

LA-6813-MS

Informal Report

UC-79p (Base Technology)

Issued: June 1977

AD A O 42801

A Bayesian Zero-Failure (BAZE) Reliability

Demonstration Testing Procedure for Components of

Nuclear Reactor Safety Systems

R. A. Waller H. F. Martz*

*Visiting Staff Member. Texas Tech University, Lubbock, TX 79409.

of the University of California

Affirmative Action/Equal Opportunity Employer

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-7405-ENG. 36

W-7405-ENG. 36 darras

This work was supported by the US Energy Research and Development Administration, Division of Reactor Development and Demonstration, and Office of Naval Research Contract N00014-75-C-0832.

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$5.00 Microfiche \$3.00

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Facey, Research and Development Administration, nor any of their employees, nor any of their contractors, subundractors, or their employees, makes any warrants, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or undiffused of any information, apparatus, product, or princes disclosed, or repressing that its use would not infringe privately owned

TABLE OF CONTENTS

NOT	ATION	iv
ABS	TRACT	vii
I.	INTRODUCTION	1
II.	BAYESIAN RELIABILITY DEMONSTRATION TESTING	5
III.	SELECTING A GAMMA PRIOR DISTRIBUTION	8
IV.	BAYESIAN ZERO-FAILURE (BAZE) RELIABILITY	
	DEMONSTRATION TESTING	13
v.	EXAMPLE	23
VI.	PRIOR DISTRIBUTIONS AND ANALYSIS FOR SELECTED	
	COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS	31
VII.	SUGGESTED BAZE TEST PLANS FOR SELECTED COMPONENTS	
	OF NUCLEAR REACTOR SAFETY SYSTEMS	33
ACK	NOWLEDGMENTS	43
REF	ERENCES	52
APP	ENDIX A. Some Useful Figures and Tables for	
	the BAZE Procedure	54
APP	ENDIX B. A Procedure for Selecting a Gamma	
	Prior Distribution	70

See 1473)

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

NOTATION

a	- prior shape parameter
b	- prior scale parameter
b ₀	- reference prior scale parameter
BAZE	- <u>Bayesian Zero-Failure</u>
BWR	- Boiling Water Reactor
CRBR	- Clinch River Breeder Reactor
ERDA	- Energy Research and Development
	Administration
f/h	- failures per hour
f(\lambda)	- prior probability density function of
	the failure-rate λ
$f(\lambda 0 \text{ failures})$	- posterior probability density function of
	the failure-rate λ conditional on 0 observed
	failures in a test of nt unit-hours
Υ	- posterior assurance
(1.0-γ)	- posterior risk
I(a,x)	- incomplete gamma function
	$-\int_{0}^{x} y^{a-1} e^{-y} dy$
k	- discrimination ratio (λ_1/λ_0)
λ	- failure-rate
λ ₀	- specified failure-rate
λ ₁	- criterion failure-rate (k\lambda_0)
λ*, λ*	- generic failure-rate

- $50(1-p_0)$ th percentile of a gamma prior LL distribution; lower prior limit - Liquid Metal Fast Breeder Reactor LMFBR MFR - Median Failure Rate MTTF - Mean Time to Failure n - number of test units - required number of test units nn - unit-hours of testing nt (nt) - required unit-hours of testing - prior assurance Po P(.) - probability P(x failures | λ) - conditional probability of x failures in a test of nt unit-hours with an underlying failure-rate of λ for each item P(0 failures) - unconditional probability of passing the BAZE test; unconditional probability of O failures in a test of nt unit-hours P(0 failures $|\lambda_{\star} \le \lambda \le \lambda^{\star}$) - conditional probability of passing the BAZE test; conditional probability of 0 failures in a test of nt unit-hours P(x failures) - unconditional probability of x failures in a test of nt unit-hours $P(\lambda_{\star} \leq \lambda \leq \lambda^{\star} | x \text{ failures})$ - conditional probability that the failurerate is contained in the interval $[\lambda_*, \lambda^*]$ given x failures in a test of nt unit-

hours

- Posterior Operating Characteristic POC - Pressurized Water Reactor PWR - $100(\gamma)$ th percentile of the standard gamma θγ distribution - required test duration t₀ - test duration t - $50(1+p_0)$ th percentile of a gamma prior UL distribution; upper prior limit - failure-time random variable X

A BAYESIAN ZERO-FAILURE (BAZE) RELIABILITY DEMONSTRATION TESTING PROCEDURE FOR COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS

Abstract

A Bayesian-Zero-Failure (BAZE) reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribution on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The procedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation. The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

I. INTRODUCTION

Most government and military contracts for hardware development include a numerical reliability requirement in the specifications. For example, a certain recent contract required an overall system failure-rate no larger than 11.64 x 10⁻⁶ f/h. In addition, most contracts require quantitative demonstrated assurance that such a requirement has been met. MIL-STD-781C[†] provides a standard which can be used to demonstrate such a requirement for times-to-failure that are exponentially distributed. The standard may be used for preproduction (qualification) tests, as well as production reliability acceptance (demonstration) tests. A typical reliability demonstration statement is that a failure-rate requirement of X failures/h be demonstrated with Y% confidence.

The purpose of this report is to develop a Bayesian reliability demonstration testing procedure for exponentially distributed failure times which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The procedure will also be used to develop suggested test plans for various components used in nuclear power reactor safety systems. This procedure may be used to verify specified and projected component failure-rates in LMFBR safety systems. However, the procedure is a general one and its use is not restricted to nuclear power

^{*}MIL-STD-781C "Reliability Qualification and Production Acceptance Tests: Exponential Distribution," Washington, D.C.: U.S. Government Printing Office, (Draft), August, 1976.

safety systems. It may also be used to demonstrate reliability for such equipment categories as ground equipment, shipboard equipment, avionic equipment, weapons systems, and surveillance equipment.

Over the past two decades numerous classical reliability demonstration testing methods have been devised for various failuretime distributions. Classical demonstration test plans for components having an exponential failure-time distribution (constant
failure-rate) may be fixed time (Type I Censoring), fixed number
of failures (Type II Censoring), or sequential tests. In addition,
such tests may be conducted either with or without the replacement
of failed items when failures occur during the test. One example
of a classical procedure is MIL-STD-781C which gives various test
procedures derived under the assumption of a constant failurerate. These tests are based on various levels of producer's and
consumer's risk, design ratios, and the confidence level of the
test. In these tests, a simple statistical hypothesis of the
form

H: $\lambda = \lambda_0$ (specified failure-rate)

A: $\lambda = \lambda_1$ (maximum acceptable failure-rate)

is tested, where λ is the (unknown) failure-rate of the device and $\lambda_1 > \lambda_0$. The producer's risk is the probability that, if H is true, A will be accepted, while the consumer's risk is the probability that, if A is true, H will be accepted. The design

ratio is defined as the ratio of λ_1 to λ_0 . The text by Mann, Schafer, and Singpurwalla (1974) gives an excellent discussion of the basis upon which these and other classical test plans have been developed.

In practice, it is often the case that the reliability parameters of interest, such as MTTF, reliable life, failure-rate, etc., most realistically should be treated as random variables and not as constant values. The statistical distribution which expresses the true underlying variation in the parameter is called the prior distribution of the parameter (when treated as a random variable). This approach has been taken in previous reactor safety analyses, such as the Rasmussen study.* In that study, the prior distribution for the reactor component failure-rates was taken to be the log-normal distribution.** Such an approach permits the reliability quantity of interest to vary randomly due to such factors as environmental effects, plant-to-plant differences, maintenance effects, and different operational demands.

By treating the parameter as a random variable, a Bayesian approach may be considered. The main advantage of the Bayesian approach is that the resulting estimates are computed from all available information, and not just narrowly defined test data

^{*}WASH 1400 Appendix III

^{**}Ibid., p. II-40

of precise content. Rather, there exist two sources of information regarding the Bayesian procedure. One source of information, the so-called "prior information," expresses the sum total of engineering judgment and belief concerning the underlying prior distribution of the parameter of interest. It is precisely this distribution which expresses the inherent variability of the parameter itself. The other source of information is the statistical model used to describe either the time-to-failure data or the test results themselves. Both sources of information are combined via Bayes Theorem [see Waller and Martz (1975)] to produce a statement such that the probability that the failure-rate does not exceed the specified value is Y%.

Such an approach is particularly applicable for deriving test plans for demonstrating the component failure rates of proposed nuclear reactors. The reason for this is that failure data are becoming available for similar components in use in existing power reactor systems throughout the world. These data, which are continuously being compiled and reported in numerous data base systems, represent the "prior information" for similar components to be used in advanced reactor systems, such as LMFBR systems.

The resulting Bayesian test plans are generally resourceeffective, due to the use of all available information and
judgment concerning the parameter of interest. If the prior
information supports an adequately reliable component, then less
testing will usually be required compared to the classical case.

If the opposite is true, then more testing may be required. A general introduction to the use of Bayesian methods in reliability is given by Waller and Martz (1975), (1976a), (1976b).

A brief review of Bayesian reliability demonstration procedures is given in Section II. A procedure for choosing the prior distribution is presented in Section III. The BAZE procedure is developed in Section IV. Section V contains an example illustration of the method, as well as an examination of the sensitivity of the results to the chosen prior distribution. Appropriate prior distributions are fitted to various components used in nuclear power systems in Section VI. Section VII presents a selection of sample BAZE test plans for these reactor components.

II. BAYESIAN RELIABILITY DEMONSTRATION TESTING

The state of the art of Bayesian reliability demonstration test procedures will now be reviewed. One of the earliest references to Bayesian reliability demonstration plans is that of Bonis (1966). Since that time numerous Bayesian schemes have been developed. Easterling (1970) presented a somewhat modified Bayesian demonstration procedure. Schafer and Singpurwalla (1970) developed a sequential Bayes procedure for obtaining required test plans. Schafer (1969), (1971), and (1973) has considered three types of Bayesian plans: (1) Bayesian fixed time tests, (2) mixed Bayesian/classical, and (3) Bayesian sequential tests. Following along these same lines, Goel et al., (dates

unknown) developed Bayesian plans for slightly different criteria. Blumenthal (1973) has also developed Bayesian test plan procedures. Guild (1968), (1973) has developed what he refers to as "median failure rate" (MFR) reliability demonstration plans. Other Bayesian plans have also been considered by Balaban (1969), (1975) and Ramos (1970). Joglekar (1975) discusses several of these Bayesian testing schemes. Recently, Goel and Joglekar [1976] have prepared a comprehensive account of the state of the art of Bayesian reliability acceptance sampling. This five-part series provides an excellent introduction to the subject.

One of the major problems with most Bayesian test plans is the relative difficulty in obtaining a desired plan in practice. This is due to the presence of additional prior parameters, as well as the relative complexity of the method. For example, most of the above Bayesian plans are derived for a constant failure-rate model and a gamma prior distribution on the failure-rate [see Waller and Martz (1975)].

The gamma prior distribution is the natural conjugate prior distribution for the constant failure-rate model. Schafer (1969) investigated data from 32 different equipments and found that in 29 cases a gamma prior distribution adequately fit the data. Others have likewise observed the suitability and versatility of the gamma prior distribution. For these reasons it is also considered here. However, it is frequently not an easy task to

identify an appropriate gamma prior distribution and, once this has been done, to obtain the required test plan. The choice of test plan criteria, e.g., the consumer and producer risks that are to be controlled, can also complicate the determination of the required plan. Wertain criteria yield plans that are simple to determine. One of the easiest of the above Bayesian procedures to use in practice is that given by Guild (1973). A more general version of this procedure is developed in Section IV for use here. An earlier version of this BAZE procedure was presented by Martz and Waller (1976c). The current BAZE procedure contains a more useful and practical procedure for selecting the prior distribution, which has been incorporated into the BAZE procedure itself. The new procedure also contains a simple method for examining the sensitivity of the resultant BAZE test plan to the chosen prior distribution. This serves to make the method more useful in practice.

Three somewhat distinctive aspects of the procedure should be mentioned before we begin the development. First, the criterion upon which the procedure is based is simple, pertinent, and easy to grasp. Second, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution. Third, the procedure is straightforward and easy to apply in practice, with only a few simple graphs and tables and pocket calculator required. Together these provide a useful Bayesian procedure for a large variety of applications.

III. SELECTING A GAMMA PRIOR DISTRIBUTION

We assume that the time-to-failure of interest is an exponentially distributed random variable with failure-rate parameter λ . For Bayesian analyses in this model, the family of gamma distributions with probability density functions given by

$$f(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}, \lambda, a, b > 0$$
 (1)

provides conjugate prior models for λ . In practice, an engineer must select a member of this family as the prior distribution to be used in determining the BAZE test plan to be discussed in the next section. The selection of a particular prior distribution is accomplished by identifying values for the prior shape parameter a and prior scale parameter b. The parameter a can be further interpreted as the number of pseudo failures in a prior life test of duration b pseudo hours. The mean and variance of λ are given by (a/b) and (a/b^2) , respectively.

Some additional benefits in using a gamma prior distribution are as follows:

a. The two parameters give sufficient flexibility to model a variety of shapes of prior distributions likely to be encountered in practice. The following indicate the possible shape characteristics of a conjugate gamma prior distribution.

p>0	L-shaped or decreasing	Exponential	Unimodal with mode at b(a-1)
	0 <a<1< td=""><td>a=1</td><td>a>1</td></a<1<>	a=1	a>1

- b. The positive skewness can account for general behaviors of assessed data in which less likely but large deviations may occur (such as abnormally high failure-rates due to batch defects, environmental degradation, and other outlier causing effects).
- c. In practice, the gamma family often satisfactorily fits observed data [see Schafer (1969)].
- d. The positively skewed nature of the gamma family provides a protective, positive-type bias which is retained when the distribution is propagated by means of a Bayesian analysis.

A simple method for determining values for a and b will now be described. The method requires an engineer to provide upper and lower percentile values. Once these are given, a simple graphical or table look up, in addition to a few simple calculations, yields the corresponding values of a and b.

The engineer must provide two values of the failure-rate λ , referred to as the <u>lower prior limit</u> (LL) and <u>upper prior limit</u> (UL), such that

$$P(\lambda < LL) = P(\lambda > UL) = (1.0-p_0)/2,$$
 (2)

where p_0 is required to be equal to one of the values 0.95, 0.90, or 0.80, and where LL < UL. That is, LL and UL are specified such that there is an equal $50(1.0-p_0)$ % chance that the true (unknown) failure-rate is either less than LL or greater than UL, respectively. Thus LL and UL are the respective $50(1.0-p_0)$ th and $50(1.0+p_0)$ th percentiles of the prior gamma distribution. For example, suppose that an engineer's best prior judgement or belief is that $P(\lambda < 1.0x10^{-7}f/h)=5%$ and that $P(\lambda > 1.0x10^{-5}f/h)=5%$. Thus $(1.0-p_0)/2 = 0.05$, $p_0 = 0.90$, $LL = 1.0 \times 10^{-7} f/h$, and $UL = 1.0 \times 10^{-7} f/h$ 1.0×10^{-5} f/h. The quantity $100p_0$ % is the prior assurance that the interval (LL, UL) contains the failure-rate of interest. Since engineers are increasingly becoming accustomed to working with 5% error probabilities, it is likely that $p_0 = 0.90$ will normally be used. However, 80% and 95% prior assurances can also be used. For example, in the Rasmussan study (WASH-1400), 90% prior assurance was considered. If the prior assurance is free to be selected, it is recommended that $p_0 = 0.90$ be used. In this case, LL and UL become the lower and upper prior 5% bounds, respectively, on the failure-rate.

A mathematical justification of the procedure to be described is given in Appendix B. A step-by-step outline of the procedure is as follows:

- Step 1: Specify the values of LL, UL, and $p_0 = 0.80$, 0.90, or 0.95 that represent the totality of your best judgement and belief about the failure-rate λ of interest. These values are selected in accordance with (2).
- Step 2: Compute the value of log10 (UL/LL).
- Step 3: For the value of p₀ chosen in Step 1 and the value of log₁₀ (UL/LL) calculated in Step 2, read the required value of shape parameter a from Figure Al (see Appendix A).
- Step 4: For the value of p₀ from Step 1 and for the value of a found in Step 3, read the value of b₀ from Figure A2 (see Appendix A).

 Note: Table A2 (see Appendix A) may be used in lieu of Figure A2 to obtain b₀, depending upon which is more convenient to use. If necessary, interpolate in Table A2.
- Step 5: For the value of LL from Step 1 and the value of b₀ from Step 4, calculate the required value of the scale parameter b according to

$$b = b_0 (1.0 \times 10^{-6} f/h) / LL.$$

Let us illustrate this procedure by means of an example.

Example: For a certain component of interest, suppose it is is believed that the failure-rate λ is such that $P(\lambda < 1.0 \times 10^{-7} f/h) = 5 \text{ and } P(\lambda > 1.0 \times 10^{-5} f/h) = 5 \text{ }.$ It is required to identify the particular gamma distribution which is consistent with this belief.

Step 1:
$$LL = 1.0 \times 10^{-7} f/h$$
, $UL = 1.0 \times 10^{-5} f/h$, and $P_0 = 0.90$.

Step 2:
$$\log_{10}(UL/LL) = \log_{10}(10^2) = 2.0$$
.

Step 3: From Figure Al, for
$$p_0 = 0.90$$
 and $log_{10}(UL/LL) = 2.0$, we find $a = 0.84$.

Step 4: For a = 0.84 and
$$p_0 = 0.90$$
, Table A2 yields $b_0 = 2.6723 \times 10^4 h$.

Step 5: The required scale parameter b becomes

$$b = \frac{(2.6723 \times 10^{4} \text{h}) (1.0 \times 10^{-6} \text{f/h})}{(1.0 \times 10^{-7} \text{f/h})}$$
$$= 2.6723 \times 10^{5} \text{ h}.$$

By means of the incomplete gamma function code INCGAM (written by D.E. Amos and S.L. Daniel of Sandia Laboratories, Albuquerque, NM, November 1974), the actual tail-area probabilities for a gamma distribution with parameters a=0.84, $b=2.6723\times10^5$ h are 0.05, as desired. However, this is not always the case. Due to numerical and round-off errors, the upper tail area may not be exactly equal to $(1-p_0)/2$. In Step 5, the denominator of the expression for b was LL. This

was done to insure that the lower tail area will always be $(1-p_0)/2$, while the upper tail area may depart somewhat from the desired value $(1-p_0)/2$. We chose to hold the lower tail area fixed because of the positively skewed nature of the gamma distribution.

One final note concerns the usefulness of Figures Al and A2 in practice. The effective range of values of a considered in Figures Al and A2 is between 0.25 and 10.0. Experience with fitting gamma prior distributions to failure-rate data indicates that this range should contain nearly all situations likely to be encountered in practice. This range is consonant with ratios of UL to LL roughly between 0.3 and 4.0 orders of magnitude (powers of 10).

IV. BAYESIAN ZERO-FAILURE (BAZE) RELIABILITY DEMONSTRATION TESTING

The BAZE reliability demonstration procedure was developed by Martz and Waller (1976c). This procedure is given here in an expanded form which includes the procedure for fitting a gamma prior distribution, described in the preceding section, and other features as well.

This section describes how to construct and apply Bayesian fixed time demonstration test plans of the replacement type, called BAZE plans, for systems/subsystems/components having a constant failure-rate. The BAZE procedure is appropriate for testing time-dependent chance failure mechanisms.

To begin, consider a device, henceforth referred to as a "component," having an exponential failure time distribution with failure-rate λ . Thus, the failure-time random variable X of this component is assumed to follow the well-known exponential probability density function given by

$$f(x|\lambda) = \lambda e^{-\lambda x}, x \ge 0, \lambda > 0.$$
 (3)

As mentioned earlier, it is assumed here that the prior distribution of λ is the natural conjugate gamma distribution with probability density function given by

$$f(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}, \lambda, a, b > 0,$$
 (4)

where a is the prior shape parameter and b is the prior scale parameter.

