Exercise 2.8: Groups and Algebraic Structures MCQs for Entry Test

Multiple Choice Questions

- 1. Which properties must a set with an operation satisfy to be a group?
 - (a) Closure, commutativity, identity
 - (b) Closure, associativity, identity, inverses
 - (c) Associativity, identity, commutativity
 - (d) Closure, associativity, commutativity
- **2.** Consider the set $\{0,1\}$ with operation \oplus defined by the table below. What is the identity element?

- (a) 0
- (b) 1
- (c) Both 0 and 1
- (d) None
- **3.** Which set with addition forms an Abelian group?
 - (a) Natural numbers N
 - (b) Whole numbers W
 - (c) Rational numbers \mathbb{Q}
 - (d) Positive rationals \mathbb{Q}^+
- **4.** Is the operation \oplus on $\{0,1,2,3\}$ (addition modulo 4) commutative?

\oplus	0	1	2	3
0	0	1 2 3	2	3
1	1	2	3	0
1 2 3	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	3	0	1
3	3	0	1	2

- (a) Yes
- (b) No
- (c) Only for 0 and 1
- (d) Only for 2 and 3
- **5.** A semigroup is defined by which properties?

- (a) Closure and identity
- (b) Closure and associativity
- (c) Associativity and inverses
- (d) Closure, associativity, identity
- **6.** For the set $\{a, b, c\}$ with operation * given below, what value of c * a ensures associativity?

*	a	b	c
\overline{a}	c	a	b
b	a	b	c
c	?	c	a

- (a) a
- (b) b
- (c) c
- (d) None
- 7. The power set P(S) with intersection (\cap) forms a:
 - (a) Group
 - (b) Semigroup
 - (c) Monoid
 - (d) Non-Abelian group
- **8.** What is the identity element for P(S) with intersection (\cap) ?
 - (a) Empty set ∅
 - (b) Set S
 - (c) Any subset of S
 - (d) None
- **9.** Which set with multiplication forms a group?
 - (a) Integers \mathbb{Z}
 - (b) Rational numbers \mathbb{Q}
 - (c) Positive rationals \mathbb{Q}^+
 - (d) Whole numbers \mathbb{W}
- 10. Why does the set of integers \mathbb{Z} with multiplication not form a group?
 - (a) Lacks closure
 - (b) Lacks associativity
 - (c) Lacks identity
 - (d) Lacks inverses
- **11.** In a group G with operation *, the solution to a * x = b is:

(a)
$$x = a * b$$

(b)
$$x = a^{-1} * b$$

(c)
$$x = b * a$$

(d)
$$x = b * a^{-1}$$

12. In a group G, solve x * a = b. The solution is:

- (a) $x = a^{-1} * b$
- (b) $x = b * a^{-1}$
- (c) x = a * b
- (d) x = b * a

13. The set of 2×2 non-singular matrices over reals with multiplication forms a:

- (a) Abelian group
- (b) Non-Abelian group
- (c) Semigroup only
- (d) Monoid only

14. Why is the group of 2×2 non-singular matrices non-Abelian?

- (a) Lacks closure
- (b) Lacks associativity
- (c) Lacks commutativity
- (d) Lacks inverses

15. In $\{1, \omega, \omega^2\}$, where $\omega^3 = 1$, what is the inverse of ω ?

- (a) 1
- (b) ω
- (c) ω^2
- (d) None

16. Is $\{1, \omega, \omega^2\}$, where $\omega^3 = 1$, with multiplication an Abelian group?

- (a) Yes
- (b) No, lacks closure
- (c) No, lacks associativity
- (d) No, lacks commutativity

17. The set $\{a+\sqrt{3}b\mid a,b\in\mathbb{Q}\}$ with addition is a:

- (a) Non-Abelian group
- (b) Abelian group
- (c) Semigroup only
- (d) Monoid only

18. What is the identity element in $\{a + \sqrt{3}b \mid a, b \in \mathbb{Q}\}$ with addition?

- (a) $1 + \sqrt{3}1$
- (b) $0 + \sqrt{3}0$
- (c) $0 + \sqrt{3}1$

- (d) None
- **19.** In $\{E,O\}$ with operation \oplus , what is the inverse of E?

