

Allan Victor Almeida Faria (190127180), Ananda Almeida de Sá (150117345), Bruno Kevyn Andrade de Souza

Trabalho de Regressão Linear

Brasília, DF

21/02/2021

Allan Victor Almeida Faria (190127180), Ananda Almeida de Sá (150117345), Bruno Kevyn Andrade de Souza

Trabalho de Regressão Linear

Trabalho de Regressão Linear de Análise de dados hospitalares.

Universidade de Brasília (UnB)

Instituto de Ciências Exatas (IE)

Departamento de Estatística (DE)

Brasília, DF

21/02/2021

Resumo

resumo aqui

Palavras-chaves: 1. Análise de dados.

Lista de ilustrações

Figura	1	_	Gráfico	de	box-plo	t das	variav	áveis	dos	dados					12
Figura	2	_	Gráfico	de	calor da	a cori	relação	entre	as	variaváveis	dos	dados.			14

Lista de tabelas

Tabela	1	_	Descrição dos códigos da tabela com a seguinte indentificação da variável.	8
Tabela	2	_	Medidas descritivas para boxplots	1

Lista de abreviaturas e siglas

INEP Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira

SAEB Sistema de Avaliação da Educação Básica

Lista de símbolos

Sumário

1	RESULT	8
1.1	Introdução	8
1.1.1	Leitura de dados	8
1.1.1.1	Descrição das variáveis	9
1.1.1.2	Estatisticass Descritivas	10
1.1.1.3	Correlação entre as variáveis	13
1.2	Objetivo	14
1.2.1	Testes	14
1.2.2	Número de enfermeira(o)s	15
1.2.3	Duração da internação	28
	REFERÊNCIAS	29
	ANEXOS	30
	ANEYO A _ AMOSTDA	21

1 RESULT

1.1 Introdução

Tipo de problema, tipo de dados, proposta para contornar o problema

1.1.1 Leitura de dados

O programa utilizado para analisar os dados disponibilizados em Excel será o R Studio, versão 4.2.0, importados como um data frame (planilha), onde as colunas representam as variáveis de estudo e cada linha representa um hospital dos Estados Unidos no período de 1975-1976.

Tabela 1 – Descrição dos códigos da tabela com a seguinte indentificação da variável.

Número de Identificação	ID				
Duração da Internação					
Idade	X2				
Risco de Infecção	X3				
Proporção de Culturas de Rotina	X4				
Proporção de Raio-X de Tórax de Rotina					
Número de leitos					
Filiação a Escola de Medicina					
Região					
Média diária de pacientes	X9				
Número de enfermeiro(s)	X10				
Facilidades e serviços disponíveis					

1.1.1.1 Descrição das variáveis

• Duração da Internação

A duração de internação é uma variável quantitativa contínua que representa a duração média da internação de todos os pacientes no hospital (em dias).

• Idade

A idade é uma variável quantitativa contínua que representa a idade média dos pacientes de cada hospital.

• Risco de Infecção

O risco de infecção é uma variável quantitativa contínua que representa a probabilidade média estimada de adquirir infecção no hospital (em %).

• Proporção de Culturas de Rotina

A proporção de culturas de rotina é uma variável quantitativa contínua que representa a razão do número de culturas realizadas com relação ao número de pacientes sem sinais ou sintomas de infeção adquirida no hospital, vezes 100.

• Proporção de Raio-X de Tórax de Rotina

A proporção de raio-X de tórax de rotina é uma variável quantitativa contínua que representa a razão do número de raio-X de tórax realizados com relação ao número de pacientes sem sinais ou sintomas de pneumonia, vezes 100.

• Número de leitos

O número de leitos é uma variável quantitativa discreta que representa o número médio de leitos no hospital durante o período de estudo.

• Filiação a Escola de Medicina

Universidade de Brasília

A filiação a escola de medicina é uma variável qualitativa ordinal onde o 1 significa que a escola tem filiação, e 2 que não tem.

• Região

A região é uma variáveis qualitativas nominal onde referese as regiões dos jospitais.

• Média diária de pacientes

O média diária de pacientes é uma variável quantitativa discreta que representa o número médio de pacientes no hospital por dia durante o período do estudo.

