Máster Interuniversitario en Física Nuclear

Universidad de Sevilla

PROPAGATION OF ERRORS IN NUCLEAR DATA TO REACTOR PARAMETERS

Additional information

CIEMAT

Unidad de Innovación Nuclear División de Fisión Nuclear - Dpto. Energía

Master thesis

Author:

José Llanes Gamonoso

Thesis directors:

Vicente Bécares Palacios, Francisco Álvarez Velarde, Carlos Guerrero Sánchez

June 2022

Contents

A	Valu	es of k_{eff} , eta_{eff} and their uncertainties.	3
В	Resu	lts of Chiba analysis	10
	B.1	MIX-COMP-FAST-005	10
	B.2	HEU-MET-INTER-001	11
	B.3	IEU-MET-FAST-007	12
	B.4	IEU-MET-FAST-010	13
C	Integ	grated sensitivity profiles and nuclear data uncertainties for each	
	_	hmark reactor.	14
	C.1	PU-MET-FAST-001	14
	C.2	PU-MET-FAST-006	15
	C.3	HEU-MET-FAST-028	18
	C.4	U233-MET-FAST-006	19
	C.5	IEU-MET-FAST-007	20
	C.6	HEU-MET-INTER-001	22
	C.7	PU-MET-INTER-002	24
	C.8	PU-MET-INTER-004	25
	C.9	LEU-COMP-THERM-006	27
	C.10	LEU-COMP-THERM-067	29
	C.11	HEU-MET-FAST-001	30
	C.12	MIX-COMP-FAST-005	31
		IEU-MET-FAST-010	34
	C.14	IEU-MET-FAST-020	35
	C.15	IEU-MET-FAST-021	37
	C.16	IEU-MET-FAST-022	39
	C.17	FCA-XIX-1	40
	C.18	FCA-XIX-2	42
		FCA-XIX-3	45
		SNEAK-7A	46
	C.21	SNEAK-7B	49
	C.22	MASURCA_R2	52
	C.23	MASURCA_ZONA2	53
		HEU-MET-FAST-062	56
		HEU-MET-FAST-100	57

A Values of k_{eff} , β_{eff} and their uncertainties.

Table A.1: Multiplication factor k_{eff} and total uncertainties for each reactor.

Benchmark	k_{eff}^{exp}	$k_{eff}^{MCNP}\pm$	Unc. to Data±			
	ејј	Stat. Unc.		Stat. Unc.		
			JEFF-3.3	JENDL-4.0u	ENDF/B-VIII.0	
HEU-MET	0.997	1.01018	0.018268	0.00935	0.013770	
-INTER-	\pm	土	\pm	土	土	
001	0.003	0.00002	0.000019	0.00005	0.000011	
MIX-COMP	0.9913	0.99255	0.009689	0.008910	0.006152	
-FAST-	\pm	\pm	土	土	土	
005	0.0023	0.00001	0.000011	0.000015	0.000006	
PU-MET	0.9878	1.00259	0.01309	0.00806	0.005552	
-INTER-	\pm	\pm	\pm	\pm	\pm	
002	0.0023	0.00002	0.00011	0.00004	0.000022	
PU-MET	0.9723	0.97378	0.009692	0.006823	0.006380	
-INTER-	\pm	\pm	\pm	土	土	
004	0.0025	0.00002	0.000011	0.000015	0.000020	
IEU-MET	0.9954	0.99735	0.018810	0.01437	0.006380	
-FAST-	\pm	\pm	\pm	土	土	
010	0.0024	0.00002	0.000021	0.00003	0.000020	
IEU-MET	1.002	1.00562	0.015714	0.008200	0.010980	
-FAST-	土	土	\pm	土	土	
020	0.0013	0.00001	0.000008	0.000012	0.000004	
IEU-MET	1.00839	1.01149	0.016834	0.010713	0.012207	
-FAST-	\pm	土	\pm	土	土	
021	0.00145	0.00001	0.000009	0.000019	0.000011	
IEU-MET	1.00077	1.00233	0.016435	0.007472	0.011107	
-FAST-	\pm	土	土	土	土	
022	0.00134	0.00001	0.000007	0.000010	0.000003	
LEU-COMP	1.0000	1.00072	0.008652	0.007082	0.0091990	
-THERM-	\pm	土	\pm	土	土	
006	0.0025	0.00001	0.000004	0.000003	0.0000011	
LEU-COMP	1.0005	1.00163	0.00907	0.00771	0.01007	
-THERM-	土	土	土	土	土	
067	0.0005	0.00004	0.00008	0.00009	0.00006	
PU-MET	1.0002	0.99929	0.006881	0.0073271	0.013770	
-FAST-	土	土	土	土	土	
001	0.0037	0.00001	0.000004	0.0000019	0.000011	
IEU-MET	1.0045	1.00493	0.018049	0.013764	0.011716	
-FAST-	±	±	±	±	±	
007	0.0007	0.00001	0.000010	0.000017	0.000006	
PU-MET	1.000	1.00335	0.009819	0.008137	0.007409	
-FAST-	±	±	±	±	±	
006	0.003	0.00002	0.000011	0.000009	0.000009	

Table A.2: Multiplication factor k_{eff} and total uncertainties for each reactor.

Benchmark	k_{eff}^{exp}	$k_{eff}^{MCNP}\pm$	Unc. to Data±			
		Stat. Unc.	TEEE 2.2	Stat. Unc		
LIO22 MET	1 0000	1.00227	JEFF-3.3	JENDL-4.0u	ENDF/B-VIII.0	
U233-MET	1.0000	1.00337	0.010679	0.011407	0.011621	
-FAST-	±	±	±	±	±	
006	0.0014	0.00002	0.000008	0.000007	0.000006	
HEU-MET	1.000	1.00013	0.013189	0.010413	0.012084	
-FAST-	±	±	±	±	±	
001	0.001	0.00001	0.000010	0.000012	0.000003	
HEU-MET	1.000	1.00412	0.014152	0.008806	0.012332	
-FAST-	±	±	±	±	±	
028	0.003	0.00001	0.000009	0.000011	0.000006	
FCA		1.00761	0.014593	0.008627	0.013061	
-XIX-	-	土	土	土	土	
1		0.00002	0.000007	0.000009	0.000004	
FCA		1.21884	0.008631	0.007346	0.005784	
-XIX-	-	土	\pm	土	土	
2		0.00002	0.000009	0.000013	0.000008	
FCA		0.99441	0.007109	0.00669	0.005306	
-XIX-	-	土	\pm	土	土	
3		0.00002	0.000013	0.00003	0.000022	
		1.0095	0.008618	0.007185	0.005619	
SNEAK-7A	-	土	土	土	\pm	
		0.00002	0.000010	0.000015	0.000008	
		1.00488	0.010033	0.009633	0.006579	
SNEAK-7B	-	\pm	\pm	土	土	
		0.00001	0.000011	0.000019	0.000007	
MASUR-		0.99246	0.01658	0.00703	0.01207	
CA_{-}	-	\pm	\pm	土	土	
R2		0.00002	0.00011	0.00008	0.00008	
MASUR-		1.00309	0.00813	0.00689	0.00522	
CA_{-}	-	土	土	土	土	
ZONA2		0.00002	0.00009	0.00007	0.00005	
HEU-MET	0.9987	1.00338	0.013792	0.008211	0.011923	
-FAST-	\pm	±	±	±	±	
062	0.001	0.00002	0.000012	0.000013	0.000008	
HEU-MET	1.0026	1.00412	0.013210	0.010373	0.012097	
-FAST-	±	±	±	±	±	
100	0.0007	0.00001	0.000010	0.000012	0.000004	
	0.0007	0.0001	3.00010	J.J.J.J.J.		

Table A.3: Delayed neutron fraction β_{eff} and total uncertainties for each reactor. In the top of each row, the β_{eff} and uncertainty calculated by Bretscher's method are found, and in the bottom, by Chiba's method.

Benchmark	$\beta_{eff}^{exp} (\text{pcm})$	$eta_{eff}^{eval}\pm$		Unc. to Dat	a±
	,	Stat. Unc. (pcm)		Stat. Unc. (p	ocm)
		•	JEFF-3.3	JENDL-4.0u	ENDF/B-VIII.0
			32	27	34.7
		682 ± 3	\pm	\pm	\pm
HEU-MET			6	5	1.9
-INTER-	659 ± 13				
001			4.47	18.22	31.208
		684.20 ± 0.10	\pm	土	土
			0.12	0.04	0.021
			9.3	15.9	8
		387.9 ± 1.4	土	土	土
MIX-COMP			1.9	2.2	3
-FAST-	381 ± 8				
005			5.1	10.86	4.34
		375.60 ± 0.10	\pm	±	\pm
			0.1	0.07	0.05
		224	22	29	18
		234 ± 3	±	±	±
PU-MET	222 4		4	8	4
-INTER-	222 ± 4		1.70	11.22	1.25
002		000 10 + 0 10	1.79	11.32	1.35
		233.10 ± 0.10	±	±	±
			0.15	0.07	0.22
		250 ± 3			-
DILMET		250 ± 3	±	±	$^{\pm}$ 4
PU-MET -INTER-	223 ± 10		1.8	1.7	4
-INTER- 004	223 ± 10		1.88	10.386	1.35
004		248.60 ± 0.10	±	±	±
		240.00 ± 0.10	0.10	0.017	0.09
			11	21	22.1
		738 ± 3	±	±	±
IEU-MET		100 ± 0	3	3	2.4
-FAST-	725 ± 15		3	3	۵,⊤
010	0 _ 10		6.06	18.21	19.95
		713.60 ± 0.20	\pm	土	\pm
			0.21	0.07	0.03

Table A.4: Delayed neutron fraction β_{eff} and total uncertainties for each reactor. In the top of each row, the β_{eff} and uncertainty calculated by Bretscher's method are found, and in the bottom, by Chiba's method.

Benchmark	$\beta_{eff}^{exp} (\text{pcm})$	$eta_{eff}^{eval} \pm$		Unc. to Dat	ra±
	, cj j (1)	Stat. Unc. (pcm)		Stat. Unc. (p	ocm)
		4 /	JEFF-3.3	JENDL-4.0u	ENDF/B-VIII.0
			7.8	22.4	23.4
		746.8 ± 1.4	\pm	±	土
IEU-MET			1.5	1.9	1.0
-FAST-	$(7.7 \pm 0.5) \cdot 10^{1}$				
020			5.02	18.04	22.954
		728.20 ± 0.10	\pm	土	\pm
			0.07	0.03	0.012
			6.7	21.0	22.6
		750.3 ± 1.4	±	土	土
IEU-MET			1.4	2.0	0.4
-FAST-	$(7.7 \pm 0.5) \cdot 10^1$				
021			5.54	18.53	21.977
		732.20 ± 0.10	±	±	±
			0.08	0.05	0.011
		7502114	9.0	19.7	23.8
		750.3 ± 1.4	±	±	±
IEU-MET	(77 + 05) 101		2.0	1.2	0.3
-FAST- 022	$(7.7 \pm 0.5) \cdot 10^1$		5.15	17.66	23.768
022		728.40+0.10	3.13 +	17.00	23.768 +
		728.40±0.10	0.07	0.03	0.012
			5.3	22.24	30.15
		795.4±1.4	±	±	±
LEU-COMP		//3.∓⊥1.∓	0.7	0.16	0.06
-THERM-	771±19		0.7	0.10	0.00
006	771±17		4.96	21.928	30.021
000		787.60 ± 0.10	±	±	±
			0.04	0.009	0.009
			6	23	31
		774.7 ± 4.4	\pm	±	±
LEU-COMP			6	5	11
-THERM-	750 ± 19				
067			4.6	22.13	30.47
		767.3 ± 0.3	±	\pm	±
			0.3	0.19	0.19

Table A.5: Delayed neutron fraction β_{eff} and total uncertainties for each reactor. In the top of each row, the β_{eff} and uncertainty calculated by Bretscher's method are found, and in the bottom, by Chiba's method.

Stat. Unc. (pcm) Stat. Unc. (pcm) Stat. Unc. (pcm) Stat. Unc. (pcm) I.8	Benchmark	$\beta_{eff}^{exp} (\text{pcm})$	$\beta_{eff}^{eval} \pm$		Unc. to Dat	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benefimark	Peff (PCIII)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			State Che. (penn)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			188.1 ± 1.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PU-MET					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		194 ± 10				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	001			1.53	4.529	1.150
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			188.50 ± 0.10	\pm	±	土
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.04	0.004	0.007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				6.9	21	20.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			739.4 ± 1.4	\pm	\pm	±
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IEU-MET			2.0	3	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		720 ± 7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	007			5.69		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			714.90 ± 0.10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			287 ± 3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.6	1.5	0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		276 ± 7		2.15	·	2.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	006		204 10 1 0 10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			284.10 ± 0.10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
U233-MET -FAST- 006 360 ± 14 0.6 0.6 0.3 24.853 374.30 \pm 0.10 24.853 \pm 0.018 20.94 0.018 19.965 0.03 8.9 19.2 29.46 29.46 HEU-MET -FAST- 001 1.4 659 \pm 10 1.4 9.14 19.02 9.14 29.748 29.748 648.00 ± 0.10 \pm \pm \pm \pm \pm \pm \pm \pm			276 2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LIO22 MET		3/6±3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		260±14		0.0	0.0	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300±14		24 853	20.04	10 065
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	000		374 30+0 10			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			374.30±0.10			
HEU-MET 650.9 ± 1.4 \pm \pm \pm HEU-MET 1.4 0.8 0.07 $-FAST$ - 659 ± 10 9.14 19.02 29.748 648.00 ± 0.10 \pm \pm \pm						
HEU-MET 1.4 0.8 0.07 -FAST- 659 ± 10 9.14 19.02 29.748 001 648.00 ± 0.10 \pm \pm \pm			650.9 ± 1.4			
-FAST- 659 ± 10 001 9.14 19.02 29.748 648.00 ± 0.10 \pm \pm \pm	HEU-MET		00000			
001 9.14 19.02 29.748 $\pm \pm \pm$		659 ± 10			2.0	2.3.
		-		9.14	19.02	29.748
0.09 0.03 0.014			648.00 ± 0.10	\pm	±	土
				0.09	0.03	0.014

Table A.6: Delayed neutron fraction β_{eff} and total uncertainties for each reactor. In the top of each row, the β_{eff} and uncertainty calculated by Bretscher's method are found, and in the bottom, by Chiba's method.

