Proc. Consulta e Algebra Relacional: Uma introdução gentil

João Marcelo Borovina Josko marcelo.josko@ufabc.edu.br

June 29, 2018

Tópicos

- Álgebra Relacional
 - Fundamentos
 - Operadores Clássicos
 - Operadores Estendidos
- 2 Multiset ou BAG
- Processamento de Consulta
 - Catálogo
 - Parsing
 - Otimização
 - Plano de Acesso

Tópicos

- Álgebra Relacional
 - Fundamentos
 - Operadores Clássicos
 - Operadores Estendidos
- 2 Multiset ou BAG
- 3 Processamento de Consulta
 - Catálogo
 - Parsing
 - Otimização
 - Plano de Acesso

Álgebra Relacional

- Linguagem procedural restrita em operações sobre um SGBD Relacional (Date 2003)
- Origem da perspectiva [Koppelaars et al. 2007]
 - Restrição facilita a otimização em operações escritas em linguagens de alto nível (SQL)
- Cada operação algébrica atua sobre uma ou mais relações e leva a uma nova relação [Date 2003]
- Grupo de operações denotam um Expressão Algébrica relacional

- A ideia central de um SGBD Relacional é otimização algébrica de operações
- Exemplo no mundo dos inteiros (Z)
 - A expressão ((a * 3) + ((a * 5) + 0))/1 é otimizada para (3 + 5) * a
- Três possibilidades. Qual a melhor?

•
$$\sigma_{p=a}(R)\bowtie_{o=s} (\sigma_{p=b}(R)\bowtie_{o=s} \sigma_{p=b}(R))$$

•
$$(\sigma_{p=a}(R)\bowtie_{o=s}(\sigma_{p=b}(R))\bowtie_{o=s}\sigma_{p=b}(R)$$

•
$$(\sigma_{p=a \land o=s \land p=b}(R) \bowtie_{o=s} (R \times R \times R)$$

Lista de Operadores

- Operadores Clássicos [Elmasri 2008]
 - Projeção, Seleção e Renomeação
 - Junção (Natural e Theta)
 - Divisão, União, Intersecção, Diferença
 - Produto Cartesiano

Banco de Dados de Referência

Projeção (Pi)

- Extrai um subconjunto de atributos de uma relação qualquer [Elmasri 2008, Date 2003]
- Sintaxe:
 - $\pi_{a1,a2,...,an}$ (R), onde $a_i, i = [1, n], a_i \in R$

π _{CodSexo,} ν	√ISalario	(Emp)
-------------------------	-----------	-------

Emp.CodSexo	Emp.VISalario
M	21000
F	4000
F	7500
M	8000
F	2600
F	4500
M	5000

select CodSexo, VISalario from Emp

Fonte: Elaborado por BOROVINA JOSKO, J.M.

Seleção (Sigma)

- Extrai um subconjunto de tuplas de uma relação R
- Tuplas extraídas satisfazem um conjunto de predicados P envolvendo atributos da relação R
 - $P = \{p_1, p_2, ..., p_k\}$, onde $p_j, j = [1, k]$, $p_j = \langle atributo \rangle \langle operador \rangle \langle atributo ou constante \rangle$
 - Predicados são conectados por operadores lógicos Φ , formando $p_1 \Phi p_2 \Phi \dots p_{k-1} \Phi p_k$
- Sintaxe:
 - $\sigma_P(R)$

Seleção (Cont.)

σ_{VISalario} > 5000 and CodDepto = 1 (Emp)

select * from Emp where VISalario > 5000 and CodDepto = 1

 Emp.CodEmp
 Emp.CodEmpGerente
 Emp.CodDepto
 Emp.NmEmp
 Emp.SnEmp
 Emp.DtNasc
 Emp.Ender
 Emp.CodSexo
 Emp.VISalario

 13
 55
 1
 Gilberto
 Vurg
 22-JAN-1960
 R. Prof.
 M
 8000

Faustino, 111

select * from Consult where VISalHora is not null

o viSalHora ≠ null Consult

σ _{VISalHora ≠ null} (Consult)

Consult.CodConsult Consult.CodDepto Consult.NmConsult Consult.SnConsult Consult.VISalHora

1	2	Carlos	Figueroa	32	
3	2	Cristina	Fernandes	28	
4	3	Humberto	Osvaldo	31	
6	3	Paula	Gilt	41	
8	2	Francisca	da Silva	33	

Fonte: Elaborado por BOROVINA JOSKO, J.M.

