Løysingsframlegg

Oppgåve 1

 \bar{a} = ?

Gjennomsnittsakselerasjonen:

$$\bar{a} = \frac{v - v_0}{t} = \frac{14 \text{ m/s}}{7.0 \text{ s}} = 2.0 \text{ m/s}^2$$

b) $a = 1.6 \text{ m/s}^2$

Omrekning av fart frå km/h til m/s:

$$v = 300 \text{ km/h} = \frac{300}{3,6} \text{ m/s} = 83,33 \text{ m/s}$$

Lengda på rullebana:

$$2as = v^2 - v_0^2 \wedge v_0 = 0$$

$$2as = v^2$$

$$s = \frac{v^2}{2a} = \frac{(83,33 \text{ m/s})^2}{2 \cdot 1,6 \text{ m/s}^2} = 2169 \text{ m} \approx 2,2 \text{ km}$$

c)

- 1. Fartsgrafane på figuren er rette linjer. Rette linjer har same stigningstal over alt. Akselerasjonen er lik stigningstalet til fartsgrafen. Altså må bilane ha konstant akselerasjon.
- 2. Kva for bil som er fremst etter 5,0 s:

Legg merke til at figuren over viser fartsgrafar, ikkje posisjonsgrafar. Vi kan altså ikkje sjå svaret direkte av grafane.

Vi finn først akseleasjonen til bilane av fartsgrafane. Etterpå kan vi rekne ut posisjonen. Har valt å finne akselerasjonen av figuren ut frå tidsintervallet [0 s, 5,0 s]:

$$a_{\rm A} = \frac{\Delta v_{\rm A}}{\Delta t} = \frac{v_5 - v_0}{t_{\rm E}} = \frac{10 \text{ m/s} - 5.0 \text{ m/s}}{5.0 \text{ s}} = 1.0 \text{ m/s}^2$$

$$a_{\rm B} = \frac{\Delta v_{\rm B}}{\Delta t} = \frac{v_{\rm 5} - v_{\rm 0}}{t_{\rm 5}} = \frac{10 \text{ m/s}}{5.0 \text{ s}} = 2.0 \text{ m/s}^2$$

Posisjonen (køyrt distanse) til bilane etter 5.0 s:

$$s_A = v_{A0}t + \frac{1}{2}a_At^2 = 5.0 \text{ m/s} \cdot 5.0 \text{ s} + \frac{1}{2} \cdot 1.0 \text{ m/s}^2 \cdot (5.0 \text{ s})^2 = 37.5 \text{ m}$$

$$s_{\rm B} = v_{\rm B0}t + \frac{1}{2}a_{\rm B}t^2 = 0.0 \text{ m/s} \cdot 5.0 \text{ s} + \frac{1}{2} \cdot 2.0 \text{ m/s}^2 \cdot (5.0 \text{ s})^2 = 25.0 \text{ m}$$

Av dette ser vi at bil A er fremst etter 5,0 s.

3. Avstanden mellom bilane etter 10 s:

Vi reknar ut posisjonen til bilane etter 10 s på same måte som ovanfor:

$$s_{\rm A} = v_{\rm A0}t + \frac{1}{2}a_{\rm A}t^2 = 5.0 \text{ m/s} \cdot 10 \text{ s} + \frac{1}{2} \cdot 1.0 \text{ m/s}^2 \cdot (10 \text{ s})^2 = 100 \text{ m}$$

$$s_{\rm B} = v_{\rm B0}t + \frac{1}{2}a_{\rm B}t^2 = 0.0 \text{ m/s} \cdot 10 \text{ s} + \frac{1}{2} \cdot 2.0 \text{ m/s}^2 \cdot (10 \text{ s})^2 = 100 \text{ m}$$

Bilane har no same posisjon. Altså er avstanden mellom dei lik null.

d)

1. Største høgda til ballen over utgangspunktet:

$$2as = v^2 - v_0^2 \wedge v = 0$$
 på toppen $2as = -v_0^2$

$$s = \frac{-v_0^2}{2a} = \frac{-(9.0 \text{ m/s})^2}{2 \cdot (-9.81 \text{ m/s}^2)} = 4.12 \text{ m} \approx 4.1 \text{ m}$$

2. Tida når ballen er 3,0 m over utgangspunktet:

Vi finn tida ved å bruke veglikininga: $s = v_0 t + \frac{1}{2}at^2$

Ordna som ei vanleg 2.-gradslikning får vi: $\frac{1}{2}at^2 + v_0t - s = 0$ Til bruk for kalkulatoren blir det slik: $At^2 + Bt + C = 0$

Her er utan nemningar: $A = \frac{1}{2}a = \frac{1}{2} \cdot (-9.81) = -4.905$

$$B = v_0 = 9.0$$

 $C = -s = -3.0$

Løyst med kalkulator får vi:

$$t = 0.437 \,\mathrm{s} \,\vee\, t = 1.39 \,\mathrm{s}$$

og med to siffer:

$$t = 0,44 \text{ s} \lor t = 1,4 \text{ s}$$

(på veg opp) (på veg ned)

Oppgåve 2

Resultatet av 9 kjemiske analysar:

Måling nr.	1	2	3	4	5	6	7	8	9
Masse Fe, m/g	8,624	8,525	8,763	8,454	8,827	9,982	8,672	8,471	8,550

a) Gjennomsnittet av alle rimelege målingar:

Vi ser av tabellen at måling nr. 6 skil seg kraftig frå alle dei andre i måleserien. Den har eit avvik på over eitt heilt gram i høve til dei andre. Det er truleg ei feilmåling. Den blir stroken som urimeleg. Då er det 8 rimelege målingar att:

$$\overline{m} = \frac{m_1 + m_2 + \ldots + m_8}{8}$$

$$\overline{m} = \frac{8,624 \text{ g} + 8,525 \text{ g} + 8,763 \text{ g} + 8,454 \text{ g} + 8,827 \text{ g} + 8,672 \text{ g} + 8,471 \text{ g} + 8,550 \text{ g}}{8}$$

 $\overline{m} = 8,611 \,\mathrm{g}$ Kommentar: Her er teke med like mange desimalar som i målingane.

b) Absolutt usikkerheit:

$$\Delta m = \frac{1}{2} \cdot (m_{\text{maks}} - m_{\text{min}}) = \frac{1}{2} \cdot (8,827 \text{ g} - 8,454 \text{ g}) = 0,1865 \text{ g} \approx 0,2 \text{ g}$$

Legg merke til at det berre blir brukt eitt siffer i absolutt usikkerhet.

Korrekt måleresultat:

$$m = \overline{m} \pm \Delta m = 8, 6 g \pm 0, 2 g$$

Legg merke til at usikkerheita ligg i sifferet etter komma. Då tek vi ikkje med fleire siffer.

