IC105: Probability and Statistics

2021-22-M

Lecture 9: Moment Generating Function

Instructor: Dr. Kuldeep Kumar Kataria

Scribe:

Theorem 9.1. Let X be a continuous (discrete) r.v. Then

$$E(X) = \int_0^\infty P(X > y) dy - \int_{-\infty}^0 P(X < y) dy,$$

provided E(X) is finite.

Proof. We will provide the proof for the case when X is a continuous r.v. with p.d.f., say f. We have

$$\begin{split} E(X) &= \int_{-\infty}^{\infty} x f(x) \mathrm{d}x \\ &= \int_{-\infty}^{0} x f(x) \mathrm{d}x + \int_{0}^{\infty} x f(x) \mathrm{d}x \\ &= -\int_{-\infty}^{0} \int_{x}^{0} f(x) \mathrm{d}y \mathrm{d}x + \int_{0}^{\infty} \int_{0}^{x} f(x) \mathrm{d}y \mathrm{d}x \\ &= -\int_{-\infty}^{0} \int_{-\infty}^{y} f(x) \mathrm{d}x \mathrm{d}y + \int_{0}^{\infty} \int_{y}^{\infty} f(x) \mathrm{d}x \mathrm{d}y = -\int_{-\infty}^{0} P(X < y) \mathrm{d}y + \int_{0}^{\infty} P(X > y) \mathrm{d}y. \end{split}$$

This completes the proof.

Corollary 9.2. (a) Suppose that X is a continuous (discrete) r.v. with $P(X \ge 0) = 1$. Then

$$E(X) = \int_0^\infty P(X > y) \mathrm{d}y.$$

(b) Suppose that $P(X \in \{0, \pm 1, \pm 2, \dots\}) = 1$. Then

$$E(X) = \sum_{n=1}^{\infty} P(X \ge n) - \sum_{n=1}^{\infty} P(X \le -n).$$

(c) Suppose that $P(X \in \{0, 1, 2, \dots\}) = 1$. Then $E(X) = \sum_{n=1}^{\infty} P(X \ge n)$.

Proof. Exercise. \Box

The following theorem suggests that for any r.v. X and any function $h : \mathbb{R} \to \mathbb{R}$, E(h(X)) can be directly found using p.m.f. / p.d.f. of X.

Theorem 9.3. (a) Let X be a discrete r.v. with p.m.f $f(\cdot)$ and support S. Let $h : \mathbb{R} \to \mathbb{R}$ be a given function and let Z = h(X). Then

$$E(Z) = \sum_{x \in S} h(x) f(x) \ \ \textit{provided} \ \sum_{x \in S} |h(x)| f(x) < \infty.$$

(b) Let X be a continuous r.v. with p.d.f $f(\cdot)$ and let $h: \mathbb{R} \to \mathbb{R}$ be a given function. If Z = h(X), then

$$E(Z) = \int_{-\infty}^{\infty} h(x)f(x)dx$$
, provided $\int_{-\infty}^{\infty} |h(x)|f(x)dx < \infty$.

Proof. We will provide the proof of (a) only. The proof of (b) follows on similar lines. The support of Z = h(X) is T = h(S). We have

$$\begin{split} E(Z) &= \sum_{t \in T} t P(Z = t) = \sum_{t \in T} t P(h(X) = t) \\ &= \sum_{t \in T} t \sum_{\{x \in S: h(x) = t\}} P(X = x) \\ &= \sum_{\{x \in S: h(x) = t\}} \sum_{t \in T} t P(X = x) \\ &= \sum_{\{x \in S: h(x) = t\}} \sum_{t \in T} h(x) P(X = x) \\ &= \sum_{t \in T} \sum_{\{x \in S: h(x) = t\}} h(x) P(X = x) \\ &= \sum_{t \in T} \sum_{\{x \in S: h(x) = t\}} h(x) P(X = x) = \sum_{x \in S} h(x) P(X = x). \end{split}$$

This completes the proof.

