Solutions to Homework No. 1 in Quantum Field Theory 2

Jacob Shapiro

March 1, 2014

Exercise 1–Free Particle Propagator

(a)

- Claim: $\int_{\mathbb{R}} dx \, e^{-ax^2} = \sqrt{\frac{\pi}{a}}$
- Proof:
 - Define $I := \int_{\mathbb{R}} dx \, e^{-ax^2}$
 - Then $I^2 = \left(\int_{\mathbb{R}} dx \, e^{-ax^2} \right)^2 = \left(\int_{\mathbb{R}} dx \, e^{-ax^2} \right) \left(\int_{\mathbb{R}} dy \, e^{-ay^2} \right) = \int_{\mathbb{R}^2} dx dy e^{-a(x^2 + y^2)}$

– Move to polar coordinates:
$$I^2 = \int_{\mathbb{R}^2} r dr d\theta e^{-ar^2} = \left(\int_{[0, 2\pi]} d\theta \right) \left(\int_{[0, \infty)} r dr e^{-ar^2} \right) = 2\pi \left(\int_{[0, \infty)} r dr e^{-ar^2} \right)$$

– Make the change of variable $ar^2 \mapsto \rho$:

Make the change of variable
$$ar \mapsto \rho$$
:
$$I^{2} = 2\pi \int_{[0,\infty)} \frac{d\rho}{2a} e^{-\rho} = \frac{\pi}{a} \int_{[0,\infty)} d\rho e^{-\rho} = \frac{\pi}{a} \left(-e^{-\rho}|_{\rho \to \infty} - \left(-e^{-\rho}|_{\rho = 0} \right) \right) = \frac{\pi}{a} \left(0 + 1 \right) = \frac{\pi}{a}$$

– Thus we find that $I = \pm \sqrt{\frac{\pi}{a}}$, but because $\exp(\mathbb{R}) \subseteq [0, \infty], I \geq 0$ and so $I = \sqrt{\frac{\pi}{a}}$.

(b)

Assume that $a \in \mathbb{C}$ is such that $\frac{a-a^*}{2i} > 0$, that is, a's imaginary part is strictly positive.

- Claim: $\int_{\mathbb{R}} dx \, e^{iax^2 + ikx} = \sqrt{\frac{i\pi}{a}} e^{-\frac{ik^2}{4a}}$
- Proof:
 - Claim: $\int_{\mathbb{R}} dx \, e^{iax^2} = \sqrt{\frac{\pi i}{a}}$
 - Proof:

Despite the hint we follow a similar approach to part (a):

- * Define $I := \int_{\mathbb{R}} dx \, e^{iax^2}$
- * Then $I^2 = \left(\int_{\mathbb{R}} dx \, e^{iax^2} \right)^2 = \int_{\mathbb{R}} dx \, e^{iax^2} \int_{\mathbb{R}} dy \, e^{iay^2}$ Fubini's Theorem $\int_{\mathbb{R}^2} dx dy e^{ia(x^2+y^2)}$

* Moving again to polar coordinates we obtain:
$$I^2 = \int_0^{2\pi} d\theta \int_0^{\infty} dr r e^{iar^2} = 2\pi \left[\frac{e^{iar^2}}{2ia} \right]_0^{\infty} = -\frac{\pi i}{a} \left[\lim_{r \to \infty} e^{iar^2} - 1 \right]$$

- · Claim: $\lim_{r\to\infty} e^{iar^2} = 0$
- Proof:

Since a has a positive imaginary part, we may write it without loss of generality as $a = \alpha + i\beta^2$ where $\{\alpha, \beta\} \subset \mathbb{R}$.

Thus we get $\left|\lim_{r\to\infty}e^{iar^2}\right| = \left|\lim_{r\to\infty}e^{i(\alpha+i\beta^2)r^2}\right| = \left|\lim_{r\to\infty}e^{i\alpha r^2}e^{-\beta^2r^2}\right| \le$ $\lim_{r \to \infty} e^{-\beta^2 r^2} = 0$

