- Cloud Models
 - Infrastructure as a service (laaS)
 - Sometimes called Hardware as a Service (HaaS)
 - Outsource your equipment
 - You're still responsible for the management
 - And for the security
 - Your data is out there, but more within your control
 - Web server providers
- Software as a Service (SaaS)
 - o On demand software
 - No local installation
 - Why manage your own email distribution or payroll?
 - Central management of data and applications
 - Your data is out there
 - A complete application offering
 - No development work required
 - Google Mail
- Platform as a service (PaaS)
 - No servers, no software, no maintenance team, no HVAC
 - Someone else handles the platform, you handle the development
 - You dont have direct control of the data, people, or infrastructure
 - Trained security professionals are watching your stuff
 - Choose carefully
 - Put the building blocks together
 - Develop your app from what's available on the platform
 - SalesForce.com
- Anything as a Service
 - A broad description of all cloud models
 - Use any combination of the cloud
 - o Services delivered over the Internet
 - Not locally hosted or managed
 - Flexible consumption model
 - No large upfront costs or ongoing license
 - IT becomes more of an operating model
 - And less of a cost center model
 - Any IT function can be changed into a service
- Cloud service providers
 - o Provide cloud services
 - SaaS, PaaS, laaS, etc
 - Charge a flat fee or based on use
 - More data, more cost
 - You still manage your processes
 - Internal staff
 - Dev team

- Operational support
- Managed service providers
 - Managed Service Provider (MSP)
 - Also a cloud service provider
 - Not all cloud service providers are MSP's
 - MSP support
 - Network connectivity management
 - Backups and disaster recovery
 - Growth management and planning
 - Managed Security Service Provider (MSSP)
 - Firewall management
 - Patch management, security audits
 - Emergency Response
- On-premises vs Off premises
 - On premises
 - Your application are on local hardware
 - Your servers are in your data center in your building
 - Off premises
 - Your servers are not in your building
 - They may not even be running on your hardware
 - Usually a specialized computing environment
- Cloud deployment models
 - Public
 - Available to everyone over the Internet
 - Community
 - Several organizations share the same resources
 - Private
 - Your own virtualized local data center
 - Hybrid
 - A mix of public and private
- Cloud Computing
 - Computing on demand
 - Instantly available computing power
 - Massive data storage capacity
 - Fast implementation
 - IT teams can adjust rapidly to change
 - Smaller startups cost and pay-as-you-go
 - Not always the best solution
 - Latency the cloud is far away
 - Limited bandwidth
 - Difficult to protect data
 - Requires Internet/Network connectivity
- Edge computing

- Over 30 billion IoT devices on the Internet
 - Devices with very specific functions
 - A huge amount of data\
- Edge computing "edge"
 - Process application data on an edge server
 - Close to the user
- Often process data on the device itself
 - No latency, no network requirement
 - Increased speed and performance
 - Process where the data is, instead of processing in the cloud
- Fog computing
 - Fog
 - A cloud thats close to your data
 - Cloud + Internet of things
 - Fog computing
 - A distributed cloud architecture
 - Extends the cloud
 - Distribute the data and processing
 - Immediate data stays local No Latency
 - Local decisions made from local data no bandwidth requirements
 - Private data never leaves Minimizes security concerns
 - Long term analysis can occur in the cloud Internet only when required
- Designing the Cloud
 - On demand computing power
 - Click a button
 - Elasticity
 - Scale up or down as needed
 - Applications also scale
 - Access from anywhere
 - How does it happen?
 - Planning and technology
- Thin client
 - Basic application usage
 - Applications actually run on a remote server
 - Virtual Desktop Infrastructure (VDI), Desktop as a Service (DaaS)
 - Local device is a keyboard, mouse, and screen
 - Minimal operating system on the client
 - No huge memory or CPU needs
 - Network connectivity
 - Big network requirement
 - Everything happens across the wire
- Virtualization
 - Virtualization

