Package 'lgpr'

January 28, 2020

```
covariate selection for longitudinal data using additive
      Gaussian process regression. Includes specialized non-stationary disease
      effect modeling features for biomedical studies. Bayesian inference for
      model parameters is performed using Stan.
License GPL (>=3)
Encoding UTF-8
LazyData true
Biarch true
Depends R (>= 3.4.0),
Imports methods,
      Rcpp (>= 0.12.0),
      rstan (>= 2.18.1),
      rstantools (\geq 2.0.0),
      bayesplot (>= 1.7.0),
      MASS (>= 7.3-50),
      stats (>= 3.4),
      ggplot2 (>= 3.1.0),
      ggpubr (>= 0.2)
LinkingTo BH (>= 1.72.0-2),
      Rcpp (>= 0.12.0),
      RcppEigen (>= 0.3.3.3.0),
      rstan (>= 2.18.1),
      StanHeaders (\geq 2.18.0)
SystemRequirements GNU make
RoxygenNote 7.0.2
Suggests knitr,
      rmarkdown,
      testthat,
```

Title Longitudinal Gaussian Process Regression

Description Implements interpretable nonparametric analysis and

Version 0.33.0

covr **VignetteBuilder** knitr

R topics documented:

Igpr-package
add_categorical_covariate
add_diseaseAges
add_test_caseIDs
adjusted_Chat
affected 8
assess_convergence
average_predictions
check_data
check_formula
check_hyperparameter_names
check_varInfo
check_warp_prior
component_index_to_covariate_index
component_index_to_type
compute_kernel_matrices
compute_lppd
compute_noise_level
compute_predicted_components
compute_predictions
compute_relevances
compute_relevances_alpha
compute_relevances_fmean
create_covariates_stan
create_data_plot_df
create_example_fit
create_F
create_predictions_plot_df1
create_predictions_plot_df2
create_simdata_plot_df
create_stan_input
create_test_points
create_X
create_X_star
create_y
dinvgamma_stanlike
disease_effect
drawCategorical
drawContinuous
drawLatentComponents
drawMeasurementTimes
example_call
extract_t_effect_samples
full_model
full_model_formula
get_case_ids

get_case_row_mappings	
get_diseased_info	
get_function_components_from_df	
get_function_components_from_df_all	
get_g_from_f	
get_model_dims	
get_obs_onset_times	
get_onset_info	
get_pkg_description	
get_predicted	
get_prior_params	
get_prior_type	
get_response	
get_runtime	
get_stan_model	
get_transform_type	
hyperparam_estimate	
hyperparam_samples	
idx_to_cont_index	
kernel_beta	
kernel_bin	
kernel_ns	
kernel_se	
kernel_var_mask	
kernel_zerosum	
lgp	
lgpfit-class	
lgpmodel-class	
lgp_component_names	
lgp_covariate_names	
lgp_fit	
lgp_model	
lgp_predict	
lgp_test	
likelihood_as_int	
likelihood_as_str	
log_gaussian_density	. 55
matrix_to_df	
model_info	
nameComponents	
onsetsToDiseaseAge	
parse_prior_distribution	
parse_prior_t_effect	
plot,lgpfit,ANY-method	
plot_beta	
plot_component	
plot_components	
plot_components_posterior	. 62

plot_components_simdata	
plot_data	63
plot_data_hl_cat	64
plot_data_hl_cont	64
plot_data_hl_disease	
plot_data_hl_individual	
plot_data_plain	
plot_effect_times	67
plot_inputwarp	68
plot_invgamma	
plot_posterior_components	
plot_posterior_components_sub1	
plot_posterior_components_sub2	
plot_posterior_f	
plot_posterior_predictions	72
plot_posterior_y	
plot_predictions_add_onsets	75
plot_predictions_options	
plot_relevances	
plot_samples	
plot_simdata	
postproc	
postproc_relevances	
predict_preproc	
PRED_to_arrays	
print_prior	
prior_default	
prior_LonGP	
prior_stan_to_readable	
prior_statement	
prior_to_stan	
qinvgamma_stanlike	
• •	
repvec	
rtgeom	
scaleRelevances	
selection	
selection_fixed_threshold	
selection_prob	
selection_prob_fixed_threshold	
selection_prob_plot	
set_C_hat	
set_N_cat	
set_N_trials	
show,lgpfit-method	
show,lgpmodel-method	
simdata_colnames_pretty	
simulate_data	
simulate kernels	95

lane nookoaa	4
lgpr-package	

Index		104
	warp_input	102
	var_mask	
	validate_prior	101
	stan_input_X_and_D	101
	standardize_inputs	100
	split_data_random_each	100
	split_data_random	99
	split_data_by_timepoint	99
	split_data_by_id	98
	split_data	98
	sim_parse_t_obs	97
	sim_generate_names	97
	sim_data_to_observed	96
	sim_check_covariates	96

Description

lgpr-package

Longitudinal Gaussian Process regression. The package features

- Additive Gaussian process modeling of longitudinal data
- Posterior inference of the model (hyper)parameters using Stan

The 'lgpr' package.

- Computation of covariate relevances
- Specialized modeling of a non-stationary disease effect
- Functions for visualizing longitudinal data, posterior samples and model predictions
- Gaussian, Poisson, binomial or negative binomial observation models

Basic usage

- See the main function 1gp for creating and fitting additive longitudinal GP models.
- See tutorials at https://jtimonen.github.io/lgpr-usage/index.html

Citation

An interpretable probabilistic machine learning method for heterogeneous longitudinal studies. Juho Timonen, Henrik Mannerstrom, Aki Vehtari and Harri Lahdesmaki, 2019. https://arxiv.org/abs/1912.03549

Author(s)

Juho Timonen (first.last at aalto.fi)

References

- 1. Carpenter, B. et al. (2017). *Stan: A probabilistic programming language*. Journal of Statistical Software 76(1).
- 2. Jonah Gabry, Ben Goodrich and Martin Lysy (2019). *rstantools: Tools for Developing R Packages Interfacing with 'Stan'*. R package version 2.0.0.
- 3. Gabry, J. and Mahr, T. (2019). *bayesplot: Plotting for Bayesian Models*. R package version 1.7.0, http://mc-stan.org/bayesplot.
- 4. Stan Development Team (2019). *RStan: the R interface to Stan.* R package version 2.19.2. http://mc-stan.org/.

add_categorical_covariate

Easily add a categorical covariate to a data frame

Description

Easily add a categorical covariate to a data frame

Usage

```
add_categorical_covariate(data, x, id_var = "id")
```

Arguments

data	the original data frame
x	A named vector containing the category for each individual. The names should specify the individual id.
id_var	name of the id variable in data

Value

A data frame with one column added. The new column will have same name as the variable passed as input x.

add_diseaseAges 7

 Create the disease-related age covariate vector based on the disease initiation times and add it to the data frame
initiation times and add it to the data frame

Description

Create the disease-related age covariate vector based on the disease initiation times and add it to the data frame

Usage

```
add_diseaseAges(data, t_init, id_var = "id", time_var = "age")
```

Arguments

data	the original	data frame
------	--------------	------------

t_init A named vector containing the observed initiation or onset time for each indi-

vidual. The names, i.e. names(t_init), should specify the individual id.

id_var name of the id variable in data time_var name of the time variable in data

Value

A data frame with one column added. The new column will be called 'diseaseAge'. For controls, the value of diseaseAge will be set to NaN.

add_test_caseIDs

Add case IDs to test data frame

Description

Add case IDs to test data frame

Usage

```
add_test_caseIDs(X_test, X_data)
```

Arguments

 X_{-} test test data frame X_{-} data data frame

Value

Updated X_test data frame.

8 affected

adjusted_Chat	Create the GP mean input for 1gp, so that it accounts for normaliza-
	tion between data points in the Poisson or NB observation model

Description

Create the GP mean input for 1gp, so that it accounts for normalization between data points in the Poisson or NB observation model

Usage

```
adjusted_Chat(y, norm_factors)
```

Arguments

```
y response variable, vector of length n
norm_factors normalization factors, vector of length n
```

Value

a vector of length n, which can be used as the C_hat input to the 1gp function

affected Select the affected individuals

Description

Select the affected individuals

Usage

```
affected(object, medians.return = FALSE, threshold = 0.5)
```

Arguments

object An object of class lgpfit.

medians.return Should the medians of beta parameters also be returned?

threshold A value that the median of beta has to exceed

Value

A binary vector indicating the individuals for which the disease effect is inferred to exist.

assess_convergence 9

assess_convergence

Assess convergence of the chains

Description

Assess convergence of the chains

Usage

```
assess_convergence(fit, skip_F_gen = TRUE)
```

Arguments

fit An (incomplete) object of class lgpfit. skip_F_gen Should F_mean, F_var etc. be ignored

Value

A data frame with columns c("Rhat", "Bulk_ESS", "Tail_ESS").

average_predictions

Average predictions over samples

Description

Average predictions over samples

Usage

```
average_predictions(LIST)
```

Arguments

LIST

a list over samples

Value

a list

10 check_formula

check_data

Validate the 'data' input to 1gp and resolve covariate types

Description

Validate the 'data' input to 1gp and resolve covariate types

Usage

```
check_data(data, varInfo, verbose)
```

Arguments

data the data frame that was passed to 1gp

varInfo variable type info

verbose can this print some info?

Value

a list

check_formula

Validate the formula of 1gp

Description

Checks if the input 'formula' to lgp_model are valid with the given data

Usage

```
check_formula(formula, data)
```

Arguments

formula the formula that was passed to lgp_model data the data frame that was passed to lgp_model

Value

nothing

check_hyperparameter_names

An error message for wrong hyperparameter naming

Description

An error message for wrong hyperparameter naming

Usage

```
check_hyperparameter_names(dist, correct)
```

Arguments

dist the distribution

correct the allowed hyperparameter names

Value

nothing

check_varInfo

Check that variable types make sense

Description

Check that variable types make sense

Usage

```
check_varInfo(varInfo)
```

Arguments

varInfo

a named list

Value

nothing

check_warp_prior

Visual checking of what kind of input warping functions a given prior allows

Description

Visual checking of what kind of input warping functions a given prior allows

Usage

```
check_warp_prior(prior, L = 24, ...)
```

Arguments

prior A valid prior argument to lgpmodel.

L time scale

... other arguments to plot_invgamma

Value

a ggplot object

```
component_index_to_covariate_index
```

Component index to covariate index

Description

Component index to covariate index

Usage

```
component_index_to_covariate_index(D, idx)
```

Arguments

D integer vector of length 6

idx integer

Value

an integer

```
component_index_to_type
```

Component index to component type

Description

Component index to component type

Usage

```
component_index_to_type(D, idx)
```

Arguments

D integer vector of length 6

idx integer

Value

an integer

```
compute_kernel_matrices
```

Evaluate kernel matrices for each component

Description

Used by compute_predictions.

Usage

```
compute_kernel_matrices(X1, X2, kernel_info)
```

Arguments

X1 Covariate matrix of size n1 x sum(D).

X2 Covariate matrix of size n2 x sum(D).

kernel_info A list of parameters and other kernel info.

