Bacheloroppgave

TELE3001

Styre- og overvåkingsystem for distribusjon av drikkevannn

Forprosjekt Trondheim, Januar 2020

> Johan Haukalid Markus Raudberget Jone Vassbø Peder Ward

Oppdragsgiver:
Wago Norge AS
Tor Erik Næbb
Distriktssjef Midt & Nord
Industri & Automasjon

Veileder:
Kåre Bjørvik
Universitetslektor
Institutt for teknisk kybernetikk
NTNU, Trondheim

Fakultet for informasjonsteknologi og elektroteknikk Institutt for teknisk kyberteknikk

Styre- og overvåkingsystem for distribusjon av drikkevannn

Forprosjekt

Sammendrag

Forprosjektets formål er å spesifisere og avgrense hovedprosjektet. Bakgrunnen for prosjektet er at oppdragsgiver vil presentere sine produkter i en ny bransje, vann og avløp. Dermed går hovedprosjektet ut på å lage et styre- og overvåkingsystem for distribusjon av drikkevann. Selve systemet lages som ett demonstrasjonsystem og monteres på en demorigg. Demoriggen er til bruk på messer og lignende. Prosjektet er derfor avgrenset til å inneholde styringskomponentene som kontrollere og skjerm.

Systemet vil inneholde funksjonalitet rundt drikkevanndistribusjonen som; lekkasjedeteksjon på ledningsnett, flomsikring av vannkilde, trykkregulering av forbruk, samt overvåking og styring via berøringsskjerm. De forskjellige delene av systemet skal kommunisere via skyen, slik at det ikke blir noen lokale nettverk. Det vil være høyt fokus på brukervennlighet, gode prosessbilder og visualisering av historisk data.

Hovedmålet med prosjektet er å levere et system av høy kvalitet. Systemet skal være med på å øke synligheten til oppdragsgivers produkter, noe som kan resultere i økt salg. Oppdragstaker ønsker å tilegne seg kunnskap og erfaring om produktene og samarbeid med en ledende leverandør av automasjonsprodukter. Utfordringene prosjektet byr på er i forbindelse med bruk av moderne teknologi og produkter, samt individuelle deler som skal settes sammen.

Prosjektet er delt opp i mindre delprosjekter hvor de forskjellige deltakerene fra oppdragstaker har ansvaret for hver sin del. Det er kartlagt hva som skal gjøres og hvor lang tid det vil ta, dette er representert i et Gantt-skjema. Prosjektdeltakerene består av fire personer med fagbrev i automasjon som ser fram til de ulike utforingene prosjektet byr på.

For å kvalitetsikre prosjektet er det iverksatt flere tiltak. Det er satt inn tiltak for å sikre informasjonsflyt, ved hjelp av møter og virtuelt møterom. Det vil bli skrevet en statusrapport hver 14. dag. Et Ganttskjema holder overordnet kontroll, mens et Kanbanboard er brukt til detaljert oversikt. Standardiserte dokumenter samt moderne verktøy og metoder vil bli brukt.

Forord

Denne rapporten er utarbeidet av undertegnede som et forprosjekt, for å kartlegge bacheloroppgavens omfang og begrensninger. Rapporten er utarbeidet ved Norges teknisk-naturvitenskapelige universitet, NTNU i Trondheim, våren 2020. Bacheloroppgaven ansees som et resultat av det treårige studiet elektroingeniør, med spesialisering i automatiseringsteknikk, på institutt for teknisk kyberteknikk, ved fakultetet for informasjonsteknologi og elektroteknikk.

Oppgaven er utarbeidet i et samarbeid mellom Wago Norge og undertegnede, den innebærer å utarbeide et styre- og overvåkingsystem for distribusjon av drikkevann. Systemet skal inneholde ulike deler der det finnes funksjonalitet for flomsikring av vannkilde, trykkregulering av forbruk og deteksjon av lekkasje. Systemet skal bruke moderne teknologi der kommunikasjon skjer via Wago Cloud, i tillegg skal store deler av anlegget kjøre på høynivåkode skrevet i Python.

I et samarbeid med Wago fikk prosjektgruppen en befaringsrunde hos Leksvik Vassverk for å få innsikt i distribusjon av drikkevann. Det rettes en ekstra takk til Leksvik Vassverk for en lærerik befaring på anlegget deres. Fra denne befaringen ble det hentet inspirasjon til å bygge opp en bedre og mer realistisk oppgave.

Vi ser frem til et samarbeid med våre veiledere fra NTNU og Wago, Kåre Bjørvik og Tor Erik Næbb og gleder oss til utfordringene prosjektet vil tilby.

Johan Haukalid

Jone Vassbø

Markus Raudberget

Peder Ward

Trondheim 29.1.20

Sted/Dato

Innhold

Sa	mm	endrag	iii
Fo	rord	l	iv
1	Inn	ledning	1
	1.1	Bakgrunn	1
	1.2	Oppgaveteksten	1
	1.3	Definisjoner	3
	1.4	•	4
2	Tek	nisk del	5
	2.1	Problemstilling	5
	2.2	Prosjektmål	6
		2.2.1 Effektmål	6
		2.2.2 Resultatmål	6
		2.2.3 Prosessmål	6
	2.3	Prosjektbeskrivelse	7
	2.4	Spesifikasjoner	7
	2.5	Avgrensinger	9
	2.6	Problemområder	9
3	Arb	eidspakker	11
4	Pro	sjektorganisering	12
	4.1	Prosjektdeltagere	12
	4.2	Utstyr og ressurser	17
	4.3	Prosjektleveranser	18
	4.4		19
	4.5		20
A	Ved	llegg Arbeidspakker	24
	A.1	Lekkasjedeteksjon på ledningsnett	25
			26
	A.3	Trykkregulering av vannleveranse	27
	A.4	Skjermbasert overvåking- og styresystem	28
	A.5	Produksjon av demorigg	29
	A.6	Simuleringsprogram for vannkilde og vær	30
	A.7		31
	A.8	Skriving av hovedrapport	32

В	Ved	llegg Tidsplan	33
	B.1	Timeplanlegging	34
	B.2	Gantt-skjema	35
Fi	gure	er	
	1	Oversiktsskisse med vannkilde	5
	2	Nettverkstopologi	8
	3	S-diagram	20
Ta	bell	er	
	1	Undersystem spesifikasjon	8
	2	Oppdeling arbeidspakker	11
	3	Foreløbig deleliste	18

1 Innledning

1.1 Bakgrunn

Oppdragsgiver er i dag en etablert leverandør innen flere bransjer, blant annet i byggautomasjon og energi. For en mulig fremtidig satsing innen vann og avløp er det ønskelig med et demonstrasjonsanlegg, til bruk på messer og lignende. Demonstrasjonsanlegget vil vise hvordan oppdragsgivers produkter også kan brukes i vann- og avløpsbransjen. Det vil demonstrere produktene i produksjon, samt hvor effektive og robuste teknologiene de bruker er.

