Factor analysis

Outline

- Factor analysis in general
- Explorative factor analysis
 - Some basics
 - Fundamental theorem
 - Computational steps
 - Communality estimation
 - Extraction methods and criteria for the number
 - Methods of factor rotation
 - Factor interpretation
- Confirmatory factor analysis
 - Some basics
 - Proceeding
 - Model specification

Basic concepts

- an *item* (also *test item*) is ...
 - is part of a scale
 - a denotation that is used in assessment and exploratory factor analysis ...
 - for questions / statement / task of a test and a questionnaire
 - for referring to data obtained by questions / statements / tasks
 - (sometimes) treated as equivalent to a manifest variable

Basic concepts

```
- a factor is ...
```

.... is a dimensions that characterizes a set of items

.... is considered as a latent variable

.... sometimes it is considered as *descriptive* sometimes as an *underlying source*

- Multivariate procedure
- *Purpose*: search for structure
- *Purpose*: data reduction
- Purpose: check of assumed structure
- *Purpose*: construction of questionnaire
- Two types:
 - explorative factor analysis
 - confirmatory factor analysis

- Multivariate procedure
- *Purpose*: search for structure

e.g. The researcher is interested in learning about **humor** (what is the structure? ...)

- Multivariate procedure
- *Purpose*: search for structure
- *Purpose*: data reduction
 - e.g. The researcher likes to investigate the effect of humor on health on the basis of 50 humor items

- Multivariate procedure
- *Purpose*: search for structure
- *Purpose*: data reduction
- *Purpose*: check of assumed structure e.g. The researcher has an idea of the structure of humor and likes to check whether it is correct

- Multivariate procedure
- *Purpose*: search for structure
- *Purpose*: data reduction
- Purpose: check of assumed structure
- *Purpose*: construction of questionnaire e.g. The researcher likes to construct a humor questionnaire

- Multivariate procedure
- *Purpose*: search for structure
- *Purpose*: data reduction
- Purpose: check of assumed structure
- *Purpose*: construction of questionnaire
- Two types:
 - explorative factor analysis
 - confirmatory factor analysis

Explorative/exploratory factor analysis

What is exploratory factor analysis?

... it is the *search* for one or several dimensions that are underlying data collected in using a number of different measures / items.

... this search is expected to provide information on which measures / items aligns with which factor.

... there is **no** clear expectation as in confirmatory factor analysis

Major outcomes of exploratory factor analysis?

... information on the number of underlying dimensions

... information regarding the grouping of measures / items

... information on participants' factor scores

A remark:

Factor analysis is **not** one single method; it is a set of methods that are applied to data in order to achieve the final result.

It is necessary that the application of these methods follow a prescribed sequence of steps.

A remark:

• • • •

It is necessary that the application of these methods follow a prescribed sequence of steps.

There are steps that require to choose between a number of alternative methods (e.g. extraction methods, rotation methods).

This theorem formalizes basic assumptions of factor analysis.

It can be considered as a kind of precursor of the model of measurement.

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \ldots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

A standardized score is described as a linear combination of factor scores, of their weights and an error component

Explanation of symbols:

m: Person

i: Item

 λ : Factor loading

F: Factor score

ε: Error component

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \ldots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

Example:

Assume z_{mi} is the score of Tina (participant) who completed item i that is an analogy problem:

$$\mathbf{Z}_{\mathsf{Tina},\mathsf{item}_i} = \lambda_{\mathsf{item}_i,\mathsf{analogical reasoning}} F_{\mathsf{Tina},\mathsf{analogical reasoning}} F_{\mathsf{Tina},\mathsf{figural reasoning}} + \dots \\ + \lambda_{\mathsf{item}_i,\mathsf{figural reasoning}} F_{\mathsf{Tina},\mathsf{figural reasoning}} + \dots \\ + \lambda_{\mathsf{item}_i,\mathsf{verbal reasoning}} F_{\mathsf{Tina},\mathsf{verbal reasoning}} + \mathcal{E}$$

analogical reasoning figural reasoning verbal reasoning

(Abilities that possibly contribute to performance)

