WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification 5: C07H 15/12, 17/00, A61K 37/00 C07K 13/00, 15/00, C12N 5/00

(11) International Publication Number:

WO 93/10136

(43) International Publication Date:

27 May 1993 (27.05.93)

(21) International Application Number:

PCT/US92/09893

(22) International Filing Date:

16 November 1992 (16.11.92)

(81) Designated States: AU, CA, FI, HU, JP, KP, NO, RO, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

(30) Priority data:

07/793,065

15 November 1991 (15.11.91) US

Published

With international search report.

(71) Applicant: THE TRUSTEES OF PRINCETON UNI-VERSITY [US/US]; New South Building, 5th Floor, Princeton, NJ 08544 (US).

(72) Inventor: LEMISCHKA, Ihor, R.; 5T Hibben Apartments, Faculty Road, Princeton, NJ 08540 (US).

(74) Agent: FEIT, Irving, N.; ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014 (US).

(54) Title: TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

(57) Abstract

Isolated mammalian nucleic acid molecules encoding receptor protein tyrosine kinases expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells are provided. Also included are the receptors encoded by such nucleic acid molecules; the nucleic acid molecules encoding receptor protein tyrosine kinases having the sequences shown in Figure 1a (murine flk-2), Figure 1b (human flk-2) and Figure 2 (murine flk-1); the receptor protein tyrosine kinases having the amino acid sequences shown in Figure 1a, Figure 1b and Figure 2; ligands for the receptors; nucleic acid sequences that encode the ligands; and methods of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

•	•	CD.	France	MR	Mauritania
AT	Austria	FR	Gabon	MW	Malawi
UA	Australia	GA		NL	Netherlands
BB	Barbados	GB	United Kingdom	NO	Norway
BE	Belgium	GN	Guinca	NZ	New Zealand
BF	Burkina Faso	GR	Greece	PL	Poland
BC	Bulgaria	HU	Hungary	PT	Portugal
LB	Benin	IE	freland	RO	Romania
BR	Brazil	IT	Italy		Russian Federation
CA	Canada	JP	Japan	RU	
	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CF	_		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SK	Slovak Republic
CH	Switzerland	KZ	Kazakhstan	SN	Senegal
CI	Côte d'Ivoire	LJ.	Liechtenstein	รบ	Soviet Union
CM	Cameroon	LK		TD	Chad
cs	Czechoslovakia •		Luxembourg	TC	Tago
CZ.	Czech Republic	I.U		UA	Ukraine
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar	VN	Viet Nam
ES	Spain	MI.	Mali	•••	
FI	Finland	MN	Mongolia		

TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

The invention described in this application was made with U.S. government support from Grant Numbers R01-CA45339 and R01-DK42989 awarded by the National Institutes of Health. The government has certain rights in this invention.

FIELD OF THE INVENTION

15

5

10

The present invention relates to hematopoietic stem cell receptors, ligands for such receptors, and nucleic acid molecules encoding such receptors and ligands.

BACKGROUND OF THE INVENTION

20

The mammalian hematopoietic system comprises red and white blood cells. These cells are the mature cells that result from more primitive lineage-restricted cells. The cells of the hematopoietic system have been reviewed by Dexter and Spooncer in the Annual Review of Cell Biology 3, 423-441 (1987).

30

The red blood cells, or erythrocytes, result from primitive cells referred to by Dexter and Spooncer as erythroid burst-forming units (BFU-E). The immediate progeny of the erythroid burst-forming units are called erythroid colony-forming units (CFU-E).

35

The white blood cells contain the mature cells of the lymphoid and myeloid systems. The lymphoid cells include B lymphocytes and T lymphocytes. The B and T lymphocytes result from earlier progenitor cells referred to by Dexter and Spooncer as preT and preB cells.

40

The myeloid system comprises a number of cells including granulocytes, platelets, monocytes, macrophages, and megakaryocytes. The granulocytes are further divided into

10

25

30

35

neutrophils, eosinophils, basophils and mast cells.

Each of the mature hematopoietic cells are sp cialized for specific functions. For example, erythrocytes are responsible for oxygen and carbon dioxide transport. T and B lymphocytes are responsible for cell-and antibody-mediated immune responses, respectively. Platelets are involved in blood clotting. Granulocytes and macrophages act generally as scavengers and accessory cells in the immune response against invading organisms and their by-products.

At the center of the hematopoietic system lie one or more totipotent hematopoietic stem cells, which undergo a series of differentiation steps leading to increasingly

15 cellsineage-restricted progenitor The more mature progenitor cells are restricted to producing one or two lineages. Some examples of lineage-restricted progenitor cells mentioned by Dexter and Spooncer include granulocyte/macrophage colony-forming cells (GM-CFC),

20 megakaryocyte colony-forming cells (Meg-CFC), eosinophil colony-forming cells (Eos-CFC), and basophil colony-forming cells (Bas-CFC). Other examples of progenitor cells are discussed above.

The hematopoietic system functions by means of a precisely controlled production of the various mature lineages. The totipotent stem cell possesses the ability both to self renew and to differentiate into committed progenitors for all hematopoietic lineages. These most primitive of hematopoietic cells are both necessary and sufficient for the complete and permanent hematopoietic reconstitution of a radiation-ablated hematopoietic system in mammals. The ability of stem cells to reconstitute the entire hematopoietic system is the basis of bone marrow transplant therapy.

It is known that growth factors play an important role in the development and operation of the mammalian hematopoietic system. The role of growth factors is complex,

however, and not well understood at the present time. One reason for the uncertainty is that much of what is known about hematopoietic growth factors results from <u>in vitro</u> experiments. Such experiments do not necessarily reflect <u>in vivo</u> realities.

In addition, <u>in vitro</u> hematopoiesis can be established in the absence of added growth factors, provided that marrow stromal cells are added to the medium. The relationship between stromal cells and hematopoietic growth factors <u>in vivo</u> is not understood. Nevertheless, hematopoietic growth factors have been shown to be highly active <u>in vivo</u>.

From what is known about them, hematopoietic growth factors appear to exhibit a spectrum of activities. At one end of the spectrum are growth factors such as erythropoietin, which is believed to promote proliferation only of mature erythroid progenitor cells. In the middle of the spectrum are growth factors such as IL-3, which is believed to facilitate the growth and development of early stem cells as well as of numerous progenitor cells. Some examples of progenitor cells induced by IL-3 include those restricted to the granulocyte/macrophage, eosinophil, megakaryocyte, erythroid and mast cell lineages.

25

30

35

Í

5

10

15

2.0

At the other end of the spectrum is the hematopoietic growth factor that, along with the corresponding receptor, was discussed in a series of articles in the October 5, 1990 edition of <u>Cell</u>. The receptor is the product of the W locus, c-kit, which is a member of the class of receptor protein tyrosine kinases. The ligand for c-kit, which is referred to by various names such as stem cell factor (SCF) and mast cell growth factor (MGF), is believed to be essential for the development of early hematopoietic stem cells and cells restricted to the erythroid and mast cell lineages in mice; see, for example, Copeland et al., Cell <u>63</u>, 175-183 (1990).

It appears, therefore, that there are growth factors

that exclusively affect mature cells. There also appear to be growth factors that affect both mature cells and stem cells. The growth factors that affect both types of cells may affect a small number or a large number of mature cells.

5

There further appears to be an inverse relationship between the ability of a growth factor to affect mature cells and the ability of the growth factor to affect stem cells. For example, the c-kit ligand, which stimulates a small number of mature cells, is believed to be more important in the renewal and development of stem cells then is IL-3, which is reported to stimulate proliferation of many mature cells (see above).

15

20

25

30

10

Prior to the present specification, there have been no reports of growth factors that exclusively stimulate stem cells in the absence of an effect on mature cells. The discovery of such growth factors would be of particular significance.

As mentioned above, c-kit is a protein tyrosine kinase (pTK). It is becoming increasingly apparent that the protein tyrosine kinases play an important role as cellular receptors for hematopoietic growth factors. Other receptor pTKs include the receptors of colony stimulating factor 1 (CSF-1) and PDGF.

The pTK family can be recognized by the presence of several conserved amino acid regions in the catalytic domain. These conserved regions are summarized by Hanks et al. in Science 241, 42-52 (1988), see Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989), see Figure 2 on page 1605.

35

Additional protein tyrosine kinases that represent hematopoietic growth factor receptors are needed in order more effectively to stimulate the self-renewal of the totipotent hematopoietic stem cell and to stimulate the

development of all cells of the hematopoietic system both in vitro and in vivo. Novel hematopoietic growth factor receptors that are present only on primitive stem cells, but are not present on mature progenitor cells, are particularly desired. Ligands for the novel receptors are also desirable to act as hematopoietic growth factors. Nucleic acid sequences encoding the receptors and ligands are needed to produce recombinant receptors and ligands.

10

15

20.

25

SUMMARY OF THE INVENTION

These and other objectives as will be apparent to those with ordinary skill in the art have been met by providing isolated mammalian nucleic acid molecules encoding receptor protein tyrosine kinases expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells. Also included are the receptors encoded by such nucleic acid molecules; the nucleic acid molecules encoding receptor protein tyrosine kinases having the sequences shown in Figure la (murine flk-2), Figure 1b (human flk-2) and Figure 2 (murine flk-1); the receptor protein tyrosine kinases having the amino acid sequences shown in Figure 1a, Figure 1b and Figure 2; ligands for the receptors; nucleic acid sequences that encode the ligands; and methods of stimulating the proliferation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

30

35

DESCRIPTION OF THE FIGURES

Figure 1a.1 through 1a.5 shows the cDNA and amino acid sequences of murine flk-2. All subsequent references to Figure 1a are intended to refer to Figure 1a.1 through 1a.5. The amino acid residues occur directly below the nucleotides in the open reading frame. Amino acids -27 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 517 constitute the extracellular receptor domain. Amino acids

518 to 537 constitute the transmembrane region. Amino acids 538 to 966 constitute the intracellular catalytic domain. Counting amino acid residue -27 as residue number 1, the following amino acid residues in the intracellular domain are catalytic sub-domains identified by Hanks (see above): 618-623, 811-819, 832-834, 857-862, 872-878. The sequence at residues 709-785 is a signature sequence characteristic of flk-2. The protein tyrosine kinases generally have a signature sequence in this region. (See SEQ. ID. NOS. 1-2)

10

15

5

Figure 1b.1 through 1b.5 shows the complete cDNA and amino acid sequences of human flk-2 receptor. All subsequent references to Figure 1b are intended to refer to Figure 1b.1 through 1b.5. Amino acids -27 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 516 constitute the extracellular receptor domain. Amino acids 517 to 536 constitute the transmembrane region. Amino acids 537 to 966 constitute the intracellular catalytic domain. (See SEQ. ID. NOS. 3-4)

20

25

Figure 2.1 through 2.7 shows the cDNA and amino acid sequences of murine flk-1. All subsequent references to Figure 2 are intended to refer to Figure 2.1 through 2.7. Amino acids -19 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 743 constitute the extracellular receptor domain. Amino acids 744 to 765 constitute the transmembrane region. Amino acids 766 to 1348 constitute the intracellular catalytic domain. (See SEQ. ID. NOS. 5-6)

30

Figure 3 shows the time response of binding between a murine stromal cell line (2018) and APtag-flk-2 as well as APtag-flk-1. APtag without receptor (SEAP) is used as a control. See Example 8.

35

Figure 4 shows the dose response of binding between stromal cells (2018) and APtag-flk-2 as well as APtag-flk-1. APtag without receptor (SEAP) is used as a control. See Example 8.

DETAILED DESCRIPTION OF THE INVENTION

R ceptors

In one embodiment, the invention relates to an isolated mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

10

5

The nucleic acid molecule may be a DNA, cDNA, or RNA molecule. The mammal in which the nucleic acid molecule exists may be any mammal, such as a mouse, rat, rabbit, or human.

15

20

25

30

The nucleic acid molecule encodes a protein tyrosine kinase (pTK). Members of the pTK family can be recognized by the conserved amino acid regions in the catalytic domains. Examples of pTK consensus sequences have been provided by Hanks et al. in Science 241, 42-52 (1988); see especially Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989); see especially Figure 2 on page 1605. A methionine residue at position 205 in the conserved sequence WMAPES is characteristic of pTK's that are receptors.

The Hanks et al article identifies eleven catalytic subdomains containing pTK consensus residues and sequences. The pTKs of the present invention will have most or all of these consensus residues and sequences.

Some particularly strongly conserved residues and sequences are shown in Table 1.

TABLE 1
Conserved Residues and Sequences in pTKs¹

5	Position ²	Residue or sequence	Catalytic Domain
		G	I
	50	· G	I
	52	_	. т
	57	v	ΙΪ
4.0	70	. A	
10		K	II
	72	E	III
	91	D	VI
•	166	•	VI
	171	N _	VII
4.5	184-186	DFG	
15		E	VIII
	208	D ·	IX
	220		IX
	225	G	XI
	280	R	VT

- 20
 1. See Hanks et al., Science 241, 42-52 (1988)
 - 2. Adjusted in accordance with Hanks et al., Id.

A pTK of the invention may contain all thirteen of these highly conserved residues and sequences. As a result of natural or synthetic mutations, the pTKs of the invention may contain fewer than all thirteen strongly conserved residues and sequences, such as 11, 9, or 7 such sequences.

30

35

The receptors of the invention generally belong to the same class of pTK sequences that c-kit belongs to. It has surprisingly been discovered, however, that a new functional class of receptor pTKs exists. The new functional class of receptor pTKs is expressed in primitive hematopoietic cells, but not expressed in mature hematopoietic cells.

hematopoietic cell is totipotent, i.e. capable of
reconstituting all hematopoietic blood cells in vivo. A
mature hematopoietic cell is non-self-renewing, and has
limited proliferative capacity - i.e., a limited ability to
give rise to multiple lineages. Mature hematopoietic cells,
for the purposes of this specification, are generally capable
of giving rise to only one or two lineages in vitro or in
vivo.

It should be understood that the hematopoietic system is complex, and contains many intermediate cells between the primitive totipotent hematopoietic stem cell and the totally committed mature hematopoietic cells defined above. As the stem cell develops into increasingly mature, lineagerestricted cells, it gradually loses its capacity for self-renewal.

The receptors of the present invention may and may not be expressed in these intermediate cells. The necessary and sufficient condition that defines members of the new class of receptors is that they are present in the primitive, totipotent stem cell or cells, and not in mature cells restricted only to one or, at most, two lineages.

15

20

25

30

35

10

An example of a member of the new class of receptor pTKs is called fetal liver kinase 2 (flk-2) after the organ in which it was found. There is approximately 1 totipotent stem cell per 10⁴ cells in mid-gestation (day 14) fetal liver in mice. In addition to fetal liver, flk-2 is also expressed in fetal spleen, fetal thymus, adult brain, and adult marrow.

For example, flk-2 is expressed in individual multipotential CFU-Blast colonies capable of generating numerous multilineage colonies upon replating. It is likely, therefore, that flk-2 is expressed in the entire primitive (i.e. self-renewing) portion of the hematopoietic hierarchy. This discovery is consistent with flk-2 being important in transducing putative self-renewal signals from the environment.

It is particularly relevant that the expression of flk-2 mRNA occurs in the most primitive thymocyte subset. Even in two closely linked immature subsets that differ in expression of the IL-2 receptor, flk-2 expression segregates to the more primitive subset lacking an IL-2 receptor. The earliest thymocyte subset is believed to be uncommitted. Therefore, the thymocytes expressing flk-2 may be multipotential. flk-2 is the first receptor tyrosine kinase known to be expressed

in the T-lymphoid lineage.

The fetal liver mRNA migrates relative to 28S and 18S ribosomal bands on formaldehyde agarose gels at approximately 3.5 kb, while the brain message is considerably larger. In adult tissues, flk-2 m-RNA from both brain and bone marrow migrated at approximately 3.5 kb.

A second pTK receptor is also included in the present invention. This second receptor, which is called fetal liver kinase 1 (flk-1), is not a member of the same class of receptors as flk-2, since flk-1 may be found in some more mature hematopoietic cells. The amino acid sequence of murine flk-1 is given in Figure 2.

15

20

25

30

10

The present invention includes the flk-1 receptor as well as DNA, cDNA and RNA encoding flk-1. The DNA sequence of murine flk-1 is also given in Figure 2. Flk-1 may be found in the same organs as flk-2, as well as in fetal brain, stomach, kidney, lung, heart and intestine; and in adult kidney, heart, spleen, lung, muscle, and lymph nodes.

The receptor protein tyrosine kinases of the invention are known to be divided into easily found domains. The DNA sequence corresponding to the pTKs encode, starting at their 5'-ends, a hydrophobic leader sequence followed by a hydrophilic extracellular domain, which binds to, and is activated by, a specific ligand. Immediately downstream from the extracellular receptor domain, is a hydrophobic transmembrane region. The transmembrane region is immediately followed by a basic catalytic domain, which may easily be identified by reference to the Hanks et al. and Wilks articles discussed above.

35

The following table shows the nucleic acid and amino acid numbers that correspond to the signal peptide, the extracellular domain, the transmembrane region and the intracellular domain for murine flk-1 (mflk-1), murine flk-2 (mflk-2) and human flk-2 (hflk-2).

mFLK-1

Signal Peptide	<u>Extracellular</u>	Transmembrane	Intracellular
aa # -19 to -1	1 to 743	744 to 765	766 to 1348
aa code M A	A E	v v	R A
na # 208-264	265-2493	2494-2559	2560-4308

mFLK-2

	Signal Peptide	<u>Extracellular</u>	Transmembrane	Intracellular
	aa # -27 to -1	1 to 517	518 to 537	538 to 966
10	aa code M T	n s	F C	H S
	na # 31-111	112-1662	1663-1722	1723-3006

hFLK-2

-	Signal Peptide	<u>Extracellular</u>	Transmembrane	Intracellular
15	aa # -27 to -1	1 to 516	517 to 536	537 to 966
	aa code M N	Q F	Y C	H S
	na # 58-138	139-1689	1690-1746	1747-3036

The present invention includes the extracellular receptor domain lacking the transmembrane region and catalytic domain. Preferably, the hydrophobic leader sequence is also removed from the extracellular domain. In the case of human and murine flk-2, the hydrophobic leader sequence includes amino acids 1-27.

25

30

20

These regions and domains may easily be visually identified by those having ordinary skill in the art by reviewing the amino acid sequence in a suspected pTK and comparing it to known pTKs. For example, referring to Figure 1a, the transmembrane region of flk-2, which separates the extracellular receptor domain from the catalytic domain, is encoded by nucleotides 1663 (T) to 1722 (C). These nucleotides correspond to amino acid residues 545 (Phe) to 564 (Cys). The amino acid sequence between the transmembrane region and the catalytic sub-domain (amino acids 618-623) identified by Hanks et al. as sub-domain I (i.e., GXGXXG) is characteristic of receptor protein tyrosine kinases.

The extracellular domain may also be identified through

10

15

20

25

35

commonly recognized criteria of extracellular amino acid sequences. The determination of appropriate criteria is known to those skilled in the art, and has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA 78, 3824-3828 (1981); Kyte et al, J. Mol. Biol. 157, 105-132 (1982); Emini, J. Virol. 55, 836-839 (1985); Jameson et al, CA BIOS 4, 181-186 (1988); and Karplus et al, Naturwissenschaften 72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed characteristic of extracellular domains.

As will be discussed in more detail below, the nucleic acid molecules that encode the receptors of the invention may be inserted into known vectors for use in standard recombinant DNA techniques. Standard recombinant DNA techniques are those such as are described in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987) and by Ausubel et al., Eds, "Current Protocols in Molecular Biology," Green Publishing Associates and Wiley-Interscience, New York (1987). The vectors may be Standard vectors circular (i.e. plasmids) or non-circular. are available for cloning and expression in a host. may be prokaryotic or eucaryotic. Prokaryotic hosts are preferably E. coli. Preferred eucaryotic hosts include yeast, insect and mammalian cells. Preferred mammalian cells include, for example, CHO, COS and human cells.

Ligands

The invention also includes ligands that bind to the receptor pTKs of the invention. In addition to binding, the ligands stimulate the proliferation of additional primitive stem cells, differentiation into more mature progenitor cells, or both.

The ligand may be a growth factor that occurs naturally in a mammal, preferably the same mammal that produces the corresponding receptor. The growth factor may be isolated and purified, or be present on the surface of an isolated

10

15

20

25

30

35

population of cells, such as stromal cells.

The ligand may also be a molecule that does not occur naturally in a mammal. For example, antibodies, preferably monoclonal, raised against the receptors of the invention or against anti-ligand antibodies mimic the shape of, and act as, ligands if they constitute the negative image of the receptor or anti-ligand antibody binding site. The ligand may also be a non-protein molecule that acts as a ligand when it binds to, or otherwise comes into contact with, the receptor.

In another embodiment, nucleic acid molecules encoding the ligands of the invention are provided. The nucleic acid molecule may be RNA, DNA or cDNA.

Stimulating Proliferation of Stem Cells

The invention also includes a method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells as defined above. The method comprises contacting the stem cells with a ligand in accordance with the present invention. The stimulation of proliferation and/or differentiation may occur in vitro or in vivo.

The ability of a ligand according to the invention to stimulate proliferation of stem cells in vitro and in vivo has important therapeutic applications. Such applications include treating mammals, including humans, whose primitive stem cells do not sufficiently undergo self-renewal. Example of such medical problems include those that occur when defects in hematopoietic stem cells or their related growth factors depress the number of white blood cells. Examples of such medical problems include anemia, such as macrocytic and aplastic anemia. Bone marrow damage resulting from cancer chemotherapy and radiation is another example of a medical problem that would be helped by the stem cell factors of the invention.

15

20

25

30

35

Functional Equivalents

The invention includes functional equivalents of the pTK receptors, receptor domains, and ligands described above as well as of the nucleic acid sequences encoding them. A protein is considered a functional equivalent of another protein for a specific function if the equivalent protein is immunologically cross-reactive with, and has the same function as, the receptors and ligands of the invention. The equivalent may, for example, be a fragment of the protein, or a substitution, addition or deletion mutant of the protein.

For example, it is possible to substitute amino acids in a sequence with equivalent amino acids. Groups of amino acids known normally to be equivalent are:

- (a) Ala(A) Ser(S) Thr(T) Pro(P) Gly(G);
- (b) Asn(N) Asp(D) Glu(E) Gln(Q);
- (c) His(H) Arg(R) Lys(K);
- (d) Met(M) Leu(L) Ile(I) Val(V); and
- (e) Phe(F) Tyr(Y) Trp(W).

substitutions, additions and/or deletions in the receptors and ligands may be made as long as the resulting equivalent receptors and ligands are immunologically cross reactive with, and have the same function as, the native receptors and ligands.

The equivalent receptors and ligands will normally have substantially the same amino acid sequence as the native receptors and ligands. An amino acid sequence that is substantially the same as another sequence, but that differs from the other sequence by means of one or more substitutions, additions and/or deletions is considered to be an equivalent sequence. Preferably, less than 25%, more preferably less than 10%, and most preferably less than 5% of the number of amino acid residues in the amino acid sequence of the native receptors and ligands are substituted for, added to, or deleted from.

20

25

30

35

Equivalent nucleic acid molecules include nucleic acid sequences that encode equivalent receptors and ligands as defined above. Equivalent nucleic acid molecules also include nucleic acid sequences that differ from native nucleic acid sequences in ways that do not affect the corresponding amino acid sequences.

ISOLATION OF NUCLEIC ACID MOLECULES AND PROTEINS

10 Isolation of Nucleic Acid Molecules Encoding Receptors

In order to produce nucleic acid molecules encoding mammalian stem cell receptors, a source of stem cells is provided. Suitable sources include fetal liver, spleen, or thymus cells or adult marrow or brain cells.

For example, suitable mouse fetal liver cells may be obtained at day 14 of gestation. Mouse fetal thymus cells may be obtained at day 14-18, preferably day 15, of gestation. Suitable fetal cells of other mammals are obtained at gestation times corresponding to those of mouse.

Total RNA is prepared by standard procedures from stem cell receptor-containing tissue. The total RNA is used to direct cDNA synthesis. Standard methods for isolating RNA and synthesizing cDNA are provided in standard manuals of molecular biology such as, for example, in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987) and in Ausubel et al., (Eds), "Current Protocols in Molecular Biology," Greene Associates/Wiley Interscience, New York (1990).

The cDNA of the receptors is amplified by known methods. For example, the cDNA may be used as a template for amplification by polymerase chain reaction (PCR); see Saiki et al., Science, 239, 487 (1988) or Mullis et al., U.S. patent 4,683,195. The sequences of the oligonucleotide primers for the PCR amplification are derived from the sequences of known receptors, such as from the sequences

given in Figures 1 and 2 for flk-2 and flk-1, resp ctively, preferably from flk-2. The oligonucleotides are synthesized by methods known in the art. Suitable methods include those described by Caruthers in Science 230, 281-285 (1985).

5

10

In order to isolate the entire protein-coding regions for the receptors of the invention, the upstream oligonucleotide is complementary to the sequence at the 5' end, preferably encompassing the ATG start codon and at least 5-10 nucleotides upstream of the start codon. The downstream oligonucleotide is complementary to the sequence at the 3' end, optionally encompassing the stop codon. A mixture of upstream and downstream oligonucleotides are used in the PCR amplification. The conditions are optimized for each particular primer pair according to standard procedures. The PCR product is analyzed by electrophoresis for the correct size cDNA corresponding to the sequence between the primers.

20

15

Alternatively, the coding region may be amplified in two or more overlapping fragments. The overlapping fragments are designed to include a restriction site permitting the assembly of the intact cDNA from the fragments.

25

30

The amplified DNA encoding the receptors of the invention may be replicated in a wide variety of cloning vectors in a wide variety of host cells. The host cell may be prokaryotic or eukaryotic. The DNA may be obtained from natural sources and, optionally, modified, or may be synthesized in whole or in part.

35

The vector into which the DNA is spliced may comprise segments of chromosomal, non-chromosomal and synthetic DNA sequences. Some suitable prokaryotic cloning vectors include plasmids from E. coli, such as colE1, pCR1, pBR322, pMB9, pUC, pKSM, and RP4. Prokaryotic vectors also include derivatives of phage DNA such as M13 and other filamentous single-stranded DNA phages.

Isolation of Receptors

DNA encoding the receptors of the invention are inserted into a suitable vector and expressed in a suitable prokaryotic or eucaryotic host. Vectors for expressing proteins in bacteria, especially $\underline{\text{E.coli}}$, are known. Such vectors include the PATH vectors described by Dieckmann and Tzagoloff in J. Biol. Chem. $\underline{260}$, 1513-1520 (1985). These vectors contain DNA sequences that encode anthranilate synthetase (TrpE) followed by a polylinker at the carboxy terminus. Other expression vector systems are based on betagalactosidase (pEX); lambda P_L ; maltose binding protein (pMAL); and glutathione S-transferase (pGST) - see Gene $\underline{67}$, 31 (1988) and Peptide Research $\underline{3}$, 167 (1990).

15

10

5

Vectors useful in yeast are available. A suitable example is the 2μ plasmid.

Suitable vectors for use in mammalian cells are also known. Such vectors include well-known derivatives of SV-40, adenovirus, retrovirus-derived DNA sequences and shuttle vectors derived from combination of functional mammalian vectors, such as those described above, and functional plasmids and phage DNA.

25

30

35

20

Further eukaryotic expression vectors are known in the art (e.g., P.J. Southern and P. Berg, J. Mol. Appl. Genet. 1, 327-341 (1982); S. Subramani et al, Mol. Cell. Biol. 1, 854-864 (1981); R.J. Kaufmann and P.A. Sharp, "Amplification And Expression Of Sequences Cotransfected with A Modular Dihydrofolate Reductase Complementary DNA Gene," J. Mol. Biol. 159, 601-621 (1982); R.J. Kaufmann and P.A. Sharp, Mol. Cell. Biol. 159, 601-664 (1982); S.I. Scahill et al, "Expression And Characterization Of The Product Of A Human Immune Interferon DNA Gene In Chinese Hamster Ovary Cells," Proc. Natl. Acad. Sci. USA 80, 4654-4659 (1983); G. Urlaub and L.A. Chasin, Proc. Natl. Acad. Sci. USA 77, 4216-4220, (1980).

10

15

The expression vectors useful in the present invention contain at least one expression control sequence that is operatively linked to the DNA sequence or fragment to be expressed. The control sequence is inserted in the vector in order to control and to regulate the expression of the cloned DNA sequence. Examples of useful expression control sequences are the <u>lac</u> system, the trp system, the tac system, the trc system, major operator and promoter regions of phage lambda, the control region of fd coat protein, the glycolytic promoters of yeast, e.g., the promoter for 3-phosphoglycerate kinase, the promoters of yeast acid phosphatase, e.g., Pho5, the promoters of the yeast alpha-mating factors, and promoters derived from polyoma, adenovirus, retrovirus, and simian virus, e.g., the early and late promoters or SV40, and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells and their viruses or combinations thereof.

vectors containing the receptor-encoding DNA and control signals are inserted into a host cell for expression of the receptor. Some useful expression host cells include well-known prokaryotic and eukaryotic cells. Some suitable prokaryotic hosts include, for example, <u>E. coli</u>, such as <u>E. coli</u> SG-936, <u>E. coli</u> HB 101, <u>E. coli</u> W3110, <u>E. coli</u> X1776, <u>E. coli</u> X2282, <u>E. coli</u> DHI, and <u>E. coli</u> MRC1, <u>Pseudomonas</u>, <u>Bacillus</u>, such as <u>Bacillus</u> subtilis, and <u>Streptomyces</u>. Suitable eukaryotic cells include yeast and other fungi, insect, animal cells, such as COS cells and CHO cells, human cells and plant cells in tissue culture.

30

35

The human homologs of the mouse receptors described above are isolated by a similar strategy. RNA encoding the receptors are obtained from a source of human cells enriched for primitive stem cells. Suitable human cells include fetal spleen, thymus and liver cells, and umbilical cord blood as well as adult brain and bone marrow cells. The human fetal cells are preferably obtained on the day of gestation corresponding to mid-gestation in mice. The amino acid sequences of the human flk receptors as well as of the

10

15

30

3.5

nucleic acid sequences encoding them are homologous to the amino acid and nucleotide sequences of the mouse receptors.

In the present specification, the sequence of a first protein, such as a receptor or a ligand, or of a nucleic acid molecule that encodes the protein, is considered homologous to a second protein or nucleic acid molecule if the amino acid or nucleotide sequence of the first protein or nucleic acid molecule is at least about 30% homologous, preferably at least about 50% homologous, and more preferably at least about 65% homologous to the respective sequences of the second protein or nucleic acid molecule. In the case of proteins having high homology, the amino acid or nucleotide sequence of the first protein or nucleic acid molecule is at least about 75% homologous, preferably at least about 85% homologous, and more preferably at least about 95% homologous to the amino acid or nucleotide sequence of the second protein or nucleic acid molecule.

