

Data Science Capstone Project

Sarote Tongra-ar November 5, 2021

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Summary of Methodologies

Data collection

Data Wrangling

EDA with Data Visualization

EDA with SQL

Building and interactive map with Folium

Predict Analysis Classification

Summary of results

Exploratory data analysis results

Interactive analytics demo

Predictive analysis

INTRODUCTION

- Project background
- SpaceX advertises Falcon 9 rocket launches with cost of 62 million USD. However, other providers cost up to 165 million USD. The cost saving from SpaceX because of reuse the part of missile. So, if we can determine if the missile can land, we can save cost of launching cost.
- Investigate information
 - What are the key factors rocket will land successfully
 - Effect of parameters that impact the success of landing
 - What condition Space X to achieves the best result on landing

METHODOLOGY

- Data collection methodology
 - SpaceX Rest API Web scraping
- Performed Data Wrangling (For Machine Learning readiness) One Hot coding for Machine leaning and dropping irrelevant info
- Perform exploratory data analysis (DEA) using SQL and web visualization
 - Plotting: Bar Graphs, Scatter plot to show relationships between parameters
- Performed interactive visual analytics using Folium (Map) and Plotly Dash
- Performed predictive analysis using classification models How to find the best parameter for the classification models

METHODOLOGY

- Data Collecting Methodology
- With Space X Rest API
 - API will give us data detail about launches, including rocket revision, location, payload and etc with landing outcome.
 - The SpaceX Rest API stat with api.spacexdata.com/v4/

 With Web scraping with BeautifulSoup Module from Wikipedia

RESULTS

Data Collecting Methodology

	FlightN umber	Date	Booste rVersio n	Payloa dMass	Orbit	Launch Site	Outco me	Flights	GridFin s	Reused	Legs	Landin gPad	Block	Reused Count	Serial	Longitu de	Latitud e
4	1	2010- 06-04	Falcon 9	6123.5 47647	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0003	80.577 366	28.561 857
5	2	2012- 05-22	Falcon 9	525.00 0000	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0005	80.577 366	28.561 857
6	3	2013- 03-01	Falcon 9	677.00 0000	ISS	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0007	80.577 366	28.561 857
7	4	2013- 09-29	Falcon 9	500.00 0000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	None	1.0	0	B1003	- 120.61 0829	34.632 093
8	5	2013- 12-03	Falcon 9	3170.0 00000	GTO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B1004	80.577 366	28.561 857

METHODOLOGY Data Wrangling

- Data Wrangling
- To mapping success with classification to 1 and fail to 0 with new column

```
In [12]: # landing class = 0 if bad outcome
         # landing class = 1 otherwise
         landing class = []
         for key,value in df["Outcome"].items():
              if value in bad outcomes:
                 landing class.append(0)
                 landing class.append(1)
```

This variable will represent the classification variable that represents the outcome of each launch. If the value one means the first stage landed Successfully

```
In [13]: df['Class']=landing_class
         df[['Class']].head(8)
```

Out[13]:

0 0 1 0
1 0
2 0
3 0
4 0
5 0
6 1
7 1

RESULTS from Datawrangling

Data Wragling

ayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
04.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
25.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
7.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
)0.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
70.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

METHODOLOGY EDA with Data Visualization

- Visualization for the data with graph been provided
 - Flight Number VS Payload Mass
 - Payload VS Launch Site
 - Orbit Vs Class
 - Orbit with Flight Number
 - Orbit Vs Payload Mass
 - Line Graph Success Rate s Year

Flight Number with Play Load Mass

```
sns.catplot(y="PayloadMass", x="FlightNumber", hue="Class", data=df, aspect = 5)
plt.xlabel("Flight Number", fontsize=20)
plt.ylabel("Pay load Mass (kg)", fontsize=20)
plt.show()
```


Launch Site with Play Load Mass

```
# Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to be the launch site, and hue to be the class value
sns.catplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df, aspect = 5)
plt.xlabel("Pay load Mass (kg)",fontsize=20)
plt.ylabel("Launch Site",fontsize=20)
plt.show()
```


Now if you observe Payload Vs. Launch Site scatter point chart you will find for the VAFB-SLC launchsite there are no rockets launched for heavypayload mass(greater than 10000).

Orbit with Class

```
: # creating the bar plot
  orbit_success = df.groupby('Orbit').mean()
  orbit success.reset index(inplace=True)
  sns.barplot(x="Orbit",y="Class",data=orbit_success,hue='Class')# HINT use groupby method on Orbit column and get the mean of Cla
  ss column
  fig = plt.figure(figsize = (10, 5))
```


Orbit with Flight Number

```
: # Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class value
  fig = plt.figure(figsize = (10, 5))
  # creating the bar plot
  sns.catplot(x='FlightNumber',y='Orbit',data=df,hue='Class')
  plt.xlabel('Flight Number')
  plt.ylabel('Orbit Details')
  plt.show()
  <Figure size 720x360 with 0 Axes>
      LEO
       PO
      GTO
     ES-L1
     MEO
     VLEO
       50
      GEO
                        Flight Number
```

Play Load Mass with Outcome

```
: # Plot a scatter point chart with x axis to be Payload and y axis to be the Orbit, and hue to be the class value
sns.catplot(x='PayloadMass',y='Outcome',data=df,hue='Class')
plt.xlabel('PayloadMass')
plt.ylabel('Outcome')
plt.show()
```


Success with Yearly Trend

```
# Plot a line chart with x axis to be the extracted year and y axis to be the success rate
plt.plot(average_by_year["Year"],average_by_year["Class"])
plt.xlabel("Year")
plt.ylabel("Success/Failure")
plt.show()
```


METHODOLOGY EDA SQL

- Visualization for the data with SQL
 - Display data from many query string

Unique Launch Site SQL

Task 1

Display the names of the unique launch sites in the space mission

%sql select distinct launch_site from spacextbl

* ibm_db_sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9 Done.

