# 原子物理学习题课

### 陶军全

邮箱: taojq@mail.ihep.ac.cn

办公室: 高能所多学科楼431

# 第五章 多电子原子

|      | <b>_</b>                                 |
|------|------------------------------------------|
| 第五章  | 多电子原子:泡利原理 211                           |
| § 24 | 氦的光谱和能级 211                              |
| § 25 | 两个电子的耦合 214                              |
|      | 电子的组态 $L-S$ 和 $j-j$ 耦合 两个角动量耦合的一般法则 选择规则 |
|      | 由电子组态到原子态                                |
| § 26 | 泡利不相容原理 219                              |
|      | 历史回顾 不相容原理的叙述 应用举例 补注:同科电子合成的状态          |
| § 27 | 元素周期表 226                                |
|      | 元素性质的周期性 壳层中电子的数目 电子组态的能量——壳层的次序         |
|      | 原子基态 电离能变化的解释                            |
|      |                                          |

- > 多电子原子
  - · L-S 耦合
  - J-J耦合
- > 泡利不相容原理
- ▶ 最小能量原理
- > 洪特定则
- ▶ 郎德间隔定则
- > 元素周期表

### 多电子原子

- ▶ 碱金属原子的原子模型:原子实 + 一个价电子
  - ✓ 价电子在原子中所处的状态,n, l, j,  $M_i$ 决定了碱金属的原 子态 $n^{2s+1}L_i$ ,而价电子在不同能级间的跃迁,便形成了 碱金属原子的光谱
- ▶ 多电子原子是指最外层有不止一个价电子

#### 原子实+2个价电子

$$E_n = -Z^2 \frac{Rhc}{n^2}$$

总能量: 
$$E = E_1 + E_2 = \left(-\frac{4 \times 13.6}{n_1^2} - \frac{4 \times 13.6}{n_2^2}\right) eV$$

$$n_1 = n_2 = 1$$

 $E_g = -108.8eV$ 

忽略电子-电子之间 相互作用并不是一个 好的近似!

实验值:

$$E_{\sigma}^{e} = -(54.4 + 24.6) = -79eV$$

- ➤ He原子的能级结构和光谱
  - ✓ 激发态能级是一个电子被激发至 nl 而另一个电 子仍处于 1s 状态
  - ✓ 典型的 L-S 耦合,激发态结构由两套能级组成, 一套是单重态 (S=0, J=L), 而另一套是三重 态 (S=1, J=L+1, L, L-1)
  - ✓ 单重态和三重态之间不能发生跃迁

善 单层结构: S, P, D, F----仲氦 能量跨越~25eV 三层结构: S, P, D, F----正氦 能量跨越~5eV

- ${}^{1}S_{0}$ 和1s2s  ${}^{3}S_{1}$ 是氦的两个亚稳态;两个电子都处在 激发态的概率很小!
- ▶ 碱土族原子光谱:任何具有 两个价电子的原子或 离子都与氦原子的光谱和能级结构相类似
  - 碱土族 (第二族) 元素原子: 铍Be、镁Mg、钙 Ca、锶Sr、钡Ba、镭Ra、锌Zn、镉Cd、汞Hg

### 电子的耦合

▶ 电子组态 : 处于一定状态的若干个(价) 电子的组合。

单个电子: nl 氦原子基态: 1s1s

两个电子:  $n_1 l_1 n_2 l_2$  第一、二激发态: 1s2s, 1s2p

多个电子:  $n_1 l_1 n_2 l_2 n_3 l_3 \cdots$  镁原子基态: 3s3s

第一激发态: 3s3p

#### > 两个电子的耦合方式

#### L-S耦合



$$L = \sqrt{l (l + 1)}\hbar \qquad l = l_1 + l_2, l_1 + l_2 - 1, \dots | l_1 - l_2 |$$

