Master of Science (M.Sc.)

"Wirtschaftsmathematik und Mathematik"

der Universität Mannheim

Modulkatalog –

Appendix

Akademisches Jahr

HWS 2023 / FSS 2024

Die folgenden Veranstaltungen wurden nach Veröffentlichung des Modulkatalogs dem Kursprogramm hinzugefügt.

Modulnr	Name des Moduls	Semester	Sprache	ECTS	Seite
MAC 569	Konvexe Optimierung – Theoretische und Algorithmische Grundlagen		Deutsch/ Englisch	6	3
MAC 570	Reinforcement Learning - Coding		Englisch	5	5
MAC 571	Large-scale dynamics of stochastic systems		Englisch	5	7
MAC 507	Nichtlineare Optimierung		Deutsch	6	9
MAC 528	Inverse Probleme		Deutsch	6	11
MAS 515	Seminar Mathematische Optimierung		Deutsch	4	13
MAB 519	Reinforcement Learning		Englisch	ab FSS 24 10	14
MAC 572	Algorithmic trading and stochastic control		Englisch	6	16

MAC 569	Konvexe Optimierung – Theoretische und Algorithmische Grundlagen
WAC 303	Convex Optimization – Theory and Algorithms
Form der Veranstaltung	Vorlesung mit Übung
Typ der Veranstaltung	Mathematik C, Wahlmodul Mathematik
Modulniveau	Master
ECTS	6
	Präsenzstudium: 4 h pro Semester (4 SWS)
Arbeitsaufwand	 Eigenstudium: 20 h pro Semester davon Vor- und Nachbereitung der Veranstaltung und freies Selbststudium: 10 h pro Semester davon Vorbereitung für die Prüfung: 10 h pro Semester
Vorausgesetzte Kenntnisse	Lineare Algebra I und IIA, Analysis I+II
Lehrinhalte	 Introduction to Convex Analysis and Monotone Operators Tools for Large-Scale Convex Optimization Fast Methods for Machine learning and Distributed Optimization
Lern- und Kompetenzziele	Fachkompetenz: Convex Analysis Numerical Algorithms Complexity Theory Methodenkompetenz: Gradient Methods Operator Splitting Techniques Acceleration of Numerical Schemes Personale Kompetenz: Willingness for self-study Creativity for problem solving
Medienformen	Präsentationen mit Tafelanschrieb
Begleitende Literatur	 Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. Yurii Nesterov. Lectures on Convex Optimization. Springer 2018 Ernest Ryu & Wotao Yin (2023). Large-Scale Convex Optimization: Algorithms & Analyses via Monotone Operators. Cambridge University Press
Lehr- und Lernmethoden	Vorlesung (4 SWS)
Art der Prüfungsleistung	schriftliche Klausur/bei geringer Studentenzahl auf mündliche Prüfung möglich
Prüfungsvorleistung	Handing-in of problem sets and passing at least 50% of them
Prüfungsdauer	90 Minuten

Sprache	Deutsch/Englisch
Angebotsturnus	Irregular
Lehrende/r	Prof. Mathias Staudigl
Modulverantwortlicher	Prof. Mathias Staudigl
Dauer des Moduls	1 Semester
Weiterführende Module	-
Verwendbarkeit	Bspw.: M.Sc. Wirtschaftsmathematik, B.Sc. Wirtschaftsmathematik, Lehramt Mathematik, M.Sc. Wirtschaftspädagogik
Einordnung in Fachsemester	1./2./3. Fachsemester

MAC 570	Reinforcement Learning - Coding
Form of module	Lectures with exercises
Type of module	Mathematics C
Level	Master
ECTS	5
Workload	28 hours lectures 122 hours self-studies
Prerequisites	Reinforcement Learning
Aim of module	 Implementation of standard algorithms in reinforcement learning Bandit algorithms (UCB) TD algorithms (Q-learning, TD) Policy gradient algorithms (SAC, PPO)
Learning outcomes and	MK1, M02, M03
qualification goals	MF1, MF3 (cf, "Erläuterungen zu den Abkürzungen")
Media	Blackboard, Slides
Literature	Original articles
Methods	Lectures, programmig tasks
Form of assessment	written exam
Admission requirements for assessment	-
Duration of assessment	90 min
Language	English
Offering	irregular
Lecturer	Prof. Dr. Leif Döring, Prof. Dr. Simon Weißmann
Person in charge	Prof. Dr. Leif Döring, Prof. Dr. Simon Weißmann
Duration of module	1 semester

