Interpolation Horners metode

Mogens Bladt bladt@math.ku.dk Department of Mathematical Sciences

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{i=0}^{n-1} (x - x_i).$$

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{j=0}^{n-1} (x - x_j).$$

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{j=0}^{n-1} (x - x_j).$$

Så kan vi faktorisere nedefra:

• konstanten c_0 isoleres.

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{j=0}^{n-1} (x - x_j).$$

- konstanten c₁ isoleres.
- $(x x_0)$ forekommer i resten af udtrykkene: sæt uden for parantes (faktoriser).

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{j=0}^{n-1} (x - x_j).$$

- konstanten c₁ isoleres.
- $(x x_0)$ forekommer i resten af udtrykkene: sæt uden for parantes (faktoriser).
- Dette isolerer c_1 som konstant plus resten.

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{j=0}^{n-1} (x - x_j).$$

- konstanten c_0 isoleres.
- $(x x_0)$ forekommer i resten af udtrykkene: sæt uden for parantes (faktoriser).
- Dette isolerer c_1 som konstant plus resten.
- I resten er $(x x_2)$ divisor og kan faktoriseres.

Fra

$$p_0(x) = c_0, \quad p_i(x) = p_{i-1}(x) + c_i \prod_{j=0}^{i-1} (x - x_j).$$

fås

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n \prod_{j=0}^{n-1} (x - x_j).$$

- konstanten c_0 isoleres.
- $(x x_0)$ forekommer i resten af udtrykkene: sæt uden for parantes (faktoriser).
- Dette isolerer c_1 som konstant plus resten.
- I resten er $(x x_2)$ divisor og kan faktoriseres.
- etc.

$$p_n(x) = c_0$$

$$+c_1(x-x_0)$$

$$+c_2(x-x_0)(x-x_1)$$

$$+c_3(x-x_0)(x-x_1)(x-x_2)$$
...
$$+c_n(x-x_0)(x-x_1)(x-x_2)\cdots(x-x_{n-1}).$$

$$p_n(x) = c_0 + (x - x_0)[c_1 + (x - x_1)[c_2 + (x - x_2)[c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1})c_n] \cdots]]]$$

$$p_{n}(x) = c_{0}$$

$$+c_{1}(x-x_{0})$$

$$+c_{2}(x-x_{0})(x-x_{1})$$

$$+c_{3}(x-x_{0})(x-x_{1})(x-x_{2})$$

$$\cdots$$

$$+c_{n}(x-x_{0})(x-x_{1})(x-x_{2})\cdots(x-x_{n-1}).$$

$$p_n(x) = \frac{c_0}{c_0} + (x - x_0) [c_1 + (x - x_1) [c_2 + (x - x_2) [c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1}) c_n] \cdots]]]$$

$$p_{n}(x) = c_{0}$$

$$+c_{1}(x-x_{0})$$

$$+c_{2}(x-x_{0})(x-x_{1})$$

$$+c_{3}(x-x_{0})(x-x_{1})(x-x_{2})$$

$$\cdots$$

$$+c_{n}(x-x_{0})(x-x_{1})(x-x_{2})\cdots(x-x_{n-1}).$$

$$p_n(x) = c_0 + (x - x_0)[c_1 + (x - x_1)[c_2 + (x - x_2)[c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1})c_n] \cdots]]]$$

$$p_n(x) = c_0$$

$$+c_1(x-x_0)$$

$$+c_2(x-x_0)(x-x_1)$$

$$+c_3(x-x_0)(x-x_1)(x-x_2)$$
...
$$+c_n(x-x_0)(x-x_1)(x-x_2)\cdots(x-x_{n-1}).$$

$$p_n(x) = c_0 + (x - x_0)[c_1 + (x - x_1)[c_2 + (x - x_2)[c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1})c_n] \cdots]]$$

$$p_n(x) = c_0$$

$$+c_1(x-x_0)$$

$$+c_2(x-x_0)(x-x_1)$$

$$+c_3(x-x_0)(x-x_1)(x-x_2)$$
...
$$+c_n(x-x_0)(x-x_1)(x-x_2)\cdots(x-x_{n-1}).$$

kan faktoriseres som

$$p_n(x) = c_0 + (x - x_0) [c_1 + (x - x_1) [c_2 + (x - x_2) [c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1}) c_n] \cdots]]]$$

Multiplikation er dyrt. I første udtryk ganges $1 + 2 + \cdots + n = n(n+1)/2$ gange.

$$p_n(x) = c_0$$

$$+c_1(x-x_0)$$

$$+c_2(x-x_0)(x-x_1)$$

$$+c_3(x-x_0)(x-x_1)(x-x_2)$$
...
$$+c_n(x-x_0)(x-x_1)(x-x_2)\cdots(x-x_{n-1}).$$

kan faktoriseres som

$$p_n(x) = c_0 + (x - x_0) [c_1 + (x - x_1) [c_2 + (x - x_2) [c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1}) c_n] \cdots]]]$$

Multiplikation er dyrt. I første udtryk ganges $1 + 2 + \cdots + n = n(n+1)/2$ gange. I Horner's udtryk ganges n gange.

$$p_n(x) = c_0$$

$$+c_1(x-x_0)$$

$$+c_2(x-x_0)(x-x_1)$$

$$+c_3(x-x_0)(x-x_1)(x-x_2)$$
...
$$+c_n(x-x_0)(x-x_1)(x-x_2)\cdots(x-x_{n-1}).$$

kan faktoriseres som

$$p_n(x) = c_0 + (x - x_0)[c_1 + (x - x_1)[c_2 + (x - x_2)[c_3 + \cdots \\ \cdots [c_{n-1} + (x - x_{n-1})c_n] \cdots]]$$

Multiplikation er dyrt. I første udtryk ganges $1+2+\cdots+n=n(n+1)/2$ gange. I Horner's udtryk ganges n gange. Defor vil udregning af $p_n(x)$ være hurtigere vha. Horner's algoritme and ved direkte indsættelse.