Value

An array of size $n1 \times n2 \times sum(D)$.

compute_lppd

Compute log-posterior predictive density at test points

Description

Compute log-posterior predictive density at test points

Usage

```
compute_lppd(PRED, y_test)
```

Arguments

PRED predictions

y_test values of the response variable at the test points

Value

```
a matrix with size n_samples x n_data
```

compute_noise_level

Determine noise level

Description

Determine noise level

Usage

```
compute_noise_level(pars, model, noise_method)
```

Arguments

pars A data frame representing one parameter sample, i.e one row of as.data.frame(stanfit),

where stanfit is an object of class stanfit

model An object of class lgpmodel noise_method Noise level estimation method.

Value

a value between 0 and 1

```
compute_predicted_components
```

Compute component-wise predictions at test points

Description

Used by compute_predictions.

Usage

```
compute_predicted_components(KK, KKs, KKss, y_data, sigma_n, DELTA)
```

Arguments

KK	Kernel matrices data vs. data.
KKs	Kernel matrices test vs. data.
KKss	Kernel matrices test vs. test.

y_data Response variable.

sigma_n Noise standard deviation parameter.

DELTA Diagonal jitter that ensures pos. def. kernel.

Value

A list containing predicted means and variances.

compute_predictions Compute component-wise predictions at test points

Description

```
Used by lgp_predict.
```

Usage

```
compute_predictions(
   X_data,
   y_data,
   X_test,
   params,
   D,
   info,
   cnames,
   TSCL,
   handle_extra = "warning"
)
```

16 compute_relevances

Arguments

X_data Covariate matrix (data points).y_data Response variable (data points).X_test Covariate matrix (test points).

params Kernel function and other hyperparameters

D a vector of length 6 info other model info

cnames Names of the model components.

TSCL time scaling function and its inverse

handle_extra What to do if test data contains individuals that are not in the training data? Must

be 'silent', 'warning' or 'error'.

Value

A list.

Description

Compute component relevances and estimate amount of noise (one MCMC sample)

Usage

compute_relevances(pars, model, method, noise_method)

Arguments

pars A data frame representing one parameter sample, i.e one row of as.data.frame(stanfit),

where stanfit is an object of class stanfit

model An object of class lgpmodel

method Relevance determination method. Must be either "f_mean" or "alpha".

noise_method Noise level estimation method.

Value

```
a matrix of size 1 x n_components + 1
```

compute_relevances_alpha

The alpha relevance determination method

Description

The alpha relevance determination method

Usage

```
compute_relevances_alpha(pars, model)
```

Arguments

pars A data frame representing one parameter sample, i.e one row of as.data.frame(stanfit),

where stanfit is an object of class stanfit

model An object of class 1gpmodel

Value

```
a vector of length n_components
```

```
compute_relevances_fmean
```

The f_mean relevance determination method

Description

The f_mean relevance determination method

Usage

```
compute_relevances_fmean(pars, model)
```

Arguments

pars A data frame representing one parameter sample, i.e one row of as.data.frame(stanfit),

where stanfit is an object of class stanfit

model An object of class 1gpmodel

Value

a vector of length n_components

18 create_data_plot_df

```
create_covariates_stan
```

Create the covariate matrix that is given to stan

Description

Create the covariate matrix that is given to stan

Usage

```
create_covariates_stan(data, varInfo, types, formula, verbose)
```

Arguments

data the data frame that was passed to lgp

varInfo original variable type info

types the types returned by check_data

formula the model formula

verbose can this print some info?

Value

a list

```
{\tt create\_data\_plot\_df} \qquad {\tt \it Create\ a\ plotting\ data\ frame\ for\ ggplot}
```

Description

A helper function for plot_data.

Usage

```
create_data_plot_df(data, hl_1, hl_2, hl_cont)
```

Arguments

data a data frame

h1_1 highlighting by color h1_2 highlighting by linestyle h1_cont highlighting continuous

Value

an extended data frame

create_example_fit 19

```
create_example_fit Create an example fit object
```

Description

Create an example fit object

Usage

```
create_example_fit(N = 4, t = 10 * c(1, 2, 3, 4, 5), iter = 100, chains = 1)
```

Arguments

N number of individuals

t time points

iter number of iterations chains number of chains

Value

```
an object of class lgpfit
```

create_F

Simulate latent function components for longitudinal data analysis

Description

Simulate latent function components for longitudinal data analysis

Usage

```
create_F(
   X,
   covariates,
   relevances,
   lengthscales,
   X_affected,
   dis_fun,
   bin_kernel,
   steepness,
   vm_params,
   force_zeromean
)
```

Arguments

X input data matrix (generated by create_X)

covariates Integer vector that defines the types of covariates (other than id and age). Dif-

ferent integers correspond to the following covariate types:

• 0 = disease-related age

• 1 = other continuous covariate

• 2 = a categorical covariate that interacts with age

• 3 = a categorical covariate that acts as a group offset

• 4 = a categorical covariate that that acts as a group offset AND is restricted

to have value 0 for controls and 1 for cases

relevances Relative relevance of each component. Must have be a vector so that

length(relevances) = 2 + length(covariates).

First two values define the relevance of the infividual-specific age and shared

age component, respectively.

lengthscales A vector so that

length(lengthscales) = 2 + sum(covariates %in% c(0,1,2)).

X_affected which individuals are affected by the disease

dis_fun A function or a string that defines the disease effect. If this is a function, that

function is used to generate the effect. If dis_fun is "gp_vm" or "gp_ns", the disease component is drawn from a nonstationary GP prior (vm is the variance

masked version of it).

bin_kernel Should the binary kernel be used for categorical covariates? If this is TRUE, the

effect will exist only for group 1.

steepness Steepness of the input warping function. This is only used if the disease compo-

nent is in the model.

vm_params Parameters of the variance mask function. This is only needed if useMaskedVarianceKernel

= TRUE.

force_zeromean Should each component (excluding the disease age component) be forced to

have a zero mean?

Value

a data frame FFF where one column corresponds to one additive data component

create_predictions_plot_df1

Create a plotting data frame for ggplot

Description

A helper function for plot_predictions.

Usage

```
create_predictions_plot_df1(fit, scale_f = TRUE, n_sds)
```

Arguments

fit An object of class lgpfit.

scale_f Should the predictions be scaled back to the original data scale?

n_sds number of standard deviations for the uncertainty band width

Value

a data frame

create_predictions_plot_df2

Create a plotting data frame for ggplot

Description

A helper function for plot_predictions.

Usage

```
create_predictions_plot_df2(model, PRED, scale_f = TRUE, mode, n_sds)
```

Arguments

model An object of class 1gpmodel.

PRED Predictions computed using lgp_predict.

scale_f Should the predictions be scaled back to the original data scale?

mode mode

n_sds number of standard deviations for the uncertainty band width

Value

a data frame

22 create_stan_input

```
{\tt create\_simdata\_plot\_df}
```

Create a plotting data frame for ggplot

Description

A helper function for plot_simdata_by_component.

Usage

```
create_simdata_plot_df(simData)
```

Arguments

simData

An object created using simulate_data.

Value

a data frame

create_stan_input

Create input for Stan

Description

Parses the formula and data input to lgp_model. Also performs many input checks.

Usage

```
create_stan_input(
  formula,
  data,
  prior,
  likelihood,
  varInfo,
  standardize,
  uncertain_effect_time,
  equal_effect,
  C_hat,
 DELTA,
  sample_F,
  verbose,
  variance_mask,
 N_trials,
  skip_gen_quant
)
```

23 create_stan_input

Arguments

data

formula

A formula of the form $y \sim x1 + x2 + x3$ defining the response variable y and covariates xi. The formula must contain exatly one tilde (~), with response variable on the left-hand side and covariates on the right-hand side. Covariates should be separated by a plus (+) sign. All variables that appear in the formula must exist as columns of data. Note that effects of categorical covariates are by default defined as interactions with time_variable. If you wish to change this, see the argument offset_vars. The subject identifier variable cannot currently be included in offset_vars. If you wish to model the effect of id_variable as a constant offset, you can create another covariate with the same values and use it in your formula and offset_vars instead.

A data frame containing the variables given in formula as columns.

A named list, defining the prior distribution of model (hyper)parameters. It is prior

recommended to first create this using the function prior_default, and then

possibly modify it.

likelihood Determines the observation model. Must be either "Gaussian" (default), "Poisson",

"NB" (negative binomial) or "binomial". To use Bernoulli likelihood, use

likelihood="binomial" and set N_trials as a vector of ones.

varInfo Variable type info.

standardize Should the response variable be standardized?

uncertain_effect_time

Do we wish to model uncertainty in the disease effect time?

Is the disease effect assumed to be equally strong for all diseased individuals?

The GP mean. Must be a vector of length dim(data)[1], or a real number defining a constant GP mean. If NULL, this is set to

> • C_hat = 0, if likelihood is "Gaussian", because with Gaussian likelihood the response variable is by default centered to have zero mean.

• C_hat = log(mean(y)) if likelihood is "Poisson" or "NB",

• $C_{hat} = log(p/(1-p))$, where $p = mean(y/N_{trials})$ if likelihood is "binomial",

where y denotes the response variable. You can modify this vector to account for normalization between data points. With Gaussian likelihood though, do not modify this argument, normalize the data beforehand instead.

DELTA the amount of added jitter to ensure positive definiteness of the kernel

sample_F Determines if the function values are be sampled (must be TRUE if likelihood is

not "Gaussian").

Should more verbose output be printed? verbose

Should a variance mask be used to force disease component variance to zero variance_mask

before disease onset?

N_trials This argument (number of trials) is only needed when likelihood is binomial.

Must have length one or equal to number of data points. Setting N_trials=1

corresponds to Bernoulli observation model.

skip_gen_quant If this is true, the generated quantities block of Stan is skipped.

equal_effect

C_hat

24 create_X

Value

A list containing the data to be given to rstan::sampling, some info about preprocessing and all the information about scaling the inputs and response, and updated variable type info.

create_test_points

Create a matrix of test points

Description

Create a matrix of test points

Usage

```
create_test_points(object, t_test)
```

Arguments

object

An object of class lgpmodel or lgpfit

 t_test

Test time points (will be same for each individual).

Value

A data frame.

create_X

Simulate an input data frame X

Description

Simulate an input data frame X

Usage

```
create_X(
   N,
   covariates,
   names,
   n_categs,
   t_data,
   t_jitter,
   t_effect_range,
   continuous_info,
   verbose
)
```

25 create_X_star

Arguments

Number of individuals.

covariates

Integer vector that defines the types of covariates (other than id and age). If not given, only the id and age covariates are created. Different integers correspond to the following covariate types:

- 0 = disease-related age
- 1 = other continuous covariate
- 2 = a categorical covariate that interacts with age
- 3 = a categorical covariate that acts as a group offset
- 4 = a categorical covariate that that acts as a group offset AND is restricted to have value 0 for controls and 1 for cases

names

Covariate names.

n_categs

An integer vector defining the number of categories for each categorical covariate, so that length(n_categs) equals to the number of 2's and 3's in the covariates vector.

t_data

Measurement times.

t_jitter

Standard deviation of the jitter added to the given measurement times.

t_effect_range Time interval from which the disease effect times are sampled uniformly. Alternatively, This can any function that returns the (possibly randomly generated) real disease effect time for one individual.

continuous_info

Info for generating continuous covariates. Must be a list containing fields lambda and mu, which have length 3. The continuous covariates are generated so that x $<-\sin(a*t+b)+c$, where

- t <-seq(0,2*pi,length.out = k)
- a <-mu[1] + lambda[1]*stats::runif(1)
- b <-mu[2] + lambda[2]*stats::runif(1)
- c <-mu[3] + lambda[3]*stats::runif(1)

verbose

verbosity mode

Value

list(X,onsets,par_cont)

create_X_star

Create X_star

Description

Create X_star

Usage

```
create_X_star(X, D, t_test, SCL, X_notnan)
```

26 create_y

Arguments

X covariate matrix

D covariate type information

t_test Test time points (will be same for each individual).

