Statistical Analysis of Simulated Data

Chapter 7. Statistical Analysis of Simulated Data

Estimate of the Population Mean

$$\theta = EX = ?$$

Recall: 1. If X_1, \ldots, X_n are i.i.d. with mean θ and variance σ^2 .

Then $E\bar{X} = \theta$ and $E(\bar{X} - \theta)^2 = Var\bar{X} = \sigma^2/n$.

2. Chebyshev's inequality:

$$P(|\bar{X} - \theta| > k\sigma/\sqrt{n}) \le 1/k^2$$

guarantees that the sample mean is unlikely to be too far away from the population mean.

Hence, take
$$X_1, \ldots, X_n$$
, use $\bar{X} = \sum_{i=1}^n X_i / n \to \theta$ a.s. as $n \to \infty$.

 \mathbf{Q} : How large is n?

Answer 1: Specify a tolerated error bound (ϵ) with a desired probability $(1 - \alpha)$. Then apply

(i) Chebyshev's Inequality:

$$P(|\bar{X} - \theta| \le k\sigma/\sqrt{n}) \ge 1 - 1/k^2$$
. $\therefore \mathbf{n} \ge \frac{\sigma^2}{\alpha \epsilon^2}$.

(ii) Central Limit Theorem: As n large,

$$P(|\bar{X} - \theta| \le z_{\alpha/2}\sigma/\sqrt{n}) \approx 1 - \alpha. : \mathbf{n} \ge \frac{\sigma^2 \mathbf{z}_{\alpha/2}}{\epsilon^2}.$$

<u>Problem</u>: But σ is usually **unknown**. \Longrightarrow Give a prior *guess* or give an *estimate*.

Recall: The sample variance $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$ is unbiased for σ^2 . n=?

Solution: Start with a 'pilot' sample of size $n_0 \geq 30$, compute its S_0^2 . Then replace σ^2 by S_0^2 in (i) or (ii) to get n. Select additional $n-n_0$ random variates and take $\bar{X} = \sum_{i=1}^n X_i/n$.

Answer 2: Sequentially generate X_i until the 'estimated' s.d. of \bar{X} is less than the s.e. that one can tolerate. i.e. $\hat{\sigma}_n/\sqrt{n} < d$ (a pre-specified bound).

Algorithm: 1. Specify d and generate X_1, \ldots, X_n , $n \ge 30$.

- 2. Compute \bar{X}_n and $S_n^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$.
- 3. If $S/\sqrt{n} > d$, generate another X_{n+1} and replace n by n+1, return to 2; otherwise, set $\hat{\theta} = \bar{X}$.

Note: \bar{X}_n and S_n^2 can be computed **recursively**.

Facts: 1.
$$\bar{X}_{n+1} = \bar{X}_n + \frac{1}{n+1}(X_{n+1} - \bar{X}_n)$$
.
2. $S_{n+1}^2 = (1 - \frac{1}{n})S_n^2 + \frac{1}{n+1}(X_{n+1} - \bar{X}_n)^2$
 $= (1 - \frac{1}{n})S_n^2 + (n+1)(\bar{X}_{n+1} - \bar{X}_n)^2$.

Proof: Exercise.

Interval Estimate of θ .

1. If
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, \sigma^2)$$
,

$$P(\bar{\mathbf{X}} - \mathbf{t}_{\alpha/2;\mathbf{n}-1}\mathbf{S}/\sqrt{\mathbf{n}} < \theta < \bar{\mathbf{X}} + \mathbf{t}_{\alpha/2;\mathbf{n}-1}\mathbf{S}/\sqrt{\mathbf{n}}) = 1 - \alpha.$$

2. If
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} EX = \theta, Var(X) = \sigma^2$$
,

$$P(\bar{\mathbf{X}} - \mathbf{z}_{\alpha/2}\mathbf{S}/\sqrt{\mathbf{n}} < \theta < \bar{\mathbf{X}} + \mathbf{z}_{\alpha/2}\mathbf{S}/\sqrt{\mathbf{n}}) \approx 1 - \alpha$$
, for large n .

