Advanced Calculus

 $\mathbb{C}\mathrm{ason}\ \mathbb{K}\mathrm{onzer}$

October 20, 2021

Find the general solution of the ODE y'' + 9y = r(t), where $r(t) = \frac{\pi}{4} |\sin t|$ for $0 < t < 2\pi$ and $r(t + 2\pi) = r(t)$.

First solve the homogeneous solution $y_h \mid y'' + 9y = 0$.

- $h^2 + 9 = 0$; $h^2 = -9$; $h = \sqrt{-9}$; $h = \pm 3i$.
- $y_h = c_1 cos(3t) + c_2 sin(3t)$.

Second solve the forcing function $r = \frac{\pi}{4} |\sin t|$ for $0 < t < 2\pi$ with period, $p = 2\pi$; $L = \pi$.

- Notice r is even thus the Euler coefficient $b_n = 0$. Solve for a_0 and a_n .
- $a_0 = \frac{1}{\pi} \int_0^{\pi} \frac{\pi}{4} |\sin t| dt$; note $\sin(t)$ is positive for all $t \mid 0 < t < \pi$.

$$a_0 = \frac{1}{4} \left[-\cos(t) \Big|_0^{\pi} \right] = \frac{-\cos(\pi) + \cos(0)}{4} = \frac{1+1}{4} = \frac{1}{2}.$$

• $a_n = \frac{2}{\pi} \int_0^{\pi} \frac{\pi}{4} |\sin t| \cos(\frac{n\pi t}{\pi}) dt = \frac{1}{2} \int_0^{\pi} \sin t \cos(nt) dt$. † Invoke Mathematica ...

$$a_n = \frac{1}{2} \left[\frac{n sin(t) sin(nt) + cos(t) cos(nt)}{n^2 - 1} \Big|_0^{\pi} \right].$$

$$a_n = \frac{1}{2} \left[\frac{(nsin(\pi)sin(n\pi) + cos(\pi)cos(n\pi)) - (nsin(0)sin(0) + cos(0)cos(0))}{n^2 - 1} \right].$$

$$a_n = \frac{1}{2} [\frac{-cos(n\pi) - 1}{n^2 - 1}] \text{ ; note } cos(n\pi) = 1 \mid n \text{ } even \text{ ; } cos(n\pi) = -1 \mid n \text{ } odd.$$

$$a_n = \frac{1}{2} \left[\frac{-1-1}{n^2-1} \right] = \frac{-1}{n^2-1} \mid n \text{ even.}$$

• $r = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt))$

$$r = \frac{1}{2} - \sum_{n=2}^{\infty} \frac{1}{n^2 - 1} \cos(nt).$$

$$r = \frac{1}{2} - \frac{1}{2^2 - 1}\cos(2t) - \frac{1}{4^2 - 1}\cos(4t) - \frac{1}{6^2 - 1}\cos(6t) - \dots$$

$$r = \frac{1}{2} - \frac{1}{3}\cos(2t) - \frac{1}{15}\cos(4t) - \frac{1}{35}\cos(6t) - \frac{1}{63}\cos(8t) - \dots$$

Third solve the particular solution $y_p \mid y'' + 9y = r(t)$.

•
$$y = A_0 + A\cos(nt)$$
; $y' = -An\sin(nt)$; $y'' = -An^2\cos(nt)$.

•
$$-An^2 \cos(nt) + 9A \cos(nt) + 9A_0 = \frac{1}{2} - \frac{1}{n^2 - 1} \cos(nt).$$

$$A_0 = \frac{1}{18}.$$

$$A(9 - n^2) = \frac{-1}{n^2 - 1} \; ; \; A = \frac{-1}{(n^2 - 1)(9 - n^2)}.$$

•
$$y_p = A_0 + \sum_{n=2}^{\infty} A\cos(nt) = \frac{1}{18} - \sum_{n=2}^{\infty} \frac{\cos(nt)}{(n^2 - 1)(9 - n^2)}$$
.

$$y_p = \frac{1}{18} - \frac{\cos(2t)}{(2^2 - 1)(9 - 2^2)} - \frac{\cos(4t)}{(4^2 - 1)(9 - 4^2)} - \frac{\cos(6t)}{(n^2 - 1)(9 - 6^2)} \dots$$

$$y_p = \frac{1}{18} - \frac{\cos(2t)}{(3)(5)} - \frac{\cos(4t)}{(15)(-7)} - \frac{\cos(6t)}{(35)(-27)} - \frac{\cos(8t)}{(63)(-54)} \dots$$

$$y_p = \frac{1}{18} - \frac{\cos(2t)}{15} + \frac{\cos(4t)}{105} + \frac{\cos(6t)}{945} + \frac{\cos(8t)}{3402} \dots$$

Last combine to form the general solution $y = y_h + y_p$.

•
$$y = c_1 cos(3t) + c_2 sin(3t) + \frac{1}{18} - \sum_{n=2 \mid n \text{ even}}^{\infty} \frac{cos(nt)}{(n^2 - 1)(9 - n^2)}$$
.

For f(x) = x on $-\pi < x < \pi$, find the trigonometric polynomial $F(x) = A_0 + \sum_{n=1}^{N} (A_n \cos(nx) + B_n \sin(nx))$ that minimizes $||f - F||_2$ on $(-\pi, \pi)$, for N = 1, 3, 5.

