VARs

Other Approaches

Adam M. Guren

Boston University

Spring 2024

Empirical Evidence on Role of Money

- Big questions in monetary economics:
 - How is an economy with money different from an economy without money?

- What effects do change in monetary policy have on real activity and inflation?
- Before we add money to canonical RBC model, turn to empirical evidence.
 - Will provide facts any successful model must match and motivate features we will add to model.
- Estimating effect of monetary policy is hard because policy is endogenous and expectations affect equilibrium today.
 - In fact, if monetary policy is successful and countercyclical, estimates of its effect would be biased towards zero.
 - Intuition: Monetary policy would move around but output would be stable.

Evidence for Nominal Rigidity

- 1. Vector Autoregressions
- 2. VAR Evidence for Non-Neutrality
- 3. Other Approaches
- 4. Natural Experiments

Introduction to VARs

- Before we get started, introduce a key econometric tool: Vector Autoregression or VAR.
 - Proposed by Sims (1980), who won the Nobel Prize for it.
 - Wanted a way to describe economic time series with minimal theoretical restrictions.

- This is a key tool in macro to summarize relationships between macroeconomic time series.
 - To motivate / test models.
 - Examine response to structural shocks.
 - Frequently used at central banks.

Stationarity and White Noise

- Cannot find regularities if things do not repeat themselves.
- Leads to concept of stationarity.
 - A time series $\{x_t\}$ is stationary if the mean, variance, and autocorrelation can be well approximated by sufficiently long time averages.

Other Approaches

• In other words, $\{x_t\}$ is covariance stationary if:

$$E\{x_t\} = \mu \ \forall \ t \ \text{and} \ E\{(x_t - \mu)(x_{t-k} - \mu)\} = g_k \ \forall \ t, k$$

- Sometimes not a great assumption (e.g., economies in transition), but for post-war US GDP, it works.
- Otherwise, detrend or difference.
- A white noise process has mean zero, a constant variance, and is serially uncorrelated.

Autoregressions

• An autoregression is a regression of a time series $\{x_t\}$ on lags of itself.

Other Approaches

• Example: AR(1)

$$x_t = \beta_0 + \beta_1 x_{t-1} + \varepsilon_t$$

- Stationary and stable if $|\beta_1| < 1$
- Otherwise goes off to infinity and never mean reverts.
- Can estimate AR(p)

$$x_t = \beta_0 + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_p x_{t-p} + \varepsilon_t$$

by OLS if $\{x_t\}$ is stationary and ε_t is a white noise process.

Vector Autoregression

- A vector autoregression is a generalization of an autoregression in which x_t is a vector of time series.
- Simple example we will use:

$$x_t = \left[\begin{array}{c} y_t \\ z_t \end{array} \right]$$

- However can be of arbitrary size n.
- The *reduced-form* single-lag VAR of x_t is then:

$$x_t = A_0 + A_1 x_{t-1} + e_t$$

where A_0 is an $n \times 1$ vector and A_1 is an $n \times n$ matrix.

Reduced-Form VAR: Estimation

More generally, for a VAR of size n with p lags,

$$x_t = A_0 + A_1 x_{t-1} + A_2 x_{t-2} + \dots + A_p x_{t-p} + e_t$$

Other Approaches

 x_t , A_0 , and e_t are $n \times 1$ vectors and A_i are $n \times n$ matrices.

- There are thus $n + pn^2$ coefficients and (n + 1) n/2 in the variance-covariance matrix.
- The right hand side only contains predetermined variables of a stationary process, and the error terms are assumed to be serially uncorrelated with constant variance (can relax).
 - So can estimate each equation by OLS.
 - Application of seemingly unrelated regression.

Forecasting

Can forecast using VAR:

$$E_t x_{t+1} = A_0 + A_1 x_t$$

$$E_t x_{t+2} = A_0 + A_1 E_t x_{t+1} = A_0 + A_1 [A_0 + A_1 x_t]$$

- Often-used diagnostic tool is the forecast error variance decomposition (FEVD).
 - Tells us proportion of variance of moments in $\{y_t\}$ or $\{z_t\}$ due to $e_{1,t}$ and $e_{2,t}$.
 - Like a partial R² of forecast error by forecast horizon.
 - See econometrics class for derivation.

