



# Who are we?



#### THE AMIDST CONSORTIUM





































## Running Use Case



#### RUNNING USE CASE





#### Predicting Defaulting Clients

Predicts probability a customer will default within 2 years



#### RUNNING USE CASE





- Daily data for millions of clients
- Tons of missing data.
- Odd distributions.



## Toolbox presentation



#### GENERAL DESCRIPTION





#### Probabilistic machine learning

Model your problem using a flexible probabilistic language based on graphical models. Then, fit it with data using a Bayesian approach to handle modelling uncertainty.

#### Multi-core and distributed processing

AMIDST provides tailored parallel and distributed implementations of Bayesian parameter learning (and probabilistic inference) for batch and streaming data. This processing is based on flexible and scalable message passing algorithms.





#### Openbox Models



Blackbox Inference Engine (Powered by Flink)



## Main Features







#### Probabilistic graphical models (PGMs)

Specify your model using probabilistic graphical models with latent variables and temporal dependencies



#### RUNNING USE CASE









#### Custom Gaussian Mixture Model

 $H_{ij}$  defines a local mixture.  $H_i$  defines a global mixture.



## PGMS RUNNING CODE EXAMPLE

```
//Set-up Flink session.
final ExecutionEnvironment env =
       ExecutionEnvironment.getExecutionEnvironment();
//Load the data stream
String filename = "hdfs://dataFlink month0.arff";
DataFlink<DataInstance> data =
       DataFlinkLoader.loadDataFromFolder(env, filename,
       false);
//Build the model
Model model = new CustomGaussianMixture(data.getAttributes());
```



#### Scalable Learning

Perform Bayesian inference on your probabilistic models with powerful approximate and scalable algorithms.





d-VMP Algorithm - Coded as iterative map-reduce task

A state-of-the-art distributed variational message passing algorithm.



## SCALABLE INFERENCE RUNNING CODE EXAMPLE



```
//Set-up Flink session.
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//Load the data stream
String filename = "hdfs://dataFlink month0.arff";
DataFlink<DataInstance> data =
         DataFlinkLoader.loadDataFromFolder(env, filename, false);
//Build the model
Model model = new CustomGaussianMixture(data.getAttributes());
//Learn the model
model.updateModel(data);
```



#### Data Streams

Update your models when new data is available. This makes our toolbox appropriate for learning from data streams.



### DATA STREAMS RUNNING CODE EXAMPLE



```
//Set-up Flink session.
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//Load the data stream
String filename = "hdfs://dataFlink month0.arff";
DataFlink<DataInstance> data =
         DataFlinkLoader.loadDataFromFolder(env, filename, false);
//Build the model
Model model = new CustomGaussianMixture(data.getAttributes());
//Learn the model
model.updateModel(data);
//Update your model
for(int i=1; i<12; i++) {
   filename = "dataFlink month"+i+".arff";
   data = DataFlinkLoader.loadDataFromFolder(env, filename, false);
   model.updateModel(data);
```

#### RUNNING USE CASE





#### Predicting Defaulting Clients

- Old BCC's models based on logistic regression got an AUC of 0.816.
- AMIDST's models gets an AUC of 0.952.







#### Scalability analysis

Use your defined models to process massive data sets in a distributed computer cluster using Flink.







#### One billion node probabilistic model

Experiment on a Flink cluster with 16 nodes on AWS.



#### SCALABILITY ANALYSIS





Speedup (with respect to 2 nodes)





#### Modular Design

The AMIDST Toolbox has been designed following a modular structure. This makes easier:

- The maintenance and enhancement of the software
- The integration with external software: HUGIN, MOA, Weka, R.



#### MODULAR DESIGN

#### ∧MiDST TOOLBOX





## Running Use Case II



#### CONCEPT DRIFT DETECTION





#### Tracking Concept Drift

Detects changes in customer profiles during Spanish financial crisis



## CONCEPT DRIFT DETECTION MODEL



Hidden Variables are used to capture changes in customer profile



### CONCEPT DRIFT DETECTION RUNNING CODE



```
//Set-up Flink session.
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//Load the data stream
String filename = "hdfs://dataFlink month0.arff";
DataFlink<DataInstance> data =
         DataFlinkLoader.loadDataFromFolder(env, filename, false);
//Build the model
Model model = new ConceptDriftDetector(data.getAttributes());
//Learn the model
model.updateModel(data);
//Update your model
for(int i=1; i<12; i++) {
   filename = "dataFlink month"+i+".arff";
   data = DataFlinkLoader.loadDataFromFolder(env, filename,false);
  model.updateModel(data);
   System.out.println(model.getPosteriorDistribution("hiddenVar").
                                                           toString());
```

## CONCEPT DRIFT DETECTION RESULTS





#### Hidden Variable Captures Concept Drift

Drift Pattern: Seasonal + Global trend



## CONCEPT DRIFT DETECTION RESULTS





#### Unemployment Rate main driver of Concept Drift

Hidden Variable correlates with unemployment rate (rho = 0.961)



#### COLLABORATE

#### ∧MiDST TOOLBOX



www.amidsttoolbox.com



github.com/amidst/toolbox





## Thanks for your attention



@ contact@amidsttoolbox.com



