Telecom Customer Churn Analysis

Churn Rate

In the marketing, cost spend by the company to acquire a new customer is greater than retaining existing customers.

The goal of this Analysis is to create a model that can help the company to reduce the Churn Rate.

The model should predict customer churn, giving the company the opportunity to act beforehand and increase customer retention.

Methodology

Problem Definition	Data Preparation	Machine Learning Model	Evaluation and Feature Importance
 Determine customers who are likely to churn Establish features correlated with churn rate 	 Import Telecom users dataset Clean the data Explore data for important information Analyse target column and features Visualize the data 	 Split data into train/ test sets Define pipeline for preprocessing check: Pycaret to determine best model Tune the model 	 Create pipeline to compare models Use SHAP to establish feature importance Add custom metric to determine customer value

Dataset - Customer Churn

Services **Demographic** Contract Information Information Information **Dataset** Churn Phone Service Contract Type Gender + Number of Lines Marital Status Tenure 5976 Samples **Internet Services** Payment Method Seniority **No Churn** Online Security/Backup **Monthly Charges** Dependents **Tech Support Total Charges** Streaming

Churn Demographics

- No difference in churn rate regarding gender.
- Churn rate of **senior citizens** is almost double that of young citizens.
- Customers with a partner churn less than customers with no partner.

Churn and Customer Account

- Customers with month-to-month contracts have a higher churn rate.
- Customers who opted for an electronic check as paying method are more likely to leave the company.
- Customers subscribed to paperless billing churn more than those who are not subscribed.

Churn and Customer Account

- The churn rate tends to be larger when monthly charges are high.
- **New customers** (low tenure) are more likely to churn.
- Clients with high total charges are less likely to leave the company.

4000

Churn No.

100

Yes

120

Churn vs Services

- We do not expect phone attributes (PhoneService and MultipleLines) to have significant predictive power.
- The percentage of churn for all classes in both independent variables is nearly the same.
- Clients with online security churn less than those without it.

Churn vs Services

- Customers with no tech support tend to churn more often than those with tech support.
- Customer with less extra packages tend to churn more.

Correlation Map

 Total Charges is closely correlated with Monthly Charges and tenure

Cost of Churn

On average the monthly cost for customers that churn is higher around \$15 per month.

If we offer a \$180 annual voucher to all the customers flagged by the model as potential churn, we gain \$720 per customer in 1 year.

Churn	Contract	Monthly Charges	Total Charges
No	Month-to-month	\$62	\$1,531
No	One year	\$62	\$2,881
No	Two year	\$60	\$3,711
Yes	Month-to-month	\$73	\$1,159
Yes	One year	\$86	\$4,189
Yes	Two year	\$87	\$5,379

We created a **Custom Metric** in PyCart - Profit - to select the model that maximizes the business value.

If we predict churn and the real value is churn, we gain (\$720 - \$180) per customer

If we predict churn and the real value is not churn, we loose (- \$180) per customer

Model Recommendation

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	Profit	TT (Sec)
9	Naive Baves	0.7350	0.8202	0.7553	0.5051	0.6049	0.4175	0.4369	21510.0000	0.0190
0	Logistic Regression	0.7951	0.8366	0.5248	0.6468	0.5789	0.4454	0.4501	18162.0000	0.8120
5	Ada Boost Classifier	0.7920	0.8379	0.5273	0.6363	0.5761	0.4400	0.4437	18072.0000	0.0960
6	CatBoost Classifier	0.7859	0.8290	0.4955	0.6285	0.5533	0.4152	0.4208	16848.0000	2.2030
4	Extreme Gradient Boosting	0.7746	0.8071	0.5123	0.5955	0.5493	0.4004	0.4034	16722.0000	0.2770
1	K Neighbors Classifier	0.7575	0.7631	0.5033	0.5543	0.5265	0.3643	0.3658	15570.0000	0.0780
3	Random Forest Classifier	0.7777	0.8097	0.4598	0.6155	0.5260	0.3847	0.3920	15408.0000	0.2580
8	SVM - Radial Kernel	0.7859	0.7613	0.4216	0.6585	0.5133	0.3845	0.4006	14760.0000	0.5760
2	Decision Tree Classifier	0.7254	0.6570	0.5021	0.4894	0.4949	0.3067	0.3072	13842.0000	0.0150
7	SVM - Linear Kernel	0.7429	0.0000	0.4606	0.6684	0.4234	0.2947	0.3490	13608.0000	0.0330

Confusion Matrix

For a Test Sample of 1793 we would gain in this exemple \$18,162 with the Proposed Logistic Regression Model.

Classificati	on Report: precision	recall	f1-score	support
6	0.84	0.90	0.87	1317
1	0.66	0.51	0.57	476
accuracy			0.80	1793
macro avg	0.75	0.71	0.72	1793
weighted avg	0.79	0.80	0.79	1793
[233 243] Accuracy Sco	ore obtained is	: 79.92%		
f1_macro Sco	re obtained is	s: 72. 15%		
f1_micro Sco	ore obtained is	: 79.92%		
f1_weighted	Score obtained)5%	
f1 Scana obt	ained is: 57.4			

SHAP Analysis

Recommendations / Future Scope

4

Provide vouchers to clients

- Retain customers by offering them vouchers of \$180
- Extend the customers value by \$720 if kept for an additional year

Offer more personalized discounts

 Engage with the product managers, marketing and financial department to offer potential churn customers personalized discounts and packages to deter churning