1.2 Oppgaveteksten

Oppgaveteksten er utarbeidet i samarbeid mellom oppdragsgiver og oppdragstaker og lyder som følger:

"For en mulig satsing innen vann og avløp ønsker Wago Norge et demonstrasjonsystem. Oppgaven går ut på å demonstrere Wago sine produkter ved å lage et styre-, overvåking- og regulerinssystem for et høydebasseng med drikkevann. Oppgaven kan i hovedsak deles inn i fire deler:

- Nivåmåling i basseng med fokus på selvdrevet system drevet av sol/vind energi.
- Flomsikring med fokus på sikkerhet, redundans og oppetid.
- Regulering av trykk hos forbruker og evt strømninger, med fokus på dynamikk.
- Overvåking av systemet med fokus på brukervennlighet og tilgjengelighet.

Generelt for alle delene, hvor det lar seg gjøre, gjelder:

- Bruk av Wago sine produkter
- Wago cloud og MQTT.
- Oppgaven er åpen og all kildekode som utvikles vil være open source.
- Modulær og gjennbrukbar programvare utviklet i Wagos e!COCKPIT basert på Codesys 3.

- Moderne utvikling av produksjonskode ved bruk av open source språk, Python.
- Moderne utrulling av produksjonskode ved bruk av Linux og Docker
- Moderne kjøring av produksjonskode ved bruk av real-time Linux

Det fysiske demosystemet begrenser seg til oppkobling av kontrollere og brukergrensesnitt. Høydebasseng, ventiler etc. vil bli simulert. Wago stiller med nødvendig utstyr, software og support uten noen kostnad for NTNU."

For å få en bedre innsikt i en potensiell kundes behov, er det blitt gjort en befaring på Leksvik Vassverk. Da et behov som ble belyst hos de ansees som viktigere enn nivåmåling, har oppgaven blitt tilpasset. Delen som tar seg av nivåmåling er byttet ut til funksjonalitet som skal overvåke og detektere lekkasjer i ledningsnettet for drikkevann.

1.3 Definisjoner

Under følger definisjoner som er brukt i denne rapporten.

Codesys 3 Utviklingsmiljø for programmering av

kontrollapplikasjoner [1].

Docker Kontainer platform for kjøring av

applikasjoner i et lettvekts virtuelt miljø [2].

e!COCKPIT Oppdragsgiver automatiseringsprogramvare

[3].

Grafana Open source trendverktøy [4]. HMI Human machine interface -

Brukergrensesnittet mellom maskin og

menneske [5].

Kanbanbrett Prosjektstyringsverktøy [6].

Latex Typesettingssystem for dokumentproduksjon

[7].

Linux Open source operativsystem [8].

Microsoft Prosjektstyringsverktøy [9].

Project

MQTT Message queuing telemetry transport -

Publiser/abonner meldings protokoll [10].

NTNU Norges teknisk-naturvitenskapelige

universitet.

Open source Programvare med åpen kildekode [11]

Overleaf Web-basert LaTeX-editor [12].

PLS Programmerbar logisk styring [13].

Python Objektorientert programmeringsspråk [14].

Real-time Sanntidssystem [15]

Scrum Rammeverk for å utvikle

informasjonssystemer. [16]

Wago Cloud Oppdragsgivers skyløsning [17].

Whereby Leverandør av virtuelt møterom [18].

1.4 Rapportens oppbygging

Rapporten er bygd opp av to hoveddeler, den tekniske og prosjektorganisering. For å beskrive og kvalitetsikre disse hoveddelene har vi tre mindre deler. Disse delene er innledning, arbeidspakker og vedlegg.

Før selve rapporten starter, vil et sammendrag gi kortfattet informasjon om hva prosjektet angår; hvilke mål, metoder, problemstilling og organisering som ligger til grunn i forprosjektet.

Innledningen - kapittel 1, som beskriver hvordan prosjektet former seg igjennom sonderingsfasen, altså hva som er bakrunnen til oppbyggingen av oppgaveteksten. Denne delen ivaretar også definisjoner på akronymer og faguttrykk.

Kapittel 2, teknisk del, tar for seg prosjektets problemstilling, mål, beskrivelse og avgrensinger. Dette er for å tydeliggjøre hva som forventes av prosjektet, hvordan det skal oppfylles og hvilke problemområder som må tas hensyn til.

For å gjøre prosjektet mer oversiktlig er problemstillingen og dens milepæler delt opp i mindre arbeidspakker. Hvordan disse er bygd opp tas rede for i kapittel 3 og arbeidspakkene finnes under vedlegg A.

Det er i alt åtte arbeidspakker, hvorav det er prosjektert for over 2000 timer. For å kvalitetssikre dette er det kritisk med en tilfredsstillende prosjektorganisering. I prosjektorganisering – kapittel 4, blir dette ivaretatt. Valg av utstyr og ressurser som må til for å nå prosjektets mål, estimering av tids- og kostnadsplan, prosjektleveranse og hvordan prosjektet organiseres for å sikre kvaliteten tas hånd om i dette kapittelet. I tillegg er det en introduksjon av prosjektets deltagere.

2 Teknisk del

2.1 Problemstilling

For å demonstrere oppdragsgivers produkter skal det lages et styre- og overvåkingsystem for tiltenkt distribusjon av drikkevann. Systemet, dokumentasjonen og prosessen med å utvikle systemet skal demonstrere oppdragsgivers produkter. Systemet skal demonstrere kvaliteten på produktene og de teknologiene som er brukt i dem. Det vil kartlegges hvor enkelt det er å ta produktene i bruk. Ytelse og responstider settes på prøve for å kartlegge om produktene egner seg for et kritisk system, som drikkevann.

