Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Selección y Dimensionamiento de Conductores Eléctricos

Que criterios se deben usar para la selección?

Que problemas crea una selección errada?

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Introducción Consecuencias de una selección inadecuada de los conductores

- Sobrecalentamiento de las líneas Perdidas de Energía.
- Caídas de tensión.
- Falla de aislamiento y puestas a tierra.
- Cortocircuitos.
- Cortes de suministro.
- Interferencias con otros sistemas
- Incendios.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores

Los conductores se seleccionan tomando en cuenta lo siguiente:

- Las Condiciones de Servicio del conductor.
- La Capacidad de corriente del conductor.
- La Caída de tensión admisible en el conductor.
- La Capacidad de cortocircuito del conductor.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Condiciones de Servicio

- El numero de fases.
- La temperatura y humedad del medio.
- El sistema de canalización a usar.
 Al aire libre, en tubo o subterráneo?
- Conductor rígido o flexible?....etc

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Capacidad de corriente

 La energía eléctrica transportada a través de los conductores debe estar presente
 en el momento y la magnitud que el usuario lo requiera; así como en las mejores condiciones de seguridad y operación.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Capacidad de corriente

- La seguridad y la operación están relacionadas con la calidad, la integridad y características del aislante.
- La integridad del aislante depende de la corriente que circula por el conductor y la sección del conductor.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Capacidad de corriente

 La corriente al circular por un conductor disipa calor por el efecto Joule.

Conductor seleccionado

IEE 217 - SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Capacidad de corriente

- El calentamiento de los conductores produce en el aislante:
 - Disminución de la resistencia de aislamiento.
 - Disminución de la resistencia mecánica
 - Envejecimiento del aislante.

El calentamiento ocurre dentro de los aparatos eléctricos, en los alimentadores, en los bornes, etc. Y define el material de aislamiento del conductor que se usará en la instalación

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Dimensionamiento de conductores por capacidad de corriente

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Capacidad de corriente

 La corriente de trabajo de la carga es:

$$I_{t} = \frac{P * F.D.}{\sqrt{3} * U * F.P. * \eta}$$
 (A)

El factor de demanda (FD) se usa cuando se conoce el comportamiento de la carga

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Capacidad de corriente

 La corriente de diseño del conductor.

 $I_{dise\tilde{n}o} = 125\% I_{trabajo}$

I diseño ≤ I admisible corregida

La corriente de trabajo es por lo general, la **corriente nominal** de la carga.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Criterios de selección de los conductores Capacidad de corriente

$$I_{dise\tilde{n}o} = \sum_{i=1}^{n} I_i + 25\% I_{mayor}$$

$$I_{dise\tilde{n}o} = I_1 + I_2 + I_3 + \dots + I_n + 0.25 * I_{mayor}$$

Donde:

 $I_{\text{dise}\tilde{\text{no}}}$ = Corriente de diseno del alimentador, en A.

I_i = Corriente de la carga "i", en A.

 I_{mayor} = Corriente de la carga mayor en el alimentador, en A.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Dimensionamiento de conductores Método CNE 2006

La <u>corriente</u> que puede transportar un conductor es definida por el <u>método de</u> instalación.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Método CNE – Utilización 2006

- Método basado en la norma IEC 60364-5-52 "Instalaciones eléctricas en edificios" Parte 5-52 "Selección y utilización de material eléctrico – canalizaciones"
- Relaciona la capacidad de corriente de un conductor con el método de instalación del mismo.
- Existen factores de corrección por temperatura y agrupación.
- Solo considera 4 tipos de aislamiento: PVC, XLPE, EPR, Mineral con o sin cubierta.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

ltem Nro.	Métodos de instalación	Descripción	Referencia del método de instalación a ser usado para obtener la capacidad de corriente nominal (ver Tabla 3)
1	2	3	4
1	Local	Conductores aislados o cables unipolares en tubo en una pared ¹⁾	A1
ž	Local	Cables multipolar en tubo en una pared ¹⁾	A2
3		Conductores aislados o cables unipolares dentro de un tubo sobre una pared de madera o mampostería o espaciada menos de 0,3 veces el diámetro del tubo desde la pared.	В1
4		Cable multipolar dentro de un tubo sobre una pared de madera o mampostería, o espaciada menos de 0,3 veces el diámetro del tubo desde la pared	B2

