

40PIN 扩展接口

管脚	名称	电平	管脚	名称	电平
1	+3.3V	3.3V	2	+5.0V	5V
3	I ² C2-SDA	3.3V	4	+5.0V	5V
5	I ² C2-SCL	3.3V	6	GND	
7	GPIO0	3.3V	8	TXD0	3.3V
9	GND	-	10	RXD0	3.3V
11	GPIO1	3.3V	12	NC	-
13	NC	-	14	GND	-
15	GPIO2	3.3V	16	TXD1	3.3V
17	+3.3V	3.3V	18	RXD1	3.3V
19	SPI-MOSI	3.3V	20	GND	-
21	SPI-MISO	3.3V	22	NC	-
23	SPI-CLK	3.3V	24	SPI-CS0	3.3V
25	GND	-	26	NC	-
27	GPIO8	3.3V	28	CANL0	-
29	GPIO3	3.3V	30	GND	-
31	GPIO4	3.3V	32	NC	-
33	GPIO5	3.3V	34	GND	-
35	GPIO6	3.3V	36	+1.8V	1.8V
37	GPIO7	3.3V	38	TXD-3559	3.3V
39	GND	-	40	RXD-3559	3.3V

- NC插针在板内无连接
- 1.8V输出电流最大为500mA
- 3.3V输出电流最大为500mA
- 5V输出电流最大为1A

40PIN 扩展接口

Pin#	NAME		NAME	Pin#
1	3.3V	0	5.0V	2
3	SDA2	o •	5.0V	4
5	SCL2	0 0	GND	6
7	GPIO0	• •	(TXD0)	8
9	GND	0 0	(RXD0)	10
11	GPIO1	0 0	NC	12
13	NC	. 0	GND	14
15	PWM1	• •	(TXD1)	16
17	3.3V	0 0	(RXD1)	18
19	SPI1_MOSI	0 0	GND	20
21	SPI1_MISO	0 0	NC	22
23	SPI1_CLK	0 0	SPI1_CS0	24
25	GND	0 0	NC	26
27	CANH0	0 0	CANL0	28
29	GPIO3	0 0	GND	30
31	GPIO4	0 0	NC	32
33	GPIO5	0 0	GND	34
35	GPIO6	0 0	1.8V	36
37	GPIO7	• •	Reserved	38
39	GND	0 0	Reserved	40

Atlas 200 DK 支持的传输协议:

7个GPIO 3对I²C 3对SPI 2对UART

传感器

可以连接哪些传感器? (包括但不限于)

触摸显示屏

超声波传感器

激光雷达 毫米波雷达

温湿度传感器

RFID传感器

加速度计/陀螺仪

心率脉搏传感器

继电器

电机/马达

红外传感器

智能小车

智能小车

UART (Universal Asynchronous Receiver/Transmitter,通用异步收发器)是一种串行、异步、全双工的通信协议。发送端和接收端不需要提前约定好通信的时间,而是通过特定的起始位和结束位来标识数据的开始和结束。

以一个字符为传输单位,同一字符中两个相邻位之间的时间间隔是固定的(间隔时间由波特率决定)

UART 接线方式

UART串行传输,传输速率低,常用于程序的调试 常见的波特率为4800bps、9600bps、115200bps等

Atlas 200 DK支持2对UART

	模块划分	管脚名称	主功能	功能描述
	UART0	UART0_RXD	RXD	UART0接收数据 用作调试、系统打印、外设扩展等
	UARTU	UART0_TXD	TXD	UART0发送数据 用作调试、系统打印、外设扩展等
	IIADT1	UART1_TXD	TXD	与SPI 3 Master OUT/Slave IN复用
UART1	UART1_RXD	RXD	与SPI 3 Master IN/Slave OUT复用	

```
#include <stdio.h>

void setup() {
    Serial.begin(115200); // 初始化 UART 接口
    Serial.println("ESP32 UART Debugging Example"); // 输出提示信息
}

void loop() {
    // 读取串行输入
    if (Serial.available()) {
        char c = Serial.read();
        Serial.print("Received: "); // 输出接收到的字符
        Serial.println(c);
    }
}
```