• Número de enfermeiro(s)

O número de enfermeiro(s) é uma variável quantitativa discreta que representa o Número médio de enfermeiros(as) de tempo-integral ou equivalente registrados e licenciados durante o período de estudo (número de tempos integrais+metade do número de tempo parcial).

• Facilidades e serviços disponíveis

A facilidades e serviços disponíveis é uma variável quantitativa contínua que representa a porcentagem de 35 potenciais facilidades e serviços que são fornecidos pelo hospital.

1.1.1.2 Estatisticass Descritivas

A tabela 2, mosta a estatistica descritivas das variáveis numéricas dos dados sem normalização, com efeito de mensuração diferentes como descrita em "Descrições de variáveis".

```
# datax2 <-datax %>%
# select(X5, X2, X4, X11)
# datax3 <-datax %>%
# select(X1, X3)
# datax1 <-datax %>%
```

Tabela 2 – Medidas descritivas para boxplots

Variaveis	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Duração da Internação	6.700	8.340	9.420	9.648	10.470	19.560
Idade	38.80	50.90	53.20	53.23	56.20	65.90
Risco de Infecção	1.300	3.700	4.400	4.355	5.200	7.800
Proporção de Culturas de Rotina	1.60	8.40	14.10	15.79	20.30	60.50
Proporção de Raio-X de Tórax de Rotina	39.60	69.50	82.30	81.63	94.10	133.50
Número de leitos	29.0	106.0	186.0	252.2	312.0	835.0
Média diária de pacientes	20.0	68.0	143.0	191.4	252.0	791.0
Número de enfermeiro(s)	14.0	66.0	132.0	173.2	218.0	656.0
Facilidades e serviços disponíveis	5.70	31.40	42.90	43.16	54.30	80.00

```
# select(X6, X9, X10)

# par(mfrow = c(1,3))
# boxplot(datax1)
# boxplot(datax2)
# boxplot(datax3)
boxplot(datax_ajusdet)
```

```
par(mfrow = c(1,2))
datax %>% select(X7) %>% table(.) %>% barplot(xlab='X7')
datax %>% select(X8) %>% table(.) %>% barplot(xlab='X8')
```


Figura 1 – Gráfico de box-plot das variaváveis dos dados.

1.1.1.3 Correlação entre as variáveis

Para verificar a natureza e a força da relação entre as variáveis e identificar lacunas e pontos discrepantes no conjunto de dados, utiliza-se a matriz de correlação aplicado no script a seguir.

```
library(ggcorrplot)
```

Carregando pacotes exigidos: ggplot2

```
library(dplyr)

pmat = datax %>% select_if(is.numeric) %>%cor_pmat()

datax %>% select_if(is.numeric) %>% cor(.) %>%
    ggcorrplot( type = "lower", p.mat = pmat, hc.order = TRUE, lab = TRUE)
```

```
# k = datax %>% select_if(is.numeric) %>% summary()
```


Figura 2 – Gráfico de calor da correlação entre as variaváveis dos dados.

1.2 Objetivo

1.2.1 Testes

Para efetuar um modelo, separa-se o banco em teste e treino no qual:

```
set.seed(10)
dados_train <- datax[sample(nrow(datax), 57, replace = F),] %>% data.frame()
dados_valid <- anti_join(datax, dados_train, by="ID") %>% data.frame()

# inbalanced data
table(dados_train$X8)
```

1 2 3 4

##

```
## 14 17 18 8
```

1.2.2 Número de enfermeira(o)s

```
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
##
       filter
## The following object is masked from 'package:graphics':
##
##
       layout
require(gridExtra)
## Carregando pacotes exigidos: gridExtra
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
```

```
require(ggplot2)
library("patchwork")

g0<-ggplot(data = dados_train, aes(x=X6, X10, color = X8))+
    geom_point()+
    geom_smooth( method=lm, se=FALSE)+theme_bw()

g1<-ggplot(data = dados_train, aes(x=X11, X10, color = X8))+
    geom_point()+
    geom_smooth( method=lm, se=FALSE)+theme_bw()+ ylab("")

g0+g1+plot_layout(guides = "collect")</pre>
```

