Data Mining

Henryk.Maciejewski@pwr.edu.pl WS 2015/16

1

Data Mining – Contents of this Part

- Purpose and Definition of Data Mining
- Application Areas of Data Mining
- Data Mining Process → Lab class
- Data Mining Algorithms in Detail (predictive modelling, clustering, association rules,...)

Data Mining – Further Reading

- J. Han, M. Kamber, Data Mining: *Concepts and Techniques, Third Edition*
- T. Hastie, R. Tibshirani, J. H. Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*

3

What is Data Mining – Introductory Example

- Business problem: loan risk prediction? Is new applicant creditworthy?
- Solutions:
 - Judgement by trained/experienced evaluator
 - Data Mining based solution: generate rules as to who is likely to be creditworthy based on bank's historical data

Definitions of DM

- "Advanced methods for exploring and modelling relationships in large amounts of data"
- "Discovery of useful summaries of data"
- "Process of identifying useful patterns and regularities in large bodies of data"
- Originally, DM was what statisticians taught us not to do...
 (DM = drawing invalid inferences from data by using invalid methods, or drawing conclusions true for purely statistical reasons)

DM as Multidisciplinary Area

- Statistics
- AI (machine learning)
- Research in clustering algorithms
- Visualization techniques
- · Pattern recognition
- Neurocomputing
- Databases (DM ⊂ KDD)

7

Data Mining vs. Data Warehousing

Data Mining Techniques

- Predictive modelling
- Cluster analysis
- Dependency derivation ("association rules")
- Web mining
- Text mining
- Sequence matching
- Time series forecasting
- ...

Predictive Modelling – Problem Formulation

- · Predictive modelling involves
 - 1. Building *a model* of relationship target(input variables)
 - 2. Estimation of predictive performance of this model for new data
- · Predictive modelling:
 - Classification for qualititive targets
 - Regression for quantitative targets

11

Predictive Modelling – Problem Formulation

- Methods/algorithms used for predictive modelling
 - Linear regression
 - Linear, nonlinear discriminant analysis
 - Logistic regression
 - Classification and regression trees
 - Perceptron algorithm, neural networks
 - Support vector machines
 - Nonparametric classifiers (nearest neighbours)
 - **–** ..

Predictive Modelling – Applications

- Finance:
 - Credit risk analysis
 - Credit card analysis
- Insurance fraud detection
- Marketing campaign planning, targeted marketing
- Churn analysis (telecoms)
- · Genetics/medicine
 - risk group prediction, breast cancer recurrence risk assessment, prediction of response to chemiotherapy, tumour classification, etc.
- Classification of text documents (sentiment analysis, spam detection, topic/subject classification,...)
- Manufacturing
 - product quality assessment, process monitoring

' ...

Example: Product Quality Assessment

- Based on data from industrial process monitoring, assess quality of products
- Example: production of copper wire

Bioinformatics: Analysis of *Massive Throughput* Experiments

 Gene expression DNA microarrays – expression of thousands of genes of a patient/tissue measured in single experiment

 Challenge: d>>n (in "typical" DM studies, d<<n)

	Gene i	d	n samples (patients)					
7100	Natural killer cell receptor (KIR) mR	X99479_f_et	245 A	-149 A	325 A	584 A	126 A	405
7101	Major Histocompatibility Complex, Cla	HS888HT658_f_st	14476 P	13686 P	6560 P	8995 P	8443 P	3632
7102	HLA-A MHC class I protein HLA-A JHLA-	M94880_/_at	10862 P	11789 P	5823 P	9567 P	8512 P	4214
7103	PRB2 locus salivary proline-rich prot	\$80905_f_at	701 A	76 A	804 A	367 A	182 A	508
7104	HLA CLASS II HISTOCOMPATIBILITY ANTIG	203068_/_at	2762 P	1967 P	1090 A	1708 P	1500 P	039
7105	GB DEF = (HLCCSS) inPINA for voltage-de	Z34822_f_#	-325 A	-191 A	-258 A	-357 A	-78 A	-311
7106	GB DEF = Endogenous retrovirus clone	U87980_LW	47 A	40 A	9 A	45 A	29 A	45
7107	Integrase gene extracted from Human e	U88902_ods1_f_at	346 A	290 A	230 A	430 A	158 A	199
7708	WUGSC:GS345013.2 gene (G-protein gennn	AC002076_ods2_at	-68 A	14 A	-58 A	-95 A	18 A	- 5
7109	TIAL1 TIA1 cytotoxic granule-associal:	D64015_at	229 A	194 P	234 P	128 P	71 P	168
7110	Ran-Specific Guanine Nucleotide-Relea	HG2510HT2606_at	-14 A	56 A	95 A	42 A	42 A	48
7111	TYROSINE-PROTEIN KINASE ITK/TSK	L10717_M	108 P	303 P	143 P	22 A	44 A	145
7112	(clone p4) 50 kD dystrophin-associate	L34395_M	28 A	-242 A	-25 A	-131 A	-33 A	-209
7113	Itp35-gene extracted from Human BRICA1	L78833_cds4_at	349 A	214 P	464 A	342 P	159 P	147
7114	INHA Inhibin, alpha	M13981_M	61 A	-28 A	513 P	142 A	71 A	376
7115	S100A9 S100 calcium-binding protein.A.	M21064_at	273 A	143 A	238 A	277 A	134 A	252
7116	PLGL Planningen-like protein	M93143_at	384 P	231 A	720 P	307 P	178 P	384
7117	ID1 Inhibitor of DNA binding 1, domin	578825_M	-306 A	-336 A	-204 A	-320 A	-182 A	-429
7118	ABP1 Andoide binding protein 1 (ani	U11863_at	-1827 A	-2380 A	-1772 A	2022 A	-179 A	-2217
7119	Transcriptional activator HSNF2b	U29175_at	1582 P	624 P	753 P	743 P	626 P	1157
7120	Transcription factor Stat5b (stat5b)	U48730_M	185 A	169 A	315 P	240 A	156 P	115
7121	Breast ephhelial artigen BA46 wFNA	U58516_W	511 A	837 A	1199 A	805 A	649 A	1221
7122	GB DEF = Calcium/calmodulin-dependent	U73738_#	-125 A	-36 A	33 A	218 A	57 A	-76
7123	TUBULIN ALPHA-4 CHAIN	X06956_M	389 P	442 A	168 A	174 A	504 P	172
7124	CYP481 Cytochrome P450, subtanily NS	X16639_at	-37 A	-17 A	52 A	-110 A	-26 A	-74
			d	isease		C	ontrol	

17

n camples (nationts)

Class Prediction Based on Microarray Data

- Medical diagnostics, selection of best therapies, disease risk analysis, agriculture,...
- Examples of medical tests based on microarray assays:

MammaPrint – breast cancer recurrence risk assessment Oncotype DX – test if cancer is likely to respond to chemotherapy

Clustering – Applications

- Customer profiling
- Target marketing
- Bioinformatics
 - · discovery of similarly expressed genes
 - disease taxonomy (groups of patients with similar expression patterns)

Clustering – Methods

- Hierarchical clustering
- k-means (nondeterministic)
- Vector Quantization
- SOM
- ...

- Challenges
 - No robust methods to determine the right number of clusters
 - Results depend on method of clustering

21

Example: Clustering Gene Expressions

- Class discovery
 - Clustering by rows discovery of relationships between genes
 - Clustering by columns disease taxonomy

Example: Clustering Gene Expressions

• Dendrogram – results of hierarchical clustering (hierarchy of clusters)

23

Example: SkyCat Project

- Digital Palomar Observatory Sky Survey (POSS II)
- 3000 images, 23040x23040x16 bit/pixel = 3TB
- Ca 5x10⁷ galaxies, 2x10⁹ stars, 10⁵ quasars
- Objects too blurred classification by human astronomer impossible
- For some objects high resolution CCD images available
- Task: automatic classification of objects (assign to one of 4 classes)
- · Solution based on:
 - Decision trees (ID3, GID3*)
 - Unsupervised classification algorithms
- Results: ~95% of correctly classified objects

Example: Profiling Restaurants

- Analysis of chain of fast food restaurants
- Each restaurant represented by value of sales (sp) vs. production losses (aod)
- Three clusters = profiles identified

25

Association Rules

- Task: find groups of items frequently bought together (also known as frequent itemset mining)
- Results are usually expressed as association rules:
 A→B

where {A,B} is frequent enough Pr{B|A} is high enough

Association Rules

- Support of rule = frequency of {A,B}
- Confidence of rule = Pr(B|A)
- Another interesting parameter of a rule is lift = Pr(B|A) / Pr(B)
 Pr(B)=prob. of buying B, no rule known
 Interesting rules significantly lift probability of buying B

