

AD-A072 301

NEW YORK UNIV N Y COURANT INST OF MATHEMATICAL SCIENCES F/G 20/4
ACCELERATION OF TRANSONIC POTENTIAL FLOW CALCULATIONS ON ARBITR--ETC(U)
1979 A JAMESON N00014-77-C-0032

UNCLASSIFIED

| OF |
AD
A072301

END
DATE
FILED
9-70
DDC

AD A072301

DDC FILE COPY

LEVEL

(6) ACCELERATION OF TRANSONIC POTENTIAL FLOW CALCULATIONS
ON ARBITRARY MESHES BY THE MULTIPLE GRID METHOD

(10) Antony Jameson

(11) 1979
(12) 33p.

Courant Institute of Mathematical Sciences, New York University
251 Mercer Street, New York, New York 10012

AIAA Paper 79-1458

AIAA FOURTH COMPUTATIONAL FLUID DYNAMICS CONFERENCE

Williamsburg - July 1979

Contract

(15) 1A00014-77-C-0032

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification for this	<i>sample</i>
By	
Distribution/	
Availability Codes	
Dist	ail and/or special

This document has been approved
for public release and sale; its
distribution is unlimited.

999950

79 07 16 026

THIS PAGE IS BEING MAILED PRACTICABLY
FROM THE UNIVERSITY OF TORONTO LIBRARIES

ACCELERATION OF TRANSONIC POTENTIAL FLOW CALCULATIONS ON ARBITRARY MESHES
BY THE MULTIPLE GRID METHOD *

Antony Jameson

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street
New York, New York 10012

Abstract

The paper describes a multiple grid method for transonic flow calculations. The proposed scheme incorporates a generalized alternating direction method as the smoothing algorithm. Numerical experiments with this multigrid alternating direction (MAD) method indicate that it is both fast and reliable.

1. Introduction

The multiple grid method was first proposed by Federenko [1], who realized that it should be possible to accelerate an iterative scheme for solving difference equations by calculating corrections for the fine grid equations on a sequence of successively coarser grids. This idea was subsequently analyzed by Bakhavlov [2], and then extended and applied to a variety of problems by Brandt [3]. It has recently been proved under rather general assumptions by Nicolaides [4], and Hackbusch [5], that the number of operations required to solve the equations arising from a finite element or a finite difference approximation to an elliptic problem by a multiple grid method is directly proportional to the number of unknowns.

There is less experience of the use of multiple grid methods for nonelliptic problems. The first demonstration of the use of a multiple grid method for a transonic flow problem was by South and Brandt [6], who solved the transonic small disturbance equation for a nonlifting flow and observed a high rate of convergence. Difficulties were experienced, however, both by South and Brandt and by the present author, in the treatment of lifting flows and in calculations on nonuniform and curvilinear meshes. There was a tendency to produce an oscillating sonic line, and for the calculations to enter a variety of limit cycles between several grids. These difficulties appeared to be due to insufficient smoothing of the errors

*This work was supported by the Office of Naval Research under Contract N00014-77-C-0032 and by NASA under Grants NSG-1579 and NGR-33-016-201. The calculations were performed at the DOE Mathematics and Computing Laboratory under Contract EY-76-C-02-3077.

on fine grids before passing to coarser grids, and South and Brandt were able to obtain convergence for a wider range of cases by using multiple line relaxation sweeps in different directions [7].

In the present work the difficulties have been attacked by combining the multiple grid method with a generalized alternating direction method suitable for transonic flows as the smoothing algorithm. Numerical experiments indicate that this multigrid alternating direction (MAD) method converges rapidly and reliably for a range of cases typical of the cruising regime, up to the onset of drag rise. It appears also that the method can readily be generalized to treat three dimensional flows.

2. The Difference Approximation

The case which will be considered is that of two dimensional transonic flow past an airfoil, using the potential flow approximation, which has been found to give useful predictions in practice for flow containing shock waves of moderate strength [8]. The potential flow equation will be treated in the conservation form

$$\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) = 0 \quad (1)$$

where x and y are Cartesian coordinates, ρ is the density, and the velocity components u and v are the gradient of the potential ϕ ,

$$u = \phi_x, \quad v = \phi_y. \quad (2)$$

If q is the speed $\sqrt{u^2+v^2}$, the local speed of sound a is determined by Bernoulli's equation

$$a^2 = a_0^2 - \frac{\gamma-1}{2} q^2 \quad (3)$$

where a_0 is the stagnation speed of sound. The density follows from the relation

$$\rho^{\gamma-1} = M_\infty^2 a^2 \quad (4)$$

where M_∞ is the Mach number q/a of the uniform flow at infinity and γ is the ratio of specific heats. At the profile the potential satisfies the Neumann boundary condition

$$\frac{\partial \phi}{\partial n} = 0, \quad (5)$$

where n is the normal direction, and also the Kutta condition that the tangential velocity is bounded at the trailing edge. At infinity, the potential approaches the potential of a vortex in compressible flow.

