1 of 7

Logistic Perceptron Learner

First Probability and Logarithms

Probability is the study of randomness and uncertainty. For the sake of a mathemetical interpretation, it is a measure of the likelihood that an event will occur. This is ratio of the event to the sample set. This sample set is the set of all possible outcomes.

- ullet ${\cal S}$: sample set
- ullet ${\mathcal E}$: set of an event such that ${\mathcal E}\subseteq {\mathcal S}$
- ullet $p=rac{|\mathcal{E}|}{|\mathcal{S}|}$: the probability of an event and $0\leq p\leq 1$
- 1-p: the probability of an event not occurring is.

This particular probability distribution would be a Bernouli distribution.

- $\mathcal{X} \sim Bern(p)$:is this a special case of the binomial distribution where n = 1. $\mathcal{X} \sim Bin(n,p)$ Both of these ditributions are discrete which is favorable for our classification outcomes.
- $f(k;p) = \left\{ egin{array}{ll} p & ext{if } k=1 \\ q=1-p & ext{if } k=0 \end{array}
 ight.$

With this we can now define odds which is simply the ratio the probability of an event occurring to the probability of the event not occurring.

ullet $odds_p=rac{p}{1-p}$ some examples of odds would be:

odds of a fair coin flip = 0.5/0.5 = 1 or 1:1

odds of a fair coin die the roll = 0.333/0.666 = 1/1 or 1:2

In logistic perceptron learner we are learning the unkown p for any given linear combination of features

$$ullet x \in \mathbb{R}^{\mathrm{d}+1}$$

In the classic perceptron model we are learning the weights for a linear combination of features

$$ullet$$
 $\hat{y}=\sum_{i=1}^d w_i x_i + b = \sum_{i=1}^{d+1} w_i x_i = w^T x$ to get $y \in \{-1,1\}$ or $\{0,1\}$

we then update the weights if miscalssified via

•
$$w_{t+1} = w_t - \alpha \nabla f_t$$
.

From the loss function we get the gradient

$$egin{aligned} ullet h(w) &= rac{1}{2} \Sigma (\hat{y} - y)^2 \ ullet rac{\partial L}{\partial w} &= rac{\partial L}{\partial z} rac{\partial z}{\partial w} =
abla f_t = (\hat{y} - y) x^i \end{aligned}$$

$$x^i = \frac{y}{y}$$

And we are also learning

• p which is \hat{p} : since our algorithm only gets $g \approx f$ The function that links the linear combination of our variables, (features) and the Bernoulis probability distribution is the logit. In more formal terms a function that maps our linear

In [5]: #In this data set se will be looking at nba players how are still in the league aft
 er 5yrs worth of stats
 #gathered about them

using Plots, CSV

Out [5]: 1,340 rows × 21 columns (omitted printing of 13 columns)

nba = CSV.read("nba_logreg.csv")