Systemet skal bestå av tre mindre systemer slik det er representert i figur 1. For å kunne detektere lekkasjer i ledningsnettet, vil det være et system for å måle strømning. For å sikre vannkilden mot flom, vil det være et system som styrer utslippet til elven og måler nivået. For å kunne levere drikkevann med rett trykk, vil det være et system som regulerer pumper og opprettholder trykket, ved svingninger i forbruket.

Figur 1: Oversiktsskisse med vannkilde

2.2 Prosjektmål

Prosjektets hovedmål er å levere et demonstrasjonsystem for distribusjon av drikkevann.

2.2.1 Effektmål

Oppdragsgiver vil stille ut systemet på messer i vann- og avløpsbransjen, noe som resulterer i følgende effektmål:

- Økt synlighet for oppdragsgiver og produktene.
- Økt salg.

2.2.2 Resultatmål

Prosjektet vil resultere i et demonstrasjonssystem, med tilhørende dokumentasjon, som er hovedmålet med dette prosjektet. Dette målet er delt inn i følgende delmål:

- Eget system for å detektere lekkasjer i ledningsnettet, som publiserer informasjonen til skyen.
- Flomsikring som opererer basert på værmeldinger.
- Stabilt trykk på drikkevannet hos forbruker.
- Overvåking av systemet med trender, alarmer og alarmhistorikk.
- Utveksling av data foregår gjennom skyen.
- Standard funksjonalitet må være modulær og gjenbrukbar.
- Deler av anlegget skal utvikles med å kjøre på open source programvare.

2.2.3 Prosessmål

Gjennom prosessen ved å produsere produktet er det følgende felles mål:

- Få kunnskap om og erfaring med å bruke produkter som er ledende innen bruk av moderne teknologi.
- Få erfaring med å samarbeide med en landsledende automasjonsleverandør.

- Få erfaring i å jobbe i en gruppe.
- Oppnå toppkarakter.

2.3 Prosjektbeskrivelse

Prosjektet innebærer å utvikle et styre- og overvåkingsystem på bakgrunn av figur 1. For at gruppen skal kunne jobbe parallelt på systemet, er det delt inn i åtte mindre deler som er beskrevet i følgende punkter:

- Lekkasjedeteksjon på ledningsnett: Designing og programmering av utstasjonert målestasjon for strømning.
- **Flomsikring av vannkilde:** Valg av PLS og programmering for innhenting av vær-data og styring av utslippsventiler.
- Trykkregulering på leveranse av vann: Valg av PLS og programmering for regulering av trykk, alternering av pumper og kontroll av motorer.
- **Skjermbasert overvåking- og styresystem:** Valg av skjerm og programmering for innhenting av data fra alle undersystemer.
- **Produksjon av demorigg:** Valg av strømforsyning og lignende, tegning, dokumentasjon og montering.
- Simuleringsprogram for vannkilde og vær: Matematisk modulering av vannkilde, simulering av vannstand og værmeldinger.
- **Systemtesting:** Testing av det komplette systemet med alle deler.
- **Rapportskriving:** Dokumentering av valg, framgangsmetoder og prosess.

2.4 Spesifikasjoner

Topologi: Systemet vil bestå av tre PLS'er og en HMI skjerm. All kommunikasjon skal gå via Wago Cloud og følger nettverkstopologien i figur 2.

Figur 2: Nettverkstopologi

Demonstrasjonsrigg: Alle de ulike komponentene skal monteres på en demonstrasjonsrigg som oppdragsgiver framskaffer.

Undersystem spesifikasjon: I henhold til figur 2 følger spesifikasjonene i tabell 1.

Spesifikasjon	PLS 1	PLS 2	PLS 3	HMI
Type	PFC100	PFC200	PFC200	-
Tilkobling	4G	4G	4G	4G
Innganger og utganger	Strømning, batterinivå	•	Ingen	-

Tabell 1: Undersystem spesifikasjon

Programvare: PLS 1 skal programmeres i e!COCKPIT, ved bruk av strukturert tekst. PLS 2 og 3 skal programmeres i Python. Det skal settes opp enhetstester i Python så langt det lar seg gjøre. Det skal

settes opp automatisk oppdatering av kontrollere, bygging, testing og utrulling av programvare til produksjon, så langt det lar seg gjøre.

Trender: For trending av måleverdier som for eksempel nivået i vannkilden, skal det testes et open source verktøy, Grafana.

Simuleringsprogram: Det må finnes støtte for å manipulere tidsforholdet, slik at for eksempel to minutter tilsvarer fem dager for systemet. Programvaren må kunne svare på forespørsler om værmelding, samt endre vannstanden i vannkilden i henhold til den gitte værmeldingen, men også simulere avvik. Det bør lages en matematisk modell av vannkilden slik at den kan representere et ekte vann. Programvaren må kunne simulere et varierende og uforutsett forbruk av drikkevann.

2.5 Avgrensinger

Som nevnt i kapittel 2.4 skal alt utstyret monteres på en demonstrasjonsrigg. Prosjektet er derfor avgrenset til å bestå av kontrollere, skjerm for HMI, strømforsyninger og sikringer. Da alle komponentene kommuniserer via skyen vil det ikke være noen komponenter for lokale nettverk, men 4G modemer. Fysisk utstyr som ventiler, trykkmålere, pumper og nivåmålere vil bli simulert. Det vil ikke bli implementert noe i forbindelse med renseanlegg. Vannkilden med drikkevann, forbruket, været, og tidsforholdet vil bli simulert av en egen programvare spesifisert i kapittel 2.4. Avgrensningene er satt for å kunne levere en realistisk løsning innen de gitte tidsrammer.

2.6 Problemområder

Prosjektet går ut på å demonstrere de nyeste produktene til oppdragsgiver i vann- og avløpsbransjen. På bakgrunn av dette er det definert følgende problemområder:

- Lite eller ingen kunnskap om bransjen.
- Produkter og deres programmering/konfigurering programvare er ny for samtlige gruppemedlemmer.
- Utstyret som blir brukt er relativt nytt og derfor finnes det begrenset med brukererfaringer.
- Produktet består av flere individuelle deler som skal settes sammen til slutt.

