Diszkrét matematika 2. C szakirány

5-6. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. tavasz

Gyűrűk

Definíció ____

 $\forall k, l, m \in R$ -re: $k \circ (l * m) = (k \circ l) * (k \circ m)$, illetve

 $\forall k, l, m \in R$ -re: $(l * m) \circ k = (l \circ k) * (m \circ k)$.

Példa

 $(\mathbb{Z};+,\cdot)$ esetén teljesül a szorzás összeadásra vonatkozó mindkét oldali disztributivitása.

Elnevezés

 $(R; *, \circ)$ két binér műveletes algebrai struktúra esetén a *-ra vonatkozó semleges elemet nullelemnek, a o-re vonatkozó semleges elemet egységelemnek nevezzük. A nullelem szokásos jelölése 0, az egységelemé 1, esetleg e.

Definíció

Az $(R; *, \circ)$ két binér műveletes algebrai struktúra gyűrű, ha

(R; *) Abel-csoport;(R; ∘) félcsoport;

teljesül a ∘-nek a ∗-ra vonatkozó mindkét oldali disztributivitása.

 $\overline{\mathsf{Az}}\ (R;*,\circ)$ gyűrű egységelemes gyűrű, ha R-en a \circ műveletre nézve van egységelem.

Az $(R; *, \circ)$ gyűrű kommutatív gyűrű, ha a \circ művelet (is) kommutatív.

Példa

• $(\mathbb{Z};+,\cdot)$ egységelemes kommutatív gyűrű.

 $(2\mathbb{Z};+,\cdot)$ gyűrű, de nem egységelemes.

Q, ℝ, C a szokásos műveletekkel egységelemes kommutatív gyűrűk.

• $\mathbb{C}^{k \times k}$ a szokásos műveletekkel egységelemes gyűrű, de nem kommutatív, ha k > 1.

Nullosztómentes gyűrűk

Definíció

Ha egy $(R, *, \circ)$ gyűrűben $\forall r, s \in R, r, s \neq 0$ esetén $r \circ s \neq 0$, akkor R nullosztómentes gyűrű.

Példa

Nem nullosztómentes gyűrű

Nullosztómentes gyűrűben a nem-nulla elemek additív rendje megegyezik, és vagy egy p prímszám vagy végtelen.

Definíció

Ha az előző állításban szereplő közös rend p, akkor a gyűrű karakterisztikája p, ha a közös rend végtelen, akkor pedig 0. Jelölése: char(R).

Nullosztómentes gyűrűk

Definíció

A kommutatív, nullosztómentes gyűrűt integritási tartománynak nevezzük.

Példa

• $(\mathbb{Z};+,\cdot)$

Definíció

Az $(R; *, \circ)$ egységelemes integritási tartományban az $a, b \in R$ elemekre azt mondjuk, hogy a osztója b-nek, ha van olyan $c \in R$, amire $b = a \circ c$. Jelölése: a|b.

Definíció

Az egységelem osztóját egységnek nevezzük.

Definíció

Az $(R; *, \circ)$ gyűrű ferdetest, ha $(R \setminus \{0\}; \circ)$ csoport. A kommutatív ferdetestet testnek nevezzük.

- ℚ, ℝ, ℂ a szokásos műveletekkel,
- ullet \mathbb{Z}_p a szokásos műveletekkel, ha p prím.

Definíció

Legyen $(R; +, \cdot)$ gyűrű. A gyűrű elemeiből képzett $f = (f_0, f_1, f_2, \dots)$ $(f_j \in R)$ végtelen sorozatot R fölötti polinomnak nevezzük, ha csak véges sok eleme nem-nulla.

