

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Segundo examen parcial

- 1. (TEMA 1) Determine la veracidad de las siguientes afirmaciones, justificando adecuadamente.
- a. Si la función f es impar, con $\mathrm{Dom}(f)=\mathbb{R}$ y $\lim_{x\to -\infty}f(x)=3$, entonces $\lim_{x\to +\infty}f(x)=-3$.

Resolución.

VERDADERO. Por hipótesis:

$$\forall \epsilon > 0 \quad \exists H > 0 : x < -H \Rightarrow |f(x) - 3| < \epsilon.$$

Sea $\epsilon > 0$, consideramos H > 0 provisto por la definición de límite de la hipótesis. Luego, consideramos $x \in \mathbb{R}$ tal que (-x) < -H. Aplicando la hipótesis resulta que $|f(-x) - 3| < \epsilon$. Pero esto es equivalente a

$$x > H \Rightarrow |-f(x) - 3| < \epsilon$$

en donde aplicamos la imparidad de f y multiplicando ambos lados de la desigualdad (-x) < -H por (-1). Reescribiendo la desigualdad de la derecha resulta:

$$|-f(x)-3| < \epsilon \Leftrightarrow |-(f(x)+3)| < \epsilon \Leftrightarrow |(f(x)+3)| < \epsilon \Leftrightarrow |f(x)-(-3)| < \epsilon.$$

Entonces.

$$\forall \epsilon > 0 \ \exists H > 0 : x > H \Rightarrow |f(x) - (-3)| < \epsilon,$$

es decir, $\lim_{x \to +\infty} f(x) = -3$.

b. La función $g(x) = \frac{x^2 - 4x + 4}{x^2 - 2x}$ tiene una raíz en el intervalo [1,3].

Resolución.

FALSO. Observamos que $Dom(g) = \mathbb{R} - \{0, 2\}$. Luego, para $x \in Dom(g)$ (trinomio cuadrado perfecto en el numerador y factorizando por x en el denominador):

$$g(x) = \frac{x^2 - 4x + 4}{x^2 - 2x} = \frac{(x-2)^2}{x(x-2)},$$

Si $x \in [1,3]$, debemos considerar g(x) con $x \neq 2$. Luego si $x \in [1,2) \cup (2,3]$,

$$g(x) = \frac{(x-2)^2}{x(x-2)} = \frac{x-2}{x} \neq 0,$$

pues $x-2=0 \Leftrightarrow x=2$, pero $2 \notin \text{Dom}(g)$. Concluímos que g no tiene raíces en [1,3].

c. La ecuación $y=\frac{\pi+\sqrt{3}}{2}-\frac{x}{2}$ corresponde a la recta tangente a la gráfica de la función $\cos(x)$ en el punto de abscisa $a=\frac{\pi}{6}$.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Resolución.

FALSO. La ecuación de la recta tangente a la gráfica de la función f en (a, f(a)) es:

$$y = f'(a)(x - a) + f(a).$$

Si $f(x) = \cos(x)$, calculamos la derivada de f y evaluamos f y f' en $a = \frac{\pi}{6}$

- $f'(x) = -\operatorname{sen}(x)$
- $f(a) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
- $f'(a) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$

Luego la recta tangente resulta ser:

$$y = -\frac{1}{2}\left(x - \frac{\pi}{6}\right) + \frac{\sqrt{3}}{2} \quad \Leftrightarrow \quad y = -\frac{x}{2} + \frac{\pi}{12} + \frac{\sqrt{3}}{2} \quad \Leftrightarrow \quad y = \left(\frac{\pi + 6\sqrt{3}}{12}\right) - \frac{x}{2}.$$

Su ordenada al origen es el número escrito en azul, el cual es diferente de $\frac{\pi+\sqrt{3}}{2}$, que es la ordenada al origen de la recta propuesta. (Observar que $2\neq 12 \implies 2^{-1}\neq 12^{-1} \implies \frac{1}{2}\neq \frac{1}{12} \implies \frac{\pi}{2}\neq \frac{\pi}{12} \implies \frac{\pi}{2}+\frac{\sqrt{3}}{2}\neq \frac{\pi}{12}+\frac{\sqrt{3}}{2} \implies \frac{\pi+\sqrt{3}}{2}\neq \frac{\pi+6\sqrt{3}}{12}$.) Concluímos que la recta tangente no es la propuesta ya que difieren las ordenadas al origen.

d. La función $h(x)=\frac{x^2+x-6}{x^2-4}$ tiene una discontinuidad inevitable de salto infinito en a=2.

