Universidade de Aveiro Departamento de Matemática

Cálculo I – Agrupamento 4

2019/2020

FICHA DE EXERCÍCIOS 3

Integral de Riemann; Teorema Fundamental do Cálculo Integral; Cálculo de áreas.

Exercícios Propostos

Diga, justificando, se as seguintes funções são integráveis nos respetivos domínios.

(a)
$$f:[0,4] \to \mathbb{R}$$
 definida por $f(x) = \cos(x^2 - 2x)$.

(b)
$$f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$$
 definida por $f(x) = \begin{cases} \operatorname{tg} x & \text{se } x \in \left[0, \frac{\pi}{2}\right] \\ 2 & \text{se } x = \frac{\pi}{2}. \end{cases}$

(c)
$$f: [-2,1] \to \mathbb{R}$$
 definida por $f(x) = \begin{cases} x+1 \text{ se } x \in [-2,0[\\ 2 \text{ se } x = 0\\ x \text{ se } x \in [0,1]. \end{cases}$

2. Determine F' sendo F a função real de variável real dada por, indicando o domínio de F',

(a)
$$F(x) = \int_0^x \frac{t^2}{t^2 + 1} dt$$
 (b) $F(x) = \int_x^0 e^{-s^2} ds$ (c) $F(x) = \int_2^{\sqrt{x}} \cos t^4 dt$

(b)
$$F(x) = \int_{x}^{0} e^{-s^2} ds$$

(c)
$$F(x) = \int_2^{\sqrt{x}} \cos t^4 dt$$

(d)
$$F(x) = \int_{\cos x}^{x^3} \ln(t^2 + 1) dt$$
 (e) $F(x) = x^3 \int_1^x e^{-s^2} ds$

(e)
$$F(x) = x^3 \int_1^x e^{-s^2} ds$$

3. Seja
$$F$$
 a função definida por $F(x)=\int_0^x\left(\int_0^t\mathrm{e}^{-u^2}\,du\right)\,dt$. Calcule $F''(x)$.

4. Considere a função F definida em \mathbb{R} por

$$F(x) = \int_{1}^{x^{2}} (1 + e^{t^{2}}) dt.$$

- (a) Calcule F'(x), para todo o $x \in \mathbb{R}$.
- (b) Estude a função F quanto à monotonia e existência de extremos locais.

5. Seja
$$H: [0, \frac{\pi}{2}] \to \mathbb{R}$$
 definida por $H(x) = \int_0^{\sin x} (x+1)^2 \cdot \operatorname{arcsen} t \, dt$.

- (a) Justifique que H é uma função contínua.
- (b) Mostre que H é diferenciável em $\left[0, \frac{\pi}{2}\right]$ e calcule H'(x).
- (c) Mostre que H tem extremos globais. Identifique os respetivos extremantes.
- 6. Usando a Regra de Cauchy, calcule o seguinte limite

$$\lim_{x \to 1} \frac{\int_1^{x^2} t \cos(1 - e^{1 - t}) dt}{x^2 - 1}.$$

7. Calcule

(a)
$$\int_{0}^{2} 6x^{4} dx$$
 (b) $\int_{3}^{2} \left(\frac{t^{2}}{3} - \sqrt{t}\right) dt$ (c) $\int_{-4}^{-3} \frac{e^{t}}{3} dt$ (d) $\int_{1}^{3} \frac{x^{3}}{\sqrt{x}} dx$ (e) $\int_{0}^{1} \frac{1}{1+t^{2}} dt$ (f) $\int_{0}^{\frac{\pi}{3}} \sec x \, tg \, x \, dx$ (g) $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sec^{2} x \, dx$ (h) $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} dx$ (i) $\int_{-\pi}^{0} \sec(3x) \, dx$ (j) $\int_{0}^{1} \frac{2x}{1+x^{2}} \, dx$ (k) $\int_{3}^{6} \frac{1}{x} \, dx$ (l) $\int_{3}^{11} \frac{1}{\sqrt{2x+3}} \, dx$ (m) $\int_{0}^{1} \sqrt[3]{x} (x-1) \, dx$ (n) $\int_{e}^{e^{2}} \frac{1}{x(\ln x)^{2}} \, dx$ (o) $\int_{0}^{1} x \sqrt{1+x^{2}} \, dx$ (p) $\int_{1}^{2} \frac{1}{x^{2}+2x+5} \, dx$

(m)
$$\int_0^1 \sqrt[3]{x} (x-1) dx$$
 (n) $\int_e^{e^2} \frac{1}{x(\ln x)}$

(o)
$$\int_{0}^{1} x \sqrt{1+x^2} \, dx$$

(p)
$$\int_{1}^{2} \frac{1}{x^2 + 2x + 5} dx$$

8. Calcule

(a)
$$\int_{-\ln 2}^{\ln 2} \frac{1}{e^x + 4} dx$$
 (b) $\int_0^1 \frac{x}{1 + x^4} dx$ (c) $\int_0^1 \sqrt{4 - x^2} dx$ (d) $\int_1^e x \ln x dx$ (e) $\int_1^e \ln^2 x dx$

9. Calcule

(a)
$$\int_0^2 f(x) dx$$
 onde $f(x) = \begin{cases} 2 & \text{se} & 0 \le x < 1 \\ \frac{1}{x} & \text{se} & 1 \le x \le 2 \end{cases}$
(b) $\int_{-1}^1 f(x) dx$ onde $f(x) = \begin{cases} \frac{2}{1+x^2} & \text{se} & x \in [-1,0[\\ 7 & \text{se} & x = 0 \end{cases}$
(c) $\int_{-1}^3 f(x) dx$ onde $f(x) = \begin{cases} \frac{x}{1+x^2} & \text{se} & x \notin [0,1] \end{cases}$
(d) $\int_0^{2\pi} f(x) dx$ onde $f(x) = \begin{cases} \frac{x}{1+x^2} & \text{se} & x \notin [0,\frac{\pi}{2}[\\ \cos x & \text{se} & x \in [\frac{\pi}{2},\frac{3\pi}{2}] \end{cases}$
 $\frac{\sin x}{1+x^2} & \text{se} & x \in [\frac{\pi}{2},\frac{3\pi}{2}]$

- 10. Suponha que f é contínua em [a,b] e que $f(x) \ge 0$ para todo o $x \in [a,b]$.
 - (a) Mostre que se existe \bar{x} em [a, b] tal que $f(\bar{x}) > 0$, então $\int_{a}^{b} f(x) dx > 0$.
 - (b) Considerando apenas que f é contínua em [a,b], diga, justificando, se a seguinte afirmação é verdadeira ou falsa:

Se
$$\int_a^b f(x) dx = 0$$
, então $f(x) = 0$ para todo o $x \in [a, b]$.

- 11. Calcule o valor da área da região limitada do plano situada entre x=0 e x=2 e limitada pelo eixo das abcissas e pelo gráfico da função g definida por $g(x) = x \ln(x+1)$.
- 12. Calcule o valor da área da região (limitada) do plano situada entre x=0 e x=2 e limitada pelo eixo das abcissas e pelo gráfico da função g definida por $g(x) = \frac{e^{2x} + 1}{e^x + 1}$

2

- 13. Seja $f(x) = x^3 3x^2 + 2x$. Calcule a área da região limitada do plano situada entre as rectas de equação x = 0 e x = 2 e limitada pelo gráfico de f e pelo eixo Ox.
- 14. Calcule a área da região limitada do plano delimitada pelos gráficos das funções f e g definidas por $f(x) = x^2$ e g(x) = x.
- 15. Calcule a área da região do plano delimitada pelos gráficos das funções f e g definidas, respetivamente, por $f(x) = e^{2x+1}$ e $g(x) = xe^{2x+1}$, e pelas retas de equações x = -1 e $x = -\frac{1}{2}$.
- 16. Calcule a área da região (limitada) de \mathbb{R}^2 delimitada pelos gráficos das funções f e g definidas, respetivamente, por $f(x) = \frac{1}{x}$ e $g(x) = x^2$, e pelas retas x = 2 e y = 0.
- 17. Determine a área da região limitada do plano delimitada pelo gráfico da função f definida por $f(x) = x \cos x$ e pelas retas de equação y = x, x = 0 e $x = \frac{\pi}{2}$.
- 18. Exprima, em termos de integrais definidos, o valor da área da região limitada do plano situada entre $x = -\pi$ e $x = \pi$ e limitada pelos gráficos das funções f e g definidas por $f(x) = \sin x$ e $g(x) = \cos x$, respetivamente.
- 19. Seja $A = \{(x, y) \in \mathbb{R}^2 : y \ge (x 3)^2, y \ge x 1, y \le 4\}.$
 - (a) Represente geometricamente a região A.
 - (b) Calcule o valor da área da região A.
- 20. Recorrendo ao cálculo integral, determine o valor da área da região sombreada representada nas figuras seguintes:

(a) $y = \sqrt{3}x$ $-4 \qquad -2 \qquad 0 \qquad 2 \qquad 4$

21. Usando o cálculo de integrais, mostre que a área da região do plano delimitada pela elipse de equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, onde $a, b \in \mathbb{R}^+$,

é πab.

