

RiWalk: Fast Structural Node Embedding via Role Identification

Xuewei Ma, Geng Qin, Zhiyang Qiu, Mingxin Zheng, Zhe Wang

Jilin University

Roles of Nodes

- Behavior/function ← → role ← → structure/topology
- Nodes in the same network may have similar roles
- Nodes in different networks may have similar roles
 - hubs/leaders
 - structural hole spanners

American air-traffic network

- Learning representations about roles helps to
 - predict behaviors/functions of nodes
 - understand networks
 - transfer knowledge across networks

Zachary's karate network

Les Misérables coappearance network

Problem: Structural Embedding

- Map nodes to low-dimensional vectors (usually Euclidean Space)
- Preserve structural similarities
 - Nodes with similar roles should be embedded closely

Problem: Structural Embedding

- Map nodes to low-dimensional vectors
- Preserve structural similarities

Related Works

Language Model

 word2vec [arXiv'13]: maps words to Euclidean space by preserving linguistic contexts of words

Network Embedding

- DeepWalk [KDD'14]: treats random walks as sentences
- node2vec [KDD'16]: uses biased random walk to add flexibility in neighborhood exploring

Structural Embedding

- RoIX [KDD'12]: factorizes node feature matrix to get node representaions
- struc2vec [KDD'17]: builds a hierarchy to measure structural similarity
- GraphWave [KDD'18]: uses empirical characteristic function to embed wavelet distributions

Key idea

- Typical network embedding
 - Nodes sharing many context nodes are embedded closely
 - Focuses on which node one node connects to
- Structural embedding
 - Nodes having similar local structures are embedded closely
 - Focuses on how one node connects to its context nodes

The RiWalk Framework

The RiWalk Framework

Role Identification: RiWalk-SP

- $\psi_i(v_i) = h(\delta_i) \oplus h(\delta_i) \oplus s_{ii}$, for each $v_j \in \mathcal{N}_i^k \setminus \{v_i\}$ $\Big|$ • \mathcal{N}_i^k : Neighbors within k hops from v_i
- $h(x) = |\log_2(x+1)|$

- v_i : Anchor node
- s_{ij} : Shortest path length between v_i and v_j
- δ_i : Degree of v_i

Role Identification: RiWalk-SP

- $\psi_i(v_j) = h(\delta_i) \oplus h(\delta_j) \oplus s_{ij},$ for each $v_j \in \mathcal{N}_i^k \setminus \{v_i\}$
- $h(x) = \lfloor \log_2(x+1) \rfloor$

- v_i : Anchor node
- \mathcal{N}_i^k : Neighbors within k hops from v_i
- * s_{ij} : Shortest path length between v_i and v_j
- δ_i : Degree of v_i

K. M. Borgwardt and H.-P. Kriegel, "Shortest-path kernels on graphs" [ICDM'05]

Role Identification: RiWalk-WL

- $\mathbf{x}_{ij}^{(n)} = \left| \{ v_l \in \mathcal{N}_j \mid s_{il} = n \} \right|$ for $n \in \{0, 1, \dots, k\}$
- $\psi_i(v_j) = h(\mathbf{x}_{ii}) \oplus h(\mathbf{x}_{ij}) \oplus s_{ij}$,
 for each $v_j \in \mathcal{N}_i^k \setminus \{v_i\}$
- $h(x) = |\log_2(x+1)|$

- v_i : Anchor node
- \mathcal{N}_i^k : Neighbors withink hops from v_i
- + s_{ij} : Shortest path length between v_i and v_j
- δ_i : Degree of v_i

Role Identification: RiWalk-WL

- $\mathbf{x}_{ij}^{(n)} = \left| \{ v_l \in \mathcal{N}_j \mid s_{il} = n \} \right|$ for $n \in \{0, 1, \dots, k\}$
- $\psi_i(v_j) = h(\mathbf{x}_{ii}) \oplus h(\mathbf{x}_{ij}) \oplus s_{ij},$ for each $v_j \in \mathcal{N}_i^k \setminus \{v_i\}$

• $h(x) = |\log_2(x+1)|$

- v_i : Anchor node
- \mathcal{N}_i^k : Neighbors withink hops from v_i
- + s_{ij} : Shortest path length between v_i and v_j
- δ_i : Degree of v_i

N. Shervashidze and K. Borgwardt, "Fast subtree kernels on graphs" [NeurIPS'09]

Expressway Network

Expressway Network

Label distribution

- (1) smooth
- 2 non-smooth
- ③ semi-smooth

Expressway Network

RESULTS OF CLASSIFICATION TASKS ON EXPRESSWAY NETWORKS. $(MACRO-F_1 (\%))$

Algorithm	smooth Expressway geo. region	Dataset non-smooth Expressway status	semi-smooth Expressway Starbucks
node2vec	96.13	50.09	52.75
struc2vec	39.78	54.44	38.60
GraphWave	51.39	51.28	42.88
RiWalk-SP	50.05	53.05	44.26
RiWalk-WL	51.39	56.62	44.70
Majority	11.41	47.37	25.37

- Smooth label distribution network embedding
- Semi-smooth

combining both?

Within-network Node Classification

	Europe	USA	Film	Actor
# Vertices	399	1190	27312	7779
# Edges	5995	13599	122514	26752
# Classes	4	4	4	4

MICRO- $F_1(\%)$ SCORES OF WITHIN-NETWORK ROLE CLASSIFICATION.

