

ENGINEERING MATHEMATICS - I Ordinary Differential Equations

Dr. Karthiyayini

Department of Science and Humanities

Unit 3: Ordinary Differential Equations

Session: 8

Sub Topic: Orthogonal Trajectories

Dr. Karthiyayini

Department of Science & Humanities

Orthogonal Trajectories – Polar Form-Example

Family of curves $\underline{r} = a(1 + cos\theta)$ & the family of curves $\underline{r} = b(1 - cos\theta)$ are orthogonal trajectories of each other.

Orthogonal Trajectories – Polar Form

For any polar curve $r=f(\theta)$, $tan\varphi=r\frac{d\theta}{dr}$ where φ is the angle between the radius vector and the tangent at any point P.

If c_1 and c_2 are 2 polar curves and φ_1 , φ_2 are the angle between the radii vector and tangent to the curves at their point of intersection c_1 and c_2 , then the two curves intersect orthogonally if $|\varphi_1 - \varphi_2| = \frac{\pi}{2}$.

Also,
$$tan\varphi_2=tan\left(\varphi_1+\frac{\pi}{2}\right)=-cot\varphi_1=-\frac{1}{tan\varphi_1}$$

Therefore $tan\varphi_1$. $tan\varphi_2=-1$

Orthogonal Trajectories – Polar Form

PES UNIVERSITY ONLINE

Working Procedure: For finding the Orthogonal Trajectory of Polar Family of Curves

Step 1: Form the differential equation for the given family of curves $F(r, \theta, c) = 0$ in the form $f(r, \theta, dr/d\theta) = 0$.

Step 2: Replace $\frac{dr}{d\theta}$ by $-r^2\frac{d\theta}{dr}$ to obtain the differential equation of the required orthogonal family of curves.

Step 3 : Solving this differential equation, the orthogonal family of curves can be obtained.

Orthogonal Trajectories – Polar Form

Note:

In case of Polar family of curves, if the **differential equation** remains the same after replacing $\frac{dr}{d\theta}$ by $-r^2\frac{d\theta}{dr}$, then the given family is said to be **Self Orthogonal**.

Orthogonal Trajectories – Problems

Solution:

Consider
$$r^2 = a^2 cos 2\theta$$

Differentiating with respect to θ , we have

$$2r\frac{dr}{d\theta} = -a^2(2\sin 2\theta)$$

Therefore,

DE of the given family :
$$\frac{1}{r}\frac{dr}{d\theta} = -tan2\theta$$

Orthogonal Trajectories – Polar Form

Replace $\frac{dr}{d\theta}$ by $-r^2\frac{d\theta}{dr}$ to obtain the differential equation of the required orthogonal family of curves

Hence, DE of the Orthogonal family:

$$\frac{dr}{r} - \cot\theta d\theta = 0$$

Solving this we obtain,

 $r^2 cosec2\theta = c^2 \text{ or } r^2 = c^2 sin2\theta \text{ which is the required}$ solution.

Orthogonal Trajectories – Problems

2. Find the Orthogonal Trajectories of the curves $r = \frac{2a}{1 - \cos \theta}$.

Solution:

Consider

$$r = \frac{2a}{1 - \cos\theta}$$

Differentiating with respect to θ , we have

DE of the given family:

$$\frac{1}{r}\frac{dr}{d\theta} = \frac{\sin\theta}{1 - \cos\theta} = \tan\frac{\theta}{2}$$

Orthogonal Trajectories – Polar Form

Replace $\frac{dr}{d\theta}$ by $-r^2\frac{d\theta}{dr}$ to obtain the differential equation of the required orthogonal family of curves

Hence, DE of the Orthogonal family:

$$\frac{dr}{r} + tan\frac{\theta}{2}d\theta = 0$$

Solving this we obtain,

 $rcos^{2}(\theta/2) = c^{2}$ which is the required solution.

THANK YOU

Dr. Karthiyayini

Department of Science & Humanities

Karthiyayini.roy@pes.edu

+91 80 6618 6651