PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-345745

(43) Date of publication of application: 14.12.2001

(51)Int.CI.

H04B H01Q H01Q 13/08 H01Q 21/28 HO4B 7/10

(21)Application number: 2000-292071

(71)Applicant: MATSUSHITA ELECTRIC IND CO

(22)Date of filing:

26.09.2000

(72)Inventor: HOASHI MASAKAZU

KOGA NAOKI

(30)Priority

Priority number : 2000090367

Priority date : 29.03.2000

Priority country: JP

(54) DIVERSITY RADIO DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a wireless radio device which can be downsized without incurring the drop of diversity gain.

SOLUTION: The correlation between antenna is lowered and high diversity gain can be obtained, by not grounding one or more antenna out of a plurality of antenna installed in a diversity radio device.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-345745 (P2001 - 345745A)

(43)公開日 平成13年12月14日(2001.12.14)

(51) Int.Cl. ⁷		識別記号	FI				テーマコード(参考)		
H04B	7/04 1/36		H04B	7/04 1/36			5 J 0 2 1 5 J 0 4 5		
H01Q			H01Q						
	1/38			1/38				5 J O 4 6	
	3/24			3/24	5 K 0 5 9				
	9/40			9/40					
	-	審査請求	未請求 請求		OL	(全	8 頁)	最終頁に続く	
(21)出願番号		特願2000-292071(P2000-292071)	(71) 出顧人 000005821						
(22)出願日		平成12年9月26日(2000.9.26)	松下電器産業株式会社 大阪府門真市大字門真1006番地 (72)発明者 帆足 正和						
(31)優先権主張番号 (32)優先日		特願2000-90367 (P2000-90367) 平成12年3月29日 (2000.3.29)	(12) 光明雀	(72)発明者 帆足 正和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内					
(33)優先権主張国		日本 (JP)	(72)発明者	(72)発明者 古賀 直樹 大阪府門真市大字門真1006番地 松 産業株式会社内					

(74)代理人 100097445

最終頁に続く

(54)【発明の名称】 ダイパーシティ無線装置

(57)【要約】

【課題】 本発明はダイバーシティ利得の低下を招くこ となく小型化できるダイバーシティ無線装置を提供する ことを目的とする。

【解決手段】 ダイバーシティ無線装置に備える複数の アンテナのうち、一つ以上のアンテナを接地しないこと により、アンテナ間の相関を低くし、高いダイバーシテ ィ利得を得ることができる。

弁理士 岩橋 文雄

【特許請求の範囲】

【請求項1】複数のアンテナによりダイバーシティを行うダイバーシティ無線装置であって、接地するアンテナと、接地しないアンテナとを備えることを特徴とするダイバーシティ無線装置。

【請求項2】接地していないアンテナ近傍にグランドを配置し、前記接地しないアンテナと高周波的に結合させることを特徴とする請求項1記載のダイバーシティ無線装置。

【請求項3】それぞれのアンテナ素子の配置角度、または給電点を変えてアンテナの指向性を操作することにより、有効にダイバーシティ効果を得ることを特徴とする請求項1又は2記載のダイバーシティ無線装置。

【請求項4】複数の接地しないアンテナによりダイバーシティを行うダイバーシティ無線装置であって、前記接地しないアンテナの少なくとも1つのアンテナ近傍にグランドを配置して、前記接地しないアンテナと高周波的に結合させることを特徴とするダイバーシティ無線装置。

【請求項5】それぞれのアンテナ素子の配置角度、または給電点を変えてアンテナの指向性を操作することにより、有効にダイバーシティ効果を得ることを特徴とする請求項4記載のダイバーシティ無線装置。

【請求項6】複数のアンテナによりダイバーシティを行うダイバーシティ無線装置であって、少なくとも一つの接地しないアンテナを備えるとともに、前記接地しないアンテナの一部の周囲を取り囲んでグランドを配置し、前記接地しないアンテナとグランドとを高周波的に結合させることを特徴とするダイバーシティ無線装置。

