

RV1126_RV1109 EVB 用户指南

发布版本:V1.0 日期:2020.04.27

免责声明

您购买的产品、服务或特性等应受瑞芯微电子股份有限公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,瑞芯微电子股份有限公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标声明

Rockchip、Rockchip™图标、瑞芯微和其他瑞芯微商标均为福州瑞芯微电子股份有限公司的商标,并归瑞芯微电子股份有限公司所有。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

版权所有 © 福州市瑞芯微电子股份有限公司 2020

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

福州市瑞芯微电子股份有限公司 地址:福建省福州市软件园A区18号 网址:www.rock-chips.com

客户服务电话: +86-4007-700-590 客户服务传真: +86-591-83951833 客户服务邮箱: FAE@rock-chips.com

前言

概述

本文主要介绍了RV1126 RV1109 EVB板的基本功能和硬件特点、多功能硬件配置和软件调试 操作方法,旨在帮助开发人员更快、更准确地使用RV1126 RV1109 EVB,并熟悉RV1126 RV1109 芯片的解决方案。

产品版本

	产品版本Product version
V1126_RV1109 EVB	RV1126_RV1109_EVB_DDR3P216SD6_V11_20200312LXF
全用对象 本文档主要适用于以下工 ● 技术支持工程师 ● 单板硬件开发工程师 ● 嵌入式软件开发工程 ● 测试工程师	i

适用对象

- 技术支持工程师
- 单板硬件开发工程师
- 嵌入式软件开发工程师
- 测试工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本号	作者	修订说明
2020-04-27	V1.0	肖好飞	Initial Release
			X

缩略语

缩略语包括文档中常用词组的简称。

CPU	「吊用河纽的间桥。 Central processing unit	中央处理器
NPU	Neural network Processing Unit	神经网络处理器
VPU	Video Processing Unit	视频处理器
PMU	Power Management Unit	电源管理单元
PMIC	Power Management IC	电源管理芯片
DDR	Double Data Rate	双倍速率同步动态随机存储器
eMMC	Embedded Multi Media Card	内嵌式多媒体存储卡
FSPI	Flexible Serial Peripheral Interface	灵活串行外设接口
SPI	Serial Peripheral Interface	串行外设接口
SDMMC	Secure Digital Multi Media Card	安全数字多媒体存储卡
SDIO	Secure Digital Input and Output Card	安全数字输入/输出卡
SD Card	Secure Digital Memory Card	安全数码卡
TF Card	Micro SD Card(Trans-flash Card)	外置记忆卡
I2C	Inter-Integrated Circuit	内部整合电路(两线式串行通讯总线)
I2S	Inter-IC Sound	集成电路内置音频总线
ACODEC	digital audio codec	数字音频编解码器
PDM	Pulse density modulation	脉冲密度调制
USB	Universal Serial Bus	通用串行总线
UART	Universal Asynchronous Receiver/ Transmitter	通用异步收发传输器
PWM	Pulse width modulation	脉冲宽度调制
TSADC	Temperature sensing a / D converter	温度感应模数转换器
SARADC	successive approximation register Analog to digital converter	逐次逼近寄存器型模数转换器
CAN	Controller Area Network	控制器局域网络
MIPI	Mobile Industry Processor Interface	移动产业处理器接口
LVDS	Low-Voltage Differential Signaling	低电压差分信号
SubLVDS	Sub- Low-Voltage Differential Signaling	低摆幅差分信号技术
RGB	RGB color mode is a color standard in industry	RGB色彩模式,是工业界的一种颜色 标准
ISP	Image Signal Processing	图像信号处理
JTAG	Joint Test Action Group	联合测试行为组织定义的一种国际标准测试协议(IEEE 1149.1兼容)
LDO	Low Drop Out Linear Regulator	低压差线性稳压器
Rockchip	Rockchip Electronics Co.,Ltd.	瑞芯微电子股份有限公司

目录

1	概述		9
	1.1	EVB开发平台简介	9
	1.2	EVB系统框图	11
	1.3	功能概述	12
	1.4	EVB默认烧录功能	14
	1.5	EVB组件	15
2	EVB硬件介绍	-	16
	2.1	实物照片	
	2.2	电源框图	17
	2.3	I ² C地址	18
	2.4	开发板参考图	19
3	EVB模块简边	<u> </u>	20
	3.1	电源输入	
	3.2	存储器	20
	3.2.1	EMMC	
	3.2.2	DDR	
	3.3	按键输入 Button input	
	3.4	G-Sensor传感器&Gyroscope传感器	
	3.5	EVB传感器主要信号列表:	23
	3.6	G_SENSOR	
	3.7	音频输入输出 Audio input and output	
	3.8	USB插座	
	3.9	TF Card插座	
	3.10	Camera插座	
	3.11	WI-FI/BT模组	
	3.12	LCM MIPI连接座	
	3.13	GPHY接口	34
	3.14	UART Debug调试座	34
	3.15	JTAG Debug调试座	35
	3.16	MIC_ARRAY Interface扩展接口	35
	3.17	Zoom/Focus/Iris/IRCUT Driver Interface扩展接口	36
	3.18	UART2 和 A7-JTAG 切换	37
4	开发板使用		
	4.1	EVB开关机和待机	38
	4.2	USB驱动安装	38
	4.3	EVB固件烧写	
	4.3.1	Maskrom烧写模式	
	4.3.2	Loader烧写模式	
	4.4	串口调试	
	4.4.1	连接串口	
_	4.4.2 公会电流	ADB调试	
5	注息争坝	注音車币Notice	43

