

NATIONAL INSTITUTE OF TECHNOLGY PATNA

Department of Computer Science & Engineering

END SEMESTER EXAMINATION, July-December 2021

B. Tech-CSE: Semester-V

Course Name: Compiler Design

Course Code: CS5404

Maximum Time: 2 hours Max. Marks: 40

Instruction:

1. Attempt all questions.

2. Assume any suitable data, if necessary.

3. The Marks, CO (Course Outcome) and BL (Bloom's Level) related to questions are mentioned on the right-hand side margin.

Questions		Marks	CO	BL
Q1.	Design LR(0) parsing table for the following CFG	5	CO-2	Create
	$S \rightarrow L = R \mid R$			
	$L \rightarrow R$			
	$L \rightarrow id$			
	$R \rightarrow + L$			
Q2.	Explain the role of Symbol Table and Error Handler in the compilation	3	CO-1	Understand
	process.			
	Construct the operator relation table and the function table for the	7	CO-2	Analyze
	following CFG			
	$T \rightarrow XR/X$			
	$R \rightarrow bXR / bX$			
	$X \to WbX/W$			
	$W \rightarrow L * W / L$			
	$L \rightarrow id$			
Q3.	Design the syntax tree for the given SDT and show what will be the	5	CO-1,	Create
	output if this SDT is carried out for the nnput String: "x+y+z"		CO-2	
	SDT:			
	$S \rightarrow X + Y + Z \{S.val = X.val + Y.val + Z.val\}$			
	$X \rightarrow \text{num } \{X.\text{val} = \text{num.val}\}$			
	$Y \rightarrow \text{num } \{Y.\text{val} = \text{num.val}\}$			
	$Z \rightarrow \text{num } \{Z.\text{val} = \text{num.val}\}$			
	Note: here x, y, and z are representing the last three digits of your roll			
	number which need to be replaced by the last three digits of your roll			
	number while solving the problem.			
Q4.	(a) Apply the optimization techniques to derive the optimized version of	3	CO-4	Apply
	the following 3-address code			

	Y = W + X			
	Z = Y			
	Y = Y - V			
	W = Z - V			
	X = X*V			
	X = Z/X			
	(b) Describe the concepts of Quadruples, Triples, and Indirect triples	7	CO-3	Remember
	along with their advantages and limitations with the help of			
	following expression $(w+x)*(y+z)+(w+x+y)$			
Q5.	(a) Explain the importance of the control flow analysis (CFA) in compiler	2	CO-4	Understand
`	design.			
	(b) Derive the three-address code (TAC) of the following high-level code	8	CO-4	Create
	and apply the CFA to identify the loop in the derived TAC			
	and apply the critical radially the roop in the derived rive			
	Note: In this program x, y, and z are representing the last three digits of			
	your roll number which you have to replace by the last three digits of your			
	roll number while writing the TAC.			
	main()			
	main()			
	$int \ roll_no[] = \{x, \ y, \ z\};$			
	int sum = 0;			
	for (int $i = 0$; $i < 3$; $i++$)			
	(
	$sum+ = roll_no[i];$			
	}			
	if(sum < 100)			
	printf ("CSE-I student");			
	else			
	printf ("CSE-II student");			
	}			
	J			