Az R fölötti polinomok halmazát R[x]-szel jelöljük. R[x] elemein definiáljuk az összeadást és a szorzást.

$$f=(f_0,f_1,f_2,\dots),\ g=(g_0,g_1,g_2,\dots)$$
 és $h=(h_0,h_1,h_2,\dots)$ esetén $f+g=(f_0+g_0,f_1+g_1,f_2+g_2,\dots)$ és $f\cdot g=h$, ahol

Megjegyzés

Könnyen látható, hogy polinomok összege és szorzata is polinom.

Állítás (NB)

Ha $(R;+,\cdot)$ gyűrű, akkor $(R[x];+,\cdot)$ is gyűrű, és R fölötti polinomgyűrűnek nevezzük.

Megjegyzés

Gyakran az $(R;+,\cdot)$ gyűrűre szimplán R-ként, az $(R[x];+,\cdot)$ gyűrűre R[x]-ként hivatkozunk.

Állítás

Ha az R gyűrű kommutatív, akkor R[x] is kommutatív.

Állítás

 $1 \in R$ egységelem esetén $e = (1, 0, 0 \dots)$ egységeleme lesz R[x]-nek.

Állítás

Ha az R gyűrű nullosztómentes, akkor R[x] is nullosztómentes.

Bizonyítás

Legyen n, illetve m a legkisebb olyan index, amire $f_n \neq 0$, illetve $g_m \neq 0$.

$$(f \cdot g)_{n+m} = \sum_{j=0}^{n+m} f_j g_{n+m-j} = \sum_{j=0}^{n-1} f_j g_{n+m-j} + f_n g_m + \sum_{j=n+1}^{n+m} f_j g_{n+m-j} = \sum_{j=0}^{n+m} f_j g_{n+m-j} = \sum_{j=0$$

$$=0+f_ng_m+0=f_ng_m\neq 0$$

Jelölés

Megjegyzés

A főegyüttható tehát a legnagyobb indexű nem-nulla együttható, a fok pedig ennek indexe.

A 0 = (0, 0, ...) nullpolinomnak nincs legnagyobb indexű nem-nulla együtthatója, így a fokát külön definiáljuk, mégpedig $deg(0)=-\infty$.

Definíció

A konstans polinomok a legfeljebb nulladfokú polinomok, a lineáris polinomok pedig a legfeljebb elsőfokú polinomok. Az $f_i x^i$ alakba írható polinomok a monomok. Ha $f \in R[x]$ polinom főegyütthatója R

egységeleme, akkor f-et <mark>főpolinomnak</mark> nevezzük.

Példa

Állítás

Legyen $f, g \in R[x]$, deg(f) = n, és deg(g) = k. Ekkor:

- $deg(f+g) \leq \max(n,k)$;
- $deg(f \cdot g) \leq n + k$.

Bizonyítás

Legyen h = f + g. Ekkor $j > \max(n, k)$ esetén $h_j = 0 + 0 = 0$. Legyen $h = f \cdot g$. Ekkor j > n + k esetén

$$h_j = \sum_{i=0}^j f_i g_{j-i} = \sum_{i=0}^n f_i g_{j-i} + \sum_{i=n+1}^j f_i g_{j-i} = 0.$$

Megjegyzés

Nullosztómentes gyűrű esetén egyenlőség teljesül a 2. egyenlőtlenségben, hiszen

$$h_{n+k} = \sum_{i=0}^{n+k} f_i g_{n+k-i} = \sum_{i=0}^{n-1} f_i g_{n+k-i} + f_n g_k + \sum_{i=n+1}^{n+k} f_i g_{n+k-i} = f_n g_k \neq 0.$$

Definíció

Az $f(x) = f_0 + f_1 x + f_2 x^2 + \ldots + f_n x^n \in R[x]$ polinom $r \in R$ helyen felvett helyettesítési értékén az $f(r) = f_0 + f_1 r + f_2 r^2 + \ldots + f_n r^n \in R$ elemet értjük.

 $\sum f(r) = 0$ esetén *r*-et a polinom gyökének nevezzük.

