- 1. Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are. 35%
 - a) $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$
 - **b**) $a_n = 2na_{n-1} + a_{n-2}$ **c**) $a_n = a_{n-1} + a_{n-4}$

- **d**) $a_n = a_{n-1} + 2$
- e) $a_n = a_{n-1}^2 + a_{n-2}$
- **f**) $a_n = a_{n-2}$

g) $a_n = a_{n-1} + n$

- 2. Solve these recurrence relations together with the initial conditions given. 35%
 - **a**) $a_n = 2a_{n-1}$ for $n \ge 1$, $a_0 = 3$
 - **b**) $a_n = a_{n-1}$ for $n \ge 1$, $a_0 = 2$
 - c) $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$
 - **d**) $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 6$, $a_1 = 8$
 - e) $a_n = -4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$
 - **f**) $a_n = 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 4$
 - g) $a_n = a_{n-2}/4$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

- 3. a) Determine values of the constants A and B such that $a_n = An + B$ is a solution of recurrence relation $a_n = 2a_{n-1} + n + 5$.
 - **b)** Use Theorem 5 to find all solutions of this recurrence relation.
 - c) Find the solution of this recurrence relation with $a_0 = 4$.