

551596

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2004年10月14日 (14.10.2004)

PCT

(10)国際公開番号
WO 2004/087625 A1

(51)国際特許分類7: C07C 1/24, 2/88, 11/18

(74)代理人: 高島一 (TAKASHIMA, Hajime); 〒5410044
大阪府大阪市中央区伏見町四丁目2番14号 藤村
大和生命ビル Osaka (JP).

(21)国際出願番号: PCT/JP2004/004038

(22)国際出願日: 2004年3月24日 (24.03.2004)

(81)指定国(表示のない限り、全ての種類の国内保護が
可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(25)国際出願の言語: 日本語

(26)国際公開の言語: 日本語

(30)優先権データ:
特願2003-095152 2003年3月31日 (31.03.2003) JP(84)指定国(表示のない限り、全ての種類の広域保護が
可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL,
SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY,
CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC,
NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).添付公開書類:
— 国際調査報告書2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイダンスノート」を参照。

WO 2004/087625 A1

(54)Title: PROCESS FOR PRODUCING ISOPRENE

(54)発明の名称: イソプレンの製造方法

(57)Abstract: A process for producing isoprene which comprises continuously or intermittently feeding isobutylene and/or t-butanol, formaldehyde, and water into an acidic aqueous solution to react the reactants while distilling off a mixture comprising isoprene generated from the liquid reaction mixture, water, unreacted starting materials, and other low-boiling matter(s), wherein the reaction is conducted while regulating the concentration of high-boiling by-products which have generated and accumulated in the liquid reaction mixture to 0.5 to 40 wt.%.

(57)要約: イソブチレンおよび／またはt-ブタノール、ホルムアルデヒドおよび水を酸性水溶液中に連続的または断続的に供給し、この反応混合液から生成したイソプレン、水、未反応原料および他の低沸点成分を含む混合物を留出させながら反応させることによりイソプレンを製造するに際し、前記反応混合液中に生成し蓄積されていく高沸点副生成物の濃度を0.5～40質量%の範囲内となるよう制御しながら、前記反応を行なう。

明細書

イソプレンの製造方法

技術分野

本発明はイソプレンの製造方法に関する。本発明の製造方法により得られるイ
5 ソプレンは、基礎化学原料として各種化学品およびポリマー原料に有効に用いら
れる。

背景技術

イソプレンの製造方法としては、酸性水溶液を含有する反応器に、イソブチレンおよび／またはt-ブタノール（以下、「イソブチレンおよび／またはt-ブタノール」を「C₄」と略記することがある。）、ホルムアルデヒドおよび水を連続的または断続的に供給し、かつ生成するイソプレンを水および他の低沸点成分と共に反応系外に留出させながら反応を行う方法が知られている（例えば、特開昭59-70623号公報参照）。

また、特開昭59-70623号公報に記載の製造方法において、C₄、ホルムアルデヒド、水および酸性水溶液の混合物（以下、「反応混合液」と略記する。）の一部を反応器から取り出し、これをC₄の少なくとも一部と併せて加熱した後、再び反応器に導入する製造方法が知られている（例えば、特開昭59-190930号公報参照）。なお、「水」は酸性水溶液などの水溶液として含まれると解してもよく、「反応混合液」は、反応による生成物および副生成物を含有20 していてもよい。

また、特開昭59-70623号公報に記載の製造方法において、反応系からガスとして留出する、生成したイソプレン、水、未反応原料および他の低沸点成分（以下、「生成したイソプレン、水、未反応原料および他の低沸点成分」を「反応留出ガス」と略記する。）中の主として水を分離させることにより水の熱量25 を回収し、さらに未凝縮ガスの熱量を、イソブチレンを気化させる際の熱源や、反応留出ガスを濃縮させ相分離して得た有機層から未反応イソブチレンを蒸留により回収する際の熱源などに使用することを特徴とするイソプレンの製造方法が

知られている（例えば、特開昭60-4138号公報参照）。

さらには、反応混合液中に蓄積する高沸点副生成物を分離するに際し、反応混合液またはその一部に、反応時の留出物の有機層から未反応原料およびイソブレンを留去して得られる残留物またはその一部を加え、該高沸点副生成物を含む有機層と酸性水溶液に分離することを特徴とするイソブレンの製造方法が知られている（例えば、特開昭59-116236号公報参照）。

しかしながら、本発明者等が上記のような従来のイソブレンの製造方法を検討したところ、これらの製造方法には、次の問題点が存在することが新たに判明した。

即ち、特開昭59-70623号公報、特開昭59-190930号公報および特開昭59-116236号公報に記載の製造方法を単に実施しただけでは、反応混合液中の高沸点副生成物の濃度が変動してしまい、反応混合液中の酸の濃度が安定せず、装置の腐食の問題やイソブレン生成の反応成績が悪化するという問題がある。

特に、反応混合液の一部を反応器から抜き取って、これをC₄の少なくとも一部と共に加熱する際、反応混合液中の高沸点副生成物の濃度が高過ぎても低過ぎても、熱が反応混合液に充分に伝わらないことが判明した。熱が充分に伝わらない場合、反応器内の反応混合液の温度が徐々に低下し、反応時における水の留出量が減少する傾向となるので、連続的に反応を行うために、該反応混合液面の高さを一定に制御すべくホルムアルデヒド水溶液の供給量を下げねばならず、その結果、単位時間当たりのイソブレンの生産量が低下する傾向となる。

一方、かかる状況で、反応器から抜き取った反応混合液とC₄の少なくとも一部を過剰に加熱することで反応器中の反応混合液の温度を一定に保持しようとすると、イソブレンの製造に要する熱量の使用効率が低下するという問題や、管路に高沸点副生成物が蓄積することで管路が詰まり易くなるという問題などが生じる。

そして、特開昭60-4138号公報に記載の製造方法では、反応留出ガスが

有する熱量を有效地に回収し再使用することができるものの、イソブレンの製造に要する熱量の補足としては満足のいくものではなく、工業的に実施するにはなお改善の余地がある。