In the numerical experiments reported here these equations are solved in a coordinate system generated by a conformal mapping of the domain onto the interior of a circle. Using polar coordinates r and θ the potential flow equation becomes

$$\frac{\partial}{\partial \theta} (\rho \phi_\theta) + r \frac{\partial}{\partial r} (r \rho \phi_r) = 0 \quad (6)$$

The velocity components in the θ and r directions are

$$u = \frac{r \phi_\theta}{H}, \quad v = \frac{r^2 \phi_r}{H} \quad (7)$$

where H is the modulus of the transformation onto the exterior of the circle.

The difference approximation is similar to schemes which have been previously used [8]. It is derived by augmenting a central difference scheme with an artificial viscosity which introduces an upwind bias throughout the supersonic zone. Using subscripts i, j to denote values at mesh points, and $i+1/2, j+1/2$ to denote values at the midpoints of the segments connecting mesh points, the approximation to equation (6) has the form

$$\begin{aligned} & \frac{1}{\Delta \theta} \left\{ \rho_{i+1/2,j} (\phi_{i+1,j} - \phi_{i,j}) \right. \\ & - \rho_{i-1/2,j} (\phi_{i,j} - \phi_{i-1,j}) \Big\} \\ & + \frac{r_j}{\Delta r} \left\{ r_{j+1/2} \rho_{i,j+1/2} (\phi_{i,j+1} - \phi_{i,j}) \right. \\ & \left. - r_{j-1/2} \rho_{i,j-1/2} (\phi_{i,j} - \phi_{i,j-1}) \right\} + T_{ij} = 0 \quad (8) \end{aligned}$$

where $\Delta \theta$ and Δr are the mesh widths, and T_{ij} is the artificial viscosity. The flow in the supersonic zone is assumed to be roughly in the θ direction and an artificial viscosity which gives a bias only in the θ direction has been used in the experiments so far. Let μ be a switching function

$$\mu = \max \{0, (1 - M_c^2/M^2)\} \quad (9)$$

which vanishes when the local Mach number M is below a cutoff Mach number M_c , and let $S_{i,j}$ be a difference approximation to $\mu(u/a)^2$ at the point i,j . Then the artificial viscosity is of the form

$$T_{i,j} = \rho_{i+1/2,j} - \rho_{i-1/2,j} \quad (10)$$

where

$$\rho_{i+1/2,j} = \begin{cases} S_{i,j} - \epsilon S_{i-1,j} & \text{if } u_{i+1/2,j} > 0 \\ S_{i+1,j} - \epsilon S_{i+2,j} & \text{if } u_{i+1/2,j} < 0 \end{cases} \quad (11)$$

and ϵ is a parameter controlling the accuracy. If $\epsilon = 0$ the added terms are of order $\Delta \theta^2$, yielding a first order accurate scheme, and if $\epsilon = 1$ the added terms are of order $\Delta \theta^4$, yielding a second order accurate scheme. The cutoff value $M_c = 0.9$ has been found to result in reliable convergence of the multigrid alternating direction scheme.

3. Review of the Multiple Grid Method

Consider the solution of the equation

$$L^h u = f \quad (12)$$

by a relaxation method, where L^h approximates a linear differential operator L on a grid with a spacing proportional to the parameter h . Let U be an approximation to the solution, and let V be the correction to U such that $U + V$ satisfies (12). Then the basis of the multiple grid method is to replace (12) by

$$L^{2h} V + I_h^{2h} L^h U = f \quad (13)$$

where L^{2h} is the same approximation to L on a grid in which the spacing has been doubled, and I_h^{2h} is an operator which transfers to each grid point of the coarse grid the residual $L^h U - f$ of the coincident point of the fine mesh, or alternatively a weighted average of the residuals at neighboring points. After solution of (13), the approximation on the fine grid is updated by interpolating the correction calculated on the coarse grid to the fine grid, so that U is replaced by

$$U^{\text{new}} = U + I_{2h}^h V \quad (14)$$

where I_{2h}^h is an interpolation operator. Equation (13) can in turn be solved by introducing an approximation on a yet coarser grid, so that a multiple sequence of grids may be used, leading to a rapid solution procedure for two reasons. First, the number of operations required for a relaxation sweep on one of the coarse grids is much smaller than the number required on the fine grid. Second, the rate of convergence is faster on a coarse grid, reflecting the fact that corrections can be propagated from one end of the grid to the other in a small number of steps.

To extend this idea to nonlinear equations, equation (13) may be reorganized by adding and subtracting the current solution U to give

$$\begin{aligned} & L^{2h}(U + V) + I_h^{2h} L^h U - L^{2h} U = f \\ \text{or} \quad & L^{2h} \bar{U} = \bar{f} \end{aligned} \quad (15)$$

where \bar{U} is the improved estimate of the solution to be determined on the coarse grid, and \bar{f} is an appropriately modified right-hand side,

$$\bar{f} = f + L^{2h} U - I_h^{2h} L^h U \quad (16)$$

The updating formula (14) now becomes

$$U^{\text{new}} = U + \frac{h}{2h} (\bar{U} - U) \quad (17)$$

This avoids the need to introduce a special perturbation operator to represent the correction equation (13).

