Chapitre 5

Les fonctions usuelles et élémentaires et leurs propriétés

1.1 Fonctions usuelles

Définition 1 On appelle fonctions usuelles les fonctions suivantes:

- 1) la fonction puissance;
- 2) la fonction exponentielle de base $a (a > 0, a \neq 1)$;
- 3) la fonction logarithme de base $a (a > 0, a \neq 1)$;
- 4) les fonctions trigonométriques: sinus, cosinus, tangente et cotangente;
- 5) les fonctions trigonométriques inverses : arcsinus, arccosinus, arctangente, arccotangente .

La fonction puissance : $y = f(x) = x^a$. où $a \in R$. 1.1.1

On distingue plusieurs cas suivant l'exposant α qu'on regroupe dans un tableau:

a	fonctions	Domaines de définition
a = 0	$x^0 = 1 \text{ (constante)}$	\mathbb{R}
$a = n \in \mathbb{N}^*$	x^n (monôme)	\mathbb{R}
$a=-n\in\mathbb{N}^*$	$x^{-n} = \frac{1}{x^n}$	\mathbb{R}^*
$a = \frac{p}{q} \in \mathbb{Q}$	$x^{\frac{p}{q}} = (\sqrt[q]{x})^p$	$ \begin{cases} \mathbb{R} & \text{si } q \text{ impair et } p \text{ positif,} \\ \mathbb{R}^* & \text{si } q \text{ impair et } p \text{ négatif,} \\ \mathbb{R}_+ & \text{si } q \text{ pair et } p \text{ positif,} \\ \mathbb{R}_+^* & \text{si } q \text{ pair et } p \text{ négatif,} \end{cases} $
$a \in \mathbb{R},$	x^a (voir exponentielle)	\mathbb{R}_+^*

Fonction exponentielle de base a $(a > 0, a \neq 1)$

Définition 2 On appelle fonction exponentielle de base $(a > 0, a \neq 1)$ la fonction définie par

$$y = a^x, x \in \mathbb{R}.$$

Propriétés 3 Soit a > 0, $a \neq 1$. On a les propriétés suivantes:

- $\mathbf{i}) \ a^1 = a, \ a^x > 0, \ \forall x \in \mathbb{R} ;$
- ii) $f(x) = a^x$ est strictement croissante sur \mathbb{R} si a > 1, et strictement décroissante sur \mathbb{R} si 0 < a < 1;

Cas particulier. Si a = e, où e est le nombre de Néper, la fonction $f(x) = e^x$, notée aussi $f(x) = \exp x$, est appelée fonction exponentielle tout court.

1.1 Fonctions usuelles -1

1.1.3 Fonction logarithme de base $a (a > 0, a \neq 1)$

La fonction exponentielle $y=a^x$ $(a>0, a\neq 1)$ est bijective de \mathbb{R} sur \mathbb{R}^*_+ , donc elle est inversible. Ainsi on a la définition suivante du logarithme:

Définition 4 On appelle fonction logarithme de base a > 0, $a \ne 1$ la fonction inverse de l'exponentielle de même base, notée $y = \log_a x$, définie $\sup]0, +\infty[$, c'est à dire que

$$y = \log_a x = y, \ x > 0 \iff x = a^y, \ y \in \mathbb{R}.$$

Cas particuliers.

Si a = e, alors on note la fonction logarithme de base e par $f(x) = \log x$ ou $f(x) = \ln x$, appelée logarithme népérien ou fonction logarithme, tout court.

Si a = 10, $f(x) = \log_{10} x$ est le **logarithme décimal.**

Propriétés 5 A partir des propriétés de l'exponentielle, on obtient les propriétés suivantes de la fonction logarithme:

- i) $\log_a a = 1$, $\log_a x = 0 \iff x = 1$;
- ii) $f(x) = \log_a x$ est strictement croissante sur \mathbb{R}_+^* si a > 1 et strictement décroissante sur \mathbb{R}_+^* si 0 < a < 1;
- iii) $\log_a(x.x') = \log_a x + \log_a x'$, $\forall x, x' \in \mathbb{R}_+^*$;
- $\mathbf{iv}) \ \log_a x^\alpha = \alpha \log_a x, \ \forall \alpha \in \mathbb{R}, \ \forall x \in \mathbb{R}_+^*;$
- **v**) On a la relation: $\log_a x = \frac{\log x}{\log a}$ $(a > 0, a \neq 1)$, $\forall x \in \mathbb{R}_+^*$.