本発明の目的は、上記した問題点を解決し、従来よりも効率的にイソブレンを

- 5 製造し得る方法を提供することにある。

発明の開示

本発明は、次の特徴によって、上記目的を達成するものである。

- (1) イソブチレンおよび／または t -ブタノール、ホルムアルデヒドおよび水を酸性水溶液中に連続的または断続的に供給し、この反応混合液から、生成した
10 イソブレン、水、未反応原料および他の低沸点成分を含む混合物を反応系外に留出させながら反応させることによるイソブレンの製造方法であって、

前記反応混合液中に生成し蓄積されていく高沸点副生成物の濃度を0.5～4
0質量%の範囲内となるよう制御しながら前記反応を行うことを特徴とする、イ
ソブレンの製造方法。

- 15 (2) 反応混合液を含有する反応器に、該反応混合液の抜取口を設け、該抜取口
から反応混合液の一部を抜き取り、該反応混合液から高沸点副生成物の少なくとも一部を分離除去した後、再び反応器に導入することにより、反応混合液中の高
沸点副生成物の濃度を上記範囲内に制御する、上記(1)に記載のイソブレンの
製造方法。

- 20 (3) 反応混合液の抜取口を少なくとも反応器の底部に設ける上記(2)に記載
のイソブレンの製造方法。

- (4) 反応混合液の抜取口を反応器の側壁部に設け、該抜取口の高さを、その高
さまで反応混合液を満たした場合の該液の体積がイソブレンの製造時における該
液の全体積の1/2以上となるような高さとする、上記(2)または(3)に記
25 載のイソブレンの製造方法。

- (5) 生成したイソブレン、水、未反応原料および他の低沸点成分を含む混合物
を反応留出ガスとして反応系外に留出させ、該反応留出ガスから水を分離させて

、得られた水を再び反応器に導入することにより、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、上記（1）～（4）に記載のイソプレンの製造方法。

（6）反応器に、反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装置を設け、イソブチレンおよび／または t -ブタノールを、反応器内の攪拌羽根の直下まで管路を延長して設けた導入口から攪拌羽根に向けて供給することにより、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、上記（1）～（5）に記載のイソプレンの製造方法。

（7）反応器に、反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装置を設け、かつ、反応器から反応混合液の一部を抜き取り、これをイソブチレンおよび／または t -ブタノールの少なくとも一部と共に熱交換器で加熱した後に再び反応器に導入する構成とし、加熱した該反応混合液を反応器に設けた導入口から攪拌羽根に向けて供給することにより、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、上記（1）～（6）に記載のイソプレンの製造方法

15 。

図面の簡単な説明

図1は、本発明の製造方法を説明するための製造設備の模式図である。

図2は、本発明の実施例において、本発明による製造方法を実施するために構築した設備の構成を模式的に示す図である。同図中に示した熱交換器2、3、5
20 、6、7、11では、配管の入出力関係を明確にするために、熱交換器内部での接続関係を実線と破線で模式的に表しているが、これらは内部の配管形状を表すものではない。

以下に、図1および図2に記載の符号の意味を示す。A：反応混合液、P1～P10：管路、1：反応器、2、3、5、6、7、11、12：熱交換器、4：高沸点副生成物分離槽、8、9、13：留出受層、10、14：蒸留塔。

発明を実施するための最良の形態

本発明のイソプレンの製造方法は、図1の製造設備の模式図によって概略的に

示すとおり、反応器 1 内の酸性水溶液中に、C₄ を管路 P 6 から、ホルムアルデヒドおよび水を管路 P 1 から連続的または断続的に供給し、この反応混合液 A から生成した、イソプレン、水、未反応原料および他の低沸点成分を含む混合物を、留出用管路 P 2 より反応留出ガスとして反応系外へ留出させながら反応させる手
5 法を用いる。この製造手法の基礎技術については、従来公知のイソプレンの製造技術と同様であって、前記した特開昭 59-70623 号公報、特開昭 59-1
90930 号公報、特開昭 60-4138 号公報および特開昭 59-11623
6 号公報を参照してよい。

ここで、従来にはない本発明の重要な特徴は、前記反応混合液 A 中に生成し蓄
10 積されていく高沸点副生成物（図示せず）の反応混合液中の濃度を 0.5 ~ 4.0 質量% の範囲内となるように制御しながら、前記イソプレンの製造を行う点にある。

例えば、特開昭 59-70623 号公報には、反応中に蓄積していく高沸点副生成物を除去すること、またその操作についての記載はあるが、高沸点副生成物
15 の濃度が反応成績に及ぼす影響については何ら記載されていない。これに対して、本発明では、高沸点副生成物を反応混合液中に一定量存在させることによって新たな作用効果が得られることを見出し、その濃度を 0.5 ~ 4.0 質量% の範囲内となるように高沸点副生成物の除去操作を制御することを特徴としている。

濃度を制御する高沸点副生成物は、反応器内では、通常、液中に広く分散しているが、攪拌効率によって、反応混合液中の上部や下部に偏っていることもある。高沸点副生成物の成分は特定できるものではないが、本発明のイソプレンの製造方法における生成物・副生成物の多量体などの高沸点有機化合物、反応原料および反応装置由来の無機物などの不純物などが挙げられる。

かかる高沸点副生成物の反応混合液中の濃度を 0.5 ~ 4.0 質量% の範囲内となるよう制御することで、該高沸点副生成物が熱伝達媒体として好ましく作用するので、熱交換器等を用いた反応混合液の加熱効率を好ましい値に維持でき、しかも高沸点副生成物による管路の詰まりなどのトラブルは生じない。これによっ

て、従来よりも、さらに効率よくイソブレンを製造することができる。

高沸点副生成物の反応混合液中の濃度は、1～30質量%の範囲内とするのがより好ましく、熱交換性の向上、および管路の詰まりなどのトラブルの抑制を高度に両立させる観点からは、2～20質量%の範囲内とするのが特に好ましい。

