大学物理试卷

班级:	姓名:		_ 学号:	成绩:	
)(3345) 单色光垂直照射在观察 可上缓慢平移而远离 ² 步条纹 ² 移. (B) ^向 ·张. (D) ^青	平面现	玻璃时,可以观察	単色光 ↓ ↓ ↓ ↓ ↓ ↓	/ 空气 フ コ]
透膜. 为了使波直入射到玻璃片 (A) 250 n	n ₃ = 1.60 的玻璃片表 E 长为λ = 500 nm (1 n T上的反射尽可能地源 m.	m = ① 或少, (B)	10 ⁻⁹ m)的光,从折射 MgF ₂ 薄膜的厚度 <i>e</i> 181.2 nm.	率 n ₁ = 1.00 自 至少是	内空气垂
)(7907) 逢衍射装置中, 若双绿 虽度之比 <i>I</i> ₁ : <i>I</i> ₂ 为	、	4.	[. 则衍射图样 [_
(A) 线偏: (B) 部分((C) 和原:		偏振	光.	[]
体平面与纸面的如图所示. 一身解石内折射光分(A) 传播方(B) 传播方)(5330) 一块方解石的一个截陷 的交线.光轴方向在约 这平行的单色自然光射 分解为 o 光和 e 光, o 可向相同,电场强度的 可向相同,电场强度的	低面下垂直 · 光利 · 为振习	为且与 AB 成一锐角 (于 AB 端面入射. 在) 口 e 光的 动方向互相垂直. 动方向不互相垂直.	A	D 轴 ン _C

(D) 传播方向不同, 电场强度的振动方向不互相垂直.

6. (本题 3分)(4404)

下面四个图中,哪一个正确反映黑体单 色辐出度 $M_{R\lambda}(T)$ 随 λ 和 T 的变化关系,已知 T_2 $> T_1$.

Γ

7. (本题 3分)(4382)

一定频率的单色光照射在某种金 属上,测出其光电流的曲线如图中实 线所示. 然后在光强度不变的条件下 增大照射光的频率,测出其光电流的 曲线如图中虚线所示.满足题意的图 是:

> Γ

8. (本题 3分)(5619)

波长 $\lambda = 5000$ Å的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda = 10^{-3}$ Å,则 利用不确定关系式 $\Delta p_x \Delta x \ge h$ 可得光子的 x 坐标的不确定量至少为

- (A) 25 cm.
- (B) 50 cm.
- (C) 250 cm.
- (D) 500 cm.

9. (本题 3分)(4786)

在氢原子的 L 壳层中,电子可能具有的量子数 (n, l, m_l, m_s) 是

- (A) $(1, 0, 0, -\frac{1}{2})$. (B) $(2, 1, -1, \frac{1}{2})$.
- (C) $(2, 0, 1, -\frac{1}{2})$. (D) $(3, 1, -1, -\frac{1}{2})$.

]

二填空题(共33分)

10. (本题 3分)(7501)

用迈克耳孙干涉仪产生等厚干涉条纹,设入射光的波长为 λ ,在反射镜 M_2 转动过程中,在总的观测区域宽度 L 内,观测到总的干涉条纹数从 N 条增加到

 N_2 条. 在此过程中 M_2 转过的角度 $\Delta\theta$ 是

1	1		(本題	44	(31	77)
		_ (1 /45年火	4711	$\mathbf{u} \circ \mathbf{u}$	///

如图,在双缝干涉实验中,若把一厚度为 e、折射率为 n 的薄云母片覆盖在 S_1 缝上,中央明条纹将向

_____移动;覆盖云母片后,两束相干光至原中央

明纹 O 处的光程差为_____.

12. (本题 3分)(5647)

维纳光驻波实验装置示意如图. MM 为金属反射镜; NN 为涂有极薄感光层的玻璃板. MM 与 NN 之间夹角 ϕ = 3.0×10⁻⁴ rad, 波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光驻波,NN 板的感光层上形成对应于波腹波节的条纹. 实验测得两个相邻的驻波波腹感光点

A、B 的间距 $\overline{AB}=1.0$ mm,则入射光波的波长为_____mm.

