See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231394867

# Atmospheric Chemistry of 1,1,1-Trichloroethane: UV Spectra and Self-Reaction Kinetics of CCl3CH2 and CCl3CH2O2 Radicals, Kinetics of the Reactions of the CCl3CH2O2 Radical with NO...

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY · APRIL 1995

Impact Factor: 2.78 · DOI: 10.1021/j100017a044

CITATIONS READS
28 150

4 AUTHORS, INCLUDING:



Ole John Nielsen University of Copenhagen

261 PUBLICATIONS 4,881 CITATIONS

SEE PROFILE

Atmospheric Chemistry of 1,1,1-Trichloroethane: UV Absorption Spectra and Self-Reaction Kinetics of CCl<sub>3</sub>CH<sub>2</sub> and CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> Radicals, Kinetics of the Reactions of the CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> Radical with NO and NO<sub>2</sub>, and the Fate of the Alkoxy Radical CCl<sub>3</sub>CH<sub>2</sub>O

# Jesper Platz, Ole J. Nielsen,\* and Jens Sehested

Section for Chemical Reactivity, Environmental Science and Technology Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

### Timothy J. Wallington\*

Ford Research Laboratory, SRL-3083, Ford Motor Company, Dearborn, P.O. Box 2053, Michigan 48121-2053 Received: October 25, 1994; In Final Form: February 10, 1995\*

A pulse radiolysis technique was used to measure the UV absorption spectra of CCl<sub>3</sub>CH<sub>2</sub> and CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals over the range 220–300 nm. At 220 nm,  $\sigma(\text{CCl}_3\text{CH}_2) = (9.4 \pm 1.1) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ ; at 250 nm,  $\sigma(\text{CCl}_3\text{CH}_2\text{O}_2) = (2.9 \pm 0.3) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ . The observed self-reaction rate constants, defined as -d[CCl<sub>3</sub>CH<sub>2</sub>]/dt =  $2k_4$ [CCl<sub>3</sub>CH<sub>2</sub>] and -d[CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub>]/dt =  $2k_5$ obs[CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub>]<sup>2</sup>, were  $k_4 = (9.1 \pm 1.1) \times 10^{-12}$  and  $k_5$ obs =  $(4.7 \pm 1.6) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. The reaction of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals with NO gives CCl<sub>2</sub>CH<sub>2</sub>O radicals. In the atmosphere, >96% of the CCl<sub>3</sub>CH<sub>2</sub>O radicals react with O<sub>2</sub> to give CCl<sub>3</sub>CHO. The rate constants for the reactions of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals with NO and NO<sub>2</sub> were determined to be  $k_6 \ge 6.1 \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> and  $k_7 = (6.5 \pm 0.4) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>, respectively. As a part of this work, the rate constant for the reaction between F atoms and CCl<sub>3</sub>CH<sub>3</sub> was determined to be  $k_3 = (6.8 \pm 1.5) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. A relative rate technique was used to measure rate constants for the reactions of Cl atoms with: CCl<sub>3</sub>CH<sub>3</sub>,  $(9.9 \pm 2.0) \times 10^{-15}$ ; CCl<sub>3</sub>CHO,  $(6.0 \pm 1.3) \times 10^{-12}$ ; and CCl<sub>3</sub>CH<sub>2</sub>OH  $(3.0 \pm 0.6) \times 10^{-12}$  (units of cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>) at 296 K. Results are discussed in the context of the atmospheric chemistry of 1,1,1-trichloroethane.

# Introduction

By international agreement, industrial production of chlorofluorocarbons (CFCs), together with hydrochlorofluorocarbons (HCFCs), will be phased out. In 1990 there was a production of  $726 \times 10^6$  kg of CCl<sub>3</sub>CH<sub>3</sub>, and the estimated release to the atmosphere the same year was  $705 \times 10^6$  kg of CCl<sub>3</sub>CH<sub>3</sub>. It is therefore important to establish the environmental impact of the release of CCl<sub>3</sub>CH<sub>3</sub>. It has been estimated that 10-15% of CCl<sub>3</sub>CH<sub>3</sub> will enter the stratosphere.<sup>2,3</sup> In the stratosphere Cl atoms will be generated by photolysis of CCl<sub>3</sub>CH<sub>3</sub>. In the troposphere CCl<sub>3</sub>CH<sub>3</sub> will react with OH radicals to produce alkyl radicals which will, in turn, react with O<sub>2</sub> to give peroxy radicals:

$$CCl3CH3 + OH \rightarrow CCl3CH2 + H2O$$
 (1)

$$CCl3CH2 + O2 + M \rightarrow CCl3CH2O2 + M$$
 (2)

In the present work we have used pulse radiolysis to determine the UV absorption spectra of  $CCl_3CH_2$  and  $CCl_3-CH_2O_2$  radicals, and the kinetics of the reactions 3-7.

$$CCl_3CH_3 + F \rightarrow CCl_3CH_2 + HF$$
 (3)

$$CCl_3CH_2 + CCl_3CH_2 \rightarrow products$$
 (4)

$$CCl_3CH_2O_2 + CCl_3CH_2O_2 \rightarrow products$$
 (5)

$$CCl_3CH_2O_2 + NO \rightarrow products$$
 (6)

$$CCl3CH2O2 + NO2 + M \rightarrow CCl3CH2O2NO2 + M (7)$$

FTIR product studies were used to study the atmospheric fate of CCl<sub>3</sub>CH<sub>2</sub>O.

## **Experimental Section**

**Pulse Radiolysis System.** The pulse radiolysis transient UV absorption setup used for the present experiments has been described in detail previously and will only be dealt with briefly here.<sup>4</sup> CCl<sub>3</sub>CH<sub>2</sub> radicals were generated by the radiolysis of SF<sub>6</sub>/CCl<sub>3</sub>CH<sub>3</sub> gas mixtures in a 1 L stainless steel reactor with a 30 ns pulse of 2 MeV electrons from a Febetron 705B field emission accelerator. SF<sub>6</sub> was always in great excess and was used to generate fluorine atoms:

$$SF_6 \xrightarrow{2MeV e^-} F + products$$
 (8)

$$F + CCl3CH3 \rightarrow CCl3CH2 + HF$$
 (3)

$$CCl3CH2 + O2 + M \rightarrow CCl3CH2O2 + M$$
 (2)

Four sets of experiments were performed. First, the ultraviolet absorption spectra of CCl<sub>3</sub>CH<sub>2</sub> and CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals were determined by observing the maximum of the transient UV absorption at short times  $(0-20~\mu s)$  following the pulse radiolysis of SF<sub>6</sub>/CCl<sub>3</sub>CH<sub>3</sub>, and SF<sub>6</sub>/CCl<sub>3</sub>CH<sub>3</sub>/O<sub>2</sub> mixtures, respectively. Second, using a longer time scale  $(100-400~\mu s)$ , the subsequent decay of the absorption was monitored to determine the kinetics of the self-reactions 4 and 5:

<sup>\*</sup> Authors to whom correspondence may be addressed.

<sup>\*</sup> Abstract published in Advance ACS Abstracts, April 1, 1995.

$$CCl_3CH_2 + CCl_3CH_2 \rightarrow products$$
 (4)

$$CCl_3CH_2O_2 + CCl_3CH_2O_2 \rightarrow products$$
 (5)

Third, the rate of NO<sub>2</sub> formation following the pulse radiolysis of  $SF_6/CCl_3CH_3/O_2/NO$  mixtures was used to measure  $k_6$ . Fourth, the rate of decay of NO<sub>2</sub> following the pulse radiolysis of  $SF_6/CCl_3CH_3/O_2/NO_2$  mixtures was used to measure  $k_7$ .

To monitor the transient UV absorption, the output of a pulsed 150 W xenon arc lamp was multi-passed through the reaction cell using internal White type optics (40, 80, or 120 cm path length). Reagent concentrations used were: SF<sub>6</sub>, 500–1000 mbar; O<sub>2</sub>, 0–40 mbar; CCl<sub>3</sub>CH<sub>3</sub>, 0–10.0 mbar; NO, 0–1.5 mbar; and NO<sub>2</sub>, 0–2.0 mbar. All experiments were performed at 295 K. Ultrahigh purity O<sub>2</sub> was supplied by L'Air Liquide, SF<sub>6</sub> (99.9%) was supplied by Gerling and Holz, CCl<sub>3</sub>CH<sub>3</sub> (>99%) was obtained from the Fluka AG and was purified on a Al<sub>2</sub>O<sub>3</sub> column, NO (>99.8%) was supplied by Linde Technische Gase. The CCl<sub>3</sub>CH<sub>3</sub> sample was degassed before use by repeated freeze—pump—thaw cycling. All other reagents were used as received.

FTIR Smog Chamber System. The FTIR system was interfaced to a 140 L pyrex reactor. Radicals were generated by the UV irradiation of mixtures of 110-890 mTorr of CCl<sub>3</sub>-CH<sub>3</sub>, 0.1-0.6 Torr of  $F_2$ , 3.4-700 Torr of  $O_2$  in 700 Torr total pressure with  $N_2$  diluent at 296 K using 22 blacklamps (760 Torr = 1013 mbar). The loss of reactants and the formation of products were monitored by FTIR spectroscopy, using an analyzing path length of 27 m and a resolution of 0.25 cm<sup>-1</sup>. Infrared spectra were derived from 32 co-added spectra. CCl<sub>3</sub>-CH<sub>3</sub>, CCl<sub>3</sub>CHO, and COCl<sub>2</sub> were monitored using their characteristic features over the wavenumber ranges 1030-1500, 950-1050 and 1740-1800, and 800-900 cm<sup>-1</sup>, respectively. Reference spectra were acquired by expanding known volumes of reference materials into the reactor.

