In [289... import pandas as pd import matplotlib.pyplot as plt In [290... df = pd.read_csv('data.csv') In [291... df.head() Out[291]: id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compact 0 842302 Μ 17.99 10.38 122.80 1001.0 0.11840 842517 132.90 1 20.57 17.77 1326.0 0.08474 M 84300903 19.69 21.25 130.00 1203.0 0.10960 M 84348301 0.14250 M 11.42 20.38 77.58 386.1 84358402 20.29 14.34 135.10 1297.0 0.10030 5 rows × 33 columns df In [292... Out[292]: id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compa 0 842302 Μ 17.99 10.38 122.80 1001.0 0.11840 1 842517 Μ 20.57 17.77 132.90 1326.0 0.08474 2 84300903 19.69 21.25 130.00 1203.0 0.10960 Μ 84348301 11.42 20.38 77.58 386.1 0.14250 Μ 84358402 20.29 14.34 135.10 1297.0 0.10030 Μ 564 926424 Μ 21.56 22.39 142.00 1479.0 0.11100 565 926682 Μ 20.13 28.25 131.20 1261.0 0.09780 566 926954 16.60 28.08 108.30 858.1 0.08455 M 567 927241 20.60 29.33 140.10 1265.0 0.11780 Μ 568 92751 В 7.76 24.54 47.92 181.0 0.05263 569 rows × 33 columns In [295... df.head() Out[295]: diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean 0 1 17.99 10.38 122.80 1001.0 0.11840 0.27760 20.57 1 1 17.77 132.90 0.08474 1326.0 0.07864 2 1 19.69 21.25 130.00 1203.0 0.10960 0.15990

20.38

14.34

77.58

135.10

386.1

1297.0

0.14250

0.10030

0.28390

0.13280

5 rows × 32 columns

1

1

11.42

20.29

Loading [MathJax]/extensions/Safe.js

3

4

Out[412]: diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_me 0 1 17.99 10.38 122.80 1001.0 0.11840 0.277 1 20.57 17.77 132.90 1326.0 0.08474 0.078 2 21.25 1 19.69 130.00 1203.0 0.10960 0.159 3 1 11.42 20.38 77.58 386.1 0.14250 0.283 4 1 20.29 14.34 135.10 1297.0 0.10030 0.132 ... 564 1 21.56 22.39 142.00 1479.0 0.11100 0.115 565 20.13 28.25 131.20 0.103 1 1261.0 0.09780 566 1 16.60 28.08 0.102 108.30 858.1 0.08455 567 1 20.60 29.33 140.10 1265.0 0.11780 0.277 0 24.54 0.043 568 7.76 47.92 181.0 0.05263 569 rows × 32 columns df.columns In [296... Index(['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', Out[296]: 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'], dtype='object') mean_features = list(df.columns[1:11]) In [298...

se_features = list(df.columns[11:21])
worst_features = list(df.columns[21:31])

mean_features.append('diagnosis')

se_features.append('diagnosis')
worst_features.append('diagnosis')

corr = df[mean_features].corr()

In [299...

In [300...

corr

In [412... df

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compact
radius_mean	1.000000	0.323782	0.997855	0.987357	0.170581	
texture_mean	0.323782	1.000000	0.329533	0.321086	-0.023389	
perimeter_mean	0.997855	0.329533	1.000000	0.986507	0.207278	
area_mean	0.987357	0.321086	0.986507	1.000000	0.177028	
smoothness_mean	0.170581	-0.023389	0.207278	0.177028	1.000000	
compactness_mean	0.506124	0.236702	0.556936	0.498502	0.659123	
concavity_mean	0.676764	0.302418	0.716136	0.685983	0.521984	
concave points_mean	0.822529	0.293464	0.850977	0.823269	0.553695	
symmetry_mean	0.147741	0.071401	0.183027	0.151293	0.557775	
fractal_dimension_mean	-0.311631	-0.076437	-0.261477	-0.283110	0.584792	
diagnosis	0.730029	0.415185	0.742636	0.708984	0.358560	

In [301... corr = df[se_features].corr()
corr

Out[301]:

	radius_se	texture_se	perimeter_se	area_se	smoothness_se	compactness_se	concav
radius_se	1.000000	0.213247	0.972794	0.951830	0.164514	0.356065	0.3
texture_se	0.213247	1.000000	0.223171	0.111567	0.397243	0.231700	0.1
perimeter_se	0.972794	0.223171	1.000000	0.937655	0.151075	0.416322	0.3
area_se	0.951830	0.111567	0.937655	1.000000	0.075150	0.284840	0.2
smoothness_se	0.164514	0.397243	0.151075	0.075150	1.000000	0.336696	0.2
compactness_se	0.356065	0.231700	0.416322	0.284840	0.336696	1.000000	0.8
concavity_se	0.332358	0.194998	0.362482	0.270895	0.268685	0.801268	1.0
concave points_se	0.513346	0.230283	0.556264	0.415730	0.328429	0.744083	0.7
symmetry_se	0.240567	0.411621	0.266487	0.134109	0.413506	0.394713	0.3
fractal_dimension_se	0.227754	0.279723	0.244143	0.127071	0.427374	0.803269	0.7
diagnosis	0.567134	-0.008303	0.556141	0.548236	-0.067016	0.292999	0.2

