Finite Dimensional Vector Spaces Notes and Exercises

John Peloquin

Chapter I

§ 7

Exercise (5).

- (a) Two vectors $\vec{x} = (x_1, x_2)$ and $\vec{y} = (y_1, y_2)$ in \mathbb{C}^2 are linearly dependent if and only if $x_1 y_2 = x_2 y_1$.
- (b) Two vectors $\vec{x} = (x_1, x_2, x_3)$ and $\vec{y} = (y_1, y_2, y_3)$ in \mathbb{C}^3 are linearly dependent if and only if $x_1 y_2 = x_2 y_1$, $x_1 y_3 = x_3 y_1$, and $x_2 y_3 = x_3 y_2$.
- (c) There is no set of three linearly independent vectors in \mathbb{C}^2 .

Proof.

(a)

 \implies Since \vec{x} and \vec{y} are linearly dependent, there exist scalars $\alpha, \beta \in \mathbb{C}$ not both zero such that $\alpha \vec{x} + \beta \vec{y} = 0$. If $\alpha = 0$, then $\beta \neq 0$, in which case we must have $\vec{y} = 0$ and the desired equality holds. Similarly if $\beta = 0$. Therefore we may assume $\alpha \neq 0$ and $\beta \neq 0$. We have

$$\alpha x_1 = -\beta y_1$$

$$\alpha x_2 = -\beta y_2$$

Cross multiplying, we have

$$\alpha \beta x_1 y_2 = \alpha \beta x_2 y_1$$

Since $\alpha \beta \neq 0$, the desired equality follows.

 \iff We consider cases of \vec{x} :

If $x_1 \neq 0$ and $x_2 \neq 0$, let $\alpha = y_1/x_1 = y_2/x_2$. Then $\alpha x_1 = y_1$ and $\alpha x_2 = y_2$, so $\alpha \vec{x} - \vec{y} = 0$.

If $x_1 \neq 0$ and $x_2 = 0$, then $y_2 = 0$, so $\alpha \vec{x} - \vec{y} = 0$ where $\alpha = y_1/x_1$. Similarly if $x_1 = 0$ and $x_2 \neq 0$.

If $x_1 = 0$ and $x_2 = 0$, then linear independence is witnessed by $\vec{x} = 0$.

(b)

 \implies As in (a), except that now three cross multiplications are performed to yield the three equations.

 \iff As in (a), we consider cases of $\vec{x} \neq 0$:

If $x_1 \neq 0$, $x_2 \neq 0$, and $x_3 \neq 0$, let $\alpha = y_1/x_1 = y_2/x_2 = y_3/x_3$. Then $\alpha \vec{x} - \vec{y} = 0$.

If $x_i = 0$, then $y_i = 0$ and the result follows from (a) applied to the other coordinates.

Note geometrically this result is immediate from (a) because two vectors in x-y-z space are linearly dependent if and only if their corresponding projections in each of the x-y, x-z, and y-z planes are linearly dependent.

(c) We prove that any set of three vectors in \mathbb{C}^2 is linearly dependent. More specifically, if \vec{x} , \vec{y} , $\vec{z} \in \mathbb{C}^2$ and \vec{x} and \vec{y} are linearly independent, then \vec{z} is a linear combination of \vec{x} and \vec{y} .

Indeed, suppose $\vec{x} = (x_1, x_2)$ and $\vec{y} = (y_1, y_2)$ are linearly independent. By part (a), $\delta = x_1 y_2 - x_2 y_1 \neq 0$. Set

$$\alpha = \frac{y_2 z_1 - y_1 z_2}{\delta} \qquad \beta = \frac{x_1 z_2 - x_2 z_1}{\delta}$$

It is immediate that $\alpha \vec{x} + \beta \vec{y} = \vec{z}$, as desired.

Note this result is also immediate from the fact that $\dim \mathbb{C}^2 = 2 < 3$ (see Theorem 8.2).

Exercise (9). There are 28 basis sets for \mathbb{C}^3 consisting of binary vectors (vectors each of whose coordinates is 0 or 1).

¹Equivalently, any set of two linearly independent vectors in \mathbb{C}^2 also spans \mathbb{C}^2 and hence is a basis for \mathbb{C}^2 . See also Theorem 8.2.

Proof. We count the number of ways to construct a basis set.

There are $2^3 = 8$ binary vectors. To construct a basis *sequence*, we choose three linearly independent vectors from this set (Theorem 8.2). We see that there are 7 possible choices for the first vector, namely each of the nonzero binary vectors. For each of these choices, there are 6 possible choices for the second vector, namely each of the remaining nonzero binary vectors. Finally, for each of these $7 \cdot 6 = 42$ choices, there are 4 possible choices for the third vector, namely each of the remaining binary vectors not in the span of the first two. This yields $7 \cdot 6 \cdot 4 = 168$ possible basis sequences.

