Versuchsbericht zu

A2 - Franck-Hertz-Versuch

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 30.04.2018 betreut von Fabian Schöttke

Inhaltsverzeichnis

1	Kurzfassung			3	
2	Methoden				
3	Ergebnisse und Diskussion 3.1 Beobachtung				
	3.1	<u> </u>		4	
	3.2			5	
		3.2.1 Unsicherheiten		5	
		3.2.2 Quecksilber-Charakteristik		5	
		3.2.3 Neon-Charakteristik		6	
		3.2.4 Bestimmen von Anregungsenergie,			
		Strahlung		7	
		3.2.5 Berechnen der mittleren freien Weg	glänge der Elektronen	7	
	3.3 Diskussion				
4	Sch	hlussfolgerung		8	

1 Kurzfassung

Der Franck-Hertz-Versuch erlaubt es die gequantelten Energieniveaus in Atomen nachzuweisen, da sich bei passender mittlerer freier Weglänge zwischen den Atomen eine charakteristische I_A/U_B -Kurve messen lässt. Diese ist nur erklärbar, wenn die Übergänge der Elektronen zwischen den Energieniveaus diskrete Energiedifferenzen bedeuten.

Dementsprechend erwarteten wir bei einer Neonröhre und bei aufgeheizter Quecksilberdampfröhre die Franck-Hertz-Kennlinie der Röhren mit mehreren Extremwerten. Die mittlere freie Weglänge, die sich aus den Extrema bestimmen lässt, sollte kleiner sein als der Abstand zwischen Kathode und Anode, was sich so zeigen ließ. Die Wellenlängen der erzeugten Strahlung erwarteten wir gemäß den wahrscheinlichen Übergängen in den Termschemata von Quecksilber und Neon. Tatsächlich haben wir aber im Fall von Neon einen der Übergänge, der nicht im Bereich des sichtbaren Lichts liegt, gemessen, aber in beiden Fällen bestätigen unsere Messwerte einen der Übergänge im jeweiligen Atom. Die Emission von sichtbarem Licht, war jedoch bei der Neonröhre erwartungsgemäß beobachtbar.

Bei kalter Quecksilberröhre wurde hingegen ein monotoner, plötzlicher Anstieg des Anodenstroms mit der Beschleunigungsspannung erwartet, da hier die mittlere freie Weglänge zu groß ist, um eine nennenswerte Anzahl von inelastischen Zusammenstößen zu ermöglichen und somit keine Minima auftreten. Dies konnte aufgrund eines Fehlers in der Messapparatur weder nachgewiesen noch widerlegt werden.

2 Methoden

Untersucht wurde eine Franck-Hertz-Röhre mit Quecksilberfüllung und eine mit Neonfüllung. Diese wurden, wie in Abb. 1 dargestellt, verschaltet. Die Quecksilberröhre befand sich in einem Ofen, der sie auf bis zu $300\,^{\circ}$ C aufheizen kann. Der Anodenstrom ist sehr klein, weshalb er vom Betriebsgerät in eine Spannung U_A umgewandelt wurde, die zum Anodenstrom proportional ist.

Zunächst wurde die I_A/U_B -Charakteristik der Röhre mit Quecksilberfüllung bei Zimmertemperatur aufgenommen. Dazu wurde die Beschleunigungsspannung U_B langsam erhöht und diese sowie die Spannung U_A gemessen.

Im Anschluss wurde der Ofen auf ca. 180 °C erhitzt. Dann wurde das Betriebsgerät so eingestellt, dass es eine Dreieckspannung mit einer Frequenz von 60 Hz als Beschleunigungsspannung ausgibt. Der resultierende Anodenstrom wurde zunächst mit einem Oszilloskop betrachtet und Bremsspannung U_B und Heizstrom I_H so eingestellt, dass sich mindestens drei Minima der Franck-Hertz-Kurve ablesen ließen. Dann wurde mithilfe manueller Reglung der Beschleunigungsspannung die I_A/U_B -Charakteristik wie zuvor aufgenommen und die Temperatur im Ofen gemessen.

Analog wurde die Neon-Röhre bei Raumtemperatur untersucht, wobei hier zusätzlich ein Steuergitter (mit Spannung U_S) verwendet wurde, um störende Einflüsse durch Abstoßung der Elektronen untereinander zu verringern.