Further modules	-
Range of application	M.Sc. Wirtschaftsmathematik, B.Sc. Wirtschaftsmathematik, M.Sc. Mathematik, M.Sc. Mannheim Master in Data Science, M.Sc. Wirtschaftsinformatik
Semester	1 st , 2 nd , 3 rd

,

MAC 571	Large-scale dynamics of stochastic systems Large-scale dynamics	
Form of module	Lecture	
Type of module	Mathematics C	
Level	Master	
ECTS	5	
Workload	Self-Study: 154 hours per semester	
Prerequisites	Stochastik 1, Markovketten, desirable: Mathematical Finance or Probability Theory 1	
Aim of module	 Markov chains and boundary value problems Elements of discrete potential theory (harmonic functions, capacity, variational characterization) Functional inequalities (Poincare, Nash, Sobolev, Log-Sobolev) Stochastic particle and spin systems Potential theoretic approach to metastability Martingale problems and convergence Hydrodynamic limit 	
Learning outcomes and qualification goals	Professional skills: gaining a mathematical understanding of the fundamental results in discrete potential theory and advanced theory of Markov chains (MK1, MF3) Methodological competence: proper handling of the standard methods in the theory of Markov chains (MK1, MF3) Interpersonal skills: teamwork	
Media	Videos and discussions/presentations on the blackboard	
Literature	 Bovier, den Hollander "Metastability" Landim, "Metastable Markov chains" Lyons, "Random walks on trees and networks" 	
Methods	Lectures (2 SWS), homework problems	
Form of assessment	Oral exam	
Admission requirements for assessment		

Duration of assessment	30 min
Language	English
Offering	irregular
Lecturer	Prof. Dr. Martin Slowik
Person in charge	Prof. Dr. Martin Slowik
Duration of module	1 semester
Further modules	
Range of application	M.Sc Wirtschaftsmathematik, M.Sc. Mathematik, (B.Sc Wirtschaftsmathematik)
Semester	M.Sc. 1 st , 2 nd , 3 rd ; (B.Sc. 5 th , 6 th)

NAC 507	Nonlinear Optimization
MAC 507	Nichtlineare Optimierung
Form der Veranstaltung	Vorlesung mit Übung
Typ der Veranstaltung	Mathematik C
Modulniveau	Master
ECTS	6
	Präsenzstudium: 56 h pro Semester (4 SWS)
Arbeitsaufwand	 Eigenstudium: 126 h pro Semester davon Vor- und Nachbereitung der Veranstaltung und freies Selbststudium: 112 h pro Semester davon Vorbereitung für die Prüfung, z.B. Prüfungs-/Seminarabschlussarbeits- und Präsentationsvorbereitung: 14 h pro Semester
Vorausgesetzte Kenntnisse	Numerik, Optimierung
Lehrinhalte	 Optimalitätsbedingungen für unrestringierte und restringierte Optimierungsprobleme Numerisches Verfahren für nicht-lineare Optimierungsprobleme.
Lern- und Kompetenzziele	 Fachkompetenz: Kennenlernen und verstehen verschiedener Methoden und Algorithmen (MK1, MK2) Implementierungen verschiedener Verfahren (MK1, MK2, MO2, MO4) Interpretation numerischer Ergebnisse (MK1, MK2) Methodenkompetenz: Mathematische Modellierung eines Problems (MF1, MF2) Konkrete Problemlösungsstrategien und deren Interpretation (MF1, MF2) Personale Kompetenz: Teamarbeit (MO2, MO3)
Medienformen	Tafelanschrieb
Begleitende Literatur	 Eigenes Skript (online) Amir Beck: Introduction to Nonlinear Optimization – Theory, Algorithms, and Applications with MATLAB Jorge Nocedal and Stephen J. Wright: Numerical Optimization
Lehr- und Lernmethoden	Vorlesung (2 SWS), Übung (2 SWS),
Art der Prüfungsleistung	Mündliche Prüfung
Prüfungsvorleistung	Bearbeitung von Übungsblättern und mindestens 50% der Übungsaufgaben bestanden.
Prüfungsdauer	30 Minuten (mündliche Prüfung)
Sprache	Englisch

