Chapter 5: Part B Simple applications of macroscopic thermodynamics

Zhi-Jie Tan Wuhan University

2019 spring semester

- Important relationships between macroscopic quantities
- ➤ Based on the fundamental thermodynamic laws (0th, 1st, 2nd, 3rd)
- Quantities such as p, E always are mean values

Independent variables:

- Most of systems only have the external para V;
- two independent variables can specify the system, such as E and V; or E and P; or T and V... Other variables can be determined by the two independent variables;

Fundamental equations:

Properties of ideal gas

5.1 Equation of state and internal energy

$$\Omega \propto V^{N} \chi(E)$$

$$\beta = \frac{\partial \ln \chi(E)}{\partial E}$$

$$\beta = \beta(E)$$

5.6 Summary of Maxwell relations and thermodynamic functions

Maxwell relations

$$dE = T dS - p dY$$

$$\begin{pmatrix} \frac{\partial T}{\partial V} \end{pmatrix}_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V} \\
\begin{pmatrix} \frac{\partial T}{\partial p} \end{pmatrix}_{S} = \left(\frac{\partial V}{\partial S}\right)_{p} \\
\begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \\
\begin{pmatrix} \frac{\partial S}{\partial p} \end{pmatrix}_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p}
\end{pmatrix}$$

T, p, V, S are not completely in-dependent

One can use Ω to give a complete macroscopic description on system

5.6 Summary of Maxwell relations and thermodynamic functions

Maxwell relations

??? One can use Ω to give a complete macroscopic description on system

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{V} \quad \text{and} \quad p = T\left(\frac{\partial S}{\partial V}\right)_{E}$$

$$dS = \left(\frac{\partial S}{\partial E}\right)_{V} dE + \left(\frac{\partial S}{\partial V}\right)_{B} dV$$

$$= \frac{1}{T} dE + \frac{p}{T} dV \quad \text{by (5.6.6)}$$

$$(T,S)$$
 and (p,V)

Number of states

generalized force

General relations for a homogeneous substance thermodynamic functions

$$dE = T dS - p dV$$

$$dH = T dS + V dp$$

$$dF = -S dT - p dV$$

$$dG = -S dT + V dp$$

5.7 Specific heats

at constant volume

$$C_{V} = \left(\frac{dQ}{dT}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V}$$

at constant pressure

$$C_{p} = \left(\frac{dQ}{dT}\right)_{p} = T\left(\frac{\partial S}{\partial T}\right)_{p}$$

$$dQ = T dS = T \left[\left(\frac{\partial S}{\partial T} \right)_{p} dT + \left(\frac{\partial S}{\partial p} \right)_{T} dp \right]$$

$$dQ = T dS = C_p dT + T \left(\frac{\partial S}{\partial p}\right)_T dp$$

5.7 Specific heats

dp

$$dQ = T dS = C_{p} dT + T \left(\frac{\partial S}{\partial p} \right)_{T} \left[\left(\frac{\partial p}{\partial T} \right)_{V} dT + \left(\frac{\partial p}{\partial V} \right)_{T} dV \right]$$

when V is constant

$$dQ = C_V dT$$

$$C_{V} = T \left(\frac{\partial S}{\partial T} \right)_{V} = C_{P} + T \left(\frac{\partial S}{\partial P} \right)_{T} \left(\frac{\partial P}{\partial T} \right)_{V}$$

$$\left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p$$

The quantities in the right of equation is easily to be measured

5.7 Specific heats

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

 $\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_n$ volume coefficient of expansion

$$\left(\frac{\partial S}{\partial p}\right)_{T} = -V_{\alpha}$$

$$dV = \left(\frac{\partial V}{\partial T}\right)_p dT + \left(\frac{\partial V}{\partial p}\right)_T dp$$

$$dV = \left(\frac{\partial V}{\partial T}\right)_{p} dT + \left(\frac{\partial V}{\partial p}\right)_{T} dp \qquad \left(\frac{\partial P}{\partial T}\right)_{V} = -\frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{\left(\frac{\partial V}{\partial p}\right)_{T}}$$

