Continuum Mechanics

Lecture 2 - Tensor Algebra

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

August 20, 2020

schedule

- 20 Aug Tensor Algebra
- 25 Aug Tensor Calculus, HW1 Due
- 27 Aug Material Derivative
- 1 Sep Conservation and Compatibility, HW2 Due

- symmetry
- transformation
- examples
- principal values
- invariants
- principal directions
- examples

symmetry

- Symmetry can be a very powerful tool
- Here we define some useful forms of symmetry in index notation
- Symmetric

$$-a_{ii...z}=a_{z...ii}$$

$$- a_{ij...m...n..z} = a_{ij...n...m..z}$$

- Anti-symmetric (skew symmetric)

$$-a_{ii...z}=-a_{z...ii}$$

$$- a_{ij...m...n...z} = -a_{ij...n...m...z}$$

- Useful identity
 - If a_{ij...m...n...k} is symmetric in mn and b_{pq...m...n...r} is antisymmetric in mn, then the product is zero

$$a_{ij...m...n...k}b_{pq...m...n...r}=0$$

 We can also write any tensor as the sum of its symmetric and anti-symmetric parts

$$a_{ij} = \frac{1}{2}(a_{ij} + a_{ji}) + \frac{1}{2}(a_{ij} - a_{ji})$$

 This textbook uses a special shortcut notation (S and A superscript) for the symmetric and anti-symmetric portions of a tensor

linear transformation

- Let us consider some transformation, T, which transforms any vector into another vector
- If we transform Ta = c and Tb = d
- We call T a linear transformation (and a tensor) if

$$T(a + b) = Ta + Tb$$

 $T(\alpha a) = \alpha Ta$

– Where α is any arbitrary scalar and ${\bf a}, {\bf b}$ are arbitrary vectors

Figure 1: 2d coordinate transformation example with vector pointing from (0,0) to (1,1)

2d coordinate transformation

- The vector, v, remains fixed, but we transform our coordinate system
- In the new coordinate system, the x'₂ portion of v is zero.
- To transform the coordinate system, we first define some unit vectors.
- \hat{e}_1 is a unit vector in the direction of x_1 , while \hat{e}'_1 is a unit vector in the direction of x'_1

Figure 2: 2d coordinate transformation from previous figure with unit vectors drawn along the x and y axes

2d coordinate transformation

- For this example, let us assume $v = \langle 2, 2 \rangle$ and $\theta = 45^{\circ}$
- We can write the transformed unit vectors, \hat{e}_1' and \hat{e}_2' in terms of \hat{e}_1 , \hat{e}_2 and the angle of rotation, θ .

$$\begin{split} \hat{e}_1' &= \langle \hat{e}_1 \cos \theta, \hat{e}_2 \sin \theta \rangle \\ \hat{e}_2' &= \langle -\hat{e}_1 \sin \theta, \hat{e}_2 \cos \theta \rangle \end{split}$$

- We can write the vector, v, in terms of the unit vectors describing our axis system
- $V = V_1 \hat{e}_1 + V_2 \hat{e}_2$
- (note: $\hat{e}_1 = \langle 1, 0 \rangle$ and $\hat{e}_2 = \langle 0, 1 \rangle$)
- $-v = \langle 2, 2 \rangle = 2\langle 1, 0 \rangle + 2\langle 0, 1 \rangle$

2d coordinate transformation

- When expressed in the transformed coordinate system, we refer to v'
- $v' = \langle v_1 \cos \theta + v_2 \sin \theta, -v_1 \sin \theta + v_2 \cos \theta \rangle$
- $-v'=\langle 2\sqrt{2},0\rangle$
- We can recover the original vector from the transformed coordinates:
- $v = v_1' \hat{e}_1' + v_2' \hat{e}_2'$

- note:

$$\hat{e}'_1 = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$$

and

$$\hat{e}_2' = \langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$$

- therefore

$$v=2\sqrt{2}\langle\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\rangle,0\langle-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\rangle=\langle2,2\rangle$$

coordinate transformation

- Coordinate transformation can become much more complicated in three dimensions, and with higher-order tensors
- We define Q_{ij} as the cosine of the angle between the x_i' axis and the x_j axis.

