N-MIXTURE MODEL WITH DETECTION MODELED BY COVARIATES AND RANDOM EFFECT ON DETECTION PROBABILITY

Brian M. Brost

30 APR 2015

Model implementation

The file N.mixture.random.p.sim.R simulates data according to the model statement presented below, and N.mixture.random.p.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let y_{ij} be the j^{th} count of individuals at site i, for j = 1, ..., J and i = 1, ..., m, and N_i be the true number of individuals at site i. Assuming the population is closed to mortality, recruitment, immigration, and emigration over the course of the J surveys conducted at any given site,

$$y_{ij} \sim \operatorname{Binom}(N_i, p_{ij})$$
 $N_i \sim \operatorname{Pois}(\lambda_i)$
 $\operatorname{logit}(p_{ij}) \sim \mathbf{W}_{ij}\boldsymbol{\alpha} + \epsilon_{ij}$
 $\epsilon_{it} \sim \operatorname{N}(0, \zeta^2)$
 $\lambda_i \sim \operatorname{Gamma}(r, q)$
 $\boldsymbol{\alpha} \sim \operatorname{N}(\boldsymbol{\mu}, \tau^2 \mathbf{I})$
 $\zeta \sim \operatorname{Unif}(a, b).$

Note that this model allows λ to vary by site and p_{ij} , the detection probability, to be modeled as a function of covariates.

Posterior distribution

For a single site, i:

$$[N_i, \boldsymbol{\alpha}, \lambda_i, \boldsymbol{\epsilon}, \zeta | \mathbf{y}_i, \mathbf{W_i}] \propto \prod_{j=1}^J [y_{ij} | N_i, p_{ij}] [N_i | \lambda_i] [\epsilon_{ij}] [\lambda_i] [\boldsymbol{\alpha}] [\zeta]$$

Full conditional distributions

Coefficients describing the effect of covariates on detection probability (α) :

$$[oldsymbol{lpha}|\cdot] \quad \propto \quad \prod_{j=1}^J [y_{ij}|N_i,p_{ij}][oldsymbol{lpha}].$$

This full-conditional distribution does not have a known analytical form; therefore sample \mathbf{p} using Metropolis-Hastings.

The true number of individuals (N_i) :

$$[N_{i}|\cdot] \propto \prod_{j=1}^{J} [y_{ij}|N_{i}, p_{ij}][N_{i}|\lambda_{i}]$$

$$\propto \prod_{j=1}^{J} {N_{i} \choose y_{ij}} p_{ij}^{y_{ij}} (1 - p_{ij})^{N_{i} - y_{ij}} \left(\frac{\lambda_{i}^{N_{i}} e^{-\lambda_{i}}}{N_{i}!}\right)$$

$$\propto \prod_{j=1}^{J} \left(\frac{N_{i}!}{y_{ij}!(N_{i} - y_{ij})!}\right) p_{ij}^{y_{ij}} (1 - p_{ij})^{N_{i} - y_{ij}} \left(\frac{\lambda_{i}^{N_{i}} e^{-\lambda_{i}}}{N_{i}!}\right)$$

$$\propto \prod_{j=1}^{J} \frac{(1 - p_{ij})^{N_{i} - y_{ij}} \lambda_{i}^{N_{i}}}{(N_{i} - y_{ij})!}$$

$$\propto \prod_{j=1}^{J} \frac{(1 - p_{ij})^{N_{i} - y_{ij}} \lambda_{i}^{N_{i}} \lambda_{i}^{-y_{ij}}}{(N_{i} - y_{ij})!}$$

$$\propto \prod_{j=1}^{J} \frac{(\lambda_{i} (1 - p_{ij}))^{N_{i} - y_{ij}}}{(N_{i} - y_{ij})!} e^{-\lambda_{i} (1 - p_{ij})}.$$

This full-conditional is a little strange because $[N_i - y_{ij}|\cdot] \propto \text{Pois}(\lambda_i(1-p_{ij}))$, which suggests there is one true abundance per replicate count at each site. This is in contrast to the case in which only one observation exists per site, i.e., $[N_i - y_i|\cdot] \propto \text{Pois}(\lambda_i(1-p_i))$. Given that $[N_i|\cdot]$ lacks a clear analytical solution, sample N_i using Metropolis-Hastings.

Rate of the process model (λ_i) :

$$\begin{split} [\lambda_i|\cdot] & \propto & [N_i|\lambda_i][\lambda_i] \\ & \propto & \frac{\lambda_i^{N_i}e^{-\lambda_i}}{N_i!}\lambda_i^{r-1}e^{-\lambda_i q} \\ & \propto & \lambda_i^{N_i}e^{-\lambda_i}\lambda_i^{r-1}e^{-\lambda_i q} \\ & \propto & \lambda_i^{N_i+r-1}e^{-\lambda_i(1+q)} \\ & = & \operatorname{Gamma}\left(N_i+r,1+q\right). \end{split}$$

Random effect on detection probability (ϵ_{ijt}) :

$$[\epsilon_{ij}|\cdot] \propto [y_{ij}|N_t, p_{ij}][\epsilon_{ij}]$$

This full-conditional lacks an analytical solution; therefore, sample ϵ_{it} using Metropolis-Hastings.

Standard deviation of random effect (ζ) :

$$[\zeta|\cdot] \propto \prod_{i=1}^{J} \prod_{j=1}^{m} [\epsilon_{ij}|\zeta][\zeta].$$

This full-conditional lacks an analytical solution; therefore, sample ζ using Metropolis-Hastings.