GSD with equally sized stages

Werner Brannath

VO "Sequential and Adaptive Designs", **University Bremen**

Introduction

▶ Because with $t_i = N_i/N_K$ we have

$$\operatorname{\mathsf{Cor}}(Z_j^*, Z_k^*) = \sqrt{N_j/N_k} = \sqrt{t_j/t_k}, \quad \text{for } j < k,$$

the type I error depends on the *fraction* of the sample sizes but is independent of its actual size.

- We assume now that: $n_1 = \cdots = n_K =: n$
- ▶ Then $t_k = k/K$ and $Cor(Z_i, Z_k) = \sqrt{j/k}$ for all $j \le k \le K$.
- This is a very common planning assumption,
- which is often not fully realized in practise. However, with small deviations, α is achieved approximately.
- Severe deviations need to be accounted for; see later.

Distributional consequences

 $N_k = kn$ and $X_{11}, \ldots, X_{1n}, \ldots, X_{K1}, \ldots, X_{Kn} \sim_{iid} N(\mu, \sigma^2)$ imply:

$$ightharpoonup Z_k^* = \sum_{k=1}^K Z_k / \sqrt{k} \sim N(\vartheta_k, 1)$$

►
$$Cor(Z_j^*, Z_k^*) = \sqrt{\min(j, k) / \max(j, k)}$$
 for all $1 \le j, k \le K$

 \triangleright $(Z_1^*, \dots, Z_{\kappa}^*)$ is multivariate normal distributed.

Classical Designs

without futility stopping

The designs of Pocock and O'Brien & Fleming

Rejection regions with rejection bounds u_k , k = 1, ..., K:

$$\mathcal{R}_k^* = \{|Z_k^*| \geq u_k\} = (-\infty, -u_k) \cup (u_k, \infty),$$

$$\mathcal{A}_k^* = \emptyset$$
, $\mathcal{C}_k^* = (-u_K, u_K)$ for $K < K$, and $\mathcal{A}_K^* = (-u_K, u_K)$.

Design of Pocock (1977): Constant rejection bounds, i.e.

$$u_1 = \cdots = u_K = c_P$$

with
$$c_{\mathsf{P}} = c_{\mathsf{P}}(K, \alpha)$$
 such that $\mathbf{P}_{\mu_0}\Big(\bigcup_{k=1}^K \left\{|Z_k^*| \geq c_{\mathsf{P}}\right\}\Big) = \alpha$

Design of O'Brien & Fleming (1979): Decreasing rejection bounds with

$$u_k = c_{\text{OBF}}/\sqrt{k}$$

with
$$c_{\mathsf{OBF}} = c_{\mathsf{OBF}}(K, \alpha)$$
 s.th. $\mathbf{P}_{\mu_0}\Big(\bigcup_{k=1}^K \left\{|Z_k^*| \geq c_{\mathsf{OBF}}/\sqrt{k}\right\}\Big) = \alpha$

Examples for Pocock and O'Brien & Fleming Designs

Two-Sided O'Brien and Fleming's (OBF) and

Pocock's (P) design

for $H_0: \mu = 0$

for equal stage sizes with K=5 stages and $\alpha=0.05$

This is Figure 2.1 in WaBr16; see also Tables 2.1 and 2.2 in WaBr16.

Comment on the O'Brien & Fleming design

We assume here for simplicity that $\mu_0 = 0$ and $\sigma = 1$.

Since $Z_{\nu}^* = \sum_{l=1}^{k} Z_l / \sqrt{k}$ with the stage-wise z-scores, and

$$Z_{l}=\sum_{j=1}^{n}X_{lj}\Big/\sqrt{n},$$

we obtain that $|Z_k^*| \ge c_{\rm OBF}/\sqrt{k}$ is equivalent to

$$\sqrt{nk}|Z^*| = |\sum_{l=1}^k \sum_{j=1}^n X_{lj} \ge \sqrt{n} c_{\mathsf{OBF}}.$$

Hence, we use a constant boundary for the sum of observations; is in line with the Sequential Likelihood Ratio Test of Wald & Barnard.

