KI-gestützte Clusterung von studentischen Programmierlösungen zur Verbesserung automatisierter Feedbackprozesse

AI-supported clustering of student programming solutions to improve automated feedback processes

Gregor Germerodt

Bachelor-Abschlussarbeit

Betreuer: Prof. Dr. Michael Striewe

Trier, 07.07.2025

Vorwort

Ein Vorwort ist nicht unbedingt nötig. Falls Sie ein Vorwort schreiben, so ist dies der Platz, um z.B. das Unternehmen vorzustellen, in der diese Arbeit entstanden ist, oder um den Personen zu danken, die in irgendeiner Form positiv zur Entstehung dieser Arbeit beigetragen haben.

Auf keinen Fall sollten Sie im Vorwort die Aufgabenstellung näher erläutern oder vertieft auf technische Sachverhalte eingehen.

Kurzfassung

In der Kurzfassung soll in kurzer und prägnanter Weise der wesentliche Inhalt der Arbeit beschrieben werden. Dazu zählen vor allem eine kurze Aufgabenbeschreibung, der Lösungsansatz sowie die wesentlichen Ergebnisse der Arbeit. Ein häufiger Fehler für die Kurzfassung ist, dass lediglich die Aufgabenbeschreibung (d.h. das Problem) in Kurzform vorgelegt wird. Die Kurzfassung soll aber die gesamte Arbeit widerspiegeln. Deshalb sind vor allem die erzielten Ergebnisse darzustellen. Die Kurzfassung soll etwa eine halbe bis ganze DIN-A4-Seite umfassen.

Hinweis: Schreiben Sie die Kurzfassung am Ende der Arbeit, denn eventuell ist Ihnen beim Schreiben erst vollends klar geworden, was das Wesentliche der Arbeit ist bzw. welche Schwerpunkte Sie bei der Arbeit gesetzt haben. Andernfalls laufen Sie Gefahr, dass die Kurzfassung nicht zum Rest der Arbeit passt.

Abstract

The same in English.

Inhaltsverzeichnis

T	Einleitung und Problemstellung	1
2	Weitere Kapitel	3
	2.1 Bausteine	
	2.2 Abschnitt	3
	2.2.1 Unterabschnitt	4
	2.3 Abbildungen und Tabellen	4
	2.4 Listings	4
	2.5 Mathematische Formel	5
	2.6 Sätze, Lemmata, Definitionen, Beweise, Beispiele	6
	2.7 Fußnoten	7
	2.8 Literaturverweise	7
3	Beispiel-Kapitel	8
	3.1 Warum existieren unterschiedliche Konsistenzmodelle?	
	3.2 Klassifizierung eines Konsistenzmodells	9
	3.3 Linearisierbarkeit (atomic consistency)	9
4	Zusammenfassung und Ausblick	11
Li	teraturverzeichnis	12
In	dex	13
\mathbf{G}	lossar	14
Ei	genständigkeitserklärung	15

A 1- 11	1 .1		• ₋₁₋	- ·
ADDI	ldungs	sverze	ıcn	nis

2.1	Bezeichnung der Ab	bbildung .		4
-----	--------------------	------------	--	---

Tabellenverzeichnis

2.1	Bezeichnung der Tabelle	5
3.1	Linearisierbarkeit ist erfüllt	10
3.2	Linearisierbarkeit ist verletzt, sequentielle Konsistenz ist erfüllt	10
3.3	Linearisierbarkeit und sequentielle Konsistenz sind verletzt	10

Listings

2.1	Quicksort-Implementierung in Python	5
2.2	Quicksort-Implementierung in JavaScript	5

Einleitung und Problemstellung

Für Lehrkräfte an Hochschulen oder Universitäten kann das Kontrollieren und Bewerten von studentischen Einreichungen je nach Anzahl zu einer großen Herausforderung werden. Gerade bei einer hohen Anzahl an Abgaben steigt der Korrekturaufwand erheblich, was den zeitlichen Rahmen für individuelles Feedback einschränken könnte. Dabei kann bei hohem Korrekturaufkommen die Fehleranfälligkeit zunehmen, sollt die Arbeitsbelastung emotional belastend und die Erholungsfähigkeit eingeschränkt sein (vgl. [TB24]). In der Informatik könnte es sich hier auf Programmieraufgaben beziehen. Dabei müssen Lehrkräfte konsistente Bewertungen abliefern, während jede Abgabe unterschiedliche Syntax und Semantik beinhalten könnte.