- * Thus $I^2 = \frac{\pi i}{2}$.
- * We thus find that $I = \pm \sqrt{\frac{\pi i}{a}}$. We reject the minus solution because $\exp(\mathbb{C}) \subseteq \mathbb{H}$.
- Going back to the original integral, $\int_{\mathbb{R}} dx \, e^{iax^2 + ikx}$, we complete the

$$iax^{2} + ikx = i\left(ax^{2} + kx\right) = i\left[ax^{2} + 2\sqrt{a}x\frac{1}{2\sqrt{a}}k + \left(\frac{1}{2\sqrt{a}}k\right)^{2} - \left(\frac{1}{2\sqrt{a}}k\right)^{2}\right] = i\left[\left(\sqrt{a}x + \frac{1}{2\sqrt{a}}k\right)^{2} - \left(\frac{1}{2\sqrt{a}}k\right)^{2}\right] = i\left(\sqrt{a}x + \frac{k}{2\sqrt{a}}\right)^{2} - \frac{ik^{2}}{4a}$$

$$\int_{\mathbb{R}} dx \, e^{iax^2 + ikx} = \int_{\mathbb{R}} dx \, e^{i\left(\sqrt{a}x + \frac{k}{2\sqrt{a}}\right)^2 - \frac{ik^2}{4a}} = e^{-\frac{ik^2}{4a}} \int_{\mathbb{R}} dx \, e^{ia\left(x + \frac{k}{2a}\right)^2}$$

– We make a change of variable $x + \frac{k}{2a} \mapsto \rho$ to get:

$$\int_{\mathbb{R}} dx \, e^{iax^2 + ikx}$$
 using the previous result $e^{-\frac{ik^2}{4a}} \sqrt{\frac{\pi i}{a}}$.

(c)

• Claim: The free particle propagator, which is given by:

$$K(x, x'; t - t') = \sqrt{\frac{m}{2\pi i\hbar (t - t')}} \exp\left[\frac{im (x - x')^2}{2\hbar (t - t')}\right]$$
 (1)

satisfies the completeness relation

$$K(x_b, x_a; t_b - t_a) = \int_{\mathbb{R}} dx \, \langle x_b, t_b \, | \, x, t \rangle \, \langle x, t \, | \, x_a, t_a \rangle \tag{2}$$

for all $t \in (t_a, t_b)$.

• Proof:

- 1. Let $t \in (t_a, t_b)$ be given.
- 2. $\int_{\mathbb{R}} dx \left\langle x_b, t_b \mid x, t \right\rangle \left\langle x, t \mid x_a, t_a \right\rangle = \int_{\mathbb{R}} dx K \left(x_b, x; t_b t \right) K \left(x, x_a; t t_a \right) = \int_{\mathbb{R}} dx \sqrt{\frac{m}{2\pi i \hbar (t_b t)}} \exp \left[\frac{i m (x_b x)^2}{2\hbar (t_b t)} \right] \sqrt{\frac{m}{2\pi i \hbar (t t_a)}} \exp \left[\frac{i m (x x_a)^2}{2\hbar (t_b t)} \right] =$
- 3. $=\frac{m}{2\pi i\hbar}\sqrt{\frac{1}{(t_h-t)(t-t_a)}}\int_{\mathbb{R}} dx \exp\left\{\frac{im}{2\hbar}\left[\frac{(x_h-x)^2}{t_h-t}+\frac{(x-x_a)^2}{t-t_a}\right]\right\}=$
 - (a) Rearrange $\frac{(x_b x)^2}{t_b t} + \frac{(x x_a)^2}{t t_a}:$ $\frac{(x_b x)^2}{t_b t} + \frac{(x x_a)^2}{t t_a} = \frac{t_b t_a}{(t_b t)(t t_a)} x^2 + \frac{-2[x_b(t t_a) + x_a(t_b t)]}{(t_b t)(t t_a)} x + \frac{(t t_a)x_b^2 + (t_b t)x_a^2}{(t_b t)(t t_a)}$
- Frigging this in we get: $= \frac{m}{2\pi i \hbar} \sqrt{\frac{1}{(t_b t)(t t_a)}} \exp\left\{ \frac{im}{2\hbar (t_b t)(t t_a)} \left[(t t_a) x_b^2 + (t_b t) x_a^2 \right] \right\}$ $\times \int_{\mathbb{R}} dx \exp\left\{ i \frac{m(t_b t_a)}{2\hbar (t_b t)(t t_a)} x^2 + i \frac{-2m[x_b(t t_a) + x_a(t_b t)]}{2\hbar (t_b t)(t t_a)} x \right\} =$
- 5. Add a small positive imaginary part to $\frac{m(t_b-t_a)}{2\bar{h}(t_b-t)(t_b-t_a)}$ to be able to use our earlier results (it is valid to take $\lim_{\varepsilon \to 0}$ out of the integral using the Lebesgue dominated convergence theorem):

$$= \lim_{\varepsilon \to 0} \frac{m}{2\pi i \hbar} \sqrt{\frac{1}{(t_b - t)(t - t_a)}} \exp\left\{\frac{im}{2\hbar (t_b - t)(t - t_a)} \left[(t - t_a) x_b^2 + (t_b - t) x_a^2 \right] \right\} \times \int_{\mathbb{R}} dx \exp\left\{ i \left[\frac{m(t_b - t_a)}{2\hbar (t_b - t)(t - t_a)} + i\varepsilon^2 \right] x^2 + i \frac{-2m[x_b(t - t_a) + x_a(t_b - t)]}{2\hbar (t_b - t)(t - t_a)} x \right\} =$$

