In	divide and conquer strategy, the	e main problem and sub-probler	ns must be of nature.	
	Same	Different	Opposite	None of the above
2.	What can be done using divid	e and conquer strategy?		
	Merge sort	Binary search	Quick sort	All of the above
3.	How do we find the mid in bin	nary search?		
	Mid = ceil [(I + h)/2]	Mid = floor [(I + h)/2]	Mid = square [(I + h)/ 2]	None of the above
4.	The worst case time complexi	ty of binary search is		
	O(1)	O(log n)	O(n)	O(n log n)
5.	The best case time complexity	of binary search is		
	O(1)	O(log n)	O(n)	O(n log n)
6.	The process of merge sort is b	pased upon		
	Divide and conquer strategy	Dynamic programming	Greedy approach	None of the above
7.	The time complexity of merge	e sort is		
	O (n)	O (1)	O (log n)	O (n log n)
8.	Traversing of elements in mer	ge sort is done in		
	Preorder	Postorder	Inorder	None of the above
9.	In merge sort, the time function	on T(n) using recurrence relation	when $n = 1$ is	
	0	•	-1	None of the above
10	In merge sort, the list is cons	sidered as small, when it is having	ng element.	
	0	1	2	3
11	The idea behind the quick so right side of pivot must be	ort is, the elements on the left sid	le of pivot must be and t	the elements on the
	Greater, smaller	Smaller, greater	Smaller, smaller	Greater, greater
12	The time complexity of quic	k sort is		

2*i	2*i+1	3*i	3*i+1
5 In a hinary tree if	the node is at index i, then the p	parent of that node will be at	
. III a billary liee, ii	е помене и и помене, и помене р		