

10/566360

Fungizide Mischungen

Beschreibung

Die vorliegende Erfindung betrifft fungizide Mischungen, enthaltend als aktive Komponenten

- 1) das Triazolopyrimidinderivat der Formel I,

I

und

- 2) Epoxiconazol der Formel II,

II

in einer synergistisch wirksamen Menge.

Außerdem betrifft die Erfindung ein Verfahren zur Bekämpfung von Schadpilzen aus der Klasse der *Oomyceten* mit Mischungen der Verbindung I mit der Verbindung II und die Verwendung der Verbindung I mit der Verbindung II zur Herstellung derartiger Mischungen sowie Mittel, die diese Mischungen enthalten.

Die Verbindung I, 5-Chlor-6-(2,4,6-trifluor-phenyl)-7-(4-methyl-piperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin, ihre Herstellung und deren Wirkung gegen Schadpilze ist aus der Literatur bekannt (WO 98/46607).

Mischungen von Triazolopyrimidinderivaten mit Epoxiconazol sind allgemein aus EP-A 988 790 bekannt. Die Verbindung I ist von der allgemeinen Offenbarung dieser Schrift umfasst, ist jedoch nicht explizit erwähnt. Die Kombination der Verbindung I mit Epoxiconazol ist daher neu.

Die Verbindung II, (2RS,3SR)-1-[3-(2-Chlorphenyl)-2,3-epoxy-2-(4-fluorphenyl)propyl]-1H-1,2,4-triazol ist seit langem als Fungizid gegen Getreidepathogene im Markt etabliert (EP-A 196 038; common name: Epoxiconazol).

Die in EP-A 988 790 beschriebenen synergistischen Mischungen von Triazolopyrimidinen werden als fungizid wirksam gegen verschiedene Krankheiten von Getreide, Obst und Gemüse, insbesondere Mehltau an Weizen und Gerste oder Grauschimmel an Äpfeln beschrieben. Die fungizide Wirkung dieser Mischungen gegen Schadpilze aus der Klasse der *Oomyceten* lässt jedoch zu wünschen übrig.

Das biologische Verhalten von *Oomyceten* weicht deutlich von dem der *Ascomyceten*, *Deuteromyceten*, und *Basidiomyceten* ab, denn *Oomyceten* sind biologisch eher mit Algen als mit Pilzen verwandt. Daher sind Erkenntnisse zur fungiziden Aktivität von Wirkstoffen gegen „echte Pilze“, wie *Ascomyceten*, *Deuteromyceten*, und *Basidiomyceten* nur sehr eingeschränkt auf *Oomyceten* übertragbar.

Oomyceten verursachen wirtschaftlich bedeutsame Schäden an verschiedenen Kulturpflanzen. In vielen Regionen stellen Infektionen durch *Phytophthora infestans* im Kartoffel- und Tomatenanbau die bedeutendsten Pflanzenkrankheiten dar. Im Weinbau werden erhebliche Schäden durch *Rebenperonospora* verursacht.

Es besteht ein andauernder Bedarf an neuen *Oomyceten*-Mitteln in der Landwirtschaft, da die Schadpilze gegen die im Markt etablierten Produkte, wie z.B. Metalaxyl und strukturell ähnliche Wirkstoffe, bereits verbreitet Resistenzen entwickelt haben.

Im Hinblick auf effektives Resistenzmanagement und eine wirkungsvolle Bekämpfung von Schadpilzen aus der Klasse der *Oomyceten* bei möglichst geringen Aufwandmengen lagen der vorliegenden Erfindung Mischungen als Aufgabe zugrunde, die bei möglichst geringer Gesamtmenge an ausgebrachten Wirkstoffen eine ausreichende Wirkung gegen die Schadpilze zeigen.

Demgemäß wurden die eingangs definierten Mischungen gefunden. Es wurde außerdem gefunden, dass sich bei gleichzeitiger gemeinsamer oder getrennter Anwendung der Verbindung I und der Verbindung II oder bei Anwendung der Verbindungen I und der Verbindung II nacheinander *Oomyceten* besser bekämpfen lassen als mit den Einzelverbindungen (synergistische Mischungen).

Bevorzugt setzt man bei der Bereitstellung der Mischungen die reinen Wirkstoffe I und II ein, denen man je nach Bedarf weitere Wirkstoffe III und IV gegen Schadpilze oder

andere Schädlinge wie Insekten, Spinnentiere oder Nematoden, oder auch herbizide oder wachstumsregulierende Wirkstoffe oder Düngemittel beimischen kann.

