

Fabricating Nanostructured Materials through

Severe Plastic Deformation (SPD)

Processing

Prof. Dr. Afërdita Priftaj Veveçka Prof. Dr. Jorgaq Kacani

Polytechnic Universitety of Tirana, Department of Physics

Albania

Workshop in Barcelona, January 8-10, 2014

Nanomaterials obtained via refining

The strength of all polycrystalline materials is related to the grain size, d, through the Hall-Petch equation:

$$\sigma_{y} = \sigma_{0} + k_{y} d^{-1/2}$$

d - grain size

- Definitions:
 - Bulk nanstructured materials (BNM) are defined as bulk materials having fully homogeneous and equiaxed micro structures with GS $< 1 \mu m$ and with grain boundaries having high angles of misorientation
 - *Ultrafine-grained materials* (UFG) (100 nm $< d < 1 \mu m$)
 - True nanocrystalline materials (d < 100 nm)

Two main approaches to produce nanocrystalline materials

1. Bottom-up

2. Top-down

- Inert gas condensation(Gleiter, 1984)
- Electrodeposition, (Erb et. al, 1989)
- Consolidation of nano-powders (Koch, 1990)
- Crystallization from amorphous materials

Severe Plastic
Deformation, "SPD"
(Valiev et al, 1991,
1993):
BULK nc materials

Severe Plastic Deformation (SPD)

- SPD a metal forming procedure in which a very high strain is imposed on a bulk solid without change in the overall dimensions, leading to the production of exceptional grain refinement. This allows for the repeated application of the process to accumulate larger strains
- Due to their refined microstructure (small GS) they provide attractive properties that cannot be achieved in conventional GS materials with the same chemical composition.

Outstanding Properties of **B**ulk NanoMaterials (BNM)

- These nanostructures lead to changes in physical and mechanical and other properties:
- high strength at low temperature and at good ductility
- high- speed and low –temperature superplasticity (SPD)
- improved magnetic properties
- Improved corrosion
- The microhardness of BNS materials is higher than that of CGS analogs by a factor of 2-7

Standard SPD Techniques

- Equal Channel Angular Pressing (ECAP)
- High Pressure Torsion (HPT)
- Accumulative roll-bonding (ARB)

High Pressure Torsion

Disc sample is torsionally deformed under high pressure of several GPa.

Schematic of HPT set-up (N.Bridgman, R.Valiev)

TEM microstructure of pure Ni produced by HPT, for N = 5 at applied pressure of 9 GPa.

Workshop in Bargelona, Jargy 8 m

Main properties of HPT technique

- Advantages:
 - gives high quality UFG materials (GZ<100 nm)
 - process brittle materials as intermetallics and semiconductors.
- Disadvantage :

the specimen dimensions are fairly small, with max disc diameter ~ 20mm and thickness of ~ 1mm; limited industrial use

Accumulative Roll-Bonding (ARB)

Is the only SPD process using rolling deformation-invented in 1998 in Japan (N.Tsuji)

Main properties of ARB

- To obtain one-body solid materials, the ARB is not only a deformation process, but also a bonding process (roll-bonding).
- To achieve good bonding, the surface of the materials is degreased and wirebrushed before stacking, and the roll-bonding is carried out at elevated temperatures.
- Depending upon the crystal structure, the microstructures have GS within the range of ~ 70-500 nm.
- The ARB materials have very high strength; 2 4 X higher than those of the same material with CGS

Equal Channel Angular Pressing (ECAP)

- First introduced by Segal and co-workers in 1980 in the former Soviet Union.
- After 1990 initiated an intense attention in the scientific community.
- Can be applied to fairly large billets
- Is a relatively simple procedure
- May be developed to materials with different crystal structure
- Reasonable homogeneity is attained

ECAP

Schematic view of ECAP die

A section through the ECAP die: the internal angles ϕ , ψ .

View of ECAP facility

Typical appearance of the samples of Al – alloy after ECAP in dies with diameters 6, 10, and 40 mm.

Workshop in Barcelona, January 8-10, 2014

Fundamental parameters in ECAP

Operates in simple shear and characterized by:

- Strain imposed in each separate passage through the die
- The slip systems operating during pressing

All these parameters play a critical role in determining the nature of UFG structure introduced by ECAP

The equivalent strain:

$$\varepsilon_N = \frac{N}{\sqrt{3}} \left[2 \cot \left(\frac{\Phi}{2} + \frac{\Psi}{2} \right) + \Psi \csc \left(\frac{\Phi}{2} + \frac{\Psi}{2} \right) \right]$$

N is the number of passing through the die (assume no friction)

- For conventional dies, the angle $\phi = 90^{\circ}$ $\varepsilon_N \sim 1$, for a single passage, for all values of
- Since the cross sectional shape of the work piece does not change, it can be introduced into the die and pressed again. Multiple passes results in a large accumulated strain.