In [302... corr = df[worst_features].corr()
 corr

Out[302]:		radius_worst	texture_worst	perimeter_worst	area_worst	smoothness_worst	compac
	radius_worst	1.000000	0.359921	0.993708	0.984015	0.216574	
	texture_worst	0.359921	1.000000	0.365098	0.345842	0.225429	
	perimeter_worst	0.993708	0.365098	1.000000	0.977578	0.236775	
	area_worst	0.984015	0.345842	0.977578	1.000000	0.209145	
	smoothness_worst	0.216574	0.225429	0.236775	0.209145	1.000000	
	compactness_worst	0.475820	0.360832	0.529408	0.438296	0.568187	
	concavity_worst	0.573975	0.368366	0.618344	0.543331	0.518523	
	concave points_worst	0.787424	0.359755	0.816322	0.747419	0.547691	
	symmetry_worst	0.243529	0.233027	0.269493	0.209146	0.493838	
	fractal_dimension_worst	0.093492	0.219122	0.138957	0.079647	0.617624	
	diagnosis	0.776454	0.456903	0.782914	0.733825	0.421465	
In []:							
III [].							
In [303	<pre>prediction_var = ['perimeter_mean', 'compactness_mean', 'concavity_mean']</pre>						
In [304	<pre>from sklearn.model_selection import train_test_split</pre>						
In [336	<pre>train, test = train_test_split(df, test_size = 0.15, random_state= 1)</pre>						
In [339	<pre>train_x = train[prediction_var] train_y = train['diagnosis']</pre>						
	<pre>test_x = test[prediction_var] test_y = test['diagnosis']</pre>						
In [307	#Import multiple options, to enable us to try out different classifiers						
	<pre>from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression</pre>						
In [342	model = MLPClassifie	r()					
	<pre>clf = MLPClassifier(hidden_layer_sizes=(6,5),</pre>						

In [343... clf.fit(train_x,train_y)

	-	1 00 -00 (0000
Iteration	1,	loss = 22.76048903
Iteration	2,	loss = 22.68155216
Iteration	3,	loss = 21.39738874
Iteration	4,	loss = 16.03174765
Iteration	5,	loss = 9.39400606
Iteration	6,	loss = 4.06393652
Iteration	7,	loss = 1.47993455
Iteration	8,	loss = 0.77384071
Iteration	9,	
	•	
Iteration	10,	
Iteration	11,	
Iteration	12,	loss = 0.75391217
Iteration	13,	loss = 0.75002932
Iteration	14,	loss = 0.74632568
Iteration	15,	loss = 0.74297240
Iteration	16,	
Iteration	17,	
	,	
Iteration	18,	
Iteration	19,	
Iteration	20,	loss = 0.72751711
Iteration	21,	loss = 0.72481400
Iteration	22,	
Iteration	23,	
	,	
Iteration	24,	
Iteration	25,	
Iteration	26,	
Iteration	27,	loss = 0.70910678
Iteration	28,	loss = 0.70676498
Iteration	29,	
Iteration	30,	
Iteration	31,	
Iteration	32,	
Iteration	33,	
Iteration	34,	loss = 0.69436729
Iteration	35,	loss = 0.69260459
Iteration	36,	
Iteration	37,	
Iteration	38,	
Iteration	39,	
Iteration	40,	
Iteration	41,	loss = 0.68342743
Iteration	42,	loss = 0.68211071
Iteration	43,	loss = 0.68080541
Iteration	44,	
Iteration	45,	
Iteration		
	46,	
Iteration	47,	
Iteration	48,	
Iteration	49,	loss = 0.67460526
Iteration	50,	loss = 0.67365477
Iteration	51,	loss = 0.67271830
Iteration	52,	
Iteration	53,	
Iteration	54,	
Iteration	55,	
Iteration	56,	loss = 0.66883527
Iteration	57,	loss = 0.66820962
Iteration	58,	
Iteration	59,	
Iteration	60,	
	,	
Iteration	61,	
Iteration	62,	
Iteration	63,	
Tteration	64.	loss = 0.66457847
ax]/extensions/Saf	e.js	

