Roll No.

H

TMA-101

B. Tech. (First Semester) Mid Semester EXAMINATION, 2016

(All Branches)

ENGINEERING MATHEMATICS—I

Time: Two Hours]

[Maximum Marks: 60

Note: (i) This question paper contains three questions with alternative choice.

- (ii) All questions are compulsory.
- (iii) Each question carries four Parts (a), (b),(c) and (d). Attempt either Parts (a) and(b) or (c) and (d) of each question.
- (iv) Each Part carries ten marks. Total marks assigned to each question are twenty.
- 1. (a) If $y = a \cos(\log x) + b \sin(\log x)$, show that:

(i)
$$x^2 y_2 + xy_1 + y = 0$$

(ii)
$$x^2 y_{n+2} + (2n+1) xy_{n+1} + (n^2+1) y_n = 0$$

C-27

P. T. O.

(b) If u, v are function of x and y defined by $x = u + e^{-v} \sin u$ and $y = v + e^{-v} \cos u$, prove that $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$.

Or

(c) If $y = x^2 e^x$, show that :

$$y_n = \frac{1}{2}n(n-1)y_2 - n(n-2)y_1 + \frac{1}{2}(n-2)y_1$$

(d) If $u(u^2 + 3x) + 3y = 0$, prove that:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{2 u (x-1)}{(u^2 + x^3)}$$

- 2. (a) Expand sin xy in powers of (x 1) and $\left(y \frac{\pi}{2}\right)$ up to second degree terms.
 - (b) Verify Euler's theorem for the functions:

$$u = \log \frac{x^2 + y^2}{xy}$$

- (c) Test the function $f(x, y) = x^2 + y^2 + \frac{2}{x} + \frac{2}{y}$ for maxima or minima.
- (d) If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$; then show that $\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)} = 4$.

[3]

- 3. (a) Discuss the maximum and minimum values of $x^2 + y^2 + 6x + 12$.
 - (b) If u, v, w are the roots of the equation in λ and $\frac{x}{a+\lambda} + \frac{y}{b+\lambda} + \frac{z}{c+\lambda} = 1$, then find $\frac{\partial(u, v, w)}{\partial u}$

Or

(c) If $u = e^{xyz}$, prove that:

$$\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3 xyz + x^2 y^2 z^2) e^{xyz}$$

(d) Using Leibnitz theorem, prove that the *n*th differential coefficient of $\frac{x^n}{x+1}$ is $\frac{n!}{(x+1)^{n+1}}$.

TMA-101

910

C-27

C-27