Eksempel

Las os udregne:

$$p_4(x) = c_0 + (x - x_0)[c_1 + (x - x_1)[c_2 + (x - x_2)[c_3 + (x - x_3)c_4]]].$$

Dette gøres så "indefra" via Horner's algoritme som følger.

- Sæt $u = c_4$.
- $u = u * (x x_3) + c_3$
- $u = u * (x x_2) + c_2$
- $u = u * (x x_1) + c_1$
- $u = u * (x x_0) + c_0$

Eksempel

Las os udregne:

$$p_4(x) = c_0 + (x - x_0) \left[c_1 + (x - x_1) \left[c_2 + (x - x_2) \left[c_3 + (x - x_3) c_4 \right] \right] \right].$$

Dette gøres så "indefra" via Horner's algoritme som følger.

- Sæt $u = c_4$.
- $u = u * (x x_3) + c_3$
- $u = u * (x x_2) + c_2$
- $u = u * (x x_1) + c_1$
- $u = u * (x x_0) + c_0$

Så vil $u = p_4(x)$.

Eksempel

Las os udregne:

$$p_4(x) = c_0 + (x - x_0) \left[c_1 + (x - x_1) \left[c_2 + (x - x_2) \left[c_3 + (x - x_3) c_4 \right] \right] \right].$$

Dette gøres så "indefra" via Horner's algoritme som følger.

- Sæt $u = c_4$.
- $u = u * (x x_3) + c_3$
- $u = u * (x x_2) + c_2$
- $u = u * (x x_1) + c_1$
- $u = u * (x x_0) + c_0$

Så vil $u = p_4(x)$.

Generelt, i pseudo-kode: $p_k(x)$ udregnes ved

$$u = c_k$$

for i=0 to k-1 do
 $u = u * (x - x_{k-1-i}) + c_{k-1-i}$
end for

Nu ved vi hvordan vi udregner funktionsværdier af polynomiet $p_k(x)$ hvis det er kendt.

Nu ved vi hvordan vi udregner funktionsværdier af polynomiet $p_k(x)$ hvis det er kendt.

Hvis vi ikke kender koefficienterne c_i , i=0,...,n-1, kan disse udregnes idet vi kender funktionsværdierne af $p_k(x)$ i punkterne x_i hvor de tager værdierne y_i .

Nu ved vi hvordan vi udregner funktionsværdier af polynomiet $p_k(x)$ hvis det er kendt.

Hvis vi ikke kender koefficienterne c_i , i=0,...,n-1, kan disse udregnes idet vi kender funktionsværdierne af $p_k(x)$ i punkterne x_i hvor de tager værdierne y_i .

Vi starter nede fra, i.e. med i=0: Her er $p_0(x_1)=c_0=y_0$ kendt, så med $u=p_0(x_1)=c_0=y_0$ har vi så

$$c_1 = \frac{y_1 - u}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0}.$$

Nu ved vi hvordan vi udregner funktionsværdier af polynomiet $p_k(x)$ hvis det er kendt.

Hvis vi ikke kender koefficienterne c_i , i=0,...,n-1, kan disse udregnes idet vi kender funktionsværdierne af $p_k(x)$ i punkterne x_i hvor de tager værdierne y_i .

Vi starter nede fra, i.e. med i=0: Her er $p_0(x_1)=c_0=y_0$ kendt, så med $u=p_0(x_1)=c_0=y_0$ har vi så

$$c_1 = \frac{y_1 - u}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0}.$$

For i = 1: c_0, c_1 er nu kendt. Dermed er $p_1(x)$ således kendt. Kør så u-algoritmen til at finde $u = p_1(x_2)$, og sæt

$$c_2 = \frac{y_2 - u}{(x_2 - x_1)(x_2 - x_0)}.$$

Nu ved vi hvordan vi udregner funktionsværdier af polynomiet $p_k(x)$ hvis det er kendt.

Hvis vi ikke kender koefficienterne c_i , i=0,...,n-1, kan disse udregnes idet vi kender funktionsværdierne af $p_k(x)$ i punkterne x_i hvor de tager værdierne y_i .

Vi starter nede fra, i.e. med i = 0: Her er $p_0(x_1) = c_0 = y_0$ kendt, så med $u = p_0(x_1) = c_0 = y_0$ har vi så

$$c_1 = \frac{y_1 - u}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0}.$$

For i = 1: c_0, c_1 er nu kendt. Dermed er $p_1(x)$ således kendt. Kør så u-algoritmen til at finde $u = p_1(x_2)$, og sæt

$$c_2 = \frac{y_2 - u}{(x_2 - x_1)(x_2 - x_0)}.$$

Så kendes c_0 , c_1 og c_2 og dermed $p_2(x)$, o.s.v.