Formulation via *local levels*

One can formulate a GSD in terms of the local p-values

$$\rho_k^* := 2\Big(1 - \Phi\big(|Z_k^*|\big)\Big), \quad k = 1, \dots, K$$

Namely: $|Z_k^*| \ge u_k \iff p_k^* \le \alpha_k := 2(1 - \Phi(u_k))$

Constant *local levels* in the Pocock design:

$$\alpha_1 = \cdots = \alpha_K = 2(1 - \Phi(c_P))$$

Decreasing *local levels* of the O'Brien & Fleming design:

$$\alpha_k = 2\left(1 - \Phi\left(c_{\mathsf{OBF}}/\sqrt{k}\right)\right), \quad k = 1, \dots, K$$

▶ Table 2.2 in WaBr16 (p.29) gives u_k and α_k of the Pocock and O'Brien & Fleming designs for $\alpha = 0.05$ up to 5 stages.

Discussion of the two designs

- \triangleright The more stages K, the larger the rejection boundaries, i.e. more adjustment is required with more stages.
- With the O'Brien& Fleming design the early rejection bounds are large and early rejections are rather unlikely, at least under H_0 .
- With the Pocock design early rejections are more likely.
- With the O'Brien& Fleming design the last rejection bound is close to the un-adjusted bound $z_{\alpha/2}$. This is not the case for Pocock's design.
- In practice, the O'Brien & Fleming design is generally preferred, since early rejection without overwhelming evidence may not be convincing (e.g. because of too little safety data).

Power and Sample size

 \triangleright As argued before, the maximum sample size N_K required for power $1 - \beta$ is a multiple of the fixed size

$$n_f = (z_{\alpha/2} + z_{\beta})^2 / \delta_1^2,$$

i.e.

$$N_K = n_f \cdot I(K, \alpha, \beta)$$

- ▶ The *inflation factor* $I(K, \alpha, \beta)$ depends on the type of design, e.g. whether Pocock or O'Brien & Fleming.
- ▶ Table 2.3 in WaBr16 gives $I = I(K, \alpha, \beta)$ of the Pocock and O'Brien & Fleming design for several K and typical α and β .
- One sees from this table that Pocock's design leads to larger maximum sample sizes N_K than the O'Brien & Fleming design.

Numerical Examples

We choose $\alpha = 0.05$, $\beta = 0.2$ and $\delta_1 = 0.5$

$$\longrightarrow$$
 $n_f = (z_{0.025} + z_{0.2})^2 / 0.25 = 31.4$

 \triangleright O'Brien & Fleming with K=4: We read I = 1.024 from Table 2.3 in WaBr16, which implies

$$N_K = 1.024 \cdot 31.4 = 32.2 \rightarrow n = N_K/4 = 8.05$$

Hence, for power 80% we need n = 9 patients per stage.

Pocock with K=4: We read I = 1.202 from Table 2.3 in WaBr16, which implies

$$N_K = 1.202 \cdot 31.4 = 37.7 \rightarrow n = N_K/4 = 9.4$$

Hence, for power 80% we need n = 10 patients per stage.

Average Sample Size

The required stage-wise sample size is

$$n = N_K/K = n_f \cdot I(K, \alpha, \beta)/K$$

Consequently, we get for the ASN (see p.16 in WaBr16 or Slide 29 for Chapter 1) relative to n_f :

$$\frac{\mathsf{ASN}(\mu)}{n_f} = \frac{\mathit{I}(K,\alpha,\beta)}{K} \underbrace{\left(1 + \sum_{k=2}^K \mathbf{P}_{\vartheta_1} \big(Z_1^* \in \mathcal{C}_1^*, \dots, Z_{k-1}^* \in \mathcal{C}_{k-1}^*\big)\right)}_{\text{average number of stages}}$$

- ▶ Since β determines the ncp $\vartheta_{1,\beta}$ uniquely, the fraction ASN/n_f is uniquely determined by design and power (and beyond that is independent from δ_1).
- Table 2.3 in WaBr16 also gives ASN/n_f (numbers in bracket).

Back to the numerical Examples (Slide I)

As before: K = 4, $\alpha = 0.05$, $\beta = 0.2$ and $n_f = 31.4$.