20 Combinations of mouse oligonucleotide pairs are used as PCR primers to amplify the human homologs from the cells to account for sequence divergence. The remainder of the procedure for obtaining the human flk homologs are similar to those described above for obtaining mouse flk receptors. The less than perfect homology between the human flk homologs and the mouse oligonucleotides is taken into account in determining the stringency of the hybridization conditions.

Assay for expression of Receptors on Stem Cells

In order to demonstrate the expression of flk receptors on the surface of primitive hematopoietic stem cells, antibodies that recognize the receptor are raised. The receptor may be the entire protein as it exists in nature, or an antigenic fragment of the whole protein. Preferably, the fragment comprises the predicted extra-cellular portion of the molecule.

10

15

20

25

30

35

Antigenic fragments may be identified by methods known in the art. Fragments containing antigenic sequences may be selected on the basis of generally accepted criteria of potential antigenicity and/or exposure. Such criteria include the hydrophilicity and relative antigenic index, as determined by surface exposure analysis of proteins. The determination of appropriate criteria is known to those skilled in the art, and has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA 78, 3824-3828 (1981); Kyte et al, J. Mol. Biol. 157, 105-132 (1982); Emini, J. Virol. 55, 836-839 (1985); Jameson et al, CA BIOS 4, 181-186 (1988); and Karplus et al, Naturwissenschaften 72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed are selected preferentially over domains predicted to be more hydrophobic or hidden.

The proteins and fragments of the receptors to be used as antigens may be prepared by methods known in the art. Such methods include isolating or synthesizing DNA encoding the proteins and fragments, and using the DNA to produce recombinant proteins, as described above.

Fragments of proteins and DNA encoding the fragments may be chemically synthesized by methods known in the art from individual amino acids and nucleotides. Suitable methods for synthesizing protein fragments are described by Stuart and Young in "Solid Phase Peptide Synthesis," Second Edition, Pierce Chemical Company (1984). Suitable methods for synthesizing DNA fragments are described by Caruthers in Science 230, 281-285 (1985).

If the receptor fragment defines the epitope, but is too short to be antigenic, it may be conjugated to a carrier molecule in order to produce antibodies. Some suitable carrier molecules include keyhole limpet hemocyanin, Ig sequences, TrpE, and human or bovine serum albumen. Conjugation may be carried out by methods known in the art. One such method is to combine a cysteine residue of the fragment with a cysteine residue on the carrier molecule.

10

15

20

25

30

35

40

The antibodies are preferably monoclonal. Monoclonal antibodies may be produced by methods known in the art. These methods include the immunological method described by Kohl r and Milstein in Nature 256, 495-497 (1975) and Campbell in "Monoclonal Antibody Technology, The Production and Characterization of Rodent and Human Hybridomas" in Burdon et al., Eds, Laboratory Techniques in Biochemistry and Molecular Biology, Volume 13, Elsevier Science Publishers, Amsterdam (1985); as well as by the recombinant DNA method described by Huse et al in Science 246, 1275-1281 (1989).

Polyclonal or monoclonal antisera shown to be reactive with receptor-encoded native proteins, such as with flk-1 and flk-2 encoded proteins, expressed on the surface of viable cells are used to isolate antibody-positive cells. One method for isolating such cells is flow cytometry; see, for example, Loken et al., European patent application 317,156. The cells obtained are assayed for stem cells by engraftment into radiation-ablated hosts by methods known in the art; see, for example, Jordan et al., Cell 61, 953-963 (1990).

Criteria for Novel Stem Cell Receptor Tyrosine Kinases Expressed in Stem Cells

Additional novel receptor tyrosine kinase cDNAs are obtained by amplifying cDNAs from stem cell populations using oligonucleotides as PCR primers; see above. Examples of suitable oligonucleotides are PTK1 and PTK2, which were described by Wilks et al. in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989). Novel cDNA is selected on the basis of differential hybridization screening with probes representing known kinases. The cDNA clones hybridizing only at low stringency are selected and sequenced. The presence of the amino acid triplet DFG confirms that the sequence represents a kinase. The diagnostic methionine residue in the WMAPES motif is indicative of a receptor-like kinase, as described above. Potentially novel sequences obtained are compared to available sequences using databases such as Genbank in order to confirm uniqueness. Gene-specific oligonucleotides are prepared as described above based on the sequence obtained.

The oligonucleotides are used to analyze stem cell enriched and depleted populations for expression. Such cell populations in mice are described, for example, by Jordan et al. in Cell 61, 953-956 (1990); Ikuta et al. in Cell 62, 863-864 (1990); Spangrude et al. in Science 241, 58-62 (1988); and Szilvassy et al. in Blood 74, 930-939 (1989). Examples of such human cell populations are described as CD33 CD34 by Andrews et al. in the Journal of Experimental Medicine 169, 1721-1731 (1989). Other human stem cell populations are described, for example, in Civin et al., European Patent Application 395,355 and in Loken et al., European Patent Application 317,156.

15

20

25

30

35

40

10

Isolating Ligands and Nucleic Acid Molecules Encoding Ligands

Cells that may be used for obtaining ligands include stromal cells, for example stromal cells from fetal liver, fetal spleen, fetal thymus and fetal or adult bone marrow. Cell lines expressing ligands are established and screened.

For example, cells such as stromal (non-hematopoietic) cells from fetal liver are immortalized by known methods. Examples of known methods of immortalizing cells include transduction with a temperature sensitive SV40 T-antigen expressed in a retroviral vector. Infection of fetal liver cells with this virus permits the rapid and efficient establishment of multiple independent cell lines. These lines are screened for ligand activity by methods known in the art, such as those outlined below.

Ligands for the receptors of the invention, such as flk1 and flk-2, may be obtained from the cells in several ways.
For example, a bioassay system for ligand activity employs
chimeric tagged receptors; see, for example, Flanagan et al.,
Cell 63, 185-194 (1990). One strategy measures ligand
binding directly via a histochemical assay. Fusion proteins
comprising the extracellular receptor domains and secretable
alkaline phosphatase (SEAP) are constructed and transfected

into suitable cells such as NIH/3T3 or COS cells. Flanagan et al. refer to such DNA or amino acid constructs as APtag followed by the name of the receptor - i.e. APtag-c-kit. The fusion proteins bind with high affinity to cells expressing surface-bound ligand. Binding is detectable by the enzymatic activity of the alkaline phosphatase secreted into the medium. The bound cells, which are often stromal cells, are isolated from the APtag-receptor complex.

For example, some stromal cells that bind APtag-flk1 and APtag-flk2 fusion proteins include mouse fetal liver cells (see example 1); human fetal spleen cells (see example 3); and human fetal liver (example 3). Some stromal fetal thymus cells contain flk-1 ligand (example 3).

15

20

5

To clone the cDNA that encodes the ligand, a cDNA library is constructed from the isolated stromal cells in a suitable expression vector, preferably a phage such as CDM8, pSV Sport (BRL Gibco) or piH3, (Seed et al., Proc. Natl. Acad. Sci. USA 84, 3365-3369 (1987)). The library is transfected into suitable host cells, such as COS cells. Cells containing ligands on their surface are detected by known methods, see above.

In one such method, transfected COS cells are 25 distributed into single cell suspensions and incubated with the secreted alkaline phosphatase-flk receptor fusion protein, which is present in the medium from NIH/3T3 or COS cells prepared by the method described by Flanagan et al., see above. Alkaline phosphatase-receptor fusion proteins 3.0 that are not bound to the cells are removed by centrifugation, and the cells are panned on plates coated with antibodies to alkaline phosphatase. Bound cells are isolated following several washes with a suitable wash reagent, such as 5% fetal bovine serum in PBS, and the DNA is 35 extracted from the cells. Additional details of the panning method described above may be found in an article by Seed et al., Proc. Natl. Acad. Sci. USA 84, 3365-3369 (1987).

In a second strategy, the putative extracellular ligand binding domains of the receptors are fused to the transmembrane and kinase domains of the human c-fms tyrosine kinase and introduced into 3T3 fibroblasts. The human c-fms kinase is necessary and sufficient to transduce proliferative signals in these cells after appropriate activation i.e. with the flk-1 or flk-2 ligand. The 3T3 cells expressing the chimeras are used to screen putative sources of ligand in a cell proliferation assay.

10

5

An alternate approach for isolating ligands using the fusion receptor-expressing 3T3 cells and insertional activation is also possible. A retrovirus is introduced into random chromosomal positions in a large population of these cells. In a small fraction, the retrovirus is inserted in the vicinity of the ligand-encoding gene, thereby activating it. These cells proliferate due to autocrine stimulation of the receptor. The ligand gene is "tagged" by the retrovirus, thus facilitating its isolation.

20

25

30

35

40

15

Examples

Example 1. Cells containing mouse flk-1 and flk-2 ligands. Murine stromal cell line 2018.

In order to establish stromal cell lines, fetal liver cells are disaggregated with collagen and grown in a mixture of Dulbecco's Modified Eagle's Medium (DMEM) and 10% heat-The cells are inactivated fetal calf serum at 37°C. immortalized by standard methods. A suitable method involves introducing DNA encoding a growth regulating- or oncogene-The DNA may be encoding sequence into the target host cell. introduced by means of transduction in a recombinant viral particle or transfection in a plasmid. See, for example, Hammerschmidt et al., Nature 340, 393-397 (1989) and Abcouwer et al, Biotechnology 7, 939-946 (1989). Retroviruses are the preferred viral vectors, although SV40 and Epstein-Barr virus can also serve as donors of the growth-enhancing sequences. A suitable retrovirus is the ecotropic retrovirus containing

10

15

20

25

30

35

40

a temperature sensitive SV40 T-antigen (tsA58) and a G418 resistance gene described by McKay in Cell 66, 713-729 (1991). After several days at 37°C, the temperature of the medium is lowered to 32°C. Cells are selected with G418 (0.5 mg/ml). The selected cells are expanded and maintained.

A mouse stromal cell line produced by this procedure is called 2018 and was deposited on October 30, 1991 in the American Type Culture Collection, Rockville, Maryland, USA (ATCC); accession number CRL 10907.

Example 2. Cells containing human flk-1 and flk-2 ligands.

Human fetal liver (18, 20, and 33 weeks after abortion), spleen (18 weeks after abortion), or thymus (20 weeks after abortion) is removed at the time of abortion and stored on ice in a balanced salt solution. After mincing into 1 mm fragments and forcing through a wire mesh, the tissue is washed one time in Hanks Balanced Salt Solution (HBSS).

The disrupted tissue is centrifuged at 200 xg for 15 minutes at room temperature. The resulting pellet is resuspended in 10-20 ml of a tissue culture grade trypsin-EDTA solution (Flow Laboratories). The resuspended tissue is transferred to a sterile flask and stirred with a stirring bar at room temperature for 10 minutes. One ml of heatinactivated fetal bovine calf serum (Hyclone) is added to a final concentration of 10% in order to inhibit trypsin activity. Collagenase type IV (Sigma) is added from a stock solution (10 mg/ml in HBSS) to a final concentration of 100 ug/ml in order to disrupt the stromal cells. stirred at room temperature for an additional 2.5 hours; collected by centrifugation (400xg, 15 minutes); and resuspended in "stromal medium," which contains Iscove's modification of DMEM supplemented with 10% heat-inactivated fetal calf serum, 5% heat-inactivated human serum (Sigma), 4 mM L-glutamine, 1x sodium pyruvate, (stock of 100x Sigma), 1x non-essential amino acids (stock of 100x, Flow), and a mixture of antibiotics kanomycin, neomycin, penicillin,

10

15

20

25

30

streptomycin. Prior to resuspending the pellet in the stromal medium, the pellet is wash d one time with HBSS. It is convenient to suspend the cells in 60 ml of medium. The number of cultures depends on the amount of tissue.

Example 3. Isolating Stromal cells

Resuspended Cells (example 2) that are incubated at 37°C with 5% carbon dioxide begin to adhere to the plastic plate within 10-48 hours. Confluent monolayers may be observed within 7-10 days, depending upon the number of cells plated in the initial innoculum. Non-adherent and highly refractile cells adhering to the stromal cell layer as colonies are separately removed by pipetting and frozen. Non-adherent cells are likely sources of populations of self-renewing stem cells containing flk-2. The adherent stromal cell layers are frozen in aliquots for future studies or expanded for growth in culture.

An unexpectedly high level of APtag-flk-2 fusion protein binding to the fetal spleen cells is observed. Two fetal spleen lines are grown in "stromal medium," which is described in example 2.

Non-adherent fetal stem cells attach to the stromal cells and form colonies (colony forming unit - CFU). Stromal cells and CFU are isolated by means of sterile glass cylinders and expanded in culture. A clone, called Fsp 62891, contains the flk-2 ligand. Fsp 62891 was deposited in the American Type Culture Collection, Rockville, Maryland, U.S.A on November 21, 1991, accession number CRL 10935.

Fetal liver and fetal thymus cells are prepared in a similar way. Both of these cell types produce ligands of flk-1 and, in the case of liver, some flk-2. One such fetal thymus cell line, called F.thy 62891, and one such fetal liver cell line, called FL 62891, were deposited in the American Type Culture Collection, Rockville, Maryland, U.S.A on November 21, 1991 and April 2, 1992, respectively,

5 .

10

20

25

35

40

accession numbers CRL 10936 and CRL 11005, respectively.

Stable human cell lines are prepared from fetal cells with the same temperature sensitive immortalizing virus used to prepare the murine cell line described in example 1.

Example 4. Isolation of human stromal cell clone

Highly refractile cells overgrow patches of stromal cells, presumably because the stromal cells produce factors that allow the formation of the CFU. To isolate stromal cell clones, sterile glass cylinders coated with vacuum grease are positioned over the CFU. A trypsin-EDTA solution (100 ml) is added in order to detach the cells. The cells are added to 5 ml of stromal medium and each (clone) plated in a single well 15 of 6-well plate.

Example 5. Plasmid (AP-tag) for expressing secretable alkaline phosphatase (SEAP)

Plasmids that express secretable alkaline phosphatase are described by Flanagan and Leder in Cell 63, 185-194 (1990). The plasmids contain a promoter, such as the LTR promoter; a polylinker, including HindIII and BglII; DNA encoding SEAP; a poly-A signal; and ampicillin resistance gene; and replication site.

Example 6. Plasmid for expressing APtag-flk-2 and APtag-flk-30 1 fusion proteins

Plasmids that express fusion proteins of SEAP and the extracellular portion of either flk-1 or flk-2 are prepared in accordance with the protocols of Flanagan and Leder in Cell <u>63</u>, 185-194 (1990) and Berger et al., Gene <u>66</u>, 1-10 (1988). Briefly, a HindIII-Bam HI fragment containing the extracellular portion of flk-1 or flk-2 is prepared and inserted into the HindIII-BglII site of the plasmid described in example 5.

30

35

40

Example 7. Production Of APtaq-flk-1 Or -flk-2 Fusion Prot in

The plasmids from Example 6 are transfected into Cos-7 cells by DEAE-dextran (as described in Current Protocols in 5 Molecular Biology, Unit 16.13, "Transient Expression of Proteins Using Cos Cells," 1991); and cotransfected with a selectable marker, such as pSV7neo, into NIH/3T3 cells by calcium precipitation. The NIH/3T3 cells are selected with $600\mu g/ml$ G418 in 100 mm plates. Over 300 clones are screened 10 for secretion of placental alkaline phosphatase activity. The assay is performed by heating a portion of the supernatant at 65°C for 10 minutes to inactivate background phosphatase activity, and measuring the OD_{405} after incubating with 1M diethanolamine (pH 9.8), 0.5 mM MgCl₂, 10 mM L-15 homoarginine (a phosphatase inhibitor), 0.5 mg/ml BSA, and 12 mM p-nitrophenyl phosphate. Human placental alkaline phosphatase is used to perform a standard curve. The APtaqflk-1 clones (F-1AP21-4) produce up to 10 μ g alkaline phosphatase activity/ml and the APtaq-flk-2 clones (F-2AP26-20 0) produce up to 0.5 μ g alkaline phosphatase activity/ml.

Example 8. Assay For APtaq-flk-1 Or APtaq-flk-2 Binding To Cells

The binding of APtaq-flk-1 or APtag-flk-2 to cells containing the appropriate ligand is assayed by standard methods. See, for example, Flanagan and Leder, Cell 63:185-194, 1990). Cells (i.e., mouse stromal cells, human fetal liver, spleen or thymus, or various control cells) are grown to confluency in six-well plates and washed with HBHA (Hank's balanced salt solution with 0.5 mg/ml BSA, 0.02% NaN3, 20 mM HEPES, pH 7.0). Supernatants from transfected COS or NIH/3T3 cells containing either APtaq-flk-1 fusion protein, APtag-flk-2 fusion protein, or APtag without a receptor (as a control) are added to the cell monolayers and incubated for two hours at room temperature on a rotating platform. The concentration of the APtaq-flk-1 fusion protein, APtag-flk-2 fusion protein, or APtag without a receptor is 60 ng/ml of

alkaline phosphatase as determined by the standard alkaline phosphatase curve (see above). The cells are then rinsed seven times with HBHA and lysed in 350 μ l of 1% Triton X-100, 10 mM Tris-HCl (pH 8.0). The lysates are transferred to a microfuge tube, along with a further 150 μ l rinse with the same solution. After vortexing vigorously, the samples are centrifuged for five minutes in a microfuge, heated at 65°C for 12 minutes to inactivate cellular phosphatases, and assayed for phosphatase activity as described previously. Results of experiments designed to show the time and dose responses of binding between stromal cells containing the ligands to flk-2 and flk-1 (2018) and APtag-flk-2, APtag-flk-1 and APtag without receptor (as a control) are shown in Figures 3 and 4, respectively.

15

5

10

Example 8A. Plasmids for expressing flk1/fms and flk2/fms fusion proteins

Plasmids that express fusion proteins of the
extracellular portion of either flk-1 or flk-2 and the
intracellular portion of c-fms (also known as colonystimulating factor-1 receptor) are prepared in a manner
similar to that described under Example 6 (Plasmid for
expressing APtag-flk-2 and APtag-flk-1 fusion proteins).
Briefly, a Hind III - Bam HI fragment containing the
extracellular portion of flk1 or flk2 is prepared and
inserted into the Hind III - Bgl II site of a pLH expression
vector containing the intracellular portion of c-fms.

30

8B. Expression of flk1/fms or flk2/fms in 3T3 cells

35

The plasmids from Example 11 are transfected into NIH/3T3 cells by calcium. The intracellular portion of c-fms is detected by Western blotting.

Example 9. Cloning and Expr ssion of cDNA Coding For Mouse
Ligand T flk-1 and flk-2 Receptors

15

20

25

30

35

cDNA expressing mouse ligand for flk-1 and flk-2 is prepared by known methods. See, for example, Seed, B., and Aruffo, A. PNAS 84:3365-3369, 1987; Simmons, D. and Seed, B. J. Immunol. 141:2797-2800; and D'Andrea, A.D., Lodish, H.F. and Wong, G.G. Cell 57:277-285, 1989).

The protocols are listed below in sequence: (a) RNA isolation; (b) poly A RNA preparation; (c) cDNA synthesis; (d) cDNA size fractionation; (e) propagation of plasmids (vector); (f) isolation of plasmid DNA; (g) preparation of vector pSV Sport (BRL Gibco) for cloning; (h) compilation of buffers for the above steps; (i) Transfection of cDNA encoding Ligands in Cos 7 Cells; (j) panning procedure; (k) Expression cloning of flk-1 or flk-2 ligand by establishment of an autocrine loop.

9a. Guanidinium thiocyanate/LiCl Protocol for RNA Isolation

For each ml of mix desired, 0.5 g guanidine thiocyanate (GuSCN) is dissolved in 0.55 ml of 25% LiCl (stock filtered through 0.45 micron filter). 20 μ l of mercaptoethanol is added. (The resulting solution is not good for more than about a week at room temperature.)

The 2018 stromal cells are centrifuged, and 1 ml of the solution described above is added to up to 5×10^7 cells. The cells are sheared by means of a polytron until the mixture is non-viscous. For small scale preparations (<108 cells), the sheared mixture is layered on 1.5 ml of 5.7M CsCl (RNase free; 1.26 g CsCl added to every ml 10 mM EDTA pH8), The mixture is and overlaid with RNase-free water if needed. spun in an SW55 rotor at 50 krpm for 2 hours. scale preparations, 25 ml of the mixture is layered on 12 ml CsCl in an SW28 tube, overlaid as above, and spun at 24 krpm for 8 hours. The contents of the tube are aspirated carefully with a sterile pasteur pipet connected to a vacuum Once past the CsCl interface, a band around the tube is scratched with the pipet tip to prevent creeping of the layer on the wall down the tube. The remaining CsCl

solution is aspirated. The resulting pellet is taken up in water, but not redissolved. 1/10 volume of sodium acetate and three volumes of ethanol are added to the mixture, and spun. The pellet is resuspended in water at 70°C, if necessary. The concentration of the RNA is adjusted to 1 mg/ml and frozen.

It should be noted that small RNA molecules (e.g., 5S) do not come down. For small amounts of cells, the volumes are scaled down, and the mixture is overlaid with GuSCN in RNase-free water on a gradient (precipitation is inefficient when RNA is dilute).

9b. Poly A RNA preparation

15

20

25

30

35

10

5

(All buffers mentioned are compiled separately below)

A disposable polypropylene column is prepared by washing with 5M NaOH and then rinsing with RNase-free water. For each milligram of total RNA, approximately 0.3 ml (final packed bed) of oligo dT cellulose is added. The oligo dT cellulose is prepared by resuspending approximately 0.5 ml of dry powder in 1 ml of 0.1M NaOH and transferring it into the column, or by percolating 0.1M NaOH through a previously used column. The column is washed with several column volumes of RNase-free water until the pH is neutral, and rinsed with 2-3 ml of loading buffer. The column bed is transferred to a sterile 15 ml tube using 4-6 ml of loading buffer.

Total RNA from the 2018 cell line is heated to 70°C for 2-3 minutes. LiCl from RNase-free stock is added to the mixture to a final concentration of 0.5M. The mixture is combined with oligo dT cellulose in the 15 ml tube, which is vortexed or agitated for 10 minutes. The mixture is poured into the column, and washed with 3 ml loading buffer, and then with 3 ml of middle wash buffer. The mRNA is eluted directly into an SW55 tube with 1.5 ml of 2 mM EDTA and 0.1% SDS, discarding the first two or three drops.

The eluted mRNA is precipitated by adding 1/10 volume of 3M sodium acetate and filling the tube with ethanol. The contents of the tube are mixed, chilled for 30 minutes at - 20°C, and spun at 50 krpm at 5°C for 30 minutes. After the ethanol is decanted, and the tube air dried, the mRNA pellet is resuspended in 50-100 μ l of RNase-free water. 5 μ l of the resuspended mRNA is heated to 70°C in MOPS/EDTA/formaldehyde, and examined on an RNase-free 1% agarose gel.

9c. cDNA Synthesis

The protocol used is a variation of the method described by Gubler and Hoffman in Gene $\underline{25}$, 263-270 (1983).

First Strand. 4 μg of mRNA is added to a microfuge tube, heated to approximately 100°C for 30 seconds, quenched on ice. The volume is adjusted to 70μl with RNAse-free water. 20 μl of RT1 buffer, 2 μl of RNAse inhibitor (Boehringer 36 u/μl), 1 μl of 5 μg/μl of oligo dT
 (Collaborative Research), 2.5 μl of 20 mM dXTP's (ultrapure - US Biochemicals), 1 μl of 1M DTT and 4 μl of RT-XL (Life Sciences, 24 u/μl) are added. The mixture is incubated at 42°C for 40 minutes, and inactivated by heating at 70°C for 10 minutes.

25

30

35

10

- 2. Second Strand. 320 μ l of RNAse-free water, 80 μ l of RT2 buffer, 5 μ l of DNA Polymerase I (Boehringer, 5 U/ μ l), 2 μ l RNAse H (BRL 2 u/ μ l) are added to the solution containing the first strand. The solution is incubated at 15°C for one hour and at 22°C for an additional hour. After adding 20 μ l of 0.5M EDTA, pH 8.0, the solution is extracted with phenol and precipitated by adding NaCl to 0.5M linear polyacrylamide (carrier) to 20 μ g/ml, and filling the tube with EtOH. The tube is spun for 2-3 minutes in a microfuge, vortexed to dislodge precipitated material from the wall of the tube, and respun for one minute.
- 3. Adaptors. Adaptors provide specific restriction sites to facilitate cloning, and are available from BRL

10

Gibco, New England Biolabs, etc. Crude adaptors are resuspended at a concentration of 1 μ g/ μ l. MgSO₄ is added to a final concentration of 10 mM, followed by five volumes of The resulting precipitate is rinsed with 70% EtOH and resuspended in TE at a concentration of 1 μ g/ μ l. To kinase, 25 μ l of resuspended adaptors is added to 3 μ l of 10X kinasing buffer and 20 units of kinase. The mixture is incubated at 37°C overnight. The precipitated cDNA is resuspended in 240 μ l of TE (10/1). After adding 30 μ l of 10X low salt buffer, 30 μl of 10X ligation buffer with 0.1mM ATP, 3 μ l (2.4 μ g) of kinased 12-mer adaptor sequence, 2 μ l (1.6 μ g) of kinased 8-mer adaptor sequence, and 1 μ l of T4 DNA ligase (BioLabs, 400 $u/\mu l$, or Boehringer, 1 Weiss unit ml), the mixture is incubated at 15°C overnight. The cDNA is extracted with phenol and precipitated as above, except that the extra carrier is omitted, and resuspended in 100 μl of TE.

9d. cDNA Size Fractionation.

20

25

30

35

15

A 20% KOAc, 2 mM EDTA, 1 μ g/ml ethidium bromide solution and a 5% KOAc, 2 mM EDTA, 1 μ g/ml ethidium bromide solution are prepared. 2.6 ml of the 20% KOAc solution is added to the back chamber of a small gradient maker. Air bubbles are removed from the tube connecting the two chambers by allowing the 20% solution to flow into the front chamber and forcing the solution to return to the back chamber by tilting the gradient maker. The passage between the chambers is closed, and 2.5 ml of 5% solution is added to the front chamber. liquid in the tubing from a previous run is removed by allowing the 5% solution to flow to the end of the tubing, and then to return to its chamber. The apparatus is placed on a stirplate, and, with rapid stirring, the topcock connecting the two chambers and the front stopcock are opened. A polyallomer 5W55 tube is filled from the bottom The gradient is overlaid with 100 μl with the KOAc solution. of cDNA solution, and spun for three hours at 50k rpm at To collect fractions from the gradient, the SW55 tube is pierced close to the bottom of the tube with a butterfly

10

15

20

25

30

35

infusion set (with the luer hub clipped off). Three 0.5 ml fractions and then six 0.25 ml fractions are collected in microfuge tubes (approximately 22 and 11 drops, respectively). The fractions are precipitated by adding linear polyacrylamide to 20 μ g/ml and filling the tube to the top with ethanol. The tubes are cooled, spun in a microfuge tube for three minutes, vortexed, and respun for one minute. The resulting pellets are rinsed with 70% ethanol and respun, taking care not to permit the pellets to dry to completion. Each 0.25 ml fraction is resuspended in 10 μ l of TE, and 1 μ l is run on a 1% agarose minigel. The first three fractions, and the last six which contain no material smaller than 1 kb are pooled.

9e. Propagation of Plasmids

SupF plasmids are selected in nonsuppressing bacterial hosts containing a second plasmid, p3, which contains amber mutated ampicillin and tetracycline drug resistance elements. See Seed, Nucleic Acids Res., 11, 2427-2445 (1983). plasmid is derived from RP1, is 57 kb in length, and is a stably maintained, single copy episome. The ampicillin resistance of this plasmid reverts at a high rate so that amp plasmids usually cannot be used in p3-containing Selection for tetracycline resistance alone is strains. almost as good as selection for ampicillin-tetracycline resistance. However, spontaneous appearance of chromosomal suppressor tRNA mutations presents an unavoidable background (frequency about 10.9) in this system. Colonies arising from spontaneous suppressor mutations are usually larger than colonies arising from plasmid transformation. Suppressor plasmids are selected in Luria broth (LB) medium containing ampicillin at 12.5 μ g/ml and tetracycline at 7.5 μ g/ml. For scaled-up plasmid preparations, M9 Casamino acids medium containing glycerol (0.8%) is employed as a carbon source. The bacteria are grown to saturation.

Alternatively, pSV Sport (BRL, Gaithersberg, Maryland) may be employed to provide SV40 derived sequences for

10

25

replication, transcription initiation and termination in COS 7 cells, as well as those sequences necessary for replication and ampicillin resistance in E. coli.

9f. Isolation of Vector DNA/Plasmid

One liter of saturated bacterial cells are spun down in J6 bottles at 4.2k rpm for 25 minutes. The cells are resuspended in 40 ml 10 mM EDTA, pH 8. 80 ml 0.2M NaOH and 1% SDS are added, and the mixture is swirled until it is clear and viscous. 40 ml 5M KOAc, pH 4.7 (2.5M KOAc, 2.5M HOAc) is added, and the mixture is shaken semi-vigorously until the lumps are approximately 2-3 mm in size. is spun at 4.2k rpm for 5 minutes. The supernatant is poured through cheesecloth into a 250 ml bottle, which is then filled with isopropyl alcohol and centrifuged at 4.2k rpm for The bottle is gently drained and rinsed with 70% 5 minutes. ethanol, taking care not to fragment the pellet. After inverting the bottle and removing traces of ethanol, the mixture is resuspended in 3.5 ml Tris base/EDTA (20 mM/10 20 3.75 ml of resuspended pellet and 0.75 ml 10 mg/ml ethidium bromide are added to 4.5 g CsCl. VTi80 tubes are filled with solution, and centrifuged for at least 2.5 hours at 80k rpm. Bands are extracted by visible light with 1 ml syringe and 20 gauge or lower needle. The top of the tube is cut off with scissors, and the needle is inserted upwards into the tube at an angle of about 30 degrees with respect to the tube at a position about 3 mm beneath the band, with the bevel of the needle up. After the band is removed, the contents of the tube are poured into bleach. The extracted 30 band is deposited in a 13 ml Sarstedt tube, which is then filled to the top with n-butanol saturated with 1M NaCl If the amount of DNA is large, the extraction procedure may be repeated. After aspirating the butanol into a trap containing 5M NaOH to destroy ethidium, an 35 approximately equal volume of 1M ammonium acetate and approximately two volumes of 95% ethanol are added to the DNA, which is then spun at 10k rpm for 5 minutes. The pellet is rinsed carefully with 70% ethanol, and dried with a swab

or lyophilizer.

9g. Preparation of Vector for Cloning

20 μ g of vector is cut in a 200 μ l reaction with 100 units of BstXI (New York Biolabs) at 50°C overnight in a well thermostated, circulating water bath. Potassium acetate solutions (5 and 20%) are prepared in 5W55 tubes as described above. 100 μ l of the digested vector is added to each tube and spun for three hours, 50k rpm at 22°C. Under 300 nm UV light, the desired band is observed to migrate 2/3 of the 10 length of the tube. Forward trailing of the band indicates that the gradient is overloaded. The band is removed with a 1 ml syringe fitted with a 20 gauge needle. After adding linear polyacrylamide and precipitating the plasmid by adding three volumes of ethanol, the plasmid is resuspended in 50 μ l 15 of TE. Trial ligations are carried out with a constant amount of vector and increasing amounts of cDNA. Large scale ligation are carried out on the basis of these trial ligations. Usually the entire cDNA prep requires 1-2 μg of 20 cut vector.

