Comment détecter le délit d'initiés ?

Axel GRORUD et Monique PONTIER

A. G.: U.R.A. CNRS 225, C.M.I., Université de Provence, 39, rue Joliot-Curie, 13453 Marseille CEDEX 13, France ;

E-mail: agrorud@abel.univ-mrs.fr

M. P.: U.R.A. CNRS 1803, Bâtiment de Mathématiques,

Université d'Orléans, BP 6759, 45067 Orléans CEDEX 02, France.

E-mail: pontier@labomath.univ-orleans.fr

Résumé.

Cette Note utilise la technique de grossissement de filtrations browniennes pour modéliser l'observation obtenue par un agent économique « initié ». Les politiques admissibles optimales sont caractérisées et, sous des hypothèses gaussiennes, un test statistique est proposé pour détecter si l'agent a effectivement bénéficié d'informations anticipant le marché.

How to detect insider trading?

Abstract.

This Note uses the enlargement of filtrations for modelling the observation of a financial market by an insider trader. A characterization of admissible strategies and a criterium for optimization are given. Then a statistical test is proposed to test the unknown of the future against its knowledge.

Abridged English Version

This work is motivated by the question of modelling the fact that some people are informed before others about the state of the financial market. A financial market model can be considered on a filtered probability space $(\Omega, (\mathcal{F}_t, t \in [0, T]), \mathbb{P})$; the prices evolve according to the linear stochastic differential equation:

$$S_t = S_0 + \int_0^t S_s b_s ds + \int_0^t S_s \sigma_s dW_s, 0 \le t \le T, S_0 \in \mathbb{R}^d,$$

the process W is a d-dimensional Brownian motion. One of the investors trading on the market knows the information normally available at time t, \mathcal{F}_t , and also a random variable L in $L^1(\mathcal{F}_T)$. Using the method of the enlargement of a Brownian filtration (see Yor [9], and Chaleyat-Maurel and Jeulin [2]), with some convenient hypotheses, a \mathcal{Y} -Brownian motion exists, where \mathcal{Y} is the filtration defined as $\mathcal{Y}_t = \mathcal{F}_t \vee \sigma(L)$.

Note présentée par Paul Malliavin.

A. Grorud et M. Pontier

Then, on the probabilisable space (Ω, \mathcal{Y}) , there exists an equilibrium price measure Q (i.e. all the prices are (Q, \mathcal{Y}) -local martingales). On the space (Ω, \mathcal{Y}, Q) , the admissible pair portfolio-consumption processes can be characterized using standard martingale methods.

Finally, a statistical inference test is given for the hypothesis H_0 , "the investor knows only \mathcal{F}_t ", against H_1 , "the investor knows \mathcal{Y}_t ".

1. Introduction

On suppose qu'un investisseur a accès dès le début de son investissement à des informations sur le futur : sur un espace de probabilité filtré $(\Omega, \mathcal{F}_t; t \in [0, T], \mathbb{P})$, il connait une variable aléatoire $L \in L^1(\Omega, \mathcal{F}_T)$. Par exemple, pour deux actifs de prix S^1 et S^2 , il connait leur rapport au temps $T: L = \ln S^1_T - \ln S^2_T$.

On note alors \mathcal{Y} la filtration « naturelle » de l'initié obtenue par grossissement initial de \mathcal{F} , lui adjoignant la variable aléatoire $L: \mathcal{Y}_t = \mathcal{F}_t \vee \sigma(L), \ t \in [0,T]$. En utilisant le calcul stochastique des variations, nous étendons les résultats de I. Karatzas et I. Pikovsky (voir [6] et [7]) au cas où L est une intégrale stochastique de processus non déterministes.

L'initié optimise sa stratégie sur l'intervalle de temps $[0,A], A \leq T$. Si A < T, on montre, sous certaines hypothèses, l'existence d'une probabilité Q « neutre au risque » sur $(\Omega, \mathcal{Y}_t ; t \in [0,A], \mathbb{P})$, puis on donne un théorème de représentation des (\mathcal{Y},Q) -martingales, ce qui permet de caractériser les stratégies admissibles pour l'initié et d'exhiber une politique optimale sur [0,A]. Il reste alors à l'initié une incertitude sur le cours des actifs sur l'intervalle de temps [A,T]. Si A=T, on peut exhiber une stratégie d'arbitrage.

