AODE and Comparison

Naive Bayes: Weakening the Independence Assumption

Seminar Maschinelles Lernen
Steffen Meyer
11.01.2006

Agenda

- Motivation
- Vergleichsalgorithmen
 - Vorstellung von NB, LBR, TAN und deren Komplexitäten
 - Vergleich TAN & LBR
- AODE: Averaged One-Dependence Estimators
 - Intuition
 - Herleitung des Klassifizierers
 - Komplexitäten
 - Vorteile, Erwartungen, Evaluation
 - Ergebnisse
- Fazit

Motivation

- Naive Bayes
 - einfacher, effizienter, weit verbreiteter Klassifizierer
 - Annahme: Attribute sind unabhängig
 - geringe Verletzung à keine Auswirkung
 - Hohe Verletzung, d.h. Vernachlässigung vieler Abhängigkeiten zwischen den Attributen à hohe Fehlerquote
- Mehrere Ansätze existieren, um Unabhängigkeitsannahme abzuschwächen
- Gibt es Unterschiede zwischen diesen? Z. B. zwischen LBR und TAN?
- Lässt sich evtl. bei vergleichbaren Ergebnissen die Laufzeit verringern? Was bedeutet eigentlich AODE?

- Besonders niedrige Fehlerquoten bei LBR & TAN
- Darstellung der Abhängigkeiten über Bayes'sche Netzwerke

Bayes'sches Netzwerk für Naive Bayes

- Naive Bayes
 - Klassifiziert mit $\underset{y}{\operatorname{arg max}}(\hat{P}(y)\prod_{i=1}^{n}\hat{P}(x_{i}\mid y))$
 - Berechnungskomplexität im Training:
 - Tabelle mit Klassenwahrscheinlichkeiten (eindimensional mit Klasse als Index) zur Berechnung des Schätzers $^{\wedge}P(y)$
 - Tabelle zur Berechnung der bedingten Wahrscheinlichkeiten der Attributwerte (zweidimensional mit Klasse und Attributwert als Index)
 - Datenkomplexität O(knv); k=Klassen, n=Attribute, v=durchschnittlicheAnzahl an Werten pro Attribut
 - Zeitkomplexität: O(tn); t=Anzahl der Trainingsbeispiele
 - Berechnungskomplexität bei Klassifizierung:
 - Datenkomplexität: Verwendung der Trainingstabellen O(knv)
 - Zeitkomplexität: O(kn)

- TAN (Tree Augmented Naive Bayes) & Super Parent-TAN
 - Jedes Attribut darf von der Klasse und höchstens einem anderen Attribut abhängig sein, seinem parent
 - Klassifizierung durch: $\arg \max_{y} \left(\hat{P}(y) \prod_{i=1}^{n} \hat{P}(x_i \mid y, parent(x_i)) \right)$
 - Berechnungskomplexität im Training:
 - Datenkomplexität: Berechnung einer 3D Wahrscheinlichkeitstabelle für jeden Attributwert, unter der Bedingung jedes anderen Attributwertes und jeder Klasse; $O(k(nv)^2)$; SP-TAN muss zusätzlich noch die Trainingsdaten speichern mit O(tn)
 - Zeitkomplexität: Berechung der Wahrscheinlichkeitstabelle $O(tn^2)$; Berechnung der parent Funktion $O(kn^2v^2+n^2log\ n)$
 - Berechnungskomplexität bei Klassifizierung:
 - Daten: Komprimierte Wahrscheinlichkeitstabelle; O(knv²)
 - Zeit: Klassifizierung; O(kn)

Bayes'sches Netzwerk f
ür TAN

- Gründe für die Restriktionen
 - Reduzierung der Anzahl von möglichen Klassifizierern
 - Werden zusätzliche parents erlaubt, so werden die Wahrscheinlichkeitsschätzungen unzuverlässiger, da die Tabellen mit bedingten Wahrscheinlichkeiten exponentiell mit der Anzahl der Eltern wachsen

