Write a python program that takes 2 inputs from the user.

- Input1: A string containing a single sentence or multiple sentences. Multiple sentences are separated by full stops.
- Input2: A list containing special characters.

After taking the inputs, your task is to create a dictionary where the **keys** will be the corresponding special characters from the given list and the **values** will be the words in the given sentence.

You need to find out which key belongs to which value. To do that, you should calculate the **index number** using the formula given below. **The calculated index is the corresponding key of the word.** Make sure no duplicate values are inserted.

The formula:

Index value of special character list = (ASCII sum of the word) % (length of special character list)

=======

Sample Input 1:

'I love Programming. Python is love.'

['@', '\$', '&', '#']

Sample Output 1:

Words in the given String: ['I', 'love', 'Programming', 'Python', 'is', 'love']

Answer: {'\$': ['I'], '&': ['love', 'Python'], '#': ['Programming'], '@': ['is']}

Explanation 1:

From the string 'I love Programming. Python is love.' the {key: value} pair is calculated accordingly:

Word	ASCII sum	List length	Calculated index	Key
1	73	4	73%4 = 1	'\$'
love	438	4	438%4 = 2	'&'
Programmin g	1155	4	1155%4 = 3	'#'
Python	642	4	642%4 = 2	'&'

is	220	4	220%4 = 0	'@'
love	438	4	438%4 = 2	'&'

The calculation is shown in the given table. Full stops after 'Programming.' and 'love.' are avoided. Also, the last word 'love' is a duplicate, and therefore, it was not inserted again as a value.

=======

Sample Input 2:

'The secret of getting ahead is getting started.'

Sample Output 2:

Words in the given String: ['The', 'secret', 'of', 'getting', 'ahead', 'is', 'getting', 'started']

Answer: {'%': ['The', 'getting', 'ahead', 'started'], '=': ['secret'], '*': ['of'], '-': ['is']}

Explanation 2:

From the string 'The secret of getting ahead is getting started.' the {key: value} pair is calculated accordingly:

Word	ASCII sum	List length	Calculated index	Key
The	289	5	289%5 = 4	'%'
secret	646	5	646%5 = 1	' <u>=</u> '
of	213	5	213%5 = 3	' * '
gettin g	754	5	754%5 = 4	'%'
ahead	499	5	499%5 = 4	'%'
is	220	5	220%5 = 0	ų.

gettin g	754	5	754%5 = 4	'%'
starte d	759	5	759%5 = 4	'%'

The calculation is shown in the given table. Full stop after 'started.' is avoided. Also, the word 'getting' is a duplicate and therefore it was not inserted again as a value.

=======