Introdução

Forma de Lagrange

Espaço do Polinômio: Lineares

Polinômios Lineares por Partes

Interpolação Polinomial Introdução aos Métodos Discretos

Prof. Joventino de Oliveira Campos - joventino.campos@ufjf.br Departamento de Ciência da Computação Universidade Federal de Juiz de Fora

Conteúdo

Introdução

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares po Partes

- 1 Introdução
- 2 Forma de Lagrange
- 3 Espaço dos Polinômios Lineares
- 4 Espaço dos Polinômios Lineares por Partes

Conteúdo

Introdução

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares po Partes

- Introdução
- 2 Forma de Lagrange
- 3 Espaço dos Polinômios Lineares
- 4 Espaço dos Polinômios Lineares por Partes

Introdução

Suponha que temos um conjunto de pontos x_0, x_1, \dots, x_n e os valores de uma função f(x) nestes pontos

 $y_0 = f(x_0), \dots, y_n = f(x_n).$

Introdução Interpolar a função f(x) nos pontos x_1, \ldots, x_n consiste em aproximá-la por uma função g(x) tal que:

$$g(x_0)=y_0$$

$$g(x_2)=y_2$$

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Polinômios Lineares por Partes

Introdução

- Iremos supor que a função interpolante g(x) é um polinômio.
- Porque polinômios? Polinômios são facilmente computáveis, suas derivadas e integrais são também polinômios, e etc.
- A interpolação polinomial é usada para aproximar uma função f(x), principalmente, nas seguintes situações:
 - Não conhecemos a expressão analítica de f(x). Isto é, somente conhecemos o valor da função em um conjunto de pontos (isso ocorre frequentemente quando se trabalha com dados experimentais).
 - f(x) é complicada e de difícil manejo.
 - Interpolação será usada também para calcular a integral numérica de f(x).
 - Veremos mais sobre isso em Integração Numérica.

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Introdução

• O problema geral da interpolação por meio de polinômios consiste em, **dados** n+1 pontos distintos

$$x_0, x_1, \ldots, x_n$$

e n+1 números y_0, y_1, \ldots, y_n , valores de uma função y=f(x) em x_0,x_1,\ldots,x_n , isto é

$$y_0 = f(x_0), \quad y_1 = f(x_1), \quad \dots \quad y_n = f(x_n)$$

• Determinar um polinômio $P_n(x)$ de grau no máximo n tal que:

$$P_n(x_0) = y_0, P_n(x_1) = y_1, \dots P_n(x_n) = y_n$$

Veremos que tal polinômio <u>existe e é único</u>, desde que os pontos x_0, x_1, \dots, x_n sejam <u>distintos</u>.

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Introdução

• Sendo assim, procuramos um polinômio na forma:

$$P_n(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$$

• Para isso é preciso encontrar os coeficientes $a_0, a_1, \dots a_n$ de tal forma que $P_n(x)$ satifaça

$$P_n(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$P_n(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

$$\vdots$$

$$P_n(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_n$$

que pode ser visto como um sistema de equações lineares $(n+1)\times(n+1)$ onde as incógnitas são a_0,a_1,\ldots,a_n .

Introdução

Forma de Lagrange

Espaço do Polinômios Lineares

Espaço dos Polinômios Lineares po Partes • Escrevendo de forma matricial temos

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

 A matriz de coeficientes é chamada de <u>Matriz de Vandermonde</u>. Sabe-se que det(**A**) ≠ 0 desde que os pontos x₀, x₁,...,x_n sejam **distintos**.

Teorema

Dados n+1 pontos <u>distintos</u> x_0, x_1, \ldots, x_n e seus valores $y_0 = f(x_0), y_1 = f(x_1), \ldots, y_n = f(x_n)$, existe um <u>único</u> polinômio $P_n(x)$, de grau $\leq n$, tal que:

$$P_n(x_i) = f(x_i), \quad i = 0, 1, ..., n$$

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares po Partes

Exemplo: Interpolação linear

Este exemplo consiste em encontrar a reta que passa pelos pontos (x_0, y_0) e (x_1, y_1) . Existe uma única reta que passa por esses pontos. Então procuramos

$$P_1(x)=a_0+a_1x$$

tal que

(i)
$$P_1(x_0) = a_0 + a_1x_0 = y_0$$

(ii) $P_1(x_1) = a_0 + a_1x_1 = y_1$

De (i) temos que $a_0 = y_0 - a_1x_0$. Substituindo em (ii) temos que

$$y_0 - a_1 x_0 + a_1 x_1 = y_1$$

 $a_1(x_1 - x_0) = y_1 - y_0$
 $a_1 = \frac{y_1 - y_0}{x_1 - x_0}$

Introducão

Forma de Lagrange

Espaço do Polinômios Lineares

Espaço dos Polinômios Lineares po Partes

Exemplo: Interpolação linear

Como

$$a_0 = y_0 - a_1 x_0$$
$$a_1 = \frac{y_1 - y_0}{x_1 - x_0}$$

temos

$$P_1(x) = a_0 + a_1 x$$

$$P_1(x) = y_0 - \frac{y_1 - y_0}{x_1 - x_0} x_0 + \frac{y_1 - y_0}{x_1 - x_0} x$$

