Problema 11. Definamos a operação $a \otimes b$ como sendo a^b . Por exemplo, $2 \otimes 3 = 8$. Determine o valor de:

$$\frac{2 \otimes (2 \otimes (2 \otimes 2))}{((2 \otimes 2) \otimes 2) \otimes 2} = 2 = 2 = 2 = 2$$
c) 1 d) 4

— a)
$$\frac{1}{256}$$

b)
$$\frac{1}{4}$$

$$2\otimes(2\otimes 2^2) = 2\otimes 2^4 = 2^{16}$$

 $(4\otimes 2)\otimes 2 = 16\otimes 2 = 16^2 = (2^4)^2 = 29$

Problema 13. Com quantos zeros termina o número 15⁶ · 28⁵ · 55⁷?

$$5^{6} \cdot 3^{6} \cdot 4^{5} \cdot 1^{5} \cdot 5^{7} \cdot 11^{7} = 3^{6} \cdot 7^{5} \cdot 11^{7} \cdot 5^{13} \cdot 2^{10}$$

$$= 3^{6} \cdot 7^{5} \cdot 11^{7} \cdot 5^{3} \cdot 10^{10}$$

Problema 14. As potências 2^n e 5^n , onde n é um inteiro positivo, começam com o mesmo algarismo d. Qual é este algarismo?

$$2^{1} = 02$$
 $2^{2} = 04$
 $2^{3} = 08$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{6} = 512$
 $2^{6} = 512$
 $2^{6} = 624$

Problema 15. Se $a = 2^{40}$, $b = 3^{20}$ e $c = 7^{10}$, então:

$$c < b < a$$
 b) $a < c < b$ c) $b < a < c$ d) $b < c < a$ e) $c < a < b$

b)
$$a < c < b$$

c)
$$b < a < c$$

d)
$$b < c < a$$

e)
$$c < a < b$$

Problema 51. Achar o menor inteiro positivo n tal que as 73 frações

$$\frac{19}{n+21}$$
, $\frac{20}{n+22}$, $\frac{21}{n+23}$, ..., $\frac{91}{n+93}$

sejam todas irredutíveis.

Problema 58. Determine o valor da expressão abaixo quando a = 2014 e n = 1000.

a)
$$1000^{2013}$$
 b) 2013^{1000} c) 2015 1 $\frac{1}{a^{n}+1} + \frac{1}{1+a^{+}n^{+}1} + \dots + \frac{1}{a^{1}+1}$ e) 1000^{2013}

$$\frac{1}{a^n + 1} + \frac{1}{a^n + 1} = \frac{a_n + 1}{a^n + 1}.$$

$$\frac{1900-1}{2} + \frac{1}{2} = \frac{2001}{2}$$

Problema 59. Ao efetuar a soma $13^1+13^2+13^3+\ldots+13^{2006}+13^{2007}$, obtemos um número inteiro. Qual o algarismo das unidades desse número?

13+134134+134+135+18 = 3+36=3+9=2

Problema 62. Calcule o valor de

$$A = \frac{1001 \cdot 1002 \cdot 1003 \cdot \ldots \cdot 2000}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot 1999}$$
 b) 2^{999} c) 1000 d) 999 e) 2.

$$\frac{2.4.6 \cdot ... \cdot 2000}{1.2.3.4. \cdot ... \cdot 1000} = \frac{2 \cdot (1.2.3... \cdot 2000)}{(1.2.3... \cdot 2000)} = 2^{1900}$$

Problema 86. Simplifique a expressão:

$$\frac{(x^{2n+1}+x)(x^{2n+1}-x)-(x^4)^{(n+1/2)}}{(x^n+x)^2-x^{2n}-2x^{n+1}},$$

Problema 105. Sejam a e b números reais.

- a) Verifique que $(a+b)^2$ ≥ 4ab.
- b) Verifique que $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$.
 - c) Verifique que $\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$.

$$\frac{a+b}{ab} > 4$$

$$\frac{a+b}{(a+b)^2} > 4ab$$

c)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{1}{b} = \frac{64}{a + b + c + d}$$

$$\frac{1}{a} + \frac{17}{b} = \frac{4}{a+b} + \frac{4}{7} = \frac{16}{a+b+c}$$

27 16 Carptc

arbicid.

Problema 107. Sejam:

$$A = \sqrt{2 + \sqrt{3}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{3}}} e B = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{3}}}} \times \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{3}}}}$$

Ouanto vale $A \cdot B$?

- a) $\sqrt{2}$
- b) $\sqrt{3}$
- d) $2 + \sqrt{2}$ e) $2 + \sqrt{3}$.

