Sample circuit files

Files new to MC10 are shown in *italics*.

Schematic	Description
283	Use of digital primitives to model a 283 logic unit
381	Use of digital primitives to model a 381 logic unit
3D1	Use of 3D plots
3D2	Use of 3D plots
555ASTAB	Use of the 555 macro in an astable application
555MONO	Use of the 555 macro in a monostable application
A BOOST CM OL	Boost current mode averaged model open loop plot
	Γ Boost current mode averaged model Zout plot
A BOOST VM	Boost voltage mode averaged model open loop plot
A BUCK CM	Buck current mode averaged model open loop plot
A_BUCK_VM	Buck voltage mode averaged model open loop plot
A_BUCKBOOST	Buckboost current mode averaged model open loop plot
A_FLYBACK	Flyback voltage mode averaged model open loop plot
A_FORWARD	Forward voltage mode averaged model open loop plot
A_NCP	NCP1200 Converter
A_RESO_DC	Resonant converter DC analysis
A_RESO_OL	Resonant converter averaged model open loop plot
A_SEPIC	Single Ended Primary Inductance Converter
AD16	AtoD and DtoA elements
AMTEST1	AM macro usage
ANIM3	Animation components
ANIM4	Animation components
ANIM5	Animation components
ANIM6	Animation components
ANIM7	Animation components
BAX	Steps a resistor to model a pot element
BPFILT	Analysis of a bandpass filter
BUTTERN	Use of a Laplace source to represent a Butterworth filter
BUFFER	Used to illustrate the Waveform Buffer
CARLO	Monte Carlo routines in transient and AC analysis
CARLO2	Monte Carlo routines in DC analysis
CARLO4	Monte Carlo routines in transient and AC analysis
CHOKE	Analysis of a diode choke circuit
CMOS	MOSFETs in an inverter configuration
CMOS_COUNTER	Hierarchically-organized CMOS counter

Schematic	Description
COLPITTS	Analysis of a colpitts oscillator
COMPDEMO	Comparator macro
CORE	Use of the core model and plotting a BH curve
CORE3	Use of the nonlinear core model with multiple inductors
COUNTER	Analysis of a binary counter
COUNTER2	Analysis of a BCD counter
CROSSOVR	Analysis of a passive 1kHz cross-over network
CURVES	BJT IV curves
DECODER	Use of a digital subcircuit as a decoder
DIAC1	Characteristic curves for a DIAC
DIAC2	Dimmer circuit using a DIAC and a TRIAC. Illustrates stepping of a component variable.

DIFFAMP Analysis of a differential amplifier

DIG POWER How to change the digital power supplies

DIST DEMO1 Harmonic and intermodulation distortion analysis

DIRA Use of the operators d, avg, sum, and rms ECLGATE Analysis of an analog equivalent ECL gate

EYE DIAGRAM How to do an eye diagram plot

F1 Use of the VCO macro

F2 Use of a nonlinear function source F3 Use of a nonlinear function source

F4 Use of the Triode macro

FFT1 Use of DSP and complex operators

FFT3 Use of cross-correlation and auto-correlation operators

FFT4 Use of the IFT operator

FFT5 Use of the auto-correlation operator

FFT7 Use of the DSP dialog box to eliminate startup transients

LINKS Illustrates the use of file links.

FILTER Chebyshev filter and use of the Noise macro

FSK2 Use of the FSK modulator macro
FSTIM8 Use of the file stimulus component
GASFET Use of the GaAsFET component
GILBERT Analysis of a Gilbert multiplier

GUMMEL Use of the Gummel-Poon SPICE BJT model

GYRTEST Use of the gyrator macro IBIS3 IBIS component usage

IDEALTRANS IDEAL2 and IDEAL3 transformer macros

IVBJT Use of DC analysis to plot the IV curves of a BJT
L1 Use of a Laplace source to model a passive network
L2 Use of Laplace sources to model transmission lines
L3 Use of a Laplace source to model a Butterworth filter

Schematic Description

LM117REG Using the LM117 model

LP8 8'th order IIR digital filter using Z sources

LTRA3 Use of the lossy transmission line
MIXED Analysis of a mixed-mode circuit
MIXED1 Analysis of a mixed-mode circuit
MIXED4 Analysis of a mixed-mode circuit
MODELRLC Use of temperature stepping

MOSCAPS Plotting of MOSFET capacitance curves
MOSDIFF Analysis of a MOSFET differential amplifier

NOISEBJT Plotting of input and output noise

NPORT4 N-PORT device

NYQUIST Plotting of a Nyquist graph
O7 Analysis of a mixed-mode circuit
OPAMP1 Use of the three levels of opamps

