Physics 325 — Scientific Computing — Fall 2016 — Lab 04

September 16, 2016

Exercise 1. Radioactive Decay with Euler

Write a program that calculates the numerical solution to the equation $\frac{dN}{dt} = \frac{-N(t)}{\tau}$ where τ is the half-life of the element. Calculate and plot N for values of t from 0 to 1000 years for a sample of 10⁶ atoms with a half life of 75 years (use h=1 year). Check to see if the value after 100 years is consistent with the analytic solution to this equation. Create two plots, one using a linear scale for the y-axis and one a log-scale, to plot the number of atoms vs. time (investigate the Pyplot semilog function)(10 points)

Exercise 2. Radioactive Decay with RK2

Write an RK2 version of the program from Exercise 1. Assume that you have a sample of Radon-222 (Ra 222) with a half life of 3.82 days. Suppose a sample of air taken from a basement has about 250 Ra-222 atoms per milliliter of air. Using a suitable h, have your numerical program determine how long after the sample is taken that the Ra-222 level drops to below 100 atoms/mL assuming no new Ra222 atoms are introduced. (10 points)

Exercise 3. Multiple Variables

Write an RK2 program that solves the following system of equations -

$$\frac{d\theta(t)}{dt} = \omega(t)$$

$$\frac{d\omega(t)}{dt} = -10 \sin(\theta(t))$$

for 0 < t < 20. Create and save a plot of both $\theta(t)$ and $\omega(t)$. (10 points)