9h. Buffers

30

35

25 Loading Buffer: .5M LiCl, 10 mM Tris pH 7.5, 1 mM

EDTA .1% SDS.

Middle Wash Buffer: .15M LiCl, 10 mM Tris pH 7.5, 1 mM

EDTA .1% SDS.

RT1 Buffer: .25M Tris pH 8.8 (8.2 at 42), .25M

KCl, 30 mM MgCl₂.

RT2 Buffer: .1M Tris pH 7.5, 25 mM MgCl2, .5M

KCl, .25 mg/ml BSA, 50 mM

dithiothreitol (DTT).

10X Low Salt: 60 mM Tris pH 7.5, 60 mM MgCl₂, 50 mM

NaCl, 2.5 mg/ml BSA 70 mM DME

10X Ligation Additions: 1 mM ATP, 20 mM DTT, 1 mg/ml BSA 10 mM spermidine.

10X Kinasing Buffer: .5M Tris pH 7.5, 10 mM ATP, 20 mM
DTT. 10 mM spermidine, 1 mg/ml BSA

100 mM MgCl₂

9i. Transfection of cDNA encoding Ligands in Cos 7 Cells

Cos 7 cells are split 1:5 into 100 mm plates in 5 Dulbecco's modified Eagles medium (DME)/10% fetal calf serum (FCS), and allowed to grow overnight. 3 ml Tris/DME (0.039M Tris, pH 7.4 in DME) containing 400 μ g/ml DEAE-dextran (Sigma, D-9885) is prepared for each 100 mm plate of Cos 7 cells to be transfected. 10 μg of plasmid DNA preparation 10 per plate is added. The medium is removed from the Cos-7 cells and the DNA/DEAE-dextran mixture is added. are incubated for 4.5 hours. The medium is removed from the cells, and replaced with 3 ml of DME containing 2% fetal calf serum (FCS) and 0.1 mM chloroquine. The cells are incubated for one hour. After removing the chloroquine and replacing with 1.5 ml 20% glycerol in PBS, the cells are allowed to stand at room temperature for one minute. 3 ml Tris/DME is added, and the mixture is aspirated and washed two times with 10 ml DME/10% FCS is added and the mixture is 20 incubated overnight. The transfected Cos 7 cells are split 1:2 into fresh 100 mm plates with (DME)/10% FCS and allowed to grow.

25 9j. Panning Procedure for Cos 7 cells Expressing Ligand

1) Antibody-coated plates:

Bacteriological 100 mm plates are coated for 1.5 hours
with rabbit anti-human placental alkaline phosphatase (Dako,
California) diluted 1:500 in 10 ml of 50 mM Tris.HCl, pH 9.5.
The plates are washed three times with 0.15M NaCl, and
incubated with 3 mg BSA/ml PBS overnight. The blocking
solution is aspirated, and the plates are utilized
immediately or frozen for later use.

2) Panning cells:

The medium from transfected Cos 7 cells is aspirated,

30

35

and 3 ml PBS/0.5 mM EDTA/0.02% sodium azide is added. plates are incubated at 37°C for thirty minutes in order to detach the cells. The cells are triturated vigorously with a pasteur pipet and collected in a 15 ml centrifuge tube. plate is washed with a further 2 ml PBS/EDTA/azide solution, which is then added to the centrifuge tube. After centrifuging at 200 xg for five minutes, the cells are resuspended in 3 ml of APtaq-flk-1 (F-1AP21-4) or flk-2 (F-2AP26-0) supernatant from transfected NIH/3T3 cells (see Example 7.), and incubated for 1.5 hours on ice. The cells are centrifuged again at 200 xg for five minutes. 10 supernatant is aspirated, and the cells are resuspended in 3 ml PBS/EDTA/azide solution. The cell suspension is layered carefully on 3 ml PBS/EDTA/azide/2% Ficoll, and centrifuged at 200 xg for four minutes. The supernatant is aspirated, and the cells are resuspended in 0.5 ml PBS/EDTA/azide 15 The cells are added to the antibody-coated plates solution. containing 4 ml PBS/EDTA/azide/5% FBS, and allowed to stand at room temperature one to three hours. Non-adhering cells are removed by washing gently two or three times with 3 ml 20 PBS/5% FBS.

3) Hirt Supernatant:

plates, which are allowed to stand 20 minutes. The viscuous mixture is added by means of a pipet into a microfuge tube.

0.1 ml 5M NaCl is added to the tube, mixed, and chilled on ice for at least five hours. The tube is spun for four minutes, and the supernatant is removed carefully. The contents of the tube are extracted with phenol once, or, if the first interface is not clean, twice. Ten micrograms of linear polyacrylamide (or other carrier) is added, and the tube is filled to the top with ethanol. The resulting precipitate is resuspended in 0.1 ml water or TE. After adding 3 volumes of EtOH/NaOAc, the cells are reprecipitated and resuspended in 0.1 ml water or TE. The cDNA obtained is transfected into any suitable E. coli host by electroporation. Suitable hosts are described in various

10

catalogs, and include MC1061/p3 or Electromax DH10B Cells of BRL Gibco. The cDNA is extracted by conventional methods.

The above panning procedure is repeated until a pure \underline{E} . \underline{coli} clone bearing the cDNA as a unique plasmid recombinant capable of transfecting mammalian cells and yielding a positive panning assay is isolated. Normally, three repetitions are sufficient.

9k. Expression cloning of flk1 or flk2 ligand by establishment of an autocrine loop

Cells expressing flk1/fms or flk2/fms (Example 10) are transfected with 20-30 μg of a cDNA library from either flk1 15 ligand or flk2 ligand expressing stromal cells, respectively. The cDNA library is prepared as described above (a-h). The cells are co-transfected with 1 μ g pLTR neo cDNA. Following transfection the cells are passaged 1:2 and cultured in 800 μ g/ml of G418 in Dulbecco's medium (DME) supplemented with 20 10% CS. Approximately 12 days later the colonies of cells are passaged and plated onto dishes coated with poly -Dlysine (1 mg/ml) and human fibronectin (15 μ g/ml). culture medium is defined serum-free medium which is a mixture (3:1) of DME and Ham's F12 medium. The medium 25 supplements are 8 mM NaHCO3, 15 mM HEPES pH 7.4, 3 mM histidine, 4 μ M MnCl₂, 10 uM ethanolamine, 0.1 μ M selenous acid, 2 μ M hydrocortisone, 5 μ g/ml transferrin, 500 μ g/ml bovine serum albumin/linoleic acid complex, and 20 μ g/ml insulin (Ref. Zhan, X, et al. Oncogene 1: 369-376,1987). 3.0. cultures are refed the next day and every 3 days until the only cells capable of growing under the defined medium condition remain. The remaining colonies of cells are expanded and tested for the presence of the ligand by assaying for binding of APtag - flk1 or APtag - flk2 to the 35 cells (as described in Example 8). The DNA would be rescued from cells demonstrating the presence of the flk1 or flk2 ligand and the sequence.

15

20

25

30

35

Example 10. Expression of Ligand cDNA

The cDNA is sequenced, and expressed in a suitable host cell, such as a mammalian cell, preferably COS, CHO or NIH/3T3 cells. The presence of the ligand is confirmed by demonstrating binding of the ligand to APtag-flk2 fusion protein (see above).

Example 11. Chemical Cross Linking of Receptor and Ligand

Cross linking experiments are performed on intact cells using a modification of the procedure described by Blume-Jensen et al et al., EMBO J., 10, 4121-4128 (1991). Cells are cultured in 100mm tissue culture plates to subconfluence and washed once with PBS-0.1% BSA.

To examine chemical cross linking of soluble receptor to membrane-bound ligand, stromal cells from the 2018 stromal cell line are incubated with conditioned media (CM) from transfected 3T3 cells expressing the soluble receptor F1k2-APtag. Cross linking studies of soluble ligand to membrane bound receptor are performed by incubating conditioned media from 2018 cells with transfected 3T3 cells expressing a F1k2-fms fusion construct.

Binding is carried out for 2 hours either at room temperature with CM containing 0.02% sodium azide to prevent receptor internalization or at 4°C with CM (and buffers) supplemented with sodium vanadate to prevent receptor dephosphorylation. Cells are washed twice with PBS-0.1% BSA and four times with PBS.

Cross linking is performed in PBS containing 250 mM disuccinimidyl suberate (DSS; Pierce) for 30 minutes at room temperature. The reaction is quenched with Tris-HCL pH7.4 to a final concentration of 50 mM.

Cells are solubilized in solubilization buffer: 0.5% Triton - X100, 0.5% deoxycholic acid, 20 mM Tris pH 7.4, 150

mM NaCl, 10mM EDTA, 1mM PMFS, 50 mg/ml aprotinin, 2 mg/ml bestatin, 2 mg/ml pepstatin and 10mg/ml leupeptin. Lysed cells are immediately transferred to 1.5 ml Nalgene tubes and solubilized by rolling end to end for 45 minutes at 4°C. Lysates are then centrifuged in a microfuge at 14,000g for 10 minutes. Solubilized cross linked receptor complexes are then retrieved from lysates by incubating supernatants with 10% (v/v) wheat germ lectin-Sepharose 6MB beads (Pharmacia) at 4°C for 2 hours or overnight.

10

Beads are washed once with Tris-buffered saline (TBS) and resuspended in 2X SDS-polyacrylamide nonreducing sample buffer. Bound complexes are eluted from the beads by heating at 95°C for 5 minutes. Samples are analyzed on 4-12% gradient gels (NOVEX) under nonreducing and reducing conditions (0.35 M 2-mercaptoethanol) and then transferred to PVDF membranes for 2 hours using a Novex blotting apparatus. Blots are blocked in TBS-3% BSA for 1 hour at room temperature followed by incubation with appropriate antibody.

20

15

Cross linked Flk2-APtag and Flk2-fms receptors are detected using rabbit polyclonal antibodies raised against human alkaline phosphatase and fms protein, respectively. The remainder of the procedure is carried out according to the instructions provided in the ABC Kit (Pierce). The kit is based on the use of a biotinylated secondary antibody and avidin-biotinylated horseradish peroxidase complex for detection.

3.0

25

Example 12. Expression and purification of Flag-Flk-2.

Design of the Flag-Flk2 expression plasmids.

35

A synthetic DNA fragment (Fragment 1) is synthesized using complementary oligonucleotides BP1 and BP2 (see below and SEQ. ID. NOS. 7 and 8). The fragment encoded the following features in the 5' to 3' order: Sal I restriction

site, 22 base pair (bp) 5' untranslated region containing an eukaryotic ribosome binding site, an ATG initiation codon, preprotrypsinogen signal sequenc , coding region for the FLAG peptide (DYKDDDDKI) and Bgl II restriction site.

5.

10

15

20

25

A cDNA fragment (Fragment 2) encoding Asn 27 to Ser 544 of murine Flk2 is obtained by polymerase chain reaction (PCR) using primers designed to introduce an in frame Bgl II site at the 5' end (oligonucleotide BP5, see below and SEQ. ID. NO. 9) and a termination codon followed by a Not I site at the 3' end (oligonucleotide BP10, see below and SEQ. ID. NO. 10). The template for the PCR reaction is full length Flk2 cDNA (Matthews et al., Cell 65:1143 (1991)). Fragment 2 is extensively digested with Bgl II and Not I restriction enzymes prior to ligation.

To assemble the complete Flag-Flk2 gene, Fragments 1 and 2 are ligated in a tripartate ligation into Sal I and Not I digested plasmid pSPORT (Gibco/BRL, Grand Island, NY) to give the plasmid pFlag-Flk2.

Preferably, the Flag-Flk2 protein is attached at either end to the Fc portion of an immunoglobulin (Ig). The Ig is preferably attached to the Flk2 portion of the Flag-Flk2 To assemble the construct pFlag-FLK2-Ig, the sequences coding for the CH1 domain of human immunoglobulin G (IgG1) are placed downstream of the Flk2 coding region in the plasmid pFlag-Flk2 as per the method described by Zettlemeissl et al., DNA and Cell Biology 9: 347-352 (1990).

30

The sequences of oligonucleotides used to construct the Flag-Flk2 gene are given below:

Oligonucleotide BP1:

5'-AATTCGTCGACTTTCTGTCACCATGAGTGCACTTCTGATCCTAGCCCTTGTG 35 GGAGCTGCTGTTGCTGACTACAAAGATGATGATGACAAGATCTA-3'

Oligonucleotide BP2:

5'-AGCTTAGATCTTGTCATCATCTTTGTAGTCAGCAACAGCAGCTCCCACA

15

20

25

30

35

AGGGCTAGGATCAGAAGTGCACTCATGGTGACAGAAAGTCGACG-3'

Oligonucleotide BP5: 5'-TGAGAAGATCTCAAACCAAGACCTGCCTGT-3'

Oligonucleotide BP10: 5'-CCAATGGCGGCCGCTCAGGAGATGTTGTCTTGGA-3'

Expression of the Flag-Flk2 construct.

For transient expression of the Flag-Flk2 construct, the Sall to Not I fragment from pFlag-Flk2 is subcloned into the plasmid pSVSPORT (Gibco/BRL) to give the plasmid pSVFlag-Flk2. For expression of the Flag-Flk2 protein pSVFlag-Flk2 is transfected into COS monkey cells using the DEAE-dextran method.

For stable expression in eukaryotic cells, the Sal I-Not I fragment of pFlag-Flk2 is cloned into the EcoRV and Not I sites of the plasmid pcDNA I/Neo (Invitrogen Co., San Diego, CA). The Sal I 3' recessed terminus of pFlag-Flk2 is filled with the Klenow fragment of DNA polymerase I and a mixture of deoxyribonucleotides to make the site compatible with the EcoRV site of the vector. The resulting construct is introduced into cultured mamalian cells using either the Lipofectin (Gibco/BRL) or the calcium phosphate methods.

For expression in insect cells, the SalI to Hind III (from pSPORT polylinker) fragment of pFlag-Flk2 is subcloned into the BamH1-Hind III sites of the baculovirus transfer vector pBlueBac III (Invitrogen). The vector Bam HI site and the insert Sal I site are blunted with Klenow (see above). Production of the recombinant virus and infection of the Sf9 insect cells is performed as per manufacturers directions (Invitrogen).

Expression of the Flag-Flk2 protein is detected by Western blotting of SDS-PAGE separated conditioned media (mamalian cells) or cell lysates (insect cells) with the

10

15

anti-Flag monoclonal antibody (mAb) M1 (International Biotechnology, Inc. [IBI], New Haven, CT).

- 3. Affinity purification of the Flag-Flk2 protein from conditioned media or insect cell lysates is performed using immobilized mAb M1 (IBI) as per manufacturers specifications.
- 3.1 Affinity purification of the Flag-Flk2-Ig¹ protein from conditioned media is performed using immobilized Protein A (Pharmacia LKB, Piscataway, NJ) as per the manufacturers instructions.
 - II. Use of the Flag-Flk2 protein to search for the Flk2 ligand.
 - 1. Binding and cross-linking studies to detect membranebound ligand:

A. Binding studies.

Murine stromal lines (eg. 2018 cells ATCC CRL 10907 20 (see below), see example 1, supra) considered to be candidates660Xfexpression of the Flk2 ligand were deposited at the American Type Culture Collection, ATCC CRL 10907 (see below) and cultured in Dulbecco's modified Eagles medium (DMEM; Gibco/BRL) supplemented with 10% fetal calf serum. The 25 cells are grown to confluency in 10 cm plates and washed once with PBS. Conditioned media containing Flag-Flk2 is incubated with the cells at 4°C for 2 hrs. The cell monolayers are rinsed extensively to remove the non-bound protein, solubilized and centrifuged to remove insoluble cellular 30 material. Glycoproteins in the lysates are partially purified with wheat germ agglutinin-Sepharose (Pharmacia LKB, Piscataway, NJ), boiled in an SDS sample buffer, separated on SDS-PAGE gels and transferred to nitrocellulose membranes. The membranes are probed with the M1 antibody to detect the 35 presence of cell-associated Flag-Flk2 protein.

B. In a cross-linking study, the above protocol is

10

15 .

followed except that prior to solubilization the monolayer are treated with the crosslinker disuccinimidyl suberate (DSS; Pierce, Rockford, IL). The presence of a putative ligand is detected by an upward shift in the apparent molecular weight of the Flag-Flk2 band on Western blots.

- C. Purified Flag-Flk2 protein labelled with Na125I via the Chloramine T method is used to asses the ability of the soluble extracellular domain of the Flk2 receptor to bind transmembrane form of the Flk2 ligand in cultured stromal lines. The labelled protein is added to monolayers of stromal cells on ice for 2 hr in the presence or absence of excess unlabelled protein. Specific binding is calculated by subtracting counts bound in the presence of excess unlabelled protein from the total counts bound.
- 2. Use of the Flag-Flk2 protein to search for secreted form of the ligand.
- The Flag-Flk2 protein is used in attempts to 20. identify the Flk2 ligand in conditioned media from stromal cell cultures via modification of the direct N-terminal sequencing method of Pan et al., Bioch. Biophys. Res. Comm. 166:201 (1990). Briefly, the Flag-Flk2 protein N-terminally sequenced by automatic Edman degradation chemistry an an ABI 25 477A sequncer with on line PTH amino acid analysis. Approximatelly 15 amino acids are determined. The protein is then immobilized on Nugel PAF silica beads via free NH4+ groups. The immobilized Flag-Flk2 is incubated with conditioned media from putative ligand-producing cells for 30 30 min at 4°C and washed free off non-bound proteins with phosphate buffered saline adjusted to 2M NaCl. The resulting protein complex is resequenced. For each sequencing cycle, any amino acid not expected at this position in the FLAG-Flk2 protein is considered as possibly originating from a protein 35 complexed to the F1k2 receptor.
 - B. For conventional affinity chromatography, the Flag-Flk2 protein is immobilized on a stable support such as

Sepharose. 35S-methionine labelled-conditioned media from stromal cell lines are passed over the affinity matrix and bound material is analyzed by SDS-PAGE gel electrophoresis and autoradiography.

5.

3. Use of the Flag-Flk2 protein in expression cloning experiments.

A method of expression cloning of integral membrane

proteins in COS cells has been described (Aruffo and Seed,
Proc. Natl. Acad. Sci. 84:8573 (1987)). A cDNA library is
prepared from an appropriate stromal cell line such as 2018
and is transfected into COS cells. Cells transiently
expressing the Flk2 ligand are affinity adsorbed onto plastic
plates coated with the Flag-Flk2 protein. The cells are
lysed, the plasmid DNA is recovered and amplified in a
bacterial host. The cycle of transfection into COS cells is
repeated until a single cDNA clone encoding the ligand
molecule is isolated.

20

In a modification of the above technique, pools of transfected COS cells are screened for binding of 125I-Flag-Flk2. Positive cells pools are selected and plasmid DNA is recovered and amplified in E. coli. The resulting DNA preparation is used in subsequent rounds of transfection and transient expression until all cells are positive for binding of 125I-Flag-Flk2. The cDNA in the final plasmid preparation is then sequenced to determine the sequence of the putative Flk-2 ligand.

30

35

25

SUPPLEMENTAL ENABLEMENT

The invention as claimed is enabled in accordance with the above specification and readily available references and starting materials. Nevertheless, Applicants have deposited with the American Type Culture Collection, Rockville, Md., USA (ATCC) the cell lines listed below:

2018, ATCC accession no. CRL 10907, deposited

October 30, 1991.

Fsp 62891, ATCC accession no. CRL 10935, deposit d November 21, 1991.

5

10

15

20

F.thy 62891, ATCC accession no. CRL 10936, deposited November 21, 1991.

FL 62891, ATCC accession no. CRL 11005, deposited April 2, 1992.

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and the regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture for 30 years from date of deposit. The organisms will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Applicants and ATCC which assures unrestricted availability upon issuance of the pertinent U.S. patent. Availability of the deposited strains is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

25

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- APPLICANT: Lemischka, Ihor R. (;)
- TITLE OF INVENTION: TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS (ii)
- (iii) NUMBER OF SEQUENCES: 10
- CORRESPONDENCE ADDRESS: (iv)
- ADDRESSEE: Imclone Systems Incorporated Street STREET: 180 Varick (A)
 - CITY: New York ΰ

a

- STATE: New York COUNTRY: U.S.A. â
 - ZIP: 10014 田田
- MEDIUM TYPE: Floppy disk COMPUTER READABLE FORM: 2
- COMPUTER: IBM PC Compatible

B

- SYSTEM: PC-DOS/MS-DOS OPERATING
- SOFTWARE: PatentIn Release #1.0, Version #1.25 <u>e</u> ΰ
- CURRENT APPLICATION DATA: APPLICATION NUMBER: (vi)

(<u>A</u>

- FILING DATE: (E)
- CLASSIFICATION:
- ATTORNEY/AGENT INFORMATION: NAME: Feit, Irving N. (viii)
- REFERENCE/DOCKET NUMBER: LEM-3-7PT REGISTRATION NUMBER: 28,601 <u>@</u>0
- TELECOMMUNICATION INFORMATION: TELEPHONE: 212-645-1405 (1x)

(B) TELEFAX: 212-645-2054

INFORMATION FOR SEQ ID NO:1: (3) SEQUENCE CHARACTERISTICS: (ï)

LENGTH: 3453 base pairs (A)

TYPE: nucleic acid (a)

STRANDEDNESS: double TOPOLOGY: linear

MOLECULE TYPE: CDNA (ii)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

FEATURE: (ix)

NAME/KEY: mat_peptide LOCATION: 112..3006 (B)

FEATURE: (ix)

(A) NAME/KEY: sig_peptide (B) LOCATION: 31..111

(B)

FEATURE: (1x)

LOCATION: 31..3009 (A) NAME/KEY: CDS (B) LOCATION: 31.. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGC AGC Arg Ser -20 GCGGCCTGGC TACCGCGCGC TCCGGAGGCC ATG CGG TTG GCG CAG CGC Met Arg Ala Leu Ala Gln Arg -27 -25

54

•									
102	150	198	246	294	342	390	438	486	534
٠.							•	•	•
GAG Glu	AGT Ser	ATG	AGT Ser 45	666 G1y	TGC	GAT	GAG Glu	AAC Asn 125	GTG Val
CTT Leu G -5	ATC A Ile s	CGA A	CAG 7	TCT Ser 60	TCC	TTT Phe	ACA Thr	GCC	TAT
ATT C Ile L	TTA A Leu I	TAC C	CGC (Arg (GAG	CTT Leu 75	CAC His	GTG Val	CGC Arg	CTG
ATG A Met I	GTT T Val I	rcg 1 Ser 1	AGG (Arg)	GCC	GAC	CCG Pro 90	AAC	GAA Glu	CAG Gln
GTA A Val M	TGT G Cys v	TCA 1 Ser 5	CCG /	GTG	666 61y	CAG	TTG Leu 105	AGC	ACA Thr
TCA G Ser V	AAG T Lys C	CCA 1 Pro 8	ACC Thr 140	GAG Glu	CCA	TGC	ATC Ile	CAG Gln 120	GAT
TTG T Leu S -10	ATC A Ile L	AAG C Lys e	TGT 7 Cys 7	GTG Val	ACC Thr	GGC Gly	GCC	ATT	AGA
GTT T Val L	GTG A Val I	GGA A Gly I	cag 1 gln (ACC	GCC Ala 70	CTG	ATG Met	CAT	GTA
GTT G Val V	CCT G Pro V	GCG GAIA	CTC (Iren (GCC	CIC	TCC Ser 85	TCC	CTC	AAT
CTT G	CTG C	TCA G	GAC (Asp)	GCG	CAG Gln	AGC	GTT Val 100	CTA	GTG
CTG C Leu L	GAC CASP I	TCA 1	GAA G	GAA Glu	GTG Val	CAC His	ATC Ile	TAC Tyr 115	ACA
CTG C Leu L -15	caa g	GGC 1	CCA (TAT TYr 50	CAA	AAG Lys	GGA	GAA Glu	TTC
CTG C Leu L	AAC C Asn G	AAT G Asn G	rcc (Ser)	GTA Val	CTG Leu 65	TTT Phe	AGA	GGA Gly	CTG
CGG C	ACA A Thr A	AAC AASn A	GGA 1 Gly 5	ACG (Thr	ACC	GTC Val	AAC	GCA	GTA Val
CGG C(Arg A)	GTT A Val T	GAG A Glu A 15	CGA G Arg G	GGG 1 Gly '	ATC Ile	TGG Trp	CAA Gln 95	CAG	ACA
gac co Asp ad	ACC G Thr V	CAT G His G	GTG C Val ?	GAA C	TCC	CIC	TTA	ACC Thr 110	TAC
ΰÃ	A H	O III				,			

				-					
	582	630	678	726	774	822	870	918	996
		· .							
					: 				· .
	CTC	TGC Cys	AGA Arg	TGC Cys 205	ATA Ile	AAA Lys	CAT His	66C 61y	CGG Arg 285
140	CTG	CTC Leu	GTC Val	AGA Arg	ACC Thr 220	CTG	AAC	GAG Glu	ATT Ile
	GCA Ala 155	GTG Val	GTT Val	ATC Ile	TTC Phe	TTC Phe 235	GTG Val	GAG Glu	ATG Met
	GAT Asp	TGG Trp 170	GCT Ala	GAC	CTG	TTA Leu	CAT His 250	CTG	ACC Thr
	CAG Gln	GAG Glu	CCT Pro 185	ACA Thr	AAG Lys	CAG Gln	ATC Ile	GCC Ala 265	AGG
٠.	AAC Asn	GTG Val	66C 61y	GGA Gly 200	ACC	CCC	GCC	AAA Lys	AAC Asn 280
135	GAA Glu	ACT Thr	GAA Glu	TTC	TGC Cys 215	CTG	AAG Lys	GAC Asp	ACA
	ATG Met 150	CCC	GAA Glu	TTG	GAA Glu	ACA Thr 230	TGT Cys	GAA	TCC
	AAG Lys	GAG Glu 165	AAA Lys	GAG	CGC Arg	AGC	AGG Arg 245	CTG	TAC
	AGG Arg	CCG	TGT Cys 180	CAT His	66C G1y	CAG Gln	ATC Ile	GAG Glu 260	ACC Thr
•	TTT Phe	GTT	AGC	CTT Leu 195	CTG	CCT	TGG	TGG Trp	AGT Ser 275
130	TAC	GGT	GAA Glu	GTA Val	GCA Ala 210	GCT	TTG Leu	ACC	ATG
	CCT Pro 145	GAG Glu	AGG	AAG Lys	AAT Asn	CAG Gln 225	CCC	CTC	GAG
	AGA Arg	TCC Ser 160	CAC	GAA Glu	AGA Arg	AAC Asn	GAA Glu 240	666 G1y	TTT Phe
	AGG Arg	ATC Ile	TCC Ser 175	GAG Glu	GCT	CTA	666 G1y	TTC Phe 255	TAC
	CTA	TGC Cys	AGC	AAG Lys 190	TGT Cys	GAT Asp	GTG Val	GGA Gly	AGC Ser 270

1014	1062	1110	1158	1206	1254	1302	1350	1398	1446
ATT CTC TTG GCC TTT GTG TCT TCC GTG GGA AGG AAC GAC ACC GGA TAT Ile Leu Leu Ala Phe Val Ser Ser Val Gly Arg Asn Asp Thr Gly Tyr 295	TAC ACC TGC TCT TCC TCA AAG CAC CCC AGC CAG TCA GCG TTG GTG ACC Tyr Thr Cys Ser Ser Ser Lys His Pro Ser Gln Ser Ala Leu Val Thr 305	ATC CTA GAA AAA GGG TTT ATA AAC GCT ACC AGC TCG CAA GAA GAG TAT Ile Leu Glu Lys Gly Phe Ile Asn Ala Thr Ser Ser Gln Glu Glu Tyr 320	GAA ATT GAC CCG TAC GAA AAG TTC TGC TTC TCA GTC AGG TTT AAA GCG Glu Ile Asp Pro Tyr Glu Lys Phe Cys Phe Ser Val Arg Phe Lys Ala 335	TAC CCA CGA ATC CGA TGC ACG TGG ATC TTC TCT CAA GCC TCA TTT CCT TYr Pro Arg Ile Arg Cys Thr Trp Ile Phe Ser Gln Ala Ser Phe Pro 350	TGT GAA CAG AGA GGC CTG GAG GAT GGG TAC AGC ATA TCT AAA TTT TGC Cys Glu Gln Arg Gly Leu Glu Asp Gly Tyr Ser Ile Ser Lys Phe Cys 375	GAT CAT AAG AAC AAG CCA GGA GAG TAC ATA TTC TAT GCA GAA AAT GAT Asp His Lys Asn Lys Pro Gly Glu Tyr Ile Phe Tyr Ala Glu Asn Asp 385	GAC GCC CAG TTC ACC AAA ATG TTC ACG CTG AAT ATA AGA AAG AAA CCT Asp Ala Gln Phe Thr Lys Met Phe Thr Leu Asn Ile Arg Lys Lys Pro 400	CAA GTG CTA GCA AAT GCC TCA GCC AGC CAG GCG TCC TGT TCC TCT GAT Gln Val Leu Ala Asn Ala Ser Ala Ser Gln Ala Ser Cys Ser Ser Asp 415	GGC TAC CCG CTA CCC TCT TGG ACC TGG AAG TGT TCG GAC AAA TCT Gly Tyr Pro Leu Pro Ser Trp Thr Trp Lys Lys Cys Ser Asp Lys Ser
			*						