Les fonctions trigonométriques

Fonctions sinus et cosinus

Soit $x \in \mathbb{R}$. Désignons par M le point du cercle trigonométrique tel que l'angle compris entre l'axe des abscisses Ox et OM est égal à x (en radians) et par P et Q, ses projections respectives sur les axes des sinus et des cosinus. On définit alors les fonctions suivantes:

i) la fonction sinus par

$$y = \sin x = \overline{OP}$$
, $\forall x \in \mathbb{R}$,

ii) la fonction cosinus par

$$y = \cos x = \overline{OQ}$$
, $\forall x \in \mathbb{R}$.

Propriétés 6 Les propriétés suivantes sont vraies:

- $|\cos x| \le 1$, $\forall x \in \mathbb{R}$; i) $|\sin x| \leq 1$,
- ii) $\sin(x+2\pi) = \sin x$, $\cos(x+2\pi) = \cos x$, $\forall x \in \mathbb{R}$; iii) $\sin x = 0 \Longleftrightarrow x = k\pi$, $\cos x = 0 \Longleftrightarrow x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$;

0 1.1 Fonctions usuelles

$$\begin{array}{ll} \mathbf{iv}) & \sin(-x) = -\sin x, & \cos(-x) = \cos x \;,\; \forall x \in \mathbb{R} \;; \\ \mathbf{v}) & \sin(x \pm x') = \sin x \cos x' \pm \sin x' \cos x \;, \\ & \cos(x \pm x') = \cos x \cos x' \mp \sin x \sin x' \;,\; \forall x, x' \in \mathbb{R} \;; \\ & \sin 2x = 2\sin x \cos x, & \cos 2x = \cos^2 x - \sin^2 x,\; \forall x \in \mathbb{R} \;; \\ & \sin\left(x + \frac{\pi}{2}\right) = \cos x, & \cos\left(x + \frac{\pi}{2}\right) = -\sin x \\ & \sin\left(\frac{\pi}{2} - x\right) = \cos x, & \cos\left(\frac{\pi}{2} - x\right) = \sin x; \end{array}$$

vi)
$$\sin x \pm \sin x' = 2 \sin \frac{x \pm x'}{2} \cos \frac{x \mp x'}{2}$$
,
 $\cos x + \cos x' = 2 \cos \frac{x + x'}{2} \cos \frac{x - x'}{2}$,
 $\cos x - \cos x' = -2 \sin \frac{x + x'}{2} \sin \frac{x - x'}{2}$, $\forall x, x' \in \mathbb{R}$;

- **vii**) $\sin^2 x + \cos^2 x = 1$, $\forall x \in \mathbb{R}$;
- **viii**) $0 \le |\sin x| \le |x|$, $\forall x \in \mathbb{R}$;
- ix) $y = \sin x$ est strictement croissante sur les intervalles $\left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right]$ $(k \in \mathbb{Z})$ et strictement décroissante sur les intervalles $\left[\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi\right] \quad (k \in \mathbb{Z})$;
- x) $y = \cos x$ est strictement croissante sur les intervalles $[-\pi + 2k\pi, 2k\pi]$ $(k \in \mathbb{Z})$ et strictement décroissante sur les intervalles $[2k\pi, (2k+1)\pi]$ $(k \in \mathbb{Z})$.

