NHZ3087-15

Consolidação de Conceitos e Métodos de Fenômenos Térmicos Primeiro quadrimestre de 2019

Problemas para trabalhar em sala de aula

Semana 10: Entropia e a Segunda Lei da Termodinâmica; Variações de entropia em processos irreversíveis.

Alunos	
	Nota

- 1. Um cilindro contendo 1,00 kg de He a 150 atm, em equilíbrio térmico com o ambiente, tem um pequeno vazamento através do qual o gás escapa para a atmosfera, até que o tanque se esvazia por completo do hélio. Qual a variação de entropia do gás hélio?
- 2. Um objeto de massa m_1 , calor específico c_1 e temperatura T_1 é colocado em contato com um segundo objeto de massa m_2 , calor específico c_2 e temperatura $T_2 > T_1$. Por causa disso, a temperatura do primeiro objeto aumenta até T e a temperatura do segundo objeto diminui para T'. (a) Mostre que o aumento de entropia do sistema é dado por:

$$\Delta S = m_1 c_1 ln \frac{T}{T_1} + m_2 c_2 ln \frac{T'}{T_2}$$

e mostre que a conservação de energia exige que:

$$m_1c_1(T-T_1) = m_2c_2(T_2-T')$$

- (b) Mostre que variação de entropia ΔS , considerada função de T, torna-se máxima quando T=T' que é precisamente a condição de equilíbrio termodinâmico.
- 3. Um cilindro de paredes adiabáticas, fechado em ambas as extremidades, possui um pistão que pode deslizar sem atrito de tal modo que o cilindro é divido em duas partes. O pistão é feito de material diatérmico e inicialmente está travado no centro do cilindro. Em ambos os lados do cilindro, tem-se 1,00 litro de ar a 300 K. A pressão em um dos lados é igual 1,00 atm enquanto que no outro é 2,00 atm. O pistão é liberado e o sistema atinge o equilíbrio. (a) Calcule os valores finais de temperatura, pressão e volume associados aos dois lados do cilindro. (b) Qual a variação de entropia do ar nesse processo?