						•			
	1494	1542	1590	1638	1686	1734	1782	1830	1878
		•							
445	GCT	ATG Met	TCT	TTC	TGT Cys 525	AAA Lys	GGC Gly	TAT	GTC Val
	AAG Lys 460	AAT Asn	AAT	CCC	CTC	TAC TYr 540	ACT	GAA Glu	AAG Lys
•	AAA 1 Lys 1	CTA Leu 475	TAC	GGC	666 G1y	AAA Lys	GTG Val 555	TAT Tyr	666 61y
	AAT Asn	ACT	GCG Ala 490	CCA	ATT Ile	CAC His	CAG Gln	GAC Asp 570	TTT
	TGG P	AGT 1	TGT Cys	TCA Ser 505	ACC Thr	TGC Cys	ATC Ile	AGG	GAG G1u 585
440	GTT 7 Val 7	AGC Ser	TGC Cys	AAC Asn	GCG Ala 520	ATC Ile	ATG	TTC	TTA
4	GGA G Gly V 455	TCG 1	AAA '	TTA	TAT Tyr	TTG Leu 535	CAG Gln	GAC	AAC Asn
•	GAA C	GTG 7 Val 470	GTC	TTT Phe	TTC	GTG Val	CTG Leu 550	GTT Val	GAG Glu
	CCA (Pro (TGG	CTG Leu 485	ATC Ile	TCC	ATT Ile	CAG Gln	TAC TYr 565	AGA
٠	ATC (Ile 1	cAG '	CTT	ACC Thr 500	ATC Ile	CTC	AGT Ser	TTC Phe	CCG Pro 580
435	GAA Z	GGC (GGG Gly	GAA Glu	AAC Asn 515	GTT Val	GAG Glu	TAC	TTC Phe
4	GAG (Glu (450	TTT (AAA Lys	TGC Cys	GAC Asp	GTT Val 530	TAC	GAG Glu	GAG Glu
	ACG C Thr	GTG Val	666 61y	TCT	CAA	ATT Ile	AGG Arg 545	AAC Asn	TGG Trp
	TGC 1 Cys 7	AAA (Lys	GCC Ala 480	ACG Thr	ATC Ile	TTC Phe	TTT Phe	GAT Asp 560	AAG Lys
•	AAT 1 Asn (AGA 1 Arg 1	GAG	GGC G1y 495	TTC	CCC	CAA Gln	CTG	CTT Leu 575
430	CCC P	AAC A	AGT (ATG	CCT Pro 510	CTC	AAG Lys	CCC	GAC Asp

1926	1974	2022	2070	2118	2166	2214	2262	2310	2358	
TCT GGC GCT TTC GGG AGG GTG ATG AAC GCC ACG GCC TAT GGC 1926 Ser Gly Ala Phe Gly Arg Val Met Asn Ala Thr Ala Tyr Gly 595 605	AAA ACG GGA GTC TCA ATT CAG GTG GCG GTG AAG ATG CTA AAA 1974 Lys Thr Gly Val Ser Ile Gln Val Ala Val Lys Met Leu Lys 610 615	GCT GAC AGC TGT GAA AAA GAA GCT CTC ATG TCG GAG CTC AAA 2022 Ala Asp Ser Cys Glu Lys Glu Ala Leu Met Ser Glu Leu Lys 625	ACC CAC CTG GGA CAC CAT GAC AAC ATC GTG AAT CTG CTG GGG 2070 Thr His Leu Gly His His Asp Asn Ile Val Asn Leu Leu Gly 640 645	ACA CTG TCA GGG CCA GTG TAC TTG ATT TTT GAA TAT TGT TGC 2118 Thr Leu Ser Gly Pro Val Tyr Leu Ile Phe Glu Tyr Cys Cys 660	GAC CTC CTC AAC TAC CTA AGA AGT AAA AGA GAG AAG TTT CAC 2166 Asp Leu Leu Asn Tyr Leu Arg Ser Lys Arg Glu Lys Phe His 675	TGG ACA GAG ATT TTT AAG GAA CAT AAT TTC AGT TCT TAC CCT Trp Thr Glu Ile Phe Lys Glu His Asn Phe Ser Ser Tyr Pro 690	CAG GCA CAT TCA AAT TCC AGC ATG CCT GGT TCA CGA GAA GTT 2262 Gln Ala His Ser Asn Ser Ser Met Pro Gly Ser Arg Glu Val 705	CAC CCG CCC TTG GAT CAG CTC TCA GGG TTC AAT GGG AAT TCA His Pro Pro Leu Asp Gln Leu Ser Gly Phe Asn Gly Asn Ser 720	TCT GAA GAT GAG ATT GAA TAT GAA AAC CAG AAG AGG CTG GCA Ser Glu Asp Glu Ile Glu Tyr Glu Asn Gln Lys Arg Leu Ala	
CTG GGG T Leu Gly S 590	ATT AGT A	GAG AAA G	ATG ATG Met Met	GCA TGC Ala Cys 655	TAT GGT Tyr Gly 670	AGG ACA Arg Thr	ACT TTC Thr Phe	CAG TTA Gln Leu	ATT CAT Ile His	

	2406	2454	2502	2550	2598	2646	2694	2742	2790
	CTT Leu 765	AAG Lys	CAC His	CTG Leu	AAG Lys	AGT Ser 845	GGT	CTG	, GGG 1 Gly
	CTC	TTC Phe 780	ACC	ATC Ile	GTG Val	AAG Lys	CTG Leu 860	AAA Lys	GAA
	GAC	GAG Glu	GTC Val 795	GAC	CCG	ATC Ile	TCA	TAT Tyr 875	ACA
	GAA Glu	CTG	TTG	CGA Arg 810	CTG	ACA Thr	TTT Phe	TTC	GCC Ala 890
745	TTT (Phe (TTC (GTG	GCC Ala	CGG Arg 825	TAC Tyr	ATA Ile	AAC	TAT
	ACG Thr Thr 760	GAA Glu	AAT Asn	CTG	GCA	ATC Ile 840	GAG Glu	GCT	TTC Phe
-	CTG	ATG Met 775	AGG	GGA Gly	AAC Asn	GGG G1y	TGG Trp 855	GAC Asp	CCA
	GTG (Val	G GC G1у	GCC Ala 790	TTT Phe	GGC G1у	GAA	CTC	GTC Val 870	CAG Gln
	AAC	AAA Lys	GCA	GAC ASP 805	AGG Arg	TTT Phe	CTT Leu	CCT	GAG G1u 885
740	TTG	GCC Ala	CTG	TGT Cys	GTC Val 820	TTA	ATC Ile	ATT Ile	ATG Met
	GAT Asp 755	GTG	GAC	ATC Ile	GTC Val	AGC Ser 835	66c 61y	GGC Gly	AAA Lys
	GAA Glu	CAA Gln 770	AGA Arg	AAG Lys	TAC	GAG Glu	TAC Tyr 850	CCT	TTT Phe
	GAG Glu	TAC	CAC His	GTG Val	AGC	CCC	TCC	TAC Tyr 865	GGA G1y
	GAG Glu	GCG	GTC Val	GTG Val 800	TCC	GCA	TGG Trp	CCT	AGT Ser 880
735	GAA (Glu (TTT	TGT Cys	AAG Lys	GAC Asp 815	ATG Met	GTC Val	AAC	CAG
• -	GAA (Glu (750	TGC	TCG	666 61y	AGC	TGG Trp 830	GAC Asp	GTG Val	ATT Ile

8838	2886	2934	2982	3036	3096	3156	3216	3276	3336	3396	3453
A TAC TIT GTA AIG CAA TCC TGC TGG GCT TIT GAC TCA AGG AAG CGG 2838 E Tyr Phe Val Met Gln Ser Cys Trp Ala Phe Asp Ser Arg Lys Arg 895	TCC TTC CCC AAC CTG ACT TCA TTT TTA GGA TGT CAG CTG GCA GAG 2886 Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly Cys Gln Leu Ala Glu 915	GCA GAA GAA GCA TGT ATC AGA ACA TCC ATC CAT CTA CCA AAA CAG GCG 2934 Ala Glu Glu Ala Cys Ile Arg Thr Ser Ile His Leu Pro Lys Gln Ala 930	CCT CAG CAG AGA GGC GGG CTC AGA GCC CAG TCG CCA CAG CGC CAG Pro Gln Gln Arg Gly Gly Leu Arg Ala Gln Ser Pro Gln Arg Gln 945	AAG ATT CAC AGA GAA AGA AGT TAGCGAGGAG GCCTTGGACC CCGCCACCCT Lys Ile His Arg Glu Arg Ser 960	AGCAGGCTGT AGACCGCAGA GCCAAGATTA GCCTCGCCTC	CGTTGCTTCG CTGGACTTTT CTCTAGATGC TGTCTGCCAT TACTCCAAAG TGACTTCTAT 3156	AAAATCAAAC CTCTCGC ACAGGCGGGA GAGCCAATAA TGAGACTTGT TGGTGAGCCC 3216	GCCIACCCIG GGGGCCTITC CACGAGCTIG AGGGGAAAGC CAIGTATCTG AAATATAGTA 3270	TATTCTTGTA AATACGTGAA ACAAACCAAA CCCGTTTTTT GCTAAGGGAA AGCTAAATAT 333	GATTTTTAAA AATCTATGTT TTAAAATACT ATGTAACTTT TTCATCTATT TAGTGATATA 339	TITIAIGGAI GGAAATAAAC TITCTACIGI AAAAAAAAA AAAAAAAA AAAAAAA AAAAAAA 345
ATA Ile	CCA Pro 910	GCZ	GCC	GTG Val	AG	S	AA	g	ŢŢ	25	H

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

acids LENGTH: 992 amino

TYPE: amino acid

TOPOLOGY: linear (ii) MOLECULE TYPE: protein

SEQUENCE DESCRIPTION: SEQ ID NO:2: (xi) Val Leu Leu Leu Leu Asp Arg Arg Ser -20 Arg Ala Leu Ala Gln Arg -25 Met -27

Leu Pro 5 Asn Gln Asp Glu Thr Val Thr Ser Val Met Ile Leu Leu

Ala Ser 20 Ser Glu Asn Asn Gly Cys Val Leu Ile Ser His

Ser Pro Glu Asp Leu Arg Gly Tyr Arg Met Val Ser

Ala Glu Ala Ser 25

Tyr 50 Val Thr Glu Gly Ser 45 Gln Arg Pro Arg

Leu

Gln

Gln Val

Leu 65

Thr

Ile

Ser

Gly

Ser 60

Glu

Ala

Val

Glu

Val. 55

 Thr

 \mathbf{Thr}

Cys

Gln

Pro

Gly Lys

lle Lys

Val

Val

Ser 85 Ser His Lys Phe Val 80 Trp Cys Leu Ser Leu Gly Asp Pro Thr Ala 70

Ser Ile Gly Gln Asn Arg Phe Asp Leu His Gln Pro cys Leu Leu Gln G1yGln Ala 110 Glu Thr Thr Asn Val Len 105 Ile

Asn \mathtt{Thr} Tyr Thr Val Leu Phe Asn 125 Ser Glu Arg Ala Glu His Ile

									•	•			
Lys	Glu 165	Lys	Glu	Arg	Ser	Arg 245	Leu	Tyr	Ser	His	Asn 325	Phe	
					Gln 8	Ile 7	Glu 260	Thr	Ser	Lys	Ile	Lys 340	
Arg	Pro	Cys 180	His	Leu Gly						Ser 1	Phe	Glu	
Phe	Val	Ser	Leu 195	Let	Pro	Trp	Trp	Ser 275	Val				
Tyr 1	Gly .	Glu	Val	Ala 210	Ala	Leu	Thr	Met	Phe 290	Ser	, G1y	Tyr	
Pro 1	G1u (Arg (Lys	Asn	Gln 225	Pro	Leu	Glu	Ala	Ser 305	Lys	Pro	
Arg F	ser G	His 2	Glu]	Arg	Asn	Glu 240	Gly	Phe	Leu	Cys	Glu 320	Asp	
Arg A	Ile S	Ser F 175	Glu (Ala	Leu	Gly	Phe 255	Tyr	Leu	Thr	Leu	11e 335	
Leu A	сув І	Ser S	Lys (Cys /	Asp	Val	Gly	Ser 270	Ile	Tyr	Ile	Tyr Glu	
Val L	Leu C	Сув в	Arg I	Cys (205	Ile /	Lys	His	Gly	Arg 285	Tyr	Thr	Tyr	
Tyr Va	Leu L	Leu C	Val A	Arg C	Thr]	Leu]	Asn	Glu	Ile	G1y 300	Val	Glu Glu	
i i	Ala L 155	Val L	Val V	Ile A	Phe 7	Phe 1 235	Val	Glu	Met	Thr	Leu 315	Glu	
n Leu		Trp Va	Ala V	Asp I	Leu F	Leu F	His 7	ren (Thr	Asp	Ala	Gln 330	
Gln	Asp				S.		Ile H	Ala 1 265	Arg '	Asn	Ser	Ser	
Thr	Gln	Glu	Pro 185	Thr	Lys	Gln							
Asp	Asn	Val	Glγ	G1y 200	Thr	Pro	Ala	Lys	Asn 280	Arg	Gln	Ser	
Arg A	Glu A	Thr 1	Glu (Phe (Cys 215	Leu	Lys	Asp	Thr	G1y 295	Ser	Thr	
		Pro T	Glu G	Leu F	Glu (Thr]	Cys	Glu	Ser	Val	Pro 310	Ala	
Val	Met 150	Pr	ບ	Ä	Ŋ	H W	U			. •			
			•										

Trp	
Thr	•
Cys	352
Arg	
Ile	
Arg	
Pro	
Tyr	350
Ala	
Lys	
Phe	
Arg	
Val	345
Ser	
Phe	
Cys	

Asp	
Glu	
Leu	
Gly	370
Arg	
Gln	
Glu	
Cys	
Pro	365
Phe	
Ser	
Ala	
Gln	
Ser	360
Phe	
Ile	

Glu Gly Pro Asn Lys 385 Cys Asp His Lys Phe 380 Ser Lys Ile Ser **TYr** 375 Gly

Ala Ser 420 Ala Asn Leu Ala Val 415 Gln Pro Lys Lys Arg 410 Ile Leu Asn Thr

Ser 435 Pro Pro Leu TYrG1y 430 Asp Ser Ser Cys Ser 425 Ala Gln Ser

Pro Ile Glu Glu 450 Thr Cys Ser Pro Asn 445 Cys Ser Asp Lys Lys 440 Trp Lys

Trp Gln G1yPhe Val 465 Lys Ala Asn Arg Lys 460 Gly Val Trp Asn Lys 455 Glu

Len Ala Gly Lys Gly 480 Ser Thr Leu Asn Met Ser Glu 475 Ser Ser Val 470

Ile

Cys Glu

Thr Ser

Met

Ser

Cys

Cys

Val

Ser Asn 515 Phe Ile Gln Asp G1y 495 Pro 510 Phe Ala Tyr Asn 490 Gly Pro Pro Ser 505 Asn Len Phe

Len Val Val 530 Ile Phe Pro Len Cys 525 Leu Gly Ile Thr Ala 520 Tyr

Gln Glu Tyr Arg 545 Lys Lys Gln Phe Tyr 540 Ile Cys His Lys Leu 535 Val

								•				·
TYr 565	Arg	Arg	Ile	Lys	His 645	Val	Leu	Lys	Ser	Gln 725	Glu	Asn
Phe T	Pro A 580	Gly P	Ser]	Glu]	His	Pro 660	Tyr	Phe	Asn	Asp	11e 740	Leu
Tyr F	Phe E	Phe (595	Val	Cys	Gly	Gly	Asn 675	Ile	Ser	Leu	Glu	1 Asp 755
Glu 1	Glu]	Ala	G1y 610	Ser	Leu	Ser	Leu	Glu 690	His	Pro	1 Asp	ı Glu
Asn (Trp (Gly	Thr	Asp 625	His	ren	Leu	Thr	Ala 705	Pro .	c Glu	n Glu
Asp 7	Lys	Ser	Lys	Ala	Thr 640	Thr	Asp	Trp	Gln	His 720	Ser	ı Glu
Leu 7	Leu 575	Gly	Ser	Lys	Met	Cys 655	Gly	Thr	. Phe	ו Leu	His 735	n Glu
Pro	Asp	Leu 590	Ile	Glu	Met	Ala	Tyr 670	Arg	Thr	l Gln	r Ile	a Glu 750
Gly	Tyr	Val	G1y 605	Lys	Lys	Gly	Cys	His 685	Pro	ı Val	Asn. Ser	u Ala
Thr	Glu	Lys	Tyr	Leu 620	Leu	Len	суѕ	Phe	: Tyr 700	g Glu		g Leu
Val 555	Tyr	Gly	Ala	Met	G1u 635	Leu	Tyr	Lys	Ser	: Arg 715	n G1y 0	s Arg
Gln	Asp 570	Phe	Thr	Lys	Ser	Asn 650	Glu	Glu	Ser	Ser	3 Asn 730	n Lys 5
Ile	Arg	Glu 585	Ala	Val	Met	Val	Phe 665	Arg	n Phe	c Gly	y Phe	n Gln 745
Met	Phe	Leu	Asn 600	Ala	Leu	11e	Ile	Lys 680	Asn 5	r Pro	г Gly	Glu Asn
Gln	Asp	Asn	Met	Val 615	Ala	Asn	Leu	Ser	1 His 695	: Met	ı Ser	
Leu 550	Val	Glu	Val	Gln	G1u 630	Asp	Tyr	Arg	G1u	Ser 710	Leu	Tyr
					·				•			

								•				
			:	•		•						
Lys	Ala	ASP 805	Arg	Phe	Leu	Pro	G1u 885	Cys	Ser	Thr	Leu	Ser 965
Ala	Leu	Cys	Val 820	Leu	Ile	Ile	Met	Ser 900	Thr	Arg	Gly	Arg
Val	Asp	Ile	Val	Ser 835	Gly	Gly	Lys	Gln	Leu 915	Ile	Gly	Glu
Gln 770	Arg	Lys	Tyr	Glu	Tyr 850	Pro	Phe	Met	Asn	Cys 930	Arg	Arg
Tyr	His 785	Val	Ser	Pro	Ser	Tyr 865	Gly	Val	Pro	Ala	Gln 945	His
Ala	Val	Val 800	Ser	Ala	Trp	Pro	Ser 880	Phe	Phe	Glu	Gln	Ile 960
Phe	Cys	Lys	Asp 815	Met	Val	Asn	Gln	Tyr 895	Ser	Glu	Pro	Lys
Cys	Ser	Gly	Ser	Trp 830	Asp	Val	Ile	Ile	Pro 910	Ala	Ala	Val
Leu (765	Lys	His	Leu	Lys	Ser 845	Gly	Leu	Gly	Arg	Glu 925	Ala	Gln
Leu]	Phe 780	Thr	Ile	Val	Lys	Leu 860	Lys	Glu	Lys	Ala	Gln 940	Arg
Asp]	Glu]	Val 795	Asp	Pro	Ile	Ser	Tyr 875	Thr	Arg	Leu	Lys	Gln 955
Glu i	ren (Leu	Arg 810	ren	Thr	Phe	Phe	Ala 890	Ser	Gln	Pro	Pro
Phe (Phe	Val	Ala	Arg 825	Tyr	Ile	Asn	Tyr	Asp 905	Cys	Leu	Ser
Thr 760	Glu	Asn	Leu	Ala	11e 840	Glu	Ala	Phe	Phe	G1y 920	His	Gln
Leu	Met (775	Arg	Gly	Asn	Gly	Trp 855	Asp	Pro	Ala	Leu	Ile 935	Ala
Val]	G1y 1	Ala 790	Phe	Gly	Glu	Leu	Val 870	Gln	Trp	Phe	Ser	Arg 950
•						,						

(2) INFORMATION FOR SEQ ID NO:3:

SEQUENCE CHARACTERISTICS: (Ţ)

LENGTH: 3501 base pairs

TYPE: nucleic acid STRANDEDNESS: double B

TOPOLOGY: linear <u>0</u>0

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

FEATURE: (ix)

(A) NAME/KEY: CDS (B) LOCATION: 58.3039

FEATURE: (ix)

NAME/KEY: mat_peptide LOCATION: 139..3036 (A)

(ix) FEATURE:

(A) NAME/KEY: sig_peptide (B) LOCATION: 58..138

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGAGGCGGCA TCCGAGGGCT GGGCCGGCGC CCTGGGGGAC CCCGGGCTCC GGAGGCC

57

									_
105	153	201	249	297	345	393	441	489	53.7
7	7		•	.,					٠,
		•							
GTT Val	GTG Val	GGG Gly	666 G1y	GCT	GAT	CTG Leu 85	ATG Met	TTT Phe	ATA
GTT Val	CCT	GTG Val 20	CTC	GCC Ala	GTC Val	TCC	TCC Ser 100	CTT	AGT Ser
CTC	CTG	TCA Ser	GAC Asp 35	GCT Ala	CTG Leu	AGC	GTT Val	CTA Leu 115	GTG Val
CTG Leu -15	GAT Asp	TCA	GAA Glu	GAA Glu 50	GTG Val	CAC His	GTT Val	TAC Tyr	ACA
CCG	CAA Gln 1	GAT Asp	CCG Pro	TAC	CAA Gln 65	AAG Lys	66A 61y	GAA Glu	TTT Phe
GTG Val	AAT Asn	AAT Asn	TCC	GTG Val	CTG Leu	TTT Phe 80	aga Arg	GGA Gly	TTG
ACC	ACA Thr	AAC Asn 15	GAA Glu	ACA Thr	ACA Thr	GTC	AAC Asn 95	GCT	ATA Ile
66C 61y	ATT Ile	AAG Lys	TCA Ser 30	666 61y	ATC Ile	TGG Trp	CAA	CAA Gln 110	ACA
GCG Ala -20	ACT Thr	CAT	GTA Val	TCA Ser 45	TCC Ser	CTC	TTA	ACC	TAC
GAC	666 61y -5	AAT	ATG Met	AGC	GCT Ala 60	TGT Cys	GAT	GAA	AAT Asn
CGC	TTT Phe	ATC Ile	CCC	CAG Gln	TCT	TCC Ser 75	TTT Phe	ACA	ACC
GCG	ATA Ile	TTA Leu 10	TAT Tyr	CCC	GTA Val	ATT Ile	CAT His	ATG	GCT
TTG	ATG Met	GTT Val	TCA Ser 25	AGA Arg	GAT Asp	AAC	CCA	AAA Lys 105	GAA
GCG Ala -25	GCA	TGT Cys	TCA	TTG Leu 40	GTG Val	GGG G1y	CAG Gln	TTG	AGT
CCG	TCT Ser -10	AAG Lys	TCA Ser	GCG Ala	GAA Glu 55	CCA	TGC Cys	ATT Ile	CAG Gln
ATG Met -27	TTT Phe	ATC Ile	AAG Lys	TGT	GTG Val	GCC Ala 70	AAT Asn	GTC	ATT Ile

•	ດ ອ ວ	633	681	729	777	825	873	921	696
٠	ATG Met	ccg Pro 165	GAA Glu	TTA	GAA Glu	ACA Thr	TGC Cys 245	GAA Glu	TCA Ser
٠.	AAA A7 Lys Mo	GAG C Glu P	AAA G Lys G 180	GAA T Glu I	AGG (Arg (ACC	AGG	TTA Leu 260	TAT
	AGA A Arg I	CCA G Pro G	TGT 7 Cys]	CAT His 195	GGC	CAG Gln	ATA Ile	GAA Glu	r Acc Thr 275
130	TTT	GTT Val	AGC Ser	CTT	CTG Leu 210	CCT	TGG Trp	TGG	AGT Ser
-	TAC 1 TYF 1	AGC	GAA Glu	GTG Val	GAA Glu	ACT Thr 225	TTA Leu	ACC	ATG Met
	CCT 1 Pro 1	GAG Glu 160	GGG	aaa Lys	AAT Asn	CAA Gln	CCC Pro 240	CTC	GAG
	AGA C Arg I	rcr ser	cag Gln 175	GAA Glu	AGA Arg	AAT Asn	GAA Glu	666 61y 255	TTT
	AGA P Arg P	ATA 1 Ile :	TCA	GAG Glu 190	GCC	CTA	GGG G1y	TTC	TAC TYF 270
125	TTA A	TGC 7 Cys :	GAT	AAG Lys	TGT Cys 205	gat Asp	GTA Val	GGA G1y	AAC
ਜ	ACA T Thr I	GTC 1 Val (TGC	AAA Lys	TGC Cys	ATA Ile 220	AAA Lys	CAT	GGC
	TAC A TYF 1	CTG (Leu 155	CTT Leu	GTT Val	AGG Arg	ACA Thr	CTT Leu 235	AAC Asn	GAG
	CTT I	GCC (Ala 1	GTG Val 170	GTT Val	ATA Ile	TTC	TTT	GTG Val 250	GAG
	CTG C	GAC (Asp 1	TGG	GCT Ala 185	GAC Asp	CTG	TTA	CAT	CTC Leu 265
120	ACC C Thr I	cag c	GAA Glu	CCA	ACG Thr 200	AGG Arg	CAA Gln	GTT Val	GCA
-	AAT A Asn 1	AAC (Asn (GTG (Val	AGT	GGG G1y	ACC Thr 215	CCA	GCT	AAA Lys
	AGA A Arg A	GAA A Glu A	ATC (Ile	GAA	TTT Phe	TGC	TTG Leu 230	AAA Lys	AAC Asn

			•						٠.
1017	1065	1113	1161	1209	1257	1305	1353	1401	1449
		•				• .			
GTG Val	CCC	GCT Ala 325	TGT Cys	ACC	GGA	TAT Tyr	ACG Thr 405	AGT Ser	TGG Trp
TCA G	CAT (His I	AAT (Asn /	TTT Phe 340	TGG	AAC Asn	GAA Glu	TTC Phe	GCA Ala 420	ACC Thr
TCA 1 Ser S	AAG (Lys 1	ATA I	GAG Glu	ACG Thr 355	GAT Asp	GGA G1y	ATG Met	TCG	${f TGG}$
GTA 1 Val 5 290	TCA 1	TTT Phe	GAA Glu	TGT Cys	CTT Leu 370	CCA Pro	AAA Lys	GCA	TCT
TTT GPhe V	TCT Ser Ser 305	GGA '	TAT	AGA Arg	GGT	CAG Gln 385	ACC Thr	GAA Glu	CCA
GCT 1 Ala 1	TCC	AAG Lys 320	CAA	ATC Ile	AAG Lys	CAC	TTT Phe 400	GCA	TTA
TTT (Phe 1	TGT	GGA	GAC Asp 335	CAA Gln	CAA	AAG Lys	CAA Gln	CTC Leu 415	CCA Pro
CTG :	ACT Thr	GTA	ATT Ile	CCA Pro 350	GAG Glu	CAT His	GCC	GTG Val	TAC
ATT (Ile 1 285	TAC	ATC Ile	GAA Glu	TAC Tyr	TGT Cys 365	AAT Asn	GAT	CAA Gln	GGA Gly
CGG 1	TAC Tyr 300	ACC Thr	TAT Tyr	GCC	CCT	TGC Cys 380	GAT Asp	CCT	GAT
ATA (Ile /	GGA Gly	GTT Val 315	GAT	AAA Lys	TTT Phe	TTT Phe	AAT Asn 395	AAA Lys	TCG
ATG A	ACC	TTG	GAA G1u 330	TTT Phe	TCA	AAG	GAA Glu	AGG Arg 410	TTC
ACT	GAC	GCT Ala	AGT Ser	AGG Arg 345	AAA Lys	TCC	GCA	AGA	TGT
AGA Arg	AAC	TCA	TCA	GTC Val	CGA Arg 360	ATA Ile	CAT	ATA Ile	TCC
AAC A	AGA Arg 295	CAA	AAT Asn	TCT Ser	TCT	AGC Ser 375	TTC	AAT Asn	GCG
ACA I	GCA	AGT Ser 310	ACC	TTT Phe	TTC Phe	TAC	ATA Ile 390	CTG	CAG Gln

	1497	1545	1593	1641	1689	1737	1785	1833	1881
	GAA Glu	GTG Val	GTC Val 485	CTT Leu	TTC Phe	CTG	CTA Leu	GTT Val 565	GAA
٠.	ACA G Thr G	TGG G	CTG (Leu	ATC Ile 500	TCA	ACC Thr	CAG Gln	TAC	AGA Arg 580
4.4 2.4	ATC A Ile T	CAG T Gln T	TTC C Phe I	ACG 7	ATC Ile 515	TTA	AGC	TTC	CCA
4	GAG A Glu I 450	GGA C	666 1 61y 1	GAG 1 Glu	AAC	GTT Val 530	GAA	TAC	TTT Phe
	GAA G Glu G	TTT G Phe G 465	AAA G Lys G	TGT (Cys (GAC	GTC Val	TAT TYT 545	GAG Glu	GAG Glu
	ACA G Thr G	GTG T Val F	ATA I Ile 1 480	Ser	CAA	ATT Ile	AGG Arg	AAT Asn 560	TGG Trp
	TGC A Cys T	AAA G Lys v	GCC A	ACA Thr 495	ATC Ile	TTC	TTT	GAT	AAA Lys 575
430	AAC T Asn C	AGA A Arg I	GAA Glu	GGC	TTC Phe 510	CTC	CAA Gln	TCA	CTC
4	CCC A Pro A	AAC AASI	AGT (Ser (CTT	CCT	CTC Leu 525	AAG Lys	TCC	GAT
	TCT C Ser F	GCT A	ATG	TCC	TTC Phe	TGT Cys	AAA Lys 540	GGC	TAT
	AAG T Lys s	AAG CLys 7	AAC ASN 1	AAT	CCC	GTT Val	TAC Tyr	ACC Thr 555	GAA Glu
	GAC A Asp I	AGA A Arg I	CTA	TAC Tyr 490	GGC Gly	GGT	AAG Lys	GTG Val	TAT Tyr 570
425	TCA G	AAT P Asn P	ACT (Thr)	GCA	CCA Pro 505	ATT Ile	CAC	CAG Gln	GAA Glu
4	TGT T Cys S 440	TGG P	AGT 7	TGT	TCT	ACA Thr 520	TGT	GTA Val	AGA
	AAG T Lys C	GTC 1 Val 1 455	AGC 1 Ser	TGC	AAC Asn	GCA	ATT Ile 535	ATG Met	TTC
	AAG A Lys L	GGA G Gly V	TCG P Ser S	AAG 1 Lys (TTA	TAT Tyr	CTA	CAG Gln 550	GAT
				•					

							•		٠.
1929	1977	2025	2073	2121	2169	2217	2265	2313	2361
٠.	•					•			
GTG Val	CAG	GAG Glu	GAG Glu 645	TAC	AGA Arg	GAA Glu	AGC	ATC Ile 725	TAT
AAA Lys	ATC Ile	AGA	CAC	ATT Ile 660	CTA	AAG Lys	TCC	CAA Gln	GAA Glu
GGA G1y 595	TCA	GAA Glu	AGC	CCA Pro	TAT Tyr 675	TTC Phe	AAT Asn	GAT	ATT Ile
TTT Phe	GTC Val 610	TCT	GGA Gly	GGA Gly	AAC Asn	ATT Ile 690	CCA Pro	TCG Ser	GAA Glu
GCT	GGA Gly	AGC Ser 625	CTG	TCA	CTC	GAG Glu	CAT His 705	GAC Asp	GAT Asp
GGT	ACA	GAC Asp	CAG Gln 640	CTG	CTT	ACA	TCA	CCG Pro 720	GAA Glu
TCA	AAA Lys	GCA Ala	ACC Thr	ACA Thr 655	GAT Asp	TGG Trp	CAA Gln	CAC His	TCT
GGA G1y 590	AGC Ser	AAA Lys	ATG Met	TGC Cys	GGT G1y 670	ACT Thr	TTC Phe	ATA	CAC
CTA	ATT Ile 605	GAA Glu	ATG Met	GCG	TAT Tyr	AGG Arg 685	ACT Thr	CAG Gln	TTT
GTA Val	GGA G1y	AAA Lys 620	AAG Lys	666 61y	TGC Cys	CAC His	CCC Pro 700	GTT Val	TCA
AAG Lys	TAT Tyr	CTG	CTC Leu 635	CTG	TGT Cys	TTT Phe	TAC Tyr	GAA Glu 715	AAT Asn
666 61y	GCT	ATG Met	GAA Glu	CTG Leu 650	ТАС Туг	AAA Lys	TTT Phe	aga Arg	666 61y
TTT Phe 585	ACA Thr	AAA Lys	TCA	AAC	GAA Glu 665	GAA Glu	AGT Ser	TCA	CAT His
GAG Glu	GCA Ala 600	GTC Val	ATG Met	GTG Val	TTT Phe	AGA Arg 680	TTC	GGT G1y	CTT Leu
TTA	AAC Asn	GCC Ala 615	CTC Leu	ATT Ile	ATT Ile	AAA Lys	AAT Asn 695	CCT	666 G1y
AAT Asn	ATG Met	GTT Val	GCA Ala 630	AAT	TTG	AGT Ser	CAC	ATG Met 710	TCA