• Alle komponentene må få plass inne i skallet for demonstrasjonsriggen.

3 Arbeidspakker

For å få bedre kontroll på arbeidsmengden deles prosjektet opp i arbeidspakker. Arbeidspakkene er laget slik at hver pakke skal fungere som en selvstendig delaktivitet. Det har blitt satt start- og sluttdato samt et timesverk på hver arbeidspakke. Timeverket som er satt er et ca. estimat på hvor lang tid hver oppgave vil ta. Siden oppgaven inneholder opplæring av ny programvare er det så langt i prosjektet veldig usikkert hvor lang tid opplæringen vil ta. Hver arbeidspakke har en som er ansvarlig for utførelsen samt en prosjektmedarbeider. Oppdeling av arbeidspakker er vist i tabell 2 og arbeidspakkene ligger som vedlegg A.

#	Aktivitet	Ansvarlig	Medarbeider
1	Lekkasjedeteksjon på ledningsnett	MR	JH
2	Flomsikring	PW	JV
3	Trykkregulering på vannleveranse	JV	PW
4	Skjermbasert overvåking- og styresystem	JH	MR
5	Produksjon av demorigg	MR	JH, JV, PW
6	Simuleringsprogram for vannkilde og vær	JV	PW
7	Systemtesting	PW	MR, JH, JV
8	Skriving av hovedrapport	JH	MR, JV, PW

Tabell 2: Oppdeling arbeidspakker

4 Prosjektorganisering

4.1 Prosjektdeltagere

Alle deltakere i prosjektet har ansvar for minst en arbeidspakke, oversikten finnes i tabell 2. Jone er prosjektleder, han vil holde en overordnet oversikt og passe på at det er fremdrift i prosjektet, samt overholde frister. Peder er ansvarlig for å organisere møter og møtereferat. Markus er ansvarlig for tegninger og dokumentasjon. Johan er ansvarlig for grensesnittet mellom skjermsystemet og PLS. En kort beskrivelse av deltakerenes utdanning, relevant arbeidserfaring og tidligere prosjekter følger under.

Johan Haukalid

Alder: 30 år

Hjemsted: Glomfjord

Tlf.: 48104668

Epost: jjhauken@gmail.com

Utdanning

- 2017-dd Elektroingeniør NTNU, spesialisering automatisering
- Fagbrev Automatiseringsfaget
- Vg1 elektro, Vg2 automatisering, Vg3 automatisering

Relevant arbeiderfaring

- 2013-dd Equinor, automatiker ved Hammerfest LNG
- 2011-2013 BIS ProductionPartner, (Bilfinger) automatiker
- 2009-2011 Rolls-Royce Marine, Longva, lærling automatiseringsfaget

Johan er oppvokst i Glomfjord i Meløy kommune, han tok utdanning som automatiker ved Meløy videregåendeskole og fagbrevet ved Rolls-Royce Marine på Longva, der de produserer og tester forskjellige styringer til maritime fartøy.

Han flyttet deretter hjem til Glomfjord og arbeidet som automatiker for Yara igjennom Bilfinger. Arbeidet hovedsaklig med feltinstrumentering som pH-målinger, trykk og temperatur.

Hans interesse for automatiserte anlegg og prosessindustri gjorde at han søkte seg til Equinors anlegg Hammerfest LNG i Finnmark. Hvor han arbeider med vedlikehold av gassanalysatorer og drift/vedlikehold av kontroll- og sikkerhetsystemene.

Markus Raudberget

Alder: 25 år

Hjemsted: Stadsbygd

Tlf.: 90873917

Epost: markus.raudberget@gmail.com

Utdanning

- 2017-dd Elektroingeniør NTNU, spesialisering automatisering
- Skipselektriker ETR
- Fagbrev Automatiseringsfaget
- Vg1 elektro, Vg2 automatisering, Vg3 automatisering

Relevant arbeiderfaring

- 2016-dd Mowi rensefisk, driftstekniker
- 2015-2016 Sjøforsvaret, skipselektriker KNM Roald Amundsen
- 2013-2015 Nidar, lærling automatiseringsfaget

Markus er født og oppvokst på Stadsbygd i Indre Fosen kommune. Han gikk yrkesfag på Rissa- og Strinda videregående skole, før han tok fagbrevet som automatiker ved Nidar sjokoladefabrikk. Etter lærlingetiden dro han i militæret og tjenestegjorde som skipselektriker på en av Sjøforsvarets fregatter. Ved siden av studiene jobber Markus som driftstekniker hos Mowi Rensefisk.

Tidligere prosjekter han har deltatt på er: Utvidelse av CONBAR produksjonslinje for sjokolade og bygging samt implementering av ny robot for vending av kasser ved Semi-Stål vaskeri. Begge prosjektene foregikk hos Nidar i Trondheim.

Jone Vassbø

Alder: 29 år

Hjemsted: Vikeså Tlf.: 91389043

Epost: jone.vassbo@gmail.com

Utdanning

- 2017-dd Elektroingeniør NTNU, spesialisering automatisering
- 2016-2019 Dataingeniør NTNU
- Fagbrev Automatiseringsfaget
- Vg1 elektro, Vg2 automatisering, Vg3 automatisering

Relevant arbeiderfaring

- 2013-2016 Oneco Technologies, automasjonstekniker
- 2011-2013 Apply Rig & Modules, automatiker
- 2009-2011 Apply Rig & Modules, lærling automatiseringsfaget

Jone er født og oppvokst på Vikeså i Rogaland. Han gikk yrkesfag i Sandnes, som automatiker og tok fagbrevet i Apply Rig & Modules. Etter noen år i oljebransjen gikk han over i landbasert industri i Oneco Technologies.

Noen av prosjektene Jone har jobbet med tidligere er; Ventilasjons- og styresystemer på universitetssykehuset i Stavanger, Styre- og overvåkingsystem for Skretting på Lerang, Gassdistribusjonssystemer for Gasnor og overvåkingsystem for tankanlegg til Halliburton.

