Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №2 ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ Вариант №10

Группа: Р3211

Студент: Орчиков Даниил Валерьевич

Преподаватель: Малышева Татьяна Алексеевна

Оглавление

Цель работы	2
· Вычислительная реализация задачи:	
1 часть. Решение нелинейного уравнения	
Рабочие формулы	
Решение	
2 часть. Решение системы нелинейных уравнений	
Рабочие формулы	
Решение	
Программная реализация задачи	
Рабочие формулы	
Листинг программы	
 Примеры и результаты работы программы	
Пример 1	
Пример 2	
Пример 3	
Вывод	

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов

Вычислительная реализация задачи:

1 часть. Решение нелинейного уравнения

$$x^3 - 3.125x^2 - 3.5x + 2.458$$

Рабочие формулы

Метод Ньютона:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Метод половинного деления:

$$x_i = \frac{a_i + b_i}{2}$$

Метод простой итерации:

$$x_{i+1} = \varphi(x_i)$$

Решение

1. Графическое отделение корней

2. Интервалы изоляции корней:

(-2.5; -1), (0; 1), (3.5; 4)

- 3. Методы, используемые для уточнения корней:
 - а. Метод Ньютона
 - b. Метод половинного деления
 - с. Метод простой итерации
- 4. Первый корень (метод Ньютона):

Интервал изоляции - (-2.5; -1)

№ итерации	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_{k+1} - x_k $
1	-2.400	-20.966	28.780	-1.672	0.728
2	-1.672	-5.093	15.329	-1.339	0.332
3	-1.339	-0.862	10.251	-1.255	0.084
4	-1.255	-0.050	9.072	<mark>-1.250</mark>	0.006

5. Второй корень (метод половинного деления):

Интервал изоляции - (0; 1)

№ итерации	а	b	Х	f(a)	f(b)	f(x)	a-b
1	0.000	1.000	0.500	2.458	-3.167	0.052	1.000
2	0.500	1.000	0.750	0.052	-3.167	-1.503	0.500
3	0.500	0.750	0.625	0.052	-1.503	-0.706	0.250
4	0.500	0.625	0.563	0.052	-0.706	-0.322	0.125
5	0.500	0.563	0.531	0.052	-0.322	-0.133	0.063
6	0.500	0.531	0.516	0.052	-0.133	-0.040	0.031
7	0.500	0.516	0.508	0.052	-0.040	0.006	0.016
8	0.508	0.516	<mark>0.512</mark>	0.006	-0.040	-0.017	0.008

6. Третий корень (метод простой итерации):

Интервал изоляции - (3.5; 4)

Применим 3 способ преобразования уравнения:

$$f'(x) = 3x^{2} - 6.25x - 3.5$$

$$\max_{[3.5;4]} |f'(x)| = 19.5$$

$$\lambda = -0.051$$

Преобразованное уравнение:

$$\varphi(x) = -0.051x^{3} + 0.16x^{2} + 1.179x - 0.125$$

$$\varphi'(x) = -0.153x^{2} + 0.32x + 1.179$$

$$\varphi'(3.5) = 0.425$$

$$\varphi'(4) = 0.011$$

Условие сходимости выполняется

№ итерации	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	3.550	3.795	-1.172	0.245
2	3.795	3.866	0.006	0.071
3	3.886	3.878	0.202	0.011
4	3.878	<mark>3.879</mark>	0.226	0.001

2 часть. Решение системы нелинейных уравнений

$$\begin{cases} \cos(y-2) + x = 0\\ \sin(x+0.5) - y = 1 \end{cases}$$

Рабочие формулы

Метод простой итерации

$$\begin{cases} x_1^{i+1} = \varphi_1(x_1^i, x_2^i, \dots, x_n^i) \\ x_2^{i+1} = \varphi_2(x_1^i, x_2^i, \dots, x_n^i) \\ \dots \dots \dots \\ x_n^{i+1} = \varphi_n(x_1^i, x_2^i, \dots, x_n^i) \end{cases}$$

Решение

1. Графическое отделение корней

2. Нахождение корня методом простых итераций:

Решение находится в области $0 < x < 1, \quad -1 < y < 0$ ($x = -\cos(y-2)$

$$\begin{cases} x = -\cos(y - 2) \\ y = \sin(x + 0.5) - 1 \end{cases}$$

Проверим условие сходимости. В области G имеем:

$$\frac{\partial \varphi_1}{\partial x} = 0 \quad \frac{\partial \varphi_1}{\partial y} = \sin(y - 2)$$

$$\frac{\partial \varphi_2}{\partial y} = \cos(y + 0.5) \quad \frac{\partial \varphi_2}{\partial y} = 0$$

$$\frac{\partial \varphi_2}{\partial x} = \cos(x + 0.5) \quad \frac{\partial \varphi_2}{\partial y} = 0$$