- This is also referred to as the "direction cosine"

$$Q_{ij} = \cos(x_i', x_i)$$

- health warning the direction cosine can also be defined inversely $(Q_{ij} = \cos(x_i, x'_j))$, and the indexes are switched in the transformation law

1

coordinate transformation

We can use this form on our 2D transformation example

$$\begin{aligned} Q_{ij} &= \cos(x_i', x_j) \\ &= \begin{bmatrix} \cos(x_1', x_1) & \cos(x_1', x_2) \\ \cos(x_2', x_1) & \cos(x_2', x_2) \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta & \cos(90 - \theta) \\ \cos(90 + \theta) & \cos \theta \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \end{aligned}$$

- We can transform any-order tensor using Qii
- Vectors (first-order tensors): $v'_i = Q_{ij}v_i$
- Matrices (second-order tensors):

$$\sigma'_{mn} = Q_{mi}Q_{nj}\sigma_{ij}$$

- Fourth-order tensors:

$$C'_{ijkl} = Q_{im}Q_{jn}Q_{ko}Q_{lp}C_{mnop}$$

coordinate transformation

- We can similarly use Q_{ij} to find tensors in the original coordinate system
- Vectors (first-order tensors): $v_i = Q_{ji}v'_i$
- Matrices (second-order tensors): $\sigma_{mn} = Q_{im}Q_{jn}\sigma'_{ij}$
- Fourth-order tensors: $C_{ijkl} = Q_{mi}Q_{nj}Q_{ok}Q_{pl}C'_{mnop}$

- We can derive some interesting properties of the transformation tensor, Q_{ii}
- We know that $v_i = Q_{ij}v'_i$ and that $v'_i = Q_{ij}v_j$
- If we substitute (changing the appropriate indexes)
 we find:

$$V_i = Q_{ii}Q_{ik}V_k$$

– We can now use the Kronecker Delta to substitute $v_i = \delta_{ib} v_b$ which gives

$$\delta_{ik}V_k = Q_{ii}Q_{ik}V_k$$

10

Figure 3: 3d coordinate system to start general transformation example

Figure 4: 3d illustration of first transformation

Figure 5: 3d illustration of second transformation (about the axes of the first)

example

$$\begin{aligned} & - Q_{ij}^1 = \cos(x_i', x_j) \\ & - Q_{ij}^2 = \cos(x_i'', x_j') \end{aligned}$$

$$Q_{ij}^1 = \begin{bmatrix} \cos 60 & \cos 90 & \cos 150 \\ \cos 90 & \cos 0 & \cos 90 \\ \cos 30 & \cos 90 & \cos 60 \end{bmatrix}$$

$$Q_{ij}^2 = \begin{bmatrix} \cos 30 & \cos 60 & \cos 90 \\ \cos 120 & \cos 30 & \cos 90 \\ \cos 90 & \cos 90 & \cos 0 \end{bmatrix}$$

- We now use Q_{ij} to find \hat{e}'_i and \hat{e}''_i
- First, we need to write \hat{e}_i in a manner more consistent with index notation
- We will indicate axis direction with a superscript, e.g. $\hat{e}_1 = e_1^1$
- $-e'_{i}=Q^{1}_{ii}e_{i}$
- $-e_{i}''=Q_{ii}^{2}e_{i}'$

- How do we find e_i'' in terms of e_i ?
- $e_i'' = Q_{ij}^2 Q_{jk}^1 e_k$

principal values

- In the 2D coordinate transformation example, we were able to eliminate one value from a vector using coordinate transformation
- For second-order tensors, we desire to find the "principal values" where all non-diagonal terms are zero
- The direction determined by the unit vector, n_i , is said to be the *principal direction* or *eigenvector* of the symmetric second-order tensor, a_{ij} if there exists a parameter, λ , such that

$$a_{ii}n_i = \lambda n_i$$

– Where λ is called the *principal value* or *eigenvalue* of the tensor

principal values

- We can re-write the equation

$$(a_{ii} - \lambda \delta_{ii})n_i = 0$$

- This system of equations has a non-trivial solution if and only if $\det[a_{ii} \lambda \delta_{ii}] = 0$
- This equation is known as the characteristic equation, and we solve it to find the principal values of a tensor

