

# [BASE] 합성곱 신경망(CNN)

# 1. 합성곱 신경망(Convolutional Neural Network)

🌟 CNN은 이미지 인식 및 음성 인식등 다양한 곳에서 사용됩니다.

특히, 이미지 인식 분야에서 딥러닝을 활용한 기법들은 대부분 CNN을 기초로 하고 있습니다.

#### ▼ 1-1. 전체 구조



대부분의 CNN의 계층은 Conv - ReLU - (Pooling) 흐름으로 연결됩니다.

또한, Output에 가까운 층에서는 Affine-ReLU 구성을 사용하며,

마지막 출력 계층에서는 'Affine-Softmax' 조합을 그대로 사용합니다.

# ▼ 1-2. CNN Layer(합성곱 계층)

#### **FC Problem**

• 데이터의 형상이 무시된다는 점입니다.

입력 데이터가 이미지인 경우, 일반적으로 (height, width, channels)로 구성된 3차원 데이터이다. 만약 **FC**를 사용하여 3차원 데이터를 1차원 데이터로 변환하는 경우, 가까운 Pixel에 대한 **공간적 정보를 소실하게 됩니다.** 

**CNN(Convolutional Neural Network)** 

• CNN에서 CNN Layer(합성곱 계층)의 입출력 데이터를 특징 맵(feature map)이라고 합니다.

(일반적으로 입력 데이터를 **입력 특징 맵(input feature map)**, 출력 데이터를 **출력** 특징 맵(output feature map)이라고 합니다.)

## ▼ 1-3. 합성곱 연산

☀️ CNN Layer에서는 합성곱 연산을 이미지 처리의 필터 연산을 의미합니다.



합성곱 연산은 입력 데이터에 필터를 적용합니다.

일반적으로 CNN에서는 데이터의 형상을 (height, width)로 표시합니다.

Input(4, 4) \* Filter(3, 3) = Output(2, 2) 입니다. (Filter를 Kernel 이라고도 합니다.)

★ CNN(Convolutional Neural Network)에서 Filter의 매개변수를 가중치 (Weights)라고 합니다.

합성곱 연산은 Filter(Kernel)의 Window를 일정 간격으로 이동하며, Input에 적용합니다.

(Window는 하단 이미지의 회색 바탕을 의미합니다.)

하단과 같이 수행하는 적분(덧셈)방식을 <mark>단일 곱셈-누산(fused multipliy-add, FMA)</mark> 라고 합니다.

| 1 | 2 | 3   | 0 |     | 9 0 1                                                  |          |       |
|---|---|-----|---|-----|--------------------------------------------------------|----------|-------|
| 0 | 1 | 2   | 3 |     | 2 0 1                                                  |          | 15    |
| 3 | 0 | 1   | 2 | (*) | 0 1 2                                                  |          |       |
| 2 | 3 | 0   | 1 |     | 1 0 2                                                  |          |       |
|   |   |     |   |     |                                                        |          |       |
| 1 | 2 | 3   | 0 |     |                                                        |          |       |
| 0 | 1 | 2   | 3 |     | 2 0 1                                                  |          | 15 16 |
| 3 | 0 | 1   | 2 | (*) | 0 1 2                                                  |          |       |
| 2 | 3 | 0   | 1 |     | 1 0 2                                                  |          |       |
|   |   |     |   |     |                                                        |          |       |
| 1 | 2 | 3   | 0 |     |                                                        |          |       |
| 0 | 1 | 2   | 3 |     | 2 0 1                                                  |          | 15 16 |
| 3 | 0 | 1   | 2 | (*) | 0 1 2                                                  | <b>—</b> | 6     |
| 2 | 3 | 0   | 1 |     | 1 0 2                                                  |          |       |
|   |   |     |   |     |                                                        |          |       |
| 1 | 2 | 3   | 0 |     |                                                        |          |       |
| 0 | 1 | 2   | 3 |     | 2 0 1                                                  |          | 15 16 |
|   |   |     |   | / \ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |          |       |
| 3 | 0 | 1   | 2 | (*) | 0 1 2                                                  |          | 6 15  |
| 3 |   | 1 0 | 2 | (*) | 1 0 2                                                  |          | 6 15  |

(만약 Bias(편향값)을 Filter(Kernel)에 적용한다면, 하단 이미지처럼 연산됩니다.)



#### ▼ 1-4. 패딩

☆ 합성곱 연산을 수행하기 전에 입력 데이터 주변을 특정 값으로 채우는 것을 의미합니다.

