Feuille d'exercices 15. Séries de réels ou de complexes

Séries de réels positifs

Exercice 15.1 : (niveau 1)

Calculer
$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}.$$

Exercice 15.2 : (niveau 1)

Nature de la série $\sum \frac{\operatorname{ch} n'}{\operatorname{ch}(2n)}$.

Exercice 15.3 : (niveau 1)

Soit $\sum u_n$, $\sum v_n$ et $\sum w_n$ trois séries de réels telles que, pour tout $n \in \mathbb{N}$, $u_n \leq v_n \leq w_n$. Montrer que si $\sum u_n$ et $\sum w_n$ convergent, alors $\sum v_n$ est aussi convergente.

Exercice 15.4 : (niveau 1)

Nature de $\sum u_n$ où $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{1}{n+1}e^{-u_n}$.

Exercice 15.5 : (niveau 1)

Soit (u_n) une suite de réels positifs telle que $\sum u_n$ converge. Déterminer la nature de $\sum \sqrt{u_{2n}u_n}$.

Exercice 15.6 : (niveau 1)

Grâce à une comparaison entre série et intégrale, déterminer un équivalent de $\sum_{k=2}^{n} \ln k$.

En déduire, la nature de la série de terme général $u_n = (\sum_{k=2}^n \ln k)^{-1}$.

Exercice 15.7 : (niveau 1)

Nature de la série $\sum a_n$ où $a_n = \int_0^{\frac{1}{n}} \frac{\sqrt{x} dx}{\sqrt[3]{1+x^2}}$.

Exercice 15.8 : (niveau 1)

Soient $\sum u_n$, $\sum v_n$ et $\sum w_n$ 3 séries convergentes à termes positifs. Montrer que les séries $\sum \sqrt[3]{u_n v_n w_n}$ et $\sum \sqrt{u_n v_n + u_n w_n + v_n w_n}$ sont convergentes.

Exercice 15.9: (niveau 1)

Soit $(\varepsilon_n)_{n\in\mathbb{N}}$ une suite de réels de]0,1[telle que $\varepsilon_n \longrightarrow 0$.

Pour tout $n \in \mathbb{N}^*$, on pose $p_n = \prod_{i=1}^n (1 - \varepsilon_i)$.

Montrer que $(p_n \xrightarrow[n \to +\infty]{} 0) \iff (\sum_{n \to +\infty}^{i=1} \varepsilon_n \text{ diverge}).$

Exercice 15.10 : (niveau 2)

Nature de $\sum_{n\geq 1} a_n$ où $a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{-n}$.

Exercice 15.11 : (niveau 2)

Soit (u_n) une suite de réels positifs. On pose $v_n = \frac{u_n}{1 + u_n}$.

Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Exercice 15.12 : (niveau 2)

Règle de Cauchy.

- 1°) Soit $\sum a_n \in \mathcal{S}(\mathbb{C})$ telle que $\sqrt[n]{|a_n|} \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+ \cup \{+\infty\}.$
- \diamond Si l < 1, montrer que $\sum a_n$ est absolument convergente.
- \diamond Si l > 1 ou si $l = 1^+$, montrer que $\sum a_n$ diverge grossièrement.
- \diamond Lorsque l=1, montrer qu'on ne peut pas conclure.
- 2°) En déduire la nature des séries $\sum \left(\frac{n+1}{2n+5}\right)^n$ et $\sum \frac{n^{\ln n}}{\ln^n n}$.

Exercice 15.13 : (niveau 2)

 α désigne un réel strictement positif. Pour tout $n \in \mathbb{N}$, on note $a_n = \frac{(n\alpha)^n}{n}$. Déterminer $\sum_{k=0}^{n} (k!)$

la nature de la série $\sum a_n$.

Exercice 15.14: (niveau 2)

Soit (a_n) une suite décroissante de réels positifs. On suppose que la série $\sum a_n$ converge. Montrer que $na_n \xrightarrow[n \to +\infty]{} 0$.

Exercice 15.15 : (niveau 2)

Soit (u_n) une suite réelle décroissante qui tend vers 0.

Montrer que les séries $\sum u_n$ et $\sum 2^n u_{2^n}$ ont la même nature. En déduire la nature de $\sum_{n\geq 2} \frac{1}{n(\ln n)^{\beta}}$, où $\beta\in\mathbb{R}$.