Angebotsturnus	regelmäßig
Lehrende/r	Prof. Mathias Staudigl, Phd
Modulverantwortlicher	Prof. Mathias Staudigl, Phd
Dauer des Moduls	1 Semester
Weiterführende Module	-
Verwendbarkeit	M.Sc. Wirtschaftsmathematik, B.Sc. Wirtschaftsmathematik, Lehramt Mathematik, Master in Data Science,
Einordnung in Fachsemester	1./2./3. Fachsemester

MAC 528	Inverse Problems	
Form der Veranstaltung	Vorlesung mit Übung	
Typ der Veranstaltung	Mathematik C	
Modulniveau	Master	
ECTS	6	
	Präsenzstudium: 56 h pro Semester (4 SWS)	
Arbeitsaufwand	 Eigenstudium: 126 h pro Semester davon Vor- und Nachbereitung der Veranstaltung und freies Selbststudium: 112 h pro Semester davon Vorbereitung für die Prüfung, z.B. Prüfungs-/Seminarabschlussarbeits- und Präsentationsvorbereitung: 14 h pro Semester 	
Vorausgesetzte Kenntnisse	Optimierung, Numerik. Grundlegende Kenntnisse in Funktionalanalysis, Wahrscheinlichkeitstheorie und nichtlinearer Optimierung sind hilfreich.	
Lehrinhalte	 Theorie und Regularisierung von schlecht gestellten inversen Problemen, numerische Verfahren zur Regularisierung Statistische inverse Probleme Bayessche inverse Probleme 	
Lern- und Kompetenzziele	 Fachkompetenz: Kennenlernen und verstehen verschiedener Methoden und Algorithmen (MK1, MK2) Implementierungen verschiedener Verfahren (MK1, MK2, MO2, MO4) Interpretation numerischer Ergebnisse (MK1, MK2) Methodenkompetenz: Mathematische Modellierung eines Problems (MF1, MF2) Konkrete Problemlösungsstrategien und deren Interpretation (MF1, MF2) Personale Kompetenz: Teamarbeit (MO2, MO3) 	
Medienformen	Tafelanschrieb, Beamerpräsentation	
Begleitende Literatur	 H.W.Engl, M.Hanke, A.Neubauer, Regularization of Inverse Problems, Kluwer, 1996 /2000. A. Kirsch: An introduction to the mathematical theory of inverse problems, Springer 2011 (2. Auflage). A. Rieder: Keine Probleme mit Inversen Problemen, Vieweg 2003. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer 2005. 	
Lehr- und Lernmethoden Vorlesung (3 SWS), Übung (1 SWS)		

Art der Prüfungsleistung	Mündliche oder schriftliche Prüfung
Prüfungsvorleistung	Bearbeitung von Übungsblättern und mindestens 50% der Übungsaufgaben bestanden.
Prüfungsdauer	90 Minuten (schriftliche Prüfung) 30 Minuten (mündliche Prüfung)
Sprache	Deutsch, auf Wunsch Englisch
Angebotsturnus	Unregelmäßig
Lehrende/r	Prof. Dr. Simon Weißmann
Modulverantwortlicher	Prof. Dr. Simon Weißmann
Dauer des Moduls	1 Semester
Weiterführende Module	-
Verwendbarkeit	M.Sc. Wirtschaftsmathematik, B.Sc. Wirtschaftsmathematik, M.Sc. Mathematik, Lehramt Mathematik
Einordnung in Fachsemester	1./2./3. Fachsemester