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| = \left| \sin(y - 2) \right|$$

$$0.141 \le |\sin(y - 2)| \le 0.909$$

$$\left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| = |\cos(x + 0.5)|$$

$$0.071 \le |\cos(x + 0.5)| \le 0.878$$

Начальные приближение

·	$x^0 = 1, y^0 = 0$
1 шаг	, ,
$x^1 = -\cos(-2) = 0.416$	$ x^0 - x^1 = 0.584 > \varepsilon$
$y^1 = \sin(1.5) - 1 = -0.003$	$ y^0 - y^1 = 0.003 < \varepsilon$
2 шаг	., , , ,
$x^2 = -\cos(-2.003) = 0.419$	$ x^1 - x^2 = 0.003 < \varepsilon$
$y^2 = \sin(0.916) - 1 = -0.207$	$ y^1 - y^2 = 0.204 > \varepsilon$
3 шаг	
$x^3 = -\cos(-2.207) = 0.594$	$ x^2 - x^3 = 0.175 > \varepsilon$
$y^3 = \sin(0.919) - 1 = -0.205$	$ y^2 - y^3 = 0.002 < \varepsilon$
4 шаг	
$x^4 = -\cos(-2.205) = 0.593$	$ x^3 - x^4 = 0.001 < \varepsilon$
$y^4 = \sin(1.094) - 1 = -0.112$	$ y^3 - y^4 = 0.093 > \varepsilon$
5 шаг	
$x^5 = -\cos(-2.112) = 0.515$	$\left x^4 - x^5 \right = 0.077 > \varepsilon$
$y^5 = \sin(1.093) - 1 = -0.112$	$\left y^4 - y^5 \right = 0.000 < \varepsilon$
6 шаг	
$x^6 = -\cos(-2.112) = 0.515$	$\left x^5 - x^6 \right = 0.000 < \varepsilon$
$y^6 = \sin(1.015) - 1 = -0.151$	$ y^5 - y^6 = 0.039 > \varepsilon$
7 шаг	
$x^7 = -\cos(-2.151) = 0.548$	$ x^6 - x^7 = 0.033 > \varepsilon$
$y^7 = \sin(1.015) - 1 = -0.151$	$ y^6 - y^7 = 0.000 < \varepsilon$
8 шаг	
$x^8 = -\cos(-2.151) = 0.548$	$ x^7 - x^8 = 0.000 < \varepsilon$
$y^8 = \sin(1.048) - 1 = -0.134$	$ y^7 - y^8 = 0.017 > \varepsilon$
9 шаг	
$x^9 = -\cos(-2.134) = 0.534$	$ x^8 - x^9 = 0.014 > \varepsilon$
$y^9 = \sin(1.048) - 1 = -0.134$	$ y^8 - y^9 = 0.000 < \varepsilon$
10 шаг	
$x^9 = -\cos(-2.134) = \frac{0.534}{}$	$ x^8 - x^9 = 0.000 < \varepsilon$
$y^9 = \sin(1.034) - 1 = -0.141$	$ y^8 - y^9 = 0.007 < \varepsilon$

Программная реализация задачи

Рабочие формулы

$$\begin{vmatrix} \frac{\partial f_1(x,y)}{\partial x} & \frac{\partial f_1(x,y)}{\partial y} \\ \frac{\partial f_2(x,y)}{\partial x} & \frac{\partial f_2(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix}$$

