GRAPH – MODEL JARINGAN (NETWORKS)

MINIMAL SPANNING TREE

Referensi:

Rosen, 2019, Discrete Mathematics and Its Applications, Bab 11 Taha, 2017, Operation Research an Introduction, Bab 6

(C. Kuntoro Adi, SJ)

1

Pokok Bahasan

- I. Pengantar
- 2. Minimal spanning tree
- 3. Route terpendek: Dijkstra
- 4. Route terpendek: Floyd

I. PENGANTAR

Banyak hal bisa dimodelkan menggunakan graph, atau jaringan.
 Misalkan jalur kereta api, kota (node, vertex, simpul) – penerbangan (edges, link)

Beberapa masalah jaringan terkait dengan:

- Desain jalur pipa penghubung sumber minyak di laut ke beberapa titik distribusi di daratan. Obyektif: memimimalkan biaya dalam membangun jalur pipa
- 2. Menemukan jarak terdekat antar kota bertolak dari jaringan jalan penghubung antar kota
- 3. Menemukan jadwal (awal dan akhir) kegiatan proyek pembangunan
- 4. Menemukan biaya minimum penjadwalan pengiriman (pengaliran) minyak dari ladang minyak ke pengolahan (refinery) melalui jaringan pipa.

Beberapa kemungkinan modeling dengan graph atau network

- I. Minimal spanning tree (kasus I)
- 2. Algoritma route terpendek (kasus 2)
- 3. Algoritma maksimal/minimal flow (kasus 3)
- 4. Algoritma critical path (CPM) (kasus 4)

9

Model Graph pada Jaringan

Definisi

- Jaringan tersusun atas nodes N (simpul, vertex) yang terhubung lewat arcs A (branch, link, edge)
- O Notasi: (N,A) dengan N = nodes, A = arcs
- o Contoh

 $N = \{1, 2, 3, 4, 5\}$ $A = \{(1,2), (1,3), (2,3), (2,5), (3,4), (3,5), (4,2), (4,5)\}$

Beberapa istilah pada network

- Flow (aliran minyak pada suatu pipa, kendaraan pada jalan raya): flow suatu network dibatasi oleh kapasitas arc (terbatas, tidak terbatas)
- Arc dikatakan directed atau oriented jika ada flow positip di suatu arah dan flow negative di arah sebaliknya. Suatu jaringan dikatakan "directed network" jika semua arcnya directed.
- Path = arc yang menghubungkan 2 node melalui node lain tapa memperhitungkan arah aliran node. Contoh di gambar sebelumnya: arc (2,3),(3,4),(4,2) membentuk suatu cycle.
- Connected network = setiap 2 node dalam jaringan terhubung paling tidak dengan satu path.
- Suatu tree = connected network yang cycle-free, terdiri dari subset semua node dalam jaringan. Spanning tree = suatu tree yang menghubungkan semua node dalam jaringan.

Spanning tree

$$G = (N,A) = (V,E)$$

Spanning tree G'=(N',A')

dengan

$$N' = N$$

$$A' \subset A$$

$$A' = |N|-1$$

Graf bisa memiliki lebih dari I spanning tree

13

Spanning trees

Minimum Spanning Tree ?

2.ALGORITMA MINIMAL SPANNING TREE

15

Catatan awal

- Algoritma ini mencoba menjawab pertanyaan, misalnya: bagaimana menghubungkan nodes dalam suatu jaringan (secara langsung maupun tidak langsung), menggunakan total penghubung terpendek
- Contoh: pengaspalan jalan yang menyambungkan beberapa kota. Masalahya adalah, manakah desain paling ekonomis sehinggga meminimalisasi biaya pengaspalan.

Algoritma

- Misal ada beberapa node $N = \{1, 2, ..., n\}$ dalam jaringan
- C_k = beberapa node yang sudah terhubung secara permanen pada iterasi k
- $\underline{C_k}$ = beberapa node yang belum terhubung secara permanen pada iterasi k

17

Langkah:

- I. Set Co = 0; Co = N
- 2. Pilih sembarang node di \underline{Co} , set $C_1 = \{i\}$ sehingga $\underline{C_1} = N \{i\}$. Set k = 2
- 3. Langkah umum langkah ke k:
 - a. Pilih node j* pada kelompok node yang belum terhubung (di \underline{C}_{k-1}) yang memiliki jarak terdekat dengan kelompok C_{k-1} . Hubungkan j* secara permanen ke C_{k-1} ; dan hapus j* dari \underline{C}_{k-1}
 - b. $C_k = C_{k-1} + \{j*\}; \underline{C}_k = \underline{C}_{k-1} \{j*\}$
 - c. Jika \underline{C}_k kosong, stop. Otherwise k = k+1

Contoh

Perusahaan TV-cable (simpul I) akan menyambung kabel untuk 5 pelanggan baru di lokasi yang beragam. Jarak lokasi (kilometer) bisa dilihat pada gambar di samping. Temukan jaringan kabel yang paling ekonomis untuk penyambungan kabel tersebut

19

Penyelesaian:

Mulai dari node 1 (atau node lain); $C_1 = \{1\}$ dan $\underline{C_1} = \{2, 3, 4, 5, 6\}$ Iterasi:

- Iterasi 1: link (1,2) merupakan jarak terpendek (1 km) di antara banyak link yang bisa menghubungkan node 1 ke node 2, 3, 4, dan 5 yang ada di C1
- Link (1,2) dibuat permanen, dan j*
 = 2 sehingga C₂ ={1, 2}, C₂ = {3, 4, 5, 6}
- Hasil iterasi akhir memberi informasi panjang sambungan kabel yang diperlukan = 1 + 3 + 4 + 3 + 5 = 16 km

