7-mavzu:

To'g'ri chiziqning tekislikka perpendikulyarligi sharti. Ularning algoritmi. Masalalarni yechish algoritmi. Tekisliklarning o'zaro perpendikulyarligi

Tekislikka perpendikulyar bo'lgan to'g'ri chiziqdan o'tuvchi barcha tekisliklar berilgan tekislikka **perpedikulyar** bo'ladi.

Bu ta'rifdan quyidagi xulosaga kelish mumkin, ya'ni tekislikka tegishli to'g'ri chiziqqa perpendikulyar bo'lgan har qanday tekislik mazkur tekislikning o'ziga ham perpendikulyar bo'ladi (7.1-rasm).

Demak, bir-biriga perpendikulyar bo'lgan tekisliklarni yasash ikki usul bilan bajarilishi mumkin:

- Tekislikka perpedikulyar to'g'ri chiziqdan tekislik o'tkazish
- Tekislikka tegishli to'g'ri chiziqqa perpedikulyar tekislik o'tkazish.

Agar biror tekislik ikki tekislikka umumiy bo'lgan to'g'ri chiziqqa perpendikulyar bo'lsa, u holda bu **tekislik har ikkala tekisliklarga ham perpendikulyar** bo'ladi.

Ma'lumki, Q va P tekisliklarga umumiy bo'lgan to'g'ri chiziq ularning l kesishish chizig'i bo'ladi. Tekisliklarning l kesishish chizig'ida ixtiyoriy B nuqta tanlab olamiz (7.9-rasm). Bu nuqtadan l ga perpendikulyar qilib a va b chiziqlarni o'tkazamiz. Natijada $a \cap b$ kesishuvchi to'g'ri chiziqlar T tekislikni hosil qiladi. Bu tekislik esa berilgan Q va P tekisliklarga perpendikulyar bo'ladi (7.2-rasm).

Demak, berilgan T tekislikka perpedikulyar bo'lgan l to'g'ri chiziqdan o'tuvchi har qanday tekislik unga perpendikulyar bo'ladi.

1-masala. $P(P_H, P_V)$ tekislikka perpendikulyar va Q_x dan o'tuvchi Q tekislik izlari bilan o'tkazilsin (7.3 -rasm).

Echish.

- P tekislikka perpendikulyar boʻlgan ixtiyoriy a toʻgʻri chiziq oʻtkaziladi.
- Bu to 'g'ri chiziqning $a_{H'}$, $a_{H''}$ va $a_{V'}$, $a_{V''}$ izlarining proyeksiyalarini yasaladi.
- Izlangan Q tekislikning gorizontal Q_H izini $Q_H \supset a_H'$ va $Q_H \supset Q_X$ qilib oʻtkaziladi, uning frontal Q_V izini $Q_V \supset a_V''$ va $Q_V \supset Q_X$ qilib oʻtkaziladi.

Bu masalani quyidagicha yechish ham mumkin: Q tekislikka perpendikulyar va P_x dan oʻtuvchi tekislikni oʻtkazish uchun (7.4 -rasm) Q tekislikda ixtiyoriy $m \supset Q$ toʻgʻri chiziq olamiz. P tekislikning izlarini P_x dan $P_H \perp m'$ va $P_V \perp m''$ qilib oʻtkaziladi. Natijada, $P \perp Q$ boʻladi.

2-masala. Kesishuvchi $a \cap b(a' \cap b', a'' \cap b'')$ chiziqlar bilan berilgan tekislikka d(d', d'') toʻgʻri chiziqdan oʻtuvchi perpendikulyar tekislik oʻtkazish talab qilinsin (7.5 -rasm).

Echish:

- berilgan tekislikning gorizontali va frontalining h', h'' va f', f'' chiziqlari o'tkaziladi;
- d toʻgʻri chiziqning ixtiyoriy D(D', D'') nuqtasidan n(n',n'') toʻgʻri chiziqning proyeksiyalarini $n' \perp h'$ va $n'' \perp f''$ qilib oʻtkaziladi. Hosil boʻlgan $d' \cap n'$ va $d'' \cap n''$ kesishuvchi chiziqlar hosil qilgan tekislik berilgan tekislikka perpendikulyar tekislikning proyeksiyalari boʻladi.

3-masala. A(A', A'') nuqtadan $Q(Q_H, Q_V)$ va $P(P_H, P_V)$ tekisliklarga perpendikulyar boʻlgan $T(T_H, T_V)$ tekislik oʻtkazish talab qilinsin (7.6 -rasm).

Yechish:

- Q va P tekisliklarning kesishish chizigʻining l', l'' proyeksiyalarni yasaladi;
- A nuqtaning A' va A'' proyeksiyalaridan izlangan tekislikning gorizontali (yoki frontali) ni tekisliklarning kesishish chizigʻiga perpendikulyar qilib oʻtkaziladi: $h' \perp l'$ $\Lambda h' \ni A'$ va $h'' \parallel Ox \Lambda h'' \ni A''$ va uning izlarning $h_{V'}$, $h_{V'}$ proyeksiyalarni yasaladi;
- izlangan tekislikning frontal izini $T_V \supset h''$, $T_V \perp l'' T_H \ni T_X$, $T_H \perp l'$ qilib oʻtkaziladi. Natijada, berilgan ikki tekislikka perpendikulyar boʻlgan uchinchi tekislik yasaladi: $T \perp O$ va $T \perp P$.

7.5-rasm 7.6-rasm

To'g'ri chiziq va tekislik orasidagi burchak aniqlash.

Ta'rif. To'g'ri chiziq bilan uning tekislikdagi ortogonal proyeksiyasi orasidagi burchak shu to'g'ri chiziq va tekislik orasidagi burchak deyiladi.

