Molekulardynamik und Lattice-Boltzmann Methoden

Dr.-Ing. Martin Bernreuther

Simulation großer Systeme Institut für Parallele und Verteilte Systeme Fakultät Informatik Universität Stuttgart

SS 2005

1/234

HPP: Eigenschaften

- 1973: Lattice-Gas Cellular Automata (LGCA) von HARDY, POMEAU und DE PAZZIS
- zweidimensionaler quadratischer (b = 4) Zellraum, Zellabstand h := 1
- VON NEUMANN-Nachbarschaft mit Radius r=1
- hexadezimale Zellzustände: $k = 2^b = 16$
- Zustandsübergangsfunktion
 - legal
 - symmetrisch
 - ohne Gedächtnis
- diskrete Zeit ($\Delta t := 1$)

HPP: Nachbarschaft

HPP: Zustandsübergangsfunktion

xx0x	xxx0	0xxx	x0xx	0000
xx1x	xxx0	0xxx	x0xx	0010
xx0x	xxx1	0xxx	x0xx	0001
xx0x	xxx0	1xxx	x0xx	1000
xx0x	xxx0	0xxx	x1xx	0100
xx1x	xxx1	0xxx	x0xx	0011
xx0x	xxx1	1xxx	x0xx	1001
xx0x	xxx0	1xxx	x1xx	1100
xx1x	xxx0	0xxx	x1xx	0110
xx1x	xxx0	1xxx	x0xx	0101
xx0x	xxx1	0xxx	x1xx	1010
xx1x	xxx1	1xxx	x0xx	1011
xx0x	xxx1	1xxx	x1xx	1101
xx1x	xxx0	1xxx	x1xx	1110
xx1x	xxx1	0xxx	x1xx	0111
xx1x	xxx1	1xxx	x1xx	1111

HPP: Evolution

- Zwei identische Kollisionen heben sich auf: $\mathcal{C}^2 = Id$ (\rightarrow Reversibilität)
- der Zustandsübergang ist symmetrisch zum inversen Zustand → Löcher verhalten sich wie Partikel und das Verhalten des Gesamtsystems ist für hohe und niedrige Dichten gleich
- Symmetriegruppe der Ordnung 4

HPP: Kollision

- 0 und 1 Partikel: keine Kollision
- 2 Partikel:
 - "seitliche Kollision": keine Änderung (Impulserhaltung)

• "frontale Kollision": 90° Richtungsänderung (keine Änderung unwahrscheinlich)

• 3,4 Partikel: keine Änderung, da Massen- und Impulserhaltung

140/234

4 □ > 4 □ > 4 □ > 4 □

HPP: Randbedingungen

• "Bounce back": entgegengesetzte Richtungen für Partikel

Rutschbedingung: Partikel wird "reflektiert"

- Einströmbedingung: Partikelverteilung vorgegeben
- Ausströmbedingung: keine Propagation
- periodische Randbedingungen: Partikelverteilung an gegenüberliegenden Rändern werden gleichgesetzt → Torustopologie

HPP: Schachbrettmuster

- aufgrund der VON NEUMANN-Nachbarschaft kann man die Zellen so in zwei Gruppen aufteilen, daß jede Zelle nur Nachbarn der anderen Gruppe hat.
- der Propagationsoperator transferiert Partikel zum entsprechenden Nachbarn
- ein Partikel wechselt seine Position in jedem Zeitschritt von einer Zelle der einen zu einer Zelle der anderen Gruppe
- die Summe der Partikel in den Zellen einer Gruppe sind in jedem zweiten Zeitschritt gleich und wechselt sich mit der Summe der anderen Gruppe ab
- das Modell besitzt eine künstliche Invarianz, die nicht physikalisch begründet ist