5 高沸点副生成物の反応混合液中の濃度が0.5質量%未満であると、反応混合液の加熱効率が低下し、以下順に、反応器内の反応混合液の温度が低下し、水の留出量が減少し、反応器内の反応混合液面の高さを一定に維持するために反応器に供給するホルムアルデヒド水溶液の量を減らすことになり、結果、単位時間当たりのイソブレンの生産量が減少する。前記した反応器内の反応混合液の温度の10 低下を防止するには、熱交換器における反応混合液の加熱を過剰に行なうことが考えられるが、そのような方法ではイソブレンの製造に要する熱量の使用効率が低下する、管路に高沸点副生成物が蓄積して管路がつまる、熱交換器表面付近の温度が高くなりすぎて酸による腐食の影響を受け易くなるという問題がある。

一方、高沸点副生成物の濃度が40質量%を超えると、熱交換器と反応器とを接続する管路や、該熱交換器自体の内部管路などが詰まり易くなり、運転トラブルの原因となる、熱交換器による反応混合液の加熱効率（与熱効率）が低下する、循環させている反応混合液が濃縮され易くなり、濃度の高まった酸が装置を腐食する原因となる、などの問題を生じる。

反応混合液中の高沸点副生成物の濃度を上記範囲内となるように制御するため20 の方法は、特に限定されないが、例えば、反応混合液の一部を取り出し（以下、取り出した反応混合液を「取出し反応混合液」と称することがある）、後述する適宜の除去処理法にて該取出し反応混合液から高沸点副生成物の少なくとも一部を除去し、かかる除去処理を受けた取出し反応混合液（以下、「除去処理済反応混合液」と称することがある）を再び反応器へ戻すという、一種のフィードバック制御が簡便な制御手法である。図1の例では、管路P3および／またはP4から反応混合液を抜き取り、高沸点副生成物分離槽4において高沸点副生成物を分離除去し、除去処理済反応混合液を管路P5から反応器へ戻している。

高沸点副生成物分離槽4において、反応混合液から高沸点副生成物を分離・除去するための手法は、特に限定されないが、例えば、有機溶媒を用いた抽出法を好適に用いることができる。

反応器内の反応混合液の一部を抜き取る頻度は、連続的でも、断続的でもよい。

5 また、抜き取り量は、反応器内における高沸点副生成物の蓄積量などを考慮して決定すればよい。反応混合液の抜き取り方としては、例えば、内容積120Lの反応器において、反応混合液を2L/時で連続的に抜き取りながら、高沸点副生成物の反応混合液中の濃度を0.5～40質量%の範囲内となるように制御する方法などが挙げられる。

10 反応混合液中の高沸点副生成物の濃度を測定する方法は特に限定されず、例えば、反応混合液の一部を抜き取って冷却すると、高沸点副生成物は固化するため、これを分離して質量を測定することにより、反応混合液中の高沸点副生成物の濃度を算出する方法などが挙げられる。

本発明において使用するホルムアルデヒドは、水溶液として反応器に供給する。
15 同伴する水に与える熱量、つまりイソブレンの製造に要する熱量を低減するという観点から、ホルムアルデヒド水溶液の濃度は、できるだけ高濃度にするのが好ましい。ホルムアルデヒド水溶液の濃度は、通常、20～70質量%の範囲内であるのが好ましく、25～60質量%の範囲内であるのがより好ましい。但し、該ホルムアルデヒド水溶液の濃度が高すぎるとパラホルムアルデヒドが析出し易
20 くなるという問題が生じる。

本発明において使用するC₄は、3-メチルブタン-1, 3-ジオール、3-メチル-2-ブテン-1-オール、3-メチル-3-ブテン-1-オール、3-メチル-1-ブテン-3-オール、メチルイソプロピルケトン、2-メチルブタナー、メチル-t-ブチルホルマール、4, 4-ジメチル-1, 3-ジオキサン、4-メチル-5, 6-ジヒドロ-2H-ピランなどを含んでいてもよい。また、反応条件下でイソブチレンおよびt-ブタノールに分解するメチル-t-ブチルエーテルなどを含んでいてもよい。

本発明で使用する酸性水溶液は、無機酸、有機酸およびそれらの塩類などの酸性物質の水溶液である。該酸性物質としては、反応条件下において低揮発性または不揮発性のものが好ましく、例えば、無機酸（リン酸、硫酸、ホウ酸など）、ヘテロポリ酸（ケイタングステン酸、リンタングステン酸など）、有機酸（p-トルエンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸など）、酸性塩（硫酸水素ナトリウムなど）などが挙げられる。

酸性水溶液のpHは、酸性物質の種類、反応温度、C₄の供給速度、ホルムアルデヒドの供給速度などにより異なり得るが、通常、pH 0.5～2.5の範囲内であるのが好ましく、pH 1～2の範囲内であるのがより好ましい。

本発明の製造方法においては、反応器中に、反応混合液の他に、必要に応じて反応条件下で不活性な低沸点化合物または不活性ガスを同時に供給しながら反応を行うことが可能である。かかる低沸点化合物としては、炭化水素類が好ましく、特に炭素数1～10のもの、例えば、n-プロパン、n-ブタン、n-ヘキサン、シクロヘキサンなどが挙げられる。また、不活性ガスとしては、窒素などが好ましいものとして挙げられる。

反応器に供給するC₄とホルムアルデヒドとのモル比（以下、「C₄/ホルムアルデヒド」と称する）は、3以上であるのが好ましく、5以上であるのがより好ましい。該モル比に、厳密な意味での上限はないが、このモル比を過度に大きくしてもイソプレンの収率の向上効果は小さく、かえってイソプレンの製造に使用する熱量が増大して経済的に不利となる。通常、C₄/ホルムアルデヒドは20以下であるのが好ましく、12以下であるのがより好ましい。なお、C₄/ホルムアルデヒドが3未満であると、イソプレンの収率が低下する傾向となる。

上記したC₄とホルムアルデヒドとのモル比から明らかなるおり、本発明では、ホルムアルデヒドに対してC₄を過剰に用いる。よって、本発明の製造方法において、反応器中に供給したC₄の過剰量分は、生成したイソプレン、低沸点成分および水と共に未反応のまま反応留出ガスとして反応系外へ留出するが、かかる反応系外へ留出した未反応のC₄は、他の留出成分から分離・回収後、本発明の