Oppgåve 3

a)

Gjennomsnittleg kraft på boka, F:

$$I = \Delta i$$

Vi bruker impulslova: $I = \Delta p$ Impuls Ft er lik endring av massefart.

$$Ft = mv - mv_0 \wedge v_0 = 0$$

som gjev:

$$F = \frac{mv}{t} = \frac{2.0 \text{ kg} \cdot 4.0 \text{ m/s}}{0.020 \text{ s}} = 400 \text{ kgm/s}^2 \approx \mathbf{0.40 \text{ kN}}$$

b)

konstant akselerasjon

Akselerasjonen under oppbremsinga, a:

$$2as = v^2 - v_0^2 \wedge v = 0$$

$$2as = -v_0^2$$

som gjev:

$$a = \frac{-v_0^2}{2s} = \frac{-(4.0 \text{ m/s})^2}{2 \cdot 1.6 \text{ m}} = -5.0 \text{ m/s}^2$$

c) Friksjonstalet mellom boka og bordet, μ :

Bruker Newtons 2. lov: $\sum F = ma \wedge \sum F = -R$ friksjonen er mot positiv retning

som gjev: $-R = ma \wedge R = \mu N$

som gjev: $-\mu N = ma$

og

$$\mu = -\frac{ma}{N}$$

Normalkrafta N finn vi lett ut frå Nwtons 1. lov sidan det ikkje er noko vertikal rørsle (y-retning). Då får vi at $\sum F_y = N - G = 0 \implies N = G$. Altså er N = mg.

No finn vi friksjonstalet:

$$\mu = -\frac{ma}{mg} = -\frac{a}{g} = -\frac{-5.0 \text{ m/s}^2}{9.81 \text{ m/s}^2} = 0.509 \approx 0.51$$

Oppgåve 4

a)

Farten til kula i det lågaste punktet, 2:

Bruker bevaring av mekanisk energi: $E_2=E_1$ $E_{\rm p2}+E_{\rm k2}=E_{\rm p1}+E_{\rm k1}$

 $E_{\mathrm{p}2}=0$ fordi kula i posisjon 2 er ved 0-nivå for potensiell energi.

Vidare er $E_{\rm k1}=0$ fordi farten er 0 i posisjon 1.

Dette gjev: $E_{\rm k2}=E_{\rm p1}$ $^{1\!\!/_{2}}mv_{2}^{2}=mgh_{1} \qquad \mbox{vi kortar vekk massen og får}$ $v_{2}=\sqrt{2gh_{1}}$

For å komme vidare må vi først rekne ut høgda h_1 . Vi ser av figuren at:

$$h_1 = L - L \cdot \cos \alpha = 1,30 \text{ m} - 1,30 \text{ m} \cdot \cos 35,0^\circ = 0,235 \text{ m}$$

Då blir farten:
$$v_2 = \sqrt{2gh_1} = \sqrt{2 \cdot 9.81 \text{ m/s}^2 \cdot 0.235 \text{ m}} = 2.147 \text{ m/s} \approx 2.15 \text{ m/s}$$

b)

Kollisjon mellom kulene A og B:

Farten til kule A etter samanstøyten:

Bruker bevaring av massefart: $p_{\rm etter} = p_{\rm før}$

$$m_{\rm A}v_{\rm A} + m_{\rm B}v_{\rm B} = m_{\rm A}v_{\rm A0} + m_{\rm B}v_{\rm B0} \wedge v_{\rm B0} = 0$$

som gjev:

$$m_{\rm A}v_{\rm A} + m_{\rm B}v_{\rm B} = m_{\rm A}v_{\rm A0}$$

og:

$$v_{\rm A} = \frac{m_{\rm A}v_{\rm A0} - m_{\rm B}v_{\rm B}}{m_{\rm A}} = \frac{0.250 \text{ kg} \cdot 2.15 \text{ m/s} - 0.400 \text{ kg} \cdot 1.50 \text{ m/s}}{0.250 \text{ kg}} = -0.250 \text{ m/s}$$

Vi ser at kule A sprett tilbake etter samanstøyten med kule B.

c) Impulsen som kule B får i samanstøyten med kule A, IB:

Vi bruker impulsiova:
$$I_{\rm B}=\Delta p_{\rm B}=\,m_{\rm B}v_{\rm B}-\,m_{\rm B}v_{\rm B0}\,\,\wedge\,\,v_{\rm B0}=0$$

$$I_{\rm B} = 0{,}400~{\rm kg} \cdot 1{,}50~{\rm m/s} = 0{,}600~{\rm kgm/s} = {\bf 0},{\bf 600}~{\rm Ns}$$

Impulsen er mot høgre fordi verdien er positiv (sjå figuren og positiv retning).

Oppgåve 5

a) Temperaturen i ein idealgass med gjennomsnittleg translatorisk kinetisk energi lik 3,20·10⁻¹⁹J:

Uttrykk for denne energien (læreboka side 161):

$$E_{\rm k} = \frac{3}{2}kT$$

som gjev temperaturen:

$$T = \frac{2E_{\rm k}}{3k} = \frac{2 \cdot 3,20 \cdot 10^{-19} J}{3 \cdot 1,38 \cdot 10^{-23} \text{J/K}} = 15458,9 \text{ K} \approx 1,55 \cdot 10^4 \text{ K}$$

Her er $k=1,38\cdot 10^{-23}$ J/K Boltzmanns konstant, sjå formelheftet side 48.

b) Trykket i tennisballen før den vart punktert, p_1 :

Tilstand 1: Tilstand 2:

Trykket utanfor: $p_2 = 101 \text{ kPa}$

Vi bruker tilstandslikninga:

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \quad \land \quad T_1 = T_2$$

dette gjev: $p_1V_1 = p_2V_2$

trykket:

$$p_1 = \frac{p_2 V_2}{V_1} = \frac{101 \text{ kPa} \cdot (70 \text{ cm}^3 + 66 \text{ cm}^3)}{70 \text{ cm}^3} = 196 \text{ kPa} \approx \mathbf{0}, \mathbf{20 \text{ MPa}}$$

a)

Tomt kalorimeter

$$C = ?$$
 $m_{\rm v} = 100 {\rm g}$ $t_{\rm kal} = 40.2 {\rm °C}$ $c_{\rm v} = 4.18 \cdot 10^3 {\rm J}$ $t_{\nu} = 15.3 {\rm °C}$

Kalorimeter med vatn

Blandingstemperatur $t_{\rm b} = 20.0~{\rm ^{\circ}C}$

Varmekapasiteten til kalorimeteret, C:

Avgjeven varme = motteken varme

$$Q_{\rm kal} = Q_{\rm v}$$
 (kalorimeteret gjev varme til vatnet)

$$C_{\text{kal}} \cdot \Delta t_{\text{kal}} = c_{\text{v}} \cdot m_{\text{v}} \cdot \Delta t_{v}$$

$$C_{\text{kal}} \cdot (t_{\text{kal}} - t_{\text{b}}) = c_{\text{v}} \cdot m_{\text{v}} \cdot (t_{\text{b}} - t_{\text{v}})$$

$$C_{\text{kal}} = \frac{c_{\text{v}} \cdot m_{\text{v}} \cdot (t_{\text{b}} - t_{\text{v}})}{t_{\text{kal}} - t_{\text{b}}} = \frac{4,18 \cdot 10^3 \,\text{J/kgK} \cdot 0,100 \,\text{kg} \cdot (20,0 - 15,3) \,\text{K}}{(40,2 - 20,0) \,\text{K}} = 97,2 \,\,\text{J/K}$$