5.7 Specific heats
$$C_V = T \left(\frac{\partial S}{\partial T} \right)_V = C_P + T \left(\frac{\partial S}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V$$

$$\kappa \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$
 isothermal compressibility

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{\alpha}{\kappa}$$

$$C_{V} = C_{p} + T(-V\alpha) \left(\frac{\alpha}{\kappa}\right)$$

$$C_{p} - C_{V} = VT^{\frac{\alpha^{2}}{\kappa}}$$

5.7 Specific heats: example---ideal gas

For ideal gas:

$$lpha \equiv rac{1}{V} igg(rac{\partial V}{\partial T} igg)_{\!P}$$

$$\frac{p \, dV}{\left(\frac{\partial V}{\partial T}\right)_p} = \frac{\nu R}{p}$$

$$\alpha = \frac{1}{V} \left(\frac{\nu R}{p}\right) = \frac{\nu R}{\nu RT} = \frac{1}{T}$$

$$\kappa \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

$$p \, dV + V \, dp = 0$$

$$\left(\frac{\partial V}{\partial p}\right)_T = -\frac{V}{p}$$

$$\kappa = -\frac{1}{V}\left(-\frac{V}{p}\right) = \frac{1}{p}$$

5.7 Specific heats: example---ideal gas

For ideal gas:

$$C_p - C_V = VT^{\frac{\alpha^2}{\kappa}}$$

5.7 Specific heats

Limiting properties near absolute zero

3rd law

as
$$T \to 0$$
, $S \to S_0$

$$S \rightarrow S_0$$

 $\partial S/\partial T \approx \text{finite value}$

In differential form

as
$$T \rightarrow 0$$

$$C_V = \left(\frac{\partial Q}{\partial T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V \longrightarrow 0$$

$$C_{\mathfrak{p}} = \left(\frac{dQ}{dT}\right)_{\mathfrak{p}} = T\left(\frac{\partial S}{\partial T}\right)_{\mathfrak{p}} \longrightarrow 0$$

5.7 Specific heats

Limiting properties near absolute zero

In integration form

$$S(T) - S(0) = \int_0^T \frac{C_V(T')}{T'} dT'$$

finite value

Guarantee converge

Maxwell relation

as
$$T \rightarrow 0$$

$$C_{\mathcal{V}}(T) \to 0$$

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right) = = = -\frac{1}{V} \left(\frac{\partial S}{\partial p} \right) = = 0$$

5.7 Specific heats

Limiting properties near absolute zero

$$\kappa \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

 $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$ Remains finite value in ground state

$$C_p - C_V = V T \frac{\alpha^2}{\kappa}$$
 Decrease to 0 very rapidly

as
$$T \rightarrow 0$$
,

$$\frac{C_{\mathfrak{p}}-C_{\mathfrak{p}}}{C_{\mathfrak{p}}}\to 0$$

5.7 Specific heats
Limiting properties near absolute zero

How about ideal gas?

$$c_P - c_V = R$$

T→0, system approaches the ground state, quantum mechanic effects will become important, and the classic equation of pV=vRT will become invalid.

5.8 Entropy and internal energy

$$C_{\mathbf{v}} = T \left(\frac{\partial S}{\partial T} \right)_{V}$$

$$S = S(T,V)$$

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$

$$\begin{pmatrix} \frac{\partial S}{\partial T} \end{pmatrix}_{v} = \frac{1}{T} C_{1}$$

$$\begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_{T} = \begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{V}$$

$$dS = \frac{C_V}{T}dT + \left(\frac{\partial p}{\partial T}\right)_V dV$$

?

Equation of state

Entropy and internal energy

$$C_{\mathbf{V}} = T \left(\frac{\partial S}{\partial T} \right)_{V}$$

$$\left(\frac{\partial C_V}{\partial V}\right)_T = \left(\frac{\partial}{\partial V}\right)_T \left[T\left(\frac{\partial S}{\partial T}\right)_V\right]$$

$$= T \frac{\partial^{2} S}{\partial T \partial V} = T \left(\frac{\partial}{\partial T} \right)_{V} \left(\frac{\partial S}{\partial V} \right)_{T}$$
$$= T \left(\frac{\partial}{\partial T} \right)_{V} \left(\frac{\partial P}{\partial T} \right)_{V}$$

$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 p}{\partial T^2}\right)_V$$
 Equation of state

5.8 Entropy and internal energy $\left(\frac{\partial C_V}{\partial V}\right)_T = T\left(\frac{\partial^2 p}{\partial T^2}\right)_V$

$$\left(\frac{\partial C_{V}}{\partial V}\right)_{T} = T \left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{V}$$

All the thermodynamic properties can be evaluated by the entropy!

