Concept of Batch Normalization: Batch normalization is a technique used in artificial neural networks to stabilize and accelerate training by normalizing the inputs to each layer within a mini-batch. It reduces the internal covariate shift, which occurs when the distribution of activations changes during training, helping the network to converge faster.

Benefits of Using Batch Normalization During Training: Faster Convergence: Batch normalization reduces the sensitivity to the choice of hyperparameters, enabling faster training. Higher Learning Rates: With more stable gradients, it allows the use of higher learning rates, speeding up the optimization process. Reduces Overfitting: By adding a slight regularization effect, it minimizes overfitting, even without dropout. Improved Gradient Flow: Prevents gradients from becoming too large or small, reducing vanishing or exploding gradient problems. Better Initialization Robustness: The network becomes less sensitive to the initialization of weights, improving training stability. Working Principle of Batch Normalization: Batch normalization involves the following steps:

Normalization: For a mini-batch of activations x

```
\{x1, x2,
```

2.

3.

4., x m} x={x 1,x 2,...,x m} from a layer:

Compute the mean (μ μ) and variance (σ 2 σ 2) of the mini-batch: μ B

 $1 m \sum i$

 $1 m x i, \sigma B 2$

 $1 m \sum i$

1 m ($x i - \mu B$) 2 μ B

m 1

 $i=1 \sum mx i, \sigma B 2$

m 1

 $i=1 \sum m(x i-\mu B) 2$

Normalize the activations: $x \wedge i$

 $x i - \mu B \sigma B 2 + \epsilon x^{\wedge}$

i

 σ B 2+ ϵ

 $xi-\mu B$

Here, ϵ is a small constant added for numerical stability. 2. Scaling and Shifting: To allow the model to learn an optimal representation, two learnable parameters, γ γ (scale) and β β (shift), are introduced:

y i

```
\gamma x \wedge i + \beta y i = \gamma x \wedge
```

 $i+\beta$ These parameters enable the network to restore any lost expressiveness from normalization.

3. Update During Training: During training, μ B μ Band σ B 2 σ B 2are computed for each mini-batch. During inference, a moving average of μ B μ Band σ B 2 σ B 2 (calculated during training) is used instead of mini-batch statistics to ensure consistent behavior.

```
In [2]: import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import os

In [4]: tf.__version__
Out[4]: '2.18.0'
In [5]: tf.config.list_physical_devices("GPU")
Out[5]: []
```

```
In [6]: mnist = tf.keras.datasets.mnist
          (x_train,y_train),(x_test,y_test) = mnist.load_data()
 In [8]: print(f"data type of x_train:{x_train.dtype},\n shape{x_train.shape}")
        data type of x_train:uint8,
         shape(60000, 28, 28)
In [10]:
         x_test.shape
Out[10]: (10000, 28, 28)
In [12]: x_valid,x_train = x_train[:5000]/255.,x_train[5000:]/255.
         y_valid,y_train = y_train[:5000],y_train[5000:]
         x_{test} = x_{test/255}.
In [14]: plt.imshow(x_valid[200],cmap='binary')
         plt.show()
          0
          5
        10
        15
        20
        25
                               10
                      5
                                        15
                                                  20
                                                           25
In [15]:
         plt.figure(figsize=(15,15))
         sns.heatmap(x_train[0],annot=True,cmap='binary')
```