Toʻgʻri chiziq va tekislik orasidagi burchak 7.7,*a*-rasmda koʻrsatilgan. Bu fazoviy modeldan foydalanib quyidagi yasash algoritmlarini keltirish mumkin:

- Berilgan a to 'g'ri chiziqni Q tekislik bilan kesishish nuqtasi aniqlanadi: $L=a \cap Q$.
- Toʻgʻri chiziqda ixtiyoriy B nuqta tanlab olinadi. Bu nuqtadan berilgan Q tekislikka n perpendikulyarni tushirib, uning Q tekislik bilan kesishuv nuqtasini aniqlanadi: $B' = n \cap Q$.
- Soʻngra L va B nuqtalarni oʻzaro tutashtirish natijasida hosil boʻlgan burchak a toʻgʻri chiziq va Q tekislik orasidagi φ burchak boʻladi.

Chizmada toʻgʻri chiziq bilan tekislik orasidagi burchakni aniqalsh uchun yuqorida keltirilgan yasash algoritmlarni toʻgʻri chiziq bilan tekislikning perpendikulyarligi va kesishishi qoidalaridan foydalanib bajariladi. Bunda φ burchak a toʻgʻri chiziqning ixtiyoriy B nuqtasidan Q tekislikka tushirilgan perpendikulyar orasidagi γ burchak orqali aniqlanadi (7.7.-a,b rasm). $\varphi^\circ + \gamma^\circ = 90^\circ$ boʻlgani uchun $\varphi^\circ = 90^\circ - \gamma^0$ boʻladi.

Masala. $Q(b \cap c)$ tekislik va a to 'g'ri chiziq orasidagi φ burchakni aniqlansin (7.8-rasm).

Yechish:

- tekislikning h (h', h") gorizontali va f (f', f") frontali o'tkaziladi;
- toʻgʻri chiziqning ixtiyoriy A(A', A'') nuqtasidan tekislikning gorizontali va frontaliga e(e', e'') perpendikulyar oʻtkaziladi. Bunda: $e'\ni A'$, $e'\perp h'$ va $e''\ni A''$, $e''\perp f''$ boʻladi.
- *a* va *e* toʻgʻri chiziqlar orasidagi $\gamma(\gamma', \gamma'')$ burchak belgilanadi. Natijada, $\varphi^{\circ}=90^{\circ}-\gamma^{\circ}$ aniqlanadi.

Ikki tekislik orasidagi burchak.

Ikki tekislik orasidagi burchak ularning kesishish chizigʻiga perpendikulyar boʻlgan ikki toʻgʻri chiziqlar orasidagi chiziqli burchak bilan oʻlchanadi.

Bu chiziqli burchakni quyidagi yasash algoritmlari bilan aniqlanadi (7.9- a, rasm).

- P va Q tekisliklarning l kesishish chizigʻini yasaladi.
- Tekisliklarning l kesishish chizigʻiga tegishli ixtiyoriy $A \ni l$ nuqtadan perpendikulyar qilib T tekislik oʻtkaziladi. Bu tekislik Q va P tekisliklarga ham perpendikulyar boʻladi.
- T tekislikning Q va P tekisliklar bilan kesishish a va b chiziqlar yasaladi: $a=Q\cap T$ va $b=P\cap T$.
- Tekisliklarning kesishish chiziqlari orasidagi $a^{\Lambda}b = \varphi$ izlangan burchak bo'ladi.

P va O ikki tekisliklar orasidagi burchakni quyidagicha ham aniqlash mumkin (7.9-b, rasm):

Fazoning ixtiyoriy D nuqtasidan berilgan Q va P tekisliklarga ye va n perpendikulyarlar tushirib, bu perpendikulyarlar orasidagi γ burchak orqali ϕ burchakning qiymati ϕ =180°- γ formula orqali aniqlanadi.

1-masala. $Q(Q_H, Q_V)$ va $P(P_H, P_V)$ tekisliklar orasidagi burchakni aniqlansin (4.68-rasm).

Yechish. Ixtiyoriy D(D',D'') nuqtani tanlab olamiz (7.10-rasm) va uning D', D'' proyeksiyalaridan ye va n perpendikulyarlarning proyeksiyalarini $e' \perp Q_H \wedge e'' \perp Q_V$ va $n' \perp P_H \wedge n'' \perp P_V$ qilib oʻtkaziladi. Chizmada hosil boʻlgan γ burchakning γ' va γ'' proyeksiyalari orqali uning haqiqiy qiymatini aniqlab, φ burchakni φ =180°- γ formula orqali topamiz.

2-masala. ΔABC va $a \parallel b$ to gʻri chiziqlarning proyeksiyalari bilan berilgan tekisliklar orasidagi burchakni aniqlansin.

Yechish. Ixtiyoriy D(D', D'') nuqta tanlab olinadi (7.11-rasm). Uning D' va D'' proyeksiyalaridan tekisliklarning gorizontallari va frontallariga ye' $\bot h_1''$, $e''\bot f_1''$ va $n'\bot h_2'$, $n''\bot f_2''$ qilib perpendikulyarlar oʻtkaziladi. Natijada, hosil boʻlgan $\gamma(\gamma', \gamma'')$ burchakning haqiqiy oʻlchamini aniqlab, soʻngra ϕ =180°- γ ° burchak aniqlanadi.

Nazorat savollari

- Tekislik chizmada qanday berilishi mumkin?
 Tekislikka perpendikulyar toʻgʻri chiziqning proyeksiyalari qanday vaziyatda boʻladi?
 - 3. Qanday tekisliklar oʻzaro perpendikulyar deyiladi?