



Electrical Engingeering, Signal Processing Systems group

#### Introduction to the course

Lecture 1, Part A



#### **Motivation**

Why statistical signal processing?





#### Why random signals?

- Signal (time-series):
  - observations are ordered in time and adjacent observations are dependent
  - Focus on discrete time signals (sequences)
- Successive observation are dependent —— we can predict them
- If prediction are exact, the series is deterministic
- If prediction are not exact, the series is stochastic
- The degree of predictability is determined by the dependence between consecutive observations



## Why statistical signal processing?

"Although random signals are evolving in time in an unpredictable manner, their average statistical properties exhibit considerable regularity"

- Described mathematically by using
  - Theory of probability
  - Random variables
  - Stochastic processes



# **Examples of random signals**







Reflected wave

- Distance -

Transmitter/

Receiver

# **Applications**

#### Signal processing





Communication, information and control theory

Biostatistics and bioinformatics



#### Machine learning



**Economy and Finance** 





#### **Content overview**



#### Part 1: Random variables and Random Signals

#### Part 1

Random Variables and Random Signals

**Lecture 1**: Probability and Random Variables

**Lecture 2**: Random vectors, Random processes

and random signals

**Lecture 3**: Rational signal models

### Part 1: Random variables and Random Signals

#### Part 1

Random Variables and Random Signals

**Lecture 1**: Probability and Random Variables

Part A: Probability

Part B: Random variables

### **Probability**

Lecture 1, Part A



# **Lecture 1, part A: Probability**

#### **Outline**

- Introduction and basic definitions
- Conditional probability
- Law of total probability
- Bayes theorem
- Independence



### **Probability: introduction**

- The word "stochastic" comes from the Greek word for "random" of "chance".
- Probability is the branch of mathematics concerned with analysis of random phenomena













Experiment: procedure that can be repeated infinitely many times





- Experiment: procedure that can be repeated infinitely many times
- **Observation** or **trial**: one realization of the experiment





- Experiment: procedure that can be repeated infinitely many times
- **Observation** or **trial**: one realization of the experiment
- Outcome: any possible observation of the experiment





Experiment

1 observation/trial = tossing the coin twice





Experiment



Outcome HH



Outcome TT



**Outcome TH** 



Outcome HT





The **sample space**, denoted by S, is the set of all possible outcomes

SAMPLE SPACE





Experiment



The **sample space**, denoted by S, is the set of all possible outcomes

An **event** is a set of outcomes of an experiment, which can be the sample space or a subset of the sample space.

**SAMPLE SPACE** 





#### **Event A:**

Tossing at least one head













If an event is an empty set of outcomes, it is a **null event**, denoted by  $\emptyset$ 

#### **Event C:**

Tossing three heads





### **Probability: classic definition**

"The probability of an event is **the ratio of the number of cases favorable to it to the number of all cases possible**" when nothing leads us to expect that any one of
these cases should occur more than any other, which renders
them, for us, equally possible



Daniel Bernoulli (1700 – 1782)



Pierre-Simone Laplace (1749 – 1827)

If a random experiment can result in N mutually exclusive and equally likely outcomes, and if event A results from the occurrence of  $N_A$  of these outcomes, then the probability of A is defined as

$$\Pr[A] = \frac{N_A}{N}$$



#### **Probability: classic definition**

What is the probability of obtaining two heads?

$$Pr[{HH}] = 1/4$$





## **Probability: frequentist definition**

$$f_A = \frac{\text{number of occurrences of event } A}{\text{total number of observations}} = \frac{N(A)}{N}$$



$$\Pr[A] = \lim_{N \to \infty} f_A = \lim_{N \to \infty} \frac{N(A)}{N}$$



## **Introduction: Venn diagrams**





#### **Probability Axioms**



$$Pr[A] = Pr[{HH, HT, TH}] =$$
  
=  $Pr[{HH}]+Pr[{HT}]+Pr[{TH}] =$   
=  $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$ 

#### **Probability Axioms:**

- 1.  $0 \le \Pr[A] \le 1$
- 2. Pr[S]=1
- 3.  $Pr[A_1 \cup A_2 \cup ... \cup A_M] = Pr[A_1] + Pr[A_2] + ... + Pr[A_M]$   $A_1, ..., A_M$ , set of disjoint events



• 
$$Pr[\emptyset] = 0$$



- $Pr[\emptyset] = 0$
- $Pr[A^C] = 1 Pr[A]$





- $Pr[\emptyset] = 0$
- $Pr[A^C] = 1 Pr[A]$
- For any events A and B,  $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$





- $Pr[\emptyset] = 0$
- $Pr[A^C] = 1 Pr[A]$
- For any events A and B,  $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$
- If  $B \subseteq A$  it holds that  $Pr[B] \le Pr[A]$





- $Pr[\emptyset] = 0$
- $Pr[A^C] = 1 Pr[A]$
- For any events A and B,  $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$
- If  $B \subseteq A$  it holds that  $Pr[B] \le Pr[A]$
- For any event A and event space  $\{B_1, B_2, ..., B_m\}$ , it holds that

$$\Pr[A] = \sum_{i=1}^{m} \Pr[A \cap B_i]$$





#### **Conditional probability**



$$\Pr[A \mid B] = \frac{\Pr[AB]}{\Pr[B]} = \frac{\Pr[A \cap B]}{\Pr[B]}$$

- $\Pr[A]$  is the *a priori* knowledge about the occurrence of the event A, before an experiment takes place.
- The conditional probability Pr[A|B] is the knowledge about the occurrence of A when we know that B has occurred (a posteriori)
- The event B becomes the sample space