O'Brien & Fleming:

We read ASN/ $n_f = 0.831$ from Table 2.3, which implies

$$ASN = 0.831 \cdot 31.4 = 26.1$$

Pocock:

We read ASN/ $n_f = 0.805$ from Table 2.3, which implies

$$ASN = 0.805 \cdot 31.4 = 25.3$$

Summary: Pocock has larger maximum but smaller expected sample sizes at the planning alternative.

Back to the numerical Examples (Slide II)

With Pocock's design we have a higher chance to stop early: Stopping probabilities (at planning alternative):

- The higher the chance to stop early, the smaller the expected sample size.
- However, this comes for the price of a larger maximum sample size with the Pocock design.

Back to the numerical Examples (Slide III)

- Figure 2.2 in WaBr16 shows the expected sample size in dependence of $\delta = (\mu - \mu_0)/\sigma$.
- ▶ One can see that Pocock gives a smaller ASN only for larger δ .
- For smaller δ the ASN is close to the maximum sample size $N_K = Kn$, which is smaller for OBF.
- Final remark: Since n is smaller for OBF and ASN(δ) $\approx n$ for large δ , the ASN becomes smaller again for OBF when δ or Kbecomes very large; see Figure 2.3 in WaBr16.
- **Exercise:** Investigate this with the gsDesign package in R.

- ▶ One can see from Table 2.3 that the expected sample size decreases with the number of stages K, while the maximum sample size increases.
- ightharpoonup There is a relevant decrease in the ASN already with K=2stages.
- ▶ With increasing *K* the gain in ASN becomes smaller and smaller.
- With the designs of OBF and Pocock the gain in the ASN becomes relatively small for K > 5.
- Interim analyses produce costs and bear the danger of bias. Hence, in practice usually only K < 5 stages are used.

Power family of Wang & Tsiatis

Wang & Tsiatis (1987) suggest the rejection boundaries

$$u_k = c_{WT}(K, \alpha, \beta, \Delta)k^{\Delta-0.5}$$

- The family of bounds is also called Δ-class.
- ightharpoonup For $\Delta = 0$ we obtain the O'Brien & Fleming boundaries.
- For $\Delta = 0.5$ we obtain Pocock's boundaries.
- For $0 < \Delta < 0.5$ we obtain a compromise between P and OBF.

Wang & Tsiatis boundaries

Wang & Tsiatis △-class:

 $u_k = c_{\rm WT} k^{\Delta - 0.5}$

Choice of c_{WT} is such that type I error is α .

- Special cases:

O'Brien & Fleming: $\Delta = 0$

Pocock: $\Delta = 0.5$

See Table 2.4 in WaBr16 for more examples.

Maximum and expected sample size for the Δ -class

- Table 2.5 in WaBr16 gives the maximum sample size and ASN (at the planning alternative), both relative to n_f .
- ightharpoonup The bounds for $\Delta = 0.4$ beat the Pocock bounds with regard to maximum and average sample size.
- ▶ Wang & Tsiatis (1987) determine the \triangle for which the ASN is minimal under the planing alternative (Table 2.6 in WaBre16)

Examples for $\alpha = 0.05$:

▶ Wang & Tsiatis (1987) found that the optimal Δ -boundaries are similar to general optimum determined by Pocock (1982).

Classical Designs

with binding futility stopping

Symmetric designs (Slide I)

Pampallona & Tsiatis (1994) suggest to use a GSD with a symmetric interim acceptance region:

$$\mathcal{A}_k^* = [-u_k^0, u_k^0], \quad \mathcal{C}_k^* = (-u_k^1, -u_k^0) \cup (u_k^0, u_k^1), \quad k = 1, \dots, K$$
 for specific $0 < u_k^0 < u_k^1$ ($k < K$) and $0 < u_K^0 = u_K^1$.