Example 9.4. (a) Let the r.v. X have the p.m.f.

$$f(x) = \begin{cases} 1/6, & \text{if } x = -2, -1, 0, 1, 2, 3, \\ 0, & \text{otherwise.} \end{cases}$$

Find $E(X^2)$.

(b) Let the r.v. X have the p.d.f.

$$f(x) = \begin{cases} 2x, & \text{if } 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find $E(X^3)$.

Solution: (a)
$$E(X^2) = \sum_{x \in S} x^2 f(x) = 4 \times \frac{1}{6} + 1 \times \frac{1}{6} + 0 \times \frac{1}{6} + 1 \times \frac{1}{6} + 4 \times \frac{1}{6} + 9 \times \frac{1}{6} = \frac{19}{6}$$
.

(b)
$$E(X^3) = \int_{-\infty}^{\infty} x^3 f(x) dx = 2 \int_0^1 x^4 dx = \frac{2}{5}$$
.

Theorem 9.5. Let X be a discrete or continuous r.v. with p.m.f./ p.d.f. f and support S. Let $h_i : \mathbb{R} \to \mathbb{R}$, i = 1, 2, ..., m be given functions.

П

(a) Then, for real constants c_1, c_2, \ldots, c_m

$$E\left(\sum_{i=1}^{m} c_i h_i(X)\right) = \sum_{i=1}^{m} c_i E(h_i(X)),$$

provided involved expectations are finite.

(b) Let $h_1(x) \leq h_2(x), \forall x \in S$. Then,

$$E(h_1(X)) \leq E(h_2(X))$$
, provided involved expectations are finite.

In particular, if E(X) is finite and $P(a \le X \le b) = 1$, for some real constants a and b (a < b) then $a \le E(X) \le b$.

- (c) If $P(X \ge 0) = 1$ and E(X) = 0, then P(X = 0) = 1.
- (d) If E(X) is finite then $|E(X)| \leq E(|X|)$.
- (e) Let a and b be two real constants. Then,

$$E(aX + b) = aE(X) + b$$
, provided involved expectations are finite.

Proof. The proofs of (a), (b) and (e) follows from the definition of expectation of a r.v.

(c) We will provide the proof for the case when X is a continuous r.v. Then

$$P(X > 0) = P\left(\bigcup_{n=1}^{\infty} \left\{X \ge \frac{1}{n}\right\}\right)$$

$$= \lim_{n \to \infty} P\left(X \ge \frac{1}{n}\right), \quad \left(\left\{X \ge \frac{1}{n}\right\}\uparrow\right)$$

$$= \lim_{n \to \infty} \int_{1/n}^{\infty} f(x) dx$$

$$\leq \lim_{n \to \infty} \int_{1/n}^{\infty} nx f(x) dx, \quad (x \in [1/n, \infty) \implies nx \ge 1)$$

$$\leq \lim_{n \to \infty} \left[n \int_{0}^{\infty} x f(x) dx\right]$$

$$= \lim_{n \to \infty} [nE(X)] = 0 \implies P(X = 0) = 1.$$

(d) We have

$$-|X| \leq X \leq |X| \implies E(-|X|) \leq E(X) \leq E(|X|) \implies |E(X)| \leq E(|X|).$$

This completes the proof.

Some Special Expectations:

- (i) h(x) = x, $E(X) = \mu'_1 = \text{mean of } X$.
- (ii) $h(x) = x^r$, $r = \{1, 2, \dots\}$, $E(X^r) = \mu'_r = r$ th moment of X about origin.
- (iii) $h(x) = |x|^r$, $r = \{1, 2, \dots\}$, $E(|X|^r) = r$ th absolute moment of X about origin.
- (iv) $h(x) = (x \mu_1')^r$, $r = \{1, 2, \dots\}$, $E(X \mu_1')^r = \mu_r = r$ th moment of X about its mean or rth central moment.
- (v) $\mu_2 = E(X \mu_1')^2 = \sigma^2$ = variance of X. We also denote it by Var(X). And, $\sqrt{\mu_2} = \sqrt{E(X \mu_1')^2} = \sigma$ is called the standard deviation of X (positive square root of the variance of r.v. X).

