Processamento de Transações

Banco de Dados: Teoria e Prática

André Santanchè e e Luiz Celso Gomes Jr Instituto de Computação - UNICAMP Setembro 2013

Exercício 1

• Quais as vantagens e desvantagens de se permitir acesso concorrente ao banco de dados?

Transação

- Execução concorrente de programas é essencial para a boa performance do SGBD
 - Acesso a disco é frequente mas lento → concorrência melhora aproveitamento da CPU
- Perspectivas sobre os dados:
 - Programa do usuário → pode realizar vários operação com os dados
 - SGBD → se preocupa apenas com leituras e gravações

(Ramakrishnan, 2003b)

Transação e Concorrência

- Transação: visão abstrata do SGBD sobre um programa do usuário:
 - Uma sequência de leituras e gravações
- Perspectivas sobre a transação:
 - Usuário → sua transação sendo executada individualmente
 - SGBD → concorrência intercalando leituras/gravações de várias transações

Modelo Simplificado do BD

- BD: coleção de itens nomeados
- Conceitos são independentes de granularidade
- Operações:
 - ler(X): lê item X do BD e armazena na variável X do programa
 - gravar(X): grava variável X do programa no item X do BD

Operação de Leitura Como Acontece

- ler(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia o item X do buffer para a variável X da memória principal

Operação de Leitura Como Abstraímos

ler(X)

Operação de Gravação Como Acontece

- gravar(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia variável X da memória principal para o buffer
 - atualiza o buffer no disco
 (Elmasri, 2010)

Operação de Gravação Como Abstraímos

gravar(X)

Transação Estados de Execução

- BEGIN_TRANSACTION
- READ ou WRITE
- END_TRANSACTION

- COMMIT_TRANSACTION
- ROLLBACK (ou ABORT)

Exemplo

Transação 1: Transferência

T1

Exemplo Transação 2: Aquisição

T2

ler(X)
X = X + M
gravar(X)

Transações Concorrentes Plano de Execução

Necessidade de um Plano de Execução

T1	T2
ler(X)	ler(X)
X = X - N	X = X + M
gravar(X)	gravar(X)
ler(Y)	
X = X + N	
gravar(Y)	

Plano de Execução Serial

T1	T2
ler(X)	
X = X - N	
gravar(X)	
ler(Y)	
Y = Y + N	
gravar(Y)	
	ler(X)
	X = X + M
	gravar(X)

Plano de Execução Serial

S

```
ler(X)
X = X - N
gravar(X)
ler(Y)
Y = Y + N
gravar(Y)
ler(X)
X = X + M
gravar(X)
```

Plano de Execução Intercalado

T1	T2
ler(X) $X = X - N$	
	ler (X) X = X + M
<pre>gravar(X) ler(Y)</pre>	
	gravar(X)
Y = Y + N	
gravar(Y)	

Plano de Execução Intercalado

ler(X) X = X - Nler(X) X = X + Mgravar(X) ler(Y) gravar(X) Y = Y + N

gravar(Y)

Plano de Execução (Schedule)

- Aplicável a várias transações simultâneas
- Lista de ações de conjunto de transações
 - leitura, gravação, abort, commit
- Na schedule:
 - S para transações T₁, T₂, ..., T_n
 - ordem de ações no plano T_i = ordem das ações em

Ordem Total e Parcial

Exemplo Transações Concorrentes

Problemas?

T1	T2
ler(X)	ler(X)
X = X - N	X = X + M
gravar(X)	gravar(X)
ler(Y)	
X = X + M	
gravar(Y)	

Problema?

T1	T2
ler(X)	
X = X - N	
	ler(X)
	X = X + M
gravar(X)	
ler(Y)	
	gravar(X)
Y = Y + N	
gravar(Y)	

Problema

T1	T2
ler(X) $X = X - N$	
	ler (X) X = X + M
<pre>gravar(X) ler(Y)</pre>	
	gravar(X)
Y = Y + N $gravar(Y)$	

AtualizaçãoPerdida

Problema

T1	T2
ler(X) $X = X - N$	
	ler (X) X = X + M
<pre>gravar(X) ler(Y)</pre>	
	gravar(X)
Y = Y + N $gravar(Y)$	

 Sobrescrita de dados alterados sem commit

> conflito WW (write/write)

(Ramakrishnan, 2003)

Problema?

T1	T2
ler(X)	
X = X - M	
gravar(X)	
	<pre>ler(X) X = X + M gravar(X)</pre>
ler(Y) ***crash***	

Problema Dirtv Read

T1	T2
ler(X)	
X = X - N $gravar(X)$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	gravar(X)
ler(Y) ***crash***	
CLASII	

Leitura de dados alterados sem commit

> conflito WR (write/read)

(Ramakrishnan, 2003)

Atualização
 Temporária

Exemplo Transação 3: Sumário

T3

```
soma = 0
ler(A)
soma = soma + A
```

ler(X)
soma = soma + X
ler(Y)
soma = soma + Y

Problema?