6. Use our earlier result for the integral:

$$= \lim_{\varepsilon \to 0} \frac{1}{2\pi i \hbar} \sqrt{\frac{1}{(t_b - t)(t - t_a)}} \exp\left\{ \frac{im}{2\overline{h}(t_b - t)(t - t_a)} \left[(t - t_a) x_b^2 + (t_b - t) x_a^2 \right] \right\}$$

$$\times \sqrt{\frac{i\pi}{\left[\frac{m(t_b - t_a)}{\overline{\pi}(t_b - t)(t - t_a)} + i\varepsilon^2\right]}} exp\left\{ \frac{-i\left[\frac{-2m\left[x_b(t - t_a) + x_a(t_b - t)\right]}{\overline{\pi}(t_b - t)(t - t_a)}\right]^2}{4\left[\frac{m(t_b - t_a)}{\overline{\pi}(t_b - t)(t - t_a)} + i\varepsilon^2\right]} \right\} =$$

7. Take the $\varepsilon \to 0$ limit because all involved functions are continuous: $= \frac{m}{2\pi i \hbar} \sqrt{\frac{1}{(t_b - t)(t - t_a)}} \exp\left\{\frac{im}{2\hbar (t_b - t)(t - t_a)} \left[(t - t_a) x_b^2 + (t_b - t) x_a^2 \right] \right\}$ $\times \sqrt{\frac{i\pi}{\left[\frac{m(t_b - t_a)}{2\pi (t_b - t)(t - t_a)}\right]}} \exp\left\{\frac{-i\left[\frac{-2m\left[x_b(t - t_a) + x_a(t_b - t)\right]}{2\pi (t_b - t)(t - t_a)}\right]^2}{4\left[\frac{m(t_b - t_a)}{2\pi (t_b - t)(t - t_a)}\right]} \right\} =$

$$\times \sqrt{\frac{i\pi}{\left[\frac{m(t_b-t_a)}{\Re(t_b-t)(t-t_a)}\right]}} \exp \left\{ \frac{-i\left[\frac{-2m\left[x_b(t-t_a)+x_a(t_b-t)\right]}{\Re(t_b-t)(t-t_a)}\right]^2}{4\left[\frac{m(t_b-t_a)}{\Re(t_b-t)(t-t_a)}\right]} \right\} =$$

$$= \sqrt{\frac{m}{2\pi i \hbar (t_b - t_a)}} \exp\left[\frac{i m (x_b - x_b)^2}{2\hbar (t_b - t_a)}\right]$$

Exercise 2–Free Particle Wave Function

- The free particle wave function at time t=0 is $\psi\left(x\right)=\frac{e^{\int_{t}^{t}px}}{\sqrt{2-k}}$
- According to our prescription, its value at later times t>0 is given by $\psi\left(x,\,t\right)=\int_{\mathbb{R}}dx'K\left(x,\,x';\,t\right)\psi\left(x'\right) \text{ using the above } \int_{\mathbb{R}}dx'\sqrt{\frac{m}{2\pi i\hbar t}}e^{\frac{im\left(x-x'\right)^{2}}{2\hbar t}} \frac{e^{\frac{i}{\hbar}px'}}{\sqrt{2\pi\hbar}}=$
- $\bullet = \frac{1}{2\pi\hbar} \sqrt{\frac{m}{it}} \int_{\mathbb{D}} dx' e^{\frac{im(x-x')^2}{2\hbar t} + \frac{i}{\hbar} px'}$

