存储器习题 (11.24)

- 1. 若某微机系统的系统RAM存储器由四个模块组成,每个模块的容量为128K字节,若四个模块的地址是连续的,最低地址为00000H,试指出每个模块的首末地址。
 - 模块一:
 - 首地址: 00000H末地址: 1FFFFH
 - 模块二:
 - 首地址: 20000H末地址: 3FFFFH
 - 模块三:
 - 首地址: 40000H末地址: 5FFFFH
 - 模块四:
 - 首地址: 60000H末地址: 7FFFFH
- 2. 对于下列芯片,它们的片内地址线各有多少根? 若分别用以下芯片组成容量为64K字节的模块,试指出分别需要多少芯片?

(1) Intel 2114 (1Kx4bit)

片内地址线: 10根需要芯片: 128块

(2) Intel 6116 (2Kx8bit)

片内地址线: 11根需要芯片: 32块

(3) Intel 2164 (64Kx1bit)

片内地址线: 16根需要芯片: 8块

(4) Intel 3148 (4Kx8bit)

片内地址线: 12根需要芯片: 16块

3. 某SRAM芯片,容量为4Kx4位,该芯片有数据线、地址线、片选信号线 \overline{CS} 和读写控制信号线 \overline{WR} 。请问:

(1) 该RAM芯片有几根地址线? 几根数据线?

地址线: 12根数据线: 4根

(2) 现要在8088为CPU的微机系统中,用该芯片构成RAM2(地址范围为: 32000H-33FFFH)和RAM4(地址范围为: 37000H-37FFFH)两个内存模块,请画出扩展这两个模块的存储器连接图。(连接图中可选用三八译码器和与非门等。)

• 如下图:

存储器习题 (11.28)

1. 假设在一个微机系统中,主存的地址为32位,主存访问Cache时采用直接相联映像方式,主存访问Cache时的地址分配如表6-8所示。CPU访问主存的十进制形式的地址序列如表6-9最左列所示。请问:

表 6-8 主存访问 Cache 时的地址分配←

Tag (标记) ←	Index(索引)←	Offset(块内偏移里)←
31–10€	9–4 <i>←</i>	3–0←

(1) Cache块的大小是多少个字节?

• Offset为4位,所以块大小为 $2^4=16 Byte$

(2) Cache有多少个条目?

• Index为6位,所以条目数为 $2^6 = 64$

(3) 若从开机起,CPU按表6-9的主存地址访问Cache,请完成表6-9的填写。有多少个块被替换了? 命中率是多少?

• 完成表格如下: (这里假设Cache初始为空)

表 6-9 CPU 访问王存的地址序列←

Address←	Binary Address⊬	Line ID←	Tag⊬	Hit/Miss⊬	Replace
(主存的地址) ↩	(以二进制形式表示的主存地址) ↩	(对应的 Cache 行)←	(标记) ←	(是否命中) ←	(是否被替换) ↩
1025←	01 000000 0001B€ ³	0←□	1←	M←□	N←□
5↩	00 000000 0101B€ [□]	0←ੋ	0←	M⊖	Yċ□
17←	00 000001 0001B↩	1€	0←□	M←	N←ī
141←	00 001000 1101B€ ³	8←□	0←□	M←	N←
181←	00 001011 0101B↩	11€	0←□	M←	N←
161←	00 001010 0001B← ³	10←	0←□	M←□	N←□
0←	00 000000 0000B€ [□]	0←ੋ	0←□	H←	N⊖
31↩	00 000001 1111B€ [□]	1←	0←	H←□	N←□
133€	00 001000 0101B€	8€ੋ	0←□	H←	N⊖
2181←	10 001000 0101B€ ³	8€□	2←1	M←	Y←□
233€ੋ	00 001110 1001B← ¹	14←	0←□	M←	N←□
310↩	00 010011 0110B∈	19€	0←□	M←	N←¹

• 有两个块被替换了

• 命中率为: 3/12 = 25%

存储器习题 (12.1)

(接上题)

- 2. 若Cache块的大小和个数与题1相同,现改为2路组相连映射。参照表6-8画出主存访问Cache时的地址分配表,填入表6-10。若从开机起,CPU按表6-11的主存地址访问Cache,请完成表6-11的填写。有多少个块被替换了?命中率是多少?并与题1的结果进行比较。
 - 相连度每增加1位,组数就会减少1/2,因此用来索引cache的位数也要相应减1,而标记位则是增1。因此得到新的Cache地址分配表如下:

表 6-10 主存访问 Cache 时的地址分配 ↔

÷	表	6-10 王存访问 Cache 时的地	址分配↩
	Tag(标记)↩	Index(索引)↩	Offset(块内偏移量)↩
	31-9←	8-4←ੋ	3-0←

• 完成表格如下: (这里假设Cache初始为空)

