1 Равномерная сходимость последовательности

Практически все задачи решаются следующим образом:

- 1. Находим кандидата на роль f по формуле $f = \lim_{n \to +\infty} f_n(x)$. Предел берется при фиксированном x. f может зависеть от x и может быть разрывным (например, 2751.6)
- 2. Проверяем, что $\rho(f,f_n) \xrightarrow{n \to +\infty} 0$, где $\rho(f,f_n) = \sup_{x \in E} |f(x) f_n(x)|$

Методы нахождения супремума:

- (a) Прямой: $\sup_{x \in (0,+\infty)} \frac{1}{x+n} = \frac{1}{n} \to 0$
- (b) Оценка сверху (доказывает равн. сходимость): $\sup_{x \in [0,1]} \left| \frac{x + x^2}{1 + n + x} \right| \le \frac{2}{1 + n} \to 0$
- (c) Оценка снизу (доказывает отсутствие равн. сходимости) обычно подстановка конкретного x (он может зависеть от n):

$$\sup_{x} \left| \sin \left(\frac{x}{n} \right) \right| \stackrel{x := n}{\geq} \sin(1) \not\to 0$$

(d) Оценка снизу пределом: $\sup_{g\in E}g(x)\geq \lim_{x\to A}g(x)$, где A — предельная точка E.

Есть более простой признак отсутствия равн. сходимости:

$$f_n(x) \rightrightarrows f \implies \forall x \in E \ f_n(x) \to f(x)$$

2 Равномерная сходимость рядов

$$\sum_{n=1}^{+\infty} u_n(x) = S(x)$$
 $S_N
ightharpoons S$ на E

Методы доказательства:

- 1. По определению (см. равн. сходимость последовательностей) самый простой вариант, для него нужен способ посчитать частную сумму. Это либо телескоп, либо прогрессия. Иногда из дроби можно получить телескоп разложением на простые дроби.
- 2. По абсурдности если $u_n(x) \not \rightrightarrows 0$, то сумма не сходится.
- 3. Признак Вейерштрасса

$$\sum u_n(x), x \in E$$
:

M3137y2019

- (a) $\forall x \in E : |u_n(x)| \leq C_n$
- (b) $\sum C_n \text{сходится}$

Тогда ряд равномерно сходится.

Обычно берут $C_n = \frac{1}{n^{\alpha}}, \alpha > 1$, но иногда нужно думать про сходимость ряда C_n , т.к. она не очевидна. Вольфрам в помощь.

При придумывании C_n можно найти точку экстремума максимума $|u_n(x)|$ ($x = \dots$) через $u_n(x)'_x$ и подставить такой x.

4. **Критерий Больцано-Коши** обычно доказывает **отсутствие** равномерной сходимости, хотя его можно использовать и для обратного.

$$\exists \varepsilon > 0 \ \forall N \ \exists n > N, \exists m \in \mathbb{N}, \exists x \ |u_{n+1}(x) + \dots + u_{n+m}(x)| > \varepsilon$$

Тогда равномерной сходимости нет.

Идея в том, чтобы иметь большие ($\geq \frac{C}{n}$) слагаемые, для этого надо придумать соответствующий x. Часто используется оценка суммы $|\sum_{i=n+1}^{n+m}u_i(x)|\geq \min u_i(x)\cdot m$.

Для обратного нужно построить отрицание критерия.

- 5. Признак Дирихле для $\sum a_n(x)b_n(x)$:
 - (a) Частичные суммы $\sum a_n$ равномерно ограничены:

$$\exists C_a \ \forall N \ \forall x \in E \ \left| \sum_{k=1}^N a_k(x) \right| \le C_a$$

