How Can Smart Buildings Be Price-Responsive?

Ricardo Fernández-Blanco, Juan Miguel Morales, Salvador Pineda

Postdoctoral researcher OASYS group, University of Malaga

Ricardo.FCarramolino@gmail.com

June 27th, 2019

Motivation

- Increasing demand-side participation in current and future electricity systems
- Advances on home automation and a growing penetration of smart meters in distribution networks
- Smart buildings can play a key role in providing flexibility!

Motivation

Lack of real-life data from price-responsive buildings

- Source: Saez-Gallego and Morales 2018.
- Existing works in the technical literature
 - Precise modelling of a single element of the smart building
 - Most of the works consider thermostatically-controlled loads

Compact Formulation

We use **economic model predictive control** to model the heat dynamics of a smart building as the minimization of its electricity costs plus the penalty cost due to discomfort:

$$\min_{\boldsymbol{u},\boldsymbol{v},\boldsymbol{x},\boldsymbol{y}} \quad h(\boldsymbol{u}, \boldsymbol{v}) \\
\downarrow \\
\text{Slack variables}$$

1) The state-space model of the building heat dynamics:

$$\dot{x} = Ax + Bu + Ez$$
Disturbances
$$y = Cx + Du$$
Identity matrix Null matrix

- 2) User-defined comfort constraints: $u, v, y \in \mathcal{C}$
- 3) Technical constraints: $\mathbf{u} \in \mathcal{T}$ (continuous + binary variables)

Model is characterized as an MILP once it is discretized

□ binsertframenavigationsymbol () 1 b () 1 b () 1 c () 4/18

Formulation

We assume a single-zone household:

- State-space model:
 - Space heaters: water-based floor heater (3 states) and HVAC (1 state)
 - Thermal loads: residential refrigerator and water heater
 - Disturbances: ambient temperature, room occupancy, hot water demand
- Comfort constraints (e.g. indoor temperature or light levels)
- Technical constraints:
 - Bounds on each appliance's power
 - Precise modelling of the operation of the uninterruptible loads (cycle time, cycle power for each phase)
 - ullet Building electricity consumption $(u^b)=$ the contribution of each appliance

Comfort bounds

Let us assume that the comfort bounds can be set as:

$$\underline{\mathbf{x}}^{r} = \mathbf{x}^{r,set} - \alpha \mathbf{y}$$
$$\overline{\mathbf{x}}^{r} = \mathbf{x}^{r,set} + \alpha \mathbf{y}$$

$\bar{\mathbf{x}}^r$ and $\underline{\mathbf{x}}^r$	maximum and minimum bounds on the indoor air temperature
x ^{r, set}	set point indoor air temperature
α	maximum temperature difference w.r.t $\mathbf{x}^{r,set}$ that the user is able to withstand
_ y	vector of continuous parameters varying between 0 and 1

ullet Parameter lpha defines the flexibility of the occupants.

□ binsertframenavigationsymbol ◀ ≣ b ◀ ≣ b ■ ■ ♥ Q C (e)

Data

- Single-zone household (30 m^2 with 1- m^2 window)
- Electricity prices (ENTSOe), ambient temperature (AEMET + Energyplus)
- Solar radiation, outdoor illuminance, occupancy schedules
- Thermal loads:
 - Water-based floor heater (FH) and HVAC system: 1 kW
 - 30-l water heater (outside): 0.35 kW
 - Residential refrigerator: 1.26 kW
- Indoor artificial lighting: 60 W
- Uninterruptable loads: oven, washing machine, tumble dryer, and dishwasher

	\mathcal{T}_i
Washing machine	06:00-14:00
Dishwasher (first)	06:00-14:00
Dishwasher (second)	16:00-00:00
Tumble dryer	15:00-00:00
Oven	10:00-15:00

Simulation setup

- Daily simulations are run with 15-min time steps for one year
- A look-ahead window of one day is used
- PI-CB vs. PD-CB
- Comfort bounds for cases noflex, flex, and extraflex

	noflex	flex	extraflex
$x_t^{r,set}$ [°C]	20	20	20
α [°C]	0	2	5
$\{\underline{x}^{wh}, \overline{x}^{wh}\} [^{\circ}C]$	{54, 56}	{50, 60}	{45, 65}
$\{\underline{x}^{rf}, \overline{x}^{rf}\} [^{\circ}C]$	{4.9, 5.1}	{4, 5}	{3, 6}

