Tema 6

2.3. Sucesiones parciales y valores de adherencia

Sea $\{x_n\}$ una sucesión de números reales; dada una aplicación $\sigma: \mathbb{N} \to \mathbb{N}$ estrictamente creciente, la sucesión que a cada número natural n hace corresponder el número real $x_{\sigma(n)}$ se representa por $\{x_{\sigma(n)}\}$ y se dice que es una **sucesión parcial** de $\{x_n\}$. Nótese que $\{x_{\sigma(n)}\}$ no es otra cosa que la composición de las aplicaciones $\{x_n\}$ y σ , esto es, $\{x_{\sigma(n)}\} = \{x_n\} \circ \sigma$.

2.37 Ejemplos. Las sucesiones $\{1/n^2\}$ y $\{2^{-n}\}$ son sucesiones parciales de la sucesión $\{1/n\}$.

Dado $q \in \mathbb{N}$ las sucesiones $\{x_{q+n}\}_{n \in \mathbb{N}}$ y $\{x_{qn}\}_{n \in \mathbb{N}}$ son sucesiones parciales de $\{x_n\}$.

Las sucesiones $\{x_{2n}\}$ y $\{x_{2n-1}\}$ son sucesiones parciales de $\{x_n\}$.

Se dice que un número real z es un valor de adherencia de una sucesión $\{x_n\}$ si hay alguna sucesión parcial de $\{x_n\}$ que converge a z.

2.38 Proposición. Si $\{y_n\}$ es una sucesión parcial de $\{x_n\}$ y $\{z_n\}$ es una sucesión parcial de $\{y_n\}$, entonces $\{z_n\}$ es una sucesión parcial de $\{x_n\}$. En particular, un valor de adherencia de una sucesión parcial de $\{x_n\}$ también es un valor de adherencia de $\{x_n\}$.

Demostración. Pongamos $y_n = x_{\sigma(n)}$, $z_n = y_{\varphi(n)}$ donde $\sigma, \varphi : \mathbb{N} \to \mathbb{N}$ son aplicaciones estrictamente crecientes. Definiendo $\psi = \sigma \circ \varphi : \mathbb{N} \to \mathbb{N}$, se tiene que ψ es estrictamente creciente y $z_n = y_{\varphi(n)} = x_{\sigma(\varphi(n))} = x_{\psi(n)}$.

Los siguientes resultados que vimos en el capítulo I serán usados en lo que sigue.

2.39 Proposición.

- a) Sea $\varphi : \mathbb{N} \to \mathbb{N}$ una aplicación tal que $\varphi(n) < \varphi(n+1)$ para todo $n \in \mathbb{N}$. Se verifica entonces que $\varphi(n) \geqslant n$ para todo $n \in \mathbb{N}$.
- b) Sea A un conjunto infinito de números naturales. Entonces existe una biyección creciente de N sobre A.
- **2.40 Proposición.** Si $\lim \{x_n\} = x$, toda sucesión parcial de $\{x_n\}$ también converge a x. En particular, una sucesión convergente tiene como único valor de adherencia su límite.

Demostración. Sea $\{x_n\} \to x$, y $\{x_{\sigma(n)}\}$ una sucesión parcial de $\{x_n\}$. Dado $\varepsilon > 0$, existe $m \in \mathbb{N}$ tal que para todo $n \geqslant m$ se verifica que $|x_n - x| < \varepsilon$. Puesto que $\sigma(n) \geqslant n$, para todo $n \geqslant m$ se tiene que $|x_{\sigma(n)} - x| < \varepsilon$. Lo que prueba que $\{x_{\sigma(n)}\} \to x$.

El resultado anterior es muy útil para probar que una sucesión *no* es convergente pues para ello basta con que tenga una sucesión parcial no convergente o dos sucesiones parciales convergentes a límites distintos.