插图目录

图	1-1 RV11XX芯片框架	10
图	1-2 RV1126/RV1109 EVB 框图	11
图	1-3 EVB板正面示意图	13
图	1-4 EVB板背面示意图	13
图	2-1 EVB PCB实物图	16
图	2-2 EVB电源框图	17
图	3-1 EVB 电源输入	20
图	3-2 EVB eMMC Flash	20
图	3-3 CPU DDR3	20
冬	3-4 EVB按键	21
	3-5 EVB按键设计	
	3-6 EVB传感器	
冬	3-7 EVB G_SENSOR	23
	3-8 sensor电阻跳线图	
	3-9 EVB音频输入输出	
冬	3-10 EVB USB端口	25
图	3-11 EVB TF card 插座	26
图	3-12 MIPI摄像头电阻跳线图	26
冬	3-13 CIF摄像头电阻跳线图	27
冬	3-14 EVB CIF Camera连接座	27
冬	3-15 EVB MIPI camera连接座	
	3-16 EVB BT1120 camera连接座	
	3-17 EVB USB camera连接座	
	3-18 EVB WI-FI/BT模组	
冬	3-19 WIFI模组电阻跳线选择图	32
	3-20 MIPI信号示意图	
	3-21 EVB MIPI LCM	
	3-23 EVB UART Debug端口(USB Micro-B)	
	3-24 EVB JTAG Debug调试座	
	3-25 MIC_ARRAY连接座电阻跳线图	
	3-26 EVB MIC_ARRAY Interface	
	3-27 EVB Zoom/Focus/Iris/IRCUT Driver	
	3-28 EVB UART2与A7-JTAG功能切换图	
	4-1 驱动安装成功示意图	
	4-2 进入Maskrom烧写模式	
	4-3 进入Loader烧写模式	
	4-4 获取当前端口COM号	
	4-5 SecureCRT界面	
	4-6 配置串口信息	
	4-7 配置串口工具选项	
图	4-8 ADB连接正常	42

表格目录

表	1-1 RV1126与RV1109差异表	11
表	1-2 EVB功能表	14
表	2-1 EVB器件I2C地址表	18
表	3-1 按键功能表	22
表	3-2 传感器主要信号列表	23
表	3-3 G_SENSOR主要信号列表	24
表	- 3-4 Audio主要信号列表	25
表	3-5 USB主要信号列表	25
表	3-6 TF主要信号列表	26
表	3-7 MIPI Camera 网络名称及主控引脚名称	28
表	3-8 CIF Camera网络名称及主控引脚名称	28
表	3-9 BT1120 Camera 网络名称及主控引脚名称	29
表	3-10 camera 电源域列表	29
表	3-11 芯片端电源域列表	30
表	3-12 WI-FI/BT模组控制信号列表3-13 MIPI屏网络名称及主控引脚名称	31
表	3-13 MIPI屏网络名称及主控引脚名称	33
表	3-14 Zoom/Focus/Iris/IRCUT Driver网络名称及主控引脚名称	36

1 概述

1.1 EVB开发平台简介

RV1126_RV1109 EVB是一款针对RV1126_RV1109多媒体处理芯片(以下简称RVXX芯片)功能验证的评估平台。用于演示RV11XX强大的多媒体接口和丰富的外设接口,同时也为客户提供基于RVXX的硬件参考设计,使客户可以完成产品的硬件开发而无需修改或只需简单修改参考设计的模块电路。

RV11XX EVB可通过USB线与电脑连接,做为一个基本开发系统使用,或实现更完全的开发系统或演示环境,此时连接如下设备或部件:

- 电源
- MIPI屏
- TF Card存储设备
- 音箱
- 摄像头模组
- 1000M Ethernet
- WIFI
- camera驱动板

R-OSA-ONIA

芯片的框图如下所示:

图 1-1 RV11XX芯片框架

两颗芯片的差异如下表所示:

	夜 1-1 KV1120				
	RV1126/RV1109 Main difference				
	RV1109 RV1126				
CPU	Dual A7	Quad A7			
NPU	1.2 TOPS	2.0 TOPS			
ISP	5M	14M			

表 1-1 RV1126与RV1109差异表

1.2 EVB系统框图

系统框图可以让开发人员对整个系统的架构和原理有一个直观的认识:整个系统由电源适配器或者电池供电,通过UART串口、JTAG接口进行调试,验证各功能模块。开发板带有大部分接口,配有Camera输入,WI-FI/BT模组,USB OTG,TF卡,音频接口,视频接口,满足大多数情况下不同应用需求,有利于芯片方案的深入研发与快速产品化。

图 1-2 RV1126/RV1109 EVB 框图

1.3 功能概述

RVXX EVB包含的功能如下:

