

数据挖掘

支持向量机分类

2024年11月

02 深入SVM

03 非线性SVM

简介

SVM (Support Vector Machine) 是一种二分类模型,是特征空间上的间隔最大的线性分类器,其学习策略是间隔最大化,最终可转化为一个凸二次规划问题求解

• 来历

- 思想由Vladimir Vapnik (弗拉基米尔·瓦普尼克)和他的同事于1964年提出
- 1992年由Boser等通过核方法得到了非线性SVM
- 90年代后得到快速发展并衍生出一系列改进和扩展算法,在机器学习和模式识别领域得到广泛应用

- 传统的统计模式识别方法在进行机器学习时,强调经验风险最小化。
 而单纯的经验风险最小化会产生"过学习问题",其泛化能力较差。
- 泛化能力是指:将学习机器(即预测函数,或称学习函数、学习模型) 对未来输出进行正确预测的能力。

Training Validation Testing

• "过学习问题": 某些情况下, 当训练误差过小反而会导致泛化能力的下降。

VC 维: $h_1 \leq h_2 \leq h_3$

- 根据统计学习理论,学习机器的实际风险由经验风险值和置信范围值两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化置信范围值,因此其泛化能力较差。
- Vapnik于1995年提出的支持向量机(Support Vector Machine, SVM)以训练 误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM 是一种基于结构风险最小化准则的学习方法,其泛化能力明显优于一些传统 的学习方法。

- 由于SVM 的求解最后转化成二次规划问题的求解,因此SVM 的解是全局唯一的最优解
- SVM在解决小样本、非线性及高维模式识别问题中表现出许 多特有的优势,并能够推广应用到函数拟合等其他机器学习 问题中。

分类标准起源:线性分类器

- 线性分类器的目标
 - 假设x表示数据点, y表示类别(-1,1)
 - 目标: 找一个超平面把数据分成两类, 超平面方程可表示为:

$$w^T x + b = 0$$

分类标准起源: Logistic 回归

Logistic回归

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

- 将特征的线性组合作为自变量,自变量取值为负无穷到正无穷, 使用Logistic函数(sigmoid函数)将自变量映射到(0,1)上
- x是n维度特征向量,g是Logisitc函数
- 若 $\theta^T x > 0$,则 $h_{\theta}(x) > 0.5$,x属于y=1的类
- 若 $\theta^T x \leq 0$,则 $h_{\theta}(x) \leq 0.5$,x属于y=0的类

分类标准起源: Logistic 回归

- Logistic变形
 - 将结果标签y=0和y=1替换为y=-1和y=1
 - 将 $\theta^T x = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n (x_0 = 1)$ 中的 θ_0 替换为b,将 $\theta_1 x_1 + \dots + \theta_n x_n$ 替换为 $w^T x$,有:

$$\theta^T x = w^T x + b$$

• 也就是说线性分类函数跟Logistic回归的形式化表示

$$h_{\theta}(x) = g(\theta^T x) = g(w^T x + b)$$

• 将上述函数g(z)映射到y=1和y=-1上,映射关系为:

$$g(z) = \begin{cases} 1 & z \ge 0 \\ -1 & z < 0 \end{cases}$$

线性分类的一个例子

线性分类的一个例子

许多决策边界可以分割这些数据点出为两类,我们选取哪一个?

02 深入SVM

03 非线性SVM

Since we want to maximize the gap, we need to minimize $\|\vec{w}\|$ or equivalently minimize $\frac{1}{2}\|\vec{w}\|^2$

应用几何知识,两根平 行线的距离为常数项相 减后除以法向量的模长

We know that

$$D = \left| b_1 - b_2 \right| / \left\| \vec{w} \right\|$$

Therefore:

$$D = 2/\|\vec{w}\|$$

最小化w跟最小化w平 方是等价的,之所以这 些做,是因为这样能够 把问题变成二次规划问 题,而二次规划问题是 有通用的解法的

 $(\frac{1}{2}$ is convenient for taking derivative later on)

In summary:

Want to minimize $\frac{1}{2} \|\vec{w}\|^2$ subject to $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$ for i = 1, ..., NThen given a new instance x, the classifier is $f(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$

$$g(x) = \langle w, x \rangle + b$$

$$= \langle \sum_{i=1}^{n} (\alpha_i y_i x_i), x \rangle + b$$

"primal formulation of linear SVMs"

Minimize
$$\underbrace{\sum_{i=1}^n w_i^2}_{\text{objective function}}$$
 subject to $\underbrace{y_i(\vec{w}\cdot\vec{x_i}+b)-1\geq 0}_{\text{objective function}}$ for $i=1,\ldots,N$

Gap(Margin):
$$D = 2/\|\vec{w}\|$$

Problem Transformation: $\max D \rightarrow \min w^2 \rightarrow \min 1/2(w^2)$

$$g(x) = \langle w, x \rangle + b$$

$$= \langle \sum_{i=1}^{n} (\alpha_i y_i x_i), x \rangle + b$$

我们分类问题也被转化成一个带约束的最小值的问题:

min
$$\frac{1}{2} \| \mathbf{w} \|^2$$
 subject to $y_{\{(\mathbf{w} x_i^2) + b\} - 1 \ge 0 \ (i = 1, 2, ..., J) (l 是样本数)$

在这个问题中,自变量就是w,而目标函数是w的二次函数, 所有的约束条件都是w的线性函数。因此它是一个凸二次规划问题。

用惩罚项来表达限制条件,从而能够转化带限制的优化问题 为无限制的优化问题

$$\min_{w,b} \frac{1}{2} \|w\|^2 + \text{penality term}$$

• 为训练数据中的每个数据样本,定义penality term如下:

$$\max_{\alpha_i \ge 0} \alpha_i (1 - y_i(w^T x_i + b))$$

● 从而可以重写SVM的优化问题:

$$\min \{ \frac{1}{2} \| w \|^2 + \sum_{i=1}^n \max_{\alpha_i \ge 0} \alpha_i (1 - y_i (w^T x_i + b)) \}$$

$$= \min_{w,b} \max_{\{\alpha_i \ge 0\}} \{ \frac{1}{2} \| w \|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$$

$$= \min_{w,b} \max_{\{\alpha_i \ge 0\}} \{ \frac{1}{2} \| w \|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$$

● 通过交换"max"和"min",形式化为对偶问题(1):

$$\min_{w,b} \max_{\{\alpha_{i} \geq 0\}} \left\{ \frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T}x_{i} + b)) \right\} \qquad \mathbf{g(x)} = <\mathbf{w}, \mathbf{x} > +\mathbf{b}$$

$$= \max_{\{\alpha_{i} \geq 0\}} \min_{w,b} \left\{ \frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T}x_{i} + b)) \right\}$$

$$= \lim_{\{\alpha_{i} \geq 0\}} \sum_{w,b} \left\{ \frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T}x_{i} + b)) \right\}$$

• 求解该对偶问题,在每一个固定的拉格朗日乘子 α_i 下,求解满足最小化 $J(w,b;\alpha)$ 的w和b

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} = 0 \qquad (1)$$
$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \qquad (2)$$

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0$$
 (1)

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

 $\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0 \qquad (2) \quad \mathbf{5}$ 持点理论解释 $= \langle \sum_{i=1}^{n} (\boldsymbol{\alpha}_i y_i \mathbf{x}_i), \mathbf{x} \rangle + \mathbf{b}$ • 基于上式(1)可以得到, $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

$$g(x) = \langle w, x \rangle + b$$

$$=<\sum_{i=1}^n (\alpha_i y_i x_i), x>+b$$

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0$$
 (1)

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

• Fix
$$L(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j)$$

$$g(x) = < w, x > +b$$

$$=<\sum_{i=1}^n (\alpha_i y_i x_i), x>+b$$

$$\min_{w,b} \max_{\{\alpha_i \ge 0\}} \left\{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \right\}$$

$$= \max_{\{\alpha_i \ge 0\}} \min_{w,b} \{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$$

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0$$
 (1)

