Universidade Federal do Amazonas Mestrado e Doutorado Interinstitucional

Cap 1. Introdução Aulas 03-04

Inteligência Artificial 2016/1

José Francisco de Magalhães Netto

jnetto@icomp.ufam.edu.br

Boa Vista, 11/04/2016

Curso: Inteligência Artificial

- Livro base
 - Inteligência Artificial, Russell & Norvig,
 Editora Campus. 3ª Edição, 2013.

O que é Inteligência Artificial (IA)?

- Há milhares de anos o homem busca entender como pensamos.
 - Como somo capazes perceber, compreender, prever e manipular o mundo?
 - Filosofia, Psicologia e Neurociência tentam responder essas questões.
- O campo da Inteligência Artificial vai mais além.
 - Tenta também construir sistemas ou entidades inteligentes.
- Atualmente a IA abrange uma variedade de temas.
 - Áreas de uso geral como aprendizado e percepção.
 - Tarefas específicas como jogos de xadrez, detecção de fraudes, tradução automática, reconhecimento de voz, veículos autônomos

O que é um sistema inteligente?

 As abordagens para o estudo de IA se dividem em 4 categorias:

	Humano	Racional
Pensamento	Sistemas que pensam como seres humanos	Sistemas que pensam racionalmente
Comportamento	·	Sistemas que agem racionalmente

Agindo de forma humana: Teste de Turing

- Turing em 1950 propôs o famoso Teste de Turing no artigo "Computing Machinery and IIntelligence".
- O teste foi proposto para fornecer uma definição operacional de inteligência.
- O computador passará no teste se um interrogador humano, depois de propor algumas perguntas por escrito, não for capaz de distingui-lo de um humano.

Agindo de forma humana: Teste de Turing

- Para passar no teste, o computador precisaria ter como capacidades:
 - Processamento de linguagem natural
 - Representação de conhecimento
 - Raciocínio automatizado
 - Aprendizado de máquina
- O teste evita a interação física direta para focar na inteligência.
 - O chamado "Teste de Turing Total" inclui um sinal de vídeo para testar habilidades de percepção e também permite manipulação de objetos (robótica).
- A crítica principal em relação ao teste é que ele não é uma definição a partir de princípios básicos e sim de imitação.

O que é um sistema inteligente?

 As abordagens para o estudo de IA se dividem em 4 categorias:

	Humano	Racional
Pensamento	· · · · · · · · · · · · · · · · · · ·	Sistemas que pensam racionalmente
Comportamento	Sistemas que agem como seres humanos	Sistemas que agem racionalmente

Pensando de forma humana: modelagem cognitiva

- A modelagem cognitiva surgiu nos anos 60 para tentar construir teorias precisas e verificáveis sobre os processos de funcionamento da mente humana.
- Como validar?
 - Top-down: Prevendo e testando o comportamento de sujeitos humanos (ciência cognitiva).
 - Bottom-up: Identificação direta de dados neurológicos (neurociência cognitiva).
- Hoje em dia são áreas separadas de IA.

O que é um sistema inteligente?

 As abordagens para o estudo de IA se dividem em 4 categorias:

	Humano	Racional
Pensamento	Sistemas que pensam como seres humanos	Sistemas que pensam racionalmente
Comportamento	Sistemas que agem como seres humanos	Sistemas que agem racionalmente

Pensando racionalmente: "leis do pensamento"

- Filósofo grego Aristóteles: tentou codificar os raciocínios corretos = silogismos.
 - "Sócrates é um homem; todos os homens são mortais; então, Sócrates é mortal".
 - O estudo dessas leis deu início ao campo da lógica = notação e regras de derivação para pensamentos.
- Existem programas que, em princípio, podem resolver qualquer problema solucionável descrito em notação lógica.
- Obstáculos na prática:
 - Não é fácil enunciar o conhecimento informal em termos formais.
 - Esgotamento dos recursos computacionais.
 - Qual é o propósito prático do "pensamento"?

O que é um sistema inteligente?

 As abordagens para o estudo de IA se dividem em 4 categorias:

	Humano	Racional
Pensamento	Sistemas que pensam como seres humanos	Sistemas que pensam racionalmente
Comportamento	Sistemas que agem como seres humanos	Sistemas que agem racionalmente

Agindo racionalmente: a abordagem do agente racional

- Comportamento racional = agir corretamente na hora certa.
- Agir corretamente = fazer o que é esperado para atingir seus objetivos, dada a informação disponível.
- Não necessariamente envolve pensamentos (raciocínios lógicos).
 - A ação pode ser resultado de um reflexo.
 - Ex.: Tirar a mão de um objeto quente.
 - O raciocínio lógico deve ser usado para alcançar um objetivo.

- Um agente é algo que percebe e age.
- Esse curso se concentrará nos princípios gerais de agentes racionais e nos componentes para construí-los.
- Abstratamente, um agente é uma função que mapeia uma sequência de percepções em uma ação.
 - $[f: \mathcal{P}^{\star} \to \mathcal{A}]$
- Para cada tipo de ambiente e tarefa, buscamos o agente com a melhor performance.
- Às vezes limitações computacionais impedem a racionalidade perfeita.
 - Racionalidade limitada: fazer o melhor possível dentro das limitações computacionais.

