Contents

Things to Remember														2						
1	Lim	its and	Funda	me	ntals															3
	1.1	General	Hints	and	Rules	of	Li	imit	S.											3
	1.2	Limits.																		4
	1.3	One-Sid	led Lim	its																5

Things to Remember

Trig Identities:

Pythagorean Identities:

$$\cos^2 x + \sin^2 x = 1$$
 $1 + \tan^2 x = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

Half Angle Formulas:

$$\sin^2 x = \frac{1 - \cos 2x}{2} \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

Double Angle Formulas:

$$\sin 2x = 2\sin x \cos x \qquad \cos 2x = \cos^2 x - \sin^2 x$$

Product-to-Sum Formulas:

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \sin y = -\frac{1}{2} [\cos(x+y) - \cos(x-y)]$$

Sum-Difference Formulas:

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Even-Odd Identities:

$$\sin(-x) = -\sin x$$
 $\cos(-x) = \cos x$ $\tan(-x) = -\tan x$
 $\csc(-x) = -\csc x$ $\sec(-x) = \sec x$ $\cot(-x) = -\cot x$

Co-Function Identities:

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \tan\left(\frac{\pi}{2} - x\right) = \cot x$$

$$\csc\left(\frac{\pi}{2} - x\right) = \sec x \qquad \sec\left(\frac{\pi}{2} - x\right) = \csc x \qquad \cot\left(\frac{\pi}{2} - x\right) = \tan x$$

[©] Copyright 2014 by Beat Your Course Inc. All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, or sorted in a data base or retrieval system, without the prior written permission of Beat Your Course Inc.

Ch 1: Limits and Fundamentals

1.1 General Hints and Rules of Limits

Let c and a be scalar constants.

Trig Limits

$$\lim_{x \to c} \sin x = \sin c$$

$$\lim_{x \to c} \cos x = \cos c$$

$$\lim_{x \to 0} \tan c = \tan c$$

$$\lim_{x \to 0} \sin x = 0$$

$$\lim_{x \to 0} \cos x = 1$$

$$\lim_{x \to 0} \tan x = 0$$

$$\lim_{x \to 0} \frac{\sin kx}{cx} = \frac{k}{c}$$

$$\lim_{x\to 0}\frac{1-\cos x}{x}=0$$

Limit Rules

$$\overline{1. \lim_{x \to a} [f(x) \pm g(x)]} = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

4.
$$\lim_{x \to a} k f(x) = k \lim_{x \to a} f(x)$$

5.
$$\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} f(x)\right]^n$$
 where n is a positive integer.

6. If $f(x) \le g(x)$ on an interval which contains a, then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

1.2 Limits

DEF'N

Let f(x) be a function, and a and L real numbers. As x approaches a, if f(x) approaches L, then we say: L is the limit of f(x) as x approaches a.

We denote this by:

$$\lim_{x \to a} f(x) = L$$

NOTE:

- x does not necessarily ever need to be equal to a, but merely approach it.
- f(x) does not necessarily need to be defined at x = a, but at values close to a.

Identifying Clues:

• Question explicitly asks for evaluation of a limit.

Procedure:

- 1. If the function is continuous and defined at a, evaluate.
- 2. If discontinuous, evaluate as f(x) approaches a.
- 3. If necessary, use one of the tools presented later in this booklet.

BYC's Concept Clarifier:

Find the value of $\lim_{x\to 0} f(x)$, where

$$f(x) = \begin{cases} x & x \neq 0 \\ 1 & x = 0 \end{cases}$$

1.3 One-Sided Limits

DEF'N

The left-hand limit of f(x) at x = a is calculated by approaching the point a only from the left, denoted as

$$\lim_{x \to a^{-}} f(x) = L$$

The right-hand limit of f(x) at x = a is calculated by approaching the point a only from the right, denoted as

$$\lim_{x \to a^+} f(x) = L$$

NOTE:

If these two limits are equal, then the limit of f(x) as x approaches a exists and is equal to L:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L \leftrightarrow \lim_{x \to a} f(x) = L$$

Identifying Clues:

- Function has a discontinuity or is piece-wise.
- Limit is written in one-sided form.

Procedure:

- 1. Identify any jumps, steps, or discontinuities.
- 2. Evaluate limit from left or right, as asked.

BYC's Concept Clarifier:

The function f is defined by:

$$f(x) = \begin{cases} -3x + 2 & x \le 1\\ 2x^3 & x > 1 \end{cases}$$

Evaluate: $\lim_{x\to 1^-} f(x)$, $\lim_{x\to 1^+} f(x)$, and $\lim_{x\to 1} f(x)$.