

Livro:

Sânya Carvalho dos Santos Caldeira

e-mail: sanya.carvalho@yahoo.com.br

ULA de 1 bit

Diagrama de temporização de um ciclo de caminho de dados

Aula 01: Sistemas de Numeração – conversão de base

- Conversão do Sistema Binário para o Sistema Decimal
- Conversão do Sistema Decimal para o Sistema Binário
- Conversão de Números Binários Fracionários em Decimais
- Conversão de Números Decimais Fracionários em Binários
- O Sistema Octal de Numeração
- Conversão do Sistema Octal para Sistema Decimal
- Conversão do Sistema Decimal para o Sistema Octal
- Conversão de Sistema Octal para o Sistema Binário
- Conversão do Sistema Binário para o Sistema Octal

Tarefa

Assistir a playlist: A História da Matemática

Sistema Binário

DECIMAL	BINÁRIO
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001

Composto por dois algarismo: 0 e 1

Exemplo de utilização: variáveis lógicas

códigos de máquinas

Significância:

Na pratica cada binário recebe a denominação de bit (**b**inary digi**t**) O conjunto de 4 bits é denominado **nibble** e o de 8 bits de **byte**.

Conversão do Sistema Binário para o Sistema Decimal

10 ²	10 ¹	10 ⁰
5	9	4

Conversão do Sistema Binário para o Sistema Decimal

$$101_2 -> ?_{10}$$

2 ²	2 ¹	2 ⁰
1	0	1

$$1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Conversão do Sistema Binário para o Sistema Decimal

2 ³	2 ²	2 ¹	2 ⁰
1	0	0	1

$$1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$1 \times 8 + 1 \times 1 = 9_{10}$$

Conversão do Sistema Binário para o Sistema Decimal Exercícios

$$01110_2 \rightarrow ?_{10}$$
 $1010_2 \rightarrow ?_{10}$
 $1100110001_2 \rightarrow ?_{10}$

Conversão do Sistema Decimal para o Sistema Binário

Ou seja:
$$2 \times 23 + 1 = 47$$

 $23 \times 2^{1} + 1 \times 2^{0} = 47 -> expressão A$

Conversão do Sistema Decimal para o Sistema Binário

Substituindo a expressão A em B:

$$23 \times 2^{1} + 1 \times 2^{0} = 47 -> expressão A$$

$$(2 \times 11 + 1) \times 2^{1} + 1 \times 2^{0} = 47$$

 $11 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 47 -> expressão C$

Conversão do Sistema Decimal para o Sistema Binário

Substituindo a expressão D em C: $11 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 47 -> expressão C$

$$(2 \times 5 + 1) \times 2^{2} + 2^{1} + 1 \times 2^{0} = 47$$

 $5 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 47 -> expressão E$

Conversão do Sistema Decimal para o Sistema Binário

Ou seja:
$$2 \times 2 + 1 = 5 \rightarrow expressão F$$

Substituindo a expressão F em E:

$$5 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 47 -> expressão E$$

$$(2 \times 2 + 1) \times 2^{3} + 1 \times 2^{2} + 2^{1} + 1 \times 2^{0} = 47$$

 $2 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 47 ->$ expressão G

Conversão do Sistema Decimal para o Sistema Binário

Ou seja: $2 \times 1 + 0 = 2 \rightarrow expressão H$

Substituindo a expressão H em G:

$$2 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 47 ->$$
expressão G

$$(1 \times 2 + 0) \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 2^1 + 1 \times 2^0 = 47$$

 $1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 47$

Conversão do Sistema Decimal para o Sistema Binário

Métodos das divisões sucessivas

LSB – Least Significant Bit

MSB – Most Significant Bit

O último quociente será o algarismo mais significativo e ficará colocado à esquerda. Os outros algarismos seguem-se na ordem até o 1º resto:

Ex.:
$$400_{10} = ?_2$$

Conversão do Sistema Decimal para o Sistema Binário Exercícios

$$21_{10} \rightarrow ?_{2}$$
 $552_{10} \rightarrow ?_{2}$
 $715_{10} \rightarrow ?_{2}$