Exercice 15.16: (niveau 2)

Déterminer la nature de $\sum a_n$ où $a_n = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + n^2 \tan^2(x)}$.

Exercice 15.17 : (niveau 2)

Soient $a \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$. Nature de $\sum a_n$ où $a_n = \frac{n^{\alpha}}{(1+a)(1+a^2)...(1+a^n)}$.

Exercice 15.18: (niveau 3)

Soit (u_n) une suite décroissante de réels strictement positifs. On suppose qu'il existe $k \in \mathbb{N}$ avec $k \geq 2$ et $n_0 \in \mathbb{N}^*$ tels que , pour tout $n \geq n_0, ku_{kn} \geq u_n$. Montrez que $\sum u_n$ est divergente.

Exercice 15.19: (niveau 3)

Soit $(a_n)_{n\geq 1}$ une suite de complexes telle que $\sum \frac{a_n}{n}$ est absolument convergente.

On suppose que pour tout $k \in \mathbb{N}^*$, $\sum_{n=1}^{+\infty} \frac{a_n}{n^k} = 0$.

Que peut-on dire de la suite $(a_n)_{n\geq 1}$

Exercice 15.20: (niveau 3)

Règle de Duhamel

Soit $\sum a_n$ une série à termes strictement positifs.

1°) On suppose qu'il existe $\alpha \in \mathbb{R}$ tel que $\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + o(\frac{1}{n})$. Si $\alpha > 1$, montrer que $\sum a_n$ converge et si $\alpha < 1$, montrer que $\sum a_n$ diverge.

2°) Déterminer la nature de la série
$$\sum a_n$$
, où $a_n = \frac{2 \times 4 \times \cdots \times (2n-2) \times (2n)}{3 \times 5 \times \cdots \times (2n-1) \times (2n+1)}$.

Exercice 15.21 : (niveau 3)

Soit $\varphi: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ une application injective. Montrer que la série $\sum \frac{\varphi(n)}{n^2}$ diverge.

Exercice 15.22: (niveau 3)

Soit (u_n) une suite décroissante de réels qui tend vers 0.

Montrer que $\sum u_n$ et $\sum n(u_n - u_{n+1})$ ont la même nature.

Lorsqu'elles sont définies, comparer les sommes de ces deux séries.

Séries alternées

Exercice 15.23: (niveau 1)

Déterminer les natures des séries $\sum (-1)^n \frac{2^n}{3\sqrt{n}}$ et $\sum (-1)^n \frac{2^{\ln n}}{3\sqrt{n}}$.

Exercice 15.24 : (niveau 1)

Déterminer la nature de la série $\sum (-1)^n a_n$, où $a_n = \int_{\frac{2}{t}}^{\frac{4}{\pi}} \frac{\sin \frac{1}{t}}{n+t} dt$.

Exercice 15.25 : (niveau 2)

Calculer
$$\sum_{n=2}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right)$$
.

Exercice 15.26: (niveau 2)

Nature de la série $\sum a_n$, où $a_n = \frac{(-1)^n}{n - \ln n}$.

Exercice 15.27 : (niveau 2)

On considère une suite récurrente telle que $u_0 \in]0, \frac{\pi}{2}[$ et telle que, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n \cos u_n$.

Etudier la suite (u_n) , puis les séries de terme général $(-1)^n u_n$ et $\ln(\cos u_n)$). Déterminer la nature de la série $\sum u_n$.

Exercice 15.28 : (niveau 2)

Pour tout $n \in \mathbb{N}^*$, on note : $h_n = \sum_{k=1}^n \frac{1}{k}$ et $u_n = h_n - \ln n$.

- 1°) Trouver un equivalent de $u_{n+1} u_n$.
- **2°)** Déterminer la nature de la série $\sum (u_{n+1} u_n)$ puis en deduire la convergence de la suite (u_n) . On notera γ la limite de la suite (u_n) .
- **3°)** Montrer que $h_n = \ln n + \gamma + o(1)$.
- **4**°) Montrer qu'il existe α et β tels que $\sum_{k=1}^{2n} \frac{(-1)^k}{k} = \alpha h_{2n} + \beta h_n.$
- 5°) En deduire que $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k} = -\ln 2.$

Soit $\sigma \in \mathbb{R}$. On note (w_k) la suite définie par : $w_k = \frac{\sigma}{k}$ lorsque 4 divise k et $w_k = \frac{1}{k}$ sinon. De plus, on note $S_n = \sum_{k=1}^n w_k$.