Fonctions tangente et cotangente

Soit $x \in \mathbb{R}$, $x \neq \frac{\pi}{2} + 2k\pi$ et $x \neq k\pi$ ($k \in \mathbb{Z}$). Désignons par M le point du cercle trigonométrique correspondant à x (en radians), par (Δ) la droite portant \overrightarrow{OM} , par N l'intersection de l'axe des tangentes avec (Δ) , par L l'intersection de l'axe des cotangentes avec (Δ) , par A l'intersection des axes tangente et cosinus, et par B l'intersection des axes cotangente et sinus (voir le cercle trigonométrique). On définit alors les fonctions suivantes:

i) fonction tangente par :

$$y = \operatorname{tg} x = \overline{AN}$$
, $\forall x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$;

ii) fonction cotangente par :

$$y = \operatorname{ctg} x = \overline{BL}$$
, $\forall x \neq k\pi$, $k \in \mathbb{Z}$.

Propriétés 7 On démontre, à partir de considérations géométriques et des propriétés des fonctions sinus et cosinus, les propriétés suivantes:

$$\begin{aligned} \textbf{i)} \quad & \text{tg} = \frac{\sin x}{\cos x}, \ x \neq \frac{\pi}{2} + k\pi, \\ \textbf{ii)} \quad & \text{tg}(x+\pi) = & \text{tg}x, \ x \neq \frac{\pi}{2} + k\pi, \\ & \text{tg}(x+\pi) = & \text{tg}x, \ x \neq k\pi, \ k \in \mathbb{Z}; \end{aligned}$$

ii)
$$\operatorname{tg}(x+\pi) = \operatorname{tg} x, \ x \neq \frac{\pi}{2} + k\pi,$$
 $\operatorname{ctg}(x+\pi) = \operatorname{ctg} x, \ x \neq k\pi, \ k \in \mathbb{Z}_2$

iii)
$$-\infty < \operatorname{tg} x < +\infty, \ \forall x \neq \frac{\pi}{2} + k\pi, \ -\infty < \operatorname{ctg} x < +\infty, \ \forall x \neq k\pi \ (k \in \mathbb{Z});$$

iv)
$$tgx = 0 \iff x = k\pi$$
, $ctgx = 0 \iff x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$;

$$\mathbf{v}$$
) $\operatorname{tg}(-x) = -\operatorname{tg} x$, $\forall x \neq \frac{\pi}{2} + k\pi$, $\operatorname{ctg}(-x) = -\operatorname{ctg} x$, $\forall x \neq k\pi$ $(k \in \mathbb{Z};$

vi)
$$y = \operatorname{tg} x$$
 est strictement croissante sur $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[(k \in \mathbb{Z});$
vii) $y = \operatorname{ctg} x$ est strictement décroissante sur $]k\pi, (k+1)\pi[(k \in \mathbb{Z});$

vii)
$$y = \operatorname{ctg} x$$
 est strictement décroissante sur $]k\pi, (k+1)\pi[$ $(k \in \mathbb{Z})$

viii)
$$\operatorname{tg}(x \pm x') = \frac{\operatorname{tg} x \pm \operatorname{tg} x'}{1 \mp \operatorname{tg} x \cdot \operatorname{tg} x'}$$
, $\forall x, x' \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$;

ix)
$$\operatorname{ctg}(x \pm x') = \frac{\operatorname{ctg} x \cdot \operatorname{ctg} x' \mp 1}{\operatorname{ctg} x \pm \operatorname{ctg} x'}, \ \forall x, x' \neq k\pi \ (k \in \mathbb{Z});$$

vii)
$$y = \operatorname{ctg} x$$
 est strictement decroissante sur $]k\pi$, $(k+1)\pi$
viii) $\operatorname{tg}(x \pm x') = \frac{\operatorname{tg} x \pm \operatorname{tg} x'}{1 \mp \operatorname{tg} x \cdot \operatorname{tg} x'}$, $\forall x, x' \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$;
ix) $\operatorname{ctg}(x \pm x') = \frac{\operatorname{ctg} x \cdot \operatorname{ctg} x' \mp 1}{\operatorname{ctg} x \pm \operatorname{ctg} x'}$, $\forall x, x' \neq k\pi$ $(k \in \mathbb{Z})$;
x) $\operatorname{tg} x \pm \operatorname{tg} x' = \frac{\sin(x \pm x')}{\cos x \cdot \cos x'}$, $\forall x, x' \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$;
xi) $\operatorname{ctg} x \pm \operatorname{ctg} x' = \frac{\sin(x \pm x')}{\sin x \cdot \sin x'}$, $\forall x, x' \neq k\pi$ $(k \in \mathbb{Z})$.

xi)
$$\operatorname{ctg} x \pm \operatorname{ctg} x' = \frac{\sin(x \pm x')}{\sin x \cdot \sin x'}$$
, $\forall x, x' \neq k\pi \ (k \in \mathbb{Z})$.