Considérons un marché où les prix des d actions sont donnés par :

(1)
$$S_t^i = S_0^i + \int_0^t S_s^i b_s^i ds + \int_0^t S_s^i \sigma_s^i dW_s, \quad 0 \le t \le T, \quad i = 1, \dots, d,$$

et où le placement sans risque suit la dynamique : $S_t^0 = 1 + \int_0^t S_s^0 r_s ds$.

Le processus W est un mouvement brownien de dimension d sur $(\Omega, \mathcal{F}_t; t \in [0, T], \mathbb{P})$ et \mathcal{F} est la filtration naturelle qu'il engendre. On suppose les paramètres b, σ et r \mathcal{F} -adaptés et bornés sur [0, T], à valeurs respectivement dans \mathbb{R}^d , $\mathbb{R}^{d \times d}$ et \mathbb{R} . On note \mathbf{H}_1 les hypothèses :

 \mathbf{H}_1 : La matrice σ est inversible, $dt \otimes d\mathbb{P}$ -presque sûrement,

$$\eta_t = \sigma_t^{-1}(b_t - r_t \mathbf{1}) \text{ vérifie } \exists C, \exists k > 0, \forall s \in [0, A], E[\exp k \|\eta_s\|^2] \leq C.$$

L'initié dispose d'un capital h(L) à l'instant t=0, h étant une fonction intégrable par la loi de L, il veut optimiser sa stratégie de consommation et de placement sur le marché. Il consomme à une vitesse c qui est un processus positif adapté à la filtration \mathcal{Y} , vérifiant $\int_0^T c_s ds < \infty$ p.s. Il place par ailleurs sur l'actif i la quantité θ^i . Sa richesse au temps t s'exprime par $X_t = \sum_{i=0}^d \theta^i_t(t) S^i_t$ et sa consommation est $\int_0^t c_s ds$. On note $\pi^i_t = \theta^i_t S^i_t$ la somme investie sur la i-ième action pour $i=1,\ldots,d$.

Une stratégie de consommation-placement (π,c) Y-admissible est un couple de processus Y-adaptés tels que $c \geq 0$, $\int_0^T c_s ds < \infty$ p.s., $\sigma^*\pi$ appartient presque sûrement à $L^2[0;T]$, et la richesse $X^{\pi,c}$ obtenue par cette stratégie est à valeurs positives ou nulles $dt \otimes d\mathbb{P}$ -presque sûrement.

Par la technique du grossissement de filtration (voir section 2), on donnera un sens à l'hypothèse d'« autofinancement » et à l'équation (2)

$$\mathbf{H_2} : dX_t = \sum_{i=0}^d \theta_t^i dS_t^i - c_t dt.$$

Notant $R_t = (S_t^0)^{-1}$ le facteur d'actualisation, la richesse X actualisée vérifie, sous la probabilité \mathbb{P} , l'équation :

(2)
$$X_t R_t + \int_0^t R_s c_s ds = h(L) + \int_0^t \langle R_s \pi_s, b_s - r_s \mathbf{1} \rangle ds + \int_0^t \langle R_s \pi_s, \sigma_s dW_s \rangle.$$

2. Grossissement de filtration et stratégies optimales

Nous construisons sur la filtration \mathcal{Y} un $(\mathcal{Y}, \mathbb{P})$ -mouvement brownien en utilisant une extension des résultats de Chaleyat-Jeulin (voir [2]) : notons D le gradient stochastique usuel associé à W et, pour p > 1 et $q \in \mathbb{N}$, $\mathbb{D}^{p,q}$ l'espace de Sobolev construit à l'aide de D (voir [8]). Soit $\mathbf{H}_{\mathbf{C}}$ l'hypothèse :

(3)
$$L \in \mathbb{D}^{2,1} \text{ est tel que } \int_t^T \|D_u L\|^2 du > 0, \ \mathbb{P}\text{-p.s. pour tout } t \in [0, T[...]]$$

Proposition 2.1. – Sous $\mathbf{H_C}$, la loi conditionnelle de L sachant \mathcal{F}_t est absolument continue et il existe une version mesurable de la densité conditionnelle $(\omega,t,x)\mapsto p(\omega,t,x)$ qui est une \mathcal{F} -martingale et se représente par $p(\omega,t,x)=p(0,x)+\int_0^t\alpha(\omega,s,x)dW_s$. Si M est une \mathcal{F} -martingale locale continue égale à $M_0+\int_0^t\beta_s\dot{d}W_s$, alors le crochet $d\langle M,p\rangle_t$ est égal à $\langle \alpha,\beta\rangle_tdt$ et le processus $\tilde{M}_t=M_t-\int_0^t\frac{\langle \alpha(\cdot,x),\beta,\rangle_u|_{x=L}}{p(u,L)}du$ est une \mathcal{Y} -martingale locale continue.