- 1, heat capacity as a function of T at V=V₁
- 2, equation of state

$$C_V(T,V) = C_V(T,V_1) + \int_{V_1}^V \left(\frac{\partial C_V(T,V')}{\partial V}\right)_T dV'$$

$$S(T,V) - S(T_0,V_0) = [S(T,V) - S(T_0,V)] + [S(T_0,V) - S(T_0,V_0)]$$

$$\int dT$$
 $\int dV$

5.8 Entropy and internal energy

$$dS = \frac{C_V}{T}dT + \left(\frac{\partial p}{\partial T}\right)_V dV$$

$$S(T,V) - S(T_0,V_0) = \int_{T_0}^T \frac{C_V(T',V)}{T'} dT' + \int_{V_0}^V \left(\frac{\partial p(T_0,V')}{\partial T}\right)_V dV'$$

Entropy and internal energy

$$dE = T dS - p dV$$

dE = T dS - p dV Fundamental equation

$$dS = \frac{C_V}{T}dT + \left(\frac{\partial p}{\partial T}\right)_V dV$$

$$dE = C_V dT + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] dV$$

$$dE = \left(\frac{\partial E}{\partial T}\right)_{V} dT + \left(\frac{\partial E}{\partial V}\right)_{T} dV$$

$$\begin{pmatrix} \frac{\partial E}{\partial T} \rangle_{V} = C_{V} \\
\left(\frac{\partial E}{\partial V} \right)_{T} = T \left(\frac{\partial P}{\partial T} \right)_{V} - P$$

5.8 Entropy and internal energy: example

Van de Waals gas

Equation of state

$$\left(p+\frac{a}{v^2}\right)(v-b)=RT$$

Additional positive pressure and occupied volume

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

$$\left(\frac{\partial p}{\partial T}\right)_v = \frac{R}{v - b}$$

$$\left(\frac{\partial e}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_v - p = \frac{RT}{v - b} - p$$

$$\left(\frac{\partial \epsilon}{\partial v}\right)_{T} = \frac{a}{v^2}$$

5.8 Entropy and internal energy: example Van de Waals gas

$$\left(\frac{\partial c_{v}}{\partial v}\right)_{T} = T\left(\frac{\partial^{2} p}{\partial T^{2}}\right) = T\left(\frac{\partial}{\partial T}\right)_{v}\left(\frac{R}{v-b}\right) = 0$$

$$d\epsilon = c_V(T) dT + \frac{a}{v^2} dv$$

$$\epsilon(T,v) - \epsilon(T_0,v_0) = \int_{T_0}^T c_V(T') dT' - a\left(\frac{1}{v} - \frac{1}{v_0}\right)$$

$$\epsilon(T,v) = \int_{T_0}^T c_V(T') dT' - \frac{a}{v} + \text{constant}$$

5.8 Entropy and internal energy: example Van de Waals gas

If c_V is independent of temperature,

$$\epsilon(T,v) = c_V T - \frac{a}{v} + \text{constant}$$

$$ds = \frac{c_V(T)}{T} dT + \frac{R}{v - b} dv$$

$$s(T,v) - s(T_0,v_0) = \int_{T_0}^T \frac{c_V(T') dT'}{T'} + R \ln \left(\frac{v-b}{v_0-b}\right)$$

If c_V is independent of temperature,

$$s(T,v) = c_V \ln T + R \ln (v - b) + \text{constant}$$

5.8 Entropy and internal energy: example Van de Waals gas

$$ds = \frac{c_V(T)}{T} dT + \frac{R}{v - b} dv$$

$$s(T,v) - s(T_0,v_0) = \int_{T_0}^T \frac{c_V(T') dT'}{T'} + R \ln \left(\frac{v-b}{v_0-b} \right)$$

