KVM 下虚拟机 cpu 性能测试

测试目的:测试不同数量虚机同时工作对于 cpu 性能的影响

测试环境

主机: Dell R720

CPU: Intel Xeon E5-2650 @2.00GHz

内存: 128G

硬盘: 600G*2 (raid1) 测试工具: y-cruncher

准备工作:

主机搭建 KVM 环境

虚拟机安装 (centos6.6 64bit)

虚拟机配置(cpu: 8 核 内存: 16G 硬盘: 20G)

y-cruncher 官网下载软件,解压到虚拟机

clone 出另外7台相同虚拟机

效果如下:

测试软件界面:

```
y-cruncher v0.7.1 Build 9466 ( www.numberworld.org )
Copyright 2008-2017 Alexander J. Yee ( a-yeeQu.northwestern.edu )

Distribute Freely - Please report any bugs.

Tuning: Linux - x64 SSE3 " Kasumi

Benchmark Pi (all in ram)
Component Stress Tester
Run I/O Performance Analysis

Custom Compute a Constant
- Compute other constants (e, Golden Ratio, etc...)
- Choose your own settings (use disk for large computations)

BBP Digit Extractor for Pi
Digit Viewer

Advanced Options
About
```

这里我们主要测试 cpu,选择 0 在内存里进行计算

A∨ailab	le Memory: 14.5 GiB	
Option	Decimal Digits	Approx. Memory Needed
1	25,000,000	129 MiB
2	50,000,000	245 MiB
3	100,000,000	479 MiB
4	250,000,000	1.11 GiB
5	500,000,000	2.21 GiB
6	1,000,000,000	4.41 GiB
7	2,500,000,000	10.8 GiB
8	5,000,000,000	21.5 GiB
9	10,000,000,000	43.1 GiB
10	25,000,000,000	109 GiB
11	50,000,000,000	224 GiB
12	100,000,000,000	473 GiB
13	250,000,000,000	1.18 TiB
14	500,000,000,000	2.36 TiB
15	1,000,000,000,000	4.72 TiB
16	2,500,000,000,000	11.5 TiB
0	I prefer SuperPi sizes.	(1M, 2M, 4M)

这款软件主要是计算 π 小数点后位数,这里我们选择了 6,小数点后 10 亿位进行计算。所需内存大概 4.41G。

测试步骤:

1.只开启1台虚机进行测试,分别测试了4台,理论上8核,结果如下。

	node1	node2	node3	node4
开启1台虚机	363. 686s	368. 522s	369. 221s	367. 695s

2.分别同时开启 2 台虚机测试, 理论上共 16 核, 结果如下。

	node1	node2	node3	node4
开启2台虚机	407.880s	412. 633s		

3.同时开启 4 台虚机测试,理论上已经跑满了 32 核,结果如下。

	node1	node2	node3	node4
开启 4 台虚机	601.848s	612. 939s	603. 040s	607. 398s

4.同时开启8台虚机测试,理论上已经跑出了64核,结果如下。

	node1	node2	node3	node4	node5	node6	node7	node8
开启8台虚机	1108.006s	1137.601s	1113. 393s	1116.832s	1121. 106s	1118. 893s	1115. 256s	1106. 261s

我们取前 4 台虚机做对比图如下:

测试结果:通过测试可以看出主机的负载越高对于虚机的性能影响越大,虚机核心超出主机物理核心一倍的情况下测试,计算用时也几乎是1倍。