- CPLEX 12.6.3 under Pyomo 5.2
- Computing times < 1 hour

Туре	Comfort bounds	Case	Annual cost [€]	Violations [° C ⋅ h]	Freq. at 20°C [%] ^a	Freq. [18,20)- (20,22] °C [%] ^a	Freq. [15,18)- (22,25]°C [%] ^a	и ^ь [%] ^ь
		noflex	103.5	862.5	37.5	62.5	0.0	54.5
	PI-CB	flex	78.9	0.0	1.5	98.5	0.0	62.7
FH		extraflex	68.4	0.0	0.0	0.3	99.7	63.5
		noflex	103.5	862.5	37.5	62.5	0.0	54.5
	PD-CB	flex	93.2	55.9	22.2	77.8	0.0	61.9
		extraflex	87.0	35.2	21.7	78.3	0.0	64.1
		noflex	107.0	0.0	100.0	0.0	0.0	57.2
	PI-CB	flex	89.9	0.0	1.1	98.9	0.0	63.5
HVAC		extraflex	76.1	0.0	0.5	19.6	79.9	64.7
HVAC		noflex	107.0	0.0	100.0	0.0	0.0	57.2
	PD-CB	flex	94.5	0.0	11.1	88.9	0.0	62.3
		extraflex	84.2	0.0	8.0	61.6	30.4	64.4

^aColumns 6–8: percentage of 15-min time intervals lying within the given temperature intervals throughout the year.

 HVAC system leads to costlier solutions but provides in general less discomfort

 $^{^{\}rm b}\text{Column 9}$ represents the share of power lying within low-price periods.

Туре	Comfort bounds	Case	Annual cost [€]	Violations [°C ⋅ h]	Freq. at 20°C [%] ^a	Freq. [18,20)- (20,22] °C [%] ^a	Freq. [15,18)- (22,25]°C [%] ^a	и ^ь [%] ^ь
		noflex	103.5	862.5	37.5	62.5	0.0	54.5
	PI-CB	flex	78.9	0.0	1.5	98.5	0.0	62.7
FH		extraflex	68.4	0.0	0.0	0.3	99.7	63.5
		noflex	103.5	862.5	37.5	62.5	0.0	54.5
	PD-CB	flex	93.2	55.9	22.2	77.8	0.0	61.9
		extraflex	87.0	35.2	21.7	78.3	0.0	64.1
		noflex	107.0	0.0	100.0	0.0	0.0	57.2
	PI-CB	flex	89.9	0.0	1.1	98.9	0.0	63.5
HVAC		extraflex	76.1	0.0	0.5	19.6	79.9	64.7
HVAC		noflex	107.0	0.0	100.0	0.0	0.0	57.2
	PD-CB	flex	94.5	0.0	11.1	88.9	0.0	62.3
		extraflex	84.2	0.0	8.0	61.6	30.4	64.4

^aColumns 6–8: percentage of 15-min time intervals lying within the given temperature intervals throughout the year.

• In the *noflex* case, HVAC is able to keep the air temperature within comfort bounds compared to the FH because of its faster dynamics

 $^{^{\}rm b}\text{Column 9}$ represents the share of power lying within low-price periods.

Туре	Comfort bounds	Case	Annual cost [€]	Violations	Freq. at 20° C [%]a		Freq. [18,20)- (20,22] °C [%] ^a	Freq. [15,18)- (22,25]°C [%] ^a	и ^ь [%] ^b
-		noflex	103.5	862.5	37.5	•	62.5	0.0	54.5
	PI-CB	flex	78.9	0.0	1.5		98.5	0.0	62.7
FH		extraflex	68.4	0.0	0.0	*	0.3	99.7	63.5
FFI		noflex	103.5	862.5	37.5	ī	62.5	0.0	54.5
	PD-CB	flex	93.2	55.9	22.2	J.	77.8	0.0	61.9
		extraflex	87.0	35.2	21.7	•	78.3	0.0	64.1
		noflex	107.0	0.0	100.0	ī	0.0	0.0	57.2
	PI-CB	flex	89.9	0.0	1.1		98.9	0.0	63.5
HVAC		extraflex	76.1	0.0	0.5	•	19.6	79.9	64.7
HVAC —		noflex	107.0	0.0	100.0	Т	0.0	0.0	57.2
	PD-CB	flex	94.5	0.0	11.1		88.9	0.0	62.3
		extraflex	84.2	0.0	8.0	~	61.6	30.4	64.4

 $^{^{\}mathrm{a}}$ Columns 6–8: percentage of 15-min time intervals lying within the given temperature intervals throughout the year.

