# KAD/ADC/109/S1



Full-bridge ADC (voltage excitation, programmable analog gain, 6kHz b/w) – 8ch at 24ksps

**CURTISSWRIGHTDS.COM** 



#### **Key Features**

- Eight full or ½-bridge, potentiometer or differential ended input channels
- Programmable input range (±10mV to ±10V)
- High accuracy (max. 0.08% FSR at unity gain)
- Programmable voltage excitation and balance adjust
- High impedance (>10MΩ) when on/off
- Short on any channel does not affect others
- 16-bit simultaneous sampling on each channel

#### **Applications**

- Bridge sensors
- Differential voltage measurement
- Strain gage measurement

### Overview

The KAD/ADC/109/S1 provides independent excitation for up to eight channels. Each channel has a separate programmable amplifier, programmable filter and A/D converter.

At the heart of the KAD/ADC/109/S1 is a hard-wired state-machine that over-samples all channels at a rate between 96ksps and 192ksps and digitally filters any noise above the user programmable cutoff frequency. This is achieved using cascaded, half-band, decimate by two, fifteen tap, finite-impulse-response (FIR) filters with 32-bit coefficients followed by an 8<sup>th</sup> order Butterworth IIR filter with a default cutoff point set at a quarter of the sampling frequency.

All signals are sampled simultaneously. Thus, when several channels are sampled at different sampling rates, at the start of an acquisition cycle all channels are aligned.



Figure 1: First of eight channels on the KAD/ADC/109/S1

INFO: CURTISSWRIGHTDS.COM EMAIL: DS@CURTISSWRIGHT.COM



## **Specifications**

All values provided in the following specification tables are valid within the operating temperature range specified under "Environmental ratings" in the "General specifications" table. Module specifications are met for up to 97% of Full Scale Range (FSR).

| TABLE 1               | Genera | specific | ations |       |                                                                                                                                                                                                                                   |
|-----------------------|--------|----------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER             | MIN.   | TYP.     | MAX.   | UNITS | CONDITION/DETAILS                                                                                                                                                                                                                 |
| Slots                 | -      | _        | 1      | -     | Can be placed in any user-slot in any combination.                                                                                                                                                                                |
| Mass                  |        |          |        |       |                                                                                                                                                                                                                                   |
|                       | -      | 102      | _      | g     |                                                                                                                                                                                                                                   |
|                       | _      | 3.59     | _      | oz    | Design metric is grams.                                                                                                                                                                                                           |
| Height above chassis  |        |          |        |       | For recommended clearance requirements, see the CON/KAD/002/CP data sheet.                                                                                                                                                        |
| bare connector        | -      | -        | 11     | mm    |                                                                                                                                                                                                                                   |
| bare connector        | -      | _        | 0.43   | in.   | Design metric is millimeters.                                                                                                                                                                                                     |
| Access rate           | -      | _        | 2      | Msps  | Maximum combined access rate for read and write.                                                                                                                                                                                  |
| Power consumption     |        |          |        |       |                                                                                                                                                                                                                                   |
| +5V                   | 100    | _        | 180    | mA    |                                                                                                                                                                                                                                   |
| +7V                   | 40     | _        | 60     | mA    | Excludes current used by excitation.                                                                                                                                                                                              |
| -7V                   | 30     | _        | 50     | mA    | Excludes current used by excitation.                                                                                                                                                                                              |
| +12V                  | 60     | _        | 80     | mA    |                                                                                                                                                                                                                                   |
| -12V                  | 40     | _        | 60     | mA    |                                                                                                                                                                                                                                   |
| total power           | 2.19   | _        | 3.35   | W     | Particular combinations of chassis and Acra KAM-500 modules may have power or current limitations. For details, see <i>TEC/N0T/016 - Power dissipation, TEC/N0T/049 - Power estimation</i> , and the relevant chassis data sheet. |
| Environmental ratings |        |          |        |       | See Environmental Qualifications Handbook.                                                                                                                                                                                        |
| operating temperature | -40    | -        | 85     | °C    | Chassis base/side plate temperature.                                                                                                                                                                                              |
| storage temperature   | -55    | _        | 105    | °C    |                                                                                                                                                                                                                                   |