Benchmark	$\beta_{eff}^{exp} (\text{pcm})$	$eta_{eff}^{eval}\pm$		Unc. to Dat	ra±
	rejj (r ·)	Stat. Unc. (pcm)		Stat. Unc. (p	
		(F)	JEFF-3.3	JENDL-4.0u	ENDF/B-VIII.0
			9.4	22.2	27.1
		692.1 ± 1.4	\pm	\pm	\pm
HEU-MET			1.8	1.7	0.3
-FAST-	675 ± 13				
028			6.99	18.41	27.353
		687.20 ± 0.10	\pm	土	\pm
			0.07	0.03	0.013
			14.4	22.3	34.1
		764.2 ± 2.8	\pm	土	土
FCA			2.3	1.7	0.5
-XIX-	742 ± 24				
1			4.45	18.591	32.760
		760.10 ± 0.20	±	土	土
			0.05	0.021	0.022
			13	16	11
		362.6 ± 2.3	±	±	±
FCA	26410		3	4	3
-XIX-	364±9		2.02	0.72	2.70
2		257 10 10 10	3.83	8.72	3.79
		357.10 ± 0.10	±	±	±
			0.13	0.06	0.04
		25612	17	16	9
ECA		256±3	± 4	$^{\pm}$ 4	± 3
FCA -XIX-	251 4		4	4	3
3	251 ± 4		1.69	7.05	1.67
3		257.80 ± 0.10	±	±	±
		237.80±0.10	0.12	0.06	0.08
-			7	16	8.3
		387±3	<u>+</u>	±	±
		J07±J	3	4	1.9
SNEAK-7A	$(40 \pm 3) \cdot 10$		5	7	1.7
STILLIN //I	(10 ± 0) 10		5.46	10.84	3.80
		372.40 ± 0.10	±	±	±
		2,2	0.14	0.08	0.05

Table A.7: Delayed neutron fraction β_{eff} and total uncertainties for each reactor. In the top of each row, the β_{eff} and uncertainty calculated by Bretscher's method are found, and in the bottom, by Chiba's method.

Benchmark	$\beta_{eff}^{exp} (\text{pcm})$	$\beta_{eff}^{eval} \pm$		Unc. to Dat	 ta±
	reff (1)	Stat. Unc. (pcm)		Stat. Unc. (p	
			JEFF-3.3	JENDL-4.0u	ENDF/B-VIII.0
			10.0	19	8.6
		437.9 ± 1.4	±	\pm	\pm
			2.1	4	2.3
SNEAK-7B	$(44.0 \pm 3.4) \cdot 10$				
			5.53	11.95	5.14
		417.60 ± 0.10	±	±	±
			0.15	0.10	0.05
			14	25	28
		740 ± 3	\pm	\pm	±
MASURCA			11	10	8
_R2	721 ± 11				
_1\2			4.5	17.7	26.4
		727.20 ± 0.20	±	土	土
			0.7	0.4	0.7
			9	15	9
		352.9 ± 2.8	±	土	土
MASURCA			12	10	8
_ZONA2	349±6			0.12	2.2
		245 40 10 10	4.1	9.13	3.2
		345.40 ± 0.10	±	±	±
			0.6	0.18	0.7
		7200 2	12.7	19.5	27.31
HEH MET		7'00±3	±	±	±
HEU-MET -FAST-	663±17		2.5	1.1	0.13
-газт- 062	003±17		6.71	18.36	27.295
002		687.50 ± 0.20	0.71 ±	16.30 ±	±
		067.30±0.20	0.09	0.04	0.018
			11.0	18.9	29.41
		646.3 ± 1.4	±	±	±
HEU-MET		0+0.5±1.+	2.0	0.6	0.07
-FAST-	657±9		2.0	0.0	0.07
100	0311		9.00	18.98	29.710
		648.60 ± 0.10	±	±	±
			0.09	0.03	0.013

B Results of Chiba analysis

B.1 MIX-COMP-FAST-005

Figure B.1.1: Experimental and Chiba's method β_{eff} for different values of the perturbation.

Table B.1.1: Experimental and evaluated delayed neutron fraction of MIX-COMP-FAST-005 obtained for different cases. Uncertainty for the JENDL-4.0u library. (*) Experimental uncertainty

Case	MIX	MIX-COMP-FAST-005					
	$\beta_{eff}\pm \text{Stat. Unc. (pcm)}$	Unc. due to Data \pm Stat. Unc. (pcm)					
Experimental	$381 \pm 2*$	-					
Brestcher	387.9 ± 1.4	15.9 ± 2.2					
a=5	384.9 ± 0.3	11.6 ± 0.3					
a = 10	381.60 ± 0.20	11.16 ± 0.14					
a = 20	375.60 ± 0.10	10.86 ± 0.07					

Table B.1.2: Evaluated reaction uncertainties due to nuclear data (and statistical error) of delayed neutron fraction of MIX-COMP-FAST-005 obtained for different cases. Uncertainty for the JENDL-4.0u library.

Case	MIX-COMP-FAST-005 uncertainties (%)						
	238U (n,n')	$238U \ ar{ u}_d$	56Fe (n,n)	239Pu $\bar{ u}_d$			
Bretscher	2 ± 3	1.895 ± 0.005	1.7 ± 2.4	1.5127 ± 0.0024			
a=5	1.32 ± 0.19	1.849 ± 0.003	-	1.5242 ± 0.0021			
a = 10	1.14 ± 0.11	1.820 ± 0.003	-	1.5391 ± 0.0018			
a = 20	1.16 ± 0.04	1.7689 ± 0.0022	-	1.5671 ± 0.0017			

B.2 HEU-MET-INTER-001

Figure B.2.1: Experimental and Chiba's method β_{eff} for different values of the perturbation.

Table B.2.1: Experimental and evaluated delayed neutron fraction of HEU-MET-INTER-001 obtained for different cases. Uncertainty for the JENDL-4.0u library. (*) Experimental uncertainty

Case	HEU-MET-INTER-001			
	$\beta_{eff}\pm {\rm Stat.\ Unc.\ (pcm)}$ Unc. due to Data $\pm {\rm\ Stat.\ Unc.\ (pcm)}$			
Experimental	$659 \pm 13.34*$	-		
Brestcher	682.1 ± 2.8	27 ± 5		
a=5	683.8 ± 0.6	19.0 ± 0.5		
a = 10	684.2 ± 0.3	18.30 ± 0.10		
a = 20	684.2 ± 0.1	18.22 ± 0.04		

Table B.2.2: Evaluated reaction uncertainties due to nuclear data (and statistical error) of delayed neutron fraction of HEU-MET-INTER-001 obtained for different cases. Uncertainty for the JENDL-4.0u library.

Case	HEU-MET-INTER-001 uncertainties (%)		
	235U $\bar{\nu}_d$ 56Fe (n,n)		
Bretscher	2.627 ± 0.004	2 ± 7	
a=5	2.621 ± 0.003	0.8 ± 1.0	
a = 10	2.6240 ± 0.0022	0.3 ± 0.7	
a = 20	2.6274 ± 0.0019	-	

B.3 IEU-MET-FAST-007

Figure B.3.1: Experimental and Chiba's method β_{eff} for different values of the perturbation.

Table B.3.1: Experimental and evaluated delayed neutron fraction of IEU-MET-FAST-007 obtained for different cases. Uncertainty for the JENDL-4.0u library. (*) Experimental uncertainty

Case	IEU-MET-FAST-007		
	$\beta_{eff}\pm { m Stat.}$ Unc. (pcm) Unc. due to Data \pm Stat. Unc. (pcm)		
Experimental	$720 \pm 7*$	-	
Brestcher	739.4 ± 1.4	21 ± 3	
a=5	730 ± 0.3	19.00 ± 0.17	
a = 10	724.6 ± 0.1	18.59 ± 0.09	
a = 20	714.9 ± 0.1	18.21 ± 0.04	

Table B.3.2: Evaluated reaction uncertainties due to nuclear data (and statistical error) of delayed neutron fraction of IEU-MET-FAST-007 obtained for different cases. Uncertainty for the JENDL-4.0u library.

	Case	IEU-MET-FAST-007 uncertainties (%)			
$a = 5$ 1.8964 ± 0.0015 1.4271 ± 0.0018 - $a = 10$ 1.9258 ± 0.0013 1.3866 ± 0.0015 -		235 U $\bar{ u}_d$	238U (n,n)		
$a = 10$ 1.9258 ± 0.0013 1.3866 ± 0.0015 -	Bretscher	1.8640 ± 0.0018	1.4815 ± 0.0023	1.3 ± 0.7	
	a=5	1.8964 ± 0.0015	1.4271 ± 0.0018	-	
$a = 20$ 1.9739 ± 0.0012 1.3102 ± 0.0012 -	a = 10	1.9258 ± 0.0013	1.3866 ± 0.0015	-	
	a = 20	1.9739 ± 0.0012	1.3102 ± 0.0012	-	

B.4 IEU-MET-FAST-010

Figure B.4.1: Experimental and Chiba's method β_{eff} for different values of the perturbation.

Table B.4.1: Experimental and evaluated delayed neutron fraction of IEU-MET-FAST-010 obtained for different cases. Uncertainty for the JENDL-4.0u library. (*) Experimental uncertainty

Case	IEU-MET-FAST-010		
	$\beta_{eff}\pm {\rm Stat.}$ Unc. (pcm) Unc. due to Data \pm Stat. Unc. (pcm)		
Experimental	$725 \pm 2*$	-	
Brestcher	738 ± 2.8 21 ± 3		
a=5	730.3 ± 0.6	18.9 ± 0.3	
a = 10	724 ± 0.3	18.62 ± 0.16	
a = 20	713.6 ± 0.2	18.21 ± 0.07	

Table B.4.2: Evaluated reaction uncertainties due to nuclear data (and statistical error) of delayed neutron fraction of IEU-MET-FAST-010 obtained for different cases. Uncertainty for the JENDL-4.0u library.

Case	IEU-MET-FAST-010 uncertainties (%)				
	235U $\bar{\nu}_d$ 238U $\bar{\nu}_d$ 238U (n,n				
Bretscher	1.852 ± 0.004	1.504 ± 0.004	1 ± 4		
a=5	1.885 ± 0.003	1.448 ± 0.003	-		
a = 10	1.9106 ± 0.0024	1.4031 ± 0.0025	-		
a = 20	1.9601 ± 0.0021	1.3291 ± 0.0020	-		

C Integrated sensitivity profiles and nuclear data uncertainties for each benchmark reactor.

C.1 PU-MET-FAST-001

Table C.1.1: ISCs for the multiplication factor of PU-MET-FAST-001.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
239 Pu $\bar{\nu}$	0.96530 ± 0.00009
$\overline{239}$ Pu $\bar{\nu}_p$	0.96351 ± 0.00009
239Pu (n,f)	0.72813 ± 0.00010
239Pu χ	$(-0.15 \pm 8.7) \times 10^{-5}$

Table C.1.2: ISCs for the delayed neutron fraction.

Quantity	ISCs for the delayed neutron fraction of PU-MET-FAST-001.			
	Bretscher Chiba Kodeli, [1]			
239 Pu $\bar{\nu}_d$	0.945 ± 0.003	0.9483 ± 0.0007	0.9480	
$\overline{239}$ Pu $\bar{\nu}_p$	-0.95 ± 0.07	-0.946 ± 0.004	-0.9470	
239Pu χ	0.00 ± 0.07	0.000 ± 0.006	-	

Table C.1.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of PU-MET-FAST-001. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (98.8%)	
239Pu χ/239Pu χ	0.45134 ± 0.00013
239 Pu $ar{ u}_p$ /239 Pu $ar{ u}_p$	0.40951 ± 0.00005
239Pu (n,f)/239Pu (n,f)	0.30293 ± 0.00005
JENDL-4.0u (82.5%)	
239Pu (n,f)/239Pu (n,f)	0.43710 ± 0.00007
239Pu $\bar{ u}/239$ Pu $\bar{ u}_p$	0.3 ± 0.4
239Pu χ /239Pu χ	0.28993 ± 0.00005
ENDF/B-VIII.0 (99.9%)	
239 Pu $\bar{\nu}/239$ Pu $\bar{\nu}$	0.31960 ± 0.00004
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.31903 ± 0.00004
239Pu χ /239Pu χ	0.19112 ± 0.00005

Table C.1.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of PU-MET-FAST-001. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity			
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
239Pu χ/239Pu χ	0.8 ± 0.3	0.699 ± 0.007	-
239 Pu $\bar{\nu}_p$ /239 Pu $\bar{\nu}_p$	0.36 ± 0.07	0.367 ± 0.003	-
JENDL-4.0u			
$\overline{239}$ Pu $\bar{\nu}_d/239$ Pu $\bar{\nu}_d$	2.296 ± 0.008	2.2735 ± 0.0006	2.274
ENDF/B-VIII.0			
$\overline{239 \text{Pu } \bar{\nu}_p/239 \text{Pu } \bar{\nu}_p}$	0.47 ± 0.04	0.4753 ± 0.0018	-
239 Pu χ /239 Pu χ	0.30 ± 0.10	0.286 ± 0.003	-

C.2 PU-MET-FAST-006

Table C.2.1: ISCs for the multiplication factor of PU-MET-FAST-006.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{239}$ Pu $n\bar{u}$	0.88307 ± 0.00024
$\overline{239}$ Pu $n\bar{u}_p$	0.88141 ± 0.00024
239Pu (n,f)	0.63230 ± 0.00025
239Pu χ	$(0.0 \pm 2.2) \times 10^{-4}$
238U (n,n')	0.06563 ± 0.00017
238U (n,f)	0.05628 ± 0.00007
238U (n,n)	0.1383 ± 0.0004

Table C.2.2: ISCs for the delayed neutron fraction of [name reactor].

Quantity	ISCs for the delayed neutron fraction.		
	Bretscher	Chiba	Kodeli, [1]
238U (n,n)	-0.16 ± 0.20	0.12 ± 0.03	0.1030
238U (n,n')	-0.15 ± 0.09	-0.159 ± 0.007	-0.1700
238U (n,f)	0.29 ± 0.04	0.246 ± 0.004	0.2610
$\overline{238U} \bar{\nu}_d$	0.3709 ± 0.0021	0.3516 ± 0.0011	0.3610
$\overline{238U} \bar{\nu}$	0.29 ± 0.04	0.256 ± 0.004	0.278
239Pu (n,f)	-0.32 ± 0.13	-0.286 ± 0.012	-0.3050
$\overline{239}$ Pu $\bar{\nu}_d$	0.5779 ± 0.0020	0.5790 ± 0.0012	0.5880
$\overline{}$ 239Pu $\bar{ u}_p$	-0.86 ± 0.12	-0.848 ± 0.009	-0.8790
$\overline{239}$ Pu $\bar{\nu}$	-0.29 ± 0.12	-0.269 ± 0.012	-0.2920
238U χ	0.00 ± 0.03	0.000 ± 0.003	-
239Pu χ	0.00 ± 0.11	0.000 ± 0.008	-
$238U(n,\gamma)$	-0.044 ± 0.013	-0.04971 ± 0.00011	-
$\overline{235}$ U $\bar{\nu}_d$	0.01919 ± 0.00011	0.0204 ± 0.0003	-
$\overline{}$ 238U $\bar{\nu}_p$	-0.08 ± 0.03	-0.09538 ± 0.00008	-

Table C.2.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of PU-MET-FAST-006. In brackets, % of the uncertainty explained by the showed reactions.

