TABLE 2-75 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions C_p [J/(kmol·K)]

Cmpd. no.	Name	Formula	CAS	Mol. wt.	$C_1 \times 1$ E-05	$C_2 \times 1\text{E-05}$	$C_3 \times 1$ E-03	$C_4 \times 1\text{E-05}$	C_5	T _{min} , K	C_p at $T_{\min} imes 1$ E-05	T _{max} , K	C_p at $T_{\text{max}} \times 1\text{E-05}$
1	Acetaldehyde	C ₂ H ₄ O	75-07-0	44.05256	0.48251	1.06650	1.99290	0.78851	912.78	298.15	0.54732	1500	1.29930
2	Acetamide	C_2H_5NO	60-35-5	59.0672	0.34200	1.29400	1.07500	0.64000	502	100	0.34481	1500	1.49970
3	Acetic acid	$C_2H_4O_2$	64-19-7	60.052	0.40200	1.36750	1.26200	0.70030	569.7	50	0.40200	1500	1.57560
4	Acetic anhydride	$C_4H_6O_3$	108-24-7	102.08864	0.87998	1.66350	0.80153	0.76076	2310.1	298.15	1.10440	1500	2.69700
5	Acetone	C ₃ H ₆ O	67-64-1	58.07914	0.57040	1.63200	1.60700	0.96800	731.5	200	0.60487	1500	1.88200
6	Acetonitrile	C ₂ H ₃ N	75-05-8	41.0519	0.44346	0.84650	1.63980	0.49487	761.47	298.15	0.52233	1500	1.11990
7	Acetylene	C_2H_2	74-86-2	26.03728	0.36921	0.31793	0.67805	0.33430	3036.6	298.15	0.44032	1500	0.75868
8	Acrolein	C_3H_4O	107-02-8	56.06326	0.57019	0.91830	0.76747	0.38554	2375.4	298.15	0.71326	1500	1.56240
9	Acrylic acid	$C_3H_4O_2$	79-10-7	72.06266	0.60590	1.37030	1.64750	1.04460	751.49	250	0.69837	1500	1.74240
10	Acrylonitrile	C_3H_3N	107-13-1	53.0626	0.56303	1.09720	0.91248	-0.44070	1178.4	298.15	0.64356	1500	1.37940
11	Air	Mixture	132259-10-0	28.96	0.28958	0.09390	3.01200	0.07580	1484	50	0.28958	1500	0.34956
12	Ammonia	H ₃ N	7664-41-7	17.03052	0.33427	0.48980	2.03600	0.22560	882	100	0.33427	1500	0.66465
13	Anisole	C ₇ H ₈ O	100-66-3	108.13782	0.76370	2.93770	1.60510	2.17000	751.2	300	1.13020	1200	3.02260
14	Argon	Ar	7440-37-1	39.948	See Table		1.00010	2.17000	731.2	300	1.13020	1200	0.02200
15	Benzamide	C ₇ H ₇ NO	55-21-0	121.13658	1.95810	1.70190	1.32570	-37.41700	41.232	298.15	1.27450	1500	3.25010
		C_7H_7NO C_6H_6	71-43-2			1.73380		0.72545			0.82616		2.41800
16	Benzene		108-98-5	78.11184	0.55238		0.76425		2445.7	298.15		1500	
17	Benzenethiol	C ₆ H ₆ S		110.17684	0.68950	2.32750	1.51200	1.75160	697.9	200	0.76894	1500	2.67390
18	Benzoic acid	$C_7H_6O_2$	65-85-0	122.12134	0.77594	2.64550	1.79250	2.23820	835.9	200	0.81258	1500	2.97120
19	Benzonitrile	C ₇ H ₅ N	100-47-0	103.1213	0.76820	2.26350	0.74786	-0.67585	896	298	1.09070	1500	2.68100
20	Benzophenone	$C_{13}H_{10}O$	119-61-9	182.2179	1.00990	4.48980	1.31100	2.83950	627.4	300	1.80010	1500	4.93110
21	Benzyl alcohol	C ₇ H ₈ O	100-51-6	108.13782	0.84115	3.14280	1.95390	2.57430	850.06	298.15	1.11980	1500	3.28800
22	Benzyl ethyl ether	$C_9H_{12}O$	539-30-0	136.19098	0.95210	2.88680	0.70207	1.63850	2002.6	300	1.55010	1500	4.34450
23	Benzyl mercaptan	C ₇ H ₈ S	100-53-8	124.20342	0.99192	2.96330	1.55830	2.21160	719.16	300	1.41560	1200	3.29570
24	Biphenyl	$C_{12}H_{10}$	92-52-4	154.2078	1.07590	4.21050	1.90410	4.17850	828.81	200	1.14810	1500	4.55570
25	Bromine	Br_2	7726-95-6	159.808	0.30113	0.08009	0.75140	0.10780	314.6	100	0.30901	1500	0.37938
26	Bromobenzene	C_6H_5Br	108-86-1	157.0079	0.72100	2.06400	1.65040	1.68700	765.3	200	0.76789	1500	2.46280
27	Bromoethane	C_2H_5Br	74-96-4	108.965	0.52310	0.89110	0.81205	0.67540	2809	298.15	0.63800	1500	1.54570
28	Bromomethane	CH ₃ Br	74-83-9	94.93852	0.36241	0.69248	1.74540	0.44781	793.32	298.15	0.42454	1500	0.90758
29	1,2-Butadiene	C_4H_6	590-19-2	54.09044	0.66964	1.09950	0.83737	0.68373	2441.1	298.15	0.79668	1500	1.92080
30	1,3-Butadiene	C_4H_6	106-99-0	54.09044	0.50950	1.70500	1.53240	1.33700	685.6	200	0.57563	1500	1.95550
31	Butane	C_4H_{10}	106-97-8	58.1222	0.80154	1.62420	0.84149	1.05750	2476.1	298.15	0.98586	1500	2.66050
32	1,2-Butanediol	$C_4H_{10}O_2$	584-03-2	90.121	1.04780	2.54900	1.87760	1.87500	833	298.15	1.26670	1500.1	3.02890
33	1,3-Butanediol	$C_4H_{10}O_2$	107-88-0	90.121	1.06600	2.57500	1.96700	1.95100	860.5	298.15	1.26790	1500.15	3.03110
34	1-Butanol	$C_4H_{10}O$	71-36-3	74.1216	0.74540	2.59070	1.60730	1.73200	712.4	298.15	1.07860	1500	2.85090
35	2-Butanol	$C_4H_{10}O$	78-92-2	74.1216	0.90878	2.55080	1.89300	1.85200	832.13	298.15	1.12570	1500	2.87300
36	1-Butene	C_4H_8	106-98-9	56.10632	0.64257	2.06180	1.67680	1.33240	757.06	250	0.75708	1500	2.28980
37	cis-2-Butene	C_4H_8	590-18-1	56.10632	0.65121	1.43250	0.85796	0.89648	2477.2	298.15	0.80241	1500	2.27180
38	trans-2-Butene	C_4H_8	624-64-6	56.10632	0.74296	1.34760	0.87025	0.89116	2463.4	298.15	0.87766	1500	2.28360
39	Butyl acetate	$C_6H_{12}O_2$	123-86-4	116.15828	1.16840	3.76900	1.95600	2.81800	811.2	298.15	1.52810	1200	3.67240
40	Butylbenzene	C ₁₀ H ₁₄	104-51-8	134.21816	1.13800	4.45400	1.55070	3.04970	708.86	200	1.26590	1500	4.84350
41	Butyl mercaptan	C ₄ H ₁₀ S	109-79-5	90.1872	0.92478	2.77950	1.68370	1.59740	758.68	200	0.97140	1500	3.10080
42	sec-Butyl mercaptan	C ₄ H ₁₀ S	513-53-1	90.1872	0.92367	2.51660	1.61090	1.56410	739.2	200	0.97633	1500	2.96150
43	1-Butyne	C ₄ H ₁₀ S	107-00-6	54.09044	0.66492	1.07260	0.79390	0.74240	-2458.4	298.15	0.81441	1500	1.92210
44	Butyraldehyde	C ₄ H ₆ C ₄ H ₈ O	123-72-8	72.10572	0.89240	1.56750	0.79390	1.09840	2566	298.15	1.02830	1500	2.67780
45	Butyric acid	C ₄ H ₈ O ₂	107-92-6	88.1051	1.48800	1.35220	1.14600	-678.00000	6.98	298.15	1.15330	1500	2.59050
45 46	3		107-92-6										2.28510
	Butyronitrile	C ₄ H ₇ N		69.1051	0.82142	1.32340	0.84021	0.67932	2313.7	298.15	0.97246	1500	