【請求項7】前記グランドは複数の積層であって、前記接地しないアンテナの一部の周囲を立体的に取り囲んでグランドを配置し、前記接地しないアンテナとグランドとを高周波的に結合させることを特徴とする請求項6記載のダイバーシティ無線装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は無線通信等に用いられるダイバーシティ無線装置に関するものである。

[0002]

【従来の技術】無線通信等に用いられるアンテナダイバーシティは、受信した信号からフェージングによる影響を取り除く有効な手段であり、一般に、相関関係の少ない2つ、あるいはそれ以上の受信系統で別々に受信し、それらの信号を検波前あるいは検波後に合成または自動的に切り替えて使用する方法である。この方法の代表的な例として、空間ダイバーシティや偏波ダイバーシティなどが挙げられる。

【0003】空間ダイバーシティは、受信点付近で互い に離れた地点におけるフェージングの変動の仕方が、互 いに独立であることを利用したものである。普通、2個 あるいはそれ以上のアンテナを空間的に互いに離して配置し、それらで別々に受信したのち、その信号を合成または切り替えて使用する。

【0004】偏波ダイバーシティは、互いに90°違った偏波の受信アンテナで別々に受信する方法である。

【0005】 これらのいずれの方法にしても、アンテナ間の相関が低いほど、大きなダイバーシティ利得が得られる。

【0006】従来のダイバーシティ無線装置の構成図を図11に示す(例えば特開平7-131229)。図11において、91はアンテナを実装する基板である。92は、基板91上に形成されたグランドプレーンである。93、94はアンテナであり、93a、94aは給電用端子、93b、94bはアンテナ支持を兼ねたグランド端子である。95はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。RF回路95のグランドはグランドプレーン92と接続されている。

【0007】この構成において、アンテナ93、94は、いわゆる逆Fアンテナであり、グランドプレーン92もアンテナ93の特性に関わってくる。

[0008]

【発明が解決しようとする課題】しかしながら、近年、無線機は小型化への要求が強く、アンテナに割り当てられるスペースが少なくなってきている。その結果、アンテナ間の距離を十分に取ることができず、共通のグランドに接続されたアンテナ間の相関が高くなり、ダイバーシティ利得の低下を招いてしまうことになる。

【0009】そこで、本発明はダイバーシティ利得の低下を招くことなく小型化できるダイバーシティ無線装置を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明は、複数のアンテナによりダイバーシティを行うダイバーシティ無線装置であって、接地するアンテナと接地しないアンテナの双方を備えるものである。

【0011】また、複数の接地しないアンテナによりダイバーシティを行うダイバーシティ無線装置であって、前記接地しないアンテナの少なくとも1つのアンテナ近傍にグランドを配置して、前記接地しないアンテナと高周波的に結合させるものである。

【0012】本発明によれば、ダイバーシティ利得の低下を招くことなく小型化できるダイバーシティ無線装置を提供することができる。

[0013]

【発明の実施の形態】本発明の請求項1に記載の発明は、複数のアンテナによりダイバーシティを行うダイバーシティ無線装置であって、接地するアンテナと、接地しないアンテナとを備えることを特徴とするダイバーシティ無線装置であり、ダイバーシティ利得の低下を招く

ことなく無線機を小型化できるという作用を有する。

【0014】本発明の請求項2に記載の発明は、接地していないアンテナ近傍にグランドを配置し、前記接地しないアンテナと高周波的に結合させることを特徴とする請求項1記載のダイバーシティ無線装置であり、複数のアンテナ間の相関を強めることなく接地していないアンテナを接地型アンテナと同様な特性にできるという作用を有する。

【0015】本発明の請求項3に記載の発明は、それぞれのアンテナ素子の配置角度、または給電点を変えてアンテナの指向性を操作する請求項1又は2記載のダイバーシティ無線装置であり、有効にダイバーシティ効果を得ることができるという作用を有する。

