5. The compactness theorem

Here we prove the *compactness theorem*: If a set of sentences is such that every finite subset of it has a model, then the whole set has a model. The theorem will be an easy consequence of Łoś's theorem on ultraproducts.

Theorem 5.1. (Łoś) Suppose that \mathcal{L} is a first-order language, $\overline{A} = \langle \overline{A}_i : i \in I \rangle$ is a system of \mathcal{L} -structures, F is an ultrafilter on I, and $a \in {}^{\omega} \prod_{i \in I} a_i$. The values of a will be denoted by a^0, a^1, \ldots . Let $\pi : \prod_{i \in I} A_i \to \prod_{i \in I} A_i / F$ be the natural mapping, taking each element of $\prod_{i \in I} A_i$ to its equivalence class under \equiv_F^A . For each $i \in I$ let $pr_i : \prod_{j \in I} A_j \to A_i$ be defined by setting $pr_i(x) = x_i$ for all $x \in \prod_{i \in I} A_i$. Suppose that φ is any formula of \mathcal{L} . Then

$$\prod_{i \in I} \overline{A_i} / F \models \varphi[\pi \circ a] \text{ iff } \{i \in I : \overline{A_i} \models \varphi[\operatorname{pr}_i \circ a]\} \in F.$$

Proof. Because the situation and the notation are complicated, we are going to give the proof in full. For brevity let $\overline{B} = \prod_{i \in I} \overline{A_i} / F$. First we show

(1) For any term
$$\tau$$
, $\tau^{\overline{B}}(\pi \circ a) = [\langle \tau^{\overline{A_i}}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F$.

We prove (1) by induction on τ . For τ a variable v_k ,

$$\tau^{\overline{B}}(\pi \circ a) = (\pi \circ a)(k) = [a^k]_F = [\langle a_i^k : i \in I \rangle]_F = [\langle v_k^{\overline{A_i}}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F,$$

as desired. For τ an individual constant \mathbf{k} ,

$$\mathbf{k}^{\overline{B}}(\pi \circ a) = \mathbf{k}^{\overline{B}} = [\langle \mathbf{k}^{\overline{A}_i} : i \in I \rangle]_F = [\langle \mathbf{k}^{\overline{A}_i}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F.$$

The inductive step:

$$(\mathbf{F}\sigma_{0}\dots\sigma_{m-1})^{\overline{B}}(\pi\circ a) = \mathbf{F}^{\overline{B}}(\sigma_{0}^{\overline{B}}(\pi\circ a),\dots,\sigma_{m-1}^{\overline{B}}(\pi\circ a))$$

$$= \mathbf{F}^{\overline{B}}([\langle\sigma_{0}^{\overline{A_{i}}}(\operatorname{pr}_{i}\circ a):i\in I\rangle]_{F},\dots,[\langle\sigma_{m-1}^{\overline{A_{i}}}(\operatorname{pr}_{i}\circ a):i\in I\rangle]_{F})$$

$$= [\langle\mathbf{F}^{\overline{A_{i}}}(\sigma_{0}^{\overline{A_{i}}}(\operatorname{pr}_{i}\circ a),\dots,\sigma_{m-1}^{\overline{A_{i}}}(\operatorname{pr}_{i}\circ a)):i\in I\rangle]_{F}$$

$$= [\langle\tau^{\overline{A_{i}}}(\operatorname{pr}_{i}\circ a):i\in I\rangle]_{F},$$

as desired.

Now we begin the real proof of the theorem, proceding, of course, by induction on φ . Suppose that φ is $\sigma = \tau$. Then

$$\overline{B} \models (\sigma = \tau)[\pi \circ a] \text{ iff } \sigma^{\overline{B}}(\pi \circ a) = \tau^{\overline{B}}(\pi \circ a)$$

$$\text{iff } [\langle \sigma^{\overline{A_i}}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F = [\langle \tau^{\overline{A_i}}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F$$

$$\text{iff } \{i \in I : \sigma^{\overline{A_i}}(\operatorname{pr}_i \circ a) = \tau^{\overline{A_i}}(\operatorname{pr}_i \circ a)\} \in F$$

$$\text{iff } \{i \in I : \overline{A_i} \models (\sigma = \tau)[\operatorname{pr}_i \circ a]\} \in F,$$

as desired.

