1

ASSIGNMENT-1

Nwjwr Khungur Brahma

Question: Calculate the ratio in which the line joining $\mathbf{A} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$ is divided by the point $\mathbf{P} = \begin{pmatrix} x^* \\ 3 \end{pmatrix}$. Also find

2) Length of \overrightarrow{AP}

Solution: The ratio in which the line is divided by the point is 1:3.

1) Now lets find the point $\mathbf{P} = \begin{pmatrix} x^* \\ 3 \end{pmatrix}$ by using the section formula

$$\mathbf{P} = \frac{(1 \times \mathbf{B}) + (3 \times \mathbf{A})}{1+3} \tag{0.0.1}$$

$$= \frac{(1 \times {\binom{-4}{2}}) + (3 \times {\binom{3}{6}})}{1+3}$$
 (0.0.2)

$$=\frac{(1\times3)+(3\times(-4))}{1+3},\frac{(1\times6)+(3\times2)}{1+3}$$

$$=\frac{-9}{4},\frac{12}{4}\tag{0.0.4}$$

$$= (-2.25, 3) \tag{0.0.5}$$

Therefore, the value of $x^* = -2.25$.

2) The length of the line \overrightarrow{AP} can be measured by the distance formula.

$$length = \sqrt[2]{(-4 - (-2.25))^2 + (2 - 3)^2}$$

$$= 2.015$$
(0.0.7)

The length of the line $\overrightarrow{AP} = 2.015(\text{Approx})$.