Practice with time complexity

Alaa Sheta

Time complexity: Nested Loop

Time Analysis Table

Line Number	Code	Time Taken (Assume each line takes `c` time)
1	`total = 0`	`c`
2	`for i in range(len(arr)):`	`n * c` (outer loop runs `n` times)
3	`for j in range(len(arr)):`	`n * n * c` (inner loop runs `n` times for each `i`)
4	`total += arr[i] + arr[j]`	`n * n * c` (runs `n` times for each `i` and `j`)
5	`return total`	`c`

Final Time Calculation

Total Time `T(n)`:

$$T(n) = c + n \times c + n \times n \times c + n \times n \times c + c$$

Simplifying:

$$T(n) = c + n \times c + 2 \times n^2 \times c + c = (2n^2 + n + 2) \times c$$

Simplified Time Complexity

• The time complexity is $`O(n^2)`$, where `n` is the number of elements in the array.

Matrix Multiplication: Time complexity

```
MatrixMultiply(A, B)
1. Initialize matrix C of size n x n with zeros
2. for i = 0 to n-1:
3.    for j = 0 to n-1:
4.        C[i][j] = 0
5.        for k = 0 to n-1:
6.        C[i][j] = C[i][j] + A[i][k] * B[k][j]
7. return C
```

Line	Operation	Time Complexity
1	Initialize matrix C of size $n imes n$	$O(n^2)$
2	Outer loop: Iterate over i from 0 to $n-1$	O(n)
3	Inner loop: Iterate over j from 0 to $n-1$	O(n)
4	Initialize $C[i][j]=0$	O(1)
5	Inner loop: Iterate over k from 0 to $n-1$	O(n)
6	Update $C[i][j] = C[i][j] + A[i][k] * B[k][j]$	O(1)
7	Return matrix ${\cal C}$	O(1)

Time complexity: sequential search

```
def sequential_search(arr, key):
    for i in range(len(arr)):  # Line 1
        if arr[i] == key:  # Line 2
            return i  # Line 3
    return -1  # Line 4
```

Time Analysis Table

Line Number	Code	Time Taken (Assume each line takes `c` time)
1	`for i in range(len(arr)):`	`n * c` (where `n` is the length of `arr`)
2	`if arr[i] == key:`	`n * c` (runs `n` times, checking each element)
3	`return i`	`c` (only executes if the key is found)
4	`return -1`	`c` (executed if the key is not found)

```
for (i = 1; i < n; i = i * 2) {
    // code
}</pre>
```

Total Number of Iterations

- The value of `i` follows the sequence: $1,2,4,8,16,\ldots$ This means that after k iterations, $i=2^k$.
- The loop condition is i < n, so $2^k < n$.
- Solving for k, we get $k < \log_2(n)$.
- Thus, the number of iterations is $\log_2(n)$.

Overall Time Complexity

• Overall Time Complexity: $O(\log n)$

```
for (i = n; i >= 1; i = i / 2) {
    // code
}
```

Total Number of Iterations

- The value of `i` follows the sequence: $n,rac{n}{2},rac{n}{4},rac{n}{8},\ldots$ After k iterations $i=rac{n}{2^k}$
- The loop condition is $i \geq 1$, so $rac{n}{2^k} \geq 1$.
- Solving for k, we get $2^k \leq n$.
- Taking the logarithm base 2, we get $k \leq \log_2(n)$.
- Thus, the number of iterations is $log_2(n)$.

Overall Time Complexity

• Overall Time Complexity: $O(\log n)$

```
for (i = 0; i * i < n; i++) {
    // code
}</pre>
```

Total Number of Iterations

- The loop continues as long as $i^2 < n$.
- The largest value of `i` will be approximately \sqrt{n} , because when i is around \sqrt{n} , i^2 will be close to n.
- Therefore, the number of iterations is approximately \sqrt{n} .

Overall Time Complexity

• Overall Time Complexity $O(\sqrt{n})$

```
for (i = 0; i < n; i++) {
    // code
}

for (j = 0; j < n; j++) {
    // code
}</pre>
```

Combined Time Complexity

Since these loops are not nested but sequential:

• First Loop: O(n)

• Second Loop: O(n)

When combined, the overall time complexity is the sum of both loops:

Overall Time Complexity: O(n) + O(n) = O(n)

```
for (i = 0; i < n; i = i * 2) {
    p++;
}

for (j = 0; j < p; j = j * 2) {
    // code
}</pre>
```

Time Complexity for First Loop:

$$p = O(\log n)$$

Total Iterations:

 $\log_2(p)$ where p is approximately $\log_2(n)$, so this becomes:

$$\log_2(\log_2(n))$$

Time Complexity for Second Loop:

 $O(\log \log n)$


```
void fun(int n) {
   int count = 0;
   for (int j = 1; j + n / 2 <= n; j++) { // Middle loop
         for (int k = 1; k <= n; k = k * 2) { // Inner loop
            count++; // Increment count
  cout << "Count: " << count << endl;</pre>
```

Time Complexity Calculation:

Let's break down the time complexity for each loop.

- 1. Outer Loop (for (i = n / 2; i <= n; i++)):
 - The loop runs from i = n / 2 to i = n, inclusive.
 - Therefore, the outer loop runs approximately n / 2 times.
- 2. Middle Loop (for $(j = 1; j + n / 2 \le n; j++)$):
 - This loop runs as long as j + n / 2 <= n.
 - This means j runs from 1 to n / 2, so the middle loop also runs n / 2 times.