Since there are $3 \cdot 2 \cdot 1 = 6$ sequences for each *set* of three vectors, there are $7 \cdot 4 = 28$ basis sets.

§9

Exercise (2). \mathbb{R} is not finite dimensional over \mathbb{Q} .

Proof. If it is, then $\mathbb{R} \cong \mathbb{Q}^n$ for some n (Theorem 1). But then

$$2^{\aleph_0} = \operatorname{card} \mathbb{R} = \operatorname{card} \mathbb{Q}^n = (\operatorname{card} \mathbb{Q})^n = \aleph_0^n = \aleph_0$$

—a contradiction since $2^{\aleph_0} > \aleph_0$.

Exercise (4). Two rational vector spaces with the same cardinality need not be isomorphic.

Proof. Consider \mathbb{Q} and \mathbb{Q}^2 . We have

$$\operatorname{card} \mathbb{Q} = \aleph_0 = \aleph_0^2 = (\operatorname{card} \mathbb{Q})^2 = \operatorname{card} \mathbb{Q}^2$$

However, dim $\mathbb{Q} = 1 < 2 = \dim \mathbb{Q}^2$, so $\mathbb{Q} \ncong \mathbb{Q}^2$.

§ 12

Exercise (2). If *V* is a vector space and *M* and *N* are subspaces of *V* satisfying $V \subseteq M \cup N$, then V = M or V = N.

Proof. Suppose $V \neq M$ and $V \neq N$. Then there exist vectors $x \in V - M$ and $y \in V - N$. Since $V \subseteq M \cup N$, we must have $x \in N$ and $y \in M$ and $z = x + y \in M \cup N$. But if $z \in M$ then $x = z - y \in M$, and if $z \in N$ then $y = z - x \in N$ —a contradiction in either case. □

Exercise (6). Let V be a vector space and M be a subspace of V.

- (a) If M is nontrivial ($M \neq 0$ and $M \neq V$), then M does not have a unique complement.
- (b) If V is n-dimensional and M is m-dimensional, then every complement of M is (n-m)-dimensional.

Proof.

- (a) We claim that if $x \in V M$, then there exists a complement N of M with $x \in N$. Indeed, if B is any basis of M, then $B \cup \{x\}$ is linearly independent in V and hence can be extended to a basis B' of V. The subspace $N = \operatorname{span}(B' B)$ is the desired complement.
 - By this result, if M has unique complement N, then $V M \subseteq N$, so that $V \subseteq M \cup N$. But this implies V = M or V = N (Exercise 2). Since M and N are complements, V = N implies M = 0. Therefore, M must be trivial.
- (b) If N is a complement of M, let $\{x_1, ..., x_m\}$ be a basis of M and $\{y_1, ..., y_k\}$ be a basis of N. Then $\{x_1, ..., x_m, y_1, ..., y_k\}$ is a basis of V. Indeed, it spans V since V = M + N, and it is linearly independent since $M \cap N = 0$. Therefore n = m + k, so dim N = k = n m as desired.

Exercise (7). Let V be a vector space and M and N be subspaces of V.

- (a) If *V* is 5-dimensional and *M* and *N* are 3-dimensional, then *M* and *N* are not disjoint.
- (b) If *M* and *N* are finite dimensional, then

$$\dim M + \dim N = \dim(M+N) + \dim(M \cap N)$$

Proof.

(a) Since M + N is a subspace of V, $\dim(M + N) \le 5$ (Theorem 1). By part (b),

$$\dim(M \cap N) = \dim M + \dim N - \dim(M + N) \ge 3 + 3 - 5 = 1 > 0$$

Therefore $M \cap N \neq 0$.

(b) Let $m = \dim M$ and $n = \dim N$. Since $M \cap N$ is a subspace of both M and N, we know $M \cap N$ is finite dimensional and $k = \dim(M \cap N) \leq \min(m, n)$ (Theorem 1). Let $\{x_1, \ldots, x_k\}$ be a basis of $M \cap N$. Extend it to a basis $\{x_1, \ldots, x_k, y_1, \ldots, y_{m-k}\}$ of M and to a basis $\{x_1, \ldots, x_k, z_1, \ldots, z_{n-k}\}$ of N (Theorem 2). Then

$$\{x_1,\ldots,x_k,y_1,\ldots,y_{m-k},z_1,\ldots,z_{n-k}\}$$

is a basis of M + N. Indeed, spanning and linear independence follow from the corresponding properties of the bases for M and N. Therefore M + N is finite dimensional and

$$\dim(M+N) = k + (m-k) + (n-k)$$

$$= m+n-k$$

$$= \dim M + \dim N - \dim(M \cap N)$$

Remark. This result is analogous to the inclusion-exclusion principle for sets:

$$card(A \cup B) = card A + card B - card(A \cap B)$$

§ 14

Exercise (4). Let $(\alpha_i) \in \mathbb{C}^{\infty}$. For $x = \sum_{i=0}^n \xi_i t^i \in \mathcal{P}$, let $y(x) = \sum_{i=0}^n \xi_i \alpha_i$. Then $y \in \mathcal{P}'$, and every element in \mathcal{P}' is of this form for suitable α_i .

