

Deep Learning

Blood Cell Classification

U Kang Seoul National University

In This Lecture

- Blood cell image
- Multi-class classification from blood cell image
- Implement a deep learning model

Outline

- **→** □ Introduction
 - □ Dataset
 - □ Preprocessing Codes

Motivation

- The diagnosis of blood-based diseases often involves identifying and characterizing patient blood samples
- Automated methods to detect and classify blood cell subtypes have important medical applications
 - Goal: detect blood cell type from a blood cell image

Goals

 Classify the blood cell image data into one of four categories

LYMPHOCYTE

MONOCYTE

EOSINOPHIL

NEUTROPHIL

Problem Definition

Given: blood cell image data

- Classify: the data into the correct categories
 - LYMPHOCYTE
 - □ EOSINOPHIL
 - MONOCYTE
 - NEUTROPHIL

Outline

- ☑ Introduction
- **→** □ Dataset
 - □ Preprocessing Codes

Training Dataset

- Image size is (240, 320)
- Number of images in each category
 - □ LYMPHOCYTE: 2,483
 - □ EOSINOPHIL: 2,497
 - MONOCYTE: 2,478
 - NEUTROPHIL: 75

Training Dataset

- Approximately 7,500 images grouped into 4 different folders according to cell type
- JPEG files in training directory

U Kang

9

Test Dataset

- **2,467** images
- The ratio of classes is balanced

Outline

- ☑ Introduction
- Data
- **→** □ Preprocessing Codes

Import libraries

 Import the libraries such as numpy, pandas, math, cv2, os, matplotlib, tensorflow, and keras

```
import numpy as np
import pandas as pd
import math, cv2, os
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import keras
%matplotlib inline
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import tensorflow as tf

print(tf.__version__)
```


Loading the Dataset

 Using the 'ImageDataGenerator' library, we prepare the input data

Found 7533 images belonging to 4 classes.

Test

Test measure

```
 acc = \frac{number\ of\ correct\ predictions}{total\ number\ of\ predictions}
```

- Save results to csv file
 - □ 1st column: file names
 - 2nd column: predicted classes
 - Separator: comma ','
 - Header: ['Filename', 'Prediction']
 - 1 Filename, Prediction 2 _11_6757.jpeg,E0SIN0PHIL

14

Submission

- Submit the "team#.zip" that contains followings:
 - "team#.csv": result including prediction labels
 - "team#.ppt": ppt summarizes your work
 - 10 min for presentation and 5 min for Q&A
 - Preprocessing, model architecture, training technique etc.
 - "team#.ipynb": your code
- E-mail address: ant6si@snu.ac.kr
- Leaderboard [<u>link</u>]
- Submission Due: 2022/02/25 12:30

Questions?