Politechnika Warszawska

Wydział Mechaniczny Energetyki i Lotnictwa Zakład Samolotów i Śmigłowców

SAMOLOTY BEZZAŁOGOWE

Projekt nr 2 Data oddania 28.03.2023

MALE, z silnikiem tłokowym i masie poniżej 1000 kg, z konfiguracją skrzydeł klasyczną

Zespół nr 2:

inż. Sara Waśniewska

inż. Stanisław Dul

inż. Kenan Majewski

prowadzący: Prof. Zdobysław Goraj

Warszawa, semestr letni 2022/2023

1. Wstęp i cel projektu

Celem niniejszego projektu było wykonanie szkicu bezzałogowego statku powietrznego (w perspektywie oraz trzech rzutach głównych) oraz wyznaczenie głównych parametrów geometrycznych i wagowych projektowanego samolotu. Do określanych najważniejszych parametrów zaliczają się:

- powierzchnia nośna S
- powierzchnia omywana S_w
- rozpiętość płata b
- wydłużenie geometryczne Λ
- wydłużenie omywane Λ_w
- średnia cięciwa aerodynamiczna Ca
- zbieżność płata λ
- grubość profilu t/c
- długość kadłuba l_k
- · wybór silnika
- ciąg zespołu napędowego T
- obciążenie powierzchni nośnej W/S
- obciążenie ciągu W/T

2. Analiza trendów

Wykonywanie projektu rozpoczęto od wykonania analizy trendów dla bezzałogowych statków powietrznych o podobnych konfiguracjach do konfiguracji projektowanego samolotu. Zebrane dane przedstawiono w tabeli 1.

Tabela 1. Analiza trendów

Bezzałogowy statek powietrzny	b [<i>m</i>]	C _a [m] (*)	S [m ²] (**)	l _k [m]	MTOW $[kg]$	Masa $[kg]$	Długotrwałość $[h]$	Pułap [km]
Professional UAS Falco EVO [1]	12,5	1,14	14,25	6,2	650	100	20	6
PD-1 Unmanned Aerial System [2]	4	0,42	1,68	2,55	40	10	10	3
Albatross 2.2 [3]	14,97	0,97	12,26	6,5	850	280	28	7,2
SITARIA-E Fixed Wing Unmanned System [4]	5,16	0,35	1,81	2,8	39	10	3	6
Bayraktrar TB2 [5]	12	0,83	9,96	6,5	650	ı	27	8,2
Aerostar Tactical UAV [6]	8,7	0,61	5,31	4,5	240	40	12	5,486
Sky Spirit UAS [7]	3,51	1,52	5,34	3,1	81,8	34,1	10	4,877
Sojka UAV [8]	4,12	1,3	5,36	3,78	145	30	3	2
Red Kite [9]	3.3	0,63	2,08	2,27	21.5	-	6	-
Super Bat DA-50 [10]	2,6	0,55	1,43	1,6	21	2	10	3,048
Seeker 400 [11]	10	1,33	13,3	5,8	450	100	16	5,486
Zala 421-20 [12]	6	1,07	6,42	5,5	200	50	8	5
Mohajer 4 [13]	5,3	0,98	5,19	3,6	175	-	5	4,5

^(*) Ze względu na brak danych długości cięciw, zostały one wyznaczone proporcjonalnie do pozostałych znanych pozostałych wymiarów statków.

^(**) Wartości powierzchni odniesienia są przybliżone, gdyż zostały wyznaczone na podstawie podanych wartości rozpiętości skrzydeł i przybliżonych wartości cięciw.

3. Dobór parametrów geometrycznych i wagowych

Wstępnie przyjęto maksymalną masę startową statku (MTOW) wynoszącą 900 kg.

