

基本扩展模块 / 绘制数据图表

陈斌 北京大学 gischen@pku.edu.cn

绘制数据图表

- › numpy矩阵处理库
- > matplotlib绘图库
- 〉基本思路
- 〉简单函数图形
- 〉 定制线形/标签图例
- 〉散点图和直方图

numpy库

numpy是Python用于处理大型矩阵的一个 速度极快的数学库

可以做向量和矩阵的运算,包括各种创建矩阵的方法,以及一般的矩阵运算、求逆、求转置

它的很多底层的函数都是用C写的,可以得到在普通Python中无法达到的运行速度

numpy库

> numpy方法

```
• 矩阵计算
```

创建矩阵 a = np.matrix([])

矩阵求逆 a.I

矩阵转置 a.T

矩阵乘法 a*b或np.dot(a,b)

• 对象属性

np.shape 数组形状,矩阵则为n行m列

np.size 对象元素的个数

np.dtype 指定当前numpy对象的整体数据

numpy库

```
>>> import numpy as np
>>> a= np.matrix([[1,2],[3,4]])
>>> a.I
matrix([[-2. , 1.],
      [1.5, -0.5]
>>> a.T
matrix([[1, 3],
       [2, 4]])
>>> a.I * a
matrix([[ 1.00000000e+00, 0.00000000e+00],
        [ 1.11022302e-16, 1.00000000e+00]])
>>> b= np.matrix([[7,6],[5,4]])
>>> a*b
                          >>> a.shape
matrix([[17, 14],
                          (2, 2)
       [41, 34]])
                          >>> a.size
                          >>> a.dtype
                          dtype('int64')
```

matplotlib绘图库

matplotlib是Python的一个绘图库。它包含了大量的工具,可以使用这些工具创建各种图形

简单的散点图、折线图, 甚至三维图形、动画等

matplotlib绘图库

> matplotlib功能异常强大

http://matplotlib.org/gallery.html

> Python科学计算社区经常使用它完成数据可视化的工作

绘制函数图像基本思路

> 基本思路

通过将图像上一些点的坐标连接起来,即可绘制函数的近似图像,当点越多时,所绘图像越接近函数图像

> numpy库的linspace()函数生成数组

numpy.linspace(<start>,<stop>,<num>)

生成一个存放等差数列的数组,数组元素为浮点型,包含三个参数,分别是:数列起始值、终止值(默认包含自身)、数列元素个数

matplotlib库的plot()函数用来画图

可以设定图形颜色、线条线型、以及做标注等

简单图形

多个简单图形

定制线型

plot()函数的绘制样式参数表示

• 颜色

颜色	表示方法	颜色	表示方法
blue	ʻb'	yellow	'y'
cyan	'c'	white	'w'
green	ʻg'	red	ʻr'
black	'k'	magenta	'm'

• 线型与点型

线型	表示方法
实线	-
短线	
短点相间线	
虚点线	:

点型	表示方法
圆形	О
叉	x、+
三角形	^、 V、 <、 >
五角星	*

定制线型

```
import matplotlib.pyplot as plt
import numpy as np
```

自定义曲线的外观

标签图例

〉 坐标轴标签

plt.xlabel() \ plt.ylabel()

图形标题

plt.title()

散点图

直方图

› 函数hist(x, n)

x是横坐标, n是条状图的数量

import matplotlib.pyplot as plt
import numpy as np

直方图

x = np.random.randn(1000)
plt.hist(x,50)
plt.show()