13. (本题 4分)(3207)

在单缝的夫琅禾费衍射实验中, 屏上第三级暗纹对应于单缝处波面可划分为

_______个半波带,若将缝宽缩小一半,原来第三级暗纹处将是

14. (本题 4分)(7914)

在透光缝数为N的平面光栅的衍射实验中,中央主极大的光强是单缝衍射

15. (本题 3分)(3371)

两个偏振片叠放在一起,强度为 10的自然光垂直入射其上,若通过两个偏振片后

的光强为 I₀ /8,则此两偏振片的偏振化方向间的夹角(取锐角)是_____, 若在两片之间再插入一片偏振片,其偏振化方向与前后两片的偏振化方向的夹角(取

锐角)相等.则通过三个偏振片后的透射光强度为 .

16. (本题 3分)(3373)

一束自然光自空气入射到折射率为 1.40 的液体表面上, 若反射光是线偏振

的,则折射光的折射角为.

17. (本题 3分)(1797)

某些各向同性的透明介质在外加电场作用下会表现出双折射现象. 其中克尔

(Kerr)效应是指介质中o光和e光的折射率差值 $(n_e - n_o)$ 正比于电场的

次方的现象.

18. (本题 3分)(4988)

普朗克公式 $M_{B\lambda}(T) = \frac{2\pi hc^2 \lambda^{-5}}{\exp[hc/(k\lambda T)] - 1}$ 中, $M_{B\lambda}(T)$ [也可写作 $e_0(\lambda, T)$]的物理意义是:

19. (本题 3分)(4533)

1921 年斯特恩和革拉赫在实验中发现: 一束处于 s 态的原子射线在非均匀磁场中分裂为两束. 对于这种分裂用电子轨道运动的角动量空间取向量子化难于

解释,只能用_____来解释.

三 计算题 (共40分)

20. (本题 5分)(5323)

在如图所示的瑞利干涉仪中, T_1 、 T_2 是两个长度都是I的气室,波长为 λ 的单色光的缝光源S放在透镜 L_1 的前焦面上,在双缝 S_1 和 S_2 处形成两个同相位的相干光源,用目镜E观察透镜 L_2 焦平面C上的干涉条纹.当

两气室均为真空时,观察到一组干涉条纹. 在向气室 T_2 中充入一定量的某种气体的过程中,观察到干涉条纹移动了 M 条. 试求出该气体的折射率 n (用已知量 M, λ 和 l 表示出来).

21. (本题10分)(5226)

一双缝, 缝距 d=0.40 mm, 两缝宽度都是 a=0.080 mm, 用波长为 λ =480 nm (1 nm = 10^{-9} m) 的平行光垂直照射双缝, 在双缝后放一焦距 f=2.0 m 的透镜求:

- (1) 在透镜焦平面处的屏上,双缝干涉条纹的间距 1;
- (2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目 N 和相应的级数.

22. (本题10分)(5220)

以波长为 λ = 500 nm (1 nm = 10^{-9} m)的单色平行光斜入射在光栅常数为 d = 2.10 μ m、缝宽为 a = 0.700 μ m 的光栅上,入射角为 i = 30.0°,求能看到哪几级光谱线.

23. (本题 5分)(1831)

已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于 1.37×10^3 W/m^2 .

- (1) 求太阳辐射的总功率.
- (2) 把太阳看作黑体, 试计算太阳表面的温度.

(地球与太阳的平均距离为 1.5×10^8 km,太阳的半径为 6.76×10^5 km, $\sigma=5.67\times10^{-8}$ W/(m²·K⁴))

24. (本题 5分)(4520)

试估计处于基态的氢原子被能量为 12.09 eV 的光子激发时,其电子的轨道 半径增加多少倍?

25. (本题 5分)(4631)

假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的 2 倍时,其德布罗意波长为多少?

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J·s}$, 电子静止质量 $m_e = 9.11 \times 10^{-31} \,\text{kg}$)