FACULTAD DE CIENCIAS E INGENIERÍA Sección Electricidad y Electrónica AREA DE ELECTRICIDAD

Àrea de sección	i i	Método de Instalación de Acuerdo a la NTP 370,301 (IEC 60364-5-523)											
transversal nominal del	Д	A1		2	B1		A1		A	A2		B1	
conductor mm²	<u>mm</u>					G						ā	
Aislamiento	P\	/C	PΛ	VC.	P	/C	XLPE	ó EPR	XLPE	ó EPR	XLPE	ó EPF	
Temperatura	70	°C	70	°C	70	°C	90	°C.	90	°C	90	°C	
Cantidad Conductores	2	3	2	3	2	3	2	3	2	3	2	3	
1	2	3	4	5	6	7	8	9	10	11	12	13	
Cobre													
1,5	14,5	13,5	14	13	22	18	22	19,5	24	22	26	22	
2,5	19,5	18	18,5	17,5	29	24	30	26	33	30	34	29	
4	26	24	25	23	38	31	40	35	45	40	44	37	
6	34	31	32	29	47	39	51	44	58	52	56	46	
10	46	42	43	39	63	52	69	60	80	71	73	61	
16	61	56	57	52	81	67	91	80	107	96	95	79	
25	80	73	75	68	104	86	119	105	138	119	121	101	
35	99	89	92	83	125	103	146	128	171	147	146	122	
50	119	108	110	99	148	122	175	154	209	179	173	144	
70	151	136	139	125	183	151	221	194	269	229	213	178	
95	182	164	167	150	216	179	265	233	328	278	252	211	
120	210	188	192	172	246	203	305	268	382	322	287	240	
150	240	216	219	196	278	230	990	29	441	371	324	271	
185	273	245	248	223	312	258	(4)	29	506	424	363	304	
240	321	286	291	261	361	297	343	207	599	500	419	351	
300	367	328	334	298	408	336	1320	29	693	576	474	398	

	P	/C	XLPE	o EPR	MI - Mineral * (al aire)			
Temperatura ambiente [°C]	('ahlee en		Cables al aire	Cables en ductos enterrados	Cubierta de PVC o desnudo y expuesto al contacto 70°C	Desnudo no expuesto al contacto 105 ºC		
10	1,22	1,10	1,15	1,07	1,26	1,14		
15	1,17	1,05	1,12	1,04	1,20	1,11		
20	1,12	1,00	1,08	1,00	1,14	1,07		
25	1,06	0,95	1,04	0,96	1,07	1,04		
30	1,00	0,89	1,00	0,93	1,00	1,00		
35	0,94	0,84	0,96	0,89	0,93	0,96		
40	0,87	0,77	0,91	0,85	0,85	0,92		
45	0,79	0,71	0,87	0,80	0,87	0,88		
50	0,71	0,63	0,85	0,76	0,67	0,84		
55	0,61	0,55	0,76	0,71	0,57	0,80		
60	0,50	0,45	0,71	0,65	0,45	0,75		
65	-	-	0,65	0,60	-	0,70		
70	-	-	0,58	0,53	-	0,65		
75	-	-	0,50	0,46	-	0,60		
80	-	-	0,41	0,38	-	0,54		
85	-	-	-	-	-	0,47		
90	-	-	-	-	-	0,40		
95	1.5	-	_	-	2	0,32		

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Corrección por número de circuitos

