

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Т «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №5 по курсу «Моделирование»

на тему: «Моделирование работы информационного центра»

Студент <u>ИУ7-71Б</u>		Постнов С. А.
(Группа)	(Подпись, дата)	(Фамилия И. О.)
Преподаватель		Рудаков И. В.
- ·	(Подпись, дата)	(Фамилия И. О.)

СОДЕРЖАНИЕ

1	Зад	дание	3
2 Теоретическая часть			
	2.1	Схемы модели	4
	2.2	Равномерное распределение	5
	2.3	Переменные и уравнение имитационной модели	6
2	Пъ	NAMINOS NOS TIPOS	7
J	Практическая часть		

1 Задание

В информационный центр приходят клиенты (пользователи) через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса от пользователя за 20 ± 5 , 40 ± 10 и 40 ± 20 ед. времени (минут). Клиенты стараются занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель, откуда выбираются на обработку. На первый компьютер — от первого и второго операторов, на второй — от третьего. Время обработки запроса в компьютерах — 15 и 30 минут соответственно.

Смоделировать процесс обработки 300 запросов. Определить вероятность отказа.

2 Теоретическая часть

2.1 Схемы модели

На рисунке 2.1 представлена концептуальная схема модели.

Рисунок 2.1 – Концептуальная схема модели

В процессе взаимодействия клиентов с информационным центром возможно два режима работы:

- 1) режим нормального обслуживания, при котором клиент выбирает одного из свободных операторов, отдавая предпочтение тому, у кого максимальная производительность;
- 2) режим отказа клиенту в обслуживании, при котором все операторы заняты.

На рисунке 2.2 представлена схема модели в терминах систем массового обслуживания (CMO).

Рисунок 2.2 – Структурная схема модели

2.2 Равномерное распределение

Случайная величина X имеет равномерное распределение на отрезке [a;b], если её функция плотности распределения f(x) имеет вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b] \\ 0, & \text{иначе.} \end{cases}$$
 (2.1)

Функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b. \end{cases}$$
 (2.2)

Обозначается $X \sim R[a;b].$

2.3 Переменные и уравнение имитационной модели

Эндогенные переменные выглядят следующим образом:

- 1) время обработки задания *i*-ым оператором;
- 2) время решения задания на j-ом компьютере.

Экзогенные переменные выглядят следующим образом:

- 1) N_0 число обслуженных клиентов;
- 2) N_1 число клиентов, получивших отказ.

Вероятность отказа в обслуживании клиента будет вычисляться по формуле:

$$P_{fail} = \frac{N_1}{N_0 + N_1} \tag{2.3}$$

3 Практическая часть

На рисунке 3.1 представлен интерфейс программы.

Рисунок 3.1 – Интерфейс программы

На рисунке 3.2 представлен результат работы программы.

Рисунок 3.2 – Результат работы программы