4. Smoothing Algorithms

The success of the multiple grid method generally depends on the use of a relaxation algorithm which rapidly reduces the high frequency components of error on any given grid, because on a coarser grid these components cannot be distinguished from low frequency components. This aliasing process will cause improper corrections to be computed on coarse grids, and can prevent convergence.

It turns out that point and line relaxation schemes do not necessarily provide the required smoothing of all high frequency components of error on a nonuniform or curvilinear mesh. To illustrate this consider the model problem

$$a\phi_{xx} + b\phi_{yy} = 0 \quad (18)$$

with positive coefficients $a > 0$, $b > 0$. Let δ_x^2 and δ_y^2 denote second difference operators in the x and y directions, and suppose that the difference approximation has the form

$$L\phi \equiv (A\delta_x^2 + B\delta_y^2)\phi = 0 \quad (19)$$

where if Δx and Δy are the mesh widths,

$$A = \frac{a}{\Delta x^2}, \quad B = \frac{b}{\Delta y^2} \quad (20)$$

Assuming periodic boundary conditions suppose that the solution after n iterations has the form

$$\phi = G^n e^{ipx} e^{iqy} \quad (21)$$

where G is the amplification factor, and let

$$p\Delta x = \xi, \quad q\Delta y = \eta$$

Then a Gauss Seidel scheme yields

$$G = \frac{Ae^{i\xi} + Be^{i\eta}}{A(2-e^{-i\xi}) + B(2-e^{-i\eta})}$$

Suppose that Δx , Δy are such that $A \gg B$ and consider the case of a high frequency in the y direction and a low frequency in the x direction, which may be represented by $\xi = 0$, $\eta = \pi$. Then

$$G = \frac{A - B}{A + 3B} \sim 1.$$

A similar analysis of a line relaxation scheme shows that if $A \gg B$ effective damping of high frequency error components requires the use of a scheme solving along the lines in the x direction [6].

On a nonuniform grid A and B may vary

widely so that in some regions $A \gg B$ and in others $B \gg A$. This has led South and Brandt to use multiple line relaxation sweeps in different directions [7]. An alternative approach proposed by Arlinger [9] is to use auxiliary grids constructed by increasing the mesh width in one direction only while the line relaxation scheme is applied to the lines in the other direction. This method has been tested by the present writer and found to give a useful acceleration of the rate of convergence of transonic flow calculations. Its potential efficiency, however, is less than that of a full multigrid scheme in which the mesh width is increased in both directions, because the coarse grids contain more mesh points when the mesh width is only increased in one direction.

It is proposed here to use an alternating direction method as the smoothing algorithm. Consider the model equation (18) and suppose that the correction $\delta\phi$ is calculated by the equation

$$(a - A\delta_x^2)(a - B\delta_y^2)\delta\phi = w\Delta L\phi \quad (22)$$

where a is a parameter to be chosen, w is an overrelaxation factor, and the residual $L\phi$ is calculated using the result of the previous iteration. (The usual Peaceman Rachford scheme [10] is obtained by setting $w = 2$.) Then on inserting a trial solution of the form (21) it is found that all high frequency components are rapidly damped if

$$a \sim 4 \min(A, B), \quad w \sim 1.5$$

(assuming that $A > 0$, $B > 0$).

5. Generalized Alternating Direction Scheme

In the case of transonic flow we have to allow for a change from elliptic to hyperbolic type as the flow becomes locally supersonic. In the model problem (18) this corresponds to one of the coefficients, say, becoming negative. The classical alternating direction scheme (22) then has the disadvantage that if one regards the iterations as representing time steps Δt in an artificial time direction t [11], it simulates the time dependent equation

$$a \Delta t \phi_t = a \phi_{xx} + b \phi_{yy}$$

When $a < 0$ and Cauchy data is given at $x=0$, corresponding to supersonic inflow, this leads to an ill posed problem which admits oscillatory solutions which are undamped in time and grow in the x direction.

The following generalized alternating direction scheme is therefore proposed. Let the scalar parameter a in equation (22) be replaced by a difference operator

$$S \equiv a_0 + a_1 \delta_x^- + a_2 \delta_y^- \quad (23)$$

where δ_x^- and δ_y^- denote one sided difference operators in the x and y directions. This

yields the scheme

$$(S - A \delta_x^2)(S - B \delta_y^2) \delta \phi = \omega S L \phi \quad (24)$$

in which the residual $L\phi$ is differenced by the operator S . The corresponding time dependent equation is now a hyperbolic equation of the form

$$s_0 \phi_t + s_1 \phi_{xt} + s_2 \phi_{yt} = a \phi_{xx} + b \phi_{yy}$$

where the coefficients s_0, s_1, s_2 depend on the parameters a_0, a_1, a_2 .