Resolución.

FALSO. h tiene una discontinuidad en a=2 pues $2 \notin Dom(h)$. Además,

$$\lim_{x \to 2} h(x) = \lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} \frac{(x+3)(x-2)}{(x+2)(x-2)}.$$

Por Carácter Local del Límite, como $\frac{(x+3)(x-2)}{(x+2)(x-2)} = \frac{(x+3)}{(x+2)}$ para todo $x \in E'(2,1)$, resulta

$$\lim_{x \to 2} \frac{(x+3)(x-2)}{(x+2)(x-2)} = \lim_{x \to 2} \frac{(x+3)}{(x+2)}.$$

Luego, como $\lim_{x\to 2}x+3=5$ y $\lim_{x\to 2}x+2=4\neq 0$, por Álgebra de Límites finitos para el cociente resulta

$$\lim_{x \to 2} \frac{(x+3)}{(x+2)} = \frac{5}{4}.$$

Luego, la discontinuidad es evitable ya que existe finito $\lim_{x\to 2}h(x)$ pero $2\notin \mathrm{Dom}(h)$.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

2. (TEMA 2) Sea

$$f(x) = \begin{cases} \frac{2 \operatorname{sen} (a \operatorname{sen} (x))}{x}, & \text{si } x \neq 0, \\ 2 - a^2, & \text{si } x = 0. \end{cases}$$

a. Encuentre todos los valores de $a \in \mathbb{R}$ para los cuales f es una función continua en x=0.

Resolución.

Deseamos hallar los valores de la constante $a \in \mathbb{R}$ tal que f es continua en x=0, i.e. tal que $\lim_{x\to 0} f(x) = f(0)$.

En primer lugar distinguimos el caso 1 en donde a=0 y el caso 2 en donde $a\neq 0$.

Caso 1: Si a=0, tenemos que para $x \neq 0$, $f(x) = \frac{2 \, \mathrm{sen}(0 \, \mathrm{sen}(x))}{x} = \frac{2 \, \mathrm{sen}(0)}{x} = \frac{0}{x} = 0$. Además, $f(0) = 2 - 0^2 = 2$. Es decir,

$$f(x) = \begin{cases} 0 & \text{si } x \neq 0, \\ 2 & \text{si } x = 0. \end{cases}$$

Ergo, f no es continua en x = 0 ya que

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} 0 = 0 \neq 2 = f(0).$$

Concluímos que si a=0, la función es discontinua en 0.

Caso 2: Si $a \neq 0$,

$$\lim_{x \to 0} f(x) \stackrel{x \neq 0}{=} \lim_{x \to 0} \frac{2 \operatorname{sen}(a \operatorname{sen}(x))}{x}.$$

Como $\lim_{x\to 0} x=0$, no podemos aplicar Álgebra de límites finitos.

Consideremos las funciones $g(x)=a\operatorname{sen}(x)$ y $h(x)=2\operatorname{sen}(x)$. Como ambas son continuas en $\mathbb R$, resulta $h\circ q$ continua en $\mathbb R$.

Como para todo $x \in \mathbb{R}$, $(h \circ g)(x) = 2 \operatorname{sen}(a \operatorname{sen}(x))$, tenemos que la función $2 \operatorname{sen}(a \operatorname{sen}(x))$ es continua en \mathbb{R} .

Observemos que $g(x) \neq 0$ en el entorno reducido de 0, $E'\left(0; \frac{\pi}{2}\right)$. Luego, para todo $x \in E'\left(0; \frac{\pi}{2}\right)$ tenemos que

$$\frac{2\operatorname{sen}(a\operatorname{sen}(x))}{x} = \frac{2\operatorname{sen}(a\operatorname{sen}(x))}{x} \cdot \frac{a\operatorname{sen}(x)}{a\operatorname{sen}(x)}.$$

