

ÜBERSETZEN VON SCHRITTMOTORPROTOKOLLEN MITTELS MIKROCONTROLLER

Praxisprojektbericht

im Studiengang Mess- und Sensortechnik Fachhochschule Koblenz, RheinAhrCampus Remagen

vorgelegt von

Johannes Dielmann

geb. am 10.01.1984 in Kirchen

Betreuer: Prof. Dr. Carstens-Behrens

Inhaltsverzeichnis

Tabellenverzeichnis												
1	Ein	leitung										
	1.1	Überb	olick									
	1.2	Aufga	benstellung									
	1.3	Proble	emlösung									
2	Pro	jektau	ıfbau									
	2.1		icht									
	2.2	Die ei	nzelnen Komponenten									
		2.2.1	Lasererfassungssystem VI-900									
		2.2.2	Ansteuerung für Drehtisch									
		2.2.3	Drehtisch									
		2.2.4	Arbeitsplatz Rechner									
A	Anh	ang 1										
	t - m - 1	- I I M I TO M F	zeichnis									

Abbildu	ıngsverzeic	hnis
	11165 (012010	111110

1	Übersicht																																							5	
---	-----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--

Tabellenverzeichnis

1 Einleitung

1.1 Überblick

Gegeben war das 3D-Lasererfassungssystem VI-900 der Firma Minolta, im Folgenden kurz VI-900 genannt, und ein Drehtisch. Der Drehtisch dient zur Aufnahme des zu erfassenden Objektes aus allen Richtungen. Des weiteren lässt sich das 3D-Modell später in der Software wesentlich einfacher zusammenführen wenn der Drehtisch benutzt wird.

Dem VI-900 lag die Software RapidForm2004 bei. Mit dieser Software lassen sich 3D-Modelle einfach bearbeiten und einzelne Modelle zu einem gesamten zusammenführen. Diese Software spricht sowohl das VI-900 an als auch den Drehtisch.

In RapidForm2004 sind jedoch nur einige wenige Schrittmotoren und deren Protokolle hinterlegt.

1.2 Aufgabenstellung

Mit dem Aufbau aus RapidForm2004, Lasererfassungssystem und Drehtisch sollen auf einfachem Wege 3D-Modelle eines Objektes erzeugt werden und diese dann zur Vermessung oder zur weiteren Verwendung in CAD-Software herangezogen werden.

Um ein vollständiges und brauchbares 3D-Objekt zu erhalten kann die Software einen Drehtisch ansteuern.

Da das Protokoll des Drehtisches nicht kompatibel zu denen in der Software war musste das Protokoll also übersetzt werden.

1.3 Problemlösung

Da die Kommunikation mittels ASCII-Zeichen über die RS-232 Schnittstelle des Computers erfolgt, lässt sich die Information leicht mit einem Mikrocontroller abfangen, auswerten und richtig kodiert an die Ansteuerung des Drehtisches weitersenden. Benötigt wird also ein Mikrocontroller mit 2 RS-232 Schnittstellen. Um später den Ablauf anzeigen zu können und den Drehtisch auch manuell bedienen zu können wurde noch ein LC-Display und mehrere Bedientaster eingeplant.

Da die Ansteuerung des Schrittmotors als Einschub für ein 19"-Rack realisiert ist wählte ich für den Mikrocontroller auch die realisierung als 19"-Einschubplatine.

2 Projektaufbau

2.1 Übersicht

Abbildung 1: Übersicht

- 2.2 Die einzelnen Komponenten
- ${\bf 2.2.1} \quad Laser er fassungs system~VI-900$
- 2.2.2 Ansteuerung für Drehtisch
- 2.2.3 Drehtisch
- 2.2.4 Arbeitsplatz Rechner

A Anhang 1

Literaturverzeichnis

- [1] Mack, T., Quarg, G., Braun, C. (2006). The mean square error of prediction in the chain ladder reserving method. A comment. ASTIN Bulletin 36, 543-553.
- [2] Mikosch, T. (1994). Non-life insurance mathematics. Springer, Heidelberg.
- [3] Wikipedia. Chi-Quadrat-Test, http://de.wikipedia.org/wiki/Chi-Quadrat-Test, Stand: 30.09.2011.

Erklärung

Hiermit versichere ich, dass ich den vorliegenden Bericht selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe.

Remagen, den 5. Januar 2012

Johannes Dielmann

J. Dielman