EXPERIMENT - 1

AIM:

To Study Hall Effect and to determine, Hall voltage V_H , Hall Coefficient R_H and hence find the density of charge carriers in a semiconductor at room temperature by Hall effect measurement.

Observations:

Material used: Germanium (Ge)

1) Magnetic field for different current through solenoid

Trial Number	Current through solenoid (A)	Magnetic field generated (Tesla)
1.	1	0.1482
2.	1.5	0.2223
3.	2	0.2964

2) Calculation of Hall Voltage, Hall Coefficient and Carrier concentration

Case I: For Magnetic Field = 0.1482 T

Trial Number	Magnetic	Thickness (t)	Hall Current	Hall Voltage	R_H
	Field (Tesla)	(mm)	(mA)	(mV)	11
1.	0.1482	0.1	1	28.765	0.0194
2.	0.1482	0.1	1.5	43.133	0.0194
3.	0.1482	0.1	2	57.511	0.0194
4.	0.1482	0.1	2.5	71.889	0.0194
5.	0.1482	0.1	3	86.267	0.0194
6.	0.1482	0.1	3.5	100.645	0.0194

Case II: For Magnetic Field = 0.2223 T

Trial Number	Magnetic	Thickness (t)	Hall Current	Hall Voltage	R_H
	Field (Tesla)	(mm)	(mA)	(mV)	
1.	0.2223	0.1	1	43.133	0.0194
2.	0.2223	0.1	1.5	64.700	0.0194
3.	0.2223	0.1	2	86.267	0.0194
4.	0.2223	0.1	2.5	107.834	0.0194
5.	0.2223	0.1	3	129.400	0.0194
6.	0.2223	0.1	3.5	150.967	0.0194

Case III: For Magnetic Field = 0.2964 T

Trial Number	Magnetic	Thickness (t)	Hall Current	Hall Voltage	R_H
	Field (Tesla)	(mm)	(mA)	(mV)	11
1.	0.2964	0.1	1	57.511	0.0194
2.	0.2964	0.1	1.5	86.267	0.0194
3.	0.2964	0.1	2	115.023	0.0194
4.	0.2964	0.1	2.5	143.778	0.0194
5.	0.2964	0.1	3	172.534	0.0194
6.	0.2964	0.1	3.5	201.290	0.0194

Calculations:

Case I: For Magnetic Field = 0.1482 T

Hall Coefficient,
$$R_H = \frac{V_H t}{i_H B} = \frac{(slope)t}{B}$$

Slope of the straight line,
$$slope = \frac{71.889-43.133}{2.5-1.5} = 28.756 \text{ ohm}$$

Hall Coefficient,
$$R_H = \frac{(28.756)(0.1 \times 10^{-3})}{0.1482} = 0.0194 \, m^3/C$$

Density of charge carriers,
$$n = \frac{1}{eR_H} = \frac{1}{1.602 \times 10^{-19} \times 0.0194} = 3.22165 \times 10^{20} m^{-3}$$

Case II: For Magnetic Field = 0.2223 T

Hall Coefficient,
$$R_H = \frac{V_H t}{i_H B} = \frac{(slope)t}{B}$$

Slope of the straight line,
$$slope = \frac{107.834-64.7}{2.5-1.5} = 43.134$$
 ohm

Hall Coefficient,
$$R_H = \frac{(43.134)(0.1 \times 10^{-3})}{0.2223} = 0.0194 \, m^3/C$$

Density of charge carriers,
$$n = \frac{1}{eR_H} = \frac{1}{1.602 \times 10^{-19} \times 0.0194} = 3.22165 \times 10^{20} m^{-3}$$

Case III: For Magnetic Field = 0.2964 T

Hall Coefficient,
$$R_H = \frac{V_H t}{i_H B} = \frac{(slope)t}{B}$$

Slope of the straight line,
$$slope = \frac{143.778 - 86.267}{2.5 - 1.5} = 57.511 \text{ ohm}$$

Hall Coefficient,
$$R_H = \frac{(57.511)(0.1 \times 10^{-3})}{0.2964} = 0.0194 \, m^3/C$$

Density of charge carriers,
$$n = \frac{1}{eR_H} = \frac{1}{1.602 \times 10^{-19} \times 0.0194} = 3.22165 \times 10^{20} m^{-3}$$

Results:

At room temperature,

Hall Coefficient of the material, $R_H = 0.0194 \, m^3/C$

Density of charge carriers or, Carrier Concentration, $n=3.22165\,X\,10^{20}m^{-3}$