Natural Language Processing Episode 7 '2021 Model compression & acceleration

Yandex Research

Chapter 1: why should you care?

Three kinds of efficiency:

Three kinds of efficiency:

Throughput samples/second

Three kinds of efficiency:

Throughput samples/second

Latency ms@percentile

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

Which is the most important?

- ?

?

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

Priorities:

Note: smaller model = you can fit more models in the same memory

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

- Group inputs into batches (e.g. by length) improves throughput at the cost of latency
- Multiple servers with load balancing improves throughput at the cost of your budget:)

- Group inputs into batches (e.g. by length) improves throughput at the cost of latency
- Multiple servers with load balancing improves throughput at the cost of your budget:)

Popular frameworks:

priorities

TensorFlow Serving

efficiency

≪ developer time

TensorRT Inference Server (Triton)

efficiency ≈ developer time

Custom model-dependent code

efficiency ≫ developer time

Scenario 2: local inference

Preload model onto a dedicated device, infer locally using that device

Typical use cases:

- Parallel speech recognition
- "Smart" cameras
- Autonomous drones
- Self-driving cars

Priorities:

Scenario 3: web/smartphone app

 Load model weights on the fly and infer locally Model size is critical for both you and the user

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally Model size is critical for both you and the user
- Autonomous machine translation (tinyurl.com/yandex-translate-app)
- Pix2pix demo in a browser (https://affinelayer.com/pixsrv)
- Priorities: (i) ____ (ii) ____

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally Model size is critical for both you and the user
- Autonomous machine translation (tinyurl.com/yandex-translate-app)
- Pix2pix demo in a browser (https://affinelayer.com/pixsrv)
- Priorities: (a) ____ (b) ____
- Popular frameworks:
- TensorFlow.js
- CoreML
- 🎒 NNAPI

Platform
All modern browsers
iOS devices
Android devices

Chapter 2: how do I improve my model?

Distillation...
Heard that word before?

First, get the best performing model regardless of size

Then, train a more compact model to approximate it!

Student architecture choices:

Naïve: same but smaller, less layers / hidden units e.g. DistillBERT: https://arxiv.org/pdf/1910.01108.pdf

Same as BERT-base, but with *half as many layers* (and ≈1.5 times faster)

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small (random) subset of weights are nonzero

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small (random) subset of weights are nonzero

Q: how to store sparse weights?

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small (random) subset of weights are nonzero

Storage: only store random seed and nonzero weights.

Compute: sparse matrix multiply

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small fraction of weights are nonzero

Read more: https://openreview.net/pdf?id=_zx8Oka09eF

Also: factorized embeddings https://arxiv.org/abs/1901.10787

Also also: small-world sparse weights graphs for RNNs

https://tinyurl.com/openai-blocksparse

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small fraction of weights are nonzero

Read more: https://openreview.net/pdf?id=_zx8Oka09eF

Also: factorized embeddings https://arxiv.org/abs/1901.10787

Also also: https://tinyurl.com/openai-blocksparse

More distillation tricks:

Ensemble distillation

Dropout distillation

Co-distillation

https://arxiv.org/abs/1702.01802

http://proceedings.mlr.press/v48/bulo16.pdf

https://arxiv.org/abs/1804.03235

Compression by quantization

INT8

8 BITS

Linear quantization

- 1) Scale inputs and parameters into uint8 range
- 2) Multiply in uint8, accumulate to int32
- 3) Un-scale multiplication results in float32

Non-linear quantization

Consider weights as a distribution

Non-linear quantization

Consider weights as a distribution

Non-linear quantization

Consider weights as a distribution

Non-linear quantization

Compute a grid of percentiles

Non-linear quantization

percentiles (32-bit)

Index (4- or 8-bit) of nearest percentile for each weight

Store each weight as its nearest percentile

High-dimensional case

Quantize entire vectors as K-means

Quantization Example

 $quantizer = KMeans(n_clusters=7).fit(X)$

Images: Jeremy Jordan

OPQ, AQ, LSQ

Product Quantization Split vectors into chunks, quantize each chunk separately

Orthogonal Product Quantization
First run orthogonal transform, then product quantization
http://kaiminghe.com/publications/cvpr13opq.pdf

More:

Additive Quantization Local Search Quantization https://tinyurl.com/babenko-aq-pdf https://tinyurl.com/martinez-lsq-pdf

Images: Jeremy Jordan

Low-precision training!

Training with 8-bit params: https://arxiv.org/abs/1812.08011 https://arxiv.org/abs/1805.11046

Compressing gradients to 1 bit and beyond https://arxiv.org/abs/2102.02888 https://arxiv.org/abs/1905.13727

Training with 8-bit optimizers: https://www.youtube.com/watch?v=IxrlHAJtqKE https://arxiv.org/abs/2110.02861

Quantization + pre-computation

Source: https://arxiv.org/abs/2106.10860

- product-quantize weights
- "quantize" inputs via LSH
- pre-compute dot products all inputs x all codes
- "multiply" by looking up pre-computed products

Do we really need every layer all the time?

3) More layers!

- 1) Positive
- 2) Negative
- 3) More layers!

Adaptive Computation Time

block of residual units

Origina ACTI (for RNN) https://arxiv.org/abs/1603.08983 Spatial ACT (conv) https://tinyurl.com/sact-pdf ACT Transformers https://arxiv.org/abs/1807.03819

Compression by sparsification

Do we really need all D by D weights?

Compression by pruning

Do we really need all D by D weights?

Magnitude pruning

Drop ~5% smallest weights from each layer every 1000 steps (and keep training)

Reminds you of something?

Magnitude pruning

Drop ~5% smallest weights from each layer every 1000 steps (and keep training)

Reminds you of something?
See ML course, Optimal Brain Damage

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Whiteboard time!

Read more: https://arxiv.org/abs/1712.01312

Alternative: https://arxiv.org/abs/1701.05369

Which one works best?

Transformer BLEU

Source https://arxiv.org/abs/1902.09574

Pruning with L_o regularization

Add a special regularizer that encourages dropping unnecessary weights

Whiteboard time!

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Can prune

- individual weights
- Individual neurons
- attention heads
- entire layers!

$$\lambda = 0.01$$

Pruning heads: https://lena-voita.github.io/posts/acl19_heads.html

Sparse training

https://cdn.openai.com/blocksparse/blocksparsepaper.pdf

Sparse training

https://cdn.openai.com/blocksparse/blocksparsepaper.pdf

What did we learn?