Eine Lösung dieses Problems bieten etablierte Systeme zur automatischen Auswertung von Programmieraufgaben. Systematische Übersichtsarbeiten zeigen, dass viele Werkzeuge vorwiegend auf Unit-Tests oder statische Analysen setzen, was meist zu eher generischem Feedback führt (vgl. [MBKS]). Die Hoschule Trier benutzt beispielsweise ASB - Automatische Software-Bewertung¹. Nachdem hierbei Studierende die von der Lehrkraft gestellte Aufgabe bearbeitet haben, können sie online ihre Lösungen hochladen. Das Programm prüft danach nach statischen Kriterien, ob z. B. alle benötigen Dateien hochgeladen wurden, ob sie der Namenskonvention entsprechen, etc. Daraufhin wird das hochgeladene Programm und mit Testdaten ausgeführt und geprüft, ob die zu erwarteten Ergebnisse ausgegeben werden. Sollte das nicht der Fall sein, wird eine Fehlermeldung ausgegeben, dass das Programm oder bestimmte Module nicht erwartungsgemäß funktionieren.

Das erzeugte Feedback solcher statischen Systeme dient zur Orierentierung, jedoch weniger zur Fehlersuche, da es recht allgemein gehalten ist. Um die Feedbackgenerierung zu verbessern könnten KI-gestütze Verfahren eingesetzt werden. Damit befassten sich beispielsweise die Autoren der wissenschaftlichen Arbeiten ... (Hier Quellen einfügen und erläutern).

In dieser Arbeit habe ich versucht einen Schritt vor der Feedbackgenerierung zu entwickeln. Er befasst sich mit der KI-gestützten Clusterung der studentischen Einreichungen. Dieser Ansatz ermöglicht es für mehrere Einreichungen ein gemeinsames Feedback zu generieren, indem sie nach Ähnlichkeit in Bezug auf Syntax und

¹ https://www.hochschule-trier.de/informatik/forschung/projekte/asb

Semantik geclustert bzw. gruppiert werden. Weiterführende Prorgamme oder auch Lehrkräfte könnten sich dann einen Kandidat pro Cluster auswählen, Feedback erzeugen und dieses dann an alle anderen Teilnehmer des Clusters weiterleiten. Dies könnte eine erhebliche Zeitersparnis zur Folge haben und dadurch weiterhin mehr Spielraum für präziseres individuelles Feedback ermöglichen.

Weitere Kapitel

Die Gliederung hängt natürlich vom Thema und von der Lösungsstrategie ab. Als nützliche Anhaltspunkte können die Entwicklungsstufen oder -schritte z.B. der Software-Entwicklung betrachtet werden. Nützliche Gesichtspunkte erhält und erkennt man, wenn man sich

- in die Rolle des Lesers oder
- in die Rolle des Entwicklers, der die Arbeit z.B. fortsetzen, ergänzen oder pflegen soll.

versetzt. In der Regel wird vorausgesetzt, dass die Leser einen fachlichen Hintergrund haben - z.B. Informatik studiert haben. Nur in besonderen Fällen schreibt man in populärer Sprache, so dass auch Nicht-Fachleute die Ausarbeitung prinzipiell lesen und verstehen können.

Die äußere Gestaltung der Ausarbeitung hinsichtlich Abschnittformate, Abbildungen, mathematische Formeln usw. wird im Folgenden kurz dargestellt.

2.1 Bausteine

Der Text wird in bis zu drei Ebenen gegliedert:

- 1. Kapitel (\chapter{Kapitel})
- 2. Abschnitte (\section{Abschnitt})
- 3. Unterabschnitte (\subsection{Unterabschnitt})

2.2 Abschnitt

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua [?]. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

2.4 Listings 4

2.2.1 Unterabschnitt

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

2.3 Abbildungen und Tabellen

Abbildung und Tabellen werden zentriert eingefügt. Grundsätzlich sollen sie erst dann erscheinen, nachdem sie im Text angesprochen wurden (siehe Abbildung 2.1). Abbildungen und Tabellen (siehe Tabelle 2.1) können im Fließtext (h=here), am Seitenanfang (t=top), am Seitenende (b=bottom) oder auch gesammelt auf einer nachfolgenden Seite (p=page) oder auch ganz am Ende der Ausarbeitung erscheinen. Letzteres sollte man nur dann wählen, wenn die Bilder günstig zusammen zu betrachten sind und die Ausarbeitung nicht zu lang (< 20 Seiten) ist.