SCL time scaling function and its inverse

X_notnan indicates where X_diseaseAge is not NaN

Value

A data frame.

create_y

Generate noisy observations

Description

Generate noisy observations

Usage

```
create_y(noise_type, f, snr, phi, N_trials)
```

Arguments

noise_type Either "Gaussian", "Poisson", NB" (negative binomial) or "binomial".

f The underlying signal.

snr The desired signal-to-noise ratio. This argument is valid only with

noise_type = "Gaussian".

phi The dispersion parameter for negative binomial data. The variance is $g + g^2/phi$.

N_trials The number of trials parameter for binomial data.

Value

A list out, where

- out\$g is f mapped through an inverse link function and
- out\$y is the noisy response variable.

dinvgamma_stanlike 27

dinvgamma_stanlike	Inverse gamma distribution pdf with the same parametrization as in
	Stan

Description

See here.

Usage

```
dinvgamma_stanlike(x, alpha, beta, log = FALSE)
```

Arguments

x point where to compute the density

alpha positive real number beta positive real number

log should logarithm of the density be returned?

Value

density or log-density at x

Description

Draw disease component from a parameteric form

Usage

```
disease_effect(X_id, X_disAge, dis_fun)
```

Arguments

X_id the id covariate

X_disAge the diseaseAge covariate dis_fun the disease age effect function

Value

a vector

28 drawContinuous

drawCategorical

Indepedently draw categorical variables for each individual

Description

Indepedently draw categorical variables for each individual

Usage

```
drawCategorical(N, k, v)
```

Arguments

N number of individuals k number of timepoints

v vector of numbers of different categories

Value

```
a matrix of size N x D, where D <-length(v)
```

 ${\tt drawContinuous}$

Indepedently draw continuous variables for each individual

Description

Indepedently draw continuous variables for each individual

Usage

```
drawContinuous(N, k, D, mu, lambda)
```

Arguments

N	number of individuals
k	number of timepoints
D	number of variables
mu	a vector of length 3
lambda	a vector of length 3

Value

```
a matrix of size N x D
```

drawLatentComponents29

Description

Draw realizations of multivariate normals

Usage

```
drawLatentComponents(KK)
```

Arguments

KK

3D matrix where KK[,,j] is the jth kernel matrix

Value

a matrix FFF

 $\ \ \, draw {\it Measurement Times} \quad {\it Draw the age covariate}$

Description

Draw the age covariate

Usage

```
drawMeasurementTimes(N, t_data, t_jitter)
```

Arguments

number of individuals Ν t_data a vector of length k

t_jitter Standard deviation of the jitter added to the given measurement times.

Value

```
a vector of length N*k
```

example_call

Returns a valid example call of the 1gp function witi valid data input

Description

Returns a valid example call of the 1gp function witi valid data input

Usage

```
example_call()
```

Value

a string

```
extract_t_effect_samples
```

Extract samples of T_effect

Description

Extract samples of T_effect

Usage

```
extract_t_effect_samples(fit)
```

Arguments

fit

an object of class lgpfit

Value

a matrix

full_model 31

full_model

Create a full model with all covariates included

Description

Create a full model with all covariates included

Usage

```
full_model(data, ...)
```

Arguments

data a data frame

... additional parameters to lgp_model

Value

a ggplot object

full_model_formula

Get formula of a full model with all covariates included

Description

Get formula of a full model with all covariates included

Usage

```
full_model_formula(data)
```

Arguments

data

a data frame, where the response variable is the last column

Value

a formula

get_case_ids

Get case ids in original data

Description

Get case ids in original data

Usage

```
get_case_ids(fit)
```

Arguments

fit

an object of class lgpfit

Value

a character vector

get_case_row_mappings Create case ID to rows and back mappings

Description

Create mappings

- from case ID to data rows (caseID_to_rows, caseID_nrows)
- from row number to case ID (row_to_caseID)

Usage

```
get_case_row_mappings(X_notnan, X_id, only_R2C = FALSE)
```

Arguments

X_notnan binary vector indicating if diseaseAge is available for that measurement

X_id the id covariate in X

only_R2C should this return only the rows-to-caseID mapping

Value

a list

get_diseased_info 33

get_diseased_info

Get some variables related to diseased individuals

Description

Get some variables related to diseased individuals

Usage

```
get_diseased_info(D, X, X_notnan, uncertain_effect_time, equal_effect, TSCL)
```

Arguments

D an integer vector of length 6

X the design matrix

X_notnan a binary vector of length n

uncertain_effect_time

Boolean value

equal_effect Boolean value

TSCL time scaling function and its inverse

Value

a list

```
get_function_components_from_df
```

Get values of function components at data points, for one MCMC sample

Description

Get values of function components at data points, for one MCMC sample

Usage

```
get_function_components_from_df(pars, model)
```

Arguments

pars A data frame representing one parameter sample, i.e one row of as.data.frame(stanfit),

where stanfit is an object of class stanfit

model An object of class 1gpmodel

Value

A matrix of size n_data x n_components+2

34 get_g_from_f

```
{\tt get\_function\_components\_from\_df\_all}
```

Get values of function components at data points

Description

Get values of function components at data points

Usage

```
get_function_components_from_df_all(df, model)
```

Arguments

df A stanfit object as data frame, obtained as as.data.frame(stanfit)

model An object of class 1gpmodel

Value

An array of size n_samples x n_data x n_components+2

 $get_g_from_f$

Get signal on data scale from process f

Description

Get signal on data scale from process f

Usage

```
get_g_from_f(f, model)
```

Arguments

f A vector

model an object of class 1gpmodel

Value

A vector g

get_model_dims 35

get	model	dims

Get some dimension variables that the Stan model needs as input

Description

Get some dimension variables that the Stan model needs as input

Usage

```
get_model_dims(X, D)
```

Arguments

X the design matrix
D a vector of length 6

Value

a list

get_obs_onset_times

Extract observed disease onset times from diseaseAge covariate vector

Description

Extract observed disease onset times from diseaseAge covariate vector

Usage

```
get_obs_onset_times(id, age, disAge)
```

Arguments

id the id covariate, vector of length nage the age covariate, vector of length n

disAge the observed disease-related age covariate, vector of length n

Value

vector of observed onset times

36 get_pkg_description

get_onset_info

Get disease onset info

Description

This returns

- a vector of observed onsets
- mapping from case ID to average sampling interval before the observed disease onset

Usage

```
get_onset_info(D, X, MAPS, TSCL)
```

Arguments

D an integer vector of length 6

X the design matrix

MAPS mappings created by get_case_row_mappings

TSCL time scaling function and its inverse

Value

two vectors of length N_cases

get_pkg_description

Get lgpr version description

Description

Get lgpr version description

Usage

```
get_pkg_description()
```

Value

package description

get_predicted 37

get_predicted

A helper function

Description

A helper function

Usage

```
get_predicted(fit)
```

Arguments

fit

An (incomplete) object of class lgpfit.

Value

a list

get_prior_params

Get prior parameters

Description

Get prior parameters

Usage

```
get_prior_params(dist, add_correct)
```

Arguments

dist the distribution

add_correct additional correct parameter names

Value

a hyperparameter vector of length 2

38 get_response

get_prior_type

A dictionary from distribution names to integer encoding

Description

A dictionary from distribution names to integer encoding

Usage

```
get_prior_type(type)
```

Arguments

type

type of the distribution as a string

Value

an integer

get_response

Get the (scaled) response variable

Description

Gets and possibly scales the response variable.

Usage

```
get_response(data, varInfo, standardize, LH)
```

Arguments

data the data frame given as input to 1gp

varInfo variable type info

standardize should the response be standardized to unit variance and zero mean

LH likelihood as integer

Value

a list with the (scaled) response variable

get_runtime 39

 $get_runtime$

Get average runtime of a chain

Description

Get average runtime of a chain

Usage

```
get_runtime(object)
```

Arguments

object

An object of class lgpfit.

Value

Average runtimes for warmup and sampling

get_stan_model

Get main stan model of the package

Description

Get main stan model of the package

Usage

```
get_stan_model()
```

Value

an object of class stanmodel

40 hyperparam_estimate

get_transform_type

A dictionary from transform names to integer encoding

Description

A dictionary from transform names to integer encoding

Usage

```
get_transform_type(type)
```

Arguments

type

Type of the transform as a string. Allowed arguments are "none" or "square". If NULL, "none" is used.

Value

```
an integer (0, 1 \text{ or } 2)
```

hyperparam_estimate

Get a posterior estimate of model (hyper)parameters

Description

Get a posterior estimate of model (hyper)parameters

Usage

```
hyperparam_estimate(object, type = "mean")
```

Arguments

object An (incomplete) object of class 1gpfit.

type Must be "mean", "median", or "map".

Value

a data frame

hyperparam_samples 41

hyperparam_samples

Get a set of model (hyper)parameter samples

Description

Get a set of model (hyper)parameter samples

Usage

```
hyperparam_samples(object, samples = NULL)
```

Arguments

object

An (incomplete) object of class lgpfit.

samples

Sample indices. If NULL, all samples are taken.

Value

a data frame

idx_to_cont_index

Component index to how manyth continuous covariate it is

Description

Component index to how manyth continuous covariate it is

Usage

```
idx_to_cont_index(D, idx)
```

Arguments

D integer vector of length 6

idx an integer

Value

an integer

42 kernel_bin

kernel_beta	Compute the multiplier matrix K_beta (to eneable heterogeneous disease effect)

Description

Compute the multiplier matrix K_beta (to eneable heterogeneous disease effect)

Usage

```
kernel_beta(beta, row_to_caseID_1, row_to_caseID_2)
```

Arguments

```
beta a row vector of length N_cases
row_to_caseID_1
mapping from row index to case ID
row_to_caseID_2
mapping from row index to case ID
```

Value

a matrix

kernel_bin

Compute a binary kernel matrix

Description

Compute a binary kernel matrix

Usage

```
kernel_bin(x1, x2 = NULL, alpha = 1, pos_class = 1)
```

Arguments

```
    x1 (integer) vector of length n
    x2 (integer) vector of length m
    alpha marginal std (default = 1)
    pos_class the positive class label
```

Value

A kernel matrix of size n x m

kernel_ns 43

kernel_ns	Compute a nonstationary kernel matrix using input warping

Description

Compute a nonstationary kernel matrix using input warping

Usage

```
kernel_ns(x1, x2 = NULL, alpha = 1, ell, a, b, c, nan_replace = 0)
```

Arguments

x1	vector of length n
x2	vector of length m
alpha	marginal std (default = 1)
ell	lengthscale in the warped space
a	steepness of the warping function rise
b	location of the effective time window
С	maximum range
nan_replace	the value to use for replacing NaN values

Value

A kernel matrix of size n x m

kernel_se	Compute a squared exponential kernel matrix	

Description

Compute a squared exponential kernel matrix

Usage

```
kernel_se(x1, x2, alpha = 1, ell = 1)
```

Arguments

```
    x1 vector of length n
    x2 vector of length m
    alpha marginal std (default = 1)
    el1 lengthscale (default = 1)
```

kernel_zerosum

Value

A kernel matrix of size n x m

Description

Compute the variance mask kernel matrix

Usage

```
kernel_var_mask(disAge1, disAge2, vm_params, stp, nan_replace = 0)
```

Arguments

disAge1 disease-related age covariate vector of length n1 disAge2 disease-related age covariate vector of length n2

vm_params vector of two mask function parameters

stp input warping steepness

nan_replace value to replace nans in disAge vectors

Value

a matrix of size n1 x n2

kernel_zerosum Compute a zero-sum kernel matrix

Description

Compute a zero-sum kernel matrix

Usage

```
kernel\_zerosum(x1, x2, M, alpha = 1)
```

Arguments

x1	(integer) vector of length n
x2	(integer) vector of length m
М	number of categories
alpha	marginal std ($default = 1$)

Value

A (binary) kernel matrix of size n x m

lgp 45

lgp

The main function of the 'lgpr' package

Description

This is a wrapper for both lgp_model and lgp_fit. It first creates an lgpmodel object and then fits the model, finally returning an lgpfit object. Note that the covariate types are automatically inferred from the given data. If you wish to change these, see the arguments

- id_variable
- time_variable
- disAge_variable
- continuous_vars and
- categorical_vars.

