Department of Computer Science & Engineering University of Asia Pacific (UAP)

Program: B.Sc. in Computer Science and Engineering

Final Examination Spring 2020 3rd Year 2nd Semester

Course Code: CSE 313 Course Title: Numerical Methods Credits: 3

Full Marks: 120* (Written)

Duration: 2 Hours

Instructions:

1. There are **Four (4)** Questions. Answer all of them. All questions are of equal value. Part marks are shown in the margins.

2. Non-programmable calculators are allowed.

1. **a)** Using $[x_1, x_2, x_3] = [1,3,5]$ as the initial guess, find the values of $[x_1, x_2, x_3]$ after **three iterations** in the Gauss-Seidel method for

$$\begin{bmatrix} 2 & 8 & -11 \\ 1 & 6 & 4 \\ 16 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -6 \\ 10 \end{bmatrix}$$

20

7

3

10

<u>Note</u>: Please replace the coefficient of x_2 (\odot) in the equation (iii) with the multiplication of your roll number (e.g. xxxxxx51) and 0.1 (i.e. 51 × 0.1).

- b) How to ensure that the above system of equations (in question 1. (a)) will converge using the Gauss-Seidel method?
- c) Why do we need the Gauss-Seidel method to solve a set of simultaneous linear equations when we already have elimination methods such as Gaussian Elimination and LU Decomposition?
- 2. a) The upward velocity of a rocket is given as a function of time in the Table 1. Find the velocity at t = 3 seconds using the Newton Divided Difference method for Quadratic interpolation.

Table 1: Velocity as a function of time

<i>t</i> (s)	v(t) (m/s)
8	227.04
36	1004.597
65.75	1902.249
95.5	2799.901
125.25	3697.553
155	4595.205
184.75	5492.857

<u>Note</u>: Please replace the value of t (\odot) in the question with the addition of your roll number (e.g. xxxxxx51) and 10 (i.e. 51 + 10).

b) How will you calculate the absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first order (Linear interpolation) and second order (Quadratic interpolation) polynomial?

Note: You have to solve question 2. (a) for Linear interpolation to answer question 2. (b).

^{*} Total Marks of Final Examination: 150 (Written: 120 + Viva: 30)

3. a) Find the most nearly value of $\int_a^b e^x dx$ by using 4-segment Simpson's 1/3 rule.

20

<u>Note</u>: Please assume the value of a is the multiplication of your roll number (e.g. xxxxxx51) and 0.2 (i.e. 51×0.2), and the value of b is a + 2.

b) Find the true error, E_t and absolute relative true error, $|\epsilon_a|$ for question 3. (a).

10

4. a) Given $2\frac{dy}{dx} + 7y^2 = \sin x$, $y(0.4) = \bigcirc$ and using a step size of h = 0.4, find the most nearly value of y(1.2) using the Runge-Kutta 2^{nd} order method (you can choose anyone among the three methods taught in the class).

20

<u>Note</u>: Please replace the initial value of y (\odot) with the multiplication of your roll number (e.g. xxxxxx51) and 0.2 (i.e. 51×0.2).

b) What method of the Runge-Kutta 2nd order have you used to solve question **4. (a)**? Why have you chosen that method? Justify your answer.

10

OR

Consider Figure 1 below. The cross-sectional area A of a gutter with equal base and edge length of 2 is given by $A = 4 \sin \theta$ (1 + $\cos \theta$). Using the Golden Section Search method, find the angle θ which maximizes the cross-sectional area of the gutter. Using an initial interval of $\left[0, \frac{\bullet}{2}\right]$, find the maximum cross-sectional area A after 3 iterations.

20

Figure 1

<u>Note</u>: Please replace the value of \odot in the initial interval with the multiplication of your roll number (e.g. xxxxxx51) and 0.2 (i.e. 51 × 0.2).

b) What would be the scenario if the Equal Interval Search method is applied to solve **OR(a)** of question 4? Explain considering the fundamentals of the Equal Interval Search method.

10