

CS/IS F214 Logic in Computer Science

MODULE: INTRODUCTION

A Brief – and Selective - History of Logic – Part II: Intuitionism

09-08-2018 Sundar B. CS&IS, BITS Pilani 0

Intuitionism

2G Scam - Proof 1

Assume that the Govt. acted honestly:

- Then they should have wanted to increase revenue for Govt.
- Auctioning spectrum would have brought more revenue than awarding it on First-Come-First-Serve basis.
- Spectrum was awarded on a FCFS basis.
 - This is a contradiction.
- Therefore we infer that the Govt. was dishonest

2G Scam – Proof 2

- Company X hired lobbyist Y.
- Lobbyist Y paid Rs rrrrrrrr to Minister Z.
- Company X received preferential allocation of spectrum.
- Therefore we infer that the Govt. was dishonest.

Proof Techniques: *Proof by Contradiction*

- Proof by Contradiction [PbC] :
 - Assume that the *negation of a statement X* is true.

• •

- Derive a contradiction
 - Conclude that X is true
- e.g. (see previous slide)
 - Consider the first "proof" of 2G scam

Brouwer's Intutionism

- Intuitionism is a school of thought in logic and mathematics:
 - founded by Brouwer
 - in the early 20th century as a response to Hilbert's program
- Intuitionists rejected Proof by Contradiction [PbC]
- Why did intuitionists reject PbC?
 - Consider the two "proofs" of 2G scam in the next two slides.
 - Intuition (no pun intended):
 - Negation of a negation does not prove existence!

Brouwer's Intutionism – Another Illustration

- Consider the claim:
 - There exist irrational numbers a and b such that a^b is rational.
- Consider a proof of this claim:
 - Let $c = \sqrt{2}$
 - Consider c^c it is either rational or irrational.
 - If it is: then let c=a and c=b and we are done.
 - If not: let a=c^c and b=c then a^b is rational.
- What is wrong with this proof?
 - How do we avoid such proofs?
 - Should we avoid such proofs?

Brouwer's Intutionism

- The proof in the last side is non-constructive:
 - i.e. it proves that there exist irrational a and b such that a^b is rational but it does not produce (i.e. construct) such a and b.
- Brouwer and intuitionists denounced such "nonconstructive" proofs and argued that such proofs should be disallowed:
 - They identified the "Law of Excluded Middle (LEM)" as the root cause of such proofs:
 - **LEM:** for any proposition A: A OR (NOT A) is true
- Exercise:
 - Identify where LEM is used in the previous proof?

Brouwer's Intutionism

- The philosophical underpinning of Brouwer's argument is this:
 - while A OR (NOT A) is always true it may not always be proven or provable for a specific A
 - and therefore it may not be used in a proof (by itself) unless one has proven A or one has proven NOT A.
- What is common in the critique of LEM and that of PbC by intuitionists?

