LaTeX テンプレート

野本 慶一郎

目次

1	記号・数式		• •		• •	• •		• •	• •		 	•	• •	• •	 •	• •	•	 	•	•	• •	• •	•	•	•	2
1.1	数学文字		• •		• •	• •		• •	• •		 	•	• •	• •	 •	• •	•	 	•	•	• •	• •	•	•	•	2
1.2	数学作用	素・・			• •	• •			• •		 	•		• •	 •	• •	•	 • •	•	•	• •	•	•	•	•	2
1.3	数式・・		• •		• •	• •			• •		 	•		• •	 •	• •	•	 	•	•	• •	• •	•	•	•	2
2	定理・コメン	· · ·	• •		• •	• •	• •	• •	• •	• •	 	•	• •	• •	 •	• •	•	 	•	•	•	• •	•	•	•	ć
2.1	定理環境	• • •	• •		• •	• •	• •	• •	• •	• •	 	•	• •	• •	 •	• •	•	 	•	•	•	• •	•	•	•	ć
3	図 · · · · ·	• • • •	• •		• •	• •	• •	• •	• •	• •	 	•	• •	• •	 •	• •	•	 	•	•	•	• •	•	•	•	4
4	アルゴリズム	・コ・	ード	• •	• •	• •	• •	• •	• •	• •	 	•	• •	• •	 •	• •	•	 • •	•	•	•	• •	•	•	•	
4.1	擬似コー	ド・・	• •		• •	• •	• •	• •	• •	• •	 	•	• •	• •	 •	• •	•	 	•	•	•	• •	•	•	•	١
4.2	ソースコ	ード									 							 								6

1. 記号・数式 1.1. 数学文字

1 記号・数式

1.1 数学文字

黒板文字 (mathbb) A, B, C, D, . . .

筆記体 (mathcal) $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \dots$

フラクトゥール (mathfrak) $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \ldots, \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}, \ldots$

花文字 (mathscr) $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}, \dots$

1.2 数学作用素

MyMathOperators に登録した文字は数学作用素として書くことができる. 例えば

 $\operatorname{Ker} f$, $\operatorname{Hom}(\mathfrak{g},\mathfrak{h})$, $\operatorname{Gal}(\overline{K}/K)$, $\operatorname{Spec} A$, $\operatorname{rank} E(\mathbb{Q})$, $\operatorname{Sel}^{(\phi)}(E/K)$

のように使用可能.

1.3 数式

align 環境で数式を書く際には、ラベリングをするかどうかに関わらず「*」は付けなくてよい.例えば数式

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$$

は引用していないので、 式番号は付いていない. しかし

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz \tag{1}$$

は式(1)と引用したので式番号が表示されている. また, 括弧は

$$\left(\frac{q}{p}\right), \left\{0, \frac{k}{m}\right\}, \left[\frac{1}{n+1}x^{n+1}\right]_{x=a}^{b}$$

のように簡潔に書くことができる. また, 集合は

$$\left\{ (a_i) \in \prod A_i \,\middle|\, f_{ij}(a_j) = a_i \right\}$$

と書くことができる.

2. 定理・コメント 2.1. 定理環境

2 定理・コメント

2.1 定理環境

定義や命題等は、以下のようにして記述する:

定義 2.1: 群の定義 [1, 命題 hoge]

空でない集合Gが**群**であるとは、写像

$$\phi: G \times G \to G$$

で以下の三つの条件を満たすものが存在することをいう.

結合法則 $\forall g, h, i \in G, \ \phi(\phi(g,h),i) = \phi(g,\phi(h,i)).$

単位元の存在 $\exists e \in G \text{ s.t. } \forall g \in G, \ \phi(g,e) = \phi(e,g) = e.$

逆元の存在 $\forall g \in G, \exists g^{-1} \in G \text{ s.t. } \phi(g, g^{-1}) = \phi(g^{-1}, g) = e.$

 $\phi(g,h)$ のことを単に, $g \cdot h$ や gh と書くことがある.

命題 2.2: 単位元の一意性 [1, 命題 hoge]

群 G の単位元 e は一意的に存在する.

証明 $e, e' \in G$ を単位元とする. 定義 2.1 より

 $e = e \cdot e'$ (:: e'は単位元)

= e' (:: eは単位元)

が成り立つ. したがって群の単位元は一意的に存在する.

注意 2.3: [1, 命題 hoge]

命題 2.2 と同様にして、逆元の一意性も証明することができる.

3 図

準同型定理の図式は以下のようにして書ける.

ファイバー積の普遍性は以下のようにして書ける.

4 アルゴリズム・コード

4.1 擬似コード

擬似コードは、以下のようにして記述する.

Algorithm 1 Euclid の互除法

1: **def** Euclid(a,b):

 $r \leftarrow a \bmod b$

3: while $r \neq 0$:

 $\triangleright r = 0$ ならば最大公約数は b

 $a \leftarrow b$

5: $b \leftarrow r$

6: $r \leftarrow a \mod b$

7: $\mathbf{return} \ b$

高速に冪乗 a^n を計算するアルゴリズムである<mark>繰り返し二乗法</mark>を説明する. 簡単のため,非負整数 $n \in \mathbb{Z}$ のサイズは高々 3 ビットとし,

$$n = n_0 + n_1 2 + n_2 2^2$$
 $(n_0, n_1, n_2 \in \{0, 1\})$

 ϵ_n の 2 進展開とする. このとき

$$a^{n} = a^{n_{0} + n_{1} + n_{2} + n_{2} + 2}$$

$$= a^{n_{0}} \cdot a^{n_{1} + n_{2} + 2}$$

$$= a^{n_{0}} \cdot \left(a^{n_{1} + n_{2} + 2}\right)^{2}$$

$$= a^{n_{0}} \cdot \left(a^{n_{1}} \cdot \left(a^{n_{2}}\right)^{2}\right)^{2}$$

$$= a^{n_{0}} \cdot \left(a^{n_{1}} \cdot \left(a^{n_{2}} \cdot (1)^{2}\right)^{2}\right)^{2}$$

が成り立つ. したがってこの場合, 内側の括弧から計算を始めることで二乗算を 3 回と乗算を高々 3 回で計算可能である. $^{1)}$ 一般の非負整数 $n\in\mathbb{Z}$ についても, 同様に冪乗算ができる. これが繰り返し二乗法である.

1) 一般に、繰り返し二乗法の計算量は $O(\log_2 n)$ である.

Algorithm 2 繰り返し二乗法

```
1: \mathbf{def} \ \mathrm{pow}(a,n):
2: n = n_0 + n_1 2 + n_2 2^2 + \dots + n_{\ell-1} 2^{\ell-1} と表す
3: \mathrm{val} \leftarrow 1
4: \mathbf{for} \ i \ \mathbf{in} \ \ell - 1 \ , \dots \ , 0:
5: \mathrm{val} \leftarrow \mathrm{val} \times \mathrm{val}
6: \mathbf{if} \ n_i == 1:
7: \mathrm{val} \leftarrow a \times \mathrm{val}
8: \mathbf{return} \ \mathrm{val}
```

4.2 ソースコード

```
1 # This is a VS Code style code block
2 def pow(a, n):
3    val = 1
4    while n != 0:
5        val *= val
6        if n & 1 == 1:
7        val *= a
8        n = n >> 1
9    return val
```

参考文献									
[1]雪江明彦. 代数学 1 群論入門. 日本評論社, 2010.									