### **Results and Discussion**

**Spectrum of CCl<sub>3</sub>CH<sub>2</sub> Radicals.** Following the pulse radiolysis of CCl<sub>3</sub>CH<sub>3</sub>/SF<sub>6</sub> mixtures, a rapid increase in absorption in the UV (230 nm) was observed, followed by a slower decay. Figure 1A shows the transient absorption at 230 nm following the radiolysis of a mixture of 5 mbar of CCl<sub>3</sub>CH<sub>3</sub>, and of 995 mbar of SF<sub>6</sub>. No absorption was observed when either 5 mbar of CCl<sub>3</sub>CH<sub>3</sub> or 995 mbar of SF<sub>6</sub> was radiolyzed separately. We ascribe the absorption shown in Figure 1 to the formation of CCl<sub>3</sub>CH<sub>2</sub> radicals and their subsequent loss by self-reaction. In this work we assume that F atoms react exclusively with CCl<sub>3</sub>CH<sub>3</sub> by a H atom abstraction mechanism to give CCl<sub>3</sub>CH<sub>2</sub> radicals, reaction 3. The validity of this assumption is discussed in a following section dealing with the atmospheric fate of CCl<sub>3</sub>CH<sub>2</sub>O radicals.

Measurement of the absolute absorption spectrum of CCl<sub>3</sub>-CH<sub>2</sub> radicals requires calibration of the initial F atom concentration. Additionally, experimental conditions are needed to ensure that there is 100% conversion of F atoms to CCl<sub>3</sub>CH<sub>2</sub> radicals. The yield of F atoms was established by monitoring the transient absorbance at 260 nm due to methylperoxy radicals produced by radiolysis of SF<sub>6</sub>/CH<sub>4</sub>/O<sub>2</sub> mixtures as described previously.<sup>5</sup> The yield of F atoms at 1000 mbar of SF<sub>6</sub> was determined to be  $(2.8 \pm 0.3) \times 10^{15}$  molecules cm<sup>-3</sup> at full irradiation dose, using a value of  $3.18 \times 10^{-18}$  cm<sup>2</sup> molecule<sup>-1</sup> for  $\sigma$ (CH<sub>3</sub>O<sub>2</sub>) at 260 nm.<sup>6</sup> The quoted error on the F atom calibration includes both statistical (±2 standard deviations) and potential systematic errors associated with the 10% uncertainty





Figure 1. (A) Transient absorbance at 230 nm following the pulsed radiolysis of a mixture of 5 mbar of CCl<sub>3</sub>CH<sub>3</sub> and 995 mbar of SF<sub>6</sub>. Radiolysis dose was maximum dose; path length was 80 cm. (B) Transient absorbance at 250 nm following the pulsed radiolysis of a mixture of 10 mbar of CCl<sub>3</sub>CH<sub>3</sub>, 20 mbar of O<sub>2</sub>, and 970 mbar of SF<sub>6</sub>. Radiolysis dose was maximum dose; path length was 80 cm.

in  $\sigma(CH_3O_2)$ . In the following, errors are propagated using conventional error analysis methods and are equal to  $\pm 2$  standard deviations.

To work under conditions where the F atoms are converted stoichiometrically into CCl<sub>3</sub>CH<sub>2</sub> radicals, it is necessary to consider potential interfering secondary chemistry. A complication could be reaction 9:

$$F + CCl_3CH_2 \rightarrow products$$
 (9)

To check for complications caused by reaction 9, experiments were performed using  $[CCl_3CH_3] = 5$  mbar and  $[SF_6] = 995$  mbar in which the maximum transient absorption at 220 nm was measured as a function of the radiolysis dose. Figure 2A shows the observed maximum transient ascribed to  $CCl_3CH_2$  radicals as a function of the dose; the optical path length was 40 cm. As shown in Figure 2A, the maximum absorption observed in experiments using high dose was significantly less than expected on the basis of a linear extrapolation of the data obtained at low dose. This observation suggests that reaction 9 is important in experiments using the maximum initial F atom concentration.

The solid line drawn through the CCl<sub>3</sub>CH<sub>2</sub> data in Figure 2A is a linear least-squares fit to the low dose data and has a slope of  $(4.5 \pm 0.3) \times 10^{-1}$ . Combining the data with the calibrated yield of F atoms of  $(2.8 \pm 0.3) \times 10^{15}$  molecules cm<sup>-3</sup> (full dose and [SF<sub>6</sub>] = 1000 mbar) gives  $\sigma(\text{CCl}_3\text{CH}_2)$  at 220 nm =  $(9.4 \pm 1.1) \times 10^{-18}$  cm<sup>2</sup> molecule<sup>-1</sup>. Quoted errors reflect uncertainties in both the F atom calibration and the slope of the line drawn in Figure 2A. To map out the absorption



Figure 2. (A) Maximum transient absorbance at 220 nm following the pulsed radiolysis of mixtures of 5 mbar of CCl<sub>3</sub>CH<sub>3</sub> and 995 mbar of SF<sub>6</sub> as a function of the radiolysis dose; path length was 40 cm. (B) Maximum transient absorbance at 250 nm following the pulsed radiolysis of mixtures of 10 mbar of CCl<sub>3</sub>CH<sub>3</sub>, 20 mbar of O<sub>2</sub>, and 970 mbar of SF<sub>6</sub> as a function of the radiolysis dose; path length was 120 cm. The solid lines in A and B are linear regressions of the low dose data (filled circles). The dotted lines are second-order fits to the entire data set to aid in visual inspection of the data trend.

TABLE 1

| wavelength (nm) | $\sigma(\text{CCl}_3\text{CH}_2)$<br>(10 <sup>-20</sup> cm <sup>2</sup> molecule <sup>-1</sup> ) | $\frac{\sigma(\text{CCl}_3\text{CH}_2\text{O}_2)}{(10^{-20}\text{cm}^2\text{molecule}^{-1})}$ |  |  |
|-----------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| 220             | 938                                                                                              | 327                                                                                           |  |  |
| 230             | 648                                                                                              | 336                                                                                           |  |  |
| 240             | 296                                                                                              | 348                                                                                           |  |  |
| 250             | 169                                                                                              | 290                                                                                           |  |  |
| 260             | 121                                                                                              | 213                                                                                           |  |  |
| 270             | 77                                                                                               | 141                                                                                           |  |  |
| 280             | 54                                                                                               | 81                                                                                            |  |  |
| 290             |                                                                                                  | 44                                                                                            |  |  |
| 300             |                                                                                                  | 25                                                                                            |  |  |

spectrum of CCl<sub>3</sub>CH<sub>2</sub> radicals, experiments were performed to measure the initial absorption between 220 and 280 nm following the pulsed irradiation of mixtures of 5 mbar of CCl<sub>3</sub>-CH<sub>3</sub> and 995 mbar of SF<sub>6</sub>. Initial absorptions were then scaled to that at 220 nm and converted into absolute absorption cross sections. Values obtained are given in Table 1 and shown in Figure 3A. The spectrum is distinctly different from that of the CH<sub>2</sub>Cl radical<sup>7</sup> also shown in Figure 3A.

**Spectrum of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> Radicals.** Following the pulsed radiolysis of mixtures of 10 mbar of CCl<sub>3</sub>CH<sub>3</sub>, 20 mbar of O<sub>2</sub>, and 970 mbar of SF<sub>6</sub>, a rapid increase, complete within  $5-10 \mu s$ , in UV absorbance in the region  $220-300 \mu s$  m was observed, followed by a slower decay. An example is shown in Figure 1B. We ascribe the UV absorbance resulting from radiolysis of SF<sub>6</sub>/CCl<sub>3</sub>CH<sub>3</sub>/O<sub>2</sub> mixtures to CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals.

