Definitionen von Stetigkeit

Jendrik Stelzner

5. Dezember 2014

Im Folgenden wollen wir die unterschiedlichen Definitionen der Stetigkeit einer Abbildung $f: \mathbb{R} \to \mathbb{R}$ angebeben und ihre Äquivalenz beweisen.

Definition 1. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt ε - δ -stetig im Punkt $x \in \mathbb{R}$, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$
 für alle $y \in \mathbb{R}$.

Die Abbildung f heißt ε - δ -stetig, falls f ε - δ -stetig an jeder Stelle $x \in \mathbb{R}$ ist.

Beispiel(e). Wir betrachten die Abbildung $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ an einer Stelle $x \in \mathbb{R}$. Für alle $y \in \mathbb{R}$ haben wir

$$|x^{2} - y^{2}| = |(x+y)(x-y)| = |x+y||x-y| \le (|x|+|y|)|x-y|$$

$$\le (|x|+|x|+|x-y|)|x-y| = 2|x||x-y|+|x-y|^{2},$$
(1)

wobei wir die Dreiecksungleichung für $|x+y| \le |x| + |y|$ und |y| = |x| + |x-y|nutzen. Wir unterscheiden nun zwischen zwei Fällen:

Ist x=0, so ist $|x^2-y^2|=|y|^2$ für alle $y\in\mathbb{R}$. Wählt man dann $\delta\coloneqq\sqrt{\varepsilon}$, so ist für alle $y\in\mathbb{R}$ mit $|y|=|x-y|<\delta$ auch $|x^2-y^2|=|y|^2<\varepsilon$. Ist $x\neq 0$, so ergibt sich für $\delta\coloneqq\min\{\varepsilon/(4|x|),\sqrt{\varepsilon/2}\}$ aus (1), dass für alle $y\in\mathbb{R}$

 $\mathrm{mit}\; |x-y|<\delta$

$$\left|x^2 - y^2\right| \le 2|x||x - y| + |x - y|^2 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Das zeigt, dass f an jeder Stelle $x \in \mathbb{R}$ stetig ist

Im Folgenden seien $f,g\colon\mathbb{R}\to\mathbb{R}$. Üb. 1 — Zeigen Sie, dass wenn f ε - δ -stetig an der Stelle $x\in\mathbb{R}$ ist und f(x)>0, dann gibt es ein $\delta > 0$ mit f(y) > 0 für alle $y \in (x - \delta, x + \delta)$. Gilt die Aussage auch für f(x) < 0 oder $f(x) \neq 0$?

Üb. 2 — Zeigen Sie: Ist $f \in \delta$ -stetig an der Stelle $x \in \mathbb{R}$ und $g \in \delta$ -stetig an der Stelle f(x), so ist die Komposition $g \circ f \varepsilon$ -stetig an der Stelle x.

Definition 2. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt folgenstetig an $x \in \mathbb{R}$, falls für jedes Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\to x$ für $n\to\infty$ auch die Folge $(f(x_n))_{n\in\mathbb{N}}$ konvergiert und

$$\lim_{n \to \infty} f(x_n) = f(x) = f\left(\lim_{n \to \infty} x_n\right).$$

f heißt folgenstetig, falls f an jeder Stelle $x \in \mathbb{R}$ folgenstetig ist.

Beispiel(e). Wir betrachten erneut die Abbildung $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ an einer Stelle $x \in \mathbb{R}$. Ist $(x_n)_{n \in \mathbb{N}}$ eine Folge mit $\lim_{n \to \infty} x_n = x$, so folgt aus den bekannten Eigenschaften konvergenter Folgen, dass auch die Folge $(x_n^2)_{n \in \mathbb{N}}$ konvergiert und

$$\lim_{n\to\infty}x_n^2=\lim_{n\to\infty}(x_n\cdot x_n)=\left(\lim_{n\to\infty}x_n\right)\cdot\left(\lim_{n\to\infty}x_n\right)=x\cdot x=x^2.$$

Das zeigt, dass f an jeder Stelle $x \in \mathbb{R}$ folgenstetig ist.

Definition 3. Es sei $f: \mathbb{R} \to \mathbb{R}$ eine Abbildung und $x_0 \in \mathbb{R}$. Für $y \in \mathbb{R}$ schreiben wir $\lim_{x \uparrow x_0} f(x) = y$, falls

für alle
$$\varepsilon > 0$$
 existiert $\delta > 0$, s.d. $|f(x_0) - f(x)| < \varepsilon$ für alle $x_0 - \delta < x < x_0$,

und bezeichnen y dann als den linksseitigen Limes von f an x_0 . Analog schreiben wir $\lim_{x\downarrow x_0}f(x)=f(y)$, falls

für alle
$$\varepsilon > 0$$
 existiert $\delta > 0$, s.d. $|f(x_0) - f(x)| < \varepsilon$ für alle $x_0 < x < x_0 + \delta$.

Wir nennen y dann denn rechtsseitigen Limes von f an x_0 . Existieren links- und rechtsseitiger Limes von f an x_0 und ist $\lim_{x \uparrow x_0} f(x) = \lim_{x \downarrow x_0} f(x)$, so nennen wir

$$\lim_{x\to x_0} f(x) \coloneqq \lim_{x\uparrow x_0} f(x) = \lim_{x\downarrow x_0} f(x)$$

den beidseitgen Limes von f an x_0 .

Definition 4. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt *linksstetig an der Stelle* $x \in \mathbb{R}$, falls $\lim_{y \uparrow x} f(y) = f(x)$. f heißt rechtsstetig an der Stelle x, falls $\lim_{y \downarrow x} f(y) = f(x)$. f heißt beidseitig stetig an x, falls $\lim_{y \to x} f(y) = f(x)$. (Insbesondere müssen die entsprechenden Grenzwerte existieren.)

f heißt linksstetig, falls f an jeder Stelle $x \in \mathbb{R}$ linksstetig ist, und rechtsstetig, falls f an jeder Stelle $x \in \mathbb{R}$ rechtsstetig ist. Ist f an jeder Stelle $x \in \mathbb{R}$ beidseitig stetig, so heißt f beidseitig stetig.

Im Folgenden sei $f\colon \mathbb{R} \to \mathbb{R}$. Üb. 3 — Zeigen Sie, dass f genau dann beidseitig stetig ist, wenn f links- und rechtsstetig ist.