Impulse Responses

• Theorem: VAR has a vector moving average representation.

Other Approaches

 Example with one lag (and a zero constant term, to keep things simple):

$$x_{t} = Ax_{t-1} + e_{t}$$

$$= A(Ax_{t-2} + e_{t-1}) + e_{t}$$

$$= e_{t} + Ae_{t-1} + A^{2}e_{t-2} + A^{3}e_{t-3} + \dots$$

• The response of x_t to a one unit shock to $e_{1,t}$ in period t after n periods with no other e shocks is:

$$IR(n) = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Impulse Response Functions

$$IR(n) = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- This is called an *impulse response function to e*₁₊ and is a convenient way to represent how shocks $\{e_t\}$ affect $\{x_t\}$.
 - Can plot graphically and create standard error bands.
- Intuitively, this is the difference between two processes $\{x_t\}$ that are made up of identical shocks $\{e_t\}$ except in period t, where an additional unit one shock is added to $e_{1,t}$.

Structural VARs

- Unfortunately, reduced form VARs are restrictive.
 - 1. No simultaneous causality
 - 2. Shocks have to be uncorrelated and white noise.
 - Note: These are the same problem written different ways.

Other Approaches

- Generalize to a structural VAR.
- Tackle problem 1 first and allow for simultaneous causality:

$$y_t = b_{10} - b_{12}z_t + \gamma_{11}y_{t-1} + \gamma_{12}z_{t-1} + \varepsilon_{yt}$$

$$z_t = b_{20} - b_{21}y_t + \gamma_{21}y_{t-1} + \gamma_{22}z_{t-1} + \varepsilon_{zt}$$

where $\varepsilon_{v,t}$ and $\varepsilon_{z,t}$ are independent white noise processes.

• Cannot directly estimate because y_t is correlated with $\varepsilon_{z,t}$ and vice-versa, violating exclusion restriction.

Reduced-Form Representation

• Write structural VAR as a matrix:

$$\begin{bmatrix} 1 & b_{12} \\ b_{21} & 1 \end{bmatrix} \begin{bmatrix} y_t \\ z_t \end{bmatrix} = \begin{bmatrix} b_{10} \\ b_{20} \end{bmatrix} + \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix} \begin{bmatrix} y_{t-1} \\ z_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{yt} \\ \varepsilon_{zt} \end{bmatrix}$$

$$Bx_t = \Gamma_0 + \Gamma_1 x_{t-1} + \varepsilon_t$$

• Premultiply by B^{-1} to get reduced-form representation:

$$x_t = A_0 + A_1 x_{t-1} + e_t$$

where
$$A_0 = B^{-1}\Gamma_0$$
, $A_1 = B^{-1}\Gamma_1$, and $e_t = B^{-1}\varepsilon_t$.

• Note reduced form errors e_t are of form:

$$e_{1t} = (\varepsilon_{yt} - b_{12}\varepsilon_{zt})/(1 - b_{12}b_{21})$$

- Stationary white noise, but correlated with one another.
- For IRFs and FEVDs, want responses to ε_{zt} not e_{zt} .

The Identification Problem

 Cannot invert from reduced form to structural VAR unless add restrictions.

Other Approaches

 Reduced form has 9 unknowns, six as plus 3 terms of var-covar matrix:

$$y_t = a_{10} + a_{11}y_{t-1} + a_{12}z_{t-1} + e_{1t}$$

$$z_t = a_{20} + a_{21}y_{t-1} + a_{22}z_{t-1} + e_{2t}$$

• Structural form has 10 unknowns, 8 bs and γ s plus 2 terms of var-covar matrix (uncorrelated shocks):

$$y_t = b_{10} - b_{12}z_t + \gamma_{11}y_{t-1} + \gamma_{12}z_{t-1} + \varepsilon_{yt}$$

$$z_t = b_{20} - b_{21}y_t + \gamma_{21}y_{t-1} + \gamma_{22}z_{t-1} + \varepsilon_{zt}$$

- Fundamentally under-identified.
 - Intuitively, es depend on both ε_{vt} and ε_{zt} so cannot invert from es to ε s. Extra parameters determine this relationship.