Usage

```
lgp(
  formula,
  data,
  likelihood = "Gaussian",
  prior = prior_default(),
  uncertain_effect_time = FALSE,
  equal_effect = TRUE,
  id_variable = "id",
  time_variable = "age",
  disAge_variable = NULL,
  continuous_vars = NULL,
  categorical_vars = NULL,
  offset_vars = NULL,
  C_{hat} = NULL
 DELTA = 1e-08,
  sample_F = NULL,
  parallel = FALSE,
  skip_postproc = FALSE,
  threshold = 0.95,
  variance_mask = TRUE,
 N_trials = NULL,
  relevance_method = "f_mean",
  verbose = FALSE,
)
```

46 lgp

Arguments

formula

A formula of the form y ~ x1 + x2 + x3 defining the response variable y and covariates xi. The formula must contain exatly one tilde (~), with response variable on the left-hand side and covariates on the right-hand side. Covariates should be separated by a plus (+) sign. All variables that appear in the formula must exist as columns of data. Note that effects of categorical covariates are by default defined as interactions with time_variable. If you wish to change this, see the argument offset_vars. The subject identifier variable cannot currently be included in offset_vars. If you wish to model the effect of id_variable as a constant offset, you can create another covariate with the same values and use it in your formula and offset_vars instead.

data A data frame containing the variables given in formula as columns.

likelihood Determines the observation model. Must be either "Gaussian" (default), "Poisson",

"NB" (negative binomial) or "binomial". To use Bernoulli likelihood, use

likelihood="binomial" and set N_trials as a vector of ones.

prior A named list, defining the prior distribution of model (hyper)parameters. It is

recommended to first create this using the function prior_default, and then

possibly modify it.

uncertain_effect_time

Do we wish to model uncertainty in the disease effect time?

equal_effect Is the disease effect assumed to be equally strong for all diseased individuals?

id_variable Name of the unique subject identifier variable (default = "id").

time_variable Name of the time variable (default = "age").

disAge_variable

Name of the disease-related age variable. If NULL, this will be chosen to be "diseaseAge", if such covariate is found in the data.

continuous_vars

Names of other continuous covariates. If NULL, the remaining covariates that have floating point values are interpreted as continuous.

categorical_vars

Names of categorical covariates that interact with the time variable. If NULL (default), the remaining covariates that have integer values are interpreted as categorical.

offset_vars

Names of the categorical covariates that are treated as time-independent group offsets. If NULL (default), no variables are interpreted as such covariates.

C_hat

The GP mean. Must be a vector of length dim(data)[1], or a real number defining a constant GP mean. If NULL, this is set to

- C_hat = 0, if likelihood is "Gaussian", because with Gaussian likelihood the response variable is by default centered to have zero mean.
- C_hat = log(mean(y)) if likelihood is "Poisson" or "NB",
- C_hat = log(p/(1-p)), where p = mean(y/N_trials) if likelihood is "binomial",

where y denotes the response variable. You can modify this vector to account for normalization between data points. With Gaussian likelihood though, do not modify this argument, normalize the data beforehand instead.

lgpfit-class 47

the amount of added jitter to ensure positive definiteness of the kernel

	the amount of accordance to ensure positive accounted to the next of
sample_F	Determines if the function values are be sampled (must be TRUE if likelihood is not "Gaussian").
parallel	Determines if the chain will be run in parallel (default = FALSE). If TRUE, then Stan is run by first defining options(mc.cores = parallel::detectCores()).
skip_postproc	In this mode the postprocessing after running Stan is skipped.
threshold	Component selection threshold for relevance sum.
variance_mask	Should a variance mask be used to force disease component variance to zero before disease onset?
N_trials	This argument (number of trials) is only needed when likelihood is binomial. Must have length one or equal to number of data points. Setting N_trials=1 corresponds to Bernoulli observation model.
relevance_metho	od
	Component relevance determination method. Must be either "f_mean" or "alpha"
verbose	Should more verbose output be printed?
•••	Optional arguments passed to rstan::sampling, for example iter, chains or control. See sampling for the possible arguments.

Value

DELTA

An object of class lgpfit.

lgpfit-class	An S4 class to represent the output of the lgp_fit function

Description

An S4 class to represent the output of the lgp_fit function

Slots

```
stan_fit The stanfit object returned by rstan::sampling.
model The lgpmodel object returned by lgp_model.
relevances Inferred component relevances.
selection Component selection info.
pkg_version Package version number.
diagnostics A data frame with columns c("Rhat", "Bulk_ESS", "Tail_ESS").
```

lgpmodel-class

An S4 class to represent an lgp model

Description

An S4 class to represent an lgp model

Slots

```
data The original unmodified data frame.

stan_dat The data to be given as input to rstan::sampling.

scalings Preprocessing scaling functions and their inverse operations.

info Model info.
```

lgp_component_names

Get names of model components

Description

Get names of model components

Usage

```
lgp_component_names(stan_dat)
```

Arguments

stan_dat

The data that was passed to rstan::sampling

Value

names of model components

lgp_covariate_names 49

lgp_covariate_names Get names of model covariates

Description

Get names of model covariates

Usage

```
lgp_covariate_names(stan_dat)
```

Arguments

stan_dat

The data that was passed to rstan::sampling

Value

names of model components

lgp_fit

Fit an lgp model

Description

Samples the posterior of an additive Gaussian process regression model using rstan.

Usage

```
lgp_fit(
  model,
  threshold = 0.95,
  parallel = FALSE,
  skip_postproc = FALSE,
  relevance_method = "f_mean",
  verbose = FALSE,
  ...
)
```

Arguments

model An object of class 1gpmodel.

threshold Component selection threshold for relevance sum.

parallel Determines if the chain will be run in parallel (default = FALSE). If TRUE, then

Stan is run by first defining options(mc.cores = parallel::detectCores()).

skip_postproc In this mode the postprocessing after running Stan is skipped.

lgp_model

relevance_method

Component relevance determination method. Must be either "f_mean" or "alpha".

verbose should some output be printed?

... Optional arguments passed to rstan::sampling, for example iter, chains or

control. See sampling for the possible arguments.

Value

An object of class lgpfit.

See Also

For the possible additional arguments, see sampling. For creating the lgpmodel input, see lgp_model.

lgp_model

Create an lgp model

Description

Creates an object of class 1gpmode1

Usage

```
lgp_model(
  formula,
  data,
  likelihood = "Gaussian",
  prior = prior_default(),
  uncertain_effect_time = FALSE,
  equal_effect = TRUE,
 C_hat = NULL,
 DELTA = 1e-08,
  sample_F = NULL,
  id_variable = "id",
  time_variable = "age",
  disAge_variable = NULL,
  continuous_vars = NULL,
  categorical_vars = NULL,
  offset_vars = NULL,
  variance_mask = TRUE,
 N_trials = NULL,
  skip_gen_quant = FALSE,
  verbose = FALSE
)
```

lgp_model 51

Arguments

formula

A formula of the form y ~ x1 + x2 + x3 defining the response variable y and covariates xi. The formula must contain exatly one tilde (~), with response variable on the left-hand side and covariates on the right-hand side. Covariates should be separated by a plus (+) sign. All variables that appear in the formula must exist as columns of data. Note that effects of categorical covariates are by default defined as interactions with time_variable. If you wish to change this, see the argument offset_vars. The subject identifier variable cannot currently be included in offset_vars. If you wish to model the effect of id_variable as a constant offset, you can create another covariate with the same values and use it in your formula and offset_vars instead.

data

A data frame containing the variables given in formula as columns.

likelihood

Determines the observation model. Must be either "Gaussian" (default), "Poisson", "NB" (negative binomial) or "binomial". To use Bernoulli likelihood, use likelihood="binomial" and set N_trials as a vector of ones.

prior

A named list, defining the prior distribution of model (hyper)parameters. It is recommended to first create this using the function prior_default, and then possibly modify it.

uncertain_effect_time

Do we wish to model uncertainty in the disease effect time?

equal_effect

Is the disease effect assumed to be equally strong for all diseased individuals?

C_hat

The GP mean. Must be a vector of length dim(data)[1], or a real number defining a constant GP mean. If NULL, this is set to

- C_hat = 0, if likelihood is "Gaussian", because with Gaussian likelihood the response variable is by default centered to have zero mean.
- C_hat = log(mean(y)) if likelihood is "Poisson" or "NB",
- C_hat = log(p/(1-p)), where p = mean(y/N_trials) if likelihood is "binomial",

where y denotes the response variable. You can modify this vector to account for normalization between data points. With Gaussian likelihood though, do not modify this argument, normalize the data beforehand instead.

DELTA

the amount of added jitter to ensure positive definiteness of the kernel

sample_F

Determines if the function values are be sampled (must be TRUE if likelihood is not "Gaussian").

id_variable

Name of the unique subject identifier variable (default = "id").

time_variable

Name of the time variable (default = "age").

disAge_variable

Name of the disease-related age variable. If NULL, this will be chosen to be "diseaseAge", if such covariate is found in the data.

continuous_vars

Names of other continuous covariates. If NULL, the remaining covariates that have floating point values are interpreted as continuous.

52 lgp_predict

categorical_vars

Names of categorical covariates that interact with the time variable. If NULL (default), the remaining covariates that have integer values are interpreted as categorical.

Names of the categorical covariates that are treated as time-independent group offset_vars

offsets. If NULL (default), no variables are interpreted as such covariates.

Should a variance mask be used to force disease component variance to zero variance_mask

before disease onset?

N_trials This argument (number of trials) is only needed when likelihood is binomial.

Must have length one or equal to number of data points. Setting N_trials=1

corresponds to Bernoulli observation model.

skip_gen_quant If this is true, the generated quantities block of Stan is skipped.

verbose Should more verbose output be printed?

Value

An object of class 1gpmodel.

See Also

For fitting the model, see lgp_fit.

lgp_predict

Compute predictions for a fitted model

Description

Compute predictions for a fitted model. Only possible for models with Gaussian likelihood.

Usage

```
lgp_predict(
  fit,
  X_test,
  samples = "map",
 print_progress = TRUE,
 print_params = FALSE
)
```

Arguments

fit An object of class lgpfit.