1.1 Fonctions usuelles

1.1.5 Fonctions trigonométriques inverses

Fonction arcsinus

La fonction $\sin : \mathbb{R} \to [-1,1]$ n'est pas bijective, mais sa restriction à $\left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi\right]$ l'est pour chaque k; en particulier pour k=0, $\sin:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$ est inversible et son inverse est appelée fonction **arcsinus**, notée par:

 $\arcsin: \quad [-1,1] \quad \to \quad \left\lfloor -\frac{\pi}{2}, \frac{\pi}{2} \right\rfloor$ $x \quad \mapsto \quad y = \arcsin x$

c'est à dire que:

$$y = \arcsin x, \ x \in [-1, 1] \ \Leftrightarrow \ x = \sin y, \ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

Graphes des fonctions $x \to \sin x$ et $\mathbf{x} \to \mathbf{arcsinx}$.

Propriétés 8 i) $\arcsin x = 0 \Leftrightarrow x = 0$;

ii) $x \mapsto \arcsin x$ est stictement croissante sur [-1, 1];

iii) $x \mapsto \arcsin x$ est impaire $\operatorname{car} \forall x \in [-1, 1] : \arcsin (-x) = -\arcsin x$;

iv) $\forall x \in [-1, 1] : \sin(\arcsin x) = x;$ v) $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] : \arcsin(\sin x) = x;$ vi) $\forall x \in [-1, 1] : \cos(\arcsin x) = \sqrt{1 - x^2}.$

Démonstration.

Les propriétés i) à v) découlent immédiatement de la bijection et des propriétés générales des fonctions inversibles.

Démontrons maintenant la propriété v)

Soit $x \in [-1,1]$. Posons $\arcsin x = a \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad (\cos a \ge 0)$. D'après les propriétés des fonctions sinus et cosinus, on a:

$$0 \le \cos a = \sqrt{1 - \sin^2 a} = \sqrt{1 - \sin^2 (\arcsin x)} = \sqrt{1 - x^2}.$$

Remarque 9 La propriétés v) est fausse si x appartient à d'autres intervalles.

Par exemple:
$$\arcsin\left(\sin\frac{3\pi}{4}\right) = \arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
 mais non pas égale à $\frac{3\pi}{4}$.

1.1 Fonctions usuelles $\mathbf{2}$

Fonction arccosinus

La fonction cos: $\mathbb{R} \to [-1,1]$ n'est pas bijective, mais sa restriction à $[2k\pi,\pi+2k\pi]$ l'est pour chaque k; en particulier pour k=0, $\cos:[0,\pi]\to[-1,1]$ est inversible et son inverse est appelée fonction **arccosinus**, notée

$$\begin{array}{cccc} \arccos: & [-1,1] & \to & [0,\pi] \\ & x & \mapsto & y = \arcsin x. \end{array}$$

c'est à dire que:

$$y = \arccos x, \ x \in [-1, 1] \Leftrightarrow x = \cos y, \ y \in [0, \pi].$$

Graphes des fonctions $x \to \cos x$ et $\mathbf{x} \to \mathbf{arccosx}$.

Propriétés 10 i) $\arccos x = 0 \Leftrightarrow x = 1$;

ii) $x \mapsto \arccos x$ est stictement décroissante sur [-1, 1];

 $iii) \forall x \in [-1, 1] : \cos(\arccos x) = x;$

vi) $\forall x \in [-1, 1] : \arcsin x + \arccos x = \frac{\pi}{2}$.

Démonstration.

Les propriétés i) à v) découlent immédiatement de la bijection et des propriétés générales des fonctions inversibles.

La démonstration de la propriété vi) est analogue à celle de la propriété vi) de la fonction arcsinus précédente. Démontrons maintenant la propriété vi).

