Mostafa Sabri

Lecture 22

6.7 Inner Product Spaces

Inner Products

An inner product on a vector space is a generalization of the dot product of \mathbb{R}^n .

An inner product $\langle \cdot, \cdot \rangle$ on a vector space V is a map $(\mathbf{u}, \mathbf{v}) \mapsto \langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{R}$ such that $\forall \mathbf{u}, \mathbf{v} \in V$, $c \in \mathbb{R}$,

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$,
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$,
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$,
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = \mathbf{0}$.

A vector space endowed with an inner product is called an *inner product space*.

Inner Products

Items 1-3 say that the map is bilinear and symmetric. Item 4 says it is positive-definite.

- 1. On \mathbb{R}^2 , define $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2 u_2 v_2$. Is this an inner product ?
- 2. On \mathbb{R}^3 , define $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 2 u_2 v_2 + u_3 v_3$. Is this an inner product ?
- 3. On C[a, b], define $\langle f, g \rangle = \int_a^b f(t)g(t) dt$. Is this an inner product ?

If V is an inner product space, we define the *norm* or *length* of a vector \mathbf{v} by

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
.

Length, Distances, Orthogonality

Let t_0, \ldots, t_n be distinct real numbers. For $p, q \in P_n$, define $\langle p, q \rangle = \sum_{i=0}^n p(t_i)q(t_i)$. Show that this is an inner product on P_n . In case n=2, and $t_0=0$, $t_1=1$, $t_2=2$, compute ||p|| for $p(t)=1+t+t^2$.

A unit vector in V is a vector of length 1.

The distance between \mathbf{u} and \mathbf{v} is $\|\mathbf{u} - \mathbf{v}\|$.

We say that \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Lem: Given $\mathbf{u}, \mathbf{v} \in V$, let $W_{\mathbf{u}} = \operatorname{Span}\{\mathbf{u}\}$ and define

$$\operatorname{proj}_{W_{\mathbf{u}}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

Then $\mathbf{z} = \mathbf{v} - \operatorname{proj}_{W_{\mathbf{u}}}(\mathbf{v})$ is orthogonal to \mathbf{u} .

Cauchy-Schwarz Inequality

Indeed, $\langle \mathbf{z}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \langle \mathbf{v}, \mathbf{u} \rangle = 0$.

```
Lem: \|\operatorname{proj}_{W_{\mathbf{u}}}(v)\| \leq \|\mathbf{v}\|.
```

Indeed, $\operatorname{proj}_{W_{\mathbf{u}}}(\mathbf{v}) = \alpha \mathbf{u}$, so by the previous lemma and Pythagoras,

$$\|\mathbf{v}\|^2 = \|\text{proj}_{W_{\mathbf{u}}}(v)\|^2 + \|\mathbf{v} - \text{proj}_{W_{\mathbf{u}}}(\mathbf{v})\|^2 \ge \|\text{proj}_{W_{\mathbf{u}}}(v)\|^2.$$

Thm (Cauchy-Schwarz): For any
$$\mathbf{u}, \mathbf{v} \in V$$
,
$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||.$$

 $\frac{\text{Proof.}}{\|\mathbf{u}\|} \|\mathbf{v}\| = \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|}{\|\mathbf{u}\|^2} \|\mathbf{u}\|$ so this follows from the lemma.

Triangle inequality, Gram-Schmidt

(
$$\triangle$$
 inequality): For any $\mathbf{u}, \mathbf{v} \in V$,
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

Proof. As in Lec19,
$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle$$
. By Cauchy-Schwarz, $2\langle \mathbf{u}, \mathbf{v} \rangle \le 2\|\mathbf{u}\| \|\mathbf{v}\|$. So $\|\mathbf{u} + \mathbf{v}\|^2 \le \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\|\mathbf{u}\| \|\mathbf{v}\| = (\|\mathbf{u}\| + \|\mathbf{v}\|)^2$.

Thm: (Gram-Schmidt) In an inner product space, if $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ is a basis for W, $\mathbf{v}_1 = \mathbf{x}_1$ and for p > 1, $\mathbf{v}_p = \mathbf{x}_p - \frac{\langle \mathbf{x}_p, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \dots - \frac{\langle \mathbf{x}_p, \mathbf{v}_{p-1} \rangle}{\langle \mathbf{v}_{p-1}, \mathbf{v}_{p-1} \rangle} \mathbf{v}_{p-1}$

Then $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is an orthogonal basis for W.

Orthogonal decomposition

The proof is the same as before. Consequently, any subspace has an orthonormal basis.

Thm: Given a subspace $W \subseteq V$, any $\mathbf{v} \in V$ has a unique orthogonal decomposition

$$\mathbf{v} = \operatorname{proj}_{W}(\mathbf{v}) + \mathbf{z}$$

where $\operatorname{proj}_{W}(\mathbf{v}) \in W$ and $\mathbf{z} \in W^{\perp}$.

Same old proof with $\operatorname{proj}_{W}(\mathbf{v}) = \sum_{i=1}^{p} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$, for an orthogonal basis $\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\}$ of W.

Let U, W be subspaces of V. Then V is said to be the direct sum of U and W, and we write $V = U \oplus W$, if $V = U + W = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W\}$ and $U \cap W = \{\mathbf{0}\}$.

Direct sums, best approximations

Thm: If $W \subseteq V$ is a subspace, then $V = W \oplus W^{\perp}$.

<u>Proof.</u> By the orthogonal decomposition, any $\mathbf{v} \in V$ has the form $\mathbf{v} = \hat{\mathbf{v}} + \mathbf{z}$ for $\hat{\mathbf{v}} \in W$ and $\mathbf{z} \in W^{\perp}$. This implies that $V = W + W^{\perp}$. Next, $W \cap W^{\perp} = \{\mathbf{0}\}$ as we saw before. So the claim follows.

Thm: $\operatorname{proj}_{W}(\mathbf{v})$ is the closest element in W to \mathbf{v} .

i.e. $\|\mathbf{v} - \operatorname{proj}_{W}(\mathbf{v})\| < \|\mathbf{v} - \mathbf{w}\| \ \forall \mathbf{w} \in W, \ \mathbf{w} \neq \operatorname{proj}_{W}(\mathbf{v}).$

Same proof as before.

Examples

- 1. Apply the Gram-Schmidt process to the vectors $F = \{1, t, t^2\}$ if
 - (i) $F \subset P_3$, where P_3 is endowed with the inner product $\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1) + p(2)q(2)$,
- (ii) $F \subset C[0, 1]$, where C[0, 1] is endowed with the inner product $\langle p, q \rangle = \int_0^1 p(t)q(t) dt$.
- 2. Endow P_3 with the inner product of point (i). Let $W = \text{Span}\{1, t, t^2\} \subset P_3$. Find the best approximation of $p(t) = 4t^3 2t + 1$ by elements in W.