Eur paisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 750 043 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 27.12.1996 Bulletin 1996/52

(21) Numéro de dépôt: 95203663.0

(22) Date de dépôt: 28.12.1995

(51) Int. Cl.⁶: **C12N 15/52**, C12N 15/74, C12N 9/00, C12N 1/21, C12P 19/14, C12Q 1/68

(84) Etats contractants désignés:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

(30) Priorité: 20.06.1995 EP 95201669

(71) Demandeur: SOCIETE DES PRODUITS NESTLE S.A.
1800 Vevey (CH)

(72) Inventeurs:

• Stingele, Francesca CH-1018 Lausanne (CH)

 Mollet, Beat CH-1074 Mollie-Margot (CH)

(54) Bactéries lactiques produisant des exopolysaccharides

(57) Fragment d'ADN d'origine génomique codant pour au moins une enzyme impliquée dans la biosynthèse d'un EPS, et capable suite à la transformation d'une bactérie lactique de restaurer la production d'un EPS dans ladite bactérie n'en produisant pas initialement, ou de modifier la structure de l'EPS produit initialement par ladite bactérie. Protéines de la souche Streptococcus thermophilus CNCM I-1590 codées par le chromosome et qui sont impliquées dans la biosynthèse de l'EPS ayant la composition Glc:Gal:Gal-Nac=1:2:1. Procédé de fabrication d'un nouvel EPS, dans lequel on clone dans un vecteur un fragment d'ADN codant partiellement ou totalement pour au moins une enzyme impliquée dans la biosynthèse d'un EPS, on transforme des bactéries lactiques produisant un autre EPS par le vecteur recombinant, puis on sélectionne une bactérie lactique produisant un nouvel EPS.

EP 0 750 043 A1

Description

La présente invention se rapporte à l'utilisation de fragments d'ADN chromosomique de bactéries lactiques codant pour au moins une enzyme impliquée dans la biosynthèse d'exopolysaccharides, ainsi que des enzymes codées par ces fragments.

Etat de la technique

Il est connu que les bactéries lactiques sont susceptibles de produire dans leur milieu de culture deux classes de polysaccharides, à savoir les homopolysaccharides comme les dextranes ou les levanes qui sont constitués par l'assemblage répété d'un seul sucre, et les hétéropolysaccharides appellés communément exopolysaccharides ou EPS (EPS est l'abréviation du terme "exopolysaccharide") constitués par l'assemblage de plusieurs sucres différents formant une unité répétitive (Cerning J., Bactéries lactiques, Vol I, de Rossart H et Luquet F. M., Lorica, 309-329, 1994).

Une bactérie lactique produisant un EPS peut confèrer un caractère filant et/ou une texture lisse et crémeuse à un lait acidifié (Cerning et al., FEMS Microbiol., 87, 113-130, 19/90). Les EPS peuvent aussi présenter des activités biologiques particulièrement intéressantes pour la santé humaine ou animale, comme des activités anti-tumeurs ou probiotiques, par exemple (Oda M. et al., Agric. Biol. Chem., 47, 1623-1625, 1983; EP94870139.6)

Par ailleurs, l'industrie est confrontée à une instabilité génétique de la biosynthèse des EPS dans les bactéries lactiques. Ceci se traduit généralement au cours d'une fermentation par la perte de la production d'ÉPS par tout ou partie des bactéries lactiques (voir "Cerning J." ci-dessus). Les produits fermentés industriels sont ainsi sujets à des variations dans leur contenu en EPS, ce qui n'est pas toujours acceptable. Pour remédier à ces problèmes, l'industrie recours actuellement à l'isolation et la caractérisation périodique de ses bactéries de manière à séparer celles qui ont perdu leur caractère originel.

La biosynthèse d'EPS dans les bactéries lactiques mésophiles, c'est à dire les bactéries lactiques ayant une croissance optimale à 28-37°C, implique au moins une enzyme qui assure l'enchaînement des sucres. Aucun gène chromosomique ou plasmidique de bactéries lactiques mésophiles codant pour une telle enzyme n'a encore été identifié et séquencé, bien que l'on connaisse des plasmides impliqués dans la biosynthèse d'EPS.

WO 92/02142 révèle ainsi l'existence du plasmide pHV67 qui produit dans *Lactococcus lactis* subsp. *lactis* (mésophile) une substance capable d'augmenter la viscosité d'un lait fermenté. US5066588 décrit deux plasmides provenant d'une souche de *Streptococcus cremoris* (mésophile) capable de confèrer un caractère épaississant à un *Streptococcus lactis*. De même, Vescovo *et al.* ont mis en évidence un plasmide d'une souche *Lactobacillus casei* subsp. *casei* (mésophile) codant pour un phénotype Muc+, c'est à dire pour des fonctions liées à la production d'épaississants exocellulaires (Vescovo *et al.*, Biotechnology Letters, Vol II, 709-712, 1989).

Enfin, Van den Berg et al. cherchent à isoler d'un Lactobacillus sake (mésophile) un groupe de gènes chromosomiques impliqués dans la biosynthèse d'un EPS (Van den Berg D.J.C. et al., First International Conference on Polysaccharide Engineering, Trondheim, Norway, June 6-8, 1994). Cependant aucun gène n'a encore été identifié et/ou séquencé.

D'un autre coté, la biosynthèse d'EPS dans les bactéries lactiques thermophiles, c'est à dire les bactéries lactiques ayant une croissance optimale à 37-45°C, n'est pas encore bien connue. On sait cependant qu'elle n'est pas associée à un plasmide. Vescovo et al. ont ainsi montré que le phénotype Muc+ de la souche Lactobacillus delbrueckii subsp bulgaricus 201 (thermophile) est lié à des fonctions chromosomiques (Vescoso et al., Biotechnology Letters, Vol II, 709-712, 1989).

Ainsi à ce jour, aucun gène ou groupe de gènes chromosomiques ou plasmidiques codant pour un EPS de bactéries lactiques mésophiles ou thermophiles n'a été identifié et/ou séquencé.

Il serait donc très intéressant d'avoir des moyens pour restaurer ou stabiliser la production originelle d'EPS dans les bactéries lactiques. De plus, il serait également intéressant d'avoir des moyens pour modifier la structure d'un EPS, et créer de ce fait de nouveaux EPS pouvant avoir des propriétés intéressantes.

Résumé de l'invention

50

L'invention se destine à fournir des nouveaux moyens pour contrôler, modifier et/ou restaurer la synthèse d'EPS invivo et in-vitro.

A cet effet, la présente invention concerne tout ADN d'origine chromosomique de bactérie lactique codant pour au moins une enzyme impliquée dans la biosynthèse de l'EPS présentant la structure répétée

$$\left[
\begin{array}{c}
\rightarrow x)\cdot A\cdot (1\rightarrow x)\cdot A\cdot (1$$

où n > 1; A est choisi dans le groupe formé par β -D-Gal ρ , β -D-Glc ρ et leurs dérivés acétyl et phosphatyl; et x et y = 2, 3, 4, 5 ou 6 sachant que x ≠ y.

Un autre objet de la présente invention concerne les vecteurs recombinants comprenant un fragment d'ADN selon la présente invention.

Un autre objet de la présente invention concerne une protéine susceptible d'être impliquée dans la biosynthèse de l'EPS ayant la structure répétée

ladite protéine ayant la séquence en acides aminés choisie dans le groupe formé par les séquences SEQ ID NO:2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, et les séquences homologues (séquences présentées dans la liste de séquences ciaprès).

Un autre objet de la présente invention concerne une bactérie lactique comprenant, intégré dans son chromosome ou par le moyen d'un plasmide réplicable, un fragment d'ADN selon l'invention.

Un autre objet de la présente invention concerne un procédé de production d'un EPS, dans lequel (1) on clone dans un vecteur un fragment d'ADN codant pour les enzymes selon l'invention, ledit vecteur comprenant en outre une séquence permettant la réplication autonome ou l'intégration dans une cellule hôte, (2) on transforme une cellule hôte par ledit vecteur, (3) puis on cultive la cellule hôte transformée dans des conditions appropriées pour la production d'un EPS.

L'invention concerne aussi un autre procédé de production d'un nouvel EPS dans lequel, (1) on clone dans un vecteur un fragment d'ADN codant pour au moins une enzyme impliquée dans la biosynthèse d'un EPS, (2) on transforme une bactérie lactique par ledit vecteur, (3) puis on cultive la bactérie lactique transformée dans des conditions appropriées pour la production d'un nouvel EPS.

La présente invention ouvre donc la possibilité d'utiliser des fragments d'ADN selon l'invention pour restaurer ou modifier la production d'EPS dans une bactérie lactique. On peut ainsi envisager d'exprimer ou de surexprimer dans une bactérie lactique l'expression des ADN selon l'invention, pour produire des EPS destinés à épaissir et rendre crémeux des boissons ou de la nourriture comme des desserts liquides, des yogourts, des soupes, des crèmes glacés, des crèmes de café, des sauces ou des mayonnaises, par exemple.

La présente invention permet aussi d'avoir des moyens nouveaux pour identifier des gènes chromosomiques de bactéries lactiques impliqués dans la biosynthèse d'EPS.

Enfin, la présente invention fournie aussi de nouvelles enzymes impliquées dans la biosynthèse de l'EPS décrit cidessus. Ces enzymes peuvent être ainsi avantageusement utilisées pour synthétiser ou modifier *in-vitro* un polysaccharide, comme un oligosaccharide ou un EPS, par exemple (Ichikawa Y. et al., American Chemical Society, <u>114</u>, 9283-9289, 1992).

Description des figures:

55

5

10

15

20

25

30

Figure 1.A. Carte physique de l'opéron impliquée dans la synthèse de l'EPS de la souche *S. thermophilus* CNCM I-1590. Les promoteurs et terminateurs sont respectivement r présentés par des drapeaux et des épingles-à-cheveux. La flèche verticale indique la position du site d'insertion du transposon Tn916. Les flèches horizontales indiquent la présence de cadres de lectures (ORF) potentiels. Les noms des gènes correspondants aux ORFs sont

indiqués en dessous des flèches. Les enzymes de restrictions sont représentées de manière abrégé (S=SacI; H= HindIII; E= EcoRI; B=BamHI).

Figure 1.B. Représentation des inserts chromosomiques de la souche CNCM I-1590, présents dans les 11 vecteurs pFS. P1, P2 et P3 indiquent la position des sondes qui sont utilisées pendant le criblage.

Figure 1.C. Représentation de l'insert génomique pFS101 comprenant tout l'operon *eps* du site de restriction *Sacl* à *Bam*HI; qui est cloné dans pJIM2279.

Figure 2. Représentation de la densité optique à 485nm des fractions de chromatographie par gel-filtration comprenant les sucres produits par la souche *Lactococcus lactis* MG1363 transformée par pFS101 ou pJIM2279. Fraction 9: 2×10⁶ Dalton (Da); fractions 11-13: 5×10⁵ Da; fractions 14-16: 7.2×10⁴ Da; fractions 17-18: 4×10⁴ Da; fraction 19 et supérieures: < 5×10³ Da.

5 Description détaillée de l'invention

5

10

Dans la suite de la description, le terme "EPS" désigne un exopolysaccharide produit par une bactérie lactique qui est constitué par l'assemblage de plusieurs sucres différents formant une unité répétitive.

On désigne par les dérivés acétyl et phosphatyl, le galactose ou le glucose comprenant au moins un radical acétyl et phosphatyl aux positions C_2 à C_6 sur le cycle du sucre.

Au sens de la présente invention, on entend par "séquence homologue" toute séquence nucléique ou d'acides aminés ayant une fonction identique, ne différant des séquences selon l'invention que par la substitution, la délétion ou l'addition d'un petit nombre de bases nucléiques ou d'acides aminés, par exemple 1 à 500 paires de bases (pb) ou 1 à 150 acides aminés.

Dans ce cadre, on considèrera en particulier comme homologues deux séquences d'ADN qui, du fait de la dégénérescence du code génétique, codent pour un même polypeptide. De même, on considèrera comme homologues deux protéines fonctionnelles qui sont reconnues par un même anticorps, le rapport des valeurs d'intensité de reconnaissance des deux protéines par l'anticorps n'excédant pas 1000, de préférence 100, par exemple.

On considèrera aussi comme séquence homologue, celle qui présente plus de 70% d'homologie avec les séquences selon l'invention, en particulier plus de 80% ou 90%. Dans ce dernier cas, l'homologie est déterminée par le rapport entre le nombre de bases ou d'acides aminés d'une séquence homologue qui sont identiques à celles d'une séquence selon l'invention, et le nombre total de bases ou d'acides aminés de ladite séquence selon l'invention.

Au sens de la présente invention, on entend par "fragment qui s'hybride" tout fragment capable de s'hybrider aux fragments selon l'invention par la méthode de Southern-Blot (Sambrook et al.., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, U.S.A., 1989, chapitres 9.31 à 9.58). De préférence, l'hybridation est conduite dans des conditions stringentes de manière à éviter des hybridations aspécifiques ou peu stables.

Enfin, le terme "fragment" ou "fragment d'ADN" doit être compris comme un ADN double brin d'origine chromosomique, qui peut être synthétisé, reproduit *in-vitro* par exemple par la méthode connue appelée "Polymérase Chain Reaction", ou reproduit *in-vivo* dans une bactérie du type *Escherchia coil*, *Lactococcus lactis*, ou *Streptococcus thermophilus* par exemple.

Pour sélectionner un fragment d'ADN selon la présente invention, il est possible de constituer une banque de grands fragments d'ADN d'une bactérie lactique produisant un EPS dans une bactérie lactique ne produisant pas d'EPS, puis de sélectionner le ou les clône(s) produisant un EPS. Pour cela, on digère l'ADN génomique d'une bactérie lactique produisant un EPS par une enzyme de restriction qui est spécifique d'un site de restriction relativement rare (BamHI, Sall, PstI) ou par une digestion partielle avec Sau3A, par exemple. On clone le produit de digestion dans un plasmide d'expression ou d'intégration qui accepte de grands fragments (plasmide pSA3 décrit à l'exemple II), on introduit les plasmides recombinants dans la même espèce de bactérie lactique ne produisant pas d'EPS, on sélectionne au moins un clone transformé produisant un EPS, puis on identifie, on isole et on séquence classiquement le fragment d'ADN responsable de la production d'EPS.

Vu que les fragments d'ADN selon la présente invention sont susceptibles d'être de grande taille, du fait qu'ils peuvent contenir un groupe de gènes impliqués dans la biosynthèse d'EPS, on peut préférer introduire les plasmides recombinants dans la même souche de bactérie lactique dont provienne les fragments, à la différence près que cette souche a perdu la capacité de produire des EPS suite à un traitement mutagénique (traitement U.V., chimique ou par transposon).

Une alternative à la méthode décrite ci-dessus peut aussi consister à constituer une banque plasmidique de fragments d'ADN d'une souche de bactérie lactique produisant un EPS, à transformer la même souche de bactérie lactique par les plasmides incapables de s'y répliquer, à sélectionner les transformants ayant intégré un plasmide dans leur génome par recombinaison homologue (sélection par une résistance à un antibiotique, par exemple), à sélectionner les transformants ne produisant plus d'EPS, puis à isoler et séquencer les fragments d'ADN chromosomique des transfor-

mants sélectionnés qui sont adjacents au plasmide intégré. Pour cela, on peut digérer le chromosome des transformants, le liguer, puis effectuer une PCR-inverse à l'aide de sondes spécifiques du plasmide intégré ou introduire le produit de ligation dans une souche dans laquelle le plasmide recircularisé est capable de se répliquer, par exemple.

Une autre alternative à la méthode de sélection décrite ci-dessus peut aussi consister à transformer des bactéries lactiques produisant un EPS par un plasmide comprenant un transposon, à soumettre les bactéries à des conditions dans lesquelles le transposon s'excise du vecteur et s'intègre au hasard dans le génome, à sélectionner les clones de bactéries ayant perdu la capacité de produire des EPS, à isoler les fragments d'ADN génomiques desdits clones dans lesquels un transposon s'est intégré. Cette méthode est décrite plus en détail dans l'exemple I présenté ci-après.

Il faut remarquer que les méthodes de sélection décrites brièvement ci-dessus peuvent être appliquées à toutes les bactéries lactiques connues, notamment aux bactéries lactiques mésophiles comme par exemple Streptococcus cremoris, Streptococcus lactis, Lactobacillus casei subsp. casei et Lactobacillus sake, et les bactéries lactiques thermophiles comme par exemple Streptococcus thermophilus, Lactobacillus delbruecki subsp. bulgaricus et Lactobacillus helveticus. A cet effet, l'homme du métier dispose de techniques de transformation pour chaque espèce de bactérie lactique, et en particulier pour Lactobacillus delbruecki subsp. bulgaricus (Sasaki Y. et al., FEMS Microbiology Reviews, 12, Fourth Symposium on Lactic Acid Bacteria, Noodwijkerhout, The Netherlands, Sept 1993).

De plus, les méthodes de sélection décrites ci-dessus permettent le plus souvent d'isoler seulement une partie d'un gène ou d'un groupe de gènes impliqués dans la biosynthèse d'un EPS. Néanmoins, l'homme du métier peut facilement identifier la partie restante du gène ou du groupe de gènes en sélectionnant dans une banque chromosomique, à l'aide de sondes nucléiques basées sur un fragment isolé, un ou plusieurs clones renfermant la partie restante, par exemple (voir l'exemple 1.6)

On a pu ainsi caractériser une séquence d'ADN de 15,2 kb de la souche *Streptococcus thermophilus* déposée le 7 juin 1995, auprès de la Collection Nationale de Culture de Microorganisme (C.N.C.M.), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France, où elle a reçu le numéro de dépôt CNCM I-1590. Par ailleurs, cette souche Grampositif présente au microscope un aspect de coques non flagellées formant des chaînettes. Cette souche ne fait pas de spores et elle est anaéorobe facultative.

Cette séquence de 15,2kb comprend des gènes codant pour des enzymes nouvelles impliquées dans la biosynthèse d'un EPS ayant la structure répétée

30

35

55

Les nucléotides 648 à 15250 de cette séquence de 15,2kb sont représentés dans la séquence SEQ ID NO:1 donnée dans la liste de séquence ci-après. 13 gènes complets sont délimités dans la séquence nucléique SEQ ID NO:1 par les nucléotides 352-1803, 1807-2535, 2547-3239, 3249-3995, 4051-4731, 4898-5854, 6425-7540, 7736-8212, 8221-9192, 9285-10364, 10392-11339, 11302-12222, et 12233-13651.

On a pu montrer que tout ou partie de la séquence SEQ ID NO:1 kb permet, suite à une transformation, de restaurer une biosynthèse d'EPS dans une cellules hôte, comme une bactérie lactique mésophile ou thermophile qui initialement n'en produisait pas, notamment dans un *Streptococcus* ou un *Lactococcus*. A titre d'exemple, la séquence d'ADN selon l'invention peut ainsi être utilisée pour restaurer la production d'EPS dans un mutant de la souche *S.* thermophilus CNCM I-1590 n'en produisant plus (mutant naturel ou issu d'une mutagenèse).

Pour restaurer la biosynthèse d'un EPS, on peut intégrer tout ou partie de la séquence SEQ ID NO:1 comprenant au moins un des gènes précités dans une cellule hôte au moyen du procédé décrit dans EP564966, ledit procédé étant incorporé par référence dans l'enseignement de la présente invention. En résumé, ce procédé permet de pouvoir (1) transformer la cellule hôte avec un plasmide donneur qui ne s'y réplique pas, ledit plasmide comprenant ledit fragment intégré fonctionnellement (le cadre de lecture est conservé) dans une partie d'un opéron issu de la cellule hôte; (2) identifier les transformants comprenant intégré la totalité du plasmide; (3) sélectionner des transformants comprenant uniquement intégré dans le chromosome le fragment selon l'invention, les autres séquences du plasmide s'étant excisé du chromosome; (4) et cultiver les transformants sélectionnés dans des conditions appropriées pour la production d'un EPS.

On peut noter que c procédé permet de ne pas utiliser des séquences promoteur et d'activation traductionnelle fonctionnels. De plus, les conditions de culture appropriées pour la production d'EPS sont à la portée d l'homme du métier, qui peut utiliser des milieux de culture standards, et choisir le pH, la température et l'agitation du milieu optimum selon la souche utilisée.