The test plans considered here assume that n identical components are tested each for a prespecified length of time t, the test duration. The quantities n and t are to be determined consistent with the following statistical test criterion. The test criterion is as follows: if no failures occur, the test is passed, while if one or more failures occur, the test is failed. Thus the test is terminated either at the prespecified test time t or at the time of the first component failure, whichever occurs first. Such "zero-failure" test plans usually require the smallest unit-hour test combination nt for a stated confidence, and are thus test resource-effective. In addition,

by restricting consideration to zero-failures, such test plans are easy to obtain. Now the probability of obtaining exactly zero failures during the test is given by

$$P(0 \text{ failures} | \lambda) = e^{-nt\lambda}.$$
 (5)

The posterior distribution of λ is also a gamma distribution with scale parameter (b + nt) and shape parameter a. Thus, conditional on zero failures in nt unit-hours of testing, the posterior probability density function of λ becomes

$$f(\lambda \mid 0 \text{ failures}) = \frac{(b+nt)^a}{\Gamma(a)} \lambda^{a-1} e^{-(b+nt)\lambda}.$$
 (6)

In order to find the required unit-hour test combination nt, some criterion regarding the desired confidence level of the demonstration test must be given. The plans presented here satisfy the posterior risk criterion given by

$$P(\lambda \le k\lambda_0 | 0 \text{ failures}) = \gamma,$$
 (7)

where P(·) is a probability function. Here λ_0 is the specified failure-rate. If we define $\lambda_1 \equiv k\lambda_0$, then λ_1 is referred to as the test criterion failure-rate and k is known as the discrimination ratio. The test criterion in (7) is interpreted as follows. In a test that is passed, i.e., zero failures occur, the probability is 100γ % that the component failure-rate does not exceed $(k\lambda_0)$. Here(1.0- γ) will be referred to as the posterior risk and γ will

be referred to as the <u>posterior assurance</u>. The word "posterior" denotes that the assurance pertains to tests which have been passed. Of course, values of γ and k are required in order to determine the required test plan. More will be said about the selection of these values later.

Recall that the test procedure requires that n items be placed on life test for t hours. If no failures occur, the test is passed. Now, if the test is passed, it may be claimed that a failure-rate not exceeding $(k\lambda_0)$ has been demonstrated with 100γ % posterior assurance. If a single failure occurs, the test is failed, and the forgoing claim cannot be made.

The BAZE procedure described requires specification of values for the following five quantities:

- LL(lower prior limit)
- UL(upper prior limit)
- p₀ (the prior assurance)
- λ_1 (the criterion failure-rate)
- γ (the posterior assurance).

It is noted that the criterion failure-rate λ_1 may be equal to the specified failure-rate λ_0 . In this case k=1; otherwise, k\neq 1. The procedure is developed by writing

$$p(\lambda \leq \lambda^* | 0 \text{ failures}) \approx \int_0^{\lambda^*} \frac{(b+nt)^a}{\Gamma(a)} \lambda^{a-1} e^{-(b+nt)\lambda} d\lambda$$
$$\approx \frac{I(a, [b+nt]\lambda^*)}{\Gamma(a)}, \qquad (8)$$

where I(a,x) is the widely studied incomplete gamma function defined by

$$I(a, x) = \int_{0}^{x} y^{a-1} e^{-y} dy.$$
 (9)

Tables and computer routines for evaluating this function are widely available for use in our development. Hence, when LL, \mathbf{L} , \mathbf{p}_0 , $\mathbf{\gamma}$, and \mathbf{h}_1 are specified, the step-by-step procedure for obtaining the required BAZE test plan is as follows:

- Step 1: For the specified values of LL and UL, compute the value of $\log_{10}(\text{UL/LL})$.
- Step 2: For p₀ = 0.80, 0.90, or 0.95, and the value of $log_{10}(UL/LL)$ from Step 1, obtain the value of the prior shape parameter a from Figure Al (Appendix A).
- Step 3: For p_0 and the value of a from Step 2, obtain the value of b_0 from either Figure A2 or Table A2.
- Step 4: For the value of LL and b_0 from Step 3, calculate the value of the prior scale parameter b, in appropriate time units, according to

$$b = b_0 (1.0 \times 10^{-6} f/h)/LL.$$

Step 5: Obtain the value of θ_{γ} from Table Al (Appendix A) for the value of a found in Step 2 and γ . Note:

Table Al may be used directly for a = 0.0001

(0.0001) 0.01 (0.001) 0.10 (0.01) 1.0 (0.1) 5.0 (0.5) 10.0 (1.0) 50.0 and $\gamma = 0.99$, .975, .95, .90, .85, .80, .75, .70, .60, .50. For other values of a and/or γ , either interpolate in Table Al or solve the equation given by

$$\int_{0}^{\theta \gamma} \lambda^{a-1} e^{-\lambda} d\lambda - \gamma \Gamma(a) \approx 0$$

for θ_{γ} . It is mentioned here that in constructing Table Al the incomplete gamma function in the above equation was numerically calculated by use of the code INCGAM, written by D.E. Amos and S.L. Daniel of Sandia Laboratories, Albuquerque, NM, November 1974. The above equation was solved on a CDC 6600 computer by use of the root-solving code ZEROIN, written by L.F. Shampine and H.A. Watts, also of Sandia Laboratories, September 1970.

Step 6: With λ_1 and the θ_γ value from Step 5, and the value of b from Step 4, solve for the required BAZE unithours of test (nt) given by

$$(nt)_0 = (\theta_{\gamma} - b\lambda_1)/\lambda_1.$$

THE REAL PROPERTY OF THE PARTY OF THE PARTY

Note: Negative values of $(nt)_0$ can occur. A negative value of $(nt)_0$ can be interpreted as a demonstration of the failure-rate λ_1 , at the stated posterior assurance level, without the need for further testing. This situation occurs whenever

- the prior distribution satisfactorily meets the assurance requirement.
- Step 7: Calculate the sensitivity of the final plan and the posterior assurance to errors in the prior assurance, as well as the sensitivity of the final plan to errors in the posterior assurance and criterion failure-rate (cf Section V. Example).
- Step 8: Identify the final plan to be used based on the results of the sensitivity analysis conducted in Step 7 and the unconditional probability of passing the test [from (10) or (11) below].
- Step 9: The required test duration t_0 and number of test units n_0 is given by any pair of values satisfying $n_0t_0 = (nt)_0$, where $(nt)_0$ is the required unit-hours of test from Step 8 and n_0 is a positive integer. The values n_0 and t_0 are selected by outside considerations, such as test time constraints and the number of test units available.

It is noted here that if a=1, b=0, and $\gamma=0.50$, then the BAZE test plan is exactly the same as the classical test plan. If a=1 and $\gamma=0.50$, then the BAZE test plan will always require less unit-hours of testing, depending upon the magnitude of b.

For a specified fixed value of a, the required BAZE unit-hours of test decreases as γ decreases, b increases, or k increases. Consequently, for given values of a and b, an opportunity is

present for the test designer to trade between decreasing testing costs [decreasing (nt) $_0$] and decreasing test assurance [decreasing γ and/or increasing λ_1]. Such tradeoffs are illustrated in Section V.

Suppose that high-reliability components with failure-rate on the order of magnitude of 10⁻⁶ f/h are being considered. If the prior mean is in this range, then it is true that as the spread between LL and UL increases both a and b will generally decrease. This is seen in Figures Al and A2. In fact, in situations such as this, a will frequently be less than one. This situation occurs whenever the prior variance is quite large, i.e., whenever the prior distribution is diffuse [see Waller and Martz (1975)]. Such situations frequently occur in reliability and this fact has motivated the fine grid of a values less than one considered in Table A1.

A quantity of particular interest to the producer is the unconditional probability of passing the test when using a test plan with (nt) unit-hours of test. The unconditional probability of not passing the test is, in some sense, the "producer's risk" of the BAZE procedure. The probability of passing the test must be sufficiently large in order that the producer be willing to conduct the test. This probability also conveys to the consumer the likelihood that the required posterior assurance will be realized. This probability is given by

$$P(Passing the Test) = P(0 failures) = [b/b+nt)]^a$$
. (10)

Related to this quantity is the conditional probability of passing the test when it is known that the true (unknown) failure-rate λ lies within a given interval $[\lambda_*, \lambda^*]$, where $0 \le \lambda_* < \lambda^* \le \infty$. In this case we have

P(Passing the Test
$$|\lambda_{\star} \le \lambda \le \lambda^{\star}$$
) =
$$\left(\frac{b}{b+nt}\right)^{a} \left[\frac{I(a,[nt+b]\lambda^{\star})-I(a,[nt+b]\lambda_{\star})}{I(a,b\lambda^{\star})-I(a,b\lambda_{\star})}\right], \qquad (11)$$

where I(a,x) is defined in (9). It is also noted that, if $\lambda_* = 0$ and $\lambda^* = \infty$, then the conditional probability of passing the test given in (11) reduces to the unconditional probability given in (10). In practice, an interval $[\lambda_*,\lambda^*]$ which is certain to contain the failure-rate can frequently be identified. If this can be done, then (11) should be used in place of (10).

What posterior assurance do we have about the failure-rate if one or more failures occur during the test, i.e., if the test is failed? Suppose that failed items are replaced as they occur during the test. Then

$$P(x \text{ failures} | \lambda) = \frac{e^{-nt\lambda} (nt\lambda)^{x}}{x!}, x = 0, 1, ...,$$
 (12)

and the posterior probability density function of λ becomes

$$f(\lambda \mid x \text{ failures}) = \frac{(b+nt)^{a+x}}{\Gamma(a+x)} \lambda^{a+x-1} e^{-(b+nt)\lambda}.$$
 (13)

Now, for any specified interval $[\lambda_*, \lambda^*]$, where $0 \le \lambda_* < \lambda^* \le \infty$, we have

$$P(\lambda_{\star} \leq \lambda \leq \lambda^{\star} | x \text{ failures}) = \frac{1}{\Gamma(a+x)} \left[I(a+x, [b+nt]\lambda^{\star}) - I(a+x, [b+nt]\lambda_{\star}) \right].$$
(14)

In particular, we have

$$P(\lambda \leq k\lambda_0 | x \text{ failures}) = I(a + x, [b + nt]k\lambda_0)/\Gamma(a + x).$$
 (15)

It is observed that, if x=0, then (15) is equal to the specified posterior assurance γ . For the criterion failure-rate $(k\lambda_0)$, as x increases (15) becomes smaller than γ . Thus, as more failures occur, we have less posterior assurance about the failure-rate not exceeding the criterion value.

Also, the unconditional probability of obtaining exactly x failures in a test of nt unit-hours duration is

$$P(x \text{ failures}) = \frac{b^{a}(nt)^{x}\Gamma(a+x)}{\Gamma(a)\Gamma(x+1)(nt+b)^{a+x}}.$$
 (16)

The statistical performance characteristics of the chosen plan are completely summarized by means of the <u>posterior operating</u> characteristic (POC) curve. This curve is obtained by plotting $P(\lambda \le \lambda * \mid 0 \text{ failures})$ as a function of $\lambda *$. Unlike classical OC curves, the POC curve is a cumulative distribution function. This probability may be computed from (8).

We cannot emphasize enough that both the consumer and producer must be willing to pay the price for increasing assurance of small failure-rates by increasing the unit-hours of testing.

This will be illustrated in the example in the next section.

V. EXAMPLE

In order to fully illustrate the BAZE procedure, consider the following example. Consider a certain component whose random failure-rate is required to be demonstrated. How many unit-hours of testing with no countable failures are required in order to be able to claim that $P(\lambda \le 2.0 \times 10^{-6} f/h) \ge 0.70$, after the test has been passed? From past experience and engineering judgement, suppose it is believed that

$$P\{\lambda \le 8.5 \times 10^{-8} f/h\} = P\{\lambda \ge 4.8 \times 10^{-6} f/h\} = 5\%.$$

Thus $\lambda_1 = \lambda_0 = 2.0 \times 10^{-6} \, \text{f/h}$, $\gamma = 0.70$, LL = $8.5 \times 10^{-8} \, \text{f/h}$, UL = $4.8 \times 10^{-6} \, \text{f/h}$, and $p_0 = 0.90$. Following the step-by-step procedure in the preceding section yields the following results:

Step 1: $\log_{10}(UL/LL) = 1.75$.

Step 2: For $log_{10}(UL/LL) = 1.75$ and $p_0 = 0.90$, we read a = 1.0 from Figure Al.

Step 3: For $p_0 = 0.90$ and a = 1.0, we obtain $b_0 = 5.1293 \times 10^4 h$ from Table A2.

Step 4: For LL = 8.5×10^{-8} f/h and b₀ = 5.1293×10^{4} h, we calculate

 $b = (5.1293 \times 10^{4} h) (1.0 \times 10^{-6} f/h)/(8.5 \times 10^{-8} f/h)$ $= 603.44 \times 10^{3} h.$

Step 5: For a = 1.0 and γ = 0.70, we obtain $\theta_{0.70}$ = 1.203973 from Table Al.

Step 6: For $\lambda_1 = 2.0 \times 10^{-6} f/h$, $\theta_{0.70} = 1.203973$, and $b = 0.60 \times 10^{6} h$, the required BAZE unit-hours of test (nt)₀ are calculated to be

 $(nt)_0 = [1.203973 - (0.60x10^6 h) (2.0x10^{-6} f/h)]/(2.0x10^{-6} f/h)$ = 1987 unit-hours.

The POC curve for this plan is plotted in Figure 1.

Step 7: Let us first examine the sensitivity of the BAZE plan to changes in the posterior assurance y and criterion failure-rate λ_1 . We express the varying criterion failure-rate λ_1 as a function of kaccording to $\lambda_1 = k\lambda_0 = k(2.0x10^{-6}f/h)$. Table I gives the resultant test plan as a function of a selected grid of values of k and γ . The plan (nt) = 1987 unit-hours is indicated in table for k = 1.0and $\gamma = 0.70$. It is clearly observed that the required unit-hours of test increase as y increases and k decreases. It is observed that the optimal test plan is quite sensitive to increasing y and also somewhat sensitive to decreasing k, for the range of k indicated. The "zeros" indicate those situations in which the prior distribution is sufficient to guarantee that the risk is at or below the specified level, without the need for

additional testing.

Fig. 1. The POC curve for Test Plan (nt) $_{\rm o}$ = 1987 Unit-Hours of Test.

TABLE I

REQUIRED UNIT-HOURS OF TESTING FOR

SELECTED VALUES OF K AND Y

(a = 1.0,b = 0.60 x 10⁶)

v						k					
	.5	.6	.1	.8	.9	1.0	1.1	1.2	1.3	1.4	1.5
.990	*005175	3237642	2699407	2278231	1953429	1702595	1493259	1319821	1171219	1044704	735057
	3545579	2474056	2034414	1/05544	1449317	1244440	1076763	¥37033	nnettt	717457	524526
.550	2395732	1895443	1534009	1272333	1004246	897856	761646	048222	552205	45430+	390511
	1752565	1318321	1044704	839116	677214	551293	446630	359410	283010	255355	16/528
.850	1297125	987933	755086	595700	453456	346560	262327	190457	154665	11543	363/3
.000	1039-39	741198	549549	405894	294132	204717	131553	70599	19015	0	
750		555245	390210	266434	170163	93147	30134	0	•	0	
.700	563973	403311	259981	152483	68874	1987	0		i	0	(
.600	316291	163576	54494	0		0			0	0	
.500	93147	0	ė					•		0	

Let us now determine the sensitivity of the BAZE plan to changes in the prior assurance. Suppose that, regarding the prior distribution, each tail area is actually 2.5%, rather than 5%, as we have assumed. Applying Steps 1-4 for $p_0 = 0.95$ yields a = 1.36 and $b = 929.70 \times 10^3 h$. Table II gives the resultant BAZE test plan for the same set of values of y and k used in Table I. Table III gives the percentage change in the BAZE plans of Table II relative to the "nominal" plans given in Table I. It is observed from Table III that the BAZE plans are somewhat sensitive to a 100% error (assumed 5% when, in fact, 2.5%) in the tail areas of the prior distribution. Now, if a = 1.36 and $b = 929.70x10^3h$, the "actual" posterior assurance of the plan (nt) = 1987 unit-hours is easily computed from (8) to be 75%, rather than 70% as required. Thus, we unknowingly would have more posterior assurance than required. Similarly, for any other BAZE test plan in Table I, we could compute the "true" posterior assurance relative to this "error" in fitting the prior distribution. Similarly, Tables IV and V consider the case where the actual tail areas of the gamma prior are 10%, instead of 5%, as assumed. From Table V, it is observed that the BAZE plans are fairly insensitive to this 100% error in the prior tail-area

TABLE II. Required Unit-Hours of Testing for Selected Valued of k and γ $(a = 1.36, b = 929.70 \times 10^3 h)$

4/2	.5.0	9.0	7.0	9.6	o.c	1.0	1.1	1.2	1.3	1.4	1.5
0050	. 590 3464155. 283	2833963.	1963. 23 1945. 204 2971. 1779308. 1568377. 1195798. 1251982. 1130 290. 1025984.	2042971.	1779308.	1568377.	1195799.	1251982.	1130 290.	1025594.	945346.
275.0	.175 2519141. 217	2126785.	6785. 1775915. 1512558. 13C7856. 114407C. 1010064.	1512558.	1307856.	114407C.	1010064.	R08393.	803901.	72290A.	652714.
0. 50	e 50 1986835. 160	1600696.	1324892.	1118021.	957131. 829418.	823418.	723197.	635348.			442279.
00000	1360130.	101	883565.	731957.	613942.	41956F.	642332.	377972.		276832.	
0.950	950 1016011.	792426.	632390.	511810.	418284.	343456.	292232.				
004.0	172714.	584929.	34929. 457451. 359194.	359194.	282619.	221357.	171274.				37572.
0.750	587545.	434621.	325390.	243466.	179747.	128773.	87066.	52311.	22902.	0	0
C. 700	4.79704.	111422.	219790.	151066.	97615.	54853.	19867.	0.	•	0.	0.
0.50	214583.	123503.	\$9050	10427.	.0	•	0.	0	0.	0.	0.
0.5.0	49631.	0.	0.	0	0.	•	•	0	0	0	0.

TABLE III. Percentage Change in the BAZE Plans of Table II

Relative to Table I

*/	٥.	9.	۲.	8.	6.	1.0	1.1	1.2	1.3	1.4	1.5
066.	13.443%	12.468%	13.443% 12.468% 11.431% 10.326%	10.3268	9.1468	7.8838	6.5278	5.068%	3.4958	1.792%	0.0568
576.	15.240	14.037	12.733	11.314	9.764	8.065	6.194	4.124	1.820	092.0	3.667
.950	17.068	15.595	13.958	12.128	10.069	7.735	990.5	1.986	1.609	5.860	10.964
006	19.585	17.658	15.415	12.770	6.607	5.775	0.962	5.164	13.271	24.502	41.096
.850	21.602	19.217	16.290	12.614	7.858	1.465	7.587	21.392	45.026	94.782	267.49
.800	23.451	20.544	16.730	11.506	3.915	8.127	30.154	83.378	394.98		
.750	25.277	21.724	16.612	8.621	5.632	38.247	188.93				
.700	27.198	22.784	15.459	0.929	41.730 2660.6	2660.6					
009	32.155	24.254	8.377						7		
500	46.718										

TABLE IV. Required Unit-Hours of Testing for Selected Values of k and γ $(a = 0.67, b = 330.68 \times 10^3 h)$

5.0	6.0	0.7	3.0	5.0	1.0	1.1	1.2	1.3	1.4	1.5
3. 900 2866135. 22	2233563	. 79:469.	1442977	1179338.		795708.		530291.	425 985.	335536.
0.07= 2019140. 152	1526789.	1175816.	912569.	767857.		- 5900 17	0	20390	12250	52714.
. c50 1386834. 100	1 300697.		518022.	357131.		123107.	35350.		0	ö
1:1672	485947.		131957.	13952.		0			0	0.
416911.	192425.		0	0		0	0		0.	0.
727:4.	3		0.0	0.		0	0.	0.	0.	0.
0	0.			0	0.	0	0	0.	0	0
0.	0.0	0.		0	.0	0.	0.	0.	0.	0
0.	3		0.	0	0.	0	0	.0	0.	0.
0.	0.	0.	0	0.0	0.	0	0.0	0	0	0

TABLE V. Percentage Change in the BAZE Plans of Table IV Relative to Table I

-/	٥,	9.		æ,	e.	1.0	1.0 1.1 1.2 1.3 1.4 1.5	1.2	1.3	1.4	1.5
066.	28.4248	28.424% 31.000% 33.741% 36.663%	33.7418	36.6638	39.7838		43.1238 46.7078	50.5638	50.563% 54.723% 59.224% 64.111%	59.2248	64.1118
576.	34.664	38.288	42.218	46.493	51.161	56.280	61.917	68.156	75.098	82.869	91.628
.950	42.112	47.233	52.924	59.286	66.444	74.560	83.838	94.547			
006.	54.826	63.153	72.847	84.274	97.944						
.850	67.854	80.383	95.751								
908	82.890										
.750											
.700											
009											
.500											

probabilities. If a = 0.67 and $b = 330.68 \times 10^3 h$, the actual posterior assurance of the plan $(nt)_0 = 1987$ unit-hours is 66%, as compared to the desired value of 70%. In this case, we have less posterior assurance than required.

Step 8: The unconditional probability of passing the test $(nt)_0 = 1987$ unit-hours is calculated from (10) as $P(Passing the Test) = [(0.60x10^6)/(0.60x10^6 + 1987)]$ = 0.9967.

Table VI gives the unconditional probability of passing the corresponding test given in Table I. In practice, tables such as Table VI are useful to the producer in selecting the final test plan. From the results of Step 7 and this step, the final plan to be used is $(nt)_0 = 1987$ unit-hours of test.

