ECE2810J Data Structures and Algorithms

AVL Trees

- ► Learning Objectives:
- Know the general balanced condition for a balanced search tree
- Know the balance condition of an AVL tree and balance factor
- Know the four types of rotation operations for an AVL tree and how to apply them during insertion

Outline

- Balanced Search Trees
 - AVL Trees
- AVL Tree Insertion
- Supporting Data Members and Functions of AVL Tree

Motivation

- Given n nodes, the average case time complexities for search, insertion, and removal on BST are all $O(\log n)$.
- Nowever, the worst case time complexities are still O(n).
 - ► The reason is that a tree could become "unbalanced" after a number of insertions and removals.
- We want to maintain the tree as a "balanced" tree.

Balanced Search Trees

- What are the requirements to call a tree a balanced tree?
- ▶ Would you require a tree to be perfect/complete to call it balanced?
 - ▶ No! They are too restrictive.

Balanced Search Trees

- We need another definition of "balanced condition."
- We want the definition to satisfy the following two criteria:
 - 1. Height of a tree of n nodes = $O(\log n)$.
 - 2. Balance condition can be maintained **efficiently**: $O(\log n)$ time to rebalance a tree.
- Several balanced search trees, each with its own balance condition
 - AVL trees
 - ▶ 2-3 trees
 - red-black trees

AVL Trees

- Adelson-Velsky and Landis' trees
 - ► AVL tree is a binary search tree.
- ▶ AVL trees' balance condition:
 - ► An empty tree is AVL balanced.
 - ► A non-empty binary tree is AVL balanced if
 - 1. Both its left and right subtrees are AVL balanced, and
 - 2. The height of left and right subtrees differ by at most 1.

Which of the Following Trees Are AVL Balanced?

Select all the AVL balanced trees.

AVL trees' balance condition:

- An empty tree is AVL balanced.
- A non-empty binary tree is AVL balanced if
 - 1. Both its left and right subtrees are AVL balanced, and
 - 2. The height of left and right subtrees differ by at most 1.

Properties of AVL Trees

- The height h of an AVL balanced tree with n internal nodes satisfies $\log_2(n+1) 1 \le h \le 1.44 \log_2(n+2)$
- ▶ AVL trees satisfies the general "balanced condition" 1:
 - ▶ The height of a tree of n nodes is $O(\log n)$.
 - ▶ Search is guaranteed to always be $O(\log n)$ time!
- ▶ We will also show that AVL trees satisfy the general "balance condition" 2:
 - Balance condition can be maintained efficiently.

Height of AVL Tree Is O(log n)

- Let N_h denote the minimum number of nodes in an AVL tree of height h
- $N_h = N_{h-1} + N_{h-2} + 1$
- $N_{h-1} = N_{h-2} + N_{h-3} + 1$
- \triangleright N_h > 2N_{h-2}
- $N_h > 4N_{h-4}$
- $N_h > 8N_{h-6}$
- $N_h > 2^{h/2}$

 \triangleright Log₂(N_h) > h

AVL Trees Operations

- Search, insertion, and removal all work exactly the same as with BST.
- However, after each insertion or removal, we must check whether the tree is still AVL balanced.
 - ▶ If not, we need to "re-balance" the tree.

Re-Balance the Tree via Rotation

- The rotation operation:
 - ▶ Interchange the role of a parent and one of its children, while still preserving the BST ordering on the keys.

on keys are preserved.

Right Rotation

- 1. The right link of the left child becomes the left link of the parent.
- 2. Parent becomes right child of the old left child.

Left Rotation

- ▶ The left link of the right child becomes the right link of the parent.
- Parent becomes left child of the old right child.

Balance Factor

- ▶ Let T_l and T_r be the left and right subtrees of a tree rooted at node T.
- ▶ Let h_l be the height of T_l and h_r be the height of T_r .
- Define the balance factor (B_T) of node T as $B_T = h_L h_r$

- ► AVL tree's balance condition:
 - ▶ For every node T in the tree, $|B_T| \leq 1$.

Balance Factor Example

Outline

- Balanced Search Trees
 - AVL Trees
- AVL Tree Insertion
- Supporting Data Members and Functions of AVL Tree

Insertion

- Inserting an item in a tree affects potentially the heights of all of the nodes along the access path, i.e., the path from the root to that leaf.
- When an item is inserted in a tree, the height of any node on the access path may increase by one.
- ► To ensure the resulting tree is still AVL balanced, the heights of all the nodes along the access path must be recomputed and the AVL balance condition must be checked.
 - ▶ Sometimes, increasing the height by one does not violate the AVL balance condition.
 - ▶ In other cases, the AVL balance condition is violated.
 - ▶ We will fix the first unbalanced node in the access path from the leaf.

Breaking AVL Balance Condition

Left-Left Insertion

P is the first unbalanced node in the access path from the leaf.

Left-left insertion: the first two edges in the insertion path from node P both go to the left.

Restoring AVL Balance Condition Left-Left Rotation

How to restore AVL balance?

