الإشتقاق

الدرس التاسع

	محتوى الدرس	
2	عمو میات	1
2	آ.ًا العدد المشتق	
2	2.1 التأويل المبياني للعدد المشتق	
3	3.1 التقريب التآلفي لدالة	
4	4.1 الإشتقاق على اليمين و الإشتقاق على اليسار	
5	حساب ألدوال المشتقة	2
5	1.2 الدالة المشتقة لدالة عددية	
5	2.2 الدوال المشتقة الإعتياديّة	
5	3.2 العمليات على الدُّوال المُشتقة	
8	تطبيقات الإشتقاق	3
8	1.3 الإشتقاق و رتابة دالة	
8	2.3 الأِشتقاق و مُطّاريف دالة	
8	$y'' + \omega^2 y = 0$ المعادلة التفاضلية 3.3	

1. عمومیات

1.1. العدد المشتق

تعريف

I منصر من I و a عنصر من f لتكن f دالة عددية معرفة على مجال

 $\frac{f(x)-f(a)}{x-a}$ بين كل عنصر x من I و العدد a التعبير ألدالة f بين كل عنصر

نقول إن الدالة f قابلة للإشتقاق في a عندما تكون نهاية معدل تغير الدالة f بين x و a عندما يؤول x إلى a هي نقول إن الدالة f قابلة للإشتقاق في a عندما تكون نهاية معدل تغير الدالة a بين a قابلة للإشتقاق في a عندما تكون نهاية معدل تغير الدالة a بين a عندما يؤول a المنابع والمنابع المنابع ال

x-a العدد المشتق للدالة f في a و يرمز له بالرمز f'(a) العدد ℓ العدد المشتق للدالة المتحدد المشتق العدد الع

ملاحظة

x - a = h بوضع x - a = h أي x - a = h نستنتج أن x - a = h نستنتج أن x - a = h عندما يؤول x - a = h ون x - a = h عندما يؤول x - a = h يؤول x - a = h عندما يؤول x - a = h

 $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ نستنج من ما سبق أن: لدراسة قابلية اشتقاق الدالة f في a يمكن كذلك أن نحسب النهاية

أمثلة

بين أن الدالة $x\mapsto \sqrt{x}$ غير قابلة للإشتقاق في 0.	*

•••••	

2.1. التأويل المبياني للعدد المشتق

خاصية

لتكن f دالة عددية معرفة على مجال I و (\mathcal{C}_f) منحناها في معلم متعامد ممنظم. ليكن a عنصرا من I. إذا كانت f قابلة للإشتقاق في a فإن f'(a) هو المعامل الموجه للمستقيم المماس للمنحنى (\mathcal{C}_f) في النقطة y = f'(a)(x-a) + f(a) معادلة هذا المماس هي: y = f'(a)(x-a) + f(a)

لتكن A(a,f(a)) و M(a+h,f(a+h)) نقطتين من المنحنى M(a+h,f(a+h)) و M(a+h,f(a+h)) نقطتين من المنحنى M(a+h,f(a+h)) العدد M(a+h) يمثل المعامل الموجه للمستقيم M(a+h,f(a+h)) عندما تؤول M(a+h) فإن M(a+h) نقرب من M(a+h) و المستقيم M(a+h) يكاد ينطبق مع المماس للمنحنى M(a+h) في النقطة M(a+h) عندما تؤول M(a+h) فإن M(a+h) نقرب من M(a+h) و المستقيم M(a+h) يكاد ينطبق مع المماس للمنحنى M(a+h) في النقطة M(a+h)

	مثال	
الدالة $f\colon x\mapsto x^2$ في النقطة ذات الأفصول 2.	_	
***************************************	• • • • • • • • • • • • • • • • • •	• •
***************************************	• • • • • • • • • • • • • • • •	• •
•••••	• • • • • • • • • • • • • • • •	• •
***************************************	• • • • • • • • • • • • • • • •	• •

3.1. التقريب التآلفي لدالة

خاصية

a من a من المي دالة عددية معرفة على مجال a و قابلة للإشتقاق في

- $h\mapsto f'(a)h+f(a)$ للدالة a في a و تكتب كذلك $x\mapsto f'(a)(x-a)+f(a)$ الدالة a في a و تكتب كذلك $x\mapsto f'(a)(x-a)+f(a)$ بوضع a=h
 - $f(a+h) \simeq f(a) + f'(a)h$ يسمى التقريب التآلفي للعدد $f(a+h) \simeq f(a) + f'(a)h$ يسمى التقريب التآلفي للعدد

مثال عدد تقريبا تآلفيا للعدد (2+h) بجوار 0 و استنتج قيمة مقربة لكل من (2,0003) و (1,9995).

