Wydział	Imię i nazwisko:	Rok	Grupa	Zespół
Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej	1. Tomasz Buczek 2. Maciej Mucha	I	IV	IV
PRACOWNIA FIZYCZNA WFIIS AGH	Wahadło fizyczne		Ćwiczenie nr: 1	
Data wykoniania:	Data oddania:	Zwrot do popr.	Data oddania	Data zaliczenia

OCENA:

1 Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali.

2 Część teoretyczna

Fala podłużna to fala, w której drgania odbywają się w kierunku zgodnym z kierunkiem jej rozchodzenia się. Opisuje ją równanie

$$y = Acos(\omega t \pm kx)$$

Prawa Hooke'a: Odkształcenie jest wprost proporcjonalne do wywołującej je siły.

Opisuje to wzór:

$$\Delta l = \frac{Fl}{ES}$$

 Δl - zmiana długości pręta, F - siła odkształcająca, l - długość, S - pole przekroju.

Współczynnik E to właśnie stała nazwana modułem Younga.

Wyprowadzenie wzoru na moduł Younga, który będzie przydatny do późniejszych obliczeń.

Wychodząc od ogólnego wzoru na prawo Hooke'a:

$$\sigma = \varepsilon E$$

 σ - naprężenie, ε - odkształcenie względne

$$\varepsilon = \frac{\delta \Psi}{\delta x}$$

zakres stosowalności prawa Hooke'a

naprężenia przy uwzględnieniu przewężenia

zakres nieliniowych odkształceń nietrwałych i plastycznych

Otrzymujemy wzór na prędkość rozchodzenia się fali w pręcie:

$$v = \sqrt{\frac{E}{\rho}}$$

czyli

$$E = v^2 \rho$$

W pręcie powstaje fala stojąca, odległość między węzłami fali stojące wynosi $l=\frac{1}{2}\lambda$, z tego obliczamy prędkość rozchodznia się fali v=2lf, f - częstotliwość fali.

Postawiając to wcześniejszego wzoru ostatecznie otrzymujemy:

$$E = 4\rho f^2 l^2$$

3 Przebieg ćwiczenia

Układ pomiarowy składa się ze stojaka z prętami i rurami zawieszonymi na niciach, wagi, młotka, śruby mikrometrowej i komputera z mikrofonem z zainstalowanym oprogramowaniem Zelscope.

Przebieg doświadczenia:

- 1. Zważenie pręta lub rury, dokonanie pomiarów długości i wymiarów podstawy, ustalenie rodzaju materiału z jakiego wykonany jest badany obiekt.
- 2. Wyznaczenie za pomocą młotka i programu składowych harmonicznych dla badanego obiektu
- 3. Powtórzenie procedury dla kolejnych obiektów.

4 Wyniki pomiarów

PRĘT 1 (ALUMINIUM)			
Długość l [m]	1.8	Masa m [kg]	0.761
Promień [m]	0.008	Objętość $[m^3]$	0.000085
Grubość ścianki [m]	0.001	Gęstość ro $\left[rac{kg}{m^3} ight]$	8952.94
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f [Hz]	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$
1	1031.25	3.6	3712.5
2	2058.82	1.8	3705.876
3	3088.24	1.2	3705.888
4	4088.24	0.9	3679.416
5	5147.06	0.72	3705.8832
6	6147.06	0.6	3688.236
7	7205.88	0.51	3674.9988
8	8205.88	0.45	3692.646
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	3695.6805
		MODUŁ YOUNGA [GPa]	122.2797

PRET 2 (STAL)			
Długość l [m]	1.8	Masa m [kg]	2.795
Bok podstawy [m]	0.01445	Objętość $[m^3]$	0.0003758445
		Gęstość ro $\left[\frac{kg}{m^3}\right]$	7436.59
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$
1	1429.69	3.6	5146.884
2	2852.94	1.8	5135.292
3	4294.12	1.2	5152.944
4	5735.29	0.9	5161.761
5	7147.06	0.72	5145.8832
6	8588.24	0.6	5152.944
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	5149.2847
		MODUŁ YOUNGA [GPa]	197.1822

PRĘT 3 (MOSIĄDZ)			
Długość l [m]	1	Masa m [kg]	0.099
Promień [m]	0.01	Objętość $[m^3]$	1.20E-05
Grubość ścianki [m]	0.0002	Gęstość ro $[rac{kg}{m^3}]$	8250
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f [Hz]	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$
1	1764.71	2	3529.42
2	3558.82	1	3558.82
3	5414.06	0.67	3627.4202
4	7176.47	0.5	3588.235
5	8970.59	0.4	3588.236
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	3578.42624
		MODUŁ YOUNGA [GPa]	105.6424

