Практическое занятие. Элементы комбинаторики. Предмет теории вероятностей. Основные понятия теории вероятностей.

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

1. Элементы комбинаторики

Пусть A — множество, состоящее из конечного числа элементов a_1 , $a_2, a_3...a_n$. Из различных элементов множества A можно образовывать группы. Если в каждую группу входит одно и то же число элементов m (m из n), то говорят, что они образуют *соединения* из n элементов по m в каждом. Различают три вида соединений: размещения, сочетания и перестановки.

Перестановки

Соединения, в каждое из которых входят все n элементов множества A и которые, следовательно, отличаются друг от друга только порядком элементов, называются nepecmanoskamu из n элементов. Число таких перестановок обозначается символом P_n .

<u>Теорема 1</u>. Число всех различных перестановок из n элементов равно P_n = $n (n-1) (n-2) (n-3) ... 3 \cdot 2 \cdot 1 = 1 \cdot 2 \cdot 3 ... (n-1) n = n!$

П р и м е р 1. Пять студентов стоят в очереди в кассу. Сколькими способами можно составить очередь?

Решение. Число способов равно $P_n = 5! |= 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$.

Размещения

Соединения, каждое из которых содержит m различных элементов (m < n), взятых из n элементов множества A, отличающихся друг от друга или составом элементов, или их порядком, называются pазмещениями из n элементов по m в каждом. Число таких размещений обозначается символом A_n^m .

<u>Теорема 2.</u> Число всех размещений из n элементов по m вычисляется по формуле

$$A_n^m = n(n-1)(n-2)...[n-(m-1)].$$

Иногда для записи числа размещений используют следующую формулу: $A_{-}^{m}=n!/(n-m)!$

П р и м е р 2. Студент запомнил все цифры номера телефона студентки, кроме двух последних. Причем эти две цифры разные. Сколько телефонных номеров должен проверить студент?

Р е ш е н и е. Последними цифрами могут быть 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Выбрав любую пару цифр, студент получит номер какого-либо телефона. Причем эти же цифры, но в другом порядке дадут другой номер. Студенту нужно перебрать столько номеров, сколько будет возможных комбинаций из 10 цифр по 2, с учетом их порядка. Это и есть размещения из 10 элементов по $2: A_{10}^2 = 10.9 = 90.$

Сочетания

Соединения, каждое из которых содержит m различных элементов (m < n) взятых из n элементов множества A, отличающихся друг от друга по крайней мере одним из элементом (только составом), называются сочетаниями из n элементов по m в каждом. Число таких сочетаний обозначается символом C_n^m .

П р и м е р 3. Из 10 кандидатов на одну и ту же должность должны быть выбраны трое. Сколькими способами это можно сделать?

Решение. Число способов равно
$$C_{_{10}}^{_3}=\frac{10\cdot 9\cdot 8}{1\cdot 2\cdot 3}=120$$
 .

Иногда для записи числа размещений используют следующую формулу:

$$C_n^m = \frac{n!}{m!(n-m)!}.$$

2. Предмет теории вероятностей

В природе не существует ни одного физического явления, в котором не присутствовал бы элемент случайности. Предметом теории вероятностей является установление специфических закономерностей, наблюдаемых в случайных явлениях. Теория вероятностей позволяет оценить достоверность случайного явления.

В настоящее время нет почти ни одной естественной науки, в которой не применялись бы вероятностные методы. Это и баллистика (наука о движении тела в воздухе), и статистическая физика, и астрономия и т.д.

Кроме того, вероятностные методы лежат в основе математической статистики, позволяющей провести обработку больших массивов данных и выявить закономерности в этих данных. Для экономистов статистические методы тоже помогают получить важную информацию. Такую, например, как связь объема спроса на отдельные товары с уровнем жизни населения в различных регионах.

3. Основные понятия теории вероятностей

Основным понятием теории вероятностей является событие.

Случайным событием (событием) называется всякий факт, который может произойти или не произойти при определенных условиях. Каждое осуществление этих условий называется *опытом*. Будем обозначать события буквами A, B, C. Примеры событий:

- 1 появление герба при бросании монеты;
- 2 появление трех гербов при троекратном бросании монеты;
- 3 попадание в цель при выстреле;
- 4 появление туза при вынимании карты из колоды и т.д.

С каждым событием связано число, которое тем больше, чем более возможно событие, такое число называется вероятностью события A и обозначается как P(A).

