The definition for $n^2 \in \mathcal{O}(\frac{n(n-1)}{2})$ indicates that there exists positive constants CI, C2, and No such that for all n > No, n^2 is both bounded above and below by $G \cdot C \cdot \frac{N(N-1)}{2}$ and $C_2 \cdot (\frac{N(N-1)}{2})$.

For $n^2 \in O(\frac{n(n-1)}{2})$, $n^2 = \frac{n}{2} \cdot 2n$ $\frac{n(n-1)}{2} = \frac{n}{2} \cdot (n-1)$. Thus, $n^2 \in O(\frac{n(n-1)}{2})$ such that for all $n > n_0$, $2n \in C_1 \cdot (n-1)$.

For $n^2 \in \Omega(\frac{n(n-1)}{2})$, $n^2 = n \cdot n$ $\frac{n(n-1)}{2} = n(\frac{n-1}{2})$ there exist $(z=|\text{ and } n_0=3 \text{ such that for all } n>n_0, n \ge \frac{n-1}{2}$ Thus, $n^2 \in \Omega(\frac{n(n-1)}{2})$. We can conclude that $n^2 \in \Omega(\frac{n(n-1)}{2})$.

- b) 051432 015432
- c) 012453.
 - d). 041532.