2

example

- Find the principal values of the tensor

$$A_{ij} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

– From the characteristic equation, we know that $\det[A_{ii} - \lambda \delta_{ii}] = 0$, or

$$\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix} = 0$$

- Calculating the determinant gives

$$(1-\lambda)(4-\lambda)-4=0$$

- Multiplying out and simplifying, we find

$$\lambda^2 - 5\lambda = \lambda(\lambda - 5) = 0$$

- This has the solution $\lambda = 0.5$

20

invariants

- Every tensor has some invariants which do not change with coordinate transformation
- These are known as fundamental invariants
- The characteristic equation for a tensor in 3D can be written in terms of the invariants

$$det[a_{ij} - \lambda \delta_{ij}] = -\lambda^3 + I_{\alpha}\lambda^2 - II_{\alpha}\lambda + III_{\alpha} = 0$$

The invariants can be found by the following equations

$$I_{\alpha} = a_{ii}$$

$$II_{\alpha} = \frac{1}{2} (a_{ii}a_{jj} - a_{ij}a_{ij})$$

$$III_{\alpha} = \det[a_{ij}]$$

invariants

– In the principal direction, a'_{ii} will be

$$a'_{ij} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

 Since invariants do not change with coordinate systems, we can also write the invariants as

$$\begin{split} I_{\alpha} &= \lambda_1 + \lambda_2 + \lambda_3 \\ II_{\alpha} &= \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1 \\ III_{\alpha} &= \lambda_1 \lambda_2 \lambda_3 \end{split}$$

principal directions

- We defined principal directions earlier

$$(a_{ij} - \lambda \delta_{ij})n_j = 0$$

- λ are the principal values and n_j are the principal directions
- For each eigenvalue there will be a principal direction
- We find the principal direction by substituting the solution for λ back into this equation

example

- Find the principal directions for the earlier principal values example
- Recall $\lambda=0,5$, let us say $\lambda_1=5$, we find $n_i^{(1)}$ by

$$\begin{bmatrix} 1 - \lambda_1 & 2 \\ 2 & 4 - \lambda_1 \end{bmatrix} \left\{ n_1 \, n_2 \right\} = 0$$

- This gives

$$\begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \left\{ n_1 \, n_2 \right\} = 0$$

 We proceed to solve the equations using row-reduction, but we find

$$\begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} \left\{ n_1 \, n_2 \right\} = 0$$

- This means we cannot uniquely solve for n_i
- We are only concerned with the direction, magnitude is not important
- Choose $n_2 = 1$, solve for n_1
- $n^{(1)} = \langle \frac{1}{2}, 1 \rangle$

example

- Similarly, for $\lambda_2 = 0$, we find

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \left\{ n_1 \, n_2 \right\} = 0$$

- Which, after row-reduction, becomes

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \left\{ n_1 \, n_2 \right\} = 0$$

- If we choose $n_2 = 1$, we find $n_1 = -2$
- This gives $n^{(2)} = \langle -2, 1 \rangle$

example

- We can assemble a transformation matrix, Q_{ij} , from the principal directions
- First we need to normalize them to unit vectors
- $-||n^{(1)}|| = \sqrt{\frac{5}{4}}$

$$- \hat{n}^{(1)} = \frac{2}{\sqrt{5}} \langle \frac{1}{2}, 1 \rangle = \langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$$

- $||n^{(2)}|| = \sqrt{5}$
- $-\hat{n}^{(2)} = \langle \frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle$

37

example

- This gives

$$Q_{ij} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$

- And we find

$$A'_{mn} = Q_{mi}Q_{nj}A_{ij}$$
$$A'_{ij} = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}$$

example

 Find principal values, principal directions, and invariants for the tensor

$$c_{ij} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

. .

