Computer Organization Lab2

Name: 梁詠晴

ID:109550134

Architecture diagrams:

新增結構連線:

1. WriteData input:

Case(MemToReg)

0 : alu result

1: DM read data

2: sign extend

3: pc+4 (adder1 result)

2. WriteRegister input:

Case(RegDst)

0: instruction[20-16]

1: instruction[15-11]

2:5'b11111

3. PC input:

Case(Jump)

0: Jump addr

1: Branch mux result

2: RS data

Hardware module analysis:

PC:表示程式執行的位置,每回合加4,jump 時則會跳到指定的位置

Adder: 將 2 個 32bit 的 source 相加

IM:讀 pc的位置,並依照 I-format、R-rormat 不同輸出相對應 address 的指令

MUX 2/3/4 to1: 根據輸入條件決定要輸出哪一個 input

Decoder: 根據 opcode 和 function code 決定指令需不需要 RegWrite o,

ALU_op_o, ALUSrc_o, RegDst_o, Branch_o, BranchType_o, Jump_o, MemToReg_o,

MemRead_o, MemWrite

ALU Ctrl: 根據 decoder 輸出決定 ALU 要做甚麼運算

DM:根據 mem read/write 決定要不要從 memory 中讀寫資料

ALU: 根據 ALU ctrl 對兩個輸入運算

Finished part:

Test data 1:

PC =	128									
Data Memory	= 1,	2,	0,	0,	0,	0,	0,	0		
Data Memory	= 0,	0,	0,	0,	0,	0,	0,	0		
Data Memory	= 0,	0,	0,	0,	0,	0,	0,	0		
Data Memory	= 0,	0,	0,	0,	0,	0,	0,	0		
Registers										
RO =	0, R1 =	1, R2 =	2,	R3 =	3, R4 =	4,	R5 =	5, R6 =	1, R7 =	2
R8 =	4, R9 =	2, R10 =	0,	R11 =	0, R12 =	0,	R13 =	0, R14 =	0, R15 =	0
R16 =	0, R17 =	0, R18 =	0,	R19 =	0 , $\mathbb{R}20$ =	0,	R21 =	0, R22 =	0, R23 =	0
R24 =	0, R25 =	0, R26 =	0,	R27 =	0, R28 =	0,	R29 =	128, R30 =	0, R31 =	0
\$stop calle	d at time : 705 i	ns : File "D:/col	ab_2022/C0	_LAB3_new/1	ab3_new/lab3_ne	ew.srcs/sin	_1/imports	:/testcase/testbenc	h.v" Line 36	

INFO: [USF-XSim-96] XSim completed. Design snapshot 'testbench_behav' loaded.

INFO: [USF-XSim-97] XSim simulation ran for 1000ns

| launch_simulation: Time (s): cpu = 00:00:07 ; elapsed = 00:00:10 . Memory (MB): peak = 1452.758 ; gain = 0.000

Test data 2:

Data Memory =	0,	0,	0,	0,	0,	0,	0,	0		
Data Memory =	0,	0,	0,	0,	0,	0,	0,	0		
Data Memory =	0,	0,	0,	0,	68,	2,	1,	68		
Data Memory =	2,	1,	68,	4,	3,	16,	0,	0		
Registers										
RO =	0, R1 =	0, R2 =	5, R3 =		0, R4 =	0, R5 =		0, R6 =	0, R7 =	0
R8 =	0, R9 =	1, R10 =	O, R11 =		0, R12 =	0, R13 =		0, R14 =	0, R15 =	0
R16 =	0, R17 =	R17 = 0, R18 =		0, R19 =		0, R21 =		0, R22 =	0, R23 =	0
R24 =	0, R25 =	0, R26 =	0, R27 =		0, R28 =	0, R29 =		128, R30 =	0, R31 =	16

\$stop called at time: 705 ns: File "D:/colab_2022/CO_LAB3_new/lab3_new.srcs/sim_1/imports/testcase/testbench.v" Line 36

xsim: Time (s): cpu = 00:00:13 ; elapsed = 00:00:06 . Memory (MB): peak = 1452.758 ; gain = 0.000 ...

INFO: [USF-XSim-96] XSim completed. Design snapshot 'testbench_behav' loaded.

INFO: [USF-XSim-97] XSim simulation ran for 1000ns

} launch_simulation: Time (s): cpu = 00:00:16 ; elapsed = 00:00:13 . Memory (MB): peak = 1452.758 ; gain = 0.000

Problems you met and solutions:

認為邏輯正確,卻一直跑不出正確答案。後來發現可能是因為有些 decoder、alu ctrl 運算時使用 case,但未給定正確的 default 值才導致答案錯誤。

Summary:

這次 lab 的 decoder 比上次多處理很多輸出跟 instruction。在這樣需要處理 更多細節的情況時,我覺得如何把程式寫得好讀就變得很重要。本來想要直 接在上次的基礎上添加變數,但未整理的 code 讓我花了很多額外的時間 debug,而整理過後效率就有因此提升。