

Curso: IDS344 - Estructura de Datos y Algoritmos II

Nombre del Estudiante: Samir Sayah Moammer Rodriguez

Profesor: Jose Ramon Romero

Título del Proyecto: Ruta Óptima del Viajero en Mapa Interactivo

Introducción

El presente proyecto tiene como objetivo desarrollar una aplicación interactiva que permita al usuario explorar distintas rutas entre ciudades, representadas en un mapa, utilizando estructuras de datos y algoritmos avanzados. El sistema simula el clásico problema del *Viajante (TSP)*, así como variantes de optimización de rutas. Esta solución tendrá una interfaz gráfica amigable y utilizará diversas estrategias algorítmicas para resolver problemas relacionados con caminos mínimos y planificación de rutas.

Objetivo General

Diseñar e implementar una aplicación interactiva que permita calcular rutas óptimas entre ciudades usando estructuras de datos y algoritmos vistos en clase.

Objetivos Específicos:

- Representar ciudades y caminos como un grafo ponderado.
- Implementar algoritmos como:
 - o Backtracking (para TSP).
 - o Greedy (algoritmo de Prim para árbol de expansión mínima).
 - o Divide and Conquer (para optimización de subrutas).
- Visualizar el grafo y los resultados de los algoritmos mediante una interfaz gráfica.
- Permitir al usuario elegir nodos de inicio, fin y ciudades intermedias.

Justificación

Este proyecto combina estructuras de datos complejas como grafos, con técnicas de resolución de problemas algorítmicos avanzadas. La aplicación práctica de estos conceptos refuerza el

aprendizaje teórico y promueve el pensamiento lógico y creativo. Además, el uso de una interfaz gráfica brinda una experiencia didáctica e interactiva, facilitando la comprensión visual de los algoritmos.

Metodología

El desarrollo se dividirá en etapas:

- 1. **Diseño del grafo:** Representación de las ciudades como nodos y caminos como aristas con pesos (distancias).
- 2. Implementación de algoritmos:
 - o TSP con backtracking.
 - o Árbol de expansión mínima con algoritmo greedy (Prim).
 - o Subdivisión de rutas con divide and conquer.
- 3. Construcción de interfaz gráfica: Visualización con Tkinter o PyQt que permita selección de rutas y muestra de soluciones.
- 4. **Integración y pruebas:** Unión de componentes, validación de resultados y mejora de usabilidad.

Herramientas y Tecnologías

• **Lenguaje:** Python 3.x

• Interfaz Gráfica: Tkinter o PyQt5

• Librerías: networkx, matplotlib, json, tkinter, PyQt.

• Editor: VSCode.

Resultados Esperados

- Un programa funcional que calcule y muestre rutas óptimas.
- Visualización gráfica del grafo y la solución seleccionada.
- Interfaz clara para que el usuario interactúe con los algoritmos.
- Código documentado y modular.

Conclusión

Este proyecto permitirá aplicar de forma integrada los conocimientos adquiridos en el curso, fortaleciendo habilidades en resolución de problemas, programación orientada a objetos, algoritmos avanzados y desarrollo de interfaces gráficas. Se busca que el proyecto no solo sea funcional, sino también didáctico y visualmente atractivo.