# Erteilt auf Grund des Ersten Überleitungsgesetzes vom 8. Juli 1949 (WIGBL S. 075)

#### BUNDESREPUBLIK DEUTSCHLAND



AUSGEGEBEN AM 28. AUGUST 1958

### **DEUTSCHES PATENTAMT**

## PATENTSCHRIFT

M: 970 246

KLASSE 48b GRUPPE 1103

INTERNAT. KLASSE C23c ——

p 9812 VI/48bD

Dipl.=Sing. Gotthard Portner, Langenberg (Thür.) ist als Erfinder genannt worden

Siemens & Halske Aktiengesellschaft, Berlin und München

Vorrichtung zur laufenden Bedampfung endloser Gebilde

Patentiert im Gebiet der Bundesrepublik Deutschland vom 2. Oktober 1948 an
Patentanmeldung bekanntgemacht am 9. November 1950
Patenterteilung bekanntgemacht am 14. August 1958

An anderer Stelle ist eine Vorrichtung zur laufenden Bedampfung von endlosen Gebilden, wie Bändern, Fäden u. dgl., vorgeschlagen worden, bei welcher der sogenannte Verdampfer, das ist ein Be-5 hälter, in welchem der zu verdampfende Stoff erhitzt wird, aus Kohle, Graphit oder einem anderen Halbleiter besteht. Der Grund für die Benutzung derartiger Stoffe für den Verdampfer liegt im wesentlichen darin, daß mit dem Verdampfungsgut 10 keinerlei Legierungsbildung eintreten kann, welche den Verdampfer in kurzer Zeit zerstören würde, und daß er außerdem sehr temperaturbeständig ist, so daß auch Stoffe mit sehr hohem Siedepunkt, die zur Erzeugung einer ausreichenden Dampfausbeute auch 15 sehr hoch erhitzt werden müssen, daraus verdampft werden können. Ferner sind Vorrichtungen vorge-

schlagen worden, bei denen der Verdampfer mehrere das Verdampfungsgut aufnehmende, voneinander getrennte Kammern besitzt. Bei diesen Vorrichtungen wird die kleine Menge des zu verdampfenden stoffes innerhalb jeder Kammer im Gegensatz zu Verdampfern mit nur einer Kammer in wesentlich kürzerer Zeit auf Verdampfungstemperatur gebracht.

Im Interesse eines hohen Wirkungsgrades wählt man bei Bedampfungseinrichtungen die sogenannte direkte Heizung, d. h., man schaltet den Verdampfer als Widerstand in den Heizstromkreis, um das Verdampfungsgut zu erwärmen. Hierbei findet eine unmittelbare Wärmeübertragung auf das Verdampfungsgut statt, wohingegen bei indirekter Heizung durch andere Widerstände oder durch Strahlungs-

09 602/88

heizung ein nicht unerheblicher Wärmewiderstand zu überwinden ist, wobei gleichzeitig auch die Ver-

luste durch Strahlung anwachsen.

Wenn man nun einen mit Verdampfungsgut aus Metall gefüllten Verdampfer direkt beheizt, ergeben sich gewisse Schwierigkeiten dadurch, daß das verdampfende Gut als ausgezeichneter Leiter für den elektrischen Strom den Verdampfer zum Teil kurzschließt, so daß nur die zwischen den einzelnen Verdampferkammern vorhandenen Teile des Verdampfers als Wärmegenerator dienen. Da der Nebenschluß durch das verdampfende Gut abhängig von der Füllhöhe der Kammern ist, ist während des Verdampfungsvorganges, bei welchem das Verdampfungsgut 15 laufend geringer wird, mit einer laufenden Änderung der Heizenergie und somit auch mit einer laufenden Anderung der erzeugten Dampfmenge zu rechnen, die, wenn überhaupt, nur mit größten Schwierigkeiten durch gegenläufige Anderung des Heizstromes kompensiert werden kann, da es in der Regel auf eine gleichmäßige Stärke der aufgedampften Schicht und damit primär eine gleichmäßig starke Dampfentwicklung ankommt.

