MATH 2023 - Multivariable Calculus

Lecture #18 Worksheet

A

April 16, 2019

Problem 1. Find the surface integral

$$\iint_{S} z dS$$

where S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$, the disk $x^2 + y^2 \le 1$ and under the plane z = x + 1.

Problem 2. Find $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = y\mathbf{i} + (z-y)\mathbf{j} + x\mathbf{k}$ and S is the surface of the tetrahedron bounded by the coordinate planes and the plane x + y + z = 1.

$$S_{1}: \vec{A} = \langle 1, 1, 1 \rangle$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dy dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dy dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dy dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dy dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \frac{1}{1 - y} dx dy$$

$$= \int_{0}^{1} \int_{0}^{1}$$

$$\begin{cases} 3: N = \langle 0, -1, 0 \rangle \\ \iint y - 7 \\ \iint |-x - 2| d \times d \end{cases}$$

Problem 3. Let $\mathbf{G} = \frac{\mathbf{r}}{|\mathbf{r}|^3}$ be the gravitational field, where $\mathbf{r} = \langle x, y, z \rangle$. Show that the flux of \mathbf{G} across a sphere S with center at the origin is independent

of the radius of S.