# SpaceX Falcon 9 First Stage Landing Prediction Model



Tricia Opdahl July 2024

#### OUTLINE



- Executive Summary
- Introduction
- Methodology
- Results
  - Visualization Charts
  - Dashboard
- Discussion
  - Findings & Implications
- Conclusion
- Appendix

#### **EXECUTIVE SUMMARY**



- SpaceX boasts low launch costs due to reusable first stage
- First stage landing success directly impacts cost
- Landing success has increased to 83%
- Analysis of historical launch data enabled predictive modeling of launch success
- Decision Tree Model predicts landing success with an accuracy of 83%

### INTRODUCTION



#### Advertised Rocket Launch Costs

- SpaceX Falcon 9: \$62 million
- Other providers: upwards of \$165 million
- SpaceX engineered a reusable First Stage

SpaceX quotes \$100 million less than other launch providers

## Using this information



Can we predict whether the first stage will successfully land?

### **METHODOLOGY**

- **Data Collection**
- Data Wrangling
- Exploratory Data Analysis
- Data Visualization
- Machine Learning Prediction

#### METHODOLOGY - DATA COLLECTION

- SpaceX API
  - https://api.spacexdata.com/v4/launches/past
  - Filtered for Falcon 9 data
  - 90 rows each corresponding to a flight
  - 17 columns each corresponding to features (e.g. BoosterVersion, PayloadMass, Orbit, etc)
- Wikipedia
  - https://en.wikipedia.org/wiki/List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_ launches
  - Additional data for each flight
  - Features include Launch Outcome, Booster Landing, and Launch Site

#### METHODOLOGY - DATA WRANGLING

- Missing Values
  - Payload Mass: Replaced with average mass
  - Landing Pad: Retained as is to indicate no landing pad used (28.9% of data)
- Landing Outcome Label
  - Based on Outcome Column
  - 0 if 'bad outcome' Any unsuccessful landing outcome regardless of location
  - 1 if 'successful outcome' Successful landing to ground pad, drone ship, or ocean
- Converted categorical variables using One-Hot-Encoding

#### METHODOLOGY - EDA

- Loaded data into Db2 database to facilitate initial data characterization
  - Number of launch sites
  - Successful Landing Rates
  - Booster Version
- Exploratory Data visualization using Seaborn, Pandas, and Matplotlib
  - Determine correlation between various features and Landing Outcome

#### METHODOLOGY - DATA VISUALIZATION

- Launch Sites Locations plotted with Folium
- Interactive Dashboard using Plotly Express and Dash
  - Launch Success statistics for each Launch Site
  - Launch Success vs Payload Mass

#### METHODOLOGY - ML PREDICTION

- Compared 4 different ML classification models
  - Logistic Regression
  - Support Vector Machine
  - **Decision Tree**
  - K Nearest Neighbors

#### METHODOLOGY - ML PREDICTION

#### Features Used in Model:

- Flight number
- Payload Mass
- Orbit
- Launch Site
- Flights
- GridFins

- Reused
- Legs
- Landing Pad
- Block
- Reused Count
- Serial

#### METHODOLOGY - ML PREDICTION

- Normalized Data to ensure accurate feature weighting
- Reserved 20% of data for testing using split-test-train: 18 samples
- Performed Grid Search to optimize the models' hyperparameters
- Trained models using all retained features: 83 columns with one-hot-encoding
- Assessed models using Accuracy and Confusion Matrix

• 4 Distinct Launch Sites

Launch\_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

• 5 records where launch sites begin with the string 'CCA'

| Date           | Time<br>(UTC) | Booster_Version | Launch_Site     | Payload                                                                         | PAYLOAD_MASS_KG_ | Orbit        | Customer              | Mission_Outcome | Landing_Outcome     |
|----------------|---------------|-----------------|-----------------|---------------------------------------------------------------------------------|------------------|--------------|-----------------------|-----------------|---------------------|
| 2010-<br>06-04 | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                   | 0                | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-<br>12-08 | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0                | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-<br>05-22 | 7:44:00       | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C2                                                     | 525              | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |
| 2012-<br>10-08 | 0:35:00       | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX<br>CRS-1                                                                 | 500              | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |
| 2013-<br>03-01 | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX<br>CRS-2                                                                 | 677              | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |

Total Mass Launched by NASA (CRS)

45596

Average Mass Carried by BV F9 v1.1

2928.4

First Successful Landing Date

2018-07-22

 Booster Version with success in drone ship and payload mass between 4000 and 6000 kg.

