Foundations of Computing Lecture 7

Arkady Yerukhimovich

February 4, 2025

Outline

- Announcements
- 2 Lecture 6 Review
- 3 Proving Languages Not Regular
- 4 Proving L Not Regular Using the Pumping Lemma
- 5 Proving L Not Regular Using Closure Properties

ACM Hackathon

First Midterm

- First midterm exam will be in class on Thursday, February 20
- Tuesday, February 18 will be a review lecture
- 5 points bonus for anyone who attends ACM Hackathon

Important

If you need to miss lecture on February 20, let me know ASAP.

Outline

- Announcements
- 2 Lecture 6 Review
- Proving Languages Not Regular
- 4 Proving L Not Regular Using the Pumping Lemma
- 5 Proving L Not Regular Using Closure Properties

Lecture 6 Review

- Nonregular languages
- Proving The NFA pumping lemma
- Using the pumping lemma

Lecture 6 Review

- Nonregular languages
- Proving The NFA pumping lemma
- Using the pumping lemma

Today

- Some more examples proving languages are not regular
- Going beyond regular languages

Let L be a regular language, prove that the following languages are regular.

- **1** NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$
- **②** $NOEXTEND(L) = \{ w \in L | w \text{ is not a proper prefix of any string in } L \}$

Let ${\it L}$ be a regular language, prove that the following languages are regular.

- **1** NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$
- ② $NOEXTEND(L) = \{w \in L | w \text{ is not a proper prefix of any string in } L\}$

Example:

- $L = \{00, 11, 001, 101\}$
- $NOPREFIX(L) = \{00, 11, 101\}$
- $NOEXTEND(L) = \{11,001,101\}$

Let L be a regular language, prove that the following languages are regular.

1 NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$

Let L be a regular language, prove that the following languages are regular.

- **1** NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$
- **②** $NOEXTEND(L) = \{ w \in L | w \text{ is not a proper prefix of any string in } L \}$

Outline

- Announcements
- 2 Lecture 6 Review
- Proving Languages Not Regular
- 4 Proving L Not Regular Using the Pumping Lemma
- 6 Proving L Not Regular Using Closure Properties

Outline

- Announcements
- 2 Lecture 6 Review
- 3 Proving Languages Not Regular
- 4 Proving L Not Regular Using the Pumping Lemma
- 5 Proving L Not Regular Using Closure Properties

The Regular Language Pumping Lemma

Pumping Lemma

If L is a regular language, then there exists an integer p (the pumping length) where any string $w \in L$ such that $|w| \ge p$ can be divided into three pieces w = xyz satisfying:

- For each $i \ge 0$, $xy^iz \in L$
- ② |y| > 0, and
- $|xy| \leq p$

To use the pumping lemma to prove that L is not regular, we do the following:

Assume that L is regular

- Assume that L is regular
- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w|>p can be pumped Note: proof must work for all p

- Assume that L is regular
- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w|>p can be pumped Note: proof must work for all p
- **3** Choose $w \in L$ with $|w| \ge p$

- Assume that L is regular
- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w| > p can be pumped Note: proof must work for all p
- **3** Choose $w \in L$ with $|w| \ge p$
- Demonstrate that w cannot be pumped
 - For each possible division w = xyz (with |y| > 0 and $|xy| \le p$), find an integer i such that $xy^iz \notin L$

- Assume that L is regular
- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w| > p can be pumped Note: proof must work for all p
- **3** Choose $w \in L$ with $|w| \ge p$
- Demonstrate that w cannot be pumped
 - For each possible division w=xyz (with |y|>0 and $|xy|\leq p$), find an integer i such that $xy^iz\notin L$
- Contradiction!!!

