Instructions: State transitions:

$$\frac{1}{50} = \frac{1}{50} = \frac{1}{50}$$

2) ADC:-
$$S_0 \longrightarrow S_1 \xrightarrow{C=1} S_2 \longrightarrow S_3 \longrightarrow S_{\times} --- S_0$$

$$C=0$$

$$S_0 - S_1 - S_{11}$$

$$S_{12} - S_{11}$$

$$S_{13} - S_{11}$$

$$S_{14} - S_{11}$$

$$S_{15} - S_{11}$$

$$S_{17} - S_{11}$$

12)
$$SA:-$$

$$So -S_1 - S_1 \xrightarrow{23+"000"} S_1 \xrightarrow{3="000"} S_2 --- S_0$$

States:-

S1:
$$IR_{11-9} \rightarrow RFA1$$
 $t_1-\omega r$
 $IR_{8-6} \rightarrow RFA2$
 $t_2 \cdot \omega r$
 $RFD1 \rightarrow t_1$
 $RFD2 \rightarrow t_2$
 $t_3 \cdot \omega r$
 $t_3 \cdot \omega r$

$$52$$
:
 $t_1 \rightarrow ALUa$ | $t_3.wr$
 $t_2 \rightarrow ALUb$ |
 $ALUc \rightarrow t_3$ |

$$52^{1}$$
:
 $t_1 \rightarrow ALUID$ $t_3 \cdot wr$
 $t_2 \rightarrow ALUID$ $ALU: nand$
 $ALUC \rightarrow t_3$

$$53$$
 $t3 \rightarrow RF_D_3$
 RF_W
 $IR_{5-3} \rightarrow RF_A_3$

$$S6:$$
 $Imm9e16(IR_{8-0}) \rightarrow RF_D3 | RF_WY$
 $IR_{11-9} \rightarrow RF_A3$

Sa:
$$t_2 \longrightarrow \text{mem-addr}$$

$$\text{mem-D} \longrightarrow t_3$$

$$t_3 \cdot \text{wr}$$

S12:

$$t_2 \longrightarrow RF-D_3$$
 $t_3 \longrightarrow RF-A_3$
 $t_3 \longrightarrow ALUa$
 $t_4 \longrightarrow ALUb$
 $t_4 \longrightarrow ALUb$

519:

S13:

$$t_1 \rightarrow \text{mem-ddol}r$$
 $t_2 \cdot \omega r$ $t_3 \rightarrow \text{ALUa}$ $t_3 \cdot \omega r$ $t_1 \rightarrow \text{ALUb}$ $t_2 \cdot \omega r$ $t_3 \rightarrow \text{RF-A1}$ $t_3 \rightarrow \text{RF-A1}$

S14:

$$t1 \longrightarrow ALUA$$
 $t1 \longrightarrow ALUb$
 $ALUC \longrightarrow t1$
 $t1 \longrightarrow mem-adds$
 $t2 \longrightarrow mem-in$

Sis:

S16:

$$\begin{array}{c} IR \longrightarrow RF-A3 \\ PC \longrightarrow RF-D3 \\ IR \longrightarrow 6 \longrightarrow RF-A2 \\ RF-D2 \longrightarrow t_2 \end{array}$$

S17:

S18:

State diagram:

