Genetic Resources Information Management System

Genetic Resources Center, IRRI

RPrantilla , MHabito, and TMetz ICIS Workshop 2006

- Part 1: GRIMS Overview
- Part 2: IRGCIS Integration with IRIS
- Part 3: GRIMS GUI

Part 1: GRIMS Overview

Introduction

- a. Background
- b. Objectives
- c. Modules

II. Application Development

- a. Tools
- b. Testing
- Documentation
- d. Source Code Management
- e. Graphical User Interface (GUI) Design

III. Database Management

- a. Database Functions and Procedures
- b. Database Triggers
- c. Aides to Parallel Implementation
- d. Schema
- Migration to PostgreSQL

Terminology

 Incoming sample – a germplasm sample that is received by the genebank through a donation, a collecting activity, or some other activity and that is worthwhile preserving

http://cropwiki.irri.org/icis/index.php/GRIMS

Background

- There is an existing system called the International Rice Genebank Information System (IRGCIS)
 - Developed using Oracle Developer 2000
 - Oracle Database Server 8.0.5
- GRIMS is a re-implementation of IRGCIS that uses ICIS Schema (i.e. GMS, IMS, and part of DMS) and some sub-systems.

Objectives

- 1. To upgrade the existing information system by providing efficient quality control over all genebank operations, including the acquisition of germplasm, its safe storage and maintenance, its characterization, and its distribution.
- To integrate IRGC data into International Rice Information System (IRIS)
- To improve efficiencies and cost-effectiveness in conserving and making available genetic resources as Global Public Goods

Main Modules

- Donor information registration and passport registration
- Incoming sample initial seed increase, viability monitoring, and inclusion into the IRGC collection

Multiplication

- Replanting of IRGC accession to replenish stock, and for special request (i.e. Genebank restoration)
- Dependent on seed stock and seed viability

Cont... Main Modules

- Seed Management
 - Inventory monitoring
 - Viability monitoring
 - Seed distribution
 - Frequently requested accessions monitoring
 - NCGRP backup
 - Seed monitoring in the drying room
- Characterization
 - Morphological and agronomic traits
 - Reactions to biotic and abiotic stresses

Application Development : Tools

- Borland Delphi Professional Version 6.0 / 2006
 - recently acquired Borland Developer Studio which includes Delphi 2006
- Fast Reports Reporting Tool
- Barcode Font

Programming Methods

- Re-using of ICIS Delphi Libraries that interfaces to the ICIS DLL Function
- Common library used by GMSSearch, SetGen, and InTrack)
 - GMS, GMSLib, DMS, DMSLib
 - i.e. creating seedlist, retrieving valid values for the passport descriptor, etc.
 - Example of calling ICIS DLL inside delphi code:

```
iFind:= DMS_getScaleDis(rSDis,FIND_FIRST);
while iFind = DMS_SUCCESS do begin
....
iFind:= DMS_getScaleDis(rSDis,FIND_NEXT);
end;
```

Programming Methods

 Module-specific library: e.g. acquisition -> ACQLIB.pas, characterization-> CHALIB.pas

```
Seed Characterization\CHALIB.pas
                           Login CHALIB MULTLIB CHA130 CHA210
    sglSelectPlantingMaterialFc
                              unit CHALIB;
    sqlSelectSamplesOneRequi
    salSelectSamplesPlanted
                               sqlSelectSamplesPlantedSl
    salSelectSamplesToInclude
                                       CHALIB. pas
    sqlSelectSampPlantMonitor
    sqlSelectSampPlantQuery
                                       (Library used by GRIMS Seed Characterization Module)
    salSelectSeedReaBvSpeci
    sqlSelectValidTextForVarial
    sqlSelectValidValuesForVar
                                       This includes: global variables, general functions,
    sqlSelectVarGroupFromCha
                                                       specific functions, SQL functions,
    sqlSelectWildNameFromCh
                                                       strings & constants used in the module
    salSelectWildSpeciesName
    sqlSortByAccessionNumbel
                                        Author: MCDLHabito
    salSortBvCountrvName
    sqlSortBylrgcRequestNumb
                              sqlSortByLocationMName
    sqlSortByPlotNumberAscer
                              // Copyright (C) 2005 IRRI
    sqlSortByScaleName
    sqlSortBySpeciesName
                              // This program is free software; you can redistribute it and/or
    sqlSortByValidValdescAsce
                              // modify it under the terms of the GNU General Public License
    sqlSortByValidValueAscend
                              // as published by the Free Software Foundation; either version 2
    sqlWhereClauseIncludeCod
                              // of the License, or (at your option) any later version.
    sgWhereClauseIncludeCro
    sqlWhereClauseIncludeHai
    sglWhereClauseIncludeLoc
                              // This program is distributed in the hope that it will be useful,
    sqlWhereClauseIncludePla
                              // but WITHOUT ANY WARRANTY; without even the implied warranty of
    salWhereClauseIncludePlo
                              // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    sglWhereClauseIncludePur
                              // GNU General Public License for more details.
    salWhereClauseIncludeSer
                              // You should have received a copy of the GNU General Public License
 - 间 Types
                              // along with this program; if not, write to the Free Software
+ Pariables/Constants
                              // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
 📋 Uses
                              22: 32
                                               Insert
                                                         \Code;
```