GAG GAG TTG AAT GTG CTT AC Glu Glu Asp Leu Asn Val Leu Th 750 TAT CAA GTT GCC AAA GGA ATG GA TYr Gln Val Ala Lys Gly Met Gl 1 Val Lys Ile Cys Asp Phe Gly L 800 CAC AGA ATG TTG GC GCC AGG AN His Arg Asp Leu Ala Ala Arg As 1 Nal Lys Ile Cys Asp Phe Gly L 800 C AAC TAT GTT GTC AGG GGC AAT G A ASN TYr Val Val Val Arg Gly Asn A 815 C CCC GAA AGC CTG TTT GAA GGC A 815 G TCA TAT GGA ATA TTA CTG TGG G TCA TAT GGA ATA TTA CTG TGG F Ser Tyr Gly Ile Leu Leu Trp G 5 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT GGA ATA TTA CTG TGG 7 G TCA TAT AAA ATG GAT CAG CCA 8 AT GGA TTT AAA ATG GAT CAG CCA 8 ATG CTA	
GAG GAC TTG AAT GTG CTT Glu Glu Asp Leu Asn Val Leu 750 TAT CAA GTT GCC AAA GGA ATG TYT Gln Val Ala Lys Gly Met 1 Val Lys Ile Cys Asp Phe Gly 800 C CCC AAG GTT GTC AGG GGC AAT C ASN TYT Val Val ATG GAC GGC AAT C ASN TYT Val Val ATG GBC GGC AAT C ASN TYT Val Val ATG GBC GGC AAT C CCC GAA AGC CTG TTT GAA GGC A Pro Glu Ser Leu Phe Glu Gly 830 G TCA TAT GGA ATA TTA CTG TGG G TCA TAT GGA ATA TTA CTG TGG G TCA TAT GGA ATA TA CTG TGG G TCA TAT GGA ATA TA CTG TGG G TCA TAT GGA ATA TA ATG GAT STG TTAC CCT GGC ATT CCG GTT GA TT TAC CCT GCC ATT CCC GTT GCC TCG TCC TCG TC	
GAG GAG TTG AAT GTG C GIU GIU ASP Leu ASN Val I 750 TAT CAA GTT GCC AAA GGA I 770 TAT CAA GTT GCC AAA GGA I 770 CAC AGA GAC CTG GCC GCC His Arg Asp Leu Ala Ala 770 CAC AGA GAC CTG GCC GCC His Arg Asp Leu Ala Ala 800 CAC AGA GAC CTG GCC GCC C ASN TY Val Val Val GYS Asp Phe 815 CAC GAA AGC CTG TTT GAA 835 G TCA TAT GTA GTA TTA CTG TT GAA 830 G TCA TAT GGA ATA TTA CTG TT TAC CCT GGA ATA TTA CTG GTT C TAC CTT GGA ATA TTA CTG GTT C TAC CTT GAA 850 TTAC CCT GGC ATT CCG GTT C TYC GAY I I I E Pro Val S65 TT GGA TTT AAA ATG GAT CAG GT CAC GTT C TAC ASP GIY BASP GIY BASP GIY SAP GIY BASP GIY SAP GIY	
GAG GAG TTG AAT G Glu Glu Asp Leu Asn v 750 TAT CAA GTT GCC AAA G TYr Gln val Ala Lys G TYr Gln val Ala Lys G His Arg Asp Leu Ala A 6 GTG AAG ATA TGT GAC c ASn Tyr val val Arg a Pro Glu Ser Leu Phe 815 G TCA TAT GGA ATA TTA G TCA CCT GGC ATT CCG TYR GLY IIE FRO 5 T TAC CCT GGC ATT CCG TY PRO GLY IIE PRO 5 T GAA TTT AAA ATG GAT	
GAG GAG GAC TTG A Glu Glu Asp Leu A 750 TAT CAA GTT GCC A TYR Gln Val Ala I His Arg Asp Leu A 185 GTG AAG ATA TGT C AAC TAT GTT GTC F ASN TYR Val Val 815 C CCC GAA AGC CTG A PRO Glu Ser Leu 830 G TCA TAT GGA ATA P Ser TYR Gly Ile 5 TTAC CCT GGC ATT C TYR GAA TTA 855 TTAC CCT GGC ATT C TYR GAA TTA 865	
GAG GAG GAC T GIU GIU ASP I 750 TAT CAA GTT C TYT GIN VAI I 1 VAI LYS IIE 1 VAI LYS IIE 2 AAC TAT GTT 5 ASD TYT VAI 815 C CCC GAA AGC A PTO GIU SET 830 G TCA TAT GIA 6 TCA TAT GGA 7 TAC CCT GGC	
GAG GAG G GIU GIU A 750 TAT CAA G TYT GIN V TYT GIN V His Arg I VAI LYS C CCC AAA A PTO GIU 830 G TCA TAT B SET TYT 5 TAC CCT 7 TAC CCT	Lys 880
GAG GG	
A STOR ACT OF OF THE STORES THE	ĞΊΥ
	Asn
GAA GI Glu G. TTT G Phe A 780 Cys V 780 AAA G Lys V Lys V 195 V	Glu
CTG GR Leu Gl TGC TY CYS PJ CYS PJ GGG A GGG A GGIY I 795 AGT G SET R SET R TTP I TTP I	Ile 875
EG E	Leu
AAA DA AAA DA AAAA AAAAAAAAAAAAAAAAAAA	Lys
AT TO TO TO THE AT TO THE AT T	λr
Se ser se	
AN DO DIT OF SER ED DE DO DE	Asn 1 870
GAA Glu TTT Phe Phe (GIG Val 790 GCT Ala Arg Arg	AT ED

2841	2889	2937	2985	3033	3086	3146	3206	3266	3326	3386	3446	3501
TAT GCT ACA GAA ATA TAC ATT ATA ATG CAA TCC TGC TGG GCT TTT Tyr Ala Thr Glu Glu Ile Tyr Ile Ile Met Gln Ser Cys Trp Ala Phe 890	GAC TCA AGG AAA CGG CCA TCC TTC CCT AAT TTG ACT TCG TTT TTA GGA Asp Ser Arg Lys Arg Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly 905	TGT CAG CTG GCA GAT GCA GAA GCG ATG TAT CAG AAT GTG GAT GGC Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 920	CGT GTT TCG GAA TGT CCT CAC ACC TAC CAA AAC AGG CGA CCT TTC AGC Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser 935	AGA GAG ATG GAT TTG GGG CTA CTC TCT CCG CAG GCT CAG GTC GAA GAT Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 950	TCG TAGAGGAACA ATTTAGTTTT AAGGACTTCA TCCCTCCACC TATCCCTAAC Ser	AGGCTGTAGA TTACCAAAAC AAGATTAATT TCATCACTAA AAGAAAATCT ATTATCAACT	GCTGCTTCAC CAGACTTTTC TCTAGAAGCC GTCTGCGTTT ACTCTTGTTT TCAAAGGGAC	TTTTGTAAAA TCAAATCATC CTGTCACAAG GCAGGAGGAG CTGATAATGA ACTTTATTGG	AGCATTGATC TGCATCCAAG GCCTTCAG GCCGGCTTGA GTGAATTGTG TACCTGAAGT	ACAGTATATT CTTGTAAATA CATAAAACAA AAGCATTTTG CTAAGGAGAA GCTAATATGA	TITITIAAGT CTATGTITTA AAATAATATG TAAATTTTTC AGCTATTTAG TGATATATT	TATGGGTGGG AATAAAATTT CTACTACAGA AAAAAAAAA AAAAAAAAA AAAAAAA

INFORMATION FOR SEQ ID NO:4: (3)

- SEQUENCE CHARACTERISTICS (i,
- LENGTH: 993 amino acids TYPE: amino acid **EBB**
 - TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Gly Thr Val Pro Leu Leu Val Val Ala -20 Leu Ala Arg Asp Pro Ala 1 -25

Val Ile Thr Asn Gln Asp Leu Pro 1 Thr G1y -5 Ala Met Ile Phe Ser -10

Phe

Gly Val 20 Ser Asn Asn Asp Ser 15 Cys Val Leu Ile Asn His Lys 10 Ile Lys

Gly Len Asp 35 Pro Glu Glu Ser Ser Tyr Pro Met Val Ser Ser Lys Ser

Ser 45 Leu Arg Pro Ala cys

Ala

Ala

Glu Ala

Tyr

Gly Thr Val

Ser

Gln

Leu Gln Val Leu Val Asp \mathtt{Thr} IleSer Ala Ser Glu Val Asp Val Val

Leu 85 Ser Ser Phe Lys His Cys Leu Trp Val Ser 75 Ile Ala Pro Gly Asn

Met Ser Asn Cys Gln Pro His Phe Asp Leu Gln Asn Arg Gly Val Val Leu Leu Phe 115 Val Ile Leu Lys Met Thr Glu Thr Gln Ala Gly Glu Tyr 105

				,						٠		
Ile	Met	Pro 165	Glu	Leu	Glu	Thr	Cys 245	Glu	Ser	Val	Pro	Ala 325
Ser I	Lys M	Glu I	Lys (180	Glu 1	Arg (Thr	Arg	Leu 260	Tyr	Ser	His	Asn
Val s	Arg I	Pro (Cys.]	His (Gly	Gln	Ile	Glu	Thr 275	Ser	Lys	Ile
Thr 7	Phe 1	Val I	Ser (Leu	Leu 210	Pro	Trp	Trp	Ser	Val 290	Ser	Gly Phe
Phe 1	Tyr 1 145	Ser	Glu	Val	Glu		Leu	Leu Thr	Met	Phe	Ser 305	Gly
Leu]	Pro	Glu 160	Gly	Lys	Asn	Gln Thr 225	Pro 240	ren	Glu	Ala	Ser	Gly Lys 320
Ile]	Arg	Ser	Gln 175		Arg	Asn	G1u	G1y 255	Phe	Phe	Cys	Gly
Thr	Arg	Ile	Ser	Glu Glu 190	Ala	Leu	Gly	Phe	Tyr 270	Leu	Thr	Ile Val
Tyr 125	Leu	Cys	Asp	Lys	Cys 205	Asp	Val	Gly	Asn	11e 285	Tyr	Ile
Asn '	Thr 140	Val	Cys	Lys	Cys	Ile 220	Lys	His	Gly	Ile Arg	Tyr 300	Val Thr 315
Thr	Tyr	Leu 155	Leu	Val	Arg	Thr	Leu 235	Asn	Glu		Gly	Val
Ala	ren '	Ala	Val 170	Val	Ile	Phe	Phe	Val 250	Glu	Met	Thr	Leu
Glu	Leu	Asp	Trp	Ala 185	Asp	Leu	Leu	His	Leu 265	Thr	Asp	Ala
Ser (Thr	Gln	Glu	Pro	Thr 200	Arg	Gln	Val	Ala	Arg 280	Asn	Gln Ser
Gln	Asn ' 135	Asn	Val	Ser	Gly	Thr 215	Pro	Ala	Lys	Asn	Arg 295	
Ile (Arg i	Glu 150	Ile	Glu	Phe	Cys	Leu 230	Lys	Asn	Thr	Ala	Ser 310
	,											

Cys	Thr	Gly	Tyr	Thr 405	Ser	Trp	Glu	Val	1 Val 485	e Leu 0	r Phe	r Leu	:
Phe (340	Trp	Asn	Glu	Phe	Ala 420	Thr	Thr	Trp	Leu	Ile 500	Ser	Thr	
			слу с	Met 1	Ser	Trp 435	Ile	Gln	Phe	Thr	11e 515	Leu	
Glu	Thr 355	Asp						слу (Gly	Glu	Asn	Val 530	
Glu	Cys	Leu 370	Pro	Lys	Ala	Ser	450						
Tyr	Arg	Gly	G1n 385	Thr	Glu	Pro	Glu	Phe 465	Lys	· Cys	ı Asp	Ile Val	
Gln T	Ile A	Lys (His	Phe 400	Ala	Leu	Thr	Val	Ile 480	Ser	Gln		
				Gln F	Leu 7 415	Pro]	Cys	Lys	Ala	Thr 495	Ile	Phe	
Asp 335	Gln	Gln Gln	ь Гуз				Asn C	Arg I	Glu 1	Gly '	Phe 510	Leu	
Ile	Pro 350	Glu	His	Ala	Val	Tyr 430						Leu I 525	
Glu	Tyr	Cys 365	Asn	Asp	Gln	Gly	Pro 445	Asn	Ser	Leu	Pro		
	Ala J	Pro (Cys 380	Asp	Pro	Asp	Ser	Ala 460	Met	Ser	Phe	cys	
o Tyr				Asn A 395	Lys 1	Ser 7	Lys	Lys	Asn 475	Asn	Pro	Val	
Asp	Lys	Phe	. Phe					Arg I	ren 7	Tyr 490	Gly	Gly	
G1u 330	Phe	Ser	Lys	Glu	Arg 410	Phe	Asp						
Ser	Arg 345	Lys	Ser	Ala	Arg	Cys 425	Ser	Asn	Thr	Ala	Pro 505	Ile	
Ω H		Arg I 360	Ile (ហ	Ile	Ser	Cys 440	Trp	Ser	Cys	Ser	Thr 520	٠
Ser	· Val			e Hi			Lys (Val ' 455	Ser	Cys	Asn	Ala	
Asn	Ser	Ser	Ser 375	Phe	Asn	n Ala					Leu A	Tyr P	
Thr	Phe	Phe	Tyr	11e 390	Leu	Gln	Lys	Gly	Ser 470	Lys	Ţ	Ţ	
רי	_				•								
•													

٠,										•	0.10	
Leu	Val 565	Glu	Val	Gln	G1u	Glu 645	Tyr	Arg	Glu	Ser	Ile 725	Tyr
Gln	Tyr	Arg 580	Lys	Ile	Arg	His	11e	Leu	Lys	Ser	Gln	G10 740
Ser (Phe	Pro	G1Y 595	Ser	Glu	Ser	Pro Ile 660	Tyr 675	Phe	Asn	Asp	Ile
Glu 8	Tyr 1	Phe	Phe	Val 610	Ser	Gly	Gly	Asn	Ile 690	Pro	Ser	Glu Asp Glu Ile Glu 740
Tyr (545	Glu i	Glu]	Ala	Gly	Ser 625	Leu	Ser	Leu	Glu	His 705	Asp	Asp
Arg 1	Asn (560	Trp	Gly	Thr	Asp	Gln 640	Leu	Asp Leu Leu	Trp Thr	Ser	Pro 720	Glu
	Asp A	Lys 1 575	Ser (Lys	Ala	Thr	Thr 655	Asp		Gln	His	Ser 735
Gln Phe	Ser A	ren 1	G1y : 590	Ser	Lys	Met	Cys	G1y 670	Thr	Phe	Ile	His
Lys G	Ser 8	Asp 1	ren (Ile 605	Glu	Met	Ala	Tyr	Arg 685	Thr	Gln	Phe
Lys I 540	Gly s	Tyr 1	Val]	Gly	Lys 620	Lys	Gly	Cys	His	Pro 700	Val	Asn Ser
Tyr I	Thr 6 555	Glu 1	Lys	Tyr (Leu	Leu 635	Leu	Cys	Phe	Tyr	Glu 715	
Lys T	Val I	Tyr 6	Gly 1	Ala	Met	Glu	Leu 650	Tyr	Lys	Phe	Arg	G1y
His I	gin v	Glu J	Phe (585	Thr	Lys	Ser	Asn	G1u 665	Glu	Ser	Ser	His
Cys H	Val G	Arg G	Glu E	Ala 7	Val	Met	Val	Phe	Arg 680	Phe	Gly	Gly Leu
Ile C 535	Met V	Phe A	ren d	Asn A	Ala. 615	Leu 1	Ile	Ile	Lys	Asn 695	Pro	Gly
Leu I	Gln M 550	Asp P	Asn L	Met A	Val A	Ala 1 630	Asn	Leu	Ser	His	Met 710	Ser
À	വ ഗ	Ø	Ø	2	•	7	. •					٠
												. •

Thr	
. Leu	
Val	755
Asn	
Leu	
Asp	
Glu	
Glu	750
Glu	
Glu	
Leu	
Ard	
LVS	745
Gln	
Asn	
מנט	i (

Lys Gly Met 770 Tyr Gln Val Ala Ala 765 Phe Asp Leu Leu Cys 760 Glu

Asn Leu Ala Ala Arg 785 Asp Arg His Val Cys 780 Ser Glu Phe Lys Leu 775 Phe

Leu 805 Gly Cys Asp Phe 11e 800 Lys Val Val Lys G1y 795 His Thr Leu Val Val 790

Ala Asn 820 Glу Arg Val Val **TYT** 815 Asn Ser Ser Asp Met 810 Ile Asp Ala Arg

Ile Gly Phe

Gla Trp Leu G1u 835 Leu 850 Ile Len Gly Glu Ser Tyr Ser Pro 830 Trp 845 Ala Val Lys Trp Met Asp Ser Lys Val 825 Pro Leu Thr Arg

Ala Pro Val Asp Ile 865 Gly Pro Tyr Pro Asn 860 Val Ser Leu Gly Phe 855

840

Ile

Phe 885 Pro Gln Asp Met Lys 880 Gly Phe Gln Asn Ile 875 Asn Phe Tyr Lys Leu 870 Phe Trp Ala 900 Cys Ser Gln Ile Met 895 Ile Ile Tyr G1u 890 Tyr Ala Thr Glu

Gly Leu Ser Thr Pro Asn Leu 910 Arg Pro Ser Phe Lys 905 Ser Arg Asp

Gly Val Asn 930 Gln Glu Ala Met Tyr 925 Ala Glu Ala Asp Leu 920 Gln Cys

Ser ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe 945 Val 935 Arg

Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 950

Ser

(2) INFORMATION FOR SEQ ID NO:5:

SEQUENCE CHARACTERISTICS: (A) LENGTH: 5406 base pairs (i)

B

TYPE: nucleic acid STRANDEDNESS: double

TOPOLOGY: linear

(O) (E)

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

FEATURE: (ix)

(A) NAME/KEY: (B) LOCATION:

NAME/KEY: CDS LOCATION: 208..4311

FEATURE: (ix)

mat_peptide 265..4308 NAME/KEY: LOCATION:

(B)

FEATURE: (ix)

(A) NAME/KEY: sig_peptide(B) LOCATION: 208..264

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

09	120	180	231	279	327	375	423	471	519	567
CTGTGTCCCG CAGCCGGATA ACCTGGCTGA CCCGATTCCG CGGACACCCG TGCAGCCGCG	GCTGGAGCCA GGGCGCCGGT GCCCGCTC TCCCCGGTCT TGCGCTGCGG GGGCCGATAC	CGCCTCTGTG ACTTCTTTGC GGGCCAGGGA CGGAGAAGGA GTCTGTGCCT GAGAAACTGG	GCTCTGTGCC CAGGCGCGAG GTGCAGG ATG GAG AGC AAG GGC CTG CTA GCT Met Glu Ser Lys Gly Leu Leu Ala -15	GTC GCT CTG TGG TTC TGC GTG GAG ACC CGA GCC GCC TCT GTG GGT TTG Val Ala Leu Trp Phe Cys Val Glu Thr Arg Ala Ala Ser Val Gly Leu -10	CCT GGC GAT TIT CTC CAT CCC CCC AAG CTC AGC ACA CAG AAA GAC ATA Pro Gly Asp Phe Leu His Pro Pro Lys Leu Ser Thr Gln Lys Asp Ile 10	CTG ACA ATT TTG GCA AAT ACA ACC CTT CAG ATT ACT TGC AGG GGA CAG Leu Thr Ile Leu Ala Asn Thr Thr Leu Gln Ile Thr Cys Arg Gly Gln 25	CGG GAC CTG GAC TGG CTT TGG CCC AAT GCT CAG CGT GAT TCT GAG GAA Arg Asp Leu Asp Trp Leu Trp Pro Asn Ala Gln Arg Asp Ser Glu Glu 45	AGG GTA TTG GTG ACT GAA TGC GGC GGT GGT GAC AGT ATC TTC TGC AAA Arg Val Leu Val Thr Glu Cys Gly Gly Gly Asp Ser Ile Phe Cys Lys 55 60	ACA CTC ACC ATT CCC AGG GTG GTT GGA AAT GAT ACT GGA GCC TAC AAG Thr Leu Thr Ile Pro Arg Val Val Gly Asn Asp Thr Gly Ala Tyr Lys 70	TGC TCG TAC CGG GAC GTC GAC ATA GCC TCC ACT GTT TAT GTC TAT GTT Cys Ser Tyr Arg Asp Val Asp Ile Ala Ser Thr Val Tyr Val 90

					•				
615	663	711	759	807	855	903	951	666	1047
•					•			•	
GGC Gly	TGC Cys	CCA	GAG Glu 165	GTC Val	TAC	CCC Pro	TGT Cys	TCT Ser 245	AAA
CAT	CCC	TAT Tyr	AGC	ATG Met 180	ATG Met	AGC	AAT Asn	CAC	GTG Val
CAG Gln 115	ATC Ile	AGG Arg	GAC	66C 61y	ATC Ile 195	CTG	TTA	TGG Trp	GAT
GAC Asp	GTG Val 130	GCT Ala	TGG	GCC Ala	TCT	ATT Ile 210	GTC Val	ACC	CGG
AGT	GTG Val	TGC Cys 145	TCC	TAT Tyr	CAG Gln	GTG Val	CTT Leu 225	TTC	AAC
GTC Val	ACT	CTT	ATT Ile 160	AGC Ser	TAT Tyr	GAT	AAA Lys	GAT Asp 240	GTA
TCT	AAA Lys	TCT Ser	AGA Arg	ATC Ile 175	ACC Thr	TAT	GAA Glu	CTT	ATT Ile
GCC Ala 110	AAC Asn	GTG Val	AAC Asn	ATG	GAA Glu 190	ATT Ile	GGA Gly	666 61y	AAG Lys
ATC Ile	AAG Lys 125	AAT Asn	GGA Gly	TAC	GAT	AGG Arg 205	GCC	GTG Val	AAG
TTC Phe	AAC Asn	CTC Leu 140	GAT Asp	AGT Ser	AAT Asn	TAT Tyr	TCT Ser 220	AAT Asn	CAT
CCA	GAG Glu	AAC Asn	CCG Pro 155	CCC	ATC Ile	GGA	CTA	CTC Leu 235	CAT
TCA	Acc Thr	TCA	GTT Val	CTC Leu 170	AAG Lys	GTA	GAG Glu	GAG Glu	TCT
AGA Arg 105	ATC Ile	ATT Ile	TTT	ACT Thr	GCA Ala 185	GTT Val	ATT Ile	ACA Thr	AAG
TAC	TAC Tyr 120	TCG Ser	AGA Arg	TTT Phe	GAG Glu	GTG Val 200	GAA Glu	aga Arg	TCA
GAT	GTG Val	GGG G1Y 135	AAG Lys	66C 61y	TGT Cys	GTT Val	CAT His 215	GCG	CCT
CGA	ATC Ile	CGA Arg	GAA Glu 150	ATA Ile	TTC	ATA Ile	CCG	ACA Thr 230	CCA
				•					

	1095	1143	1191	1239	1287	1335	1383	1431	1479
		•			•				
į	ATA Ile	rcc ser	ACA Thr	GCC Ala 325	CCA	AAC	GAA	ATG Met	c CAG o Gln 405
260	ACA	GCG	CAC His	GAA Glu	TAC TYF 340	TCC	ACT Thr	TCA	CCC
~	TTG A Leu T 275	GTA G Val A	GTT (Val I	GTG (Val	AGT	GAG Glu 355	GTG	ATT	CCA Pro
	ACC T	TGT Cys 290	CGA Arg	TTG	CTC	ATT Ile	GAA Glu 370	CCC.	GTC
	AGC A Ser T	ACC T Thr C	GTC C Val 7	Ser	TAT TYr	CCC	ATG Met	AAC Asn. 385	AAT Asn
	TTG A	TAC A	TTT (Phe	AAA Lys 320	AAG Lys	AGG Arg	ATC Ile	ACC	GTG Val
255	TTT T Phe L	GAA T Glu T	ACA T Thr	ATG Met	GTG Val 335	GGA Gly	ACC Thr	CTC Leu	GTT Val
2	ATG T Met Pl 270	GGG G Gly G	AGA A Arg I	GGG 1 Gly 1	CCT	AAT Asn 350	CTC	ATC Ile	CTG
		CAA G Gln G 285	AAT A Asn A	AGT G Ser G	ATC (Ile I	AGA	GAA G1u 365	GTC Val	TCT Ser
	3 AAG a Lys				CGA A Arg I	TAC F Tyr 1	GAT (Asp	ACG Thr 380	GTC Val
	GCG Ala	GAC ASP	AGA Arg 300	c GGT e Gly 5			GGC G	TAC P Tyr 1	ATG (Met 1395
	grg Val	AGT Ser	AAG Lys	TTC Phe 315	GTC	TGG Trp			
250	ACT	AAG Lys	ATC Ile	GCT	CAA Gln 330	aaa Lys	GTT Val	AAC	CAC His
73	GGG A G1Y 1 265	Acc 1 Thr 1	ATG	ATT	AGT Ser	ATC Ile	ATT Ile	GGA Gly	AGC
	CCT G Pro G	GTG A Val 1 280	CGG A	TTT /	GGC	GAT	ATG Met 360	GCA	CAG
•			GGA C Gly A 295	CCT 1 Pro E	GTG (Val (CCT	ACA	GAT ASP 375	AAA Lys
	TTT Phe	A AGT u Ser				GCT C	TAC 7	AGA (Arg	GAG Glu 390
	CCC Pro	GAA	AGT Ser	AAG Lys 310	ACA	Ğ K	HH	44	000

1527	1575	1623	1671	1719	1767	1815	1863	1911	1959
٠.						•		٠٠.	
666 61y	CAC His	CCC	GAT	CTG Leu 485	GCC Ala	CGA Arg	ACT Thr	TTG	CTT
TAT (Tyr (420	CTG (Leu	AGA	GAG Glu	GCC Ala	GCT Ala 500	GGA Gly	ATT	CTG	AAG Lys
CAG 1 Gln 1	CCC (Pro 1435	TAC	Gre Val	TAT Tyr	CAA Gln	GCG Ala 515	GAA Glu	TCC	TAC
TAC (Tyr (CCT (Pro)	TCC Ser 450	CAC	CAA Gln	ATC Ile	AAA Lys	CCT Pro 530	GTG Val	TGG Trp
Ser 1	AAC (Asn 1	TGC	AGA Arg 465	AAC Asn	GTC Val	AAC	GGT Gly	AGT Ser 545	ACG Thr
GAT 1 Asp 8	GCC 1 Ala 1	GCC 7	TGG	AAA Lys 480	CTG	ATC Ile	AGG Arg	GAG Glu	CTC
ATG G Met A	TAC (Tyr)	GAA Glu	GAA Glu	ACC Thr	ACG Thr 495	GCC	ATC Ile	CAG	AAC Asn
CCT Pro Pro P	GTC 1 Val 1 430	GAA (Glu (AAA Lys	GTC	AGT Ser	GAA Glu 510	GTG Val	GAG Glu	GAG Glu
TCG (Ser E	ACA (Thr	CTA (Leu (445	TGT	GAA Glu	GTA Val	TGT Cys	CAT His 525	ACT Thr	TTT
ATC 1 Ile 5	TGC 1 Cys 1	CAG Gln	GCT Ala 460	ATC Ile	ACT	AAA Lys	TTC Phe	CCA Pro 540	ACG
TTG A	ACA T	TGG (Trp (TAT	AAG Lys 475	AAA Lys	TAC	TCC	CAG	AAT
GCC 1 Ala 1	TTG /	TAC	CCG	AAC	AAC Asn 490	TTG	ATC Ile	GCC Ala	AGA Arg
AAA G Lys A	ACA 1 Thr 1	TGG '	AGC	GGA Gly	AAA Lys	GCG Ala 505	GTC Val	GCT	GAC
GAG A	cAG 1	CAG Gin 440	ACA	GGG Gly	GGA Gly	TCA Ser	AGG Arg 520	CCT	GCA Ala
GGT G	ATG C Met C	ATC (Ile (CAA Gln 455	CAG	GAA Glu	GTG Val	GAG Glu	CAA G1n 535	ACT GCA Thr Ala
ATC G Ile G	ACC F Thr	CAC H	GGC Gly (TTC Phe 470	ATT Ile	AAC Asn	GGA Gly	GTG Val	TGC

	2007	2055	2103	2151	2199	2247	2295	2343	2391
565	ACA CCA GTT Thr Pro Val 580	ATG TTT TCT Met Phe Ser 595	GCC TCT CTG Ala Ser Leu	AAG ACC AAG Lys Thr Lys	CGC ATG GCA Arg Met Ala 645	ATT GGC GAG Ile Gly Glu 660	CCA CAC ATT Pro His Ile 675	GGC ATT GTA Gly Ile Val	AGG AAG GAG Arg Lys Glu
560	GGC GAA TCA CTC A Gly Glu Ser Leu T 575	CTG AAT GGC ACC / Leu Asn Gly Thr !	GCA TTT CAG AAT Ala Phe Gln Asn 610	GCT CAA GAT AAG Ala Gln Asp Lys 625	ATC ATC CTA GAG Ile Ile Leu Glu 640	CAG ACA ACA ACC Gln Thr Thr Thr 655	GGA AAT CCT ACC Gly Asn Pro Thr	GTA GAA GAT TCA Val Glu Asp Ser 690	ATC CGC AGG GTG Ile Arg Arg Val
	GTC CAC ATG Val His Met	CTT TGG AAA Leu Trp Lys 590	TTG ATT GTG Leu Ile Val 605	GTT TGC TCT Val Cys Ser 620	AAA CAG CTC Lys Gln Leu	CTG GAG AAT Leu Glu Asn	CCA GCA TCT Pro Ala Ser 670	GAG ACC CTG Glu Thr Leu 685	CGG AAC CTG ACT Arg Asn Leu Thr 700
555	CAG GCA ACA TCG Gln Ala Thr Ser 570	AAC TTG GAT GCT Asn Leu Asp Ala 585	ACA AAT GAC ATC Thr Asn Asp Ile 600	CAA GGC GAC TAT Gln Gly Asp Tyr	CAT TGC CTG GTC His Cys Leu Val 635	ATC ACC GGA AAT Ile Thr Gly Asn 650	GAA GTG ACT TGC Glu Val Thr Cys 665	TTC AAA GAC AAC Phe Lys Asp Asn 680	GAT GGG AAC Asp Gly Asn
550	GGC TCA (G1y Ser (TGC AAG Cys Lys	AAC AGC Asn Ser	CAG GAC Gln Asp 615	AAA AGA Lys Arg 630	CCC ATG Pro Met	ACC ATT Thr Ile	ACA IGG Thr Trp	CTG AGA Leu Arg 695

