Critério da Capacidade de curtocircuito

Dois critérios básicos

Limitação da Seção do condutor;

• Limitação do comprimento do circuito em função da corrente de curto fase terra.

Por que usar a corrente de curto fase terra?

Perguntinhas

 Como um condutor pode suportar uma corrente de curto-circuito 100 vezes maior que a corrente de carga?

 Os níveis de corrente de curto-circuito são os mesmos para todos os pontos da instalação?

Seção do condutor (mm²)

$$S_c = \frac{\sqrt{T_c} \times I_{cs}}{0.34 \times \sqrt{\log\left(\frac{234 + T_f}{234 + T_i}\right)}}$$

 I_{cs} – corrente simétrica de curto-circuito, em kA;

 T_e – tempo de eliminação de defeito, em s;

 T_f - temperatura máxima de curto-circuito suportada pela isolação do condutor, em °C;

 T_i – temperatura máxima admissível pelo condutor em regime normal de operação, em °C.

Os valores de T_f e T_i são estabelecidos por norma, ou seja:

Condutor com isolação PVC/70°C

$$T_f = 160^{\circ}\text{C} \text{ e } T_i = 70^{\circ}\text{C}$$

Condutor com isolação XLPE

$$T_f = 250$$
°C e $T_i = 90$ °C

Fig. 3.24 - Capacidade máxima da corrente de curto-circuito

EXEMPLO DE APLICAÇÃO

Considerando-se que, no caso do exemplo anterior, onde foi utilizado o cabo de 25 mm²/XLPE – 90°C, o tempo de eliminação do defeito realizado pelo fusível foi de 0,5 s para uma corrente simétrica de curto-circuito de 4,0 kA, no extremo do circuito, determinar a seção mínima do condutor.

Exemplo de aplicação para o critério de limitação do seção

EXEMPLO DE APLICAÇÃO

Considerando-se que, no caso do exemplo anterior, onde foi utilizado o cabo de 25 mm²/XLPE – 90°C, o tempo de eliminação do defeito realizado pelo fusível foi de 0,5 s para uma corrente simétrica de curto-circuito de 4,0 kA, no extremo do circuito, determinar a seção mínima do condutor.

$$S_c = \frac{\sqrt{0.5 \times 4.0}}{0.34 \times \sqrt{\log\left(\frac{234 + 250}{234 + 90}\right)}} = 19.9 \text{ mm}^2$$

Logo, o condutor de 25 mm² satisfaz as três condições, ou seja, capacidade da corrente de carga, queda de tensão e capacidade da corrente de curto-circuito.

Através do gráfico da Fig. 3.25 obtém-se o mesmo resultado, ou seja, tomando-se a corrente de curtocircuito de 4,0 kA e cruzando-se a reta de 30 ciclos (0,50 s) obtém-se a seção anteriormente dimensionada.

Comprimento máximo do sistema

$$L_{c} = \frac{\frac{0.95 \times V_{ff}}{\sqrt{3} \times I_{ft}} - Z_{mp}}{\frac{2 \times Z_{jp}}{1.000}}$$
 (m)

 V_{ff} – tensão entre fases do sistema, em V;

 I_{ft} – corrente de curto-circuito que assegura a atuação da proteção da barra de onde deriva o circuito de comprimento L_c ;

 Z_{mp} – impedância de sequência positiva desde a fonte até a barra de onde deriva o circuito já referido, em Ω ;

 Z_{jp} – impedância de seqüência positiva do circuito a jusante da barra, ou seja, aquele que deve ter o seu valor limitado ao comprimento L_c , em m Ω /m;

V_{ff} – tensão entre fases do sistema, em V.

Tabela 3.29 - Resistência e reatância dos condutores de PVC/70° C (valores médios)

