Projet 7 Développez une preuve de concept

Sommaire

- Présentation du projet
- État de l'art de la détection d'objets
- Modèle de référence
- Algorithme YOLOv5
- Algorithme YOLOR
- Synthèse

presentation

- Comment améliorer le projet P6 ?
- Actuellement : classification
- Ajout : localisation
- Pistes d'améliorations :
 - Data augmentation
 - traitement images différents(résolution)
 - test de différentes configuration sur des petits datasets
 - Tester de nouveaux modèles

Méthodologie

- Dataset: (standforddogs, road signs, whiteblood)
- Localisation : récupération/conversion ou création
- Modèles de référence xception avec transfert learning
- Algorithme de détection Yolor et Yolov5

État de l'art de la détection d'obiets

- Détection d'objets = classification + localisation
- Transformation des images : encadrer les cibles
- Localisation = prédire un rectangle d'encadrement

→ coordonnées centre rectangle + hauteur + largeur

État de l'art de la détection d'objets

- Algorithmes testés :
 CNN (R CNN) , yoloV5 et Yolor
- Métriques :
- Classification → précision / recall /
- Localisation → mAP@0.X

Modèles de référence

- Dataset :
 - -stanforddogs (120 classes)
 - -road signs (4 classes)
 - -bloodcells (6 classes)
- Performances Xception

XCEPTION	StandfordDogs	Roadsigns	Whitebloods
Loss	0.3741	0.1204	0.1576
Accuracy	0.89	0.76	0.94

Modèles de référence

Road signs

	precision	recall	f1-score	support
crosswalk speedlimit stop trafficlight	0.73 0.96 0.60 0.73	0.61 0.94 0.75 0.92	0.67 0.95 0.67 0.81	18 138 8 12
accuracy macro avg weighted avg	0.76 0.90	0.80 0.90	0.90 0.77 0.90	176 176 176

speedlimit 100% (speedlimit)

speedlimit 99% (speedlimit)

White cells

	precision	recall	f1-score	support
	•			
basophil	0.97	0.93	0.95	245
eosinophil	0.94	0.98	0.96	623
erythroblast	0.89	0.98	0.93	316
ĺymphocyte	0.88	0.99	0.93	228
monocyte	0.95	0.94	0.94	299
neutrophil	0.98	0.87	0.92	659
accuracy			0.94	2370
macro avo	0.94	0.95	0.94	2370
weighted avg	0.94	0.94	0.94	2370

erythroblast 100% (erythroblast)

erythroblast 98% (erythroblast)

Yolov5

Rectangle d'encadrement

0 0.398 0.569 0.257 0.542

Yolo configuration:

Utilisation du Transfer Learning , fine tuning, grâce aux fichiers de configuration

Yolov5

- Anchor boxes pour chaque images
- Préparation des données → yolov5.yaml :
 - Nombre de classes
 - Noms des classes
 - convertion des annotations aux formats pascal voc vers yolo
 - création de labels automatiquement
 - Data augmentation +Fine-tuning

Yolov5 performances

 $Resultats: {\tt https://wandb.ai/ismail-azdad/YOLOR/reports/yolor-blood_cells-dataset-report---VmlldzoxOTQwNzM2}$

YOLOV5	StandfordDogs	Roadsigns	Whitebloods	
Loss	0.00999	0.002799	0.00153	
Accuracy	0.78	0.98	0.991	

Yolov5 whitecells métrique

Matrice de confusion yolov5 roadsigns

Matrice de confusion yolov5 whitecells

Yolor

Anchor boxes pour chaque image (comme Yolov5)

- Préparation des données → fichier_conf.yaml + names :
 - Nombre de classes
 - Noms des classes
 - réglages des résolutions d images
 - path des images pour chaque jeu de données
 - convertion pascal voc to yolo format
 - creation de labels automatiquement
- Utilisation du Transfer Learning
- Data augmentation + fine tuning

Yolor performances

 $\textbf{Resultats:} \ {\tt https://wandb.ai/ismail-azdad/YOLOR/reports/yolor-blood_cells-dataset-report---VmlldzoxOTQwNzM2}$

YOLOR	Roadsigns	Whitebloods
Loss	0.01113	0.003741
Accuracy	0.85	0.96

Yolor whitecells metric

Résultat

Liens vers les notebooks

https://github.com/ismailazdad/vision_detection_benchmark

accuracy	StandfordDogs	Roadsigns	Whitebloods
Xception	0.89	0.76	0.94
YOLOR	X	0.85	0.96
YOLOV5	0.78	0.98	0.99

synthèse

- État de l'art des architecture existantes
- Modèles références pour classification
 - Xception avec Transfer Learning
- Algorithme YOLOv5 :
- Ajout data augmentation
- Création rectangles d'encadrement
- Entraînement chronophage du modèle
- Meilleure classification des trois
- Algorithme YOLOr :
- Ajout data augmentation
- Création rectangles d'encadrement
- Entraînement plus rapide que YOLOv5
- Meilleure détection que Xception
- détection plus rapide

Thank you!