Проект GenAl Sketch-to-Image

GenAl

Опис проекту

Цей проект спрямований на використання генеративного штучного інтелекту (GenAI) для перетворення ручних ескізів у реалістичні зображення. Користувачі можуть малювати ескізи у веб-інтерфейсі, надсилати їх для обробки та отримувати детальний опис зображення і реалістичну версію свого ескізу. Проект демонструє використання сучасних інструментів ШІ для створення креативного контенту.

https://sketch-image-lpuu.onrender.com/

Функціонал

- Завантаження ескізів: Веб-інтерфейс для створення та завантаження ескізів.
- Опис зображення: Автоматична генерація детальних описів зображень за допомогою OpenAl API.
- **Перетворення ескізів у зображення**: Трансформація ескізів у реалістичні зображення за допомогою WorqHat API.
- Обробка зображень: Ефективна обробка та збереження завантажених і згенерованих зображень.
- Інтерактивний інтерфейс: Зручний інтерфейс з миттєвим зворотним зв'язком.

Вступ

Ціль проекту

Метою цього проекту є розробка системи, яка на основі користувацьких ескізів генерує реалістичні зображення та детальні описи цих зображень. Поєднання можливостей сучасних генеративних моделей для обробки зображень і тексту дає змогу легко переходити від концептуального начерку до повноцінної візуалізації.

Мотивація для вибору теми

- 1. **Креативний процес**: Багато ідей та концептів народжуються у вигляді швидких начерків, однак перехід від ескізу до реалістичного зображення зазвичай вимагає тривалого часу та додаткових навичок у графічних редакторах. Автоматизована система допомагає спростити й прискорити цей процес.
- 2. **Доступність технології**: Завдяки сучасним інструментам генеративного ШІ (наприклад, моделей трансформації зображень та мовних моделей) створення подібних продуктів стало значно простішим. Це відкриває широкі можливості для дизайнерів, ілюстраторів і навіть користувачів без спеціальних навичок.

3. **Потенціал для розширення**: Технологію можна використати в різних сферах – від прототипування UI/UX та створення концепт-арту до освітніх застосунків, де учні можуть одразу бачити результат своїх ідей. Ця гнучкість робить проєкт актуальним та корисним.

Процес роботи

Збір і підготовка даних

У даному проєкті не використовувався попередньо зібраний датасет для навчання чи валідації. Усі ескізи надходять безпосередньо від користувача в режимі реального часу. Відповідно, не проводилася додаткова анотація чи фільтрація зображень. Натомість, був підготовлений набір підказок (промптів), які система використовує для опису ескізів та генерування готових зображень.

Навчання або адаптація моделі

Оскільки в проєкті застосовуються готові API для опису та трансформації зображень (зокрема WorqHat API), процес навчання або fine-tuning власної моделі не проводився. Система повністю покладається на можливості наявних генеративних моделей, доступних через API.

Інтеграція рішення в продукт або прототип

Усі компоненти були відразу об'єднані в єдиний веб-застосунок. Архітектура передбачає повний цикл роботи з ескізами: від завантаження або малювання користувачем у фронтенд-інтерфейсі, через передачу даних до бекенду для опису та генерації зображень, і до повернення згенерованого результату користувачеві. Окрім основного функціоналу, був реалізований окремий модуль для збору й обчислення метрик (наприклад, CLIP Similarity), що дозволяє оцінити якість та точність згенерованих зображень.

Виклики та їх вирішення

Вартість генерації

- **Проблема**: Використання зовнішніх сервісів для аналізу та генерації зображень безпосередньо впливає на бюджет проекту. Кожен запит до сервісу "Analyze Images" коштує \$0.006, а перетворення "Sketch to Image" \$0.02 за зображення.
- Підхід до подолання:
 - о *Оптимізація використання API*: Використання ефективної логіки на рівні бекенду, щоб не надсилати зайві запити та мінімізувати кількість потрібних звернень.

- Контрольоване масштабування: Під час збільшення кількості користувачів можна впровадити платні тарифи або ліміти для унеможливлення неконтрольованого зростання витрат.
- о *Промпт-інжиніринг*: Уточнення промптів, щоб досягти потрібного результату з меншою кількістю повторних викликів.

Швидкість роботи

Проблема:

- Аналіз зображення за допомогою "Analyze Images" триває в середньому 2–3 секунди.
- Генерація реалістичного зображення зі скетчу ("Sketch to Image") може займати до 25–30 секунд, що є досить тривалим для миттєвої взаємодії з користувачем.

Підхід до подолання:

- Асинхронна обробка: Застосування асинхронних викликів до API та реалізація механізму чергування завдань дає змогу не блокувати інтерфейс.
- о *Індикатор прогресу*: Користувач отримує повідомлення про поточний статус генерації зображення, що робить очікування менш проблемним.
- Кешування результатів: Якщо користувач надсилає подібний ескіз чи повторно викликає генерацію, можна використати вже наявну інформацію (у випадках, коли це доречно).
- о *Оптимізація промптів*: Скорочення або уточнення описів може зменшити час генерації за рахунок мінімізації обсягу обчислень.

