Part I: Theory of LoFT

To be released soon.

Part II: Community Tools for Floating Wind Turbines

LoFT (Low-Order modelling of floating wind turbines For Training) draws on the work of other open-source repositories. Below we give a list of them and collect their links and key features. Hope that this list will help beginners and developers.

Table 1. A list of open-source repositories for beginners in the area of floating wind turbines

Repository(link)	Key features	Main Purpose	Developers
OpenFast/Fast.Farm	Individual turbine or wind-farm	Modelling	NREL
	model (with a limited number of		
	wind turbines) written in Fortran;		
	can simulate steady or turbulent		
	inflow, regular or irregular waves;		
	and conduct structural/fatigue		
	analysis. The resulted are		
	validated by scaled experiments.		
WEC-Sim	Wave Energy Converter	Modelling	NREL
	Simulator (WEC-Sim), an open-		
	source code for simulating wave		
	energy converters. The code		
	implementations for		
	hydrodynamics and mooring		
	dynamics are similar and helpful		
	for modelling of floating wind		
	turbines.		
RAFT	RAFT - Response Amplitudes of	Design	NREL
	Floating Turbines, python codes		
	for frequency-domain analysis of		
	floating wind turbines. It presents		
	a design-oriented modelling of		
	floating wind turbines		
WISDEM	The Wind-Plant Integrated	Design	NREL
	System Design and Engineering		
	Model (WISDEM) is a set of		
	models for assessing overall wind		
	plant cost of energy (COE).		
	Helpful for design and economic		
	assessment of floating wind		
	turbines		
ROSCO	Reference open-source controller	Control	CU Boulder
	that can be used in OpenFAST;		/NREL
	when compiled, produces a		
	libdiscon.so controller that uses a		

	1	I	1
	specified DISCON.IN file. The		
	controller for floating wind		
	turbines features floating		
	feedback, peak saturation and		
	detuned natural frequency.		
<u>Floris</u>	FLORIS is a controls-focused	Control	NREL
	wind farm simulation software		
	incorporating steady-state		
	engineering wake models into a		
	performance-focused Python		
	framework.		
MoorPy	MoorPy is a design-oriented	Design	NREL
	mooring system library for		
	Python based around a quasi-		
	static modeling approach.		
<u>HydroChrono</u>	HydroChrono is an emerging	Modelling	NREL
	hydrodynamics simulation tool		
	designed to model complex ocean		
	systems. Seamlessly integrated		
	with the Project Chrono physics		
	engine, it offers a powerful C++		
	API for a wide range of		
	simulations.		
QBlade	Built on the Project Chrono	Modelling	
	physics engine.		
MOST (link1, link2)		Modelling	MOREnergyLab
<u>TurboPark</u>	The TurbOPark wake model has	Control	DTU
	been developed by Ørsted and		
	was validated on 19 offshore		
	wind farms coupled with a		
	blockage and a flow model.		
LoFT	Low-order modelling of floating	Control	XJTU
	wind turbines for reinforcement		
	learning training.		
L		l	I

Part III: Open-source Data Base for Floating Wind Turbines

To be released soon