 Workshop in Barcelona, January 8-

10, 2014

The processing routes for ECAP

The best route for UFG microstructure is route Bc

The slip systems viewed on the X, Y and Z planes for consecutive passes using processing routes Workshop in Barcelona, January 8-

The development of UFG microstructure

- Microstructures on the X, Y, and Z planes for polycrystalline AL after ECAP through 1 pass :
- Grains that are elongated
- Formation of low angle cell structure at the initial stages of SPD process in pure metals independent of their crystal lattice type.
- SAED patterns exhibit net patterns, indicative of low angle boundaries.

Y.Iwahashi, Z.Horita, M.Nemoto, T.G.langdon, Acta Mater. 1998,46

Appearance of the microstructures on the X plane

Polycrystalline Al, after ECAP through 4 passes

SAED: The spots are distributed around circles showing the presence of high angle grain boundaries

Route B_C leads to the most rapid evolution into an array of high angle boundaries

Microstructural features after ECAP

- An increase in ECA pressing leads to a gradual transformation of the low angle subgrain structure to the equiaxed grain nanostructure with high angle grain boundaries.
- This evolution is interpreted by rearrangement and annihilation of dislocations with opposite signs.
- The process of nanostructured formation during SPD is rather complex and its mechanisms is not yet fully explained

Some application of BNM

- UFG Ti and Ti alloys have entered the bio-medical market
 - Are currently used as implant materials in traumatology, orthopaedics and dentistry:
 - Due to their excellent biological compatibility, good corrosion resistance and high specific strength compared with other metals
- Nanostructured light alloys (Al and Mg alloys) for automotive industry

Improvement of mechanical properties of commercial Al alloy processed by ECAP

Objective:

- To examine the potential for using ECAP to refine the grain size and strengthen the commercial Al alloys
- The experiment was realized in collaboration with the department of Mechanics, University of Ancona, Italy

Experimental material and procedures

Al-5754 commercial alloy with composition in wt%:
2.4-2.6% Mg, 0.1-0.6% Mn, 0.4% Cr, 0.4% Fe, 0.4% Si, 0.2% Zn with the balance Al.

- Alloy used for producing automotive parts and supplied by STAMPAL (Torino, Italy).
- Observations by optical microscopy revealed a grain size of 70 μm in the as received condition

We studied

- Microstructure :
- TEM (a Philips CM-200 at 200 kV); Specimen preparation: twin-jet polishing
- Microhardness HV
- Tensile testing at room temperature and at a constant rate of 3 x 10⁻³ s⁻¹

Experimental results

Microstructure after ECAP through 2 - 6 passes

Measurements indicated average grain sizes ~ 0.3 -0.4 μ m, in the as-pressed condition, demonstrating that ECAP is an effective procedure for attaining an UFG size.

Microhardness Hv versus number of passes

2 Conclusions:

- The hardness is essentially independent of the plane of sectioning
- The value of Hv increases abruptly after a single pass, but thereafter increases slowly with additional passes

Stress vs. strain after pressing through 1 to 6 passes

Workshop in Barcelona, January 8-10, 2014

- The value of 0.2% proof stress increases by a factor
 - ~ 3 times from ~ 80 MPa in the as-received alloy to
 - 240 MPa after a single pass in ECAP
- For additional passes the increase is relatively minor
- Elongations to failure are reduced after ECAP. The unpressed alloy pulls out to elongation ~ 35%, but after pressing from 1-6 passes, the elongation are reduced to ~10%.

Summary and Conclusions

- * ECAP was an effective tool for achieving a substantial reduction in the GS of the commercial 5754 Al alloy
- * The initial GS of ~ 70 μ m in the as received alloy, was reduced to ~ 0.3 0.4 μ m by ECAP through up to 7 passes.

Cont.

* There is an immediate increase in the microhardness at a strain ~ 1 with minor additional increases with subsequent straining

♦ 0.2% proof stress is increased by a factor of three times

Strain-rate Sensitivity of (UFG) AA 6061 processed by ECAP

Objective:

- UFG materials may exhibit an enhanced strength and sometimes also an enhanced ductility.
- Investigations on the strain-rate sensitivity of UFG AA 6061 alloy were performed at temperatures ranging from RT to 250° C, in order to reveal the dominant deformation mechanisms.
- The experiment was realized in collaboration with the department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Germany.

Workshop in Barcelona, January 8-10, 2014

Experimental material and procedures

AA 6061 commercial alloy with the following chemmical composition in wt%:

- 0.4-0.8 % Si, 0.7 % Fe, 0.15-0.4 Cu, 0.15 Mn, 0.8-1.2 % Mg, 0.04-0.35 % Cr, 0.25% Zn, 0.15 % Ti with the balance Al.
- The UFG microstructure was achieved by ECAP in a die with an intersecting angle of the die –channels of 120°, using rectangular specimens with a cross section of 16 x 16 mm and a length of 100 mm. For all specimens route B_C was applied.
- For the ECAP process two different initial states of the materials were used.

