Análisis Reto 4

Juan David Aparicio Gutiérrez 202116532

j.apariciog@uniandes.edu.co

Paula Cecilia Daza Díaz 202111276 p.dazad@uniandes.edu.co

Análisis de complejidades

Requerimiento 1. Encontrar puntos de interconexión aérea:

La complejidad de este es O(m*k)+O(p log(p)). Donde m es el total de vértices del grafo, utilizados para hallar su grado y guardarlo en un ARRAY_LIST, p serían los grados de los vértices ordenados con un merge sort, y por último k serían los códigos iata de los 5 aeropuertos más interconectados almacenados en otro ARRAY_LIST.

Requerimiento 2. Encontrar clústeres de tráfico aéreo:

La complejidad sería O(E+V), donde E son los arcos del grafo y V los vértices. Esta complejidad se debe al algoritmo **Kosaraju** utilizado para encontrar los clústeres.

Requerimiento 3. Encontrar la ruta más corta entre ciudades

Este tiene una complejidad O(a*b*c)+O(e log(v)). Porque buscar los aeropuertos cercanos tiene una complejidad O(a*b*c), donde a es el número de mapas que entran en la latitud, b es el número de listas dentro de los mapas a que entran dentro del rango de longitud, y c es el número de aeropuertos en cada una de las listas por longitud que entraron en el rango. Y el algoritmo de Dijkstra usado para buscar las rutas mínimas tiene una complejidad O(e log(v)) donde e es el número de arcos, e e0 el número de vértices en el grafo dirigido.

Requerimiento 4. Utilizar las millas de viajero

Tiene una complejidad O(e log(v)). Donde e es el número de arcos, e el número de vértices en el grafo no dirigido. y El dfs tiene una complejidad O(e), y el prim tiene una complejidad O(e log(v)). Y buscar la ruta más larga tiene una complejidad O(v). De este modo, la mayor es O(e log(v)).

Requerimiento 5. Cuantificar el efecto de un aeropuerto cerrado.

La complejidad sería O(E), donde E son los arcos del grafo, los cuales se recorren para hallar los aeropuertos que llegan y salen del aeropuerto que dan por parámetro.