Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018

Department of Computer Science, University of Victoria

Introduction

DICTIONARY

Dictionary is an ADT that supports the following operations on a set S of elements:

Search(key): Search for an item with the given key in S.

Insert(x): Add item x to S.

Delete item x from S.

Motivation

• A linked list can also perform these operations but it may take O(n) time to search for a key. (n is the size of the linked list)

• We can do these operations in time as fast as O(1) if we implement dictionaries efficiently.

Motivation

- Example of using a dictionary:
- 1. In a compiler that looks up variables and their values
- 2. In a spell correction program that gives you suggestions
- In databases when you want to fetch a student's records

Basic assumptions

- Assume that all elements have unique keys.
- We need a data structure that stores the keys in a way that we can **easily** *look up*, *add*, and *remove* keys in that table.

- We have set *U* which is the universe of keys
- We have set K which is the actual keys we are working with. $K \subseteq U$.
- We assume that the keys are integers, for now.

Simple solution: direct addressing

•
$$U = \{0, 1, 2, ..., 9\}$$
, $K = \{2, 3, 5, 8\}$

Direct-address tables

• In direct addressing we just allocate an array T (i.e. direct-address table) of size |U|, and slot k in the table points to the element whose key is k. The implementation is easy:

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

 $1 \quad T[x.key] = x$

DIRECT-ADDRESS-DELETE (T, x)

 $1 \quad T[x.key] = NIL$

All operations are worst-case O(1) time.

Issues with direct accessing

- The main issue is that the size of universe might be huge.
- Imagine we choose 1000 keys from the set of all 64-bit integers: $|U|=2^{64}{\sim}10^{18}$, but |K|=1000
 - Issue 1: It may not be possible to allocate this much memory
 - Issue 2: Even if we do, a lot of it is wasted.

Chopping and mixing around

Hashish, Hashashin

• The idea is to use a hash function $h: U \to \{0, 1, ..., m-1\}$

• Instead of putting the item with key k in the slot k of the table, we put it in the slot h(k) which is computed by the hash function.

• As a result, we will only need O(|K|) = O(m) space for the table T.

Some terminology:

- T is a hash-table.
- h(k) is the hash value of k.
- Key k hashes to h(k).

Problems to solve

1. Resolving collisions (i.e. when two keys are hashed to the same slot)

2. Find hash functions

Collision resolution - chaining

• In *chaining*, we place all the elements that hash to the same slot into the same linked list.

Chaining - implementation

CHAINED-HASH-INSERT (T, x)

1 insert x at the head of list T[h(x.key)]

CHAINED-HASH-SEARCH(T, k)

1 search for an element with key k in list T[h(k)]

CHAINED-HASH-DELETE (T, x)

1 delete x from the list T[h(x.key)]

• Basically, we want to show that the **expected length** is O(1).

We do the analysis under an assumption called simple uniform hashing.

• Simple uniform hashing is the assumption that each of the keys is equally likely to hash to any of the m cells independently of where other keys have hashed to.

• That is, we assume that each of the keys is **equally likely** to hash to any of the m slots independently of where other keys have hashed to.

 Important note: The hash function itself should not be randomized since we want it to always hash the same key to the same slot; however, in the real world, good hash functions which guarantee low collisions, are constructed randomly. But their behaviour is deterministic.

• Now, say we have a hash table T with m slots that stores n keys.

• We define load factor as
$$\alpha = \frac{number\ of\ elem.\ in\ T}{number\ of\ slots\ in\ T} = \frac{n}{m}$$
.

This ratio shows how much your table is loaded.

- We prove that under the simple uniform hashing assumption, the expected length of any list is $\frac{n}{m}$.
- In fact, the expected length is exactly equal to the load factor of the table α .

• Say Y_i is the random variable representing the number of keys that hash to position i.

• We define
$$X_{i,j} = \begin{cases} 1 & if \ h(k_j) = i \\ 0 & otherwise \end{cases}$$

A 0-1 random variable is called an indicator random variable.

- If X is a random variable, then E[X] = Pr(X = 1)
- Since $Y_i = \sum_{j=1}^n X_{i,j}$, we show that $E[Y_i] = \frac{n}{m}$

- Therefore, by picking $m \geq \frac{n}{c}$, where c is some constant, the expected length will be $\leq c = O(1)$ and all dictionary operations can be done in O(1) time, as well.
- Later we will show an alternative method (not necessarily faster) to store all n elements inside the table and without using pointers.

Hash functions

- A good hash function is one that is close to satisfying the assumption of simple uniform hashing.
- We present three methods for constructing hash functions:
- 1. The division method
- 2. The multiplication method
- 3. Universal hash functions (this construction is random)

Converting keys to integers

- Since hash functions work with a **natural number** (\in {0, 1, 2,}) as input we need a way to interpret keys as natural numbers.
- A very common is that if we are dealing with strings as keys, we can interpret the string as an integer in base
 256. For example UVic

	256^{2}				200	256 ²			
U	V	i	С	=	085	086	105	99	=

Converting keys to integers

 Programming languages usually use an object's physical address in memory (which is an integer) as a unique integer representing that object.

 Since the address of the object doesn't change during the execution, this number can be used as the key.

Converting keys to integers

 Java's hashCode method is an example that returns a unique integer for a given object. (Used in Java's HashMap)

 Note that two separate executions of a program may result in different keys, and hence different hash values.

$$h(k) = k \% m$$

$$h(k) = k \% m$$

- This method is very bad!
- Question: Say m=8, provide an example of a collision?

$$h(k) = k \% m$$

- This method is very bad!
- Question: Say m=8, provide an example of a collision?
- Answer: $k_1 = 8$, $k_2 = 16$, and $h(k_1) = h(k_2) = 0$

The hash function is

$$h(k) = k \% m$$

This method is very bad!

