Methods of Spectral Algebraic Geometry in Chromatic Homotopy Theory

Doctoral Dissertation Proposal

Student: Xuecai Ma

Supervisor: Yifei Zhu

Table of contents

1. Introduction to Chromatic Homotopy Theory

2. Introduction to Spectral Algebraic Geometry

3. Applications of Spectral Algebraic Geometry

4. How to Lift a Complex Orientation $MU \to E$ to an E_{∞} Map

Introduction to Chromatic

Homotopy Theory

Brown representability theorem (1962)

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Brown representability theorem (1962)

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Stable homotopy category (closed symmetric monoidal category)

Brown representability theorem (1962)

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Stable homotopy category (closed symmetric monoidal category)

Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra

Brown representability theorem (1962)

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Stable homotopy category (closed symmetric monoidal category)

Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra

Modern approach: ∞ -category of spectra, Sp

Brown representability theorem (1962)

Generalized cohomology theories of $Top \longleftrightarrow Spectra$

Stable homotopy category (closed symmetric monoidal category)

Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra Modern approach: ∞-category of spectra. **Sp**

ring spectra: Alg(Sp)

• E_{∞} -ring spectra : CAlg(Sp)

• H_{∞} -ring spectra : CAlg(ho(Sp))

Brown representability theorem (1962)

Generalized cohomology theories of $Top \longleftrightarrow Spectra$

Stable homotopy category (closed symmetric monoidal category)

Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra Modern approach: ∞-category of spectra. **Sp**

ring spectra: Alg(Sp)

• E_{∞} -ring spectra : CAlg(Sp)

• H_{∞} -ring spectra : CAlg(ho(Sp))

Formal Groups

Let R be a complete local ring with residue filed characteristic p>0, C_R denote the category of local Noetherian R-algebras. We define

$$\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$$

Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, C_R denote the category of local Noetherian R-algebras. We define

$$\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$$

A commutative one-dimensional formal group over R is a functor

$$G: C_R \to \mathbf{Ab}$$

which is isomorphic to $\hat{\mathbb{A}}^1$.

Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, C_R denote the category of local Noetherian R-algebras. We define

$$\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$$

A commutative one-dimensional formal group over R is a functor

$$G: C_R \to \mathbf{Ab}$$

which is isomorphic to $\hat{\mathbb{A}}^1$.

$$\mathcal{O}_G \to \mathcal{O}_{G \times G} \cong \mathcal{O}_G \otimes \mathcal{O}_G$$

 \mathcal{O}_{G} is just $R[\![X]\!]$ and $\mathcal{O}_{\mathsf{G}}\otimes\mathcal{O}_{\mathsf{G}}$ is $R[\![X]\!]\otimes_{\mathsf{R}}R[\![Y]\!]=R[\![X,Y]\!]$.

$$\phi: R[X] \rightarrow R[X, Y]$$

$$X \rightarrow f(X, Y)$$

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$

- $\cdot F(x,0) = F(0,x) = x$ (Identity)
- $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity)
- $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$

- F(x,0) = F(0,x) = x (Identity)
- $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity)
- $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

There exists a ring L and $F_{univ}(x, y) \in L[x, y]$

{Formal Group Law over R} \longleftrightarrow { $L \to R$ }

such that $F(x,y) \in R[x,y]$ over R,

$$f^*(F_{univ}(x,y)) = F(x,y).$$

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$

- $\cdot F(x,0) = F(0,x) = x$ (Identity)
- $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity)
- $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

There exists a ring L and $F_{univ}(x, y) \in L[x, y]$

{Formal Group Law over R} \longleftrightarrow { $L \to R$ }

such that $F(x,y) \in R[x,y]$ over R,

$$f^*(F_{univ}(x,y)) = F(x,y).$$

Lazard's Theorem

$$L \cong \mathbb{Z}[t_1, t_2, \cdots]$$

Let
$$f(x,y) \in R[x,y]$$

- 1. If n = 0, we set [n](t) = 0.
- 2. If n > 0, we set [n](t) = f([n-1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Let $f(x,y) \in R[x,y]$

- 1. If n = 0, we set [n](t) = 0.
- 2. If n > 0, we set [n](t) = f([n-1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Let $f(x,y) \in R[x,y]$

- 1. If n = 0, we set [n](t) = 0.
- 2. If n > 0, we set [n](t) = f([n-1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Examples

1. Formal multiplicative group f(x,y)=x+y+xy, $[n](t)=(1+t)^n-1$. If p=0 in R, then $[p](t)=(1+t)^p-1=t^p$, so f has height 1.

Let $f(x,y) \in R[x,y]$

- 1. If n = 0, we set [n](t) = 0.
- 2. If n > 0, we set [n](t) = f([n-1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Examples

- 1. Formal multiplicative group f(x,y)=x+y+xy, $[n](t)=(1+t)^n-1$. If p=0 in R, then $[p](t)=(1+t)^p-1=t^p$, so f has height 1.
- 2. Formal additive group f(x,y) = x + y, if p = 0 in R. Then [p](t) = 0, so f has infinite height.

