Zaawansowane zagadnienia systemów rekomendacyjnych

Michał Maternik, Kacper Raczy, Maksym Telepchuk

Dane

MovieLens 100K - zbiór danych z ocenami filmów (od 1 do 5)

Liczba użytkowników: 943

• Liczba filmów: 1682

• Liczba opinii: 100000

Mining Frequent Itemsets

- 1. Podejście z dziedziny Collaborative Filtering (CF)
- 2. Model-based
- 3. Działa na zbinaryzowanych macierzach rankingu
- 4. Idea: Im większe jest wsparcie elementu, tym większe jest prawdopodobieństwo, że ten element pojawi się w jakimś zestawie przedmiotów

Binary matrix

Table 1. Rating matrix table

	Item 1	Item 2	Item 3	Item 4
User 1	3	5	2	1
User 2	3	5	2	1
User 3	1	5	4	

Table 2. Bit rating matrix table

	User 1	User 2	User 3
Item_1_1	0	0	1
Item_1_3	1	1	0
Item_2_5	1	1	1
Item_3_2	1	1	0
Item_3_4	0	0	1
Item_4_1	1	1	0

Łatwe porównanie wektorów

Binary matrix

Table 1. Rating matrix table

	Item 1	Item 2	Item 3	Item 4
User 1	3	5	2	1
User 2	3	5	2	1
User 3	1	5	4	

Table 2. Bit rating matrix table

	User 1	User 2	User 3
Item_1_1	0	0	1
Item_1_3	1	1	0
Item_2_5	1	1	1
Item_3_2	1	1	0
Item_3_4	0	0	1
Item_4_1	1	1	0

Łatwe porównanie wektorów Problem: przy dużej ilości wektorów algorytm jest wolny

Reguly asocjacyjne

- Zbinaryzowaną macież nazywamy ścianą.
- Na ścianie wszystkie elementy są pokazane w kolejności malejącej według wartości wsparcia (support)
- Posiadamy wałek, którym jedziemy po ścianie, od pozycji do pozycji, w kolejności malejącej.
- Jeśli zostanie znaleziony przedmiot spełniający minimalne wsparcie (support), jest dodawany do częstego zestawu przedmiotów (frequent itemset), a zadanie miningu jest kontynuowane, aż nie ma elementu, który spełnia minimalne wsparcie.
- Wszystkie przedmioty z tego częstego zestawu przedmiotów zostaną usunięte ze ściany, oraz mining zaczyna się od nowa aż na ścianie nie zostanie się żadnego przedmiotu.

Przykład

U1	U2	U3
0	0	1
1	1	0
1	1	1
1	1	0
0	0	1
1	1	0
	0 1 1 1 0	0 0 1 1 1 1 1 1 0 0

	U1	U2	U3
I ₁₃	1	1	0
I ₄₁	1	1	0
I ₃₂	1	1	0

$$p(s_i) = null$$

$$s_i = \{\}$$

$$S = \{\}$$

$$p(s_i) = 111$$

 $s_i = \{l_{25}\}$
 $S = \{\}$

Przykład

	U1	U2	U3
I ₁₃	1	1	0
l ₄₁	1	1	0
I ₃₂	1	1	0

$$p(s_i) = 111$$

 $s_i = \{l_{25}\}$
 $S = \{\}$

$$p(s_i) = 110$$

 $s_i = \{l_{25}, l_{13}\}$
 $S = \{\}$

$$p(s_i) = 110$$

 $s_i = \{l_{25}, l_{13}, l_{41}\}$
 $S = \{\}$

Wyniki - Frequent Itemset Mining

	MAE CV 5	Fit time	Test time
SVD	0.7392∓0.002	4.54∓0.02	0.22∓0.08
Random	1.2202∓0.004	0.14∓0.01	0.21∓0.09
Frequent Itemset Mining	1.6007∓0.04	27.54∓1.56	0.008∓0.0002
Improved FIM	1.4074	1096	0.01