$$\begin{array}{c|ccc} \oplus & E & O \\ \hline E & E & O \\ O & O & E \end{array}$$

- (a) E
- (b) O
- (c) Both E and O
- (d) None
- **20.** Does $\{E,O\}$ with \oplus form an Abelian group?
 - (a) Yes
 - (b) No, lacks inverses
 - (c) No, lacks commutativity
 - (d) No, lacks identity

Answers and Explanations

1. Answer: (b) Closure, associativity, identity, inverses

Explanation: A group requires closure $(a * b \in G)$, associativity ((a * b) * c = a * (b * c)), an identity (a * e = a), and inverses $(a * a^{-1} = e)$. Option (b) lists all four. Option (a) includes commutativity, which is not required for a general group. Option (c) omits closure, and option (d) omits identity and inverses, making them incomplete.

2. Answer: (a) 0

Explanation: The identity element satisfies $e \oplus a = a$. From the table, $0 \oplus 0 = 0$, $0 \oplus 1 = 1$, so 0 is the identity. Option (b): $1 \oplus 1 = 0 \neq 1$, so 1 is not the identity. Option (c): Only one identity exists in a group. Option (d): 0 exists as the identity.

3. Answer: (c) Rational numbers \mathbb{Q}

Explanation: An Abelian group requires closure, associativity, identity, inverses, and commutativity under addition. For \mathbb{Q} , $a+b\in\mathbb{Q}$, addition is associative, 0 is the identity, inverses are $-a\in\mathbb{Q}$, and a+b=b+a. Option (a): \mathbb{N} lacks inverses (e.g., no -1). Option (b): \mathbb{W} lacks inverses. Option (d): \mathbb{Q}^+ lacks 0 and inverses for negative numbers.

4. Answer: (a) Yes

Explanation: Commutativity requires $a \oplus b = b \oplus a$. The table is symmetric across the diagonal (e.g., $1 \oplus 2 = 3$, $2 \oplus 1 = 3$), confirming commutativity. Option (b): The operation is commutative. Options (c, d): Commutativity holds for all elements, not just specific pairs.

5. Answer: (b) Closure and associativity

Explanation: A semigroup requires closure $(a*b \in G)$ and associativity ((a*b)*c = a*(b*c)). Option (b) is correct. Option (a): Identity is for monoids. Option (c): Inverses are for groups. Option (d): Identity makes it a monoid, not just a semigroup.

6. Answer: (b) b

Explanation: Associativity requires (a*a)*a = a*(a*a). Compute: a*a = c, so left side is c*a, right side is a*c = b. Thus, c*a = b. Option (b) is correct. Option (a): c*a = a fails (e.g., $c*a \neq b$). Option (c): $c*a = c \neq b$. Option (d): b satisfies associativity.

4

7. Answer: (c) Monoid

Explanation: P(S) with \cap is closed $(A \cap B \in P(S))$, associative $(A \cap (B \cap C) = (A \cap B) \cap C)$, and has an identity $(A \cap S = A)$. It's a monoid but not a group, as inverses don't exist (e.g., no B such that $A \cap B = S$ for all A). Option (a): No inverses. Option (b): It's more than a semigroup due to identity. Option (d): Intersection is commutative.

8. Answer: (b) Set S

Explanation: The identity for intersection satisfies $A \cap e = A$. Since $A \cap S = A$, S is the identity. Option (a): $A \cap \emptyset = \emptyset \neq A$. Option (c): Subsets like $\{x\} \subset S$ give $A \cap \{x\} \neq A$. Option (d): S exists as the identity.

9. Answer: (c) Positive rationals \mathbb{Q}^+

Explanation: A group under multiplication requires closure, associativity, identity, and inverses. For \mathbb{Q}^+ , $a \cdot b \in \mathbb{Q}^+$, multiplication is associative, 1 is the identity, and inverses are $\frac{1}{a} \in \mathbb{Q}^+$. Option (a): \mathbb{Z} lacks inverses for non- ± 1 . Option (b): \mathbb{Q} includes 0, which has no inverse. Option (d): \mathbb{W} lacks inverses for non-1.

