Problème: ex 67 p 116

largeur : x

profondeur: 12 - x

hauteur : profondeur : 12 - x

1)
$$V(x) = x \times (12 - x) \times (12 - x) = x \times (12 - x)^2$$

On va utiliser une identité remarquable : $(12 - x)^2 = 12^2 - 2 \times 12 \times x + x^2$ donc $V(x) = x \times (12^2 - 2 \times 12 \times x + x^2)$

et, on développe encore!

$$V(x) = x \times (12^2 - 2 \times 12 \times x + x^2) = x \times 12^2 - x \times 24 \times x + x \times x^2$$
$$V(x) = 144x - 24x^2 + x^3$$

2) Calculons $V'(x) = 3x^2 - 48x + 144$

On a dérivé x^3 : on trouve $3x^2$

On a dérivé x^2 : on trouve 2x. On a multiplié x^2 par -24 : donc on multiplie 2x par -24. On obtient $2x \times (-24) = -48x$.

3) On va calculer V'(4) et V'(12).

On trouve:

$$V'(4) = 3 \times 4^2 - 48 \times 4 + 144 = 0$$

$$V'(12) = 3 \times 12^2 - 48 \times 12 + 144 = 0$$

4 et 12 sont donc les racines de V'(x).

On en déduit que
$$V'(x) = a(x - x_1)(x - x_2) = 3(x - 4)(x - 12)$$

Il reste maintenant à calculer le signe de V'(x). Voir le tableau page suivante. On fait attention que le coefficient 3 est un nombre positif.

4) Pour les variations, on va intégrer directement notre résultat dans le tableau de signes.

x	0	4		12
(x-4)	_	0	+	
(x - 12)	_		_	0
f'(x) = 3(x-4)(x-12)	+	0	_	0
f				•

5) Il semble évident que l'on va avoir un placard de taille maximum si x=4 . Dans ce cas, le volume de notre placard sera de $f(4)=256\,$ dm^2