Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

ОТЧЁТ ПО ЗАДАЧАМ НА ТЕМУ «ПРЕОБРАЗОВАНИЕ СЛУЧАЙНЫХ ВЕКТОРОВ»

Выполнил:

Яковлев Денис Михайлович Группа 21.Б04-мм 095998@student.spbu.ru

Санкт-Петербург 30 марта 2024 г.

Оглавление

1.	Задача	1]
	1.1.	Формулировка	1
	1.2.	Решение]
	Задача	2	
	2.1.	Формулировка	
	2.2.	Решение	•

1. Задача 1

1.1. Формулировка

Пусть $\xi_1, \ldots, \xi_n \in \text{EXP}(1)$ и независимы. При каждом элементарном событии ω упорядочим числа $\xi_i(\omega)$ по возрастанию и получим новые случайные величины $0 \leqslant \xi_{[1]} \leqslant \cdots \leqslant \xi_{[i]} \leqslant \cdots \leqslant \xi_{[n]}$.

Найти распределение вектора

$$(\xi_{[1]}, \xi_{[2]} - \xi_{[1]}, \dots, \xi_{[i]} - \xi_{[i-1]}, \dots, \xi_{[n]} - \xi_{[n-1]})^{\mathsf{T}}.$$

1.2. Решение

Поскольку $\xi_1, \dots, \xi_n \in \text{EXP}(1)$, то $\xi_i \in [0, +\infty) \ \forall i = 1, 2, \dots, n$ и $\bar{\xi} \in [0, +\infty)^n = D$, где $\bar{\xi} = (\xi_1, \dots, \xi_n)$.

Представим $D = \bigcup_{i=1}^m D_i$, где D_i - попарно непересекающиеся множества. В качестве D_i :

$$D_i = \{0 < \xi_{i_1} < \xi_{i_2} < \dots < \xi_{i_n}\},\$$

где $\{i_1, i_2, \ldots, i_n\}$ – перестановка $\{1, 2, 3, \ldots, n\}$. Тогда число таких множеств будет равняться n!, а множества D и $\bigcup_{i=1}^{n!} D_i$ совпадают \mathcal{P}_{ξ} -почти всюду.

Рассмотрим измеримое отображение $\varphi: D \to \mathbb{R}^n$, для которой существуют $\varphi_i: \varphi(D_i) = \varphi_i(D_i) = G_i$. Исходя из условий, $\forall i \ \varphi|_{D_i} = \varphi_i = A_i$, где A_i – матрица $n \times n$. Тогда, чтобы существовало $\psi_i = \varphi_i^{-1}$, необходимо и достаточно, чтобы $\exists A_i^{-1}$. Для этого достаточно проверить, что $\det A_i \neq 0$. Впоследствие вычислений получилось, что $|\det A_i| = 1 \ \forall i \ \Rightarrow |\det A_i^{-1}| = 1$.

Осталось выяснить область определения образа $\varphi_i(D_i) = G_i$. Покажем, что $\forall i \ G_i = [0, +\infty)^n$. Пусть

$$\bar{\eta}=(\eta_1,\eta_2,\ldots,\eta_n)=\varphi(\bar{\xi}).$$

Так как

$$\bar{\eta} = (\xi_{[1]}, \xi_{[2]} - \xi_{[1]}, \dots, \xi_{[i]} - \xi_{[i-1]}, \dots, \xi_{[n]} - \xi_{[n-1]})^{\mathsf{T}}, 0 \leqslant \xi_{[1]} \leqslant \dots \leqslant \xi_{[i]} \leqslant \dots \leqslant \xi_{[n]},$$

Тогда $\eta_1=\xi_{[1]}\geqslant 0, \eta_2=\xi_{[2]}-\xi_{[1]}\geqslant 0,\ldots,\eta_n=\xi_{[n]}-\xi_{[n-1]}\geqslant 0.$ Более того, из этого следует, что $G_i=G_j\forall i,j.$

Рассмотрим случай n=2 и ответим на следующие вопросы:

1. Какие распределения у η_i , i = 1, 2;

2. Являются ли η_1 , η_2 независимыми.