<u>Kommentar</u>: Vi skulle vise at varmekapasiteten til kalorimeteret kan setjast til 97 J/K. Det stemmer med utrekninga dersom vi skriv svaret med berre to siffer.

b)Kalorimeter med vatn

$$C_{\text{kal}} = 97 \text{ J/K}$$

 $t_{\text{kal}} = t_{\text{v}} = 20.0 \,^{\circ}\text{C}$

Sink

$$m_{
m sink} = 50 ext{ g}$$

 $t_{
m sink} = 100 ext{ °C}$
 $c_{
m sink} = ?$

 ${\it Kalorimeter\ med\ vatn\ og\ sink}$

Blandingstemperatur $t_{\rm b} = 23.0~{\rm ^{\circ}C}$

Utrekna spesifikk varmekapasitet til sink:

Avgjeven varme = motteken varme

$$\begin{aligned} Q_{\rm sink} &= \, Q_{\rm kal} + \, Q_{\nu} \\ c_{\rm sink} \cdot m_{\rm sink} \cdot \Delta t_{\rm sink} &= \, C_{\rm kal} \cdot \Delta t_{\rm kal} + \, c_{\rm v} \cdot m_{\rm v} \cdot \Delta t_{\rm v} \\ c_{\rm sink} &= \, \frac{C_{\rm kal} \cdot \Delta t_{\rm kal} + \, c_{\rm v} \cdot m_{\rm v} \cdot \Delta t_{\rm v}}{m_{\rm sink} \cdot \Delta t_{\rm sink}} = \frac{C_{\rm kal} \cdot (t_{\rm b} - \, t_{\rm kal}) + \, c_{\rm v} \cdot m_{\rm v} \cdot (t_{\rm b} - \, t_{\rm v})}{m_{\rm sink} \cdot (t_{\rm sink} - \, t_{\rm b})} \\ c_{\rm sink} &= \, \frac{97 \, \, \text{J/K} \cdot (23.0 - 20.0) \, \, \text{K} + 4.18 \cdot 10^3 \, \, \text{J/kgK} \cdot 0.100 \, \, \text{kg} \cdot (23.0 - 20.0) \, \, \text{K}}{0.050 \, \, \text{kg} \cdot (100 - 23.0) \, \, \text{K}} \end{aligned}$$

$$c_{\rm sink} = 401,29 \text{ J/kgK} = \mathbf{0}, \mathbf{40 \text{ kJ/kgK}}$$

Oppgåve 7

Vinkelen v på figuren er grensevinkelen for totalrefleksjon mellom glas og luft. Denne kan vi finne ved hjelp av Snells brytingslov:

$$n_g \cdot \sin \alpha_g = n_1 \cdot \sin \alpha_1 \quad \land \quad \alpha_1 = 90^\circ \quad \land \quad \alpha_g = v$$

$$\sin v = \frac{n_1 \cdot \sin 90^\circ}{n_g} = \frac{1,00}{1,55} = 0,6452$$

$$v = 40,2^\circ$$

Vi ser av figuren at $\alpha + v + 90^\circ = 180^\circ$ (vinkelsummen i ein trekant). <u>Vinkel α :</u>

$$\alpha = 90^{\circ} - v = 90^{\circ} - 40,2^{\circ} = 49,8^{\circ}$$

Dersom vinkel α er større enn 49,8°, blir sida BC i glasprismet brattare, og vinkel v blir mindre enn grensevinkelen for totalrefleksjon. Vinkel $\alpha=49,8^\circ$ må derfor vere den største vinkelen som gjev totalrefleksjon.

Pr. N. 9	3	kontar velik g.
e. A. hu	= m	A = 1.6 (longel x breidle
1		
hazda under untu :	hu = Pro	Lob
	130 ks	0.400
hu ·	21973.15 45/430	1,10m 2,40m = D,182m
	h 20,18m	
(4) Tilstoud 16	innestened gas	3 Tolstand 2:
p, (ulijent)		p=p1+50% au p1 = 1,50p1
Vi (ulipent)		V2 = V, (konstant volum
t, = -23°C	= 2	T2 = 7
T1 = (273-23) U		t2 = T2-273K =?
= 250 K		
Absolutt tempe	routar o telstano	८ १३
Toll stands lithman	C 2 3	
	12V2 -	p. VI A V2 = VI
	TZ	Ti
1	pa	n.
	Ta	7
Tos I	P1 = 250	K. 1,50p1 = 375K
	P. I	ri
Temperaturen D.	tolstand 2 3 Ce	leinegnater:
	= (375 - 273)	

Volumet av kaparklossen: $M = 2.75 \text{ ks}$ $P = \frac{M}{V}$ $V = \frac{M}{R} = \frac{2.75 \text{ ks}}{3.16 \cdot 10^2 \text{ kg/m}^2} = \frac{2.75 \text{ ks}}{3.76 \text{ ks/m}^2} = 0.3069 \text{ d}$
$P = \frac{m}{\sqrt{10^{-10^{3}} \text{ kg/m}^{3}}} = \frac{2.75 \text{ kg}}{3.16 \text{ kg/m}^{3}} = \frac{2.75 \text{ kg}}{3.16 \text{ kg/m}^{3}} = \frac{0.3069 \text{ d}}{3.16 \text{ kg/m}^{3}} = \frac{0.3069 \text{ d}}{3.36 \text{ kg/m}^{3}} = 0.306$
$P = \frac{3.76 \cdot 10^{3} \text{ kg/m}^{2}}{7} = \frac{10.75 \text{ kg}}{3.76 \text{ kg/m}^{2}} = \frac{2.75 \text{ kg}}{3.76 \text{ kg/m}^{2}} = \frac{2.75 \text{ kg}}{3.76 \text{ kg/m}^{2}} = \frac{0.3069 \text{ d}}{3.76 \text{ kg/m}^{2}} = \frac{2.75 \text{ kg}}{3.76 \text{ kg/m}^{2}} = \frac{2.75 \text{ kg/m}^{2}}{3.76 $
$V = \frac{m}{\sqrt{16 + 10^{3} \text{ kg/m}^{2}}} = \frac{2.75 \text{ kg}}{3.16 \text{ kg/m}^{2}} = \frac{2.75 \text{ kg}}{3.16 \text{ kg/m}^{2}} = 0.3069 \text{ d}$
$V = \frac{m}{e} = \frac{2.75 \text{ ks}}{3.16 \cdot 10^{3} \text{ kg/m}^{2}} = \frac{2.75 \text{ ks}}{3.16 \text{ ks/dm}^{2}} = 0.3069 \text{ d}$
$V = \frac{m}{e} = \frac{2.75 \text{ ks}}{8.16 \cdot 10^2 \text{ kg/m}^2} = \frac{2.75 \text{ ks}}{3.16 \text{ ks/ds}^2} = 0.3069 \text{ d}$
$V = \frac{m}{e} = \frac{2.75 \text{ ks}}{8.16 \cdot 10^2 \text{ kg/m}^2} = \frac{2.75 \text{ ks}}{3.16 \text{ ks/ds}^2} = 0.3069 \text{ d}$
8,76 102 hy/m2 3,76 hc/dm 0,3069d
8,76 102 hy/m2 3,76 hc/dm 0,3069d
20,307 du
00 210m =0,210m
W areal A = 1.6
m= 50s (= 297 mm =), 297 m
Goms bordylete
- 110 0 173
Tryllet under arket;
N = A N F 36 SWG X A = C.O.
mg 50010 kg. 7, 31 1/2
n= mg = 50010 ks · 7, 31 1/ks
AP
p = 0,786 N/m2 2 0,79 Pa

