Tymote	eusz Paszun	Rok II	Grupa 3a	Zespół 6	
Piotr I	Morawiecki				
Temat:			Numer ćwiczenia:		
Współczynnik załamania ciał stałych			51		
ata oddania	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena	
24.10.2017	Zwiot do popiawki	Data Oddama	Data Zanczema	Occiia	
);	Piotr I Temat: ik załamania ata oddania	ik załamania ciał stałych ata oddania Zwrot do poprawki	Piotr Morawiecki Temat: Nu ik załamania ciał stałych ata oddania Zwrot do poprawki Data oddania	Piotr Morawiecki Temat: Numer ćwiczenia: ik załamania ciał stałych ata oddania Zwrot do poprawki Data oddania Data zaliczenia	

1 Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla ciał stałych metodą mikroskopu. Zbadanie zależności współczynnika załamania od długości fali.

2 Wstęp teoretyczny

Gdy wiązka światła przechodzi przez dwa ośrodki o różnych własnościach optycznych, to na powierzchni granicznej częściowo zostaje odbita, częściowo zaś przechodzi do drugiego środowiska, ulegając załamaniu. Prawo załamania:

$$\frac{sin\alpha}{sin\beta}=n$$

Wielkość n jest stała zwaną współczynnikiem załamania ośrodka drugiego względem ośrodka pierwszego. Współczynnik załamania zależy od długości fali światła padającego.

Rysunek 1: Powstanie pozornego obrazu O_1 punktu O leżącego na dolnej powierzchni płytki płaskorównoległej

3 Układ pomiarowy

W skład układu pomiarowego wchodzą:

- 1. Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową.
- 2. Śruba mikrometryczna.
- 3. Zestaw płytek szklanych i z pleksiglasu, różnej grubości.
- 4. Kolorowe filtry.

4 Wyniki pomiarów

Materiał: szkło							
Grubość rzeczywista: $d = 5,34 [\text{mm}]$							
niepewność $u(d) = 0,01 [\text{mm}]$							
Wskazanie czujnika Grubość Współczyn							
Lp.	VV SKaZai	ne czujinka	pozorna	załamania			
Δр.	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$			
	[mm]	[mm]	[mm]	$n = \frac{1}{h}$			
1.	7,40	4,26	3,14	1,701			
2.	7,42	4,30	3,12	1,712			
3.	7,47	4,36	3,11	1,717			
4.	7,44	4,37	3,07	1,739			
5.	7,42	4,39	3,03	1,762			
6.	7,50	4,31	3,19	1,674			
7.	7,42	4,36	3,06	1,745			
8.	7,45 4,37		3,08	1,734			
,		Wartość	2 10	1 799			
		średnia	3,10	1,723			
		Niepewność	0,018	0,0104			

Materiał: szkło Grubość rzeczywista: $d=2,97\,[\mathrm{mm}]$ niepewność $u(d)=0,01\,[\mathrm{mm}]$

	Wekazai	nie czujnika	Grubość	Współczynnik
Lp.	wskazanie czujnika		pozorna	załamania
	a_d	a_d a_g		$n = \frac{d}{b}$
	[mm] $[mm]$		[mm]	$n = \frac{1}{h}$
1.	8,10	6,18	1,92	1,547
2.	8,08	6,21	1,87	1,588
3.	8,04	6,19	1,85	1,605
4.	8,09	6,19	1,90	1,563
5.	8,13	6,18	1,94	1,523
6.	8,08	6,19	1,89	1,571
7.	8,09	6,16	1,93	1,539
8.	8,09 6,19		1,90	1,563
		Wartość	1,90	1,562
		średnia	1,90	1,502
		Niepewność	0,011	0,0108

Materiał: pleksiglas

Grubość rzeczywista: $d=3,88\,\mathrm{[mm]}$

niepewność $u(d) = 0,01 \, [\text{mm}]$

	Wskazanie czujnika		Grubość	Współczynnik
Lp.			pozorna	załamania
Lp.	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$
	[mm]	[mm] $[mm]$		$n = \frac{1}{h}$
1.	7,81	5,34	2,47	1,571
2.	7,86	5,30	2,56	1,516
3.	7,845	5,35	2,495	1,555
4.	7,85	5,33	2,52	1,540
5.	7,85	5,35	2,50	1,552
6.	7,845	5,34	2,51	1,549
7.	7,83	5,33	2,50	1,552
8.	7,835 5,33		2,51	1,549
		Wartość	2,51	1,548
		średnia	2,31	1,346
		Niepewność	0,009	0,0069