27

Association Rules

- The task is to find all rules with given min support and min confidence
- Task is challenging due to large volume of data to be searched, e.g.,
 - 10⁵ items in store
 - · 20 millions transactions per day

Association Rules – Applications

- Baskets = documents
- Articles = words
 Words appearing together may imply phrases characteristic to some area. Used for automatic text classification.
- Baskets = sentences
- Articles = documents
 Documents with many identical sentences may suggest plagiarism or mirror sites in the Internet

29

Association Rules - Applications

 Recommendation systems, e.g., amazon.com

Time Series Forecasting

- Input data: time series variable(s) (spaced equally over time)
- · Data assumed to have
 - Trend
 - · Seasonal behaviour
 - Noise
- Forecasting done by extrapolating trends in past values of the series

Time Series Forecasting

- Applications:
 - Short term electricity consumption demands
 - Economics sales data, share prices, employment figures
 - · Meteorology rainfall, temperature patterns
 - ٠..
- Several methods to model the trends:
 - ARIMA,
 - · Exponential smoothing models,
 - AutoRegressive Trees

1210	1074
1160	1875
1160	1876
813	1877
1230	1878
1370	1879
1140	1880
995	1881
935	1882
1110	1883
994	1884
1020	1885
960	1886
1180	1887
799	1888
958	1889
1140	1890
1100	1891
1210	1892
1150	1893
1250	1894
1260	1895
1220	1896
10303	2 1897
1100	1898
•	

1871 1872

1160 1872

1140

1110

1180

1140

1150

1250 1894 1260 1895 1220 1896 103031 1897

963 1873

1883 1884

1887

1890

Example – Flow of the Nile River

- Prediction based on annual volume of the Nile measured at Aswan
- Shift in level in 1899 due to construction of the new dam at Aswan (and partly weather changes)

33

Example – Flow of the Nile River

This forecast is based on more recent data only (data before 1899 removed)

Algorithms for Predictive Modelling – Contents

- Regression
- Classification
- Auxiliary topics:
 - Estimation of prediction error
 - Reduction of dimensionality

35

Predictive Modelling – Terminology

· Given input data

$$\{(\pmb{x}_1, \pmb{y}_1), ..., \; (\pmb{x}_n, \pmb{y}_n)\}$$

- 1. find model of relationship between Y and $X_1, X_2, ..., X_d$
- 2. estimate predictive performance of the model for *new data*
- X_i input variable (other names: independent variable, predictor, regressor, explanatory variable, carrier, factor, covariate)
- Y target variable (also response)

Linear Methods for Regression

- We seek Y(X) assuming that the relationship is linear (assumption simplifies computations to fit the model)
- Many nonlinear problem can be modelled with linear regression – by applying transformations to variables
- We will discuss the following problems
 - Fitting the model to data
 - Verifying goodness-of-fit
 - Should the model include all the features X₁ through X_d, or only the best features? (especially important for high-dimensionality data)

37

Linear Methods for Classification

- Regression can also used for classification logistic regression
- Linearity assumption also important in classification (e.g. Linear Discriminant Analysis (LDA), separating hyperplanes (perceptron algorithm))

Theoretical Background – Statistical Decision Theory

- Notation
 - $X \in R^d$ input variables (random variables)
 - Y ∈ R output variable (random variable)
 - Pr(X,Y) joint probability distribution
- We look for a function f(X) for predicting the value of Y

39

Theoretical Background – Statistical Decision Theory

• Criterion: the function should minimize the *squared error*:

$$EPE(f) = E(Y - f(X))^{2} = \int (y - f(x))^{2} Pr(dx, dy)$$

• Solution – regression function:

$$f(x) = E(Y \mid X = x)$$

Theoretical Background – Statistical Decision Theory

• Notice: if criterion is to minimize the L₁ norm

$$E[Y - f(X)]$$

then the solution is

$$f(x) = \text{median}(Y \mid X = x)$$

41

From Theory to Practice...

- Regression function f(x)=E(Y|X=x) is based on known joint probability distribution of X and Y
- How to estimate f from data: $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}$?
- Different approaches:
 - Parametric build model of f(x)
 - Nonparametric

Linear Regression

 We assume that f(x)=E(Y|X=x) is a linear function of X₁, X₂,..., X_d:

$$f(X) = \beta_0 + \sum_{j=1}^d X_j \beta_j$$

 β - vector of unknown model coefficients

- As X_i we can take:
 - Quantitative input variables
 - Nonlinear transformations of inputs (e.g., log)
 - Polynomial terms, e.g., X₂=X₁², etc.
 - Numerically coded levels of *qulitative* variable

43

Fitting the Model

• Estimation of $\beta = [\beta_0, \beta_{1,...,}, \beta_d]$ based on $\{(\boldsymbol{x}_1, \boldsymbol{y}_1), ..., (\boldsymbol{x}_n, \boldsymbol{y}_n)\}$ – by minimization of residual sum of squares RSS(β):

RSS(
$$\beta$$
) = $\sum_{j=1}^{n} (y_j - f(x_j))^2$

• Solution:

$$\beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \dots \\ \mathbf{x}_n \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \dots \\ \mathbf{y}_n \end{bmatrix}$$

Verifying the Model

 Goodness of fit must be verified before we attempt use the model for prediction

How to check if the model fits the data well?

- Regression procedures in software packages (SAS, SPSS, etc.) offer several tools to do this:
 - diagnostic plots,
 - hypothesis tests if parameters significant,
 - measures of residual error, etc. we illustrate these by example

45

Linear Regression – Example

- How weight of children depends on height and age?
- Solution using SAS procedure reg:

```
proc reg data=kids;
    model weight=height age;

plot weight*age weight*height;
plot r.*p.;

run;
Fit model
w = f(h,a)

Diagnostic
plots for model
verification
```

age	height	weight
14.3	56.3	85
15.5	62.3	105
15.3	63.3	108
16.1	59	92
19.1	62.5	112.5
17.1	62.5	112
18.5	59	104
14.2	56.5	69
16	62	94.5
14	53.8	68.5
13.9	61.5	104
17.8	61.5	103.5
15.7	64.5	123.5
14.9	58.3	93
14.3	51.3	50.5
14.5	58.8	89
19.1	65.3	107
15	59.5	78.5
14.7	61.3	115

Linear Regression – Example

· Solution:

weight = -127.8 + 3.09 x height + 2.4 x age

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	-127.8199	12.09900	-10.56	<.0001		
height	1	3.09005	0.25734	12.01	<.0001		
age	1	2.40275	0.55103	4.36	<.0001		

47

Linear Regression – Example

- Overall measures concerning the fit:
 - Root MSE mean square error in regression
 - R-Square regression accounts for 63% of variance in data is explained by the regression model (→1 implies that the model is appropriate)

Root MSE	11.86836	R-Square	0.6305
Dependent Mean	101.30802	Adj R-Sq	0.6273
Coeff Var	11.71512		

Linear Regression – Example

$$SS_{total} = \sum_{j=1}^{n} (y_j - \overline{y})^2$$

$$SS_{reg} = \sum_{j=1}^{n} (f(x_j) - \overline{y})^2$$

$$SS_{reg} = \sum_{j=1}^{n} (f(x_j) - \overline{y})^2$$

$$SS_{err} = RSS = \sum_{j=1}^{n} (y_j - f(x_j))^2$$

$$R^2 = 1 - \frac{SS_{err}}{SS_{total}}$$

49

Linear Regression – Example

- Testing if parameters of the model are significant
 - t Value test of hypothesis H0: $\beta_i = 0$
 - p value < 0.05 − reject H0 → model parameters are significant

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	-127.8199	12.09900	-10.56	<.0001		
height	1	3.09005	0.25734	12.01	<.0001		
age	1	2.40275	0.55103	4.36	<.0001		

Linear Regression – Example

- Diagnostic plots Residual vs predicted values
- Residual =
 Y_{observed} -Y_{predicted}
- Trend in shape may indicate model inadequacy

53

Linear Regression – Finding Best Regressors

 Problem: regression based on all features X vs regression based only on the best features?

```
proc reg data=kids;
  model weight=height age / selection=forward;
  model weight=height age / selection=backward;
  model weight=height age / selection=stepwise;
run;
```

- Forward subsequent parameters added to model
- Backward starting with complete model, parameters are removed
- Stepwise similar to forward (but parameter can be removed after being added to the model)

Forward Selection: Step 1

Variable height Entered: R-Square = 0.6004 and C(p) = 20.0137

' > F							
0001							
Variable Parameter Standard Type II SS F Value Pr > F							
Pr > F							
0							