Recursive VARs and Identification

- Solution is recursive system:
 - Assume y_t has contemporaneous effect on z_t , but z_t has no contemporaneous effect on y_t .

Other Approaches

- Jargon: "order" y_t first, in the sense that it is "causally prior."
- System is:

$$y_t = b_{10} + \gamma_{11}y_{t-1} + \gamma_{12}z_{t-1} + \varepsilon_{yt}$$

$$z_t = b_{20} - b_{21}y_t + \gamma_{21}y_{t-1} + \gamma_{22}z_{t-1} + \varepsilon_{zt}$$

SO

$$e_{1t} = \varepsilon_{yt}$$
 and $e_{2t} = \varepsilon_{zt} - b_{21}\varepsilon_{yt}$

- Exactly identified because one parameter (b_{12}) is now a zero. 9 parameters in both structural VAR and reduced form.
- Intuition: Can now distinguish ε_{vt} and ε_{zt} shocks.
 - Only ε_{vt} shocks affect contemporaneous values of y_t.
 - e_{1t} attributed completely to ε_{vt} ; can invert es to get ε s.

Cholesky Decomposition

- Lower triangular assumption on the structural residuals is called a *Cholesky decomposition*.
 - Most common identification scheme for VAR.
- Generalize this to *n* variable and *p* lag VAR.
 - B is then an $n \times n$ matrix.
 - Exact identification requires $(n^2 n)/2$ restrictions between the regression residuals and structural innovations.
 - Cholesky does this by setting exactly $(n^2 n)/2$ values of the B matrix to zero.

VARS

0000000000000000000

Frror Correlation Version

 Assume instead there is no simultaneous causality but $e_t = C\varepsilon_t$ where ε_t are the independent structural shocks and C is an $n \times n$ matrix:

$$x_t = A_0 + A_1 x_{t-1} + C \varepsilon_t$$

Other Approaches

Equivalent to reduced form VAR

$$C^{-1}x_t = C^{-1}A_0 + C^{-1}A_1x_{t-1} + \varepsilon_t$$

- Same as before. Recursive VAR if C^{-1} is lower triangular.
- Same problem cannot tell apart shocks.
- Now direct relationship between es and ε s instead of relationship arising through simultaneous causality.
- Alternate interpretation of Cholesky: Assume ε_{zt} affects both y_t and z_t but ε_{vt} has no contemporaneous effect on z_t .

Cholesky Decomposition: Key Assumptions

- Cholesky is a STRONG assumption.
 - No reverse-causality
 - No omitted variables correlated with "lower ordered" variables and "higher ordered" variables.
 - Strong exclusion restriction.
- "Ordering" sounds innocuous. It's not.
 - n! possible orderings!

Stock and Watson: VAR Criticisms in Practice

- 1. What really are the VAR "shocks?"
 - Concern: Shocks reflect factors omitted from model. If correlated with included variables, then OVB.
 - In practice: imagine you order policy last and thus statistically model effect of variables on policy.
 - Assuming regression captures all channels through which policy responds to developments in economy.
 - Omitted channels may lead to correlation between policy and outcomes.

- Ex: "Price puzzle" of why inflation rises with negative monetary shock.
 - One answer is Fed is forward looking and rises rates when it (correctly) anticipated inflation.
 - VAR omits variables that predict this inflation.
- 2. Parameter instability.
- Timing assumptions do not reflect real-time data availability, causing misspecification.

Other SVAR Identification Schemes

- VARs criticized for being too reduced form.
- Structural VAR (SVAR) approach uses economic theory rather than Cholesky decomposition invert reduced form VAR to structural VAR (that is, to recover structural innovations from reduced form residuals).

- Must impose $(n^2 n)/2$ restrictions.
- Examples:
 - Gali (1999) splits Solow residual into tech and non-tech shocks by assuming that only tech shocks affect long-run productivity.
 - Sign restrictions (Uhlig).
 - Assuming cross-sectional regression holds (e.g., Beraja, Hurst, and Ospina, 2016).