2	Ejennamsmittleg translatorisk kometokle energed tol
	hydrogen male ky/ ved 20°C's
	EK = \frac{3}{2} kT \ \(T = (273+20) K = 293 K
	$E_{K} = \frac{3}{2} kT$ $\Lambda T = (273 + 20)K = 293K$ $k = 438 \cdot 10^{-23} \frac{7}{K} k \text{ falsel}$
	Fx = 3.1,38.10 7/1. 293K = 6065.10 7
	Ex = 3.1,38.10 7/K. 293K = 6,065.10 21 }
4	Gjunnamsnottsfarten tol hydrogen ned 20°C°
	En = \(\frac{1}{2} m \over 2 = 6,065.10 \) \(\frac{7}{3} \) \(\frac{1}{6} \) \(\frac{1}{3} \) \(\frac{1}{6} \) \(\
	Massentil Harmolehyl. fm Ha = 2. am H = 2.1,008a
	= 2,0164 × frå pendo
	systemet .
	Atomer masserwing grunnstoff
	lu = 1,66-10-87 les
	105 10 1524
	> U= \ 2.Ex = \ 2.6,065.10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	12,0164 - 1,66.10 ks/4
	= 1903 m/s 2 1,9 km/s
	Notrosenmolekyl, Ne, her eon masse jes om las 14 ganger
	Notrosen malekyl, Ne, her eon masse jeg om las 14 ganger med enn hydragen. Farten bler skå vecuntleg meddre
	Notrosen molekyl, Ne, her eon masse jes om las 14 ganger med enn hydrogen. Farten blor stå vecuntles mondre med same to snedselle energy,

Oppgåve 12

Når vogna kommer til bakken, vil den starte oppover den. Med bevaring av mekanisk energi kan vi se at farten minker etter hvert som den potensielle energien øker.

<u>To ting kan skje:</u> Enten kommer vogna opp bakken og fortsetter med lavere fart på det øverste planet. Eller så kommer vogna ikke opp. Den vil da stanse i bakken og trille ned igjen.

Bevaring av mekanisk energi: E_k (oppe) + E_p (oppe) = E_k (nede)

som gir: $\frac{1}{2}mv^2 + mgh = \frac{1}{2}mv_0^2$

Farten på toppen:

$$v = \sqrt{v_0^2 - 2gh}$$

Dersom verdien under rottegnet er positivt, er farten er stor nok til at vogna kommer opp bakken og fortsetter på toppen med farten v. Dersom verdien er negativt, kommer vogna ikke opp.

a) Vognas plassering og fart etter bakken når høyden h = 0.20 m:

Eventuell fart på toppen av bakken:

$$v = \sqrt{v_0^2 - 2gh} = \sqrt{(2.0 \text{ m/s})^2 - 2.9,81 \text{ m/s}^2 \cdot 0.20 \text{ m}} = 0.2756 \text{ m/s} \approx 0.28 \text{ m/s}$$

Konklusjon: Vogna kommer opp bakken og triller videre med farten 0,28 m/s.

b) Vognas plassering og fart etter bakken når høyden h = 0.30 m:

Eventuell fart på toppen av bakken:

$$v = \sqrt{v_0^2 - 2gh} = \sqrt{(2.0 \text{ m/s})^2 - 2.9,81 \text{ m/s}^2 \cdot 0.30 \text{ m}} = \sqrt{-1.886 \text{ m/s}}$$

Konklusjon: Vogna kommer ikke opp bakken. Den vil trille ned igjen og få farten – 2,0 m/s.

Oppgåve 13

Ein flåte er prismeforma med lengd l=3,00 m, breidd b=2,00 m og høgd h=1,00 m. Den har massen m=1000 kg. Figur:

Flåten ligg og flyt i sjøvatn som vist i figuren under. Kreftene som verkar på flåten er teikna inn:

a) Kor djupt flåten stikk ned i vatnet, d:

Flåten ligg i ro i vatnet. Då gjeld Newtons 1. lov:

$$\sum F = 0 \wedge \sum F = O - G$$

Dette gjev: O = G

Arkimedes lov seier at oppdrifta er lik tyngda av fortrengd væske, $0=\rho_{\text{væske}}\cdot V_{\text{væske}}\cdot g$

Dette gjev: $\rho_{\text{væske}} \cdot V_{\text{væske}} \cdot g = m_{\text{flåte}} \cdot g$

Her kan vi korte vekk g og får likning 1: $\rho_{\text{væske}} \cdot V_{\text{væske}} = m_{\text{flåte}}$

Massetettleiken til væska, <u>sjøvatnet</u>, er: $\rho_{\text{sjøvatn}} = 1,025 \cdot 10^3 \text{ kg/m}^3$ (frå tabell, side 14)

Volumet av den fortrengde væska er lik den delen av flåten som er under vatn: $V = l \cdot b \cdot d$

Set vi inn dette i likning 1, får vi: $\rho_{\rm sjøvatn} \cdot l \cdot b \cdot d = m_{\rm flåte}$