Test H0 that "smaller" model is appropriate

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-132.99101	12.49370	17184	113.31	<.0001
height	3.81815	0.20318	53555	353.14	<.0001

55

Linear Regression – Finding Best Regressors

Forward Selection: Step 2

Variable age Entered: R-Square = 0.6305 and C(p) = 3.0000

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	56233	28117	199.61	<.0001		
Error	234	32961	140.85795				
Corrected Total	236	89194					

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	-127.81991	12.09900	15721	111.61	<.0001
height	3.09005	0.25734	20309	144.18	<.0001
age	2.40275	0.55103	2678.22612	19.01	<.0001

Regression vs nonparametric approach

Linear regression

 $f(x)=E(Y \mid X=x)$ – assumption: linear function of $X_1,...,X_d$

$$f(X) = \beta_0 + \sum_{j=1}^{d} X_j \beta_j$$

Nearest neighbours method

$$\hat{f}(x) = \text{Average}(y_i \mid x_i \in N_k(x))$$

- $N_k(x)$ neighbourhood of x containing k points closest to x
- Attempt to estimate $f(x)=E(Y\mid X=x)$ directly from data
- Theorem. If $n,k\rightarrow\infty$, $k/n\rightarrow0$, then $f^{\wedge}(x)\rightarrow E(Y\mid X=x)$

57

Algorithms for Predictive Modelling – Contents

- Regression
- Classification
- Auxiliary topics:
 - Estimation of prediction error
 - Reduction of dimensionality

Algorithms for building classifiers

- Linear, nonlinear discriminant analysis
- Logistic regression
- Naive Bayes
- · Classification and regression trees
- · Perceptron algorithm, neural networks
- Support vector machines
- Nonparametric classifiers (k nearest neighbours)
- •

59

Classification

Notation

$$\begin{split} X \in R^d - \text{input variables (random variables)} \\ Y \in C = & \{c_1, \, c_2, ..., c_M\} - \text{possible values of } Y \\ x \in c_i \text{ if } Y(x) = c_i \text{ (x belongs to class c_i)} \end{split}$$

 We again assume that the joint probability distribution Pr(X,Y) of X and Y is known

Classification

 Loss matrix L_{MxM} (to punish misclassification decisions of classifier f)

L(i,j)=0 for
$$x \in c_i$$
 and $f(x)=c_j$ and $i=j$
L(i,j)=1 for $x \in c_i$ and $f(x)=c_j$ and $i\neq j$

 We look for classifer f(X) minimizing the expected prediction error:

$$EPE = E(L(Y, f(X)))$$

61

Bayes Classifier

• Solution – Bayes classifier

$$f(x) = c_k$$
 for $Pr(c_k | X = x) = \max_{c \in C} Pr(c | X = x)$

- Rule: classify x into class c_k which proves most likely under conditional distribution Pr(Y|X=x)
- The Bayes classifier is <u>optimal</u> with respect to minimizing the classification error probability

Bayes Classifier

• Bayes classifier – simple rule:

 $Pr(c_1|x) > Pr(c_2|x) \rightarrow classify x to c_1$ $Pr(c_1|x) < Pr(c_2|x) \rightarrow classify x to c_2$

- Problem: estimation of Pr(c_i|x) from data is hard, easier to estimate Pr(x|c_i)
- Bayes rule:

$$Pr(c_i \mid x) = \frac{Pr(x \mid c_i) Pr(c_i)}{Pr(x)}$$

63

Bayes Classifier

• Bayes rule:

$$Pr(c_i \mid x) = \frac{Pr(x \mid c_i) Pr(c_i)}{Pr(x)}$$

- Pr(c_i|x) known as α posteriori probabilities
- Pr(c_i) a priori probabilities, can be estimated from training data (as frequencies of samples of various classes)

Bayes Classifier

Bayes classifier – equivalent form:

 $Pr(x|c_1)Pr(c_1) > Pr(x|c_2)Pr(c_2) \rightarrow classify x to c_1$ $Pr(x|c_1)Pr(c_1) < Pr(x|c_2)Pr(c_2) \rightarrow classify x to c_2$

Or, for equiprobable classes:

 $Pr(x|c_1) > Pr(x|c_2) \rightarrow classify x to c_1$ $Pr(x|c_1) < Pr(x|c_2) \rightarrow classify x to c_2$

65

Bayes Error

Rule for equiprobable classes:

$$Pr(x|c_1) > Pr(x|c_2) \rightarrow classify x to c_1$$

 $Pr(x|c_1) < Pr(x|c_2) \rightarrow classify x to c_2$

Total probability of committing classification error:

$$P_{e} = \Pr(c_{2}) \int_{-\infty}^{x_{0}} p(x \mid c_{2}) dx + \Pr(c_{1}) \int_{x_{0}}^{+\infty} p(x \mid c_{1}) dx$$

$$P_{e} = \frac{1}{2} \left(\int_{-\infty}^{x_{0}} p(x \mid c_{2}) dx + \int_{x_{0}}^{+\infty} p(x \mid c_{1}) dx \right)$$
(Figure 1)

$$P_{e} = \frac{1}{2} \left(\int_{-\infty}^{x_{0}} p(x \mid c_{2}) dx + \int_{x_{0}}^{+\infty} p(x \mid c_{1}) dx \right)$$

Bayes Error

- Bayes error error due to overlapping features
- The only way to reduce this error is to provide more information about items classified (more features)

67

Discriminant functions

· Given Bayes rule:

 $Pr(c_1|x) > Pr(c_2|x) \rightarrow classify x to c_1$ $Pr(c_1|x) < Pr(c_2|x) \rightarrow classify x to c_2$

partitions the feature space into disjoint regions. *Decision surface* in the boundary between contiguous regions:

$$g(x) = Pr(c_1|x) - Pr(c_2|x) = 0$$

• Then x is classified as:

c = sign(g(x))

 $p(x|c_1)$

Linear Methods in Classification

- How to estimate the decision hyperplanes given training data?
 - Analytical solution for $p(x|c_i)$, i=1,...,M normally distributed
 - LDA
 - QDA
 - Iterative algorithms to fit separating hyperplanes for nonnormally distributed data

69

Linear Discriminant Analysis

· LDA Linear Discriminant Analysis

$$c_{i} = sign\left(\sum_{j=1}^{d} \beta_{j} X_{j} + \beta_{0}\right)$$

- LDA defines the Bayes (optimal) classifier for p(x|c_i) normally distributed (with the same covariance matrix in all classes)
- Then β_0 , β_1 ,..., β_d are computed based on means and covariances of features in different classes

Quadratic Discriminant Analysis

 QDA Quadratic Discriminant Analysis

$$c_{i} = sign\left(\beta_{0} + \sum_{j=1}^{d} \beta_{j} X_{j} + \sum_{j=1}^{d} \sum_{k=1}^{d} \beta_{jk} X_{j} X_{k}\right)$$

 QDA defines the Bayes (optimal) classifier for the general case of p(x|c_i) normally distributed

71

Naive Bayes Classifier

- Problem: in high dimensional data x=(x₁,...,x_d) estimation of class-conditional densities p(x | c_j), j=1,...,m is difficult (curse of dimensionality)
- Naive Bayes is based on the assumption:

$$p(x|c_j) = \prod_{k=1}^d p(x_k|c_j)$$

i.e. we assume that in each class j, the features are independent

Naive Bayes Classifier

- Estimation of one-dimensional marginal densities p(x_k | c_i) – easy:
 - Continuous features: $p(x_k \mid c_j)$ can be estimated $p(x_k/c_1)$ using one-dimensional kernel density estimates or univariate normal distribution
 - Discrete features: p(x_k | c_j) based on the observed frequency (histogram-based estimates)

- Easy to mix different feature types in feature vector
- In reality features *are* dependent, depite this NB often performs remarkably well...

73

Logistic Regression

- Idea of logistic regression
 - Y discrete, e.g., with values 0 or 1
 - p=Pr(Y=1|X=x)
 - Logit(p) = log(p/(1-p))
 - We model logit(p) as a linear function of features

$$\operatorname{logit}(p) = \sum_{j=1}^{d} \beta_{j} X_{j} + \beta_{0}$$

Linear Methods in Classification – Separating Hyperplanes

• Problem: given *linearly separable* training data, find a separating hyperplane (defined by β , β ₀):

$$f(\mathbf{x}) = \sum_{j=1}^{d} \beta_j X_j + \beta_0 = 0$$
$$f(\mathbf{x}) = \langle \mathbf{\beta}, \mathbf{x} \rangle + \beta_0 = 0$$

• Class c_i of x is then found as:

$$c_i = sign(\langle \boldsymbol{\beta}, \mathbf{x} \rangle + \beta_0)$$

75

Linear Methods in Classification – Separating Hyperplanes

- Here <u>no assumption</u> is made regarding distribution of training data Pr(x|c_i)
- ? How to find β , $\beta_0 \rightarrow$ perceptron algorithm

Linear Methods in Classification – Perceptron Algorithm

• Idea: find β by solving an optimization task – minimize cost $J(\beta)$ of misclassified items:

$$J(\mathbf{\beta}) = \sum_{\text{misclassifed } \mathbf{x}} |\langle \mathbf{\beta}, \mathbf{x} \rangle|$$

• β found by iterative minimization of $J(\beta)$ – gradient descent method

$$\beta(t+1) = \beta(t) - \rho_t \frac{\partial J(\beta)}{\partial \beta}$$

77

Perceptron for Non-linearly Separable Data?