Prior Examples

We've already seen how to prove:

•
$$L = \{0^n 1^n | n \ge 0\}$$
 is not regular

Let's try something a little harder

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Proof:

lacktriangle Assume L is regular, and let p be the pumping length this implies

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$
- **1** Problem: If $y = 0^m 1^m$, then w can be pumped no contradiction

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$
- **1** Problem: If $y = 0^m 1^m$, then w can be pumped no contradiction
- **5** Solution: Use condition that $|xy| \le p$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$
- **1** Problem: If $y = 0^m 1^m$, then w can be pumped no contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$
- **1** Problem: If $y = 0^m 1^m$, then w can be pumped no contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols
 - But, this means that y must be all 0s

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$
- **1** Problem: If $y = 0^m 1^m$, then w can be pumped no contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols
 - But, this means that y must be all 0s
- Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$
- **1** Problem: If $y = 0^m 1^m$, then w can be pumped no contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols
 - But, this means that y must be all 0s
- \odot Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$
- Contradiction hence, L is not regular

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

◆ Assume L is regular, and let p be the pumping length

- lacktriangle Assume L is regular, and let p be the pumping length
- ② For any sufficiently long w, by pumping lemma, there must be a partition w = xyz s.t. $xy^iz \in L$ for all i

- lacktriangle Assume L is regular, and let p be the pumping length
- ② For any sufficiently long w, by pumping lemma, there must be a partition w = xyz s.t. $xy^iz \in L$ for all i
- **3** Goal: Show that for all partitions, $xy^iz \notin L$ for some $i \ge 0$

- lacktriangle Assume L is regular, and let p be the pumping length
- ② For any sufficiently long w, by pumping lemma, there must be a partition w = xyz s.t. $xy^iz \in L$ for all i
- **3** Goal: Show that for all partitions, $xy^iz \notin L$ for some $i \ge 0$ That is, $xy^iz = 0^{m'}1^{n'}$ with m' = n'.

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length
- ② For any sufficiently long w, by pumping lemma, there must be a partition w = xyz s.t. $xy^iz \in L$ for all i
- **3** Goal: Show that for all partitions, $xy^iz \notin L$ for some $i \ge 0$ That is, $xy^iz = 0^{m'}1^{n'}$ with m' = n'.

Question

What w should we choose?

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

1 Suppose we choose $w = 0^p 1^{p+1}$, then since $|xy| \le p$, $x = 0^{\alpha}$, $y = 0^{\beta}$, $z = 0^{p-(\alpha+\beta)}1^{p+1}$

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w = 0^p 1^{p+1}$, then since $|xy| \le p$, $x = 0^{\alpha}$, $y = 0^{\beta}$, $z = 0^{p-(\alpha+\beta)}1^{p+1}$
- ② Consider what happens when we pump k times:

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w = 0^p 1^{p+1}$, then since $|xy| \le p$, $x = 0^{\alpha}$, $y = 0^{\beta}$, $z = 0^{p-(\alpha+\beta)}1^{p+1}$
- ② Consider what happens when we pump k times:

$$xy^kz = 0^{\alpha + k\beta + p - (\alpha + \beta)}1^{p+1}.$$

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w = 0^p 1^{p+1}$, then since $|xy| \le p$, $x = 0^{\alpha}$, $y = 0^{\beta}$, $z = 0^{p-(\alpha+\beta)}1^{p+1}$
- ② Consider what happens when we pump k times:

$$xy^kz = 0^{\alpha + k\beta + p - (\alpha + \beta)}1^{p+1}.$$

For this to give a contradiction we need

$$m' = n'$$
, i.e. $\alpha + k\beta + p - (\alpha + \beta) = p + (k - 1)\beta = p + 1$

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w = 0^p 1^{p+1}$, then since $|xy| \le p$, $x = 0^{\alpha}$, $y = 0^{\beta}$, $z = 0^{p-(\alpha+\beta)}1^{p+1}$
- ② Consider what happens when we pump k times:

$$xy^kz = 0^{\alpha + k\beta + p - (\alpha + \beta)}1^{p+1}.$$

For this to give a contradiction we need

$$m' = n'$$
, i.e. $\alpha + k\beta + p - (\alpha + \beta) = p + (k - 1)\beta = p + 1$

Equivalently, we need

$$(k-1)\beta=1$$

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w = 0^p 1^{p+1}$, then since $|xy| \le p$, $x = 0^{\alpha}$, $y = 0^{\beta}$, $z = 0^{p-(\alpha+\beta)}1^{p+1}$
- ② Consider what happens when we pump k times:

$$xy^kz = 0^{\alpha + k\beta + p - (\alpha + \beta)}1^{p+1}.$$

For this to give a contradiction we need

$$m' = n'$$
, i.e. $\alpha + k\beta + p - (\alpha + \beta) = p + (k - 1)\beta = p + 1$

Equivalently, we need

$$(k-1)\beta=1$$

9 But, we can't control β , so this w does not work

Let's try again!!!

