Math 255 - Homework 3

Colin Pi

Due in class, Wednesday April 15

Problem 1

Lohr textbook ch. 2 exercise 14. Data set is missing from SDaA so use the file:

```
> ssc <- read.csv("http://math.carleton.edu/kstclair/data/ssc.csv")
```

(a) The members of SSC not in the online directory is not considered. Also, it only covers workers in academics, government, and industry. These possibly lead to undercoverage issue.

```
(b)
```

```
> ssc$N <- 864
> ssc$wts <- ssc$N/nrow(ssc)</pre>
> design1.srs <- svydesign(id = ~1, fpc = ~N, weights = ~wts, data = ssc)
> svymean(~sex, design1.srs)
        mean
sexf 0.30667 0.0343
sexm 0.69333 0.0343
> confint(svymean(~sex, design1.srs), df = degf(design1.srs)) ## can I just use z distribution for pro
         2.5 %
                 97.5 %
sexf 0.2388099 0.3745234
sexm 0.6254766 0.7611901
> sex <- ifelse(ssc$sex == "f", 1, 0)
> se < sqrt((1 - length(sex)/864) * (mean(sex) * (1 - mean(sex)))/(length(sex) -
> mean(sex) + se * qt(c(0.025, 0.975), df = length(sex) - 1)
[1] 0.2388099 0.3745234
\hat{p}_{female} = 0.30667
95% CI: (0.2388099 0.3745234)
> svytotal(~sex, design1.srs)
      total
sexf 264.96 29.67
sexm 599.04 29.67
> confint(svytotal(~sex, design1.srs), df = degf(design1.srs))
        2.5 % 97.5 %
sexf 206.3317 323.5883
sexm 540.4117 657.6683
> se <- 864 * sqrt((1 - nrow(ssc)/864) * (mean(sex) * (1 - mean(sex)))/(nrow(ssc) -
> mean(sex) * 864 + se * qt(c(0.025, 0.975), df = nrow(ssc) - 1)
[1] 206.3317 323.5883
\hat{t}_{female} = 264.96
95% CI: (206.3317, 323.5883)
```

Problem 2

Lohr textbook ch. 2 exercise 15. Data set agsrs

```
> agsrs$N <- 3078
> agsrs$wts <- agsrs$N/nrow(agsrs)</pre>
> design2.srs <- svydesign(id = ~1, fpc = ~N, weights = ~wts, data = agsrs)</pre>
(a)
> hist(agsrs$acres87, main = "Acres devoted to Farm (1987)", xlab = "")
```

Acres devoted to Farm (1987)


```
> svymean(~acres87, design2.srs)
          mean
                   SE
acres87 301954 18914
> confint(svymean(~acres87, design2.srs), df = degf(design2.srs))
         2.5 % 97.5 %
acres87 264733 339174.5
> se <- sqrt(1 - nrow(agsrs)/3078) * sd(agsrs$acres87)/sqrt(nrow(agsrs))
> mean(agsrs$acres87) + qt(c(0.025, 0.975), df = nrow(agsrs) -
      1) * se
[1] 264733.0 339174.5
\hat{y}_{U,1987} = 301954 \text{ Acres}
```

95% CI: (264733, 339174.5)

> hist(agsrs\$farms92, main = "Number of Farms (1992)", xlab = "")

Number of Farms (1992)


```
> svymean(~farms92, design2.srs)
          mean
farms92 599.06 22.062
> confint(svymean(~farms92, design2.srs), df = degf(design2.srs))
            2.5 %
                    97.5 %
farms92 555.6426 642.4774
> se <- sqrt(1 - nrow(agsrs)/3078) * sd(agsrs\farms92)/sqrt(nrow(agsrs))
> mean(agsrsfarms92) + qt(c(0.025, 0.975), df = nrow(agsrs) -
      1) * se
[1] 555.6426 642.4774
\hat{\bar{y}}_{U,1987} = 599.06
95% CI: (555.6426, 642.4774)
(c)
> hist(agsrs$largef92, main = "Number of Farms with 1000 acres or more (1992)",
      xlab = "")
```

Number of Farms with 1000 acres or more (1992)

Number of Farms with 9 acres or fewer (1992)


```
\hat{\bar{y}}_{U,1992} = 46.823
95% CI: (39.6649, 53.98177)
```

Problem 3

Lohr textbook ch. 2 exercise 16. Data set golfsrs

(a)

```
> hist(golfsrs\sukday9, main = "Weekday Green Fees, 9 holes", xlab = "")
```

Weekday Green Fees, 9 holes

The distribution is heavility skewed to the right.