Abbildung 1: Schaltungen der Franck-Hertz-Röhren mit Quecksilber (links) und Neon (rechts).[4]

3 Ergebnisse und Diskussion

3.1 Beobachtung

Abbildung 2: Aufgenommene Quecksilber-Charakteristik bei $T=(19,0\pm1,5)\,^{\circ}$ C. Die Stromstärke wurde mit einem Operationsverstärker in eine messbare Spannung umgewandelt.

3.2 Datenanalyse

3.2.1 Unsicherheiten

Die Unsicherheit des Voltmeters beträgt $\pm (0,5\% + 200\,\mathrm{mV})$ für die Beschleunigungsspannung und $\pm (0,5\% + 20\,\mathrm{mV})$ für die gemessene Spannung (0,5% vom angezeigten Wert).[6] Die zusätzliche Unsicherheit des Operationsverstärkers wird als demgegenüber vernachlässigbar angenommen.

Die Unsicherheit des Thermometers vom Typ K ist 1,5 °C in dem gemessenen Temperaturinterval.[1] Zusätzlich ist die Temperatur nicht überall im Heizkasten gleich und schwankte beim Aufnehmen der Quecksilber-Charakteristik von 165 bis 180 °C, deshalb wählen wir für diese Messung die Unsicherheit als 7 °C.

Bei der Bestimmung der Beschleunigungsspannung an Extremstellen nehmen wir die Unsicherheit als aus dem Verlauf der Kurve und dem Abstand zum nächsten Messpunkt zusammengesetzt an.

3.2.2 Quecksilber-Charakteristik

In Abb. 3 ist die I_A/U_B -Charakteristik des Quecksilbers bei $T=(175\pm7)\,^{\circ}$ C dargestellt. Daraus lassen sich folgende Abstände ablesen:

• Maxima:

$$\Delta U_1 = (27.1 \pm 0.3) \text{ V} - (21.0 \pm 0.1) \text{ V} = (6.1 \pm 0.3) \text{ V}$$

• Minima

$$\Delta U_2 = (29.4 \pm 0.2) \text{ V} - (24.1 \pm 0.2) \text{ V} = (5.3 \pm 0.3) \text{ V}$$

 $\Delta U_3 = (24.1 \pm 0.2) \text{ V} - (18.0 \pm 0.5) \text{ V} = (6.1 \pm 0.5) \text{ V}$

Im Mittel ergibt sich ein $\Delta U_{\rm Hg}$ von (5.8 ± 0.2) V.

Abbildung 3: Aufgenommene Quecksilber-Charakteristik bei $T=(175\pm7)\,^{\circ}\text{C}$. Die Stromstärke wurde mit einem Operationsverstärker in eine messbare Spannung umgewandelt.

3.2.3 Neon-Charakteristik

In Abb. 4 ist die I_A/U_B -Charakteristik des Neons bei $T=(19,0\pm 1,5)\,^{\circ}$ C dargestellt. Daraus lassen sich folgende Abstände ablesen:

• Maxima:

$$\Delta U_1 = (38.8 \pm 0.2) \text{ V} - (20.8 \pm 0.4) \text{ V} = (18.0 \pm 0.4) \text{ V}$$

 $\Delta U_2 = (57.2 \pm 0.2) \text{ V} - (38.8 \pm 0.2) \text{ V} = (18.4 \pm 0.3) \text{ V}$

• Minima

$$\Delta U_3 = (44.9 \pm 0.5) \text{ V} - (27.5 \pm 0.3) \text{ V} = (17.4 \pm 0.6) \text{ V}$$

 $\Delta U_4 = (62.9 \pm 0.5) \text{ V} - (45.5 \pm 0.4) \text{ V} = (18.0 \pm 0.7) \text{ V}$

Im Mittel ergibt sich ein $\Delta U_{\rm Ne}$ von (17.9 ± 0.3) V.

Abbildung 4: Aufgenommene Neon-Charakteristik bei $T=(19,0\pm1,5)\,^{\circ}\text{C}$. Die Stromstärke wurde mit einem Operationsverstärker in eine messbare Spannung umgewandelt.

3.2.4 Bestimmen von Anregungsenergie, Wellenlänge und Frequenz der Strahlung

Aus den Spannungen lässt sich die kinetische Energie eines Elektrons bestimmen, die nowendig ist um den Resonanzzustand des Atoms anzuregen. Sie beträgt $\Delta E = \Delta U e$. Die Frequenz folgt aus $\nu = \Delta E/h$ und die Wellenlänge aus $\lambda = c/\nu$.[5] Die jeweiligen Werte sind in Tabelle 1 aufgelistet.