SPI(Serial Peripheral Interface,串行外设接口)是一种同步串行通信协议,用于在微控制器和外设之间进行全双工(同时发送和接收数据)通信。SPI是一种主从式通信协议,其中至少有一个主设备(Master)和一个或多个从设备(Slave)。

名称	说明
SCK	串行时钟信号
MOSI	主设备输出,从设备输入
MISO	主设备输入,从设备输出
SSi	片选信号,主设备单独与从设备i通信

SPI 应用非常广泛,许多传感器(如温湿度传感器、压力传感器、加速度传感器等)、TFT屏幕、点阵屏幕都通过SPI传输

Atlas 200 DK支持3组SPI,其中SPI3与I²C2、UART1共用接口

	/titas 200 b(文) (5515-17)					
杉	读划分	管脚名称	主功能	功能描述		
		SPI1_CS0_N	CS0	SPI1片选0。SPI接口只支持MASTER mode。		
		SPI1_CS1_N	GPIO65	SPI1片选1。		
	SPI1	SPI1_CLK	CLK	SPI1时钟。Atlas 200 AI加速模块内已串33Ω电阻。		
		SPI1_MOSI	MOSI	SPI 1 Master OUT/Slave IN, Atlas 200 AI加速模块内已串33Ω电阻。 复用上电strap功能,不使用要悬空,外部不能有上拉。		
	SPI2_CS_N	CS	SPI2片选0, SPI接口只支持MASTER mode。			
		SPI2_CLK	CLK	SPI2时钟。Atlas 200 AI加速模块内已串33Ω电阻。		
	SPI2	SPI2_MOSI/EM MC_SD_SEL	MOSI	SPI 2 Master OUT/Slave IN。Atlas 200 AI加速模块内已串33Ω电阻。 上电阶段做strap功能: EMMC与SD卡模式选择信号,由Atlas 200 AI加速模块外部高低电平配置。0: EMMC, 1: SD。用户板做外部上下拉,使用上拉电阻上拉至VBUCK8_1V8电压或使用下拉电阻下拉至GND,不用MMC接口时可悬空。		
		SPI2_MISO	MISO	SPI 2 Master IN/Slave Out。		
	SPI3	I ² C2 SDA	SDA	I2C2 SDA(复用功能:SPI3片选1-/SPI3_CS)Atlas 200 AI加速模块内已串33Ω 电阻。用户板做外部上拉;使用用户接口电源上拉。		
	I ² C2 UART1	I ² C2 SCL		I2C2 SCL (复用功能: SPI3时钟-SPI3_CLK) Atlas 200 AI加速模块内已串33Ω 电阻。用户板做外部上拉,使用用户接口电源上拉。		
UAR I 1 复用	复用	UART1_TXD	TXD	UART1 TXD (复用功能: SPI 3 Master OUT/Slave IN)		
	UART1_RXD	RXD	UART1 RXD (复用功能: SPI 3 Master In/Slave Out)			
	SESSE CONTROL SESSE DE LA	A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF				

IIC(Inter-Integrated Circuit,通常写作 I²C 或 I2C)是一种用于集成电路之间进行短距离双向通信的串行总线协议。I2C总线有两根双向的信号线,一根数据线SDA用于收发数据,一根时钟线SCL用于通信双方时钟的同步;I2C总线硬件结构简单,简化了PCB布线,降低了系统成本,提高了系统可靠性,因此在各个领域得到了广泛应用。

多主从架构

每个设备都有唯一的地址 (7 bit)