- ▶ Rejection regions: $\mathcal{R}_{k}^{*} = (-\infty, -u_{k}^{1}) \cup (u_{k}^{1}, \infty), 1 < k < K.$
- This means to accept H_0 at stage k if $|Z_{k}^*| < u_{k}^0$, and to reject H_0 a stage k if $|Z_k^*| \ge u_k^1$
- Choice of rejection boundaries:

$$u_k^1 = c^1(K, \alpha, \beta, \Delta)k^{\Delta - 0.5} \qquad (2.1)$$

Symmetric designs (Slide II)

Choice of the acceptance ("futility") boundaries:

$$u_k^0 = \vartheta_k - c^0(K, \alpha, \beta, \Delta)k^{\Delta - 0.5}$$
 (2.2)

where $\vartheta_k = \mathbf{E}_{\mu_1}(Z_k^*) = \sqrt{kn}\,\delta_1$ is the planning ncp.

▶ **Rational:** Think of testing $\tilde{H}_1 : |\delta| \ge \delta_1$ (as null) at level β .

Since $Z_k^* \mp \vartheta_k \sim_{\delta=\pm\delta_1} N(0,1)$, rejection of H_1 is best done by

$$Z_k^* - \vartheta_k \le -d_k^0 \iff Z_k^* \le \vartheta_k - d_k^0$$

and

$$Z_k^* + \vartheta_k \ge d_k^0 \quad \iff \quad Z_k^* \ge -(\vartheta_k - d_k^0)$$

The two rejection rules can be summarized as: $|Z_k^*| \leq \vartheta_k - d_k^0$

Example for Pampallona and Tsiatis boundaries

Pampallona & Tsiatis design:

- Rejection boundaries

$$u_k^1 = c^1$$

- Acceptance boundaries:

$$u_k^0 = \vartheta_k - c^0$$

– Choice of c^1 and c^0 is such that type I & II errors are α & β .

Here:
$$\Delta = 0.5$$
, $K = 4$, $\alpha = 0.05$ and $1 - \beta = 0.8$.

Determination of c^0 and c^1 (Slide 1)

- ▶ Want to choose $c^0 = c^0(K, \alpha, \beta, \Delta)$ and $c^1 = c^1(K, \alpha, \beta, \Delta)$ such that pre-specified type I and II errors, α and β , are **both** met.
- \blacktriangleright Simultaneous control of α and β via the decision boundaries is main reason for the name "symmetric designs". (Before, we focused solely on α in the determination of boundaries.)
- **Problem:** u_{ν}^{0} seem to depend on δ_{1} (i.e. μ_{1}) and n via ϑ_{k} !
- ▶ By the definition of u_k^0 , u_k^1 and the identity $u_k^0 = u_k^1$ we obtain:

$$\vartheta_K = \sqrt{Kn}\,\delta_1 = (c^0 + c^1)K^{\Delta - 0.5}$$

which implies

$$\vartheta_{k} = \sqrt{kn}\delta_{1} = \sqrt{k(c^{0} + c^{1})}K^{\Delta - 1}, \quad k = 1, ..., K.$$
 (2.3)

Determination of c^0 and c^1 (Slide 2)

▶ By formula (2.3) we can remove the dependency on δ_1 and n:

$$u_k^1=c^1k^{\Delta-0.5}$$
 and $u_k^0=\left\lceil\sqrt{k/K}(c^0+c^1)-c^0
ight
ceil K^{\Delta-0.5}$

By two-dimensional root finding one can determine c^0 and c^1 such that

$$\mathbf{P}_{\vartheta_1=0}\Big(\mathrm{reject}\;H_0\Big)=lpha\quad \mathrm{and}\quad \mathbf{P}_{artheta_1=artheta_1^*}\Big(\mathrm{reject}\;H_0\Big)=1-eta$$
 where $artheta_1^*:=(c^0+c^2)K^{\Delta-1}.$

▶ These bounds do only depend on α , β , K and Δ , i.e.

$$c^0 = c^0(K, \alpha, \beta, \Delta)$$
 and $c^1 = c^1(K, \alpha, \beta, \Delta)$

Sample size calculation

- Described choice of c^0 and c^1 guarantees type I rate α .
- It guarantees type II error $\leq \beta$, if the first stage Z_1^* has expectation

$$\vartheta_1 = \sqrt{n}(\mu - \mu_1)/\sigma \ge \vartheta_1^* = (c^0 + c^2)K^{\Delta - 1}$$

Given the planning alternative μ_1 , this leads to the formula

$$n \geq \left(\frac{(c^0+c^1)K^{\Delta-1}}{\delta_1}\right)^2, \qquad \delta_1 := (\mu_1-\mu_0)/\sigma$$

for the stage-wise sample size, and for the maximum sample size:

$$N_{K} = Kn \ge \left[(c^{0} + c^{1})K^{\Delta - 0.5}/\delta_{1} \right]^{2}$$

Note the similarity to the formula for the single-stage z-test!

