JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May - 2018 MATHEMATICS-II

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a) Find
$$L\{\cos^3 2t\}$$
. [2]

b) Find
$$L^{-1} \left\{ \frac{4}{(s+1)(s+2)} \right\}$$
. [3]

c) Evaluate
$$\int_{0}^{1} x^{7} (1-x)^{5} dx$$
. [2]

d) Evaluate
$$\int_{0}^{\infty} x^4 e^{-x^2} dx.$$
 [3]

e) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{x}} xy \, dy dx$$
. [2]

f) Evaluate
$$\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx \, dy \, dz$$
. [3]

g) If
$$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$$
 then find $div \overline{r}$. [2]

i) Evaluate
$$\nabla (x^2 - yz + z^2)$$
. [2]

j) If
$$\overline{a}$$
 is a constant vector then find $curl(\overline{r} \times \overline{a})$. [3]

PART - B

(50 Marks)

2.a) Find $L\{te^{2t}\sin 3t\}$.

b) Find
$$L^{-1} \left\{ \frac{s^2}{\left(s^2 + 4\right)\left(s^2 + 25\right)} \right\}$$
. [5+5]

OR

Solve Well-Pern Val Activation $\frac{d^2}{dt^2}$ 9k sin Susing Oplace Intensform, given that $x(0)=1, \ x\left(\frac{\pi}{2}\right)=1.$ [10]

4. Prove that $\beta(m,n) = \frac{\Pi(m).\Pi(n)}{\Pi(m+n)}$. [10]

OR

5. Show that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$. [10]

6. Change the order of integration and solve $\int_{0}^{a} \int_{x^{2}/a}^{2a-x} xy^{2} dy dx.$ [10]

OR

7. Find the area of the loop of the curve $r = a(1 + \cos \theta)$. [10]

8.a) Prove that $\nabla \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\nabla \times \overline{A}) - \overline{A} \cdot (\nabla \times \overline{B})$.

b) Find the directional derivative of $2x^2 + z^2$ at (1, -1, 3) in the directional of $\overline{l} + 2\overline{j} + 3\overline{k}$. [5+5]

OR

9. Show that
$$\nabla^2 \left[f(r) \right] = f''(r) + \frac{2}{r} f'(r)$$
 where $r = |\overline{r}|$. [10]

10. Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$ where 'C' is bounded by y = x and $y = x^2$.

OR

11. Verify the Stoke's theorem for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ and surface is the part of the plane $x^2 + y^2 + z^2 = 1$ above the xy - plane. [10]

---ooOoo---