Soit $x \in [-1,1]$. Posons $\alpha = \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\beta = \arccos x \in [0,\pi]$. On a d'après les propriétés des fonctions sinus et cosinus et les propriétés vi) de arcsinus et vi) de arccosinus:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha$$
$$= xx + \sqrt{1 - x^2}\sqrt{1 - x^2} = 1.$$

Comme $\alpha + \beta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right]$, alors on déduit que $\alpha + \beta = \frac{\pi}{2}$.

Remarques 11 1) La propriétés iv) est fausse si x appartient à d'autres intervalles.

 $Par\ exemple:\ \arccos\left(\cos\frac{-\pi}{4}\right)=\arccos\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}\ mais\ non\ pas\ égale\ à\ \frac{-\pi}{4}.$

2) La fonction $x \mapsto \arccos x$ n'est ni paire ni impaire.

1.1 Fonctions usuelles 3

Fonction arctangente

La fonction tg : $\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\} \to \mathbb{R}$ n'est pas bijective, mais sa restriction à $\left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$ l'est pour chaque k; en particulier pour k=0, tg : $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\to \mathbb{R}$ est inversible et son inverse est appelée fonction arctangente, notée par:

$$arctg: \quad \mathbb{R} \quad \to \quad \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ x \quad \mapsto \quad y = arctg \, x$$

c'est à dire que:

$$y = \operatorname{arctg} x, \ x \in \mathbb{R} \ \Leftrightarrow \ x = \operatorname{tg} y, \ y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

Figure 1.1: Graphes des fonctions $x \to \operatorname{tg} x$ et $\mathbf{x} \to \operatorname{arctgx}$.

Propriétés 12 i) $arctg x = 0 \Leftrightarrow x = 0$;

- ii) $x \mapsto \operatorname{arctg} x$ est stictement croissante sur \mathbb{R} ;
- iii) $x \mapsto \arctan x \text{ est impaire } \operatorname{car} \forall x \in \mathbb{R} : \arctan (-x) = -\arctan x;$
- $(iv) \ \forall x \in \mathbb{R} : \operatorname{tg}(\operatorname{arctg} x) = x;$ $(v) \ \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[: \operatorname{arctg}(\operatorname{tg} x) = x;$

Démonstration.

Les propriétés i) à v) découlent immédiatement de la bijection et des propriétés générales des fonctions inversibles.

Remarques 13 1) La propriétés v) est fausse si x appartient à d'autres intervalles.

Par exemple:
$$\operatorname{arctg}\left(\operatorname{tg}\frac{3\pi}{4}\right) = \operatorname{arctg}\left(-1\right) = -\frac{\pi}{4} \text{ mais non pas égale à } \frac{3\pi}{4}.$$

2)
$$\arctan x \neq \frac{\arcsin x}{\arccos x}$$

Fonction arccotangente

La fonction ctg : $\mathbb{R} - \{k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$ n'est pas bijective, mais sa restriction à $[k\pi, (k+)\pi]$ l'est pour chaque k; en particulier pour k=0, ctg : $]0,\pi[\to\mathbb{R}$ est inversible et son inverse est appelée fonction **arccotangente**, notée par:

c'est à dire que:

$$y = \operatorname{arcctg} x, \ x \in \mathbb{R} \iff x = \operatorname{ctg} y, \ y \in]0, \pi[$$
.

Graphes des fonctions $x \to \operatorname{ctg} x$ et $\mathbf{x} \to \operatorname{\mathbf{arcctgx}}$.

Propriétés 14 *i)* $\forall x \in \mathbb{R}$, $\operatorname{arcctg} x \neq 0$;

ii) $x \mapsto \operatorname{arcctg} x$ est stictement décroissante sur \mathbb{R} ;

 $iii) \ \forall x \in \mathbb{R} : \operatorname{ctg}(\operatorname{arcctg} x) = x;$

 $iv) \ \forall x \in]0, \pi[: \operatorname{arcctg}(\operatorname{ctg} x) = x;$

v) $\forall x \in \mathbb{R} : \operatorname{arcctg}(-x) = \pi - \operatorname{arcctg} x;$

 $vi) \ \forall x \in \mathbb{R} : \operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}.$

Démonstration.