- BQ24171充电控制
- RK809-2电源管理芯片
- DDR 2x16bit DDR3,总容量8Gbit
- 8bit EMMC Flash, 总容量16GByte
- TF Card: 支持外部存储卡
- USB HOST接口(USB2600): 支持USB2.0外接设备
- USB Micro Port (J2500): 固件升级、ADB调试使用
- USB HOST 2.5mm headset(J2601): 预留, USB camera测试
- USB Micro Port: 开发板串口调试使用
- USB Mini Port: 开发板功耗测试使用
- 系统按键: Power、Reset、Menu、Esc、Left、Right、Update
- SDIO Wi-Fi/BT(AP6256): 支持802.11 ac/a/b/g/n和蓝牙5.0
- Audio out: 扬声器
- Audio in: 支持麦克风录音
- 千兆以太网RTL8211F
- Sensor: G-sensor+Gyroscope MPU6500
- CIF Camera: IMX323, 200W像素
- MIPI Camera: IMX327, IMAX334,OV2718,AR0239, OS04A10
- 镜头P-IRIS, Zoom, Focus IRCUT调试控制座子
- MIC 阵列拓展座子
- 调试接口包含: JTAG

功能模块布局如下:

表层:

图 1-3 EVB板正面示意图

底层:

图 1-4 EVB板背面示意图

1.4 EVB默认烧录功能

开发板已经有烧录好固件,默认涵盖的所有功能如下表:

表 1-2 EVB功能表

序号	功能部分	要求
1	TF Card	正常识别TF Card
2	USB Micro-B Port	可以认到ADB设备,可以下载固件
3	USB Type-A Port	可以识别device设备,且功能正常
4	USB camera input	正常识别USB camera
5	the boat switch	方次迁和现 於 》的1007中海,可以通过机刑工艺术按划打工式艺
6	12V power supply input	直流适配器输入的12V电源,可以通过船型开关来控制打开或关闭
7	KEY BAORD	所有按键功能正常
8	CLASS D output	喇叭功能正常
9	WI-FI/BT	AP6256模组功能正常
10	RISC-V JTAG/ A7- JTAG	芯片验证调试, TPYEC仅供芯片验证使用
11	NC	
12	TPYEC	X Y
13	USB Micro-B Port	串口可以正常输入和输出
14	以太网Ethernet	网络连接正常
15	Zoom/ Iris Driver Interface	开发板预留Zoom/Focus/Iris/IRCUT/ IRCUT连接座,方便客户进行CAMERA设备调试开发。
16	CIF camera	摄像头功能正常,CIF摄像头输入
17	MIPI Camera 1	摄像头功能正常,默认MIPI摄像头输入
18	MIPI Camera 2	摄像头功能正常,默认MIPI摄像头输入
19	MIC-ARRAY	MIC陈列输入
20	eMMC Flash	可以正常识别容量16GByte
21	DDR DDR3	可识别到总容量8Gbit
22	PMIC RK809-2	各路电源正常输出,电池电量检测准确
23	CPU	RVXX
24	MIPI屏 MIPI panel	屏幕图像显示正常
25	BQ24171	双节电池充放电正常
Bottom	Layer	
26	BT1120 Camera	摄像头功能正常,BT1120 摄像头输入
27	功能切换SWITCH	UART2和A7-JTAG功能切换
28	SPI flash	验证SPI flash功能
29	USB Micro-B Port	用于功耗测试
30	Camera_LED 驱动输 出	Warm up lamp drive

1.5 EVB组件

RVXX EVB包括以下物品:

- RVXX EVB
- 电源适配器,规格:输入 100V AC~240V AC,50Hz;输出 12V DC,2A
- 显示屏, 规格: MIPI; 尺寸: 5.5寸/竖屏; 分辨率: 720*1280

2 EVB硬件介绍

2.1 实物照片

RVXX EVB的PCB实物照片如下:

图 2-1 EVB PCB实物图

2.2 电源框图

RVXX EVB使用的PMIC是RK809-2, 电源框图如下图。

Power Diagram VCC5V0_8Y8 VDD_NPU SY8089AAC SY8089AAC RK809-2 BUCK2 VCC_DDR VCC3 BUCK3 VCC3V3_8Y8 VCC4 BUCK4 vcc_ove LD01 VCC BUCK5 VCC1V8_PMU VCC_BUCK5 VCC_DOVDD VCC_DVDD VCC5VO SYS VCCIO_SD LD09 1.5A SWOUTS BUCK4 (VCC3V3 SYS) VCC_3V3 VCC_BUCK5 SY8113B 8GM2203-5.0 VCC_SYSIN

Input 12V/2A

图 2-2 EVB电源框图

2.3 I²C地址

RVXX EVB的外围器件I²C(7bit)地址配置如下表:

表 2-1 EVB器件I2C地址表

	设备Device	地址Address
I ² C0	RK809-2	0x20
I ² C1	IMX327	0x34
101	IMX323	0x1a
	TP	0x28
	MIC Array	TAD
I ² C5	MPU-6500	the address of the one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high).

注意:使用扩展板时,要保证板上I2C地址与开发板上I2C地址不冲突。

2.4 开发板参考图

RVXX EVB对应的参考图对应如下,如有需要,请向我司FAE索取。

《RV1126_RV1109_EVB_DDR3P216SD6_V11_20200312LXF.pcb》

3 EVB模块简述

3.1 电源输入

直流适配器输入的12V电源,可以通过船型开关来控制打开或关闭。电源输入经过Charge芯片降压后得到系统电源VCC_IN,该电源经过BUCK芯片SY8113B降压为VCC5V0_SYS后为PMIC提供输入,由PMIC输出其余各组电压供开发板使用。

图 3-1 EVB电源输入

3.2 存储器

3.2.1 **EMMC**

1.EVB的默认eMMC Flash大小为16GByte。

2.Flash旁边配有Update升级按键,主板丝印为"Update",方便开发板固件升级。连接USB,按住按键,EVB上电或复位,系统将进入MaskRom固件烧写模式。

