

02Logica Combinatoria

Porte logiche

Alla base della logica combinatoria ci sono le porte logiche, esse si dividono in **fondamentali** e **derivate**.

Porte logiche fondamentali

Porte logiche derivate

				1
α	b	Porta NAND	Porta NOR	Porta XOR
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

Circuiti combinatori

Si tratta di circuiti in cui lo stato di uscita dipende solo dagli input.

Decoder

Disponde di n input e 2^n output, ad ogni set di input corrisponde un output

Multiplexer (mux)

Dispone di $2^n(valori) + n(selettori)$ input e 1 output;

l'output è il valore del dato selezionato dai selettori.

Logiche a due livelli PLA

Si tratta di un circuito in cui gli input sono prima elaborati tramite degli AND (prodotto) e poi da una serie di OR (somma).

ALU

ALU è l'abbreviazione di unità aritmetico logica, è composta da una serie di OR, NOT e NAND e di un MUX.

Esistono due tipi di ALU:

- **ALU SLT:** Set on less then, restituisce 1 se a < b, il controllo avviene sottaentro b ad a, e controllando che il risultato sia positivo o negativo.
- **ALU BEQ:** Branch on equal, ritorna 1 se a==b, il controllo avviene sottraendo b ad a e controllando che il risultato sia 0.

Sommatore full adder

Si tratta di un componente elettronico che dispone di **3 ingressi** e **2 uscite**, i 3 input sono: i due numeri da sommare ed il carry-in (ossia il resto di una somma precedente) mentre i due output sono il risultato della somma ed il carry-out (ossia il resto della somma).