Proof. Since the coefficients of x are uniquely determined, y is a well defined function from \mathscr{P} to \mathbb{C} . If $u = \sum_{i=0}^m \mu_i t^i$, $v = \sum_{i=0}^n v_i t^i$, and $\mu, v \in \mathbb{C}$, we may assume m = n (using coefficients of zero), and

$$y(\mu u + \nu v) = y\left(\mu \sum_{i} \mu_{i} t^{i} + \nu \sum_{i} \nu_{i} t^{i}\right)$$

$$= y\left(\sum_{i} [\mu \mu_{i} + \nu \nu_{i}] t^{i}\right)$$

$$= \sum_{i} (\mu \mu_{i} + \nu \nu_{i}) \alpha_{i}$$

$$= \mu \sum_{i} \mu_{i} \alpha_{i} + \nu \sum_{i} \nu_{i} \alpha_{i}$$

$$= \mu y(u) + \nu y(v)$$

Therefore *y* is linear and hence $y \in \mathcal{P}'$.

If $z \in \mathcal{P}'$ is arbitrary, set $\beta_i = [t^i, z]$. Then

$$\left[\sum_{i} \xi_{i} t^{i}, z\right] = \sum_{i} \xi_{i} [t^{i}, z] = \sum_{i} \xi_{i} \beta_{i}$$

so *z* has the desired form for $(\beta_i) \in \mathbb{C}^{\infty}$.

Exercise (5). If $y \in V'$ and $y \neq 0$, and $\alpha \in \mathbb{F}$ is an arbitrary scalar, then there exists $x \in V$ with $[x, y] = \alpha$.

Proof. Since $y \neq 0$, there exists $x \in V$ with $\beta = [x, y] \neq 0$. Set $\gamma = \alpha/\beta$. Then

$$[\gamma x, \gamma] = \gamma[x, \gamma] = \gamma \beta = \alpha$$

Exercise (6). If $y, z \in V'$ and [x, y] = 0 whenever [x, z] = 0, then $y = \alpha z$ for some $\alpha \in \mathbb{F}$.

Proof. If y = 0, take $\alpha = 0$. Otherwise, choose $x_0 \in V$ with $\beta = [x_0, y] \neq 0$. We must have $\gamma = [x_0, z] \neq 0$. Set $\alpha = \beta/\gamma$. We claim $y = \alpha z$.

Indeed, if there exists $x \in V$ with $\delta = [x, y] \neq [x, \alpha z]$, we must have $\epsilon = [x, z] \neq 0$. Set $\zeta = \gamma/\epsilon$ and $v = x_0 - \zeta x$. Then

$$[v, z] = [x_0 - \zeta x, z] = [x_0, z] - \zeta [x, z] = \gamma - \zeta \epsilon = \gamma - \gamma = 0$$

but

$$[v, y] = [x_0 - \zeta x, y] = [x_0, y] - \zeta [x, y] = \beta - \zeta \delta = \frac{\gamma (\alpha \epsilon - \delta)}{\epsilon} \neq 0$$

—a contradiction.

§ 17

Exercise (3). If *V* is a vector space and $y \in V'$, define

$$K = \ker y = \{x \in V \mid [x, y] = 0\}$$

Then K is a subspace of V and if $n = \dim V$, then

$$\dim K = \begin{cases} n & \text{if } y = 0\\ n - 1 & \text{if } y \neq 0 \end{cases}$$

Proof. We have $0 \in K$ since [0, y] = 0, and if $u, v \in K$ and $\alpha, \beta \in \mathbb{F}$, then

$$[\alpha u + \beta v, y] = \alpha [u, y] + \beta [v, y] = \alpha \cdot 0 + \beta \cdot 0 = 0$$

so $\alpha u + \beta v \in K$. Therefore *K* is a subspace of *V*.

If $n = \dim V$, let $\{x_1, ..., x_k, x_{k+1}, ..., x_n\}$ be a basis of V where $\{x_1, ..., x_k\}$ is a basis of K (Theorem 12.2). Let $U = \text{span}\{x_{k+1}, ..., x_n\}$. Then

$$\dim V = n = k + (n - k) = \dim K + \dim U$$

We claim $y|_U$ is injective. Indeed, if $u, v \in U$ and [u, y] = [v, y], then [u - v, y] = 0, so $u - v \in K$. Write $u = \sum_j \alpha_j x_{k+j}$ and $v = \sum_j \beta_j x_{k+j}$. Then $u - v = \sum_j (\alpha_j - \beta_j) x_{k+j}$. Now for the basis of K there exist $\gamma_i \in \mathbb{F}$ such that

$$\sum_{j=1}^{n-k} (\alpha_j - \beta_j) x_{k+j} = \sum_{i=1}^{k} \gamma_i x_i$$

By linear independence of the basis for V, we must have $\alpha_j - \beta_j = \gamma_i = 0$ for all i, j. In particular, $\alpha_j = \beta_j$ for all j, so u = v, establishing injectivity.

