TD 8 : Convergence de variables aléatoires I

Une étoile désigne un exercice important.

Modes de convergence

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes, de même loi donnée par $\frac{1}{n}\delta_{\sqrt{n}} + (1-\frac{1}{n})\delta_0$. Étudier les différents modes de convergence de la suite $(X_n)_{n\geq 1}$.

Exercice 2. Soit X une v.a. de loi uniforme sur [0,1]. Pour tout $n \in \mathbb{N}^*$, et tout $\omega \in \Omega$, on pose

$$Y_n(\omega) = n$$
 si $0 \le X(\omega) \le 1/n$ et $Y_n(\omega) = 0$ si $X(\omega) > 1/n$.

- 1. La suite $(Y_n)_{n>0}$ converge-t-elle presque sûrement?
- 2. La suite $(Y_n)_{n\geq 0}$ converge-t-elle en loi?
- 3. La suite $(Y_n)_{n>0}$ converge-t-elle dans L^1 ?

Exercice 3. Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et X une variable aléatoire réelle.

- 1. Montrer que, si pour tout $\varepsilon > 0$, $\sum_{n \geq 1} \mathbb{P}(|X_n X| > \varepsilon) < \infty$, alors $X_n \overset{n \to \infty}{\to} X$ p.s..
- 2. On suppose que $X_n \to 0$ p.s. (resp. $X_n \to X$ p.s.). Montrer que, pour tout $\varepsilon > 0$, $\sum_{n \geq 1} \mathbb{P}(|X_n| > \varepsilon) < \infty$ (resp. $\sum_{n \geq 1} \mathbb{P}(|X_n X| > \varepsilon) < \infty$).
- 3. Conclure.
- * Exercice 4. On considère deux suites de v.a. réelles $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$.
 - 1. On suppose que (X_n) converge en loi vers une v.a. X et que (Y_n) converge en probabilité vers 0. Montrer que la suite $(X_n + Y_n)$ converge en loi vers X.

Indication : travailler avec les fonctions caractéristiques, et majorer $|\phi_{X_n+Y_n}(t) - \phi_{X_n}(t)|$.

- 2. Donner un exemple dans lequel (X_n) converge en loi vers une v.a. X, (Y_n) converge en loi vers une v.a. Y, mais $(X_n + Y_n)$ ne converge pas en loi.
- **Exercice 5.** Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles définies sur un espace $(\Omega, \mathcal{F}, \mathbb{P})$, et f une application continue de \mathbb{R} dans \mathbb{R} . Montrer que si X_n converge en loi vers X, alors $f(X_n)$ converge en loi vers f(X).

Exercice 6. On définit la suite $(T_n)_{n\geq 1}$ par

$$T_n = \frac{1}{n}$$
 si $X_n \le \frac{1}{n}$, et $T_n = 1$ si $X_n > \frac{1}{n}$,

où $(X_n)_n$ est une suite de v.a indépendantes de loi uniforme sur [0,1].

- 1. Montrer que la suite (T_n) converge en probabilité et trouver sa limite.
- 2. Vérifier que la série de probabilités $\sum_{n=1}^{\infty} P(|T_{n^2} 1| > \varepsilon)$, est convergente pour tout $\varepsilon > 0$. En déduire la convergence presque sûre de la suite (T_{n^2}) .

Exercice 7. Soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires. On suppose que $\mathbb{E}[Y_n] \to 1$ et que $\mathbb{E}[(Y_n)^2] \to 1$. Montrer que Y_n converge en loi vers 1.

Exemples de convergence

Exercice 8. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes, et de même loi de Bernoulli de paramètre p, $(0 . On pose, pour tout <math>n \geq 1$, $Y_n = X_n X_{n+1}$, et $V_n = Y_1 + \cdots + Y_n$. Montrer que V_n/n converge en probabilité vers p^2 .

