Notes for General Topology

Zhao Wenchuan

August 24, 2021

Contents

1	Topological Spaces		
	1.1	Metric Spaces	2
	1.2	Open sets in Metric Spaces	4

Chapter 1

Topological Spaces

1.1 Metric Spaces

Definition 1.1.1. Let X be any set. A mapping $d: X \times X \to \mathbb{R}_{\geq 0}$ is *metric* on X if and only if it satisfies the *metric axioms*. That is, for any $x, y, z \in X$:

M1. d(x,y) = 0 if and only if x = y;

M2. d(x,y) = d(y,x);

M3. $d(x,z) \le d(x,y) + d(y,z)$.

In this case, the pair M = (X, d) is called a *metric space*.

Definition 1.1.2. A M=(X,d) be a metric space, let $x \in X$ and let $\varepsilon \in \mathbb{R}_{>0}$. An open ε -ball, or just ε -ball, about x is defined to be the set

$$B_{\varepsilon}(x;d) = \{ y \in X : d(x,y) < \varepsilon \}.$$

A closed ball is defined to be the set

$$\overline{B}_{\varepsilon}(x;d) = \{ y \in X : d(x,y) \le \varepsilon \}.$$

Note 1.1.1. As

$$M = (X, d), M' = (X, d'), M'' = (X, d''), \dots$$

are different although they share the same set X, for any $x \in X$ and any $\varepsilon \in \mathbb{R}_{>0}$,

$$B_{\varepsilon}(x;d), B_{\varepsilon}(x;d'), B(x;d''), \ldots$$

are also different. However, if confusion is unlikely, we simply write " $B_{\varepsilon}(x)$ " for " $B_{\varepsilon}(x;d)$ ".

Example 1.1.1. The Euclidean metric space M = (X, d) is an n-dimensional set X equipped with the Euclidean metric d defined as

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}}.$$

This is also called $standard\ Euclidean\ metric$, in contrast to the $non-standard\ Euclidean\ metrics$

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}, \quad p \ge 1.$$

In particular,

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|.$$

Example 1.1.2. A discrete metric space M = (X, d) is a set X equiped with the discrete metric d defined as

$$d(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{else.} \end{cases}$$

This is an equivalent definition of the discrete metric:

$$d(x,y) = (\operatorname{sgn}(d'(x,y)))^2,$$

where $sgn(\cdot)$ is a sign function, and d' is any metric on X.

Example 1.1.3. ¹ Denote C[a, b] for the set of all continuous mapping $\mathbb{R}_{[a,b]} \to \mathbb{R}$. On C[a, b], we can define a metric d as

$$d_p(f,g) = \left(\int_a^b |f(t) - g(t)|^p dt\right)^{\frac{1}{p}}, \quad p \ge 1.$$

In particular,

$$\frac{d_{\infty}(f,g)}{d_{\infty}(f,g)} = \sup_{t \in \mathbb{R}_{[a,b]}} |f(t) - g(t)|.$$

¹ See Minkowski inequality.

Example 1.1.4. ² Let M=(X,d) be a metric space. The *Hausdorff metric* d_H on $2^X\setminus\{\emptyset\}$ is defined as

$$d_H = \max \left\{ \sup_{x \in X} d(x, Y), \sup_{y \in Y} d(y, X) \right\},\,$$

where

$$d(x,Y) = \inf_{y \in Y}(x,y), \text{ and } d(y,X) = \inf_{x \in X}(y,x).$$

1.2 Open sets in Metric Spaces

Definition 1.2.1. Let M=(X,d) be a metric space, and let $U\subseteq X$. U is said to be *open in* M if and only if for any $y\in U$, there exists $\varepsilon\in\mathbb{R}_{>0}$, such that $B_{\varepsilon}(y)\subseteq U$.

Lemma 1.2.1. Let M=(X,d) be a metric space, let $x\in A$ and let $\varepsilon\in\mathbb{R}_{>0}$. For any $y\in B_{\varepsilon}(x)$, there is a $\delta\in\mathbb{R}_{>0}$ such that $B_{\delta}(y)$ sss

 $^{^2}$ See Hausdorff distance.