To work under conditions where the F atoms are converted stoichiometrically into CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals, it is necessary to consider potential interfering secondary chemistry. Potential



**Figure 3.** (A) UV-absorption spectrum of the CCl<sub>3</sub>CH<sub>2</sub> radical in the range 220–280 nm. (B) UV-absorption spectrum of the CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radical in the range 220–300 nm.

complications include: (i) loss of F atoms by reaction with molecular oxygen:

$$F + O_2 + M \rightarrow FO_2 + M \tag{10}$$

(ii) unwanted radical—radical reactions such as reaction 4, 5, 11, and 12.

$$F + CCl_3CH_2O_2 \rightarrow products$$
 (11)

$$CCl_3CH_2 + CCl_3CH_2O_2 \rightarrow CCl_3CH_2O + CCl_3CH_2O$$
 (12)

Using rate constants for reaction 3 and 10 measured in our laboratory,  $k_3 = (6.8 \pm 1.5) \times 10^{-12} \, \mathrm{cm^3} \, \mathrm{molecule^{-1}} \, \mathrm{s^{-1}}$  and  $k_{10} = (1.9 \pm 0.3) \times 10^{-13} \, \mathrm{cm^3} \, \mathrm{molecule^{-1}} \, \mathrm{s^{-1}},^8$  we calculate that 5.5% of the F atoms are converted into FO<sub>2</sub> radicals and 94.5% into CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals. Corrections for the presence of 5.5% of FO<sub>2</sub> radicals were calculated using the expression  $\sigma(\mathrm{CCl_3CH_2O_2}) = [\sigma(\mathrm{observed}) - 0.055\sigma(\mathrm{FO_2})]/0.945$ . Values of  $\sigma(\mathrm{FO_2})$  are taken from the literature.<sup>8,9</sup>

There are no literature data concerning the kinetics of reactions 9, 11, and 12; hence we cannot calculate their importance. To check for these unwanted radical—radical reactions, the transient absorbance at 250 nm was measured in experiments using  $[CCl_3CH_3] = 10$  mbar,  $[O_2] = 20$  mbar, and  $[SF_6] = 970$  mbar with the radiolysis dose varied over an order of magnitude. The UV path length was 120 cm. Figure 2B shows the observed maximum of the transient absorbance of  $CCl_3CH_2O_2$  radicals at 250 nm as a function of dose. As seen

from Figure 2B, the maximum absorbance is linear with the radiolysis dose up to about 40% of the maximum dose. At maximum dose and half-dose, the maximum transient absorbance falls below that expected from a linear extrapolation of the low dose results. We ascribe the curvature in Figure 2B to incomplete conversion of F atoms into CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals caused by secondary radical-radical reactions 9, 11, and 12 at high initial F atoms concentrations.

The solid line drawn through the data in Figure 2B is a linear least-squares fit of the low dose data. The slope is (3.98  $\pm$  $0.14) \times 10^{-1}$ . From this value and three additional pieces of information, (i) the yield of F atoms of  $(2.8 \pm 0.3) \times 10^{15}$ molecule cm<sup>-3</sup> (full dose and  $[SF_6] = 1000$  mbar), (ii) the conversion of F atoms into 94.5% CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals and 5.5% FO<sub>2</sub>, and (iii) the absorption cross section for FO<sub>2</sub> at 250 nm  $(\sigma = 1.3 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1})$ , we derive  $\sigma(\text{CCl}_3\text{CH}_2\text{O}_2)$ at 250 nm =  $(2.9 \pm 0.3) \times 10^{-18}$  cm<sup>2</sup> molecule<sup>-1</sup>. The quoted error includes both statistical and potential systematic errors and so reflects the accuracy of the measurement.

To map out the spectrum of the CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radical, experiments were performed to measure the initial absorbance between 220 and 300 nm following the pulsed irradiation of SF<sub>6</sub>/CCl<sub>3</sub>-CH<sub>3</sub>/O<sub>2</sub> mixtures. The initial absorbances were scaled to that at 250 nm and corrected for FO<sub>2</sub> to obtain absolute absorption cross sections. Absorption cross sections are given in Table 1 and compared to the spectra of CH<sub>2</sub>ClO<sub>2</sub><sup>9</sup> and CF<sub>3</sub>CH<sub>2</sub>O<sub>2</sub><sup>10</sup> in Figure 3B. As seen from Figure 3B, the CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> spectrum is closely related to spectra of other halogenated peroxy radicals. The position of the maximum is consistent with the literature on peroxy radical spectra.<sup>11</sup> The Cl atoms on the carbon atom adjacent to the carbon bearing the O-O group lower the absorption maximum.

Kinetic Study of the Self-Reaction of CCl<sub>3</sub>CH<sub>2</sub> Radicals. Figure 1A shows a typical absorption trace obtained for the selfreaction of CCl<sub>3</sub>CH<sub>2</sub> radicals, together with a nonlinear leastsquares second-order decay fit. As discussed in previous publications, 12,13 the kinetic analysis of second-order decays can be complicated by the formation of products which absorb at the monitoring wavelength. This leads to a positive absorbance after all reactions have ceased. Accordingly, the experimental data were fit with a three parameter expression

$$1/B - 1/B_0 = (\ln 10)(2kt)/\sigma_{\text{eff}}L$$
 (I)

where  $B = \log(I_{\infty}/I)$ ,  $B_0 = \log(I_{\infty}/I')$ , where I' is the minimum transmitted light intensity following the radiolysis pulse,  $I_{\infty}$  is the final light intensity, and I is the transmitted light at time t. k is the second-order rate constant for the self-reaction of the radicals,  $\sigma_{\rm eff}$  is the absorption cross section of the radical minus that of any absorbing product formed at the monitoring wavelength (in the case of CCl<sub>3</sub>CH<sub>2</sub> radical there was no observable residual absorption and  $\sigma_{\text{eff}} = \sigma(\text{CCl}_3\text{CH}_2)$ ), and L is the monitoring UV path length (80 cm).

The decay of the transient absorption following radiolysis of CCl<sub>3</sub>CH<sub>3</sub>/SF<sub>6</sub> mixtures was monitored at a wavelength of 230 nm. The decay was well represented by this second-order leastsquares fit. No residual absorption was observed, indicating the absence of any long-lived product which absorbs significantly at 230 nm. Figure 4A shows the reciprocal half-life for the decay of the absorption at 230 nm as a function of the initial absorbance due to CCl<sub>3</sub>CH<sub>2</sub> radicals. A linear least-squares fit of the data in Figure 4A gives a slope of  $(5.7 \pm 0.2) \times 10^4 \,\mathrm{s}^{-1}$ =  $(k_4 \times 2 \ln 10)/(\sigma(\text{CCl}_3\text{CH}_2)L)$ . The intercept of the linear regression of the data is  $(1.7 \pm 0.6) \times 10^3 \text{ s}^{-1}$  and is significantly different from 0. This could be explained by a small amount of  $O_2$  present in the SF<sub>6</sub>. Using  $\sigma(CCl_3CH_2) =$ 





Figure 4. (A) Plot of the reciprocal half-life for the self-reaction of CCl<sub>3</sub>CH<sub>2</sub> radicals as a function of A<sub>max</sub> at 230 nm. (B) Plot of the reciprocal half-life for the self-reaction of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals as a function of  $A_{\text{max}}$  at 250 nm.

 $(9.4 \pm 1.1) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$  at 230 nm and the slope  $(5.7 \pm 0.2) \times 10^4 \,\mathrm{s}^{-1}, k_4 = (9.1 \pm 1.1) \times 10^{-12} \,\mathrm{cm}^3 \,\mathrm{molecule}^{-1}$ s<sup>-1</sup> was derived. This rate constant value can be compared to typical halogenated alkyl radical self-reaction rate constants ranging from  $2.4 \times 10^{-12}$  in the case of CF<sub>3</sub>CCl<sub>2</sub><sup>14</sup> to  $3.2 \times$ 10<sup>-11</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> for CH<sub>2</sub>Cl<sup>7</sup> and follow the sequence  $CH_2Cl > CHCl_2 > CCl_3 > CF_3CCl_2$ . This order of reactivity can be rationalized in simple terms on the basis of steric arguments with bulky substituents, F and Cl atoms, slowing down the association reaction.

Kinetic Study of the Self-Reaction of the CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> Radicals. Following the pulsed radiolysis of 10 mbar of CCl<sub>3</sub>-CH<sub>3</sub>, 20 mbar of O<sub>2</sub>, and 970 mbar of SF<sub>6</sub>, a rapid increase in UV absorbance in the region 220-300 nm was observed followed by a slower decay, as shown in Figure 1B. As discussed previously, we ascribe the absorbance to the CCl<sub>3</sub>-CH<sub>2</sub>O<sub>2</sub> radicals. The decay was fit by expression I and in all cases, within the experimental uncertainties, the decays followed second-order kinetics.

The observed self-reaction rate constant of reaction 5 is defined as  $-d[CCl_3CH_2O_2]/dt = 2k_{50bs}[CCl_3CH_2O_2]^2$ . Figure 4B shows the reciprocal half-life for the decay of the absorption at 250 nm as a function of the initial absorbance due to CCl<sub>3</sub>-CH<sub>2</sub>O<sub>2</sub> radicals. The absorbance is corrected for the absorption of FO2. A linear least-squares fit of the corrected data in Figure 4B gives a slope of  $(9.3 \pm 0.4) \times 10^4 \,\mathrm{s}^{-1}$ . The intercept of the linear regression of the data is  $(-3.9 \pm 4.4) \times 10^3 \text{ s}^{-1}$  and is not statistically significant. Using  $\sigma(\text{CCl}_3\text{CH}_2\text{O}_2) = (2.9 \pm 0.3)$  $\times 10^{-18} \, \mathrm{cm^2 \, molecule^{-1}}$  at 250 nm gives  $k_{5\mathrm{obs}} = (4.7 \pm 1.6) \, \times$  $10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>.  $k_{5obs}$  may be an overestimate of the true bimolecular rate constant for reaction 5, as the CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals might react with the reaction products, as discussed in



**Figure 5.** Plot of the maximum absorbance as a function of the concentration ratio [CCl<sub>3</sub>CH<sub>3</sub>]/[O<sub>2</sub>] observed following the radiolysis of CCl<sub>3</sub>CH<sub>3</sub>/O<sub>2</sub>/SF<sub>6</sub> mixtures; see text for details.