 $(n_1l_1n_2l_2)$ 分别是两个价电子的主量子数和角量子数

▶ 选择定则

#### L-S耦合的辐射跃迁选择定则

 $\Delta S = 0$ 

Δs=0决定了氦的两套能级之间不可能发生跃迁

 $\Delta L = 0, \pm 1$ 

 $\Delta J = 0, \pm 1(J = 0 \rightarrow J' = 0 除外)$  为什么不能有J=0到J'=0的跃迁?总角动量守恒

#### 

两个电子的j-j耦合过程:  $\begin{cases} L_1 + S_1 = J_1 \\ \vec{I}_1 + \vec{S}_2 = \vec{I} \end{cases}$ 

j-j耦合多电子情况可以记为:

$$(s_1 l_1)(s_2 l_2)(s_3 l_1) \cdots = (j_1 j_2 j_3 \cdots) = \vec{J}$$

原子态表示为:  $(j_1, j_2)_i$ 

#### j-j耦合的辐射跃迁选择定则:

$$\Delta j = 0,\pm 1$$

$$\Delta J = 0,\pm 1 (J = 0 \rightarrow J' = 0 )$$
 公外

# 泡利不相容原理

▶ 在一个原子中,不可能有两个或两个以上的电子具有完全相同的状态、或者完全相同的四个量子数(n,l,m<sub>l</sub>,m<sub>s</sub>),或者说原子中的每一个状态只能容纳一个电子

#### 7个量子数描述电子的状态,它们分别是

$$n,l,m_l,s,m_s,j,m_j$$

#### 各量子数的取值范围是

$$n = 1, 2, 3 \cdots; \quad l = 0, 1, 2 \cdots n - 1; \quad m_l = 0, \pm 1 \cdots \pm l;$$
  
 $s = \frac{1}{2}; \quad m_s = \frac{1}{2}, -\frac{1}{2}; \quad j = l + \frac{1}{2}, l - \frac{1}{2}; \quad m_j = j, j - 1, \cdots - j$ 

主量子数n-确定原子中电子在核外空间运动轨道的大小和能量的高低。一般说来, $n \rightarrow$ 大,能量 $\rightarrow$ 高,轨道半径 $\rightarrow$ 大。

轨道角量子数l决定电子轨道的形状和角动量的大小,同时也与能量有关.n相同时, $l \rightarrow$ 大,能量 $\rightarrow$ 高。

轨道磁量子数m<sub>1</sub>表示轨道角动量在外场方向的投影 自旋磁量子数m<sub>s</sub>表示自旋角动量在外场方向的投影,共2个 泡利原理更一般的描述是: 在费米子(自旋为半整数的粒子)组成的系统中不能有两个或多个粒子处于完全相同的状态。

自旋为<sup>1</sup>/<sub>2</sub> ħ奇数倍的微观粒子,包括如电子、质子、中子、超子等。

➤ He原子的基态

 $(1s1s)^{1}S_{0}$ 

 $(1s1s)^3S_1$ 态: n, l,  $m_l$ , 相同,  $s_1$ 和 $s_2$ 同向  $\rightarrow$ 违反了泡 利不相容原理(x)

▶ 夸克的颜色:重子△由三个相同的夸克组成,三个夸克都处于基态,而且自旋都为1/2→两个夸克相同的自旋→违法了泡利不相容原理 ←新的量子数—颜色

### 同科电子

- ▶同科电子(等效电子):主量子数n 和轨道角动量量子l都相同的几个电子, 表示为nl<sup>v</sup>, ν是同科电子的个数
  - ✔ 状态数目

$$G = \frac{Y!}{v!(Y-v)!}$$
  $Y = 2(2l+1)$ 

✓ 两个电子总的波函数交换反对称
总的波函数交换对称性取决于(-1) L+S+1

- $\checkmark$   $(nl)^{Y-v}$ 的同科电子与 $(nl)^v$ 的同科电子的状态 一样
- ✓ 斯莱特 (Slater) 方法(np² 组态)