Important remark / extension

- We cannot always satisfy both, the type I and type II error condition, by the choice for (2.1) and (2.2) of the rejection and acceptance boundaries.
- Both conditions can be fulfilled, if we permit starting acceptance of H_0 at some later stage $k^* > 1$.
- ▶ This means to set $u_k^0 := 0$ for all $k < k^*$.
- The method can be implemented by using the acceptance bounds

$$u_k^0 := \max\left(\underbrace{\left[\sqrt{k/K}(c^0+c^1)-c^0
ight]K^{\Delta-0.5}}_{ ext{the original }u_k^0},0
ight)$$

where k^* is simply the smallest k with $\sqrt{k/K} > c^0/(c^0 + c^1)$.

Example boundaries

Pampallona & Tsiatis design:

- Rejection boundaries

$$u_k^1 = c^1 k^{-0.5}$$

– Acceptance boundaries:

$$u_k^0 = \max\left(\vartheta_k - c^0 \, k^{-0.5}, 0\right)$$

with
$$\vartheta_k = \sqrt{k}(c^0 + c^1)K^{-1}$$

– Choice of c^1 and c^0 is such that type I & II errors are α & β .

Here:
$$\Delta=0,\, K=4,\, \alpha=0.05$$
 and $1-\beta=0.8.$

The example numerically

- K = 4. $\Delta = 0$. $\alpha = 0.05$. $\beta = 0.2$
- ► Table 2.7 in WaBr16: $c^0 = 1.9892$ and $c^1 = 3.9055$
- $\theta_k = \sqrt{k}(c^0 + c^1)/K = \sqrt{k} \cdot 1.4738$
- $u_1^0 = 1.4738 1.9892 < 0 \rightarrow u_1^0 = 0$ $u_2^0 = \sqrt{2} \cdot 1.4738 - 1.9892 = 0.678$ $u_2^0 = \sqrt{3} \cdot 1.4738 - 1.9892 = 1.404$ $u_4^0 = \sqrt{4} \cdot 1.4738 - 1.9892 = 1.953$
- $u_1^1 = 3.9055, \quad u_1^2 = 3.9055/\sqrt{2} = 2.762$ $u_1^2 = 3.9055/\sqrt{3} = 2.255, \quad u_1^2 = 3.9055/\sqrt{4} = 1.953$

Sample sizes in the example

- We plan for the relative effect $\delta_1 = 0.5$
- Sample size for fixed sample z-test:

$$n_f = (1.96 + 0.842)^2 / 0.5^2 = 31.4$$

- ▶ Table 2.7 in WaBr16: inflation factor for design is I = 1.107
- ► Hence, $N_K \ge 1.107 \cdot 31.4 = 34.8$ and $n \ge 34.8/4 = 8.7$

$$\rightarrow n = 9 \rightarrow N_K = 4 \cdot 9 = 36$$

Expected sample sizes (see Table 2.7. in WaBr16):

$$ASN(0) = 0.722 \cdot 36 = 26.0$$
$$ASN(\delta_1) = 0.802 \cdot 36 = 28.9$$

One-Sided Designs

Introduction

We consider now the one-sided hypotheses

$$H_0: \mu \leq \mu_0$$
 against $H_1: \mu > \mu_0$

Without early acceptance we would now choose

$$\mathcal{C}_k^* = (-\infty, u_k), \quad \mathcal{A}_k^* = \emptyset, \quad k = 1, \dots, K - 1$$

 $\mathcal{R}_k^* = [u_k, \infty), \quad k = 1, \dots, K, \quad \mathcal{A}_K^* = (-\infty, u_K).$

Type I error rate control:

$$\mathbf{P}_{\mu_0}\left(\bigcup_{k=1}^K\left\{Z_k^*\geq u_k\right\}\right)=\alpha$$