ref 15. The rate constant for the self-reaction of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals is consistent with those for self-reactions of other halogenated peroxy radicals.<sup>11</sup> It should be pointed out that there is a large residual absorption as seen in Figure 1B. As will be discussed in the subsequent section dealing with the atmospheric fate of CCl<sub>3</sub>CH<sub>2</sub>O radicals, under the present experimental conditions with  $[O_2] = 20$  mbar, 27% of the CCl<sub>3</sub>-CH<sub>2</sub>O radicals formed in reaction 5 will decompose to give CCl<sub>3</sub> radicals which eliminate Cl atoms to give COCl<sub>2</sub>. By analogy to the behavior of other peroxy radicals, CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals probably react rapidly with Cl atoms to give ClO. The ClO concentration does not change on the timescale of our experiment. If all Cl atoms gave ClO, and using the recommended CIO absorption cross section at 250 nm,  $3.8 \times 10^{-18}$  cm<sup>2</sup> molecule-1,16 then the residual absorption expected would be  $A_{\text{res}} = 3.8 \times 10^{-18} \times 0.27 \times 2.8 \times 10^{15} \times 80 \times 0.97/2.303 =$ 0.097, which compares reasonably with the observed value of 0.07. At this point it should be noted that CCl<sub>3</sub>CHO and COCl<sub>2</sub> absorb weakly at 250 nm with absorption cross sections of 2 ×  $10^{-20 \text{ }17}$  and  $8.1 \times 10^{-20}$  cm<sup>2</sup> molecule<sup>-1</sup>, <sup>18</sup> respectively. The formation of CCl<sub>3</sub>CHO and COCl<sub>2</sub> does not contribute significantly to the residual absorption seen in Figure 1B.

In light of the potential complications noted above, the value of  $k_{5\text{obs}}$  derived in the present work should be treated as an observed rate constant for the decay of absorption at 250 nm.

Reaction of F Atoms with CCl<sub>3</sub>CH<sub>3</sub>. To measure  $k_3$ , experiments were performed in which the maximum in the transient absorbance at 250 nm was observed following the radiolysis of SF<sub>6</sub>/CCl<sub>3</sub>CH<sub>3</sub>/O<sub>2</sub> mixtures. The radiolysis dose (41.6% of full dose) and the concentration of SF<sub>6</sub> (980 mbar) were held fixed. The concentrations of CCl<sub>3</sub>CH<sub>3</sub> and O<sub>2</sub> were varied over the ranges 0–20 mbar and 20–40 mbar, respectively. Figure 5 shows the observed variation of the maximum absorbance as a function of the concentration ratio [CCl<sub>3</sub>CH<sub>2</sub>]/[O<sub>2</sub>]. In this reaction system there is a competition between 3 and 10:

$$F + CCl3CH3 \rightarrow CCl3CH2 + HF$$
 (3)

$$F + O_2 + M \rightarrow FO_2 + M \tag{10}$$

At 250 nm, FO<sub>2</sub> radicals absorb less than the same amount of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals. As the CCl<sub>3</sub>CH<sub>3</sub> concentration is increased, CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals are formed at the expense of FO<sub>2</sub>, and the maximum absorbance increases; see Figure 5.  $A_{\text{max}}$  increases until the ratio [CCl<sub>3</sub>CH<sub>3</sub>]/[O<sub>2</sub>] is about 0.2. Further increase in this ratio does not affect the maximum absorbance.

The solid line in Figure 5 is a three parameter fit of the following expression to the data:

$$A_{\text{max}} = \frac{\{A_{\text{FO2}} + A_{\text{RO2}}(k_3/k_{10})[\text{RH}]/[\text{O}_2]\}/\{1 + (k_3/k_{10})[\text{RH}]/[\text{O}_2]\}\}}{\{1 + (k_3/k_{10})[\text{RH}]/[\text{O}_2]\}}$$

where  $A_{\text{max}}$  is the observed maximum absorbance,  $A_{\text{FO2}}$  is the maximum absorbance expected if only FO<sub>2</sub> were produced, RH is CCl<sub>3</sub>CH<sub>3</sub>, and  $A_{\text{RO2}}$  is the maximum absorbance expected if only CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> were formed. Parameters  $A_{\text{FO2}}$ ,  $A_{\text{RO2}}$ , and  $(k_3/k_{10})$  were varied simultaneously. The best fit was obtained with  $k_3/k_{10} = 36.0 \pm 5.3$ . Using  $k_{10} = (1.9 \pm 0.3) \times 10^{-13}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> 8 gives  $k_3 = (6.8 \pm 1.5) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. This value is used for the calculations in this work.

Kinetic Data for the Reaction  $CCl_3CH_2O_2 + NO \rightarrow$  Products. The kinetics of reaction 6 were studied by monitoring the increase in the absorbance at 400 nm, attributed to the formation of  $NO_2$ , following the pulsed radiolysis of  $SF_6/CCl_3-CH_3/O_2/NO$  mixtures. The mixtures were combinations of [NO] = 0.28-1.5 mbar,  $[CCl_3CH_3] = 10$  mbar,  $[O_2] = 20$  mbar, and  $[SF_6] = 970$  mbar. This method of determining rates constants of reactions of peroxy radicals with NO has been used extensively in our laboratory and is discussed in detail elsewhere. Figure 6A shows the result from a mixture with [NO] = 1.03 mbar. After the pulse radiolysis the  $CCl_3CH_2O_2$  radicals will form within a few microseconds. The smooth curve in Figure 6A is a first-order fit starting 3  $\mu$ s after the radiolysis pulse. The absorption transient is fitted using the expression:

$$A(t) = (A_{\infty} - A_0)[1 - \exp(-k^{1st}t)] + A_0$$
 (II)

where A(t) is the absorbance as a function of time,  $A_{\infty}$  is the absorbance at infinite time,  $k^{\rm lst}$  is the pseudo-first-order appearance rate of NO<sub>2</sub>, and  $A_0$  is the extrapolated absorbance at t=0. For data shown in Figure 6A,  $k^{\rm lst}=1.67\times 10^5~{\rm s}^{-1}$ . In all cases, the rise in absorbance was well fitted by first-order kinetics. It seems reasonable to conclude that NO<sub>2</sub> is the species responsible for the absorbance change following pulsed radiolysis of SF<sub>6</sub>/CCl<sub>3</sub>CH<sub>3</sub>/O<sub>2</sub>/NO mixtures.

As seen from Figure 7A, the pseudo-first-order rate constant,  $k^{1st}$ , increased linearly with [NO]. The initial F atom concentration employed in the present experiments (1.2  $\times$  10<sup>15</sup> molecule cm $^{-3}$ ) is a significant fraction (3-17%) of that of the initial NO concentration and deviations from pseudo-first-order kinetics may be expected. However, no such deviations were discernible within the experimental data scatter. Assuming that all F atoms either react directly with NO or produce species that react with NO, then the average NO concentration in a given experiment is  $[NO]_{av} = [NO]_0 - [F]_0/2$ . This expression was used to correct the data shown in Figure 7. Corrections applied were in the range 2-8%. Linear least-squares analysis of the data in Figure 7A gives  $k_6 = (6.6 \pm 0.5) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ . The y-axis intercept in Figure 7A is  $(-0.2 \pm 1.2) \times 10^4$  s<sup>-1</sup> and is not statistically significant. F atom also react with NO producing FNO,  $k(F + NO \rightarrow FNO) = 5.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1}$ s<sup>-1,21</sup> The absorption of FNO at 400 nm is negligible<sup>22</sup> and hence has no influence on the kinetics analysis deriving  $k_6$ .

The reaction of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals with NO produces NO<sub>2</sub> and, by inference, CCl<sub>3</sub>CH<sub>2</sub>O radicals. The alkoxy radical CCl<sub>3</sub>-CH<sub>2</sub>O can, as discussed in a following section, react with O<sub>2</sub> or undergo C–C bond fission. In either case peroxy radicals (HO<sub>2</sub> or CCl<sub>3</sub>O<sub>2</sub>) will be formed which can undergo subsequent reaction with NO to give more NO<sub>2</sub>. In the present experiments the yield of NO<sub>2</sub>, calculated using  $\sigma_{\text{NO2}}(400 \text{ nm}) = 6 \times 10^{-19} \text{ cm}^2$  molecule<sup>-1</sup>, <sup>31</sup> was  $162 \pm 33\%$ . The fact that the NO<sub>2</sub> yield exceeds 100% shows that reaction with O<sub>2</sub>, and/or decomposition of CCl<sub>3</sub>CH<sub>2</sub>O radicals, takes place within our experimental





**Figure 6.** (A) Transient absorbance at 400 nm observed following pulsed radiolysis (dose = 42% of maximum) of a mixture of 1.03 mbar of NO, 10 mbar of CCl<sub>3</sub>CH<sub>3</sub>, 20 mbar of  $O_2$ , and 970 mbar of SF<sub>6</sub>. (B) Transient absorbance at 400 nm observed following pulsed radiolysis (dose = 42% of maximum) of a mixture of 0.61 mbar of NO<sub>2</sub>, 20 mbar of CCl<sub>3</sub>CH<sub>3</sub>, 20 mbar of  $O_2$ , and 960 mbar of SF<sub>6</sub>. The path length was 120 cm in A and B.

