

Pflichtenheft

HTW Berlin ZWL-Roboter

Autor: Gruppe ZWL Letzte Änderung: 24. Nov 2022

Dateiname: ZWL-Roboter_Pflichtenheft.docx

Version: 1.0

Copyright

© ZWL-Roboter Gruppe

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Version	Datum	Verantwortlich	Änderung
0.1	28.10.2022	Markus	Überblick + Hauptziele
0.2	29.10.2022	Elian	Workflow
0.3	01.11.2022	Maged	Annahmen
0.4	03.11.2022	Markus	Überblick Funktionalität
0.5	05.11.2022	Maged	Abgrenzungen
0.6	07.11.2022	Elian	Funktionalität
0.7	10.11.2022	Rayen	Erweiterungen Funktionalität
0.8	15.11.2022	Markus	Erweiterungen Überblick
0.9	24.11.2022	Alle	Allgemeine Erweiterungen
1.0	24.11.2022	Elian	Abgabe

Inhaltsverzeichnis

Ve	erzeic	hnis vorhandener Dokumente	II
1	Übe	rblick	1
2	Hau	ptziele	2
3	Ann	ahmen und Abgrenzungen	2
4	Wor	kflow	3
5	Funi	ktionalität	4
	5.1	Überblick	4
		Zauberwürfel Seiten fotografieren	
	5.3	Lösungsstrategie berechnen	7
		Zauberwürfel lösen	
6	Offe	ne Fragen	9
7	Mod	ulabhängigkeiten	9
R	Wer	hat was gemacht	9

Abbildungsverzeichnis

bbildung 1: Systemmodell	1
bbildung 2: Workflowbbildung 2: Workflow	
bbildung 3: Möglicher aufbau	
bbildung 4: Schaltplanung	
bbildung 5: Use Case Diagra	5
bbildung 6: Mögliche Würfelseiten	6

Tabellenverzeichnis

Tabelle 1: Hauptziele	2
Tabelle 2: Annahmen	
Tabelle 3: Abgrenzungen	
Tabelle 4: Zauberwürfel Seiten fotografieren	
Tabelle 5: Lösungsstrategie berechnen	7
Tabelle 6: Zauberwürfel lösen	
Tabelle 7: offene Frage	
Tabelle 8: wer hat was gemacht.	

Verzeichnis vorhandener Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden

Dokument	Autor	Datum
ZWL-Roboter_Workflow.graphml	Elian	17.11.2022
ZWL-Roboter_USD.webp	Rayen	20.11.2022
ZWL-Roboter Plan(1),mpp	Maged	22.11.2022

1 Überblick

Im Rahmen des vorliegenden Projekts wird ein System aufgebaut, das automatisiert einen beliebig verdrehten Zauberwürfel in die Ausgangsposition zurückdreht. Entsprechend dem Lastenheft soll das zu entwickelnde System folgende Merkmale verfügen:

Die Ausgangskonfiguration des Würfels wird durch eine Kamera detektiert. Durch die Kamera wird stets die aktuelle Position mit Hilfe der Farben ermittelt, um den Lösungsweg anschließend berechnen zu können. Die Kamera befindet sich über dem Würfel in einer Halterung. Die Kamerahalterung wird fest an der Bodenplatte verschraubt.

Der Lösungsweg wird durch einen ausgewählten Algorithmus ermittelt.

Das System verfügt über eine Drehmechanik mit insgesamt 3 beweglichen Achsen. Die einzelnen Achsen werden jeweils von einem Schrittmotor angetrieben. Die Motorsteuerung erfolgt über Software. Der aktuelle Status bzw. eventuell entstandene Probleme werden über Ton bzw. über eine Anzeige (LED-Indikator) dem Benutzer mitgeteilt. Für die Steuerung des Roboters sind zwei Buttons vorgesehen (Start/Aus & Not-Aus).

Abbildung 1: Systemmodell

2 Hauptziele

#	Ziel	Beschreibung der Implementation
1	Lösen des Würfels.	Es soll mit der Wahrscheinlichkeit von 95% den Würfel lösen können.
2	Zeit	Löst den Würfel in maximal 5min.
3	Status	Zeigt den aktuellen Lösungsvorschritt
4	Fehler Reduzierung.	Fehler, welche durch Hardware entstehen sollen, vorgebeugt werden und nicht häufiger als 10% vorkommen.
5	Vereinfachung des Systems.	Kein Vorwissen / Einarbeitung notwendig.

