

Independence (Linear and Affine)

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

Linear Independence

- \square Plane *P* includes origin and three non-zero vectors $\{v,u,w\}$ in *P*
- \square If no two of $\{v, u, w\}$ are parallel, then $P = \text{span}\{u, v, w\}$
- ☐ Any two vectors determines a plane and express the other as a linear combination of those two:

$$w = d_1 u + d_2 v \ (d_1 \& d_2 \ can't \ both \ be \ zero)$$

- $\Box c_1 u + c_2 v + c_3 w = 0$ u, w, v are not all independent.
- ☐ Independence is a property of a set of vectors.

Definition

- ☐ Geometry:
 - ☐ A set of vectors is linear independent if the subspace dimensionality (its span) equals the number of vectors.
 - ☐ Example: 1,2,3 vectors spans?

Definition

- ☐ Algebra
 - ☐ Dependent
 - \square For at least one $\lambda \neq 0$

$$0 = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n, \qquad \lambda \in \mathbb{R}$$

- A set of vectors is dependent if at least one vector in the set can be expressed as a linear weighted combination of the other vectors in that set.
- ☐ Independence

☐ No vector in the set is a linear combination of the others (has only the trivial solution)

Example

Example

$$\square \text{ Let } v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, and v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

☐ A set containing only one vector—say, v—is linearly independent if and only if v is not ...

$$\square$$
 a) $v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

b)
$$v_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

Characterization of Linearly Dependent sets

Theorem

An indexed set $S = \{v_1, ..., v_n\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $v_1 \neq 0$, then some v_j (with j > 1) is a linear combination of the preceding vectors, $v_1, ..., v_{j-1}$.

□ Does *not* say that *every* vector

Characterization of Linearly Dependent sets

Proof

If some v_j in S equals a linear combination of the other vectors, then v_j can be subtracted from both sides of the equation, Producing a linear dependence relation with a nonzero weight (-1) on v_j . [For instance, if $v_1 = c_2v_2 + c_3v_3$, then $0 = (-1)v_1 + c_2v_2 + c_3v_3 + 0v_4 + \cdots + 0v_n$.] Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v_1 is zero, then it is a (trivial) linear combination of the other vectors in S. Otherwise, $v_1 \neq 0$, and there exist weights c_1, \dots, c_n not all zero, such that

$$c_1 v_1 + c_2 v_2 + \dots + c_p v_n = 0$$

Characterization of Linearly Dependent sets

Proof

Let j be the largest subscript for which $c_j \neq 0$. If j = 1, then $c_1 v_1 = 0$, which is impossible because $v_1 \neq 0$. So j > 1 and

$$c_1 v_1 + \dots + c_j v_j + 0 v_{j+1} + 0 v_n = 0$$

$$c_j v_j = -c_1 v_1 - \dots - c_{j-1} v_{j-1}$$

$$v_j = \left(-\frac{c_1}{c_j}\right) v_1 + \dots + \left(-\frac{c_{j-1}}{c_j}\right) v_{j-1}$$

Properties

Theorem

Any set of vectors that contains the zeros vector is guaranteed to be linearly dependent.

Properties

 \Box The vectors coming from the vector form of the solution of a matrix equation Ax = 0 are linearly independent

Example

- \square Vectors related to x_2 and x_3 are linear independent.
- \square Columns of A related to to x_2 and x_3 are linear dependent.
- $\square \operatorname{Span}\{A_1, A_2, A_3\} = \operatorname{Span}\{A_1\}$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Properties |

Important

☐ If a collection of vectors is linearly dependent, then any

superset of it is linearly dependent.

☐ Any nonempty subset of a linearly independent collection of

vectors is linearly independent.

Properties

Theorem

 \square Any set of M > N vectors in \mathbb{R}^n is necessarily dependent.

 \square Any set of $M \le N$ vectors in \mathbb{R}^n could be linearly independent.

Example

Example

a.
$$\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$$

$$b. \quad \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 8 \end{bmatrix}$$

$$c. \begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}, \begin{bmatrix} 3 \\ -6 \\ -9 \\ 15 \end{bmatrix}$$

Linear Dependent Properties

 \square Suppose vectors v_1, \dots, v_n are linearly dependent:

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0$$

with $c_1 \neq 0$. Then:

$$span\{v_1, ..., v_n\} = span\{v_2, ..., v_n\}$$

☐ When we write a vector space as the space of a list of vectors, we would like that list to be as short as possible. This can achieved by iterating.