Oventity	$\Delta l_a / l_a $ (97)
Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (78.9%)	
239Pu χ /239Pu χ	0.4879 ± 0.0004
238U (n,n')/238U (n,n')	0.4609 ± 0.0015
239Pu $ar{ u}_p$ /239Pu $ar{ u}_p$	0.38213 ± 0.00012
JENDL-4.0u (80.4%)	
238U (n,n')/238U (n,n')	0.4141 ± 0.0019
238U (n,f)/238U (n,f)	0.37220 ± 0.00017
238U (n,n)/238U (n,n)	0.3401 ± 0.0018
ENDF/B-VIII.0 (78.8%)	
238U (n,n)/238U (n,n')	0.4 ± 0.5
238U (n,n)/238U (n,n)	0.3412 ± 0.0011
239 Pu $\bar{\nu}$ /239 Pu 0.26931 ± 0.00009	

Table C.2.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of PU-MET-FAST-006. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity	$\Deltaeta_{eff}/eta_{eff}\left(\% ight)$		
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
238U (n,n')/238U (n,f)	-1.0 ± 1.4	-0.9 ± -1.3	-
238U (n,n')/238U (n,n')	0.9 ± 1.5	1.03 ± 0.06	-
238U (n,f)/238U (n,f)	0.76 ± 0.12	0.628 ± 0.007	-
238U χ /238U χ	0.60 ± 0.10	0.399 ± 0.003	-
239Pu χ /239Pu χ	0.6 ± 0.3	-	-
238U (n,n)/238U (n,n')	-	-0.7 ± 0.9	-
239 Pu $\bar{ u}_p$ /239 Pu $\bar{ u}_p$	0.35 ± 0.12	0.341 ± 0.005	-
238U (n,n)/238U (n,f)	-	0.5 ± 0.7	-
238U (n,f)/238U (n, γ)	-	0.3 ± 0.4	-
JENDL-4.0u			
$235 \mathrm{U} \; \bar{\nu}_d / 235 \mathrm{U} \; \bar{\nu}_d$	0.0637 ± 0.0004	0.0684 ± 0.0003	0.066
238U $ar{ u}_d$ /238U $ar{ u}_d$	1.241 ± 0.007	1.1760 ± 0.0019	1.191
238U (n,n')/238U (n,n')	2.3 ± 0.8	1.80 ± 0.03	1.712
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	1.340 ± 0.005	1.3439 ± 0.0010	1.347
ENDF/B-VIII.0			
238U (n,n)/238U (n,n')	1.0 ± 1.5	-0.7 ± 1.0	-
238U (n,n')/238U (n,n')	0.7 ± 1.0	0.45 ± 0.03	-
238U (n,n')/238U (n,f)	-0.6 ± 0.9	-0.6 ± 0.9	-
238U $\bar{\nu}_d$ /238U $\bar{\nu}_d$	0.481 ± 0.003	0.4562 ± 0.0007	-
238U χ /238U χ	0.48 ± 0.07	0.369 ± 0.003	-
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.39 ± 0.06	0.365 ± 0.003	-
$238U \bar{\nu}/238U \bar{\nu}$	0.36 ± 0.05	0.318 ± 0.003	-
239Pu χ /239Pu χ	-	0.303 ± 0.006	-
238U (n,f)/238U (n,f)	0.35 ± 0.05	0.301 ± 0.003	-
238U $\bar{ u}/238$ U $\bar{ u}_p$	-0.3 ± 0.4	0.318 ± 0.003	-
238U (n,n)/238U (n,n)	-	0.4 ± 2.0	-
238U (n,n')/238U (n, γ)	-	0.3 ± 0.4	-
239Pu $\bar{\nu}$ /239Pu $\bar{\nu}$	0.26 ± 0.07	0.233 ± 0.003	-

C.3 HEU-MET-FAST-028

Table C.3.1: ISCs for the multiplication factor of HEU-MET-FAST-028.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.91737 ± 0.00024
$\overline{235}$ U $\bar{\nu}_p$	0.91160 ± 0.00024
235U (n,f)	0.5745 ± 0.0003
235U (n,n')	0.03372 ± 0.00017
$235U(n,\gamma)$	-0.052022 ± 0.000023
238U (n,n')	0.06309 ± 0.00018
238U (n,n)	0.1454 ± 0.0004

Table C.3.2: ISCs for the delayed neutron fraction of HEU-MET-FAST-028.

Quantity	ISCs for the delayed neutron fraction.		
	Bretscher	Chiba	Kodeli, [1]
$\overline{235}$ U $\bar{\nu}_d$	0.8269 ± 0.0007	0.8405 ± 0.0015	0.8360
$\overline{235}$ U $\bar{\nu}_p$	-0.85 ± 0.05	-0.8403 ± 0.0024	-0.8430
$\overline{238U} \bar{\nu}_d$	0.1601 ± 0.0003	0.1391 ± 0.0004	0.1530
$\overline{}$ 238U $\bar{\nu}_p$	-0.130 ± 0.013	-0.1329608 ± 0.0000019	-0.1400
$$ 235U χ	0.00 ± 0.05	0.000 ± 0.006	-
235U (n,f)	-0.09 ± 0.05	-0.053 ± 0.007	-
238U (n,n)	0.17 ± 0.09	0.040 ± 0.014	-

Table C.3.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of HEU-MET-FAST-028. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (71.8%)	
235U (n,f)/235U (n,f)	0.7117 ± 0.0006
235U (n,n')/235U (n,f)	0.5 ± 0.8
235U (n, γ)/235U (n, γ)	0.47924 ± 0.00022
JENDL-4.0u (72.7%)	
238U (n,n')/238U (n,n')	0.4041 ± 0.0023
238U (n,n)/238U (n,n)	0.3642 ± 0.0020
235U $ar{ u}/235$ U $ar{ u}_p$	0.3 ± 0.5
ENDF/B-VIII.0 (74.1%)	
235U (n,f)/235U (n,f)	0.6917 ± 0.0004
235U $\bar{ u}/235$ U $\bar{ u}_p$	0.5 ± 0.7
238U (n,n)/238U (n,n')	0.4 ± 0.6

Table C.3.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of HEU-MET-FAST-028. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)		
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
235U χ/235U χ	0.91 ± 0.13	0.455 ± 0.005	-
235U (n,f)/235U (n,f)	0.59 ± 0.13	0.659 ± 0.006	-
238U (n,n)/238U (n,n)	0.58 ± 0.22	-	-
235U $\bar{ u}_p$ /235U $\bar{ u}_p$	0.42 ± 0.04	0.4185 ± 0.0022	-
JENDL-4.0u			
$\overline{235}$ U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	2.3856 ± 0.0022	2.4829 ± 0.0014	2.403
238U (n,n)/238U (n,n)	1.6 ± 0.4	-	-
ENDF/B-VIII.0			
235 U $\bar{\nu}_d$ /235U $\bar{\nu}_d$	3.886 ± 0.004	3.9504 ± 0.0022	-

C.4 U233-MET-FAST-006

Table C.4.1: ISCs for the multiplication factor of U233-MET-FAST-006.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$233U \bar{\nu}$	0.91126 ± 0.00025
$\overline{233}$ U $\bar{\nu}_p$	0.90864 ± 0.00024
233U (n,f)	0.5910 ± 0.0003
235U (n,f)	0.006918 ± 0.000023
238U (n,n')	0.07156 ± 0.00017
238U (n,n)	0.1317 ± 0.0004

Table C.4.2: ISCs for the delayed neutron fraction of U233-MET-FAST-006.

Quantity	ISCs for the delayed neutron fraction.		
	Bretscher	Chiba	Kodeli, [1]
233U (n,f)	-0.20 ± 0.10	-0.228 ± 0.011	-0.2310
$\overline{}$ 233U $\bar{\nu}_d$	0.6972 ± 0.0019	0.6919 ± 0.0014	0.7000
$\overline{}$ 233U $\bar{\nu}_p$	-0.88 ± 0.09	-0.868 ± 0.006	-0.8850
$\overline{233}$ U $\bar{\nu}$	-0.19 ± 0.09	-0.176 ± 0.010	-0.1850
238U (n,n')	-0.19 ± 0.06	-0.119 ± 0.005	-0.1290
238U (n,f)	0.16 ± 0.03	0.163 ± 0.003	0.1670
$\overline{238U} \bar{\nu}_d$	0.2886 ± 0.0013	0.2666 ± 0.0008	0.2740
$\overline{238}$ U $\bar{\nu}_p$	-0.136 ± 0.025	-0.103651 ± 0.000016	-0.1040

Table C.4.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of U233-MET-FAST-006. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta I_a / I_a $ (07)
Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (77.0%)	
235U (n,f)/235U (n,f)	0.5632 ± 0.0003
238U (n,n')/238U (n,n')	0.5028 ± 0.0015
238U (n,n)/238U (n,n')	0.3 ± 0.4
JENDL-4.0u (78.5%)	
$\overline{233U \bar{\nu}/233U \bar{\nu}_p}$	0.6 ± 0.9
238U (n,n')/238U (n,n')	0.4518 ± 0.0018
233U $\bar{\nu}/233$ U $\bar{\nu}$	0.44474 ± 0.00016
ENDF/B-VIII.0 (76.7%)	
$\overline{233}$ U $\bar{\nu}/233$ U $\bar{\nu}_p$	0.6 ± 0.9
$233U \bar{\nu}/233U \bar{\nu}$	0.44474 ± 0.00016
233 U $\bar{\nu}_p$ /233U $\bar{\nu}_p$	0.44431 ± 0.00016

Table C.4.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of U233-MET-FAST-006. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)		
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
$233U \bar{\nu}_d/233U \bar{\nu}_d$	6.597 ± 0.019	6.576 ± 0.004	-
JENDL-4.0u			
$233 \mathrm{U} \; \bar{\nu}_d / 233 \mathrm{U} \; \bar{\nu}_d$	5.213 ± 0.015	5.201 ± 0.004	5.097
ENDF/B-VIII.0			
$233U \bar{\nu}_d/233U \bar{\nu}_d$	5.213 ± 0.015	5.201 ± 0.004	-

C.5 IEU-MET-FAST-007

Table C.5.1: ISCs for the multiplication factor of IEU-MET-FAST-007.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.75371 ± 0.00020
$\overline{}$ 235U $\bar{\nu}_p$	0.74966 ± 0.00020
235U (n,f)	0.50260 ± 0.00022
$$ 235U χ	0.00000 ± 0.00020
$238U(n,\gamma)$	-0.23059 ± 0.00007
238U (n,n')	-0.0862 ± 0.0004
238U (n,n)	0.1104 ± 0.0009

Table C.5.2: ISCs for the delayed neutron fraction of IEU-MET-FAST-007.

Quantity	ISCs for the delayed neutron fraction.		
	Bretscher	Chiba	Kodeli, [1]
$\overline{235}$ U $\bar{\nu}_d$	0.54272 ± 0.00048	0.5678 ± 0.0011	0.548
$\overline{235}$ U $\bar{\nu}_p$	-0.51 ± 0.04	-0.5301 ± 0.0009	-0.516
$\overline{238U} \bar{\nu}_d$	0.4420 ± 0.0006	0.3907 ± 0.0007	0.443
$\overline{}$ 238U $\bar{\nu}_p$	-0.478 ± 0.022	-0.426344 ± 0.000004	-0.473
238U (n,n')	-0.07 ± 0.07	-0.040 ± 0.006	-
235U (n,f)	0.04 ± 0.04	0.017 ± 0.006	-
235U χ	0.00 ± 0.04	0.000 ± 0.004	-

Table C.5.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of IEU-MET-FAST-007. In brackets, % of the uncertainty explained by the showed reactions.

	A 1 /1 /07)
Quantity	$\Delta k_{eff}/k_{eff}~(\%)$
JEFF-3.3 (83.8%)	
235U (n,f)/235U (n,f)	1.0732 ± 0.0006
235U χ /235U χ	0.8595 ± 0.0005
238U (n, γ)/238U (n, γ)	0.61137 ± 0.00014
JENDL-4.0u (88.5%)	
238U (n,n')/238U (n,n')	1.0055 ± 0.0025
235U χ /235U χ	0.53849 ± 0.00007
238U (n, γ)/238U (n, γ)	0.40847 ± 0.00016
ENDF/B-VIII.0 (51.7%)	
235U (n,f)/235U (n,f)	0.6073 ± 0.0003
238U (n,n)/238U (n,n')	-0.4 ± 0.6
235U $\bar{ u}$ /235U $\bar{ u}_p$	0.4 ± 0.6

Table C.5.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of IEU-MET-FAST-007. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)		
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
238U (n,n')/238U (n,n')	0.5 ± 1.9	0.31 ± 0.06	-
238U $ar{ u}_p$ /238U $ar{ u}_p$	0.447 ± 0.023	0.4051 ± 0.0013	-
235U (n,f)/235U (n,f)	0.39 ± 0.14	0.316 ± 0.007	-
235U $ar{ u}_p$ /238U $ar{ u}_p$	0.27 ± 0.03	-	-
235U χ /235U χ	-	0.406 ± 0.008	-
JENDL-4.0u			
$\overline{235}$ U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	1.8640 ± 0.0018	1.9739 ± 0.0012	1.8570
238U $\bar{ u}_d$ /238U $\bar{ u}_d$	1.4815 ± 0.0023	1.3102 ± 0.0012	-
238U (n,n)/238U (n,n)	1.3 ± 0.7	-	-
ENDF/B-VIII.0			
235 U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	2.5508 ± 0.0025	2.6686 ± 0.0017	-

C.6 HEU-MET-INTER-001

Table C.6.1: ISCs for the multiplication factor of HEU-MET-INTER-001.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.9971 ± 0.0004
$\overline{235}$ U $\bar{\nu}_p$	0.9903 ± 0.0004
235U (n,f)	0.5177 ± 0.0004
56Fe (n,n)	0.1106 ± 0.0024
$235U(n,\gamma)$	-0.15041 ± 0.00004
$$ 56Fe (n, γ)	-0.06314 ± 0.00004

Table C.6.2: ISCs for the delayed neutron fraction of HEU-MET-INTER-001.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$\overline{$ 235U $\bar{\nu}_d$	0.9904 ± 0.0012	0.988 ± 0.003	
$\overline{$ 235U $\bar{\nu}_p$	-0.99 ± 0.07	0.986 ± 0.000	
57Fe (n,n)	0.04 ± 0.12	0.006 ± 0.016	
56Fe (n,n)	0.4 ± 0.5	-0.04 ± 0.04	
54Fe (n,n)	0.01 ± 0.18	0.013 ± 0.024	
235U χ	0.000 ± 0.071	0.000 ± 0.003	

Table C.6.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of HEU-MET-INTER-001. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (86.1%)	
235U (n,f)/235U (n,f)	1.0352 ± 0.0008
235U (n, γ)/235U (n, γ)	0.90187 ± 0.00016
235U (n,f)/235U (n, γ)	0.7 ± 1.0
JENDL-4.0u (80.5%)	0.6582 ± 0.0015
56Fe (n,n)/56Fe (n,n)	0.478 ± 0.019
56Fe (n, γ)/56Fe (n, γ)	0.4398 ± 0.0003
235U (n,f)/235U (n,f) $\bar{\nu}_{p}$	0.3653 ± 0.0005
ENDF/B-VIII.0 (76.5%)	
$\overline{235}$ U $\bar{\nu}/235$ U $\bar{\nu}_p$	0.7 ± 1.0
235U (n, γ)/235U (n, γ)	0.57459 ± 0.00010
235U (n,f)/235U (n,f)	0.5302 ± 0.0004

Table C.6.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of HEU-MET-INTER-001. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta \beta_{eff}/\beta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
57Fe (n,n)/57Fe (n,n)	1.8 ± 1.0	-
56Fe (n,n)/56Fe (n,n)	1.7 ± 1.2	-
54Fe (n,n)/54Fe (n,n)	1.2 ± 0.4	-
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.54 ± 0.04	0.543 ± 0.003
235U χ /235U χ	-	0.1782 ± 0.0003
JENDL-4.0u		
$\overline{235U \bar{\nu}_d/235U \bar{\nu}_d}$	2.627 ± 0.004	2.6274 ± 0.0019
56Fe (n,n)/56Fe (n,n)	2 ± 7	-
ENDF/B-VIII.0		
235U $\bar{\nu}_d$ /235U $\bar{\nu}_d$	4.549 ± 0.006	4.536 ± 0.003

