

Established in collaboration with MIT

30.502 Research Methods

Final Examination

Semester 3
12th December 2017
2 pm to 4 pm (2 hours)

Instructions to Candidates:

- 1. This paper consists of 4 questions with XXX printed pages.
- 2. This test counts for 40% of your final 30.502 mark
- 3. Answer all the questions.
- 4. Write in blue or black ink. [Do not use red ink or pencil]
- 5. Write your answers in the answer books provided.
- 6. For derivations or calculations, put a box around your final solution
- 7. All phones, tablets, and other communication devices must be switched off.

Two-factor ANOVA notes

$$SSt = SSA + SSB + SS(AB) + SSE$$

Where the observed sum of squares:

$$SST = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{m=1}^{r} (y_{ijm} - \langle y \rangle)^{2}$$
$$= S^{2}(abr - 1)$$

The sum of square associated with A is:

$$SSA = b.r. \sum_{i=1}^{a} (\bar{A}_i - \langle y \rangle)^2$$

The sum of square associated with B is:

$$SSB = a.r. \sum_{j=1}^{b} (\bar{B}_j - \langle y \rangle)^2$$

The sum of squares error is:

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{m=1}^{r} (y_{ijm} - \bar{y}_{ij})^{2}$$

Sum of square associated with the AB interaction is SST(AB)

y = observation under m^{th} replication when A is at level i and B is at level j

a = number of levels of factor A

b = number of levels of factor B

r = number of replications per cell

 \bar{y}_{ij} =average for each cell (i.e., across replications)

 $\langle y \rangle = \text{grand average}$

 $i=1, \ldots a$ is the index for levels of factor A

 $j=1, \dots b$ is the index for levels of factor B

m = 1, ... r is the index for replicate.

SS(AB) is deduced as all other quantities are calculable.

A linear statistical model can be used to describe the response dependence on the two factors. The model starts with the grand average and adds individual effects of the factors, interfaction terms and noise.

$$y_{ij} = \langle y \rangle + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ij}$$

 α_i the main effect for factor a at level $i = \bar{A}_i - \langle y \rangle$, and $\sum_{i=1}^a \alpha_i = 0$

 β_j the main effect for factor b at level $\mathbf{j} = \bar{B}_i - \langle y \rangle$, and $\Sigma_{j=1}^b \beta_j = 0$

 $\alpha \beta_{ij}$ the interaction of (ab) at level ij $= \bar{y}_{ij} - (\langle y \rangle + \alpha_i + \beta_j)$, and $\Sigma_{j=1}^b \Sigma_{i=1}^a (\alpha_i \beta_j) = 0$

 ϵ_{ij} Uncorrelated error with a mean of zero and σ^2 =MSE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean square	Computed F statistic	Degrees of Freedom for p-value
Factor A	SSA	a-1	MSA = SSA/(a-1)	MSA/MSE	a-1, $ab(r-1)$
Factor B	SSB	b-1	MSB = SSB/(b-1)	MSB/MSE	b-1, $ab(r-1)$
AB interaction	SS(AB)	(a-1)(b-1)	MS(AB)=SS(AB)/(a-1)(b-1)	MS(AB)/MSE	(a-1)(b-1), $ab(r-1)$
Error	SSE	ab(r-1)	MSE=SSE/[ab(r-1)]	_	_
Total variation	SST	abr – 1	_	_	_

STANDARD NORMAL	DISTRIBUTION: Table	Values Represent A	AREA to the LEFT of	the Z score.

STANDAR										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414

7	00	0.1	0.2	0.2	0.4	0.5	0.6	0.7	00	00
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

t Table

cum. prob	t _{.50}	t .75	t .80	t .85	t _{.90}	t .95	t .975	t .99	t _{.995}	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df										0.00=	
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
2	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence Lo	evel				

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

Probability p
Table entry for ρ is the critical value F^* with probability ρ lying to its right.