The test points where the predictions should be computed. X_test

lgp_test 53

samples The predictions can be computed either by using only the posterior mean

(samples="mean"), median (samples="median"), or MAP (samples="map") parameters, or for all parameter samples (samples="all"). This can also be a set of indices, for example samples=c(1:10) gives predictions for the parame-

ter samples 1...10.

print_progress Should progress be printed (if there is more than one sample)?

print_params Should the parameter values be printed? (only works if samples is mean or

median.)

Value

A list.

See Also

- For creating an lgpfit object, see lgp_fit.
- For creating an lgpmodel object, see lgp_model.

lgp_test

Compute predictions and log-posterior predictive density at test points

Description

This is a convenience function that wraps lgp_predict, compute_lppd and plot_posterior_y.

Usage

```
lgp_test(fit, test_data, plot = FALSE, verbose = TRUE, samples = "mean")
```

Arguments

fit an object of class lgpfit

test_data a test data matrix

should this return also a plot of the data and predictions?

verbose Should this print progress?

samples Sample indices or a keyword "mean", "median", "map", or "all".

```
a ggplot object or lppd
```

54 likelihood_as_str

likelihood_as_int

Convert likelihood string to Stan encoding

Description

Convert likelihood string to Stan encoding

Usage

```
likelihood_as_int(likelihood)
```

Arguments

likelihood a string

Value

an integer

likelihood_as_str

Convert the Stan likelihood encoding to a string

Description

Convert the Stan likelihood encoding to a string

Usage

```
likelihood_as_str(LH)
```

Arguments

LH

an integer

Value

a string

log_gaussian_density 55

log_gaussian_density Compute log-density for gaussian distribution

Description

Compute log-density for gaussian distribution

Usage

```
log_gaussian_density(x, mu, s2)
```

Arguments

x point x mu mean s2 variance

Value

a number

 $matrix_to_df$

Matrix to data frame without editing column names

Description

Matrix to data frame without editing column names

Usage

```
matrix_to_df(M)
```

Arguments

M a matrix

Value

a data frame

56 nameComponents

model_info

Get model info

Description

Get model info

Usage

```
model_info(object, print = TRUE)
```

Arguments

object an object of class lgpmodel or lgpfit

print should this print the info?

Value

the info as a string

nameComponents

Create names for all components based on covariate names and types

Description

Create names for all components based on covariate names and types

Usage

```
nameComponents(types, names)
```

Arguments

types vector of covariate types names names of the covariates

Value

a vector of component names

onsetsToDiseaseAge 57

 $\verb"onsetsToDiseaseAge"$

Compute the disease-related ages

Description

Compute the disease-related ages

Usage

```
onsetsToDiseaseAge(onsets, age, k)
```

Arguments

onsets true disease effect times, a vector of length N age the age covariate, a vector of length N*k k number of measurements per individual

Value

the diseaseAge covariate, a vector of length N*k

```
parse_prior_distribution
```

Turn a list describing a prior distribution into vectors to be given to Stan

Description

Turn a list describing a prior distribution into vectors to be given to Stan

Usage

```
parse_prior_distribution(dist, add_correct = NULL)
```

Arguments

dist a list with field type, and possibly others add_correct additional correct parameter names

Value

a list with two vectors to be given to Stan

Description

Turn a list describing an effect time distribution into things to be given to Stan

Usage

```
parse_prior_t_effect(dist, N_cases, T_observed, T_last, UNCRT)
```

Arguments

dist This is prior\$effect, where prior is an argument of lgp_model

N_cases number of case individuals

T_observed observed disease onsets / initiation timesT_last last time point for each diseased individual

UNCRT 0 or 1

Value

a list with things to be given to Stan

```
plot, lgpfit, ANY-method
```

Visualize a fitted 'lgpfit' object

Description

Visualize a fitted 'lgpfit' object

Usage

```
## S4 method for signature 'lgpfit,ANY'
plot(fit, x = 1, y = 1, color_scheme = "red")
```

Arguments

fit an object of class lgpfit

x does nothingy does nothing

color_scheme bayesplot color scheme

Value

a ggplot object

plot_beta 59

plot_beta Visualize posterior samples of individual-specific disease effect mag- nitude parameters

Description

Can only be used if the disease effect was modeled heterogeneously.

Usage

```
plot_beta(fit, color_scheme = "red", threshold = 0.5)
```

Arguments

fit An object of class lgpfit.
color_scheme Name of bayesplot color scheme.

threshold Threshold for median.

Value

a ggplot object

plot_component

Helper function for plotting one component

Description

Helper function for plotting one component

Usage

```
plot_component(
   MMM,
   SSS,
   model,
   idx,
   time_is_xvar,
   linealpha,
   linetype,
   fill_alpha,
   X_test,
   marker,
   sum_highlight,
   viridis_option
)
```

60 plot_components

Arguments

MMM a n array of size n_samples x n_data x n_components
SSS a n array of size n_samples x n_data x n_components

model an object of class 'lgpmodel'
idx Index of component to be plotted.
time_is_xvar is the time variable the x-axis variable

linealpha line alpha linetype line type

fill_alpha fill alpha for geom_ribbons
X_test optional matrix of test points

marker point type

sum_highlight name of a categorical covariate to be highlighted

viridis_option the option argument of ggplot2::scale_colour_viridis_c by colour in the

sum plot

Value

a ggplot object

plot_components

Helper function for plotting components

Description

Helper function for plotting components

Usage

```
plot_components(
   MMM,
   SSS,
   model,
   time_is_xvar,
   X_test = NULL,
   sum_highlight = NULL,
   linealpha = 1,
   linetype = 1,
   fill_alpha = 0.3,
   marker = NULL,
   ncol = NULL,
   nrow = NULL,
   legend = NULL,
   labels = NULL,
```

plot_components 61

```
ylim = NULL,
font_size = 9,
theme = ggplot2::theme_linedraw(),
legend_dir = "horizontal",
xlabel = NULL,
ylabel = " ",
viridis_option = "viridis",
return_list = FALSE
)
```

Arguments

MMM a n array of size n_samples x n_data x n_components
SSS a n array of size n_samples x n_data x n_components

model an object of class 'lgpmodel'

time_is_xvar is the time variable the x-axis variable

X_test optional matrix of test points

sum_highlight name of a categorical covariate to be highlighted

linealpha line alpha linetype line type

fill_alpha fill alpha for geom_ribbons

marker point type

ncol number of plot columns nrow number of plot rows

legend legend argument for ggarrange, use "none" to remove legends

labels labels argument for ggarrange

ylim y axis limits
font_size font size for plots
theme ggplot theme
legend_dir direction of legend

xlabel x-axis label ylabel y-axis label

viridis_option the option argument of ggplot2::scale_colour_viridis_c by colour in the

sum plot

return_list should this return a list of ggplot objects instead of doing ggarrange

```
an object returned by ggpubr::ggarrange or a list
```

```
plot_components_posterior
```

Deprecated function. Use plot_posterior_components instead.

Description

Deprecated function. Use plot_posterior_components instead.

Usage

```
plot_components_posterior(fit, ...)
```

Arguments

```
fit fit
```

... other arguments

Value

Nothing. Throws an error when called.

```
plot_components_simdata
```

Visualize the components of a simulated data set

Description

Visualize the components of a simulated data set

Usage

```
plot_components_simdata(simData, time_is_xvar = TRUE, marker = 16, ...)
```

Arguments

```
simData simulated data object (list)
```

time_is_xvar is the time variable the x-axis variable in all subplots?

marker point marker

... additional arguments for plot_components

```
an object returned by ggpubr::ggarrange or a list
```

plot_data 63

plot_data

A spaghetti plot of longitudinal data.

Description

A spaghetti plot of longitudinal data.

Usage

```
plot_data(
  data,
  highlight = NULL,
  response = "y",
  id_variable = "id",
  time_variable = "age",
  psize = 2,
  lwd = 0.5,
  title = NULL
)
```

Arguments

data A data frame.

highlight Name of a covariate to be highlighted with color, or id of a subject to be high-

lighted.

response Name of the response variable.

id_variable Name of id variable.

time_variable Name of time variable.

psize point size
lwd line width

title additional string added to title

```
a ggplot object
```

plot_data_hl_cont

plot_data_hl_cat	A spaghetti plot of longitudinal data, highlighting a categorical covariate.
------------------	--

Description

A spaghetti plot of longitudinal data, highlighting a categorical covariate.

Usage

```
plot_data_hl_cat(
  data,
  highlight = NULL,
  response = "y",
  id_variable = "id",
  time_variable = "age",
  psize = 2,
  lwd = 0.5
)
```

Arguments

data A data frame.

highlight Name of a categorical covariate to be highlighted with color.

response Name of the response variable.

id_variable Name of id variable.time_variable Name of time variable.

psize point size lwd line width

Value

a ggplot object

Description

A spaghetti plot of longitudinal data, highlighting a continuous covariate.

plot_data_hl_disease 65

Usage

```
plot_data_hl_cont(
  data,
  highlight = NULL,
  response = "y",
  id_variable = "id",
  time_variable = "age",
  psize = 2,
  lwd = 0.5,
  colgrad = ggplot2::scale_colour_gradient2()
)
```

Arguments

data A data frame.

highlight Name of a continuous covariate to be highlighted with color.

response Name of the response variable.

id_variable Name of id variable.time_variable Name of time variable.

psize point size
lwd line width
colgrad color gradient

Value

a ggplot object

Description

A spaghetti plot of longitudinal data, highlighting based on disease group.

Usage

```
plot_data_hl_disease(
   data,
   highlight = "diseaseAge",
   response = "y",
   id_variable = "id",
   time_variable = "age",
   psize = 2,
   lwd = 0.5
)
```

Arguments

data A data frame.

highlight Name of the disease-related age variable.

response Name of the response variable.

id_variable Name of id variable.time_variable Name of time variable.

psize point size lwd line width

Value

a ggplot object

```
plot_data_hl_individual
```

A spaghetti plot of longitudinal data, highlighting one individual.

Description

A spaghetti plot of longitudinal data, highlighting one individual.

Usage

```
plot_data_hl_individual(
  data,
  highlight = 1,
  response = "y",
  id_variable = "id",
  time_variable = "age",
  psize = 2,
  lwd = 0.5
)
```

Arguments

data A data frame.

highlight Number indicating the individual to highlight.

response Name of the response variable.

id_variable Name of id variable.time_variable Name of time variable.

psize point size lwd line width

Value

a ggplot object

plot_data_plain 67

plot_data_plain

A spaghetti plot of longitudinal data without highlighting.

Description

A spaghetti plot of longitudinal data without highlighting.

Usage

```
plot_data_plain(
  data,
  response = "y",
  id_variable = "id",
  time_variable = "age",
  psize = 2,
  lwd = 0.5
)
```

Arguments

data A data frame.

response Name of the response variable.

id_variable Name of id variable.time_variable Name of time variable.

psize point size lwd line width

Value

a ggplot object

plot_effect_times

Visualize posterior uncertainty in the disease effect times

Description

Can only be used if the uncertainty of effect time was modeled.