Peder Ward

Alder: 24 år

Hjemsted: Verdal Tlf.: 92427089

Epost: pederw455@gmail.com

Utdanning

- 2017-dd Elektroingeniør NTNU, spesialisering automatisering
- Fagbrev Automatiseringsfaget
- Vg1 elektro, Vg2 automatisering, Vg3 automatisering

Relevant arbeiderfaring

- 2019-dd ISI-Tech, prosjektingeniør
- 2016-dd Tine Meierier Verdal, prosessoperatør
- 2016-2016 Tine Meierier Verdal, automatiker
- 2014-2016 Tine Meierier Verdal, lærling automatiseringsfaget

Peder er født og oppvokst på Verdal i Trøndelag. Han gikk yrkesfag på Levanger VGS før han tok fagbrevet som automatiker hos TINE Meierier Verdal. Etter å ha tatt fagbrevet jobbet han et halvt år som automatiker før han begynte å studere.

Ved siden av studiene jobber Peder som prosessoperatør hos TINE og som prosjektingeniør hos ISI-Tech. Noen av prosjektene han har vært med på tidligere er; ny pakkelinje til Gräddost for TINE og nytt SD-anlegg til Halsan skole gjennom ISI-Tech.

4.2 Utstyr og ressurser

Under prosjektperioden er det ønskelig fra oppdragstaker å ha et felles møte- og arbeidsrom. Etter samtale med veileder ble det tildelt et grupperom på Gløshaugen.

Siden denne oppgaven inneholder flere nye programvarer er det planlagt tid til opplæring. For å effektivisere opplæringsfasene har oppdragstaker fått tilgang til opplæringsstoff fra oppdragsgiver i form av videoer, dokumenter og bøker. I tillegg til dette har oppdragstaker også mulighet til å benytte Wagos brukerstøtte.

For å bygge den planlagte riggen som oppgaven har definert, trengs det diverse deler og komponenter. Siden det er tidlig i prosjektet er det litt usikkerhet rundt hva som trengs av deler. Oppdragstakere har tilgang til Wagos varelager og det er ønskelig at det meste av delene blir tatt fra der. Det er mulig at noen av delene må bestilles eksternt hvis de ikke finnes i Wagos sortiment. For å forhindre forsinkelser i prosjektet er det viktig at man er tidlig ute med å tenke på hvilke deler som trengs da det leveringstid på disse. Under i tabell 3 har oppdragstaker laget en foreløbig deleliste.

Elementnr	Vare	Antall
750-8212	PFC200 - PLS	2
750-8101	PFC100 ekst. temp - PLS	1
-	4G moduler med antenne	3
-	Simkort	3
-	HMI skjerm	1
-	Nettverkskabel Master-HMI	1
-	2-polt automatsikring	1
-	Strømforsyning 230v/24v	1
2022-1201	Rekkeklemme grå/L 230v	1
2022-1204	Rekkeklemme blå/N 230v	1
2022-1207	Rekkeklemme gul-grønn/jord 230v	1
2022-1291	Endeplate 230v	1
249-117	Endestoppere	2
2022-103/00-038	Plugg for rekkeklemme 230v	1
2022-152	Låsespake for plugg 230v	1
	Merkeutstyr	
	Ledninger	
	Forsyningskabel	
	Festematerial	
	Niter	
	Strips	
	DIN-skinne	
	Slissede kanaler	

Tabell 3: Foreløbig deleliste

4.3 Prosjektleveranser

Under hele prosjektperioden skal det leveres inn rapporter og tidsfrister skal holdes. Datoene er satt i samarbeid med veileder og oppdragsgiver med NTNU sine frister som en pekepinne. Oppdragsgiver ønsker også å få en oppdatering hver 14. dag, der de blir oppdatert på fremgangen de siste to ukene. Demoriggen vil bli konstruert på Wagos kontorer i Leksvik. Tiden før riggen blir satt sammen vil det brukes en plate der komponentene blir montert.

Fristene er også lagt inn i Gantt-skjemaet, se vedlegg B.2.

- Onsdag 29.01 Innlevering av forprosjekt
- Onsdag 15.04 Setting av tittel
- Dato ikke satt Ferdig demorigg
- Onsdag 20.05 Innlevering av prosjektrapport
- Dato ikke satt Presentasjon

4.4 Tids- og kostnadsplan

I prosjekter av en denne størrelsen er det essensielt å ha kontroll på tid, kostnad og ressurser. Som en del av planleggingen av prosjektet er det derfor valgt å bruke Microsoft Project for å lage et Gantt-skjema, se vedlegg B. Her får man lett oversikt over når arbeidet med de ulike arbeidspakkene skal foregå. I tillegg ser man hvilke arbeidspakker som avhenger av hverandre.

Som nevnt tidligere i forprosjektet, innehar oppdragsgiveren det meste av utstyret som skal benyttes. Dette gjør det lite hensiktsmessig å sette opp et budsjett med kostnadene som påløper under prosjektet. Likevell kan det tenkes at noe utstyr blir kjøpt fra eksterne leverandører, men dette utstyret er ikke fastsatt på nåværende tidspunkt.

Diagrammet nedenfor viser hvordan det planlagte akkumulerte timeforbruket utvikler seg gjennom prosjektperioden. Vanligvis vil slike diagrammer ha en tilnærmet S-kurve. Det vil si at man starter med en moderat arbeidsmengde, som økes utover i prosjektet, før det avtrappes mot slutten. Grunnen til at dette diagrammet har en tilnærmet konstant arbeidmengde gjennom hele prosjektet, begrunnes med at flere av prosjektdeltakerne har jobb ved siden av studiet. Dette er med å begrense hvor mye det kan arbeides med prosjektet per uke. Av erfaring vil de framkomme noe avvik til det planlagte akkumulerte timeforbruket. I starten av prosjektperioden skal alle prosjektdeltakerne ha et obligatorisk fag parallelt med prosjektet, dette kan begrense arbeidstimene i startfasen. Det kan nevnes at det flate partiet på grafen nedenfor er en planlagt påskeferie.

