Definición

Una Función f(t) es periódica con período T, si cumple la siguiente propiedad para todo valor de t.

$$f(t) = f(t+T)$$

A la constante mínima para la cual se cumple lo anterior se le llama el **periodo** de la función

Nota: f(t) = f(t + kT), donde $k=0,\pm 1,\pm 2,\pm 3,...$

Aqui T=211

Ejemplo

El periodo T de la función sen(t) y cos(t) es 2π

$$f(t) = \operatorname{sen}(t + 2k\pi), k\epsilon\mathbb{Z}$$

Suma o diferencia de funciones periódicas:

$$f(t) = f_1(t) + f_2(t) + f_3(t) \implies \text{Periodos: } T1 \qquad T2 \qquad T3$$

Ejemplo

¿Cuál el periodo de la función $f(t) = \cos\left(\frac{t}{3}\right) + \cos\left(\frac{t}{4}\right)$?

Solución.- Si f(t) es periódica se debe cumplir:

$$f(t+T) = \cos\left(\frac{t+T}{3}\right) + \cos\left(\frac{t+T}{4}\right) = \cos\left(\frac{t}{3} + \frac{T}{3}\right) + \cos\left(\frac{t}{4} + \frac{T}{4}\right)$$

Pero como se sabe $cos(x + 2k\pi) = cos(x)$ para cualquier entero k, entonces para que se cumpla la igualdad se requiere que:

$$T/3=2k_1\pi$$
 , $T/4=2k_2\pi$

Es decir $T = k_1 6\pi = k_2 8\pi$, donde k_1 y k_2 son enteros,

$$\Rightarrow \frac{k_1}{k_2} = \frac{4}{3}$$

El valor mínimo de T se obtiene con $k_1 = 4$, $k_2 = 3$, es decir:

$$T=24\pi$$

$$* Pas(\frac{1}{4}t) = \frac{2\pi}{\frac{1}{4}} = 8\pi$$

Ejemplo

Grafica de la función $f(t) = \cos\left(\frac{t}{3}\right) + \cos\left(\frac{t}{4}\right)$

Ortogonalidad de funciones en un intervalo

Se dice que un conjunto de funciones $f_k(t)$ son **ortogonales** en el intervalo a < t < b si dos funciones cualesquiera $f_m(t), f_n(t)$ de dicho conjunto cumplen

$$\int_{a}^{b} f_{\mathbf{m}}(\mathbf{t}) f_{\mathbf{n}}(\mathbf{t}) dt = \begin{cases} 0 & para \ m \neq n \\ r_{n} & para \ m = n \end{cases}$$

Ejemplo: Las funciones sent y cost son ortogonales en el intervalo $-\pi < t < \pi$, ya que

$$\int_{-\pi}^{\pi} \frac{\operatorname{sent} \cdot \operatorname{cost} \, \mathrm{d}t}{\operatorname{d} u} = \frac{\operatorname{sen}^2 t}{2} \Big|_{-\pi}^{\pi} = 0$$

Ortogonalidad de funciones senoidales

 \square A continuación se muestra un conjunto de una infinidad de funciones ortogonales en el intervalo $-\frac{T}{2} < t < \frac{T}{2}$

1, $\cos \omega_o t$, $\cos 2\omega_o t$, $\cos 3\omega_o t$, ..., $\sin \omega_o t$, $\sin 2\omega_o t$, $\sin 3\omega_o t$,

(para cualquier valor de $\omega_o = {}^{2\pi}/_T$).

Probemos con algunos pares de funciones dadas:

$$1.- f_1(t) = 1 \text{ Vs. } f_2(t) = \cos(m\omega_0 t):$$

$$\int_{-T/2}^{T/2} \cos(m\omega_0 t) dt = \frac{\sin(m\omega_0 t)}{m\omega_0} \Big|_{-T/2}^{T/2} = \frac{\sin(m\frac{\omega_0 T}{2})}{m\omega_0} - \frac{\sin\left(m\left(-\frac{\omega_0 T}{2}\right)\right)}{m\omega_0} = 0 , \qquad m \neq 0$$

2.-
$$f_1(t) = 1$$
 Vs. $f_2(t) = \text{sen}(m\omega_0 t)$:

$$\int_{-T/2}^{T/2} \operatorname{sen}(m\omega_0 t) dt = \frac{-\cos(m\omega_0 t)}{m\omega_0} \Big|_{-T/2}^{T/2} = \frac{-\cos(m\omega_0 \frac{T}{2})}{m\omega_0} + \frac{\cos(m\omega_0 (-\frac{T}{2}))}{m\omega_0} = 0, \quad m \neq 0$$

