REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID)

ALBERTO MOLINA COBALLES

IES GONZALO NAZARENO

8 DE DICIEMBRE DE 2020

Introducción

- RAID es un sistema que aumenta la fiabilidad de los datos almacenados en discos utilizando mecanismos de redundancia.
- RAID hace dos cosas principalmente:
 - Duplicar (<u>mirroring</u>) los datos en varios discos, reduciendo el riesgo asociado al fallo de un disco.
 - ► Mejorar el rendimiento dividiendo (<u>stripping</u>) los datos en varios discos, que trabajan simultáneamente con un flujo unico de datos.

.

TIPOS DE RAID

Hardware Está implementado completamente dentro de la controladora de disco (controladora RAID), mediante hardware y firmware especializado. Una controladora RAID hardware debe presentar al sistema operativo los discos como un único dispositivo de almacenamiento.

Software Lo implementa mediante software el sistema operativo de forma independiente de la controladora de disco.

BIOS Está implementado parcialmente dentro de la controladora de disco, pero utilizan controladores de software específicos para poder comunicarse adecuadamente con el sistema operativo.

PARIDAD

Los datos de paridad se utilizan para conseguir redundancia de los datos. Si una unidad falla, es posible recuperar los datos combinando los datos de las otras unidades y los de paridad (operaciones XOR).

Ejemplo:

Unidad 1	01101101	01101101	
Unidad 2	11010100		11010100
Unidad P		10111001	10111001

Si cualquiera de las tres unidades falla, se pueden recuperar los datos que contenía mediante operaciones XOR de las otras dos.

RAID o

- También llamado stripe set
- Se reparten los datos entre todas las unidades
- No hay datos de paridad
- No hay redundancia
- Aumenta el rendimiento
- Unidades mínimas: 2
- Tolerancia a fallos: o

- También llamado mirror
- Se copian los mismos datos en todas las unidades
- No hay datos de paridad
- Baja el rendimiento
- Unidades mínimas: 2
- Tolerancia a fallos: n-1

- Se reparten los datos entre todas las unidades menos una
- Se utiliza una unidad para los datos de paridad
- Unidades mínimas: 3
- Tolerancia a fallos: 1
- Descartado en favor de RAID 5

- Similar a RAID 4, pero se reparten los datos de paridad entre todas las unidades
- Alto rendimiento
- Unidades mínimas: 3
- Tolerancia a fallos: 1

- Extensión de RAID 5
- Dos bloques de paridad repartidos en las unidades
- Peor rendimiento que RAID 5
- Mayor tolerancia a fallos que RAID 5
- Unidades mínimas: 4
- Tolerancia a fallos: 2

ŏ

DISCO DE RESERVA

- En la mayoría de las configuraciones RAID, una vez que se produce un fallo, los datos no son accesibles hasta que se ha sustituido el disco y se ha restaurado su contenido.
- Es recomendable utilizar un disco de reserva o <u>hot spare</u>, como suplente de la unidad de disco que tenga un fallo.
- Este disco permanece inactivo hasta que falla un disco del RAID, momento en el que se activa y lo sustituye.
- Utilizando un <u>hot spare</u> se reduce mucho el tiempo de recuperación de los datos