The artificial viscosity introduced in Section 2 is equivalent to a switch to upwind differencing in the x direction as was first proposed by Murman and Cole [12], and in the implementation of the scheme the difference operator δ_x^2 in the first factor is correspondingly replaced by an upwind difference operator when $A < 0$, and the direction of the one sided operator δ_x^2 in S is chosen to be upwind.

The generalized scheme (24) can be related to previously proposed alternating direction methods for transonic flows [13, 14] by appropriate specialization of the parameters. For example, the AF2 scheme proposed by Ballhaus, Jameson and Albert [13], corresponds to the choice $a_0 = 0$, $a_2 = 0$, followed by an integration in the x^2 direction which eliminates the differencing of the residual.

6. Multiple Grid Strategy

Theoretical estimates of the rate of convergence attainable by the use of multiple grids have been obtained for recursive strategies [4, 5]. South and Brandt [6] used an adaptive strategy, with transitions to a coarser grid if the rate of convergence becomes too low on a particular grid, or to a finer grid if the average residual has been sufficiently reduced.

In the present work a simple fixed strategy has been found to be effective. Each cycle begins on the fine grid. The alternating direction iteration is performed once on each grid until the coarsest grid is reached. Then it is performed once on each grid going back up to the second finest grid, and the cycle terminates with the interpolation of the correction from the second finest grid to the fine grid. It is convenient to measure the work in units representing the work required to perform one iteration of the alternating direction scheme on the fine grid. Since each grid has $1/4$ as many cells as the next finer grid, the work required to perform each cycle is

$$1 + 2 \left(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} \dots \right) \leq 1 \frac{1}{3} \text{ units},$$

plus the overhead of computing and transmitting residuals from one grid to the next, and interpolating the corrections.

It is the usual practice to accelerate

the alternating direction scheme (22) by using a sequence of values of the parameter α designed to give rapid damping of the error components in a series of frequency bands. The multigrid alternating direction method economizes the work required by passing to the coarse grids to treat the error components in the low frequency bands. If a sequence of 6 parameters were used to treat 6 frequency bands, for example, the work required to complete one cycle through the parameters would be 6 units, whereas the work required to perform the alternating direction iterations of a multigrid cycle with 6 grids would be less than $1 \frac{2}{3}$ units with the present strategy.

7. Results

The efficiency of the multigrid alternating direction method has been confirmed by numerical experiments. Some typical results are presented here. All the examples were calculated on a circular domain generated by conformal mapping of the profile to a unit circle, with 192 cells in the θ and 32 cells in the r direction on the fine grid. Up to 6 grids were used, giving a coarse grid with as few as 6 cells in the θ direction and 1 cell in the r direction.

Figure 1 shows the observed convergence rate using different numbers of grids for a case with a shock of moderate strength, the flow past an NACA 64A410 airfoil at Mach 0.720 and an angle of attack of 0° . The pressure distribution of the fully converged result is shown in Figure 1a. Figures 1b-1g show the logarithm of the average absolute value of the residual plotted against the work, measured by the equivalent number of iterations on the fine grid. The convergence rate, measured as the mean reduction in the average residual per unit of work, is also indicated under each graph. It can be seen that the rate of convergence was improved from 0.9840 to 0.6677 as the number of grids was increased from 1 to 5, while no further improvement was realized with 6 grids. (In subsonic flow it pays to use 6 grids.)

Figure 2 shows a case with a fairly strong shock, the flow past an NACA 0012 airfoil at Mach 0.750 and an angle of attack of 2° . In this case the calculation converges rapidly after an initial hesitation. A study of plots of the pressure distribution after each cycle shows that the formation of the shock is accompanied by the appearance ahead of the shock of a temporary overshoot which is subsequently suppressed. The first order accurate scheme obtained by setting $\epsilon = 1$ in equation (11) was used both in this calculation and in the calculations displayed in Figure 1.

Figure 3 shows the initial convergence history of the calculation of a flow containing two shocks, to illustrate the

speed with which the flow pattern is established. The case is that of a Korn airfoil at a Mach number slightly below its design point, calculated with the second order accurate scheme obtained by setting $\epsilon = 1$ in equation (11). (The forward shock was suppressed when the calculation was repeated with $\epsilon = 0$). The potential of incompressible flow generated by the conformal mapping was used to start the calculation, yielding the pressure distribution displayed in Figure 3(a). The subsequent plots show the pressure distribution after completing the iteration on the fine grid and before entering the multigrid loop of each cycle. At the beginning of the 10th cycle the calculation is essentially complete. The lift and drag coefficients $CL = 0.5998$ and $CD = 0.0003$ are identical to the values obtained when this calculation was continued for 50 cycles. It appears that it should generally be possible to calculate the flows likely to be encountered in subsonic cruising flight with about 10 cycles of the multigrid alternating direction scheme.