Δ -class of Wang & Tsiatis (1987)

We choose

$$u_k = c_{WT}(K, \alpha, \Delta)k^{\Delta-0.5}$$

- $ightharpoonup \Delta = 0.5
 ightharpoonup one-sided Pocock design$
- $ightharpoonup \Delta = 0
 ightharpoonup one-sided O'Brien & Fleming design$
- In the one-sided case, sample sizes are "based" on the one-sided fixed size sample z-test

$$n_f = (z_{\alpha} + z_{\beta})/\delta_1^2$$

Two-sided versus one-sided boundaries

- \blacktriangleright As for single stage tests, the *two-sided boundaries at level* α appear to be identical to the *one-sided boundaries at level* $\alpha/2$: compare Tables 2.1 and 2.9 (last column) in WaBr16.
- This is only a numerical coincidence and approximately true.
- \blacktriangleright We illustrate this for the case K=2: The type I error of the two-sided GSD is

$$\begin{split} \mathbf{P}\big(|Z_1^*| \geq u_1\big) + \mathbf{P}\big(|Z_1^*| < u_1, \ |Z_2^*| \geq u_2\big) = \\ 2\Big\{\underbrace{\mathbf{P}\big(Z_1^* \geq u_1\big) + \mathbf{P}\big(Z_1^* < u_1, \ Z_2^* \geq u_2\big)}_{\text{level of one-sided test}} - \underbrace{\mathbf{P}\big(Z_1^* < -u_1, \ Z_2^* \geq u_2\big)}_{\approx 0}\Big\} \end{split}$$

Numerical comparison and conclusion

 P_1 is the type I error rate of the one-sided and P_2 of the two-sided test with $u = u_1 = u_2$:

и	0.4	8.0	1.2	1.6	2.0	2.4
						0.0285025575 0.0285025575

- For sufficiently large u_k , we can use boundaries of the two-sided GSD at level α (e.g. 0.05) for the one-sided GSD at level $\alpha/2$ (0.025).
- However, to be on the safe side, it is recommended to do the calculations for the one-sided GSD.

One-sided GSD with early acceptance

- DeMets & Ware (1980, 1982) suggest to use a constant futility boundary $u^L < u_k$ for all k < K - 1.
- With this futility boundary the decision regions become

$$\mathcal{C}_k^* = (u^L, u_k), \quad \mathcal{A}_k^* = (-\infty, u^L), \quad k = 1, \dots, K - 1$$
$$\mathcal{R}_k^* = (u_k, \infty), \quad k = 1, \dots, K, \quad \mathcal{A}_k^* = (-\infty, u_K)$$

One-sided boundaries

No futility stop iff $u^L = -\infty$.

DeMets & Ware design:

- fix early acceptance (futility) bound

$$u^L \in [-\infty, \infty)$$

rejection one-sided bounds

$$u_k^1 = c_{DW} \, k^{\Delta-0.5} > u_L$$

- Choose c_{DW} such that type I error is α .

(Figure 2.6 of WaBr16)

Properties of One-sided GSD with early acceptance

- See Table 2.9 in WaBr16.
- Notice that rejection boundaries u_k increase with decreasing u^L
- Rejection boundaries u_k change only little with u^L for small K.
- Non-constant $u^L = u^L_{\nu}$ where also suggested by DeMets & Ware and others.

Symmetrical designs of Pampalona & Tsiatis (1994)

• We use one-sided acceptance u_k^0 and rejection boundaries u_k^1 :

$$\begin{aligned} u_k^0 &= \vartheta_k - c^0(K, \alpha, \beta, \Delta) k^{\Delta - 0.5}, \quad k = 1, \dots, K \\ u_k^1 &= c^1(K, \alpha, \beta, \Delta) k^{\Delta - 0.5}, \quad k = 1, \dots, K \\ u_K^0 &= u_K^1 &\longrightarrow \quad \vartheta_k = \sqrt{k} (c^0 + c^1) K^{\Delta - 1}, \quad k = 1, \dots, K \end{aligned}$$

