Nombres complexes

I. L'ensemble des nombres complexes

1. L'ensemble $\mathbb C$ - L'écriture algébrique

Théorème

Il existe un ensemble noté $\mathbb C$ appelé l'ensemble des nombres complexes, il contient l'ensemble $\mathbb R$ et il vérifie ce qui suit :

- L'ensemble \mathbb{C} contient un élément irréel i qui vérifie $i^2 = -1$.
- Tout élément z de $\mathbb C$ s'écrit de façon unique sous la forme z=a+ib où a et b sont deux nombres réels.

Vocabulaire

- L'écriture z=a+ib s'appelle l'écriture algébrique du nombre complexe z.
- Le nombre a est appelé **partie réelle** du nombre z qu'on note par $\Re(z)$.
- Le nombre b est appelé **partie imaginaire** du nombre z qu'on note $\Im(z)$.
- Tout nombre qui s'écrit sous la forme ib est dit nombre **imaginaire pur**, et l'ensemble des nombres imaginaires purs est noté $i\mathbb{R}$.

Exemples

- $z_1 = 5 + 7i$, alors $\Re(z_1) = 5$ et $\Im(z_1) = 7$.
- $z_2 = 1 i$, alors $\Re(z_2) = 1$ et $\Im(z_2) = -1$.
- $z_3 = 5$, alors $\Re(z_3) = 5$ et $\Im(z_3) = 0$.
- $z_4 = 3i$, alors $\Re(z_4) = 0$ et $\Im(z_4) = 3$ (on a z_4 est un nombre imaginaire pur).
- $z_5 = 1 \sqrt{5} + \sqrt{2} \frac{\pi}{2} + 4i$, alors $\Re(z_5) = 1 \sqrt{5} + \sqrt{2} \frac{\pi}{2}$ et $\Im(z_5) = 4$.

Application

Écrire sous la forme algébrique les nombres suivants : $z_1 = 4i - (2+5i)$ et $z_2 = 3(1+i) + i(i+1)$.

Propriété: Égalité de deux nombres complexes

Soient z = a + ib et z' = a' + ib' deux nombres complexes on a :

- $z = z' \Leftrightarrow a = a' \text{ et } b = b'$.
- $z = 0 \Leftrightarrow a = 0 \text{ et } b = 0.$

Application

Déterminer la valeur des nombres réels a et b dans les cas suivants :

- (1+2i)a+b=5-4i
- (2+i)a + (3-2i)b = 1+4i

2. Opérations dans \mathbb{C}

Les opérations de la somme et le produit de $\mathbb R$ se prolongent en $\mathbb C$ et elles ont les mêmes propriétés.

Propriété

Soient z = a + ib et z' = a' + ib'. On a:

- z + z' = (a + ib) + (a' + ib') = (a + a') + i(b + b').
- $z \times z' = (a+ib) \times (a'+ib') = aa' bb' + i(ab' + a'b).$
- $\frac{1}{z} = \frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2+b^2}$ $(z \neq 0)$.

Application

Écrire sous la forme algébrique les nombres suivants :

- $z_1 = (2+3i)(-1+i)$ $z_3 = \frac{1}{2+3i} + (2+i)^2$ $z_2 = (1+\sqrt{3}i)(1-\sqrt{3}i)$ $z_4 = -\frac{1}{4i}$

Remarque

Pour tout nombre complexe z, on a : $z \in \mathbb{R} \Leftrightarrow \Im(z) = 0$ et $z \in i\mathbb{R} \Leftrightarrow \Re(z) = 0$.

Exercice

1. Soit z = (x+i)[(x+5) - i(x-7)] tel que x est réel. Déterminer le réel x dans chacun des cas :

a.
$$z \in \mathbb{R}$$

b.
$$z \in i\mathbb{R}$$

c.
$$\Im(z) = 2\Re(z)$$
.

2. Résoudre dans \mathbb{C} les équations suivantes : $(E_1): iZ-1=Z+3i$ et $(E_2): \frac{Z+i}{Z-i}=i$.

Exercice

Soit M un point du plan complexe d'affixe z = x + iy, M' le point d'affixe $z' = \frac{z+1}{z-1}$.

- 1. Écrire z' sous la forme algébrique.
- 2. Déterminer l'ensemble des points M du plan tels que z^\prime est un nombre réel.
- 3. Déterminer l'ensemble des points M du plan tels que z' est un nombre imaginaire pur.