Complex Oriented Cohomology Theories

Complex Orientation

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^{\infty})$ which restricts to 1 under the composite

$$E^2(\mathbb{C}P^{\infty}) \to E^2(\mathbb{C}P^1) = E^2(S^2) \cong E^0(*)$$

Complex Oriented Cohomology Theories

Complex Orientation

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^\infty)$ which restricts to 1 under the composite

$$E^2(\mathbb{C}P^{\infty}) \to E^2(\mathbb{C}P^1) = E^2(S^2) \cong E^0(*)$$

$$E^*(\mathbb{CP}^\infty) \cong E^*(*)[\![t]\!] = (\pi_*E)[\![t]\!]$$
$$(\pi_*E)[\![t]\!] \cong E^*(\mathbb{CP}^\infty) \to E^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \cong (\pi_*E)[\![x,y]\!]$$
{complex oriented cohomology theory E } $\to G_E = \operatorname{Spf}E^0(\mathbb{CP}^\infty)$.

Complex Oriented Cohomology Theories

Complex Orientation

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^{\infty})$ which restricts to 1 under the composite

$$E^2(\mathbb{C}P^{\infty}) \to E^2(\mathbb{C}P^1) = E^2(S^2) \cong E^0(*)$$

$$E^*(\mathbb{CP}^\infty) \cong E^*(*)[\![t]\!] = (\pi_*E)[\![t]\!]$$
$$(\pi_*E)[\![t]\!] \cong E^*(\mathbb{C}P^\infty) \to E^*(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \cong (\pi_*E)[\![x,y]\!]$$
{complex oriented cohomology theory E } $\to G_E = \operatorname{Spf}E^0(\mathbb{C}P^\infty)$.

Theorem(Quillen, 1969)

MU is the universal complex oriented cohomology theory, $L \cong \pi_*MU$.

For E complex oriented, $MU \rightarrow E$, induce $L = \pi_*MU \rightarrow \pi_*E$.

Xuecai Ma Doctoral Dissertation Proposal

The Landweber Exact Functor Theorem

If we already have a ring map $L \to R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

The Landweber Exact Functor Theorem

If we already have a ring map $L \to R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

$$E_*(X) = MU_*(X) \otimes_{\pi_*MU} R = MU_*(X) \otimes_L R$$

The Landweber Exact Functor Theorem

If we already have a ring map $L \to R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

$$E_*(X) = MU_*(X) \otimes_{\pi_*MU} R = MU_*(X) \otimes_L R$$

Landweber's Exact Functor Theorem, 1976

Let M be a module over the Lazard ring L. Then M is flat over \mathcal{M}_{FG} if and only if for every prime number p, the elements $v_0 = p, v_1, v_2, \dots \in L$ form a regular sequence for M.

Lubin-Tate Theory

Deformation of formal groups: Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) satisfying

Lubin-Tate Theory

Deformation of formal groups: Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) satisfying

- · G is a formal group over R,
- There is a map $i: k \to R/m$,
- There is an isomorphism $\Psi: \pi^*G \cong i^*G_0$ of formal groups over R/m.

Lubin-Tate Theory

Deformation of formal groups: Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) satisfying

- · G is a formal group over R,
- There is a map $i: k \to R/m$,
- There is an isomorphism $\Psi: \pi^*G \cong i^*G_0$ of formal groups over R/m.

Lubin-Tate's Theorem, 1966

There is a universal formal group G over $R_{LT} = W(k)[[v_1, \dots, v_n - 1]]$ in the following sense: for every infinitesimal thickening A of k, there is a bijection

$$\operatorname{Hom}_{/R}(R_{LT},A) \to \operatorname{Def}(A).$$

Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic spectrum E(n)

$$\pi_* E(n) = W(k) \llbracket v_1, \cdots, v_{n-1} \rrbracket [\beta^{\pm 1}]$$

Theorem (Goerss-Hopkins-Miller, 2004)

The spectrum E(n) admits a unique E_{∞} -ring structure.

Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic spectrum E(n)

$$\pi_* E(n) = W(k) \llbracket v_1, \cdots, v_{n-1} \rrbracket [\beta^{\pm 1}]$$

Theorem (Goerss-Hopkins-Miller, 2004)

The spectrum E(n) admits a unique E_{∞} -ring structure.

M(k) denote the cofiber of the map $\sum^{2k} MU_{(p)} \to MU_{(p)}$ given by the multiplication by t_k .

Let K(n) denote the smash product

$$MU_{(p)}[v_n^{-1}] \otimes_{MU_{(p)}} \bigotimes_{k \neq p^n-1} M(k).$$

This spectrum K(n) is called **Morava K-theory**. The homotopy groups of K(n) is

$$\pi_* \mathit{K}(n) \cong (\pi_* \mathit{MU}_{(p)})[v_n^{-1}]/(t_0, t_1, \cdots t_{p^n-2}, t_{p^n}, \cdots) \cong \mathbb{F}_p[v_n^{\pm 1}]$$

Xuecai Ma

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

$$C_E(X) \to X \to L_E(X)$$
.

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

$$C_E(X) \to X \to L_E(X)$$
.

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E. The map $X \to L_E(X)$ is characterized up to equivalence by two properties.

- 1. The spectrum $L_E(X)$ is E-local.
- 2. The map $X \to L_E(X)$ is an E-equivalence.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

$$C_E(X) \to X \to L_E(X)$$
.

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E. The map $X \to L_E(X)$ is characterized up to equivalence by two properties.

- 1. The spectrum $L_F(X)$ is E-local.
- 2. The map $X \to L_E(X)$ is an E-equivalence.
- $L_{E(n)}$, behaves like restriction to the open substack $\mathcal{M}_{FG}^{\leq n} \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

$$C_E(X) \to X \to L_E(X)$$
.

