

_19___ січня_____ 2024___ р

Вчитель: Родіна Алла Олегівна

Тема: Розв'язування типових вправ з теми «Зовнішній кут трикутника та його властивості. Співвідношення між сторонами і кутами трикутника»

Мета:

- Навчальна: закріпити знання, отримані на попередніх уроках;
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: закріплення знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Актуалізація опорних знань

МАТЕМАТИЧНИЙ ДИКТАНТ

1) Сума кутів трикутника дорівнює:

A) 180°

Б) 90°

B) 360°

- 2) У будь-якого трикутника:
- А) Два кути прямі
- Б) Два кути тупі
- В) Два кути гострі
- 3) Трикутник не може мати більше ніж один:
- А) Тупий кут
- Б) Гострий кут
- В) Розгорнутий кут
- 4) Зовнішній кут трикутника це кут, що з кутом цього трикутника:
- А) Вертикальний
- Б) Суміжний
- В) Власна відповідь

✓x ½ ICUMCITIS	I, / NJIAC	45
5) Скільки існує зо	внішніх кутів при одній в	ершині трикутника?
А) Один	Б) Два	В) Три
6) Чому зовнішні к	ути при одній вершині тр	икутника рівні?
Вони вертикальні		
7) Скільки всього з	овнішній кутів має кожен	трикутник?
А) Два	Б) Три	В) Шість
8) Зовнішній кут тр	оикутника дорівнює 44°, т	годі два внутрішні кути, що
не суміжні з ним	, дорівнюють:	
A) 44 °	Б) 88°	B) 22°
9) У трикутнику пр	оти більшої сторони лежі	ить:
А) Менший кут	Б) Більший кут	В) Власна відповідь
10) У трикутнику пр	оти більшого кута лежиті	
А) Більша сторона	Б) Менша сторона	В) Власна відповідь
11) Два кути трикуті	ника дорівнюють 150° і 1	0°, тоді третій кут
дорівнює:		
A) 10°	Б) 20°	B) 30°
12) Два кути трикуті	ника дорівнюють 45°, тод	і трикутник:
А) Гострокутний	Б) Прямокутний	В) Тупокутний

K

III. Розв'язування задач

№1

Розв'язання:

1)
$$\angle DAB = \angle B + \angle C = 64^{\circ} + 44^{\circ} = 108^{\circ}$$
 (за теоремою про властивість зовнішнього кута трикутника)

H

2)
$$\angle TPR = 180^{\circ} - \angle TPL = 180^{\circ} - 108^{\circ} = 72^{\circ}$$
 (за теоремою про властивість суміжних кутів) $\angle RTK = \angle TRP + \angle TPR = 51^{\circ} + 72^{\circ} = 123^{\circ}$ (за теоремою про властивість зовнішнього кута трикутника)

3)
$$NV = MV \rightarrow \Delta MVN -$$
рівнобедрений $\rightarrow \angle N = \angle M = 80^{\circ}$ $\angle MVN = \angle N + \angle M = 80^{\circ}$ (за теоремою про властивість зовнішнього кута трикутника)

4)
$$\angle LKH = \angle KHM + \angle KMH$$
 (за теоремою про властивість зовнішнього кута трикутника) $\angle KMH = \angle LKH - \angle KHM$ $\angle KMH = 137^{\circ} - 28^{\circ} = 109^{\circ}$

Відповідь: 1) 108°; 2) 123°; 3) 80°; 4) 109°

У трикутнику MNV, $\angle M=40^\circ$, $\angle V=60^\circ$, MA=MN, VN=VB. Знайдіть кут ANB

Дано: MNV -трикутник; $\angle M = 40^{\circ};$ $\angle V = 60^{\circ};$ MA = MN; VN = VB;

Знайти:

 $\angle ANB-?$

Розв'язання:

Розглянемо трикутник АМN:

 $AM = MN \to \Delta AMN$ — рівнобедрений $\to \angle MAN = \angle MNA$ За теоремою про властивість зовнішнього кута трикутника: $\angle NMV = \angle MAN + \angle MNA$

$$\angle NMV = \angle MAN + \angle MNA$$

$$\angle MAN = \angle MNA$$

$$\angle NMV = 40^{\circ}$$

$$40^{\circ} = 2\angle MAN$$

$$\angle MAN = \frac{40^{\circ}}{2} = 20^{\circ}$$

Розглянемо трикутник *NVB*:

 $VN = VB \rightarrow \Delta NVB$ — рівнобедрений $\rightarrow \angle VNB = \angle VBN$ За теоремою про властивість зовнішнього кута трикутника: $\angle NVM = \angle VNB + \angle VBN$

$$\angle NVM = \angle VNB + \angle VBN$$

$$\angle VNB = \angle VBN$$

$$\angle NVM = 60^{\circ}$$

$$60^{\circ} = 2\angle VBN$$

$$\angle VBN = \frac{60^{\circ}}{2} = 30^{\circ}$$

Розглянемо трикутник *ANB*:

За теоремою про суму кутів трикутника:

$$\angle ANB = 180^{\circ} - \angle NAB - \angle NBA = 180^{\circ} - 20^{\circ} - 30^{\circ} = 130^{\circ}$$

Відповідь: 130°

Доведіть, що сума зовнішніх кутів будь-якого трикутника, взятих по одному при кожній вершині, дорівнює 360° .

Дано:

ABC – трикутник; MAB, ABN, NCV – зовнішні кути ΔABC ;

Довести:

$$\angle MAB + \angle ABN + \angle NCV = 360^{\circ}$$

Доведення:

За теоремою про властивість зовнішнього кута трикутника:

$$\angle MAB = \angle B + \angle C$$

 $\angle ABN = \angle A + \angle C$
 $\angle NCV = \angle A + \angle B$

Отже:

$$\angle MAB + \angle ABN + \angle NCV = \angle B + \angle C + \angle A + \angle C + \angle A + \angle B$$

$$= 2\angle A + 2\angle B + 2\angle C = 2(\angle A + \angle B + \angle C)$$

$$\angle MAB + \angle ABN + \angle NCV = 2(\angle A + \angle B + \angle C)$$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$(3a \text{ теоремою про}$$

$$\angle CMAB + \angle C = 180^{\circ}$$

$$(3a \text{ теоремою про}$$

$$(3a \text{$$

Доведено

No4

Зовнішній кут при вершині B трикутника ABC дорівнює 118° . Знайдіть $\angle C$, якщо $\angle A = 85^{\circ}$

Дано:

ABC — трикутник; $\angle CBL = 118^{\circ}$; $\angle A = 85^{\circ}$;

Знайти:

∠*C* – ?

Розв'язання:

$$\angle ABC = 180^{\circ} - \angle CBL = 180^{\circ} - 118^{\circ} = 62^{\circ}$$
 (за теоремою про суміжні кути) $\angle C = 180^{\circ} - \angle A - \angle ABC = 180^{\circ} - 85^{\circ} - 62^{\circ} = 33^{\circ}$

Відповідь: $\angle C = 33^{\circ}$

№5

Доведіть, що бісектриси внутрішнього і зовнішнього кутів трикутника при одній вершині перпендикулярні між собою.

Дано:

ABC — трикутник; CM, CN — бісектриси;

Довести:

 $CM \perp CN$

Доведення:

$$\angle BCA = x^{\circ}$$

Тоді за теоремою про властивість суміжних кутів: $\angle BCV = 180^{\circ} - x^{\circ}$

$$\angle MCN = \angle MCB + \angle BCN$$
 (за основною властивістю вимірювання кутів)

Так як CM, CN — бісектриси
$$\angle ACB$$
 і $\angle BCV$, то:
$$\angle MCN = \angle MCB + \angle BCN = \frac{1}{2} \angle ACB + \frac{1}{2} \angle BCV = \frac{1}{2} (\angle ACB + \angle BCV)$$

$$\angle ACV$$
 – розгорнутий $\rightarrow \angle ACV = 180^\circ$ (за основною $\angle ACV = \angle ACB + \angle BCV$ властивістю вимірювання кутів) $\rightarrow \angle ACB + \angle BCV = 180^\circ$ $\angle MCN = \frac{1}{2}(\angle ACB + \angle BCV)$ $\rightarrow \angle MCN = \frac{1}{2} \cdot 180^\circ = 90^\circ$ $\angle ACB + \angle BCV = 180^\circ$

 $\angle MCN = 90^{\circ} \rightarrow CM \perp CN$

Доведено

IV. Підсумок уроку

- Дати відповідь на запитання учнів
- Індивідуальна робота з учнями, що не зрозуміли матеріал

V. Домашнє завдання

Розв'язати задачу

Один із зовнішніх кутів рівнобедреного трикутника 108°. Знайдіть градусні міри внутрішніх кутів трикутника. Скільки розв'язків має задача?