Als weitere Wirkstoffe im voranstehenden Sinne kommen insbesondere Fungizide ausgewählt aus der folgenden Gruppe in Frage:

- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Tridemorph,
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Ipiconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol,
- Dicarboximide wie Myclozolin, Procymidon,
- Dithiocarbamate wie Ferbam, Nabam, Metam, Propineb, Polycarbamat, Ziram, Zineb,
- Heterocyclische Verbindungen wie Anilazin, Boscalid, Carbendazim, Carboxin, Oxy-carboxin, Cyazofamid, Dazomet, Famoxadon, Fenamidon, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Tiadinil, Tricyclazol, Triforine,
- Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl,
- Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- Schwefel,
- Sonstige Fungizide wie Acibenzolar-S-methyl, Carpropamid, Chlorothalonil, Cyafenamid, Cymoxanil, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Phosphorige Säure, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
- Strobilurine wie Fluoxastrobin, Metominostrobin, Orysastrobin, Pyraclostrobin oder Trifloxystrobin,
- Sulfensäurederivate wie Captafol,
- Zimtsäureamide und Analoge wie Flumetover.

In einer Ausführungsform der erfindungsgemäßen Mischungen werden den Verbindungen I und II ein weiteres Fungizid III oder zwei Fungizide III und IV beigemischt.

Als Komponenten III und IV kommen insbesondere die folgenden Fungizide in Frage:

Aminderivate wie Dodemorph, Fenpropimorph, Fenpropidin, Iminoctadine, Tridemorph; Azole wie Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triflumizol, Triticonazol; Heterocyclische Verbindungen wie Boscalid, Carbendazim, Carboxin, Cyazofamid, Flutolanil, Quinoxyfen; Dithiocarbamate; und Strobilurine wie Fluoxastrobin, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin; Sonstige Fungizide wie Benthiavalicarb, Chlorothalonil, Cyflufenamid, Diclofluanid, Fenhexamid, Fluazinam, Fosetyl, Fosetyl-Aluminium, Phosphorige Säure, Iprovalicarb, Metrafenon und Pencycuron.

Mischungen der Verbindungen I und II mit einer Komponente III sind bevorzugt. Besonders bevorzugt sind Mischungen der Verbindungen I und II.

Die Mischungen der Verbindung I und der Verbindung II bzw. die gleichzeitige gemeinsame oder getrennte Verwendung der Verbindung I und der Verbindung II zeichnen sich aus durch eine hervorragende Wirksamkeit gegen pflanzenpathogene Pilze aus der Klasse der Oomyceten, insbesondere von *Phytophthora infestans* an Kartoffeln und Tomaten, sowie *Plasmopara viticola* an Reben. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide, bzw. als Saatbeizmittel eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung von Oomyceten an verschiedenen Kulturpflanzen wie Gemüsepflanzen (z.B. Gurken, Bohnen und Kürbisgewächse), Kartoffeln, Tomaten, Reben und entsprechende Samen.

Insbesondere eignen sie sich zur Bekämpfung der Kraut- und Knollenfäule an Tomaten und Kartoffeln, die durch *Phytophthora infestans* verursacht wird, sowie des falschen Rebenmehltaus (Rebenperonospora), verursacht durch *Plasmopara viticola*.

Darüber hinaus ist die erfindungsgemäße Kombination der Verbindungen I und II auch zur Bekämpfung anderer Pathogene geeignet, wie z. B. *Septoria*- und *Puccinia*-Arten in Getreide wie Weizen und Gerste und *Alternaria*- und *Botrytis*-Arten in Gemüse, Obst und Wein.

Die Verbindung I und die Verbindung II können gleichzeitig gemeinsam oder getrennt oder nacheinander aufgebracht werden, wobei die Reihenfolge bei getrennter Applikation im allgemeinen keine Auswirkung auf den Bekämpfungserfolg hat.

Die Komponenten III und IV werden ggf. im Verhältnis von 20:1 bis 1:20 zu der Verbindung I zugemischt.

Die Verbindung I und die Verbindung II werden üblicherweise in einem Gewichtsverhältnis von 100:1 bis 1:100, vorzugsweise 50:1 bis 1:50, insbesondere 10:1 bis 1:10 angewandt.