Podemos entonces aplicar el C.L.L. y resulta

$$\lim_{x \to 0} \frac{2\operatorname{sen}(a\operatorname{sen}(x))}{x} = \lim_{x \to 0} \frac{2\operatorname{sen}(a\operatorname{sen}(x))}{x} \frac{a\operatorname{sen}(x)}{a\operatorname{sen}(x)}.$$

Ergo,

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2\operatorname{sen}(a\operatorname{sen}(x))}{x} \cdot \frac{a\operatorname{sen}(x)}{a\operatorname{sen}(x)} = \lim_{x\to 0} 2a \cdot \frac{\operatorname{sen}(a\operatorname{sen}(x))}{a\operatorname{sen}(x)} \cdot \frac{\operatorname{sen}(x)}{x}.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Hemos probado (Prop. 6 del Apunte de la Unidad 3) que $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x} = 0.$ (I)

Por otro lado, como hemos mencionado, $g(x)=a\sin(x)\neq 0$ para todo $x\in E'\left(0,\frac{\pi}{2}\right)$. Además, como ya vimos que la función auxiliar g es continua en 0, $\lim_{x\to 0}a\sin(x)=a\sin(0)=0$. Podemos entonces aplicar el resultado del ejercicio 14 ítem (a) de la Práctica 3 parte 1, y obtenemos que

$$\lim_{x \to 0} \frac{\operatorname{sen}(g(x))}{g(x)} = \lim_{x \to 0} \frac{\operatorname{sen}(a \operatorname{sen}(x))}{a \operatorname{sen}(x)} = 1.$$
 (II)

Luego, de (I) y (II), aplicando A.L.F. para el producto resulta

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} 2a \frac{\operatorname{sen}(a \operatorname{sen}(x))}{a \operatorname{sen}(x)} \cdot \frac{\operatorname{sen}(x)}{x} = 2a \cdot 1 \cdot 1 = 2a.$$

Ahora bien, para que f sea continua en x=0, necesitamos que $\lim_{x\to 0} f(x)=f(0)$. Luego,

$$2a = 2 - a^2 \Leftrightarrow a^2 + 2a - 2 = 0.$$

Aplicando la fórmula resolvente para la ecuación cuadrática en la variable a obtenemos los dos valores reales siguientes:

$$a_1 = -1 - \sqrt{3}, \qquad a_2 = -1 + \sqrt{3}.$$

Concluímos que f es continua en x=0 sii $a=a_1$ o $a=a_2$.

 ${\bf b}$. Para los valores hallados en el ítem anterior, obtener todas las asíntotas de f.

Resolución.

Sea $a \in \{a_1, a_2\}$, i.e. consideremos a alguno de los dos valores hallados en el ítem anterior. Luego,

$$f(x) = \begin{cases} \frac{2\sin(a\sin(x))}{x} & \text{si } x \neq 0, \\ 2 - a^2 & \text{si } x = 0. \end{cases}$$

• Asíntotas verticales: Por lo realizado anteriormente sabemos que f es continua en x=0.

Además, hemos probado en un pasaje del ítem anterior que $2 \operatorname{sen}(a \operatorname{sen}(x))$ es continua en $\mathbb R$. Por otro lado, sabemos que la función identidad es continua en $\mathbb R$. Luego, utilizando Álgebra de Funciones Continuas para el cociente, tenemos que la función $\frac{2 \operatorname{sen}(a \operatorname{sen}(x))}{x}$ es continua en $\mathbb R - \{0\}$.

Como para todo $x \in \mathbb{R} - \{0\}$, $f(x) = \frac{2 \operatorname{sen}(a \operatorname{sen}(x))}{x}$, entonces f es continua en $x \in \mathbb{R} - \{0\}$.

En conclusión, f es continua en \mathbb{R} , i.e. para todo $x_0 \in \mathbb{R}$ resulta $\lim_{x \to x_0} f(x) = f(x_0)$. Luego ninguna recta vertical es asíntota de f ya que existen finitos todos los límites $\lim_{x \to x_0} f(x)$.