$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

Basta avaliar $P_1(x)$ em $x = x_0$ e $x = x_1$ para verificar que de fato este é o polinômio interpolador de (x_0, y_0) e (x_1, y_1) .

Exemplo

Introdução

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares po Partes

Exemplo de interpolação linear

Dada a seguinte tabela

		1			
ta	an (x)	1.5574	1.9648	2.5722	3.6021

use interpolação linear para estimar o valor de tan (1.15).

Assim

$$(x_0, y_0) = (1.1, 1.9648), \quad (x_1, y_1) = (1.2, 2.5722)$$

e portanto

$$\tan{(1.15)} \approx 1.9648 + \frac{(2.5722 - 1.9648)}{(1.2 - 1.1)}(1.15 - 1.1) = 2.2685$$

Valor exato: tan(1.15) = 2.2345.

Introdução

Forma de

Espaço do Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Resultado da interpolação linear

Introdução

Forma de

Espaço dos Polinômios

Espaço dos Polinômios Lineares por Partes

Resultado da interpolação linear (zoom)

Introdução

Forma de Lagrange

Espaço do: Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Matriz de interpolação

De forma geral, dados (x_i, y_i) para $i = 0, 1, \ldots, n$, para encontrar o polinômio $P_n(x)$, precisamos resolver o sistema de equações lineares

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

usando algum método que já estudamos (Eliminação Gaussiana, Decomposição LU, etc).

Exemplo

Introdução

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares por Partes

Exemplo

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 0.54 & 1 & 0.54 \end{array}$$

Vamos encontrar o polinômio de grau ≤ 2 que interpola estes pontos.

Exemplo

Introdução

Forma de Lagrange

Espaço do Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Exemplo

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 0.54 & 1 & 0.54 \end{array}$$

Vamos encontrar o polinômio de grau ≤ 2 que interpola estes pontos.

Solução

$$a_0 + a_1(-1) + a_2(-1)^2 = 0.54$$

 $a_0 + a_1(0) + a_2(0)^2 = 1.00$
 $a_0 + a_1(1) + a_2(1)^2 = 0.54$

Exemplo

Introdução

Forma de Lagrange

Espaço do Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Solução

$$\begin{bmatrix} 1 & -1 & -1^2 \\ 1 & 0 & 0^2 \\ 1 & 1 & 1^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.54 \\ 1 \\ 0.54 \end{bmatrix}$$

Resolvendo este sistema encontramos que $a_0=1$, $a_1=0$ e $a_2=-0.46$ e portanto

$$P_2(x) = 1 - 0.46x^2$$

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Polinômios Lineares por Partes

Observações Importantes

- Veremos formas mais simples de se obter o polinômio interpolante, sem a necessidade de resolver um sistema de equações lineares.
- Além disso, a matriz de Vandermonde costuma ser mal condicionada, o que leva a perda de precisão na solução quando temos que resolver o sistema.

Conteúdo

Introdução

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares po Partes

- 1 Introdução
- 2 Forma de Lagrange
- 3 Espaço dos Polinômios Lineares
- 4 Espaço dos Polinômios Lineares por Partes

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Polinômios Lineares po Partes

Forma de Lagrange

Para ilustrar a idéia vamos começar com um exemplo onde temos três pontos distintos $(x_0, y_0), (x_1, y_1)$ e (x_2, y_2) . Queremos encontrar o polinômio

$$P_2(x) = a_0 + a_1 x + a_2 x^2$$

que satisfaz

$$P_2(x_i) = y_i, \quad i = 0, 1, 2$$

para os dados fornecidos.

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares po Partes

Forma de Lagrange

Uma fórmula para encontrar tal polinômio é a seguinte:

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

onde

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

As funções $L_0(x)$, $L_1(x)$ e $L_2(x)$ são chamadas de funções de base de Lagrange para interpolação quadrática.

Introducão

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares por Partes

Forma de Lagrange

Figura: Exemplo das funções de base de Lagrange quadráticas.