If c_V is independent of temperature,

$$s(T,v) = c_V \ln T + R \ln (v - b) + \text{constant}$$

Free energy expansion and throttling process 5.9 free expansion

Open valve and the gas is free to expand to fill the volume V_2 from V_1

container is adiabatically insulated,

$$Q = 0$$

does no work in the process

$$W = 0$$

$$\Delta E = 0$$

Free energy expansion and throttling process 5.9 free expansion

First law

$$\Delta E = 0$$

Then

$$E(T_2,V_2)=E(T_1,V_1)$$

Specially, for ideal gas

$$E(T_2) = E(T_1)$$

Generally,

$$E(T_2, V_2) = E(T_1, V_1)$$

Free energy expansion and throttling process 5.9 free expansion

Free energy expansion and throttling process 5.9 free expansion: example

Van de Waals gas

$$\epsilon(T_2,v_2) = \epsilon(T_1,v_1)$$

$$\int_{T_1}^{T_2} c_V(T') dT' - \frac{a}{v_2} = \int_{T_2}^{T_2} c_V(T') dT' - \frac{a}{v_1}$$

$$\int_{T_1}^{T_1} c_V(T') dT' - \int_{T_0}^{T_1} c_V(T') dT' = a \left(\frac{1}{v_2} - \frac{1}{v_1} \right)$$

$$\int_{T_1}^{T_2} c_V(T') dT' = a \left(\frac{1}{v_2} - \frac{1}{v_1} \right)$$

Free energy expansion and throttling process

5.9 free expansion: example

 $\epsilon(T_2,v_2) = \epsilon(T_1,v_1)$

Van de Waals gas

Ignore c_V change in $[T_1, T_2]$

$$c_{V}(T_{2}-T_{1})=a\left(\frac{1}{v_{2}}-\frac{1}{v_{1}}\right)$$

$$T_{2}-T_{1}=-\frac{a}{c_{V}}\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right)$$

For an expansion where $v_2 > v_1$,

$$T_2 < T_1$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

Steady-stateexperiment by J-T

A porous plug provide a constriction to the flow of gas;

A continuous stream of gas flow from left to right; p_1 in the left $> p_2$ in the right;

T₁ is the temperature in left, what is T₂ in right?

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

Initial: Left, p₁, V₁

Final: right, p₂, V₂

$$\Delta E = E_2 - E_1 = E(T_2, p_2) - E(T_1, p_1)$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

$$W = p_2 V_2 - p_1 V_1$$

To external and by external

adiabatically insulated

$$Q = 0$$

Then,

$$\Delta E + W = Q = 0$$

$$(E_2 - E_1) + (p_2V_2 - p_1V_1) = 0$$

 $E_2 + p_2V_2 = E_1 + p_1V_1$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

Already define
$$H \equiv E + pV$$

$$(E_2 - E_1) + (p_2V_2 - p_1V_1) = 0$$

$$E_2 + p_2V_2 = E_1 + p_1V_1$$

$$H(T_2,p_2) = H(T_1,p_1)$$

$$H = H(T)$$

For ideal gas

$$H = E + pV = E(T) + \nu RT$$

in throttling process

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

More generally, H = H(T, p)

$$\mu \equiv \left(\!\frac{\partial T}{\partial p}\!\right)_{\! H}$$

μ>0, T increases with p μ<0, T decreases with p

Inversion curve

$$\mu == ??$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

$$dE = T dS - p dV$$

$$dH \equiv d(E + pV) = T dS + V dp$$
 $dH = 0.$
 $C_p = T(\partial S/\partial T)_p.$

$$0 = T \left[\left(\frac{\partial S}{\partial T} \right)_{p} dT + \left(\frac{\partial S}{\partial p} \right)_{T} dp \right] + V dp$$

$$C_{p} dT + \left[T \left(\frac{\partial S}{\partial p} \right)_{T} + V \right] dp = 0$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

$$\mu \equiv \left(\!\frac{\partial T}{\partial p}\!\right)_{\! H}$$

$$\mu \equiv \left(\frac{\partial T}{\partial p}\right)_{H} = -\frac{T(\partial S/\partial p)_{T} + V}{C_{p}}$$
 Maxwell

$$\mu = \frac{V}{C_p} \left(T\alpha - 1 \right)$$

For ideal gas, $\alpha = T^{-1}$

$$\alpha = T^{-1}$$

$$\mu = 0$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..) Application:

J-T effect constitute a practical method for cooling gas.