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

• Suppose we choose $w=0^m1^n$ with $m \ge p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- ② Consider what happens when we pump k times:

$$xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n.$$

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- ② Consider what happens when we pump k times:

$$xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n.$$

We need a k s.t. $m + (k-1)\beta = n$ for a contradiction

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- ② Consider what happens when we pump k times:

$$xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n.$$

We need a k s.t. $m+(k-1)\beta=n$ for a contradiction Equivalently, we need $k=1+(n-m)/\beta$ to be an integer

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- ② Consider what happens when we pump k times:

$$xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n.$$

We need a k s.t. $m+(k-1)\beta=n$ for a contradiction Equivalently, we need $k=1+(n-m)/\beta$ to be an integer

③ We only know $\beta \leq p$, how can we guarantee (n-m) is divisible by β ?

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- ② Consider what happens when we pump k times:

$$xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n.$$

We need a k s.t. $m+(k-1)\beta=n$ for a contradiction Equivalently, we need $k=1+(n-m)/\beta$ to be an integer

3 We only know $\beta \leq p$, how can we guarantee (n-m) is divisible by β ? Hint: What number is divisible by all integers $\leq p$?

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

Goal

Pick a w s.t. for all partitions w = xyz, for some $i \ge 0$, $xy^iz = 0^{m'}1^{m'}$.

- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- ② Consider what happens when we pump k times:

$$xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n.$$

We need a k s.t. $m+(k-1)\beta=n$ for a contradiction Equivalently, we need $k=1+(n-m)/\beta$ to be an integer

- ⓐ We only know $\beta \le p$, how can we guarantee (n-m) is divisible by β ? Hint: What number is divisible by all integers ≤ p?
- Set n = 2(p!), m = p!, then (n m) = p! is divisible by β , so there is k s.t. $xy^kz \notin L$

Hints for Using the Pumping Lemma

To use the pumping lemma, need to do the following

- Identify what it means for $x \notin L$
- Choose w such that any valid split xyz can lead to a contradiction
- Prove that $w' = xy^k z \notin L$ form some k

Choosing w is often tricky, requires intuition and some trial and error.

Outline

- Announcements
- 2 Lecture 6 Review
- Proving Languages Not Regular
- 4 Proving L Not Regular Using the Pumping Lemma
- 5 Proving L Not Regular Using Closure Properties

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

A simpler proof:

① We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is nonregular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is nonregular
- ② Observe that $L_1 = L \cap 0^*1^*$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is nonregular
- ② Observe that $L_1 = L \cap 0^*1^*$
- Easy to see that 0*1* is regular
- lacktriangle Since regular languages are closed under \cap , if L is regular then L_1 must be regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is nonregular
- ② Observe that $L_1 = L \cap 0^*1^*$
- Easy to see that 0*1* is regular
- lacktriangle Since regular languages are closed under \cap , if L is regular then L_1 must be regular
- lacktriangle Since we know L_1 is nonregular, this means that L must be nonregular

Using Closure Properties of Regular Languages

We have seen a number of closure properties of REs

- ① Closure under complement: \overline{L} is regular if L is
- **2** Closure under union: $L_1 \cup L_2$ is regular if L_1 , L_2 are
- **3** Closure under intersection: $L_1 \cap L_2$ is regular if L_1, L_2 are
- Closure under reversal: L^R is regular if L is
- NOPREFIX, NOEXTEND
- There are many more (e.g., set difference, cross product, ...)

Using Closure Properties of Regular Languages

We have seen a number of closure properties of REs

- ① Closure under complement: \overline{L} is regular if L is
- ② Closure under union: $L_1 \cup L_2$ is regular if L_1 , L_2 are
- **3** Closure under intersection: $L_1 \cap L_2$ is regular if L_1, L_2 are
- Closure under reversal: L^R is regular if L is
- NOPREFIX, NOEXTEND
- There are many more (e.g., set difference, cross product, ...)

Important

- It is often much easier to prove non-regularity using closure properties
- Try this first before you turn to pumping lemma

Exercise

Prove that the following language is nonregular:

$$L = \{0^{i}1^{j}2^{i}3^{j}|i,j>0\}$$