Survival analysis 2020/2021 Exercises week 2

Exercise 1 (JL 1.17): Competing risks

In a competing risk setting, individuals can die from K > 1 different causes. Each individual has a lifetime T^* and a mode of failure ϵ . The cause-specific hazard function is defined as

$$\alpha_k(t) = \lim_{dt \to 0} \frac{pr(t \le T^* < t + dt, \epsilon = k | T^* \ge t)}{dt}$$

- (a) Show that the hazard function for T^* is $\sum_{k=1}^K \alpha_k(t)$ and obtain the marginal survival function $S(t)=pr(T^*>t)$
- (b) Find $F_k(t) = pr(T^* \le t, \epsilon = k)$ and thereby also $pr(\epsilon = k)$ and $pr(\epsilon = k | T \le t)$

Exercise 2 (JL 3.8a): Piecewise constant hazards

Assume that the hazard of T^* is constant on the intervals defined by the fixed numbers $0 = a_0 < a_1 < \ldots < a_m = \infty$,

$$\alpha(t) = \alpha_j$$
, for $a_{j-1} \le t < a_j, j = 1, ..., m$.

Define $D_j(t) = \int_{a_{j-1}}^{a_j} I(u \leq t) du$, $j = 1, \dots, m$. The survival function is given by

$$S(t) = \exp\left(-\sum_{j=1}^{m} \alpha_j D_j(t)\right).$$

Assume that the event times subject to independent and noninformative right-censoring, such that we observe $T_i = T_i^* \wedge C_i$ and $\Delta_I = I(T^* \leq C)$, i = 1, ..., n, where the censoring time C_i is independent of the event time T_i^* .

- (a) Write up the likelihood for α_j , j = 1, ..., m in terms of occurrence and exposure within the m intervals
- (b) Find the maximum likelihood estimate of the hazard $\alpha(t)$ and use this to find an estimate of the survival S(t)

Exercise 3

(a) Let T_1, \ldots, T_n be a random sample from a distribution with survival function S(t) such that for t near 0,

$$S(t) = 1 - \lambda t + o(t)$$

for some $\lambda > 0$ and where a o(t) is a function such that $\lim_{t\to 0} o(t)/t = 0$. Show that the limiting distribution of $X_n = n \min(T_1, \ldots, T_n)$ is exponential with failure rate λ .

A function g(s) is $o(s^r)$ if $\lim_{s\to 0} g(s)/s^r = 0$.

(b) Suppose that for t near 0,

$$S(t) = 1 - (\lambda t)^{\gamma} + o(t^{\gamma}), \lambda > 0, \gamma > 0.$$

Show that the limiting distribution of $Y_n = n^{1/\gamma} \min(T_1, \dots, T_n)$ is Weibull with shape γ and scale λ , i.e. has hazard $\lambda \gamma (\lambda t)^{\gamma-1}$ and cumulated hazard $(\lambda t)^{\gamma}$.

(b) As seen in Exercise C from week 1, in the Weibull regression model covariates act multiplicatively both on the hazard and the log-survival time. That is, it can be expressed both as a proportional hazards model

$$\alpha(t|X) = \alpha_0(t) \exp(\beta^T X)$$

and an accelerated failure time model

$$\log T = \theta^T X + \epsilon.$$

Show that the Weibull model is the only model where the proportional hazards and linear log-survival time models intersect.

Exercise 4 (MS 3.9a)

Assume that X_1 and X_2 are two covariates that take the values $\{0,1\}$ and have joint distribution given by $pr(X_1=0|X_2=0)=2/3$, $pr(X_1=0|X_2=1)=1/3$ and $pr(X_2=1)=1/2$. Let $\alpha(t)$ be a locally integrable non-negative function and assume that the survival time T^* (no censoring) given X_1 and X_2 has hazard function

$$\alpha(t) \exp(0.1X_1 + 0.3X_2). \tag{1}$$

Assume that only X_1 is observed. What is the intensity function of T^* given X_1 ?

Hint: Calculate $pr(X_2 = x_2 | X_1 = x_1, T^* > t)$ for $x_1, x_2 \in \{0, 1\}$ and use the innovation theorem (MS p. 27).