Out[15]: <Axes: >

```
0 0 0 0
                                                      0
                                                          0
                                                            0
                                                                0
                                                                   0
                               0
                                     0
                                        0
                                                                                                           - 0.0035
                                    0
                                       0
                                          0 0 0 0 0 0
                                    0 0 0 0 0 0 0 0
                                                                0
                                                                   0
                              0 0 00.0004.0026.006.0039003900390027.006.0028001
                        0 0 00.0007.00260034003900390036.006.003900390039003900
                                                                                                            0.0030
                            001140033800338003390020007000015000L2e0050010.006.0033900339003
                             1060033900339003000740 0 0 0 0 0.006.0033900339002
                                             0 0 00.0000.0033400339003.0011 0
                         04.6e 00 60 003 10 003 10 002 3 0
                                           0
                                                                                                            0.0025
                              0 0 0 0
                                          0 00.0002.0016003040030900318001 0
                               0 0 00.0001.0026003000390039002002.000460 0 0
                                     00.0007.00380038003900390039003900360038003.1e-05 0
                               0
                                 0
                                                                                                            0.0020
                                           00.000660150015003200320032003200320032000
                                                 0 00.00014007601300390039003,0012 0
                                        0
                                                       0 0 1.5e-0.002800390039002
                                                    0
                                              0
                                                                                                            0.0015
                                                       0 0 0 0.002800390039001
                                                    0 0 0 00 1300 3300 3390 03 000550
                                        0
                                           0
                                              0
                                                 0
                                                   0 00.000 9.00 3300 3900 3900 2 000170
                                           0 0 0 0 .0015003800390039003 000140
                                                                                                            0.0010
                                 0 0 0 0 00.000<del>0</del>.0028003900390039003
                           00.0000,000.00065009.00 ISO02740037700389003890020002
                         0
                               00229003290032900329003290033900329003
                                                                                                            0.0005
                                  0.0 3900 3900 3900 3900 3900 30.00IL5e-05.0
                         0
                                     0
                                        0
                                           0
                                              0
                                                    0
                                                       0
                                                         0 0 0 0 0 0 0
                                                                                                           - 0.0000
                                          10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
In [18]: from tensorflow.keras.models import Sequential
            from tensorflow.keras.layers import Dense,Flatten,BatchNormalization,ReLU
            from tensorflow.keras.optimizers import Adam
In [34]:
           def create_model_without_bn():
                 model = Sequential([
                      Flatten(input_shape=[28,28],name = 'inputLayer'),
                      Dense(256,activation="relu",name="hiddenLayer1"),
                      Dense(128,activation='relu',name="hiddenLayer2"),
                      Dense(10,activation='softmax',name="outputLayer")
                 ])
                 model.compile(optimizer=Adam(learning rate=0.001),
                                loss = 'sparse_categorical_crossentropy',
                                metrics = ['accuracy'])
                 return model
           model without bn = create model without bn()
            model_without_bn.summary()
```

Model: "sequential_2"

