Assignment A2a: Signal Detection Please follow the General Assignment Guidelines document on canvas under the Pages for completing this assign Overview	Inment. When you have completed the assignment, please follow the Submission Instructions.
This assignment focuses on detecting simple signals in noise. Readings The following material provides both background and additional context. It linked in the Canvas page for this assignment focuses on detection, sections 5-1 and 5-2.	gnment.
 Learning objectives write code to generate random signals use vector operations and logical indexing to concisely express computational ideas measure different types of detection errors characterize different types of error profiles with ROC curves 	
<pre># import necessary packages import numpy as np import math from mathlotlih import pyplot as nlt</pre>	
	ation of a sparsely occurring events and additive Gaussian noise. Here, we assume the events are fixed amplitude impulses that occur within a single sample. The observed waveform, therefore, is a li
an event occurring within a sample. Assume the events are independent. The function should return a tuple of the Plot the generated waveform samples and display the location of the events with markers. (Comment on terminology: The term "signal" can refer either to an individual event or the collection of events as a itself cannot be observed directly, only inferred. The term "underlying signal" is often used to emphasize the compared.	a whole. The waveform is the signal plus the noise. Note that "signal" is sometimes used loosely to refer to the observed waveform, rather than the waveform without the noise. This is because the sign
<pre>def genwaveform(N:int=100, alpha:float=0.1, A:float=1, sigma:float=0.1): # first generate the events occuring E = np.random.binomial(1, alpha, N) # generate y-values based on events with noise and return return np.array([0 + np.random.normal(0, sigma) if e == 0 else A + np.random.normal(0, def plot_waveform(W:np.array, E:np.array=None): # generate time values</pre>	, sigma) for e in E]), E
<pre>T = np.array(range(0, len(W))) # isolate markers to mark sigmal if E is not None: # get indices of signal E_sig = [i for i in range(len(E)) if E[i] == 1] # plot markers plt.scatter(T[E_sig], W[E_sig], marker="v", color="r")</pre>	
<pre># plot plt.plot(T, W) plt.xlabel("Time") plt.ylabel("Amplitude") plt.title("Generated wave based on event probability") plt.show() # test plot - if you pass the events, you also get markers where signal is W, E = genwaveform(N=100, alpha=0.1, A=1, sigma=0.25)</pre>	
Generated wave based on event probability 1.5 - 1.0 -	
Amplitude O.5 -	
0.0 -	
1b. Signals in uniform noise	ere we will use Gaussian and uniform . For uniform noise, we again assume zero mean. The σ parameter should be interpreted as the width of the uniform distribution with range $[-\sigma/2,\sigma/2)$.
<pre>def genwaveform(N:int=100, alpha:float=0.1, A:float=1, sigma:float=0.1, noisetype:str="gau # first generate the events occuring E = np.random.binomial(1, alpha, N) # generate y-values based on events with noise and return if noisetype == "uniform": return np.array([0 + np.random.uniform(-sigma/2, sigma/2) if e == 0 else A + np.ra else:</pre>	
<pre>return np.array([0 + np.random.normal(0, sigma) if e == 0 else A + np.random.normal # test the new function with a noisetype = uniform W, E = genwaveform(N=100, alpha=0.1, A=1, sigma=0.25, noisetype="uniform") plot_waveform(W, E)</pre> Generated wave based on event probability	al(0, sigma) for e in E]), E
1.0 - 0.8 - <u>u</u> 0.6 -	
9 0.6 - 0.4 - 0.2 -	
0.0 - W W W W W W W W W W W W W W W W W W	
For a discrete waveform, the observed sample at time t is $y[t]$. For additive noise, this is the sum of the signal $x[t]$. Note we have used square brackets to indicate that the functions are a discrete. The discrete delta-function	$y[t]$ and the noise $\epsilon[t]$ $y[t] = x[t] + \epsilon[t]$
is commonly used is to express the occurrence of a unit impulse at sample $ au$: i.e. a discrete function that is zero everywhere except at $t= au$, where it has a value of one.	$\delta[t] = egin{cases} 1 & t = 0 \ 0 & t eq 0 \ , \end{cases}$ $\delta[t- au]$
	ite an expression to indicate that the noise $\epsilon[t]$ is distributed according to a Normal with mean μ and variance σ^2 . $x[t] = \sum_i^N A * \tau_i$
Additionally, the expression to indicate that noise is gaussian can be written as: 1d. Conditional probability	$\epsilon[t] = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x[t]-\mu)^2}{2\sigma^2}}$
What is the expression for the probability distribution of the waveform at time t given that there is a signal? Given that there is a signal at time t , the waveform at time t can be expressed as the amplitude plus the error. Sin	$p(y(t) signal) = A + \epsilon$