	Name	GP	MIN	PTS	FGM	FGA	FG%	3P Made
	String?	Int64②	Float642	Float642	Float64®	Float64®	Float64®	Float642
1	Brandon Ingram	36	27.4	7.4	2.6	7.6	34.7	0.5
2	Andrew Harrison	35	26.9	7.2	2.0	6.7	29.6	0.7
3	JaKarr Sampson	74	15.3	5.2	2.0	4.7	42.2	0.4
4	Malik Sealy	58	11.6	5.7	2.3	5.5	42.6	0.1
5	Matt Geiger	48	11.5	4.5	1.6	3.0	52.4	0.0
6	Tony Bennett	75	11.4	3.7	1.5	3.5	42.3	0.3
7	Don MacLean	62	10.9	6.6	2.5	5.8	43.5	0.0
8	Tracy Murray	48	10.3	5.7	2.3	5.4	41.5	0.4
9	Duane Cooper	65	9.9	2.4	1.0	2.4	39.2	0.1
10	Dave Johnson	42	8.5	3.7	1.4	3.5	38.3	0.1
11	Corey Williams	35	6.9	2.3	0.9	2.4	36.5	0.0
12	Sam Mack	40	6.7	3.6	1.2	3.0	39.8	0.1
13	Lorenzo Williams	27	6.6	1.3	0.6	1.3	47.2	0.0
14	P.J. Hairston	45	15.3	5.6	1.9	6.0	32.3	1.1
15	Elmore Spencer	44	6.4	2.4	1.0	1.9	53.7	0.0
16	John Crotty	40	6.1	2.6	0.9	1.8	51.4	0.1
17	Stephen Howard	49	5.3	2.1	0.7	1.9	37.6	0.0
18	Randy Woods	41	4.2	1.7	0.6	1.6	34.8	0.1
19	Larry Johnson	82	37.2	19.2	7.5	15.3	49.0	0.1
20	Larry Johnson	82	37.2	19.2	7.5	15.3	49.0	0.1
21	Billy Owens	80	31.4	14.3	5.9	11.1	52.5	0.0
22	Stacey Augmon	82	30.5	13.3	5.4	11.0	48.9	0.0
23	Mark Macon	76	30.3	10.6	4.4	11.7	37.5	0.1
24	Steven Smith	61	29.6	12.0	4.9	10.7	45.4	0.7
25	Mitch McGary	32	15.2	6.3	2.8	5.2	53.3	0.0
26	Larry Stewart	76	29.3	10.4	4.0	7.8	51.4	0.0
27	Mike luzzolino	52	24.6	9.3	3.1	6.8	45.1	1.1
28	Doug Smith	76	22.5	8.8	3.8	9.2	41.5	0.0
29	Paul Graham	78	22.0	10.1	3.9	8.7	44.7	0.7
30	Donald Hodge	51	20.7	8.4	3.2	6.4	49.7	0.0
:	:	:	:	:	:	:	:	:

3 of 7

```
In [7]: # zero is if they are not in the nba after 5yrs and 1 is there are in the nba after
         5yrs
         nba[21]
Out[7]: 1340-element Array{Union{Missing, Float64},1}:
         0.0
          0.0
          0.0
          1.0
          1.0
          0.0
          1.0
          1.0
          0.0
          0.0
          0.0
          1.0
          1.0
          0.0
          0.0
          1.0
          1.0
          1.0
          0.0
          0.0
          0.0
          1.0
          0.0
          1.0
          1.0
In [9]: | #we want to see if we can predict if a playe makes it past 5yrs or not.
         data = [x \text{ for } x \text{ in } zip(nba[2], nba[3], nba[21])]
Out[9]: 1340-element Array{Tuple{Int64,Float64,Float64},1}:
         (36, 27.4, 0.0)
          (35, 26.9, 0.0)
          (74, 15.3, 0.0)
          (58, 11.6, 1.0)
          (48, 11.5, 1.0)
          (75, 11.4, 0.0)
          (62, 10.9, 1.0)
          (48, 10.3, 1.0)
          (65, 9.9, 0.0)
          (42, 8.5, 0.0)
          (35, 6.9, 0.0)
          (40, 6.7, 1.0)
          (27, 6.6, 1.0)
          (73, 18.9, 0.0)
          (40, 15.4, 0.0)
          (82, 18.9, 1.0)
          (82, 18.3, 1.0)
          (50, 16.3, 1.0)
          (79, 16.1, 0.0)
          (80, 15.8, 0.0)
          (80, 15.8, 0.0)
          (68, 12.6, 1.0)
          (43, 12.1, 0.0)
          (52, 12.0, 1.0)
          (47, 11.7, 1.0)
```

4 of 7 5/4/2019, 8:13 PM

```
In [10]: #We can not fit a linear model here

scatter([x[1:2] for x in data if x[3] == 1.0], label = "5yrs")
scatter!([x[1:2] for x in data if x[3] != 1.0], label = "Not 5yrs")
plot!(title = "Nba Data", xlabel = "Minutes Played", ylabel = "Points")
```



```
In [39]: data[101:150]
Out[39]: 50-element Array{Tuple{Int64,Float64,Float64},1}:
          (73, 11.0, 0.0)
           (15, 10.9, 0.0)
           (64, 10.9, 1.0)
           (56, 10.6, 0.0)
           (64, 10.6, 0.0)
           (68, 10.1, 1.0)
           (47, 10.0, 0.0)
           (52, 9.8, 1.0)
           (64, 9.5, 0.0)
           (34, 10.8, 0.0)
           (42, 9.5, 1.0)
           (50, 9.3, 1.0)
           (52, 7.3, 1.0)
           (75, 17.9, 1.0)
           (72, 17.0, 0.0)
           (79, 16.8, 1.0)
           (25, 10.4, 0.0)
           (81, 15.9, 1.0)
           (63, 14.0, 1.0)
           (81, 13.8, 1.0)
           (61, 13.2, 1.0)
           (43, 13.0, 0.0)
           (55, 12.9, 1.0)
           (59, 12.4, 0.0)
           (66, 11.3, 1.0)
```