To get an interval estimate of θ based on simulation, one may generate random variates **sequentially** until the interval length, $2z_{\alpha/2}S_n/\sqrt{n} \leq I$, a specified bound, then the resulting $\bar{X}_n \pm z_{\alpha/2}S_n/\sqrt{n}$ is the estimate.

The Bootstrapping Technique

Ex: 1.
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, 2.19)$$
. $\theta = EX$. $\hat{\theta} = \bar{X}$ and $Var(\hat{\theta}) = 2.19/n$; Interval estimate: $\bar{X} \pm 1.96\sqrt{2.19}/\sqrt{n}$. \square

Ex: 2. $X_1, \ldots, X_n \overset{i.i.d.}{\sim} C(\theta, 1)$. θ is the **median** of X_i , i.e. θ is such that $E[\mathbf{1}_{(-\infty,\theta)}(X)] = 1/2$. Consider $\hat{\theta} = \mathbf{sample median} = X_{(n+1)/2}$, n odd.

Q: Sampling distribution of $\hat{\theta}$? Interval estimate of θ ? Mean square error of $\hat{\theta}$?

Idea: In general, the parameter of interest, say θ , is a function of the distribution, i.e. $\theta = \theta(F)$.

Now F is unknown \Longrightarrow Take a sample $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$, estimate F by \hat{F}_e , the empirical distribution of X_1, \ldots, X_n , and estimate θ by $\theta(\hat{F}_e)$.

Recall: 1.
$$\hat{\mathbf{F}}_{\mathbf{e}}(\mathbf{x}) = \frac{\# \text{ of } X_i' s \leq x}{n}, \quad i = 1, \dots, n.$$

$$(\text{or } P(X^* = X_i) = 1/n, \quad i = 1, \dots, n; \text{ or } X^* \sim \hat{F}_{e}.)$$

2. As $n \to \infty$, $\hat{F}_e(x) \to F(x)$, \forall continuity point x. $\hat{\theta} = \theta(\hat{F}_e) \to \theta(F) = \theta$ a.s. as $n \to \infty$ under general conditions.

Ex: 1.
$$\theta = \theta(F) = EX = \int x dF(x) = ?$$
 Let $X_1, \dots, X_n \sim F$.

If
$$X^\star \sim \hat{F}_e$$
, $P(X^\star = X_i) = 1/n, \ i = 1, \ldots, n.$

$$\therefore \hat{\theta} = \theta(\hat{\mathbf{F}}_{e}) = E\mathbf{X}^{*} = \sum_{i=1}^{n} X_{i} P(X^{*} = X_{i}) = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \bar{X}.$$

Ex

: 2.
$$\theta = \text{median of } F = \theta(F) = ?$$

Note that
$$\int_{-\infty}^{\theta} dF(x) \ge 1/2$$
 and $\int_{\theta}^{\infty} dF(x) \ge 1/2$.

Thus, $\hat{\theta}$ is such that

$$\int_{-\infty}^{\hat{ heta}} d\hat{F}_e(x) \geq 1/2$$
 and $\int_{\hat{ heta}}^{\infty} d\hat{F}_e(x) \geq 1/2.$

That is, given X_1, \ldots, X_n ,

$$\sum_{x \le \hat{\theta}} P(X^* = x) \ge 1/2 \iff \sum_{i: X_i \le \hat{\theta}} P(X^* = X_i) \ge 1/2$$

$$\iff \sum_{i: X_i \le \hat{\theta}} \frac{1}{n} \ge 1/2.$$

$$i: X_i \le \hat{\theta}$$

i.e.
$$\sum_{i:X_i \leq \hat{\theta}} 1 \geq n/2$$
 and $\sum_{i:X_i \geq \hat{\theta}} 1 \geq n/2$.
Hence, $X_{([n/2])} \leq \hat{\theta} \leq X_{([n/2]+1)}$, $\hat{\theta} =$ sample median.