Intercalação com Transferência Problema?

	T3
ler(X)	soma = 0 ler(A) soma = soma + A
X = X - N $gravar(X)$	• • •
	ler(X)
	soma = soma + X
	ler(Y)
	soma = soma + Y
ler(Y)	• • •
Y = Y + N	
gravar(Y)	

Problema

T1	Т3
	soma = 0 ler(A)
1 o m (V)	soma = soma + A
<pre>ler(X) X = X - N gravar(X)</pre>	• • •
	ler(X)
	<pre>soma = soma + X ler(Y)</pre>
	soma = soma + Y
ler(Y)	• • •
Y = Y + N	
gravar(Y)	

Resumo Incorreto

Problema

T1	Т3
	soma = 0 ler(A)
	soma = soma + A
ler(X)	
X = X - N $gravar(X)$	• • •
	ler(X)
	soma = soma + X
	ler(Y) soma = soma + Y
ler(Y)	• • •
X = X + N	
gravar(Y)	

- Leitura de dados alterados sem commit
 - conflito WR

Exemplo Transação 4: Reserva de Livro

T4

ler(B)
verifica(B)
...
ler(B)
reserva(B)
gravar(B)

Intercalação da Reserva Problema?

T4	T4'
ler(B)	
verifica(B)	
	ler(B)
	verifica(B)
• • •	• • •
	ler(B)
	reserva(B)
	gravar(B)
ler(B)	
reserva(B)	
gravar(B)	

Intercalação da Reserva Problema?

T4	T4'
ler(B)	
verifica(B)	
	ler(B)
	verifica(B)
• • •	• • •
	ler(B)
	reserva(B)
	gravar(B)
ler(B)	
reserva(B)	
gravar(B)	

- Leitura de dados alterados sem commit
 - conflito WR (write/read)

(Ramakrishnan, 2003)

Atualização Temporária

Problema Leitura Não Repetitiva

T4	T4'
ler(B)	
verifica(B)	
	ler(B)
	verifica(B)
• • •	• • •
	ler(B)
	reserva(B)
	gravar(B)
ler(B)	
reserva(B)	
gravar(B)	
gravar (D)	

- Leitura Não Repetitiva
 - conflito RW (read/write)

(Ramakrishnan, 2003)

Leitura Não Repetitiva

Problemas com Transações Concorrentes

- Atualização Perdida
- Atualização Temporária
- Resumo Incorreto
- Leitura não repetitiva

Problemas com Transações Concorrentes

- Conflito WR
 - Leitura de dados alterados sem commit
- Conflito RW
 - Leitura não repetível
- Conflito WW
 - Sobrescrita de dados alterados sem commit

(Ramakrishnan, 2003)

Propriedades ACID

- Atomicidade: todas as operações da transação acontecem ou nenhuma acontece
- Preservação de Consistência: a execução completa de uma transação faz o BD passar de um estado consistente para outro
- Isolamento: uma transação deve ser executada como se estivesse isolada das demais
- Durabilidade ou permanência: se uma transação é efetivada, seu efeito persiste

Plano de Execução Restaurável

- Plano Restaurável
 - T realiza commit somente depois que todas as transações cujos valores T leu realizam commit
- Plano Livre de Cascata (cascadeless)
 - T só lê valores que foram alterados por transações que já realizaram commit
- Plano Estrito
 - T só lê e/ou grava valores que foram alterados por transações que já realizaram commit

Plano Serial e Serializável

- Plano Serial
 - Transações completas são executadas em série
 - Não há intercalação de operações entre transações
- Plano Serializável
 - equivalente a algum plano serial

Plano Serial 1

T1	T2
ler(X)	
X = X - N	
gravar(X)	
ler(Y)	
Y = Y + N	
gravar(Y)	
	ler(X)
	X = X + M
	gravar(X)

Plano Serial 2

T1	T2
	ler(X)
	X = X + M
	gravar(X)
ler(X)	
X = X - M	
gravar(X)	
ler(Y)	
X = X + M	
gravar(Y)	

Plano Serializável?

T1	T2
ler(X)	
X = X - N	
	ler(X)
	X = X + M
arawar (Y)	
gravar(X) ler(Y)	
	gravar(X)
Y = Y + N	
gravar(Y)	

Não Serializável

T1	T2
$ \mathbf{ler}(X) \\ X = X - N $	
	ler (X) X = X + M
gravar(X) ler(Y)	
	gravar(X)
Y = Y + N $gravar(Y)$	

Plano Serializável?