Step 9: A single component may be tested for 1987 hours; five components for 397.4 hours; ten components for 198.7 hours; etc. If no failures occur, it may be claimed that a failure-rate of 2.0x10⁻⁶f/h or less has been demonstrated with 70% assurance.

At this point the question can be raised; namely, how many unit-hours of testing are required when using an alternate classical (standard non-Bayesian) procedure? By judicious choice of producer and/or consumer risks, it is possible to "show" that classical test plans result in either larger or smaller total unit-hours of testing. Thus, a person advocating a purely classical approach could "show" that his procedure results in

TABLE VI

THE UNCONDITIONAL PROBABILITIES OF PASSING
THE CORRESPONDING TESTS IN TABLE I

~						k					
Y	.5	.6	.7	.8	.9	1.0	1.1	1.2	1.3	1.4	1.5
.990	.130	.156	.182	.208	.235	.261	.237	.313	.339	.365	.391
975	.163	.195	.228	.260	.293	.325	.358	.390	.423	.455	.488
.950	.200	.240	.280	.320	.361	.401	.441	.491	.521	.561	.6ul
.900	.261	.313	.365	.417	.469	.521	.573	.625	.677	.730	.752
.850	.316	.380	.443	.506	.559	.633	. 596	.759	.822	.896	,949
.800	.373	.447	.522	.596	.67.1	.746	.820	.895	,959	1.000	1.000
.750	.433	.519	.606	.692	. 179	.866	.952	1.000	1.000	1.000	1.000
.700	.498	.598	.698	.797	.897	1447	1.000	1.000	1.000	1.000	1.000
.600	.655	.786	.917	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
.500	.866	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

less testing. On the other hand, a "Bayesian" can "show" the opposite to be the case. The correct answer lies in recognizing that the two procedures cannot be directly compared, due to the basic underlying philosophical difference regarding the interpretation of the failure-rate λ . In the classical approach, the failure-rate is a non-random (unknown) constant, while in the Bayesian approach it is an (unknown) value of a random variable. The proper procedure to be used should be based on this fact alone, and not on the basis of which procedure yields the smallest amount of testing. In some cases, the classical procedure will require less testing; in others, the BAZE procedure will require less. Since nuclear reactor components exhibit failure-rates which appear to be random, a Bayesian procedure, such as described here, should be used.

VI. PRIOR DISTRIBUTIONS AND ANALYSIS FOR SELECTED COMPONENTS
OF NUCLEAR REACTOR SAFETY SYSTEMS

Table III 2-1 in Appendix III of the WASH 1400 Reactor Safety Study (1975) contains assessed estimates of the failure-rates of selected components of PWR and BWR safety systems. Upper and lower bounds, as well as the median, were computed from best available data for these failure-rates. The approach used there was also a Bayesian one and the random component failure-rates were assumed to follow a log-normal prior distribution. It is remarked here that the log-normal distribution is also a two-parameter positively skewed distribution similar to the gamma distribution used here. Although failure-rates were given on a

per demand and per hour basis, depending upon the failure mode, only the time-dependent failure modes whose failure-rates are given on a per hour basis will be considered here. The upper and lower bounds were computed to be 5% bounds, respectively. That is, the probability that the given interval contains the failure-rate for any particular system is 90%. Thus $p_0 = 0.90$. These bounds are reproduced in Table VII for these same components and corresponding failure modes. If available, failure-rates corresponding to US nuclear operational experience are also given.

Gamma prior distributions have been fitted to these data by means of the procedure outlined in Section III. These prior distributions may be used in future test programs, such as those required in demonstrating the safety and reliability of planned LMFBR systems. The corresponding gamma parameters a and b, as well as the prior mean and variance, are given in Table VII. It is observed that there are only three different "shapes" of gamma priors present; namely, a = 0.50, 0.84, and 2.45. This is due to the fact that the ratio of UL to LL takes on only three different order of magnitude values; namely, 3, 2, or 1. The priors corresponding to a = 0.50 and 0.84 are quite diffuse; that is, the prior-variance is quite large for these priors.

Table VII also presents certain probabilities of interest associated with the corresponding fitted gamma prior distributions. The quantities P_1 , P_2 , P_3 , P_4 , and P_5 in Table VII represent the probabilities defined by

 $P_1 \equiv Prob. (\lambda \leq Prior Mean),$

 $P_2 = Prob.$ ($\lambda \leq Median of a Log-Normal Prior),$

 P_3 = Prop. ($\lambda \le US$ Nuclear Operating Experience Value),

 $P_4 \equiv Prob. \ (\lambda \leq Lower 5\% Limit),$

 $P_5 \equiv Prob. (\lambda \geq Upper 5% Limit).$

These probabilities were calculated by means of the incomplete gamma function code, INCGAM, mentioned in Section III. Since the values of P_2 in Table VII are all less than 0.5, the gamma prior distributions tend to favor somewhat larger failure-rates than a log-normal distribution with the same 5% tail-area probabilities. The gamma approach is slightly conservative. Further, the values of P_4 and P_5 are included as a check on the accuracy of the procedure used to fit the gamma priors. The P_4 values are all 5%, to three decimal places, while the values of P_4 deviate somewhat from the desired value of 5% for a = 0.50 and 2.45. This departure is due to errors in reading and interpolating earlier, and slightly less accurate, versions of Figure Al and Table A2, respectively.

VII. SUGGESTED BAZE TEST PLANS FOR SELECTED COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS

The purpose of this section is to propose several possible BAZE test plans for a few typical components selected from Table VII. It is emphasized that the plans given here are not

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems

		Assessed	sessed Prior Failure	ailure										
Component	Failure	Lower 5% Limit(LL)	Rates 1	Rates 1 Lower 5% Upper 5% Limit(LL) Median Limit(UL)	US Nuclear Operating Experiencel	1 a	р ₂	Prior Mean ¹	Prior Variance ³	P ₁	P ₂	a.	4	٩. د
Electric Clutch Premature	Premature Open	1×10-7	9-01×1	1×10 ⁻⁵	NA	0.84	26.72x104	3.14×10 ⁻⁶	1.18x10-11	0.64	0.31	¥	0.050	0.050
Instrumentation (Amplification, Amnuciators, Transducers, Combination)	Failure to Operate	1x10 ⁻⁷	1×10 ⁻⁶	1x10 ⁻⁵	1×10 ⁻⁶	.84	26.72x10 ⁴	.84 26.72x10 ⁴ 3.14x10 ⁻⁶	1.18×10-11	49.	н.	н.	.050	. 050
Mechanical Clutch	Failure to Open	3×10 ⁻⁸	3x10-7 3x10-6	3×10-6	NA A	.84	89.08×104		9.43x10 ⁻⁷ 1.06x10 ⁻¹²	.64	ж.	ž	.050	.050
Electric Motor	Failure to Run	3×10 ⁻⁶	1×10-5	3×10 ⁻⁵	1×10-6	2.45	2.45 18.32x10 ⁴	1.34×10 ⁻⁵	7.30×10 ⁻¹¹	65.	.42	.004	.050	. 049
Electric Motor; Pumps	Failure to Run (Extreme Envir.)	1×10-4	1×10-3	1×10 ⁻²	¥	.84	26.72×10 ¹	3.15x10 ⁻³	1.18×10 ⁻⁵	26.	Ħ.	¥	.050	.050
Relays	Failure NO Contact to Close	1×10-7	3x10 ⁻⁷	1×10-6	1×10-6	2.45	549.63x10 ⁴	4.46x10 ⁻⁷	8.11×10-14	.59	.36	.95	.050	.049
	Short Across lx10-9 NO/NC Contact	ss lx10-9	1×10 ⁻⁸	1×10-7	1×10-6	.84	26.72x10 ⁶	3.14×10 ⁻⁸	1.18x10 ⁻¹⁵	.64	ੜ.	.31 1.00	.050	.050
	Open NC Contact	3×10-8	1×10-7	3×10 ⁻⁷	1×10 ⁻⁶	2.45	18.32×10 ⁶	2.45 18.32x10 ⁶ 1.34x10 ⁻⁷	7.30x10 ⁻¹⁵	.59	.42	.42 1.00	.050	.049

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems (Continued)

Component Made Limit(II) Median Limit(III) Experience			Assessed Prior Failure Rajes	Prior	Pailure	US Nuclear			1						
Contacts	Component	Failure	Lower 58 Limit(LL)	Median	Upper 54 Limit (UL)		•	p ₂	Mean	Variance ³	P.	P2	P ₃	P4	P ₅
External Leak or Rupture External Leak or Rupture Transfer Open Circuit Short Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ Open Open Short Premature 3x10 ⁻⁸ 3x10 ⁻⁶ Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁸ Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷	Switches;	Contacts	1×10-9	B-01×1	1×10-7		.84	26.72×10 ⁶	3.14×10 ⁻⁸	1.18×10-15	0.64	0.31	0.63	0.050	0.050
External Leak or Rup Jare Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ Transfer Jopen Circuit Short Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ Open Open Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁵ Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ Rupture The Rupture of the PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ Rupture	Valves (MOV);	External Leak or Rupture													
ters;	Jalves (AOV)	External Leak or Rup are													
Formers Short Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ 1x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ 1x10 ⁻⁷ 1x10 ⁻⁶ 1x10 ⁻⁷ 1x10 ⁻⁶ 1x10 ⁻⁷ 1x10 ⁻⁸ 1x10 ⁻⁸ 1x10 ⁻⁷ 1x10 ⁻⁸ 1x10	Nrcuit Breakers;	Premature Transfer	3×10-7	1×10-6	3×10-6	1×10 ⁻⁶	2.45	18.32×10 ⁵	1.34×10 ⁻⁶	7.30×10 ⁻¹³	.59	.42	.42	.050	.049
Formers Short Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ NA 2.45 18.32x10 ⁵ 1.34x10 ⁻⁶ 7.30x10 ⁻¹³ Open 1x10 ⁻⁶ 3x10 ⁻⁶ 1x10 ⁻⁵ 1x10 ⁻⁶ 2.45 54.96x10 ⁴ 4.46x10 ⁻⁶ 8.11x10 ⁻¹² Short to PWR 1x10 ⁻⁹ 3x10 ⁻⁸ 1x10 ⁻⁷ NA .84 89.08x10 ⁶ 9.43x10 ⁻⁷ 1.06x10 ⁻¹² Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ NA .84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵ Stort to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ NA .84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵	Fransformers;	Open Circuit													
Premature 3x10 ⁻⁷ 1x10 ⁻⁶ 3x10 ⁻⁶ NA 2.45 18.32x10 ⁵ 1.34x10 ⁻⁶ 7.30x10 ⁻¹³ Open 1x10 ⁻⁶ 3x10 ⁻⁶ 1x10 ⁻⁵ 1x10 ⁻⁶ 2.45 54.96x10 ⁴ 4.46x10 ⁻⁶ 8.11x10 ⁻¹² Short to 3x10 ⁻⁸ 3x10 ⁻⁸ 1x10 ⁻⁷ 1x10 ⁻⁷ .84 89.08x10 ⁴ 9.43x10 ⁻⁷ 1.06x10 ⁻¹² Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ NA .84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵ Stress (TEST) Rupture	Fransformers	Short													
Open 1x10 ⁻⁶ 3x10 ⁻⁶ 1x10 ⁻⁵ 1x10 ⁻⁶ 2.45 54.96x10 ⁴ 4.46x10 ⁻⁶ 8.11x10 ⁻¹² Short to 3x10 ⁻⁸ 3x10 ⁻⁷ 3x10 ⁻⁶ 1x10 ⁻⁷ .84 89.08x10 ⁴ 9.43x10 ⁻⁷ 1.06x10 ⁻¹² Short to PWR 1x10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ NA .84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵ Strest Rupture	inses	Premature Open	3×10-7	1×10-6	3×10-6		2.45	18.32×10 ⁵	1.34×10 ⁻⁶	7.30×10 ⁻¹³	.59	.42	ş	.050	.049
Short to BMR lx10 ⁻⁹ 3x10 ⁻⁷ 3x10 ⁻⁶ 1x10 ⁻⁷ .84 89.08x10 ⁴ 9.43x10 ⁻⁷ 1.06x10 ⁻¹² Short to PWR lx10 ⁻⁹ 1x10 ⁻⁸ 1x10 ⁻⁷ NA .84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵ Rupture Rupture	Vires	Open		3×10-6	1×10-5		2.45	54.96×104	4.46x10-6	8.11x10-12		.36	.05	.050	.049
Short to PWR lx10 ⁻⁹ lx10 ⁻⁸ lx10 ⁻⁷ NA .84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵ Rupture Rupture		Short to GND	3×10 ⁻⁸	3×10-7	3×10-6		.84	89.08×104	9.43×10 ⁻⁷	1.06×10 ⁻¹²		к .	E.	.050	.050
	Vires; Valves (VACUUM); Valves (TEST)	Short to PWR Rupture Rupture		1x10-8	1×10-7	ź	8.	26.72×106	3.14×10 ⁻⁸	1.18×10 ⁻¹⁵	.64	г .	¥	.050	050. 050.

Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems. (Continued) TABLE VII.

		Assessed Prior Failure	Prior I	ailure	ne Nuclear									
Component	Failure	Lower 5%	Median	Lower 5% Upper 5% Limit(LL) Median Limit(UL)	Operating Experiencel	ď	_p ²	Prior Mean	Prior Variance	P ₁	P ₂	P ₃	P ₁ P ₂ P ₃ P ₄	P _S
Solid State Devices	Fails to Function (Hi PWR Apps.)	7-01×E	3×10-6	3×10-5	1×10 ⁻⁶	8.	.84 89.08×10 ³	9.43×10 ⁻⁶ 1.06×10 ⁻¹⁰	1.06×10-10	0.64	0 31	0.13	0.64 0 31 0.13 0.050 0.050	0.050
	Shorts (Hi PWR Apps.); Fails to Function (Low FWR Apps.)	^ر -01×1	1×10-6	1×10-6 1×10-5	1×10 ⁻⁷	8	26.72x10 ⁴	.84 26.72×10 ⁴ 3.14×10 ⁻⁶ 1.18×10 ⁻¹¹	1.18×10 ⁻¹¹	4.	18.	90.	.050	.050
	Shorts (Low PWR Apps.)	1×10 ⁻⁸	1x10 ⁻⁷ 1x10 ⁻⁶	1×10-6	£	8.	26.72x10 ⁵	.84 26.72×10 ⁵ 3.14×10 ⁻⁷ 1.18×10 ⁻¹³	1.18×10 ⁻¹³	.64		.31 NA	.050	.050
Pumps	Failure to Run (Normal Envir)	3×10 ⁻⁶	3×10 ⁻⁵ 3×10 ⁻⁴	3x10-4	3×10-6	8.	89.08×10 ²	.84 89.08×10 ² 9.43×10 ⁻⁵ 1.06×10 ⁻⁸	1.06×10 ⁻⁸	.64	н.	.00	. 050	.050
Valves (Check)	Reverse Leak	1×10-7	3×10-7	3x10 ⁻⁷ 1x10 ⁻⁶	ź	2.45 5	49.63x104	2.45 549.63x10 ⁴ 4.46x10 ⁻⁷ 8.11x10 ⁻¹⁴	8.11x10 ⁻¹⁴	.59	.36	2	.050	.049
	External Leaks- Ruptures	1×10 ⁻⁹	1x10 ⁻⁸	1×10 ⁻⁸ 1×10 ⁻⁷	3×10 ⁻⁸	48.	26.72x10 ⁶	.84 26.72x10 ⁶ 3.14x10 ⁻⁸ 1.18x10 ⁻¹⁵	1.18×10 ⁻¹⁵	2	н.	.63	.050	.050

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems (Continued)

		Assessed Prior Failure	Prior F	ailure										
					US Nuclear			Part of	30					
Components	Failure	Lower 5% Limit(LL) Median	Median	r 5% Upper 5% t(LL) Median Limit(UL)	Operating Experience	ø	p ₂	Mean ¹	Variance Pl P2 P3	P	P ₂	P ₃	P.	P ₅
Values (Relief)	Premature Open/Hr.	3×10-6	1x10-5	3×10 ⁻⁵	1×10 ⁻⁵	2.45	2.45 18.32×10 ⁴	1.34×10 ⁻⁵ 7.30×10 ⁻¹¹		0.59	0.59 0.42 0.42	0.42	0.050 0.049	0.049
Fipes>3" (Hi Quality)	Rupture (Section)	3×10-12	1x10 ⁻¹⁰ 3x10 ⁻⁹	3×10 ⁻⁹	1×10-10	.50 6	55.36x10 ⁶	.50 655.36×10 ⁶ 7.63×10 ⁻¹⁰ 1.16×10 ⁻¹⁸	1.16x10 ⁻¹⁸	89.	.28	.28	.050	.047
Pipes<3"	Rupture	3×10-11	1x10-9 3x10-8	3×10-8	1×10-9	.50 6	55.36x10 ⁵	.50 655.36x10 ⁵ 7.63x10 ⁻⁹	1.16×10-16	.68	. 28	.28	.050	.047
Gaskets	Leak		3×10-6	1×10-4	1×10-6	.50	.50 19.66×10 ³	2.54×10 ⁻⁹	1.29×10 ⁻⁹	.68	.27	.16	.050	.047
Flanges, Closures, Elbows	Leak/ Rupture	1x10 ⁻⁸	3×10-7	1x10 ⁻⁵	£	.50	.50 19.66x10 ⁴	2.54x10 ⁻⁶	1.29x10 ⁻¹¹	89.	.27	2	.050	.047
Welds	Leak	1×10-10	3x10-9 1x10-7	1×10-7	¥	.50	.50 19.66x10 ⁶ 2.54x10 ⁻⁸	2.54×10 ⁻⁸	1.29×10-15	.68	12.	2	.050	.047
Diesal (Complete Plant)	Failure to Run	3×10-4	3×10 ⁻³	3×10 ⁻²	1×10-3	.84	89.08×10 ⁰	.84 89.08×10 ⁰ 9.43×10 ⁻³	1.06×10 ⁻⁴	.64	т.	E	.050	.050
Diesal (Engine Only)	Failure to Run	3×10 ⁻⁵	3×10-4	3×10 ⁻³	\$.84	89.08×101	.84 89.08×10 ¹ 9.43×10 ⁻⁴	1.06x10 ⁻⁶	.64	н.	2	.050	.050
Batteries, Power Supplies	NO/Output	1×10-6	3×10-6	1×10 ⁻⁵	3×10-7	2.45	54.96x10 ⁴	2.45 54.96x10 ⁴ 4.46x10 ⁻⁶	8.11x10-12	65.	.36	.003	.050	.049
Instrumentation Shift (Amplification, Calibb Annuciators, Transducers, Combination)	Shift Calibration	3×10 ⁻⁶	3x10 ⁻⁵	3x10 ⁻⁴	1×10-4	48.	89.08×10 ²	.84 89.06×10 ² 9.43×10 ⁻⁵	1.06x10 ⁻⁸	49.	æ.	99.	.050	.050

to be considered an exhaustive set or the sole source for the final selection. The final selection rests with the producer in conjunction with the consenting agreement of the consumer. It may be necessary or desirable to alter the prior distributions given in Table VII for numerous possible reasons. Such alterations will result in different test plans from those proposed here.

Before such BAZE test plans can be used in practice, several things must be considered. First, the life cycle of each component must be identified. This includes establishing the environments and operating conditions to which each component is exposed during the various phases of its existence. This also includes defining the duty cycle for the operational phases. Such practical details surrounding the implementation of these BAZE plans will not be addressed here. This would ordinarily be considered in the contractor's reliability program plan.

We shall restrict our consideration to three "typical" components given in Table VII; namely, electric clutchs (a = 0.84), electric motors (a = 2.45), and the category of flanges, closures, and elbows (a = 0.50). The specified failure-rate λ_0 will be taken to be the corresponding value of λ according to the US nuclear operating experience given in Table VII. If such values are not available, as indicated in Table VII, then λ_0 will be taken to be the assessed median prior failure-rate. Once a reliability, risk, or safety analysis program is under way, the

value of λ_0 is a contract specification which may differ from the values considered here.

First, consider the electric clutch in Table VII. The BAZE procedure described in Section IV was applied to this component in conjunction with its fitted prior given in Table VII. Table VIII presents the resulting required unit-hours of testing for selected values of the discrimination ratio (k) and the posterior assurance (γ). For example, for k = 5 and γ = 0.90, it would require (nt)₀ = [2.018547 - (26.72×10⁴)(5)(1.0×10⁻⁶)]/[(5)(1.0×10⁻⁶)] = 136,510 unit-hours of electric clutch testing without a failure in order to demonstrate a failure-rate of 5.0×10⁻⁶f/h with 90% assurance. Table IX gives the unconditional probabilities of passing the corresponding tests given in Table VIII. The unconditional probability of passing the above test is 70.7%.

Similarly, Tables X and XI give the required BAZE unit-hours of testing and unconditional probabilities of passing the test for the case of an electric motor in a normal (nonextreme) environment. Likewise, Tables XII and XIII consider the category of flanges, closures, and elbows, with respect to leak or rupture failure modes.

