NEC

NPN SILICON TRANSISTOR 2SC1842

DESCRIPTION

The 2SC1842 is designed for use in an AF amplifier and general

purpose.

FEATURES

• High h_{FE}.

 h_{FE} : 600 TYP. (V_{CE} = 6.0 V, I_{C} = 1.0 mA)

• Low Noise Voltage. NV : 30 mV TYP. $V_{CE} = 6.0 \text{ V}$, $I_{C} = 1.0 \text{ mA}$,

 $R_G = 100 \text{ k}\Omega$, $G_v = 80 \text{ dB}$,

 $\int f = 10 Hz \text{ to } 1.0 \text{ kHz}$

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures
Storage Temperature55 to +125 °C
Junction Temperature +125 °C Maximum
Maximum Power Dissipation (Ta = 25 °C)
Total Power Dissipation 250 mW
Maximum Voltages and Currents (Ta = 25 °C)
V _{CBO} Collector to Base Voltage 40 V
V _{CEO} Collector to Emitter Voltage 35 V
V _{EBO} Emitter to Base Voltage 5.0 V
Ic Collector Current 100 mA
IB Base Current 20 mA

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	150	580		_	$V_{CE} = 6.0 \text{ V}, I_{C} = 0.1 \text{ mA}$
hFE2	DC Current Gain	200	600	1200	_	$V_{CE} = 6.0 \text{ V, } I_{C} = 1.0 \text{ mA}$
f _T	Gain Bandwidth Product	150	250	•	MHz	$V_{CE} = 6.0 \text{ V}, I_{E} = -10 \text{ mA}$
Cob	Output Capacitance		3.0	4.0	pF ·	$V_{CB} = 6.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
NV	Noise Voltage		30	50	mV	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, R_{G} = 100 \text{ k}\Omega,$ $G_{V} = 80 \text{ dB}, f = 10 \text{ Hz} \text{ to } 1.0 \text{ kHz}$
Ісво	Collector Cutoff Current			100	nA	V _{CB} = 40 V, I _E = 0
IEBO	Emitter Cutoff Current			100	nΑ	$V_{EB} = 5.0 \text{ V, } I_{C} = 0$
V _{BE(sat)}	Base Saturation Voltage		0.86	1.0	V	I _C = 100 mA, I _B = 10 mA
VCE(sat)	Collector Saturation Voltage		0.15	0.3	V	$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$
V _{BE}	Base to Emitter Voltage	0.55	0.60	0.65	٧	$V_{CE} = 6.0 \text{ V, } I_{C} = 1.0 \text{ mA}$

Classification of hFE2

Rank	Р	F	E	U
Range	200 – 400	300 — 600	400 - 800	600 – 1200

hFE Test Conditions : $V_{CE} = 6.0 \text{ V}$, $I_{C} = 1.0 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)

INPUT AND OUTPUT CAPACITANCE vs. REVERSE VOLTAGE

SMALL SIGNAL CURRENT GAIN vs. DC CURRENT GAIN

INPUT IMPEDANCE, VOLTAGE FEEDBACK RATIO AND OUTPUT ADMITTANCE vs. SMALL SIGNAL CURRENT GAIN

NORMALIZED h-PARAMETERS vs. COLLECTOR CURRENT

NORMALIZED h-PARAMETERS vs. COLLECTOR TO EMITTER VOLTAGE

en AND in vs. COLLECTOR CURRENT

NOISE VOLTAGE TEST CIRCUIT

 $V_{CE}\!\doteqdot\!5$ V, $I_{C}\!=\!1.0$ mA, $R_{G}\!=\!100$ kQ, $G_{V}\!=\!80$ dB, FLAT(f=10 Hz to 1.0 kHz)