## UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

ENGC46- Síntese de Circuitos

Docente: Maicon Deivid Pereira

Discente: Vinícius Viana Moitinho

## Avaliação 1 - Síntese de Filtro RC-Ativo

Através dos dados da tabela de especificações, concluiu-se que o filtro a ser projetado se trata de um Passa-Alta, com banda de passagem em 500kHz e banda de rejeição em 180kHz. A função de aproximação utilizada para o desenvolvimento do filtro foi a de Chebyshev e o software utilizado foi o MATLAB.

A função de transferência completa T(s) que descreve o filtro obtida no MATLAB foi:

$$T(s) = \frac{0.8913s^{6}}{s^{6} + 1.4E07 s^{5} + 1.345E14 s^{4} + 5.409E20 s^{3} + 2.729E27 s^{2} + 4.122E33 s + 1.395E40}$$

Com isso, foi possível calcular os pólos e zeros de T(s) e projetar os três biquads a serem utilizados no circuito RC. Os biquads calculados foram:

$$t_1(s) = \frac{s^2}{s^2 + 1.169E07 s + 7.914E13}$$

$$t_2(s) = \frac{s^2}{s^2 + 1.914E06 s + 1.77E13}$$

$$t_3(s) = \frac{0.8913s^2}{s^2 + 3.943E05 s + 9.962E12}$$

Foi utilizado o modelo Biquad de Tow-Thomas, no qual é exemplificado na Figura 1.



Figura 1: Biquad de Tow-Thomas e sua respectiva função de transferência.

Fazendo a comparação entre a função de transferência do Biquad de Tow Thomas com t(1), temos que:

$$\frac{1}{R_{3}C} = 1.169E7$$

$$\frac{1}{R_{1}RC^{2}} = 7.914E13$$

$$\frac{1}{R_{3}} = \frac{R_{PA}}{R_{PF}} \frac{1}{R_{2}}$$

$$\frac{1}{RR_{1}} = \frac{R_{PA}}{R_{PB}} \frac{1}{RR_{2}}$$

$$R_{PA} = R_{F2}$$

Arbitrando os valores de  $R_1, R_2$  e  $R_3$  para 10k, encontramos

$$C = 8.5543 \, pF$$
$$R = 17268 \, \Omega$$

Para os valores de  $R_{PF}$  e de  $R_{PA}$ , percebe-se que eles devem ter o mesmo valor para obedecer à igualdade, assim como o valor de  $R_{PA}$  e de  $R_{PB}$  .Dessa forma,

todos receberam o valor de  $10 \mathrm{k}\Omega$ . O valor  $R_4$  de não faz nenhuma diferença no resultado da função de transferência e foi atribuído a ele o valor de 1k. Todos esses valores dos componentes do biquad t1(s) foram registrados na Tabela 1.

Foi realizado o mesmo procedimento para t2(s) e para t3(s), em que neste último, foi necessário ajustar o valor de R3 para  $100 \mathrm{k}\Omega$  para que o valor final de R esteja na faixa dos  $\mathrm{k}\Omega$ , e, consequentemente, o valor de  $R_{PF}$  também foi para  $100 \mathrm{k}\Omega$  de forma a obedecer a igualdade. Todos os valores dos componentes a serem utilizados foram registrados na Tabela 1.

|          | $R_1(\Omega)$ | $R_2(\Omega)$ | $R_3(\Omega)$ | $R_4(\Omega)$ | $R_{PA}(\Omega)$ | $R_{PB}(\Omega)$ | $R_{pF}(\Omega)$ | $R_{F2}(\Omega)$ | $R(\Omega)$ | C(pF) |
|----------|---------------|---------------|---------------|---------------|------------------|------------------|------------------|------------------|-------------|-------|
| $t_1(s)$ | 10k           | 10k           | 10k           | 1k            | 10k              | 10k              | 10k              | 10k              | 17.3k       | 8.55  |
| $t_2(s)$ | 10k           | 10k           | 10k           | 1k            | 10k              | 10k              | 10k              | 10k              | 2.07k       | 52.25 |
| $t_3(s)$ | 10k           | 10k           | 100k          | 1k            | 10k              | 10k              | 100k             | 8.91k            | 15.6k       | 25.36 |

Tabela 1: Valores dos componentes a serem utilizados no desenvolvimento dos Biquads.

O circuito foi montado através do software do LTSpice. A Figura 2 apresenta o diagrama esquemático do circuito.



Figura 2: Circuito a ser simulado no LTSpice.

Os dados da simulação do LTSpice foram exportados para o MATLAB para que fosse possível comparar os resultados da aproximação e da simulação. A Figura 3 apresenta as duas curvas plotadas no mesmo gráfico, sendo a contínua a curva teórica e a pontilhada a curva simulada no LTSpice. A Figura 4 e a Figura 5 apresentam as mesmas curvas, mas com foco na banda passante e na banda de rejeição, respectivamente. A Figura 6 apresenta a comparação das respostas de fase da função de transferência teórica e do circuito simulado. A Tabela 2 apresenta a comparação da atenuação das duas curvas.



Figura 3: Curvas da aproximação por Chebyshev e curva simulada no LTSpice.



Figura 4: Curvas da aproximação por Chebyshev e curva simulada no LTSpice com ênfase na banda passante.



Figura 5: Curvas da aproximação por Chebyshev e curva simulada no LTSpice com ênfase na banda de rejeição.



Figura 6: Curvas das respostas de fase de aproximação por Chebyshev e do circuito simulado no LTSpice.

|                      |                    | Atenuação (dB) |             |          |  |  |  |
|----------------------|--------------------|----------------|-------------|----------|--|--|--|
|                      | Frequência<br>(Hz) | Especificada   | Aproximação | Circuito |  |  |  |
| Banda de<br>Passagem | 500k               | 1              | 0.8366      | 0.9194   |  |  |  |
| Banda de<br>Rejeição | 180k               | 70             | 75.7        | 75.68    |  |  |  |

Tabela 2: Comparação dos resultados obtidos com as especificações .