

Løsningsforslag – Eksamen S2, våren 2018

Laget av Tommy O. Sist oppdatert: 28. mai 2018 Antall sider: 4

Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source, alle kan bidra på https://github.com/matematikk/vgs_eksamener.

Del 1 - uten hjelpemidler

Oppgave 1

- a) Vi skal derivere $f(x)=2x^3-4x+1$, og må bruke regelen $(x^n)'=nx^{n-1}$. Vi får $f'(x)=2(3)x^{3-1}-4x^{1-1}+0=\underline{6x^2-4}$ som svar.
- b) Vi skal derivere $g(x) = x/e^x$. Det er fullt mulig å bruke brøkregelen for derivasjon, men man kan også skrive om funksjonen til produktet $g(x) = xe^{-x}$ og bruke produktregelen (uv)' = u'v + uv' slik som dette

$$g'(x) = (x)' e^{-x} + (e^{-x})' x$$

$$= 1e^{-x} + (-1)e^{-x}x$$

$$= e^{-x} + -1e^{-x}x$$

$$= e^{-x}(1-x)$$

c) Vi skal derivere $h(x) = \ln(x^2 + 4x)$, og må bruke kjernereglen $h'(x) = h'(u) \times u'(x)$, der u er en kjerne. Vi velger $u = x^2 + 4x$, da er $h(u) = \ln(u)$ og h'(u) = 1/u), slik at vi får

$$g'(x) = h'(u) \times u'(x)$$

$$= \left(\frac{1}{u}\right) \times (2x+4)$$

$$= \frac{2x+4}{u} = \frac{2x+4}{\underline{x^2+4x}}$$

Oppgave 2

Vi skal løse likningssystemet nedenfor, og vi kan bruke to forskjellige metoder: innsetningsmetoden eller addisjonsmetoden. Vi velger addisjonsmetoden.

$$5x + y + 2z = 0$$
 (A)
 $2x + 3y + z = 3$ (B)
 $3x + 2y - z = -3$ (C)

For å kvitte oss med variabelen z regner vi ut to nye likninger (D) = (A) $-2 \times$ (B) og (E) = (A) $+2 \times$ (C) som følger.

$$x - 5y = -6 \quad (D)$$

$$11x + 5y = -6$$
 (E)

Ved å legge disse sammen kvitter vi oss med y, får likningen 12x = -12 og ser at $\underline{x = -1}$. For å løse for y setter vi x = -1 inn i likning (D) eller (E) og ser at $\underline{y = 1}$. Nå vet vi x og y, og kan sette dette inn i (A), (B) eller (C) og finne ut at $\underline{z = 2}$. På eksamen bør du sette en prøve å svaret—det går fort og du vet umiddelbart om du har regnet riktig.

Oppgave 3

- a) asdf
- b) asdf

Oppgave 4

- a) asdf
- b) asdf

Oppgave 5

- a) asdf
- b) asdf

Oppgave 6

- a) asdf
- b) asdf
- c) asdf
- d) asdf

Oppgave 7

- a) asdf
- b) asdf

Oppgave 8

- a) asdf
- b) asdf

Oppgave 9

 sdf

Del 2 - med hjelpemidler

Oppgave 1

- a) asdf
- b) asdf
- c) asdf
- d) asdf

Oppgave 2

- a) asdf
- b) asdf
- c) asdf
- d) asdf

Oppgave 3

- a) asdf
- b) asdf

- c) asdf
- d) asdf