	Species	Wavelength	Telescopes					
			ALMA	Herschel	$\mathbf{J}\mathbf{W}\mathbf{S}\mathbf{T}$	Spitzer	SOFIA	SWAS
Currently Available	[C I] [C II] [O I] [Fe II] [†] [Si II] [†] H_2 0-0S(0) to S(3) [†] H_2 6-4Q(1) [†]	$370\mu\text{m}, 609\mu\text{m}$ $158\mu\text{m}$ $63\mu\text{m}, 145\mu\text{m}$ $26\mu\text{m}$ $35\mu\text{m}$ $28.2-9.7\mu\text{m}$ $1.6\mu\text{m}$		•	•	•	•	•
	H_2 1-0S(1) [†] ^{12}CO J=1 to 14 [^{13}C I]] [‡] [^{13}C II] [‡] H_2 S(4) to S(20) [‡] §	2.12μm 2.6–0.2mm 370μm, 609μm 158μm 8-1μm	•	•	•		•	•
Proposed Additions	$^{12}\text{CO J}=15 \text{ to } 25^{\ddagger}$ $^{13}\text{CO J}=1 \text{ to } 25^{\ddagger}$ $^{13}\text{CO v}=1-0^{\ddagger}$ $^{12}\text{CO v}=1-0^{\ddagger}$	$0.2-0.1$ mm $2.6-0.1$ mm $4.5-5\mu$ m $6.7-7\mu$ m	•	•	•		•	
	[S I] [‡] [Fe II] [‡] [Fe I] [‡] [F I] [‡] [Cl I] [‡]	25.2 μm 17.9 μm 24.0 μm 24.8μm 11.3μm			•		•	

The PDR Toolbox reads in a set of diagnostic emission line observations, and returns the best fit model for the physical conditions – density, incident radiation field, and gas temperature – of the region. As currently implemented, PDRT uses pre-computed sets of PDR models. Our goals are to enhance and expand the existing parts while adding real-time accessible codes that can be tuned for specific objects by users, broadening its capability to analyze archival data products. To that end, we propose to:

• Allow image data as inputs. Currently PDRT finds model fits using data from a single beam. However, line images are now readily available, for example, from Herschel, SOFIA, and Spitzer. We will read in FITS images and output images of the best