Now let us consider the sensitivity of the BAZE procedure for each of these three component categories to errors in the tail-area probabilities. The procedure follows the example in Section V. Table XIV gives the fitted gamma prior distributions for these three components for actual prior probabilities of being

TABLE VIII. Required BAZE Unit-Hours of Testing for the Electric Clutch (a = 0.84, b = 26.72×10^4 h)

	2.5
1:.3	0631.171138 063.668368 000 000 000 000
10.0	55.105 0
6.0	047.89826E C\$5.784216 O\$4.37484E U\$3.36815E U\$2.61313E U\$2.02589E O\$1.55410F O\$].17173E O\$5.68472E O\$4.0137 F O\$2.89914E O\$7.1032FE U\$1.50456 O\$1.04210E O\$4.02389E O\$1.57410F O\$3.86470E O\$4.0137 F O\$2.89914E O\$7.1032FE U\$1.50456 O\$1.04210E O\$6.403.03123E O\$5.61142E O\$0.00 O\$5.6137 F O\$1.316E O\$6.75014E O\$7.303123E O\$5.61142E O\$0.00 O\$0.
6.0	C55.784216 054.37484E 053.36815E 052.61313E 0 054.01337E 052.89914E 053.36815E 051.5045E 052.6137E 052.89914E 052.11639E 051.5045E 052.627035E 054.2056 055.07035E 055.64114E 030.0 050.0
7.0	052.3.36815E 052.10327E 052.115316E 040.0 0.0 0.0 0.0
0.0	554.374846 552.899146 552.899146 55.96.92456 55.90 50.0 50.0 50.0
۶.	C55 - 784216 054-055-055-055-055-055-055-055-055-055-
•••	047.89826E 055.68472E 055.68472E 052.3723E 051.42062E 067.50237E 067.0033
3.0	0.9903.96090E 061.86685E 061.14217E 04 0.973.01549F 061.40414F 048.47029E 095 0.9502.41041F 041.07161E 046.25337F 05 0.9001.75135E 067.42033E 054.25649F 035 0.6001.10169F 064.17247E 051.89098F 05 0.7007.25874E 055.14.42E 051.29375E 05 0.5004.65125E 052.93178 051.00
	061.84685E 061.42013E 061.07161E 061.51323E 064.17247E 053.144.92E 053.30763E 051.06787
	903.96090E 733.01549F 502.41041F 501.75135E 501.75135E 501.75155E 501.75155E 501.75155E
/	0000000000

3

TABLE IX. The Unconditional Probabilities of Passing the Corresponding Tests in Table VIII

								_		_
11.0	0.737	0.848	0.144 0.258 0.363 0.462 0.558 0.650 0.740 0.828 0.914 0.898 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.0	0.680	0.829	0.598	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.0	0.623	0.758	0.914	1.0000	1.000	1.000	1.000	1.000	1.000	1.000
8.0	995.0	0.687	0.828	1.000	1.000	1.000	1.000	1.000	1.000	1.00C
7.0	905.0	0.614	0.740	0.538	1.00C	1,000	1.000	1.000	1.000	1.000
0.9	0.443	0.539	0.450	0. 824	0.583	1.000	1.000	1.000	1.000	1.000
5.0	0.380	0.463	0.558	0.707	6,843	086.0	1,000	1.000	1.000	1,000
4.0	0.315	0.384	0.462	0.586	0.699	0.812	0.532	1.000	1.000	1.000
3.0	0.247	c. 301	0,363	095.3	0.549	0.638	0.732	0.833	1.000	1,000
2.0	0.176	0.214	0.258	C.327	0.390	6.454	0.520	0.593	C. 764	0,992
1.6 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0	0.990 0.098 0.176 0.247 0.315 0.380 0.443 0.564 0.564 0.623 0.680 0.737	C. 120	0.144	C-183	0.218 0.390 0.549 0.699 0.843 0.583 1.000 1.000 1.000 1.000 1.000	6,254 6,454 0,538 0,812 6,980 1,000 1,000 1,000 1,000 1,000 1,000	0.291 0.520 0.732 0.532 1.000 1.500 1.500 1.000 1.000 1.000 1.000 1.000	0.331	C. 42 7 C. 764 1. 000 1. 000 1. 000 1. 000 1.000 1.000 1.000 1.000 1.000	0.554
	0.660	0.975		100		0.800	0.750	007.0	0.600	0.500 0.554 0.554 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE X. Required BAZE Unit-Hours of Testing for the Electric Motor (a = 2.45, b = $18.32 \times 10^4 h$)

	04									
21.0	041.41342	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	10.0
0.0:	052.01173E 051.42039E 059.86736E 046.55120F 043.93319F 041.31343: 04	0.0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0
17.0	346.551205	041. 342 BEE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
15.0	359.86736F	043.96457E	0.00	0.0	0.0	0.0	0.0	0.0	0.0	
13.0	351.42039E	3929Æ	342.27701E	0500	0.0	0.0	0.0	0.0	0.0	•
11.0	52.011735	S1.20681E (56.02192	143.04309E	0.0	0.0	0.0	0.0	0.0	0 0
0.6	32. 86589E U	151.882105 0	0 32185175	54.10630E	0.00			-	0.0	
7.0	366.62421E 054.20815E 052. 96589E	152.943275 0	051.99316E C	051.05164E C			0.000	0.000	0.0	0.0
5.0	366.62421E	054.A5337E	053.5232E	052.20509E 051.05164E	US1.442 09E 055.06633E	059.05789E 041.23564E	054. 93569E	351.59847E	0.050	0.0
3.0	061.22617E	C69.31029E	341.0533F	364.896495	376779.67		C52.04395E			0.050
1:0	1.7904.04.90F 061.22617F	1.9753.15049E C69.31079E	3.5502.49.41E 057.0533F	J. 9301 . 93535F 064. 89649F	3.8 FO 1. 45 3 8 5 E C/ 3. 62 4 32 C	0.3001.18569E 062.730995	1.1505.75584E C52.04395E	0.7308 .12724E 051.48775E	1. +005.53155E C54.22518E	C. 500 561628 050.0
/	0.72	0.47	65.0	0.03	0.85	0.300	0.15	0.73	0. +0	

BEST AVAILABLE COPY, TABLE XI. The Unconditional Probabilities of Passing the

Corresponding Tests in Table X.

	1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0	0.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0	21.0
	-	1	,							
00	7 0.0	224 0	1. 054	0.100	0.990 C.00C G.007 0.024 0.054 0.100 0.163 0.245 0.348 0.473 0.621 0.794	0.245	0.348	0.473	0.621	961.0
.012	0.0	04.2 0	950.0	0.177	0.601 0.012 0.042 0.056 0.177 0.289 0.436 0.619 0.841 1.000 1.000	0.436	0.619	0.841	1.000	1.000
. 021	0.0	072 0	.165	0.305	0.953 6.601 6.021 0.072 0.165 0.305 0.498 0.750 1.000 1.000 1.000 1.000	0.750	1.000	1.000	1.000	1.000
.041	0	0 451	1.329	0.609	C. C03 0.041 0.144 0.329 0.609 0.596 1.000 1.000 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
690-	0.2	0 173	0550	1.000	0.850 0.005 0.069 0.241 0.550 1.000 1.000 1.666 1.666 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
101.	0	374 0	3.852	1.000	C. 0C7 C. 107 0. 374 9. 852 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
.159	0.5	557 1	000-1	1.000	0.011 0.159 0.557 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
.233	0.8	315 1	0000	1.000	C. C16 C. 233 O. 815 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
.448	1:	1000	0000	1.000	0.033 0.448 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
000-	11.0	1000	0000	1.000	1.000	1.000	1.000	1.000	1.000	5. 505 0.071 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Required BAZE Unit-Hours of Testing for Flanges, Closures, and Elbows (a = 0.50, b = $19.66x10^4$ h) TABLE XII.

28.0 31.0	041.38314E 066.09216E 056.54028E 054.94535E 053.85408E 053.05046E 057.4577E 041.9434E 041.7011F 0 041.38314E 056.40714E 056.40714E 056.40714E 056.4072E 057.4507E 051.3439E 051.0347E 051.77011F 0 045.4557E 056.40714E 056.40714E 056.47607E 051.3057E 051.40370E 059.44195E 051.3525E 061.0347E 051.3525E 061.0352E 051.40370E 059.44195E 056.94972E 043.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25.0	052.4577£ 041.59
22.0	051.83.97E 051.83.97E 058.44195E 068.36546E 0.0
19.0	053.85408E 051.4097E 051.4097E 040.0 040.0 0.0 0.0
16.0	054-94535E 053.854 053.2542E 052-460 052.03525E 051-403 0581-52275E 044-072 041-92593E 040-0 0-0 0-0
13.0	056.54028E 052.4748E 052.4589E 051.50265E 041.39608E 040.0
10.0	065.09216E 0 056.40714E 056.43643E 052.4324E 051.48775E 057.71290E 062.39507E
7.0	061.383146 065.645636 067.1803 E 056.4577E 051.94441E 051.18472E 040.0
0.,	072.56794E 061.40401E 069.20711E 065.66837E 064.6773E 062.50941E
0:1	0.5-01.06f166 072.56794E 0.5754.17654E 061.89469E 0.5504.20583E 061.40401E 0.9004.31264E 065.2071E 0.8003.2571E 065.66837E 0.8002.54069E 066.87739E 0.7002.6451E 064.5777E 0.001.55372E 064.56991E

TABLE XIII. The Unconditional Probabilities of Passing the

Corresponding Tests in Table XII

/	1.0	4.0	7.0	10.0	13.0	1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 25.0 28.0 31.0	19.0	22.0	25.0	28.0	31.0
0550	C.133 C. 267 C. 353 0. 422 C.481 0.533 0.581 0.625 0.667 0.706 0.742	C. 267	0.353	0.422	0.481	0.533	0.581	0.625	199.0	901.0	0.742
0.975	0.153	0.306	0.405	0.485	0.552	0.613	0.668	C. 719	0.766	0.811	0.853
0.950	C.175	C.350	9.464	0.554	0.632	C.175 C.350 0.464 0.554 0.632 0.701 0.764 0.822 0.876 0.927 0.976	0.764	0.822	0.876	0.927	0.976
006.0	0.209	0.418	0.552	0.660	0.753	0.209 0.418 0.552 0.660 0.753 0.835 6.510 6.979 1.000 1.000 1.000	0.5.0	0.979	1.000	1.000	1.000
	0.239	0.477	169.0	0.754	098.0	0.230 0.477 0.631 0.754 0.860 0.954 1.000 1.000 1.000 1.000	1.000	1.000	1.000	1.000	1.000
	6.268	C. 536	0. 709	0.847	0.966	1.000	1.000	1.000	1.000	1.000	1.000
	0.299 0.597 0.790 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.597	0.790	456-0	1.000	1.000	1.000	1.00C	1.000	1.000	1.000
	0.331	0.663	0.877	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.600	C. 408 C. 816 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	C. 816	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.500	5.00 5.505 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

below and above LL and UL, respectively, the tail-area probabilities, of 2.5%, 5%, and 10%. Table XV gives the BAZE test plans for the electric clutch when the tail area probabilities are 2.5% instead of 5%. Table XVI gives the percentage change in the plans of Table XV relative to the "nominal" plans of Table VIII. Similarly, Tables XVII and XVIII correspond to Tables XV and XVI except that the tail-area probabilities are 10%. It is observed from Tables XVI and XVIII that the BAZE plans for the electric clutch are fairly sensitive to the tail-area probabilities in the gamma prior distribution. Similarly, Tables XIX-XXII and Tables XXIII-XXVI correspond to Tables XV-XVIII for the case of the electric motor and flanges, closures, and elbows, respectively. Again, the BAZE plans for these components are observed to be fairly sensitive to the tail-area probabilities.

Finally, similar BAZE test plans could be developed for the remaining components in Table VII. The BAZE procedure appears to be a practical means of conducting Bayesian reliability demonstration testing. The main advantage over other Bayesian procedures is its ease of application. A few simple tables and figures, which are included, and a pocket calculator are all that is required. The practical utility of the procedure appears to be evident.

ACKNOWLEDGMENTS

The authors wish to thank Ms. Myrle Johnson for her help in computing and constructing Figures Al and A2, as well as Tables

Al and A2. Ms. Carla McInteer also assisted in the computation of Table Al. We also wish to thank Mrs. Terry Wilson for her excellent and painstaking typing of this report.

Gamma Prior Distributions for Selected Tail-Area Probabilities for the Electric Clutch, Electric Motor, and Flanges, Closures, and Elbows TABLE XIV.

Component	Tail-Area Probability(%) P ₀ a	Po		q	Prior	Prior Variance	$^{P}_{1}$	P2	P3	P ₁ P ₂ P ₃ P ₄ P ₅	P ₅
Electric	2.5	0.95	1.13	0.95 1.13 4.10x10 ⁵ h 2.76x10 ⁻⁶ 6.72x10 ⁻¹²	2.76×10 ⁻⁶	6.72×10 ⁻¹²	0.63	0.63 0.28 -	1	0.025	0.022
Clutch	5	.90	.84	.90 .84 26.72×10 ⁴ h 3.14×10 ⁻⁶ 1.18×10 ⁻¹¹	3.14×10-6	1.18×10 ⁻¹¹	.64	- 64 .31 -	1	.050	.050
	10	.85	09.	.60 18.87x10 ⁴ h 3.18x10 ⁻⁶ 1.69x10 ⁻¹⁰	3.18×10 ⁻⁶	1.69×10 ⁻¹⁰	19.	- 38 -	1	.103	.068
Electric	2.5	.95	3.38	.95 3.38 2.62×10 ⁵ h 1.29×10 ⁻⁵ 4.92×10 ⁻¹¹	1.29×10 ⁻⁵	4.92×10 ⁻¹¹	.57	.40	.57 .40 0.001	.025	.024
Motor	5	.90	2.45	.90 2.45 18.32×10 ⁴ h 1.34×10 ⁻⁵ 7.30×10 ⁻¹¹	1.34×10-5	7.30×10 ⁻¹¹	.59	.41	.59 .41 .004	.050	.049
	10	.85	1.59	.85 1.59 1.11x10 ⁵ h 1.43x10 ⁻⁵	1.43×10^{-5}	1.29x10 ⁻¹⁰	.61	.44	.61 .44 .020	.100	.095
Flanges,	2.5	.95	.67	.95 .67 34.93×10^4 h 1.92×10^{-6} 5.49×10^{-12}	1.92×10 ⁻⁶	5.49×10-12	99.	.66 .23	1	.025	.014
Closures	5	.90	.50	.50 19.66x10 ⁴ h 2.54x10 ⁻⁶ 1.29x10 ⁻¹¹	2.54×10-6	1.29x10-11	.68	.68 .27	1	.050	.047
	10	.85		.35 100.34x10 ³ h 3.49x10 ⁻⁶ 3.48x10 ⁻¹¹	3.49×10-6	3.48×10 ⁻¹¹	.71	.71 .33 -	•	.100	.101

TABLE XV. Required BAZE Unit-Hours of Testing for the Electric Clutch (a = 1.13, b = $4.10 \times 10^5 h$)

	*
11.0	m 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
10.3	E 057-97034E 043-31852E 34 050-0 050
0.6	552.99576E 052.22129E 751.34115E 05 551.55203E 058.45523E 042.96021E 04 553.32095E 040.0 50.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
0.8	552.22129E 3 58.45523E 0 5.0 5.0 0.0 0.0 0.0 0.0
7.0	0.52. 99576E 0 0.51. 55.203E 0 0.53. 32.95E 0 0.00 0.00 0.00 0.00
0.0	55. 06.1738 55. 494938 55. 195418 55. 195418 65. 1
5.0	055-594)7E
7.7	62.14259; 055.59477E 054.06173E 055.79105E 053.881284E 052.49403E 054.21052E 057.48412E 041.07010E 041.15293E 0540.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.5	2222222
2	0.9924 .487731 042.038572 551.22231 0.9723.54442 41.568216 .49.08900 0.9502.33471 561.211235 555.3147 0.9002.3114216 648.521035 554.3147 0.8501.349216 646.495096 551.90340 0.7503.33535 647.89696 551.86734 0.7503.460357 52.750386 474.66734 0.6002.538466 531.239238 550.
	04 - 48 773 F C
1/-	0.000

TABLE XVI. Percentage Change in the BAZE Plans of Table XV

			кета	Relative to lable vill	lani	1111					
1/	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0
066	3.6058	1	12.5034	7.732\$ 12.5034 18.0808	24.6881	24.688% 32.641% 42.397% 54.647% 70.487% 91.768%	42.3974	54.6478	70.4878	91.7688	
516.	4.643	10.170	16.859	25.120	35.581	49.256	67.894	94.798			
950	5.924	13.326	22.836	35.504	53.220	79.746					
000	8.154	19.243	35.203	60.142							
.850	10.424	25.901	51.278								
.800	12.962	34.224	75.516								
.750	15.945	45.450									
.700	19.596	61.882									
009	30.438										
.500	52.469										
-	-		-	-	-	-	-				

TABLE XVII. Required BAZE Unit-Hours of Testing for the Electric Clutch (a = 0.60, b = 18.87 \times 10⁴h)

	5	50	35	4	7.3					
0.11	52.56485E	\$1.70974E	S1.06570E	44.377335	42.31552E	0.0	0.0	0.0	0:0	0.0
13.5	3.51.545	2.06942E 3	1.355475 3	6.37236E 34	2.14171E C	0.0	0.0	0.0	0.0	6.0
6.6	. 55415E US	. 50902E 05	.71574E US	.17673E C4	. 47634E 114	.12121E 64	0.0	0.		0.0
8.0	.23429E 05	3.95852E 052	1,16608E 051	1.25825E US	7.39463E 044	3.62011E 041	5.75404E C3C	0.0		0.0
7.0	5.11.876E US	1.76533E 35	.74509E 35	271901E 05	1.11467E 09	1.83293E 34	3.4676UE 04	7.01932E 53(0.0	0.0
6.6	5.274725 7 5	12 F.CA.U0405E 656.12584E 054.70703E 053.76503E 053.05882E 052.50902E 052.06942E 051.70974E 05	3.51711E 35	2,32001E 05	1.61495E US	1.11158€ (5	7.19053E 04	3.96392E FIG	9.0	0.0
5.0	30 311166.	6.32584E 05	4.59793E 05	3.161418 0:	2.315346 01	1.71142E 05	1.249268 05	8.53373E 94	47.67616E 342.36693E 040.6	
÷4	1.33556E 06	9.00405E 45	5.21916E US	1.42351E 05	3.36592E 15	2.011:2E 05	2.32258E 03	36:38:31	7.67616E 34	1.619346 04
3.1	7.9984 738338 78/25982E 281 443548 681 335568 368 97777 056 274722 TS5178768 834-234296 833-554158 833-310348 352-56485E 35	1.130115 64	3.92122 : 54	C. 527028 54	5.11696 : 3	3.8 011.011.011.01.09.46 34.11.368 . 42.011.78 031.71142E 041.11168E (\$6.83298E 043.62011E 041.12121E 040.0	1.32511E 04	2.77. 11.18134F 1/4.96319E 1/2.67978E 1/41.53819E 15/8.53373E 11/3.96392E 14/7.01932E 530.3	1.652490	0.5006.30874E 192.21387E 05/8.449116 041.61934E 040.0
2.5	2.259826 3	9. 318681.1	1.432548 35	1.573476 5	8.61885. 5	27. 54. 621.7	3.93116E 35	4.96318E 5	3.42223E . 5	2.213.97E 45
1.	4. 7.8315 . 6	C. 9733. 767728 Col. 789518 Col. 13011	3. 353 77 5 1 5	2.3355 € (6	1.91247	1.010516 (5)	1.374436 06	1.131346 14	0.600 4.73146E : 43.42223E : 41.65249E	6.30874E 15
1/2	066.7	216.3	0.950	0.900	85.	3.6 %	3.75	7.7	0.60	0.500

TABLE XVIII. Percentage Change in the BAZE Plans of Table XVII Relative to Table VIII

-	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0
1 -	1.9824	4.2504	6.8738	9.9384	13.5718	17.9448	9.9388 13.571% 17.944% 23.307% 30.041% 38.748%	30.0418	38.748%	50.4478	\$66.992 \$
2	2.552	5.591	9.268	13.809	19.560	27.077	37.323	52.112 75.329 117.045	75.329	117.045	214.011
m	3.257	7.325	12.553	19.518	29.256	43.838	68.074	116.293	258.907 13989.32	3989.32	
+	4.482	10.578	19,352	33.061	57.504	113.400	370.915				
5	5.731	14.238	28.189	55.258	130.376 1391.562	1391.562					
7.	7.125	18.814	41.513	104.634 1193.18	1193.18						
80	8.765	24.985	65.202	334.096							
10.	211.	10.772 34.018 121.190	121.190								
16.	.600 16.732	77.740									
28.	843	.500 28.843 3163.88									

Required BAZE Unit-Hours of Testing for the Electric Motor (a = 3.38, b = 2.62 x 10⁵h) TABLE XIX.

