

# 第四章 机器人运动学

研究的是机器人工作空间与关节空间之间的影射关系

正运动学: 给定机器人各关节变量, 计算机器人末端的位置姿态

即 关节变量 => 位置姿态

逆运动学:已知机器人末端的位置姿态,计算机器人对应位置的全部关节变量

## 连杆

## 连杆坐标系

- 1. 称基座为连杆O,不包含在n个连杆内
- 2. 关节1处于基座与连杆1之间
- 3. 👉 连杆i 距基座近的一端的关节为 关节i ,据基座远的一端的关节为关节 i+1
- 4. 固连于基座上的坐标系为坐标系{0},建立在关节1上
  - 。 若用改进DH,则坐标系{0},{1}是重合的

## 连杆参数

连杆参数: 连杆长度 $a_i$ ,连杆扭角 $\alpha_i$ , 连杆偏距 $d_i$ , 关节角 $\theta_i$ 

只有 $d_i$ , $\theta_i$ 是关节变量

### ★★各连杆参数的含义:

- 连杆尺寸参数:由连杆两端关节轴的相对关系决定
  - 。 连杆长度:两关节的轴线的公垂线的长度
  - 。 连杆扭角:两关节轴线的夹角
- 连杆之间的连接关系:用连接两个连杆的关节轴的特性来表示
  - 。 连杆偏距:描述了两连杆之间的一个距离关系
    - 关节i上的两条公垂线 $(a_i,a_{i-1})$ 之间的距离,沿关节轴线

。 关节角:描述了连杆i想对于连杆i-1绕关节i轴线的旋转角度

#### 不同关节类型对关节变量的影响:

- 关节i是转动关节:  $\theta_i$ 是关节变量,其他三个参数固定不变
- 关节i是移动关节:  $d_i$ 是关节变量,其他三个参数固定不变

### 特殊情况下连杆参数的值

关节i,关节i-1轴线平行时 $lpha_{i-1}=0$ 关节i,关节i-1轴线相交时 $a_{i-1}=0$ ,指向任意

## D-H建模

标准D-H建模: 将坐标系{i}建立在 i+1 关节的轴线上 改进D-H建模(重要):将坐标系{i}建立在 i 关节的轴线上

## D-H关节坐标系建立(标准)

建立原则:先中间,后两边

#### tip: 画图时,y轴可以不用话,也没必要画

- 1. 关节i坐标系{i-1}的建立:
  - 。 原点 $O_{i-1}$ : 关节i 轴线与 关节i-1,i 的公垂线的交点
  - 。 Zi-1轴:与 关节i 轴线重合,指向任意
  - 。  $x_{i-1}$ 轴: 与 关节i 和 关节i-1 轴线的公垂线重合,指向从 i 到 i+1
    - 轴线相交时,则取两轴线所在平面的法线为 $x_{i-1}$ 轴
  - 。  $y_{i-1}$ 轴: 由右手螺旋法则得到
- 2. {0}的建立:
  - 。 20轴: 与关节1轴线一致
  - 。 关节1变量为0时,坐标系{0},{1}重合
- 3. {n+1}的建立:
  - 。  $z_{n+1}$ 轴: 沿关节n轴线方向
  - 。 关节n变量为0时,坐标系{n},{n+1}重合

## 利用连杆坐标系确定D-H参数(即连杆参数)

- $a_i$ : 从 $Z_{i-1}$ 到 $Z_i$ 沿 $X_i$ 测量的距离 。 若 $Z_{i-1}$ , $Z_i$ 相交,则 $a_i=0$
- $\alpha_i$ : 从 $Z_{i-1}$ 到 $Z_i$ 绕 $X_i$ 旋转的角度
- $d_i$ : 从 $X_{i-1}$ 到 $X_i$ 沿 $Z_{i-1}$ 测量的距离
  - 。  $\bigstar$ 关节1是旋转关节时, $d_i=0$
- $\theta_i$ : 从 $X_{i-1}$ 到 $X_i$ 绕 $Z_{i-1}$ 旋转的角度
  - 。 关节1是移动关节时, $\theta_i = 0$

tip: 顺时针绕是负值, 逆时针转是正值

#### 个人理解

- 1. 连杆i 所在的那条直线(关节i,关节i+1轴线不相交)是 $x_{i-1}$ 轴。 若关节i,关节i+1轴线相交,则啥也不是
- 2.  $\uparrow a_i, \alpha_i$ :由连杆前后两关节(关节i,关节i+1)决定
- 3.  $d_i, \theta_i$ :由关节i前后两连杆决定
- 4.  $z_{i-1}$ 轴:一般是关节i的轴线
- 5. 当关节是旋转关节时, $x_i, x_{i-1}$ 是不可能重合的,即使平移