`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'

Universidade de Brasília

Espera-se que o número de enfermeira(o)s esteja relacionado às instalações e serviços disponíveis através de um modelo de segunda ordem. Suspeita-se também que varie segundo

serviços disponíveis:X1,X4,X5,X6,X11

instalações:X7

região:X8

Deseja-se estudar se o número de enfermeira(o)s está relacionado às instalações, ou seja, os números de leitos do hospital, e se há diferenças entre os serviços disponíveis pelos hospitais. Neste caso, a variável resposta é o número de enfermeira(o)s e as duas outras variáveis são explicativas. Para isso, faz-se necessário a aplicação da regressão linear múltipla realizada no script a seguir:

boxplot(dados_train\$X10~dados_train\$X8)

Para um modelo inicial temos que

$$\hat{y} = \beta_0 + \beta_{X8}X8 + \beta_{X6}X6 + \beta_{X11}X11$$

analizando ANOVA do modelo, percebemos que o modelo tem apenas interação com X6, X11, e o resto das variáveis nao foram significantes

```
# Avaliando quais variaveis tem significância
summary(aov(X10 ~ X8*X6*X11*X7, data=dados_train))
```

```
##
                Df Sum Sq Mean Sq F value Pr(>F)
                 3
                     0.73
                             0.24
                                    1.932 0.1450
## X8
## X6
                   49.17
                            49.17 388.115 <2e-16 ***
                 1
## X11
                             0.31
                                    2.433 0.1290
                    0.31
                 1
## X7
                 1
                    0.68
                             0.68
                                  5.340 0.0277 *
## X8:X6
                 3
                   1.49
                            0.50
                                  3.921 0.0175 *
## X8:X11
                 3
                   0.65
                             0.22
                                    1.703 0.1868
## X6:X11
                 1
                   0.01
                             0.01
                                  0.083 0.7756
## X8:X7
                   0.54
                 3
                             0.18
                                   1.433 0.2519
## X6:X7
                 1
                   0.44
                             0.44
                                  3.474 0.0719 .
## X11:X7
                 1
                   0.00
                             0.00
                                   0.025 0.8752
## X8:X6:X11
                                    0.411 0.7459
                 3
                   0.16
                             0.05
## X8:X6:X7
                    0.36
                             0.36
                                   2.812 0.1036
                 1
## X8:X11:X7
                    0.00
                             0.00
                                   0.017 0.8968
                 1
## X6:X11:X7
                 1
                    0.31
                             0.31
                                   2.454 0.1274
## X8:X6:X11:X7 1
                     0.05
                                    0.365 0.5501
                             0.05
## Residuals
                     3.93
                31
                             0.13
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

agora construindo um modelo de regressão linear com esta configuração temos que

```
modelo_inicial <- lm(X10 ~ X6+X7, data=dados_train)
summary(modelo_inicial)</pre>
```

##

Call:

```
## lm(formula = X10 ~ X6 + X7, data = dados_train)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -1.2383 -0.1577 -0.0397 0.1697
                                    1.0820
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.39441
                           0.15677
                                     2.516
                                             0.0149 *
## X6
                0.86803
                           0.07152
                                   12.137
                                             <2e-16 ***
## X72
                           0.17969 -2.333
               -0.41918
                                             0.0234 *
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.3995 on 54 degrees of freedom
## Multiple R-squared: 0.8535, Adjusted R-squared: 0.8481
## F-statistic: 157.3 on 2 and 54 DF, p-value: < 2.2e-16
```

com valor do F-statistics, percebe-se que o teste de regressão é significativo, indicando que há regressão nesses dados, e analizando o modelo, x11 e x6 não tem diferença significativa, podendo descartar acabando com um modelo do tipo

```
modelo_inicial <- lm(X10 ~ X6+X7, data=dados_train)
summary(modelo_inicial)</pre>
```

```
##
## Call:
## lm(formula = X10 ~ X6 + X7, data = dados_train)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -1.2383 -0.1577 -0.0397 0.1697
                                     1.0820
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.39441
                            0.15677
                                      2.516
                                              0.0149 *
```

