Project 4 -Lightning Talk

Team Flanagan

Techniques

- HOG + SVM
- CNN
- Flatten Images + SVM
- Optical Flow

SVM with HOG

- Histogram of Gradient (HOG) Descriptor
- Feature descriptor used in computer vision and image processing for object detection
- Counts occurrences of gradient orientation in localized portions of an image
- Concept:
 - local object appearance and shape within an image can be described by the distribution of intensity gradients or edge directions
- PRO: Particularly suited for object detection
- CON:
 - Not able to use HOG features when dealing with pixelwise dataset
 - Cilium are too small to detect (better to detect cells)

SVM with HOG

CNN

- TensorFlow CNNs == Static Input Shape
- Minimum video dimension identified: 128
- Method One : PreChunk
 - o PreChunk data into 128 X 128 size images
 - o Train and Test the model
 - o Problem: GPU RAM limitations

CNN

- TensorFlow CNNs == Static Input Shape
- Minimum video dimension identified: 128
- Method One : PreChunk
- Method Two: TensorFlow Data API
 - Serialize data into TFRecords
 - Problem: Preserving data dimensions
 - Stream data in through TFRecordDataset object
 - random_crop
 - o random_slice
 - Train the model
 - o Still have to slice & stitch the test data (not pretty...)

CNN

- TensorFlow CNNs == Static Input Shape
- Minimum video dimension identified: 128
- Method One : PreChunk
- Method Two: TensorFlow Data API
- Problems:
 - o Vanishing Gradient?
 - o Suspicious about my UNET implementation...

SVM with Flatten Images

- Storing N images of single video, each of dimension (X, Y), in a single huge matrix of dimension (X*Y, N)
- Each row of this matrix is labelled with respective pixel in the mask (X*Y, 1)
- Train this data on SVM model and predict on test data.
- Problems:
 - Takes a huge amount of time to perform SVM
 - o 10 train samples and 2 test samples takes about 5 hours to train and 40 minutes to predict
 - Ended up with no decent output

Optical Flow

- Calculates two-frame motion estimation and computes a degree of flow for each pixel.
 Ends up with N-1 flow matrices for a video of N frames
- A sum of these flow matrices is found and scaled down to $\{0,1,2\}$ by observing the pixels in motion
- Problems:
 - Difficult to scale the videos where even the cell has a motion. Results in larger areas of motion.
 This effected on overall mean IoU
- Best Score: 20.6449