Az $\hat{f}:r\mapsto f(r)$ leképezés az f polinomhoz tartozó polinomfüggvény. C

Megjegyzés

Ha R véges, akkor csak véges sok $R \to R$ függvény van, míg végtelen sok R[x]-beli polinom, így vannak olyan polinomok, amikhez ugyanaz a polinomfüggvény tartozik, például $x, x^2 \in \mathbb{Z}_2[x]$.

Példa

 $f(x) = x^2 + x - 2 \in \mathbb{Z}[x]$ -nek a -2 helyen felvett helyettesítési értéke $(-2)^2 + (-2) - 2 = 0$, ezért -2 gyöke f-nek.

Horner-elrendezés

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0$, ahol $f_n \neq 0$. Ekkor átrendezéssel a következő alakot kapjuk:

$$f(x) = (\cdots ((f_n \cdot x + f_{n-1}) \cdot x + f_{n-2}) \cdot x + \dots + f_1) \cdot x + f_0, \text{ és így}$$

$$f(c) = (\dots ((f_n \cdot c + f_{n-1}) \cdot c + f_{n-2}) \cdot c + \dots + f_1) \cdot c + f_0.$$

Vagyis f(c) kiszámítható n db szorzás és n db összeadás segítségével.

Általánosan: $c_k = c_{k-1}c + f_{n-k+1}$, ha $1 < k \le n$.

Példa

Határozzuk meg az $f(x) = x^4 - 3x^3 + x + 6$ polinom -2 helyen vett helyettesítési értékét!

	1	-3	0	1	6	
-2	X	1	-5	10	-19	44

Tétel (polinomok maradékos osztása)

Legyen R egységelemes integritási tartomány, $f, g \in R[x]$, és tegyük fel, ogy g főegyütthatója egység R-ben. Ekkor egyértelműen léteznek olyan, $r \in R[x]$ polinomok, melyekre f = qg + r, ahol deg(r) < deg(g).

Bizonyítás

Létezés: f foka szerinti TI: ha deg(f) < deg(g), akkor q = 0 és r = f esetén megfelelő előállítást kapunk.

Legyen f főegyütthatója f_n , g főegyütthatója g_k . $n \ge k$ esetén legyen $f^*(x) = f(x) - f_n g_k^{-1} g(x) x^{n-k}$. $deg(f^*) < deg(f)$ (Miért?) miatt f^* -ra használhatjuk az indukciós feltevést, vagyis léteznek $q^*, r^* \in R[x]$ polinomok, amikre $f^* = q^*g + r^*$. $f(x) = f^*(x) + f_n g_k^{-1} g(x) x^{n-k} = q^*(x) g(x) + r^*(x) + f_n g_k^{-1} g(x) x^{n-k} = (q^*(x) + f_n g_k^{-1} x^{n-k}) g(x) + r^*(x)$, így $g(x) = g^*(x) + f_n g_k^{-1} x^{n-k}$ és $r(x) = r^*(x)$ jó választás.

17.

A maradékos osztás tétele és következményei

Bizonyítás folyt.

Egyértelműség: Tekintsük f két megfelelő előállítását:

 $f = qg + r = q^*g + r^*$, amiből:

$$g(q-q^*)=r^*-r.$$

Ha a bal oldal nem 0, akkor a foka legalább k, de a jobb oldal foka legfeljebb k-1, tehát

$$0 = g(q - q^*) = r^* - r$$
, és így $q = q^*$ és $r = r^*$.

Definíció

Ha $c \in R$ az $f \in R[x]$ polinom gyöke, akkor $(x - c) \in R[x]$ a c-hez tartozó gyöktényező.

Következmény (gyöktényező leválasztása)

Ha $0 \neq f \in R[x]$, és $c \in R$ gyöke f-nek, akkor létezik olyan $q \in R[x]$, amire f(x) = (x - c)q(x).