Remark 9.6. (i) $Var(X) = \sigma^2 = E(X - \mu_1')^2 = E(X^2 - 2\mu_1'X + (\mu_1')^2) = E(X^2) - 2(\mu_1')^2 + (\mu_1')^2 = E(X^2) - (E(X))^2$.

(ii) Since $(X - \mu_1')^2 \ge 0$, we have

$$Var(X) = E(X - \mu_1')^2 \ge 0 \implies E(X^2) \ge (E(X))^2.$$

(iii)
$$Var(X) = 0 \iff E(X - \mu_1')^2 = 0 \iff P(X = E(X)) = 1.$$

Theorem 9.7. Let X be a r.v. such that $E(|X|^s) < \infty$, for some s > 0. Then, $E(|X|^r) < \infty$, $\forall 0 < r < s$.

Proof. Note that $|X|^r \le \max\{|X|^s,1\} \le |X|^s+1$. This implies that $E(|X|^r) \le E(|X|^s+1) = E(|X|^s)+1 < \infty$. Thus, the result follows.

9.1. Moment Generating Function

Let X be a r.v with d.f. F and p.d.f. / p.m.f. $f(\cdot)$.

Definition 9.8. We say that the moment generating function (m.g.f.) of X (denoted by $M_X(\cdot)$) exists and equals

$$M_X(t) = E(e^{tX})$$
, provided $E(e^{tX})$ is finite in $(-h, h)$ for some $h > 0$.

Remark 9.9. (i) $M_X(0) = 1$, thus $A = \{t \in \mathbb{R} : E(e^{tX}) \text{ is finite}\} \neq \phi$.

- (ii) $M_X(t) > 0$, $\forall t \in A = \{s \in \mathbb{R} : E(e^{sX}) \text{ is finite}\}.$
- (iii) Suppose that $M_X(t)$ exists and is finite on (-h,h) for some h>0. For real constants c and d, let Y=cX+d. Then, the m.g.f. of Y also exists and is finite on $\left(-\frac{h}{|c|},\frac{h}{|c|}\right)$ (with the convention that $\pm \frac{a}{0}=\pm \infty$, if a>0). Moreover,

$$M_Y(t) = E(e^{t(cX+d)}) = e^{td} M_X(ct), \quad t \in \left(-\frac{h}{|c|}, \frac{h}{|c|}\right).$$

(iv) The name m.g.f. to the transform M_X is motivated by the fact that M_X can be used to generate moments of any r.v., as illustrated in the following theorem.

Theorem 9.10. Let X be a r.v. with m.g.f. M_X that is finite on (-h,h), h>0. Then,

- (a) For each $r \in \{1, 2, ...\}$, $\mu'_r = E(X^r)$ is finite;
- (b) For each $r \in \{1, 2, ...\}$, $\mu'_r = E(X^r) = M_X^{(r)}(0)$, where

$$M_X^{(r)}(0) = \left[\frac{\mathrm{d}^r}{\mathrm{d}t^r} M_X(t)\right]_{t=0}, \ \ \text{the rth derivative of } M_X \ \text{at the point 0};$$

(c) $M_X(t) = \sum_{r=0}^{\infty} \frac{t^r}{r!} \mu'_r$, $t \in (-h,h)$, so that μ'_r is equal to coefficient of $\frac{t^r}{r!}$ $(r=1,2,\ldots)$ in the Maclaurin's series expansion of $M_X(t)$ around t=0.

Proof. (a) We have

$$E(e^{tX}) < \infty, \ \forall \ t \in (-h,h)$$

$$\Longrightarrow \int_{-\infty}^{0} e^{tx} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h) \ \text{ and } \int_{0}^{\infty} e^{tx} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h)$$

$$\Longrightarrow \int_{-\infty}^{0} e^{-t|x|} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h) \ \text{ and } \int_{0}^{\infty} e^{t|x|} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h)$$

$$\Longrightarrow \int_{-\infty}^{0} e^{|t||x|} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h) \ \text{ and } \int_{0}^{\infty} e^{|t||x|} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h)$$

$$\Longrightarrow \int_{-\infty}^{\infty} e^{|tx|} f(x) \mathrm{d}x < \infty, \ \forall \ t \in (-h,h);$$

here $f(\cdot)$ denotes the p.d.f. of r.v. X.