| TABLE 2                                 | Differential ended analog inputs |      |        |       |                                                                                                                 |
|-----------------------------------------|----------------------------------|------|--------|-------|-----------------------------------------------------------------------------------------------------------------|
| PARAMETER                               | MIN.                             | TYP. | MAX.   | UNITS | CONDITION/DETAILS                                                                                               |
| Inputs                                  | _                                | _    | 8      | -     |                                                                                                                 |
| Sampling rate                           |                                  |      |        |       | While the sampling rate can be set individually, each must have a power of two times any other (1/4, 1/2 2, 4). |
| ANALOG[7:0]                             | 2                                | _    | 24,000 | sps   |                                                                                                                 |
| Input voltage                           |                                  |      |        |       |                                                                                                                 |
| operating range (G <sub>p</sub> = 1)    | -10                              | -    | 10     | V     | Primary gain = 1                                                                                                |
| operating range (G <sub>p</sub> = 10)   | -1                               | _    | 1      | V     | Primary gain = 10                                                                                               |
| operating range (G <sub>p</sub> = 100)  | -100                             | -    | 100    | mV    | Primary gain = 100                                                                                              |
| operating range (G <sub>p</sub> = 1000) | -10                              | _    | 10     | mV    | Primary gain = 1000                                                                                             |
| overvoltage protection                  | -40                              | _    | 40     | V     | Voltages outside of this range can damage input.                                                                |



| TABLE 2                    | Differer | Differential ended analog inputs (continued) |      |                |                                                                                                                |  |  |  |
|----------------------------|----------|----------------------------------------------|------|----------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| PARAMETER                  | MIN.     | TYP.                                         | MAX. | UNITS          | CONDITION/DETAILS                                                                                              |  |  |  |
| DC error                   |          |                                              |      |                | DC signal averaged over 200 samples without excitation.                                                        |  |  |  |
| gain = 1, 10, 100          | _        | _                                            | 0.08 | %FSR           |                                                                                                                |  |  |  |
| gain = 2, 20, 200          | _        | _                                            | 0.14 | %FSR           |                                                                                                                |  |  |  |
| gain = 4, 40, 400          | _        | _                                            | 0.25 | %FSR           |                                                                                                                |  |  |  |
| gain = 8, 80, 800          | _        | _                                            | 0.44 | %FSR           |                                                                                                                |  |  |  |
| gain = 1000                | _        | _                                            | 0.3  | %FSR           |                                                                                                                |  |  |  |
| gain = 2000                | _        | _                                            | 0.6  | %FSR           |                                                                                                                |  |  |  |
| gain = 4000                | -        | _                                            | 1.2  | %FSR           |                                                                                                                |  |  |  |
| Effective number of bits   |          |                                              |      |                |                                                                                                                |  |  |  |
| gain = 1, 10               | 13.5     | _                                            | _    | bits           | $f_{c} \le 2kHz$ and secondary gain of 1 ( $f_{c}$ : filter cutoff frequency).                                 |  |  |  |
| gain = 100                 | 11       | _                                            | _    | bits           | $f_C \le 2kHz$ and secondary gain of 1.                                                                        |  |  |  |
| gain = 1000                | 8        | _                                            | -    | bits           | $f_c \le 2kHz$ and secondary gain of 1.                                                                        |  |  |  |
| Crosstalk                  |          |                                              |      |                |                                                                                                                |  |  |  |
| gain = 1, 10, 100          | _        | _                                            | -60  | dB             |                                                                                                                |  |  |  |
| gain = 1000                | _        | _                                            | -45  | dB             |                                                                                                                |  |  |  |
| Common mode                |          |                                              |      |                |                                                                                                                |  |  |  |
| voltage range              | -10      | _                                            | 10   | V              | Operational voltage range.                                                                                     |  |  |  |
| rejection ratio            | 50       | _                                            | _    | dB             | Applies within the above common mode voltage range, $0 \le f \le f_c$ .                                        |  |  |  |
| Analog filter              |          |                                              |      |                | Analog filter is Butterworth.                                                                                  |  |  |  |
| poles                      | _        | _                                            | 4    | _              |                                                                                                                |  |  |  |
| filter cutoff -3dB         | 11.4     | 12                                           | 12.6 | kHz            |                                                                                                                |  |  |  |
| Digital filter             |          |                                              |      |                | Digital filter is Butterworth.                                                                                 |  |  |  |
| poles                      | -        | _                                            | 8    | _              |                                                                                                                |  |  |  |
| filter cutoff -3dB         | 0.25     | _                                            | 16   | f <sub>s</sub> | The maximum value is limited to 6kHz (f <sub>s</sub> : sampling frequency).                                    |  |  |  |
| 0.1dB bandwidth            | _        | 0.8                                          | -    | f <sub>c</sub> |                                                                                                                |  |  |  |
| aliasing to 0.1dB band     | _        | _                                            | -72  | dB             |                                                                                                                |  |  |  |
| aliasing to f <sub>c</sub> | _        | -                                            | -74  | dB             |                                                                                                                |  |  |  |
| Filter delay               | -        | 0.33                                         | _    | ms             | Where $f_{in} = f_c = 6kHz$ ( $f_{in}$ : input signal frequency). See "Understanding filter delays" on page 8. |  |  |  |
| Input resistance           |          |                                              |      |                |                                                                                                                |  |  |  |
| between inputs             | 10       | _                                            | -    | ΜΩ             | Module powered off.                                                                                            |  |  |  |
| between inputs             | 10       | _                                            | _    | ΜΩ             | Module powered on.                                                                                             |  |  |  |
| each input to GND          | 10       | _                                            | -    | ΜΩ             | Module powered off.                                                                                            |  |  |  |
| each input to GND          | 10       | -                                            | -    | ΜΩ             | Module powered on.                                                                                             |  |  |  |