表 26.2 同科电子的态项

| 电子组态             | 态 项                                            | 电子组态           | 态项                                                                                                                                                                                             |
|------------------|------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s                | ²S                                             | d,d°           | <sup>2</sup> D                                                                                                                                                                                 |
| s <sup>2</sup>   | ¹S                                             | $d^2$ , $d^8$  | 1S,1D,1G,3P,3F                                                                                                                                                                                 |
| p,p <sup>5</sup> | <sup>2</sup> P                                 | d³,d²          | <sup>2</sup> P, <sup>2</sup> D, <sup>2</sup> F, <sup>2</sup> G, <sup>2</sup> H, <sup>4</sup> P, <sup>4</sup> F                                                                                 |
| $p^2, p^4$       | <sup>1</sup> S, <sup>1</sup> D, <sup>3</sup> P | d⁴,d°          | 'S,'D,'F,'G,'I,'P,'D,'F,'G,'H,'D                                                                                                                                                               |
| p <sup>3</sup>   | <sup>4</sup> S, <sup>2</sup> P, <sup>2</sup> D | d <sup>5</sup> | <sup>2</sup> S, <sup>2</sup> P, <sup>2</sup> D, <sup>2</sup> F, <sup>2</sup> G, <sup>2</sup> H, <sup>2</sup> I, <sup>4</sup> P, <sup>4</sup> F, <sup>4</sup> D, <sup>4</sup> G, <sup>6</sup> S |

*电子1(m<sub>l</sub>, m<sub>s</sub>*)电子2(*m<sub>l2</sub>, m<sub>s2</sub>*)

| $M_{l}$ $m_{s}$ | -1                     | 0                                              | +1                  |
|-----------------|------------------------|------------------------------------------------|---------------------|
| +2              | (1, -) (1, -)<br>×     | (1,+)(1, -)                                    | (1,+) (1, +)<br>×   |
| +1              | (1,-)(0, -)            | (1,+) (0, -)<br>(1,-) (0, +)                   | (1,+) (0, +)        |
| 0               | (1,-) (-1, -)          | (1,+) (-1, -)<br>(0,+) (0, -)<br>(1,-) (-1, +) | (1,+) (-1, +)       |
| -1              | (0,-) (-1, -)          | (0,+) (-1, -)<br>(0,-) (-1, +)                 | (0,+) (-1, +)       |
| -2              | (-1,-) (-1,<br>-)<br>× | (-1,+) (-1, -                                  | (-1,+) (-1, +)<br>× |



### 元素周期表

- ▶ 元素性质的周期性,是电子组态周期性的反映
- ▶ 电子的填充次序以及能级相对高、低的一般规律
- $\rightarrow$  对( $n, l, m_l, m_s$ ),当n, /一定时,  $m_j$ 可取(2/+1)个值; 对每一个 $m_l, m_s$ 可取二个值



▶ 原子中的电子**壳层**结构

n 1 2 3 4 5 6 7 ... 壳层名称 K L M N O P Q ... L 0 1 2 3 4 5 6 ... 支壳层名称 s p d f a h i ... 每个支壳层可以容纳

的电子数: 2(2l+1)

每个壳层可以容纳的

P 包子数:  $N = \sum_{n=1}^{n-1}$ 

 $N = \sum_{l=0}^{n-1} 2(2l+1) = 2n$ 

能量最小原理: 电子按能量由低到高的次序填充各壳层

| l<br>n | s<br>0 | р<br>1 | d<br>2 | f<br>3 | g<br>4 | h<br>5 | i<br>6 | 总计 |
|--------|--------|--------|--------|--------|--------|--------|--------|----|
| K      | 2      |        |        |        |        |        |        | 2  |
| L      | 2      | 6      |        |        |        |        |        | 8  |
| M      | 2      | 6      | 10     |        |        |        |        | 18 |
| N      | 2      | 6      | 10     | 14     |        |        |        | 32 |
| 0      | 2      | 6      | 10     | 14     | 18     |        |        | 50 |
| P      | 2      | 6      | 10     | 14     | 18     | 22     |        | 72 |
| Q      | 2      | 6      | 10     | 14     | 18     | 22     | 26     | 98 |

每个壳层的最大电子 32、50、72......; 各周期的元素依 2、8、8、18、18、 32、32......。 32、32.....。 对一壳层尚填一个的壳层 电壳层 的壳层