Démonstration. – L'hypothèse $\int_t^T \|D_u L\|^2 du > 0$, \mathbb{P} , p.s. et le théorème 5.2.7 a) de Bouleau-Hirsch (voir [1]) montrent que la loi conditionnelle de L sachant \mathcal{F}_t est absolument continue par rapport à la mesure de Lebesgue. Puis, on utilise l'article de Jacod (voir [4]) dont les résultats ne dépendent pas de la dimension du mouvement brownien considéré et donnent les propriétés requises sur p. En particulier, en notant $T_a^x = \inf\{t > 0 : p(.,t,x) \le a\}$, on obtient $T_0^L = +\infty$ p.s. et par conséquent, pour tout t, p(.,t,L) > 0 p.s.

On obtient en corollaire que le processus vectoriel $(B_t = W_t - \int_0^t \frac{\alpha(u,L)}{p(u,L)} du, \ t \in [0;T[)$ est un mouvement brownien sur l'espace de probabilité filtré $(\Omega,\mathcal{Y},\mathbb{P})$.

L'exemple proposé en introduction, $L = \ln S_T^1 - \ln S_T^2$, vérifie cet ensemble d'hypothèses dans le cas d'un marché à coefficients continus et déterministes. On retrouve dans ce cas le $(\mathcal{Y}, \mathbb{P})$ -mouvement brownien explicité par Chaleyat-Maurel et Jeulin (voir [2]).

Pour l'initié, la consommation et le portefeuille admissibles sont \mathcal{Y} -prévisibles, ce qui doit améliorer son gain dans la mesure où il peut l'optimiser sur un ensemble a priori plus grand $(\mathcal{F} \subset \mathcal{Y})$. On doit donc récrire le modèle relativement à ce nouveau mouvement brownien et à cette nouvelle filtration. Ayant noté $l_s = \frac{\alpha(s,L)}{p(s,L)}$, le marché actualisé $\tilde{S} = RS$ s'écrit : $d\tilde{S}_t = \tilde{S}_t[(b_t - r_t \mathbf{1} + \sigma_t l_t)dt + \sigma_t dB_t], 0 \le t < T$.

On effectue alors un changement de probabilité pour se ramener à une mesure « neutre au risque ». Mais la forme du processus l ne permet cette transformation que sur $[0,A],\,A < T$, car au delà, il n'est pas sûr que la martingale locale de changement de probabilité soit une vraie martingale jusqu'en T:

PROPOSITION 2.2. – Soit A < T, $\eta_t = \sigma_t^{-1}(b_t - r_t \mathbf{1})$ et $\xi_t = -l_t - \eta_t$ vérifiant l'une des conditions suivantes :

$$\mathbf{H_{N}}: E\left[\exp\frac{1}{2}\int_{0}^{A}\|\xi_{s}\|^{2}ds\right] < +\infty, \ ou \ \mathbf{H_{P}}: \exists C, \exists k > 0, \forall s \in [0, A], E[\exp k\|\xi_{s}\|^{2}] \leq C.$$

On pose $M_t = \exp[\int_0^t \xi_s dB_s - \frac{1}{2} \int_0^t \|\xi_s\|^2 ds], t \in [0,A].$ Alors, M est une $(\mathcal{Y}, \mathbb{P})$ -martingale uniformément intégrable et, sous $Q = M.\mathbb{P}$, le processus $\tilde{B}_t = B_t - \int_0^t \xi_s ds$ est un (\mathcal{Y}, Q) -mouvement brownien et les prix actualisés sont des (\mathcal{Y}, Q) -martingales

 $\mathbf{H}_{\mathbf{N}}$ est l'hypothèse classique de Novikov. L'hypothèse $\mathbf{H}_{\mathbf{P}}$ figure dans le cours de E. Pardoux (voir [8]). L'une et l'autre sont évidemment vraies dans le cas simple où le vecteur \mathcal{E} est $d\mathbb{P} \otimes dt$ presque sûrement borné. La seconde est plus facile à vérifier, comme dans l'exemple donné lorsque les coefficients sont déterministes et bornés, puisqu'alors le vecteur ξ_s suit une loi gaussienne de moyenne $-\eta_s$ et de variance $\frac{\|\sigma_s\|^2}{\int_{-T}^T \|\sigma_u\|^2 du}$.

Proposition 2.3. – On suppose H_C , et H_N ou H_P . Soient $A \in T$ et une variable aléatoire $Z \in L^1(\Omega, \mathcal{Y}_A, Q)$; alors il existe un unique vecteur \mathcal{Y} -prévisible ψ tel que

$$Z = E_Q[Z/\mathcal{Y}_0] + \int_0^A \psi(s)d\tilde{B}_s.$$

Démonstration. – Puisque \tilde{B} est un (\mathcal{Y}, Q) -mouvement brownien, sous la probabilité Q, il y a indépendance entre \tilde{B}_t , pour tout $t \in [0, A]$, et $\mathcal{Y}_0 = \sigma(L)$. On peut suivre le raisonnement de [6] et écrire $Z = \sum_{i \in \mathbb{N}} f_i(L) N_i$ avec $N_i \in L^1(\Omega, \mathcal{F}_A, Q)$.

Par ailleurs, la définition de \tilde{B} et celle de B montrent que $\tilde{B} = W + \int_0^{\infty} \eta_s ds$. \tilde{B} est donc un (\mathcal{Y}, Q) mouvement brownien qui est de plus \mathcal{F} -adapté, or $\mathcal{F} \subset \mathcal{Y}$, donc c'est aussi un (\mathcal{F}, Q) -mouvement brownien.

Soit Y la densité de Girsanov telle que $W = \tilde{B} - \int_0^1 \eta_s ds$ soit un $(\mathcal{F}, Y.Q)$ -mouvement brownien; son existence est assurée par l'hypothèse \mathbf{H}_1 . De plus, \mathcal{F} étant la filtration naturelle de W, on a la propriété de représentation prévisible pour W sous $(\mathcal{F}, Y.Q)$, en particulier N_i vérifie :

$$N_i = E_{Z,Q}(N_i) + \int_0^A \phi_i(s) dW_s.$$

Une simple manipulation entre les (\mathcal{F}, Q) et les $(\mathcal{F}, Y.Q)$ -martingales, comme cela est fait dans [5], amène à : $N_i = E_{Y,Q}(N_i) + \int_0^A \phi_i(s) d\tilde{B}_s$. L'indépendance, sous Q, de \mathcal{F}_t et $\sigma(L)$ permet d'écrire $f_i(L)N_i = f_i(L)E_{Y,Q}(N_i) + \int_0^A f_i(L)\phi_i(s)d\tilde{B}_s$. Il reste ensuite à justifier la permutation entre la somme infinie et l'intégrale stochastique, comme cela est fait dans [7], pour obtenir le résultat avec $\psi(s) = \sum_{i \in \mathbb{N}} f_i(L) \phi_i(s)$ et $\sum_{i \in \mathbb{N}} f_i(L) E_{Y,Q}(N_i) = E_Q[Z/L]$, en conditionnant les deux membres de l'égalité par $\sigma(L) = \mathcal{Y}_0$.

Remarque 2.4. - Selon une observation du lecteur de cette Note, on pourrait procéder autrement et remplacer les hypothèses $\mathbf{H}_{\mathbf{C}}$, et $\mathbf{H}_{\mathbf{N}}$ ou $\mathbf{H}_{\mathbf{P}}$ par l'unique hypothèse un peu moins forte (mais de façon générale plus difficile à vérifier) :

sous P, la loi conditionnelle de L sachant \mathcal{F}_A est équivalente à la loi de L : $E[f(L)/\mathcal{F}_A]$ = $\int_{B} f(x)q(\omega,x)q_{L}(dx), \ q(\omega,x) > 0 \ \mathbb{P} \otimes q_{L}$ -presque sûrement.

Ceci est le cas, par exemple, quand L est gaussienne. La démarche consiste alors à suivre le schéma de [3]: on introduit la probabilité $Q=\frac{1}{q(L)}.P$ sous laquelle W devient un (\mathcal{Y},Q) -mouvement brownien, ce qui donne un sens à l'équation (2). Comme ce processus est F-adapté, c'est aussi un (\mathcal{F},Q) -mouvement brownien, ce qui permet d'opérer la représentation prévisible comme ci-dessus. Sous les hypothèses H₁, H₂, H_C, et H_N ou H_P on obtient comme corollaire la caractérisation

suivante des politiques admissibles que l'on a définies ci-dessus.

Proposition 2.5. – Soient (π, c) un couple « admissible » et la richesse finale associée $X_A^{\pi,c}$. Alors, $E_Q[X_A^{\pi,c}R_A + \int_0^A R_t c_t dt/\mathcal{Y}_0] \leq h(L)$, où h est une fonction positive telle que $X_0^{\pi,c} = h(L)$. Réciproquement, pour une richesse initiale strictement positive h(L) donnée, une consommation c, un processus Y-adapté positif tel que $\int_0^A c_s ds < \infty Q$ -p.s., et une variable aléatoire $Z \in L^1(\mathcal{Y}_A, Q)$ telles que : $E_Q[ZR_A + \int_0^A R_t c_t dt/\mathcal{Y}_0] = h(L)$, il existe alors un portefeuille π \mathcal{Y} -prévisible tel que (π, c) est admissible et $X_A^{\pi, c} = Z$.

Démonstration. - La première partie est usuelle ; la réciproque utilise la proposition précédente, le théorème de représentation donnant l'existence de fonctions k et ϕ telles que

$$N_t = E_Q \left[ZR_A + \int_0^A R_s c_s ds / \mathcal{Y}_t \right] = k(L) + \int_0^t \phi^L(s) d\tilde{B}_s.$$

Pour t=0, on obtient k=h, et $\pi_s=\sigma_s^{-1}R_s^{-1}\phi_s^L$ est une solution du problème de couverture.

On choisit comme critère d'optimisation de la stratégie un couple de fonctions d'utilité (U_1, U_2) croissantes, concaves et positives. Il s'agit donc de réaliser le maximum de $(\pi,c) \mapsto J(\pi,c) =$ $E_{\mathbb{P}}[\int_0^A U_1(c_t)dt + U_2(X_A^{\pi,c})/\mathcal{Y}_0]$ dans l'ensemble des stratégies admissibles sous la contrainte

 $E_Q[X_A^{\pi,c}R_A + \int_0^A R_t c_t dt/\mathcal{Y}_0] \leq h(L).$ Ce problème se résout classiquement par la méthode des multiplicateurs de Lagrange. Notant $I_i = (U_i')^{-1}$ et $\mathcal{X}(y) = E_{\mathbb{P}}[\int_0^A R_t M_t I_1(yR_tM_t) dt + R_A M_A I_2(yR_AM_A)/\mathcal{Y}_0]$, on obtient le résultat

Sous les hypothèses $\mathbf{H_1}$, $\mathbf{H_2}$, $\mathbf{H_C}$, et $\mathbf{H_N}$ ou $\mathbf{H_P}$, il existe une stratégie optimale (π^*, c^*) telle que $J(\pi^*, c^*) = \sup\{J(\pi, c), (\pi, c) \text{ admissibles}\}\ de\ la\ forme$:

 $c_t^* = I_1(\lambda^* M_t R_t), X_A^{\pi^*, c^*} = I_2(\lambda^* M_A R_A), \text{ où } \lambda^* \text{ est solution de l'équation implicite } : \mathcal{X}(\lambda^*) = h(L).$ On obtient la valeur optimale du problème $E_{\mathbb{P}}[U_2 \circ I_2(\lambda^* M_A R_A) + \int_0^A U_1 \circ I_1(\lambda^* M_t R_t) dt/\mathcal{Y}_0].$

3. Test statistique

On construit un test dans le cas où les fonctions d'utilité sont $U_i(x) = \log(x), i = 1, 2$. On trouve $\lambda^* = \frac{A+1}{h(L)}$ et la politique optimale : $R_A X_A^* = \frac{h(L)}{A+1} M_A^{-1}, \ R_t c_t^* = \frac{h(L)}{A+1} M_t^{-1}$. Le test se présente de la manière suivante : l'hypothèse H_0 est L=0, ce qui revient à (puisque

 $l_s = \frac{\alpha(s,L)}{p(s,L)} H_0 = (l=0)$ contre $H_1 = (l \neq 0)$.