Usage

```
plot_effect_times(
   fit,
   color_scheme = "red",
   prob = 1,
   prob_outer = 1,
   point_est = "none"
)
```

68 plot_inputwarp

Arguments

fit An object of class lgpfit.

color_scheme Name of bayesplot color scheme.

point_est Point estimate type

Value

a ggplot object

plot_inputwarp

Visualize the input warping function for different parameter samples

Description

Visualize the input warping function for different parameter samples

Usage

```
plot_inputwarp(fit, p = 300, color_scheme = "red", b = 0, c = 1)
```

Arguments

fit An object of class lgpfit.

p number of plot points

color_scheme Name of bayesplot color scheme.

b location of the effective time window (default = 0)

c maximum range (default = 1)

Value

a ggplot object

plot_invgamma 69

plot_invgamma

Plot pdf of inverse gamma distribution

Description

Uses the same parametrization as decribed here.

Usage

```
plot_invgamma(
   alpha,
   beta,
   by = 0.01,
   max = 1.5,
   log = FALSE,
   IQR = 0.95,
   return_quantiles = FALSE
)
```

Arguments

```
alpha positive real number
beta positive real number
by grid size
max maximum warping steepness to be visualized
log if prior pdf should be on log scale
IQR interquantile range width
return_quantiles
```

should this return a list

Value

```
a ggplot object or a list
```

```
plot_posterior_components
```

Visualize inferred components

Description

Visualize inferred components

Usage

```
plot_posterior_components(
    fit,
    subsamples = NULL,
    time_is_xvar = TRUE,
    PRED = NULL,
    marker = NULL,
    sample_idx = 1,
    n_sd = 2,
    ...
)
```

Arguments

fit An object of class lgpfit. subsamples How many samples to plot. If this is NULL, average over all samples is plotted. If this is "all", all samples are plotted. is the time variable the x-axis variable in all subplots? time_is_xvar **PRED** object returned by lgp_predict marker point type Which sample to plot. sample_idx number of standard deviations (ribbon width) n_sd additional arguments for plot_components

Value

an object returned by ggpubr::ggarrange or a list of ggplot2 objects

```
{\it Plot\_posterior\_components\_sub1} \\ {\it Helper for} \ {\it plot\_posterior\_components}
```

Description

Helper for plot_posterior_components

Usage

```
plot_posterior_components_sub1(fit, subsamples, time_is_xvar, marker, ...)
```

Arguments

fit An object of class lgpfit.

subsamples How many samples to plot. If this is NULL, average over all samples is plotted.

If this is "all", all samples are plotted.

time_is_xvar is the time variable the x-axis variable in all subplots?

marker point type

... additional arguments for plot_components

Value

```
an object returned by ggpubr::ggarrange or a list
```

```
plot_posterior_components_sub2
```

Helper for plot_posterior_components

Description

Helper for plot_posterior_components

Usage

```
plot_posterior_components_sub2(fit, PRED, sample_idx, time_is_xvar, n_sd, ...)
```

Arguments

fit An object of class lgpfit.

PRED object returned by lgp_predict

sample_idx Which sample to plot.

time_is_xvar is the time variable the x-axis variable in all subplots?

n_sd number of standard deviations (ribbon width)... additional arguments for plot_components

```
an object returned by ggpubr::ggarrange or a list
```

plot_posterior_f

Plot posterior of f

Description

This is a wrapper for plot_posterior_predictions.

Usage

```
plot_posterior_f(
   fit,
   PRED = NULL,
   plot_uncertainty = TRUE,
   data_marker = 16,
   n_sds = 2,
   ...
)
```

Arguments

```
fit An object of class lgpfit.

PRED Predictions computed using lgp_predict.

plot_uncertainty
Should an uncertainty ribbon be plotted?

data_marker pch for data points

n_sds number of standard deviations for the uncertainty band width

... additional arguments to plot_posterior_predictions
```

Value

```
a ggplot object
```

```
plot_posterior_predictions
```

Plot posterior of f or predictive distribution for y

Description

Plot posterior of f or predictive distribution for y

Usage

```
plot_posterior_predictions(
  fit,
  mode,
 PRED = NULL,
  color_scheme = "red",
  color_scheme_t_effect = "gray",
  alpha = 0.5,
  alpha_line = 1,
  alpha2 = 0.5,
  plot_uncertainty = TRUE,
  title = NULL,
  ylim = NULL,
  plot_obs_onset = FALSE,
  plot_t_effect_samples = FALSE,
  ypos_dens = NULL,
  test_data = NULL,
  color_test = "deepskyblue2",
  pch_test = 21,
  size\_test = 2,
  error_bar = FALSE,
  n_sds = 2,
  reference_times = NULL,
  post_t_effect_stat = "none",
  original_y_scale = TRUE,
  data_color = "black",
  data_marker = 21,
  ons_linetypes = c(1, 2, 3),
  ons_linecolors = c("black", "red", "gray50")
)
```

Arguments

```
fit
                  An object of class lgpfit.
                  Must be either "posterior" or "predictive".
mode
PRED
                  Predictions computed using lgp_predict.
color_scheme
                  Name of bayesplot color scheme or a list with fieds 'dark' and 'light'.
color\_scheme\_t\_effect
                  color scheme name for effect time density plotting
alpha
                  Ribbon fill opacity.
alpha_line
                  Line opacity.
alpha2
                  alpha of t_onset density
plot_uncertainty
                  Should an uncertainty ribbon be plotted?
title
                  optional prefix to plot title
```

74 plot_posterior_y

```
ylim
                  y axis limits
plot_obs_onset should the observed disease onset/initiation time be plotted by a vertical line
plot_t_effect_samples
                  should a distribution of sampled effect times be plotted
ypos_dens
                  y-position of the density plot
test_data
                  Test data frame
color_test
                  test point color
pch_test
                  test point marker
size_test
                  test point size
error_bar
                  should uncertainty be plotted using error bars instead of a ribbon
                  number of standard deviations for the uncertainty band width
n_sds
reference_times
                  reference onset times
post_t_effect_stat
                  statistic computed from effect time samples (mean or median)
original_y_scale
                  should the predictions be scaled back to original data scale
data_color
                  data marker color
data_marker
                  data marker type
ons_linetypes
                  onset line types
ons_linecolors onset line colors
```

Value

a ggplot object

plot_posterior_y

Plot posterior predictive distribution

Description

This is a wrapper for plot_posterior_predictions.

```
plot_posterior_y(
   fit,
   PRED,
   uncertainty = "ribbon",
   test_data = NULL,
   data_marker = 16,
   n_sds = 2,
   ...
)
```

Arguments

```
fit An object of class lgpfit.

PRED Predictions computed using lgp_predict.

uncertainty Either "none", "ribbon" or "errorbar".

test_data Test data set.

data_marker pch for data points

n_sds number of standard deviations for the uncertainty band width

additional arguments to plot_posterior_predictions
```

Value

a ggplot object

```
{\tt plot\_predictions\_add\_onsets}
```

Add disease onset / effect times to predictions plot

Description

NOTE: currently assumes that diseased individuals come first.

Usage

```
plot_predictions_add_onsets(
    fit,
    h,
    plot_obs_onset,
    plot_t_effect_samples,
    idvar,
    timevar,
    ypos_dens,
    color_scheme_t_effect,
    reference_times,
    post_t_effect_stat,
    linetypes = c(1, 2, 3),
    linecolors = c("black", "red", "gray50"),
    alpha2 = 1
)
```

Arguments

```
fit An object of class lgpfit.
h a ggplot object
plot_obs_onset a boolean value
```

```
plot_t_effect_samples
                 a boolean value
idvar
                 id variable name
timevar
                 time variable name
ypos_dens
                 y position of the estimated onset density
color\_scheme\_t\_effect
                 color scheme
reference_times
                 reference onset times
post_t_effect_stat
                 statistic computed from effect time samples
linetypes
                 onset line types
linecolors
                 onset line colors
alpha2
                 alpha parameter
```

Value

a modified ggplot object

```
plot_predictions_options
```

Do input checks and set options for plotting predictions

Description

Do input checks and set options for plotting predictions

```
plot_predictions_options(
    fit,
    color_scheme,
    original_y_scale,
    PRED,
    test_data,
    color_scheme_t_effect,
    mode,
    n_sds
)
```

plot_relevances 77

Arguments

fit An object of class lgpfit.

color_scheme Name of bayesplot color scheme.

original_y_scale

Boolean value.

PRED Predictions computed using lgp_predict.

Another color scheme.

mode mode

n_sds number of standard deviations for the uncertainty band width

Value

a list

plot_relevances

Barplot of covariate relevances

Description

Barplot of covariate relevances

Usage

```
plot_relevances(object, violin = FALSE, color_scheme = "red", ...)
```

Arguments

object an object of class lgpfit

violin Should a violin plot be used instead of a boxplot

color_scheme bayesplot color scheme name

... Additional arguments to ggplot2::geom_boxplot or ggplot2::geom_violin.

Value

a ggplot object

78 plot_samples

plot_samples

Visualize the distribution of the model parameter samples

Description

This is a wrapper for functions in the bayesplot package.

Usage

```
plot_samples(
   object,
   pars = character(),
   regex_pars = character(),
   type = "intervals",
   prob = 0.5,
   prob_outer = 0.9,
   color_scheme = "red",
   point_est = "median",
   binwidth = NULL,
   transformations = list(),
   off_diag_args = list(size = 1),
   facet_args = list()
)
```

Arguments

object An object of class lgpfit.

pars parameter names

regex_pars regex for parameter names

type Visualization type. Must be either "dens", "areas", "intervals" (default) or

"hist".

prob inner interval prob_outer outer interval

color_scheme See different color schemes in the bayesplot package.

point_est the point estimate type

binwidth width of histogram bins if type = "hist"

transformations

the parameter transformations

off_diag_args Additional argument list for the pairs plot.

facet_args additional facetting arguments

Value

```
a ggplot object
```

plot_simdata 79

plot_simdata

Plot a simulated longitudinal data set for each individual separately

Description

Plot a simulated longitudinal data set for each individual separately

Usage

```
plot_simdata(
    simData,
    linecolor = "gray50",
    nrow = NULL,
    ncol = NULL,
    i_test = NULL,
    color_point = "black",
    color_test = "steelblue2",
    signal_name = "signal",
    y_transform = function(x) {            x         }
)
```

Arguments

```
a list returned by simulate_data
simData
linecolor
                 line color
                 an argument for ggplot2::facet_wrap
nrow
ncol
                 an argument for ggplot2::facet_wrap
                 test point indices
i_test
color_point
                 data point color
color_test
                 test point color
signal_name
                 name of signal
y_transform
                 function to transform the data y
```

Value

a ggplot object

See Also

For plotting each component separately, see plot_components_simdata

80 postproc_relevances

postproc

Finalize the lgpfit object after sampling

Description

Finalize the lgpfit object after sampling

Usage

```
postproc(fit, threshold = 0.95, relevance_method = "f_mean", verbose = FALSE)
```

Arguments

fit An (incomplete) object of class lgpfit.
threshold Threshold for relevance sum. Must be a value between 0 and 1.

 $relevance_method$

Component relevance determination method. Must be either "f_mean" or "alpha".

verbose Should some output be printed?

Value

An updated object of class lgpfit.

postproc_relevances

Compute component relevances and estimate amount of noise (one MCMC sample)

Description

Compute component relevances and estimate amount of noise (one MCMC sample)

Usage

```
postproc_relevances(
   fit,
   relevance_method = "f_mean",
   noise_method = "SSE",
   verbose = FALSE
)
```

Arguments

fit An (incomplete) object of class lgpfit.

relevance_method

Component relevance determination method. Must be either "f_mean" or "alpha".

noise_method Noise level determination method. Currently must be "SSE".

verbose Should some output be printed?

predict_preproc 81

Value

An updated object of class lgpfit.

predict_preproc

Preprocess some things before computing predictions

Description

This is a helper function for lgp_predict.

