El método de Newton-Raphson

(para hallar raíces de una ecuación f(x)=0)

1. Introducción.

El método de Newton para hallar las raíces de la ecuación f(x) = 0, es el más conocido, y a menudo, el más efectivo.

Sea f(x) una función continuamente diferenciable dos veces en el intervalo [a, b], lo cual se expresa: $f \in C^2[a,b]$. Sea $\overline{x} \in [a,b]$ una aproximación a la raíz p tal que:

$$\begin{cases} f'(x) \neq 0 \\ |\overline{x} - p| \to 0 \end{cases}$$

Expresamos el desarrollo de Taylor de primer grado para f(x) en torno a \overline{x} :

$$f(x) = f(\overline{x}) + (x - \overline{x})f'(\overline{x}) + \frac{(x - \overline{x})^2}{2}f''(c)$$

Aquí sustituimos x=p, y, considerando: $\begin{cases} f(p) = 0 \\ (p-x)^2 \Box 0 \end{cases}$

$$0 \square f(\overline{x}) + (p - \overline{x}) f'(\overline{x})$$

Y despejando p, tenemos:

$$p \approx \overline{x} - \frac{f(\overline{x})}{f'(\overline{x})}$$

El método de Newton consiste en tomar una aproximación inicial, \bar{x} , y a continuación obtener una aproximación más refinada mediante la fórmula de arriba. Es decir, se trata de acercarnos a la raíz p por medio de la fórmula recursiva:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

2. Interpretación geométrica.

La ecuación de la recta tangente que pasa por el punto $(p_n, f(p_n))$ viene dada por:

$$y - f(p_n) = f'(p_n)(x - p_n)$$

Si hacemos y=0, $x=p_{n+1}$, obtenemos la expresión anterior:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Importante:

* Debemos tomar siempre como p_0 un valor t.q. $f(p_0) \cdot f''(p_0) > 0$.

• El método de Newton converge siempre que tomemos un p_0 lo bastante cercano al valor p de la raíz.

EL ALGORITMO DE NEWTON-RAPHSON

Para hallar una solución aproximada de f(x) = 0, dada una aproximación inicial p_0 .

Entrada: aproximación inicial p_0 ; tolerancia TOL; cantidad máxima de iteraciones N;

Salida: solución aproximada p ó mensaje de fracaso.

Paso 1: Tomar i = 1;

Paso 2: Mientras que $i \le N$ seguir pasos 3-6;

Paso 3: Tomar $p = p_0 - \frac{f(p_0)}{f'(p_0)}$ % Calculamos p_i .

Paso 4: Si $|p-p_0|$ < TOL entonces SALIDA(p);

Paso 5: Tomar i = i+1

Paso 6: Tomar $p_0 = p$ % redefinir p_0 .

Paso 7: SALIDA('El método fracasó después de N iteraciones'); PARAR.

- OTROS MÉTODOS RELACIONADOS:
- 1. El método de Newton modificado (fórmula de Von Mises).

A partir de la fórmula de Newton:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$$

Si la derivada f'(x) varía ligeramente en el intervalo [a, b]:

$$f'(p_0) \approx f'(p_1) \approx f'(p_2) \approx \dots \approx f'(p_n)$$

Podemos poner la fórmula de Von Mises:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_0)}$$