Les propriétés i) à v) découlent immédiatement de la bijection et des propriétés générales des fonctions inversibles.

La démonstration de la propriété vi) est analogue à celle de la propriété vi) de la fonction arccosinus précédente. Démontrons la propriété v).

Remarques 15 1) La propriétés iv) est fausse si x appartient à d'autres intervalles.

Par exemple: $\operatorname{arcctg}\left(\operatorname{tg}\frac{5\pi}{4}\right) = \operatorname{arcctg}\left(1\right) = \frac{\pi}{4} \text{ mais non pas \'egale \'a} \frac{5\pi}{4}.$ 2) La fonction $x \mapsto \operatorname{arcctg} x$ n'est ni paire ni impaire.

3) $\operatorname{arcctg} x \neq \frac{\arccos x}{\arcsin x}$ et $\operatorname{arcctg} x \neq \frac{1}{\operatorname{arctg} x}$.

1.2 Fonctions élémentaires.

Définition 16 On appelle fonction élémentaire toute fonction réelle obtenue à partir de fonctions usuelles à l'aide d'un nombre fini d'opérations arithmétiques et de compositions de fonctions.

1.2.1Fonctions polynomiales et rationnelles

Définition 17 On appelle:

i) fonction rationnelle entière ou fonction polynmiale réelle sur \mathbb{R} , une fonction élémentaire $P:\mathbb{R}\longrightarrow\mathbb{R}$ de la forme :

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

où $a_0, a_1, a_2, \ldots, a_n \in \mathbb{R}$, sont appelés coefficients de P. Si $a_k \neq 0$ et $a_j = 0, \forall j > k$, l'expression

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

est appelée polynôme réel de degré $k \in \mathbb{N}$ et on écrit $\deg P = k$;

ii) fonction rationnelle la fonction élémentaire définie par :

$$x \longmapsto f(x) = \frac{a_0 + a_1x + a_2x^2 + \dots + a_nx^n}{b_0 + b_1x + b_2x^2 + \dots + b_mx^m}$$

 $\textit{définie sur l'ensemble} \ \ D = \left\{ x \in X : b_0 + b_1 x + b_2 x^2 + ... + b_m x^m \neq 0 \right\} o \grave{u} \quad a_0, \ a_1, ..., a_n, \ b_0, \ b_1, ..., \ b_m \in \mathbb{R}.$

1.2.2 Fonctions hyperboliques

Définition 18 On appelle fonctions hyperboliques les fonctions suivantes:

1) la fonction sinus hyperbolique définie par:

$$x \longmapsto \operatorname{sh} x = \frac{e^x - e^{-x}}{2}, \ x \in \mathbb{R}$$

2) la fonction cosinus hyperbolique définie par:

$$x \longmapsto \operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \ x \in \mathbb{R};$$

3) la fonction tangente hyperbolique définie par:

$$x \longmapsto \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \ x \in \mathbb{R};$$

4) la fonction cotangente hyperbolique définie par :

$$x \longmapsto cthx = \frac{chx}{shx} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, \ x \in \mathbb{R}^*.$$

Propriétés 19 *i)* $shx = 0 \iff x = 0$ et $\forall x \in \mathbb{R}, chx \ge 1$,

- $thx = 0 \iff x = 0$ et $\forall x \in \mathbb{R}^*, cthx \neq 0$,
- $\begin{array}{lll} \textbf{\textit{iii}}) & \forall x \in \mathbb{R}, & sh(-x) = -shx & et & ch(-x) = chx, \\ \textbf{\textit{iv}}) & \forall x \in \mathbb{R}, & th(-x) = -thx & et & \forall x \in \mathbb{R}^*, & cth(-x) = -cthx, \end{array}$
- $et \qquad \forall x \in \mathbb{R}^*, \quad |cthx| > 1,$ v) $\forall x \in \mathbb{R}, |thx| < 1$
- vi) $x \longmapsto shx$ est strictement croissante sur \mathbb{R} , $x \longmapsto chx$ est strictement décroissante sur $]-\infty,0]$ et strictement croissante sur $[0,+\infty[$, $x \mapsto thx$ est strictement croissante sur \mathbb{R} . $x \mapsto cthx$ est strictement décroissante sur $]-\infty,0[\cup]0,+\infty[$.
- $vii) \ \forall x, x' \in \mathbb{R} : 1) \quad sh(x \pm x') = shx.chx' \pm shx'.chx, \quad 2) \quad ch(x \pm x') = chx.chx' \pm shx.shx'.$