 Annual costs decrease when increasing the degree of flexibility at expense of a higher degree of discomfort

 $^{^{}m b}$ Column 9 represents the share of power lying within low-price periods.

Туре	Comfort bounds	Case	Annual cost [€]		Violations [°C·h]	Freq. at 20°C [%] ^a	Freq. [18,20)- (20,22] °C [%] ^a	Freq. [15,18)– (22,25]°C [%] ^a	и ^b [%] ^b
		noflex	103.5	1	862.5	37.5	62.5	0.0	54.5
	PI-CB	flex	78.9	34%	0.0	1.5	98.5	0.0	62.7
FH		extraflex	68.4	•	0.0	0.0	0.3	99.7	63.5
		noflex	103.5	ī	862.5	37.5	62.5	0.0	54.5
	PD-CB	flex	93.2	16%	55.9	22.2	77.8	0.0	61.9
		extraflex	87.0	•	35.2	21.7	78.3	0.0	64.1
		noflex	107.0	T	0.0	100.0	0.0	0.0	57.2
	PI-CB	flex	89.9	29%	0.0	1.1	98.9	0.0	63.5
HVAC		extraflex	76.1	~	0.0	0.5	19.6	79.9	64.7
IIVAC		noflex	107.0	T	0.0	100.0	0.0	0.0	57.2
	PD-CB	flex	94.5	21%	0.0	11.1	88.9	0.0	62.3
		extraflex	84.2	•	0.0	8.0	61.6	30.4	64.4

a Columns 6-8: percentage of 15-min time intervals lying within the given temperature intervals throughout the year.

• PI-CB lead to higher cost reductions than PD-CB when increasing the degree of flexibility regardless of the space heater

^bColumn 9 represents the share of power lying within low-price periods.

Туре	Comfort	Case	Annual		Violations	Freq. at	Freq. [18,20)-	Freq. [15,18)-	u ^b ,
.,,,,	bounds	Cube	cost [€]		[°C · h]	20°C [%] ^a	(20,22] °C [%] ^a	(22,25]°C [%] ^a	[%] ^b
		noflex	103.5	1	862.5	37.5	62.5	0.0	54.5
	PI-CB	flex	78.9	_34%	0.0	1.5	98.5	0.0	62.7
FH		extraflex	68.4		0.0	0.0	0.3	99.7	63.5
		noflex	103.5		862.5	37.5	62.5	0.0	54.5
	PD-CB	flex	93.2	16%	55.9	22.2	77.8	0.0	61.9
		extraflex	87.0		35.2	21.7	78.3	0.0	64.1
		noflex	107.0	ī	0.0	100.0	0.0	0.0	57.2
	PI-CB	flex	89.9	29%	0.0	1.1	98.9	0.0	63.5
HVAC		extraflex	76.1		0.0	0.5	19.6	79.9	64.7
IIVAC		noflex	107.0	<u> </u>	0.0	100.0	0.0	0.0	57.2
	PD-CB	flex	94.5	21%	0.0	11.1	88.9	0.0	62.3
		extraflex	84.2		0.0	8.0	61.6	30.4	64.4

^aColumns 6–8: percentage of 15-min time intervals lying within the given temperature intervals throughout the year.

 PD-CB lead to higher costs due to the time-varying comfort bounds, however it leads to less discomfort than the PI-CB

^bColumn 9 represents the share of power lying within low-price periods.

Туре	Comfort bounds	Case	Annual cost [€]	Violations [°C·h]	Freq. at 20°C [%]a	Freq. [18,20)- (20,22] °C [%] ^a	Freq. [15,18)- (22,25]°C [%] ^a	и ^ь [%] ^b	-
		noflex	103.5	862.5	37.5	62.5	0.0	54.5	-i
	PI-CB	flex	78.9	0.0	1.5	98.5	0.0	62.7	9.0%
FH		extraflex	68.4	0.0	0.0	0.3	99.7	63.5	Y
		noflex	103.5	862.5	37.5	62.5	0.0	54.5	_
	PD-CB	flex	93.2	55.9	22.2	77.8	0.0	61.9	9.6%
		extraflex	87.0	35.2	21.7	78.3	0.0	64.1	V
		noflex	107.0	0.0	100.0	0.0	0.0	57.2	_
	PI-CB	flex	89.9	0.0	1.1	98.9	0.0	63.5	7.2%
HVAC		extraflex	76.1	0.0	0.5	19.6	79.9	64.7	w .
IIVAC		noflex	107.0	0.0	100.0	0.0	0.0	57.2	_
	PD-CB	flex	94.5	0.0	11.1	88.9	0.0	62.3	7.5%
		extraflex	84.2	0.0	8.0	61.6	30.4	64.4	~

 $^{^{}m a}\overline{\text{Columns 6-8: percentage of 15-min time intervals lying within the given temperature intervals throughout the year.}$

 Both space heaters shift energy to low-price periods when increasing the user-defined flexibility

Both systems can be price-responsive

insertframenavigationsymbol

^bColumn 9 represents the share of power lying within low-price periods.

