

Прогнозирование свойств композитных материалов

Шипов Михаил Всеволодович

Постановка задачи

Построить модели для прогноза конечных свойств получаемых композиционных материалов:

1 Модуль упругости при растяжении

2 Прочность при растяжении

3 Соотношение матрица-наполнитель Нейронная сеть

Композиционные материалы обладают следующими характеристиками

- экологическая безопасность;
- прочность на изгиб, сжатие, растяжение;
- стойкость к механическим и вибрационным нагрузкам;
- упругость, жесткость, удельный вес;
- износостойкость, электропроводимость;
- тепло- и звукоизоляционные характеристики;
- химическая, биологическая, коррозионная устойчивость

Характеристика датасета

Данные представлены двумя xlsx файлами

Размерность: X_bp (1023, 10), X_upr (1040, 3)

Признаки:

- 12 количественных (float64);
- 1 категориальный «Угол нашивки» (int64)

Пустые значения: отсутствуют

Вероятная ошибка в данных:

- X_upr первые 40 строк повторяющиеся значения;
- X_bp первые 23 строки протянутые значения;
- Без них общее кол-во строк обоих файлов 1000

Строки удалены из датасета со сбросом индексов. Итоговая размерность общего датасета (1000, 13). Количественные признаки – уникальные значения

Разведочный анализ и предобработка данных

Анализ распределения данных и кодирование категориального признака

Распределение количественных признаков

Ящик с усами

Статистические характеристики

- 1. Распределение значений по всем количественным признакам является близким к нормальному;
- 2. Размах и масштаб необходима нормализация данных;
- 3. Наличие выбросов в данных;
- 4. Угол нашивки: 500 значений 0 градусов, 500 90 градусов

```
labelencoder = LabelEncoder()

df['Угол нашивки, град'] = labelencoder.fit_transform(df['Угол нашивки, град'])

df['Угол нашивки, град'].value_counts()

✓ 0.0s

Угол нашивки, град

0 500
1 500

Name: count, dtype: int64
```


Разведочный анализ

Нахождение связей между признаками

Корреляция признаков композитных материалов около нулевая, изменение одной переменной не влияет на увеличение/уменьшение другой.

Для поиска нелинейной связи воспользуемся методом Phik, основанным на хи-квадрат тесте Пирсона.

```
phik_overview = df.phik_matrix()
phik_overview['Модуль упругости при растяжении, ГПа'].sort_values(ascending=False)
```

В результате находим более значимые признаки, которые следует учесть при построении моделей

Модуль упругости при растяжении

Модуль упругости при растяжении, ГПа	1.00
Шаг нашивки	0.26
модуль упругости, ГПа	0.17
Потребление смолы, г/м2	0.15
Прочность при растяжении, МПа	0.15
Угол нашивки, град	0.08

Прочность при растяжении

Decimant and postawania MDs	1.00
Прочность при растяжении, МПа	1.00
Количество отвердителя, м.%	0.22
Модуль упругости при растяжении, ГПа	0.15
Соотношение матрица-наполнитель	0.10
Потребление смолы, г/м2	0.10
Поверхностная плотность, г/м2	0.08
Плотность нашивки	0.08
плотноств нашивки	0.00

Соотношение

матрица-наполнитель

Соотношение матри	ца-наполнитель	1.00
Температура вспыш	ки, С_2	0.13
Прочность при рас	тяжении, МПа	0.10
Потребление смолы	, г/м2	0.10
Плотность, кг/м3		0.06
Шаг нашивки		0.04

Корреляция признаков и график попарного рассеяния точек

Предобработка данных

Подготовка датасетов Упругости и Прочности к моделированию

Разбивка на обучающую и тестовую выборки

- Mетод train_test_split()
- 30% тестовая выборка

```
df_train, df_test = train_test_split(df, test_size=0.3, random_state=42)
df_train.shape, df_test.shape
$\square$ 0.0s
((700, 13), (300, 13))
```

Устранение выбросов

- Для обучающей выборки
- Метод межквартильного интервала

$$Q_1 - k * IQR, Q_3 + k * IQR$$

Ящик с усами

Нормирование данных

- Для каждого датасета
- Mетод MinMaxScaler()

$$Xnorm = \frac{X - Xmin}{Xmax - Xmin}$$

	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	642.00	0.50	0.19	0.00	0.38	0.50	0.62	1.00
Плотность, кг/м3	642.00	0.51	0.18	0.00	0.38	0.51	0.63	1.00
модуль упругости, ГПа	642.00	0.44	0.20	0.00	0.29	0.43	0.58	1.00
Количество отвердителя, м.%	642.00	0.51	0.19	0.00	0.37	0.51	0.64	1.00
Содержание эпоксидных групп,%_2	642.00	0.50	0.18	0.00	0.37	0.50	0.62	1.00
Температура вспышки, С_2	642.00	0.50	0.19	0.00	0.37	0.49	0.63	1.00
Поверхностная плотность, г/м2	642.00	0.37	0.21	0.00	0.21	0.34	0.54	1.00
Прочность при растяжении, МПа	642.00	0.50	0.19	0.00	0.37	0.49	0.62	1.00
Потребление смолы, г/м2	642.00	0.52	0.20	0.00	0.39	0.52	0.66	1.00
Угол нашивки, град	642.00	0.52	0.50	0.00	0.00	1.00	1.00	1.00
Шаг нашивки	642.00	0.50	0.19	0.00	0.37	0.50	0.62	1.00
Плотность нашивки	642.00	0.50	0.19	0.00	0.37	0.50	0.63	1.00

