PROBABILITY THEORY LECTURE 4

Per Sidén

Division of Statistics Dept. of Computer and Information Science Linköping University

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L4

1 / 9

Notes

Notes

OVERVIEW LECTURE 4

- ► Order statistics
- ► Distribution of max and min
- ► Marginal distribution of order statistics
- ► Joint distribution of order statistics

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L4

2/9

ORDER STATISTICS

- ► Finding the distribution of extremes:
 - $\min(X_1, X_2, ..., X_n)$
 - $ightharpoonup \max(X_1, X_2, ..., X_n).$
- ▶ Range: $R = \max(X_1, X_2, ..., X_n) \min(X_1, X_2, ..., X_n)$.
- ► Applications in extreme value theory

DEF The *k*th order variable

$$X_{(k)} = \text{the } k \text{th smallest of } X_1, X_2, ..., X_n$$

DEF The order statistics: $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$.

▶ Even if the original sample $X_1, X_2, ..., X_n$ are independent, their order statistics $X_{(1)}$, $X_{(2)}$, ..., $X_{(n)}$ are not clearly not.

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L4

3 / 9

DISTRIBUTION OF THE MAXIMUM

TH The distribution of the maximum $X_{(n)}$

$$F_{X_{(n)}}(x) = P(X_1 \le x, X_2 \le x, ..., X_n \le x)$$

= $\prod_{i=1}^{n} P(X_i \le x) = [F(x)]^n$.

▶ The density of the maximum $X_{(n)}$

$$f_{X_{(n)}}(x) = n [F(x)]^{n-1} f(x)$$

 $igoplus Let X_1,...,X_n \sim L(a).$ Find $F_{X_{(n)}}(x).$ Solution: If $X \sim L(a)$ then

$$F(x) = \begin{cases} 1 - \frac{1}{2} \exp\left(-\frac{x}{a}\right) & \text{if } x \ge 0 \\ F_{X_{(n)}}(x) = [F(x)]^n = \begin{cases} \frac{1}{2^n} \exp\left(\frac{nx}{a}\right) & \text{if } x < 0 \\ \left[1 - \frac{1}{2} \exp\left(-\frac{x}{a}\right)\right]^n & \text{if } x \ge 0 \end{cases}$$

Notes

Notes

DISTRIBUTION OF THE MINIMUM

TH The distribution of the minimum $X_{(1)}$

$$F_{X_{(1)}}(x) = 1 - P\left(X_{(1)} > x\right)$$

$$= 1 - P\left(X_1 > x, X_2 > x, ..., X_n > x\right)$$

$$= 1 - \prod_{i=1}^{n} P(X_i > x) = 1 - [1 - F(x)]^n.$$

▶ The density of the minimum $X_{(n)}$

$$f_{X_{(1)}}(x) = n[1 - F(x)]^{n-1} f(x)$$

ightharpoonup Let $X_1,...,X_n\sim Exp(1/a)$. What is $f_{X_{(1)}}(x)$ and $E(X_{(1)})$?

$$F(x) = 1 - e^{-ax}$$

$$f_{X_{(1)}}(x) = n \left[e^{-ax}\right]^{n-1} a e^{-ax} = a n e^{-anx}$$

 $\underset{\text{Per Siden}}{\text{So}}(X_{(1)} \sim \underset{\text{Exp}(1/\text{an})}{\text{Exp}(1/\text{an})} \text{ and } \underbrace{E(X_{(1)})}_{\text{Problability}} = \underbrace{\frac{1}{9n}}_{\text{Tabol}}. \text{[Serial electric circuits]}$

MARGINAL DISTRIBUTION OF $X_{(k)}$

 TH The distribution of the kth order variable $X_{(k)}$ from a random sample from F(x):

$$F_{X_{(k)}}(x) = F_{\beta(k,n+1-k)}[F(x)]$$

where $F_{\beta(k,n+1-k)}(\cdot)$ is the cdf of a Beta(k,n+1-k) variable.

▶ In particular, if $X \sim U\left(0,1\right)$, then $X_{\left(k\right)} \sim \beta\left(k,n+1-k\right)$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L4

6/9

Notes

Notes

Notes

Marginal distribution of $X_{(k)}$ - example

independently U(a, b) distributed. Three jumps per athlete. What is the probability that the recorded score of the silver medalist is longer than c meters?

Solution: First, calculate the distribution of $Y_i = \text{longest jump out of}$ three jumps for the ith athlete, for i = 1, ..., n:

$$F_{Y_i}(y) = [F(y)]^3 = \left(\frac{y-a}{b-a}\right)^3$$

Then derive $Y_{(n-1)}$

$$F_{Y_{(n-1)}}(y) = F_{\beta(n-1,2)}\left(\left(\frac{y-a}{b-a}\right)^3\right)$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L4

7 / 9

8 / 9

JOINT DISTRIBUTION OF THE EXTREMES AND RANGE

- ► So far: only *marginal* distributions of order statistics.
- TH The joint density of $X_{(1)}$ and $X_{(n)}$

$$f_{X_{(1)},X_{(n)}}(x,y) = \begin{cases} n(n-1)\left(F(y) - F(x)\right)^{n-2}f(y)f(x) & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$

- From $f_{X_{(1)},X_{(n)}}(x,y)$ we can derive the distribution of the Range $R_n=X_{(n)}-X_{(1)}$ by the transformation theorem, using $U=X_{(1)}$.
- TH The distribution of the Range $R_n = X_{(n)} X_{(1)}$ is

$$\mathit{f}_{R_n}(r) = \mathit{n}(\mathit{n}-1) \int_{-\infty}^{\infty} \left(\mathit{F}(\mathit{u}+\mathit{r}) - \mathit{F}(\mathit{u}) \right)^{\mathit{n}-2} \mathit{f}(\mathit{u}+\mathit{r}) \mathit{f}(\mathit{u}) \mathit{d}\mathit{u}$$

Notes			
Notes			

PROBABILITY THEORY - L4 PER SIDÉN (STATISTICS, LIU)

JOINT DISTRIBUTION OF ORDER STATISTICS

TH The joint density of the order statistics is

$$f_{X_{(1)},\dots,X_{(n)}}(y_1,...,y_n) = \begin{cases} n! \prod_{k=1}^n f(y_k) & \text{ if } y_1 < y_2 < \dots < y_n \\ 0 & \text{ otherwise} \end{cases}$$

- ▶ The marginal densities of any order variable can be derived by integrating $f_{X_{(1)},...,X_{(n)}}(y_1,...,y_n)$ in the usual fashion.
- \implies $X_{1},X_{2}\sim$ $Exp\left(1
 ight)$.What is the density of $\left(X_{\left(1
 ight)},X_{\left(2
 ight)}
 ight)$ and of $X_{\left(1
 ight)}$?

$$\begin{array}{lcl} f_{X_{(1)},X_{(2)}}\left(y_1,y_2\right) & = & 2e^{-y_1}e^{-y_2}, \ y_1 < y_2 \\ \\ f_{X_{(1)}}\left(y_1\right) & = & \int_{y_1}^{\infty} 2e^{-y_1}e^{-y_2} dy_2 = 2e^{-2y_1} \end{array}$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L4

9 / 9

Notes		
-		
Notes		
Notes		
Notes		