Wärme- und Stoffübertragung I

Wärmeleitung in einer mehrschichtigen ebenen Wand mit Konvektion

Prof. Dr.-Ing. Reinhold Kneer

Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

- Einführung in die Konvektion
 - Was ist Konvektion?
 - Was ist ein Wärmeübergangskoeffizient und was setzt dieser in Relation?

- Temperaturprofil in mehrschichtiger Wand mit Konvektion
 - Wie verläuft das Temperaturprofil in einer mehrschichtigen, ebenen Wand unter Berücksichtigung von Konvektionswiderständen?

 T_{I}

- Wärmewiderstand in einer mehrschichtigen, ebenen Wand mit Konvektion
 - Wie stellt sich der Gesamtwiderstand in einer mehrschichtigen ebenen Wand mit Konvektion dar?
 - Wie lässt sich der Wärmestrom in einer mehrschichtigen ebenen Wand mit Konvektion berechnen?

Wärmeübertragung mit und ohne Einfluss des konvektiven Wärmewiderstands Beispiel: Fenster

Vergleich des Wärmeverlustes mit und ohne konvektivem Wärmewiderstand

Wärmeverlust ohne konvektivem Widerstand

$$W_L = \frac{\delta_G}{\lambda_G} = \frac{4 \cdot 10^{-3} m}{0.8 \frac{W}{mK}} = 0,005 \frac{K}{W}$$

$$\dot{q}^{\prime\prime} = -\frac{T_B - T_A}{W_L} = -\frac{-20^{\circ}C - 20^{\circ}C}{0,005} = 8.000 \frac{W}{m^2}$$

$$\dot{q}^{\prime\prime} = ?\frac{w}{m^2}$$

Innentemperatur:

 $T_A = 20 \, {}^{\circ}C$

Außentemperatur:

 $T_B = -20 \, ^{\circ}C$

Glasdicke:

 $\delta_G = 4 mm$

Wärmeleitfähigkeit von Glas:

 $\lambda_G = 0.8 W/mK$

Wärmedurchgangskoeffizient:

 α_A , $\alpha_B = ?W/m^2K$

Mehrschichtige Wand mit Konvektion Beispiel: Hauswand

Temperaturprofil in mehrschichtiger Wand mit Konvektion

Annahmen:

- Stationärer Zustand
- Eindimensional
- Konstante Materialeigenschaften
- Konstante Querschnittsfläche

 λ_i : Wärmeleitfähigkeit in jeder Schicht

$$\lambda_2 = \lambda_{iso} \ll \lambda_1, \lambda_3 \quad \left[\frac{w}{m \, K}\right]$$

 α_A : Wärmeübergangskoeffizient im Innenraum

 α_B : Wärmeübergangskoeffizient außerhalb des Hauses

$$\alpha_A, \alpha_B : \left[\frac{w}{m^2 K}\right]$$

Temperaturprofil in mehrschichtiger Wand mit Konvektion

Annahmen:

- Stationärer Zustand
- Eindimensional
- Konstante Materialeigenschaften
- Konstante Querschnittsfläche

λ_i: Wärmeleitfähigkeit in jeder Schicht

$$\lambda_2 = \lambda_{iso} \ll \lambda_1, \lambda_3 \quad \left[\frac{W}{m K}\right]$$

 α_A : Wärmeübergangskoeffizient im Innenraum

 α_B : Wärmeübergangskoeffizient außerhalb des Hauses

 δ_2

 $\alpha_{\rm B}$

Temperaturprofil in mehrschichtiger Wand mit Konvektion

Annahmen:

- Stationärer Zustand
- Eindimensional
- Konstante Materialeigenschaften
- Konstante Querschnittsfläche

λ_i: Wärmeleitfähigkeit in jeder Schicht

$$\lambda_2 = \lambda_{iso} \ll \lambda_1, \lambda_3 \quad \left[\frac{W}{m K}\right]$$

 α_A : Wärmeübergangskoeffizient im Innenraum

 α_B : Wärmeübergangskoeffizient außerhalb des Hauses

Wärmewiderstand in einer mehrschichtigen, ebenen Wand mit Konvektion

Annahmen:

- Stationärer Zustand
- Eindimensional
- Konstante Materialeigenschaften
- Konstante Querschnittsfläche

 $\dot{\mathbf{Q}}_{Konv,\,innen}=\,\dot{\mathbf{Q}}_{Leit,Wand}=\dot{\mathbf{Q}}_{Konv,\,außen}$

Wärmewiderstand in einer mehrschichtigen, ebenen Wand mit Konvektion

Konvektion an der Oberfläche

• Innenseite:
$$\dot{Q}_{K_A} = \frac{T_A - T_1}{\frac{1}{\alpha_A A}}$$

• Außenseite:
$$\dot{Q}_{KB} = \frac{T_4 - T_B}{\frac{1}{\alpha_B A}}$$

Wärmeleitung in der Wand

- Erste Wandschicht: $\dot{Q}_{L_1} = \frac{T_1 T_2}{\frac{\delta_1}{\lambda_1 A}}$
- Zweite Wandschicht : $\dot{Q}_{L_2} = \frac{T_2 T_3}{\frac{\delta_2}{\lambda_2 A}}$
- Dritte Wandschicht: $\dot{Q}_{L_3} = \frac{T_3 T_4}{\frac{\delta_3}{\lambda_3 A}}$

$$\dot{Q}_{K_A} = \dot{Q}_{L_1} = \dot{Q}_{L_2} = \dot{Q}_{L_3} = \dot{Q}_{K_B}$$