【0016】本発明の請求項4に記載の発明は、複数の接地しないアンテナによりダイバーシティを行うダイバーシティ無線装置であって、前記接地しないアンテナの少なくとも1つのアンテナ近傍にグランドを配置して、前記接地しないアンテナと高周波的に結合させることを特徴とするダイバーシティ無線装置であり、接地していないアンテナに接地型アンテナと同様の特性を持たせ、それらのアンテナでダイバーシティを行うことができるという作用を有する。

【0017】本発明の請求項5に記載の発明は、それぞれのアンテナ素子の配置角度、または給電点を変えてアンテナの指向性を操作する請求項4記載のダイバーシティ無線装置であり、有効にダイバーシティ効果を得ることができるという作用を有する。

【0018】本発明の請求項6に記載の発明は、複数のアンテナによりダイバーシティを行うダイバーシティ無線装置であって、少なくとも一つの接地しないアンテナを備えるとともに、前記接地しないアンテナの一部の周囲を取り囲んでグランドを配置し、前記接地しないアンテナとグランドとを高周波的に結合させることを特徴とするダイバーシティ無線装置であり、複数のアンテナ間の相関を低く保ちつつ、それぞれのアンテナが広い指向性を持つことができ、良好なスペースダイバーシティの効果が得られるという作用を有する。

【0019】本発明の請求項7に記載の発明は、前記グランドは複数の積層であって、前記接地しないアンテナの一部の周囲を立体的に取り囲んでグランドを配置し、前記接地しないアンテナとグランドとを高周波的に結合させることを特徴とする請求項6記載のダイバーシティ無線装置であって、複数のアンテナ間の相関を低く保ちつつ、それぞれのアンテナが広い指向性を持つことができ、良好なスペースダイバーシティの効果が得られるという作用を有する。

【0020】以下、本発明の実施の形態について図1から図9までを用いて説明する。

【0021】(実施の形態1)図1は、本発明の第1の 実施の形態におけるダイバーシティ無線装置の構成図で ある。

【0022】図1において、11はアンテナを実装する基板である。12は、基板11上に形成されたグランドプレーンである。13は接地するアンテナ、14は接地しないアンテナであり、13a、14aは給電用端子、13bはアンテナ13の支持を兼ね、アンテナ13をグランドプレーン12に電気的に接続するためのグランド端子である。14bはアンテナを支持する支持用端子である。15はRF回路であり、アンテナへの給電や受信信号の処理を行う。RF回路15のグランドはグランドプレーン12と接続されている。

【0023】この構成において、アンテナ13は、いわゆる逆Fアンテナの形となっており、グランドプレーン12もアンテナ13の特性に関わってくる。一方、アンテナ14は、アンテナ13やグランドプレーン12から完全に切り離されている。したがって、アンテナ13とアンテナ14は相関が低くなっており、これらのアンテナによりダイバーシティを行えば、高いダイバーシティ利得が得られることになる。

【0024】図10は、本発明の第1の実施の形態におけるダイバーシティ無線装置の外観図である。

【0025】図10において、81は、PCカード型のダイバーシティ無線装置であり、図示しないPCカードスロットに挿入して、接続するための接続コネクタ部82を有する。ダイバーシティ無線装置81は、図示しないPCカードスロットを有するゲートウェイ等のネットワーク接続機器、あるいはポータブルPC等に接続されることにより、無線によるデータの送受信等に供される

【0026】(実施の形態2)図2は、本発明の第2の 実施の形態におけるダイバーシティ無線装置の構成図で ある。

【0027】図2において、21はアンテナを実装する基板である。22は、基板21上に形成されたグランドプレーンである。23は接地するアンテナ、24は接地しないアンテナであり、23a、24aは給電用端子、23bはアンテナ支持を兼ね、アンテナ23とグランドプレーン22を電気的に接続するグランド端子である。25はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。RF回路25のグランドはグランドプレーン22と接続されている。【0028】本実施の形態においては接地しないアンテ

