中断屏蔽技术

1. 多重中断的概念(中断嵌套)

程序断点 k+1, l+1, m+1

(7) 处理中断的过程中又 出现新的中断 怎么办 ?

2. 实现多重中断的条件

(1) 提前设置开中断

中断隐指令响应,存断点之后关中断中断服务结束之前开中断

中断隐指令响应,存断点之后关中断中断服务开始之后开中断

图 5.43 单重中断和多重中断服务程序流程

2. 实现多重中断的条件

(1) 提前设置开中断

优先级如何设定?

(2) 优先级别高 的中断源 有权中断优先级别低 的中断源

3. 屏蔽技术

(1) 屏蔽触发器的作用-动态优先级设定

MASK = 0 (未被屏蔽)

 $MASK_i = 1$ (被屏蔽)

INTR 被置 "1"

 $INTP_i = 0$ (不能被排队选中)

(2) 屏蔽字

16个中断源 1, 2, 3... 16 按 降序 排列,每个对应16位屏蔽字在ISR中设置屏蔽字,屏蔽对应中断源

优先级	屏 蔽 字
1	11111111111111
2	$oxed{0}$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$
4	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$
5	$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$
6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
:	:
15	$oxed{0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1}_{ integrate}$
16	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1$ 4 LABORAT

(3) 新屏蔽字的设置-ISR

(4) 屏蔽技术可改变处理优先等级

响应优先级

不可改变

为何不改变响应优先级?

处理优先级

可改变(通过重新设置屏蔽字)

中断源	原屏蔽字	新屏蔽字
A	1 1 1 1	1111
В	0 1 1 1	0 1 0 0
C	0 0 1 1	0 1 1 0
D	0 0 0 1	0 1 1 1

响应优先级 $A \rightarrow B \rightarrow C \rightarrow D$ 降序排列

处理优先级 $A \rightarrow D \rightarrow C \rightarrow B$ 降序排列

(4) 屏蔽技术可改变处理优先等级 (2)

CPU 执行程序轨迹(原屏蔽字)

(4) 屏蔽技术可改变处理优先等级

CPU 执行程序轨迹(新屏蔽字)

(4) 屏蔽技术的其他作用

可以人为地屏蔽某个中断源的请求,便于程序控制

入 式 系 结 空 哈 安

问:结合屏蔽字设置的响应和处理流程,分析红色圈中的"锯齿"是从何来的?