Now suppose that φ is $\mathbf{R}\sigma_0 \dots \sigma_{m-1}$. Then

$$\overline{B} \models \varphi[\pi \circ a] \text{ iff } (\sigma_0^{\overline{B}}(\pi \circ a), \dots, \sigma_{m-1}^{\overline{B}}(\pi \circ a)) \in \mathbf{R}^{\overline{B}}$$

$$\text{iff } ([\langle \sigma_0^{\overline{A_i}}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F, \dots, [\langle \sigma_{m-1}^{\overline{A_i}}(\operatorname{pr}_i \circ a) : i \in I \rangle]_F) \in \mathbf{R}^{\overline{B}}$$

$$\text{iff } \{i \in I : (\sigma_0^{\overline{A_i}}(\operatorname{pr}_i \circ a), \dots, \sigma_{m-1}^{\overline{A_i}}(\operatorname{pr}_i \circ a)) \in \mathbf{R}^{\overline{A_i}}\} \in F$$

$$\text{iff } \{i \in I : \overline{A_i} \models \varphi[\operatorname{pr}_i \circ a]\} \in F,$$

as desired.

The inductive step when φ is $\neg \psi$:

$$\overline{B} \models \varphi[\pi \circ a] \text{ iff } \operatorname{not}(\overline{B} \models \varphi[\pi \circ a])$$

$$\operatorname{iff } \operatorname{not}(\{i \in I : \overline{A_i} \models \psi[\operatorname{pr}_i \circ a]\} \in F)$$

$$\operatorname{iff } I \setminus \{i \in I : \overline{A_i} \models \psi[\operatorname{pr}_i \circ a]\} \in F$$

$$\operatorname{iff } \{i \in I : \operatorname{not}(\overline{A_i} \models \psi[\operatorname{pr}_i \circ a])\} \in F$$

$$\operatorname{iff } \{i \in I : \overline{A_i} \models \varphi[\operatorname{pr}_i \circ a]\} \in F,$$

as desired.

The induction step for \wedge :

$$\overline{B} \models (\psi \land \chi)[\pi \circ a] \overline{B} \models \psi[\pi \circ a]) \text{ and } \overline{B} \models \chi[\pi \circ a]$$

$$\{i \in I : \overline{A_i} \models \psi[\operatorname{pr}_i \circ a]\} \in F) \text{ and } \{i \in I : \overline{A_i} \models \chi[\operatorname{pr}_i \circ a]\} \in F$$

$$\text{iff } \{i \in I : \overline{A_i} \models \psi[\operatorname{pr} \circ a] \text{ and } \overline{A_i} \models \chi[\operatorname{pr} \circ a]\} \in F$$

$$\text{iff } \{i \in I : \overline{A_i} \models (\psi \land \chi)[\operatorname{pr}_i \circ a]\} \in F,$$

as desired.

It remains only to consider φ of the form $\exists v_k \psi$, which is the main case. We do each direction in the desired equivalence separately. First suppose that $\overline{B} \models \varphi[\pi \circ a]$. Choose $u \in \prod_{i \in I} A_i$ such that $\overline{B} \models \psi[(\pi \circ a)_{[u]_F}^k]$. Now $(\pi \circ a)_{[u]_F}^k = \pi \circ a_u^k$, so we can apply the induction hypothesis and get $\{i \in I : \overline{A_i} \models \psi[\operatorname{pr}_i \circ a_u^k]\} \in F$. But for each $i \in I$ we have $(\operatorname{pr}_i \circ a_u^k) = (\operatorname{pr}_i \circ a)_{u(i)}^k$, so

$$\{i \in I : \overline{A_i} \models \psi[\operatorname{pr}_i \circ a_u^k]\} \subseteq \{i \in I : \overline{A_i} \models \varphi[\operatorname{pr}_i \circ a]\},\$$

and hence $\{i \in I : \overline{A_i} \models \varphi[\operatorname{pr}_i \circ a]\} \in F$. This finishes half of what we want.