 \blacktriangleright We choose u_k^0 and u_k^1 such that

$$\mathbf{P}_0 \Big(Z_1^* \ge u_k^1 \Big) + \sum_{k=2}^K \mathbf{P}_0 \Big(u_j^0 < Z_j^* \le u_j^1, j < k, \ Z_k^* \ge u_k^1 \Big) = \alpha$$

$$\mathbf{P}_{\vartheta_1} \Big(Z_1^* \ge u_k^1 \Big) + \sum_{k=0}^K \mathbf{P}_{\vartheta_1} \Big(u_j^0 < Z_j^* \le u_j^1, j < k, \ Z_k^* \ge u_k^1 \Big) = 1 - \beta$$

Comments on symmetrical one-sided designs

- Like for two-sided GSD this method controls the type I and II errors rates per design.
- See Tables 2.11 and 2.12 as well as Figure 2.7 in WaBr16 for examples.
- The Tables also contain the inflation factor I as well as average sample sizes under

$$\vartheta_1 = 0, \quad \frac{c^0 + c^1}{2} K^{\Delta - 1}, \quad (c^0 + c^1) K^{\Delta - 1}.$$

- The Pampalona & Tsiatis designs behaves favourable with respect to the average sample sizes.
- Given $\vartheta_1 = (c^0 + c^1)K^{\Delta 1}$ and the planning effect size δ_1 the stage wise sample size need to be chosen such that

$$n \geq (\vartheta_1/\delta_1)^2$$

Binding vs. non-binding futility boundaries

- ln the trial, one may **not** wish to stop when $Z_{\nu}^* \leq u^L$, e.g. because of promising results in secondary endpoints.
- However, ignoring the futility boundary will lead to an inflation of the type I error rate.
- **Solution:** Calculate rejection bound u_k^1 under the assumption of no futility stopping ($u^L = -\infty$) even though we choose $u^L > -\infty$.
- Stopping for futility then leads to a type I error rate $< \alpha$.
- ▶ The finite u^L should be accounted for in the power and sample size calculation. The power is then by sure $> 1 - \beta$.
- Advantage: We have the option to stop with acceptance of H_0 if $Z_{\nu}^* < u^L$, and we having type I and II error rates by sure under control.

Two-sided as two one-sided GSD (Slide I)

Two-sided GSD are commonly used even though the one-sided null hypothesis

$$H^{(+)}: \mu \leq \mu_0$$

is of most relevance for clinical trials.

- Classical two-sided z- and t-tests can be understood as two one-sided tests at level $\alpha/2$.
- This is also true for group sequential designs, however in a more complex sense.
- A two-sided GSD without early acceptance is like two one-sided GSD with binding early acceptance:

If at some stage k, $Z_k^* < -u_k$, then $H^{(+)}$ must be accepted (and the trial is stopped).

Two-sided as two one-sided GSD (Slide II)

▶ In general, we have for the decision regions of a two-sided GSD:

$$\mathcal{C}_k^* = \mathcal{C}_k^{*(-)} \cup \mathcal{C}_k^{*(+)}, \quad \mathcal{R}_k^* = \mathcal{R}_k^{*(-)} \cup \mathcal{R}_k^{*(+)} \quad \mathcal{A}_k^* = \mathcal{A}_k^{*(-)} \cup \mathcal{A}_k^{*(+)}$$

with negative and positive parts indexed by (-) and (+).

- We reject $H_0^{(+)}: \mu \leq \mu_0$ at stage k if $Z_k^* \in \mathcal{R}_k^{*(+)} = [u_k^1, \infty)$,
- ▶ and use for $H_0^{(+)}$ the continuation rejection $C_{\nu}^{*(+)} = (u_{\nu}^0, u_{\nu}^1)$.
- ► This means to accept $H_0^{(+)}$ also if $Z_i^* \in C_i^{*(-)}$ at some stage j.
- ▶ The probability that $Z_j^* \in \mathcal{C}_j^{*(-)}$ and $Z_k^* \ge u_k^1$ for some k > j is usually small (in particular under the alternative).

In this case the stage wise z-scores have "conflicting directions".

If early acceptance is binding, the resulting one-sided GSD is somewhat conservative (has level > $\alpha/2$).