Vi løyser denne likninga med omsyn på d og finn kor djupt flåten stikk ned i vatnet:

$$d = \frac{m_{\text{flåte}}}{\rho_{\text{sjøvatn}} \cdot l \cdot b} = \frac{1000 \text{ kg}}{1,025 \cdot 10^3 \text{ kg/m}^3 \cdot 3,00 \text{ m} \cdot 2,00 \text{ m}} = 0,162 \text{ m} \approx 16 \text{ cm}$$

b) Massetettleiken til flåten, $ho_{ ext{flåte}}$:

$$\rho_{\rm flåte} = \frac{m_{\rm flåte}}{V_{\rm flåte}} = \frac{m_{\rm flåte}}{l \cdot b \cdot h} = \frac{1000 \text{ kg}}{3,00 \text{ m} \cdot 2,00 \text{ m} \cdot 1,00 \text{ m}} = 166,6 \text{ kg/m}^3 \approx 167 \text{ kg/m}^3$$

a) Tactored 4	Tilsband 2
a) Toleband 1	12=11 2
Vi = 2,0 ms	V2 = 3,0m 9
t, = 20°C /	t2=3 [4]
T,=(273++1) K=(273+20)K	T2=?
= 293 K	
Vo four Te au tolsband	
ps·V2 - p	1. Vo harter with trylile.
Ta	10 harter with trashbel.
12 = V2 · 11	= 3,0m3. 293K - 4395K = 440K
, , , , , , , , , , , , , , , , , , ,	1,010
Stattemperaturen o°C	0
	3)°C = (440-273)°C = 167°C
08 4 (18 21	eller 1,7.10°C
	etter (, V. 10 C
1 - 11 1 1 1 1 1 1	11 2 1202
b) Trushed some a bade be	Til stand 2
P1 = 1,2.105 Pa	M2 = 7 V2 = V + 3 V
(V ₁ = V) t ₁ = 20°C)	$\left(\frac{\sqrt{2} = \sqrt{+3\%}}{\sqrt{2}}\right) = 1.03\sqrt{2}$
ti = NOC	t2 = 60°C/
T1 = (273+t1) 4 - (273+20)4	T2 = (273+62) = (273+60) U
= 9931	= 33 <u>2</u> K
Tololands Wendusa:	
	10 = p1. V T2 - 17.10 Pa. V. 332K
To Ti	M2 = M. V To - 67.10 Pa. V. 332K
	= 132409,9Pa= 1,3-105Pa

Oppgåve 15

Oppgåve 15

Oppgåve 25

Areal under sharts:

A = (.6., dr

(.30,0 cm = 0,300 m

is 6.0 1,0 mm = 0,0010 m

Tryklet under sharts:

A = 6. ms A = (.6.

A = 1.6.

A = 1

14 15	1	2	3	4	7	6	7	8	9
t/c	8.624	8,525	8.763	8.454	8,827	8,672	8,471	8.550	9,982
									Dei 8 for
									ss over
est	seku	ud ha	gare,	V)	van	oli) kar	ate (a	like c	lenne ma
\	Ā		-1/ 7			0	0 - 1	. 0 .	+ >/-
3) (zjenu	au su	alt_Lt		(<u>a</u> o-	92 2	Kars	te malo
	<i>T</i> -	t1+t2	++	t_8	8,6245	+ 8,5%	255 +		+ 8,5505
	T		8	_ 3			8		
		0.	7		0 1		Vo	vest s	blefe kar i
	35	8,6	107	\$ 12	0,61	(<u>S</u>			n in
	<u> </u>						L	C) KAL	n uq.
/\ \ \ \ \	. 0 .//		1 1 2	4	ı	f a	Л. с	0 41	
	>0-Kuth	4504	up recit	101	b	(au-	Ker) 8	Korre)	
<u> </u>			7	.1	. .	1/8	227	RUCU	1-
<u></u>		- 10							
		- 10							(softer)
	At	= 0,	1865	5 2	0,2				
	At	- 10	1865	5 2	0,2				
	At	= 0, = 0,	l 865	ς 2 - Δ4	0,2	<u>\$</u>	Bur	2 20H	sofler
	At	= 0, = 0,	l 865	ς 2 - Δ4	0,2	<u>\$</u>	Bur	2 20H	
	At	= 0, = 0,	l 865	ς 2 - Δ4	0,2	<u>\$</u>	Bur	2 20H	sofler
_ Re	At latelo	= 0, = 0, - usole	kerheit At.	100%	0,2	<u>\$</u>	Bur	2 20H	sofler
	At latelo	= Q (= O, - usole el = -	herheit 2 t.	(A)	0,2 rel ^o 8	1865 9	Berr.	2 20H	softer s
- Re	At latelo	= 2 (= 0, - usole el = -	herheit 2 t.	100%	0,2 rel ^o 8	1865 9	Berr.	2 20H	softer s

	Jahn	- M = 5,0 kg St = tsuff - tefert
	1/2	= 65° - 8,0° = 57°C
	C+ Q=7	CV = 4/18 kg/kg-K
34	4	
Varme sau	ntrenesto a	0
FY		
0 = Cu	·m·st = 1	4,18 kg/kg. K. 5,0kg. STK
9	191,3 kg 2	1, RM J

toun: m+= 85,0g = 0,0850ks 6 t+ = 280°C ved start 720 tos = 0,0°C Lis = 334.10 3/ks smalterarme be tabel Mis =? masse av os san smeltar Masse au de son smelter, m de : meer forther our town for tabell: Smeltenent, tom = 232°C spesofilh varmelap., C+ > 230 3/46K sperotalle suddenne, L+ = 59.10° F/ks Nar flytande have blor helt ned a asgrope, blor den forst aveight ned til smelte punchet (på 280°C for 232°C). Deretter vol bonnet stoplene. Tol slatt und det fiste touset ble aveight ned tol 0,0°C (smalle muchted for de). mattelier varue = tolfort varine Qis = Qflytande four + Ostarknows ar four + Qfast four Licomos = Ct. Mt. Street+ lt. Mt + Ct. Mt. Dt facts. Mos = Ct. mt. Dtflut. + 1 t. mt + Cx. mt. Dtfut. 0.632-OK = 2307/4 n. 0,08504. (280-232) K + 59+87/4.0,08304 + 2307/4.K D,08504 334.103 7/kg 104894 = 0,03140ks 2 31,49 Kanmenter: Sperifille varme lapa sotel er den same fast of flytange town.

ppgave		, , , , , ,	
a)	kanstant volum	Tolstandl:	Tustanda
		p, (alijent)	pr= p+ 50%
		V_ (-u-)	= 1,5p,
	gass.	T, = 250K	T 2 = ?
			1 2 -
	Temperaturen etter	oppuarmous, Too	
	Till standslikenings:	TRE VZ = PIVI 1 V2=	V. 1 12 = 1,5p.
-		₩	
		To Ti	
		To Ti	
	7 -	1.50 11	2756
	(2	1,5p. Ti = 1,5:	130N = 3+3M
W)			
(7)		7 -	. 2
	helitem gase	p = 100 kPa N= 3	
		V = 0,010 m R =	
	helitem gassi	t = 22°C => T = (27	73+22) K= 295K
	Natal heloway	lebyl & game, No	
	Tolstandslikuvuga		
-		pV=NkT	
		1,38.10 238/W.29	
	N= pV	_ = 100.10 Pq. 0,010 m	
	k l	1,38.10 038/w.29	SK
	N ~ 2	45.1023 2 2,5.10	+8