• Example of non-linearly separable data:

X₁ X₂ X 0 0 **A** 0 1 **B** 1 0 **B**

 X_2

 However, after transformation of variables, problem becomes linearly separable...

Non-linearly separable data

• Mapping based on output of two perceptrons

79

Non-linearly separable data

• Mapping based on output of two perceptrons

In new coordinate system, the two classes are .
 linearly separable → multilayer perceptron

Neural Nets: Multilayer Perceptron

81

Neural Nets: Multilayer Perceptron

Neural Nets

Output can involve more neurons (non-binary classification)

83

Neural Nets

- Interval (quantitative) inputs: one input neuron per input variable
- Ordinal or nominal inputs: variable with N levels is changed to N dummy variables (with values of 0,1 used to code class membership)
- Drawback: NN is a "Black-Box" tool impossible to understand prediction process

K-Nearest Neighbours

- Idea: predict target for new set of inputs based of k nearest neighbours in training data set
- Example of a nonparametric approach
- Can be regarded as an approach to compare p(x|c₁) vs p(x|c₂) – directly from data

85

K-Nearest Neighbours

• E.g., voting records for US congressmen

n y n y y y n n n y ? y y y n y --> republican n y n y y y n n n n n n y y y n ? --> republican ? y y ? y y n n n n n y n y y n ? --> democrat n y n ? y n n n n n y n y n n y --> democrat n y n y n y n n n n n n y y y y --> democrat n y n y y n y n n n n n n n y y y y --> democrat n y n y y n y n n n n n n n y y y y --> democrat n y n y y y n n n n n n n y y y y --> democrat n y n y y y n n n n n n n y y ? y --> republican n y n y y y n n n n n n n y y ? y --> republican y n y y y n n n n n n ? ? y y n --> republican y n y n y n n n n n ? ? y y n n --> republican n y n y y n n n n n n ? ? y y ? ? --> republican n y n y y y n n n n n y ? y y ? ? --> republican

• Prediction:

y n n y y n y y y n n y y y n y-->?
y n n y y n y y y n n y y y n y--> republican

Note: subsequent 'n', 'y' denote against or in favour of vote in following matters:

- 1. more-support-for-handicapped-infants
- 2. water-project-cost-sharing
- 3. adoption-of-the-budget-resolution
- 4. physician-fee-freeze
- 5. el-salvador-aid
- 6. religious-groups-in-schools
- 7. anti-satellite-test-ban 8. aid-to-nicaraguan-contras
- 9. mx-missile
- 9. mx-missile 10. immigration
- 11. synfuels-corporation-cutback
- 12. education-spending
- 13. superfund-right-to-sue
- 14. crime
- 15. duty-free-exports
- 16. export-administration-act-south-africa

K-Nearest Neighbours

- We need to define how to measure distance between points:
 - Euclidean distance
 - City-block (Manhattan distance) sum of the absolute differences between corresponding values
 - Correlation distance = 1-cor(v₁, v₂)
 (cor correlation coefficient between vectors v₁, v₂)

87

Decision Trees

- · Root: whole data set
- Recursively partition data to increase purity of partitions
- Leaves correspond to classification decisions
- Measures of purity: entropy, Giniindex....
- Partitioning continues until partitions become pure or small
- Binary trees most frequently used
- Algorithms CART, C4.5, C5.0

Decision Trees

- Decision process easy to understand
- Drawback: poor stability (small changes in data may lead to different trees)
- Hence: random forests (L. Breiman)

89

Algorithms for Building Decision Trees - Problems

- How to select an attribute to use for a data split?
- How long should we follow with the process of splitting?
- What is the right height/size of the tree?

Selection of Attribute for Next Split

- Approach I: Based on some measure of relationship of variables X_i and Y
 - Idea: for each X_i i=1,2,...d, compute pValue of test for H₀: X_i and Y independent
 - Split node S using variable X_i, for which pValue is smallest (providing pValue < 0.05 (possibly with multiple testing correction))
 - Possible tests: Chi-square, F or ANOVA

91

Selection of Attribute for Next Split

- Approach II: Maximize some criterion of quality of split (e.g. entropy reduction, variance reduction etc.)
- Idea:
 - Define I(S) measure of node's S impurity
 - Considering split based on variable A, define measure of quality of this split:

 $W(S,A) = I(S) - \sum p(b)I(S_b)$

(sum over all branches b leaving node S p(b) – probability of selecting branch b)

Select split according to A, maximizing the measure W

Selection of Attribute for Next Split – definitions of I(S)

• Entropy $(Y \in C=\{c_1, c_2,...,c_M\})$

$$Entropy(S) = -\sum_{i=1}^{M} p_i \log_2 p_i$$

· Gini index

$$Gini(S) = 1 - \sum_{i=1}^{M} \left(\frac{n_i}{|S|} \right)^2$$

- Both measures realize:
 - max value for equal probabilities of all classes (=1/M)
 - 0 if p_i=1 for some i (all data belong to a single class)

93

Selection of Attribute for Next Split

- · Consider 3 competing splits of a node
- Notation: n₁/n₂ number of observations of class "1" / "2" in node
- We select the split maximizing W:

$$W(S, A) = Entropy(S) - \sum_{\text{branch } b} \frac{|S_b|}{|S|} Entropy(S_b)$$

Algorithms for Building Decision Trees - Problems

- ✓ How to select an attribute to use for a data split?
- How long should we follow with the process of splitting?
 - Rule: stop if node pure or small (min n parametr of algorithm)
- What is the right height/size of the tree?

95

Algorithms for Building Decision Trees - Problems

- ✓ How to select an attribute to use for a data split?
- ✓ How long should we follow with the process of splitting?
- What is the *right* height/size of the tree?
 - Problem:
 find the balance between overfitting vs oversimplifying
 (too complex vs too simple tree)
 - Rule: estimate error (misclassification cost) for train and test data
 - Prune higher tree to decrease the cost (measured for test data)

Trees vs. Neural Nets

- Trees:
 - Classification process can be understood (and expressed as set of simple rules). Classification rules give insight into data
 - Can be unstable (small change in input data may change structure of tree) → random forests...
- · Neural nets:
 - 'Black Box' classification process cannot be understood
 - More stable than trees

97

Optimal separating hyperplanes

 Linear classifier f (for (y_i∈{-1,+1}, i=1,2,...,N)):

$$C(x_i)$$
=sign $f(x_i)$

- Task
 - Find separating hyperplane with the constraint: maximize the separating margin
 → solve optimization problem:

$$\max_{\beta,\beta_0} C$$
subject to $y_i(\beta_0 + \langle \beta, x_i \rangle) \ge C$, $i = 1,2,...,N$

 $f(x) = \beta_0 + \langle \beta, x \rangle = 0$

Optimal separating hyperplanes

• Solution:

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

with $\alpha_i \neq 0$ only for points on the edge of the separating slab (support vectors)

99

Support vector classifier

• Allow for non-linearly separable data

$$f(x) = \beta_0 + \langle \beta, x \rangle = 0$$

 Find separating hyperplane → solve the same optimization problem with different constraints:

$$\begin{split} \max_{\beta,\beta_0} C \\ subject \ to \ y_i \Big(\beta_0 + \big<\beta, x_i\big>\Big) &\geq C \Big(1 - \xi_i\Big), \ i = 1, 2, ..., N \\ with & \sum_i \xi_i \leq const \end{split}$$

Support vector classifier

- Values ξ_i indicate proportional amout by which prediction $\beta_0 + \langle \beta, x_i \rangle$ is on the wrong side of the margin
- We bound $\sum \xi_i$
- Solution: β depends on support vectors only

$$\widehat{\beta} = \sum_{i=1}^{N} \widehat{\alpha}_i y_i x_i$$

101

Support vector machine

• Putting solution for β into definition of f(x)

$$f(x) = \beta_0 + \langle \beta, x \rangle = 0$$

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i \langle x_i, x \rangle + \beta_0$$

