sne funkcije 3=110nF.

naponska on $u_2(t_0)$ u

naponska on $u_2(t_0)$ u

4. Za električne krugove prikazane slikom 3 izračunati naponske prijenosne funkcije $T(s)=U_2(s)/U_1(s)$, ako su zadane vrijednosti elemenata $R_1=17\mathrm{k}\Omega$, $R_2=12\mathrm{k}\Omega$ i $C_1=120\mathrm{nF}$

Kako se zove električni krug na slici 3(a), a kako na slici 3(b)?

Za krug na slici 3(a): Koliko iznosi vremenska konstanta kruga ? Ako je zadana naponska pobuda $u_1(t)=10^3 t S(t)$ [V], kako glasi izraz za napon $u_2(t)$? Skicirati valne oblike $u_1(t)$ i $u_2(t)$.

$$C = R_2 C_1 = 1.44 \cdot 10^{-3} \text{ S}$$

$$V_1(S) = \frac{10^3}{5^2}$$

$$V_2(S) = -R_2 \cdot k \cdot C_1$$

$$V_3(E) = -1.44 \cdot 5(E)$$

Za krug na slici 3(b): Koliko iznosi vremenska konstanta kruga ? Ako je zadana naponska pobuda $u_1(t)=10^3 t S(t)$ [V], kako glasi izraz za napon $u_2(t)$? Koliko iznosi napon $u_2(t_0)$ u trenutku t_0 =10,2 ms? Skicirati valne oblike $u_1(t)$ i $u_2(t)$. U, (to=10.2 ms) = -1.449 V

$$C = R_1 (1 = 2.04 \text{ m/s})$$

$$U_1(8) = \frac{10^3}{5^2} = \frac{k}{5^2} = \frac{10^3}{5^2}$$

$$U_2(8) = -\frac{kR_2(1)}{5(1+R_1)S(1)} = \frac{A}{5} + \frac{B}{4+R_1)S(1)}$$

$$A = -\frac{kR_2(1)}{5(1+R_1)S(1)} = \frac{A}{5} + \frac{B}{4+R_1)S(1)}$$

$$U_2(8) = -\frac{kR_2(1)}{5(1+R_1)S(1)} = \frac{A}{5(1+R_1)S(1)} = \frac{A}{5(1+R_1)S(1)}$$

$$U_2(1) = -\frac{kR_2(1)}{5(1+R_1)S(1)} = \frac{A}{5(1+R_1)S(1)} = \frac{A}{5(1+R_1)S(1)}$$

$$U_2(1) = -\frac{kR_2(1)}{5(1+R_1)S(1)} = \frac{A}{5(1+R_1)S(1)} = \frac{A}$$

ljenjem na praktična valitetnije sastavljen boardu je

Električni krugovi - Lab

Lab 5. Izvješće Električni krugovi s operacijskim pojačalom

Ime i Prezime:	
Asistent:	
Grupa:	

Napomena: Pojedine točke ovog Lab Izvješća se popunjavaju tokom izrade laboratorijskih vježbi prema istim točkama koje su detaljno opisane u Lab Uputama. Lab Izvješće se predaje asistentu na ocjenu po završetku laboratorijskih vježbi.

Vježba 1: Određivanje naponskih odziva u električnim krugovima s operacijskim pojačalom:

a. Integrator (idealni):

1.1 Zalemite na univerzalnoj štampanoj pločici električni krug s operacijskim pojačalom, kondenzatorom i otpornikom koji je prikazan na slici 5(b) te uzmite vrijednosti elemenata R_1 =5k Ω , C_2 =100nF. (Napomena: vidi Uputu, točka c. idealni integrator: obavezno dodati veliki otpor R_2 =100k Ω u paralelu sa kapacitetom C_2 .) Priključite generator signala (ISKRA MA3733) i podesite valni oblik napona na generatoru na pravokutni, amplituda napona neka je Vpp=0.5V, s DC offsetom od 0V i s periodom dužine T=20ms (ili frekvencijom signala 50Hz). (Objašnjenje: Vpp znači napon od vrha do vrha; engl. peak-to-peak; tj. ako je amplituda Vpp=0.5V tada periodički valni oblik poprima najnižu vrijednost -0.25V, a najvišu +0.25V.) Da biste preciznije podesili amplitudu napona Vpp=0.5V pogodno je uključiti prekidač -20dB na generatoru signala.

Na osciloskopu (Tektronix 2205) promatrajte valne oblike napona pobude i napona odziva na izlazu operacijskog pojačala i precrtajte ih niže. Frekvenciju vremenske baze osciloskopa podesite tako da se na ekranu dobije pet perioda pravokutnog napona (10ms/div). Označite sve karakteristične vrijednosti na slikama. Isti postupak crtanja valnih oblika napona pobude i odziva ponovite za pobudu koja ima trokutasti valni oblik i sinusni valni oblik. Svi parametri

signala su isti kao i za pravokutni valni oblik.

Pobuda: c) sinusni valni oblik b) trokutasti valni oblik a) pravokutni valni oblik

Iz dobivenih grafikona izračunati vrijednost vremenske konstante idealnog integratora: (=0,5mA

jegnu dvije

nog stanja) prezanjem. je površine akt. podloge i koje čisti oja. To je emljenju" podloge. a).

nema SI	ednju vrijednost jedn	aku nuli, ia	ako je
Zašto napon na izlazu idealnog integratora nema sr V _{DC} =0? Što se treba učini da se navedeni efekt spriječi	17 POSACALO SAU	JENO A	IA
V _{DC} =0? Sto se treba ucim da SVILI JE R JE			
ISTOSM (ERNI 12VOIS			

b. Integrator s gubicima (realni integrator):

1.2 Zalemite na univerzalnoj štampanoj pločici električni krug s operacijskim pojačalom, kondenzatorom i otpornikom koji je prikazan na slici 5(e) te uzmite vrijednosti elemenata R_1 =5k Ω , R_2 =20k Ω , C_2 =100nF. Priključite generator signala i podesite valni oblik napona na generatoru na pravokutni, trokutasti i sinusni kao u točki 1.1. Svi parametri signala su kao u točki 1.1. Na osciloskopu (Tektronix 2205) promatrajte i precrtajte valne oblike napona pobude i napona odziva na izlazu operacijskog pojačala. Frekvenciju vremenske baze osciloskopa podesite tako da se na ekranu dobije pet perioda periodičkog napona (10ms/div). Označite sve karakteristične vrijednosti na slikama.

c. Derivator (idealni):

1.3 Zalemite na univerzalnoj štampanoj pločici električni krug s operacijskim pojačalom, kondenzatorom i otpornikom koji je prikazan na slici 5(d) te uzmite vrijednosti elemenata R_2 =5k Ω , C_1 =100nF. Priključite generator signala i podesite valni oblik napona na generatoru na pravokutni, trokutasti i sinusni kao u točki 1.1. Svi parametri signala su kao u točki 1.1, jedino je amplituda ulaznog signala Vpp=10V. Na osciloskopu (Tektronix 2205) promatrajte i precrtajte valne oblike napona pobude i napona odziva. Frekvenciju vremenske baze osciloskopa podesite tako da se na ekranu dobije pet perioda periodičkog napona (10ms/div). Označite sve karakteristične vrijednosti na slikama.

ti da zasasijekog pojačala može realizirati idealni deri	vator ?
Da li se bez operacijskog pojačala može realizirati idealni deri)^^