II. Représentation géométrique d'un nombre complexe

1. Définitions

Le plan (P) est rapporté au repère orthonormé direct $(O; \vec{e_1}, \vec{e_2})$.

Définition

- Tout nombre complexe z = x + iy (tels que x et y deux réels) associé à un unique point M, appelé **l'image** de z, des coordonnées (x, y) et on écrit M(z).
- Tout point M(x,y), le nombre complexe z=x+iy s'appelle **l'affixe du point** M et on écrit z=aff(M).
- Le vecteur $\vec{u}(x,y)$ s'appelle **l'image vectoriel** du nombre z=x+iy et le nombre z s'appelle **l'affixe** du vecteur \vec{u} et on écrit $z=\mathrm{aff}(\vec{u})$.

Application

Construire dans le plan complexe rapporté au repère orthonormé $(O; \vec{e_1}, \vec{e_2})$ les points A(-1+i), B(2-2i), $C(\frac{1}{2}i)$ et D(2+2i).

Propriété

Soient $A(z_A)$ et $B(z_B)$ deux points du plan complexe. On a :

- $\bullet \quad z_{\vec{AB}} = z_B z_A.$
- L'affixe du point I le milieu du segment [AB] est $\frac{z_A+z_B}{2}$.

Démonstration

On sait que $\vec{AB}(x_B-x_A;y_B-y_A)$, alors $\text{aff}(\vec{AB})=(x_B-x_A)+i(y_B-y_A)=x_B+iy_B-(x_A+iy_A)=z_B-z_A$.

Application

On considère dans le plan complexe les points : A(2i), B(1-i) et C(3).

- 1. Déterminer l'affixe des vecteurs \vec{AB} , \vec{AC} et $3\vec{AB} \vec{BC}$.
- 2. Déterminer l'affixe du point D sachant que ABCD est un parallélogramme.
- 3. Déterminer l'affixe du point I le centre du parallélogramme ABCD.

2. Colinéarité de deux points

Propriété

Soient $A(z_A), B(z_B)$ et $C(z_C)$ trois points du plan complexe. Les points A, B et C sont alignés si et seulement si $\frac{z_B - z_A}{z_C - z_A} \in \mathbb{R}$.

Démonstration

Les points A,B et C sont alignés si et seulement il existe un réel k tel que $\vec{AB} = k\vec{AC}$. Et on a : $\vec{AB} = k\vec{AC} \Leftrightarrow z_B - z_A = k(z_C - z_A) \Leftrightarrow \frac{z_B - z_A}{z_C - z_A} = k \in \mathbb{R}$.

Application

On considère dans le plan complexe les points A(4;-6), B(-2;3) et $C(-1;\frac{3}{2})$. Montrer que les points A,B et C sont alignés.

3. Points cocycliques

Propriété

Soient $A(z_A), B(z_B), C(z_C)$ et $D(z_D)$ quatre points non alignés et deux à deux distincts du plan complexe. Les points A, B, C et D sont **cocycliques** (appartiennent au même cercle) si et seulement si : $\frac{z_A - z_B}{z_C - z_B} \times \frac{z_C - z_D}{z_A - z_D} \in \mathbb{R}$.

Application

On considère dans le plan complexe les points A(1+i), B(3+i), C(2+2i) et D(2). Montrer que les points A, B, C et D sont cocycliques.

III. Conjugué d'un nombre complexe

Définition

Soit z=a+ib, où a et b sont deux réels. Le nombre a-ib est appelé le **conjugué** du nombre complexe z, et on le note par \overline{z} .

Exemples

- $z_1 = 5 + 6i$, alors $\overline{z_1} = 5 6i$.
- $z_2 = -1 i$, alors $\overline{z_2} = -1 + i$.
- $z_3 = i$, alors $\overline{z_3} = -i$.
- $z_4 = 6$, alors $\overline{z_4} = 6$.

Interprétation géométrique

Soit z un nombre complexe. Dans le plan complexe, le point $M(\overline{z})$ est symétrique au point M(z) par rapport à l'axe réel.

Propriété

Soient z et z^\prime deux nombres complexes et n un nombre relatif.

