Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 11 - Jueves 02 de junio del 2022

Problema 1. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de números naturales. Demuestre que si $\{a_n\}_{n\in\mathbb{N}}$ es una sucesión estrictamente creciente, entonces $n \leq a_n$ para todo $n \in \mathbb{N}$.

Problema 2. Sea $n \ge k \ge 1$ enteros. Pruebe que $\binom{n}{k}k = n\binom{n-1}{k-1}$. Luego, demuestre que

$$n(1+x)^{n-1} = \sum_{i=1}^{n} \binom{n}{i} i x^{i-1}$$

Problema 3. Calcule el valor de

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k}$$

Problema 4. Encuentre el coeficiente que acompaña el término x^{13} en la expansión de

$$\left(x^2 + \frac{1}{x}\right)^{17}$$

Puede dejar su respuesta expresada en términos de coeficientes binomiales.

Problema 5. ¿Para qué valores de $n \in \mathbb{N}$ la expansión de $(\frac{1}{x} + x^3)^n$ tiene un término cuadrático?

Problema 6. Sea $a \in (0,1)$. Demuestre que la sucesión $x_n = a^n$ converge a 0 cuando n tiende a infinito.

Problema 7. Usando la definición de límite, demuestre que

$$\lim_{n \to \infty} \frac{n^2}{2n^2 + n + 1} = \frac{1}{2}.$$