- Next make the change of variables $x' x \mapsto \rho$: $= \frac{1}{2\pi\hbar} \sqrt{\frac{m}{it}} e^{\frac{i}{\hbar}px} \int_{\mathbb{R}} d\rho e^{\frac{im\rho^2}{2\hbar t} + \frac{i}{\hbar}p\rho} =$ $= \frac{1}{2\pi\hbar} \sqrt{\frac{m}{it}} e^{\frac{i}{\hbar}px} \int_{\mathbb{R}} d\rho \lim_{\varepsilon \to 0} e^{i\left(\frac{m}{2\hbar t} + i\varepsilon^2\right)\rho^2 + \frac{i}{\hbar}p\rho} =$ Convergence Theorem $= \frac{1}{2\pi\hbar} \sqrt{\frac{m}{it}} e^{\frac{i}{\hbar}px} \lim_{\varepsilon \to 0} \int_{\mathbb{R}} d\rho e^{i\left(\frac{m}{2\hbar t} + i\varepsilon^2\right)\rho^2 + \frac{i}{\hbar}p\rho} =$
- Use question 1 (b) to ascertain that: $\int_{\mathbb{R}} d\rho e^{i\left(\frac{m}{2\hbar i} + i\varepsilon^2\right)\rho^2 + \frac{i}{\hbar}p\rho} = \sqrt{\frac{i\pi}{\left(\frac{m}{2\hbar i} + i\varepsilon^2\right)}} e^{-\frac{i\left(p/\hbar\right)^2}{4\left(\frac{m}{2\hbar i} + i\varepsilon^2\right)}}$
- Thus we have $\psi(x,t) = \frac{1}{2\pi\hbar} \sqrt{\frac{m}{it}} e^{\frac{i}{\hbar}px} \lim_{\varepsilon \to 0} \sqrt{\frac{i\pi}{(\frac{m}{2\hbar t} + i\varepsilon^2)}} e^{-\frac{i(p/\hbar)^2}{4(\frac{m}{2\hbar t} + i\varepsilon^2)}} = \frac{1}{2\pi\hbar} \sqrt{\frac{m}{it}} e^{\frac{i}{\hbar}px} \sqrt{\frac{i\pi}{m/2\hbar t}} e^{-\frac{i(p/\hbar)^2}{4(m/2\hbar t)}} = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}px \frac{i}{\hbar} \frac{p^2}{2m}t}$
- This is exactly what you would find in Sakurai page 523 on equation B.1.1 (making the proper 3D to 1D transition), hence we are self consistent with old quantum mechanics.

Exercise 3–A Bit More on Propagators

We know that

$$K(x, x'; t - t') = \sum_{\beta} e^{-\frac{i}{\hbar} E_{\beta}(t - t')} \langle x \mid \beta \rangle \langle \beta \mid x' \rangle$$
 (3)

(a)

Let us compute K for a free particle:

• For a free particle, the energy eigenvalues are $\frac{p^2}{2m}$ where $p \in \mathbb{R}$ and so we have:

$$K(x, x'; t - t') = \int_{\mathbb{R}} dp \, e^{-\frac{i}{\hbar} \frac{p^2}{2m} (t - t')} \langle x | p \rangle \langle p | x' \rangle \tag{4}$$

- Plug in $\langle x | p \rangle = \frac{e^{\frac{i}{\hbar}px}}{\sqrt{2\pi\hbar}}$ and $\langle p | x \rangle = \frac{e^{-\frac{i}{\hbar}px}}{\sqrt{2\pi\hbar}}$: $K(x, x'; t - t') = \int_{\mathbb{R}} dp \, e^{-\frac{i}{\hbar}\frac{p^2}{2m}(t - t')} \frac{e^{\frac{i}{\hbar}px}}{\sqrt{2\pi\hbar}} \frac{e^{-\frac{i}{\hbar}px'}}{\sqrt{2\pi\hbar}} =$ $= \frac{1}{2\pi\hbar} \int_{\mathbb{R}} dp \, \exp\left\{+i\frac{(t'-t)}{2m\hbar}p^2 + i\frac{(x-x')}{\hbar}p\right\} =$ $= \frac{1}{2\pi\hbar} \int_{\mathbb{R}} dp \, \lim_{\varepsilon \to 0} \exp\left\{+i\left[\frac{(t'-t)}{2m\hbar} + i\varepsilon^2\right]p^2 + i\frac{(x-x')}{\hbar}p\right\} =$ $\stackrel{!}{=} \frac{1}{2\pi\hbar} \lim_{\varepsilon \to 0} \int_{\mathbb{R}} dp \, \exp\left\{+i\left[\frac{(t'-t)}{2m\hbar} + i\varepsilon^2\right]p^2 + i\frac{(x-x')}{\hbar}p\right\}$
- Now use the result of part 1. (b) with $a := \left[\frac{(t'-t)}{2m\hbar} + i\varepsilon^2\right]$ and $k = \frac{(x-x')}{\hbar}$ to get:

$$=\frac{1}{2\pi\hbar}\lim_{\varepsilon\to 0}\sqrt{\frac{\pi i}{\left[\frac{(t'-t)}{2m\hbar}+i\varepsilon^2\right]}}e^{-i\left[\frac{(x-x')}{\hbar}\right]^2\over 4\left[\frac{(t'-t)}{2m\hbar}+i\varepsilon^2\right]}=$$

$$=\frac{1}{2\pi\hbar}\sqrt{\frac{\pi i}{\frac{(t'-t)}{2m\hbar}}}e^{-i\left[\frac{(x-x')}{\hbar}\right]^2\over 4\frac{(t'-t)}{2m\hbar}}=$$

$$=\sqrt{\frac{m}{i(t-t')2\pi\hbar}}\exp\left\{\frac{im(x-x')^2}{2\hbar(t-t')}\right\}$$
which is precisely what we started with in 1. (c).