Fix $r \in \{1, 2, ...\}$ and $t \in (-h, h) - \{0\}$. Then, $\lim_{|x| \to \infty} \frac{|x|^r}{e^{|tx|}} = 0$ and therefore \exists a positive real number $A_{r,t}$ such that $|x|^r < e^{|tx|}$, $\forall |x| > A_{r,t}$. Therefore

$$E(|X|^{r}) = \int_{-\infty}^{\infty} |x|^{r} f(x) dx$$

$$= \int_{|x| \le A_{r,t}} |x|^{r} f(x) dx + \int_{|x| > A_{r,t}} |x|^{r} f(x) dx$$

$$\le A_{r,t}^{r} \int_{|x| \le A_{r,t}} f(x) dx + \int_{|x| > A_{r,t}} e^{|tx|} f(x) dx$$

$$\le A_{r,t}^{r} + \int_{-\infty}^{\infty} e^{|tx|} f(x) dx < \infty, \quad r = 1, 2, \dots$$

(b)
$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$
, $M_X^{(r)}(t) = \frac{d^r}{dt^r} \int_{-\infty}^{\infty} e^{tx} f(x) dx$, $r = 1, 2, ...$

Using the arguments of advanced calculus it can be shown that of $M_X(t) = E(e^{tX}) < \infty$, $\forall t \in (-h, h)$, then the derivative can be passed through the integral sign. Therefore,

$$M_X^{(r)}(t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}^r}{\mathrm{d}t^r} \left(e^{tx} f(x) \right) \mathrm{d}x = \int_{-\infty}^{\infty} x^r e^{tx} f(x) \mathrm{d}x, \quad r = 1, 2, \dots$$

and

$$M_X^{(r)}(0) = \int_{-\infty}^{\infty} x^r f(x) \mathrm{d}x = E(X^r).$$

(c)
$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \int_{-\infty}^{\infty} \left(\sum_{r=0}^{\infty} \frac{t^r x^r}{r!} \right) f(x) dx.$$

Under the assumption that $M_X(t) = E(e^{tX}) < \infty$, $\forall t \in (-h, h)$, using arguments of advanced calculus, it can be shown that the summation sign can be passed through the integral sign. Thus,

$$M_X(t) = \sum_{r=0}^{\infty} \frac{t^r}{r!} \int_{-\infty}^{\infty} x^r f(x) dx = \sum_{r=0}^{\infty} \frac{t^r}{r!} E(X^r), \quad r = 1, 2, \dots$$

This completes the proof.

Corollary 9.11. Under the notation and assumption of the above theorem define $\psi_X(t) = \ln(M_X(t)), \ t \in (-h, h)$. Then,

$$\mu'_1 = \mu = E(X) = \psi_X^{(1)}(0)$$
 and $\mu_2 = \sigma^2 = \text{Var}(X) = \psi_X^{(2)}(0)$.

Proof. For $t \in (-h, h)$

$$\psi_X^{(1)}(t) = \frac{M_X^{(1)}(t)}{M_X(t)} \implies \psi_X^{(1)}(0) = M_X^{(1)}(0) = E(X) \quad \text{(since } M_X(0) = 1).$$

Also,

$$\psi_X^{(2)}(t) = \frac{M_X(t)M_X^{(2)}(t) - (M_X^{(1)}(t))^2}{(M_X(t))^2} \implies \psi_X^{(2)}(0) = M_X^{(2)}(0) - (M_X^{(1)}(0))^2 = E(X^2) - (E(X))^2 = \text{Var}(X).$$

This completes the proof.

