\mathbf{Index}

Derivatives of Measures symmetric derivative 1.1 maximal function 1.2

1 Differentiation

1.1 Derivatives of Measures

Theorem 1. Suppose μ is a complex Borel measure on \mathbb{R}^1 and

$$f(x) = \mu((-\infty, x)) \text{ for } x \in \mathbb{R}^1$$
 (1)

If $x \in \mathbb{R}^1$ and A is a complex number, TFAE

- (a) f is differentiable at x and f'(x) = A.
- (b) For all $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left|\frac{\mu(I)}{m(I)} - A\right| < \epsilon \tag{2}$$

for every open segment I that contains x and whose length is less than δ . Note m is the Lebesgue measure on \mathbb{R}^1 .

Proof. (a) \Rightarrow (b) Since f'(x) = A, we have, for all $\epsilon > 0$ there is a $\delta > 0$ such that for (t, x) with $|t - x| < \delta$:

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = \left| \frac{\mu([t, x))}{t - x} - A \right| = \left| \frac{\mu([t, x))}{m([t, x))} - A \right| < \epsilon \tag{\dagger}$$

So for I = (a, b) is any open interval containg x, of length less than δ . Now let $\{t_n\}$ be such that $a < \ldots < t_n < t_{n-1} < \ldots < t_1$.

Definition 1.1. Let us fix a dimension k, denote the open ball with center $x \in \mathbb{R}^k$ and radius r > 0 by

$$B(x,r) = \{ y \in \mathbb{R}^k : |y - x| < r \}$$

We associate to any Borel measure μ on \mathbb{R}^k the quotients:

$$(Q_r\mu)(x) = \frac{\mu(B(x,r))}{m(B(x,r))}$$

Where m is the Lebesgue measure on \mathbb{R}^k .

We define the **symmetric derivative** to be

$$(D\mu)(x) = \lim_{r \to 0} (Q_r\mu)(x)$$

Definition 1.2. Using the same notation as above we define the **maximal function** $M\mu$, for $\mu \geq 0$, to be defined by

$$(M\mu)(x) = \sup_{0 < r < \infty} (Q_r\mu)(x)$$

Remark. The maximal function of a complex Borel measure μ is, by definition, its total variation $|\mu|$.

Proposition 1. The functions $M\mu$: $R^k \to [0,\infty]$ are lower semicontinuous, hence measurable.

Proof. Assume $\mu \geq 0$, and let $\lambda > 0$ and $E = \{M\mu > \lambda\}$. Fix $x \in E$. Then there is an r > 0 such that:

$$\mu(B(x,r)) = tm(B(x,r))$$
 for some $t > \lambda$

Indeed since $\sup_{0 < r < \infty} \frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. So for some r, we have $\frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. Letting $t = \frac{\mu(B(x,r))}{m(B(x,r))}$ gives us the desired result

Furthermore there is a $\delta > 0$ such that:

$$(r+\delta)^k < \frac{r^k t}{\lambda}$$

If $|y-x| < \delta$, then $B(y,r+\delta) \supseteq B(x,r)$. Therefore

$$\mu(B(y,r+\delta)) \ge \mu(B(x,r)) = tm(B(x,r)) = t\left[\frac{r}{(r+\delta)^k}m(B(y,r+\delta)) > \lambda m(B(y,r+\delta))\right]$$

Thus $B(x, \delta) \subseteq E$. So E is open.