Ortogonalidad de funciones senoidales

1 Vs. $cos(m\omega_0 t)$	$\int_{-T/2}^{T/2} \cos(m\omega_0 t) dt = 0,$	$m \neq 0$
1 Vs. $sen(m\omega_0 t)$	$\int_{-T/2}^{T/2} \operatorname{sen}(m\omega_0 t) dt = 0,$	$m \neq 0$
$\cos(m\omega_0 t)$ Vs. $\cos(n\omega_0 t)$	$\int_{-T/2}^{T/2} \cos(m\omega_0 t) \cos(n\omega_0 t) dt = \begin{cases} 0 \\ T/2 \end{cases}$	$para m \neq n$ $para m = n \neq 0$
$sen(m\omega_0 t)$ Vs. $sen(n\omega_0 t)$	$\int_{-T/2}^{T/2} \operatorname{sen}(m\omega_0 t) \operatorname{sen}(n\omega_0 t) dt = \begin{cases} 0 \\ T/2 \end{cases}$	$para m \neq n$ $para m = n \neq 0$
$sen(m\omega_0 t) Vs. cos(n\omega_0 t)$	$\int_{-T/2}^{T/2} \operatorname{sen}(m\omega_0 t) \cos(n\omega_0 t) dt = 0,$	para cualquier <i>m</i> , <i>n</i>

Serie Trigonométrica de Fourier

☐ Algunas funciones periódicas f(t) de periodo T pueden expresarse por la siguiente serie, llamada Serie Trigonométrica de Fourier

$$f(t) = \frac{1}{2}a_0 + (a_1\cos(\omega_0 t) + a_2\cos(2\omega_0 t) + \ldots) + (b_1\sin(\omega_0 t) + b_2\sin(2\omega_0 t) + \ldots)$$

Donde $\omega_0 = 2\pi/T$.

T: Periodo

Es decir,

wo: frecuencia

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n sen(n\omega_0 t)]$$

an =? bn =??

Serie Trigonométrica de Fourier

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n sen(n\omega_0 t)]$$

¿Cómo se modela la señal de tren de pulsos con la serie de Fourier?

Coeficientes de la Serie de Fourier

□ Dada una función periódica f(t) ¿cómo se obtiene su serie de Fourier?

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n sen(n\omega_0 t) \right]$$

El problema se resuelve si podemos calcular los coeficientes a_0 , a_1 , a_2 ,..., b_1 , b_2 ,...

Esto se puede resolver considerando la ortogonalidad de las funciones seno y coseno comentada anteriormente.

Ejemplo: Hallando el coeficiente a₀

$$\int_{-T/2}^{T/2} \operatorname{sen}(m\omega_0 t) dt = 0, m \neq 0$$

$$\int_{0}^{T/2} \cos(m\omega_0 t) dt = 0, m \neq 0$$

Serie Trigonométrica de Fourier

☐ Algunas **funciones periódicas f(t) de periodo T** pueden expresarse por la siguiente serie, llamada **Serie Trigonométrica de Fourier**

$$f(t) = \frac{1}{2}a_0 + (a_1\cos(\omega_0 t) + a_2\cos(2\omega_0 t) + \ldots) + (b_1\sin(\omega_0 t) + b_2\sin(2\omega_0 t) + \ldots)$$

Donde $\omega_0 = 2\pi/T$.

T: Periodo

Es decir,

wo: frecuencia

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n sen(n\omega_0 t)\right]$$

Coeficientes de la Serie de Fourier

De esta manera tenemos:

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt$$

 \square Multiplicando ambos miembros por $\cos(n\omega_0 t)$ e integrando de -T/2 a T/2, obtenemos:

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(\mathbf{n}\omega_0 t) dt \quad n = 1, 2, 3, \dots$$

$$\Rightarrow Coeficients$$
de cosenos

 \square Similarmente, multiplicando por $sen(n\omega_0 t)$ e integrando de -T/2 a T/2, obtenemos:

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) sen(\mathbf{n}\omega_0 t) dt \quad n = 1, 2, 3, \dots$$

$$\Rightarrow \text{ Coeficien to de senos}$$

Coeficientes de la Serie de Fourier

Observación:

- El intervalo de integración no necesita ser simétrico respecto al origen.
- Como la ortogonalidad de las funciones seno y coseno no sólo se da en el intervalo de -T/2 a T/2, sino en cualquier intervalo que cubra un periodo completo. Por ejemplo:

De
$$t_0$$
 a $t_0 + T$, con t_0 arbitrario

Las fórmulas para calcular los coeficientes de la serie trigonométrica de Fourier pueden calcularse en cualquier intervalo que mida T.