- · Dual representation: data appears in dot products only
- This cannot deal with non-linearly separable (or noisy)
- Solution: Move data to higher dimensionality feature space and separate data there

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i \langle h(x_i), h(x) \rangle + \beta_0$$

Support vector machine

• We do not need the transformation h() – we need only *kernels*!

$$f(x) = \beta_0 + \langle \beta, x \rangle = 0$$

$$K(x,x') = \langle h(x), h(x') \rangle$$

Possible kernels

$$K(X,X') = \langle X,X' \rangle$$

linear

$$K(X,X') = (1 + \langle X,X' \rangle)^2$$

polynomial

$$K(X, X') = \exp\left(\sigma \|X - X'\|^2\right)$$

radial-basis

103

Auxiliary Topics

- Classifier complexity
- Estimation of prediction error
- "Curse of dimensionality"
- Feature selection
- PCA

Classifier Overfitting

- Training a classifier attempt to fine-tune classifier parameters to minimize the training error
- Performance of classifier is to be verified on independent (new) test data
- Often a large gap observed between training error and test error
- · This problem is called overfitting

107

Overfitting and Classifier Complexity

- · Overfitting increases with:
 - Model complexity
 - Dimensionality of the problem
- Example (Markowetz, Methods Inf Med. 3/2005)
 LDA vs QDA with changing number of variables

- Too simple classifer not able to grasp the relationship between target and input parameters
- Too complex overfitting → trade-off needs to be sought between flexibility of classifier and its ability to generalize

Classification Based on High Throughput Experiments Data

- High throughput data: d>>n
- Interesting fact: in p dimensions a simple linear classifier can always separate p+1 points
- Hence, it is always possible to perfectly separate such training data set -> Overfitting as the major problem

73		3/35075.E.al	245 A	-149.A	325 A	594 A	125 A	475 A
710		HS890HT658_LM	14479 P	13696 P	6560 P	1995 P	9443 P	3632 F
210		M36000 I M	10062 P	11700 P	5003 P	9507 P	9512 P	4214 F
7%		\$90005 f_W	701 A	76 A	904 A	367 A	192 A	500 A
270	ANTIG	>00008_(_a/	2762 P	1967 P	1090 A	1708 P	1503 P	839 A
210		234022,I, et	025 A	-191 A.	Q58 A	1997 A	-78 A	-311 /
776		USF933 f. et.	-87 A	A 00	3 A	45 A	23 A	45 A
310		U68902_ods1_f_at	346 A	290 A	229 A	430 A	168 A	199 /
71	Genera	ACBEZO75_cds2_M	-60 A	14 A.	-58 A	-25 A	10.6	57
71		D64315_W	229 A	194 P	294 P	120 P	71 P	160 8
71		HG25TOHT2606_wt	-34 A	56 A	95 A	42 A	42 A	40 /
770			100 P	303 P	143 P	22 A	44.6	145 /
71		L34395, et	28 A	242 A	35 A	-131 A	-33 A	-209 /
71	BRIGHT	L79822_odel_st	263 V	214 P	464 A	342 P	153 P	147)
210		M13061_M	\$1.A	20 A	513 P	142 A	71.6	276 (
71		M21064_M	273 A	142 A	238 A	277 A	124.6	252 (
770		M53143_et	384 P	231 A	728 P	307 P	178 P	304 /
710		579025, of	-306 A	336 A	C04.A	-320 A	182 A	436 /
79		U11963_M	-1607.A	-2390 A	-1772 A	-2022 A	-179.4	-2217 /
20		LOSE75_M	1582 P	624 P	753 P	743 P	606 P	1157 F
7%		U48730_w	185 A	169 A	315 P	240 A	156 P	115 A
7%		USBS16_at	511 A	837 A	1199 A	835 A	643 A	
7%	Calcium/calreodulin-dependent	U73739_W	-125 A	06 A	23 A	218 A	57 A	-76 A
2%		100956_M	369 P	442 A	168 A	174 A	504 P	
7%	CVPRRT Cytochrone PRSO, subrandy	10009 M	-37 A	-17 A	52 A	-110 A	-25 A	-74 A

109

Classification Based on High Throughput Experiments - Problems

- Reduction of dimensionality important to avoid overfitting
 - Feature selection based on statistical hypothesis tests (discriminatory capability of features tested independently)
 - PCA

Small size of available data (n)

 Insufficient data to train the model and test it on indepentdent

- Data reuse methods

Estimation of Expected Prediction Error – Data Reuse Methods

- "Standard" approach (n samples >> d dimension)
 - Partition data into train/validation/test subsets
 - Validation used to fine-tune model's parameters (nHiddenNeurons, nIterations, nInputs, SVM C and γ, ...)
 - Test to estimate EPE
- n<<d case → no data to validate and test
- Data reuse to estimate EPE, e.g.,
 - K-fold cross validation
 - Leave-out-one cross validation, etc.

111

Performance of Classifiers

Confusion matrix

Predicted

	Class 1	Class 2
Class 1	а	b
Class 2	С	d

Sensitivity = a/(a+b)

Specificity = d/(c+d)

Performance of Classifiers

- Receiver operating characteristic (ROC)
- Each point represents a cut-off probability
- Area under ROC:
 0.5 worthless model
 1 perfect classifier

113

"Curse of Dimensionality"

 Example: N points in p dimensions distributed uniformly in a unit ball. Then the median distance from the origin to the closest point is:

$$d=(1-0.5^{1/N})^{1/p}$$

- "Curse of dimensionality" in high dimensions training data sparsly populate input space
- This limits, in high dimensionality problems, practical use of various data mining techniques such as
 - Clustering
 - K-nearest neighbour, etc.

Principal Components Analysis - Idea

- Transform the original set of p variables (on n observations) to uncorrelated set of p latent variables – principal components
- Variability in data is captured in first few latent variables (ordered in the descending order of explained variability)
- Applications
 - Technique of analysis of high dimensional data / data summarization / explanatory data analysis
 - First principal components are used to reduce the number of variables in predictive modelling, clustering, etc.

115

PCA - Technical Details

- Given a data set with p numeric variables, you can compute p principal components.
- Each principal component is a linear combination of the original variables, with coefficients equal to the eigenvectors of the correlation or covariance matrix.
- The eigenvectors are customarily taken with unit length.
- The principal components are sorted by descending order of the eigenvalues, which are equal to the variances of the components.

Example: PCA for Information Compression

- Analysis of job performance of policemen (as seen by their bosses)
- Each policeman rated in 14 categories (1=fail, 10=outstanding)

	Communication Skills	Problem Solving	Learning Ability	Judgment Under Pressure	Observation Skills	Willingness to Confront Problems	Interest in People	Interpersonal Sensitivity	Desire for Self-Improvemen	Appearance	Dependability	Physical Ability	Integrity	Overall Rating
1	2	6	8	3	8	8	5	3	8	7	9	8	6	7
2	7	4	7	5	8	8	7	6	8	5	7	6	6	7
3	5	6	7	5	7	8	6	3	7	7	5	8	7	5
4	6	7	8	6	9	7	7	7	9	8	8	9	9	7
5	9	9	8	9	9	8	9	9	8	9	9	8	9	9
6	7	4	7	5	8	8	7	6	8	5	7	6	6	7
7	5	6	7	5	7	8	6	3	7	7	5	8	7	5
8	6	7	8	6	9	7	7	7	9	8	8	9	9	7
9	9	9	8	9	9	8	9	9	8	9	9	8	9	9
10	7	4	7	5	8	8	7	6	8	5	7	6	6	7
11	5	6	7	5	7	8	6	3	7	7	5	8	7	5
12	6	7	8	6	9	7	7	7	9	8	8	9	9	7
13	9	9	8	9	9	8	9	9	8	9	9	8	9	9

117

Example – cnt'd

Correlation matrix (part)

	Communication Skills	Problem Solving	Learning Ability	Ju I Pi
Communication Skills	1.0000	0.6280	0.5546	
Problem Solving	0.6280	1.0000	0.5690	
Learning Ability	0.5546	0.5690	1.0000	
Judgment Under Pressure	0.5538	0.6195	0.4892	
Observational Skills	0.5381	0.4284	0.6230	
Willingness to Confront Problems	0.5265	0.5015	0.5245	
Interest in People	0.4391	0.3972	0.2735	

	Eigenvalues of the Correlation Matrix								
	Eigenvalue	Difference	Proportion	Cumulative					
1	6.54740242	4.77468744	0.5036	0.5036					
2	1.77271499	0.76747933	0.1364	0.6400					
3	1.00523565	0.26209665	0.0773	0.7173					
4	0.74313901	0.06479499	0.0572	0.7745					
5	0.67834402	0.22696368	0.0522	0.8267					
6	0.45138034	0.06922167	0.0347	0.8614					
7	0.38215866	0.08432613	0.0294	0.8908					
8	0.29783254	0.02340663	0.0229	0.9137					
9	0.27442591	0.01208809	0.0201	nvalues sur					
10	0.26233782	0.01778332		component variation					
11	0.24455450	0.04677622	First	5 compone					
12	0.19777828	0.05508241	0.0152	0.9890					
13	0.14269586		0.0110	1.0000					

PRIN1, PRIN2, ... -- Eigenvectors of the correlation matrix

PC1 = linear combination of the original variables with coefficients given in the first eigenvector

PC1=0.303548*(Communication_skills) +0.278034*(Problem solving)+...