5 of 7 5/4/2019, 8:13 PM

```
In [43]: #trianing data
        train_X, train_Y = [[x[1], x[2]] for x in data[1:100]], [x[3] for x in data[1:100]]
Out[43]: (Array{Float64,1}[[36.0, 27.4], [35.0, 26.9], [74.0, 15.3], [58.0, 11.6], [48.0,
        11.5], [75.0, 11.4], [62.0, 10.9], [48.0, 10.3], [65.0, 9.9], [42.0, 8.5] ... [4
        7.0, 14.3], [37.0, 13.6], [62.0, 13.3], [62.0, 12.5], [51.0, 11.9], [36.0, 11.8]
        , [74.0, 11.6], [63.0, 11.6], [33.0, 10.8], [54.0, 11.2]], [0.0, 0.0, 0.0, 1.0,
        0])
In [68]: #testing data
        test X, test Y = [[x[1], x[2]] for x in data[101:150]], [x[3] for x in data[101:150]
Out[68]: (Array{Float64,1}[[73.0, 11.0], [15.0, 10.9], [64.0, 10.9], [56.0, 10.6], [64.0,
        10.6], [68.0, 10.1], [47.0, 10.0], [52.0, 9.8], [64.0, 9.5], [34.0, 10.8] ... [7
        9.0, 16.8], [25.0, 10.4], [81.0, 15.9], [63.0, 14.0], [81.0, 13.8], [61.0, 13.2]
        , [43.0, 13.0], [55.0, 12.9], [59.0, 12.4], [66.0, 11.3]], [0.0, 0.0, 1.0, 0.0,
        0])
In [57]: train X
Out[57]: 100-element Array{Array{Float64,1},1}:
         [36.0, 27.4]
         [35.0, 26.9]
         [74.0, 15.3]
         [58.0, 11.6]
         [48.0, 11.5]
         [75.0, 11.4]
         [62.0, 10.9]
         [48.0, 10.3]
         [65.0, 9.9]
         [42.0, 8.5]
         [35.0, 6.9]
         [40.0, 6.7]
         [27.0, 6.6]
         [76.0, 15.4]
         [55.0, 14.9]
         [47.0, 14.3]
         [37.0, 13.6]
         [62.0, 13.3]
         [62.0, 12.5]
         [51.0, 11.9]
         [36.0, 11.8]
         [74.0, 11.6]
         [63.0, 11.6]
         [33.0, 10.8]
         [54.0, 11.2]
In [52]: h(w,train X[9])
Out[52]: 1
In [ ]:
```

6 of 7 5/4/2019, 8:13 PM

```
In [46]: #predictor function
          function predict(x,w)
              x_new = copy(x)
              push! (x_new, 1.0)
               return w'*x_new
          end
Out[46]: predict (generic function with 1 method)
In [61]: w = rand(3)
          function \sigma(s)
               return 1/(1 +exp(-s))
          end
          function logistic_perception!(x, y, w, \alpha)
              # to make a 1 to correspond to the bais
              new_x = copy(x)
              new_x = [1.0, x[1], x[2]]
               #in vector form w'*new x
              z = w' * new_x
               y_hat = \sigma(z)
               if y_hat < 0.5 && y == 1
                   w=\alpha^* (y-y_hat) *\sigma(z) *(1 - \sigma(z)) *new_x
               end
               return w
          end
Out[61]: logistic_perception! (generic function with 1 method)
In [60]: for _ in 1:10000
               for i in 1 :100
                  logistic_perception!(train_X[i], train_Y[i], w, 0.45)
               end
          end
In [64]: \sigma(\text{predict}(\text{train}_X[2], w))
Out[64]: 0.999999998350017
In [69]: \sigma(\text{predict}(\text{test X}[15], w))
Out[69]: 0.9999982477976892
In [70]: \sigma(\text{predict}(\text{test}_X[3], w))
Out[70]: 0.999999995470104
```

7 of 7