# On Commonsense Domains within the Winograd Schema Challenge

#### Aneta Koleva

International Center for Computational Logic Technische Universität Dresden Germany

- Winograd Schema Challenge
- Previous Approaches
- Knowledge Types Identification and Reasoning
- Categorization of Winograd Schemas
- Conclusion



#### **Motivation**

- ▶ Winograd Schema Challenge (Levesque et al., 2012)
  - S: The trophy does not fit into the brown suitcase because it is too [small/large].
  - Q: What is too [small/large]?
  - A: The suitcase/the trophy.

#### Motivation

- ▶ Winograd Schema Challenge (Levesque et al., 2012)
  - S: The trophy does not fit into the brown suitcase because it is too [small/large].
  - Q: What is too [small/large]?
  - A: The suitcase/the trophy.



# **Winograd Schema Challenge**

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.

# Winograd Schema Challenge

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.
- Winograd Schema:

| Sentence containing two nouns              | trophy, suitcase          |
|--------------------------------------------|---------------------------|
| One ambiguous pronoun                      | it                        |
| A special word                             | small/ large              |
| Question about the referent of the pronoun | What is too [small/large] |
| Two possible answers                       | The suitcase /the trophy  |

# Winograd Schema Challenge

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.
- Winograd Schema:

| Sentence containing two nouns              | trophy, suitcase          |
|--------------------------------------------|---------------------------|
| One ambiguous pronoun                      | it                        |
| A special word                             | small/ large              |
| Question about the referent of the pronoun | What is too [small/large] |
| Two possible answers                       | The suitcase /the trophy  |

- Characteristics:
  - Easy to answer for an adult English speaker
  - Always contains special word
  - Google proof

#### Competition

- Competition in 2016 at IJCAI-16
  - ▶ Two time-constraint rounds 210 min. each
    - Pronoun Disambiguation Problems (PDPs) 60
    - Parts of Winograd Schemas 150
  - Four competitors
  - Best result: 58% correctly resolved PDPs
  - There was no second round
- Current state-of-the-art (Radford et al., 2019) achieves 70.7% accuracy on the WSs dataset

# **Previous Approaches**

- Machine learning and deep learning techniques
- ► Knowledge-based system with reasoning procedures

# **Previous Approaches**

- Machine learning and deep learning techniques
- ► Knowledge-based system with reasoning procedures

| Technique                           | PDPs<br>Size - Correct | WSC<br>Size - Correct | WSC*<br>Size - Correct | Remarks                                                                                              |
|-------------------------------------|------------------------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------|
| Supervised ranking<br>SVM model [6] | NA                     | NA                    | 282-30% - 205-73%      | -provided additional dataset set<br>-no evaluation on WSC dataset                                    |
| Classification task with NN [3]     | NA                     | 282-100% - 157-56%    | 282-30% - 177-63%      | -first to use substitution of the pronoun with the antecedents                                       |
| Knowledge<br>Embeddings [4]         | 60-100% - 40-66.7%     | NA                    | NA                     | -best results in the 2016<br>WSC competition                                                         |
| Google's language models [9]        | 60-100% - 42-70%       | 273-100% - 173-63.7%  | NA                     | -no reasoning involved in the discovery of the correct answer -state-of-the-art for PDPs             |
| OpenAl language models [5]          | NA                     | 273-100% - 193-70.70% | NA                     | -current state-of-the-art for WSC -requires a lot of data for training -results are not reproducible |
| Graphs with<br>Relevance theory [7] | NA                     | 4-2.6% - 4-100%       | NA                     | -manual construction of graphs<br>-first representation of WS<br>as dependency graph                 |
| 2 identified categories [8]         | NA                     | 71-25% - 49-69%       | NA                     | -first attempt of identifying commonsense knowledge types -developed the KParser                     |
| Semantic relations categories [1]   | NA                     | 100-34% - 100-100%    | 138-14% - 111-80%      | which capture the entire WSC                                                                         |
| Knowledge hunting framework [2]     | NA                     | 273-100% - 119-43.5%  | NA                     | -refined query generation<br>-developed an algorithm for<br>scoring the retrieved sentences          |