PC1 ~ overall performance

PC2 ~ smart, not socialized

PC3 ~ strong, not very brilliant

119

Example: PCA for ink recognition based on spectral data

- Problem: we want to verify if two signatures have been written with the same ink
- Signatures (images) scanned with the spectral scanner

Project details: http://skaner.mvlab.pl

Example: PCA for ink recognition based on spectral data

 Task: verify the H0 that two signatures have been written with the same ink

Example: PCA for ink recognition based on spectral data

- Every point in the signature is represented by a vector of spectral data (e.g. 480 spectral values per point)
- PCA is useful for reduction of dimensionality of the spectral data

[480x626 single]
[480x1228 single]
[480x903 single]
[480x708 single]
[480x653 single]
[480x657 single]
[480x657 single]
[480x819 single]
[480x705 single]
[480x105 single]
[480x802 single]
[480x802 single]
[480x103 single]
[480x103 single]
[480x104 single]

Example: PCA for ink recognition based on spectral data

Visualization of the compared inks in the space of the first two components: different inks

Example: PCA for ink recognition based on spectral data

Visualization of the compared inks in the space of the first two components: the same ink used to write two samples of text

Example: PCA for process control

Idea

Process variables transformed into set of uncorrelated *latent* variables:

- PCA method
- PLS method

Scatter plot of first two latent variables used to determine area of:

- Proper system operation
- Abnormal conditions

125

Example: PCA for Process Control – DISS Solar Plant • www.psa.es water evaporation Water injection line Water (40 - 108 bar) B.O.P. Example: PCA for Process Control – DISS Solar Plant • www.psa.es

Example: DISS Monitoring Data

- · DISS monitoring data
 - 55MB data / day, interval 5 sec.
 - ~600 variables measured / recorded (flows, temperatures, pressures of the solar field, meteorological data, monitoring of power block BOP, etc.
- Purpose of analysis is to detect / predict faults
 Fault temperature difference in a cross section surpasses
 50°C (collector goes to a desteer state)

127

Example: System State Trajectory

- Idea: PCA model: scatter plot of first two principal components
- Day 1 recirculation and feed pumps not running
- Day 2 correct plant operation

Towards Standarization of DM Tools (PMML)

 Problem: how deploy models created with different DM tools into a production DBMS scoring system?

129

Predictive Modeling Markup Language (PMML)

- · XML based language to express data mining models
- Purpose: interchange DM models between DM / BI tools (e.g., predictive model built in one tool to be used for scoring in another tool)
- Developed by Data Mining Group (IBM, Oracle, Microsoft, Microstrategy, prudsys, SAS, SPSS, StatSoft,...) www.dmg.org
- Specification available at http://sourceforge.net/projects/pmml (here XML Schema pmml-3-1.xsd)

DM Model Expressed in PMML

- PMML document describing a DM model is an XML document based on PMML XML schema (pmml-3-1.xsd)
- PMML standard (ver. 3-1 allows to describe models:
 - * Association Rules
 - * Decision Trees
 - * Center-Based & Distribution-Based Clustering
 - * Regression
 - * General Regression
 - * Neural Networks
 - * Naive Bayes
 - * Sequences
 - * Text
 - * Ruleset
 - * Support Vector Machine

131

Example: Decision Tree in PMML

- Build a decission tree classifier to decide whether to play golf (famous problem in DM ©)
- Training data

OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
sunny	85	85	FALSE	Don't Play
sunny	80	90	TRUE	Don't Play
overcast	83	78	FALSE	Play
rain	70	96	FALSE	Play
rain	68	80	FALSE	Play
rain	65	70	TRUE	Don't Play
overcast	64	65	TRUE	Play
sunny	72	95	FALSE	Don't Play
sunny	69	70	FALSE	Play
rain	75	80	FALSE	Play
sunny	75	70	TRUE	Play
overcast	72	90	TRUE	Play
overcast	81	75	FALSE	Play
rain	71	80	TRUE	Don't Play

Example: Decision Tree in PMML

- · Node has:
 - One predicate (defines condition to select this node),
 - Child nodes (if not leaf node; no child nodes → leaf).
- Scoring procedure (given observation X):
 - Start with root node (predicate=True)
 - Check if predicate of first child is True for X.
 If YES: move to this node. Repeat procedure for child nodes of this node (if leaf: return Node score)
 - If NO: return to root and repeat procedure for next child

```
- CTreeModel modelNatine = 9...
+ CMiningSchema>
- Node score="will play">
- True />
- Node score="will play">
- True />
- Node score="will play">
- Node score="will play">
- SimplePredicate field="outlook" operator="equal" value="sunny" />
- SimplePredicate field="outlook" operator="equal" value="sunny" />
- True /*
- True 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            will

<
                                                                                                                                                                                                                                                                                                                                                                                                        Outlook=sunny Outlook=overcast|rain
                                                                                                                                                                                                                                                                                                                                                                                                                                                  will
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          may
                                       - <Node score="will play">
<SimplePredicate field="humidity" operator="lessThan" value="80" />
                                                                                                                                                                                                                                                                                                                                                                                                                                                             Temp<=50 or

<
                                                                                                                                                                                                                                                                                                                                                                                       50<Temp<90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Temp>=90
                                        </Node>
                                                                                                                                                                                                                                                                                                                                                                                                         will
                               + <Node score="no play">
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      no
                              + <Node score='mo piay'>
</Node>
<Node score='may play'>

<CompoundPredicate booleanOperator="or">

<SimplePredicate field="outlook" operator="equal" value="overcast"/>

<SimplePredicate field="outlook" operator="equal" value="rain"/>
                                                                                                                                                                                                                                                                                                                                                                                     Hum<80
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Hum>=80
                             <pr
                                                                                                                                                                                                                                                                                                                                                                                            will
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           no
                                </Node>
```

Association Rules

- Problem: given a transaction database, find all association rules
 A→B with given min support and min confidence
- Algorithms should be efficient for large databases, e.g., :
 - >10⁵ items
 - >10⁶ transactions

135

Important Concepts

- **Support** of rule = frequency of {A,B} in transaction database
- Confidence of rule = Pr(B|A)
- Another interesting parameter of a rule is lift = Pr(B|A) / Pr(B)
 Pr(B)=prob. of buying B, no rule known
 Interesting rules significantly lift probability of buying B

Example

• Rule: "If a customer purchases diapers, then 40% of the times he/she will purchase beer"

All transactions: 1.000.000
Trans. with diapers: 50.000
Trans. with beer: 200.000
Trans. with diapers and beer: 20.000

Support = 2%

Confidence(D \rightarrow B) = 20K/50K = 40%

Pr(B) = 20% Lift = 2 Confidence(B \rightarrow D) = ?

137

Algorithms for Association Rules – Notation

 $I=\{i_1,i_2,...,i_m\}$ set of items

D set of transactions

 $T \subseteq I$ transaction $X \subseteq I, Y \subseteq I$ itemsets

- Transaction T contains itemset X if X ⊆T T_X set of such transactions
- Support sup(X) of itemset X: percent of transactions in D containing X, sup(X)=|T_X|/|D|

Algorithms for Association Rules – Notation

- Association rule is an implication X \Rightarrow Y, where X \subset I, Y \subset I and X \cap Y= \varnothing
- Confidence c of rule X⇒Y: c% of transactions with X also contain Y
- Support s of rule X⇒Y: s% of transactions in **D** contain X∪Y
- TASK: Find <u>all</u> rules with minimum support *minsup* and minimum confidence *minconf*

(not just verify that a *given rule* X⇒Y realizes *minsup* and *minconf*!)