- (b) і. При фиксированном x функция $b_n(x)$ монотонна по n
 - іі. $b_n(x) \rightrightarrows 0$ на E при $n \to +\infty$
- 6. Признак Абеля для $\sum a_n(x)b_n(x)$:
 - (а) $\sum a_n(x)$ равномерно сходится на E
 - (b) і. $b_n(x)$ монотонно по n
 - ii. $b_n(x)$ равномерно ограничено:

$$\exists C_b \ \forall N \ \forall x \in E \ |b_n(x)| \le C_b$$

3 Свойства через ряды

M3137y2019

- $u_n(x)$ непр. в x_0
- Ряд равномерно сходится в $U(x_0)$

Тогда f непр. в x_0

- 2. $\sum u'_n(x) = \varphi(x)$
 - $\sum u_n'(x)$ равномерно сходится в $U(x_0)$

Тогда f — дифф. в $x_0, f'(x) = \varphi(x)$

- 3. $\sum u_n(x)$ равномерно сходится на [a,b]
 - u_n непр. на [a, b]

Тогда
$$\int_a^b f(x)dx = \sum \int_a^b u_n(x)dx$$

Когда требуют равномерную сходимость в $U(x_0)$ $\forall x_0 \in E$, можно пытаться доказать равномерную сходимость в E. Это проще сделать, но не всегда возможно.

4 Степенные ряды

Степенной ряд — ряд вида $\sum a_n(x-x_0)^n$. Он сходится при $|x-x_0| < R, R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$

Верхний предел — наибольший предел из пределов всех подпоследовательностей.

Иногда ответ выдает $R=\lim\left|\frac{a_n}{a_{n+1}}\right|$, но не всегда.

И ещё возможно сходится при $x=x_0\pm R$. Сходимость при таком x находится путём подстановки соответствующего x в ряд. Но этот ряд не простой, в нем не будет работать признак Даламбера и Коши.

Можно решать заменой на эквивалентное (возможно по модулю), если это не помогает, то применяется Лейбниц или Дирихле.

5 Разложение фукнций

Мы знаем, что если $f(x) = \sum a_n (x-x_0)^n$, то это ряд Тейлора, т.е. $a_n = \frac{f^{(n)}(x_0)}{n!}$.

У нас есть пять основных разложений:

$$e^{z} = 1 + z + \frac{z^{2}}{2} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots$$

M3137y2019

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!} + \dots \quad x \in (-1,1)$$
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1}\frac{x^n}{n} + \dots \quad x \in (-1,1]$$

Функции вида $f(x)=(x-x_0)^{\alpha}\cdot g(x)$, где $g=\sum a_n(x-x_0)^n$, раскладываются по формуле $f=\sum a_n(x-x_0)^{n+\alpha}$, то есть разложение можно домножить на $(x-x_0)^{\alpha}$.

Композиция сохраняется разложением.

Можно найти разложение производной (f'(x)), потом проинтегрировать и найти искомое. Константа находится подстановкой $x=x_0$, при ней ряд после интеграции =0, $f(x_0)$ может не быть 0.

Трюки

1.

$$\frac{t}{1+t^2} \le \frac{1}{2}$$

2.

$$\left| xe^{-x^2n} \right| \le \frac{C}{\sqrt{n}}$$

3.

$$a+b \ge 2\sqrt{ab}$$

4. $\sum \frac{(-1)^n}{n^p}$ сходится при p>0 и расходится при $p\leq 0$

5.

$$\sum \frac{(-1)^n}{n} = -\ln 2$$

6.

$$\sum_{n=1}^{N} \sin(nx) = \sin \frac{nx}{2} \sin \frac{(n+1)x}{2} \frac{1}{\sin \frac{x}{2}}$$

7.

$$\frac{\sin x}{\sin \frac{x}{2}} = 2\cos \frac{x}{2}$$

8.

$$\left| \sum_{n=1}^{N} \sin(nx) \right| \le \frac{1}{|e^{ix} - 1|}$$

9. Если $u_n(x)$ монотонно по n, то:

$$\left| \sum_{n \ge N} (-1)^n u_n(x) \right| \le u_N(x)$$

10. Если есть равномерная сходимость ряда в U(0), то $\sum u_n(x) \xrightarrow{x \to 0} \sum u_n(0)$.