Separable and Linear Equations (2.1, 2.2)

- 1. Solve the ODE: $\frac{dy}{dx} = \frac{x^2}{1+y^2}$
- **2.** Solve the ODE: $\frac{dy}{dx} = xe^{x+y}$
- 3. Solve the ODE: $ty' + 2y = \sin t$, t > 0
- **4.** Solve the IVP: $y' 2y = e^{2t}$, y(0) = 2
- 5. Solve the IVP: ty' + (t+1)y = t, $y(\ln 2) = 1$, t > 0

Modelling with 1st Order Equations (2.3)

- 1. A tank originally contains 40 gal of water with 5 lb of salt in solution. Water containing $\frac{1}{10}$ lb of salt per gallon is entering at a rate of 2 gal/min, and the well-stirred solution in the tank is leaving at the same rate.
 - **a.** Write down the differential equation for Q(t), the amount of salt in the tank.

b. Write the initial value problem for Q(t).

c. Find Q(t) by solving the initial value problem.