2012 级《高等数学 I(2)》考试卷(A)

使用专业、班级 学号

题 号	 <u></u>	111	四	五.	六	七	总分
得分							
阅卷人							

得分

一、填空题(每小题 4 分, 共 20 分)

- (1) 设向量 $\mathbf{a} = (1,0,2), \mathbf{b} = (1,1,-1), 则以<math>\mathbf{a}, \mathbf{b}$ 为邻边的三角形的面积等于
- (2)函数 $f(x,y) = x^2y^3$ 在点(2,1)处沿方向 l = i + j 的方向导数为
- (3) 交换二次积分的次序: $\int_0^1 dy \int_{\sqrt{y}}^{2-y} f(x,y) dx =$
- (4) 设 L 是圆周 $x^2 + y^2 = a^2$, 则曲线积分 $\int_{\mathbb{R}} x^2 ds =$
- (5) 将函数 $f(x) = \frac{1}{x+1}$ 展开成 (x-2) 的幂级数 (并指出其收敛域):

f(x) =

本题

二、选择题(每小题4分,共16分)

- (1) xOy 面上的曲线 $4x^2 9y^2 = 36$ 绕 y 轴旋转一周所得曲面的方程是

 - (A) $4(x^2 + z^2) 9y^2 = 36$. (B) $4(x^2 + z^2) 9(y^2 + z^2) = 36$.
 - (C) $4x^2 9(y^2 + z^2) = 36$. (D) $4x^2 9y^2 = 36$.

- (2) 设 z = z(x, y) 是由方程 $x + z = y \sin(x^2 z^2)$ 所确定的隐函数,则 $z \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ 等于
 - (A) x.
- (B) y.
- (C) z.
- (D) $y\sin(x^2 z^2)$.

- (3) 设 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧, 则曲面积分 $\iint_{\Sigma} \frac{x^3 \text{dyd}z + y^3 \text{dzd}x + z^3 \text{dxdy}}{\sqrt{x^2 + y^2 + z^2}}$ 等于
- (A) $\frac{6}{5}\pi a^4$. (B) $\frac{12}{5}\pi a^4$. (C) $2\pi a^4$. (D) $4\pi a^4$.

- (4) 设级数 $\sum_{n=0}^{\infty} a_n (x+1)^n$ 在 x=-2 处条件收敛,则其在 x=1 处
 - (A) 绝对收敛.
- (B) 条件收敛.
- (C) 发散.
- (D) 敛散性不确定. 【 】

三、计算下列各题(每小题7分,共28分)

(1) 设 $z = f(x, xe^y)$, 其中 f(u, v) 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x^2}$.

(2) 求过点 (1,0,-2) 且与平面 3x+4y-z+6=0 平行, 又与直线 $\frac{x-3}{1}=\frac{y+2}{4}=\frac{z}{1}$ 垂直的直线的方程.

考试形式开卷()、闭卷(√),在选项上打(√)

开课教研室<u>大学数学部</u> 命题教师<u>命题组</u> 命题时间<u>2013-5-25</u> 使用学期<u>2012-2013-2</u> 总张数<u>3</u> 教研室主任审核签字

(3) 计算三重积分 $\iint_{\Omega} z\sqrt{x^2+y^2} dv$, 其中 Ω 是由抛物面 $z=x^2+y^2$ 与平面 z=2 所围成的区域.

本题 得分

- 四、(本题 10 分) 设 $I = \int_L \frac{x \mathrm{d}y y \mathrm{d}x}{x^2 + y^2}$.

 (1) 证明在区域 $G = \{(x, y) \mid y \ge 0, x^2 + y^2 \ne 0\}$ 内曲线积分 I 与路径无关;

 (2) 设 L 是摆线 $\begin{cases} x = t \sin t \pi \\ y = 1 \cos t \end{cases}$ 上对应于 t = 0 到 $t = 2\pi$ 的一段弧, 求 I 的值.

(4) 设 Σ 是圆锥面 $z=\sqrt{x^2+y^2}$ 夹在平面 z=1 和 z=2 之间的部分,其面密度为 $\mu(x,y,z)=x^2+y^2$, 试求曲面 Σ 的质量.

本题 得分

五、(本题 10 分) 求函数 $z = x^2 + xy + y^2 - 6x - 9y$ 的极值.

本题	本题