4.1. الإشتقاق على اليمين و الإشتقاق على اليسار

تعریف

I من من I و I من من I من من I من من I من من I

- نقول إن الدالة f قابلة للإشتقاق على اليمين في a عندما تكون نهاية معدل تغير الدالة f بين x و a عندما يؤول $\int \lim_{\substack{x \to a \\ x > a}} \frac{f(x) f(a)}{x a} = \ell$ أو بتعبير آخر f أو بتعبير آخر f على اليمين، هي عدد حقيقي f أو بتعبير آخر f
 - العدد $f_d'(a)$ بالرمز له بالرمز a على اليمين في a و يرمز له بالرمز العدد المشتق للدالة f
- نقول إن الدالة f قابلة للإشتقاق على اليسار في a عندما تكون نهاية معدل تغير الدالة f بين x و a عندما يؤول . $\lim_{\substack{x \to a \\ x < a}} \frac{f(x) f(a)}{x a} = \ell'$ أو بتعبير آخر ℓ' أو بتعبير آخر ℓ' أو بتعبير آخر ℓ' يسمى العدد المشتق للدالة f على اليسار في a و يرمن له بالرمن $f'_g(a)$

التأويل المبياني

a عنصرا من التكن a دالة عددية معرفة على مجال a و (\mathscr{C}_f) منحناها في معلم متعامد ممنظم. ليكن a

- إذا كانت f قابلة للإشتقاق على اليمين في a فإن المنحنى (\mathscr{C}_f) يقبل نصف مماس في النقطة A(a,f(a)) معامله $x \geq a$ حيث $y = f'_d(a)(x-a) + f(a)$ و معادلته هي $f'_d(a)$

خاصية

لتكن f دالة عددية معرفة على مجال I و a عنصر من I. الدالة f قابلة للإشتقاق في a إذا كانت f قابلة للإشتقاق على اليمين و على اليسار في a و $f'_d(a) = f'_g(a)$.

تمرين 1

- 1. بين أن الدالة $|x| \mapsto f: x \mapsto |x|$ غير قابلة للإشتقاق في 0 ثم أول مبيانيا النتيجة.
- 2. أدرس قابلية اشتقاق الدالة $x^2 + |x| + x = g$ في x 1 ثم أول مبيانيا النتيجة.

2. حساب الدوال المشتقة

1.2. الدالة المشتقة لدالة عددية

تعریف

لتكن f دالة عددية معرفة على مجال I.

- نقول إن f قابلة للإشتقاق على I إذا كانت قابلة للإشتقاق في x، لكل x من I.
- الدالة المعرفة على f بحيث f'(x) تسمى الدالة المشتقة للدالة f و نرمز لها بالرمز f'(x) أو f.

2.2. الدوال المشتقة الإعتيادية

خاصیات

_					
	$D_{f'}$	f'(x)	D_f	f(x)	
	R	0	R	а	
	\mathbb{R}	1	\mathbb{R}	\boldsymbol{x}	
	\mathbb{R}	nx^{n-1}	\mathbb{R}	$x^n \ (n \ge 1)$	
	\mathbb{R}^*	$-\frac{1}{x^2}$	\mathbb{R}^*	$\frac{1}{x}$	
	\mathbb{R}^{+*}	$\frac{1}{2\sqrt{x}}$	\mathbb{R}^+	\sqrt{x}	
	\mathbb{R}	$\cos(x)$	\mathbb{R}	$\sin(x)$	
	\mathbb{R}	$-\sin(x)$	\mathbb{R}	$\cos(x)$	

