Алгоритм Берлекэмпа разложения на множители многочленов от одной переменной над конечным полем

Плешаков Алексей, М3439

15.10.2020

1 Постановка задачи

Пусть $f(x) = x^d a_d + x^{d-1} a_{d-1} + \ldots + a_0$ — многочлен от одной переменной, $a_i \in GF(q=p^n)$, $d = \deg(f(x)) \ge 2$. Требуется разложить f(x) на множители в соответствующем конечном поле.

2 Подготовка

Если a, b — многочлены в кольце вычетов по модулю p, то $(a+b)^k \equiv a^k + b^k \pmod{p}$.

Доказательство. Распишем выражение с помощью бинома Ньютона:

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \ldots + \binom{p}{p-1}ab^{p-1} + b^p \equiv a^p + b^p \pmod{p}$$

Пусть a(x) — многочлен, тогда $a(x^p) \equiv a(x)^p \pmod{p}$.

Доказательство. Докажем утверждение индукцией по deg(a(x)). Предположение верно при deg(a(x)) = 0. В общем случае же $a(x) = b(x) + a_n x^n, deg(b(x)) < deg(a(x)),$ и a(x) можно выразить следующим образом:

$$a(x) = (b(x) + a_n x^n)^p = a(x)^p + (a_n x^n)^p = b(x^p) + a_n x_{np} = a(x^p)$$

3 Переход к задаче попроще

Пусть

$$f(x) = f_1(x)_1^e f_2(x)_2^e \dots f_k(x)_k^e$$

где f_i — неприводимые многочлены, входящие в разложение со степенями e_i . Покажем, что нахождение разложения $\Pi_0^n f_i(x)^{e_i}$ сводится к нахождению разложения многочлена

$$g(x) = g_1(x)g_2(x)\dots g_k(x)$$

не имеющего кратных неприводимых множителей. В самом деле, если будет найдено разложение g(x), то, при условии, что возможно декомпозировать f(x) на совокупность различных $g_j(x)_{j=0}^t$, можно будет получить степени $f_i(x)$. Рассмотрим метод, позволяющий декомпозировать f(x).

3.1 Square-free decomposition

Предположим, что f(x) представлен в виде произведения линейных множителей:

$$f(x) = \prod_{i=1}^{n} (x - a_i)^{n_i}$$

В таком случае производная f', посчитанная чисто алгебраическим методом по коэффициентам f, равна

$$f' = \sum_{i=1}^{n} n_i (x - a_i)^{n_i - 1} \prod_{i \neq j, j=1}^{n} (x - a_j)^{n_j}$$

Заметим, что, для любого i, $(x - a_i)^{n_i-1}$ делит f и f'. Более того, каждый многочлен, делящий f, является произведением $(x - a_i)$ в степенях, не превосходящих соответствующие n_i . Таким образом, наибольший общий делитель $g = \gcd(f, f')$ почти определен: это произведение $(x - a_i)$ в степенях n_i или $n_i - 1$. Но эта степень не может быть равной n_i , так как в таком случае ровно одно слагаемое f' не будет делиться на g, а, значит, и f' не будет делиться на g. Таким образом,

$$\gcd(f, f') = \prod_{i=1}^{n} (x - a_i)^{n_i - 1}$$

Значит, $\frac{f}{\gcd(f,f')} = \prod_{i=1}^n (x-a_i)$. Обозначим эту величину как q. Далее,

$$\gcd(q,\gcd(f,f'))=\Pi_{i=1,n_i>1}^n(x-a_i)$$

, и, соответственно,

$$\frac{q}{\gcd(q,\gcd(f,f'))} = \Pi_{i=1,n_i=1}^n(x-a_i) = g(x)$$

Заметим, что рассуждения выше не работают для многочленов с нулевой производной. Обработаем эти случаи следующим образом:

Пусть gcd(f, f') = f, тогда f' = 0. Такое равенство может выполниться лишь в том случае, когда каждый моном f является точной p-й степенью (так как p является характеристикой конечного поля). Тогда $f = g(x)^p$, и для вычисления декомпозиции мы должны рекурсивно применить алгоритм к q.

