CS3063 Theory of Computing

Semester 4 (20 Intake), Feb – Jun 2023

Lecture 8

Context-Free Languages: Session 3

Previous Lecture

- Context-free Languages
 - Ambiguous CFGs (continued)
 - Simplified Forms and Normal Forms
 - Pushdown Automata (PDA)
 - Definition
 - Acceptance
 - Examples: SimplePal, Pal languages and corresponding PDA

Today's Outline:

Lecture 8

Context-free Languages (CFLs) - 3

- Acceptance by PDA
 - Review & Further Discussion
- Non-determinism in PDA
- PDA for a CFG
 - Top-Down Approach
 - Bottom-up Approach

Outline:

Lecture 8

Context-free Languages (CFLs) - 3

- Acceptance by PDA
 - Review & Further Discussion
- Non-determinism in PDA
- PDA for a CFG
 - Top-Down Approach
 - Bottom-up Approach

Recall: Acceptance by a PDA

• Definition: If $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is a PDA and x is in Σ^* , x is accepted by M if

$$(q_0, x, Z_0) \vdash_{\mathsf{M}}^* (q, \Lambda, \alpha)$$

for some α in Γ^* and some q in A

– The stack may or may not be empty because $\alpha = \Lambda$ or $\alpha \neq \Lambda$

More on Acceptance

- Here acceptance depends only on the state, not the stack contents
 - Accepting configuration is any configuration in which the state is an accepting state

This is "acceptance by final state"

More on Acceptance ...conto

- Can define "acceptance by empty stack"
 - If we reach a configuration with empty stack
 - Regardless of whether we reach an accepting state
- Two types of acceptance are equivalent
 - If a language is accepted by a PDA using one mode of acceptance, there is another PDA using the other mode that accepts the language

Transition Diagram for a PDA?

More complicated than that for an FA

Example

- -a, X / β : transition (move) occur at state q_0 for input a with a stack symbol X; replace X by β on stack
- To follow arrows, keep track of stack contents

Transition Table for a PDA?

- Contains more info than transition diagram
- Example

Move #	State	Input	Stack Symbol	Move(s)
1	q_0	a	Z_0	(q_0, aZ_0)
2	q_0	b	Z_0	(q_0, bZ_0)
3	q_0	a	a	(q_0, aa)
	• • • •	•••		
12	q_1	Λ	Z_0	(q_2, Z_0)

Outline:

Lecture 8

Context-free Languages (CFLs) - 3

- Acceptance by PDA
 - Review & Further Discussion
- Non-determinism in PDA
- PDA for a CFG
 - Top-Down Approach
 - Bottom-up Approach

- Recall 2 recent examples we discussed
 - Example 1 SimplePal (p. 251, Example 7.1)
 - What is the PDA to accept odd length palindromes over {a, b} with c as the middle symbol?
 - Example 2 *Pal* (p. 257, Example 7.2)
 - What is the PDA to accept all palindromes (odd or even length) over {a, b}?

Example 1: SimplePal

Consider the previous CFG again

$$S \rightarrow aSa \mid bSb \mid c$$

Generates odd-length palindromes of {a, b} with c being the middle symbol

- What is the PDA to accept the language?
 - Discussion from E.g. 7.1 (p. 251)

Example 1: SimplePal

- Simple palindrome recognizer
 - -3 states $Q=\{q_0, q_1, q_2\}$; q_0 initial state, q_2 accepting state
 - Input alphabet Σ ={a, b, c}
 - Stack alphabet Γ ={a, b, Z_0 }
 - Transition function δ in Table 7.1 (p. 254)
 - Next slide (→all other combinations: "none" move)
 - "Transition diagram" in Fig. 7.1 (p. 255)

Transition Table

Move #	State	Input	Stack Symbol	Move(s)
1	q_0	а	Z_0	(q_0, aZ_0)
2	q_0	b	Z_0	(q_0, bZ_0)
3	q_0	а	а	(q ₀ , aa)
4	q_0	b	а	(q ₀ , ba)
5	q_0	а	b	(q ₀ , ab)
6	q_0	b	b	(q_0, bb)
7	q_0	C	Z_0	(q_1, Z_0)
8	q_0	C	а	(q ₁ , a)
9	q_0	C	b	(q ₁ , b)
10	q_1	а	а	(q_1, Λ)
11	q_1	b	b	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)

Transition Diagram

- Example 7.2 in text book p. 257
- A PDA accepting the language of all palindromes over {a, b} even or odd-length
 - When we reach the mid-point, if odd-length, discard mid symbol
 - Push all symbols in first half to stack
 - Match second half symbols to symbols on stack

