CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (*RSC*)
Bhargab B. Bhattacharya (*BBB*)
Lecture #16, #17: Computer Arithmetic
07 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

Computer Arithmetic

"Could I have some computer time to troubleshoot this problem?"

So far covered ...

- * Evolution and history of computer design
- * Basic components of a computer
- **❖** Instruction Set Architecture (ISA)
- CPU Performance
- ❖ MIPS Instruction Set, Programming

Observed so far ...

RISC's underlying principles lead to efficient hardware design

- Simplicity favors regularity
- **❖** Make the common case fast
- **❖** Smaller is faster
- Good design demands good compromises

What is inside?

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
 - Hardware implementation of ALU
- Floating-point real numbers
 - Representation and operations
 - Overflow and underflow
 - Hardware implementation of FP-operations

What determines the execution time of a machine/assembly-level program P when it is run on a machine M?

- *P* consists of a number of machine-level instructions (IC: *instruction count*);
- Each machine instruction requires several clock cycles to complete (CPI: average number of *clock cycles per instruction*);
- Each clock cycle has certain time period (CCT: *clock cycle time*)

Thus, CPU-time = $IC \times CPI \times CCT$

(CPU Performance Equation)

Clock Timing

Does it mean that CCT is exclusively determined by the critical delay? Once the hardware is designed, is it fixed for a given technology?

.. Oh no, there is a catch!

You can redesign hardware so that delay becomes smaller: (i) using low-depth logic (increases cost!), or (ii) use retiming, i.e., insert additional state elements (FFs) on long logic paths (increases #clock cycles to perform the same task, thus impacting CPI, though CCT is reduced!)

Clock period should be large enough to accommodate delays along critical paths in the circuit (longest ones); but not too large – system slows down unnecessarily

Execution Cycle

MIPS Example

C code:

$$f = (g + h) - (i + j);$$

• f, ..., j in \$s0, ..., \$s4

Compiled MIPS code:

Adders must be very efficient: cost, speed

```
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
```

Amdahl

Make common operations faster ...

2's Complement Integer Arithmetic: Dilemma of Final Carry and Overflow

Decimal	2's Complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

universe:

4-bit 2's complement arithmetic

Decimal	2's Complement
Бесина	2 s complement
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

0100

 $0\ 1\ 0\ 0$

1000

no final carry; no overflow; result correct

inal carry discarded;				
result still correct;				
no overflow				

(-8)

(-8)

(0)

1000

1000

10000

no final carry; overflow √; result invalid

(+4)

(+4)

(-8)

Overflow Detection Logic: Hardware Solution

Overflow =
$$a_{n-1}b_{n-1}\overline{s}_{n-1} + \overline{a}_{n-1}\overline{b}_{n-1} s_{n-1}$$

- overflow → adding two positives yields a negative
- or, adding two negatives gives a positive

In MIPS, on detecting overflow, interrupt (exception) is invoked; *add, addi* (overflow considered); *addu, addiu* (overflow ignored)

Overflow Detection Logic: Another Solution

- ° Carry into MSB ° Carry out of MSB
 - For a N-bit ALU: Overflow = CarryIn[N 1] XOR CarryOut[N 1]

Show that these two solutions are logically equivalent

Hazards of Finite-Precision Arithmetic

Compute: X = A + B - C; A, B, C are +ve integers;

 $^{\circ}$ X = (A + B) - C

Or,

 $^{\circ}$ X = A + (B - C) ?

The first choice might cause overflow – invalid result The second option is *safer*

Saturating Adders

Saturating arithmetic:

When a result is out of range, provide the most positive or the most negative value that is representable

Required in many DSP applications

Courtesy: Behrooz Parhami, UCSB

Why Adders?

- Addition: a fundamental operation
 - Basic block of most arithmetic operations
 - Address calculation
- Faster and faster
- How?
 - Architectural-level optimization
 - Gate-level optimization
 - Speed/area trade-off

Review: 1-bit adder

One-bit Half Adder:

A	В	Sum	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

One-bit Full Adder:

C_{ir}	A	В	Sum C	out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

n-bit Ripple-Carry Adder (RCA)

To add two *n*-bit numbers

A: $a_{n-1}, a_{n-2}, \dots, a_1, a_0$ B: $b_{n-1}, b_{n-2}, \dots, b_1, b_0$

- N-bit RCA delay = $n * \delta$
- δ = (delay of 1-bit FA)

Critical path in an n-bit ripple-carry adder \rightarrow CCT needs to accommodate long delay Cost = O(n); delay = O(n)

4-bit Ripple-Carry Addition: Example

delay = 4 units; also, overflow has occurred

Using 2's complement representation: -B = ~B + 1

~= bit-wise complement

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by control input:

Multi-bit Adder

(a) Bit-serial adder.