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E. The map $X \to L_E(X)$ is characterized up to equivalence by two properties.

- 1. The spectrum $L_F(X)$ is E-local.
- 2. The map $X \to L_E(X)$ is an E-equivalence.
 - $L_{E(n)}$, behaves like restriction to the open substack $\mathcal{M}_{FG}^{\leq n} \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.
 - $L_{K(n)}$, behaves like completion along the locally closed substack $\mathcal{M}_{FG}^n \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.

Elliptic Cohomology

An elliptic cohomology consists of

- 1. An even periodic spectrum E.
- 2. An elliptic curve C over $\pi_0 E$.
- 3. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Elliptic Cohomology

An elliptic cohomology consists of

- 1. An even periodic spectrum E.
- 2. An elliptic curve C over $\pi_0 E$.
- 3. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the étale topology. For any étale morphism $f:\operatorname{Spec}(R)\to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum $(\mathcal{O}_{tmf}(f),\mathcal{C}_f,\phi)$, satisfying $\pi_0\mathcal{O}_{tmf}(f)=R$, and \mathcal{C}_f is a generalized elliptic curve over R classified by f.

Elliptic Cohomology

An elliptic cohomology consists of

- 1. An even periodic spectrum E.
- 2. An elliptic curve C over $\pi_0 E$.
- 3. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the étale topology. For any étale morphism $f:\operatorname{Spec}(R)\to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum $(\mathcal{O}_{tmf}(f),\mathcal{C}_f,\phi)$, satisfying $\pi_0\mathcal{O}_{tmf}(f)=R$, and \mathcal{C}_f is a generalized elliptic curve over R classified by f.

 $Tmf = \mathcal{O}_{tmf}(\overline{\mathcal{M}}_{ell} \to \overline{\mathcal{M}}_{ell})$, topological modular forms.

Introduction to Spectral Algebraic

Geometry

Spectral Stacks

Definition

Let $\mathcal X$ be an ∞ -topos, an spectrally ringed ∞ -topos is a limit preserving functor $F:\mathcal X\to\mathsf{CAlg}(\mathsf{Sp})$

Spectral Stacks

Definition

Let $\mathcal X$ be an ∞ -topos, an spectrally ringed ∞ -topos is a limit preserving functor $F:\mathcal X\to\mathsf{CAlg}(\mathsf{Sp})$

Let A be an E_{∞} -ring, and M be an A-module. We will say that M is étale if the following conditions holds

- 1. $\pi_0 M$ is étale over $\pi_0 A$..
- 2. $\pi_n A \otimes_{\pi_0 A} \pi_0 M \cong \pi_n M$

Spectral Stacks

Definition

Let \mathcal{X} be an ∞ -topos, an spectrally ringed ∞ -topos is a limit preserving functor $F: \mathcal{X} \to \mathsf{CAlg}(\mathsf{Sp})$

Let A be an E_{∞} -ring, and M be an A-module. We will say that M is étale if the following conditions holds

- 1. $\pi_0 M$ is étale over $\pi_0 A$..
- 2. $\pi_n A \otimes_{\pi_0 A} \pi_0 M \cong \pi_n M$

Definition

A spectral Deligne-Mumford stack is a spectral ringed ∞ -topos $X = (\mathcal{X}, \mathcal{O}_X)$ which locally likes $\operatorname{Sp\'et} A$, for an E_∞ ring A.

Definition

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.

Definition

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.

Definition

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.
- 3. When U be an open subset of X, $(U, (\pi_0 \mathcal{O}_X)|_U)$ is affine. $\pi_n(\mathcal{O}_X(U)) \to (\pi_n \mathcal{O}_X)(U)$ is an isomorphism.

Definition

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.
- 3. When U be an open subset of X, $(U, (\pi_0 \mathcal{O}_X)|_U)$ is affine. $\pi_n(\mathcal{O}_X(U)) \to (\pi_n \mathcal{O}_X)(U)$ is an isomorphism.
- 4. $\pi_n \mathcal{O}_X$ vanishes when n < 0.

Definition

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.
- 3. When U be an open subset of X, $(U, (\pi_0 \mathcal{O}_X)|_U)$ is affine. $\pi_n(\mathcal{O}_X(U)) \to (\pi_n \mathcal{O}_X)(U)$ is an isomorphism.
- 4. $\pi_n \mathcal{O}_X$ vanishes when n < 0.

If the spectrally ringed space only satisfy the first three conditions, then we call it a nonconnective spectral scheme.

Spectral Varieties

Definition

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral DM stack, such that $\tau_{\geq 0}X \to \operatorname{Spet} \tau_{\geq 0}R$ is proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

Spectral Varieties

Definition

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral DM stack, such that $\tau_{\geq 0}X \to \operatorname{Spet}\tau_{\geq 0}R$ is proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

• Abelian varieties over R : commutative monoidal objects of the ∞ category $\mathrm{Var}(R)$.

Spectral Varieties

Definition

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral DM stack, such that $\tau_{\geq 0}X \to \operatorname{Spet} \tau_{\geq 0}R$ is proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

- Abelian varieties over R : commutative monoidal objects of the ∞ category Var(R).
- Strict abelian varieties over R : abelian group objects of the ∞ -category $\mathrm{Var}(R)$.

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$.