Local Projections

- Jorda (2005) proposes more robust estimate of impulse response by local projection.
- Assume you have a shock S_t and an outcome Y_t. Idea is to directly and non-parametrically estimate the impulse response:

$$Y_{t+h} = \beta_0 + \beta_h S_t + \gamma X_t + \varepsilon_t^h$$

- Then the β_h s for h = 0, ..., T is the estimated T-period impulse response.
- Controls X_t often include lags of outcome and shock to control for autocorrelation and anticipatory effects.
- Local projections increasingly popular.
 - Less extrapolation of model at long horizons.
 - More robust to misspecification, which compounds at long horizons.
 - But much wider standard errors. Bias-variance tradeoff between LP and SVAR (Plagborg-Moller and Wolf, 2021; Li, Plagborg-Moler, and Wolf, 2022).

VARS

VAR Evidence on Non-Neutrality

- Apply VARs to study the effects of monetary shocks.
- Key challenge is endogeneity.
 - Changes in monetary policy occur for good reasons.
 - Error term ε_t correlated with outcome:

$$\Delta y_t = \alpha + \beta \Delta i_t + \varepsilon_t$$

- Start with simple VAR from Stock and Watson (2001).
 - 3 variables: inflation, unemployment, and Federal Funds interest rate.
 - Order π_t , u_t , R_t in recursive VAR.
 - π_t affects u_t and R_t contemporaneously but not vice-versa.
 - u_t affects R_t contemporaneously but not vice-versa.
 - See paper for data description (FEVD, Granger Causality tests).

IRFs: Taylor Rule

IRFs: Phillips Curve

IRFs: Monetary Non-Neutrality

IRFs: Two Structural Approaches

• Stock and Watson then use a structural VAR in which impose a Taylor rule for identification rather than recursive VAR.

- In solid: backward-looking Taylor rule.
- In dashed: forward-looking Taylor rule.
- Structural assumptions (and hence ordering) not innocuous.

VARS

Christiano, Eichenbaum, and Evans (2005)

Paper does a lot. For now just focus on VAR evidence.

- Run an 9-variable VAR. Ordering:
 - 1. Real GDP
 - 2. Real Consumption
 - GDP Deflator
 - 4. Real Investment
 - 5. Real Wage
 - 6. Labor Productivity
 - 7. Federal Funds Rate
 - 8. Real Profits
 - M2 Growth
- Economic conditions can affect monetary policy, but monetary policy only affects economic conditions with a lag.
 - Trying to get around endogeneity of monetary policy by statistically modeling it. But still Stock-Watson concerns.

Christiano, Eichenbaum and Evans (2005) Summary

- 1. Hump-shaped response of output, consumption and investment, peaking at $1\frac{1}{2}$ years and returning to trend after 3.
- 2. Hump-shaped response of inflation, peaking after two years.
- 3. Interest rate falls for one year
- 4. Real profits, wages, and labor prod rise.
- 5. Growth rate of money rises immediately.
- Phillips curve and Taylor rule as in Stock and Watson still hold.
- Consistent with significant monetary non-neutrality
 - \Rightarrow money affects real outcomes.

VARS

Other Approaches

- We may not like recursive VAR approach to identifying monetary shocks.
- Five other approaches that try to deal with causality more directly of which I want you to be aware.

Other Approaches

00000000

- 1. Large Shocks
- 2. Discontinuity-Based Approach
- 3. Narrative Approach
- 4. High Frequency Approach
- 5. Natural Experiments
- Good summary: Section 4 of Nakamura and Steinsson (2018) "Identification in Macroeconomics"

 Friedman and Schwartz (1963) famously argue that Fed made Great Depression worse.

Other Approaches

00000000

- Focus on policy actions that are "of major magnitude," not caused by other developments, sharp results that they compare to science experiment.
 - But others have questioned since.

Breakdown of Bretton Woods: Mussa (1986)

- In 1973 Bretton Woods fixed exchange rate system breaks.
 - Discontinuous and purely monetary change.
 - If money is neutral, should not affect real variables like real exchange rates.
- Monthly change in real Mark-Dollar exchange rate:

 But Itskhoki and Mukhin (2022) argue this is not evidence of monetary non-neutrality but instead financial frictions in foreign exchange markets.

00000000

Narrative Approach

- Narrative approach of Romer and Romer (1989) updated by Romer and Romer (2023)
 - Identify exogenous monetary shocks by using historical record.
 - Go through meeting transcripts, historical material, etc. to find a change in monetary policy unrelated to state of the economy e.g. a change in the Fed's preferences.

