Областная олимпиада по математике, 2009 год, 10 класс

- 1. Пусть $\ \| bracea_n \|_{n \ge 1}$ последовательность действительных чисел такая, что $|a_{n+1}-a_n| \le 1$ для всех натуральных чисел n, а $\ \| braceb_n \|_{n \ge 1}$ последовательность действительных чисел такая, что $b_n = \frac{a_1+a_2+\cdots+a_n}{n}$. Докажите, что $|b_{n+1}-b_n| \le \frac{1}{2}$ для всех натуральных n.
- **2.** В треугольнике ABC вписанная окружность с центром I касается сторон AB, BC и CA в точках M, N и K соответственно. Обозначим через E точку пересечения прямых MN и AC. Докажите, что прямая IE перпендикулярна прямой BK.
- **3.** Существует ли непостоянная бесконечная арифметическая прогрессия, каждый член которой можно записать в виде a^b , где $a,\ b$ натуральные числа и $b \geq 2$?
- 4. В треугольнике ABC проведены высоты AA_1 , BB_1 , CC_1 к сторонам BC, AC, AB соответственно. На высотах AA_1 , BB_1 , CC_1 выбраны точки D, E, F так, что $\frac{AD}{AA_1} = \frac{BE}{BB_1} = \frac{CF}{CC_1} = k$. Определите все значения k, для которых треугольник ABC подобен треугольнику DEF.
- **5.** Определите все положительные числа x, y, z для которых одновременно выполняются три неравенства: $x^3y + 3 \le 4z, y^3z + 3 \le 4x, z^3x + 3 \le 4y$.
- 6. В школе учатся 2009 мальчиков и 2009 девочек. Каждый школьник посещает не более 100 кружков. Известно, что любой мальчик посещает с каждой девочкой по крайней мере один общий кружок. Докажите, что существует кружок, который посещают по крайней мере 11 мальчиков и по крайней мере 11 девочек.