Extração de Relacionamentos Utilizando Redes Neurais Recorrentes

Bruno Dorscheidt Brandelli Orientadora: Renata Vieira

Sumário

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Relacionados
- Recursos Utilizados
- IberLEF 2019
- Pré-Processamento
- Modelos Desenvolvidos
- Resultados
- Conclusão
- Referência Bibliográfica

Introdução

- Motivação
 - Aumento da quantidade de dados disponíveis.
 - Necessidade de extrair informações relevantes dos dados.
 - Avanços na área de Extração de Informação

- Caracterização do Problema
 - Número reduzido de sistemas para língua portuguesa

Objetivos

Gerais

 Desenvolver um sistema capaz de realizar tarefas de Extração de Relacionamentos (ER)

Específicos

- Aprofundar conhecimento em Processamento de Linguagem Natural (PLN)
- Estudar abordagens e estudos na área de PLN
- Modelar e treinar um sistema capaz de realizar tarefa de ER
- Analisar resultados obtidos

Fundamentação Teórica

- Aprendizado de Máquina
- Redes Neurais
- Processamento de Linguagem Natural
- Extração de Informação
- Reconhecimento de Entidades Nomeadas
- Extração de Relacionamentos

Fundamentação Teórica - Aprendizado de Máquina

Tornar uma máquina capaz de aprender de forma autônoma a resolver problemas específicos.

- Tipos de Aprendizado de Máquina
 - Supervisionado
 - Não-Supervisionado
 - Semi-Supervisionado

Fundamentação Teórica - Redes Neurais

Implementação que busca modelar o modo como o cérebro aprende.

Fundamentação Teórica - Redes Neurais

Características

- Estrutura Paralela Distribuída
- Alta Capacidade de Aprendizado
- Generalização

Fundamentação Teórica - Redes Neurais

- Principais tipos de Redes Neurais
 - Redes Neurais Recorrentes
 - Long Short-Term Memory (LSTM)
 - Bidirectional Long Short-Term Memory (BiLSTM)
 - Redes Neurais Convolucionais

Fundamentação Teórica - PLN

Processamento de Linguagem Natural (PLN) refere-se ao uso de métodos computacionais para processar linguagem escrita ou falada.

Fundamentação Teórica - Extração de Informação

Tarefa de alto nível de PLN, utilizada para extrair dados relevantes de entradas de texto.

- Principais tipos de informações procuradas
 - Entidades
 - Relacionamentos

Fundamentação Teórica - REN

Reconhecimento de Entidades Nomeadas (REN), busca identificar Entidades Nomeadas (EN) em entradas de texto.

Tipo	Tag	Exemplo		
Pessoa	PER	Turing é o pai da computação		
Organização	ORG	O Grêmio é o rei de copas		
Local	LOC	Porto Alegre é demais		
Veiculo	VEH	O Uno é um carro muito bom		
Pessoa-Local	PER-LOC	Bento Gonçalves é muito grande		

Fundamentação Teórica - ER

Extração de Relacionamentos (ER), tarefa de extrair ou classificar o relacionamento entre duas EN.

Frase	Relacionamento
André jogador do Grêmio está mal.	Jogador do
José é o filho mais novo de João	Filho de
Maria é a fundadora da fintech Finmoney	Fundador de

Trabalhos Relacionados

- Rede Neural Convolucional
- Rede Neural Recorrente
- NLPyPort
- RelP

Trabalhos Relacionados - Redes Neurais

- Rede Neural Convolucional
 - Sistema desenvolvido pelo MIT
 - Tarefa 10 do SemEval 2017

- Rede Neural Recorrente
 - Desenvolvido por Zhang e Wang
 - Tarefa 8 do SemEval 2010

Trabalhos Relacionados - IberLEF

NLPyPort

- Desenvolvido por Ferreira, Gonçalo e Rodrigues
- Baseado em regras
- Tarefa de ER do IberLEF 2019

Relp

- Desenvolvido por Colovini e Viera
- Modelo Conditional Random Fields (CRF)

Recursos Utilizados

- Linguagem
 - Python
- Frameworks / Bibliotecas
 - Tensorflow
 - Keras
 - spaCy
 - NLTK
- Plataformas online
 - Google Colab
 - Kaggle

Recursos Utilizados

- Repositório NILC de Word Embeddings
 - 31 modelos treinados de Word Embeddings
 - 17 Corpus
 - 1.395.926.282 tokens
 - Algoritmos: Word2Vec, FastText, Wang2Vec, Glove
 - Dimensionalidades: 50, 100, 300, 600, 1000

IberLEF 2019 - O que é?

