CS250 homework 4

name:Austen Nelson

Due: 7/23/19

1. The Fibonacci numbers are a fun sequence of numbers that show up in math a lot. The sequence is $1, 1, 2, 3, 5, 8, 13, 21, \ldots$, and we compute each number by adding the previous two. Write an iterative (while loop) python function to compute the n^{th} Fibonacci number. so fib(6) should return 8.

```
def fib_iter(a):
    num0 = 0
    num = 1

for i in range(a - 1):
    old = num
    num = num + num0
    num0 = old

return num
```

2. Now write a recursive program to compute the n^{th} Fibonacci number.

```
def fib_rec(a):
    if a <= 1:
        return a

return fib_rec(a - 1) + fib_rec(a - 2)</pre>
```

3. Let $e = \gcd(n, m\%n)$, Prove that e|m and e|n

```
n, m, e, x, y, r, q, z \in \mathbf{N}
                                                                        variable declarations
                m \mod n = r
                                                                                  initializing r
                     m = qn + r
                                                                           rewriting modulus
                                                                             definition of gcd
            n = ze \text{ so } qn \equiv qze
                                                                                  substitution
              e \mid qn \text{ or } qn = xe
                                               because qn = qze and definition of divides
                                                definition of gcd and definition of divides
                  e \mid r \text{ or } r = ye
m = xe + ye or m = e(x + y)
                                                                    substitution and algebra
                                                                         definition of divides
                            e \mid m
```

4. Prove that for any $a, b, c \in \mathbb{N}$ if a|b and a|c then a|bx + cy for any $x, y \in \mathbb{N}$.

```
a,b,c,x,y,s,z\in \mathbf{N} variable declarations b=az \text{ and } c=as \qquad \qquad \text{definition of divides} bx+cy\equiv azx+asy\equiv a(zx+sy) \qquad \qquad \text{substitution and factor} a\mid a(zx+sy) \qquad \qquad \text{definition of divides}
```

Austen Nelson HW4

5. The distance between two vertices in a graph is the length of the shortest path between them. We usually write the distance between u and v in graph G as d(u, v). Show that for any three vertices $u, v, t \in G$ $d(u, v) \leq d(u, t) + d(t, v)$.

Case 1: t is on the shortest path from u to v. d(u,t) + d(t,v) = d(u,v) because if there exists a shorter path (u,t) or (t,v) then there exists a path shorter than our shortest path (u,v). Case 2: t is not on the shortest path from u to v. Path (u,t) must diverge from shortest path (u,v). d(u,t) + d(t,v) > d(u,v) because path $u \to t \to v$ is not the shortest path (u,v).

6. In the video https://www.youtube.com/watch?v=2SUvWfNJSsM he shows that you can solve towers of hanoi by counting in binary. Make this explicit by writing a python function move_disk(n) where n is a binary number. move_disk should return the number of the disk to be moved. So, to move the 3rd disk, you'd return 3. You can test your code in hanoi.py on d2l. Right now it just loops forever

```
def move_disk(i):
    h = 5
    while h > 0:
        if i % 2**h == 0:
            return h + 1
        h = h - 1
    return 1
```

7. give a bijection as a python function for

```
\bullet \mathbf{E} \to \mathbf{N}
  def E_N(even)
      return even/2
\bullet N \rightarrow Z
  import math
  def N_Z(nat)
      return (-1 ** nat) * math.floor(nat / 2)
\bullet \ \mathbf{N} \to \mathbf{Q}^+
  import math
  from fractions import Fraction
  def N_Qpos(nat)
      #Calkin-Wilf series
      for i in range(nat):
          z = Fraction(1, 2 * math.floor(z) - z + 1)
      return z
ullet \mathbf{Z} 	o \mathbf{Q}
  def Z_Q(an_int)
      if an_int == 0:
          return 0
      if an_int > 0:
          return N_Qpos(an_int)
      return -1 * N_Qpos(-1 * an_int)
```

Austen Nelson HW4

```
 \begin{array}{c} \bullet \  \, \mathbf{E} \to \mathbf{Q} \\ \\ \texttt{def} \  \, \mathtt{E\_Q(even)} \\ \\ \texttt{return} \  \, \mathtt{Z\_Q(N\_Z(E\_N(even)))} \end{array}
```

8. Let's try to find a use for this infinity nonsense.

In computer science it can be useful to look at problems as a language.

A language is just a set of finite strings.

So we can make a language describing π as $L_{\pi} = \{"3", "3.1", "3.14", "3.141", ...\}$

So why do we care about languages?

Well, we can phrase all of our problems in CS as different languages.

For example $L_{factor} = \{"6 = 2 \cdot 3", "12 = 2 \cdot 2 \cdot 3", \ldots \}$

is the language of numbers and their factors.

We can make the language of graphs and their shortest paths, the languages of lists and their sorting. Really we can make a language for any problem.

A language is decidable if there is a program that can (eventually) produce any string in that language.

We want to prove that there is at least 1 undecidable language.

That is, there is a problem that can't be solved by a program.

First show that there are countably many programs we can write.

Hint: what happens when you compile a program?

A program is just a string. A string can be represented as a binary number. Therefore, a program is just a number within N. This means we have an injection from programs to N and that there are countably infinite possible programs.

second show that there are uncountably many languages.

As stated in the example every real number can be represented as a language. This means we there exists a surjection from programs to the reals and that there is an uncountable number of languages.