5 Assignment 3

5.1 Continuous Random Variables

A pair of jointly continuous random variables, X and Y, have a joint probability density function given by

$$f_{X,Y}(x,y) = \begin{cases} c, & \text{in the shaded region of figure} \\ 0, & \text{otherwise} \end{cases}$$

3. Find
$$\mathbb{E}(X|Y=1/4)$$
 and $Var(X|Y=1/4)$. (1.5)

4. Find the conditional PDF for X given that
$$Y = 3/4$$
.

5.2 Card Shuffling

Consider a deck of cards numbered $1, \dots, n$. Suppose the cards are arranged as $1, 2, \dots, n$ initially from top to bottom. Define a shuffle operation to be picking the top card and placing it at a random position bellow it (n positions are there including the top position). Suppose you do a sequence of shuffle operations to the deck of cards.

1. Now let T_i be the random variable which counts the number of shuffles that are performed until for the first time i cards lie below card numbered n (This is the card which was initially at the bottom). What is the PDF of the random variable $T_i - T_{i-1}$? (Need to also explain why it is so).

Hint: $T_i - T_{i-1}$ is the random variable which is the number of shuffles that was done after i-1 cards went bellow n for the next card to go bellow n. Does it depend on T_{i-1} ?

- 2. Prove that after $T_{n-1} + 1$ shuffles, all possible n! arrangements are equally likely.
- 3. Find the expected value of $T_{n-1} + 1$. Hint: $T_{n-1} = T_1 + T_2 T_1 + T_3 T_2 + \cdots + T_{n-1} T_{n-2}$

4. Show that if you shuffle $100 \cdot n \cdot \ln n$ times, with 99% chance, the deck will be completely random (ie. all n! possibilities are equally likely). Hint: The nth Harmonic number can be approximated by $\ln n$ (the natural logarithm of n).

5.3

Suppose you are lost in a maze shown below. At each step you leave the room by choosing at random one of the doors out of the room.

- 1. Give the transition matrix P for this Markov chain.
- 2. Show that it is irreducible but not aperiodic.
- 3. Find the stationary distribution
- 4. Now suppose there is a trap in Room 5 and you start in Room 1. Find the expected number of steps before reaching Room 5 for the first time, starting in Room 1.
- 5. Find the expected time to return to room 1.