Ítem	Disposición (en cuanto a cables)	Número de circuitos o cables multipolar									A usarse con capaci- dades de corriente				
		1	2	3	4	5	6	7	8	9	12	16	20	nominal, referencia	
1	Agrupados en el aire, sobre una superficie empotrados o encerrados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45 0,41 0,38			4 a 8 Métodos A a F	
2	En una capa sobre una pared, piso o bandeja no perforada	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	No más factores de reducción para más de nueve circuitos o cables multipolares			4 a 7	
3	En una capa fijado directamente bajo un techo de madera	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61				Método C	
4	En una capa sobre una bandeja perforada horizontal o vertical	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72				8 a 9 Métodos E y F	
5	En una capa sobre un soporte de bandeja de escaleras, o listones, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78					

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Factores de corrección de la Capacidad de corriente

- La capacidad nominal de corriente o de transporte de un conductor depende de las siguientes condiciones:
 - La canalización
 - La temperatura ambiente.
 - La agrupación de conductores dentro de los ductos de canalización.

Por lo tanto, al variar estas condiciones se debe efectuar una corrección.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Corrección de la Capacidad nominal de corriente

 La capacidad de corriente de un conductor se obtiene de la siguiente expresión,

$$I_{corr} = K_N * K_T * I_{adm}$$

 I_{corr} = Corriente admisible corregida, en A.

 K_N = Factor de Corrección por agrupación.

K_T = Factor de Corrección por temperatura.

 I_{adm} = Corriente admisible del conductor, en A.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores **Ejemplo**

- Verificar la capacidad de corriente de un conductor en las siguientes condiciones:
 - Calibre TW 70 de 6 mm²
 - Temperatura ambiente 38°C
 - Numero de circuitos (conductores) en el ducto = 3 circuitos monofásicos
 - Instalados en tubería adosada a la pared

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores **Ejemplo 1**

- En estas condiciones se tienen los siguientes valores:
 - Intensidad admisible del conductor Calibre
 TW 6 mm² en circuito monofásicos = 34 A
 - K_T=0,87 (tabla 5A, al aire a 40°C puede interpolarse)
 - K_N=0,7 (tabla 5C, 3 circuitos monofásicos método A)

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Criterios de selección de los conductores **Ejemplo 1**

 La corriente admisible corregida del conductor para estas condiciones será:

$$I_{adm. corregida} = K_N * K_T * I_{admisible}$$
 $I_{adm. corregida} = 0.70 * 0.87 * 34 A$
 $I_{adm. corregida} = 0.609 * 34 A$

I_{adm. corregida} = 20,71 Ampere

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Verificación de la caída de tensión admisible

Se debe limitar la caída de tensión en el alimentador de cada carga, especialmente en el caso de cargas sensibles como lámparas o instrumentación.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Criterios de selección de los conductores Caída de tensión admisible

 El transporte de corriente en un conductor produce una caída de tensión.

MEC 290 - ELECTRICIDAD INDUSTRIAL

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Caída de tensión admisible

- En nuestro país, la caída de tensión admisible es:
 - Alimentadores □ Circuitos derivados - 2,5 % Según □ Circuitos de motores □ Circuitos de iluminación - 1 %

Expresada como porcentaje de la tensión entre líneas. Se recomienda revisar el CNE utilización para otras condiciones.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Criterios de selección de los conductores Caída de tensión admisible

$$\Delta U\% = \frac{0.0309 * I * L * cos\phi}{s * U} * 100\%$$

$$\Delta U\% = \Delta U\%_{Admisible}$$

Donde:

 $\Delta U\%$ = Caída de tensión, en porcentaje.

 $cos\phi$ = Factor de potencia. = Tensión, en Voltios.

= corriente de operación, en Ampere.

