Homework 10 David Yang

Chapter VIII (The Logarithmic Integral) Problems.

Section VIII.4 (Open Mapping and Inverse Function Theorems), Problem 1

Suppose D is a bounded domain with piecewise smooth boundary. Let f(z) be meromorphic and g(z) analytic on D. Suppose that both f(z) and g(z) extend analytically across the boundary of D, and that $f(z) \neq 0$ on ∂D . Show that

$$\frac{1}{2\pi i} \oint_{\partial D} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} m_j g(z_j)$$

where z_1, \ldots, z_n are the zeros and poles of f(z) and m_j is the order of f(z) at z_j .

Solution. Note that $g(z)\frac{f'(z)}{f(z)}$ is analytic on $D \cup \partial D$ except for a finite number of isolated singularities at z_1, \ldots, z_n . Consequently, by the Residue Theorem, we have that

$$\oint_{\partial D} g(z) \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res} \left[g(z) \frac{f'(z)}{f(z)}, z_j \right].$$

Consider a given singularity z_j , which is either a zero or pole of order m_j at f(z). By definition, we have that

$$f(z) = (z - z_j)^{m_j} h(z)$$

for a function h(z) satisfying $h(z_j) \neq 0$ and h(z) analytic at z_j . By the Chain Rule, we also find that

$$f'(z) = m_j(z - z_j)^{m_j - 1}h(z) + (z - z_j)^{m_j}h'(z)$$

and so

$$\frac{f'(z)}{f(z)} = \frac{m_j(z - z_j)^{m_j - 1}h(z) + (z - z_j)^{m_j}h'(z)}{(z - z_j)^{m_j}h(z)}$$
$$= \frac{m_j}{z - z_j} + \frac{h'(z)}{h(z)}.$$

Since $h(z_j) \neq 0$ and h(z) is analytic at z_j , $\frac{h'(z)}{h(z)}$ is also analytic at z_j . Thus, the residue of $\frac{f'(z)}{f(z)}$ at z_j , which is the coefficient of the $\frac{1}{z-z_j}$ term in the Laurent expansion about z_j , is simply m_j .

Plugging this residue into our result from the Residue Theorem, we find that

$$\oint_{\partial D} g(z) \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{j=1}^{n} \text{Res} \left[g(z) \frac{f'(z)}{f(z)}, z_j \right]$$
$$= 2\pi i \sum_{j=1}^{n} m_j g(z_j)$$

where the factor of $g(z_j)$ follows from the fact that g(z) is analytic at z_j .

Dividing both sides of our equation by $2\pi i$, we arrive at the desired result,

$$\frac{1}{2\pi i} \oint_{\partial D} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} m_j g(z_j)$$

where z_1, \ldots, z_n are the zeros and poles of f(z) and m_j is the order of f(z) at z_j .

Let γ be a closed path in a domain D such that $W(\gamma, \xi) = 0$ for all $\xi \notin D$. Suppose that f(z) is analytic on D except possibly at finite number of isolated singularities $z_1, \ldots, z_m \in D \setminus \Gamma$. Show that

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{m} W(\gamma, z_k) \operatorname{Res}[f, z_k].$$

Solution. Note that f(z) is analytic on D except at its isolated singularities z_1 to z_m . Consequently, the function

$$g(z) = f(z) - \sum_{k=1}^{m} \sum_{n=-\infty}^{-1} a_{n,k} (z - z_k)^n$$

obtained by subtracting the principal parts of f(z) at each singularity from f(z) is analytic both at each singularity and everywhere else on D. Equivalently, g(z) is analytic everywhere on D.

Since $g(z) = f(z) - \sum_{k=1}^{m} \sum_{n=-\infty}^{-1} a_{n,k} (z - z_k)^n$ is analytic on D, and for the closed path γ in D, $W(\gamma, \xi) = 0$ for all $\xi \notin D$, we know by the Theorem on page 243 that

$$\int_{\gamma} g(z) \, dz = \int_{\gamma} \left(f(z) - \sum_{k=1}^{m} \sum_{n=-\infty}^{-1} a_{n,k} (z - z_k)^n \right) \, dz = 0.$$

Rearranging the equation $\int_{\gamma} \left(f(z) - \sum_{k=1}^{m} \sum_{n=-\infty}^{-1} a_{n,k} (z-z_k)^n \right) dz = 0$, we find that

$$\int_{\gamma} f(z) dz = \int_{\gamma} \sum_{k=1}^{m} \sum_{n=-\infty}^{-1} a_{n,k} (z - z_k)^n dz$$
$$= \sum_{k=1}^{m} \int_{\gamma} \sum_{n=-\infty}^{-1} a_{n,k} (z - z_k)^n dz$$

By VIII.6 Problem 5, we know that for each $n \leq -2$ and each singularity z_k (since no singularity is on the trace of γ), $\int_{\gamma} (z - z_k)^n dz = 0$. Thus,

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{m} \int_{\gamma} \sum_{n=-\infty}^{-1} a_{n,k} (z - z_{k})^{n} dz$$

$$= \sum_{k=1}^{m} \int_{\gamma} \left(\sum_{n=-\infty}^{-2} a_{n,k} (z - z_{k})^{n} \right) + \left(a_{-1,k} (z - z_{k})^{-1} \right) dz$$

$$= \sum_{k=1}^{m} \int_{\gamma} a_{-1,k} \frac{1}{z - z_{k}} dz$$

$$= \sum_{k=1}^{m} a_{-1,k} \int_{\gamma} \frac{1}{z - z_{k}} dz.$$

Note that $W(\gamma, z_k) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_k} dz$ and $\text{Res}[f, z_k] = a_{-1,k}$ by definition, and so substituting these expressions to our current equation gives us

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{m} W(\gamma, z_k) \operatorname{Res}[f, z_k]$$

where z_1 to z_m are the isolated singularities of f(z), as desired.