Die Vorrichtung kann nun so aufgebaut werden, 25 daß der beschriebene Nachteil vermieden wird und eine gleichmäßige Bedampfung erfolgt, wenn der als Behälter ausgebildete, vom Heizstrom durchflossene, aus Kohle, Graphit oder einem Halbleiter bestehende Verdampfer mehrere das Verdampfungsgut aufnehmende, voneinander getrennte Kammern besitzt und wenn erfindungsgemäß der Verdampferquerschnitt zwischen den Kammern geschwächt ist. Hierdurch kann man bei sinnvoller Ausbildung des Verdampfers erreichen, daß der elektrische Wider-35 stand des Verdampfers unabhängig von der Füllmenge des Verdampfungsgutes in den einzelnen Kammern ist, daß der Heizstrom im wesentlichen konstant bleibt und ohne besondere Beobachtung eine gleichmäßige Bedampfung gewährleistet ist, weil die Teile des Verdampfers, die zwischen den Kammern liegen, einen gegenüber den Kammerteilen hohen Widerstand besitzen. Die Verringerung des leitenden Querschnittes des Verdampfers zwischen den Kammern erfolgt am zweckmäßigsten durch Anbringung von durchgehenden Durchbrechungen in Form von Löchern oder Schlitzen, wobei durch besondere Anordnung dieser Löcher oder Schlitze der Stromweg in den Teilen zwischen den Kammern noch künstlich vergrößert werden kann, beispielsweise dadurch, daß man einen mäanderförmigen Stromverlauf schafft. Die letztgenannte Ausführung hat noch den Vorteil, daß die als Heizgenerator wirkenden Teile des Verdampfers mit den Hauptflächen unmittelbar auf die Kammerwände strahlen, so daß auch die Strahlungsverluste

besonders gering werden.

In der Zeichnung sind verschiedene Beispiele für die Ausbildung von Verdampfern entsprechend der Erfindung dargestellt, ohne jedoch den Anspruch auf Vollzähligkeit zu erheben. Die Verdampfer bestehen aus Stäben aus Kohle od. dgl. und sind sämtlich von oben betrachtet dargestellt. In Fig. 1 ist a ein Stab beliebigen Querschnittes aus Kohle od. dgl., in wel-

chem in bestimmten Abständen Kammern für die Aufnahme des Verdampfungsgutes vorgesehen sind. 65 Diese Kammern sind mit b bezeichnet. Der leitende Querschnitt des Verdampfers zwischen den Kammern b ist durch die Ausnehmungen c geschwächt, so daß diese Teile einen höheren elektrischen Widerstand besitzen, der im wesentlichen den Gesamt- 70 widerstand des Verdampfers bestimmt. Bei geeigneter Bemessung kann man erreichen, daß der Gesamtwiderstand unabhängig von der Füllmenge der Kammern b wird. In Fig. 2 ist ein ähnlicher Verdampfer wiedergegeben, bei welchem die Ausneh- 75 mungen c jedoch Löcher durch den Verdampferkörper darstellen. Wie die Fig. 3 zeigt, ist die Schwächung des Verdampferquerschnittes an den zwischen den Kammern b liegenden Teilen durch abwechselnd von verschiedenen Seiten erfolgte Ein- 80 schnitte d, die bis über die Längsachse des Verdampfers reichen, erzielt, wodurch sich ein mäanderförmiger Stromverlauf ergibt. Die Fig. 4 und 5 unterscheiden sich von den vorhergehenden Beispielen grundsätzlich dadurch, daß die zwischen den 85 Kammern liegenden Teile des Verdampfers nicht nur durch eine Schwächung des leitenden Querschnittes des Verdampfers erhöhten elektrischen Widerstand aufweisen, sondern daß auch zusätzlich der Stromweg in diesen Teilen künstlich verlängert 90 ist. Es sind jeweils zwei von verschiedenen Seiten geführte Schnitte d nebeneinander angeordnet, wodurch sich in den Teilen e jeweils eine rechtwinklig abgebogene Stromrichtung ergibt. Diese Teile e sind die auf hoher Temperatur stehenden Warmegenera- 95 toren, deren Breitseiten gegen die Wande der Kammern b strahlen, so daß geringste Strahlungsver-