Conversely, suppose that $\{i \in I : \overline{A_i} \models \varphi[\operatorname{pr}_i \circ a]\} \in F$. For each i in this set pick $u(i) \in A_i$ such that $\overline{A_i} \models \psi[(\operatorname{pr}_i \circ a)_{u(i)}^k]$ (using the axiom of choice). For other i's in I let u(i) be any old element of A_i , just to fill out u to make it a member of $\prod_{i \in I} A_i$. Now $(\operatorname{pr}_i \circ a)_{u(i)}^k = \operatorname{pr}_i \circ a_u^k$. Thus $\{i \in I : \overline{A_1} \models \psi[\operatorname{pr}_i \circ a_u^k]\} \in F$. By the inductive hypothesis it follows that $\overline{B} \models \psi[\pi \circ a_u^k]$. But $\pi \circ a_u^k = (\pi \circ a)_{[u]_F}^k$, so we finally get $\overline{B} \models \varphi[\pi \circ a]$. \square

Corollary 5.2. Suppose that \mathcal{L} is a first-order language, $\overline{A} = \langle \overline{A}_i : i \in I \rangle$ is a system of \mathcal{L} -structures, and F is an ultrafilter on I. Suppose that φ is any sentence of \mathcal{L} . Then

$$\prod_{i \in I} \overline{A_i} / F \models \varphi \text{ iff } \{ i \in I : \overline{A_i} \models \varphi \} \in F.$$

The compactness theorem is now easy to prove:

Theorem 5.3. (The Compactness Theorem) Suppose that Γ is a set of sentences in a first-order language \mathcal{L} , and every finite subset of Γ has a model. Then Γ has a model.

Proof. For each finite subset Δ of Γ , let \overline{A}_{Δ} be a model of Δ . Let $I = \{\Delta \subseteq \Gamma : \Delta \text{ is finite}\}$. For each $\Delta \in I$, let

$$x_{\Delta} = \{ \Theta \in I : \Delta \subseteq \Theta \}.$$

Then the family $\{x_{\Delta} : \Delta \in I\}$ of subsets of I has fip. In fact, let $\Delta_0, \ldots, \Delta_{m-1} \in I$. Then clearly

$$\Delta_0 \cup \ldots \cup \Delta_{m-1} \in x_{\Delta_0} \cap \ldots \cap x_{\Delta_{m-1}},$$

as desired. Hence by Theorem 1.14, let F be an ultrafilter on I such that $x_{\Delta} \in F$ for all $\Delta \in I$. We claim now that $\prod_{\Delta \in I} \overline{A_{\Delta}}/F$ is a model of Γ . To see this, take any $\varphi \in \Gamma$. Then for any $\Delta \in x_{\{\varphi\}}$ we have $\varphi \in \Delta$, and $\overline{A_{\Delta}}$ is a model of Δ , hence of φ . Thus $\{\Delta \in I : \overline{A_{\Delta}} \models \varphi\} \supseteq x_{\Delta}$, so $\{\Delta \in I : \overline{A_{\Delta}} \models \varphi\} \in F$. By Corollary 5.2 it follows that $\prod_{\Delta \in I} \overline{A_{\Delta}}/F \models \varphi$, as desired.

We now indicate a few applications of the compactness theorem. There are more in the exercises.

Corollary 5.4. Let \mathcal{L} be a first order language. Then there does not exist a set Γ of sentences of \mathcal{L} such that the models of Γ are exactly the finite \mathcal{L} -structures.

Proof. Suppose that such a set Γ exists. Then let

$$\Theta = \Gamma \cup \left\{ \exists v_0 \dots \exists v_{m-1} \left(\bigwedge_{i < j < m} \neg (v_i = v_j) \right) : m \in \omega \right\}.$$

Note that for a given m, the sentence $\exists v_0 \dots \exists v_{m-1} (\bigwedge_{i < j < m} \neg (v_i = v_j))$ holds in a structure \overline{A} iff A has at least m elements. Since there are \mathscr{L} -structures of any finite size, it follows that every finite subset of Θ has a model. So Θ itself has a model. But such a model must satisfy the indicated sentences for all $m < \omega$, and so must be infinite, contradiction. \square

The argument just given really shows the following stronger result:

Corollary 5.5. Let \mathscr{L} be a first order language and Γ a set of sentences of \mathscr{L} . If Γ has models of arbitrarily large finite size (i.e., if for every $m \in \omega$ Γ has a finite model with at least m elements), then Γ has an infinite model.

Corollary 5.6. If a sentence φ holds in every infinite model of a set Γ of sentences, then there is an $m \in \omega$ such that it holds in every model of Γ with at least m elements.

Proof. Suppose that the conclusion fails. Note that the hypothesis implies that every model of $\Gamma \cup \{\neg \varphi\}$ is finite. The conclusion failing means that for every $m \in \omega$ there is a model of Γ with at least m elements in which φ fails. So $\Gamma \cup \{\neg \varphi\}$ has models of arbitrarily large finite size, hence by 5.5 it has an infinite model, contradiction.