Распределение количественных признаков

Разработка моделей

Формулировка гипотез

Количество признаков

Влияние выбросов

Сложность модели

Применение гиперпараметров

Большее количество признаков позволяет лучше описать закономерности в условиях отсутствия корреляции между отдельными признаками

Выбросы стоит удалять по минимуму, т.к. кол-во значений небольшое

Ансамблевые модели работают лучше в силу более сложных алгоритмов

Настройка гиперпараметров позволит улучшить качество модели

Разработка моделей

Результат проверки гипотез

Количество признаков

Влияние выбросов

Сложность модели

Применение гиперпараметров

Решение дающее лучший результат

Необходимо сокращение признаков: Phik для Модуля упругости при растяжении; PC для Прочности при растяжении

Удаление «более грубым» методом межквартильного интервала

Тор 3: Линейная регрессия, Случайный лес и Градиентный бустинг. Низкая ошибка достигается минимизацией отклонения от среднего

После настройки гиперпараметров модели стали вести себя как линейная регрессия за исключением Catboost, который сохранил высокий R2 на обучающей выборке и низкий на тестовой, что говорит о переобучении

Примеры предсказаний

Модуль упругости при растяжении

	R2_train	R2	MSE	RMSE	MAE	MAPE
lin_reg	0.01	-0.00	10.65	3.26	2.68	0.04
random_forest_reg	0.85	-0.08	11.46	3.38	2.75	0.04
knn_reg	0.23	-0.16	12.27	3.50	2.85	0.04
bag_reg	0.79	-0.13	11.95	3.46	2.83	0.04
gb_reg	0.42	-0.11	11.75	3.43	2.80	0.04
cat_reg	0.82	-0.23	13.00	3.61	2.93	0.04

	R2_train	R2	MSE	RMSE	MAE	MAPE
lin_reg	0.00	-0.01	10.69	3.27	2.68	0.04
random_forest_reg	0.84	-0.10	11.67	3.42	2.80	0.04
knn_reg	0.19	-0.18	12.51	3.54	2.88	0.04
bag_reg	0.79	-0.25	13.23	3.64	2.96	0.04
gb_reg	0.38	-0.09	11.55	3.40	2.83	0.04
cat_reg	0.71	-0.12	11.84	3.44	2.80	0.04

 \mathbb{R}^{C}

	R2_train	R2	MSE	RMSE	MAE	MAPE
lin_reg	0.01	-0.00	10.65	3.26	2.68	0.04
random_forest_reg	0.43	-0.07	11.37	3.37	2.75	0.04
knn_reg	0.01	-0.02	10.82	3.29	2.71	0.04
bag_reg	0.00	0.00	10.61	3.26	2.67	0.04
gb_reg	0.06	-0.00	10.64	3.26	2.69	0.04
cat_reg	0.81	-0.22	12.95	3.60	2.93	0.04

Прочность при растяжении

	R2_train	R2	MSE	RMSE	MAE	MAPE
lin_reg	0.01	-0.01	226330.27	475.74	371.20	0.16
random_forest_reg	0.84	-0.06	235971.66	485.77	380.53	0.16
knn_reg	0.26	-0.21	269600.81	519.23	398.43	0.17
bag_reg	0.78	-0.12	249817.30	499.82	384.45	0.16
gb_reg	0.45	-0.07	239125.25	489.00	379.67	0.16
cat_reg	0.86	-0.15	255965.80	505.93	402.07	0.17

	R2_train	R2	MSE	RMSE	MAE	MAPE
lin_reg	0.00	-0.01	225211.84	474.56	370.60	0.16
random_forest_reg	0.84	-0.05	234610.96	484.37	389.27	0.16
knn_reg	0.22	-0.19	264390.13	514.19	411.72	0.17
bag_reg	0.78	-0.15	256933.18	506.89	399.73	0.17
gb_reg	0.44	-0.05	233870.69	483.60	382.19	0.16
cat_reg	0.85	-0.12	249722.52	499.72	400.60	0.17