References

1. Federenko, R. P.: The speed of convergence of one iterative process, USSR Comp. Math. and Math. Phys., Vol. 4, 1964, pp. 227-235.
2. Bakhvalov, N. S.: On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comp. Math. and Math. Phys., Vol. 6, 1966, pp. 101-135.
3. Brandt, Achi: Multi-level adaptive solution to boundary value problems, Math. Comp., Vol. 31, 1977, pp. 333-391.
4. Nicholaides, R. A.: On the ℓ^2 convergence of an algorithm for solving finite element systems, Math. Comp., Vol. 31, 1977, pp. 892-906.
5. Hackbusch, Wolfgang: Convergence of multi-grid iterations applied to difference equations, Köln University Mathematics Institute Report 79-5, April 1979.
6. South, J. C., and Brandt, A.: Application of a multi-level grid method to transonic flow calculations, in Transonic Flow Problems in Turbomachinery, edited by T. C. Adamson and M. F. Platzer, Hemisphere, Washington, 1977.
7. South, J. C., and Brandt, A.: The multi-grid method: fast relaxation for transonic flows, presentation at 13th Annual Meeting of Society of Engineering Science, Hampton, November 1976.
8. Jameson, Antony: Numerical computation of transonic flows with shock waves, Symposium Transonicum II, Gottingen, September 1975.
9. Arlinger, Bert: Multigrid technique applied to lifting transonic flow using full potential equation, SAAB Report L-0-1 B439, December 1978.
10. Peaceman, D. W., and Rachford, H. H.: The numerical solution of parabolic and elliptic differential equations, SIAM Journal Vol. 3, 1955, pp. 28-41.
11. Jameson, Antony: Iterative solution of transonic flows over airfoils and wings, including flows at Mach 1, Comm. Pure Appl. Math., Vol. 27, 1974, pp. 283-309.
12. Murman, E. M., and Cole, J. D.: Calculation of plane steady transonic flows, AIAA Journal, Vol. 9, 1971, pp. 114-121.
13. Ballhaus, W. F., Jameson, A., and Albert, J.: Implicit approximate factorization schemes for the efficient solution of steady transonic flow problems. Third AIAA Computational Fluid Dynamics Conference, Albuquerque, June 1977.
14. Holst, T. L., and Ballhaus, W. F.: Fast conservative schemes for the full potential equation applied to transonic flows, AIAA Journal, Vol. 17, 1979, pp. 145-152.

NACA 64A410
MACH .720 ALPHA 0.000
CL .6667 CD .0030 CM -.1478
GRID 192X32 NCYC 29 RES .323E-12

Figure 1a. Converged pressure distribution.

NACA 64A410
MACH .720 ALPHA 0.000
RESID1 .720E-04 RESID2 .144E-04
WORK 100.00 RATE .9840
GRID 192X32

Figure 1b. Convergence with 1 grid.

NACA 64A410			
MACH	.720	ALPHA	0.000
RESID1	.720E-04	RESID2	.780E-07
WORK	149.50	RATE	.9554
GRID	192X32		

Figure 1c. Convergence with 2 grids.

NACA 64A410

MACH	.720	ALPHA	0.000
RESID1	.720E-04	RESID2	.308E-11
WORK	161.88	RATE	.9005
GRID	192X32		

Figure 1d. Convergence with 3 grids.

NACA 64A410
MACH .720 ALPHA 0.000
RESID1 .720E-04 RESID2 .522E-12
WORK 67.25 RATE .7568
GRID 192X32

Figure 1e. Convergence with 4 grids.

NACA 64A410
MACH .720 ALPHA 0.000
RESID1 .720E-04 RESID2 .323E-12
WORK 47.59 RATE .6677
GRID 192X32

Figure 1f. Convergence with 5 grids.

NACA 64A410
MACH .720 ALPHA 0.000
RESID1 .720E-04 RESID2 .341E-12
WORK 47.65 RATE .6688
GRID 192X32

Figure 1g. Convergence with 6 grids.

NACA 0012
MACH .750 ALPHA 2.000
CL .5878 CD .0182 CM -.0253
GRID 192X32 NCYC 50 RES .493E-11

Figure 2a. Converged pressure distribution.

NACA 0012
MACH .750 ALPHA 2.000
RESID1 .916E-04 RESID2 .493E-11
WORK 82.54 RATE .8165
GRID 192X32

Figure 2b. Convergence with 5 grids.

KORN AIRFOIL

MACH .740

CL .4833

GRID 192X32

ALPHA 0.000

CD .0010

NCYC 0

CM -.1257

RES .838E-04

Figure 3. Movie of Convergence

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .4880 CD .0041 CM -.1265
GRID 192X32 NCYC 1 RES .107E-03

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5755 CD .0033 CM -.1428
GRID 192X32 NCYC 2 RES .283E-04

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5902 CD .0013 CM -.1437
GRID 192X32 NCYC 3 RES .751E-05

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5950 CD .0005 CM -.1430
GRID 192X32 NCYC 4 RES .440E-05

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5953 CD .0005 CM -.1429
GRID 192X32 NCYC 5 RES .364E-05

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5963 CD .0005 CM -.1431
GRID 192X32 NCYC 6 RES .322E-05

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5976 CD .0004 CM -.1434
GR'D 192X32 NCYC 7 RES .276E-05

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5988 CD .0004 CM -.1435
GRID 192X32 NCYC 8 RES .207E-05

Figure 3. Continued.

