MIAT_STM32 USB介面driver

浯陽科技有限公司

Declared Version

Training Only				
Declare				
Document Number				
Document Version	1.00			
Release Date				
Document Title	USB介面driver			
Exercise Time				
Platform	■ MIAT_STM32.V2 ■ MIAT IOB.V1			
Peripheral				
Author	■ WU-YANG Technology Co., Ltd.			

實驗目的(一)

□ 使用MIAT_STM32實驗板透過USB進行資料存取實驗, 並利用PC端程式傳送資料顯示於LCD或由STM32取回 資料。

實驗原理

- □ USB
 - 簡介
 - 傳輸類型
 - 資料傳輸
 - 裝置列舉
 - Endpoint
- □ LCD

USB簡介

- □ 支持熱插拔和隨插即用
- □ 包括Hub在內最多可連接127台裝置
- □ 一個控制器下最多可以有5級hub
- □ 傳輸數率
 - High-speed
 - □ 傳輸速率25Mbps ~ 400Mbps (最大480Mbps)
 - Full-speed
 - □ 傳輸速率500Kbps~10Mbps (最大12Mbps)
 - Low-speed
 - □ 傳輸速率10Kbps~100Kbps (最大1.5Mbps)

USB傳輸類型

- □ 巨量傳輸 (Bulk Transfer)
 - 使用剩下的頻寬傳輸大量資料(沒有保證延遲、連續性、頻寬 和速度)
- □ 同步傳輸 (Isochronous Transfer)
 - 保證一定的頻寬傳輸(沒有保證資料的正確性)
- □ 控制傳輸 (Control Transfer)
 - 簡單的命令和狀態傳輸,用於匯流排的命令與設定
- □ 中斷傳輸 (Interrupt Transfer)
 - 定時詢問回報資料或是支援中斷

USB資料傳輸

- □ 所有的傳輸接由Host端開始,一般Host為PC
- □ 裝置(Device)回應Host的需求
- □ Host傳送資料至Device稱為OUT
- □ Device送資料回Host稱為IN

Control Transfer

Control In Protocol

Bulk Transfer

Bulk IN

Bulk OUT

裝置列舉

- □ USB Plug and Play,第一個動作就是裝置列舉 (Enumeration)電腦主機會利用控制傳輸和裝置溝通,以便取得裝置的資訊,如此電腦作業系統可以載入適當的驅動程式,讓裝置開始運作。
 - 取得裝置描述元
 - 設定裝置的新位址
 - 使用新位址取得裝置描述元
 - 取得配置描述元
 - 設定配置描述元

Endpoint

- □ STM32有 16 個Endpoint
- □ 每個Endpoint都有自己的方向與所指到的資料記憶體儲存空間
- □ 控制傳輸用為雙向,其餘為單向
- □ 每個 USB 裝置都有EndpointO,只用來做控制傳輸用
- □ 裝置列舉的過程, Host 與Device 經由Endpoint()作控制 傳輸

PC端驅動程式

- □ Windows XP 內建驅動程式
 - HID Device
 - ☐ Low-speed
 - 傳輸速率10Kbps~100Kbps (最大1.5Mbps)
 - Mass Storage Device
 - ☐ High-speed
 - 傳輸速率25Mbps ~ 400Mbps (最大480Mbps)

STM32 USB通訊

- □ 大量資料傳輸
- □ 採用Bulk Transfer
- □ 採用USB Mass Storage Device模式
- □ SCSI Command新增D0、D3、D4

PC端SCSI指令

- □ status = SCSICMD(fileHandle, SCSI_IOCTL_DATA_IN,CMD,datalength,databuffer);
 - fileHandle:磁碟機
 - SCSI_IOCTL_DATA_IN:資料讀取
 - CMD: SCS命令
 - datalength: 資料長度
 - databuffer: 資料存放空間
- □ SCSICMD(fileHandle, SCSI_IOCTL_DATA_OUT,CMD,datalength,databuffer)
 - SCSI_IOCTL_DATA_OUT: 資料送出

CMD封包

C	AAAA	R	NN
			T 4T 4

field	Description
C	SCSI Command
AAAA	Logical Block Address of First Block
R	reserved
NN	Number of Blocks to transfer

☐ Example:

- SCSI Command D4
- First Logical Block Address: 0x00000000
- One Block to transfer
- Get Data from 0x00000000 ~ 0x00000200

硬體電路配置

Mapping Table

Num.	MIAT_STM32V2	MIAT_IOBV1
1	PE6 (1.5)	LCD_EN
2	PF6 (1.18)	LCD_R/W
3	PF7 (1.19)	LCD_RS
4	PF8(1.20)	LCD_D4
5	PF9 (1.21)	LCD_D5
6	PF10 (1.22)	LCD_D6
7	PF11 (2.13)	LCD_D7
8	VCC5V (1.36)	VCC5V
9	GND (1.35)	GND

實驗步驟

- □ 範例目錄架構
- □ 函式庫說明
- □ 範例說明
- □ 參數說明
- □ 燒錄MIAT_STM32
- □ PC端程式

範例目錄架構

- □ 範例目錄
 - 測試程式
 - 測試映像檔
 - 含括檔
 - 函式庫
 - 專案檔
 - ■原始碼

🛅 include

🛅 library

표 🛅 project

🛅 sounce

USBMEM函式庫

- □ void USB_Init(void)
 USB初始化函式
- □ void USB_Connect(BOOL con)
 USB連線建立
- □ void USB_SetBuffer(unsigned char *Buffer,unsigned int Size)

設定SCSI Command DO傳回的記憶體區塊位置與大小

USBMEM函式庫

- □ void USB_GetBuffer(void (*function)(unsigned char *)) 當執行SCSI Command D0指令時可呼叫一外部程式
- □ void USB_SetInBuffer(unsigned char *Buffer,unsigned int Size)

設定SCSI Command D3傳入的記憶體區塊位置與大小

□ void USB_SetOutBuffer(unsigned char *Buffer,unsigned int Size)

設定SCSI Command D4傳回的記憶體區塊位置與大小

範例說明

Embedded Software Side Bootup STM32F10x int main (void) **Programming Bootup** stm32 Init STM32F10x unsigned char *pIN_Buffer; **RCC Configure** unsigned short i; **NVIC Configure** stm32_Init(); // STM32 Initialization **GPIO Configure** lcd_init(); // LCD Initialization lcd_clear(); **lcd Configure** USB_SetOutBuffer(OUT_Buffer,512); **USB Configure** USB_SetInBuffer(IN_Buffer,512); **USB Connect** USB_Init(); // USB Initialization USB_Connect(TRUE); // USB Connect **USB** operation Example

範例說明

Embedded Software Side USB operation while (1) **USB** operation // Loop forever pIN_Buffer=IN_Buffer; set_cursor (0, 0); for(i=0;i<16;i++) lcd_putchar(*pIN_Buffer++); Example LCD Line1顯示 set_cursor (0, 1); IN_Buffer[0~15] for(i=0;i<16;i++) lcd_putchar(*pIN_Buffer++); } // end while LCD Line2顯示 } // end main IN_Buffer[16~31]

參數說明

- □ unsigned char IN_Buffer[512]
 - 資料輸入
 - 大小必須是512的倍數
- unsigned char OUT_Buffer[512]
 - 資料輸出
 - 大小必須是512的倍數
- □ USB_Connect
 - TRUE: USB 連線
 - FALSE: USB斷線

燒錄MIAT_STM32

- □ Rebuilder all target files產生HEX
- □ DFU File Manager轉換HEX產生DFU
- □ DfuSe Demonstration 燒錄DFU
- ☐ Leave DFU mode

USB Mass Storage Device

PC端程式

PC端程式

- □ C|搜尋MIAT_STM32裝置
- □ Read Buffer Size:取得資料大小
- □ Read:取得資料
- □ Write Buffer Size:送出資料大小(固定512)
- □ LCD Line1: 顯示於LCD Line1的文字
- □ LCD Line2:顯示於LCD Line2的文字
- □ Write:送出資料