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (2) **支持点理论解释**

• 基于上式(1)可以得到,
$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

• 所以
$$L(w,b,\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i}^{T} x_{j})$$
• 原始的优化问题(1)变成如下问题(2):

$$\min_{w,b} \max_{\{\alpha_{i} \geq 0\}} \{\frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T} x_{i} + b))\}$$

$$= \max_{\{\alpha_{i} \geq 0\}} \min_{w,b} \{\frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T} x_{i} + b))\}$$

原始的优化问题(1)变成如下问题(2):

$$\max_{\{\alpha_i \geq 0\}} \{ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j (x_i^T x_j) \} \qquad \min_{w,b} \max_{\{\alpha_i \geq 0\}} \{ \frac{1}{2} ||w||^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$$

s.t. $\alpha_i \geq 0, \forall i$,

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$g(x) = < w, x > +b$$

$$= < \sum_{i=1}^{n} (\alpha_{i} y_{i} x_{i}), x > +b$$

$$\min_{w,b} \max_{\{\alpha_i \ge 0\}} \left\{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \right\}$$

$$= \max_{\{\alpha_i \ge 0\}} \min_{w,b} \{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$$

$$\min_{w,b} \max_{\{\alpha_i \ge 0\}} \{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$$

$$= \max_{\{\alpha_i \ge 0\}} \quad \min_{w,b} \left\{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \right\}$$

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0$$
 (1)

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (2) **支持点理论解释**

• 基于上式(1)可以得到,
$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

• 所以
$$L(w,b,\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i}^{T} x_{j})$$
• 原始的优化问题(1)变成如下问题(2):

$$\min_{w,b} \max_{\{\alpha_{i} \geq 0\}} \{\frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T} x_{i} + b))\}$$

$$\lim_{w,b} \{\frac{1}{2} \|w\|^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i}(w^{T} x_{i} + b))\}$$

原始的优化问题(1)变成如下问题(2):

$$\alpha) = \sum_{i=1}^{\infty} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{\infty} \alpha_i \alpha_j y_i y_j (x_i^T x_j)$$

$$\max_{\{\alpha_{i} \geq 0\}} \{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i}^{T} x_{j}) \}$$

$$\min_{w,b} \max_{\{\alpha_{i} \geq 0\}} \{ \frac{1}{2} ||w||^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} (w^{T} x_{i} + b)) \}$$

$$S.t. \ \alpha_{i} \geq 0, \ \forall i,$$

$$\sum_{\{\alpha_{i} \geq 0\}} \alpha_{i} y_{i} = 0$$

$$\sum_{u,b} \{ \frac{1}{2} ||w||^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} (w^{T} x_{i} + b)) \}$$

$$\sum_{u,b} \{ \alpha_{i} \geq 0 \}$$

$$\sum_{u,b} \{ \frac{1}{2} ||w||^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} (w^{T} x_{i} + b)) \}$$

$$\sum_{u,b} \{ \alpha_{i} \geq 0 \}$$

$$g(x) = < w, x > +b$$

$$=<\sum_{i=1}^n(\alpha_iy_ix_i),x>+b$$

$$\min_{w,b} \max_{\{\alpha_i \ge 0\}} \left\{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \right\}$$

$$= \max_{\{\alpha_i \ge 0\}} \min_{w,b} \left\{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \right\}$$

$$L(w,b,\alpha)$$

仍然是一个二次规划问题,可以求 解到全局最优解。(方法: SMO)

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0 \tag{1}$$

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0 \tag{2}$$

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (2) **支持点理论解释**

- 基于上式(1)可以得到, $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$
- $\qquad \text{Ff} \boxtimes L(w,b,\alpha) = \sum_{i=1}^{n} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \qquad \qquad \min_{w,b} \max_{\{\alpha_i \geq 0\}} \{\frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i (1 y_i (w^T x_i + b))\}$ $= \max_{\{\alpha_i \ge 0\}} \min_{w,b} \{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (w^T x_i + b)) \}$
- 原始的优化问题(1)变成如下问题(2):

$$\max_{\{\alpha_{i} \geq 0\}} \{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i}^{T} x_{j}) \}$$

$$\min_{w,b} \max_{\{\alpha_{i} \geq 0\}} \{ \frac{1}{2} ||w||^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} (w^{T} x_{i} + b)) \}$$