• Certain values should be avoided for m. For example, if $m=2^p$ (is a power of 2), then k % m is equal to the p lowest-order bits of key.

- Usually, the best choice for m is a prime close to
 n (number of keys) but not close to a power of 2.
- It's because a prime has only two divisors (1 and itself)
 which are less likely to be in common with the divisors of
 the keys.

 Also, a prime prevents to some extent patterns in the hash values.

• For example, say we have **10 keys** which are multiples of 14. We pick m=12 (not a prime).

$14 \mod 12 = 2$	$84 \mod 12 = 0$
28 mod 12 = 4	98 mod 12 = 2
42 mod 12 = 6	112 mod 12 = 4
56 mod 12 = 8	126 mod 12 = 6
70 mod 12 = 10	140 mod 12 = 8

 A pattern appears because 14 and 12 have 2 as a common divisor.

• For example, say we have **10 keys** which are multiples of 14. We pick m=12 (not a prime).

$14 \mod 12 = 2$	$84 \mod 12 = 0$
28 mod 12 = 4	98 mod 12 = 2
42 mod 12 = 6	112 mod 12 = 4
56 mod 12 = 8	126 mod 12 = 6
70 mod 12 = 10	140 mod 12 = 8

So, technically we are using half the capacity of table.

• But if we m=11 (a prime not close to 8 or 16):

14 mod 11 = 3	$84 \mod 11 = 7$
28 mod 11 = 6	98 mod 11 = 10
42 mod 11 = 9	112 mod 11 = 2
56 mod 11 = 1	126 mod 11 = 5
70 mod 11 = 4	140 mod 11 = 8

The multiplication method

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

- First we multiply the key by s.
- Then we take the result $mod 2^w$.
- Finally we shift right the value by (w p) bits.

The multiplication method

The hash function is

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

• We assume that the machine works with w-bit words. (64-bits for example) – w is known to us beforehand.

• Choice of p:

We take $m = 2^p$, such that p < w. So, $2^p < 2^w$.

Again, m should be near $\frac{n}{c}$ so that the load factor becomes constant.

The hash function is

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

- Choice of s:
- s is an **integer** in range $(0, 2^w)$
- So, we can say that $s = A.2^w$ where A is a **real number** in range (0,1)

The hash function is

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

- Choice of s:
- s is an **integer** in range $(0, 2^w)$
- So, we can say that $s = A.2^w$ where A is a **real number** in range (0,1)
- In fact, what matters is the choice of *A*.
- Knuth says picking $A \approx \frac{\sqrt{5}-1}{2}$ (golden ratio), works well!

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

- % is the mod operation.
- >> is the shift right operation. (C/C++, Java, ...)

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

- % is the mod operation.
- >> is the shift right operation. (C/C++, Java, ...)

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

- % is the mod operation.
- >> is the shift right operation. (C/C++, Java, ...)

w-bits

w-bits

The result is a 2w-bit integer

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

k.s

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

k.s

 $(k.s)\%2^{w}$

$$h(k) = [(k \cdot s) \% 2^{w}] \gg (w - p)$$

$$(k.s)\%2^{w}$$

$$[(k.s)\%2^w] \gg (w-p) = h(k)$$

Universal hash functions

A hash function is a universal hash function if:

$$\forall k_1, k_2 \in U, k_1 \neq k_2 : \Pr[h(k_1) = h(k_2)] \leq 1/m$$

• This property **guarantees** that even for the worst-case choice of keys, the expected number of collisions in any specific slot is low, i.e. $O(\alpha)$.

Proof of low number of collisions

 The proof is very similar to the one we had for expected length of linked lists assuming simple uniform hashing.

• However, since we don't have that assumption here we have to use the fact that $\Pr[h(k_1) = h(k_2)] \le 1/m$ and define our indicator random variables differently.

Proof of low number of collisions

We define
$$X_{i,j} = \begin{cases} \mathbf{1} & if \ h(k_i) = h(k_j) \\ 0 & otherwise \end{cases}$$
We know $\mathbf{E}[X_{ij}] = \Pr(X_{ij} = 1) = \Pr(h(k_i) = h(k_j)) \leq \frac{1}{m}$

Suppose for a specific slot i, Y_i is the number of keys hashed to that slot. (we have n keys overall)

$$Y_{i} = \sum_{j \neq i} X_{i,j} \to E[Y_{i}] = E\left[\sum_{j \neq i} X_{i,j}\right] = (linearity) \sum_{j \neq i} E[X_{i,j}] \le \frac{n}{m}$$

The last inequality is because (1) we have n keys, and (2) $E[X_{i,j}] \leq \frac{1}{m}$

Universal hash functions

- An easy way to construct a universal hash function is:
- 1. Pick a prime p such that all keys fall in [0, p-1]
- 2. Pick a, b independently at random from [0, p-1]
- 3. Then, h(k) = ((ak + b) % p)% m

Universal hash functions

- An easy way to construct a universal hash function is:
- 1. Pick a prime p such that all keys fall in [0, p-1]
- 2. Pick a, b independently at random from [0, p-1]
- 3. Then, h(k) = ((ak + b) % p)% m

Theorem: if k and l are different keys $\Pr(h(k) = h(l)) \le \frac{1}{m}$; so, h is a universal hash function.

The proof is optional and is in page 267-268 of CLRS.