= Distancia del tablero al punto de alimentación, en m

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Caída de tensión admisible

 Si consideramos un circuito con las condiciones de carga más desfavorables, podemos hallar la sección mínima del conductor.

$$S_{minima} = \frac{0,0309 * I * L * cos\phi}{\Delta U\% * U} * 100\%$$

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Caída de tensión admisible

$$\Delta U\% = \frac{0.0357 * I * L * cos\phi}{s * U} * 100\%$$

$$\Delta U\% = \Delta U\%_{Admisible}$$

Donde:

 $\Delta U\%$ = Caída de tensión, en porcentaje.

Circuitos monofásicos

cosφ = Factor de potencia.U = Tensión, en Voltios.

I = corriente de operación, en Ampere.

L = Distancia del tablero al punto de alimentación, en m

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores Caída de tensión admisible

 Si consideramos un circuito monofásico con las condiciones de carga más desfavorables, podemos hallar la sección mínima del conductor.

$$S_{\text{minima}} = \frac{0.0357 * I * L * \cos \varphi}{\Delta U\% * U} * 100\%$$

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de los conductores Cálculo de Alimentadores

- Los conductores alimentadores de un circuito eléctrico pueden alimentar una carga o un conjunto de cargas.
 - Alimentadores con carga concentrada
 - · Alimentadores con carga distribuida

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Cálculo por Caída de Tensión Admisible Alimentador con carga concentrada

 Este alimentador tiene la carga o centro de carga situada en un extremo del alimentador.

Cálculo por Caída de Tensión Admisible

Alimentador con carga concentrada

 Si consideramos un circuito, con las condiciones de carga más desfavorables, podemos hallar la sección mínima del conductor.

$$S_{minima} = \frac{k * I * L *}{\Delta U\% * U} * 100\%$$

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores **Ejemplo 2**

- Alimentador de un calefactor monofásico de 2,25 kW, 220 V, FP=1, eficiencia 100 %, que se encuentra en un tercer piso.
 - Corriente aprox. = 10,23 A.
 - Distancia = 35 metros

 - Temperatura ambiente = 30°C
 - Conductor de Cobre, tipo TW 70 en tubo de PVC

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Criterios de selección de los conductores **Ejemplo 2**

$$S_{minima} = \frac{\frac{k * I * L * cos\phi}{\Delta U\% * U} * 100\%}{\frac{\Delta U\% * U}{\Delta 0.23 * 35 * 1}} * 100\%$$

$$S_{minima} = \frac{0.036 * 10.23 * 35 * 1}{2.5 * 220} * 100\%$$

$$A_{minima} = 2.34 \ mm^{2}$$

- En la tabla seleccionamos un conductor TW Calibre 2,5 mm² cuya sección es mayor que la mínima!!
- Y la corriente admisible es 19,5 A para un conductor monopolar en tubo.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Ejemplo de selección

DATOS - Bomba

- Potencia 24 HP
- Voltaje 220 V
- Eficiencia 88,5%
- FP (cos φ) 0,85
- Longitud 150 m
- T_{ambiente} 50 °C
- FD = 1

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Ejemplo de selección Calculo de la I de diseño

Calculo de la corriente de trabajo (I_t)

$$I_t = \frac{P * F.D.}{\sqrt{3} * U * F.P.* \eta} = \frac{24 * 746 * 1}{\sqrt{3} * 220 * 0.85 * 0.885}$$

$$I_t = 62.46 A$$

Calculo de la corriente de diseño (I_{dis})

$$I_{dis} = 1,25 * I_t = 1,25 * 62,46 A$$

 $I_{dis} = 78,08 A$

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Ejemplo de selección Corrección de la I de diseño

- La temperatura ambiente es 50°C > 30°C, por lo tanto se debe corregir la corriente de diseño, usando el K_t de la tabla No.5A
- No.5A $K_t = 0.71$

	PVC						
Temperatura ambiente [°C]	Cables al aire	Cables en ductos enterrados					
10	1,22	1,10					
15	1,17	1,05					
20	1,12	1,00					
25	1,06	0,95					
30	1,00	0,89					
35	0,94	0,84					
40	0,87	0,77					
45	0,79	0,71					
50	0,71	0,63					

