PRINTABLE VERSION

Quiz 4

You scored 90 out of 100

Question 1

Your answer is CORRECT.

Consider the function

$$f: \{1, 3, -2\} \rightarrow \{84, 19, 4, -23\}$$

where
$$f(x) = x^4 + 3$$

Determine the expressions that best complete the following statement:

f sends the element 1 from the domain

to the element ____ in the co-domain $_{_{3}}$

a)
$$\bigcirc \underbrace{\{84, 19, 4, -23\}}_{1}$$
, $\underbrace{f(1) = -23}_{2}$, $\underbrace{\{1, 3, -2\}}_{3}$

c)
$$\bigcirc \frac{\{1,3,-2\}}{1}$$
, $\frac{f(1)=4}{2}$, $\frac{\{1,3,-2\}}{3}$

d)
$$\bigcirc \frac{\{84, 19, 4, -23\}}{1}$$
, $\frac{f(1) = 4}{2}$, $\frac{\{1, 3, -2\}}{3}$

e)
$$\bigcirc \frac{\{1,3,-2\}}{1}$$
, $\frac{f(1)=-23}{2}$, $\frac{\{84,19,4,-23\}}{3}$

Question 2

Your answer is CORRECT.

Recall the the exponential function e^x . Of the options provided below, which is the largest possible domain one can use for this function?

$$a) \bigcirc R - Z$$

b)
$$\bigcirc$$
 R = $\{0\}$

- $c) \bigcirc Z$
- **d)** $\bigcirc \{x \in R : x > 0\}$
- e)

 R

Question 3

Your answer is CORRECT.

Recall the the exponential function $(\frac{1}{2})^{-x}$ with domain R and co-domain B. Of the options provided below, which is the smallest possible co-domain, B, one can use for this function?

- a) \bigcirc N
- **b)** \bigcirc R
- \mathbf{c}) $\bigcirc \mathbf{R} \mathbf{Z}$
- d) \bigcirc Z
- e) $\bigcirc R \{0\}$
- $f_{1} \oplus \{x \in R : x > 0\}$

Question 4

Your answer is INCORRECT.

Which of the following is an example of a function $f: N \times N \to Z$?

- $a) \cap a \mapsto (a^2, a^3)$
- b) \bigcirc $(a, b, c) \mapsto ac + b$
- $(a^2, 3a)$
- d) \bigcirc a \mapsto (a², 3a, arctan(a))
- $e) \odot a \mapsto [a] + [a]$
- f) \bigcirc $(a, b, c, d) \mapsto ad bc$

Question 5

Your answer is CORRECT.

Consider the sequence $\{a_n\} = \{\frac{3}{2^n}\}$ Determine the value of a_6 .

a)
$$a_6 = 3/128$$

b)
$$\bigcirc$$
 $a_6 = 0$

c)
$$\bigcirc$$
 $a_6 = 3/32$

e)
$$a_6 = 3/2$$

Ouestion 6

Your answer is CORRECT.

Consider the sequence $a_n = \sin^2(n) + \cos^2(n)$. Which of the following statements is true?

- a) The terms of this sequence are strictly increasing (they get larger as n gets larger).
- **b)** \bigcirc This is a constant sequence! The terms stay the same value for all n.
- c) This sequence is neither strictly increasing nor strictly decreasing. Sometimes the terms increase and at other times they decrease.
- d) The terms of this sequence are strictly decreasing (they get smaller as n gets larger.)

Question 7

Your answer is CORRECT.

Recall the recursively defined (and famous!) Fibonacci Sequence F_n ; its recursive structure is present in the defining recurrence relation

$$F_n = F_{n-1} + F_{n-2}$$

 $F_n=F_{n-1}\ +F_{n-2}$ and it satisfies the initial conditions $F_1=F_2=1\$. Determine the value of F_{11} .

$$a) \bigcirc F_{11} = 10 + 9 = 19$$

b)
$$\bigcirc$$
 F₁₁ = 144

c)
$$\bigcirc$$
 F₁₁ = 55

d)
$$\circ$$
 $F_{11} = 89$

Question 8

Your answer is CORRECT.

Consider the sequence that solves the recurrence relation $a_n = a_{n-1} - 5$ with initial condition $a_0 = 25$. Which term in this sequence, if any, equals -5?

- **a)** $a_4 = -5$
- **c)** $a_0 = -5$
- d) One term in this sequence will equal -5.
- e) $a_{25} = -5$

Question 9

Your answer is CORRECT.

Consider the sequence that solves the recurrence relation $a_n = 2a_{n-1}$ with initial condition $a_0 = 5$. Find an explicit formula for a_n .

- $\mathbf{a)} \odot \mathbf{a_n} = 2 \cdot 5^{\mathrm{n}}$
- **b)** $\bigcirc a_n = 10n$
- (c) $a_n = 5 \cdot 2^n$
- $\mathbf{d)} \bigcirc \mathbf{a_n} = 5^n$
- e) $\bigcirc a_n = 2^n$

Ouestion 10

Your answer is CORRECT.

Consider the recursively defined sequence $a_n=a_{n-1}-a_{n-2}$ with initial conditions $a_0=8$ and $a_1=5$. Determine the value of a_2 .

- $a) \bigcirc -5$
- **b)** 03
- c) -8
- **d)** 08