We also claim ran $y|_U = \operatorname{ran} y$. Indeed, trivially ran $y|_U \subseteq \operatorname{ran} y$. Conversely, for any $x = \sum_i \alpha_i x_i \in V$, we have

$$[x, y] = [\alpha_1 x_1 + \dots + \alpha_k x_k + \alpha_{k+1} x_{k+1} + \dots + \alpha_n x_n, y]$$

$$= \alpha_1 [x_1, y] + \dots + \alpha_k [x_k, y] + \alpha_{k+1} [x_{k+1}, y] + \dots + \alpha_n [x_n, y]$$

$$= \alpha_1 \cdot 0 + \dots + \alpha_k \cdot 0 + \alpha_{k+1} [x_{k+1}, y] + \dots + \alpha_n [x_n, y]$$

$$= [\alpha_{k+1} x_{k+1} + \dots + \alpha_n x_n, y]$$

Since $u = \sum_j \alpha_{k+j} x_{k+j} \in U$, this shows ran $y \subseteq \operatorname{ran} y|_U$. Hence $y|_U : U \cong \operatorname{ran} y$. Now if y = 0, then ran y = 0 so $\dim U = 0$ and $\dim K = n$. If $y \neq 0$, then ran $y = \mathbb{F}$ (Exercise 14.5), so $\dim U = \dim \mathbb{F} = 1$ and $\dim K = n - 1$.

Remark. This result is just a special case of rank nullity (Theorem 50.1), which asserts that $\dim V = \dim \ker T + \dim \operatorname{ran} T$ for any linear transformation T on V.

Exercise (4). Let $y \in (\mathbb{C}^3)'$ defined by

$$(x_1, x_2, x_3) \mapsto x_1 + x_2 + x_3$$

Then $B = \{(1,0,-1), (0,1,-1)\}\$ is a basis of ker y.

Proof. Clearly, $B \subseteq \ker y$ and B is linearly independent. Since $y \neq 0$, dimker y = 3 - 1 = 2 (Exercise 3). Therefore B is a basis of ker y (Theorem 8.2). □

Exercise (5). If V is an n-dimensional vector space and y_1, \ldots, y_m are linear functionals on V where m < n, then there exists a nonzero $x \in V$ such that $[x, y_j] = 0$ for all $1 \le j \le m$.

Proof. We need to show that $\bigcap \ker y_j \neq 0$. First, we may assume without loss of generality that $y_j \neq 0$ for all $1 \leq j \leq m$, so dim $\ker y_j = n - 1$ for all $1 \leq j \leq m$ (Exercise 3). We claim that

$$\dim \bigcap_{j=1}^m \ker y_j \ge n - m$$

The desired result then follows since n - m > 0.

We proceed by induction on m. The claim is true for m = 1 by the above. For m > 1, we have

$$\bigcap_{j=1}^{m} \ker y_j = \left(\bigcap_{j=1}^{m-1} \ker y_j\right) \cap \ker y_m$$

Therefore, by the inclusion-exclusion principle for dimension (Exercise 12.7) and the induction hypothesis, we have

$$\dim \bigcap_{j=1}^{m} \ker y_{j} = \dim \left[\left(\bigcap_{j=1}^{m-1} \ker y_{j} \right) \cap \ker y_{m} \right]$$

$$= \dim \bigcap_{j=1}^{m-1} \ker y_{j} + \dim \ker y_{m} - \dim \left[\bigcap_{j=1}^{m-1} \ker y_{j} + \ker y_{m} \right]$$

$$\geq [n - (m-1)] + (n-1) - n$$

$$= n - m$$

Remark. This result implies that a homogeneous system of m linear equations in n variables always has a nontrivial solution when m < n. Indeed, consider the system

$$\begin{cases} \alpha_{11}x_1 + \dots + \alpha_{1n}x_n = 0 \\ \vdots & \vdots & (\alpha_{ij} \in \mathbb{F}) \end{cases}$$
$$\alpha_{m1}x_1 + \dots + \alpha_{mn}x_n = 0$$

For $\vec{x} = (x_1, ..., x_n) \in \mathbb{F}^n$, define y_j by $[x, y_j] = \sum_i \alpha_{ij} x_i$ for $1 \le j \le m$. Clearly this system has a nontrivial solution if and only if there exists a nonzero $\vec{x} \in \mathbb{F}^n$ such that $[x, y_j] = 0$ for all $1 \le j \le m$, which is true by this result.