Exercice 9. Soit $(X_n)_{n\geq 1}$ une suite de v.a. à valeurs entières telle que pour tout n, X_n suit la loi :

$$P(X_n = k) = \frac{\alpha}{n} \left(1 - \frac{\alpha}{n} \right)^{k-1}, \quad k \ge 1,$$

 $(\alpha \in \mathbb{R}_+^*, n \in \mathbb{N}^*, n > \alpha)$. Montrer que $(\frac{1}{n}X_n)_{n \geq 1}$ converge en loi. Préciser sa limite.

Exercice 10. Considérons une suite $(X_n)_{n\geq 1}$ de v.a. telle que X_n suive une loi exponentielle de paramètre λ_n . On suppose que $\lim_{n\to\infty}\lambda_n=0$. Soit $Z_n=X_n-[X_n]$, où [x] désigne la partie entière du réel x. Montrer que Z_n converge en loi. Préciser sa limite.

Exercice 11. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de même loi uniforme sur [0,1]. Posons $S_n = \sum_{k=1}^n \mathbf{1}_{[0,\alpha]}(X_k)$ et $Z_n = S_n - n\alpha$, $n \geq 1$, pour $\alpha \in [0,1]$.

- 1. Montrer en utilisant l'identité de Markov que pour tout $\varepsilon > 0$, $P(|Z_n| > n\varepsilon) \leq \frac{\text{Cste}}{n^2}$.
- 2. Montrer que pour tout $\alpha \in [0,1]$, $\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{[0,\alpha]}(X_k) \stackrel{n \to +\infty}{\to} \alpha$, p.s.

Exercice 12. Soit $(X_n)_{n\geq 1}$ une suite de v.a. positives, montrer que $S_n=X_1+\cdots+X_n$ converge en probabilité si et seulement si S_n converge p.s..

Remarque : en cours, on a montré que c'était le cas pour des variables aléatoires indépendantes.

Exercice 13. Pour tout $n \in \mathbb{N}$, on note f_n la fonction définie sur \mathbb{R} par :

$$f_n(x) = 1 - \cos 2n\pi x$$
, si $x \in]0,1[$
 $f_n(x) = 0$, sinon.

Pour tout $n \in \mathbb{N}$, on définit X_n , une v.a. de densité f_n . Montrer que la suite (X_n) converge en loi bien que la suite de fonctions (f_n) ne converge pas.

Exercice 14. Pas de Césaro pour la convergence en probabilité Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes, X_n étant de fonction de répartition donnée par

$$F_n(x) = 0 \text{ si } x \le 0$$
 et $F_n(x) = 1 - \frac{1}{x+n} \text{ si } x > 0.$

Montrer que la suite $(X_n)_{n\geq 1}$ converge en probabilité ers 0, mais pas la suite $Y_n=\frac{1}{n}\sum_{i=1}^n X_i$.

Exercice 15. On considère une suite de v.a. indépendantes et de même loi : $(X_n)_{n\geq 0}$. On définit alors la suite $(Y_n)_{n\geq 0}$ par

$$Y_0 = \frac{X_0}{2}$$
; $Y_1 = \frac{X_1 + Y_0}{2}$; $Y_2 = \frac{X_2 + Y_1}{2}$; \cdots ; $Y_n = \frac{X_n + Y_{n-1}}{2}$; \cdots .

- 1. Calculer la fonction caractéristique ϕ_n de Y_n en fonction de ϕ , la fonction caractéristique de X_1 , et de n.
- 2. On suppose que la loi commune aux variables X_n est la loi normale centrée $\mathcal{N}(0,\sigma)$. Quelle est la loi de Y_n ? Quelle est la loi limite de (Y_n) lorsque n tend vers l'infini?
- 3. Si les variables X_n suivent la loi de Cauchy de densité $[\pi(1+x^2)]^{-1}$, $x \in \mathbb{R}$, montrer que (Y_n) converge en loi lorsque n tend vers l'infini. Préciser la limite.

 Indication: la fonction caractéristique de la loi de Cauchy est donnée par $\phi(t) = e^{-|t|}$.