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$. For any finitely generated ideals $I \subset \pi_0 A$, I-completion functor

 $\operatorname{Mod}_A \to \operatorname{Mod}_A^I : M \to \hat{M}_I$

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$. For any finitely generated ideals $I \subset \pi_0 A$, I-completion functor

$$\operatorname{Mod}_A \to \operatorname{Mod}_A^I: M \to \hat{M}_I$$

Definition

For an adic E_{∞} -ring A, define $\mathrm{Spf}(A) := (\mathrm{Shv}^{adic}_A, \mathcal{O}_{\mathrm{Shv}^{adic}_A})$

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$. For any finitely generated ideals $I \subset \pi_0 A$, I-completion functor

$$\operatorname{Mod}_A \to \operatorname{Mod}_A': M \to \hat{M}_I$$

Definition

For an adic E_{∞} -ring A, define $\mathrm{Spf}(A) := (\mathrm{Shv}^{adic}_A, \mathcal{O}_{\mathrm{Shv}^{adic}_A})$

Definition

A formal spectral DM stack is a spectrally ringed ∞ -topos $X = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ which admits a cover $\{U_i\}$, such that each $(\mathcal{X}_{|U_i}, \mathcal{O}_{\mathcal{X}|U_i})$ is equivalent to SpfA_i for some E_{∞} -ring A_i

Spectral Formal Groups

A spectral formal hyperplane is a functor

$$\mathsf{CAlg}_{R} o \mathcal{S}$$

is represented $\mathrm{Spf}(\mathcal{C}^{\vee})$ for some smooth coalgebra C.

Spectral Formal Groups

A spectral formal hyperplane is a functor

$$\mathsf{CAlg}_{R} o \mathcal{S}$$

is represented $\operatorname{Spf}(C^{\vee})$ for some smooth coalgebra C.

Definition

A n-dimensional formal group over a connective E_{∞} -ring R is a functor

$$\hat{G}: CAlg_R \rightarrow Mod_Z$$

such that the composite

$$\mathsf{CAlg}_{R} \to \mathrm{Mod}_{\mathbb{Z}} \to \mathcal{S}$$

is represented $\mathrm{Spf}(C^{\vee})$ for some n-dimensional smooth coalgebra C.

 G_0 be a p-divisible group over R_0 . A deformation of G_0 along $\rho_A:A\to R_0$ is a pair (G,α) , where G is a spectral p-divisible group over A and $\alpha:G_0\simeq\rho_A^*G$.

 G_0 be a p-divisible group over R_0 . A deformation of G_0 along $\rho_A:A\to R_0$ is a pair (G,α) , where G is a spectral p-divisible group over A and $\alpha:G_0\simeq \rho_A^*G$.

Theorem (Lurie, 2018)

There exists a connective E_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho: R_{G_0}^{un} \to R_0$, and a deformation G of G_0 with the following properties:

• $R_{G_0}^{un}$ is Noetherian, $\pi_0(\rho): \pi_0(R_{G_0}^{un}) \to R_0$ is surjective, and $R_{G_0}^{un}$ is complete with respect to the ideal $\ker(\pi_0(\rho))$.

 G_0 be a p-divisible group over R_0 . A deformation of G_0 along $\rho_A:A\to R_0$ is a pair (G,α) , where G is a spectral p-divisible group over A and $\alpha:G_0\simeq \rho_A^*G$.

Theorem (Lurie, 2018)

There exists a connective E_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho: R_{G_0}^{un} \to R_0$, and a deformation G of G_0 with the following properties:

- $R_{G_0}^{un}$ is Noetherian, $\pi_0(\rho): \pi_0(R_{G_0}^{un}) \to R_0$ is surjective, and $R_{G_0}^{un}$ is complete with respect to the ideal $\ker(\pi_0(\rho))$.
- For other $\rho_A:A\to R_0$. The extension of scalars induces an equivalence of ∞ -categories

$$\operatorname{Map}_{\mathsf{CAlg}_{/R_0}}(R^{un}_{G_0}, A) \to \operatorname{Def}_{G_0}(A, \rho_A).$$

 G_0 be a p-divisible group over R_0 . A deformation of G_0 along $\rho_A:A\to R_0$ is a pair (G,α) , where G is a spectral p-divisible group over A and $\alpha:G_0\simeq \rho_A^*G$.

Theorem (Lurie, 2018)

There exists a connective E_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho: R_{G_0}^{un} \to R_0$, and a deformation G of G_0 with the following properties:

- $R_{G_0}^{un}$ is Noetherian, $\pi_0(\rho): \pi_0(R_{G_0}^{un}) \to R_0$ is surjective, and $R_{G_0}^{un}$ is complete with respect to the ideal $\ker(\pi_0(\rho))$.
- For other $\rho_A:A\to R_0$. The extension of scalars induces an equivalence of ∞ -categories

$$\operatorname{Map}_{\mathsf{CAlg}_{/R_0}}(R_{G_0}^{un}, A) \to \operatorname{Def}_{G_0}(A, \rho_A).$$

We refer to $R_{G_0}^{un}$ as the spectral deformation ring of the p-divisible group G_0 .