$$Q_{o} = \frac{2}{7} \int_{-\frac{7}{2}}^{\frac{7}{2}} f_{ct} dt = \frac{2}{7} \int_{-\frac{7}{2}+\alpha}^{\frac{7}{2}+\alpha} f_{ct} dt = \frac{2}{7} \int_{-\frac{7}{4}}^{\frac{7}{4}+\alpha} f_{ct} dt$$

$$= \frac{2}{7} \int_{-\frac{7}{2}+\alpha}^{\frac{7}{4}+\alpha} f_{ct} dt = \frac{2}{7} \int_{-\frac{7}{4}+\alpha}^{\frac{7}{4}+\alpha} f_{ct} dt$$

$$= \frac{2}{7} \int_{-\frac{7}{2}+\alpha}^{\frac{7}{4}+\alpha} f_{ct} dt = \frac{2}{7} \int_{-\frac{7}{4}+\alpha}^{\frac{7}{4}+\alpha} f_{ct} dt$$

$$= \frac{2}{7} \int_{-\frac{7}{2}+\alpha}^{\frac{7}{4}+\alpha} f_{ct} dt = \frac{2}{7} \int_{-\frac{7}{4}+\alpha}^{\frac{7}{4}+\alpha} f_{ct} dt = \frac{2}{7} \int_{-$$

Ejemplo: Encontrar la Serie de Fourier para la siguiente función de periodo T:

Solución: La expresión para f(t) en -T/2 < t < T/2 es:

$$f(t) = \begin{cases} -1 & para - \frac{T}{2} < t < 0 \\ 1 & para \ 0 < t < \frac{T}{2} \end{cases}$$

 \square Calculando coeficiente a_0 :

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt$$

$$f(t) = \begin{cases} -1 & para - \frac{T}{2} < t < 0 \\ 1 & para \ 0 < t < \frac{T}{2} \end{cases}$$

$$a_0 = \frac{2}{7} \left[\int_{-\frac{7}{2}}^{0} -1. dt + \int_{0}^{\frac{7}{2}} 1. dt \right] = \frac{2}{7} \left[-\frac{t}{2} + \frac{t}{2} \right]$$

$$a_o = \frac{2}{T} \left[-\left(0 - \frac{7}{2}\right) + \left(\frac{T}{Z} - O\right) \right] \Rightarrow a_o = 0$$

 \square Calculando coeficiente a_n :

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_{0}t) dt$$

$$Q_{n} = \frac{2}{T} \left[\int_{-\frac{T}{Z}}^{0} -1 \cdot \cos(n\omega_{0}t) dt + \int_{0}^{T/2} 1 \cdot \cos(n\omega_{0}t) dt \right]$$

$$Q_{n} = \frac{2}{T} \left[-\frac{\operatorname{Sen}(n\omega_{0}t)}{n\omega_{0}} \Big|_{-T/2}^{0} + \frac{\operatorname{Sen}(n\omega_{0}t)}{n\omega_{0}} \Big|_{0}^{T/2} \right]$$

$$Q_{n} = \frac{2}{Tn\omega_{0}} \left[-\left(\operatorname{SenO} - \operatorname{Sen}(-n\omega_{0}T) \right) + \left(\operatorname{Sen}(n\omega_{0}T) - \operatorname{Sen}(0) \right) \right]$$

$$Q_{n} = \frac{2}{2\pi n} \left[-\operatorname{Sen}(n\pi) + \operatorname{Sen}(n\pi) \right] \implies Q_{n} = 0$$

*
$$\int \cos(\omega t) dt = \frac{\sec(\omega t)}{\infty}$$

* $\int \sin(\omega t) dt = \frac{\cos(\omega t)}{\infty}$

$$f(t) = \begin{cases} -1 & para - \frac{T}{2} < t < 0 \\ 1 & para 0 < t < \frac{T}{2} \end{cases}$$

* $\lambda \log T$

$$\omega_0 = 2\pi$$

 \square Calculando coeficiente b_n :

$$b_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt$$

$$b_{n} = \frac{2}{T} \left[\int_{-\frac{T}{Z}}^{0} -1 \cdot \operatorname{Sen}(n\omega_{0}t) dt + \int_{0}^{\frac{T}{Z}} 1 \cdot \operatorname{Sen}(n\omega_{0}t) dt \right]$$

$$b_{n} = \frac{2}{T} \left[-\frac{-\cos(n\omega_{0}t)}{n\omega_{0}} \int_{-\frac{T}{Z}}^{0} + \frac{-\cos(n\omega_{0}t)}{n\omega_{0}} \int_{0}^{\frac{T}{Z}} \right]$$

$$b_{n} = \frac{2}{T \cdot n\omega_{0}} \left[\operatorname{Geso} - \operatorname{Ges}(-n\omega_{0}\frac{T}{Z}) - \operatorname{Cos}(n\omega_{0}\frac{T}{Z}) + \operatorname{Cos}(0) \right]$$

$$f(t) = \begin{cases} -1 & para - \frac{T}{2} < t < 0 \\ 1 & para \ 0 < t < \frac{T}{2} \end{cases}$$

$$b_{n} = \frac{2}{2n\pi} \left[2 - 2 \cos(\pi n) \right]$$

$$(-1)^{n}$$

$$b_{n} = \frac{2}{n\pi} \left[1 - (-1)^{n} \right]$$

$$b_n = \begin{cases} 0 & n \text{ par} \\ \frac{4}{n\pi} & n \text{ impar} \end{cases}$$

$$b_n = \begin{cases} 0, n \text{ par} \\ \frac{4}{n\pi}, n \text{ impar} \end{cases} \quad o \quad b_n = \frac{2}{n\pi} (1 - (-1)^n), n \in \mathbb{Z}$$

