996

all $\lambda, \mu \in K$, we have

$$\varphi(u_1 + u_2, v) = \varphi(u_1, v) + \varphi(u_2, v)$$

$$\varphi(u, v_1 + v_2) = \varphi(u, v_1) + \varphi(u, v_2)$$

$$\varphi(\lambda u, v) = \lambda \varphi(u, v)$$

$$\varphi(u, \mu v) = \mu \varphi(u, v).$$

A bilinear form as in Definition 29.1 is sometimes called a *pairing*. The first two conditions imply that $\varphi(0, v) = \varphi(u, 0) = 0$ for all $u \in E$ and all $v \in F$.

If E = F, observe that

$$\varphi(\lambda u + \mu v, \lambda u + \mu v) = \lambda \varphi(u, \lambda u + \mu v) + \mu \varphi(v, \lambda u + \mu v)$$
$$= \lambda^2 \varphi(u, u) + \lambda \mu \varphi(u, v) + \lambda \mu \varphi(v, u) + \mu^2 \varphi(v, v).$$

If we let $\lambda = \mu = 1$, we get

$$\varphi(u+v,u+v) = \varphi(u,u) + \varphi(u,v) + \varphi(v,u) + \varphi(v,v).$$

If φ is *symmetric*, which means that

$$\varphi(u,v) = \varphi(v,u)$$
 for all $u,v \in E$,

then

$$2\varphi(u,v) = \varphi(u+v,u+v) - \varphi(u,u) - \varphi(v,v). \tag{*}$$

The function Φ defined such that

$$\Phi(u) = \varphi(u, u) \quad u \in E,$$

is called the *quadratic form* associated with φ . If the field K is not of characteristic 2, then φ is completely determined by its quadratic form Φ . The symmetric bilinear form φ is called the *polar form* of Φ . This suggests the following definition.

Definition 29.2. A function $\Phi \colon E \to K$ is a *quadratic form* on E if the following conditions hold:

- (1) We have $\Phi(\lambda u) = \lambda^2 \Phi(u)$, for all $u \in E$ and all $\lambda \in E$.
- (2) The map φ' given by $\varphi'(u,v) = \Phi(u+v) \Phi(u) \Phi(v)$ is bilinear. Obviously, the map φ' is symmetric.

Since
$$\Phi(x+x) = \Phi(2x) = 4\Phi(x)$$
, we have

$$\varphi'(u, u) = 2\Phi(u) \quad u \in E.$$