| TABLE 3                  | Bipolar DC voltage excitation outputs |      |      |                   |                                                        |
|--------------------------|---------------------------------------|------|------|-------------------|--------------------------------------------------------|
| PARAMETER                | MIN.                                  | TYP. | MAX. | UNITS             | CONDITION/DETAILS                                      |
| Outputs                  | _                                     | _    | 8    | _                 |                                                        |
| Output voltage           |                                       |      |      |                   |                                                        |
| operating range          | 0                                     | -    | 5.1  | V                 | Bi-polar excitation: 5V is 10V across the bridge.      |
| resolution               | -                                     | -    | 1.8  | mV                | Bi-polar excitation: 1.8mV is 3.6mV across the bridge. |
| compliance               | _                                     | -    | 30   | mA                | Per channel.                                           |
| short circuit current    | _                                     | -    | 125  | mA                |                                                        |
| short circuit duration   | ∞                                     | -    | _    | s                 | To GND.                                                |
| DC error                 |                                       |      |      |                   |                                                        |
| error                    | -                                     | -    | 0.3  | %FSR              | With a constant $350\Omega$ load.                      |
| noise (gain = 1)         | -                                     | _    | 0.5  | mV <sub>rms</sub> | As measured on analog input.                           |
| noise (gain = 10)        | -                                     | _    | 0.05 | mV <sub>rms</sub> | As measured on analog input.                           |
| noise (gain = 100, 1000) | _                                     | _    | 0.01 | mV <sub>rms</sub> | As measured on analog input.                           |
| Output resistance        | _                                     | 0.5  | _    | Ω                 |                                                        |