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \ldots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

Example:

Assume z_{mi} is the score of Tina (participant) who completed item i that is an analogy problem:

$$Z_{\mathsf{Tina},\mathsf{item}_i} = \lambda_{\mathsf{item}_i,\mathsf{analogical\ reasoning}} F_{\mathsf{Tina},\mathsf{analogical\ reasoning}} + \dots \\ + \lambda_{\mathsf{item}_i,\mathsf{figural\ reasoning}} F_{\mathsf{Tina},\mathsf{figural\ reasoning}} + \dots \\ + \lambda_{\mathsf{item}_i,\mathsf{verbal\ reasoning}} F_{\mathsf{Tina},\mathsf{verbal\ reasoning}} + \mathcal{E}$$

Information is regarding Tina and item!

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \ldots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

Example:

Assume z_{mi} is the score of Tina (participant) who completed item i that is an analogy problem:

What do we know before conducting exploratory factor analysis?

$$\mathbf{Z}_{\mathsf{Tina},\mathsf{item}_i} = \lambda_{\mathsf{item}_i,\mathsf{analogical reasoning}} F_{\mathsf{Tina},\mathsf{analogical reasoning}} + \dots \\ + \lambda_{\mathsf{item}_i,\mathsf{figural reasoning}} F_{\mathsf{Tina},\mathsf{figural reasoning}} + \dots \\ + \lambda_{\mathsf{item}_i,\mathsf{verbal reasoning}} F_{\mathsf{Tina},\mathsf{verbal reasoning}} + \mathcal{E}$$

What is achieved by factor analysis?

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \dots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

What is achieved by factor analysis?

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \dots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

... is given

... are achieved as estimates

What **is** achieved by factor analysis (from the *technical perspective*)?

- the factor loadings
- the number of substantial factors
- (event.) the factor scores
- (error estimates)

The various methods contributing to explorative factor analysis have to be applied in successive steps.

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction
- 5. Determination of the number of factors
- 6. Factor rotation
- 7. Factor interpretation

The research problem for illustrating factor analysis

There are six items for assessing a person's mood

... but it is *not known* whether these items represent *one attribute* that is in this case mood or different attributes.

1. Computation of correlation matix

Data

An example: an item for assessing the persons' mood

```
I am very angry
really angry
angry
somewhat angry
not angry
o
```

1. Computation of correlation matix

Data

```
An example: an item .... the coding

I am very angry oreally angry orangry orangry
```

The following moods are considered ...

angry, nervous, grieved, determined, strong, excited

1. Computation of correlation matix

An example:

	angry	nervous	grieved	determined	strong	excited
angry	1.000	.329	.346	.123	207	042
nervous	.329	1.000	.405	125	317	136
grieved	.346	.405	1.000	009	389	238
determine d	.123	125	009	1.000	.247	.310
strong	207	317	389	.247	1.000	.372
excited	042	136	238	.310	.372	1.000

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction
- 5. Determination of the number of factors
- 6. Factor rotation
- 7. Factor interpretation

Extraction methods serve

... the **identification of the factors** (components) that are basic for describing / explaining the data (space)

(There is a tradition to consider the search for factors as seach for axes of a high-dimentional space)

Extraction methods serve

... the **identification of the factors** (components) that are basic for describing / explaining the data

Illustration: spatial representation of data and factor

Extraction methods serve

... the identification of the factors / components that are basic for describing / explaining the data (space)

(There is a tradition to consider the seearch for factors as seach for as axes of a high-dimentional space)

- → The mathematical method of factor extraction searches for the of axis in the data space that enables the factor *to* account for as much *variance* as *possible*
- → After one or several factor(s) have been detected, the search for the next factor follows the principle that this new factor has to account for the successively largest amount of variance

There are two types of basic methods for factor extraction (or component extraction):

