Machine Learning

Linear Regression and its variants. ML and MAP principles. Regression Quality Metrics.

Aleksandr Petiushko

ML Research

• Linear Regression formulation

- Linear Regression formulation
- ML and MAP principles

- Linear Regression formulation
- ML and MAP principles
- 3 Least Squares method

- Linear Regression formulation
- ML and MAP principles
- 3 Least Squares method
- Opposite the Polynomial Regression

- Linear Regression formulation
- ML and MAP principles
- Least Squares method
- Open Polynomial Regression
- Ridge Regression, LASSO and Elastic Net

2 / 26

- Linear Regression formulation
- ML and MAP principles
- Least Squares method
- Opposite the Polynomial Regression
- Ridge Regression, LASSO and Elastic Net
- Quality metrics for Regression

• Bayes' rule:
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

- Bayes' rule: $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$
- PDF of Normal distribution $x \sim N(\mu, \sigma^2)$: $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

A. Petiushko

- Bayes' rule: $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$
- PDF of Normal distribution $x \sim N(\mu, \sigma^2)$: $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- Square norm (common, euclidean, L_2 usually w/o saying explicitly) of a vector $w = (w_1, \ldots, w_n)$: $||w||^2 = \sum_{i=1}^n (w_i)^2$

A. Petiushko Linear Regression

- Bayes' rule: $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$
- PDF of Normal distribution $x \sim N(\mu, \sigma^2)$: $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- Square norm (common, euclidean, L_2 usually w/o saying explicitly) of a vector $w = (w_1, \ldots, w_n)$: $||w||^2 = \sum_{i=1}^n (w_i)^2$
- L_1 -norm of a vector $w = (w_1, \dots, w_n)$: $|w| = \sum_{i=1}^n |w_i|$

Problem Statement: Linear Regression

Given

$$y_i = w^T x_i + \varepsilon_i \Rightarrow y_i \sim N(w^T x_i, \sigma^2),$$

for i = 1, ..., m, where $w \in \mathbf{R}^{n+1}$, $\varepsilon_i \sim N(0, \sigma^2)$, $X^m = \{(x_1, y_1), ..., (x_m, y_m)\}$ — the training dataset.

Task

Find w

Two kinds of parameter estimation

Maximum Likelihood (\mathbf{ML}) Principle

$$w_{ML} = \underset{w}{\operatorname{arg\,max}} p(y|w, x)$$

Two kinds of parameter estimation

Maximum Likelihood (ML) Principle

$$w_{ML} = \underset{w}{\operatorname{arg\,max}} p(y|w, x)$$

Principle of Maximum A Posterior (MAP) Probability

$$w_{MAP} = \underset{w}{\operatorname{arg\,max}} p(w|x, y)$$

$$w_{ML} = \arg\max_{w} p(y|w, x)$$

$$w_{ML} = \underset{w}{\arg\max} p(y|w, x)$$
$$w_{ML} = \underset{w}{\arg\max} \prod_{i} p(y_{i}|w, x_{i})$$

$$w_{ML} = \underset{w}{\arg \max} p(y|w, x)$$

$$w_{ML} = \underset{w}{\arg \max} \prod_{i} p(y_i|w, x_i)$$

$$p(y_i|w, x_i) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)$$

$$\begin{aligned} w_{ML} &= \arg\max_{w} p(y|w,x) \\ w_{ML} &= \arg\max_{w} \prod_{i} p(y_{i}|w,x_{i}) \\ p(y_{i}|w,x_{i}) &= \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma^{2}}\right) \\ w_{ML} &= \arg\max_{w} \prod_{i} \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma^{2}}\right) = \arg\max_{w} \sum_{i} -\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma^{2}} \end{aligned}$$

A. Petiushko

$$w_{ML} = \arg\max_{w} p(y|w, x)$$

$$w_{ML} = \arg\max_{w} \prod_{i} p(y_{i}|w, x_{i})$$

$$p(y_{i}|w, x_{i}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_{i} - w^{T}x_{i})^{2}}{2\sigma^{2}}\right)$$

$$w_{ML} = \arg\max_{w} \prod_{i} \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(y_{i} - w^{T}x_{i})^{2}}{2\sigma^{2}}\right) = \arg\max_{w} \sum_{i} -\frac{(y_{i} - w^{T}x_{i})^{2}}{2\sigma^{2}}$$

$$w_{ML} = \arg\min_{w} \sum_{i} (y_{i} - w^{T}x_{i})^{2}$$

A. Petiushko

Problem statement and assumptions

$$\bullet \ X = \mathbb{R}^n, \, Y = \mathbb{R}$$

Problem statement and assumptions

- $X = \mathbb{R}^n$, $Y = \mathbb{R}$
- $a(x) = f_w(x) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_n x^n$, where $w = (w_0, w_1, \dots, w_n)^T \in \mathbb{R}^{n+1}$ model parameters.