							· ·		•	
	2439	2487	2535	2583	2631	2679	2727	2775	2823	2871
	៤ ២៤	O E	ည် စွာ	e n	GAA Glu	AAG Lys 805	CGC Arg	AAG Lys	GCA Ala	ATC Ile
٠	GCA Ala 725	AAC	TTC Phe	GAA						
	TGT Cys	ACC Thr 740	TTC Phe	AAT Asn	gat Asp	AGC Ser	GGC G1y 820	GAC	GGA Gly	CTC
•	66C 61y	AAG Lys	ATG Met 755	GCC	CCA	GCC	CTT	ATT Ile 835	GAA Glu	ATC Ile
	CIT	GAA Glu	GCC	CGG Arg 770	GAT	GAT	CCT	GGA Gly	AAA Lys 850	AAG Lys
	GTC	CAG	ATT	AAG Lys	ATG Met 785	TAT Tyr	AAA Lys	TTT Phe	TTG	CTC
:	AAT Asn 720	GCC Ala	GTG Val	GTT Val	GTC Val	CCT Pro 800	GGA G1y	GCT	ATG	GAA
	TGC	GGT G1y 735	GCA	ACC Thr	ATT Ile	TTG	CTA Leu 815	GAC	AAG Lys	TCT
	GCC	GAA Glu	ACT Thr 750	CGG Arg	TCT Ser	CGC	AAA Lys	GCA Ala 830	GTC	ATG
	CAG Gln	ATA Ile	66C 61Y	GTA Val 765	TTG Leu	GAA	CTG	GAG Glu	GCC Ala 845	CTC
	TGC	ATA Ile	GTC Val	CTC Leu	TAC Tyr 780	TGT	CGG	ATT Ile	GTA Val	GCC
	ACC Thr 715	TTC Phe	CTC	ATT Ile	GGC	CGC Arg 795	GAC	GTG Val	ACA Thr	CGA
	TAC Tyr	CTC Leu 730	ATC Ile	GTC Val	ACA	GAG	AGG Arg 810	CAA Gln	aaa Lys	CAT His
-	CTC Leu	ACG Thr	ATT Ile 745	CTT	AAG Lys	GAT Asp	CCC Pro	GGC G1Y 825	TGC Cys	GAG Glu
	66C G1y	GAG Glu	GTC Val	CTT Leu 760	CTG	TTG Leu	TTC Phe	TTC	ACT Thr 840	CAC AGC His Ser
	GGA Gly	GCG	GAA Glu	CTC	GAA Glu 775	CCC Pro	GAA	GCC	ACA GCG Thr Ala	CAC
	GAT ASP 710	AGA	TTG	TGG Trp	666 61y	TTG Leu 790	TGG Trp	GGT Gly	ACA	ACA

								•	
	2919	2967	3015	3063	3111	3159	3207	3255	3303
		,		:					
	ACC Thr 885	GGA	TAT Tyr	GAG Glu	CAG Gln	GTA Val 965	TTG	TTC Phe	ATT Ile
,	TGC 7 Cys 7	TTT Phe 900	CCC	GGG G1y	AGC Ser	GAT Asp	ACC Thr 980	GAG Glu	ASC
	GCC T Ala C	AAG T Lys F	GTT C Val 1 915	GTT Val	AGC Ser	AGT Ser	CTG	ATG Met 995	CGA Arg
	GGC G Gly A	TCG A	TTT (Phe	TAC TYr 930	ACC Thr	CIC	TTC	66c 61y	GCA Ala 1010
865	CTA G Leu G	TTC 1 Phe s	GAA G	GAC Asp	ATC Ile 945	TCG Ser	GAC Asp	aag Lys	GCA
œ	CTC C Leu L 880	GAA T Glu P	AAT G Asn G	AAG (Lys 1	AGC	AAA Lys 960	AAG Lys	GCT	CTG
	AAC C Asn L	GTG G Val G 895	AGA A Arg A	66C 7	GAC	GAG Glu	TAC TYF 975	GTG Val	GAC
	GTG A	ATT G Ile V	AAG A Lys A 910	cag c	TTG Leu	GAG Glu	CTG Leu	CAA Gln 990	AGG Arg 5
	GTG G Val V	GTG A Val I	GGC A Gly I	CGC CARG 6925	CGC :	GTT Val	GAA Glu	TTC Phe	CAC His
09	AAT GJ Asn Va	ATG G' Met V	CGG G Arg G	TTC C Phe P	AGA (Arg 1940	TTT	GAA	AGC	ATC
860	CTC A Leu As 875	CTC A' Leu M	TTA C Leu A	CGC 1	AAA I Lys 1	66C ' 61Y 955	TCT	TAC	TGT Cys
	CAT CT His Le	CCT C Pro L	TAC T TYr L	GCA C Ala A	CTG 1 Leu 1	TCA	GCT Ala 970	TGT Cys	AAG Lys
	cac cz His Hi	666 C	ACT T Thr T 905	GGG G	GAT (Asp 1	AGC 7	GAA Glu	ATC Ile 985	AGG Arg 0
		GGA G Gly G	TCA A Ser T	AAA G Lys G 920	GTG (Val)	GCC	GAA	CTC	TCA Ser 100
آ <u>ن</u>	T GGT e Gly	cce go Pro G	CTA To	AGC A Ser L	TCC G Ser V 935	TCT (Ser 7	GAA Glu	CAT	GCA
82	C ATT S Ile		AAC C. Asn Le	AAG A Lys S	CTC T Leu S	AGC 1 Ser 8 950	GAG (Glu (GAG	TTG
	CAC His 870	AAG Lys	ā ä	4 H	OH	A 01 01			

								. "	
3351	3399	3447	3495	3543	3591	3639	3687	3735	3783
AAG AAT GTG GTT AAG ATC TGT GAC TTC GGC TTG GCC Lys Asn Val Val Lys Ile Cys Asp Phe Gly Leu Ala 1020	AAA GAC CCG GAT TAT GTC AGA AAA GGA GAT GCC CGA Lys Asp Pro Asp Tyr Val Arg Lys Gly Asp Ala Arg 1035	TGG ATG GCC CCG GAA ACC ATT TTT GAC AGA GTA TAC Trp Met Ala Pro Glu Thr Ile Phe Asp Arg Val Tyr 1050	GAT GTG TGG TCT TTC GGT GTG TTG CTC TGG GAA ATA 349 Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile 1070	GCC TCC CCA TAC CCT GGG GTC AAG ATT GAT GAA 354 Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu 1085	TTG AAA GAA GGA ACT AGA ATG CGG GCT CCT GAC TAC 359 Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr 1100	ATG TAC CAG ACC ATG CTG GAC TGC TGG CAT GAG GAC 363 Met Tyr Gln Thr Met Leu Asp Cys Trp His Glu Asp 1115	CCC TCG TTT TCA GAG TTG GTG GAG CAT TTG GGA AAC Pro Ser Phe Ser Glu Leu Val Glu His Leu Gly Asn 1130	AAT GCG CAG CAG GAT GGC AAA GAC TAT ATT GTT CTT 373 Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu i 1150	ACA CTG AGC ATG GAA GAG GAT TCT GGA CTC TCC CTG Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser Leu
G GAG r Glu	T TAT e Tyr	G AAG tu Lys		FA GGT eu Gly 380	sg aga rg arg	CCA GAA Pro Glu	CAG AGA Gln Arg	CAA GCA Gln Ala 1145	
CTA TCG Leu Ser 1015	GAC ATT ASP Ile	CCT TTG Pro Leu	ATT CAG Ile Gln	TCC TTA Ser Leu 1080	TGT AGG Cys Arg 1095	ACC Fhr	AAC C? Asn G]	CTG CZ Leu G]	CCA ATG TCA Pro Met Ser
CTC C Leu I	CGG GArg Arg A	CTC C	ACA A	TTT Phe	TTT Phe	ACT Thr Thr 1110	CCC	CTC	CCA

	3831	3879	3927	3975	4023	4071	4119	4167	4215
1160 1165 1170	CCT ACC TCA CCT GTT TCC TGT ATG GAG GAA GAG GAA GTG TGC GAC CCC	AAA TTC CAT TAT GAC AAC ACA GCA GGA ATC AGT CAT TAT CTC CAG AAC	AGT AAG CGA AAG AGC CGG CCA GTG AGT GTA AAA ACA TTT GAA GAT ATC	CCA TTG GAG GAA CCA GAA GTA AAA GTG ATC CCA GAT GAC AGC CAG ACA	GAC AGT GGG ATG GTC CTT GCA TCA GAA GAG CTG AAA ACT CTG GAA GAC	AGG AAC AAA TTA TCT CCA TCT TTT GGT GGA ATG ATG CCC AGT AAA AGC	AGG GAG TCT GTG GCC TCG GAA GGC TCC AAC CAG ACC AGT GGC TAC CAG	TCT GGG TAT CAC TCA GAT GAC ACA GAC ACC GTG TAC TCC AGC GAC	GAG GCA GGA CTT TTA AAG ATG GTG GAT GCT GCA GTT CAC GCT GAC TCA
	Pro Thr Ser Pro Val Ser Cys Met Glu Glu Glu Val Cys Asp Pro	Lys Phe His Tyr Asp Asn Thr Ala Gly Ile Ser His Tyr Leu Gln Asn	Ser Lys Arg Lys Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp Ile	Pro Leu Glu Glu Pro Glu Val Lys Val Ile Pro Asp Asp Ser Gln Thr	Asp Ser Gly Met Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp	Arg Asn Lys Leu Ser Pro Ser Phe Gly Gly Met Met Pro Ser Lys Ser	Arg Glu Ser Val Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln	Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp	Glu Ala Gly Leu Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser
	1175	1190	1210	1225	1240	1255	1270	1295	1305

4263	4318	4378	4438	4498	4558	4618	4678	4738	4798	4858	4918	4978	5038	2098	5158	5218
42	C.	43	44	4	4	4	4	4	4	4	4	4	L)	u,		
٠.	TAGATTTTCA	93	₹¥	ည္သ	AG .	GA	CT	99	CT	AC	SSS	CTC	ည	AGA	rca	AGC
GTC Val		TGGAGGAGGG	CATGACCCAA	TGTGCCCTGC	GTCCTCCAAG	GTGTTGAGGA	GGATGCGGCT	AGCCGTCCGG	CTTGTGGCCT	TGCTCTTCAC	Trectrees	CTCCTTCCTC	CAGAGGCTCC	TGGGTGGAGA	AGGC	TTTI
CCT	GCT Ala	IGGA	CATG	TGTG	GTCC	GTG	GGAT	AGC	CTT	TGC				TGG	TAA	GT
GGT Gly 0	GGT GCT GCT Gly Ala Ala			TAA				GGAAGGCGCA	TGGAGGTGGG	AAGGTTTGCG	CTAATGAGAG	ATGCAGCTTG	GGAACGTCGG	GGGTTTCTGC	CAAGTGGCGG TAAAGGCTCA	CAAGTCCTCA GTATTTAGC
		TTTTCATTTT	AGAAGATGCC	TCCTATATAA	CGTGGACTCT	AATGCTTTGT	GCTTTGTGGA	BAAGG	3GAGG	AGGTT	TAAT G	TGCAG	GAACG	GGTTI	AAGTO	AAGT
GGA Gly	AGA (Arg (1345					Z		95								υ υ
TTA AAT Leu Asn	GAG	TTGA	CCAG	AAAAG	AAACA	reggo	IGGAG	AGGAA	TCTG	TTTG	TACT	AAAT	AGAG,	ACTC	rcre	၁၁၁၅၅
	AAT CAC GAG Asn His Glu	AGTGTTGTTC TTTCCACCAC CCGGAAGTAG CCACATTTGA	AAGGAGCT TGTCCTCAGG GCATTTCCAG	CATTTAAAAG	TGTGGTCTCA CTACCAGTTA AAGCAAAAGA CTTTCAAACA	TGAAACTGGA TCGAATGGGC	TACCTTGGAG	GGGATGTGGA CTGGGAGGAA	CTGGCTCTGG	TTGGTTTTGG	TTTCCTACTC	GAAGGAAATG	CCAAAAGAGA	GAGAACAGAA CAGAAACTCA	GGTTCTCTGT	CTTCCTCTAT CTCCACTCCT GTCAGGCCCC
TGT Cys		Ŭ Ů	Ö	E.	S.A. C.	JA T		GA C					CA	AA	,AG	CT
	GGA G1y	AGTA	TCAG	rccat	AAAAG	ACTG	rctg	TGTG	ATGCATTGTG	CAGG	CCCTGTGGCG	CTGGCCCCAG	ATTCAGAACA	ACAG	CAGGTCTGAG	CACTO
CTC ACC Leu Thr	CCT (Pro (1340	2000	IGTCC	GAATGTGTG ACTCTACTCT CTTTTCCATT	AAGC	TGAA	TGGGTGAGAT GTCCCAGGGC CGAGTCTGTC	GGGA	ATGC	CCGGCAGGGT						CTC
	A ACT o Thr	CAC (GCT	TCT	TTA		၁၅၅	TGT	SCAG	3000	AGTT	TCTCCTGGC	CTGTGCCTTA	SAAGAATTGT	GCCCTGGTGG	CTAT
cAG Gln	c ccA	CCAC	AGGA	CTAC	CCAG	ACCT	CCAG	TAAG	SCTO	AAAGG	36067	CTCC	GTGC	AGAA'	CCTG	TCCT
CTC	CCC	TŢŢ	GCA	ACT	CIA	999	GTC	TGI	GAC	25	CAC	GT		O		_
ACA (Thr]	ccg ccc Pro Pro 5	TTC	ACT	TTG	TCA	AAC	GAT	CAAG	3TTG	AAAC	GTTA	ACGT	CAGG	၁၁၅၅	TGGC	TCLI
GGG ACC ACA CTG Gly Thr Thr Leu 1320	CCG GCT C Pro Ala 1	GTTG	ACCTCAGACT GO	TGTG	GGTC	AAGTGGCAAC GGCACCTCTG	GTG?	ATGAGCCAAG TGTTAAGTGT	AGAGCGGTTG GAGCCTGCAG	GTCAGGAAAC GCAAAGGCGG	AGTCGGGTTA CAGGCGAGTT	ACTCTTACGT	ATCTCTCAGG	TGACGGGGCC	CCCACGTGGC	GGCTGGTGTT
666 61y	CCG	AGT	ACC	GAA	TGI	AAG	TGC	ATC	AG	GT(AG	AC	AT	TG	္မ	Ü

TITGIGGCIT CCTGATGGCA GAAAATCIT AATIGGTIGG TITGCTCTCC AGATAATCAC	CCTGATGGCA	GAAAAATCTT	AATTGGTTGG	TTTGCTCTCC	AGATAATCAC	5278
TAGCCAGATT TCGAAATTAC TTTTTAGCCG AGGTTATGAT AACATCTACT GTATCCTTTA	TCGAAATTAC	TTTTAGCCG	AGGTTATGAT	AACATCTACT	GTATCCTTTA	5338
GAATTTTAAC	CTATAAAACT	ATGTCTACTG	GTTTCTGCCT	GTGTGCTTAT	GAATITITAAC CIAIAAAACI AIGICIACIG GITICIGCCI GIGIGCITAI GITAAAAAA	5398
AAAAAAA		-	•			5406

(2) INFORMATION FOR SEQ ID NO:6:

SEQUENCE CHARACTERISTICS: (A) LENGTH: 1367 amino acids (ï,

TYPE: amino acid <u>e</u>e

TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

Glu Glu ser Lys Gly Leu Leu Ala Val Ala Leu Trp Phe Cys Val -10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Met -19

Thr Arg Ala Ala Ser Val Gly Leu Pro Gly Asp Phe Leu His Pro Pro

Lys Leu Ser Thr Gln Lys Asp Ile Leu Thr Ile Leu Ala Asn Thr Thr 15

Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 30 Gly Asn Ala Gln Arg Asp Ser Glu Glu Arg Val Leu Val Thr Glu Cys 50 55

Gly Gly Asp Ser Ile Phe Cys Lys Thr Leu Thr Ile Pro Arg Val Val 65

٠.
Ile
Asp
Val
Asp 90
Arg
Tyr
Ser
Cys
Lys 85
TYr
Ala
Gly
Thr
Asp 80
Asn
Gly

Ile Arg Ser Pro Phe 105 Tyr Val Arg Asp Tyr 100 Val Tyr Val Ser Thr Ala

Ile Thr Glu Asn TYr120 Ile Val His Gly Gln 115 Asp Ser Ser Ala 110

Asn Leu 140 Asn Ser Ile Ser Gly 135 Arg Pro Cys Ile Val Val Thr Asn Lys

Gly Asp Pro 155 Val Phe Lys Arg Glu 150 Tyr Pro Ala Arg Cys 145 Leu Ser

Tyr Ser Pro Ile Gly Phe Thr

Asp Asn Ile Lys Leu 170 Glu Ala 185 Val Phe Glu 165 Ser Trp Asp Ser Ile 160 Asn Arg

Cys

Met 180

Tyr Ala Gly

Ser

11e 175

Met

Arg 205 Tyr Gly Val Val Val 200 Tyr Ile Val Met 11e 195 Ser Thr Tyr Gln Glu 190 Ala Ser 220 Leu Glu Ile Glu Ile Leu Ser Pro Pro His 210 Ile Tyr Asp Val

Asn Val Len Thr Ala Arg Thr Glu 230 Gly Glu Lys Leu Val Leu Asn Cys 225 His Ser 250 Lys Ser Pro Pro Ser 245 Trp His Gly Leu Asp Phe Thr 240 Gly Thr Val Ala Lys 265 Lys Pro Phe Pro Val 260 Asp Arg Asn Val Lys

Thr Lys Ser Asp Gln 285 Val 280 Thr Ile Glu Ser Leu 275 Met Phe Leu Ser Thr 270 Asn Arg Met G1Y 295 Ser Cys Val Ala Ser 290 Thr Gly Glu Tyr

Ser Gly Phe 315 Ala Lys Pro Phe Ile Thr His Arg Val Val 305 Phe Arg Thr

I1eVal Gln 330 Ser Gly Thr Val A1a 325 Glu Ser Leu Val Gly Met

Arg $\mathbf{T}\mathbf{y}\mathbf{x}$ Trp Lys Pro Ala Pro Asp Ser Pro Val Lys Tyr Leu Lys 320

11e 345 Tyr 340

Val **Glu** 365 Asp Gly Ile Val Met 360 Thr Tyr Ser Asn G1u 355 Gly Arg Pro Ile

Thr 380 Tyr Ala Gly Asn Asp 375 Glu Val Thr Glu Arg Ile Met

Thr

Leu

Asn 350

Ser Val Met 395 His Ser Glu Lys Gln 390 Pro Ile Ser Met Asn 385 Thr Ile Leu

Ser Ile Len Asn Val Pro Pro Gln Ile Gly Glu Lys Ala 405 Val 400 Leu Val

Thr Сys Thr Leu Thr 425 Gln Tyr Gly Thr Met 420 Gln Tyr Ser Asp Met 415 Pro

Сys Ala 460 Thr Ser Pro Tyr Gln 440 Gln 455 Gly Arg Pro Tyr Pro 435 Ser 450 cys Ala Glu Glu Ala Tyr Val 430

Trp Gln

Trp Tyr

Leu His His Ile

Pro

Asn

Gly Asn Lys Ile Glu 475 Gln Gly Phe 470 Glu Asp His Val Arg 465 Glu Lys

Glu Gly Lys Asn Lys Thr Val Ile Leu 485 Lys Asn Gln Tyr Ala 480 Val Thr

Ser Gly Asn Pro Thr Pro His Ile Thr Trp Phe Lys Asp Asn Glu Thr 675 685

Leu Val Glu Asp Ser Gly Ile Val Leu Arg Asp Gly Asn Arg Asn Leu 690

										•
Cys	His 525	Thr	Phe	His	Trp	Ile 605	Cys	Gln	Glu	Ala
Lys (Phe 1	Pro 540	Thr Phe	Val	Leu Trp	Leu	Val 620	Lys	Leu	Pro
Tyr 1	Ser 1	Gln]	Asn 555	Ser	Ala	Ile	Tyr	Val 635	Asn	Cys
Len 1	ile 9	Ala (Thr 570	Asp	Asp	Asp	Leu	G1Y 650	Thr
Ala I 505	Val]	Ala 1	Asp Arg	Ala	Leu 585	Asn Asp Ile	Gly Asp Tyr Val	Cys	Thr Gly 650	Glu Val 665
Ser	Arg \ 520	Pro 1	Ala	Gln	Asn	Thr 600	Gln	His	Ile	Glu
	lu ?	Gln 1 535	Thr	Ser	Lys	Ser	Asp 615	Arg	Met	Ile
Ala Asn Val	Gly Glu	Val (Cys 550	Gly	Cys	Asn	Gln	Lys 630	Pro	Thr
la A	Arg (Thr	Leu	Leu 565	Val	Ser	Leu	Lys	Ala 645	G1u
11a A	Gly A	ile 1	Len	Lys	Pro 580	Phe	Ser	Thr	Met	Ile Gly 660
Gln Ala 500	Ala (515	Glu]	Ser]	Tyr	Thr	Met 595	Ala	Lys	Arg	
Ile G	Lys P	2ro (Val	Trp '	Leu	Thr	Asn 610	Asp Lys 625	Glu	Thr
'al I	Asn I	Gly Pro 530	Ser 545	Thr '	Ser	Gly	Gln	Asp 625	Leu	Thr Thr
en V	Ile A	rg (Glu S	Leu ' 560	Glu	Asn	Phe	Gln	Ile 640	Thr
Thr Leu Val 495	Ala I	Ile Arg	Gln (Asn]	G1y 575	Leu	Ala	Ala	Ile	Gln
Ser T	Glu A 510	Val I	Glu (Glu 1	Met	Lys 590	Val	Ser	Leu	Asn

e Tu
Cys
Thr 715
Tyr
Leu
Gly
Gly
Asp 710
Glu
Lys
Arg
Val
Arg 705
Arg
Ile
Thr

Ile Ile Phe Leu 730 Arg Ala Glu Thr A1a 725 Cys Asn Val Leu Gly 720 cys

Gly Ile Leu Val 11e 745 Asn Leu Glu Val Thr 740 Ala Gln Glu Lys Glu

Val Leu Leu Val Leu 760 Met Phe Phe Trp Leu 755 Ile Ala Ala Val Thr 750 Leu TYF780 Gly Glu Leu Lys Thr 775 Ala Asn Glu Gly Arg 770 Lys Val Thr

Glu Cys Arg 795 Pro Leu Asp Glu Gla Pro Asp Asp Val

Leu Arg Asp Arg 810 Trp Glu Phe Pro Leu 790 Lys 805 Ser Ala Asp TYrMet 785 Pro 800

Leu

Arg

Ser

Arg

Lys

Ala 845 Gla Gln Val Ile Thr Val Lys Cys G1Y 825 Thr 840 Phe Ala Ala Gly Thr Lys Arg Asp G1y 820 Ile 835 Leu Gly Lys Pro Phe Gly Asp Leu 815 Ala 830

Leu Ala 860 Arg Glu His Ser His 855 ${
m Thr}$ Gly Ala Gla Lys 850 Len Met

Asn Leu 875 His His Gly Ile His 870 Ile Ile Leu Lys Leu 865 Glu Ser Met

Val Met Len Pro 890 Gly G1yPro Lys Thr 885 Cys Ala Gly Leu Leu 880 Val Asn

Gly Tyr Leu Arg Thr 905 Asn Leu Ser Gly Phe 900 Glu Phe Ser Lys Ile

											,	
		٠			ហ		•	0	Li .	r 85	>	ы
Arg 925	Arg	Val	Glu	Phe	His 100	Val	Asp	Pro	Ser	o Tyr 1085	u Gly 00	n Th
Phe	Arg 940	Phe	Glu	Ser	Ile	Val V	Asp Pro 1035	Trp Met Ala 1050	l Trp	r Pro	Lys Glu (1100	r Gl
Lys Gly Ala Arg 920	Lys	G1 <u>y</u> 955	Ser	Tyr	Cys	Lys Asn		Met 50	Asp Val	a Ser	u Ly	t Ty
Ala	Leu	Ser	Ala 970	Cys	Lys	Lys	Lys		r Ası	/ Ala	g Le	u Me
Gly	Asp	Ser	Glu	Ile 985	Arg 0	Ser Glu	Tyr	Lys	Ser 1	Leu Gly 1080	Arg Arg Leu	o G1
Lys 920	Val	Ala	Glu	Leu	Ser 7	Ser 5	Ile	Leu	e Gln	r Leu C 1080	s Ar 95	r .Pr
Lys Ser	Ser 935	Ser	Glu	Glu His	Ala	Leu 1015	ASP	1 Pro	c 110	e Ser	e Cys ^p 1095	r Th
	Leu	Ser 950	Glu	Glu	Phe Leu	Leu	Ala Arg A 1030	Arg Leu l 1045	Arg Val Tyr Thr Ile 1060	e Phe	Ile Asp Glu Glu Phe 1090	r Th
Tyr	Glu	Gln	Val 965	Leu	Phe	Ile		1 Ard	L Ty:	u Ile	u G1	p Ty
Pro Tyr	Gly Glu	Ser	Asp	Thr 980	Glu	Arg Asn Ile	Gly Leu	Ale	y Va.	5 G1v	p G1	o As
Val 915	Val	Ser	Ser	Leu	Met 995	Arg 0	. G1y	Asp.	Arc	10.	e Asj 90	a Pr
Phe	Tyr 930	Thr	Leu	Phe	Gly	Ala / 1010	Asp Phe (1025	Arg Lys Gly Asp Ala 1040	Phe Asp	ı Leı		q Al
Glu	Asp	11e 945	Ser	Asp	Lys	Ala	Asp 102	r Lys		l Le	Val Lys	t Ar
Asn	Lys	Ser	Lys 960	Tyr Lys Asp Phe 975	Ala	Leu	Cys	. Arç 104	Thr Ile 1055	Gly Val Leu Leu Trp Glu	v va	Me.
Arg Asn Glu Phe	Gln Gly	Asp	Glu Glu		Gln Val Ala Lys Gly 990	Arg Asp Leu	Lys Ile	· Val	1059 1059	e G1) 70	о Gly	The Ard Met Ard Ala Pro Asp Tyr Thr Thr Pro Glu Met Tyr Gln Thr
Lys 910	Gln	Leu	G]u	Leu	G1n 990	Arg	Lys	Tyr	Glu	Phe 1070	Pro	Ē
	•				-			•				

Ser
Phe
Ser
Pro 1130
Arg
Gln
Asn
Pro
Asp 112
Glu
His
Trp
Asp Cys
Asp 112
Met Leu
Met

Glu His Leu Gly Asn Leu Leu Gln Ala Asn Ala Gln Gln 1140 Glu Leu Val

Ser Glu Thr Leu Ser 1160 Asp Gly Lys Asp Tyr Ile Val Leu Pro Met 1150

Cys Met Ser Gly Leu Ser Leu Pro Thr Ser Pro Val 1170 Ser Glu Glu Asp

Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn Thr Ala 1185 Glu Glu Glu

Ser His Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg Pro Val 1200 Gly Ile

Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu Val Lys 1215

Gly Met Val Leu Ala Ser Ser Ser Gln Thr Asp 1235 Val Ile Pro Asp Asp

Asn Lys Leu Ser Pro Ser Phe 1255 Lys Thr Leu Glu Asp Arg 1250 Glu Glu Leu

Ser Glu Gly 1275 Val Ala Ser Arg Glu Ser 1270 Gly Met Met Pro Ser Lys Gly

Ser Asp Asp 1290 Gln Ser Gly Tyr His 1285 $\mathbf{T}\mathbf{y}\mathbf{r}$ Gly Ser Ser Asn Gln Thr

Val Ser Asp Glu Ala Gly Leu Leu Lys Met 1300 Ser Asp Thr Thr Val Tyr

Ser Asp Ala Ala Val His Ala Asp Ser Gly Thr Thr Leu Gln Leu Thr 1310

Thr	1340
Pro Pro	
ro	35
Pro Al	1335
Val	
Pro)
לוט	7
Ser	1330
ארט	
A C.D	
Lon	ן אַר
5	נ לא

Asn His Glu Arg Gly Ala Ala

(2) INFORMATION FOR SEQ ID NO:7:

SEQUENCE CHARACTERISTICS: (i)

LENGIH: 96 base pairs (A)

STRANDEDNESS: single TYPE: nucleic acid

TOPOLOGY: linear

<u>(</u>

<u>(</u>) (B)

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AATTCGTCGA CTTTCTGTCA CCATGAGTGC ACTTCTGATC CTAGCCCTTG TGGGAGCTGC

TGTTGCTGAC TACAAGATG ATGATGACAA GATCTA

(2) INFORMATION FOR SEQ ID NO:8:

LENGTH: 96 base pairs SEQUENCE CHARACTERISTICS: (B) (i)

STRANDEDNESS: single TYPE: nucleic acid

TOPOLOGY: linear (Ú) (£)

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AGCTTAGATC TTGTCATCAT CATCTTTGTA GTCAGCAACA GCAGCTCCCA CAGAGGCTAG

96

9

GATCAGAAGT GCACTCATGG TGACAGAAAG TCGACG

(2) INFORMATION FOR SEQ ID NO:9:

SEQUENCE CHARACTERISTICS: Œ

A) LENGTH: 30 base pairs B

STRANDEDNESS: single TYPE: nucleic acid

TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGAGAAGATC TCAAACCAAG ACCTGCCTGT

(2) INFORMATION FOR SEQ ID NO:10:

LENGTH: 34 base pairs SEQUENCE CHARACTERISTICS: (i)

TYPE: nucleic acid STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCAATGGCGG CCGCTCAGGA GATGTTGTCT TGGA

96 CLAIMS

What I claim is:

- An isolated mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells.
- 10 2. A nucleic acid molecule according to claim 1 wherein the nucleic acid molecule is DNA.
 - 3. A nucleic acid molecule according to claim 2 wherein the nucleic acid molecule is cDNA.
- A nucleic acid molecule according to claim 1 wherein the nucleic acid molecule is RNA.
- 5. A nucleic acid molecule according to claim 1 that is a mouse nucleic acid molecule.
 - 6. A nucleic acid molecule according to claim 5 that is flk-2 comprising the sequence shown in Figure 1a.
- 25 7. A nucleic acid molecule according to claim 1 that is a human nucleic acid molecule.
 - A nucleic acid molecule according to claim 7 that is DNA.
- 9. A nucleic acid molecule according to claim 7 that is flk-2 comprising the sequence shown in Figure 1b.
- 10. An isolated acid nucleic molecule that is flk-2 comprising the sequence shown in Figure 1a.
 - 11. A nucleic acid molecule according to claim 10 wherein the nucleic acid molecule is DNA.
- 40 12. An isolated nucleic acid molecule that is flk-2

SUBSTITUTE SHEET

5 -

20

25

comprising the sequence shown in Figure 1b.