Pseudokod

```
B = bit_transform(D)
S = mining_frequent_itemset(B)
matched_itemset = null
max_count = -1
For each s ∈ S
   bs = bitset(u) AND bitset(s)
   If bs = bitset(u) && count(bs) > max_count then
        matched_itemset = s
        max_count = count(bs)
   End If
End For
r_item = bitset(matched_itemset) AND (NOT bitset(u))
```

```
0 = sort(I)
i = 1
While (true)
  c = first(0)
  s_i = s_i \cup \{c\}
  0 = 0 / \{c\}
  If 0 = \emptyset then return S
  While (true)
     If c = last(0) then
        S = S U S
        0 = 0 / S
       i = i + 1
       break
     Else
        c = next(0, c)
        If support(c) < min_sup continue</pre>
        b = bitset(S) AND bitset(c)
        If count(b) ≥ min_sup then
          s_i = s_i \cup \{c\}
        End If
     End If
  End While
End While
```

Partitioning clustering

- Podejście typu collaborative filtering
- Użytkownicy i obiekty (filmy) przyporządkowywane do klastrów
- Swoboda w doborze metody klastrowania:
 - **K-means**
 - K-way
 - Bisecting K-means

S. Merugu and T. George, "A Scalable Collaborative Filtering Framework Based on Co-Clustering," in Proceedings. Fifth IEEE International Conference on Data Mining, Houston, TX, 2005 pp. 625-628.

Co-clustering

- Użytkownicy i obiekty (filmy) przyporządkowywane do klastrów C_u, C_i oraz C_ui
- Predykcja uzyskiwana jako:

$$\hat{r}_{ui} = \overline{C_{ui}} + (\mu_u - \overline{C_u}) + (\mu_i - \overline{C_i}),$$

S. Merugu and T. George, "A Scalable Collaborative Filtering Framework Based on Co-Clustering," in Proceedings. Fifth IEEE International Conference on Data Mining, Houston, TX, 2005 pp. 625-628.

Co-Clustering - Wyniki

	MAE CV 5	Fit time	Test time
Co-Clustering	0.7590 ∓0.005	2.26 ∓0.06	0.16 ∓0.05
KNN (cosine)	0.7413∓0.005	1.64∓0.03	4.45∓0.06
SVD	0.7392∓0.002	4.54∓0.02	0.22∓0.08
Random	1.2202∓0.004	0.14∓0.01	0.21∓0.09

Co-Clustering - Wpływ zmian hiperparametrów

	Liczba klastrów	MAE CV 5	Fit time	Test time
Co-Clustering	3	0.7561∓0.005	2.26 ∓0.06	0.21∓0.07
Co-Clustering	5	0.7585∓0.005	2.85 ∓0.06	0.23∓0.06
Co-Clustering	7	0.7624∓0.006	3.18 ∓0.04	0.25∓0.08
Co-Clustering	11	0.7658∓0.004	3.85 ∓0.06	0.22∓0.09

Co-clustering - Podsumowanie

Zalety podejścia:

- Skuteczność porównywalna z metodami opartymi na faktoryzacji macierzy
- Znacznie niższy koszt obliczeniowy
- Możliwość przeprowadzania przyrostowych aktualizacji modelu

Wady:

- Porównywalna, ale jednak gorsza od SVD skuteczność
 - S. Merugu and T. George, "A Scalable Collaborative Filtering Framework Based on Co-Clustering," in Proceedings. Fifth IEEE International Conference on Data Mining, Houston, TX, 2005 pp. 625-628.

SlopeOne

Predykcja uzyskiwana jako:

$$\hat{r}_{ui} = \mu_u + rac{1}{|R_i(u)|} \sum_{j \in R_i(u)} \operatorname{dev}(i,j),$$

gdzie: R_i(u),

$$\operatorname{dev}(i,j) = rac{1}{|U_{ij}|} \sum_{u \in U_{ij}} r_{ui} - r_{uj}$$

Lemire, D., & Maclachlan, A. (2005). Slope One Predictors for Online Rating-Based Collaborative Filtering. SDM.

Embedding & NN

- input: (user id, movie id)
- output: rating
- loss: MSE, optimizer: Adam(Ir=0.001)
- wymiar osadzeń: 50
- regularyzacja L2 na macierzach osadzeń + dropout na jednostkach FC

Embedding & NN - podejście hybrydowe

- Dla każdego filmu pobrano zarys fabuły z imdb.com
- Teksty osadzono na word2vec
- Konkatenacja wektora osadzenia obiektu z embeddings ID user i obiekt

Embedding & NN - wyniki

Method	MAE Train-Test (30%)
KNN (Pearson)	0.7338
SVD	0.7420
SVD++	0.7239
Embedding + NN	0.6711
Embedding + content + NN	0.6687

Dziękujemy