Tabelle 1: Hauptziele

3 Annahmen und Abgrenzungen

#	Annahmen (fachliche und technische Annahmen)
1	Arduino (Microkontroller)
2	Laptop
3	3d Teile
4	Schrittmotoren
5	Kamera
6	DC-Stromversorgung 12V

Tabelle 2: Annahmen

#	Abgrenzungen(Was ist in dieser Lösung nicht enthalten bzw. abgedeckt)
1	Sprachsteuerung
2	Handy-Applikation
3	Drahtlose Kommunikation
4	Steuerung per Internet

Tabelle 3: Abgrenzungen

4 Workflow

Abbildung 2: Workflow

5 Funktionalität

5.1 Überblick

Der Roboter muss an eine konstante Stromquelle (12 V) angeschlossen werden. Würfel in den vorgesehenen Platz einlegen und den Start-Knopf betätigen. Der Roboter erkennt, ob ein Würfel eingelegt ist oder nicht und fängt erstmal mit dem Fotografieren (Scanner) der einzelnen Seiten an.

Intern wird eine Karte der Seitenteile inkl. Der einzelnen Farben gebildet. Der Algorithmus berechnet danach die notwendigen Lösungsschritte. Die Motoren werden entsprechend der Lösungsschema angesteuert. Sollte etwas nicht funktionieren oder der Würfel rausfallen stoppt er den Vorgang und meldet es dem Benutzer.

Der Vorschritt, also der ungefährer Prozentstatus, wird auf dem Display angezeigt. Dadurch weiß man ungefähr, wann er fertig ist.

Abbildung 3: Möglicher Aufbau

Abbildung 4: Schaltplanung

Abbildung 5: Use Case Diagramm

5.2 Zauberwürfel Seiten fotografieren:

Zweck/Ziel	Der Roboter fotografiert alle Seiten des Zauberwürfels mit einer Kamera, um diese dann inder Software auszuwerfen			
Akteur/Auslöser	Benutzer, Start-Button			
Berechtigung	Jeder ist in der Lage das System zu bedienen			
WF-Rererenz	Kamera fotografiert alle Seiten Zauberwürfel Step: 4			
Vorbedingung	Zauberwürfel muss im Position sein.			
	 Zauberwürfel muss vom Typ 3x3x3 sein. 			
	 Zauberwürfel soll vorgegebene Größe haben. 			
Verarbeitungs- schritte	Um ein Foto von allen Seiten des Zauberwürfels zu machen:			
	Fotos von den Seiten des Zauberwürfels werden mit einer Kamera aufgenommen,			
	die direkt über dem Würfel positioniert wird.			
	Wenn das Foto aufgenommen			
	wird, dreht der Roboter den Würfel, um die nächste Seite aufzunehmen.			
Ergebnis	6 Fotos aufgenommen und jedes Foto zeigt eine Seite des Zauberwürfels			
Plausibilitäten	Es müssen 6 verschiedene Dateien vorhanden sein.			
Fehlerhandling	Der gesamte Prozess wird vom Benutzer überwacht.			
	Falls der Würfel seine Position nicht erfolgreich ändert, wird der Benutzer den Würfel richtig positionieren. Kamera nicht korrekt angeschlossen: es gibt eine Fehlermeldung			
Folgeprozess	Step 5: Lösungsstrategie berechnen			
Anforderung	Bilder der Einzelseiten müssen vorhanden sein Zauberwürfel muss richtig eingestellt werden Start-Button muss gedruckt werden			
Test Cases	Start-button drucken, ohne den Zauberwürfel einzustellen Kamera nicht angeschlossen.			