- Drei Hauptmerkmale von Lazy Learning Algorithmen:
 - Verarbeiten der Eingaben erst bei Informationsanforderung
 - Ausgaben ergeben sich ausschließlich aus gespeicherten Daten
 - Zwischenergebnisse und berechnete Antworten gehen verloren
- LBR (Lazy Bayesian Rules)
 - Für jedes zu klassifizierende $x = \langle x_i, ..., x_n \rangle$, wird eine Menge W an beliebig abhängigen Attributen ausgewählt. Alle anderen Attribute sind voneinander unabhängig
 - Dadurch hängt jedes Attribut von der Klasse und den Attributen in W ab.
 - Anwendung speziell für Klassifizierung weniger Beispiele pro Trainingsset
 - Komplette Neugenerierung eines Bayes'schen Netzwerkes bei Klassifizierung

- LBR (cnt'd)
 - Klassifizierung durch: $\underset{y}{\operatorname{arg max}} \left(\hat{P}(y|W) \prod_{i=1}^{n} \hat{P}(x_i | y, W) \right)$
 - Berechnungskomplexität im Training: nur Speicherung der Trainingsdaten; Daten-, Zeitkomplexität jeweils O(tn)
 - Berechnungskomplexität bei Klassifikation: Auswählen der Attribute für W; $O(tkn^2)$; Datenkomplexität O(tn)
- Bayes'sches Netzwerk f
 ür LBR

Vergleich TAN & LBR

Unterschiede

- In der Art und Anzahl von Abhängigkeiten, die erlaubt werden
 - TAN erlaubt verschiedene Parents der Attribute, allerdings maximal ein parent pro Attribut
 - Bei LBR sind beliebig viele Abhängigkeiten für Attribute erlaubt, allerdings nur von den gleichen Parents
- In der Art des Lernens
 - Bei TAN bei Eingabe der Trainingsdaten, dadurch Verwendung des selben Netzwerkes
 - Bei LBR auf Anfrage, dadurch Erzeugung eines neuen Netzwerkes pro Test
- LazyTAN zur Überprüfung des zweiten Unterschiedes

Kurzevaluation

- LBR, TAN und LazyTAN haben vergleichbare Fehlerraten
- Weder LBR noch TAN sind prinzipiell immer besser
- Der Vorteil gegenüber NB hängt von den Datensets ab

Warum AODE?

- LBR und SP-TAN haben liefern ähnliche Fehlerraten wie Boosting Decision Trees
- Dafür fallen aber hohe Berechnungskosten an. (Ausnahme: LBR für Klassifizierung weniger Beispiele)
- 2 Ursachen für Berechnungskomplexität:
 - Wahrscheinlichkeitsschätzung: "on the fly" bei LBR und 3D Tabelle mit bedingten Wahrscheinlichkeiten bei SP-TAN
 - Modellauswahl: W bei LBR und parent() bei SP-TAN

AODE versucht nun

- die Unabhängigkeitsannahme abzuschwächen, dabei
- konkurrenzfähige Fehlerraten zu LBR und SP-TAN zu erzielen,
- allerdings ohne deren Berechnungsaufwand.

- 1. Ursache: Wahrscheinlichkeitsschätzung
- x-dependence Estimator
 - Wahrscheinlichkeit für jeden Attributwert ist bedingt durch die Klasse und maximal x andere Attribute
 - Allgemein können die benötigten Attribute in einer (x+2)dimensionalen Tabellen gespeichert werden, indexiert durch
 - den Zielattributwert,
 - die Klasse,
 - die x anderen Attribute von denen der Zielwert abhängig ist.
- Aus Effizienzgründen werden hier 1-dependence Klassifizierer gewählt