MICO

WCC\*

► Language models trained on unlabeled data

- ► Language models trained on unlabeled data
  - Recurrent Neural Networks
  - Trained on large datasets and on a dataset customized for WSC

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - ▶ Trained on large datasets and on a dataset customized for WSC
- ► Substitution of the ambiguous pronoun
  - The trophy doesn't fit in the suitcase because the trophy is too big
  - ▶ The trophy doesn't fit in the suitcase because the suitcase is too big

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - ▶ Trained on large datasets and on a dataset customized for WSC
- ► Substitution of the ambiguous pronoun
  - The trophy doesn't fit in the suitcase because the trophy is too big
  - ▶ The trophy doesn't fit in the suitcase because the suitcase is too big
- Language models assign scores to both sentences

Score<sub>full</sub> ("the trophy")= **P**(The trophy doesn't fit into the brown suitcase because **the trophy** is too small)

Score partial ("the trophy")= P(is too big | The trophy doesn't fit into the brown suitcase because the trophy)

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - ▶ Trained on large datasets and on a dataset customized for WSC
- Substitution of the ambiguous pronoun
  - ▶ The trophy doesn't fit in the suitcase because the trophy is too big
  - ▶ The trophy doesn't fit in the suitcase because the suitcase is too big
- Language models assign scores to both sentences

Score<sub>full</sub> ("the trophy")= **P**(The trophy doesn't fit into the brown suitcase because **the trophy** is too small)

 $Score_{partial}$  ("the trophy")= P (is too big |The trophy doesn't fit into the brown suitcase because the trophy)

- Evaluation and results
  - PDPs 70% accuracy
  - ▶ WSC 63.7% accuracy

# Knowledge Types Identification and Reasoning (Sharma and Baral, 2018)

- Identified 12 knowledge types which cover the entire WSC dataset
- ► Categorization based on the structure of the Winograd sentence
- Developed a logical reasoning algorithm
- ► Evaluated on 100 problems from WSC and achieved 100% accuracy

# Knowledge Types Identification and Reasoning (Sharma and Baral, 2018)

- Identified 12 knowledge types which cover the entire WSC dataset
- ► Categorization based on the structure of the Winograd sentence
- Developed a logical reasoning algorithm
- ► Evaluated on 100 problems from WSC and achieved 100% accuracy
- Solver
  - 1. Semantic graph of the input sentence and question
  - 2. Semantic graph representation of background knowledge
  - 3. Graph merging
  - 4. Project question graph on the merged graph
  - 5. Answer the node from the merged graph which is from the same domain as the unknown node from the question graph

# Semantic graph representation<sup>1</sup>

"The man couldn't lift his son because he was so weak".



<sup>1</sup>kparser.org

# Semantic graph representation<sup>1</sup>

"The man couldn't lift his son because he was so weak".



"Who was weak?"



<sup>1</sup>kparser.org

# Semantic graph representation<sup>1</sup>

"The man couldn't lift his son because he was so weak".



▶ "Who was weak?"



"weak y prevents y lifts"



<sup>&</sup>lt;sup>1</sup>kparser.org

# Reasoning procedure



# Reasoning procedure



```
has_k(weak,is_trait_of,y).
has_k(weak,prevents,lifts).
2
has_k(lifts,agent,y).
3
```

# Reasoning procedure



```
has_k(weak,is_trait_of,y).
%has_k(weak,prevents,lifts).
has_k(lifts,agent,y).
3
```

### **Categorization of Winograd Schemas**

- Motivation
  - Current state-of-the-art has a poor performance
  - Background knowledge is crucial for predicting the correct answer

### **Categorization of Winograd Schemas**

- Motivation
  - Current state-of-the-art has a poor performance
  - Background knowledge is crucial for predicting the correct answer
  - Idea
    - Analyze the input Winograd Schema and identify the domain of the least necessary knowledge
    - 2. Search for knowledge specific to this domain
    - 3. Apply reasoning procedure
- Categorization based on the content of the Winograd sentence

