Stochastik 1 für Studierende der Informatik

Präsenzübung 2

Präsenzübung 2.1 (Ereignisse und Mengen). Es sei $\Omega \neq \emptyset$ eine Ergebnismenge, außerdem seien $A, B, C \subset \Omega$ Ereignisse.

- a) Beschreiben Sie das Ereignis $A \cap B \cap C$ verbal.
- b) Beschreiben Sie das Ereignis $(A \cap B) \cup (A \cap C) \cup (B \cap C)$ verbal.
- c) Beschreiben Sie das Ereignis "Das Ereignis A und mindestens eines der Ereignisse B, C tritt ein" mengentheoretisch.
- d) Beschreiben Sie das Ereignis "Genau eines der drei Ereignisse A,B,C tritt ein" mengentheoretisch.

Präsenzübung 2.2 (Ereignisse und Laplace-Wahrscheinlichkeiten). Ein fairer Würfel wird viermal hintereinander geworfen, in jedem Wurf wird die Augenzahl notiert.

- a) Geben Sie einen geeigneten Ergebnisraum an. Wie viele Ergebnisse gibt es?
- b) Wie viele Ereignisse gibt es?
- c) Stellen Sie das Ereignis "Alle vier Würfel zeigen die gleiche Augenzahl" mengentheoretisch dar. Wie viele Ergebnisse enthält diese Menge?
- d) Ausgehend von einer geeigneten Laplace-Annahme: Wie wahrscheinlich ist das Ereignis "Alle vier Würfel zeigen die gleiche Augenzahl"?

Hausübung 2

Abgabe in Ihrer Übung am 19.4. oder 21.4.2016

Hausübung 2.1 (Ereignisse und Mengen, 3+3 Punkte). Es sei $\Omega \neq \emptyset$ eine Ergebnismenge, außerdem seien $A, B, C \subset \Omega$ Ereignisse.

- a) Beschreiben Sie das Ereignis $A \cup (B \cap C)$ verbal.
- b) Beschreiben Sie das Ereignis "Höchstens zwei der Ereignisse A,B,C treten ein" mengentheoretisch.

Hausübung 2.2 (Warten auf Zahl, 2+2 Punkte). In einem Zufallsexperiment wird eine Münze solange geworfen, bis zum ersten Mal "Zahl" erscheint, die möglichen Ausgänge sind die natürlichen Zahlen, d.h. \mathbb{N} ist die Ergebnismenge.

- a) Stellen Sie das Ereignis "Der erste Wurf, bei dem Zahl erscheint, hat eine ungerade Nummer" als Menge dar.
- b) Stellen Sie das Ereignis "Spätestens nach 10 Würfen ist einmal Zahl erschienen" als Menge dar.

Hausübung 2.3 (Wahrscheinlichkeitsmaße, 2+5 Punkte). Über $\Omega = \{1, 2, 3\}$ soll ein Wahrscheinlichkeitsmaß P definiert werden.

a) Verstollständigen Sie die folgende Tabelle so, dass P ein Wahrscheinlichkeitsmaß wird.

A	Ø	{1}	{2}	{3}	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$	$\{1, 2, 3\}$
P(A)		$\frac{1}{3}$				$\frac{1}{2}$		

b) In einer anderen Situation kennen Sie über $\Omega = \{1, 2, 3\}$ nur Angaben zu $P(\{1\})$ und $P(\{2, 3\})$. Begründen Sie, warum diese Information nicht ausreicht, um $P: 2^{\Omega} \to \mathbb{R}$ eindeutig festzulegen.

Hausübung 2.4 (Rechnen mit Wahrscheinlichkeiten, 3+5 Punkte). Es werden zwei faire Würfel geworfen, dabei werden die folgenden Ereignisse betrachtet.

- A sei das Ereignis "Pasch gewürfelt", d.h. beide Würfel zeigen die gleiche Augenzahl, es gilt $P(A) = \frac{6}{36} = \frac{1}{6}$.
- B sei das Ereignis "Maximum der Augenzahlen ist ≤ 3 ", es gilt $P(B) = \frac{9}{36} = \frac{1}{4}$.
- C sei das Ereignis "Augensumme 7 gewürfelt", es gilt $P(C) = \frac{6}{36} = \frac{1}{6}$.
- D sei das Ereignis "Augensumme 11 gewürfelt", es gilt $P(D) = \frac{2}{36} = \frac{1}{18}$.
- a) Es gilt außerdem $P(A\cap B)=\frac{3}{36}=\frac{1}{12}.$ Nutzen Sie diese Information und den Additionssatz, um $P(A\cup B)$ zu berechnen.
- b) Begründen Sie, dass A, C, D paarweise disjunkt sind. Berechnen Sie anschließend $P(A \cup C \cup D)$.