Table 1: The image preprocessing algorithms available in IBEX

Category	Preprocessing Algorithm Name	Comment	Reference
Image Smoothing	Average_Smooth		
	EdgePreserve_Smooth3D	C++ MEX	
	Gaussian_Smooth		11,12,13,14,16
	Gaussian_Smooth3D	C++ MEX	
	Median_Smooth		
	Wiener_Smooth		11
Image Enhancement	AdaptHistEqualization_Enhance3D	C++ MEX	
	HistEqualization_Enhance		
	Sharp_Enhance		
Image Deblur	Blind_Deblur		
	Gaussian_Deblur		
Change Enhancement	Laplacian_Filter		11,12,13,14,16
	Log_Filter		11,12,13,14,16
	XEdge_Enhance		
	YEdge_Enhance		
Resample	Resample_UpDownSample	C++ MEX	9
	Resample_VoxelSize	C++ MEX	9
Miscellaneous	Threshold_Image_Mask	_	11,15
	Threshold_Mask		11,15
	BitDepthRescale_Range	Change dynamic range	11,15

Table 2: The feature algorithms available in IBEX $\,$

Category	Feature Algorithm Name	Comment	Reference
	Volume		7,15
	SurfaceArea		7
	SurfaceAreaDensity	H C.I.C. CT. 1	7
	Mass	Useful for CT only	7
	Convex ConvexHullVolume		7
Shape	ConvexHullVolume3D		
•	MeanBreath		
	Orientation		7
	Roundness		7
	NumberOfObjects		,
	NumberOfVoxel		7
	VoxelSize		,
-	Kurtosis		7,9,11,15
	Skewness		7,9,11,15
	Range		9
	Percentile		9,15
	Quantile		9
	InterQuartileRange		9
	GlobalEntropy		7,9,11,12,15,
	GlobalUniformity		11,12,13,14,16
IntensityDirect	GlobalMax		9,15
	GlobalMin		9,15
	GlobalMean		7,9,11,12,13,15
	GlobalMedian		9,15
	GlobalStd		7,9,11,13,15,
	MeanAbsoluteDeviation		9
	MedianAbsoluteDeviation		
	LocalEntropy/Range/StdMax		
	LocalEntropy/Range/StdMin		
	LocalEntropy/Range/StdMean		
	LocalEntropy/Range/StdMedian LocalEntropy/Range/StdStd		
	Kurtosis		
	Skewness		
	Range		
IntensityHistogram	Percentile		
, ,	Percentile Area		
	Quantile		
	InterQuartileRange		
	Contrast	25:=GLCM is computed	7,9,11,15,28
GrayLevelCooccurenceMatrix25	Correlation	from all 2D image slices	7,9,11,15,28
GrayLevelCooccurenceMatrix3	Energy	3:=GLCM is computed	7,9,11,15,28
	Homogeneity	from 3D image matrix	7,9,11,15,28
	Busyness	25:=NID is computed	11,23,29
NeighborIntensityDifference25	Coarseness	from all 2D image slices	11,23,29
NeighborIntensityDifference3	Complexity	2NID : 1	23,29
	Contrast	3:=NID is computed from 3D image matrix	11,23,29
	TextureStrength	Hom 5D image matrix	23,29
	GrayLevelNonuniformity		7,15,30,31
	HighGrayLevelRunEmpha		7,,30,31
	LongRunEmphasis		7,15,30,31
GrayLevelRunLengthMatrix25	LongRunHighGrayLevelEmpha	25:=RLM is computed	7,30,31
	LongRunLowGrayLevelEmpha	from all 2D image slices	7,30,31
	LowGrayLevelRunEmpha	~6- ~ v	7,30,31
	RunLengthNonuniformity		7,15,30,31
	RunPercentage		7,15,30,31
	ShortRunEmphasis		7,15,30,31
	ShortRunHighGrayLevelEmpha		7,30,31
	ShortRunLowGrayLevelEmpha		7,30,31
	z		.,,

Reference

- 1. Chen HY, Yu SL, Chen CH, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007;356(1):11-20.
- 2. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47.
- 3. Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2(2):115-52.
- 4. Machtay M, Duan F, Siegel BA, et al. Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol. 2013;31(30):3823-30.
- 5. Raz DJ, Ray MR, Kim JY, et al. A multigene assay is prognostic of survival in patients with early-stage lung adenocarcinoma. Clin Cancer Res. 2008;14(17):5565-70.
- 6. Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55(7):1822-30.
- 7. Basu S. Developing Predictive Models for Lung Tumor Analysis. University of South FloridaFollow; 2012.
- 8. Cunliffe AR, Al-Hallaq HA, Labby ZE, et al. Lung texture in serial thoracic CT scans: assessment of change introduced by image registration. Med Phys. 2012;39(8):4679-90.
- 9. Cunliffe AR, Armato SG, 3rd, Fei XM, et al. Lung texture in serial thoracic CT scans: registration-based methods to compare anatomically matched regions. Med Phys. 2013;40(6):061906.
- 10. Cunliffe AR, Armato SG, Straus C, et al. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy. Phys Med Biol. 2014;59(18):5387-98.
- 11. Fried DV, Tucker, S. L., Zhou, S., Liao, Z., Mawlawi, O., Ibbott, G., Court, L. E. Prognostic value and reproducibility of pretreatment CT texture features in stage III Non-Small-Cell lung cancer Int J Radiation Oncol Biol Phys. 2014.
- 12. Ganeshan B, Abaleke S, Young RC, et al. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010;10:137-43.
- 13. Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266(1):326-36.
- 14. Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22(4):796-802.
- 15. Hunter LA, Krafft S, Stingo F, et al. High quality machine-robust image features: identification in nonsmall cell lung cancer computed tomography images. Med Phys. 2013;40(12):121916.

- 16. Ravanelli M, Farina D, Morassi M, et al. Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol. 2013;23(12):3450-5.
- 17. Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675-80.
- 18. Tan H, Liu T, Wu Y, et al. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol. 2014;49(7):498-504.
- 19. Win T, Miles KA, Janes SM, et al. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res. 2013;19(13):3591-9.
- 20. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441-6.
- 21. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234-48.
- 22. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30(5):979-85.
- 23. Fang YH, Lin CY, Shih MJ, et al. Development and evaluation of an open-source software package "CGITA" for quantifying tumor heterogeneity with molecular images. Biomed Res Int. 2014;2014:248505.
- 24. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda--a software package for image texture analysis. Comput Methods Programs Biomed. 2009;94(1):66-76.
- 25. Krasner GE, Pope ST. A cookbook for using the model-view controller user interface paradigm in Smalltalk-80. J. Object Oriented Program. 1988;1(3):26-49.
- 26. Xie T, Taneja K, Kale S, Marinov D. Towards a Framework for Differential Unit Testing of Object-Oriented Programs. Proceedings of the Second International Workshop on Automation of Software Test: IEEE Computer Society; 2007:5.
- 27. Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM standard. Eur Radiol. 2002;12(4):920-7.
- 28. Haralick RM, Shanmuga.K, Dinstein I. Textural Features for Image Classification. Ieee Transactions on Systems Man and Cybernetics. 1973;Smc3(6):610-21.
- 29. Amadasun M, King R. Textural features corresponding to textural properties. Systems, Man and Cybernetics, IEEE Transactions on. 1989;19(5):1264-74.
- 30. Tang XO. Texture information in run-length matrices. Ieee Transactions on Image Processing. 1998;7(11):1602-9.
- 31. Galloway MM. Texture analysis using gray level run lengths. Computer Graphics and Image Processing. 1975;4(2):172-9.