| TABLE 4                  | Bridge adjust DC current outputs <sup>1</sup> |      |      |                   |                                                                                                                                                          |
|--------------------------|-----------------------------------------------|------|------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER                | MIN.                                          | TYP. | MAX. | UNITS             | CONDITION/DETAILS                                                                                                                                        |
| Outputs                  | -                                             | _    | 8    | -                 |                                                                                                                                                          |
| Output current           |                                               |      |      |                   |                                                                                                                                                          |
| operating range          | -71                                           | _    | 71   | μA                |                                                                                                                                                          |
| resolution               | -                                             | 35   | -    | nA                |                                                                                                                                                          |
| DC error                 |                                               |      |      |                   |                                                                                                                                                          |
| error                    | -                                             | _    | 2    | %FSR              | With a constant $175\Omega$ load. The impact of this error on the channel reading is less than 0.01%FSR (200 times lower than the error specified here). |
| drift                    | -                                             | _    | 0.15 | %FSR              | Over temperature.                                                                                                                                        |
| noise (gain = 1)         | _                                             | _    | 0.5  | $mV_{rms}$        | As measured on analog input.                                                                                                                             |
| noise (gain = 10)        | -                                             | _    | 0.05 | mV <sub>rms</sub> | As measured on analog input.                                                                                                                             |
| noise (gain = 100, 1000) | -                                             | _    | 0.01 | mV <sub>rms</sub> | As measured on analog input.                                                                                                                             |
| Output resistance        | _                                             | 34.8 | _    | kΩ                |                                                                                                                                                          |

<sup>1.</sup> The adjust line is intended for use in balancing strain gages and should not be used for asymmetric bridge transducers such as accelerometers or pressure transducers unless sensor re-calibration is carried out on a channel-by-channel basis.



## Setting up the KAD/ADC/109/S1

All module setup can be defined in XML using XidML® schemas (see <a href="http://www.xidml.org">http://www.xidml.org</a>).

#### Instrument settings

| SETUP DATA              | CHOICE                                | DEFAULT          | NOTES                                                                                                                                                                               |
|-------------------------|---------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer            | -                                     | -                | -                                                                                                                                                                                   |
| Name                    | ACRA CONTROL                          | ACRA CONTROL     | Name of manufacturer.                                                                                                                                                               |
| PartReference           | KAD/ADC/109/C/S1                      | KAD/ADC/109/C/S1 | The instrument part reference.                                                                                                                                                      |
| SerialNumber            | AB1234                                | AB1234           | Unique name for each module.                                                                                                                                                        |
| Channels                | -                                     | -                | -                                                                                                                                                                                   |
| AnalogIn(7:0)           | _                                     | _                |                                                                                                                                                                                     |
| Analog Input            |                                       | _                |                                                                                                                                                                                     |
| Settings                | -                                     | -                | -                                                                                                                                                                                   |
| Filter Cutoff           | 0.25<br>0.5<br>1<br>2<br>4<br>8<br>16 | 0.25             | Required cutoff point for the filter is the chosen value multiplied by the user sampling frequency. 0.25 is recommended as any higher may lead to aliasing. 1 is the sampling rate. |
| Excitation Amplitude    | 0 to 5.1                              | 0.2              | Required excitation (in V) for the top of the bridge.  Excitation is bipolar so entering 5V means 10V across the bridge.                                                            |
| Balance.Type            | CurrentShunt                          | CurrentShunt     | Specifies the balance type to be carried out on the bridge.                                                                                                                         |
| Balance.Applied         | -71e-6 to 71e-6                       | 0                | Shunt current (in A) applied to the bridge.                                                                                                                                         |
| Balance.BalanceThisTime | True<br>False                         | False            | Specifies if balancing should be carried out this time by software.                                                                                                                 |
| Balance.Tolerance       | 0.01 to 99.99                         | 0.1              | Specifies acceptable tolerance of achieved value vs. target value, expressed as percentage of defined input range.                                                                  |
| Balance.Target          | -10 to 10                             | 0                | Specifies a value. that the channel should be balanced to.                                                                                                                          |
| ShuntCurrent.Applied    | -71e-6 to 71e-6                       | 0                | Shunt mode current (in A) added to the bridge.                                                                                                                                      |

#### Parameter definitions

| NAME/DESCRIPTION         | BASE UNIT | DATA FORMAT  | BITS | REGISTER DEFINITION |
|--------------------------|-----------|--------------|------|---------------------|
| AnalogIn(7:0) Parameters |           |              |      |                     |
| AnalogIn                 | Volt      | OffcotPinon  | 16   | D[15:0]             |
| Analog signal data       | VOIL      | OffsetBinary | 10   | R[15:0]             |

### Configurable parameters

### AnalogIn(7:0)

| SETUP DATA    | CHOICE    | DEFAULT | NOTES                            |
|---------------|-----------|---------|----------------------------------|
| Range Maximum | -10 to 10 | 10      | Range maximum for analog channel |
| Range Minimum | -10 to 10 | -10     | Range minimum for analog channel |

NOTE: It is recommended that names are less than 20 characters, have no white space or contain any of the following five characters "/><\.