 $\dot{Q} = \frac{Temperaturunterschied}{W\ddot{a}rmewiderstand}$

Wärmewiderstand in einer mehrschichtigen, ebenen Wand mit Konvektion

Wärmeübergangswiderstände:

$$W_{K_A} = \frac{1}{\alpha_A A}$$

$$W_{K_B} = \frac{1}{\alpha_B A}$$

Wärmeleitungswiderstände:

$$W_{L_1} = \frac{\delta_1}{\lambda_1 A}$$

$$W_{L_2} = \frac{\delta_2}{\lambda_2 A}$$

$$W_{L_3} = \frac{\delta_3}{\lambda_3 A}$$

Wärmestrom in einer mehrschichtigen, ebenen Wand mit Konvektion

$$\dot{Q} = \frac{T_A - T_B}{W_{K_A} + W_{L_1} + W_{L_2} + W_{L_3} + W_{K_B}}$$

Wärmestrom in mehrschichtiger ebener Wand

$$\dot{Q}_{i} = \frac{A}{\frac{1}{\alpha_{A}} + \sum_{i=1}^{n} \frac{\delta_{i}}{\lambda_{i}} + \frac{1}{\alpha_{B}}} (T_{A} - T_{B})$$

Wärmedurchgangskoeffizient (k)

$$k = \frac{1}{\sum w} = \frac{1}{\frac{1}{\alpha_A} + \sum_{i=1}^n \frac{\delta_i}{\lambda_i} + \frac{1}{\alpha_B}} \qquad \left[\frac{w}{m^2 k}\right]$$

$$\dot{Q}_i = k A (T_A - T_B)$$

Wärmeübertragung mit und ohne Einfluss des konvektiven Wärmewiderstands Beispiel: Fenster

Vergleich des Wärmeverlustes mit und ohne konvektivem Wärmewiderstand

Wärmeverlust ohne konvektivem Widerstand

$$w_L = \frac{\delta_G}{\lambda_G} = \frac{4 \cdot 10^{-3} m}{0.8 \frac{w}{mK}} = 0,005$$

$$\dot{q}^{"} = -\frac{T_B - T_A}{w_L} = -\frac{-20^{\circ}C - 20^{\circ}C}{0,005} = 8.000 \frac{W}{m^2}$$

$$\dot{q}^{\prime\prime} = ?\frac{W}{m^2}$$

Innentemperatur:

 $T_A = 20 \, {}^{\circ}C$

Außentemperatur:

 $T_R = -20 \, ^{\circ}C$

Glasdicke:

 $\delta_G = 4 mm$

Wärmeleitfähigkeit von Glas:

 $\lambda_G = 0.8 W/mK$

Wärmedurchgangskoeffiizient:

 α_A , $\alpha_B = ?W/m^2K$

Wärmeübertragung mit und ohne Einfluss des konvektiven Wärmewiderstands Beispiel: Fenster

Vergleich des Wärmeverlustes mit und ohne konvektivem Wärmewiderstand

Wärmeverlust ohne konvektivem Widerstand

$$w_L = \frac{\delta_G}{\lambda_G} = \frac{4 \cdot 10^{-3} m}{0.8 \frac{w}{mK}} = 0,005 \frac{K}{W}$$

$$\dot{q}^{"} = -\frac{T_B - T_A}{w_L} = -\frac{-20^{\circ}C - 20^{\circ}C}{0,005} = 8.000 \frac{W}{m^2}$$

Wärmeverlust inklusive konvektivem Widerstand

$$w_{ges.} = w_{K,A} + w_L + w_{K,B} = \frac{1}{\alpha_A} + \frac{\delta_G}{\lambda_G} + \frac{1}{\alpha_B}$$

$$= \frac{1}{10 \frac{W}{m^2 K}} + \frac{4 \cdot 10^{-3} m}{0.8 \frac{W}{m K}} + \frac{1}{10 \frac{W}{m^2 k}} = 0,205 \frac{K}{W}$$

$$\dot{q}'' = \frac{T_A - T_B}{w_{ges.}} = -\frac{-20^{\circ}C - 20^{\circ}C}{0,205} \approx 200 \frac{W}{m^2}$$

Innentemperatur:

$$T_A = 20 \, ^{\circ}C$$

Außentemperatur:

$$T_B = -20 \, ^{\circ}C$$

Glasdicke:

$$\delta_G = 4 mm$$

Wärmeleitfähigkeit von Glas:

$$\lambda_G = 0.8 W/mK$$

Wärmedurchgangskoeffizient:

$$\alpha_A$$
, $\alpha_B = 10 W/m^2 K$

Verständnisfragen

Was ist Konvektion und wie lässt sich diese empirisch beschreiben?

Welche Krümmung weist das Temperaturprofil auf der Fluidseite aufgrund von Konvektion auf?

Welchen Einfluss hat die zusätzliche Berücksichtigung der Konvektion auf den Gesamtwärmeübergang?