(b)

Average weekday greens fee to play 9 holes of golf = \$20.153 SE: \$1.6299

Problem 4

Lohr textbook ch. 2 exercise 18

```
> holes18 <- ifelse(golfsrs$holes == 18, 1, 0)</pre>
> design3.srs <- update(design3.srs, holes18 = holes18)</pre>
> svymean(~holes18, design3.srs)
           mean
holes18 0.70833 0.0415
> confint(svymean(~holes18, design3.srs), df = degf(design3.srs))
            2.5 %
                     97.5 %
holes18 0.6261612 0.7905054
> mean(holes18)
[1] 0.7083333
> se <- sqrt((1 - length(holes18)/14938) * (mean(holes18) * (1 -
      mean(holes18)))/(length(holes18) - 1))
> mean(holes18) + se * qt(c(0.025, 0.975), df = length(holes18) -
      1)
[1] 0.6261612 0.7905054
```

```
\hat{p}_{18 \ holes} = 0.70833
95% CI: (0.6261612, 0.7905054)
```

Problem 5

Lohr textbook ch. 2 exercise 19.

 n_0 , the required sample size we would use for SRS without replacement, is defined as

$$n_0 = \left(\frac{z_{\alpha/2}S}{e}\right)^2.$$

For a large populations, $S^2 \approx p(1-p)$, and the maximum of S^2 is at which p=1/2. If we plug-in p=1/2 to get the maximum S^2 , $z_{\alpha/2}=1.96$, and e=0.04, $n_0=(\frac{1.96}{0.04})^2\cdot 1/4=600.25$. If we plug-in n_0 to the equation below,

$$n = \frac{n_0}{1 + \frac{n_0}{N}} = \frac{600.25}{1 + \frac{600.25}{N}}$$

```
> city <- c("Buckeye", "Gillbert", "Gila Bend", "Phoenix", "Tempe")
> N <- c(4857, 59338, 1724, 1149417, 153821)
> n <- unlist(lapply(N, function(x) {
+    return(600.25/(1 + 600.25/x))
+ }))
> sample.size <- data.frame(City = city, Population = N, Sample.Size = n)
> knitr::kable(sample.size)
```

City	Population	Sample.Size
Buckeye	4857	534.2277
Gillbert	59338	594.2388
Gila Bend	1724	445.2322
Phoenix	1149417	599.9367
Tempe	153821	597.9168

For the cities with population above 50k, the required sample size to have margin of error of 4% is close to 600 (n_0 , which does not put fpc into consideration). But the required sample size for small cities like Buckeye and Gila Bend shows a huge deviation from n_0 , suggesting that fpc makes a huge difference for the populations with small size.

Problem 6

Lohr textbook ch. 2 exercise 32.

(a)

```
> pop <- read.csv("http://math.carleton.edu/kstclair/data/baseball.csv",
+ header = FALSE, na.strings = c("NA", " ", "."))
>
> names(pop) <- c("team", "league", "player", "salary", "POS",
+ "G", "GS", "InnOuts", "PO", "A", "E", "DP", "PB", "GB", "AB",
+ "R", "H", "SecB", "ThiB", "HR", "RBI", "SB", "CS", "BB",
+ "SO", "IBB", "HPB", "SH", "SF", "GIDP")</pre>
```

```
> pop$logsal <- log(pop$salary)</pre>
> n <- 150
> set.seed(30) # put your favorite large integer here
> samp <- sample(1:nrow(pop), size = n, replace = FALSE)
> baseball.srs <- pop[samp, ]</pre>
> str(baseball.srs)
'data.frame': 150 obs. of 31 variables:
$ team : Factor w/ 30 levels "ANA", "ARI", "ATL",...: 3 15 11 13 9 5 27 7 29 5 ...
 $ league : Factor w/ 2 levels "AL","NL": 2 2 1 2 1 1 2 2 1 1 ...
 $ player : Factor w/ 791 levels "aardsda0", "abbotpa0", ...: 663 444 638 203 635 356 626 468 560 153 ...
 $ salary : int 11666667 1400000 385000 370000 2700000 750000 8625000 1200000 1700000 500000 ...
        : Factor w/ 9 levels "1B", "2B", "3B", ...: 7 7 5 9 7 8 3 7 1 6 ...
         : int 69 44 79 104 1 136 142 66 49 30 ...
         : int 0 0 77 97 30 59 139 0 11 5 ...
 $ GS
 $ InnOuts: int 245 85 1983 2526 564 1772 3684 159 321 132 ...
         : int 9 1 177 137 1 133 93 1 104 7 ...
         : int 9 5 2 279 17 5 325 4 3 1 ...
 $ A
 $ E
         : int 0 0 9 10 0 2 10 0 0 0 ...
         : int 0 1 1 56 2 0 23 0 12 0 ...
 $ DP
 $ PB
         : int NA NA NA NA NA NA NA NA NA ...
 $ GB
         : int 69 44 79 104 1 136 142 66 49 30 ...
         : int 2 0 332 384 4 290 500 2 134 75 ...
 $ AB
         : int 0 0 41 66 0 51 109 0 13 9 ...
 $ R
         : int 0 0 107 105 1 79 157 0 30 17 ...
 $ H
 $ SecB : int 0 0 9 15 0 14 32 0 2 8 ...
 $ ThiB : int 0 0 3 2 0 1 4 0 1 0 ...
 $ HR
         : int 0 0 2 8 0 6 34 0 5 2 ...
         : int 0 0 26 31 0 33 124 0 17 8 ...
 $ RBI
 $ SB
         : int 0 0 19 13 0 5 4 0 0 0 ...
 $ CS
         : int 0 0 13 2 0 4 3 0 0 0 ...
 $ BB
         : int 0 0 7 17 0 15 72 0 14 10 ...
         : int 2 0 50 56 2 49 92 0 19 21 ...
 $ SO
       : int 000005000...
 $ HPB
         : int 0 0 0 9 0 2 13 0 3 1 ...
         : int 0 0 12 22 0 1 1 0 0 0 ...
 $ SH
         : int 0 0 1 3 0 2 7 0 2 0 ...
 $ SF
 $ GIDP : int 0 0 5 4 0 5 8 0 3 1 ...
 $ logsal : num 16.3 14.2 12.9 12.8 14.8 ...
(b)
> par(mfrow = c(1, 2))
> hist(baseball.srs$salary, main = "Salary", xlab = "")
> hist(baseball.srs$logsal, main = "Salary, in log scale", xlab = "")
```


