Colle 5 Nombres complexes

- ► Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant vendredi midi.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercice 5.1

Soit $n \in \mathbb{N}$. Soit $t \in \mathbb{R}$ tel que $e^{it} \neq 1$.

Calculer la somme :

$$\sum_{k=1}^{n} \sin\left(kt + \frac{\pi}{4}\right).$$

Exercice 5.3

Soit $n \in \mathbb{N}^*$.

Déterminer les solutions dans $\mathbb C$ de l'équation $(z+1)^n = (z-1)^n$.

Exercice 5.4

Exercice 5.2

Soit $z \in \mathbb{C} \setminus \{1\}$.

sante sur |z| pour que

Soient $x, y, z \in \mathbb{R}$. On définit :

$$a := e^{ix}, b := e^{iy}$$
 et $c := e^{iz}$.

Déterminer une condition nécessaire et suffi-

 $\frac{1+z}{1-z} \in i\mathbb{R}.$

Exprimer, en fonction de x, y et z le module et un argument du nombre complexe

$$\frac{c^2+ab}{ab}$$

Exercice 5.5

Pour $z \in \mathbb{C} \setminus \{2\}$, on pose

$$h(z) := \frac{z+1}{z-2}.$$

 $h(z) := \frac{z+1}{z-2}.$ Déterminer l'ensemble des nombres complexes $z \in \mathbb{C}$ pour lesquels :

1.
$$|h(z)| = 1$$
;

$$2. \Re e(h(z)) = 0.$$

Exercice 5.6

Soient $a, b \in \mathbb{C}$.

1. Montrer que

1

$$|a-b|^2 \leqslant (1+|a|^2)(1+|b|^2).$$

2. Étudier le cas d'égalité.

Exercice 5.7 Noyaux de Dirichlet et de Féjer.

Soit $n \in \mathbb{N}^*$. On pose, pour $t \in \mathbb{R}$,

$$\mathsf{D}_n(t) \coloneqq \sum_{k=-n}^n \mathsf{e}^{\mathsf{i} k t} \quad \text{et} \quad \mathsf{K}_n(t) \coloneqq \frac{1}{n} \sum_{m=0}^{n-1} \mathsf{D}_m(t).$$

- **1.** Soit $t \in \mathbb{R}$ tel que $t \equiv 0$ [2π]. Calculer $D_n(t)$ et $K_n(t)$.
- **2.** Soit $t \in \mathbb{R}$ tel que $t \not\equiv 0$ [2π]. Montrer que

$$\mathsf{D}_n(t) = \frac{\mathsf{sin}\Big(\Big(n + \frac{1}{2}\Big)t\Big)}{\mathsf{sin}\Big(\frac{t}{2}\Big)}.$$

- **3.** Soit $t \in \mathbb{R}$ tel que $t \not\equiv 0$ [2π].
 - (a) Calculer $\sum_{m=0}^{n-1} e^{i(n+\frac{1}{2})t}.$
 - **(b)** En déduire $K_n(t)$.

Exercice 5.8

Soit $\theta \in \left]0, \frac{\pi}{2}\right[$. On définit

$$\Delta_{ heta} \coloneqq \left\{ z \in \mathbb{C} \quad \left| \quad egin{cases} |z| < 1 \ \exists
ho \in]0, \cos(heta)[, \ \exists arphi \in]- heta, heta[: \ z = 1 -
ho \mathrm{e}^{\mathrm{i}arphi} \end{cases}
ight.
ight.$$

- **1.** Dessiner Δ_{θ} dans le plan complexe.
- 2. Montrer que

$$\forall z \in \mathbb{C}, \quad |z| < 1 \implies \frac{1}{1 - |z|} \leqslant \frac{2}{1 - |z|^2}.$$

3. Montrer que

$$orall z \in \Delta_{ heta}, \quad rac{|1-z|}{1-|z|} \leqslant rac{2}{\cos(heta)}.$$