Abbildung 2.1: Bezeichnung der Abbildung

2.4 Listings

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua (siehe Listing 21, Zeile 8).

Prozesse	$\mathbf{Zeit} o$			
$\overline{P_1}$	W(x)1			
P_2		W(x)2		
P_3		R(x)2		R(x)1
P_4			R(x)2	R(x)1

Tabelle 2.1: Bezeichnung der Tabelle

```
def quicksort(arr):
2
   less = []
   pivotList = []
3
4
   more = []
   if len(arr) <= 1:
6
       return arr
7
   else:
       pivot = arr[0] # the pivot element
8
9
       for i in arr:
10
            if i < pivot:</pre>
                less.append(i)
11
            elif i > pivot:
12
13
                more.append(i)
            else:
14
15
                pivotList.append(i)
       less = quicksort(less)
16
       more = quicksort(more)
17
        return less + pivotList + more
   print(quicksort[4, 65, 2, -31, 0, 99, 83, 782, 1]))
20
```

Listing 2.1: Quicksort-Implementierung in Python

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua (siehe Listing 10, Zeilen 3 und 5).

Listing 2.2: Quicksort-Implementierung in JavaScript

Größere Code-Fragmente sollten im Anhang eingefügt werden. [?]

2.5 Mathematische Formel

Mathematische Formeln bzw. Formulierungen können sowohl im Fließtext (z.B. $y = x^2$) oder abgesetzt und zentriert im Text erscheinen. Gleichungen sollten für Referenzierungen nummeriert werden (siehe Formel 2.1).

$$e_i = \sum_{i=1}^n w_i x_i \tag{2.1}$$

Entscheidungsformel:

$$\psi(t) = \begin{cases} 1 & 0 <= t < \frac{1}{2} \\ -1 & \frac{1}{2} <= t < 1 \\ 0 & sonst \end{cases}$$
 (2.2)

Matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 (2.3)

Vektor:

$$\overline{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \tag{2.4}$$

2.6 Sätze, Lemmata, Definitionen, Beweise, Beispiele

Sätze, Lemmata, Definitionen, Beweise und Beispiele können in speziell dafür vorgesehenen Umgebungen erstellt werden.

Definition 2.1. (Optimierungsproblem) Ein Optimierungsproblem \mathcal{P} ist festgelegt durch ein Tupel $(I_{\mathcal{P}}, sol_{\mathcal{P}}, m_{\mathcal{P}}, goal)$ wobei gilt

- 1. $I_{\mathcal{P}}$ ist die Menge der Instanzen,
- 2. $sol_{\mathcal{P}}: I_{\mathcal{P}} \longmapsto \mathbb{P}(S_{\mathcal{P}})$ ist eine Funktion, die jeder Instanz $x \in I_{\mathcal{P}}$ eine Menge zulässiger Lösungen zuweist,
- 3. $m_{\mathcal{P}}: I_{\mathcal{P}} \times S_{\mathcal{P}} \longmapsto \mathbb{N}$ ist eine Funktion, die jedem Paar (x, y(x)) mit $x \in I_{\mathcal{P}}$ und $y(x) \in sol_{\mathcal{P}}(x)$ eine Zahl $m_{\mathcal{P}}(x, y(x)) \in \mathbb{N}$ zuordnet $(= Ma\beta \text{ für die Lösung } y(x) \text{ der Instanz } x)$, und
- $4. \ goal \in \{min, max\}.$

Beispiel 2.2. MINIMUM TRAVELING SALESMAN (MIN-TSP)

- $I_{MIN-TSP} =_{def}$ s.o., ebenso $S_{MIN-TSP}$
- $sol_{MIN-TSP}(m, D) =_{def} S_{MIN-TSP} \cap \mathbb{N}^m$
- $m_{MIN-TSP}((m,D),(c_1,\ldots,c_m)) = \underset{def}{def} \sum_{i=1}^{m-1} D(c_i,c_{i+1}) + D(c_m,c_1)$
- $goal_{MIN-TSP} =_{def} min$

2.8 Literaturverweise 7

Satz 2.3. Sei \mathcal{P} ein NP-hartes Optimierungsproblem. Wenn $\mathcal{P} \in PO$, dann ist P = NP.