- **6°)** Montrer que (S_{4n}) converge si et seulement si $\sigma = -3$.
- 7°) Etudier la nature et calculer la somme de la série $\sum w_k$.

Exercice 15.29 : (niveau 3)

- 1°) Déterminer la nature de la série de terme général $u_n = \sum_{k=0}^{+\infty} \frac{(-1)^k}{n+1+k}$.
- **2°)** Déterminer la nature de la série de terme général $v_n = (-1)^n u_n$.

Exercice 15.30 : (niveau 3)

Sommation par paquets.

Soient $\sum x_n \in \mathcal{S}(\mathbb{C})$ et $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante.

On pose
$$y_0 = \sum_{k=0}^{\varphi(0)} x_k$$
 et, pour tout $n \in \mathbb{N}^*$, $y_n = \sum_{k=\varphi(n-1)+1}^{\varphi(n)} x_k$.

Ainsi, y_n constitue un "paquet" de $\varphi(n) - \varphi(n-1)$ termes consécutifs de $\sum x_k$, en convenant que $\varphi(-1) = -1$.

- 1°) Montrer que si $\sum x_n$ converge, alors $\sum y_n$ converge également. Montrer que la réciproque est fausse.
- 2°) Montrer que la réciproque est vraie lorsque $\sum x_k$ est à termes positifs.
- **3°)** Montrer que la réciproque est vraie lorsque (x_n) tend vers 0 et que la suite $(\varphi(n) \varphi(n-1))$ est majorée.
- **4°)** Montrer que la réciproque est vraie lorsqu'à l'intérieur de chaque paquet (pour $k \in [\varphi(n-1)+1, \varphi(n)]$), tous les x_k sont réels et de même signe.

Exercices supplémentaires

Exercice 15.31 : (niveau 1)

Soit α un réel. Déterminer la nature de la série $\sum a_n$ où $a_n = \left(\frac{n+1}{n+3}\right)^{(n^{\alpha})}$.

Exercice 15.32 : (niveau 1)

Soit $\alpha \in \mathbb{R}$. On note $a_n = \operatorname{ch}^{\alpha}(n) - \operatorname{sh}^{\alpha}(n)$. Nature de $\sum a_n$.

Exercice 15.33 : (niveau 1)

Soit (a_n) une suite de réels positifs. Montrez que si $\sum n^2 a_n^2$ converge, $\sum a_n$ est convergente.

Exercice 15.34: (niveau 2)

Trouver la nature de la série de terme général $u_n = \sin(\pi(2+\sqrt{3})^n)$, à l'aide des suites $x_n = \pi(2+\sqrt{3})^n$ et $y_n = \pi(2-\sqrt{3})^n$.

Exercice 15.35 : (niveau 2)

Soit (u_n) une suite de réels positifs. Montrer que les séries $\sum u_n$, $\sum \frac{u_n}{1+u_n}$,

 $\sum \ln(1+u_n)$ et $\sum \int_0^{u_n} \frac{1}{1+x^e} dx$ sont toutes convergentes ou bien toutes divergentes.

Exercice 15.36 : (niveau 2)

Si $n \in \mathbb{N}^*$ on note p(n) le nombre de chiffres de l'écriture décimale de n.

Déterminer la nature de $\sum_{n>1} (10 - n^{\frac{1}{p(n)}})$.

Exercice 15.37: (niveau 2)

Soit $\sum u_n$ une série à termes strictement positifs.

On pose $v_0 = 1$ et $v_{n+1} = \frac{1}{2}(v_n + \sqrt{v_n^2 + u_n})$.

- 1°) On suppose que $\sum u_n$ est convergente : Nature de $\sum v_{n+1}(v_{n+1}-v_n)$, convergence de $(v_{n+1}(v_{n+1}-v_n))$, de $(v_{n+1}-v_n)$, puis de (v_n) .
- 2°) On suppose que (v_n) converge dans \mathbb{R} : Convergence de $\sum (v_{n+1}^2 v_n^2)$, puis de $\sum u_n$.