- Characteristic equation simplifies to
- $-\lambda^3 + 14\lambda^2 56\lambda + 64 = 0$
- Which has the solutions $\lambda = 2, 4, 8$

$$\begin{bmatrix} 8 - 8 & 0 & 0 \\ 0 & 3 - 8 & 1 \\ 0 & 1 & 3 - 8 \end{bmatrix} \left\{ n_1 \, n_2 \, n_3 \right\} = 0$$

41

example

- After row-reduction, we find

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -24 \\ 0 & 1 & -5 \end{bmatrix} \left\{ n_1 \, n_2 \, n_3 \right\} = 0$$

- This means that $n_3 = 0$ and, as a result, $n_2 = 0$.
- n_1 can be any value, we choose $n_1 = 1$ to give a unit vector.

$$- n^{(1)} = \langle 1, 0, 0 \rangle$$

$$\begin{bmatrix} 8-4 & 0 & 0 \\ 0 & 3-4 & 1 \\ 0 & 1 & 3-4 \end{bmatrix} \left\{ n_1 \, n_2 \, n_3 \right\} = 0$$

/. 0

example

- After row-reduction, we find

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \left\{ n_1 \, n_2 \, n_3 \right\} = 0$$

- This means that $n_1 = 0$
- We also know that $n_2 = n_3$, so we choose $n_2 = n_1 = 1$
- This gives $n^{(2)} = \frac{1}{\sqrt{2}} \langle 0, 1, 1 \rangle$ after normalization

$$\begin{bmatrix} 8-2 & 0 & 0 \\ 0 & 3-2 & 1 \\ 0 & 1 & 3-2 \end{bmatrix} \left\{ n_1 \, n_2 \, n_3 \right\} = 0$$

45

example

- After row-reduction, we find

$$\begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \left\{ n_1 \ n_2 \ n_3 \right\} = 0$$

- This means that $n_1 = 0$
- We also know that $n_2 = -n_3$, so we choose $n_2 = 1$ and $n_1 = -1$
- This gives $n^{(3)} = \frac{1}{\sqrt{2}} \langle 0, 1, -1 \rangle$ after normalization

- In summary, for cii we have:
- $\lambda_1 = 8$ and $n^{(1)} = \langle 1, 0, 0 \rangle$
- $-\lambda_2 = 4$ and $n^{(2)} = \frac{1}{\sqrt{2}} \langle 0, 1, 1 \rangle$
- $-\lambda_3 = 2 \text{ and } n^{(3)} = \frac{\sqrt{2}}{\sqrt{2}} \langle 0, 1, -1 \rangle$
- We can assemble $n^{(i)}$ into a transformation tensor

$$Q_{ij} = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

47

- What is c'_{ii} ?
- $-c'_{ii}=Q_{im}Q_{jn}c_{mn}$

$$c'_{ij} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- We can also find the invariants for

$$c_{ij} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

- Recall:

$$I_{\alpha} = a_{ii}$$

$$II_{\alpha} = \frac{1}{2} (a_{ii}a_{jj} - a_{ij}a_{ij})$$

$$III_{\alpha} = \det[a_{ij}]$$

example

- First invariant

$$I_{\alpha} = a_{ii} = 8 + 3 + 3 = 14$$

- Second invariant

$$II_{\alpha} = \frac{1}{2} (a_{ii}a_{jj} - a_{ij}a_{ij})$$

$$a_{ii}a_{jj} = 14 \times 14$$

$$a_{ij}a_{ij} = a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + \dots + a_{33}a_{33}$$

$$II_{\alpha} = \frac{1}{2} (196 - 84) = 56$$

example

- Third invariant

$$III_{\alpha} = \det[a_{ij}]$$

$$III_{\alpha} = 8 \times (3 \times 3 - 1 \times 1) = 64$$