Note that Corollary 5.6 can be applied in the theory of fields: let Γ be a collection of sentences saying that the \mathcal{L} -structure is a field of characteristic p (p fixed). Thus a sentence holds in every infinite field of characteristic p (p a prime) iff there is an m such that it holds in every field of characteristic p with at least m elements.

Corollary 5.7. Let \mathcal{L} be the language of ordering. Then there is no set Γ of sentences whose models are exactly the well-ordering structures.

Proof. Suppose there is such a set. Let us expand the language \mathscr{L} to a new one \mathscr{L}' by adding an infinite sequence \mathbf{c}_m , $m \in \omega$, of individual constants. Then consider the following set Θ of sentences: all members of Γ , plus all sentences $\mathbf{c}_{m+1} < \mathbf{c}_m$ for $m \in \omega$. Clearly every finite subset of Θ has a model, so let $\overline{A} = (A, <, a_i)_{i < \omega}$ be a model of Θ itself. (Here a_i is the 0-ary function, i.e., element of A, corresponding to \mathbf{c}_i .) Then $a_0 > a_1 > \cdots$; so $\{a_i : i \in \omega\}$ is a nonempty subset of A with no least element, contradiction. \square

The applications of the compactness theorem so far are negative: certain things cannot be done in first-order logic. Positive applications are more interesting, but generally more lengthy. We give one example.

Proposition 5.8. If (A, <) is a partial ordering structure, then there is a relation \prec such that (A, \prec) is a simple ordering structure and < is a subset of \prec .

Proof. First we prove this for A finite. This goes by induction on |A|. It is obvious if |A| = 1. If we have proved it for all partial ordering structures (A, <) with |A| = m, suppose that (A, <) is a partial ordering structure with |A| = m + 1. Fix $a_0 \in A$, and let $A' = A \setminus \{a_0\}$ and $<' = < \cap (A' \times A')$. Let \prec' be a simple ordering on A' such that <' is a subset of \prec' . Let

$$X = \{ u \in A' : \exists v (v < a_0 \text{ and } u \leq' v) \},$$

and then we define a relation \prec on A by setting, for any $x, y \in A$,

$$x \prec y \text{ iff } \begin{cases} x, y \in A' \text{ and } x \prec' y \\ \text{or } x \in X \text{ and } y = a_0 \\ \text{or } x = a_0 \text{ and } y \in A \setminus (X \cup \{a_0\}). \end{cases}$$

It is straightforward but tedious to check that this gives a simple order extending <; we go through the details. Clearly \prec is irreflexive. Suppose now that $x \prec y \prec z$; we want to show that $x \prec z$. If $x, y, z \in A'$ this is obvious. So three cases remain. Case 1. $x = a_0$. Then $y \in A \setminus (X \cup \{a_0\})$. Then $y \notin X$, and this implies that $z \neq a_0$. Suppose that $z \in X$. Choose accordingly v such that $v < a_0$ and $z \preceq' v$. Now also $y \prec' z$, so $y \prec' v$, and hence $y \in X$, contradiction. Thus $z \notin X$, so $x \prec z$. Case 2. $y = a_0$. Thus $x \in X$ and $z \in A \setminus (X \cup \{a_0\})$.

Since $x \in X$, choose v so that $v < a_0$ and $x \leq' v$. Obviously $z \neq x$. Suppose that $z \prec' x$. Then $z \prec' v$ and so $z \in X$, contradiction. The only remaining possibility is that $x \prec' z$, hence $x \prec z$. Case 3. $z = a_0$. Thus $y \in X$ and $x \prec' y$. It is clear then from the definition of X that also $x \in X$, and so $x \prec' z$.

Next we show that (A, \prec) is a simple ordering structure. Suppose that x and y are distinct elements of A. If both of them are in A', then $x \prec' y$ or $y \prec' x$, hence $x \prec y$ or $y \prec x$. Suppose that one of them, say x, is a_0 . Then either $y \in X$, in which case $y \prec x$, or $y \notin X$, in which case $x \prec y$.

It remains just to show that < is a subset of \prec . Suppose that x < y. If $x, y \in A'$, then $x \prec' y$, hence $x \prec y$. Suppose that $x = a_0$. If $y \in X$, choose v so that $v < a_0$ and $y \preceq' v$. Then $v < a_0 < y$, so v < y, hence $v \prec' y$, contradiction. So $y \notin X$, and hence $x \prec y$. Finally, suppose that $y = a_0$. Then $x \in X$ by definition of X, so $x \prec y$.