【0028】本実施の形態においては接地しないアンテナ24として別基板に形成されたメアンダパターンを持つアンテナを用いている点が実施の形態1と異なっている。

【0029】上記のように別の構造のアンテナを使用することにより、アンテナ23とアンテナ24との相関を低くくすることができ、またそれぞれのアンテナの利点を活かしたダイバーシティ効果を得ることができる。また、前記基板11上にパターンとしてメダンダアンテナ

を構成することも当然可能である。

【0030】なお、前記実施の形態で述べたアンテナ以外の構成においても本発明の効果があることは明らかである。

【0031】(実施の形態3)図3は、本発明の第3の 実施の形態におけるダイバーシティ無線装置の構成図で ある。

【0032】図3において、31はアンテナを実装する基板である。32は、基板31上に形成されたグランドプレーンである。33は接地するアンテナ、34は接地しないアンテナであり、33a、34aは給電用端子、33b、34bはアンテナを支持する端子である。特に、端子33bは、アンテナ33とグランドプレーン32を電気的に接続するものである。35はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。RF回路35のグランドはグランドプレーン32と接続されている。

【0033】上記構成において、接地するアンテナ33と接地しないアンテナ34との角度を所定の角度とすることにより、アンテナ33とアンテナ34との相関を低くくすることができると共に、偏波ダイバーシティの効果を得ることもでき、ダイバーシティ利得の大きなダイバーシティ無線装置を得ることができる。

【0034】なお、前記実施の形態で述べたアンテナ以外の構成においても本発明の効果があることは明らかである。

【0035】(実施の形態4)図4は、本発明の第4の 実施の形態におけるダイバーシティ無線装置の構成図で ある。

【0036】図4において、41はアンテナを実装する基板である。42は、基板41上に形成されたグランドプレーンである。43は接地するアンテナ、44は接地しないアンテナであり、43a、44aは給電用端子、43bはアンテナ支持を兼ね、アンテナ43をグランドプレーン42へ電気的に接続するためのグランド端子、44bはアンテナを支持する支持用端子である。

【0037】本実施の形態では、アンテナ44をグランドと高周波的に結合させるべく、支持用端子44bのでく近傍にグランドプレーン42を配置している。45はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。RF回路45のグランドはグランドプレーン42と接続されている。

【0038】本実施の形態の構成によれば、アンテナ44のごく近傍にグランドプレーン42を配置し、高周波的に結合させることにより、アンテナ44の指向性を広くできると共に、アンテナ43とアンテナ44との相関を低くくすることができ、ダイバーシティ利得の大きなダイバーシティ無線装置を得ることができる。

【0039】なお、アンテナとグランドを高周波的に結合させるのは、表層のみでなく、内層や裏面などでも可

能である。

【0040】また、前記実施の形態で述べたアンテナ以外の構成においても本発明の効果があることは明らかである。

【0041】(実施の形態5)図5は、本発明の第5の 実施の形態におけるダイバーシティ無線装置の構成図で ある。

【0042】図5において、51はアンテナを実装する基板である。52は、基板51上に形成されたグランドプレーンである。53、54はともに接地しないアンテナであり、53a、54aは給電用端子、53b、54bは、アンテナを支持する支持用端子であり、グランドと高周波的に結合させるべく、ごく近傍にグランドプレーン52を配している。

【0043】55はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。 【0044】RF回路55のグランドはグランドプレーン52と接続されている。

【0045】本実施の形態の構成によれば、アンテナ53、54のでく近傍にグランドプレーン52を配置し、高周波的に結合させることによりアンテナ53およびアンテナ54の相関を低く保ちつつ、それぞれのアンテナが広い指向性を持つことができ、良好なスペースダイバーシティの効果が得られる。