	_	±.0	1.0	0. 0.	÷.	0.0		0.	Ť.		8. 9. م	. o.	Ť.		4	9.0	÷.	0; č		0.	÷.		9	9.0	=	. 0
	1 1			.010 4052.2 .001 405284		.050 18.5	10 98.50	.001 998.5	.100 5.54			.001 167.03				.001 74.14	100 4.06			01 47.18				.001 35.51		050 5.59
	2			4999.5 4 500000			0 99.00		4 5.46			3 148.50				4 61.25	3.78							27.00		9 4.74
	3	53.59	864.16	5403.4 540379	9.16	19.16	99.17	999.17	5.39	9.28	15.44 20.46	141.11	4.19	6.59	9.98	56.18	3.62	5.41	12.06	33.20	3.29	4.76	09.9	23.70	3.07	4.35
Degrees of fi	4	55.83	899.58	5624.6 562500	9.24	19.25	99.25	999.25	5.34	9.12	15.10	137.10	4.11	6.39	9.60	53.44	3.52	5.19	11.39	31.09	3.18	4.53	6.23	21.92	2 06	4.12
Degrees of freedom in the numerator	ıc	57.24	921.85	5763.6 576405	9.29	19.30	99.30	999.30	5.31	9.01	28.24	134.58	4.05	6.26	9.36	51.71	3.45	5.05	10.97	29.75	3.11	4.39	5.99	20.80	2 88	3.97
e numerator	9	58.20	937.11	5859.0 585937	9.33	19.33	99.33	999.33	5.28	8.94	14.73	132.85	4.01	6.16	9.20	50.53	3.40	4.95	10.67	28.83	3.05	4.28	5.82	20.03	2 8 3	3.87
	7	58.91	948.22	5928.4 592873	9.35	19.35	39.30 99.36	980.36	5.27	8.89	14.62	131.58	3.98	60.9	9.07	49.66	3.37	88.4	10.46	28.16	3.01	4.21	5.70	19.46	2 78	3.79
	∞	59.44	956.66	5981.1 598144	9.37	19.37	99.37	999.37	5.25	8.85	14.54	130.62	3.95	6.04	8.98	49.00	3.34	4.82	10.29	27.65	2.98	4.15	5.60	19.03	27.6	3.73
	6	59.86	963.28	6022.5	9.38	19.38	99.39	999.39	5.24	8.81	14.47	129.86	3.94	9.00	8.90	48.47	3.32	4.77	10.00	27.24	2.96	4, 10	5.52	18.69	770	3.68

T-14 Tables

		6	2.56 3.39 4.36 5.91 11.77	2.44 3.18 4.03 5.35 10.11	2.35 3.02 3.78 4.94 8.96	2.27 2.90 3.59 4.63 8.12	2.21 2.80 3.44 4.39 7.48	2.16 2.71 3.31 4.19 6.98	2.12 2.65 3.21 4.03 6.58	2.09 2.59 3.12 3.89 6.26	2.06 2.54 3.05 3.78 5.98	2.03 2.49 2.98 3.68 5.75
		œ	2.59 3.44 4.43 6.03 12.05	2.47 3.23 4.10 5.47 10.37	2.38 3.07 3.85 5.06 9.20	2.30 2.95 3.66 8.35	2.24 2.85 3.51 4.50 7.71	2.20 2.77 3.39 4.30 7.21	2.15 2.70 3.29 4.14 6.80	2.12 2.64 3.20 4.00 6.47	2.09 2.59 3.12 3.89 6.19	2.06 2.55 3.06 3.79 5.96
		7	2.62 3.50 4.53 6.18 12.40	2.51 3.29 4.20 5.61 10.70	2.41 3.14 3.95 5.20 9.52	2.34 3.01 3.76 4.89 8.66	2.28 2.91 3.61 4.64 8.00	2.23 2.83 3.48 7.44 7.49	2.19 2.76 3.38 4.28 7.08	2.16 2.71 3.29 4.14 6.74	2.13 2.66 3.22 4.03 6.46	2.10 2.61 3.16 3.93 6.22
	numerator	9	2.67 3.58 4.65 6.37 12.86	2.55 3.37 4.32 5.80 11.13	2.46 3.22 4.07 5.39 9.93	2.39 3.09 3.88 5.07 9.05	2.33 3.00 3.73 4.82 8.38	2.28 2.92 3.60 7.86	2.22 2.85 3.50 7.44 7.44	2.21 2.79 3.41 7.09	2.18 2.74 3.34 4.20 6.80	2.15 2.70 3.28 4.10 6.56
	Degrees of freedom in the numerator	ıc	2.73 3.69 4.82 6.63 13.48	2.61 3.48 4.48 6.06 11.71	2.52 3.33 4.24 5.64 10.48	2.45 3.20 4.04 5.32 9.58	2.39 3.11 3.89 5.06 8.89	2.35 3.03 3.77 4.86 8.35	2.31 2.96 3.66 4.69 7.92	2.27 2.90 3.58 4.56 7.57	2.24 2.85 3.50 4.44 7.27	2.22 2.81 3.44 4.34 7.02
	grees of fre	4	2.81 3.84 5.05 7.01 14.39	2.69 3.63 4.72 6.42 12.56	2.61 3.48 4.47 5.99 11.28	2.54 3.36 4.28 5.67 10.35	2.48 3.26 4.12 5.41 9.63	2.43 3.18 4.00 5.21 9.07	2.39 3.11 3.89 5.04 8.62	2.36 3.06 3.80 4.89 8.25	2.33 3.01 3.73 4.77 7.94	2.31 2.96 3.66 4.67 7.68
	De	3	2.92 4.07 5.42 7.59 15.83	2.81 3.86 5.08 6.99 13.90	2.73 3.71 4.83 6.55 12.55	2.66 3.59 4.63 6.22 11.56	2.61 3.49 4.47 5.95 10.80	2.56 3.41 4.35 5.74 10.21	2.52 3.34 4.24 5.56 9.73	2.49 3.29 4.15 5.42 9.34	2.46 3.24 4.08 5.29 9.01	2.44 3.20 4.01 5.19 8.73
		2	3.11 4.46 6.06 8.65 18.49	3.01 4.26 5.71 8.02 16.39	2.92 4.10 5.46 7.56 14.91	2.86 3.98 5.26 7.21 13.81	2.81 3.89 5.10 6.93	2.76 3.81 4.97 6.70	2.73 3.74 4.86 6.51 11.78	2.70 3.68 4.77 6.36 11.34	2.67 3.63 4.69 6.23 10.97	2.64 3.59 4.62 6.11 10.66
inued)			3.46 5.32 7.57 11.26 25.41	3.36 5.12 7.21 10.56 22.86	3.29 4.96 6.94 10.04 21.04	3.23 4.84 6.72 9.65 19.69	3.18 4.75 6.55 9.33 18.64	3.14 4.67 6.41 9.07 17.82	3.10 4.60 6.30 8.86 17.14	3.07 4.54 6.20 8.68 16.59	3.05 4.49 6.12 8.53 16.12	3.03 4.45 6.04 8.40 15.72
critical values (continued)		d	.100 .050 .025 .010	.100 .050 .025 .010	.100 .050 .025 .010	.100 .050 .025 .010	.100 .050 .025 .010	.100 .050 .010 .010	.100 .050 .010 .010	.100 .050 .025 .010	.100 .050 .025 .010	.100 .050 .025 .010
ical val			∞	6	10	11	12	13	41	15	16	17
F crit						inator	monəb ədi ni n	rees of freedor	Deg			