Сравнивая события по степени их возможности, мы должны установить единицу измерения. В качестве единицы измерения принимается вероятность достоверного события - события, которое в результате опыта обязательно произойдет, т.е. вероятность достоверного события равна единице. Например, выпадение не более 6 очков при бросании игральной кости - достоверное событие.

Событие называется *невозможным*, если в данном опыте оно не может произойти. Вероятность невозможного события равна нулю. Например, выпадение 9 очков при бросании игральной кости - невозможное событие.

Случайным называется такое событие, которое может произойти в данном опыте, а может и не произойти.

Для всякого опыта проводим непосредственный подсчет вероятностей. Для этого определяем:

- 1. Полную группу событий ее образуют несколько событий, если в результате опыта непременно должно появиться хотя бы одно из них (выпадение герба и решки при бросании монеты, попадание и промах при выстреле, появление 1, 2, 3, 4, 5, 6 при бросании игральной кости и т.п.).
- 2. *Несовместные события* их образуют несколько событий, если в данном опыте никакие два из них не могут появиться вместе (выпадение герба и решки при бросании монеты, попадание и промах при выстреле).
- 3. *Равновозможные события* несколько событий в данном опыте, ни одно из которых не является объективно более возможным, чем другое (выпадение герба и решки, появление 1, 2, 3, 4, 5, 6 при бросании кости).

События, обладающие в данном опыте всеми тремя свойствами, называются *случайными исходами* (появление орла и решки, появление 1, 2, 3, 4, 5, 6 при бросании игральной кости и т.п.)

Исход называется *благоприятным* некоторому событию, если появление этого исхода влечет за собой появление данного события.

Например, событие – выпадение четного числа очков на игральной кости, благоприятные исходы – выпадение 2, 4, 6 при бросании кости.

Kлассическое определение вероятности. Вероятность события A вычисляется как отношение числа благоприятных событию A исходов (k) к

$$P(A) = \frac{k}{n}$$
.

общему числу равновозможных исходов (n):

П р и м е р 4. Найти вероятность того, что при бросании игральной кости выпадет шесть очков.

Р е ш е н и е. Число случаев равно 6 (n=6), число благоприятных случаев равно 1 (k=1). Тогда $P(A)=k\ /n=1/6$.

Таким образом, вероятность того, что при бросании игральной кости выпадет шесть очков, равна 1/6.

Пример 5. В урне 4 белых и 2 черных шара. Из урны вынимают наудачу два шара. Найти вероятность того, что оба шара будут белыми.

Р е ш е н и е. Пусть A – событие, состоящее в появлении двух белых шаров.

Так как C_n^m даёт ответ на вопрос: сколькими способами можно из п элементов выбрать m элементов, то в нашем случае:

1. Общее число возможных случаев n равно

$$n = C_6^2 = \frac{6 \cdot 5}{1 \cdot 2} = 15.$$

2. Число благоприятных случаев k равно:

$$k = C_4^2 = \frac{4 \cdot 3}{1 \cdot 2} = 6.$$

По классическому определению вероятности:

$$P(A) = \frac{k}{n} = \frac{6}{15} = \frac{2}{5}$$
.

Т.е. вероятность того, что оба шара будут белыми равна 0,4.

УПРАЖНЕНИЯ

- 1. В отделе трудятся 6 человек. Поступило распоряжение выдать трем сотрудникам премию в размере 400, 500, 600 руб. Сколькими способами это можно сделать?
- 2. В ящике 10 шаров разного цвета. Сколько имеется способов выбора четырёх шаров?
- 3. В отделе трудятся 5 человек. Поступило распоряжение выдать трем сотрудникам премию по 500 руб. Сколькими способами это можно сделать?

- 4. В ящике 10 белых шаров. Сколько имеется способов выбора четырёх шаров?
- 5. Бросаются две игральные кости. Найти вероятность, что сумма очков равна 8.
- 6. Бросают две игральные кости. Какова вероятность, что сумма очков равна 6, а произведение 8.
- 7. В урне имеется 9 шаров, из которых 4 белых и 5 черных. Из урны вынимают наудачу 2 шара. Найти вероятность, что оба черные.
- 8. В партии 12 деталей, из них 5 бракованных. Наудачу взяты 4 детали, найти вероятность того, что 2 из них бракованные.
- 9. В соревнованиях участвуют 15 человек: 8 мужчин, 4 женщин, 3 детей. Найти вероятность, что наудачу выбранная команда имеет следующий состав: 3 мужчин, 2 женщин, 2 ребёнка.