Тогда для областей и их отображений

$$D_1 = \{0 < \xi_1 < \xi_2\}, \ \varphi_1(\bar{\xi}) = (\xi_1, \xi_2 - \xi_1) = \bar{\eta};$$

$$D_2 = \{0 < \xi_2 < \xi_1\}, \ \varphi_2(\bar{\xi}) = (\xi_2, \xi_1 - \xi_2) = \bar{\eta},$$

Соответствующие им обратные отображения: $\psi_1(\bar{\eta})=(\eta_1,\eta_2+\eta_1), \psi_2(\bar{\eta})=(\eta_2+\eta_1,\eta_1).$ Найдём распределения для $\eta_1,~\eta_2$. Знаем, что $\rho_{\bar{\eta}}(x_1,x_2)=\rho_{\bar{\xi}}(x_1,x_2+x_1)+\rho_{\bar{\xi}}(x_2+x_1,x_1)=2\exp\{-(2x_1+x_2)\}\mathbbm{1}_{[0,+\infty)^2}(x_1,x_2)$

$$\rho_{\eta_1}(x_1) = \int_{\mathbb{R}} \rho_{\bar{\eta}}(x_1, x_2) \ dx_2 = 2 \int_0^{+\infty} \exp\{-(2x_1 + x_2)\} \ dx_2 = 2 \exp\{-2x_1\} \mathbb{1}_{[0, +\infty)}(x_1).$$

$$\rho_{\eta_2}(x_2) = \int_{\mathbb{R}} \rho_{\bar{\eta}}(x_1, x_2) \ dx_1 = 2 \int_0^{+\infty} \exp\{-(2x_1 + x_2)\} \ dx_1 = \exp\{-x_2\} \mathbb{1}_{[0, +\infty)}(x_2).$$

Таким образом, η_1 и η_2 независимы. При этом $\eta_1 \in EXP(2)$, $\eta_2 \in EXP(1)$. Теперь рассмотрим случай n > 2.

Аналогично начнём с определения областей D_i , их отображений и обратных отображений. В общем виде для i:

$$D_{i} = \{0 < \xi_{i_{1}} < \xi_{i_{2}} < \dots < \xi_{i_{n}}\}, \ \varphi_{i}(\bar{\xi}) = (\xi_{i_{1}}, \xi_{i_{2}} - \xi_{i_{1}}, \dots, \xi_{i_{n}} - \xi_{i_{n-1}}) = \bar{\eta},$$

$$\psi_{i}(\bar{\eta}) = (\dots, \dot{\eta}_{1}^{i_{1}}, \dots, \eta_{2} + \eta_{1}, \dots, \eta_{3} + \dot{\eta}_{2}^{i_{3}} + \eta_{1}, \dots, \eta_{n} + \eta_{n-1}^{i_{n}} + \dots + \eta_{1}, \dots).$$

Таким образом, у обратного отображения на месте i_1 стоит η_1 , на $i_2-\eta_2+\eta_1$ и так далее.

Теперь воспользуемся преобразованием случайных векторов:

$$\rho_{\bar{\eta}}(x_1, \dots, x_n) = \mathbb{1}_{[0, +\infty)^n} \sum_{i=1}^{n!} \rho_{\bar{\xi}}(\psi_i(x_1, \dots, x_n))$$
$$= n! \exp\{-(nx_1 + (n-1)x_2 + \dots + 2x_{n-1} + x_n)\} \mathbb{1}_{[0, +\infty)^n}$$

Вычислим $\rho_{\eta_i}(x_i)$:

$$\rho_{\eta_{i}}(x_{i}) = \int \cdots \int_{\mathbb{R}^{n-1}} \rho_{\bar{\eta}}(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{n}$$

$$= n! \int \cdots \int_{[0, +\infty)^{n-1}} \exp\{-(nx_{1} + (n-1)x_{2} + \dots + 2x_{n-1} + x_{n})\} dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{n}$$

$$= n! \frac{1}{n} \frac{1}{n-1} \dots \frac{1}{n-i+2} \frac{1}{n-i} \dots \frac{1}{2} \exp\{-(n-i+1)x_{i}\}$$

$$= (n-i+1) \exp\{-(n-i+1)x_{i}\}.$$

Таким образом получили, что $\{\eta_i\}_{i=1}^n$ независимы и

$$\rho_{\eta_i}(x_i) = (n+1-i) \exp\{-(n+1-i)x_i\} \mathbb{1}_{[0,+\infty}(x_i) \ \forall i=1,2,\ldots,n, \ \eta_i \sim \text{EXP}(n+1-i).$$