		Labeled Nodes (%)								Time and Memory Usage			
Dataset	Method	10	20	30	40	50	60	70	80	90	Mem (M)	Real (s)	User (s)
USA	node2vec struc2vec GraphWave RiWalk-SP RiWalk-WL	54.86 54.39 60.30 58.62 58.25	58.84 58.06 61.30 60.35 60.82	61.03 60.23 62.45 61.21 62.39	61.78 60.93 62.90 63.03 63.04	62.79 61.86 62.38 63.69 64.34	63.44 62.73 62.98 63.58 64.38	63.74 63.17 62.36 64.47 65.92	63.86 64.38 63.25 65.83 66.17	64.18 65.75 64.67 64.60 66.25	82 127 13 42	94 6 4 17	863 74 19 146
Film	node2vec struc2vec GraphWave RiWalk-SP RiWalk-WL	44.04 54.14 — 60.26 59.15	45.36 55.59 — 61.08 60.23	45.91 56.10 — 61.40 60.48	46.10 56.24 — 61.52 60.71	46.36 56.37 — 61.61 60.67	46.33 56.54 — 61.63 60.82	46.46 56.46 — 61.65 60.76	46.75 56.70 — 61.44 60.88	46.68 56.43 — 61.56 60.98	1027 — 111 113	1972 — 179 600	18236 — 1148 5404
Actor	node2vec struc2vec GraphWave RiWalk-SP RiWalk-WL	31.24 42.46 — 43.27 41.60	33.34 44.72 — 44.61 43.43	34.88 45.43 45.05 44.25	35.74 45.99 45.60 44.16	36.04 46.51 — 45.31 44.69	36.83 46.56 — 45.78 45.27	36.61 47.05 — 46.56 45.39	37.14 47.48 — 46.05 45.23	37.82 47.56 — 45.13 46.54	284 — 65 64	379 — 30 62	3459 — 177 545

 RiWalk achieves comparable performance with other baselines while being an order of magnitude more efficient (time & space).

Within-network Node Classification

MICRO- $F_1(\%)$ SCORES OF WITHIN-NETWORK ROLE CLASSIFICATION.

		Labeled Nodes (%)							Time and Memory Usage				
Dataset	Method	10	20	30	40	50	60	70	80	90	Mem (M)	Real (s)	User (s)
USA	node2vec struc2vec GraphWave RiWalk-SP RiWalk-WL	54.86 54.39 60.30 58.62 58.25	58.84 58.06 61.30 60.35 60.82	61.03 60.23 62.45 61.21 62.39	61.78 60.93 62.90 63.03 63.04	62.79 61.86 62.38 63.69 64.34	63.44 62.73 62.98 63.58 64.38	63.74 63.17 62.36 64.47 65.92	63.86 64.38 63.25 65.83 66.17	64.18 65.75 64.67 64.60 66.25	82 127 13 42	94 6 4 17	863 74 19 146
Film	node2vec struc2vec GraphWave RiWalk-SP RiWalk-WL	44.04 54.14 — 60.26 59.15	45.36 55.59 — 61.08 60.23	45.91 56.10 — 61.40 60.48	46.10 56.24 — 61.52 60.71	46.36 56.37 — 61.61 60.67	46.33 56.54 — 61.63 60.82	46.46 56.46 — 61.65 60.76	46.75 56.70 — 61.44 60.88	46.68 56.43 — 61.56 60.98	1027 — 111 113	1972 — 179 600	18236 — 1148 5404
Actor	node2vec struc2vec GraphWave RiWalk-SP RiWalk-WL	31.24 42.46 — 43.27 41.60	33.34 44.72 — 44.61 43.43	34.88 45.43 — 45.05 44.25	35.74 45.99 45.60 44.16	36.04 46.51 — 45.31 44.69	36.83 46.56 — 45.78 45.27	36.61 47.05 — 46.56 45.39	37.14 47.48 — 46.05 45.23	37.82 47.56 — 45.13 46.54	284 — 65 64	379 — 30 62	3459 — 177 545

- RiWalk achieves comparable performance with other baselines while being an order of magnitude more efficient (time & space).
- RiWalk performs well when labels are sparse.

Across-network Node Classification

- Merge two networks into one, feed it to embedding methods
- One network as training data, the other one as test.
- Train a classifier on the training data to predict labels of nodes in the other network

Across-network Node Classification

Macro- $F_1(\%)$) scores of across-network role classification.

Algorithm	Dataset								
	USA:Europe	Europe:USA	Actor:USA	USA:Actor					
node2vec	42.92	45.99	46.91	42.88					
struc2vec	78.87	79.74	80.13	57.48					
GraphWave	86.17	73.98	_	_					
RiWalk-SP	81.98	80.07	78.95	73.97					
RiWalk-WL	81.95	78.99	80.90	67.34					
Majority	42.91	42.87	42.87	42.86					

• Structural embedding can transfer across networks.

Across-network Node Classification

Macro- $F_1(\%)$) scores of across-network role classification.

Algorithm	Dataset									
	USA:Europe	Europe:USA	Actor:USA	USA:Actor						
node2vec struc2vec	42.92 78.87	45.99 79.74	46.91 80.13	42.88 57.48						
<i>GraphWave</i> RiWalk-SP RiWalk-WL	86.17 81.98 81.95	73.98 80.07 78.99	78.95 80.90	73.97 67.34						
Majority	42.91	42.87	42.87	42.86						

- Structural embedding can transfer across networks.
- RiWalk is robust when transferring from small networks to large networks

Scalability

Running time on Erdos-Renyi graphs (constant degree of 10)

Thanks

Xuewei Ma: xuew.ma@gmail.com

Code: github.com/maxuewei2/RiWalk

Performance w.r.t. neighboorhood size k.