Sisteme liniare iterative

$$Ax^* = b, x^* = ?$$

 $x^{(k)} \rightarrow x^*, k \rightarrow \infty$

$$x^{(k+1)} = c + T \cdot x^{(k)} \to x^*, k \to \infty, \qquad T = ? \quad c = ? \quad x^{(0)} = ?$$

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{i1}x_1 + \dots + a_{in}x_n = b_i \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{1}{a_{1i}} \left(b_1 - \sum_{j=2}^n a_{1j}x_j \right) \\ \vdots \\ x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^n a_{ij}x_j \right) \\ \vdots \\ x_n = \frac{1}{a_{nn}} \left(b_n - \sum_{j=1}^{n-1} a_{nj}x_j \right) \end{cases}$$

$$1) \text{ Jacobi:} \qquad x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^n a_{ij}x_j^{(k)} \right)$$

$$2) \text{ Gauss-Seidel:} \qquad x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij}x_j^{(k)} \right)$$

$$3) \text{ SOR:} \qquad x_i^{(k+1)} = \omega \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij}x_j^{(k)} \right) + (1 - \omega)x_i^{(k)}, \quad \omega \in (0,2)$$

$$\omega = 1 \Rightarrow \text{ Gauss-Seidel}$$

$$A = M - N, M$$
 inversabilă

$$Ax^* = b \Leftrightarrow (M - N)x^* = b \Leftrightarrow M^{-1} \cdot | Mx^* = b + Nx^*$$

$$\Leftrightarrow x^* = c + Tx^*, \qquad c = M^{-1}b = M \setminus b, \qquad T = M^{-1}N = M \setminus N, \qquad N = M - A,$$

$$M = ?$$

$$x^{(k+1)} = c + T \cdot x^{(k)} \to x^*, k \to \infty$$

2) Gauss-Seidel: *M=tril(A)*

3) SOR:
$$M = \frac{1}{\omega} \cdot diag(diag(A)) + tril(A,-1)$$

Observație: Dacă raza spectrală $\rho_T = max \left(abs\left(eig(T)\right)\right) < 1$, atunci are loc convergența.

Dacă $||T||_p = norm(T, p) < 1$, pentru un $p \in [1, \infty]$, atunci $\rho_T < 1$.

Teorema de punct fix a lui Banach:

Dacă $||Tx - Ty|| \le M ||x - y||, \forall x, y$ vectori, unde $M \in (0,1)$ este fixat, atunci șirul $x^{(k+1)} = c + Tx^{(k)} \to x^*, k \to \infty$, pentru orice vector inițial $x^{(0)}$, iar x^* este unic (nu depinde de alegerea lui $x^{(0)}$).

Observație: Dacă $||T||_p = norm(T,p) < 1$, atunci:

criteriul de oprire este dat de inegalitatea: $\|x^{(k+1)} - \mathbf{x}^*\|_p \le \frac{\|T\|_p}{1 - \|T\|_p} \cdot \|x^{(k+1)} - x^{(k)}\|_p$.

 x^* e necunoscut \Rightarrow criteriul de oprire este $\frac{\|T\|_p}{1-\|T\|_p} \cdot \left\|x^{(k+1)} - x^{(k)}\right\|_p \le \varepsilon$ și se returnează $x^{(k+1)}$.

Exemplu de matrice reală A pentru care metodele de mai sus converg:

- $a_{ii} > 0$, i = 1, ..., n;
- $\cdot A \text{ simetrică: } A = \text{transpusa}(A);$
- · A strict diagonal dominantă: $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$, i = 1, ..., n.

Dacă, în plus, A este tridiagonală, atunci putem alege, în metoda SOR:

$$\omega_{optim} = \frac{2}{1 + \sqrt{1 - \rho(T_J)^2}}$$

unde $\rho(T_I)$ este raza spectrală pentru T din metoda Jacobi.