- 3. Inner Loop (for $(k = 1; k \le n; k = k * 2)$):
 - The value of k starts at 1 and doubles each time (k = k * 2).
 - The number of iterations for this loop is logarithmic, i.e., O(log n). The loop runs until k exceeds n, so it runs log₂(n) times.

i <= n - n/2

j <= n/2

Total Time Complexity:

To calculate the total time complexity, we multiply the complexities of all loops:

- Outer loop: runs n / 2 times → O(n)
- Middle loop: runs n / 2 times \rightarrow O(n)
- Inner loop: runs O(log n) times

Thus, the total time complexity is:

$$O\left(n \times n \times \log n\right) = O(n^2 \log n)$$

```
void fun(int n) {
    if (n <= 1) return;
    int i, j;
    for (i = 1; i < n; i++) {
        for (j = 1; j \le n; j++) {
            cout << "Hello" << endl;</pre>
            break; // Break immediately after printing "Hello"
```

Time Complexity Analysis:

- The outer loop (for (i = 1; i < n; i++)) runs n 1 times (approximately O(n)).
- The inner loop (for (j = 1; j <= n; j++)) runs only once for each iteration of the outer loop because of the break statement. Even though the condition would allow it to run up to n times, the break ensures that the inner loop terminates after one iteration.

Thus, the inner loop effectively contributes **O(1)** to the complexity for each iteration of the outer loop.

Total Time Complexity:

- The outer loop runs O(n) times.
- The inner loop runs O(1) times for each iteration of the outer loop.

Time Complexity Analysis:

- 1. Outer Loop (for (i = 1; i < n / 3; i++)):
 - The outer loop runs from i = 1 to i < n / 3.
 - The number of iterations of the outer loop is approximately n / 3, which simplifies to O(n).
- 2. Inner Loop (for $(j = 1; j \le n; j += 4)$):
 - The inner loop starts from j = 1 and increments by 4 in each iteration until j > n.
 - The number of iterations of the inner loop is approximately n / 4, which simplifies to O(n).

Total Time Complexity:

To find the total time complexity, multiply the complexity of the outer loop and the inner loop:

$$O\left(rac{n}{3} imesrac{n}{4}
ight)=O(n imes n)=O(n^2)$$

```
def fun(n):
    count = 0
    for i in range(3, n): # Outer loop starts from i=3 and goes up to n-1
        for j in range(i): # Inner loop runs from j=0 to j=i-1
            count += 1
    return count
```

Time Complexity Analysis:

- 1. Outer Loop (for (int i = 3; i < n; i++):
 - The outer loop runs from i = 3 to i = n 1.
 - Therefore, the number of iterations of the outer loop is n 3, which is O(n).
- 2. Inner Loop (for (int j = 0; j < i; j++):
 - The inner loop runs i times for each value of i from the outer loop. So:
 - When i = 3, the inner loop runs 3 times.
 - When i = 4, it runs 4 times.
 - When i = 5, it runs 5 times, and so on up to i = n 1.

3. Total Iterations:

 The total number of iterations of the inner loop across all iterations of the outer loop is the sum of the values from 3 to n - 1:

Total Iterations =
$$3 + 4 + 5 + \cdots + (n-1)$$

This is an arithmetic series, and the sum of the first k integers is given by:

$$\sum_{i=3}^{n-1} i = \frac{(n-1)(n)}{2} - \frac{2(2+1)}{2}$$

Simplified, this becomes:

Total Iterations =
$$O(n^2)$$

```
// First loop
for (int i = 0; i < n; i++) {
    sum += i;
// Second nested loop
for (int j = 0; j < n; j++) {
    for (int k = 0; k < n; k++) {
        sum += j * k;
cout << "Sum: " << sum << endl;</pre>
return 0;
```

Complexity Analysis

- 1. First Loop:
 - The first loop runs n times, contributing O(n) to the complexity.
- 2. Second Nested Loop:
 - The nested loop runs n times for j and n times for k, resulting in n^2 iterations.
 - This contributes O(n²) to the complexity.

Total Complexity

Combining both parts:

- First loop: O(n)
- Second nested loop: O(n²)

```
for(int i = 0; i < 100; i++)
  for(int j = N; j >= 0; j--)
    print("bark");
```

1. Outer Loop:

The outer loop runs 100 times, which is a constant and does not depend on N.

2. Inner Loop:

The inner loop runs from N down to 0, which means it runs N + 1 times.

Total Complexity

To find the total number of iterations:

- The outer loop contributes 100 iterations.
- For each iteration of the outer loop, the inner loop contributes N + 1 iterations.

So, the total number of iterations is:

$$100 \times (N + 1)$$

This simplifies to O(N) since the constant factor (100) is ignored in Big O notation.

```
for(int i = 0; i < N; i += 2) {
   for(int j = 1; j < N; j *= 2) {
       print("go");
```

1. Outer Loop:

- The outer loop starts at i = 0 and increments by 2 each time until it reaches N.
- This means the outer loop runs approximately $rac{N}{2}$ times (or O(N) in Big O notation).

2. Inner Loop:

- The inner loop starts at j = 1 and multiplies j by 2 each iteration until it reaches or exceeds N.
- The inner loop runs as follows:
 - 1, 2, 4, 8, ..., up to the largest power of 2 less than N.
- The number of iterations for the inner loop can be expressed as $\log_2(N)$ since it doubles j each time.

Total Complexity

To find the total number of iterations:

- The outer loop runs O(N) (specifically $\frac{N}{2}$).
- The inner loop runs $O(\log N)$.

Combining both parts:

Total Iterations =
$$O(N) \times O(\log N) = O(N \log N)$$

Final Complexity

Thus, the time complexity of the code is:

$$O(N \log N)$$