Conversão de Números Binários Fracionários em Decimais

10,5

$$1 \times 10^{1} + 0 \times 10^{2} + 5 \times 10^{-1}$$

Conversão de Números Binários Fracionários em Decimais

$$1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8}$$

$$= 4 + 1 + 0,5 + 0,125 = 5,625_{10}$$

Ex.: 1010,1101₂

Conversão de Números Binários Fracionários em Decimais

$$111,001_2 = ?_{10}$$

 $1001,11001_2 = ?_{10}$

Conversão de Números Decimais Fracionários em Binários

19

$$8_{10} = 1000_2$$

Conversão de Números Decimais Fracionários em Binários

Conversão de Números Decimais Fracionários em Binários

$$8,375_{10} = ?_2$$

$$8_{10} = 1000_{2}$$
 $0,350_{10} = 0,011_{2}$
 $8,350_{10} = 1000,011_{2}$

Conversão de Números Decimais Fracionários em Binários

$$3,380_{10} = ?_2$$

O Sistema Octal de numeração

DECIMAL	OCTAL
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17
16	20

Composto por 8 algarismo: 0, 1, 2, 3, 4, 5, 6 e 7

Exemplo de utilização: atualmente pouco utilizado no campo da Eletrônica Digital, tratando-se apenas de um sistema numérico intermediário dos sistemas binário e hexadecimal.

Conversão do Sistema Octal para Sistema Decimal

$$1 \times 8^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 64 + 4 \times 8 + 4 \times 1 =$$

$$64 + 32 + 4 = 100_{10}$$

$$144_8 = 100_{10}$$

Conversão do Sistema Octal para Sistema Decimal

$$77_8 = ?_{10}$$
 $100_8 = ?_{10}$
 $476_8 = ?_{10}$

Conversão do Sistema Decimal para o Sistema Octal

Métodos das divisões sucessivas

92 8

1º resto
$$4$$
 11 8

2º resto 3 1 \rightarrow último quociente

$$92_{10} = 134_8$$

Conversão do Sistema Decimal para o Sistema Octal

$$74_{10} = ?_{8}$$
 $512_{10} = ?_{8}$
 $719_{10} = ?_{8}$

Conversão do Sistema Octal para o Sistema Binário

<u>REGRA</u>: Transformar cada algarismo diretamente no correspondente em binário, respeitando-se o número padrão de bit do sistema, sendo para octal igual a três $(2^3 = 8 -> base do sistema octal)$

$$\frac{2}{1}$$
 $\frac{7}{1}$ $\frac{7}{1}$ $\frac{27}{8} = 10111_{2}$

OBS.: A regra só é válida entre sistemas numéricos de base múltipla de $\mathbf{2}^{N}$, sendo \mathbf{N} um número inteiro.

Conversão do Sistema Octal para o Sistema Binário

$$34_8 = ?_2$$

 $536_8 = ?_2$
 $44675_8 = ?_2$

Conversão do Sistema Binário para o Sistema Octal

$$110010_2 = 62_8$$

No caso do último grupo se formar incompleto, adicionamos zeros à esquerda, até completa-lo com 3 bits.

Conversão do Sistema Binário para o Sistema Octal Exercícios

$$1010_{2} = ?_{8}$$
 $10111_{2} = ?_{8}$
 $11010101_{2} = ?_{8}$
 $1000110011_{2} = ?_{8}$

- 1. Converta para o sistema decimal:
- a) 100110₂
- b) 011110₂
- 2. Converta para o sistema binário:
- a) 78₁₀
- b) 102₁₀
- 3. Transforme para decimal os seguintes números binários:
- a) 11,11₂
- b) 1000,0001₂

- 4. Transforme os seguintes números decimais em binários:
- a) 0,125₁₀
- b) 0,0625₁₀
- 5. Transforme os números octais para o sistema decimal:
- a) 14₈
- b) 67₈
- 6. Converta para o sistema octal:
- a) 107₁₀ b) 185₁₀

- 7. Converta os seguintes números octais em binários:
- a) 477₈
- b) 1523₈
- 8. Converta os seguintes números binários em octais:
- a) 1011₂
- b) 10011100₂

Gabarito

- 1. a) 38₁₀
- 2. a) 1001110₂
- 3. a) 3,75₁₀
- 4. a) 0,001₂
- 5. a) 12₁₀
- 6. a) 153₈
- 7. a) 100111111₂
- 8. a) 13₈

- b) 30₁₀
- b) 1100110₂
- b) 8,0625₁₀
- b)0,0001₂
- b) 55₁₀
- b)271₈
- b) 1101010011₂
- b) 234₈