On peut aussi choisir de cloner tout ou partie de la séquence SEQ ID NO:1 comprenant au moins un des gènes précités dans un plasmide d'expression autoréplicatif en aval de séquences promoteur et d'activation traductionnelle fonctionnels, et le cas échéant en amont d'un terminateur, puis de transformer une cellule hôte par le plasmide recombinant.

Par ailleurs, on peut observer que l'EPS produit par une cellule hôte transformée par la séquence SEQ ID NO:1, par exemple un *Lactococcus lactis* ne produisant pas initialement un EPS, peut être différent de l'EPS qui devrait être normalement synthétisé par les enzymes recombinantes, en l'occurence l'EPS produit par la souche CNCM I-1590. L'utilisation de tout ou partie de la séquence de 15,2 kb peut donc permettre la création de variants de l'EPS décrit cidessus.

De même, on a pu montrer que tout ou partie de la séquence SEQ ID NO:1 peut aussi permettre, suite à une transformation, de modifier la structure répétée d'un EPS produit initialement par une cellule hôte, par exemple par une bactérie lactique mésophile ou thermophile, notamment un Streptococcus ou un Lactococcus.

10

Ces observations ouvrent ainsi la possibilité de réaliser une méthode originale de production d'un nouvel EPS, dans laquelle (1) on clone dans un vecteur un fragment d'ADN codant partiellement ou totalement pour au moins une enzyme impliquée dans la biosynthèse d'un EPS; (2) on transforme des bactéries lactiques par le vecteur recombinant; (3) on sélectionne le cas échéant une bactérie lactique produisant un nouvel EPS; (4) puis on cultive la bactérie lactique transformée dans des conditions appropriées pour la production d'un nouvel EPS. De préférence le vecteur code pour les protéines selon l'invention. De plus la bactérie lactique peut produire un autre EPS que celui synthétisé par les protèines codées par ledit vecteur.

En particulier, on clone dans un vecteur d'intégration un fragment d'ADN codant partiellement pour au moins une enzyme impliquée dans la biosynthèse d'un premier EPS, on introduit le vecteur recombinant dans des bactéries lactiques mésophiles ou thermophiles, pouvant le cas échéant produire un deuxième EPS par l'intermédiaire d'un ou plusieurs gènes chromosomiques ou plasmidiques, on isole les bactéries ayant intégrés dans leur chromosome le vecteur d'intégration, puis on sélectionne celles qui produisent un nouvel EPS à cause de l'inactivation d'un ou plusieurs gènes impliqués dans la biosynthèse du deuxième EPS. De préférence, le premier et le deuxième EPS sont identiques, et on choisit un fragment d'ADN codant partiellement (au moins 15 paires de bases) pour au moins une enzyme impliquée dans l'adjonction d'un sucre sur la chaine latérale de l'unité répétitive ou dans la modification d'un sucre comme une sulpho-, phosphoryl- ou acétyl-transférase, par exemple.

De même, on peut cloner dans un vecteur d'expression réplicatif un fragment d'ADN codant totalement pour au moins une enzyme impliquée dans la biosynthèse d'un premier EPS, on peut introduire le vecteur recombinant dans des bactéries lactiques mésophiles ou thermophiles, pouvant le cas échéant produire un deuxième EPS par l'intermédiaire d'un ou plusieurs gènes chromosomiques ou plasmidiques, on peut isoler les bactéries renfermant le vecteur réplicatif, puis on peut sélectionner celles qui produisent un nouvel EPS à cause de l'expression d'un ou plusieurs gènes impliqués dans la biosynthèse du premier EPS. De préférence, on choisit des fragments d'ADN codant pour des enzymes impliquées dans la modification d'un sucre comme une sulpho-, phosphoryl- ou acétyl-transférase par exemple, ou dans l'adjonction à l'unité répétitive d'un sucre comme une glucosyl-ou une galactosyl-transférase, par exemple.

De préférence, on utilise totalement ou partiellement au moins un des gènes portés par la séquence SEQ ID NO:1. On peut aussi utiliser au moins un gène plasmidique de bactéries lactiques mésophiles impliqué dans la biosynthèse d'un EPS (gène que l'on peut séquencer à partir de plasmides connus).

Enfin, le vecteur recombinant peut être tout fragment d'ADN, simple ou double brin, linéaire ou circulaire, d'expression ou d'intégration, et comprenant un une séquence d'ADN selon l'invention notamment tout ou partie de la séquence SEQ ID NO:1. Dans le cas où le procédé décrit dans EP564966 n'est pas utilisé, il faut veiller à ce que le vecteur puisse exprimer l'ADN selon l'invention par des séquences nucléiques adaptées (promoteur; site d'attachement du ribosome; codon préféré), et le cas échéant à ce qu'il comprenne une ou plusieurs origines de réplication de diverses bactéries, notamment d'Escherichia coli et/ou d'un Streptococcus, par exemple.

L'invention concerne aussi les nouvelles enzymes codées par les gènes de la séquence SEQ ID NO:1, notamment les séquence qui leur sont homologues On peut ainsi envisager de les utiliser pour modifier ou synthétiser *in-vitro* un oligosaccharide ou un polysaccharide comme un EPS, par exemple. Pour cela, il est préférable de purifier au moins une de ces enzymes, en surexprimant classiquement leur gène dans une bactérie et en les isolant classiquement, par précipitation et/ou chromatographie du milieu de culture, par exemple.

Un autre objet de la présente invention concerne une bactérie lactique comprenant, intégré dans son chromosome ou par le moyen d'un plasmide réplicable, une séquence d'ADN selon l'invention. De préférence, la séquence comprend au moins un des gènes de la séquence SEQ ID NO:1.

L'invention concerne aussi toute utilisation de fragments de la séquence SEQ ID NO:1 ou de fragments du brin complémentaire de cette séquence, d'au moins 15 paires de bases, comme amorce pour faire une PCR ou comme sonde pour détecter *in-vitro* ou inactiver *in-vivo* des gènes de bactéries lactiques impliqués dans la biosynthèse d'un EPS. Cette limite inférieure est arbitrairement fixée du fait que les petits fragments s'hybridant spécifiquement ont généralement une longeur de 15-25 pb.

La présente invention est décrite plus en détail ci-après à l'aide du complément de description qui va suivre, qui se

réfère à des exemples d'obtention de fragments d'ADN, de plasmides recombinants et de bactéries transformées selon l'invention. Ces exemples sont précédés d'une description des milieux de culture. Il va de soi, toutefois, que ces exemples sont donnés à titre d'illustration de l'objet de l'invention dont ils ne constituent en aucune manière une limitation. La manipulation de l'ADN, le clonage et la transformation de cellules bactériennes sont, en l'absence de précisions contraires, effectués selon les protocoles décrits dans l'ouvrage de Sambrook et al. cité plus haut. Les pourcentages sont donnés en poids, sauf indication contraire.

Milieux: (rajouter 1,5% de Bacto-agar pour un milieu solide)

- M17 (Difco,USA): tryptone 0,5%, soytone 0,5%, viande hydrolysée 0,5%, extrait de levure 0,25%, acide ascorbique 0,05%, sulphate de magnésium 0,025%, disodium-beta-glycérophosphate 1,9% et de l'eau.
 - LM17: milieu M17 comprenant 1% de lactose.
 - GM17: milieu M17 comprenant 1% de glucose.
 - MSK: lait écrémé (poudre reconstituée à 10%) comprenant 0,1% d'extrait de levure.
- MAM: lait écrémé (poudre reconstituée à 10%) comprenant 10% d'un mélange d'rides aminés (495 mg/l Ala, 343 mg/l Arg, 682 mg/l Asp, 59 mg/l Cys, 1229 mg/l Glu, 759 mg/l Gly, 153 mg/l His, 215 mg/l Iso, 470 mg/l Leu, 565 mg/l Lys, 122 mg/l Met, 255 mg/l Phe, 436 mg/l Pro, 68 mg/l Ser, 170 mg/l Thr, 61 mg/l Try, 304 mg/l Val ajusté à pH5).
 - HJL: tryptone 3%, extrait de boeuf 0,2%, extrait de levure 1%, lactose 1% et KH₂PO₄ pH 6,5 0,5%.
- Rouge de Ruthénium: extrait de levure 0,5%, lait en poudre écrémé 10%, sucrose 1%, agar 1,5% et 0,08g/l de rouge de ruthénium (voir FR2632968).

Exemple I; clonage d'un fragment d'ADN de la souche S. thermophilus Sfi6

I.1. Sélection d'une souche S. thermophilus productrice d'EPS; on cultive les souches de bactéries lactiques de la collection Nestlé dans un milieu liquide HJL et on en étale des dilutions sur un milieu solide Rouge de Ruthénium. Les souches productrices d'EPS demeurent de couleur blanche car les EPS empêchent le colorant de teinter leur paroi cellulaire. Par contre, les souches non-productrices se colorent en rouge du fait de l'affinité du colorant pour le peptidoglycane de leur paroi cellulaire.

On a ainsi sélectionné parmi les bactéries lactiques productrices d'EPS la souche *S. thermophilus* Sfi6, qui a reçu le numéro de dépôt CNCM I-1590 et que l'on désignera dans la suite des exemples par l'expression "souche Sfi6".

<u>I.2. Structure répétée de l'EPS</u>: la structure de l'EPS produit par la souche Sfi6 a été publiée par Doco *et al.* (Carbohyd.Res., <u>198</u>, 313-321, 1995). Cet EPS présente la composition Glc:Gal:GalNac=1:2:1, et l'unité tétrasaccharidique répétée:

35

40

25

30

45

<u>I.3. Mutagenèse par le transposon Tn916:</u> on rend la souche Sfi6 résistante à la streptomycine en la cultivant par des transferts répétés dans un milieu HJL supplémenté par des teneurs croissantes de 20 à 2000µg/ml de streptomycine, puis en sélectionnant les souches devenues naturellement résistantes.

On conjugue la souche Sfi6 résistante à la streptomycine et la souche *Enterococcus faecalis* JH2-2 qui possède un plasmide pAM180 portant le transposon Tn916 (Tn916 est connu pour porter un gène de résistance à la tetracycline; Gawron *et al.*, Nature, 300, 281-283, 1982). Pour cela, on mélange à 1ml d'une culture d'une nuit dans un milieu M17 à 37°C de la souche *E. faecalis* JH2-2, 10ml d'une culture d'une nuit dans un milieu HJL à 42°C de la souche Sfi6, on centrifuge les cellules et on les resuspend dans des tubes comprenant 100µl de milieu HJL, on dépose la suspension sur un milieu solide LM17 que l'on incube à 37°C pendant 20h, on récupère les cellules par grattage et on les resuspend dans des tubes de 10 ml de milieu liquide HJL, on incube les tubes à 42°C pendant 4h en les agitant de temps en temps, puis on étale des dilutions des cultures sur un milieu LM17 solide supplémenté de 2,5µg/ml de tetracycline et 2000µg/ml de streptomycine.

En réalisant 20 conjugaisons en parrallèles (mutations indépendantes), on a pu ainsi sélectionner 2×10⁴ transconjugants résistants à la tetracycline et à la streptomycine.

1.4. Sélection de mutants de la souche Sfi6 ne produisant plus d'EPS [phénotype EPS(-)]; on transfert les transcon-

jugants résistants sur le milieu solide Rouge de Ruthénium supplémenté par 2,5μg/ml de tetracycline et 2000μg/ml de streptomycine. Environ 10% des transconjugants forment des colonies rouges EPS(-). On sélectionne ensuite environ 800 colonies rouges que l'on cultive une nuit dans des plaques de microtitration comprenant 200μl de milieu HJL supplémenté de 2,5μg/ml de tetracycline. On cultive ensuite 100μl de la culture HJL dans 1ml d'un lait MSK. Environ, 25% des colonies rouges testées présentent un phénotype EPS(-) stable dans le lait (le lait n'est pas épais et filant, et l'analyse du surnageant de culture ne révèle pas d'EPS). Les autres colonies rouges présentent un phénotype EPS(+) ou retrouvent le phénotype EPS(+) après plusieurs sous-cultures dans le lait.

En conclusion, les mutants stables EPS(-) ont perdu leur capacité à produire des EPS à cause de l'intégration du transposon Tn916 dans un gène chromosomique impliqué dans la biosynthèse des EPS. En effet, les mutants stables EPS(-) peuvent retrouver un phénotype EPS(+) lorsqu'on les cultive dans un milieu de croissance dépourvu de tetracycline (excision et perte du transposon).

I.5 Caractérisation de mutants stables EPS(-): on analyse environ 100 mutants stables par Southern-blot d'une préparation d'ADN chromosomique des mutants, digérée par *Hindl*III, et hybridation du filtre de Southern-blot avec le gène *tetM* radioactif (code une résistance à la tetracycline) provenant du plasmide plC182 (Hill *et al.*, Applied and Env. Micro., 54, 1230-1236, 1988). Environ 85% des mutants analysés présentent une bande majoritaire identique correpondant à un locus appellé "locusA". On peut remarquer pour certains des autres mutants deux autres bandes majoritaires (locus B et C) correspondant à des locus connus impliqués dans la biosynthèse de la paroi cellulaire (publication en préparation).

1.6 Caractérisation du locus A: les régions chromosomiques proches du transposon Tn916 intégré peuvent être isolées par une PCR-inverse. Pour cela, on digère classiquement 1μg d'une préparation d'ADN chromosomique d'un mutant choisi arbitrairement (mutant n°1) par HindIII pendant 4h, on extrait l'ADN au phénol/chloroforme, on le dilue dans 720μl d'eau, on chauffe l'ADN dilué à 56°C pendant 5 min, on refroidit l'ADN sur de la glace, on lui ajoute 80μl d'un tampon de ligation 10 fois concentré et 5 unités d'une T4-ligase (Boehringer-Manheim), on l'incube à 12°C pendant 16 h, on le chauffe à 70°C pendant 15 min pour inactiver la ligase, puis on le concentre dans un volume de 100μl par plusieurs extractions successives dans du butanol. On ajoute alors dans un dispositif de PCR 10μl du mélange de ligation, 100pmol d'amorces, 15mM de dNTPs, 10μl de tampon et 0,2 unité de Super-Taq polymerase (Stehlin GmBH). Les amorces nucléiques (ou primers) sont choisies à partir de la séquence connue du transposon Tn916.

En utilisant les amorces ayant la séquence SEQ ID NO:15 et SEQ ID NO:16 on a pu isoler par PCR un fragment de 1kb. De plus, en utilisant les amorces SEQ ID NO:17 et SEQ ID NO:18 on a pu isoler un fragment de 4kb (voir la liste de séquences ci-après).

Un troisième fragment de 0.8kb peut être aussi isolé du mutant n°1, en réalisant une seconde PCR-inverse à partir de son ADN chromosomique digéré par Rsal et à l'aide des amorces ayant la séquence SEQ ID NO:18 et SEQ ID NO:19 (voir la liste de séquence ci-après).

Les fragments de 1kb et de 0.8kb ont été clonés dans le plasmide linéarisé pGEMT (Promega, USA). Le séquencage de ces fragments par la méthode des didéoxynucléotides (kit f-mol[®] DNA Sequencing System, Promega) montre deux séquences qui, en se recoupant, couvrent trois cadres de lectures ouvertes (ORFs) correpondants aux nucléotides 9933 à 11643 de la séquence SEQ ID NO:1.

Les fragments de 1kb et 4kb ont également été utilisés pour cribler une banque λ-ZAP Express (Stratagene, USA) renfermant des fragments d'ADN de la souche Sfi6. Pour cela, selon les recommandations du fournisseur on digère partiellement une préparation d'ADN dudit mutant par Sau3A, on sépare les fragments par une électrophorèse sur gel d'agarose, on coupe du gel les bandes correspondantes à des fragments de 5 à 12kb, on élue l'ADN, puis on le ligue au vecteur λ-ZAP Express préalablement digéré par BamHI. On encapside in-vitro le produit de ligation à l'aide du système GigagoldIII (Stratagene), on mélange ensuite les phages avec des Escherichia coli XL1Blue (Stratagene) selon les recommandations du fournisseur, puis on étale le mélange sur boîte de Petri. On analyse ensuite les plaques recombinantes par hybridation de leur ADN transféré sur une membrane Hybond-N (Amersham Life Sciences, UK) avec les fragments de 1kb et 4kb préalablement rendus radioactifs (kit Random Primed DNA Labeling, Boehringer-Manheim).

Parmi 3000 plaques recombinantes, on a pu sélectionner par hybridation environ 20 plaques positives, desquelles on a ensuite isolé les vecteurs λ-ZAP Express, puis excisé les vecteurs pCMV renfermant un insert chromosomique (voir les recommandations du fournisseur Stratagene). Ces vecteurs recombinants sont appelés dans la suite des exemples "pFS".

On a ensuite séquencé les inserts chromosomiques de 11 vecteurs pFS (kit f-mol[®] DNA Sequencing System), à savoir les vecteurs pFS14, pFS15, pFS26, pFS30, pFS33, pFS49, pFS50, pFS65, pFS73, pFS80 et pFS86 (voir figure 1.B) qui comprennent respectivement des fragments correspondant aux nucléotides de la séquence SEQ ID NO:1, 9314-14602, 1-3159, 7988-11253, 1702-7991, 1361-7229, 4400-8477, 648-7676, 5997-11253, 8474-13489, 3550-7229 et 648-1702

En recoupant les séquences nucléiques des différents inserts chromosomiques, on a pu ainsi caractériser une séquence de 15,2kb correspondant au locus A de la souche Sfi6 (voir figure 1.A). Les nucléotides 648 à 15250 de cette séquence de 15,2kb sont représentés dans la séquence SEQ ID NO:1.

I.7. Analyse de la séquence SEQ ID NO:1:

La séquence SEQ ID NO:1 comprend la totalité de l'opéron eps de la souche Sfi6. Cette séquence comprend 13 ORFs complets, dans la même orientation, que l'on appelle eps A, B, C, D, E, F, G, H, I, J, K, L, M (voir figure 1.A). Cette séquence comprend en outre 1 ORF complet à l'extrémité 3' de la séquence, qui est codé par le brin complémentaire. Cet ORF, appellé of Z, marque probablement la fin de l'opéron du fait de son orientation inverse par rapport aux autres ORFs

La comparaison des séquences en acides aminés codées par les 13 premiers ORFs avec celles de protéines présentes dans la banque de donnée Swiss-Prot, à l'aide des logiciels FASTA, PEPPLOT et PILEUP de GCG-softwear, Wisconsin, USA, permet de déduire la fonction des 13 protéines codées par l'opéron *eps*. Les résultats sont présentés ci-après.

L'ORF epsA (nucléotides 352-1803) code pour une protéine EpsA (SEQ ID NO:2) ayant 26,4% d'identité avec la protéine LytR de Bacillus subtilis qui est impliquée dans la régulation de l'autolysine N-acetylmuramoyl-L-alanine (Lazaveric et al., J. Gen. Microbiol., 138, 1949-1961, 1992). EpsA est donc probablement une protéine de régulation de l'opéron eps. Par ailleurs, puisqu'un ORF de régulation d'un opéron est généralement trouvé en amont des autres ORFs, le gène epsA est probablement le premier gène de l'opéron eps. Ceci est confirmé par le fait qu'un terminateur est trouvé aux nucléotides 230-252, un promoteur aux nucléotides 274-302, et un site d'attachement des ribosomes aux nucléotides 340-345 de la séquence SEQ ID NO:1.

Le gène *epsB* (nucléotides 1807-2535) code pour une protéine EpsB (SEQ ID NO:3) ayant 67,5% d'identité avec la protéine CpsA de *Streptococcus agalactiae* et 30% d'identité avec la protéine CapC de *Staphylococcus aureus* (Rubens *et al.*, Mol. Microbiol., <u>8</u>, 843-885, 1993; Lin *et al.*, J. Bacteriol., <u>176</u>, 7005-7016, 1994). La fonction précise de ces gènes est encore inconnue, en dehors du fait qu'ils sont essentiels pour la synthèse de la capsule qui est constituée de polysaccharides accrochés aux phospholipides de la membrane externe des bactéries.

Le gène epsC (nucléotides 2547-3239) code pour une protéine EpsC (SEQ ID NO:4) ayant 52% d'identité avec la protéine CpsB de Streptococcus agalactiae qui est impliquée dans la synthèse de la capsule (Rubens et al.). EpsC a aussi 23% d'identité, 49% de similarité, et un profil d'hydrophobicité comparable à celui des protéines CLD de Salmonella typhimurium, Salmonella enterica et Escherichia coli (Batchelor et al., J. Bacteriol., 174, 5228-5236, 1992; Bastin et al., Mol. Microbiol., 7, 725-734, 1993). Il faut remarquer que les protéines CLD sont impliquées dans le contrôle de la longeur des chaînes de polysaccharides lors de leur biosynthèse.

Le gène *epsD* (nucléotides 3249-3995) code pour une protéine EpsD (SEQ ID NO:5) ayant 60,5% d'identité avec la protéine CpsC de *Streptococcus agalactiae*, ayant 34,5% d'identité avec la protéine CapA de *Staphylococcus aureus*, et ayant 33% d'identité avec la protéine ExoP de *Rhizobium meliloti* (Rubens *et al.*; Lin *et al.*; Becker *et al.*, Mol. Gen. Genet., <u>241</u>, 367-379, 1993). La protéine ExoP est une protéine de membrane qui est impliquée dans la translocation d'EPS et/ou de précurseurs d'EPS.

Le gène *epsE* (nucléotides 4051-4731) code pour une protéine EpsE (SEQ ID NO:6) présentant des homologies significatives avec de nombreuses protéines ayant une activité galactosyl-transférase (Rubens *et al.*). Ce gène code donc probablement pour une galactosyl-transférase.

On peut remarquer que les gènes epsB, C, D, E de S. thermophilus Sti6 sont similaires à ceux de l'opéron de S. agalactiae comprenant les gènes cpsA, B, C, D (Rubens et al.). De plus, ils sont organisés de la même façon. Bien que les polysaccharides de capsule et l'EPS des deux souches soient très différents, ceci indique qu'une région chromosomique a été probablement tranférée entre ces deux espèces.

Le gène *epsF* (nucléotides 4898-5854) code pour une protéine EpsF (SEQ ID NO:7) ayant respectivement 24,5% et 23% d'identité avec les protéines CapH et CapM de *S. mutans* qui sont impliquées probablement en tant que glycosyl-transférases dans la biosynthèse de la capsule (Lin *et al.*).

Le gène *epsG* (nucléotides 6425-7540) code pour une protéine EpsG (SEQ ID NO:8) ayant 20,5% d'identité et 50% de similarité avec la N-acétylglucoseamine-transférase de *Salmonella tryphimurium* LT2 qui est impliquée dans la biosynthèse du polysaccharide LPS de la membrane externe (Mac Lachlan *et al.*, J. Bacteriol., <u>173</u>, 7151-7163, 1991). Du fait qu'une *N*-acétylglucosamine n'est pas impliquée dans la biosynthèse de l'EPS de la souche Sfi6 (il n'y a pas de glucose acetylé), le gène *eps*G code probablement pour une glucosyl-transférase, une *N*-acétylglucosyl-transférase ayant une activité *N*-acétylglucosamine-épimérase.

Le gène epsH (nucléotides 7736-8212) code pour une protéine EpsH (SEQ ID NO:9) ayant de fortes homologies avec des acétyl-transférases NodL-LacA-CysE (Downie et al., Mol. Microbiol. 3, 1649-1651, 1989). De ce fait la protéine EpsH pourrait être une acétyl-transférase impliquée dans la biosynthèse de la N-acétylgalactoseamine de l'EPS.

Le gène *epsI* (nucléotides 8221-9192) code pour une protéine EpsI (SEQ ID NO:10) ayant 24% d'identité avec une protéine, codée par un l'ORF RfbV du cluster *rfb* de *Salmonella typhimurium*, qui est probablement une glycosyl-transférase (Jiang *et al.*; Liu *et al.*, J. Bacteriol., <u>177</u>, 4084-4088, 1995).

Le gène *epsJ* (nucléotides 9285-10364) code pour une protéine EpsJ (SEQ ID NO:11) ayant 20% d'identité et un profil d'hydrophobicité comparable à celui d'une protéine d'un ORF du cluster *rfb* de *Salmonella enterica* qui est luimême similaire à une polymérase de l'antigène O des salmonelles du groupe B et C2 (Lee *et al.*, J. Gen, Microbiol.,

138, 1843-1855, 1992; Morona et al., J. Bacteriol. 176, 733-747, 1994). Le gène epsJ pourrait donc coder une EPS-polymérase qui polymériserait l'unité tétrasaccharide de l'EPS.

Le gène *epsK* (nucléotides 10392-11339) code pour une protéine EpsK (SEQ ID NO:12) ayant 18% d'identité et 42% de similarité avec la protéine, codée par le gène *lipB* de *Neisseria meningitidis*, qui est impliquée dans la biosynthèse de la capsule en accrochant des polysaccharides aux phospholipides de la membrane externe (Frosch *et al.*, Mol. Microbiol., <u>8</u>, 483-493, 1993). Sachant que les *S. thermophilus* n'ont pas de membrane externe (Gram-positif), le gène *epsK* pourrait donc coder une enzyme impliquée dans l'accrochage des EPS aux phospholipides de la membrane cellulaire, qui de concert avec un transporteur d'EPS (probablement EpsC et EpsD) et une enzyme qui détache les EPS, participerait au transport de l'EPS à travers la membrane (modèle en accord avec celui présenté par Frosch *et al.*).

Par ailleurs, on peut remarquer que le transposon Tn916 est intégré dans le gène epsK du mutant n°1 utilisé pour identifier l'opéron eps (voir le point I.6 ci-dessus), entre les nucléotides 10540-10541 de la séquence SEQ ID NO:1.

Le gène *epsL* (nucléotides11302-12222) code pour une protéine EpsL (SEQ ID NO:14) qui ne présente aucune homologie avec des protéines connues. Les 38 premiers nucléotides sont couverts par l'extrémité 3' de *epsK*, ce qui laisse supposer une expression coordonnée des deux protéines, et une activité de la protéine EpsL dans le transport membranaire de l'EPS.

Le gène *epsM* (nucléotides 12233-13651) code pour une protéine EpsM (SEQ ID NO:13) qui ne présente aucune homologie avec des protéines connues de la banque de données Swiss-prot. Ce gène est certainement impliqué dans la biosynthèse de l'EPS de la souche Sti6 car il n'y a pas, en amont, un promoteur spécifique pour ce gène.

Le gène *orf*Z (13732-14305 sur le brin complémentaire) est présent en orientation inverse par rapport au reste des ORFs de l'opéron *eps*. De ce fait, il n'est probablement pas impliqué dans la biosynthèse de l'EPS de la souche Sfi6. De plus, il ne présente aucune homologie avec des protéines connues de la banque de données Swiss-prot.

En conclusion, les inserts chromosomiques isolés des 11 vecteurs pSF (voir le point I.6 ci-dessus) couvrent une région chromosomique de la souche *S. thermophilus* Sfi6 qui est manifestement impliquée dans la biosynthèse de l'EPS. On a pu ainsi identifier 13 gènes complets qui comprennent en amont un promoteur délimitant le début de l'opéron *eps*.

Exemple II: inactivation du gène epsJ

10

50

On inactive par recombinaison homologue le gène *epsJ* de l'opéron *eps* pour confirmer son importance dans la biosynthèse de l'EPS.

Pour cela, on isole un fragment *Dral-Sal*I du plasmide pGEMT renfermant le fragment de PCR de 0.8 kb (voir l'exemple I.6 ci-dessus), on le ligue dans le plasmide thermosensible pSA3 (Dao *et al.*, Appl. Environ. Microbiol., 49, 115-119, 1985) préalablement digéré par *Eco*RV et *Sal*I, on transforme la souche *E. coli* XL1-blue par le produit de ligation, on sélectionne des transformants, on isole un plasmide recombinant, puis on transforme par électroporation la souche *S. thermophilus* Sfi6 avec le plasmide recombinant au moyen d'une méthode adaptée de celle décrite par Slos *et al.* (Appl. Environ. Microbiol., <u>57</u>, 1333-1339, 1991). On resuspend les cellules soumises à une décharge de 2,1kV, 25μF et 400Ω dans 1ml de milieu HJL que l'on incube 4h à 37°C (température permissive), on étale les cellules sur un milieu solide LM17 supplémenté de 2,5μg/ml d'erythromycine que l'on incube 16h à 37°C, puis on sélectionne les colonies transformées qui survivent. On incube ensuite les colonies sélectionnées dans 2 ml de milieu HJL supplémenté de 2,5μg/ml d'erythromycin jusqu'à ce que la densité optique à 600nm (DO₆₀₀) de la culture atteigne 0,2, on soumet la culture à 45°C jusqu'à ce que la DO₆₀₀ atteigne 1.0 (le plasmide ne se réplique plus), puis on étale des dilutions de la culture sur un milieu LM17 solide supplémenté de 2,5μg/ml d'erythromycine que l'on incube 12h à 45°C.

Les colonies qui survivent ont intégré dans le gène *epsJ* le plasmide pSA3 recombinant. Ceci peut être vérifié par Southern-Blot d'une préparation d'ADN chromosomique des colonies survivantes digérée par *Eco*RI (coupe une seule fois dans pSA3), et hybridation du filtre de Southern-Blot avec le fragment radioactif précité *Dral-Sal*I. Les colonies ayant intégré le plasmide pSA3 présentent deux bandes sur le filtre de Southern-Blot. De plus, les colonies ayant intégré dans *epsJ* le plasmide pSA3 recombinant présentent un phénotype EPS(-) sur un milieu solide Rouge de Ruthénium, et ont perdu leur caractère filant dans un lait MSK (voir l'exemple I.4 ci-dessus).

Exemple III: inactivation des gènes eps A, B, C, D, E, F, G, H, I, K, L, M

On a montré aux exemples I et II que l'inactivation des gènes *epsK* et *epsJ*, par insertion d'un transposon ou d'un plasmide intégratif, interrompt la biosynthèse d'EPS dans la souche Sfi6.

De même, on peut inactiver par recombinaison homologue les autres gènes de l'opéron *eps* de la souche Sfi6, et observer ainsi une interruption de la biosynthèse d'EPS. Pour cela, on amplifi par PCR un fragment d'un ORF provnant d'un des 11 vecteurs pFS décrits à l'exemple I.6 ci-dessus. On le clone dans le plasmide pSA3, puis on le transforme et on l'intègre à la souche Sfi6 dans les mêmes conditions que celles décrites à l'exemple précédent.

Exemple IV: restauration de la production d'EPS

On coupe par *EcoRI* pFS30, on sépare les fragments, on ligue le fragment de 5.5 kb à pFS14 préalablement digéré par *EcoRI*, on transforme des cellules XL1-blue par le produit de ligation, on sélectionne des clones transformés présentant une bonne orientation des inserts, on isole un plasmide appellé pFS30-14, on ligue un fragment *EcoRI* central de pFS65 à pFS30-14 préalablement coupé par *EcoRI*, on transforme des cellules XL1-blue par le produit de ligation, puis on sélectionne des clones transformés présentant une bonne orientation des inserts. Le plasmide recombinant résultant, appellé pFS30-65-14, comprend les nucléotides 1702 à 14602 de la séquence SEQ ID NO:1.

On coupe ensuite pFS30-65-14 par *Sal*I et *Sma*I, on sépare le fragment de 12.9 kb, on le ligue à pSA3 préalablement coupé par *Eco*RV et *Sal*I, on transforme des cellules XL1-blue par le produit de ligation, on sélectionne des clones transformés, et on isole des plasmides pSA3 recombinants.

On transforme par électroporation la souche *S. thermophilus* CNCM I-1292 déposée le 29 mars 1993 par les plasmides pSA3 recombinants. Cette souche Gram-positive présente au microscope un aspect de coques non flagellées formant des chaînettes, elle ne fait pas de spores, elle est anaéorobe facultative, elle ne produit pas d'EPS, et elle présente dans son génome 1000 pb correspondant à l'extrémité 5' de l'operon *eps*. Le plasmide pSA3 recombinant peut donc s'intégrer dans le génome de la souche CNCM I-1292. Certains des clones transformés présentent un phénotype EPS(+) sur un milieu solide Rouge de Ruthénium, et un caractère filant dans un lait MSK.

Exemple V restauration de la production d'EPS

On digère le chromosome de la souche Sfi6 par des enzymes qui ne coupent pas dans la séquence SEQ ID NO:1 (BamHI, Sall, NruI, StuI), on sépare le produit de digestion sur un gel d'agarose, on élue les bandes de 15-25 kb, on les ligne dans pSA3 préalablement coupé par une enzyme de restriction appropriée, on transforme par électroporation la souche S. thermophilus CNCM I-1292, puis on sélectionne des transformants par transferts des colonies sur un filtre suivi d'une hybridation de leur ADN avec l'insert de pFS14 rendu préalablement radioactif. Certains des clones transformés présentent un phénotype EPS(+) sur un milieu solide Rouge de Ruthénium, et un caractère filant dans un lait MSK.

Exemple VI modification d'un EPS

20

30

35

On transforme par électroporation la souche *S. thermophilus* CNCM I-1422, déposée le 18 mai 1994, par le plasmide pSA3 recombinant de l'exemple V. Cette souche Gram-positive présente au microscope un aspect de coques non flagellées formant des chaînettes, elle ne fait pas de spores, elle est anaéorobe facultative, et elle produit un EPS ayant la composition Glc:Gal=2:2.

Exemple VII modification d'un EPS

On transforme par électroporation la souche *S. thermophilus* CNCM I-1351, déposée le 5 août 1993, par le plasmide pSA3 recombinant de l'exemple V. Cette souche Gram-positive présente au microscope un aspect de coques non flagellées formant des chaînettes, elle ne fait pas de spores, elle est anaéorobe facultative, et elle produit un EPS ayant la composition Glc:Gal:Rha=1:3:2

Exemple VIII modification d'un EPS

On isole de l'ADN chromosomique de la souche CNCM I-1590 par le méthode de Slos *et al.* (Appl. Environ. Microbiol., <u>57</u>, 1333-1339, 1991). On digère la préparation d'ADN par *Sac*I et *Bam*HI, on sépare les fragments d'ADN par électrophorèse sur gel d'agarose 0,7%, on élue les fragments de 12 à 16kb, on ligue l'ADN extrait au vecteur pJIM2279 (obtenu de P. Renault, INRA, Jouy-en-Josas, Paris, France) préalablement digéré par *Sac*I et *Bam*HI puis déphosphorylé. On transforme la souche *Lactococcus lactis* MG1363 (J. Bacteriol., 154, 1-9, 1983), cultivée sur milieu GM17 à 30°C, par la méthode de De Vos *et al.* (Gene, <u>85</u>, 169-176, 1989). On sélectionne les clones transformés par hybridation du DNA génomique des clones avec l'une des sondes ayant la séquence SEQ ID NO:15, 16, 17, 18 et 19. Parmi 400 transformants, 6 clones positifs sont sélectionnés, dont 1 comprend un plasmide appelé pFS101 représenté à la figure 1.C.

Pour déterminer si le plasmide pFS101 est capable d'induire la production d'EPS recombinant, *L. lactis* MG1363 est retransformé par pFS101, et directement étalé sur le milieu solide rouge de ruthénium. A titre de comparaison, *L. lactis* MG1363 est transformé par le plasmide pJIM2279 puis est directement étalé sur le milieu solide rouge de ruthénium Les résultats montrent que toutes les colonies comprenant pJIM2279 ont un phénotype rouge (3000 colonies EPS(-)), tandis que plus de 99,5% des colonies comprenant pFS101 ont un phénotype blanc (800 colonies EPS(+), à l'exception de 2 colonies). La souche *L. lactis* MG1363 transformé par pFS101 produit donc un EPS recombinant.

On fait produire l'EPS de la souche *L. lactis* MG1363 transformée par pFS101, en la cultivant dans le milieu MAM, à un pH de 5,5, à 30°C sous agitation magnétique de 60 rotation par minute. On isole l'EPS recombinant en mélangeant le milieu de culture à 40% d'acide trichloro-acétique, en centrifugeant le mélange 20 min à 8000g, en mélangeant un volume égal d'acétone au précipité, en incubant le tout à 4°C pendant 12h, en précipitant le mélange à 10000g pendant 1h, en mettant en suspension le précipité dans de l'eau, en ajustant le pH du mélange à 7, en le dialysant contre de l'eau pendant 24h, en l'ultracentrifugeant à 10000g pendant 1h, en récupérant le surnageant, puis en lyophilisant le surnageant. A titre de comparaison, on cultive la souche *L. lactis* MG1363 transformée par pJIM2279 dans les mêmes conditions et on isole les sucres de la même manière.

On détermine la quantité de sucres neutres totaux par la méthode de Dubois *et al.* (Anal. Chem., <u>28</u>, 350-356, 1956). Les résultats montrent que la souche transformée par pFS101 produit 10mg/l de sucres, exprimé en glucose équivalent, tandis la souche transformée par pJIM2279 produit des traces de sucre (< 1mg/l).

On estime le poids moléclaire de l'EPS recombinant par chromatographie sur une colonne de gel-filtration Superose-6 (Pharmacia) qui est connectée au système FPLC (Pharmacia) préalablement calibré avec du dextran commercial (Sigma) de 2×10⁶ à 5×10³ Dalton (Da). Pour cela, on dépose sur la colonne 0,25 à 1ml d'un échantillon comprenant 250µg de sucres neutres, on l'élue par un flux de 0,5ml/min dans un tampon phophate 50mM pH7,2. Pour comparaison, de la même manière on sépare les sucres produits par la souche transformée par pJIM2279. Les résultats présentés à la figure 2 montrent que la souche transformée par pJIM2279 produit une petite quantité de polysaccharides hétérogènes ayant certainement pour origine la paroi cellulaire (2-0,5×10⁶ Da; fractions 8-15) et une grande quantité d'oligosaccharides de petits poids moléculaires (mono- et di-saccharides; fractions 20-22). Par contre, la souche transformée par pFS101 présente manifestement un EPS recombinant de haut poids moléculaire d'environ 2×10⁶ Da (fraction 9).

On détermine la composition en sucres de l'EPS recombinant par chromatographie en phase gazeuse par la méthode de Neeser *et al.* (Anal. Biochem., <u>142</u>, 58-67, 1984). Les résultats montrent que le milieu de culture de la souche transformée par pFS101 comprend en molarité un ratio 1:3 de Glc:Gal. On peut détecter des traces de rhamnose issues de la paroi cellulaire. Par contre, on ne détecte pas de GalNac.

La composition de l'EPS produit par la souche *L. lactis* MG1363 transformée par pFS101 est donc différente de celle de l'EPS produit par la souche *S. thermophilus* CNCM I-1590. On peut raisonnablement estimer que la structure de l'EPS recombinant est la même que celle de l'EPS de la souche CNCM I-1590, à la difference près que le GalNac est remplacé par un galactose.

30

35

40

45

50

LISTE DE SEQUENCES

```
(1) INFORMATIONS GENERALES:
                                                                                                                                                                                                                                                        (i) DEPOSANT:
                                                                                                                                                                                                                                                                                                          (A) NOM: SOCIETE DES PRODUITS NESTLE
(B) RUE: AVENUE NESTLE 55
(C) VILLE: VEVEY
(D) ETAT OU PROVINCE: CANTON DE VAUD
                                                                                                                                                                                                           (D) ETAT OU PROVINCE: CANTON DE VAUD

(E) PAYS: SUISSE

(F) CODE POSTAL: 1800

(G) TELEPHONE: (41) 21 924 4760

(H) TELECOPIE: (41) 21 924 2880

(ii) TITRE DE L' INVENTION: BACTERIES LACTIQUES PRODUISANT DES EPS

(iii) NOMBRE DE SEQUENCES: 19

(iv) FORME DECHIFFRABLE PAR ORDINATEUR:

(A) TYPE DE SUPPORT: Floppy disk

(B) ORDINATEUR: IBM PC compatible

(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS

(D) LOGICIEL: Patentin Release #1.0, Version #1.30 (OEB)
         10
                                                                                                                                                               (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DO
(D) LOGICIEL: Patentin Release #1.0, Vers
(D) LOGICIEL: Patentin Release #1.0, Vers
(E) INFORMATIONS POUR LA SEQ ID NO: 1:
(i) CARACTERISTIQUE: 14602 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: double
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (g, nomique)
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1522..1803
(D) AUTRES INFORMATIONS:/product= "epsA"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1807..2535
(D) AUTRES INFORMATIONS:/product= "epsB"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 2547..3239
(D) AUTRES INFORMATIONS:/product= "epsC"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 3249..3995
(D) AUTRES INFORMATIONS:/product= "epsD"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 4051..4731
(D) AUTRES INFORMATIONS:/product= "epsE"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 4645..7540
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 6425..7540
(D) AUTRES INFORMATIONS:/product= "epsG"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 7736..8212
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 7736..8212
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 7736..8212
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 8221...9192
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1321...9192
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1339
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 10392...11339
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 10392...11339
(D) AUTRES INFORMATIONS:/product= "epsF"
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 11302...12222
         15
       20
     25
   30
 35
 40
 45
50
```

	(D) AUTRES INFORMATIONS:/product= "CDS (epsL) recouvrant le CDS aux nucleotides 10392-11339"	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS	
5	(B) EMPLACEMENT:1223313651	
	(D) AUTRES INFORMATIONS:/product= "epsM" (ix) CARACTERISTIQUE:	
	(A) NOM/CLE: misc feature (B) EMPLACEMENT: 1373214305	
	(D) AUTRES INFORMATIONS:/function= "cadre de lecture ouverte porte par le brin complementaire"	
10	/product= "orfz" (ix) CARACTERISTIQUE:	
	(A) NOM/CLE: terminator (B) EMPLACEMENT:230252	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: promoter	
	(B) EMPLACEMENT:274302 (ix) CARACTERISTIQUE:	
15	(A) NOM/CLE: RBS (B) EMPLACEMENT: 340345	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:	
	TAGTTTGTAA AAGGACGCCA TTTGGTCGTC CTTTTGTGTT GTAGCTAATA TCTGTTCGAA	60
20	GTGATAATAA GTTAAAATTT TTCAAACTAC TAGAAAAAAT AAAAATATTT GGAAGAAGAA 1	.20
	GACTTATAAT AAATAGGTAA ATATCTGACA ATTTAAAGTT TAACTACTAA AAATGTAAAA 1	180
	GATAGTTCAC AATATAATGG AAAATGATAT AAATTAAATG ATTGATATCA TAATGAAAAA 2	40
0.5	CGTTTTCTTA TTTTTTGAA AAAAGAATGA CAATTGAAAT GAGGTTGTAT TAATGTTATA	00
25	ATAATAATAA TAATGGGGAA TACCTAATTT TAATTTTTAG GAGCAATTTA T ATG AGT Met Ser	57
	. 1	
	TCG CGT ACG AAT CGT AAG CAA AAG CAT ACG AGT AAT GGA TCG TGG GGG Ser Arg Thr Asn Arg Lys Gln Lys His Thr Ser Asn Gly Ser Trp Gly	105
30	5 10 15	
	ATG GTC AAC GTT GGG TTG ACC ATC CTG TAT GCT ATT TTA GCA TTG GTC Met Val Asn Val Gly Leu Thr Ile Leu Tyr Ala Ile Leu Ala Leu Val	53
	20 25 30	
	TTA TTA TTC ACC ATG TTC AAT TAT AAT TTC CTA TCC TTT AGG TTT TTG Leu Leu Phe Thr Met Phe Asn Tyr Asn Phe Leu Ser Phe Arg Phe Leu	501
35	35 40 45 50	
	AAC ATC ATT ATC ACC ATT GGT TTG TTG GTA GTT CTT GCT ATT AGC ATC Asn Ile Ile Ile Thr Ile Gly Leu Leu Val Val Leu Ala Ile Ser Ile	49
	55 60 65	
	TTC CTT CAG AAG ACT AAG AAA TTA CCA CTA GTG ACA ACG GTT GTA CTG Phe Leu Gln Lys Thr Lys Lys Leu Pro Leu Val Thr Thr Val Val Leu	97
40	70 75 80	
	GTT ATC TTC TCG CTA GTT TCT CTG GTT GGT ATT TTT GGT TTT AAA CAA Val Ile Phe Ser Leu Val Ser Leu Val Gly Ile Phe Gly Phe Lys Gln	545
	85 90 95	
		593
45	Met Ile Asp Ile Thr Asn Arg Met Asn Gln Thr Ala Ala Phe Ser Glu 100 105 110	
		741
	Val Glu Met Ser Ile Val Val Pro Lys Glu Ser Asp Ile Lys Asp Val 115 120 125 130	
50	AGC CAG CTT ACT AGC GTA CAG GCA CCT ACT AAG GTT GAT AAG AAC AAT Ser Gln Leu Thr Ser Val Gln Ala Pro Thr Lys Val Asp Lys Asn Asn	789
50	135 140 145	
	ATC GAG ATC TTG ATG TCA GCT CTC AAA AAA GAT AAA AAA GTT GAT GTT	337

	Ile	Glu	Ile	Leu 150	Met	Ser	Ala	Leu	Lys 155	Lys	Ąsp	Lys	Lys	Val 160	Asp	Val	
5	AAA Lys	GTT Val	GAT Asp 165	GAT Asp	GTT Val	GCC Ala	TCA Ser	TAT Tyr 170	CAA Gln	GAA Glu	GCT Ala	TAT Tyr	GAT Asp 175	AAT Asn	CTC Leu	AAG Lys	885
	TCT Ser	GGC Gly 180	AAA Lys	TCT Ser	AAA Lys	GCT Ala	ATG Met 185	GTC Val	TTG Leu	AGT Ser	GGC Gly	TCT Ser 190	TAT Tyr	GCT Ala	AGC Ser	CTA Leu	933
10					GAT Asp												981
					AAA Lys 215												1029
15					AAT Asn												1077
					TCA Ser												1125
20					AAG Lys												1173
25					GGT Gly												1221
25					GGC Gly 295												1269
30					CTT Leu												1317
	CTT Leu	AAG Lys	TTG Leu 325	ATT Ile	GAC Asp	CAA Gln	CTT Leu	GGT Gly 330	GGT Gly	GTG Val	ACA Thr	GTC Val	CAT His 335	AAT Asn	GAT Asp	CAA Gln	1365
35					GAG Glu												1413
	AAT Asn 355	TCA Ser	GAG Glu	CAA Gln	GCA Ala	CTT Leu 360	GGA Gly	TTT Phe	GTT Val	CGT Arg	GAA Glu 365	CGC Arg	TAT Tyr	TAA Asn	TTA Leu	GAT Asp 370	1461
40					GAC Asp 375												1509
					TTG Leu		Ser	Leu	Lys	Ser	Val	Ser	Asn	Phe			1557
45					CTC Leu												1605
					TTG Leu												1653
50																	
					CAA Gln												1701

	ATC Ile	TCT Ser	TAT Tyr	GCG Ala	ATG Met 455	CCA Pro	AAT Asn	TCT Ser	AGT Ser	CTT Leu 460	TAC Tyr	ATG Met	ATG Met	AAA Lys	CTA Leu 465	GAT Asp	1749
5										GCT Ala							1797
		AAA Lys								CAT His							1845
10								Glu		TTA Leu							1893
15										TCA Ser							1941
										ATT Ile 55							1989
20	Val	Lys	Ala	Glu 65	Ala	Glu	Ala	Leu	Tyr 70	CCA Pro	Asp	Leu	Thr	Ile 75	Tyr	Tyr	2037
	Gly	Gly	Glu 80	Leu	Tyr	Tyr	Thr	Ser 85	qaA	ATT Ile	Val	Glu	Lys 90	Leu	Glu	Lys	2085
25	Asn	Leu 95	Ile	Pro	Arg	Met	His 100	Asn	Thr	CAA Gln	Phe	Ala 105	Leu	Ile	Glu	Phe	2133
	Ser 110	Ala	Arg	Thr	Ser	Trp 115	Lys	Glu	Ile	CAT His	Ser 120	Gly	Leu	Ser	Asn	Val 125	2181
30	Leu	Arg	Ala	Gly	Val 130	Thr	Pro	Ile	Val	GCT Ala 135	His	Ile	Glu	Arg	Tyr 140	Asp	222,9
										CGA Arg							2277
35	Сув	Tyr	Thr 160	Gln	Val	Asn	Ser	Ser 165	His	GTC Val	Leu	Lys	Pro 170	Lys	Leu	Phe	2325
										CGT Arg							2373
40	Lys 190	Asn	Leu	Val	His	Met 195	Val	Ala	Ser	GAC Asp	Met 200	His	Asn	Leu	Gly	Pro 205	2421
45		D	D	61. -					PRA	GAA Glu 215	~? .			-	AAC Asn 220	_	2469
										ATT Ile							2517
50	CTA Leu	GAA Glu	AAT Asn 240	CAA Gln	TAT Tyr	TTA Leu	TAG	BAGA:	rat :	Met				Ası		r FAa L YYY	2567
50			GAA							CTA Leu	CAT			TGG	ACG		2615

	AAG Lys	CTT Leu 25	TTG Leu	ATT Ile	CTT Leu	TTC Phe	ACA Thr 30	GCT Ala	TTT Phe	TAT Tyr	TTC Phe	GCT Ala 35	GTT Val	TTC Phe	AGT Ser	TTC Phe	2663
5					TTC Phe												2711
	ATC Ile	TAT Tyr	GTT Val	GTT Val	AAT Asn 60	CAG Gln	GCA Ala	ACA Thr	GAT Asp	AAT Asn 65	AAG Lys	AAT Asn	CTT Leu	TCT Ser	GCT Ala 70	CAA Gln	2759
10					GGT Gly												2807
45					GTA Val												2855
15					GAA Glu												2903
20					ATT Ile												2951
	GCG Ala	CAA Gln	ACA Thr	CTT Leu	GCC Ala 140	AAT Asn	AAG Lys	GTT Val	CGT Arg	GAA Glu 145	GTT Val	GCT Ala	TCA Ser	AAA Lys	AAA Lys 150	ATC Ile	2999
25					AAA Lys												3047
					CCA Pro												3095
30					GGA Gly												3143
					GAT Asp												3191
35					CTT Leu 220											TAA *	3239
			Me	t Pr	ro Le	eu Le	eu Ly	/s Le 5	eu Va	ıl Ly	s Se	er Ly	rs Va LO	al As	p Pl	ne	3287
40	GCT Ala	AAA Lys 15	AAG Lys	ACG Thr	GAA Glu	GAG Glu	TAT Tyr 20	TAT Tyr	AAC Asn	GCT Ala	ATT Ile	CGC Arg 25	ACA Thr	AAT Asn	ATT Ile	CAA Gln	3335
	TTT Phe 30	TCT Ser	GGT Gly	GCT Ala	CAG Gln	ATG Met 35	AAA Lys	GTG Val	ATT Ile	GCG Ala	ATT Ile 40	AGC Ser	TCT Ser	GTT Val	GAA Glu	GCT Ala 45	3383
45					TCA Ser 50												3431
	Ser	Val	Gly	Leu 65	CGA Arg	Thr	Leu	Leu	Ile 70	Asp	Ala	Glu	Thr	Arg 75	Asn	Ser	3479
50	Val	Leu	Ser 80	Gly	ACA Thr	Phe	Lys	Ser 85	Asn	Glu	Pro	Tyr	Lys 90	Gly	Leu	Ser	3527
	AAT	TTC	CTT	TCA	GGA	AAT	GCC	GAT	CTA	AAT	GAA	ACG	ATT	TGC	CAA	ACT	3575

	Asn	Phe 95	Leu	Ser	Gly	Asn	Ala 100	qaA	Leu	Asn	Glu	Thr 105	Ile	Суз	Gln	Thr	
5		ATT Ile															3623
		ACA Thr															3671
10	GCT Ala	CGT Arg	AGT Ser	TGT Cys 145	TAT Tyr	GAT Asp	TAT Tyr	GTC Val	ATC Ile 150	ATC Ile	GAT Asp	ACA Thr	CCA Pro	CCA Pro 155	GTT Val	GGT Gly	3719
		GTT Val															3767
15		GTT Val 175															3815
		GAA Glu															3863 ·
20		AAA Lys															3911
ne.		TCA Ser															3959
25		AGA Arg	Ala					Lys					TAAC	CGCG'	TA		4005
			240					245									
· 20	GTG"	rgtt:		AGAT	TCG:	rt Go	GAA		A AGT	rggao	GGA.	ATG			CA CI er G		4059
30	GCT	AAA Lys 5	TTA /	GAA	ATT	TCA	GAT	GAC	ATG	ACT	TAT	TCA	GAG	t So 1 CTA	er G	ln AGT	4059 4107
30 35	GCT Ala CAT	AAA	GAG Glu CCC	GAA Glu AAA	ATT	TCA Ser	GAT Asp 10	GTT Val	ATG Met	ACT Thr	TAT Tyr	TCA Ser 15 CGG	GAG Glu ATT	CTA Leu	ACA Thr	AGT Ser ATT	
·	GCT Ala CAT His 20	AAA Lys 5 AAG	GAG Glu CCC Pro	GAA Glu AAA Lys TCT	ATT Ile	TCA Ser ATT 11e 25	GAT Asp 10 TAT Tyr	GTT Val AGC Ser	ATG Met TTG Leu	ACT Thr ATT Ile	TAT Tyr AAG Lys 30	TCA Ser 15 CGG Arg	GAG Glu ATT Ile	CTA Leu GGT Gly	ACA Thr GAT Asp	AGT Ser ATT Ile 35	4107
·	GCT Ala CAT His 20 TTG Leu	AAA Lys 5 AAG Lys	GAG Glu CCC Pro AGT Ser	GAA Glu AAA Lys TCT Ser	ATT Ile ATT Ile ATT Ile ATT ATT	TCA Ser ATT 11e 25 GGT Gly	GAT Asp 10 TAT Tyr TTA Leu	GTT Val AGC Ser ATT Ile	ATG Met TTG Leu ATT Ile	ACT Thr ATT Ile TTG Leu 45	TAT Tyr AAG Lys 30 ATA Ile	TCA Ser 15 CGG Arg CCG Pro	GAG Glu ATT Ile CTA Leu CCT	CTA Leu GGT Gly TTT Phe	ACA Thr GAT Asp TTG Leu 50	AGT Ser ATT Ile 35 ATA Ile	4 107 4 155
35	GCT Ala CAT His 20 TTG Leu GTT Val	AAA Lys 5 AAG Lys GTT Val	GAG Glu CCC Pro AGT Ser TTG Leu	GAA Glu AAA Lys TCT Ser ATC Ile 55	ATT Ile ATT Ile ATT Ile ATT	TCA Ser ATT 11e 25 GGT Gly AAA Lys	GAT Asp 10 TAT TYY TTA Leu TGC Cys	GTT Val AGC Ser ATT Ile TCT Ser	ATG Met TTG Leu ATT Ile GAA Glu 60 GGC	ACT Thr ATT Ile TTG Leu 45 CCA Pro	TAT Tyr AAG Lys 30 ATA Ile ACA Thr	TCA Ser 15 CGG Arg CCG Pro GCA Ala	GAG Glu ATT Ile CTA Leu CCT Pro	CTA Leu GGT Gly TTT Phe ATA Ile 65	ACA Thr GAT Asp TTG Leu 50 TTT Phe	AGT Ser ATT Ile 35 ATA Ile TTC Phe	4107 4155 4203
35	GCT Ala CAT His 20 TTG Leu GTT Val	AAA Lys 5 AAG Lys GTT Val GCT Ala	GAG Glu CCCC Pro AGT Ser TTG Leu ATT Ile 70	GAA Glu AAA Lys TCT Ser ATC Ile 55 AGA Arg	ATT Ile ATT Ile ATT Ile 40 ATG Met AAT Asn	TCA Ser ATT Ile 25 GGT Gly AAA Lys GGT Gly	GAT Asp 10 TAT Tyr TTA Leu TGC Cys	GTTT Val AGC Ser ATT Ile TCT Ser AAT Asn 75 GCA	ATG Met TTG Leu ATT Ile GAA Glu 60 GGC Gly	ACT Thr ATT Ile TTG Leu 45 CCA Pro AAA Lys	TATT Tyr AAG Lys 30 ATA Ile ACA Thr AAG Lys	TCA Ser 15 CGG Arg CCG Pro GCA Ala TTC Phe	GAG Glu ATT Ile CTA Leu CCT Pro AAA Lys 80 ATG	et S 1 CTA Leu GGT Gly TIT Phe ATA Ile 65 ATG Met	ACA Thr GAT Asp TTG Leu 50 TTT Phe TAT Tyr	AGT Ser ATT Ile 35 ATA Ile TTC Phe AAA Lys	4107 4155 4203 4251
35 40	GCT Ala CAT His 20 TTG Leu GTT Val TCA Ser TTT Phe	AAA Lys 5 AAG Lys GTT Val GCT Ala CAT His AGA Arga 85 CTT Leu	GAG Glu CCC Pro AGT Ser TTG Leu ATT Ile 70 ACC Thr	GAA Glu AAA Lys TCT Ser ATC Ile 55 AGA Arg Met	ATT Ile ATT Ile ATT Ile ATT	TCA Ser ATT Ile 25 GGT Gly AAA Lys GGT Gly CAG GIn TTT TPhe 105	GAT Asp 10 TAT TYY TTA Leu TGC Cys AAA Lys GAC Asp 90 AAG Lys	GGACI GTT Val AGC Ser ATT Ile TCT Ser AATA ASn 75 GCA Ala GCA Ala	ATG Met TTG Leu ATT fle GAA Glu 60 GGC Gly GAA Glu AAT	ACT Thr ATT Ile TTG Leu 45 CCA Pro AAA Lys TCG Ser	TAT Tyr AAG Lys 30 ATA Thr AAG Lys ATT Ile	TCA Ser 15 CGG Arg CCG Pro GCA Ala TTC Phe TTG Leu 95 AAA Lys	GAG Glu ATT Ile CTA Leu CCT Pro AAA Lys 80 ATG Met CTT Leu	CTA Leu GGT Gly TTT Phe ATA Ile 65 ATG Met AAA Lys	ACA Thr GAT Asp TTG Leu 50 TTT Phe TAT Tyr GAT Asp	AGT Ser ATT Ile 355 ATA Ile TTC Phe AAA Lys ACG Thr CAT His 115	4107 4155 4203 4251 4299 4347 4395
35 40	GCT Ala CAT His 20 TTG Leu GTT Val TCA Ser TTT Phe GAA Glu 100 GAA	AAA Lys 5 AAG Lys GTT Val GCT Ala CAT His AGA 85 CTT Leu	GAG Glu CCC Pro AGT Ser TTG Leu ATT Ile 70 ACC Thr	GAA Glu AAA Lys TCT Ser ATC 1le 55 AGA Arg ATG Met	ATT Ile ATT Ile ATT Ile ATT TRE 40 ATG Met AAT Asn TGT Cys AAA Lys	TCA Ser ATT lle 25 GGT Gly AAA Lys GGT Gly CAG GIn TTT Phe 105	GAT Asp 10 TAT TYY TTA Leu TGC Cys AAA Lys GAC ASP 90 AAG Lys	GGACI GTT Val AGC Ser ATT Ile TCT Ser AAT Asn 75 GCA Ala GCA Ala	ATG Met TTG Leu ATT Ile GAA Glu 60 GGC Gly GAA Glu AAT Asn	ACT Thr ATT lie TTG Leu 45 CCA Pro AAAA Lys TCG GGT Gly GGC	TAT Tyr AAG Lys 30 ATA Ile ACA Thr AAG Lys ATT Ile TAT Tyr	TCA Ser 15 CGG Arg CCG Pro GCA Ala TTC Phe TTG Leu 95 AAA Lys	GAG Glu ATT Ile CTA Leu CCT Pro AAAA Lys 80 ATG Met CTT Leu AGG	CTA Leu GGT Gly TITT Phe ATA Ile 65 ATG Met AAAA CJu GAAA Glu	ACA Thr GAT Asp TTG Leu 50 TTT Phe TAT Tyr GAT Asp	AGT Ser ATT Ille 35 ATA Ille TTC Phe AAA Lys ACG Thr CAT His 115 AGT	4107 4155 4203 4251 4299

		135			140	14	5	
5						BAA ATC ATT GAR Slu Ile Ile Glo 160		539
	GAT AAC Asp Asn 165	. Gln Glu	AAA TTT Lys Phe	TTA AGC Leu Ser 170	GTT AAA C Val Lys P	CCA GGC ATG AC Pro Gly Met Th	A GGA TGG 4 r Gly Trp	1587
10					Ile Gly T	TAT CCT GAG CGC Tyr Pro Glu Arg .90		1635
						TT ACT TTC GAT The Thr Phe Asp		683
15						AG AGA GTT GG Lys Arg Val Gl 22	y Ala Arg	731
	TAGTACT	GAT GAAA	CAAAAA T	rattattg:	A TAATAGAA	GC GATGAGTGGT	GGAGCCGGTC 4	791
	GTCATGT	ACA AGAC	ITGATT A	GTCATCTA	C CTCAAGAA	AA ATTTGATATT	TATGTGATTT 4	851
20	ATTCAAA	TCA TAGA	ACAAAT C	CTGTTTTT	T GGAAAAA	ATA GTAACG ATG Met 1	AAT GAG 4 Asn Glu	1906
						TA AGA GAA AT Val Arg Glu Ilo 15		954
25					Phe Ile S	CCT AAA AAG AT Ser Lys Lys Il 30		002
						CCA AAA GCT GG Ger Lys Ala Gl		050
30						AAA AAA ATA TT Lys Lys Ile Pho 69	Tyr Thr	5098
05						TT AGT GGG AAC Phe Ser Gly Lyc 80		146
35		Phe Val				GC CGA TTT GCG Ser Arg Phe Ala 95		194
40					Glu Met G	CAA GCT GCT CT Sln Ala Ala Le 10		5242
						ATT TAT AAT GG le Tyr Asn Gl		290
45			Pro Ser			GGG GCG CAA TT: Arg Ala Gln Lei 14	ı Gly Leu	338
	Glu Lys	Ala Ala 150	Val Val	Ile Gly 155	Asn Asn A	SCA AAA ATG TC Ala Lys Met Se: 160	r Glu Gln	386
50		Pro Met				CGA AAA ATG AT Arg Lys Met Ile 175		5434
	AAC GCA Asn Ala 180	AAT TGG Asn Trp	CAT TTT His Phe 185	Val Trp	Val Gly A	BAT GGT CAG CT Asp Gly Gln Le 190	G ATG CCA 5 u Met Pro 195	5482

	CTT TTT CAA TCA TTT ATT AAG CAA AAT GGA CTA GAG GGA AAT ATC CAT Leu Phe Gln Ser Phe Ile Lys Gln Asn Gly Leu Glu Gly Asn Ile His 200 205 210	5530
5	TTG CTT GGC GAG CGT CCT GAT AGT GAA ATA GTT GTG ACA GCC TAT GAC Leu Leu Gly Glu Arg Pro Asp Ser Glu Ile Val Val Thr Ala Tyr Asp 215 220 225	5578
10	ATC TTC TTG ACG ACT TCC CAA TAT GAA GGT TTA CCT TAT GCA CCA ATT Ile Phe Leu Thr Thr Ser Gln Tyr Glu Gly Leu Pro Tyr Ala Pro Ile 230 240	5626
,0	GAA GCG ATG CGA GCT GGT GTC CCG ATT CTT GCG ACA AAA GTT GTT GGC Glu Ala Met Arg Ala Gly Val Pro Ile Leu Ala Thr Lys Val Val Gly 245 255	5674
15	AAT AGT GAG CTT GTG ATA GAG GGC AAA AAT GGT TAT TTG ATT GAC TTA Asn Ser Glu Leu Val Ile Glu Gly Lys Asn Gly Tyr Leu Ile Asp Leu 260 275 270	5722
	GAG TGG TCA AAA TCT GTC GAA GAA AAA TTA TAT AAG GCA GCG AAA ATA Glu Trp Ser Lys Ser Val Glu Glu Lys Leu Tyr Lys Ala Ala Lys Ile 280 285 290	5770
20	GAT GCA CAA ATG ATT AAA GCA GAT TTT AGG CAA AGG TTT GCG ATT GAT Asp Ala Gln Met Ile Lys Ala Asp Phe Arg Gln Arg Phe Ala Ile Asp 295 300 305	5818
	CAG ATA TTA AAG CAA ATT GAA ACA ATT TAT TTA GCT TGAATGAAGA Gln Ile Leu Lys Gln Ile Glu Thr Ile Tyr Leu Ala 310 315	5864
05	ATGAGGAGGC ATAAATGCTG ATTTTGAAAT TAAAATTTCA TCTTAATTGG TACACAAACG	5924
25	AAAACCATTA TTACACGTGA GTATTCGAAG ACCTGGAAAC GAGGCGATGA GCCGTATTAT	5984
	CCAGTGAACA ATGATCGTAA CAACAAACTC TATACTGCCT ATAAGCGTCT TGCCGAGCAA	6044
	CAAGAGAATG TCATTTTCGG TGGACGTCTA GGTCACTACC GTTACTACGA TATGCACCAG	6104
30	GTAATTGGAG CTGCCTTGCA GTGTGTCAGA AATGAAGTGA AGTAAATCTT GATGAAGTTG	6164
	AATAACTTTA AGTAATTTTA TACTTAATCC AATTGATGAA AATATTTTTG TATCGATTTA	6224
	TCTTCTGTAA GAAGAGTCCT AATCGTTTAA AAAATGTACA ATTGAGTTTT TATATTTTTA	6284
	AATAAAGTTA CTTTTAAGTC GTGTTATAGA ATATACATGA ATAGGTGTAT TAGAAAATTT	6344
35	ATTAATCTAA TCCTCGAAAA TAACTGACTG TAAGGAATCA AGTTGTGGAG TGTAAGTTGT	6404
	CAAATGGAGA GGAAAATAAT ATG AAA AAA ATT TCA ATT TTA CAC TTT TCC Met Lys Lys Ile Ser Ile Leu His Phe Ser 1 5 10	6454
40	CAA GTA TCA GGC GGG GGA GTT GAA AAG TAC ATA AAA TTA TTT TTA AAG Gln Val Ser Gly Gly Val Glu Lys Tyr Ile Lys Leu Phe Leu Lys 15 20 25	6502
	TAT TCT GAT GTG ACA AAA TTT AAT AAT TAT TTA GTT GCA CCT AAT CTT Tyr Ser Asp Val Thr Lys Phe Asn Asn Tyr Leu Val Ala Pro Asn Leu 30 35 40	6550
45	GAA AAT TAT GAC GAA TTT AAT GGA TAT TTA AAG ATG TCT GTC AAT TTT Glu Asn Tyr Asp Glu Phe Asn Gly Tyr Leu Lys Met Ser Val Asn Phe 45 50 55	6598
50	AAT ATG GAA CAA ACT TTT TCT CCG CTA AAA ATA TTC AAA AAT GTC TTT Asn Met Glu Gln Thr Phe Ser Pro Leu Lys Ile Phe Lys Asn Val Phe 60 65 70	6646.
	TTT ATT CGT AGT GTA CTC AAA AAA ATA AAC CCA GAT ATA GTA TAC CTA Phe Ile Arg Ser Val Leu Lys Lys Ile Asn Pro Asp Ile Val Tyr Leu 75 80 85 90	6694

			ACA Thr														6742
5			rya Yyy														6790
			TAT Tyr 125														6838
10			TTA Leu														6886
			AAC Asn														6934
15			GTT Val														6982
20			CCA Pro														7030
			AAA Lys 205														7078
25			CGA Arg														7126
			GAA Glu														7174
30	ATC Ile	TAT Tyr	ATT Ile	ACT Thr	GGG Gly 255	TGG Trp	GTT Val	GAT Asp	AAT Asn	CCG Pro 260	AGA Arg	AAC Asn	TAT Tyr	ATA Ile	GAG Glu 265	AAG Lys	7222
			CAA Gln														7270
35			GAA Glu 285														7318
			ATT Ile														7366
40			GGA Gly														7414
			AAA Lys														7462
45	Val	Val	GAA Glu ATA	Gln 350	Phe	Ser	Ile	Glu	Lys 355	Gln	Met	Ala	Glu	Ile 360	Glu	Ser	7510 7560
	Leu	Phe	Ile 365	Glu	Met	Сув	Asn	Asn 370	Glu	Lys						GCAGC	7620
50	_															CAGAT	7680
																ATG	7738

																Met 1	
5	CTG Leu	ATT Ile	TTG Leu	AAA Lys 5	TTA Leu	AAA Lys	TTT Phe	CAT His	CTT Leu 10	AAA Lys	TCG Ser	TTA Leu	TTC Phe	CTT Leu 15	AAA Lys	TGG Trp	7786
			CGA Arg 20														7834
10	ACG Thr	TTT Phe 35	CGA Arg	GAT Asp	GGG Gly	TTT Phe	CAT His 40	TTG Leu	TTA Leu	ATT Ile	GAA Glu	AAA Lys 45	TCT Ser	GGG Gly	AAA Lys	GTT Val	7882
	ATC Ile 50	ATC Ile	GGG Gly	AAT Asn	CAT His	GTT Val 55	TTT Phe	TTT Phe	AAT Asn	AAC Asn	TTT Phe 60	TGT Cys	TCA Ser	ATT Ile	AAT Asn	GCC Ala 65	7930
15	ATG Met	TTA Leu	TCA Ser	GTA Val	ACG Thr 70	ATT Ile	GGT Gly	GAT Asp	GAC Asp	TGT Cys 75	ATT Ile	TTT Phe	GGT Gly	GAA Glu	AAC Asn 80	GTT Val	7978
,			TAT Tyr														8026
20	TCA Ser	rya Lya	CAA Gln 100	GGT Gly	TTT Phe	TCA Ser	ACT Thr	GCT Ala 105	GCT Ala	ATC Ile	CAG Gln	ATT Ile	GGT Gly 110	CGT Arg	AAC Asn	TGT Cys	8074
			GGT Gly														8122
25	AAT Asn 130	AGT Ser	ATC Ile	ATT Ile	GGT Gly	GCT Ala 135	GGT Gly	GTG Val	GTA Val	GTT Val	TAT Tyr 140	CAA Gln	GAT Asp	GTG Val	CCA Pro	GAA Glu 145	8170
30			ATT Ile														8212
30	TAAT	TAAT'		. Tyı									Ile			A TAT L Tyr	8262
35			GAG Glu														8310
	ACT Thr	TAC Tyr	AAT Asn	AAT Asn	TTT Phe 35	GAA Glu	GTG Val	ATT Ile	TTA Leu	GTG Val 40	AAT Asn	GAT Asp	GGC Gly	TCA Ser	ACC Thr 45	gat Asp	8358
40	TCA Ser	TCA Ser	CTT Leu	TCA Ser 50	ATA Ile	TGC Cys	GAA Glu	AAA Lys	TTT Phe 55	GTT Val	AAT Asn	CAG Gln	GAT Asp	AAA Lys 60	AGA Arg	TTT Phe	8406
			TTT Phe 65														8454
45	GGA Gly	ATT Ile 80	AAA Lys	AAG Lys	GCT Ala	AAA Lys	GGA Gly 85	TCG Ser	TTT Phe	ATC Ile	ACA Thr	TTT Phe 90	GTA Val	GAT Asp	AGT Ser	GAT Asp	8502
	GAC Asp 95	TAC	ATA Ile	GTA Val	AAA Lys	GAT Asp 100	TAT	CTT Leu	TCT Ser	CAT His	TTG Leu 105	GTA	GCT Ala	GGG Gly	ATA Ile	AAA Lys 110	8550
50			ACC Thr														8598
	GGA Gly	AGT Ser	TTA Leu	TTG Leu	ACT Thr	AAA Lys	AAA Lys	GAG Glu	GCA Ala	CCT Pro	AAA Lys	AAG Lys	AAA Lys	TCA Ser	GAA Glu	GTC Val	8646

				130					135					140			
5						AGT Ser											8694
						TGG Trp											8742
10						GAA Glu 180											8790
						TTG Leu											8838
15						CAG Gln											8886
						GAT Asp											8934
20						TTT Phe											8982
						GTG Val 260											9030
25						CAA Gln											9078
						ATG Met											9126
30						TTT Phe											9174
			TTA Leu			AGA Arg	TAAT	rgati	ATT (BAAA	GCGA!	ra co	ATA	ZAAT(2		9222
35	GTA	AACT"	rcr :	rttg(GTGT"	rg ac	CTAGO	BAGT	r ago	TTG	TAAF	TTG	ATA	CAA I	AGGA	AGCAAC	9282
						Phe I											9329
40						TTA Leu											9377
	TTT	TGT Cys	GTT Val	CTT Leu 35	ACG Thr	TTT Phe	GGT Gly	ACA Thr	CTA Leu 40	GGC Gly	TTT Phe	ATT Ile	TCA Ser	GCA Ala 45	AGT Ser	CGT Arg	9425
45						ACG Thr										AAA Lys	9473
50						ATA Ile											9521
						GGT Gly 85											9569

	ACG GCC Thr Ala	GCT AAT Ala Asn	TCA GTT Ser Val	TTG Leu	ATT A Ile T	ACA ATA Thr Ile 105	CTT . Leu	ATT GG Ile Gl	T ATT y Ile	TTT Phe 110	ATT Ile	9617
5		GTA GCG Val Ala 115	Glu His		Phe V					Ile		9665
	TTG TTT Leu Phe	TAT TAT Tyr Tyr 130	GCT ACA Ala Thr	Ser	TTT A Phe A 135	AT ATT Asn Ile	TCA . Ser .	AGA CA Arg Gl 14	n Phe	ATT Ile	GCC Ala	9713
10		CTT GTA Leu Val			Ile S		Ala :					9761
15		TGG TTT Trp Phe		Thr								9809
,,,		GTT GCT Val Ala										9857
20		AAG ACA Lys Thr 195			Phe P							. 9905
		GAT GCT Asp Ala 210		Asn					e Pro			9953
25		TAT ATC Tyr Ile					Ile :					10001
		GTG GTT Val Val		Lys								10049
30		TTG TTT Leu Phe										10097
		TTG ATA Leu Ile 275			Thr V							10145
35		AAT AAT Asn Asn 290		Leu .					e Tyr			10193
		ATC GTA Ile Val					Asp '					10241
40		CAA AAA Gln Lys		. Val								10289
45	Leu Ile	ACA CTT Thr Leu TTG CCT	Val Pro	Tyr	Tyr I	le Gln 345	Val	Ser Gl	y Asn	Tyr 350	_	10337
10	Gly Ile	Leu Pro 355 ATG GAG	Tyr Val	Ile	Gln G 3	31n 360					CAC	10433
50		Met Glu 1	Asp Arg	Lys 5	Lys G	In Val	Ile	Leu Il 10	e Leu	Ser	His	
		ACT CTC Thr Leu		Lys								10481

							CAT His										10529
5							ATT Ile										10577
							TGG Trp										10625
10							GCA Ala 85										10673
							GAT Asp										10721
15							AGT Ser										10769
20							AAA Lys										10817
							AAG Lys										10865
25							TTC Phe 165										10913
	Lys 175	Leu	Leu	Lys	Val	Asn 180	CGC Arg	Leu	Lys	Asn	Arg 185	Glu	Ile	Glu	Ile	Phe 190	10961
30	Lys	Gly	His	Gln	Trp 195	Суз	AGT Ser	Leu	Thr	Asn 200	Gln	Phe	Val	Asp	11e 205	Leu	11009
	Leu	Asp	Lys	Glu 210	Glu	Arg	AGA	Val	Gly 215	Lys	Ser	Tyr	Phe	Ser 220	Ser	Ser	11057
35	Leu	Ile	Pro 225	Asp	Glu	Сув	TAT	Phe 230	Gln	Thr	Phe	Ala	Met 235	Ile	Lys	Lys	11105
	Val	Glu 240	Ile	Tyr	Gln	Gln	Lys 245	Asn	Met	Ser	Ala	Arg 250	Leu	Ile	Asp	Trp	11153
40	Thr 255	Arg	Gly	Lys	Pro	Tyr 260	Ile	Trp	Arg	Gln	Asp 265	Asp	Phe	Phe	Glu	Ile 270	11201
	Met	Asn	Asp	Lys	Asp 275	Ser	ATG Met	Phe	Ser	Arg 280	Lys	Phe	Asp	Glu	Asn 285	Val	11249
45	Asp	Arg	Lys	Ile 290	Ile	Glu	GAA Glu	Ile	Tyr 295	Ile	Lys	Ile	Arg	Gly 300			- : 11297
	Thr	Asp	Glu 305	Ala	Asn	Lys	ATC Ile	Lys 310	Asp	Lys	Arg	Phe	Thr 315	ГÀЗ			11339
50											-					TATCAT	11399
																CAATT	11459
	TTT	AGTA	AAT (CATG!	TATC	HG TA	ACGA(sATG.	· AGA	AACA?	rcrr	ATA(JAAA(A Aند	AAAC"	PATTTC	11519

	AGAAATAAAA TCTATAAAAA AAAATATTGG AAAAAAAGAA TTAGTTTTTT TTCATGGGGG 11	579
	AGGAAATTTC GGGACACTTT ATCTAAAGTA TGAGCGCATT AGAAGATTGG CAGTATCAAA 11	639
5	GCTTCCCTTT AATAAAATGA TTCTATTTCC TCAGTCAATT TCATTTGAAG ATAGTAGGTT 11	699
	TGGTCAGAAG CAGCTGAATA AAAGTAAAAA AATATACAGT CAAAATACAA ATTTTATTTT	759
	GACTGCAAGA GAACCAAAAT CTTATGGTTT AATGAAGAAA TGTTTTCCAT ATAACAAAGT 11	819
	AATCTTGACA CCGGATATCG TGCTCTCATT TAAATTTGAA GTCACCATTT CTGATACGCA 11	879
10	TATTGGGAAA GAAAAGGATA GTGTTATAAC TTATGAAAAT CGTCAACACT ATCTTGAGAT 11	939
	AAAGTGGGAT GAAATTGCGC AGCATGAGGT CGCCTTAACT GATAGATTAC ATGGTATGAT 11	999
	TTTTTCATAT ATCACAGGCA CACCATGTGT TGTTTTGGCT AATAATAATC ATAAAATTGA 12	059
	AGGAACATAC AAACATTGGT TGAATGAAGT CAACTATATT CGTTTTATTG AAAATCCGAC 12	119
15	TGTTGAAAAT ATTTTAGATG CAATCAATGA CTTAAAGCAA ATCGAACCTC ACTATATTGA 12	179
	TTTATCTGAT AAATTTCAAC CACTAATTGA TGCGATAAAA GGGTAAAGGT TTA ATG Met 1	235
20	AAT AAA TAT AAA AAA CTA CTA TCC AAC TCT CTT GTT TTC ACG ATA GGA ABN Lys Tyr Lys Lys Leu Leu Ser Asn Ser Leu Val Phe Thr Ile Gly 10 15	283
	ARC TTA GGC AGC AAA CTG TTA GTC TTT TTA CTC GTA CCG CTC TAC ACC Asn Leu Gly Ser Lys Leu Leu Val Phe Leu Leu Val Pro Leu Tyr Thr 20 25 30	331
25	TAT GCG ATG ACA CCG CAA GAG TAT GGT ATG GCA GAC TTA TAT CAA ACA Tyr Ala Met Thr Pro Gln Glu Tyr Gly Met Ala Asp Leu Tyr Gln Thr 35 40 , 45	379
	ACA GCA AAT CTA CTT TTG CCA TTA ATT ACA ATG AAT GTA TTT GAT GCA Thr Ala Asn Leu Leu Pro Leu Ile Thr Met Asn Val Phe Asp Ala 50 65	427
30	ACT TTA CGT TTT GCT ATG GAA AAG TCA ATG ACA AAA GAG AGT GTG TTA Thr Leu Arg Phe Ala Met Glu Lys Ser Met Thr Lys Glu Ser Val Leu 70 75 80	475
35	ACA AAT TCT CTT GTG GTT TGG TGT TTT AGC GCG GTG TTC ACT TGT TTG Thr Asn Ser Leu Val Val Trp Cys Phe Ser Ala Val Phe Thr Cys Leu 85 90 95	523
	GGC GCT TGT ATT ATC TAT GCG TTG AAC TTG AGT AAT AAA TGG TAT TTA Gly Ala Cys Ile Ile Tyr Ala Leu Asn Leu Ser Asn Lys Trp Tyr Leu 100 105 110	571
40	GCT TTA CTT TTA ACC TTC AAC TTA TTT CAA GGT GGA CAA AGT ATA TTA Ala Leu Leu Thr Phe Asn Leu Phe Gln Gly Gly Gln Ser Ile Leu 115 120 125	619
	Ser Gln Tyr Ala Arg Gly Ile Gly Lys Ser Lys Ile Phe Ala Ala Gly 130 135 140 145	667
45	GGA GTT ATT TTA ACC TTT TTG ACA GGC GCT TTA AAT ATT CTT TTT TTG Gly Val Ile Leu Thr Phe Leu Thr Gly Ala Leu Asn Ile Leu Phe Leu 150 160	715
	GTA TAT TTA CCG CTT GGG ATT ACG GGC TAT TTA ATG TCC CTG GTT TTA Val Tyr Leu Pro Leu Gly Ile Thr Gly Tyr Leu Met Ser Leu Val Leu 165 170 175	763
50	GCG AAT GTA GGT ACG ATT CTA TTT TTT GCT GGC ACA CTT TCC ATT TGG Ala Asn Val Gly Thr Ile Leu Phe Phe Ala Gly Thr Leu Ser Ile Trp 180 185 190	811
	AAG GAA ATT AGT TTT AAA ATA ATT GAT AAA AAA	859

		195					200					205					
5	CTC Leu 210	TAT Tyr	TAT Tyr	GCC Ala	TTA Leu	CCT Pro 215	TTG Leu	ATT Ile	CCT Pro	AGT Ser	TCC Ser 220	ATC Ile	CTG Leu	TGG Trp	TGG Trp	TTA Leu 225	12907
	CTG Leu	AAT Asn	GCT Ala	TCT Ser	AGT Ser 230	CGC Arg	TAT Tyr	TTC Phe	GTT Val	TTA Leu 235	TTC Phe	TTT	TTA Leu	GGA Gly	GCA Ala 240	GGT Gly	12955
10			GGT Gly														13003
	ATT Ile	TTT Phe	AAT Asn 260	ACG Thr	ATT Ile	TTT Phe	ACA Thr	CAG Gln 265	GCG Ala	TGG Trp	CAA Gln	ATT Ile	TCA Ser 270	GCC Ala	ATA Ile	GAA Glu	13051
15			gat Asp														13099
	TAC Tyr 290	TTA Leu	GCA Ala	ACT Thr	TTT Phe	CTA Leu 295	TTG Leu	TTA Leu	GGG Gly	ACA Thr	TCA Ser 300	GCT Ala	TTT Phe	ATG Met	ATT Ile	GTG Val 305	13147
20	CTT Leu	AAA Lya	CCA Pro	ATT Ile	GTC Val 310	GAA Glu	AAA Lys	GTC Val	GTT Val	TCA Ser 315	AGT Ser	GAC Asp	TAT Tyr	GCA Ala	AGT Ser 320	TCA Ser	13195
			TAT Tyr														13243
25	Ser	Asp	TTT Phe 340	Phe	Gly	Thr	Asn	Tyr 345	Ile	Ala	Ala	Lys	Gln 350	Thr	Lys	Gly	13291
	GTA Val	TTT Phe 355	ATG Met	ACA Thr	TCT Ser	ATC Ile	TAT Tyr 360	GGT Gly	ACC Thr	ATT Ile	GTT Val	TGT Cys 365	GTC Val	TTA Leu	CTC Leu	CAA Gln	13339
30			CTG Leu														13387
05			GGA Gly														13435
35			GTG Val														13483
40			GTT Val 420														13531
	Phe	Leu 435	TAT Tyr	Phe	Gly	Leu	Ala 440	Leu	Leu	Phe	Сув	Gly 445	Met	Leu	Val	Val	13579
45			Arg														13627
40			TTT Phe						TAAI	ATAA!	AGA C	CAGGI	GGT	T AT	CTCC	SAATG	13681
																CAACCG	13741
50																SATAAT	13801
																CAAAAG CCACC	13861
	AGT (ancu)	TANK ()MDI.		in Ch	muc 1	GIII	. GMA	MICE	MIC	114	LINCE	UI F	MAGC	CLACC	13921

	TAAAGGAATG	AAGTAGATAA	TATTTAGCAC	AGCCTCTTGA	ATCGTTCTGG	GATCCGCTTT	13981
	TATAAAGTCA	AAAGGATTCA	GTGACATCGC	CTGAAAATCC	GTTATTTTAG	TAAAAAGTAC	14041
5	CATGAATAAC	AGTAATAAAT	ACACACTGAA	AGCAAGATAG	AGATAAATAA	CTGAAAAATA	14101
	TTTGAGGTGA	TACTGGATAC	CAAACAACCA	GATAATCAGC	GTTAATAAGA	GTATTAAAGT	14161
	CAATGTGGTA	TAGTCAAAGT	GGTTAATCAA	CTTAGCCAGG	CTTTGATAGC	GAGTGAGAAC	14221
	GGGCATAATC	AGCCAAGTAA	TCGTCGCATA	ACTCAGGATA	AATGTGATCA	ATAAACTGCT	14281
10	GAGGTAGATC	ATATATTTTC	GCAACTGTTT	CTAACTCCTT	TTCTTGATGA	GATTAACCCT	14341
	ATTTTAACAT	ATTTTAAAAC	TGTCATGTTT	TTATGAATTT	AAAATAAATG	TTAAAGAAAA	14401
	TAAAAATTCA	CCAGTTGGTT	CTGTTGCAAA	GTTTTCCAAA	AAATCTATTT	TAGTGTAAAA	14461
15	TTGAGAAAAA	AGACAGAGAG	GACAGAGTAA	TGAATTATTT	TAAAGGCAAA	CAATTCAAAA	14521
	AAGACGTCAT	TATTGTCTCT	GTTGGTTACT	ACCTGCGTTA	CAATCTAAGC	TATCGTTAAG	14581
	TTCAGGAATT	GTTATATGAT	С				14602
•					•		
20							

(2) INFORMATIONS POUR LA SEQ ID NO: 2:
 (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 484 acides aminés
 (B) TYPE: acide aminé
 (D) CONFIGURATION: linéaire
 (ii) TYPE DE MOLECULE: protéine
 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Ser Ser Arg Thr Asn Arg Lys Gln Lys His Thr Ser Asn Gly Ser Trp Gly Met Val Asn Val Gly Leu Thr Ile Leu Tyr Ala Ile Leu Ala
20 25 30 Leu Val Leu Leu Phe Thr Met Phe Asn Tyr Asn Phe Leu Ser Phe Arg Phe Leu Asn Ile Ile Ile Thr Ile Gly Leu Leu Val Val Leu Ala Ile 50 55 60 Ser Ile Phe Leu Gln Lys Thr Lys Lys Leu Pro Leu Val Thr Thr Val 65 70 80 Val Leu Val Ile Phe Ser Leu Val Ser Leu Val Gly Ile Phe Gly Phe 85 90 95 Lys Gln Met Ile Asp Ile Thr Asn Arg Met Asn Gln Thr Ala Ala Phe 100 105 110Ser Glu Val Glu Met Ser Ile Val Val Pro Lys Glu Ser Asp Ile Lys Asp Val Ser Gln Leu Thr Ser Val Gln Ala Pro Thr Lys Val Asp Lys 130 140 Asn Asn Ile Glu Ile Leu Met Ser Ala Leu Lys Lys Asp Lys Lys Val 145 150 160 Asp Val Lys Val Asp Asp Val Ala Ser Tyr Gln Glu Ala Tyr Asp Asn 165 170 175 Leu Lys Ser Gly Lys Ser Lys Ala Met Val Leu Ser Gly Ser Tyr Ala 180 180 190 Ser Leu Leu Glu Ser Val Asp Ser Asn Tyr Ala Ser Asn Leu Lys Thr

	11	le T 2	yr 10	Thr	Tyr	Lys	Ile	Lys 215	Lys	Lys	Asn	Ser	Asn 220	Ser	Ala	Asn	Gln
5	Va 22	al A 25	qe	Ser	Arg	Val	Phe 230	Asn	Ile	Tyr	Ile	Ser 235	Gly	Ile	qeA	Thr	Tyr 240
	G)	ly P	ro	Ile	Ser	Thr 245	Val	Ser	Arg	Ser	Asp 250	Val	Asn	Ile	Ile	Met 255	Thr
	Va	al A	sn	Met	Asn 260	Thr	Hìs	Lys	Ile	Leu 265	Leu	Thr	Thr	Thr	Pro 270	Arg	Asp
10	LA	la T	yr	Val 275	Lys	Ile	Pro	Gly	Gly 280	Gly	Ala	Asp	Gln	Tyr 285	Asp	Lys	Leu
	Th		is 90	Ala	Gly	Ile	Tyr	Gly 295	Val	Glu	Thr	Ser	Glu 300	Gln	Thr	Leu	Glu
15	As 30		eu	Тук	Gly	Ile	Lys 310	Leu	Asp	Tyr	Tyr	Ala 315	Arg	Ile	Asn	Phe	Thr 320
	Se	er P	he	Leu	Lys	Leu 325	Ile	Asp	Gln	Leu	Gly 330	Gly	Val	Thr	۷al	His 335	Asn
	As	sp G	ln	Ala	Phe 340	Thr	Gln	Glu	Lys	Phe 345	Asp	Phe	Pro	Val	Gly 350	Asp	Ile
20	Gl	ln M	et	Asn 355	Ser	Glu	Gln	Ala	Leu 360	Gly	Phe	Val	Arg	Glu 365	Arg	Tyr	Asn
	Le		sp 70	Gly	Gly	Asp	Asn	Asp 375	Arg	Gly	Lys	Asn	Gln 380	Glu	Lys	Val	Ile
25	Se 38		la	Ile	Leu	Asn	Lys 390	Leu	Ala	Ser	Leu	Lys 395	Ser	Val	ser	Asn	Phe 400
	Th	hr S	er	Ile	Val	Asn 405	Asn	Leu	Gln	Asp	Ser 410	Val	Gln	Thr	Asn	Met 415	Ser
	Le	eu A	sn	Thr	Ile 420	Asn	Ala	Leu	Ala	Asn 425	Thr	Gln	Leu	Glu	Ser 430	Gly	Ser
30	Ly	ys P	he	Thr 435	Val	Thr	Ser	Gln	Ala 440	Val	Thr	Gly	Thr	Gly 445	Ser	Thr	Gly
	G1	ln L	eu 50	Ile	Ser	Tyr	Ala	Met 455	Pro	Asn	Ser	Ser	Leu 460	Tyr	Met	Met	Lys
35	Le 46		sp	Asn	Ser	Ser	Val 470	Glu	Ser	Ala	Ser	Gln 475	Ala	Ile	Lys	Lys	Leu 480
	Me	et G	lu	Glu	Lys												
40																	
	(2	2} <u>1</u>		i) (ARAC	TERI NGUE	STIC	UES 243	DE I	A SI	EQUE						
45				1) I (i	YPE	PE: ONFIG DE N	TURAT OLE	ULE:	lir pro	otéir	1e	SEQ 1	D NO): 3:			
	Va	al I	le	Asp	Val	His 5	Ser	His	Ile	Val	Phe 10	Asp	Val	Asp	Asp	Gly 15	Pro
50	G1	lu T	hr	Leu	Glu 20	Glu	Ser	Leu	Asp	Leu 25	Ile	Gly	Glu	Ser	Tyr 30	Ala	Gln
	G1	ly V	al	Arg 35	Lys	Ile	Val	Ser	Thr 40	Ser	His	Arg	Arg	Lys 45	Gly	Met	Phe

Glu Thr Pro Glu Asp Lys Ile Phe Ala Asn Phe Lys Lys Val Lys Ala
50 55 60 Glu Ala Glu Ala Leu Tyr Pro Asp Leu Thr Ile Tyr Tyr Gly Gly Glu 65 70 75 80 Leu Tyr Tyr Thr Ser Asp Ile Val Glu Lys Leu Glu Lys Asn Leu Ile Pro Arg Met His Asn Thr Gln Phe Ala Leu Ile Glu Phe Ser Ala Arg Thr Ser Trp Lys Glu Ile His Ser Gly Leu Ser Asn Val Leu Arg Ala Gly Val Thr Pro Ile Val Ala His Ile Glu Arg Tyr Asp Ala Leu Glu Glu Asn Ala Asp Arg Val Arg Glu Ile Ile Asn Met Gly Cys Tyr Thr 145 150 155 160 Gln Val Asn Ser Ser His Val Leu Lys Pro Lys Leu Phe Gly Asp Lys Asp Lys Val Arg Lys Lys Arg Val Arg Phe Phe Leu Glu Lys Asn Leu Val His Met Val Ala Ser Asp Met His Asn Leu Gly Pro Arg Pro Pro Phe Met Lys Asp Ala Tyr Glu Ile Val Lys Lys Asn Tyr Gly Ser Lys 210 215 220 Arg Ala Lys Asn Leu Phe Ile Glu Asn Pro Lys Thr Leu Leu Glu Asn 225 230 235 240 Gln Tyr Leu

(2) INFORMATIONS POUR LA SEQ ID NO: 4:
 (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 231 acides aminés
 (B) TYPE: acide aminé
 (D) CONFIGURATION: linéaire
 (ii) TYPE DE MOLECULE: protéine
 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

Met Asn Gln Asp Asn Thr Lys Ser Asp Glu Ile Asp Val Leu Ala Leu Leu His Lys Leu Trp Thr Lys Lys Leu Leu Ile Leu Phe Thr Ala Phe Tyr Phe Ala Val Phe Ser Phe Leu Gly Thr Tyr Phe Phe Ile Gln Pro Thr Tyr Thr Ser Thr Thr Arg Ile Tyr Val Val Asn Gln Ala Thr Asp 50 60 Asn Lys Asn Leu Ser Ala Gln Asp Leu Gln Ala Gly Thr Tyr Leu Ala Asn Asp Tyr Lys Glu Ile Ile Ala Ser Asn Asp Val Leu Ser Glu Val Ile Lys Asp Glu Lys Leu Asn Leu Ser Glu Ala Glu Leu Ser Lys Met 100 105 110 Val Ser Val Asn Ile Pro Thr Asp Thr Arg Leu Ile Ser Ile Ser Val Asn Ala Lys Thr Gly Gln Asp Ala Gln Thr Leu Ala Asn Lys Val Arg

45

5

10

20

Glu Val Ala Ser Lys Lys Ile Lys Lys Val Thr Lys Val Glu Asp Val 145 150 160 Thr Thr Leu Glu Glu Ala Lys Leu Pro Glu Ser Pro Ser Ser Pro Asn 165 170 175 Ile Lys Leu Asn Val Leu Leu Gly Ala Val Leu Gly Gly Phe Leu Ala 180 185 190 Val Val Gly Val Leu Val Arg Glu Ile Leu Asp Asp Arg Val Arg Arg 195 200 205 10 Pro Glu Asp Val Glu Asp Ala Leu Gly Met Thr Leu Leu Gly Ile Val 210 215 220 Pro Asp Thr Asp Lys Ile 225 230 15 (2) INFORMATIONS POUR LA SEQ ID NO: 5:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 249 acides aminés

(B) TYPE: acide aminé

(D) CONFIGURATION: linéaire 20 (ii) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5: Met Pro Leu Leu Lys Leu Val Lys Ser Lys Val Asp Phe Ala Lys Lys Thr Glu Glu Tyr Tyr Asn Ala Ile Arg Thr Asn Ile Gln Phe Ser Gly Ala Gln Met Lys Val Ile Ala Ile Ser Ser Val Glu Ala Gly Glu Gly
35 40 . 45 Lys Ser Met Ile Ser Val Asn Leu Ala Ile Ser Phe Ala Ser Val Gly 50 60 30 Leu Arg Thr Leu Leu Ile Asp Ala Glu Thr Arg Asn Ser Val Leu Ser Gly Thr Phe Lys Ser Asn Glu Pro Tyr Lys Gly Leu Ser Asn Phe Leu
85 90 95

35

40

45

50

10	(2)	(:	(i) (; (i) (ii) (;	CARA(A) L(B) T C) C(TYPE	OTER: ONGUI OPE: ONFIC DE 1	ISTICEUR: acic SURAT	OUES 227 ie an TION: TULE:	DE 1 acio niné : lir : pro	LA SI ies a néaim otéir	EQUE amino re ne	és	ID NO	D: 6	:		
	Met 1	Ser	Gln	Ala	Lys 5	Glu	Glu	Ile	Ser	Asp 10	Val	Met	Thr	Tyr	Ser 15	Glu
	Leu	Thr	Ser	His 20	Lys	Pro	Lys	Ile	Ile 25	Tyr	Ser	Leu	Ile	Lys 30	Arg	Ile
15	Gly	Asp	Ile 35	Leu	Val	Ser	Ser	Ile 40	Gly	Leu	Ile	Ile	Leu 45	Ile	Pro	Leu
	Phe	Leu 50	Ile	Val	Ala	Leu	Ile 55	Met	Lys	Cys	Ser	Glu 60	Pro	Thr	Ala	Pro
20	Ile 65	Phe	Phe	Ser	His	Ile 70	Arg	Asn	Gly	Lys	Asn 75	Gly	Lys	Lys	Phe	80 Lys
	Met	Tyr	Lys	Phe	Arg 85	Thr	Met	Суѕ	Gln	qaA 0e	Ala	Glu	Ser	Ile	Leu 95	Met
<i>25</i>	Lys	Asp	Thr	Glu 100	Leu	Phe	Ala	Lys	Phe 105	ГÀа	Ala	Asn	Gly	Tyr 110	Lys	Leu
	Glu	Thr	His 115	Glu	Asp	Pro	Arg	Ile 120	Thr	ГÀЗ	Ile	Gly	Gly 125	Ile	Leu	Arg
	Lys	Thr 130	Ser	Ile	Asp	Glu	Leu 135	Pro	Gln	Leu	Ile	Asn 140	۷al	Phe	Leu	Gly
30	Gln 145	Met	Ser	Leu	Val	Gly 150	Pro	Arg	Pro	Leu	Pro 155	qaA	Arg	Glu	Ile	Ile 160
	Glu	Tyr	Gly	qaA	Asn 165	Gln	Glu	Lys	Phe	Leu 170	Ser	Val	Lys	Pro	Gly 175	Met
35		Gly		180					185					190		
	Arg	Суз	His 195	Leu	Glu	Leu	Tyr	Tyr 200	Val	Glu	Lys	Сув	Сув 205	Phe	Thr	Phe
	Asp	Val 210	Leu	Ile	Leu	Leu	Lys 215	Thr	Ile	Gly	Ile	Val 220	Leu	Lys	Arg	Val
40	Gly 225	Ala	Arg													
45	(2)	(:	(i) (// (i) (ii) 1	CARACA) LC B) TC C) CC CYPE	OTERI ONGUI OPE: ONFI ODE 1	JR LA ISTIC EUR: acic EURA MOLEC ION I	OUES 319 le an CION: CULE:	DE lacioniné line	LA SI des a néaim otéir	EQUE amino ce ne	és	ID NO	D: 7	:		
50	Met 1	Asn	Glu	Gln	Val 5	Thr	Phe	Ile	Leu	Cys 10	Asp	Phe	Leu	Val	Arg 15	Glu
	Ile	ГÀЗ	Pro	Lys 20	Tyr	Asp	Leu	Leu	Ala 25	Tyr	Gln	Phe	Ile	Ser 30	Lys	Lys