Examples:

- In December 1988, change view of what level of inflation is acceptable and raise rates.
- January 1972 think unemployment settled too high and lower.
- No monetary shocks 1988-2016! Only one expansionary shock!
- Impulse responses to these "exogenous" policy dates show non-neutrality.

Narrative Approach

- More quantitative method in Romer and Romer (2004):
 - Determine intended FFR at meeting based on Fed's internal staff "Greenbook" forecast.
 - Regression controlling for level and change in forecasts of output, inflation, and unemployment.

Other Approaches

00000000

- Difference from FFRI agreed upon at meeting to obtain shock.
- IRFs show non-neutrality:

00000000

High-Frequency Approach

- Shock series based on response of Fed funds futures in short window around Fed announcements.
 - Captures verbal communication in addition to rate
 - Gürkaynak-Sack-Swanson (2005): Forward rates at long horizons affected by MP contrary to standard models.
 - Would like to look at responses of macro variables to show non-neutrality, but those are not at daily frequency!
- Two solutions to get at non-neutrality:
 - Gertler and Karadi (2015) time aggregate high frequency shocks and use as external instruments in VAR with low-frequency outcomes (e.g. inflation and output).
 - Nakamura and Steinsson (2018) compare responses of high frequency nominal and inflation-indexed Treasuries to separate real interest rate response and inflation expectations.
 - Issue with high frequency approach: Shocks are very small, lack of precision in local projection without VAR structure.

High-Frequency Approach: Gertler-Karadi (2015)

High-Frequency Approach Finds Non-Neutrality

- Gertler-Karadi (2015): Non neutrality, no price puzzle, credit spreads respond to monetary policy.
- Nakamura-Steinsson (2018)
 - Monetary shocks have large and persistent effects on real interest rates.
 - Monetary shocks have small effects on expected inflation at short horizons (< 1 year) and grows to a large effect over 2-3 years (hump shaped response).
 - Argue results imply that Fed announcements provide information that affects beliefs about economic fundamentals beyond interest rates.
- Which do we prefer?
 - Some issues of time aggregation here. N-S is more convincing for real interest rates and inflation expectations.
 - But sometimes we want to look at outcomes that are not as high frequency (e.g. output, realized inflation, credit spreads) and have to bite the time aggregation bullet.

Natural Experiments

- Ideal Evidence: Experiment where randomly change money supply in some places.
- Problem: Central banks are run by economists.
 - Changes in money supply are not random!
- Solution: Natural experiments. Examples:
 - Hyperinflations: inflation tracks money supply.
 - U.S. Great Depression (Freidman and Schwartz, 1963).
 - Gold Standard and Great Depression (Eichengreen and Sachs, 1985).
 - Breakdown of Bretton Woods (Mussa, 1986).
 - Volcker disinflation in early 1980s.

- Money: coins with no face value.
 - Government sets nominal value by decree, can change it overnight and without warning.

- Velde (2009) examines an episode where three times in 1724, French cut value of currency overnight by a cumulative 45%.
 - Ex: September 22, 1724 at 8am, all 5 livre coins are now 4 livre coins.
 - "The high price level reduced the real value of soldiers' wages and harmed government creditors."
 - Why? King and his misters wanted to (before economists!).
 - Revalue some in 1726.
- Expectations:

VARS

- Had done before, but always fast inflations and gradual deflations.
- Velde argues these three deflations were "unforetold." Kept secret to reduce capital losses by state.

Value of a Coin

Foreign Exchange Prices Adjust Instantaneously

Commodities and Goods Prices Fall Slowly

Summary: Strong Evidence of Non-Neutrality

- Introduced tool of VAR.
 - Recursive and structural.
 - Discussed assumptions, flaws, and benefits.
- Looked at VAR, narrative, high-frequency, and natural experiment evidence for monetary non-neutrality.
 - Strong evidence that money is non-neutral: it has effects on real economy.
 - Strong evidence of hump-shaped inflation responses.
- Next class: Introduce money and add it to RBC framework.
 - Can it explain the facts presented here?
 - Read Gali Ch. 2.