# 原子能级填充顺序

> 电子组态的能量--壳层的次序

由能量最低原理决定:多 电子原子处于基态时, 核外电子的分布在不违 反泡利原理前提下,总 是尽先分布在能量较低 的轨道,以使原子处于 能量最低状态。

由于原子实的总角 动量和总磁矩为零

一般用价电子的组 态来代表原子的电 子组态



#### ▶ 填3d还是填4s

- 1.第一周期 H: 1s<sup>1</sup>, He: 1s<sup>2</sup>
- 2.第二周期 Li, 1s<sup>2</sup>2s<sup>1</sup>, Be: 1s<sup>2</sup>2s<sup>2</sup> B~Ne的6种元素 1s<sup>2</sup>2s<sup>2</sup>2p<sup>1~6</sup>
- 3.第三周期 Na, Mg: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>1~2</sup> Al~Ar的6种元素 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup> 3p<sup>1~6</sup>
  - $_{21}$ Sc $\sim_{30}$ Zn:  $3d^{1\sim10}4s^{1\sim2}$ <sub>21</sub>Sc 3d<sup>1</sup>4s<sup>2</sup>, <sub>22</sub>Ti 3d<sup>2</sup>4s<sup>2</sup>, <sub>23</sub>V 3d<sup>3</sup>4s<sup>2</sup>,  $_{24}$ Cr  $3d^54s^1$ ,  $_{25}$ Mn  $3d^54s^2$ , 3d支壳层半满 <sub>26</sub>Fe 3d<sup>6</sup>4s<sup>2</sup>, <sub>27</sub>Co 3d<sup>7</sup>4s<sup>2</sup>, <sub>28</sub>Ni 3d<sup>8</sup>4s<sup>2</sup>,

 $_{31}$ Ga $\sim_{36}$ Kr:  $4s^23d^{10}4p^{1\sim6}$ 

 $_{29}$ Cu  $3d^{10}4s^1$ ,  $_{30}$ Zn  $3d^{10}4s^2$  3d支壳层全满

## 洪特(Hund)定则及其补充

- ▶原子基态: 洪特 (Hund) 定则, *L-S*耦合情况下原子状态的能量高低次序
  - 1) 对一给定的电子组态,<mark>能量最低</mark>的原子态必定具 有泡利不相容原理所允许的**最大S值**
  - 2) 在S值相同的状态中,**L值最大**的原子态的<mark>能量</mark> 最低
  - 3) 对于同科电子(*nl*)<sup>ν</sup> *ν<= 2l+1* (小于半满) J值最小的能量最低 → 正常次序; *ν > 2l+1* (超过半满) J值最大的能量最低 → 倒转次序

<sub>6</sub>C(碳) 电子排布式: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>2</sup>

电子组态 <sup>1</sup>S<sub>0</sub>, <sup>3</sup>P<sub>0,1,2</sub>, <sup>1</sup>D<sub>2</sub>

按洪特规则(正序): <sup>3</sup>P<sub>0</sub>

<sub>9</sub>F(氟) 电子排布式: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>5</sup>

电子组态 <sup>2</sup>P<sub>1/2,3/2</sub>

按洪特规则 (倒序): <sup>2</sup>P<sub>3/2</sub>

➤ Hund规则补充: 全充满、半充满规则

在等价轨道上,处于**全充满**( $p^6$ 、 $d^{10}$ 、 $f^{14}$ ),半充满 ( $p^3$ 、 $d^5$ 、 $f^7$ ) 或全空 ( $p^0$ 、 $d^0$ 、 $f^0$ ) 的状态时,体系能量较低,状态较稳定。

<sub>24</sub>Cr(铬) 电子排布式: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup> 4s<sup>2</sup>3d<sup>4</sup>

按洪特规则: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup> 3d<sup>5</sup>4s<sup>1</sup>