$$s.t. \ \alpha_{i} \geq 0, \forall i,$$

$$= \max_{\{\alpha_{i} \geq 0\}} \min_{w,b} \{ \frac{1}{2} ||w||^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} (w^{T} x_{i} + b)) \}$$

$$\sum_{L(w,b,\alpha)} \sum_{L(w,b,\alpha)} \sum_{$$

- 得到问题的解 $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ 一般来说,解仅含有部分非零 一般来说,解仅含有部分非零 的对应非零值
- 仍然是一个二次规划问题, 可以求 解到全局最优解。(方法: SMO)

g(x) = < w, x > +b

 $= < \sum_{i=1}^{n} (\alpha_i y_i x_i), x > +b$

- 所谓支持向量,即对应非零向量

SVM目标函数求解:对偶问题求解

- 发现
 - 所有非支持向量对应的系数α都等于0

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i (y_i(w^T x_i + b) - 1)$$

SVM目标函数求解:对偶问题求解

- 发现
 - 所有非支持向量对应的系数α都等于0

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1)$$

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

SVM目标函数求解:稀疏性理论解释

最终模型:

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i^{\top} \boldsymbol{x} + b$$

KKT条件:

$$\begin{cases} \alpha_i \ge 0, \\ y_i f(\boldsymbol{x}_i) \ge 1, \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1) = 0. \end{cases}$$

$$y_i f(\boldsymbol{x}_i) > 1 \quad \Rightarrow \quad \alpha_i = 0$$

支持向量机解的稀疏性:训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关。

SVM分类

- x的分类
 - 预测x的分类时,就是将x代入到 $f(x) = w^T x + b$ 中,算出结果,根据其正负号判断其类别
 - 根据前面推导

$$w^* = \sum_{i=1}^n \alpha_i y_i x_i$$

• 可得分类函数为

$$f(x) = (\sum_{i=1}^{n} \alpha_i y_i x_i)^T x + b$$
$$= \sum_{i=1}^{n} \alpha_i y_i \langle x_i, x \rangle + b$$

• 可见新点x的类别预测,实际上只需要计算x与训练数据点的内积即可

一个例子

$$\max_{\{\alpha_{i} \geq 0\}} \{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i}^{T} x_{j}) \}$$

s.t. $\alpha_i \geq 0, \forall i$,

$$x_1 = (0, 0), y_1 = +1$$

$$x_2 = (1, 0), y_2 = +1$$

$$x_3 = (2, 0), y_3 = -1$$

$$x_4 = (0, 2), y_4 = -1$$

$$Q(\alpha) = (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) - \frac{1}{2}(\alpha_2^2 - 4\alpha_2\alpha_3 + 4\alpha_3^2 + 4\alpha_4^2)$$

可调用Matlab中的二次规划程序,求得 α_1 , α_2 , α_3 , α_4 的值, 进而求得w和b的值。

一个例子

$$\begin{cases} \alpha_1 = 0 \\ \alpha_2 = 1 \end{cases}$$
$$\alpha_3 = 3/4$$
$$\alpha_4 = 1/4$$

$$w = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

$$b = -\frac{1}{2} \left[-\frac{1}{2}, -\frac{1}{2} \right] \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \frac{3}{4}$$
$$g(x) = 3 - 2x_1 - 2x_2 = 0$$

02 深入SVM

03 非线性SVM

基于软间隔的C-SVM

基于软裕量的C-SVM

• 概述:

- 经典SVM的基本假设是样本之间线性可分。但这在实践中常常 并不合理——线性不可分是更普遍的现象。
- 为了解决线性不可分的情况, Cortes和Vapnik于1995年提出通 过修改和扩展上述裕量最大化问题来予以解决。
- 这种方法的核心思想是:不再像经典SVM那样要求所有的训练样本均能被正确划分,而是允许一定数量的训练样本被分错,也即训练过程容忍一定程度的分类误差。这样,训练过程挑选的是一个尽可能能够正确划分训练样本的超平面,而训练的目标仍然是最大化该超平面与分类正确的、最近的正/负例训练样本之间的距离(仍然称之为裕量——软裕量)。