21.0									
-	3.3	;	100	0.0	.,	3.5	3.0	0.0	:
19.3	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17.0	2.60609E 04				0.0			0.0	
15.0	6.44690E 04	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0
13.0	1.14595E 05	6.9	0.0	0.0	0.0	0.0	0.0	0.0	6.0
0.11	1.83185E C5	3.27697E 04	0.0	6.0	5.c	0.0	1.0	0.0	0.0
0.0	752 82115E 051.83185E 051.14695E 056.44690E 042.60609E 0 951.77692E 059.7674E 044.23399E 041.76125E 030.0	9.32741E 54	041.84674E 04		0.0	•	3.0	C.0	
6.7	54.37576E 3	052.01209E 3	59.86008E 74	13.81672E 04	0.07	4		***	
		35			159.78419E .	.45.1726 SE	91.20071E	6.4	
3.0	1.370346	3.18822E	5.794.26	4.3839 €	3.37736r	2.592115	1.946785	9.1648BE :	1.11.121
:	0.97 4.635 3E 101.370 34F 107.1740 7E	0.95 2.98 412 144.188221 553.8649	1.9 2.26221F (65.794.2E 92.4284)	3.65. 1.83917E . 44.3839 E	1.8 (1.53721£ Cel3.37736r 159.7841	3.75 1.3 1636 - (2.592115 . 45.4726	0.7 11.108 3F 14. 94678E 191.20071E	0.6 . 7.99845E USD .19488E UST. D	0.500 5.575730 51.119121 .4
/	0.978	0.95	6.4	3.65	3.8.6	3.75	0.7.5	0.6	9.50

TABLE XX. Percentage Change in the BAZE Plans of Table XIX Relative to Table X

.990 1.9584 6.4274 11.8964 18.7264 27.4964 39.1704 55.4784 79.8594 .975 2.494 8.464 16.236 26.773 41.868 65.297 .900 4.293 11.109 22.366 88.934 .900 4.293 16.093 35.735 74.931 .800 6.646 28.854 86.996 86.996 .700 9.696 52.966 8.044 38.553 .600 14.246 8.2.96 8.044 8.2.966	-/	0.1	3.0	5.0	7.0	0.6	11.0	9.0 11.0 13.0 15.0 17.0 19.0	15.0	17.0	19.0	21.0
2.494 8.464 16.236 26.773 41.868 3.159 11.109 22.366 39.536 68.934 4.293 16.093 35.735 74.931 5.420 21.739 54.643 54.643 6.646 28.854 86.996 8.044 38.553 9.696 52.966 14.246	066	1.958%		11.8968	18.7268	27.4968	39.1708	55.4788	79.859			
3.159 11.109 22.366 39.536 4.293 16.093 35.735 74.931 5.420 21.739 54.643 6.646 28.854 86.996 8.044 38.553 9.696 52.966 14.246	57.6	1	8.464	16.236	26.773	41.868	65.297					
4.293 16.093 35.735 5.420 21.739 54.643 6.646 28.854 86.996 8.044 38.553 9.696 52.966 14.246 22.125	150	3.159	11.109	22.366	39.536	68.934						
5,420 21.739 6,646 28.854 8,044 38.553 9,696 52.966 14,246	90	4.293	16.093	35.735	74.931							
6,646 28.854 8,044 38.553 9,696 52.966 14,246 22,125	99	5.420	21.739	54.643								
9.696 14.246 22.125	00	6.646	28.824	966.98								
9.696 14.246 22.125	950	8.044	38.553									
	00/	9.696	52.966									
	009	14.246										
	200	22.125										

TABLE XXI. Required BAZE Unit-Hours of Testing for the Electric Motor (a = 1.59, b = $1.11 \times 10^{5} \text{h}$

	warm	
21.0	1.22192E U 7.74009E 0 4.34032E 0 9.20128E 0 0.0	
19.0	.46739E 05 .72326E 04 .96561E C4 .18530E 04	0.0
17.3	77561E C51 21731E 059 97333E 045 74827E 042 255983E 040 0	20
15.0	.68477E55.88576E 0.54.33115E 0.63.34195E 0.52.65595E 0.52.15469E 0.51.7701E 0.51.46739E 0.51.22192E 0.5 .80284E 0.54.58203E 0.53.28602E 0.52.48674E 0.51.93340E 0.51.52761E 0.51.27171E 0.59.72326E 0.47.4009E 0.49.3403E 0.49.3403E 0.51.65164E 0.57.977333E 0.45.96501E 0.43.4032E 0.49.3403E 0.49.3403E 0.49.3403E 0.51.69467E 0.51.69467E 0.51.89467E 0.51.69467E 0.51.89467E 0.51.89780E 0.41.25383E 0.40.0 .09234E 0.51.89167E 0.51.22463E 0.58.00154E 0.45.06285E 0.42.90780E 0.41.25383E 0.40.0 .00234E 0.51.89167E 0.51.22463E 0.58.00154E 0.45.06285E 0.42.90780E 0.41.25383E 0.40.0 .003642E 0.51.2376E 0.53.2311846E 0.42.7749E 0.30.0 .00060000000000000000000000000000	00
13.0	55595E 052- 93340E 051- 38420E 051- 31597E 045- 06285E 042- 74507E 048-	000
5.11	41956 652. 86746 051. 37706 651. 84736 058. 71546 045. 56456 042.	2.3
6.6	15E 653.3 74E 051.8 67E 051.1 63E 051.1 21E 045.2 69E 043.1	93E 030.0
7.3	5E 054.331 3E 051.286 3E 051.286 3E 051.694 7E 051.224 0E ○58.891 3E 056.273	3E 046.992
	5.88576 55.88576 653.5526 552.4960 551.4960 551.46036	54.0692
5.3	368, 6840 75 556, 30 28 46 551, 30 38 415 551, 93 84 15 551, 48 84 25 552, 61 84 55 551, 61 75	51.01369
3.6	1.52134E 1.20781E 9.6982E 7.3,4°2E 5.89395E 4.88736E	2.429496
1.0	0.9974.786.3E (61.52134E 368. 0.97.3.84542E 001.20781E 005. 0.95.3.13147E 049.69822E 55. 0.95.2.4131E 067.3, 492.2E 053. 0.85(1.09717E 065.99392E 053. 0.875(1.68921E 046.88736E 352. 0.75(1.45263E 04.1211E 152.	0.6c: 9.5: 4468 (\$2.424408 551.
1/2	0.99 0.95 0.95 0.85 0.85 0.75 0.75	0.00

TABLE XXII. Percentage Change in the BAZE Plans of Table XXI Relative to Table X

/	1.0	3.0	5.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0	21.0
066.	1.7858	5.888%	10.899%	17.1578	25.1938	1	50.8316	73.1718	35.8909% 50.831% 73.171% 110.209% 183.567% 398.053%	183.5678	398.0538
376.	2.285	7.755	14.876	24.530	38.361	59.821	199.76	182.114	537.658		
950	2.894	10.179	20.493	36.224	63.160	63.160 119.895	317.082				
900	3.934	14.745	32.742	68.655	175.742 23725.8	3725.8					
.850	4.966	19.918	990.09	142.508							
.800	6.089	26.437	79.710	584.312							
.750	7.370	35.324	146.282								
.700	8.884	48.530	451.682								
009	13.052 115.981	115.981									
.500	20.272										

TABLE XXII. Required BAZE Unit-Hours of Testing for the Flanges, Closures and Elbows $(a = 0.67, b = 34.93 \times 10^4 h)$

6.994(1.5974)
6.9941.59741E (7):731566 (4):9825E CC1.20304E 569.06350E (95.70915E 555.09829E 653.92675E C5333680E 75.0941.59741E (7):731566 (4):49325E CC1.20304E 569.06350E (95.70915E 555.09829E 653.92675E C5333680E 75.9722E 651.21762E 551.74688E 72.94772E (4):4973E
6.9941.59741E (7):731562 (4):9325E CC1.28344E 569.06350E (95.770915E 555.79829E 653.92675E L53.73638E 65.6.9741E (7):731562 (4):73172E (4):7317
6.9941.59741E (7):731566 0-51.98252E CC1.28304E 569.06350E 036.70915E 555.79829E 553.92675E L3 6.9741.28341E (7):731566 0-51.98352E CC1.28304E 569.06350E 036.70915E 555.79829E 553.92675E L3 6.9741.2838E (72.94772E 041.9313) C49.69504E 675.451016E 673.26213E 675.19594E 053.31554E U59.7141.4983E 77.35274E (41.19572E 041.9226E 041.31554E U59.316471E 671.756276E 041.9210E 671.89732E 671
6.994(1.5974)E (7)5.731562 051.98252E CC1.28304E 569.06350E 036.70915E 555.79829E 551.954(1.5974)E (7)5.731562 051.9832E CC1.28304E 569.06350E 036.70915E 555.79829E 551.9773E (7)5.34772E (7)5.655.79829E (7)5.9554E 051.49589E (72.34772E (7)5.3573E 051.3522E 035.78210E (53.26213E 552.19554E 051.9569E (7)5.9554E 051.9557E 051.9573E 051.95793E 051.75576E 051.95787E 051.95787E 051.95787E 051.95782E 051.75576E 051.95782E 051.75576E 051.95782E 051.75576E 051.95782E 051.75576E 051.95782E 051.75576E 051.95782E 051.95782E 051.95782E 051.95782E 051.95782E 051.95782E 051.95782E 051.95782E 051.95787E
6.9961.59741E (71.731562 061.93252E C61.28304E 569.06350E 056.70915E C5 0.9961.59741E (71.731562 061.93252E C61.28304E 569.06350E 056.70915E C5 0.9961.58731E C69.06550E 056.5166E 056.70915E C5 0.9009 0.0471E (71.35276E 061.19473E 067.331522E 059.067.331523E 056.6573E 061.76576E 059.0909 0.0471E (61.75620E 051.35722E 051.76576E 0
6.9961.59741E (71.731562 051.93252E CG1.20304E 569.06350E U5 6.9961.59741E (71.731562 051.93252E CG1.20304E 569.06350E U5 6.9961.49589E (72.352776E 051.19473E 057.31522E 055.65166E 05 6.9064.6471E (61.7542)E 054.5272E 054.73102E 055.0904 05471E (61.7542)E 054.5272E 054.73100E 051.89461E 051.9961 051.89461E 051.89464E 051.89461E
6.9901.59741E (73.731562 061.98252E 061.28304E 76.9721.28368E (72.94772E 041.98252E 061.28304E 76.9721.28368E (72.94772E 041.9473E 043.31522E 05.9004 06471E (10.15620E 051.28772E 045.5772E 045.9722E 05.9004 06471E (11.75620E 051.28772E 045.5726 051.5773E 051.5773E 051.5774E 051.784.8628.6 (10.150.4E 051.9738E 051.7746E 051.77911E 051.0603.19019E (45.35272E 051.57378 051.77911E 051.06003.19019E (45.35272E 051.7751E 051.7791E 051.0791E
6.9961.59741E (7)3.731562 (6)1.98252E (6)1.9771.28388E (72.94772E (6)1.9473E (6)1.5673E (6)1.9473E (6)1.5673E (6)1.9573E (6)1.5746E (6)1.9573E
6.9941.59741E (73.731562 6 6.9741.2838BE (72.34772E 6 6.951.114589E (72.35276E 0 6.9006471E (61.754.25 7.861065459E (41.40167E 6 7.86106471E (61.756.25 7.86106471E (61.756.25 6.75148628 (69.53777E 0) 6.754628 (69.53777E 0) 6.6003.19019E (45.35772E 0)
6.9901.59741E (6.9741.28358E (6.9541.14589E (7.9004.66471E (7.9004.66471E (7.9004.21748 (0.754.8628.E (0.754.21749E (6.6003.19019E (
7 6.99 6.99 6.99 6.99 6.99 6.99 6.99 6.99

TABLE XXIV. Percentage Change in the BAZE Plans of Table XXIII Relative to Table XII

*/	1.0	4.0	7.0	10.0	13.0	16.0	19.0	22.0	25.0	28.0	31.0
066	1.4064	5.9461	11.0404	16,7958 23.3488	23.348%	30.8778	39.620% 49.895%	49.8958	62.1428 76.9918	76.9918	95.3698
516.	1.868	8.051	15.277	23.833	34.124	46.737	62.558	82.990			
.950	2.461	10.876	21.266	34.420	51.606	75.018					
006.	3.541	16.407	34.117	60.042	100.000	100.000					
.850	4.688	22.899	51.450	100.000							
.800	6.010	31.309	78.533								
.750	7.601	43.041	100.000								
.700	9.581	60.841									
009	15.519	100.000									
.500	27.189										

TABLE XXV. Required BAZE Unit-Hours of Testing for the Flanges, Closures and Elbows $(a = 0.35, b = 100.34 \times 10^3 h)$

		_								
	?	2	5	3.5	5	*	04	3	5.60(1).43914# 047.84532E 094.05371E 092.53639E 091.71928E 091.20878E 058.59488E 046.05458E 046.05458E 046.12395E 042.60702E 041.3837CE (4	
31.0	23E	HIE	12E	a, E	92E	32E	34E	25E	J'CE	
-	252	250	483	110	522	312	119	169	383	3
	54.	33	35	1:	3	3	40.	44.	7	:
	5	e c	E C	E 3	e c	6 3	E 3	e o	Э	
28.3	646	1662	668	169	199	1851	990	593	732	
	. 82	-	. 85	.00	1.49		.58	27	.50	0.
	0.50	60	5	90	50	S	05	24	20	63
25.0	9 RE	8 2E	368	21E	1 6E	54E	3 4 4	1 3E	9 SE	42E
~	252	271	319	362	198	368	081	233	123	936
	55	54.	53.	52.	51.	511.	51.	58.	4 .	48.
3	ت س	E	E 3	E O	0 3	E J	0 3	E	E J	0.3
22.6	635	===	1943	1115	9101	257	574	1241	459	3376
	5.41	6.	3.90	2.82	7.1	.72	.36		50.05	.36
	0 56	250	35	0 5	0.5	351	50	0.5	50	04
19.0	98E	88 E	13E	33E	96E	361	81E	17E	BAE	4 RE
-	287	937	689	425	682	153	139	400	294	344
	51.	55	54.	53.	35	525	3	3	58.	44.
2	0 3	E O	33	,e	0 3	E C	Ē	Ē	E	E 0
16.0	181	3913	5173	5536	143	5655	5416	5384	. H 7.E	404
	9.1.6	1.2	5.7	4.2	3.3	2.7	2.2	1.8	1.20	7.0
	90	3	60	3	. 25	50	0	3	0	Ç
13.0	316	25E	61E	92E	21E	95E	91E	51E	2 8E	07E
-	155	141	310	468	384	6:3	305	5.9	719	398
	61.	69	54.	58	.54.	53	53	. 25	5	5
٠)E 1	. J.	16	16	3E	SE .	0 90	3.6	. 3E	1 .
10.0	3200	184	840	106	*:10	616	387	633	363	285
	5.1	1.2		1.4	2.0	6.4	4.2	3.5	2.5	1.7
	00	-	-	30	6.	3	:	-	S	CI
7.3	5 BF	67E	5 9	6 6E	165	263	460	5 7E	315	3 36
	231	783	443	101	: 72	564	442	52	053	899
	356	3	3	15	6.3	5	60.	165.	34	250
٠.	2E .	BE	37	C.E.	4.5	<u>.</u>	, H.	39	37	RE
4	805	996	17	13	9:5		326	413	453	263
	4.9	1:	3	2.5	1.6		1.2	-	4.	5.8
	0	07	07	90	06	70	30	90	0	90
1	316	3776	195	1676	155	. 25	76 E	146	145	576
	.622	306	11.	313	. 90	168	=	466	439	.631
-/	16	181	200	=	9	3	5	÷	-	7
/.	6.0	9.0	9.6	6.0	3.8	B. C	1.1	0.7	3.6	5:3
/	1	131		1					-	

TABLE XXVI. Percentage Change in the BAZE Plans of Table XXV Relative to Table XII

.886% 3.749% 6.960% 10.588% 14.718% 19.465% 24.976% 31.453% 39.174% 48.534% 1.177 5.075 9.630 15.024 21.511 29.462 39.436 52.316 69.589 93.966 1 1.551 6.856 13.406 21.698 32.532 47.290 65.576 101.950 161.789 300.266 5 2.232 10.343 21.507 37.849 64.060 112.945 236.345 1150.678 300.266 5 3.789 19.737 49.506 124.804 689.503 8	×/	1.0	4.0	7.0	10.0	13.0	16.0	19.0	22.0	25.0	28.0	31.0
5.075 9.630 15.024 21.511 29.462 39.436 52.316 69.589 93.966 6.856 13.406 21.698 32.532 47.290 65.576 101.950 161.789 300.266 10.343 21.507 37.849 64.060 112.945 236.345 1150.678 300.266 19.737 49.506 124.804 689.503 3 3 3 3 27.133 81.251 401.910 3 <t< td=""><td>066.</td><td>.8868</td><td>3.749%</td><td>6.9608</td><td>10.588%</td><td>1</td><td>19.465%</td><td>24.976%</td><td></td><td>39.174%</td><td>48.534%</td><td>60.119%</td></t<>	066.	.8868	3.749%	6.9608	10.588%	1	19.465%	24.976%		39.174%	48.534%	60.119%
1.551 6.856 13.406 21.698 32.532 47.290 65.576 101.950 161.789 300.266 2.232 10.343 21.507 37.849 64.060 112.945 236.345 1150.678 300.266 2.955 14.435 32.433 64.702 139.360 499.809 34.354 49.506 124.804 689.503 34.354 401.910 38.354 162.711 401.910 38.354 162.711 401.910 40.506 40.5	975	1.177	5.075	9.630	15.024	21.511	29.462	39.436	52.316	69.589	93.966	130.963
2.232 10.343 21.507 37.849 64.060 112.945 2.955 14.435 32.433 64.702 139.360 499.809 3.789 19.737 49.506 124.804 689.503 4.792 27.133 81.251 401.910 6.040 38.354 162.711 9.783 97.690	950	1.551	958.9	13.406	21.698	32.532	47.290	65.576	101.950	161.789	300.266	969.386
2.955 14.435 32.433 64.702 139.360 3.789 19.737 49.506 124.804 689.503 4.792 27.133 81.251 401.910 6.040 38.354 162.711 9.783 97.690 17.139	006	2.232	10.343	21.507	37.849	64.060	112.945	236.345	1150.678			
3.789 19.737 49.506 124.804 4.792 27.133 81.251 401.910 6.040 38.354 162.711 9.783 97.690 17.139	850	2.955	14.435	32.433	64.702	139.360	499.809					
4.792 27.133 81.251 6.040 38.354 162.711 9.783 97.690 17.139	800	3.789	19.737	49.506	124.804	689.503						
6.040 38.354 9.783 97.690 17.139	750	4.792	27.133	1.251	401.910							
9.783	700	6.040		162.711								
	009	9.783	97.690									
	200	17.139										

REFERENCES

- Balaban, H., "A Bayesian Approach to Reliability Demonstration," Annals of Assurance Sciences, Vol. 8, 1969, pp, 497-506.
- Balaban, H., "Reliability Demonstration: Purposes, Practices, and Value," <u>Proceedings of the 1975 Annual Reliability and</u> Maintainability Symposium, Washington, D.C., 1975, pp. 246-248.
- 3. Blumenthal, S., "Reliability Demonstration," <u>Technical Report No. 183</u>, Department of Operations Research, Cornell University, <u>Ithaca</u>, NY, May 1973.
- 4. Bonis, A.J., "Bayesian Reliability Demonstration Plans,"
 Reliability and Maintainability Conference, Vol. 5, 1966,
 pp. 861-870.
- 5. Easterling, R.G., "On the Use of Prior Distributions in Acceptance Sampling," Annals of Reliability and Maintainability, Vol. 9, 1970, pp. 31-35.
- 6. Goel, A.L. and Joglekar, A.M., "Reliability Acceptance Sampling Plans Based Upon Prior Distribution, <u>Technical Reports 76-1</u> to 76-5, Department of Industrial Engineering and Operations Research, Syracuse University, Syracuse, NY, March 1976.
- 7. Goel, A.L. et al., "Reliability Demonstration Plans Using Prior Distribution," <u>Technical Report</u>, Department of Industrial Engineering and Operations Research, Syracuse University, Syracuse, NY.
- 8. Goel, A.L. et al., "Graphical Design of Reliability Demonstration Plans Based upon Prior Distribution," Technical Report, Department of Industrial Engineering and Operations Research, Syracuse University, Syracuse, NY.
- 9. Guild, R.D., "Bayesian MFR Life Test Sampling Plans," Journal of Quality Technology, Vol. 5, 1973, pp. 11-15.
- 10. Guild, R.D., "Reliability Testing and Equipment Design Using Bayesian Models," Unpublished Ph.D. Dissertation, Northwestern University, Evanston, IL, 1968.
- 11. Joglekar, A.M., "Reliability Demonstration Based on Prior Distribution Sensitivity Analysis and Multi Sample Plans,"

 Proceedings of the 1975 Annual Reliability and Maintainability Symposium, Washington, D.C., 1975, pp. 251, 252.