Exercice 15.38 : (niveau 2)

Soit f une application de [0,1] dans \mathbb{R}_+ que l'on suppose croissante et continue. Montrer que l'intégrabilité de $t \longmapsto f(e^{-t})$ sur \mathbb{R}_+ est équivalente à la convergence de la série de terme général :

- 1°) $u_n = f(e^{-n}).$
- 2°) $v_n = \frac{1}{n} f(\frac{1}{n}).$
- 3°) $w_n = nf(e^{-n^2}).$

Exercice 15.39: (niveau 2)

- 1°) Notons $f: [1, +\infty[\longrightarrow \mathbb{R}]$ $x \longmapsto \frac{\sin(\ln x)}{x}$. Montrer que f' est intégrable.
- **2**°) Pour $n \in \mathbb{N}$, avec $n \geq 2$, on pose $w_n = \int_{n-1}^n f(t)dt f(n)$.

Montrer que la série $\sum_{n\geq 2} w_n$ est absolument convergente.

- **3°)** Montrer que la suite $(\cos(\ln n))_{n\in\mathbb{N}^*}$ n'admet pas de limite en $+\infty$.
- **4**°) En déduire la nature de la série $\sum_{n>1} \frac{\sin(\ln n)}{n}$.

Exercice 15.40 : (niveau 2)

- 1°) En utilisant que, pour tout $k \in \mathbb{N}$, $\frac{1}{2k+1} = \int_0^1 x^{2k} dx$, calculer $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$.
- **2**°) Déterminer la nature de la série de terme général $u_n = \ln \left(tan \sum_{k=0}^n \frac{(-1)^k}{2k+1} \right)$ (on pourra faire intervenir les restes de Cauchy R_n de la série de la première question).

Exercice 15.41: (niveau 3)

 (u_n) désigne une suite de réels positifs.

Pour tout $n \in \mathbb{N}$, on pose $w_n = \frac{1}{1 + n^2 u_n}$.

1°) On suppose que $u_n \sim \frac{1}{n^{\alpha}}$, avec $\alpha \in \mathbb{R}$.

Discuter de la convergence de la série des w_n en fonction de α .

- **2°)** On suppose que $\sum u_n$ et $\sum w_n$ sont convergentes. Montrer que $\sum \sqrt{u_n w_n}$ est divergente.
- 3°) On suppose que $\sum u_n$ converge. Montrer que $\sum w_n$ diverge.

Exercice 15.42 : (niveau 3)

Soit $\alpha \in \mathbb{R}$.

- 1°) Déterminer la nature de $\sum_{n\geq 1} a_n$ où $a_n = \frac{\cos(\frac{n\pi}{3})}{n^{\alpha}}$.
- 2°) Soit β un second réel.
- a) Pour tout $n \in \mathbb{N}$, notons $C_n = \sum_{k=0}^n \cos(\beta k)$.

Calculer C_n . La suite (C_n) est-elle bornée?

b) Soit $n \in \mathbb{N}^*$. Montrer que

$$\sum_{k=1}^{n} \frac{\cos(k\beta)}{k^{\alpha}} = \sum_{k=1}^{n} C_k \left(\frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}}\right) - C_0 + \frac{C_n}{(n+1)^{\alpha}}.$$

c) Quelle est la nature de la série $\sum_{n\geq 1} a_n$ où $a_n = \frac{\cos(\beta n)}{n^{\alpha}}$?

Exercice 15.43 : (niveau 3)

a et b sont deux réels strictement positifs.

Soit
$$(u_n)$$
 la suite définie par : $u_0 = 1$ et, $\forall n \in \mathbb{N}$ $\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$.

Le but de l'exercice est de déterminer la nature de $\sum u_n$ et de calculer sa somme en cas de convergence.

- 1°) Traitez le cas où $a \ge b$.
- 2°) On suppose que a b + 1 < 0.
- Etudiez le sens de variation de la suite $((n+b-1)u_n)$.
- Traitez l'exercice dans ce cas.
- 3°) Achevez la résolution de l'exercice.

Exercice 15.44 : (niveau 3)

Soit $p \in \mathbb{N}$ avec $p \geq 2$. Soit (u_k) une suite p-périodique de complexes.

Montrer que la série $\sum_{k\geq 1} \frac{u_k}{k}$ est convergente si et seulement si $\sum_{k=1}^p u_k = 0$.

Exercice 15.45: (niveau 3)

Soit $\sum u_n$ une série à termes positifs avec $u_0 > 0$. Pour tout $n \in \mathbb{N}$, on pose $s_n = \sum_{k=0}^n u_k$.

Soit $\alpha \in \mathbb{R}$. Déterminer la nature de $\sum \frac{u_n}{s_n^{\alpha}}$.