X	Discrete random variable	Y	Continuous random variable	n	Sample size
p ; p	Probability; Sample probability	q ; q	Complementary probability: $1 - p$; $1 - \hat{p}$	V_p	p th percentile
$E[X]/\mu$	Population mean/ Expected value	\bar{x}	Sample mean/ Arithmetic mean	λ	$\frac{d}{dt}$ (expected number of events)
SD/σ	Population standard deviation	S	Sample standard deviation	Cov	Covariance of dependent variables X, Y
Var/σ^2	Population variance $(\frac{1}{n})$	s^2	Sample variance $(\frac{1}{n-1})$	Corr/p	Correlation between $X, Y: \rho \in [-1,1]$
PMF	Probability mass function: $P(X = k)$	CDF/F	Cumulative distribution function: $P(X \le x)$	PDF	Probability density function: $f(y)$
H_0	Null hypothesis: hypothesis to be tested	α	Significance level: $P(\text{reject } H_0 \mid H_0 \text{ is true})$	Type I error	$P(\text{reject } H_0 H_0 \text{ is true})$
н.	Alternative hypothesis: contradicts H _o	1 – R	Power: P(reject Hold Hois false)	Type II error	$P(\text{accent } H_0 H_0 \text{ is false}) = R$

Standard probability stuff

	prosusinej sturi				
D(DIA)	$P(A B) \times$	(P(B))	$\sigma^2 = E[X^2] - \mu^2$	$Bin(n,p); n \ge 100; p \le 0.01 \rightarrow Po(np)$	
P(B A) =	$\frac{P(A B) \times P(B) + P(B B) \times P(B B)}{P(A B) \times P(B B)}$	$P(A \bar{B}) \times P(\bar{B})$	$Po(\lambda); \lambda \geq 10 \rightarrow N(\lambda, \lambda)$	$Bin(n,p); npq \ge 5 \rightarrow N(np, npq)$	
Outlying values: $x < V_{25} - 1.5(V_{75} - V_{25}) \mid V_{75} + 1.5(V_{75} - V_{25}) < x$					
$\boxed{n = \frac{\sigma^2}{(\mu_0 - \mu)^2} \Big(z_{1 - \frac{\alpha}{2}} + z_{1 - \beta} \Big)^2 * \left[\text{power} = 1 - \beta = \Phi\left(\frac{ \mu - \mu_0 \sqrt{n}}{\sigma} - z_{1 - \alpha}\right) = \Phi\left(\frac{(\mu_0 - \mu)\sqrt{n}}{\sigma} - z_{1 - \frac{\alpha}{2}}\right) + \Phi\left(\frac{(\mu - \mu_0)\sqrt{n}}{\sigma} - z_{1 - \frac{\alpha}{2}}\right)^*} \right]} $					

Binomial distribution stuff - Bin(n, p)

$PMF = P(X = k) = C_k^n p^k q^{n-k}$	$P(a \le X \le b) = P(a - 0.5 \le Z \le b + 0.5)$	$\mu = np$	Var[X] = npq
--------------------------------------	---	------------	--------------

Continuous distribution stuff

$P(a < b) = P(a \le b)$	$P(a \le Y < b) = \int_a^b f(y) dy$	$\mu = \int_{-\infty}^{\infty} y f(y) dy$	$Var[Y] = \int_{-\infty}^{\infty} (y - \mu)^2 f(y) dy$
Cov(X,Y)	$= E[(X - \mu_x)(Y - \mu_y)] = E[.$	$[XY] - \mu_x \mu_y$	$\rho = \frac{1}{\sigma_X \sigma_Y} Cov(X, Y)$

Gaussian/Normal distribution stuff - $N(\mu, \sigma^2)$

$$f(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(y-\mu)^2}; E[Y] = \mu; Var[Y] = \sigma^2$$

Standard normal distribution stuff - N(0,1): $\mu=0$; $\sigma^2=1$

$$z_{u} = V_{100u}; u \in [0,1] \qquad \qquad P(-z_{u} < Z < z_{u}) = u$$

$$CDF_{N(0,1)}(x) = P(Z \le z_{u}) = \frac{1 + P(-z_{u} \le Z \le z_{u})}{2} = \frac{1 + u}{2} = \Phi(z_{u}) = 1 - \Phi(-z_{u}) *$$

$$Standardisation: N(0,1) = \frac{N(\mu,\sigma^{2}) - \mu}{\sigma} \qquad \qquad P(a < Y < b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right) *$$