Ile Lys Glu Ile Lys Pro Asp Ile Val His Cys His Ser Ser Lys Ala
35 40 45 Gly Val Ile Gly Arg Leu Ala Ala Lys Arg Arg Gly Val Lys Lys Ile
50 60 Phe Tyr Thr Pro His Ala Tyr Ser Phe Leu Ala Pro Glu Phe Ser Gly 65 70 75 80 Lys Lys Phe Leu Phe Val Gln Ile Glu Lys Phe Leu Ser Arg Phe 10 Ala Thr Thr Lys Ile Phe Cys Val Ser Ile Ala Glu Met Gln Ala Ala Leu Glu Val Asn Leu Asp Lys Thr Asp Lys Phe Gln Val Ile Tyr Asn 115 120 125 Gly Leu Pro Glu Ile Asp Leu Pro Ser Lys Glu Thr Ile Arg Ala Gln
130 135 140 15 Leu Gly Leu Glu Lys Ala Ala Val Val Ile Gly Asn Asn Ala Lys Met 145 150 155 160 Ser Glu Gln Lys Asn Pro Met Phe Phe Met Glu Ile Ala Arg Lys Met
165 170 175 20 Ile Arg Gln Asn Ala Asn Trp His Phe Val Trp Val Gly Asp Gly Gln
180 185 190 Leu Met Pro Leu Phe Gln Ser Phe Ile Lys Gln Asn Gly Leu Glu Gly 195 200 205 Asn Ile His Leu Leu Gly Glu Arg Pro Asp Ser Glu Ile Val Val Thr 210 215 220 Ala Tyr Asp Ile Phe Leu Thr Thr Ser Gln Tyr Glu Gly Leu Pro Tyr 225 230 235 240 Ala Pro Ile Glu Ala Met Arg Ala Gly Val Pro Ile Leu Ala Thr Lys 245 250 255 Val Val Gly Asn Ser Glu Leu Val Ile Glu Gly Lys Asn Gly Tyr Leu 260 265 270 Ile Asp Leu Glu Trp Ser Lys Ser Val Glu Glu Lys Leu Tyr Lys Ala 275 280 285 Ala Lys Ile Asp Ala Gln Met Ile Lys Ala Asp Phe Arg Gln Arg Phe 290 295 300 35 Ala Ile Asp Gln Ile Leu Lys Gln Ile Glu Thr Ile Tyr Leu Ala 305 310 315

(2) INFORMATIONS POUR LA SEQ ID NO: 8:

(1) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 372 acides aminés

(B) TYPE: acide aminé

(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

Met Lys Lys Ile Ser Ile Leu His Phe Ser Gln Val Ser Gly Gly Gly Val Glu Lys Tyr Ile Lys Leu Phe Leu Lys Tyr Ser Asp Val Thr Lys Phe Asn Asn Tyr Leu Val Ala Pro Asn Leu Glu Asn Tyr Asp Glu Phe Asn Gly Tyr Leu Lys Met Ser Val Asn Phe Asn Met Glu Gln Thr Phe

Ser Pro Leu Lys Ile Phe Lys Asn Val Phe Phe Ile Arg Ser Val Leu

55

40

45

	65					70					75					80
	Lys	Lys	Ile	Asn	Pro 85	Asp	Ile	Val	Tyr	Leu 90	His	Ser	Thr	Phe	Ala 95	Gly
5	Val	Val	Gly	Arg 100	Ile	Ala	Ser	Ile	Gly 105	Leu	Pro	Thr	Lys	Val 110	Val	Tyr
	Asn	Pro	His 115	Gly	Trp	Ser	Phe	Lys 120	Met	Ąsp	Asn	Ser	Tyr 125	Leu	Lys	Lys
10	Leu	Ile 130	Phe	Lys	Leu	Ile	Glu 135	Phe	Ser	Leu	Ser	Phe 140	Leu	Thr	Asp	Lys
	Phe 145	Ile	Leu	Ile	Ser	Glu 150	Ser	Glu	Tyr	Ile	Leu 155	Ala	Asn	His	Ile	Ser 160
15	Phe	Asn	Lys	Ser	Lys 165	Phe	Ser	Leu	Ile	Asn 170	Asn	Gly	Val	Glu	Val 175	Ile
15	Thr	Gly	qeA	Ser 180	Arg	Asn	Glu	Ile	Glu 185	Glu	Ile	Phe	Pro	Asn 190	Glu	Asp
	Phe	Ile	Ile 195	Gly	Met	Val	Gly	Arg 200	Leu	Ser	Pro	Pro	Lys 205	Glu	Phe	Phe
20	Phe	Phe 210	Ile	Asp	Phe	Ala	Lys 215	Lys	Ile	Leu	Gln	11e 220	Arg	Asn	qaA	Thr
	Asn 225	Phe	Ile	Ile	Val	Gly 230	qaA	Gly	Glu	Leu	Arg 235	Ser	Glu	Ile	Glu	Arg 240
25	Met	Ile	Leu	Asp	Asn 245	Gly	Leu	Gly	Ąsp	Lув 250	Ile	Tyr	Ile	Thr	Gly 255	Trp
	Val	Авр	Asn	Pro 260	Arg	Asn	Tyr	Ile	Glu 265	Lys	Phe	qeA	Gln	Ala 270	Ile	Leu
	Phe	Ser	Arg 275	Trp	Glu	Gly	Leu	Ser 280	Leu	Thr	Ile	Ala	Glu 285	Tyr	Met	Ser
30	Gln	Lys 290	Lys	Thr	Ile	Leu	Ala 295	Thr	Asn	Ile	Gly	Gly 300	Ile	Asn	Asp	Leu
	Ile 305	Thr	Asp	Gly	Glu	Thr 310	Gly	Met	Leu	Ile	Glu 315	Val	Gly	Asp	Leu	Asn 320
35	Ser	Ala	Val	Ser	Lys 325	Ser	Phe	Glu	Leu	Arg 330	Asn	Asn	Lys	Glu	Val 335	Ser
	Asn	Gln	Leu	Ala 340	Asn	Asn	Ala	Tyr	Asn 345	Lys	Val	Val	Glu	Gln 350	Phe	Ser
	Ile	Glu	Lys 355	Gln	Met	Ala	Glu	Ile 360	Glu	Ser	Leu	Phe	Ile 365	Glu	Met	Сув
40	Asn	Asn 370	Glu	Lys										•		
45	(2)		(i)	CARA	CTER	STI	VES 159	DE	LA S	EQUE						
		(ii	(1	B) T	YPE: ONFIC	acio TURA	de and ION	niné : li:	néai:							
		(xi) DE	SCRI	PTIO	1 DE	LA :	SEQUI	ENCE		-					_
50	1				5					10				Phe	15	
	Trp	Ile	Tyr	Arg 20	Leu	Leu	Tyr	Leu	Lys 25	Lys	Phe	Gln	Phe	Gly 30	Ala	Arg

Leu Thr Phe Arg Asp Gly Phe His Leu Leu Ile Glu Lys Ser Gly Lys Val Ile Ile Gly Asn His Val Phe Phe Asn Asn Phe Cys Ser Ile Asn 50 55 60 Ala Met Leu Ser Val Thr Ile Gly Asp Asp Cys Ile Phe Gly Glu Asn Val Lys Ile Tyr Asp His Asn His Cys Tyr Gln Asn Lys Ser Gln Pro Ile Ser Lys Gln Gly Phe Ser Thr Ala Ala Ile Gln Ile Gly Arg Asn 100 105 110 Cys Trp Ile Gly Ser Gln Val Thr Ile Leu Lys Gly Val Thr Ile Gly 115 120 125 Asp Asn Ser Ile Ile Gly Ala Gly Val Val Val Tyr Gln Asp Val Pro Glu Asn Ser Ile Val Leu Ser Asn Gly Glu Ile Arg Lys Arg Gly 145 $$ 150 $$ 155

20

30

35

40

10

15

25

(2) INFORMATIONS POUR LA SEQ ID NO: 10:
 (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 324 acides aminés
 (B) TYPE: acide aminé
 (D) CONFIGURATION: linéaire
 (ii) TYPE DE MOLECULE: protéine
 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

Met Tyr Leu Lys Ser Leu Ile Ser Ile Val Ile Pro Val Tyr Asn Val Glu Lys Tyr Leu Glu Lys Cys Leu Gln Ser Val Gln Asn Gln Thr Tyr Asn Asn Phe Glu Val Ile Leu Val Asn Asp Gly Ser Thr Asp Ser Ser Leu Ser Ile Cys Glu Lys Phe Val Asn Gln Asp Lys Arg Phe Ser Val Phe Ser Lys Glu Asn Gly Gly Met Ser Ser Ala Arg Asn Phe Gly Ile Lys Lys Ala Lys Gly Ser Phe Ile Thr Phe Val Asp Ser Asp Asp Tyr 85 90 95

Ile Val Lys Asp Tyr Leu Ser His Leu Val Ala Gly Ile Lys Ser Glu 100 105 110 Thr Ser Ile Val Cys Ser Lys Phe Phe Leu Val Asp Glu Lys Gly Ser 115 120 125 Leu Leu Thr Lys Lys Glu Ala Pro Lys Lys Lys Ser Glu Val Val Ser 130 140 Ile Glu Glu Ser Ile Lys Ile Leu Leu Leu Gln Gln Asn Gly Tyr Asp 145 150 155 160

Leu Ala Val Trp Gly Lys Leu Tyr Pro Val Ser Phe Phe Glu Thr Ile 165 170 175 Ser Phe Pro Glu Gly Lys Leu Tyr Glu Asp Met Gly Thr Thr Tyr Lys Leu Leu Lys Leu Ala Ser Glu Val Val Phe Leu Asp Ala Tyr Asp Tyr
195 200 205

50

Ala Tyr Val Gln Arg Pro Asn Ser Ile Met Asn Ser Ser Phe Asn Leu 210 215 220 Lys Lys Leu Asp Ile Ile Glu Met Val His Glu Met Glu Asn Asp Ile 225 230 240 Leu Ala Gln Phe Pro Asn Leu Ala Leu Tyr Val Lys Asn Arg Ala Phe 245 250 255 Ala Ala Glu Val Lys Ile Phe Leu Glu Ile Pro Lys Glu Lys Glu Phe 260 265 270 Glu Gln Ala Gln Lys Gln Leu Trp His Asp Ile Lys Lys Asn Arg Lys 275 280 285 Ala Pro Phe Met Thr Lys Gly Ala Arg Leu Lys Asn Arg Leu Gly Ala 290 295 300 Ser Leu Ser Phe Leu Gly Lys Ser Leu Phe Leu Thr Ile Gly Lys Gln 305 310 320 Leu Val Asp Arg

25

30

35

10

15

(2) INFORMATIONS POUR LA SEQ ID NO: 11:

INFORMATIONS POUR LA SEQ ID NO: 11:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 360 acides aminés

(B) TYPE: acide aminé

(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Met Val Ile Tyr Phe Leu Leu Phe Pro Met Ile Ala Met Ile Tyr Leu 1 15 Met Thr Leu Leu Arg Gln Lys Ala Gln Ile Gln Lys Thr Ile Phe 20 30Cys Val Leu Thr Phe Gly Thr Leu Gly Phe Ile Ser Ala Ser Arg Ala 35 40 45 Ser Ser Val Gly Thr Asp Val Thr Leu Tyr Glu Asn Ile Phe Lys Ser Ile Asn Tyr Gly Ile Ser Ala Glu Asn Asn Trp Gly Tyr Val Ile Tyr 65 70 75 80 Asn Lys Leu Ile Gly Ser Val Phe Gly Tyr Thr Gly His Glu Ile Thr Ala Ala Asn Ser Val Leu Ile Thr Ile Leu Ile Gly Ile Phe Ile Trp Lys Val Ala Glu His Tyr Phe Val Ala Thr Phe Leu Tyr Ile Ser Leu 115 120 125 Phe Tyr Tyr Ala Thr Ser Phe Asn Ile Ser Arg Gln Phe Ile Ala Met 130 135 140 Gly Leu Val Leu Val Ala Ile Ser Phe Ala Leu Asp Lys Lys Val Met 145 150 160 Pro Trp Phe Ile Leu Thr Val Leu Ala Thr Leu Phe His Ala Thr Ala 165 170 175

Ile Val Ala Phe Pro Val Tyr Trp Leu Thr Lys Val His Trp Asp Val

Lys Lys Thr Leu Ser Ile Phe Pro Ile Thr Ile Phe Ala Ser Phe Ile 195 200 205

	Phe	Asp 210	Ala	Ile	Leu	Asn	Ile 215	Phe	Val	Arg	Phe	Phe 220	Pro	His	Tyr	Glu
5	Met 225	Tyr	Ile	Thr	Gly	Thr 230	Gln	Phe	Asn	Ile	Ser 235	Asp	Gln	Gly	Gln	Gly 240
	Arg	Val	Val	Leu	Val 245	Lys	Ile	Phe	Ile	Leu 250	Leu	Ile	Leu	Phe	Thr 255	Leu
	Phe	Leu	Phe	Tyr 260	Lys	Lys	Ser	Tyr	Ala 265	Leu	Ile	Ser	Glu	Сув 270	His	Gln
10	Ser	Leu	Ile 275	Ala	Leu	Thr	Thr	Val 280	Gly	Leu	Ser	Ile	Gly 285	Ile	Val	Phe
	Tyr	Asn 290	Asn	Ile	Leu	Leu	Asn 295	Arg	Ile	Glu	Met	Phe 300	Tyr	Ser	Ile	Leu
15	Ser 305	Ile	Val	Phe	Ile	Pro 310	Ile	Ala	Ile	Asp	Tyr 315	Ile	Ser	Leu	Lys	Phe 320
	Lys	Gln	Lys	Asp	Ala 325	Val	Arg	Leu	Met	Leu 330	Thr	Ile	Gly	Ile	Leu 335	Leu
	Ile	Thr	Leu	Val 340	Pro	Tyr	Tyr	Ile	Gln 345	Val	Ser	Gly	Asn	Tyr 350	Ser	Gly
20	Ile	Leu	Pro 355	Tyr	Val	Ile	Gln	Gln 360								
25	(2)		RMAT	ARAC	TER	STIC	UES	DE 1	A SI	OUE						
					NGUE				ies a	amıne	25					
			(1		ONFIC	JURA"	CION	: li:								
				YPE	DE N	OLEC	CULE	li:	otéir	ie _	II QE	NO:	: 12:	•		
30	Met 1	(xi	(i) 1 (i)	O) CO TYPE ESCRI	DE N DE N	ON DE	TION: CULE:	: lir : pro SEQU	otéir JENCI	ne E: SI					Arg 15	Asn
30	1	(xi	(I Li) T L) DI	O) CC TYPE ESCRI Arg	ONFIC DE N IPTIC Lya 5	FURAT MOLEC ON DI Lys	CULE: LA Gln	: lin : pro SEQU Val	otéir JENCI Ile	le E: SI Leu 10	Ile	Leu	Ser	His	15	
	1 Thr	(xi Glu Leu	(I Li) T L) DI Asp	O) CO TYPE ESCRI Arg Leu 20	DNFIC DE N IPTIC Lya 5	FURATIOLEC ON DI Lys Ser	CULE: LA Gln Thr	: lin : pro SEQU Val	otéir JENCI Ile Glu 25	Leu 10	Ile Leu	Leu Asp	Ser Ser	His Gln 30	15 Tyr	Phe
<i>30</i>	1 Thr Asp	(xi Glu Leu Phe	(I ii) T ii) Di Asp Ala Phe 35	D) CO TYPE SSCRI Arg Leu 20	DNFIC DE N IPTIC Lys 5 Lys	FURATION DE Lys Ser	CULE: LA Gln Thr	: lin: proseque Val Ile Lys 40	otéin JENCI Ile Glu 25 Lys	Leu 10 Leu Ser	Ile Leu Arg	Leu Asp Ile	Ser Ser Gln 45	Gln 30 Asp	15 Tyr Phe	Phe Phe
	1 Thr Asp	(xi Glu Leu Phe	(I ii) Di Asp Ala	D) CO TYPE SSCRI Arg Leu 20	DNFIC DE N IPTIC Lys 5 Lys	FURATION DE Lys Ser	CULE: LA Gln Thr	: lin: proseque Val Ile Lys 40	otéin JENCI Ile Glu 25 Lys	Leu 10 Leu Ser	Ile Leu Arg	Leu Asp Ile	Ser Ser Gln 45	Gln 30 Asp	15 Tyr Phe	Phe Phe
	1 Thr Asp Tyr	Glu Leu Phe Leu 50	(I ii) T ii) Di Asp Ala Phe 35	D) CO TYPE ESCRI Arg Leu 20 Leu	Lys Lys Lys Lys	SURATION DE Lys Ser Ile	CULE LA Gln Thr Asp	Val Lys 40	otéin JENCI Ile Glu 25 Lys Ser	Leu 10 Leu Ser	Ile Leu Arg	Leu Asp Ile His 60	Ser Ser Gln 45	Gln 30 Asp	Tyr Phe Glu	Phe Phe Arg
	Thr Asp Tyr Lys 65	Glu Leu Phe Leu 50 Asn	(I ii) Di Asp Ala Phe 35	Leu Leu Lys	Lys Lys Lys His	SURATIOLEGON DE Lys Ser Ile Thr Gly 70	TION CULE LA Gln Thr Asp Lys 55 Gly	: lin: : pro SEQU Val Ile Lys 40 Phe	ctéin JENCI Ile Glu 25 Lys Ser	Leu 10 Leu Ser Thr	Ile Leu Arg Ile Val	Leu Asp Ile His 60 Glu	Ser Ser Gln 45 Phe Ala	His Gln 30 Asp Ser Met	Tyr Phe Glu Phe	Phe Phe Arg Ala 80
35	Thr Asp Tyr Lys 65 Leu	(xi Glu Leu Phe Leu 50 Asn	(III) DE Asp Ala Phe 35 Lys Val Glu	Cys	Lys Lys His Ile Trp	URATIOLEGON DE Lys Ser Ile Thr 70 Arg	TION TULE: Gln Thr Asp Lys 55 Gly Asp	E lize pro SEQUE Val IIe Lys 40 Phe Phe	ctéin JENCI Ile Glu 25 Lys Ser Ser	Leu 10 Leu Ser Thr Met Glu 90 Asp	Ile Leu Arg Ile Val 75	Leu Asp Ile His 60 Glu Ser	Ser Ser Gln 45 Phe Ala Tyr	His Gln 30 Asp Ser Met	Tyr Phe Glu Phe His	Phe Phe Arg Ala 80 Phe
35	Thr Asp Tyr Lys 65 Leu Leu	(xi Glu Leu Phe Leu 50 Asn Leu Ser	(Iii) The state of	Cys Asp Asp Asp	DE NIPTIC DE NIPTIC Lys 5 Lys His Ile Trp Ala 85	GURATOLECON DILECTOR DI	TION: UULE: LA Gln Thr Asp Lys 55 Gly Asp	: lir: property of the control of th	DENCI Ile Glu 25 Lys Ser Ser Gly Lys 105	Leu 10 Leu Ser Thr Met Glu 90 Asp	Ile Leu Arg Ile Val 75 Tyr Asn	Leu Asp Ile His 60 Glu Ser	Ser Ser Gln 45 Phe Ala Tyr Ile	His Gln 30 Asp Ser Met Phe Val	Tyr Phe Glu Phe His 95 Phe	Phe Phe Arg Ala 80 Phe
35 40	Thr Asp Tyr Lys 65 Leu Leu Phe	(xi Glu Leu Phe Leu 50 Asn Leu Ser	(Iii) The state of	D) CC CYPE ESSCRIANCE Arg Leu 20 Leu Lys His Cys Asp 100 Asn	DE MIPTIC Lys 5 Lys 1 Lys 5 Asp Ser	GURATION DIVIDITION DI	TION: UULE: LA Gln Thr Asp Lys 55 Gly Asp Pro	: lir: : property : pr	the ser ser ser ser ser ser ser ser ser se	ne E: SI Leu 10 Leu Ser Thr Met Glu 90 Asp	Ile Leu Arg Ile Val 75 Tyr Asn	Leu Asp Ile His 60 Glu Ser Glu	Ser Ser Gln 45 Phe Ala Tyr Ile Ile	His Gln 30 Asp Ser Met Phe Val 110	Tyr Phe Glu Phe His 95 Phe Asp	Phe Phe Arg Ala 80 Phe Asn Phe
35 40	Thr Asp Tyr Lys 65 Leu Leu Phe	Glu Leu Phe Leu 50 Asn Leu Ser Phe Asn 130	(Iii) The state of	Cys Asp Leu Lys Lys Asp Asp Asp Asp Asp	DNFIC DE M Lys 5 Lys Lys His Trp Ala 85 Asp	SURANGOLDANGON DI Lys Lys Ser Ile Thr Gly 70 Arg Met Tyr	COLE COLE LA Gln Thr Asp Lys 55 Gly Asp Pro Pro	lize processed to see the second seco	the ser ser ser ser ser ser ser ser ser has here. Lys has	ne E: SE Leu 10 Leu Ser Thr Met Glu 90 Asp Phe	Ile Leu Arg Ile Val 75 Tyr Asn Ile Glu	Leu Asp Ile His 60 Glu Ser Glu Asp	Ser Ser Gln 45 Phe Ala Tyr Ile Ile 125 Pro	His Gln 30 Asp Ser Met Phe Val 110 Leu Glu	Tyr Phe Glu Phe His 95 Phe Asp	Phe Arg Ala 80 Phe Asn Phe
35 40	Thr Asp Tyr Lys 65 Leu Leu Phe Glu Glu Glu 145	Glu Leu Phe Leu 50 Asn Leu Ser Phe Asn Glu	(Iii) The control of	D) CC CYPE Arg Leu 20 Leu Lys His Cys Asp 100 Asn Asn Val	DNFIC DE N Lys 5 Lys His Trp Ala 85 Asp Ser Lys	GURATION DI Lys Ser Ile Thr Gly 70 Arg Met Tyr Asn Tyr 150	COULES LA Gln Thr Asp Lys 55 Gly Asp Pro Pro Serr 135 Tyr	lizing property of the propert	the ser ser ser ser ser ser ser ser ser has he ser has he ser ser he ser ser ser ser ser ser ser ser ser se	ne E: SE Leu 10 Leu Ser Thr Met Glu 90 Asp Phe Tyr His	Ile Leu Arg Ile Val 75 Tyr Asn Ile Glu Met	Leu Asp Ile His 60 Glu Ser Glu Asp Pro 140	Ser Ser Gln 45 Phe Ala Tyr Ile Ile Pro Ile	His Gln 30 Asp Ser Met Phe Val 110 Leu Glu	Tyr Phe Glu Phe His 95 Phe Asp Met Asn	Phe Arg Ala 80 Phe Asn Phe Lle Arg 160

