1 Field Extensions I

Definition 1 (Integral domain). Let R be a commutative ring. Then R is <u>an integral domain</u> if ab = 0 implies that a = 0 or b = 0 for all $a, b \in R$.

Definition 2 (Euclidean domain). Let R be an integral domain. Then R is a <u>Euclidean domain</u> if there exists some function $f: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for all $a, b_{\not\equiv 0} \in R$, there exist elements $q, r \in R$ such that a = qb + r where r = 0 or f(r) < f(b).

Theorem 1.1 (Bézout's Identity). Let R be a Euclidean domain. For $a, b \in R$, there exists $\alpha, \beta \in R$ such that $gcd(a, b) = \alpha a + \beta b$

Definition 3 (Irreducible). Let F be a field, and $f \in F[t] \setminus F$. Then f is <u>irreducible</u> if $\not\supseteq g, h \in F[t] \setminus F$ of strictly smaller degree such that f = gh.

Definition 4 (Unique factorization domain). Let R be an integral domain. Then R is a unique factorization domain (UFD) if for irreducible $p_i \in R$, any nonzero $x \in R$ can be written uniquely (up to ordering) as $x = p_1 p_2 \cdots p_k$, $k \ge 1$.

Fact: If R is an Euclidean domain, then R is a UFD (and PID)

Corollary 1.2. Let $f \in \mathbb{F}[t]$ be a monic polynomial with deg $f \geq 1$. Then we can write $f = f_1 f_2 \cdots f_k$ uniquely (up to ordering) for irreducible monic polynomials f_j .

Definition 5. Let R be a UFD. When $a_0, \ldots, a_n \in R$ are not all 0, we can generalize the greatest common divisor of a_0, \ldots, a_n (written $gcd(a_0, \ldots, a_n)$) any element $c \in R$ satisfying

- (i) $c \mid a_i \ (0 \le i \le n)$, and
- (ii) if $d \mid a_i \ (0 \le i \le n)$, then $d \mid c$.

When $f = \sum_{j=0}^{d} a_j x^j \in R[x]$ is a non-zero polynomial, we define a <u>content</u> of f to be any $\gcd(a_0, \ldots, a_d)$ and $\gcd(f) = \gcd(a_0, \ldots, a_d)$. We say that $f \in R[X]$ is <u>primitive</u> if $f \neq 0$ and the content of f is divisible only by units of R.

Lemma 1.3 (Gauss). $gcd(fg) = gcd f \cdot gcd g$

Corollary 1.4. $f \in \mathbb{Z}[t]$ is irreducible $\iff f$ is irreducible over $\mathbb{Q}[t]$

Corollary 1.5. If R is a UFD with field of fractions Q and $f \in R[X]$ with deg f > 0, then f is irreducible in $R[X] \iff f$ is irreducible in Q.

Theorem 1.6 (Eisenstein's Criterion). Let R be a UFD with field of fractions Q and let $f = a_0 + a_1X + \dots + a_nX^n \in R[X]$ with gcd(f) = 1. Suppose there exists an irreducible element $p \in R$ such that

- (i) $p \mid a_i \text{ for } 0 \le i < n$,
- (ii) $p^2 \nmid a_0$, and
- (iii) $p \nmid a_n$,

then f is irreducible in R[X] (and hence also in Q[X]).

Definition 6 (Field extension). Let L and K be fields. Then L is an extension of K if there exists a homomorphism $\varphi: K \to L$. Then we write L: K or L/K, $\varphi(K) \cong K$ and identify $\varphi(K)$ with K.

Fact: Suppose that L is a field extension of K with associated embedding $\varphi: K \to L$. Then L forms a vector space over K, under the operations

```
(vector addition) \psi: L \times L \to L given by (v_1, v_2) \mapsto v_1 + v_2 (scalar multiplication) \tau: K \times L \to L given by (k, v) \mapsto \varphi(k)v.
```

Definition 7 (Degree, finite extension). Let L: K. Then the <u>degree</u> of L: K is $[L:K] = \dim L$ over K as a vector space. We say that L: K is a finite extension if $[L:K] < \infty$.

Definition 8 (Tower, intermediate field). We say that M:L:K is a <u>tower</u> of field extensions if M:L and L:K are field extensions, and in this case we say that L is an <u>intermediate field</u> (relative to the extension M:K)

Theorem 1.7 (The Tower Law). Suppose that M:L:K is a tower of field extensions. Then M:K is a field extension, and [M:K]=[M:L][L:K].

Corollary 1.8. Suppose that L: K is a field extension for which [L: K] is a prime number. Then whenever L: M: K is a tower of field extensions with $K \subseteq M \subseteq L$, one has either M = L or M = K.