Component analysis

- observed data are without error
- identifies components
- theoretically the whole variance is explained (PCA)

(actual) Factor analysis

- observed data include error
- identifies latent variables (reflecting constructs)
- explains only the true variance

(FA) Explorative factor analysis

There are two types of basic methods for factor extraction:

Only (actual) factor analysis fits with the framework of *modeling latent variables*

Component analysis

- observed variables are without error
- theoretically the whole variance is explained

(actual) Factor analysis

- observed variable including error
- identifies latent

 Explorative factor analysis

There are two types of basic methods for factor extraction:

Only (actual) factor analysis fits with the framework of modeling latent variables

This means ...

- Factor extraction has to be done by (actual) factor analysis
- Component analysis is only necessary for determining the number of factors (... is explained in another section)

2. Selection of extraction method

.... it means for the user to select one of the available methods for factor extraction.

Using SPSS it means ...

2. ... SPSS

Procedural steps

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction

- 6. Factor rotation
- 7. Factor interpretation

This step is necessary because the <u>true</u> (=<u>systematic</u>) variance of the items is **not known**!

- The true variance of the item is referred to as its
 communality
- A number of methods for estimating communality is available
- No one of them is considered perfect
- Research showed that the best estimates are obtainable in a iterative way

Modern methods of factor analysis estimate communality in *iterative circles*:

- Initial estimates start the search for communalities
 - → (mostly) squared multiple correlation of a variable with the other variables serve as initial estimates

3.SPSS Output

Example

Communalities

	Initial	Final
angry	.193	
	.100	
nervous	.242	
grieved		
	.296	
determined		
	.165	
strong	.287	
excited	.207	

Extraction Method: Principal Axis Factoring.

A *post-hoc* definition of communalities is given by ...

q: number of factors

- disadvantage: this formula is only applicable after the estimation of the factor loadings

An example of using the equation:

Item number	Factor	loading	Squared	Loading	h^2
(variable)	\mathbf{F}_1	F_2	\mathbf{F}_1	F_2	
1	.30	.10	.09	.01	.10
2	.45	.05	.2025	.0025	.205

(Practice)

Find the communalities for

Item number	Factor le	oading	h^2
	F_1	F_2	
-	4.0	0.0	1040 0001 - 1000
1	.43	.09	.1848 + .0081 = .1929
2	.39	.05	.1521 + .0025 = .1546
3	.61	.13	.3721 + .0169 = .3890
4	.00	.35	••••••
5	.18	.41	

Explorative factor analysis

A post-hoc definition of communalities is given by ...

h_i²: communality of item i

 λ_{ik} : factor loading of item i on factor k

q: number of factors

- disadvantage: this formula is only applicable after the estimation of the factor loadings
- changes of factor loadings can lead to changes of communalities
- a search process including the modification of factor loadings can lead to larger communalities
- the aim of search is the largest possible communalities

Procedural steps

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction
- 5. Determination of the number of factors
- 6. Factor rotation
- 7. Factor interpretation

Factor extraction is a complex process

- it includes
 - (> the maximization of the communalities)
 - > the estimation of factor loadings
 - (> the determination of the number of factors)

Factor extraction is a complex process

- it includes
 - (> the maximization of the communalities)
 - > the estimation of factor loadings
 - (> the determination of the number of factors)

It occurs iteratively (with the exception of the last one)

4. ... SPSS

Explorative factor analysis

Factor extraction is designed as ...