Figur 3: S-diagram

4.5 Kvalitetssikring

For å holde en kontinuerlig flyt av informasjon mellom deltakerene er det hentet ett aspekt fra metodikken Scrum; daglig statusmøte på opptil femten minutter, hvor det informeres om hva en har gjort, hva en skal gjøre og om noe blokkerer fremdriften. Filosofien for å benytte denne metoden er å identifisere utfordringer tidlig og øke eierskap på tvers av arbeidspakkene, uten at dette skal forårsake forsinkelser. For å kunne utføre dette uten at alle må være fysisk tilstede på samme plassen er det tatt i bruk et virtuelt møterom fra Whereby. Det fungerer som et møterom, der man logger inn og venter på at de andre kommer.

For å holde kontinuerlig flyt av informasjon til oppdragsgiver og veileder vil det bli sendt en standardisert rapport hver 14. dag. Det vil bli holdt møter med veileder og oppdragsgiver etter behov, typisk rundt leveringsfrister. Før møtene vil det bli sendt ut standardisert møteinnkalling, og etter endt møte vil det bli sendt ut standardisert møtereferat til deltakerene.

Overordnet skal Microsoft Project holde oversikten i prosjektet ved hjelp av Gantt-skjema som inneholder delmålene og milepælene i prosjektet. Det vil bli ført timelister slik at det er kontroll på fremdriften. Det vil også arrangeres ukentlige møter for å sette arbeidsagenda for kommende uke. For oppgavesporing på detaljnivå, holde styr på hvem som gjør hva og at ikke noe blir glemt, er det tatt i brukt et Kanbanbrett. Deltakerene vil kontinuerlig oppdatere brettet med status på sine oppgaver slik at andre deltakere kan ta over eller komme med innspill, ideer eller lignende.

Systemtesting vil foregå etter planlagte og godkjente testplaner med medfølgende sjekklister for å sikre at systemet fungere slik oppdragsgiver forventer.

For å sikre at systemet er dokumentert etter oppdragsgivers standarder vil det bli utarbeidet en dokumentasjonsplan. Planen er til for at alle nødvendige dokumenter blir produsert og overlevert til oppdragsgiver.

For å sikre kvaliteten av rapporten er det gjort flere tiltak. Det er laget et eget dokument for stil og verktøy som brukes, dette er for å sikre at hele rapporten holder samme stil. Dokumentet setter standard for hvordan figurer og tabeller skal se ut, hvordan man behandler kilder, og gir føringer i språket. Rapporten skrives i Latex, med en nettbasert editor med navn Overleaf, dette er med på å sikre samme stil og kvalitet gjennom hele rapporten, samtidig som det tillater at alle kan skrive i rapporten samtidig.

Referanser

- [1] Codesys the comprehensice software suited for automation technoligy. https://www.codesys.com/the-system.html. (Accessed on 01/22/2020).
- [2] Docker debug your app, not your environment. https://www.docker.com/. (Accessed on 01/22/2020).
- [3] Wago e!cockpit engineering-programvare. https://www.wago.com/no/automasjon-teknologi/software/ecockpit-engineering-programvare. (Accessed on 01/09/2020).
- [4] Grafana the open observability platform | grafana labs. https://grafana.com/. (Accessed on 01/09/2020).
- [5] User interface wikipedia. https://en.wikipedia.org/wiki/User_interface. (Accessed on 01/13/2020).
- [6] What is a kanban board? I atlassian. https://www.atlassian.com/agile/kanban/boards. (Accessed on 01/13/2020).
- [7] Latex a document preparation system. https://www.latex-project.org/. (Accessed on 01/13/2020).
- [8] Linux open source operating system. https://www.linux.org/. (Accessed on 01/22/2020).
- [9] Microsoft project møt den nye og kraftfulle project. https://products.office.com/nb-no/project/project-management-software. (Accessed on 01/22/2020).
- [10] What is mqtt? definition and details. https://www.paessler.com/it-explained/mqtt. (Accessed on 01/28/2020).
- [11] Open-source software wikipedia. https://en.wikipedia.org/wiki/ Open-source_software. (Accessed on 01/24/2020).
- [12] Overleaf for authors overleaf, online latex editor. https://www.overleaf.com/for/authors. (Accessed on 01/13/2020).
- [13] Programmerbar logisk styring wikipedia. https://no. wikipedia.org/wiki/Programmerbar_logisk_styring. (Accessed on 01/13/2020).

- [14] Python welcome to python.org. https://www.python.org/. (Accessed on 01/09/2020).
- [15] Real-time wikipedia. https://en.wikipedia.org/wiki/Real-time. (Accessed on 01/24/2020).
- [16] Scrum the home of scrum. https://www.scrum.org/. (Accessed on 01/13/2020).
- [17] Wago cloud universal iot solutions for machines, systems and buildings. https://www.wago.com/global/open-automation/cloud-automation/automation-wago-cloud. (Accessed on 01/09/2020).
- [18] Whereby video meetings, video conferencing, and screen sharing. https://whereby.com/user. (Accessed on 01/13/2020).