Ejemplo de selección Corrección de la I de diseño

 La corriente de diseño corregida por temperatura usando el Kt

$$I_{dise\~no\ corregido\ por\ t} = \frac{I_{dise\~no}}{K_t} = \frac{78,08\ A}{0,71}$$

$$I_{dise\~no\ corregido\ por\ t} = 110\ A$$

 $I_{admisible\ conductor} \ge I_{dise\tilde{n}o\ corregido\ por\ t}$

 $I_{admisible\ conductor} \ge 110\ A$

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Ejemplo de selección **Opciones**

- Se evalúan dos alternativas usando la tabla No. 2 para obtener las corrientes admisibles de los conductores
 - Opción No. 1 (B1) 1 conductor TW de 50 mm² por fase en un tubo Iadm =134 A > Idis.corr 110 A
 - Opción No. 2 2 conductores TW de 16 mm² por fase en 2 tubos separados Iadm de 2 conductores = $2 \times 68 \text{ A} = 132 \text{ A}$ Iadm de 2 conductores > 110 A

Ejemplo de selección Verificación de la Caída de U

Opción No.1

$$\Delta E\% = \frac{0,0309 * 62,46 * 150 * 0,85}{50 * 220} * 100\%$$

$$\Delta E\% = 2,23 \% \le 3\%$$

Opción No.2

$$\Delta E\% = \frac{0,0309 * 62.46 * 150 * 0,85}{2 * 16 * 220} * 100\%$$

$$\Delta E\% = 3,5\% > 3\% \text{ NO CUMPLE}$$

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Ejemplo de selección Selección de canalización

 Dado que solamente la opción No.1 cumple con la condición de caída de tensión, se seleccionan la tubería Conduit en la tabla No.6 - Máximo número de conductores de una dimensión en tuberías pesadas o livianas.

			-							
Sección	Diámetro	Dimensión de la								
nominal [mm²]	exterior [mm]	15 [mm]	20 [mm]	25 [mm]	35 [mm]	40 [mm]	55 [mm]			
		(1/2)*	(3/4)*	(1)*	(11/4)*	(11/2)*	(2)*			
2,5	4,0	6	10	17	30	41	68			
4	4,5	4	8	14	24	33	54			
6	5,0	3	7	11	19	26	44			
10	6,5	1	4	6	11	15	26			
16	8,5	1	1	3	6	9	15			
25	9,5	1	1	3	5	7	12			
35	11	1	1	1	4	5	9			
50	13		1	1	2	3	6			
70	15		1	1	1	2	4			

Ejemplo de selección Selección de canalización

- La tubería seleccionada debe poder contener al menos tres conductores para las fases (R, S, y T) y el conductor de puesta tierra (PE)
- Opción No. 1

1 tubo de PVC CP (SAP) o 1 conduit metálico (GRC) de φ 55 mm o 2" de diámetro acepta hasta **6 conductores**.

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Costos de la instalación

- Los costos de la instalación están compuestos por los materiales y la mano de obra, y se debe tomar en cuenta lo siguiente:
 - El costo de los conductores normalmente se expresa en S/. por metro o S/. por rollo de 100 m. Y es directamente proporcional con la sección del conductor (s en mm²)
 - El costo de las tuberías o canalizaciones se expresa en S/. por pieza de 3 m. Y es directamente proporcional con su diámetro (Ø en mm o ")
 - Se debe considerar el costo de cajas de paso, accesorios de montaje, etc.
 - El costo de la mano de obra depende de la calificación de los operarios, si es trabajo de riesgo, la altura de montaje, etc.