- 2. Ursache: Modellauswahl
- Einfachste Variante: Kein Modell auswählen (siehe NB)
 - Berechnungsaufwand minimiert
 - Außerdem kann sich bei Modellauswahl die Varianz erhöhen
 - Vermeidung einer Modellauswahl kann somit den, durch Varianz entstehenden, Fehleranteil eines Klassifizierers vermindern
- Allerdings muss bei 1-dependence Klassifizierern das eine abhängige Attribut ausgewählt werden.
- Lösung:
 - Auswahl einer begrenzten Zahl an 1-dependence Klassifizierern
 - Bilden eines Durchschnittes der entstehenden Voraussagen

Intuition

- Wähle alle 1-dependence Klassifizierer, bei denen ein einzelnes Attribut parent von allen anderen ist
- Beziehe aber nur solche Modelle für die Wahrscheinlichkeitsberechnung mit ein, bei denen der Wert für ein Attribut x_i aus dem zu klassifizierenden \mathbf{x} öfter als oder gleich m –mal in den Trainingsdaten vorkommt.
- Herleitung des Klassifizierers
 - Für jedes xi gilt wegen der Produktregel:

$$P(y, x) = P(y, x_i)P(x \mid y, x_i)$$

- Herleitung des Klassifizierers (cnt'd)
 - Daraus der Durchschnitt über alle gewählten xi:

$$P(y,x) = \frac{\sum_{i:1 \le i \le n \land F(x_i) \ge m} P(y,x_i) P(x \mid y,x_i)}{\left| \left\{ i:1 \le i \le n \land F(x_i) \ge m \right\} \right|}$$

- F(xi) ist hierbei die Anzahl an Trainingsbeispielen, die den Attributwert xi besitzen
- Klassifizierung durch:

$$\arg\max_{y} \left(\sum_{i:1 \le i \le n \land F(x_i) \ge m} \hat{P}(y, x_i) \prod_{j=1}^{n} \hat{P}(x_j \mid y, x_i) \right)$$

Ansonsten NB

- Berechnungskomplexität im Training
 - Datenkomplexität: Erzeugen der Tabellen zur Berechnung der Schätzer; $O(k(nv)^2)$
 - Analyse der Häufigkeiten in den Trainingsdaten um die Tabellen zu füllen; $O(tn^2)$
- Berechungskomplexität bei Klassifizierung
 - Es findet keine Modellauswahl statt, da der Durchschnitt über alle xi gebildet wird
 - Datenkomplexität: Es werden die Wahrscheinlichkeitstabellen aus dem Training verwendet; $O(k(nv)^2)$
 - Zeitkomplexität: Berechnung der Klassifizierungsfunktion; $O(kn^2)$

Komplexität (Übersicht)

	Training	Klassifikation		
Algorithmus	Zeit	Daten	Zeit	Daten
NB	O(nt)	O(knv)	O(kn)	O(knv)
TAN	$O(tn^2 + kn^2v^2 + n^2log n)$	$O(k(nv)^2)$	O(kn)	$O(knv^2)$
SP-TAN	$O(tkn^3)$	$O(tn+k(nv)^2)$	O(kn)	$O(knv^2)$
LBR	O(tn)	O(tn)	$O(tkn^2)$	O(tn)
AODE	$O(tn^2)$	$O(k(nv)^2)$	$O(kn^2)$	$O(k(nv)^2)$

k – Anzahl der Klassen

n − Anzahl der Attribute

v − Durchschnittliche Anzahl an Werten pro Attribut

t – Anzahl der Trainingsbeispiele

Vorteile

- Inkrementelles Lernen, indem einfach die relevanten
 Wahrscheinlichkeiten in den Tabellen geändert werden
- Schneller als SP-TAN & TAN während Training
- Schneller als LBR während Klassifizierung
- Erwartung: Zusätzlich niedrigere Fehlerrate als NB, weil
 - Schwächere Unabhängigkeitsannahme, da Abhängigkeit von einem Attribut erlaubt wird
 - Allerdings kann P(y, xi) und P(xj | y, xi) ungenauer sein als P(y) und P(xi, y) bei NB, wenn xi nicht häufig genug in den Trainingsdaten vorkommt
 - Fehlerrate wird deshalb mit steigender Anzahl an Trainingsdaten zusätzlich sinken
 - Hinweise vorhanden, dass eine Aggregation mehrerer vertrauenswürdiger Modelle die Vorhersagegenauigkeit erhöht