A Vedlegg Arbeidspakker

A.1 Lekkasjedeteksjon på ledningsnett

Fag: TELE3	8031 Bacheloroppga	ve automatisering	Dato: 0	8.01.20	
Prosjekt: 46 -	Wago - Demonstrasj	onsystem for høydebas	seng for drikkevann		
Aktivitet: Lek	kasjedeteksjon av led	lningsnett	Aktivit	et nr: 1	
Startdato: 30.	01.20	Sluttdato: 0	4.03.20		
Avhengighet:	Foregående aktivit	eter: Forprosjekt			
	Etterfølgende aktiv	viteter: Skjermbasert o	vervåking- og styresyster	n	
			ınnkumme å måle strømr		
	9	et overvåkes og detekte	re lekkasjer. Modulen sk	al	
torsynes av lok	al energikilde.				
A 1 *11 1 2 2	l Di i	0.1.	. 111		
			av utviklingsprogramvar		
			ent. Beregning av energi		
med tanke på e	nergikilde. Bestilling	g av utstyr. Programmei	ing av PLS. Publisering	av	
verdier til Was	o Cloud Testing og	dokumentering.			
verdier til Wago Cloud. Testing og dokumentering.					
verdier til wag	o Cloud. Testing og	oonumentering.			
verdier in wag	o cloud. Testing og	oog.			
verdier in wag	o Cloud. Testing og	uonumumg.			
vertiler til wag	o cloud. Testing og	uonumumg.			
			MR: 100t		
Timeverk: 200		Fordeling:	MR: 100t JH: 100t		
Timeverk: 200					
Timeverk: 200 Kostnader: De	Ot O	Fordeling:			
Timeverk: 200 Kostnader: De	Ot eler og komponenter	Fordeling:			
Timeverk: 200 Kostnader: Do Ressurser: Py	Ot eler og komponenter	Fordeling:			
Timeverk: 200 Kostnader: Do Ressurser: Py Risiko:	Ot eler og komponenter	Fordeling:			
Timeverk: 200 Kostnader: Do Ressurser: Py Risiko: N/A	eler og komponenter thon, e!COCKPIT, el	Fordeling:			
Timeverk: 200 Kostnader: Do Ressurser: Py Risiko: N/A	Ot eler og komponenter	Fordeling:			
Timeverk: 200 Kostnader: Do Ressurser: Py Risiko: N/A Faglig ansvari	eler og komponenter thon, e!COCKPIT, el	Fordeling: Plan get (MR)			
Timeverk: 200 Kostnader: Do Ressurser: Py Risiko: N/A Faglig ansvari	eler og komponenter thon, e!COCKPIT, el	Fordeling: Plan get (MR)			

A.2 Flomsikring

D 11/1/	3031 Bacheloroppgave autom	natisering	Dato: 08.01.20			
Prosjekt: 46 -	Wago - Demonstrasjonsystem	for høydebas	seng for drikkevann			
Aktivitet: Flor			Aktivitet nr: 2			
Startdato: 30.		Sluttdato:04	1.03.20			
Avhengighet:	Avhengighet: Foregående aktiviteter: Forprosjekt					
	Etterfølgende aktiviteter: S	imuleringspro	gram for vannkilde og vær			
Mål: Planlegge og regn.	e og lage en modul som kan fl	omsikre vannl	rilde med tanke på snøsmelting			
av riktig utstyr Programmering	og komponenter ut ifra Wago	's sortiment. I	av utviklingsprogramvare. Valg Bestilling av utstyr. jeneste. Publisering av verdier til			
Timeverk: 200	Ot .	Fordeling:	PW: 100t JV: 100t			
		Fordeling:				
Kostnader: Do	Ot eler og komponenter thon, e!COCKPIT, ePlan	Fordeling:				
Kostnader: Do	eler og komponenter	Fordeling:				
Kostnader: Do Ressurser: Py Risiko: N/A	eler og komponenter	Fordeling:				

A.3 Trykkregulering av vannleveranse

Fag: TELES	3031 Bacheloroppgave auton	natisering		Dato: 08.01.20
	Wago - Demonstrasjonsystem		seng for drikk	kevann
Aktivitet: Try	kkregulering av vannleveranse	e		Aktivitet nr: 3
Startdato: 30.		Sluttdato: 0	4.03.20	
Avhengighet:	Foregående aktiviteter: For	rprosjekt		
	Etterfølgende aktiviteter: S	Simuleringspro	gram for vani	nkilde og vær
Mål: Planlegg	e og lage en modul som sørger	r for trykkregu	lering av leve	eranse til forbruker
	og komponenter ut ifra Wago g av PLS med design av pump			
	verdier til Wago Cloud. Testi			migsolokk.
	verdier til Wago Cloud. Testin			Hilgsblokk.
Publisering av Timeverk: 200	verdier til Wago Cloud. Testin	ng og dokume	JV: 100t	migsolokk.
Publisering av Timeverk: 200 Kostnader: D	verdier til Wago Cloud. Testin	ng og dokume	JV: 100t	THISSUIOKK.
Publisering av Timeverk: 200 Kostnader: D	verdier til Wago Cloud. Testin Ot eler og komponenter	ng og dokume	JV: 100t	Hilgsolokk.
Publisering av Timeverk: 200 Kostnader: D Ressurser: Py	verdier til Wago Cloud. Testin Ot eler og komponenter	ng og dokume	JV: 100t	THISSUIOKK.
Timeverk: 200 Kostnader: D Ressurser: Py Risiko: N/A	verdier til Wago Cloud. Testin Ot eler og komponenter	ng og dokume	JV: 100t	Tiligsulokk.

A.4 Skjermbasert overvåking- og styresystem

Fag: TELE3	8031 Bacheloroppgave auton	natisering		Dato: 08.01.20	
Prosjekt: 46 -	Wago - Demonstrasjonsystem	n for høydebas	seng for drikke	vann	
Aktivitet: Skje	ermbasert overvåking- og styre			Aktivitet nr: 4	
Startdato: 05.		Sluttdato: 0			
Avhengighet:	Foregående aktiviteter: Lek	kkasjedeteksjo	n av ledningsne	ettet	
Etterfølgende aktiviteter: Produksjon av demorigg					
Mål: Planlegge	e, designe og programmere et	brukervennlig	brukergrensesr	nitt.	
en standard og	og komponenter ut ifra Wago dialog med oppdragsgiver. Br Lage en brukermanual.				
Timeverk: 200)t	Fordeling:	JH: 100t MR: 100t		
Kostnader: Sk	N .				
	COCKPIT, WagoCloud				
Risiko: N/A					
Faglig ansvar	lig: Johan Haukalid (JH)				
Prosjektmeda	rbeidere: Markus Raudberge	t (MR)			
Prosjektmeda	rbeidere: Markus Raudbergei	t (MK)			

A.5 Produksjon av demorigg

Fag: TELE3	031 Bacheloroppgave autom	atisering		Dato: 08.01.20		
	Wago - Demonstrasjonsystem	for høydebas:	seng for drikkev	ann		
Aktivitet: Prod	luksjon av demorigg			Aktivitet nr: 5		
Startdato: 27.		Sluttdato: 0				
Avhengighet:	et: Foregående aktiviteter: Skjermbasert overvåking- og styresystem					
	Etterfølgende aktiviteter: Systemtesting					
Mål: Lage en o	lemonstrasjonsrigg som skal v	ise fram oppg	aven samt utsty	ret til Wago.		
Wago's sortim leveranse av sk	ent. Produksjon av demorigg. 'allet til riggen.	Testing og dol	cumentering. Da	ato er avhengig av		
Timeverk: 40t		Fordeling:	MR: 10t JH: 10t JV: 10t PW: 10t			
	eler og komponenter					
Ressurser: ePl	an					
Risiko: N/A						
Faglig ansvar	ig: Markus Raudberget (MR)					
Prosjektmeda	rbeidere: Johan Haukalid (JH), Jone Vassbo	ø (JV), Peder W	ard (PW)		