time scale of  $0-40~\mu s$ . The presence of additional processes forming NO<sub>2</sub> subsequent to reaction 6 increases the time taken for the NO<sub>2</sub> to reach a maximum, and so the value of  $k_6=(6.6\pm0.5)\times10^{-12}~{\rm cm^3}$  molecule<sup>-1</sup> s<sup>-1</sup> is actually a lower limit. Hence, we choose to give  $k_6 > 6.1\times10^{-12}~{\rm cm^3}$  molecule<sup>-1</sup> s<sup>-1</sup>. This value is in accordance with rate constants previously determined for RO<sub>2</sub> + NO reactions.<sup>20</sup>

Kinetic Data of the Reaction  $CCl_3CH_2O_2 + NO_2 + M \rightarrow CCl_3CH_2O_2NO_2 + M$ . The kinetics of reaction 7 were studied by monitoring the absorbance at 400 nm following the pulsed radiolysis of mixtures of 20 mbar of  $CCl_3CH_3$ , 20 mbar of  $O_2$ , 0.5-2.0 mbar  $NO_2$ , and  $SF_6$  to 1000 mbar total pressure. Figure 6B shows the absorbance as a function of time after the pulsed radiolysis of a mixture with  $[NO_2] = 0.61$  mbar. The absorbance before the pulsed radiolysis is due solely to the  $NO_2$ . The decay rate of the absorbance at 400 nm increased with increasing  $NO_2$  concentration. It seems reasonable to explain the loss in absorbance by a loss of  $NO_2$ . Three reactions could be responsible:

$$F + NO_2 + M \rightarrow FNO_2/FONO + M$$
 (13)

$$CCl_3CH_2 + NO_2 \rightarrow products$$
 (14)

$$CCl_3CH_2O_2 + NO_2 + M \rightarrow CCl_3CH_2O_2NO_2 + M$$
 (15)

As discussed previously,  $^{10,23}$  under the present experimental conditions with  $[CCl_3CH_3] = 10$  mbar and  $[O_2] = 20$  mbar, reactions 13 and 14 will have a negligible influence.

The smooth curve in Figure 6B is the first-order fit of the absorption transient from 4  $\mu$ s. The curve gives a pseudo-firstorder rate constant  $k^{1st}$ .  $k^{1st}$  values for six experiments with different concentrations of NO2 are shown in Figure 7B. The initial F atom concentration employed in the present experiments  $(1.2 \times 10^{15} \text{ molecule cm}^{-3})$  is a significant fraction (2-10%)of that of the initial NO2 concentration, and deviations from pseudo-first-order kinetics may be expected. However, no such deviations were discernible within the experimental data scatter. Assuming that all F atoms either react directly with NO2 or produce species that react with NO2, then the average NO2 concentration in a given experiments is  $[NO_2]_{av} = [NO_2]_0$  -[F]<sub>0</sub>/2. This expression was used to correct the data shown in Figure 7B. Corrections applied were in the range 1-5%. Linear least-squares analysis of the data in Figure 7B gives  $k_7$ =  $(6.5 \pm 0.4) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. The y-axis intercept in Figure 7B is  $(-0.3 \pm 0.8) \times 10^4$  s<sup>-1</sup> and is not statistically significant.

 $m RO_2 + NO_2$  reactions are pressure dependent and are generally at, or near, the high pressure limit at 1 atm total pressure of SF<sub>6</sub> diluent.<sup>11</sup> This value of  $k_7$  is in accordance with rate constants previously determined for  $m RO_2 + NO_2$  reactions.<sup>11</sup>

Kinetics of the Reactions of Cl Atoms with CCl<sub>3</sub>CH<sub>3</sub>, CCl<sub>3</sub>-CHO, and CCl<sub>3</sub>CH<sub>2</sub>OH. Prior to investigating the atmospheric fate of CCl<sub>3</sub>CH<sub>2</sub>O radicals, a series of relative rate experiments was performed using the FTIR system to investigate the kinetics of the reactions of Cl atoms with CCl<sub>3</sub>CH<sub>3</sub>, CCl<sub>3</sub>CHO, and CCl<sub>3</sub>-CH<sub>2</sub>OH. The techniques used are described in detail elsewhere.<sup>24</sup> Photolysis of molecular chlorine was used as a source of Cl atoms.

$$Cl_2 + h\nu \rightarrow 2Cl$$

$$Cl + CCl_3CH_3 \rightarrow CCl_3CH_2 + HCl$$
 (16)

$$Cl + CCl_3CHO \rightarrow CCl_3CO + HCl$$
 (17)

$$Cl + CCl_3CH_2OH \rightarrow products$$
 (18)

The kinetics of reaction 16 were measured relative to reaction 19; reactions 17 and 18 were studied relative to (20):

$$Cl + CD_4 \rightarrow CD_3 + DCl$$
 (19)

$$C_1 + C_2H_5C_1 \rightarrow C_2H_4C_1 + HC_1$$
 (20)

The observed losses of CCl<sub>3</sub>CH<sub>3</sub> versus CD<sub>4</sub>, CCl<sub>3</sub>CHO versus C<sub>2</sub>H<sub>5</sub>Cl, and CCl<sub>3</sub>CH<sub>2</sub>OH versus C<sub>2</sub>H<sub>5</sub>Cl following the UV irradiation of CCl<sub>3</sub>CH<sub>3</sub>/CD<sub>4</sub>/Cl<sub>2</sub>, CCl<sub>3</sub>CHO/C<sub>2</sub>H<sub>5</sub>Cl/Cl<sub>2</sub>, and CCl<sub>3</sub>CH<sub>2</sub>OH/C<sub>2</sub>H<sub>5</sub>Cl/Cl<sub>2</sub> mixtures, respectively, in 700 Torr total pressure of N2, or air, diluent are shown in Figure 8. There was no discernible difference between data obtained in N<sub>2</sub>, or air, diluent. Linear least-squares analysis gives  $k_{16}/k_{19} = (1.62)$  $\pm$  0.05),  $k_{17}/k_{20} = 0.75 \pm 0.06$ , and  $k_{18}/k_{20} = 0.37 \pm 0.03$ . Using  $k_{19} = 6.1 \times 10^{-15}$  and  $k_{20} = 8.04 \times 10^{-12}$  gives  $k_{16} = (9.9)$  $\pm 0.3$ )  $\times 10^{-15}$ ,  $k_{17} = (6.0 \pm 0.5) \times 10^{-12}$ , and  $k_{18} = (3.0 \pm 0.5) \times 10^{-12}$  $0.2) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ , respectively. We estimate that potential systematic errors associated with uncertainties in the reference rate constants could add an additional 20% to the uncertainty range. Propagating this additional 20% uncertainty gives  $k_{16} = (9.9 \pm 2.0) \times 10^{-15}$ ,  $k_{17} = (6.0 \pm 1.0)$ 1.3)  $\times$  10<sup>-12</sup>, and  $k_{18} = (3.0 \pm 0.6) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup>

The kinetics of reaction 16 have been studied previously by Wine et al.<sup>26</sup> and Tschuikow-Roux et al.<sup>27</sup> Using an



Figure 7. (A) Plot of the pseudo-first-order rate constant for the formation of  $NO_2$  as a function of the NO concentration. (B) Plot of the pseudo-first-order rate constant for the decay of  $NO_2$  as a function of the  $NO_2$  concentration.



Figure 8. Results of the Cl atom relative rate experiments: observed loss of  $CCl_3CH_3$  versus  $CD_4$  (circles),  $CCl_3CHO$  versus  $C_2H_5Cl$  (triangles), and  $CCl_3CH_2OH$  versus  $C_2H_5Cl$  (diamonds). Filled symbols were acquired in 700 Torr of air; open symbols were acquired in 700 Torr of  $N_2$ .

absolute rate technique Wine et al. <sup>26</sup> measured an upper limit of  $k_{16} < 3.7 \times 10^{-14}$  at room temperature while Tschuikow-Roux et al. <sup>27</sup> used a relative rate method to derive  $k_{16} = (1.6 \pm 0.4) \times 10^{-14}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. The kinetics of reaction 17 have been studied by Scollard et al. <sup>28</sup> who report  $k_{17} = (7.1 \pm 0.5) \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. Within the cited experimental uncertainties the results from the present work are consistent with the previous studies of  $k_{16}$  and  $k_{17}$ . There have been no studied of  $k_{18}$  with which to compare the present results.



Figure 9. Infrared spectra acquired before (A) and after (B) a 1 min irradiation of a mixture of 740 mTorr of  $CCl_3CH_3$  and 330 mTorr of  $F_2$  in 700 Torr of air diluent (experiment 3; see Table 2). Panels D and E show reference spectra of  $CCl_3CHO$  and  $COCl_2$ , respectively.