Ma	Materiał: pleksiglas			Grubość rzeczywista $d=3,88$ [mm]			
Długość fali		Wskazanie czujnika		Grubość	Współczynnik	Wartość	
L	rugosc ian	w skazame czujmka		pozorna	załamania	średnia	
	λ	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{b}$	n	
	$[\mu m]$	[mm]	[mm]	[mm]	$n = \frac{1}{h}$	n_{sr}	
		7,78	5,24	2,54	1,528		
	I Niebieski 0,48	7,80	5,245	2,555	1,519		
I		7,84	5,25	2,59	1,498	1,522	
		7,78	5,24	2,54	1,528		
		7,80	5,25	2,55	1,522		
		7,79	5,265	2,525	1,537		
	II Czerwony 0,63	7,80	5,30	2,50	1,552		
II		7,80	5,305	2,495	1,555	1,541	
		7,85	5,305	2,545	1,525		
		7,825	5,295	2,53	1,534		

5 Obliczenia

5.1 Współczynnik załamania światła

Współczynnik załamania światła obliczamy ze wzoru:

$$n = \frac{d}{h}$$

gdzie: d - grubość rzeczywista, h - grubość pozorna

5.2 Niepewność pomiaru grubości rzeczywistej płytki

Pomiaru grubości płytki dokonywaliśmy za pomocą śruby mikrometrycznej, więc

$$u(d) = 0.01 \, [\text{mm}]$$

5.3 Niepewność typu A dla grubości pozornej

Rodzaj	Rodzaj	Grubość	Niepewność $u(h)$ [mm]
materiału	światła	pozorna $h[mm]$	Niepewnosc $u(n)$ [mm]
Szkło	Białe	2,97	0,011
Szkło	Białe	5,34	0,018
Pleksiglas	Białe	3,88	0,009
Pleksiglas	Niebieskie	3,88	0,008
Pleksiglas	Czerwone	3,88	0,009

5.4 Niepewność złożona współczynnika załamania światła

Wyznaczamy niepewność obliczonego współczynnika załamania światła. Niepewność współczynnika załamania światła:

$$u(n) = \sqrt{\left(\frac{\partial n}{\partial d}u(d)\right)^2 + \left(\frac{\partial n}{\partial h}u(h)\right)^2} = \sqrt{\left(\frac{1}{h}u(d)\right)^2 + \left(\frac{-d}{h^2}u(h)\right)^2}$$

Niepewność względna współczynnika załamania światła:

$$\frac{u(n)}{n} = \sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2}$$

$$u(n) = n\sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2}$$

5.5 Zestawienie wyników

Rodzaj materiału	Rodzaj światła	Współczynnik n tablicowy	Współczynnik załamania n	Niepewność $u(n)$	Zgodność z wartością tablicową w granicach niepewności rozszerzonej
Szkło	Białe	1,50-1,54	1,723	0,0104	NIE
Szkło	Białe	1,50-1,54	1,562	0,0108	TAK
Pleksiglas	Białe	1,489	1,548	0,0069	NIE
Pleksiglas	Niebieskie	1,489	1,541	0,0061	NIE
Pleksiglas	Czerwone	1,489	1,522	0,0068	NIE

6 Wnioski

Zdecydowana większość otrzymanych wartości współczynników załamania światła nie jest zgodna z ich wartościami tablicowymi w granicach niepewności rozszerzonej. Przyczyną błędnych wyników jest prawdopodobnie mała dokładność metody pomiaru, ponieważ ciężko jest określić czy obraz mikroskopu jest dostatecznie ostry. Inną możliwą przyczyną niezgodności z wartościami tablicowymi może być rozrzut wartości współczynnika załamania światła w zależności od rodzaju szkła, który może mieć wartości od 1,40 do 1,90

Poprzez oświetlenie płyki z pleksiglasu kolorem czerwonym i niebieskim możemy stwierdzić, że współczynnik załamania światła zależy od długości fali, a więc zachodzi zjawisko dyspersji. Współczynnik załamania światła dla światła czerwonego ma większą wartość od wartości dla światła niebieskiego, a więc wraz ze wzrostem długości fali światła współczynnik załamania maleje.