- $\overline{z+z'} = \overline{z} + \overline{z'}$.
- $\overline{z \times z'} = \overline{z} \times \overline{z'}$.
- $\overline{(\frac{z}{z'})} = \frac{\overline{z}}{\overline{z'}} \quad (z' \neq 0).$
- $\overline{(z^n)} = (\overline{z})^n \quad (z \neq 0).$

Exemples

- $(2-i)(1+i)^2 = (1+i)(-2i) = 2-2i$.
- $\frac{1}{\sqrt{2}i-\sqrt{2}} = \frac{1}{-\sqrt{2}-\sqrt{2}i} = \frac{-\sqrt{2}+\sqrt{2}i}{4}$.

Application

Soit z un nombre complexe différent de -2i. Simplifier l'expression $\frac{\overline{iz}}{z+2i}+i(\overline{\frac{3+z}{z-2i}})$.

Exercice

On pose z = x + iy où x et y sont deux réels.

- 1. a) Déterminer la forme algébrique du nombre complexe $3iz \overline{z}$.
 - b) Résoudre dans \mathbb{C} l'équation $3iz \overline{z} = 8i$.
- 2. Déterminer les nombres complexes z pour que $3iz-\overline{z}$ soit un nombre imaginaire pur.
- 3. Résoudre l'équation $\frac{4z-2}{z+1} = -3 + i$.

Propriété

Pour tout nombre complexe z, on a :

- $z + \overline{z} = 2\Re(z)$ et $z \overline{z} = 2i\Im(z)$.
- $z \in \mathbb{R} \Leftrightarrow z = \overline{z}$.
- $z \in i\mathbb{R} \Leftrightarrow \overline{z} = -z$.

Application

On pose : $u = \frac{2+3i}{3+2i}$ et $v = \frac{2-3i}{3-2i}$. Sans calculer u+v et u-v, montrer que u+v est réel et que u-v est imaginaire pur.

IV. Module d'un nombre complexe

Définition

Soit z=x+iy, où x et y deux nombres réels, un nombre complexe. Le **module** du nombre complexe z, est le nombre réel positif noté |z| et qui est défini par :

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$$

Exemples

- $|3-4i| = \sqrt{3^2+4^2} = \sqrt{25} = 5$
- $|1 i| = \sqrt{1^2 + 1^2} = \sqrt{2}$
- $|i| = \sqrt{1^2} = 1$
- $|-i| = \sqrt{(-1)^2} = 1$
- $|\frac{1}{2} + \frac{\sqrt{3}}{2}i| = 1$

Propriété

Soient z et z' nombres complexes et n un nombre relatif.

- $|z| = |-z| = |\overline{z}|$.
- $|z \times z'| = |z| \times |z'|$.
- $|z + z'| \le |z| + |z'|$.
- $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} \quad (z' \neq 0).$
- $|z^n| = |z|^n \quad (z \neq 0).$

Application

On pose $z_1 = 1 + i$ et $z_2 = 1 - i\sqrt{3}$.

- 1. Calculer $|z_1|$ et $|z_2|$.
- 2. En déduire le module des nombres suivants : $z_1 \times z_2, z_1^6$ et $(\frac{z_1}{z_2})^2$.

Interprétation géométrique

Soit M(z) un point du plan complexe tel que z = x + iy. On sait que $OM = ||\overrightarrow{OM}|| = \sqrt{x^2 + y^2}$. Et on a $|z| = \sqrt{x^2 + y^2}$. Alors OM = |z|.

Propriété

Soient $A(z_A)$ et $B(z_B)$ deux points du plan complexe. On a : $AB = |z_B - z_A|$.

Application

Dans le plan complexe, on considère les points A(-1+6i), B(1+9i) et C(2+4i). Montrer que le triangle ABC est isocèle.

On muni le plan (P) par un repère orthonormé direct $(O; \vec{e_1}, \vec{e_2})$.

Soit M(z) un point du plan complexe (P) différent de O.

On appelle **argument** du nombre complexe z, la mesure de l'angle orienté $(\vec{e_1}, \overrightarrow{OM})$ qu'on note par le symbole $\arg(z)$.

Et on a $\arg(z) = \theta[2\pi]$ (c-à-d $\arg(z) = \theta + 2k\pi/k \in \mathbb{Z}$).

Propriété

Soit z un nombre complexe.

