Expression QTLs (II)

BBMS 3009: Genome Science (First Semester, 2021)

Dr. Yuanhua Huang School of Biomedical Sciences & Department of Statistics and Actuarial Science

Today's learning objectives

- Review the methods for predicting eQTLs and allelic specific expression
- Understand the principles in machine learning to prioritise variants
- Discuss the use of gene regulatory network
- Understand the principles in systems genomics

Recall

Alternative model (Likelihood
$$L_1$$
) $y=eta_0+x_1eta_1+x_2eta_2$ Null model (Likelihood L_0) $y=eta_0+x_1eta_1$

Billororida gorio expression	•	Differential	gene	expression
------------------------------	---	--------------	------	------------

•	χ_2	is	condition,	e.g.,	treated	or	untreated
---	----------	----	------------	-------	---------	----	-----------

- Usually small sample size; around 3 replicates
- Generalized linear model negative binomial for raw counts

 Expression 	QTLs	(eQTL)
--------------------------------	------	--------

- x_2 is genotype value 0, 1, 2, from cis- or trans- SNPs
- Usually, hundreds of samples
- log(RPKM + small_value) or log(TPM + small_value); Gaussian-like

Hypothesis testing:

- Likelihood ratio test: likelihood ratio between two models
- Wald test: mean and variance of β_2 in alternative model

0.6

0.9

0

Single-cell eQTLs

Data harmonization

QC + Normalization, cell type assignment, gene expression imputation

Federated eQTL analysis

Consistent eQTL analysis per cohort, efficient meta-analysis procedure

Allelic specific expression (ASE)

- Imbalance of the expression of two alleles
- One example reason: mutation in the promoter in one chromosome → affect factor binding → increase or reduce the expression → ASE
- Avoid mapping bias: use the right reference, possibly by masking the SNPs

Castel et al., Genome Biology, 2015
Przytycki & Singh, 2020, Cell Systems10, 193–203

Think: relation between ASE and eQTLs

Predict pathogenic variants

 How can we predict pathogenic variants by the epigenomic markers and / or other genomic features?

Evans et al, Genome Research, 2019

- Classification problem
- Training data (variants: positive & negative)
 - We have the pathogenic label: y
 - We have the feature vector: X

Learned boundary f(X)

Feature x_2

Feature x_1

- Fitting machine learning model: f(X)
 - For example, by minimizing errors in training set $\sum_{i=1}^{N} (f(X_i) y_i)^2$
- Predicting the pathogenic state of new variant $f(X_{new})$

Machine learning methods

- Predictive features (need exploration and prior knowledge)
 - Epigenetic marks
 - Functional annotations
 - Sequence motifs (or factor binding peaks)
 - Conservation across species
- Models
 - Logistic regression
 - Artificial neural network (deep learning)
 - Support vector machines
 - Random forest (decision tree based)
 - Many more, incl. ensemble or stack models

Different models may have advantages to a certain types of data distributions

Performance evaluation

- Cross-validation: 10-fold (assessing generalization)
 - Training set, (validation set), test set
- Sensitivity vs Specificity; Precision vs recall
 - Receiver Operating Characteristic (ROC) curve; Precision recall curve (PRC)
- Avoid systematic bias: check balance of positive vs negative samples

Revisit gene regulatory network (GRN)

- Recall: discussion of GRN on the motivation of transcriptomics
 - Systematic way to view the transcriptome instead of single genes
- Transcription factor
 - Binding to promoter region of other genes
 - Turn on or off the target gene: the right cell, right time, right amount
 - Estimated up to 1600 TFs in the human genome

Babu et al. 2004 Vaquerizas et al, 2009

香港大學
THE UNIVERSITY OF HONG KONG

Gene regulatory network with genetics

- Genetic variants interacting with transcriptional regulation
 - Genetic variants may affect the TF bindings
 - Potential mechanism of eQTLs and Allele specific expression
- CRISPR perturbations can be used to test the regulatory roles, e.g., <u>Perturb-seq</u>, <u>CROP-seq</u>

van der Wijst, et al. Genome Med, 2018

Systems genomics

- Why do we need Systems genomics?
- Conventional genetic analysis approaches failed to
 - Biologically interpret many statistical significances
 - Find out all disease susceptibility DNA sequence variations
 - Obtain a full picture of the development of human diseases
- Assays for multiple molecular layers
 - DNA sequence → Genomic data
 - Epigenetic markers → Epigenomic data
 - Gene expression → Transcriptomic data
 - Proteins → Proteomic data
 - Metabolites → Metabolomic data
 - Microbes → Microbiome data

Systems genomics: example

- The FTO region harbours the strongest genetic association with obesity
- Unclear mechanistic basis

Approaches

- GWAS → associated SNPs
- Epigenetics & chromatin capturing
 (Hi-C) → genes interaction
- Transcriptome → eQTL; further prediction of causative SNP
- CRISPR/Cas9 validation

Questions?

- Review the methods for predicting eQTLs and allelic specific expression
- Understand the principles in machine learning to prioritise variants
- Discuss the use of gene regulatory network
- Understand the principles in systems genomics

Relevant reading

 Albert and Kruglyak. The role of regulatory variation in complex traits and disease, Nat Rev Gen, 2015