- How does PDA know mid-point reached?
 - PDA has to guess
 - Guessing OK if non-palindromes not accepted
 - First a sequence of "not yet" guesses
 - Push each symbol to stack (first half)
 - Then a "yes" guess stops the "not yet" series
 - Odd-length (xsx^r) : discard next, match after that
 - Even-length (xx^r) : match from next
 - After that no more guesses

- Consequences of above guessing
 - Non-palindromes will not be accepted
 - Can accept all palindromes
 - make the correct "yes" guess at the right time
 - PDA may also guess at the wrong time for a given palindrome
 - May not accept or accept a different palindrome
- Table 7.2, Fig. 7.2 (pp. 258, 259)
 - Next slide (→all other combinations: "none" move)

Transition Table

Move #	State	Input	Stack Symbol	Move(s)
1	q_0	а	Z_0	$(q_0, aZ_0), (q_1, Z_0)$
2	q_0	b	Z_0	$(q_0, bZ_0), (q_1, Z_0)$
3	q_0	а	а	$(q_0, aa), (q_1, a)$
4	q_0	b	а	$(q_0, ba), (q_1, a)$
5	q_0	a	b	$(q_0, ab), (q_1, b)$
6	q_0	b	b	$(q_0, bb), (q_1, b)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	а	(q_1, a)
9	q_0	Λ	b	(q ₁ , b)
10	q_1	а	a	(q_1, Λ)
11	q_1	b	b	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)

- First 6 rows in table → 2 possible moves
 - Non-determinism with two choices
 - "Not yet" guess
 - "Yes" guess: input symbol is middle (odd length)
- Another form of non-determinism
 - Rows 7, 8, 9: not read input, Λ -transition
 - "Yes" guess: input symbol is middle (even length)
- State q₀ → all guessing occurs here
- State q₁ → all comparison-making here

- Example 1: SimplePal
 - PDA to accept odd length palindromes over {a, b} with c as the middle symbol
 - Never has a choice of more than one move
 - This is a deterministic PDA (or DPDA)
- Example 2: Pal
 - PDA to accept all palindromes (odd or even length) over {a, b}?

Has two forms of non-determinism

- Two types of non-determinism can exist
 - 1. There are two or more moves involving the same combination of state, stack symbol and input symbol
 - 2. For some combination of state and stack symbol, the PDA has a choice of reading an input symbol or making a Λ -transition
- A deterministic PDA (or DPDA) has no configuration with a choice of > 1 move

- A CFL is a deterministic CFL (or DCFL) if it there is a DPDA accepting it
- Recall that a regular language can be accepted by an NFA or an FA
- But not every CFL is accepted by a DPDA
 - Language of palindromes requires non-determinism in the PDA

Language of palindromes is not a DCFL

Outline:

Lecture 8

Context-free Languages (CFLs) - 3

- Acceptance by PDA
 - Review & Further Discussion
- Non-determinism in PDA
- PDA for a CFG
 - Top-Down Approach
 - Bottom-up Approach

PDA for a CFG

Every CFG can be recognized by a PDA

- For a given CFG, G, we want to build a PDA to determine whether a given (arbitrary) string can be derived from G
 - Strategy: simulate a derivation
 - Can involve guessing (non-determinism)

PDA for a CFG ...contd

- A step in simulation = constructing a portion of the derivation tree
- 2 natural ways to simulate a derivation (using order of constructing the portions)
 - Top-down
 - Bottom-up

Top-Down Approach

 Start by pushing the start symbol S (at the top of derivation tree) onto the stack

- Next, at each step, replace a non-terminal on the stack (a node in the tree) by the RHS of a production that has that non-terminal on LHS
 - i.e., add children of that node to the tree

Top-Down Approach ...contd

- Stack contains a portion of the current string in the derivation
- 2 types of moves by PDA, after push S
 - 1. Replace non-terminal A on top of stack by RHS α of some production A $\rightarrow \alpha$ (may involve guessing)
 - 2. Pop a terminal from stack if it matches the next input symbol and then discard both

Top-Down Approach ...conto

 At each step, current string in derivation = the string of input symbols read so far followed by contents of stack

- A non-terminal appears on top of stack means terminals preceding it have already been matched and it is the leftmost non-terminal in current string
 - We are simulating a leftmost derivation