The distributions of both salary and logsal are heavily skewed to the right, but the distribution of logsal is less skewed than that of Salary.

```
(c)
```

```
> baseball.srs$N <- 797
> baseball.srs$wts <- 797/nrow(baseball.srs)</pre>
> design6.srs <- svydesign(id = ~1, fpc = ~N, weights = ~wts, data = baseball.srs)</pre>
> svymean(~logsal, design6.srs)
         mean
                  SE
logsal 13.948 0.0903
> confint(svymean(~logsal, design6.srs), df = degf(design6.srs))
          2.5 %
                  97.5 %
logsal 13.76949 14.12649
> se <- sqrt(1 - nrow(baseball.srs)/797) * sd(baseball.srs$logsal)/sqrt(nrow(baseball.srs))
> mean(baseball.srs$logsal) + qt(c(0.025, 0.975), df = nrow(baseball.srs) -
      1) * se
[1] 13.76949 14.12649
logsal = 13.948
95% CI: (13.76949, 14.12649)
(d)
> pitcher <- ifelse(baseball.srs$POS == "P", 1, 0)
> design6.srs <- update(design6.srs, pitcher = pitcher)</pre>
> svymean(~pitcher, design6.srs)
           mean
pitcher 0.48667 0.0369
> confint(svymean(~pitcher, design6.srs), df = degf(design6.srs))
            2.5 % 97.5 %
pitcher 0.4137654 0.559568
>
> se <- sqrt((1 - length(pitcher)/797) * (mean(pitcher) * (1 -
      mean(pitcher)))/(length(pitcher) - 1))
> mean(pitcher) + se * qt(c(0.025, 0.975), df = length(pitcher) -
      1)
[1] 0.4137654 0.5595680
```

```
    pitcher = 0.48667
95% CI: (0.4137654, 0.559568)

(e)

> mean(pop$logsal)
[1] 13.92706
> pitcher.pop <- ifelse(pop$POS == "P", 1, 0)
> mean(pitcher.pop)
[1] 0.4717691
```

 $logsal_U = 13.92706$ $p_{pitcher} = 0.4717691$

Both parameters are included in the CIs calculated above.

Problem 7

$$n_{min} = 28 + 25\left(\frac{\sum_{i=1}^{N} (y_i - \bar{y}_U)^3}{NS^3}\right)^2$$

```
> mean.diff.salary <- pop$salary - mean(pop$salary)
> N <- 797
> S.salary <- sd(pop$salary)
> n_min.salary <- 28 + 25 * ((sum(mean.diff.salary^3))/(N * S.salary^3))^2
> mean.diff.logsal <- pop$logsal - mean(pop$logsal)
> S.logsal <- sd(pop$logsal)
> n_min.logsal <- 28 + 25 * ((sum(mean.diff.logsal^3))/(N * S.logsal^3))^2</pre>
```

 $n_{min, salary} = 166.7455208$ $n_{min, logsal} = 35.4787922$

Problem 8

$$\begin{split} &\frac{1}{\pi_i} = \frac{N}{n}, \ E[Z_i] = \frac{n}{N} \\ &E[\hat{t}] = E[\sum_{i \in S} \frac{y_i}{\pi_i}] = E[\sum_{i=1}^N \frac{y_i}{\pi_i} Z_i] = \frac{N}{n} E[\sum_{i=1}^N y_i Z_i] = \frac{N}{n} \frac{n}{N} E[\sum_{i=1}^N y_i] = E[t] \end{split}$$