

基础篇

- 电阻 电容
- 电感

基础篇·电阻

■ 定义:导体对电流的阻碍作用

公式: $R = \frac{U}{I}$ 、 $R = \rho \frac{L}{S}$

■ 換算: 1KΩ=1000Ω, 1MΩ=1000KΩ

■ 焊接类型:接插式(Through Hole)、贴片式(SMT)

■ 常用阻值: 1K, 4.7K、10K

■ 常用封装: 0603

■ 特殊电阻: 热敏电阻、光敏电阻

基础篇・电容

■ 定义:储存电荷量与电路分压之比

公式: $C = \frac{Q}{U}$ 、 $C = \frac{\mathcal{E}S}{4\pi kd}$

■ 换算: 1nF=1000pF, 1uF=1000nF

■ 焊接类型:接插式(Through Hole)、贴片式(SMT)

■ 常用容值: 100nF, 1uF、22uF

■ 常用封装: 0603, 1206

■ 常用电容: MLCC (Multi-layer Cera

■ 特殊电容: 安规电容 (X、Y) 、超级

基础篇·电感

- 定义: 感生电动势与电流变化率之比
- 公式: $L = V / \frac{dI}{dt}$
- 常见用途: 开关电源、电流互感、交流变压
- 常用感值: 4.7uH、10uH、22uH

基础篇・二极管

- 特性: 单向导电性
- 导通压降: 硅二极管: 0.7V, 锗二极管: 0.3V
- 常见用途: 限幅保护(TVS)、静电释放(ESD)、电感续流(FWD)
- 常用型号: SMAJ28CA (TVS)

SBR3U40P1 (Schottky)

1N4148WS (Switching)

基础篇・三极管

- 特性:信号放大,电流控制电流
- 常见用途:信号反向(接收机),开关控制(激光、电磁阀)
- 常用型号: S8050, NPN三极管, Ic=500mA

基础篇·封装

- 封装: Package, 把集成电路装配成芯片产品
- 表面贴装技术: SMT(Surface Mounted Technology)
- 贴片电阻:

类型	尺寸	功率		
0402	1.0*0.5mm	1/16W		\otimes
0603	1.6*0.8mm	1/10W		\bowtie
0805	2.0*1.2mm	1/8W		
1206	3.2*1.6mm	1/4W	Office Code Street Code Stree	CIT

■ 常见封装: LQFP、SOT-23、SOT23-5、SOIC8

信号篇

- 电平 单端 差分

信号篇・电平

- 定义:相同阻抗下电量的相对比值
- 阈值电平电压:低于阈值,属于低电平,反之
- 常见电平:
- \blacksquare RS-232(±15V), RS-485(±6V), TTL(5V),
- LV(3.3V), LV(2.5V), LV(1.8V);
- 5V输入/输出: AT89C51, 各种传感器
- 3.3V输入/输出: STM32 series
- 兼容性: 部分3.3V IC Pin具有5V兼容性
- (5V tolerant I/O)

	FT	5 V tolerant I/O
I/O structure	TTa	3.3 V tolerant I/O directly connected to ADC
1/O structure	В	Dedicated BOOT0 pin
	RST	Bidirectional reset pin with embedded weak pull-up resistor

STM32F405xx STM32F407xx

ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Datasheet - production data

Features

- Core: ARM® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing n-wait state execution from Tias in en ory, Nely ency up to 168 MHz, remayly from 0.00 unin ZiJ DMIPS/1.25 CMIPS. 11.25 CMIPS. 11.2
- Memories
- Up to 1 Mbyte of Flash memory
- Up to 192+4 Kbytes of SRAM including 64-Kbyte of CCM (core coupled memory) data RAM
- Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories
- LCD parallel interface, 8080/6800 modes
- Clock react and available acceptment
 1.8 V to 3.6 V application upply and I/Os
- 4-to-26 MHz crystal oscillator
- Internal 16 MHz factory-trimmed RC (1%
- 32 kHz oscillator for RTC with calibration
- Internal 32 kHz RC with calibration
- Low-power operation
- Sleep, Stop and Standby modes
- V_{BAT} supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM
- 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode
- 2×12-bit D/A converters
- General-purpose DMA: 16-stream DMA controller with FIFOs and burst support

- Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 168 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
- · Debug mode
- Serial wire debug (SWD) & JTAG interfaces
- Cortex-M4 Embedded Trace Macrocell™
- . Up to 140 I/O ports with interrupt capability
- Up to 136 fast I/Os up to 84 MHz
- Up to 138 5 V-tolerant I/Os
- Up to 15 communication interfaces
- Up to 3 × I²C interfaces (SMBus/PMBus)
- Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modern control)
- Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I²S to achieve audio class accuracy via internal audio PLL or external clock
- 2 × CAN interfaces (2.0B Active)
- SDIO interface
- Advanced connectivity
- USB 2.0 full-speed device/host/OTG controller with on-chip PHY
- USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI
- 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII

September 2016

DocID022152 Rev 8

1/202

This is information on a product in full production

www.st.co

信号篇·单端

- 定义:以GND为参考点,用对地电压的变化来表达信号
- 优势:简单,通用,成本低
- 劣势: 抗干扰能力差(共模噪声、地弹)
- 实例: GPIO、PWM

信号篇·差分

- 定义:两传输信号振幅相同,相位相反
- 特点:高共模抑制比 (CMRR)
- 要求: 等长(时序), 等宽(反射), 等间距(差分阻抗)
- 实例:CAN(Controller Area Network)、USB(Universal Serial Bus)

信号篇・布局

- 晶振: 高精度时钟源,放置位置尽可能靠近芯片时钟管脚(高次谐波)
- 去耦电容:减少元件作为噪声源造成的影响,应靠近元件输出端
- 旁路电容:减少噪声输入对元件的影响,应靠近元件输入端
- 模拟数字:模拟电路在布置时应避免靠近频繁切换电平的数字电路

电源篇

- 电压 电流 网络

电源篇・电压

■ 输入电压: 电池24V or 上级降压芯片输出

■ 输出电压: 模块固定输出 or 可调节输出

■ 反馈电压:反馈电阻反馈至FB(FeedBack)管脚的电压

■ 系统耐压:必须高于输入电压,且具有足够的降额系数

■ 纹波电压: 电压中的交流成分造成的电压波动

■ 尖峰脉冲:上电瞬间产生的高于输入电压的冲激

Table 4—300kHz, 24V _{IN}										
Vоит (V)	L (μΗ)	R1 (kΩ)	R2 (kΩ)	R4 (kΩ)	C4 (pF)	R _{FREQ} (kΩ)				
3.3	10	30.9	10	953	390	110				
5	10	53.6	10	845	560	169				
	Table 5—500kHz, 24V _{IN}									
V _{OUT} (V)	L (µH)	R1 (kΩ)	R2 (kΩ)	R4 (kΩ)	C4 (pF)	R _{FREQ} (kΩ)				
3.3	10	31.6	10	620	390	63.4				
5	10	53.6	10	845	300	100				

	Table 6—700KHZ, 24V _{IN}										
V _{OUT} (V)	L (μΗ)	R1 (kΩ)	R2 (kΩ)	R4 (kΩ)	C4 (pF)	R_{FREQ} $(k\Omega)$					
3.3	10	31.6	10	560	390	44.2					
5	10	54.9	10	620	390	69.8					

SOT-23 PACKAGE ORDER NUMBER	VOLTAGE OPTION (V)
LP5907QMFX-1.2Q1	1.2
LP5907QMFX-1.8Q1	1.8
LP5907QMFX-2.5Q1	2.5
LP5907QMFX-2.8Q1	2.8
LP5907QMFX-3.0Q1	3.0
LP5907QMFX-3.3Q1	3.3
LP5907QMFX-3.8Q1	3.8
LP5907QMFX-4.5Q1	4.5

Foodback Voltage	V _{FB}	T _J = 25°C	807	815	823	mV
Feedback Voltage	V_{FB}	$T_{J} = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	803		827	mV

电源篇·电流

■ 输出电流:略大于电流需求,否则影响系统性能或

触发芯片过流保护(OCP)/短路保护(SCP)

■ 静态电流:芯片处于使能或关闭状态时消耗的电流

■ 走线宽度:参考电流-线宽对照表,线宽过窄可能烧断走线

■ 热效应: $Q = I^2Rt$,大电流情景需考虑散热与结温

						1
I _{LOAD}	Output load current		0		250	mA
IQ		V_{EN} = 1.2 V, I_{OUT} = 0 mA		12	25	
	Quiescent current ⁽⁴⁾	$V_{EN} = 1.2 \text{ V}, I_{OUT} = 250 \text{ mA}$		250	425	μA
		V _{EN} = 0.3 V (Disabled)		0.2	1	
I _G	Ground current ⁽⁵⁾	V _{EN} = 1.2 V, I _{OUT} = 0 mA		14		μA
V	Dranaut valtage (6)	I _{OUT} = 100 mA		50		m)/
V _{DO}	Dropout voltage (6)	I _{OUT} = 250 mA			250	mV
I _{SC}	Short circuit current limit	$T_A = 25^{\circ}C^{(7)}$	250	500		mA