製造方法に再使用することができる。

反応系外に留出した未反応の C₄ は、反応条件下におけるイソブチレンと t - プタノールの平衡組成に近い組成である。即ち、たとえ本発明の製造方法において出発物質としてイソブチレンおよび t - プタノールのうちいずれか一種のみを 5 反応器に供給した場合でも、原料の原単位を低減する観点から未反応の原料を分離・回収して再使用すれば、イソブチレンと t - プタノールの混合物を原料として使用することになる。

上記のとおり、本発明では、C₄、ホルムアルデヒドおよび水を酸性水溶液中に連続的または断続的に供給し、この反応混合液から、生成したイソプレン、水、 10 未反応原料および他の低沸点成分を含む混合物を、反応留出ガスとして反応系外へ留出させながら反応させる方法をとる。

イソプレンを高収率で得るためにには反応器内の圧力（但し、反応条件下で不活性な低沸点化合物を原料と共に供給した場合は、その分圧を差し引いた圧力）が、反応温度における酸性水溶液の蒸気圧の 1. 1 ~ 2. 5 倍の範囲内にあるのが好 15 ましく、1. 1 ~ 2 倍の範囲内にあるのがより好ましい。

なお、反応温度における酸性水溶液の蒸気圧（以下、これを P_W と略記する。）は、該反応混合液に含まれる酸性物質の種類と濃度によって一義的に決まる物理定数である。反応器内の圧力が P_W の 2. 5 倍を超えるとイソプレンの収率が顕著に低下する傾向となる。一方、反応器内の圧力が P_W の 1. 1 倍未満で 20 ある場合、イソプレンの収率に顕著な低下はみられないが、ホルムアルデヒドの転化率が低下し、また反応留出ガス中のイソプレンに対する水の割合が増加して、反応で消費される熱量、即ち、イソプレンの製造に要する熱量が増大し、経済的に不利となる。

本発明における好適な反応温度は、反応混合液中の酸の濃度を考慮して決定され、通常、150 ~ 220 °C の範囲内であるのが好ましい。反応温度を 150 °C 未満にすると、反応速度を一定の水準に維持するために酸性水溶液の濃度を高めてもイソプレンの収率が低下する傾向となる。一方、反応温度が 220 °C を超え

てもイソプレンの選択率が著しく低下することはないが、最適選択率を与える条件でのホルムアルデヒドの転化率が低下し、逆にホルムアルデヒドの転化率が高くなるような反応条件を選択すると、イソプレンからの逐次反応が進行して副生成物が増え、結果としてイソプレンの選択率が低下するので有益ではない。

5 反応器へのホルムアルデヒド源（ホルムアルデヒド水溶液）の好ましい供給速度は、反応混合液中の酸の濃度、反応温度および反応圧力を考慮して決定される。

ホルムアルデヒド源の供給速度を大きくするためにには反応混合液中の酸の濃度を上げるか、あるいは反応温度を高める必要があり、この場合、反応器の腐食の問題が生じる。ホルムアルデヒド源の供給速度については下限はないが、小さく10 し過ぎると容積効率が悪化する。ゆえにホルムアルデヒド源の供給速度は、通常、反応混合液 1 kg につきホルムアルデヒド換算で 0. 2 ~ 3 モル／時の範囲内であるのが好ましく、0. 5 ~ 2 モル／時の範囲内であるのがより好ましい。

反応器に供給する水の量は、通常、反応器中の反応混合液の量が一定に保たれるように調節される。すなわち、この量は反応器から留出する水の量および反応15 により増減した水の量によって決められる。

上記したように、反応留出ガスを構成する成分の中で水の沸点は高いため、反応器内の圧力が高いと反応留出ガス中の水以外の成分の合計に対する水の割合が減少し、該圧力が低いと水の割合が増加する。故に、反応器から留出する水のモル数と留出する原料および生成物のモル数の比は反応器内の圧力によって規定さ20 れるといえる。また、留出する原料および生成物のモル数は、供給される C₄ のモル数にほぼ等しいため、留出する水と供給される C₄ の比率も反応器内の圧力によって規定され得る。従って、供給する水の量は、反応器内の圧力、C₄ の供給量および反応による水の増減を考慮して決定すればよい。

上記のとおり、反応混合液中には、反応を長時間にわたって実施するのに伴い、25 高沸点副生成物が生成し蓄積される。該高沸点副生成物は、反応混合液中で相分離し分散するため、反応器内の反応混合液の一部を連続的または断続的に抜き取り、高沸点副生成物分離槽（例えば、デカンターや抽出塔など）に導いて高沸点

副生成物の少なくとも一部を除去し、その濃度を制御する。

しかしながら、この高沸点副生成物は、反応混合液に対して比重の差が小さく、さらに比重の大きいものと小さいものが混在しているため、デカンテーションなどの比重差を利用した分液操作により分離するのは困難であり、また、該高沸点副生成物は、室温下で固化する性質を有するため、反応混合液の温度を一旦下げて高沸点副生成物を固化させてから分離除去する方法もあるが、再び反応混合液に熱量を与える必要がある。これらの点から、反応混合液と高沸点副生成物との分離を容易にするために、抽出溶剤を使用して抽出除去するのが好ましい。

かかる抽出溶剤としては、水より沸点が低く、水への溶解性が低く、かつ常圧で液状の炭化水素が好ましく、例えばn-ヘキサン、シクロヘキサンなどが挙げられる。

抽出溶剤としては、反応器から反応系外へ留出した反応留出ガスに含有される有機物から、蒸留によって未反応原料およびイソプレンを留出させた後の蒸留残渣として得られる化合物またはその一部の成分を使用することもできる。かかる蒸留残渣に含まれる化合物としては、4-メチル-5, 6-ジヒドロ-2H-ピラン、メチルイソプロピルケトン、2-メチルブタナール、2, 6-ジメチル-2, 5-ヘプタジエン、2, 6-ジメチル-1, 5-ヘプタジエン、3-メチル-3-ブテン-2-オールなどが挙げられるが、これら以外にも、炭素数4~15の種々の官能基を有する化合物が含まれている。