C.7 PU-MET-INTER-002

Table C.7.1: ISCs for the multiplication factor of PU-MET-INTER-002.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{239}$ Pu $\bar{\nu}$	0.9891 ± 0.0004
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.9868 ± 0.0004
239Pu (n,f)	0.5811 ± 0.0004
239Pu (n,γ)	-0.18717 ± 0.00007
56Fe (n,n)	0.0948 ± 0.0019
56Fe (n,γ)	-0.04259 ± 0.00004
52Cr(n,n)	0.0320 ± 0.0008

Table C.7.2: ISCs for the delayed neutron fraction of PU-MET-INTER-002.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)	
	Bretscher	Chiba
56Fe (n,n)	1.6 ± 1.1	-0.13 ± 0.09
239Pu $\bar{\nu}_d$	0.972 ± 0.003	0.976 ± 0.004
58Ni (n,n)	-1.5 ± 0.5	0.07 ± 0.10
$\overline{}$ 239Pu $\bar{\nu}_p$	-1.0 ± 0.2	-1.0 ± 0.0
57Fe (n,n)	0.0 ± 0.2	-0.013 ± 0.013
54Fe (n,n)	0.2 ± 0.4	0.02 ± 0.03
239Pu (n,γ)	-0.03 ± 0.04	-0.0462 ± 0.0002
52Cr(n,n)	0.2 ± 0.5	0.04 ± 0.09
55Mn(n,n)	-0.2 ± 0.4	0.00 ± 0.03

Table C.7.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of PU-MET-INTER-002. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (92.2%)	
239Pu (n, γ)/239Pu (n, γ)	0.8499 ± 0.0005
239Pu (n,f)/239Pu (n,f)	0.7168 ± 0.0008
239 Pu $\bar{\nu}_p$ /239 Pu $\bar{\nu}_p$	0.46022 ± 0.00017
JENDL-4.0u (76.2%)	
56Fe (n,n)/56Fe (n,n)	0.392 ± 0.012
56Fe (n, γ)/56Fe (n, γ)	0.3447 ± 0.0003
239Pu (n, γ)/239Pu (n, γ)	0.32108 ± 0.00006
ENDF/B-VIII.0 (78.2%)	
239Pu $\bar{\nu}$ /239Pu $\bar{\nu}$	0.26807 ± 0.00011
239 Pu $\bar{\nu}_p$ /239 Pu $\bar{\nu}_p$	0.26745 ± 0.00011
52Cr(n,n)/52Cr(n,n)	0.211 ± 0.006

Table C.7.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of PU-MET-INTER-002. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
56Fe (n,n)/56Fe (n,n)	5 ± 14	0.4 ± 0.5
57Fe (n,n)/57Fe (n,n)	4.7 ± 1.8	-
58Ni (n,n)/58Ni (n,n)	4 ± 3	-
239Pu $ar{ u}_p$ /239Pu $ar{ u}_p$	0.44 ± 0.17	0.451 ± 0.006
54 Fe (n,n) / 54 Fe (n,n)	-	0.2 ± 0.3
239Pu (n, γ)/239Pu (n, γ)	-	0.228 ± 0.018
JENDL-4.0u		
56Fe (n,n)/56Fe (n,n)	9 ± 16	-
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	4.737 ± 0.014	4.789 ± 0.004
52Cr(n,n)/52Cr(n,n)	3.1 ± 2.3	-
ENDF/B-VIII.0		
58Ni (n,n)/58Ni (n,n)	5 ± 4	0.29 ± 0.16
56Fe (n,n)/56Fe (n,n)	3.1 ± 2.2	0.26 ± 0.10
239Pu $ar{ u}_p$ /239Pu $ar{ u}_p$	0.28 ± 0.09	0.262 ± 0.003
55Mn (n,n)/55Mn (n,n)	3 ± 4	-
52Cr(n,n)/52Cr(n,n)		0.2 ± 0.3

C.8 PU-MET-INTER-004

Table C.8.1: ISCs for the multiplication factor of PU-MET-INTER-004.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)		
$\overline{239}$ Pu $\bar{\nu}$	0.9830 ± 0.0004		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.9806 ± 0.0004		
239Pu (n,f)	0.5766 ± 0.0004		
239Pu (n,γ)	-0.15062 ± 0.00007		
208Pb (n,n)	0.1514 ± 0.0010		

Table C.8.2: ISCs for the delayed neutron fraction of PU-MET-INTER-004.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
207Pb (n,n)	1.0 ± 0.4	-0.03 ± 0.04	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.964 ± 0.003	0.968 ± 0.004	
206Pb (n,n)	-0.6 ± 0.4	0.00 ± 0.05	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	-0.97 ± 0.21	-0.96938 ± 0.00005	
56Fe (n,n)	-0.3 ± 0.4	-0.0015 ± 0.0024	
54Fe (n,n)	-0.15 ± 0.15	0.000 ± 0.016	
57Fe (n,n)	0.06 ± 0.09	0.001 ± 0.011	
239Pu χ	0.00 ± 0.20	0.000 ± 0.011	
58Ni (n,n)	-0.33 ± 0.18	0.02 ± 0.03	
206Pb (n,n)	-0.6 ± 0.4	0.00 ± 0.05	
239Pu (n,γ)	-0.10 ± 0.04	-0.06826 ± 0.00006	
239Pu (n,n)	-0.4 ± 0.3	0.02 ± 0.04	
52Cr (n,n)	0.06 ± 0.17	-0.027 ± 0.009	
	0.00 = 0.11	5.5 2 , ± 5.666	

Table C.8.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of PU-MET-INTER-004. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}~(\%)$
JEFF-3.3 (88.3%)	
239Pu (n, γ)/239Pu (n, γ)	0.5815 ± 0.0004
239Pu (n,f)/239Pu (n,f)	0.4796 ± 0.0007
239 Pu $\bar{\nu}_p$ /239 Pu $\bar{\nu}_p$	0.45104 ± 0.00019
JENDL-4.0u (79.9%)	
208Pb (n,n)/208Pb (n,n)	0.339 ± 0.003
239Pu (n, γ)/239Pu (n, γ)	0.33351 ± 0.00007
239Pu (n,f)/239Pu (n,f)	0.29564 ± 0.00022
ENDF/B-VIII.0 (79.2%)	
208Pb (n,n)/208Pb (n,n)	0.359 ± 0.003
239Pu $\bar{\nu}$ /239Pu $\bar{\nu}$	0.26492 ± 0.00011
239 Pu $\bar{\nu}_p$ /239 Pu $\bar{\nu}_p$	0.26427 ± 0.00011

Table C.8.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of PU-MET-INTER-004. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
56Fe (n,n)/56Fe (n,n)	3 ± 5	-
54Fe (n,n)/54Fe (n,n)	1.6 ± 1.0	-
57Fe (n,n)/57Fe (n,n)	1.4 ± 0.7	-
239Pu $ar{ u}_p$ /239Pu $ar{ u}_p$	0.43 ± 0.16	0.435 ± 0.007
239Pu χ /239Pu χ	-	0.4274 ± 0.0022
58Ni (n,n)/58Ni (n,n)	0.9 ± 1.0	-
207Pb (n,n)/207Pb (n,n)	1.2 ± 0.8	-
206Pb (n,n)/206Pb (n,n)	0.9 ± 0.9	-
239Pu (n, γ)/239Pu (n, γ)	-	0.282 ± 0.014
JENDL-4.0u		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	4.054 ± 0.012	4.133 ± 0.004
56Fe (n,n)/56Fe (n,n)	2 ± 9	-
239Pu (n,n)/239Pu (n,n)	1.3 ± 2.3	-
207Pb (n,n)/207Pb (n,n)	1.2 ± 0.8	-
ENDF/B-VIII.0		
207Pb (n,n)/207Pb (n,n)	5 ± 3	0.16 ± 0.20
206Pb (n,n)/206Pb (n,n)	3 ± 4	-
239Pu χ /239Pu χ	1.0 ± 0.3	0.326 ± 0.013
239Pu $ar{ u}_p$ /239Pu $ar{ u}_p$	0.28 ± 0.09	0.270 ± 0.004
52Cr (n,n)/52Cr (n,n)	-	0.16 ± 0.07

C.9 LEU-COMP-THERM-006

Table C.9.1: ISCs for the multiplication factor of LEU-COMP-THERM-006.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)		
$235U \bar{\nu}$	0.94195 ± 0.00010		
$\overline{235}$ U $\bar{\nu}_p$	0.93508 ± 0.00010		
235U (n,f)	0.33033 ± 0.00017		
$\overline{1 \text{H} (n, \gamma)}$	-0.13192 ± 0.00004		
235U χ	0.00000 ± 0.00016		

Table C.9.2: ISCs for the delayed neutron fraction of LEU-COMP-THERM-006.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$235U \bar{\nu}_d$	0.8590 ± 0.0012	0.8656 ± 0.0007	
$\overline{235}$ U $\bar{\nu}_p$	-0.884 ± 0.019	-0.875 ± 0.000	
235U χ	0.000 ± 0.028	0.0000 ± 0.0033	

Table C.9.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of LEU-COMP-THERM-006. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff} (\%)$
JEFF-3.3 (81.1%)	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.52475 ± 0.00015
$1 \text{H (n,}\gamma)/1 \text{H (n,}\gamma)$	0.33685 ± 0.00010
235U χ /235U χ	0.32030 ± 0.00005
JENDL-4.0u (79.3%)	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.4 ± 0.6
$235 \mathrm{U}~ar{ u}/235 \mathrm{U}~ar{ u}$	0.28127 ± 0.00005
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.28039 ± 0.00005
ENDF/B-VIII.0 (94.3%)	
235 U $\bar{\nu}/235$ U $\bar{\nu}_p$	0.6 ± 0.9
235 U $\bar{\nu}/235$ U $\bar{\nu}$	0.43411 ± 0.00011
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.43300 ± 0.00011

Table C.9.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of LEU-COMP-THERM-006. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
235 U $\bar{\nu}_p/235$ U $\bar{\nu}_p$	0.50 ± 0.03	0.4907 ± 0.0015
235U χ /235U χ	0.28 ± 0.03	0.2734 ± 0.0003
JENDL-4.0u		
235 U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	2.701 ± 0.004	2.7234 ± 0.0015
ENDF/B-VIII.0		
235 U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	3.753 ± 0.006	3.7840 ± 0.0017

C.10 LEU-COMP-THERM-067

Table C.10.1: ISCs for the multiplication factor of LEU-COMP-THERM-067.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.9611 ± 0.0004
$\overline{235}$ U $\bar{\nu}_p$	0.9541 ± 0.0004
235U (n,f)	0.3652 ± 0.0005
$235U \chi$	0.0000 ± 0.0005
$1H(n,\gamma)$	-0.11617 ± 0.00006

Table C.10.2: ISCs for the delayed neutron fraction of LEU-COMP-THERM-067.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)	
	Bretscher	Chiba
$\overline{$ 235U $\bar{\nu}_d$	0.897 ± 0.004	0.9043 ± 0.0010
$\overline{}$ 235U $\bar{\nu}_p$	-0.89 ± 0.06	-0.91 ± 0.00
56Fe (n,n)	0.08 ± 0.08	-0.006 ± 0.012
16O (n,n)	-0.13 ± 0.16	-0.034 ± 0.016
238U (n,n)	-0.17 ± 0.09	0.006 ± 0.019
1H (n,n)	-0.3 ± 0.3	-0.12 ± 0.03
235U χ	0.00 ± 0.07	0.000 ± 0.008

Table C.10.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of LEU-COMP-THERM-067. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (79.0%)	
$235 \mathrm{U}~ar{ u}_p / 235 \mathrm{U}~ar{ u}_p$	0.53539 ± 0.00022
235U χ /235U χ	0.365 ± 0.003
$1 \text{H (n,} \gamma) / 1 \text{H (n,} \gamma)$	0.3032 ± 0.0003
JENDL-4.0u (74.3%)	
$\overline{235}$ U $\bar{ u}/235$ U $\bar{ u}_p$	0.40384 ± 0.00012
235 U $\bar{ u}/235$ U $\bar{ u}$	0.28635 ± 0.00012
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.28544 ± 0.00012
ENDF/B-VIII.0 (87.8%)	
235 U $\bar{\nu}/235$ U $\bar{\nu}_p$	0.62436 ± 0.00018
235 U $\bar{ u}/235$ U $\bar{ u}$	0.44249 ± 0.00018
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.44137 ± 0.00018

Table C.10.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of LEU-COMP-THERM-067. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
$\overline{235 \mathrm{U} \; \bar{\nu}_p / 235 \mathrm{U} \; \bar{\nu}_p}$	0.50 ± 0.03	0.51 ± 0.00
56Fe (n,n)/56Fe (n,n)	0.25 ± 0.12	-
16O (n,n)/16O (n,n)	0.2 ± 0.3	-
238U (n,n)/238U (n,n)	0.22 ± 0.13	-
1H (n,n)/1H (n,n)	0.18 ± 0.14	-
235U χ /235U χ	0.2 ± 0.4	-
JENDL-4.0u		
$\overline{235 \mathrm{U} \; \bar{\nu}_d / 235 \mathrm{U} \; \bar{\nu}_d}$	2.822 ± 0.013	2.8475 ± 0.0013
ENDF/B-VIII.0		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	3.911 ± 0.018	3.9462 ± 0.0018

C.11 HEU-MET-FAST-001

Table C.11.1: ISCs for the multiplication factor of HEU-MET-FAST-001.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.98291 ± 0.00025
$\overline{235}$ U $\bar{\nu}_p$	0.97665 ± 0.00025
235U (n,f)	0.6523 ± 0.0003
235U (n,n')	0.08179 ± 0.00017
235U (n,n)	0.1091 ± 0.0003

Table C.11.2: ISCs for the delayed neutron fraction of HEU-MET-FAST-001.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$\overline{$ 235U $\bar{\nu}_d$	0.9544 ± 0.0009	0.9698 ± 0.0016	
$\overline{235}$ U $\bar{\nu}_p$	-0.95 ± 0.06	-0.966 ± 0.004	
235U (n,f)	-0.07 ± 0.06	-0.054 ± 0.007	
$$ 235U χ	0.00 ± 0.05	0.000 ± 0.005	
235U (n,n')	0.02 ± 0.04	-0.008 ± 0.003	

Table C.11.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of HEU-MET-FAST-001. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (90.0%)	
235U (n,n')/235U (n,n')	0.6995 ± 0.0018
235U (n,n')/235U (n,f)	0.7 ± 1.0
235U (n,f)/235U (n,f)	0.6577 ± 0.0005
JENDL-4.0u (84.6%)	
235U (n,n')/235U (n,n')	0.6582 ± 0.0016
235U (n,n)/235U (n,n)	0.4425 ± 0.0017
235U $\bar{ u}$ /235U $\bar{ u}_p$	0.4 ± 0.5
ENDF/B-VIII.0 (86.6%)	
235U (n,f)/235U (n,f)	0.7855 ± 0.0004
235U $\bar{ u}$ /235U $\bar{ u}_p$	0.6 ± 0.8
235U $\bar{\nu}$ /235U $\bar{\nu}$	0.39965 ± 0.00012