أمثلة

$$(\sqrt{7})' = \dots \qquad (\frac{11}{5})' = \dots \qquad (-3)' = \dots \qquad (x^3)' = \dots \qquad (x^2)' = \dots \qquad (x^2)' = \dots \qquad (x^3)' = \dots \qquad (x^3)' = \dots \qquad (x^3)' = \dots \qquad (x^3)' = \dots \qquad (x^4)' = \dots$$

3.2. العمليات على الدوال المشتقة

قاعدة 1

u و u دالتين عدديتين قابلتين للإشتقاق على مجال u

دالتها المشتقة	قابلة للإشتقاق على المجال	تعبير الدالة
(u+v)'=u'+v'	I	u+v
(ku)' = ku'	I	$ku \ (k \in \mathbb{R})$

أمثلة

```
(x^{2} + \frac{1}{x})' = \dots
(\sqrt{x} - \sin(x))' = \dots
(3x - 5)' = \dots
(-x^{2} + 4x - 5)' = \dots
(-\frac{1}{2}x + \frac{2}{3})' = \dots
(\frac{3}{4}x^{4} - \frac{2}{4}x^{3} + 5x - 2)' = \dots
```

قاعدة 2

u و v دالتین عددیتین قابلتین للایشتقاق علی مجال u

دالتها المشتقة	قابلة للإشتقاق على المجال	تعبير الدالة
(uv)' = u'v + uv'	I	uv
$(u^n)' = nu^{n-1}u'$	I	$u^n \ (n \in \mathbb{N}^*)$

أمثلة

```
((2x-3)(4-x))' = \dots 
(2x\cos(x))' = \dots 
\left(\frac{x^2-3x+7}{x}\right)' = \dots 
(\sin^5(x))' = \dots 
((x^3-4x-5)^{11})' = \dots 
((x-3)^5(x+4)^3)' = \dots
```

قاعدة 3

التكن u و $v\neq 0$ دالتين عدديتين قابلتين للإشتقاق على مجال u بحيث $v\neq 0$ على u

	مستان خلی جون آ بحیث کی ۲۰	
دالتها المشتقة	قابلة للإشتقاق على المجال	تعبير الدالة
$\left(\frac{1}{\nu}\right)' = -\frac{\nu'}{\nu^2}$	I	$\frac{1}{\nu}$
$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	I	$\frac{u}{v}$
$(v^n)' = nv^{n-1}v'$	I	$v^n \ (n \in \mathbb{Z}^*)$

أمثلة

$$\left(\frac{1}{x\sqrt{x}}\right)' = \dots$$

$$\left(\frac{3}{-2x^3 + \sqrt{5}x^2 - 3x + 4}\right)' = \dots$$

$$\left(\frac{x^2 - 3x + 7}{x}\right)' = \dots$$

$$\left(\tan(x)\right)' = \dots$$

$$\left(\frac{2x - 1}{4x - 3}\right)' = \dots$$

قاعدة 4

I على $u > 0$ على ا	لتكن u دالة عددية قابلة للإشتقاق على	
قاراة الاشتقاق على الحال	تم بر الرالة	

		<u> </u>
دالتها المشتقة	قابلة للإشتقاق على المجال	تعبير الدالة
$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$	I	\sqrt{u}

أمثلة

```
\left(\sqrt{3x-4}\right)' = \dots
\left(\sqrt{\frac{x-3}{x+1}}\right)' = \dots
\left(2\sqrt{1-\cos(x)}\right)' = \dots
```

قاعدة 5

 $ax + b \in I$ لدينا x من x من x لتكن x لتكن x لتكن x من x لدينا المينا x

دالتها المشتقة	قابلة للإشتقاق على المجال	تعبير الدالة
$(u(ax+b))' = a \times u'(ax+b)$	I	$x \mapsto u(ax+b)$

أمثلة

 $(\sin(2x+7))' = \dots$ $(\cos(\frac{x}{3}))' = \dots$ $\left(\tan\left(\frac{4x-3}{5}\right)\right)' = \dots$

ملاحظات

- كل دالة حدودية قابلة للإشتقاق على ℝ.
- كل دالة جذرية أو لاجذرية قابلة للإشتقاق على كل مجال ضمن مجموعة تعريفها.

