Nom	е
-----	---

Número

Curso

1. Determinar o conjunto solução:

1.
$$|2x - 1| = x + 1$$
.

2.
$$\cos(x) > \frac{1}{2}$$
.

3.
$$|\tan(x)| > 1$$
.

2. Considere a sucessão
$$u_{i+1} = \frac{(u_i+1)^2}{u_i}$$
 com $u_1 = 1$.

- 1. Mostrar por indução que $u_i > 0$ para qualquer $i \in \mathbb{N}$.
- 2. Mostrar que a sucessção é crescente.
- 3. Mostrar por indução que $u_i \geq i$ e deduzir o limite a sucessão.

3. Determinar o domínio e contradominio das funções seguintes

1.
$$f(x) = [\sin(x^2)]^2$$
.

$$2. \ f(x) = \sqrt{\tan(x)}.$$

3.
$$f(x) = \ln(|x| - 1)$$
.

4. Determinar os limites seguintes (quando existir)

1.
$$\lim_{x \to +\infty} \frac{2x+3}{9-17x}$$
.

2.
$$\lim_{x \to 0^+} \frac{\ln(x)}{\sqrt{x+1}} x$$
.

$$3. \lim_{x \to 1^{-}} \frac{\sin(x)}{\ln(x)}.$$

1.1 temos considerar três casos

- Se 2x 1 = 0, seja x = 1/2 então a relação não faz sentido.
- Se 2x-1<0, temos a relação -2x+1=x+1 seja x=0<1/2. A solução é eligivel.
- Se 2x 1 < 0, temos a relação 2x 1 = x + 1 seja x = 2 > 1/2. A solução é também eligivel.

En conclusão, o conjunto solução é $S = \{0, 2\}$.

1.2 No intervalo $]-\pi,\pi]$, a relação $\cos(x)>\frac{1}{2}$ significa que $x\in]-\frac{\pi}{3},\frac{\pi}{3}[$. Com a periodicidade, concluimos que

$$S = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{3} + 2k\pi, \frac{\pi}{3} + 2k\pi \right].$$

1.3 no intervalo $]-\frac{\pi}{2},\frac{\pi}{2}[$ a condição $|\tan(x)|>1$ implica que $x\in]-\frac{\pi}{2},-\frac{\pi}{4}[\cup]\frac{\pi}{4},\frac{\pi}{2}[$. A periodicidade da função \tan é π então o conjunto solução é

$$S = \bigcup_{k \in \mathbb{Z}} \left(\left[-\frac{\pi}{2} + k\pi, -\frac{\pi}{4} + k\pi \left[\bigcup \right] \frac{\pi}{4} + k\pi, \frac{\pi}{2} + k\pi \right] \right).$$

- **2.1** Seja $\mathcal{H}(i)=\{u_i>0\}$ a hipotese de recorrência. Podemos verificar que temos $\mathcal{H}(1)$. Agora supomos que $\mathcal{H}(i)$ é verdadeira, então $\frac{1}{u_i}>0$ e $u_i+1>0$. Temos finalmente $u_{i+1}=\frac{(u_i+1)^2}{u_i}>0$, seja $\mathcal{H}(i+1)$ está certa. Concluimos que para qualquer $i \in \mathbb{N}$, $\mathcal{H}(i)$ é verdadeira.
- 2.2 Calculamos a diferença entre dois termos sucessivos

$$u_{i+1} - u_i = \frac{(u_i + 1)^2}{u_i} - u_i = \frac{(u_i + 1)^2 - u_i^2}{u_i} = \frac{2u_i + 1}{u_i} > 0.$$

Concluimos que a sucessão é estritamente crescente.

2.3 Seja $\mathcal{H}(i) = \{u_i \geq i\}$ a hipotese de recorrência. Podemos verificar que temos $\mathcal{H}(1)$ proque $u_1 = 1 \leq 1$. gora supomos que $\mathcal{H}(i)$ é verdadeira, então $u_i \geq i$ seja $u_i + 1 \geq i + 1$ e $(u_i + 1)^2 \geq (i + 1)(u_i + 1) \geq (i + 1)u_i$. Como $u_i > 0$ deduzimos que

$$u_{i+1} = \frac{(u_i + 1)^2}{u_i} \ge \frac{u_i(i+1)}{u_i} = i+1.$$

Mostramos assim que $\mathcal{H}(i+1)$ está certa e concluimos que para qualquer $i, u_i \geq i$.

2.4 Seja a sucessão $v_i=i$. Mostramos que $u_i\geq v_i$. Como $\lim_{i\to\infty}v_i=+\infty$ deduzimos que $\lim_{i\to\infty}u_i=+\infty$.

3.1
$$D_f = \mathbb{R}, CD_f = [0, 1].$$

3.1
$$D_f = \mathbb{R}, CD_f = [0, 1].$$

3.2 $D_f = \bigcup_{k \in \mathbb{Z}} [k\pi, \frac{\pi}{2} + k\pi[, CD_f = [0, +\infty].$

3.3
$$|x| - 1 > 0$$
 seja $D_f =]-\infty, -1[\cup]1, +\infty[, CD_f = \mathbb{R}.$

4.1
$$\lim_{x \to +\infty} \frac{2x+3}{9-17x} = -\frac{2}{17}.$$

4.2
$$\lim_{x\to 0^+} \frac{\ln(x)}{\sqrt{x+1}} x = 0$$

4.3
$$\lim_{x \to 1^{-}} \frac{\sin(x)}{\ln(x)} = -\infty.$$