(b) Ripple-carry adder.

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through the entire chain
- Disadvantage: slow

Possible solutions to mitigate carry-propagation delay

- 1. Detect the end of carry propagation rather than wait for the worst-case time
- 2. Speed-up propagation using techniques such as
 - lookahead
 - carry-select
 - logarithmic adder
- 3. Limit carry propagation to within a small number of bits
- 4. Trade-off: speed (or inversely, delay) versus logic cost

CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (RSC)

Bhargab B. Bhattacharya (BBB)

Lecture #18: Computer Arithmetic

13 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

How to speed up computer arithmetic?

Instead of RCA, use *n independent* 1-bit FA-modules working in parallel; no signal propagation through stages; directly generate all carry-bits from inputs

- Generate all carry bits **directly from inputs**, instead of *rippling through* FA-blocks sequentially
- Few notation:
 - Generate (g_i) and propagate (p_i) signals for each bit:
 - A column will generate a carry out if a_i AND b_i are both 1.

$$g_i = a_i b_i$$

• A column will propagate a carry in to the carry out if A_i OR B_i is 1.

$$\boldsymbol{p_i} = \boldsymbol{a_i} + \boldsymbol{b_i}$$

• The carry out of a column (C_i) is:

$$c_{i+1} = a_i b_i + (a_i + b_i) c_i = g_i + p_i c_i$$

Carry Lookahead Adder (CLA): Basic Idea

At the *i*th *stage*, carry will be generated for propagation to the next stage if and only if

 $a_i = b_i = 1$; => $g_i = a_i b_i ==>$ carry-generate function

or either a_i or $b_i = 1$, and previous carry c_{i-1} arrives here; => $p_i = a_i + b_i$ => carry-propagate function

- Generate all carry bits **directly from inputs**, instead of *rippling through* FA-blocks sequentially
- Few notation:
 - Generate (g_i) and propagate (p_i) signals for each bit:
 - A column will generate a carry out if a_i AND b_i are both 1.

$$g_i = a_i b_i$$

• A column will propagate a carry in to the carry out if A_i OR B_i is 1.

$$p_i = a_i + b_i$$

• The carry out of a column (C_i) is:

$$c_{i+1} = a_i b_i + (a_i + b_i) c_i = g_i + p_i c_i$$

We can visualize carry "generate" and "propagate" functions from another perspective:

$$C_{i+1} = a.b + b. c_{in} + a. c_{in}$$

= $a.b + c_{in}. (a+b)$

• A column will generate a carry out if a_i AND b_i are both 1, i,e., $g_i = a_i b_i$

• A column will propagate a carry if A_i or B_i is 1, i.e., $p_i = a_i + b_i$

• The carry out of a column (C_i) is:

$$c_{i+1} = a_i b_i + (a_i + b_i) c_i = g_i + p_i c_i$$

• Idea:

 Produce c_i ahead of time instead of passing through (i-1) stages
 Carry propagation in

Instead of RCA, use *independent* 1-bit FA-modules no signal propagation through stages

Instead of RCA, use *n independent* 1-bit FA-modules working in parallel; no signal propagation through stages; directly generate all carry-bits from inputs

Basic Signals

Generate signal:

Propagate signal:

 $g_i = a_i b_i$ $p_i = a_i + b_i$

Carry recurrence

$$c_{i+1} = g_i + c_i p_i$$

Average Carry Propagation Length

Generate signal: $g_i = a_i b_i$

Propagate signal: $p_i = a_i + b_i$

Given binary numbers with random bits, for each position i we have

Probability of carry generation $= \frac{1}{4}$ (both 1)

Probability of carry annihilation $= \frac{1}{4}$ (both 0)

Probability of carry propagation $= \frac{1}{2}$ (different)