```
## X6     0.86803     0.07152     12.137     <2e-16 ***
## X72     -0.41918     0.17969     -2.333     0.0234 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3995 on 54 degrees of freedom
## Multiple R-squared: 0.8535, Adjusted R-squared: 0.8481
## F-statistic: 157.3 on 2 and 54 DF, p-value: < 2.2e-16</pre>
```

agora avalindo este modelo temos que o erro medio das previsões é baixo e o R2 no banco de teste é alto, assim sendo um bom modelo para começar e avaliar com as suposições do hospital

```
library(caret)
```

Carregando pacotes exigidos: lattice

```
# predições
predictions <- modelo_inicial %>% predict(dados_valid)
data.frame(
    RMSE = RMSE(predictions, dados_valid$X10),
    R2 = R2(predictions, dados_valid$X10)
)
```

```
## RMSE R2
## 1 0.4212077 0.8287177
```

```
# Teste de multicolinearidade Gif (>1 indica multicolinearidade)
car::vif(modelo_inicial)
```

```
## X6 X7
## 1.668569 1.668569
```

shapiro.test(modelo_inicial\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: modelo_inicial$residuals
## W = 0.95214, p-value = 0.02461
```

plot(modelo_inicial)

Agora avaliando através do steepwise, temos que o modelo que converge sobre o uso de mais variaveis

```
modelo_inicial <- lm(X10 ~ X6+X7, data=dados_train)
summary(modelo_inicial)</pre>
```

```
##
## Call:
## lm(formula = X10 ~ X6 + X7, data = dados_train)
##
## Residuals:
       Min
##
                1Q
                   Median
                                 ЗQ
                                         Max
## -1.2383 -0.1577 -0.0397
                             0.1697
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                0.39441
                            0.15677
                                       2.516
                                               0.0149 *
## X6
                0.86803
                                     12.137
                                               <2e-16 ***
                            0.07152
```

```
## X72
                                            -0.41918
                                                                              0.17969 - 2.333
                                                                                                                                   0.0234 *
## ---
                                                       0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.3995 on 54 degrees of freedom
## Multiple R-squared: 0.8535, Adjusted R-squared: 0.8481
## F-statistic: 157.3 on 2 and 54 DF, p-value: < 2.2e-16
modmin<-lm(X10 ~ 1, data=dados_train)</pre>
modcompl<-lm(X10~ X1+X2+X3+X4+X5+X6+X8+X9+X11, data=dados_train)</pre>
modfim <- step(modmin, scope=list(lower=modmin, upper=modcompl), direction="both", darection="both", d
## Start: AIC=3.8
## X10 ~ 1
##
##
                             Df Sum of Sq
                                                                            RSS
                                                                                                      AIC
## + X9
                                1
                                              49.718 9.109 -100.527
## + X6
                               1
                                             49.342 9.485 -98.221
## + X11 1 33.638 25.189 -42.549
## + X1
                                      11.306 47.521 -6.367
## + X3
                                            10.532 48.294 -5.447
## + X4
                                           3.608 55.218
                                                                                             2.190
## <none>
                                                                   58.827
                                                                                               3.798
## + X5
                                                 1.534 57.293
                                                                                         4.292
## + X2
                                                 0.002 58.825
                                                                                             5.796
                               1
## + X8
                               3
                                                 0.734 58.092
                                                                                                9.082
##
## Step: AIC=-100.53
## X10 ~ X9
##
##
                             Df Sum of Sq
                                                                            RSS
                                                                                                      AIC
## + X11
                                1
                                                 0.476 8.633 -101.587
## + X4
                               1
                                                 0.391 8.718 -101.029
## + X5
                               1
                                                 0.377 8.732 -100.934
## + X3
                                                  0.326 8.783 -100.605
```

```
## <none>
                       9.109 -100.527
## + X8
                0.871 8.237 -100.259
## + X6
                0.256 8.853 -100.152
          1
## + X2
                0.053 9.056 -98.858
          1
## + X1
               0.004 9.105 -98.551
## - X9
          1
              49.718 58.827
                               3.798
##
## Step: AIC=-101.59
## X10 ~ X9 + X11
##
         Df Sum of Sq
##
                          RSS
                                  AIC
## <none>
                       8.6327 -101.587
## + X5
               0.2891 8.3436 -101.528
## + X4
               0.2513 8.3814 -101.271
          1
## + X3
             0.1887 8.4440 -100.847
## + X6
             0.1833 8.4494 -100.811
          1
## - X11
              0.4761 9.1088 -100.527
          1
## + X8
             0.6907 7.9420 -100.340
## + X2
          1
              0.0390 8.5937 -99.846
## + X1
          1
             0.0033 8.6294 -99.609
## - X9
              16.5563 25.1890 -42.549
```