+ ‡+	表 6-11 CPU 访问主存的地址序列←						
	Address←	Binary Address⊬	Set ID⊕	Tag⊬	Hit/ <u>miss</u> ⊬	Replace	
	(主存的地址) ↩	(以二进制形式表示的主存地址) ↩	(对应的 Cache 组)←	(标记) ←	(是否命中) ←	(是否被替换) ↩	
	1025€	010 00000 0001B↩	0←	2←	M←	N←	
	5<□	000 00000 0101B↩	0←	0←□	M←□	N₽	
	17€	000 00001 0001B↩	1↩	0←□	M←	N∈	
	141₽	000 01000 1101B↩	8€	0←□	M←	N←	
	181₽	000 01011 0101B↩	11€	0←□	M←	N∈	
	161₽	000 01010 0001B€ [□]	10←	0←	M←	N←□	
	0←□	000 00000 0000B↩	0←	0←	H←	N₽	
	31↩	000 00001 1111B€ [□]	1←	0←	H←¹	N←□	
	133₽	000 01000 0101B↩	8€	0←	Н€	N∈	
	2181₽	100 01000 0101B↩	8←	4←	M←	N∈	
	233↩	000 01110 1001B←	14←	0←	M←	N∈	
	310€	000 10011 0110B←	19€	0←	M←	N∤□	

• 没有块被替换

• 命中率为: 3/12 = 25%

• 可以看出,相连度增加后,命中率没有变化,替换次数减少了。实际上当查询次数足够多时,2路 相连的cache替换数相对会更少,命中率也更高。

海明码习题 (12.8)

1. 已知:信息码为:"11001100"(k=8),试求出海明码。

• 过程如下:

位置	1	2	3	4	5	6	7	8	9	10	11	12
编码之后的数据位	p1	p2	d1	рЗ	d2	d3	d4	p4	d5	d6	d7	d8
P1	X		X		X		Χ		X		X	
P2		X	X			X	Х			X	X	
P3				Х	Х	X	Х					X
P4								Х	Х	X	X	Х
海明码	1	0	1	1	1	0	0	0	1	1	0	0

• 海明码为: 101110001100

2. 已知:接收的海明码字为:"100110001100"(k=8), 试求出发送端的信息码。

• 校验位分别为: $p_1=1, p_2=0, p_3=1, p_4=0$, 海明码检测到错误位为3, 即D3发生错误,因此正确信息码为: 01101100

虚存习题 (12.8)

虚拟存储器采用页表来追踪虚拟地址到物理地址的映射。假设下列数据构成了一个微机系统中的虚拟地址流。假设页的大小是4KB(即:2¹²B),有一个4条目的块表(TLB)如表6-11所示,初始页表如表6-12所示。采用最近最少使用替换算法(LRU)。当某个页要从磁盘装入主存时,页表中最大的主存页号加1。页表中,若某个虚拟页在内存中,则Valid位为1;不在内存中,则Valid位为0。

• 虚存访问过程如下:

表 6-13 虚存访问过程示例↔

Address⊖	Virtual Page	TLB H/M⊖		3	
			Valid ←	Tag⊖	Physical Page⊖ ⇔
2228⊬	0H₽	TLB M⊬	1↩	11₽	12↩
(8B4H)∉		Page Table H⊖	1ċ	7⇔	4↩
			1ċ	3←	6↩
			1(0)⊖	0←	5↩
48871⊬	BH∉	TLB H↩	1(1)₽	11↩	12↩
(BEE7H)⊖			1⊖	7⇔	4↩
			1⊖	3↩	6↩
			1(0)₽	0←	5↩
34588⊬	3H€	TLB M⊬	1(1)₽	11↩	12↩
(871CH)≓		Page Table M⊖	1(2)₽	8↩	13↩
			1⊖	3↩	6↩
			1(0)⊖	0←	5₽
13197⊬	3 H ↩	TLB H↩	1(1)⊖	11↩	12↩
(338DH)≓			1(2)₽	8←	13↩
			1(3)₽	3↩	6↩
			1(0)∈	0←	5←
4670⊬	1₩	TLB M⊬	1(1)≓	11↩	12₽
(123EH)⊖		Page Table H⊖	1(2)₽	8←	13↩
			1(3)₽	3↩	6↩
			1(4)₽	1↩	0←
49225⊬	CH←	TLB M⊬	1(5)₽	12↩	14€
(C049H)⊖		Page Table M⊖	1(2)₽	8←	13↩
			1(3)₽	3↩	6↩
			1(4)⊖	1ċ	0←
12608⊬	3H↩	TLB H↩	1(5)₽	12↩	14€
(3140H)⊖			1(2)₽	8←	13↩
			1(6)₽	3↩	6↩
			1(4)⊖	1⊖	0←

• 最终的页表如下:

表 6-11 初始的 TLB 表

Valid⊖	Tag⊖	Physical Page Number⊖
1⊖	11↩	12₽
1⊖	7↩	4⊖
1₽	3↩	6↩
0←	4⊖	947

ę.

表 6-12 初始的页表 (Page table) ↔

Index⊖	Valid⊖	Physical Page or in Disk∉
0←	1€	5₽
1⊖	0←	Disk⊖
2↩	0←	Disk⊕
3₽	1€	6↩
4←	1€	9₽
5↩	1€	114
6↩	0←	Disk⊕
7↩	1€	4←
8←	0←	13₽
9←	0←	Disk⊕
10€	1€	3₽
11↩	1ċ	12년
12↩	1€	144