Loading [MathJax]/extensions/Safe.js

```
Iteration 65, loss = 0.66416500
            Iteration 66, loss = 0.66375391
            Iteration 67, loss = 0.66334230
            Iteration 68, loss = 0.66306404
            Iteration 69, loss = 0.66268567
            Iteration 70, loss = 0.66239802
            Iteration 71, loss = 0.66204637
            Iteration 72, loss = 0.66185327
            Iteration 73, loss = 0.66148404
            Iteration 74, loss = 0.66124674
            Iteration 75, loss = 0.66102454
            Iteration 76, loss = 0.66081638
            Iteration 77, loss = 0.66062474
            Iteration 78, loss = 0.66042610
            Iteration 79, loss = 0.66028069
            Iteration 80, loss = 0.66012292
            Iteration 81, loss = 0.66000451
            Iteration 82, loss = 0.65987291
            Iteration 83, loss = 0.65977724
            Iteration 84, loss = 0.65967691
            Iteration 85, loss = 0.65953616
            Iteration 86, loss = 0.65945482
            Iteration 87, loss = 0.65937944
            Iteration 88, loss = 0.65931332
            Iteration 89, loss = 0.65924677
            Iteration 90, loss = 0.65916795
            Iteration 91, loss = 0.65910634
            Iteration 92, loss = 0.65907757
            Iteration 93, loss = 0.65899105
            Iteration 94, loss = 0.65896684
            Iteration 95, loss = 0.65888264
            Iteration 96, loss = 0.65882415
            Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stoppin
  Out[343]:
                                          MLPClassifier
             MLPClassifier(hidden layer sizes=(6, 5), learning rate init=0.01,
                            random state=5, verbose=True)
  In [405...] test_1 = test_x.iloc[1,0:3]
  In [406...
            test_1
             perimeter_mean
                                 85.9800
  Out[406]:
             compactness_mean
                                  0.1231
             concavity_mean
                                  0.1226
             Name: 47, dtype: float64
  In [411...
            df.loc[66, 'diagnosis']
  Out[411]:
  In [404...
            clf.predict([test_1])
            C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not hav
            e valid feature names, but MLPClassifier was fitted with feature names
              warnings.warn(
             array([0], dtype=int64)
  Out[404]:
            test_2 = test_x.iloc[1,0:3]
            test_3 = test_x.iloc[45,0:3]
Loading [MathJax]/extensions/Safe.js
```

```
test_2
  In [366...
             perimeter_mean
                                  85.9800
  Out[366]:
             compactness_mean
                                   0.1231
             concavity_mean
                                   0.1226
             Name: 47, dtype: float64
  In [367...
            test_3
             perimeter_mean
                                  103.2000
  Out[367]:
             compactness_mean
                                    0.2284
                                    0.2448
             concavity_mean
             Name: 257, dtype: float64
  In [414... df.loc[567, 'diagnosis']
  Out[414]:
            df.loc[566, 'diagnosis']
  In [421...
  Out[421]:
            clf.predict([test_2])
  In [422...
            C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not hav
            e valid feature names, but MLPClassifier was fitted with feature names
              warnings.warn(
             array([0], dtype=int64)
  Out[422]:
  In [423... clf.predict([test_3])
            C:\Users\HP\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not hav
            e valid feature names, but MLPClassifier was fitted with feature names
              warnings.warn(
             array([0], dtype=int64)
  Out[423]:
  In [424... from sklearn import metrics
            y_true = test_y
            y_pred = clf.predict(test_x)
            from sklearn.metrics import recall_score
  In [425...
            from sklearn.metrics import precision_score
            recall = recall_score(y_true, y_pred)
            precision = precision_score(y_true, y_pred)
            print("The recall score is ", "%.2f" %recall)
            print("The precision score is ", "%.2f" %precision)
            The recall score is 0.00
            The precision score is 0.00
            C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1334: Undefin
            edMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted sampl
            es. Use `zero_division` parameter to control this behavior.
              _warn_prf(average, modifier, msg_start, len(result))
  In [426...] F1 = 2 * (precision * recall) / (precision + recall)
Loading [MathJax]/extensions/Safe.js | %F1)
```

```
nan
         C:\Users\HP\AppData\Local\Temp\ipykernel_14680\242740335.py:1: RuntimeWarning: invalid v
         alue encountered in double_scalars
           F1 = 2 * (precision * recall) / (precision + recall)
In [427... from sklearn.metrics import f1_score
         f1_score = f1_score(y_true, y_pred)
         print("The f1 score is ", "%.2f" %f1_score)
         The f1 score is 0.00
In [428... from sklearn.metrics import accuracy_score
         from sklearn.metrics import roc_auc_score
         accuracy = accuracy_score(y_true, y_pred)
         AUC = roc_auc_score(y_true, y_pred)
         print("The accuracy is ", "%.2f" %accuracy)
         print("The AUC is ", "%.2f" %AUC)
         The accuracy is 0.60
         The AUC is 0.50
In [429... from sklearn.metrics import confusion_matrix
         confusion_matrix = confusion_matrix(y_true, y_pred)
         confusion_matrix
In [430...
          array([[52,
                       0],
Out[430]:
                      0]], dtype=int64)
                 [34,
```

In []: