

CLASE DE PROBLEMAS N° 11: Electroquímica

1) Determinar el número de oxidación del átomo resaltado en cada especie:

NO⁻2 OCI-AqI **Pb**5O₄ MnO_2 **IO**-3

 AI_2O_3 $KMnO_4$ Cr207K2 Ca²⁺ **SO**₂ $(AI(H_2O)_4(OH)_2)^{+}$

2) Identificar los elementos que experimentan cambios en su estado de oxidación, en las siguientes reacciones:

a- 2 Fe + 3
$$Cl_2$$
 \longrightarrow 2 Fe Cl_3
b- $2Cu^{2+}(ac)$ + $2H_2O(1)$ \longrightarrow 2 $Cu(s)$ + O_2 + 4 $H^+(ac)$
c- $BaSO_4(s)$ + 4 $C(s)$ \longrightarrow $BaS(s)$ + 4 $CO(g)$

- 3) El sulfuro de plomo(II) sólido reacciona a alta temperatura con el oxígeno del aire para formar óxido de plomo(II) y dióxido de azufre.
 - a- Escriba una ecuación química balanceada para esta reacción.
 - b- ¿Cuál sustancia es el agente reductor y cuál el agente oxidante?
- 4) Completar y balancear cada uno de las siguientes ecuaciones de óxido-reducción:

a-
$$Cr_2O_7^{2-}(ac) + I^{-}(ac)$$
 $\longrightarrow Cr^{3+}(ac) + IO_3^{-}(ac)$ (Solución ácida)
b- $MnO_4^{-}(ac) + Br^{-}(ac)$ $\longrightarrow MnO_2(s) + BrO_3^{-}(ac)$ (Solución básica)

b-
$$MnO_2(s) + Br^{-1}(ac)$$
 $\longrightarrow MnO_2(s) + BrO_3(ac)$ (Solución básica)

c-
$$Cu(s) + NO_3^-(ac) \longrightarrow Cu^{2+}(ac) + NO(q)$$
 (Solución ácida)

c-
$$Cu(s) + NO_3^-(ac)$$
 $\longrightarrow Cu^{2+}(ac) + NO(g)$ (Solución ácida)
d- $I_2(s) + Cu^{2+}(ac)$ $\longrightarrow IO_3^-(ac) + Cu(s)$ (Solución ácida)

e-
$$Br_2(1)$$
 $\longrightarrow BrO_3^-(ac) + Br^-(ac)$ (Solución básica)
f- $Pb(s) + PbO_2(s) + H_2SO_4(ac)$ $\longrightarrow PbSO_4(s)$

f- Pb (s) + PbO₂ (s) + H₂SO₄ (ac)
$$\longrightarrow$$
 PbSO₄ (s)

$$g-ClO_3^-(ac)+Cr^{+3}(ac)$$
 \longrightarrow $CrO_4^-(ac)+Cl^-(ac)$ (Solución básica)

5) Prediga si las siguientes reacciones ocurrirán espontáneamente en disolución acuosa a 25°C. Suponga que todas las concentraciones iniciales de las especies disueltas son 1 M.

$$a- Ca(s) + Cd^{2+}(ac) \longrightarrow Ca^{2+}(ac) + Cd(s)$$

 $b- 2Br^{-}(ac) + Sn^{2+}(ac) \longrightarrow Br_{2}(l) + Sn(s)$
 $c- Cu^{+}(ac) + Fe^{3+}(ac) \longrightarrow Cu^{2+}(ac) + Fe^{2+}(ac)$

- 6) Prediga si ocurrirá una reacción espontánea o no:
- a- cuando un trozo de alambre de plata se introduce en una disolución de ZnSO4;
- b- cuando se añade iodo a la disolución de NaBr;
- c- cuando un trozo de cinc metálico se introduce en una disolución de NiSO4.

Suponga que todas las especies se encuentran en su estado estándar.

- 7) Escriba las reacciones para las células electroquímicas cuyos esquemas se dan a continuación y calcule el E°cel de cada una de las reacciones:
- a Al(s)/Al + 3(1M)//Sn2 + (1M)/Sn(s)
- b- Pt (s)/Fe 2+(1M), Fe3+(1M)//Ag+(1M)/Ag(s).
- 8) Considera la pila representada por:

$$Zn(s)/ZnCl_2(ac)$$
; $Cl_2(q, 1 atm)$; $Cl^-(ac)/C$

Calcula:

- a- E°
- b- E para la pila cuando la concentración de ZnCl₂ es 0,15 mol/l

9) Calcular la constante de equilibrio de la siguiente reacción:

$$Fe^{3+} + I^{-} \longrightarrow Fe^{2+} + \frac{1}{2}I_{2}$$

10) a- Dada la siguiente ecuación:

$$2 Co^{3+} (ac) + Zn(s) \longrightarrow 2 Co^{2+} (ac) + Zn^{2+} (ac)$$

Calcule la fem de la pila bajo las siguientes condiciones: $[Co^{3+}] = 0.25 \text{ M}$, $[Co^{2+}] = 0.040 \text{ M}$, $[Zn^{2+}] = 0.023 \text{ M}$.

- b- Escriba la pila en forma convencional.
- c- Calcular la constante de equilibrio.
- 11) a- Calcule la fem de una pila que utiliza la reacción:

$$Co(s) + I_2(s) \longrightarrow Co^{2+}(ac) + 2 I^{-}(ac)$$

- a 298 K cuando $[Co^{2+}] = 0.016 \text{ M y } [I^{-}] = 0.0060 \text{ M}.$
- b- Escriba la pila en forma convencional.
- c- Calcular la constante de equilibrio.
- 12) Escriba una ecuación para representar la oxidación del $Cl^{-}(aq)$ a $Cl_{2}(g)$ mediante $PbO_{2}(s)$ en medio ácido. ¿Tendrá lugar espontáneamente esta reacción en sentido directo si todos los otros reactivos y productos están en sus estados estándar y
- $a-[H^{\dagger}]=6,0 M$
- b- [H⁺]= 1,2 M
- c-pH=4,25? Justifique su respuesta.
- 13) En condiciones normales, la siguiente reacción no es espontánea:

$$Br^{-}(ac) + 2MnO_{4}^{-}(ac) + H_{2}O(1)$$
 \longrightarrow $BrO_{3}^{-}(ac) + 2MnO_{2}(s) + 2OH^{-}(ac)$

Las condiciones de reacción se ajustan de modo que E= 1,10 V haciendo que:

$$[Br^{-}] = [MnO_4] = 1.5 M y [BrO_3] = 0.5 M.$$

- a- ¿Cuál es la concentración de los iones oxhidrilos en esta celda?.
- b- ¿Cuál es el pH de la disolución en la celda?.
- 14) Dibuje una celda para la electrólisis del NaCl fundido, utilizando electrodos inertes. Indique las direcciones en las cuales los electrones y los iones se movilizan. Dé las reacciones de los electrodos y marque el ánodo y el cátodo, indicando los signos correspondientes.
- 15) Fundamenta las siguientes frases:
- a- El magnesio metálico no puede ser obtenido por electrólisis de cloruro de magnesio acuoso, MgCl2.
- b- No hay iones sodio en la reacción global de la célula para la electrólisis del cloruro sódico acuoso
- 16) En la electrólisis continua de cada una de las siguientes disoluciones, a pH= 7 y a $25^{\circ}C$, predecir el producto principal de cada electrodo si no hay sobretensiones:
 - a-NiSO₄ 1M con electrodos de Ni
 - b- NiBr₂ 1M con electrodos inertes
 - c- Na₂SO₄ 1M con electrodos de Cu