CE080 - FUNDAMENTOS BÁSICOS PARA ESTATÍSTICA

2018-03-19

Sumário

Prefácio		5
1	Conjuntos Numéricos	7
	1.1 Números Inteiros	. 7
	1.2 Números Naturais	. 8
	1.3 Números Racionais	
	1.4 Números Irracionais	. 9
	1.5 Números Reais	
	1.6 Operações com Conjuntos	. 9
2	Sem Título	11
3	Sem Título	13
4	Sem Título	15
5	Sem Título	17

4 SUMÁRIO

Prefácio

Este material busca auxiliar na compreensão e nos estudos dos assuntos tratados na matéria Fundamentos Básicos para Estatística (CE080) ministrada pela professora Fernanda Buhrer Rizzato (fernandab@ufpr.br) no primeiro semestre de 2018 para os candidatos presentes na terceira fase de seleção de acadêmicos do curso de Estatística da Universidade Federal do Paraná (UFPR).

6 SUMÁRIO

Conjuntos Numéricos

Um conjunto numérico pode ser definido como um agrupamento de elementos numéricos que possuem alguma característica em comum. Por exemplo, podemos definir o conjunto dos números pares positivos como:

$$P = \{2, 4, 6, 8, 10, 12, ...\}$$

Onde a característica em comum entre os elementos de P é a satisfação dos requisitos: i) ser par; ii) ser positivo.

De forma geral podemos denotar um conjunto em função das caracetísticas em comum de seus elementos. Seja C um conjunto de elementos e com uma característica em comum a definimos:

$$C = \{e \mid e \text{ possui a característica } a\}$$

Lê-se: C é o conjunto dos elementos e tal que e possui a característica a.

Retomando o exemplo do conjunto P, podemos escrevê-lo em função de suas características (i e ii):

$$P = \{x \mid x = 2n \ \forall \ n \in \mathbb{N}^*\}$$

Repare que n pertence a um conjunto denotado por \mathbb{N}^* . O conjunto \mathbb{N}^* possui apenas elementos positivos e inteiros (zero não está incluso pois não é positivo e sim neutro). Logo os valores de x serão os valores de x multiplicados por 2, desta forma todos os valores de x serão positivos e pares. Falaremos mais sobre o conjunto \mathbb{N} nas próximas seções.

1.1 Números Inteiros

O conjunto dos números inteiros, denotado por \mathbb{Z} , compreende todos os números inteiros não positivos (inclui o zero) e os números inteiros positivos. Desta forma temos:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Na notação de conjunto podemos incluir três operadores: *, + e - que servem respectivamente para denotar a ausência do elemento neutro (zero), presença somente de elementos não negativos e a presença somente de elementos não positivos. Com esses operadores obtemos diversas variações do conjunto \mathbb{Z} , ou seja, subconjuntos do conjunto \mathbb{Z} , são elas:

1. Números inteiros não-nulos

$$\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3, ...\}$$

2. Números inteiros não negativos

$$\mathbb{Z}_{+} = \{0, 1, 2, 3, ...\}$$

3. Números inteiros não positivos

$$\mathbb{Z}_{-} = \{..., -3, -2, -1, 0\}$$

4. Números inteiros positivos

$$\mathbb{Z}_{+}^{*} = \{1, 2, 3, ...\}$$

5. Números inteiros negativos

$$\mathbb{Z}_{-}^{*} = \{..., -3, -2, -1\}$$

1.2 Números Naturais

O conjunto dos números naturais, denotado por N, compreende todos os números inteiros não negativos (inclui o zero). Desta forma temos:

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

Repare que o conjunto \mathbb{N} é um subconjunto de \mathbb{Z} , ou seja, $\mathbb{N} \subset \mathbb{Z}$. Note também que \mathbb{N} é equivalente a \mathbb{Z}_+ .

Na notação do conjunto dos números naturais podemos definir somente o operador * uma vez que, por natureza, ele só possui elementos não negativos.

1. Números naturais positivos

$$\mathbb{N}^* = \{1, 2, 3, ...\}$$

1.3 Números Racionais

O conjunto dos números naturais, denotado por \mathbb{Q} , compreende todos os números da forma $\frac{a}{b}$ onde $a \in \mathbb{Z}$ e $b \in \mathbb{Z}^*$. Desta forma temos:

$$\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}^* \}$$

Repare que o conjunto \mathbb{Z} é subconjunto de \mathbb{Q} e \mathbb{N} é subconjunto de \mathbb{Z} , ou seja $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. Então podemos dizer que todos número natural é um número inteiro, e todo numero inteiro é um número racional, sendo assim todo número natural é também racional.

Na notação do conjunto dos números racionais estão definidos os três operadores.

1. Números racionais não-nulos

$$\mathbb{Q}^* = \{ \frac{a}{b} \mid a \in \mathbb{Z}^*, b \in \mathbb{Z}^* \}$$

2. Números racionais não negativos

$$\mathbb{Q}_+ = \{ \frac{a}{b} \mid a \in \mathbb{Z}_+, b \in \mathbb{Z}_+^* \}$$

$$\mathbb{Q}_+ = \{ \frac{a}{b} \mid a \in \mathbb{Z}_-, b \in \mathbb{Z}_-^* \}$$

3. Números racionais não positivos

$$\mathbb{Q}_{-} = \{ \frac{a}{b} \mid a \in \mathbb{Z}_{-}, b \in \mathbb{Z}_{+}^{*} \}$$

$$\mathbb{Q}_{-} = \{ \frac{a}{b} \mid a \in \mathbb{Z}_{+}, b \in \mathbb{Z}_{-}^{*} \}$$

4. Números racionais positivos

$$\mathbb{Q}_+^* = \{ \frac{a}{b} \mid a \in \mathbb{Z}_+^*, b \in \mathbb{Z}_+^* \}$$

$$\mathbb{Q}_+^* = \{ \frac{a}{b} \mid a \in \mathbb{Z}_-^*, b \in \mathbb{Z}_-^* \}$$

5. Números racionais negativos

$$\mathbb{Q}_{-}^* = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}_{-}^*, b \in \mathbb{Z}_{+}^* \right\}$$

$$\mathbb{Q}_-^* = \{ \frac{a}{b} \mid a \in \mathbb{Z}_+^*, b \in \mathbb{Z}_-^* \}$$

1.4 Números Irracionais

O conjunto dos números irracionais, denotado por \mathbb{I} , compreende todos números reais que não podem ser expressos através de $\frac{a}{b}$ em que $a \in \mathbb{Z}$ e $b \in \mathbb{Z}^*$. Desta forma temos:

$$\mathbb{I} = \{ a \mid \ a \in \mathbb{R}, a \notin \mathbb{Q} \}$$

São exemplos de números irracionais: $\sqrt{2}$, $\sqrt{3}$, e=2,71828..., $\pi=3,14159...$, entre outros.

Na notação do conjunto dos números irracionais estão definidos dois operadores: + e -.

1. Números irracionais positivos

$$\mathbb{I}_{+} = \{ a \mid a \in \mathbb{R}_{+}, a \notin \mathbb{Q} \}$$

2. Números irracionais negativos

$$\mathbb{I}_{-} = \{ a \mid a \in \mathbb{R}_{-}, a \notin \mathbb{Q} \}$$

1.5 Números Reais

1.6 Operações com Conjuntos