Die Aufwandmengen der erfindungsgemäßen Mischungen liegen je nach Art der Verbindung und des gewünschten Effekts bei 5 g/ha bis 2000 g/ha, vorzugsweise 50 bis 1500 g/ha, insbesondere 50 bis 750 g/ha.

Die Aufwandmengen für die Verbindung I liegen entsprechend in der Regel bei 1 bis 1000 g/ha, vorzugsweise 10 bis 750 g/ha, insbesondere 20 bis 500 g/ha.

Die Aufwandmengen für die Verbindung II liegen entsprechend in der Regel bei 1 bis 1000 g/ha, vorzugsweise 10 bis 750 g/ha, insbesondere 20 bis 500 g/ha.

Bei der Saatgutbehandlung werden im allgemeinen Aufwandmengen an Mischung von 0,001 bis 1 g/kg Saatgut, vorzugsweise 0,01 bis 0,5 g/kg, insbesondere 0,01 bis 0,1 g/kg verwendet.

Sofern für Pflanzen pathogene Schadpilze zu bekämpfen sind, erfolgt die getrennte oder gemeinsame Applikation der Verbindung I und der Verbindung II oder der Mischungen aus der Verbindung I und der Verbindung II durch Besprühen oder Bestäuben der Samen, der Pflanzen oder der Böden vor oder nach der Aussaat der Pflanzen oder vor oder nach dem Auflaufen der Pflanzen.

Die erfindungsgemäßen Mischungen, bzw. die Verbindungen I und II können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwen-

dung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylo), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylo, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubmittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsul-

fat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% der Wirkstoffe. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

1. Produkte zur Verdünnung in Wasser

A) Wasserlösliche Konzentrate (SL)

10 Gew.-Teile der Wirkstoffe werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

B) Dispergierbare Konzentrate (DC)

20 Gew.-Teile der Wirkstoffe werden in Cyclohexanon unter Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.

C) Emulgierbare Konzentrate (EC)

15 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

D) Emulsionen (EW, EO)

40 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

E) Suspensionen (SC, OD)

20 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffssuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG)

50 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP)

75 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

2. Produkte für die Direktapplikation**H) Stäube (DP)**

5 Gew.-Teile der Wirkstoffe werden fein gemahlen und mit 95 % feinteiligem Kaolin inig vermischt. Man erhält dadurch ein Stäubmittel.

I) Granulate (GR, FG, GG, MG)

0.5 Gew.-Teile der Wirkstoffe werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

J) ULV- Lösungen (UL)

10 Gew.-Teile der Wirkstoffe werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubmitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfundungsgemäßen Wirkstoffe gewährleisten.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und even-

tuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln zugemischt werden, was üblicherweise im Gewichtsverhältnis von 1:10 bis 10:1 erfolgt.

Die Verbindungen I und II, bzw. die Mischungen oder die entsprechenden Formulierungen werden angewendet, indem man die Schadpilze, die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge der Mischung, bzw. der Verbindungen I und II bei getrennter Ausbringung, behandelt. Die Anwendung kann vor oder nach dem Befall durch die Schadpilze erfolgen.

Die fungizide Wirkung der Verbindung und der Mischungen lässt sich durch folgende Versuche zeigen:

Die Wirkstoffe wurden getrennt oder gemeinsam als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Anwendungsbeispiel - Wirksamkeit gegen die Krautfäule an Tomaten verursacht durch *Phytophthora infestans* bei protektiver Behandlung

Blätter von Topfpflanzen der Sorte "Große Fleischtomate St. Pierre" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer kalten wässrigen Zosporenaufschwemmung von *Phytophthora infestans* mit einer Dichte von $0,25 \times 10^6$

Sporen/ml infiziert. Anschließend wurden die Pflanzen in einer wasserdampf-gesättigten Kammer bei Temperaturen zwischen 18 und 20°C aufgestellt. Nach 6 Tagen hatte sich die Krautfäule auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

Die visuell ermittelten Werte für den Prozentanteil befallener Blattflächen wurden in Wirkungsgrade als % der unbehandelten Kontrolle umgerechnet:

Der Wirkungsgrad (W) wird nach der Formel von Abbot wie folgt berechnet:

$$W = (1 - \alpha/\beta) \cdot 100$$

- α entspricht dem Pilzbefall der behandelten Pflanzen in % und
- β entspricht dem Pilzbefall der unbehandelten (Kontroll-) Pflanzen in %

Bei einem Wirkungsgrad von 0 entspricht der Befall der behandelten Pflanzen demjenigen der unbehandelten Kontrollpflanzen; bei einem Wirkungsgrad von 100 weisen die behandelten Pflanzen keinen Befall auf.