T1	T2
ler(X) $X = X - N$	
gravar(X)	
	<pre>ler(X) X = X + M gravar(X)</pre>
ler(Y) Y = Y + N	
gravar(Y)	

Serializável

T1	T2
ler(X) $X = X - N$	
gravar(X)	ler(X)
	X = X + M $gravar(X)$
ler(Y) Y = Y + N	
gravar(Y)	

Plano Serializável Grafo de Precedência

Grafo de Precedência Algoritmo

- Para cada transação crie um nó no grafo
- Para cada caso em S
 - $□ Tj \rightarrow ler(x) depois de Ti \rightarrow gravar(x)$
 - aresta(Ti → Tj)
 - □ Tj → gravar(x) depois de Ti → ler(x)
 - aresta(Ti → Tj)
 - □ Tj → gravar(x) depois de Ti → gravar(x)
 - aresta(Ti → Tj)
- Serializável → sem ciclos

(Elmasri, 2010)

Plano Serial 1

T1	T2
ler(X)	
X = X - N	
gravar(X)	
ler(Y)	
$\lambda = \lambda + M$	
gravar(Y)	
	ler(X)
	X = X + M
	gravar(X)

Plano Serial 2

T1	T2
	ler(X)
	X = X + M
	gravar(X)
ler(X)	
X = X - N	
gravar(X)	
ler(Y)	
Y = Y + N	
gravar(Y)	

Não Serializável

T1	T2
ler(X)	
X = X - N	
	lor(V)
	$ \mathbf{ler}(X) \times = X + M$
gravar(X)	
ler(Y)	
	arazar (Y)
	gravar(X)
Y = Y + N	
gravar(Y)	

Plano Não Serializável

Serializável

T1	T2
ler(X)	
X = X - N	
gravar(X)	
	ler(X)
	X = X + M
	gravar(X)
9 (57)	
ler(Y)	
Y = Y + N	
gravar(Y)	

Exercício 2

 Defina se os planos a seguir são seriais ou serializáveis. Desenhe os grafos de precedência.

Obs.: r1(x) == Transação 1 lê x.

- a) r1(x), w1(y), r3(x), w2(y), w2(y)
- b) r1(x), r2(y), w2(y), w1(y), w3(x), r2(x)

Equivalência

- Planos Conflito Equivalentes
- Equivalência de Visão

Plano Conflito Serializável

- Planos Conflito Equivalentes
 - Ordem de operações conflitantes for a mesma em ambos
 - Operações conflitantes
 - pertencem a diferentes transações
 - acessam o mesmo item
 - pelo menos uma for gravar
- Plano Conflito Serializável
 - Conflito equivalente a um plano serial

Grafo de Precedência Algoritmo

- Para cada transação crie um nó no grafo
- Para cada caso em S
 - Ti precede e conflita com Tj
 - aresta(Ti → Tj)
- Serializável → sem ciclos

(Ramakrishnan, 2003)

Equivalência de Visão

- Dois planos S e S' possuem equivalência se:
 - Possuem as mesmas transações e operações
 - No plano S, se há um read(X) em T_i que seja valor original (antes de S) ou gravado por um write(X) em T_j, o mesmo acontece em S'
 - No plano S, se write(Y) é a última operação em Y a gravar em T_k, o mesmo acontece em S'

Falha

- Tipos de Falha:
 - Sem dano físico ao BD:
 - O computador falhar (crash ou queda de sistema)
 - Um erro de transação ou sistema
 - Erros locais ou condições de exceção detectadas pela transação
 - Imposição do controle de concorrência
 - Com dano físico ao BD:
 - Falha de disco
 - Problemas físicos e catástrofes

Transação e Atomicidade

- A transação é uma unidade de trabalho atômica:
 - ou é executada completamente ou é não é executada por inteiro
 - transações podem reverter (rollback)
- Exemplos:
 - T1, T2 & T3completas
 - T4 & T5 devem
 ser revertidas

(Ramakrishnan, 2003b)

Transação e Durabilidade

O que fazer se o SGBD parar?

- Exemplos:
 - T1, T2 & T3 tem
 que permanecer

(Ramakrishnan, 2003b)

Exercício 3

 Para cada propriedade ACID (atomicidade, consistência, isolamento, durabilidade), descreva um problema que pode acontecer caso o SGBD não a garanta.

André Santanchè

http://www.ic.unicamp.br/~santanche

Referências

- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2010) Sistemas de Banco de Dados. Pearson, 6ª edição em português.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.
- Ramakrishnan, Raghu; Gehrke, Johannes (2003b)
 Database Management Systems. McGraw-Hill, 3rd edition (companion slides).

Licença

- Estes slides são concedidos sob uma Licença Creative
 Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Agradecimentos: fotografia da capa e fundo por Ben Collins http://www.flickr.com/photos/graylight/.

Ver licença específica em

http://www.flickr.com/photos/graylight/261480919/