- Run many different operating systems on the same hardware
- Each application instance has its own operating system
 - Adds overhead and complexity
 - Virtualization is relatively expensive
- Application containerization
 - Container
 - Contains everything you need to run an application
 - Code and dependencies
 - A standardized unit of software
 - An isolated process in a sandbox
 - Self contained
 - Apps can't interact with each other
 - Container image
 - A standard for portability
 - Lightweight, uses the host kernel
 - Secure separation between the applications
- Microservices and API's
 - Monolithic applications
 - One big application that does everything
 - Application contains all decision making processes
 - User interface
 - Business logic
 - Data input and output
 - Code challenges
 - Large codebase
 - Change control challenges
 - API's
 - Application Programming Interfaces
 - API is the glue for the microservices
 - Work together to act as the application
 - Scalable
 - Scale just the microservices you need
 - Resilient
 - Outages ate contained
 - Security and compliance
 - Containment is built in\
- Serverless architecture
 - Function as a Service (FaaS0
 - Applications are separated into individual, autonomous functions
 - Remove the operating system from the equation
 - Developer still creates the server side logic
 - Runs in a stateless compute container
 - May be event triggered and ephemeral (temporary)
 - May only run for one event

- Managed by a third-party
 - All OS security concerns are at the third party
- Transit Gateway
 - Virtual Private Cloud (VPC)
 - A pool of resources created in a public cloud
 - Common to create many VPC's
 - Many different application clouds
 - Connect VPC's with a transit gateway
 - And users to VPC's
 - A "cloud router"
 - Now make it secure
 - VPC's are commonly on different IP subnets
 - Connecting to the cloud is often through a vpn
- Resource policies
 - Assigning permissions to cloud resources
 - Not the easiest tak
 - Everything is in constant motion
 - Specify which resources can be provisioned (Azure)
 - Create a service in a specific region, deny all others
 - Specify the resource and what actions are permitted (amazon)
 - Allow access to the an API gateway from an Ip address range
 - Explicitly list the users who can access the resource (amazon)
 - Userlist is associated with the resource
- Service integration
 - Service Integration and management (SIAM)
 - Many different service providers
 - The natural result of multisourcing
 - Every provider works differently
 - Different tools and processes
 - SIAM is the integration of these diverse providers
 - Provide a single business facing IT organization
 - An evolving set of processes and procedures
- Infrastructure in code
 - o Describe an infrastructure
 - Define servers, network, and applications as code
 - Modify the infrastructure and create versions
 - The same way you version application code
 - Use the description (code) to build other application instances
 - Build it the same way every time based on the code
 - An important concept for cloud computing
 - Build a perfect version every time
 - SDN (Software Defined Networking)
 - Networking devices have two functional planes of operation

- Control plane, data plane
- Directly programmable
 - Configuration is different than forwarding
- > Agile
 - Changes can be made dynamically
- Centrally Managed
 - Global view, single pane of glass
- Programmatically configured
 - No human intervention
- Open standards / vendor neutral
 - A standard interface to the network
- SDV (Software Defined Visibility)
 - You must see the traffic to secure the data
 - React and respond
 - Dynamic deployments include security and network visibility devices
 - Next generation firewalls, web application firewalls, Security Info and Event management (SIEM)
 - Data is encapsulated and encrypted
 - VXLAN (Virtual Extensible LAN) and SSL/TLS
 - New tech change what you can see
 - Infrastructure as code, microservices
 - Security devices monitor app traffic
 - SDV provides visibility to traffic flows
 - Visibility expands as the application instances expand
 - Real time metrics across all traffic flows
 - Application flows can be controlled via API
 - Identify and react to threats
- VM sprawl avoidance
 - Click a button
 - You've built a server or multiple servers, networks, firewalls
 - It becomes almost too easy to build instances
 - This can get out of hand very quickly
 - The virtual machines are sprawled everywhere
 - You aren't sure which VMs are related to which applications
 - It becomes extremely difficult to deprovision
 - Formal process and detailed documentation
 - You should have information on every virtual object.
- VM Escape Protection
 - The virtual machine is self contained
 - Theres no way out
 - Virtual machine escape
 - Break out of the VM and interact with the host operating system or hardware

- o Once you escape the VM, you have great control
 - Control the host and control other guest VM's
- o This would be a huge exploit
 - Full control of the virtual world
- Escaping the VM
 - o March 2017 Pwn2Own competition
 - Hacking contest
 - You pwnit, you own it with some cash