

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Многокадровый метод повышения разрешающей способности изображений посредством сверточных нейронных сетей

Студент: Светличная Алина Алексеевна ИУ7-83Б

Научный руководитель: Филиппов Михаил Владимирович

Цель и задачи

Цель: разработать многокадровый метод повышения разрешающей способности изображений с использованием сверточных нейронных сетей.

Задачи:

- описать предметную область
- проанализировать существующие методы повышения разрешения
- спроектировать алгоритмы необходимые для подготовки данных, обучения модели и ее использования
- по спроектированным алгоритмам реализовать программное обеспечение
- провести исследование применимости разработанного метода

Анализ предметной области

Растровое изображение – двумерный массив, элементы которого (пиксели) содержат информацию о цвете.

Полноцветное изображение — изображение, непосредственно хранящее информацию о цвете на основе компонентов цветовой модели.

Разрешающая способность — количество пикселей (точек) на единицу площади изображения.

Классические методы

Интерполяция — процесс определения значений между известными точками данных.

Ступенчатость — видимые лестничные ступеньки или резкие перепады яркости вдоль контуров. *Размытие* — потеря деталей и четкости изображения при сглаживании краев.

Граничное гало – светлые или темные области, окружающие объекты или контуры на изображении.

- 1. Метод ближайшего соседа учитывает только один пиксель ближайший к точке интерполяции.
- **2. Билинейная интерполяция** рассматривает квадрат 2х2 известных пикселей, окружающих неизвестный.
- 3. Бикубическая интерполяция рассматривает массив из 4х4 окружающих пикселей.
- **4. Метод Ланцоша** основан на применении нормированной функции *sinc()*.

Нейронные методы

Сверточные нейронные сети – автоматическое извлечение иерархии признаков из входных данных.

2.
$$F_1(y) = max(0, W_1 * y + B_1)$$

3.
$$F_2(y) = max(0, W_2 * F_1(y) + B_2)$$

4.
$$F(y) = W_3 * F_2(y) + B_3$$

 \max — функция активации ReLU, * — операция свертки W — фильтр, B — смещение

Генеративно-состязательные нейронные сети — система из двух нейронных сетей, выполняющих роли генератора и дискриминатора.

2 Выделение патчей и их представление

Вектор сигналов изображения LR

4 Генерирование изображения

Выходное (HR) изображение высокого разрешения

Вектор сигналов изображения HR

Классификация методов

Классические методы:

- K_1 ступенчатость
- K_2 размытие
- K_3 граничное гало
- K_4 вычислительная сложность

Нейронные методы:

- K_1 время обучения
- K_2 вычислительная сложность
- K_3 память
- K_4 сложность реализации
- K_5 пиковое отношение сигнала к шуму
- K_6 индекс структурного сходства

Классические и нейронные типы методов:

- K_1 вычислительная сложность
- K_2 сложность реализации
- K_3 качество

Метод	<i>K</i> ₁	<i>K</i> ₂	<i>K</i> ₃	K_4
Ближайшего соседа	4	1	1.5	1
Билинейный	3	3	1.5	2
Бикубический	1	4	3.5	3
Ланцоша	2	2	3.5	4

Метод	<i>K</i> ₁	<i>K</i> ₂	<i>K</i> ₃	K_4	<i>K</i> ₅	<i>K</i> ₆
Сверточный	1	1	1	1	1	2
Генеративно- состязательный	2	2	2	2	2	1

Методы	<i>K</i> ₁	K ₂	<i>K</i> ₃
Классические	1	1	2
Нейронные	2	2	1

Наборы данных

Набор данных	Объем набора в шт.	Разнообразие категорий	Вариативность одного изображения	
Set5	5	Различные категории	Один экземпляр	
Set14	14	Различные категории	Один экземпляр	
BSD100	100	Различные категории	Один экземпляр	
Urban100	100	Архитектура	Один экземпляр	
DIV2K	800	Различные категории	Несколько экземпляров	
Manga109	109 томов	Манга	Один экземпляр	

Тренировочный набор: 100 изображений различных категорий обработанных

собственным алгоритмом понижения разрешения

Валидационный набор: Set14

Тестовый набор: Set5

Формализация задачи

Разрабатываемый метод должен:

- получать изображения низкого разрешения
- подготавливать входные изображения
- иметь возможность обучать модель
- корректно использовать обученную модель для получения изображений высокого разрешения

Метод повышения разрешения

Алгоритм предобработки изображений

Y – яркость пикселя [16, 235]

Сь – интенсивность синего по отношению к зеленому [16, 240]

Ст – интенсивность красного по отношению к зеленому [16, 240]

Нормализация — процесс приведения значений пикселей к определенному диапазону или распределению, в данном случае [0, 1] за счет деления на 255 Денормализация — обратный процесс, в данном случае [0, 255] за счет умножения на 255

Алгоритм разделения изображений на участки

Размерность матрицы выходного слоя: $c_h = n_h - k_h + 1$

Размерность выходного изображения:

$$h' = h - \sum_{i=1}^{n} k_{h_i} + n$$

Архитектура нейронной сети

Конкатенация входных изображений будет такой, словно изображение имеет 6 каналов цвета. В модели RGB порядок каналов будет RGBRGB, а в модели YCbCr – YCbCrYCbCr.

