Econometrics with R at SciencesPo

Florian Oswald and Jean-Marc Robin 2018-04-03

Contents

T	Econometrics at SCPo - WORK IN PROGRESS	Э
2	R 2.1 A very quick R intro 2.2 Can do Math	7 7 7
3	Summarizing Data	11
4	Linear Regression 4.1 Try to find the Slope!	13 13
5	Standard Errors	15
6	Multiple Regression	17
7	Categorial Variables: Dummies and Interactions	19
8	Quantile Regression	21
9	Panel Data	23
10	Instrumental Variables	25
11	Logit and Probit	27
12	Principal Component Analysis	29
13	Notes 13.1 Book usage	31

4 CONTENTS

Econometrics at ScPo - WORK IN PROGRESS

This is our book about Introductory Econometrics for 2nd year UGs at ScPo. We follow a practical approach with minimal reliance on maths and maximal reliance on practical learning.

On this first page we can explain a bit more about the course structure:

- Who is who
- how to communicate
- how many sessions etc

SciencesPo DEPARTMENT OF ECONOMICS

Figure 1.1:

\mathbf{R}

2.1 A very quick R intro

2.2 Can do Math

$$R^{2} = \frac{\text{SSReg}}{\text{SST}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$= \frac{\text{SST} - \text{SSE}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

$$= 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

But don't have to!

8 CHAPTER 2. R

Stopping Distance vs Speed

Figure 2.1: A simple plot in ${\bf R}$

2.2. CAN DO MATH

Histogram of residuals(stop_dist_model)

Density

Figure 2.2: what you were looking for

10 CHAPTER 2. R

Summarizing Data

We describe our methods in this chapter.

Linear Regression

- 1. linear regression stop at R-squared
 - 1. different data: missing variable
 - 2. non-linear realtionship
- 2. scatter plot
 - 1. label observations
- 3. how do the data come to us? spreadsheet
- 4. approx link x and y by a line
- 5. OLS gives the best line for this
 - 1. $y_i = a + bx_i$. find a,b s.t. dist is minimal
 - 2. write out sum of least-squares and call it MSE: $u_1 + u_2 + ... / N$
- 6. plot fitted values see imperfect approximation
- 7. R-squared: goodness of fit / measure of goodness
 - 1. 1 sum of squared errors / SST
 - 2. how much of total variance is explained by the model?
- 8. regression on mean
- 9. How come there are residuals?
 - 1. measurement error?
 - 2. there is more to this than just x
 - 3. misspecification
- 10. There is statistical uncertainty about those estimates
- 11. plot a second data set with a less clear interpretation
 - 1. do you really think there is a linear relationship?
 - 2. SE tells us whethe rwe really think this is a positive slope
 - 3. poor R2 and large standard error
 - 4. How **confident** are you about this relationship? Is there enought data?
 - 5. SE is ameasure of precision depending on N

4.1 Try to find the Slope!

knitr::include_url("https://gallery.shinyapps.io/simple_regression/",height = "600px")

Standard Errors

- 1. Standard Errors
 - 1. True data
 - 2. play with N and see how errors behave

Multiple Regression

- $\bullet\,$ Same as simple regression but more variables
- income \sim age is not linear

Categorial Variables: Dummies and Interactions

- 1. if you only have educ categories, the estimate is like the conditional mean by educ
- 2. if you have too many categories you will have empty bins

Quantile Regression

- 1. before you were modelling the mean. the average link
- 2. now what happens to **outliers**? how robust is the mean to that
- 3. what about the entire distribution of this?

Panel Data

- scanner data on breakfast cereals, (Q_{it}, D_{it})
- $\bullet\,$ why does D vary with Q
- pos relation ship
- don't observe the group identity!
- unobserved het alpha is correlated with Q
- \bullet within group estimator
- what if you don't have panel data?

Instrumental Variables

- 1. wage = educ
- 2. educ = ability
- 3. ols estimator captures your ability
- 4. you predict x by z and you only keep the variation that is in the error

Logit and Probit

Principal Component Analysis

Notes

this creates a library for the used R packages.

13.1 Book usage

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter ??. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter 4.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 13.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 13.1.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2018) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

32 CHAPTER 13. NOTES

Figure 13.1: Here is a nice figure!

Table 13.1: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Bibliography

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2018). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.7.5.