#### Booster\_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

| Mission_Outcome                  | COUNT(*) |
|----------------------------------|----------|
| Failure (in flight)              | 1        |
| Success                          | 98       |
| Success                          | 1        |
| Success (payload status unclear) | 1        |

**Mission Outcomes** 



Boosters that have carried the maximum payload mass

#### Booster\_Version

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7



| Out[19]: | Month | Landing_Outcome        | Booster_Version | Launch_Site |
|----------|-------|------------------------|-----------------|-------------|
|          | 01    | Failure (drone ship)   | F9 v1.1 B1012   | CCAFS LC-40 |
|          | 02    | Controlled (ocean)     | F9 v1.1 B1013   | CCAFS LC-40 |
|          | 03    | No attempt             | F9 v1.1 B1014   | CCAFS LC-40 |
|          | 04    | Failure (drone ship)   | F9 v1.1 B1015   | CCAFS LC-40 |
|          | 04    | No attempt             | F9 v1.1 B1016   | CCAFS LC-40 |
|          | 06    | Precluded (drone ship) | F9 v1.1 B1018   | CCAFS LC-40 |
|          | 12    | Success (ground pad)   | F9 FT B1019     | CCAFS LC-40 |

Landing Outcomes in 2015

Out[24]:

 Landing Outcomes from 2010-06-04 to 2017-03-20

| Landing_Outcome        | Outcome Count |
|------------------------|---------------|
| No attempt             | 10            |
| Success (drone ship)   | 5             |
| Failure (drone ship)   | 5             |
| Success (ground pad)   | 3             |
| Controlled (ocean)     | 3             |
| Uncontrolled (ocean)   | 2             |
| Failure (parachute)    | 2             |
| Precluded (drone ship) | 1             |





Orbit vs Flight Number



Orbit vs Payload Mass



 Success Rates increased significantly since 2013



First 5 records before one-hot-encoding

| [14]: |   | FlightNumber | PayloadMass | Orbit | LaunchSite   | Flights | GridFins | Reused | Legs  | LandingPad | Block | ReusedCount | Serial |
|-------|---|--------------|-------------|-------|--------------|---------|----------|--------|-------|------------|-------|-------------|--------|
|       | 0 | 1            | 6104.959412 | LEO   | CCAFS SLC 40 | 1       | False    | False  | False | NaN        | 1.0   | 0           | B0003  |
|       | 1 | 2            | 525.000000  | LEO   | CCAFS SLC 40 | 1       | False    | False  | False | NaN        | 1.0   | 0           | B0005  |
|       | 2 | 3            | 677.000000  | ISS   | CCAFS SLC 40 | 1       | False    | False  | False | NaN        | 1.0   | 0           | B0007  |
|       | 3 | 4            | 500.000000  | PO    | VAFB SLC 4E  | 1       | False    | False  | False | NaN        | 1.0   | 0           | B1003  |
|       | 4 | 5            | 3170.000000 | GTO   | CCAFS SLC 40 | 1       | False    | False  | False | NaN        | 1.0   | 0           | B1004  |