- $z \in \mathbb{R}_+^* \Leftrightarrow \arg(z) = 0[2\pi].$
- $z \in \mathbb{R}_{-}^* \Leftrightarrow \arg(z) = \pi[2\pi].$
- $z \in i\mathbb{R}_+^* \Leftrightarrow \arg(z) = \frac{\pi}{2}[2\pi].$
- $z \in i\mathbb{R}_{-}^* \Leftrightarrow \arg(z) = -\frac{\pi}{2}[2\pi].$

Exemples

- $arg(2i) = \frac{\pi}{2}[2\pi]$
- $\arg(\sqrt{5} \sqrt{7}) = \pi[2\pi]$
- $arg(1+\sqrt{3})=0[2\pi]$
- $arg(-2i) = -\frac{\pi}{2}[2\pi]$

Propriété

Soit z un nombre complexe non nul.

- $\arg(\overline{z}) = -\arg(z)[2\pi].$
- $\arg(-z) = \pi + \arg(z)[2\pi].$

2. La forme trigonométrique d'un nombre complexe non nul

Soit z = x + iy un nombre complexe non nul et θ son argument. On sait que $\cos \theta = \frac{x}{|z|}$ et $\sin \theta = \frac{y}{|z|}$ alors $x = |z|\cos \theta$ et $y = |z|\sin \theta$. C.à.d. $z = |z|(\cos \theta + i\sin \theta)$. Cette écriture s'appelle la **forme trigonométrique** du nombre complexe z et on le note par $[|z|; \theta]$.

Exemples

Déterminons la forme trigonométrique des deux nombres complexes z = 2 + 2i et z' = 2 - 2i.

Application

Écrire sous la forme trigonométrique les nombres complexes suivants :

- $z_1 = 1 + i\sqrt{3}$
- $z_3 = -1 i\sqrt{3}$
- $z_5 = 4$

- $z_2 = 1 i\sqrt{3}$
- $z_4 = -2\sqrt{3} + 2i$
- $z_6 = -7$

Propriété

Soient z et z' deux éléments de \mathbb{C}^* tels que $z = [r; \theta]$ et $z' = [r'; \theta']$ et $n \in \mathbb{N}$:

- $[r, \theta] = [r', \theta'] \Leftrightarrow \begin{cases} r = r' \\ \theta = \theta' + 2k\pi/k \in \mathbb{Z} \end{cases}$.
- $z \times z' = [r, \theta] \times [r', \theta'] = [rr', \theta + \theta'].$
- $\frac{1}{z} = \frac{1}{[r,\theta]} = \left[\frac{1}{r}, -\theta\right].$
- $\frac{z}{z'} = \frac{[r,\theta]}{[r',\theta']} = [\frac{r}{r'}, \theta \theta'].$
- $z^n = [r, \theta]^n = [r^n, n\theta].$

Application

On considère z_1, z_2 et z_3 trois nombres complexes non nuls tels que $\arg(z_1) = \frac{\pi}{2}[2\pi]$ et $\arg(z_2) = \frac{\pi}{4}[2\pi]$. Déterminer l'argument du nombre z_3 dans les cas suivants :

- a. $z_3 = z_1 z_2^2$.
- b. $z_3 \times \overline{z_2} = 4z_1$.

Exercice

On pose $z_1 = 1 + i\sqrt{3}$ et $z_2 = 1 + i$.

1. Écrire z_1 et z_2 sous la forme trigonométrique puis en déduire la forme trigonométrique...

Exercice

Déterminer dans le plan complexe l'ensemble (E) des points M(z) dans les cas suivants :

a.
$$|z-2+i| = |z-4i|$$

b.
$$|z+i| = |z-1+i|$$

c.
$$|z - 2 + i| = 4$$

d.
$$|iz - 2| = |z + 1 - i|$$

e.
$$|z| = |z + 1 - i|$$

V. La forme géométrique d'un nombre complexe

- 1. Argument d'un nombre complexe
 - 2. Écrire Z sous la forme algébrique, où $Z = \frac{z_1^2}{z_2}$.
 - 3. En déduire la valeur de $\cos(\frac{5\pi}{12})$ et $\sin(\frac{5\pi}{12})$.
 - 4. Montrer que $z_1^{12} \in \mathbb{R}$.
- 3. Angle entre deux vecteurs Argument d'un nombre complexe

Propriété

Soient $A(z_A), B(z_B), C(z_C)$ et $D(z_D)$ des points du plan complexe. On a :

•
$$(\vec{e_1}, \vec{AB}) \equiv \arg(z_B - z_A)[2\pi].$$

•
$$(\vec{AB}, \vec{AC}) \equiv \arg(\frac{z_C - z_A}{z_B - z_A})[2\pi].$$

•
$$(\vec{AB}, \vec{DC}) \equiv \arg(\frac{z_C - z_D}{z_B - z_A})[2\pi].$$

Application

On considère dans le plan complexe les points A(2;2), B(2;-1), C(4;2) et D(6;2).