29Cu(铜) 3d<sup>10</sup>4s<sup>1</sup> 而不是: 3d<sup>9</sup>4s<sup>2</sup>

▶ 特列: 41Nb(铌)是 4d⁴5s¹, 而不是 4d³5s²
44Ru(钌)是 4d³5s¹, 而不是4 d⁶5s²

各元素原子中电子分布的实际情况,最终只能由光谱等实验来确定。。

### 朗德(Lande)间隔定则

➤ 两个精细能级之间的能量间隔与这两个能级中总角动量量子数J较大的那个成正比



$$E_{J+1} - E_J = \frac{\hbar^2}{2} \xi(L, S) [(J+1)(J+2) - J(J+1)]$$
  
=  $\hbar^2 \xi(L, S)(J+1)$ 

 $E_J = \frac{\hbar^2}{2} \xi(L, S) [J(J+1) - L(L+1) - S(S+1)]$ 

电离能变化的解释



### 作业主要情况

### L-S耦合 原子态 <sup>1</sup>G<sub>3</sub> ? <sup>2S+1</sup>L<sub>J</sub>

$$S=0$$
, **L=4**  $J=L+S,...,|L-S|=4 \rightarrow {}^{1}G_{4}$  (第7、10题)

- ➢ 态度:亲自推导,错了也没关系,避免网上答案+借鉴同学 平时自己推导的同学,考试基本上都是得分高或者靠前的
- ▶ 信心: 保持自信,坚定自己的推导
- ▶ 怀疑:参考答案、科研权威、科研成果, … 要敢于挑战

#### **5-2** 计算⁴D<sub>3/2</sub>态的 *L* · S.

2*S*+1*L*<sub>J</sub>

轨道角动量量子数/=0, 1, 2,3,4,5··· 的态依次称为*s,p,d,f,g,h···*态

总角动量量子数 J=3/2

对应的角动量分别是

$$S = \sqrt{s(s+1)}\hbar = \sqrt{\frac{3}{2}(\frac{3}{2}+1)}\hbar = \frac{\sqrt{15}}{2}\hbar$$

$$L = \sqrt{l(l+1)}\hbar = \sqrt{2(2+1)}\hbar = \sqrt{6}\hbar$$

$$J = \sqrt{j(j+1)}\hbar = \sqrt{\frac{3}{2}(\frac{3}{2}+1)}\hbar = \frac{\sqrt{15}}{2}\hbar$$

$$J^2 = (L+S)^2 = L^2 + S^2 + 2L \cdot S$$

$$\frac{15}{4}\hbar^2 = 6\hbar^2 + \frac{15}{4}\hbar^2 + 2L \cdot S$$

$$L \cdot S = -3\hbar^2$$

### 5-4 试求3F2 态的总角动量和轨道角动量之间的夹角.

2S+1=3 → 自旋量子数 **S=1** 

 $^{2S+1}L_J$ 

轨道角动量量子数 L=3

总角动量量子数 J=2





对于L-S耦合: ----

$$S^2 = (J - L)^2 = J^2 + L^2 - 2J \cdot L$$
  
=  $J^2 + L^2 - 2|J||L|\cos\theta$ 

$$2\hbar^2 = 6\hbar^2 + 12\hbar^2 - 2\sqrt{6}\sqrt{12}\hbar^2 \cos\theta$$

$$16\hbar^2 = 2\sqrt{6}\sqrt{12}\hbar^2\cos\theta$$

$$\cos \theta = \frac{16}{2\sqrt{6}\sqrt{12}} = \frac{8}{6\sqrt{2}} = \frac{4}{3\sqrt{2}} \approx 0.943$$

$$\theta = 19^{\circ}28'$$

5-7 依 L-S 耦合法则,下列电子组态可形成哪些原子态? 其中哪个态的能量最低? (1)  $np^4$ ; (2)  $np^5$ ; (3) (nd)(n'd).

