$\Sigma(1620) \; 1/2^-$

$$I(J^P) = 1(\frac{1}{2}^-)$$
 Status: *

OMITTED FROM SUMMARY TABLE

The S_{11} state at 1697 MeV reported by VANHORN 75 is tentatively listed under the $\Sigma(1750)$. CARROLL 76 sees two bumps in the isospin-1 total cross section near this mass. GAO 12 sees no evidence for this resonance.

Production experiments are listed separately in the next entry.

Σ (1620) POLE POSITION

RE	ΑI	PA	RT

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the follow	ving data for averages,	fits, limits,	etc. • • •
1501	7HANG	13a DPWA	Multichannel

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	ng data for averages	, fits, limits, o	etc. • • •
171	ZHANG	13A DPWA	Multichannel

Σ(1620) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 1620 OUR ESTIMATE				
1600 ± 15	ZHANG	13A	DPWA	Multichannel
1600 ± 6	¹ MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
1608± 5	² CARROLL	76	DPWA	Isospin-1 total σ
1633 ± 10	³ CARROLL	76	DPWA	Isospin-1 total σ
1630 ± 10	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
1620	KIM	71	DPWA	K-matrix analysis

Σ(1620) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
400 ± 152	ZHANG	13A	DPWA	Multichannel
87± 19	$^{ m 1}$ MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
15	² CARROLL	76	DPWA	Isospin-1 total σ
10	³ CARROLL	76	DPWA	Isospin-1 total σ
65 ± 20	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
40	KIM	71	DPWA	K-matrix analysis

Created: 5/30/2017 17:20

Σ (1620) DECAY MODES

	Mode
$\overline{\Gamma_1}$	NK
Γ_2	$\Lambda\pi$

Σ (1620) BRANCHING RATIOS

$\Gamma(N\overline{K})/\Gamma_{total}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.59 ± 0.10	ZHANG	13A	DPWA	Multichannel
0.22 ± 0.02	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
0.05	KIM	71	DPWA	K-matrix analysis
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(1620) \rightarrow \Lambda\pi$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$

$(i j i f)^{-}/i \text{ total in } N \rightarrow $					(1 <u>1</u> 1 2)'-/1
	VALUE	DOCUMENT ID		TECN	COMMENT
	0.12 ± 0.02	¹ MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
	not seen	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$
	0.15	KIM	71	DPWA	K-matrix analysis

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma($	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$			
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.32\pm0.03$	ZHANG	13A	DPWA	Multichannel
not seen	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma \pi$
$+0.40\pm0.06$	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
+0.08	KIM	71	DPWA	K-matrix analysis

Σ (1620) FOOTNOTES

Σ (1620) REFERENCES

ZHANG GAO	13A 12	PR C88 035205 PR C86 025201	H. Zhang <i>et al.</i> P. Gao, J. Shi, B.S. Zou	(KSU) (BHEP, BEIJT)	
Also		NP A867 41	P. Gao, B.S. Zou, A. Sibirtsev	(BHEP, BEIJT+)	
MORRIS	78	PR D17 55	W.A. Morris et al.	` (FSU) IJP	
CARROLL	76	PRL 37 806	A.S. Carroll et al.	(BNL) I	
HEPP	76B	PL 65B 487	V. Hepp <i>et al.</i>	(CERN, HEIDH, MPIM) IJP	
BAILLON	75	NP B94 39	P.H. Baillon, P.J. Litchfield	(CERN, RHEL) IJP	
VANHORN	75	NP B87 145	A.J. van Horn	(LBL) IJP	
Also		NP B87 157	A.J. van Horn	(LBL) IJP	
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner	(MPIM) IJP	
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP	
Also		Duke Conf. 161	J.K. Kim	(HARV) IJP	
Hyperon Resonances, 1970					

 $\Gamma(N\overline{K})/\Gamma_{total}$

Created: 5/30/2017 17:20

 $^{^1}$ MORRIS 78 obtains an equally good fit without including this resonance. 2 Total cross-section bump with (J+1/2) $\Gamma_{\rm el}$ / $\Gamma_{\rm total}$ is 0.06 seen by CARROLL 76. 3 Total cross-section bump with (J+1/2) $\Gamma_{\rm el}$ / $\Gamma_{\rm total}$ is 0.04 seen by CARROLL 76.