Study of the Atmospheric Fate of CCl<sub>3</sub>CH<sub>2</sub>O Radicals. To determine the atmospheric fate of the alkoxy radical CCl<sub>3</sub>-CH<sub>2</sub>O, experiments were performed in which F<sub>2</sub>/CCl<sub>3</sub>CH<sub>3</sub>/O<sub>2</sub> mixtures at a total pressure of 700 Torr made up with N<sub>2</sub> diluent were irradiated in the FTIR smog chamber system. The loss of CCl<sub>3</sub>CH<sub>3</sub> and the formation of products were monitored by FTIR spectroscopy. Figure 9 shows IR spectra acquired before (A) and after (B) a 1 min irradiation of a mixture of 740 mTorr of CCl<sub>3</sub>CH<sub>3</sub> and 330 mTorr of F<sub>2</sub> in 700 Torr of air diluent (expt 3; see Table 2). Panel C (Figure 9) shows the product spectrum derived by subtracting A from B. Comparison of the product spectrum with reference spectra of CCl<sub>3</sub>-CHO and COCl<sub>2</sub> shown in panels D and E shows the formation of these products. In addition to CCl<sub>3</sub>CHO and COCl<sub>2</sub>, CO was detected as a product. Observed product yields are listed in Table 2. IR features attributable to HCHO were searched for but not found, and an upper limit of 0.1 mTorr was established for the yield of HCHO. Within the experimental errors, the observed products of CCl<sub>3</sub>CHO and COCl<sub>2</sub> account for 100% of the loss of CCl<sub>3</sub>CH<sub>3</sub>. No evidence was observed for the presence of CCl<sub>3</sub>CH<sub>2</sub>OH in the product spectra, and an upper limit of 7% for the molar yield (Δ[CCl<sub>3</sub>CH<sub>2</sub>-OH]/( $\Delta$ [CCl<sub>3</sub>CHO] +  $\Delta$ [COCl<sub>2</sub>])) of this species was estab-

By analogy to the behavior of other peroxy radicals,<sup>6,28</sup> it is expected that the self-reaction of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals proceeds via two possible channels:

$$CCl_{3}CH_{2}O_{2} + CCl_{3}CH_{2}O_{2} \rightarrow$$

$$CCl_{3}CH_{2}O + CCl_{3}CH_{2}O + O_{2} (5a)$$

$$CCl_{3}CH_{2}O_{2} + CCl_{3}CH_{2}O_{2} \rightarrow$$

$$CCl_{3}CH_{2}OH + CCl_{3}CHO + O_{2} (5b)$$

The absence of IR features attributable to CCl<sub>3</sub>CH<sub>2</sub>OH product

TABLE 2: Product Yields<sup>a</sup> Following the Irradiation of CCl<sub>3</sub>CH<sub>3</sub>/F<sub>2</sub>/O<sub>2</sub> Mixtures in 700 Torr of Diluent

| exp | $[CCl_3CH_3]_0^b$ | $[F_2]_0^b$ | $[O_2]^b$ | t <sub>UV</sub> (min) <sup>c</sup> | $\Delta[CCl_3CH_3]$   | $\Delta[CCl_3CHO]$ | $\Delta[COCl_2]$ | Δ[CO] |
|-----|-------------------|-------------|-----------|------------------------------------|-----------------------|--------------------|------------------|-------|
| 1   | 0.11              | 0.1         | 147       | 2                                  | $\operatorname{nd}^d$ | 0.66               | 0.14             | 0.54  |
|     |                   |             |           | 4                                  | 2.2                   | 1.09               | 0.84             | 1.33  |
|     |                   |             |           | 6                                  | 3.6                   | 1.09               | 1.63             | 2.31  |
|     |                   |             |           | 8                                  | 4.4                   | 1.05               | 3.4              | 3.1   |
|     |                   |             |           | 10                                 | 5.5                   | 1.00               | 4.1              | 4.3   |
| 2   | 0.75              | 0.3         | 700       | 1                                  | nd                    | 1.65               | 0.19             | 0.34  |
| 3   | 0.74              | 0.3         | 147       | 1                                  | nd                    | 2.11               | 0.37             | 0.78  |
| 4   | 0.85              | 0.3         | 48        | 1                                  | nd                    | 1.45               | 0.56             | 0.54  |
| 5   | 0.88              | 0.2         | 17        | 1                                  | nd                    | 1.12               | 1.02             | 0.94  |
| 6   | 0.79              | 0.3         | 10.5      | 1                                  | nd                    | 1.32               | 1.11             | 1.08  |
| 7   | 0.89              | 0.3         | 10.1      | 1                                  | nd                    | 1.12               | 1.21             | 1.03  |
| 8   | 0.88              | 0.3         | 4.5       | 1                                  | nd                    | 0.53               | 1.12             | 1.35  |
| 9   | 0.88              | 0.6         | 3.4       | 1                                  | nd                    | 0.46               | 1.40             | 1.40  |

<sup>a</sup> Concentrations in units of mTorr, with no corrections of any kind applied to data. <sup>b</sup> Units of Torr. <sup>c</sup> UV lamps were not equipped with preignition coils; hence the exact irradiation times may vary. <sup>d</sup> Consumption of CCl<sub>3</sub>CH<sub>3</sub> was not discernible.

suggests that channel 5a is dominant and channel 5b is, at most, of minor importance. This observation is consistent with the observed behavior of the analogous species CH<sub>2</sub>ClO<sub>2</sub> radicals where the molecular channel of the self-reaction is of negligible (<3%) importance.<sup>29</sup>

CCl<sub>3</sub>CH<sub>2</sub>O radicals produced in reaction 5a are expected to either decompose via C-C bond scission or react with O<sub>2</sub>:

$$CCl_3CH_2O + M \rightarrow CCl_3 + HCHO + M$$
 (21)

$$CCl3CH2O + O2 \rightarrow CCl3CHO + HO2$$
 (22)

M represents a third body such as  $N_2$ . In the presence of  $O_2$ ,  $CCl_3$  radicals undergo the following reactions leading to the formation of  $COCl_2$  and Cl atoms.<sup>30</sup>

$$CCl_3 + O_2 + M \rightarrow CCl_3O_2 + M \tag{23}$$

$$CCl_3O_2 + RO_2 (R = CCl_3 \text{ or } CCl_3CH_2) \rightarrow CCl_3O + RO + O_2 (24)$$

$$CCl_3O + M \rightarrow COCl_2 + Cl + M$$
 (25)

The observation of COCl<sub>2</sub> as a product following the F atom initiated oxidation of CCl<sub>3</sub>CH<sub>3</sub> can be taken as an indication of the importance of reaction 21 as a fate of the alkoxy radical CCl<sub>3</sub>CH<sub>2</sub>O. Alternatively, COCl<sub>2</sub> may arise following unwanted secondary reactions of CCl<sub>3</sub>CHO with either Cl or F atoms (or both) within the chamber.

$$Cl(F) + CCl_3CHO \rightarrow CCl_3CO + HCl(HF)$$
 (26)

$$CCl_3CO + M \rightarrow CCl_3 + CO + M$$
 (27)

Zabel et al.<sup>31</sup> have shown that decomposition of CCl<sub>3</sub>CO radicals proceeds rapidly to give CO and CCl<sub>3</sub> radicals which will then produce COCl<sub>2</sub> and Cl atoms via reactions 23–25. The fact that the CCl<sub>3</sub>CHO yield decreases and the COCl<sub>2</sub> yield increases with increasing conversion of CCl<sub>3</sub>CH<sub>3</sub> in experiment 1 (see Table 2) shows that such secondary chemistry is important in the present work. Because Cl atoms are 600 times more reactive toward CCl<sub>3</sub>CHO than toward CCl<sub>3</sub>CH<sub>3</sub> (see previous section), loss of CCl<sub>3</sub>CHO via reaction with Cl atoms may be important even in the presence of high CCl<sub>3</sub>CH<sub>3</sub> concentrations.

The complications caused by secondary reactions involving loss of CCl<sub>3</sub>CHO evident in the results from experiment 1 (see Table 2) render a detailed analysis of the results from this experiment difficult. However, several interesting points with regard to experiment 1 emerge from inspection of the data given in Table 2. First, after the initial 2 min irradiation period, where

the impact of unwanted secondary reactions is the least, the yield of CCl<sub>3</sub>CHO is approximately 5 times that of COCl<sub>2</sub>. This observation suggests that under the experimental conditions of experiment 1 reaction 22 dominates reaction 21 as a loss of CCl<sub>3</sub>CH<sub>2</sub>O radicals. Second, upon further irradiation the yield of CCl<sub>3</sub>CHO reaches a plateau whereas the COCl<sub>2</sub> yield increases markedly. This behavior is explained by the conversion of CCl<sub>3</sub>CHO into COCl<sub>2</sub> via reactions 26, 27, 23, 24, and 25. Third, the yield of CO is similar to that of COCl<sub>2</sub> although in the early experiments the yield is substantially greater. The apparent enhanced yield of CO during the first 6 min of irradiation presumably reflects the reaction of F atoms with impurities in the chamber. Fourth, within the experimental uncertainties, the sum of the yields of CCl<sub>3</sub>CHO and COCl<sub>2</sub> is equal to the observed loss of CCl<sub>3</sub>CH<sub>3</sub>, suggesting the absence of any other major products.