- 12. Mann, N.R., Schafer, R.E., and Singpurwalla, N.D., Methods for Statistical Analysis of Reliability and Life Data, Wiley, Inc., 1974.
- 13. Martz, H.F. and Waller, R.A., "The Basics of Bayesian Reliability Estimation from Attribute Test Data," Report No. LA-6126, Los Alamos Scientific Laboratory, 1976a.
- 14. Martz, H.F. and Waller, R.A., "Handbook of Bayesian Reliability Estimation Methods," Report No. LA-6572-MS, Los Alamos Scientific Laboratory, 1976b.
- 15. Martz, H.F. and Waller, R.A., "A Bayesian Zero-Failure (BAZE) Reliability Demonstration Testing Procedure and Its Application to a Rankine Dynamic Radioisotope Power Conversion System," Report No. LA-6421-MS, Los Alamos Scientific Laboratory, 1976c.
- 16. MIL-STD-781C, Reliability Tests: Exponential Distribution, U.S. Government Printing Office, Washington, D.C.
- 17. Ramos, J.R., "Development of Bayesian Life Test Sampling Plans Assuming a Failure Rate with a Gamma Prior Distribution," Unpublished M.S. Thesis, The Pennsylvania State University, University Park, PA, 1970.
- 18. Schafer, R.E., "Bayesian Reliability Demonstration: Phase I--Data for the A Priori Distribution," RADC-TR-69-389, 1969.
- 19. Schafer, R.E., "Bayesian Reliability Demonstration: Phase III--Development of Test Plans," RADC-TR-73-139, 1973.
- 20. Schafer, R.E. and Sheffield, T.S., "Bayesian Reliability Demonstration: Phase II--Development of a Prior Distribution," RADC-TR-71-209, DDC AD-732283, 1971.
- 21. Schafer, R.E. and Singpurwalla, N.D., "A Sequential Bayes Procedure for Reliability Demonstration," Naval Research Logistics Quarterly, Vol. 17, 1970, pp. 55-67.
- 22. Waller, R.A. and Martz, H.F., "Bayesian Reliability Estimation: State of the Art for the Time-Dependent Case," Report No. LA-6003, Los Alamos Scientific Laboratory, 1975.
- 23. WASH 1400 (NUREG 75/014) REACTOR SAFETY STUDY. An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants (Appendix III. Failure Data), U.S. Nuclear Regulatory Commission, October, 1975.

- APPENDIX A. Some Useful Figures and Tables for the BAZE Procedure
- Figure Al. Gamma Shape Parameter a as a Function of log10 (UL/LL)
- Figure A2. Gamma Reference Scale Parameter \mathbf{b}_0 As a Function of the Shape Parameter a
- Table Al. Values of θ_{γ} for Selected Values of Prior Shape Parameter (a) and Posterior Assurance (γ)
- Table A2. Gamma Reference Scale Values b_0 for Selected Values of Shape Parameter (a) and Prior Assurance (p_0)

Fig. Al. Gamma Shape Parameter a as a Function of \log_{10} (UL/LL).

Fig. A2. Gamma Reference Scale Parameter \mathbf{b}_{0} as a Function of the Shape Parameter a.

BEST AVAILABLE COPY

Table AI. Values of θ_{γ} for Selected Values of Prior Shape Parameter (α) and Posterior Assurance (γ)

Colored Colo	0	66.0	.975	96.0	0.60	0.85	0.80	0.75	0.10		
	1000	1.24275-44	14	261	964-14	27-107-14	1	154-14	9877-14	11-57-14	-
	5000	W. 4210F-23	96208	30	7.6984-149	2707-14	1	54-14	9477-14	1327-14	16
10 10 10 10 10 10 10 10	.6013	1.54526 15	25366	+	.6984	2707 14		415414	9877 14	41 -5561	4.2769-160
	VLC0.	A. 47725-12	62396		2000	41-1072		71-4	21-17-16	327-14	4.2749-149
	50000	200000000000000000000000000000000000000	10101	200	37740	3014-11	1	4	9077-14	1323-14	4.2769-149
	4000	7 26601 -07	10125-1	36.66-3	15905	3073-10		154-1	2077-14	1323-14	4.2749-149
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	S. C. P. R.	1.36416-06	0125E-1		8700E-5	33635-8		1154-14	9a77-14	1323-14	4.2769-149
Cartier Cart	6000	7.94075-05	4.384E-1	9.9561E-26	C9071-5	11956	799-10	3-14	9477-14	1323-14	4.2769-149
1971 1971	01.00	2.4250E-05	6793E-1	2.9736E-23	.8217E	177	916	21-0	41-77-14	1321-14	4.2749-149
100 100	. 6611	F.04478-05	4	3.15108-21	57.4	4694	4.45375-89		1-900	1 1 1001	601.0010
Control Cont	0015	. 295-6-04	3.8630E-10	1-35	12441.	15434	0405-1	2 0	1-617	1301-14	67.0916.4
1.00 1.00	00013	+0-3c and +	POOF	42E-1	16366	14151-5	3.375Ht-70	7	11-151-11	1323-14	4.2769-149
MARGON MARCON M	3.30	4. 42. 2 LE - 04	6278E	7	75/4E	9437E-4		D	0331-1	1322-14	4.2769-149
1942-0.3 1942-0.7 1940-0.2 21347-2 1940-0.3	9019	1 052-8-03	7.5+70F-08	6,7165E-15	41735	32384	1,51751-61	-	6331E	1,2429-139	4.2769-149
1,774 1,77	1100	1,52428-03	91455		.8145E	47E	54672-5	3E-7	4.27695-92	7010-13	4.2769-149
Control Cont	0619	2.11836-03	31946	2,36691-13	13378-2	45345 -4	4835-5	-	18-315-6.	A71-12	6.5769-149
A	0010	6. na42F-03	1623E	3	4.646.35-25		0	0	1.6647E-12	102-11	071-0412-
1,100 1,00	0200	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7674	1 1	3466	1 4 0		0-3/000	51-35056-0	2010	26.1
1949/1013 1948	. 6002	- 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64.20F		93411-2	375	0130r		10.00	1239	6 4 9
## ## ## ## ## ## ## ## ## ## ## ## ##	0000	1497	32275	1.150RE-10	17106-2	1.15548-31	4.12434-43	5-3058	2.5203E-68	1.9484E-97	7.3711-132
10.39 10.39 10.30 10.3	7000.	F-6144F-03	4749E	-	-	2.19485-30	2.34965-41	5-3470	6	6-3×9	5-0942-126
1770 F = 0.7 1.00 E = 0.7 1.00	.0028	30 37020-1	34945		,	29441	. :	5 4	-	2505-8	2.1788-121
14744500	9000	20-1-66	30175	0-302	1-16914	04505-7	7 2058t - 37	7-36700	* "	2 8370F-83	1.8101-112
### 17816-04 17816-04 17816-04 17816-04 17816-05 17816-0	1200.	20-37723	45 9 2F	4. 229AF -09	1-3/64Y	1.897F-2	1.37912-34	1. 34695-45	2.6H03E-56	3.300aE-80	1.7362-108
2.3142F-UZ 1.2171E-UA 2.1131E-UA 3.4771E-16 1.6725E-24 2.793E-33 1.2710E-42 1.3044E-51 1.5357E-72 4 2.4947E-02 1.5941E-04 3.6545E-UA 3.6445E-UA 1.6645E-UA 3.6445E-UA 1.6645E-UA 3.6445E-UA	0000	79046-02	50	1.1718E-UR	1730E	2	2.15332-34	4-32954	14715-5		8.8492-109
## 2945F_02 15481E_04 3.5445E_04 9.7711E_16 5.014E_27 3.0841E_32 2.0076E_47 5.0445E_47 5.0456E_07 5.0456E_04 5.0505E_07 5.0456E_07 5.0456	.0030	2.010.26-02	21716	2.1131E-08	1-30741	6725E	93E	1.27105-42	0	6.32136-75	2.5530-101
2. 4578-02 2 67308-04 10078-05 2 86752-15 7.78-22 2 7.78-41-31 5.74-28-40 7.78-28-40 3.38-68-10 2.86758-04 1.0078-24 1.0078-24 1.5708-06 1.37-68-29 1.00998-37 1.58-28-46 3.18-88-66 1.37-88-22 2 7.78-28-37 1.00998-37 1.58-28-40 3.38-88-66 1.37-88-20 1.00998-37 1.58-28-40 3.18-88-66 1.37-88-20 1.00998-37 1.58-28-40 3.18-88-66 1.37-88-20 1.00998-37 1.58-28-40 3.18-88-66 1.37-88-20 1.37-88-20 1.00998-37 1.58-28-40 3.18-88-66 1.37-88-20 1.37-88-20 1.37-88-30 1.37	. 0631	5	5481E	3.55456-04	.77116-1	7	3.08+1E-32	2.8029E-41	05416-5		9 1
3 915 F 0.0 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2500	20-17602.5	0630F	6.1539E-08	82656-1	2 30301 22	2.92474-31	5.09455-4	2060E-4	33855-7	3 30205.03
3.556F-02 4 0721F-04 3.635F-07 4 7531L-16 3 9419F-21 1.1534L-28 1.1318F-36 3.1107E-45 2.318F-64 3.545F-64	.0033	20-1120	50.60E	10-30000 T	96994-1	10	1.76442-29	1.00896-3	45.205	LARE-6	1.6304E-R9
3,470=6-02 4 0721E-04 3.6535E-07 1.0970E-11 1.3056E-20 6.7768E-28 11102E-35 5.2757E-44 1.3356E-62 13.465E-62 13.465E-62 13.465E-63 1.0970E-13 4.4776E-10 1.7525E-35 1.0755E-43 6.1877E-61 24.46776E-10 1.7755E-77 4.443E-34 9.7755E-75 2.3417E-61 24.4977E-70 1.7755E-75 1.0755E-75 2.3417E-61 24.4977E-70 1.7755E-75 1.0755E-75 2.3417E-61 2.3447E-70 1.0547E-70 1.0547E-7	0035	3 2037F-02	000	2.43158-07	75331.	3.8419F-71	1,15346-28	1,13185	1107E-4		0
J. KENSENCE OF CONTROLL S. 3702E-07 5.1170E-13 4.7779E-27 4.6725E-27 7.6775E-59 7.371E-07 2.31170E-03 4.7771E-07 7.3521E-39 7.371E-07 7.3521E-39 7.371E-07 7.3521E-39 7.371E-07 7.3521E-39 7.371E-07 7.3521E-39 7.371E-07 7.3521E-37 7.3531E-27 7.3531E-27 7.3531E-27 7.3531E-37 7.	96 36	3.57528-02	4.9721E-04	3.65.358-07	1.09/0E-1	1,3956£-20	6.77881-28	1.1102E-3	-37575	33645	1.35265-84
### ### ### ### ### ### ### ### ### ##	16031	3. HABSE-02	6.0141E-04	7 75:5-07	30114	72796-6	75027	7 "	70516-1	34115-5	3.40415.80
4 7657E 02 10354E 03 10474E 04 2 0444E 15 102740E 16 3.3361E 25 3,2414E 32 10494E 39 10434E 55 5 10594E 03 2 10744E 04 3 4374 E 16 1.30474E 24 1.4945E 31 0.3786E 39 4.3746E 55 5 10594E 02 1.1735E 03 2.4744E 04 3.4377E 14 1.5355E 23 4.5434E 31 0.3786E 39 4.3746E 55 5 10594E 03 1.5444E 03 2.74444E 04 1.2474E 11 1.5355E 2.3 4.0543E 30 5.351E 37 1.4397E 55 5 10434E 03 3.4774E 03 3.4774E 11 1.4444E 11 1.6355E 23 2.6444E 29 3.51444E 35 2.1444E 51 2.7474E 02 2.7946E 33 3.3466E 03 3.346E 04 3.8574E 16 4.8557E 27 0.6947E 29 3.51444E 35 2.1444E 51 2.7474E 02 2.5864E 03 3.346E 04 3.3541E 16 4.8557E 27 3.6947E 27 3.6947E 38 3.346E 49 2.7747E 03 3.4748E 33 3.4764 27 3.6947E 2	ME 00 .	20-11/11/4	P. C. C. 75 - 174		40000	4978F-1	9797	1 60		7.35215-58	
5.1050E_02 1.1735E_03 2.0774E_06 3.8974E_12 3.4347E_16 1.3007L_24 1.6963E_31 9.3786E_39 4.378FE_55 1.5008E_02 1.3597E_02 1.3597E_03 2.7944E_06 7.1804E_12 8.8757E_18 4.7534E_24 1.0008E_30 7.4028E_38 8.5757E_59 1.5008E_02 1.3497E_03 2.7779E_03 1.3497E_03 1.3497E_03 1.3497E_03 2.1416E_51 2.5498E_03 4.3768E_03 2.3497E_03 2.2496E_03 4.3768E_03 2.3497E_02 1.7894E_03 4.3768E_03 3.3497E_02 1.7894E_03 4.3768E_04 1.1144E_16 1.54676_27 9.6937E_29 2.1894E_35 2.1416E_51 2.7747E_02 2.0341E_03 4.3768E_04 3.3497E_04 1.1246E_16 1.54676_27 9.6937E_28 1.0206E_34 3.3497E_49 2.7747E_02 2.5868E_03 1.0268E_95 1.0349E_11 1.1144E_15 3.4497E_21 4.7738E_27 7.3185E_33 3.4687E_47 1.1144E_15 3.4498E_21 1.7921E_25 1.3754E_32 2.9416E_45 2.7746E_63 1.2762E_93 3.9774E_10 2.2821E_15 9.4083E_21 1.7921E_25 1.3754E_32 2.9416E_45 2.7496E_27 3.0185E_33 3.4687E_47 1.1144E_15 2.3394E_27 5.7746E_28 3.7746E_32 2.9416E_45 2.3394E_70 5.7746E_28 3.5774E_93 3.9774E_10 4.31407E_15 2.3394E_70 5.7746E_26 5.8696E_32 2.9416E_45 2.3416E_45 3.57746E_33 3.9774E_10 4.31407E_15 2.3394E_70 5.7746E_28 3.57746E_32 2.9416E_45 3.9416E_45 3.9416E	0000	20-31-907.4	1.00546-03	-36616	04H-2E	496-1	3,33611-25	4		1.04346-56	
\$\text{\$4.093\text{\$4.000}\$}\$\$\text{\$7.000\text{\$4.000}\$}\$\text{\$7.000\text{\$4.000}\$}\$\$4.000\text{\$4.000\tex	1700	5 10508-02	1.	34/10	89.6E	43476-1		m 1		37855-5	1327
5 7684F_02 1 5445E_03 3,779E_05 1 2470E_11 5,179E_17 1,5355E_23 4,759E_12 3,534E_23 5,141E_51 5 6 6931E_202 1,7446E_03 4,745E_05 2,744E_03 5,44E_03	2000	5.4297F-62	1,35976-03	7984E	808	. 8267E-1		0081F-3	402RE	50525-5	1,1940F_72
A 418F-02 1784E-03 4 570FE-03 5 3870E-11 3 520FE-17 3 5176-22 5 5054E-23 5 5 570FE-24 5 5 570FE-25 5 6 570FE-50 7 5 570FE-27 5 570FE	6400	5 75845-02	1.55496-03	362	SA TUE	36041		5-35 BCC	3 510 E 36	14 100 6	2 14245 40
7.77176.02 2.5698E.03 8.0959E.06 6.3636E.11 2.5641E.16 4.8557E.22 3.8937E.28 1.1626E.34 3.344FE.49 2.77176.02 2.5688E.03 1.0265E.05 1.0369F.10 5.4168E.16 1.3547E.27 1.4735E.27 6.7105E.34 3.5416E.48 5.77176.02 2.5688E.03 1.2886E.05 1.0369F.10 1.1134F.15 3.6429E.21 5.738E.27 3.0185E.33 3.4083E.47 1.74265E.02 3.4246E.03 1.5629E.05 2.58179E.10 2.2521E.15 9.4083E.21 1.7921E.26 1.354E.32 2.9416E.46 2.7436F.02 3.5774E.03 1.5753E.05 3.9774F.10 4.3140E.15 2.3394E.20 5.7940E.26 5.8080E.32 2.9406.45 3.	7700	20-318-0-4	34681	0.00	22042	16621		12	2 12945-35	2425-5	7.16755-68
7 1217F.02 2.5642E.03 1.0265E.05 1.0360F.10 5.4164E.16 1.3547L.21 1.4734E.27 6.7105E.34 3.5410E.48 5 7.4711F.02 2.8445E.03 1.2886E.05 1.6524F.10 1.1134F.15 3.6424E.21 5.7738E.27 3.0185E.33 3.4083E.47 1 7.4245E.02 3.4249E.03 1.5024E.05 2.54170E.10 2.2221E.15 9.4083E.21 1.7921E.26 1.3754E.32 2.9910E.46 2 1.3754E.03 1.9752E.05 3.9774F.10 4.3140E.15 2.3394E.20 5.7940E.26 5.8080E.32 2.4051E.45 3	6400	77475-02	29966	0	3634	55416		-2	1929E	347E-4	C
/47116-02 2.8945E-03 1.2886E-05 1.6524F-10 1.1134F-15 3.6429E-21 5.2738E-27 3.0185E-33 3.4083E-47 1 7.4245E-02 3.4246E-03 1.5029E-05 2.58770E-0 2.2221E-15 9.4083E-21 1.7921E-26 1.3754E-32 2.9910E-46 2 1.394E-03 1.5753E-05 3.9774F-10 4.3140E-15 2.3394L-20 5.7940E-26 5.8080E-32 2.4057E-95 3	1700	7 12135-02	56625	0	.0	5.8E-1	1,35471-21	47335-2	6.2105E-34		0
7.H245E-UZ 3.4249E-U3 1.5029E-U5 2.587VE-U 2.2821E-15 9.4083E-21 1.792FE-46 1.3794E-32 2.991NE 1.1804E-02 3.5774E-U3 1.9752E-U5 3.9774E-U 4.3140E-15 2.3394E-PO 5.7940E-26 5.8090E-32 2.4067E	0048	1.471 15 - 62	2	Las	3	1,11346-15	3,64291-21	2738E-2	3.0185E-33	LA	1.0875F-63
4. 1904F-02 3.5774F-03 1.9763E-05 3.9774F-10 4.3140E-14 2.3394E-70 5.7494E-66 5.8080E-32 7.40	6700	1245F	38427	1.5029E-05	2.5870E-10	2,22216-15	9.4083E-21	7921E-6	1,37545-32	Las	2.07195-62
	0500	19045	3774E	1.,7628-05		4.31408-15	2.3394t-70	fel	5.4980E-32	54-31904.5	3.50838-61

BEST AVAILABLE COPY

TABLE AI (CONTINUED)