10. Answer: (d) Lacks inverses

Explanation: \mathbb{Z} with multiplication is closed $(a \cdot b \in \mathbb{Z})$, associative, and has identity 1, but lacks inverses (e.g., 2 has no inverse in \mathbb{Z} , as $\frac{1}{2} \notin \mathbb{Z}$). Option (a): Closure holds. Option (b): Associativity holds. Option (c): Identity exists.

11. Answer: (b) $x = a^{-1} * b$

Explanation: To solve a * x = b, multiply both sides by a^{-1} on the left: $a^{-1} * (a * x) = a^{-1} * b$, so $(a^{-1} * a) * x = a^{-1} * b$, hence $e * x = a^{-1} * b$, or $x = a^{-1} * b$. Option (a): a * b doesn't isolate x. Option (c): b * a assumes commutativity. Option (d): $b * a^{-1}$ is for x * a = b.

12. Answer: (b) $x = b * a^{-1}$

Explanation: To solve x*a = b, multiply both sides by a^{-1} on the right: $(x*a)*a^{-1} = b*a^{-1}$, so $x*(a*a^{-1}) = b*a^{-1}$, hence $x*e = b*a^{-1}$, or $x = b*a^{-1}$. Option (a): Incorrect for this equation. Option (c): Doesn't isolate x. Option (d): Assumes wrong operation order.

13. Answer: (b) Non-Abelian group

Explanation: 2×2 non-singular matrices are closed (product determinant non-zero), associative (matrix multiplication), have identity (I_2) , and inverses (matrix inverses). They are non-Abelian since $A \cdot B \neq B \cdot A$. Option (a): Not commutative. Option (c): More than a semigroup. Option (d): More than a monoid.

14. Answer: (c) Lacks commutativity

Explanation: The matrix group is non-Abelian because matrix multiplication is not commutative (e.g., try $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$). Option (a): Closure holds. Option (b): Associativity holds. Option (d): Inverses exist.

15. Answer: (c) ω^2

Explanation: The inverse of ω satisfies $\omega \cdot x = 1$. From the table, $\omega \cdot \omega^2 = 1$, so $\omega^{-1} = \omega^2$. Option (a): $\omega \cdot 1 = \omega$. Option (b): $\omega \cdot \omega = \omega^2$. Option (d): An inverse exists.

16. Answer: (a) Yes

Explanation: The set is closed (all products in set), associative (multiplication), has identity (1), inverses ($\omega^{-1} = \omega^2$), and is commutative (table symmetric, e.g., $\omega \cdot \omega^2 = \omega^2 \cdot \omega$). Option (b): Closure holds. Option (c): Associativity holds. Option (d): Commutativity holds.

17. Answer: (b) Abelian group

Explanation: The set is closed $((a+\sqrt{3}b)+(c+\sqrt{3}d)\in\mathbb{Q})$, associative, has identity $(0+\sqrt{3}0)$, inverses $(-(a+\sqrt{3}b))$, and is commutative $((a+\sqrt{3}b)+(c+\sqrt{3}d)=(c+\sqrt{3}d)+(a+\sqrt{3}b))$. Option (a): It's commutative. Option (c): More than a semigroup. Option (d): More than a monoid.

18. Answer: (b) $0 + \sqrt{3}0$

Explanation: The identity satisfies $(a + \sqrt{3}b) + e = a + \sqrt{3}b$. Since $(a + \sqrt{3}b) + (0 + \sqrt{3}0) = a + \sqrt{3}b$, $0 + \sqrt{3}0$ is the identity. Option (a): Adds non-zero terms. Option (c): Adds $\sqrt{3}$. Option (d): Identity exists.

19. Answer: (a) *E*

Explanation: The inverse of E satisfies $E \oplus x = E$. From the table, $E \oplus E = E$, so $E^{-1} = E$. Option (b): $E \oplus O = O \neq E$. Option (c): Only one inverse exists. Option (d): Inverse exists.

20. Answer: (a) Yes

Explanation: The set is closed (all entries in $\{E,O\}$), associative (check $(E \oplus O) \oplus O = E \oplus (O \oplus O)$), has identity (E), inverses $(E^{-1} = E, O^{-1} = O)$, and is commutative $(E \oplus O = O \oplus E)$. Option (b): Inverses exist. Option (c): Commutative. Option (d): Identity exists.

