Thermal & Electrochemical combustion-Enthalpy & Gibbs Free Energy Changes

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

Previously: Energy Challenge & Enthalpy Changes of thermal combustion-

$$\overline{h}(T,p) = \overline{h}_{f}^{\circ} + [\overline{h}(T,p) - \overline{h}(T_{ref}, p_{ref})] = \overline{h}_{f}^{\circ} + \Delta \overline{h}$$

$$Q - W = \overline{h}_C^{\circ} + \sum N_p (\overline{h} - \overline{h}^{\circ})_p - \sum N_r (\overline{h} - \overline{h}^{\circ})_r \qquad (kJ/kmol)$$

Entropy change for reacting systems

$$S_{\rm in} - S_{\rm out} + S_{\rm gen} = \Delta S_{\rm system}$$
 (kJ/K)
Net entropy transfer Entropy Change by heat and mass generation in entropy

$$\sum \frac{Q_k}{T_k} + S_{\text{gen}} = S_{\text{prod}} - S_{\text{react}} \qquad (kJ/K)$$

$$S_{\text{gen,adiabatic}} = S_{\text{prod}} - S_{\text{react}} \ge 0$$

Figs: TD-Cengel & Boles

Approximations to entropy & Absolute Entropy

 3^{rd} law: $S \rightarrow Constant$ as $T \rightarrow 0$

$$\overline{s}(T,P) = \overline{s}^{\circ}(T,P_0) - R_u \ln \frac{P}{P_0}$$

$$\overline{s}_i(T, P_i) = \overline{s}_i^{\circ}(T, P_0) - R_u \ln \frac{y_i P_m}{P_0} \qquad (kJ/kmol \cdot K)$$

Thermochemical Properties of Selected Substances at 298K and 1 atm

			Enthalm, of	Cibbo Forestion		Heating Values	
Substance	Formula	Molar Mass, <i>M</i> (kg/kmol)	Enthalpy of Formation, $\overline{h_f^o}$ (kJ/kmol)	Gibbs Function of Formation, \bar{g}_{f}^{o} (kJ/kmol)	Absolute Entropy, \$\overline{s}^{\text{o}} (kJ/kmol·K)	Higher, HHV (kJ/kg)	Lower, LHV (kJ/kg)
Carbon	C(s)	12.01	0	0	5.74	32,770	32,770
Hydrogen	H₂(g)	2.016	0	0	130.57	141,780	119,950
Nitrogen	N ₂ (g)	28.01	0	0	191.50	_	-
Oxygen	O₂(g)	32.00	0	0	205.03	_	-
Carbon Monoxide	CO(g)	28.01	-110,530	-137,150	197.54	-	-
Carbon dioxide	CO₂(g)	44.01	-393,520	-394,380	213.69	-	-
Water	H₂O(g)	18.02	-241,820	-228,590	188.72	_	-
Water	H₂O(I)	18.02	-285,830	-237,180	69.95	-	-

2nd law analysis of reacting systems

$$X_{\text{destroyed}} = T_0 S_{\text{gen}}$$
 (kJ) $\psi = (h - T_0 s) - (h_0 - T_0 s_0)$

$$w^{\text{rev}} = \dot{W}^{\text{rev}} / \dot{m} = \sum \left(1 - \frac{T_0}{T_j} \right) q_j + (h_{\text{tot}i} - T_0 s_i) - (h_{\text{tot}e} - T_0 s_e)$$

$$W^{\text{rev}} = \sum m_i (h_i - T_0 s_i) - \sum m_e (h_e - T_0 s_e)$$

$$W^{\text{rev}} = \sum_{R} n_{i} (\overline{h}_{f}^{0} + \Delta \overline{h} - T_{0} \overline{s})_{i} - \sum_{P} n_{e} (\overline{h}_{f}^{0} + \Delta \overline{h} - T_{0} \overline{s})_{e} \stackrel{\text{Exergy}}{\uparrow}$$

$$g = h - Ts$$

$$W^{\text{rev}} = \sum_{R} n_i \overline{g}_i - \sum_{P} n_e \overline{g}_e = -\Delta G$$

$$\Delta G = \Delta H - T \Delta S$$

Figs: TD-Borgnakke & Sonntag; Cengel & Boles

Reversible work from formation of compounds

$$W_{\text{rev}} = \sum N_r \overline{g}_{f,r}^{\circ} - \sum n_p \overline{g}_{f,p}^{\circ} \qquad \text{(kJ)}$$

Thermochemical Properties of Selected Substances at 298K and 1 atm

			E .1 1 6	CILL E:		Heating Values	
Substance	Formula	Molar Mass, M (kg/kmol)	Enthalpy of Formation, \overline{h}_f^o (kJ/kmol)	Gibbs Function of Formation, \bar{g}_{f}^{o} (kJ/kmol)	Absolute Entropy, \$\overline{s}^0 (kJ/kmol·K)	Higher, HHV (kJ/kg)	Lower, LHV (kJ/kg)
Carbon	C(s)	12.01	0	0	5.74	32,770	32,770
Hydrogen	H₂(g)	2.016	0	0	130.57	141,780	119,950
Nitrogen	N₂(g)	28.01	0	0	191.50	-	
Oxygen	O ₂ (g)	32.00	0	0	205.03	_	-
Carbon Monoxide	CO(g)	28.01	-110,530	-137,150	197.54	-	-
Carbon dioxide	CO₂(g)	44.01	-393,520	-394,380	213.69	-	-
Water	H₂O(g)	18.02	-241,820	-228,590	188.72	-	_
Water	H₂O(I)	18.02	-285,830	-237,180	69.95	-	_

Fuel cells & Batteries: Electrical work unconstrained by Carnot η

Figs: TD-Moran, Shapiro, Boettner & Bailey; Borgnakke & Sonntag

What's next?

• Phase equilibria, Phase rule & Kirchoff equation