Exercise (7). If V is an n-dimensional vector space and $0 \le m \le n$, then the number of m-dimensional subspaces of V is equal to the number of (n-m)-dimensional subspaces.

Proof. Fix a basis of V and assume that V = V' = V'' (Theorems 15.2 and 16.1). Now the mapping $M \mapsto M^0$ sends each m-dimensional subspace to an (n-m)-dimensional subspace (Theorem 1). Moreover, this mapping is its own inverse (Theorem 2), hence it is bijective and witnesses cardinal equality.

§ 20

Exercise (3). There exists a vector space V with subspaces M, N_1 , N_2 such that $V = M \oplus N_1 = M \oplus N_2$ but $N_1 \neq N_2$.

Proof. Let $V = \mathbb{R}^2$, M be the subspace consisting of vectors of the form (x,0) (the horizontal axis), N_1 be the subspace consisting of vectors of the form (0,y) (the vertical axis), and N_2 be the subspace consisting of vectors of the form (x,x) (the diagonal line y = x).

Remark. This result shows that there is no cancellation law for direct sums.

Exercise (4). Let U, V, W be vector spaces.

- (a) $(U \oplus V) \oplus W \cong U \oplus (V \oplus W)$
- (b) $U \oplus V \cong V \oplus U$

Proof.

- (a) The mapping $\langle \langle u, v \rangle, w \rangle \mapsto \langle u, \langle v, w \rangle \rangle$ is clearly bijective and linear.
- (b) The mapping $\langle u, v \rangle \mapsto \langle v, u \rangle$ is clearly bijective and linear.

§ 22

Exercise (4). Let *V* be a vector space and *M* be a subspace of *V*. In addition, let $\pi: V \to V/M$ be the mapping $x \mapsto x + M$.

- (a) The mapping $\phi: y \mapsto y\pi$ is an isomorphism from (V/M)' to M^0 .
- (b) The mapping $\psi : y + M^0 \mapsto y|_M$ is an isomorphism from V'/M^0 to M'.

Proof.

(a) The mapping ϕ is defined from (V/M)' into V'. It is injective since if $y\pi = z\pi$, then

$$y(x + M) = y(\pi(x)) = z(\pi(x)) = z(x + M)$$

for all $x \in V$, so y = z. To see that $\operatorname{ran} \phi \subseteq M^0$, note that if $y\pi \in \operatorname{ran} \phi$, then $y\pi(x) = y(M) = 0$ for all $x \in M$, so $y\pi \in M^0$. Conversely, if $z \in M^0$, define y on V/M by $x + M \mapsto z(x)$. Note y is well defined and linear since $z \in M^0$, so $y \in (V/M)'$, and $\phi(y) = y\pi = z$. Therefore $\operatorname{ran} \phi = M^0$. Finally, ϕ is linear, hence $\phi: (V/M)' \cong M^0$.

(b) The mapping ψ is clearly well defined and injective from V'/M^0 to M' since

$$y + M^{0} = z + M^{0} \iff y - z \in M^{0}$$

$$\iff (y - z)(x) = 0 \quad (x \in M)$$

$$\iff y(x) = z(x) \quad (x \in M)$$

$$\iff y|_{M} = z|_{M}$$

It is also surjective since if $z \in M'$, then there exists $y \in V'$ with $y|_M = z$. Indeed, if N is any complement of M in V, define y(u+v) = z(u) for $u \in M$ and $v \in N$. Finally, it is clearly linear, hence an isomorphism.

Remark. Just remember $(V/M)' \cong V'/M'$ (Theorems 20.1 and 22.1).

Exercise (5). If V is finite-dimensional and $W = V \oplus V'$, then the mapping $\langle x, y \rangle \mapsto \langle y, x \rangle$ is an isomorphism from W to W'.

Proof. By taking the dual of the direct sum W (Theorem 20.1) and applying reflexivity of V (Theorem 16.1), we obtain

$$W' = (V \oplus V')' = V' \oplus V'' = V' \oplus V$$

Hence the mapping is indeed a mapping from W to W'. It is clearly bijective and linear, hence an isomorphism.

§ 23

Exercise (1). Let $V = \mathbb{R}^n \oplus \mathbb{R}^n$.

(a) If w is a bilinear form on V, then there exist unique scalars $\alpha_{ij} \in \mathbb{R}$ for $1 \le i, j \le n$ such that

$$w(\vec{x}, \vec{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i y_j$$

for all $\vec{x} = (x_1, ..., x_n)$ and $\vec{y} = (y_1, ..., y_n)$ in \mathbb{R}^n .

(b) If z is a linear functional on the space of all bilinear forms on V, then there exist unique scalars $\beta_{ij} \in \mathbb{R}$ for $1 \le i, j \le n$ such that

$$z(w) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \beta_{ij}$$

for all w with α_{ij} as in (a).

Proof.

