Алгоритмы поиска с бикритериальной оптимизацией Проект по курсу "Эвристические методы планирования"

Угадяров Л.А. https://github.com/ugadiarov-la-phystech-edu/hs-project

МФТИ, группа МО5-006а

12 мая 2021 г.

Задача бикритериальной оптимизации

Поиск множества оптимальных решений с учётом нескольких неоднородных критериев, которые невозможно свести друг к другу.

Пусть $p = (p_1, p_2)$ и $q = (q_1, q_2)$ — пары вещественных чисел, тогда:

- ullet р \prec Q (р доминирует Q), если $(p_1 < q_1) \land (p_2 < q_2)$ или $(p_1 = q_1) \land (p_2 < q_2)$
- p < q (p слабо доминирует q), если ($p_1 < q_1$) $\land (p_2 < q_2)$

Маршрут $\pi(s_{start}, s_{goal})$ называется парето-оптимальным $\Leftrightarrow \sharp \pi'(s_{start}, s_{goal}) : \pi' \prec \pi$.

Решение задачи бикритериальной оптимизации — множестві всех парето-оптимальных маршрутов с уникальной стоимостью.

Основная проблема адаптации А* для многокритериальных задач — низкая производительность из-за большого количества проверок доминирования.

Реализация алгоритмов NAMOA* и BOA*

Язык программирования: Python 3.6. Используемая библиотека: NetworkX.

Особенности реализаций:

- Список OPEN реализован с помощью кучи. Вершина кучи узел с лексикографически минимальным f-значением.
- Для NAMOA* реализовано ленивое удаление узлов из списка OPEN
- Если эвристическая функция неизвестна, то производится расчёт монотонной эвристической функция путём запуска алгоритма Дейкстры из целевой вершины для каждого веса критерия
- Реализации возвращают парето-оптимальное множество весов кротчайших путей из стартовой вершины в целевую, множество родительских вершин, количество совершённых раскрытий вершин при выполнении алгоритма, время выполнения в секундах, максимальный размер списка OPEN. Также для NAMOA* возвращается максимальный размер списка OPEN без учёта вершин, помеченных как удалённые.

Проверка корректности реализаций NAMOA* и ВОА*:

- Проверка на случайном графе из 1000 вершин. Проверка корректности на случайном графе, который был сгенерирован с помощью библиотеки NetworkX. Параметры графа:
 - Количество вершин 1000
 - ▶ Вероятность создания ребра между вершинами 0.1
 - ▶ Веса рёбер кортежи из двух элементов случайные целые чис- ла от 1 до 1000
- ② Проверка на подграфе дорожной сети New York City (DIMACS) из 10000 вершин.

Hernández Ulloa, C., Yeoh, W., Baier, J. A., Zhang, H., Suazo, L., & Koenig, S. (2020). A Simple and Fast Bi-Objective Search Algorithm

Сравнение производительности реализаций NAMOA* и ВОА*

Производительность алгоритмов сравнивалась на 100 случайно выбранных парах вершин из графа дорожной сети New York City (DIMACS).

	Количество	Время	Максимальный размер
	раскрытий	выполнения, с	списка OPEN
Min	$4.9 * 10^{1}$	1.8	$2.8 * 10^{1}$
Mean	$4.9 * 10^{5}$	27.9	$2.2 * 10^4$
Max	$8.5 * 10^6$	521.7	$2.4 * 10^{5}$
Std	$1.3 * 10^6$	78.4	3.6 * 10 ⁴

Производительность реализации ВОА*

	Количество Время		Максимальный размер	Максимальный размер
	раскрытий	выполнения, с	списка ОРЕN (без учёта	списка OPEN
			удалённых вершин)	
Min	$4.9 * 10^{1}$	1.6	$2.2 * 10^{1}$	2.7 * 10 ¹
Mean	$4.9 * 10^{5}$	189.9	1.3 * 10 ⁴	$1.9 * 10^4$
Max	$8.5 * 10^6$	4236.6	1.5 * 10 ⁵	$2.1*10^{5}$
Std	1.3 * 10 ⁶	643.7	2.3 * 10 ⁴	3.2 * 104

Производительность реализации NAMOA*

Применение ВОА* для поиска множества оптимальных путей

- Граф 8-связная карта duskwood (Moving Al Lab)
- Поиск парето-оптимального множества путей, минимизирующего длину пути и максимизирующего безопасность пути
- Безопасность проходимой клетки расстояние до ближайшей непроходимой клетки
- Безопасность маршрута сумма значений метрики безопосности для каждой клетки маршрута Переход от задачи максимизации безопасности к минимизации опасности:

$$\forall v \in V \Rightarrow danger(v) = -safety(v) + \max_{v^* \in V} safety(v^*) + 1$$

Применение ВОА* для поиска множества оптимальных путей

Множество парето-оптимальных маршрутов из клетки (100, 110) в клетку (430, 400). Полученное множество содержит 258 маршрутов.