Orientations

Definition

Let R be an E_{∞} -ring and let $X: \mathbf{CAlg}^{cn}_{\tau_{\geq 0}(R)} \to \mathcal{S}_*$ be a pointed formal hyperplane over R. A preorientation of X is a map of pointed spaces

$$e:S^2\to X(\tau_{\geq 0}(R))$$

Orientations

Definition

Let R be an E_{∞} -ring and let $X: \mathbf{CAlg}^{cn}_{\mathcal{T}_{\geq 0}(R)} \to \mathcal{S}_*$ be a pointed formal hyperplane over R. A preorientation of X is a map of pointed spaces

$$e: S^2 \to X(\tau_{\geq 0}(R))$$

Definition

A preorientation of an 1-dimensional formal group \hat{G} over a $E_{\infty}\text{-ring}$ R is a map

$$e: S^2 \to \Omega^{\infty} \hat{G}(\tau_{\geq 0} R)$$

of based spaces, where the based points goes to the identity of the group structure.

The dualizing line of an 1-dimensional formal group $\hat{\textbf{G}}$ is an R-module defined by

$$\omega_{\hat{\mathsf{G}}} := \mathsf{R} \otimes_{\mathcal{O}_{\hat{\mathsf{G}}}} \mathcal{O}_{\hat{\mathsf{G}}}(-\eta)$$

The dualizing line of an 1-dimensional formal group $\hat{\textbf{G}}$ is an R-module defined by

$$\omega_{\hat{\mathsf{G}}} := \mathsf{R} \otimes_{\mathcal{O}_{\hat{\mathsf{G}}}} \mathcal{O}_{\hat{\mathsf{G}}}(-\eta)$$

For every preorientation $e: S^2 \to \hat{G}(\tau_{\geq 0}R)$, there is an associated map

$$\beta_e:\omega_{\hat{G}}\to\Sigma^{-2}R$$

called the Bott map.

The dualizing line of an 1-dimensional formal group $\hat{\textbf{G}}$ is an R-module defined by

$$\omega_{\hat{\mathsf{G}}} := \mathsf{R} \otimes_{\mathcal{O}_{\hat{\mathsf{G}}}} \mathcal{O}_{\hat{\mathsf{G}}}(-\eta)$$

For every preorientation $e: S^2 \to \hat{G}(\tau_{\geq 0}R)$, there is an associated map

$$\beta_e:\omega_{\hat{G}}\to\Sigma^{-2}R$$

called the Bott map.

Definition

An orientation of a formal group is a preorientation e whose the Bott map is an equivalence.

Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then there exists an E_{∞} -ring \mathcal{D}_X and $e \in \mathrm{Or}(X_{\mathcal{D}_X})$, such that for other $R' \in \mathsf{CAlg}_R$, evaluation on e induces a homotopy equivalence

$$\operatorname{Map}_{\mathsf{CAlg}_R}(\mathcal{D}_X, R') \to \operatorname{Or}(X_{R'}).$$

We refer to \mathcal{D}_X as the orientation classifer.

Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then there exists an E_{∞} -ring \mathcal{D}_X and $e \in \mathrm{Or}(X_{\mathcal{D}_X})$, such that for other $R' \in \mathsf{CAlg}_R$, evaluation on e induces a homotopy equivalence

$$\operatorname{Map}_{\mathsf{CAlg}_R}(\mathcal{D}_X, R') \to \operatorname{Or}(X_{R'}).$$

We refer to \mathcal{D}_X as the orientation classifer.

Lemma

Let R be an even periodic E_{∞} -ring, G be any formal group over R. Then there is a canonical homotopy equivalence

$$\operatorname{PreG} \simeq \operatorname{Map}_{FG(R)}(G_R^Q, G)$$

Where G_R^Q is the spectral Quillen formal group, whose 0-th homotopy is the classical Quillen formal group.

Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then there exists an E_{∞} -ring \mathcal{D}_X and $e \in \mathrm{Or}(X_{\mathcal{D}_X})$, such that for other $R' \in \mathsf{CAlg}_R$, evaluation on e induces a homotopy equivalence

$$\operatorname{Map}_{\mathsf{CAlg}_R}(\mathcal{D}_X, R') \to \operatorname{Or}(X_{R'}).$$

We refer to \mathcal{D}_X as the orientation classifer.

Lemma

Let R be an even periodic E_{∞} -ring, G be any formal group over R. Then there is a canonical homotopy equivalence

$$\operatorname{PreG} \simeq \operatorname{Map}_{FG(R)}(G_R^Q, G)$$

Where G_R^Q is the spectral Quillen formal group, whose 0-th homotopy is the classical Quillen formal group.

The preorientation is an orientation if and only its image under the above map is a equivalence of formal groups over R.

Applications of Spectral Algebraic

Geometry

Elliptic Cohomology Theory

Spectral elliptic curves: spectral abelian varieties of dimension one.

Elliptic Cohomology Theory

Spectral elliptic curves: spectral abelian varieties of dimension one.

Strict elliptic curves: strict ableian varieties of dimensional one.

Elliptic Cohomology Theory

Spectral elliptic curves: spectral abelian varieties of dimension one.

Strict elliptic curves: strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion along the identity section is an oriented formal group.

Elliptic Cohomology Theory

Spectral elliptic curves: spectral abelian varieties of dimension one.

Strict elliptic curves: strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion along the identity section is an oriented formal group.

Theorem(Lurie, 2009-2018)

There exists a nonconnective spectral Deligne-Mumford stack \mathcal{M}_{ell}^{or} such that

$$\operatorname{Map}_{\operatorname{SpDM}^{nc}}(\operatorname{Sp\'{e}tR},\mathcal{M}^{or}_{ell})\cong\operatorname{Ell}^{or}(R)^{\simeq}$$

Elliptic Cohomology Theory

Spectral elliptic curves: spectral abelian varieties of dimension one.