22. 1 A probabilidade do eletrão de um átomo de hidrogénio se encontrar a uma distância inferior a x do seu núcleo é dada por

$$F(x) = \int_0^x \frac{4}{\beta^3} r^2 e^{-\frac{2r}{\beta}} dr,$$

onde $\beta \in \mathbb{R}^+$ é o chamado raio de Bohr ($\beta \simeq 0.5292\text{Å}$). Calcule a probabilidade do eletrão se encontrar a uma distância do núcleo inferior a 2β .

3

¹A partir deste exercício, retomam-se assuntos já abordados em exercícios anteriores. Exceto os dois primeiros, os exercícios foram retirados de provas de avaliação de edições anteriores.

- 23. Do fundo de um tanque de armazenamento fluí água a uma taxa $r(t) = 200 4t, \ 0 \le t \le 50$, em ℓ/min .
 - (a) Calcule a quantidade de água debitada durante os 10 primeiros minutos.
 - (b) Determine a expressão analítica da função que representa o volume total de água debitada, em litros, até um dado instante t, $0 \le t \le 50$.
 - (c) Qual o instante t em que o tanque terá debitado um volume total de 3 m³ de água?
- 24. Mostre que a função F definida em $[1, +\infty[$ por $F(x) = \int_0^{\ln x} \frac{e^t}{t+1} dt$ é estritamente crescente.
- 25. Calcule a área da região do plano situada entre $x=-\frac{1}{2}$ e x=0 e limitada pelo eixo das abcissas e pelo gráfico da função h definida por

$$h(x) = \frac{\arcsin x}{\sqrt{1 - x^2}}$$

- 26. Seja f uma função contínua em [2,5] e $F(x)=\int_2^x f(t)\,dt,$ com $x\in[2,5].$
 - (a) Justifique que a função F é integrável em [2,5].
 - (b) Mostre que existe $c \in]2, 5[$ tal que $\int_2^5 F(t) dt = 3 \int_2^c f(t) dt.$
- 27. Diga, justificando, se a função h definida por

$$h(x) = \begin{cases} \operatorname{arccotg}(x^2 - 4) & \text{se } x < 2\\ \pi & \text{se } x = 2\\ \cos(1 - e^{x-2}) & \text{se } x > 2 \end{cases}$$

é integrável (no sentido de Riemann) no intervalo [-1,4].

- 28. Considere a função F definida em \mathbb{R} por $F(x) = \int_0^{x^3} t e^{\operatorname{sen} t} dt$.
 - (a) Justifique que F é diferenciável em \mathbb{R} e determine F'(x) para todo o $x \in \mathbb{R}$.
 - (b) Calcule $\lim_{x\to 0} \frac{F(x)}{\sin x}$.
- 29. Considere a função f definida por $f(x) = \frac{x}{(x^2+1)^{\frac{3}{2}}}$.
 - (a) Determine $\int f(x) dx$.
 - (b) Calcule o valor da área da região delimitada pelo gráfico da função f, pelo eixo das abcissas e pelas retas de equações x=-1 e $x=\sqrt{3}$.
- 30. Sejam I um intervalo de \mathbb{R} , $a \in I$ e $f: I \to \mathbb{R}$ uma função de classe C^2 (isto é, tal que f'' é contínua). Observando que $f(x) = f(a) + \int_a^x f'(t)dt$, mostre que

4

$$f(x) = f(a) + (x - a)f'(a) + \int_a^x (x - t)f''(t)dt, \quad \forall x \in I.$$

(Sugestão: use o método de integração por partes).

31. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e par. Considere a função $F: \mathbb{R} \to \mathbb{R}$ definida por

$$F(x) = f\left(\frac{x}{2}\right) \cdot \int_0^{2x} f(t) dt.$$

Mostre que F é uma função ímpar. (Sugestão: use o método de integração por substituição)

- 32. Seja $F:]0, \frac{\pi}{2}[\to \mathbb{R}$ a função definida por $F(x) = \int_0^{\sin x} \frac{1}{\sqrt{(1-t^2)(4-t^2)}} dt$.
 - (a) Justifique que F é diferenciável e mostre que $F'(x) = \frac{1}{\sqrt{4 \sin^2 x}}, x \in \left]0, \frac{\pi}{2}\right[$.
 - (b) Calcule $\lim_{x\to 0^+} \frac{F(x)}{\sin x \cos x}$.
- 33. Considere a função F de domínio [-1,1] definida por $F(x) = \int_{\arccos x}^{0} \frac{(\sec t)^2}{e^t + 1} dt$.
 - (a) Justifique que F é diferenciável em]-1,1[e determine F'(x) para $x \in]-1,1[$.
 - (b) Estude F quanto à monotonia e identifique os extremantes globais de F.

