Lesson 10. Introduction to Markov Chains

1 Overview

- Sample path of a stochastic process: sequence of state changes $(S_0, S_1, S_2, ...)$ occurring at random points in time $(T_0, T_1, T_2, ...)$
- In some settings, we care more about the state changes than the times at which the changes occur
- This lesson: a stochastic process model that focuses on the transitions between states

2 The Case of the Random Behavior

Jungle.com is an online retailer that sells everything from books to toothbrushes. Their data analytics group is currently evaluating changes to Jungle.com's computer architecture, and needs a model that describes customer behavior. The group has identified four key types of customer transactions:

- (1) visit the Jungle.com home page to start shopping ("log on"),
- (2) fetch the main page of a product,

• System events:

- (3) fetch and read the reviews of a product, and
- (4) finish shopping by checking out or closing the browser ("log off").

The data analytics group believes that the next transaction a customer requests is strongly influenced by the last (most recent) transaction requested, and not significantly influenced by anything else. For a given customer, let

- *N* be a random variable representing the next transaction a customer requests, and
- *L* be a random variable representing the last transaction requested.

Based on its substantial historical data, it has determined the following conditional pmfs:

а	1	2	3	4
$p_{N L=1}(a)$	0	0.95	0.01	0.04
$p_{N L=2}(a)$	0	0.27	0.63	0.10
$p_{N L=1}(a)$ $p_{N L=2}(a)$ $p_{N L=3}(a)$	0	0.36	0.40	0.24
$p_{N L=4}(a)$	0	0	0	1

Denote the corresponding conditional cdfs as $F_{N|L=1}$, $F_{N|L=2}$, $F_{N|L=3}$, $F_{N|L=4}$.

•	Let's model the transitions	between	customer	transaction	types as a	ı stochastic p	process

. 11					
tata variables					
tate variables.					
	tate variables:				

In this model, $n=$ We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N I=4}(4)=1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I We can generalize this model so that the initial state is allowed to be random by redefining e_0 :	System event subro	outines:		
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				tate only
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
We are not keeping track of event epochs, so our algorithm Simulation can be simplified to: algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I				
algorithm Simulation: 1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I	In this model, $n =$			
1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I	We are not keeping	g track of event epochs,	so our algorithm Simulation can be simplified to:	
1: $n \leftarrow 0$ (initialize system-event counter) $e_0()$ (execute initial system event) 2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I		algorithm Simulation:		
2: $e_1()$ (update state of the system) $n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I		1: $n \leftarrow 0$	(initialize system-event counter)	
$n \leftarrow n+1$ (update system-event counter) 3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I		**	·	
3: go to line 2 Since $p_{N L=4}(4) = 1$, once a sample path reaches state 4, it stays there The stochastic process model above – with the property that the probability distribution of the next state only depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I		**	· '	
The stochastic process model above – with the property that the probability distribution of the next state $\underline{\text{only}}$ depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I		3: go to line 2	- · ·	
The stochastic process model above – with the property that the probability distribution of the next state $\underline{\text{only}}$ depends on the last state – is called a Markov chain Let I be a random variable that represents the initial state with cdf F_I	Since $p_{N L=4}(4) =$	1, once a sample path re	eaches state 4, it stays there	
				only
We can generalize this model so that the initial state is allowed to be random by redefining e_0 :	Let <i>I</i> be a random	variable that represents	the initial state with cdf F_I	
	We can generalize	this model so that the in	nitial state is allowed to be random by redefining e_0 :	

 $\circ~$ In the Jungle.com case, we can think of I as a random variable with

$$Pr\{I = 1\} = 1$$
 $Pr\{I = i\} = 0$ for $i = 2, 3, 4$

to model that a session always begins with a log on

3	Marko	ov chains
	• Disc	rete-time, discrete-state stochastic process $\{S_0, S_1, S_2, \dots\}$
	• State	e space $\mathcal{M} = \{1, \ldots, m\}$
	• State	es evolve according to the algorithmic model above
	• $\{S_0,$	S_1, S_2, \dots is a Markov chain if:
		In other words, $\{S_0, S_1, S_2, \dots\}$ satisfies the Markov property : the conditional probability of the next state given the history of past states <u>only depends on the last state</u> As a consequence:
	requests	e 1. Recall that the performance-modeling group at Jungle.com believes that the next transaction a customer is essentially solely influenced by the last transaction requested. Compute the probability of the sequence actions 1, 2, 4.
		arkov chain is time-stationary if: In other words, the conditional probability of the next state given the last one does not depend on the
		number of time steps taken so far
	0	As a consequence:

• In this course, we assume that Markov chains are time-stationary unless told otherwise

• The one-step probabilities p_{ij} are	
• The initial-state probabilities p_i are	e
Example 2. Assuming time-stationarity the one-step transition and initial-state	y, express the probability of the sequence of transactions 1, 2, 4 in terms probabilities.
• The sample paths of a time-stationar of one-step transition probabilities a	ry Markov chain are completely characterized by a corresponding sequen and initial-state probabilities
Representations of Markov chains	s
• We can organize the one-step transit	tion probabilities into a one-step transition matrix :
	$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & p_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} & p_{m2} & \dots & p_{mm} \end{bmatrix}$
We can also organize the initial-state	e probabilities into a initial-state vector :
	$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{bmatrix}$
Example 3. Write the one-step transition the rows of the one-step transition matr	on matrix and initial-state vector for the Jungle.com Markov chain. Why orix sum up to 1?

•	We can a	also draw	a transition	probability	y diagram	where
---	----------	-----------	--------------	-------------	-----------	-------

- o each node represents a state of the system
- \circ a directed arc connects state *i* to state *j* if a one-step transition from *i* to *j* is possible
- \circ the one-step transition probability p_{ij} is written next to the arc from i to j

5 Next time...

- Using the one-step transition matrix **P** and initial-state vector **p** to answer questions like:
 - \circ Given that we are in state *i* right now, what is the probability we will be in state *j* after *n* time steps?
 - What is the unconditional probability we will be in state j after n time steps?