Korzystając z danych zebranych podczas analizy trendów oszacowano masy własne dla każdego z pojazdu jako maksymalne masy startowe, MTOW, pomniejszone o masy ładunków, W_p , i oznaczono je jako W_e :

$$W_e = MTOW - W_p$$

 $W_e=MTOW-W_p$ Wykonano wykres zależności stosunku $\frac{W_e}{MTOW}$ w funkcji MTOW (rys. 1) i wynikową krzywą opisano korzystając z równania [14]:

$$\frac{W_e}{MTOW} = A * MTOW^C * K$$

gdzie K jest równy jedności dla skrzydeł o stałym skosie wzdłuż rozpiętość, a współczynniki A i C są wyznaczane na podstawie danych z wykresu następującego wzoru:

$$C = \log\left(\frac{y_1}{y_2}\right) / \log\left(\frac{x_1}{x_2}\right)$$

gdzie $y_i = \frac{W_e}{MTOW}(MTOW_i)$, a $x_i = MTOW_i$

$$A = \frac{y_1}{x_1^C}$$

Przyjmując na podstawie rysunku 1. dla skrajnych punktów $(x_1, y_1) = (21, 0.77158)$ oraz $(x_2, y_2) = (21, 0.77158)$ (850, 0.755) otrzmano C = -0.00587 oraz A = 0.7854928.

Ostatecznie oszacowano stosunek masy własnej do maksymalnej masy startowej bezzałogowca jako:

$$\frac{W_e}{MTOW} = 0.7854928 * 900^{-0.00597} = 0.7547467 [-]$$

Masa własna została oszacowana na wartość:

$$W_e = 0.7547467 * 900 = 679,272 \text{ kg}$$

Rysunek 1. Zależność stosunku masy własnej do maksymalnej masy startowej w funkcji maksymalnej masy startowej

Powierzchnię nośną samolotu wyznaczono sugerując się zależnością obciążenia powierzchni nośnych w funkcji maksymalnych mas startowych dla bezzałogowych statków powietrznych o podobnych konfiguracjach do wybranej w danym projekcie. Na podstawie wykonanego wykresu i równania linii trendu (rys. 2) określono, iż dla 900 kg obciążenie powierzchni nośnej wynosi:

$$\frac{MTOW}{S} = 0,0597 * MTOW + 17,237$$

$$\frac{MTOW}{S} = 0,0597 * 900 + 17,237 = 70,967 \frac{kg}{m^2}$$

A zatem przyjęto, iż powierzchnia nośna skrzydeł jest równa:

$$S = \frac{MTOW}{70,967} = \frac{900}{70,967} = 12,682 \, m^2$$

Rysunek 2. Zależność obciążenia powierzchni nośnej w funkcji maksymalnej masy startowej

Wymiary geometryczne samolotu, podobnie do powyższych parametrów, również oszacowano korzystając z analizy trendów.

Wykonano wykres stosunku rozpiętości do maksymalnej masy startowej w funkcji maksymalnej masy startowej (rys. 3) oraz aproksymowano daną zależność wzorem:

$$\frac{b}{MTOW} = 0.0397 * e^{-0.001*MTOW}$$

Warto zaznaczyć, iż funkcja aproksymująca dla zależności $\frac{b}{MTOW} = f(MTOW)$ została wyznaczona na podstawie danych dla samolotów o maksymalnej masie startowej nie mniejszej niż 200 kg.

Dla przyjętej w projekcie wartości MTOW wyliczono stosunek:

$$\frac{b}{MTOW} = 0.0397 * e^{-0.001*900} = 0.016141 \frac{m}{kg}$$

Wyznaczono wartość rozpiętości:

$$b = 0.016141 * MTOW = 14,527 m$$

Rysunek 3. Zależność stosunku rozpiętości do maksymalnej masy startowej w funkcji maksymalnej masy startowej

Podobnie oszacowano długość kadłuba. Wyznaczono funkcję aproksymującą:

$$\frac{l_k}{MTOW} = 0,7202 * MTOW^{-0,663}$$

$$\frac{l_k}{MTOW} = 0,7202 * 900^{-0,663} = 0,007921 \frac{m}{kg}$$

$$l_k = MTOW * 0,007921 = 900 * 0,007921 = 7,129 m$$

Rysunek 4. Zależność stosunku długości kadłuba do maksymalnej masy startowej w funkcji maksymalnej masy startowej