Usage

```
predict_preproc(fit, X_test, samples)
```

Arguments

fit An object of class lgpfit.

X_test The test points where the predictions should be computed.

samples The samples argument to lgp_predict

PRED_to_arrays

PRED object to arrays

Description

PRED object to arrays

Usage

```
PRED_to_arrays(PRED)
```

Arguments

PRED

an object returned by lgp_predict

Value

a list containing two arrays

82 prior_default

print_prior

Human-readable description of a specified prior

Description

Print human-readable info about the prior specification that was used or will be used

Usage

```
print_prior(object)
```

Arguments

object

An object of class lgpfit or a valid prior argument for the 'lgp' function.

Value

nothing

prior_default

Create the default prior

Description

Create the default prior

Usage

```
prior_default(sigma_alpha = 1)
```

Arguments

sigma_alpha

Sigma parameter of the student-t distribution for all alpha.

Value

A list defining a valid prior argument for the 1gp function.

prior_LonGP 83

prior_LonGP

Create a similar default prior as in LonGP (Cheng et. al, 2019)

Description

Not recommended, because a lengthscale close to 0 is possible.

Usage

```
prior_LonGP()
```

Value

A list defining a valid prior argument for the lgp_model function.

```
prior_stan_to_readable
```

Human-readable information about the priors in the Stan data object

Description

Human-readable information about the priors in the Stan data object

Usage

```
prior_stan_to_readable(stan_dat)
```

Arguments

stan_dat

The list that is passed as data to rstan::sampling.

Value

Info as a string.

84 prior_to_stan

prior_statement	Human-readable	prior statement
-----------------	----------------	-----------------

Description

Human-readable prior statement

Usage

```
prior_statement(parname, TYP, P, dist, row_change = TRUE)
```

Arguments

parname parameter name
TYP two integers

P three real numbers

dist list of distribution names

row_change should a newline be last character?

Value

Sampling statement as a string.

prior_to_stan Get priors as a format that can be input to Stan

Description

Get priors as a format that can be input to Stan

Usage

```
prior_to_stan(D, prior, HMGNS, UNCRT, N_cases, T_observed, T_last)
```

Arguments

D an integer vector of length 6

prior The prior argument supplied to lgp().

HMGNS Is diseaseAge assumed to have a homogenous effect (1) or not (0)?

UNCRT Boolean value, is uncertainty of disease onset modeled?

N_cases number of case individuals
T_observed observed disease onsets

T_last last time point for each diseased individual

qinvgamma_stanlike 85

Value

a list with all things related to priors that Stan needs

qinvgamma_stanlike Quantiles of inverse gamma distribution pdf with the same parametrization as in Stan

Description

See here.

Usage

```
qinvgamma_stanlike(p, alpha, beta)
```

Arguments

p quantile (must be between 0 and 1)

alpha positive real number beta positive real number

Value

a positive real number

repvec

Repeat a vector as a rows of an array

Description

Repeat a vector as a rows of an array

Usage

```
repvec(v, n)
```

Arguments

v a vector of length m

n number of times to repeat

Value

returns an array of size n x m

86 scaleRelevances

rtgeom

Sample from the 'truncated geometric' distribution

Description

Sample from the 'truncated geometric' distribution

Usage

```
rtgeom(s, p, n = 1)
```

Arguments

s an integer

p a number between 0 and 1

n number of samples

Value

an integer from the interval 1...n

scaleRelevances

Scale the effect sizes

Description

Scale the effect sizes

Usage

```
scaleRelevances(FFF, relevances, force_zeromean, i_skip)
```

Arguments

FFF matrix where one column corresponds to one additive data component

relevances the desired variance of each component (column)

force_zeromean Should each component (excluding the disease age component) be forced to

have a zero mean.

i_skip induces of components for which the zero-mean forcing is skipped

Value

a new matrix FFF

selection 87

selection

Selection of relevant components

Description

Selection of relevant components

Usage

```
selection(object, threshold = 0.95)
```

Arguments

object An object of class lgpfit.

threshold Threshold for relevance sum. Must be a value between 0 and 1.

Value

A named list

```
selection_fixed_threshold
```

Select relevant components

Description

Select relevant components

Usage

```
selection_fixed_threshold(rel, threshold)
```

Arguments

rel a named vector of component relevances

threshold value between 0 and 1

Value

indices of selected components (including "noise" always)

selection_prob

Probabilistic selection of relevant components

Description

Probabilistic selection of relevant components

Usage

```
selection_prob(
  object,
  p = function(x) {         stats::dbeta(x, 100, 5) },
  h = 0.01,
       show_progbar = FALSE
)
```

Arguments

object An object of class lgpfit.

p a function defining a density over interval [0,1]
h discretization parameter for computing a quadrature

show_progbar Should this show a progress bar?

Value

Selection probabilities for each component

```
selection_prob_fixed_threshold

Selection probabilities using a fixed threshold
```

Description

Selection probabilities using a fixed threshold

Usage

```
selection_prob_fixed_threshold(relevances, threshold)
```

Arguments

relevances The relevances\$samples slot of an lgpfit object.
threshold value between 0 and 1

Value

proportion of times each component was selected

selection_prob_plot 89

selection_prob_plot

Plot of probabilistic selection of relevant components

Description

Plot of probabilistic selection of relevant components

Usage

```
selection_prob_plot(PROB, H, P)
```

Arguments

PROB computed probabilities at points H

H a grid on interval [0,1]

P threshold probability distribution evaluated at H

Value

a ggplot object

set_C_hat

Set C_hat (Non-gaussian observation models)

Description

Set C_hat (Non-gaussian observation models)

Usage

```
set_C_hat(C_hat, response, LH, N_trials)
```

Arguments

C_hat the C_hat argument given as input to lgp_model

response response variable LH likelihood as int

N_trials the N_trials data (binomial likelihood)

Value

a real number

90 set_N_trials

set_N_cat

Count numbers of different categories for each categorical variable

Description

Count numbers of different categories for each categorical variable

Usage

```
set_N_cat(X, D)
```

Arguments

X the design matrix
D a vector of length 6

Value

a numeric vector

set_N_trials

Set N_trials (binomial and Bernoulli observation models)

Description

Set N_trials (binomial and Bernoulli observation models)

Usage

```
set_N_trials(N_trials, response, LH)
```

Arguments

N_trials the N_trials argument given as input to lgp_model

response response variable
LH likelihood as int

Value

a numeric vector

show,lgpfit-method 91

show,lgpfit-method

Show a summary of results of the 1gp function

Description

Show a summary of results of the 1gp function

Usage

```
## S4 method for signature 'lgpfit'
show(object)
```

Arguments

object

an object of class lgpfit

Value

nothing

```
show,lgpmodel-method Show a summary of an lgpmodel
```

Description

Show a summary of an lgpmodel

Usage

```
## S4 method for signature 'lgpmodel'
show(object)
```

Arguments

object

an object of class lgpmodel

Value

nothing

92 simulate_data

```
simdata_colnames_pretty
```

Simulated data column names in a prettier form

Description

Simulated data column names in a prettier form

Usage

```
simdata_colnames_pretty(cn)
```

Arguments

cn

column names

Value

names of model components

simulate_data

Generate an artificial longitudinal data set

Description

Generate an artificial longitudinal data set.

```
simulate_data(
 Ν,
  t_data,
  covariates = c(),
 names = NULL,
  relevances = c(1, 1, rep(1, length(covariates))),
  n_categs = rep(2, sum(covariates %in% c(2, 3))),
  t_{jitter} = 0,
  lengthscales = rep(12, 2 + sum(covariates %in% c(0, 1, 2))),
  f_{var} = 1,
  noise_type = "Gaussian",
  snr = 3,
  phi = 1,
 N_{affected} = round(N/2),
  t_effect_range = "auto",
  t_observed = "after_0",
```

simulate_data 93

```
C_hat = 0,
dis_fun = "gp_vm",
bin_kernel = FALSE,
steepness = 0.5,
vm_params = c(0.025, 1),
continuous_info = list(mu = c(pi/8, pi, -0.5), lambda = c(pi/8, pi, 1)),
N_trials = 1,
verbose = FALSE,
force_zeromean = TRUE
)
```

Arguments

N Number of individuals.

t_data Measurement times.

covariates

Integer vector that defines the types of covariates (other than id and age). If not given, only the id and age covariates are created. Different integers correspond to the following covariate types:

- 0 = disease-related age
- 1 = other continuous covariate
- 2 = a categorical covariate that interacts with age
- 3 = a categorical covariate that acts as a group offset
- 4 = a categorical covariate that that acts as a group offset AND is restricted to have value 0 for controls and 1 for cases

names Covariate names.

relevances Relative relevance of each component. Must have be a vector so that

length(relevances) = 2 + length(covariates).

First two values define the relevance of the infividual-specific age and shared

age component, respectively.

n_categs An integer vector defining the number of categories for each categorical co-

variate, so that length(n_categs) equals to the number of 2's and 3's in the

covariates vector.

t_jitter Standard deviation of the jitter added to the given measurement times.

lengthscales A vector so that

length(lengthscales) = 2 + sum(covariates %in% c(0,1,2)).

f_var variance of f

noise_type Either "Gaussian", "Poisson", NB" (negative binomial) or "binomial".

snr The desired signal-to-noise ratio. This argument is valid only with

noise_type = "Gaussian".

phi The dispersion parameter for negative binomial data. The variance is $g + g^2/phi$.

N_affected Number of diseased individuals that are affected by the disease. This defaults

to the number of diseased individuals. This argument can only be given if

covariates contains a zero.

94 simulate_data

t_effect_range Time interval from which the disease effect times are sampled uniformly. Alternatively, This can any function that returns the (possibly randomly generated) real disease effect time for one individual. Determines how the disease effect time is observed. This can be any function t_observed that takes the real disease effect time as an argument and returns the (possibly randomly generated) observed onset/initiation time. Alternatively, this can be a string of the form "after_n" or "random_p" or "exact". C hat A constant added to f dis_fun A function or a string that defines the disease effect. If this is a function, that function is used to generate the effect. If dis_fun is "gp_vm" or "gp_ns", the disease component is drawn from a nonstationary GP prior (vm is the variance masked version of it). bin_kernel Should the binary kernel be used for categorical covariates? If this is TRUE, the effect will exist only for group 1. Steepness of the input warping function. This is only used if the disease composteepness nent is in the model. vm_params Parameters of the variance mask function. This is only needed if useMaskedVarianceKernel = TRUE. continuous_info Info for generating continuous covariates. Must be a list containing fields lambda and mu, which have length 3. The continuous covariates are generated so that x $<-\sin(a*t+b)+c$, where

- t <-seq(0,2*pi,length.out = k)
- a <-mu[1] + lambda[1]*stats::runif(1)
- b <-mu[2] + lambda[2]*stats::runif(1)
- c <-mu[3] + lambda[3]*stats::runif(1)

N_trials The number of trials parameter for binomial data.

verbose verbosity mode

force_zeromean Should each component (excluding the disease age component) be forced to have a zero mean?