- Iberian Languages Evaluation Forum
- Uni\u00e3o de dois outros workshops de avalia\u00e7\u00e3o, TASS e IberEval.
- Encorajar a comunidade da área de pesquisas a organizar tarefas de PLN.

IberLEF 2019 - Tarefas

Tarefas Disponíveis

- Análise de Humor (Espanhol)
- Análise de Sentimento (Espanhol)
- Detecção de Ironia (Espanhol)
- Reconhecimento de Entidades Nomeadas (Português e Espanhol)
- Extração de Relacionamentos (Português e Espanhol)

Tarefa Selecionada

Extração de Relacionamentos (Português)

IberLEF 2019 - Dataset

Sentenças

o Treino: 90

Teste: 149

• Exemplo de Sentença, Relacionamento e Tripla

Sentença	A Marfinite fica em o Brasil	
Relacionamento	fica em	
Tripla	(Marfinite, fica em, Brasil)	

IberLEF 2019 - Dataset

• Categorias de EN e distribuição nos datasets

Categoria	Sigla	Dataset Treino	Dataset Teste	
Organização	ORG	119	196	
Pessoa	PER	31	56	
Lugar	PLC	30	46	

IberLEF 2019 - Dataset

Número de relacionamentos entre pares de EN

PAR	Dataset Treino	Dataset Teste
ORG-ORG	29	47
ORG-PLC	30	46
ORG-PER	31	56
Total 90		149

Pré-Processamento

- Padronização de Tamanho
- Identificador de Palavra
- Indicador de EN
- Identificador de POS Tag
- Saída do Sistema

Pré-Processamento

Dado	Representação	
Sentença Original	Romildo é o presidente do Grêmio	
Tripla	(Romildo, presidente do, Grêmio)	
Padronização de Tamanho	Romildo é o presidente do Grêmio <pad> <pad></pad></pad>	
Identificador de Palavras	6 3 7 45 2 30 0 0	
Indicador de EN	10000100	
POS Tag	PROPN CONJ DET NOUN CONJ PROPN PAD PAD	
Identificador de POS Tag	12342100	
Saída do Modelo	00011000	

Modelos Desenvolvidos - Arquiteturas

Modelos Desenvolvidos - Especificação

Nome	Entradas		
Modelo Simples	Identificador de Palavras		
Modelo Intermediário Modelo Simples + Indicador de EN			
Modelo Completo Modelo Intermediário + Identificador de POS Tag			

Modelos Desenvolvidos - Modelo Genérico

Modelos Desenvolvidos - Simples

Modelos Desenvolvidos - Intermediário

Modelos Desenvolvidos - Completo

Modelos Desenvolvidos - Hiper-Parâmetros

Hiper-Parâmetro	Valor	
Épocas	15	
Tamanho das Entradas	100 Palavras	
Batch de Treino	3 Sentenças	
Dropout	50%	
Taxa de Aprendizado	1%	
Word Embedding	50 Dimensões	
EN Embedding	5 Dimensões	
POS Tag Embedding	5 Dimensões	
Algoritmo de Word Embedding	GloVe	

Resultados - Acurácia Treino

Resultados - Perda Treino

Resultados - Métricas IberLEF

- Relacionamentos Completamente Corretos (RCC)
- Relacionamentos Parcialmente Corretos (RPC)
- Relacionamentos Parcialmente Corretos Absolutos (RPCA)
- Total de Relacionamentos no Dataset (TR)
- Relacionamentos Identificados (RI)

Resultados - Métricas IberLEF

Precisão

 Proporção de respostas corretas, com a proporção de respostas dadas pelo sistema.

Recall

 Proporção de respostas corretas, com a proporção de respostas esperadas no dataset.

F-Measure

Combinação das duas métricas anteriores.