Table C.11.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of HEU-MET-FAST-001. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
235U (n,f)/235U (n,f)	0.81 ± 0.09	0.839 ± 0.005
235U χ /235U χ	0.66 ± 0.14	0.918 ± 0.003
235U (n,n')/235U (n,f)	0.8 ± 1.1	-
JENDL-4.0u		
235U $\bar{\nu}_d$ /235U $\bar{\nu}_d$	2.626 ± 0.003	2.7300 ± 0.0014
ENDF/B-VIII.0		
$\overline{235U} \bar{\nu}_d / 235U \bar{\nu}_d$	4.486 ± 0.005	4.5580 ± 0.0025

C.12 MIX-COMP-FAST-005

Table C.12.1: ISCs for the multiplication factor of MIX-COMP-FAST-005.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{239}$ Pu $\bar{\nu}$	0.7896 ± 0.0003
$\overline{}$ 239Pu $\bar{\nu}_p$	0.7881 ± 0.0003
239Pu (n,f)	0.5703 ± 0.0003
239Pu χ	(0.0000 ± 0.0003)
238U (n,n')	-0.0554 ± 0.0003
$238U(n,\gamma)$	-0.21390 ± 0.00006
$\overline{238U} \bar{\nu}$	0.15585 ± 0.00010
$\overline{238U} \bar{\nu}_p$	0.15366 ± 0.00010

Table C.12.2: ISCs for the delayed neutron fraction of MIX-COMP-FAST-005.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)	
,	Bretscher	Chiba
$\overline{}$ 238U $\bar{\nu}_d$	0.5640 ± 0.0014	0.5265 ± 0.0012
$\overline{}$ 239Pu $\bar{\nu}_d$	$\pm 0.3756 \pm 0.0005$	0.3816 ± 0.0012
$\overline{239}$ Pu $\bar{\nu}_p$	-0.58 ± 0.10	-0.62597 ± 0.00007
56Fe (n,n)	-0.36 ± 0.23	0.00 ± 0.03
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	-0.34 ± 0.04	-0.278600 ± 0.000006
238U (n,n)	0.2 ± 0.4	-0.02 ± 0.03
238U (n,n')	-0.27 ± 0.12	-0.105 ± 0.005
238U (n,f)	0.27 ± 0.04	0.289 ± 0.005
57Fe (n,n)	-0.05 ± 0.05	0.004 ± 0.005
239Pu χ	0.00 ± 0.09	0.000 ± 0.008
240Pu (n,n')	-0.025 ± 0.013	0.0000 ± 0.0013
238U χ	0.00 ± 0.03	0.000 ± 0.004
23Na (n,n)	0.00 ± 0.23	-0.01 ± 0.03
58Ni (n,n)	-0.16 ± 0.10	-0.002 ± 0.013
$\overline{238U} \bar{\nu}$	0.22 ± 0.04	0.2479 ± 0.0044

Table C.12.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of MIX-COMP-FAST-005. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff} (\%)$
JEFF-3.3 (74.9%)	
239Pu χ/239Pu χ	0.5245 ± 0.0004
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.36367 ± 0.00015
238U (n,n')/238U (n,n')	0.357 ± 0.004
JENDL-4.0u (80.1%)	
238U (n,n')/238U (n,n')	0.5074 ± 0.0022
239Pu χ /239Pu χ	0.36121 ± 0.00011
238U (n, γ)/238U (n, γ)	0.35855 ± 0.00011
ENDF/B-VIII.0 (73.7%)	
$238U (n,\gamma)/238U (n,\gamma)$	0.28142 ± 0.00007
238U $\bar{ u}/238$ U $\bar{ u}_p$	0.3 ± 0.4
239Pu χ /239Pu χ	0.23717 ± 0.00014

Table C.12.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of MIX-COMP-FAST-005. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta \beta_{eff}/\beta_{eff}$ (%)	
•	Bretscher	Chiba
JEFF-3.3		
238U (n,n)/238U (n,n')	-2 ± 3	-
238U (n,n')/238U (n,n')	1.7 ± 1.9	0.70 ± 0.08
238U (n,n')/238U (n,f)	-1.2 ± 1.7	-0.8 ± 1.2
56Fe (n,n)/56Fe (n,n)	1.1 ± 1.7	-
238U (n,n)/238U (n,f)	1.1 ± 1.6	-
238U (n,n)/238U (n,n)	1.1 ± 1.9	-
57Fe (n,n)/57Fe (n,n)	0.9 ± 0.4	-
238U (n,f)/238U (n,f)	0.66 ± 0.13	0.701 ± 0.008
239Pu χ /239Pu χ	0.64 ± 0.20	0.966 ± 0.007
240Pu(n,n')/240Pu(n,n')	0.5 ± 0.5	-
JENDL-4.0u		
238U (n,n')/238U (n,n')	2 ± 3	1.16 ± 0.04
238U $\bar{ u}_d$ /238U $\bar{ u}_d$	1.895 ± 0.005	1.7689 ± 0.0022
56Fe (n,n)/56Fe (n,n)	1.7 ± 2.4	-
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	1.5127 ± 0.0024	1.5671 ± 0.0017
ENDF/B-VIII.0		
238U (n,n)/238U (n,n')	-1.5 ± 2.1	-
23Na (n,n)/23Na (n,n)	1 ± 4	-
238U (n,n)/238U (n,n)	1.0 ± 1.5	-
238U (n,n')/238U (n,f)	-0.9 ± 1.2	-0.6 ± 0.8
238U (n,n')/238U (n,n')	1 ± 3	-
58Ni (n,n)/58Ni (n,n)	0.8 ± 1.0	-
238U $ar{ u}_d$ /238U $ar{ u}_d$	0.7315 ± 0.0019	0.6826 ± 0.0009
56Fe (n,n)/56Fe (n,n)	0.7 ± 0.8	-
239Pu χ /239Pu χ	0.59 ± 0.07	0.605 ± 0.004
238U χ /238U χ	0.51 ± 0.07	0.521 ± 0.004
238U $ar{ u}/238$ U $ar{ u}_p$	-0.5 ± 0.7	-0.5 ± 0.7
238U (n,f)/238U (n,f)	0.33 ± 0.06	0.354 ± 0.003
238U $\bar{\nu}_p$ /238U $\bar{\nu}_p$	0.43 ± 0.05	0.346 ± 0.003
$238U \bar{\nu}/238U \bar{\nu}$	0.29 ± 0.05	0.318 ± 0.003

C.13 IEU-MET-FAST-010

Table C.13.1: ISCs for the multiplication factor of IEU-MET-FAST-010.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$235 \mathrm{U} \ \bar{\nu}$	0.7513 ± 0.0004
$\overline{235}$ U $\bar{\nu}_p$	0.7473 ± 0.0004
235U (n,f)	0.5110 ± 0.0004
235U χ	0.0000 ± 0.0004
238U (n,n')	-0.1102 ± 0.0007
$238U(n,\gamma)$	-0.26595 ± 0.00012

Table C.13.2: ISCs for the delayed neutron fraction of IEU-MET-FAST-010.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)	
	Bretscher	Chiba
235U $\bar{\nu}_d$	0.5362 ± 0.0009	0.5627 ± 0.0019
238U $\bar{ u}_d$	0.4483 ± 0.0012	0.3960 ± 0.0011
$235 \mathrm{U} \ \bar{ u}_p$	-0.56 ± 0.07	-0.5247 ± 0.0012
$238U \ \bar{ u}_p$	-0.42 ± 0.04	-0.43221 ± 0.0000021
235U χ	0.00 ± 0.07	0.000 ± 0.007
56Fe (n,n)	0.04 ± 0.09	-0.007 ± 0.007
238U (n,n')	0.05 ± 0.13	-0.048 ± 0.003
235U (n,f)	-0.03 ± 0.07	0.022 ± 0.012
238U (n,f)	0.11 ± 0.04	0.043 ± 0.003
238U (n,n)	0.3 ± 0.3	-0.02 ± 0.03

Table C.13.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of IEU-MET-FAST-010. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (83.9%)	
235U (n,f)/235U (n,f)	1.1542 ± 0.0011
235U χ /235U χ	0.8491 ± 0.0008
238U (n,n')/238U (n,n')	0.674 ± 0.008
JENDL-4.0u (90.7%)	
238U (n,n')/238U (n,n')	1.092 ± 0.004
235U χ /235U χ	0.54247 ± 0.00012
238U (n, γ)/238U (n, γ)	0.4715 ± 0.0003
ENDF/B-VIII.0 (73.0%)	
235U (n,f)/235U (n,f)	0.6174 ± 0.0005
238U (n, γ)/238U (n, γ)	0.44343 ± 0.00019
235 U $\bar{\nu}/235$ U $\bar{\nu}_p$	0.4 ± 0.6

Table C.13.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of IEU-MET-FAST-010. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}\left(\% ight)$	
	Bretscher	Chiba
JEFF-3.3		
235U χ/235U χ	0.9 ± 0.3	0.436 ± 0.012
56Fe (n,n)/56Fe (n,n)	0.6 ± 0.5	-
238U (n,n')/238U (n,n')	0 ± 5	-
238U $ar{ u}_p$ /238U $ar{ u}_p$	0.41 ± 0.04	0.4120 ± 0.0022
238U (n,n')/238U (n,f)	0.4 ± 0.5	-
235U $\bar{ u}_p$ /235U $\bar{ u}_p$	0.30 ± 0.05	0.281 ± 0.003
235U (n,f)/235U (n,f)	0.2 ± 0.6	0.279 ± 0.015
JENDL-4.0u		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1.852 ± 0.004	1.9601 ± 0.0021
238U $\bar{ u}_d$ /238U $\bar{ u}_d$	1.504 ± 0.004	1.3291 ± 0.0020
238U (n,n)/238U (n,n)	1 ± 4	-
ENDF/B-VIII.0		
$\overline{235 \mathrm{U} \; \bar{\nu}_d / 235 \mathrm{U} \; \bar{\nu}_d}$	2.520 ± 0.005	2.644 ± 0.003
238U (n,n)/238U (n,n)	1.0 ± 1.8	-

C.14 IEU-MET-FAST-020

Table C.14.1: ISCs for the multiplication factor of IEU-MET-FAST-020.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.82055 ± 0.00022
$\overline{235}$ U $\bar{\nu}_p$	0.81576 ± 0.00021
235U (n,f)	0.51909 ± 0.00023
$$ 235U χ	0.00000 ± 0.00021
$235U(n,\gamma)$	-0.061807 ± 0.000021
238U (n,n')	-0.0121 ± 0.0003

Table C.14.2: ISCs for the delayed neutron fraction of IEU-MET-FAST-020.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$\overline{235}$ U $\bar{\nu}_d$	0.6364 ± 0.0005	0.6569 ± 0.0012	
$\overline{238U} \; \bar{\nu}_d$	0.3498 ± 0.0005	0.3074 ± 0.0005	
235U $\bar{ u}_p$	-0.68 ± 0.04	-0.6513 ± 0.0003	
238 U $\bar{ u}_p$	-0.346 ± 0.015	-0.310 ± 0.003	
238U (n,n)	0.28 ± 0.12	0.016 ± 0.017	
238U (n,n')	-0.07 ± 0.05	-0.042 ± 0.003	
$$ 235U χ	0.00 ± 0.04	0.000 ± 0.003	
235U (n,f)	-0.02 ± 0.04	-0.015 ± 0.007	
65Cu (n,n)	-0.07 ± 0.07	-0.004 ± 0.009	

Table C.14.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of IEU-MET-FAST-020. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (83.8%)	
235U (n,f)/235U (n,f)	1.0083 ± 0.0006
235U χ /235U χ	0.6366 ± 0.0004
235U (n, γ)/235U (n, γ)	0.54196 ± 0.00019
JENDL-4.0u (77.8%)	
238U (n,n')/238U (n,n')	0.4221 ± 0.0023
235U χ /235U χ	0.38773 ± 0.00008
235U $\bar{ u}/235$ U $\bar{ u}_p$	0.3 ± 0.4
ENDF/B-VIII.0 (76.4%)	
235U (n,f)/235U (n,f)	0.6240 ± 0.0003
235U $ar{ u}/235$ U $ar{ u}_p$	0.5 ± 0.7
235U (n, γ)/235U (n, γ)	0.36823 ± 0.00012

Table C.14.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of IEU-MET-FAST-020. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
238U (n,n)/238U (n,n')	-0.7 ± 1.0	-
238U (n,n')/238U (n,n')	0.7 ± 0.9	0.31 ± 0.04
238U (n,n)/238U (n,n)	0.5 ± 0.4	-
235U χ /235U χ	0.46 ± 0.11	-
235U (n,f)/235U (n,f)	0.37 ± 0.14	0.318 ± 0.008
65Cu (n,n)/65Cu (n,n)	0 ± 3	-
235U $\bar{ u}_p$ /235U $\bar{ u}_p$	0.33 ± 0.03	0.3434 ± 0.0016
238U $\bar{ u}_p$ /238U $\bar{ u}_p$	0.331 ± 0.016	0.2955 ± 0.0008
JENDL-4.0u		
$\overline{235}$ U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	2.0427 ± 0.0019	2.1378 ± 0.0012
238U (n,n')/238U (n,n')	1.5 ± 0.5	-
238U $\bar{ u}_d$ /238U $\bar{ u}_d$	1.1732 ± 0.0018	1.0312 ± 0.0009
ENDF/B-VIII.0		
235 U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	2.990 ± 0.003	3.0862 ± 0.0018

C.15 IEU-MET-FAST-021

Table C.15.1: ISCs for the multiplication factor of IEU-MET-FAST-021.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235U} \bar{\nu}$	0.79288 ± 0.00022
$\overline{}$ 235U $\bar{\nu}_p$	0.78835 ± 0.00021
235U (n,f)	0.50595 ± 0.00023
$$ 235U χ	0.00000 ± 0.00020
$235U(n,\gamma)$	-0.056125 ± 0.000020
238U (n,n')	0.0068 ± 0.0003
238U (n,n)	0.1663 ± 0.0007

Table C.15.2: ISCs for the delayed neutron fraction of IEU-MET-FAST-021.