【0046】さらに、2つのアンテナ間の角度を90°に設定することで、一方のアンテナで水平偏波面の信号を主に受信させ、もう一方のアンテナで垂直偏波面の信号を主に受信させることによって、偏波ダイバーシティの効果を得ることもできる。

【0047】なお、アンテナとグランドを高周波的に結合させるのは、表層のみでなく、内層や裏面などでも可能である。

【0048】また、前記実施の形態で述べたアンテナ以外の構成においても本発明の効果があることは明らかである。

【0049】(実施の形態6)図6は本発明の第6の実施の形態におけるダイバーシティ無線装置の構成図、図7は本発明の第6の実施の形態におけるダイバーシティ無線装置のアンテナ部分の断面図である。

【0050】図6、図7において、61はアンテナを実装する多層基板。

【0051】62aは、前記多層基板61の第1層に形成されたグランドプレーンである。 '

【0052】62bは、前記多層基板61の第2層に形成されたグランドプレーンである。

【0053】63は接地しないアンテナであり、その構成は、給電用端子63a、導電性の部材からなる支持端子63b、多層基板61と平行に形成された導電体63c、多層基板61の第1層に形成され、グランドプレーン62aに周囲を囲まれた島状の導電体63dからな

る。

【0054】前記支持端子63bは、前記導電体63c と前記導電体63dを接続している。

【0055】64は接地しないアンテナであり、その構成は、給電用端子64a、導電性の部材からなる支持端子64b、前記多層基板61と平行に形成された導電体64c、前記多層基板61の第1層に形成され、グランドプレーン62aに周囲を囲まれた島状の導電体64dからなる。

【0056】前記支持端子64bは、前記導電体64c と前記導電体64dを接続している。

【0057】65はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。

【0058】RF回路65のグランド、グランドプレーン62a、62bとは、直接、あるいはスルーホールなどで接続されている。

【0059】本構成によれば、アンテナの一部である、 導電体63d、64dがグランドプレーン62a、62 bと高周波的に結合するため、二つのアンテナ間の相関 を低く保ちつつ、それぞれのアンテナが広い指向性を持 つことができ、良好なスペースダイバーシティの効果が 得られる。

【0060】さらに、2つのアンテナ間の角度を90°に設定することで、一方のアンテナで水平偏波面の信号を主に受信させ、もう一方のアンテナで垂直偏波面の信号を主に受信させることによって、偏波ダイバーシティの効果を得ることもできる。

【0061】また、前記実施の形態で述べたアンテナ以外の構成においても本発明の効果があることは明らかである。

【0062】なお、本実施の形態では、一例として63 c、および64cを多層基板61と平行に形成された導 電体を示したが、特にこの形状に限定するものではない。

【0063】また、導電体63d、64dは、必ずしも 多層基板61に形成される必要は無く、アンテナ側に形 成されていてもよい。

【0064】また、アンテナ63,64ともに接地しない構成となっているが、一つのアンテナのみ接地しない構成であってもよい。

【0065】(実施の形態7)図8は本発明の第7の実施の形態におけるダイバーシティ無線装置の構成図、図9は本発明の第7の実施の形態におけるダイバーシティ無線装置のアンテナ部分の断面図である。

【0066】図8、図9において、71はアンテナを実装する多層基板。

【0067】72aは、前記多層基板71の第1層に形成されたグランドプレーンである。

【0068】72bは、前記多層基板71の第2層に形成されたグランドプレーンである。

【0069】72cは、前記多層基板71の第3層に形成されたグランドプレーン。

【0070】73は接地しないアンテナであり、その構成は、給電用端子73a、導電性の部材からなる支持端子73b、前記多層基板71と平行に形成された導電体73c、前記多層基板71の第2層に形成され、グランドプレーン72bに周囲を囲まれた島状の導電体73dからなる。

