Hausaufgabe 5 (1) (6 Punkte) Abgabe: 11. Juli 2012

Implementieren Sie die Suche nach kürzesten Wegen in gerichteten Graphen mit N Knoten und M Kanten!

Hinweise

- Der Graph ist als ADT zu implementieren. Seine Knoten sind von 0 bis N-1 durchnummeriert.
- Als Kantengewichte sind **positive** und **negative** ganze Zahlen **ungleich 0** zulässig. Der Betrag einer Zahl muss kleiner als 1000 sein. Die Nichtexistenz einer Kante ist durch den Wert 9999 (∞) zu kennzeichnen.
- Implementieren Sie auf Basis der in der Vorlesung vorgestellten Verfahren von Dijkstra und Floyd-Warshal zwei Methoden zur Berechnung des kürzesten Weges zwischen einem Start- und einem Zielknoten.
- Der Dijkstra-Algorithmus ist mit Hilfe einer **Prioritätswarteschlange** zu realisieren. Die Prioritätswarteschlange zu realisieren. Die Prioritätswarteschlange ist als **eigenständiger ADT** mit Hilfe eines **Heaps** zu implementieren.
- Schreiben Sie ein Programm, dass die Knoten und Kanten des Graphen sowie Beispielanfragen zur Wegberechnung aus einer Textdatei einliest. Der Dateiname ist via Kommandozeile zu übergeben.
- Auf Grundlage der gelesenen Graphdaten ist eine Instanz Ihres Graph-ADTs zu erzeugen, die Adjazenzmatrix formatiert auf dem Bildschirm auszugeben sowie die Beispielanfragen sowohl mit Dijkstraals auch Floyd-Warshal-Methode zu berechnen und deren Ergebnisse auf dem Bildschirm auszugeben.
- Ihr Programm muss sich mit GCC übersetzen lassen. Bibliotheksfunktionalität ist nur für Ein- und Ausgabe erlaubt. Fehler in der Textdatei können Sie ausschließen bzw. müssen nicht abgefangen werden.

Zusatzfrage

Unter welchen Umständen liefern Floyd-Warshal- und Dijkstra-Algorithmus unterschiedliche Ergebnisse?

Hausaufgabe 5 (2) (6 Punkte)

Aufbau der Textdatei

Anzahl der Knoten N

Anzahl der Kanten M Startknoten₁ Endknoten₁ Gewicht₁

Startknoten₂ Endknoten₂ Gewicht₂

- - -

Startknoten_M Endknoten_M Gewicht_M

Anzahl der Anfragen Q

Startknoten₁ Zielknoten₁

Startknoten₂ Zielknoten₂

. . .

Startknoten_Q Zielknoten_Q

Beispiel- Bildschirmausgabe für Beispieldatei datei

Adjazenzmatrix:

1								
10	9999	9999	9999	9999	9999	9999	2	
0 6 2	4	9999	10	2	9999	9999	9999	
1 0 4	9999	9999	9999	9999	-5	9999	9999	
1 2 10 1 3 2	9999	9999	11	9999	8	9999	4	
2 4 -5	9999	9999	9999	9999	9999	7	9999	
3 2 11	9999	9999	9999	9999	9999	9999	9999	
3 4 8	9999	9999	9999	4	9999	9999	9999	
3 6 4								
4 5 7	Kosten							
6 3 4	von 1	nach	6: Flo	yd–War	shal:	6	Dijkstra:	6
4	von 3	nach	5: Flo	yd–War	shal:	13	Dijkstra:	15
1 6	von 0	nach	4: Flo	yd–War	shal:	12	Dijkstra:	14
3 5 0 4	von 5	nach	0: Flo	yd–War	shal:	9999	Dijkstra:	9999
₹ ₹								

Die Beispieldatei steht auch zum Download bereit (HA5-Graph.dat)

Graph aus Beispieldatei visualisiert

7