Average length of the longest carry chain for n-bit addition: $O(\log_2 n)$

Unrolling Carry Recurrence

$$\begin{split} c_{i} &= g_{i\text{-}1} + c_{i\text{-}1}p_{i\text{-}1} = \\ &= g_{i\text{-}1} + (g_{i\text{-}2} + c_{i\text{-}2}p_{i\text{-}2})p_{i\text{-}1} = g_{i\text{-}1} + g_{i\text{-}2} \, p_{i\text{-}1} + c_{i\text{-}2}p_{i\text{-}2}p_{i\text{-}1} = \\ &= g_{i\text{-}1} + g_{i\text{-}2} \, p_{i\text{-}1} + (g_{i\text{-}3} + c_{i\text{-}3}p_{i\text{-}3})p_{i\text{-}2}p_{i\text{-}1} = \\ &= g_{i\text{-}1} + g_{i\text{-}2} \, p_{i\text{-}1} + g_{i\text{-}3} \, p_{i\text{-}2}p_{i\text{-}1} + c_{i\text{-}3}p_{i\text{-}3}p_{i\text{-}2}p_{i\text{-}1} = \\ &= \dots = \\ &= g_{i\text{-}1} + g_{i\text{-}2} \, p_{i\text{-}1} + g_{i\text{-}3} \, p_{i\text{-}2}p_{i\text{-}1} + g_{i\text{-}4}p_{i\text{-}3}p_{i\text{-}2}p_{i\text{-}1} + \dots + \\ &+ g_0 p_1 p_2 \dots p_{i\text{-}2}p_{i\text{-}1} + c_0 p_0 p_1 p_2 \dots p_{i\text{-}2}p_{i\text{-}1} = \end{split}$$

$$= g_{i-1} + \sum_{k=0}^{i-2} g_k \prod_{j=k+1}^{i-1} p_j + c_0 \prod_{j=0}^{i-1} p_j$$

4-bit Carry-Lookahead Adder

$$c_4 = g_3 + g_2 p_3 + g_1 p_2 p_3 + g_0 p_1 p_2 p_3 + c_0 p_0 p_1 p_2 p_3$$

$$c_3 = g_2 + g_1 p_2 + g_0 p_1 p_2 + c_0 p_0 p_1 p_2$$

$$c_2 = g_1 + g_0 p_1 + c_0 p_0 p_1$$

$$c_1 = g_0 + c_0 p_0$$

$$g_i = a_i b_i$$
$$p_i = a_i + b_i$$

$$c_{i+1} = g_i + c_i p_i$$

 $s_1 = p_1 \oplus c_1$

$$s_0 = x_0 \oplus y_0 \oplus c_0 = p_0 \oplus c_0$$

$$s_2 = p_2 \oplus c_2 \qquad \qquad s_3 = p_3 \oplus c_3$$

Carry Lookahead Adder

one AND-gate and one OR-gate

$$C_1 = a_0b_0 + (a_0+b_0)c_0 = g_0 + p_0c_0$$

$$C_2 = a_1b_1 + (a_1+b_1)c_1 = g_1 + p_1c_1 = g_1 + p_1g_0 + p_1p_0c_0$$

$$C_3 = a_2b_2 + (a_2+b_2)c_2 = g_2 + p_2c_2 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

$$C_4 = a_3b_3 + (a_3 + b_3)c_3 = g_3 + p_3c_3 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$

$$g_i = a_i b_i$$
 $p_i = a_i + b_i$

Carry Lookahead Circuits

4-bit CLA Logic

A: $a_3 a_2 a_1 a_0$

B: b₃ b₂ b₁ b₀

$$g_i = a_i b_i$$
$$p_i = a_i + b_i$$

all carry-bits are generated directly from inputs; one can thus use independent FA-modules, to produce the sum-bits in parallel!

n-bit CLA Adder

Much faster than RCA

Critical path delay in an *n*-bit CLA?

Cost = O(?); delay O(?)

Carry Lookahead Adder: Analysis

Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly from the inputs that affect it

Full carry-lookahead adder is impractical for large *n*

Solution 1: *n*-bit Hybrid CLA Adder

- Implementation of lookahead for the complete adder is impractical because of cost
 - Divide n stages into smaller groups
 - Full carry lookahead within each group
 - Ripple carry among groups
 - Compromise between cost and delay

12-Bit Hybrid Adder (CLA + RCA) 1001 A =p,g p,g p,g p,g p,g p,g p,g p,g p,g p,g **Carry Generator** Carry Generator Carry Generator

Another solution: 12-Bit Hybrid (RCA + CLA)?? Cost = O(?); delay = O(?)