KORN AIRFOIL
MACH .740 ALPHA 0.000
CL .5995 CD .0004 CM -.1436
GRID 192X32 NCYC 9 RES .155E-05

Figure 3. Continued.

KORN AIRFOIL
 MACH .740 ALPHA 0.000
 CL .5998 CD .0003 CM -.1436
 GRID 192X32 NCYC 10 RES .115E-05

Figure 3. Continued.

DISTRIBUTION LIST FOR UNCLASSIFIED
TECHNICAL REPORTS AND REPRINTS ISSUED UNDER
CONTRACT A00014-77-C-0030 TASK ARCB61-043

All addresses receive one copy unless otherwise specified

Technical Library
Building 313
Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005

Dr. F. D. Bennett
External Ballistic Laboratory
Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005

Mr. C. C. Hudson
Sandia Corporation
Sandia Base
Albuquerque, NM 81115

Professor P. J. Roache
Ecodynamics Research
Associates, Inc.
P. O. Box 8172
Albuquerque, NM 87108

Dr. J. D. Shreve, Jr.
Sandia Corporation
Sandia Base
Albuquerque, NM 81115

Defense Documentation Center
Cameron Station, Building 5
Alexandria, VA 22314

Library
Naval Academy
Annapolis, MD 21402

Director, Tactical Technology Office
Defense Advanced Research Projects
Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research
Attn: Code 211
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Attn: Code 438
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Attn: Code 1021P (ONRL)
800 N. Quincy Street
Arlington, VA 22217 6 copies

Dr. J. L. Potter
Deputy Director, Technology
von Karman Gas Dynamics Facility
Arnold Air Force Station, TN 37389

Professor J. C. Wu
Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332

Library
Aerojet-General Corporation
6352 North Irwindale Avenue
Azusa, CA 91702

NASA Scientific and Technical
Information Facility
P. O. Box 8757
Baltimore/Washington International
Airport, MD 21240

Dr. K. C. Wang
Martin Marietta Corporation
Martin Marietta Laboratories
1450 South Rolling Road
Baltimore, MD 21227

Dr. S. A. Berger
University of California
Department of Mechanical Engineering
Berkeley, CA 94720

Professor A. J. Chorin
University of California
Department of Mathematics
Berkeley, CA 94720

Professor M. Holt
University of California
Department of Mechanical Engineering
Berkeley, CA 94720

Dr. H. R. Chaplin
Code 1600
David W. Taylor Naval Ship Research
and Development Center
Bethesda, MD 20084

Page 2

Dr. Hans Lugt
Code 184
David W. Taylor Naval Ship Research
and Development Center
Bethesda, MD 20084

Dr. Francois Frenkiel
Code 1802.2
David W. Taylor Naval Ship Research
and Development Center
Bethesda, MD 20084

Dr. G. R. Inger
Department of Aerospace Engineering
Virginia Polytechnic Institute and
State University
Blacksburg, VA 24061

Professor A. H. Nayfeh
Department of Engineering Science
Virginia Polytechnic Institute and
State University
Blacksburg, VA 24061

Mr. A. Rubel
Research Department
Grumman Aerospace Corporation
Bethpage, NY 11714

Commanding Officer
Office of Naval Research Branch Office
666 Summer Street, Bldg. 114, Section D
Boston, MA 02210

Dr. G. Hall
State University of New York at Buffalo
Faculty of Engineering and Applied
Sciences
Fluid and Thermal Sciences Laboratory
Buffalo, NY 14214

Dr. R. J. Vidal
CALSPAN Corporation
Aerodynamics Research Department
P. O. Box 235
Buffalo, NY 14221

Professor R. F. Probstein
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Commanding Officer
Office of Naval Research Branch Office
536 South Clark Street
Chicago, IL 60605

Code 753
Naval Weapons Center
China Lake, CA 93555

Mr. J. Marshall
Code 4063
Naval Weapons Center
China Lake, CA 93555

Professor R. T. Davis
Department of Aerospace Engineering
University of Cincinnati
Cincinnati, OH 45221

Library MS 60-3
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

Dr. J. D. Anderson, Jr.
Chairman, Department of Aerospace
Engineering
College of Engineering
University of Maryland
College Park, MD 20742

Professor W. L. Melnik
Department of Aerospace Engineering
University of Maryland
College Park, MD 20742

Professor O. Burggraf
Department of Aeronautical and
Astronautical Engineering
Ohio State University
1314 Kinnear Road
Columbus, OH 43212

Technical Library
Naval Surface Weapons Center
Dahlgren Laboratory
Dahlgren, VA 22448

Dr. F. Moore
Naval Surface Weapons Center
Dahlgren Laboratory
Dahlgren, VA 22448

Technical Library 2-51131
LTV Aerospace Corporation
P. O. Box 5907
Dallas, TX 75222

Page 3

Library, United Aircraft Corporation
Research Laboratories
Silver Lane
East Hartford, CT 06108

