Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ к минисессии 29 октября 2015 г.

kiv@icm.krasn.ru

- 1. Вектор. Равенство векторов. Коллинеарные и компланарные векторы.
- 2. Линейные операции над векторами и их свойства.
- 3. Линейная комбинация векторов. Линейная независимость системы векторов. Необходимое и достаточное условие линейной зависимости системы векторов.
- 4. Геометрические критерии линйной зависимости.
- 5. Базис векторов прямой, плоскости и пространства. Координаты вектора в базисе. Координаты линейной комбинации векторов в базисе.
- 6. Декартова система координат на прямой, плоскости и в пространстве. Деление отрезка в данном отношении. Координаты точки, делящей отрезок пополам. Золотое сечение.
- 7. Декартовы прямоугольные системы координат. Полярные, цилиндрические и сферические системы координат. Их связь с прямоугольными координатами.
- 8. Числовая проекции вектора на направление и её свойства.
- 9. Скалярное произведение векторов и его свойства.
- 10. Ортонормированный базис. Выражение скалярного произведения через координаты данных векторов, угол между векторами. Условие ортогональности двух векторов.
- 11. Векторная проекция вектора на плоскость, ортогональную заданному нанаправлению. Свойства векторной проекции.
- 12. Левая и правая пары и тройки векторов. Векторное произведение. Свойства векторного произведения.
- 13. Координаты векторного произведения в ортонормированном базисе. Выражение через векторное произведение условия коллинеарности векторов.
- 14. Тождество Якоби.
- 15. Смешанное произведение трёх векторов. Нахождение смешанного произведения векторов через их координаты в ортонормированном и произвольном базисе.
- 16. Свойства смешанного произведения. Вычисление объёма тетраэдра по координатам его вершин.
- 17. Замена системы координат.

Типовые задачи

- 1. В треугольнике ABC проведены медианы AD,BE и CF. Представить векторы $\overrightarrow{AD},\overrightarrow{BE}$ и \overrightarrow{CF} в виде линейных комбинаций векторов \overrightarrow{AB} и \overrightarrow{AC} .
- 2. Точки E и F служат серединами сторон AB и CD четырехугольника ABCD (плоского или пространственного). Доказать, что $EF = \frac{BC + AD}{2}$. Вывести отсюда теорему о средней линии трапеции.
- 3. Точки K и L служат серединами сторон BC и CD параллелограмма ABCD. Выразить векторы \overline{BC} и \overline{CD} через векторы \overline{AK} и \overline{AL} .
- 4. На стороне AD параллелограмма ABCD отложен отрезок $AK = \frac{1}{5}AD$, а на диагонали AC отрезок $AL = \frac{1}{6}AC$. Доказать, что векторы \overrightarrow{KL} и \overrightarrow{LB} коллинеарны, и найти отношение \overrightarrow{KL} к \overrightarrow{LB} .
- 5. Доказать утверждения:
- 1) конечная система векторов, содержащая нулевой вектор, линейно зависима;
- 2) конечная система векторов, содержащая два равных вектора, линейно зависима.
- 6. Даны три вектора $\vec{a}(1,2), \vec{b}(-5,-1), \vec{c}(-1,3)$. Найти координаты векторов $2\vec{a}+3\vec{b}-\vec{c}$, $16\vec{a}+5\vec{b}-9\vec{c}$.
- 7. Проверить, что векторы $\vec{a}(4,1,1)$, $\vec{b}(1,2,-5)$ и $\vec{c}(-1,1,1)$ образуют базис в пространстве. Найти координаты векторов $\vec{l}(4,4,-5)$, $\vec{m}(2,4,-10)$ и $\vec{n}(0,3,-4)$ в этом базисе.
- 8. Дан правильный шестиугольник ABCDEF. Принимая за базисные векторы \overline{AB} и \overline{AF} , найти в этом базисе координаты векторов $\overline{BC},\overline{CD},\overline{EF},\overline{BD},\overline{CF},\overline{CE}$.
- 9. Дан параллелепипед $ABCDA_1B_1C_1D_1$. Принимая за начало координат вершину A, а за базисные векторы $\overrightarrow{AB}, \overrightarrow{AD}$ и $\overrightarrow{AA_1}$, найти координаты:
 - 1) вершин C, D_1 и C_1 ;
 - 2) точек K и L середин ребер A_1B_1 и CC_1 соответственно;
- 3) точек M и N пересечения диагоналей граней $A_1B_1C_1D_1$ и ABB_1A_1 соответственно:
 - 4) точки О пересечения диагоналей параллелепипеда.
- 10. Найти прямоугольные координаты точки, лежащей на шаре радиуса 1, зная ее широту 45° и долготу 330°.
- 11. Найти цилиндрические координаты точек по их прямоугольным координатам: A(3,-4,5), B(1,-1,-1), C(6,0,8).
- 12. В треугольнике АВС проведены медианы АД, ВЕ, СГ. Вычислить выражение

```
(\overrightarrow{DC}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BE}) + (\overrightarrow{AB}, \overrightarrow{CF}).
```