Bizonyítás

Osszuk el maradékosan f-et (x - c)-vel (Miért lehet?):

$$f(x) = q(x)(x - c) + r(x).$$

Mivel deg(r(x)) < deg(x-c) = 1, ezért r konstans polinom. Helyettesítsünk be c-t, így azt kapjuk, hogy 0 = f(c) = q(c)(c-c) + r(c) = r(c),

amiből
$$r = 0$$
.

Következmény

Az $f \neq 0$ polinomnak legfeljebb deg(f) gyöke van.

Bizonvítás

f foka szerinti TI:

deg(f) = 0-ra igaz az állítás (Miért?).

Ha deg(f) > 0, és f(c) = 0, akkor f(x) = (x - c)g(x) (Miért?), ahol deg(g) + 1 = deg(f) (Miért?). Ha d gyöke f-nek, akkor d - c = 0. amiből d = c, vagy d gyöke g-nek (Miért?). Innen következik az állítás.

Következmény

Ha két, legfeljebb \emph{n} -ed fokú polinomnak $\emph{n}+1$ különböző helyen ugyanaz a helyettesítési értéke, akkor egyenlőek.

Bizonyítás

A két polinom különbsége legfeljebb n-ed fokú, és n+1 gyöke van (Miért?), ezért nullpolinom (Miért?), vagyis a polinomok egyenlőek.

Következmény

Ha R végtelen, akkor két különböző R[x]-beli polinomhoz nem tartozik ugyanaz a polinomfüggvény.

Bizonyítás

Ellenkező esetben a polinomok különbségének végtelen sok gyöke lenne (Miért?).

Bővített euklideszi algoritmus

Definíció

Azt mondjuk, hogy $f,g \in R[x]$ polinomok esetén f osztója g-nek (g többszöröse f-nek), ha létezik $h \in R[x]$, amire $g = f \cdot h$.

Definíció

Az $f,g \in R[x]$ polinomok kitüntetett közös osztója (legnagyobb közös osztója) az a $d \in R[x]$ polinom, amelyre d|f, d|g, és tetszőleges $c \in R[x]$ esetén $(c|f \land c|g) \Rightarrow c|d$.

Test fölötti polinomgyűrűben tetszőleges nem-nulla polinommal tudunk maradékosan osztani, ezért működik a bővített euklideszi-algoritmus. Ez $f,g\in R[x]$ esetén (R test) meghatározza f és g kitüntetett közös osztóját, a $d\in R[x]$ polinomot, továbbá $u,v\in R[x]$ polinomokat, amelyekre $d=u\cdot f+v\cdot g$.

Bővített euklideszi algoritmus

Algoritmus

Legyen R test, $f,g \in R[x]$. Ha g=0, akkor $(f,g)=f=1\cdot f+0\cdot g$, különben végezzük el a következő maradékos osztásokat:

$$f = q_{1}g + r_{1};$$

$$g = q_{2}r_{1} + r_{2};$$

$$r_{1} = q_{3}r_{2} + r_{3};$$

$$\vdots$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n};$$

$$r_{n-1} = q_{n+1}r_{n}.$$

Ekkor $d = r_n$ jó lesz kitüntetett közös osztónak.

Az $u_{-1}=1,\ u_0=0,\ v_{-1}=0,\ v_0=1$ kezdőértékekkel, továbbá az $u_k=u_{k-2}-q_k\cdot u_{k-1}$ és $v_k=v_{k-2}-q_k\cdot v_{k-1}$ rekurziókkal megkapható $u=u_n$ és $v=v_n$ polinomok olyanok, amelyekre teljesül $d=u\cdot f+v\cdot g$.

23.

Bővített euklideszi algoritmus

Bizonyítás

A maradékok foka természetes számok szigorúan monoton csökkenő sorozata, ezért az eljárás véges sok lépésben véget ér.