Introducão

Forma de Lagrange

Espaço do Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Forma de Lagrange

Essas funções possuem a seguinte propriedade

$$L_i(x_j) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

para i,j=0,1,2. E ainda, cada uma possui grau 2. Consequentemente $P_2(x)$ tem grau ≤ 2 e assim fica claro que este polinômio interpola os dados, pois

$$P_{2}(x_{0}) = y_{0} \underbrace{L_{0}(x_{0})}_{=1} + y_{1} \underbrace{L_{1}(x_{0})}_{=0} + y_{2} \underbrace{L_{2}(x_{0})}_{=0} = y_{0}$$

$$P_{2}(x_{1}) = y_{0}L_{0}(x_{1}) + y_{1}L_{1}(x_{1}) + y_{2}L_{2}(x_{0}) = y_{1}$$

$$P_{2}(x_{2}) = y_{0}L_{0}(x_{2}) + y_{1}L_{1}(x_{2}) + y_{2}L_{2}(x_{2}) = y_{2}$$

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Forma de Lagrange

Interpolação Quadrática

Exemplo

Voltando ao exemplo anterior

$$\begin{array}{c|ccccc} x & -1 & 0 & 1 \\ \hline f(x) & 0.54 & 1 & 0.54 \end{array}$$

Assim

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{x(x-1)}{2}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x+1)(x-1)}{(0+1)(0-1)} = \frac{x^2-1}{-1} = 1-x^2$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x+1)(x-0)}{(1+1)(1-0)} = \frac{x(x+1)}{2}$$

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Forma de Lagrange

Interpolação Quadrática

Exemplo - Forma de Lagrange - Interpolação Quadrática

Obtemos então

$$P_{2}(x) = y_{0}L_{0}(x) + y_{1}L_{1}(x) + y_{2}L_{2}(x)$$

$$= (0.54)\frac{x(x-1)}{2} + (1)(1-x^{2}) + (0.54)\frac{x(x+1)}{2}$$

$$= \frac{0.54}{2}x(x-1+x+1) + 1 - x^{2}$$

$$= 0.54x^{2} + 1 - x^{2}$$

$$= 1 - 0.46x^{2}$$

Observe que este é o mesmo polinômio obtido anteriormente, pois como vimos este polinômio é único.

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Forma de Lagrange

Vamos considerar que agora temos n+1 pontos:

$$(x_0,y_0),\ldots,(x_n,y_n)$$

e queremos encontrar um polinômio $P_n(x)$ de grau $\leq n$ que interpola os pontos acima. Definindo os polinômios de Lagrange:

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1}) \dots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \dots (x_{i} - x_{n})}$$

$$= \prod_{i=0}^{n} \frac{(x - x_{j})}{(x_{i} - x_{j})}$$

logo o polinômio interpolador (na forma de Lagrange!) é dado por:

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x) = \sum_{i=0}^n y_i L_i(x)$$

Conteúdo

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares po Partes

- 1 Introdução
- 2 Forma de Lagrange
- 3 Espaço dos Polinômios Lineares
- 4 Espaço dos Polinômios Lineares por Partes

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares po Partes

Espaço dos Polinômios Lineares

Base dos monômios

• Seja $I = [x_0, x_1]$ algum intervalo no domínio dos números reais e seja $P_1(I)$ o espaço vetorial das funções lineares em I, definido por

$$P_1(I) = \{v : v(x) = c_0 + c_1 x, x \in I, c_0, c_1 \in \mathbb{R}\}\$$

- $P_1(I)$ contém todas as funções da forma $v(x) = c_0 + c_1 x$ em I.
- Uma função linear pode ser unicamente determinada pela exigência de que ela passe em dois pontos fornecidos $\alpha_0 = v(x_0)$ e $\alpha_1 = v(x_1)$ nos extremos x_0 e x_1 de I, resultando no sistema linear

$$\left[\begin{array}{cc} 1 & x_0 \\ 1 & x_1 \end{array}\right] \left[\begin{array}{c} c_0 \\ c_1 \end{array}\right] = \left[\begin{array}{c} \alpha_0 \\ \alpha_1 \end{array}\right]$$

cujo determinante é $x_1 - x_0$, igual ao tamanho do intervalo.