Beweis. Um zu zeigen, dass $\mathbf{P} = \mathbf{NP}$ gilt, genügt es wegen Satz A.30 zu zeigen, dass ein einziges \mathbf{NP} -vollständiges Problem in \mathbf{P} liegt. Sei also \mathcal{P}' ein beliebiges \mathbf{NP} -vollständiges Problem.

Weil \mathcal{P} nach Voraussetzung **NP**-hart ist, gilt insbesondere $\mathcal{P}' \leq_T \mathcal{P}_C$. Sei R der zugehörige Polynomialzeit-Algorithmus dieser Turing-Reduktion. Weiter ist $\mathcal{P} \in$ **PO** vorausgesetzt, etwa vermöge eines Polynomialzeit-Algorithmus A. Aus den beiden Polynomialzeit-Algorithmen R und A erhält man nun leicht einen effizienten Algorithmus für \mathcal{P}' : Ersetzt man in R das Orakel durch A, ergibt dies insgesamt eine polynomielle Laufzeit.

Lemma 2.4. Aus PO = NPO folgt P = NP.

Beweis. Es genügt zu zeigen, dass unter der angegeben Voraussetzung KNAP-SACK $\in \mathbf{P}$ ist.

Nach Voraussetung ist MAXIMUM KNAPSACK \in **PO**, d.h. die Berechnung von $m^*(x)$ für jede Instanz x ist in Polynomialzeit möglich. Um KNAPSACK bei Eingabe (x, k) zu entscheiden, müssen wir nur noch $m^*(x) \geq k$ prüfen. Ist das der Fall, geben wir 1, sonst 0 aus. Dies bleibt insgesamt ein Polynomialzeit-Algorithmus.

2.7 Fußnoten

In einer Fußnote können ergänzende Informationen¹ angegeben werden. Außerdem kann eine Fußnote auch Links enthalten. Wird in der Arbeit eine Software (zum Beispiel Java²) eingesetzt, so kann die Quelle, die diese Software zur Verfügung stellt in der Fußnote angegeben werden.

2.8 Literaturverweise

Jede verwendete Literatur wird im Literaturverzeichnis angegeben³. Jeder im Verzeichnis vorkommende Eintrag muss mindestens einmal im Text referenziert werden [?].

¹ Informationen die für die Arbeit zweitrangig sind, jedoch für den Leser interessant sein könnten.

² https://www.oracle.com/java/technologies/

³ Dazu wird eine sogenannte BibTeX-Datei (literatur.bib) verwendet.

Beispiel-Kapitel

In diesem Kapitel wird beschrieben, warum es unterschiedliche Konsistenzmodelle gibt. Außerdem werden die Unterschiede zwischen strengen Konsistenzmodellen (Linearisierbarkeit, sequentielle Konsistenz) und schwachen Konsistenzmodellen (schwache Konsistenz, Freigabekonsistenz) erläutert. Es wird geklärt, was Strenge und Kosten (billig, teuer) in Zusammenhang mit Konsistenzmodellen bedeuten.

3.1 Warum existieren unterschiedliche Konsistenzmodelle?

Laut [?] sind mit der Replikation von Daten immer zwei gegensätzliche Ziele verbunden: die Erhöhung der Verfügbarkeit und die Sicherung der Konsistenz der Daten. Die Form der Konsistenzsicherung bestimmt dabei, inwiefern das eine Kriterium erfüllt und das andere dementsprechend nicht erfüllt ist (Trade-off zwischen Verfügbarkeit und der Konsistenz der Daten). Stark konsistente Daten sind stabil, das heißt, falls mehrere Kopien der Daten existieren, dürfen keine Abweichungen auftreten. Die Verfügbarkeit der Daten ist hier jedoch stark eingeschränkt. Je schwächer die Konsistenz wird, desto mehr Abweichungen können zwischen verschiedenen Kopien einer Datei auftreten, wobei die Konsistenz nur an bestimmten Synchronisationspunkten gewährleistet wird. Dafür steigt aber die Verfügbarkeit der Daten, weil sie sich leichter replizieren lassen.