Indukcióval belátjuk, hogy $r_{-1} = f$ és $r_0 = g$ jelöléssel $r_k = u_k \cdot f + v_k \cdot g$ teljesül minden $-1 \le k \le n$ esetén:

$$k = -1$$
-re $f = 1 \cdot f + 0 \cdot g$, $k = 0$ -ra $g = 0 \cdot f + 1 \cdot g$.

Mivel $r_{k+1} = r_{k-1} - q_{k+1} \cdot r_k$, így az indukciós feltevést használva:

$$r_{k+1} = u_{k-1} \cdot f + v_{k-1} \cdot g - q_{k+1} \cdot (u_k \cdot f + v_k \cdot g) =$$

$$= (u_{k-1} - q_{k+1} \cdot u_k) \cdot f + (v_{k-1} - q_{k+1} \cdot v_k) \cdot g = u_{k+1} \cdot f + v_{k+1} \cdot g.$$

Tehát
$$r_n = u_n \cdot f + v_n \cdot g$$
, és így f és g közös osztói r_n -nek is osztói.

Kell még, hogy r_n osztója f-nek és g-nek.

Indukcióval belátjuk, hogy $r_n | r_{n-k}$ teljesül minden $0 \le k \le n+1$ esetén:

$$k = 0$$
-ra $r_n | r_n$ nyilvánvaló, $k = 1$ -re $r_{n-1} = q_{n+1} r_n$ miatt $r_n | r_{n-1}$.

 $r_{n-(k+1)} = q_{n-(k-1)}r_{n-k} + r_{n-(k-1)}$ miatt az indukciós feltevést használva kapjuk az állítást, és így k = n, illetve k = n + 1 helyettesítéssel $|r_n|r_0 = g$, illetve $|r_n|r_{-1} = f$.

Definíció

Legyen R gyűrű. Az

$$f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_2 x^2 + f_1 x + f_0 \in R[x] \ (f_n \neq 0)$$
 polinom algebrai deriváltja az

$$f'(x) = nf_n x^{n-1} + (n-1)f_{n-1}x^{n-2} + \ldots + 2f_2x + f_1 \in R[x]$$
 polinom.

Megjegyzes

Itt
$$kf_k = \underbrace{f_k + f_k + \ldots + f_k}_{k-1}$$
.

Állítás

Legyen R gyűrű, $a, b \in R$ és $n \in \mathbb{N}^+$. Ekkor (na)b = n(ab) = a(nb).

Bizonyítás

$$(\underbrace{a+a+\ldots+a}_{n \text{ db}})b = (\underbrace{ab+ab+\ldots+ab}_{n \text{ db}}) = a(\underbrace{b+b+\ldots+b}_{n \text{ db}})$$

Állítás

Ha R egységelemes integritási tartomány, akkor az $f \mapsto f'$ algebrai deriválás rendelkezik a következő tulajdonságokkal:

- konstans polinom deriváltja a nullpolinom;
- az x polinom deriváltja az egységelem;

- $(f+g)'=f'+g', \text{ ha } f,g\in R[x] \text{ (additivitás)};$
- (fg)' = f'g + fg', ha $f, g \in R[x]$ (szorzat differenciálási szabálya).

Megjegyzés

Megfordítva, ha egy R egységelemes integritási tartomány esetén egy $f\mapsto f',\ R[x]$ -et önmagába képező leképzés rendelkezik az előző 4 tulajdonsággal, akkor az az algebrai deriválás.

Állítás

Ha R egységelemes integritási tartomány, $c \in R$ és $n \in \mathbb{N}^+$, akkor $((x-c)^n)' = n(x-c)^{n-1}$.

Bizonyítás

n szerinti TI:

n = 1 esetén $(x - c)' = 1 = 1 \cdot (x - c)^0$.

Tfh. n = k-ra teljesül az állítás, vagyis $((x-c)^k)' = k(x-c)^{k-1}$.