2. Signal detection2a. Effect of parameters on detection probability	$p(y(t) signal) = A + rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x t -\mu)^2}{2\sigma^2}}$
There are two basic principles that tie into signal recognition. Firstly, the larger the amplitude relative to the baseling be to detect the signal compared to what is noise. See the plots below, which demonstrate these differences. Larger than the define parameters # define parameters A = [5, 1]	bability reduce to pure chance? Or become certain (i.e. approach 1)? Explain your reasoning and illustrate with plots. ine, the easier it is to separate what is the baseline from what is signal. Secondly, the standard deviation of the noise makes a big difference because the larger the standard deviation, the more difficult A , small A , large σ , small σ . Notice that all of these parameters depend on how they are relative to the other, ie. how large the amplitude is relative to the standard deviation of noise.
<pre>S = [5, 1] # generate plots with different parameters fig, ax = plt.subplots(2, 2) # loop to generate values and plot for i in range(len(A)): for j in range(len(S)): T = np.array(range(0, len(W))) W, E = genwaveform(N=100, A=A[i], sigma=S[j], alpha=0.05)</pre>	
<pre>E_sig = [i for i in range(len(E)) if E[i] == 1] ax[i,j].plot(T, W) ax[i,j].scatter(T[E_sig], W[E_sig], marker="v", color="r") # set axes for a in ax.flat: a.set(xlabel="Time", ylabel="Amplitude")</pre> 15	
10 - pn	
0 25 50 75 100 0 25 50 75 100 10 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Notice that in only one of the plots above, the signal is fairly easy to distinguish from the noise. This is the ideal co	ondition where signal amplitude is larger than sigma. The other plots contain suboptimal conditions: large amplitude, large sigma; small amplitude, large sigma; small amplitude, small sigma.
2b. Types of detections and detection errors Write a function detectioncounts(si, y, θ) which given an array y, signal index si, and threshold θ Write a function that plots the samples and threshold and shows the true positives, false negatives, and false positive def detectioncounts(Si:np.array, Y:np.array, threshold:float): # find indices where signal >= threshold	, returns a named tuple (tp, fn, fp, tn) of the counts of the true positives, false negatives, false positives, and true negatives.
<pre>Se = np.array([1 if y >= threshold else 0 for y in Y]) # calculate tp, fn, fp, tn tp = np.sum(np.logical_and(Se == 1, Si == 1)) fn = np.sum(np.logical_and(Se == 0, Si == 1)) fp = np.sum(np.logical_and(Se == 1, Si == 0)) tn = np.sum(np.logical_and(Se == 0, Si == 0)) # return</pre>	
<pre>return (tp, fn, fp, tn) def plot_detectioncounts(Si:np.array, Y:np.array, threshold:float=0.8): # generate x-values T = np.array(range(0, len(Y))) # plot the easy stuff (Y and threshold) plt.plot(T, Y, label="waveform") plt.plot(T, [threshold for i in range(len(Y))], label="threshold")</pre>	
<pre>plt.xlabel("Time") plt.ylabel("Amplitude") plt.title("Threshold-based Signal Detection") # find indices of tp, fp, fn Se = np.array([1 if y >= threshold else 0 for y in Y]) tp = [i for i in range(len(Y)) if Se[i] == 1 and Si[i] == 1] fp = [i for i in range(len(Y)) if Se[i] == 1 and Si[i] == 0] fn = [i for i in range(len(Y)) if Se[i] == 0 and Si[i] == 1]</pre>	
<pre># plot tp, fp, fn plt.scatter(T[tp], Y[tp], marker="v", color="red", label="true positive") plt.scatter(T[fp], Y[fp], marker="^", color="green", label="false positive") plt.scatter(T[fn], Y[fn], marker="o", color="blue", label="false negative") # add legend plt.legend()</pre>	
<pre>plt.show() W, E = genwaveform(sigma=0.5) plot_detectioncounts(Si=E, Y=W, threshold=0.75) Threshold-based Signal Detection 2.0 - waveform threshold</pre>	
true positive false positive false negative	
0.5 - 0.00.5 -	
2c. Detection probabilities	
$p({ m false\ positiv})$	false positive? What is it for a false negative? (Note that these are conditioned on the signal being absent or present, respectively.) $ive) = p(\text{signal detected} \text{signal absent}) = 1 - \int_{\theta}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x[t]-\mu)^2}{2\sigma^2}} dy = 1 - \frac{1}{2}[1 + \text{erf}(\frac{\theta-\mu}{\sigma\sqrt{2}})]$ $gative) = p(\text{signal missed} \text{signal present}) = \int_{\theta}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-A)^2}{2\sigma^2}} dy = 1 - \frac{1}{2}[1 + \text{erf}(\frac{\theta-A}{\sigma\sqrt{2}})]$
	st argument should be the threshold θ , the rest of the arguments should be keyword arguments that follow those of genwaveform but without unnecessary parameters.