139

Algorithms for Association Rules Discovery

- Initial algorithm proposed by Agrawal, Imieliński, Swami (1993)
- Based on following facts:
 - $\sup(X \cup Y) \leq \sup(X)$
 - Support of rule $X \Rightarrow Y = \sup(X \cup Y)$

Justification of fact 1: $\sup(X \cup Y) = |T_{X \cup Y}|/|D| = |T_X \cap T_Y|/|D| \leq |T_X|/|D| = \sup(X)$

Association Rules Discovery

Algorithm

Step 1: Find all candidate itemsets (i.e., itemsets with support ≥ minsup, denoted large itemsets)

Step 2: Using set of large itemsets generate all rules with minconf

141

Algorithm - Step 1 (Apriori)

Find all large itemsets:

- 1. Initialize set C_k of candidate itemsets of size k=1 to I
- 2. Prune C_k by eliminating itemsets with support < minsup
 - Scan set of transactions D
 - $-\,$ For each transaction increase counter for each element in C_k covered by that transaction
 - When done, eliminate elements of C_k with support < minsup
- 3. If $C_k = \emptyset$ then stop
- 4. Create C_{k+1} by extending C_k
- 5. k++; goto 2

Algorithm - Step 2

Using large itemsets, generate rules with minconf

For each large itemset L try all rules of the form:

a⇒L-a, where a \subset L

If $\sup(L)/\sup(a) \ge \min conf$ then output rule $a \Rightarrow L-a$

Justification of this procedure:

- Rule will have minimum support because L is a large itemset
- $conf(X \Rightarrow Y) = |T_{X \cup Y}| / |T_X| = sup(X \cup Y) / sup(X)$
- Hence conf(a \Rightarrow L-a) = sup(a \cup (L-a))/sup(a)=sup(L)/sup(a)

143

Example – Transaction DB

Layout of transaction DB

CUSTOMER – ID of a transaction PRODUCT – ID of an item

(TIME not used)

Enterprise Miner diagram

	TABLE: Sam CUSTOMER	TIME	PRODUCT
1	000 TOWILK		hering
2	0		corned b
3	0		olives
4	0		ham
5	0		turkey
6	0		
			bourbon
7	0		ice_crea
8	1		baguette
9			soda
10	1		hering
11	1		cracker
12	1		heineken
13	1		olives
14	1		corned_b
15	2	0	avocado
16	2		cracker
17	2	2	artichok
18	2	3	heineken
19	2	4	ham
20	2	5	turkey
21	2	6	sardines
22	3	0	olives
23	3	1	bourbon
24	3	2	coke
4			Þ

Example – Rules Discovered

Parameters of discovered rules: Support Confidence Lift

Clustering Algorithms – Contents

- K-means
- Hierarchical algorithms
- Linkage functions
- Vector quantization

147

Clustering – Formulation Find groups of similar points (observations) in multidimensional space No target variable (unsupervised learning) Attributes Model

Methods of Clustering - Overview

- · Variety of methods:
 - Hierarchical clustering create hierarchy of clusters (one cluster entirely contained within another cluster)
 - Non-hierarchical methods create disjoint clusters
 - Overlapping clusters (objects can belong to >1 cluster simultaneously)
 - Fuzzy clusters (defined by the probability (grade) of membership of each object in each cluster)
- Useful data preprocessing prior to clustering:
 - PCA (Principal components analysis) to reduce dimensionality of data
 - Data standarization (transform data to reduce large influence of variables with larger variance on results of clustering)

149

Introductory Example

 97 countries described by 3 attributes: Birth, Death, InfantDeath rate (given as number per 1000, data from year 1995)

Birth	Death	InfantDeath	Country
24.7	5.7	30.8	Albania
12.5	11.9	14.4	Bulgaria
13.4	11.7	11.3	Czechoslovakia
12	12.4	7.6	Former_EGermany
11.6	13.4	14.8	Hungary
14.3	10.2	16	Poland
13.6	10.7	26.9	Romania
14	9	20.2	Yugoslavia
17.7	10	23	USSR
15.2	9.5	13.1	Byelorussia_SSR
13.4	11.6	13	Ukrainian_SSR
20.7	8.4	25.7	Argentina
46.6	18	111	Bolivia
28.6	7.9	63	Brazil
23.4	5.8	17.1	Chile
27.4	6.1	40	Columbia
32.9	7.4	63	Ecuador
28.3	7.3	56	Guyana
34.8	6.6	42	Paraguay
32.9	8.3	109.9	Peru
18	9.6	21.9	Uruguay
27.5	4.4	23.3	Venezuela
29	23.2	43	Мехісо
12	10.6	7.9	Belgium
13.2	10.1	5.8	Finland
12.4	11.9	7.5	Denmark
13.6	9.4	7.4	France

Example – cntd.

Analysis I

- Clustering raw data
- k-means algorithm
- Result: 3 clusters (no. of obs. in each cluster: 13, 32, 52)

151

Birth	Death	InfantDeath	Country	Cluster ID
40.4	18.7	181.6	Afghanistan	1
42.2	15.5	119	Bangladesh	1
41.4	16.6	130	Cambodia	1
39.6	14.8	128	Nepal	1
47.2	20.2	137	Angola	1
48.6	20.7	137	Ethiopia	1
47.4	21.4	143	Gambia	1
48.3	25	130	Malawi	1
45	18.5	141	Mozambique	1
44	12.1	135	Namibia	1
48.2	23.4	154	Sierra_Leone	1
50.1	20.2	132	Somalia	1
46.8	12.5	118	Swaziland	1

Birth	Death	InfantDeath	Country	Cluster ID
46.6	18	111	Bolivia	2
28.6	7.9	63	Brazil	2
32.9	7.4	63	Ecuador	2
28.3	7.3	56	Guyana	2
32.9	8.3	109.9	Peru	2
42.5	11.5	108.1	Iran	2
42.6	7.8	69	Iraq	2
42.1	7.6	71	Saudi_Arabia	2
29.2	8.4	76	Turkey	2
30.5	10.2	91	India	2
28.6	9.4	75	Indonesia	2
36.1	8.8	68	Mongolia	2
30.3	8.1	107.7	Pakistan	2
31.8	9.5	64	Vietnam	2
35.5	8.3	74	Algeria	2
48.5	11.6	67	Botswana	2

Birth	Death	InfantDeath	Country	Cluster ID
24.7	5.7	30.8	Albania	3
12.5	11.9	14.4	Bulgaria	3
13.4	11.7	11.3	Czechoslovakia	3
12	12.4	7.6	Former_EGermany	3
11.6	13.4	14.8	Hungary	3
14.3	10.2	16	Poland	3
13.6	10.7	26.9	Romania	3
14	9	20.2	Yugoslavia	3
17.7	10	23	USSR	3
15.2	9.5	13.1	Byelorussia_SSR	3
13.4	11.6	13	Ukrainian_SSR	3
20.7	8.4	25.7	Argentina	3
23.4	5.8	17.1	Chile	3
27.4	6.1	40	Columbia	3
34.8	6.6	42	Paraguay	3
18	9.6	21.9	Uruguay	3
27.5	4.4	23.3	Venezuela	3
29	23.2	43	Mexico	3
12	10.6	7.9	Belgium	3
13.2	10.1	5.8	Finland	3

Example – Standarization of Data

Analysis II

- Data standarized prior to clustering (variables divided by their standard deviation)
- Result: 3 clusters (with 35, 46, 16 obs.)
- Data clustered based on InfantDeath and Death
- Observe that data with largest variance have largest influence on results of clustering

e Analysis II: profiles of clusters Output Description Output Description Desc

Methods of Clustering

- Non-hierarchical methods
 - K-means clustering
 - Non-deterministic
 - O(n) n number of observations
- Hierarchical methods
 - Aglomerative (join small clusters)
 - Divisive (split big clusters)
 - Deterministic methods
 - O(n²) O(n³), depending on the clustering method (i.e. definition of intercluster distance)

157

Methods of Clustering - Remarks

- Clustering large datasets
 - K-means
 - If results of hierarchical clustering needed first use K-means yielding e.g.
 50 clusters, followed by hierarchical clustering on results of K-means
- Consensus clustering
 - Discover real clusters in data analyze stability of results with noise injected in data

K-means Algorithm

- · K-means clustering
 - Select k points (centroids of initial clusters; select randomly)
 - Assign each observation to the nearest centroid (nearest cluster)
 - For each cluster find the new centroid
 - Repeat step 2 and 3 until no change occurs in cluster assignments

159

K-means Algorithm

- Result: k separate clusters
- Algorithm requires that the correct number of clusters k is specified in advance (difficult problem: how to know the *real* number of clusters in data...)