15 E. A.

$$\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{4-(2+\sqrt{2+\sqrt{3}})}$$

$$\sqrt{2+\sqrt{3}} \cdot (2+\sqrt{3}) \cdot \sqrt{2-(2+\sqrt{3})}$$

$$= (2+\sqrt{3}) \cdot (\sqrt{2}-(2+\sqrt{3}))$$

$$= (2+\sqrt{3}) \cdot \sqrt{2-\sqrt{3}} = \sqrt{4-3} = 1$$

Problema 110. João está ajudando seu pai com as finanças de sua loja. Como a quantidade de produtos ofertados estava influenciando a quantidade de produtos vendidos, ele decidiu procurar algum padrão que pudesse ajudá-lo a descobrir qual a quantidade ideal de produtos que deveriam ser ofertadas para maximizar a quantidade de produtos vendidos. Depois de um bom tempo "quebrando a cabeça", ele percebeu que se "a" produtos eram ofertados, então a loja vendia "a(10-a)" itens. Em seguida, com a ajuda de um produto notável semelhante a essa expressão, foi possível achar a quantidade ideal de produtos que deveriam ser vendidos. Como ele fez isso?

$$a \cdot (10-a)$$
 eron rendides.
 $f(a) = -a^2 + 10a$. $= -(a^2 - 10a + 25) + 25$.
 $f(a) = -(a-5)^2 + 25$.
 $f(a) = -(a-5)^2 = 0$. $(a=5)_n$.
 $f(a) = 25$

Problema 111. O pai de João (veja o problema anterior), percebendo a astúcia do filho, decidiu desafiá-lo a fazer o mesmo com uma fórmula bem diferente e supondo agora que a é um número real qualquer. Nesse novo problema, dado "a" real, ele deve tentar achar o valor máximo de $4a - a^4$. Novamente usando produtos notáveis, João conseguiu descobrir que o máximo de tal expressão é 3. Você consegue descobrir como ele fez

$$f(a) = 4a - a^4 = 4a - 2a^2 + 2a^2 - a^4 + 1 - 1$$

$$4a - 2a^2 + 1 - (a^2 - 1)^2$$

 $-2a^{2} + 4a + 3 - 2 - (a^{2} - 1)^{2}$ $3 - 2(a - 1)^{2} - (a^{2} - 1)^{2}$. Fazer aparece (

7/8 7/8 1550; $\alpha = (-)$ fca) wk = 3

1,1,2,3,5,8,13

Problema 139. A sequência de Fibonacci é definida recursivamente por $F_{n+2} = F_{n+1} + F_n$ para $n \in \mathbb{Z}$ e $F_1 = F_2 = 1$. Determine o valor de:

$$\left(1 - \frac{F_2^2}{F_3^2}\right) \left(1 - \frac{F_3^2}{F_4^2}\right) \cdot \ldots \cdot \left(1 - \frac{F_{2013}^2}{F_{2014}^2}\right)$$
 a) $\frac{F_{2016}}{F_{2013}^2}$ b) $\frac{F_{2014}}{F_{2013}}$ c) $\frac{F_{2015}}{F_{2013}^2}$ d) $\frac{F_{2015}}{2}$

c)
$$\frac{F_{2015}^2}{F_{2013}^2}$$
 d) $\frac{F_{2014}}{2}$

e)
$$\frac{F_{2015}}{2F_{2013}F_{2014}}$$
.

$$(F_3^2 - F_2^2)(F_4^2 - F_3^2)$$
 $(F_{2014}^2 - F_{2013}^2)$

$$F_1$$
 F_2 F_{2012} F_{2013} F_{3} F_{4} F_{5} F_{5} F_{7015} F_{7015}

Problema 132. Calcule o valor de:

$$\sqrt{(2014)(2015)(2016)(2017)+1}$$

$$\sqrt{(x^{2}+3x)(x^{2}+3x+1+1)+1}$$

$$= \sqrt{(x^{2}+3x)(x^{2}+3x+1)+1}$$

$$= \sqrt{(x^{2}+3x)(x^{2}+3x+1)^{2}-1}$$

Problema 135. Fatore $n^5 + n^4 + 1$.

$$(N_5+N+1)(N_3-N+1)$$
.
 $N_3(N_5+N+1)+(N_5+N+1)-N(N_5+N+1)$.

$$P2. n^{5} - n^{3} + n^{2} + n^{4} - n^{2} + n + n^{3} - n + 1$$

$$= n^{5} + n^{4} + 1$$

Problema 136. Qual é o menor inteior positivo n tal que $\sqrt{n} - \sqrt{n-1} < 0.01$

$$\sqrt{n} - \sqrt{n-1} \ (\sqrt{n} + \sqrt{n-1}) \ (\sqrt{n} + \sqrt{n} + \sqrt{n-1}) \ (\sqrt{n} + \sqrt{n} +$$

200

$$n > 50^{2} + 100.1 + (1)^{2}$$
 $200 + (200)^{2}$
 $n > 2500 + (1)^{2}$
 200

|0|.M = |1|| (2+2) |0|.1|| = |1|2|| (2+2+2) |0|.1||| = |1|2|| (2+2+2+2)|0|.1||| = |1|2||| ...

