(1) $\overrightarrow{0}$ でない平面ベクトル \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} が ,

$$\frac{\overrightarrow{a}}{|\overrightarrow{a}|} + \frac{\overrightarrow{b}}{|\overrightarrow{b}|} + \frac{\overrightarrow{c}}{|\overrightarrow{c}|} = \overrightarrow{0}$$

を満たすとき、3つのベクトルの互いになす角をそれぞれ求めよ.

(2) $\overrightarrow{a} \neq \overrightarrow{0}$, \overrightarrow{x} を任意の平面ベクトルとするとき,

$$|\overrightarrow{a} - \overrightarrow{x}| \ge |\overrightarrow{a}| - \overrightarrow{x} \cdot \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$

であることを示せ、

ここで, $\overrightarrow{x}\cdot \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$ は \overrightarrow{x} と $\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$ の内積を表す.

(3) すべての内角が 120° 未満の三角形 ABC の内部の点 X から各頂点までの距離 の和

$$|\overrightarrow{XA}| + |\overrightarrow{XB}| + |\overrightarrow{XC}|$$

が最小となるようなXを求めよ.