Problem statement and assumptions

- $X = \mathbb{R}^n$, $Y = \mathbb{R}$
- $a(x) = f_w(x) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_n x^n$, where $w = (w_0, w_1, \dots, w_n)^T \in \mathbb{R}^{n+1}$ model parameters.
- It is convenient to write in vector form

$$a(x) = w^T \cdot x,$$

where $x = (1, x^1, ..., x^n)^T \in \mathbb{R}^{n+1}$.

A. Petiushko Linear Regression

Problem statement and assumptions

- $X = \mathbb{R}^n, Y = \mathbb{R}$
- $a(x) = f_w(x) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_n x^n$, where $w = (w_0, w_1, \dots, w_n)^T \in \mathbb{R}^{n+1}$ model parameters.
- It is convenient to write in vector form

$$a(x) = w^T \cdot x,$$

where $x = (1, x^1, ..., x^n)^T \in \mathbb{R}^{n+1}$.

Least squares method (LSM)

• $L(w, X_{train}) = MSE(w, X_{train}) = \frac{1}{m} \sum_{i} (w^T \cdot x_i - y_i)^2$ — loss function

Problem statement and assumptions

- $X = \mathbb{R}^n, Y = \mathbb{R}$
- $a(x) = f_w(x) = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_n x^n$, where $w = (w_0, w_1, \dots, w_n)^T \in \mathbb{R}^{n+1}$ model parameters.
- It is convenient to write in vector form

$$a(x) = w^T \cdot x,$$

where $x = (1, x^1, ..., x^n)^T \in \mathbb{R}^{n+1}$.

Least squares method (LSM)

- $L(w, X_{train}) = MSE(w, X_{train}) = \frac{1}{m} \sum_{i} (w^T \cdot x_i y_i)^2 \text{loss function}$
- The task is to find $\hat{w} = \underset{w}{\operatorname{arg min}}(L(w, X_{train}))$

A. Petiushko Linear Regression 7 / 26

Equivalence of ML and LSM

Equivalence

ML and LSM are equivalent for a regression task under an assumption of normal distribution for $p(y_i|w, x_i)$.

Analytical solution

Theorem

The solution to the problem $\underset{w}{\operatorname{arg\,min}}(\sum_{i=1}^{m}(w^T\cdot x_i-y_i)^2)$ is $\hat{w}=(X^TX)^{-1}\cdot X^T\cdot y$, where

$$X_{i,j} = x_i^j, y = (y_1, \dots, y_m)^T.$$

Analytical solution

Theorem

The solution to the problem $\underset{w}{\operatorname{arg\,min}} (\sum_{i=1}^{m} (w^T \cdot x_i - y_i)^2)$ is $\hat{w} = (X^T X)^{-1} \cdot X^T \cdot y$, where $X_{i,j} = x_i^j$, $y = (y_1, \dots, y_m)^T$.

Proof idea

Let's write the problem in vector form $||Xw - y||^2 \to \min_{w}$. The necessary condition for a minimum in matrix form is:

$$\frac{\partial}{\partial w}||Xw - y||^2 = 0$$

Polynomial Regression

Idea

It is possible to generate new features based on existing ones by applying non-linear functions

Polynomial Regression

Idea

It is possible to generate new features based on existing ones by applying non-linear functions

Transformation examples

- Exponentiation
- Pairwise products
- Square root

Pros and cons of linear regression

A. Petiushko

Pros and cons of linear regression

Advantages

- Simple algorithm, not computationally complex
- Linear regression is a well interpretable model
- Despite its simplicity, it can describe quite complex dependencies (for example, polynomials)

Pros and cons of linear regression

Advantages

- Simple algorithm, not computationally complex
- Linear regression is a well interpretable model
- Despite its simplicity, it can describe quite complex dependencies (for example, polynomials)

Disadvantages

- The algorithm assumes that all features are numeric
- The algorithm assumes that the data is normally distributed, which is not always the case
- The algorithm is highly sensitive to outliers