La sucesión $\{(-1)^n\}$ tiene las sucesiones parciales $\{(-1)^{2n}\}=\{1\}_{n\in\mathbb{N}}$ y $\{(-1)^{2n-1}\}=\{-1\}_{n\in\mathbb{N}}$ que convergen respectivamente a 1 y a -1. Volvemos a obtener así que $\{(-1)^n\}$ no es convergente.

Damos a continuación una útil caracterización de los valores de adherencia de una sucesión.

- **2.41 Proposición.** Sea $\{x_n\}$ una sucesión y x un número real. Equivalen las siguientes afirmaciones:
 - i) x es un valor de adherencia de $\{x_n\}$.
- ii) Para todo intervalo abierto I que contiene a x se verifica que el conjunto de números naturales $\{n \in \mathbb{N} : x_n \in I\}$ es infinito.
 - iii) Para todo $\varepsilon > 0$ el conjunto de números naturales $\{n \in \mathbb{N} : x \varepsilon < x_n < x + \varepsilon\}$ es infinito.

Demostración. Supongamos que hay una sucesión parcial, $\{x_{\sigma(n)}\}$, convergente a x. Dado un intervalo abierto I que contenga a x, sabemos que hay un número $m_0 \in \mathbb{N}$ tal que para todo $p \geqslant m_0$ se verifica que $x_{\sigma(p)} \in I$. Deducimos que

$${n \in \mathbb{N} : x_n \in I} \supseteq {\sigma(p) : p \geqslant m_0}$$

y, por ser la aplicación σ , estrictamente creciente, y por tanto inyectiva, el conjunto $\{\sigma(p): p \ge m_0\}$ es infinito, luego también lo es el conjunto $\{n \in \mathbb{N}: x_n \in I\}$. Hemos probado así que i) implica ii). Siendo evidente que ii) implica iii), para acabar probaremos que iii) implica i).

Por hipótesis para todo $k \in \mathbb{N}$ el conjunto

$$A_k = \{ n \in \mathbb{N} : x - 1/k < x_n < x + 1/k \}$$

es infinito. Por tanto, cualesquiera sean los números naturales k, p, el conjunto

$$B_{p,k} = \{ n \in A_k : n > p \}$$

no es vacío. Haciendo uso del principio de buena ordenación podemos definir $\varphi: \mathbb{N} \to \mathbb{N}$ por:

$$\varphi(1) = \min(A_1)$$
 $\varphi(k+1) = \min(B_{\varphi(k),k+1}) \quad \text{para todo } k \in \mathbb{N}.$

Con ello es claro que $\varphi(k) < \varphi(k+1)$, y $\varphi(k) \in A_k$ para todo $k \in \mathbb{N}$. Por tanto $\{x_{\varphi(n)}\}$ es una sucesión parcial de $\{x_n\}$ y como $|x-x_{\varphi(n)}| < 1/n$ para todo $n \in \mathbb{N}$, deducimos que $\{x_{\varphi(n)}\}$ converge a x.

2.3.1. El teorema de Bolzano - Weierstrass

Es importante advertir que una sucesión puede tener un único valor de adherencia y no ser convergente. Por ejemplo, la sucesión dada para todo $n \in \mathbb{N}$ por $x_n = (1 + (-1)^n)n + 1/n$, no es convergente y tiene a 0 como único valor de adherencia. También puede ocurrir que una sucesión, la de los números naturales por ejemplo, no tenga *ningún* valor de adherencia. Vamos a ver a continuación que estos comportamientos no pueden darse con sucesiones acotadas.

2.42 Lema. Toda sucesión de números reales tiene una sucesión parcial monótona.

Demostración. Sea $\{x_n\}$ una sucesión y definamos

$$A = \{ n \in \mathbb{N} : x_n \geqslant x_p \text{ para todo } p > n \}$$

Podemos visualizar el conjunto A como sigue. Consideremos en el plano los segmentos de extremos (n,x_n) y $(n+1,x_{n+1})$, $n=1,2,3,\ldots$. Resulta así una línea poligonal infinita y podemos imaginar que dicha línea es el perfil de una cordillera cuyas cumbres y valles son los puntos (n,x_n) . Imaginemos ahora que los rayos de luz del Sol, paralelos al eje de abscisas, iluminan dicha cordillera por el lado derecho (el Sol estaría, pues, situado en el infinito del eje de abscisas positivo). Pues bien, un número natural n pertenece al conjunto n0 si el punto n1 setá iluminado y no pertenece a n2 si dicho punto está en sombra.