State 1: Solution heat treatment at 530° C for 1 hour (quenched in water) + ECAP 6 passes at 100° C

State 2: Solution heat treatment at 530° C for 1 hour (quenched in water) + 18 hour annealing treatment at 165° C (T6 state) + ECAP 2 passes at 100° C.

Workshop in Barcelona, January 8-10, 2014

- 1951 1991 UPT
 - •Strain -rate sensitivity (SRS) was determined from strain-rate jumps during compression tests on an Instron 4505 testing machine.
 - The samples for the compression tests with the dimensions of $d \approx 4$ mm and $h \approx 4.6 4.8$ mm, were taken from the central part of the ECAP-rods.
 - The test temperature was varied from room temperature (25°C) up to 250°C, which is the upper limit of thermal stability of the UFG-material under the applied testing conditions.
 - During the tests the strain rate was varied from $1 \times 10^{-3} \text{ s}^{-1}$ to $1 \times 10^{-5} \text{ s}^{-1}$. For the compression test the first and the last applied strain rate was $1 \times 10^{-4} \text{ s}^{-1}$. Thus the testing conditions at the beginning and the end of the complete test series were identical.

Experimental results and Discussion

FIGURE 1. True stress – true strain curves from compression tests a) CG AA6061, b) UFG AA6061 state 1, c) UFG AA6061 state 2, d) comparison of the stress – strain curves at 200° C for all three conditions. Please note the logarithmic scale of the stress axis.

- Concerning the strain rate sensitivity the following statements can be made:
- For CG AA6061 in a temperature range from room-temperature up to 100° C, no pronounced strain rate sensitivity is found. By increasing the testing temperature further the SRS also increases.
- For CG AA6061 only moderate strain rate sensitivity is obtained, compared to the behaviour of both UFG AA6061 conditions.
- For both UFG states the strain rate sensitivity is strongly enhanced compared to the CG condition and the strain rate sensitivity also increases at higher temperatures.

Strain Rate Sensitivity Exponent

• The strain-rate sensitivity exponent *m* was determined by the following formula:

$$m = \begin{pmatrix} \frac{\partial \ln \sigma}{\partial \ln \dot{\epsilon}} \end{pmatrix}$$
 where σ is the stress and $\dot{\epsilon}$ is the strain rate.

• The obtained values of m are summarized in the following table Strain rate sensitivity exponent m for CG and UFG AA6061 at different temperatures.

Strain rate sensitivity exponent in for CO and OTO AA0001 at different temperatures.						
$\dot{\varepsilon} = 10^{-4} - 10^{-3} (s^{-1})$						
material	m	m	m	m	m	m
AA6061	at RT	at 100° C	at 150° C	at 175° C	at 200° C	at 250° C
CG (T6)	-	0.005	0.015	0.026	0.034	0.033
State 2	-	0.01	0.02	0.052	0.068	0.082
State 1	-	0.021	0.096	0.1	0.176	0.22
$\dot{\varepsilon} = 10^{-4} - 10^{-5} (s^{-1})$						
CG (T6)	-	-	0.019	0.018	0.04	0.046
State 2	-	0.023	0.024	0.058	0.098	0.11
State 1	-	0.05	0.18	0.18	0.24	0.248

10. 2014

FIGURE 2. Strain rate sensitivity exponent m vs. temperature for a) strain rate jumps from $1 \times 10^{-4} \text{ s}^{-1}$ to $1 \times 10^{-3} \text{ s}^{-1}$ and b) $1 \times 10^{-4} \text{ s}^{-1}$ to $1 \times 10^{-5} \text{ s}^{-1}$.

- The higher amount of high angle grain boundaries for state 1 is supposed to be the main reason for the enhanced SRS.
- The results obtained indicate a change in the deformation mechanism in the UFG regime
- It is supposed that thermally activated recovery processes taking place at the grain boundaries are the dominating deformation mechanisms.

10,2014

Summary and Conclussions

- The SRS of aluminium alloy AA6061, has been investigated in the CG sized state and in the UFG conditions, after ECAP for 2 and 6 passes at 100⁰ C.
- Strain rate jumps during compression tests were performed at different temperatures and the values of the strain-rate sensitivity exponent *m* were determined.
- UFG microstructures have a strongly increased SRS compared to CG state, especially at elevated temperatures, indicating a change in deformation mechanism in the UFG regime.
- The value of strain-rate sensitivity m increases from m = 0.05 at 100^{0} C to m = 0.248 at 250^{0} C (= $10^{-4} 10^{-5}$ s⁻¹), for the UFG material processed for 6 ECAP passes
- Thermally activated recovery processes taking place at the GB are the dominating deformation mechanisms.

THANK YOU FOR YOUR ATTENTION