(b)

Let us compute K for a simple harmonic oscillator (Sakurai page 527):

• For a simple harmonic oscillator, the energy eigenvalues are $\hbar\omega$ $\left(n+\frac{1}{2}\right)$ where $n\in\mathbb{N}\cup\{0\}$ and so we have:

$$K\left(x,\,x';\,t-t'\right) = \sum_{n\in\mathbb{N}\cup\{0\}} e^{-\frac{i}{\hbar}\hbar\omega\left(n+\frac{1}{2}\right)\left(t-t'\right)} \left\langle x\,|\,n\right\rangle \left\langle n\,|\,x'\right\rangle \quad (5)$$

- Plug in $\langle x \, | \, n \rangle = \left[\frac{m\omega}{\pi \hbar 2^{2n} (n!)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{m\omega}{2\hbar} x^2 \right) H_n\left(\sqrt{\frac{m\omega}{\hbar}} x \right)$ where $H_n\left(\right)$ are the Hermite polynomials: $K\left(x, \, x'; \, t t' \right) = \sum_{n \in \mathbb{N} \cup \{0\}} e^{-\frac{i}{\hbar}\hbar\omega \left(n + \frac{1}{2} \right) \left(t t' \right)} \left[\frac{m\omega}{\pi \hbar 2^{2n} (n!)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{m\omega}{2\hbar} x^2 \right) H_n\left(\sqrt{\frac{m\omega}{\hbar}} x \right) \times \left[\left[\frac{m\omega}{\pi \hbar 2^{2n} (n!)^2} \right]^{\frac{1}{4}} \exp\left(-\frac{m\omega}{2\hbar} \left(x' \right)^2 \right) H_n\left(\sqrt{\frac{m\omega}{\hbar}} x' \right) \right]^*$
- Since the Hermite polynomials are real we obtain: $= \sqrt{\frac{m\omega}{\pi\hbar}} \exp\left[-\frac{m\omega}{2\hbar} \left(x^2 + (x')^2\right) \frac{i}{\hbar}\hbar\omega\frac{1}{2} \left(t t'\right)\right] \sum_{n \in \mathbb{N} \cup \{0\}} \frac{1}{n!} \left\{\frac{\exp\left[-\frac{i}{\hbar}\hbar\omega\left(t t'\right)\right]}{2}\right\}^n \times H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) H_n\left(\sqrt{\frac{m\omega}{\hbar}}x'\right)$
- $\bullet\ \exists$ a formula called "Mehler's Hermite Polynomial Formula" (from http://mathworld.wolfram.com/MehlersHermitePolynomialFormula.html) which stipulates:

$$\sum_{n \in \mathbb{N} \cup \{0\}} \frac{1}{n!} \left(\frac{w}{2}\right)^n H_n(x) H_n(y) = \sqrt{\frac{1}{1 - w^2}} \exp\left[\frac{2xyw - (x^2 + y^2)w^2}{1 - w^2}\right]$$
(6)

$$\begin{split} \bullet \text{ We employ this formula with } w &:= \exp\left[-\frac{i}{\hbar}\hbar\omega\left(t-t'\right)\right] \text{ to get:} \\ &= \sqrt{\frac{m\omega}{\pi\hbar}} \exp\left[-\frac{m\omega}{2\hbar}\left(x^2 + (x')^2\right) - \frac{i}{\hbar}\hbar\omega\frac{1}{2}\left(t-t'\right)\right] \sqrt{\frac{1}{1-\left\{\exp\left[-\frac{i}{\hbar}\hbar\omega(t-t')\right]\right\}^2}} \times \\ &\exp\left[\frac{2\sqrt{\frac{m\omega}{\hbar}}x\sqrt{\frac{m\omega}{\hbar}}x'\left\{\exp\left[-\frac{i}{\hbar}\hbar\omega(t-t')\right]\right\} - \left(\left[\sqrt{\frac{m\omega}{\hbar}}x\right]^2 + \left[\sqrt{\frac{m\omega}{\hbar}}x'\right]^2\right)\left\{\exp\left[-\frac{i}{\hbar}\hbar\omega(t-t')\right]\right\}^2}{1-\left\{\exp\left[-\frac{i}{\hbar}\hbar\omega(t-t')\right]\right\}^2} \right] \end{aligned}$$