To wrap up...

From a modelling perspective:

- Detailed formulation for a smart building with smart appliances (including 5 states to capture thermal dynamics)
- Precise modelling of variable power cycles for uninterruptible loads
- Development of a simulation tool to generate synthetic data of price-responsive loads

To wrap up...

From the numerical results:

- Substantial cost savings can be achieved when increasing the comfort bounds
- The more-price responsive the household is, the higher discomfort the occupants experience
- Price-dependent comfort bounds may help reduce the occupants' discomfort

Future Work

- Extension to a smart multi-zone building
- Inclusion of battery energy storage system and local renewable generation to increase flexibility

Contacts

Any questions?

Ricardo Fernández-Blanco

ricardo.fcarramolino@uma.es OASYS Webpage: oasys.uma.es

Data

- Single-zone household (30 m^2 with 1- m^2 window)
- Electricity prices (ENTSOe) and ambient temperature (AEMET + Energyplus weather data)

- Solar radiation, outdoor illuminance, occupancy schedules
- Thermal loads: water-based floor heater (FH) and HVAC system
 - FH: mass of water = 400 kg, nominal power = 1 kW, COP = 3
 - HVAC: COP = 1.67(3.67) for heating(cooling), nominal power = 1 kW

Data

 Thermal loads: 30-l water heater (outside) and a residential refrigerator

	Refrigerator	Water heater
Nominal power capacity [kW]	0.35	1.26
COP	0.76	0.92
Thermal capacity [Wh/°C]	6.65	34.85
Heat transfer coefficient [W/°C]	0.678	0.5

- Indoor artificial lighting: 60 W, indoor luminous efficacy = 90 lumen/W
- Uninterruptable loads: oven, washing machine, tumble dryer, and dishwasher

	τ_i
Washing machine	06:00-14:00
Dishwasher (first)	06:00-14:00
Dishwasher (second)	16:00-00:00
Tumble dryer	15:00-00:00
Oven	10:00-15:00

Results: Effect of structural parameters

- $UA^{r,a}$: heat transfer coefficient = heat conductivity x surface area
- The higher $UA^{r,a}$, the less insulated the household is
- We consider no windows and flex case
- Value of *UA*^{r,a} is multiplied by factors: 0.5, 1, 2, 4

Туре	Cost and metrics	Factor					
туре	Cost and metrics	0.5	1	2	4		
	Cost [€]	76.6	86	105.8	149.8		
	Violations [°C ⋅ h]	0	0	1.1	93.4		
FH	Freq. at 20°C [%]	0	0	2.9	4.2		
	Freq. [18,20)–(20,22]°C [%]	100	100	97	95.4		
	Freq. [15,18)–(22,25]°C [%]	0	0	0.1	0.2		
	Cost [€]	87	106.5	146	225		
	Violations [°C ⋅ h]	0	0	0	0		
HVAC	Freq. at 20°C [%]	0.9	0.6	0.3	0.2		
	Freq. [18,20)–(20,22]°C [%]	99.1	99.4	99.7	99.8		
	Freq. [15,18)–(22,25]°C [%]	0	0	0	0		

 Annual costs increase when the household is less insulated at the expense of slightly increasing the occupants' discomfort

Results: Effect of structural parameters

• Effect of *UA*^{r,a} on the share of building power consumption lying within low-price periods in %

	FH			HVAC		
Factor	noflex	flex	extraflex	noflex	flex	extraflex
0.5	54.9	64.2	65.5	56.1	63.0	65.2
1.0	54.0	67.2	68.1	55.9	62.3	64.6
2.0	53.1	71.0	71.7	55.7	60.2	62.2
4.0	51.7	72.5	73.4	55.6	57.8	58.6

- FH is more price-responsive when increasing the household is less isolated
- Opposite behaviour can be observed for the HVAC
- HVAC system has faster dynamics than the water-based FH