• Asíntotas horizontales: Como $Dom(f) = \mathbb{R}$, tiene sentido analizar los límites en el infinito para esta función y de esto deducir si tiene alguna asíntota horizontal. Consideraremos primero el siguiente límite:

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

$$\lim_{x \to +\infty} f(x) \stackrel{x > 0}{=} \lim_{x \to +\infty} \frac{2 \operatorname{sen} \left(a \operatorname{sen} \left(x \right) \right)}{x}.$$

Sabemos que $\lim_{x\to +\infty} \frac{1}{x}=0$. Además, para todo $x\in \mathbb{R}$, $|2\operatorname{sen}(a\operatorname{sen}(x))|\leq 2$. Aplicando entonces la Prop. 9 del Apunte de la Unidad 3 (para el caso del Teorema 6 para límites en el infinito), resulta

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{2\operatorname{sen}\left(a\operatorname{sen}\left(x\right)\right)}{x} = \lim_{x\to +\infty} \frac{1}{x} \cdot 2\operatorname{sen}\left(a\operatorname{sen}\left(x\right)\right) = 0.$$

Tenemos entonces que la recta y = 0 es una asíntota horizontal.

Análogamente se puede probar que

$$\lim_{x \to -\infty} f(x) = 0.$$

Por lo tanto tenemos como única asíntota horizontal la recta de ecuación y=0.

■ Asíntotas oblicuas: Recordemos que por definición la recta de ecuación y = mx + h (con $m \neq 0$) es asíntota oblicua de f si $\lim_{x \to +\infty} (f(x) - (mx + h)) = 0$ o $\lim_{x \to -\infty} (f(x) - (mx + h)) = 0$.

Hemos visto que $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = 0.$

Además sabemos que si m>0 entonces $\lim_{x\to +\infty} mx+h=+\infty$ y $\lim_{x\to -\infty} mx+h=-\infty$. Surge entonces de la Proposición 9 del Apunte de la Unidad 3 que $\lim_{x\to +\infty} -(mx+h)=-\infty$ y $\lim_{x\to -\infty} -(mx+h)=+\infty$.

Luego, aplicando Corolario 7 del Anexo 4 del Apunte de la Unidad 3 resulta que

$$\lim_{x \to +\infty} (f(x) - (mx + h)) = \lim_{x \to +\infty} (f(x) + (-(mx + h))) = -\infty.$$

De la misma forma, a partir del Corolario 8 del Anexo 4 del Apunte de la Unidad 3 resulta que

$$\lim_{x \to -\infty} \left(f(x) - (mx + h) \right) = \lim_{x \to -\infty} \left(f(x) + \left(-(mx + h) \right) \right) = +\infty.$$

Si m < 0, un razonamiento análogo nos permite probar que

$$\lim_{x \to +\infty} (f(x) - (mx + h)) = +\infty \quad \text{y} \quad \lim_{x \to -\infty} (f(x) - (mx + h)) = -\infty.$$

Por lo tanto, como los límites mencionado en la definición de asíntota oblicua no se verifican para ningún $m \neq 0$, tenemos que f no tiene asíntotas oblicuas.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

3. (TEMA 3). Determine todos los puntos de continuidad, justificando adecuadamente, y, de existir, clasifique las discontinuidades de la función

$$g(x) = \left\{ \begin{array}{ll} \displaystyle \frac{\sqrt{x}-3}{x-9}, & \text{si } x \in [0,9) \cup (9,+\infty), \\[0.2em] \displaystyle \frac{2x\cos(x)-2x}{x^2}, & \text{si } x \in (-\infty,0). \end{array} \right.$$

Resolución.

Observamos que $Dom(g) = \mathbb{R} - \{9\}$. Luego, la función g no es continua en x = 9. Estudiemos los puntos de continuidad de la función g, para ello consideremos los siguientes casos:

■ Si $x \in (0,9) \cup (9,+\infty)$ resulta

$$g(x) = \frac{\sqrt{x} - 3}{x - 9}$$

sabemos que es continua por ser cociente de funciones continuas, es decir, podemos pensar a $g(x)=\frac{h(x)}{w(x)}$ donde la función w(x)=x-9 es continua por ser lineal y la función $h(x)=\sqrt{x}-3$ es continua en su dominio por ser resta de funciones continuas. Recordemos que la función raíz cuadrada y la función constante ambas resultan continuas en $(0,9)\cup(9,+\infty)$.