Technical Library
AVCO-Everett Research Laboratory
2385 Revere Beach Parkway
Everett, MA 02149

Professor G. Moretti
Polytechnic Institute of New York
Long Island Center
Department of Aerospace Engineering
and Applied Mechanics
Route 110
Farmingdale, NY 11735

Professor S. G. Rubin
Polytechnic Institute of New York
Long Island Center
Department of Aerospace Engineering
and Applied Mechanics
Route 110
Farmingdale, NY 11735

Dr. W. R. Briley
Scientific Research Associates, Inc.
P. O. Box 498
Glastonbury, CT 06033

Professor P. Gordon
Calumet Campus
Department of Mathematics
Purdue University
Hammond, IN 46323

Library (MS 185)
NASA Langley Research Center
Langley Station
Hampton, VA 23665

Professor A. Chapman
Chairman, Mechanical Engineering
Department
William M. Rice Institute
Box 1892
Houston, TX 77001

Technical Library
Naval Ordnance Station
Indian Head, MD 20640

Professor D. A. Caughey
Sibley School of Mechanical and
Aerospace Engineering
Cornell University
Ithaca, NY 14850

Professor E. L. Resler
Sibley School of Mechanical and
Aerospace Engineering
Cornell University
Ithaca, NY 14850

Professor S. F. Shen
Sibley School of Mechanical and
Aerospace Engineering
Ithaca, NY 14850

Library
Midwest Research Institute
425 Volker Boulevard
Kansas City, MO 64110

Dr. M. M. Hafez
Flow Research, Inc.
P. O. Box 5040
Kent, WA 98031

Dr. E. M. Murman
Flow Research, Inc.
P. O. Box 5040
Kent, WA 98031

Dr. S. A. Orszag
Cambridge Hydrodynamics, Inc.
54 Baskin Road
Lexington, MA 02173

Dr. P. Bradshaw
Imperial College of Science and
Technology
Department of Aeronautics
Prince Consort Road
London SW7 2BY, England

Professor T. Cebeci
California State University,
Long Beach
Mechanical Engineering Department
Long Beach, CA 90840

Mr. J. L. Hess
Douglas Aircraft Company
3855 Lakewood Boulevard
Long Beach, CA 90808

Page 4

Dr. H. K. Cheng
University of Southern California,
University Park
Department of Aerospace Engineering
Los Angeles, CA 90007

Professor J. D. Cole
Mechanics and Structures Department
School of Engineering and Applied
Science
University of California
Los Angeles, CA 90024

Engineering Library
University of Southern California
Box 77929
Los Angeles, CA 90007

Dr. C. -M. Ho
Department of Aerospace Engineering
University of Southern California,
University Park
Los Angeles, CA 90007

Dr. T. D. Taylor
The Aerospace Corporation
P. O. Box 92957
Los Angeles, CA 90009

Commanding Officer
Naval Ordnance Station
Louisville, KY 40214

Mr. B. H. Little, Jr.
Lockheed-Georgia Company
Department 72-74, Zone 369
Marietta, GA 30061

Professor E. R. G. Eckert
University of Minnesota
241 Mechanical Engineering Building
Minneapolis, MN 55455

Library
Naval Postgraduate School
Monterey, CA 93940

Supersonic-Gas Dynamics Research
Laboratory
Department of Mechanical Engineering
McGill University
Montreal 12, Quebec, Canada

Dr. S. S. Stahara
Nielsen Engineering & Research, Inc.
510 Clyde Avenue
Mountain View, CA 94043

Engineering Societies Library
345 East 47th Street
New York, NY 10017

Professor A. Jameson
New York University
Courant Institute of Mathematical
Sciences
251 Mercer Street
New York, NY 10012

Professor G. Miller
Department of Applied Science
New York University
26-36 Stuyvesant Street
New York, NY 10003

Office of Naval Research
New York Area Office
715 Broadway - 5th Floor
New York, NY 10003

Dr. A. Vaglio-Laurin
Department of Applied Science
26-36 Stuyvesant Street
New York University
New York, NY 10003

Professor H. E. Rauch
Ph.D. Program in Mathematics
The Graduate School and University
Center of the City University of
New York
33 West 42nd Street
New York, NY 10036

Librarian, Aeronautical Library
National Research Council
Montreal Road
Ottawa 7, Canada

Lockheed Missiles and Space Company
Technical Information Center
3251 Hanover Street
Palo Alto, CA 94304

Page 5

Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, CA 91106

California Institute of Technology
Engineering Division
Pasadena, CA 91109

Library
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103

Professor H. Liepmann
Department of Aeronautics
California Institute of Technology
Pasadena, CA 91109

Mr. L. I. Chasen, MGR-MSD Lib.
General Electric Company
Missile and Space Division
P. O. Box 8555
Philadelphia, PA 19101

Mr. P. Dodge
Airesearch Manufacturing Company
of Arizona
Division of Garrett Corporation
402 South 36th Street
Phoenix, AZ 85010