	imate these from the distribution parameters and detection threshold? Show that your empirical results are consistent with those calculated analytically. generated. In order for us to be confident in the probabilistic estimate, our real example should be close to what is estimated by probability. We can see the results below:
<pre>tp, fin, fp, th = detectioncounts(E, w, 0.8) fpr = fp/(fp+tn) fnr = fn/(tp+fn) # print the comparisons print(f"probabilistic fnr: {falseneg(threshold=0.8, sigma=2.0, A=1)}") print(f"tested fnr: {fnr}") print(f"probabilistic fpr: {falsepos(threshold=0.8, sigma=2.0)}") print(f"tested fpr: {fpr}") probabilistic fnr: 0.460172162722971</pre>	
probabilistic fnr: 0.460172162722971 tested fnr: 0.46551554020720276 probabilistic fpr: 0.3445782583896758 tested fpr: 0.3450620375006955 As can be seen from the tests above, the probabilistic and tested fnr and fpr are withing 1% of each other, sugges 3. ROC cures	sting they are good estimates for the true values generated.
3a. Threshold considerations Explain why, in general, there is not an optimal value for the threshold. What value minimizes the total error probable optimal suggests there is a specific value at which the error is minimized. This is not the case for signal detection	because there will always be some values which are detected while others are not. In some cases signal should not be detected. There is always a trade off between error rates.
Minimizing the total error probability means that the threshold value should minimize the false negative and false particles. The probability of error and the number of errors are fundamentelly different, but are both affected by the threshold should be a function plotroc to plot the ROC curve using the functions above. It should use a similar parameter contains the functions above.	ld in their own ways.
<pre>Write a function plotROC to plot the ROC curve using the functions above. It should use a similar parameter condended by the should manufacture of the should manufacture</pre>	
<pre># calc min errors min_index = np.argmin((1-alpha) * FP + alpha * (1-TP)) # plot the ROC curve plt.plot(FP, TP) plt.scatter(FP[min_index], TP[min_index], marker='v') plt.annotate(text=f"\$\Theta\$={round(T[min_index], 3)} - minimum error", xy=(FP[min_index]) plt.title("ROC Curve")</pre>	dex]+0.05, TP[min_index]))
<pre>plt.title("ROC Curve") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.show() plotROC(-5, 5, 0.5, 0.85, 1)</pre> ROC Curve	
1.0 - 0.8 - Θ=0.5 - minimum error	
0.6 - 9.11/4 - 0.2 -	
0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate	
 can expect conceptual questions from the readings and lectures questions from the assignment 	mit your draft version, take the self check quiz. This will give you feedback so you can make corrections and revisions before you submit your final version. Here are examples of the types of questio
 plot waveforms of signals in Gaussian and uniform noise using specified parameters plot examples that have high and low SNR question that use reference data ("A2a-testdata.h5" in "Files/assignment files" on Canvas) Submission Instructions	
Submission Instructions Please refer to the Assignment Submission Instructions on canvas under the Pages tab.	