Undergraduates: Questions 1-3: 6 points. Question 4: 7 points. Don't do question

Graduates: Each question 5 points.

5

1. (6 points) Backton is connected to Crestville by three roads, and each road goes across a bridge, and they all use different bridges. The bridges are labeled A, B, and C. The probability that bridge A is up is 98%, the probability that bridge B is up is 97%, and the probability that bridge C is up is 96%. What is the probability that on any day an ambulance can drive from Crestville to the hospital in Backton?

$$P(can) = 1 - P(can't)$$

$$= 1 - P(A out)P(B out)P(C out)$$

$$= 1 - (1 - .98)(1 - .97)(1 - .96)$$

$$= 1 - .02 \times .03 \times .04$$

$$= 1 - .000024$$

$$= .999976$$

2. (6 points) Pg 54, #6

$$1 = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

$$1 = 3 \times P(X = 1) + 3 \times P(X = 2)$$

$$= 3 \times P(X = 1) + 3 \times 2 \times P(X = 1)$$

$$= 9P(X = 1)$$

$$P(X=1) = \frac{1}{9}$$

1	$\frac{1}{9}$
2	$\begin{array}{c} \overline{9} \\ \underline{2} \\ \overline{9} \\ 1 \end{array}$
3	$\frac{1}{9}$
4	$\frac{2}{9}$
5	$\frac{1}{9}$
6	9 2 9 1 9 2 9

$$P(<4) = \frac{1}{9} + \frac{2}{9} + \frac{1}{9} = \frac{4}{9}$$

3. (6 points) Pg 56 #14

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

- (a) $\frac{1}{6}$
- (b) $\frac{1}{3}$
- (c) $\frac{11}{36}$
- (d) $\frac{10}{30} = \frac{1}{3}$
- 4. (6 points) Pg 54, #7

$${E, OE, OOE, OOOE, \dots} = {O^*E}$$

$$E \in \{2, 4, 6\}, O \in \{1, 3, 5\}$$

Where O^*E indicates n Os followed by one E, $n \ge 0$.

5. (6 points) Pg 57 #17 Pick four items from the batch, a, b, c, d. P(a = defective) = .05, P(a not defective) = .95.

Pick the first item, and the probability it is not defective is $\frac{95}{100}$. Pick the second item, and the probability it is not defective is $\frac{94}{99}$. Pick the third item, and the probability it is not defective is $\frac{93}{98}$. Pick the second item, and the probability it is not defective is $\frac{92}{97}$.

$$\frac{95}{100} \times \frac{94}{99} \times \frac{93}{98} \times \frac{92}{97} = 0.811875$$

So, probability of all four being not defective = $0.81187511 \approx .812$.