Global Rhythm Style Transfer

Aakriti Samiksha Das Sumit Jain

Contents

- 1. Introduction
- 2. Motivation
- 3. Related Work
- 4. Methodology
- 5. Experiments
- 6. Conclusion

Introduction

- Works on non-parallel speech style transfer
- Refers to transferring source speech into speech of target domain
 - o In voice style transfer, domains correspond to speaker identities
- Non-parallel style transfer when the source and target utterances do not need to have the same speech content

Introduction

- Speech has many layers of information
 - Content
 - Prosody
 - Rhythm
 - Pitch
- Prosody is an important aspect
- Prosody must be disentangled from the source utterance to apply the traits of the target utterance
- Disentangling the prosody information is very challenging

Motivation

Generating new voices for TTS (Text-To-Speech) systems

Dubbing in movies and videogames

Speech enhancement

Related Works

Prosody Disentanglement:

- Disentangle prosody from speech content by an auto-encoder based representation
- CHiV explicitly extracts prosodic features and linguistic features for expressive TTS
- Require text transcriptions which limits their applications to high-resource language
- Algorithms that do not rely on text transcriptions
 - Attempts to remove the rhythm information by randomly resampling input speech
 - SPEECHSPLIT relies on fine-grained prosody ground-truth in the target domain
- Prosody conversion not effective

Related Works

Voice Style Transfer:

- Directly learn speaker-independent content representations using a VAE
- ACVAE-VC encourages converted speech to be correctly classified as the target speaker by classifying the output
- Image style transfer approaches like CycleGAN and StarGAN adapted
- AUTOVC disentangles the timbre and content using a simple autoencoder
- Only focus on converting timbre, which is only one of the speech components

Problem to be Solved

- Most algorithms require text transcriptions to identify content and separate out style
- Cannot be applied to low-resource languages with few text transcriptions
- Some attempts try to disentangle prosody in an unsupervised manner
 - Consists of an auto-encoder with a resampler to corrupt the rhythm
- SPEECHSPLIT: better disentanglement, but needs target ground-truth prosody info
- Prosody style transfer without relying on text transcriptions or local prosody ground truth largely remains unresolved in the research community

Problem to be Solved

- The autoVC algorithm doesn't change the rhythm of source speaker it only change the timbre to target source.
- The two speaker have different speech rate, which is not reflected by autoVC alone.

Example:

Source Speech:

Target Example Speech:

AutoPST

- AUTOPST is an unsupervised speech decomposition algorithm that
 - does not require text annotations
 - can effectively convert prosody style given domain summaries
- Introduces a much more thorough rhythm removal module
- Adopts two-stage training strategy to pass full content without leaking rhythm
- Experiments on different style transfer tasks show that AUTOPST can effectively convert prosody that correctly reflects the styles of the target domains

How autoPST changes Speech rate and pauses?

- Our goal is to retain phonetic sequence and obscure repetition information
- The autoPST contains a hidden module called resampling module which obscure rhythm by resampling so that the decoder couldn't guess original repetition of sequence

Framework Overview

- AUTOPST adopts an autoencoder based structure
- 13-dimension MFCC is taken by encoder (ENC) having very little pitch information
- Novel resampling module (downsampling/upsampling) to disentangle rhythm from source
- Decoder aims to reconstruct speech based on random resampling module output and the domain identifiers (pitch and rhythm of domain)

Similarity based downsampling

- 1. Based on observation that relatively steady segments in speech have more flexible durations
- 2. Uses a self-expressive autoencoder to derive frame-level representations with high cosine similarity between similar frames
- 3. Similarity threshold τ if similarity between two frames is less than τ , segment boundary is added
- 4. Later all frames within two segment boundaries are merged to one code with mean pooling

$$\mathsf{G}(t,t') = rac{oldsymbol{A}^T(t)oldsymbol{A}(t')}{\|oldsymbol{A}(t)\|_2\|oldsymbol{A}(t')\|_2}.$$

Similarity based upsampling

- 1. If τ < 1, we perform the aforementioned downsampling
- 2. If $1 \le \tau < 2$, we create a boundary
- If similarity between two frames is high enough we insert code of previous frame
- 4. As a result, some part of sequence is upsampled
- At the end of resampling, frames with the most similarity between them are stretched or collapsed the most - rhythm is scrambled

Method: Thresholding (au)

- Trade-off between rhythm disentanglement and information loss
- Randomized thresholding to keep all content and forget all rhythm
- Double randomized thresholding:
 - Randomly draw global variable G from $U[u_r, u_r]$ that is shared across the whole utterance
 - Local variable L(t) from U[G 0.05, G + 0.05]

$$\tau(t) = L(t)$$
-quantile $[G(t_m, t_m - b : t_m + b)]$

 Quantile : q-quantile, b: sliding window in which threshold is computed, G: similarity function

Training strategy

- Introduce a two-stage training scheme to prevent rhythm information leaking
- Stage 1 : Synchronous Training

• Stage 2: Asynchronous Training

Architecture and Results

Architecture:

- Encoder
 - 1*5 conv layers with group normalization
 - Output dimension 4
- Decoder
 - Transformer with 4 encoder and 4 decoder layers
- Spectrogram Conversion to Wavelength
 - WaveNet Vocoder:

Dataset (VCTK):

- 44 hours of speech, 109 speakers

Baselines:

- RR
- AutoVC

Spectrogram Visualisation:

AutoVC and AutoPST: Result Comparison

Source speech	
Target speech	•
AutoVC output	•
AutoPST	•

More Experiments

Relative Duration Difference = $(L_{F2S} - L_{S2F})/L_{S2F}$

More Experiments

- Subjective Evaluation:

	AUTOPST	RR	AUTOVC
Timbre	4.29 ± 0.032	4.07 ± 0.037	4.26 ± 0.034
Prosody	3.61 ± 0.053	2.97 ± 0.063	2.64 ± 0.066
Overall	3.99 ± 0.036	3.63 ± 0.045	3.49 ± 0.052

 Can AutoPST restore abnormal localised rhythm patterns? (right)

Conclusion

- AutoPST performs non-parallel voice style transfer and succeeds at transferring prosody characteristics
- Successfully transfers the rhythm aspect of prosody

Limitations:

- Severe limitations on the dimensions of the hidden representation, compromising the quality of the converted speech
- Performs poorly on in-the-wild examples