3	66.0									
				-		1	1	-		
1500.	10		2.41671-05	6.0126E-10	- 3.	5.51275-20	300	BARBE.	1 . 7 A 30F - 44	5.31675-60
-0052	.089003	043	2.93275-05	8.94rbE-10	0	1-1120	5.30266-25	N	7-357	5-3515
£500.	.092435		3.5329E-05	1131-0	1665-1	2.9262t-19	7-3	3452E	1548-4	8.97476-58
+500.	5		2.	?	376-1	7	1157E-2	.1633E	4.65745-42	1156.5
\$500.	*56660*		30	0536-0	A+26-1	7	2-	BEAR E		. 043
9500.	.103438		6456.	T.	465	. 796ZE	2	1.2310F-28		. 9073
1500.	.107335	0	.9701E	5.243ct-Ja	3724-1	-	79636-2	.7433E	4-30B	69
.0058	.111043	.007223	0 1E	7.28056-39	7	0	2		m	7.07395-53
.500.	114761	-	.4580E	7	14516-1	1636-1	30	1394E-	41276-3	200
09000	.118489	.008366	1.0934E-04	1.334 dE - 08	7	3.97916-17	-2	8.50938-27	9795E-3	
1900.		.008971	1.2580E-04	1.7794E-08	51648-1	7,3216E-17	-360	27		2,5253E-50
2900	.125963	6	1.44095-04	3514E-0	3307F-1	1.3209£-16		9525F	32128	S
.0063	.129709		6432E	3.07948-08	3,53365-12	3	A.3180E-21	1.458AE-25		9.31165-49
.900	.133456	0	1.65638-04	0	5.29AZE-12	683E-1	798-2	1	1.22305-35	5.19595-48
5900	137207		155	5,15456-08	7.41645-12	6.9500t-16	3.3307E-20	8.3284E-25	4.17825-35	2.75008-47
9900	140959		37	6.5874E-00	1,14175-11	1,17046-15	5-37082	1.912AE-24	1.37475-34	1.34385-46
19000	.144711			360+E	1.0490E-11	1.9388t-15	1.27101-19	4.2856E-24	3647E	6.63525-46
.006A			2.9918E-04	1,053 / 1-07	2,35608-11	3,16421-15	2.3900E-19	m	37688	342
69000	1152514		3,33785-04	1.31906-07	3,3315E-11	5,09151-15	7	C	9791E-3	3312
0200.	.155963		3,7122E-04	1.640/1-37	4.66446-11	8.0821t-15	A.0061E-19	4 19726-23	14592	5615
.0071	.159708		4,11635-04	2.02436-07		1,26531-14	1.42845-18	40	2020E-3	10
5700.	.153450	-	4.55138-04	2.49676-07	H. 89111-11	1.959at-14	2.5077E-18	7287E	8 7007E-32	8.75315-4
6700.	681781.	-	5. 11898-14	3.04038-07	3	2.9902E-14	4.33535-18	4078	2.29975-31	3.27295-4
\$700.	.170922	1880	5.5191E-04	3.79265-07	1.6357E-10	4.5290E-14	7.3848F-18	10	σ	1.19095-4
•0075	.174650	-	5.0543E-04	4770E	2,19376-10		1.24028-17	5435	1.48555-30	4.11775-4
92000	.178372		6.6253E-04	5.34641-07	2.91776-10	1.0016t-13	2.05.5E-17	34528	3.54255-30	1.3894F-4
7700.	•		.2332E	6.44.156-07	3 45205-10	1.46472-13	3.35936-17	31446	A 72035-30	4.54215-4
9700.	•	2	335	7.68096-07	04944-1	2.1258E-13	5.4238E-17	8139E	0	• 3
.200.	•	2	35.	1210E	57381-1	2	7	30418	4 47745-29	4.43ARE-3
0800.	.19319	4	300	0777E-	8.5022E-10	4.3492t-13	7	4514E	34670	32475
1800.	19697	.025447	375	1.2630E-06	1 0987E-09	6,137ot-13	2,1265E-16	2511E	36608	a.
.0082		9	08666	43016-	3957E-0	8.5890t-13	7	27376	96	1.0997F-3
. C083	-23452	2	1,17196-03	3316	723E	1-3776	5.0051E-16	-	055AE	3.04516-3
+600.	.207a8	9582	1.26195-03	3	3175	1.64215-12		7	7.19646-27	3008
c600·	.21153	0960	1.35-76-03	1	3660	4475-1	1-351	774E-1	SEE	
· 60095	. 215	~	545	,	3.50976-09	04635-1	7736-1	.5020E-1	3678-2	0.
.600.	.218404		1.55806-03	,		,10566-1		7	1.78885-66	1.41676-35
.000	15 4222.	0	1.65535-03	57035-	5.33351-09	5.49476-12	-3169	7	B6 3E - 6	000
	7.0032.		1.17942-03	, '	- 141.6	1060	S. H. I.		6 69 SAE - CB	0 1
0.000	233334	030140	1.09/5E-03	4.654706	8.1316E-09	51-17-15	7.42005-15	3.47695-18	7 34345-25	2.01725-3.
2000	4189EC.		2.14976-03		20436-0	1.6554	1 - 8646-14	2304F-1	4 3411F-25	2 1
1600.	.240383		2.24195-03	6. 7934E-06	- 3E 9	2.1468t-11	7	1 3 8 5 1	2	2.42005-3
+600.	.243941		2,42036-03	0	7540E -0	2,77391-11	2. H927E-14	1.87815-17	2-3	
c600.	.247488		2.5640E-03	8.63242-36	1043[14	3.99256-14	C.	2-5130E-24	1.16235-3
95000	.251023		2,71295-03	310	51506	3	5.47378-14	1411	4.40035-24	457
1600.	.254548	345	.no72t	1.05521-65	38766	5.78 5t-11	7.4556 -14	07426	7.616AE-24	5.2330E-3
p600°	190852	90	.0269E	1.21425-05	35F -0			840AE	137E	1.08516-31
6600.	.261563		3.1920E-03	1.3517E-05	3	9.20341-11	1.35766-13	3077S	2.2074E-23	2.2170E-3
.0100	.765053	17	•	1.50366-05	4.9518E-05	40	1,81556-13	œ	3.69835-23	4.4655F-3

TABLE A1 (CONTINUED)

0	66.0	.975	96.0	0.00	0.85	08.0	0.75	0.10	09.0	0.50
1					-					
.0110	1066620	.060131	5,3753E-03	.9217E-0	0-3g	-7746E-	. 4840E-1	4004	3.84775-21	4370
.0150	.332376	.073964	•	8.7175t-05	7.44435-07		TOOF !	- 407AE	H454	116.00
•0130	.364275	.088128	.1034	1.714/5 04	Z-1116F 06	1.99215-08		928E 1	A. HAZAE B	7-
.010.	3.0CAC.	101.01.	1.07715-02	2000	201616	١	1 1 1 1	יייייייייייייייייייייייייייייייייייייי		4 95265
00100	171.77	.11/63	8950c	2.00.6	5	- 19/65	011111	1000	2000	7220
0010.	001660	0137610	32415	10101	* "	176	0 . 0 . 7	1	1	11416
.0110	0,010	147718	5 - 50 + 40F - 0 C		136.	20.00	2000	1016	2 2	0160
.0180	. 20 / HO.	041701.	10835			67040	0.0101000		20100	17245
.0130	.533774	.1//R15	36 + 9E		1.0998E-04	0-30426	*	-36110		207170
.0200	.538886	.192756	291	477E	. 6ARZE	4516	7	0264E-0	-	3,068/1
.0210	.583237	.207587	5.2228E-02	9	. 48ADE - 0	.3867E-0	1666-0	4014E-0	W W	.0.
.9220	.606873	.222286		34177.	5401E	.2446E-0	969E-0	20116	1045	1.18556-1
.0230	.629835	.236837	6.5506E-02	5.89508-03	4.8855E-04	.4993E	2,1151E-06	.05346		4.66465-1
0020.	.652160	.251230	7.24095-62	12t.	6.5644E-04	.246BE-0	0-3049	1165		1.64015-13
.0250	.673HB4	.265454	7.3454E-02	8.5377E-03	. 51528		ů	.6481E		5,21175-1
.0260	140549.	.279506	8.66201-02	0	1.10745-03	1.0746E-04	0-34	3201E	Lai	1.51506-1
.0250	.715660	.293382	9.3888E-02	1.174-6-02	1,39745-03	179E-0	366	0513E-0	4451E	4.06995-1
0820	.735770	.307079	.101240	1,3511E-02	-	1.9870E-04	0	SP65E	8551E	1,01895
0620	155196	.320597	.108662	1.54235-02	12136	9	8569E	E-0	2870E	4
0300	.774564	.333936	.116138	7451E	56016-0	3.3860E-04	0	0	3110	55F-1
0310	. 793296	.347097	.123659	1.96065-32	052BE	4.3080E-04	?	1995E	0	.1209F-1
0320	8116	.360083	.131212	.1855E	3.60116-03	39	7.18245-05	8.3156E-06	7267E	2.2562E-10
0333	R295	372895	.138788	2,42305-02		.67	0	1.466E-0	0920E	-:
0 3 4 0	A.70	.385536	.146381	OCE	4.8685E-03	8.15291-04	1,2208E-04	0-35509	7231E	-:
0350	8642	.398009	.153981	.921CE	5842E-0	9.8439E-04	55¢0£	2,1470E-05	-3U679	0-3089ª.
.0353	a	. 10317	.161582	. 19 Juf - 02	6.3685E-03	763E-0	1.9567E-04	2.8783E-05	9764E-0	.5120E-0
.0370	104768.	.422463	917	20-36194.	0	1,39666-03	4304E	.7451E-0		.2302E-
.0380	.913801	.434451	.176768	.750cE-02	8.102AF-03	333E-0	8496	856	9	3115-0
.0399	.9291.93	*#46284	.184342	-05	9.0573E-03	1.90072-03	3.62735-04	6. 1AZAE-05		0736-0
60+0.	562596.	\$457965	668161.	- 05	1.00495-02	19536-0	9449	. 77716	1. 648AE-06	.7686F-0
.0410	.960618	867694.	.199435	-05	0	.5181E-0	1.1	445-0	36252	39.35-0
.0450	.975475	.480886	.206947	.9541E-0	0	37E-0	595E	106		.9504E
.0430	•	.492133	1443	.2713E	0	. 45 VBE - 0	. 2246E			-803cE-
0440.	1.005026	.503242	99	.59 . ct - 0	478E	3.6621c-03	8.424E	1550	2807E	36775
05.00	•	.514216	. 229316	0-36556	? *		12155	1000	1000	- 26.60
0000	1.033425	850556.	01/057	20-305-0-4	0.055.0	00077	20246-0	0.0	11000	20636
0.00	•	2/1000	400447	- 3cc.	013640	41671	5015-0	44016	30808	123
000	0	556637	25,8482	28176 - 3	14226-0	1833E-0	0	0101	7334F	19716
0040		547.74	265623	431/6-0	31566-0	7820E-0	0	4454	2 1360F-05	.5739F
0150	1.100680	577404	.273145	98541-0	35	4124E-0	805E-0	3706	2 6130E-05	32
0250		.587520	-	8.34201-02	63596-0	A. 07441-03	_	÷	3,17055-05	5
0250		597625	.287454	70181-3	8025F	8.7479E-03		0	8192E	1.22455-06
0540	1 . 1 38747	.607422	.294549	0-3++90	0	494/E-1	8550E-0	7 94135-04	56	5613F.
0550	1.151092	.617213	.301605	9 4275E-02	-	1.02491-02	3 14685-03	0	430AE	9733E
.0569	1.163273	. 526900	.308620	79716-0	3266	1035E-0	3,4607E-03	0	415AE	2.4732E-06
.0570	7529	.636486	.315595	.101669	.5039E-0	34-0		-	5350E	54E-
.0584	-	.645973	.322530	•10538A	694BF			SERF	8010E-0	U.
0650.	1.198882	.655364	.329425	.109122	3.88435-02	1.3577E-02	4.5087E-03	1,3961E-03	1.02245-04	4.65175-06
00900	73.0.0		-							

TABLE AL (CONTINUED)

0	66.0	.975	56.0	06.0	0.85	0.80	0.75	0.10	0.60	05.0
01900	1.221890	.673865	.343092	.115644		1.5420E-02	3025E	536-0	1.3604E-04	848
29	1.233187		.349866	.120427		1.63845-02	0	.8757E	-3484E-	320E-0
.0630	1.244151	\$60269*	.356599	124555	-	C	0	.0570E-0	.7776E	93416-0
00000	1.255386	*****	.363293	.123028	2	C .		.2494E-0	193E-	1692
0590.	1.266295	.709800	.369947	.131845	4	0	2	.4532E-0	-30482	23E-0
0990.	1.277681	.718573	.376562	1735671	5.20165-06	0	?	345		0-30456
0240.	1.287749	.727265	.383137	.139504	100		• !	- H404E-	40-34:04.	7 0
.0580	2	. 735878		14334	- 3202 .	0-16975	1	1 3435-0	46 1	50-14112.2
0600.	1.308739	.744414	.396172	~	5.34418-06	389	?	3,3453E-03	\$151E	7
.0700	1.319057	.752874	. 402632	.151044	543E-0	0/35	2 0	.6484E-0	145	
.071	1.329288	.761260	+5060++	5	0	2.62734-02	1.04 12E-02	97398-0	•	-
.0720	1.339404	.769574	.415438	158760	1116-0	541.	2 0	CIIRE-0	93346	1
.0739	1.349417	.777816	.421785	.162623	33755-0	2.474 JE-02	1.16HHE-02	.5122E-0	4413E	4.47545-05
.0743	1.359332	.785988	.428095	.155488	.04591-0	3,00135-02	0	8253E-0	306	5.0920E-05
.0750	1.369148	.794093	.43+369	.170354	.2962E-0	3.1304t-02	2	108-0	3484E	5.77396-05
.0760	1.373870	.802130	1090***	174221	.52H25.	3.24172-02	?	0-346E+	310	6.5255E-05
0770	1.368499	-810102	608455	.178084	. 76191 -0	3,39514-02	1.44235-02	8409E-0	7.8424E-04	
0780	398	818009	. 452975	-	1766-0	3.53Unt-02	0	2051E-0	34656	8.2575E-05
0670	1.407446	.82583¢	. \$59106	.145821	8.23416-02	1-0	1.58996-02	6.5A21E-03	BUANE	9.24776-05
000		633436	.465203		4725E-0	3.8075E-02	1.6664E-02	6.9721E-03	SAPOR	1.0328E-04
0.80	1.426127	841358	.471266	354	8.71236-08	3.94892-02	1.7446E-02	7.37495-03	3160	1,15035-04
0000	1.415123	869020	.677294	.197410	A.95346-02	0	9245F-0	7.7906E-03	1.1n17E-03	1.27785-04
0000	1.656.37	856424	645684	.201264	9.19595-02	4.2371E-02	0-3190	2	1 2740E-03	1.41595-04
0100	1.45 34.72	. 466171	157689	.205123	50-39664.6	4.3839E-02	0-35686	6407E-0	1 37296-03	1.56515.04
	1.442.39	871661	1000	.208974	6844F-0	4.5325E-02	074460	1150F-0	1 47605-03	7260
0000	1.471311	879096	501077	.212823	63346 -3	4.6827E-02	0		1 5847E-03	1668
0000	8		506962	.21666	.10175	4.8345E-02	2.2491E-02	0062E-0	1.69745-03	5
0 00	C. 4 F. F. C.		511715	.220504	114256	4.9490E-02	2.3384F-02	0454F-0	1 8167E-03	2,28445-04
0000	1.447515	901080	518577	. 224341	.105746		2.4302E-02	1060E-0	1 94048-03	2.4577E-04
0000	1.506107	908304	.524348	.228171	1092	2	2,5230E-02	1577E-0	2 0700 5-03	2,7256E-04
0.60	1.51.632	. 915477	3008	. 231994	•111755	4	2.4174E-02		2	2.9687F-04
02600	1.523089	.922601	.535799	.235819	.116272	5.6168t-02	2,7133E-02	2450E-0	3460E-0	3.8874E-04
.0930	1.531.80	929676	.541479	.239629	573	-	2.8106E-02	1.3205E-02	4924E-0	3.50255-04
60600	1.534807	.935703	.547130	.243437	33	0	20-3F606-2	772F-0	30779	3.79456-04
6560.	1.5.8070	.943484	.552752	.247239	2		3,00055-02	0	B031E	4.10395-04
6960.	1.656271	. 950617	.558345	. 251035	0154610	26/42		0	2	
0160.	1.564412	975750	330	785	20,00	4334E-0	3.2139F-02		3,13745-03	-1177E-
2		. 404344	0.204440	*25850A	2000	0	.3182E	.6162E_0	336	14316
0660.	1.5065.1	*******	456476	.242385	132093	6.7635	3.4230E 02	6789E	3.49595 03	5.52935
.1000	000	CO 6 1 1 6 .	40000	501007	2000	1	0	4.325.0	20174700	
.1100	2010001	1.04.3231	60,23000	900000	0000	יייייייייייייייייייייייייייייייייייייי	0000	4000	2000000	٠.
1200	- a	1646401	797567	. 375720	100010	191761	0	2 0	23301.03	101025
1300		10.00.01	780443	021014	290000	083631		5 11755-02	1 20 3 4 5 5 0 5	44.3
0041.		1017121	. 825CA7	10	26437	• -	100366	9	0-30061	234.0
000		1 323719	869170	478191	174197	183190	200	24205-0	6775	
	2 045460	1 372991	911315	510861	316944			515		1.00355-02
	2.099584	1.420538	• ທ	.542A4a	.342364	. 223320	146	6101F-0	8932F-0	9 0
	2.151805	1.466528	991908	.574183	.34751A	664645	6	108415	576KE-0	1.71195-02
0000	2.202305	1.511103		· 6064000	.392398	* 461544	.178859	.121039	5 3011E-02	07465-
									1	

TABLE A1 (CONTINUED)

0	66.0	.975	96.0	06.0	0.85	0.80	0.75	0.10	09.0	05.0
2100	2.251244	1.554388	1.068149	.635041	.417000	• 483606	195062	133922	.060630	+17450.
2200	2.298758	1.596493	2	.664630	•441326	• 303505	.211366	.147027	685890.	0
.2300	5.344069	1.637511	1.140712	6698669	•465379	• 323526	.227743	.160319	-	.033409
.2400	2.389980	1.677528	-	.72227A	*483164	• 343355	1.6	.173768	ac .	.038503
.2500	.43348	1.716618	1.210115	.750393	.512697	.363085	.260626	.187348	Or .	.043674
.2500	2.475767	1.754847	3	.77806A	*242424	•382709	.27709R	.201039	.103236	0
0012.	2.519697	1.792275	1.276777	· H05327	699	. *02222	.293571	.214821	.112475	m
.2800		1.828956	1.309187	.832190	.5A1755	• 421422	.310034	·228578	. 121902	90
.2900	2.599963	1.864938	1.341034	·858479	.604304	906044.	.326480	.242597	.131500	.046807
3000	5.639409	1.900264	1.372350	.884811	.626628	+460074	89	• 256565	2	.073131
.3100	2.678131	1.934974	1.403167	.910604	•648735	•479126	.354288	.270572	4	.079645
3200	2.716171	1.969104	1.433511	.936074	.670532	-49a065	.375640	.284609	.161168	.086336
3300	2.753570	2.002688	1.463409	.761237	.692329	9	95	. 298669	.171306	6
3403	2.770363	2.035755	1.492884	· 786106	.713829	.535543	.408220	.312745	8	0200
3500	2.426584	2.068333	1.521958	1.010695	.735141	.554190	244424.	.326831	.191898	0736
3600	2.862264	2.100447	1.550651	1.035016	.756272	.572577	• + + 0 + 1 +	.340922	-	466
3700	2.897430	2,132122	1.578981	1.059081	.777228	150165.	.456740	.355013	282	5503
3800	2.932109	2.163379	1.606966	1.082900	.798014	.609331	.472814	.369102	0	1139645
0066.	2.906323	2.194237	1.634621	1.105484	.818637	. 527502	+488834	. 383184	3+0+	30
0000	3.000097	2.224716	1.661962	N	5016E8.	. 645571	0440	.357257	4	.145078
.4100	3.033449	2.254A33	1.689002	1 1 1 2 2 3 8 5	.859414	9324	.520724	.411319	1	4625
1024	3.056400	2.284604	1.715755	159	.8795/3	. 681415	· 536589	.425367	.260324	50
1300	3.048466	2.314045	1.742232	1.198652	.899501	\$6 1660 ·	.552402	.439400	.27/181	.168970
0000	3.131195	2.343168	1. 168445	2211	0076160	116881	691996	-	000	011771.
1200	3.153012	2.371988	10116	24.35	563454	9/344/8	178586.	414.04.	010662.	.185329
0000	3-194522	2.400517	1.820120	1.205726	000000	186161	42446.	F 6 1 3 4 3	050000	201010
2004	3.2637.08	2 , 5 , 5 , 5	200040.	u	2000140	146.07	6515164	1 0000	0.60266	0.00
6000	3.7.00	2 484470	000000	1 - 30 1 - 1		00000	900000	10210C	343081	610010
0045	3.2.7.48	2.511042	000000	1 35 37 7 3	1001000	600000	.661653	153763	354163	227468
2000	3.347460	2 539177	945359	1.37616	1.05157	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	64774	446088	900	234080
2000	3.377204	2.566180	•	1.395.74	1.074082	.855313	-	6481	376391	244745
2300	3.406691	2.592959		41546	1.092902	.872264	0773	.578640	387534	. 253461
5400	3.435930	2.619524	2.018103	1.47	1.111021	6.84143	.722497	.592441	.398692	.242226
5500	3.454928	2.645880	2.041999	1.458234	1.130241	. 405951	.738716	*12904.	998607	.271036
5600		2.672035	2,065720	1.478930	1.148766	. 722690	.753391	126619.	.421052	168612.
5700		2.697997	2.089276	-	1.167198	.939363	.768521	.633701	.432251	.288786
.5800	_	2,723769	2.112674	1.519950	1 1 1 8 5 3 3 9	696556.	8360	.647407	.443461	.297721
2900	_	2.749360	2.135918	1.540283	1.203793	972512	9865	.661049	.454681	•
0000		2.774773	2.159012	1.560503	1.221360	26686.	1365	.67474B	0	.315702
5100		2.800016	2.181961	1.580614	1.240044	1.005411	.828614	. 688383	.477146	.324744
5200	_	2.825091	5.204769	0	1.253047	-	4323	0	938	.333819
6300		4.850006	·V	1.620517	1.275770	1.034070	20	.7155R3	.499638	.342925
0649		2.874764	2.249980	1.640314	1.293817	1.054314	73	.72914A	980	.352060
6200		2.899370	2.272389	10009	1.311588	1.070502	.888055	.74269n	. 522152	155
6600	_	2.923827	2.294673	67962	1.329285	1.086635	.902818	.756210	. 533416	.370415
6700	3.796754	2.948141	2.316835	m		1.102714	.917545	401691.	. 544683	.379631
•6800	3.423238	2.972314	2.338878	1.118552	1.364467	1.1187.2	• 432235	.783181	.555933	.388872
6065	3.849565	2.496352	2.350806	-	1.341955	1.134718	688056	. 746633	. 56/226	.39813
7003	2.875739	430000	2. 1826.20	001/4/1	4/1000	10000	10000	. 4000	COSHIC	46 47 4 4 4