Trade-off: cost *versus* delay

RCA

CLA principle can be used recursively to build bigger adders => Carry-Lookahead Tree (CLT)

- Example: A 16-bit adder Use four 4-bit adders
- It takes block g and p terms and c_{in} to generate block-carry-bits
- Use the CLA principle again to design lower level adders

We have seen (i) CLA + RCA; (ii) RCA + CLA

Solution
$$-2$$
 (CLA + CLA + ...)

16-bit 2-level Carry-Lookahead Tree (CLT)

64-bit 3-level Carry-Lookahead Tree (CLT)

Solution – 3: Carry-Select Adders (CSA)

Idea:

Compute sum-bits in parallel for two possible carry-bits; When the previous carry actually arrives, just select the pre-computed "sum"

CLA: Looking ahead in time (pre-compute carry-bits)

CSA: Looking ahead in space (pre-compute sum-bits)

k-bit Carry-Select Adder

Units: cost and delay of a single 2-to-1 multiplexer

Multi-level k-bit Carry-Select Adder

cost = ? delay = ?

Other adder designs: Carry-skip addition

Pitfalls of CLA Adder

- Implementation of lookahead for the complete adder is impractical because of cost
- Analyze the implementation complexity of CLA

CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (*RSC*)
Bhargab B. Bhattacharya (*BBB*)
Lecture #19, #20: Computer Arithmetic
14 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

Solution – 4: Tree-Based Adder

Recall: 4-bit CLA

inputs

In CLA, carry-logic cost grows @ $O(n^3)$ for n-input adders

$$c_4 = g_3 + g_2(p_3) + g_1(p_2p_3) + g_0(p_1p_2p_3) + c_0(p_0p_1p_2p_3)$$
 $c_3 = g_2 + g_1 p_2 + g_0 p_1p_2 + c_0(p_0p_1p_2)$

$$c_2 = g_1 + g_0 p_1 + c_0 p_0 p_1$$

$$c_1 = g_0 + c_0 p_0$$

 $g_i = a_i b_i$

 $p_i = a_i + b_i$

 $c_n => last term would be <math>p_0p_1p_2....p_{n-1}$

In general, the problem boils down to => $c_{i+1} = g_i + c_i p_i$ How to compute efficiently in reasonable cost and time:

$$x_0, x_0x_1, x_0x_1x_2, x_0x_1x_2x_3, \ldots, x_0x_1x_2x_3 \ldots x_{n-1}$$

(Prefix-sum/product problem)

Why so fuss about prefix computation?

Use a serial chain done!

However, its delay is again O(n), so the whole purpose of CLA design is defeated. Can we reduce delay, compromising cost and fanout?

Prefix tree: Basic idea

Large fanout slows down $0 \rightarrow 1$ or $1 \rightarrow 0$ transitions at logic nodes and thus may increase consumed power and signal delay indirectly

Prefix Tree: Logarithmic-Delay

Brent-Kung Parallel-Prefix Adder (log-delay)

cost can further be improved

$$c_{i+1} = g_i + c_i p_i$$

Brent-Kung: Carry-Generation Tree for 8-Bit Adder

Other Tree-Based Prefix Adders

Kogge-Stone Adder (16-Bit)

- fanout: constant
- delay = $O(\log n)$;
- cost = O(nlog n);
- high wiring complexity

Adder Design

Design considerations

- Timing (delay)
- Power/energy, heat dissipation
 - -- fan-in, fan-out, logic switching
- Area (cost)
 - -- logic, wiring

Adding multiple numbers

can we do better?

Carry-Save Addition: Adding multiple operands

- Consider adding six numbers (4 bits each)
- 1001, 0110, 1111, 0111, 1010, 0110 (all unsigned +ve)
- One way is to add them pair wise, getting three results, and then adding them again

Other method is add them three at a time by saving carry

final sum

CARRY-SAVE ADDER (addition of multiple operands)

Add four 4-bit integers, A, B, E, F

Adding *m*, *n*-bit numbers with CSA and log-adder

Linear chain;

 $Delay = O(m + \lg (n + m))$

$$Delay = O(\log m + \lg (n + \log m))$$

Integer Multiplication

Multiplication

2's compl.

unsigned

- Multiplicand
- Multiplier
- Partial products
- Final sum
- Base 10: $8 \times 5 = 40$

$$=> 32 + 0 + 8 = 40$$

• How wide is the result?

$$\Rightarrow \log(n \times m) = \log n + \log m$$

$$\Rightarrow$$
 32-bit \times 32-bit = 64-bit result

Can you notice the need for Carry-Save Addition? We need to add multiple numbers!