Oppgav	<u>/e 19 </u>
62	and last
	NL=1,00
	5,0 mg = 1.54
	Spegal Spegal
	> pegat
	Austanden AB:
	Av refleksjonslova ser wat AC = CB & Dearen.
	Altså er AB = 2 AC.
	Vo four forst brytongsvouheler o glarof, olg:
	Suells hydrighter ng-sondg = n2. sond
	son dg = Mr. sonde
	N3
	= 1,00 · sou 60° = 0,5623
	Qg = 34,22°
	Vo ser av foguren at
	tandg = AC
	and any Ap
	AC = AD. tanda
	= 5,0 mm . tan 34,22° = 3,40 mm
	2/12-14134
	Da far vo AB = 2AC > 2.3,40 mm > 6,80 mm 2 6,8 mm

Oppgåve 20 h=50m S = 3,0 m U-254 Her O-WOR PA EN Aute i noteunal energo: 1 Ep = Ep (sour) - Ep (om) = Ep (sour) = mgh = 1000 kg = 9,81 1/kg = 50m = 490500 Nm & 0,49 MI Ahselva sjonen bil hersens, 2ac=v3-05 100=0 a = 25 = (2,5 %) = 1,04 % = 2 1,0 % = 5=7 Krafta fra heusbaltelen à Newtons 2. lati SF= Ma 12F=S-G a = 104 /2 opposer 6 × Ma S-G=ma S=ma+6 16=mg C= mating S = 1000 kg - (104 W/kg + 9,81 1/kg) S = 10850N 2 11 kN

	Nerson un > 75ks
MA ARMADA PARA PARA PARA PARA PARA PARA PARA P	6= mg
Kva bode ve Vd fina	har weer o part normalbrakk his badwelly pe manner;
Newlars 2 dev	ΣF=ma 1 ΣF=N-G
	N-G= ma 16=ms N= mg+ ma N=75hs.(9,81 / hy+ 1,09 / hy) N=813,75N
masse à	er evgutles evu ling bfundlar som gjev uf staden fr half. Den er kalibrart for evt sigitem ir v akselvrarjan slik at g = 9,814/6.
Badeverla	weer: $M = \frac{N}{9}$ (Den , trust of N=G.) $M = \frac{813,75N}{9,810/4} = 882,9546 \approx 8346$
e) Aksulvasja	en under opphremsonen: EF = ma 1 EF = N-6
	N-G=ma N-G=704.9,81 m/c²-754c.9,81 m/c² 754c Q=-0,654 m/c² = 0,65 m/c² Negation på grann av nedtremsons.

	Oppaáve 5		⇒+ for ,1	for stay	tou.	O, =-8,	55 m/s	-	Thelp for	hejm!
		A.	MMM	j		ß				
		M.A.	= 0,300 kg	ò	W	16=0	140065			
	Malo sananpronous			U > 0						
		Ð.	Append 6	,>	F (Book	vakt)			vanantum v	
	a) Imp	ulsen 1	nk Bå							
	Av Empulcions 5	I = F		n s m	20 - N	ngvo		ΛÜ) > 0 m	l shows.
		T 5	- mis-							
		<u>~</u> ,	- 0,400	bly - (-8	8,554/5))				
		5	3,42 Ns							
1							w			

	Sodan det siège et frobsjan, wi fjora for opp o ses
	all honebook energy for blow B. Bernon av mek, es
	Er (filor) = Ex (klos) = to mg vo?
	1 kx2 = 5 mg vo2
	Samen prisions: X = \(\frac{m_B U_0}{k} \) \(\frac{1400 \lag{6.400 \lag{6.55 \frac{m}{k}}}{1400 \mathred{m}_{lon}} \)
	= 0,2703 m 2 0,27m
C) Kraffa P& Fjøra pe R når B v skuset
	Av Hoalus lov 3 F = Ex = 400 N/m = 0, 2703 m
	= 108,12N & 108N
i) For: VOA = 0 VOB = 6
્ત	0 70000 B
==	then MA=0,300ks mg=0,400ks
	$U_R = 2$
	A mmm ≡ R
	Vo shel altes forme forter up as to other elisphogonen.
	Us her becarring and in any ford: Peter = Prfor
0	bevorder av meknisk eugs. Eetter = Effer
	Ex (other) = Ep (figs, for)

	Severals au manaforti MAUA + MBUB = pfox 1 pfox = G
	MAUA +MRUR = 0 Colonar 1
	7 . 7 . 7
	Bevarine as mekosurer 5ma va + 5ma va = 1 kt2
	ma va + me va = kt2 loknow 2
-	
	V) har no 2 lotenouser of 2 ulyench some ban loggast and sunsettlesser
	Ma Wennes 9: Up = MAUA = 0,400ks. Up = 3 UA
	Ao Wennes 1: OB = - 100 0,400 10 - 7 UA
	Liberton 2 mod marsar: 0,300kg - Up + 0,400kg. Up = 400 m/m. (0,270xm)
	0,300 kg - U4 + 0,400 kg - UZ = 29,22 Nm
	SE set w am bour : 0,300kg. Up +0,400kg. (-3 Up) = 29,27Na
	0,3006. Up + 0,4006. 9 Up = 79,77 Nm
	(0,300kg + 0,400kg - 9).04 = 79,77 N/4
	0,525kg · Up 2 - 29,27 Nm
	1 29 22 Al
	UA = + \ \ \frac{29,22 Nm}{0,5256} = + 7,46 \frac{4}{5}
	VI see as fogurar at bloss A sprett mat venstre, alter of 20
	-A 1111 ·
	Forten tol horsane: Up = -7,46 m/s 2 - 7,5 m/s (most renotive)
	0 4 = +10 12 1C - 412/2 (1000 1000 100)
	UR = - 3 UD = - 3 (-7,46%) = 5,59% 256%
	UB = 516 m/E (mode hage)
	- No.

a) Fort: Anten v: =65km/h der va = 70km/h
 Osla strebusnes S= 170 mil = 1700 km Tromsp
Brush took ved & hager turn o 656m/h:
 $c=v+=> +=\frac{s}{v}$
t, = S = 1700 km, = 26,15h (tomar)
Bruht tal work & legege turen o 70 km/hi.
f 2 = 5 = 1700 hm = 24,28 h
 Sport told wed & horac 3 70 ha/a saman blena men 65 ka/a:
Sport till = 6; -62 = 26,15h - 24,28h = 1,87h = 1 h 52 min a 1,9h part cal

l) Renal.
Survey tool T (tools for so full scores out on hour)
 Måle resulbat
 Malora ur. 1 2 3 4 5 6 7 8 9 10
 20T/s 54.2 54.0 53.9 54.4 54.6 54.1 54.2 54.0 54.3 53.8 T/s 2.71 2.70 2.693 2.72 2.73 2.705 2.71 2.70 2.715 2.69
Gjennom switt : T = T1 + T2 + 000 + TN 1 N = 10
T = P.71s + 2,70s + 2,695s + 2,72s + 2,735 + 2,705s + 2,71s + 2,705 + 2,715s + 2,69s -
 T = 2,7075 & 2,715
Absolute usolekerhadt:
AT = \(\frac{1}{2} \left(\tau_{\text{mals}} - \tau_{\text{mon}} \right) = \frac{1}{2} \left(\text{15} - \tau_{\text{10}} \right) = \frac{1}{2} \left(\text{273c} - \text{269c} \right)
<u> </u>
Karreld möleresaltato
T = T + DT = 2,715 + 0,025

a) Kraft og effekt på rullestol

Tur med rullestol

Arbeidet er gjeve ved formelen: $W = F \cdot s \cdot \cos \alpha$ Sidan F og s har same retning, er vinkelen $\alpha = 0^\circ$ og $\cos \alpha = 1$. Altså er $W = F \cdot s$.

Krafta som pleiaren brukar:
$$F = \frac{W}{s} = \frac{3.0 \text{ kJ}}{250 \text{ m}} = \frac{12 \text{ N}}{\text{m}}$$

Effekten:
$$P = \frac{W}{t} = \frac{3.0 \text{ kJ}}{2.0 \text{ min}} = \frac{3.0 \cdot 10^3 \text{ J}}{120 \text{ s}} = 25 \text{ J/s} = \frac{25 \text{ W}}{250 \text{ min}}$$

b) Lastebil og personbil med same energi

Vi rekner først om farten til lastebilen til m/s: $v = 72 \text{ km/h} = \frac{72 \cdot 1000 \text{ m}}{3600 \text{ s}} = \frac{20 \text{ m/s}}{3600 \text{ s}}$

Kinetisk energi til lastebilen: $E_k = \frac{1}{2}mv^2 = \frac{1}{2} \cdot 8000 \text{ kg} \cdot (20 \text{ m/s})^2 = 1600000 \text{ J} \approx 1,6 \text{ MJ}$

Personbilen har same kinetiske energi som lastebilen.

Farten:

$$E_{kp} = \frac{1}{2}mv^2 = E_{kl} \implies v = \sqrt{\frac{2E_{kl}}{m}} = \sqrt{\frac{2 \cdot 1.6 \text{ MJ}}{800 \text{ kg}}} = 63,246 \text{ m/s}$$

= 63,246 \cdot 3.6 \text{ km/h} = 227,2 \text{ km/h} \approx 2,3 \cdot 10^2 \text{ km/h}

Her er svart med same eining for fart som er brukt i oppgåveteksten, sjå figur!

c) Fontene ved Genèvesjøen

Figur: Fontena i Genève-sjøen

Effekten:

$$P = \frac{W}{t} = \frac{mgh}{t} = \frac{500 \text{ l} \cdot 1,00 \text{ kg/l} \cdot 9,81 \text{ N/kg} \cdot 140 \text{ m}}{1,00 \text{ s}} = 686700 \text{ Nm/s}$$
$$\approx 687 \text{ kW}$$

d) Kloss på skråplan

Figur:

Endring i mekanisk energi til klossen når den glir frå A til B:

$$\Delta E = E_{B} - E_{A} = E_{pB} + E_{kB} - (E_{pA} + E_{kA})$$

$$= mgh_{B} + \frac{1}{2}mv_{B}^{2} - (mgh_{A} + \frac{1}{2}mv_{A}^{2})$$

$$= \frac{1}{2}mv_{B}^{2} - mgh_{A} \quad \text{(fordi } h_{B} = 0 \text{ og } v_{A} = 0\text{)}$$

$$= \frac{1}{2} \cdot 2.5 \text{ kg} \cdot (2.0 \text{ m/s})^{2} - 2.5 \text{ kg} \cdot 9.81 \text{N/kg} \cdot 0.60 \text{ m}$$

$$= -9.715 \text{ Nm} \approx -9.7 \text{ J}$$

Endringa i energi er negativ, altså er det energitap.

a) Kloss på horisontalt friksjonsplan

Figur:

Kloss på horisontalt friksjonsplan

1) Gjennomsnittsakselerasjonen:

Vi kan finne gjennomsnittsakselerasjonen til klossen ved hjelp av rørslelikninga:

$$2as = v^2 - v_0^2$$
.

Akselerasjonen:
$$a = \frac{v^2 - v_0^2}{2s} = \frac{(2.5 \text{ m/s})^2 - (4.0 \text{ m/s})^2}{2 \cdot 0.50 \text{ m}} = -9.75 \text{ m/s}^2 = \frac{-9.8 \text{ m/s}^2}{2 \cdot 0.50 \text{ m}}$$

2) Kreftene som verkar på klossen når den er på friksjonsfeltet:

Desse kreftene er teikna inn på figuren over. Det er tre krefter:

- N (normalkrafta som verkar opp frå underlaget),
- G (tyngdekrafta som verkar rett ned) og
- *R* (friksjonskrafta mellom klossen og underlaget, som verkar mot rørsleretninga). <u>Friksjonstalet</u>:

Sidan det ikkje er noko rørsle vertikalt, må summen av vertikalkreftene vere lik null (Newtons 1 lov). Altså har vi at N = G = mg.

Totalt har vi då at summen av kreftene, ΣF , er lik friksjonskrafta R som gjev nedbremsing av klossen. Altså har vi at $\Sigma F = -R = ma$.

Friksjonstalet:
$$\mu = \frac{R}{N} = \frac{-ma}{mg} = \frac{-a}{g} = \frac{-(-9.75 \,\text{m/s}^2)}{9.81 \,\text{m/s}^2} = 0.994 \approx 0.994 \approx 0.99 \text{ som vi skulle vise.}$$

b) Tre ulike samanstøytar (kollisjonar) mellom to klossar

Situasjonen <u>før</u> samanstøyten *Figur:*

Ved alle samanstøytar gjeld at massefarten (rørslemengda) p blir bevart, altså:

$$\rho_{\text{etter}} = \rho_{\text{før}}$$

$$\downarrow$$

$$m_{\text{A}} v_{\text{A}} + m_{\text{B}} v_{\text{B}} = m_{\text{A}} v_{\text{A0}} + m_{\text{B}} v_{\text{B0}}$$

Vilkår 1) Klossane blir hengande saman etter samanstøyten

Når klossane heng saman etter samanstøyten, må dei ha same fart. Vi bruker bevaring av massefart:

Felles fart etter samanstøyten:

$$m_{A}v_{A} + m_{B}v_{B} = m_{A}v_{A0} + m_{B}v_{B0} \quad \land \quad v_{A} = v_{B} = v \quad \text{felles fart}$$

$$\downarrow \downarrow$$

$$m_{A}v + m_{B}v = m_{A}v_{A0} + m_{B}v_{B0}$$

$$\downarrow \downarrow$$

$$(m_{A} + m_{B}) \cdot v = m_{A}v_{A0} + m_{B}v_{B0}$$

$$\downarrow \downarrow$$

$$v = \frac{m_{A}v_{A0} + m_{B}v_{B0}}{m_{A} + m_{B}} = \frac{1,0 \text{ kg} \cdot 2,5 \text{ m/s} + 2,0 \text{ kg} \cdot (-1,5 \text{m/s})}{1,0 \text{ kg} + 2,0 \text{ kg}} = -0,1667 \text{ m/s} \approx -0,17 \text{ m/s}$$

