Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет программной инженерии и компьютерной техники

Основы профессиональной деятельности Лабораторная работа №3

Вариант 3104

Выполнил:

студент группы Р3231

Нестеров Иван Алексеевич

Преподаватель:

Блохина Елена Николаевна

Задание:

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

52F:	0548	53D:	F407	54B:	6530
530:	A000	53E:	0480	Ì	
531:	E000	53F:	F405	Ì	
532:	E000	540:	0400	Ì	
533:	+ AF40	541:	0400	Ì	
534:	0680	542:	7EEF	Ì	
535:	0500	543:	F801	1	
536:	EEFB	544:	EEED	ĺ	
537:	AF04	545:	8531	Ì	
538:	EEF8	546:	CEF4	ĺ	
539:	4EF5	547:	0100	1	
53A:	EEF5	548:	0000	ĺ	
53B:	ABF4	549:	0580	Ì	
53C:	0480	54A:	B540	Ì	

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарий
533	AF40	LD #40	Прямая загрузка $40_{16} ightarrow AC$
534	0680	SWAB	Обмен значений старшего и младшего байтов
535	0500	ASL	Сдвиг AC влево: $AC15 \rightarrow C$, $0 \rightarrow AC0$
536	EEFB	ST 0x532	Прямая относительная (IP-5) адресация.
			$AC \rightarrow 532$
537	AF04	LD #4	Прямая загрузка $4_{16} o AC$
538	EEF8	ST 0x531	Прямая относительная (IP-8) адресация.
			$AC \rightarrow 531$
539	4EF5	ADD 0x52F	Прямая относительная (IP-11) адресация.
			$52F_{16} + AC \rightarrow AC$
53A	EEF5	ST 0x530	Прямая относительная (ІР-11) адресация.
			$AC \rightarrow 530$
53B	ABF4	LD 0x52F	Косвенная относительная автодекрементная
			(IP-13) адресация. $52F_{16} \rightarrow AC$
53C	0480	ROR	Сдвиг АС и С вправо. $AC0 \rightarrow C, C \rightarrow AC15$
53D	F407	BCS (BHIS)	Переход в IP+7, если $C == 1$
		0x545	
53E	0480	ROR	Сдвиг AC и C вправо. AC0 \rightarrow C, C \rightarrow AC15
53F	F405	BCS (BHIS)	Переход в IP+5, если $C == 1$
		0x545	
540	0400	ROL	Сдвиг АС и С влево. AC15 \rightarrow C, C \rightarrow AC0
541	0400	ROL	Сдвиг AC и C влево. AC15 \rightarrow C, C \rightarrow AC0
542	7EEF	CMP 0x532	Прямая относительная (ІР-17) адресация.
			Установить флаги по результату АС - 532
543	F801	BLT 0x545	Переход на IP+1, если N != V
544	EEED	ST 0x532	Прямая относительная (ІР-19) адресация.
			$AC \rightarrow 532$
545	8531	LOOP 0x531	$531 - 1_{16} \rightarrow 531$. Если $531 \le 0$, то $IP + 1 \rightarrow IP$
546	CEF4	JUMP 0x53B	$IP - C_{16} \rightarrow IP$

Описание программы:

Во варианте представлен массив из 4-х чисел, которые хранятся по адресам 0х548-0х54В. Указатель на первый элемент массива хранится по адресу 0х52F, на текущий рассматриваемый – по адресу 0х530. Кроме того, хранится счетчик элементов массива, который изначально равен 4 (по количеству элементов массива), и после рассмотрения элемента уменьшается на единицу. Цикл продолжает работу, пока значение счетчика положительно, то есть повторяет действие для каждого из 4-х элементов массива, а именно: анализ двух его последних бит (значение которых вычисляется при помощи логического сдвига вправо и сохранения «выпавшего» бита во флаг С). Если хотя бы один из них равен единице, то программа начинает итерацию для следующего элемента. Если же нет, то можно сделать вывод о том, что число делится на 4, и программа сравнивает его с числом, хранящимся в ячейке 0х532. В результате операций в ячейках 0х533-0х536 в ячейке 0х532 лежит двоичное число 1000 0000 0000 0000. Это максимальное по модулю отрицательное число. То есть это число, значение которого – возможный минимум значения числа в БЭВМ. Элемент массива сравнивается с этим числом, и если оно больше (скорее всего, да), то значение ячейки 0х532 перезаписывается. Аналогичные действия повторяются для каждого элемента массива. В конце концов, в этой ячейке останется лежать максимальное по значению число массива, которое делится на 4.

