HSG.SRT.C.8

10.6 Special right triangles

- 1. Isosceles right $\triangle ABC$ is shown with legs AC = BC = 10 as marked.
 - 450 (a) Write down θ .
 - (b) Find the length of hypotenuse AB.

(c) Write down $\tan A = \frac{10}{10}$

(e) Find $\sin A =$ 10 = 1

- 2. Given right triangle $\triangle ABC$ with base AC=1 and hypotenuse AB=2 as marked.
 - (a) Find the altitude BC = h.

$$h^{2}+1^{2}=2^{2}$$
 $h^{2}=4-1=3$
 $h=\sqrt{3}$

- (b) $\triangle ABC$ is reflected across \overline{BC} . Mark the lengths of the sides of its image $\triangle DBC$
- (c) Write down the angle measure of $\angle A$. 60
- (d) Write down the angle measure of $\angle ABC$.

- (e) Write down $\cos A$. $= \frac{1}{2}$
- (f) Write down $\sin A$. = $\sqrt{3}$

3. In the diagram below, $\triangle ABC$ is inscribed in circle O. Show that $\overline{AB} \perp \overline{BC}$.

$$m_{AB}^{=} = \frac{4}{2} = 2$$
 $m_{BC} = \frac{0-4}{10-2} = -\frac{4}{8} = -\frac{2}{2}$
 $(m_{AB})(m_{BC}) = (2)(-\frac{1}{2}) = -1$
 $\Rightarrow AB + BC$

4. In the diagram below, $\triangle ABC$ has vertices with coordinates A(1,2), B(8,3) and C(4,6).

Find the length of each side of $\triangle ABC$, showing that it is isosceles and not equilateral.