一个主设备理论上可以接127个从设备

相比SPI速度较慢,通常为100kbps – 5Mbps之间,而SPI为50Mbps I²C广泛的应用于各类传感器、OLED屏幕、EEPROM存储器

Atlas 200 DK支持3组I²C,其中I²C2与UART1、SPI3共用接口

模块划分	管脚名称	主功能	功能描述
I ² C0	I2C0_SCL	SCL	I2CO总线时钟。Atlas 200 AI加速模块带外管理接口。 用户可以读取Atlas 200 AI加速模块的硬件ID、EEPROM信息。 Atlas 200 AI加速模块内有4.7K上拉电阻,Atlas 200 AI加速模块 内已串33Ω电阻。
I-CU	I2C0_SDA	SDA	I2CO总线数据,Atlas 200 AI加速模块带外管理接口。 用户可以读取Atlas 200 AI加速模块的硬件ID、EEPROM信息。 Atlas 200 AI加速模块内有4.7K上拉电阻,Atlas 200 AI加速模块 内已串33Ω电阻。
1204	I2C1_SCL	SCL	I2C1总线时钟。Atlas 200 AI加速模块内已串33Ω电阻,用户板做外部上拉,使用用户接口电源上拉。
I ² C1	I2C1_SDA	SDA	I2C1总线数据。Atlas 200 AI加速模块内已串33Ω电阻,用户板做外部上拉,使用用户接口电源上拉。
1200	I2C2 SDA	SDA	I2C2 SDA(复用功能:SPI3片选1-/SPI3_CS)Atlas 200 AI加速模块内已串33Ω电阻。 用户板做外部上拉,使用用户接口电源上拉。
l ² C2	I2C2 SCL	SCL	I2C2 SCL (复用功能: SPI3时钟-SPI3_CLK) Atlas 200 AI加速模块内已串33Ω电阻。 用户板做外部上拉,使用用户接口电源上拉。

GPIO(General-Purpose Input/Output,通用输入/输出)是处理器与外围电路间的主要通信接口,可以通过控制逻辑电平实现输入、输出、控制等功能,具有广泛的应用。

两种状态: 高电平 (1) / 低电平 (0)

输出电压为3.3V,输出高电平为22.2mA,输出低电平时为-25mA

两种方向:输入 (in) /输出 (out)

中断: 当GPIO引脚状态发生变化时自动触发中断事件,无需程序轮询监听,提高系统效率和实时性

Atlas 200 DK共支持7个GPIO,其中编号0、1由处理器直接控制,编号3-7由PCA6416通过I²C间接控制

GPIO0和GPIO1的设备文件位于 /sys/class/gpio/

- 开启GPIO设备(GPIO0的文件描述符为504, GPIO1的为444): echo 504 > /sys/class/gpio/export
- 关闭GPIO设备: echo 504 > /sys/class/gpio/unexport
- 设置GPIO方向(out为输出,in为输入): echo out > /sys/class/gpio/gpio504/direction
- 设置GPIO电平值(必须为输出模式,1为输出高电平,0为输出低电平): echo 1 > /sys/class/gpio/gpio504/value
- 获取GPIO电平值(通常为输入模式使用):cat /sys/class/gpio/gpio504/value

传感器示例

驱动DHT11温湿度传感器,并读取传感器数据

引脚	颜色	名称	描述	
1	紅色	VDD	电源 (3.3-5.5V)	
2	黄色	DATA	串行数据, 双向口	
3		NC	空脚	
4	黑色	GND	地	

DHT11完整时序图:

传感器实验

编程实现下列2个实验(语言不限,如Python、Java、C/C++)

提示: C/C++可使用fstream操作GPIO设备文件, Python可通过os库, Java可通过java.nio包

实验一: 使用GPIO点亮LED (循环10次, 周期: 亮1秒 → 灭0.5秒 → 亮0.5秒 → 灭1秒)

实验二:设计通过GPIO传输一个字节00101100,并画出时序图

开始信号,结束信号,如何表示1,如何表示0

上传文件命令: scp 本地文件 HwHiAiUser@192.168.137.2:/home/HwHiAiUser/目标路径

上传文件夹命令: scp -r 本地目录 HwHiAiUser@192.168.137.2:/home/HwHiAiUser/目标路径