## **Conditional probability**



$$\Pr[A \mid B] = \frac{\Pr[AB]}{\Pr[B]} = \frac{\Pr[A \cap B]}{\Pr[B]}$$

#### Properties of conditional probability:

- 1.  $Pr[A|B] \ge 0$
- 2. Pr[B|B]=1
- 3.  $Pr[A|B] = Pr[A_1|B] + Pr[A_2|B] + ... + Pr[A_M|B]$

 $A_1, \dots, A_M$ , set of disjoint events



# **Example Conditional Probability**



Double head



 $\{HH\}$ 

First toss head





 $\{HH, HT\}$ 

First toss tail









# **Example Conditional Probability**



Double head



 $Pr[{HH}] = 1/4$ 

First toss head



 $Pr[{HH, HT}] = 1/2$ 

First toss tail



$$Pr[\{TT, TH\}] = 1/2$$



## **Example Conditional Probability**

Probability of having two heads in two-coin tosses, given the first toss is a head:

$$\Pr[\{HH\}|\{HH, HT\}] = \frac{\Pr[\{HH\} \cap \{HH, HT\}]}{\Pr[\{HH, HT\}]} = \frac{1/4}{1/2} = 1/2$$

• Probability of having two heads in two-coin tosses, given the first toss is a tail:

$$\Pr[\{HH\}|\{TH, TT\}] = \frac{\Pr[\{HH\} \cap \{TT, TH\}]}{\Pr[\{TT, TH\}]} = \frac{0}{1/2} = 0$$



$$\Pr[A \mid B] = \frac{\Pr[AB]}{\Pr[B]} = \frac{\Pr[A \cap B]}{\Pr[B]}$$

Sample space partitioned into pairwise disjoint events A<sub>i</sub>.

$$\Pr[B] = \sum_{i} \Pr[A_i \cap B] = \sum_{i} \Pr[B \mid A_i] \Pr[A_i]$$





#### **Example: Total Probability**

- Two disjoint events:
  - A<sub>1</sub> = First toss a head
  - A<sub>2</sub> = First toss a tail
- Consider the event:
  - **B** = Second toss a tail

$$\Pr[B] = \Pr[A_1 \cap B] + \Pr[A_2 \cap B]$$



В



# **Bayes theorem**

From the definition of conditional probability

$$Pr[A \mid B]Pr[B] = Pr[A \cap B] = Pr[B \cap A] = Pr[B \mid A]Pr[A].$$



"how to update or revise the strengths of evidence-based beliefs in light of new evidence a posteriori"



#### Where is J from?

European person by pseudonym of J



#### **Description:**

J is blond and tall. He/she preferably moves around by bike. His/her lunch is typically simple and convenient: she/he eats bread and cheese and a glass of milk. Sometimes, when it's cold, he/she also likes to have a cup of soup. His/Her favorite is made of peas.

Is J Dutch?





## Where is J from?

European person by pseudonym of J



#### **Description:**

J is blond and tall. He/she preferably moves around by bike. His/her lunch is typically simple and convenient: she/he eats bread and cheese and a glass of milk. Sometimes, when it's cold, he/she also likes to have a cup of soup. His/Her favorite is made of peas.





## Where is J from?

European person by pseudonym of J



European union population: 445 millions

*Dutch population: 17 millions* 

# 1 in 25

Dutch not Dutch
4%
96%



# **Geometrical interpretation Bayes theorem**

Sample of 250 people from EU





# **Geometrical interpretation Bayes theorem**

Sample of 250 people from EU



20% of non-Dutch fit description

$$\Pr[\textit{Dutch} \mid \textit{description}] = \frac{\Pr[\textit{description} | \textit{Dutch}] \Pr[\textit{Dutch}] =}{\Pr[\textit{description}]} = \frac{6}{6+48} \approx 11\%!$$



# **Interpretation Bayes theorem**

- **Prior**: 4% of EU population is Dutch
- **Evidence**: description, 60% of Dutch people fit description
- **Posterior**: update prior, there is a 11% chance that the person described is Dutch



## Independence

Events A and B are independent if and only if:

$$Pr[A \cap B] = Pr[A]Pr[B]$$

- Independent and disjoints are NOT synonyms
- Extension to multiple sets: Multiple sets  $\{A_1, A_2, ..., AM\}$  are independent if and only if the following two constraints hold
  - 1. Every possible combination of two sets is independent
  - 2. It holds that  $\Pr[A_1 A_2 \dots A_M] = \Pr[A_1] \Pr[A_2] \dots \Pr[A_M]$



## **Probability: classic definition**

What is the probability of obtaining two heads?

$$Pr[{HH}] = 1/4$$





#### **Example independent events**

Each coin toss in independent!



$$Pr[{HH}] = 1/2 \cdot 1/2 = 1/4$$



# Wrap-up (I)

- Probability is the branch of mathematics concerned with analysis of random phenomena
- Random experiments are described in terms of trials (or observations), outcomes, events, and sample space
- By the classic definition, the probability is calculated as the number of favorable outcomes over the total number of outcomes
- By the frequentist definition, the probability is defined as the limit for an infinitely large number of trials of the relative frequency
- Probability is governed by three probability axioms



# Wrap-up (II)

- The conditional probability is the a posteriori probability of an event, given the knowledge that another event has occurred
- The law of total probability allows relating the a priori probability of an event to a sum of conditional probabilities over several distinct events, which partition the sample space
- Bayes theorem permits updating probabilities in view on new evidence
- Two events are independent when the outcome of one event does not influence the outcome of the other
- Two events are disjoint when they cannot occur at the same time







Electrical Engingeering, Signal Processing Systems group