计算机组成原理 实验3 浮点运算器设计

实验目的

- 掌握IEEE754单精度浮点数的格式
- 掌握IEEE754单精度浮点数<u>加减法运算的过程</u>
- 了解CPU运算器的设计方法

实验内容

- ◆ 设计浮点运算器
 - 在模板工程上,设计支持IEEE754 float32加减法 的运算器
 - 要求:
 - ① 实现规格化数据的加减法运算
 - ② 必做题只需通过Testbench前5组(共10个)测试用例
 - ③ 实现方式不限 (原码、补码均可;组合、时序均可)
 - ④ 不考虑±∞、NaN作为输入数据、运算结果的情况
 - ⑤ 不能使用Vivado库或任何第三方IP核

实验内容

- **附加题** (+0.5分):
 - 修改必做题代码,使运算器支持<u>非规格化</u>数据的加减法运算
 - 要求:
 - ① 不考虑±∞、NaN作为输入数据、运算结果的情况
 - ② 不能使用Vivado库或任何第三方IP核
 - ③ 需通过Testbench的**所有**11组 (共**22个**) 测试用例

实验原理

◆ IEEE754单精度浮点数

• 格式: S Exponent Mantissa

1bit 8bit阶码 23bit尾数

• 表示的数据:

阶码	尾数	表示的数据	数据 换算方法	
8'h0	23'h0	±0	-	
8'h0	除23'h0外	非规格化数	$(-1)^S \cdot (Mantissa)_2 \cdot 2^{-126}$	
8'h1 ~ 8'hFE	任意	规格化数	$(-1)^{S} \cdot (\{1, Mantissa\})_2 \cdot 2^{Exponent-127}$	
8'hFF	23'h0	$\pm Inf$	$\pm\infty$	
8'hFF	除23'h0外	NaN	Not a Number	

• 运算基本步骤: 求阶差、对阶、尾数运算、规格化

• 编码实现方式:原码、补码

- ◆ 基于原码的浮点加减步骤:
 - $x = (-1)^{S_x} \cdot M_x \cdot 2^{E_x 127}$, $y = (-1)^{S_y} \cdot M_y \cdot 2^{E_y 127}$, $\Re z = x \pm y$
 - ① 求阶差: $\Delta E = |E_x E_y|$
 - ② 小阶对大阶:设 E_x 更大,则令y的尾数 M_y 右移 ΔE 位,得到 M_y'
 - ③ 尾数运算: 计算 $(-1)^{S_x} \cdot M_x \pm (-1)^{S_y} \cdot M_y'$, 根据结果得出 S_z 和 M_z
 - ④ 规格化: 规格化数的格式: 1位隐藏1 + 23位小数

找出 M_z 最左侧的1作为隐藏1,再截取其后的23bit作为尾数 M_{7} : 23bit的定宽窗口

$$E_z = E_x - 5$$

0_0000_0<mark>1</mark>01_1001_0101_1110_1110_0000_0

◆ 基于原码的浮点加减步骤:

•
$$x = (-1)^{S_x} \cdot M_x \cdot 2^{E_x - 127}$$
, $y = (-1)^{S_y} \cdot M_y \cdot 2^{E_y - 127}$, $\Re z = x \pm y$

- ① 求阶差: $\Delta E = |E_x E_y|$
- ② 小阶对大阶: 设 E_x 更大,则令y的尾数 M_y 右移 ΔE 位,得到 M_y'
- ③ 尾数运算: 计算 $(-1)^{S_x} \cdot M_x \pm (-1)^{S_y} \cdot M_y'$,根据结果得出 S_z 和 M_z
- 4 规格化: 规格化数的格式: 1位隐藏1 + 23位小数

找出 M_z 最左侧的1作为隐藏1,再截取其后的23bit作为尾数 M_z : 23bit的定宽窗口

右规
$$1_0$$
000_0101_1001_0101_1110_1110 $E_z = E_x + 1$

1_0000_0101_1001_0101_1110_1110 0 0舍1入、恒置1

- ◆ 基于原码的浮点加减步骤:
 - 【步骤】求阶差 ⇒ 对阶 ⇒ 尾数运算 ⇒ 规格化
 - 【优点】容易理解、无编码转换
 - · 【缺点】需<u>保证运算结果也是原码</u>,故<u>加减法需分开处理</u>
 - 尾数运算: $(-1)^{S_x} \cdot M_x \pm (-1)^{S_y} \cdot M_y'$
 - · 被减数 < 减数时, 需变换被减数和减数
 - 【注意】尾数运算时,增加1bit数据位 (记录进位)

- ◆ 基于补码的浮点加减步骤:

 - ① 求补码:
 - ◆ 阶码的补码: 假定y阶码更小,则求 $[-E_y]_{**}$;
 - ◆ 尾数的补码: $[M_x]_{*}$ 、 $[M_y]_{*}$ (若是<u>减法运算</u>,求 $[-M_y]_{*}$)
 - $[M_x]_{*+} = \{S_x, [\{S_x, M_x\}]_{*+}\}$ (尾数是无符号数)
 - ② 求阶差: $\Delta E = [E_x] + [-E_y]$
 - ③ 对阶: $[M'_y]_{\stackrel{\text{\tiny }}{\scriptscriptstyle h}} = [M_y]_{\stackrel{\text{\tiny }}{\scriptscriptstyle h}} >> s \Delta E$ (若是<u>减法运算</u>, $[M'_y]_{\stackrel{\text{\tiny }}{\scriptscriptstyle h}} = [-M_y]_{\stackrel{\text{\tiny }}{\scriptscriptstyle h}} >> s \Delta E$)
 - ④ 尾数运算: 计算 $Sum = [M_x]_{*} + [M'_v]_{*}$, 得z的符号 $S_z = Sum[MSB]$

- ◆ 基于补码的浮点加减步骤:
 - ⑤ 规格化:
 - ◆ 右规: 双符号位不同, Sum >>s 1
 - \Diamond 阶码 $E_z = E_x + 1$
 - ◇ 尾数[Mz]ネト = Sum[MSB-1:MSB-25] (1位符号、1位隐藏1、23位尾数)
 - ◆ 左规: 符号与最高的数据位相同, Sum 左移直到符号与最高数据位不同
 - \diamond 阶码 $E_z = E_x$ 移位位数
 - ◇ 尾数 $[M_z]$ $\triangleq Sum[MSB-1:MSB-25]$
 - 6 求尾数原码:
 - · 根据 $[M_z]$ **求出 M_z ,得 $z = \{ S_z, E_z, M_z[22:0] \}$

- ◆ 基于补码的浮点加减步骤:
 - · 【步骤】原转补 ② 求阶差 ② 对阶 ② 尾数运算 ② 规格化 ② <u>补转原</u>
 - 【优点】符号与数值一起运算、减法可当作加法处理
 - 【缺点】不直观、编码转换
 - · 在IEEE754标准中,阶码是<u>移码</u>,尾数是<u>原码</u>
 - 移码的求补方法与原码相同
 - 【注意】尾数设置双符号位(记录进位)

- ◆ 运算器的**电路实现方案**:组合电路
 - · 依靠assign语句、always @(*)实现
 - · 【难点】规格化的<mark>位数</mark>
 - ✓ Solution: 结合位操作和多路选择器
 - 接口信号:

接口信号	位宽	属性	释义		
ор	1	输入	0-加法; 1-减法		
Α	32	输入	被加/减数		
В	32	输入	加/减数		
С	32	输出	运算结果		

- ◆ 运算器的**电路实现方案**: 时序电路
 - 运算过程有清晰的步骤,适合使用状态机实现

+☆ □ / = □ .						
 接口信号: 	接口信号	位宽	属性	释义		
	rst	1	输入	高电平复位		
ctort 生 幼仏士	clk	1	输入	时钟信 号		
start有效代表 有新数据输入	start	1	输入	运算开始信号		
	ор	1	输入	0-加法; 1-减法		
Will the second	Α	32	输入	被加/减数		
ready有效代表	В	32	输入	加/减数		
运算器就绪, 一	ready	1	输出	就绪信号		
运算	С	32	输出	运算结果		
· - / ·						

- ◆ 运算器的**电路实现方案**: 时序电路
 - · 运算过程有清晰的步骤,适合使用**状态机**实现
 - 遵循以下时序:

- ① ready有效, start才会有效 start有效时, op、A和B有效
- ② start只维持1个clk
- ③ 运算完成后,拉高ready, 输出运算结果

- ◆ 运算器的**电路实现方案**: 时序电路
 - 状态机示例:

- ◆ IDLE状态:等待运算开始
 - > start有效时进入下一状态
 - > 缓存输入的op、A和B
 - ➤ 拉低ready信号
- ◆ END状态:运算完成
 - > 输出运算结果
 - ➤ 拉高ready信号

实验步骤

- 1. 理清IEEE754单精度浮点数格式及其运算过程
- 2. 打开模板工程,实现浮点运算器
 - 若采用组合电路方案,完成fpu.v
 - 若采用时序电路方案,完成fpu_clk.v
- 3. 运行功能仿真,根据波形完成调试
 - 若采用组合电路方案,用fpu_tb.sv作为Testbench
 - 若采用时序电路方案,用fpu_tb_clk.sv作为Testbench
- 4. 按模板撰写实验报告

仿真设置

1. 设置顶层模块(仿真的顶层模块也要改)

Artix-7

xc7a100tfgg484-

Ctrl+E

Alt+O

Delete

Alt+减号

fp unit clk

Verilog

仿真设置

2. 设置显示格式

验收&提交

• 课堂验收

• 课上检查是否通过前5组(共10个)测试用例:2分

・提交内容

• 必做题: fpu.v 或 fpu clk.v: 1分

实验报告(按模板完成): 4分

• 附加题: fpu.v 或 fpu clk.v: +0.5分

- 将上述文件打包成.zip, 以"学号_姓名.zip"命名提交到作业系统
 - ◆ 注意: **如有雷同,双方均0分!**

开始实验

1920

哈 I 大