$$x_{i+1} = x_i + \Delta x_i$$

$$y_{i+1} = y_i + \Delta y_i$$

Листинг программы

Представлен только код, непосредственно выполняющий вычисления

Весь код можно посмотреть тут (GitHub)

```
function chordMethod(a, b, accuracy) {
 function runA() {
  let v = 1
   document.getElementById("res").innerHTML = "<math>N^{\circ}
let x0 = a
  while (true) {
    \overline{\text{let}} \text{ fx0} = f["function"](x0)
    let fb = f["function"](b)
    x = x0 - (b - x0) / (fb - fx0) * fx0
    let fx = f["function"](x)
    document.getElementById("res").innerHTML +=
${v}${x0}${b}${x0}${fb}${Math.
abs(x0 - x)
    if (Math.abs(x0 - x) < accuracy) return
    x = 0
    if (v > 100) {
      document.getElementById("res").innerHTML = ""
      document.getElementById("info").innerHTML = "<br/>br>Ha данном интервале метод хорд не может получить решение"
     return
 function runB() {
  let v = 1
   document.getElementById("res").innerHTML = "<math>N_{\odot}
let x0 = b
  while (true) {
    let fx0 = f["function"](x0)
    let fa = f["function"](a)
    x = x0 - (a - x0) / (fa - fx0) * fx0
    let fx = f["function"](x)
    document.getElementById("res").innerHTML +=
${v}${a}${x0}${Math.}
abs(x0 - x)
    if (Math.abs(x0 - x) < accuracy) return
    v++
    if (v > 100) {
      document.getElementById("res").innerHTML = ""
      document.getElementById("info").innerHTML = "<br/>br>Ha данном интервале метод хорд не может получить решение"
 if (root(a, b, f["derivative"]) || root(a, b, f["derivative2"])) {
  alert("На заданном интервале применение метода может дать некорректный результат")
 let x
 if (f["derivative"]((a + b) / 2) * f["derivative2"]((a + b) / 2) > 0) {
  runA()
 if (f''' derivative'']((a + b) / 2) * f''' derivative2'']((a + b) / 2) < 0 || a > x || b < x) {
  runB()
 if (a > x || b < x) {
function newtonMethod(a, b, accuracy) {
 \textit{document}. \textbf{getElementById} ("res"). inner HTML = "<\!\!\text{tr}\!\!>\!\!<\!\!\text{th}\!\!>\!\!N^{\!o}
function run() {
```

```
let v = 1
            while (true) {
                  let fx0 = f["function"](x0)
                  let dfx0 = f["derivative"](x0)
                  x = x0 - fx0 / dfx0
                  document.getElementById("res").innerHTML +=
   ${v}${x0}${fx0}${dfx0}${x}${Math.abs(x0 - x)}
                  if (Math.abs(x0 - x) < accuracy) return
                  x0 = x
                  if (v > 100) {
                         document.getElementById("res").innerHTML = ""
                         document.getElementById("info").innerHTML = "<br/>br>На данном интервале метод Ньютона не может получить решение"
     if (root(a, b, f["derivative2"])) {
            alert("На заданном интервале применение метода Ньютона может дать некорректный результат")
     let x0, x
     if (f["function"](a) * f["derivative2"](a)) {
           x0 = a
     run()
     if (a > x || b < x)
            document.getElementById("res").innerHTML = "<math>N_{\odot}
if (f["function"](a) * f["derivative2"](a)) {
                 x0 = b
           else x0 = a
            run()
function simpleIterationMethod(a, b, accuracy) {
     \textit{document}. \\ \texttt{getElementById} \\ (\text{"res"}). \\ \texttt{innerHTML} = \text{"}<\texttt{tr}><\texttt{th}>\texttt{N}^{\underline{0}} \\ \texttt{Illara}</\texttt{th}><\texttt{th}>\texttt{x}_i</\texttt{th}><\texttt{th}>\texttt{x}_{\{i+1\}}</\texttt{th}><\texttt{th}>\texttt{phi}\\ (x_{\{i+1\}}</\texttt{th}><\texttt{th}>\texttt{phi}) \\ \texttt{innerHTML} = \text{"}<\texttt{th}>\texttt{n}^{\underline{0}} \\ \texttt{innerHTML} = \text{"}<\texttt{innerHTML} 
1\})<(th>f(x_{k+1})<(th>|x_k - x_{k+1}|"
     function run() {
            let x0 = a
            while (true) {
                  x = x0 + lambda * (f["function"](x0))
                  (f["function"](x))  f["function"](x)  f[Math.abs(x0 - x)]  (td > (td > x)) < (td > x)  f[math.abs(x0 - x)] < (td > x) < (td > x
                  if (Math.abs(x0 - x) < accuracy) return
                  v++
                  x0 = x
                  if (v > 100) {
                         document.getElementById("info").innerHTML += "<br>Не удалось добиться нужной точности за вменяемое количество