Example 9.12. (a) Let X be a discrete r.v. with p.m.f.

$$f_X(x) = P(X = x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!}, & x = 0, 1, 2, \dots, \\ 0, & \text{otherwise}, \end{cases}$$

where $\lambda > 0$. Show that the m.g.f. of X exists and is finite on whole \mathbb{R} . Find $M_X(t)$, mean, variance of X and $E(X^3)$. (b) Let X be a continuous r.v. with p.d.f.

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & \text{otherwise}, \end{cases}$$

where $\lambda > 0$. Find m.g.f., mean, variance of X and $E(X^r)$, r = 1, 2, ... (provided they exist).

(c) Let X be a continuous r.v. having the p.d.f. $f(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < \infty$ (called Cauchy p.d.f. and corresponding probability distribution is called Cauchy distribution). Show that the m.g.f. of X does not exist.

Solution: (a) We have

$$M_X(t) = \sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} = e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)}, \ \forall \ t \in \mathbb{R}.$$

Thus, m.g.f. of X exists and finite on whole of \mathbb{R} and $M_X(t) = e^{\lambda(e^t - 1)}, \ t \in \mathbb{R}$.

Now
$$\psi_X(t) = \ln(M_X(t)) = \lambda(e^t - 1) \implies \psi_X^{(1)}(t) = \lambda e^t = \psi_X^{(2)}(t), \ \forall \ t \in \mathbb{R}.$$

Thus,
$$E(X) = \psi_X^{(1)}(0) = \lambda$$
 and $\operatorname{Var}(X) = \psi_X^{(2)}(0) = \lambda$. Again,

$$\begin{split} M_X^{(1)}(t) &= \lambda e^t e^{\lambda(e^t - 1)} = \lambda e^t M_X(t) \implies M_X^{(1)}(0) = E(X) = \lambda, \\ M_X^{(2)}(t) &= \lambda e^t M_X^{(1)}(t) + \lambda e^t M_X(t) \implies M_X^{(2)}(0) = E(X^2) = \lambda^2 + \lambda, \\ M_Y^{(3)}(t) &= \lambda e^t M_Y^{(2)}(t) + 2\lambda e^t M_Y^{(1)}(t) + \lambda e^t M_X(t) \implies M_Y^{(3)}(0) = E(X^3) = \lambda^3 + 3\lambda^2 + \lambda. \end{split}$$

Alternatively, for $t \in \mathbb{R}$,

$$M_X(t) = e^{\lambda(e^t - 1)}$$

$$= 1 + \lambda(e^t - 1) + \frac{\lambda^2(e^t - 1)^2}{2!} + \frac{\lambda^3(e^t - 1)^3}{3!} + \cdots$$

$$= 1 + \lambda \left(\sum_{j=1}^{\infty} \frac{t^j}{j!}\right) + \frac{\lambda^2}{2!} \left(\sum_{j=1}^{\infty} \frac{t^j}{j!}\right)^2 + \frac{\lambda^3}{3!} \left(\sum_{j=1}^{\infty} \frac{t^j}{j!}\right)^3 + \cdots$$

$$= 1 + \lambda t + t^2 \left(\frac{\lambda}{2!} + \frac{\lambda^2}{2!}\right) + t^3 \left(\frac{\lambda}{3!} + \frac{2\lambda^2}{(2!)^2} + \frac{\lambda^3}{3!}\right) + \cdots$$

Thus,

$$E(X) = \text{coefficient of } t \text{ in the expansion of } M_X(t) = \lambda,$$

$$E(X^2) = \text{coefficient of } \frac{t^2}{2!} \text{ in the expansion of } M_X(t) = \lambda^2 + \lambda,$$

$$E(X^3) = \text{coefficient of } \frac{t^3}{3!} \text{ in the expansion of } M_X(t) = \lambda^3 + 3\lambda^2 + \lambda.$$

(b)
$$\int_{-\infty}^{\infty} e^{tx} f_X(x) dx = \lambda \int_{-\infty}^{\infty} e^{-\lambda(1-t/\lambda)x} dx < \infty$$
, if $t < \lambda$. Thus the m.g.f. of X exists and, for $t < \lambda$,

$$M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-1} = 1 + \frac{t}{\lambda} + \frac{t^2}{\lambda^2} + \dots + \frac{t^r}{\lambda^r} + \dots$$