(a) Let $\{\vec{e}_1, ..., \vec{e}_n\}$ be the standard basis of \mathbb{R}^n (where $\vec{e}_i = (\delta_{i1}, ..., \delta_{in})$) and let $\alpha_{ij} = w(\vec{e}_i, \vec{e}_j)$ for $1 \le i, j \le n$. Then for $\vec{x} = (x_1, ..., x_n)$ and $\vec{y} = (y_1, ..., y_n)$, $\vec{x} = \sum_i x_i \vec{e}_i$ and $\vec{y} = \sum_j y_j \vec{e}_j$, so

$$w(\vec{x}, \vec{y}) = \sum_{i} \sum_{j} x_i y_j w(\vec{e_i}, \vec{e_j}) = \sum_{i} \sum_{j} \alpha_{ij} x_i y_j$$

by bilinearity of w (see the proof of Theorem 1). If scalars $\alpha'_{ij} \in \mathbb{R}$ also satisfy this condition, then

$$\alpha_{ij} = w(\vec{e}_i, \vec{e}_j) = \alpha'_{ij} \qquad (1 \le i, j \le n)$$

(b) Again, let $\{\vec{e_1},\ldots,\vec{e_n}\}$ be the standard basis of \mathbb{R}^n and let w_{pq} $(1 \le p,q \le n)$ be the corresponding 'standard' basis of the space of all bilinear forms on V (Theorem 2). Let $\beta_{ij} = z(w_{ij})$ for $1 \le i,j \le n$. Then for a bilinear form w as in (a), $w = \sum_i \sum_j \alpha_{ij} w_{ij}$ by bilinearity of w (see the proof of Theorem 2), so

$$z(w) = \sum_{i} \sum_{j} \alpha_{ij} z(w_{ij}) = \sum_{i} \sum_{j} \alpha_{ij} \beta_{ij}$$

by linearity of z (see the proof of Theorem 15.1). If scalars $\beta'_{ij} \in \mathbb{R}$ also satisfy this condition, then

$$\beta_{ij} = z(w_{ij}) = \beta'_{ij} \qquad (1 \le i, j \le n)$$

Remark. If $\vec{x} = (x_1, ..., x_n)$ and $\vec{y} = (y_1, ..., y_n)$, let $\beta_{ij} = x_i y_j$ for $1 \le i, j \le n$. Then z in (b) is the tensor product of \vec{x} and \vec{y} (Definition 25.1), which is intuitively just β .

Exercise (2). Let $V = \mathbb{C}^2 \oplus \mathbb{C}^2$.

- (a) The mapping $\langle (x_1, x_2), (y_1, y_2) \rangle \mapsto x_1 y_1$ is a degenerate bilinear form on V.
- (b) The mapping $\langle (x_1, x_2), (y_1, y_2) \rangle \mapsto x_1 y_1 + x_2 y_2$ is a non-degenerate bilinear form on V.

Proof.

- (a) The mapping is clearly bilinear. It is degenerate since $\langle (0,1), (y_1, y_2) \rangle \mapsto 0$ for all $(y_1, y_2) \in \mathbb{C}^2$.
- (b) The mapping is clearly bilinear. If $x_1, x_2 \in \mathbb{C}$ and $x_1y_1 + x_2y_2 = 0$ for all $y_1, y_2 \in \mathbb{C}$, then in particular $x_1 = x_1 \cdot 1 + x_2 \cdot 0 = 0$ and $x_2 = x_1 \cdot 0 + x_2 \cdot 1 = 0$. Similarly if $y_1, y_2 \in \mathbb{C}$ and $x_1y_1 + x_2y_2 = 0$ for all $x_1, x_2 \in \mathbb{C}$, then $y_1 = y_2 = 0$. Therefore the mapping is non-degenerate.

Remark. The mapping in (b), restricted to \mathbb{R}^n , is just the dot product, which reflects the extent to which two nonzero vectors point in the same direction geometrically.

Exercise (5). The mapping $w : \langle (x_1, x_2), (y_1, y_2) \rangle \mapsto x_1 y_2 - x_2 y_1$ is a nonzero bilinear form on $\mathbb{C}^2 \oplus \mathbb{C}^2$ with w(x, x) = 0 for all $x \in \mathbb{C}^2$.

Proof. The mapping w is clearly bilinear and nonzero, and

$$w((x_1, x_2), (x_1, x_2)) = x_1 x_2 - x_1 x_2 = 0$$
 $((x_1, x_2) \in \mathbb{C}^2)$

Remark. This mapping is just the 2-by-2 determinant, which reflects the linear dependence (collinearity) of two vectors geometrically. See Exercise 7.5.

§ 25

Exercise (2). Let $\mathscr{P}_{n,m}$ be the space of all polynomials z(s,t) such that either z=0 or else $\deg_s z \le n-1$ and $\deg_t z \le m-1$. Then there exists an isomorphism $\mathscr{P}_n \otimes \mathscr{P}_m \cong \mathscr{P}_{n,m}$ such that $x \otimes y \mapsto xy$ for all $x \in \mathscr{P}_n$ and $y \in \mathscr{P}_m$.