تعریف

I دالة عددية قابلة للإشتقاق على مجال I

- إذا كانت الدالة f' قابلة للإشتقاق على I فإن دالتها المشتقة تسمى الدالة المشتقة الثانية (أو من الرتبة f') للدالة f و نرمز لها بالرمز f'.
- إذا كانت الدالة f'' قابلة للإشتقاق على I فإن دالتها المشتقة تسمى الدالة المشتقة الثالثة (أو من الرتبة f) للدالة f و نرمز لها بالرمز f'' أو f.
 - لكل n من \mathbb{N}^* نرمن للدالة المشتقة من الرتبة n للدالة f بالرمن \mathbb{N}^*

تمرين 2

 $f: x \mapsto x^3 - \cos(2x)$ حدد الدالة المشتقة من الرتبة 4 للدالة

3. تطبيقات الإشتقاق

1.3. الإشتقاق و رتابة دالة

خاصية

I لتكن f دالة عددية قابلة للإشتقاق على مجال

- الدالة f تزايدية (قطعا) على I إذا وفقط إذا كانت f موجبة (قطعا) على I
- الدالة f تناقصية (قطعاً) على I إذا وفقط إذا كانت f سالبة (قطعاً) على I
 - الدالة f ثابتة على \dot{I} إذا وفقط إذًا كانت \dot{f} منعدمة على I

تمرين 3

 $f(x) = -x^2 + 4x - 2$; $f(x) = x^3 - 3x + 1$; $f(x) = \frac{x - 2}{x + 1}$ الدالة $f(x) = -x^2 + 4x - 2$; $f(x) = x^3 - 3x + 1$; $f(x) = \frac{x - 2}{x + 1}$

2.3. الإشتقاق و مطاريف دالة

خاصية

I من I من I من I من I لتكن I دالة عددية قابلة للإشتقاق على مجال I

- f'(a) = 0 فإن f(a) مطرافا للدالة f(a) فإن •
- إذا كان f' تنعدم و تغير إشارتها في a فإن f(a) مطراف للدالة

		فصوية	يمة ف	f(a)	!)	
X	5			a		
f'((x)	-	+	0	_	

	قيمة دنوية $f(a)$
x	a
f'(x)	- 0 +

تمرين 4

$$f(x) = x^4 - \frac{2}{3}x^3 - x^2 - 2$$

حدد مطاريف الدالة f المعرفة على $\mathbb R$ بما يلي:

تعریف

ليكن ω عددا حقيقيا،

- المعادلة $y'' + \omega^2 y = 0$ فاصلية بالمعادلة تفاضلية و المعادلة تفاضلية بالمعادلة تفاضلية و المعادلة عبد المعادلة بالمعادلة تفاضلية بالمعادلة بالمعادلة تفاضلية بالمعادلة تفاضلية بالمعادلة تفاضلية بالمعادلة بالمعاد
- كل دالة عددية f قابلة للإشتقاق مرتين على $\mathbb R$ و تحقق $\mathbb R$ و تحقق $f''(x) + \omega^2 f(x) = 0$ للمعادلة التفاضلية $y'' + \omega^2 y = 0$

خاصية

 ω عددا حقیقیا، نعتبر المعادلة التفاضلیة ω عددا حقیقیا، نعتبر المعادلة التفاضلیة

• إذا كان $\omega=0$ فإن حلول المعادلة التفاضلية (E) هي الدوال المعرفة على $\omega=0$ $y: x \mapsto ax + b$

حيث a و b عددين حقيقيين. • إذا كان $w \neq 0$ فإن حلول المعادلة التفاضلية (E) هي الدوال المعرفة على $\mathbb R$ بما يلي: $y: x \mapsto a\cos(\omega x) + b\sin(\omega x)$

حيث a و b عددين حقيقيين.

تمرین 5

1. حل المعادلات التفاضلية التالية:

y'' + y = 0; y'' + 3y = 0; 4y'' + y = 0; -2y'' = y

2. نعتبر المعادلة التفاضلية: (*E*): 9y'' + y = 0

(۱) بين أن الدالة العددية $f: x \mapsto 2\sin(\frac{x}{3})$ هي حل للمعادلة التفاضلية (۱)

(E) حل المعادلة التفاضلية (V)

g'(0)=-1 و $g(\pi)=2$ و $g(\pi)=2$