BCI-Based Epileptic Seizure Detection and Warning System

Team 27

Lidia Podoluk, Igor Jakus, Kyrylo Goroshenko

Our task

Goal and motivation:

 Provide timely alerts for individuals with epilepsy and their relatives.

- Improve the quality of life and reduce risks associated with seizures.
- Desire to win Neurohackathon

Info about the data:

- EEG dataset from a referenced research paper.
- Data includes labeled examples of pre-seizure and non-seizure brain activity.

Dataset info

Total Samples: 11,500.

Features: 178 per sample (EEG signals).

5 - Eyes open, healthy.

4 - Eyes closed, healthy.

3 - Recording of the EEG activity from the healthy brain area.

2 - Recording of the EEG from the area where the tumor was located

1 - Recording of seizure activity

All subjects falling in classes 2, 3, 4, and 5 are subjects who did not have epileptic seizure. Only subjects in class 1 have epileptic seizure.

Preprocessing done:

Relabelling to binary:

- 1 = Seizure (only class "1" in original data)
- 0 = No Seizure (every other class)

Data Imbalance: Resolved using SMOTE to oversample minority class (seizures).

Feature Scaling: StandardScaler helped normalize feature contributions, critical for SVM and k-NN.

Data transformation: Some time series models needed some other data shapes.

Methods for binary classification

Used **over 15** Machine Learning algorithms, including:

- Support Vector Machine
- k-Nearest Neighbors
- Logistic Regression
- Decision Trees
- Random Forest
- AdaBoost
- XGBoost
- K-Means (unsupervised)
- Recurrent Neural Network
- Naive Bayes

Model performance

Evaluation metrics:

- Accuracy
- Precision
- Recall
- F1-Score
- Confusion Matrix

$$Recall = \frac{TP}{TP + FN}$$

Context in Epilepsy Detection

- High recall is more important than precision → Missing a seizure (FN) is more dangerous than a false alarm (FP).
- F1-Score: Balanced precision and recall are ideal → Too many FPs (low precision) lead to unnecessary anxiety for the patient.
- Confusion matrix helps visualize both risks (false negatives vs. false positives).

For seizure detection, we prioritize **high** recall while keeping precision reasonable to avoid unnecessary alerts.

K-Means

Classificatio	n Report:			
	precision	recall	f1-score	support
Θ	0.55	1.00	0.71	9108
1	1.00	0.18	0.30	9108
accuracy			0.59	18216
macro avg	0.77	0.59	0.50	18216
weighted avg	0.77	0.59	0.50	18216

Confusion Matrix

Unsupervised Learning

Logistic Regression

Accuracy: 0.64

Classification	n Report:			
	precision	recall	f1-score	support
Θ	0.61	0.75	0.67	1822
1	0.68	0.52	0.59	1822
accuracy			0.64	3644
macro avg	0.65	0.64	0.63	3644
weighted avg	0.65	0.64	0.63	3644

Naive Bayes (Gaussian)

when you start machine learning without **rpis**

Accuracy: 0.8990120746432492

Classification	Report: precision	recall	f1-score	support
0 1	0.85 0.96	0.96 0.84	0.90 0.89	1822 1822
accuracy macro avg weighted avg	0.91 0.91	0.90 0.90	0.90 0.90 0.90	3644 3644 3644

AdaBoost

Accuracy: 0.9250823271130626

Decision trees

Classification Report: recall f1-score precision support 0.93 0.92 0.92 1822 0 0.92 0.93 0.93 1822 0.93 3644 accuracy 0.93 0.93 0.93 3644 macro avq weighted avg 0.93 0.93 0.93 3644

Accuracy: 0.9810647639956093

Random Forest

Classification Report:

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

XGBoost

K-Nearest Neighbors

1819

- 1750

- 1500

- 1250

- 1000

- 750

- 500

- 250

abel

Confusion Matrix

Predicted

1816

0

Classification Report:

Accuracy: 0.9898463227222832

precision

recall f1-score

support

Classification Report:

Support Vector Machine

Challenge: division into 5 classes

2-5 pretty similar :(

Models (tested with many parameters):

- KNN with DTW
- RNN
- SVM with feature extraction
- Shapelets (2 versions)
- Random Forest with feature extraction
- A LOT OF ensembles

Distance metrics:

- euclidean
- manhattan
- cross-correlation
- dtw -> veeery slow ->

Scalers:

- StandardScaler
- TimeSeriesScalerMinMax

Feature extraction:

- custom with statistic features
- from TSFresh library

Accuracy: 0.35792709705753184 Precision: 0.48092219929576463 Recall: 0.35792709705753184

Classification Report:

macro avq

weighted ava

f1-score precision recall support 1.00 0.39 0.56 456 0.26 0.40 0.32 455 0.27 0.45 0.34 455 0.54 0.21 0.31 456 0.33 0.33 0.33 455 0.36 2277 accuracy

0.48

0.48

0.36

0.36

0.37

0.37

2277

2277

Shapelets

<- Custom

Library ->

We tried different lengths, numbers of Shapelets, different metrics, etc, unfortunately they didn't improve the results at all

Accuracy: 0.5265700483091788 Precision: 0.595196255520782 Recall: 0.5265700483091788

Classification		Report:			
		precision	recall	f1-score	support
	1	0.93	0.82	0.87	456
	2	0.55	0.04	0.07	455
	3	0.37	0.89	0.52	455
	4	0.54	0.82	0.65	456
	5	0.59	0.06	0.10	455
	accuracy			0.53	2277
	macro avg	0.60	0.53	0.44	2277
	weighted avg	0.60	0.53	0.45	2277

Our experience with shapelets...

SVM with feature extraction from TSFresh

Recurrent Neural Network

support

456

455

455

456

455

2277

2277

2277

0.90

0.54

0.52

0.72

0.61

0.66

0.66

0.66

KNN with Dynamic Time Warping

Random Forest with custom feature extraction

Random Forest with feature extraction from

200

- 150

- 100

TCErach

	Random Forest	with TSFresh	but bet	ter Results	5:
		precision	recall	f1-score	support
- 400	1	0.97	0.97	0.97	456
	2	0.75	0.72	0.73	455
	3	0.76	0.76	0.76	455
- 350	4	0.93	0.88	0.91	456
	5	0.84	0.92	0.88	455
- 300					
	accuracy			0.85	2277
	macro avg	0.85	0.85	0.85	2277
- 250	weighted avg	0.85	0.85	0.85	2277

Most important in context of seizure risk detection: **not classify** 1,2,3 as 4,5

So effectively it's much better than 85% accuracy shows

You can't use simplest possible classifier with just one neighbour and expect it to have any good accuracy.

Accuracy: 0.997530186608123

Classification Report:

Classiii	Cation	precision	recall	f1-score	support	
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	1822 1822	
accu	racy	1100	1100	1.00	3644	
macro weighted	avg	1.00 1.00	1.00 1.00	1.00	3644 3644	

Conclusions

- Implemented multiple machine learning models to detect seizures.
- Achieved state-of-the-art performance with SVM and 1-NN
- Successfully experimented with classifying into 5 classes using advanced time series techniques.
- Achieved almost* state-of-the-art performance for 5 classes division with Random Forest with feature extraction
- Beat all Kaggle competitors :-)

Thank you for your attention!

github.com/igorjakus/neurohackathon

