

planetmath.org

Math for the people, by the people.

continuous poset

Canonical name ContinuousPoset
Date of creation 2013-03-22 16:43:18
Last modified on 2013-03-22 16:43:18

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Definition Classification msc 06B35

Defines continuous lattice

A poset P is said to be *continuous* if for every $a \in P$

- 1. the set $wb(a) = \{u \in P \mid u \ll a\}$ is a directed set,
- 2. $\bigvee wb(a)$ exists, and
- 3. $a = \bigvee wb(a)$.

In the first condition, \ll indicates the way below relation on P. It is true that in *any* poset, if $b := \bigvee \text{wb}(a)$ exists, then $b \leq a$. So for a poset to be continuous, we require that $a \leq b$.

A continuous lattice is a complete lattice whose underlying poset is continuous. Note that if P is a complete lattice, condition 1 above is automatically satisfied: suppose $u, v \ll a$ and $D \subseteq P$ with $a \leq \bigvee D$, then there are finite subsets F, G of D with $u \leq \bigvee F$ and $v \leq \bigvee G$. Then $H := F \cup G \subseteq D$ is finite and $u \vee v \leq (\bigvee F) \vee (\bigvee G) = \bigvee H$, or $u \vee v \ll a$, implying that wb(a) is directed.

Examples.

- 1. Any finite poset is continuous, and so is any finite lattice (since it is complete).
- 2. A chain is continuous iff it is complete.
- 3. The lattice of ideals of a ring is continuous.
- 4. The set of all lower semicontinuous functions from a fixed compact topological space into the extended real numbers is a continuous lattice.
- 5. The set of all closed convex subsets of a compact convex subset of \mathbb{R}^n ordered by reverse inclusion is a continuous lattice.

Remarks.

- Every algebraic lattice is continuous.
- Every continuous meet semilattice is meet continuous.

References

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, *Continuous Lattices and Domains*, Cambridge University Press, Cambridge (2003).