- 1. Calculer $(\overrightarrow{AD}, \overrightarrow{AC})$, que peut-on déduire ?
- 2. Calculer $(\overrightarrow{AC}, \overrightarrow{AB})$. Que peut-on dire de la position des deux droites (AB) et (AC)?

Exercice

Dans le plan complexe on considère les points A, B et C d'affixes respectives $z_A = \sqrt{3} - i$, $z_B = -z_A$ et $z_C = \sqrt{3} + 3i$ et soit D le point symétrique de C par rapport à l'axe réel.

- 1. Calculer $\frac{z_A-z_D}{z_A-z_C}$ puis déduire que les points A, D et C sont alignés.
- 2. Vérifier que $\frac{z_C z_A}{z_B z_A} = \frac{1 i\sqrt{3}}{2}$.
- 3. Montrer que le triangle ABC est équilatéral.

Exercice

On considère les points A, B, C et D d'affixes respectives $a=\sqrt{3}, b=2+i\sqrt{3}, c=2-\sqrt{3}+2i, d=(2-\sqrt{3})i$. Montrer que ABCD est un carré.

VI. Représentation complexe des transformations usuelles

1. La translation

Soit $t_{\vec{u}}$ une translation de vecteur $\vec{u}(z_{\vec{u}})$ et soit $M'(z_{M'})$ l'image du point $M(z_M)$ par la translation $t_{\vec{u}}$. On a : $t_{\vec{u}}(M) = M' \Leftrightarrow M \vec{M}' = \vec{u} \Leftrightarrow z_{M'} - z_M = z_{\vec{u}} \Leftrightarrow z_{M'} = z_M + z_{\vec{u}}$. Cette écriture s'appelle la représentation complexe de la translation $t_{\vec{u}}$.

Application

On considère la translation t de vecteur $\vec{u}(-1+2i)$.

- 1. Déterminer la représentation complexe de la translation t.
- 2. Déterminer l'affixe du point A' l'image de A(2i) par la translation t.
- 3. Déterminer l'affixe de B tels que t(B) = B' et B'(2-3i).

2. L'homothétie

Soient $\Omega(z_{\Omega})$ un point du plan complexe et k un élément de \mathbb{R}^* . Soit h l'homothétie de centre Ω et de rapport k. Soit $M'(z_{M'})$ l'image de $M(z_M)$ par l'homothétie h. On a : $h(M) = M' \Leftrightarrow \Omega \vec{M}' = k\Omega \vec{M} \Leftrightarrow z_{M'} - z_{\Omega} = k(z_M - z_{\Omega}) \Leftrightarrow z_{M'} = z_{\Omega} + k(z_M - z_{\Omega}) \Leftrightarrow z_{M'} = kz_M + z_{\Omega}(1 - k)$. Cette écriture s'appelle la **représentation complexe de l'homothétie** h.

Application

On considère l'homothétie de centre $\Omega(2-i)$ et de rapport 4.

- 1. Déterminer la représentation complexe de l'homothétie h.
- 2. Déterminer l'affixe du point A' l'image de A(1+i) par l'homothétie h.
- 3. Déterminer l'affixe de B où h(B) = B' et B'(2i).

Exercice

Connaître la nature des transformations usuelles suivantes dont la représentation complexe est comme suit :

- a. z' = z 3i.
- b. z' + 2i = -5(z + 2i).
- c. z' = 1 z.
- d. z' = 4z 3i.

VII. Notation exponentielle - Applications trigonométriques

1. Notation exponentielle d'un nombre complexe

Activité

- 1. On considère le nombre complexe $z = 2\sqrt{2} + 2i\sqrt{6}$. Montrer que $z = [4\sqrt{2}; \frac{\pi}{3}]$.
- 2. On écrit z sous la forme $z=4\sqrt{2}e^{i\frac{\pi}{3}}$. Cette écriture s'appelle une forme exponentielle du nombre complexe z.
- 3. Donner une forme exponentielle des nombres complexes suivants : $z_1 = 1 i$, $z_2 = 2i$, $z_3 = 3 + 3i\sqrt{3}$ et $z_4 = -3$.

