ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № Д.4.3 **Измерение толщины волоса**

Серебренников Даниил Группа Б02-826 **Цель работы:** получить дифракционную картину на волосе и определить его толщину.

В работе используются: зеленая лазерная указка, волос, картон, клейкая лента, линейка, маркерная доска.

1 Теоретическая часть

Случай геометрической оптики применим лишь тогда, если длина световой волны λ много меньше характерных размеров освещаемых объектов d, то есть $\lambda \ll d$. При приближении размеров объектов к длине световой волны $(\lambda \sim d)$, отклонения от законов геометрической оптики, приводящие к возникновению дифракции, проявляются сильнее. Согласно принципам геометрической оптики за непрозрачным объектом должна находиться резкая геометрическая тень. В случае волновой оптики вместо резкой тени получается сложное распределение интенсивности, называемое дифракционной картиной.

Для простоты обратимся к результатам дифракции Фраунгофера на щели. Такая дифракционная картина состоит из центрального максимума и побочных минимумов меньшей интенсивности. Положение минимумов такой картины в приближении малых углов описывается следующим соотношением:

$$m\Delta x = m\lambda \frac{L}{d},\tag{*}$$

где $m \in \mathbb{Z} \setminus \{0\}$ — номер минимума, L — расстояние от щели до экрана. Отметим, что точно таким же образом описывается дифракционная картина от тонкой проволоки (волоса).

2 Экспериментальная часть

2.1 Порядок выполнения работы

- 1. Вырежем в картоне небольшое окошко размерами примерно 2×4 см. С помощью клейкой ленты закрепим в окошке натянутый волос. Разместим штатив на расстоянии L от экрана.
- 2. Будем светить зеленым лазером нм на волос и на экране отмечать пики дифракционной картины. В качестве экрана будем использовать белую маркерную доску.
- 3. Измерим расстояния между минимумами дифракционной картины по отметкам на маркерной доске.
- 4. Для повышения точности измерений получим дифракционную картину ещё раз и повторим измерения.
- 5. Повторим эксперимент на волосе другого человека.

2.2 Экспериментальные данные

Таблица 1: Некоторые измеряемые величины и их погрешность.

	L, cm	λ , HM	Δx , cm
Величина	100	532	5,0
Погрешность	1	0	0,2
ε , %	1	0	4

Таблица 2: Результаты измерений расстояний между минимумами.

	Волос D		Bолос G	
\overline{m}	Δx_1 , cm	Δx_2 , cm	Δx_1 , cm	Δx_2 , cm
8	-	-	7,8	7,8
7	7,0	-	7,0	6,6
6	6,1	-	6,1	5,8
5	5,2	4,4	5,0	4,8
4	4,5	3,5	4,0	3,8
3	3,4	2,5	3,1	3,0
2	2,3	1,8	1,9	2,1
1	1,1	0,8	1,0	1,0
0	0,0	0,0	0,0	0,0
-1	-0,9	-1,0	-0,9	-1,0
-2	-1,8	-2,1	-1,8	-2,0
-3	-2,8	-2,9	-2,7	-2,9
-4	-3,7	-4,0	-3,8	-3,9
-5	-4,8	-4,9	-4,8	-4,9
-6	-5,8	_	-5,9	-5,8
-7	-	-	-7,0	-6,7
-8	-	-	-8,0	-7,7

2.3 Обработка результатов

На основани результатов измерений, представленных в таблице 2, построим интерполяционные прямые, иллистрирующие зависмости $\Delta x = \Delta x(m)$ различных волос.

10
8
No 1
No 2
MHK No 1
MHK No 2

-2
-4
-6
-8
-10
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
m

Рис. 1: $\Delta x = \Delta x(m)$ волоса D.

Рис. 2: $\Delta x = \Delta x(m)$ волоса G.

В таблицах 3 и 4 представлены значения наклонов графиков, изображенных на рисунках 1 и 2 соответственно.

Таблица 3: Волос D.

	№ 1	Nº 2
$\Delta x/m$, cm	0,998	0,930
$\sigma_{\Delta x/m}$, cm	0,010	0,010

Таблица 4: Волос G.

	<i>№</i> 1	Nº 2
$\Delta x/m$, cm	0,988	0,965
$\sigma_{\Delta x/m}$, cm	0,005	0,004

Из формулы (*) следует, что толщина волоса есть $d_i = \lambda L(\Delta x/m)_i^{-1}$, тогда погрешность можно рассчитать следующим образом $\sigma_{d_i} = d_i \sqrt{\left(\frac{\sigma_{\Delta x/m}}{\Delta x/m}\right)_i^2 + \left(\frac{\sigma_L}{L}\right)^2}$. Рассчитанные значения усредним $d = \frac{d_1 + d_2}{2}$, причем $\sigma_d = \frac{\sigma_{d_1} + \sigma_{d_2}}{2}$. Окончательно получим:

$$d_D = (55, 3 \pm 0, 8) \text{ MKM}$$

$$d_G = (54, 5 \pm 0, 6) \text{ MKM}$$

3 Выводы

В ходе данной лабораторный работы мы наблюдали на волосе дифракционную картину, по которой определили толщину волос двух студентов ФОПФ с относительной погрешностью порядка 1,5%. В пределах погрешности толщины их волос получилсь одиннаковыми.

Отметим, что на экране протяженные полосы лазера чередовались не менее протяженными полосами теней. Протяженность темных участков может быть связана с тем, что глаз экспериментатора не чувствителен к низким интенсивностям света.

Для повышения точности результатов можно измерить толщину большего числа волос, взятых с головы одного человека.