Programming Methods

Programming Methods

Naming convention of forms

- All .dfm files are named using the use-case code
- The Name property of a form is a string with prefix "frm" followed by the use-case code.

e.g. For CHA110.dfm: 'frmCHA110'.

Programming Methods

- Naming convention of form objects
 - Prefixed with a short string containing a few letters from the name of the component type
 - Followed by a word that describes the information/event related to the component
 - **e.g.** btnSubmit is of type TButton
 - → "Submit" button

Programming Methods

- Naming convention of variables
 - Prefixed with first letter of variable's data type followed by a word that describes the value being stored by the variable.

e.g. sSpecies is of type String stores the species code

Programming Methods

1. Naming of functions and procedures

Name is descriptive of what the function/procedure does.

e.g.

- procedure Create_Prooflist;
- function Insert_Generation(iGid,iAccno:longint;
 sCropyear, sSourceCropyear:string):boolean;

Programming Methods

8. Re-writing of IRGCIS source code

- Algorithms in the GRIMS modules are based on existing algorithms in the IRGCIS.
- GRIMS mirror the fundamental functionalities of IRGCIS.
 - However, a number of algorithms from IRGCIS were revisited and modified to meet the changing requirements of system users.
- Introduced new technologies (i.e. ICIS and barcoding)

GRIMS Development is documented in the form of Wiki articles on the Internet.

ICISWiki:

http://cropwiki.irri.org/icis/index.

CropForge: https://cropforge.org/

Graphical User Interface (GUI) Design

- Most GRIMS UIs are patterned after existing IRGCIS UIs.
- Usability Rule-Of-Thumb:
 Minimize typing/keyboard input.

20

Graphical User Interface (GUI) Design

Graphical User Interface (GUI) Design

- Printing of reports/ proof list in more re-usable format
 - MS Excel
 - Notepad
- A number of IRGCIS reports/ prooflist are created in Oracle Developer Reports builder which doesn't allow copying and pasting of the result to a new file format

Part 1: GRIMS Overview

Introduction

- a. Background
- b. Objectives
- c. Modules

II. Application Development

- a. Tools
- b. Testing
- Documentation
- d. Source Code Management
- e. Graphical User Interface (GUI) Design

III. Database Management

- Database Functions and Procedures
- b. Database Triggers
- c. Aides to Parallel Implementation
- d. Schema
- Migration to PostgreSQL

Stored Procedures and Functions

- Database Server Specific
- Stored Procedure
 - Executes on the database with possible input & output parameters
 - Does data manipulation operation (i.e. insert, delete, update)

Function

- Does data manipulation operation as well, but returns a value
- Can be called inside a SQL query
 - Example:

```
SQL> SELECT Get_Accno(gid) accno, gid, nval FROM NAMES
2 WHERE gid =1 and ntype=6;
```

ACCNO	GID	NVAL
747	1	Т 12-42

Stored Procedures and Functions

CLOSE c1;

END:

```
CREATE OR REPLACE FUNCTION Get Imsapack (xAccno NUMBER, xCropyear
VARCHAR2:='') RETURN NUMBER IS
xVal
                   NUMBER;
CURSOR c1 IS
         SELECT NVL(SUM(trnqty),0)
         FROM IMS LOT a, IMS TRANSACTION b
         WHERE a.lotid=b.lotid AND trnstat=1
                       AND scaleid=-1000
                       AND a.eid= Get Gidcropyear(xAccno,xCropyear);
BEGIN
         OPEN c1;
                                    Cursors are pointers used to fetch rows from a result set.
         FETCH c1 INTO xVal;
                                    One can think of a cursor as a data structure that describes
                                    the results returned from a SOL SELECT statement.
          IF c1%NOTFOUND THEN
                                    One of the variables in this structure is a pointer to the
                   xVal := 0;
                                    next record to be fetched from the query results.
         END IF;
                                    www.orafaq.com/glossary/fagglosc.htm
         RETURN xVal;
```