Strict elliptic curves: strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion along the identity section is an oriented formal group.

Theorem(Lurie, 2009-2018)

There exists a nonconnective spectral Deligne-Mumford stack \mathcal{M}_{ell}^{or} such that

$$\operatorname{Map}_{\operatorname{SpDM}^{nc}}(\operatorname{Sp\acute{e}tR},\mathcal{M}^{or}_{ell}) \cong \operatorname{Ell}^{or}(R)^{\simeq}$$

The elliptic spectrum has the E_{∞} structure, since the spectral stack of oriented elliptic curve has the same underlying *étale* site with the classical stack of elliptic curve.

Theorem (Lurie, 2010-2017)

Let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site.

Theorem (Lurie, 2010-2017)

Let M^n_{pd} denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site, such that for any

$$E := \mathcal{O}^{top}(\operatorname{Spec} R \stackrel{G}{\to} M_{pd}^n)$$

Theorem (Lurie, 2010-2017)

Let M^n_{pd} denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site, such that for any

$$E := \mathcal{O}^{top}(\operatorname{Spec} R \stackrel{G}{\to} M_{pd}^n)$$

we have

$$\mathrm{Spf}\pi_0 E^{\mathbb{C}P^\infty} = G^0$$

where G^0 is the formal part of the p-divisible group G.

Theorem (Lurie, 2010-2017)

Let M^n_{pd} denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site, such that for any

$$E:=\mathcal{O}^{top}(\operatorname{Spec} R \stackrel{G}{\to} M^n_{pd})$$

we have

$$\operatorname{Spf} \pi_0 E^{\mathbb{C}P^{\infty}} = G^0$$

where G^0 is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks (moduli stacks of abelian varieties with the extra structure of Polarization, Endomorphisms, and Level structure) which associated to a rational form of the unitary group U(1, n-1)) can give a 1-dimensional p-divisible group satisfying the conditions of this theorem.

$$\pi_* E(n) = W(k) \llbracket v_1, \cdots, v_{n-1} \rrbracket [\beta^{\pm 1}]$$

1. \hat{G}_0 is a formal group over k, viewed as a identity component of a connected p-divisible group G_0 .

$$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$$

- 1. \hat{G}_0 is a formal group over k, viewed as a identity component of a connected p-divisible group G_0 .
- 2. There exists a universal deformation G_{un} over the spectral deformation ring $R_{G_n}^{un}$.
- 3. Let G_{un}^0 be the identity component of G_{un} .

$$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$$

- 1. \hat{G}_0 is a formal group over k, viewed as a identity component of a connected p-divisible group G_0 .
- 2. There exists a universal deformation G_{un} over the spectral deformation ring $R_{G_n}^{un}$.
- 3. Let G_{un}^0 be the identity component of G_{un} .
- 4. Let $R_{G_0}^{or}$ be an orientation classifier for G_{un}^0 .

$$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$$

- 1. \hat{G}_0 is a formal group over k, viewed as a identity component of a connected p-divisible group G_0 .
- 2. There exists a universal deformation G_{un} over the spectral deformation ring $R_{G_n}^{un}$.
- 3. Let G_{un}^0 be the identity component of G_{un} .
- 4. Let $R_{G_0}^{or}$ be an orientation classifier for G_{un}^0 .
- 5. $E_{G_0} = L_{K_n} R_{G_0}^{or}$ is just the spectra of Morava E-theory. We refer to this as the Lubin-Tate spectrum.

How to Lift a Complex Orientation

 $MU \rightarrow E$ to an E_{∞} Map

Theorem (Ando-Hopkins-Strickland, 2004)

The rule which associates a level structure

$$l:A\rightarrow i^*G(R)$$

Theorem (Ando-Hopkins-Strickland, 2004)

The rule which associates a level structure

$$l: A \rightarrow i^*G(R)$$

to a map $\psi_l^E: \mathrm{Spf}R \to S_E$ given by the ring map $\pi_0 E \overset{D_A}{\to} \pi_0 E^{BA_+^*} \to R$

Theorem (Ando-Hopkins-Strickland, 2004)

The rule which associates a level structure

$$l: A \rightarrow i^*G(R)$$

to a map $\psi_l^E: \operatorname{Spf} R \to S_E$ given by the ring map $\pi_0 E \overset{D_A}{\to} \pi_0 E^{BA_+^*} \to R$ and the isogeny

$$\psi_l^{G/E}: i^*G \to \psi_l^*G$$

is descent data for level structure on the formal group G over S_E.

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}$, $\sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \Sigma_{i \in I} a_i$.

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}$, $\sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \Sigma_{i \in I} a_i$.

We define a line bundle over G_S^k by

$$\Theta^k(\mathcal{L}) = \bigotimes_{I \subset \{1, \dots, k\}} (\mathcal{L}_I)^{(-1)^{|I|}}$$

And set $\Theta^0(\mathcal{L}) = \mathcal{L}$.

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}$, $\sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \sum_{i \in I} a_i$.