Layer (type)	Output Shape	Param #	
inputLayer (Flatten)	(None, 784)	0	
hiddenLayer1 (Dense)	(None, 256)	200,960	
hiddenLayer2 (Dense)	(None, 128)	32,896	
outputLayer (Dense)	(None, 10)	1,290	

```
Total params: 235,146 (918.54 KB)
   Trainable params: 235,146 (918.54 KB)
   Non-trainable params: 0 (0.00 B)
In [36]: layer1 = model_without_bn.layers[1]
    layer1.name
Out[36]:
    'hiddenLayer1'
In [37]: layer1.get_weights()
Out[37]: [array([[ 0.00024679, 0.01895618, -0.03377344, ..., 0.0686481,
        -0.02457647, -0.06941981],
        [ 0.00959727, -0.04944124, 0.07086723, ..., 0.01559485,
        -0.00149529, 0.06366555],
        [0.03715939, 0.06979208, -0.06463815, ..., -0.02731165,
         0.06465426, 0.00370755],
        [0.05847649, 0.00189476, -0.07038119, \ldots, 0.07156751,
        -0.00198147, -0.05277468],
        [0.00424322, 0.03120036, 0.05713306, ..., -0.0231708]
         0.05896318, 0.06744424],
        [-0.07490488, 0.03696477, 0.00724544, ..., -0.03196631,
        -0.0306811 , 0.02167708]], dtype=float32),
     0.], dtype=float32)]
In [39]:
    Epochs = 30
    validationset = (x valid,y valid)
    history = model without bn.fit(x train,y train,epochs = Epochs,validation data
```

```
Epoch 1/30
           7s 4ms/step - accuracy: 0.6208 - loss: 1.2019 - va
1563/1563 -
l_accuracy: 0.8916 - val_loss: 0.3939
Epoch 2/30
                    7s 4ms/step - accuracy: 0.8939 - loss: 0.3700 - va
1563/1563 ———
1_accuracy: 0.9058 - val_loss: 0.3397
Epoch 3/30
1563/1563 -
                          - 9s 5ms/step - accuracy: 0.9102 - loss: 0.3047 - va
1_accuracy: 0.9152 - val_loss: 0.2928
Epoch 4/30
                    8s 5ms/step - accuracy: 0.9215 - loss: 0.2666 - va
1563/1563 -
l accuracy: 0.9248 - val loss: 0.2602
Epoch 5/30
1563/1563 8s 5ms/step - accuracy: 0.9334 - loss: 0.2290 - va
l_accuracy: 0.9314 - val_loss: 0.2345
Epoch 6/30
                        ---- 9s 6ms/step - accuracy: 0.9442 - loss: 0.1930 - va
1563/1563 -
l_accuracy: 0.9416 - val_loss: 0.1967
Epoch 7/30
1563/1563 -
                       ---- 6s 4ms/step - accuracy: 0.9501 - loss: 0.1738 - va
l_accuracy: 0.9434 - val_loss: 0.1834
Epoch 8/30
                     5s 3ms/step - accuracy: 0.9542 - loss: 0.1507 - va
1563/1563 -
l accuracy: 0.9506 - val loss: 0.1647
Epoch 9/30
                   5s 3ms/step - accuracy: 0.9622 - loss: 0.1272 - va
1563/1563 -
l_accuracy: 0.9528 - val_loss: 0.1497
Epoch 10/30
                     5s 3ms/step - accuracy: 0.9635 - loss: 0.1184 - va
1563/1563 -
l accuracy: 0.9562 - val loss: 0.1453
Epoch 11/30
1563/1563 -
                         --- 5s 3ms/step - accuracy: 0.9672 - loss: 0.1066 - va
l_accuracy: 0.9586 - val_loss: 0.1336
Epoch 12/30
1563/1563 — 5s 3ms/step - accuracy: 0.9732 - loss: 0.0898 - va
l accuracy: 0.9626 - val loss: 0.1172
Epoch 13/30
                        --- 5s 3ms/step - accuracy: 0.9721 - loss: 0.0905 - va
1563/1563 -
l_accuracy: 0.9642 - val_loss: 0.1146
Epoch 14/30
                          - 5s 3ms/step - accuracy: 0.9759 - loss: 0.0779 - va
1563/1563 -
l accuracy: 0.9630 - val loss: 0.1257
Epoch 15/30
               5s 3ms/step - accuracy: 0.9785 - loss: 0.0699 - va
1563/1563 -
l_accuracy: 0.9652 - val_loss: 0.1088
Epoch 16/30
1563/1563 —
            l accuracy: 0.9688 - val loss: 0.1025
Epoch 17/30
                     ----- 5s 3ms/step - accuracy: 0.9813 - loss: 0.0613 - va
1563/1563 -
l_accuracy: 0.9690 - val_loss: 0.1019
Epoch 18/30
                       ---- 5s 3ms/step - accuracy: 0.9828 - loss: 0.0550 - va
1563/1563 -
l accuracy: 0.9694 - val loss: 0.1105
Epoch 19/30
                    5s 3ms/step - accuracy: 0.9842 - loss: 0.0519 - va
1563/1563 ---
l_accuracy: 0.9712 - val_loss: 0.0984
Epoch 20/30
                   5s 3ms/step - accuracy: 0.9854 - loss: 0.0465 - va
1563/1563 -
1_accuracy: 0.9706 - val_loss: 0.0952
```

```
Epoch 21/30
                   1563/1563 -
       l_accuracy: 0.9704 - val_loss: 0.1033
       Epoch 22/30
                           ______ 5s 3ms/step - accuracy: 0.9877 - loss: 0.0381 - va
       1563/1563 ———
       1_accuracy: 0.9702 - val_loss: 0.0988
       Epoch 23/30
       1563/1563 -
                                 - 5s 3ms/step - accuracy: 0.9893 - loss: 0.0353 - va
       1_accuracy: 0.9746 - val_loss: 0.0900
       Epoch 24/30
                              ---- 5s 3ms/step - accuracy: 0.9907 - loss: 0.0311 - va
       1563/1563 -
       l accuracy: 0.9714 - val loss: 0.0992
       Epoch 25/30
       1563/1563 — 5s 3ms/step - accuracy: 0.9912 - loss: 0.0289 - va
       1_accuracy: 0.9752 - val_loss: 0.0964
       Epoch 26/30
                               --- 5s 3ms/step - accuracy: 0.9916 - loss: 0.0257 - va
       1563/1563 -
       l_accuracy: 0.9720 - val_loss: 0.1028
       Epoch 27/30
       1563/1563 -
                              ---- 5s 3ms/step - accuracy: 0.9932 - loss: 0.0243 - va
       l_accuracy: 0.9756 - val_loss: 0.0936
       Epoch 28/30
                              1563/1563 -
       l_accuracy: 0.9710 - val_loss: 0.0995
       Epoch 29/30
                              ---- 5s 3ms/step - accuracy: 0.9950 - loss: 0.0192 - va
       1563/1563 -
       l_accuracy: 0.9708 - val_loss: 0.1050
       Epoch 30/30
       1563/1563 -
                              ---- 5s 3ms/step - accuracy: 0.9942 - loss: 0.0190 - va
       l accuracy: 0.9758 - val loss: 0.0931
In [42]: history.params
Out[42]: {'verbose': 'auto', 'epochs': 30, 'steps': 1563}
In [43]: pd.DataFrame(history.history)
```