(1) 对于 $np^4$ , p对应l=1, 4代表有4个电子的组态。因为在p态上可以排Y=2(2l+1)=6个

电子。因此 $np^4$ 与 $np^2$ 具有相同的原子态

 $(nl)^{Y-v}$ 的同科电子与 $(nl)^v$ 的同科电子的状态一样

对于 $np^2$ 的电子组态:

$$l_1 = l_2 = 1$$
,总轨道角动量 $L = l_1 + l_2, l_1 + l_2 - 1, ..., |l_1 - l_2| = \mathbf{2}, \mathbf{1}, \mathbf{0}$   
 $s_1 = s_2 = \frac{1}{2}$ ,总自旋角动量 $S = s_1 + s_2, s_1 + s_2 - 1, ..., |s_1 - s_2| = \mathbf{1}, \mathbf{0}$ 

总角动量J = S + L, J = L + S, ..., |L - S| = 2,0, 对应的原子态为 ${}^{1}S_{0}$ ,  ${}^{1}D_{2}$ 

当
$$S=1$$
,  $L=1$ 

总角动量J = L + S, ..., |L - S| = 2,1,0,对应的原子态为 $^{3}P_{0}$ , $^{3}P_{1}$ , $^{3}P_{2}$ 

利用洪特定则(对于一个给定的电子组态形成的原子态,当某原子态具有 的 S 最大时,它处的能级位置最低;对同一 S,又以 L 值大的为最低;对于同科电 子关于同一 L 值而 J 值不同的诸能级次序, 当同科电子数小于或等于闭壳层占 有数的一半时,具有最小 J 值的能级处在最低,这称为正常次序;当同科电子数 大于闭壳层的一半时,具有最大I值的能级为最低.)

每个支壳层可以 2(2l+1)容纳的电子数:

每个壳层可以  $N = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$ 容纳的电子数:

L=0, 1, 2, 3, 4, 5, 6...  $S_{\lambda}$   $P_{\lambda}$   $D_{\lambda}$   $F_{\lambda}$   $G_{\lambda}$   $H_{\lambda}$  I...

因为S = 1的能级低于S = 0的能级。由于 $np^4$ 有4个电子, 即同科电子个数大于支壳层 (闭壳层)的一半,因此**J越** 大能级越低(反常序)。所以  $^{3}P_{2}$ 原子态的能级最低。

# 5-7 依 L-S 耦合法则,下列电子组态可形成哪些原子态? 其中哪个态的能量最低? (1) $np^4$ ;(2) $np^5$ ;(3) (nd)(n'd).

(2) 对于 $np^5$ , p对应l=1, 5代表有5个电子的组态。 $np^5$ 与 $np^1$ 具有相同的原子态

$$l_1 = 1$$
, 总的轨道角动量 $L = 1$   $s_1 = \frac{1}{2}$ , 总的自旋角动量 $S = \frac{1}{2}$  总角动量 $J = L + S$ , ...,  $|L - S| = \frac{3}{2}, \frac{1}{2}$  对应的原子态为 $^2P_{\frac{3}{2}}$ ,  $^2P_{\frac{1}{2}}$ 

 $nP^5$ : 5代表有5个电子,超过半满,**反常序**, 因此**J越大能级越低**。所以 $^2P_3$ 原子态的能级最低

表 26.2 同科电子的态项

| 电子组态             | 态 项                                            | 电子组态           | 态项                                                                                                                                                                                             |
|------------------|------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s                | ²S                                             | d,d°           | <sup>2</sup> D                                                                                                                                                                                 |
| s <sup>2</sup>   | ¹S                                             | $d^2, d^8$     | 'S,'D,'G,'P,'F                                                                                                                                                                                 |
| p,p <sup>5</sup> | <sup>2</sup> P                                 | $d^3, d^7$     | <sup>2</sup> P, <sup>2</sup> D, <sup>2</sup> F, <sup>2</sup> G, <sup>2</sup> H, <sup>4</sup> P, <sup>4</sup> F                                                                                 |
| $p^2, p^4$       | <sup>1</sup> S, <sup>1</sup> D, <sup>3</sup> P | d⁴,d°          | <sup>1</sup> S, <sup>1</sup> D, <sup>1</sup> F, <sup>1</sup> G, <sup>1</sup> I, <sup>3</sup> P, <sup>3</sup> D, <sup>3</sup> F, <sup>3</sup> G, <sup>3</sup> H, <sup>5</sup> D                 |
| p <sup>3</sup>   | <sup>4</sup> S, <sup>2</sup> P, <sup>2</sup> D | d <sup>5</sup> | <sup>2</sup> S, <sup>2</sup> P, <sup>2</sup> D, <sup>2</sup> F, <sup>2</sup> G, <sup>2</sup> H, <sup>2</sup> I, <sup>4</sup> P, <sup>4</sup> F, <sup>4</sup> D, <sup>4</sup> G, <sup>6</sup> S |

