P. Allen, D.M.C., J. Böttcher

Ramsey number

Ramsey number

Ramsey number

Ramsey number

Ramsey number

Ramsey number

Towards size-Ramsey

There are smaller $2K_2$ -Ramsey graphs.

Towards size-Ramsey

There are smaller (?) $2K_2$ -Ramsey graphs.

Towards size-Ramsey

There are smaller $2K_2$ -Ramsey graphs.

size-Ramsey

size-Ramsey

$$\hat{r}_3(2K_2)$$

size-Ramsey

$$\hat{r}_3(2K_2) = 4$$

size-Ramsey

$$\hat{r}_3(2K_2) = 4$$

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Beck, 1983)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Friedman and Pippinger, 1987)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Haxell, Kohayakawa and Łuczak, 1995)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Clemens, Miralaei, Reding, Schacht, Taraz, 2019)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Berger, Kohayakawa, Maesaka, Martins, Mendonca, Mota, Parczyk; Kamčev, Liebenau, Wood, Yepremyan; 2021)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Rödl and Szemerédi, 2000)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}})$.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Tikhomirov, 2023)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}}).$...

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}}).$...
- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Nenadov, 2016)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}}).$. . .
- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Conlon, Nenadov and Trujić)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}}).$...
- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.
 - Improved for $\Delta=3$ to $O(n^{\frac{8}{5}})$.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Draganić and Petrova, 2023)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}}).$...
- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.
 - Improved for $\Delta = 3$ to $O(n^{\frac{3}{2} + o(1)})$.

Thm. (Chvátal, Rödel, Szemerédi and Trotter, 1983)

If $\Delta(F) \leq \Delta$, then:

$$e(F) \le \hat{r}_r(F) \le O(n^2).$$

A lot of research went to improving these bounds.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

- We have $\hat{r}_r(F) \sim e(F)$ when F is a path, or a tree, or a cycle, or a power of a path, or has bounded treewidth.
- Graphs F with $\Delta(F)=3$ and $\hat{r_2}(F)=\Omega(n(\log(n))^{\frac{1}{60}}).$...
- Changes in the upper bound: $\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$
 - Extended for $K_{\Delta+1}$ -free F.
 - Improved for $\Delta = 3$ to $O(n^{\frac{3}{2} + o(1)})$.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2 - \frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2 - \frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{{\bf Q}} \colon$ How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})?$

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Opt. 1: Do it graph by graph.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Opt. 1: Do it graph by graph.

. . .

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2 - \frac{1}{\Delta}} (\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathbf{Q}}$: How would you upper bound $\hat{r}_2(\{2K_2,K_3,C_4\})$?

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

Q: How would you upper bound $\hat{r}_r(\mathcal{G}(\Delta, n))$?

Opt. 2 (stronger): Find a graph that works for all.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

There is Γ ($e(\Gamma) = \dots$) s.t. $\Gamma \to_r F$ for each $F \in \mathcal{G}(\Delta, n)$.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathsf{Q}}$: How would you upper bound $\hat{r}_r(\mathcal{G}(\Delta,n))$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathsf{Q}}$: How would you upper bound $\hat{r}_r(\mathcal{G}(\Delta,n))$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

There is a graph Γ $(e(\Gamma) = \dots)$ s.t. any r-colouring has a colour class χ containing $\mathcal{G}(\Delta, n)$.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

Q: How would you upper bound $\hat{r}_r(\mathcal{G}(\Delta, n))$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

There is a graph Γ $(e(\Gamma) = \dots)$ s.t. any r-colouring has a colour class χ containing $\mathcal{G}(\Delta, n)$.

Partition universality

We say that Γ is r-partition universal for \mathcal{G} .

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

Any graph F in $\mathcal{G}(\Delta, n)$ has

$$\hat{r}_r(F) = O(n^{2-\frac{1}{\Delta}}(\log n)^{\frac{1}{\Delta}}).$$

 $\underline{\mathsf{Q}}$: How would you upper bound $\hat{r}_r(\mathcal{G}(\Delta,n))$?

Opt. 3 (stronger +): Find a graph s.t. for each c, one colour works for all.

Thm. (Kohayakawa, Rödel, Schacht and Szemerédi, 2011)

For the appropriate random graph G(N,p), a.a.s. any r-colouring has a colour class χ containing $\mathcal{G}(\Delta,n)$.

Partition universality

We say that Γ is r-partition universal for \mathcal{G} .

Summary

Summary

While studying upper bounds for $\hat{r}_r(\mathcal{G}(\Delta,n))$ one realises that the p for which we can prove G(N,p) is r size-Ramsey for $\mathcal{G}(\Delta,n)$ are the same for which G(N,p) is r-partition universal for $\mathcal{G}(\Delta,n)$.

GOAL: Study partition universality properties of random graphs.

GOAL: Study partition universality properties of random graphs.

Thm. (Allen, Böttcher, 2022)

A.a.s. $G(N, N^{\mu - \frac{1}{\Delta - 1}})$ is r-partition universal for $\mathcal{G}(\Delta, cN)$.

GOAL: Study partition universality properties of random graphs.

Thm. (Allen, Böttcher, 2022)

A.a.s. $G(N, N^{\mu - \frac{1}{\Delta - 1}})$ is r-partition universal for $\mathcal{G}(\Delta, cN)$.

Rem: Better bounds for $\Delta = 3$.

GOAL: Study partition universality properties of random graphs.

Thm. (Allen, Böttcher, 2022)

A.a.s. $G(N, N^{\mu - \frac{1}{\Delta - 1}})$ is r-partition universal for $\mathcal{G}(\Delta, cN)$.

Coro. (Allen, Böttcher, 2022)

For any $F\in \mathcal{G}(\Delta,n)$,

$$\hat{r}_r(F) = O(n^{2+\mu - \frac{1}{\Delta - 1}}).$$

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(N, N^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, cN)$.

<u>Rem</u>: By first moment method we cannot take $p = o(N^{-\frac{1}{D}})$.

GOAL: Study partition universality properties of random graphs.

Lemma/Thm. (Allen, Böttcher, 2022)

A.a.s. $G(N, N^{\mu-\frac{1}{D}})$ is r-partition universal for $\mathcal{G}(D, \Delta, cN)$.

 $\underline{\mathit{Rem}}$: By first moment method we cannot take $p = o(N^{-\frac{1}{D}})$.

Thm. (Allen, Böttcher, M.C., 2023+)

Want

Want

Want

Want

Want

Want

Want

Want

Want

Want

Want

Want

Want

Want

Want

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

Goal

