Far-right Support in Finland: Bringing Income Inequality Back

Hector Bahamonde 1 Aki Koivula ¹

Authors in alphabetical order. All contributed equally to this paper.

¹University of Turku, Finland

June 26th, 2024

Democracy's status:

Introduction Motivation?

- Not in trouble (Voeten, 2016).
- In trouble (Mounk & Foa, 2016; Mudde, 2004; Coffé et al., 2007).
- Far-right populism drivers:
 - Cultural reasons (Veugelers & Chiarini, 2002).
 - Psychological factors (Cohen & Smith, 2016).
 - Identity reasons (Sniderman et al., 2004; Oesch, 2008).
- Inequality and populism:
 - High inequality (Han, 2016).
 - Low inequality (Patana, 2020).
 - And finally, some even think that "it's not the economy, stupid!" (Mudde, 2007).

Introduction Motivation?

Despite the disagreements, the question still stands: How can we explain the rapid increase in support for far-right populism in Finland?

Introduction Motivation?

Introduction

Our Paper

Bringing Income Inequality Back

In this paper we are going to concentrate on the relationship between inequality and far-right support in Finland.

Introduction Our Paper

Bringing Income Inequality Back

- Argument: We argue that high income inequality and perceived threats from skilled immigration drive voter support for the Finns Party in Finland.
- Theory: We apply "prospect theory" (Kahneman & Tversky, 1979) to far-right support.
- Data and methods: Using census and electoral data, we employ linear panel data methods with citu fixed effects (Angrist & Pischke, 2009; Gelman & Hill, 2006).
- Findings: Voters influenced by past economic conditions and fear of losing socio-economic status support far-right parties to prevent potential losses.
- Contribution: We reaffirm the role of economic inequality in supporting far-right parties in Finland, challenging Patana's (2020) finding that higher inequality decreases such support.

• Prospect Theory: (Kahneman & Tversky, 1979)

- 1. Actors often perceive themselves as facing losses, even when they are not (Lau, 1985; Levy, 1992b, p. 291).
- 2. Potential losses are weighed more heavily than equivalent gains ("endowment effect" and "loss aversion").
- 3. Individuals are more focused on preventing decline than achieving gains (Levy, 1997).

Populist campaigns:

Prospect Theoru

√ When parties frame their campaigns as losses (e.g., "Make America Great Again"), voters' loss aversion increases support for far-right parties to avoid a socio-economic decline.

• Status Voting theory: (Lipset, 1981)

- 1. When individuals perceive that their social status is threatened, they are more likely to engage in "status voting."
- 2. This voting behavior is defensive, aimed at protecting their social position from perceived threats ("losers of modernity").

Far-right parties:

Status Voting

- Capitalize on fears that immigration threatens the socio-economic status of native populations.
- Promise to restore the status of native-born citizens by opposing immigration.

Case Selection

- The FP started in 2011 and has become a major right-wing political force in Finland.
- Historically done well in rural poor areas, but now they have expanded and also represent other socioeconomic groups, such as blue-collar workers.
- The partu's identity is shaped by socio-cultural issues, particularly opposition to immigration, rather than purely economic factors.

 (Y_{it}) : Votes for the FP at the city level.

 (Y_{it}) : Votes for the FP at the city level. (X_{it}) : Gini coefficient at the city level.

 (Y_{it}) : Votes for the FP at the city level.

 (X_{it}) : Gini coefficient at the city level.

(Z_{it}): Immigration Data (country level). Recoded whether the immigrant comes:

 (Y_{it}) : Votes for the FP at the city level.

 (X_{it}) : Gini coefficient at the city level.

(Z_{it}): Immigration Data (country level). Recoded whether the immigrant comes:

Predominantly Muslim.

 (Y_{it}) : Votes for the FP at the city level.

 (X_{it}) : Gini coefficient at the city level.

(Z_{it}): Immigration Data (country level). Recoded whether the immigrant comes:

- Predominantly Muslim.
- Developed/Underdeveloped.

 (Y_{it}) : Votes for the FP at the city level.

 (X_{it}) : Gini coefficient at the city level.

(Z_{it}): Immigration Data (country level). Recoded whether the immigrant comes:

- Predominantly Muslim.
- Developed/Underdeveloped.
- Helps in exploring cultural and economic factors behind far-right support.