MAS 515	Seminar Mathematische Optimierung
Form der Veranstaltung	Seminar
Typ der Veranstaltung	Vertiefung
Modulniveau	Master
ECTS	4
	Präsenzstudium: 28 h pro Semester (2 SWS)
Arbeitsaufwand	 Eigenstudium: Vorbereitung des Vortrags: 35 h Schriftliche Ausarbeitung des Vortrags: 20 h
Vorausgesetzte Kenntnisse	Numerik, Optimierung
Lehrinhalte	Ausgewählte Themen der Optimierung
	Fachkompetenz: Vertiefte Kenntnisse in einem Spezialgebiet der Numerik / Optimierung (MK1, MK2, MF2)
Lern- und Kompetenzziele	Methodenkompetenz: Fähigkeit, in einem Spezialgebiet einschlägige Fachliteratur lesen und präsentieren zu können (MF1, MO1, MO3, MO4)
	Personale Kompetenz: Kommunikationsfähigkeit (MO3, MO4)
Medienformen	Tafelanschriebe, Präsentationen mit Beamer
Begleitende Literatur	Ausgewählte Buchkapitel, Zeitschriftenartikel der Numerik / Optimierung / Stochastischen Optimierung
Lehr- und Lernmethoden	Vorträge der teilnehmenden Studierenden
Art der Prüfungsleistung	Vortrag und schriftliche Ausarbeitung
Prüfungsvorleistung	-
Prüfungsdauer	-
Sprache	Deutsch, auf Wunsch Englisch
Lehrende/r	Prof. Dr. Mathias Staudigl, Prof. Dr. Simon Weißmann
Modulverantwortlicher	Prof. Dr. Mathias Staudigl, Prof. Dr. Simon Weißmann
Dauer des Moduls	1 Semester
Weiterführende Module	

MAB 519	Reinforcement Learning
Form of module	Lecture with exercise classes
Type of module	Mathematics B
Level	Master
ECTS	9 ab FSS 24 10 ECTS
Workload	Lectures: 56h Exercise classes: 28h Self-study: 156h
Prerequisites	Stochastik I, Markovketten
Aim of module	 Foundations of Markov Decision Processes Policy- and Value-Iteration Methods Temporal Difference Learning Policy-Gradient Methods Implementation in Python
Learning outcomes and qualification goals	MK1, M02, M03 MF1, MF3 (cf, "Erläuterungen zu den Abkürzungen")
Media	Blackboard, Slides
Literature	 Lectures Notes Sutton, Barto: Reinforcement Learning - An Introduction Putterman: Markov Decision Processes
Methods	Lectures, theoretical and programming exercises
Form of assessment	Oral exam
Admission requirements for assessment	Participation in the exercises
Duration of assessment	30 min
Language	English
Offering	Irregular
Lecturer	Prof. Dr. Leif Döring

Person in charge	Prof. Dr. Leif Döring
Duration of module	1 semester
Further modules	
Range of application	M.Sc. Wirtschaftsmathematik, B.Sc. Wirtschaftsmathematik, M.Sc. Mathematik, M.Sc. Mannheim Master in Data Science, M.Sc. Wirtschaftsinformatik
Semester	1 st , 2 nd , 3 rd

MAC 572	Algorithmic trading and stochastic control Algorithmic trading and stochastic control
Form of module	Lecture with exercise classes
Type of module	Mathematik C
Level	Master
ECTS	6
Workload	Classroom instruction: 42 hours per semester Self-study: 138 hours per semester
Prerequisites	Stochastik 1, Stochastic Calculus; Advanced Topics in Mathematical Finance is recommended
Aim of module	 Stochastic Optimal Control Optimal stopping Optimal Execution with Continuous Trading Market Making Pairs Trading and Statistical Arbitrage Strategies
Learning outcomes and qualification goals	Professional skills: gaining a mathematical understanding of fundamental results in stochastic control and algorithmic trading (MK1, MK2, MF1, MF2, MF3, MO3, MO4) Methodological competence: proper handling of the standard methods in in stochastic control and algorithmic trading (MK1, MF1, MO2)
	Interpersonal skills: team work (MO2, MO3)
Media	Presentation on the blackboard
Literature	 Lecture notes Cartea, Álvaro, Sebastian Jaimungal, and José Penalva. Algorithmic and high-frequency trading. Cambridge University Press, 2015. Pham, Huyên. Continuous-time stochastic control and optimization with financial applications. Vol. 61. Springer Science & Business Media, 2009.
Methods	Lectures, tutorials, problem sheets, question hours
Form of assessment	Oral exam
Admission requirements for assessment	Successful participation in the exercise classes
Duration of assessment	30 min

Language	English
Offering	FSS
Lecturer	Prof. Dr. David Prömel
Person in charge	Prof. Dr. David Prömel
Duration of module	1 semester
Further modules	-
Range of application	M.Sc. Wirtschaftsmathematik, M.Sc. Mathematik
Semester	1 st , 2 ^{nd,} or 3 rd