Vilkår 2) Når kloss B får farten 0,50m/s etter samanstøyten

Vi bruker bevaring av massefart:

Farten til A etter samanstøyten:

$$m_{A}v_{A} + m_{B}v_{B} = m_{A}v_{A0} + m_{B}v_{B0} \wedge v_{B} = 0,50 \text{ m/s}$$

$$\downarrow \downarrow$$

$$m_{A}v_{A} = m_{A}v_{A0} + m_{B}v_{B0} - m_{B}v_{B}$$

$$\downarrow \downarrow$$

$$v_{A} = \frac{m_{A}v_{A0} + m_{B}v_{B0} - m_{B}v_{B}}{m_{A}} = \frac{1,0 \text{ kg} \cdot 2,5 \text{ m/s} + 2,0 \text{ kg} \cdot (-1,5 \text{ m/s}) - 2,0 \text{ kg} \cdot 0,50 \text{ m/s}}{1,0 \text{ kg}}$$

$$= -1,5 \text{ m/s}$$

Sidan farten til A etter samanstøyten er negativ, tyder det at den går mot venstre. Klossen sprett altså noko attende.

Vilkår 3) Dei to klossane har elastisk samanstøyt

Ved elastisk samanstøyt har vi to krav som begge skal vere oppfylte:

- 1) Den samla massefarten p til klossane er bevart, og
- 2) Den samla kinetiske energien E_k til klossane er bevart.

Altså:

Bevaring av massefart:

1)
$$p_{\text{etter}} = p_{\text{for}} \implies m_{\text{A}} v_{\text{A}} + m_{\text{B}} v_{\text{B}} = m_{\text{A}} v_{\text{A0}} + m_{\text{B}} v_{\text{B0}}$$

og bevaring av kinetisk energi:

2)
$$E_{k \text{ etter}} = E_{k \text{ før}} \implies \frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 = \frac{1}{2} m_A v_{A0}^2 + \frac{1}{2} m_B v_{B0}^2$$

Vi har no to ukjende, v_A og v_B , som vi kan løyse ut av dei to likningane 1) og 2) over. Vi skal ikkje løyse dette likningssettet her, oppgåva spør ikkje etter løysinga.

Løysing av eit liknande likningssett står i læreboka på side 137.

2. (a)
$$\Sigma F = 0$$

$$O = G$$

$$\rho_{fv}V_{fv}g = mg$$

$$V_{fv} = \frac{m}{\rho_{fv}} = \frac{60 \text{ kg}}{998 \text{ kg/m}^3} = 0,06012 \text{ m}^3 = \underline{0,060 \text{ m}^3}$$
(b)
$$p = p_0 + \rho gh$$

$$p - p_0 = \rho gh = 998 \frac{\text{kg}}{\text{m}^3} \cdot 9,81 \frac{\text{m}}{\text{s}^2} \cdot 0,0100 \text{ m} = 97,903 \text{ Pa} = \underline{97,9 \text{ Pa}}$$
(c)
$$\Sigma M = 0$$

$$F_1l_1 = F_2l_2$$

$$20 \text{ N} \cdot 1,20 \text{ m} = F_2 \cdot 0,50 \text{ m}$$

$$F_2 = 20 \text{ N} \cdot \frac{1,20}{0,50} = \underline{48 \text{ N}}$$
(d) $s = 7,0 \text{ m}$ $t = 10 \text{ s}$ $v = 0$

$$s = \frac{v_0 + v}{2}t$$

$$2s = v_0t$$

$$v_0 = \frac{2s}{t} = \frac{2 \cdot 7,0 \text{ m}}{10 \text{ s}} = 1,400 \frac{\text{m}}{\text{s}}$$

$$a = \frac{v - v_0}{t} = \frac{0 - 1,400 \frac{\text{m}}{\text{s}}}{10 \text{ s}} = -0,14 \frac{\text{m}}{\text{s}^2}$$

(e) Dette skyldes lysbrytning og er forårsaket av at lyset har ulik hastighet i luft og vann. Lyset vil derfor skifte retning i overgangen slik det uttrykkes i snells lov

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

der n står for brytningsindeks og α står for vinkel mellom lysstrålen og loddlinja.

6.
$$\frac{p_2V_2}{T_2} = \frac{p_1V_1}{T_1}$$

$$p_2 = p_1\frac{T_2}{T_1} = 1,00 \, \mathrm{atm} \cdot \frac{(273-15)\,\mathrm{K}}{(273+50)\,\mathrm{K}} = \underline{0,799\,\mathrm{atm}}$$

Den mekaniske energien er bevart ved utskyting:

$$E_{k0} = E_p$$

 $\frac{1}{2}mv_0^2 = \frac{1}{2}kx^2$

$$\begin{split} mv_0^2 &= kx^2 \\ v_0^2 &= \frac{k}{m}x^2 \\ v_0 &= \sqrt{\frac{k}{m}} \cdot x = \sqrt{\frac{300\,\text{N/m}}{0,020\,\text{kg}}} \cdot 0,0240\,\text{m} = 2,939\,\frac{\text{m}}{\text{s}} \end{split}$$

 Σp er bevart i støtet

$$mv_0 = mV + mU$$
$$v_0 = V + U$$
$$U = v_0 - V$$

 ΣE_k er bevart i støtet

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mV^2 + \frac{1}{2}mU^2$$

$$v_0^2 = V^2 + U^2$$

$$v_0^2 = V^2 + (v_0 - V)^2$$

$$v_0^2 = V^2 + v_0^2 - 2v_0V + V^2$$

$$0 = 2V^2 - 2v_0V$$

$$0 = V(V - v_0)$$

Kulene har ikke samme fart som før, altså må korrekt løsning være:

$$V = 0 \text{ og } U = v_0 = 2,939 \frac{\text{m}}{\text{s}}$$

 $h = 2l = 0,28 \text{ m}$

Dette kunne vi ha sagt med en gang ut fra prinsippet om bevaring av bevegelsesmengde og energi ettersom kulene har samme masse. De vil da bytte fart i kollisjonen slik som kulene i newtons vugge. Den mekaniske energien er bevart i bevegelsen.

$$\begin{split} E_p + E_k &= E_{k0} \\ mgh + \frac{1}{2}mv^2 &= \frac{1}{2}mv_0^2 \\ v^2 &= v_0^2 - 2gh \\ a &= \frac{v^2}{R} = \frac{v_0^2 - 2gh}{l} = \frac{(2,939^2 - 2\cdot 9,81\cdot 0,28)}{0,14} \frac{\mathrm{m}}{\mathrm{s}^2} = \underline{22} \frac{\mathrm{m}}{\mathrm{s}^2} \end{split}$$