TABLE AL (CONTINUED)

	66.0	.975	96.0	06.0	0,85	0.80	0.75	0.10	0,00	05.0
001	3.901764	3.044032		1.776299	10416732	1.166522	160916.	. 823473	.589776	.416733
1200	3.927644	3.067681	2.425922		1.434024	-	149066.	. 83686n	.601053	**** 5062
300	3.953383	3.091207		1436	1.451254	9	1.005157	. 850226	.612331	.475418
400	3.978985	3.114614		1.833284	1.458424	1.213869	1.019640	. 863571	.623609	.444780
500	4.004452	3.137904	6	1.852130	1 • 485533	1.529561	1.034091	.87689€	.634888	.454167
009	4.029787	3.151080	50	1.870899	1.502585	1.445208	51	· 890199	.646165	. 463571
700	4.054495	3.184144		1.889994	1.519580	1.460411	1.062899	. 4034A3	.657444	£6564.
800	A-080078	3.207100	2.553349	1.908218	1.536519	1.476373	1.077256		157899.	. 492430
000	4.105033	3.229949		. 926	1.553403	1.691992	6	100626.	955519.	CI
000	4	3.252695	2.595144		1.570234	1.307371	1.105881	.943215	.691271	(
200	4	3.275339	2.615885	1.963677	1.587013	1.32-910	2014	.956420	.702545	.510834
500	4	3,297884	2.636542	1.942031	1.603741	1.334209	34	109696.	381	33
300	4	3,320331		2.000321	1.620418	1.353570	1.148600	.982774	.725086	0,4000.
	;	3.342684	2.677610	2.018547	1.637045	1.368894	1.162784	.995923	.736355	291918
200	•	3.364944		2.036713	1.653626	1.384180	1.176940	1.009054	.747621	. 54AB9
000	•	3.387113		2.05+31A	1.670159	1.399429	1.191070	1.022166	.758884	.55844
700	•	3.409192	2.738621	2.072864	1.696644	1.414643	1.205173	1.035261	.770146	.569003
900	٠	3,431185	2.758807	2.090H52	1.703036	1.429922	1.219250	1.048334	.781405	.577572
006	•	3,453092		~	1.713483	1.444966	1.2.13302	1.05139A	199261.	.587152
600	*	3,474915	2.798961	2.126660	1.715835	1.460076	1.247328	1.074441	803915	. 59674
001	•	3,496656	316	2.144482	1.752145	1.475153	-	1,087467	991518.	.606344
200	4	3,518317	2.838835	6.152250	1.768412	1.490198	1.275308	1.100474	856415	.615054
000	*	3,539898	858	2.179966	1.784638	1.505210	1.299261	1.113468	.837660	.625574
000	•	3,561402	2.878439	4.197630	1.800823	1.520190	1.303191	1.126445	206948.	\$92569.
200	,	3,582830	2.898144	6.215243	1695	1.535140	00	1.139405	.860142	. 544439
009	;	3.604184		23280	1.813075	1.550058	1.330981	1.152350	8/13/8	007754.
200	j	3.625464	2.937362	6.550323	1.849142	1.00001	1.344463	1259	119788	.664134
900	•	3.646673	2.956879	2.26773n	1.865172	1.579836	1.358682	7819	48088	104674.
006	;	3.667911	2.976335	2.285211	88115	1.594636	1.372499	1.191090	100000	
000	į	3.088979	•	6.3025H5	1.89/120	1.009438	1.380294	1.203973	162014	41500.
000	ď	3,896009		2.473953	.05479	1.755974	1,523133	1,332016	1.028337	Cr 1
00	v.	4.097368	m. 1	2.641460	20938	1.900089	1.058130	1.458746	1.140034	0000000
000	n a	4.693771	74466.	8400000	2,361323	2 1 4 2 2 4 4	1 93 34 74	2104001	1000000	0
000		4.465886		2 1 25 4 04	2 650524	3 300010	2 054173	3 6	1 473083	7 accal 1
000	0	2024/0.4	3.407.305	3.202104	20000	2.457008	2 183735	1.055.190	2 4 4 B 4 4 B	1.20170
000		101669.4	248743	3.43666	0440	2.573675			1.493566	1.390762
000	6.24.862	S 22034B	•	3.589282	09105	2.748245		2.198489	1.803395	1.479857
000		K.397120	4.580807	3.740258	23235	2.861780	un.	2,319141	1,912973	C
000		5.571643	7 1	3.889720		2.994308	2,692635	2.439216	2,022313	67834
000		5.744103	4.905160	4.037792		3,125932	.817	2,558751	2.131432	1.777712
000	-	5.914661	5.064831	4.184584	64932	3.256717	2,942518	2.677785	2.240341	1.877141
000	-	6.033457	5.223002	610	6428		9	2.796353	2.349054	9746
000	·	6,250616	37977	3	3,922359	u)	3,189945	2.914488	2.457581	. 07415
000	-	6.416252	5,535249	4.618178	140	•	7	3.032216	2.565934	17573
5.6000	-	6.580461	00	97.	4.192063		3,435236	3.149562	2.674120	2.275339
000	-	6.743333	5.842625	4.902326	4.325799	000	3,557164	3,266552	200	37498
0000	œ	6.904947		310	4.454850	900	3,678652	3,383203	500	
000	60	7.065379	6.145709	5.183088	4.591255	461501.4	3,44,64	3.44400	11166.7	4.574.34
000	•	10000	100000							

TABLE Al (CONTINUED)

						7				
5	66.0	.975	96.0	06.0	0.85	08.0	0.75	0.70	09.0	0.50
1 8		7,382939	6.444977	5.460843	4.854271	4.404393	4.040710	.73131	3.212857	2.773797
0		U)	6.593303	5.598691	4.984944	4.549312	16066	3.846789	3.320213	2.871551
0		•	6.740820	5.735901	.11509	4+653811	4.280279	3.962007	3.427453	2.973322
0		an)	6.887563	.872	5.244759	4.7/7909	39957	4.076978	3.534582	3.073107
00		0	7.033568	0.003518	37394	4.901625	so .	4.191715	3.441604	3-172907
0		~	7.178876	-	5.502689	5.044977	63727	4.306229	•	3.272717
00		8.312978	7.323508	6.278921	5.631001	5.147980	5570	*** 20530	3.455346	m :
0		40015	87+ 0+-	0 ** 13355	5.758900	2.5.0650	1300	53452	3.99207	3.472370
00	9.865325	2 1	7.610376	4	5.886407	5.373001	9116	4.648519	4.068712	3.572211
00	10.045118	8.767274	7.753657	6.080783	1353	5.515040	5.104430	4.762229	4.175263	3.672061
00	10.20.140	8.917333	7.893874	G :	6.140305	2.626798	5.425851	4.875757	4.281728	
0	10.352412	9.056751	8.037546	0.340425	6.266724	5.738266	5.344051	4.989110	4.388118	00
0	10.519955	9.215550	8.178691	7.078618	6.392811	2.8 9450	5.461033	5.102295	4.494.25	3.971656
00	10.676814	9.363754	8.319335	7.410415	6.514569	6.030392	5,577805	5.215319	************	4.071533
00	10.432448	9.511386	2 1	7.341828	0.0440.9	6.141073	5.094376	5.328186	4.706520	=
00	10.988535	9.658461	3	704/2874	6.769170	6.241509	5.810751	5.440905	4.812911	4.271305
0	11.143445	9.805005	8.738404	7.603558	6.894031	6.301711	5.926938	5.553474	4.918937	4.371201
0	11.291752	9.951026	8.877196	7.733902	7.018612	6.401687	6.042944	5.665904	5.024892	4.471100
0	110451474	0	9.015564	7.863905	7.142921	6.601438	6.158772	5.778199	5.130786	4.571002
0	11.504626	rv.	6153316	7.993589	7.266964	6.740979	6.274431	5.890363	5.235618	4.670909
0	12.364.88		9.837589	8.637505	7.883548	7.315710	6.850347	6.449336	5.764916	5.170499
0	13.108487	11.658333	10.513032	9.274674	8.494657	7.905993	7.422702	7.005551	6.291919	5.670162
00	13.446121		11.181017	9.905965	9.100988	8 . 4 7 2 3 9 7	7.991953	7.559361	.81778	5.169578
0	14.570521		11.842396	•	9.703121	9.0 5384	8,558467	8.111049	7.342646	6.669638
0	15.288963		12.497896	11.153566	10.301504	9.655359	9.122543	8.660847	7.866511	7.169430
0	15.999966	14.422678	13.148115	11.770915	10.894529	10.232544	9.684431	0 8	A . 389768	7.669251
0	16.704332		13.793557	12.384520	11.488514	10.807280	10.244338	9.755507	.91219	8.169692
00	17.402656	15.763192	14.434646	12.994712	12.077736	11.3/9774	10.802445	10.300677	9.433952	8.658950
000	18.09543G	10.420164	15.01106	13.001/42	12.004.621	11.920204	11.350703	0 1	4000A	7.168321
000	18.793123	17.084810	15.705.13	•	13.248193	12.518752	11.713846	211	*ROC/ **01	4.668710
000	20.144684	18.390357	16.552622	3 10	14.411220	13.65072	13.019033	12.469508	11.515531	56852
000	\$166.00 LC	19.602034	120,02.81	52101001	15.569637	10000	14.160519	13.547.45	12.553175	11.658353
000	540029.22	585104.07	0/67+4067		10011001	120021311	503/13:01	E01520.41	7*******	12.00822
000	24,137127	22.230398	1,000000	10421404	*** / CD* / T	17.013283	10.31024	15.690.61	* K C * 50	
000	201090.62	23.404054	80*000*17	210821.02	18.75160	18.163040	10466	160,00117	21040	14.000010
000	697060.80	25.982992	24-301184	22.451500	→ D	20152.00	19.570390	10.84769	10-12-12-15	
000	29.349600	27.218645	25.499231		4 (210439396	20.651808	10.040.01	75247	
0 0	30.581052	28.447777	26.691771	24.756292	3.503585	22.538139	21.730954	21.022525	.78218	
000	31,845381	29.670858	27.879242	25.902540	24.621929	23.634281	22.808003	22.082438	. A1109	19.667673
000	33.103128	30.888383	29.062021	27.045102	25.737296	24.747986	23.883126	23.140838	21 . 439302	20.667624
	34.754764	32-100744	30.240440	28.184271	26.849910	25.8194A2	24.950450	240197847	'n	
000	35.600707	33.308266	41481	29.320269	27.959956	26.908856	26.028098	25.253553	23.893720	66754
000	36.841330	34.511301	32,585374	30.453305		7.99	27.098184	26.308045	24.920029	23.667503
000	38,076956	35.710101	33.752414	31.583561	1299	29.001890	28.166803	27.361398	p	24.667469
000	39.307887	36.904948	34.916089	32.711215	1428	20 1	29.234045	28.413679	97102	
000	40.534390	50	36.076610	9639	32,377578	31.248064	30.29991	29.464952		26.657405
000	41.756738	S	23417	34.959258	33.476977	2.348	31.364711	30.515272	29.020101	27.667379
59.0000	42.975095	678	38.388918	36.079917	574	m i	32,428274	31.564690	30.043468	28,667350
000	44.184/17	41.648842	39.540787	37.178555	100010.00	34.400044	33,490732	32.613239	31.001.51	64.007.324

TABLE AL (CONTINUED)

					•						
0	66.0	.975	96.0	06.0	0.85	0,0	0.75	0.70	09.0	05.0	
31.0000	45.400776	42,824876	40,690505	38,315117	35,764887	35,562657	34,552154	33.661009	32.090473	30,567311	
32.0000	46.538444	44.002030	41.837637	39 . 4 2 3 8 2 3	37.857699	36.638052	35.612575	34.707970	33-113172	31.667291	
33.0000	47.812869	45.174458	42.982466	40.542744	38.949060	37.712247	36.672057	35.754229	34.135515	32.567272	
34.0000	49.014226	46.344288	44.125085	41.653939	40.039020	38.785329	37.730619	36.799770	35-157496	33.667258	
35.0000	50.212588	47.511599	45.265616	42.763521	41.127577	39.857326	38,788329	37.844639	36.179174	34.667230	
36.0000	51.478187	48.576511	46.404120	43.871508	42.215054	40.948296	39.845226	38.88883	37.200535	35.567222	
37.0000	52.601029	49.839183	47.540735	620878044	43.301215	41.998286	40.901293	39.932480	34.221599	36.667205	
38.0000	53.791297	50.99632	48.675488	46.083084	44.386209	43.007307	41,956629	40.975497	39.242375	37.667198	
39.0000	54.979045	52.157977	49.808471	47-186744	45,470082	44.135427	43,011231	42.017969	40.262888	38.657:78	
*0.000	56.164393	52,314291	50.939746	48.289090	46.552879	45.202675	44.065116	43.059856	41.283126	39.667166	
41.0000	57.347484	54.458656	52.069372	49.390155	47.63+639	46.269059	45,118356	44.101228	42.303114	40,667153	
42.0000	58.528289	55.621137	53.197424	50.490013	48,715385	47.334670	46.170926	45.142096	43.322840	41.667142	
43.0000	59.705952	56.771796	54.323951	51.588637	49.795186	48.399482	47.222881	46.182505	44.342367	42.667131	
*** 0000	60.883584	57.920722	55.449005	52.686107	50,874063	49.403514	48.274212	47.222420	45.361649	43.667121	
45.0000	62.158173	59.067953	56.572638	53. 782505	51,952057	50.546864	49.324967	48.251888	46.380712	44.667110	
•6.0000	63.230868	60.213551	57.69.899	54.877815	53,029132	51.583485	50,375165	49.300905	47.399561	45.657100	
47.0000	64.401640	61,357533	58.815828	55.472092	54.105397	52.651420	51.424800	50.339508	48.418206	46.647091	
48.0000	65.870540	62.500050	59.935454	57.065355	55,180848	53.712694	52,473897	51.377691	49.436650	47.647092	
00000-54	66.737841	63,641014	61.053858	58-157640	56,255501	54.173339	53,522507	52.415459	50.454918	48.667073	
50.000	67.903375	54.780609	62.171059	59.249005	57.329410	55.83338	54,570622	53.452881	51.472973	49.667065	

TABLE A2. Gamma Reference Scale Values b_0 for Selected Values of Shape Parameter (a) and Prior Assurance (p_0)

a/p ₀	0.95	0.90	0.80
a/P 000000000000000000000000000000000000	0.95 1-74857185371857588571857938EEEE	250877163119876654332222111100000011111122222222222222222	0.80
0.59	1.5897E+03 1.7737E+03	5.15825+03 5.6448E+03	1.6823E+04 1.8060E+04

Table A2 (Continued)

a/.p ₀	0.95	0.90	0.80
1234567890123456789012345678901234567890050505050 000000000000000000000000000	0.95 10.033333333333333333333333333333333333	03333333333333333333333333333333333333	44444444444444444444444444444444444444
1.30 1.35 1.40 1.45 1.50 1.55 1.60	6.7908E+04 7.7079E+04 8.6810E+04 9.7087E+04 1.0790E+05 1.1923E+05 1.3106E+05 1.4338E+05	1.1827E+05 1.3179E+05 1.4593E+05 1.6064E+05 1.7592E+05 1.9174E+05 2.0808E+05 2.2492E+05	2.0956E+05 2.2935E+05 2.4974E+05 2.7069E+05 2.9219E+05 3.1419E+05 3.3669E+05 3.5965E+05
1.70 1.75 1.80 1.85 1.90 1.95 2.00	1.5618E+05 1.6944E+05 1.8314E+05 1.9729E+05 2.1186E+05 2.2683E+05 2.4221E+05	2.4225E+05 2.6003E+05 2.7827E+05 2.7827E+05 3.1601E+05 3.3549E+05 3.5536E+05	3.8306E+05 4.0689E+05 4.3113E+05 4.5575E+05 4.8075E+05 5.0611E+05 5.3181E+05

Table A2 (Continued)

	0.95	0.90	0.80
0 5050505050505050505050505050505050505	0.95 10.	3.9614.00555556666666666666666666666666666666	05555555555555555555555555555555555555
4.40	1.2970E+06	1.6023E+06	2.0154E+06
4.45	1.3235E+06	1.6324E+06	2.0497E+06
4.50	1.3502E+06	1.6626E+06	2.0841E+06
4.55	1.3770E+06	1.6928E+06	2.1185E+06
4.65	1.4039E+06	1.7232E+06	2.1531E+06
6.65	1.4309E+06	1.7537E+06	2.1877E+06
4.75	1.4581E+06	1.7843E+06	2.2225E+06
478	1.4853E+06	1.8150E+06	2.2573E+06
499	1.5127E+06	1.8459E+06	2.2922E+06
499	1.5403E+06	1.8768E+06	2.3272E+06
499	1.5679E+06	1.9078E+06	2.3622E+06
499	1.5956E+06	1.9389E+06	2.3974E+06
50	1.6235E+06	1.9701E+05	2.4326E+06

Table A2 (Continued)

a/p ₀	0.95	0.90	0.80
50505050505050505050505050505050505050	1.67077642952EE++++++++++++++++++++++++++++++++++	06666666666666666666666666666666666666	66666666666666666666666666666666666666
7.65 7.70 7.75 7.80 7.85 7.90	3.2273E+06 3.2595E+06 3.2917E+06 3.3240E+06 3.3564E+06 3.3888E+06	3.7001E+06 3.7351E+06 3.7700E+06 3.8050E+06 3.8401E+06 3.8752E+06 3.9104E+06	4.3496E+06 4.3878E+06 4.4260E+06 4.4643E+06 4.5026E+06 4.5409E+06 4.5793E+06
7.95	3.4213E+06 3.4538E+06	3.9456E+06 3.9808E+06	4.6177E+06 4.6561E+06

Table A2 (Continued)

APPENDIX B. A Procedure for Selecting a Gamma Prior
Distribution

It is required to find a and b which satisfies

$$\int_{LL}^{UL} \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx} dx = p_0,$$
 (B1)

where

$$\int_{0}^{LL} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-bx} dx = \int_{UL}^{\infty} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-bx} dx = (1-p_{0})/2.$$

Letting y = x/LL in (B1), we have

$$\int_{1}^{\text{UL/LL}} \frac{(\text{bLL})^{a}}{\Gamma(a)} y^{a-1} e^{-(\text{bLL})y} dy = p_{0}.$$
 (B2)

Since b is a scale parameter, set bLL=1, and solve (B2) for the shape parameter a. Thus a depends only upon the value of UL/LL, or equivalently, $\log(\text{UL/LL})$. Once a has been numerically determined, we can solve (B2) for a temporary value of b, say b_0 , corresponding to a temporary lower limit of, say, 1.0×10^{-6} f/h. Since b is a scale parameter, we know that

$$bLL = b_0(1.0x10^{-6})$$

from which

$$b = b_0 (1.0x10^{-6} f/h)/LL.$$

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE I. REPORT NUMBER 2. GOVT ACCESSION NO. LA- 6813-MS OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) A Bayesian Zero-Failure (BAZE) Reliability Technical Report, Demonstration Testing Procedure for Com-PERFORMING ORG. REPORT NUMBER ponents of Nuclear Reactor Safety Systems, CONTRACT OR GRANT NUMBER(S) H.F. Martz, er. R.A. Waller NØ0014-75-C-0832 ., W-7405-eng-3 9. PERFORMING ORGANIZAT ON NAME AND ADDRESS AREA & WORK UNIT NUMBERS Department of Industrial Engineering (NR 042-320) Texas Tech University 31 MAR 27 Lubbock, TX 79409 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE Office of Naval Research March 31, 1977 NUMBER OF PAGES Statistics and Probability Program; Code 436 Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Unclassified 154. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Nuclear Reactor Bayesian analysis Safety Analysis Demonstration Testing Component Testing Reliability Prior Distribution ABSTRACT (Continue on reverse side if necessary and identify by block number) A Bayesian-Zero-Failure (BAZE) reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribution on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The procedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation. DD TORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

211350

CLASSIFICATION OF THIS PAGE (When Date Entered)

Unclassified

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

[☆] U.S. GOVERNMENT PRINTING OFFICE 1977—777-018/76