	R2_train	R2	MSE	RMSE	MAE	MAPE
lin_reg	0.01	-0.01	226330.27	475.74	371.20	0.16
random_forest_reg	0.47	-0.05	233760.26	483.49	381.08	0.16
knn_reg	0.02	-0.02	228443.29	477.96	373.72	0.16
bag_reg	0.00	-0.01	225682.18	475.06	372.67	0.16
gb_reg	0.12	-0.01	225813.63	475.20	372.61	0.16
cat_reg	0.83	-0.15	256622.95	506.58	402.34	0.17
	random_forest_reg knn_reg bag_reg gb_reg	lin_reg 0.01 random_forest_reg 0.47 knn_reg 0.02 bag_reg 0.00 gb_reg 0.12	lin_reg 0.01 -0.01 random_forest_reg 0.47 -0.05 knn_reg 0.02 -0.02 bag_reg 0.00 -0.01 gb_reg 0.12 -0.01	lin_reg 0.01 -0.01 226330.27 random_forest_reg 0.47 -0.05 233760.26 knn_reg 0.02 -0.02 228443.29 bag_reg 0.00 -0.01 225682.18 gb_reg 0.12 -0.01 225813.63	lin_reg 0.01 -0.01 226330.27 475.74 random_forest_reg 0.47 -0.05 233760.26 483.49 knn_reg 0.02 -0.02 228443.29 477.96 bag_reg 0.00 -0.01 225682.18 475.06 gb_reg 0.12 -0.01 225813.63 475.20	lin_reg 0.01 -0.01 226330.27 475.74 371.20 random_forest_reg 0.47 -0.05 233760.26 483.49 381.08 knn_reg 0.02 -0.02 228443.29 477.96 373.72 bag_reg 0.00 -0.01 225682.18 475.06 372.67 gb_reg 0.12 -0.01 225813.63 475.20 372.61

Выбор модели

Возможно выбрана не та модель?

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
Bayesian Ridge	-0.05	-0.01	473.79	0.02
TweedieRegressor	-0.05	-0.01	473.90	0.02
ElasticNetCV	-0.05	-0.01	473.91	0.19
GammaRegressor	-0.05	-0.01	473.98	0.01
ElasticNet	-0.05	-0.01	474.42	0.02
DummyRegressor	-0.05	-0.01	474.61	0.02
LassoCV	-0.05	-0.01	474.73	0.15
LarsCV	-0.05	-0.01	474.74	0.04
LassoLarsCV	-0.05	-0.01	474.74	0.04
SVR	-0.05	-0.01	475.07	0.09
LassoLarsIC	-0.05	-0.01	475.30	0.02
NuSVR	-0.06	-0.01	475.65	0.06
SGDRegressor	-0.06	-0.02	476.43	0.02
RidgeCV	-0.06	-0.02	476.59	0.02
Lasso	-0.06	-0.02	476.60	0.02
LassoLars	-0.06	-0.02	476.60	0.02
Ridge	-0.06	-0.02	476.73	0.01
Lars	-0.06	-0.02	476.74	0.02
TransformedTargetRegressor	-0.06	-0.02	476.74	0.02
LinearRegression	-0.06	-0.02	476.74	0.01
4.4				

Для повышения качества модели требуется:

- больший объем данных для обучения;
- перепроверка исходных данных на предмет ошибок заполнения

^{*} Прогноз качества моделей получен при помощи LazyRegressor()

Построение нейронной сети

Подготовка данных и этапы разработки архитектуры нейронной сети для модели соотношения матрица-наполнитель

Разбивка на обучающую (70%) и Подготовка датасета тестовую (30%) выборки. Необходимо сокращение количества признаков Встроенный слой нормализации Активации 'relu', 'tanh', 'sigmoid'. 'tanh' дает более стабильный результат. 'sigmoid' – dummy. Функция активации Активация 'linear' на выходе На выходе не стоит задавать функцию активации Кол-во слоев активации 1-9. (і) Увеличение числа слоев/нейронов приводит к Сложность модели Кол-во нейронов в слое 10-10*і «спрямлению» прогнозных результатов Применение Качество модели повышается при использовании обоих Dropout, Batchnormalization дополнительных слоев слоев

Построение нейронной сети

Лучшие модели по итогам различных конфигураций нейронной сети

HC tanh 1

0.85

HC 6e3 dropout & batch 2

0.92

Model: "sequential_76"		
Layer (type)	Output Shape	Param #
normalization_1 (Normalization)	(None, 5)	11
dense_343 (Dense)	(None, 10)	60
dense_344 (Dense)	(None, 10)	110
dense_345 (Dense)	(None, 1)	11
		========

0.95

0.77

-0.04

0.36

0.90

0.74 0.02

0.34

- Normalization
- Dense (10, 'tanh')
- Dropout
- BatchNormalization
- Dense(1)

Общие параметры

- Sequential()
- Скорость обучения 0.001
- loss = mse
- Кол-во эпох 1000
- Ранняя остановка

- Normalization
- Dense (10, 'relu')
- Dense(1)

Приложение на Flask

Температура вспышки, С_2, (160..413)

Поверхностная плотность, г/м², (1..1400)

Модуль упругости при растяжении, ГПа, (64..82)

Прочность при растяжении, МПа, (1036..3848)

Потребление смолы, г/м², (34..414)

Угол нашивки, (0, 90)

Шаг нашивки, (0..14)

Отправить

Плотность нашивки, (12..104)

Результат прогноза

2.838562

Соотношение матрица-накопитель для переданных параметров

Удаленный репозиторий

do.bmstu.ru