On compare les politiques optimales obtenues dans les deux cas. Pour un non initié, la stratégie obtenue est : $R_A X_A^* = y N_A^{-1}$, $R_t c_t^* = y N_t^{-1}$, où $y = \frac{x}{A+1}$ avec $N_t = \exp \int_0^t (-\eta_s dW_s - \frac{1}{2} ||\eta_s||^2 ds)$. Sont donc à comparer les consommations optimales :

$$\log R_t c_t^* = \log y + \int_0^t \eta_s dW_s + \frac{1}{2} \int_0^t \|\eta_s\|^2 ds$$
, sous H_0

et

$$\log R_t c_t^* = \log y + \int_0^t (l_s + \eta_s)_s dB_s + \frac{1}{2} \int_0^t ||l_s + \eta_s||^2 ds, \text{ sous } H_1.$$

Sous l'hypothèse nulle, la forme des politiques optimales est la première. On pose : $Y_i = \log R_{t_{i+1}} c_{t_{i+1}} - \log R_{t_i} c_{t_i} = \int_{t_i}^{t_{i+1}} \eta_s dW_s + \frac{1}{2} \int_{t_i}^{t_{i+1}} \|\eta_s\|^2 ds$. Si l'on suppose les coefficients b, r et σ déterministes, Y est une suite de variables aléatoires indépendantes, gaussiennes d'espérance $\frac{1}{2} \int_{t_i}^{t_{i+1}} \|\eta_s\|^2 ds$ et de variance $\int_{t_i}^{t_{i+1}} \|\eta_s\|^2 ds$. Sous l'hypothèse alternative $H_1, l \neq 0$, on a $l + \eta$ à la place de η et B à la place de W.

A. Grorud et M. Pontier

On peut donc construire un test raisonnable de région critique au niveau 0,05 :

$$RC_{i} = \left\{ \omega : \left| Y_{i}(\omega) - \frac{1}{2} \int_{t_{i}}^{t_{i+1}} \|\eta_{s}\|^{2} ds \right| > 1,96 \sqrt{\int_{t_{i}}^{t_{i+1}} \|\eta_{s}\|^{2} ds} \right\}.$$

Note remise le 2 octobre 1996, acceptée après révision le 10 février 1997.

Références bibliographiques

- [1] Bouleau N. et Hirsch F., 1991. Dirichlet Forms and Analysis on Wiener Space, Walter de Gruyter, Berlin.
- [2] Chaleyat-Maurel M. et Jeulin T., 1985. Grossissement gaussien de la filtration brownienne, Séminaire de Calcul Stochastique 1982-83, Paris, Lecture Notes in Math., 1118, p. 59-109, Springer-Verlag.
- [3] **Follmer H. et Imkeller P., 1993**. Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space, *Ann. Inst. H.-Poincaré*, 29-4, p. 569-586.
- [4] Jacod J., 1985. Grossissement initial, Hypothèse H' et Théorème de Girsanov, Séminaire de Calcul Stochastique 1982-83, Paris, Lecture Notes in Math., 1118, p. 15-35, Springer-Verlag.
- [5] Jeanblanc-Pique M. et Pontier M., 1994. Optimal Portfolio for a Small Investor in a Market Model with Discontinuous Prices. Economica. Paris.
- [6] Karatzas I. et Pikovsky I., 1995. Anticipative portfolio optimization, Adv. in Appl. Prob., (revised version, November 28).
- [7] Karatzas L et Pikovsky L, 1994. An extended martingale representation theorem, preprint.
- [8] Pardoux E., 12-30 Sep 1994. Stochastic calculus, SDE, BSDE and PDE, CIMPA School, Beijing.
- [9] Yor M., 1985. Grossissement de filtrations et absolue continuité de noyaux, Séminaire de Calcul Stochastique 1982-83, Paris, Lecture Notes in Math., 1118, p. 6-14, Springer-Verlag.