Probability and Statistics Notes

Thomas Møller Jensen February 14, 2023

Lecture 1: Elementary digital circuits

The flash converter, an analog signal can be converted from analog to digital using this converter. it will divide a voltage into different levels, shown as the resistors on the figure below. This will produce a truth table of sorts, if we put in a signal that is between 2 and 3 volts in the example on the blackboard, it will correspond to the 2nd row in the table below:

Exercises

- 1. Show by perfect induction the following relations:
 - 1. (A+B)*(A+C) = A + (B*C)

A	В	С	A + B	A + C	(A+B)*(A+C)	B*C	A + (B * C)
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

2.
$$A * (A + B) = A$$

A	В	A + B	A*(A+B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

3.
$$A + \overline{A} = 1$$

A	\overline{A}	$A + \overline{A}$			
0	1	1			
1	0	1			

4.
$$\overline{A+B+C} = \overline{A}*\overline{B}*\overline{C}$$

A	В	С	A+B+C	$\overline{A+B+C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} * \overline{B} * \overline{C}$
0	0	0	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0
1	1	0	1	0	0	0	1	0
1	1	1	1	0	0	0	0	0

2. Show that the following expression is equivalent to the exclusive or function $\;$ This is denoted by \oplus

A	В	$A*\overline{B}$	$\overline{A} * B$	$\overline{(A*\overline{B})}$	$\overline{(\overline{A}*B)}$	$\overline{(A*\overline{B})}*\overline{(\overline{A}*B)}$	$\overline{(A*\overline{B})*\overline{(\overline{A}*B)}}$
0	0	0	0	1	1	1	0
0	1	0	1	1	0	0	1
1	0	1	0	0	1	0	1
1	1	0	0	1	1	1	0

- 3. Reduce the following expressions:
 - 1. $A * \overline{B} * \overline{C} + A * B * \overline{C} + \overline{A} * \overline{C}$

$$\overline{C}(A*\overline{B}+A*B+\overline{A})$$

 $2. \ \ M*\overline{N}*P+\overline{L}*M*P+\overline{L}*M*\overline{N}+\overline{L}*M*\overline{N}+\overline{L}*\overline{N}*\overline{P}+\overline{L}*\overline{N}*\overline{P}$

$$M(\overline{N}*P + \overline{L}*P + \overline{L}*\overline{N} + \overline{L}*N*\overline{P}) + \overline{L}*\overline{N}*\overline{P}$$

$$M(\overline{N}*P + \overline{L}(P + \overline{N} + N*\overline{P})) + \overline{L}*\overline{N}*\overline{P}$$

4. Find expressions for D and C cricuit below. What is the purpose of the circuit?

$$C = \overline{(\overline{A(\overline{AB})})(\overline{B(\overline{AB})})}$$

$$D = \overline{\overline{A*B}}$$

This circuit is a 1-bit adder, with C being the sum, and D being the carry.

5. Find the Gate Input Count (GIC) of the cirquit below.

6. Extend the half adder from slide 9 to take a carry as an additional input.