

Inverse Dynamics

Plan for Session

The inverse problem

Going from subject motion to joint kinematics

Dealing with noisy data

Plan for Session (cont.)

Going from joint kinematics to joint moments

Solving the muscle force distribution problem

Video Cameras Reflective Markers

Inverse Kinematics

- Identify research question for the inverse problem
- Determine what should be measured and modeled
- Compute joint kinematics
- Filter and differentiate joint kinematics data

Example Research Questions

Courtesy of Gillette Children's Specialty Healthcare

Courtesy of John Hutchinson

Computing Joint Kinematics

Differentiation Amplifies High-Frequency Noise

- ✓ Identified research question for the inverse problem
- **Inverse Kinematics**
- ✓ Determined what should be measured and modeled
- ✓ Computed joint kinematics
- ✓ Filtered and differentiated joint kinematics data

Inverse Dynamics

Inverse Kinematics

- Derive equations of motion defining the model
- Solve equations of motion for joint moments

A Possible Inverse Dynamics Question

What are the sagittal plane moments about the ankle, knee, and hip during a maximum height jump?

Experimental set-up

Inverse Dynamics Input: The Experimental Results

Experiments provide

- joint angles
- angular velocities
- ground reaction forces

Inverse Dynamics Equations: Multibody Dynamics

- Planar 3 degrees of freedom
- Position (orientation) in global coordinate system
- Segment length = l_i
- Distance to mass center = r_i
- Moments of inertia about mass center
- Foot has no mass and remains on ground

Inverse Dynamics Output: Net Joint Moments

- ✓ Derived equations of motion defining the model
- ✓ Solved equations of motion for joint moments

Inverse Dynamics

TIPS & TRICKS

Filter your raw coordinate data

Check residuals for RRA and to make sure GRFs were applied correctly

Compare to previous literature data (if available)