Datos técnicos

- Separata Tablas de conductores eléctricos CNE Tablas 2, 3, 5A, 5C y 6 MINEM Ministerio de energía y Minas.
 - Tabla 2 Capacidad de corriente en A de conductores aislados – En canalización o cable
 - Tabla 3 Métodos de instalación referenciales
 - Tabla 5A Factores de corrección para temperatura ambiente distinta de 30 °C para cables al aire y distinta a 20 °C para cables en ductos enterrados
 - Tabla 5C Factores de reducción por grupos de más de un circuito o de más de un cable multipolar
 - Tabla 6 Máximo número de conductores de una dimensión en tuberías pesadas o livianas

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Cálculo por Caída de Tensión Admisible Alimentador con carga Distribuida

- En este caso se pueden usar dos criterios de dimensionamiento:
 - Criterio de la sección constante.
 - Criterio de la sección variable.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Cálculo por Caída de Tensión Admisible Criterio de la sección constante

 En este caso se considera que el alimentador tiene la misma sección en toda su longitud.

$$S_{minima} = \frac{k * 100\%}{\Delta U\% * U} (L_1 * I_1 * \cos\varphi_1 + L_2 * I_2 * \cos\varphi_2 + \dots + L_n * I_n * \cos\varphi_n)$$

Donde:

L_n = Distancia de la carga "n", en metros.

 I_n = Corriente de la carga "n", en Amperios.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Criterios de selección de los conductores **Ejemplo 3**

• Se tiene un alimentador trifásico en la figura:

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de los conductores **Ejemplo 3**

$$S = \frac{k * 100\%}{\Delta U\% * U} (L_1 * I_1 * \cos\varphi_1 + L_2 * I_2 * \cos\varphi_2 + \dots + L_n * I_n * \cos\varphi_n)$$

$$S = \frac{0.03092*100}{5*220} (30 * 20 * 1 + 80 * 30 * 1 + 120 * 60 * 1)$$

$$S_{minima} \approx 28.7 \ mm^2$$

 El conductor a seleccionar será un TW con una sección de 35 mm²

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Cálculo por Caída de Tensión Admisible Criterio de la sección cónica

La sección del conductor disminuye en cada tramo.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Cálculo por Caída de Tensión Admisible Criterio de la sección variable

- En el diagrama se puede ver que la corriente en cada tramo del conductor es:
 - □ Tramo 1 $I_1=i_1+I_2$
 - \Box Tramo 2 $I_2=i_2+I_3$
 - □ Tramo 3 $I_3=i_3$
- La longitud del conductor es:
 - \Box $L_{total} = L_1 + L_2 + L_3$

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Cálculo por Caída de Tensión Admisible Criterio de la sección variable

 En este caso, la sección del alimentador se determina suponiendo que la "Densidad de corriente (J) es constante"

$$J = \frac{\Delta U\% * U}{k * L_T * \cos \phi_{promedio} * 100\%} (A/mm^2)$$

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Cálculo por Caída de Tensión Admisible Criterio de la sección variable

- La sección de cada tramo se obtiene de las expresiones del lado.
- Donde:
 - Ai es el Area de la sección "i"
 - Ii es la corriente de la sección "i"
 - J es la densidad de corriente hallada

$$A_1 = \frac{I_1}{J}$$

$$A_2 = \frac{I_2}{J}$$

$$A_3 = \frac{I_3}{J}$$

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Criterios de selección de conductores **Ejemplo 4**

$$J = \frac{\Delta U\% * U}{k * L_T * \cos\varphi_{promedio} * 100\%}$$

$$J = \frac{3 * 220}{0,0309 * 180 * (1,0) * 100}$$

$$J = 1,186 \quad A/mm^2$$

 La densidad de corriente admisible es 1,19 A/mm² y se debe aplicar a cada tramo del alimentador.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Criterios de selección de conductores **Ejemplo 4**

$$A_1 = \frac{I_1}{I} = \frac{85}{1.186} = 71,67 \quad mm^2$$

$$A_2 = \frac{I_2}{I} = \frac{70}{1,186} = 59,02 \quad mm^2$$

$$A_3 = \frac{I_3}{I} = \frac{50}{1,186} = 42,16 \quad mm^2$$

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