OPT1 Using the Optimizer to maximize power transfer
OPT2 Using the Optimizer to maximize low frequency gain
OPT3 Using the Optimizer to design matching networks

OPT4 Using the Optimizer in curve fitting
OSC1 Use of the Schmitt macro in an oscillator

P1 Use of the Laplace table source for a RC network PERF1 Demonstrates the use of performance plots PERF2 Demonstrates the use of performance plots

PLA2 Use of a PLA subcircuit as an equality comparator

PLA3 Use of the PLA digital primitive

POTDEMO Use of the pot macro

PRINT Use of the print preview for the schematic PRLC Analysis of a simple passive network PSK2 Use of the PSK modulator macro

PSS1 PSS usage in transient analysis on a buck converter
PSS2 PSS usage in harmonic distortion on an audio amplifier
PSS3 PSS usage in transient analysis on a simple rectifier
PSS4 PSS usage in transient analysis for an RF mixer

RCA3040 Analysis of a RCA3040 component

RECTIFIER_45 Three-phase SCR converter RELAY Using the relay models

RISE Use of Monte Carlo routines for rise times

S_2FLY_CM Two-Switch Flyback Converter
S_2FOR_CM Two-Switch Forward Converter
S_BOOST_CM Boost Current Mode Converter
S_BOOST_VM Boost Voltage Mode Converter
S_BUCK_CM Buck_Current Mode Converter

Schematic Description

S_BUCK_SYN Synchronous Buck Voltage Mode Converter S_BUCK_SYN2 Synchronous Buck Current Mode Converter

S_BUCK_VM Buck Voltage Mode Converter

S_BUCKBOOST_CM Buck-Boost Current Mode Converter
S_BUCKBOOST_VM Buck-Boost Voltage Mode Converter
S_FLYBACK_CM Flyback Current Mode Converter
S_FLYBACK_VM Flyback Voltage Mode Converter
S_FORWARD_CM Forward Current Mode Converter
S_FORWARD_VM Forward Voltage Mode Converter
S_FULL_CM Full Bridge Current Mode Converter
S_FULL_VM Full Bridge Voltage Mode Converter

S FULL XFMR Full Bridge with XFMR Current Mode Converter

S_HALF_CM Half Bridge Current Mode Converter S_HALF_VM Half Bridge Voltage Mode Converter

S_HALF_XFMR Half Bridge with XFMR Current Mode Converter

S NCP NCP1200 Converter

S_PUSH_CM Push-Pull Current Mode Converter S_PUSH_VM Push-Pull Voltage Mode Converter SH2 Sample and hold component.

SMITH Smith chart

SPAR1 Use of the N Port device. Importing S-parameters from

a Touchstone file. Use of Smith charts.

SPARK Spark-gap macro usage
STIM_DEMO Digital stimulus generators
STIMSAMP Digital stimulus generators

STIMTST2 Stim generator in counting from 0 to F STIMTST3 INCR command in a Stim generator STIMTST4 Random characters in a Stim generator

SUBCKT Use of an analog subcircuit SUBCKT1 Adding subcircuits to the library

SWITCH Use of the three types of the Switch component

SYSTEM1 Analysis of a mechanical system

SYSTEM2 Analog behavioral modeling components

T1 Nonlinear table sources

TIMER Timer device

THY1 Use of the Put, Triac, and SCR macros THY2 Analysis of a SCR phase control

TL1 Use of transmission line and plotting line variables

TL2 AC simulation of a transmission line
TL3 Plotting the input small signal impedance

Schematic Description

TRANS Use of the three methods of implementing a transformer

TTLINV Use of mixed mode analysis
TUBE_AMP Vacuum tube amplifier
TUBE6L6 Vacuum tube circuit

UA709 Analysis of a UA709 opamp UA723REG Using the UA723 model UA741 Analysis of a UA741 opamp

USER User source

USER2 Multiple user sources

XTAL1 Crystal macro ZDOMAIN Z transform source

SPICE files Description

ASTABLE.CKT Analysis of a SPICE circuit
CHOKE.CKT SPICE netlist of CHOKE.CIR
ECLGATE.CKT SPICE netlist of ECLGATE.CIR
Use of a PLA subcircuit in a SPICE

PLA1.CKT Use of a PLA subcircuit in a SPICE file PLA2.CKT The PLA subcircuit that is used in PLA2

RCA3040.CKT SPICE netlist of RCA3040

RTLINV.CKT Analysis of a SPICE RTL inverter
SCHMITT.CKT Analysis of a SPICE Schmitt trigger
TTLINV.CKT SPICE analysis of a TTL inverter

UA709.CKT SPICE netlist of UA709