シフト線型方程式に対するMINRES法の適用と性能評価

日高 俊太郎*

*電気通信大学 情報理工学研究科 情報・ネットワーク工学専攻

研究目的

本研究では,標準シフト線型方程式

$$(A + \sigma^{(k)}I)\mathbf{x}^{(k)} = \mathbf{b}, \qquad (k = 1, \dots, M).$$
 (1)

に対する解法である shifted MINRES法[1]の効率的な計算モデルの検討を行う. 行列 A は実対称・エルミート行列で σ_k は複素数,I は単位行列であるとする.

研究背景

標準シフト線型方程式 (1) は,量子力学や電子構造計算などに現れる.特に近 年では,行列関数の計算における部分問題としても重要性が増している.

こうした問題では, 10^7 ~ 10^8 次元を超える超大規模行列が登場することもあり, 従来の逐次的な解法では対応が困難である.

このような制約下では,次のような特性を持つアルゴリズムが求められる:

- Matrix-free (行列全体を保持しない)
- 複数シフトに対する同時解法
- 並列計算への適用可能性

このような要請に応える手法として,Krylov部分空間法が注目されている.

shifted MINRES法

MINRES法は,実対称またはエルミートな係数行列に対して有効な Krylov 部分 |空間法であり,Lanczos過程に基づいて最小残差解を反復的に求める.

これをシフト線形方程式に拡張したのが shifted MINRES法(sminres)である. アルゴリズムの概要:

1. Aに対して Lanczos過程を実行し,正規直交基底を構成

2. $k = 1, 2, \dots, M$

2.1
$$\widehat{T}_n^{(k)} = \widehat{T}_n + \sigma^{(k)} \begin{bmatrix} I \\ \mathbf{0}^T \end{bmatrix}$$
とおく($(A + \sigma^{(k)}I)V_n = V_{n+1}\widehat{T}_n^{(k)}$ が成り立つ)

2.2 $\widehat{T}_n^{(k)}$ のQR分解を計算する($T_n^{(k)}=Q_nR_n$)

 $\mathbf{2.3} \ \mathbf{y}_n^{(k)} = \|\mathbf{b}\| R_n^{-1} Q_n^{\mathrm{H}} \mathbf{e}_1$ を求める

$$\|\mathbf{r}_{n}^{(k)}\| = \|\mathbf{b} - (A + \sigma_{k}I)\mathbf{x}_{n}\| = \|V_{n+1}\left(\|\mathbf{b}\|\mathbf{e}_{1} - \widehat{T}_{n}^{(k)}\mathbf{y}_{n}^{(k)}\right)\|$$

$$= \|\|\mathbf{b}\|\mathbf{e}_{1} - \widehat{T}_{n}^{(k)}\mathbf{y}_{n}^{(k)}\|$$

$$= \|\mathbf{b}\|\mathbf{e}_{1} - \widehat{T}_{n}^{(k)}\mathbf{y}_{n}^{(k)}\|$$
(3)

 $\mathbf{2.4}$ 最小残差解 $\mathbf{x}_n^{(k)} = V_n \mathbf{y}_n^{(k)}$ を求める

特徴:

- ullet 1 $oxed{oldsymbol{\square}}$ の $oxed{oldsymbol{\square}}$ の $oxed{oldsymbol{\square}}$ の $oxed{oldsymbol{\square}}$ の $oxed{oldsymbol{\square}}$ の方程式に必要な基底が得られる
- 残差のノルムの単調減少性と無破綻性を持つ
- シフトごとに独立に最小残差解を求められる

Algorithm 1 shifted MINRES method 1: $\mathbf{x}_0^{(\sigma)} = \mathbf{0}, \ \mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$

 $h_i^{(k)} = |-\overline{s}_i^{(k)}| \cdot h_{i-1}^{(k)}$

20:

end for

22: end for

Determine convergence by $\|\mathbf{r}_{i}^{(k)}\| = h_{i}^{(k)}$

2: $\beta_0 = 0$, $\mathbf{v}_0 = \mathbf{0}$; $\mathbf{v}_1 = \mathbf{r}_0 / ||\mathbf{r}_0||_2$ 3: $f_1^{(\sigma)} = 1$, $h_0^{(\sigma)} = \|\mathbf{r}_0\|_2$, $\mathbf{p}_{-1}^{(\sigma)} = \mathbf{p}_0^{(\sigma)} = \mathbf{0}$ 4: **for** $j = 1, 2, \cdots$ **do** 5: $\mathbf{v}_{j+1}'' = A\mathbf{v}_j$ 6: $\alpha_j = \langle \mathbf{v}_j, \mathbf{v}_{j+1}'' \rangle$ 7: $\mathbf{v}'_{j+1} = \mathbf{v}''_{j+1} - \alpha_j \mathbf{v}_i - \beta_{j-1} \mathbf{v}_{j-1}$ $\beta_j = \|\mathbf{v}'_{j+1}\|_2$ $\mathbf{v}_{j+1} = \mathbf{v}'_{j+1}/\beta_j$ for $k = 1, 2, \dots, M$ do $\hat{T}_{i-2,j}^{(k)} = 0$ $\hat{T}_{i-1,j}^{(k)} = \beta_{j-1}, \ \hat{T}_{i,j}^{(k)} = \alpha_j + \sigma_k, \ \hat{T}_{i+1,j}^{(k)} = \beta_j$ if $j \ge 3$ then $\left[\hat{T}_{j,j-2}^{(k)} \; \hat{T}_{j,j-1}^{(k)}\right]^{\mathrm{T}} = G_{j-2}^{(k)} \left[\hat{T}_{j,j-2}^{(k)} \; \hat{T}_{j,j-1}^{(k)}\right]^{\mathrm{T}}$ end if if $j \ge 2$ then $\left[\hat{T}_{j,j-1}^{(k)} \ \hat{T}_{j,j}^{(k)}\right]^{\mathrm{T}} = G_{j-1}^{(k)} \left[\hat{T}_{j,j-1}^{(k)} \ \hat{T}_{j,j}^{(k)}\right]^{\mathrm{T}}$ end if $(\hat{T}_{j,j}^{(k)}, G_j^{(k)}) = \text{GIVENS}(\hat{T}_{j,j}^{(k)}, \hat{T}_{j+1,j}^{(k)})$ $\mathbf{p}_{j}^{(k)} = \left(\mathbf{v}_{j} - \hat{T}_{j-2,j}^{(k)} \mathbf{p}_{j-2}^{(k)} - \hat{T}_{j-1,j}^{(k)} \mathbf{p}_{j-1}^{(k)}\right) / \hat{T}_{j,j}^{(k)}$ $\mathbf{x}_{i}^{(k)} = \mathbf{x}_{i-1}^{(k)} + ||\mathbf{r_0}|| c_i^{(k)} f_i^{(k)} \mathbf{p}_i^{(k)}$ $f_{i+1}^{(k)} = -\bar{s}_j f_i^{(k)}$

shifted MINRES法の並列化モデル

sminresでは,すべてのシフトに対して共通の基底を用いて反復計算を行う.こ の構造は,シフトごとの処理が独立であることから,高い並列性を有する. 本研究では,以下の2種類の並列化モデルを実装・比較した:

モデル1:ベクトル分割(MPI) +シフト分割(OpenMP)

- MPI によるベクトルの行方向分割(ドメイン分割)
- OpenMP による各プロセス内でシフトループを並列化(M 個の方程式)
- 行列ベクトル積,内積,ノルム演算で通信を必要とする

モデル2:シフト分割(MPI) +シフト分割(openMP)

- MPI によりプロセスに対してシフトを割り当て,完全に独立なシフト分散
- OpenMP により担当シフト内でループを並列化
- 通信を必要としない(行列は各プロセスが全体を保持)

図 2: 並列化モデル 2

モデル1における通信の詳細:

行番号	MPI関数	目的	通信量
5	MPI_Allgatherv	部分ベクトルを集約し,全体ベクトルを構成	O(N)
6	MPI_Allreduce	局所内積の合計を求め,全プロセスに共有	O(1)
8	MPI_Allreduce	局所平方和の合計を求め,全プロセスに共有	O(1)

数值実験

CED上で2種類の並列化モデルおよび逐次実装の実行時間(秒)を比較した.

- 問題設定
 - ▶ VCNT4000std(4000次実対称),VCNT40000std(40000次実対称)[2]
 - $\sigma^{(k)} = 0.01 \exp(2\pi(k 0.5)/M), M = 50$ (実験1)
 - > $\sigma^{(k)} = -0.1 + k * 0.2/M + 0.01i$, M = 100 (実験2)
 - ▶ 収束条件: 相対残差 $||\mathbf{r}_i||/||\mathbf{r}_0|| \le 10^{-13}$
 - ► MPI: 4並列

実験1 \/CNIT4000ctc

VCNT4000std			VCNT40000std		
逐次	モデル1	モデル2	 逐次	モデル1	モデル2
3.44726	13.5996	0.988548	676.268	156.539	912.709

実験2 VCNT4000std

	V CIVI 10005ta	
逐次	モデル1	モデル2
2.55095	3.44825	0.267222

	VCNT40000std	
逐次	モデル1	モデル2
160.371	32.1898	207.159

- 大規模行列では,通信の相対負荷が低下し,モデル1が最も高速だった
- 小規模行列では,通信のないモデル2が最も高速に動作した
- 超大規模行列では,モデル1がスケーラブルな解法として期待できる

まとめと今後の展望

- shifted MINRES法に対する2種類の並列化モデルの検討をおこなった
 - ▶ 行列のサイズが大きい場合にはモデル1が有効
- ▶ 行列のサイズが小さい場合にはモデル2が有効
- 大規模問題,実問題での性能検証
- その他の並列化モデル・最適化の検討

- [1] S. Hidaka, S. Kudo, T. Hoshi, Y. Yamamoto, Performance of the shifted minimal residual method for multiply shifted linear systems with real symmetric or complex Hermitian coefficient matrices, Comput. Phys. Comm., **314** (2025), 109679.
- [2] T. Hoshi, ELSES matrix library, 2019, http://www.elses.jp/matrix/. (accessed 22 Jun. 2025)
- [3] S. Hidaka, 修士課程中間発表リポジトリ, https://github.com/ShunHidaka/masters-interim-poster.