Expressão em Álgebra Relacional

- Operadores algébricos O₁, O₂, ..., O_n podem ser combinados em um expressão E
- O resultado da operação interna é utilizado pela operação externa subsequente
- Sintaxe em pipeline:
 - $O_1(O_2(O_n))$
- Sintaxe procedural:
 - $T \leftarrow O_n$
 - $G \leftarrow O_2(T)$
 - O₁(G)

Expressão em Álgebra Relacional

```
6 |- X = pi CodEmp (Emp)
7 -- Y = pi CodEmp (Depte)
8 -- Z = X ∩ Y
9 -- Emp join Z
10
11
12 Emp join ((pi CodEmp (Emp)) ∩ (pi CodEmp (Depte)))
```


Renomear (rho)

- Renomeia (atribui um alias) a atributos de uma relação R
- Sintaxes:
 - ρ Alias R(R)
 - ρ Alias $a_1, a_2, ..., a_n(R)$
 - ρ Alias $R(a_1, a_2, ..., a_n)(R)$

 $\rho_{MeuCodEmp}$ (π_{CodEmp} (Emp))

MeuCodEmp.CodEmp
55
39
29
13
17
16
2
1

select CodEmp as MeuCodEmp from Emp

Fonte: Elaborado por BOROVINA JOSKO, J.M.

Produto Cartesiano

- Realiza a operação de combinação das tuplas das relações R_1 e R_2 e gera uma nova relação T
- Seja < Relação > o número de atributos de uma relação, então $< T > = < R_1 > + < R2 >$
- Seja |Relacão| o número de tuplas de um relação, então $|T| = |R_1| * |R_2|$
- Sintaxe:
 - $R_1 \times R_2$

Produto Cartesiano (Cont.)

π_{NmProj} (Proj) $\times \pi_{NmDepto}$ (Depto)

Proj.NmProj	Depto.NmDepto
reengenharia	pesquisa
reengenharia	administracao
reengenharia	financeiro
produto X	pesquisa
produto X	administracao
produto X	financeiro
produto Y	pesquisa
produto Y	administracao
produto Y	financeiro
automatizacao	pesquisa
automatizacao	administracao
automatizacao	financeiro

select NmProj, NmDepto from Proj, Depto

Fonte: Elaborado por BOROVINA JOSKO, J.M.

Junção Natural

- Extrai tuplas das relações R e T que possuem em comum um ou mais atributos
- Combinação de Produto Cartesiano e Seleção
- Pode apresentar um conjunto de predicados (similar a seleção)
- Seja R(A) e T(A) os atributos das relações R e T, então $R(A) \cap T(A) \neq \emptyset$
- Sintaxe:
 - R ⋈ T
 - $R \bowtie_P T$

Junção Natural (Cont.)

(Proj) ⋈ (Depto)

select * from Proj Natural Join Depto

ou

select * from

Proj Join Depto using (CodDepto)

Proj.CodProj	Proj.CodDepto	Proj.NmProj	Proj.NmLocal	Depto.CodEmpResponsavel	Depto.NmDepto	Depto.NmLocalizacao
1	2	reengenharia	SP	null	administracao	campinas
2	1	produto X	SP	null	pesquisa	sao paulo
3	2	reengenharia	MG	null	administracao	campinas
4	1	produto Y	SP	null	pesquisa	sao paulo
5	3	automatização	SP	null	financeiro	campinas

Fonte: Elaborado por BOROVINA JOSKO, J.M.

Junção Theta

- Estende a junção natural ao permitir indicar predicados sobre atributos das relações envolvidas
- Sintaxe:
 - $R \bowtie_P T$

Junção Theta (Cont.)

Alocado M (QtHoras < 100 and Alocado.CodProj = Proj.CodProj) Proj

M (QtHoras < 100 and Alocado.CodProj = Proj.CodProj)

select * from Alocado Join Proj using (CodProj) where OtHoras < 100

Alocado

Alocado.CodProj	Alocado.CodEmp	Alocado.QtHoras	Proj.CodProj	Proj.CodDepto	Proj.NmProj	Proj.NmLocal
2	13	80	2	1	produto X	SP
4	13	60	4	1	produto Y	SP
4	1	50	4	1	produto Y	SP
1	55	40	1	2	reengenharia	SP
1	13	25	1	2	reengenharia	SP
3	55	30	3	2	reengenharia	MG
4	29	15	4	1	produto Y	SP
5	29	70	5	3	automatizacao	SP
3	17	40	3	2	reengenharia	MG

Fonte: Elaborado por BOROVINA JOSKO, J.M.