## Getting the most from the KAD/ADC/109/S1

### Wiring configurations

Figures 2 to 4 show possible wiring configurations for the KAD/ADC/109/S1.



Figure 2: Second of eight independent ½-bridge channels with matched pair completion resistors



Figure 3: Third of eight independent potentiometer channels

**CURTISSWRIGHTDS.COM** 





Figure 4: Fourth of eight independent differential ended channels

#### Bias current return path

As shown in Figure 4 on page 7, the analog inputs can be used as differential inputs (that is, not from a bridge). In this case, if the signal source is isolated with respect to the KAM-500 (for example a battery), a common-mode resistance between the negative input and ground (GND) should be used to provide a return for bias currents and reduce common-mode noise pick-up. Because the bias currents are in the order of nAs, resistors up to  $10k\Omega$  can be used. In most cases a short  $(0\Omega)$  is recommended.

NOTE: When analog inputs are used as differential inputs, setting the excitation and balance to zero reduces quiescent currents of the module.

#### Using high primary gains

For gains above 1,000, the gain-bandwidth product of the amplifier reduces the bandwidth to 1,000 Hz.

#### Excitation setup

Excitation can contribute error to the overall measurement, so it is recommended to use as close as possible to full-scale excitation, to minimize the percentage error.

For optimal accuracy ensure each channel uses its corresponding excitation. If the excitation is not used, it should be set to the minimum value.

#### Excitation drift on potentiometer configurations

Curtiss-Wright recommends a full-bridge input configuration for the KAD/ADC/109/S1. With this configuration the differential input amplifier removes common mode voltage or common mode pickup noise on the input lines.

For potentiometer circuits where the negative input is tied to ground, excitation drift can have a direct impact on the input signal either as a gain or an offset error. Note that excitation can drift up to 0.3% on an FSR of 5.1V. In the case where both excitation lines drift in the same direction, an offset error is seen in the measurement. The worst case offset is 0.3% of 5.1V and results in a 5.3mV offset of the measurement. This does not happen when full-bridge configurations.

Curtiss-Wright recommends that the negative input is tied to GND as shown in Figure 3 on page 6.

#### Compensation for lead resistance (Excitation Mode set to Voltage)

In bridge applications, if the lead resistance can be measured or estimated, add the voltage drop across the leads to the excitation voltage. For example, for  $0.5\Omega$  leads in a  $350\Omega$  full-bridge, where  $\pm 2.5V$  (5V) is desired across the bridge, the excitation should be set to  $2.5V + (0.5 \times 5 / 350) = 2.507$ .



NOTE: When Excitation Mode is set to Current, the lead's resistance does not need to be compensated for. If sense lines are required, see the KAD/ADC/109/S2.

#### Understanding filter delays

The Acra KAM-500 uniquely samples all signals at the start of an acquisition cycle and at equal intervals of time thereafter. Signals sampled at the same sample rate will always be sampled at the same time independently of how they are stored or transmitted. (This has significant advantages for issues such as time correlation.) However, before signals are sampled they are filtered to remove noise components that might alias. The recommended cutoff point is one quarter the sampling frequency, as this results in the maximum filtering of aliasing frequencies.

