Filtros en el dominio espacial Lección 05.2

Dr. Pablo Alvarado Moya

MP6123 Procesamiento Digital de Imágenes Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

II Cuatrimestre 2012

Contenido

- Filtros lineales
 - Máscaras de suavizamiento
 - Aproximación del gradiente
 - Laplaciano
- 2 Filtros de rango

Filtros lineales

- Suavizamiento (Filtros paso-bajo)
- Aproximación de derivación (Filtros paso-alto)
- Laplaciano (Filtros paso-alto)
- Nitidez

Filtros de media móvil

$$h(x,y) = \frac{1}{N^2} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} = \frac{1}{N^2} \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

Filtros gaussianos y binomiales

Gaussiano:

$$g(x, y, \sigma) = g(x, \sigma)g(y, \sigma)$$

 $g(x, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}$

Binomial:

$$B_{N}(x,y) = B_{N}(x)B_{N}(y)$$

$$B_{N}(x) = \frac{1}{K} \binom{N}{x} \qquad \binom{N}{x} = \frac{N!}{(N-n)!N!} \quad K = \sum_{x=0}^{N} \binom{N}{x}$$

Filtros lineales

Triángulo de Pascal

Gradiente

En espacio continuo:

$$\nabla f = \begin{bmatrix} \frac{\partial}{\partial x} f(x, y) \\ \frac{\partial}{\partial y} f(x, y) \end{bmatrix}$$

Con frecuencia se utilizan

$$\begin{aligned} |\nabla f| &= \sqrt{\left(\frac{\partial}{\partial x} f(x,y)\right)^2 + \left(\frac{\partial}{\partial y} f(x,y)\right)^2} \\ \angle \nabla f &= \arctan\left(\frac{\frac{\partial}{\partial y} f(x,y)}{\frac{\partial}{\partial x} f(x,y)}\right) \end{aligned}$$

Gradiente en el espacio discreto Aproximación por diferencias

Aproximación hacia atrás (Kernel $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$):

$$\frac{\partial}{\partial x}f(x,y)\approx f(x,y)-f(x-1,y)$$

$$\frac{\partial}{\partial y} f(x,y) \approx f(x,y) - f(x,y-1)$$

Aproximación hacia adelante (Kernel $\begin{bmatrix} 1 & -1 \end{bmatrix}$):

$$\frac{\partial}{\partial x} f(x, y) \approx f(x + 1, y) - f(x, y)$$

$$\frac{\partial}{\partial x} f(x, y) \approx f(x + 1, y) - f(x, y)$$
$$\frac{\partial}{\partial y} f(x, y) \approx f(x, y + 1) - f(x, y)$$

Gradiente en el espacio discreto Aproximación por diferencias

Aproximación centrada (Kernel [1 0 - 1]):

$$\frac{\partial}{\partial x} f(x, y) \approx \frac{1}{2} (f(x+1, y) - f(x-1, y))$$
$$\frac{\partial}{\partial y} f(x, y) \approx \frac{1}{2} (f(x, y+1) - f(x, y-1))$$

Gradiente en el espacio discreto Kernel de Roberts

• Aproximaciones por diferencias: componentes desplazadas

Gradiente en el espacio discreto Kernel de Roberts

• Aproximaciones por diferencias: componentes desplazadas

Aproximación con kernels de Roberts

Gradiente en el espacio discreto Kernel de Roberts

• Aproximaciones por diferencias: componentes desplazadas

Aproximación con kernels de Roberts

• Derivación amplifica ruido de alta frecuencia

Gradiente en el espacio discreto Kernel de Roberts

Aproximaciones por diferencias: componentes desplazadas

Aproximación con kernels de Roberts

- Derivación amplifica ruido de alta frecuencia
- Reducción de ruido en dirección ortogonal con filtro pasa-bajos

Gradiente en el espacio discreto Kernel de Prewitt

- Reducción de ruido utilizando filtro de media móvil
- Aproximación central para gradiente
- Factor de normalización de 1/6
- Origen: aproximación cuadrática de imagen en Vecindad-8

Gradiente en el espacio discreto Kernel de Sobel

- Reducción de ruido utilizando filtro binomial
- Aproximación central para gradiente
- Factor de normalización de 1/8
- Origen: aproxima DoG

Otros kernels para gradientes

Robinson (no separable)

Kirsch (no separable, 4 direcciones)

Ando (optimizado para invarianza a rotación)

Notas sobre el gradiente

- En literatura aparecen rotados 180° (inconsistente pero sin mayor efecto) ¿origen?
- Sobel, Robinson y Kirsch: Versiones a $\pm 45^{\circ}$

DoG Derivative of Gaussians

- Idea:
 - 1 Filtrar con kernel gaussiano para reducir ruido
 - @ Gradiente/Derivar resultado
- Pero:

$$o(x,y) = \nabla(g(x,y,\sigma) * i(x,y))$$

= $i(x,y) * \nabla g(x,y,\sigma)$

• Más económico calcular $\nabla g(x, y, \sigma)$:

$$\frac{\partial g}{\partial x} = -\frac{x}{\sigma^2} g(x, y, \sigma) \qquad \qquad \frac{\partial g}{\partial y} = -\frac{y}{\sigma^2} g(x, y, \sigma)$$

Sobel se considera aproximación de DoG

Laplaciano

- Gradiente con dos componentes es anisotrópico
 ⇒ ambas componentes cambian si imagen rota sobre pixel
- Laplaciano es isotrópico
 ⇒ único valor no cambia si imagen rota sobre pixel
- Definición en espacio contínuo:

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplaciano discreto

 Definición en espacio discreto basada en aproximación en diferencias:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) - 2f(x,y) + f(x-1,y)$$
$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) - 2f(x,y) + f(x,y-1)$$

El laplaciano discreto se implementa con

0	+1	0
+1	-4	+1
0	+1	0

- Otras variantes existen para reducir ruido (e.g. LoG)
- Laplaciano no es separable

Usos del Laplaciano

- Medición de "bordicidad" (edgeness)
- Mejora de nitidez:

$$g(x,y) = f(x,y) + c\nabla^2 f(x,y)$$

(a imagen se le amplifican los bordes)

Filtros no lineales

Filtros de Rango

Filtros de rango Rank ordered filters

- También llamados filtros por orden (order-statistic filters)
- Son no lineales ⇒ no aplica convolución
- Se toma el elemento r de los píxeles en la vecindad, ordenados.
- Ejemplos: filtro máximo, filtro mínimo, filtro mediana

Resumen

- Filtros lineales
 - Máscaras de suavizamiento
 - Aproximación del gradiente
 - Laplaciano
- 2 Filtros de rango