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Espaço dos Polinômios Lineares

• Sabendo que podemos especificar qualquer função em $P_1(I)$ através de seus valores nodais α_0 e α_1 , podemos introduzir uma nova base $\{\lambda_0, \lambda_1\}$ para $P_1(I)$. Esta nova base é chamada de base noda e é definida como

$$\lambda_j(x_i) = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases}, \quad i, j = 0, 1$$

- Desta definição vemos que cada função base $\lambda_j, j=0,1$, é uma função linear, assumindo o valor 1 em x_j , e 0 no outro nó.
- Então podemos expressar qualquer função v em $P_1(I)$ como combinação linear de λ_0 e λ_1 com α_0 e α_1 como coeficientes:

$$v(x) = \alpha_0 \lambda_0(x) + \alpha_1 \lambda_1(x)$$

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Polinômios Lineares por Partes

Espaço dos Polinômios Lineares

• As funções base nodais possuem a seguinte forma em 1:

$$\lambda_0(x) = \frac{x_1 - x}{x_1 - x_0}, \quad \lambda_1(x) = \frac{x - x_0}{x_1 - x_0}$$

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Polinômios Lineares por Partes

Interpolação Linear

Base nodal

- Considerando o intervalo $I = [x_0, x_1]$.
- Dada uma função contínua f em I, definimos um interpolante linear $\pi f \in P_1(I)$ para f como

$$\pi f(x) = f(x_0) \lambda_0 + f(x_1) \lambda_1$$

 Observamos que o interpolante aproxima f, no sentido de que πf e f têm os mesmos valores em x₀ e x₁: πf (x₀) = f (x₀) e πf (x₁) = f (x₁)).

Conteúdo

Introdução

Forma de Lagrange

Espaço do Polinômio Lineares

Espaço dos Polinômios Lineares por Partes

- 1 Introdução
- 2 Forma de Lagrange
- 3 Espaço dos Polinômios Lineares
- 4 Espaço dos Polinômios Lineares por Partes

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Espaço dos Polinômios Lineares por Partes

- Uma extensão natural das funções lineares são as funções lineares por partes. A ideia básica é dividir o domínio de v em pequenos subintervalos.
- Em cada subintervalo, v será expressa por funções lineares.
- A continuidade é imposta no início e fim de cada subintervalo.
- Seja I = [0, L] um intervalo e considere n+1 nós $\{x_i\}_{i=0}^n$, definindo uma discretização

$$\mathcal{I}: 0 = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = L$$

de I em n subintervalos $I_i = [x_{i-1}, x_i], i = 1, 2, ..., n$, de tamanho $h_i = x_i - x_{i-1}$.

• A discretização \mathcal{I} é chamada de malha.

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Espaço dos Polinômios Lineares por Partes

• Na malha ${\mathcal I}$ definimos o espaço V_h das funções lineares contínuas por partes

$$V_h = \left\{ v : v \in C^0(I), \left. v \right|_{I_i} \in P_1(I_i) \right\}$$

onde $C^0(I)$ denota o espaço das funções contínuas em I e $P_1(I_i)$ denota o espaço das funções lineares em I_i .

• Por construção, as funções em V_h são lineares em cada subintervalo I_i e contínuas em todo o intervalo I.

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Espaço dos Polinômios Lineares por Partes

- Qualquer função v em V_h é determinada por seus valores nodais $\{v(x_i)\}_{i=0}^n$
- Para qualquer conjunto de valores nodais $\{\alpha_i\}_{i=0}^n$ existe uma função v em V_h com estes valores.
- Portanto, podemos introduzir uma base $\{\varphi_j\}_{j=0}^n$ para V_h associada com os nós, tal que

$$\varphi_{j}(x_{i}) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}, \quad i, j = 0, 1, \dots, n$$

• Assim, qualquer função v em V_h pode ser escrita como combinação linear de $\{\varphi_i\}_{i=0}^n$ e $\{\alpha_i\}_{i=0}^n$ com $\alpha_i = v(x_i)$, $i = 0, 1, \ldots, n$, os valores nodais de v:

$$v(x) = \sum_{i=0}^{n} \alpha_i \varphi_i(x)$$

Introdução

Forma de

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Espaço dos Polinômios Lineares por Partes

- φ_i é chamada de função chapéu, por sua forma.
- Cada φ_i é contínua, linear por partes, assume o valor 1 em x_i e 0 nos demais nós.
- Portanto, φ_i só é diferente de zero em I_i e I_{i+1} , exceto nos extremos.

Introducão

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Espaço dos Polinômios Lineares por Partes

 As expressões explícitas para as funções chapéu são dadas por

$$\varphi_{i} = \begin{cases} \left(x - x_{i-1}\right)/h_{i}, & \text{se } x \in I_{i} \\ \left(x_{i+1} - x\right)/h_{i+1}, & \text{se } x \in I_{i+1} \\ 0, & \text{caso contrário} \end{cases}$$

Introdução

Forma de Lagrange

Espaço dos Polinômios Lineares

Espaço dos Polinômios Lineares por Partes

Interpolação Linear por Partes

• Dada uma função contínua f no intervalo I=[0,L], definimos o interpolante linear por partes $\pi f \in V_h$ na malha $\mathcal I$ de I por

$$\pi f(x) = \sum_{i=1}^{n} f(x_i) \varphi_i(x)$$