Linear combinations of linearly independent vectors

Theorem

Suppose x is linear combination of linearly independent vectors v_1, \dots, v_k :

$$x = \beta_1 v_1 + \dots + \beta_k v_k$$

The coefficients β_1, \dots, β_k are unique.

Proof

Conclusion

Important

Step 1: Count the number of vectors (call that number M) in the set and compare to N in \mathbb{R}^n . As mentioned earlier, if M > N, then the set is necessarily dependent. If $M \leq N$ then you have to move on to step 2.

Step 2: Check for a vector of all zeros. Any set that contains the zeros vector is a dependent set.

☐ The rank of a matrix is the estimate of the number of linearly independent rows or columns in a matrix.

Basis

☐ A set of n linearly independent n-vectors is called a basis

 \square A basis is the combination of span and independence: A set of vectors $\{v_1, \dots, v_n\}$ forms a basis for some subspace of \mathbb{R}^n if it

- \Box (1) spans that subspace
- \Box (2) is an independent set of vectors.

Basis

Definition

Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathcal{B} = \{b_1, ..., b_P\}$ in *V* is a

basis for *H* if

- 1. B is linearly independent set, and
- 2. The subspace spanned by \mathcal{B} coincides with H; that is,

$$H = Span \{b_1, \dots, b_P\}$$

Example

Which are unique?

- ☐ Express a vector in terms of any particular basis
- \square Bases for \mathbb{R}^2
- \square Bases with unit length for \mathbb{R}^2

Functions Linearly Independent

 \Box Let f(t) and g(t) be differentiable functions. Then they are called

linearly dependent if there are nonzero constants c_1 and c_2 with $c_1 f(t) + c_2 g(t) = 0$

for all t. Otherwise they are called linearly independent.

Example

Linearly dependent or independent?

- \square Functions $f(t) = 2 \sin^2 t$ and $g(t) = 1 \cos^2 t$
- \square Functions $\{\sin^2 x, \cos^2 x, \cos(2x)\} \subset \mathcal{F}$

Vector Space of Polynomials

Example (Linear independence)

Are
$$(1-x)$$
, $(1+x)$, x^2 linearly independent?

Example (Basis)

- \square Standard bases for $P_n(\mathbb{R})$?
- \square Are (1-x), (1+x), x^2 basis for $P_2(\mathbb{R})$?

Coordinate Systems

 \Box The main reason for selecting a basis for a subspace H; instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors.

Note

Suppose the set $\mathcal{B} = \{b_1, ..., b_P\}$ is a basis for a subspace H. For each x in H, the **coordinates** of x relative to the basis \mathcal{B} are the weights $c_1, ..., c_P$ such that $\mathbf{x} = c_1b_1 + \cdots + c_Pb_p$, and the vector in \mathbb{R}^p

$$[x]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_P \end{bmatrix}$$

is called the **coordinate vector of** x (**relative to** B) or the B-coordinate vector of x.

Coordinate Systems

Example

Coordinate vector of
$$p(x) = 4 - x + 3x^2$$
 respect to basis $\{1, x, x^2\}$

Coordinate axes

☐ The familiar Cartesian plane (left) has orthogonal coordinate axes. However, axes in linear algebra are not constrained to be orthogonal (right), and non-orthogonal axes can be advantageous.

Linearly Independent Sets versus Spanning Sets

Theorem

Let *V* be a vector space with a basis *B* of size *n*. Then

- a) Any set of more than *n* vectors in *V* must be linearly dependent, and
- b) Any set of fewer than *n* vectors cannot span *V*.

Span	Linearly Independent	
Want many vectors in small space	Want few vectors in big space	
Adding vectors to list only helps	Deleting vectors from list only helps	
Suppose that $v_1,, v_k$ are columns of A, now we have: AX = b has solution $\Leftrightarrow b \in span\{v_1,, v_k\}$	Suppose that $v_1,, v_k$ are columns of A, now we have: AX = 0 has only trivial solution(X=0) $\Leftrightarrow v_1,, v_k$ are linearly independent.	

Dimensions

- ☐ The dimensionality of a vector is the number of coordinate axes in which that vector exists.
- ☐ If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional.
- ☐ The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted dim(V).

