

EGEC 180: – Digital Logic and Computer Structures

Spring 2024

Lecture 14: Midterm Exam No 2 Review

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton
Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: <u>ramahto@fullerton.edu</u> **Phone No**: 657-278-7274

Mid-Term Exam No 2

- Day: 1 May 2014
- Time: 11:30 8:00 AM
- Lecture Slides from 8 to 13
- Bring a cheat-sheet of one page (A4 Size), pen, pencil and calculator.

OR/AND to NOR/NOR (Practice Problem #3)

Given $F_2(X,Y,Z) = X'Z' + XZ + Y$

 Find a minimum product-of-sum expression for F using a Karnaugh Map

$$F_2(X,Y,Z) = (X+Y+Z')(X'+Y+Z)$$

2. Draw the corresponding two-level OR-AND circuit.

OR/AND to NOR/NOR (Practice Problem #3)

3. Add bubbles to inputs and bubbles to outputs

4. Replace all gates with NOR gates leaving the gate interconnection unchanged.

Decoders

Design F1 with a Decoder

 $F1 = \Sigma m(2,3,5,7) - SOM$

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or

\boldsymbol{A}	В	C	F1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Designing Logic Circuits with MUXs

Technique 1:

 For n variables, use n-1 variables as inputs to select lines. Hence, we need a 2ⁿ⁻¹-to-1 MUX.

Example: Given $F_1(X,Y,Z) = \Sigma m(1,2,5,7)$, 3 variables so we need a 2²-to-1 MUX. Lets allocate X and Y to select lines, leaving Z for the Data Lines.

	X	Y	Z	F		
Γ.	0	0	0	0	Notice F and Z	
I ₀	0	0	1	1	are the same	
	0	1	0	1	Notice F and Z are	F
l ₁	0	1	1	0	Complemented 3	
١.	1	0	0	0	Notice F and Z	
	1	0	1	1	are the same	
١.	1	1	0	0	Notice F and Z	
I ₃	1	1	1	1	∫ are the same	

S-R Latch

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

\bar{S}	\bar{R}	Q	Q^+	NA
1	1	0	0	X
1	1	1	1	0
1	1	1	1	0
1	0	0	0	1
1	0	1	0	1
0	1	0	1	
0	1	1	1	
0	0	0	- l inputs	not
0	0	1	− ∫ allow	ed

NAND function			
X	Y	F _{NAND}	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOTE: any time one of the inputs X or Y is a 0 the output F is a 1.

D-Latch

2-to-1 MUX Equation: Z (output) = $A'I_0 + AI_1$

A is select line, I_0 and I_1 are input lines.

$$Q^+ = C'Q + CD; C = A$$

D-Flip Flop

D Latch with a CLR Input: a) implemented with a logic hazard-free function in AND-OR circuit form, and b) logic symbol

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Extra term removes the logic glitch: C'Q + CD + DQ

Counter Design

Binary Up Counter (2 bits):

- a) Counting Sequence Diagram
- b) Equivalent State Diagram

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Q&A