Q: Now
$$\hat{\theta} = \theta(\hat{F}_e) = g(X_1, \dots, X_n)$$
, $X_i \sim F$, how 'good' is $\hat{\theta}$? e.g. $E(\hat{\theta}) = ?$ $Var(\hat{\theta}) = ?$ or $MSE(\hat{\theta}) = ?$

If F is unknown, then the 'behavior' of $\hat{\theta}$ is unknown. For example

$$MSE(F) = E^{F}(\hat{\theta} - \theta)^{2} = E^{F}(\theta(\hat{F}_{e}) - \theta(F))^{2}$$

$$= E^{F}(g(X_{1}, ..., X_{n}) - \theta(F))^{2}, \quad X_{i} \sim F$$

$$= \int (g(x_{1}, ..., x_{n}) - \theta(F))^{2} dF(x_{1}, ..., x_{n}),$$

function of F, unknown! Again, estimate it by $MSE(\hat{\mathbf{F}}_{\mathbf{e}})$.

For given $X_1, \ldots, X_n \sim F$,

$$MSE(\hat{F}_{e}) = E^{\hat{F}_{e}}(g(X_{1}^{*}, \dots, X_{n}^{*}) - \theta(\hat{F}_{e}))^{2}$$

$$= \int (g(x_{1}^{*}, \dots, x_{n}^{*}) - \hat{\theta})^{2} d\hat{F}_{e}(x_{1}^{*}, \dots, x_{n}^{*})$$

$$= \sum_{x_{1}^{*}} \dots \sum_{x_{n}^{*}} (g(x_{1}^{*}, \dots, x_{n}^{*}) - g(X_{1}, \dots, X_{n}))^{2}$$

$$\cdot P(X_{1}^{*} = x_{1}^{*}, \dots, X_{n}^{*} = x_{n}^{*}).$$

Here, $x_i^* \in \{X_1, ..., X_n\}$,

$$P(X_1^* = x_1^*, \dots, X_n^* = x_n^*) = \prod_{i=1}^n P(X_i^* = x_i^*) = \prod_{i=1}^n \frac{1}{n} = (\frac{1}{n})^n$$
.

Note: The summation is over *all* possible combinations of

$$(x_1^*, \dots, x_n^*)$$
 and $x_i^* \in \{X_1, \dots, X_n\}$. $n^n!$ Big!

Monte-Carlo approximation.

Given
$$X_1, \ldots, X_n \sim F$$
,

$$\widehat{MSE}_{B} = \widehat{MSE}(\hat{F}_{e})$$

$$= \frac{1}{N} \sum_{l=1}^{N} (g(X_{1l}^{\star}, \dots, X_{nl}^{\star}) - (g(X_{1}, \dots, X_{n}))^{2}$$

$$\rightarrow MSE(\hat{F}_{e}), N \text{ large },$$

where $X_{1I}^{\star},\ldots,X_{nI}^{\star}\sim X_{i}^{\star}\sim \hat{F}_{e}$, the **uniform distribution** on $\{X_{1},\ldots,X_{n}\}.$

$$\underline{\mathbf{Ex}}: \ \theta = \theta(\mathbf{F}) = EX, \ \hat{\theta} = \theta(\hat{\mathbf{F}}_{\mathbf{e}}) = \bar{X} = g(X_1, \dots, X_n).$$

$$MSE(\mathbf{F}) = E(\hat{\theta} - \theta)^2 = ?.$$

Note that $\hat{\theta}^{\star} = g(X_1^{\star}, \dots, X_n^{\star}) = \bar{X}^{\star}$,

 $X_i^{\star} \sim \hat{F}_e \sim \text{ uniform on } \{X_1, \dots, X_n\}.$

$$\therefore \widehat{MSE}(\hat{\mathbf{F}}_{\mathbf{e}}) = \frac{1}{N} \sum_{l=1}^{N} [\bar{\mathbf{X}}_{l}^{\star} - \bar{\mathbf{X}}]^{2},$$

where
$$\bar{X}_I^{\star} = \sum_{i=1}^n X_{iI}^{\star}/n$$
, $I = 1, \ldots, N$; $X_{iI}^{\star} \sim X_i^{\star} \sim \hat{\mathbf{F}}_{\mathbf{e}}$.