Supongamos que A es infinito. En tal caso sabemos (ver proposición 2.39) que hay una aplicación $\sigma:\mathbb{N}\to\mathbb{N}$ estrictamente creciente con $\varphi(\mathbb{N})=A$. Resulta ahora evidente que la sucesión parcial $\{x_{\sigma(n)}\}$ es decreciente pues todos los puntos $(\sigma(n),x_{\sigma(n)})$ están iluminados y, por tanto, ninguno de ellos puede hacerle sombra a uno anterior. De manera más formal, como para todo $n\in\mathbb{N}$ es $\sigma(n)\in A$ se verifica que $x_{\sigma(n)}\geqslant x_p$ para todo $p\geqslant\sigma(n)$; en particular, como $\sigma(n+1)>\sigma(n)$, se tiene que $x_{\sigma(n)}\geqslant x_{\sigma(n+1)}$.

Si A es finito podemos suponer, sin pérdida de generalidad, que $A = \emptyset$. En tal caso, para todo $n \in \mathbb{N}$ hay algún p > n tal que $x_n < x_p$ (pues todo punto (n, x_n) está en sombra). Podemos definir ahora una aplicación $\sigma : \mathbb{N} \to \mathbb{N}$ estrictamente creciente de la siguiente forma:

$$\sigma(1)=1$$

$$\sigma(n+1)=\min\{p\!\in\!\mathbb{N}:\sigma(n)< p\ \ \text{y}\ \ x_{\sigma(n)}< x_p\}\ \ \text{para todo}\ \ n\in\mathbb{N}$$

Resulta ahora evidente que la sucesión parcial $\{x_{\sigma(n)}\}$ es estrictamente creciente pues cada punto $(\sigma(n), x_{\sigma(n)})$ deja en la sombra al anterior.

Figura 2.1. Puntos de sol y de sombra

Como consecuencia de este lema, de que toda sucesión parcial de una sucesión acotada es una sucesión acotada y del teorema 2.14, obtenemos el siguiente importante resultado.

2.43 Teorema (Teorema de Bolzano-Weierstrass). Toda sucesión acotada de números reales tiene alguna sucesión parcial convergente. Equivalentemente, toda sucesión acotada de números reales tiene al menos un valor de adherencia.

Podemos precisar algo más este resultado.

2.44 Proposición. Una sucesión acotada no convergente tiene al menos dos valores de adherencia.

Demostración. Sea $\{x_n\}$ acotada y no convergente. Sea z un valor de adherencia de $\{x_n\}$. Como $\{x_n\}$ no converge a z tiene que haber un $\varepsilon > 0$ tal que el conjunto $A_{\varepsilon} = \{n \in \mathbb{N} : |x_n - z| \ge \varepsilon\}$ es infinito. Por la proposición 2.39 sabemos que hay una aplicación $\sigma : \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\sigma(\mathbb{N}) = A_{\varepsilon}$. Pongamos $y_n = x_{\sigma(n)}$. La sucesión $\{y_n\}$ está acotada y, por tanto tiene algún valor de adherencia $w = \lim\{y_{\varphi(n)}\}$. Sabemos por la proposición 2.38 que w también es valor de adherencia de $\{x_n\}$. Como para todo $n \in \mathbb{N}$ es $|y_{\varphi(n)} - z| = |x_{\sigma(\varphi(n))} - z| \ge \varepsilon$, deducimos que $|w - z| \ge \varepsilon$ y por tanto $w \ne z$.

2.45 Corolario. Una sucesión acotada es convergente si y sólo si tiene un único valor de adherencia.