(3) nd(n'd), d对应  $l_1 = l_2 = 2$ ,  $L = l_1 + l_2$ ,...,  $|l_1 - l_2| = 4$ , 3, 2, 1, 0;  $s_1 = s_2 = \frac{1}{2}$ , 总自旋角动量 $S = s_1 + s_2$ ,...,  $|s_1 - s_2| = 1$ , 0 因为**不是同科电子**,所以S, L可以取任何组合,并不违背泡利不相容原理

当S = 0, L = 4,3,2,1,0, J = S + L, ..., |S - L| = L 原子态:  ${}^{1}S_{0}$ ,  ${}^{1}P_{1}$ ,  ${}^{1}D_{2}$ ,  ${}^{1}F_{3}$ ,  ${}^{1}G_{4}$  有些同学写成 ${}^{1}G_{3}$ 

当S = 1, L = 4,3,2,1,0, J = S + L, ..., |S - L| 原子态:  ${}^{3}S_{1}$ ,  ${}^{3}P_{2,1,0}$ ,  ${}^{3}D_{3,2,1}$ ,  ${}^{3}F_{4,3,2}$ ,  ${}^{3}G_{5,4,3}$ 

有些同学把G抄写成C

根据洪特定则,**S最大能量最低、S相同时L最大能量最低**,S=1、L=4;  ${}^3\mathbf{G}_{\mathbf{x}}$  由于只有两个电子,在l=2时少于半满,J正常序,J最小时处于能量最低状态。因此 ${}^3\mathbf{G}_{\mathbf{3}}$  为基态

**5-10** 依照 L-S 耦合法则, $(nd)^2$  组态可形成哪几种原子态?能量最低的是哪个态?并依此确定钛原子的基态.

#### ndnd

d对应 $l_1 = l_2 = 2$ ,  $L = l_1 + l_2$ , ...,  $|l_1 - l_2| = 4$ , 3, 2, 1, 0  $s_1 = s_2 = \frac{1}{2}$ , 总的自旋角动量 $S = s_1 + s_2$ , ...,  $|s_1 - s_2| = 1$ , 0 同科电子,需要考虑泡利不相容原理

根据同科电子偶数原则

$$L+S=$$
偶数  $^{2S+1}L_J$ 

当S = 0, L = 4,2,0, J = S + L,...,|S - L| = L原子态:  ${}^{1}S_{0}$ ,  ${}^{1}D_{2}$ ,  ${}^{1}G_{4}$ 

当S = 1, L = 3,1, J = S + L, ..., |S - L| 原子态:  ${}^{3}P_{2,1,0}$ ,  ${}^{3}F_{4,3,2}$ 

根据洪特定则, S最大能量最低、S相同时 L最大能量最低, S=1、L=3  $^3F_{\chi}$ 

由于只有2个电子,所以同科电子个数少于支壳层电子总数(Y=2(2l+1)=6)的一半,因此是**正常序**,所以**J越小,能级越小** 

#### $^{3}F_{2}$ 能级最低

钛原子的原子序数为22,价电子组态为 $3d^2$ ,所以钛原子的基态为 $^3F_2$ 

22 Ti
3 d<sup>2</sup>4s<sup>2</sup>



### 5-12 写出下列原子的基态的电子组态,并确定它们的基态:15P,16S,17Cl,18Ar.

每个支壳层可以容纳的电子数:

$$2(2l+1)$$

每个壳层可以容纳的电子数:

$$N = \sum_{l=1}^{n-1} 2(2l+1) = 2n^2$$

#### 各量子数的取值范围是

| n l | s<br>0 | р<br>1 | d<br>2 | f<br>3 | g<br>4 | h<br>5 | i<br>6 | 总计 |
|-----|--------|--------|--------|--------|--------|--------|--------|----|
| K   | 2      |        |        |        |        |        |        | 2  |
| L   | 2      | 6      |        |        |        |        |        | 8  |
| M   | 2      | 6      | 10     |        |        |        |        | 18 |
| N   | 2      | 6      | 10     | 14     |        |        |        | 32 |
| 0   | 2      | 6      | 10     | 14     | 18     |        |        | 50 |
| P   | 2      | 6      | 10     | 14     | 18     | 22     |        | 72 |
| Q   | 2      | 6      | 10     | 14     | 18     | 22     | 26     | 98 |