Do a right rotation at node P.

The rotation is also called left-left (LL) rotation.

Restoring AVL Balance Condition

Left-Left Rotation

An LL rotation is called for when the node becomes unbalanced with a positive balance factor and the left subtree of the node also has a positive balance factor.

The rotation is also called left-left (LL) rotation.

Properties of Left-Left Rotation

- The ordering property of BST is kept.
- ▶ Both nodes A and P have balance factor of 0.
- ► The height of the tree after the rotation is the same as the height of the tree before insertion.

Right-Right (RR) Rotation

- Symmetric to left-left rotation.
- An RR rotation is called for when the node becomes unbalanced with a negative balance factor and the right subtree of the node also has a negative balance factor.

Breaking AVL Balance Condition

Left-Right Insertion

insert a new item

Left-right insertion: the first edge in the insertion path goes to the left and the second edge goes to the right.

Restoring AVL Balance Condition

Left-Right Insertion

How to restore AVL balance?

A right rotation at node P does not work!

Left-Right (LR) Rotation

A to re-balance:
Do a **left** rotation on node A;
then a **right** rotation on node P
(next slide).

Left-Right (LR) Rotation

Left-Right (LR) Rotation

An LR rotation is called for when the node becomes unbalanced with a positive balance factor but the left subtree of the node has a negative balance factor.

Properties of Left-Right Rotation

- The ordering property of BST is kept.
- Node B has a balance factor of 0.
- The height of the tree after the rotation is the same as the height of the tree before insertion.

Right-Left (RL) Rotation

- Symmetric to left-right rotation; also a double rotation.
- An RL rotation is called for when the node becomes unbalanced with a negative balance factor but the right subtree of the node has a positive balance factor.

Rotation Summary

- When an AVL tree becomes unbalanced, there are four cases to consider depending on the direction of the first two edges on the insertion path from the unbalanced node:
 - Left-left
 - Right-right
 - Left-right
 - Right-left

LL Rotation

RR Rotation

LR Rotation

RL Rotation

single rotation

double rotation

Note: We fix the first unbalanced node in the access path from the leaf.

Exercises

- Insert into an empty BST: 42, 35, 69, 21, 55, 83, 71.
 - ► Compute the balance factors.
 - ▶ Is the tree AVL balanced?

Insert 95, 18, 75?

Exercises

Insert 95, 18

Exercises

▶ Insert 75

The Number of Rotations Required

- When an AVL tree becomes unbalanced after an insertion, exactly one single or double rotation is required to balance the tree.
 - Before the insertion, the tree is balanced.
 - Only nodes on the access path of the insertion can be unbalanced. All other nodes are balanced.
 - ▶ We rotate at the first unbalanced node from the leaf.
 - ▶ By the properties of rotation, the height of the node after rotation is the same as that before insertion.
 - ▶ All ancestors of that node on the access path should now be balanced.

Animation

Outline

- Balanced Search Trees
 - AVL Trees
- AVL Tree Insertion
- Supporting Data Members and Functions of AVL Tree

AVL Trees Supporting Data Members and Functions

```
struct node {
   Item item;
   int height;
   node *left;
   node *right;
};
```

```
int Height(node *n) {
  if(!n) return -1;
  return n->height;
void AdjustHeight(node *n) {
  if(!n) return;
  n->height = max( Height(n->left),
    Height(n->right) ) + 1;
int BalFactor(node *n) /
  if(!n) return 0;
  return (Height(n->left)
    Height(n->right));
```

AVL Trees

Supporting Functions

```
void LLRotation(node *&n);
void RRRotation(node *&n);
void LRRotation(node *&n);
void RLRotation(node *&n);
void Balance(node *&n) {
  if(BalFactor(n) > 1) {
    if(BalFactor(n->left) > 0) LLRotation(n)
    else LRRotation(n);
  else if (BalFactor(n) < -1) {
    if (BalFactor(n->right) < 0) RRRotation(n)</pre>
    else RLRotation(n);
```

AVL Trees

```
Changes to Insertion
```

```
void insert(node **root, Item item)
{
   if(root == NULL) {
      root = new node(item);
      return;
   }
   if(item.key < root->item.key)
      insert(root->left, item);
   else if(item.key > root->item.key)
      insert(root->right, item);

   Balance(root);
   AdjustHeight(root);
}
```

Imbalance after Removal

Imbalance after Removal: Case 1

Imbalance after Removal: Case 2

Imbalance after Removal: Case 3

Case 3

Removal

- ► First remove node as with BST
- Then update the balance factors of those ancestors in the access path and rebalance as needed.
- Difference from insertion: a single rotation might not completely fix all AVL imbalance
- ► Time Complexity: O(log n)
 - ► Why?
 - Only rebalance along the ancestor path

Summary of AVL Tree

Search: O(log n)

► Insert: O(log n)

Delete: O(log n)

Canvas -> Exercise -> AVL Trees

Problem 14. Longest Common Prefix

Problem 720. Longest Word in Dictionary

Problem 692. Top K Frequent Words