Confidence interval stuff

Hypothesis stuff

μ nypotnesis (H_0 : $\mu = \mu_0$; H_1 : $\mu < \neq > \mu_0$)	μ nypotnesis (H_0 : $\mu = \mu_0$; H_1 : $\mu < \neq > \mu_0$)
\bigcirc Unknown σ	\bigcirc Known σ
② Find α'_p from $t_{obs} = \frac{\sqrt{n}}{s}(\bar{x} - \mu_0) = t_{n-1,\alpha'_p}^*$	② Find α'_p from $z_{obs} = \frac{\sqrt{n}}{\sigma}(\bar{x} - \mu_0) = z_{\alpha'_p}^*$
σ hypothesis $(H_0: \sigma = \sigma_0; H_1: \sigma < \neq > \sigma_0)$	p hypothesis $(H_0: p = p_0; H_1: p < \neq > p_0)$
① $\chi^2_{obs} = \frac{s^2}{\sigma^2} (n-1)$	① Check normal approximation: $np_0q_0 \ge 5$
$ ② Find \alpha'_p from \chi^2_{obs} = \chi^2_{n-1,\alpha'_p}^* $	
$ \underbrace{\text{Accept } H_0 \text{ if } \chi^2_{obs} \in \left[\chi^2_{n-1,\alpha_c \mid \frac{\alpha_c}{2}}, \chi^2_{n-1,1-\alpha_c \mid 1-\frac{\alpha_c}{2}} \right] } $	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Δ hypothesis (H_0 : $\Delta = \Delta_0$; H_1 : $\Delta < \neq > \Delta_0$)	α_p' interpretation ($\alpha_{\text{cutoff}} = 0.05$)
	$\alpha = (1 - \alpha'_p)$, one tailed
$\mathfrak{D} t_{obs} = \frac{\sqrt{n}}{s_d} (\bar{d} - \Delta_0)$	
- 1,up	Reject H_0 , $\alpha_p < 0.05$, (significant)

$\sigma_1 \ \sigma_2$ hypothesis $(H_0: \sigma_1 = \sigma_2; H_1: \sigma_1 \neq \sigma_2)$

- ① Assume normal distribution & independent
- ② $F_{obs} = \frac{s_1^2}{s_2^2}$
- (3) Find $\alpha_p^{\frac{3}{2}}$ from $F_{obs} = F_{n_1 1, n_2 1, \alpha_p}^*$
- $\underline{\textbf{4}}\underline{\textbf{Accept}}\,H_0 \text{ if } F_{obs} \in \left[F_{n_1-1,n_2-1,\frac{\alpha_c}{2}},\frac{1}{F_{n_2-1,n_1-1,\frac{\alpha_c}{2}}}\right]$

$\mu_1 \, \mu_2$ hypothesis $(H_0: \mu_1 = \mu_2; H_1: \mu_1 < \neq > \mu_2)$

- ① Test/Assume $\sigma_1 = \sigma_2$
- $2\frac{1}{n'} = \frac{1}{n_1} + \frac{1}{n_2}; s' = \sqrt{\frac{(n_1 1)s_1^2 + (n_2 1)s_2^2}{n_1 + n_2 2}}$

$\mu_1 \ \mu_2$ hypothesis $(H_0: \mu_1 = \mu_2; H_1: \mu_1 < \neq > \mu_2)$

① Test/Assume
$$\sigma_1 \neq \sigma_2$$

$$\begin{cases} z_{obs} = \frac{1}{\sqrt{\frac{\sigma_1^2 + \frac{\sigma_2^2}{n_1}}{n_2}}} (\overline{x_1} - \overline{x_2}), & \sigma \text{ known} \end{cases}$$

$$\mathcal{Z} \begin{cases}
z_{obs} = \frac{1}{\sqrt{\frac{\sigma_1^2 + \frac{\sigma_2^2}{n_1}}}} (\overline{x_1} - \overline{x_2}), & \sigma \text{ known} \\
t_{obs} = \frac{1}{\sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1}}} (\overline{x_1} - \overline{x_2}), & \sigma \text{ unknown}
\end{cases}$$

$$\mbox{\mathfrak{J} Find α'_p from } \begin{cases} z_{obs} = z_{\alpha'_p} *, & \sigma \; \text{known} \\ t_{obs} = t_{d'',\alpha'_p} *, & \sigma \; \text{unknown} \end{cases} ;$$

$$d'' = \left[\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^4}{n_1^2(n_1 - 1)} + \frac{S_2^4}{n_2^2(n_2 - 1)}\right)} \right]$$

Regression hypothesis $(H_0: \beta = 0; H_1: \beta \neq 0)$

① Reject
$$H_0$$
 if $F_{obs} = \frac{Reg}{Res_{MS}} > F_{1,n-2,1-\alpha}^*$

Correlation hypothesis
$$(H_0: \rho = 0; H_1: \rho \neq 0)$$

① Find
$$\alpha_p'$$
 from $t_{obs}=r\sqrt{\frac{n-2}{1-r^2}}=t_{n-2,\alpha_p'}*; r=\frac{L_{xy}}{\sqrt{L_{xx}L_{yy}}}$

Regression hypothesis $(H_0: \beta = 0; H_1: \beta \neq 0)$

① Find
$$\alpha'_p$$
 from $t_{obs} = b \sqrt{\frac{L_{xx}}{Res_{MS}}} = t_{n-2,\alpha'_p}^*$