Calling a stored procedure inside Delphi code using ADO

```
function Mark Insufficient Distribution(strIrgcreqno:string):boolean;
// author: rgh
// description : marks the seed as insufficient for distribution
//----
var storedProc:TAdoStoredProc;
begin
try
  try
       Result:=True;
       if strIrgcreqno='' then exit;
       storedProc:=TAdoStoredProc.Create(nil);
       storedProc.Connection:=adoCnn;
       with storedProc do begin
             ProcedureName := 'Mark Insufficient Distribution';
             Parameters.Refresh;
             parameters.ParamByName(Parameters.Items[0].Name).Value := strIrgcreqno;
             ExecProc;
      end;
      GRC Information ('Done checking list for insufficient stock!');
   finally
        storedProc.Free;
   end;
except on e:exception do
   begin
      Result:=false;
     messagedlg('Error encountered.', mtInformation, [mbOK], 0);
    end:
end;
end;
```

Aides to Parallel Implementation

- A program in a database that gets called each time a row in a table is INSERTED, UPDATED, or DELETED.
- Allows checking that any changes are correct, or filling in missing information before the data is committed in the database

Aides to Parallel Implementation

```
CREATE OR REPLACE TRIGGER I LOCAL.tbl acs tgr
              AFTER UPDATE OF TRAYNO, cropyear, amt bulk, num apack, amt base ON accession stored
FOR EACH ROW
DECLARE
              xScaleid INTEGER;
BEGIN
--Description: This trigger is fired whenever an update/ delete is made to ACCESSION STORED table COLUMN
----trayno, cropyear, amt bulk, num apack, amt base.
      IF (:OLD.TRAYNO<>:NEW.TRAYNO) THEN
           Update Lot Locid(:NEW.gid,:NEW.trayno,:NEW.stotype);
      END IF;
     IF (:OLD.amt bulk<>:NEW.amt bulk) AND (:OLD.amt bulk=NULL AND :NEW.amt bulk IS NOT NULL)
            AND (:NEW.STOTYPE='A') THEN
           Append Trigger Imsbulk(:NEW.gid,:NEW.accno,:NEW.cropyear,:NEW.amt bulk);
     END IF;
     IF ((:OLD.amt base<>:NEW.amt base) OR(:OLD.amt base IS NULL AND :NEW.amt base IS NOT NULL) )
           AND (:NEW.STOTYPE='B') THEN
           Append Trigger Imsbase(:NEW.gid,:NEW.accno,:NEW.cropyear,:NEW.amt base);
      END IF:
      IF (:OLD.num apack<>:NEW.num apack) AND (:NEW.STOTYPE='A') THEN
           Append Trigger Imsapack(:NEW.gid,:NEW.accno,:NEW.cropyear,:NEW.num apack);
      END IF:
End:
```

Aides to Parallel Implementation


```
xDate:=TO NUMBER(TO CHAR(SYSDATE, 'YYYYMMDD'));
xuserid:=Get Icisuserid(USER);
xScaleid:=-1000;
xLotID:=Get Lotid(xeid, xscaleid);
xCurrTrnqty:=Get Imsapack(xAccno, xCropyear);
xTrnid:=Get Nexttrnid(xeid, xscaleid);
  IF (xAmt>0) AND (xLotid=0) THEN
            SELECT LOT SEQ.NEXTVAL
            INTO xLotid
            FROM dual;
            INSERT INTO IMS LOT...
            INSERT INTO IMS TRANSACTION ...
            xTrnid:=xTrnid+1;
END IF;
            xTrnQty:=xAmt- xCurrTrnQty;
            IF xTrnqty<>0 THEN
                         INSERT INTO IMS TRANSACTION ...
            END IF;
END;
```

Oracle to PostgreSQL Database Migration

- Under way
- Slight differences on the following:
 - Data type declaration
 - Varchar2
 - Varchar
 - Function call
 - Select <function> from dual
 - Select <function?</p>
 - 3. Creation of stored procedures and functions
 - Create or replace <function > Return varchar2 IS
 - Create or replace <function> Returns VARCHAR AS

. . .