1, It is necessary to work in the region of pressure and T where $\mu > 0$.

2, The initial T < T maximum on the inversion curve

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

Joule-Thomson effect and molecular force

```
For ideal gas,

T does not change for free expansion

for throttling process
```

These process becomes interesting for realistic gas virial expansion

For any gas, $n \equiv N/V$.

$$p = kT[n + B_2(T)n^2 + B_3(T)n^3 \cdot \cdot \cdot]$$

Virial coefficent

$$p = \frac{N}{V} kT \left(1 + \frac{N}{V} B_2 \right)$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ...)

Joule-Thomson effect and molecular force

$$p = \frac{N}{V} kT \left(1 + \frac{N}{V} B_2 \right)$$

At low T, attractive force play dom. role, $B_2<0$; At high T, (exclusion) collision play dom. role, $B_2>0$ B_2 increases with T

$$\mu == ??$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..) Joule-Thomson effect and molecular force

$$p = \frac{N}{V} kT \left(1 + \frac{N}{V} B_2 \right)$$

$$p = \frac{NkT}{V}\left(1 + \frac{p}{kT}B_2\right) = \frac{N}{V}(kT + pB_2)$$

$$V = N\left(\frac{kT}{p} + B_2\right)$$

$$\mu = \frac{V}{C_p} \left(T\alpha - 1 \right)$$

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\mu = \frac{1}{C_p} \left[T \left(\frac{\partial V}{\partial T} \right)_p - V \right] = \frac{N}{C_p} \left(T \frac{\partial B_2}{\partial T} - B_2 \right)$$

Free energy expansion and throttling process
5.10 throttling process (Joule-Thomson ..)
Joule-Thomson effect & molecular force: discussion

$$\mu = \frac{1}{C_p} \left[T \left(\frac{\partial V}{\partial T} \right)_p - V \right] = \frac{N}{C_p} \left(T \frac{\partial B_2}{\partial T} - B_2 \right)$$

At low T, $B_2<0$, $\mu>0$ At high T, $B_2>0$, μ can <0

The inversion curve $(\mu=0)$ indicates the competition between attraction and repulsion.

Historically, the subject of thermodynamics began with the study of engines:

- 1, great technological important
- 2, intrinsic physical interests

It is easy to do mechanical work w upon a device, and then extract from it heat q (q=w)

To what extent is it possible to proceed in the reversal way?

To build a device to extract internal energy from a heat reservoir in form of heat, and convert it to work?

The device is called heat engine!

Heat engine--- key points:

1, The work cannot be provided by the engine itself; or the heat-to-work process cannot be continued. Thus one wish the heat engine keeps the same macro-state at the end of process (cycle);

Heat engine--- Question?

To what extent is it possible to exact a net amount of energy from heat reservoir?

In reservoir, energy is randomly distributed over many degree of freedom.

To energy associated the single freedom connected with the external parameter.

Heat engine--- Question?

First law since E of M does not change

not realizable.

Work→ heat is an irreversible process

Since accessible states more random and entropy increases

Ideal heat engine violates 2nd law!

$$\Delta S \geq 0$$

Heat reservoir, absorbed heat == (-q)The entropy change $-q/T_{1}$

Wish w>0,
So it cannot be satisfied!!!

$$\frac{q}{T_1} = \frac{w}{T_1} \le 0$$

Wish w>0, So it cannot be satisfied!!!

It is impossible to construct a perfect heat engine.

Kelvin's formulation of the second law

Historically, the subject of thermodynamics began with the study of engines:

- 1, great technological important
- 2, intrinsic physical interests

Class-work

P 198 5.17

Homework

P 192 5.11\13\14\15