튜터 프로필 / 운영계획서 정보통신공학부 1학년 공학수학Ⅱ

튜터	프로필
박지훈	현재 학과교수님과 공학수학 교재 개발 연구에 보조연구원으로 참여하고있습니다. 보조연구원으로 학생들이 어느 범위 에서 어려움을 느끼는지 그 누구보다 잘 압니다. 어려움을 극복하고 싶으신가요?

학부생 튜터 활동 계획서

성 명		박지훈	학	과		정보통신공학부			
학 번		2017036203	학	년		3학년			
활동기간		2021년 9월	1일	~	2021년	12월	7일		
교과목 명		공학수학II							
주차	활동 계획								
1	7.3절 내적(dot project)개념에 대해 보충설명 및 성질을 통해 문제들을 출제한다.								
2	7.4절 외적(cross product)개념에 대해 보충설명 및 성질을 통해 문제들을 출제함.								
3	벡터공간 안에서의 정의11가지가 있는데, 그에 맞는 설명 및 문제를 출제한다.								
4	일차독립, 일차종속에 대한 내용을 쉽게 이해할 수 있도록 예를 들어서 설명하고 그에 따른 선형 미분방정식까지 유도하는 과정을 보여준다.								
5	제일 중요한 Gram-Schmidt 직교화 과정을 상세히 설명해서 이해가 될 수 있도록 많은 문제들을 같이 풀며 설명한다.								
6	지난주차에 배웠던 Gram-Schmidt 직교화 과정을 복습차원에서 직접 도움없이								
30259	풀어보는 시간을 갖고 피드백을 통해 이해도를 높인다. 지금까지 배웠던 내용을 범위로 퀴즈를 통해 시험보는 시간을 갖고, 솔루션을								
7	통해 튜터들의 학습력을 높인다.								
8	8.1절 행렬에 대한 개념을 이해시키고, 행렬의 사칙연산을 기본개념을 통해								
	문제를 직접 풀어본다. 연립 선형대수방정식의 풀이를 해의 검증을 통해 풀이하는 방법을 직접 보여주고,								
9									
10	튜터들이 이해가 되었는지 응용된 문제를 바로 출제해 이해도를 확인한다. 첨가행렬, 사다리꼴 행렬, 소거법에 대한 개념을 보충설명하고 Gauss-Jordan								
	소거법까지 하는 방법을 이해되기 쉽게 설명한다.								
11	8.3절 행렬의 계수를 Gauss소거법을 통해 구하는 방법과 중요한 내용인 해의								
	존재성을 상세히 설명함으로 튜터들의 이해도를 높인다.								
12	8.4절 행렬식을 여인수 전개하는 방법을 보충설명하고 중요한 여인수의 성질을								
13	증명하는 방법을 설명한 뒤 기본문제들을 풀어본다. 지금까지 다뤘던 내용을 범위로 퀴즈를 통해 시험보는 시간을 갖고, 솔루션을								
	지금까지 나눴던 대용을 범위도 위스을 통해 시험보는 시간을 갖고, 골두선을 통해 튜터들의 학습력을 높인다.								
	중에 파니르의 커뮤딕트 표현대.								