Przyjęto, iż płat będzie miał obrys prostokątny, przez co zbieżność przyjęła wartość jedności:

$$\lambda = 1[-]$$

Wydłużenie geometryczne wyznaczono na podstawie wzoru:
$$\Lambda=\frac{b^2}{S}=\frac{14,53^2}{12,68}=16,64~[-]$$

Średnią cięciwę aerodynamiczną obliczono korzystając z prostokątnego kształtu skrzydeł:

$$c_a = \frac{S}{b} = \frac{12,68}{14,53} = 0,87 m$$

Kształt przekroju kadłuba określono wzorując sie kształtem przekroju kadłuba statku Aerostar. Przyjęto, iż projektowany kadłub o długości 7,13 m ma wysokość 1,4 m oraz szerokość 1,1 \div 1,3 m. Następnie pole przekroju kadłuba, S_k , obliczono przybliżając je polem trapezu:

$$S_k = 1.4 * 0.5 * (1.3 + 1.1) = 1.68 m^2$$

Powierzchnię omywaną, S_w , wyznaczono ze wzoru [15]:

$$S_w = 2,85 * l_k * \sqrt{S_k}$$
$$S_w = 26,33 m^2$$

Wydłużenie omywane obliczono korzystając z wartości powierzchni omywanej: $\Lambda_w=\frac{b^2}{S_w}=\frac{14,53^2}{26,33}=8,01~[-]$

$$\Lambda_{\rm w} = \frac{b^2}{S_{\rm w}} = \frac{14,53^2}{26,33} = 8,01 [-]$$

W projekcie przyjęto grubość profilu wynoszącą $\frac{t}{c}=14$ %. Wyniknęło to z faktu, iż grubość profilu wpływa na wartość generowanych sił nośnej i oporu (przy czym obydwa współczynniki sił nie są liniowymi funkcjami $\frac{t}{c}$), a dla zakresu 14%-17% osiągane są maksymalne wartości współczynnika siły nośnej [16].

Ze względu na brak dostępnych danych dotyczących wartości mocy i ciągów generowanych przez zespoły napędowe dla statków wymienionych w tabeli 1 wykonano dodatkową analizę zależności maksymalnej masy startowej (MTOW) od mocy (P) dla załogowych samolotów szkolno-treningowych, których wybór wyniknął z przybliżonych mas, wymiarów i konfiguracji do projektowanego samolotu. Zebrane dane przedstawiono w tabeli 2.

Tabela 2. Analiza obciążenia mocy dla załogowych samolotów szkolno-treningowych

Statek powietrzny	MTOW $[kg]$	P[kW]	$\frac{MTOW}{P} \left[\frac{kg}{kW} \right]$
PZL M26 Iskierka [17]	1400	200	7,000
Cesna 152 [18]	758	82	9,244
Jak – 18 [19]	1165	118	9,873
Yakovlev UT – 2 [20]	940	92	10,217
DART – 450 [21]	2300	369	6,233
PZL M – 10 [22]	900	132	6,818
PZL – 130 Orlik [23]	2700	560	4,821

Wykonano wykres ukazujący zależność obciążenia mocy od MTOW (rys. 5), na podstawie którego otrzymano następujący wzór aproksymujący:

$$\frac{MTOW}{P} = -0,002 * MTOW + 10,851$$

Dla 900 kg:

$$\frac{MTOW}{P} = -0,002 * 900 + 10,851 = 8,961$$

z czego moc wyniosła:

$$P = 900 * 8,961 = 100,435 \, kW$$

Rysunek 5. Zależność obciążenia mocy w funkcji maksymalnej masy startowej

W projekcie wykorzystywany jest napęd śmigłowy, dla którego przyjęto sprawność na poziomie $\eta=0.8$. A zatem wymagana moc, P_r , wyniosła:

$$P_r = \frac{P}{\eta}$$

$$P_r = \frac{100,435}{0,8} = 125,544 \text{ kW}$$

Kolejnym krokiem był dobór silnika. Postawionymi wymaganiami były moc generowana przez silnik nie mniejsza od wstępnie oszacowanej wymaganej mocy, tłokowy rodzaj napędu oraz jego gabaryty. Dobrano silnik Jacobs L – 4, którego charakterystyczne parametry przedstawiono w tabeli 3.

