MY470 Computer Programming

Welcome to Computer Programming

Week 1 Admin, MT 2017

Overview

- Course content
- Prerequisites and materials
- Course meetings
- Assesment and collaboration
- Weekly schedule

Instructors

- Dr. Milena Tsvetkova, m.tsvetkova@lse.ac.uk
- Prof. Kenneth Benoit, k.r.benoit@lse.ac.uk
- Dr. Kohei Watanabe (TA), k.watanabe1@lse.ac.uk

Course Content

- Introduction to the fundamentals of computer programming
- We will cover the foundations of computer languages, object-oriented programming, and algorithms
- You will learn how to design, write, and debug computer programs and how to evaluate algorithms

Prerequisites and Software

- Introductory course no prerequisites
- Software
 - **Python** and **R** (Anaconda distributions) to learn basic concepts in computer science
 - Jupyter notebooks web app to write code
 - **GitHub** to share course documents and assignments

Books

- Guttag, John V. Introduction to Computation and Programming Using Python: With Application to Understanding Data. Mit Press, 2016.
- Grolemund, Garrett and Hadley Wickham. R for Data Science. O'Reilly, 2016. http://r4ds.had.co.nz (http://r4ds.had.co.nz)
- Grolemund, Garrett. Hands-On Programming with R. O'Reilly, 2014.
- Matthes, Eric. Python Crash Course, Cheet Sheet at https://ehmatthes.github.io/pcc/cheatsheets/README.html).
 (https://ehmatthes.github.io/pcc/cheatsheets/README.html).
- Python Intermediate and Advanced Documentation at http://docs.python.org/3/). (http://docs.python.org/3/).

Course Meetings

- Ten two-hour lectures: Mondays 13:00–15:00 in KSW.G.01
- Ten 1.5-hour computer classes
 - Tuesdays 15:00–16:30 in TW2 4.03
 - Thursdays 14:30–16:00 in STC S018
- No lecture/class in Week 6!
- Office hours
 - Milena: Mondays 15:00–17:00, COL 8.03
 - Ken: By appointment, COL 8.11

Assessment

- In-class assessment (50%)
 - 10 problem sets (due on Fridays of weeks 1-5 and 7-11)
 - Grades available at the latest on Wednesday the week after
- Take-home exam (50%)
 - Substantive project requiring you to demonstrate concepts and skills learned from the course
 - Can choose either Python or R
- Criteria
 - The code runs and does what it is expected to
 - The code is written using the concepts, paradigms, and best practices covered in the course

Collaboration

- Assignments are individual unless we instruct you otherwise
- For individual assignments:
 - You can discuss solutions with peers
 - However, you are not allowed to copy-paste code you need to write the code yourself
- You can use online resources but always give credit in comments if you borrow code/solutions

Course Outline

Week	Language	Topic
1	1	What is Computation?
2	Python	Data Types
3	Python	Control Flow
4	Python	Functions
5	Python	Classes
6	ı	_
7	Python	Testing and Debugging
8	R	Data Types and Control Flow
9	R	Functions and Debugging
10	Python, R	Algorithms and Order of Growth
11	Python, R	Searching and Sorting Algorithms