Trace Carrying Capacity per mil std 275

		t	er n	nil sto	127	5				
Temp Rise	10 C				20 C			30 C		
Copper	1/2 oz.	1 oz.	2 oz.	1/2 oz.	1 oz.	2 oz.	1/2 oz.	1 oz.	2 oz.	
Trace Width		м	axin	num	Cur	ren	t Am	ıps	-	
.010	.5	1.0	1.4	0.6	1.2	1.6	.7	1.5	2.2	
.015	.7	1.2	1.6	8.0	1.3	2.4	1.0	1.6	3.0	
.020	.7	1.3	2.1	1.0	1.7	3.0	1.2	2.4	3.6	
.025	.9	1.7	2.5	1.2	2.2	3.3	1.5	2.8	4.0	
.030	1.1	1.9	3.0	1.4	2.5	4.0	1.7	3.2	5.0	
.050	1.5	2.6	4.0	2.0	3.6	6.0	2.6	4.4	7.3	
.075	2.0	3.5	5.7	2.8	4.5	7.8	3.5	6.0	10.0	
		_				_			-	

2.6 4.2 6.9 3.5 6.0 9.9 4.3 7.5 12.5

5.0 8.3 12.3 7.2 12.3 20.0 9.0 15.0 24.5

.250

电源篇・网络

- PDN: 电源分配网络 (Power Delivery Network)
- 包含:从稳压模块 (VRM) 到芯片的焊盘,再到片内分配本地电压和返回电流的片上金属层在内的所有互连。
- 难点:网络中一个部件参数的改变,影响到整个系统的性能(生态系统)
- 作用:保持芯片焊盘间的供电电压恒定 使地弹最小化(同时开关噪声SSN) 使电磁干扰问题最小化
- 指导准则:保持电源分配网络阻抗低于目标阻抗值

$$V_{ ext{ripper}} > V_{PDN} = I(f) \times Z_{PDN}(f)$$
 $Z_{PDN}(f) < \frac{V_{ ext{ripper}}}{I(f)} = Z_{target}(f)$

电源篇・散热

- \blacksquare 结温 (T_i) : 半导体实际工作温度,超过额定温度范围将损坏半导体器件
- 耗散功率:有功输入总功率与有功输出总功率的差值
- 散热方式:
 - 元器件级散热(引脚、散热焊盘、封装)
 - 电路板级散热 (铺铜、散热过孔、开窗)
 - 外部散热(散热片、导热硅脂、风扇)

级别	温度范围		7		
军工级	-55°C~125°C				
汽车级	-40°C~125°C			# # # # # # # # # #	
工业级	-40°C~85°C	A. Car		пппп	A175 lst
商业级	0°C~70°C	J'es		Timinini	

设计篇

- 方面
- 问题
- 原则
-

设计师可以分成两类—— 一类已经遇到了信号完整性问题, 另一类即将遇到信号完整性问题。

设计篇·3个方面

- 信号完整性(Signal Integrity, SI):
 - 信号波形的失真
 - 与噪声问题和时序问题有关
- 电源完整性 (Power Integrity, PI):
 - 有源器件供电的互连线及各相关元件上的噪声
 - 与电源分配网络 (PDN) 相关
- 电磁兼容性 (ElectroMagnetic Compatibility, EMC):
 - 产品自身产生的电磁辐射和由外场导入的电磁干扰
 - 讨论解决方案:电磁兼容,讨论辐射问题:电磁干扰(EMI)

设计篇 · 6种问题

- 单一网络的信号失真(反射);
- 互连线中频率相关损耗引起的上升边退化;
- 两个或多个网络之间的串扰;
- 串扰特殊形式:地弹、电源弹(感性耦合);
- 电源和地分配中的轨道塌陷(电压沉降);
- 来自整个系统的电磁干扰和辐射;

设计篇·设计原则

- 信号质量: 互连线阻抗可控,瞬时阻抗恒定,线路两端端接,点到点拓扑布线
- 上升边退化:采用短宽互连线和低耗散因子叠层板,避免与频率相关损耗
- 串扰:线间距大于最小值
- 地弹、电源弹:连续返回路径,分立返回电流,减小非理想返回路径互感
- 轨道塌陷:最小化电源/地路径阻抗和△I噪声
- 电磁干扰: 最小化带宽和地阻抗,减小外电缆和屏蔽线共模电流,采用屏蔽

设计篇·分析工具

- 经验法则
 - 用于快速评估;
 - 单位长度导线自感25nH/in;
 - 1oz方块电阻1mΩ/sq;
- ■解析近似
 - 用于方案权衡;
 - 采用方程或者公式;
- ■数值仿真
 - 用于高精度设计;
 - 采用场求解器/SPICE;

叁考资料

《信号完整性与电源完整性分析》(第三版)-Eric Bogatin

《电路设计工程计算基础》-武晔卿