NTU ADL hw1 Report

[∞]Q1: Data processing

Tokenizer

 Describe in detail about the tokenization algorithm you use. You need to explain what it does in your own ways.

The pre-trained model I used is hfl/chinese-roberta-wwm-ext-large. Roberta's tokenizer is derived from GPT-2 tokenzier, it's a BPE(Byte-Pair-Encoding). BPE first splits text into words and calculate the frequency, then splits words into chars. After that, add the most-frequent chars sequence into vocabs.

Continue doing above operation until vocal size reaches vocab_size hypermeter.

Answer Span

1. How did you convert the answer span start/end position on characters to position on tokens after BERT tokenization?

While doing tokenization, we can enable two flags:
return_overflowing_token and
return_offsets_mapping.

Then tokenizer will return
overflow_to_sample_mapping and offset_mapping
these two data for us to track text and input_ids.

Then we can simplying use while loops to find the
positions of answer span.

2. After your model predicts the probability of answer span start/end position, what rules did you apply to determine the final start/end position?

Select the start/end positions below n_best_size parameter. Then map both start/end positions combinations back into text.

Select the prediction with most score: probability score of start position + probability score of end position.

Q2: Modeling with BERTs and their variants

Describe

1. Your model

I use the pre-trained model httlps://huggingface.co/hfl/chinese-roberta-wwm-ext-large) for both multiple-choice and question-answering tasks. This is RoBERTa model and used chinese corups to pretrain.

RoBERTa shares the same model architecture with BERT, but a different dynamic masking techniques and tokenizer approach (BPE).

2. The performance of your model.

After fine-tuning, multiple-choice model reaches accuracy 96.2.

Fine-tuned question-answering model reaches val_exact_match 84.3.

3. The loss function you used.

Both tasks utilizes CrossEntroyLoss for model optimization.

Mutliple-choice calculates the loss between groundtruth label index and predicted label index.

Question-answerings calculates the loss between ground-truth and predicts both start/end positions, then average them.

4. The optimization algorithm (e.g. Adam), learning rate and batch size.

For aboth training, I uses AdamW optimizer.

MC: Learning rate: 2e-5, Batch size: 4

QA: Learning rate: 8e-5, Effective batch size: 32

(distributed training on 4 gpus)

Try another type of pre-trained LMs and describe

1. Your model

At first, I used **bert-base-chinese** (https://huggingface.co/bert-base-chinese).

I also tried hfl/chinese-bert-wwm-ext, hfl/chinese-roberta-wwm-ext.

2. The performance of your model.

bert-base-chinese reachs about 0.78 exact match score. hfl/chinese-bert-wwm-ext reachs about 0.79 exact match score.

hfl/chinese-roberta-wwm-ext reachs about 0.81 exact match score.

hfl/chinese-roberta-wwm-ext-large reaches about 0.83 exact match score.

Finally, *-large model with larger batch size gives the best performance.

3. The difference between pre-trained LMs (architecture, pretraining loss, etc.)

BERT and RoBERTa has similar model architectures, but the loss is vary from 1e-5 to 3e-5.

Pre-trained dataset wwm-ext can have a significant increase on accuracy.

Q3: Curves

Plot the validation set learning curve of your span selection (extractive QA) model. Please make sure there are at least 5 data points in each curve.

1. Learning curve of the loss value

validation loss curve

train running loss curve (with 20 steps running average)

2. Learning curve of the Exact Match metric value validation exact_match curve

Q4: Pre-trained vs Not Pre-trained

Train a transformer-based model (you can choose either paragraph selection or span selection) from scratch (i.e. without pretrained weights).

Describe

1. The configuration of the model and how do you train this model (e.g., hyper-parameters).

I adopt the BERT config. But with smaller hidden_size , num_attention_heads and num_hidden_layers as below.

I trained the model from scratch 20 epochs, using learning rate 2e-5 (constant Ir_scheduler).

The tokenizer I use is BERTTokenizer.

```
"attention_probs_dropout_prob": 0.1,
2
3
         "classifier_dropout": null,
         "hidden_act": "gelu",
4
         "hidden_dropout_prob": 0.1,
5
6
         "hidden_size": 384,
         "initializer_range": 0.02,
7
8
         "intermediate_size": 3072,
         "layer_norm_eps": 1e-12,
9
10
         "max_position_embeddings": 512,
         "model_type": "bert",
11
         "num_attention_heads": 4,
12
13
         "num_hidden_layers": 4,
         "pad_token_id": 0,
14
         "position_embedding_type": "absolute",
15
         "transformers_version": "4.33.3",
16
         "type_vocab_size": 2,
17
         "use_cache": true,
18
19
         "vocab_size": 30522
20 }
```

2. The performance of this model v.s. BERT.

The best performance I got with from-scratch model is exact match score near 6.5%, which is far from using pre-trained model.

I firstly tried training the model for 20 epochs, but the result is quite poor, it's only a \sim 4% exact match accuracy. I then trained the model for 200 epochs, however, the model start over-fitted at about 40 epochs.

So I think the model is not capable with the ability to understand the context and just try to remember the train set inputs.

The pre-trained model really helped a lot for downstream tasks.