Value

A list out, where

- out\$data is a data frame containing the actual data and
- out\$components contains more points for smoother visualizations of the generating process.
- out\$onsets contains the real disease effect times
- out\$p_signal proportion of variance explained by signal

Examples

```
# Generate Gaussian data
dat <- simulate_data(N = 4, t_data = c(6,12,24,36,48), snr = 3)
# Generate negative binomially distributed count data
dat <- simulate_data(N = 6, t_data = seq(2, 10, by = 2), noise_type = "NB", phi = 2)</pre>
```

simulate_kernels 95

simulate_kernels

Compute all kernel matrices when simulating data

Description

Compute all kernel matrices when simulating data

Usage

```
simulate_kernels(
   X,
   types,
   lengthscales,
   X_affected,
   bin_kernel,
   useMaskedVarianceKernel,
   steepness,
   vm_params
)
```

Arguments

X covariates

types vector of covariate types, so that

• 1 = ID

• 2 = age

• 3 = diseaseAge

• 4 = other continuous covariate

• 5 = a categorical covariate that interacts with age

• 6 = a categorical covariate that acts as an offset

lengthscales vector of lengthscales

X_affected which individuals are affected by the disease

bin_kernel whether or not binary (mask) kernel should be used for categorical covariates

useMaskedVarianceKernel

should the masked variance kernel be used for drawing the disease component

steepness steepness of the input warping function
vm_params parameters of the variance mask function

Value

a 3D array

sim_data_to_observed

Description

Input check for the covariates-related arguments of simulate_data

Usage

```
sim_check_covariates(covariates, relevances, names, n_cat)
```

Arguments

covariates argument to simulate_data
relevances argument to simulate_data
names argument to simulate_data

n_cat the n_categs argument to simulate_data

Value

the covariate names

sim_data_to_observed Real generated disease ages to observed ones

Description

Real generated disease ages to observed ones

Usage

```
sim_data_to_observed(dat, t_observed)
```

Arguments

data frame

t_observed Determines how the disease onset is observed. See documentation of simulate_data.

Value

a new data frame and observed onsets

sim_generate_names 97

sim_generate_names

Generate names for covariates

Description

Generate names for covariates

Usage

```
sim_generate_names(covariates)
```

Arguments

covariates

vector of covariate types

Value

covariate names

sim_parse_t_obs

Parse the t_observed argument of simulate_data

Description

Parse the $t_observed$ argument of $simulate_data$

Usage

```
sim_parse_t_obs(t_observed)
```

Arguments

t_observed a string

Value

a list with a name and number

98 split_data_by_id

split_data

Split data into training and test data according to given row indices

Description

Split data into training and test data according to given row indices

Usage

```
split_data(data, i_test, sort_ids = TRUE)
```

Arguments

data a data frame

i_test test data row indices

sort_ids should the test indices be sorted into increasing order

Value

```
a list(train, test)
```

split_data_by_id

Split data into training and test data according to given individuals

Description

Split data into training and test data according to given individuals

Usage

```
split_data_by_id(data, test_ids, id_variable = "id")
```

Arguments

data a data frame

test_ids test data individual identifiers

id_variable name of id variable

Value

```
a list(train, test)
```

```
split_data_by_timepoint
```

Split data into training and test data according to time point indices

Description

Split data into training and test data according to time point indices

Usage

```
split_data_by_timepoint(
  data,
  test_idx,
  id_variable = "id",
  time_variable = "age"
)
```

Arguments

```
data a data frame
```

Value

```
a list(train, test)
```

split_data_random

Split data into training and test data randomly

Description

Split data into training and test data randomly

Usage

```
split_data_random(data, p_test = 0.1, n_test = NULL)
```

Arguments

data a data frame

p_test desired proportion of test data

n_test desired number of test data points (if NULL, p_test is used to compute this)

100 standardize_inputs

Value

```
a list(train, test)
```

```
split_data_random_each
```

Split data into training and test data by selecting randomly k points from each individual

Description

Split data into training and test data by selecting randomly k points from each individual

Usage

```
split_data_random_each(
  data,
  n_test = 1,
  id_variable = "id",
  time_variable = "age"
)
```

Arguments

data a data frame

n_test desired number of test data points per individual

id_variable name of id variable
time_variable name of time variable

Value

```
a list(train, test)
```

standardize_inputs

Standardize continuous input variables in X

Description

Standardize continuous input variables in X

```
standardize_inputs(X, D)
```

stan_input_X_and_D

Arguments

X the design matrix

D the covariate types, a vector of length 6

Value

updated X and info about scaling

stan_input_X_and_D

Predictor covariates and types to Stan input

Description

Reorders covariates and takes only those that are needed

Usage

```
stan_input_X_and_D(data, varInfo, types, formula, verbose)
```

Arguments

data a data frame containing the covariates

varInfo original variable type info types types of the covariates

formula model formula

verbose can this print some info?

Value

X and needed types and updated varInfo

validate_prior

Validate prior by sampling the signal and noise from it

Description

Validate prior by sampling the signal and noise from it

```
validate_prior(model, chains = 4, iter = 1000, parallel = FALSE)
```

102 warp_input

Arguments

model An object of class 1gpmodel.

chains how many chains are used to sample from the prior

iter for how many iterations are the chains run parallel should the chains be run in parallel?

Value

An object of class lgpfit and random samples of both 'f' and 'y'.

var_mask

Variance masking function

Description

Variance masking function

Usage

```
var_mask(x, a)
```

Arguments

x vector of length n
a a positive real number

Value

a vector of length n

warp_input

Input warping function

Description

Input warping function

```
warp_input(t, a, b, c)
```

warp_input 103

Arguments

a vector

a steepness of the rise

b location of the effective time window

c maximum range

Value

a vector of warped inputs w(t)

Index

*Topic Gaussian	compute_relevances_alpha, 17	
lgpr-package, 5	compute_relevances_fmean, 17	
*Topic Stan,	create_covariates_stan, 18	
lgpr-package, 5	create_data_plot_df, 18	
*Topic covariate	<pre>create_example_fit, 19</pre>	
lgpr-package, 5	create_F, 19	
*Topic data,	<pre>create_predictions_plot_df1, 20</pre>	
lgpr-package, 5	<pre>create_predictions_plot_df2, 21</pre>	
*Topic interpretable	<pre>create_simdata_plot_df, 22</pre>	
lgpr-package, 5	<pre>create_stan_input, 22</pre>	
*Topic longitudinal	create_test_points, 24	
lgpr-package, 5	create_X, 20, 24	
*Topic models	create_X_star, 25	
lgpr-package, 5	create_y, 26	
*Topic processes ,		
lgpr-package, 5	dinvgamma_stanlike, 27	
*Topic selection ,	disease_effect, 27	
lgpr-package, 5	drawCategorical, 28	
	drawContinuous, 28	
add_categorical_covariate,6	drawLatentComponents, 29	
add_diseaseAges, 7	drawMeasurementTimes, 29	
add_test_caseIDs, 7		
adjusted_Chat, 8	example_call, 30	
affected, 8	<pre>extract_t_effect_samples, 30</pre>	
assess_convergence, 9		
average_predictions, 9	full_model, 31	
	full_model_formula, 31	
check_data, 10, <i>18</i>		
check_formula, 10	get_case_ids, 32	
check_hyperparameter_names, 11	<pre>get_case_row_mappings, 32</pre>	
check_varInfo, 11	<pre>get_diseased_info, 33</pre>	
check_warp_prior, 12	<pre>get_function_components_from_df, 33</pre>	
component_index_to_covariate_index, 12	<pre>get_function_components_from_df_all,</pre>	
component_index_to_type, 13	34	
compute_kernel_matrices, 13	get_g_from_f, 34	
compute_lppd, 14, 53	<pre>get_model_dims, 35</pre>	
compute_noise_level, 14	<pre>get_obs_onset_times, 35</pre>	
compute_predicted_components, 15	get_onset_info, 36	
compute_predictions, 13, 15, 15	get_pkg_description, 36	
compute_relevances, 16	<pre>get_predicted, 37</pre>	

INDEX 105

<pre>get_prior_params, 37</pre>	plot_components, 60, 62, 70, 71	
<pre>get_prior_type, 38</pre>	<pre>plot_components_posterior, 62</pre>	
get_response, 38	plot_components_simdata, 62, 79	
get_runtime, 39	plot_data, 63	
<pre>get_stan_model, 39</pre>	plot_data_hl_cat,64	
get_transform_type, 40	plot_data_hl_cont,64	
	plot_data_hl_disease, 65	
hyperparam_estimate, 40	<pre>plot_data_hl_individual,66</pre>	
hyperparam_samples, 41	plot_data_plain, 67	
idx_to_cont_index, 41	<pre>plot_effect_times, 67</pre>	
	plot_inputwarp,68	
kernel_beta, 42	plot_invgamma, <i>12</i> , 69	
kernel_beta, 42 kernel_bin, 42	plot_posterior_components, 69, 70, 71	
kernel_ns, 43	plot_posterior_components_sub1,70	
kernel_se, 43	plot_posterior_components_sub2,71	
kernel_var_mask, 44	plot_posterior_f, 72	
kernel_zerosum, 44	plot_posterior_predictions, 72, 72, 74	
Kerner_zer osum, 44	75	
lgp, 5, 45	plot_posterior_y, 53, 74	
lgp_component_names, 48	plot_predictions_add_onsets,75	
lgp_covariate_names, 49	$plot_predictions_options, 76$	
lgp_fit, 45, 49, 52, 53	plot_relevances, 77	
lgp_model, 22, 31, 45, 50, 50, 53	plot_samples, 78	
lgp_predict, 15, 52, 53, 70, 71, 81	plot_simdata,79	
lgp_test, 53	postproc, 80	
lgpfit, 19	postproc_relevances, 80	
lgpfit (lgpfit-class), 47	PRED_to_arrays, 81	
lgpfit-class, 47	<pre>predict_preproc, 81</pre>	
lgpmodel, 12, 102	print_prior,82	
lgpmodel (lgpmodel-class), 48	prior_default, 23, 46, 51, 82	
lgpmodel-class, 48	prior_LonGP,83	
lgpr (lgpr-package), 5	prior_stan_to_readable, 83	
lgpr-package, 5	prior_statement, 84	
likelihood_as_int, 54	prior_to_stan,84	
likelihood_as_str, 54		
log_gaussian_density, 55	qinvgamma_stanlike,85	
5–6 – 3/	0.5	
matrix_to_df, 55	repvec, 85	
model_info, 56	rstan, 49	
	rtgeom, 86	
nameComponents, 56	line 47 50	
	sampling, 47, 50	
onsetsToDiseaseAge, 57	scaleRelevances, 86	
	selection, 87	
parse_prior_distribution, 57	selection_fixed_threshold, 87	
parse_prior_t_effect, 58	selection_prob, 88	
plot,lgpfit,ANY-method,58	selection_prob_fixed_threshold, 88	
plot_beta, 59	selection_prob_plot, 89	
plot_component, 59	set_C_hat, 89	

106 INDEX

```
set_N_cat, 90
set_N_trials, 90
show, lgpfit-method, 91
show, lgpmodel-method, 91
sim_check_covariates, 96
\verb|sim_data_to_observed|, 96|
sim_generate_names, 97
sim_parse_t_obs, 97
simdata\_colnames\_pretty, 92
simulate_data, 79, 92, 96
simulate\_kernels, 95
split_data, 98
split_data_by_id, 98
split_data_by_timepoint, 99
split_data_random, 99
split_data_random_each, 100
{\tt stan\_input\_X\_and\_D, 101}
standardize\_inputs, 100
validate_prior, 101
var\_mask, \frac{102}{}
warp_input, 102
```