**泡利不相容原理**: 在一个原子中,不可能有两个或两个以上的电子具有完全相同的状态、或者完全相同的四个量子数(n, l, m<sub>l</sub>, m<sub>s</sub>)

磷P, 硫S, 氯CI, 氩Ar

(1)  $_{15}P$ 磷原子,电子的在主量子数上的排布为  $1s^22s^22p^63s^2$  **3**  $p^3$ 

主量子数n=1,2这两层已经排满,n=3这一层l=0被排满,只有 $3p^3$ 这三个电子并未排满相应的轨道

根据洪特定则,在同科电子组态里,**总自旋S越大能级越低**,所以这3个电子的**自旋在z的分量一定相同**,这样总的自旋角动量才最大,能量才最低

$$\begin{array}{c|ccccc}
1 & 0 & -1 \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\end{array}$$

总的自旋角动量为 
$$S = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$

如果这3个电子的**自旋角动量分量必须一样**的话,而且他们的**主量子数和轨道角动量量子数也相同**,根据泡利不相容原理  $(n, l, m_l, m_s)$ ,则他们的**轨道角动量的分量就一定不相同**。  $m_{l_1}, m_{l_2}, m_{l_3}$ 只能从l = -1, 0, 1这三个数各取一个,这样就导致总的轨道角动量L = -1 + 0 + 1 = 0

$$\frac{2S+1}{L_J}$$
 因此基态可以写为  $\frac{4S_3}{2}$ 

### 5-12 写出下列原子的基态的电子组态,并确定它们的基态:15P,16S,17Cl,18Ar.

 $(2)_{16}S$ ,电子组态的排布为  $1s^22s^22p^63s^23p^4$ 

同5-7第一问结果一样, 3P<sub>2</sub>

(3)  $_{17}Cl$ ,电子组态的排布为  $1s^22s^22p^63s^23p^5$ 

同5-7第二问结果一样, ${}^2P_{\frac{3}{2}}$ 

对于 $_{16}$ S 原子,基态的电子组态为 $1s^2$   $2s^2$   $2p^6$   $3s^2$   $3p^4$ . 填满的壳层不用考虑,原子的角动量等于  $3p^4$  的总角动量. 根据洪特定则,未满壳层的电子的排布如图 5-4 所示. 故基态原子态 S=1, L=1,又因 4 个 p 电子超过 p 支壳层满额的

1 0 -1 1 1 1 1 1

一半,多重态有反常序,故 J=L+S=2. 所以<sub>16</sub>S 原子基态的原子态为<sup>3</sup>P<sub>2</sub>.

对于<sub>17</sub>Cl 原子,基态的电子组态为1s² 2s² 2p6 3s² 3p5. 填满的壳层不用考虑,原子的角动量等于 3p5 的总角动量. 根据洪特定则,未满壳层的电子的排布如图 5-5 所示. 故基态原子态  $S=\frac{1}{2}$ , L=1,又因 5 个 p 电子超过 p 支壳层满额的一半,多重态有反常序,故  $J=L+S=\frac{3}{2}$ .

所以17Cl 原子基态的原子态为2P3/2.

### 5-12 写出下列原子的基态的电子组态,并确定它们的基态:15P,16S,17Cl,18Ar.

(3) 对于 $_{18}$ Ar 原子,基态的电子组态为 $1s^2 2s^2 2p^6 3s^2 3p^6$ ,壳层全部填满,原子的角动量等于0,即 S=0, L=0, J=L+S=0.

所以<sub>18</sub>Ar 原子基态的原子态为<sup>1</sup>S<sub>0</sub>