47	Carbon dioxide	CO ₂	124-38-9	44.0095	0.29370	0.34540	1.42800	0.26400	588	50	0.29370	5000	0.63346
48	Carbon disulfide	CS ₂	75-15-0	76.1407	0.30100	0.33380	0.89600	0.28930	374.7	100	0.31003	1500	0.61475
49	Carbon monoxide	CO	630-08-0	28.0101	0.29108	0.08773	3.08510	0.08455	1538.2	60	0.29108	1500	0.35208
50	Carbon tetrachloride	CCl_4	56-23-5	153.8227	0.37582	0.70540	0.51210	0.48500	236.1	100	0.47299	1500	1.06620

TABLE 2-75 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions C_p [J/(kmol·K)] (Continued)

		_											
Cmpd. no.	Name	Formula	CAS	Mol. wt.	$C_1 \times 1\text{E-05}$	$C_2 \times 1\text{E-05}$	$C_3 \times 1\text{E-03}$	$C_4 \times 1\text{E-05}$	C_5	T_{\min} , K	C_p at $T_{\min} imes 1$ E-05	T _{max} , K	C_p at $T_{ m max} imes 1$ E-05
51	Carbon tetrafluoride	CF ₄	75-73-0	88.0043	0.92004	0.16446	1.07640	-5083.80000	2.3486	298	0.61055	1500	1.04650
52	Chlorine	Cl ₂	7782-50-5	70.906	0.29142	0.09176	0.94900	0.10030	425	50	0.29142	1500	0.37930
53	Chlorobenzene	C ₆ H ₅ Cl	108-90-7	112.5569	0.80110	2.31000	2.15700	2.04600	897.6	200	0.82193	1500	2.53270
54	Chloroethane	C ₂ H ₅ Cl	75-00-3	64.5141	0.52590	1.40200	2.03700	0.99820	861.18	298.15	0.62879	1500	1.55080
55	Chloroform	CHCl ₃	67-66-3	119.37764	0.39420	0.65730	0.92800	0.49300	399.6	100	0.40484	1500	1.00630
56	Chloromethane	CH ₃ Cl	74-87-3	50.4875	0.36220	0.69810	1.80500	0.44470	844.27	298.15	0.41193	1500	0.90655
57	1-Chloropropane	C ₃ H ₇ Cl	540-54-5	78.54068	0.64710	1.79800	1.67600	1.23300	755.78	298.15	0.84674	1500	2.09750
58	2-Chloropropane	C ₃ H ₇ Cl	75-29-6	78.54068	0.61809	1.80230	1.54380	1.18930	685.93	200	0.67679	1500	2.10230
59	m-Cresol	C ₇ H ₈ O	108-39-4	108.13782	0.90974	2.13210	0.76324	0.93355	2474.5	298.15	1.24780	1500	3.21580
60	o-Cresol	C ₇ H ₈ O	95-48-7	108.13782	0.79880	2.85300	1.47650	2.04200	664.7	200	0.91584	1500	3.21630
61	p-Cresol	C ₇ H ₈ O	106-44-5	108.13782	0.92021	2.11060	0.76622	0.95073	2464.6	298.15	1.25080	1500	3.21320
62	Cumene	C ₉ H ₁₂	98-82-8	120.19158	1.08100	3.79320	1.75050	3.00270	794.8	200	1.14800	1500	4.18080
63	Cyanogen	C_2N_2	460-19-5	52.0348	0.45894	0.41286	1.38120	0.33023	559.94	273.15	0.54968	1500	0.81268
64	Cyclobutane	C ₄ H ₈	287-23-0	56.10632	0.50835	1.64870	0.82849	0.86658	2472.4	298.15	0.70636	1500	2.32330
65	Cyclohexane	C ₆ H ₁₂	110-82-7	84.15948	0.43200	3.73500	1.19200	1.63500	530.1	100	0.43657	1500	3.65160
66	Cyclohexanol	C ₆ H ₁₂ O	108-93-0	100.15888	0.90430	2.57710	0.78820	1.30680	1952.2	200	0.96478	1500	3.82510
67	Cyclohexanone	C ₆ H ₁₀ O	108-94-1	98.143	0.85860	2.57770	0.84895	0.77780	2401.5	298.15	1.14170	1500	3.47740
68	Cyclohexene	C_6H_{10}	110-83-8	82.1436	0.58171	3.17170	1.54350	2.12730	701.62	150	0.59782	1500	3.21320
69	Cyclopentane	C_5H_{10}	287-92-3	70.1329	0.41600	3.01400	1.46170	1.80950	668.8	100	0.41650	1500	2.92980
70	Cyclopentene	C ₅ H ₁₀ C ₅ H ₈	142-29-0	68.11702	0.48074	2.51590	1.58030	1.74540	718.37	150	0.49182	1500	2.56190
71	Cyclopropane	C ₃ H ₆	75-19-4	42.07974	0.33800	1.68940	1.61350	1.17680	722.8	100	0.33813	1500	1.72130
71	Cyclohexyl mercaptan	C ₃ H ₆ C ₆ H ₁₂ S	1569-69-3	116,22448	0.54305	3.99620	1.35750	2.56230	618.54	300	1.26440	1200	3.72360
73	Decanal	$C_{10}H_{20}O$	112-31-2	156.2652	1.94250	5.14030	1.89780	4.17520	859.95	298.15	2.37630	1500	6.04070
73 74	Decana	C ₁₀ H ₂₀ O	124-18-5	142.28168	1.67200	5.35300	1.61410	3.78200	742	200	1.79670	1500	6.09320
75	Decane Decanoic acid	$C_{10}H_{20}$ $C_{10}H_{20}O_2$	334-48-5	172.265	0.24457	6.54600	1.08990	4.86420	424	298.15	2.52320	1500	6.10990
76	1-Decanol	C ₁₀ H ₂₀ O ₂ C ₁₀ H ₂₂ O	112-30-1	158.28108	1.69840	5.39200	1.56800	3.93800	720.5	298.15	2.43540	1500	6.21860
77	1-Decene	C ₁₀ H ₂₀	872-05-9	140.2658	1.71010	5.20890	1.72650	3.59350	782.92	298.15	2.23040	1500	5.87450
78	Decyl mercaptan	$C_{10}H_{20}$ $C_{10}H_{22}S$	143-10-2	174.34668	1.93100	5.48150	1.60850	3.74000	754.75	298.13	2.23040	1500	6.46130
78 79	1-Decyne	$C_{10}H_{22}S$ $C_{10}H_{18}$	764-93-2	138.24992	1.50450	4.37940	1.32910	2.55570	632.01	298	2.19380	1500	5.27940
	,											1	
80	Deuterium	D_2	7782-39-0	4.0316	0.30290	0.09750	2.51500	-0.02750	368	100	0.30195	1500	0.34251
81	1,1-Dibromoethane	C ₂ H ₄ Br ₂	557-91-5	187.86116	0.66622	0.81703	0.76285	0.40941	2488.3	298.15	0.79599	1500	1.56840
82	1,2-Dibromoethane	C ₂ H ₄ Br ₂	106-93-4	187.86116	0.74906	1.27250	1.98100	0.94370	845.2	200	0.76345	1500	1.70410
83	Dibromomethane	CH ₂ Br ₂	74-95-3	173.83458	0.39100	0.64800	1.19400	0.42000	501	100	0.39288	1500	0.95987
84	Dibutyl ether	C ₈ H ₁₈ O	142-96-1	130.22792	1.61220	4.47770	1.68310	2.91800	781.6	200	1.68410	1500	5.21450
85	m-Dichlorobenzene	C ₆ H ₄ Cl ₂	541-73-1	147.00196	0.70000	2.07460	1.36640	1.59830	620.16	200	0.82450	1500	2.51610
86	o-Dichlorobenzene	C ₆ H ₄ Cl ₂	95-50-1	147.00196	0.69480	2.08040	1.36320	1.59400	619.2	200	0.81978	1500	2.51610
87	<i>p</i> -Dichlorobenzene	C ₆ H ₄ Cl ₂	106-46-7	147.00196	0.69780	2.07800	1.36350	1.59650	619.37	200	0.82283	1500	2.51750
88	1,1-Dichloroethane	C ₂ H ₄ Cl ₂	75-34-3	98.95916	0.63412	0.83862	0.76898	0.44030	2533.2	298.15	0.76395	1500	1.56330
89	1,2-Dichloroethane	C ₂ H ₄ Cl ₂	107-06-2	98.95916	0.65271	1.12540	1.73760	0.87800	795.45	200	0.67221	1500	1.57430
90	Dichloromethane	CH ₂ Cl ₂	75-09-2	84.93258	0.36280	0.68040	1.25600	0.42750	548	100	0.36369	1500	0.95430