LANGUAGE 'plpgsql';

\$\$

Part 2: Integration with IRIS

Part 2: Integration with IRIS

IRGCIS-IRIS Integration (GRIMS)

- IRGCIS Data in IRIS before World Bank (Phase I) Project
- b. Strategy of Data Migration to IRIS
- c. ICIS Applications in GRIMS
 - Incoming germplasm registration (SHU Portal)
 - ii. Germplasm distribution (seed export)
 - iii. Inventory management
 - iv. Seed list management
 - v. Study

II. Design/ Implementation Issues and Solution

IRGCIS Data in IRIS Before World Bank Phase I Project

- IRGC Accession
 - ~100,000 accessions
- Location information
 - Some data contains inconsistent info
 - donor location vs origin
- Names
- Due to the Data Quality Activity of WB project, the data in IRIS needs to be updated as well

Strategy of Data Migration to IRIS

- Identification of accession generation information
 - Assignment of negative germplasm identifier to all available accession generation
- Assignment of seed packet identifier (LOT ID)
 - Active
 - Bulk
 - Aluminum packet
 - Paper
 - Base
 - Aluminum can

Strategy of Data Migration to IRIS

- Reformatting of passport data into IRIS standard, stored as germplasm ATTRIBUTE
 - Defined passport descriptors in ICIS user defined field table (UDFLDS)
 - Transformed IRGCIS valid values for passport descriptors and for morpho-agronomic traits into ICIS SCALE, SCALEDIS, SCALECON
 - Created script that inserts and formats the IRGCIS passport data into ICIS ATTRIBUTE table
 - Still outstanding
 - Loading of Morpho-agronomic passport data in the DMS as STUDY

ICIS Applications for Data Management

- Curation of Incoming Data through IRIS
 - Input incoming data using SetGen in a separate IRIS local database for incoming germplasm
 - Upload the entire incoming local database to the central database (IRIS Database Administrator)
 - Import to GRIMS database
- Listdata (trigger on update/ insert/delete to insert data automatically to IRGCIS)

Germplasm distribution/ seed export

- The request is made by accession number and the seed source (GID) is initially unknown
- 2. After finalizing the seed source and updating of the seed stocks, the seedlist is created which can be view
- A seed export template is filled in by the user which is submitted to the Seed Health Unit.

Inventory Management

- IMS Lot
- IMS Transaction

Seed list management

- The list is grouped according to process which is performed by GRIMS
- i.e.
 - Barcode Labels generic printing of barcode labels
 - Initial Seed Increase seed list used only by incoming samples for initial seed multiplication
 - Seed requests/ distribution
 - Already in production database

Implementation Issues & Solution

- Viability data is yet to be uploaded to the DMS
- Characterization data is already in DMS but the data is not yet used for selection of planting materials
- Germplasm taxonomy and mission information are not properly represented in ICIS schema.

Design Issues & Solution:

Selection of Planting Material for Characterization

- Importance of null value
- In DMS, null value means no row/ record
- Plant selection criteria for seed characterization is based on the following:
 - 1. Accessions with no single description
 - 2. Accessions with incomplete description
 - → incomplete stage(s)
 - → number of null traits
 - - → range of accessions
 - → morpho-agron traits

Design Issues & Solution Selection of Planting Material for Characterization

- Considerable execution time if flat table is used
- E.g. Select O.sativa accessions with no specified traits (no descriptors)

```
select a.accno,a.cropyear
from morpho_agron1 a
where get_sppcode(get_mgid(accno)) = 'S'
    and get_status_acc(accno) = "AV"
    and a.pop_code = 'A'
    and GET_NULL_TRAIT(a.accno,a.pop_code) = 45
```