- 13. Найти скалярное произведение векторов \vec{a} и \vec{b} , если:
 - 1) $|\vec{a}| = 3, |\vec{b}| = 1, \angle(\vec{a}, \vec{b}) = 45^{\circ};$
 - 2) $|\vec{a}| = 6, |\vec{b}| = 7, \angle(\vec{a}, \vec{b}) = 120^{\circ};$
 - 3) $|\vec{a}| = 4, |\vec{b}| = 2, \angle(\vec{a}, \vec{b}) = 90^{\circ};$
 - 4) $|\vec{a}| = 5, |\vec{b}| = 1, \vec{a}$ и \vec{b}) сонаправлены;
 - 5) $|\vec{a}| = 3, |\vec{b}| = 2, \vec{a}$ и $\angle(\vec{a}, \vec{b}) = 45^{\circ}$ противоположно направлены.
- 14. Найти скалярное произведение векторов \vec{a} и \vec{b} , заданных своими координатами:
 - 1) $\vec{a}(3,2,-5), \vec{b}(10,1,2)$;
 - 2) $\vec{a}(1,0,3), \vec{b}(-4,15,1)$;
 - 3) $\vec{a}(2,1,5), \vec{b}(7,-9,-1)$.
- 15. Найти угол между векторами \vec{a} и \vec{b} , заданными своими координатами:
 - 1) $\vec{a}(1,-1,1),\vec{b}(5,1,1)$;
 - 2) $\vec{a}(1,-1,1), \vec{b}(-2,2,-2)$.
- 16. Дан вектор $\vec{a}(3,3,6)$. Найти ортогональную проекцию вектора \vec{b} на прямую, направление которой определяется вектором \vec{a} , и ортогональную составляющую вектора \vec{b} относительно этой прямой, если вектор \vec{b} имеет координаты: 1)(2,-2,4), 2)(1,1,2), 3(4,0,-2).
- 18. Найти векторное произведение векторов \vec{a} и \vec{b} , заданных своими координатами: 1) $\vec{a}(3,-1,2),\vec{b}(2,-3,-5)$; 2) $\vec{a}(2,-1,1),\vec{b}(-4,2,-2)$; 3) $\vec{a}(6,1,0),\vec{b}(3,-2,0)$.
- 19. Параллелепипед ABCDA'B'C'D' задан координатами вершин ребер, выходящих из вершины A с координатами A(1,2,3), B(9,6,4), C(3,0,4) и A'(5,2,6). Найти длину ребра AB, угол между ребром AB и AC; площадь основания ABCD, объем параллелепипеда и вычислить высоту, опущенную из вершины A'. Система координат прямоугольная.
- 20. Найти необходимые и достаточные условия того, чтобы уравнение $[\vec{a}, \vec{x}] = \vec{b}$, где $\vec{a} \neq \vec{0}$, имело решение. Найти общее решение этого уравнения.
- 21. Найти координаты точки в системе координат O(1,3,3), $\vec{e}_1(3,3,1)$, $\vec{e}_2(3,5,2)$, $\vec{e}_3(1,2,1)$ в пространстве, если известны ее координаты x',y',z' в системе координат O'(-1,0,2), $\vec{e}_{1'}(1,-2,1)$, $\vec{e}_{2'}(4,2,1)$, $\vec{e}_{3'}(2,-1,3)$.
- 22. Дан правильный шестиугольник *ABCDEF*. Найти координаты точки плоскости в системе координат $A, \overline{AB}, \overline{AF}$, если известны ее координаты x', y' в системе координат $C, \overline{CB}, \overline{CE}$.

Кафедра алгебры и математической логики АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ **Билет 10**

- 1. Ортонормированный базис. Выражение скалярного произведения через координаты данных векторов, угол между векторами. Условие ортогональности двух векторов.
 - 2. Задача.