

d) excludes hyperbola and axes

1)
$$\frac{(2-i)(8+3i)}{3+i} = \frac{19-2i}{3+i} = \frac{(19-2i)(3-i)}{(3+i)(3-i)}$$

= $\frac{57-2-19i-6i}{10} = \frac{11-5i}{2}$

ii)
$$Argz = \frac{5\pi}{6}, |z| = 2$$

$$z = 2cis\frac{5\pi}{6}$$
, so $z^6 = (2cis\frac{5\pi}{6})^6 = 2^6cis5\pi = -64$

$$z^6 + 64 = 0$$
, or $z^7 + 64z = 0$

- iii) a) The locus of z is the circle of centre A, radius 5. This circle goes through the origin, hence, |z| is maximum when z lies at the other end of the diameter through the origin. $\therefore |z|_{max} = 10$
 - b) The locus of z is the ellipse of foci A, B such that the sum of the distance from z to A and B is equal to 12. Notice that this ellipse touches the y-axis. \therefore

$$Arg(z)_{max} = \frac{\pi}{2}$$

3.
i)
$$z^2 = x^2 - y^2 + 2xyi$$

Re(z^2) = 3 gives $x^2 - y^2 = 3$, this is a rectangular hyperbola whose axes are $x = \pm y$ (fig. α)
ii) Im(z^2) = $2xy = 4$, this rectangular hyperbola $xy = 2$ has axes coincident with the x -, y -axis (fig. β)

iii)
$$z^2 = 3 + 4i = 4 + 4i - 1 = 4 + 4i + i^2 = (2 + i)^2$$
,
thus $z = \pm (2 + i)$

iv) Refer to figures (α), and (β) above the locus of z is

the intersection of these regions