Санкт-Петербургский Национальный Исследовательский Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №3

По "Основы профессиональной деятельности"
Вариант 48322

Выполнила:

Брель Мария Владимировна Р3107

Преподаватель:

Вербовой Александр Александрович

Оглавление

Задание	3
Основные этапы вычисления	4
1.1 Таблица команд	4
1.2 Описание программы	
1.3 Область представления	
1.4 Область допустимых значений	
1.5 Расположение данных в памяти	
2.0 Таблица трассировки	
Вывод	

Задание

481:	0491	48F:	CEFB
482:	0200	490:	0100
483:	4000	491:	0000
484:	E000	492:	0000
485:	+ 0200	493:	F100
486:	EEFD	494:	0000
487:	AF05	495:	0000
488:	EEFA	ĺ	
489:	4EF7	Ì	
48A:	EEF7	ĺ	
48B:	ABF6	ĺ	
48C:	F001	1	
48D:	7AF6		
48E:	8483	1	

Основные этапы вычисления

1.1 Таблица команд

Адрес	Код команд	Мнемоника	Комментарии	
			·	
481	0491	X	Адрес начала массива	
482	0200	Y	Текущий адрес массива	
483	4000	N	Размер массива	
484	E000	R	Результат	
485	0200	CLA	Очистка аккумулятора	
486	EEFD	ST (IP - 3)	Прямое относительное сохранение (АС → MEM(484))	
487	AF05	LD #N	Прямая загрузка (0005 → АС)	
488	EEFA	ST (IP - 6)	Прямое относительное сохранение (АС → МЕМ(483))	
489	4EF7	ADD (IP - 9)	Прямое относительное сложение (AC + MEM(481))	
48A	EEF7	ST (IP - 9) Прямое относительное сохранение (AC → MEM(482))		
48B	ABF6	LD -(IP - A)	Косвенная автодекрементная загрузка (МЕМ(483)-1)	
48C	F001	BEQ D	Переход если равенство Z == 1 (IP + 2)	
48D	7AF6	CMP(IP - A)+	Установить флаги по результату АС — МЕМ(484) и прибавить 1	
48E	8483	L00P 483	Цикл Если МЕМ(483)<= 0 (IP + 2)	
48F	CEFB	JUMP 48B	Прямой относительный прыжок (48В)	
490	0100	HLT	Останов	
491	0000			
492	0000			
493	F100		Элементы массива	
494	0000			
495	0000			

1.2 Описание программы

Программа выполняет подсчет ненулевых ячеек массива(491-495) и записывает их количество в ячейку 484

1.3 Область представления

Х, Y — 11 разрядные — адрес ячейки памяти в БЭВМ

N, R - 16 разрядные беззнаковые числа

Элементы массива - 16 разрядные знаковые целые числа

1.4 Область допустимых значений

Элементы массива - [-32768;32767]

X - [0;481 - N] or [491;7FF - N]

 $Y - [0; 2^{11}-1]$

 $R - [0; 2^{16}-1]$

N - [0; 7F]

1.5 Расположение данных в памяти

Х - адрес первого элемента массива(481)

Ү - Адрес текущего элемента массива (482)

N - Количество элементов массива (483)

R - Результат (484)

Arr - массив (491-495)

2.0 Таблица трассировки

i = 5

a[0] = 0000

a[1] = dad1

a[2] = dead

a[3] = cal1

a[4] = 0000

Адр	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
485	0200	486	0200	485	0200	000	0485	0000	0100		
486	EEFD	487	EEFD	484	0000	000	FFFD	0000	0100	484	0000
487	AF05	488	AF05	487	0005	000	0005	0005	0000		
488	EEFA	489	EEFA	483	0005	000	FFFA	0005	0000	483	0005
489	4EF7	48A	4EF7	481	0491	000	FFF7	0496	0000		
48A	EEF7	48B	EEF7	482	0496	000	FFF7	0496	0000	482	0496
48B	ABF6	48C	ABF6	495	0000	000	FFF6	0000	0100	482	0495
48C	F001	48E	F001	48C	F001	000	0001	0000	0100		
48E	8483	48F	8483	483	0004	000	0003	0000	0100	483	0004
48F	CEFB	48B	CEFB	48F	048B	000	FFFB	0000	0100		
48B	ABF6	48C	ABF6	494	CA11	000	FFF6	CA11	1000	482	0494
48C	F001	48D	F001	48C	F001	000	048C	CA11	1000		
48D	7AF6	48E	7AF6	000	0000	000	FFF6	CA11	1001	484	0001
48E	8483	48F	8483	483	0003	000	0002	CA11	1001	483	0003
48F	CEFB	48B	CEFB	48F	048B	000	FFFB	CA11	1001		
48B	ABF6	48C	ABF6	493	DEAD	000	FFF6	DEAD	1001	482	0493
48C	F001	48D	F001	48C	F001	000	048C	DEAD	1001		
48D	7AF6	48E	7AF6	001	0000	000	FFF6	DEAD	1001	484	0002
48E	8483	48F	8483	483	0002	000	0001	DEAD	1001	483	0002
48F	CEFB	48B	CEFB	48F	048B	000	FFFB	DEAD	1001		

48B	ABF6	48C	ABF6	492	DAD1	000	FFF6	DAD1	1001	482	0492
48C	F001	48D	F001	48C	F001	000	048C	DAD1	1001		
48D	7AF6	48E	7AF6	002	0000	000	FFF6	DAD1	1001	484	0003
48E	8483	48F	8483	483	0001	000	0000	DAD1	1001	483	0001
48F	CEFB	48B	CEFB	48F	048B	000	FFFB	DAD1	1001		
48B	ABF6	48C	ABF6	491	0000	000	FFF6	0000	0101	482	0491
48C	F001	48E	F001	48C	F001	000	0001	0000	0101		
48E	8483	490	8483	483	0000	000	FFFF	0000	0101	483	0000
490	0100	491	0100	490	0100	000	0490	0000	0101		

Вывод

Выполняя данную лабораторную работу я преисполнилась в познании адресаций. Так же я научилась работать с циклами и массивами в БЭВМ и вычитать шестнадцатеричные числа .