Bipolo

Utilizzatori

Generatori

$$V = -R \times I \text{ [V]}$$

$$P_{Ass} = -V \times I \text{ [W]}$$

$$P_{Ero} = V \times I \text{ [W]}$$

Teorema di Tellegen

$$\sum V_n \times I_n = 0$$

Partitori

$$I_1 = I \times \frac{R_2}{R_1 + R_2}$$

$$V \overset{+}{\overset{+}{\longrightarrow}} R_1 \overset{R_1}{\overset{}{\swarrow}} V_1$$

$$V_1 = V \times \frac{R_2}{R_1 + R_2}$$

Nota: Dovre è presente una maggiore resistenza, sarà presente una minore intensità di corrente ed una maggiore tensione.

	Serie	Parallelo
Corrente	$I = I_1 = \ldots = I_n$	$I = \sum I_n$
Tensione	$V = \sum V_n$	$V = V_1 = \ldots = V_n$

Trasformazioni

Stella \rightarrow triangolo

$$G_{12} = \frac{G_1 \times G_2}{\sum G_n}$$

 $Triangolo \rightarrow stella$

$$R_1 = \frac{R_{12} \times R_{13}}{\sum R_n}$$

Equivalenti

Thévenin

$$V_{Eq} = V_{CA}$$

$$R_{Eq} = \frac{1}{G_{Eq}}$$

Norton

Trasformatore ideale

$$V_1 = n \times V_2$$
$$I_1 = -\frac{1}{n} \times V_2$$

$$z_{AB} = n^2 \times z$$

Doppi bipoli

$$R : \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix}$$

$$G : \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} \hat{I}_1 \\ \hat{I}_2 \end{bmatrix}$$

Ibride

$$\begin{aligned} H1: \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} &= \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} \hat{V_1} \\ \hat{I_2} \end{bmatrix} \\ H2: \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} &= \begin{bmatrix} h'_{11} & h'_{12} \\ h'_{21} & h'_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} \hat{I_1} \\ \hat{V_2} \end{bmatrix} \end{aligned}$$

Trasmissione

Diretta:
$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix} + \begin{bmatrix} \hat{V}_1 \\ \hat{I}_1 \end{bmatrix}$$

$$\begin{bmatrix} V_2 \\ \end{bmatrix} = \begin{bmatrix} t'_{11} & t'_{12} \\ \end{bmatrix} \begin{bmatrix} V_1 \\ \end{bmatrix} + \begin{bmatrix} \hat{V}_2 \\ \end{bmatrix}$$

$$\text{Inversa}: \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix} = \begin{bmatrix} t'_{11} & t'_{12} \\ t'_{21} & t'_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ I_1 \end{bmatrix} + \begin{bmatrix} \hat{V_2} \\ \hat{I_2} \end{bmatrix}$$

Nota: se le relazioni non vengono trovate risolvendo il circuito, bisogna utilizzare il metodo delle prove semplici, spegnendo i generatori secondo necessità, risolvendo i risultanti circuiti.

Induttori e generatori

$$V_L = L \times \frac{\mathrm{d}i_L(t)}{\mathrm{d}t}$$
$$[L] = [H]$$

$$V_C$$

$$I_C = C \times \frac{\mathrm{d}v_C(t)}{\mathrm{d}t}$$

$$[C] = [F]$$

$$R = \underbrace{\frac{l \text{lunghezza}}{l}}_{\text{sezione}} \times \underbrace{\frac{c}{c}}_{\text{conducibilità}}$$

Analisi nodale

Semplice

LKC ai nodi con le correnti in funzione dei ponziali di nodo (verso positivo uscente). Risolvo poi il sistema risultante.

Modificata

Aggiungo un'equazione per ogni variabile aggiunta non controllabile in tensione. Risolvo poi il sistema risultante.

Per ispezione

- Matrice dei coefficienti:
 - Diagonale principale posizione (x, x): somma delle conduttanze che arrivano al nodo x.
 - Fuori dalla diagonale principale posizione (i, j): la conduttanza tra i nodi $i \in j$ con segno meno.
- Vettore dei termini noti riga i: valore del generatore di corrente entrante nel nodo i.

Nota: Ogni generatore si deve presentare due volte con segno opposto nel vettore dei termini noti od una sola volta se collegato al nodo di riferimento.

Regime alternato sinusoidale

$$v(t) = \underbrace{A}_{\text{ampiezza}} \times \cos\left(\underbrace{\omega}_{\text{pulsazione}} t + \underbrace{\varphi}_{\text{fase}}\right) \iff \overline{V}_{\text{fasore}} = \underbrace{A}_{\text{ampiezza}} \times e^{j\underbrace{\varphi}} = a + jb$$

$$\underbrace{\omega}_{\text{pulsazione}} = 2\pi \underbrace{\nu}_{\text{frequenza}} \qquad A = \sqrt{a^2 + b^2} \qquad \phi = \arctan\frac{b}{a} \qquad \text{Nota: attenzione al quadrante.} \qquad \text{Nota: } \overline{V} \in \mathbb{C}.$$

$$\underbrace{Z}_{\text{impedenza}} = \underbrace{R}_{\text{resistenza}} + j\underbrace{X}_{\text{reattanza}} \qquad \underbrace{Y}_{\text{ammettenza}} = \underbrace{R}_{\text{conduttanza}} + j\underbrace{B}_{\text{suscettanza}} \qquad \angle Z = -\angle Y$$