Proof. Let $\{1, s, ..., s^{n-1}\}$ be a basis of \mathcal{P}_n and $\{1, t, ..., t^{m-1}\}$ be a basis of \mathcal{P}_m . Then $\{s^i \otimes t^j\}$ is a basis of $\mathcal{P}_n \otimes \mathcal{P}_m$ (Theorem 1). We claim that $\{s^i t^j\}$ is a basis of $\mathcal{P}_{n,m}$. Indeed, the set is linearly independent, since if

$$z(s,t) = \sum_{i} \sum_{j} \alpha_{ij} s^{i} t^{j} = 0$$

then z has infinitely many roots, so $\alpha_{ij} = 0$ for all i, j. Also, the set spans $\mathcal{P}_{n,m}$ by definition.

Let π be the isomorphism from $\mathscr{P}_n \otimes \mathscr{P}_m$ to $\mathscr{P}_{n,m}$ such that $s^i \otimes t^j \mapsto s^i t^j$ for all i, j (Theorem 9.1). Then for $x(s) = \sum_i \alpha_i s^i \in \mathscr{P}_n$ and $y(t) = \sum_i \beta_j t^j \in \mathscr{P}_m$,

$$\pi(x \otimes y) = \pi \left[\sum_{i} \sum_{j} \alpha_{i} \beta_{j} (s^{i} \otimes t^{j}) \right]$$

$$= \sum_{i} \sum_{j} \alpha_{i} \beta_{j} \pi(s^{i} \otimes t^{j})$$

$$= \sum_{i} \sum_{j} \alpha_{i} \beta_{j} s^{i} t^{j}$$

$$= \left(\sum_{i} \alpha_{i} s^{i} \right) \left(\sum_{j} \beta_{j} t^{j} \right)$$

$$= x y$$

Exercise (3). Let *U*, *V*, *W* be finite-dimensional vector spaces.

- (a) $U \otimes V \cong V \otimes U$
- (b) $(U \otimes V) \otimes W \cong U \otimes (V \otimes W)$
- (c) $U \otimes (V \oplus W) = (U \otimes V) \oplus (U \otimes W)$

Proof.

- (a) The map $x \otimes y \mapsto y \otimes x$ is an isomorphism.
- (b) The map $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$ is an isomorphism.

(c) The two spaces have the same basis.

Exercise (4). There exists a finite-dimensional vector space V and vectors $x, y \in V$ such that $x \otimes y \neq y \otimes x$.

Proof. Let $V = \mathbb{C}^2$, so $\vec{e_1} = (1,0)$ and $\vec{e_2} = (0,1)$. Then

$$\vec{e}_1 \otimes \vec{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \vec{e}_2 \otimes \vec{e}_1$$

Remark. This result shows that the vector tensor product is not commutative.

§31

Exercise (3). The mapping

$$w: \langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle \mapsto x_1 y_2 - x_2 y_1$$

is a nonzero alternating bilinear form on \mathbb{C}^3 . The vectors $\vec{x} = (1,0,0)$ and $\vec{y} = (1,0,1)$ are linearly independent but $w(\vec{x}, \vec{y}) = 0$.

Proof. The claims are clearly true (see also Exercise 23.5).

Remark. The mapping is just the 2-by-2 determinant of the projections of the vectors into the x-y plane. The result just reflects the fact that two vectors in x-y-z space can fail to be collinear while their projections into the x-y plane are collinear.

Chapter II

§ 49

Exercise (4). Let V be a vector space and E and F be projections on V.

- (a) ran(E) = ran(F) if and only if EF = F and FE = E.
- (b) ker(E) = ker(F) if and only if EF = E and FE = F.

Proof. Recall for a projection P on V, $V = ran(P) \oplus ker(P)$ and (Theorem 41.2)

$$ran(P) = \{ x \in V \mid Px = x \}$$
 $ker(P) = \{ x \in V \mid Px = 0 \}$

(a)

 \implies If $x \in V$, then $Ex \in \text{ran}(E) \subseteq \text{ran}(F)$, so FEx = F(Ex) = Ex. Therefore FE = E. Similarly EF = F.

 \leftarrow If $x \in \text{ran}(E)$, then x = Eu for some $u \in V$, so

$$Fx = F(Eu) = FEu = Eu = x$$

and hence $x \in \operatorname{ran}(F)$. Therefore $\operatorname{ran}(E) \subseteq \operatorname{ran}(F)$. Similarly $\operatorname{ran}(F) \subseteq \operatorname{ran}(E)$ and hence $\operatorname{ran}(E) = \operatorname{ran}(F)$.

