Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 2

Hausaufgaben (Abgabe: bis 26.04.2022 $10^{\underline{00}}$ Uhr)

Abgabe paarweise — Bitte beide Namen auf der Lösung angeben.

Hausaufgabe 2.1: Abschätzungen
$$(4 \text{ P.})$$
 Sei $f(x) := \frac{3x^2 - 2x^3 + 1}{3x(2-x)}$. Zeigen Sie $\forall x \in [\frac{1}{2}, 1]: f(x) \in [\frac{1}{2}, 1].$

Hinweis: Formen Sie die Ungleichung $f(x) \geq \frac{1}{2}$ bzw. $f(x) \leq 1$ in eine Ungleichung $p(x) \leq 0$ bzw. $q(x) \geq 0$ um, mit Polynomen p(x), q(x), denn Kurvendiskussion für Polynome ist leichter als für rationale Funktionen.

Hausaufgabe 2.2: Landau-Symbole

Aus der Komplexitätstheorie kennen Sie Landau-Symbole (etwa: Die Laufzeit des Bubblesort-Algorithmus ist in $\mathcal{O}(n^2)$ für Listen der Länge n). Wir werden damit den asymptotischen Fehler beschreiben.

Definition: Seien $f, g: X \to \mathbb{R}$ mit $X \subset \mathbb{R}$ und $x_0 \in \mathbb{R} \cup \{\infty\}$ ein Häufungspunkt von X.

$$f \in \mathcal{O}(g)$$
 für $x \to x_0 :\Leftrightarrow \limsup_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| < \infty$

$$f \in o(g) \text{ für } x \to x_0 :\Leftrightarrow \lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = 0$$

Wenn also $x_0 \in \mathbb{R}$, dann $f \in \mathcal{O}(g) \iff \exists C > 0 \exists \varepsilon > 0 \colon \forall x \in U_{\varepsilon}(x_0) \colon |f(x)| \le$ $C \cdot |g(x)|$ und $f \in o(g) \iff \forall C > 0 \exists \varepsilon > 0 \colon \forall x \in U_{\varepsilon}(x_0) \colon |f(x)| \le C \cdot |g(x)|$.

- a) Seien $h_1 \in \mathcal{O}(f), h_2 \in \mathcal{O}(g), h_3 \in o(f)$ für $x \to x_0$. Zeigen Sie die Gültigkeit folgender Regeln:
 - i) (1 P.) $h_1 + h_2 \in \mathcal{O}(|f| + |g|)$ für $x \to x_0$
 - ii) (1 P.) $h_2 \cdot h_3 \in o(f \cdot q)$ für $x \to x_0$
- b) (2 P.) Zeigen Sie $\left(1+\frac{1}{n}\right)^n e \in \mathcal{O}(\frac{1}{n})$ für $n \to \infty$. **Hinweis:** Die beiden e-Folgen kamen sicherlich in der Analysis vor. Vgl. Wikipedia.

Bitte wenden

Hausaufgabe 2.3: Vergleich von Approximationen

Für
$$x \in \mathbb{R}$$
 ist $E(x) := \sum_{k=0}^{20} \frac{x^k}{k!} \approx e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.

(4 P.) Bestimmen Sie jeweils eine möglichst gute obere Schranke, ohne exakte Werte von e^x zu verwenden.

a)
$$|E(-5.5) - e^{-5.5}|$$

a)
$$|E(-5.5) - e^{-5.5}|$$
 b) $|(E(5.5))^{-1} - e^{-5.5}|$ c) $|(E(-0.5))^{11} - e^{-5.5}|$

c)
$$|(E(-0.5))^{11} - e^{-5.5}|$$

Programmieraufgabe 2.4: Numerisches Differenzieren

Bekanntlich ist für eine differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ die Ableitung an der Stelle x_0 definiert als

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
.

Es gilt aber auch

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

Dadurch erhält man zwei Wege, um $f'(x_0)$ zu approximieren, nämlich D(h) :=Education erhant Euler Wege, and $f(x_0)$ for approximation, hammen E(h): $\frac{f(x_0+h)-f(x_0)}{h} \approx f'(x_0) \approx \frac{f(x_0+h)-f(x_0-h)}{2h} =: S(h) \text{ für } h \text{ von kleinem Betrag.}$ (4 P.) Schreiben Sie ein Programm zur Berechnung von D(h) und S(h) in double precision. Berechnen Sie damit jeweils $|D(h) - f'(x_0)|$ und $|S(h) - f'(x_0)|$ für $f(x) := x \cdot \sin(x), x_0 := 0.5 \text{ und } h := 0.25^n \text{ mit } n \in \{1, ..., 20\} \text{ und erklären Sie}$ die Abhängigkeit von n. **Hinweis:** $f'(x) = x \cdot \cos(x) + \sin(x)$.

Erreichbare Punktzahl: 16