Dimensions

Definition

A vector space *V* is called...

- **a) finite-dimensional** if it has a finite basis, and its **dimension**, denoted by dim(*V*), is the number of vectors in one of its bases.
- **b) infinite-dimensional** if it has no finite basis, and we say that $dim(V) = \infty$.

Dimensions

Example

Let's compute the dimension of some vector spaces that we've been working with.

Vector space	Basis	Dimension
F^n		
P^p		
$M_{m,n}$		
P (all polynomials)		
F (functions)		
<i>C</i> (continues functions)		

Dimensionality and Properties of Bases

Note

Let *V* be a finite dimensional vector space over field *F*. Below are some properties of bases:

- 1. Any linearly independent list can be extended to a basis (a maximal linearly independent list is spanning).
- 2. Any spanning list contains a basis (a minimal spanning list is linearly independent).
- 3. Any linearly independent list of length dim *V* is a basis.
- 4. Any spanning list of length dim *V* is a basis.

☐ We will learn about change of basis in matrix transformation lecture!

Independent ≤ spanning

Note

In a finite-dimensional space,

the length of every linearly independent list of vectors

≤ the length of every spanning list of vectors

Proof

Affine Independence

Theorem

An indexed set of points $\{v_1, ..., v_p\}$ in \mathbb{R}^n is **affinely dependent** if there exists real numbers $c_1, ..., c_p$, not all zero, such that

$$c_1 + \dots + c_p = 0$$
 and $c_1 v_1 + \dots + c_p v_p = 0$

Otherwise, the set is **affinely independent.**

Example

 \square $\{v_1\}$

Affine Independence

Note

Given an indexed set $S = \{v_1, ..., v_p\}$ in \mathbb{R}^n , with $p \ge 2$, the following statements are logically equivalent. That is, either they are all true statements or they are all false.

- a. S is affinely dependent.
- b. One of the points in *S* is an affine combination of other points in *S*.
- c. The set $\{v_2 v_1, ..., v_p v_1\}$ in \mathbb{R}^n is linearly dependent.

Example

Example

Let
$$v_1 = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2 \\ 7 \\ 6.5 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 4 \\ 7 \end{bmatrix}$, and $v_4 = \begin{bmatrix} 0 \\ 14 \\ 6 \end{bmatrix}$, and let $S = \{v_1, \dots, v_4\}$. Is S affinely dependent?

https://forms.gle/PRPepskcrsodHQKN6

https://docs.google.com/forms/d/e/1FAI pQLSfC_nasehBdwePexo4b_32rhlLgz7uP5bdterYx7L96_ EpOw/viewform?usp=sf_link

Barycentric Coordinates

Theorem

Let set $S = \{v_1, ..., v_k\}$ be an affinely independent set in \mathbb{R}^n . Then each \mathbf{p} in aff S has a unique representation as an affine combination of $v_1, ..., v_k$. That is, for each \mathbf{p} there exists a unique set of scalers $c_1, ..., c_k$ such that

$$\mathbf{p} = c_1 v_1 + \dots + c_k v_k$$
 and $c_1 + \dots + c_k = 1$

Note

$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} v_1 \\ 1 \end{bmatrix} + \dots + c_k \begin{bmatrix} v_k \\ 1 \end{bmatrix}$$

Involving the homogeneous forms of the points. Row reduction of the augmented matrix $[\widetilde{v_1} \dots \widetilde{v_k} \quad \widetilde{\mathbf{p}}]$ produces the Barycentric coordinates of \mathbf{p} .

Barycentric Coordinates

Definition

Let set $S = \{v_1, ..., v_k\}$ be an affinely independent set. Then for each point \mathbf{p} in aff S, the coefficients $c_1, ..., c_k$ in the unique representation

$$\mathbf{p} = c_1 v_1 + \dots + c_k v_k$$
 and $c_1 + \dots + c_k = 1$

of **p** are called the **Barycentric** (or, sometimes **affine**) **coordinates** of **p**

Barycentric Coordinates

Example

Let
$$a = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$, and $p = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. Find the

Barycentric Coordinates of p determined by the affinely independent set $\{a, b, c\}$.

Conclusion: Linear and Affine

Conclusion and Review

Reference

• Page 97 LINEAR ALGEBRA: Theory, Intuition, Code

• Page 213: David Cherney,

• Page 54: Linear Algebra and Optimization for Machine Learning