EE1001 Foundations of Digital Techniques

Logic

Assignment 1

Validity and Soundness of Argument
Propositional Logic
Conditionals

- •Q1)
- A = {4, 14, 66, 70}, ∃ x ∈ A such that x is an odd number. Determine whether the statement is T or F.

- Q1)
- A = $\{4, 14, 66, 70\}$, $\exists x \in A$ such that x is an odd number. Determine whether the statement is T or F.

- Solution Q1)
- Consider A = $\{4, 14, 66, 70\}$. Let p: $\exists x \in A$ such that x is an odd number. Here, the statement p uses the quantifier 'there exists' (∃). This statement is true if at least one element of set A satisfies the condition 'x is an odd number' and is false otherwise. Here, the given statement is false as none of the elements of set A satisfy the condition, 'x ∈ A such that x is an odd number'.

•Q2)

A = {1, 2, 3}, p: ∀ x ∈ A, x < 4.
 Determine whether the statement is T or F.

•

- Q2)
- A = $\{1, 2, 3\}$, p: \forall x \in A, x < 4. Determine whether the statement is T or F.

•

- Solution Q2)
- A = $\{1, 2, 3\}$ Let p: \forall x \in A, x < 4 Here, the statement p uses the quantifier 'for all'(\forall). This statement is true if and only if each and every element of set A satisfies the condition 'x < 4' and is false otherwise. Here, the given statement is true for all the elements of set A, as 1, 2, 3 satisfy the condition, 'x \in A, x < 4'.

- Q3)
- Write the negations of following statements.
- i. \forall n \in N, n + 1 > 2.
- ii. $\forall x \in \mathbb{N}$, x = 2 + x is even number.

Write the negations of following statements.

- i) $\forall n \in \mathbb{N}, n+1 > 2$
- ii) $\forall x \in \mathbb{N}$, $x^2 + x$ is an even number

Ans:

i)
$$\sim (\forall n \in \mathbb{N}, n+1 > 2)$$

= $\exists n \in \mathbb{N}, n+1 \le 2$

Ans:

- ii) \sim ($\forall x \in \mathbb{N}$, $x^2 + x$ is an even number)
 - $=\exists x\in \mathbb{N}, x^2+x \text{ is not an even number}$

- 1) If Superheroexists, then Superhero is all-powerful) and perfectly-good.
- 2). If Superhero is all-powerful, then he would be able to prevent crimes.
- 3). If Superhero is perfectly-good, then he would be willing to prevent crimes.
- 4). If Superhero is able to and willing to prevent crimes, then there would be no crime.
- 5) There are crimes.

Conclusion: Superhero does not exist.

Use inference rules and logical equivalence relation to determine the validity of the argument above.

- 1) If Superhero exists, then Superhero is all-powerful) and perfectly-good.
- 2). If Superhero is all-powerful, then he would be able to prevent crimes.
- 3). If Superhero is perfectly-good, then he would be willing to prevent crimes.
- 4). If Superhero is able to and willing to prevent crimes, then there would be no crime.
- 5) There are crimes.

Conclusion: Superhero does not exist.

Use inference rules and logical equivalence relation to determine the validity of the argument above.

```
Ans:

1) S \rightarrow (p \land g)

2) p \rightarrow a

3) g \rightarrow w

4) (a \land w) \rightarrow \neg e

10) (\neg a \rightarrow \neg p) \land (\neg w \rightarrow \neg b) (C 8,9) Caution: A valid argument may not be sound.

11) \neg p \lor \neg g (CD 10,7) may not be sound.

12) \neg (p \land g) (De Morgan 11)

13) \neg S (MT 1,12)
```

7) ~a v ~w (De Morgan 6)

6) \sim (*a* \wedge *w*) (MT 4,5)

8) $\sim a \rightarrow \sim p$ (contrapositive 2)

9) $\sim w \rightarrow \sim g$ (contrapositive 3)

Q5. There are two types of phones:

Question:

A is a hijacked phone, and my input message is "A is ordinary or hijacked".

What message will A output?

Q5. There are two types of phones:

Question:

A is a hijacked phone, and my input message is "A is ordinary or hijacked".

What message will A output?

Ans:

Let p = "A is an ordinary phone"

The statement "A is ordinary or hijacked" can be formulated as " $p \lor \sim p$ "

Given A is a hijacked phone, its output message should be the **negation** of the input message, i.e.,

Output message =
$$\sim (p \lor \sim p)$$

= $\sim p \land \sim (\sim p)$ (De Morgan's laws)
= $\sim p \land p$
= A is hijacked and ordinary

Q6. There are two types of phones:

Question:

Are A and B ordinary or hijacked? Use truth table to justify.

Q6. There are two types of phones:

Question:

Are A and B ordinary or hijacked? Use truth table to justify.

Ans:

Let p = "A is an ordinary phone", and q = "B is an ordinary phone". Therefore, the statement "A and B are ordinary" can be formulated as " $p \land q$ " The condition is satisfied only when $p \leftrightarrow (p \land q)$ = True

: Three possible solutions

	p	q	p∧q	<i>p</i> ↔(p ∧ q)
	T	Т	Т	T
	Т	F	F	F
	F	Т	F	T
	F	F	F	Т

•END