=) n=101. 111...11 =) Sn = 2.2007 = 40142007 alg **Problema 141.** Define-se o conjunto de 100 números $\{1,1/2,1/3,...,1/100\}$. Eliminamos dois elementos quaisquer a e b deste conjunto e se inclui, no conjunto, o número a + b + ab ficando assim um conjunto com um elemento a menos. Depois de 99 destas operações, ficamos só com um número. Que valores pode ter esse número?

$$a+b+ab = a(b+1)+b+(-1)$$

$$\frac{3(.4.5...)(1+1/4)...(1+1/100)-1}{3(.4.5...)(1+1/4)...(1+1/100)-1}$$

Depois das 99 operacées

Problema 145. Sejam a, b, c, x, y, z reais distintos tais que ax + by + cz = 0. Verifique que

$$\frac{ax^2 + by^2 + cz^2}{bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2}$$

não depende de x, nem de y, nem de z.

ax + by + C2 = 0. $ax + by + c^{2}z^{2} = -2(abxy + acx2 + bcy2)$ $bc(y^{2} + z^{2}) + ac(x^{2} + z^{2}) + ab(x^{2} + y^{2}) + a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2}$. $ax^{2}(a + b + c) + by(a+b+c) + cz^{2}(a+b+c)$

$$bc(y-2)^{2} + ca(z-x)^{2} + cb(x-y)^{2} =$$

$$= ax^{2}(a+b+c) + by(a+b+c) + c2(a+b+c)$$

$$(ax^{2} + by^{2} + c2^{2}) = (a+b+c)(ax^{2} + by^{2} + c2^{2})$$

$$(a+b+c)(ax^{2} + by^{2} + c2^{2}) = a+b+c$$

Problema 152. O retângulo ABCD abaixo representa um terreno. Deve-se passar uma cerca que o divida de maneira que a área do polígono CDEF seja o dobro da área do polígono ABFE. Sobre o lado AD essa cerca começa a 5m do vértice A e sobre o lado BC essa cerca termina a x metros do vértice B.

- a) Represente algebricamente a área dos dois polígonos separados pela cerca.
- b) Determine o valor de x.

Problema 161. A figura abaixo é o projeto de um quarto com uma porta de 1m de largura e uma porta dupla de 2m de largura. As dimensões externas desse quarto são 5m x 3m. Se a espessura das paredes é x, determine:

- a) o perímetro interno desse quarto.
- b) a área interna desse quarto, desconsiderando o vão deixado pelas portas.
- c) se a altura das portas é 2m e a altura das paredes é 3m, determine a área interna das paredes, desconsiderando as portas.

a) Perime tro : nterno: 2.(5-2x) +2.(3-2x) = 46-8x

b) Free interna: (5-2x)(3-2x) = 15-16x+4x.

c) Áreas das portas

Problema 306. Resolva o sistema

$$\begin{cases} \frac{2a^2}{1+a^2} = b \\ \frac{2b^2}{1+b^2} = c \\ \frac{2c^2}{1+c^2} = a \end{cases}$$

$$\frac{1+\alpha^{2}}{\alpha^{2}} + \frac{1+\alpha^{2}}{\beta^{2}} + \frac{1+\alpha^{2}}{\alpha^{2}} + \frac{1+$$

$$= \frac{1}{\alpha^2} - \frac{2}{\alpha} + e = \left(\frac{1 - 1}{\alpha} \right)^{\frac{1}{\alpha}}$$

$$= \frac{1 - 1}{\alpha} + \frac{1 - 1}{b}^{2} + \frac{1 - 1}{c}^{2} = 0$$

$$= \frac{1 - 1}{\alpha} + \frac{1 - 1}{c}^{2} = 0$$

$$= \frac{1 - 1}{\alpha} + \frac{1 - 1}{c}^{2} = 0$$

$$= \frac{1 - 1}{\alpha} + \frac{1 - 1}{c}^{2} = 0$$

$$|a=b=c=|$$
 or $|a=b=c=0|$

Problema 219. Encontre $x^2 + y^2$ se $x, y \in \mathbb{Z}$ e

$$\begin{cases} xy + x + y = 71 \\ x^2y + xy^2 = 880. \end{cases}$$

$$\mathcal{L} = (X + y)^2 - 2xy$$

$$\begin{cases}
(x+y) + xy = +1 \\
xy(x+y) = 880
\end{cases}$$

$$K = 16^2 - 2.55 = 146$$

$$(xy)^{1}-H(xy)+880=0$$

 $(xy)=\frac{1+39}{2}$ (55)

(XHy) >55

Problema 229. Para quais valores de r vale que:

$$(r^2 + 5r - 24)(r^2 - 3r + 2) = (4r - 10)(r^2 + 5r - 24)$$
?

$$(r^2 + 5r - 24)(r^2 - 3r + 2) = (4r - 10)(r^2 + 5r - 24)$$

$$\frac{(r^2+5r-24)(r^2-3r+2-4r+10)=0}{(r^2+5r-24)(r^2-3r+2-4r+12)=0}.$$

$$\frac{(r+8)(r-3)(r-4)(r-3)=0}{(r+8)(r-3)(r-4)(r-3)=0}$$