Evaluation - Beobachtung

Fehler

Data	AODE	NB	ODE	LBR	TAN	SP-TAN	J48	Boost J48
Mittel	0,204	0,219	0,216	0,209	0,216	0,211	0,230	0,206
Geo. Mittel		1,124	1,115	1,049	1,102	1,056	1,225	1,026

Bias

Data	AODE	NB	ODE	LBR	TAN	SP- TAN	J48	Boost J48	_
Mittel	0,140	0,155	0,147	0,139	0,140	0,142	0,126	0,111	
Geo. Mittel		1,160	1,084	1,003	0,998	1,026	0,963	0,773	

Varianz

Data	AODE	NB	ODE	LBR	TAN	SP-TAN	J48	J48
Mittel	0,063	0,062	0,068	0,069	0,075	0,068	0,102	0,093
Geo. Mittel		0,980	1,178	1,131	1,375	1,119	1,735	1,717

Evaluation - Beobachtung

Win/Draw/Loss, AODE vs Alternativen

	NB		ODE		LBR		TAN	
	W/D/L	р	W/D/L	р	W/D/L	р	W/D/L	р
Fehler	22/7/8	0,008	23/10/4	<0,001	19/6/12	0,281	27/2/8	0,002
Bias	24/9/4	<0,001	19/8/10	0,136	18/4/15	0,728	13/2/22	0,175
Varianz	6/15/16	0,026	23/10/4	<0,001	19/8/10	0,136	31/4/2	<0,001

	SP-T	AN	J4	-8	Boosted J48		
	W/D/L	р	W/D/L	р	W/D/L	р	
Fehler	23/3/11	0,058	25/0/12	0,047	21/0/16	0,511	
Bias	18/3/16	0,864	15/0/22	0,324	10/0/27	0,008	
Varianz	25/5/7	0,002	33/0/4	<0,001	32/1/4	<0,001	

Evaluation - Ergebnisse

Fehler

- Im Durchschnitt geringer als bei allen anderen
- Allerdings bei W/D/L nur gegenüber NB, ODE, TAN, J48 signifikant geringer

Bias

- Im Durchschnitt geringer als bei NB, LBR, TAN, SP-TAN
- Bei W/D/L signifikant geringer als bei NB, aber nicht signifikant bei LBR, TAN, SP-TAN, J48
- Höher als bei J48 und Boosted J48, bei W/D/L bei J48 aber nicht signifikant

Varianz

- Im Durchschnitt geringer als bei ODE, LBR, TAN, SP-TAN, J48, Boosted J48; allerdings bei W/D/L nicht signifikant bei LBR
- Im Durchschnitt höher als bei NB, auch bestätigt bei W/D/L, allerdings wäre ein zweiseitiger Test mit 0,052 nur marginal signifikant

Fazit

- Starke Senkung des Bias auf Kosten einer sehr kleinen Erhöhung der Varianz im Vergleich zu NB
- Scheinbar niedrigere Varianz aber h\u00f6herer Bias als LBR, TAN, SP-TAN, decision trees, allerdings ohne die hohen Trainingskosten von SP-TAN und ohne Klassifizierungskosten von LBR
- Eignung für inkrementelles Lernen
- Die Idee begrenzte Modelle zu aggregieren und damit die Modellauswahl zu vermeiden scheint aufzugehen

Noch Fragen?

Vielen Dank für eure Aufmerksamkeit!