Вышеприведенным образом оказывается возможно вычислить g(x), являющийся произведением всех множителей, входящих в f(x) в первой степени. Более того, было получено значение $\gcd(f,f')$, которое имеет все те же множители, что и f, но с уменьшенными на единицу показателями степеней. Если примененный к f алгоритм применить к $\gcd(f,f')$, можно получить значение g, являющееся произведением всех множителей f второй степени. Действуя по аналогии, можно представить f в виде Πg_i^i , где g_i — произведение всех множителей f степени i. Каждый из g_i при этом не имеет множителей степеней более первой, и все g_i взаимно просты. Такое разложение f называется square free decomposition. Вышеприведенное сведение можно выполнить за $\mathcal{O}(d^3 \log d) \subset \mathcal{O}(qrd^2)$, где r — количество неприводимых сомножителей f.

4 Основной случай

Пусть

$$f(x) = f_1(x) f_2(x) \dots f_k(x)$$

где f_i — неприводимые многочлены. Необходимо найти разложение $\{f_1(x), f_2(x), \dots, f_k(x)\}$. Примем во внимание факт, что f_i взаимно просты.

Пусть $s_1, s_2, \dots s_k$ — некоторые элементы поля GF(q). По китайской теореме об остатках, существует полином

$$v \equiv s_i \pmod{q, f_i(x)} \tag{1}$$

. Степень v при этом не превосходит произведение f_i , то есть f. Такой полином может нам пригодиться, так как если $s_i \neq s_j$, то $\gcd(f,v-s_i)$ делится на f_i , при этом не делясь на f_j , и поэтому декомпозирует f. Выполняется следующее соотношение:

$$v(x)^q \equiv s_j^q \equiv s_j \equiv v(x) \pmod{f_j, q}$$

, и, по китайской теореме об остатках,

$$v(x)^q \equiv v(x) \pmod{f(x), q} \tag{2}$$

. Также, подставив в вышестоящее равенство x = v(x), получим соотношение

$$v(x)^{q} - v(x) \equiv (v(x) - 0)(v(x) - 1)\dots(v(x) - (q - 1)) \pmod{q}$$
(3)

Таким образом, если v(x) удовлетворяет равенству (2), f(x) делит левую часть (3), и каждый из неприводимых сомножителей f_i является делителем одного полинома правой части (3). Это, в свою очередь, иллюстрирует то, что v эквивалентен элементу из поля GF(q), а, значит, решения уравнения (1) совпадают с решениями уравнения (2).

Уточним, как алгоритмически получить решения (1). Рассмотрим матрицу

$$Q = \begin{pmatrix} q_{0,0} & q_{0,1} & \dots & q_{0,d-1} \\ q_{1,0} & q_{1,1} & \dots & q_{1,d-1} \\ \vdots & \vdots & & \vdots \\ q_{d-1,0} & q_{d-1,1} & \dots & q_{d-1,d-1} \end{pmatrix}$$

, где $x^{qk} \equiv q_{k,d-1}x^{d-1} + \ldots + q_{k,1}x + q_{k,0} \pmod{f(x),q}$. Рассмотрим полином как вектор его коэффициентов; тогда умножение на Q будет соответствовать возведению этого полинома в степень q. Таким образом, решения (2) будут являться собственными векторами Q для собственного числа 1. Наконец, алгоритм Берлекэмпа будет выглядеть следующим образом:

- 1. Привести f(x) к соответствующему многочлену, не имеющему кратных неприводимых сомножителей.
- 2. Вычислить матрицу Q.
- 3. Найти собственные векторы Q для собственного значения 1. Одним из них всегда является вектор $[1,0,\ldots,0]$, так как целые числа всегда являются решениями (2). Размер базиса собственных векторов соответствует количеству многочленов в разложении f(x).
- 4. Вычислить $gcd(f, v_i s)$ для каждого целого числа s по модулю q, где v_i многочлены, соответствующие собственным векторам Q. С помощью этих вычислений получить разложение f(x).
- 5. Если преобразовение шага 1 оказалось нетривиальным, восстановить разложение исходного полинома по имеющемуся.

Асимптотикой алгоритма будет являться $\mathcal{O}(d^3+qrd^2)$, где r — количество множителей в разложении.