Dynamic Linear Panel Regression Model

- We regress votes for the FP on the Gini coefficient for city i and time t.
- To capture levels of loss aversion, we included 1-year lags.
- We also include other controls (immigration) and city fixed effects.
- Coverage: 485 cities, between 1995 – 2023 (N = 3903).

$$Y_{it} = \alpha + \beta X_{it-1} + \gamma Z_{it-1} + \lambda_i + \epsilon_{it-1}$$

where:

 Y_{it} : Votes for the FPi at time t

lpha : Intercept

 X_{it} : Gini for city i at time t

 Z_{it} : Matrix of control variables for city i at time t

 λ_i : City fixed effects

 ϵ_{it} : Error term

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10
Intercept	-5342.56***	-4029.95***	-2975.42***	-3413.70***	-7306.89***	-4992.89***	-4981.63***	-5510.35***	37049.78***	34154.41***
	(670.86)	(688.48)	(710.03)	(725.37)	(809.69)	(840.74)	(817.95)	(824.58)	(2466.39)	(2479.27)
Gini	83.32**	135.76***	84.27**	105.34***					-1523.23***	-1464.68***
	(26.09)	(24.97)	(26.47)	(27.49)					(93.72)	(90.05)
High and Upper-medium Country Immigration	76.47***								-751.23***	-691.62***
	(5.37)								(48.40)	(50.54)
Muslim Immigration		0.39***		0.21**					-0.29***	
		(0.03)		(80.0)					(80.0)	
Immigration Total			0.10***	0.05*						-0.15***
			(0.01)	(0.02)						(0.03)
Gini (1 lag)					160.15***	176.57***	155.87***	169.40***		
					(29.54)	(29.89)	(29.16)	(29.22)		
High and Upper-medium Country Immigration (1 lag)					75.83***					
					(5.07)					
Muslim Immigration (1 lag)						0.38***		-0.30***		
						(0.03)		(0.07)		
Immigration Total (1 lag)							0.11***	0.18***		
							(0.01)	(0.02)		
Gini x High and Upper-medium Country Immigration									31.77***	31.45***
									(1.79)	(1.76)
AIC	35295.18	35323.97	35327.30	35325.77	35714.78	35770.51	35694.57	35683.57	35009.59	35004.66
BIC	35323.00	35351.79	35355.11	35359.15	35742.63	35798.37	35722.43	35717.00	35048.53	35043.60
Log Likelihood	-17642.59	-17656.99	-17658.65	-17656.88	-17852.39	-17880.26	-17842.29	-17835.78	-17497.79	-17495.33
Num. obs.	1926	1926	1926	1926	1942	1942	1942	1942	1926	1926
Num. groups: City	278	278	278	278	293	293	293	293	278	278
Var: City (Intercept)	3058282.91	2906916.58	3049780.73	2990919.42	5332857.63	5294916.55	5368474.15	5298986.04	3013375.88	2912310.91
Var: Residual	4137935.21	4211950.46	4186254.09	4183125.50	4098561.82	4215221.92	4013946.45	3985390.57	3496524.93	3499401.53

^{***}p < 0.001; **p < 0.01; *p < 0.05

Results

Results

- Inequality: While immigration predictors are positive and significant, income inequality trumps all of them.
 - In fact, lagged inequality (loss aversion) is the strongest predictor.
- Cultural backlash theories: Muslim immigration is a stronger predictor than total migration.
- Status voting theory: immigration from developed countries is the strongest immigration predictor.

 Model 9 interacts the country of origin of the immigrant (developed/underdeveloped) with income inequality: the FP does better when "developed immigration" and inequality are high.

Results

• Our interpretation: Given that individuals prioritize preventing economic decline, they perceive the potential losses associated with skilled immigrants in contexts characterized by high inequality.

Wrapping Up

- We think the literature is very messy, with different conflicting explanations.
- What we're trying to do is to revive inequality as one of the most important predictors.
- Also, we contribute to the literature by introducing prospect theory to the study of far-right support.
- Empirically, we also contribute by disaggregating immigration by type.

Avenues for Discussion

Em 00

Limitations

- We don't have regional-level data on immigration.
- "Smoking guns" problem: we're trying to improve our identification strategy
 which might not directly match with our loss aversion theory. Comments on this
 plz!

Avenues for Discussion

Thank you

o to check updates on this project.