- i. Table 1 shows observed measurements, O, for different values of x. Both Normal distributions and Poisson distributions have been fit to O(x). In both cases the distribution means were computed from the observed data (the population mean is unknown). The expected value for the normal distribution $\langle E_N(x) \rangle$ and the Poisson distribution $\langle E_P(x) \rangle$ are shown. For convenience, the χ^2 between the expected and observed values are also given in the last two columns of the table.
 - (a) Compute χ^2 -statistic for the Normal and Poisson distribution fits.
 - (b) Perform a hypothesis test at $\alpha=5\times 10^{-3}$ to see if either of the distributions are significantly different from the observed data. State the number of degrees of freedom used for the test and the critical χ^2 .
 - (c) Based on these results state the distribution (Poisson or Normal) that better fits the observed.

x	O(x)	$ < E_N(x) >$	$\langle E_P(x) \rangle$	$\chi_N^2 = \frac{(O(x) - \langle E_N(x) \rangle)^2}{\langle E_N(x) \rangle}$	$\chi_P^2 = \frac{(O(x) - \langle E_P(x) \rangle)^2}{\langle E_P(x) \rangle}$
0	0.1	0.135	0.135	0.009	0.009
1	0.26	0.27	0.276	0.000	0.001
2	0.3	0.27	0.28	0.003	0.001
3	0.12	0.18	0.19	0.020	0.026
4	0.1	0.09	0.097	0.001	0.000
5	0.05	0.036	0.04	0.005	0.003
6	0.01	0.012	0.014	0.000	0.001

Table 1: Observed Measurements, expected values, and χ^2 .)

- ii. A discrete Fourier transform (DFT) is used to analyse an analog signal with a frequency content of up to 10 kHz. Calculate:
 - (a) the minimum sampling rate, f_s that is required to properly represent the signal
 - (b) the number of samples required for the DFT to achieve a frequency resolution of 10 Hz at the minimum sampling rate
- iii. Which of the following are correct?
 - (a) Precision and accuracy have the same meaning
 - (b) Precision is a measurement of how well a result can be determined
 - (c) Precision is a measurement of how close a result is to the true value
 - (d) Accuracy is a measurement of how well a result can be determined
 - (e) Accuracy is a measurement of how close a result is to the true value
 - (f) all of the above
- iv. The length of an object is measured N times. The mean length, \bar{x} and the standard deviation, S, in the length measurements are reported in Table 2. Calculate the standard error for each set of measurements. You note that \bar{x} only varies from 15.46 cm to 15.52 cm, so what is the advantage of increasing the number of measurements, N?
- v. In a two level factorial design of experiment, you are interested to know whether temperature and pressure (P) interact to produce higher quality materials. The interaction main effects plots are shown in Figure 1. Order the plots from low to high according to the strength of the interaction.