Nach [?] kann die Performanzsteigerung der schwächeren Konsistenzmodelle wegen der Optimierung (Pufferung, Code-Scheduling, Pipelines) 10-40 Prozent betragen. Wenn man bedenkt, dass mit der Nutzung der vorhandenen Synchronisierungsmechanismen schwächere Konsistenzmodelle den Anforderungen der strengen Konsistenz genügen, stellt sich der höhere programmiertechnischer Aufwand bei der Implementierung der schwächeren Konsistenzmodelle als ihr einziges Manko dar.

In [?] ist beschrieben, wie man sich Formen von DSM vorstellen könnte, für die ein beachtliches Maß an Inkonsistenz akzeptabel wäre. Beispielsweise könnte DSM verwendet werden, um die Auslastung von Computern in einem Netzwerk zu speichern, so dass Clients für die Ausführung ihrer Applikationen die am wenigsten ausgelasteten Computer auswählen können. Weil die Informationen dieser Art innerhalb kürzester Zeit ungenau werden können (und durch die Verwendung

der veralteten Daten keine großen Nachteile entstehen können), wäre es vergebliche Mühe, sie ständig für alle Computer im System konsistent zu halten [?]. Die meisten Applikationen stellen jedoch strengere Konsistenzanforderungen.

3.2 Klassifizierung eines Konsistenzmodells

Die zentrale Frage, die für die Klassifizierung (streng oder schwach) eines Konsistenzmodells von Bedeutung ist [?]: wenn ein Lesezugriff auf eine Speicherposition erfolgt, welche Werte von Schreibzugriffen auf diese Position sollen dann dem Lesevorgang bereitgestellt werden? Die Antwort für das schwächste Konsistenzmodell lautet: von jedem Schreibvorgang, der vor dem Lesen erfolgt ist, oder in der "nahen" Zukunft, innerhalb des definierten Betrachtungsraums, erfolgten wird. Also irgendein Wert, der vor oder nach dem Lesen geschrieben wurde.

Für das strengste Konsistenzmodell, Linearisierbarkeit (atomic consistency), stehen alle geschriebenen Werte allen Prozessoren sofort zur Verfügung: eine Lese-Operation gibt den aktuellsten Wert zurück, der geschrieben wurde, bevor das Lesen stattfand. Diese Definition ist aber in zweierlei Hinsicht problematisch. Erstens treten weder Schreib- noch Lese-Operationen zu genau einem Zeitpunkt auf, deshalb ist die Bedeutung von "aktuellsten" nicht immer klar. Zweitens ist es nicht immer möglich, genau festzustellen, ob ein Ereignis vor einem anderen stattgefunden hat, da es Begrenzungen dafür gibt, wie genau Uhren in einem verteilten System synchronisiert werden können.

Nachfolgend werden einige Konsistenzmodelle absteigend nach ihrer Strenge vorgestellt. Zuvor müssen wir allerdings klären, wie die Lese- und Schreibe-Operationen in dieser Ausarbeitung dargestellt werden.

Sei x eine Speicherposition, dann können Instanzen dieser Operationen wie folgt ausgedrückt werden:

- R(x)a eine Lese-Operation, die den Wert a von der Position x liest.
- W(x)b eine Schreib-Operation, die den Wert b an der Position x speichert.

3.3 Linearisierbarkeit (atomic consistency)

Die Linearisierbarkeit im Zusammenhang mit DSM kann wie folgt definiert werden:

- Die verzahnte Operationsabfolge findet so statt: wenn R(x)a in der Folge vorkommt, dann ist die letzte Schreib-Operation, die vor ihr in der verzahnten Abfolge auftritt, W(x)a, oder es tritt keine Schreib-Operation vor ihr auf und a ist der Anfangswert von x. Das bedeutet, dass eine Variable nur durch eine Schreib-Operation geändert werden kann.
- Die Reihenfolge der Operationen in der Verzahnung ist konsistent zu den <u>Echtzeiten</u>, zu denen die Operationen bei der tatsächlichen Ausführung aufgetreten sind.