图 3-2 EVB eMMC Flash

3.2.2 **DDR**

RV11XX的DDR控制器支持32bit DDR。EVB中使用DDR3,总容量为2GByte。

图 3-3 CPU DDR3

3.3 按键输入 Button input

- 1.开发板提供按键组合应用,使用RV11XX ADKEY_IN0作为检测输入,支持10位分辨率。
- 2.ADC供电电源由ADC_AVDD_1V8提供,根据图3-5的电阻参数可以计算出对应的按键键值。
- 3.开发板上定义了几个常用的功能按键: MENU/ESC/RIGHT/LEFT。

图 3-4 EVB按键

图 3-5 EVB按键设计

表 3-1 按键功能表

按键名称	信号网络	功能说明	备注
MENU	CPU / ADKEY_IN0	主菜单	
LEFT	CPU / ADKEY_IN0	功能按钮	
RIGHT	CPU / ADKEY_IN0	功能按钮	
ESC/RECOVERY	CPU / ADKEY_IN0	进入RECOVERY模式	
UPDATE	CPU / FSPI_D0/FLASH_ALE	程序烧写,配合RESET按	
	CPU / EMMC_D0/FLASH_D0	键进入maskrom模式	
RESET	RK809 / RESETB	复位	
PWRON	RK809 / PWRON	开关机	

3.4 G-Sensor传感器&Gyroscope传感器

开发板所用的传感器为MPU6500六轴传感器,可以支持加速度以及陀螺仪检测功能,下图所示。

图 3-6 EVB传感器

3.5 EVB传感器主要信号列表:

MPU6500管脚 网络名称 CPU网络名称 功能说明 PIN12 INT GSENSOR_INT_H/IR_PWM2_M1/ GSENSOR_INT_MPU 中断信号 GPIO2_B1 I2C5_SCL_M0 PIN23 I2C5_SCL_M0/GPIO2_A5 I2C SPI_CLK_SENSOR SCL/SCLK 接测试点 PIN24 I2C5_SDA_M0/ GPIO2_B3 I2C I2C5_SDA_M0 SDA/SDI SPI TXD SENSOR PMU 接测试点

表 3-2 传感器主要信号列表

3.6 G_SENSOR

开发板所用的G_SENSOR为BMA250,与主控通信采用I²C方式。位置如下图所示。功能默认状态为NC,使用时需要焊接电阻R7400/R7402/R7406。

图 3-7 EVB G SENSOR

图 3-8 sensor电阻跳线图

G SENSOR主要信号列表:

表 3-3 G_SENSOR主要信号列表

BMA250管脚	网络名称	CPU网络名称	功能说明
PIN6 GAPO	GSENSOR_INT2	接测试点	
PIN5 INT	GSENSOR_BMA250_INT	GSENSOR_INT_H/IR_PWM2_M1/ GPIO2_B1	中断信号
PIN12 SCX	I2C5_SCL_M0	I2C5_SCL_M0/ GPIO2_A5	I2C
PIN2 SDX	I2C5_SDA_M0	I2C5_SDA_M0/ GPIO2_B3	I2C

3.7 音频输入输出 Audio input and output

开发板的音频使用RK809-2芯片内置的Codec, 其特性如下:

- 内置Charge Pump, 支持立体声耳机无电容耦合输出。
- 内置Class-D功放,可驱动1.3W/8ohm喇叭输出,且有过流保护。
- 麦克风支持单端/差分输入模式。

图 3-9 EVB音频输入输出

Audio主要信号列表:

表 3-4 Audio主要信号列表

RK809-2管脚	网络名称	CPU网络名称	功能说明
PIN14 LRCLK	I2S0_LRCK_TX_M0	GPIO3_D3	帧时钟LRCK, (也称
			WS),用于切换左右
			声道的数据
PIN15 BCLK	I2S0_SCLK_TX_M0	GPIO3_D0	串行时钟SCLK,也叫
			位时钟 (BCLK)
PIN16 MCLK	I2S0_MCLK_M0	GPIO3_D2	主时钟信号
PIN17 SDI	I2S0_SDO0_M0	GPIO3_D5	串行数据SDATA
PIN18	I2S0_SDI3_M0	GPIO3_D7	串行数据SDATA
SDO/PDMDATA			

3.8 USB插座

开发板的USB OTG端口J2500是固件烧写口。为方便客户使用,开发板还预留了USB-A型端口USB2600,用作USB HOST功能。

图 3-10 EVB USB端口

USB主要信号列表:

表 3-5 USB主要信号列表

USB管脚	信号网络	CPU网络名称	功能说明
USB20_micro PIN3	OTGDP	OTG_DP	数据
USB20_micro PIN2	OTGDM	OTG_DM	数据
USB20_micro PIN4	ID	OTG_ID	用于USB SWTICH
			SY6280AAC开关
1	OTG_DET_1V8	OTG_DET_1V8	检测信号
USBA PIN2	USB_HOST_DP	USB_HOST_DP	数据
USBA PIN3	USB_HOST_DM	USB_HOST_DM	数据

3.9 TF Card插座

开发板带TF卡接口,如下图所示,支持SDMMC 2.0/3.0,数据总线宽度是4bits。

图 3-11 EVB TF card 插座

TF主要信号列表:

表 3-6 TF主要信号列表

TF管脚	信号网络	CPU网络名称	功能说明
PIN1 DATA2	SDMMC0_D2	GPIO1_A6	数据
PIN2 CD/DATA3	SDMMC0_D3	GPIO1_A7	数据
PIN3 CMD	SDMMC0_CMD	GPIO1_B1	命令和回应
PIN5 CLK	SDMMC0_CLK	GPIO1_B0	时钟
PIN7 DATA0	SDMMC0_D0	GPIO1_A4	数据
PIN8 DATA1	SDMMC0_D1	GPIO1_A5	数据
PIN9 CD	SDMMC0_DET	GPIO0_A3	插入检测

3.10 Camera插座

开发板摄像头插座支持MIPI CSI、CIF、BT1120、USB四种摄像头模组,插座如图所示。使用Camera时请注意电平匹配,否则会造成Camera工作异常或无法工作。摄像头电压域有变化需要同步更改EVB板上对应的电阻,具体查看原理图。

BT1120与CIF不能同时使用,需要跳电阻选择功能。

default: R4752, R4724 OR, R4751, R4725 DNP option: R4752 DNP, R4751 OR, R4724 39K, R4725 47K

图 3-12 MIPI摄像头电阻跳线图

default: R4640, R4614 OR, R4615,R4635 DNP option: R4640 DNP, R4635 OR,R4614 39K, R4615 47K

图 3-13 CIF摄像头电阻跳线图

图 3-14 EVB CIF Camera连接座

图 3-15 EVB MIPI camera连接座

图 3-16 EVB BT1120 camera连接座

图 3-17 EVB USB camera连接座

Camera网络表格如下:

表 3-7 MIPI Camera 网络名称及主控引脚名称

MIPI Camera插座引脚号	MIPI Camera插座引脚网络名称	主控引脚名称
1	SPI0_MISO_M1	GPIO1_D7
2	SPI0_CS1n_M1	GPIO1_D5
3	RX1_PDN	GPIO3_A4
4	CAMERA_RST_1	NC
5	I2C1_SDA	I2C1_SDA/GPIO1_D2
6	SPI0_CLK_M1/ I2C1_SCL	I2C1_SCL/GPIO1_D3
7	GND	GND
8	GND	GND
9	MIPI_CSI_RX1_D0N	MIPI_CSI_RX1_D0N
10	MIPI_CSI_RX1_D0P	MIPI_CSI_RX1_D0P
11	MIPI_CSI_RX1_D1N	MIPI_CSI_RX1_D1N
12	MIPI_CSI_RX1_D1P	MIPI_CSI_RX1_D1P
13	MIPI_CSI_RX1_D2N	MIPI_CSI_RX1_D2N
14	MIPI_CSI_RX1_D2P	MIPI_CSI_RX1_D2P
15	MIPI_CSI_RX1_D3N	MIPI_CSI_RX1_D3N
16	MIPI_CSI_RX1_D2P	MIPI_CSI_RX1_D2P
17	GND	GND
18	MIPI_CSI_RX1_CLKN	MIPI_CSI_RX1_CLKN
19	MIPI_CSI_RX1_CLKP	MIPI_CSI_RX1_CLKP
20	GND	GND
21	MIPI_CSI_CLK1	MIPI_CSI_CLK1/GPIO2_A2
22	VCC_DOVDD_1	VCC_DOVDD_1
23	VCC_DVDD_1	VCC_DVDD_1
24	VCC_AVDD_1	VCC_AVDD_1

表 3-8 CIF Camera网络名称及主控引脚名称

CIF Camera插座引脚号	CIF Camera插座引脚网络名称	主控引脚名称
	D15	CIF_D15_M0
2	GND	GND
3	SDA	I2C1_SDA /GPIO1_D2
4	VCC_AVDD_CIF	VCC_AVDD_CIF
5	SCL	I2C1_SCL/GPIO1_D3
6	RST	CIF_RST
7	VSYNC	CIF_VSYNC_M0
8	CIF_PDN0	CIF_PDN0
9	HSYNC	CIF_HSYNC_M0
10	VCC_DVDD_CIF	VCC_DVDD_CIF
11	VCC_DOVDD_CIF	VCC_DOVDD_CIF
12	D13	CIF_D13_M0
13	CLKOUT	CIF_CLKOUT_M0
14	D12	CIF_D12_M0
15	GND	GND

16	D11	CIF_D11_M0
17	CLKIN	CIF_CLKIN_M0
18	D10	CIF_D10_M0
19	D6	CIF_D6_M0
20	D9	CIF_D9_M0
21	D7	CIF_D7_M0
22	D8	CIF_D8_M0
23	D5	CIF_D5_M0
24	D4	CIF_D4_M0
25	D14	CIF_D14_M0
26	GND	GND
27	GND	GND
28	GND	GND
29	GND	GND
30	GND	GND