For r = 1, 2, ...

$$\mu_r'=E(X^r)=\text{coefficient of }\frac{t^r}{r!}\text{ in the expansion of }M_X(t)=\frac{r!}{\lambda^r},\ \ r\in\{1,2,\dots\}.$$

Alternatively,

$$M_X^{(1)}(t) = \frac{1}{\lambda} \left(1 - \frac{t}{\lambda}\right)^{-2}, \ M_X^{(2)}(t) = \frac{2}{\lambda^2} \left(1 - \frac{t}{\lambda}\right)^{-3} \ \text{ and } \ M_X^{(r)}(t) = \frac{r!}{\lambda^r} \left(1 - \frac{t}{\lambda}\right)^{-(r+1)}, \ t < \lambda.$$

This implies

$$E(X^r) = M_X^{(r)}(0) = \frac{r!}{\lambda^r}, \ r = 1, 2, \dots \text{ and } \operatorname{Var}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

(c) Since E(X) is not finite, the m.g.f. of X does not exist.

Definition 9.13 (Equality in Distribution). Let X and Y be two r.v.'s with d.f.'s F_X and F_Y , respectively. We say that X and Y have the same distribution (written as $X \stackrel{d}{=} Y$) if $F_X(x) = F_Y(x)$, $\forall x \in \mathbb{R}$.

Remark 9.14. (i) Let X and Y be two discrete r.v.'s with p.m.f.'s f_X and f_Y , respectively. Then,

$$X \stackrel{d}{=} Y \iff f_X(x) = f_Y(x), \ \forall \ x \in \mathbb{R}.$$

- (ii) Let X and Y be two continuous r.v.'s. Then, $X \stackrel{d}{=} Y$ iff there exist versions of p.d.f.'s f_X and f_Y of X and Y, respectively, such that $f_X(x) = f_Y(x), \ \forall \ x \in \mathbb{R}$.
- (iii) Suppose $X \stackrel{d}{=} Y$, then for any Borel measurable function $h : \mathbb{R} \to \mathbb{R}$, $h(X) \stackrel{d}{=} h(Y)$ and hence E(h(X)) = E(h(Y)).

Theorem 9.15. Let X and Y be r.v.'s such that for some c > 0, $M_X(t) = M_Y(t)$, $\forall t \in (-c, c)$. Then, $X \stackrel{d}{=} Y$.

Proof. Special Case: Suppose that X and Y are discrete r.v.'s with support $S_X = S_Y = \{1, 2, \dots\}, p_k = P(X = k)$ and $q_k = P(Y = k), k = 1, 2, \dots$ Then

$$\begin{split} M_X(t) &= M_Y(t), \ \forall \ t \in (-c,c), \text{for some } c > 0 \\ &\Longrightarrow \sum_{k=1}^{\infty} e^{kt} p_k = \sum_{k=1}^{\infty} e^{kt} q_k, \ \ \forall \ t \in (-c,c) \\ &\Longrightarrow \sum_{k=1}^{\infty} \Lambda^k p_k = \sum_{k=1}^{\infty} \Lambda^k q_k, \ \ \forall \ \Lambda \in (e^{-c},e^c) \\ &\Longrightarrow p_k = q_k, \ \ \forall \ k = 1,2,\ldots, \end{split}$$

since if two power series are equal over an interval then their coefficients are the same. Thus, $X \stackrel{d}{=} Y$.

Example 9.16. For any $p \in (0,1)$ and positive integer n, let $X_{p,n}$ be a discrete r.v. with p.m.f.

$$f_{p,n}(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & \text{if } x = \{0, 1, \dots, n\}, \\ 0, & \text{otherwise.} \end{cases}$$

Here, $p \in (0,1)$ and $n \in \mathbb{N}$. (Such a r.v. or probability distribution is called binomial r.v. or distribution with n trails and probability of success p). Define $Y_{p,n} = n - X_{p,n}$. Using the m.g.f. of $X_{p,n}$, show that $Y_{p,n} \stackrel{d}{=} X_{1-p,n}$. Find $E(X_{1/2,n})$.