Tabelle 4: Zauberwürfel Seiten fotografieren

Abbildung 6: Mögliche Würfelseiten Fotografie der Kamera

5.3 Lösungsstrategie berechnen

Zweck/Ziel	Die Lösungsstrategie für den Zauberwürfel berechnen.			
Akteur/Auslöser	Roboter, System			
Berechtigung	Daten von dem System (Kamera) erhalten.			
WF-Rererenz	Lösungsstrategie berechnen Step 5.			
Vorbedingung	Würfel befindet sich in seiner Position.			
	Kamera fotografiert den Zauberwürfel.			
	Fotos als PNG speichern.			
Daten-Input	Daten von fotografierte Zauberwürfel (Step: 4)			
	Die Daten sollen passende zu Algorithmus sein (Datenformat)			
Verarbeitungs-	Um ein Lösungsstrategie des Zauberwürfels zu berechnen:			
schritte	 Fotos werden als PNG gespeichert (z.B). 			
	 Die Zusammensetzung des Würfels wird anhand der Farben Ermitteln, die 			
	in jedem Foto mit Hilfe von Bildverarbeitungsalgorithmen vorhanden ermittelt.			
	Dann basierend auf den Ergebnissen und einem spezialisierten Algorith-			
	mus, um einen Zauberwürfel zu lösen, werden wir eine Lösungsstrategie berechnen.			
Ergebnis	Eine Reihe von Befehlen, um den Zauberwürfel entweder in y-Richtung oder in x-			
	Richtung zu drehen			
Plausibilitäten	Es müssen Reihe von verschiedenen Befehlen vorhanden sein			
Fehlerhandling	Was passiert im Fehlerfall? z.B.			
	 Falscher Würfel eingelegt, dann gibt es eine Fehlermeldung. Daten unvoll- ständig, dann wird es erneut Fotografiert bzw. es gibt eine Fehlermeldung. 			
Folgeprozess	Der Roboter fängt den Zauberwürfel zu lösen(Step: 6)			
Test Cases	Einen gelösten Würfel einlegen.			
	Würfel hat auf jeder Seite gleiche Farben.			

Tabelle 5: Lösungsstrategie berechnen

5.4 Zauberwürfel lösen

Zweck/Ziel	Der Roboter löst den Zauberwürfel		
Akteur/Auslöser	Roboter		
Berechtigung	Software, Roboter		
WF-Rererenz	Zauberwürfel lösen Step 6		
Vorbedingung • Lösungsstrategie berechnen.			
	 Die Lösungsstrategie für der Zauberwürfel erhalten. 		
Daten-Input	 Die berechnete Lösungsstrategie. 		
	 Lösungsschema für Motor Ansteuerung. 		
Verarbeitungs- schritte	Beschreibung der Verarbeitungslogik gemäß Workflow Definition.		
	 Entsprechend der Lösung steuere die Schrittmotoren. 		
	Steuerung erfolgt nach dem vorgegebenen Schema.		
	 Entsteht ein Fehler wird es dem User gemeldet und der Vorgang gestoppt. 		
Ergebnis	Ein gelöster Zauberwürfel		
Plausibilitäten	Ein erneutes Fotografieren kann das erfolgreiche Lösen des Würfels bestätigen bzw. Korrekturen starten.		
Fehlerhandling	Was passiert im Fehlerfall? z.B.		
	 Lösen nicht erfolgreich: Meldung an dem Benutzer und stoppen. Mechanischer Fehler: der Benutzer greift ein und stoppt den Vorgang. Gelöster Würfel ist fehlerhaft: ein erneutes Starten des Vorgangs erforderlich. 		
Folgeprozess	Ende		
Test Cases	Einen gelösten Würfel einlegen. Würfel hat auf jeder Seite gleiche Farben.		

Tabelle 6: Zauberwürfel lösen

6 Offene Fragen

#	Issue	Status	Owner	Deadline
1	Keine Offene Fragen an Auftraggeber.			

Tabelle 7: Offene Fragen

7 Modulabhängigkeiten

Das Projekt beinhaltet Kenntnisse, die aus den folgenden Modulen erworbenen wurden: Konstruktion, Software-Entwicklungsprojekt, Programmierung, Mechatronik und Projektmanagement. Das sind die vorausgesetzten Module, um das Projekt erfolgreich abzuschließen.

8 Wer hat was gemacht

Autor	Aufgabe/Kapitel	Anteil
Elian	Workflow	100%
Markus	Überblick	100%
maged	Annahmen und Abgrenzungen	100%
Rayen	Funktionalität	65%
Elian	Funktionalität	35%

Tabelle 8: wer hat was gemacht