## 连杆变换

连杆变换定义: 连杆坐标系{i}相对于{i-1}的变换

- 相关的四个参数: $a_i, \alpha_i, d_i, \theta_i$
- 有四个基本子变换(均是动坐标系变换):经过后可从{i-1}变换到{i}
  - 1. 系 $\{i-1\}$ 绕 $z_{i-1}$ 轴旋转 $\theta i$ ,是 $x_{i-1}, x_i$ 平行,算子为 $Rot(z, \theta_i)$
  - 2. 沿 $z_{i-1}$ 轴平移 $d_i$ ,使 $x_{i-1},x_i$ 重合,算子为 $Trans(0,0,d_i)$
  - 3. 沿 $x_i$ 轴平移 $a_i$ ,使两坐标系原点重合,算子为 $Trans(a_i,0,0)$
  - 4. 绕 $x_i$ 轴旋转 $\alpha_i$ , 使 $z_{i-1}, z_i$ 重合,即 $\{i\},\{i+1\}$ 重合,算子为 $Rot(x,\alpha_i)$

### $\{i-1\}$ 到 $\{i\}$ 变换矩阵 $A_i$ :

 $A_i = Rot(z, \theta_i) Trans(0, 0, d_i) Trans(a_i, 0, 0) Rot(x, \alpha_i)$ 

$$igsplus_i A_i = egin{bmatrix} \cos heta_i & -\sin heta_i \cos lpha_i & \sin heta_i \sin lpha_i & lpha_i \cos lpha_i & -\cos heta_i \sin lpha_i & lpha_i \sin lpha_i \ 0 & \sin lpha_i & \cos lpha_i & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

## $T_i$ :{i}连杆坐标系想对于固定坐标系{0}的变换

$$T_0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_1 = A_1 T_0 = A_1$$

$$T_2 = A_1 A_2 ($$
应右乘)

$$T_n = A_1 A_2 A_3 \dots A_n$$

## 机器人正运动学

知:连杆变换矩阵T,各关节变量 求:机器人末端的位置姿态

tip:  $c_i = \cos \theta_i, s_i = \sin \theta_i$ 

## 机器人雅可比矩阵

 $J_i$ :雅可比矩阵第i列

$$J_i = egin{bmatrix} J_{li} \ J_{mi} \end{bmatrix}$$

知连杆变换 $T_6^i$ ,即可根据相应的n,o,a,p求 $J_i$ (以6节机器人为例)

$$T_6^i = egin{bmatrix} \vec{n} & \vec{o} & \vec{a} & \vec{p} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_6^2 = A_3 A_4 A_5 A_6$$

$$T_2^0 = A_1 A_2$$

转动关节i:

$$J_{li} = egin{bmatrix} (ec{p} imes ec{n})_z \ (ec{p} imes ec{o})_z \ (ec{p} imes ec{z})_z \end{bmatrix} \ J_{mi} = egin{bmatrix} n_z \ o_z \ a_z \end{bmatrix}$$

移动关节
$$\mathbf{i}$$
:  $J_{li}=egin{bmatrix} n_z \ o_z \ a_z \end{bmatrix}$  $J_{mi}=egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$ 

## 基础知识

$$ec{p} imes ec{n} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ p_x & p_y & p_z \ n_x & n_y & n_z \ \end{pmatrix}$$

 $(ec{p} imesec{n})_z$ : 即取 $ec{p} imesec{n}$ 与 $ec{k}$ 有关的项,即如Z轴的分量

$$c_1 = \cos( heta_1) \ c_{12} = \cos( heta_1 + heta_2)$$