A.6 Simuleringsprogram for vannkilde og vær

Fag: TELE3	3031 Bacheloroppgave autom	atisering		Dato: 08.01.20
Prosjekt: 46 -	Wago - Demonstrasjonsystem	for høydebas	seng for drikkev	ann
Aktivitet: Sim	uleringsprogram for vannkilde	og vær		Aktivitet nr: 6
Startdato: 05.	03.20	Sluttdato: 0	3.04.20	
Avhengighet:	Foregående aktiviteter:			
	Flomsikring			
	Trykkregulering av vannlever	ranse		
	Etterfølgende aktiviteter: S	ystemtesting		
Mål: Lage et s værdata.	imuleringsprogram av vannkil	den samt et gr	ensesnitt for uth	enting av
simuleringspro	ivelse: Planlegging av oppgave gram for vannkilde samt et gre skal sendes til Wago Cloud. T	ensesnitt for u	thenting av værd	
Timeverk: 170	Ot	Fordeling:	JV: 85t PW: 85t	
Kostnader: De	eler og komponenter			
	thon, Wago Cloud			
Risiko:	-			
N/A				
Faglig ansvar	lig: Jone Vassbø (JV)			
Prosjektmeda	rbeidere: Peder Ward (PW)			

A.7 Systemtesting

Fag: TELE3	031 Bacheloroppgave automa	atisering		Dato: 08.01.20	
Prosjekt: 46 -	Wago - Demonstrasjonsystem:	for høydebas:	seng for drikkev	ann	
Aktivitet: Syst				Aktivitet nr: 7	
Startdato: 09.	04.20	Sluttdato: 1	7.04.20		
Avhengighet:	Foregående aktiviteter:				
ı	Simuleringsprogram for vannle	kilde og vær			
Produksjon av demorigg					
	Etterfølgende aktiviteter: Ho	ovedrapporter	1		
Mål: Etter at a	lle modulene er bygd opp og sa	tt sammen m	å systemet testes	S.	
	velse: Testing av system. Tests				
	endringer eller at man oppdage				
riggen er også	lagt inn i denne arbeidspakken.	Dokumenter	ing av hele syste	emet.	
Timeverk: 200)t	Fordeling:	PW: 50t		
		g.	MR: 50t		
			JH: 50t		
			JV: 50t		
Kostnader: N/	'A				
Ressurser: Pyr	thon, e!COCKPIT, Wago Cloud	d			
Risiko:					
Risiko: N/A					
N/A	lig: Peder Ward (PW)				

A.8 Skriving av hovedrapport

				T						
Fag: TELE3		Dato: 08.01.20								
	Wago - Demonstrasjonsystem	for høydebas:	seng for drikkev							
Aktivitet: Skri		Aktivitet nr: 8								
Startdato: 20.		Sluttdato: 1								
Avhengighet:	Foregående aktiviteter: Sys	temtesting								
	Etterfølgende aktiviteter:									
Mål: Skrive ho	ovedrapporten.									
Arbeidsbeskr	ivelse: Skrive ferdig hovedrap	porten for back	heloroppgaven.							
Timeverk: 600	O.	E1-12	III. 150							
11meverk: 600	Ut .	Fordeling:	JH: 150t							
			MR: 150t							
			JV: 150t							
			PW: 150t							
Kostnader: N	/A									
Ressurser: N/	A									
Risiko:										
N/A										
Faglig ansvar	lig: Johan Haukalid (JH)									
Prosjektmeda	rbeidere: Markus Raudberget	(MR), Jone V	assbø (JV), Ped	ler Ward (PW)						

B Vedlegg Tidsplan

B.1 Timeplanlegging

		Task Mode	Task Name	Duration	Start	Finish	Predecessors	Resource Names
1		冷	Prosjektperiode		Wed 08.01.20			
2		*	Forprosjekt	120 hrs	Tue 07.01.20	Mon 27.01.20		
3		*	Lekkasjedeteksjon av ledningsnett	200 hrs	Thu 30.01.20	Wed 04.03.20	2	
10		*	Flomsikring	200 hrs	Thu 30.01.20	Wed 04.03.20	2	
18		*	Trykkregulering av vannleveranse	200 hrs	Thu 30.01.20	Wed 04.03.20	2	
23		*	Simuleringsprogram for vannkilde og vær	170 hrs	Thu 05.03.20	Fri 03.04.20	18;10	
25		*	Skjermbasert overvåking- og styresystem	200 hrs	Thu 05.03.20	Wed 08.04.20	3	
28		*	Produksjon av demo rigg	40 hrs	Fri 27.03.20	Thu 02.04.20	25	
29		*	Systemtesting	50 hrs	Thu 09.04.20	Fri 17.04.20	25;28	JV;MR;PW;JH
30		*	Fremdriftsrapport	16 hrs			2	
31		*	Skriving av hovedrapport	150 hrs	Mon 20.04.20	Thu 14.05.20	29	JH;JV;MR;PW
32		*	Presentasjon av bachelor	56 hrs	Wed 20.05.20	Thu 28.05.20	31	
			Task		Inactive Summary		External Tasks	
					Inactive Summary Manual Task		External Tasks External Milestone	*
· roie	t: Dem	nonstrasi	Split		*			*
	t: Dem Tue 28	,	Split		Manual Task		External Milestone	•
		,	Split , Milestone		Manual Task Duration-only		External Milestone Deadline	•
		,	Split . Milestone Summary		Manual Task Duration-only Manual Summary Rollup Manual Summary		External Milestone Deadline Progress	•
		,	Split Milestone Summary Project Summary Inactive Task		Manual Task Duration-only Manual Summary Rollup Manual Summary		External Milestone Deadline Progress	•

B.2 Gantt-skjema