Seção		le seqüência positiva nOhm/m)	Impedância de seqüência zero (mOhm/m)			
	Resistência	Reatância	Resistência	Reatância		
1,5	14,8137	0,1378	16,6137	2,9262		
2,5	8,8882	0,1345	10,6882	2,8755		
4	5,5518	0,1279	7,3552	2,8349		
6	3,7035	0,1225	5,5035	2,8000		
10	2,2221	0,1207	4,0222	2,7639		
16	1,3899	0,1173	3,1890	2,7173		
25	0,8891	0,1164	2,6891	2,6692		
35	0,6353	0,1128	2,4355	2,6382		
50	0,4450	0,1127	2,2450	2,5991		
70	0,3184	0,1096	2,1184	2,5681		
95	0,2352	0,1090	2,0352	2,5325		
120	0,1868	0,1076	1,9868	2,5104		
150	0,1502	0,1074	1,9502	2,4843		
185	0,1226	0,1073	1,9226	2,4594		
240	0,0958	0,1070	1,8958	2,4312		
300	0,0781	0,1068	1,8781	2,4067		
400	0,0608	0,1058	1,8608	2,3757		
500	0,0507	0,1051	1,8550	2,3491		
630	0,0292 0,1042		1,8376	2,3001		

Exemplo 3

EXEMPLO DE APLICAÇÃO

Determinar o comprimento máximo de um circuito que alimenta um motor de 40 cv/380 - IV pólos, sabendo-se que a corrente de curto-circuito fase e terra no CCM que assegura o disparo da proteção fusível em 0,2 s é de 500 A. A impedância do sistema desde a fonte até o referido CCM é de $(0,014 + \text{j}0,026) \Omega$. Os condutores são isolados em PVC e estão instalados em eletrodutos no interior de canaleta fechada com dimensão de 30×30 cm. O comprimento do circuito terminal do motor é de 50 m.

Resolver para: 75 Cv Lc= 100 m Pelo critério da corrente de carga

$$I_c = 56,6 \text{ A}$$

 $S_c = 3 \# 16 \text{ mm}^2$ (Tabela 3.4 – coluna B2 – justificada pela Tabela 3.2 – método de instalação 41)

Pelo critério da queda de tensão

$$S_c = \frac{173,2 \times \rho \times \Sigma (L_c \times I_c)}{\Delta V\% \times V_{ff}} = \frac{173,2 \times (1/56) \times 50 \times 56,6}{2 \times 380}$$

$$S_c = 11,5 \text{ mm}^2 \rightarrow S_c = 3 \# 16 \text{ mm}^2$$

Pelo critério da capacidade de corrente de curto-circuito

$$S_c = \frac{\sqrt{0.2 \times 0.5}}{0.34 \times \sqrt{\log\left(\frac{234 + 160}{234 + 70}\right)}} = 1,95 \text{ mm}^2$$

$$S_c = 3 \# 2.5 \text{ mm}^2$$

Pelo critério que limita o comprimento máximo do circuito

$$\begin{split} \vec{Z}_{mp} &= 0,\!014 + j\,0,\!026 \ \to \ Z_{mp} = 0,\!02952\;\Omega \\ \vec{Z}_c &= 1,\!3899 + j\,0,\!1173\;\mathrm{m}\;\Omega/\mathrm{m}\;\;(\mathrm{Tabela}\;3.29) \ \to \ Z_{mp} = 1,\!3948\;\mathrm{m}\;\Omega/\mathrm{m} \end{split}$$

$$L_c = \frac{\frac{0.95 \times 380}{\sqrt{3} \times 500} - 0.02952}{\frac{2 \times 1.3948}{1.000}} = 138.8 \text{ m}$$

Critérios de dimensionamento da seção mínima do condutor neutro

Critérios básicos paro o dimensionamento do condutor neutro (NBR 5410)

- O condutor neutro n\u00e3o pode ser comum a mais de um circuito;
- Em circuitos monofásicos, a seção do condutor neutro deve ser igual à do condutor fase;
- Em circuitos com duas fases e um neutro, a seção do neutro não deve ser menor que a seção dos condutores fases. Podendo ser igual se a taxa de terceira harmônica e seus múltiplos for menor que 33%.

Critérios básicos paro o dimensionamento do condutor neutro

- Em circuitos Trifásicos, a seção do neutro não deve ser menor que a seção dos condutores fases. Podendo ser igual se a taxa de terceira harmônica e seus múltiplos for menor que 33%.
- Em circuitos 3F+N se a seção do condutor fase for > 25 mm² usar a tabela 3.23

Tabela 3.30 - Seção do condutor neutro

Seção dos condutores fase (mm²)	Seção mínima do condutor (mm²)				
S ≤ 25	S				
35	25				
50	25				
70	35				
95	50				
120	70				
150	70				
185	95				
240	120				
300	150				
500	185				

Observação importante

 A corrente do neutro em sistemas 3F+N ou 2F+N pode ser maior que a corrente nos condutores de fase, devido a presença de harmônicos (>33%).