Correlation hypothesis $(H_0: \rho = \rho_0; H_1: \rho \neq \rho_0)$

① Find
$$\alpha'_p$$
 from $\lambda = \frac{\sqrt{n-3}}{2} \left(\ln \frac{1+r}{1-r} - \ln \frac{1+\rho_0}{1-\rho_0} \right) = \alpha_{\alpha'_p}^*$

Non-parametric stuff

Sign test $(H_0: \Delta = 0; H_1: \Delta \neq 0)$

- ① Let $C = \text{number of data points with } d_i > 0$
- ② $z_{obs} = \frac{\sqrt{n}}{2} \left(C \frac{n}{2} \right)$ ③ Find α'_p from $z_{obs} = z_{\alpha'_p}^*$

Signed-rank test $(H_0: \Delta = 0; H_1: \Delta \neq 0)$

- ① Rank d_i by ascending $|d_i|$ from 1 to n; ignore $d_i = 0$
- ② Let $R = \text{sum of ranks for data points } d_i > 0$

② Let
$$R = \text{sum of ranks for data points } d_i > 0$$
③ Find α'_p from $T = \frac{2|R - \frac{1}{4}n(n+1)|}{\sqrt{\sum_{l=1}^n rank_l^2}} \approx \frac{2\sqrt{6}|R - \frac{1}{4}n(n+1)|}{\sqrt{n(n+1)(2n+1)}} = z_{\alpha'_p}^*$

Rank-sum test $(H_0: F_1(x) = F_2(x); H_1: F_1(x) = F_2(x - \Delta))$

- ① Rank d_i by ascending $|d_i|$ of both samples from 1 to $n_1 + n_2$; ignore $d_i = 0$
- ② Let $R_1 = \text{sum of ranks for data points } d_i > 0 \text{ for one sample}$

② Let
$$R_1 = \text{sum of ranks for data points } d_i > 0$$
 for one sample
③ Find α'_p from $T = \sqrt{\frac{(n_1 + n_2)(n_1 + n_2 + 1)}{n_1 n_2}} \frac{\left| R_1 - \frac{n_1(n_1 + n_2 + 1)}{2} \right|}{\sqrt{\sum_{i=1}^{n_1 + n_2} \left(rank_i - \frac{n_1 + n_2 + 1}{2} \right)^2}} \approx \frac{2\sqrt{3} \left| R_1 - \frac{n_1(n_1 + n_2 + 1)}{2} \right|}{\sqrt{n_1 n_2(n_1 + n_2 + 1)}} = Z_{\alpha'_p}^*$

Contingency table stuff

Contingency table test (H_0 : factors are independent; H_1 : factors are associated)

- ② Compute $E_{i,j} = \frac{1}{n} (n_{i+} n_{+j})$ table
- $\text{ 3 Compute } \chi_{i,j}^2 = \frac{1}{E_{i,j}} \left(E_{i,j} n_{i,j} \right)^2 \text{ table}$
- **4** Reject H_0 if $\sum \chi^2 > \chi^2_{(R-1)(C-1),1-\alpha}^*$

Fisher's exact test (H_0) : factors are independent; H_1 : factors are associated)

- ① Follow contingency table test, check that $\geq 20\%$ of $E_{i,j} < 5$ or any $E_{i,j} < 1$
- ② Rearrange table such that $\Sigma_{1+} < \Sigma_{2+}$ and $\Sigma_{+1} < \Sigma_{+2}$ ③ Enumerate tables $\begin{bmatrix} 0 & b+a \\ c+a & d-a \end{bmatrix} ... \begin{bmatrix} a-1 & b+1 \\ c+1 & d-1 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a+1 & b-1 \\ c-1 & d+1 \end{bmatrix} ... \begin{bmatrix} a+c & b-c \\ 0 & d+c \end{bmatrix}$ ④ Find $P(\text{Table } n) = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$, compare p_n with hypothesis

Linear regression stuff

$$E[Y|X=x] = f(x) = \alpha + \beta x \qquad a = \bar{y} - b\bar{x} \qquad b = \frac{L_{xy}}{L_{xx}} \qquad L_{xx} = -n\bar{x}^2 + \sum_{i=1}^n x_i^2 \qquad L_{yy} = -n\bar{y}^2 + \sum_{i=1}^n y_i^2$$

$$Reg = \frac{L_{xy}^2}{L_{xx}} \qquad Res_{MS} = \frac{1}{n-2} (L_{yy} - Reg) \qquad \sigma^2 = s_{y.x}^2 = Res_{MS} \qquad L_{xy} = -n\bar{x}\bar{y} + \sum_{i=1}^n x_i y_i$$

$$R^2 = \frac{Reg_{MS}}{L_{yy}} = \frac{L_{xy}^2}{L_{xx}L_{yy}} \qquad Adjusted \ R^2 = 1 - \frac{s_{y.x}^2}{s_y^2} \qquad s_x^2 = \frac{1}{n-1} L_{xx} \qquad s_y^2 = \frac{1}{n-1} L_{yy}$$