Prediction of Online Customers' Purchasing Intention

Team Name: YZman

Team Member: Xiayi Ye, Chenxing Zhai

Team web page: https://github.com/zcx10025/DM-Project

Abstract

Today, the use of big data technology has penetrated into every area of our daily life,

especially in the field of e-commerce. Understanding customer preferences and buying habits,

predicting customer buying intentions are useful for business decisions, such as accurate

delivery of advertising, network traffic analysis, market trends and etc. So we choose this topic

to explore how big data technology works on prediction of online customers' purchasing

intention

After preprocessing, exploratory data analysis and feature selection, we will build two

models to predict whether a visit will end with a transaction. A comparison of the two models

will also be included.

Introduction:

The rapid development of e-commerce is inseparable from the advancement of big data

technology. Analysis of customers' behavior, purchasing intention and their preference are

useful for business decision. For example, after you buy a computer at Amazon, next time you

enter Amazon, it will automatically recommend some products related to computer to you,

such as keyboard, mouse and so on. After we grasp many big data technologies this semester,

we have a new understanding of online shopping. So we choose this topic to explore how big

data technology predict online shoppers' purchase intention. Through this topic, we can not

only understand the analysis method of e-commerce from the perspective of a consumer, but

also evaluate which consumers have a strong willingness to purchase from the perspective of

a merchant.

Our goal is to build two models to predict whether a visit will be finalized with a transaction

with this data set. If our model is precision enough, perhaps it can really be used in reality to

predict the customers' purchasing intention. Because this will be a classification problem, so I decide to use confusion matrix to evaluate our model.

Data set and features:

We download the data set from UCI Machine Learning Repository. The link is: https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset#

The dataset consists of 10 numerical, 8 categorical attributes and 12,330 rows. Description of them is below:

Name	Description	Type		
Administrative	Number of administrative pages visited by the visitor	Numeric		
Administrative Duration	Total time spent on administrative pages by the visitor	Numeric		
Informational	Number of informational pages visited by the visitor	Numeric		
Informational Duration	Total time spent on informational pages by the visitor	Numeric		
Product Related	Number of product related pages visited by the visitor	Numeric		
Product Related Duration	Total time spent on product related pages by the visitor	Numeric		
Bounce Rate	Bounce rate of the pages visited by the visitor	Numeric		
Exit Rate	Exit rate of the pages visited by the visitor	Numeric		
Page Value	Page Value Value of the page visited by the visitor			

Special Day	Measure how close the day of the visit is to a special day	Numeric	
Month	The day of the visit is in which month	Categorical	
Operating System	Operating system version of the visitor	Categorical	
Browser	Browser type of the visitor	Categorical	
Region	Region where the visit is located	Categorical	
Traffic Type	Ways for visitors to visit the web page	Categorical	
Visitor Type	Whether the visitor is a new visitor, returning visitor or other	Categorical	
Weekend	Indicate whether the day of the visit is weekend	Categorical	
Revenue	Categorical		

Tools:

We plan to use R for our project. Packages like "caret", "ggplot2" and "corrplot" can be used to preprocess the data and do some exploration analysis. We want to build several classification model and make a prediction, so package "e1071", "randonForest" and "neuralnet" may be included.

Related work (Literature Review):

[1] Yi Jin Lima, Abdullah Osmanb, Shahrul Nizam Salahuddinc, Abdul Rahim Romled, Safizal Abdullahe, 2015. Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention.

Available: https://www.sciencedirect.com/science/article/pii/S2212567116000502#bibl0005

Summary: When customers have a good impression of the product and feel that it is useful, their willingness to buy it will increase significantly. However, customers' doubts about the standardization of products on the website can adversely affect purchase behavior. In addition, if the customer subconsciously feels that the product is useful, then they do not care whether to buy online or offline. In a nutshell, the wishes of customers determine whether they will buy online.

[2] Dai, H., Wang, L., Li, Y., Nie, Z., Wen, J. R., & Zhao, L. (2010). *U.S. Patent No. 7,831,685*. Washington, DC: U.S. Patent and Trademark Office.

Available: https://patents.google.com/patent/US7831685B2/en

Summary: The data extracted from the web browser or search behavior can be used to detect users' browsing or search intent. The article mentions that machine learning can automatically detect and classify online users' business intent based on these data. Therefore, the related advertisement can be matched with the user or potential user who has the purchase intention to increase revenue.

Preprocessing

According to the data set, we need to change the type of the 8 categorical predictors and the output variable into factor first. Then we use the function "preProcess" to preprocess the data. Method is "range", which means we scale the numerical predictor to a 0–1 scale. The formula is: $v' = \left(\frac{v - min_A}{max_A - min_A}\right)$.