The Acra KAM-500 filters signals using over-sampling signal processing techniques. The following figure shows a delay for an  $8^{th}$  order filter where  $f_c = 1 \text{kHz}$ . All filters cause a delay inversely proportional to the filter cutoff frequency ( $f_c$ ), so to calculate the delay for other  $f_c$  values, multiply the delay by  $1 \text{kHz} / f_c$ . The frequency axis then needs to be rescaled to the new  $f_c$  by dividing the frequency values by  $(1 \text{kHz} / f_c)$ . For example, an  $8^{th}$  order Butterworth filter with an  $f_c$  of 1 kHz delays a 1 kHz signal by 1 ms; a filter with an  $f_c$  of 10 Hz delays a 10 Hz signal by 0.1 s. The delay for IIR filters (for example Butterworth) varies with the input frequency.



Figure 5: Filter delay for  $8^{th}$  order Butterworth filter where  $f_c = 1 \text{kHz}$ 

The filter delay for the KAD/ADC/109/S1 is:

$$T_D \approx T_A + \frac{1}{f_C} + T_{Butterworth8}(f)$$

T<sub>D</sub> is the filter delay

 $T_A$  (analog filter delay)  $\approx 0$ 

f<sub>c</sub> is the filter cutoff frequency.

#### Additional delay sources

Primary gains higher than 1 cause an additional delay from 1<sup>st</sup> order filters in the instrumentation amplifier. That additional delay is 2µs for a gain of 10, 15µs for a gain of 100, and 150µs for a gain of 1,000. In applications where time correlation is more important than suppression of aliasing, set the same cutoff point on all channels, even if the sampling rates are different.



## Connector pinout of the KAD/ADC/109/S1

| PIN | NAME       | SEE SPECIFICATIONS TABLE                                                     | COMMENT                                        |
|-----|------------|------------------------------------------------------------------------------|------------------------------------------------|
| 1   | ANALOG(0)- | Differential ended analog inputs                                             | Analog input                                   |
| 2   | EXC_V(0)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 0      |
| 3   | EXC_V(0)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 0   |
| 4   | ANALOG(0)- | Differential ended analog inputs                                             | Analog input                                   |
| 5   | ANALOG(0)+ | Differential ended analog inputs                                             | Analog input                                   |
| 6   | ADJUST(0)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 7   | ANALOG(1)- | Differential ended analog inputs                                             | Analog input                                   |
| 8   | EXC_V(1)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 1      |
| 9   | EXC_V(1)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 1   |
| 10  | ANALOG(1)- | Differential ended analog inputs                                             | Analog input                                   |
| 11  | ANALOG(1)+ | Differential ended analog inputs                                             | Analog input                                   |
| 12  | ADJUST(1)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 13  | ANALOG(2)- | Differential ended analog inputs                                             | Analog input                                   |
| 14  | EXC_V(2)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 2      |
| 15  | EXC_V(2)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 2   |
| 16  | ANALOG(2)- | Differential ended analog inputs                                             | Analog input                                   |
| 17  | ANALOG(2)+ | Differential ended analog inputs                                             | Analog input                                   |
| 18  | ADJUST(2)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 19  | ANALOG(3)- | Differential ended analog inputs                                             | Analog input                                   |
| 20  | EXC_V(3)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 3      |
| 21  | EXC_V(3)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 3   |
| 22  | ANALOG(3)- | Differential ended analog inputs                                             | Analog input                                   |
| 23  | ANALOG(3)+ | Differential ended analog inputs                                             | Analog input                                   |
| 24  | ADJUST(3)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 25  | ANALOG(4)- | Differential ended analog inputs                                             | Analog input                                   |
| 26  | EXC_V(4)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 4      |
| 27  | EXC_V(4)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 4   |
| 28  | ANALOG(4)- | Differential ended analog inputs                                             | Analog input                                   |
| 29  | ANALOG(4)+ | Differential ended analog inputs                                             | Analog input                                   |
| 30  | ADJUST(4)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 31  | ANALOG(5)- | Differential ended analog inputs                                             | Analog input                                   |
| 32  | EXC_V(5)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 5      |
| 33  | EXC_V(5)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 5   |
| 34  | ANALOG(5)- | Differential ended analog inputs                                             | Analog input                                   |
| 35  | ANALOG(5)+ | Differential ended analog inputs                                             | Analog input                                   |
| 36  | ADJUST(5)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 37  | ANALOG(6)- | Differential ended analog inputs                                             | Analog input                                   |
| 38  | EXC_V(6)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 6      |
| 39  | EXC_V(6)-  | Bipolar DC voltage excitation outputs                                        | Excitation to bottom of bridge for channel 6   |
| 40  | ANALOG(6)- | Differential ended analog inputs                                             | Analog input                                   |
| 41  | ANALOG(6)+ | Differential ended analog inputs  Differential ended analog inputs           | Analog input                                   |
| 42  | ADJUST(6)  | Bridge adjust DC current outputs                                             |                                                |
| 43  | ANALOG(7)- | Differential ended analog inputs                                             | Used to balance/calibrate bridge  Analog input |
| 44  | EXC_V(7)+  | Bipolar DC voltage excitation outputs                                        | Excitation to top of bridge for channel 7      |
| 45  | EXC_V(7)+  | Bipolar DC voltage excitation outputs  Bipolar DC voltage excitation outputs | Excitation to top of bridge for channel 7      |
| 46  | ANALOG(7)- | Differential ended analog inputs                                             |                                                |
|     |            | Differential ended analog inputs  Differential ended analog inputs           | Analog input                                   |
| 47  | ANALOG(7)+ |                                                                              | Analog input                                   |
| 48  | ADJUST(7)  | Bridge adjust DC current outputs                                             | Used to balance/calibrate bridge               |
| 49  | DNC        |                                                                              | Do not connect                                 |
| 50  | DNC        | Internal many d                                                              | Do not connect                                 |
| 51  | GND        | Internal ground                                                              | D. H. J. C. L.                                 |
| 52  | CHASSIS    | Chassis                                                                      | Double-density connector only                  |