本発明の製造方法を実施する場合、イソプレンの製造に要する熱量、ならびにイソプレン、水、未反応原料および他の低沸点成分の留出に要する熱量を確保するため、反応器自体に加熱装置を設けてもよいが、適当な補助加熱装置を配置する態様が好ましい。例えば、図1に示すように、反応器の外部に補助加熱装置として熱交換器3を配置し、管路P7およびP9を通じて反応器1と該熱交換器3との間を反応混合液が循環する構成として反応混合液を加熱する態様などが挙げられる。

この態様の場合、反応混合液をそのまま外部の熱交換器に循環させて加熱する

と、該反応混合液に溶存しているイソブチレンの量が少ないため、反応器内に比べて沸点上昇が起こり、熱交換器内の反応混合液の温度が大幅に上昇する。かかる反応混合液の温度上昇によって副反応が増大し、これによってイソブレンの収率低下が生じる。これを防ぐために、図1に示すように、循環のために管路P7
5で取り出した反応混合液に、C₄の少なくとも一部を管路P8を通じて加え、これらを併せて熱交換器3で加熱し、管路P9を通じて反応器1へ導入する態様が好ましい。

但し、t-ブタノールはイソブチレンに比べて加熱による反応混合液の温度上昇を防ぐ効果が著しく小さい。しかも、t-ブタノールは熱交換器内で酸性水溶液と接することで、イソブチレンに転換され、はじめて前記した効果を示すため、循環加熱のために取り出した反応混合液に加えるC₄としては、イソブチレンが好ましい。

本発明では、反応留出ガスの有する熱量を回収して、イソブレンの製造に有効に利用することができる。

熱量回収の態様としては、例えば、反応留出ガス中の主として水を分離させることにより水の持つ熱量を回収する態様が挙げられる（例えば、図2では、熱交換器5において水の分離を行なっている。）。

また、回収した熱量の用途としては、未凝縮の反応留出ガスの熱量を、イソブチレンを気化させる際の熱源（例えば、図2では熱交換器6および7における熱源としている。）とすることや、反応留出ガスを凝縮させて相分離して得た有機層中の未反応イソブチレンを、蒸留により回収する際の熱源（例えば、図2では熱交換器11における熱源としている。）などに使用すること、反応留出ガスを水と熱交換させることにより水蒸気を発生させること、反応留出ガスを直接、イソブチレンの回収、t-ブタノールの回収またはイソブレンの回収もしくは精製の際に用いられる蒸留塔の再沸器に導入し、該再沸器の熱源として使用することなどが挙げられる。また、図2において、熱交換器5で得られたスチームは、熱交換器11などで加熱用のスチームとして用いてよい。

本発明では、反応混合液中の高沸点副生成物の濃度を0.5～40質量%の範囲内に制御するため、上記したように、反応混合液の一部を連続的または断続的にデカンターや抽出塔などに導き、該反応混合液から高沸点副生成物の少なくとも一部を除去する工程を含む。

5 この高沸点副生成物の除去方法は、本発明のポイントであるため、本発明者等はさらに検討を行った。その結果、前記したように、蓄積してくる高沸点副生成物には、反応混合液に対して比重の大きいものと小さいものがあり、反応器中に
おいて反応混合液に対して比重の大きい高沸点副生成物は反応混合液の下部、つまり反応器の底部に溜まり易く、比重の小さい高沸点副生成物は反応混合液の上
10 部に溜まり易い傾向にあることを見出した。

そこで、本発明の好ましい実施態様では、反応混合液中の高沸点副生成物の除去に際して、反応混合液の抜取口を少なくとも反応器の底部に設ける。例えば、
15 図1では抜取り管路P3が反応器の底面中央に設けてある。この抜取り管路P3を用いることによって、反応混合液に対して比重の大きい高沸点副生成物を、反応混合液の一部を連続的または断続的に抜き取る際に、反応器外に除去し易くなる。かかる抜取口は反応器の底面中央に設けるのが好ましいが、ここに限定されず、比重の大きい高沸点副生成物を取り出し得る充分に低い位置に1つ以上設ければよい。

これと同様に、本発明の好ましい実施態様では、反応混合液に対して比重の小さい高沸点副生成物を取り出し易くするために、反応混合液の抜取口を反応器の側壁部（反応器の胴体側部壁面）に設ける。その場合、該抜取口の高さは、その高さまで反応混合液を満たした場合の該液の体積が、製造開始時に収容すべき反応混合液の全体積の1/2以上、より好ましくは2/3以上の体積となるような高さ（以下、高さhと略記する。）とすることが好ましい。この高さhの部位に
25 抜取口を設けることによって、反応混合液の一部を連続的または断続的に抜き取る際に、反応混合液に対して比重の小さい高沸点副生成物を容易に除去することが可能となる。

そして反応器の底部および側壁部の両方に反応混合液の抜取口を設けることによって、反応混合液に対する比重の大小を問わず、高沸点副生成物を反応器中の反応混合液から効率的に除去することが可能となり、高沸点副生成物の濃度をより容易に0.5～40質量%の範囲内に制御することができる。

5 反応混合液の抜取口を反応器の底部に1つも設けなかった場合には、反応を長時間にわたって行うに伴い、反応器の底部に反応混合液に対して比重の大きい高沸点副生成物が蓄積していき、高沸点副生成物の反応混合液中の濃度を0.5～40質量%の範囲内に制御することが困難となる。そして、反応混合液の加熱効率の低下および管路の閉塞の問題や、反応混合液中の酸の濃度や原料の組成比の変動などにより反応の定常状態を維持できなくなるという問題が生じる。

また、反応混合液の抜取口を反応器の側壁部に設けなかった場合には、反応を長時間にわたって行うに伴い、反応混合液の上部に反応混合液に対して比重の小さい高沸点副生成物が蓄積していき、高沸点副生成物の濃度を0.5～40質量%の範囲内に制御することが困難となる。そして、反応混合液から生成したイソブレン、水、未反応原料および他の低沸点成分の反応留出ガスとしての反応器外への留出が妨げられて、反応器内の反応混合液面の上昇、反応混合液中の酸の濃度および原料の組成比の変動などにより反応の定常状態を維持できなくなるという問題が生じる。さらに反応留出ガスの留出量が減少すると、反応器内の反応混合液面の高さを一定に維持するために反応器に供給するホルムアルデヒド水溶液の量を減らさなければならなくなり、イソブレンの生産量が減少する。