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Site start name with CCA

Task 2

Display 5 records where launch sites begin with the string 'CCA'

%sql select * from spacextbl where launch_site like'CCA%'

* ibm_db_sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:31321/bludb Done.

D	ATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
	010- 6-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
- 1)10- 2-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
- 1)12- 5-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
- 1)12-)-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS- 1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
- 1)13- 3-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS- 2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Pay load Launched by NASA

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

```
\label{eq:sql} \mbox{\tt %sql} \quad \mbox{\tt select sum(PAYLOAD\_MASS\_\_KG\_)} \quad \mbox{\tt from spacextbl where customer like 'NASA%'}
```

* ibm_db_sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lcDone.

1

99980

Average Pay Load by Booster F9 v1.1

Task 4

Display average payload mass carried by booster version F9 v1.1

```
%sql select avg(PAYLOAD_MASS__KG_) from spacextbl where booster_version like 'F9 v1.1'
```

* ibm_db_sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.data

1

2928

Date with successful landing outcome

Task 5

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

```
%sql select min(date) from spacextbl where mission outcome = 'Success'
 * ibm db sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu
Done.
```

2010-06-04

Name of the boosters which have success in drone ship and pay load >400 and <6000

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
%%sql select booster_version, landing__outcome, mission_outcome, payload_mass__kg_ from spacextbl
    where (landing__outcome like '%drone ship%') and
    (mission_outcome ='Success') and payload_mass__kg_>4000
    and payload_mass__kg_< 6000</pre>
```

* ibm_db_sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:31
Done.

booster_version	landingoutcome	mission_outcome	payload_masskg_
F9 FT B1020	Failure (drone ship)	Success	5271
F9 FT B1022	Success (drone ship)	Success	4696
F9 FT B1026	Success (drone ship)	Success	4600
F9 FT B1021.2	Success (drone ship)	Success	5300
F9 FT B1031.2	Success (drone ship)	Success	5200

Number of success and Failure

Task 7

List the total number of successful and failure mission outcomes

```
%%sql select mission_outcome , count('mission_outcome') from spacextbl
    group by mission_outcome
```

* ibm db sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0. Done.

mission_outcome	2
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

List the name of booster version with maximum payload

Task 8

List the names of the booster versions which have carried the maximum payload mass. Use a subquery

%%sql select booster_version,(select max(payload_mass__kg_) as maximumLoad from spacextbl)
from spacextbl

* ibm_db_sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appd

booster_version	maximumload
F9 v1.0 B0003	15600
F9 v1.0 B0004	15600
F9 v1.0 B0005	15600
F9 v1.0 B0006	15600
F9 v1.0 B0007	15600
F9 v1.1 B1003	15600
F9 v1.1	15600

List the failed landing outcome in drone ship in year 2015

Task 9

List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015

```
%%sql select date ,landing_outcome, booster_version, launch_site from spacextbl
     where landing outcome like 'Failure (drone ship)' and (year(date) = 2015)
```

* ibm db sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdom Done.

DATE	landing_outcome	booster_version	launch_site
2015-01-10	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
2015-04-14	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank the count of landing outcome between date 2010-06-04 till 2017-03-20

Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

```
%%sql select landing outcome,count(landing outcome) as count
    from spacextbl
    where landing outcome in (select landing outcome from spacextbl where date(date) between
    '2010-06-04' and '2017-03-20')
    group by landing outcome
    order by count asc
```

* ibm db sa://mjy02689:***@ba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:31321/bludb

landingoutcome	COUNT
Precluded (drone ship)	1
Failure (parachute)	2
Uncontrolled (ocean)	2
Controlled (ocean)	5
Failure (drone ship)	5
Success (ground pad)	9
Success (drone ship)	14
No attempt	22

METHODOLOGY Visualize with Map

- Visualization for the data with Folium
- Visualize data with map

RESULTS from Map

RESULTS from Map and marker

RESULTS from Launched site with land mark

METHODOLOGY Visualize Dashboard

Visualization for the data with Dashboard

RESULTS from Dasboard

Total Success Launches By all sites

We can see that KSC LC-39A had the most successful launches from all the sites

RESULTS from Dasboard

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

RESULTS from Dasboard

Low Weighted Payload 0kg - 4000kg

Heavy Weighted Payload 4000kg - 10000kg

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

METHODOLOGY Modeling and Classification

 Establish model with best parameters to and classification to success

RESULTS from Classification

 The confusion matrix could predict with high accuracy (83%)

RESULTS from Classification

• The Linear Regression has higher score 83% compares to peers.

TASK 12

Find the method performs best:

```
scores = [lr score,svm score,tree score,knn score]
print(scores)
print(scores.index(max(scores)))
[0.83333333333334, 0.8333333333333334, 0.72222222222222, 0.833333333333333]
```

CONCLUSION

- Linear Regression has the best model for the dataset
- Successful rate increase vs year
- High successful rate with ESL1 and GEO orbit

APPENDIX