Tabela 3. Parametry silnika Jacobs L – 4 [24]

Wartość / opis					
Jacobs L – 4					
8,4559*10 ⁻⁵ kg/kW/s					
217,724 kg					
1,1049 m					
0,9875 m					
182,696 kW (2200 RPM)					
167,782 kW (2000 RPM)					
131,989 kW (1900 RPM)					
73-oktanowa benzyna					

Podsumowanie wyznaczonych w danym projekcie parametrów przedstawiono w tabeli 4.

Tabela 4. Podsumowanie wyznaczanych głównych parametrów geometrycznych i wagowych projektowanego samolot

Parametr	Oznaczenie	Jednostka	Wartość / opis
Maksymalna masa startowa	MTOW	[kg]	900
Masa własna	W_e	[kg]	679,272
Powierzchnia nośna	S	$[m^2]$	12,682
Powierzchnia omywana	S_w	$[m^2]$	26,33
Rozpiętość płata	b	[m]	14,527
Wydłużenie geometryczne	٨	[-]	16,64
Wydłużenie omywane	$\Lambda_{\sf w}$	[-]	8,01
Średnia cięciwa aerodynamiczna	Ca	[<i>m</i>]	0,87
Zbieżność płata	λ	[-]	1
Grubość profilu	t/c	[-]	14 %
Długość kadłuba	I_k	[m]	7,129
Moc niezbędna	P_r	[kW]	125,544
Wybór silnika		_	Jacobs L – 4
Moc (przelotowa) zespołu napędowego	P	[kW]	131,989
Obciążenie powierzchni nośnej	$\frac{MTOW}{S}$	$\left[\frac{kg}{m^2}\right]$	70,967
Obciążenie mocy	$\frac{MTOW}{P}$	$\left[\frac{kg}{kW}\right]$	6,819

4. Bibliografia

- [1] https://www.aeroexpo.online/prod/leonardo-finmeccanica/product-169774-75998.html
- [2] https://www.airforce-technology.com/projects/pd-1-unmanned-aerial-system/
- [3] https://www.uavos.com/products/fixed-wing-uavs/albatross-2-2/
- [4] https://www.airforce-technology.com/projects/sitaria-e-fixed-wing-unmanned-system/
- [5] https://pl.wikipedia.org/wiki/Bayraktar TB2
- [6] https://www.airforce-technology.com/projects/aerostaruav/
- [7] https://defense-update.com/20070828_sky_spirit.html
- [8] https://www.army.cz/scripts/detail.php?id=6312
- [9] https://bbsr.co.uk/wp-content/uploads/2018/09/redkite.pdf
- [10] https://drones.cnas.org/drones/
- $[11] https://www.armadainternational.com/wp-content/uploads/2020/06/ARM_COM_2006_07_UAV.pdf$
- [12] https://www.militaryfactory.com/aircraft/detail.php?aircraft_id=1681
- [13] https://en.wikipedia.org/wiki/Qods_Mohajer
- [14] BIPOL I Projekt 1: Analizy wstępne
- [15] Mechanika Lotu I Projekt 3: Charakterystyki aerodynamiczne samolotu
- [16] Galiński C., Wybrane zagadnienia projektowania samolotów, Wydawnictwa Naukowe Instytutu Lotnictwa, Warszawa, 2016
- [17] https://pl.wikipedia.org/wiki/PZL_M26_Iskierka
- [18] https://pl.wikipedia.org/wiki/Cessna_152
- [19] https://pl.wikipedia.org/wiki/Jak-18
- [20] https://en.wikipedia.org/wiki/Yakovlev_UT-2
- [21] https://en.wikipedia.org/wiki/Diamond DART series
- [22] http://www.samolotypolskie.pl/samoloty/2413/126/M-10-PZL-M-102
- [23] https://pl.wikipedia.org/wiki/PZL-130_Orlik
- [24] https://www.enginehistory.org/Piston/Jacobs/Jacobs.shtml