				180					185					190		
	His	Gln	Trp 195	Сув	Ser	Leu	Thr	Asn 200	Gln	Phe	Val	Asp	Ile 205	Leu	Leu	Asp
5	Lys	Glu 210	Glu	Arg	Arg	Val	Gly 215	Lys	Ser	Tyr	Phe	Ser 220	Ser	Ser	Leu	Ile
	Pro 225	Asp	Glu	Сув	Tyr	Phe 230	Gln	Thr	Phe	Ala	Met 235	Ile	Lys	Lys	Val	Glu 240
10		Tyr	Gln	Gln			Met	Ser	Ala	Arg 250	_	Ile	Asp	Trp		_
10	Gly	Lys	Pro		245 Ile	Trp	Arg	Gln	Asp		Phe	Phe	Glu		255 Met	Asn
	Asp	Lys	Asp	260 Ser	Met	Phe	Ser	Arg	265 Lys	Phe	Asp	Glu	Asn	270 Val	Asp	Arg
15		Ile	275					280				_	285			
		290					295					300	 9	501		vob
	305	Ala	Asn	rys	116	310	Asp	гàг	Arg	Pne	315	гув				
20																
	(2)	INF	(i) (CIONS CARAC A) LC	TER	[STI	QUES	DE 1	ĻA SI	EQUE						
			(I	3) T	PE:	acio	ie ar	niné								
25				PE DI						: SE	O ID	NO:	13:			
	Met 1	Asn	Lys	Tyr	Lys 5	Lys	Leu	Leu	Ser	Asn 10	Ser	Leu	Val	Phe	Thr 15	Ile
30	Gly	Asn	Leu	Gly 20	Ser	Lys	Leu	Leu	Val 25	Phe	Leu	Leu	Val	Pro 30	Leu	Tyr
	Thr	Tyr	Ala 35	Met	Thr	Pro	Gln	Glu 40	Tyr	Gly	Met	Ala	Asp 45	Leu	Tyr	Gln
	Thr	Thr 50	Ala	Asn	Leu	Leu	Leu 55	Pro	Leu	Ile	Thr	Met 60	Asn	Val	Phe	Asp
35	Ala 65	Thr	Leu	Arg	Phe	Ala 70	Met	Glu	Lys	Ser	Met 75	Thr	Lys	Glu	Ser	Val 80
	Leu	Thr	Asn	Ser	Leu 85	Val	Val	Trp	Сув	Phe 90	Ser	Ala	Val	Phe	Thr 95	Сув
40	Leu	Gly	Ala	Cys 100	Ile	Ile	Tyr	Ala	Leu 105	Asn	Leu	Ser	Asn	Lys 110	Trp	Tyr
70	Leu	Ala	Leu 115		Leu	Thr	Phe	Asn 120		Phe	Gln	Gly	Gly 125		Ser	Ile
	Leu	Ser		Tyr	Ala	Arg	Gly		Gly	Lys	Ser	Lys		Phe	Ala	Ala
45	Gly	130 Gly	Val	Ile	Leu	Thr	135 Phe	Leu	Thr	Gly	Ala	140 Leu	Asn	Ile	Leu	Phe
	145 Leu	Val	Tvr	Leu	Pro	150 Leu	Glv	Ile	Thr	Glv	155 Tvr	Leu	Met	Ser	Leu	160 Val
			_		165					170					175	
50		Ala		180					185					190		
	Trp	Lys	Glu 195	Ile	Ser	Phe	Lys	Ile 200	Ile	Asp	ГЛЗ	Lys	Leu 205	Ile	Trp	Gln

	Met	Leu 210	Tyr	Tyr	Ala	Leu	Pro 215	Leu	Ile	Pro	Ser	Ser 220	Ile	Leu	Trp	Trp	
5	Leu 225	Leu	Asn	Ala	Ser	Ser 230	Arg	Tyr	Phe	Val	Leu 235	Phe	Phe	Leu	Gly	Ala 240	
	Gly	Ala	Asn	Gly	Leu 245	Leu	Ala	Val	Ala	Thr 250	Lys	Ile	Pro	Ser	Ile 255	Ile	
	Ser	Ile	Phe	Asn 260	Thr	Ile	Phe	Thr	Gln 265	Ala	Trp	Gln	Ile	Ser 270	Ala	Ile	
10	Glu	Glu	Tyr 275	qaA	Ser	His	Gln	Lys 280	Ser	Lys	Tyr	Tyr	Ser 285	Asp	Val	Phe	
	His	Tyr 290	Leu	Ala	Thr	Phe	Leu. 295	Leu	Leu	Gly	Thr	Ser 300	Ala	Phe	Met	Ile	
15	Val 305	Leu	Lys	Pro	Ile	Val 310	Glu	Lys	Val	Val	Ser 315	Ser	Asp	Tyr	Ala	Ser 320	
	Ser	Trp	Gln	Tyr	Val 325	Pro	Phe	Phe	Met	Leu 330	Ser	Met	Leu	Phe	Ser 335	Ser	
•	Phe	Ser	Asp	Phe 340	Phe	Gly	Thr	Asn	Tyr 345	Ile	Ala	Ala	Lys	Gln 350	Thr	Lys	
20	Gly	Val	Phe 355	Met	Thr	Ser	Ile	Tyr 360	Gly	Thr	Ile	Val	Cys 365	Val	Leu	Leu	
	Gln	Val 370	Val	Leu	Leu	Pro	Ile 375	Ile	Gly	Leu	Asp	Gly 380	Ala	Gly	Leu	Ser	
25	Ala 385	Met	Leu	Gly	Phe	Leu 390	Thr	Thr	Phe	Leu	Leu 395	Arg	Val	Lys	Asp	Thr 400	
	Gln	Lys	Phe	Val	Val 405	Ile	Gln	Ile	Lys	Trp 410	Arg	Ile	Phe	Ile	Ser 415	Asn	
30	Leu	Leu	Ile	Val 420	Leu	Ala	Gln	Ile	Leu 425	Сув	Leu	Phe	Tyr	Leu 430	Pro	Ser	
30	Glu	Phe	Leu 435	Tyr	Phe	Gly	Leu	Ala 440	Leu	Leu	Phe	Сув	Gly 445	Met	Leu	Val	
	Val	Asn 450	Gln	Arg	Thr	Ile	Leu 455	Tyr	Ile	Ile	Met	Ala 460	Leu	Lys	Ile	Lys	
35	Asn 465	Lys	Thr	Phe	Gly	Met 470	Lys	Ser	Ser								
40	(2)	INFO	CAI () () ()	RACTE A) LO B) TY C) NO	ERIST ONGUI OPE: OMBRI	riqui SUR: acio B DE	SS DI 307 de ar BRII	acio niné NS:	SEQU des a simpl	JENCI amine Le							
45			TY	O) CO PE DE SCRII	MO1	LECU	LE:]	pept:	ide) ID	NO:	14:				
45		Met 1	Ly	s Glr	ı Ile	E Lys	s Se	r Ly:	s Ile	e Arg	Ası 10	e Lev	ı Gl	n Ası	n Ası	n Phe 15	Thr
		Туз	r Vai	l Phe	20 20	y Ly:	a Ly	s Th	r Phe	25	ı Gl	y Arg	g Gl	y Gl	u Ala 30	a Ile	Ile
50		Ile	e Ası	Glu 35	ı Pro	Gl:	u Hi	s Gl	y Ası 40	n Le	ı Gl	y Ası	Gl:	n Ala 45	a Ile	e Ala	Phe
		Ala	a Gl	ı Ası	n Gli	n Ph	e Le	u Vai	l Ası	n Hi	s Va	l Se	r Va 60	l Ar	g Ası	p Val	Glu

		His 65	Leu	Ile	Glu	Ser	Lys 70	Thr	Ile	Ser	Glu	Ile 75	Lys	Ser	Ile	Lys	Lys 08	
5		Asn	Ile	Gly	Lys	Lys 85	Glu	Leu	Val	Phe	Phe 90	His	Gly	Gly	Gly	Asn 95	Phe	
		Gly	Thr	Leu	Tyr 100	Leu	Lys	Tyr	Glu	Arg 105	Ile	Arg	Arg	Leu	Ala 110	Val	Ser	
		Lys	Leu	Pro 115	Phe	Asn	Lys	Met	Ile 120	Leu	Phe	Pro	Gln	Ser 125	Ile	Ser	Phe	
10		Glu	Asp 130	Ser	Arg	Phe	Gly	Gln 135	Lys	Gln	Leu	Asn	Lys 140	Ser	Lys	Lys	Ile	
		Tyr 145	Ser	Gln	Asn	Thr	Asn 150	Phe	Ile	Leu	Thr	Ala 155	Arg	Glu	Pro	Lys	Ser 160	
15		Tyr	Gly	Leu	Met	Lys 165	Lys	Cys	Phe	Pro	Tyr 170	Asn	Lys	Val	Ile	Leu 175	Thr	
		Pro	Asp	Ile	Val 180	Leu	Ser	Phe	Lys	Phe 185	Glu	Val	Thr	Ile	Ser 190	Asp	Thr	
		His	Ile	Gly 195	Lys	Glu	Lys	Asp	Ser 200	Val	Ile	Thr	Tyr	Glu 205	Asn	Arg	Gln.	
20		His	Tyr 210	Leu	Glu	Ile	Lys	Trp 215	Asp	Glu	Ile	Ala	Gln 220	His	Glu	Val	Ala	
		Leu 225	Thr	Asp	Arg	Leu	His 230	Gly	Met	Ile	Phe	Ser 235	Tyr	Ile	Thr	Gly	Thr 240	
25		Pro	Cys	Val	Val	Leu 245	Ala	Asn	Asn	Asn	His 250	Lys	Ile	Glu	Gly	Thr 255	Tyr	
		Lys	His	Trp	Leu 260	Asn	Glu	Val	Asn	Tyr 265	Ile	Arg	Phe	Ile	Glu 270	Asn	Pro	
30		Thr	Val	Glu 275	Asn	Ile	Leu	Asp	Ala 280	Ile	Asn	qaA	Leu	Lys 285	Gln	Ile	Glu	
		Pro	His 290	Tyr	Ile	Asp	Leu	Ser 295	qaA	Lys	Phe	Gln	Pro 300	Leu	Ile	Asp	Ala	
		305	Lys	_														
35	(2) 1	(i)	(A) (B) (C) (D)	LON TYI NON CON	RIST NGUE PE: 1 MBRE NFIGU	IQUES JR: 3 nucle DE I	S DE 32 pa Sotia SRINS ION:	LA S aires de 3: s: liné	NO: 1 SEQUE de imple saire acid	base	es _	ique						
40			(A)	DES	SCRI	PTIO	1 : ,	/desc	NCE:	'olig	gonuc	ceot:						
	GTTGC	CGGCC	CG CO	SATA!	LAGT (G TGJ	ATAA	TC C	AG									32
45	(2)	(i)	(A) (B) (C) (D)	LON TYI NON CON	RIST NGUE PE: 1 MBRE NFIG	IQUES JR: nucle DB I JRAT	S DE 30 pa Sotio BRINS ION:	LA Saires de S: S:	SEQUE s de imple ≨aire	ENCE: base	25	imia						
50			(A)	DES	SCRI	PTIO	vi: 1	/des	acio c = ' NCE:	'olig	gonuc	cleot	ide' 16:	•				
	ATAGO	GGC	CG C	PTAG	CTCA:	r GT	IGATO	3CGG										30

(2) INFORMATIONS POUR LA SEQ ID NO: 17:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 31 paires de bases

(B) TYPE: nucléotide

(C) NOMBRE DE BRINS: simple

(D) CONFIGURATION: linéaire 5 (ii) TYPE DE MOLECULE: Autre acide nucl, ique
(A) DESCRIPTION: /desc = "oligonucleotide"
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17: CCTGCGGCCG CGCTTCCTAA TTCTGTAATC G 31 10 (2) INFORMATIONS POUR LA SEQ ID NO: 18: (i) CARACTERISTIQUES DE LA SEQUENCE: 15 (A) LONGUEUR: 31 paires de bases(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: Autre acide nucl,ique
(A) DESCRIPTION: /desc = "oligonucleotide"
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18: 20 CTGGCGGCCG CTACTTCACG TTTCTTTGCA T 31 25 (2) INFORMATIONS POUR LA SEQ ID NO: 19: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 31 paires de bases(B) TYPE: nucléotide(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéalre 30 TACGCGGCCG CACATAGAAT AAGGCTTTAC G 31 35 Revendications 40 1. ADN d'origine chromosomique de bactérie lactique codant pour au moins une enzyme impliquée dans la biosynthèse de l'EPS présentant la structure répétée 45 50

41

où n > 1; A est choisi dans le groupe formé par β-D-Galp, β-D-Glcp et leurs dérivés acétyl et phosphatyl; et x et y

2. ADN selon la revendication 1, codant pour au moins une enzyme impliquée dans la biosynthèse de l'EPS présen-

55

= 2, 3, 4, 5 ou 6 sachant que x ≠ y.

tant la structure répétée

10

5

- 3. ADN selon la revendication 1, comprenant la séguence nucléique SEQ ID NO:1.
- ADN selon la revendication 2 comprenant au moins un gène choisi dans le groupe de gènes délimités dans la séquence nucléique SEQ ID NO:1 par les nucléotides 352-1803, 1807-2535, 2547-3239, 3249-3995, 4051-4731, 4898-5854, 6425-7540, 7736-8212, 8221-9192, 9285-10364, 10392-11339, 11302-12222, et 12233-13651.
 - 5. ADN selon la revendication 2, qui est homologue ou qui s'hybride à un ADN selon l'une des revendications 3 et 4.
- 20 6. Vecteur recombinant comprenant un ADN selon l'une des revendications 1 à 5.
 - 7. Protéine susceptible d'être impliquée dans la biosynthèse de l'EPS présentant la structure répétée

30

25

et ayant la séquence en acides aminés choisie dans le groupe formé par les séquences SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, et les séquences homologues fonctionnelles.

35

- 8. Bactérie lactique comprenant, intégré dans son génome ou par le moyen d'un plasmide réplicable, un fragment d'ADN selon la revendication 1.
- 9. Procédé de production d'un EPS, dans lequel (1) on clone dans un vecteur un fragment d'ADN codant pour les enzymes impliquées dans la biosynthèse d'un EPS selon la revendication 7, ledit vecteur comprenant en outre une séquence permettant la réplication autonome ou l'intégration dans une cellule hôte, (2) on transforme une cellule hôte par ledit vecteur, (3) puis on cultive la cellule hôte transformée dans des conditions appropriées pour la production d'un EPS.
- 45 10. Procédé selon la revendication 9, dans lequel le vecteur comprend en outre une séquence promoteur et d'activation traductionnelle fonctionnels dans ladite cellule hôte.
 - 11. Procédé de production d'un EPS, dans lequel (1) on clone dans un vecteur un fragment d'ADN codant pour au moins une des enzymes impliquées dans la biosynthèse d'un EPS, (2) on transforme par ledit vecteur une bactérie lactique produisant le cas échéant un autre EPS, (3) puis on cultive la bactérie lactique transformée dans des conditions appropriées pour la production d'un nouvel EPS.
 - 12. Procédé selon l'une des revendications 9 à 11, dans lequel on clone dans un vecteur un fragment d'ADN selon l'une des revendications 2 à 5.

55

50

13. Utilisation d'un fragment d'ADN d la séquence SEQ ID NO:1 ou de son brin complémentaire, d'au moins 15pb, comme amorce utilisable dans une réaction de PCR ou comme sonde pour détecter *in-vitro* ou inactiver *in-vivo* des gènes de bactéries lactiques impliquées dans la biosynthèse d'un EPS.

Figure 1

Figure 2

RAPPORT DE RECHERCHE EUROPEENNE

EP 95 20 3663

Catégorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.CL6)
A	STREPTOCOCCI, ENTER 487-493 CODEN: DVBS 1995, XP000603799 STINGELE, F. ET AL: integration and tra genes involved in the exopolysaccharides thermophilus.	ansposition to identi the production of	fy	C12N15/52 C12N15/74 C12N9/00 C12N1/21 C12P19/14 C12Q1/68
A	capsular polysaccha Streptococcus pneum * abrégé; figure 2 * page 5389, colonne page 5390, colonne	ASHINGTON US, P002015452 AL.: "Nucleotide of genes essential for aride biosynthesis in moniae type 19F" * ne de droite, alinéa 2 de gauche, alinéa 2 ne de gauche, alinéa	2 -	DOMAINES TECHNIQUI RECHERCHES (Int.Cl.6) C12N C07 K C12P
	of Streptococcus pn * abrégé * * page 189, colonne page 191, colonne d figure 4 * * page 193, colonne	BERLIN DE, 12015453 AL: "Cloning and the involved in the apsular polysaccharida teumoniae type 3" the de droite, alinéa 5 the gauche, alinéa 1; the de gauche, alinéa 2 the gauche, alinéa 1 * -/	-	
	Jes de la recherche	Date d'achivement de la recherche		Examinateur
	LA HAYE	9 Octobre 1996	5 Mon	tero Lopez, B
X : part Y : part autr	CATEGORIE DES DOCUMENTS (iculièrement pertinent à lui seul iculièrement pertinent en combinaiso e document de la même catégorie ire-plan technologique	E : document d date de dép n avec un D : cité dans la L : cité pour d'	autres raisons	

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande EP 95 20 3663

Catėgorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concersée	CLASSEMENT DE LA DEMANDE (IBLCL6)
D,A	BIOTECHNOLOGY LETTE vol. 11, no. 10, pages 709-712, XPOG MARISA VESCOVO ET A ropiness production ssp. casei" * abrégé * * page 711, alinéa	00603812 AL.: "Plasmid-encoded in Lactobacillus casei	1	
Α	TECHNOLOGY) 11 Févr * page 1, alinéa 3 * page 3, alinéa 2	ACHUSSETTS INSTITUTE OF ier 1988 - page 6, alinéa 1 * - page 10, alinéa 1 *	1,6,8,9	
D,A	WO-A-92 02142 (SING Février 1992 * page 8, ligne 1 -		1,6-10	
D, A	NL, pages 313-321, XP00 THIERRY DOCO ET AL. exocellular polysac Streptococcus therm * abrégé *	Mai 1990, AMSTERDAM 12015454 : "Structure of an incharide produced by hophilus" 1 - page 314, alinéa 1	1,2,7-10	DOMAINES TECHNIQUES RECHERCHES (Int. Ci.6)
	Lieu de la recherche	Date d'achèvement de la recherche		Examinateur
	LA HAYE	9 Octobre 1996	Mont	tero Lopez, B
X : part Y : part autr A : arri O : div	CATEGORIE DES DOCUMENTS diculièrement pertinent à lui seul iculièrement pertinent en combinaiso re document de la même catégorie ère-plan technologique algation non-écrite unent intercalaire	E : document de brei date de dépôt ou n avec un D : cité dans la dem L : cité pour d'autres	et antérieur, mai après cette date ande : raisons	s publié à la