pORFect predictor

A Magnum Opus by
Maria Hesselman and Maryia Ropat
Group 4

Genomes

Bradyrhizobium japonicum Chlamydia trachomatis Dictyoglomus turgidum Rhodopirellula baltica Saccharomyces cerevisiae

Statistics

Nucleotide frequencies

GC content =((G+C)(A+T+C+G))100

Dinucleotide frequencies

Di-nucleotide frequency = XX/(total X-1)

Prediction

Frame retrieval

- ATG start codon
- TAA, TAG, TGA stop codon

Refinement

- 225+ bases
- Shannon entropy

 $H = \sum P(Dinucleotide in sequence) * log2 P(Dinucleotide in genome)$

Performance

Species	TP	FP	TN	FN	Ref. orfs	Predicted
B. japonicum	35%	18%	82%	64%	8621	3070
C. trachomatis	63%	14%	84%	37%	935	588
D. turgidum	49%	14%	87%	51%	1865	906
R. baltica	39%	16%	82%	61%	7405	2898
S.cerevisiae	72%	15%	85%	28%	418	302

Predicted protein length distribution

Predicted ORF Amino Acid frequency

Distance matrix and tree

$$D = \sqrt{(GC \ genome \ 1 - GC \ genome \ 2)}^{2}$$

Alignment of 10 orthologs

rRNA alignment

Discussion?

Writing ORF prediction software in 2018, colorized Source: https://netrunnerdb.com