Series solutions near an ordinary point (£5,295,3).
Problem 1. (radius of convergence).

Expand $\frac{1}{(1).x^2-2x+2} = \sum_{n=0}^{\infty} a_n x^n \quad (x_{o}=0)$. find the vadius of . Convergence. (2). $\frac{1}{x^2-2x+2} = \sum_{n=0}^{\infty} b_n (x-1)^n \quad (x_{o}=1)$. find the vadius of convergence. Without computing (an) and (bn).

Solution. The denominator is the polynomial $\chi^2 = 2x + 2$. With zeros: $\chi = 1 \pm i$.

So (1). Center $\chi_{0=0}$, so $\rho_{1} = |0 - (1+i)| = \sqrt{2}$. (2) Center $\chi_{0=1}$, so $\rho_{2} = |1 - (1+i)| = 1$.

Problem 2. (vadius of convergence lower bound).

Determine the lower bound for the vadius of convergence of the series solution for $(1+x^2)y'' + 2xy' + 4x^2y = 0$. (1). Center $x_0 = 0$. (2) center $x_0 = -\frac{1}{2}$.

Solution. $P(x)=1+x^2$, Q(x)=2x, $R(x)=4x^2$ polynomials. P(x) has zeros: $x=\pm \bar{x}$.

(1). Center $x_0=0$, so $p_1=|0-i|=1$. The series solution has radius of convergence at least(2) $p_1=1$.

(2) center $x_0 = -\frac{1}{2}$, so $p_2 = |-\frac{1}{2} - i| = \frac{1}{2}$. The series solution has radius of convergence at least (3) $p_2 = \frac{\sqrt{5}}{2}$. Problem 3. (Airy's equation).

Final the series general solution of y"-xy=0, at x=0.

Solution. $P(x) \equiv 1$, $Q(x) \equiv 0$, R(x) = -x. polynomials.

P(x) has no zeros. So radius of convergence $P = \infty$.

Let $y = \sum_{n=0}^{\infty} a_n x^n$, then $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$ and $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$.

Plug back in: $\sum_{n=2}^{\infty} n(n-1) a_n \chi^{n-2} - \chi \cdot \sum_{n=2}^{\infty} a_n \chi^n = 0$.

Shift index: $\sum_{n=0}^{\infty} (n+\alpha)(n+1) a_n x^n - \sum_{n=0}^{\infty} a_n x^{n+1} = 0$.

 $2.a_2 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2} \chi^n - \sum_{n=1}^{\infty} a_{n-1} \chi^n = 0$

 \Rightarrow . $a_{z=0}$ and. $(n+z)(n+1)a_{n+2}-a_{n-1}=0$. for n=1,2,3,...

Take N=3,6,9,... $0=a_2=a_5=a_8=...=a_{3k+2}$ (k=0,h2,...)

Take $N=1,4,7,\cdots$ $a_3=\frac{a_0}{2\cdot 3}$, $a_6=\frac{d_0}{2\cdot 3\cdot 5\cdot 6}$,

Take n=2,5,8,... $a_4 = \frac{a_1}{3.4}, a_7 = \frac{a_1}{3.4.6.7}$...

In general $\begin{cases} a_{3k} = \frac{a_0}{2 \cdot 3 \cdot 5 \cdot 6 - (3k-1)3k}, & k=1,2,... \end{cases}$ $a_{3k+1} = \frac{a_1}{3.4 \cdot 6.7 \cdot ... \cdot 3k(3k+1)}, \quad k=1,2,...$

where ao, a, are arbitrary constants.

So $y = \sum_{n=0}^{\infty} a_n x^n = a_0 \left(1 + \frac{x^3}{2 \cdot 3} + \dots + \frac{x^{3k}}{2 \cdot 3 \cdot \dots + (3k-1)3k} + \dots\right) + a_1 \left(x + \frac{x^4}{3 \cdot 4} + \dots + \frac{x^{3k+1}}{3 \cdot 4} + \dots\right)$

= ao y, + a, y2.

where $\{y_1,y_2\}$ is a fundamental set of solutions. (Since $W(y_1,y_2)(0) = \det(\binom{1}{0}) = 1 \neq 0$).