 $=\sqrt{\frac{m\omega}{\pi\hbar}}\frac{1}{1-\exp\left[-2\frac{i}{\hbar}\hbar\omega(t-t')\right]}\exp\left[-\frac{m\omega}{2\hbar}\left(x^2+\left(x'\right)^2\right)-\frac{i}{\hbar}\hbar\omega\frac{1}{2}\left(t-t'\right)+\frac{2\frac{m\omega}{\hbar}xx'\exp\left[-\frac{i}{\hbar}\hbar\omega(t-t')\right]}{1-\exp\left[-2\frac{i}{\hbar}\hbar\omega(t-t')\right]}\right]$ which can probably be simplified further?

Exercise 4–Explicit Propagator Calculation

Let a Lagrangian be given as $L\left(x,\,\dot{x}\right):=\frac{1}{2}f\left(x\right)\dot{x}^{2}+g\left(x\right)\dot{x}-V\left(x\right)$

(a)

Let us calculate the Hamiltonian:

•
$$H \equiv p\dot{x} - L = p\dot{x} - \frac{1}{2}f(x)\dot{x}^2 - g(x)\dot{x} + V(x)$$

• $p \equiv \frac{\partial L}{\partial \dot{x}} = f(x)\dot{x} + g(x)$, thus $\dot{x} = \frac{p - g(x)}{f(x)}$. Plug this into the expression of H to get H in terms of p and x instead of \dot{x} and x: $H = p \frac{p - g(x)}{f(x)} - \frac{1}{2} f(x) \left[\frac{p - g(x)}{f(x)} \right]^{2} - g(x) \frac{p - g(x)}{f(x)} + V(x) =$ $=\frac{1}{2}\frac{[p-g(x)]^2}{f(x)}+V(x)$

(b)

Let us calculate the propagator for some time ε where we will eventually take the limit $\lim_{\varepsilon\to 0}$ and so during the calculation we shall ignore all orders above the linear order:

•
$$K(x, x'; \varepsilon) \equiv \langle x, \varepsilon \mid x', 0 \rangle \equiv \left\langle x \mid e^{-\frac{i}{\hbar}\hat{H}\varepsilon} \mid x' \right\rangle = \left\langle x \mid \sum_{n \in \mathbb{N} \cup \{0\}} \frac{1}{n!} \left(-\frac{i}{\hbar}\hat{H}\varepsilon \right)^n \mid x' \right\rangle = \left\langle x \mid \left(1 - \frac{i}{\hbar}\hat{H}\varepsilon \right) \mid x' \right\rangle + \mathcal{O}\left(\varepsilon^2\right)$$

• Insert
$$\mathbb{1} = \int_{\mathbb{R}} dp \ |p\rangle \langle p|$$
:
$$= \langle x| \left(1 - \frac{i}{\hbar} \hat{H} \varepsilon\right) \int_{\mathbb{R}} dp \ |p\rangle \langle p| \ |x'\rangle = \int_{\mathbb{R}} dp \ \langle x| \left(1 - \frac{i}{\hbar} \hat{H} \varepsilon\right) \ |p\rangle \langle p| \ x'\rangle$$

operators become numbers • Now, $\langle x | \hat{H} | p \rangle$ is easy to evaluate: $\langle x | \hat{H} | p \rangle = \langle x | \left(\frac{1}{2} \frac{[\hat{p} - g(\hat{x})]^2}{f(\hat{x})} + V(\hat{x}) \right) | p \rangle$
$$\begin{split} &\left(\frac{1}{2}\frac{[p-g(x)]^2}{f(x)} + V\left(x\right)\right)\langle x\mid p\rangle. \\ &\text{Plugging this in we get:} \\ &= \left[1 - \frac{i}{\hbar}\left(\frac{1}{2}\frac{[p-g(x)]^2}{f(x)} + V\left(x\right)\right)\varepsilon\right]\int_{\mathbb{R}}dp\,\langle x\mid p\rangle\,\langle p\mid x'\rangle = \end{split}$$

$$= \left[1 - \frac{i}{\hbar} \left(\frac{1}{2} \frac{[p - g(x)]^2}{f(x)} + V(x)\right) \varepsilon\right] \int_{\mathbb{R}} dp \left\langle x \mid p \right\rangle \left\langle p \mid x' \right\rangle =$$

$$= \exp\left\{-\frac{i}{\hbar} \varepsilon \left[\frac{1}{2} \frac{[p - g(x)]^2}{f(x)} + V(x)\right]\right\} \int_{\mathbb{R}} dp \frac{e^{\frac{i}{\hbar} px}}{\sqrt{2\pi\hbar}} \frac{e^{-\frac{i}{\hbar} px'}}{\sqrt{2\pi\hbar}} + \mathcal{O}\left(\varepsilon^2\right)$$