Lista de Operadores

- Operadores Relacionas Estendidos [Elmasri 2008]
 - Ordenação
 - Projeção Estendida
 - Agrupamento
 - Funções de Agregação
 - Junção Externa

- Realiza a ordenação por ordem ascendente ou descendente de atributos de um relação R
- Sintaxe:
 - $\tau_{atributo_1[asc,desc]}$, $atributo_K[asc,desc]$

Ordenação (Cont.)

π Emp.NmEmp, Emp.VISalario (τ Emp.VISalario desc, Emp.NmEmp asc (Emp))

Emp.NmEmp	Emp.VISalario
PAulo	21000
Gilberto	8000
Tereza	7500
Jose	5000
Fabiana	4500
Mariana	4500
Ana	4000
Daniela	2600

select NmEmp, VISalario from Emp Order by VISalario desc, NmEmp Asc

Projeção Estendida

- Permite aplicar expressões aritméticas sobre atributos de um relação ${\it R}$
- Sintaxe:
 - $\pi_{atributo_1}$ operação atributo_K R
- Exemplo:
 - τ_{nmemp,vIsalario *12} Emp
 - SQL: Select nmemp, vlsalario * 12 from Emp

- Permite agrupar tuplas da relação R de acordo com uma lista de atributos
- Sintaxe:
 - γatributo₁, atributoょ; função Agregação agregação → alias R

Agrupamento (Cont.)

- Funções de agregação não são operadores da Álgebra relacional
- Consomem um conjunto de tuplas de uma relação para produzir um valor único
- Principais funções:
 - Count
 - Sum
 - Max
 - Min
 - Avg

Y CodDepto, CodSexo; COUNT(CodSexo)→Total, SUM(VISalario)→Soma (Emp)

Emp.CodDepto	Emp.CodSexo	Total	Soma
2	M	1	21000
2	F	1	4000
3	F	3	14600
1	M	2	13000
1	F	1	4500

select CodDepto, CodSexo, count(Codsexo) Total, sum(VISalario) Soma from Emp Group by CodDepto, CodSexo

Y CodDepto, CodSexo; COUNT(CodSexo)→Total, SUM(VISalario)→Soma

Junção Externa

- Extrai tuplas da relação R e T que podem ou não estar relacionadas
- Possibilidades:
 - ullet Junção externa a esquerda o Tuplas de R que não estão em T
 - Junção externa a direita o Tuplas de T que não estão em R
 - Junção externa cheia ightarrow Tuplas de R que não estão em T e vice-versa
- As respectivas sintaxes são:
 - $R \bowtie_P T$
 - $R \bowtie_P T$
 - $R \bowtie_P T$

Exercícios

- Selecionar a quantidade de projetos por nome de departamento.
 Ordene o resultado por nome do departamento em ordem descendente
- Selecionar o nome do consultor e o local do departamento que está associado. Deseja-se todos os locais, independente de terem consultores associados

Agrupamento (Cont.)

π_{NmEmp, NmDepte} (Emp ⋈ _{Emp.CodEmp} = Depte.CodEmp</sub> Depte)

Emp.NmEmp	Depte.NmDepte
PAulo	null
Ana	null
Tereza	Gabriela Kohn
Tereza	Ricardo Kohn
Gilberto	Carla √urg
Daniela	null
Fabiana	null
Mariana	null
Jose	Ramiro Santos
Jose	Samuel Santos

select NmEmp, NmDepte from Emp RIGHT OUTER JOIN Depte on Emp.CodDepte = Depte.CodDepte

Tópicos

- Álgebra Relacional
 - Fundamentos
 - Operadores Clássicos
 - Operadores Estendidos
- Multiset ou BAG
- Processamento de Consulta
 - Catálogo
 - Parsing
 - Otimização
 - Plano de Acesso

Um pouco de história

- Da proposta inicial do Modelo Relacional.... [Elmasri 2008]
 - Baseada na álgebra de Conjuntos de Tuplas (Set)
 - Restrito às operações de União, Produto Cartesiano, Junção
- ...até a sua implementação em produtos SGBD
 - Baseado no conceito de Multiset ou Bag
 - Grupo estendido de operações

Implementação

- SGBDR comercias raramente utilizam o conceito de Set
 - Não permite duplicações de tuplas
- O conceito utilizado é o de Multiset ou Bags
 - Não é necessário checar por duplicados a cada operação
 - Não desconsidera valores iguais durante operações (e.g., agrupamento)
- Implicações...
 - Aumenta a velocidade dos operadores
 - Todos operadores algébricos em Set funcionam de modo distinto em Multiset
 - Operador algébrico de conversão de Multiset para Set

Valores Distintos (Delta)

- Permite eliminar tuplas de uma operação sobre a relação R com conteúdo idêntico para uma lista de atributos
- Sintaxe:
 - Δ_{atributo1, atributo1} R

Valores Distintos (Cont.)

