МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ І СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

КАФЕДРА КОНСТРУЮВАННЯ КЕОА

3BIT

з лабораторної роботи №1 по курсу «Аналогова сїемотехніка» на тему

«Дослідження суматора напруг на резисторі та RC фільтрів»

Виконав:

студент гр. ДК-61

Шваюк М.В.

Перевірив:

доцент

Короткий Є. В.

Лаба має 4 завдання:

- 1) Суматор напруг на резисторах при постійному струмі
- 2) Суматор напруг на резисторах при змінному струмі
- 3) RC ланцюжок при змінному струмі
- 4) RC фільтр низької частоти, обчислення коефіцієнту передачі за напругою (Ku)
- 5) Розрахунок AЧX RC-фільтра низької частоти

Завдання 1 Суматор напруг на резисторах при постійному струмі

Схема:

R1 = R2 = 47kOm

Спочатку теоретичний розрахунок:

U1 = 2V

U2 = 5V

Uout = 0.5(2+5) = 7/2 = 3.5 V

Потім моделювання у LTSpice:

Значення, отримані за допомогою analog discovery:

Вхід 1:

		Channel 1
DC	2.002 V	
True RMS	2.002 V	
AC RMS	2 mV	

Вхід 2:

		Channel 1
DC	4.987 V	
True RMS	4.987 V	
AC RMS	1 mV	

Вихід:

	72	Channel 1
DC	3.412 V	
True RMS	3.412 V	
AC RMS	1 mV	

Завдання 2 Суматор напруг на резисторах при змінному струмі

signal 1 = pulse meandr 1 kHz, A = 1V signal 2 = sin 5 kHz, A = 1V

Моделювання у LTSpice:

Значення, отримані за допомогою analog discovery:

Вхід - меандр

Вхід — сінус

Вихід

Завдання 3 RC — ланцюжок при змінному струмі

Схема:

R = 1 kOm C = 16 nF

Теоретичні розрахунки:

Тривалість заряду та розряду ємності:

ливалість заряду та розряду ємності.	
R=1 kom	
C= 16 HP	
C Profit	
T= 5 J= 5	RC
10 enero (9 0%)	
301 payy - pot payy	
(=) 5 · 1000 ·	16-10-9
	6
(=) = 80 .10	= 80 mx C
7 - 80.5	= 400 MKC
1генератора = 80.5	TOO MK C
2	
	= 0,0025 -10 = 2,5.103 Fg
Генератора = 400-10	2 6,5 10 19
	2,5 K/y
	Y Y

Визначили що необхідний сигнал — це **sin 2.5 kHz** Результати моделювання у LTSpice:

Результати, отримані за допомогою analog discovery: Вхід:

Вихід:

Завдання 4

RC - фільтр низької частоти, обчислення коефіцієнту передачі за напругою (Ku)

Схема:

R = 1 kOm C = 16 nF

Теоретичний розрахунок частоти зрізу:

теоретичний розрахунок частоти зрізу.
5 = 1 00
2 3przy = 200 RC
R= 1 KOW
C= 16 HP
+
30174 =
5 3 pi jy = 7 14 · 10 3 · 18 · 10 9
10 70
=
6 0,000
100,5 -10-6
= 9,95 ·103 [y = 9,95 x [y
= 9,95 ·103 [y = 9,95 K/y

Моделювання у LTSpice:

f = 9.95 kHz Amplitude Uout = 0.725 V

f = 2.5 kHz Amplitude Uout = 0.970 V

Вхід

X ▼-500 us

-300 us

Тут через жахливий Libre Office знищилася фотографія виходу Analog discovery:(

100 us

300 us

500 us

-100 us

f = 5 kHz Amplitude Uout = 0.890 V

Вхід

Вихід

f = 7.5 kHz Amplitude Uout = 0.800 V

<u>Вихід</u>

Вище полоси пропускання:

f = 15 kHz Amplitude Uout = 0.640 V

f = 20 kHz Amplitude Uout = 0.550 V

Вхід

f = 30 kHz Amplitude Uout = 0.432 V

Вихід

f = 50 kHz Amplitude Uout = 0.300 V

Вхід

Вихід

f = 100 kHz Amplitude Uout = 0.163 V

Вхід

Вихід

Таблиця KU теоретичного та формула його розрахунку

Таблиця KU, порахованого за формулою:

KU теор	етичний
Частота <u>kHz</u>	KU
2,5	0,970
5	0,894
7,5	0,799
9,95	0,707
15	0,553
20	0,446
30	0,315
50	0,195
100	0,099

Таблиця результатів, отриманих внаслідок моделювання:

R = 1 kOm	C = 16 nF	U is himplitude: 1 P
Частота, кНх	Leut kniplitude, K	kU
acioia, Kiiz		KO
2,5	0,97	0,97
5	0,89	0,89
7,5	0,8	0,8
9,95	0,725	0,725
15	0,64	0,64
20	0,55	0,55
30	0,43	0,43
50	0,3	0,3
100	0,163	0,163

Графік цієї ж залежності:

Таблиця даних, отриманих з analog discovery:

KU емпіричний			
Частота кНг	U in mV	U out mV	KU
2,5	986	970	0,984
5	953	857	0,899
7,5	919	744	0,810
9,95	995	645	0,648
15	857	488	0,569
20	840	389	0,463
30	823	271	0,329
50	815	168	0,206
100	814	85	0,104

Завдання 5 RC - фільтр низької частоти, обчислення АЧХ

Моделювання у LTSpice:

Дані, отримані з analog discovery:

Реальна частота зрізу (8.4) вийшла менше за теоретичну (9.95) через те що прилади не дуже точні і конденсатор міг бути не на 16нФ, а трохи більше чи трохи менше. Також свою частину похибок внесли паразитна ємність та опір щупів (їх перемичок).

Швидкість спадання