Définition

Tout nombre complexe z de module r et d'argument θ s'écrit sous la forme $z=re^{i\theta}$. Cette écriture s'appelle la **forme exponentielle** du nombre z.

Exemples

- $e^{i\pi} = -1$.
- $2e^{i\frac{3\pi}{4}} = 2(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}) = 2(\cos(\pi \frac{\pi}{4}) + i\sin(\pi \frac{\pi}{4})) = -\sqrt{2} + i\sqrt{2}$.

Application

- 1. Écrire sous la forme algébrique les nombres complexes : $z_1=4e^{-i\frac{\pi}{3}}$ et $z_2=e^{i\frac{5\pi}{4}}$.
- 2. Écrire sous la forme exponentielle le nombre complexe $z=-3(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12})$.

Propriété

Soient r, r', θ et θ' des nombres réels. On a :

- $|e^{i\theta}| = 1$.
- $\arg(e^{i\theta}) = \theta[2\pi].$
- $e^{i\theta} = e^{-i\theta}$.
- $re^{i\theta} \times r'e^{i\theta'} = rr'e^{i(\theta+\theta')}$.
- $\frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$.
- $\frac{re^{i\theta}}{r'e^{i\theta'}} = \frac{r}{r'}e^{i(\theta-\theta')}$.
- $(\forall n \in \mathbb{Z})(re^{i\theta})^n = r^n e^{in\theta}$.

Application

On pose : $z_1=1-i, z_2=2i$ et $z_3=3+3i\sqrt{3}$. Écrire sous la forme exponentielle les nombres suivants : $a=\frac{z_1}{z_3}, b=z_1^8, c=\frac{z_2z_3}{z_1}$.

WhatsApp: +212...

2. Formule de Moivre - Formules d'Euler - Applications

a. Formule de Moivre

On a : $(\forall n \in \mathbb{Z})(\forall \theta \in \mathbb{R}) : (e^{i\theta})^n = e^{in\theta}$. Ainsi : $(\forall n \in \mathbb{Z})(\forall \theta \in \mathbb{R}) : (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$. Cette égalité s'appelle la **formule de Moivre**.

Propriété (formule de Moivre)

$$(\forall n \in \mathbb{Z})(\forall \theta \in \mathbb{R}) : (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

Application

- 1. Écrire par deux méthodes différentes $(\cos(x) + i\sin(x))^2$ sous la forme algébrique.
- 2. En déduire la valeur de cos(2x) et sin(2x) en fonction de cos(x) et sin(x).

b. Formules d'Euler

On sait que :
$$(\forall \theta \in \mathbb{R})$$

$$\begin{cases} e^{i\theta} = \cos(\theta) + i\sin(\theta) & (1) \\ e^{-i\theta} = \cos(\theta) - i\sin(\theta) & (2) \end{cases}$$

La somme des deux égalités donne : $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$

En soustrayant l'équation (1) de l'équation (2) on obtient : $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Ces deux formules résultantes s'appelle les formules d'Euler.

Propriété (formules d'Euler)

$$(\forall \theta \in \mathbb{R})$$
 $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Application

- 1. En utilisant les formules d'Euler, montrer que $(\forall x \in \mathbb{R}) : (\cos(x))^2 = \frac{1}{2}\cos(2x) + \frac{1}{2}$. On dit dans ce cas-là qu'on a **linéarisé** le polynôme trigonométrique $(\cos(x))^2$.
- 2. Linéariser les expressions suivantes $\sin^2(x)$ et $\cos^3(x)$.

VIII. Équations de second degré dans $\mathbb C$

Propriété

On considère dans \mathbb{C} l'équation $az^2 + bz + c = 0$ où a, b et c sont des réels et $a \neq 0$. Le nombre $\Delta = b^2 - 4ac$ s'appelle le discriminant de l'équation.

- Si $\Delta > 0$, alors l'équation admet deux solutions réelles $z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- Si $\Delta=0$, alors l'équation admet une solution réelle double $z_0=-\frac{b}{2a}$.
- Si $\Delta < 0$, alors l'équation admet deux solutions complexes conjuguées distinctes : $z_1 = \frac{-b i\sqrt{-\Delta}}{2a}$ et $z_2 = \overline{z_1} = \frac{-b + i\sqrt{-\Delta}}{2a}$.