Cas particuliers: $\forall x \in \mathbb{R}$, a) $\operatorname{sh}2x = 2\operatorname{sh}x\operatorname{ch}x$, b) $\operatorname{ch}2x = \operatorname{ch}^2x + \operatorname{sh}^2x$, c) $\operatorname{ch}^2x - \operatorname{sh}^2x = 1$.

1.2.3 Fonctions hyperboliques inverses

Fonction argument sinus hyperbolique

La fonction sh: $\mathbb{R} \longrightarrow \mathbb{R}$ est bijective, donc inversible. Son inverse est appelée fonction <u>argument sinus hyperbolique</u>, notée:

$$\mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto y = \operatorname{argsh} x,$$

c'est à dire que: $y = \operatorname{argsh} x, \ x \in \mathbb{R} \iff x = \operatorname{sh} y, \ y \in \mathbb{R}.$

Grâce au théorème suivant, la fonction $y = \operatorname{argsh} x$ peut s'exprimer en fonction du logarithme comme suit.

Théorème 20 $argshx = \log(x + \sqrt{x^2 + 1}), \quad x \in \mathbb{R}.$

Démonstration. Soit y un élément donné de \mathbb{R} . Résolvons l'équation d'inconnue x réelle telle que $y = \operatorname{sh} x$. On obtient alors, d'après la définition de $\operatorname{sh} x$:

$$2y = e^x - e^{-x} \iff 2ye^x = e^{2x} - 1 \iff (e^x)^2 - 2ye^x - 1 = 0.$$

En posant $t = e^x$, on obtient une équation du second degré de la forme:

$$t^2 - 2yt - 1 = 0.$$

En résolvant cette équation en t, on trouve deux solutions: $t_1 = y - \sqrt{y^2 + 1} < 0$ et $t_2 = y + \sqrt{y^2 + 1} > 0$. La première solution t_1 est à rejeter car $t = e^x > 0$, $\forall x \in \mathbb{R}$, et donc on obtient $t = e^x = y + \sqrt{y^2 + 1}$, d'où, en appliquant le logarithme:

 $x = \log\left(y + \sqrt{y^2 + 1}\right).$

Propriétés 21 i) $argshx = 0 \iff x = 0$,

- *ii)* $\forall x \in \mathbb{R}$, argsh(-x) = -argshx;
- iii) $x \longmapsto argshx$ est strictement croissante sur \mathbb{R} ,
- iv) $\forall x \in \mathbb{R}, \ argsh(shx) = x;$
- v) $\forall x \in \mathbb{R}$, sh(argshx) = x.

Démonstration. Conséquences des propriétés de la fonction $x \mapsto \operatorname{sh} x$ et des propriétés des fonctions inverses.

Fonction argument cosinus hyperbolique

La fonction ch: $]-\infty, +\infty[$ \longrightarrow $[1, +\infty[$ n'est pas bijective, mais sa restriction à $[0, +\infty[$ l'est et donc inversible. Son inverse est appelée fonction argument cosinus hyperbolique, notée:

$$\operatorname{arg ch} : [1, +\infty[\longrightarrow [0, +\infty[$$

 $x \longmapsto y = \operatorname{arg ch} x,$

c'est à dire que: $y = \operatorname{argch} x, \ x \in [1, +\infty[\iff x = \operatorname{ch} y, \ y \in [0, +\infty[$.

Grâce au théorème suivant, la fonction $x \longmapsto \operatorname{argch} x$ peut s'exprimer en fonction du logarithme comme suit.