# **Identified Categories**

| Category              | Example                                                                                  |  |
|-----------------------|------------------------------------------------------------------------------------------|--|
| Physical              | S: John couldn't see the stage with Billy in front of him because he is so [short/tall]. |  |
|                       | Q: Who is so [short/tall]?                                                               |  |
| 2. Emotional          | S: Frank felt [vindicated/crushed] when his longtime rival Bill                          |  |
|                       | revealed that he was the winner of the competition.                                      |  |
|                       | Q: Who was the winner of the competition?                                                |  |
| 3. Interactions       | S: Joan made sure to thank Susan for all the help she had [given/received].              |  |
|                       | Q: Who had [given/received] help?                                                        |  |
| 4. Comparison         | S: Joe's uncle can still beat him at tennis, even though he is 30 years [older/younger]. |  |
|                       | Q: Who is [older/younger]?                                                               |  |
| 5. Causal             | S: Pete envies Martin [because/although] he is very successful.                          |  |
|                       | Q: Who is very successful?                                                               |  |
| 6. Multiple knowledge | S: Sam and Amy are passionately in love, but Amy's parents are unhappy about it,         |  |
|                       | because they are [snobs/fifteen].                                                        |  |
|                       | Q: Who are [snobs/fifteen]?                                                              |  |
|                       |                                                                                          |  |

### **Annotation of Winograd Schemas**

- Strong agreement between the annotators Cohen's kappa score 0.66
- Annotation Results

| Category           | Annotator 1 | Annotator 2 |
|--------------------|-------------|-------------|
| Physical           | 36 – 24%    | 39 – 26%    |
| Emotional          | 7 – 4.6%    | 9 – 6%      |
| Interactions       | 44 –29.3%   | 24 –16%     |
| Comparison         | 19 –12.6%   | 26 –17.3%   |
| Causal             | 16 -10.6%   | 18 –12%     |
| Multiple knowledge | 28 –18.6%   | 34 –22.6%   |

### **Graph Representation for Physical Category**

1. The trophy doesn't fit into the brown suitcase because it's too small.



# **Graph Representation for Physical Category**

1. The trophy doesn't fit into the brown suitcase because it's too small.



2. The man couldn't lift his son because he was so weak.



#### Reasoning

- Knowledge required for both examples is about physical features
- Similar reasoning rules for categorizing the traits

#### Reasoning

- Knowledge required for both examples is about physical features
- Similar reasoning rules for categorizing the traits

- Reasoning Algorithm
- ► Change of background knowledge

#### **Contributions**

- Overview of different approaches towards WSC
- ▶ None achieves close to 90% accuracy
- ▶ We analyzed the entire WSC corpus and identified 6 categories
- We identified a mistake in the Reasoning Algorithm and proposed a correction

#### **Future Work**

- Formalization of the characteristics for each category
- Knowledge-enhanced neural networks



Thank you!

#### References

[1] C. Baral A. Sharma.

Commonsense knowledge types identification and reasoning for the winograd schema challenge, 2018.

[2] A. Emami, N. De La Cruz, A. Trischler, K. Suleman, and J. Chi Kit Cheung.

A knowledge hunting framework for common sense reasoning.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 1949-1958, 2018,

[3] Opitz J. and Frank A.

Addressing the winograd schema challenge as a sequence ranking task.

In Proceedings of the First International Workshop on Language Cognition and Computational Models, pages 41-52. Association for Computational Linguistics, 2018.

[4] Q. Liu, H. Jiang, Z. Ling, X. Zhu, S. Wei, and Y. Hu.

Combing context and commonsense knowledge through neural networks for solving winograd schema problems. 2016

[5] A. Badford, J. Wu, B. Child, D. Luan, D. Amodei, and I. Sutskever.

Language models are unsupervised multitask learners, 2019.

[6] A. Rahman and V. No.

Resolving complex cases of definite pronouns: The winograd schema challenge.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pages 777-789, 2012.

[7] P. Schüller.

Tackling winograd schemas by formalizing relevance theory in knowledge graphs.

In Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference. KR 2014. Vienna. Austria, July 20-24, 2014, 2014.

[8] A. Sharma, Nguyen Ha Vo, Somak Aditya, and Chitta Baral.

Towards addressing the winograd schema challenge - building and using a semantic parser and a knowledge hunting module. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1319-1325, 2015.

[9] O. V. Le T. H. Trinh.

A simple method for commonsense reasoning. 2018