- .. search for **estimates** of the parameters that are suited for reproducing the correlation matrix \mathbf{R}
- i.e. the parameters included in Λ (the factor loadings) have to be estimated
- i.e. reproduction means the calculation of the product of the factor loading matrix Λ (Λ Λ) (plus the diagonal matrix of error components Θ) so that it is equal to the correlation matrix \hat{R}

$$\mathbf{R} = \mathbf{\Lambda} \mathbf{\Lambda}^{\mathrm{T}} + \mathbf{\Theta}$$

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

e.g. assume the given correlation matrix:

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

e.g. assume that **0.25** as **communality** replaces the diagonal elements

$$\mathsf{R}_{\mathsf{h}} = \begin{bmatrix} .25 & .25 & .25 & .25 \\ .25 & .25 & .25 & .25 & .25 \\ .25 & .25 & .25 & .25 & .25 \\ .25 & .25 & .25 & .25 & .25 \\ .25 & .25 & .25 & .25 & .25 \end{bmatrix}$$

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

... requires a vector $\underline{\lambda}$ or a matrix $\underline{\Lambda}$ so that ...

$$R_h = \lambda \lambda^T$$
 $R_h = \Lambda \Lambda^T$
(one factor case)

Or
 $R_h = \Lambda \Lambda^T$
(case of several factors)

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

$$\chi = \begin{bmatrix}
.5 & .5 & .5 & .5 & .5
\\
.5 & .5 & .5
\\
.5 & .5 & .5
\\
.5 & .5
\end{bmatrix}$$

$$= \lambda^{T}$$

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

e.g.

Communality Remainder

$$R = \begin{bmatrix} .25 + e & .25 & .25 & .25 \\ .25 & .25 + e & .25 & .25 & .25 \\ .25 & .25 & .25 + e & .25 & .25 \\ .25 & .25 & .25 & .25 + e & .25 \\ .25 & .25 & .25 & .25 & .25 + e \end{bmatrix}$$

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

e.g. ... for
$$e=.75$$
 (remainder):

$$\lambda = \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & .25 & .25 & .25 \\ .25 & 1 & .25 & .25 \\ .25 & .25 & 1 & .25 \\ .25 & .25 & .25 & 1 \end{bmatrix}$$

$$25 & .25 & .25 & .25 \\ .25 & .25 & .25 & .25 \\ .25 & .25 & .25 & .25 \end{bmatrix}$$

Factor extraction is designed as ...

• .. reproduction of the correlation matrix

Practice

Find the matrix that is reproduced by the following vector of factor loadings:

$$\lambda = \begin{bmatrix} .6 \\ .4 \\ .5 \end{bmatrix}$$

Practice

Find the matrix that is repreduced by the following vector of factor loadings:

$$\lambda = \begin{bmatrix} .6 \\ .4 \\ .5 \end{bmatrix}$$

$$\lambda^{T} = [.6.4.5]$$

Practice

Find the matrix that is repreduced by the following vector of factor loadings:

Compute the missing numbers:

$$\lambda = \begin{bmatrix} .6 \\ .4 \\ .5 \end{bmatrix}$$

$$\lambda^{T} = [.6.4.5]$$

$$\lambda = \begin{bmatrix} .6 \\ .4 \\ .5 \end{bmatrix}$$

Factor extraction is designed as ...

- ... reproduction of the correlation matrix
- ... with the re-estimation of communalities (and factor loadings) in an *iterative way*

Factor extraction is designed as ...

- ... reproduction of the correlation matrix
- ... with the re-estimation of communalities (and factor loadings) in an *iterative way*
- ... repeated reproduction of the correlation matrix using modified parameters
- until a convergence criterion is reached.

Factor extraction is designed as ...

•

A note.

- only in the case of several factors the communality shows major changes during iteration (see example with two factors).

4.SPSS Output

Communalities

Extraction Method: Principal Axis Factoring.

The final outcome of the factor extraction is

the factor matrix
(here in the case of two factors):

Factor Matrix

	Factor		
	1	2	
angry	.426	.425	
nervous	.553	.162	
grieved	.649	.224	
determined	256	.520	
strong	651	.172	
excited	454	.377	

Extraction Method: Principal Axis Factoring.

a. 2 factors extracted. 10 iterations required.

4.SPSS Output

The matrix of factor loadings λ achieved in the end of factor extraction

Extraction Method: Principal Axis Factoring.

a. 2 factors extracted. 10 iterations required.

Procedural steps

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction
- 5. Determination of the number of factors
- 6. Factor rotation
- 7. Factor interpretation

5. Determination of ...

Number of factors

- Determination of the number of factors to be extracted
- The 3 most important methods
 - 1.Kaiser-Guttman criterion
 - 2. Scree test
 - 3. Parallel analysis

5. Determination of ...

Number of factors

• • • • • • • • •

Note.

eigen values play a major role; "eigen value" is a term that is used to describe the amount of variance explained by a factor

5. Determination of ...

Number of factors

• • • • • • • • •

Note.

we distinguish between "relevant eigen value" and "eigen value due to chance"

5. Determination of ...

Kaiser-Guttman criterion

- All factors with *eigen values* (*amount of explained variance*) larger 1 are retained
- If eigen value >1, then the corresponding factor explains more variance than a single variable

Problem:

- Frequent over-estimation of number
- Factors at random can have eigen values >1

5. Determination of ...

Scree test

- Sorting of factors according to eigen values
- Entry of eigenvalues in a diagram
- Relevant are all factors before the "bend" point

Explorative factor analysis

5. Determination of ...

<u>Parallel analysis</u>

- Best detection of eigen values due to chance
- (1) computation of eigen values at random, (2) entry into the diagram besides the observed eigen values

Determination of the number of factors: parallel analysis

Procedural steps

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction
- 5. Determination of the number of factors
- 6. Factor rotation
- 7. Factor interpretation

Why is rotation necessary?

• The results of factor extraction usually leads to a *bad interpretation*

• The literal **aim** of rotation is the achievment of factors that enable a "good" interpretation

- **Note.** If there are two or more factors virtually always the *reproduction* of the correlation matrix is possible by means of *different patterns of factor loadings*
- Rotation of factors in the factor space means transformation of factor loadings

• **Note.** If there are two or more factors virtually always the *reproduction* of the correlation matrix is possible by means of *different patterns of factor loadings*

 Rotation of factors in the factor space means transformation of factor loadings

Formal goal of factor rotation (criterion)

• simple structure of the pattern of factor loadings

Principle of simple structure

- ... includes rules:
- →each variable should show a **large** loading **on one** factor only and small loading on the other factors
- >each factor should have **several** high loadings

Principle of simple structure

This means (e.g.) F1 F2 F3 $\mathbf{X}\mathbf{X}$ XX XXXX XX XX **XX** XX XXXX $\mathbf{X}\mathbf{X}$ XX XX XX XXXX $\mathbf{X}\mathbf{X}$ XX XX $\mathbf{X}\mathbf{X}$ XX

An example: illustration of how factor rotation changes the factors as axes of a two-dimensional space

Situation after factor extraction

Each factor explains as much variance as possible.

Situation after factor rotation

Orthogonal rotation procedures

- Uncorrelated original factors
- Rotated factors are uncorrelated with each other

Varimax rotation (prominent example)

• Sum of the squared factor loadings λ^2 within each factor is maximized

Situation after factor rotation

Oblique rotation procedure

 After rotation factors are no more uncorrelated

Oblimin rotation (prominent example)

- Simultaneous optimization of an orthogonal and an oblique rotation criterion
- The influences of the two criteria can be modified by selecting weights; they influence the resulting correlation of factors

Situation after factor rotation (Version 1)

Situation after factor rotation (Version 1)

Situation after factor rotation (Version 1)

Situation after factor rotation (Version 2)

Situation after factor rotation (Version 2)

5.SPSS Output

Evaluation regarding cross-loadings:

Factor Matrix

	Factor		
	1	2	
angry			
	.426	.425	
nom/01/0			
nervous	.553	.162	
grieved			
	.649	.224	
determined			
	256	.520	
strong	054	470	
-	651	.172	
excited	454	.377	

Extraction Method: Principal Axis Factoring.

a. 2 factors extracted. 10 iterations required.

Rotated Factor Matrix

	Factor		
	1	2	
angry	.590	.115	
nervous	.550	173	
grieved	.663	175	
determined	.077	.574	
strong	445	.505	
excited	167	.566	

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

Explorative factor analysis

5.SPSS Output

Evaluation regarding **highest loadings**:

Factor Matrix

	Factor		
	1	2	
angry		_	
	.426	.425	
nervous	.553	.162	
grieved			
	.649	.224	
determined			
	256	.520	
strong	651	.172	
oveited	001	.172	
excited	454	.377	

Extraction Method: Principal Axis Factoring.

a. 2 factors extracted. 10 iterations required.

Rotated Factor Matrix

	Factor			
	1		2	
angry		.590		.115
nervous		.550		173
grieved		.663		175
determined				
		.077		.574
strong	(.445		.505
excited		167		.566

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

Explorative factor analysis

Procedural steps

- 1. Computation of correlation matrix
- 2. Selection of extraction method
- 3. Estimation of communalities
- 4. Factor extraction
- 5. Determination of the number of factors
- 6. Factor rotation
- 7. Factor interpretation

6. Factor interpretation

- Assigning meaning to factors
- Interpretion of the items sets
- A interpretation has to be based on the meanings of the items showing large loading on the factor

6.SPSS Output

Rotated Factor Matrix

	Factor			
	1	2		
angry	.590	.115		
nervous	.550	173		?
grieved	.663	175		
determined	.077	.574		
strong	445	.505	-	?
excited	167	.566		

Extraction Method: Principal Axis Factoring.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

6. Factor interpretation

Factor 1:

- angry
- nervous
- grieved
- weak (= strong)

What are the common categories?

Factor 2:

- determined
- strong
- excited

6. Factor interpretation

Factor 1:

- angry
- nervous
- grieved
- weak (= strong)

Emotionality (?)

Factor 2:

- determined
- strong
- excited

Self-confidence (?)

A note.

$$z_{mi} = \lambda_{i1}F_{m1} + \lambda_{i2}F_{m2} + \ldots + \lambda_{ip}F_{mp} + \varepsilon_{mi} = \sum_{k=1}^{p} (\lambda_{ik}F_{mk}) + \varepsilon_{mi}$$

A standardized score is described as a linear combination of factor scores, of their weights and an error component

Explanation of symbols:

m: Person

i: Item

 λ : Factor loading

F: Factor score

ε: Error component

A note

Furthermore, after the factors are identified there is the possibility to compute the factor scores of the participants (see fundamental equation).

$$\hat{F}_{mk} = \beta_{k1} z_{m1} + ... + \beta_{kp} z_{mp}$$

Explanation of symbols:

F: Factor score

m: Person

k: Ability/Trait (Factor)

 β : Regression weight

 ε : Error component

z: Standardized score

A humorous characterization

of what a researcher does when he/she has no idea of what to do with many correlations between scales

"I'm not sure what is here and there are too many measures to make sense of, so let's do a factor analysis and reduce the measures to a more restricted set of variables and see what emerges"

Summary and brush up:

Explorative factor analysis

- Some basics What is the basic idea of explorative factor analysis?
 ... search for (underlying) dimensions
- Fundamental theorem ... formal representation of assumptions
- Computational steps ... communality estimation, factor extraction, rotation, etc.
- Communality estimation ... estimation of explained variance
- Extraction methods ... methods employed identifying factors
- Determination of number of factors ... criteria for finding the number of to be extracted factors
- Method of factor rotation
 methods, simple structure principle
- Factor interpretation ... find the common categories for factors

QUESTIONS REGARDING COURSE UNIT 4

- What are the purposes for selecting FA?
- What type of variance is represented by the communality?
- Why is factor rotation conducted?
- What is the principle of factor rotation?

Literature

Brown, T. A. (2006) Confirmatory factor analysis (S. 1-11, 40-76). New York, NJ: The Guilford Press