A. Petiushko Linear Regression 11 / 26

$$w_{MAP} = \operatorname*{arg\,max}_{w} p(w|x_1, \dots, x_m, y_1, \dots, y_m)$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} p(w|x_1, \dots, x_m, y_1, \dots, y_m)$$
$$w_{MAP} = \underset{w}{\operatorname{arg max}} \prod_{i} [p(y_i|x_i, w)p(w)]$$

$$w_{MAP} = \underset{w}{\arg \max} p(w|x_1, \dots, x_m, y_1, \dots, y_m)$$
$$w_{MAP} = \underset{w}{\arg \max} \prod_i [p(y_i|x_i, w)p(w)]$$
$$w_{MAP} = \underset{w}{\arg \max} \sum_i \ln p(y_i|x_i, w) + m \ln p(w)$$

A. Petiushko Linear Regression

$$w_{MAP} = \underset{w}{\operatorname{arg max}} p(w|x_1, \dots, x_m, y_1, \dots, y_m)$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} \prod_i [p(y_i|x_i, w)p(w)]$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} \sum_i \ln p(y_i|x_i, w) + m \ln p(w)$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} \sum_i -\frac{(y_i - w^T x_i)^2}{2\sigma^2} + m \ln p(w)$$

A. Petiushko Linear Regression

$$w_{MAP} = \underset{w}{\operatorname{arg max}} p(w|x_1, \dots, x_m, y_1, \dots, y_m)$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} \prod_i [p(y_i|x_i, w)p(w)]$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} \sum_i \ln p(y_i|x_i, w) + m \ln p(w)$$

$$w_{MAP} = \underset{w}{\operatorname{arg max}} \sum_i -\frac{(y_i - w^T x_i)^2}{2\sigma^2} + m \ln p(w)$$

$$w_{MAP} = \underset{w}{\operatorname{arg min}} \sum_i \frac{(y_i - w^T x_i)^2}{2\sigma^2} - m \ln p(w)$$

A. Petiushko

$$w_{MAP} = \underset{w}{\arg\max} p(w|x_1, \dots, x_m, y_1, \dots, y_m)$$

$$w_{MAP} = \underset{w}{\arg\max} \prod_{i} [p(y_i|x_i, w)p(w)]$$

$$w_{MAP} = \underset{w}{\arg\max} \sum_{i} \ln p(y_i|x_i, w) + m \ln p(w)$$

$$w_{MAP} = \underset{w}{\arg\max} \sum_{i} -\frac{(y_i - w^T x_i)^2}{2\sigma^2} + m \ln p(w)$$

$$w_{MAP} = \underset{w}{\arg\min} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - m \ln p(w)$$

An additional term appeared in the minimization problem, which depends only on the prior distribution on the weights w

A. Petiushko Linear Regression 12 / 26

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - m \ln p(w)$$

A. Petiushko Linear Regression

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - m \ln p(w)$$

Let's assume that $p(w) \sim N(0, \tau^2)$

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - m \ln p(w)$$

Let's assume that $p(w) \sim N(0, \tau^2)$

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} + \frac{m||w||^2}{2\tau^2}$$

A. Petiushko Linear Regression

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} - m \ln p(w)$$

Let's assume that $p(w) \sim N(0, \tau^2)$

A. Petiushko

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} + \frac{m||w||^2}{2\tau^2}$$

$$w_{MAP} = \underset{w}{\operatorname{arg\,min}} \frac{1}{m} \sum_{i} \frac{(y_i - w^T x_i)^2}{2\sigma^2} + \frac{1}{2\tau^2} ||w||^2$$

Linear Regression 13 /

Ridge Regression

L_2 regularization

• $L(w, X_{train}) = MSE(w, X_{train}) + \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 = \frac{1}{m} \sum_{i=1}^{m} (w^T \cdot x_i - y_i)^2 + \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 - \text{loss}$ function

Ridge Regression

L_2 regularization

- $L(w, X_{train}) = MSE(w, X_{train}) + \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 = \frac{1}{m} \sum_{i=1}^{m} (w^T \cdot x_i y_i)^2 + \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 \text{loss}$ function
- The task is to find $\hat{w} = \arg\min_{w} (L(w, X_{train}))$

A. Petiushko Linear Regression

Ridge Regression

L_2 regularization

- $L(w, X_{train}) = MSE(w, X_{train}) + \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 = \frac{1}{m} \sum_{i=1}^{m} (w^T \cdot x_i y_i)^2 + \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 \text{loss}$ function
- The task is to find $\hat{w} = \arg\min_{w} (L(w, X_{train}))$

Note: L_2 regularization and MAP with the normally distributed weights are the same!

A. Petiushko

inear Regres

Ridge regression: solution

Theorem

The solution of the problem $\underset{w}{\operatorname{arg\,min}} (\sum_{i=1}^{m} (w^T \cdot x_i - y_i)^2 + \alpha \sum_{j=0}^{n} w_j^2)$ is $\hat{w} = (X^T X + \alpha I_{n+1})^{-1} \cdot X^T \cdot y$, where $X_{i,j} = x_i^j$, $y = (y_1, \dots, y_m)^T$, I_{n+1} is the identity matrix.

Proof idea

Let's write the problem in vector form $||Xw - y||^2 + \alpha ||w||^2 \to \min_w$. The necessary condition for a minimum in matrix form is:

$$\frac{\partial}{\partial w} \left((Xw - y)^T \cdot (Xw - y) + \alpha w^T w \right) = 0$$

A. Petiushko Linear Regression

Ridge Regression: Properties

- Regularization prevents model parameters from being too large
- In general, regularization provides better generalization ability
- More resistant to outliers
- A parameter has been added that can be configured using cross-validation

Ridge Regression: Properties

- Regularization prevents model parameters from being too large
- In general, regularization provides better generalization ability
- More resistant to outliers
- A parameter has been added that can be configured using cross-validation

The probabilistic meaning of the α parameter

 $\alpha = \frac{1}{\tau^2}$, where τ is the standard deviation of the prior distribution on w

LASSO

L_1 -regularization

• $L(w, X_{train}) = MSE(w, X_{train}) + \alpha \sum_{j=0}^{n} |w_j| = \sum_{i=1}^{m} (w^T \cdot x_i - y_i)^2 + \alpha \sum_{j=0}^{n} |w_j| - \text{loss}$ function

LASSO

L_1 -regularization

- $L(w, X_{train}) = MSE(w, X_{train}) + \alpha \sum_{j=0}^{n} |w_j| = \sum_{i=1}^{m} (w^T \cdot x_i y_i)^2 + \alpha \sum_{j=0}^{n} |w_j| \text{loss}$ function
- The task is to find $\hat{w} = \underset{w}{\operatorname{arg\,min}}(L(w, X_{train}))$

LASSO

L_1 -regularization

- $L(w, X_{train}) = MSE(w, X_{train}) + \alpha \sum_{i=0}^{n} |w_i| = \sum_{i=1}^{m} (w^T \cdot x_i y_i)^2 + \alpha \sum_{i=0}^{n} |w_i| \text{loss}$ function
- The task is to find $\hat{w} = \arg\min(L(w, X_{train}))$

Properties

- This regularization provides feature selection
- No analytical solution

Probabilistic interpretation of LASSO

The probabilistic meaning of the α parameter

The parameter α — is inversely proportional to the standard deviation of the prior distribution by w. In this case, this is the *Laplace* distribution

$$p(w) = \frac{1}{\tau} exp\left(-\frac{||w||}{2\tau}\right)$$

Intuition of feature selection under L_1 -regularization

Elastic Net

L_1 -regularization and L_2 -regularization

•
$$L(w, X_{train}) = MSE(w, X_{train}) + r\alpha \sum_{j=0}^{n} |w_j| + (1 - r) \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 =$$

$$\sum_{i=1}^{m} (w^T \cdot x_i - y_i)^2 + r\alpha \sum_{j=0}^{n} |w_j| + (1 - r) \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 - \text{loss function}$$

A. Petiushko Linear R

Elastic Net

L_1 -regularization and L_2 -regularization

•
$$L(w, X_{train}) = MSE(w, X_{train}) + r\alpha \sum_{j=0}^{n} |w_j| + (1 - r) \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 =$$

$$\sum_{i=1}^{m} (w^T \cdot x_i - y_i)^2 + r\alpha \sum_{j=0}^{n} |w_j| + (1 - r) \frac{\alpha}{2} \sum_{j=0}^{n} w_j^2 - \text{loss function}$$

• The task is to find $\hat{w} = \arg\min(L(w, X_{train}))$

Properties

- No analytical solution
- Combines the positive properties of Ridge regression and LASSO.

Motivation

• The formulation of a machine learning problem usually begins with the definition of a metric and fixing a test dataset on which this metric will be calculated

Motivation

- The formulation of a machine learning problem usually begins with the definition of a metric and fixing a test dataset on which this metric will be calculated
- An incorrectly chosen metric can make it difficult to use the machine learning model in real life and nullify the efforts of the team developing the machine learning algorithm

Motivation

- The formulation of a machine learning problem usually begins with the definition of a metric and fixing a test dataset on which this metric will be calculated
- An incorrectly chosen metric can make it difficult to use the machine learning model in real life and nullify the efforts of the team developing the machine learning algorithm
- As a rule, the customer does not think in terms of metrics and can only explain the problem he wants to solve in business language

A. Petiushko Linear Regression

Motivation

- The formulation of a machine learning problem usually begins with the definition of a metric and fixing a test dataset on which this metric will be calculated
- An incorrectly chosen metric can make it difficult to use the machine learning model in real life and nullify the efforts of the team developing the machine learning algorithm
- As a rule, the customer does not think in terms of metrics and can only explain the problem he wants to solve in business language
- Understanding the impact of the choice of a particular metric on the customer's business is the key to successful problem setting

A. Petiushko Linear Regression 21 / 26

Quality Metrics for the Regression Problem¹

Mean Square Error

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - a(x_i))^2$$

¹Note: unless otherwise specified, metrics are applied on top of the test dataset.

A. Petiushko Linear Regression 22 / 26

Quality Metrics for the Regression Problem¹

Mean Square Error

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - a(x_i))^2$$

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - a(x_i))^2}$$

¹Note: unless otherwise specified, metrics are applied on top of the test dataset.

A. Petiushko Linear Regression 22 / 26

Quality Metrics for the Regression Problem¹

Mean Square Error

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - a(x_i))^2$$

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - a(x_i))^2}$$

Mean Absolute Error

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - a(x_i)|$$

A. Petiushko Linear Regression 22 / 26

 $^{^{1}}$ Note: unless otherwise specified, metrics are applied on top of the test dataset.

Max Error

$$ME = \max_{i=1...m} (|y_i - a(x_i)|)$$

Max Error

$$ME = \max_{i=1...m} (|y_i - a(x_i)|)$$

Mean Squared Logarithmic Error

$$MSLE = \frac{1}{m} \sum_{i=1}^{m} (\ln y_i - \ln a(x_i))^2$$

Max Error

$$ME = \max_{i=1\dots m} (|y_i - a(x_i)|)$$

Mean Squared Logarithmic Error

$$MSLE = \frac{1}{m} \sum_{i=1}^{m} (\ln y_i - \ln a(x_i))^2$$

R^2 score (also known as Coefficient of Determination)

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y_{i} - a(x_{i}))^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}},$$

where $\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$.

◆□ ト ◆□ ト ◆ 豊 ト ◆ 豊 ・ り ♀ ○

Mandatory external links to read

- Linear Regression task
 - ► A simple introductory <u>video</u> about Linear Regression and a more rigorous <u>one</u> about its variants.

• Linear regression — simple, well-interpreted model, but not robust to outliers

- Linear regression simple, well-interpreted model, but not robust to outliers
- Linear regression variants have a clear probabilistic interpretation

25 / 26

- Linear regression simple, well-interpreted model, but not robust to outliers
- Linear regression variants have a clear probabilistic interpretation
- Regularization is a great way to deal with the overfitting and data noise

25 / 26

- Linear regression simple, well-interpreted model, but not robust to outliers
- Linear regression variants have a clear probabilistic interpretation
- Regularization is a great way to deal with the overfitting and data noise
- Ridge Regression == L_2 -regularization == adding weighted square (L_2) norm of w to MSE of linear regression

A. Petiushko Linear Regression 25 / 26

- Linear regression simple, well-interpreted model, but not robust to outliers
- Linear regression variants have a clear probabilistic interpretation
- Regularization is a great way to deal with the overfitting and data noise
- Ridge Regression == L_2 -regularization == adding weighted square (L_2) norm of w to MSE of linear regression
- LASSO == L_1 -regularization == adding weighted L_1 norm of w to MSE of linear regression

A. Petiushko Linear Regression 25 / 26

- Linear regression simple, well-interpreted model, but not robust to outliers
- Linear regression variants have a clear probabilistic interpretation
- Regularization is a great way to deal with the overfitting and data noise
- Ridge Regression == L_2 -regularization == adding weighted square (L_2) norm of w to MSE of linear regression
- LASSO == L_1 -regularization == adding weighted L_1 norm of w to MSE of linear regression
- Elastic Net $== L_1 + L_2$ -regularization == adding weighted L_1 and squared L_2 norm of w to MSE of linear regression

A. Petiushko Linear Regression 25 / 26

Thank you!