Out[43]:		accuracy	loss	val_accuracy	val_loss
	0	0.77814	0.734837	0.8916	0.393883
	1	0.89794	0.351283	0.9058	0.339719
	2	0.91156	0.300605	0.9152	0.292824
	3	0.92402	0.257924	0.9248	0.260173
	4	0.93472	0.223239	0.9314	0.234498
	5	0.94370	0.192980	0.9416	0.196736
	6	0.95080	0.167460	0.9434	0.183362
	7	0.95598	0.147306	0.9506	0.164726
	8	0.96124	0.129206	0.9528	0.149742
	9	0.96468	0.115553	0.9562	0.145345
	10	0.96852	0.104629	0.9586	0.133631
	11	0.97176	0.093529	0.9626	0.117221
	12	0.97400	0.085484	0.9642	0.114638
	13	0.97580	0.077423	0.9630	0.125736
	14	0.97858	0.070896	0.9652	0.108784
	15	0.97930	0.065332	0.9688	0.102515
	16	0.98158	0.059658	0.9690	0.101945
	17	0.98320	0.055195	0.9694	0.110516
	18	0.98454	0.050270	0.9712	0.098384
	19	0.98542	0.046739	0.9706	0.095155
	20	0.98722	0.041644	0.9704	0.103281
	21	0.98766	0.038588	0.9702	0.098776
	22	0.98908	0.035614	0.9746	0.090047
	23	0.98974	0.033035	0.9714	0.099173
	24	0.99128	0.029360	0.9752	0.096361
	25	0.99162	0.027049	0.9720	0.102797
	26	0.99264	0.025291	0.9756	0.093577
	27	0.99322	0.023180	0.9710	0.099486
	28	0.99390	0.020765	0.9708	0.105004
	29	0.99466	0.018906	0.9758	0.093074

In [44]: pd.DataFrame(history.history).plot()