summary(modfim)

```
##
## Call:
## lm(formula = X10 ~ X9 + X11, data = dados_train)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -1.30613 -0.16346 -0.01179 0.13399 0.80067
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04952
                           0.05328
                                     0.929
                                              0.3568
## X9
                           0.08618 10.177 3.67e-14 ***
                0.87702
```

```
## X11     0.13898     0.08053     1.726     0.0901 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3998 on 54 degrees of freedom
## Multiple R-squared: 0.8533, Adjusted R-squared: 0.8478
## F-statistic: 157 on 2 and 54 DF, p-value: < 2.2e-16</pre>
```

agora com o teste linear geral, temos que existe diferença significatifva entre os modelos e acabamos com um moelo mais parcimanioso sem multicolineariade que é o caso do modtest

```
anova(modelo_inicial, modfim) # modelo 2 é melhor
```

```
## Analysis of Variance Table

##

## Model 1: X10 ~ X6 + X7

## Model 2: X10 ~ X9 + X11

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 54 8.6165

## 2 54 8.6327 0 -0.016185
```

AIC(modelo_inicial,modfim) # quanto menoor melhor

```
## df AIC
## modelo_inicial 4 62.06488
## modfim 4 62.17184
```

BIC(modelo_inicial,modfim)

```
## df BIC
## modelo_inicial 4 70.23708
## modfim 4 70.34405
```

```
car::vif(modfim)
##
         χ9
                 X11
## 2.357255 2.357255
shapiro.test(modfim$residuals)
##
    Shapiro-Wilk normality test
##
## data: modfim$residuals
## W = 0.92676, p-value = 0.001982
modtest<- lm(X10 ~ X8+X4+X6, data=dados_train)</pre>
car::vif(modtest)
          GVIF Df GVIF<sup>(1/(2*Df))</sup>
## X8 1.150084 3
                         1.023579
## X4 1.179353 1
                         1.085980
## X6 1.056460 1
                         1.027842
anova(modfim,modtest)
## Analysis of Variance Table
##
## Model 1: X10 ~ X9 + X11
## Model 2: X10 ~ X8 + X4 + X6
     Res.Df
               RSS Df Sum of Sq F Pr(>F)
##
## 1
         54 8.6327
## 2
         51 8.7650 3 -0.13234
predictions <- modtest %>% predict(dados_valid)
data.frame(
  RMSE = RMSE(predictions, dados_valid$X10),
```

```
R2 = R2(predictions, dados_valid$X10)
)

## RMSE R2
## 1 0.4026966 0.8498328

predictions <- modfim %>% predict(dados_valid)
data.frame(
    RMSE = RMSE(predictions, dados_valid$X10),
    R2 = R2(predictions, dados_valid$X10)
)

## RMSE R2
## 1 0.4319206 0.8343771
```

1.2.3 Duração da internação

A duração da internação está associada a características do paciente, seu tratamento e do hospital

características do paciente:X2, seu tratamento:X4,X5 hospital:X3,X6,X7,X9,X10, X11

Deseja-se estudar se a Duração da internação está associada a características do paciente, seu tratamento e do hospital, ou seja, a duração da internação, e se há diferenças entre os serviços disponíveis pelos hospitais. Neste caso, a variável resposta é o número de enfermeira(o)s e as duas outras variáveis são explicativas. Para isso, faz-se necessário a aplicação da regressão linear múltipla realizada no script a seguir:

Referências

ANEXO A - Amostra