Die zu erwartenden Wirkungsgrade für Wirkstoffkombinationen wurden nach der Colby-Formel (Colby, S. R. (Calculating synergistic and antagonistic responses of herbicide Combinations", Weeds, 15, S. 20 - 22, 1967) ermittelt und mit den beobachteten Wirkungsgraden verglichen.

Colby Formel:

$$E = x + y - x \cdot y / 100$$

- E zu erwartender Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Mischung aus den Wirkstoffen A und B in den Konzentrationen a und b
- x der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs A in der Konzentration a
- y der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs B in der Konzentration b

Als Vergleichsverbindungen wurden die von den in EP-A 988 790 beschriebenen Epoxiconazol-Mischungen bekannten Verbindungen A und B verwendet:

A

B

Tabelle A - Einzelwirkstoffe

Beispiel	Wirkstoff	Wirkstoffkonzentration in der Spritzbrühe [ppm]	Wirkungsgrad in % der unbehandelten Kontrolle
1	-	Kontrolle (unbehandelt)	(89 % Befall)
2	I	63	10
		16	10
		4	0
3	II (Epoxiconazol)	16	10
4	Vergleich A	63	0
		16	0
		4	0
5	Vergleich B	63	10
		16	0
		4	0

Tabelle B – erfindungsgemäße Mischungen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
6	I+II 63+16 ppm 4:1	55	19
7	I+II 4+16 ppm 1:4	44	10

*) berechneter Wirkungsgrad nach der Colby-Formel

Tabelle C – Vergleichsversuche – Aus EP-A 988 790 bekannte Mischungen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
8	A+II 63+16 ppm 4:1	21	10
9	A+II 4+16 ppm 1:4	0	10
10	B+II 63+16 ppm 4:1	10	19
11	B+II 4+16 ppm 1:4	10	10

*) berechneter Wirkungsgrad nach der Colby-Formel

Aus den Ergebnissen der Versuche geht hervor, dass der beobachtete Wirkungsgrad der erfindungsgemäßen Mischungen aufgrund des starken Synergismus deutlich höher ist, als nach der Colby-Formel vorausberechnet, während sich *Oomyceten* mit den aus EP-A 988 790 bekannten Epoxiconazol-Mischungen der Vergleichswirkstoffe nicht wirksam bekämpfen lassen.

Patentansprüche

1. Fungizide Mischungen, enthaltend als aktive Komponenten

1) das Triazolopyrimidinderivat der Formel I,

und

2) Epoxiconazol der Formel II,

in einer synergistisch wirksamen Menge.

2. Fungizide Mischungen, enthaltend die Verbindung der Formel I und die Verbindung der Formel II in einem Gewichtsverhältnis von 100:1 bis 1:100.
3. Fungizides Mittel, enthaltend einen flüssigen oder festen Trägerstoff und eine Mischung gemäß Anspruch 1 oder 2.
4. Verfahren zur Bekämpfung von Schadpilzen aus der Klasse der Oomyceten, dadurch gekennzeichnet, dass man die Pilze, deren Lebensraum oder die vor Pilzbefall zu schützenden Pflanzen, den Boden oder Saatgut mit einer wirksamen Menge der Verbindung I und der Verbindung II gemäß Anspruch 1 behandelt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Verbindungen I und II gemäß Anspruch 1 gleichzeitig, und zwar gemeinsam oder getrennt, oder nacheinander aus bringt.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Mischung gemäß Ansprüchen 1 oder 2 auf die vor Pilzbefall zu schützenden Pflanzen oder den Boden in einer Menge von 5 g/ha bis 2000 g/ha aufwendet.

7. Verfahren nach Ansprüchen 4 und 5, dadurch gekennzeichnet, dass man die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 0,001 bis 1 g/kg Saatgut anwendet.
8. Verfahren nach Ansprüchen 4 bis 7, dadurch gekennzeichnet, dass der Schadpilz *Phytophthora infestans* bekämpft wird.
9. Saatgut, enthaltend die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 0,001 bis 1 g/kg.
10. Verwendung der Verbindung I und der Verbindung II gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von *Oomyceten* geeigneten Mittels.