The observation of a significant yield of CCl<sub>3</sub>CHO in experiment 1 suggests that reaction with O2 is the dominant atmospheric fate of CCl<sub>3</sub>CH<sub>2</sub>O radicals. To quantify the relative importance of reactions 21 and 22 in the atmospheric chemistry of CCl<sub>3</sub>CH<sub>2</sub>O radicals, experiments 2-9 were performed in which the [O<sub>2</sub>] partial pressure was varied from 3.4 to 700 Torr. To suppress the consumption of CCl<sub>3</sub>CHO product via Cl atom attack, high concentrations and low conversions of CCl<sub>3</sub>CH<sub>3</sub> were used. The results are shown in Table 2. As seen in Table 2, as [O2] was lowered, the yield of CCl3CHO decreased while the COCl<sub>2</sub> yield increased. The yield of CO was generally indistinguishable from that of COCl<sub>2</sub>, although for experiments 2 and 3 with low yields of COCl<sub>2</sub> the CO yield somewhat larger, reflecting a small unknown source of CO in the present experiments. The observed dependence of the CCl<sub>3</sub>CHO and COCl<sub>2</sub> yields on the partial pressure of O<sub>2</sub> suggests that there is a competition between reactions 21 and 22 for the available CCl<sub>3</sub>CH<sub>2</sub>O radicals. Ignoring for the moment the possible complications caused by secondary reactions, and assuming that CCl<sub>3</sub>CH<sub>2</sub>O radicals are lost solely by reactions 21 and 22, then the yields of COCl<sub>2</sub> and CCl<sub>3</sub>CHO are related by the expression  $Y(COCl_2)/Y(CCl_3CHO) = k_{21}/(k_{22}[O_2])$ . Figure 10 shows a plot of Y(COCl<sub>2</sub>)/Y(CCl<sub>3</sub>CHO) versus 1/[O<sub>2</sub>]. Linear least-squares analysis gives a slope =  $k_{21}/k_{22}$  = (8.9 ± 0.9) Torr.

At this point we must consider the validity of the assumptions implicit in the above derivation of the rate constant ratio  $k_{21}/k_{22}$ . By analogy to the behavior of other alkoxy radicals, two possible fates of CCl<sub>3</sub>CH<sub>2</sub>O radicals have been considered thus far. Recently, Jenkin et al.<sup>32</sup> have shown that a third possible decomposition route is available some alkoxy radicals, namely, elimination of a hydrogen atom.

$$CCl_3CH_2O + M \rightarrow CCl_3CHO + H + M$$
 (28)



Figure 10. Plot of the ratio of the yield of  $COCl_2$  to  $CCl_3CHO$  versus the reciprocal of the  $O_2$  concentration for experiments 2-9; see Table 2 for details.

There are two factors which mitigate against reaction 28 being of importance in the present work. First, Nelson et al.<sup>33</sup> have estimated that reaction 28 is endothermic by 19 kcal mol<sup>-1</sup>. Second, if reaction 28 were significant, no dependence of the CCl<sub>3</sub>CHO and COCl<sub>2</sub> yields on the O<sub>2</sub> partial pressure would be expected. This is in marked contrast to the present experimental observations. Accordingly, it seems reasonable to assume that reaction 28 plays no significant role and that reactions 21 and 22 are the sole loss processes for CCl<sub>3</sub>CH<sub>2</sub>O radicals.

There is one other assumption implicit in the data analysis. This is that neither CCl<sub>3</sub>CHO nor COCl<sub>2</sub> is lost in any secondary reactions. COCl<sub>2</sub> does not decay in the chamber either in the dark or upon irradiation with the UV fluorescent lamps. Furthermore, no loss of COCl<sub>2</sub> was observed on irradiation of mixtures of this compound with Cl<sub>2</sub>. We conclude that COCl<sub>2</sub> is not lost via photolysis, heterogeneous reactions, or reaction with Cl atoms. Control experiments showed that CCl<sub>3</sub>CHO is also not lost via either heterogeneous processes or photolysis. However, as shown in the previous section, CCl<sub>3</sub>CHO does react rapidly with Cl atoms. In the chamber CCl<sub>3</sub>CH<sub>3</sub>, CCl<sub>3</sub>CHO, and possibly other species compete for the available Cl atoms. The rate constant ratio  $k_{17}/k_{16} = 600$  (see previous section). The concentrations of CCl<sub>3</sub>CH<sub>3</sub> and CCl<sub>3</sub>CHO in experiments 2-10 are known (see Table 2). For each COCl<sub>2</sub> molecule that is formed in the chamber one Cl atom is liberated. The observed COCl<sub>2</sub> yield provides a measure of the Cl atoms liberated in the chamber. Corrections for the loss of CCl<sub>3</sub>CHO via reaction with Cl atoms were estimated using the following method. Let us consider experiment 2 (see Table 2) as an example of this calculation. First, the average [CCl<sub>3</sub>CHO]/[CCl<sub>3</sub>CH<sub>3</sub>] ratio in the experiment was  $0.825/750 = 1.1 \times 10^{-3}$ . The rate constant ratio  $k_{17}/k_{16} = 600$  (this work). It follows that, on average, 0.66/1.66 = 40% of the Cl atoms will react with CCl<sub>3</sub>CHO while 60% will react with CCl<sub>3</sub>CH<sub>3</sub>. We are not concerned with those Cl atoms which react with CCl<sub>3</sub>CH<sub>3</sub>. The 40% of the reaction which proceeds via attack on CCl<sub>3</sub>CHO leads to regeneration of Cl atoms which, in turn, have a 40% chance of reacting with another CCl<sub>3</sub>CHO molecule. Hence, a chain reaction is initiated. The efficiency of the chain is given by the geometric progress  $0.4 + 0.4^2 + 0.4^3 + ...$ , the sum of which is 0.4/(1-0.4) = 0.7. Each Cl atom generated by reaction 21 followed by (23)-(25) then leads to the loss of 0.7 molecule of CCl<sub>3</sub>CHO and the formation of an additional 0.7 molecule

of COCl<sub>2</sub>. It then follows that the observed yield of COCl<sub>2</sub> is 1.7 times greater than that expected in the absence of secondary chemistry. The corrected COCl<sub>2</sub> yield is then 0.11 mTorr and the corrected CCl<sub>3</sub>CHO yield is 1.73 mTorr. Using this approach, corrections were calculated for experiments 2–9. Corrected data are shown as the open circles in Figure 10. Linear least-squares analysis of the corrected data gives  $k_{21}/k_{22} = (5.7 \pm 0.7)$  Torr.

For convenience, in the above analysis the concentration of CCl<sub>3</sub>CHO is assumed to be constant at one-half of the experimentally observed value. This is, of course, a simplification as in reality the CCl<sub>3</sub>CHO will increase during the experiment. To assess the magnitude of the errors introduced by making this simplification, a modelling exercise was undertaken to explicitly evaluate the impact of secondary chemistry. In this modelling exercise the Acuchem<sup>34</sup> chemical kinetic modelling package was used with rate constant ratios of  $k_{21}/k_{22} = 5.7$  Torr and  $k_{17}/k_{16} = 600$  assumed. For the initial experimental conditions given in Table 2 the simulations reproduced the observed final yields of CCl<sub>3</sub>CHO and COCl<sub>2</sub> to within 5%, thereby supporting the data analysis methodology used above.

In computing the above corrections, we have just considered the competition between reactions 16 and 17 for the Cl atoms. In doing so we have, in effect, assumed a worse case scenario. In reality there may be other losses for Cl atoms in the chamber. For example, Cl atoms react 7300 times faster with HCHO than with CCl<sub>3</sub>CH<sub>3</sub>.<sup>16</sup> While, as noted above, HCHO was not detected as a product in the present experiments, the <0.1 mTorr upper limit for the concentration of HCHO does not preclude this species from being a significant reaction partner for Cl atoms in the present experiments. In view of the uncertainties associated with corrections needed to account for reaction of Cl atoms with CCl<sub>3</sub>CHO, we choose to quote a final value of  $k_{21}/k_{22} = (7.3 \pm 2.5)$  Torr which is an average of the corrected and uncorrected data together with error limits which encompass the extremes of the two determinations. From this rate constant ratio it can be calculated that, in the presence of 1 atm of air at 296 K, reaction with O<sub>2</sub> accounts for 96% of the loss of CCl<sub>3</sub>-CH<sub>2</sub>O radicals. Reaction with O<sub>2</sub> dominates the fate of CCl<sub>3</sub>-CH2O radicals at sea level. With increasing altitude in the atmosphere the temperature, total pressure, and partial pressure of O<sub>2</sub> all decrease. Decreasing temperature and total pressure favor reaction 22 over reaction 21 while decreasing partial pressure of O2 will favor reaction 21 over reaction 22. Reaction 21 is a unimolecular decomposition reaction and is expected to be very sensitive to changes in temperature. Considering the conditions pertinent to the U.S. standard atmosphere over the altitude range 0-15 km<sup>35</sup> and neglecting the effect of total pressure, reaction 21 will slow down faster than reaction 22 if the activation energy for reaction 21 is >4 kcal mol<sup>-1</sup> than that for reaction 22. By analogy with other alkoxy radicals,<sup>36</sup> it seems likely that the barrier to decomposition of CCl<sub>3</sub>CH<sub>2</sub>O radicals will be substantially greater than 4 kcal mol<sup>-1</sup> larger than that for reaction with O2, and hence it is expected that reaction with O2 is essentially the sole atmospheric fate of CCl3-CH2O radicals.