We define a line bundle over G_S^k by

$$\Theta^k(\mathcal{L}) = \bigotimes_{I \subset \{1, \dots, k\}} (\mathcal{L}_I)^{(-1)^{|I|}}$$

And set $\Theta^0(\mathcal{L}) = \mathcal{L}$.

$$\Theta^{0}(\mathcal{L})_{a} = \mathcal{L}_{a}
\Theta^{1}(\mathcal{L})_{a} = \frac{\mathcal{L}_{0}}{\mathcal{L}_{a}}
\Theta^{2}(\mathcal{L})_{a,b} = \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b}}
\Theta^{3}(\mathcal{L})_{a,b,c} = \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b} \otimes \mathcal{L}_{a+c} \otimes \mathcal{L}_{b+c}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b} \otimes \mathcal{L}_{c} \otimes \mathcal{L}_{a+b+c}}$$

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

A Θ^k structure on a line bundle $\mathcal L$ over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal L)$ such that

- 1. For k > 0, s is a rigid section.
- 2. s is symmetric,i.e., for each $\sigma \in \Sigma_k$, we have $\xi_\sigma \pi_\sigma^* s = s$.
- 3. The section $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes corresponds to 1.$

A Θ^k structure on a line bundle $\mathcal L$ over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal L)$ such that

- 1. For k > 0, s is a rigid section.
- 2. s is symmetric, i.e., for each $\sigma \in \Sigma_k$, we have $\xi_\sigma \pi_\sigma^* s = s$.
- 3. The section $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes$ corresponds to 1.

If $g: MU\langle 2k \rangle \to E$ is an orientation, then the composition

$$((\mathbb{C}P^{\infty})^k)^{\vee} \to MU\langle 2k \rangle \to E$$

represents a rigid section s of $\Theta^k(I_G(0))$

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

- 1. For k > 0, s is a rigid section.
- 2. s is symmetric, i.e., for each $\sigma \in \Sigma_k$, we have $\xi_\sigma \pi_\sigma^* s = s$.
- 3. The section $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes$ corresponds to 1.

If $g: MU\langle 2k \rangle \to E$ is an orientation, then the composition

$$((\mathbb{C}P^{\infty})^k)^{\vee} \to MU\langle 2k \rangle \to E$$

represents a rigid section s of $\Theta^k(I_G(0))$

Theorem

For $0 \le k \le 3$, the maps of ring spectra $MU\langle 2k \rangle \to E$ are in one to one correspondence with Θ^k -structures on $\mathcal{I}(0)$ over G_F .

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G$$
,

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}}\mathbf{S} = (\psi_l^{\mathrm{E}})i^*\mathbf{S}$$

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}}\mathbf{S} = (\psi_l^{\mathrm{E}})i^*\mathbf{S}$$

And if $k \le 3$, the converse is true.

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{\mathrm{G}/\mathrm{E}}}\mathrm{S} = (\psi_l^{\mathrm{E}})i^*\mathrm{S}$$

And if $k \le 3$, the converse is true.

Using this theorem, they proved the σ orientation of an elliptic spectrum is an H_{∞} map.

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}}\mathbf{S} = (\psi_l^{E})i^*\mathbf{S}$$

And if $k \le 3$, the converse is true.

Using this theorem, they proved the σ orientation of an elliptic spectrum is an H_{∞} map. Zhu (2020) proved that the map $MU\langle 0 \rangle \to E$ coming from a coordinate of $\mathrm{Spf}E^0(\mathbb{C}^{\infty})$ is a H_{∞} map, since the map satisfying the condition above, which is called norm coherence.

Obstructions to E_{∞} -maps

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

1. $\lim MX_n \to MU$ is an equivalence.

Obstructions to E_{∞} -maps

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

- 1. $\lim MX_n \to MU$ is an equivalence.
- 2. $\operatorname{Map}_{E_{\infty}}(MX_1, E) \simeq Or(E)$ for each E_{∞} -ring E.

Obstructions to E_{∞} -maps

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

- 1. $\lim MX_n \to MU$ is an equivalence.
- 2. $\operatorname{Map}_{E_{\infty}}(MX_1, E) \simeq Or(E)$ for each E_{∞} -ring E.
- 3. Given m > 0 and an E_{∞} -ring E, there is a pull back square

$$\begin{aligned} \operatorname{Map}_{E_{\infty}}(MX_m,E) &\longrightarrow \operatorname{Map}_{E_{\infty}}(MX_{m-1},E) \\ \downarrow & & \downarrow \\ \{*\} &\longrightarrow \operatorname{Map}_*(F_m,\operatorname{Pic}(E)) \end{aligned}$$

where F_m is a certain pointed space.

4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.

- 4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.
- 5. Let E denote an E_{∞} such that π_*E is p-local and p-torsion free. Then an E_{∞} -map $MX_1 \to E$ extends to an E_{∞} map $MX_P \to E$ if and only if the corresponding complex orientation of E satisfies the Ando criterion.

- 4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.
- 5. Let E denote an E_{∞} such that π_*E is p-local and p-torsion free. Then an E_{∞} -map $MX_1 \to E$ extends to an E_{∞} map $MX_P \to E$ if and only if the corresponding complex orientation of E satisfies the Ando criterion.

Theorem (Senger, 2022)

Let E denote a height \leq 2 Landweber exact E_{∞} -ring whose homotopy groups is concentrated in even degrees. Then any complex orientation $MU \to E$ which satisfies the Ando criterion lifts uniquely up to homotopy to an E_{∞} -ring map $MU \to E$.