表 3-9 BT1120 Camera网络名称及主控引脚名称

BT1120 Camera插座引脚号	BT1120 Camera插座	主控引脚名称
	引脚网络名称	CIVE
1	GND	GND
2	GND	GND
3	I2C1_SCL	I2C1_SCL/GPIO1_D3
4	I2C1_SDA	I2C1_SDA/GPIO1_D2
5	GND	GND
6	D15	CIF_D15_M0
7	D14	CIF_D14_M0
8	D13	CIF_D13_M0
9	D12	CIF_D12_M0
10	GND	GND
11	D11	CIF_D11_M0
12	D10	CIF_D10_M0
13	D9	CIF_D9_M0
14	D8	CIF_D8_M0
15	GND	GND
16	D7	CIF_D7_M0
17	D6	CIF_D6_M0
18	D5	CIF_D5_M0
19	D4	CIF_D4_M0
20	GND	GND
21	D3	CIF_D3_M0/LCD_PWREN_H
22	D2	CIF_D2_M0/CAM_EN
23	D1	CIF_D1_M0/CIF_PDN
24	D0	CIF_D0_M0/MIPI_RX1_PDN
25	GND	GND
26	VSYNC	CIF_VSYNC_M0
27	HSYNC	CIF_HSYNC_M0
28	GND	GND
29	CLKIN	CIF_CLKOUT_M0
30	GND	GND

Camera电源域与芯片端供电电源列表如下:

表 3-10 camera 电源域列表

				/14/ JH114
Camera类型	供电网络	供电模式	默认电压	启动时序
CTT	VCC_DVDD_CIF	RK809 LDO5	1.8V	OFF
CIF	VCC_DOVDD_CIF	RK809 LDO4	1.8V	3
	VCC_AVDD_CIF	RK809 LDO6	1.5V	OFF
	VCC_DVDD	RK809 LDO5	1.8V	OFF
MIPI	VCC_DOVDD	RK809 LDO4	1.8V	3
	VCC_AVDD	RK809 LDO6	1.5V	OFF
BT1120	\	\	\	\
USB	VCC5V0_HOST	RK809 SWOUT1	5.0V	OFF

表 3-11 芯片端电源域列表

Camera类型	供电网络	供电模式	默认电压	启动时序
		VCC_1V8/	1.8V	3
CIF	VCCIO6_VDD	RK809 LDO4(默	,	A 0
		认)	X	
		VCC_3V3/		
		RK809		
		SWOUT2	A (7)	
	MIPI_CSI_RX1_AV	VCC_0V8/RK80	0.8V	2
MIPI	DD_0V8	9 LDO1		
	MIPI_CSI_RX1_AV	VCC_1V8/	0.8V	2
	DD_1V8	RK809 LDO3		
BT1120	同CIF	同CIF	同CIF	同CIF
USB	USB_AVDD_0V8	VCC_0V8/RK80	0.8V	2
		9 LDO1		
	USB_AVDD_1V8	VCC_1V8/	1.8V	3
		RK809 LDO4		
	USB_AVDD_3V3	VCC_3V3/	3.3V	4
		RK809		
		SWOUT2		

3.11 WI-FI/BT模组

开发板上WI-FI/BT模组采用台湾正基的AP6256模组,如图3-14,其特性如下:

- 支持WI-FI(802.11 ac/a/b/g/n)、BT5.0功能。
- BT数据通过UART传输
- BT语音通过PCM传输。

● WI-FI数据支持4bits SDIO 3.0

图 3-18 EVB WI-FI/BT模组

WIFI/BT模组主要控制信号列表:

表 3-12 WI-FI/BT模组控制信号列表

WIFI/BT管脚	信号网络	CPU网络名称	功能说明
PIN6 BT_WAKE	HOST_WAKEBT	GPIO0_A4	HOST wake-up Bluetooth
			device
PIN7	BT_HOST_WAKE	GPIO0_A5	Bluetooth device to wake-
BT_HOST_WAKE			up HOST
PIN12 WL_REG_ON	WIFI_REG_ON	GPIO0_A6	Internal regulators power
			enable/disable
PIN13	WIFI_WAKEHOST	GPIO0_B0	WLAN to wake-up HOST
WL_HOST_WAKE			
PIN24 LPO	WIFI_BT_32KIN	GPIO0_A2	CLK IN
PIN34 BT_RST_N	BT_RST	GPIO0_A7	Low asserting reset for
			Bluetooth core
PIN40 TX1	WAKEUP_SOC_OPTION	\	\

WIFI/BT模组电源选择, WiFi可分为两种情况:

- 1. 在待机状态下,关闭WiFi时,SDIO已关闭,使用VCC_1V8和VCC_3V3作为电源。
- 2. 如果WiFi未关闭,则SDIO已打开,WiFi进入待机模式,VCC1V8 U PMU和VCC3V3-SYS用于供电。

如果待机WIFI不断电,VCCIO3_VDD要改成VCC1V8_PMU供电,VCCIO_VDD_1V8也要改成VCC1V8_PMU供电的。

待机状态下,SOC的SDIO有通电,r6009和r6008不用贴片,贴r6010,默认使用WIFI-WAKEHOST唤醒SOC。

待机时,SOC的SDIO没有上电,贴r6009和r6008,r6010不上件,使用WAKEUP_SOC_OPTION唤醒SOC。

Module Power

图 3-19 WIFI模组电阻跳线选择图

3.12 LCM MIPI连接座

开发板视频MIPI屏输出如下图所示:

MIPI-DSI Interface

图 3-20 MIPI信号示意图

图 3-21 EVB MIPI LCM

表 3-13 MIPI屏网络名称及主控引脚名称

MIPI屏插座引脚号	MIPI屏插座引脚网络名称	主控引脚名称
1	GND	GND
2	MIPI_DSI_D0N	MIPI_DSI_D0N
3	MIPI_DSI_D0P	MIPI_DSI_D0P
4	GND	GND
5	MIPI_DSI_D1N	MIPI_DSI_D1N
6	MIPI_DSI_D1P	MIPI_DSI_D1P
7	GND	GND
8	MIPI_DSI_CLKN	MIPI_DSI_CLKN
9	MIPI_DSI_CLKP	MIPI_DSI_CLKP
10	GND	GND
11	MIPI_DSI_D2N	MIPI_DSI_D2N
12	MIPI_DSI_D2P	MIPI_DSI_D2P