Application

- 1. Résoudre dans $\mathbb C$ les équations :
 - $(E_1): z^2 = -4$
 - $(E_2): z^2 + 2\sqrt{3}z + 4 = 0$
 - $(E_3): 2z^2 3z + 2 = 0$
- 2. On pose $p(z) = z^3 6z^2 + 12z 16$.
 - a. Déterminer les réels a et b tels que : $(\forall z \in \mathbb{C}) p(z) = (z-4)(z^2+az+b)$.
 - b. Résoudre dans $\mathbb{C}: p(z) = 0$.

IX. La représentation complexe de la rotation

Soit R une rotation de centre $\Omega(z_{\Omega})$ et de mesure d'angle θ , et soit $M'(z_{M'})$ l'image de $M(z_{M})$ par

la rotation R. On a :
$$R(M) = M' \Leftrightarrow \begin{cases} \Omega M' = \Omega M \\ (\Omega \vec{M}, \Omega \vec{M}') \equiv \theta[2\pi] \end{cases} \Leftrightarrow \begin{cases} |z_{M'} - z_{\Omega}| = |z_{M} - z_{\Omega}| \\ \arg(\frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}}) \equiv \theta[2\pi] \end{cases} \Leftrightarrow \begin{cases} |z_{M'} - z_{\Omega}| = |z_{M} - z_{\Omega}| \\ \arg(\frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}}) \equiv \theta[2\pi] \end{cases}$$

$$\begin{cases} |\frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}}| = 1\\ \arg(\frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}}) \equiv \theta[2\pi] \end{cases} \Leftrightarrow \frac{z_{M'} - z_{\Omega}}{z_{M} - z_{\Omega}} = e^{i\theta}$$

Propriété

Soit R une rotation de centre $\Omega(z_{\Omega})$ et de mesure d'angle θ , et soit $M'(z_{M'})$ l'image de $M(z_{M})$ par la rotation R. On a :

$$z_{M'} = (z_M - z_\Omega)e^{i\theta} + z_\Omega.$$

Application

- 1. On considère la rotation R de centre $\Omega(2+3i)$ et de mesure d'angle $\frac{\pi}{2}$.
 - a. Déterminer la représentation complexe de la rotation R.
 - b. Déterminer l'affixe du point A' l'image de A(2-i) par la rotation R.
 - c. Déterminer l'affixe du point B avec R(B) = B' et B'(-2-4i).
- 2. Déterminer l'image du point M(4i) par la rotation de centre O et de mesure d'angle $\frac{5\pi}{6}$.

Exercice

On considère la transformation F représentée par : z' = -iz + i - 1.

- 1. Montrer qu'il existe un point unique M du plan complexe (P) invariant par la transformation F. Notons ce point par Ω et son affixe par ω .
- 2. Vérifier, pour tout M(z) et M'(z') du plan (P), que :

$$F(M) = M' \Leftrightarrow z' - \omega = -i(z - \omega).$$

3. En déduire la nature de la transformation F.

Exercice de synthèse : Session Normale 2020

1. On considère dans l'ensemble des nombres complexes $\mathbb C$ l'équation

$$(E): z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0.$$

- a. Vérifier que $\Delta = -4(\sqrt{6} \sqrt{2})^2$.
- b. En déduire les solutions de l'équation (E).
- 2. On considère les nombres complexes $a=(\sqrt{6}+\sqrt{2})+i(\sqrt{6}-\sqrt{2}), b=1+i\sqrt{3}$ et $c=\sqrt{2}+i\sqrt{2}$.
 - a. Vérifier que $b\overline{c}=a$ puis déduire que : ac=4b.
 - b. Écrire les deux nombres complexes a et b sous forme trigonométrique.
 - c. En déduire que $a = 4(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12}))$.
- 3. Dans le plan complexe est rapport à un repère orthonormé direct $(O; \vec{u}; \vec{v})$. On considère les points B, C et D d'affixes respectives b, c et d tel que $d=a^4$. Soit z l'affixe du point M du plan et z' l'affixe du point M' image de M par la rotation R de centre O et d'angle $\frac{\pi}{12}$.
 - a. Vérifier que $z' = \frac{1}{4}az$.
 - b. Déterminer l'image du point C par la rotation R.
 - c. Déterminer la nature du triangle OBC.
 - d. Montrer que $a^4 = 128b$ et en déduire que les points O, B et D sont alignés.