Transformations Between Two Images

- Translation
- Rotation
- Rigid
- Similarity (scaled rotation)
- Affine
- Projective
- Pseudo Perspective
- Bi-linear

Lecture-12

Applications

- Stereo
- Structure from Motion
- View Invariant Action Recognition
- •

Stereo Pairs and Depth Maps (from Szeliski's book)

Image Rectification For Stereo

Photosynth: Structure From Motion

- Longuet Higgins (1981)
- Hartley (1992)
- Faugeras (1992)
- Zhang (1995)

Fundamental Matrix Song

http://www.youtube.com/watch?v=DgGV3182NTk

Preliminaries

- Linear Independence
- Rank of a Matrix
- Matrix Norm
- Singular Value Decomposition
- Vector Cross product to Matrix Multiplication
- RANSAC

Linearly Independence

A finite subset of n vectors, \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n , from the vector space V, is *linearly dependent* if and only if there exists a set of n scalars, a_1 , a_2 , ..., a_n , not all zero, such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{0}.$$

Rank of a Matrix

- The column rank of a matrix A is the maximum number of linearly independent column vectors of A.
- The row rank of a matrix A is the maximum number of linearly independent row vectors of A.
- The column rank of A is the dimension of the column space of A
- The row rank of A is the dimension of the row space of A.

Example (Row Echelon)

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} R_2 \to 2r_1 + r_2$$

Singular Value Decomposition (SVD)

Theorem: Any m by n matrix A, for which $m \ge n$, can be written as

$$A = O_1 \Sigma O_2$$

$$\max_{\text{mxn}} \max_{\text{nxn}} \max_{\text{nxn}}$$

$$\sum$$
 is diagonal

 O_1, O_2 are orthogonal

$$O_1^T O_1 = O_2^T O_2 = I$$

Matrix Norm

L1 matrix norm is maximum of absolute column sum.

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|,$$

Vector Cross Product to Matrixvector multiplication

$$A \times B = \begin{bmatrix} i & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{bmatrix} = \begin{bmatrix} -A_z B_y + A_y B_z & A_z B_x - A_x B_z & -B_x A_y + B_y A_x \end{bmatrix}$$

$$A \times B = S.B = \begin{bmatrix} 0 & -A_z & A_y \\ A_z & 0 & -A_x \\ -A_y & A_x & 0 \end{bmatrix} \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix} = \begin{bmatrix} -A_z B_y + A_y B_z & A_z B_x - A_x B_z & -B_x A_y + B_y A_x \end{bmatrix}$$

RANSAC: Random Sampling and Consensus

RANSAC Song

http://www.youtube.com/watch?v=1YNjMxxXO-E&feature=relmfu

How to Fit A Line?

How to Fit A Line?

- Least squares Fit (over constraint)
- RANSAC (constraint)
- Hough Transform (under constraint)

Least Squares Fit

- Standard linear solution to estimating unknowns.
 - If we know which points belong to which line
 - Or if there is only one line

$$y = mx + c = f(x, m, c)$$

Minimize $E = \sum_{i} [y_i - f(x_i, m, c)]^2$

Take derivative wrt m and c set to 0^{-1}

Line Fitting

RANSAC: Random Sampling and Consensus

- 1. Randomly select two points to fit a line
- 2. Find the error between the estimated solution an all other points. If the error is less than tolerance, then quit, else go to step (1).

Derivation of Fundamental Matrix

Epipolar Geometry

Defined for two static cameras

Epipolar Geometry

Essential Matrix

Coplanarity constraint between vectors (\mathbf{P}_l - \mathbf{T}), \mathbf{T} , \mathbf{P}_l .

$$\begin{pmatrix} (\mathbf{P}_{l} - \mathbf{T})^{\mathrm{T}} \mathbf{T} \times \mathbf{P}_{l} = 0 \\ \mathbf{P}_{r} = \mathbf{R} (\mathbf{P}_{l} - \mathbf{T}) \end{pmatrix} \qquad \mathbf{P}_{r}^{\mathrm{T}} \mathbf{R} \mathbf{T} \times \mathbf{P}_{l} = 0$$

$$\mathbf{R}^{T}\mathbf{P}_{r} = (\mathbf{P}_{l} - \mathbf{T})$$
$$\mathbf{P}_{r}^{T}\mathbf{R} = (\mathbf{P}_{l} - \mathbf{T})^{T}$$

Essential Matrix

$$\mathbf{P}_{r}^{\mathrm{T}}\mathbf{R}\mathbf{T} \times \mathbf{P}_{l} = 0$$

$$\mathbf{P}_{r}^{\mathrm{T}}\mathbf{E}\mathbf{P}_{l} = 0$$

$$\mathbf{P}_{r}^{\mathrm{T}}E\mathbf{P}_{l} = 0$$
essential matrix
$$E = \mathbf{R} \mathbf{S}$$

$$T_{z} \quad 0 \quad -T_{x}$$

$$-T_{y} \quad T_{x} \quad 0$$

Apply Camera model

$$M_l^{-1}\mathbf{x}_l = \mathbf{P}_l$$

$$M_r^{-1}\mathbf{x}_r = \mathbf{P}_r$$

$$\mathbf{x}_r^T M_r^{-T} = \mathbf{P}_r^T$$

$$\mathbf{x}_{l} = M_{l} \mathbf{P}_{l}$$

$$\mathbf{x}_{r}^{T} M_{r}^{-T} E M_{l}^{-1} \mathbf{x}_{l} = 0$$

$$\mathbf{x}_{r}^{T} \left(M_{r}^{-T} E M_{l}^{-1} \right) \mathbf{x}_{l} = 0$$

$$\mathbf{x}_{r}^{T} E \mathbf{P}_{l} = 0$$

$$\mathbf{x}_{r}^{T} F \mathbf{x}_{l} = 0$$
fundamental matrix

• Given a point in left camera \mathbf{x} , epipolar line in right camera is: $\mathbf{u}_r = F\mathbf{x}$