• Rearrange to arrive at: $= \frac{1}{2\pi\hbar} \int_{\mathbb{R}} dp \exp\left\{-\frac{i}{\hbar} \varepsilon \left[\frac{1}{2} \frac{[p-g(x)]^2}{f(x)} + V(x)\right] + \frac{i}{\hbar} p(x-x')\right\}$

$$\begin{split} \bullet & \text{ Make the change of variable } p - g\left(x\right) \mapsto p': \\ &= \frac{1}{2\pi\hbar} \int_{\mathbb{R}} dp' \exp\left\{-\frac{i}{\hbar}\varepsilon\left[\frac{1}{2}\frac{(p')^2}{f(x)} + V\left(x\right)\right] + \frac{i}{\hbar}\left(p' + g\left(x\right)\right)\left(x - x'\right)\right\} \\ &= \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \int_{\mathbb{R}} dp' \exp\left\{i\frac{-\varepsilon}{2\hbar f(x)}\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &= \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \int_{\mathbb{R}} dp' \lim_{\delta \to 0} \exp\left\{i\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &\stackrel{\square}{=} \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \int_{\mathbb{R}} dp' \exp\left\{i\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &\stackrel{\square}{=} \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \int_{\mathbb{R}} dp' \exp\left\{i\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &\stackrel{\square}{=} \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \int_{\mathbb{R}} dp' \exp\left\{i\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &\frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \int_{\mathbb{R}} dp' \exp\left\{i\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &\frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \int_{\mathbb{R}} dp' \exp\left\{i\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]\left(p'\right)^2 + i\frac{(x - x')}{\hbar}p'\right\} = \\ &\frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \int_{\mathbb{R}} dp' \exp\left\{-\frac{i}{\hbar}\left(x\right) + i\delta^2\right\right\} \left(x - x'\right) + i\frac{(x - x')}{\hbar}\left(x - x'\right) + i\frac{(x - x')}{\hbar}\left(x - x'\right)\right\} \left(x - x'\right) + i\frac{(x - x')}{\hbar}\left(x - x'\right) + i\frac{(x -$$

• Carry out the integration over p' using the formula of 1. (b) with $a := \left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]$ and $k := \frac{(x-x')}{\hbar}$ to get:

$$= \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \lim_{\delta \to 0} \sqrt{\frac{i\pi}{\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]}} \exp\left\{\frac{-i\left(\frac{\left(x - x'\right)}{\hbar}\right)^2}{4\left[\frac{-\varepsilon}{2\hbar f(x)} + i\delta^2\right]}\right\} =$$

$$= \frac{1}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right)\right\} \sqrt{\frac{i\pi}{\left(\frac{-\varepsilon}{2\hbar f(x)}\right)}} \exp\left\{\frac{-i\left(\frac{\left(x - x'\right)}{\hbar}\right)^2}{4\left(\frac{-\varepsilon}{2\hbar f(x)}\right)^2}\right\} =$$

$$= \sqrt{\frac{f(x)}{2\pi i\hbar\varepsilon}} \exp\left\{-\frac{i}{\hbar}\varepsilon V\left(x\right) + \frac{i}{\hbar}g\left(x\right)\left(x - x'\right) + \frac{i(x - x')^2 f(x)}{2\hbar\varepsilon}\right\} =$$

$$= \sqrt{\frac{f(x)}{2\pi i\hbar\varepsilon}} \exp\left\{\frac{i}{\hbar}\varepsilon \left[\frac{1}{2}f\left(x\right)\frac{\left(x - x'\right)^2}{\varepsilon^2} + g\left(x\right)\frac{\left(x - x'\right)}{\varepsilon} - V\left(x\right)\right]\right\} =$$

$$= \sqrt{\frac{f(x)}{2\pi i\hbar\varepsilon}} \exp\left\{\frac{i}{\hbar}\varepsilon L\left(x, \dot{x}\right)|_{\dot{x} = \frac{x - x'}{\varepsilon}}\right\}$$

(c)

Let us determine the path integral for a finite time interval $t_f - t_i$ (*i* standing for initial and f for final):