Théorème 22 arg $chx = \log(x + \sqrt{x^2 - 1}), x \ge 1.$

Démonstration. La démonstration est analogue à celle du théorème sur $\operatorname{argsh} x$.

Propriétés 23 i) $argchx = 0 \iff x = 1$,

- ii) $x \longmapsto \operatorname{argchx}^{\perp} \operatorname{est} \operatorname{strictement} \operatorname{croissante} \operatorname{sur} [1, +\infty[$
- $iii) \forall x \ge 0, \ argch(chx) = x;$
- iv) $\forall x \ge 1$, ch(argchx) = x.

Démonstration. Conséquences immédiates des propriétés des fonctions inverses.

Fonction argument tangente hyperbolique

La fonction th: $]-\infty, +\infty[\longrightarrow]-1,1[$ est bijective, donc inversible. Son inverse est appelée fonction argument tangente hyperbolique, notée:

C'est à dire que:

$$y = \operatorname{argth} x, \ x \in [-1, 1] \iff x = \operatorname{th} y, \ y \in \mathbb{R}.$$

Grâce au théorème suivant, la fonction $x \mapsto \operatorname{argth} x$ peut s'exprimer en fonction du logarithme comme suit:

Théorème 24 $argthx = \frac{1}{2} \log \frac{1+x}{1-x}, \quad x \in]-1,1[.$

Démonstration. Soit $y \in]-1,1[$ donné. Résolvons l'équation d'inconnue x réelle tell que y = thx.. On obtient alors, d'après la définition de thx:

$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{-x}(e^{2x} - 1)}{e^{-x}(e^{2x} + 1)} = \frac{e^{2x} - 1}{e^{2x} + 1} \iff$$

$$\iff e^{2x}(1 - y) = y + 1 \iff e^{2x} = \frac{1 + y}{1 - y}.$$

D'où, en appliquant le logarithme:

$$x = \frac{1}{2}\log\frac{1+y}{1-y}.$$

Propriétés 25 i) $argthx = 0 \iff x = 0$,

- *ii)* $\forall x \in]-1,1[, argth(-x) = -argthx;$
- *iii)* $x \longmapsto argthx$ est strictement croissante sur]-1,1[,
- (iv) $\forall x \in \mathbb{R}, \ argth(thx) = x;$
- $v) \quad \forall x \in]-1,1[, th(argthx) = x.$

Démonstration. Conséquences immédiates de la définition et des propriétés des fonctions inverses.

Fonction argument cotangente hyperbolique

La fonction cth: $\mathbb{R}^* \longrightarrow]-\infty, -1[\ \cup\]1, +\infty[$ est bijective, donc inversible. Son inverse est appelée fonction argument cotangente hyperbolique, notée :

$$]-\infty,-1[\ \cup\]1,+\infty\ [\longrightarrow \mathbb{R}^*$$

$$x\longmapsto y=\mathrm{argcth}\ x;$$

c'est à dire que:

$$y = \operatorname{argcth} x, \ x \in]-\infty, -1[\cup]1, +\infty[\iff x = \operatorname{cth} y, \ y \in \mathbb{R}^*.$$

Grâce au théorème suivant, la fonction $x \longmapsto y = \operatorname{argcth} x$ peut s'exprimer à l'aide du logarithme comme suit:

$$\mbox{\bf Th\'eor\`eme 26} \ \forall x, \ |x|>1 \ , \ \ argeth \ x=\frac{1}{2}\log\left|\frac{1+x}{1-x}\right|,$$

Démonstration. La démonstration est analogue à celle du théorème précédent sur argthx.

Propriétés 27 i) $\forall x, |x| > 1, \ argcthx \neq 0;$

- *ii)* $\forall x, |x| > 1, \ argcth(-x) = -argcthx;$
- *iii)* $x \mapsto argcthx \ est \ strictement \ décroissante \ sur \]-\infty, -1[\cup]1, +\infty[;$
- iv) $\forall x \in \mathbb{R}^*$, argcth(cthx) = x;
- $v) \quad \forall x, |x| > 1, \ cth(argcthx) = x.$

Démonstration. Conséquences immédiates de la définition et des propriétés des fonctions inverses.