Find the Fourier Series $| p = 2\pi ; L = \pi$

- Notice r is odd thus the Euler coefficients $a_0, a_n = 0$. Solve for b_n .
- $b_n = \frac{2}{\pi} \int_0^{\pi} x \sin(\frac{n\pi x}{\pi}) dx = \frac{2}{\pi} \int_0^{\pi} x \sin(nx) dx$. † Invoke Mathematica ... $b_n = \frac{2}{\pi} \left[\frac{\sin(nx) nx\cos(nx)}{n^2} \Big|_0^{\pi} \right] = \frac{2}{\pi} \left[\frac{(\sin(n\pi) n\pi\cos(n\pi)) (\sin(0) 0)}{n^2} \right].$ $b_n = \frac{2}{\pi} \left[\frac{-n\pi\cos(n\pi)}{n^2} \right] = \frac{-2\cos(n\pi)}{n} \text{ ; note } \cos(n\pi) = 1 \mid n \text{ even } \text{ ; } \cos(n\pi) = -1 \mid n \text{ odd.}$ $b_n = B_n = -\frac{2}{n} \mid n \text{ even } \text{ ; } \frac{2}{n} \mid n \text{ odd.}$

•
$$f = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) = F = A_0 + \sum_{n=1}^{\infty} (A_n \cos(nx) + B_n \sin(nx)).$$

$$F_N = \sum_{n=1}^{N} \sum_{n=1}^{N} \frac{1}{n} \sin(nx) - \sum_{n=2}^{N} \sum_{n=1}^{N} \frac{1}{n} \sin(nx).$$

$$F_{N=1} = 2\sin(x).$$

$$F_{N=3} = 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x).$$

$$F_{N=5} = 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x) - \frac{1}{2}\sin(4x) + \frac{2}{5}\sin(5x).$$

Refer to problem 2 to complete problem 3. Use software to compute $||f-F||_2$ for N=1,3,5. Then use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ to show $\lim_{N\to\infty} (||f-F||_2)^2 = \lim_{N\to\infty} E^*(N) = 0$.

Recall our solutions from 2. **Recall** $||f - F||_2 = \sqrt{\int_R (f - F)^2 dx}$.

•
$$f = x \mid -\pi < x < \pi$$
; $F_N = \sum_{n=1}^{N} \frac{1}{n} \frac{2}{n} \sin(nx) - \sum_{n=2}^{N} \frac{2}{n} \sin(nx) - \sum_{n=2}^{N} \frac{2}{n} \sin(nx)$.

• $F_{N=1} = 2\sin(x)$.

$$||f - F_{N=1}|| = x - 2\sin(x)$$

$$||f - F_{N=1}||_2 = \sqrt{\int_{-\pi}^{\pi} (x - 2\sin(x))^2 dx} = 2.84684$$

•
$$F_{N=3} = 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x)$$
.

$$f - F_{N=3} = x - 2\sin(x) + \sin(2x) - \frac{2}{3}\sin(3x)$$

$$||f - F_{N=3}||_2 = \sqrt{\int_{-\pi}^{\pi} (x - 2\sin(x) + \sin(2x) - \frac{2}{3}\sin(3x))^2 dx} = 1.88855$$

•
$$F_{N=5} = 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x) - \frac{1}{2}\sin(4x) + \frac{2}{5}\sin(5x)$$
.

$$f - F_{N=5} = x - 2\sin(x) + \sin(2x) - \frac{2}{3}\sin(3x) + \frac{1}{2}\sin(4x) - \frac{2}{5}\sin(5x)$$

$$||f - F_{N=5}||_2 = \sqrt{\int_{-\pi}^{\pi} (x - 2\sin(x) + \sin(2x) - \frac{2}{3}\sin(3x) + \frac{1}{2}\sin(4x) - \frac{2}{5}\sin(5x))^2 dx} = 1.50949$$

Recall $||f - F||_2 = E$ and as $A_0 = a_0$, $A_n = a_n$, $B_n = b_n$; $E = E^*$. Thus $\lim_{N \to \infty} (||f - F||_2)^2 = \lim_{N \to \infty} E(N) = \lim_{N \to \infty} E^*(N) \dots$

Find
$$E^* = \int_{-\pi}^{\pi} f^2 dx - \pi [2a_0^2 + \sum_{n=1}^{N} (a_n^2 + b_n^2)].$$

$$\bullet \ E^* = \int_{-\pi}^{\pi} f^2 \, dx - \pi \sum_{n=1}^{N} b_n^2.$$

$$\int_{-\pi}^{\pi} f^2 \, dx = \int_{-\pi}^{\pi} x^2 \, dx = \frac{x^3}{3} \Big|_{-\pi}^{\pi} = \frac{\pi^3}{3} + \frac{\pi^3}{3} = \frac{2\pi^3}{3}$$

$$\pi \sum_{n=1}^{N} b_n^2 = \pi \sum_{n=1}^{N} ((-1)^{n-1} \frac{2}{n})^2 = \pi \sum_{n=1}^{N} (-1)^{2(n-1)} \frac{4}{n^2} = \pi \sum_{n=1}^{N} \frac{4}{n^2} = 4\pi \sum_{n=1}^{N} \frac{1}{n^2}$$

Find $\lim_{N\to\infty} E^*(N)$.

$$\bullet \lim_{N \to \infty} E^*(N) = \int_{-\pi}^{\pi} f^2 dx - \pi \sum_{n=1}^{\infty} b_n^2 = \frac{2\pi^3}{3} - 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2\pi^3}{3} - 4\pi (\frac{\pi^2}{6}) = \frac{2\pi^3}{3} - \frac{2\pi^3}{3} = 0$$