Table 2: Measurements of an object's length

\mathbf{N}	\bar{x}	S
5	$15.52~\mathrm{cm}$	$1.33~\mathrm{cm}$
25	$15.46~\mathrm{cm}$	$1.28~\mathrm{cm}$
625	$15.49~\mathrm{cm}$	$1.31~\mathrm{cm}$
10000	$15.49~\mathrm{cm}$	$1.31~\mathrm{cm}$

Figure 1: Main effects plots for the Temperture–Quality interaction in a two-level factorial design

vi. A full-factorial two level design of experiment is conducted to quantify the significance of tyre brand (B), tyre air pressure (P), and wear (W), on the speed of a F1 racing car. Write out the full table of possible experiments that should be conducted. Include the pressure and wear interaction column in your table.

Figure 2: Normal distributions with mean μ and standard deviation σ , and the distribution of n independently selected sample with a mean of \bar{x} , and standard deviation σ . z_A is the standard normalised z-score for distribution A.

Figure 2 shows two distributions, A and B. A is the parent distribution and it has a mean of μ . B is the distribution of n randomly selected samples and it has a mean of \bar{x} . Both distributions have the same standard deviation, σ . For the hypothesis test H_0 : $\mu = \bar{x}$ and H_A : $\mu \neq \bar{x}$,

- a) What does the light blue shaded area represent?
- b) What does the green shaded area represent?
- c) To test the hypothesis $\mu = \bar{x}$, you select a sufficient number of samples, n, from distribution B such that the β -error is 10%. For this case, what is the value of z_B ?
- d) For a 5% significance level, a 10% β -error, in terms of μ and σ , write an expression for \bar{x} , which is the mean of distribution B.
- e) If $\bar{x} \mu = 1$, use your answer from (d) to find the standard error for a 5% significance level, and a 10% β -error
- f) If the standard deviation, $\sigma = 2$ and $\bar{x} \mu = 1$, what is the minimum number of samples, n, that must be taken in order to reject H_0 with a significance level of 5% and a β -error of 0.1.

Problem 3 Propagation of Errors [10 Points]

The electrical voltage across a capacitor in a resistor–capacitor series circuit at time t is given by $V(t) = V_0(1-e^{-\frac{t}{RC}})$, where $V_0 = 1$ V is the voltage the at t=0 seconds, R is the resistance, and C is the capacitance. What is the voltage across the capacitor after 10 seconds if R=1 $M\Omega$ ($M=10^6$) and C=40 μF ($\mu=10^{-6}$) and both values are known to an accuracy of 5%. Note that a stopwatch is used to measure the 10 seconds, but the experimenter's random measurement error is 0.2 seconds.

- (a) Use the propagation of error equation to determine the **relative error** in the current after 10 seconds of discharging.
- (b) Which factor should be improved to gain a more accurate measurement of the voltage
- (c) The analyst is better at programming than differentiation. Rather than applying the propagation of error equation to find the relative error in the electrical voltage, the analyst determines the voltage error using a Monte Carlo simulation. Draw a flow diagram to show how the analyst might implement the Monte Carlo simulation.

Problem 4 Propagation of Errors [10 Points]

Problem 5 ANOVA and DoE [10 Points]

An experiment was performed to determine the effect chemicals and threads on the strength of a fabric. Five different threads were measured and four different chemical types were used. The data are shown in Table 3. We will test to see if the threads and chemicals significantly effect the fabric strength using the two factor analysis of variance method. The significance level for the test should be $\alpha = 0.01$.

	Thread Type, B					
Chemical type, A	1	2	3	4	5	Average
1	1.3	1.6	0.5	1.2	1.1	1.14
2	2.2	2.4	0.4	2.0	1.8	1.76
3	1.8	1.7	0.6	1.5	1.3	1.38
4	3.9	4.4	2.0	4.1	3.4	3.56
Average	2.30	2.53	0.88	2.2	1.90	1.96

Table 3: Effect of chemicals and thread type on the strength of a fabric. The mean strength measured for the whole data set is 1.96, and the **variance is 1.352**

Perform an ANOVA test at a significance level of $\alpha=0.01$. For each calculation, clearly state the number of degrees of freedom used.

- a) Calculate the between group sum of squares for the different chemical types (SSA)
- b) Calculate the between group sum of squares for the different thread types (SSB)
- c) Calculate the total sum of squares (SST)
- d) Calculate the sum of square errors (SSE)
- e) Calculate the F-statistic for the chemical type and the thread type.
- f) Do the different chemicals and threads have a statistically significant effect on the fabric strength? Use a significance level of 0.01 to justify your conclusion.

END OF EXAM PAPER