13	GND	GND
14	MIPI_DSI_D3N	MIPI_DSI_D3N
15	MIPI_DSI_D3P	MIPI_DSI_D3P
16	GND	GND
17	LCD_BL_PWM3_M0	GPIO0_C1
18	TP	/
19	TP	/
20	TP	/
21	ADC4_LCD_ID	ADCIN4
22	LCD_PWREN_H	GPIO3_A7
23	I2C_SCL_TP	I2C5_SCL_M0
24	I2C_SDA_TP	I2C5_SDA_M0
25	TP_INT	TP_INT_L
26	TP_RST	TP_RST_L/GPIO2_B0
27	GND	GND
28	5V_DSI	5V_DSI
29	5V_DSI	5V_DSI
30	5V_DSI	5V_DSI

3.13 GPHY接口

开发板上采用了RTL8211F-CG,它符合10Base-T,100Base-TX和1000Base-T IEEE802.3标准,可以通过CAT 5 UTP电缆及CAT 3 UTP电缆传输网络数据,该芯片在网络通信中属于物理层,用于MAC与PHY之间的数据通信。

开发板上提供GPHY接口,如下图。

图 3-22 EVB GPHY

3.14 UART Debug调试座

开发板提供串口供开发调试使用,选用FT232RL高度集成的FT232-USB接口转换芯片,如下图所示。

Typec接口为内部测试用。

图 3-23 EVB UART Debug端口(USB Micro-B)

3.15 JTAG Debug调试座

开发板采用标准的20pin JTAG调试接口,方便客户通过JTAG进行调试开发,如下图所示。 编号**D** JTAG座子目前没有使用。

图 3-24 EVB JTAG Debug调试座

3.16 MIC_ARRAY Interface扩展接口

开发板预留MIC_ARRAY连接座,方便客户进行MIC设备调试开发,如下图所示。 默认状态不能使用,使用时需要补焊R7252/R7209/R7210,同时删除网络上的电阻R2136。

图 3-25 MIC_ARRAY连接座电阻跳线图

图 3-26 EVB MIC_ARRAY Interface

3.17 Zoom/Focus/Iris/IRCUT Driver Interface扩展接口

开发板预留Zoom/Focus/Iris/IRCUT连接座,方便客户进行CAMERA设备调试开发,如下图所示。

图 3-27 EVB Zoom/Focus/Iris/IRCUT Driver

表 3-14 Zoom/Focus/Iris/IRCUT Driver网络名称及主控引脚名称

Driver	Driver插座引脚网络名称	主控引脚名称
插座	D11(01)II/II 31/J-11 151 II 1/3	T17T 21/24 17 141.
引脚		
号		
1	GND	GND
2	P_IRIS/ZOOM/FOCUS_AIN1	PWM6 M1/SPI1 CS0n M2/GPIO2 D4
3	P_IRIS/ZOOM/FOCUS_AIN2	PWM10_M1/SPI1_CLK_M2/GPIO2_D5
4	P IRIS/ZOOM/FOCUS BIN1	PWM9_M1/SPI1_MOSI_M2/GPIO2_D6
5	P_IRIS/ZOOM/FOCUS_BIN2	PWM8_M1/SPI1_MISO_M2/GPIO2_D7
6	TP	NC NC
7	GND	GND
8	P_IRIS_EN_H	P_IRIS_EN/GPIO0_C2
9	ZOOM_EN_H	ZOOM_EN/GPIO0_C0
10	FOCUS_EN_H	FOCUS_EN/GPIO0_C3
11	GND	GND
12	VCC_3V3	VCC_3V3
13	VCC_3V3	VCC_3V3
14	VCC_3V3	VCC_3V3
15	VCC_3V3	VCC_3V3
16	GND	GND
17	VCC5V0_SYS	VCC5V0_SYS
18	VCC5V0_SYS	VCC5V0_SYS
19	VCC5V0_SYS	VCC5V0_SYS
20	VCC5V0_SYS	VCC5V0_SYS
21	VCC5V0_SYS	VCC5V0_SYS
22	VCC5V0_SYS	VCC5V0_SYS
23	GND	GND
24	GND	GND

25	GSENSOR_INT_H/IR_PWM2_M1	GSENSOR_INT_H/IR_PWM2_M1/GPIO2_B1
26	PWM7_M1/PHY_INT	PWM7_M1/PHY_INT/GPIO3_A0
27	PWM11_M1/LCD_PWREN_H/LED_EN	PWM11_M1/LCD_PWREN_H/LED_EN/GPIO3_A1
28	PWM5_M1/ICR_AIN/CIF_PDN	PWM5_M1/ICR_AIN/CIF_PDN//GPIO2_A6
29	PWM4_M1/ICR_BIN/MIPI_RX1_PDN	PWM4_M1/ICR_BIN/MIPI_RX1_PDN//GPIO2_A7
30	GND	GND