- 13. A nucleic acid molecule according to claim 12 wherein the nucleic acid molecule is DNA.
- 14. An isolated nucleic molecule that is flk-1 having the sequence shown in Figure 2.
- 15. A nucleic acid molecule according to claim 14 wherein the nucleic acid molecule is DNA.
 - 16. A nucleic acid molecule according to claim 14 wherein the nucleic acid molecule is cDNA.
- 15 17. A nucleic acid molecule according to claim 14 that has the corresponding sequence of RNA.
 - 18. A vector comprising a mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells.
 - 19. A vector comprising flk-1 having the nucleic acid sequence of Figure 2.
 - 20. A vector comprising flk-2 having the nucleic acid sequence of Figure 1a or 1b.
- 21. A vector according to claim 18 wherein the vector is capable of being cloned in a host.
 - 22. A vector according to claim 19 wherein the vector is capable of being cloned in a host.
- 35 23. A vector according to claim 20 wherein the vector is capable of being cloned in a host.
 - 24. A vector according to claim 21 wherein the host is a prokaryotic host.

- 25. A vector according to claim 22 wherein the host is a prokaryotic host.
- 26. A vector according to claim 23 wherein the host is a prokaryotic host.
 - 27. A vector according to claim 18 that is capable of expressing the nucleic acid molecule in a host.
- 28. A vector according to claim 19 that is capable of expressing flk-1 in a host.
 - 29. A vector according to claim 20 that is capable of expressing flk-2 in a host.
 - 30. A vector according to claim 27 wherein the host is a prokaryotic host.
- 31. A vector according to claim 28 wherein the host is a prokaryotic host.
 - 32. A vector according to claim 29 wherein the host is a prokaryotic host.
- 25 33. A vector according to claim 27 wherein the host is a eucaryotic host.
 - 34. A vector according to claim 28 wherein the host is a eucaryotic host.
- 30
 35. A vector according to claim 29 wherein the host is a eucaryotic host.
- 36. An isolated protein tyrosine kinase expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells.
 - 37. The protein tyrosine kinase according to claim 36 that is flk-2 having the sequence shown in Figure 1a or 1b.

25

- 38. The protein tyrosine kinase according to claim 36 that is human flk-2.
- 39. The protein tyrosine kinase according to claim 38 that is flk-2 having the sequence shown in Figure 1b.
 - 40. An isolated protein tyrosine kinase that is flk-1 having the sequence shown in Figure 2.
- 41. A ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells, wherein the ligand stimulates the proliferation and/or differentiation of the primitive hematopoietic cells.
- 42. A ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-1 shown in Figure 2, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-1.
 - 43. A ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-2 shown in Figure 1a or 1b, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-2.
- 44. A nucleic acid molecule encoding a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells, wherein the ligand stimulates the proliferation and/or differentiation of the primitive hematopoietic cells.
- 45. A nucleic acid molecule encoding a ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-1 shown in Figure 2, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-1.

SUBSTITUTE SHEET

- 46. A nucleic acid molecule encoding a ligand that binds to the receptor protein tyrosine kinase having the amino acid sequence of flk-2 shown in Figure 1a or 1b, wherein the ligand stimulates the proliferation and/or differentiation of cells that express flk-2.
- 47. A nucleic acid molecule according to claim 44 wherein the nucleic acid molecule is DNA.
- 10 48. A nucleic acid molecule according to claim 44 wherein the nucleic acid molecule is cDNA.

15

- 49. A nucleic acid molecule according to claim 44 wherein the nucleic acid molecule is RNA.
- 50. A nucleic acid molecule according to claim 45 wherein the nucleic acid molecule is DNA.
- 51. A nucleic acid molecule according to claim 45 wherein the nucleic acid molecule is cDNA.
 - 52. A nucleic acid molecule according to claim 45 wherein the nucleic acid molecule is RNA.
- 25 53. A nucleic acid molecule according to claim 46 wherein the nucleic acid molecule is DNA.
 - 54. A nucleic acid molecule according to claim 46 wherein the nucleic acid molecule is cDNA.
 - 55. A nucleic acid molecule according to claim 46 wherein the nucleic acid molecule is RNA.
- of the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

- 57. A method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to the receptor protein tyrosine kinase having the nucleic acid sequence of flk-1 shown in Figure 2.
- 58. A method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to the receptor protein tyrosine kinase having the nucleic acid sequence of flk-2 shown in Figure 1a or 1b.

- 15 59. A method according to claim 56 wherein the stimulation occurs in vitro.
 - 60. A method according to claim 57 wherein the stimulation occurs in vitro.
- 20
 61. A method according to claim 58 wherein the stimulation occurs in vitro.
- 62. A method according to claim 56 wherein the stimulation occurs in vivo.
 - 63. A method according to claim 57 wherein the stimulation occurs in vivo.
- 30 64. A method according to claim 58 wherein the stimulation occurs in vivo.
 - 65. Murine cell line 2018 having ATCC accession number ATCC CRL 10907.
 - 66. A recombinant nucleic acid molecule that is murine flk-2 having the sequence shown in Figure 1a.
 - 67. A recombinant nucleic acid molecule comprising the

15

25

sequence shown in Figure 1a from nucleotide 1 to nucleotide 1662.

- 68. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1a from nucleotide 31 to nucleotide 3006.
 - 69. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1a from nucleotide 112 to nucleotide 3006.
 - 70. An isolated mRNA that encodes the murine flk-2 protein, said protein having the amino acid sequence shown in Figure 1a.
 - 71. A recombinant nucleic acid molecule that is human flk-2 having the sequence shown in Figure 1b.
- 72. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1b from nucleotide 1 to nucleotide 1689.
 - 73. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1b from nucleotide 58 to nucleotide 3036.
 - 74. A recombinant nucleic acid molecule comprising the sequence shown in Figure 1b from nucleotide 139 to nucleotide 3036.
- 75. An isolated mRNA that encodes the human flk-2 protein, said protein having the amino acid sequence shown in Figure 1b.
- 76. A recombinant nucleic acid molecule that is murine flk-1 having the sequence shown in Figure 2.
 - 77. A recombinant nucleic acid molecule comprising the sequence shown in Figure 2 from nucleotide 1 to

10

nucleotide 2493.

- 78. A recombinant nucleic acid molecule comprising the sequence shown in Figure 2 from nucleotide 208 to nucleotide 4308.
- 79. A recombinant nucleic acid molecule comprising the sequence shown in Figure 2 from nucleotide 265 to nucleotide 4308.
- 80. An isolated mRNA that encodes the murine flk-1 protein, said protein having the amino acid sequence shown in Figure 2.

1/19

Fig. 1a.1

GCG	CCTG	GC I	ACCO	CGCG	C TC	CGGA	.GGCC	ATG Met	ALY	GCG Ala -25	, LICU	GCG Ala	CAG Gln	CGC Arg	AGC Ser -20
Asp	Arg	Arg	Leu	Leu -15	CTG Leu	Leu	vaı	val	-10	SEL	Vai		110	5	
Thr	Val	Thr	Asn 1	Gln	GAC Asp	Leu	Pro 5	vai	TIE	пуз	Cys	10	204		
His	Glu 15	Asn	Asn	Gly	TCA Ser	Ser 20	Ala	СТУ	гур	PIO	25	DCI	-1-	••• 5	•••
Val 30	Arg	Gly	Ser	Pro	GAA Glu 35	Asp	Leu	GIII	Cys	40	110	my	•••		45
Glu	Gly	Thr	Val	Tyr 50		Ala	Ala	THE	55	GIU	·			60	-
Ser	Ile	Thr	Leu 65	Gln	GTG Val	GIn	Leu	70	THE	PIO	Gly	ДЭР	75		-1-
Leu	Trp	Val 80	Phe	Lys		ser	ser 85	Leu	GIY	Cys		90	;	,	•
Leu	Gln 95	Asn	Arg	Gly	Ile	100	Ser	Mec	WIG	110	105				
Thr 110	Gln	Ala	Gly	Glu	Tyr 115	Leu	Leu	nis	116	120	DCI	Olu	9	•••	
Tyr	Thr	Val	Leu	130	Thr	vaı	ASII	Val	135	vob				140	GTG Val
Lev	Arg	Arg	Pro 145	Tyr	Phe	Arg	гÃг	150	Glu	. non	. 01		155	7	CTC Leu
Cys	Ile	Ser 160	Glu	Gly	Val	Pro	165	Pro	, THIL	Val	. GIG	170			TGC Cys
AG0 Se1	TCC Ser 175	His	AGG Arg	GAA Glu	AGC Ser	TGT Cys	гла	GAA Glu	GAA Glu	GGC Gly	CCT Pro 185	, ,,,,,,,	GTT Val	GTC Val	AGA Arg

2/19

Fig. la.2

Lys 190	Glu	Glu	Lys	Val	Leu 195	His	GIU	Leu	Pne .	200	TIIL	лэр	110	AGA Arg	205
TGT Cys	GCT Ala	AGA Arg	AAT Asn	GCA Ala 210	CTG Leu	GGC Gly	CGC Arg	GAA Glu	TGC Cys 215	ACC Thr	AAG Lys	CTG Leu	TTC Phe	ACC Thr 220	ATA Ile
GAT Asp	CTA Leu	AAC Asn	CAG Gln 225	GCT Ala	CCT Pro	CAG Gln	AGC Ser	ACA Thr 230	CTG Leu	CCC Pro	CAG Gln	TTA Leu	TTC Phe 235	CTG Leu	AAA Lys
GTG Val	GGG Gly	GAA Glu 240	CCC Pro	TTG Leu	TGG Trp	ATC Ile	AGG Arg 245	TGT Cys	AAG Lys	GCC Ala	ATC Ile	CAT His 250	GTG Val	AAC Asn	CAT His
GGA Gly	TTC Phe 255	GGG Gly	CTC Leu	ACC Thr	TGG Trp	GAG Glu 260	CTG Leu	GAA Glu	GAC Asp	AAA Lys	GCC Ala 265	CTG Leu	GAG Glu	GAG Glu	GGC Gly
AGC Ser 270	TAC Tyr	TTT Phe	GAG Glu	ATG Met	AGT Ser 275	ACC Thr	TAC Tyr	TCC Ser	ACA Thr	AAC Asn 280	AGG Arg	ACC Thr	ATG Met	ATT	CGG Arg 285
Ile	Leu	Leu	Ala	Phe 290	Val	Ser	ser	vaı	295	Arg	ASII	изр	1111	GGA Gly 300	-1-
Tyr	Thr	Cys	Ser 305	Ser	Ser	Lys	HIS	310	Ser	GIII	Ser	AIG	315		
Ile	Leu	Glu 320	Lys	Gly	Phe	He	325	Ala	THE	261	261	330		, , , , , , , , , , , , , , , , , , ,	TAT
GAA Glu	ATT Ile 335	GAC Asp	CCG Pro	TAC Tyr	GAA Glu	AAG Lys 340	TTC Phe	TGC Cys	TTC	Ser	GTC Val 345	AL 9	TTT Phe	AAA Lys	GCG Ala
TAC Tyr 350	Pro	CGA Arg	ATC Ile	CGA Arg	TGC Cys 355	ACG Thr	TGG Trp	ATC Ile	TTC Phe	TCT Ser 360	GIII	GCC	TCA Ser	TTT Phe	CCT Pro 365
TGT Cys	GAA Glu	CAG Gln	AGA Arg	GGC Gly 370	CTG Leu	GAG Glu	GAT Asp	GGG Gly	TAC Tyr 375	Ser	ATA Ile	TCT Ser	AAA Lys	TTT Phe 380	TGC Cys
GAT Asp	CAT His	AAG Lys	AAC Asn 385	Lys	CCA Pro	GGA Gly	GAG Glu	TAC Tyr 390	116	TTC Phe	TAT Tyr	GCA Ala	GAA Glu 395		GAT Asp
GAC Asp	GCC Ala	CAG Gln 400	Phe	ACC Thr	AAA Lys	ATG Met	TTC Phe 405	THE	CTG Leu	AAT Asn	ATA Ile	AGA Arg 410	, 2,-	AAA Lys	CCT Pro

3/19

Fig. 1a.3

	415	Leu	Ala	Asn	Ala	Ser	Ala	ser	GIII	AIG	425	TGT Cys		DC1	p
Gly 430	Tyr	Pro	Leu	Pro	Ser 435	Trp	Thr	Trp	гÀг	440	Cys	SEI	nsp	AAA Lys	445
Pro	Asn	Cys	Thr	Glu 450	Glu	Ile	Pro	GIU	455	vai	111	ASII	בעם	AAG Lys 460	
Asn	Arg	Lys	Val 465	Phe	Gly	Gln	Trp	470	ser	Ser	Set	TIIL.	475	AAT Asn	
Ser	Glu	Ala 480	Gly	Lys	Gly	Leu	Leu 485	vaı	rys	cys	Cys	490	TYL	AAT Asn	
Met	Gly 495	Thr	Ser	Cys	Glu	Thr 500	ITE	Pne	Leu	ASII	505		GIY		TTC Phe
Pro 510	Phe	Ile	Gln	Asp	Asn 515	Ile	ser	Pue	TĂL	520	1111	116	GIY		525
Leu	Pro	Phe	Ile	Val 530	Val	Leu	lle	Val	535	TIE	Cys	nis	Буз	,	ביינב
Lys	Gln	Phe	Arg 545	Tyr	Glu	ser	GIN	550	GIII	Mec	110	O ₂ 211	555		GGC Gly
Pro	Leu	Asp 560	Asn	Glu	Tyr	Phe	Tyr 565	vaı	Asp	Pne	Arg	570	ıyı	GIU	TAT Tyr
Asp	Leu 575	Lys	Trp	Glu	Phe	Pro 580	Arg	GIU	ASII	Leu	585	riic	CII	2,2	GTC Val
Leu 590	Gly	Ser	Gly	Ala	Phe 595	GIY	Arg	val	Mec	600	. Ala	1111	7114	-1-	GGC Gly 605
Ile	Ser	Lys	Thr	619	Val	Ser	TIE	GIN	615	, Ald	·	נים		620	
GAG Glu	AAA Lys	GCT Ala	GAC Asp 625	Ser	TGT Cys	GAA Glu	AAA Lys	GAA Glu 630	ATa	CTC Lev	: ATG Met	TCG Ser	GAG Glu 635		AAA Lys

Fig. 1a.4

			•													
Met	Met	Thr 640	His	Leu	GGA Gly	His	H15	Asp	ASN	TTE	val	650	Deu	пéа	GIY	,
GCA Ala	TGC Cys 655	ACA Thr	CTG Leu	TCA Ser	GGG Gly	CCA Pro 660	GTG Val	TAC Tyr	TTG Leu	ATT Ile	TTT Phe 665	GAA Glu	TAT Tyr	TGT Cys	TGC Cys	
TAT Tyr 670	GGT Gly	GAC Asp	CTC Leu	CTC Leu	AAC Asn 675	TAC Tyr	CTA Leu	AGA Arg	AGT Ser	AAA Lys 680	AGA Arg	GAG Glu	AAG Lys	TTT Phe	CAC His 685	
AGG Arg	ACA Thr	TGG Trp	Thr	GAG Glu 690	ATT	TTT Phe	AAG Lys	GAA Glu	CAT His 695	Asn	TTC Phe	AGT Ser	TCT	TAC Tyr 700	CCT Pro	
ACT Thr	TTC Phe	CAG Gln	GCA Ala 705	CAT His	TCA Ser	AAT Asn	TCC Ser	AGC Ser 710	ATG Met	CCT Pro	GGT Gly	TCA Ser	CGA Arg 715	GAA Glu	GTT Val	
CAG Gln	TTA Leu	CAC His 720	CCG Pro	CCC Pro	TTG Leu	GAT Asp	CAG Gln 725	CTC Leu	TCA Ser	GGG Gly	TTC Phe	AAT Asn 730	GGG Gly	AAT Asn	TCA Ser	
ATT Ile	CAT His 735	TCT Ser	GAA Glu	GAT Asp	GAG Glu	ATT Ile 740	GAA Glu	TAT Tyr	GAA Glu	AAC Asn	CAG Gln 745	AAG Lys	AGG Arg	CTG Leu	GCA Ala	
GAA Glu 750	GAA Glu	GAG Glu	GAG Glu	GAA Glu	GAT Asp 755	TTG Leu	AAC Asn	GTG Val	CTG Leu	ACG Thr 760	Pne	GAA Glu	GAC Asp	CTC Leu	CTT Leu 765	
TGC Cys	TTT Phe	GCG Ala	TAC	CAA Gln 770	GTG Val	GCC Ala	AAA Lys	GGC Gly	ATG Met 775	GIU	TTC Phe	CTG Leu	GAG Glu	TTC Phe 780	AAG Lys	
TCG Ser	TGT Cys	GTC Val	CAC His 785	Arg	GAC Asp	CTG Leu	GCA Ala	GCC Ala 790	AGG Arg	AAT Asn	GTG Val	Leu	GTC Val 795	TIIL	CAC His	
GGG Gly	AAG Lys	GTG Val 800	Väl	AAG Lys	ATC Ile	TGT Cys	GAC Asp 805	Pne	GGA Gly	CTG Leu	GCC Ala	CGA Arg 810	ASP	ATC Ile	CTG Leu	
AGC Ser	GAC Asp 815	Ser	AGC Ser	TAC Tyr	GTC Val	GTC Val 820	Arg	GGC Gly	AAC Asn	GCA Ala	CGG Arg 825	Leu	CCG Pro	GTG Val	AAG Lys	
TGG Trp 830	Met	GCA Ala	CCC	GAG Glu	AGC Ser 835	Leu	TTT Phe	GAA Glu	GGG Gly	ATC Ile 840	Tyr	ACA Thr	ATC Ile	AAG Lys	AGT Ser 845	
GAC Asp	GTC Val	TGG Trp	TCC Ser	TAC Tyr 850	GGC	ATC Ile	CTT Leu	CTC Leu	TGG Trp 855	GIU	ATA Ile	TTT Phe	Ser	CTG Leu 860		,
							•									

Fig. 1a.5

GTG AAC CCT TAC CCT GGC ATT CCT GTC GAC GCT AAC TTC TAT AAA CTG Val Asn Pro Tyr Pro Gly Ile Pro Val Asp Ala Asn Phe Tyr Lys Leu 875 865 ATT CAG AGT GGA TTT AAA ATG GAG CAG CCA TTC TAT GCC ACA GAA GGG Ile Gln Ser Gly Phe Lys Met Glu Gln Pro Phe Tyr Ala Thr Glu Gly 880 ATA TAC TTT GTA ATG CAA TCC TGC TGG GCT TTT GAC TCA AGG AAG CGG Ile Tyr Phe Val Met Gln Ser Cys Trp Ala Phe Asp Ser Arg Lys Arg 905 895 CCA TCC TTC CCC AAC CTG ACT TCA TTT TTA GGA TGT CAG CTG GCA GAG Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly Cys Gln Leu Ala Glu 920 915 910 GCA GAA GAA GCA TGT ATC AGA ACA TCC ATC CAT CTA CCA AAA CAG GCG Ala Glu Glu Ala Cys Ile Arg Thr Ser Ile His Leu Pro Lys Gln Ala 930 GCC CCT CAG CAG AGA GGC GGG CTC AGA GCC CAG TCG CCA CAG CGC CAG Ala Pro Gln Gln Arg Gly Gly Leu Arg Ala Gln Ser Pro Gln Arg Gln 950 945 GTG AAG ATT CAC AGA GAA AGA AGT TAGCGAGGAG GCCTTGGACC CCGCCACCCT Val Lys Ile His Arg Glu Arg Ser 965 960

										2	cccc	CCCT	ecc o	CACC	CC
	\GGCG(
Met		Ala -25	Leu	Ala	Arg	Asp	Ala -20	GIŸ	Tnr	vai	Pro	-15	red	Val	vai
TTT Phe	TCT Ser -10	GCA Ala	ATG Met	ATA Ile	TTT Phe	GGG Gly -5	ACT Thr	ATT Ile	ACA Thr	AAT Asn	CAA Gln 1	GAT Asp	CTG Leu	CCT Pro	GTG Val 5
ATC Ile	C AAG Lys	TGT Cys	GTT Val	TTA Leu 10	ATC Ile	AAT Asn	CAT His	AAG Lys	AAC Asn 15	AAT Asn	GAT Asp	TCA Ser	TCA Ser	GTG Val 20	GGG Gly
AA(Lys	G TCA S Ser	TCA Ser	TCA Ser 25	TAT Tyr	CCC Pro	ATG Met	GTA Val	TCA Ser 30	GAA Glu	TCC	CCG Pro	GAA Glu	GAC Asp 35	CTC Leu	GGG Gly
TG	r GCG s Ala	TTG Leu 40	AGA Arg	CCC Pro	CAG Gln	AGC Ser	TCA Ser 45	GGG Gly	ACA Thr	GTG Val	TAC Tyr	GAA Glu 50	GCT Ala	GCC Ala	GCT Ala
GT(G GAA l Glu 55	GTG Val	GAT Asp	GTA Val	TCT Ser	GCT Ala 60	TCC Ser	ATC Ile	ACA Thr	CTG Leu	CAA Gln 65	GTG Val	CTG Leu	GTC Val	GAT Asp
GC Ala	C CCA a Pro	GGG	AAC Asn	ATT	TCC Ser 75	TGT Cys	CTC Leu	TGG Trp	GTC Val	TTT Phe 80	AAG Lys	CAC His	AGC Ser	TCC Ser	CTG Leu 85
AA' Asi	T TGC n Cys	CAG Gln	CCA Pro	CAT His 90	TTT Phe	GAT Asp	TTA Leu	CAA Gln	AAC Asn 95	AGA Arg	GGA Gly	GTT Val	GTT Val	TCC Ser 100	ATG Met
GT Va	C ATT	TTG Leu	AAA Lys 105	Met	ACA Thr	GAA Glu	ACC Thr	CAA Gln 110	GCT Ala	GGA Gly	GAA Glu	TAC Tyr	CTA Leu 115	CTT Leu	TTT Phe
AT'	r CAG e Gln	AGT Ser 120	Glu	GCT Ala	ACC Thr	AAT Asn	TAC Tyr 125	ACA Thr	ATA Ile	TTG Leu	TTT Phe	ACA Thr 130	GTG Val	AGT Ser	ATA Ile
AG.	A AAT g Asn 135	Thr	CTG Leu	CTT Leu	TAC Tyr	ACA Thr 140	TTA Leu	AGA Arg	AGA Arg	CCT Pro	TAC Tyr 145	Pne	AGA Arg	AAA Lys	ATG Met
GA G1 15	A AAC u Asn O	CAG Gln	GAC Asp	GCC Ala	CTG Leu 155	GTC Val	TGC Cys	ATA Ile	TCT Ser	GAG Glu 160	Ser	GTT Val	CCA Pro	GAG Glu	CCG Pro 165
AT Il	C GTG e Val	GAA Glu	TGG Trp	GTG Val 170	Leu	TGC Cys	GAT Asp	TCA Ser	CAG Gln 175	GIY	GAA Glu	AGC Ser	TGT Cys	AAA Lys 180	OIG
GA Gl	A AGT u Ser	CCA Pro	GCT Ala 185	Val	GTT Val	AAA Lys	AAG Lys	GAG Glu 190	GIU	AAA Lys	GTG Val	CTT Leu	CAT His	GIU	TTA Leu

											~~ ~ ~	oma		200	ממכ
Phe	Gly	Thr 200	Asp	Ile	Arg	cys	205	Ala	ALG	POII	:	210	GGC Gly	ج ۽	
TGC Cys	ACC Thr 215	AGG Arg	CTG Leu	TTC Phe	ACA Thr	ATA Ile 220	GAT Asp	CTA Leu	AAT Asn	CAA Gln	ACT Thr 225	CCT Pro	CAG Gln	ACC Thr	ACA Thr
TTG Leu 230	CCA Pro	CAA Gln	TTA Leu	TTT Phe	CTT Leu 235	AAA Lys	GTA Val	GGG Gly	GAA Glu	CCC Pro 240	TTA Leu	TGG Trp	ATA Ile	AGG Arg	TGC Cys 245
AAA Lys	GCT Ala	GTT Val	His	GTG Val 250	AAC Asn	CAT His	GGA Gly	TTC Phe	GGG Gly 255	CTC Leu	ACC Thr	TGG Trp	GAA Glu	TTA Leu 260	GAA Glu
AAC Asn	AAA Lys	GCA Ala	CTC Leu 265	GAG Glu	GAG Glu	GGC Gly	AAC Asn	TAC Tyr 270	TTT Phe	GAG Glu	ATG Met	AGT Ser	ACC Thr 275	TAT Tyr	TCA Ser
ACA Thr	AAC Asn	AGA Arg 280	ACT Thr	ATG Met	ATA Ile	CGG Arg	ATT Ile 285	reu	TTT Phe	GCT Ala	TTT Phe	GTA Val 290	TCA Ser	TCA Ser	GTG Val
Ala	Arg 295	Asn	Asp	Thr	GIĀ	300	туг	THE	Cys	ber	305		AAG Lys		· .
AGT Ser 310	CAA Gln	TCA Ser	GCT Ala	TTG Leu	GTT Val 315	Thr	ATC Ile	GTA Val	GGA Gly	AAG Lys 320	Gry	TTT	ATA Ile	AAT Asn	GCT Ala 325
ACC Thr	AAT Asn	TCA Ser	AGT Ser	GAA Glu 330	Asp	TAT Tyr	GAA Glu	ATT	GAC Asp 335	GIII	TAT Tyr	GAA Glu	GAG Glu	TTT Phe 340	TGT Cys
TTT Phe	TCT Ser	GTC Val	AGG Arg 345	Phe	Lys	Ala	Tyr	PLO	GII	ATC Ile		TGT Cys	ACG Thr 355	TGG Trp	ACC Thr
TTC Phe	TCT Ser	CGA Arg 360	Lys	TCA Ser	TTT Phe	CCT Pro	TGT Cys	GIU	CAA Glr	AAG Lys	GGT Gly	CTT Leu 370	<u>F</u>	AAC Asn	GGA Gly
TAC Tyr	AGC Ser	Ile	TCC Ser	AAG Lys	TTI Phe	TGC Cys	ASI	CAT His	AAC Lys	CAC His	CAG Gln 385		GGA Gly	GAA Glu	TAT Tyr
ATA Ile 390	Ph	CAT His	GCA Ala	GAA Glu	AAT AST 395	r Ast	GAT Asp	GCC Ala	CA!	A TTT n Phe 400		AAA Lys	ATG Met	TTC Phe	ACG Thr 405
,		ATA	A AGA Arg	AGG Arg 410	J Lys	CCI Pro	CAA Glr	A GTO	G CTC L Lev 419	7 27	A GAA a Glu	A GCA 1 Ala	A TCG a Ser	GCA Ala 420	AGT Ser

Gln	Ala	Ser	Cys 425	Phe	Ser	Asp	GIY	430	PIO	neu	CCA Pro	J	435		
Lys	Lys	Cys 440	Ser	Asp	Lys	ser	445	ASII	СуБ	1114	GAA Glu	450			
Gly	Val 455	Trp	Asn	Arg	Lys	460	ASN	Arg	пуэ	Var	TTT Phe 465	0- 1		,•	
Ser 470	Ser	Ser	Thr	Leu	475	Met	ser	GIU	Ala	480	AAA Lys	U 11.			485
Lys	Cys	Cys	Ala	Tyr 490	Asn	Ser	Leu	GIY	495	561	TGT Cys	014		500	
Leu	Asn	Ser	Pro 505	Gly	Pro	Pne	Pro	510	116	GII.	1.05		515		5
Tyr	Ala	Thr 520	Ile	Gly	Val	Cys	525	Leu	Pne	TTE	GTC Val	530	. 202		
. Leu	Ile 535	Cys	His	Lys	Tyr	Lys 540	Lys	GIII	PIIC	ALG	545		:		CTA
Gln 550	Met	Val	Gln	Val	Thr 555	GIY	Ser	Ser	vsh	560		-1-			565
Asp	Phe	Arg	Glu	Tyr 570	GIU	Tyr	ASP	пец	575	111				580	
Asn	Leu	Glu	Phe 585	Gly	Lys	vaı	Leu	590	Per	GIJ	•••		595	- 4 ,	GTG Val
Met	Asn	Ala 600	Thr	Ala	Tyr	GIÀ	605	SEL	пåз	. 1111		610			CAG Gln
Val	Ala 615	Val	Lys	Met	Leu	620	GIU	груз	ALC	. 110 F	625		. •		GAG Glu
GCA Ala 630	Leu	ATG Met	TCA Ser	GAA Glu	CTC Leu 635	. Lys	ATC Met	ATC Met	ACC Thr	CAC Glr 640	•	GG#	A AGC	CAC His	GAG Glu 645

Asn	Ile	Val	Asn	Leu 650	CTG Leu	GIŸ	ATG	cys	655	200		2		660	
Leu	Ile	Phe	Glu 665	Tyr	TGT Cys	cys	TYL	670	nsp	ДСС		•	675		
Ser	Lys	Arg 680	Glu	Lys	TTT Phe	HIS	685	1111	11 p			690			
His	Asn 695	Phe	Ser	Phe	TAC Tyr	700	Thr	PHE	GIII		705				
Met 710	Pro	Gly	Ser	Arg	GAA Glu 715	vaı	GIII	116	nis	720			. •		725
Ser	Gly	Leu	His	Gly 730	AAT Asn	ser	Pne	ura	735	014				740	
Glu	Asn	Gln	Lys 745	Arg	CTG Leu	GIU	Giu	750	GIG				755		
Phe	Glu	Asp 760	Leu	Leu	Cys	Pne	765	IYL	GIII	, , ,		770	. •	•	GAA Glu
Phe	Leu 775	Glu	Phe	Lys	ser	780	vai	UIS	nr 9	1105	785		•	_	AAC Asn
Val 790	Leu T	\Val	Thr	His	795	гÀг	val	Val	י עם	800)	•		_	TTG Leu 805
Ala	Aro) Ast) Ile	810	ser	Asp) SEI	NSI.	815	5				820	GCC Ala
Arg	Leu	Pro	Val 825	. Lys	rrp) Met	. Ald	830)	. 502			835	5	ATC Ile
Туз	Thi	: Ile 840	e Lys	s Ser	. Asp	val.	845	5	. <u> </u>	. 01		850)		GAA Glu
ATC Ile	TT(Phe 85	e Sei	A CTT	r GG7 ı Gly	r GT0 / Val	AAT ASI 860	1 Pro	тас Туг	C CC'	r GGG	ATTY Ile		G GTT	r GAT L Asp	r GCT o Ala