Exercícios Resolvidos

1. Considere a função real de variável real definida por $H(x) = \int_0^{x^2} e^{t^3} dt$. Indique o domínio de H e mostre que nesse domínio a função é diferenciável. Calcule H'(x).

Resolução: O domínio de $H \in \mathbb{R}$.

Sejam F e g dadas por $F(x) = \int_0^x e^{t^3} dt$ e $g(x) = x^2$, respetivamente. Notar que,

$$H(x) = F(g(x)), \forall x \in \mathbb{R}.$$

A função F é diferenciável em \mathbb{R} , dado que f definida por $f(t) = e^{t^3}$ é contínua em \mathbb{R} , e $F'(x) = e^{x^3}$, pelo Teorema Fundamental do Cálculo Integral. Por outro lado, a função g, que é uma função quadrática, é também diferenciável em \mathbb{R} e g'(x) = 2x. Então, usando a regra da cadeia, H é diferenciável em \mathbb{R} e H'(x) = f(g(x))g'(x), ou seja,

$$H'(x) = e^{(x^2)^3} \cdot 2x$$

= $2x e^{x^6}$, para todo o $x \in \mathbb{R}$.

- 2. Considere a função f de domínio $]1,+\infty[$ definida por $f(x)=\frac{1}{x \ln x}$.
 - (a) Determine a primitiva de f que se anula no ponto $x=e^2$.
 - (b) Calcule o valor da área da região do plano situada entre as retas de equações x = e e $x = e^3$, limitada pelo eixo das abcissas e pelo gráfico de f.

Resolução:

(a) Atendendo ao Teorema Fundamental do Cálculo Integral, uma vez que f é contínua em qualquer subintervalo fechado e limitado de $]1, +\infty[$, essa primitiva é a função dada por

$$F(x) = \int_{e^2}^x f(t)dt = \int_{e^2}^x \frac{1}{t \ln t} dt = \int_{e^2}^x \frac{\frac{1}{t}}{\ln t} dt = \ln|\ln x| - \ln(\ln(e^2))$$

ou seja, a primitiva de f que se anula no ponto $x = e^2$ é dada por $F(x) = \ln |\ln x| - \ln(2)$.

5

(b) Uma vez que para todo o $x \ge e$, $\ln x \ge 1$, podemos concluir que para todo o $x \in [e, e^3]$, $x \ln x > 0$ e, portanto,

$$\frac{1}{x \ln x} > 0.$$

Como f é contínua e positiva em $[e, e^3]$ a área pedida é dada por

$$\int_{e}^{e^3} f(x)dx = \left[\ln|\ln x|\right]_{e}^{e^3} = \ln|\ln(e^3)| - \ln|\ln e| = \ln 3 - \ln 1 = \ln 3.$$

3. Calcule o valor da área da região do plano situada entre os gráficos das funções f e g definidas, respetivamente, por

$$f(x) = \frac{4 + \sin^2 x}{1 + 4x^2}$$
 e $g(x) = \frac{\sin^2 x}{1 + 4x^2}$

e pelas retas de equações x=0 e $x=\frac{1}{2}.$

 $\textbf{Resolução} \text{: Uma vez que as funções } f \text{ e } g \text{ são contínuas em } \left[0,\frac{1}{2}\right] \text{ e, para todo o } x \in \left[0,\frac{1}{2}\right],$

$$f(x) = \frac{4 + \sin^2 x}{1 + 4x^2} > \frac{\sin^2 x}{1 + 4x^2} = g(x)$$

podemos afirmar que a área pedida é dada pelo seguinte integral de Riemann:

$$\int_0^{\frac{1}{2}} (f(x) - g(x)) \, dx = \int_0^{\frac{1}{2}} \frac{4}{1 + 4x^2} dx.$$

Como

$$\int_0^{\frac{1}{2}} \frac{4}{1+4x^2} dx = \frac{4}{2} \int_0^{\frac{1}{2}} \frac{2}{1+(2x)^2} dx = 2 \left[\operatorname{arctg}(2x) \right]_0^{\frac{1}{2}} = 2 \left(\operatorname{arctg}(1) - \operatorname{arctg}(0) \right) = 2 \frac{\pi}{4} = \frac{\pi}{2}$$

podemos concluir que a área é igual a $\frac{\pi}{2}$.