(b)

 \implies Since $V = \operatorname{ran}(E) \oplus \ker(E)$, if $x \in V$ there exist $u \in \operatorname{ran}(E)$ and $v \in \ker(E)$ with x = u + v. Now

$$FEx = FE(u + v)$$

$$= FEu + FEv$$

$$= Fu + F0 \qquad \text{since } u \in \text{ran}(E) \text{ and } v \in \text{ker}(E)$$

$$= Fu + Fv \qquad \text{since } \text{ker}(E) \subseteq \text{ker}(F)$$

$$= F(u + v)$$

$$= Fx$$

Therefore FE = F. Similarly EF = E.

 \iff If $x \in \ker(E)$, then

$$Fx = FEx = F(Ex) = F0 = 0$$

so $x \in \ker(F)$. Therefore $\ker(E) \subseteq \ker(F)$. Similarly $\ker(F) \subseteq \ker(E)$ and hence $\ker(E) = \ker(F)$.

Remark. By (a) and (b), E = F if and only if ran(E) = ran(F) and ker(E) = ker(F). In other words, projections are characterized by their ranges and null spaces.

Exercise (5). If $E_1, ..., E_k$ are projections on V with the same range and $\alpha_1, ..., \alpha_k$ are scalars such that $\sum_i \alpha_i = 1$, then $E = \sum_i \alpha_i E_i$ is a projection.

Proof. By Exercise 4(a), we have

$$E^{2} = \left(\sum_{i} \alpha_{i} E_{i}\right)^{2}$$

$$= \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} E_{i} E_{j}$$

$$= \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} E_{j} \qquad \text{since } \operatorname{ran}(E_{i}) = \operatorname{ran}(E_{j})$$

$$= \left(\sum_{i} \alpha_{i}\right) \left(\sum_{j} \alpha_{j} E_{j}\right)$$

$$= 1 \cdot E \qquad \text{since } \sum_{i} \alpha_{i} = 1$$

$$= E$$

Therefore E is idempotent, and hence a projection (Theorem 41.1).

§ 55

Remark. We clarify Halmos' proof (p. 105) that the algebraic multiplicity of an eigenvalue is at least as great as its geometric multiplicity. As in the proof, let A be a linear transformation, λ_0 be an eigenvalue, M be the corresponding eigenspace, and $A_0 = A|_M$. If λ is arbitrary, observe that M is also invariant under $A - \lambda$, and $(A - \lambda)|_M = A|_M - \lambda = A_0 - \lambda$. Therefore by the determinant of quotient maps (§ 53, p. 100),

$$\det(A - \lambda) = \det(A_0 - \lambda) \cdot \det((A - \lambda)/M)$$

So $\det(A_0 - \lambda)$ is a factor of $\det(A - \lambda)$. Now $(A_0 - \lambda)x = (\lambda_0 - \lambda)x$ for all $x \in M$, so $\det(A_0 - \lambda) = (\lambda_0 - \lambda)^m$, where $m = \dim M$ is the geometric multiplicity of λ_0 , by the determinant of scalar maps (§ 53, p. 99). It follows that the algebraic multiplicity of λ_0 as a root of $\det(A - \lambda)$ is at least m.

§ 56

Remark. We clarify Halmos' remark (p. 107) that $\det(A - \alpha_{ii}) = 0$ for each of the diagonal entries α_{ii} in an upper triangular matrix [A] for A. Observe from the matrix $[A - \alpha_{ii}]$ (on the same basis) that $(A - \alpha_{ii})|_{M_i}$ maps the i-dimensional subspace M_i into the (i-1)-dimensional subspace M_{i-1} . Hence by rank nullity (Theorem 50.1), dimker $(A - \alpha_{ii}) \neq 0$, so $A - \alpha_{ii}$ is not invertible (§ 49, p. 89), so $\det(A - \alpha_{ii}) = 0$ (§ 53, p. 99).

Alternately, observe from the equation for the determinant (Equation 53.2) that the determinant of an upper triangular matrix is the product of its diagonal entries. Since $[A - \lambda]$ (on the same basis) is upper triangular,

$$\det(A - \lambda) = \prod_{i} (\alpha_{ii} - \lambda)$$

This shows $det(A - \alpha_{ii}) = 0$, so α_{ii} is an eigenvalue of A, and α_{ii} appears on the diagonal of [A] as many times as its algebraic multiplicity.

Remark. We show that if A is a linear transformation and p is a polynomial, then the eigenvalues of p(A), including algebraic multiplicities, are precisely the values $p(\lambda)$ where λ ranges over the eigenvalues of A (p. 108). Indeed, fix a basis on which $[A] = (\alpha_{ij})$ is upper triangular. Then [p(A)] = p([A]) on the same basis is also upper triangular with diagonal entries $p(\alpha_{ii})$. The result now follows from the previous remark.

References

[1] Halmos, P. Finite Dimensional Vector Spaces. Springer, 1987.