Exemplo

- Calcular a seção do condutor neutro.
- Circuito trifásico TN-C que alimenta um CCM
- 4 motores trifásicos de 20 cv
- Cabos isolados em PVC, dispostos em eletroduto aparente

Corrente nominal= 28,8 A

						V pólos	200.0	0 420 T	6.0	0,81	0,0016
1	0,7	3,8	2,2	1.715	0,65	5,7	200,0	0,420	6,0	0,82	0,0080
3	2,2	9,5	5,5	1.720	0,73	6,6	200,0	1,230	6,0	0,83	0,0000
5	4	13,7	7,9	1.720	0,83	7,0	200,0	2,070	6,0	•	0,0031
7,5	5,5	20,6	11,9	1.735	0,81	7,0	200,0	3,100	6,0	0,84	0,0328
10	7,5	26,6	15,4	1.740	0,85	6,6	190,0	4,110	8,3	0,86	
15	iı	45.0	26,0	1.760	0,75	7,8	195,0	6,120	8,1	0,86	0,0433
20	15	52,0	28,8	1.760	0,86	6,8	220,0	7,980	7,0	0,88	0,0900
25	18,5	64,0	33,3	1.760	0,84	6,7	230,0	9,970	6,0	0,90	0,1010
30	22	78,0	43,3	1.760	0,83	6,8	235,0	11,970	9,0	0,90	0,2630
40	30	102,0	56,6	1.760	0,85	6,7	215,0	15,960	10,0	0,91	0,4050
50	37	124,0	68,8	1.760	0,86	6,4	300,0	19,950	12,0	0,92	0,4440
60	45	150,0	83,3	1.765	0,86	6,7	195,0	23,870	12,0	0,92	0,7900
75	55	182,0	101,1	1.770	0.86	6,8	200,0	29,750	15,0	0,92	0,9000
100	75	244,0	135,4	1.770	0,87	6,7	200,0	39,670	8,3	0,92	1,0600
125	90	290,0	160,9	1.780	0,87	6,5	250,0	49,310	14,0	0,94	2,1000
150	110	350,0	194,2	1.780	0,87	6,8	270,0	59,170	13,0	0,95	2,5100
180	132	420,0	233,1	1,785	0,87	6,5	230,0	70,810	11,0	0,95	2,7300
200	150	470,0	271,2	1.785	0,87	6,9	230,0	80,000	17,0	0,95	2,9300
	160	510,0	283,0	1,785	0,87	6,5	250,0	86,550	15,0	0,95	3,1200
220			327,4	1.785	0,87	6,8	240,0	95,350	15,0	0,95	3,6900
250	185	590,0	385,2	1.785	0,88	6,8	210,0	118,020	24,0	0,96	6,6600
300	220	694,0		1.785	0,89	6,9	210,0	149,090	25,0	0,96	7,4000
380	280	864,0	479,5		0,89	7,6	220,0	186,550	26,0	0,96	9,1000
475	355	1100,0	610,5	1.788		7,8	220,0	265,370	29,0	0,96	12,1000
600	450	1384,0	768,1	1.790	0,89	/,0	220,0	202,270	22,5		

Corrente de carga

$$I_c = 4 \times 28.8 = 115.2 \text{ A}$$

Tipos de Linhas Elétricas (I)

Método de instalação número	Esquema Ilustrativo	Descrição	Método de referência para a capacidade de condução de corrente (1)	Método de instalação número	Esquema ilustrativo	Descrição	Método de referência para a capacidade de condução de corrente (1)
1		Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante (2)	Al	17		Cabos unipolares ou cabo multipolar suspenso(s) por cabo de suporte, incorporado ou não	E (multipolar) F (unipolares)
2		Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante (2)	A2	18		Condutores nus ou isolados sobre isoladores	G
3		Condutores isolados ou cabos unipolares em eletroduto aparente e de seção circular sobre parede ou espaçado da mesma (3)	В1	21	• &	Cabos unipolares ou cabo multipolar em espaço de construção (6)	$1.5 D_e \le V < 5 D_e$ $B2$ $5 D_e < V < 50 D_e$ $B1$
4		Cabo multipolar em eletroduto de seção circular sobre parede ou espaçado da mesma (3)	B2	22		Condutores isolados em eletroduto de seção circular em espaço de construção (6)	1,5 $D_e \le V < 20 D_e$ B2 $V \ge 20 D_e$ B1
5		Condutores isolados ou cabos unipolares em eletroduto aparente de seção não-circular sobre parede	B1	23		Cabos unipolares ou cabo multipolar em eletroduto de seção circular em espaço de construção (6)	B2