The proof of Senger's theorem was based on E-cohomology of some certain spaces.

We have the following pullback square.

The proof of Senger's theorem was based on E-cohomology of some certain spaces.

We have the following pullback square.

 $\mathrm{Map}_{E_\infty}(MU,R)\simeq Or(R)$ for a rational E_∞ -ring R, and $\pi_1\mathrm{Map}_{E_\infty}(MU,R)\cong \pi_1Or(R)\cong 0$, if R is concentrated in even degrees.

The proof of Senger's theorem was based on E-cohomology of some certain spaces.

We have the following pullback square.

 $\operatorname{Map}_{E_{\infty}}(MU,R) \simeq Or(R)$ for a rational E_{∞} -ring R, and $\pi_1 \operatorname{Map}_{E_{\infty}}(MU,R) \cong \pi_1 Or(R) \cong 0$, if R is concentrated in even degrees.

$$\pi_{0}\operatorname{Map}E_{\infty}(MU,R) \longrightarrow \pi_{0}\operatorname{Map}_{E_{\infty}}(MU,\prod_{\rho}E_{\rho}^{\wedge}) \qquad \pi_{0}\operatorname{Or}(E) \longrightarrow \pi_{0}\operatorname{Or}(\prod_{\rho}E_{\rho}^{\wedge})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\pi_{0}\operatorname{Or}(E_{\mathbb{Q}}) \longrightarrow \pi_{0}\operatorname{Or}((\prod_{\rho}E_{\rho}^{\wedge})_{\mathbb{Q}}) \qquad \pi_{0}\operatorname{Or}(E_{\mathbb{Q}}) \longrightarrow \pi_{0}\operatorname{Or}((\prod_{\rho}E_{\rho}^{\wedge})_{\mathbb{Q}})$$

It suffices to lift the induced complex orientation of E_p^{\wedge} .

Assume that E is p-complete. So we only need to prove

$$\pi_0 \operatorname{Map}_{E_\infty}(MX_{p^2}, E) \to \pi_0 \operatorname{Map}_{E_\infty}(MX_p, E)$$

is surjective.

It suffices to lift the induced complex orientation of E_p^{\wedge} .

Assume that E is p-complete. So we only need to prove

$$\pi_0 \operatorname{Map}_{E_\infty}(MX_{p^2}, E) \to \pi_0 \operatorname{Map}_{E_\infty}(MX_p, E)$$

is surjective.

There is a cofiber sequence.

$$\operatorname{Map}_{E_{\infty}}(MX_{p^2}, E) \to \operatorname{Map}_{E_{\infty}}(MX_p, E) \to \operatorname{Map}_*(F_{p^2}, Pic(E))$$

and a equivalence

$$\operatorname{Map}_{E_{\infty}}(F_m, \operatorname{Pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \operatorname{pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \Sigma E).$$

It suffices to lift the induced complex orientation of E_p^{\wedge} .

Assume that E is p-complete. So we only need to prove

$$\pi_0 \operatorname{Map}_{E_\infty}(MX_{p^2}, E) \to \pi_0 \operatorname{Map}_{E_\infty}(MX_p, E)$$

is surjective.

There is a cofiber sequence.

$$\operatorname{Map}_{E_{\infty}}(MX_{p^2},E) \to \operatorname{Map}_{E_{\infty}}(MX_p,E) \to \operatorname{Map}_*(F_{p^2},Pic(E))$$

and a equivalence

$$\operatorname{Map}_{E_{\infty}}(F_m, \operatorname{Pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \operatorname{pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \Sigma E).$$

It suffices to show that

$$E^1(\mathbf{\Sigma}^{\infty}F_{n^2})\simeq 0$$

Lemma (Senger, 2022)

$$E^{2n}(F_p) \cong E^{2n+1}(F_{p^2}) \cong 0.$$

Lemma (Senger, 2022)

$$E^{2n}(F_p)\cong E^{2n+1}(F_{p^2})\cong 0.$$

Let L_m denote the nerve of the poset of proper direct sum decomposition of \mathbb{C}^m , and $(L_m)^{\diamond}$ is its unreduced suspension.

$$F_m \simeq ((L_m)^{\diamond} \wedge S^{2m})_{hU(m)}.$$

Our question is how to lift a complex orientation $MU \to E$ to an E_{∞} -map ? Especially when E is a Morava E-theory.

Our question is how to lift a complex orientation $MU \to E$ to an E_{∞} -map ? Especially when E is a Morava E-theory.

 What is the conceptional description of the complex orientation in the context of spectral algebraic geometry? What is the relation between the spectral Quillen formal group and level structures?

Our question is how to lift a complex orientation $MU \to E$ to an E_{∞} -map ? Especially when E is a Morava E-theory.

- What is the conceptional description of the complex orientation in the context of spectral algebraic geometry? What is the relation between the spectral Quillen formal group and level structures?
- The descent data of H_{∞} -spectrum only consider the level one structures, what about the infinity level structures?

Our question is how to lift a complex orientation $MU \to E$ to an E_{∞} -map ? Especially when E is a Morava E-theory.

- What is the conceptional description of the complex orientation in the context of spectral algebraic geometry? What is the relation between the spectral Quillen formal group and level structures?
- The descent data of H_{∞} -spectrum only consider the level one structures, what about the infinity level structures?
- Norm coherence condition in the context of spectral algebraic geometry.

Thanks for Your Listening!

Questions and Answers!