Out[44]: <Axes: >

```
1.0
        0.8
        0.6
                                                                    accuracy
                                                                    loss
                                                                    val_accuracy
                                                                    val loss
        0.4
        0.2
        0.0
                          5
                                     10
                                                           20
               0
                                                15
                                                                      25
                                                                                 30
In [45]: x_new = x_test[5:12]
In [47]: actual = y_test[5:12]
         actual
Out[47]: array([1, 4, 9, 5, 9, 0, 6], dtype=uint8)
In [48]: y_prob = model_without_bn.predict(x_new)
                               - 0s 84ms/step
        1/1
                               - 0s 84ms/step
In [49]: y_prob.round(3)
Out[49]: array([[0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
                 [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]
                 [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]
                 [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.]
                 [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
                 [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                 [0., 0., 0., 0., 0., 1., 0., 0., 0.]], dtype=float32)
In [50]: y_pred = np.argmax(y_prob,axis=-1)
         y_pred
Out[50]: array([1, 4, 3, 5, 9, 0, 6], dtype=int64)
In [51]: actual
Out[51]: array([1, 4, 9, 5, 9, 0, 6], dtype=uint8)
        # Define the model with batch normalization
         def create_model_with_bn():
             model = Sequential([
```

```
Flatten(input_shape=(28, 28)),
        BatchNormalization(),
        Dense(256,activation="relu"),
        BatchNormalization(),
        Dense(128,activation="relu"),
        BatchNormalization(),
        Dense(10, activation='softmax')
   ])
   model.compile(optimizer=Adam(learning_rate=0.001),
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])
   return model
# Train the model
model_with_bn = create_model_with_bn()
history_with_bn = model_with_bn.fit(x_train, y_train,
                                    epochs=15,
                                    batch_size=64,
                                    validation_data=(x_test, y_test))
```

Epoch 1/15

```
9s 6ms/step - accuracy: 0.8886 - loss: 0.3707 - val_
       782/782 -----
       accuracy: 0.8393 - val_loss: 75.1736
       Epoch 2/15
       782/782 -----
                           4s 5ms/step - accuracy: 0.9721 - loss: 0.0919 - val_
        accuracy: 0.8555 - val_loss: 86.2978
       Epoch 3/15
       782/782 -
                                  - 4s 5ms/step - accuracy: 0.9815 - loss: 0.0578 - val
       accuracy: 0.8283 - val_loss: 161.3035
       Epoch 4/15
                              4s 6ms/step - accuracy: 0.9858 - loss: 0.0455 - val_
       782/782 -
       accuracy: 0.8336 - val loss: 146.3367
       Epoch 5/15
       782/782 4s 5ms/step - accuracy: 0.9881 - loss: 0.0352 - val_
       accuracy: 0.8349 - val_loss: 162.6207
       Epoch 6/15
                              ----- 5s 5ms/step - accuracy: 0.9894 - loss: 0.0309 - val_
       782/782 -
       accuracy: 0.8197 - val_loss: 197.8586
       Epoch 7/15
       782/782 -
                               ---- 4s 5ms/step - accuracy: 0.9879 - loss: 0.0348 - val_
       accuracy: 0.8314 - val_loss: 194.8844
       Epoch 8/15
                             4s 5ms/step - accuracy: 0.9922 - loss: 0.0240 - val_
       782/782 -
       accuracy: 0.8311 - val loss: 217.2879
       Epoch 9/15
                           ------ 4s 5ms/step - accuracy: 0.9927 - loss: 0.0226 - val_
       782/782 -
       accuracy: 0.7691 - val_loss: 322.8061
       Epoch 10/15
                             4s 6ms/step - accuracy: 0.9933 - loss: 0.0210 - val_
       782/782 -
       accuracy: 0.7871 - val loss: 300.1436
       Epoch 11/15
       782/782 -
                                 - 5s 6ms/step - accuracy: 0.9945 - loss: 0.0162 - val_
       accuracy: 0.7978 - val_loss: 303.1212
       Epoch 12/15
                          5s 5ms/step - accuracy: 0.9936 - loss: 0.0191 - val
       782/782 -----
       accuracy: 0.7662 - val loss: 279.5966
       Epoch 13/15
                                 - 4s 6ms/step - accuracy: 0.9944 - loss: 0.0160 - val_
       782/782 -
       accuracy: 0.7798 - val_loss: 295.4492
       Epoch 14/15
                                  - 4s 5ms/step - accuracy: 0.9940 - loss: 0.0182 - val
       782/782 -
       accuracy: 0.7647 - val loss: 301.6129
       Epoch 15/15
                         4s 5ms/step - accuracy: 0.9953 - loss: 0.0134 - val_
       782/782 -
       accuracy: 0.7857 - val_loss: 326.0355
In [59]: import matplotlib.pyplot as plt
         # Evaluate models
         print("Model Without Batch Normalization:")
         model_without_bn.evaluate(x_test, y_test)
         print("Model With Batch Normalization:")
         model with bn.evaluate(x test, y test)
         # Plot accuracy comparison
         plt.plot(history.history['accuracy'], label='Train Without BN')
         plt.plot(history.history['val_accuracy'], label='Val Without BN')
         plt.plot(history_with_bn.history['accuracy'], label='Train With BN')
         plt.plot(history with bn.history['val accuracy'], label='Val With BN')
```

```
plt.title('Accuracy Comparison')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

Accuracy Comparison