Quantity	Integrated Sensitivi	ty Coefficients for β_{eff} (%/%)
	Bretscher	Chiba
$\overline{$ 235U $\bar{\nu}_d$	0.5967 ± 0.0005	0.6202 ± 0.0011
$\overline{}$ 238U $\bar{\nu}_d$	0.3891 ± 0.0005	0.3417 ± 0.0005
$\overline{$ 235U $\bar{\nu}_p$	-0.59 ± 0.04	-0.6003 ± 0.0010
$\overline{}$ 238U $\bar{ u}_p$	-0.391 ± 0.017	-0.358922 ± 0.0000019
238U (n,n')	-0.02 ± 0.06	-0.061 ± 0.004
235U (n,n')	0.029 ± 0.025	-0.0073 ± 0.0014
235U (n,f)	-0.03 ± 0.04	-0.007 ± 0.006

Table C.15.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of IEU-MET-FAST-021. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff} (\%)$
JEFF-3.3 (79.2%)	
235U (n,f)/235U (n,f)	0.9753 ± 0.0006
235U χ /235U χ	0.7287 ± 0.0004
235U (n, γ)/235U (n, γ)	0.50639 ± 0.00019
JENDL-4.0u (82.5%)	
238U (n,n')/238U (n,n')	0.619 ± 0.003
235U χ /235U χ	0.44377 ± 0.00007
238U (n,n)/238U (n,n)	0.428 ± 0.004
ENDF/B-VIII.0 (71.4%)	
235U (n,f)/235U (n,f)	0.6108 ± 0.0003
235U $ar{ u}/235$ U $ar{ u}_p$	0.5 ± 0.6
238U (n,n)/238U (n,n)	0.3974 ± 0.0021

Table C.15.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of IEU-MET-FAST-021. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta \beta_{eff}/\beta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
238U (n,n')/238U (n,n')	0.4 ± 1.4	0.44 ± 0.04
238U $\bar{ u}_p$ /238U $\bar{ u}_p$	0.374 ± 0.018	0.3416 ± 0.0010
235U (n,n')/235U (n,f)	0.4 ± 0.5	-
235U $\bar{ u}_p$ /235U $\bar{ u}_p$	0.31 ± 0.03	0.3149 ± 0.0015
235U (n,f)/235U (n,f)	0.31 ± 0.13	0.345 ± 0.008
JENDL-4.0u		
235U $\bar{\nu}_d$ /235U $\bar{\nu}_d$	1.9651 ± 0.0019	2.0725 ± 0.0012
238U $\bar{ u}_d$ /238U $\bar{ u}_d$	1.3050 ± 0.0019	1.1463 ± 0.0010
238U (n,n')/238U (n,n')	1.2 ± 0.6	-
ENDF/B-VIII.0		
$235 \mathrm{U} \; \bar{\nu}_d / 235 \mathrm{U} \; \bar{\nu}_d$	2.805 ± 0.003	2.9148 ± 0.0017

C.16 IEU-MET-FAST-022

Table C.16.1: ISCs for the multiplication factor of IEU-MET-FAST-022.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.83795 ± 0.00022
$\overline{235}$ U $\bar{\nu}_p$	0.83295 ± 0.00022
235U (n,f)	0.52239 ± 0.00023
$235U(n,\gamma)$	-0.075864 ± 0.000019
$$ 235U χ	0.00000 ± 0.00021
238U (n,n')	-0.0131 ± 0.0003

Table C.16.2: ISCs for the delayed neutron fraction of IEU-MET-FAST-022.

Integrated Sensitivity Coefficients for β_{eff} (%/%)	
Bretscher	Chiba
0.6601 ± 0.0005	0.6824 ± 0.0013
0.3215 ± 0.0005	0.2835 ± 0.0005
-0.67 ± 0.04	-0.682292 ± 0.000007
-0.31 ± 0.05	$-0.28106570000 \pm 0.000000000009$
0.01 ± 0.07	-0.014 ± 0.006
-0.048 ± 0.022	-0.0061 ± 0.0010
-0.08 ± 0.05	-0.0399 ± 0.0014
-0.01 ± 0.04	-0.019 ± 0.008
0.00 ± 0.04	0.000 ± 0.003
	Bretscher 0.6601 ± 0.0005 0.3215 ± 0.0005 -0.67 ± 0.04 -0.31 ± 0.05 0.01 ± 0.07 -0.048 ± 0.022 -0.08 ± 0.05 -0.01 ± 0.04

Table C.16.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of IEU-MET-FAST-022. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (85.7%)	
235U (n,f)/235U (n,f)	1.0932 ± 0.0006
235U (n, γ)/235U (n, γ)	0.62791 ± 0.00015
235U (n,f)/235U (n, γ)	0.6 ± 0.9
JENDL-4.0u (72.8%)	
235U χ/235U χ	0.34582 ± 0.00009
238U (n,n')/238U (n,n')	0.3187 ± 0.0019
235U (n,f)/235U (n,f)	0.27067 ± 0.00015
ENDF/B-VIII.0 (81.9%)	
235U (n,f)/235U (n,f)	0.6236 ± 0.0003
235U $\bar{ u}/235$ U $\bar{ u}_p$	0.5 ± 0.7
235U (n, γ)/235U (n, γ)	0.41486 ± 0.00010

Table C.16.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of IEU-MET-FAST-022. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
65Cu (n,n)/65Cu (n,n)	0.6 ± 2.2	-
235U (n,n')/235U (n,n')	0.6 ± 0.4	-
238U (n,n')/238U (n,n')	0.5 ± 0.8	0.28 ± 0.03
235U $\bar{ u}_p$ /235U $\bar{ u}_p$	0.35 ± 0.03	0.3632 ± 0.0015
235U (n,f)/235U (n,f)	0.36 ± 0.18	0.285 ± 0.008
235U χ /235U χ	-	0.285 ± 0.006
JENDL-4.0u		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	2.0330 ± 0.0019	2.1247 ± 0.0012
238U $\bar{\nu}_d$ /238U $\bar{\nu}_d$	1.0797 ± 0.0017	0.9521 ± 0.0009
ENDF/B-VIII.0		
235 U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	3.101 ± 0.003	3.2059 ± 0.0018

C.17 FCA-XIX-1

Table C.17.1: ISCs for the multiplication factor of FCA-XIX-1.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235U} \bar{\nu}$	0.9760 ± 0.0004
$\overline{}$ 235U $\bar{\nu}_p$	0.9688 ± 0.0004
235U (n,f)	0.4579 ± 0.0004
$235U(n,\gamma)$	-0.17544 ± 0.00005
235U χ	0.0000 ± 0.0004

Table C.17.2: ISCs for the delayed neutron fraction of FCA-XIX-1.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)	
	Bretscher	Chiba
$\overline{}$ 235U $\bar{\nu}_d$	0.9370 ± 0.0010	0.942 ± 0.003
0C (n,n)	-1.0 ± 0.3	-0.05 ± 0.05
$\overline{}$ 235U $\bar{\nu}_p$	-0.95 ± 0.07	-0.94 ± 0.00
$$ 235U χ	0.00 ± 0.07	0.000 ± 0.006
55Mn (n,n)	0.09 ± 0.04	-0.003 ± 0.003
56Fe (n,n)	-0.04 ± 0.13	-0.008 ± 0.011
54Fe (n,n)	0.08 ± 0.05	-0.002 ± 0.006
235U (n,n)	-0.12 ± 0.09	0.002 ± 0.010

Table C.17.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of FCA-XIX-1. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (90.7%)	
235U (n, γ)/235U (n, γ)	0.86065 ± 0.00016
235U (n,f)/235U (n,f)	0.7891 ± 0.0008
235U (n,f)/235U (n, γ)	0.6 ± 0.9
JENDL-4.0u (85.1%)	
$235U (n,\gamma)/235U (n,\gamma)$	0.48213 ± 0.00020
235U (n,f)/235U (n,f)	0.4770 ± 0.0008
235U χ /235U χ	0.2656 ± 0.0005
ENDF/B-VIII.0 (88.5%)	
$\overline{235}$ U $\bar{\nu}/235$ U $\bar{\nu}_p$	0.8 ± 1.1
$235U \bar{\nu}/235U \bar{\nu}$	0.5741 ± 0.0003
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.5729 ± 0.0003

Table C.17.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of FCA-XIX-1. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
235U χ /235U χ	1.018 ± 0.022	-
55Mn (n,n)/55Mn (n,n)	0.8 ± 0.5	-
56Fe (n,n)/56Fe (n,n)	0.6 ± 1.0	-
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.52 ± 0.04	0.5124 ± 0.0023
0C(n,n)/0C(n,n)	0.49 ± 0.23	-
54Fe (n,n)/54Fe (n,n)	0.5 ± 0.5	-
JENDL-4.0u		
$\overline{235}$ U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	2.352 ± 0.003	2.3983 ± 0.0018
235U (n,n)/235U (n,n)	0.8 ± 2.0	-
ENDF/B-VIII.0		
$\overline{235 \mathrm{U} \; \bar{\nu}_d / 235 \mathrm{U} \; \bar{\nu}_d}$	4.261 ± 0.005	4.283 ± 0.003

C.18 FCA-XIX-2

Table C.18.1: ISCs for the multiplication factor of FCA-XIX-2.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{239}$ Pu $\bar{\nu}$	0.7968 ± 0.0003
$\overline{239}$ Pu $\bar{\nu}_p$	0.7952 ± 0.0003
239Pu (n,f)	0.5043 ± 0.0003
239Pu χ	0.0000 ± 0.0003
239Pu (n,γ)	-0.053534 ± 0.000025
$238U(n,\gamma)$	-0.14009 ± 0.00004

Table C.18.2: ISCs for the delayed neutron fraction of FCA-XIX-2.

Quantity	Integrated Sensitivi	ity Coefficients for β_{eff} (%/%)
	Bretscher	Chiba
238U (n,n)	0.6 ± 0.3	-0.047 ± 0.007
$\overline{}$ 239Pu $\bar{\nu}_d$	0.4391 ± 0.0008	0.4400 ± 0.0014
$\overline{}$ 238U $\bar{\nu}_d$	0.3989 ± 0.0016	0.3718 ± 0.0009
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	-0.71 ± 0.11	-0.71381 ± 0.00019
239Pu χ	0.00 ± 0.10	0.000 ± 0.009
56Fe (n,n)	0.1 ± 0.3	-0.038 ± 0.019
57Fe (n,n)	0.04 ± 0.06	0.002 ± 0.007
27Al (n,n)	-0.13 ± 0.20	0.002 ± 0.023
238U (n,n')	0.06 ± 0.12	-0.084 ± 0.006
238U (n,f)	0.25 ± 0.03	0.229 ± 0.003
52Cr (n,n)	-0.26 ± 0.13	0.009 ± 0.017
58Ni (n,n)	-0.07 ± 0.12	-0.005 ± 0.012
$\overline{$ 235U $\bar{\nu}_d$	0.1385 ± 0.0004	0.1415 ± 0.0011
$\overline{238U} \bar{\nu}$	0.22 ± 0.03	0.198 ± 0.003
238 U $\bar{ u}_p$	-0.18 ± 0.03	-0.17388 ± 0.00003

Table C.18.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of FCA-XIX-2. In brackets, % of the uncertainty explained by the showed reactions.

Overtity	Λ I ₂ /I ₂ (07)
Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (75.1%)	
239Pu $\bar{\nu}_p$ /239Pu $\bar{\nu}_p$	0.36529 ± 0.00015
239Pu (n,f)/239Pu (n,f)	0.27771 ± 0.00021
239Pu χ /239Pu χ	0.2692 ± 0.0003
JENDL-4.0u (71.2%)	
239Pu (n,f)/239Pu (n,f)	0.27318 ± 0.00017
239Pu (n, γ)/239Pu (n, γ)	0.23993 ± 0.00006
238U (n, γ)/238U (n, γ)	0.22751 ± 0.00008
ENDF/B-VIII.0 (75.6%)	
239Pu $\bar{\nu}$ /239Pu $\bar{\nu}$	0.21612 ± 0.00009
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.21569 ± 0.00009
238U (n, γ)/238U (n, γ)	0.18848 ± 0.00005

Table C.18.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of FCA-XIX-2. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta \beta_{eff}/\beta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
239Pu χ/239Pu χ	1.66 ± 0.13	0.687 ± 0.006
56Fe (n,n)/56Fe (n,n)	1.5 ± 2.0	-
238U (n,n)/238U (n,n)	1.1 ± 0.7	-
238U (n,n)/238U (n,f)	1.1 ± 1.5	-
57Fe (n,n)/57Fe (n,n)	1.1 ± 0.5	-
238U (n,n)/238U (n,n')	1.0 ± 1.4	-
27Al (n,n)/27Al (n,n)	0.8 ± 1.3	-
238U (n,n')/238U (n,f)	-	-0.6 ± 0.9
238U (n,n')/238U (n,n')	-	0.56 ± 0.08
238U (n,f)/238U (n,f)	0.63 ± 0.09	0.558 ± 0.005
239Pu $\bar{\nu}_p$ /239Pu $\bar{\nu}_p$	0.32 ± 0.07	0.320 ± 0.004
JENDL-4.0u		
238U (n,n)/238U (n,n)	2.9 ± 1.4	-
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	1.585 ± 0.004	1.6233 ± 0.0018
238U $\bar{\nu}_d$ /238U $\bar{\nu}_d$	1.341 ± 0.005	1.2499 ± 0.0018
239Pu χ /239Pu χ	1.13 ± 0.10	-
56Fe (n,n)/56Fe (n,n)	1 ± 4	-
238U (n,n')/238U (n,n')	-	0.8967 ± 0.0011
ENDF/B-VIII.0		
52Cr (n,n)/52Cr (n,n)	1.5 ± 1.5	-
238U (n,n)/238U (n,n)	1.2 ± 1.0	-
27Al(n,n)/27Al(n,n)	1 ± 3	-
56Fe (n,n)/56Fe (n,n)	0.8 ± 0.6	-
239Pu χ /239Pu χ	0.78 ± 0.09	0.432 ± 0.004
58Ni (n,n)/58Ni (n,n)	0.8 ± 1.1	-
235U $\bar{\nu}_d$ /235U $\bar{\nu}_d$	0.6497 ± 0.0019	0.6639 ± 0.0013
238U $\bar{\nu}_d$ /238U $\bar{\nu}_d$	0.5176 ± 0.0021	0.4822 ± 0.0007
238U (n,n')/238U (n,f)	-	-0.4 ± 0.6
238U $\bar{ u}/238$ U $\bar{ u}_p$	-0.4 ± 0.5	-0.3 ± 0.5
238U (n,f)/238U (n,f)	0.31 ± 0.04	0.2805 ± 0.0024
$238U \ \bar{\nu}/238U \ \bar{\nu}$	0.27 ± 0.04	0.2536 ± 0.0022
238U (n,n')/238U (n,n')	-	0.24 ± 0.04
238U (n,n)/238U (n,n')	-	0.2 ± 0.3

C.19 FCA-XIX-3

Table C.19.1: ISCs for the multiplication factor of FCA-XIX-3.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{239}$ Pu $\bar{\nu}$	0.9160 ± 0.0003
$\overline{}$ 239Pu $\bar{\nu}_p$	0.9140 ± 0.0003
239Pu (n,f)	0.6030 ± 0.0003
56Fe (n,n)	0.0798 ± 0.0013
239Pu (n,γ)	-0.06421 ± 0.00003
52Cr (n,n)	0.0343 ± 0.0007

Table C.19.2: ISCs for the delayed neutron fraction of FCA-XIX-3.