Prozesse	$ \mathbf{Zeit} ightarrow$			
$\overline{P_1}$	W(x)1		W(y)2	
P_2		R(x)1		R(y)2

Tabelle 3.1: Linearisierbarkeit ist erfüllt

Die Bedeutung dieser Definition kann an folgendem Beispiel (Tabelle 3.1) nachvollzogen werden. Es sei angenommen, dass alle Werte mit 0 vorinitialisiert sind.

Hier sind beide Bedingungen erfüllt, da die Lese-Operationen den zuletzt geschriebenen Wert zurückliefern. Interessanter ist es, zu sehen, wann die Linearisierbarkeit verletzt ist.

Prozesse	$ \mathbf{Zeit} ightarrow$			
$\overline{P_1}$	W(x)1	W(x)2		
P_2			R(x)0	R(x)2

Tabelle 3.2: Linearisierbarkeit ist verletzt, sequentielle Konsistenz ist erfüllt.

In diesem Beispiel (Tabelle 3.2) ist die Echtzeit-Anforderung verletzt, da der Prozess P_2 immer noch den alten Wert liest, obwohl er von Prozess P_1 bereits geändert wurde. Diese Ausführung wäre aber sequentiell konsistent (siehe kommender Abschnitt), da es eine Verzahnung der Operationen gibt, die diese Werte liefern könnte (R(x)0, W(x)1, W(x)2, R(y)2). Würde man beide Lese-Operationen des 2. Prozesses vertauschen, wie in der Tabelle 3.3 dargestellt, so wäre keine sinnvolle Verzahnung mehr möglich.

Prozesse	$ \mathbf{Zeit} ightarrow$				
$\overline{P_1}$	W(x)1	W(x)2			
P_2			R(x)	2 R(:	x)0

Tabelle 3.3: Linearisierbarkeit und sequentielle Konsistenz sind verletzt.

In diesem Beispiel sind beide Bedingungen verletzt. Selbst wenn die Echtzeit, zu der die Operationen stattgefunden haben, ignoriert wird, gibt es keine Verzahnung einzelner Operationen, die der Definition entsprechen würde.

Zusammenfassung und Ausblick

In diesem Kapitel soll die Arbeit noch einmal kurz zusammengefasst werden. Insbesondere sollen die wesentlichen Ergebnisse Ihrer Arbeit herausgehoben werden. Erfahrungen, die z.B. Benutzer mit der Mensch-Maschine-Schnittstelle gemacht haben oder Ergebnisse von Leistungsmessungen sollen an dieser Stelle präsentiert werden. Sie können in diesem Kapitel auch die Ergebnisse oder das Arbeitsumfeld Ihrer Arbeit kritisch bewerten. Wünschenswerte Erweiterungen sollen als Hinweise auf weiterführende Arbeiten erwähnt werden.

Literaturverzeichnis

- MBKS. Messer, Marcus, Neil C. C. Brown, Michael Kölling und Miaojing Shi: Automated Grading and Feedback Tools for Programming Education: A Systematic Review.
- TB24. TERNIKOV, ANDREI und MIKHAIL BLYAKHER: Grade inflation and grading process: does faculty workload matter? Journal of Applied Research in Higher Education, 16(5):1937–1955, 2024.

\mathbf{Index}

Abbildung, 4 Abschnitt, 3	Listing, 4 Literatur, 7
Beispiel, 6 Beweis, 6	Matrix, 6
Definition, 6	Operation Lesen, 9
Echtzeiten, 9	Schreiben, 9 Optimierung, 8
Formel, 5 Freigabekonsistenz, 8	Quellen, 7
Inkonsistenz, 8	Quelltext, 4
Kapitel, 3	Replikation, 8
Konsistenz, 8 schwach, 8, 9	Satz, 6
sequentiell, 8 streng, 9	Tabelle, 4
Konsistenzmodelle, 8	Unterabschnitt, 4
Lemma, 6 Linearisierbarkeit, 8, 9	Vektor, 6 Verfügbarkeit, 8

Glossar

DisASTer Distributed Algorithms Simulation Terrain, eine Platt-

form zur Implementierung verteilter Algorithmen [?]