- $K(x_f, x_i; t_f t_i) \equiv \lim_{n \to \infty} \left(\int_{\mathbb{R}^n} \prod_{j=1}^n dx_j \right) \left\{ K(x_f, x_n; t_f t_n) \left[\prod_{j=n}^2 K(x_j, x_{j-1}; t_j t_{j-1}) \right] K(x_1, x_i; t_1 t_i) \right\}$ where $\prod_{j=1}^n dx_j$ stands for the Lebesgue measure $d\mu$ on \mathbb{R}^n .
- We take the partition of $[t_i, t_f]$ by dividing each $t_j t_{j-1}$ length so that they are all equal to some positive quantity ε : $= \lim_{n \to \infty} \left(\int_{\mathbb{R}^n} \prod_{j=1}^n dx_j \right) \left\{ K\left(x_f, x_n; \varepsilon\right) \left[\prod_{j=n}^2 K\left(x_j, x_{j-1}; \varepsilon\right) \right] K\left(x_1, x_i; \varepsilon\right) \right\}$
- Plug in what we found above for the propagator for small times ε : $= \lim_{n \to \infty} \left(\int_{\mathbb{R}^n} \prod_{j=1}^n dx_j \right) \left\{ \sqrt{\frac{f(x_f)}{2\pi i \hbar \varepsilon}} \exp\left\{ \frac{i}{\hbar} \varepsilon L\left(x_f, \frac{x_f x_n}{\varepsilon}\right) \right\} \right]$ $\left[\prod_{j=n}^2 \sqrt{\frac{f(x_j)}{2\pi i \hbar \varepsilon}} \exp\left\{ \frac{i}{\hbar} \varepsilon L\left(x_j, \frac{x_j x_{j-1}}{\varepsilon}\right) \right\} \right] \sqrt{\frac{f(x_1)}{2\pi i \hbar \varepsilon}} \exp\left\{ \frac{i}{\hbar} \varepsilon L\left(x_1, \frac{x_1 x_i}{\varepsilon}\right) \right\} \right\}$
- In the limit $n \to \infty$, $\frac{x_j x_{j-1}}{\varepsilon} \to \dot{x}$, and so: = $\lim_{n \to \infty} \left(\int_{\mathbb{R}^n} \prod_{j=1}^n dx_j \right) \left\{ \sqrt{\frac{f(x_f)}{2\pi i \hbar \varepsilon}} \exp\left\{ \frac{i}{\hbar} \varepsilon L\left(x_f, \, \dot{x}_f\right) \right\} \right\}$

$$\left[\prod_{j=n}^{2} \sqrt{\frac{f(x_{j})}{2\pi i \hbar \varepsilon}} \exp\left\{\frac{i}{\hbar} \varepsilon L\left(x_{j}, \, \dot{x}_{j}\right)\right\}\right] \sqrt{\frac{f(x_{1})}{2\pi i \hbar \varepsilon}} \exp\left\{\frac{i}{\hbar} \varepsilon L\left(x_{1}, \, \dot{x}_{1}\right)\right\}$$

$$\bullet = \lim_{n \to \infty} \left(\sqrt{\frac{1}{2\pi i \hbar \varepsilon}} \right)^{n+1} \left(\int_{\mathbb{R}^n} \prod_{j=1}^n dx_j \right)$$

$$\left\{ \sqrt{f(x_f)} \exp\left\{ \frac{i}{\hbar} \varepsilon L(x_f, \dot{x}_f) \right\} \left[\prod_{j=n}^1 \sqrt{f(x_j)} \exp\left\{ \frac{i}{\hbar} \varepsilon L(x_j, \dot{x}_j) \right\} \right] \right\}$$

• =
$$\sqrt{f(x_f)} \lim_{n \to \infty} \exp\left\{\frac{i}{\hbar} \varepsilon L(x_f, \dot{x}_f)\right\} \left(\sqrt{\frac{1}{2\pi i \hbar \varepsilon}}\right)^{n+1}$$

$$\int_{\mathbb{R}^n} \left(\prod_{j=1}^n \sqrt{f(x_j)} dx_j\right) \exp\left\{\sum_{j=n}^1 \frac{i}{\hbar} \varepsilon L(x_j, \dot{x}_j)\right\}$$

- In that limit we could probably write (though I am not sure how to make this step rigorous nor how to compute \mathcal{N}): = $\mathcal{N} \int \mathcal{D}x \sqrt{f(x)} \exp\left\{\frac{i}{\hbar} \int_{\mathbb{R}} dt L(x(t), \dot{x}(t))\right\}$