на слое №2

Алгоритмы применения и тестирования модели

Структура программного обеспечения

Средства реализации

Язык программирования – **Python**:

- большое количества библиотек для работы непосредственно с нейронными сетями
- широкий выбор вспомогательных библиотек для работы с массивами, изображениями и т. д.
- наличие большого числа как официальной документации, так и дополнительной информации от сообщества разработчиков

Библиотека глубокого обучения – **PyTorch**:

- вычислительный граф определяется во время
 выполнения программы, поэтому возможно использовать любой инструмент отладки
- легко и естественно интегрируется с другими популярными библиотеками, например, Numpy

Ограничения данных

1. Входные изображения должны быть в форматах PNG или JPEG.

PNG (Portable Network Graphics) – формат, подходящий для текста и графики, так как использует сжатие без потерь.

JPEG (Joint Photographic Experts Group) – формат, подходящий для реалистичных изображений с плавными переходами яркости и цвета, так как использует сжатие с потерями.

2. Разрешение входных изображений не должно быть более 1024

Тестирование программного обеспечения

Действие	Описание ситуации	Результат	
Training	Запуск действия	«Обучение завершено, модель сохранена по стандартному пути»	
Demonstration	Запуск действия с корректными параметрами	Получение фотографий с названиями «bicibic1.png», «bicubic2.png», «hr.png»	
Demonstration	В Image_path[№] указан набор символов, не являющийся путем в стандартном понимании	«Image_path[№] не существует»	
Demonstration	В Image_path[№] указан не существующий путь	«Image_path[№] не существует»	
Demonstration	Image_path[№] ведет к изображению недопустимого расширения	«Формат изображения [№] не поддерживается»	
Demonstration	Image_path[№] ведет к изображению разрешением больше 1024	«Изображение [№] не может быть обработано»	
Demonstration	Изображения имеют разное разрешение	«Входные изображения имеют разное разрешение»	
Testing	Запуск действия	Получение таблицы сравнения MSE, PSNR, SSIM	

Демонстрация работы

Разрешение входных изображений: 510 * 339

Коэффициент увеличения: 2

Постановка задачи исследования

Изображения можно классифицировать.

По качеству:

- хорошего качества
- размытые изображения
- зашумленные изображения
- поврежденные несколькими
 - способами

По содержимому:

- животные
- люди
- архитектура
- природные объекты
- другое

С использованием Google Форм был составлен опрос, включающий два блока сравнение изображений по качеству и по содержимому.

«По качеству» включают по два изображения на каждый вопрос – полученное SRCNN и многокадровым методом.

«По содержимому» включают по три изображения на вопрос – два получены методом SRCNN, а одно многокадровым SRCNN.

Задающийся вопрос «Какое из представленных выше фото наиболее качественное?».

Вопросы являются выбором с одним вариантом ответа, где кроме номеров фотографий есть еще вариант «Не вижу никакой разницы».

Результаты исследования

Тип	SRCNN	Многокадр. SRCNN	Нет разницы
Качественное	48,8%	46,3%	4,9%
Размытое	12,2%	9,8%	78%
Зашумленное	75,6%	14,6%	9,8%

Тип	SRCNN (1 фото)	SRCNN (2 фото)	Многокадр. SRCNN	Нет разницы
Животное	41,5%		58,5%	
Архитектура		31,7%	68,3%	
Природа	58,5%	_	41,5%	_
Лицо	70,7%	7,3%	22%	_
Текст	31,7%	_	68,3%	

Выводы:

- метод показал себя лучше, если получал на вход два различных изображения
- иногда метод дает излишне зашумленные результаты
- метод плохо справляется с размытием изображений

Заключение

Цель достигнута: разработан многокадровый метод повышения разрешающей способности изображений с использованием сверточных нейронных сетей.

Задачи решены:

- описана предметная область
- проанализированы существующие методы повышения разрешения
- спроектированы алгоритмы необходимые для подготовки данных, обучения модели и ее использования
- по спроектированным алгоритмам реализовано программное обеспечение
- проведено исследование применимости разработанного метода

Дальнейшее развитие

- реализовать возможность использования более двух входных изображений
- спроектировать и реализовать алгоритм совмещения фотографий по объектам
- добавить обработку большего числа входных форматов