Capacidade de condução (PVC)

	Métodos de referência definidos na Tabela 3.1												
Seções	cões A1		A2		E	B1		B2		С		D	
nominais mm²	2 Condutores carregados	Condutores carregados	Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	Condutores carregados	3 Condutores carregados	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
Cobre								\-/	ζ/				
0,5	7	7	7	7	9	8	9	8	10	9	12	10	
0,75	9	9	9	9	11	10	11	10	13	11	15	12	
1	11	10	11	10	14	12	13	12	15	14	18	15	
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18	
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24	
4	26	24	25	23	32	28	30	27	36	32	38	31	
6	34	31	32	29	41	36	38	34	46	41	47	39	
10	46	42	43	39	57	50	52	46	63	57	63	52	
16	61	56	57	52	76	68	69	62	85	76	81	67	
25	80	73	75	68	101	89	90	80	112	96	104	86	
35	99	89	92	83	125	110	11	99	138	119	125	103	
50	119	108	110	99	151	134	133	118	168	144	148	122	
70	151	136	139	125	192	171	168	149	213	184	183	151	
95	182	164	167	150	232	207	201	179	258	223	216	179	
120	210	188	192	172	269	239	232	206	299	259	246	203	
150	240	216	219	196	309	275	265	236	344	299	278	230	
185	273	245	248	223	353	314	300	268	392	341	312	258	
240	321	286	291	261	415	370	351	313	461	403	361	297	
300	367	328	334	298	477	426	401	358	530	464	408	336	
400	438	390	398	355	571	510	477	425	634	557	478	394	

Tabela 3.30 - Seção do condutor neutro

Seção dos condutores fase (mm²)	Seção mínima do condutor (mm²)
S ≤ 25	S
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
500	185

Critérios de dimensionamento da seção mínima dos Condutores de Proteção

Objetivos do aterramento

Proteção;

• funcional;.

Tabela 3.31 – Seção mínima dos condutores de proteção

Seção mínima dos condutores fase (mm²)	Seção mínima dos condutores de proteção (mm²)
S ≤ 16	S
$16 < S \le 35$	16
S > 35	$0.5 \times S$

Obs:

- O condutor de proteção pode ser comum a vários circuitos;
- Se o condutor PE não fizer parte do mesmo cabo ou invólucro dos condutores fase:

```
2,5 mm<sup>2</sup> se protegido mecanicamente;
4 mm<sup>2</sup> se não for protegido.
```

Alguns elementos podem ser usados como PE:

```
armações;
```

coberturas metálicas, etc.

Condutores de média tensão

Condutores de média tensão

Instalações industriais de médio e pequeno porte:

condutores primários (v>1 kV) geralmente subterrâneos

• Instalações industriais de grande porte:

É grande a aplicação de condutores unipolares

Condutores de média tensão Deve-se conhecer:

- Tipos de linhas (Tabela 3.26);
- Métodos de referência (Tabela 3.27);
- Capacidade de corrente dos condutores (Tabelas 3.28 e 3.29);

```
    Fatores de correção :
        temperatura (tabelas 3.30 e 3.31);
        agrupamento (tabelas 3.32 – 3.36);
        resistividade térmica do solo (tabela 3.37).
```

Exemplo de aplicação

- Circuito trifásico XLPE 8,7/15 kV;
- 13,8 V;
- Em badeja;
- Alimentando 6,5 MVA (Potência Aparente);
- Agrupado com mais um circuito trifásico;
- Cabos unipolares separados.

1º. Calculo da corrente

$$Ic = \frac{6500}{\sqrt{3 * 13.8}} = 271.9 A$$

2º. Fator de correção

$$Ic = \frac{271,9}{0.97} = 280,3 A$$

3º. Olhar na tab. 3.28. (método de referência B)

$$S_c = 70 \text{ mm}^2 \text{ (isolação XLPE} - 8,7/15 \text{ kV)}$$