Ekkor

$$((x-c)^{k+1})' = ((x-c)^k(x-c))' = ((x-c)^k)'(x-c) + (x-c)^k(x-c)' = k(x-c)^{k-1}(x-c) + (x-c)^k \cdot 1 = (x-c)^k(k+1).$$

Ezzel az állítást beláttuk.

Állítás (NB)

Ha R integritási tartomány, char(R) = p, és $0 \neq r \in R$, akkor $n \cdot r = 0 \iff p \mid n$.

Definíció

Legyen R egységelemes integritási tartomány, $0 \neq f \in R[x]$ és $n \in \mathbb{N}^+$. Azt mondjuk, hogy $c \in R$ az f egy n-szeres gyöke, ha $(x-c)^n | f$, de $(x-c)^{n+1}$ /f.

Megjegyzés

A definíció azzal ekvivalens, hogy $f(x) = (x - c)^n g(x)$, ahol c nem gyöke g-nek. (Miért?)

Tétel

Legyen R egységelemes integritási tartomány, $f \in R[x]$, $n \in \mathbb{N}^+$ és $c \in R$ az f egy n-szeres gyöke. Ekkor c az f'-nek legalább (n-1)-szeres gyöke, és ha $char(R) \nmid n$, akkor pontosan (n-1)-szeres gyöke.

Bizonyítás

Ha $f(x)=(x-c)^ng(x)$, ahol c nem gyöke g-nek, akkor $f'(x)=((x-c)^n)'g(x)+(x-c)^ng'(x)==n(x-c)^{n-1}g(x)+(x-c)^ng'(x)=(x-c)^{n-1}(ng(x)+(x-c)g'(x)).$ Tehát c tényleg legalább (n-1)-szeres gyöke f'-nek, és akkor lesz (n-1)-szeres gyöke, ha c nem gyöke ng(x)+(x-c)g'(x)-nek, vagyis $0\neq ng(c)+(c-c)g'(c)=ng(c)+0\cdot g'(c)=ng(c)$. Ez pedig teljesül, ha char(R) n.

Példa

Legyen $f(x) = x^4 - x \in \mathbb{Z}_3[x]$. Ekkor 1 3-szoros gyöke f-nek, mert

$$f(x) = x(x^3 - 1) \stackrel{\mathbb{Z}_3}{=} x(x^3 - 3x^2 + 3x - 1) = x(x - 1)^3.$$

$$f'(x) = 4x^3 - 1 \stackrel{\mathbb{Z}_3}{=} x^3 - 3x^2 + 3x - 1 = (x - 1)^3,$$

tehát 1 3-szoros gyöke f'-nek is.

Lagrange-interpoláció

Tétel

Legyen R test, $c_0, c_1, \ldots, c_n \in R$ különbözőek, továbbá $d_0, d_1, \ldots, d_n \in R$ tetszőlegesek. Ekkor létezik egy olyan legfeljebb n-ed fokú polinom, amelyre $f(c_j) = d_j$, ha $j = 0, 1, \ldots, n$.

Bizonyítás

Legyen

$$I_j(x) = \frac{\prod_{i \neq j} (x - c_i)}{\prod_{i \neq j} (c_j - c_i)},$$

a j-edik Lagrange-interpolációs alappolinom, és legyen

$$f(x) = \sum_{j=0}^{n} d_j I_j(x).$$

 $l_i(c_i) = 0$, ha $i \neq j$, és $l_i(c_i) = 1$ -ből következik az állítás.

