6.002 CIRCUITS AND ELECTRONICS

Violating the Abstraction Barrier

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 25

Case 1: The Double Take

(a) DC case

Question: So why did our circuits work?

Case 2: The Double Dip

Problem → strange spikes on supply

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 25

- solution 1. short wires
 - 2. low inductance wires
 - 3. avoid big current swings

Case 3: The Double Team, or, Slower may be faster!

Let's try speeding it up by using stronger drivers

How does this relate to chip?

Load output!

- put cap on outputs of chip
- jitter edges
- slew edges

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 25

Case 4: The Double Jump

Careful abstraction violation for the better...

but, observe

Case 4: The Double Jump

Careful abstraction violation for the better...