Finalmente la serie de Fourier $f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$ queda: $f(t) = \sum_{n=1}^{\infty} \left[\frac{2(1 - (-1)^n)}{n\pi} \sin(n\omega_0 t) \right]$ $\frac{1}{\sqrt{2}} \int_{-1}^{\sqrt{2}} \frac{1}{\sqrt{2}} \int_{-1}^{\sqrt{2}} \frac{1}{\sqrt{$

$$f(t) = \frac{4}{\pi} \left[sen(\omega_0 t) + \frac{1}{3} sen(3\omega_0 t) + \frac{1}{5} sen(5\omega_0 t) + \dots \right]$$

En la siguiente figura se muestran: **la primera armónica** o componente fundamental (n=1) así como la suma parcial de los primeros siete términos de la serie para $\omega_0 = \pi$, es decir, T=2:

$$f(t) = \sum_{n=1}^{\infty} \left[\frac{2(1-(-1)^2)}{n\pi} \operatorname{sen}(n\pi t) \right] = \frac{4}{\pi} \left[\operatorname{sen}(\pi t) + 0 + \frac{1}{3} \operatorname{sen}(3\pi t) + 0 + \frac{1}{5} \operatorname{sen}(5\pi t) + 0 + \frac{1}{7} \operatorname{sen}(7\pi t) + \dots \right]$$

Para
$$n = 1$$
: $f(t) = \frac{4}{\pi} [sen(\pi t)]$ (componente fundamental)

$$f(t) = \sum_{n=1}^{\infty} \left[\frac{2(1-(-1)^2)}{n\pi} \operatorname{sen}(n\pi t) \right] = \frac{4}{\pi} \left[\operatorname{sen}(\pi t) + 0 + \frac{1}{3} \operatorname{sen}(3\pi t) + 0 + \frac{1}{5} \operatorname{sen}(5\pi t) + 0 + \frac{1}{7} \operatorname{sen}(7\pi t) + \dots \right]$$

Para
$$n = \{1,2,3\}$$
: $f(t) = \frac{4}{\pi} \left[sen(\pi t) + \frac{1}{3} sen(3\pi t) \right]$

$$f(t) = \sum_{n=1}^{\infty} \left[\frac{2(1-(-1)^2)}{n\pi} \operatorname{sen}(n\pi t) \right] = \frac{4}{\pi} \left[\operatorname{sen}(\pi t) + 0 + \frac{1}{3} \operatorname{sen}(3\pi t) + 0 + \frac{1}{5} \operatorname{sen}(5\pi t) + 0 + \frac{1}{7} \operatorname{sen}(7\pi t) + \dots \right]$$

Para
$$n = \{1,2,3,4,5\}$$
: $f(t) = \frac{4}{\pi} \left[sen(\pi t) + \frac{1}{3} sen(3\pi t) + \frac{1}{5} sen(5\pi t) \right]$

$$f(t) = \sum_{n=1}^{\infty} \left[\frac{2(1-(-1)^2)}{n\pi} \operatorname{sen}(n\pi t) \right] = \frac{4}{\pi} \left[\operatorname{sen}(\pi t) + 0 + \frac{1}{3} \operatorname{sen}(3\pi t) + 0 + \frac{1}{5} \operatorname{sen}(5\pi t) + 0 + \frac{1}{7} \operatorname{sen}(7\pi t) + \dots \right]$$

Para
$$n = \{1,2,3,4,5,6,7\}$$
: $f(t) = \frac{4}{\pi} \left[sen(\pi t) + \frac{1}{3} sen(3\pi t) + \frac{1}{5} sen(5\pi t) + \frac{1}{7} sen(7\pi t) \right]$

$$f(t) = \sum_{n=1}^{\infty} \left[\frac{2(1-(-1)^2)}{n\pi} \operatorname{sen}(n\pi t) \right] = \frac{4}{\pi} \left[\operatorname{sen}(\pi t) + \frac{1}{3} \operatorname{sen}(3\pi t) + \frac{1}{5} \operatorname{sen}(5\pi t) + \frac{1}{7} \operatorname{sen}(7\pi t) + \dots \right]$$