【0071】導電体73dは、グランドプレーン72 a、72b、72cによって立体的に周囲を取り囲まれ ている。

【0072】前記支持端子73bは、前記導電体73cと前記導電体73dを接続している。

【0073】74は接地しないアンテナであり、その構成は、給電用端子74a、導電性の部材からなる支持端子74b、前記多層基板71と平行に形成された導電体74c、前記多層基板71の第2層に形成され、グランドプレーン72bに周囲を囲まれた島状の導電体74dからなる。

【0074】導電体74dは、グランドプレーン72 a、72b、72cによって立体的に周囲を取り囲まれ ている。

【0075】前記支持端子74bは、前記導電体74c と前記導電体74dを接続している。

【0076】75はRF回路であり、送受信アンテナの切り替え、アンテナへの給電や受信信号の処理を行う。

【0077】RF回路75のグランド、グランドプレーン72a、72b、72cとは、直接、あるいはスルーホールなどで接続されている。

【0078】本構成によれば、アンテナの一部である、 導電体73d、74dがグランドプレーン72a、72 b、72cと高周波的に結合するため、二つのアンテナ 間の相関を低く保ちつつ、それぞれのアンテナが広い指 向性を持つことができ、良好なスペースダイバーシティ の効果が得られる。

【0079】さらに、2つのアンテナ間の角度を90°に設定することで、一方のアンテナで水平偏波面の信号を主に受信させ、もう一方のアンテナで垂直偏波面の信号を主に受信させることによって、偏波ダイバーシティの効果を得ることもできる。

【0080】また、前記実施の形態で述べたアンテナ以外の構成においても本発明の効果があることは明らかである。

【0081】なお、本実施の形態では、一例として73 c、および74cを多層基板71と平行に形成された導電体と示したが、特にこの形状に限定するものではない。

【0082】また、導電体73d、74dを最下位層に 形成し、その一つ上の層にグランドプレーンを配置し て、高周波的に結合させてもよい。 【0083】また、アンテナ73,74ともに接地しない構成となっているが、一つのアンテナのみ接地しない構成であってもよい。

[0084]

【発明の効果】本発明は、ダイバーシティ無線装置に備える複数のアンテナのうち、一つ以上のアンテナを接地しないことにより、アンテナ間の相関を低くすることができるので、高いダイバーシティ利得を得ることができるという効果を有する。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態におけるダイバーシティ無線装置の構成図

【図2】本発明の第2の実施の形態におけるダイバーシティ無線装置の構成図

【図3】本発明の第3の実施の形態におけるダイバーシティ無線装置の構成図

【図4】本発明の第4の実施の形態におけるダイバーシティ無線装置の構成図

【図5】本発明の第5の実施の形態におけるダイバーシティ無線装置の構成図

【図6】本発明の第6の実施の形態におけるダイバーシ

ティ無線装置の構成図

【図7】本発明の第6の実施の形態におけるダイバーシティ無線装置のアンテナ部分の断面図

【図8】本発明の第7の実施の形態におけるダイバーシティ無線装置の構成図

【図9】本発明の第7の実施の形態におけるダイバーシティ無線装置のアンテナ部分の断面図

【図10】本発明の第1の実施の形態におけるダイバーシティ無線装置の外観図

【図11】従来のダイバーシティ無線装置の構成図 【符号の説明】

- 11 基板
- 12 グランドプレーン
- 13 接地するアンテナ
- 13a アンテナの給電用端子
- 13b アンテナのグランド端子
- 14 接地しないアンテナ
- 14a アンテナの給電用端子
- 14b アンテナの支持用端子
- 15 RF回路

【図1】

【図2】

【図3】

【図4】

F ターム(参考) 5J021 AA02 AA05 AA06 AB00 CA03 DB01 HA06 JA05 JA07 5J045 AA05 AB05 DA08 EA07 FA01 JA01 LA01 NA00 5J046 AA00 AA03 AB00 AB10 TA01 TA04 5K059 CC01 CC05 DD01 DD31