Lagrange-interpoláció

Példa

Polinomok

Adjunk meg olyan $f \in \mathbb{R}[x]$ polinomot, amelyre f(0) = 3, f(1) = 3, f(4) = 7 és f(-1) = 0!A feladat szövege alapján $c_0 = 0$, $c_1 = 1$, $c_2 = 4$, $c_3 = -1$, $d_0 = 3$, $d_1 = 3$, $d_2 = 7$ és $d_3 = 0$ értékekkel alkalmazzuk a Lagrange-interpolációt. $I_0(x) = \frac{(x-1)(x-4)(x+1)}{(0-1)(0-4)(0+1)} = \frac{1}{4}x^3 - x^2 - \frac{1}{4}x + 1$ $I_1(x) = \frac{(x-0)(x-4)(x+1)}{(1-0)(1-4)(1+1)} = -\frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{2}{3}x$ $I_2(x) = \frac{(x-0)(x-1)(x+1)}{(4-0)(4-1)(4+1)} = \frac{1}{60}x^3 - \frac{1}{60}x$ $I_3(x) = \frac{(x-0)(x-1)(x-4)}{(-1-0)(-1-1)(-1-4)} = -\frac{1}{10}x^3 + \frac{1}{2}x^2 - \frac{2}{5}x$ $f(x) = 3l_0(x) + 3l_1(x) + 7l_2(x) + 0l_3(x) = \frac{22}{60}x^3 - \frac{3}{2}x^2 + \frac{68}{60}x + 3$ X

Definíció

Legyen R egységelemes integritási tartomány.

Ha a $0 \neq f \in R[x]$ polinom nem egység, akkor felbonthatatlannak (irreducibilisnek) nevezzük, ha $\forall a, b \in R[x]$ -re

$$f = a \cdot b \Longrightarrow (a \text{ egység} \lor b \text{ egység}).$$

Ha a $0 \neq f \in R[x]$ polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük.

Megjegyzés

Utóbbi azt jelenti, hogy f-nek van nemtriviális szorzat-előállítása (olyan, amiben egyik tényező sem egység).

Állítás

Legyen $(R; *, \circ)$ gyűrű $0 \in R$ nullelemmel. Ekkor $\forall r \in R$ esetén $0 \circ r = r \circ 0 = 0$.

Állítás

Test nullosztómentes.

Állítás

Legyen $(F;+,\cdot)$ test. Ekkor $f\in F[x]$ pontosan akkor egység, ha deg(f)=0.

Bizonyítás

Később.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor f-nek van gyöke.

Bizonyítás

Később.

Megjegyzés

Ha $(R; +, \cdot)$ nem test, akkor egy R fölötti elsőfokú polinomnak nem feltétlenül van gyöke, pl. $2x - 1 \in \mathbb{Z}[x]$.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor ffelbonthatatlan.

Bizonyítás

Később.

Megjegyzés

Tehát nem igaz, hogy egy felbonthatatlan polinomnak nem lehet gyöke.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha $2 \le deg(f) \le 3$, akkor f pontosan akkor felbontható, ha van gyöke.

Bizonyítás

Később.

Tétel

 $f \in \mathbb{C}[x]$ pontosan akkor felbonthatatlan, ha deg(f) = 1.

Bizonyítás

Később.

Tétel

 $f \in \mathbb{R}[x]$ pontosan akkor felbonthatatlan, ha

- deg(f) = 1, vagy
- deg(f) = 2, és f-nek nincs (valós) gyöke.

Bizonyítás

Később.

Definíció

 $f \in \mathbb{Z}[x]$ -et primitív polinomnak nevezzük, ha az együtthatóinak a legnagyobb közös osztója 1.

Tétel (Schönemann-Eisenstein)

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ legalább elsőfokú primitív polinom. Ha található olyan $p \in \mathbb{Z}$ prím, melyre

- p/f_n ,
- $p|f_i$, ha $0 \le j < n$,
- p^2 / f_0 ,

akkor f felbonthatatlan \mathbb{Z} fölött.

Bizonyítás

NB. (Lehet, hogy később igen.)

Megjegyzés

A feltételben f_n és f_0 szerepe felcserélhető.

Megjegyzés

A tétel nem használható test fölötti polinom irreducibilitásának bizonyítására, mert testben nem léteznek prímek, hiszen minden nem-nulla elem egység.