3-Connected Planar Graphs into PSLG

Using Tutte's Embedding

Adi, Asa

Example of 3-Connected Graph

Adjacency	Matrix
-----------	--------

0,1,0,1,1
1,0,1,0,1
0,1,0,1,1
1,0,1,0,1
1,1,1,1,0

Degree Matrix

3,0,0,0,0
0,3,0,0,0
0,0,3,0,0
0,0,0,3,0
0.0.0.0.3

Tutte's Embedding

Consider vertices have 1 unit weight and Edges are spring Connecting them

Adjacency Matrix	Degree Matrix
0,1,0,1,1	3,0,0,0,0
1,0,1,0,1	0,3,0,0,0
0,1,0,1,1	0,0,3,0,0
1,0,1,0,1	0,0,0,3,0
1,1,1,1,0	0,0,0,0,3

Peripheral Face

· The face which encloses all the vertices

In this graph, any face could be peripheral face

Adjacency Matrix	Degree Matrix
0,1,0,1,1 1,0,1,0,1	3,0,0,0,0 0,0,0,0,0,0,0,0
0,1,0,1,1 1,0,1,0,1	0,0,3,0,0 0,0,0,3,0
1,1,1,1,0	0,0,0,0,3

Consider this to be Peripheral Face

Springs Pulling the Weight

Consider this to be Peripheral Face and Has fixed Co-ordinates

By Solving the Laplacian Matrix we can find the co-ordinates of other points

Final Product