Below is the result after we finish the preprocessing:

```
str(df)
> str(d)
'data.frame':
              12330 obs. of 18 variables:
$ Administrative
                       : num 00000
$ Administrative : num 0 0 0 0 0 ...
$ Administrative_Duration: num 0 0 0 0 0 0 0 0 0 ...
                       : num 0000000000...
$ Informational
$ Informational_Duration : num 0 0 0 0 0 0 0 0 0 0 .
                              0.00142 0.00284 0.00142 0.00284 0.01418 ...
$ ProductRelated
                       : num
$ ProductRelated_Duration: num
                              0.00 1.00e-03 0.00 4.17e-05 9.81e-03 ...
$ BounceRates
                              1 0 1 0.25 0.1
                       : num
$ ExitRates
                        : num
                              1 0.5 1 0.7 0.25
                              00000000000...
$ PageValues
                       : num
$ SpecialDay
$ OperatingSystems
$ Browser
$ Region
$ TrafficType
$ VisitorType
$ Weekend
$ Revenue
```

> summary(df)					=			
Administrative	Administrative_Dur	ation Information	al Informatio	nal_Duration	ProductRelated	d Produc	ctRelated_D	uration
Min. :0.00000	Min. :0.000000	Min. :0.00	0000 Min. :0.	00000	Min. :0.0000	000 Min.	:0.000000	
1st Qu.:0.00000	1st Qu.:0.000000	1st Qu.:0.00	0000 1st Qu.:0.	00000	1st Qu.:0.0099	929 1st Q	u.:0.002878	
Median :0.03704	Median :0.002207	Median :0.00	0000 Median :0.	00000	Median :0.025	32 Media	n:0.009362	
Mean :0.08575	Mean :0.023779	Mean :0.02	2098 Mean :0.	01352	Mean :0.0450	009 Mean	:0.018676	
3rd Qu.:0.14815	3rd Qu.:0.027438	3rd Qu.:0.00	0000 3rd Qu.:0.	00000	3rd Qu.:0.0539	901 3rd Q	u.:0.022887	
Max. :1.00000	Max. :1.000000	Max. :1.00		00000	Max. :1.0000		:1.000000	
BounceRates	ExitRates	PageValues	SpecialDay	Month	Operatings	Systems I	Browser	Region
Min. :0.00000	Min. :0.00000	Min. :0.00000	Min. :0.00000	May :336	4 2 :60	501 2	:7961	1 :4780
1st Qu.:0.00000	1st Qu.:0.07143	1st Qu.:0.00000	1st Qu.:0.00000	Nov :299	8 1 :2:	85 1	:2462	3 :2403
Median :0.01556	Median :0.12578	Median :0.00000	Median :0.00000	Mar :190	7 3 :2:	555 4	: 736	4 :1182
Mean :0.11096	Mean :0.21536	Mean :0.01628	Mean :0.06143	Dec :172	74:4	178 5	: 467	2 :1136
3rd Qu.:0.08406	3rd Qu.:0.25000	3rd Qu.:0.00000	3rd Qu.:0.00000	Oct : 54	98:	79 6	: 174	6 : 805
Max. :1.00000	Max. :1.00000	Max. :1.00000	Max. :1.00000	Sep : 44	86:	19 10	: 163	7 : 761
				(Other):133	<pre>7 (Other):</pre>	13 (ot)	her): 367	(Other):1263
TrafficType	VisitorTyp	e weekend	Revenue					
2 :3913 Nev	w_Visitor : 16	94 FALSE:9462	FALSE:10422					
1 :2451 oth	ner :	85 TRUE :2868	TRUE : 1908					
3 :2052 Ret	turning_Visitor:105	51						
4 :1069	_							
13 : 738								
10 : 450								
(Other):1657								

Exploratory Data Analysis

We created correlation coefficient graph and boxplot for the numeric variables. According to the plots below, we can say that the number of pages viewed by the user has a high correlation with the length of time spent on the page. Also we find that there are too many outliers in column "Informational_Duration" and "SpecialDay".

Models

We plan to build two models. One is based on random forest and the other is based on neural

network. We will compare and analyze these three models to get their own advantages and

disadvantages. So far, we have successfully established a model based on random forest.

According to the confusion matrix, the accuracy is about 90%.

Before we build our first model, we use function "step" to run a feature selection.

According to the result, "ProductRelated Duration + ExitRates + PageValues + Month +

TrafficType + VisitorType" is the best feature combination. So we decide to build two models

based on different feature combination. One is the combination of all the features and the other

is the combination obtained by function "step". We split the data, 60% for training and 40%

for testing. Then we run our model in R.

Results and discussion

Below is the confusion matrix of our first model:

All the features are used:

Reference

Prediction FALSE TRUE

FALSE 4007 328

TRUE 161 435

Accuracy: 0.9008

Best feature combination obtained by "step":

Reference

Prediction FALSE TRUE

FALSE 3994 312

TRUE 174 451

Accuracy: 0.9014

It seems that the best combination obtained by "step" is more accurate.

Conclusions