# Badanie różnych implementacji tablic asocjacyjnej pod kątem dostępu do jej elementów

Szymon Leśniak 28 maja 2014

### 1 Wstęp

Tablica asocjacyjna jest strukturą danych, w który zbiera pary danych, niekoniecznie tych samych typów: klucza, który zwykle jest wartością stałą, oraz wartości, dowolnie modyfikowalnej. Tablice asocjacyjne implementowane są tak, by minimalizować czas dostępu (modyfikacji lub pobrania) wartości. Jest to operacja na tyle popularna, że C++ STL definiuje ją za pomocą operatora [] (szablon std::map).

## 2 Opis badania i szczegóły implementacji

Do badania przeznaczonych było 5 zestawów niepowtarzających się napisów w różnej ilości: 100, 1000, 10000, 50000 i 100000 sztuk. Każdym z zestawów zapełniano tablicę asocjacyjną. Mierzony był czas wpisania wartości do losowo wybranego elementu tablicy. Operację powtarzano wielokrotnie w celu zniwelowania błędów przypadkowych.

Badanymi implementacjami były: prosta tablica dynamiczna, drzewo binarne (bez mechanizmów równoważenia długości gałęzi) oraz tablicę haszującą. Funkcja haszująca była oparta na operacji modulo. Ostatnia implementacja była badana w trzech wariantach, odpowiadających różnemu zapełnieniu tablicy: 10%, 50% i 90%. Konieczne było zatem odejście od spotykanego zalecenia, by rozmiar wyrażał się liczbą pierwszą.

# 3 Wyniki badania

Wyniki są przedstawione w poniższej tabeli oraz na wykresie (skala log-log):

### 4 Wnioski

Zgodnie z oczekiwaniami zwykła tablica dała najgorszy czas dostępu do danych. Dostęp ma złożoność O(n) i jako taki jest nieakceptowalny dla większych zbiorów danych.

Tablica 1: Czasy dostępu do elementów tablicy asocjacyjnej (w sekundach)

| Ilość pró-     | tradycyjna         | drzewo bi-           | tablica              | tablica            | tablica            |
|----------------|--------------------|----------------------|----------------------|--------------------|--------------------|
| $\mathbf{bek}$ | tablica            | narne                | haszująca            | haszująca          | haszująca          |
|                |                    |                      | (zapeł-              | (zapeł-            | (zapeł-            |
|                |                    |                      | nienie               | nienie             | nienie             |
|                |                    |                      | 10%)                 | 50%)               | 90%)               |
| 100            | $2,67\cdot10^{-6}$ | $6,50\cdot10^{-6}$   | $4,41\cdot10^{-7}$   | $5,31\cdot10^{-7}$ | $6,30\cdot10^{-7}$ |
| 1000           | $1,27\cdot10^{-5}$ | $6.82 \cdot 10^{-6}$ | $4,52 \cdot 10^{-7}$ | $6,34\cdot10^{-7}$ | $6,14\cdot10^{-7}$ |
| 10000          | 0,000452823        | $7,17\cdot10^{-6}$   | $7,17\cdot10^{-7}$   | $9,45\cdot10^{-7}$ | $8,67\cdot10^{-7}$ |
| 50000          | 0,0126578          | $7,84 \cdot 10^{-6}$ | $7.84 \cdot 10^{-7}$ | $6,32\cdot10^{-7}$ | $5,20\cdot10^{-7}$ |
| 100000         |                    | $8,29 \cdot 10^{-6}$ | $8,29\cdot10^{-7}$   | $1,70\cdot10^{-6}$ | $8,26\cdot10^{-7}$ |

#### Średni czas dostępu do elementów tablicy asocjacyjnej



Potwierdzona została przewidwana złożoność dostępu O(1) dla tablicy haszującej. Duży rozmiar tablicy przyspiesza nieznacznie średni czas dostępu do danych, co wynika z mniejszego prawdopodobieństwa wystąpienia kolizji.

Jedynie dla drzewa binarnego zgodność z założeniami teoretycznymi (tj. złożoność  $O(\log n)$ ) jest widoczna w niewielkim stopniu.