■ Si $x \in (-\infty, 0)$ resulta

$$g(x) = \frac{2x\cos(x) - 2x}{x^2}$$

sabemos que es continua por ser cociente de funciones continuas, es decir, podemos pensar a $g(x)=\frac{h(x)}{w(x)}$ donde la función $w(x)=x^2$ es continua por ser la función cuadrática y la función $h(x)=2x\cos(x)-2x$ es continua por ser resta de funciones continuas, pues siendo f(x)=2x continua por ser lineal y sabiendo que la función coseno es continua (T.8), por producto de funciones continuas se puede afirmar que $s(x)=2x\cos(x)$ es continua.

Por lo analizado anteriormente, g es continua al menos en el conjunto $(-\infty,0) \cup (0,9) \cup (9,+\infty)$.

Analicemos, ahora la continuidad de g en a=0, para ello consideramos los límites laterales

$$\lim_{x \to 0^+} g(x), \lim_{x \to 0^-} g(x).$$

Por la continuidad a derecha en a=0 de la función raíz cuadrada, usando álgebra de límites finitos para la suma, tenemos

$$\lim_{x \to 0^+} \sqrt{x} - 3 = \sqrt{0} - 3 = -3 \wedge \lim_{x \to 0^+} x - 9 = -9 \neq 0.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - 2023

Luego, por álgebra de límites laterales finitos para el cociente,

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{\sqrt{x} - 3}{x - 9} = \frac{1}{3}.$$

Ahora evaluemos el otro límite lateral.

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{2x \cos(x) - 2x}{x^{2}} = \lim_{x \to 0^{-}} \frac{2x(\cos(x) - 1)}{x^{2}}.$$

Considerando x en el semi-entorno a izquierda de 0, $\left(-\frac{\pi}{4},0\right)$, observemos que tanto $\cos(x)+1\neq 0$ como $x\neq 0$. Luego, para todo $x\in\left(-\frac{\pi}{4},0\right)$ tenemos que

$$\frac{2x(\cos(x) - 1)}{x^2} = 2 \cdot \frac{x}{x} \cdot \frac{(\cos(x) - 1)}{x} \cdot \frac{\cos(x) + 1}{\cos(x) + 1} = 2 \cdot \frac{(\cos^2(x) - 1)}{x(\cos(x) + 1)}.$$

Podemos entonces aplicar el C.L.L. y resulta

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{2(\cos^{2}(x) - 1)}{x(\cos(x) + 1)}.$$

De la identidad pitagórica de las funciones trigonométricas, dado que $\sin^2(x) + \cos^2(x) = 1$ resulta que $\cos^2(x) - 1 = -\sin^2(x)$, entonces:

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{-2 \operatorname{sen}(x) \operatorname{sen}(x)}{x (\cos(x) + 1)}.$$

Aplicamos álgebra de límites laterales finitos para el cociente: lo escrito en azul tiende a 1 por Proposición 6, lo que está en rojo tiende a 0 pues la función seno es continua en x=0 y lo que está en naranja a 2, por ser el coseno una función continua en x=0 y álgebra de funciones continuas. Por todo esto, usando álgebra de límites finitos, tenemos

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{-2 \operatorname{sen}(x) \operatorname{sen}(x)}{x (\cos(x) + 1)} = -2 \cdot 1 \cdot 0 \cdot \frac{1}{2} = 0.$$

Como

$$\lim_{x \to 0^+} g(x) = \frac{1}{3} \neq 0 = \lim_{x \to 0^-} g(x),$$

resulta que g tiene una discontinuidad de salto finito en 0

Por lo tanto, g resulta exactamente continua en $(-\infty,0)\cup(0,9)\cup(9,+\infty)$.

Nos queda analizar qué tipo de discontinuidad hay en a=9, para eso consideremos un entorno reducido por ejemplo de radio 1, E'(9;1). Para todo $x \in E'(9;1)$,

$$g(x) = \frac{\sqrt{x} - 3}{x - 9} = \frac{\sqrt{x} - 3}{x - 9} \cdot \frac{\sqrt{x} + 3}{\sqrt{x} + 3} = \frac{x - 9}{(x - 9)(\sqrt{x} + 3)} = \frac{1}{\sqrt{x} + 3}.$$

Luego, por el C.L.L. y álgebra de funciones continuas, tenemos

$$\lim_{x \to 9} g(x) = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{6}.$$

Como existe límite finito en a=9 concluímos que g tiene una discontinuidad evitable en ese punto.