Esame Di Progettazione di Sistemi Digitali - Canale MZ 18/01/2023 (A)

Cognome:	Nome:	
Matricola:		

N.B.: Gli studenti con DSA devono svolgere solo i primi 4 esercizi.

Esercizio 1 (8 punti) Progettare un circuito sequenziale con un ingresso x due uscite z1 e z0. L'uscita z1 deve essere uguale a 1 se gli ultimi tre bit di ingresso contengono almeno due 0, mentre z0 deve essere 1 se gli ultimi 3 bit sono uguali. Non si considerino le sovrapposizioni. Usare una ROM per la parte combinatoria e un FF di tipo JK per il bit più significativo. Disegnare il circuito ottenuto.

Esempio x 10100000111

z1 00010010000 z0 00000010001

Esercizio 2 (1+2+1+2 punti) Si consideri la PLA in figura.

- Scrivere l'espressione delle funzioni g ed h
- Trasformare l'espressione $f=g\oplus h$, usando assiomi e regole dell'algebra di Boole, in forma normale SOP ed in forma canonica SOP
- Stendere la tavola di verità di f
- Scrivere le espressioni minimali SOP e POS di f

Esercizio 3 (4 punti) Descrivere in SystemVerilog il seguente circuito:

Esercizio 4 (3 punti)

Un circuito di controllo riceve in ingresso i valori booleani a, b, c, d e produce in uscita y tale che:

y=1 se
$$a \cdot b = 1$$
 oppure $\bar{b} + \bar{c} = 0$ oppure $\bar{a}\bar{b}\bar{c} = 1$

- Si stenda la tavola di verità
- Si realizzi y con un MUX 4-a-1 usando gli ingressi a e b come variabili di controllo
- Si disegni il circuito corrispondente alla realizzazione all-NAND

Esercizio 5 (1+2+1 punti)

Dato A= -3.25 rappresentarlo in virgola mobile secondo lo standard IEEE half-precision. Eseguire poi la somma tra A e B, con B = 0100_0110_0100_0000 e rappresentare il risultato in virgola mobile secondo lo stesso formato. Infine, si converta in esadecimale il numero binario ottenuto dai 16 bit della rappresentazione in formato IEEE half-precision del risultato.

Esercizio 6 (5 punti) Data la funzione $f = \bar{a}d \oplus (a\bar{b} + bc)$

rappresentarla in forma POS specificando assiomi e regole dell'algebra di Boole utilizzati.