```
import matplotlib.pyplot as plt
# Evaluate models
print("Model Without Batch Normalization:")
loss_without_bn, accuracy_without_bn = model_without_bn.evaluate(x_test, y_test)
print(f"Test Accuracy without BN: {accuracy without bn:.4f}")
print(f"Test Loss without BN: {loss_without_bn:.4f}")
print("Model With Batch Normalization:")
loss_with_bn, accuracy_with_bn = model_with_bn.evaluate(x_test, y_test)
print(f"Test Accuracy with BN: {accuracy_with_bn:.4f}")
print(f"Test Loss with BN: {loss with bn:.4f}")
# Plot accuracy comparison
plt.figure(figsize=(10, 6))
plt.plot(history.history['accuracy'], label='Train Without BN')
plt.plot(history.history['val_accuracy'], label='Val Without BN')
plt.plot(history_with_bn.history['accuracy'], label='Train With BN')
plt.plot(history with bn.history['val accuracy'], label='Val With BN')
# Add title and labels
plt.title('Accuracy Comparison: Model with and without Batch Normalization')
```

```
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

# Show the plot
plt.show()
```

```
Model Without Batch Normalization:

313/313 — 1s 2ms/step - accuracy: 0.8844 - loss: 80.7867

Test Accuracy without BN: 0.8981

Test Loss without BN: 69.9988

Model With Batch Normalization:

313/313 — 1s 2ms/step - accuracy: 0.7681 - loss: 334.1991

Test Accuracy with BN: 0.7857

Test Loss with BN: 326.0353
```

Accuracy Comparison: Model with and without Batch Normalization

In []:

Q3. Experimentation and Analysis Experimenting with Batch Sizes Train the model with varying batch sizes (e.g., 16, 64, 256) and observe:

Larger batch sizes may result in smoother gradients and faster convergence. Smaller batch sizes may provide noisier updates but help escape local minima. Advantages of Batch Normalization: Improved Training Stability: Normalized inputs ensure that activations do not diverge. Regularization Effect: Acts as a form of implicit regularization, reducing overfitting. Robust to Initialization: Reduces dependency on careful weight initialization. Limitations: Dependency on Mini-Batches: Batch normalization requires a sufficiently large mini-batch for accurate statistics. Training Overhead: Additional computations for normalization and maintaining moving averages increase training time. Not Always Effective: In certain architectures (e.g., recurrent neural networks), batch normalization may not yield significant improvements, prompting alternatives like Layer Normalization.