EX> Input Image(4,4) 에 Padding 1을 적용한 경우 (0으로 채우는 경우 ZeroPadding)



EX> 처음 Input Image(4,4)에 Padding(1) 한 것에 Filter(3, 3) 적용한 결과 = Output(4, 4)

| 0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>3<br>2 | 0<br>2<br>1<br>0<br>3 | 0<br>3<br>2<br>1<br>0 | 0<br>0<br>3<br>2<br>1 | 0<br>0<br>0<br>0<br>0 | * | 2 0 1<br>0 1 2<br>1 0 2 | • | 7<br>4<br>10<br>8 | 12<br>15<br>6<br>10 | 10<br>16<br>15<br>4 | 2<br>10<br>6<br>3 |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|-------------------------|---|-------------------|---------------------|---------------------|-------------------|
| af                    | raw                   | nput<br>/ size        | e – 4                 | ×4                    | < 6                   |   | Filter<br>3×3           |   | 0                 | utpu<br>4>          | t Dat               | ta                |

## ▼ 1-5. 스트라이드

Input Image에 Filter를 적용하는 위치의 간격을 스트라이드(Stride)라고 합니다.

EX > Stride가 2인 경우 (Window가 2칸씩 이동합니다.)



#### 수식(Formulation)

- Input ImageSize(H, W)
- Filter Size(FH, FW)
- Padding(P)
- Stride(S)
- Output ImageSize(OH, OW)

$$OH = rac{H + 2P - FH}{S} + 1$$
  $OW = rac{W + 2P - FW}{S} + 1$ 

etc) 정수로 떨어지지 않는다면, 일반적으로 반올림을 하지만, 웬만하면, 정수로 표현되게 유도합니다.

#### ▼ 1-6. 3차원 데이터의 합성곱 연산

→ 이미지의 경우, (H, W, C) [세로, 가로, 채널]까지 고려한 3차원 데이터이다.

주의점으로는, Input Image와 Filter의 channel 수가 동일해야 합니다.



EX 계산과정>



| Г | 3 | 0 2 | 6 | 1 5 | 2 |   |   | 4 | 1 | 0 | 2 |               |    |    |
|---|---|-----|---|-----|---|---|---|---|---|---|---|---------------|----|----|
| 1 | 2 | 3   | 0 | 3   | 4 |   |   | 0 | 1 | 3 | 0 |               | 63 | 55 |
| 0 | 1 | 2   | 3 | 0   | 2 | * | 2 | 0 | 1 | 2 | 2 | $\rightarrow$ |    |    |
| 3 | 0 | 1   | 2 | 0   | 5 |   | 0 | 1 | 2 | 0 | 2 |               |    |    |
| 2 | 3 | 0   | 1 | 1   |   |   | 1 | 0 | 2 | H |   |               |    |    |

| 4 2 1 2                                               |   |   |   |                                             |   |    |    |
|-------------------------------------------------------|---|---|---|---------------------------------------------|---|----|----|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |   | 0 | 4 | $\begin{array}{c c} 0 \\ 1 & 3 \end{array}$ | 2 |    |    |
| 0 1 2 3 2                                             | * | 2 | 0 | 1 2                                         | 0 | 63 | 55 |
| 3 0 1 2 1                                             |   | 0 | 1 | 2 0                                         | 2 | 18 |    |
| 2 3 0 1                                               |   | 1 | 0 | 2                                           |   |    |    |

|   |   | 4 | 2 | 1 | 2 |               |   |   | _ |               |   |               |    |    |
|---|---|---|---|---|---|---------------|---|---|---|---------------|---|---------------|----|----|
| _ | 3 | 0 | 6 | 5 | 4 |               |   | 4 | _ | 0   2         |   |               |    |    |
| 1 | 2 | 3 | 0 | 3 | 2 |               | 0 | 0 | 1 | $\frac{3}{0}$ |   |               | 63 | 55 |
| 0 | 1 | 2 | 3 | 0 | - | $\circledast$ | 2 | 0 | 1 | 2 2           |   | $\rightarrow$ | 18 | 51 |
| 3 | 0 | 1 | 2 | 1 | 5 |               | 0 | 1 | 2 | 0             | _ |               | 10 | 01 |
| 2 | 3 | 0 | 1 | 1 |   |               | 1 | 0 | 2 | r             |   |               |    |    |

# ▼ 1-7. 블록으로 생각하기

♪ 3차원 합성곱 연산은 데이터와 필터를 직육면체 블록으로 생각하면 쉽습니다.



만약, Filter Block이 여러 개 존재한다면,



여기에, Bias Block을 추가한다면, CNN의 흐름은 아래의 이미지와 같습니다.



# ▼ 1-8. Pooling Layer(폴링 계층)

→ Pooling이란? 세로, 가로 방향의 공간을 줄이는 연산을 의미합니다.

EX Pooling (2) 와 Window (2) 인 경우>

(일반적으로, Pooling == Window 입니다.)



#### Pooling을 하는 이유?

- 정말 필요한 데이터만 출력할 수 있습니다.
- 데이터의 양이 적어집니다.
- Feature가 많아져, Overfitting이 발생하는 경우를 방지합니다.

#### Pooling의 특징

- 학습해야 할 매개 변수가 없습니다.
  - 합성곱 계층과 달리 학습해야 할 매개변수가 없습니다.
  - 폴링은 대상 영역에서 최댓값이나 평균을 취하는 명확한 처리이므로. **학습X**

- 채널 수가 변하지 않습니다.
- 입력의 변화에 영향을 적게 받습니다. (Strong[강건하다.])