PRET 4 (STAL)			
Długość l [m]	1.8	Masa m [kg]	1.138
Promień [m]	0.0052	Objętość [m^3]	0.0001529076
		Gęstość ro $\left[\frac{kg}{m^3}\right]$	7442.4
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f [Hz]	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$
1	1411.76	3.6	5082.336
2	2882.35	1.8	5188.23
3	4264.71	1.2	5117.652
4	5735.29	0.9	5161.761
5	7176.47	0.72	5167.0584
6	8647.06	0.6	5188.236
7	10029.47	0.51	5115.0297
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	5145.7575
		MODUŁ YOUNGA [GPa]	197.066

PRET 5 (STAL)			
Długość l [m]	1.8	Masa m [kg]	0.481
Bok podstawy [m]	0.006	Objętość $[m^3]$	0.0000648
		Gęstość ro $[\frac{kg}{m^3}]$	7422.84
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $[\frac{m}{s}]$
1	1429.69	3.6	5146.884
2	2823.53	1.8	5082.354
3	4264.71	1.2	5117.652
4	5705.88	0.9	5135.292
5	7117.65	0.72	5124.708
6	8588.24	0.6	5152.944
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	5126.639
		MODUŁ YOUNGA [GPa]	195.0903

PRĘT 1 z wymuszonym węzłem na środku (ALUMINIUM)			
Długość l [m]	1.8	Masa m [kg]	0.761
Promień [m]	0.008	Objętość $[m^3]$	0.000085
Grubość ścianki [m]	0.001	Gęstość ro $\left[\frac{kg}{m^3}\right]$	8952.94
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $\left[\frac{m}{s}\right]$
1	1429.69	1.8	2573.442
2	4264.71	0.9	3838.239
3	7117.65	0.51	3630.0015
4	10000	0.4	4000
		ŚREDNIA PRĘDKOŚĆ v $[\frac{m}{s}]$	3510.420625
		MODUŁ YOUNGA [GPa]	110.3276

5 Opracowanie wyników

Dla obliczeń błędów pomiaru przyjęto następujące niepewności:

Dla długości pręta: u(l) = 1[mm]

Dla promienia: u(r) = u(R) = 0, 1[mm]

Dla masy próbki:u(m) = 1[g]Dla częstotliwości:u(f) = 25[Hz]

Niepewność gęstości:

$$\begin{split} u(\rho) &= \sqrt{\left(\frac{\partial \rho}{\partial m} u(m)\right)^2 + \left(\frac{\partial \rho}{\partial l} u(l)\right)^2 + \left(\frac{\partial \rho}{\partial r} u(r)\right)^2 + \left(\frac{\partial \rho}{\partial R} u(R)\right)^2} = \\ &= \sqrt{\left(\frac{1}{l\Pi(R^2-r^2)} u(m)\right)^2 + \left(\frac{-m}{l^2\Pi(R^2-r^2)} u(l)\right)^2 + \left(\frac{-2mr}{l\Pi(R^2-r^2)^2} u(r)\right)^2 + \left(\frac{-2mR}{l\Pi(R^2-r^2)^2} u(R)\right)^2} \end{split}$$

Niepewność długości fali:

$$u(\lambda) = \sqrt{\left(\frac{2}{n}u(l)\right)^2}$$

Niepewność prędkości fali:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Niepewność modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho} u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v} u(v)\right)^2} = \sqrt{\left(v^2 u(\rho)\right)^2 + \left(2\rho v u(v)\right)^2}$$

Nr pręta (materiał)	Niepewność gęstości u(ro) $\left[\frac{kg}{m^3}\right]$	Niepewność prędkości fali u(v) $\left[\frac{m}{s}\right]$	Niepewność moduług Younga u(E) [GPa]
1 (aluminium)	35.4413	90.0115	5.9761
2 (stal)	571.8466	90.0159	16.6563
3 (mosiądz)	80.7742	50.0353	3.1301
4 (stal)	286.3508	90.0157	10.2482
5 (stal)	78.9227	90.0159	7.1581

6 Wnioski

Na podstawie wymiarów pręta oraz pomiaru częstotliwości przy pomocy programu Zelscope wyznaczyliśmy gęstość materiału oraz prędkość rozchodzenia się w nim fali. Dzięki temu obliczyliśmy wartość modułu Younga. Następnie obliczyliśmy niepewność standardową wartości modułu Younga dla każdego z materiałów. Wszystkie wyznaczone wartości modułu Younga zgadzają się z wartościami tabelarycznymi.