This finishes the case when A is finite. Note that all of this is just standard set theory, no logic involved.

Now we take a partial ordering structure (A, <) with A infinite. Let \mathcal{L} be a first-order language which has a binary relation symbol < and, for each $a \in A$, an individual constant \mathbf{c}_a . In this language we consider the following set Γ of sentences:

Sentences saying that < gives a simple order $\mathbf{c}_a < \mathbf{c}_b$ whenever a < b, for all $a, b \in A$.

By our previous argument, every finite subset of Γ has a model. So Γ itself has a model $(B, <, b_a)_{a \in A}$, where b_a is the denotation of \mathbf{c}_a in the model. Now we define $a \prec a'$ iff $a, a' \in A$ and $b_a < b_{a'}$. Clearly (A, \prec) is a simple ordering structure. If $a, a' \in A$ and a < a', then the sentence $\mathbf{c}_a < \mathbf{c}_{a'}$ is in Γ , and so this sentence holds in $(B, <, b_a)_{a \in A}$, which means that $b_a < b_{a'}$ and hence $a \prec a'$.

The following concept will play an important role in what follows. Two structures \overline{M} , \overline{N} are elementarily equivalent iff for every sentence φ , $\overline{M} \models \varphi$ iff $\overline{N} \models \varphi$.

EXERCISES

Exc. 5.1. Suppose that \overline{A} is an \mathscr{L} -structure. Let F be a nonprincipal ultrafilter on a set I. For each $a \in A$ let $f(a) = [\langle a : i \in I \rangle]_F$. Show that f is an embedding of \overline{A} into $I\overline{A}/F$, and \overline{A} is elementarily equivalent to $I\overline{A}/F$.

Exc. 5.2. We work in the language for ordered fields; see Chapter 1. In general, an element $a \in M$ is definable iff there is a formula $\varphi(x)$ with one free variable x such that $\{b \in M : \overline{M} \models \varphi[b]\} = \{a\}.$

- (i) Show that 1 is definable in \mathbb{R} .
- (ii) Show that every positive integer is definable in \mathbb{R} .
- (iii) Show that every positive rational is definable in \mathbb{R} .
- (iv) If \overline{M} is an extension of \mathbb{R} , an element ε of M is infinitesimal iff $0 < \varepsilon < r$ for every positive rational r. Let \overline{M} be an ultrapower of \mathbb{R} using a nonprincipal ultrafilter on ω . Thus \overline{M} is isomorphic to an extension of \mathbb{R} by exercise 5.1. Show that \overline{M} has an infinitesimal.

- (v) Use the compactness theorem to show the existence of an ordered field \overline{M} which has an infinitesimal and is elementarily equivalent to \mathbb{R} .
- Exc. 5.3. Consider the structure $\overline{N} = (\omega, +, \cdot, 0, 1, <)$. We look at models of $\Gamma = \{\varphi : \varphi \text{ is a sentence and } \overline{N} \models \varphi\}$.
- (i) For every $m \in \omega$ there is a formula φ_m with one free variable x such that $\overline{N} \models \varphi_m[m]$ and $\overline{N} \models \exists! x \varphi_m(x)$.
 - (ii) \overline{N} can be embedded in any model of Γ .
- (iii) Show that Γ has a model with an infinite element in it, i.e., an element greater than each $m \in \omega$.
- Exc. 5.4. (Continuing exercise 5.3.) An element p of a model \overline{M} of Γ is a *prime* iff p > 1 and for all $a, b \in M$, if $p = a \cdot b$ then a = 1 or a = p.
- (i) Prove that if \overline{M} is a model of Γ with an infinite element, then it has an infinite prime element.
- (ii) Show that the following conditions are equivalent:
- (a) There are infinitely many (ordinary) primes p such that p+2 is also prime. (The famous twin prime conjecture, unresolved at present.)
- (b) There is a model \overline{M} of Γ having at least one infinite prime p such that p+2 is also a prime.
- (c) For every model \overline{M} of Γ having an infinite element, there is an infinite prime p such that p+2 is also a prime.
- Exc. 5.5. Let G be a group which has elements of arbitrarily large finite order. Show that there is a group H elementarily equivalent to G which has an element of infinite order.
- Exc. 5.6. Suppose that Γ is a set of sentences, and φ is a sentence. Prove that if $\Gamma \models \varphi$, then $\Delta \models \varphi$ for some finite $\Delta \subseteq \Gamma$.