Quantity	Integrated Sensitiv	ity Coefficients for β_{eff} (%/%)
	Bretscher	Chiba
$\overline{}$ 239Pu $\bar{\nu}_d$	0.774 ± 0.003	0.7669 ± 0.0025
52Cr (n,n)	0.3 ± 0.4	0.00 ± 0.03
239Pu $\bar{ u}_p$	-0.96 ± 0.18	-0.8995 ± 0.0005
54Fe (n,n)	-0.54 ± 0.25	-0.007 ± 0.022
56Fe (n,n)	-0.4 ± 0.7	0.06 ± 0.11
57Fe (n,n)	0.30 ± 0.16	-0.011 ± 0.013
239Pu χ	0.00 ± 0.18	0.000 ± 0.017
238U (n,n')	0.03 ± 0.09	-0.028 ± 0.003
238U (n,f)	0.120 ± 0.024	0.066 ± 0.003
53Cr (n,n)	0.14 ± 0.23	-0.005 ± 0.012
58Ni (n,n)	0.2 ± 0.3	-0.049 ± 0.019
235U $\bar{\nu}_d$	0.1009 ± 0.0005	0.1008 ± 0.0013

Table C.19.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of FCA-XIX-3. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (82.1%)	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.42018 ± 0.00019
239Pu (n,f)/239Pu (n,f)	0.3263 ± 0.0003
56Fe (n,n)/56Fe (n,n)	0.248 ± 0.004
JENDL-4.0u (80.1%)	
56Fe (n,n)/56Fe (n,n)	0.349 ± 0.008
239Pu (n,f)/239Pu (n,f)	0.32553 ± 0.00021
239Pu (n, γ)/239Pu (n, γ)	0.25056 ± 0.00007
ENDF/B-VIII.0 (78.8%)	
239 Pu $\bar{\nu}/239$ Pu $\bar{\nu}$	0.24739 ± 0.00011
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.24685 ± 0.00011
52Cr (n,n)/52Cr (n,n)	0.234 ± 0.006

Table C.19.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of FCA-XIX-3. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)		
	Bretscher	Chiba	
JEFF-3.3			
56Fe (n,n)/56Fe (n,n)	5 ± 4	0.27 ± 0.24	
54Fe (n,n)/54Fe (n,n)	2.6 ± 1.8	-	
57Fe (n,n)/57Fe (n,n)	2.4 ± 1.5	-	
239Pu $\bar{\nu}_p$ /239Pu $\bar{\nu}_p$	0.44 ± 0.14	0.405 ± 0.006	
239Pu χ /239Pu χ	-	0.20 ± 0.05	
238U (n,n')/238U (n,f)	-	-0.189 ± 0.006	
238U (n,n')/238U (n,n')	-	0.189 ± 0.016	
238U (n,f)/238U (n,f)	0.29 ± 0.08	0.156 ± 0.003	
54Fe (n,n)/54Fe (n,n)	-	0.150 ± 0.010	
JENDL-4.0u			
56Fe (n,n)/56Fe (n,n)	5 ± 9	-	
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	2.608 ± 0.009	2.630 ± 0.003	
ENDF/B-VIII.0			
56Fe (n,n)/56Fe (n,n)	2.4 ± 2.2	-	
53Cr (n,n)/53Cr (n,n)	1.2 ± 1.9	-	
52Cr (n,n)/52Cr (n,n)	1 ± 20	-	
58Ni (n,n)/58Ni (n,n)	1 ± 4	0.18 ± 0.13	
235U $\bar{\nu}_d/235$ U $\bar{\nu}_d$	0.4721 ± 0.0024	0.4714 ± 0.0016	
239 Pu $\bar{\nu}_p$ /239 Pu $\bar{\nu}_p$	0.27 ± 0.08	0.247 ± 0.004	

C.20 SNEAK-7A

Table C.20.1: ISCs for the multiplication factor of SNEAK-7A.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)	
	MCNP	Kodeli, [1]
239Pu (n,f)	0.5485 ± 0.0003	0.54
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.7955 ± 0.0003	0.779
$\overline{238U} \bar{\nu}_p$	0.13257 ± 0.00009	0.137
$\overline{$ 239Pu $\bar{\nu}$	0.7971 ± 0.0003	-
239Pu χ	0.0000 ± 0.0003	-
$238U(n,\gamma)$	-0.16411 ± 0.00006	-
$\overline{238U \bar{\nu}}$	0.13450 ± 0.00009	-

Table C.20.2: ISCs for the delayed neutron fraction of SNEAK-7A.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	Kodeli, [1]
238U (n,n')	-0.06 ± 0.12	-0.1548 ± 0.0017	-0.151
238U (n,f)	0.27 ± 0.04	0.261 ± 0.004	0.276
239Pu (n,f)	-0.21 ± 0.11	-0.224 ± 0.014	-0.252
$\overline{}$ 238U $\bar{\nu}_d$	0.4967 ± 0.0021	0.4683 ± 0.0012	0.488
$\overline{239}$ Pu $\bar{\nu}_d$	0.4023 ± 0.0008	0.4117 ± 0.0014	0.402
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	-0.25 ± 0.03	$-0.236308500 \pm 0.000000020$	-0.233
$\overline{239}$ Pu $\bar{\nu}_p$	-0.66 ± 0.10	-0.66953 ± 0.00003	-0.7
$\overline{238U} \bar{\nu}$	0.25 ± 0.03	0.232 ± 0.004	0.255
$\overline{239}$ Pu $\bar{\nu}$	-0.26 ± 0.10	-0.258 ± 0.016	-0.298
238U (n,n)	-0.5 ± 0.3	0.00 ± 0.03	-
57Fe (n,n)	0.06 ± 0.04	0.000 ± 0.004	_
56Fe (n,n)	0.12 ± 0.17	-0.017 ± 0.017	-
$$ 238U χ	0.00 ± 0.03	0.000 ± 0.003	-
239Pu (n,n)	-0.14 ± 0.13	-0.006 ± 0.011	_
240Pu (n,n)	0.07 ± 0.04	-0.0006 ± 0.0008	_
240Pu (n,n')	0.014 ± 0.013	-0.0020 ± 0.0005	_
$\overline{235}$ U $\bar{\nu}_d$	0.05651 ± 0.00019	0.0594 ± 0.0006	_
239Pu χ	0.0 ± 0.1	0.000 ± 0.008	-

Table C.20.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of SNEAK-7A. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff} (\%)$
JEFF-3.3 (73.8%)	
239Pu χ/239Pu χ	0.4055 ± 0.0004
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.36448 ± 0.00015
239Pu (n,f)/239Pu (n,f)	0.31548 ± 0.00022
JENDL-4.0u (68.2%)	
239Pu (n,f)/239Pu (n,f)	0.29512 ± 0.00017
238U (n, γ)/238U (n, γ)	0.27470 ± 0.00013
239Pu χ /239Pu χ	0.27083 ± 0.00012
ENDF/B-VIII.0 (69.5%)	
$\overline{238U \bar{\nu}/238U \bar{\nu}_p}$	0.2 ± 0.3
238U (n, γ)/238U (n, γ)	0.22080 ± 0.00008
239Pu $\bar{\nu}$ /239Pu $\bar{\nu}$	0.21631 ± 0.00009

Table C.20.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of SNEAK-7A. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity	$\Deltaeta_{eff}/eta_{eff}\left(\% ight)$		
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
238U (n,n)/238U (n,n)	1.2 ± 1.3	-	-
238U (n,n)/238U (n,f)	-1.2 ± 1.7	-	-
57Fe (n,n)/57Fe (n,n)	0.9 ± 0.3	-	-
238U (n,f)/238U (n,f)	0.70 ± 0.11	0.634 ± 0.007	-
56Fe (n,n)/56Fe (n,n)	0.7 ± 1.1	-	-
238U (n,n)/238U (n,n')	0.6 ± 0.9	-	-
238U (n,n')/238U (n,f)	-0.4 ± 0.6	-	-
238U χ /238U χ	0.39 ± 0.07	-	-
239Pu (n,n)/239Pu (n,n)	0.3 ± 0.3	-	-
239Pu $\bar{\nu}_p$ /239Pu $\bar{\nu}_p$	0.29 ± 0.08	0.296 ± 0.004	-
240Pu (n,n)/240Pu (n,n')	0.3 ± 0.4	-	-
238U (n,n')/238U (n,n')	-	1.04 ± 0.07	-
239Pu χ /239Pu χ	-	0.941 ± 0.006	-
JENDL-4.0u			
238U (n,n')/238U (n,n')	1.5 ± 1.6	1.48 ± 0.04	1.425
235U $ar{ u}_d$ /235U $ar{ u}_d$	0.1529 ± 0.0006	0.1614 ± 0.0004	0.218
238U $ar{ u}_d$ /238U $ar{ u}_d$	1.668 ± 0.008	1.5729 ± 0.0021	1.61
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	1.561 ± 0.004	1.6389 ± 0.0018	1.529
238U (n,n)/238U (n,n)	2.4 ± 2.3	-	-
ENDF/B-VIII.0			
238U (n,n)/238U (n,n')	1.3 ± 1.9	-	-
238U (n,n)/238U (n,n)	1.1 ± 1.8	-	-
238U $ar{ u}_d$ /238U $ar{ u}_d$	0.644 ± 0.003	0.6075 ± 0.0008	-
238U (n,n')/238U (n,n')	0.6 ± 1.6	0.45 ± 0.04	-
238U (n,n')/238U (n,f)	-	-0.6 ± 0.9	-
239Pu χ /239Pu χ	-	0.550 ± 0.004	-
238U $\bar{ u}/238$ U $\bar{ u}_p$	-0.4 ± 0.6	-0.4 ± 0.6	-
238U χ /238U χ	-	0.403 ± 0.003	-
238U (n,f)/238U (n,f)	0.33 ± 0.05	0.319 ± 0.003	-
$238U \bar{\nu}/238U \bar{\nu}$	0.31 ± 0.05	0.299 ± 0.003	

C.21 SNEAK-7B

Table C.21.1: ISCs for the multiplication factor of SNEAK-7B.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
239Pu χ	0.0000 ± 0.0003
238U (n,n')	-0.0173 ± 0.0003
$238U(n,\gamma)$	-0.16411 ± 0.00006
$\overline{238U} \bar{\nu}$	0.13450 ± 0.00009
238U (n,n)	0.1032 ± 0.0009
$\overline{}$ 238U $\bar{\nu}_p$	0.13257 ± 0.00009
238U (n,f)	0.08529 ± 0.00010

Table C.21.2: ISCs for the delayed neutron fraction of SNEAK-7B.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		f (%/%)
	Bretscher	Chiba	Kodeli, [1]
238U (n,n')	-0.17 ± 0.12	-0.130 ± 0.005	-0.164
238U (n,f)	0.27 ± 0.04	0.251 ± 0.005	0.267
239Pu (n,f)	-0.23 ± 0.08	-0.217 ± 0.007	-0.233
$\overline{}$ 238U $\bar{\nu}_d$	0.5618 ± 0.0012	0.5270 ± 0.0011	0.564
$\overline{}$ 239Pu $\bar{\nu}_d$	0.3002 ± 0.0004	0.3091 ± 0.0010	0.3
$\overline{238}$ U $\bar{\nu}_p$	-0.36 ± 0.04	-0.320129 ± 0.000006	-0.334
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	-0.55 ± 0.08	-0.5613 ± 0.0003	-0.579
$\overline{238U} \bar{\nu}$	0.20 ± 0.04	0.207 ± 0.004	0.23
$\overline{239}$ Pu $\bar{\nu}$	-0.25 ± 0.08	-0.252 ± 0.008	-0.28
56Fe (n,n)	-0.07 ± 0.16	-0.002 ± 0.017	-
239Pu χ	0.00 ± 0.08	0.000 ± 0.007	-
\sim 238U χ	0.00 ± 0.03	0.000 ± 0.004	-
238U (n,2n)	-0.019 ± 0.007	-0.002 ± 0.000	-
$238U(n,\gamma)$	-0.095 ± 0.021	-0.0114 ± 0.0007	-
$\overline{235}$ U $\bar{\nu}_d$	0.09964 ± 0.00021	0.1044 ± 0.0007	-
27Al (n,n)	0.02 ± 0.05	-0.001 ± 0.005	
52Cr (n,n)	0.02 ± 0.08	-0.002 ± 0.004	-

Table C.21.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of SNEAK-7B. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (52.5%)	
239Pu χ/239Pu χ	0.5081 ± 0.0004
238U (n,n')/238U (n,n')	0.410 ± 0.004
238U (n,n')/238U (n,f)	-0.4 ± 0.6
JENDL-4.0u (82.7%)	
238U (n,n')/238U (n,n')	0.603 ± 0.003
238U (n, γ)/238U (n, γ)	0.38189 ± 0.00014
239Pu χ /239Pu χ	0.34515 ± 0.00009
ENDF/B-VIII.0 (49.2%)	
$\overline{238U \bar{\nu}/238U \bar{\nu}_p}$	0.3 ± 0.4
238U (n, γ)/238U (n, γ)	0.30785 ± 0.00009
238U (n,n)/238U (n,n')	-0.3 ± 0.4

Table C.21.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of SNEAK-7B. All the reactions showed explain an 85% of the total uncertainty at least. The library used in [1] is JENDL-4.0m

Quantity	$\Deltaeta_{eff}/eta_{eff}$ (%)		
	Bretscher	Chiba	Kodeli, [1]
JEFF-3.3			
238U (n,n)/238U (n,n')	-1.5 ± 2.2	-	-
238U (n,n')/238U (n,n')	1.5 ± 1.7	0.86 ± 0.08	-
238U (n,n)/238U (n,n)	1.2 ± 1.3	-	-
238U (n,n)/238U (n,f)	1.2 ± 1.6	-	-
238U (n,n')/238U (n,f)	-0.8 ± 1.2	-0.8 ± 1.2	-
238U (n,n')/238U (n,2n)	0.7 ± 1.0	-	-
238U (n,n')/238U (n, γ)	0.7 ± 1.0	-	-
238U (n,f)/238U (n,f)	0.68 ± 0.14	0.609 ± 0.008	-
56Fe (n,n)/56Fe (n,n)	0.7 ± 0.8	-	-
239Pu χ /239Pu χ	-	0.780 ± 0.007	-
238U χ /238U χ	-	0.4484 ± 0.0025	-
JENDL-4.0u			
238U (n,n')/238U (n,n')	2.4 ± 1.4	1.48 ± 0.04	1.701
235U $ar{ u}_d$ /235U $ar{ u}_d$	0.2890 ± 0.0007	0.3047 ± 0.0006	0.329
238U $ar{ u}_d$ /238U $ar{ u}_d$	1.886 ± 0.004	1.7697 ± 0.0021	1.848
239 Pu $\bar{ u}_d$ /239 Pu $\bar{ u}_d$	1.2004 ± 0.0019	1.2660 ± 0.0014	1.162
238U (n,n)/238U (n,n)	2.3 ± 1.5	-	-
ENDF/B-VIII.0			
238U (n,n')/238U (n,n')	1.3 ± 1.2	-	-
238U (n,n)/238U (n,n')	-1.2 ± 1.6	0.4 ± 0.5	-
238U (n,n)/238U (n,n) χ	1.0 ± 1.2	-	-
238U (n,n')/238U (n,f)	-0.7 ± 1.0	-0.6 ± 0.8	-
238U $ar{ u}_d$ /238U $ar{ u}_d$	0.7288 ± 0.0017	0.6836 ± 0.0008	-
238U χ /238U χ	0.70 ± 0.04	0.540 ± 0.003	-
238U $\bar{ u}$ /238U $\bar{ u}_p$	-0.5 ± 0.7	-0.5 ± 0.6	-
235U $ar{ u}_d$ /235U $ar{\overline{ u}}_d$	0.4682 ± 0.0011	0.4904 ± 0.0009	-
27Al (n,n)/27Al (n,n)	0.5 ± 0.7	-	-
238U $\bar{ u}_p$ /238U $\bar{ u}_p$	0.45 ± 0.05	0.396 ± 0.003	-
52Cr (n,n)/52Cr (n,n)	0.4 ± 1.9	-	-
239Pu χ /239Pu χ	-	0.518 ± 0.003	-