- 3x3 matrix with 9 components
- Rank 2 matrix (due to S)
- 7 degrees of freedom
- Given a point in left camera \mathbf{x} , epipolar line in right camera is: $\mathbf{u}_r = F\mathbf{x}$

- Longuet Higgins (1981)
- Hartley (1992)
- Faugeras (1992)
- Zhang (1995)

• Fundamental matrix captures the relationship between the corresponding points in two views.

$$\begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}^T \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} = 0,$$

$$\begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}^T \begin{bmatrix} f_{11}x' + f_{12}y_i' + f_{13} \\ f_{21}x' + f_{22}y_i' + f_{23} \\ f_{31}x' + f_{32}y_i' + f_{33} \end{bmatrix} = 0,$$

$$x_i(f_{11}x' + f_{12}y_i' + f_{13}) + y_i(f_{21}x' + f_{22}y_i' + f_{23}) + (f_{31}x' + f_{32}y_i' + f_{33}) = 0$$

$$x_ix'f_{11} + x_iy_i'f_{12} + x_if_{13} + y_ix'f_{21} + x'y_i'f_{22} + y_i'f_{23} + x'f_{31} + y_i'f_{32} + f_{33} = 0$$

One equation for one point correspondence

$$Mf = \begin{bmatrix} x'_1x_1 & x'_1y_1 & x'_1 & y'_1x_1 & y'_1y_1 & y'_1 & x_1 & y_1 & 1 \\ x'_2x_2 & x'_2y_2 & x'_2 & y'_2x_2 & y'_2y_2 & y'_2 & x_2 & y_2 & 1 \\ \vdots & \vdots \\ x'_nx_n & x'_ny_n & x'_1 & y'_nx_n & y'_ny_n & y'_n & x_n & y_n & 1 \end{bmatrix} f = 0$$

M is 9 by n matrix
$$f = [f_{11} \ f_{12} \ f_{13} \ f_{21} \ f_{22} \ f_{23} \ f_{31} \ f_{32} \ f_{33}]$$

To solve the equation, the rank(M) must be 8.

Computation of Fundamental Matrix

Normalized 8-point algorithm (Hartley)

Objective:

Compute fundamental matrix F such that

$$\mathbf{x}_{i}^{\prime}F\mathbf{x}_{i}=0$$

Algorithm

Normalize the image $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$

$$\hat{\mathbf{x}}_{i} = T\mathbf{x}_{i}$$

$$\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$$

$$T = \begin{bmatrix} a_x & 0 & d_x \\ 0 & a_y & d_y \\ 0 & 0 & 1 \end{bmatrix}$$

Find centroid of points in each image, determine the range, and normalize all points between 0 and 1

Linear solution

determining the eigen vector corresponding to the smallest eigen value of A,

$$Af = \begin{bmatrix} \hat{x}_1'\hat{x}_1 & \hat{x}_1'\hat{y}_1 & \hat{x}_1' & \hat{y}_1'\hat{x}_1 & \hat{y}_1'\hat{y}_1 & \hat{y}_1' & \hat{x}_1 & \hat{y}_1 & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \hat{x}_8'\hat{x}_8 & \hat{x}_8'\hat{y}_8 & \hat{x}_8' & \hat{y}_8'\hat{x}_8 & \hat{y}_8'\hat{y}_8 & \hat{y}_8' & \hat{x}_8' & \hat{y}_8 & 1 \end{bmatrix} f = 0$$

Normalized 8-point algorithm (Hartley)

Construct

$$\hat{F} = \begin{bmatrix} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{bmatrix}$$

Normalize

$$\hat{F} = \hat{F} / || \hat{F} ||$$

L1 matrix norm is maximum of absolute column sum.

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|,$$

Constraint enforcement SVD decomposition

$$\hat{F} = U \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} V' \qquad (\sigma_1 \ge \sigma_2 \ge \sigma_3)$$

Rank enforcement

$$\widetilde{F} = U \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V'$$

$$F = T'^T \widetilde{F} T$$

De-normalization:

Robust Fundamental Matrix Estimation (by Zhang)

- Uniformly divide the image into 8×8 grid.
- Randomly select 8 grid cells and pick one pair of corresponding points from each grid cell, then use Hartley's 8-point algorithm to compute Fundamental Matrix F_i .
- For each F_i , compute the median of the squared residuals R_i .
 - $R_i = \text{median}_k[d(p_{1k}, F_i p_{2k}) + d(p_{2k}, F'_i p_{1k})]$
- Select the best F_i according to R_i .
- Determine outliers if $R_k > Th$.
- Using the remaining points compute the fundamental Matrix *F* by weighted least square method.

Epi-polar Lines

Epi-polar lines