O que é um sistema inteligente?

 As abordagens para o estudo de IA se dividem em 4 categorias:

	Fidelidade ao desempenho humano	Racionalidade
Pensamento	Sistemas que pensam como seres humanos	Sistemas que pensam racionalmente
Comportamento	Sistemas que agem como seres humanos	Sistemas que agem racionalmente

Visão do livro e do curso

A "Pré-História" da IA

- Filosofia (de 428 A.C. até a atualidade)
 - Lógica, métodos de raciocínio, mente como um sistema físico, origens do aprendizado (indução), racionalidade
- Matemática (cerca de 800 até a atualidade)
 - Representações formais, algoritmos, computabilidade, intratabilidade, probabilidade
- Economia (de 1776 até a atualidade)
 - Conceito de utilidade, teoria da decisão, teoria dos jogos
- Neurociência (de 1861 até a atualidade)
 - Substrato físico para a atividade mental
- Psicologia (de 1879 até a atualidade)
 - Percepção e controle motor, técnicas experimentais
- Engenharia da Computação (de 1940 até a atualidade)
 - Construção de computadores rápidos, ambientes computacionais, conceitos de programação
- Linguística (de 1957 até a atualidade)
 - Representação do conhecimento e gramática

Breve Histórico da IA

•	1943	McCulloch & Pitts: Modelo booleano do cérebro
•	1950	Turing publica "Computing Machinery and Intelligence"
•	1956	Encontro em Dartmouth: o termo "Inteligência Artificial" é criado
•		Primeiros programas de IA, incluindo o jogador de le Samuel, o Logic Theorist de Newell & Simon metry Theorem Prover de Gelernter.
•	1965 complet	Robinson descobre um método de raciocínio lógico o
•	1966—73	IA enfrenta o problema da complexidade computacional A pesquisa em redes neurais quase desaparece.
•	1969—79	Desenvolvimento de sistemas especialistas
•	1980	IA (sistemas especialistas) se torna uma indústria
•	1986	Retorno das redes neurais
•	1987	IA se torna uma ciência
•	1995	Surgimento de agentes inteligentes » Popularizados na internet

Agentes Inteligentes

Capítulo 2 – Russell & Norvig

Video

LEGO Mindstorms Sudoku Solver https://www.youtube.com/watch?v=Mp8Y2yjV4fU

Agentes

 Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores.

Exemplos

- Agente humano
 - Sensores: Olhos, ouvidos e outros órgãos.
 - Atuadores: Mãos, pernas, boca e outras partes do corpo.
- Agente robótico
 - Sensores: câmeras e detectores de infravermelho.
 - Atuadores: vários motores.
- Agente de software
 - Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.
 - Atuadores: tela, disco, envio de pacotes pela rede.

Mapeando percepções em ações

- Sequência de percepções: história completa de tudo que o agente percebeu.
- O comportamento do agente é dado abstratamente pela função do agente:

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

onde é a \mathcal{P}^* é uma sequência de percepções e \mathcal{A} é uma ação.

- O programa do agente roda em uma arquitetura física para produzir f.
- Agente = arquitetura + programa.

Video

iRobot Roomba® 700 Series Vacuum Cleaning Robots https://www.youtube.com/watch?v=edSfq8ItAal

Exemplo: O mundo do aspirador de pó

Percepções: local e conteúdo

– Exemplo: [A, sujo]

Ações: Esquerda, Direita, Aspirar, NoOp

Uma função para o agente aspirador de pó

Sequência de Percepções	Ação
[A, Limpo]	Direita
[A, Sujo]	Aspirar
[B, Limpo]	Esquerda
[B, Sujo]	Aspirar
[A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Sujo]	Aspirar
[A, Limpo], [A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Limpo], [A, Sujo]	Aspirar

Programa: Se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado de 1 - 11/04/2016

- Como preencher corretamente a tabela de ações do agente para cada situação?
- O agente deve tomar a ação "correta" baseado no que ele percebe para ter sucesso.
 - O conceito de sucesso do agente depende uma medida de desempenho objetiva.
 - Exemplos: quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado, etc.
 - A medida de desempenho deve refletir o resultado realmente desejado.

- Agente racional: para cada sequência de percepções possíveis deve selecionar uma ação que se espera venha a maximizar sua medida de desempenho, dada a evidência fornecida pela seqüência de percepções e por qualquer conhecimento interno do agente.
 - Exercício: para que medida de desempenho o agente aspirador de pó é racional?

- Racionalidade é diferente de perfeição.
 - A racionalidade maximiza o desempenho esperado, enquanto a perfeição maximiza o desempenho real.
 - A escolha racional só depende das percepções até o momento.
- Mas os agentes podem (e devem!) executar ações para coleta de informações.
 - Um tipo importante de coleta de informação é a exploração de um ambiente desconhecido.
- O agente também pode (e deve!) aprender, ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo.
 - Nesse caso o agente é chamado de autônomo.
 - Um agente que aprende pode ter sucesso em uma ampla variedade de ambientes.

PEAS

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa.
 - Performance = Medida de Desempenho
 - Environment = Ambiente
 - Actuators = Atuadores
 - Sensors = Sensores