反応混合液中の高沸点副生成物の濃度を0.5～40質量%の範囲内に制御するための、反応装置の好ましい構成の一例を図1を用いて説明する。反応器内の反応混合液中で攪拌羽根Wが水平回転するように攪拌装置（外部駆動装置は図示せず）を設け、C₄を供給する管路P6を反応器内の該攪拌羽根の直下まで延長し、導入口P6-1からC₄を攪拌羽根に当たるように、好ましくは噴出させて供給する。

C₄が該攪拌羽根に当たるのであれば、攪拌羽根とC₄の供給口の距離に厳密な

意味での制限はないが、C₄の分散効率の観点からは、例えば攪拌羽根の回転中心から先端までの距離が2mである場合、通常、0.3m以内の範囲であるのが好ましく、0.2m以内の範囲であるのがより好ましい。C₄が該攪拌羽根に当たらず供給される形式の場合、反応器内の反応混合液中の気体および液体の分散が不十分となり、高沸点副生成物の生成量が増加して反応混合液内に蓄積される高沸点副生成物の濃度が高まる傾向となる。

また、C₄の導入口P 6-1の形態に特に制限はないが、導入口P 6-1を構成する管をリング状に湾曲させ、その円周上に適当な間隔をおいて供給口を設ける様が好ましい。その場合、リング状とした導入口P 6-1の湾曲半径は、攪拌羽根の回転中心から先端までの距離の50～80%の長さとすることが好ましい。また、リング状とした導入口P 6-1の円周上に設けられる供給口の間隔は、円周を5～100等分する程度の間隔が好ましく、10～40等分する程度の間隔がより好ましい。

上記したように、反応器と外部熱交換器との間で反応混合液を循環させる際に、反応混合液にC₄を加えて外部熱交換器によって加熱し、再び反応器へ戻すことが好ましい（図1の管路P 7、P 8、P 9）。

かかる反応混合液を反応器へ戻す際の好ましい様としては、例えば図1に示すように、C₄が加えられてから熱交換器3で加熱された該反応混合液を、管路P 9により反応器の下部へ導入し、攪拌羽根Wに当たるように供給する。これによつて、反応器内の反応混合液中の気体および液体の分散を充分にし、高沸点副生成物の濃度の上昇を抑制することができ、濃度の制御も容易となる。ここで、反応器の下部としては、反応混合液を再度反応器に導入する際、該反応混合液が攪拌羽根に当たる場所であれば特に限定はないが、攪拌羽根の下方から反応器に導入するのが好ましい。

熱交換器より反応器に戻される反応混合液が管路P 9を経由して攪拌羽根に当たるように供給されない場合、反応器内における反応混合液中の気体および液体の分散が不十分となり、高沸点副生成物の生成量が増加して反応器内に蓄積され、

反応混合液中における濃度が高まる傾向となる。

本発明では、反応器に供給する水として、反応留出ガスから水を分離させ、かかる分離した水を再使用してもよい（以下、反応留出ガスから分離して再使用される水を「リサイクル水」と略記する。）。例えば、図2では、熱交換器5において分離した水は留出受層8に導入され、管路P10-1などを経由して反応器に供給され、再利用される。

かかるリサイクル水を直接反応器に供給することにより、反応器内の反応混合液量を一定に保つことができ、高沸点副生成物の反応混合液中の濃度を0.5～4.0質量%の範囲内に制御することが容易となる。またリサイクル水の温度は10 20～140°C（圧力約1.5 MPaの条件下）の範囲内にあるため、イソブレンの製造に要する熱量を低減することができる。リサイクル水を使用しない場合、即ち、新しい水（通常約25°C）を使用しても反応混合液中の高沸点副生成物の濃度を制御することはできるが、反応温度に加熱するまでに必要な熱量が増大するため、経済的に不利である。

15 イソブレンは、本反応方法の実施により反応系外へ留出した留出物の有機層を分離することにより得ることができる。図1の管路P2より留出した留出物から最終的にイソブレンが分離されるまでのステップについては公知技術（例えば、特開昭60-4138号公報など）を参照してよい。

以下、実施例により本発明を詳しく説明するが、本発明はかかる実施例に何ら限定されるものではない。

以下の実施例では、本発明のイソブレンの製造方法を実施するための設備を実際に構築し、反応混合液中の高沸点副生成物の濃度を0.5～4.0質量%の範囲内において種々の濃度で安定するよう制御し、それぞれの値の濃度を維持した状態において反応を8時間継続し、それについて、最後の1時間のホルムアルデヒドの転化率、イソブレン選択率および収率を調べた。

また、比較例では、反応器内の反応混合液中の高沸点副生成物の濃度を上記範囲外とし、実施例と比較することによって、高沸点副生成物の濃度の範囲の臨界

的意義を確認した。

(設備構成)

先ず、本発明のイソプレンの製造方法を実施するために構築した設備の一例を図2を用いて説明する。

5 反応器1として内容積120Lのタンクを用意し、これに、C₄導入管路P6、ホルムアルデヒド水溶液導入管路P1-1、水導入管路P1-2、酸性水溶液(リン酸水溶液)導入管路P1-3、生成物などの留出管路P2、反応混合液抜取り管路P3およびP4が接続されている。また、反応器は、温度計、圧力計、攪拌機、邪魔板など、反応制御に必要な付帯装置を備えている。

10 該反応器1に、4.6質量%ホルムアルデヒド水溶液、酸性水溶液としての2.5%リン酸水溶液およびホルムアルデヒドの12倍モルの水を供給した。一方、ホルムアルデヒドの8倍モルのC₄を熱交換器2で予熱し蒸発させて、リング状の供給口から攪拌羽根に吹き付けるように噴出させて反応器内に供給した。

15 また、反応混合液抜取り管路P3から管路P7を分岐し、反応器から抜き取った反応混合液をC₄と混合し、かかる混合液を熱交換器3を通して加熱し、反応器に戻す構成とした。なお、熱交換器3で加熱された反応混合液を反応器1内に戻す際には、攪拌羽根に向けて該羽根に当たるように噴出させる構成とした。

