KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI POLITEKNIK NEGERI LHOKSEUMAWE

A SERWAN

JURUSAN TEKNIK ELEKTRO
In Banda Aceh-Medan Km. 280,3 Buketrata – Lhokseumawe. 24301 P.O Box 90
Telepon (0645) 42785, Fax. 42785 Ex. 9
Laman: www.elektro.pnl.ac.id

SOAL UJIAN PERBAIKAN

SEMESTER GANJIL TAHUN AKADEMIK 2021/2022 PROGRAM STUDI TEKNIK INFORMATIKA

Matakuliah: ALJABAR LINIER

No	Uraian Soal	Bobot (%)
	Dapatkan Nilai-nilai Eigen, Vektor Eigen , dan Basis untuk matrik B berikut:	
	$A = egin{bmatrix} 1 & -2 \ -2 & 1 \end{bmatrix}$ Petunjuk:	
	Pertama, hitung $\det(\lambda I - B) = 0$, akar-akar persamaan ini adalah nilai 2 eigen.	
1	Kedua, hitung $(\lambda I-B)X=0$, lalu setelah dapat persamaan matrik, masukkan nilai-nilai λ nya, lalu cari $x_1\mathrm{dan}x_2$, lalu misalkan salah satunya dengan t , maka itulah vector eigen. Ulangi untuk λ lainnya	50
	Ketiga, dari $\pmb{\lambda}$ yang ada, keluarkan t sebagai konstanta dari vector, maka angka 2 yang ada dalam vector itu adalah basis (bila ada).	
	Dapatkan sebuah matrik $m{P}$ yang mendiagonalisasi matrik $m{B}$ berikut, lalu periksa dengan menghitung $m{P^{-1}BP}$	
	$B = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$	
	Petunjuk:	
	Pertama, hitung $det(\lambda I-C)=0$, maka akan diperoleh nilai2 λ .	
2	Kedua, dari nilai 2 λ tersebut, hitung $(\lambda I - B)X = 0$ sehingga diperoleh $x_1 \mathrm{dan} x_2$ sama seperti perhitungan basis. Jadikan nilai basis untuk λ pertama sebagai P_1 dan nilai basis untuk λ lainnya sebagai P_2 sehingga diperoleh matriks P adalah gabungan dari P_1 dan P_2 .	50
	Ketiga, hitung $m{P}^{-1}$ dengan terlebih dahuli mencari determinan dan adjointnya.	
	Keempat, hitung $P^{-1}BP$, dari sini akan kelihatan apakah matriks ini diagonal apa bukan.	
	Jumlah	100