Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for detecting a position of an impulse
2	response in a multipath channel comprising:
3	(a) receiving a transmitted signal as a received signal, the received signal
4	comprising one or more reflected signals and a line-of-sight signal;
5	(b) correlating a representation of the received signal with a pseudo-random
6	number (PN) sequence to produce an evaluation signal, the PN sequence being used to produce
7	the transmitted signal, the evaluation signal comprising a plurality of peak values;
8	(c) identifying a first peak value from among the plurality of peak values;
9	(d) determining a position in the evaluation signal of the first peak value, wherein
10	the position is representative of time;
11	(e) determining a threshold value based on the evaluation signal;
12	(f) comparing the threshold value with one of the peak values to produce a
13	comparison result; and
14	(g) based on the comparison result, determining whether to:
15	produce a new evaluation signal based on the evaluation signal; and
16	repeat the steps (c) - (g) using the new evaluation signal,
17	wherein a plurality of first peak values are accumulated by the repetition of steps
18	(c)-(g),
19	wherein a position of an impulse response corresponds to the first peak value in
20	the plurality of first peak values whose associated time is the earliest[[.]],
21	wherein the first peak value with the earliest time represents the arrival time of the
22	line-of-sight signal.

Appl. No. 10/651,449 Amdt. sent January 4, 2007 Reply to Office Action of October 4, 2006

1	2. (Original) The method of claim 1 wherein the new evaluation signal is
2	produced by subtracting a template signal from the evaluation signal.
1	3. (Original) The method of claim 1 wherein the threshold value is based on
2	the peak values comprising the evaluation signal, exclusive of the first peak value.
1	4. (Original) The method of claim 1 wherein the threshold value is based on
2	a ratio between the first peak value and the other peak values comprising the evaluation signal.
1	5. (Original) Apparatus for identifying a position of an impulse response in a
2	multipath channel comprising:
3	a data processing unit; and
4	a memory component in data communication with the data processing unit, the
5	memory component containing a first memory configured with computer program code,
6	the computer program code configured to operate the data processing unit to
7	perform the method steps as recited in claim 1.
1	6. (Currently amended) A signal detection method comprising:
2	(a) receiving a transmitted signal as a received signal, the transmitted signal
3	comprising a first signal correlated with a pseudo-random number sequence, the first signal
4	representative of an information signal, the received signal comprising one or more reflected
5	signals and a line-of-sight signal;
6	(b) producing a matched signal from the received signal;
7	(c) correlating the matched signal with the pseudo-random number sequence to
8	produce a correlated signal, the correlated signal comprising a main lobe and a plurality of side
9	lobes;
10	(d) determining a peak value of the main lobe;
11	(e) determining a time value associated with the peak value of the main lobe;
12	(f) determining a threshold value based on the correlated signal; and

13	(g) if one of peak value of the main lobe and the plurality of side lobes exceeds
14	the threshold value the threshold value exceeds a value based on the side lobes, then subtracting
15	a template signal from the correlated signal to produce a new signal and repeating the steps (c) -
16	(g) with the new signal, wherein the threshold value is recomputed with each iteration of the
17	steps (c) - (g),
18	wherein a plurality of time values are produced by the repetition of steps (c)-(g),
19	<u>and</u>
20	wherein the smallest of the time values represents the arrival time of the line-of-
21	sight signal.
1	7. (Original) The method of claim 6 wherein the first signal is the
2	information signal.
1	8. (Original) The method of claim 6 wherein the threshold value is based on
2	peak values of the side lobes.
1	9. (Original) The method of claim 6 wherein the threshold value is based on
2	a ratio between the peak value of the main lobe and a peak value of each side lobe.
1	10. (Currently amended) A signal detection processor comprising:
2	(a) means for receiving a digital signal, the digital signal representative of a
3	transmitted signal, the transmitted signal formed by correlating an information signal with a PN
4	sequence, the digital signal comprising one or more reflected signals and a line-of-sight signal;
5	(b) means for correlating the digital signal with the PN sequence to produce a
6	correlated signal;
7	(c) means for detecting a peak value in the correlated signal including associating
8	a time value representative of the position of the peak value in the correlated signal;
9	(d) means for determining a threshold value based on the correlated signal;
10	(e) means for producing a new correlated signal from the correlated signal; and

11	(f) means for repeating [[the]]a process performed by the means (b)-(e) using the
12	new correlated signal, if a comparison of the threshold value with the correlated signal produces
13	a first comparison result,
14	thereby accumulating a plurality of peak values[[.]], and
15	wherein the smallest of the time values represents the arrival time of the line-of-
16	sight signal.
1	11. (Currently amended) The processor of claim 10 wherein each of the
2	recited means [[are]] is provided as computer program code.
1	12. (Currently amended) The processor of claim 10 wherein each of the
2	recited means [[are]] is performed on a data processing unit.
1	13. (Original) The processor of claim 10 wherein the means for determining a
2	threshold is based on peaks in the correlated signal exclusive of the detected peak value.
1	14. (Original) The processor of claim 10 wherein the means for producing a
2	new correlated signal includes subtracting a template signal from the correlated signal.