INTRODUCTION TO EPIGENOME-WIDE ASSOCIATION STUDIES (EWAS)

1. WELCOME AND INTRODUCTION TO THE COURSE

AIM

To introduce basic concepts and guidelines to conduct epigenome-wide association studies (EWAS) using DNA methylation data obtained from arrays.

Teachers:

- Juan R González (<u>juanr.gonzalez@isglobal.org</u>)
- Mariona Bustamante (<u>mariona.bustamante@isglobal.org</u>)
- Laura Balagué (<u>laura.balague@isglobal.org</u>)
- Sofía Aguilar (sofia.aguilar@isglobal.org)
- Felix P Chilunga (<u>f.p.chilunga@amsterdamumc.nl</u>)

SESSIONS

Five sessions of 2 hours:

- Day 1: Introduction to epigenetics and Bioconductor
- Day 2: Pre-processing of DNA methylation data
- Day 3: Epigenome-wide association studies (EWAS)
- Day 4: Meta-analysis of epigenome-wide association studies (meta-EWAS)
- Day 5: Biological interpretation

Each session:

- Theory (30 min)
- Practices
 - Introduction (all together 15 min)
 - Practical session (in groups 45 min)
 - Resolution (all together 30 min)

MATERIAL

Material:

- Laptop or computer with >8Gb RAM
- Power points: https://github.com/isglobal-brge/course methylation/tree/main/Slides
- Bookdown with all R code: https://isglobal-brge.github.io/course_methylation/
- Data: https://mega.nz/folder/Y3EDAD6Y#pQB HeqEfAYTg6UixU-k5A

Recommended papers:

- Recommendations for the design and analysis of epigenome-wide association studies https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-021-01200-8
- Epigenetic Signatures of Cigarette Smoking https://www.ahajournals.org/doi/full/10.1161/CIRCGENETICS.116.001506
- Meffil: efficient normalization and analysis of very large DNA methylation datasets (ADDED NOW) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247925/
- Orchestrating high-throughput genomic analysis with Bioconductor https://www.nature.com/articles/nmeth.3252

INTRODUCTION TO EPIGENOME-WIDE ASSOCIATION STUDIES (EWAS)

1. INTRODUCTION TO EPIGENETICS

EPIGENOME

The sum of all modifications to DNA or to DNA-associated RNA and proteins, that permit interpretation of the genome to instruct cell identity and function.

Symphony = Phenotype

Partiture = Genome

https://www.google.com/search?q=genome+symphony+epigenome&source=lmns&tbm=vid&bih=609&biw=1280&rlz=1C1GCEU_esES978ES978&hl=es&sa=X&ved=2ahUKEwj20rC8msCAAxUypycCHaXLDGkQ0pQJKAJ6BAgBEAY#fpstate=ive&vld=cid:2d6174fc,vid:W3Kg9w-srFk

EPIGENETIC MARKS

- DNA methylation
- Histone modifications
- Non-coding RNAs

EPIGENETIC MARKS: HISTONE MODIFICATIONS

Histone modifications

Histones: proteins needed for DNA packaging

EPIGENETIC MARKS: NON-CODING RNAS

Non-coding RNAs

Types of non-coding RNAs

Joshi et al. Repr Biol Endocr 2020 Gurtam et al. Journal of Molecular Biology 2013

miRNA regulatory mechanism

EPIGENETIC MARKS: DNA METHYLATION

DNA methylation

FUNCTIONS OF THE EPIGENOME

The epigenome regulates how genes are expressed (when, where, at what level...), thus it regulates:

- Embryo and fetal development
- Cellular differentiation
- Chromosome X inactivation
- Chromosome stability (ie. inhibition of DNA mobile elements)
- Response to environmental factors
- Involved in disease mechanisms

TISSUE AND CELL SPECIFICITY

Tissue and cell specificity

TIME SPECIFICITY

Fetal development

THE LINK BETWEEN EXPOSURES, GENETIC VARIATION AND TRAITS

APLICATIONS OF EPIGENETICS

Main applications of epigenetics

- Understand biological mechanisms from environment to disease
- Stratify disease in subtypes for diagnosis
- Predict disease risk, treatment response...
- Predict past exposures

UNDERSTAND BIOLOGICAL MECHANISMS

Maternal tobacco smoking - placental methylation - birth weight

growth-factor signaling hormone activity inflammation vascularization

overlap with genetic variants of birth weight

Prediction of health risk factors and exposures

Prediction of health risk factors and exposures

Prediction of smoking status

EpiSmokEr R package — blood methylation data C: Current, F: Former, N: Never and O: other two categories

Yousefi et al Nat Rev Genet 2022 Bollepalli, bioarxiv 2022

Prediction of health outcomes

Prediction of health outcomes

Prediction of health outcomes

Prediction of health outcomes

Primary neuroblastoma

INTRODUCTION TO EPIGENOME-WIDE ASSOCIATION STUDIES (EWAS)

1. EPIGENETICS AMONG TRANSITIONING AFRICAN POPULATIONS

(Felix P Chilunga)

INTRODUCTION TO EPIGENOME-WIDE ASSOCIATION STUDIES (EWAS)

1. RESOURCES AND TOOLS FOR EPIGENETICS

Go to: https://isglobal-brge.github.io/course methylation/resources-and-tools-for-epigenetics-in-bioconductor.html