In der Fig. 6 schließlich ist ein Verdampfer, der nach der Regel der vorliegenden Erfindung aufge- 100 baut ist, gezeigt, bei welchem gleichzeitig noch folgender Vorteil erreicht ist. Wenn ein Band, beispielsweise ein Papierband, über die Verdampfer der Fig. 1 bis 5 in der Richtung von unten nach oben oder umgekehrt geführt wird, können sich bei zu 105 großer Entfernung der Verdampferkammern b voneinander Streifen höherer Schichtstärke und Streifen geringerer Schichtstärke auf dem Papierband ausbilden, weil die Dampfentwicklung unmittelbar über den Verdampferkammern b naturgemäß am 110 größten ist. Um nun eine über die gesamte Breite gleichmäßige Dampfentwicklung und damit eine gleichmäßige Schichtstärke auf dem Bedampfungsgut zu erreichen, sind, wie die Fig. 6 zeigt, zwei Reihen von Verdampfungskammern parallel zuein- 115 ander vorgesehen, wobei darauf Bedacht genommen ist, daß, von der Seite betrachtet, die Kammern b aneinander angrenzen oder sich sogar geringfügig überlappen. An Stelle der zwei dargestellten Reihen von Verdampferkammern b können auch deren 120 mehrere vorgesehen sein. Im Grunde genommen stellt die Anordnung nach Fig. 6 lediglich zwei Verdampfer nach Abb. 3 dar, die zu einem einheitlichen Ganzen zusammengefaßt sind. Auch hierdurch werden im Gegensatz zur Verwendung zweier Ver- 125 dampfer, mit denen hinsichtlich der aufgedampften

б5

Schicht die gleiche Wirkung zu erzielen wäre, die Strahlungsverluste verringert, da zwei Längsflächen der Verdampfer in Fortfall kommen.

Die Erzielung einer auf der gesamten Breite eines Bandes gleichmäßigen Schichtstärke ist auch in der Weise zu lösen, daß man die Verdampferkammern, wie es Fig. 7 zeigt, als schräg verlaufende, schlitzartige Ausnehmungen f oder dergleichen ausbildet, die so angeordnet sind, daß jeweils der Anfang einer 10 Kammer, von der Seite gesehen, sich an das Ende der vorhergehenden Kammer anschließt oder sich mit diesem um geringe Beträge überlappt. Der von der Füllmenge des Verdampfungsgutes unabhängige elektrische Widerstand des Verdampfers ist durch die Schlitze g bedingt, die die zwischen den Verdampferkammern f liegenden Teile mit gegenüber den Kammerteilen erhöhten Widerstand versehen und eine strahlungsverlustarme Aufheizung der Kammern f gewährleisten.

#### PATENTANSPRÜCHE:

25

1. Vorrichtung zur laufenden Bedampfung endloser Gebilde, wie Bänder, Fäden u. dgl., mittels vorzugsweise hochsiedender Metalle, wobei die Metalle in einem als Behälter ausgebildeten, durch den Heizstrom durchflossenen Verdampfer aus Kohle, Graphit oder einem Halbleiter erwärmt werden und der Verdampfer mehrere das Verdampfungsgut aufnehmende, voneinander getrennte Kammern besitzt, gekennzeichnet durch eine Schwächung des Verdampferquerschnitts zwischen diesen Kammern.

2. Einrichtung zur Bedampfung nach Anspruch 1, dadurch gekennzeichnet, daß der leitende Querschnitt des Verdampfers zwischen den einzelnen Kammern so weit verringert ist, daß der elektrische Widerstand des Verdampfers im wesentlichen konstant und unabhängig von der Füllmenge des Verdampfungsgutes in den 40 Kammern ist.

3. Einrichtung zur Bedampfung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der leitende Querschnitt mittels durchgehender Ausnehmungen durch den Verdampferkörper 45 verringert ist.

4. Einrichtung zur Bedampfung nach Anspruch 3, dadurch gekennzeichnet, daß durch Einschnitte zwischen den einzelnen Kammern ein mäanderförmiger Stromverlauf entsteht.

5. Einrichtung zur Bedampfung nach den Ansprüchen I bis 4, dadurch gekennzeichnet, daß die Verdampferkammern in zwei oder mehr parallelen Reihen derart versetzt angeordnet sind, daß, von der Seite gesehen, sie sich gegenseitig überdecken und keine Bedampfungslücke entsteht.

6. Einrichtung nach den Ansprüchen I bis 4, dadurch gekennzeichnet, daß die Verdampferkammern als schräg verlaufende schlitzartige 60 Ausnehmungen ausgebildet sind, deren Anfänge und Enden sich, von der Seite betrachtet, aneinander anschließen oder geringfügig überlappen.

In Betracht gezogene ältere Patente: Deutsches Patent Nr. 765 487.

Hierzu I Blatt Zeichnungen

Zu der Patentschrift 970 246
Kl. 48 b Gr. 11 os
Internat. Kl. C 23 c ——





809 602/88