基于软间隔的C-SVM

基于软间隔的C-SVM

- 形式化:
 - 具体的,这种所谓软间隔方法引入了松弛变量ξi(≥0),用以表征或者说度量分类器针对训练样本xi的差错程度。则最优划分平面求解的优化问题转化为:

$$\min_{(\mathbf{w},b)} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \right\}$$
s.t. $(y_i (\mathbf{w} \mathbf{x}_i + b) \ge 1 - \xi_i) \text{ and } (\xi_i \ge 0), \quad \forall i = 1, ..., n$

其中C为预先选定的调和参数。

同样运用Lagrange数乘法,通过引入非负的Lagrange乘子矢量α和β,可得到此时优化问题的原始形式如下:

$$\min_{(\mathbf{w},b)} \max_{\boldsymbol{\alpha}, \ \boldsymbol{\beta}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left[y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i \right\}$$

$$\mathbf{w}^T \mathbf{x} + b = 1$$

$$\mathbf{w}^T \mathbf{x} + b = 1$$

不同的C的影响

不同的C的影响

 $\min_{(\mathbf{w},b)} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \right\}$ s.t. $(y_i(wx_i+b)\geq 1-\xi_i)$ and $(\xi_i\geq 0)$, $\forall i=1,...,n$ C值太大时,使得松弛变量过小,导致

C值太小时,使得松弛变量过大,导致 样本误分较多,但模型泛化能力强

过分拟合训练数据,导致过拟合

• 概述:

- 上面讨论的都是训练样本(大致)线性可分的情形,这时分类器为 线性函数,即分类超平面。
- 但现实情况中(见下面两图所示的情形),训练样本往往并非 线性可分的,也即任何超平面都无法较好的分开两类训练样本, 或者说使用任何超平面带来的、对训练样本的分类误差都是不 可容忍的。

• 概述:

• 概述:

● 概述:

由于特征维度的提高一般总是能提升样本之间的可区分性,所以可以考虑将原始样本特征描述映射至某个高维空间中,使得映射后的样本之间线性可分。

形式化的,记此映射为 $\Phi: x \to \varphi(x)$,其中 $x \in R^p$,而 $z = \varphi(x) \in R^q$,且 通常有 $q \square p$ 。这样,原始的训练样本集合D被映射为线性可分的高维空间中的集合:

$$D' = \{(z_i, y_i) \mid z_i \in R^q, y_i \in \{-1, 1\}\}_{i=1}^n$$

- 概述:
 - 在R_q空间中,因为D'是线性可分的,所以其判别函数和最优分 类平面求解的对偶形式分别为:

$$f(z) = sign(wz + b - 1) = sign(\sum_{i=1}^{n} \alpha_i y_i z_i^T z + b - 1)$$

$$\max_{\boldsymbol{\alpha} \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{Z}_i^T \mathbf{Z}_j \right\}$$

观察以上两个式子可见:无论判别函数还是对偶形式中的目标函数都只涉及到高维空间中两个矢量之间的内积,而并不需要知道它们的具体坐标。

$$\mathbf{z}_{i}^{T} \mathbf{z}_{j} = K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$\sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i, j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j})$$

- 常用核函数:
 - 高斯RBF (Radial Basis Function)核:

$$K(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2) = \exp(-||x_i - x_j||^2/2\sigma^2)$$

齐次多项式(homogeneous polynomial)核:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (\mathbf{x}_{i} \cdot \mathbf{x}_{j})^{d}$$

• 非齐次多项式(inhomogeneous polynomial)核:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (\mathbf{x}_{i} \cdot \mathbf{x}_{j} + 1)^{d}$$

• Sigmoid核:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = \tanh(\kappa \mathbf{x}_{i} \cdot \mathbf{x}_{j} + \theta)^{d}$$

多分类问题

• 如何将SVM的二分类转换成多分类问题?

一对一

• 对N 类训练数据两两组合,构建C²N = N (N - 1) /2个支持向量机。 最后分类的时候采取"投票"的方式决定分类结果。

• 一对其余

对N分类问题构建N个支持向量机,每个支持向量机负责区分本类数据和非本类数据。最后结果由输出离分界面距离w·x + b最大的那个支持向量机决定。