Solution: We have

$$M_{X_{p,n}}(t) = E\left(e^{tX_{p,n}}\right) = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=0}^{n} \binom{n}{x} (e^{t}p)^{x} (1-p)^{n-x} = (1-p+pe^{t})^{n}, \ t \in \mathbb{R}.$$

Now

$$\begin{split} M_{Y_{p,n}}(t) &= E\left(e^{tY_{p,n}}\right) = E\left(e^{t(n-X_{p,n})}\right) \\ &= e^{nt}M_{X_{p,n}}(-t) = e^{nt}(1-p+pe^{-t})^n \\ &= (p+(1-p)e^t)^n = (1-(1-p)+(1-p)e^t)^n = M_{X_{1-n,n}}(t), \ \forall \ t \in \mathbb{R}. \end{split}$$

Thus, $Y_{p,n} \stackrel{d}{=} X_{1-p,n}$.

Alternatively.

$$\begin{split} f_{Y_{p,n}}(y) &= P(Y_{p,n} = y) \\ &= P(X_{p,n} = n - y) \\ &= \begin{cases} \binom{n}{n-y} p^{n-y} (1-p)^{n-(n-y)}, & \text{if } n-y = \{0,1,\dots,n\}, \\ 0, & \text{otherwise.} \end{cases} \\ &= \begin{cases} \binom{n}{y} (1-p)^y (1-(1-p))^{n-y}, & \text{if } y = \{0,1,\dots,n\}, \\ 0, & \text{otherwise.} \end{cases} \\ &= f_{X_{1-p,n}}(y), \ \forall \, y \in \mathbb{R}. \end{split}$$

Thus, $Y_{p,n} \stackrel{d}{=} X_{1-p,n}$.

Now for p = 1/2, $X_{1/2,n} \stackrel{d}{=} n - X_{1/2,n}$. Thus, $E(X_{1/2,n}) = E(n - X_{1/2,n}) \implies E(X_{1/2,n}) = n/2$.

Example 9.17. Let X be a r.v. with p.d.f. $f_X(x) = \frac{e^{-|x|}}{2}$, $-\infty < x < \infty$ and let Y = -X. Show that $Y \stackrel{d}{=} X$ and hence show that E(X) = 0.

Solution: We have

$$M_Y(t) = E(e^{tY}) = E(e^{-tX}) = \int_{-\infty}^{\infty} e^{-tx} \frac{e^{-|x|}}{2} dx = \int_{-\infty}^{\infty} e^{tx} \frac{e^{-|x|}}{2} dx = M_X(t), \ \forall t \in (-1, 1).$$

$$\begin{split} \left[M_X(t) &= \int_{-\infty}^{\infty} e^{tx} \frac{e^{-|x|}}{2} \mathrm{d}x = \int_{-\infty}^{0} e^{tx} \frac{e^x}{2} \mathrm{d}x + \int_{0}^{\infty} e^{tx} \frac{e^{-x}}{2} \mathrm{d}x \\ &= \frac{1}{2} \left(\int_{0}^{\infty} e^{-(1+t)x} \mathrm{d}x + \int_{0}^{\infty} e^{-(1-t)x} \mathrm{d}x \right) \\ &= \frac{1}{2} \left(\frac{1}{1+t} + \frac{1}{1-t} \right) = \frac{1}{1-t^2}, \ \forall \, t \in (-1,1) \implies X \stackrel{d}{=} Y. \end{split}$$

Alternatively, the p.d.f. of Y is

$$f_Y(y) = \frac{e^{-|y|/2}}{2} = f_X(y), \ \forall -\infty < y < \infty \implies X \stackrel{d}{=} Y.$$

Thus,
$$E(Y) = E(X) \implies E(-X) = E(X) \implies E(X) = 0$$
 (since $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$).