First 5 records after one-hot-encoding

| [16]: | F | FlightNumber | PayloadMass | Flights | GridFins | Reused | Legs | Block | ReusedCount | Orbit_ES-<br>L1 | Orbit_GEO |     | Serial_B1048 | Serial_B1049 | Serial_ |
|-------|---|--------------|-------------|---------|----------|--------|------|-------|-------------|-----------------|-----------|-----|--------------|--------------|---------|
|       | 0 | 1.0          | 6104.959412 | 1.0     | 0.0      | 0.0    | 0.0  | 1.0   | 0.0         | 0.0             | 0.0       |     | 0.0          | 0.0          |         |
|       | 1 | 2.0          | 525.000000  | 1.0     | 0.0      | 0.0    | 0.0  | 1.0   | 0.0         | 0.0             | 0.0       |     | 0.0          | 0.0          |         |
|       | 2 | 3.0          | 677,000000  | 1.0     | 0.0      | 0.0    | 0.0  | 1.0   | 0.0         | 0.0             | 0.0       | *** | 0.0          | 0.0          |         |
|       | 3 | 4.0          | 500.000000  | 1.0     | 0.0      | 0.0    | 0.0  | 1.0   | 0.0         | 0.0             | 0.0       | *** | 0.0          | 0.0          |         |
|       | 4 | 5.0          | 3170.000000 | 1.0     | 0.0      | 0.0    | 0.0  | 1.0   | 0.0         | 0.0             | 0.0       |     | 0.0          | 0.0          |         |

5 rows × 80 columns

# RESULTS - Interactive Map with Folium

- 4 Launch Sites:
  - CCAFS LC-40
  - VAFB SLC-4E
  - KSC LC-39A
  - CCAFS SLC-40
- 1 in California
- 3 in Florida



# RESULTS - Interactive Map with Folium

 Successful and Failed outcomes at VAFB



# RESULTS - Interactive Map with Folium

- All sites near coastline
- All sites near major modes of transportation



### DASHBOARD - Landing Success per Site



#### SpaceX Launch Records Dashboard



Success Rates vary across the 4 launch sites

### DASHBOARD - Landing Success vs PL Mass, Booster Version, All Sites



Success Rates vary with booster version and payload mass

### DASHBOARD Landing Success vs PL Mass, Booster Version, One Site



Success Rates vary with booster version and payload mass

#### **RESULTS - Decision Tree**

- All 4 classification models produced an accuracy of 83.3% on test data
- Decision Tree produced lowest false positive predictions



- Logistic Regression
  - Accuracy on train data: 84.6%
  - Accuracy on test data: 83.3%
  - tuned hyerparameters :(best parameters) {'C': 0.01, 'penalty': 'l2', 'solver': 'lbfgs'}



- Support Vector Machine
  - Accuracy on train data: 84.8%
  - Accuracy on test data: 83.3%
  - tuned hyerparameters: (best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}



- K Nearest Neighbors
  - Accuracy on train data: 84.8%
  - Accuracy on test data: 83.3%
  - tuned hyerparameters: (best parameters) {'algorithm': 'auto', 'n\_neighbors': 10, 'p': 1}



#### Decision Tree

- Accuracy on train data: 87.5%
- Accuracy on test data: 83.3%
- tuned hyperparameters: (best parameters) {'criterion': 'gini', 'max\_depth': 10, 'max\_features': 'sqrt', 'min\_samples\_leaf': 1, 'min\_samples\_split': 10, 'splitter': 'random'}



#### **DISCUSSION**



- Can we predict whether the first stage will successfully land?
- ML model trained with historical landing data.
- ML model utilizes 12 features.
- Decision Tree Model predicts first stage landing success with 83.3% accuracy.
- Further data collection necessary to maintain model as SpaceX technology improves over time.

#### OVERALL FINDINGS & IMPLICATIONS

#### **Findings**

- SpaceX Falcon 9 landing success above 80%
- SpaceX landing success increases over time
- Model predicts landing success with an accuracy of 83%

#### **Implications**

- SpaceX Falcon 9 launch costs likely to remain low
- Continued data collection and analysis necessary
- Can predict actual cost of SpaceX Falcon 9 launch



#### CONCLUSION



- SpaceX continues to advertise low launch costs
- First stage landing success is high, but not flawless
- We can predict landing success with high accuracy
- We can determine actual launch cost with high accuracy

### APPENDIX - DASHBOARD

https://github.com/topdahl/Capstone\_Project/blob/64e938a5605c1112c366694bcad0ae7 ad889b14d/spacex\_dash\_app.py

