Assignment 1

There is a universe set U with |U|=n and a family of subsets $F=\{S_1,\ldots,S_m\}$ where $S_i\subseteq U$ for all i. Each subset S_i has a cost c_i . Given a budget B, a feasible solution is an index set I denoting sets S_i where $i\in I$ selected from F such that the total cost of the selected sets is no more than budget B. The objective is to maximize the number of elements covered which is maximizing $|\cup_{i\in I}S_i|$. Let M=[m] and $f:2^M\to\mathbb{N}^+$ be the coverage function where $f(I)=|\cup_{i\in I}S_i|$. Define the additive cost function: $c:2^M\to\mathbb{R}^+$ where $c(I)=\sum_{i\in I}c_i$. The problem is to select $I\subseteq M$ maximizing f(I) such that $c(I)\leq B$. In the following, for $i\in M$ and $I\subseteq M$, I+i means $I\cup\{i\}$ and I-i means $I\setminus\{i\}$. Consider the following Greedy Algorithm:

Algorithm Greedy Algorithm

```
Input: M, B, cost function c

1: I_G \leftarrow \emptyset

2: while there exists an i \in M such that c(I_G) + c(i) \leq B do

3: i^* \leftarrow \arg\max_{i \in M} \frac{f(I_G + i) - f(I_G)}{c(i)}

4: if c(I_G) + c(i^*) \leq B then

5: I_G \leftarrow I_G + i^*

6: end if

7: end while

8: return I_G
```

1. Show that Greedy Algorithm's approximation ratio can not be better than $\frac{1}{n}$ (by giving an example).

Proof. Suppose $U = \{e_1, \dots, e_n\}$, $F = \{S_1 = \{e_1\}, S_2 = U\}$; S_1 has cost $\frac{B}{2n}$ and S_2 has cost B. Greedy algorithm will only choose S_1 covering one element but opt chooses S_2 covering n elements.

- 2. Though Greedy Algorithm's approximation ratio can be very small when the number of elements n is very large, by solving the following questions, we will see it can serve as a building block for a modified algorithm which has constant approximation ratio. Suppose line 4 is always True during the first l iterations of While-loop and let $I_l = \{i_1, \dots, i_l\}$ be the index set of sets selected after the l-th time the line 5 is executed. Let I^* be the index set of sets selected by optimal solution.
 - (a) Show that $f(I^*) f(I_l) \le (1 \frac{c(i_l)}{B})(f(I^*) f(I_{l-1}))$, which is, Greedy Algorithm is approaching optimal solution step by step.

(Hint: $\forall I \subseteq M, J \subseteq M, f$ satisfies: $f(I) \leq f(J) + \sum_{i \in I \setminus J} (f(J+i) - f(J))$)

Proof.

$$f(I^*) \leq f(I_{l-1}) + \sum_{i \in I^* \setminus I_{l-1}} (f(I_{l-1} + i) - f(I_{l-1}))$$

$$= f(I_{l-1}) + \sum_{i \in I^* \setminus I_{l-1}} c(i) \frac{f(I_{l-1} + i) - f(I_{l-1})}{c(i)}$$

$$\leq f(I_{l-1}) + \frac{f(I_l) - f(I_{l-1})}{c(i_l)} \sum_{i \in I^* \setminus I_{l-1}} c(i)$$
 (Greediness: i_l maximizes $\frac{f(I_{l-1} + i) - f(I_{l-1})}{c(i)}$)
$$\leq f(I_{l-1}) + \frac{B}{c(i_l)} (f(I_l) - f(I_{l-1}))$$
 ($\sum_{i \in I^* \setminus I_{l-1}} c(i) \leq c(I^*) \leq B$)

Multiply $\frac{c(i_l)}{B}$ both sides, reorder items and get the inequality in (a).

(b) Show that $f(I_l) \ge (1 - e^{-\frac{c(I_l)}{B}}) f(I^*)$

(Hint: Solve the inequality in (a) recursively and use inequality $1-x \le e^{-x}$)

Proof.

$$f(I^*) - f(I_l) \le \prod_{t=1}^l (1 - \frac{c(i_t)}{B}) f(I^*)$$
 (Solve inequality in (a) recursively)

$$f(I_l) \ge (1 - \prod_{t=1}^l (1 - \frac{c(i_t)}{B})) f(I^*)$$

$$\ge (1 - \prod_{t=1}^l (e^{-\frac{c(i_t)}{B}}) f(I^*)$$
 (1 - \frac{c(i_t)}{B}) \in (1 - \frac{c(i_t)}{B}) \in e^{-\frac{c(i_t)}{B}})
= (1 - e^{-\frac{c(I_l)}{B}}) f(I^*)

(c) Show that for the first time the line 4 of Greedy algorithm is False, $f(I_G + i^*) \ge (1 - \frac{1}{e})f(I^*)$

Proof. The inequality in (b) doesn't assume whether line 4 of Greedy algorithm is True or False. So just substitute I_l in (b)'s inequality with $I_G + i^*$ and get:

$$f(I_G + i^*) \ge (1 - e^{-\frac{c(I_G + i^*)}{B}}) f(I^*)$$

 $\ge (1 - \frac{1}{e}) f(I^*)$ $(c(I_G + i^*) > B \text{ when line 4 is False})$

3. Consider the Modified Greedy Algorithm below, let I be the set returned by it, show that it is a $\frac{1}{2}(1-\frac{1}{e})$ -approximation algorithm.

Proof.

$$f(I) \ge \frac{1}{2}(f(I_G) + f(i^*))$$
 (set I is the one with max f value)

$$\ge \frac{1}{2}f(I_G + i^*)$$
 (coverage property)

$$\ge \frac{1}{2}(1 - \frac{1}{e})f(I^*)$$
 (inequality in (c))

Algorithm Modified Greedy Algorithm

Input: M, B, cost function c

- 1: $i^* \leftarrow \arg\max_{i \in M, c(i) \leq B} f(i)$
- 2: $I_G \leftarrow \text{result of Greedy Algorithm}$
- 3: **return** arg max { $f(I_G), f(i^*)$ }