DSM Distributed Shared Memory

AC Atomic Consistency (dt.: Linearisierbarkeit)
RC Release Consistency (dt.: Freigabekonsistenz)

SC Sequential Consistency (dt.: Sequentielle Konsistenz)

WC Weak Consistency (dt.: Schwache Konsistenz)

Eigenständigkeitserklärung

Die vorliegende Arbeit wurde als Einzelarbeit angefertigt.
Die vorliegende Arbeit wurde als Gruppenarbeit angefertigt. Mein Anteil an der Gruppenarbeit ist im untenstehenden Abschnitt $Verantwortliche$ dokumentiert:
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne unzulässige Hilfe Dritter angefertigt habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als solche kenntlich gemacht. Darüber hinaus erkläre ich, dass ich die vorliegende Arbeit in dieser oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht habe.
Es ist keine Nutzung von KI-basierten text- oder inhaltgenerierenden Hilfsmitteln erfolgt.
Die Nutzung von KI-basierten text- oder inhaltgenerierenden Hilfsmitteln wurde von der/dem Prüfenden ausdrücklich gestattet. Die von der/dem Prüfenden mit Ausgabe der Arbeit vorgegebenen Anforderungen zur Dokumentation und Kennzeichnung habe ich erhalten und eingehalten. Sofern gefordert, habe ich in der untenstehenden Tabelle Nutzung von KI-Tools die verwendeten KI-basierten text- oder inhaltgenerierenden Hilfsmittel aufgeführt und die Stellen in der Arbeit genannt. Die Richtigkeit übernommener KI-Aussagen und Inhalte habe ich nach bestem Wissen und Gewissen überprüft.
Datum Unterschrift der Kandidatin/des Kandidaten

Verantwortliche

Die Tabellen unten führen auf, wer als Autor für die einzelnen Kapitel der vorliegenden Dokumentation beziehungsweise für einzelne Teile des Quellcodes hauptverantwortlich ist.

Insgesamt beteiligt sind die folgenden Personen:

- Autor 1
- Autor 2
- Autor 3

Dokumentation

Kapitel	Überschrift	Autor
1	Einleitung	Autor 1, Autor 2, Autor 3
2	Problemstellung	Autor 1, Autor 2, Autor 3
3	Aufgabenstellung und Zielsetzung	Autor 1, Autor 2, Autor 3
4	Übrige Abschnitte (Kapitel und Absätze)	Autor 1
4.1	Abschnitt	Autor 3
4.1.1	Unterabschnitt	Autor 2, Autor 3
4.2	Abbildungen und Tabellen	usw.
4.3	Mathematische Formel	
4.4	Sätze, Lemmas und Definitionen	
4.5	Fußnoten	
4.6	Literaturverweise	
5	Beispiel-Kapitel	
5.1	Warum existieren unterschiedliche Konsistenz-	
	modelle?	
5.2	Klassifizierung eines Konsistenzmodells	
5.3	Linearisierbarkeit (atomic consistency)	

Quellcode

Paket	Autor
algorithms.search	Autor 1
algorithms.sort	Autor 3

Nutzung von KI-Tools

KI-Tool	Genutzt für	Warum?	Wann?	Mit w	elcher	An	wel-
				Eingabef	ra-	cher	\mathbf{Stelle}
				ge bzv	v	der	Arbeit
				aufforder	rung ?	übernor	nmen?
ChatGPT	Konzept XY er-	Erklärung von	Bei der Bearbei-	Welches s	ind die	S. 25, 30	ff.
	klären lassen	Verständnisfrage	tung des Theo-	zentralen	Merk-		
		zu	rieteils der Ar-	male des	Kon-		
			beit	zepts XY?	•		
DeepL Write	Neuformulierung	Bessere Lesbar-	Über die gesamte	Formuliere	e die	S. 45 ff.,	S. 67
	meiner Text-	keit	Arbeit hinweg	Kapitel 2	2 und		
	entwürfe			3 neu in	einfa-		
				chen und	leicht		
				verständlie	chen		
				Sätzen!			