C.22 MASURCA_R2

Table C.22.1: ISCs for the multiplication factor of MASURCA_R2.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.8884 ± 0.0003
$\overline{235}$ U $\bar{\nu}_p$	0.8828 ± 0.0003
235U (n,f)	0.5289 ± 0.0003
$235U(n,\gamma)$	-0.09421 ± 0.00003
$238U(n,\gamma)$	-0.15225 ± 0.00005

Table C.22.2: ISCs for the delayed neutron fraction of MASURCA_R2.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)	
	Bretscher	Chiba
$\overline{235}$ U $\bar{\nu}_d$	0.7500058 ± 0.0010	0.7646934 ± 0.0020
$\overline{}$ 235U $\bar{\nu}_p$	-0.77 ± 0.06	-0.774411 ± 0.000006
238U (n,n')	-0.16 ± 0.06	-0.025 ± 0.004
235 U χ	0.00 ± 0.06	0.000 ± 0.005
56Fe (n,n)	-0.09 ± 0.13	0.014 ± 0.023
238U (n,n)	0.14 ± 0.17	0.007 ± 0.022
57Fe (n,n)	-0.03 ± 0.03	0.002 ± 0.003
235U (n,f)	0.00 ± 0.06	-0.033 ± 0.011
238U $\bar{\nu}_p$	-0.220 ± 0.016	$-0.199411900 \pm 0.000000021$

Table C.22.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of MASURCA_R2. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (87.6%)	
235U (n,f)/235U (n,f)	1.0841 ± 0.0008
235U (n, γ)/235U (n, γ)	0.71167 ± 0.00018
235U (n,f)/235U (n, γ)	0.6773 ± 0.0004
JENDL-4.0u (66.0%)	
235U (n,f)/235U (n,f)	0.28555 ± 0.00025
238U (n, γ)/238U (n, γ)	0.26321 ± 0.00008
235U $\bar{ u}/235$ U $\bar{ u}_p$	0.26017 ± 0.00007
ENDF/B-VIII.0 (78.2%)	
235U (n,f)/235U (n,f)	0.6094 ± 0.0004
235U $ar{ u}/235$ U $ar{ u}_p$	0.56080 ± 0.00015
235U $(n,\gamma)/235U$ (n,γ)	0.46672 ± 0.00012

Table C.22.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of MASURCA_R2. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
238U (n,n')/238U (n,n')	1.1 ± 0.4	-
235U χ /235U χ	0.7 ± 0.4	0.216 ± 0.012
56Fe (n,n)/56Fe (n,n)	0.6 ± 0.3	-
238U (n,n)/238U (n,n')	0.4 ± 0.8	-
57 Fe (n,n) / 57 Fe (n,n)	0.44 ± 0.20	-
235U $\bar{ u}_p$ /235U $\bar{ u}_p$	0.41 ± 0.03	0.415557 ± 0.000003
235U (n,f)/235U (n,f)	0.37 ± 0.14	0.231 ± 0.008
238U $\bar{ u}_p$ /238U $\bar{ u}_p$	0.211 ± 0.016	$0.193774540 \pm 0.000000024$
JENDL-4.0u		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	2.197 ± 0.003	2.2621 ± 0.0016
238U (n,n)/238U (n,n)	1.5 ± 0.8	-
238U (n,n')/238U (n,n')	1.3 ± 0.4	-
ENDF/B-VIII.0		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	3.519 ± 0.005	3.5881 ± 0.0023

C.23 MASURCA_ZONA2

Table C.23.1: ISCs for the multiplication factor of MASURCA.ZONA2.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{239}$ Pu $\bar{\nu}$	0.7852 ± 0.0003
$\overline{239}$ Pu $\bar{\nu}_p$	0.7837 ± 0.0003
239Pu (n,f)	0.5518 ± 0.0003
240Pu (n,f)	0.037236 ± 0.000025
239Pu χ	0.0000 ± 0.0003
$238U(n,\gamma)$	-0.13807 ± 0.00005
$\overline{238U} \bar{\nu}$	0.11530 ± 0.00008
$\overline{238}$ U $\bar{ u}_p$	0.11362 ± 0.00008

Table C.23.2: ISCs for the delayed neutron fraction of MASURCA_ZONA2.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$\overline{238U} \bar{\nu}_d$	0.5640 ± 0.0014	0.4422 ± 0.0011	
$\overline{}$ 239Pu $\bar{\nu}_d$	0.3756 ± 0.0005	0.4295 ± 0.0014	
56Fe (n,n)	-0.36 ± 0.23	-0.023 ± 0.018	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	-0.34 ± 0.04	-0.211133 ± 0.000025	
238U (n,n)	0.3 ± 0.3	-0.01 ± 0.03	
54Fe (n,n)	-0.13 ± 0.07	0.000 ± 0.009	
238U (n,f)	0.26 ± 0.03	0.261 ± 0.004	
238U (n,n')	0.01 ± 0.11	-0.078 ± 0.007	
239Pu χ	0.00 ± 0.10	0.000 ± 0.009	
52Cr (n,n)	0.08 ± 0.09	-0.001 ± 0.010	
23Na (n,n)	-0.1 ± 0.3	-0.01 ± 0.03	
28Si (n,n)	0.26 ± 0.10	-0.002 ± 0.010	
$\overline{238U} \bar{\nu}$	0.24 ± 0.03	0.231 ± 0.004	
238U χ	0.00 ± 0.03	0.000 ± 0.003	

Table C.23.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of MASURCA_ZONA2. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff} (\%)$
JEFF-3.3 (77.1%)	
239Pu χ/239Pu χ	0.3763 ± 0.0016
239Pu $\bar{ u}_p$ /239Pu $\bar{ u}_p$	0.35897 ± 0.00013
240Pu (n,f)/240Pu (n,f)	0.34593 ± 0.00023
JENDL-4.0u (67.5%)	
239Pu (n,f)/239Pu (n,f)	0.29623 ± 0.00015
239Pu χ /239Pu χ	0.2690 ± 0.0010
238U (n, γ)/238U (n, γ)	0.23429 ± 0.00007
ENDF/B-VIII.0 (69.6%)	
239 Pu $\bar{\nu}/239$ Pu $\bar{\nu}$	0.21339 ± 0.00007
239Pu $ar{ u}_p$ /239Pu $ar{ u}_p$	0.21298 ± 0.00007
238U $\bar{\nu}/238$ U $\bar{\nu}_p$	0.20014 ± 0.00010

Table C.23.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of MASURCA_ZONA2. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta \beta_{eff}/\beta_{eff}$ (%)	
•	Bretscher	Chiba
JEFF-3.3		
56Fe (n,n)/56Fe (n,n)	1.5 ± 0.6	-
238U (n,n)/238U (n,f)	0.9 ± 0.5	-
54Fe (n,n)/54Fe (n,n)	0.8 ± 0.3	-
238U (n,n)/238U (n,n)	0.7 ± 0.7	-
238U (n,f)/238U (n,f)	0.66 ± 0.09	0.641 ± 0.005
238U (n,n')/238U (n,n')	0.6 ± 0.5	-
239Pu χ /239Pu χ	-	0.91 ± 0.03
238U (n,n')/238U (n,f)	-	-0.665 ± 0.010
JENDL-4.0u		
238U (n,n)/238U (n,n)	2.0 ± 1.5	-
238U (n,n')/238U (n,n')	1.8 ± 1.1	0.925 ± 0.006
239 Pu $\bar{\nu}_d$ /239 Pu $\bar{\nu}_d$	1.600 ± 0.004	1.6550 ± 0.0016
238U $\bar{\nu}_d$ /238U $\bar{\nu}_d$	1.593 ± 0.008	1.4864 ± 0.0017
56Fe (n,n)/56Fe (n,n)	1.5 ± 0.8	-
ENDF/B-VIII.0		
52Cr (n,n)/52Cr (n,n)	1.2 ± 0.6	-
23Na (n,n)/23Na (n,n)	1.2 ± 0.9	-
28Si (n,n)/28Si (n,n)	1.0 ± 0.5	-
238U (n,n')/238U (n,n')	1.0 ± 0.7	-
238U (n,n)/238U (n,n')	-0.7 ± 0.6	-
238U (n,n)/238U (n,n)	0.6 ± 0.5	-
239Pu χ /239Pu χ	0.63 ± 0.19	0.538 ± 0.009
238U $\bar{\nu}_d$ /238U $\bar{\nu}_d$	0.615 ± 0.003	0.5737 ± 0.0007
238U (n,n')/238U (n,f)	-	-0.449 ± 0.010
238U $\bar{ u}$ /238U $\bar{ u}_p$	-0.42 ± 0.04	-0.3927 ± 0.0015
238U χ /238U χ	-	0.354 ± 0.004
238U (n,f)/238U (n,f)	0.32 ± 0.04	0.3194 ± 0.0023
$238U \bar{\nu}/238U \bar{\nu}$	0.30 ± 0.04	0.2958 ± 0.0022
238U $\bar{\nu}_p$ /238U $\bar{\nu}_p$	0.29 ± 0.04	$0.26280292 \pm 0.00000006$

C.24 HEU-MET-FAST-062

Table C.24.1: ISCs for the multiplication factor of HEU-MET-FAST-062.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.9185 ± 0.0003
$\overline{235}$ U $\bar{\nu}_p$	0.9127 ± 0.0003
235U (n,f)	0.5754 ± 0.0003
235U (n,n')	0.03221 ± 0.00022
$235U(n,\gamma)$	-0.05259 ± 0.00003
238U (n,n)	0.1288 ± 0.0006
238U (n,n')	0.04981 ± 0.00025

Table C.24.2: ISCs for the delayed neutron fraction of HEU-MET-FAST-062.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$\overline{$ 235U $\bar{\nu}_d$	0.8175 ± 0.0012	0.8387 ± 0.0019	
$\overline{235}$ U $\bar{\nu}_p$	-0.84 ± 0.07	-0.842 ± 0.003	
$$ 235U χ	0.00 ± 0.06	0.000 ± 0.008	
235U (n,f)	-0.08 ± 0.07	-0.056 ± 0.010	
235U (n,n')	0.03 ± 0.04	-0.011 ± 0.004	

Table C.24.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of HEU-MET-FAST-062. In brackets, % of the uncertainty explained by the showed reactions.

Quantity	$\Delta k_{eff}/k_{eff} \ (71.4\%)$
JEFF-3.3 (74.4%)	
235U (n,f)/235U (n,f)	0.7261 ± 0.0008
235U (n,n')/235U (n,f)	0.5 ± 0.8
235U (n, γ)/235U (n, γ)	0.4835 ± 0.0003
JENDL-4.0u (67.8%)	
235U $\bar{ u}$ /235U $\bar{ u}_p$	0.3 ± 0.5
238U (n,n)/238U (n,n)	0.320 ± 0.003
238U (n,n')/238U (n,n')	0.310 ± 0.003
ENDF/B-VIII.0 (79.7%)	
235U (n,f)/235U (n,f)	0.6927 ± 0.0005
235U $ar{ u}/235$ U $ar{ u}_p$	0.5 ± 0.7
235 U $\bar{\nu}/235$ U $\bar{\nu}$	0.37376 ± 0.00015

Table C.24.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of HEU-MET-FAST-062. All the reactions showed explain an 85% of the total uncertainty at least.

		(04)
Quantity	Δeta_{eff} ,	$/eta_{eff}$ (%)
	Bretscher	Chiba
JEFF-3.3		
235U χ/235U χ	1.32 ± 0.15	0.460 ± 0.006
235U (n,f)/235U (n,f)	0.78 ± 0.14	0.626 ± 0.008
235U (n,n')/235U (n,f)	0.7 ± 1.1	-
235U $\bar{\nu}_p$ /235U $\bar{\nu}_p$	0.41 ± 0.06	0.420 ± 0.003
JENDL-4.0u		
$\overline{235U \bar{\nu}_d/235U \bar{\nu}_d}$	2.363 ± 0.004	2.4802 ± 0.0018
235U χ /235U χ	0.71 ± 0.05	-
ENDF/B-VIII.0		
$\overline{235U \; \bar{\nu}_d/235U \; \bar{\nu}_d}$	3.842 ± 0.006	3.942 ± 0.003
		·

C.25 HEU-MET-FAST-100

Table C.25.1: ISCs for the multiplication factor of HEU-MET-FAST-100.

Quantity	Integrated Sensitivity Coefficients for k_{eff} (%/%)
$\overline{235}$ U $\bar{\nu}$	0.98181 ± 0.00025
$\overline{}$ 235U $\bar{\nu}_p$	0.97556 ± 0.00025
235U (n,f)	0.6496 ± 0.0003
235U (n,n')	0.08067 ± 0.00017
235U (n,n)	0.1084 ± 0.0003

Table C.25.2: ISCs for the delayed neutron fraction of HEU-MET-FAST-100.

Quantity	Integrated Sensitivity Coefficients for β_{eff} (%/%)		
	Bretscher	Chiba	
$\overline{235}$ U $\bar{\nu}_d$	0.9600 ± 0.0009	0.9676 ± 0.0015	
$\overline{$ 235U $\bar{\nu}_p$	-0.96 ± 0.05	-0.964 ± 0.004	
$$ 235U χ	0.00 ± 0.05	0.000 ± 0.006	
235U (n,f)	-0.04 ± 0.06	-0.054 ± 0.007	

Table C.25.3: Reaction contribution to multiplication factor uncertainty due to nuclear data of HEU-MET-FAST-100. In brackets, % of the uncertainty explained by the showed reactions.

Ovantity	Λ l ₂ /l ₂ (07)
Quantity	$\Delta k_{eff}/k_{eff}$ (%)
JEFF-3.3 (89.9%)	
235U (n,n')/235U (n,f)	0.7 ± 1.0
235U (n,n')/235U (n,n')	0.6911 ± 0.0018
235U (n,f)/235U (n,f)	0.6587 ± 0.0005
JENDL-4.0u (84.3%)	
235U (n,n')/235U (n,n')	0.6472 ± 0.0016
235U (n,n)/235U (n,n)	0.4413 ± 0.0018
235U $\bar{ u}$ /235U $\bar{ u}_p$	0.4 ± 0.5
ENDF/B-VIII.0 (86.6%)	
235U (n,f)/235U (n,f)	0.7823 ± 0.0004
235U $ar{ u}/235$ U $ar{ u}_p$	0.6 ± 0.8
$235U \bar{\nu}/235U \bar{\nu}$	0.39920 ± 0.00012

Table C.25.4: Reaction contribution to delayed neutron fraction uncertainty due to nuclear data of HEU-MET-FAST-100. All the reactions showed explain an 85% of the total uncertainty at least.

Quantity	$\Delta eta_{eff}/eta_{eff}$ (%)	
	Bretscher	Chiba
JEFF-3.3		
235U χ/235U χ	1.37 ± 0.11	0.882 ± 0.003
235U (n,f)/235U (n,f)	0.94 ± 0.09	0.829 ± 0.005
JENDL-4.0u		
$235 \mathrm{U} \; \bar{\nu}_d / 235 \mathrm{U} \; \bar{\nu}_d$	2.644 ± 0.003	2.7271 ± 0.0014
ENDF/B-VIII.0		
235U $\bar{\nu}_d$ /235U $\bar{\nu}_d$	4.512 ± 0.005	4.5477 ± 0.0024

References

[1] I. Kodeli. "Sensitivity and uncertainty in the effective delayed neutron fraction (β_{eff})". In: Nuclear Instruments and Methods in Physics Research A 715 (2013), pp. 70–78.