Finally, the results from the product study of the F atom initiated oxidation of CCl<sub>3</sub>CH<sub>3</sub> can shed some light on the question of the mechanism of F atom attack. Throughout this work it has been assumed that reaction proceeds via H atom abstraction to give CCl<sub>3</sub>CH<sub>2</sub> radicals. Another possibility is Cl atom abstraction to give CH<sub>3</sub>CCl<sub>2</sub> radicals. In the presence of O<sub>2</sub>, CH<sub>3</sub>CCl<sub>2</sub> radicals will form peroxy radicals CH<sub>3</sub>CCl<sub>2</sub>O<sub>2</sub>. Subsequent reactions will then either form COCl<sub>2</sub> or CH<sub>3</sub>COCl.

As shown in Figure 10, the  $COCl_2$  yield was strongly dependent on the  $O_2$  concentration in the chamber with a yield which approached zero at high  $[O_2]$ .  $CH_3COCl$  was not an observed product. An upper limit of 4% for the molar yield of  $CH_3COCl$  ( $\Delta[CH_3COCl]/\Delta[CCl_3CH_3]$ ) was established. The lack of any  $CH_3COCl$  product and the tendency of the  $COCl_2$  yield to approach zero in the presence of high  $O_2$  concentrations suggest that the formation of  $CH_3CCl_2$  radicals is of negligible importance.

### **Implications for Atmospheric Chemistry**

Following release into the atmosphere, CCl<sub>3</sub>CH<sub>3</sub> will react predominantly with hydroxyl radicals. The atmospheric lifetime of CCl<sub>3</sub>CH<sub>3</sub> with respect to reaction with OH is  $5.7 \pm 0.7$ vears.<sup>37</sup> Reaction with OH gives CCl<sub>3</sub>CH<sub>2</sub> which, within 1  $\mu$ s, will be converted into the corresponding peroxy radical, CCl<sub>3</sub>-CH<sub>2</sub>O<sub>2</sub>. We have shown here that CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals react rapidly with NO to produce NO2 and (by inference) CCl3CH2O radicals. Using  $k_6 \ge 6.1 \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> together with an estimated background tropospheric NO concentration of  $2.5 \times 10^8$  cm<sup>-3</sup>, <sup>38</sup> the lifetime of CCl<sub>3</sub>CH<sub>2</sub>O<sub>2</sub> radicals with respect to reaction 6 is calculated to be less than 11 min. Reaction 6 is likely to be an important atmospheric loss of CCl<sub>3</sub>-CH<sub>2</sub>O<sub>2</sub> radicals. We have shown here that the atmospheric fate of the alkoxy radical generated in reaction 6 is reaction with O2 to give CCl3CHO. The subsequent atmospheric chemistry of CCl<sub>3</sub>CHO is believed to be dominated by photolysis and reaction with OH radicals. The atmospheric lifetime of CCl<sub>3</sub>-CHO with respect to reaction with OH is 290 h.39 The atmospheric lifetime of CCl<sub>3</sub>CHO with respect to photolysis is estimated to be of the order of a few hours.<sup>39</sup> The atmospheric degradation of CCl<sub>3</sub>CH<sub>3</sub> in the lower atmosphere gives products which are short lived and incapable of transporting significant amounts of chlorine to the stratosphere.

**Acknowledgment.** We thank Steve Japar (Ford Motor Company) for a critical reading of the manuscript.

### References and Notes

- (1) Midgley, P. M. Personal communication, 1994.
- (2) World Meteorological Organization, Global Ozone Research and Monitoring Project-Report No. 20; Scientific Assessment of Stratospheric Ozone, Appendix: AFEAS Report, 1989; Vol. 2, Chapter 6.
- (3) World Meteorological Organization, Global Ozone Research and Monitoring Project-Report No. 25; Scientific Assessment of Stratospheric Ozone Depletion, 1991; Chapter 5.
  - (4) Nielsen, O. J. Risø-R-480, 1984.
- (5) Wallington, T. J.; Ellermann, T.; Nielsen, O. J. J. Phys. Chem. 1993, 97, 8442.
- (6) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667.
- (7) Roussel, P. B.; Lightfoot, P. D.; Caralp, F.; Catoire, V.; Lesclaux, R.; Forst, W. J. Chem. Soc., Faraday Trans. 1991, 87, 2367.
- (8) Ellermann, T.; Sehested, J.; Nielsen, O. J.; Pagsberg, P.; Wallington, T. J. Chem. Phys. Lett. 1993, 218, 287.

- (9) Degaut, P.; Wallington, T. J.; Kurylo, M. J. Int. J. Chem. Kinet. 1988. 20, 815.
- (10) Nielsen, O. J.; Gamborg, E.; Sehested, J.; Wallington, T. J.; Hurley, M. D. J. Phys. Chem. 1994, 98, 9518.
- (11) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. Environ. 1992, 26A, 1805.
- (12) Kurylo, M. J.; Ouellette, P. A.; Laufer, A. H. J. Phys. Chem. 1986, 90, 437.
  - (13) Sander, S. P.; Watson, R. T. J. Phys. Chem. 1981, 85, 2960.
- (14) Wallington, T. J.; Ellermann, T.; Nielsen, O. J. Res. Chem. Intermed. 1994, 20, 265.
- (15) Sehested, J.; Ellermann, T.; Nielsen, O. J.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1993, 25, 701.
- (16) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Jet Propulsion Laboratory Publication 92-20, Pasadena, CA, 1992.
- (17) Scollard, D. J. P. Ph.D. Thesis, Chemistry Department, University College Dublin, 1992.
- (18) Okabe, H. Photochemistry of Small Molecules; John Wiley: New York, 1978.
  - (19) Wallington, T. J.; Nielsen, O. J. Chem. Phys. Lett. **1991**, 187, 33.
- (20) Sehested, J.; Nielsen, O. J.; Wallington, T. J. Chem. Phys. Lett. 1993, 213, 457.
- (21) Wallington, T. J.; Ellermann, T.; Nielsen, O. J.; Sehested, J. J. Phys. Chem. 1994, 98, 2346.
  - (22) Sehested, J.; Nielsen, O. J. Chem. Phys. Lett. 1993, 206, 369.
  - (23) Sehested, J.; Nielsen, O. J. Chem. Phys. Lett. 1993, 213, 433.
  - (24) Wallington, T. J.; Hurley, M. D. Chem. Phys. Lett. 1992, 189, 437.
  - (25) Wine, P. H.; Semmes, D. H. J. Phys. Chem. 1983, 87, 3572.
- (26) Wine, P. H.; Semmes, D. M.; Ravishankara, A. R. Chem. Phys. Lett. 1982, 90, 128.
- (27) Tschuikow-Roux, E.; Niedzielski, J.; Faraji, F. Can. J. Chem. 1984, 63, 1093.
- (28) Scollard, D. J.; Treacy, J. J.; Sidebottom, H. W.; Balestra-Garcia, C.; Laverdet, G.; LeBras, G.; MacLeod, H.; Téton, S. J. Phys. Chem. 1993, 97 4683
- (29) Tyndall, G. S.; Wallington, T. J.; Hurley, M. D.; Schneider, W. F. J. Phys. Chem. 1993, 97, 1576.
- (30) Lesclaux, R.; Dognon, A. M.; Caralp, F. J. Photochem. Photobiol., A: Chem. 1987, 41, 1.
- (31) Zabel, F.; Kirchner, F.; Becker, K. H. Int. J. Chem. Kinet. 1994, 26, 827
- (32) Jenkin, M. E.; Hayman, G. D.; Wallington, T. J.; Hurley, M. D.; Ball, J. C.; Nielsen, O. J.; Ellermann, T. J. Phys. Chem. 1993, 97, 11712.
- (33) Nelson, L.; Shanahan, I.; Sidebottom, H. W.; Treacy, J.; Nielsen, O. J. Int. J. Chem. Kinet. 1990, 22, 577.
- (34) Braun, W.; Herron, J. T.; Kahaner, D. K. Int. J. Chem. Kinet. 1988, 20, 51
- (35) U.S. Standard Atmosphere, 1976; NOAA, NASA, USAF: Washington, DC, 1976.
- (36) Wallington, T. J.; Hurley, M. D.; Ball, J. C.; Kaiser, E. W. Environ. Sci. Tech. 1992, 26, 1318.
- (37) Derwent, R. G.; Volz-Thomas, A.; Prather, M. J. World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 20; Scientific Assessment of Stratospheric Ozone, 1989; Vol. 2, p 124.
- (38) Atkinson, R. World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 20; Scientific Assessment of Stratospheric Ozone, 1989; Vol. 2, p 167.

  (39) Barry, J.; Scollard, D. J.; Treacy, J. J.; Sidebottom, H. W. G.;
- (39) Barry, J.; Scollard, D. J.; Treacy, J. J.; Sidebottom, H. W. G.; LeBras, G.; MacLeod, H.; Téton, S.; Poulet, G.; Teton, S.; Chichinin, A.; Canosa-Mas, C. E.; Kinnison, D. J.; Wayne, R. P.; Nielsen, O. J. Chem. Phys. Lett. 1994, 221, 353-358.

JP942872R