     if (root(a, b, f["derivative"])) {
           alert("На заданном интервале применение метода простых итераций может дать некорректный результат")
     let mx = Number.MIN_VALUE
     for (let i = a; i \le b; i += Math.abs(a - b) / 100)
            if (mx < Math.abs(f["derivative"](i)))</pre>
                  mx = Math.abs(f["derivative"](i))
     let lambda = 1 / mx
     lambda *= f["derivative"](mx) > 0? -1:1
      document.getElementById("info").innerHTML = "Достаточное условие" + (lambda * f["derivative"](mx) + 1 < 1? " ": " не ") +
```

```
console.log(lambda * f["derivative"](mx) + 1)
     let x
     run()
     if (a > x || b < x) {
           \label{eq:document} \textit{document}. \textbf{getElementById}("res"). \textbf{innerHTML} = "Nº III arax_ix_ix_i+1}phi(x_{i} + x_{i} + x_{
 1})  (x_{k+1})  |x_k - x_{k+1}|  |x_k - x_{k+1}| < |x_k -
          lambda *= -1
           console.log(lambda * f["derivative"](mx) + 1)
           document.getElementById("info").innerHTML = "Достаточное условие" + (lambda * f["derivative"](mx) + 1 < 1?" ": " не ") +
          run()
function root(a, b, func) {
    const step = Math.abs(b - a) / 100;
     let previousSign = Math.sign(func(a));
     let currentSign;
     for (let x = a; x \le b; x += step) {
           currentSign = Math.sign(func(x));
           if (currentSign !== previousSign || currentSign === 0) {
           previousSign = currentSign;
     return 0;
function hasMoreThat1Root(a, b) {
     a = root(a, b, f["function"])
     return root(a, b, f["function"])
function systemNewtonMethod(x0, y0, accuracy) {
     document.getElementById("info").innerHTML = ""
     document.getElementById("check").innerHTML = ""
     while (true) {
           let a11 = f["derivative1X"](x0, y0)
           let a12 = f["derivative1Y"](x0, y0)
           let a21 = f["derivative2X"](x0, y0)
           let a22 = f["derivative2Y"](x0, y0)
           let b1 = -f["function1"](x0, y0)
           let b2 = -f["function2"](x0, y0)
           let d = a11 * a22 - a12 * a21
           if (Math.abs(d) < Number.EPSILON) {</pre>
                  document.getElementById("res").innerHTML = ""
                 document.getElementById("info").innerHTML = "Определитель матрицы равен нулю"
           if (d === 0) break
           let d1 = b1 * a22 - b2 * a12
           let dx = d1 / d
           let dy = d2 / d
           document.getElementById("res").innerHTML +=
  ${v}${x0}${y0}${Math.abs(dx)}${Math.abs(dy)}
          x = x0 + dx
           if (Math.abs(dx) <= accuracy && Math.abs(dy) <= accuracy) {</pre>
           x0 = x
```

```
y0 = y v++ if (v > 300) { document.getElementById("info").innerHTML += "<br/>br>He удалось добиться нужной точности за вменяемое количество итераций." return } } document.getElementById("check").innerHTML = `f1(${x}, ${y}) = ${f["function1"](x, y)} \approx ${Math.round(f["function1"](x, y))}^* document.getElementById("check").innerHTML += `<br/>br>f2(${x}, ${y}) = ${f["function2"](x, y)} <math>\approx ${Math.round(f["function2"](x, y))}^*}
```

Примеры и результаты работы программы

Пример 1

Пример 2

 $-4.918010542652314\\ -4.917198665542184\\ -4.917998000203651\\ -0.00006392808369382053\\ 0.0008118771101299771\\ -0.00006392808369382053\\ -0.00008118771101299771\\ -0.00006392808369382053\\ -0.00008118771101299771\\ -0.00006392808369382053\\ -0.000063928083693\\ -0.000063928083693\\ -0.000063928083693\\ -0.00006392808369\\ -0.00006392808369\\ -0.00006392808369\\ -0.00006392808208\\ -0.00006392808208\\ -0.00006392808208\\ -0.00006392808\\ -0.000060808\\ -0.0000608\\ -0.0000608\\ -0.0000608\\ -0.0000608\\ -0.0000608\\$

Пример 3

 $\begin{array}{l} f1(0.4545903553343455,\,1.976374917891506) = 1.4033219031261979e\text{-}13 \approx 0 \\ f2(0.4545903553343455,\,1.976374917891506) = 8.471001677889944e\text{-}14 \approx 0 \end{array}$

Вывод

Во время выполнения данной лабораторной работы я познакомился с различными итерационными методами решения нелинейных уравнений и систем нелинейных уравнений и запрограммировал некоторые из них.