Tabelle 1: Aus den Charakteristiken von Quecksilber und Neon berechnete kinetische Energie, sowie Frequenz und Wellenlänge des emittierten Lichts.

	ΔU	ΔE	ν	λ
Quecksilber	$(5.8 \pm 0.2) \mathrm{V}$	$(5.8 \pm 0.2) \text{eV}$	$(1402 \pm 48) \text{THz}$	$(214.0 \pm 6.3) \mathrm{nm}$
Neon	$(17.9 \pm 0.3) \mathrm{V}$	$(17.9 \pm 0.3) \text{eV}$	$(4328 \pm 73) \text{THz}$	$(69.3 \pm 1.2) \mathrm{nm}$

3.2.5 Berechnen der mittleren freien Weglänge der Elektronen

In der Einführung wurde folgende Formel aufgeführt zum Bestimmen der freien Weglänge λ der Elektronen:

$$\lambda = \frac{k_B T}{\sigma p}$$
 mit $\sigma = \pi r_{\rm Hg}^2$ (1)

Der Druck p wird durch die Clausius-Clapeyron-Gleichung in integrierter Form bestimmt:

$$\ln\left(\frac{p_2}{p_1}\right) = \frac{\Delta H_{\text{m,v}}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \tag{2}$$

Dabei beträgt die allgemeine Gaskonstante $R=8,3145\,\mathrm{J\,mol^{-1}\,K^{-1}}$, die Verdampfungsenthalpie von Quecksilber $\Delta H_{\mathrm{m,v}}=59,3\,\mathrm{kJ/mol}$, der Radius eines Quecksilberatoms $r_{\mathrm{Hg}}=150\,\mathrm{pm}$ und der Referenzpunkt ist $T_1=293,15\,\mathrm{K}$ mit $p_1=0,242\,\mathrm{Pa.}[3][2][5]$

Durch Umformen von Gleichung (2) ergibt sich p_{kalt} und p_{warm} . Daraus widerum folgt mit Gleichung (1) λ_{kalt} und λ_{warm} . Die so bestimmten Werte sind in Tabelle 2 enthalten.

Tabelle 2: Mittlere frei Weglänge von Elektronen in Quecksilberdampf bei Raumtemperatur(kalt) und Heiztemperatur(warm).

	T	p	λ
kalt	$(292,15 \pm 1,50) \mathrm{K}$	$(0,223 \pm 0,028) \mathrm{Pa}$	$(0.256 \pm 0.032) \mathrm{m}$
warm	$(453,15 \pm 7,00) \mathrm{K}$	$(1,3 \pm 0,2) \text{kPa}$	$(0.068 \pm 0.010) \mathrm{mm}$

3.3 Diskussion

Abbildung 5: Vereinfachte Termschemata von Quecksilber (links) und Neon (rechts). Dicke Pfeile stellen Übergänge mit der größten Wahrscheinlichkeit dar.[4]

4 Schlussfolgerung

Literatur

- [1] R. Hörnemann GmbH. DIN-Toleranzen für Thermopaare und Termoleitungen. URL: http://www.hoernemann-rh.de/technik_details.asp?technikid=3 (besucht am 05.05.2018).
- [2] Charles F. Hill. "Measurement of Mercury Vapor Pressure by Means of the Knudsen Pressure Gauge". In: *Phys. Rev.* 20 (3 Sep. 1922), S. 259–266. DOI: 10.1103/PhysRev.20.259. URL: https://link.aps.org/doi/10.1103/PhysRev.20.259.

- [3] mai2014@andyhoppe.com. Quecksilber: Stoffeigenschaften. URL: http://www.periodensystem.info/elemente/quecksilber (besucht am 05.05.2018).
- [4] WWU Münster. Franck-Hertz-Versuch Einführung. URL: https://sso.uni-muenster.de/LearnWeb/learnweb2/pluginfile.php/1334783/mod_resource/content/1/Franck-Hertz-Versuch_Einf.pdf (besucht am 04.05.2018).
- [5] NIST. NIST Reference on Constants, Units and Uncertainty. URL: https://physics.nist.gov/cuu/index.html (besucht am 05.05.2018).
- [6] FH-Pforzheim. Infoblatt Digitalmultimeter. URL: http://eitidaten.fh-pforzheim. de/daten/labore/ellt/unterlagen_webseite/von_becker/Infoblatt_DigMM. pdf (besucht am 05.05.2018).