20 反応器1内で生成したイソプレンは、未反応のC₄、水、ホルムアルデヒドなどと共に、管路P2を通して反応留出ガスとして反応器外へ留出する。これらの反応留出ガスは、熱交換器5に送られる。熱交換器5では、熱交換用配管に流入した反応留出ガスと、熱交換器内に流入した冷却用水との間で熱交換が行なわれ(即ち、反応留出ガスは冷却され)、反応留出ガス中の水が分離される。また、熱交換器5に流入させた冷却水は反応留出ガスから熱量を得てスチームとなり、熱量の回収がなされる。

25 熱交換器5で分離した水は、留出受槽8へ送られる。

留出受槽8の水の一部は、管路P10-1を通して反応器へ直接供給されて反応器内の反応混合液量の調節に用いられ、また、管路P10-2を通して熱交換

器 2 へ供給され、ホルムアルデヒドと C₄ とのモル比を調節するのに用いられ、C₄ と共に蒸発させて反応器 1 へ供給される。留出受槽 8 の水の残りは、留出受槽 9 へ送られる。

一方、熱交換器 5 で凝縮されなかった化合物は、熱交換器 6 および熱交換器 7 5 で凝縮させ、留出受槽 9 へ送られ、そこで有機層と水層とに分離される。有機層は、熱交換器 7 に送られて加熱された後、イソブチレンを分離するための蒸留塔 10 へ送られる。

蒸留塔 10 における留分は、イソブチレンが主成分であり、熱交換器 12 で凝縮した後、留出受槽 13 へ送られる。

10 かかるイソブチレンを主成分とする留分の一部は、熱交換器 6 で加熱し蒸発させた後、一部はホルムアルデヒドとのモル比を調節するために熱交換器 2 へ、そして一部は熱交換器 3 の沸点上昇を防ぐため熱交換器 3 へ送られた後、反応器 1 へ戻される。また、留分の残りは蒸留塔 10 へ戻すか、別途イソブチレンの精製工程を経由した後、本発明の製造方法に原料として再使用される。

15 蒸留塔 10 の塔底液は、イソブチレンおよび未反応の t - ブタノールが主成分である。この塔底液を蒸留塔 14 で精製することにより、塔頂部よりイソブチレンが取得される。

一方、蒸留塔 14 の塔底液の主成分は t - ブタノールであり、別途精製して本発明の製造方法に再使用するが、この際に得られる副生成物は、高沸点副生成物 20 分離槽 4 に送られ、反応器から抜き取った反応混合液からの高沸点副生成物の分離の際に抽出溶剤として使用する。

反応器 1 内の反応混合液（高沸点副生成物を含む）は、反応器底面中央および反応器側壁部の反応混合液面付近に設けた各抜取口から抜き取られ、前記した抽出溶剤と混合した後、高沸点副生成物分離槽 4 へ送られ、そこで高沸点副生成物を含有する有機層（抽出溶剤）と水層に分離される。

有機層は燃料などの用途に有効利用され、水層のリン酸水溶液は少なくとも一部を反応器ヘリサイクルする。

反応器内の反応混合液中の高沸点副生成物の濃度測定のための反応混合液のサンプリングは、例えば、管路 P 3、P 4、P 7 に取出口を設けて行うことができる。高沸点副生成物の反応混合液中の濃度を確認しながら、該濃度が 0.5 ~ 4.0 質量% の範囲内になるように、該取出口からの反応混合液の取り出しの停止と

5 実行を適宜行う構成とした。

実施例 1 ~ 8

反応器における反応条件は、反応温度 175 ~ 178°C、反応圧力 1.52 M Pa、攪拌羽根の回転数 48 ~ 55 回転/分とした。

反応器（内容積 120 L）に、60 L の 2.5% リン酸水溶液を仕込み、上記
10 反応条件下で、4.6 質量% ホルムアルデヒド水溶液を 3.24 kg/時、イソブチレンを 17.7 kg/時、t-ブタノールを 6.02 kg/時、水を 9.08 kg/時の速度で連続的に供給し、反応を開始した。

反応開始から 24 時間後、図 2 に示す反応設備〔反応混合液の抜取口を、反応器の底部中央に 1 つと側部（反応器内の反応混合液の全体積の 4/5 となる高さ）に 1 つ設け、導入口 P 6-1 から C₄ を攪拌羽根に当たるように噴射し、かつ管路 P 9 を経由して反応混合液を反応器内に戻す際、攪拌羽根に当たるよう噴射する。そして、留出受槽 8 からリサイクル水を反応器へ再度導入する形態をとっている。〕において、主に高沸点副生成物分離槽 4 において高沸点副生成物の除去量を調節することによって、反応混合液中の高沸点副生成物の濃度をそれ
20 れ下記した所定の値となるように制御した。

制御した高沸点副生成物の濃度は次のとおりである。

0.5 質量%（実施例 1）、1 質量%（実施例 2）、2 質量%（実施例 3）、
5 質量%（実施例 4）、10 質量%（実施例 5）、20 質量%（実施例 6）、30 質量%（実施例 7）、40 質量%（実施例 8）。

25 それぞれの濃度で安定した状態で維持し、それから 8 時間反応を続け、最後の 1 時間のホルムアルデヒドの転化率、イソブレン選択率および収率を調べた。その結果を表 1 に示す。

比較例 1～4

反応混合液中の高沸点副生成物の濃度をそれぞれ 0 質量%（比較例 1）、0.3 質量%（比較例 2）、50 質量%（比較例 3）、60 質量%（比較例 4）に維持したこと以外は、実施例 1～8 と同様に反応を行ない、最後の 1 時間のホルムアルデヒドの転化率、イソプレン選択率および収率を調べた。この結果を表 1 に示す。

表 1

		高沸点副生成物 濃度（質量%）	ホルムアルデヒド 転化率（%）	イソプレン 選択率（%）	収率 (%)
実施 例	1	0.5	98.1	72.4	71.0
	2	1	98.2	72.4	71.2
	3	2	98.3	72.5	71.4
	4	5	98.3	72.7	71.5
	5	10	98.3	72.8	71.9
	6	20	98.5	73.0	71.6
	7	30	98.6	72.5	71.3
	8	40	98.8	72.3	71.0
比較 例	1	0.1	95.8	72.2	69.2
	2	0.3	96.7	72.3	69.9
	3	50	95.9	70.0	67.1
	4	60	95.7	68.5	65.6