## Ordering information

| PART NUMBER      | DESCRIPTION                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|
| KAD/ADC/109/C/S1 | Full-bridge ADC (voltage excitation, programmable analog gain, 6kHz b/w) – 8ch at 24ksps (with 52-way double-density connector)  |
| KAM/ADC/109/C/S1 | Full-bridge ADC (voltage excitation, programmable analog gain, 6kHz b/w) – 8ch at 24ksps (with 51-way micro-miniature connector) |

By default, the standard mating connector (CON/KAD/002/CP for KAD modules; ACC/CON/008/04 for KAM modules) is included with each module in the shipment. Its part number will be added to the Confirmation of Order unless an alternative option is specified (see the *Cables* data sheet). In this data sheet, KAD/ADC/109/S1 refers to both the KAD and KAM version of the module.

The KAD/ADC/109/S1 uses power from the  $\pm 7V$  power line for excitation and therefore cannot be used with the KAM/CHS/04L, KAM/CHS/05F or KAM/CHS/03F chassis.

### Revision history

| REVISION         | DIFFERENCES                                                                                             | STATUS                           |
|------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|
| KAD/ADC/109/C/S1 | High impedance per channel when powered off, enhanced mechanical strength and improved format switching | Recommended for new programs     |
| KAD/ADC/109/B/S1 | Reduced power consumption on the ±7V power lines                                                        | Not recommended for new programs |
| KAD/ADC/109/S1   | 8 channel bridge A/D converter with excitation and signal conditioning                                  | Not recommended for new programs |

## Supporting software

| SOFTWARE     | DETAILS                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| DAS Studio 3 | User interface for setup and management of data acquisition, network switches, recorders and ground stations in an integrated environment |
| KSM-500      | This module is supported by the KSM-500 suite of software tools                                                                           |

### Related documentation

| DOCUMENT    | DETAILS                              |
|-------------|--------------------------------------|
| DOC/DBK/001 | KAM-500 Databook                     |
| DOC/HBK/002 | Environmental Qualification Handbook |
| DOC/MAN/018 | KSM-500 Databook                     |
| DOC/MAN/030 | DAS Studio 3 User Manual             |
| TEC/NOT/001 | Strain gages and ideal bridges       |
| TEC/NOT/016 | Power dissipation                    |
| TEC/NOT/049 | Power estimation                     |