3.18 UART2 和 A7-JTAG 切换

开发板上的UART2与A7-JTAG功能复用,使用的时候要进行切换。

				59 30 0	
				Dial Switch 4	
				SW8 5R68X5R40X2	R30
mac mvc/1120m2 DV	R9325	1 22B 5% 2	R0402 1	- 8	UART2 RX
TAG_TMS/UART2_RX		$\neg \neg \lor \lor \neg \neg$	2	7	JTAG TMS
mac mer/1120m2 mv	R9326	1 22B 5% 2	R0402 3	6	UART2 TX
TAG_TCK/UART2_TX		$\neg \neg \lor \lor \neg \neg$	4	5	JTAG TCK

图 3-28 EVB UART2与A7-JTAG功能切换图

4 开发板使用

4.1 EVB开关机和待机

EVB开机和关机方法介绍如下:

1、开机:

如果使用DC 12V供电,打开电源总开关,即可开机。

2、关机方法: Power off:

长按Power键2s,在显示屏窗口界面点击关机。

- 3、异常关机方法: Abnormal power off:
- (1) 如果使用单电池供电,异常情况下,可以长按Power键8s进入强制关机;或者点击Reset按键重新复位;
- (2) 如果使用DC 12V供电,异常情况下,除以上方式,还可以通过关闭船型开关电源来关闭 开发板电源。
 - 4、待机的方法:

在桌面或者应用场景下,按下Power键,系统会进入一级待机状态。在没有连接USB的情况下, 不做任何操作,系统会在一段时间后,由一级待机转入二级待机状态

4.2 USB驱动安装

EVB在固件烧写以及ADB调试前需要先安装USB驱动程序,驱动工具路径:

SDK\RKTools\windows\Release_DriverAssitant目录下,打开"DriverInstall.exe",点击"驱动安装",提示"安装驱动成功"即可。如果已安装旧驱动,请点击"驱动卸载",并重新安装驱动。

驱动文件目前仅支持Windows。

图 4-1 驱动安装成功示意图

4.3 EVB固件烧写

RV11XX EVB有两种固件烧写方式:

4.3.1 Maskrom烧写模式

基本原理是在系统上电前将FLASH_D0对地短路,使Flash引导失败,从而进入Maskrom状态。适用于烧写了错误的bootloader文件,无法正常引导系统开机的情况下。

具体步骤如下:

- 1、连接USB到电脑PC端,并按住开发板的update按键不放;
- 2、给EVB供电12V,并打开船型开关;要是已经处于上电情况下,请按下复位按键。
- 3、等待会儿开发工具将显示"发现一个Maskrom设备",需要注意的是在Maskrom状态下需要同时选择对应的Loader才能升级。
 - 4、开发工具选择对应的image文件。
 - 5、点击执行,即进入升级状态,在工具的右侧有进度显示栏,显示下载与校验情况。

图 4-2 进入Maskrom烧写模式

4.3.2 Loader烧写模式

基本原理在系统上电或重启前保证ADC2_KEY_IN是低电平,上电或重启后系统将进入Loader 状态。适用于正常情况下,更换固件中的一小部分或者全部。

具体步骤如下:

- 1、并按住开发板的Vol+/RECOVER按键不放,连接USB到电脑PC端。
- 2、给EVB供电12v,并打开船型开关;要是已经处于上电情况下,请按下复位按键。
- 3、等待会儿开发工具将显示"发现一个Loader设备",需要注意的是在Loader模式下不需要烧写完整的固件,可以只选择需要更新的image文件。
- 4、开发工具选择对应的image文件。
- 5、点击执行,即进入升级状态,在工具的右侧有进度显示栏,显示下载与校验情况。

图 4-3 进入Loader烧写模式

4.4 串口调试

4.4.1 连接串口

连接EVB板的USB Debug到电脑PC端,在PC端设备管理器中得到当前端口的COM号。

图 4-4 获取当前端口COM号

打开串口工具"SecureCRT",点击"快速连接"按钮。

图 4-5 SecureCRT界面

配置串口,端口选择连接开发板的端口号,波特率选择1.5M,流控RTS/CTS不需勾选。

图 4-6 配置串口信息

点击连接,就能正常连接设备了。为方便调试,配置会话选项,点击工具栏"会话选项",回滚 缓冲区设置较大数,可以保存更多的log信息。

图 4-7 配置串口工具选项

4.4.2 ADB调试

- 1.确保驱动安装成功,PC连接开发板的USB OTG口;
- 2.开发板上电,开机进入系统,再进入setting项,选择"developer options",勾选"USB debugging";
- 3.电脑PC端,点击"开始---运行",输入"cmd",进入adb.exe工具所在的目录,输入"adb devices",可以查询到连接的设备,表示连接正常;
 - 4.输入"adb shell", 进入ADB调试。

```
C:\\INDO\S\system32>D:\软件工具\adb_too1s\adb.exe shell
/ #
/ #
/ #
/ #
/ # su
```

图 4-8 ADB连接正常

5 注意事项

5.1 注意事项Notice

RV11XX EVB适用于实验室或者工程开发环境,在开始操作之前,请先阅读以下注意事项:

- 任何情况下都不可以对开发板的屏幕接口及扩展板进行热插拔操作。
- 在拆封开发板包装和安装之前,为避免静电释放(ESD)对开发板硬件造成损伤,请采取必要的防静电措施。
- 手持开发板时请拿开发板的边沿,不要触碰到开发板上的外露金属部分,以免静电对开 发板元器件造成损坏。
- 请将RV11XX 开发板放置于干燥的平面上,以保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如: 医疗设备)等。