Figure: Distinção entre Set e Multiset

Tópicos

- Álgebra Relacional
 - Fundamentos
 - Operadores Clássicos
 - Operadores Estendidos
- 2 Multiset ou BAG
- Processamento de Consulta
 - Catálogo
 - Parsing
 - Otimização
 - Plano de Acesso

Do you remember me?

Figure: Visão Resumida dos passos do Processamento de Consultas

Vamos pensar ... (Cont.)

Figure: What!!!!! São iguais?! Why?

Vamos pensar ... (Cont.)

Figure: Agora são diferentes? Que Louco!

- Representa um conjunto de relações do SGBD
- Descreve uma série de características físicas e de conteúdo de relações do usuário
 - Esquema (Relação, seus atributos e tipos, regras de integridade e unicidade, etc.)
 - Estatísticas (Volume e tamanho de relações e índices)
 - Autorização (Logins, senhas e permissão de acesso e operações)
- Recurso elegante
 - Relações do catálogo são tratadas do mesmo modo que relações do usuário

Álgebra Rel. Multiset Proc. Consulta References Catálogo Parsing Otimização Plano de Acesso

Catálogo no PostgreSQL

Catalog Name	Purpose	
pg_aggregate	aggregate functions	
pg_am	index access methods	
pg_amop	access method operators	
pg_amproc	access method support procedures	
pg_attrdef	column default values	
pg_attribute	table columns ("attributes")	
pg_authid	authorization identifiers (roles)	
pg_auth_members	authorization identifier membership relationships	
pg_cast	casts (data type conversions)	
pg_class	tables, indexes, sequences, views ("relations")	
pg_collation	collations (locale information)	
pg_constraint	check constraints, unique constraints, primary key constraints, foreign key constrain	
pg_conversion	encoding conversion information	
pg_database	databases within this database cluster	
pg_db_role_setting	per-role and per-database settings	
pg_default_acl	default privileges for object types	
pg_depend	dependencies between database objects	
pg_description	descriptions or comments on database objects	
pg_enum	enum label and value definitions	
pg_event_trigger	event triggers	
pg_extension	installed extensions	
pg_foreign_data_wrapper	foreign-data wrapper definitions	
pg_foreign_server	foreign server definitions	
pg_foreign_table	additional foreign table information	
pg_index	additional index information	
pg_inherits	table inheritance hierarchy	

Figure: Trecho das relações que compõem o catálogo do PostgreSQL

J. M. Borovina Josko 42 / 48

Catálogo no PostgreSQL (Cont.)

select relname, relpages, reltuples from pg_class where relname not like 'pg%'

relname name	relpages integer	reltuples real
pg_statistic	15	384
pg_type	9	359
pg_toast_2604	0	0
pg_toast_2604_index	1	0
pg_toast_2606	0	0
pg_toast_2606_index	1	0
pg_toast_2609	0	0
pg_toast_2609_index	1	0
pg_toast_1255	0	0
pg_toast_1255_index	1	0
pg_toast_2618	47	205
pg_toast_2618_index	2	205
pg_toast_3596	0	0
pg_toast_3596_index	1	0
pg_toast_2619	3	13
pg_toast_2619_index	2	13
pg_toast_2620	0	0

Figure: Objetos gerenciados pela relação de catálogo pg_class

Funcionamento Geral

Figure: Principais passos da etapa de parsing

Funcionamento Geral

Figure: Principais passos na etapa de otimização

Query Tree

Figure: Escolhas do otimizador - algoritmos e índices

Qual é a base de escolhas do Otimizador

- Existem diversos algoritmos para um mesmo operador algébrico
- Escolhas dependem das estatísticas correntes do BD → determinar custo
- Principais técnicas...
 - Índices seletivos
 - Iterações (e.g., sort-merge para operações de junção)
 - Particionamento dos dados

Referências I

Date (2003) C. J. Date. An introduction to database systems. Pearson, 8th. ed.

Elmasri (2008) Ramez Elmasri. Fundamentals of database systems. Pearson Education India.

Koppelaars et al. (2007) Toon Koppelaars et al. Applied mathematics for database professionals. Apress.