Total Marks: 30

Name	Student No.

- For your exam you are ONLY allowed to refer to the lecture notes, text book, tutorials and assignments.
- Surfing the internet for ideas and answers is not allowed.
- Submit your exam on Avenue as a single PDF file named firstname_lastname.pdf.
- Clearly write your full name and student number on each sheet.

Time allotted: 2 hours

off and the DDE and and

(for the test and uploading solution PDF on Avenue)

Multiple choice questions [7 marks]

Circle your answer. Each question has just one correct answer. Therefore multiple selections will not get a mark.

- 1. The function $T(n) = n \log n + n^2 + 2n + 3$ is in
 - (a) $\Omega(n^3)$
 - (b) $\Theta(n^2)$
 - (c) $O(n \log n)$
 - (d) None of the above.
- 2. Suppose all the connected components of a graph are provided. The maximum number of queries on them require you to identify in which component does a given node x belong to. In this scenario, which of the below approaches would perform the best?
 - (a) Quick-find + union
 - (b) Quick-union + find
 - (c) Weight Quick-union + find
 - (d) Weight Quick-union + find with path compression

Statement 1: Shell sort is a stable sorting algorithm. Statement 2: Shell sort is an in-place sorting algorithm.	•
(a) Both statements are true	
(b) Statement 2 is true but statement 1 is false	
(c) Statement 2 is false but statement 1 is true	
(d) Both statements are false	

- 4. Which of the following sorting algorithms is generally used along with quicksort to sort the sub arrays?
 - (a) Selection sort
 - (b) Shell sort
 - (c) Insertion sort
 - (d) Merge sort
- 5. A full binary tree has 32 leaf nodes. What is the height of this tree?
 - (a) 32
 - (b) 5
 - $(c) \overline{6}$
 - (d) 2
- 6. Suppose that a certain BST has keys that are integers between 1 and 10, and we search for 7. Which sequence below cannot be the sequence of keys examined?
 - (a) 10, 9, 8, 7
 - (b) 4, 10, 8, 7
 - (c) 2, 5, 3, 8, 4, 7
 - (d) 1, 10, 2, 9, 3, 8, 4, 7
- 7. Choose the sequence of nodes visited/printed in a preorder traversal of the tree give in Figure 1.
 - (a) A, E, H, K, M, O, P, Q, T, V
 - (b) M, K, E, A, H, Q, O, T, P, V
 - (c) M , K , E, A, H, Q, O, P, T, V
 - (d) M K Q E, A, H, O, T, P, V

Figure 1: Binary Tree for MCQ 7

Provide detailed answers to the 5 questions below

- 1. Let $L = L_L L_R$ be a doubly linked list such that L_L is the first half of L and L_R is the right half of L. Give a double linked list implementation of ROTATE_HALF algorithm that does the following: Takes the list $L = L_L L_R$ as the input and outputs a new list $L' = L_R L_L$. You may assume that you have all the data values and operations supporting a double linked list L such as L.head; L.tail, and all the node (x) values and operations such as x.next; x.prev; x.value. [5 marks]
- 2. Assume Weighted Quick Union model and the following id[] array:

$$i \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$
 $id[] \quad 0 \quad 0 \quad 0 \quad 3 \quad 3 \quad 6 \quad 7 \quad 7 \quad 9 \quad 9$

- (a) Draw the forest represented by the above table. [2 marks]
- (b) Execute Union(3,5) and draw the resulting forest/tree. [2 marks]
- 3. (a) Suppose that top-down mergesort algorithm is modified to skip the call on merge() whenever $a[mid] \leq a[mid+1]$. Then give the number of compares on an input array consisting of distinct elements and sorted order in ascending order. Explain your answer. [3 marks]
 - (b) Is an array that is sorted in decreasing order a max heap. Explain your answer. [2 marks]
- 4. Consider the BST given in Figure 2.
 - a. Give the sequence of nodes visited to compute the floor(N) and ceiling(I) operations in the BST given in Figure 2. [1 mark]
 - b. Give the sequence of nodes visited to compute the minimum and maximum operations in the BST given in Figure 2. [1 mark]

- c. What is the rank of the node Q in the BST given in Figure 2. [1 mark]
- d. Draw the resulting tree after deleting 'I' from it, using Hibbard's deletion. [1 mark]
- e. Draw the resulting tree when the key D is inserted into the tree obtained after (d). [1 mark]

Figure 2: BST for Q4

5. Draw the left leaning red-black tree (LLRBT) that results when you insert the keys C O M P U T E in that order into an initially empty LLRBT. Show the resulting LLRBT after every insertion.[4 marks]