TATA24 2024-01-08 SVAR OCH LOSNINGSSKISSER

1.
$$x=0, y=4, z=-2$$
2. $\sqrt{6}$
3. $a\neq -1$

4. 4
5. $-1, 3$
6. $2+x+x^2$

7. $\det(A-\lambda I) = \lambda^2 - 2\lambda - 3 = (\lambda+1)(\lambda-3),$
 $5a^{\circ}$ egenvardena $a=-1$ och $a=-1$

En egenvektor till -1 $a=-1$ (1) och en till $a=-1$ $a=-1$

Mel $T=\begin{pmatrix} 1 & 5 \end{pmatrix}, D=\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$ galler darfor

$$A^{\circ} = TD^{\circ}T^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}\begin{pmatrix} (-1)^{\circ} & 0 \\ 0 & 3^{\circ} \end{pmatrix} + \begin{pmatrix} 5 & -1 \\ -1 & 1 \end{pmatrix} =$$

$$= \frac{1}{4}\begin{pmatrix} 5 \cdot (-1)^{\circ} - 3^{\circ} & (-1)^{\circ} + 3^{\circ} \\ 5 \cdot (-1)^{\circ} - 5 \cdot 3^{\circ} & (-1)^{\circ} + 5 \cdot 3^{\circ} \end{pmatrix}$$

8. $\begin{pmatrix} -1 & 2 & 0 - 1 & 0 \\ 1 & -2 & -2 & 0 \\ -1 & 2 & 0 - 1 & 0 \end{pmatrix}$

$$= \begin{pmatrix} -1 & 2 & 0 - 1 & 0 \\ 5 \cdot (-1)^{\circ} - 5 \cdot 3^{\circ} & (-1)^{\circ} + 5 \cdot 3^{\circ} \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 2 & 0 - 1 & 0 \\ 5 \cdot (-1)^{\circ} - 5 \cdot 3^{\circ} & (-1)^{\circ} + 5 \cdot 3^{\circ} \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 2 & 0 - 1 & 0 \\ 5 \cdot (-1)^{\circ} - 5 \cdot 3^{\circ} & (-1)^{\circ} + 5 \cdot 3^{\circ} \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 2 & 0 - 1 & 0 \\ 5 \cdot (-1)^{\circ} - 5 \cdot 3^{\circ} & (-1)^{\circ} + 5 \cdot 3^{\circ} \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 2 & 0 - 1 & 0 \\ 5 \cdot (-1)^{\circ} - 5 \cdot 3^{\circ} & (-1)^{\circ} & (-1)^{\circ$$

9. Tabellvärdena insatta i elivationen teder till systemet
$$\begin{pmatrix}
a - b + c = -1, \\
c = -4, \\
a + b + c = 4, \\
da + 2b + c = 3.$$
Normalelivationen är
$$\begin{pmatrix}
1 & 0 & 1 & 4 \\
-1 & 0 & 1 & 2 \\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 1 & 4 \\
-1 & 0 & 1 & 2 \\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
-1 \\
4 & 2 & 1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
18 & 8 & 6 & 2 \\
8 & 6 & 2 & 2 \\
6 & 2 & 4
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
15 \\
11 \\
2
\end{pmatrix}
\Leftrightarrow \cdots \Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
1/2 \\
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
18 & 8 & 6 & 2 \\
8 & 6 & 2 \\
6 & 2 & 4
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
1/2 \\
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
6 & 2 & 4
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
1/2 \\
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
6 & 2 & 4
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
3/2 \\
-1
\end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
a \\
c
\end{pmatrix} = \begin{pmatrix}
a$$

Sa
$$N(F) = \{\bar{o}\}\$$
.

Omvant, om $N(F) = \{\bar{o}\}\$ och $F(\bar{u}_1) = F(\bar{u}_2)$, sa har vi $\bar{O} = F(\bar{u}_1) - F(\bar{u}_2) = F(\bar{u}_1 - \bar{u}_2)$, sa $\bar{u}_1 - \bar{u}_2 \in N(F)$.

Eftersom $N(F) = \{\bar{o}\}\$, waste da $\bar{u}_1 = \bar{u}_2$ och F ar injectiv.

b)
$$\dim N(G) + \dim V(G) = \dim \mathbb{R}^3 = 3$$
.
Eftersom $\dim V(G) \leq \dim \mathbb{R}^2 = 2$, maste $\dim N(G) \geq 1$.
Alltsa finns $\overline{u} \in \mathbb{R}^3$, $\overline{u} \neq \overline{o}$, so att $\overline{u} \in N(G)$.
 $F \circ G(\overline{u}) = F(G(\overline{u})) = F(\overline{o}) = \overline{o}$, so $\overline{u} \in N(F \circ G)$.
Darfor galter $N(F \circ G) \neq \{\overline{o}\}$, so $F \circ G$ ar interinjective enligt (a).