Resultados - Comparação de Sistemas

	Simples	Intermediário	Completo	RelP	NLPyPort
RI	133	141	132	74	144
RCC	28	75	83	46	106
RPCA	61	45	30	21	-
Precisão Ex.	0.210	0.531	0.628	0.621	0.736
Recall Ex.	0.187	0.503	0.577	0.307	0.711
F-Measure Ex.	0.198	0.517	0.590	0.412	0.723
Precisão P.	0.326	0.588	0.684	0.685	0.766
Recall P.	0.288	0.557	0.606	0.340	0.748
F-Measure P.	0.305	0.572	0.642	0.454	0.757

Conclusão

- Conclusão Geral
 - Objetivos atingidos
 - Resultados Satisfatórios
- Trabalhos Futuros
 - Datasets diferentes
 - Customização do Desenvolvimento do Modelo
 - Modelo BiLSTM-CRF

- "Colaboratory frequently asked questions". Capturado em: https://research.google.com/colaboratory/faq.html, Junho 2019
- 2. "General python faq". Capturado em:https://docs.python.org/3/faq/general.html#what-is-python, Abril 2019
- 3. "Iberlef 2019 portuguese named entity recognition and relation extraction tasks". Capturado em: http://www.inf.pucrs.br/linatural/wordpress/iberlef-2019/, Março 2019
- 4. Amaral, D.; Fonseca, E.; Lopes, L.; Vieira, R. "Comparative analysis of portuguese named entities recognition tools". In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), 2014, pp. 2554–2558

- 5. Augenstein, I.; Das, M.; Riedel, S.; Vikraman, L.; McCallum, A. "SemEval 2017 task10: SciencelE extracting key phrases and relations from scientific publications". In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 546–555
- 6. Burkov, A. "The Hundred-page Machine Learning Book". Andriy Burkov, 2019
- 7. Cimiano, P. "Ontology Learning and Population from Text: Algorithms, Evaluation and Applications". Berlin, Heidelberg: Springer-Verlag, 2006
- 8. de Abreu, S. C.; Vieira, R. "Relp: Portuguese open relation extraction", Knowledge Organization, vol. 44–3, 2017, pp. 163–177
- 9. Gers, F. "Long short-term memory in recurrent neural networks", 2001

- 10. Ferreira, J.; Gonçalo Oliveira, H.; Rodrigues, R. "Nlpyport: Named entity recognition with crf and rule-based relation extraction". In: Iberian Languages Evaluation Forum(IberLEF 2019), 2019
- 11. Goodfellow, I.; Bengio, Y.; Courville, A. "Deep Learning". MIT Press, 2016, http://www.deeplearningbook.org.
- 12. Hartmann, N.; Fonseca, E. R.; Shulby, C.; Treviso, M. V.; Rodrigues, J.; Aluísio, S. M. "Portuguese word embeddings: Evaluating on word analogies and natural language tasks", CoRR, vol. abs/1708.06025, 2017, 1708.06025
- 13. Haykin, S. S. "Neural networks and learning machines". Upper Saddle River, NJ:Pearson Education, 2009, third ed
- 14. Hochreiter, S.; Schmidhuber, J. "Long short-term memory", Neural Comput., vol. 9–8, Nov 1997, pp. 1735–1780

- 15. Hearst, M. A. "Automatic acquisition of hyponyms from large text corpora". In:Proceedings of the 14th Conference on Computational Linguistics Volume 2, 1992,pp. 539–545.
- 16. Hendrickx, I.; Kim, S. N.; Kozareva, Z.; Nakov, P.; Ó Séaghdha, D.; Padó, S.;Pennacchiotti, M.; Romano, L.; Szpakowicz, S. "Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals". In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, 2009, pp. 94–99
- 17. Jurafsky, D.; Martin, J. H. "Speech and Language Processing (2nd Edition)". Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009
- 18. Kriesel, D. "A Brief Introduction to Neural Networks". 2007.

- 19. Lee, J. Y.; Dernoncourt, F.; Szolovits, P. "MIT at SemEval-2017 task 10: Relation extraction with convolutional neural networks". In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 978–984.
- 20. Li, Y.; Xu, L.; Tian, F.; Jiang, L.; Zhong, X.; Chen, E. "Word embedding revisited: A new representation learning and explicit matrix factorization perspective". In: Proceedings of the 24th International Conference on Artificial Intelligence, 2015, pp. 3650–3656.
- 21. Santos, D.; Freitas, C.; Gonçalo Oliveira, H.; Carvalho, P. "Second harem: New challenges and old wisdom", 2008, pp. 212–215.
- 22. Sarawagi, S. "Information extraction", Found. Trends databases, vol. 1–3, Mar 2008, pp. 261–377

- 23. Singh, S. "Natural language processing for information extraction", CoRR, vol.abs/1807.02383, 2018, 1807.02383
- 24. Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. "Relation classification via convolutional deep neural network", the 25th International Conference on Computational Linguistics: Technical Papers, 01 2014, pp. 2335–2344
- 25. Zhang, D.; Wang, D. "Relation classification via recurrent neural network", CoRR, vol.abs/1508.01006, 2015.