A Hail of a Good Time: Understanding Forecast Storms

August Ist, 2025

Climate Disasters

Severe Convective Storms

United States Billion-Dollar Disaster Events 1980-2025 (CPI-Adjusted)

Updated: April 8, 2025 Powered by ZingChart

Convective Outlook (Short Intro)

Area coverage

Year

Brier Skill Score

Daily Overlap: Hail 15% PPH vs Hail 15% Outlook (2010-2024)

Severe Convective Storms

Brier Score Comparison: PPH vs Convective Outlook (2010-2024)

Brier Skill Score: PPH vs Convective Outlook vs Climatology (Fair Comparison)

Model Brier Score Comparison (Fair Comparison)

Monthly Brier Skill Score: PPH vs Convective Outlook vs Climatology (2018-2024)

Texas Hail Reports May 19, 2023

Texas Hail Reports + Convective Outlooks May 19-20

Longitude

Texas Hail Analysis Storm + Convective Outlook + PPH May 19-20, 2023

Longitude

Texas Hail
Storm Reports + Convective Outlooks + PPH + Radar MESH
May 19-20, 2023

Longitude

Texas Hail PPH + Outlook + MESH + Significant Reports Significant Hail May 19-20, 2023

Why are we doing this? / Next Steps

Estimate damages

$$ext{TIV}_{ ext{Loss}}(d,\phi,\lambda) = F\Big(\underbrace{ig\{P_{g,\sigma}(d,\phi,\lambda)ig\}_{g\in\{211,212,215,218\}}}_{16 ext{ convective-outlook probabilities}}, ext{ MESH}(d,\phi,\lambda), ext{ Dist}_{ ext{NCEI}}(d,\phi,\lambda), ext{ \overline{Age}}(d,\phi,\lambda), ext{ \overline{Roof}}(d,\phi,\lambda), ex$$

Variable definitions

- d Date (day, month, year).
- φ, λ Latitude and longitude of the grid cell centre.
- $P_{q,\sigma}(d,\phi,\lambda)$ Convective-outlook probability on NAM grid $\mathbf{g} \in \{211,212,215,218\}$ after Gaussian smoothing scale $\mathbf{\sigma} \in \{1.5,2,2.5,3\}$.
- **MESH** Radar-derived *Maximum Estimated Size of Hail* at (d, ϕ, λ) .
- $\mathrm{Dist}_{\mathrm{NCEI}}$ Great-circle distance from (ϕ,λ) to the nearest NCEI severe-weather report valid on **d**.
- Age Average building age in the cell.
- Roof Average roof type (encoded numerically or one-hot and then averaged).
- **Tax** Average tax-appraised property value in the cell.

 $F: \mathbb{R}^{16+5} \to [0, 100]$ is the model (e.g. random forest, diffusion-based model, etc) that maps the 16-element probability vector and the 5 additional predictors to an expected percentage loss of *total insured value* (TIV).