Подобный вывод можно сделать, рассмотрев тело цикла в представленной программе. Программа переходит к новой итерации, если хотя бы один из двух младших битов числа равен единице. Соответственно, осуществляется поиск числа с двумя младшими битами, равными 0 (такое число делится на 4). Далее число сравнивается с числом R, которое перезаписывается лишь в том случае, когда возникло отрицательное число (R меньше элемента массива), либо возникло переполнение, что также позволяет сделать такой вывод.

Область представления:

А[0]-А[3] (элементы массива) – знаковые 16-ти разрядные числа

х, у (адреса) – 11-ти разрядные беззнаковые числа

і (кол-во элементов массива) – 4 (величина постоянно)

R (число для сравнения) — 100000000000000002. Его роль указана в описании программы. Значение получается путем непосредственной загрузки в аккумулятор шестнадцатеричного числа 40, обмена значений его старшего и младшего байтов и последующего логического сдвига влево. К концу работы программы будет представлять собой максимальный делящийся на 4 элемент массива.

Область допустимых значений:

Переменные A[0] - A[3]: $[-2^{15}; 2^{15} - 1]$

Переменная х (адрес первого элемента массива): $[0; 0x4FB_{16}] \cup [0x50E_{16}; 0xFFD_{16}]$

Переменная у (указатель ячейки массива): $[0; 0x4FD_{16}] \cup [0x50E_{16}; 0xFFF_{16}]$

Const i: $\{4\}\ (0 \le i \le 4)$

Переменная R: $[-2^{15}; 2^{15} - 1]$

Кол-во элементов массива, с которым может работать программа: {4}

Расположение в памяти ЭВМ программы, исходных данных и результатов:

Расположение программы: 533-547.

Исходные данные:

Ячейка для хранения адреса первого элемента массива: 52F

Ячейка для хранения адреса текущего элемента массива: 530

Ячейка для хранения количества элементов массива: 531

Ячейка для хранения числа для сравнения: 532

Расположение элементов массива: 548-54В

Адрес первой выполняемой команды: 533

Адрес последней выполняемой команды: 547

Таблица трассировки:

Адрес	Значение	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Значение
533	AF40	534	AF40	533	0040	0	0040	0040	000	0000		
534	0680	535	0680	534	0680	0	0534	4000	000	0000		
535	0500	536	0500	535	4000	0	0535	8000	00A	1010		
536	EEFB	537	EEFB	532	8000	0	FFFB	8000	00A	1010	532	8000
537	AF04	538	AF04	537	0004	0	0004	0004	000	0000		
538	EEF8	539	EEF8	531	0004	0	FFF8	0004	000	0000	531	4
539	4EF5	53A	4EF5	52F	0548	0	FFF5	054C	000	0000		
53A	EEF5	53B	EEF5	530	054C	0	FFF5	054C	000	0000	530	054C
53B	ABF4	53C	ABF4	54B	6530	0	FFF4	6530	000	0000	530	054B
53C	0480	53D	0480	53C	0480	0	053C	3298	000	0000		
53D	F407	53E	F407	53D	F407	0	053D	3298	000	0000		
53E	0480	53F	0480	53E	0480	0	053E	194C	000	0000		
53F	F405	540	F405	53F	F405	0	053F	194C	000	0000		
540	0400	541	0400	540	0400	0	0540	3298	000	0000		
541	0400	542	0400	541	0400	0	0541	6530	000	0000		
542	7EEF	543	7EEF	532	8000	0	FFEF	6530	00A	1010		
543	F801	544	F801	543	F801	0	0543	6530	00A	1010		
544	EEED	545	EEED	532	6530	0	FFED	6530	00A	1010	532	6530
545	8531	546	8531	531	0003	0	0002	6530	00A	1010	531	3
546	CEF4	53B	CEF4	546	053B	0	FFF4	6530	00A	1010		
53B	ABF4	53C	ABF4	54A	B540	0	FFF4	B540	800	1000	530	054A
53C	0480	53D	0480	53C	0480	0	053C	5AA0	000	0000		
53D	F407	53E	F407	53D	F407	0	053D	5AA0	000	0000		
53E	0480	53F	0480	53E	0480	0	053E	2D50	000	0000		
53F	F405	540	F405	53F	F405	0	053F	2D50	000	0000		
540	0400	541	0400	540	0400	0	0540	5AA0	000	0000		

541	0400	542	0400	541	0400	0	0541	B540	00A	1010		
542	7EEF	543	7EEF	532	6530	0	FFEF	B540	003	0011		
543	F801	545	F801	543	F801	0	0001	B540	003	0011		
545	8531	546	8531	531	0002	0	0001	B540	003	0011	531	2
546	CEF4	53B	CEF4	546	053B	0	FFF4	B540	003	0011		
53B	ABF4	53C	ABF4	549	0580	0	FFF4	0580	001	0001	530	549
53C	0480	53D	0480	53C	0480	0	053C	82C0	00A	1010		
53D	F407	53E	F407	53D	F407	0	053D	82C0	00A	1010		
53E	0480	53F	0480	53E	0480	0	053E	4160	000	0000		
53F	F405	540	F405	53F	F405	0	053F	4160	000	0000		
540	0400	541	0400	540	0400	0	0540	82C0	00A	1010		
541	0400	542	0400	541	0400	0	0541	0580	003	0011		
542	7EEF	543	7EEF	532	6530	0	FFEF	0580	008	1000		
543	F801	545	F801	543	F801	0	0001	0580	008	1000		
545	8531	546	8531	531	0001	0	0000	0580	008	1000	531	1
546	CEF4	53B	CEF4	546	053B	0	FFF4	0580	008	1000		
53B	ABF4	53C	ABF4	548	0000	0	FFF4	0000	004	0100	530	548
53C	0480	53D	0480	53C	0480	0	053C	0000	004	0100		
53D	F407	53E	F407	53D	F407	0	053D	0000	004	0100		
53E	0480	53F	0480	53E	0480	0	053E	0000	004	0100		
53F	F405	540	F405	53F	F405	0	053F	0000	004	0100		
540	0400	541	0400	540	0400	0	0540	0000	004	0100		
541	0400	542	0400	541	0400	0	0541	0000	004	0100		
542	7EEF	543	7EEF	532	6530	0	FFEF	0000	008	1000		
543	F801	545	F801	543	F801	0	0001	0000	008	1000		
545	8531	547	8531	531	0000	0	FFFF	0000	008	1000	531	0
547	0100	548	0100	547	0100	0	0547	0000	008	1000		-

Вывод: по ходу выполнения данной лабораторной работы я познакомился с различными видами адресации в БЭВМ, с командами ветвления и сравнения чисел, с организацией хранения массивов. Знания пригодятся для «низкоуровневого» понимания принципов работы ЭВМ с циклами при написании каких-то более высокоуровневых программ. Проведенная же работа с массивами дает понимание того, почему индексы массива начинаются с 0: ведь первый элемент массива это лишь сдвиг 0 в памяти, относительно адреса начала массива.