Algorithm:

STEP 1: Compute $\bar{X} = \sum_{i=1}^{n} X_i / n$ for **given** data $\{X_1, \dots, X_n\}$. I = 1.

STEP 2: Generate $\mathbf{X}_{I}^{\star} = (X_{1}^{\star}, \dots, X_{n}^{\star})$, where $X_{j}^{\star} \sim$ uniformly on $\{X_{1}, \dots, X_{n}\}$.

STEP 3: Compute $\bar{X}_{l}^{\star} = \sum_{j=1}^{n} X_{j}^{\star}/n$.

STEP 4: Repeat STEP 2 to STEP 3, for l = 1, ..., N times.

STEP 5:
$$\widehat{MSE}_B = \frac{1}{N} \sum_{l=1}^{N} [\bar{X}_l^* - \bar{X}]^2$$
.

Note: 1.
$$\widehat{MSE}_B \to MSE(\hat{F}_e) \to MSE(F)$$
.

2. $\hat{\theta}_{I}^{\star}$, I = 1, ..., N can be used to approximate the distribution of $\hat{\theta}$.

$$\hat{F}_{\hat{\theta}}(x) = \{ \# \text{ of } \hat{\theta}_I^* \leq x \} / N, -- \text{bootstrap distribution of } \hat{\theta},$$

$$\hat{F}_{\hat{\theta}}(x) = \{ \# \text{ of } \hat{\theta}_I^* - \hat{\theta} \leq x \} / N, -- \text{ bootstrap distribution of } \hat{\theta} - \theta.$$

3. One may use $\hat{\theta}_{I}^{\star}$, $I=1,\ldots,N$ to construct an interval estimate of θ .

Ex: θ = Median of X, i.e. $P(X \le \theta) \ge 1/2$ and $P(X \ge \theta) \ge 1/2$.

$$\hat{\theta} = \theta(\hat{F}_e) = \text{the middle of } \{X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}\} = X_{(\frac{n+1}{2})}.$$

Thus,
$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = MSE(F)$$
 and

$$MSE(\hat{F}_e) = E^{\hat{F}_e}(X_{(\frac{n+1}{2})}^{\star} - X_{(\frac{n+1}{2})})^2$$
 based on X_1, \dots, X_n .

Therefore,

$$\widehat{MSE}_B = \frac{1}{N} \sum_{l=1}^{N} \left(X_{(\frac{n+1}{2})}^{\star l} - X_{(\frac{n+1}{2})} \right)^2,$$

where $X_{(\frac{n+1}{2})}^{\star l}$ is the median based on $\{X_1^{\star l}, \dots, X_n^{\star l}\}$ and each $X_i^{\star l} \stackrel{i.i.d.}{\sim}$ uniform on $\{X_1, \dots, X_n\}$.

Recall: Generation of $X^* \sim \text{uniform on } \{X_1, \dots, X_n\}$:

STEP 1: Generate $U \sim U(0,1)$.

STEP 2: Set I = Int(nU) + 1.

STEP 3: Set $X^* = X_I$.

Parametric Bootstrap

Use $\hat{F}(x) = F(x|\hat{\theta})$ where $\hat{\theta}$ is an estimate of θ .

e.g.
$$MSE(\hat{\theta})=?$$

Algorithm:

- 1. Compute $\hat{\theta} = g(X_1, \dots, X_n)$ based on X_1, \dots, X_n .
- 2. Generate X_1^*, \ldots, X_n^* from $F(\cdot|\hat{\theta})$.
- 3. Compute $\hat{\theta}^{\star} = g(X_1^{\star}, \dots, X_n^{\star})$.
- 4. Repeat 2-3 N times to get $\hat{\theta}_i^{\star}$, $i = 1, \dots, N$.
- 5. $\widehat{MSE}_B(\hat{\theta}) = \frac{1}{N} \sum_{i=1}^N \left(\hat{\theta}_i^* \hat{\theta} \right)^2$.