Отсюда выведем плотность распределения η :

$$\rho_{\bar{\eta}}(x) = \left(\prod_{k=1}^{n} \rho_{\eta_k}(x_k)\right) \mathbb{1}_{[0,+\infty)^n}(x) = n! \exp\{-(nx_1 + (n-1)x_2 + \dots + 2x_{n-1} + x_n)\} \mathbb{1}_{[0,+\infty)^n}(x).$$

2. Задача 2

2.1. Формулировка

Вектор $\bar{\xi}=(\xi_1,\xi_2)^{\sf T}$ имеет плотность распределения $p(x,y)=Ce^{-(x^2+y^2)}$. Найти такую матрицу A(2,2), что у компонент вектора $\bar{\eta}=A\bar{\xi}$ будет коэффициент корреляции, равный -1/2.

2.2. Решение

Вспомним, как выражается коэффициент корреляции от двух случайных величин ξ_1, ξ_2 :

$$\rho(\xi_1, \xi_2) = \frac{\operatorname{cov}(\xi_1, \xi_2)}{\sqrt{D\xi_1}\sqrt{D\xi_2}},$$

где
$$cov(\xi_1, \xi_2) = E(\xi_1 - E\xi_1)(\xi_2 - E\xi_2) = E\xi_1\xi_2 - E\xi_1E\xi_2.$$

Решим задачу поэтапно:

- 1. Вычислим коэффициент C у плотности распределения случайного вектора $\bar{\xi}=(\xi_1,\xi_2);$
- 2. Выразим $\rho_{\bar{\eta}}(\bar{x})$ через преобразование $\bar{\eta}=A\bar{\xi};$
- 3. Вычислим $cov(\eta_1, \eta_2), D\eta_1, D\eta_2 \Leftrightarrow E\eta_1\eta_2, E\eta_1^2, E\eta_2^2, E\eta_1, E\eta_2;$
- 4. Решим $\rho(\eta_1, \eta_2) = -\frac{1}{2}$ относительно коэффициентов матрицы A(2, 2).

(Замечание: в дальнейшем полагаем $\bar{\eta}=\eta, \bar{\xi}=\xi$).

1.

$$F_{\xi}(+\infty, +\infty) = \iint_{\mathbb{R}^2} Ce^{-(x_1^2 + x_2^2)} dx_1 \ dx_2 = C\pi = 1 \to C = \pi^{-1}$$

Тогда
$$\rho_{\xi}(\bar{x}) = \frac{1}{\pi} e^{-(\bar{x},\bar{x})}.$$

2. Пользуясь формулой преобразования случайных векторов, получим:

$$\rho_{\eta}(\bar{x}) = \frac{1}{|\det A|\pi} \rho_{\xi}(A^{-1}\bar{x}) = \frac{1}{|\det A|\pi} e^{-(A^{-1}\bar{x}, A^{-1}\bar{x})}.$$

В дальнейшем будем полагать $|A| = |\det A|$.

3. Вычислим матожидания в порядке $E\eta_1, E\eta_2, E\eta_1^2, E\eta_2^2, E\eta_1\eta_2$:

$$\begin{split} E\eta_1 &= \int_{\mathbb{R}} x_1 \rho_{\eta_1}(x_1) dx_1 = \int_{\mathbb{R}} x_1 \left(\int_{\mathbb{R}} \frac{1}{|A|\pi} \rho_{\xi}(A^{-1}\bar{x}) dx_2 \right) dx_1 \\ &= [\bar{x} = A\bar{y}, \bar{y} = A^{-1}\bar{x}, dx_1 dx_2 = |A| dy_1 dy_2] = \int_{\mathbb{R}^2} (a_{11}y_1 + a_{12}y_2) \frac{1}{|A|\pi} e^{-(y_1^2 + y_2^2)} |A| \ dy_1 dy_2 \\ &= \frac{a_{11}}{\pi} \left(\int_{\mathbb{R}} e^{-y_2^2} \ dy_2 \right) \left(\int_{\mathbb{R}} y_1 e^{-y_1^2} \ dy_1 \right) + \frac{a_{12}}{\pi} \left(\int_{\mathbb{R}} e^{-y_1^2} \ dy_1 \right) \left(\int_{\mathbb{R}} y_2 e^{-y_2^2} \ dy_2 \right) = 0; \\ E\eta_2 &= \cdots = 0; \\ E\eta_1^2 &= \frac{1}{\pi} \iint_{\mathbb{R}^2} (a_{11}y_1 + a_{12}y_2)^2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 = \frac{a_{11}^2}{\pi} \left(\iint_{\mathbb{R}^2} y_1^2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \right) \\ &+ \frac{2a_{11}a_{12}}{\pi} \left(\iint_{\mathbb{R}^2} y_1 y_2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \right) + \frac{a_{12}^2}{\pi} \left(\iint_{\mathbb{R}^2} y_2^2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \right) \\ &= \frac{a_{11}^2}{\pi} \frac{\pi}{2} + 0 + \frac{a_{12}^2}{\pi} \frac{\pi}{2} = \frac{a_{11}^2 + a_{12}^2}{2}; \\ E\eta_1 \eta_2 &= \frac{1}{\pi} \iint_{\mathbb{R}^2} (a_{11}y_1 + a_{12}y_2) (a_{21}y_1 + a_{22}y_2) \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \\ &= \frac{a_{11}a_{21}}{\pi} \left(\iint_{\mathbb{R}^2} y_1^2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \right) + \frac{a_{11}a_{22} + a_{12}a_{21}}{\pi} \left(\iint_{\mathbb{R}^2} y_1 y_2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \right) \\ &+ \frac{a_{12}a_{22}}{\pi} \left(\iint_{\mathbb{R}^2} y_2^2 \ e^{-(y_1^2 + y_2^2)} \ dy_1 dy_2 \right) = \frac{a_{11}a_{21}}{\pi} \frac{\pi}{2} + 0 + \frac{a_{12}a_{22}}{\pi} \frac{\pi}{2} = \frac{a_{11}a_{21} + a_{12}a_{22}}{2}. \end{split}$$

Исходя из полученных значений, $cov(\eta_1, \eta_2) = E\eta_1\eta_2, D\eta_1 = E\eta_1^2, D\eta_2 = E\eta_2^2.$

4. Найдём подходящие коэффициенты для того, чтобы $\rho(\eta_1, \eta_2) = -\frac{1}{2}$:

$$\rho(\eta_1, \eta_2) = \frac{\frac{a_{11}a_{21} + a_{12}a_{22}}{2}}{\sqrt{\frac{a_{11}^2 + a_{12}^2}{2}}\sqrt{\frac{a_{21}^2 + a_{22}^2}{2}}} = \frac{a_{11}a_{21} + a_{12}a_{22}}{\sqrt{a_{11}^2 + a_{12}^2}\sqrt{a_{21}^2 + a_{22}^2}} = -\frac{1}{2}.$$

Хочется рассмотреть такой случай:

$$\begin{cases} a_{11}a_{21} + a_{12}a_{22} = -\frac{1}{2} \\ a_{11}^2 + a_{12}^2 = 1 \\ a_{21}^2 + a_{22}^2 = 1 \end{cases}$$
 (1)

Если в качестве матрицы A взять, например:

$$A = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix},$$

то $|A|=\cos 2\varphi$, что значит, что при $\varphi\in[0,2\pi)$: $|A|=0 \leftrightarrow \varphi=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}$. При этом, если бы в качестве A взяли матрицу поворотов, то $\rho(\eta_1,\eta_2)=0$ при любом угле φ . Для матрицы A при заданных φ выполняются второе и третье равенства из (1), а для первого:

$$a_{11}a_{21} + a_{12}a_{22} = \sin 2\varphi = -\frac{1}{2} \to \varphi = \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}.$$

Таким образом нашли матрицу A такую, что $\eta = A\xi, \rho(\eta_1, \eta_2) = -\frac{1}{2}$. Принимая во внимание то, что растяжение матрицы на произвольные ненулевые значения $\lambda_1, \lambda_2 \in \mathbb{R}$ не изменит коэффициента корреляции, а точнее:

$$\rho(\lambda_1\eta_1,\lambda_2\eta_2) = \rho(\lambda_1\eta_1,\eta_2) = \rho(\eta_1,\lambda_2\eta_2) = \rho(\eta_1,\eta_2).$$

Поэтому, в качестве одного из решений можно взять матрицу вида:

$$\begin{pmatrix} \lambda_1 \cos \varphi & \lambda_1 \sin \varphi \\ \lambda_2 \sin \varphi & \lambda_2 \cos \varphi \end{pmatrix}, \ \lambda_1, \lambda_2 \in \mathbb{R}/\{0\}, \varphi \in [0, 2\pi).$$