

# Лабораториска вежба 2 - Учење со поттикнување

## Gym - Python библиотека

Gym e Python библиотека која поддржува развој и споредба на алгоритми за учење со поттикнување. Документацијата на оваа библиотека е достапна на следната страна. Инсталација на библиотеката:

pip install gymnasium

Околина може да се креира на следниот начин:

```
env = gym.make(env_name)
```

каде env\_name е името на околината. Библиотеката gym обезбедува голем број на околини кои може да се користат. Пример за околини:

- FrozenLake-v0
- MountainCar-v0

Некои атрибути на околината кои може да се користат:

- Action\_space валидни акции
- Observation\_space валидни состојби
- Reward\_range ранг на наградата која агентот ја добива
- Еnv дополнителни информации за околината

Околината се ресетира со повик на функцијата reset():

```
env.reset()
```

Оваа функција ја враќа почетната состојба.

Со повик на функцијата render() може да се визуелизира тековната состојба:

```
env.render()
```

За движење низ околината се користи функцијата step:

```
state, reward, done, info = env.step(action)
```

каде action е акцијата која се презема. Оваа функција како резултат враќа 4 вредности:



- State објект кој ја претставува следната состојба на околината
- Done информација дали епизодата е завршена (ако е завршена, околината треба да се ресетира)
- Info дополнителни информации специфични за конкретната околина

## Задачи

### Задача 1 (15 поени)

За околината "FrozenLake-v1" одредете ја Q функцијата со **q learning** со следните вредности за discount\_factor: 0.5 и 0.9, и learning\_rate: 0.1 и 0.01. Тестирајте со различни вредности за број на епизоди. Може да ја користите имплементацијата достапна во скриптата **q\_learning.py**. При учење на Q табелата во секој чекор на случаен начин избирајте акција која треба да се преземе.

Визуелизирајте го движењето на агентот низ оваа околина. Тестирајте ја добиената функција во 50 и 100 итерации. Колкав е просечниот број на чекори потребни за стигнување до целта? Колкава е просечната награда? Дали резултатите се менуваат ако се користи  $\varepsilon$ -greedy политика?

#### Задача 1 (15 поени)

За околината "Taxi-v3" одредете ја Q функцијата со **q learning** со следните вредности за discount\_factor: 0.5 и 0.9, и learning\_rate: 0.1 и 0.01. Тестирајте со различни вредности за број на епизоди. Може да ја користите имплементацијата достапна во скриптата **q\_learning.py**. При учење на Q табелата во секој чекор избирајте ја најдобрата акција која треба да се преземе.

Визуелизирајте го движењето на агентот низ оваа околина. Тестирајте ја добиената функција во 50 и 100 итерации. Колкав е просечниот број на чекори потребни за стигнување до целта? Колкава е просечната награда? Дали резултатите се менуваат ако наместо најдобрата акција се избира акција на случаен начин при учење на Q табелата? Дали резултатите се менуваат ако се користи  $\varepsilon$ -greedy политика?

## Задача 3 (20 поени)

За околината "MountainCar-v0" одредете ја Q функцијата со **q learning** со користење  $\varepsilon$ -greedy политика без  $\varepsilon$ -decay. Тестирајте со различни вредности за број на епизоди. **Напомена**: потребно е да направите дискретизација на состојбите. Може да ја користите имплементацијата достапна во скриптата **q\_learning.py**.

Визуелизирајте го движењето на агентот низ оваа околина. Тестирајте ја добиената функција во 50 и 100 итерации. Колкав е просечниот број на чекори потребни за стигнување до целта? Колкава е просечната награда? Дали резултатите се менуваат ако се користи  $\varepsilon$ -decay?