91	1,1-Dichloropropane	C ₃ H ₆ Cl ₂	78-99-9	112.98574	0.71450	1.73440	1.52400	1.22300	674.2	150	0.72683	1500	2.16090
92	1,2-Dichloropropane	C ₃ H ₆ Cl ₂	78-87-5	112.98574	0.78658	1.74290	1.71570	1.26270	765.1	200	0.82172	1500	2.18940
93	Diethanol amine	$C_4H_{11}NO_2$	111-42-2	105.13564	1.20800	3.06600	2.08900	2.34300	891	298.15	1.41970	1500.1	3.46740
94	Diethyl amine	$C_4H_{11}N$	109-89-7	73.13684	0.91020	2.67400	1.71900	1.79260	794.94	200	0.95017	1500	3.05190
95	Diethyl ether	C ₄ H ₁₀ O	60-29-7	74.1216	0.99953	1.70380	0.87072	1.07460	2471.3	298.15	1.16950	1500	2.92630
96	Diethyl sulfide	$C_4H_{10}S$	352-93-2	90.1872	0.91273	2.41000	1.66860	1.65200	771.08	200	0.95673	1500	2.87240
97	1,1-Difluoroethane	$C_2H_4F_2$	75-37-6	66.04997	0.55477	1.23610	0.83501	-0.40972	1033.4	298.15	0.67988	1500	1.54560
98	1,2-Difluoroethane	$C_2H_4F_2$	624-72-6	66.04997	0.57793	0.89811	0.84727	0.43249	2424.2	298.15	0.67730	1500	1.55140
99	Difluoromethane	CH_2F_2	75-10-5	52.02339	0.37540	0.53510	0.86687	0.22998	2437.2	298.15	0.42969	1500	0.94201
100	Diisopropyl amine	$C_6H_{15}N$	108-18-9	101.19	1.13840	2.57470	0.73840	1.62000	2143	300	1.59950	1500	4.19410
101	Diisopropyl ether	$C_6H_{14}O$	108-20-3	102.17476	1.09300	3.68300	1.60570	2.34200	699	298.15	1.56690	1500	4.05350
102	Diisopropyl ketone	$C_7H_{14}O$	565-80-0	114.18546	1.08690	4.05400	1.78020	2.97860	791.6	300	1.51020	1500	4.30930

1.24 Dimentinacyropeane	103	1,1-Dimethoxyethane	C ₄ H ₁₀ O ₂	534-15-6	90.121	1.15560	1.83050	0.95919	0.99605	2826.3	298.15	1.27770	1500	3.06780
Description Coll.														
Descript armine														
2.4 - 1		1 2												
1.1-Dimethyleycycholeanae		1 3												
199														
110														
Dimethyl chasaffide CALS 624-29 91-19994 0.78450 1.8580 0.87100 5.790.65 200 0.01551 1500 1.95230 1132 Dimethyl chier CALO 68-122 73.09718 0.72200 1.5200 1.5300 1.5200 1.5000 7.022 200 0.79937 1500 2.25950 113 2.25950 114 2.25950 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000000														
Dimethyle ether		, , ,												
131 AP.Dimechy formanie C.H.A.O 68-15-2 7.09078 0.72000 1.75300 1.75300 1.30000 762 200 0.75977 1500 2.25989 111 2.25980 1.25980		, ,												
2.4-Dimothylpentane		1 3									1			
Dimethy pixhalater C. J. J. C. 131-113 194,184 1.39600 4.78000 2.1900 3.000 3.000 1.78810 1200 4.47000 1100 Dimethy sulfide C. J. S. 7.183 6.134 0.00370 1.57870 1.4100 0.78850 7.41.5 2.00 0.06976 1500 1.09490 1.0011 1														
Dimorthysislane														
Dimethy salfide		J 2 1												
18		1									1			
Dimethyterophthalate C,H,O, 129-61-8 194,184 1,14025 5,36801 2,08860 4,1410 809,837 298,15 1,07000 1,500 2,31850 1,21900 1,219		1									1			
14-Dioxane		1												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 2 1											1	
Dipropriamine		1 -												
Dode-cane		1												
Eicosane		1												
Ethane		l .									1			
Ethanol														
Ethyl acetate		l .	"											
Ethyl amine		l .												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2												
Ethyl benzoate C,H_o, 93-89.0 150,1745 1,09440 4,17940 0,88375 -1,60900 1183.1 300 1,45980 1500 4,25400 132 Ethyl butanoia caid C,H_n,02 105-544 116.15828 1,11500 2,31480 0,71000 1,47100 2,616.6 300 1,51020 1200.15 3,63300 3,63310 3,0310 1,67050 2,51800 73.56 298 1,55830 1200 3,62130 3,03131 3,0310 1,67050 2,51800 73.56 298 1,55830 1200 3,62130 3,03133 3,0310 3,03100 3,03130 3,03100 3,03130														
$ \begin{array}{c} 131 \\ 32 \\ 132 \\ 2 \\ 133 \\ 2 \\ 134 \\ 2 \\ 134 \\ 2 \\ 134 \\ 2 \\ 134 \\ 2 \\ 135 \\ 2$													1	
$ \begin{array}{c} \text{Etyl} \text{ butyrate} \\ \text{C}_{1}\text{H}_{2}\text{O} \\ \text{C}_{2}\text{H}_{3}\text{O} \\ \text{C}_{3}\text{H}_{6} \\ \text{C}_{4}\text{H}_{6} \\ \text{C}_{5}\text{H}_{6} \\ \text{C}_{4}\text{H}_{6} \\ \text{C}_{5}\text{H}_{6} \\ \text{C}_{4}\text{H}_{6} \\ \text{C}_{5}\text{H}_{6} \\ \text{C}_{5}\text{H}$		· ·												
Ethylevelohexane		1 2												
$ \begin{array}{c} 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 $		3 3												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , ,												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 2 2 1									1			
137 Ethylene glycol C.H.Q. 107-21-1 62.06784 0.63012 1.45840 1.67300 0.97296 773.65 300 0.77997 1500 1.80950 138 Ethylene imine C.H.N 151-56-4 43.0678 0.34300 1.42700 1.63800 1.03700 744.7 150 0.34798 1500 1.51780 139 Ethylene oxide C.H.Q. 75-21-8 44.05256 0.33460 1.21160 1.60840 0.82410 737.3 50 0.33460 1500 1.32970 140 Ethyl formate C.H.Q. 109-94-4 74.07854 0.53700 1.88600 1.20700 0.86400 496 100 0.54118 1500 2.14850 141 2-Ethyl hexanoic acid C.H.LQ. 149-57-5 144.211 1.57770 4.40170 1.74940 3.23780 792.34 298.15 2.02790 1500 5.12010 142 Ethylkexyl ether C.H.LQ. 5756-34-34 130.22792 1.63400 4.51190 1.75320 3.10320 899.75 298.15 2.03600 1200 4.87440 143 Ethylisopropyl ether C.H.LQ. 625-54-7 88.14818 1.09530 3.00320 1.97800 2.34600 896 298.15 1.36200 1200 3.22890 144 Ethylisopropyl ethor C.H.LQ. 565-69-5 100.15888 1.24000 3.20000 1.96700 2.34600 896 298.15 1.44790 1200 3.42340 145 Ethyl mercaptan C.H.LQ. 105-37-3 102.1317 0.93700 2.82900 1.64800 2.15500 724.7 300 1.33770 1200 3.05690 147 Ethylpropyl ether C.H.LQ. 628-32-0 88.14818 1.13200 2.94000 1.82700 2.05500 852 298.15 1.35380 1500 3.45350 148 Ethyltrichlorosilane C.H.LQ. 165-37-3 102.1317 0.93700 2.82900 1.64800 2.15500 724.7 300 1.33770 1200 3.05690 149 Fluorine F ₂ 7782-41-4 37.9968064 0.29122 0.10132 1.45300 0.09410 662.91 50 0.29122 1500 0.38122 150 Fluorobehane C.H.LF 593-53-3 34.03292 0.35193 0.66344 1.13330 0.15240 2.4460 298.15 0.35440 1500 0.75710 151 Fluoromethane C.H.LP 593-53-3 34.03292 0.35193 0.66344 1.13330 0.49394 1.92800 0.29728 965.04 298.15 0.35440 1500 0.75730 1500 0.79328 156 Formaide C.H.NO 75-12-7 4.0406		1 3												