Hierarchical Clustering

- Notation
 - x_i observations, i=1..n
 - $-C_k$ clusters
 - G current number of clusters
 - $\,$ D_{KL} distance between clusters C_{K} and C_{L}
- Between-cluster distance D_{KL} linkage function (various definitions available, results of clustering depend on D_{KL})

on ering C_{κ}

161

Hierarchical Clustering

- Algorithm (agglomerative hierarchical clustering)
 - $C_k = \{x_k\}, k=1..n, G=n$
 - Find K, L such that D_{KL} = min D_{IJ} , 1<=I,J<=G
 - Replace clusters C_K and C_L by cluster $C_K {\cup} C_L$, $G{=}G{-}1$
 - Repeat steps 2 and 3 while G>1

D_{KL}

 Result: hierarchy of clusters → dendrogram

163

Definitions of Distance Between Clusters

- Different definitions of distance between clusters
 - Average linkage
 - Single linkage
 - Complete linkage
 - Density linkage
 - Ward's minimum variance method
 - **–** ..

(SAS CLUSTER procedure accepts 11 different definitions of inter-cluster distance)

Average Linkage

Notation

- x_i observations, i=1..n
- d(x,y) distance between observations (Euclidean distance assumed from now on)
- C. clusters
- N_{κ} number of observations in cluster C_{κ}
- D_{KL} distance between clusters C_K and C_L
- mean_{CK} mean observation in cluster C_K
- $W_K = \sum |x_i mean_{CK}|^2 x_i \in C_K variance in cluster$

$$D_{KL} = \frac{1}{N_K N_L} \sum_{i \in \mathcal{C}_K} \sum_{j \in \mathcal{C}_L} d(x_i, x_j)$$

 $D_{KL} = \|\bar{\mathbf{x}}_K - \bar{\mathbf{x}}_L\|^2 + \frac{W_K}{N_K} + \frac{W_L}{N_L}$

Average linkage

- Tends to join clusters with small variance
- Resulting clusters tend to have similar variance

165

Complete Linkage

Notation

- x_i observations, i=1..n
- d(x,y) distance between observations
- C_k clusters
- N_K number of observations in cluster C_K
- $\,$ D_{KL} distance between clusters C_{K} and C_{L}
- mean_{CK} mean observation in cluster C_K

- $W_K = \sum |x_i \text{-mean}_{CK}|^2 x_i \in C_K - \text{variance in cluster}$

 $D_{KL} = \max_{i \in \mathcal{C}_K} \max_{j \in \mathcal{C}_L} d(x_i, x_j)$

· Complete linkage

- Resulting clusters tend to have similar diameter

Single Linkage

Notation

- x_i observations, i=1..n
- d(x,y) distance between observations
- C_k clusters
- N_K number of observations in cluster C_K
- $\,$ D_{KL} distance between clusters C_{K} and C_{L}
- mean_{CK} mean observation in cluster C_K
- $W_K = \sum |x_i mean_{CK}|^2 x_i \in C_K$ variance in cluster

 $D_{KL} = \min_{i \in C_K} \min_{j \in C_L} d(x_i, x_j)$

Single linkage

- Tends to produce elongated clusters, irregular in shape

167

Ward's Minimum Variance Method

Notation

- x_i observations, i=1..n
- d(x,y) distance between observations
- C_k clusters
- N_K number of observations in cluster C_K
- D_{KL} distance between clusters C_K and C_L
- mean_{CK} mean observation in cluster C_K
- $B_{KL}=W_M-W_K-W_L$ where $C_M=C_K\cup C_L$

$\begin{array}{ll} - \text{ mean}_{\text{CK}} - \text{ mean observation in cluster } \mathbf{C}_{\text{K}} \\ - \mathbf{W}_{\text{K}} = \sum |\mathbf{x}_{\text{i}} - \text{mean}_{\text{CK}}|^2 \ \mathbf{x}_{\text{i}} \in \mathbf{C}_{\text{K}} - \text{variance in cluster} \end{array} \qquad D_{KL} = B_{KL} = \frac{\|\bar{\mathbf{x}}_K - \bar{\mathbf{x}}_L\|^2}{\frac{1}{N_K} + \frac{1}{N_L}}$

Ward's minimum variance method

- Tends to join small clusters
- Tends to produce clusters with similar number of observations

Density Linkage

- Notation
 - x_i observations, i=1..n
 - d(x,y) distance between observations
 - r a fixed constant
 - f(x) proportion of observations within sphere centered at x with radius r divided by the volume of the sphere (measure of density of points near observation x)

$$d^*(x_i,x_j) = \begin{cases} \frac{1}{2} \left(\frac{1}{f(x_i)} + \frac{1}{f(x_j)} \right) & \text{if } d(x_i,x_j) \leq r \\ \infty & \text{otherwise} \end{cases}$$

- · Density linkage
 - We realize single linkage using the measure d*
 - Capable of discovering clusters of irregular shape

169

Example – Average Linkage

Elongated clusters in data

Example – K-means

Elongated clusters in data

171

Example – Density Linkage

Elongated clusters in data

Example – K-means Nonconvex clusters in data FASTCLUS Analysis of Data Containing Nonconvex Clusters of Data Containing Nonconvex Clusters (Cluster 1 2 3

Example – Density Linkage

Nonconvex clusters in data

175

Example – True Clusters

Clusters of unequal size

Example — K-means Clusters of unequal size FASTCLUS Analysis of Data Containing Compact Clusters of Unequal Size of Data Containing Compact Clusters of Unequal Size Cluster 1 2 3 3 4 5 6 7 8 9 10

Example – Average Linkage

Method: average linkage

179

Example – Centroid Linkage

Clusters of unequal size

Example – Single Linkage

Clusters of unequal size

181

Example – Well Separated Data

Any method will work ©

Example – Poorly Separated Data

Ward's method

185

Clustering Methods – Final Remarks

- Standarization of variables prior to clustering
 - Often necessary, otherwise variables with large variance tend to have large influence on clustering
 - Often standarized measurement z_{ij} is computed as the z-score:

$$z_{ij} = \frac{x_{ij} - \mu_j}{s_j}$$

where x_{ij} – original measurement in observation i and variable j, μ_j – mean value of variable j, s_j – mean absolute deviation of variable j (or its standard deviation)

- Other ideas: divide variable by its range, max value or standard deviation

Clustering Methods – Final Remarks

- · The number of clusters
 - No satisfactory theory to determine the right number of clusters in data
 - Various criteria can be observed to help determine the right number of clusters, e.g. Criteria based on variance accounted for by clusters
 - R²=1-P_G/T
 - or semipartial R²=B_{KI}/T

where T – total variance of observations; $P_G = \sum W_K$ over G clusters $B_{KL} = W_M - W_L + W_L$ where $C_M = C_K \cup C_L$

- Cubic Clustering Criterion (CCC)
- Often data visualization useful for determining the number of clusters
 - Scatterplot for 2-3 dimensional data
 - In high dimensions → apply PCA transformation (or similar) → visualize data in 2-3 dimensional space of first principal components

187

Example – R², Semi-partial R²

Example – Number of Clusters – Useful Checks

•PST2: 3 or 6 or 9 (one before peak in value)

PSF: 9 (peak in value)CCC: 18 (CCC around 3)

189

Kohonen VQ (Vector Quantization)

- Algorithm similar to k-means
- · Idea of VQ algorithm:
 - 1. Select k points (initial cluster *centroids*)
 - 2. For observation x_i find nearest centroid (winning seed) denoted by S_n
 - 3. Modify S_n according to the formula:

$$S_n = S_n(1-L) + x_i L$$

where L – learning constant (decreased during learning)

- 4. Repeat steps 2 and 3 over all training observations
- 5. Repeat steps 2-4 given number of iterations

Kohonen SOM (Self Organizing Maps)

- · Idea of the SOM algorithm
 - 1. Select k initial points (cluster centroids), represent them on a 2D map
 - 2. For observation x_i find winning seed S_n
 - 3. Modify all centroids :

 $S_j=S_j (1-K(j,n)L)+x_iK(j,n)L,$ where

L – learning constant (decreasing during training)

K(j,n) – function decreasing with increasing distance on the 2D map between S_j i S_n centroids (K(j,j)=1)

Repeat steps 2 and 3 over all training observations

191

Data Mining Tools

SAS Enterprise Miner, SAS Foundation

http://www.sas.com

IBM SPSS Modeler, IBM SPSS Statistics

 $http://www.spss.com\ , \quad http://www-01.ibm.com/software/analytics/spss/$

- Insightful Miner, RapidMiner, MS Analysis Services, ...
- R System (free version of S-System)

http://www.r-project.org http://www.cran.r-project.org http://www.bioconductor.org

(The Comprehensive R Archive Network

· WEKA (free Data Mining software in Java)

http://www.cs.waikato.ac.nz/ml/weka/

- scikit-learn (library for Python)
- knime (uses Weka)

http://www.knime.org

...