CARRY-SAVE ADDER (addition of multiple operands)

Add four 4-bit integers, A, B, E, F

CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (RSC)

Bhargab B. Bhattacharya (BBB)

Lecture #21: Computer Arithmetic

16 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

Multiplying N-bit number by M-bit number gives (N+M)-bit result

A_i and B_i are all 0 or 1

Combinational Multiplier (unsigned)

16-bit Array Multiplier using Carry Sav-Adder

- Conceptually straightforward
- Fairly expensive hardware

Multiplication (Shift and Repeated Additions)

Mimic the multiplication process in hardware

Length of product is the sum of operand lengths

Explanations

- Multiplicand register is kept 64-bit wide because 32-bit multiplicand will be shifted 32 times to the left
 - Requires a 64-bit ALU
- Product register must be 64-bit wide to accommodate the result
- Contents of multiplier register is shifted 32 times to the right so that each bit successively appears as the least significant bit (LSB) to be checked by the controller

An Optimized Version of Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

Optimized Multiplication: Implementation

Multiplication Example

 $0010 \times 0110 = ? 0010 (+ 2, multiplicand); 0110 (+ 6, multiplier)$

Itera-	multi-	Orignal algorithm	
tion	plicand	Step	Product
0	0010	Initial values	0000 0110
1	0010	$1:0 \Rightarrow$ no operation	0000 0110
	0010	2: Shift right Product logical shift	0000 0011
2	0010	$1a:1 \Rightarrow prod = Prod + Mcand$	0010 0011
	0010	2: Shift right Product	0001 0001
3	0010	$1a:1 \Rightarrow prod = Prod + Mcand$	0011 0001
	0010	2: Shift right Product	0001 1000
4	0010	$1:0 \Rightarrow$ no operation	0001 1000
	0010	2: Shift right Product +12	0000 1100

Signed Multiplication

Recall

- For $p = a \times b$, if either a < 0 or b < 0, then p < 0
- If (a < 0 and b < 0) or (a > 0 and b > 0) then p > 0
- Hence $sign(p) = sign(a) \oplus sign(b)$

Hence

- Convert multiplier and multiplicand to positive number each
- Multiply two positive numbers
- Compute sign, convert product accordingly

Multiplication: A Fundamental Question

What is the complexity of multiplying A_1 two A_2 bit integers A_0 and A_3 bit integers A_0 bit integers

A_i and B_i are all 0 or 1

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Integer Multiplication

Multiplication

Given two *n*-bit integers a and b, compute $a \times b$

Ref: Jon Kleinberg and Éva Tardos, Algorithm Design Slides by Kevin Wayn Copyright © 2005 Pearson-Addison Wesley

Q. Is school multiplication algorithm optimal?

School method $\Theta(n^2)$ bit operations

Multiplication

Given two *n*-bit integers a and b, compute $a \times b$

Andrey Nikolaevich Kolmogorov (1903 – 1987)

1952: Kolmogorov conjectured that any multiplication algorithm will take $\Omega(n^2)$ bit operations, i.e., it is asymptotically optimal

1960: Kolmogorov announced in a seminar at Moscow State University that it is indeed $\Omega(n^2)$

Q. Is grade-school multiplication algorithm optimal?

Integer Multiplication

School method $\Theta(n^2)$ bit operations

Multiplication

Given two *n*-bit integers a and b, compute $a \times b$

Kolmogorov

1960: Kolmogorov announced in a seminar at Moscow State University that multiplication is indeed $\Omega(n^2)$

Anatoly Alexeyevich Karatsuba (1937 – 2008)

1960: Within one week, Karatsuba disproved the claim, showing that multiplication can be done in $O(n^{1.585})$ time!

Karatsuba multiplication algorithm for two *n*-bit integers *a*, *b*

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively
- Add, subtract, and shift to obtain result

$$\begin{array}{l}
a_1b_0 + a_0b_1 \\
= \\
(a_1 + a_0) (b_1 + b_0) - a_1b_1 - a_0b_0
\end{array}$$

Theorem: [Karatsuba-Ofman 1962] One can multiply two *n*-bit integers in $O(n^{1.585})$ bit operations \square

Ref: Jon Kleinberg and Éva Tardos, Algorithm Design Slides by Kevin Wayn Copyright © 2005 Pearson-Addison Wesley

Multiplication of two n-bit integers a, b

Theorem: [Schönhage and Strassen] It is possible to multiply two n-bit integers in $O(n\log n \log \log n)$ bit operations

Ref: D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison Wesley