$ \begin{array}{c} 138 \text{Ethyleneimine} \qquad & C_2^1 H_3^- N \\ 159 \text{Ethylene eimine} \qquad & C_2^2 H_3^- N \\ 159 \text{Ethylene oxide} \qquad & C_2^2 H_4 O \\ C_2^2 H_4 O \\ 159 \text{Ethylene oxide} \qquad & C_2^2 H_4 O \\ C_2^2 H_4 O \\ 159 \text{Ethylene oxide} \qquad & C_2^2 H_4 O \\ C_2^2 H_4 O \\ 159 \text{Ethylene oxide} \qquad & C_2^2 H_4 O \\ C_2^2 H_4 O \\ 159 \text{Ethylene oxide} \qquad & C_2^2 H_4 O \\ C_2^2 H_4 O \\ 159 \text{Ethylene oxide} \qquad & C_2^2 H_4 O \\ C_2^$														
$ \begin{array}{c} 139 \\ \text{Ethylene oxide} \\ \text{C}_2 \text{H}_4 \text{O} \\ \text{C}_2 \text{H}_4 \text{O} \\ \text{C}_3 \text{H}_6 \text{O} \\ \text{109-94-4} \\ \text{74.07854} \\ \text{0.53700} \\ \text{1.88600} \\ \text{1.20700} \\ \text{1.20700} \\ \text{0.86400} \\ \text{0.82410} \\ \text{0.82400} \\ \text{0.496} \\ \text{0.0} \\ \text{0.496} \\ \text{0.0} \\ \text{0.0} \\ \text{0.54118} \\ \text{1500} \\ \text{0.214850} \\ \text{1500} \\ \text{2.14850} \\ \text{141} \\ \text{2-Ethyl hexanoic acid} \\ \text{C}_4 \text{H}_6 \text{O}_2 \\ \text{149-57-5} \\ \text{144.211} \\ \text{1.57770} \\ \text{1.57700} \\ \text{1.63400} \\ \text{4.51190} \\ \text{1.75320} \\ \text{3.10320} \\ \text{3.10320} \\ \text{809.75} \\ \text{298.15} \\ \text{2.02790} \\ \text{1500} \\ \text{1500} \\ \text{1200} \\ \text{4.87440} \\ \text{143} \\ \text{Ethylisopropyl ether} \\ \text{C}_2 \text{H}_{10} \text{O} \\ \text{565-69-5} \\ \text{100.15888} \\ \text{1.24000} \\ \text{3.00320} \\ \text{1.79880} \\ \text{1.8700} \\ \text{2.13110} \\ \text{817.35} \\ \text{298.15} \\ \text{1.36200} \\ \text{1200} \\ \text{3.22890} \\ \text{1.44790} \\ \text{1200} \\ \text{3.22890} \\ \text{144} \\ \text{Ethylisopropyl ether} \\ \text{C}_4 \text{H}_{20} \text{O} \\ \text{565-69-5} \\ \text{100.15888} \\ \text{1.24000} \\ \text{3.00320} \\ \text{1.79880} \\ \text{2.13110} \\ \text{81.735} \\ \text{298.15} \\ \text{1.36200} \\ \text{1200} \\ \text{3.22890} \\ \text{1.66800} \\ \text{146} \\ \text{Ethyl propionate} \\ \text{C}_5 \text{H}_{10} \text{O} \\ \text{2.144790} \\ \text{1200} \\ \text{3.05690} \\ \text{1.66280} \\ \text{146} \\ \text{Ethylpropyl ether} \\ \text{C}_3 \text{H}_{10} \text{O} \\ \text{628-32-0} \\ \text{88.14818} \\ \text{1.13200} \\ \text{2.94000} \\ \text{1.68700} \\ \text{2.94000} \\ \text{1.82700} \\ \text{2.05500} \\ \text{852} \\ \text{2.98.15} \\ \text{1.35380} \\ \text{1.35380} \\ \text{1500} \\ \text{3.43530} \\ \text{1.69700} \\ \text{3.43530} \\ \text{1.44700} \\ \text{1.2000} \\ \text{3.05690} \\ \text{1.47} \\ \text{Ethylprophenzene} \\ \text{C}_2 \text{H}_5 \text{C}_3 \text{C}_3 \text{C}_4 $		1 2 22												
$ \begin{array}{c} 140 \\ 140 \\ 2 \\ 141 \\ 2 \\ 2 \\ 141 \\ 2 \\ 2 \\ 141 \\ 2 \\ 2 \\ 2 \\ 141 \\ 2 \\ 2 \\ 2 \\ 2 \\ 141 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $, ,												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·	1 1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , ,												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , ,												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2 1												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2									1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I .									1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .	"								1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
157 Helium-4 He 7440-59-7 4.0026 See Table 2-155			1 ' '				1.28390	0.74699	0.47541	2500.6	298.15	0.65450	1500	1.79520
	157	Helium-4	Не	7440-59-7	4.0026	See Table 2-155								

TABLE 2-75 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions Cp [J/(kmol·K)] (Continued)

Cmpd. no.	Name	Formula	CAS	Mol. wt.	$C_1 \times 1\text{E-05}$	$C_2 \times 1\text{E-05}$	$C_3 \times 1$ E-03	$C_4 \times 1\text{E-}05$	C_5	T_{\min} , K	C_p at $T_{\min} \times 1\text{E-05}$	T _{max} , K	C_p at $T_{\text{max}} \times 1\text{E-05}$
158	Heptadecane	C ₁₇ H ₃₆	629-78-7	240.46774	2.78780	9.52470	1.69350	6.66510	744.57	200	3.00340	1500	10.41600
159	Heptanal	C ₇ H ₁₄ O	111-71-7	114.18546	1.30930	3.53810	1.52500	2.23950	740.37	298.15	1.70230	1500	4.27590
160	Heptane	C ₇ H ₁₆	142-82-5	100.20194	1.20150	4.00100	1.67660	2.74000	756.4	200	1.28280	1500	4.42830
161	Heptanoic acid	$C_7H_{14}O_2$	111-14-8	130.185	1.31350	2.33170	0.67567	1.82400	1846	300	1.84970	1500	4.29410
162	1-Heptanol	C ₇ H ₁₆ O	111-70-6	116.20134	1.22150	3.99100	1.58000	2.83500	717.7	298.15	1.75720	1500	4.53460
163	2-Heptanol	C ₇ H ₁₆ O	543-49-7	116.20134	1.41060	2.88580	0.80394	1.49680	2456.1	298.15	1.79590	1500	4.59900
164	3-Heptanone	C ₇ H ₁₄ O	106-35-4	114.18546	1.27680	3.38100	1.38310	1.88800	650.3	200	1.39680	1500	4.13860
165	2-Heptanone	C ₇ H ₁₄ O	110-43-0	114.18546	1.25070	2.14800	0.69120	1.61900	1759.3	150	1.26880	1200	3.84460
166	1-Heptene	C ₇ H ₁₄	592-76-7	98.18606	1.18510	3.63620	1.73590	2.50480	785.73	298.15	1.54340	1500	4.08360
167	Heptyl mercaptan	C ₇ H ₁₆ S	1639-09-4	132.26694	1.44200	4.16030	1.66030	2.65720	759.39	200	1.51910	1500	4.78310
168	1-Heptyne	C_7H_{12}	628-71-7	96.17018	1.07120	3.02580	1.52730	2.09750	689.62	200	1.17210	1500	3.59850
169	Hexadecane	C ₁₆ H ₃₄	544-76-3	226,44116	2.62830	8.97330	1.69120	6.26400	744.41	200	2.83120	1500	9.81820
170	Hexanal	C ₆ H ₁₂ O	66-25-1	100.15888	1.18400	3.07260	1.70770	2.11740	790.64	298.15	1.48160	1500	3.66440
171	Hexane	C ₆ H ₁₄	110-54-3	86.17536	1.04400	3.52300	1.69460	2.36900	761.6	200	1.11170	1500	3.86200
172	Hexanoic acid	$C_6H_{12}O_2$	142-62-1	116.158	1.16220	2.07080	0.68661	1.53550	1932.5	298.15	1.61070	1500	3.76360
173	1-Hexanol	$C_6H_{14}O$	111-27-3	102.17476	1.06250	3.52100	1.58350	2.46200	715.75	298.15	1.53110	1500	3.97260
174	2-Hexanol	C ₆ H ₁₄ O	626-93-7	102.175	1.26150	3.59640	1.84450	2.59400	819.17	298.15	1.58290	1500	4.06720
175	2-Hexanone	C ₆ H ₁₂ O	591-78-6	100.15888	1.09400	1.80700	0.68900	1.47400	1772	200	1.18150	1200	3.32070
176	3-Hexanone	$C_6H_{12}O$	589-38-8	100.15888	1.12370	2.93600	1.40100	1.60100	650.5	150	1.14430	1500	3.58740
177	1-Hexene	C_6H_{12}	592-41-6	84.15948	1.04340	3.07490	1.74590	2.07280	793.53	298	1.33010	1500	3.48190
178	3-Hexyne	C ₆ H ₁₀	928-49-4	82.1436	0.93760	3.01500	1.90570	1.98600	817	300	1.19090	1500	3.18890
179	Hexyl mercaptan	C ₆ H ₁₄ S	111-31-9	118.24036	1.26620	3.72940	1.65740	2.30800	757.8	200	1.33400	1500	4.24830
180	1-Hexyne	C_6H_{10}	693-02-7	82.1436	0.91290	2.55770	1.52900	1.73700	683	200	1.00040	1500	3.03710
181	2-Hexyne	C_6H_{10}	764-35-2	82.1436	1.03600	3.00900	2.11600	2.10600	902.4	300	1.22150	1500	3.18940
182	Hydrazine	H_4N_2	302-01-2	32.04516	0.41729	0.54686	0.81130	0.41755	2639.2	298.15	0.48803	1500	1.05830
183	Hydrogen	H_2	1333-74-0	2.01588	0.27617	0.09560	2.46600	0.03760	567.6	250	0.28426	1500	0.32248
184	Hydrogen bromide	BrH	10035-10-6	80.91194	0.29120	0.09530	2.14200	0.01570	1400	50	0.29120	1500	0.34786
185	Hydrogen chloride	ClH	7647-01-0	36.46094	0.29157	0.09048	2.09380	-0.00107	120	50	0.29137	1500	0.34063
186	Hydrogen cyanide	CHN	74-90-8	27.02534	0.30125	0.31710	1.61020	0.21790	626	100	0.30137	1500	0.55224
187	Hydrogen fluoride	FH	7664-39-3	20.0063432	0.29134	0.09325	2.90500	0.00195	1326	50	0.29134	1500	0.32243
188	Hydrogen sulfide	H ₂ S	7783-06-4	34.08088	0.33288	0.26086	0.91340	-0.17979	949.4	100	0.33288	1500	0.51432
189	Isobutyric acid	$C_4H_8O_2$	79-31-2	88.10512	0.74694	2.43560	1.71500	1.84840	757.75	298.15	1.04270	1200	2.53830
190	Isopropyl amine	C_3H_9N	75-31-0	59.11026	0.79534	1.44250	0.81831	0.95493	2499.9	298.15	0.97640	1500	2.45580
191	Malonic acid	$C_3H_4O_4$	141-82-2	104.06146	0.49522	1.87180	1.29580	1.48520	569.96	300	0.97903	1500	2.14970
192	Methacrylic acid	$C_4H_6O_2$	79-41-4	86.08924	0.72510	2.08900	1.85160	1.64830	798.43	298.15	0.94749	1200.1	2.20570
193	Methane	CH ₄	74-82-8	16.0425	0.33298	0.79933	2.08690	0.41602	991.96	50	0.33298	1500	0.88904
194	Methanol	CH ₄ O	67-56-1	32.04186	0.39252	0.87900	1.91650	0.53654	896.7	273.15	0.42513	1500	1.05330
195	N-Methyl acetamide	C ₃ H ₇ NO	79-16-3	73.09378	0.61160	2.02900	1.76830	1.33020	835.5	300	0.76980	1500	2.22090
196	Methyl acetate	$C_3H_6O_2$	79-20-9	74.07854	0.55500	1.78200	1.26000	0.85300	562	298	0.84891	1500	2.07540
197	Methyl acetylene	C_3H_4	74-99-7	40.06386	0.51734	0.68157	0.80525	0.51402	2463.8	298.15	0.60784	1500	1.33000
198	Methyl acrylate	$C_4H_6O_2$	96-33-3	86.08924	0.12060	2.37660	1.05430	1.81860	418.8	298.15	0.99083	1200.1	2.16630
199	Methyl amine	CH ₅ N	74-89-5	31.0571	0.41000	1.05780	1.70800	0.68360	735	150	0.41364	1500	1.23880
200	Methyl benzoate	$C_8H_8O_2$	93-58-3	136.14792	0.93960	2.55900	0.82500	1.36000	3000	300	1.25860	1200	3.35690
201	3-Methyl-1,2-butadiene	C_5H_8	598-25-4	68.11702	0.67100	2.22200	1.42100	1.19400	614.7	150	0.69311	1500	2.50280
202	2-Methylbutane	C_5H_{12}	78-78-4	72.14878	0.74600	3.26500	1.54500	1.92300	666.7	200	0.85462	1500	3.37920
203	2-Methylbutanoic acid	$C_5H_{10}O_2$	116-53-0	102.1317	1.84580	1.74300	1.22000	-56.11000	31.2	300	1.27930	1500	3.22620
204	3-Methyl-1-butanol	$C_5H_{12}O$	123-51-3	88.1482	0.92139	3.33710	1.83610	2.46440	757.83	298.15	1.31350	1500	3.48560
205	2-Methyl-1-butene	C ₅ H ₁₀	563-46-2	70.1329	0.87026	2.55560	1.77570	1.76360	807.82	200	0.90596	1500	2.89230
206	2-Methyl-2-butene	C_5H_{10}	513-35-9	70.1329	0.81924	2.60380	1.75930	1.71950	800.93	200	0.85589	1500	2.87090
207	2-Methyl -1-butene-3-yne	C_5H_6	78-80-8	66.10114	0.79060	1.65600	1.69260	1.21670	788.4	298.15	0.96319	1500.15	2.15020
208	Methylbutyl ether	$C_5H_{12}O$	628-28-4	88.14818	0.82051	3.08690	1.38640	1.78860	613.87	300	1.33000	1200	3.19940
209	Methylbutyl sulfide	$C_5H_{12}S$	628-29-5	104.214	1.07850	2.73880	1.58850	1.90670	749.6	273.15	1.31730	1200	3.16870

210	3-Methyl-1-butyne	C ₅ H ₈	598-23-2	68.11702	0.82740	2.13770	1.75500	1.51490	782	200	0.86459	1500	2.52550
211	Methyl butyrate	C_5H_8 $C_5H_{10}O_2$	623-42-7	102.1317	0.89400	2.91000	1.57000	2.07300	678.3	298	1.34610	1200	3.07660
212	Methylchlorosilane	CH ₅ ClSi	993-00-0	80.5889	0.59895	1.16360	1.56500	0.81581	690.39	200	0.63795	1500	1.55930
213	Methylcyclohexane	C ₇ H ₁₄	108-87-2	98.18606	0.92270	4.11500	1.65040	2.90060	779.48	200	0.99530	1500	4.31800
214	1-Methylcyclohexanol	C ₇ H ₁₄ C ₇ H ₁₄ O	590-67-0	114.18546	0.79590	2.59600	0.62130	2.28800	1698.6	300	1.53020	1200	4.13590
214	cis-2-Methylcyclohexanol	C ₇ H ₁₄ O C ₇ H ₁₄ O	7443-70-1	114.18546	0.79390	2.67090	0.62130	1.98470	1732.4	300	1.50990	1200	4.14670
216	trans-2-Methylcyclohexanol	C ₇ H ₁₄ O C ₇ H ₁₄ O	7443-70-1	114.18546	0.92279	2.67090	0.68784	1.98470	1732.4	300	1.50990	1200	4.14670
217	Methylcyclopentane	$C_{7}H_{14}O$ $C_{6}H_{12}$	96-37-7	84.15948	0.78439	2.50070	0.81937	1.30010	2416.4	298.15	1.09680	1500	3.54830
217	1-Methylcyclopentene	C_6H_{10} C_6H_{10}	693-89-0	82.1436	0.69411	3.02090	1.69030	2.12090	781.56	298.13	0.74637	1500	3.14960
218	3-Methylcyclopentene	C_6H_{10} C_6H_{10}	1120-62-3			3.02090			750.25	200		1500	
219	, , , ,			82.1436	0.64220	1.03070	1.63870	2.12980	668.94		0.70833		3.15490
	Methyldichlorosilane	CH ₄ Cl ₂ Si	75-54-7	115.03396	0.72830		1.54290	0.78110		200	0.77172	1500	1.58930
221	Methylethyl ether	C ₃ H ₈ O	540-67-0	60.09502	0.79188	1.31660	0.87136	0.86597	2468	298.15	0.92283	1500	2.29440
222	Methylethyl ketone	C ₄ H ₈ O	78-93-3	72.10572	0.78400	2.10320	1.54880	1.18550	693	200	0.83967	1500	2.48160
223	Methylethyl sulfide	C ₃ H ₈ S	624-89-5	76.1606	0.75083	1.95770	1.64240	1.19490	749.19	273.16	0.90040	1500	2.31780
224	Methyl formate	$C_2H_4O_2$	107-31-3	60.05196	0.50600	1.21900	1.63700	0.89400	743	250	0.58880	1500	1.51090
225	Methylisobutyl ether	$C_5H_{12}O$	625-44-5	88.14818	0.72840	3.17130	1.35200	1.89480	585.14	300	1.32000	1200	3.19870
226	Methylisobutyl ketone	$C_6H_{12}O$	108-10-1	100.15888	1.22700	2.19500	0.84200	1.19100	2460	298.15	1.47550	1500.15	3.65320
227	Methyl Isocyanate	C ₂ H ₃ NO	624-83-9	57.05132	0.47400	1.22600	2.18800	0.85983	1008.2	298.15	0.51946	1500	1.35950
228	Methylisopropyl ether	$C_4H_{10}O$	598-53-8	74.1216	0.89232	2.47650	1.69600	1.55980	791.4	200	0.92804	1500	2.86960
229	Methylisopropyl ketone	$C_5H_{10}O$	563-80-4	86.1323	1.59140	1.76400	1.20760	-407.40000	10.503	300	1.12910	1500	2.99910
230	Methylisopropyl sulfide	$C_4H_{10}S$	1551-21-9	90.1872	0.99247	2.72750	2.00300	1.89740	849.64	273	1.13770	1500	2.99520
231	Methyl mercaptan	CH ₄ S	74-93-1	48.10746	0.43697	0.50387	0.80924	0.42223	2192.4	298.15	0.50277	1500	1.06940
232	Methyl methacrylate	$C_5H_8O_2$	80-62-6	100.11582	0.86400	1.81100	0.75430	0.80000	2160	298.15	1.16210	1500	2.86370
233	2-Methyloctanoic acid	$C_9H_{18}O_2$	3004-93-1	158.23802	1.74830	4.92880	1.73840	3.58970	788.01	298.15	2.25670	1500	5.71770
234	2-Methylpentane	C_6H_{14}	107-83-5	86.17536	0.90300	3.80100	1.60200	2.45300	691.6	200	1.01920	1500	3.96170
235	Methyl pentyl ether	$C_6H_{14}O$	628-80-8	102.17476	0.94326	3.59650	1.35330	2.05690	599.92	300	1.56000	1200	3.74090
236	2-Methylpropane	C_4H_{10}	75-28-5	58.1222	0.76394	1.68020	0.82654	1.02850	2483.1	298.15	0.96745	1500	2.66680
237	2-Methyl-2-propanol	$C_4H_{10}O$	75-65-0	74.1216	0.90658	1.71370	0.80201	1.04240	2489.7	298.15	1.13730	1500	2.85290
238	2-Methyl propene	C_4H_8	115-11-7	56.10632	0.73226	1.36060	0.84872	0.88667	2499.8	298.15	0.88184	1500	2.28420
239	Methyl propionate	$C_4H_8O_2$	554-12-1	88.10512	0.77650	2.44200	1.71400	1.81800	716	300	1.12420	1200	2.52760
240	Methylpropyl ether	$C_4H_{10}O$	557-17-5	74.1216	0.92151	2.39430	1.69360	1.48960	797.79	298	1.12510	1200	2.63910
241	Methylpropyl sulfide	$C_4H_{10}S$	3877-15-4	90.1872	0.93775	2.61780	1.72910	1.62360	783.23	298.15	1.17280	1500	2.99040
242	Methylsilane	CH ₆ Si	992-94-9	46.14384	0.46149	1.27810	1.45650	0.79115	643.23	200	0.51411	1500	1.52530
243	alpha-Methyl styrene	C ₉ H ₁₀	98-83-9	118.1757	1.00010	2.65370	0.77176	1.11620	2405.2	298.15	1.40620	1500	3.86080
244	Methyl tert-butyl ether	C ₅ H ₁₂ O	1634-04-4	88.1482	0.98059	3.08940	1.64560	2.09850	732.6	298.15	1.35330	1500	3.47810
245	Methyl vinyl ether	C ₃ H ₆ O	107-25-5	58.07914	0.60865	1.59650	1.61900	0.93783	739.55	300	0.77480	1500	1.88710
246	Naphthalene	C ₁₀ H ₈	91-20-3	128.17052	0.89232	2.67720	0.76122	1.02010	2435.5	298.15	1.32040	1500	3.73860
247	Neon	Ne	7440-01-9	20.1797	See Table 2-155								
248	Nitroethane	C ₂ H ₅ NO ₂	79-24-3	75.0666	0.64084	1.16310	0.80970	0.59591	2425.6	298.15	0.79235	1500	1.92450
249	Nitrogen	N ₂	7727-37-9	28.0134	0.29105	0.08615	1.70160	0.00103	909.79	50	0.29105	1500	0.34838
250	Nitrogen trifluoride	F ₃ N	7783-54-2	71.00191	0.33284	0.49837	0.70930	0.23264	372.91	100	0.34036	1500	0.80919
251	Nitromethane	CH ₃ NO ₂	75-52-5	61.04002	0.47876	0.78357	0.82960	0.37215	2433.8	298.15	0.57242	1500	1.32860
252	Nitrous oxide	N ₂ O	10024-97-2	44.0128	0.29338	0.32360	1.12380	0.21770	479.4	100	0.29475	1500	0.58278
253	Nitric oxide	NO NO	10102-43-9	30.0061	See Table 2-155	0.02000	1112000	0.21770		100	0.25110	1000	0.00270
254	Nonadecane	C ₁₉ H ₄₀	629-92-5	268.5209	3.10620	10.57500	0.76791	-4.56610	912.03	200	3.35330	1500	11.61300
255	Nonanal	C ₁₉ H ₁₈ O	124-19-6	142.23862	1.71190	4.50580	1.71000	3.36580	807.38	298.15	2.15310	1500	5,42420
256	Nonane	C ₉ H ₁₈ O C ₉ H ₂₀	111-84-2	128.2551	1.51750	4.91500	1.64480	3.47000	749.6	298.13	1.62570	1500	5.54070
257	Nonanoic acid	C ₉ H ₂₀ C ₉ H ₁₈ O ₂	112-05-0	158.238	0.12660	6.01100	1.04480	4.59460	418.2	298.15	2.29530	1500	5.52670
258	1-Nonanol		143-08-8	144.2545		4.93600		3.58800	721.11	298.15		1500	
258 259		C ₉ H ₂₀ O	628-99-9		1.54000		1.57800		2550.1		2.20920		5.66060
	2-Nonanol	C ₉ H ₂₀ O		144.255	1.81180	3.59270	0.81841	2.17920		298.15	2.26250	1500	5.85550
260	1-Nonene	C ₉ H ₁₈	124-11-8	126.23922	1.53520	4.68440	1.72880	3.23040	783.67	298.15	2.00140	1500	5.27760
261	Nonyl mercaptan	C ₉ H ₂₀ S	1455-21-6	160.3201	1.76460	5.04400	1.61820	3.38570	755.48	200	1.86580	1500	5.90820
262	1-Nonyne	C ₉ H ₁₆	3452-09-3	124.22334	1.62890	3.97080	1.89280	3.21360	855.52	298.15	1.96930	1500	4.79240
263	Octadecane	C ₁₈ H ₃₈	593-45-3	254.49432	2.95020	10.03400	0.77107	-4.30120	916.73	200	3.18000	1500	11.01600

TABLE 2-75 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions C_p [J/(kmol·K)] (Continued)

	• •		•	•	•			71		-b [-, (72 1		
Cmpd.	Name	Formula	CAS	Mol. wt.	$C_1 \times 1\text{E-05}$	$C_2 \times 1\text{E-05}$	C ₃ ×1E-03	$C_4 \times 1\text{E-05}$	C_5	$T_{ m min}$, K	C_p at $T_{\min} \times 1\text{E-05}$	T _{max} , K	C_p at $T_{\text{max}} \times 1\text{E-05}$
264	Octanal	C ₈ H ₁₆ O	124-13-0	128.212	1.59550	3.14670	0.85788	1.47130	2679.4	298.15	1.92770	1500	4.91940
265	Octane	C ₈ H ₁₈	111-65-9	114.22852	1.35540	4.43100	1.63560	3.05400	746.4	200	1.45290	1500	4.97640
266	Octanoic acid	C ₈ H ₁₆ O ₂	124-07-2	144.211	1.40820	4.34360	1.46620	2.76870	659.38	298.15	2.06520	1500	5.04110
267	1-Octanol	C ₈ H ₁₈ O	111-87-5	130.22792	1.38050	4.45900	1.57510	3.20160	718.8	298.15	1.98320	1500	5.09650
268	2-Octanol	C ₈ H ₁₈ O	123-96-6	130.228	1.58030	3.23480	0.79814	1.78820	2434.3	298.15	2.02310	1500	5.20600
269	2-Octanone	C ₈ H ₁₆ O	111-13-7	128.21204	1.39010	3.80600	1.37170	2.25730	660.96	150	1.41620	1500	4.65470
270	3-Octanone	C ₈ H ₁₆ O	106-68-3	128.21204	1.49520	4.41030	0.80211	-2.09580	981.95	200	1.57750	1500	4.90670
271	1-Octene	C ₈ H ₁₆	111-66-0	112.21264	1.35990	4.16050	1.73170	2.86750	784.47	298.15	1.77230	1500	4.68070
272	Octyl mercaptan	C ₈ H ₁₈ S	111-88-6	146.29352	1.59810	4.60630	1.62950	3.03010	756.28	200	1.68810	1500	5.35490
273	1-Octyne	C ₈ H ₁₄	629-05-0	110.19676	1.23070	3.49420	1.52800	2.46170	694.81	200	1.34480	1500	4.16040
274	Oxalic acid	C ₂ H ₂ O ₄	144-62-7	90.03488	0.56777	1.11940	0.62070	-0.38079	676.72	298.15	0.79711	1500	1.56180
275	Oxygen	O ₂	7782-44-7	31.9988	0.29103	0.10040	2.52650	0.09356	1153.8	50	0.29103	1500	0.36533
276	Ozone	O_3	10028-15-6	47.9982	0.33483	0.29577	1.52170	0.27151	680.35	100	0.33489	1500	0.59282
277	Pentadecane	C ₁₅ H ₃₂	629-62-9	212,41458	2.46790	8.42120	1.68650	5.85370	743.6	200	2.65860	1500	9.22090
278	Pentanal	C ₅ H ₁₀ O	110-62-3	86.1323	1.06000	2.85000	1.93000	2.01000	879.23	298.15	1.25200	1500	3.24590
279	Pentane	C_5H_{12}	109-66-0	72.14878	0.88050	3.01100	1.65020	1.89200	747.6	200	0.94039	1500	3.29270
280	Pentanoic acid	$C_5H_{10}O_2$	109-52-4	102.132	2.83600	1.08000	2.10700	-3.56000	283	298.15	1.38240	1500	3.29520
281	1-Pentanol	C ₅ H ₁₂ O	71-41-0	88.1482	0.90600	3.06200	1.60540	2.11500	717.97	298.15	1.30440	1500	3.41330
282	2-Pentanol	C ₅ H ₁₂ O	6032-29-7	88.1482	1.08530	3.07470	1.86720	2.22710	825.4	298.15	1.35390	1500	3.47010
283	2-Pentanone	C ₅ H ₁₀ O	107-87-9	86.1323	0.90053	2.70850	1.65920	1.80120	743.96	200	0.95908	1500	3.07970
284	3-Pentanone	C ₅ H ₁₀ O	96-22-0	86.1323	0.96896	2.49070	1.41770	1.30100	646.7	200	1.05360	1500	3.03580
285	1-Pentene	C ₅ H ₁₀	109-67-1	70.1329	0.82523	2.59430	1.72910	1.76800	778.7	298.15	1.08560	1500	2.88970
286	2-Pentyl mercaptan	$C_5H_{12}S$	2084-19-7	104.21378	1.13270	2.94700	1.74180	2.09870	795.78	298	1.42020	1500	3.49940
287	Pentyl mercaptan	$C_5H_{12}S$	110-66-7	104.21378	1.09740	3.29590	1.67610	1.94860	757.67	200	1.15470	1500	3.69560
288	1-Pentyne	C ₅ H ₈	627-19-0	68.11702	0.75300	2.09050	1.53070	1.37800	672.8	200	0.82759	1500	2.47540
289	2-Pentyne	C ₅ H ₈	627-21-4	68.11702	0.82096	1.46770	0.84463	0.96258	2452.3	298.15	0.98524	1500	2.50600
290	Phenanthrene	$C_{14}H_{10}$	85-01-8	178.2292	1.27200	3.56890	0.75021	1.32990	2409.4	298.15	1.86940	1500	5.06820
291	Phenol	C ₆ H ₆ O	108-95-2	94.11124	0.43400	2.44500	1.15200	1.51200	507	100	0.44014	1500	2.60450
292	Phenyl isocyanate	C ₇ H ₅ NO	103-71-9	119.1207	0.59683	2.55330	1.23970	1.55190	576.78	298.15	1.10540	1500	2.83900
293	Phthalic anhydride	$C_8H_4O_3$	85-44-9	148.11556	0.73640	2.54400	1.08520	0.80800	573	298.15	1.07450	1000.15	2.67370
294	Propadiene	C_3H_4	463-49-0	40.06386	0.48308	0.73665	0.78152	0.48698	2480	298.15	0.59127	1500	1.33810
295	Propane	C_3H_8	74-98-6	44.09562	0.59474	1.26610	0.84431	0.86165	2482.7	298.15	0.73665	1500	2.05600
296	1-Propanol	C_3H_8O	71-23-8	60.09502	0.61900	2.02130	1.62930	1.29560	727.4	298.15	0.85428	1500	2.24580
297	2-Propanol	C_3H_8O	67-63-0	60.095	0.73145	2.03130	1.93750	1.48150	843.37	298.15	0.89664	1500	2.27600
298	Propenylcyclohexene	C_9H_{14}	13511-13-2	122.20746	1.05630	4.33970	1.60980	3.18100	729.66	300	1.63920	1500	4.65270
299	Propionaldehyde	C ₃ H ₆ O	123-38-6	58.07914	0.71306	1.16890	0.92731	1.02100	2512.8	298.15	0.80337	1500	2.11890
300	Propionic acid	$C_3H_6O_2$	79-09-4	74.0785	0.69590	1.77780	1.70980	1.26540	763.78	298.15	0.89382	1500	2.12480
301	Propionitrile	C_3H_5N	107-12-0	55.0785	0.52525	1.46630	1.54760	0.93033	674.15	298.15	0.73244	1500	1.72030
302	Propyl acetate	$C_5H_{10}O_2$	109-60-4	102.1317	1.79940	1.75300	1.19600	-4.12000	108.2	298.15	1.35940	1500	3.20240
303	Propyl amine	C_3H_9N	107-10-8	59.11026	0.76078	2.10490	1.72560	1.39360	789.03	200	0.79326	1500	2.43530
