## Assignment 2

Jonas Lauri

April 2021

## Problem a)

We are given  $v_L(t) = v_0(t/t_1)$  and  $v_R(t) = v_0(t/t_2)$  where  $v_0, t_1, t_2$  are constants. Additionally, we have the following formulae from the lecture on kinematics

$$x_1 = x_0 + \int_{t_0}^{t_1} V_x(t)dt = x_0 + \int_{t_0}^{t_1} \frac{v_R(t) + v_L(t)}{2} \cos \phi(t) dt$$

$$y_1 = y_0 + \int_{t_0}^{t_1} V_y(t)dt = y_0 + \int_{t_0}^{t_1} \frac{v_R(t) + v_L(t)}{2} \sin \phi(t) dt$$

$$\phi_1 = \phi_0 + \int_{t_0}^{t_1} \dot{\phi} dt = \phi_0 + \int_{t_0}^{t_1} \frac{v_R(t) - v_L(t)}{2R} dt.$$

Insert the expressions for  $v_L$  and  $v_R$  into the equations above to get

$$x_1 = x_0 + \int_{t_0}^{t_1} \frac{v_0 \frac{t(t_1 + t_2)}{t_1 t_2}}{2} \cos \phi(t) dt = x_0 + \frac{v_0(t_1 + t_2)}{2t_1 t_2} \int_{t_0}^{t_1} t \cos \phi(t) dt.$$

For  $\phi$ , we have

$$\phi_1 = \phi_0 + \int_{t_0}^{t_1} \frac{v_R(t) - v_L(t)}{2R} dt = \phi_0 + \int_{t_0}^{t_1} \frac{v_0(t/t_2 - t/t_1)}{2R} dt = \phi_0 + \frac{v_0(t_1 - t_2)}{2t_1 t_2 R} \int_{t_0}^{t_1} t \, dt.$$

With  $B = \frac{v_0(t_1-t_2)}{2t_1t_2R}$  and  $\int t \, dt = t^2/2 + C_1$  we have the last equation

$$\phi(t) = \phi_0 + B\left(\frac{t^2}{2} + C_1\right).$$

Use our initial condition  $\phi(0) = \phi_0$  to get  $C_1 = 0$  and insert to get

$$\phi(t) = \phi_0 + B\frac{t^2}{2} = \frac{5t^2}{48}. (1)$$

Write  $A = \frac{v_0(t_1+t_2)}{2t_1t_2}$  and insert  $\phi(t)$  into the expression for  $x_1$ 

$$x(t) = x_0 + A \int_0^t t \cos \left(\phi_0 + B \frac{t^2}{2}\right) dt.$$

Integrate

$$x(t) = x_0 + \frac{A}{B} \left( \sin \left( \phi_0 + B \frac{t^2}{2} \right) - \sin(\phi_0) + C_2 \right).$$

Use the initial condition  $x(0) = x_0$  get

$$x(0) = x_0 + \frac{A}{B} \left( \sin \left( \phi_0 + B \frac{0^2}{2} \right) - \sin(\phi_0) + C_2 \right)$$
$$x(0) = x_0 + \frac{A}{B} \left( \sin(\phi_0) - \sin(\phi_0) + C_2 \right)$$
$$x(0) = x_0 + \frac{A}{B} C_2 \longrightarrow C_2 = 0.$$

The resulting expression x(t) with inserted constants is

$$x(t) = x_0 + \frac{A}{B} \left( \sin \left( \phi_0 + B \frac{t^2}{2} \right) - \sin(\phi_0) \right) = \frac{9}{25} \sin \left( \frac{5t^2}{48} \right).$$
 (2)

Finally, y(t)

$$y_1 = y_0 + \frac{v_0(t_1 + t_2)}{2t_1t_2} \int_{t_0}^{t_1} t \sin \phi(t) dt.$$

Write  $A = \frac{v_0(t_1+t_2)}{2t_1t_2}$  and insert  $\phi(t)$ 

$$y(t) = y_0 + A \int_0^t t \sin \left(\phi_0 + B \frac{t^2}{2}\right) dt.$$

Integrate

$$y(t) = y_0 + \frac{A}{B} \left( \cos(\phi_0) - \cos(\phi_0 + B\frac{t^2}{2}) + C_3 \right).$$

Again, use the initial condition  $y(0) = y_0$  get

$$y(0) = y_0 + \frac{A}{B} \left( \cos(\phi_0) - \cos\left(\phi_0 + B\frac{0^2}{2}\right) + C_3 \right)$$
$$y(0) = y_0 + \frac{A}{B} \left( \cos(\phi_0) - \cos(\phi_0) + C_3 \right)$$
$$y(0) = y_0 + \frac{A}{B} C_3 \longrightarrow C_3 = 0.$$

The resulting expression for y(t) is

$$y(t) = y_0 + \frac{A}{B} \left( \cos(\phi_0) - \cos\left(\phi_0 + B\frac{t^2}{2}\right) \right) = -\frac{9}{25} \cos\left(\frac{5t^2}{48}\right) + \frac{9}{25}.$$
 (3)

An example trajectory can be seen in figure 1.

## The MATLAB-code

The MATLAB-code can be found at: https://github.com/BotLauri/TME290.

## Problem b)

See Figure 2 for a visualisation of the path and **source\_code\_lauri.zip** for the source code.



Figure 1: A plot of an example trajectory for  $R=0.12, v_0=0.5, t_1=10$  and  $t_2=5$ .



Figure 2: A plot of the trajectory from the .rec file.