実施例 1～8、比較例 1～4 に従って、それぞれの反応を行なったところ、表 1 から明らかなどおり、反応混合液中における高沸点副生成物の濃度を 0.5～40 質量%（実施例 1～8）の範囲内に維持することによって、反応器内での反応の定常状態が維持でき、また、ホルムアルデヒドの転化率が常に 98% 以上となり、イソプレンの収率が常に 71% 以上となることがわかった。

これらの結果から、高沸点副生成物の反応混合液中の濃度を 0.5～40 質

量%の範囲内に維持することによって、反応の定常状態を維持しながら効率よくイソプレンを製造することができる事がわかった。

一方、反応混合液中の高沸点副生成物の濃度を上記範囲外とした比較例1～4では、全て、ホルムアルデヒドの転化率が97%を下回り、イソプレンの収率も常に70%未満となることがわかった。

また、反応混合液中の高沸点副生成物の濃度を0.5質量%未満とした比較例1、2では、熱交換器3による反応混合液の加熱効率が低下し、そのため反応器内の反応混合液の温度が低下したことによりホルムアルデヒドの転化率が減少して収率が下がった。

10 高沸点副生成物の濃度を40質量%を上回る値とした比較例3、4では、反応器1と熱交換器3を連結する管路内に高沸点副生成物が蓄積していき、反応混合液を熱交換器3に送ることが困難になり、熱交換器3での加熱効率が低下した。そのため、反応器内の反応混合液の温度が低下したことによりホルムアルデヒドの転化率およびイソプレン選択率が減少して収率が下がった。

15 本発明のイソプレンの製造方法は、公知の他のイソプレンの製造方法（例えば、特開昭56-79628号公報およびHYDROCARBON PROCESSING, 167頁（1971年11月）参照）と比較して、製造工程が簡潔であり、さらにユーティリティを低く抑えることができ有利である。この方法において、これまで成し遂げられなかつた収率の向上を2%程度増加させることができたことは、製造コストの面から見ても本発明の分野においては非常に有益である。

産業上の利用可能性

本発明の製造方法により得られるイソプレンは、基礎化学原料として各種化学品およびポリマー原料に有効に用いられる。

請求の範囲

1. イソブチレンおよび／またはt-ブタノール、ホルムアルデヒドおよび水を酸性水溶液中に連続的または断続的に供給し、この反応混合液から、生成したイソブレン、水、未反応原料および他の低沸点成分を含む混合物を反応系外に留出させながら反応させることによるイソブレンの製造方法であって、
5 前記反応混合液中に生成し蓄積されていく高沸点副生成物の濃度を0.5～4.0質量%の範囲内となるよう制御しながら前記反応を行うことを特徴とする、イソブレンの製造方法。
2. 反応混合液を含有する反応器に、該反応混合液の抜取口を設け、該抜取口
10 から反応混合液の一部を抜き取り、該反応混合液から高沸点副生成物の少なくとも一部を分離除去した後、再び反応器に導入することにより、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、請求の範囲第1項に記載のイソブレンの製造方法。
3. 反応混合液の抜取口を少なくとも反応器の底部に設ける請求の範囲第2項
15 に記載のイソブレンの製造方法。
4. 反応混合液の抜取口を反応器の側壁部に設け、該抜取口の高さを、その高さまで反応混合液を満たした場合の該液の体積がイソブレンの製造時における該液の全体積の1/2以上となるような高さとする、請求の範囲第2項または第3項に記載のイソブレンの製造方法。
- 20 5. 生成したイソブレン、水、未反応原料および他の低沸点成分を含む混合物を反応留出ガスとして反応系外に留出させ、該反応留出ガスから水を分離させて、得られた水を再び反応器に導入することにより、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、請求の範囲第1項～第4項のいずれかに記載のイソブレンの製造方法。
- 25 6. 反応器に、反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装置を設け、イソブチレンおよび／またはt-ブタノールを、反応器内の攪拌羽根の直下まで管路を延長して設けた導入口から攪拌羽根に向けて供給することによ

り、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、請求の範囲第1項～第5項に記載のイソブレンの製造方法。

7. 反応器に、反応混合液中で攪拌羽根が水平回転するよう構成された攪拌装置を設け、かつ、反応器から反応混合液の一部を抜き取り、これをイソブチレンおよび／または t -ブタノールの少なくとも一部と共に熱交換器で加熱した後に再び反応器に導入する構成とし、加熱した該反応混合液を反応器に設けた導入口から攪拌羽根に向けて供給することにより、反応混合液中の高沸点副生成物の濃度を上記範囲内に制御する、請求の範囲第1項～第6項に記載のイソブレンの製造方法。
5

図 1

2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/004038

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C07C1/24, 2/88, 11/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C07C1/20-1/24, 2/86-2/88, 11/18

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 59-70623 A (Kuraray Co., Ltd.), 21 April, 1984 (21.04.84), & JP 59-116236 A & JP 59-190930 A & EP 106323 A1 & US 4511751 A & DE 3371902 A1	1-7
A	JP 50-62905 A (Bayer AG.), 29 May, 1975. (29.05.75), & US 3972955 A & DE 2347841 A1 & FR 2244738 A1	1-7

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
--	--

Date of the actual completion of the international search
25 May, 2004 (25.05.04)Date of mailing of the international search report
15 June, 2004 (15.06.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1' C07C1/24, 2/88, 11/18

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' C07C1/20-1/24, 2/86-2/88, 11/18

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 59-70623 A (株式会社クラレ) 1984. 04. 21 & JP 59-116236 A & JP 59-190930 A & EP 106323 A1 & US 4511751 A & DE 3371902 A1	1-7
A	JP 50-62905 A (バイエル・アクチングゼルシャフト) 1975. 05. 29 & US 3972955 A & DE 2347841 A1 & FR 2244738 A1	1-7

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

25. 05. 2004

国際調査報告の発送日

15. 6. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

藤森 知郎

4H 9357

電話番号 03-3581-1101 内線 3443