Top-Down Approach ...contd

- Suppose G=(V, Σ, S, P) is a CFG
- Top-down PDA M that accepts L(G) is:
 - $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ such that
 - $Q = \{q_0, q_1, q_2\}, A = \{q_2\}, \Gamma = V \cup \Sigma \cup \{Z_0\}, Z_0 \text{ is not in } V \cup \Sigma$
 - Initially, place S on stack and move to q_1 : $\delta(q_0, \Lambda, Z_0) = \{(q_1, SZ_0)\}$

Top-Down Approach ...contd

- PDA M that accepts L(G) is: (...contd)
 - Only move to accepting state q_2 is from q_1 , when stack is empty, except for Z_0 : $\delta(q_1, \Lambda, Z_0) = \{(q_2, Z_0)\}$
 - Otherwise, the only 2 moves of M are:
 - 1. For every X in V, $\delta(q_1, \Lambda, X) = \{(q_1, \alpha) \mid X \to \alpha \text{ is in P}\}$
 - 2. For every a in Σ , $\delta(q_1, a, a) = \{(q_1, \Lambda)\}$

Example

- See Example 7.5 on p. 269
 - Strings over {a, b} with more a's than b's
- CFG given as:

$$S \rightarrow a \mid aS \mid bSS \mid SSb \mid SbS$$

- Our PDA is, $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where:
 - $-Q = \{q_0, q_1, q_2\}, A = \{q_2\}$
 - $-\Sigma = \{a, b\}, \Gamma = \{S, a, b, Z_0\}$

Example ...contd

• Transition function δ defined by moves:

State	Input	Stack Symbol	Move(s)
q_0	Λ	Z_0	(q ₁ , SZ ₀)
q_1	Λ	S	$(q_1, a), (q_1, aS), (q_1, bSS), (q_1, SSb), (q_1, SbS)$
q_1	а	а	(q_1, Λ)
q_1	b	b	(q_1, Λ)
q_1	Λ	Z_0	(q ₂ , Z ₀)
All other combinations			none

Exercise: Check if the string abbaaa is in L(G)

Outline:

Lecture 8

Context-free Languages (CFLs) - 3

- Acceptance by PDA
 - Review & Further Discussion
- Non-determinism in PDA
- PDA for a CFG
 - Top-Down Approach
 - Bottom-up Approach

Bottom-Up Approach

- Opposite counterparts to previous moves
 - Instead of replacing a non-terminal A on the stack by the RHS α of some production A $\rightarrow \alpha$, remove α from stack and replace it by A
 - This is called "reducing α to A"

- Derivation tree is built bottom-up
 - Start at leaves and extend upwards

Bottom-Up Approach ...contd

- Contents of stack represents a portion of string in the derivation being simulated
- The PDA "shifts" a terminal from the input to the end of this portion to prepare for a "reduction"

- Note: shifting reverses the order of input
 - string α (to be reduced to A) will appear on the stack in reverse

Bottom-Up Approach ...contd

 A reduction here requires a sequence of moves (while top-down method requires one move to apply a production)

• Process ends when start symbol S, which is on the stack due to the last reduction, is popped off so that only Z_0 is left in it

Bottom-Up Approach ...contd

- A derivation of input string in reverse order
- At each step, current string in derivation is the contents of stack (in reverse) followed by the string of unread input
- After each reduction, the non-terminal at top of stack is the *rightmost*
 - We are simulating a rightmost derivation (in reverse)

Example

- See Example 7.6 on p. 271
 - Given the CFG

$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * a \mid a$

- How will a bottom-up PDA process the input string a + a * a?
- Rightmost derivation:

$$S \Rightarrow S + T \Rightarrow S + T * a \Rightarrow S + a * a \Rightarrow T + a * a \Rightarrow a + a * a$$

Move	Production	Stack	Unread input
-		Z_0	a+a*a
Shift		aZ_0	+a*a
Reduce	$T \rightarrow a$	TZ_0	+a*a
Reduce	$S \rightarrow T$	SZ ₀	+a*a
Shift		$+SZ_0$	a*a
Shift		$a+SZ_0$	*a
Reduce	$T \rightarrow a$	T+SZ ₀	*a
Shift		*T+SZ ₀	a
Shift		$a*T+SZ_0$	-
Reduce	$T \rightarrow T * a$	$T+SZ_0$	-
Reduce	$S \rightarrow S + T$	SZ ₀	-
(pop S)		Z_0	-
(accept)			

CFG for a PDA

We can construct a CFG for a given PDA

Procedure outlined in the book

– pp. 273-280

 Approach based on "acceptance by empty stack" mentioned earlier

Conclusion

- We discussed today
 - Acceptance by PDA
 - Non-determinism in PDA
 - PDA for a given CFG
 - Top-down approach
 - Bottom-up approach