Universidade Estadual da Paraíba - UEPB Centro de Ciências e Tecnologias - CCT Departamento de Matemática - DM

1ª Prova	Cálculo I	Diferencial e Integral III	
Professor: Maxwell Aires	da Silva	Data: 21/12/2021	Turno: Noite
Curso:		Nome:	
Turma: 01		Matrícula:	Nota:

- 1º Questão Esboce algumas curvas de nível de $f(x,y) = x^2 2x y^2$.
- $2^{\underline{a}}$ Questão Esboce algumas curvas de nível de $f(x,y)=(x-2)^2+(y+3)^2$.
- $3^{\underline{a}}$ Questão Esboce algumas superfícies de nível de $f(x, y, z) = x^2 + y^2 z^2$.
- $4^{\underline{a}}$ Questão Esboce algumas superfícies de nível de $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.
- $5^{\underline{a}}$ Questão Calcule $\lim_{(x,y)\to(0,0)} \frac{x^4 y^4}{x^2 + y^2}$.
- 6ª Questão Calcule $\lim_{(x,y)\to(1,2)} \frac{xy-y}{x^2-x+2xy-2y}$.
- 7ª Questão Mostre que o limite $\lim_{(x,y)\to(1,2)} \frac{xy-2x-y+2}{x^2+y^2-2x-4y+5}$ não existe.
- 8ª Questão Mostre que o limite $\lim_{(x,y)\to(0,0)} \frac{3xy}{5x^4+2y^4}$ não existe.
- $9^{\underline{a}}$ Questão Sabendo que uma função é contínua em todo o seu domínio. Determine o domínio das funções dadas a seguir:

(a)
$$f(x,y) = \frac{x^2}{y-1}$$
;

(b)
$$f(x,y) = \ln(25 - x^2 - y^2);$$

(c)
$$f(x,y) = \arccos(x+y)$$
;

(d)
$$f(x,y) = e^{1-xy}$$
;

(e)
$$f(x,y) = \sqrt{x} \cdot e^{\sqrt{1-y^2}}$$
.

 $10^{\underline{a}}$ Questão Se $f(x,y) = x^2 + 2y$, $g(t) = e^t$ e $h(t) = t^2 - 3t$, determine h(f(x,y)).

 $11^{\underline{a}}$ Questão Se $f(x,y,z) = 2x + ye^z$, $g(t) = t^2$ e $h(t) = \sin t$, determine f(g(t),h(t)).

 $12^{\underline{a}}$ Questão Calcule todas as derivadas parciais das funções dadas a seguir:

(a)
$$f(s,t) = \frac{t}{s} - \frac{s}{t}$$
;

- (b) $f(x, y) = xe^{y} + y \sin x;$
- (c) $f(x, y) = e^x \ln(xy)$;

(d)
$$f(t,v) = \ln\left(\frac{t+v}{t-v}\right)$$
;

(e)
$$f(u, w) = \arctan\left(\frac{u}{w}\right)$$
.

 $13^{\underline{a}}$ Questão Sendo \mathcal{S} a área da superfície do corpo de um ser humano, então $\mathcal{S}(w,h) = 2w^{0,4}h^{0,7}$, em que w é a massa e h é a altura da pessoa. Se w = 70~kg e h = 1,8~m, determine $\frac{\partial \mathcal{S}}{\partial w}$ e $\frac{\partial \mathcal{S}}{\partial h}$ e interprete o resultado obtido.

 $14^{\underline{a}}$ Questão O volume \mathcal{V} de um cilindro circular reto é dado pela expressão $\mathcal{V}(r,h) = \pi r^2 h$, em que r é o raio e h é a altura. Determine:

- (a) A taxa de variação instantânea de \mathcal{V} em relação a r se r variar e h permanecer constante;
- (b) A taxa de variação instantânea de $\mathcal V$ em relação a h se h variar e r permanecer constante;
- (c) Suponha que h tenha um valor constante de 4 cm, mas que r varie. Determine a taxa de variação de \mathcal{V} em relação a r no ponto onde r = 6 cm;
- (d) Suponha que r tenha um valor constante de 8 cm, mas que h varie. Determine a taxa de variação de \mathcal{V} em relação a h no ponto onde $h=10\ cm$.

15^a Questão A Lei dos Gases Ideais pode ser enunciada como

$$PV = knT$$
,

em que n é o número de moléculas do gás, V é o volume, T é a temperatura, P é a pressão e k é uma constante. Mostre que

$$\frac{\partial V}{\partial T} \cdot \frac{\partial T}{\partial P} \cdot \frac{\partial P}{\partial V} = -1.$$

 $16^{\underline{a}}$ Questão Mostre que as funções \mathcal{U} , \mathcal{V} dadas a seguir verificam às Equações de Cauchy-Riemann

$$\mathcal{U}_x = \mathcal{V}_y \text{ e } \mathcal{U}_y = -\mathcal{V}_x.$$

(a)
$$\begin{cases} \mathcal{U}(x,y) = x^2 - y^2 \\ \mathcal{V}(x,y) = 2xy \end{cases}$$
;

(a)
$$\begin{cases} \mathcal{U}(x,y) = x^2 - y^2 \\ \mathcal{V}(x,y) = 2xy \end{cases} ;$$
(b)
$$\begin{cases} \mathcal{U}(x,y) = \frac{y}{x^2 + y^2} \\ \mathcal{V}(x,y) = \frac{x}{x^2 + y^2} \end{cases} ;$$

(c)
$$\begin{cases} \mathcal{U}(x,y) = e^x \cos y \\ \mathcal{V}(x,y) = e^x \sin y \end{cases}$$
;

(d)
$$\begin{cases} \mathcal{U}(x,y) = \cos x \cosh y \\ \mathcal{V}(x,y) = \sin x \sinh y \end{cases}$$

... "Pela fé entendemos que os mundos pela palavra de Deus foram criados; de maneira que aquilo que se vê não foi feito do que é aparente." ...