取得資料

USB資料存取實驗

實驗一

實驗一練習

□ 練習:

- 測試從PC傳入資料至LCD顯示
- 測試從PC取回STM32資料
- 修改OUT_Buffer大小測試是否正常
- 修改OUT_Buffer內容測試是否正常

實驗目的(二)

□ 使用MIAT_STM32實驗板透過MIAT_IOB實驗板整合 2MPixels影像感測器進行影像擷取實驗,並利用PC端程 式取回擷取影像。

硬體電路配置

Mapping Table

Num.	MIAT_STM32V2	MIAT_IOBV1	Num.	MIAT_STM32V2	MIAT_IOBV1
1	PC0 (1.24)	CMOS_D0	10	PC1 (1.25)	CMOS_D1
2	PC2 (1.26)	CMOS_D2	11	PC3 (1.27)	CMOS_D3
3	PC4 (2.8)	CMOS_D4	12	PC5 (2.9)	CMOS_D5
4	PC6 (3.24)	CMOS_D6	13	PC7 (3.25)	CMOS_D7
5	PE4 (1.3)	CMOS_STBYN	14	PA1 (1.33)	CMOS_MCLK
6	VCC5V (1.36)	VCC5V	15	GND (1.35)	GND
7	PE3 (1.2)	CMOS_VSYNC	16	PA6 (2.6)	CMOS_PCLK
8	PE2 (1.1)	CMOS_HSYNC	17	PE5 (1.4)	CMOS_RST
9	PB10 (2.33)	CMOS_SCL	18	PB11 (2.34)	CMOS_SDA

硬體電路配置

實驗步驟

- □ 範例目錄架構
- □ 函式庫説明
- □ 範例說明
- □ 參數說明
- □ PC端程式

CMOS函式庫

- □ void CMOS_Init(void)
 CMOS初始化函式
- □ void CMOS_Exposure(unsigned short Shutter_Width) 調整CMOS曝光時間
- □ void CMOS_SetWindowOrigin(unsigned short Row_Start, unsigned short Column_Start)

設定取像視窗起始位置

CMOS函式庫

- □ void CMOS_SetImageSize(unsigned short Row_Width, unsigned short Column_Width) 設定取像視窗大小
- □ void CMOS_Capture(unsigned char *CAM_Buffer) 取得CMOS影像存入CAM_Buffer記憶體區塊

範例說明

範例說明

參數說明

- □ Row_Start
 - Row_Start CMOS取像的Row起始位置
 - Row_Start必須大於等於 28
- ☐ Column_Start
 - Column_Start CMOS取像Column的起始位置
 - Column_Start必須大於等於 60
- □ Row_Width
 - CMOS取像Row的大小
 - Row_Width + Row_Start必須小於等於1228
- ☐ Column_Width
 - CMOS取像Column的大小
 - Column_Width + Column_Start必須小於等於1660

參數說明

- ☐ CAM_Buffer
 - CMOS影像輸出Buffer
 - 大小必須是512的倍數
 - 最大不可超過256K
- □ void USB_GetBuffer(void (*function)(unsigned char *))
 - 當執行SCSI Command D0指令時可呼叫一外部程式 例: CMOS_Capture(unsigned char *CAM_Buffer)

範例目錄架構

- □ 範例目錄
 - 測試程式
 - 測試映像檔
 - 含括檔
 - 函式庫
 - 專案檔
 - ■原始碼

image

a include

🛅 library

표 🚞 project

a source

USB Mass Storage Device

PC端程式

PC端程式

- □ <mark>②</mark>搜尋MIAT_STM32裝置
- □ Height:取得影像高
- □ Width:取得影像寬
- □ Frame Num.:連續取得張數
- □ Capture:取得影像

取得影像

CMOS取像與USB資料傳輸實驗

實驗二

實驗二練習

- □ 練習:
 - 測試從PC取回CMOS影像資料
 - 修改CAM_Buffer與CMOS取像大小測試是否正常
 - 修改CMOS曝光時間、取像原點測試是否正常

Q & A