Fig. 1b.5

AAC TTC TAC AAA CTG ATT CAA AAT GGA TTT AAA ATG GAT CAG CCA TTT Asn Phe Tyr Lys Leu Ile Gln Asn Gly Phe Lys Met Asp Gln Pro Phe 880 875 870 TAT GCT ACA GAA GAA ATA TAC ATT ATA ATG CAA TCC TGC TGG GCT TTT Tyr Ala Thr Glu Glu Ile Tyr Ile Ile Met Gln Ser Cys Trp Ala Phe 895 890 GAC TCA AGG AAA CGG CCA TCC TTC CCT AAT TTG ACT TCG TTT TTA GGA Asp Ser Arg Lys Arg Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly 910 905 TGT CAG CTG GCA GAT GCA GAA GCG ATG TAT CAG AAT GTG GAT GGC Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 920 CGT GTT TCG GAA TGT CCT CAC ACC TAC CAA AAC AGG CGA CCT TTC AGC Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser 935 AGA GAG ATG GAT TTG GGG CTA CTC TCT CCG CAG GCT CAG GTC GAA GAT Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 960 955

TCG TAGAGGAACA ATTTAGTTTT AAGGACTTCA TCCCTCCACC TATCCCTAAC

Fig. 2.1

CTGTGTCCCG CAGCCGGATA ACCTGGCTGA CCCGATTCCG CGGACACCCG TGCAGCCGCG GCTGGAGCCA GGGCGCGGT GCCCGCGCTC TCCCCGGTCT TGCGCTGCGG GGGCCGATAC CGCCTCTGTG ACTTCTTTGC GGGCCAGGGA CGGAGAAGGA GTCTGTGCCT GAGAAACTGG GCTCTGTGCC CAGGCGCGAG GTGCAGG ATG GAG AGC AAG GGC CTG CTA GCT Met Glu Ser Lys Gly Leu Leu Ala -19 GTC GCT CTG TGG TTC TGC GTG GAG ACC CGA GCC GCC TCT GTG GGT TTG Val Ala Leu Trp Phe Cys Val Glu Thr Arg Ala Ala Ser Val Gly Leu -10 CCT GGC GAT TTT CTC CAT CCC CCC AAG CTC AGC ACA CAG AAA GAC ATA Pro Gly Asp Phe Leu His Pro Pro Lys Leu Ser Thr Gln Lys Asp Ile 10 CTG ACA ATT TTG GCA AAT ACA ACC CTT CAG ATT ACT TGC AGG GGA CAG Leu Thr Ile Leu Ala Asn Thr Thr Leu Gln Ile Thr Cys Arg Gly Gln 30 25 CGG GAC CTG GAC TGG CTT TGG CCC AAT GCT CAG CGT GAT TCT GAG GAA Arg Asp Leu Asp Trp Leu Trp Pro Asn Ala Gln Arg Asp Ser Glu Glu AGG GTA TTG GTG ACT GAA TGC GGC GGT GGT GAC AGT ATC TTC TGC AAA Arg Val Leu Val Thr Glu Cys Gly Gly Gly Asp Ser Ile Phe Cys Lys 55 ACA CTC ACC ATT CCC AGG GTG GTT GGA AAT GAT ACT GGA GCC TAC AAG Thr Leu Thr Ile Pro Arg Val Val Gly Asn Asp Thr Gly Ala Tyr Lys 75 TGC TCG TAC CGG GAC GTC GAC ATA GCC TCC ACT GTT TAT GTC TAT GTT Cys Ser Tyr Arg Asp Val Asp Ile Ala Ser Thr Val Tyr Val Tyr Val 100 95 CGA GAT TAC AGA TCA CCA TTC ATC GCC TCT GTC AGT GAC CAG CAT GGC Arg Asp Tyr Arg Ser Pro Phe Ile Ala Ser Val Ser Asp Gln His Gly 110 105 ATC GTG TAC ATC ACC GAG AAC AAG AAC AAA ACT GTG GTG ATC CCC TGC Ile Val Tyr Ile Thr Glu Asn Lys Asn Lys Thr Val Val Ile Pro Cys 125 120 CGA GGG TCG ATT TCA AAC CTC AAT GTG TCT CTT TGC GCT AGG TAT CCA Arg Gly Ser Ile Ser Asn Leu Asn Val Ser Leu Cys Ala Arg Tyr Pro 145 135 GAA AAG AGA TTT GTT CCG GAT GGA AAC AGA ATT TCC TGG GAC AGC GAG Glu Lys Arg Phe Val Pro Asp Gly Asn Arg Ile Ser Trp Asp Ser Glu 150 ATA GGC TTT ACT CTC CCC AGT TAC ATG ATC AGC TAT GCC GGC ATG GTC Ile Gly Phe Thr Leu Pro Ser Tyr Met Ile Ser Tyr Ala Gly Met Val

175

Fig. 2.2

1	Phe	Cys	Glu	Ala 185	Lys	Ile	ASN	Asp	190	1111	- 7 -	CAG Gln		195		- .
٠	Ile	Val	Val 200	Val	Val	Gly	Tyr	205	TIE	TYL	лэр	GTG Val	210			
•	Pro	His 215	Glu	Ile	Glu	Leu	220	Ald	GIY	GIU	n, o	CTT Leu 225				•
	Thr 230	Ala	Arg	Thr	Glu	Leu 235	ASN	Val	GIY	Deu	240	TTC Phe				245
	Pro	Pro	Ser	Lys	Ser 250	His	HIS	ьys	гур	255	vai	AAC Asn			260	· · · · · · · · · · · · · · · · · · ·
	Pro	Phe	Pro	Gly 265	Thr	Val	ΑΙα	гÀг	270	FIIC	Dea	,		275		•
	Glu	Ser	Val 280	Thr	Lys	Ser	Asp	285	GIY	Giu	+1+	ACC Thr	290			
	Ser	Gly 295	Arg	Met	Ile	гÀг	300	ASII	MY	1111	11.0	305		:		ACA Thr
	Lys 310	Pro	Phe	Ile	Ala	9ne 315	GIY	Ser	GIY	Mec	320					325
	Thr	Val	Gly	Ser	330	Val	Arg	TIE	PLO	335	בענ	-1-			340	
	Ala	Pro	Asp	345	Lys	Trp	туг	Arg	350	Gly	111-9			355		AAC Asn
	Tyr	Thr	Met 360	: Ile	. Val	GIY	Asp	365	Den	1 1111		, ,,,	370			GAA Glu
-	Arg	Asp 375	Ala ;	Gly	Asn	Tyr	380	vai	116	Ter		385	,	•		ATG Met
	GAG Glu 390	Lys	CAC Glr	AGC Ser	CAC His	ATG Met	. val	TCI Ser	CTC Lev	GTI Val	T GT0 L Val 400		T GTO	C CCA Pro	CCC Pro	CAG Gln 405

Fig. 2.3

Ile	Gly	Glu	Lys	Ala 410	TTG Leu	Tie	ser	PIO	415	ro P		-1-		420	.
Thr	Met	Gln	Thr 425	Leu	ACA Thr	Cys	Thr	430	TAT	AIG	ASII		435		
His	Ile	Gln 440	Trp	Tyr	TGG Trp	Gin	445	GIU	GIU	·	O, D	450	-1-	J	
Gly	Gln 455	Thr	Ser	Pro	TAT Tyr	460	Cys	гàг	GIU	ILP	465	1110	,		
Phe 470	Gln	Gly	Gly	Asn	AAG Lys 475	ile	GIU	vai	1111	480	. AUII	U11.	-,-		485
Ile	Glu	Gly	Lys	Asn 490	AAA Lys	Thr	vai	Ser	495	Deu	Vul			500	
Asn	Val	Ser	Ala 505	Leu	TAC Tyr	гĀг	Cys	510	MIG	.110	ADII	ביים	515	1	ب
Gly	Glu	Arg 520	Val	Ile		Pne	525	vai	116	n. y	OLI	530			
Val	Gln 535	Pro	Ala	Ala	GIn	540	THE	GIU.	GIII		545				TTG
Cys 550	Thr	Ala	Asp	Arg	Asn 555	Tnr	Pne	Glu	. ASII	560			-1-	-4 -	CTT Leu 565
Gly	Ser	Gln	Ala	Thr 570	ser	val	HIS	Met	575	GIU				580	
Cys	Lys	Asn	Leu 585	Asp	Ala	Leu	Trp	590	Leu	L KSI	. 017		595	3	TCT Ser
Àsn	sr	Thr 600	Asn	Asp	lle	Leu	605	vaı	ALC	riic	. 01.	610)		CTG Leu
CAG Gln	GAC Asp 615	Gln	GGC Gly	GAC Asp	TAT	GTT Val 620	Cys	TCI Ser	GCI Ala	CAA Glr	GAT Asp 625		AAC Lys	ACC Thi	AAG Lys

Fig. 2.4

Lys 630	Arg	His	TGC Cys	Leu	Val 635	гуs	GIN	Pen	116	640	Tea.		•••		645
Pro	Met	Ile	ACC Thr	Gly 650	Asn	Leu	GIU	ASII	655	1111	1111			660	
Thr	Ile	Glu	GTG Val 665	Thr	Cys	Pro	Ala	670	GIY	ASII	110	1111	675		
Thr	Trp	Phe 680	AAA Lys	Asp	Asn	GIU	685	ъėп	vai	Giu	. Asp	690	CLI		
Leu	Arg 695	Asp	GGG Gly	Asn	Arg	700	Leu	THE	TIE	ALG	705	Vul	•••	-1-	
Asp 710	Gly	Gly	Leu	Tyr	Thr 715	Cys	GIn	Ala	Cys	720	Vai			-,-	GCA Ala 725
Arg	Ala	Glu		Leu 730	Phe	lie	IIe	GIU	735	NIG			- 1-	740	
Leu	Glu	Val	Ile 745	Ile	Leu	Val	GIY	750	ΑΙα	· vai	110	11120	755		TTC Phe
Trp	Leu	Leu 760	Leu	Val	Ile	Leu	765	Arg	1111	, var	БуЗ	770			GAA Glu
Gly	Glu 775	Leu	Lys	Thr	GTÀ	780	ьeu	Ser	116	. var	785	p			GAA Glu
Leu 790	Pro	Leu	Asp	Glu	795	Cys	GIU	Arg	Tea	800	. - y-	nop		, ,	AAG Lys 805
Trp	Glu	Phe	Pro	810	Asp	Arg	Leu	граг	815	5				820	
Gly	Ala	Phe	825	Gln	val	TIE	. GIU	830)	ALG		. 011	835	,	AAG Lys
AC? Thr	GCG Ala	ACT Thr 840	Cys	AAA Lys	ACA Thr	GTA Val	GCC Ala 845	l val	AAC Lys	ATG Met	TTG Leu	AAA Lys 850		GGA Gly	GCA Ala

15/19 Fig. 2.5

Thr	His 855	Ser	Glu	His	Arg	860	Leu	ATG Met	Ser	GIU	865	בינם				
His 870	Ile	Gly	His	His	Leu 875	Asn	vaı	GTG Val	ASII	880	Dea	GIJ		• 1	885	
AAG Lys	CCG Pro	GGA Gly	Gly	CCT Pro 890	CTC Leu	ATG Met	GTG Val	ATT	GTG Val 895	GAA Glu	TTC Phe	TCG Ser	AAG Lys	TTT Phe 900	GGA Gly	
AAC Asn	CTA Leu	TCA Ser	ACT Thr 905	TAC Tyr	TTA Leu	CGG Arg	GGC Gly	AAG Lys 910	AGA Arg	AAT Asn	GAA Glu	TTT Phe	GTT Val 915	CCC Pro	TAT Tyr	
AAG Lys	AGC Ser	AAA Lys 920	GGG Gly	GCA Ala	CGC Arg	TTC Phe	CGC Arg 925	CAG Gln	GGC Gly	AAG Lys	GAC Asp	TAC Tyr 930	GTT Val	GGG Gly	GAG Glu	
CTC Leu	TCC Ser 935	GTG Val	GAT Asp	CTG Leu	AAA Lys	AGA Arg 940	CGC Arg	TTG Leu	GAC Asp	AGC Ser	ATC Ile 945	ACC Thr	AGC Ser	AGC	CAG Gln	
AGC Ser 950	Ser	GCC Ala	AGC Ser	TCA Ser	GGC Gly 955	TTT	GTT Val	GAG Glu	GAG Glu	AAA Lys 960	TCG Ser	CTC Leu	AGT Ser	GAT Asp	GTA Val 965	
Glu	Glu	Glu	Glu	Ala 970	Ser	GIU	GIU	reu	975	пуз	nop	1		980		
Glu	His	Leu	Ile 985	Cys	Tyr	ser	Pne	990	Val	AIG.	<u>Б</u> уО		995		TTC Phe	
Leu	Ala	Ser 100	Arg O	Lys	Cys	IIe	100)5	Ash	реч		101	.0		ATT	
CTC Leu	CTA Leu 101	Ser	GAG Glu	AAG Lys	AAT Asn	GTG Val 102	val	AAG Lys	ATC	TGT Cys	GAC Asp 102		GGC Gly	TTG Lev	GCC Ala	
CGG Arg 103	Asp	ATT Ile	TAT	AAA Lys	GAC Asp 103	Pro	GAT Asp	TAT Tyr	GTC Val	AGA Arg	בענ	GGA Gly	GAI Asp	GCC Ala	CGA Arg 1045	
Leu	Pro	Leu	Lys	105	Met 0	Ala	Pro	GIC	105	55				106		
ACA Thr	ATT	CAG Gln	AGC Ser 106	. Asp	GTG Val	TGG	TCI Sei	TTC Phe 107	ניט:	r GTC / Val	TTC Lev	CT(TGG Tri	G GAA o Glu 75	A ATA	

Fig. 2.6

TTT TCC TTA GGT GCC TCC CCA TAC CCT GGG GTC AAG ATT GAT GAA GAA Phe Ser Leu Gly Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu 1080 TTT TGT AGG AGA TTG AAA GAA GGA ACT AGA ATG CGG GCT CCT GAC TAC Phe Cys Arg Arg Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr 1100 1095 ACT ACC CCA GAA ATG TAC CAG ACC ATG CTG GAC TGC TGG CAT GAG GAC Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp His Glu Asp 1120 1115 1110 CCC AAC CAG AGA CCC TCG TTT TCA GAG TTG GTG GAG CAT TTG GGA AAC Pro Asn Gln Arg Pro Ser Phe Ser Glu Leu Val Glu His Leu Gly Asn 1135 1130 CTC CTG CAA GCA AAT GCG CAG CAG GAT GGC AAA GAC TAT ATT GTT CTT Leu Leu Gln Ala Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu 1150 1145 CCA ATG TCA GAG ACA CTG AGC ATG GAA GAG GAT TCT GGA CTC TCC CTG Pro Met Ser Glu Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser Leu 1170 1165 1160 CCT ACC TCA CCT GTT TCC TGT ATG GAG GAA GAG GAA GTG TGC GAC CCC Pro Thr Ser Pro Val Ser Cys Met Glu Glu Glu Val Cys Asp Pro 1180 AAA TTC CAT TAT GAC AAC ACA GCA GGA ATC AGT CAT TAT CTC CAG AAC Lys Phe His Tyr Asp Asn Thr Ala Gly Ile Ser His Tyr Leu Gln Asn 1200 1195 1190 AGT AAG CGA AAG AGC CGG CCA GTG AGT GTA AAA ACA TTT GAA GAT ATC Ser Lys Arg Lys Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp Ile 1215 1210 CCA TTG GAG GAA CCA GAA GTA AAA GTG ATC CCA GAT GAC AGC CAG ACA Pro Leu Glu Glu Pro Glu Val Lys Val Ile Pro Asp Asp Ser Gln Thr 1230 1225 GAC AGT GGG ATG GTC CTT GCA TCA GAA GAG CTG AAA ACT CTG GAA GAC Asp Ser Gly Met Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp 1250 :1245 1240 AGG AAC AAA TTA TCT CCA TCT TTT GGT GGA ATG ATG CCC AGT AAA AGC Arg Asn Lys Leu Ser Pro Ser Phe Gly Gly Met Met Pro Ser Lys Ser 1265 1260 1255 AGG GAG TCT GTG GCC TCG GAA GGC TCC AAC CAG ACC AGT GGC TAC CAG Arg Glu Ser Val Ala Ser Glu Gly S r Asn Gln Thr Ser Gly Tyr Gln

TCT GGG TAT CAC TCA GAT GAC ACA GAC ACC GTG TAC TCC AGC GAC Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp 1295 1290

1275

1270

Fig. 2.7

GAG GCA GGA CTT TTA AAG ATG GTG GAT GCT GCA GTT CAC GCT GAC TCA
Glu Ala Gly Leu Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser
1305 1310 1315

GGG ACC ACA CTG CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Gly Thr Thr Leu Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val

CCG GCT CCG CCC CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT TAG
Pro Ala Pro Pro Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala
1335
1340
1345

ATTTTCAAGT GTTGTTCTTT CCACCACCC GAAGTAGCCA CATTTGATTT TCATTTTTGG AGGAGGGACC TCAGACTGCA AGGAGCTTGT CCTCAGGGCA TTTCCAGAGA AGATGCCCAT GACCCAAGAA TGTGTTGACT CTACTCTCTT TTCCATTCAT TTAAAAGTCC TATATAATGT GCCCTGCTGT GGTCTCACTA CCAGTTAAAG CAAAAGACTT TCAAACACGT GGACTCTGTC CTCCAAGAAG TGGCAACGGC ACCTCTGTGA AACTGGATCG AATGGGCAAT GCTTTGTGTG TTGAGGATGG GTGAGATGTC CCAGGGCCGA GTCTGTCTAC CTTGGAGGCT TTGTGGAGGA TGCGGCTATG AGCCAAGTGT TAAGTGTGGG ATGTGGACTG GGAGGAAGGA AGGCGCAAGC CGTCCGGAGA GCGGTTGGAG CCTGCAGATG CATTGTGCTG GCTCTGGTGG AGGTGGGCTT GTGGCCTGTC AGGAAACGCA AAGGCGGCCG GCAGGGTTTG GTTTTGGAAG GTTTGCGTGC TCTTCACAGT CGGGTTACAG GCGAGTTCCC TGTGGCGTTT CCTACTCCTA ATGAGAGTTC CTTCCGGACT CTTACGTGTC TCCTGGCCTG GCCCCAGGAA GGAAATGATG CAGCTTGCTC CTTCCTCATC TCTCAGGCTG TGCCTTAATT CAGAACACCA AAAGAGAGGA ACGTCGGCAG GTGGAGACCC ACGTGGCGCC CTGGTGGCAG GTCTGAGGGT TCTCTGTCAA GTGGCGGTAA AGGCTCAGGC TGGTGTTCTT CCTCTATCTC CACTCCTGTC AGGCCCCCAA GTCCTCAGTA TTTTAGCTTT GTGGCTTCCT GATGGCAGAA AAATCTTAAT TGGTTGGTTT GCTCTCCAGA TAATCACTAG CCAGATTTCG AAATTACTTT TTAGCCGAGG TTATGATAAC ATCTACTGTA TCCTTTAGAA TTTTAACCTA TAAAACTATG TCTACTGGTT TCTGCCTGTG TGCTTATGTT ААААА АААААААА

Beda brund

Bound APtag (OD 405)

International application No. PCT/US92/09893

	OF COMPECT MATTER	•	1
	SSIFICATION OF SUBJECT MATTER C07H 15/12, 17/00; A61K 37/00; C07K 13/00, 15/0	0; C12N 5/00	
According to	o International Patent Classification (IPC) or to both n	ational classification and IPC	
B. FIEL	DS SEARCHED	1 15 vin symbols	
	ocumentation searched (classification system followed	by classification symbols)	
-	530/350, 387, 846; 536/27; 514/2; 435/240.2		
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched
- 			
		of deta have and where practicable.	search terms used)
Electronic d	ata base consulted during the international search (nar	ne of data base and, where president,	
APS, DIA	LLOG ms: protein tyrosine kinase, flt3, flk, hematopoiesis		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
Y	Proceedings of the National Academy of Sciences, "Two putative protein-tyrosine kinases identified by	Vol. 86, issued March 1989, Wilks, y application of the polymerase chain	1-64, 66-80
	reaction", pages 1603-1607, entire document.		
Y	Cell, Vol. 63, Issued 05 October, 1990, Flanagan molecule altered in steel mutant fibroblasts", pages	et al., "The kit ligand: A cell surface 185-194, entire document.	41-64
<u>X,P</u> Y	Proceedings of the National Academy of Sciences, V et al., "A receptor tyrosine kinase cDNA isolated fi hematopoictic cells and exhibiting close genetic link document.	ol. 88, Issued October 1991, Matthews	14-17, 19,22,25,28, 31,34,76-80 1 - 1 3 , 1 8 , 2 0 , 21,23,24,26,27,29,30,3 2,33,35-64,66-75
A	Science, Volume 241, Issued 01 July 1988, S.K. Ha Conserved features and deduced phylogeny of the o document.	anks et al., "The protein kinase family: eatalytic domains", pages 42-52, entire	1-64, 66-80
,		•	
	the discharge investigation of Box C	See patent family annex.	<u> </u>
انتا	her documents are listed in the continuation of Box C		emational filing date or priority
	pecial categories of cited documents: cument defining the general state of the art which is not considered	date and not in conflict with the apple principle or theory underlying the in	vention
l to	be part of particular relevance relier document published on or after the international filing date	"X" document of particular relevance; to considered novel or cannot be considered	ne claimed invention cannot be ered to involve an inventive step
		when the document is taken alone	
_ ci	ted to establish the publication date of histories change of Sans- pecial reason (as specified)	"Y" document of particular relevance; to considered to involve an inventive combined with one or more other out.	ch documents, such combination
i m	ocument referring to an oral disclosure, use, exhibition or other seans	being obvious to a person akulied in	the art
ı ı	ocument published prior to the international filing date but later than to priority date claimed	Date of mailing of the international se	
Date of the	actual completion of the international search	'	
05 Janua	ry 1993	02 FEG 1993	
No are and	mailing address of the ISA/	Authorized officer	
Commissi Box PCT	oner of Patents and Trademarks	LORRAINE M. SPECTOR, PH.	D. <i>' , '</i>
Washingto	on, D.C. 20231	Telephone No. (703) 308-1793	<u>'</u>
Facsimile	No. NOT APPLICABLE		

International application No. PCT/US92/09893

C (Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	1-6,10-13,
		18,20,21,23,24,26,27,2
<u>.P</u>	Cell, Volume 65, Issued 28 June 1991, W. Matthews et al., 1216 Proceedings of the Matthews et al., 1216 Proceedings of	9,30,32,33,
•	1152, entire document.	<u>35,36-39,66-75</u>
		7-9,41,43, 44,46-49,
•		53-55,56,
		58,59,61,62,64,76-80
		20,27,01,02,04,10 00
		1-6,10-
	Oncogene, Volume 6, Issued 1991, O. Rosnet et al., "Murine Flt3, a gene encoding a	13,18,20,21,23,24,26,2
P	Oncogene, Volume 6, Issued 1991, O. Rosner et al., Multin 125, 2 games 1641-1650, entire novel tyrosine kinase receptor of the PDGFR/CSF1R family", pages 1641-1650, entire	7,29,30,32,33,
•		35,36-39, 66-75
	document.	7-9,41,43, 44,46-49,
•		=
	1	53-55,56,58, 59,61,62,64,76-80
		23,01,02,04,70-0V
,		
	Genomics, Volume 9, Issued 1991, O. Rosnet et al., "Isolation and chromosomal pages 380-385, entire document.	1-6,10-13,
K, <u>P</u>	Genomics, Volume 9, Issued 1991, O. Rosnet et al., Issuation and ordered document. localization of a novel FMS-like tyrosine kinase gene", pages 380-385, entire document.	18,20,21,23,24,26,27,2
<u>(,P</u> Y	localization of a novel FMS-like tyrosine kinds 8-110, page 1	9,30 32 32 35. 36-
		<u>39,66-75</u>
		7-9,41,43, 44,46-49,
		53-55,56,58,
		59,61,62,64, 76-80
	Journal of Experimental Medicine, Volume 169, Issued May 1989, R.G. Andrews et al.,	1-80
Δ	Journal of Experimental Medicine, Volume 109, Issued May 1907, Issued May	1.
A.		
	"Precursors of colony-forming cells in humans can be distinguished from colony-forming cells in humans cel	
	"Precursors of colony-forming cells in nutrians can be obtained by expression of the CD33 and CD34 antigens and light scatter properties", pages	
	"Precursors of colony-forming cells in nutrians can be obtained by expression of the CD33 and CD34 antigens and light scatter properties", pages	·
	"Precursors of colony-forming cells in nutrials can be obtained by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document.	1-80
	"Precursors of colony-forming cells in nutrials can be below to be colony-forming cells in nutrials can be below to be cells by expression of the CD33 and CD34 antigens and light scatter properties", pages cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document.	1-80
A	"Precursors of colony-forming cells in nutrials can be below to be colony-forming cells in nutrials can be below to be cells by expression of the CD33 and CD34 antigens and light scatter properties", pages cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document.	1-80
	"Precursors of colony-forming cells in numbers can be below to be colored and colored and colored and colored and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document.	1-80
A	"Precursors of colony-forming cells in numbers can be below to be colored and colored and colored and colored and colored and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document.	,
	"Precursors of colony-forming cells in numbers can be below to be colored and colored and colored and colored and colored and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document.	,
A	"Precursors of colony-forming cells in numbers can be below the cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document.	1-80
A A	"Precursors of colony-forming cells in numbers can be below to be colored and colored and colored and colored and colored and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document.	
A	"Precursors of colony-forming cells in numbers can be below to be colored and colored and colored and colored and colored and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document.	1-80
A A	"Precursors of colony-forming cells in numans can be below the cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document.	1-80
A A Y	"Precursors of colony-forming cells in numans can be below the cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document.	1-80
A A	"Precursors of colony-forming cells in humans can be be collisted by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF	1-80
A A Y	"Precursors of colony-forming cells in humans can be be collisted by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF	1-80
A A Y	"Precursors of colony-forming cells in humans can be below cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry.	1-80 65 65
A A Y	"Precursors of colony-forming cells in humans can be below cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be below cells by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988, G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55
A A Y	"Precursors of colony-forming cells in humans can be colored to collist by expression of the CD33 and CD34 antigens and light scatter properties", pages 1721-1731, entire document. Cell, Volume 45, Issued 20 June 1986, I.R. Lemischka et al., "Developmental potential and dynamic behavior of hematopoietic stem cells", pages 917-927, entire document. Cell, Volume 61, Issued 15 June 1990, C.T. Jordan et al., "Cellular and developmental properties of fetal hematopoietic stem cells", pages 953-963, entire document. Science, Volume 241, Issued 01 July 1988. G.J. Spangrude et al., "Purification and characterization of mouse hematopoietic stem cells", pages 58-62, entire document. R. HAY et al., "AMERICAN TYPE CULTURE COLLECTION CAGALOGUE OF CELL LINES AND HYBRIDOMAS FIFTH EDITION, 1985", published 1985 by American Type Culture Collection (MD), see page 232, first entry. Proceedings of the National Academy of Sciences, Volume 84, Issued May 1987, B.	1-80 65 65 41-55

International application No. PCT/US92/09893

III2 THE	ernational report has not been	n established in respect	of certain claims under	r Article 17(2)(a) for t	he following reaso	ns:
	Claims Nos.:	·		•		•
. Ш	because they relate to su	bject matter not requir	ed to be searched by	this Authority, name	ely:	
•	•				•	•
	•	•				
. 🗀	l Claims Nos.:			•		
· L	because they relate to par	rts of the international a	application that do not	comply with the pres	scribed requireme	nts to such
	an extent that no meaning	igful international searc	ch can be carried out	, specifically.		
			•		•	
		•				
	·			٠		
. \square	Claims Nos.:			•		
ا.	because they are dependent	nt claims and are not dr	afted in accordance w	ith the second and this	rd sentences of Ru	ic 6.4(a).
ox II	Observations where unit	y of invention is lacki	ing (Continuation of	item 2 of first snee		
hie lete	ernational Searching Autho	rity found multiple inv	ventions in this intern	ational application, a	s follows:	•
nis inic	lease See Extra Sheet.	,				
•	•		•	;		4
		· '			*	
	•				•	
				•		
	•			Li- international s	earch report cave	re all scarchab
· 🔀	As all required additional		ly paid by the applicat	nt, this internationars	caren report tove	
	claims. (Telephone Pro					
	As all searchable claims	could be searched with	out effort justifying a	in additional fee, this	Authority did no	t invite payme
	of any additional fee.					
`	•	rired additional search f	ees were timely paid	by the applicant, this	international sear	ah rap in Coka
ш, —	As as ly some of the regu	M co moditionar continui				
	As only some of the requ	nich fees were paid, sp	ecifically claims Nos	i.:		
	As only some of the requ only those claims for wh	nich sees were paid, sp	ecifically claims Nos	i.:		
	As only some of the requ only those claims for wh	hich fees were paid, sp	ecifically claims Nos	i.:		
	As only some of the requ only those claims for wh	nich fees were paid, sp	ecifically claims No	.:		
. []	As only some of the requ only those claims for wh	nich fees were paid, sp	ecifically claims No	.:		
	As only some of the requ only those claims for wh	nich fees were paid, sp	ecifically claims Nos	.:		
	only those claims for wh	nich fees were paid, sp	ecilically claims Nos		this international	search report
	only those claims for wh	nich fees were paid, sp	y paid by the applica	ant. Consequently,	this international	search report
	only those claims for wh	nich fees were paid, sp	y paid by the applica	ant. Consequently,	this international	search report
	only those claims for wh	nich fees were paid, sp	y paid by the applica	ant. Consequently,	this international	search report
	only those claims for wh	nich fees were paid, sp	y paid by the applica	ant. Consequently,	this international	search reposi
	only those claims for wh	nich fees were paid, sp	y paid by the applicate claims; it is covered	ant. Consequently, ted by claims Nos.:	:	search report

Form PCT/ISA/2:0 (continuation of first sheet(1))(July 1992)

International application No. PCT/US92/09893

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

I. Claims 1-13, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35-39, 41, 43, 44, 46-49, 53-56, 58, 59, 61, 62, 64-75, Drawn to fik-2, Class 530, subclasses 350, 387 and 846, Class 536, subclass 27, Class 514, subclass 2, and Class 435, subclass 240.2.

II. Claims 14-17, 19, 22, 25, 28, 31, 34, 40, 42, 45, 50-52, 57, 60, 63, 65, 76-80, drawn to fik-1, Class 530, subclasses 350, 387 and 846, Class 536, subclass 27, Class 514, subclass 2, and Class 435, subclass 240.2.

The claims of these two groups are drawn to distinct invention s which do not share a unifying technical feature. They are distinct proteins, with distinctly different amino acid sequences and patterns of expression. PCT Rules 13.1 and 13.2 do not provide for multiple products.