土木工程学院2022级开题汇报

>内禀最优约束比的梁板壳结构 < 有限元无网格混合分析方法

汇报人: 徐洋涛

指导老师: 许斌 吴俊超

2023年12月15日

> 目录 <

- 1.研究背景
- 2.研究方案
- 3.进度安排

梁、板结构

壳结构

主要研究对象为考虑横向剪切应变的深梁、厚板、厚壳结构

Mindlin板几何方程

位移:

$$\begin{cases} u_{\alpha}(x) = -x_3 \varphi_{\alpha} & \alpha = 1, 2 \\ u_3(x) = w \end{cases}$$

应变:

$$\begin{cases} \varepsilon_{\alpha\beta}(x) = -\frac{x_3}{2}(\varphi_{\alpha,\beta} + \varphi_{\beta,\alpha}) \\ \varepsilon_{\alpha3}(x) = \frac{1}{2}k(w_{,\alpha} - \varphi_{\alpha}) \end{cases}$$

k 为剪切修正系数

平面应变假设:

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = \frac{E}{1 - \nu^2} \begin{vmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{(1 - 2\nu)}{2} \end{vmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ 2\varepsilon_{12} \end{cases} \qquad \begin{cases} \sigma_{13} \\ \sigma_{23} \end{cases} = 2G \begin{cases} \varepsilon_{13} \\ \varepsilon_{13} \end{cases}$$

$$\begin{bmatrix} \sigma_{13} \\ \sigma_{23} \end{bmatrix} = 2G \begin{bmatrix} \varepsilon_{13} \\ \varepsilon_{13} \end{bmatrix}$$

$$M_{lphaeta}=\int_0^h x_3 \sigma_{lphaeta} dx_3 \qquad \qquad Q_lpha=k \! \int_0^h \sigma_{lpha 3} dx_3 \, ,$$

$$\begin{bmatrix} M_{11} \\ M_{22} \\ M_{12} \end{bmatrix} = -\frac{Eh^3}{12(1-\nu^2)} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{(1-2\nu)}{2} \end{bmatrix} \begin{bmatrix} \varphi_{1,1} \\ \varphi_{2,2} \\ \varphi_{1,2} + \varphi_{2,1} \end{bmatrix}$$

剪力:

$$\begin{cases} Q_{\scriptscriptstyle 1} \\ Q_{\scriptscriptstyle 2} \end{cases} = kGh \begin{cases} w_{\scriptscriptstyle ,1} - \varphi_{\scriptscriptstyle 1} \\ w_{\scriptscriptstyle ,2} - \varphi_{\scriptscriptstyle 2} \end{cases}$$

伽辽金弱形式:

$$D^b \int_{\Omega} \delta oldsymbol{\kappa}^T oldsymbol{D} oldsymbol{\kappa} d\Omega + D^s \int_{\Omega} \delta oldsymbol{\gamma}^T oldsymbol{\gamma} d\Omega + \int_{\Gamma^h} \delta oldsymbol{ heta}^T ar{oldsymbol{M}} d\Gamma + \int_{\Gamma^h} \delta w^T ar{oldsymbol{Q}} d\Gamma - \int_{\Omega} \delta w q d\Omega = 0$$

$$oldsymbol{\kappa} = egin{cases} arphi_{1,1} \ arphi_{2,2} \ arphi_{1,2} + arphi_{2,1} \ \end{cases} \qquad oldsymbol{\gamma} = egin{cases} w_{,1} - arphi_{1} \ w_{,2} - arphi_{2} \ \end{cases} \qquad oldsymbol{D} = egin{cases} 1 &
u & 0 \
u & 1 & 0 \
0 & 0 & \frac{(1-2
u)}{2} \ \end{cases}$$

抗弯刚度和抗剪刚度

$$D^b = \frac{Eh^3}{12(1-\nu^2)} \qquad \qquad D^s = kGh$$

抗剪刚度过大导致剪切自由度受到约束,引起自锁

缩减积分法

$$D^b \int_{\Omega} \delta oldsymbol{\kappa}^T oldsymbol{D} oldsymbol{\kappa} d\Omega + D^s \int_{\Omega} \delta oldsymbol{\gamma}^T oldsymbol{\gamma} d\Omega + \int_{\Gamma^h} \delta oldsymbol{ heta}^T ar{oldsymbol{M}} d\Gamma + \int_{\Gamma^h} \delta w^T ar{oldsymbol{Q}} d\Gamma - \int_{\Omega} \delta w q d\Omega = 0$$

Q4R1单元棋盘模式应力

积分点过少将导致单元间的应力振荡,影响计算精度

混合离散分析方法

挠度离散 ● 挠度节点

$$oldsymbol{u}^h(oldsymbol{x}) = \sum_{I=1}^{n_{\mathrm{u}}} N_I^{\mathrm{u}}(oldsymbol{x}) d_I^{}$$

应力离散 十应力节点

$$Q^h(\mathbf{x}) = \sum_{I=1}^{n_q} N_I^q(\mathbf{x}) q_I^{}$$

自由度需根据单元进行布置,无法任意调整

养绮大学

LBB稳定性条件

$$\inf_{q \in Q} \sup_{w \in H} \frac{b(w,q)}{\|w\| \|q\|} \ge \beta > 0 \qquad \qquad \dim(w) : \dim(q)$$

LBB稳定性条件和自由度比例之间的关系不明确

$rac{h}{R}$	$ rac{oldsymbol{u}^f}{oldsymbol{u}^c}{-}1 $	$ rac{oldsymbol{v}^f}{oldsymbol{v}^c}\!-\!1 $	$ rac{oldsymbol{ heta}^f}{oldsymbol{ heta}^c} - 1 $
1/5	0.35%	1.59%	2.09%
1/10	2.57%	3.24%	3.57%
1/20	9.08%	9.30%	9.04%
1/30	17.83%	17.82%	16.80%
1/40	27.48%	27.28%	25.54%
1/50	36.90%	36.58%	34.26%
1/100	69.27%	68.83%	65.96%
1/200	89.75%	89.54%	88.06%
1/300	95.13%	95.02%	94.24%
1/400	97.19%	97.13%	96.66%
1/500	98.18%	98.14%	97.83%
1/1000	99.54%	99.53%	99.45%

悬臂曲梁问题:

半径: R=1

荷载: P = 1000

杨氏模量: $E = 3 \times 10^6$

悬臂曲梁问题:

半径: R=1

荷载: P = 1000

厚度: h=1/10

杨氏模量: $E = 3 \times 10^6$

问题:

- 1.消除自锁的最优自由度比例;
- 2.如何任意调整约束自由度比例。

解决方案:

内禀最优约束比的有限元无网格混合分析方法

无网格法具有全域高阶连续光滑的形函数

研究方案

时间	研究内容	进度情况	
2023.7-2023.12	验证LBB稳定性条件与自由度比例之间的关系		
2024.1-2024.2	进行Timoshenko假设下梁结构、曲梁结构的无网格有 限元混合离散分析	0	
2024.3-2024.9	进行Mindlin假设下板壳结构的有限元无网格混合离散 分析		
2024.10-2024.12	整理成果并完成论文初稿撰写		
2025.1-2025.3	进一步修改完善论文,形成并提交论文终稿		
● 已完成 ○ 正在进行			

请各位老师批评指正!