304	Propylbenzene	C_9H_{12}	103-65-1	120.19158	1.13460	2.80980	0.79504	1.23760	2449.5	298.15	1.52430	1500	4.16280
305	Propylene	C_3H_6	115-07-1	42.07974	0.43852	1.50600	1.39880	0.74754	616.46	130	0.44363	1500	1.68170

306	Propyl formate	$C_4H_8O_2$	110-74-7	88.10512	0.87100	2.44700	1.92540	1.88800	821.3	298.15	1.10220	1500	2.74840
307	2-Propyl mercaptan	C ₃ H ₈ S	75-33-2	76.16062	0.73815	1.95290	1.59540	1.23560	730.5	200	0.78247	1500	2.32870
308	Propyl mercaptan	C ₃ H ₈ S	107-03-9	76.16062	0.74740	1.95230	1.63100	1.21120	750.92	200	0.78483	1500	2.32160
309	1,2-Propylene glycol	$C_3H_8O_2$	57-55-6	76.09442	2.01140	0.80820	1.86560	-2.44040	279.98	298.15	1.02180	1000.15	2.11750
310	Ouinone	$C_6H_4O_2$	106-51-4	108.09476	0.80992	1.57510	0.74707	0.60196	2344.9	298.15	1.07700	1500	2.49790
311	Silicon tetrafluoride	F ₄ Si	7783-61-1	104.07911	0.36810	0.71245	0.65201	0.46721	286.03	100	0.41815	1500	1.05370
312	Styrene	C ₈ H ₈	100-42-5	104.14912	0.89300	2.15030	0.77200	0.99900	2442	100	0.89310	1500	3.24160
313	Succinic acid	$C_4H_6O_4$	110-15-6	118.08804	0.71806	2.26690	1.27390	1.73420	537.65	300	1.33700	1200	2.58230
314	Sulfur dioxide	O ₂ S	7446-09-5	64.0638	0.33375	0.25864	0.93280	0.10880	423.7	100	0.33538	1500	0.56950
315	Sulfur hexafluoride	F ₆ S	2551-62-4	146.0554192	0.35256	1.22700	0.67938	0.78407	351.27	100	0.38719	1500	1.53970
316	Sulfur trioxide	O ₃ S	7446-11-9	80.0632	0.33408	0.49677	0.87322	0.28563	393.74	100	0.34081	1500	0.79673
317	Terephthalic acid	C ₈ H ₆ O ₄	100-21-0	166.13084	1.00130	2.61780	0.87239	1.28310	3521.5	298.15	1.26040	1500	3.59670
318	o-Terphenyl	C ₁₈ H ₁₄	84-15-1	230.30376	2.07190	6.26680	2,40440	6.34500	967.71	298.15	2.47630	1500	6.69470
319	Tetradecane	C ₁₄ H ₃₀	629-59-4	198.388	2.30820	7.86780	1.68230	5.44860	743.1	200	2.48640	1500	8.62250
320	Tetrahydrofuran	C ₄ H ₈ O	109-99-9	72.10572	0.54850	1.84910	0.83310	0.89089	2458.5	298.15	0.76617	1500	2.55380
321	1,2,3,4-Tetrahydronaphthalene	C ₁₀ H ₁₂	119-64-2	132.20228	1.05550	3.21010	0.78248	1.43950	2433	298.15	1.52510	1500	4.53700
322	Tetrahydrothiophene	C ₄ H ₈ S	110-01-0	88.17132	0.65341	1.71150	0.77705	0.91824	2432.6	298.15	0.90956	1500	2.56890
323	2,2,3,3-Tetramethylbutane	C_8H_{18}	594-82-1	114.22852	1.13520	5.63310	1.62110	3.38290	681.9	200	1.30690	1500	5.57840
324	Thiophene	C ₄ H ₄ S	110-02-1	84.13956	0.48694	1.23760	0.71271	0.47248	2484.2	298.15	0.72827	1500	1.81130
325	Toluene	C ₇ H ₈	108-88-3	92.13842	0.58140	2.86300	1.44060	1.89800	650.43	200	0.70157	1500	3.00290
326	1,1,2-Trichloroethane	C ₂ H ₃ Cl ₃	79-00-5	133.40422	0.66554	1.12570	1.54540	0.97196	717.04	298.15	0.84963	1500	1.64330
327	Tridecane	$C_{13}H_{28}$	629-50-5	184.36142	2.14960	7.30450	1.66950	4.99980	741.02	200	2.31560	1500	8.02510
328	Triethyl amine	C ₆ H ₁₅ N	121-44-8	101.19	1.27660	2.55590	0.80937	1.48290	2231.7	200	1.32780	1500	4.20460
329	Trimethyl amine	C ₃ H ₉ N	75-50-3	59.11026	0.71070	1.50510	0.79662	0.84537	2187.6	200	0.74387	1500	2.43220
330	1,2,3-Trimethylbenzene	C_9H_{12}	526-73-8	120.19158	1.05200	3.79000	1.48140	2.33100	667.3	200	1.18320	1500	4.19830
331	1,2,4-Trimethylbenzene	C_9H_{12}	95-63-6	120.19158	1.22100	2.68650	0.82886	1.42030	2443	298.15	1.54310	1500	4.18780
332	2,2,4-Trimethylpentane	C_8H_{18}	540-84-1	114.22852	1.13900	5.28600	1.59400	3.35100	677.94	200	1.31390	1500	5.37690
333	2,3,3-Trimethylpentane	C_8H_{18}	560-21-4	114.22852	0.98200	5.40200	1.53100	3.49300	639.9	200	1.21940	1500	5.37540
334	1,3,5-Trinitrobenzene	$C_6H_3N_3O_6$	99-35-4	213.10452	2.03670	1.81810	1.20890	0.79777	1060.8	298.15	2.10540	1500	3.75850
335	2,4,6-Trinitrotoluene	$C_7H_5N_3O_6$	118-96-7	227.1311	2.15400	2.44320	1.11260	0.58651	950.59	298.15	2.27260	1500	4.35600
336	Undecane	$C_{11}H_{24}$	1120-21-4	156.30826	1.95290	6.09980	1.70870	4.13020	775.4	200	2.05940	1500	6.83420
337	1-Undecanol	$C_{11}H_{24}O$	112-42-5	172.30766	1.85900	5.86900	1.57180	4.32600	722.7	298.15	2.66140	1500	6.78340
338	Vinyl acetate	$C_4H_6O_2$	108-05-4	86.08924	0.53600	2.11900	1.19800	1.14700	510	100	0.54044	1500	2.37500
339	Vinyl acetylene	C_4H_4	689-97-4	52.07456	0.55978	1.21410	1.61020	0.89079	710.4	200	0.59670	1500	1.55900
340	Vinyl chloride	C ₂ H ₃ Cl	75-01-4	62.49822	0.42364	0.87350	1.64920	0.65560	739.07	200	0.44572	1500	1.14230
341	Vinyl trichlorosilane	C ₂ H ₃ Cl ₃ Si	75-94-5	161.48972	0.84894	1.14710	1.38000	0.90000	644.61	298.15	1.07540	1500	1.85950
342	Water	H ₂ O	7732-18-5	18.01528	0.33363	0.26790	2.61050	0.08896	1169	100	0.33363	2273.15	0.52760
343	<i>m</i> -Xylene	C_8H_{10}	108-38-3	106.165	0.75680	3.39240	1.49600	2.24700	675.9	200	0.87588	1500	3.59200
344	o-Xylene	C_8H_{10}	95-47-6	106.165	0.85210	3.29540	1.49440	2.11500	675.8	200	0.96428	1500	3.59650
345	<i>p</i> -Xylene	C_8H_{10}	106-42-3	106.165	0.75120	3.39700	1.49280	2.24700	675.1	200	0.87096	1500	3.59230

Constants in this table can be used in the following equation to calculate the ideal gas heat capacity C_p , $C_p = C_1 + C_2[C_3/T/\sinh(C_3/T)]^2 + C_4[C_5/T/\cosh(C_5/T)]^2$ where C_p is in J/(kmol·K) and T is in K. Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard M Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as "R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, N. F. Giles, $DIPPR^{\otimes}$ Data Compilation of Pure Chemical Properties, Design Institute for Physical Properties, AIChE, New York, NY (2016)".