Результати

Для порівняння було обрано наступне зображення:

Для скетчу було згенерований такий опис:

A realistically rendered, slightly angled view of a square gift box with a tied bow on top. The box is wrapped in paper with a vertical ribbon, creating

sections on the front. The box sits flat on a surface. The ribbon and bow should be realistically detailed with folds, the paper has a matte finish and is smooth. The lighting is soft and diffused, creating subtle shadows, giving the scene a calm and celebratory feel. The scene is a close-up, focusing on the details of the gift box. The colors of the bow and wrapping paper are vibrant and rich, creating a nice contrast.

Отримані метрики

- CLIP Similarity:
 - *Original* 25.28
 - Generated 22.82
- Object Match Score:
 - *Original* 0.00
 - o Generated 0.00
- FID Score:
 - *Original* 0.21
 - o Generated 0.30
- SSIM Metric:
 - 0.78

Високе значення **SSIM** (0.78) вказує на доволі велику структурну схожість між оригінальним та згенерованим зображенням. Водночас, **CLIP Similarity** показує зменшення відповідності змісту (від 25.28 до 22.82), що може свідчити про дещо меншу релевантність згенерованого зображення відносно промпту/опису, порівняно з оригіналом. **FID** (Frechet Inception Distance) теж вищий у згенерованого зображення (0.30), але залишається на прийнятному рівні, враховуючи специфіку задачі (генерація зі скетчу).

Порівняння з існуючими підходами

На ринку є чимало схожих інструментів для перетворення ескізів у цифрові зображення з використанням генеративного ШІ (наприклад, <u>OpenArt.ai</u>, <u>Canva</u>, <u>Adobe Firefly</u>, <u>Freepik AI</u>).

- 1. **Зручність та спектр можливостей**: Більшість альтернатив пропонують більш широкий набір інструментів (зокрема стилізацію, додавання ефектів), однак можуть вимагати платної підписки або обмежувати кількість безплатних генерацій.
- 2. **Швидкість та вартість**: Подібні сервіси варіюються за часом обробки та вартістю доступу. Наш застосунок демонструє помірні показники швидкості (2–3 с для аналізу і 25–30 с для генерації) та чіткі тарифи за кожний запит, що робить витрати прозорими й передбачуваними.
- 3. **Контроль над процесом**: Власний проект дає можливість налаштовувати та інтегрувати додаткові модулі (наприклад, оцінку метрик) і безпосередньо керувати бекенд-частиною, чого може бракувати у готових SaaS-рішеннях.

Таким чином, попри наявні конкуренти, розроблене рішення вирізняється прозорістю ціноутворення, можливістю кастомізації й чітким контролем над генеративним процесом завдяки власному модулю метрик.

Інтеграція

API проекту GenAl Sketch-to-Image

Проект надає наступні АРІ ендпоінти:

1. Головна сторінка

- Метод: GET Ендпоінт: /
- Опис: Повертає головну сторінку застосунку (index.html).
- Використання: Відкрийте браузер за адресою http://localhost:5050/

2. Обробка зображення

- Метод: POST Ендпоінт: /magic
- Опис: Обробляє завантажене зображення, генерує опис та конвертує ескіз у реалістичне зображення.
- Параметри запиту: JSON з полем image (base64-encoded зображення)
- Повертає: JSON з наступними полями:
 - message: Повідомлення про статус обробки
 - filename: Ім'я збереженого файлу
 - description: Згенерований опис зображення
 - image: URL згенерованого реалістичного зображення
 - uuid: Унікальний ідентифікатор обробленого зображення
- о Коди відповіді:
 - 200: Успішна обробка
 - 400: Помилка обробки (з описом помилки)

3. Статичні файли

- Метод: GET
- o Ендпоінт: /assets/<path:filename>
- Опис: Повертає статичні файли (CSS, JavaScript, зображення тощо).
- Використання: Автоматично використовується браузером для завантаження ресурсів.

UI проекту GenAl Sketch-to-Image

Процес малювання скетчу

Процес генерації малюнку (очікування результату)

Отримані результати: зображення та опис

Висновки

Оцінка досягнутих результатів

У рамках проекту вдалося створити повноцінну систему, здатну перетворювати скетчі користувача на реалістичні зображення із супровідними текстовими описами. Результати метрик (CLIP Similarity, FID, SSIM) свідчать про прийнятний рівень якості згенерованих зображень з огляду на те, що в основі лежать готові моделі та API. Інтегрований модуль метрик надає кількісну оцінку якості зображень, допомагаючи виявляти сильні та слабкі місця підходу. Також було збудовано зручний веб-інтерфейс, який забезпечує покрокову взаємодію користувача з системою.

Майбутні можливості покращення

- 1. **Покращення опису**: Розширення промптів додатковим контекстом або залучення додаткових моделей для більш інформативних і доречних описів.
- 2. **Оптимізація швидкості**: Розглянути можливість організації обробки в асинхронних чергах або застосування локальних моделей, щоб зменшити час очікування (25–30 секунд) під час генерації зображень.
- 3. **Адаптація моделей**: Хоч проєкт наразі покладається на готові API, у перспективі можна розглянути fine-tuning моделей чи використання спеціалізованих моделей для скетч-ту-зображення, що потенційно покращить якість і знизить витрати.
- 4. **Пакетна обробка**: Додавши функцію одночасного завантаження кількох скетчів, користувачі зможуть ефективніше працювати над серією ідей чи концептів.
- 5. **Персоналізація**: Реалізувати систему авторизації, щоб кожен користувач мав власну історію завантажених скетчів і отриманих зображень, а також використовувати вподобання користувача для точнішого та релевантнішого результату.