Technical Library
Naval Missile Center
Point Mugu, CA 93042

Professor S. Bogdonoff
Gas Dynamics Laboratory
Department of Aerospace and
Mechanical Sciences
Princeton University
Princeton, NJ 08540

Professor S. I. Cheng
Department of Aerospace and
Mechanical Sciences
Princeton University
Princeton, NJ 08540

Dr. J. E. Yates
Aeronautical Research Associates
of Princeton, Inc.
50 Washington Road
Princeton, NJ 08540

Professor L. Sirovich
Division of Applied Mathematics
Brown University
Providence, RI 02912

Dr. P. K. Dai (RI/2178)
TRW Systems Group, Inc.
One Space Park
Redondo Beach, CA 90278

Redstone Scientific Information Center
Chief, Document Section
Army Missile Command
Redstone Arsenal, AL 35809

U.S. Army Research Office
P. O. Box 12211
Research Triangle, NC 27709

Editor, Applied Mechanics Review
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78228

Library and Information Services
General Dynamics-CONVAIR
P. O. Box 1128
San Diego, CA 92112

Dr. R. Magnus
General Dynamics-CONVAIR
Kearny Mesa Plant
P. O. Box 80847
San Diego, CA 92138

Mr. T. Brundage
Defense Advanced Research Projects
Agency
Research and Development Field Unit
APO 146, Box 271
San Francisco, CA 96246

Office of Naval Research
San Francisco Area Office
One Hallidie Plaza, Suite 601
San Francisco, CA 94102

Library
The RAND Corporation
1700 Main Street
Santa Monica, CA 90401

Page 6

Dr. P. E. Rubbert
Boeing Aerospace Company
Boeing Military Airplane Development
Organization
P. O. Box 3707
Seattle, WA 98124

Dr. H. Yoshihara
Boeing Aerospace Company
P. O. Box 3999
Mail Stop 41-18
Seattle, WA 98124

Mr. R. Feldhuhn
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910

Librarian
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910

Dr. J. M. Solomon
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910

Professor J. H. Ferziger
Department of Mechanical Engineering
Stanford University
Stanford, CA 94305

Professor K. Karamcheti
Department of Aeronautics and
Astronautics
Stanford University
Stanford, CA 94305

Professor M. van Dyke
Department of Aeronautics and
Astronautics
Stanford University
Stanford, CA 94305

Professor O. Bunemann
Institute for Plasma Research
Stanford University
Stanford, CA 94305

Engineering Library
McDonnell Douglas Corporation
Department 218, Building 101
P. O. Box 516
St. Louis, MO 63166

Dr. R. J. Hakkinen
McDonnell Douglas Corporation
Department 222
P. O. Box 516
St. Louis, MO 63166

Dr. R. P. Heinisch
Honeywell, Inc.
Systems and Research Division -
Aerospace Defense Group
2345 Walnut Street
St. Paul, MN 55113

Dr. N. Malmuth
Rockwell International Science Center
1049 Camino Dos Rios
P. O. Box 1085
Thousand Oaks, CA 91360

Library
Institute of Aerospace Studies
University of Toronto
Toronto 5, Canada

Professor W. R. Sears
Aerospace and Mechanical Engineering
University of Arizona
Tucson, AZ 85721

Professor A. R. Seebass
Department of Aerospace and Mechanical
Engineering
University of Arizona
Tucson, AZ 85721

Dr. K. T. Yen
Code 3015
Naval Air Development Center
Warminster, PA 18974

Air Force Office of Scientific Research
(SREM)
Building 1410, Bolling AFB
Washington, DC 20332

Chief of Research and Development
Office of Chief of Staff
Department of the Army
Washington, DC 20310

Library of Congress
Science and Technology Division
Washington, DC 20540

Page 7

Director of Research (Code RR)
National Aeronautics and Space
Administration
600 Independence Avenue, SW
Washington, DC 20546

Library
National Bureau of Standards
Washington, DC 20234

National Science Foundation
Engineering Division
1800 G Street, NW
Washington, DC 20550

Mr. W. Koven
AIR 03E
Naval Air Systems Command
Washington, DC 20361

Mr. R. Siewert
AIR 320D
Naval Air Systems Command
Washington, DC 20361

Technical Library Division
AIR 604
Naval Air Systems Command
Washington, DC 20361

Code 2627
Naval Research Laboratory
Washington, DC 20375

SEA 03512
Naval Sea Systems Command
Washington, DC 20362

SEA 09G3
Naval Sea Systems Command
Washington, DC 20362

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code AX)
Washington, DC 20380

Director
Weapons Systems Evaluation Group
Washington, DC 20305

Chief of Aerodynamics
AVCO Corporation
Missile Systems Division
201 Lowell Street
Wilmington, MA 01887

Research Library
AVCO Corporation
Missile Systems Division
201 Lowell Street
Wilmington, MA 01887

AFAPL (APRC)
AB
Wright Patterson, AFB, OH 45433

Dr. Donald J. Harney
AFFDL/FX
Wright Patterson AFB, OH 45433