Design Issues & Solution Selection of Planting Material for Characterization

CREATE OR REPLACE FUNCTION Get_Null_Trait (xAccno NUMBER,xPop_Code VARCHAR2) RETURN NUMBER IS cnumber NUMBER:

```
sppCode CHAR(1);
CURSOR cSat IS
SELECT (45 - (
               DECODE(hdg 80head,NULL,0,1) +
               DECODE(sdht code, NULL, 0, 1) +
               DECODE(mat,NULL,0,1)
               DECODE(blpub veg,NULL,0,1) +
               DECODE(blco rev veg,NULL,0,1) +
               DECODE(blsco rev veg,NULL,0,1) +
               DECODE(la.NULL.0.1) +
               DECODE(ligsh.NULL.0.1) +
               DECODE(cco rev veg,NULL,0,1) +
               DECODE(ligco_rev_veg,NULL,0,1) +
               DECODE(auco rev veg,NULL,0,1) +
               DECODE(cuan repro, NULL, 0, 1) +
               DECODE(noco rev,NULL,0,1) +
               DECODE(inco rev repro, NULL, 0, 1) +
               DECODE(cust repro, NULL, 0, 1) +
               DECODE(fla repro, NULL, 0, 1) +
               DECODE(pty,NULL,0,1) +
               DECODE(second br repro, NULL, 0, 1) +
               DECODE(pex repro, NULL, 0, 1) +
               DECODE(pa repro, NULL, 0, 1) +
```

```
BEGIN
sppCode:=Get Spp Code(xAccno);
IF sppCode='G' THEN
 OPEN cGlab:
 FETCH cGlab INTO cnumber:
  IF cGlab%NOTFOUND THEN
    cnumber := 0:
 END IF:
 CLOSE cGlab:
ELSIF sppCode='S' THEN
        OPEN cSat;
 FETCH cSat INTO cnumber;
  IF cSat%NOTFOUND THEN
    cnumber := 0;
 END IF:
 CLOSE cSat:
ELSIF sppCode='W' THEN
 cNumber:=0:
END IF:
RETURN cnumber:
END;
```

Design Issues and Solutions: Taxonomy information

 At the moment, GRIMS and IRGCIS uses the taxonomy number provided by IPGRI.

TAXNO	NOT	NULL	NUMBER (5)
KINGDOM	NOT	NULL	VARCHAR2(30)
DIVIPHYLUM			VARCHAR2(30)
CLASS			VARCHAR2(30)
ORDR			VARCHAR2(30)
FAMILY			VARCHAR2(30)
GENUS	NOT	NULL	VARCHAR2(60)
GHYBRID			VARCHAR2(1)
GAUTHOR			VARCHAR2(100)
SUBGENUS			VARCHAR2(30)
SECT			VARCHAR2(30)
SER			VARCHAR2(30)
SUBSERIES			VARCHAR2(30)
SHYBRID			VARCHAR2(1)
SPECIES	NOT	NULL	VARCHAR2(60)
SAUTHOR			VARCHAR2(100)
SUBSP			VARCHAR2(30)
SSPAUTHOR			VARCHAR2(100)
VARHYBRID			VARCHAR2(1)
BVAR			VARCHAR2(30)
VARAUTHOR			VARCHAR2 (100)
SVHYBRID			VARCHAR2(1)
SUBVAR			VARCHAR2(30)
FORMA			VARCHAR2(70)

Design Issues and Solutions: Collecting mission

Mission

Null?	Type	Comment
NOT NULL	NUMBER (5)	Code given to a mission
	NUMBER (10)	Funding institute
	NUMBER (10)	Date when the mission started
	NUMBER (10)	Date when the collecting mission ended
	VARCHAR2(5)	
		Rescue collecting Immediate use
		Gap filling
		Research purpose Opportunistic reasons
	NUMBER (10)	Location or country where the mission was held
		NOT NULL NUMBER (5) NUMBER (10) NUMBER (10) NUMBER (10) VARCHAR2 (5)

Mission Collectors

Name	Null?	Туре	Comment
MISSION_CODE	NOT NULL	NUMBER(5)	Code given to a mission
PERSONID	NUMBER (1	0)	Collector ID

ERD for Incoming Sample

Listname=

BATCH ID

IRIS/ GRIMS/ IRGCIS Integration

Summary and Conclusion

- Heavily used ICIS modules
 - - GERMPLSM, NAMESM, LISTNMS, LISTDATA, UDFLDS
 - LOCATION
 - IMS
 - IMS_TRANSACTION, IMS_LOT
- DMS
 - SCALE, SCALEDIS, SCALECON, SCALETAB
 - For publication of data into IRIS Central database

Acknowledgement

GRC

BBU/ CRIL

Flora de Guzman Adelaida Alcantara Ato Reaño Soccie Almazan Arllet Portugal
William Eusebio
May Ann Sallan
Lilibeth Sison

