

UNIVERSIDAD AUTÓNOMA DE CHIAPAS

"Por la conciencia de la necesidad de servir"

Licenciatura en Ingeniería en Desarrollo y Tecnologías de Software

MATERIA:

copiladores

ACTIVIDAD I, II.-5%

Mejia Ramirez Owen israel

DOCENTE

Luis Gutierrez Alfaro

15/08/2024

Facultad de Contaduría y Administración Campus I Licenciatura en Ingeniería en Desarrollo y Tecnologías de Software regulares.

Definir el concepto de expresión regular. I.- Explicar los tipos de operadores de expresiones

Una expresión regular (o regex) es una secuencia de caracteres que forma un patrón de búsqueda. Se utilizan ampliamente en informática para buscar y manipular texto, ya sea para validar datos, extraer información específica de un texto o realizar reemplazos. En esencia, son como comodines muy poderosos que nos permiten definir patrones complejos de búsqueda.

- Concatenación: Simplemente une dos expresiones regulares. Por ejemplo, ab busca la secuencia exacta "ab".
- Alternancia: Representa una elección entre dos expresiones regulares. Se denota con el símbolo |. Por ejemplo, a|b busca "a" o "b".
- Cero o más repeticiones: El operador * indica que el elemento anterior puede aparecer cero o más veces. Por ejemplo, a* busca cero o más "a" consecutivas.
- Una o más repeticiones: El operador + indica que el elemento anterior debe aparecer al menos una vez. Por ejemplo, a+ busca una o más "a" consecutivas.
- Cero o una repetición: El operador ? indica que el elemento anterior puede aparecer cero o una vez. Por ejemplo, a? busca cero o una "a".
- Rango de repeticiones: Los cuantificadores {n,m} indican que el elemento anterior debe aparecer al menos n veces y como máximo m veces. Por ejemplo, a{2,4} busca de 2 a 4 "a" consecutivas.
- Conjunto de caracteres: Los corchetes [] se utilizan para definir un conjunto de caracteres. Por ejemplo, [abc] busca "a", "b" o "c".
 Negación de un conjunto: El símbolo ^ dentro de un conjunto de
- Negación de un conjunto: El símbolo ^ dentro de un conjunto de caracteres niega la coincidencia. Por ejemplo, [^abc] busca cualquier carácter excepto "a", "b" o "c".
- Metacaracteres: Son caracteres especiales que tienen un significado especial dentro de las expresiones regulares, como el punto ., que coincide con cualquier carácter excepto un salto de línea.

II. Conversión de DFA a Expresiones Regulares

El algoritmo general implica eliminar estados del DFA uno por uno, reescribiendo las expresiones regulares asociadas a las transiciones. Este proceso continúa hasta que solo quedan dos estados: el estado inicial y el estado de aceptación. La expresión regular asociada a la transición entre estos dos estados finales es la expresión regular equivalente al DFA original.

II. Leyes Algebraicas de Expresiones Regulares

- Asociatividad de la concatenación: (r1r2)r3 = r1(r2r3)
- Distributividad de la concatenación sobre la unión: r(s|t) = rs|rt
- Idempotencia de la unión: r|r = r
- Conmutatividad de la unión: r|s = s|r
- Elemento neutro de la concatenación: εr = rε = r, donde ε es la cadena vacía
- Ley de absorción: r(r|s) = r
- Realice una expresión regular de todas las cadenas con símbolos a y b, que terminan con el <u>sufijo abb</u>. Ejemplo de <u>éstas</u> cadenas son:

abb, aabb, babb, aaabb, ababb, baabb, bbabb, ...

(a|b)*abb

2. Realice una expresión regular de todas las cadenas de con símbolos 0 y 1, que primero tengan los símbolos 1 's con longitud impar y después aparezcan los 0 's con longitud par. Ejemplo de <u>éstas</u> cadenas son:

100, 10000, 1000000, 11100, 1110000, 111110000, ...

1(11)*(00)+

```
* / 1(11)*(00)+

TEST STRING

10011100

1004

1100

1100

1004
```

- Para la expresión regular (+|-)?d + .d + indique las cadenas correctas de los siguientes incisos. (Nota. En esta expresión <u>él</u> es un símbolo no el operador concatenación y d representa los dígitos del 0 al 9).
 - a) -20.43: Correcta.
 - b) 0.3216: Correcta.
 - c) 329.: Incorrecta.
 - d) 217.92: Correcta.
 - e) +2019: Incorrecta.
 - f) +.762: Incorrecta.
 - g) -.4555: Incorrecta.
- 4.- Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto Σ={a,b,c}. El conjunto de cadenas que inician en la sub-cadena "ac" y terminan en la sub-cadena "ab".

5.- Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto Σ={a,b,c}. El conjunto de cadenas que no inician en la sub-cadena "ac" o no terminan en la sub-cadena "ab".

