Devoir Maison - Microéconomie Équilibre général et Optimum de Pareto

Prénom Nom

31 mars 2025

Exercice 1 — Équilibre général et Optimum de Pareto (15 points)

1. Représentation de la situation initiale dans la boîte d'Edgeworth

Les dotations initiales des agents sont :

• Agent A : $W_A = (8, 1)$

• Agent B : $W_B = (12, 9)$

Les quantités totales des biens sont :

$$X = 8 + 12 = 20, \quad Y = 1 + 9 = 10$$

La boîte d'Edgeworth a donc une largeur de 20 (axe des X) et une hauteur de 10 (axe des Y).

2. Courbes d'indifférence des deux agents

Agent A : Utilité $U_A(X_A, Y_A) = X_A Y_A$

Dotation: $U_A = 8 \cdot 1 = 8$

Quelques points sur la courbe $X_A Y_A = 8$:

Agent B: Utilité $U_B(X_B, Y_B) = (X_B Y_B)^{2/3}$

Dotation: $U_B = (12 \cdot 9)^{2/3} = 36$

Quelques points sur la courbe $(X_B Y_B)^{2/3} = 36$:

$$(12,9),\ (14,7.71),\ (16,6.75),\ (18,6)$$

3. L'allocation initiale est-elle un optimum de Pareto?

Pour le vérifier, on compare les TMS des deux agents :

$$TMS_A = \frac{Y_A}{X_A} = \frac{1}{8} = 0.125, \quad TMS_B = \frac{Y_B}{X_B} = \frac{9}{12} = 0.75$$

Les TMS sont différents \Rightarrow l'allocation n'est pas Pareto efficace.

Il existe donc une zone d'amélioration de Pareto située entre les deux courbes d'indifférence passant par les dotations initiales.

4. Courbe des contrats

Les allocations efficaces vérifient l'égalité des TMS:

$$\frac{Y_A}{X_A} = \frac{Y_B}{X_B}$$

Sachant que $Y_B = 10 - Y_A$ et $X_B = 20 - X_A$, on obtient :

$$\frac{Y_A}{X_A} = \frac{10 - Y_A}{20 - X_A} \Rightarrow Y_A = \frac{1}{2}X_A$$

La courbe des contrats est donc donnée par l'équation : $Y_A = \frac{1}{2} X_A$

5. Prix d'équilibre et allocation correspondante

À l'équilibre concurrentiel, les TMS sont égaux pour les deux agents et égaux au rapport de prix :

$$TMS_A = TMS_B = \frac{P_Y}{P_X} = P$$

On a vu que $TMS=\frac{1}{2}\Rightarrow P=\frac{1}{2}$

Les revenus des agents sont :

$$R_A = 8 \cdot 1 + 1 \cdot 2 = 10, \quad R_B = 12 \cdot 1 + 9 \cdot 2 = 30$$

Les allocations à l'équilibre sont donc :

$$\Psi_A = (5, 2.5), \quad \Psi_B = (15, 7.5)$$

6. Représentation graphique dans la boîte d'Edgeworth

Figure 1: Boîte d'Edgeworth avec dotations initiales, allocations d'équilibre, courbe des contrats et zone Pareto améliorante

7. Justification de l'optimalité de l'allocation d'équilibre

À l'équilibre :

$$TMS_A = \frac{2.5}{5} = 0.5, \quad TMS_B = \frac{7.5}{15} = 0.5$$

Les courbes d'indifférence sont tangentes ⇒ efficacité de Pareto.

De plus, l'allocation est faisable : 5 + 15 = 20 et 2.5 + 7.5 = 10

L'équilibre est donc Pareto optimal et utilise toutes les ressources disponibles.

8. Allocation égalitaire avec transferts

a) Réalisation via un équilibre avec transferts

L'allocation égalitaire $\tilde{\Psi}_A = \tilde{\Psi}_B = (10, 5)$ respecte la courbe des contrats $(Y = \frac{1}{2}X) \Rightarrow$ elle est efficace.

Elle peut être atteinte par un ajustement des dotations initiales (transferts) pour que les agents choisissent naturellement cette allocation à l'équilibre.

b) Montant des transferts

Transferts nécessaires :

$$Are coit + 4enXet + 4enY$$
, $Bperd - 4enXet - 4enY$

Nouvelles dotations:

$$\tilde{W}_A = (12, 5), \quad \tilde{W}_B = (8, 5)$$

c) Représentation dans la boîte d'Edgeworth

Figure 2: Allocation égalitaire $\tilde{\Psi}$ et nouvelles dotations \tilde{W} dans la boîte d'Edgeworth

Exercice 2 — Compléments parfaits (5 points)

1. Courbes d'indifférence et boîte d'Edgeworth

Pour les compléments parfaits : $U_i = \min(x_i, y_i)$

Les courbes d'indifférence sont des "L" et chaque agent consomme les biens en quantités égales.

Figure 3: Boîte d'Edgeworth avec compléments parfaits et ensemble des optima de Pareto (ligne horizontale rouge)

2. Ensemble des allocations Pareto efficaces

Les biens totaux sont 100 unités de α et 50 de β . Pour chaque agent : $x_i=y_i$ Donc pour que $\beta_1+\beta_2=50,$ on a :

$$\beta_1 = \beta_2 = 25, \quad \alpha_1 \in [25, 75]$$

Tous les points (α_i, β_i) tels que $\beta_i = 25$ sont Pareto optimaux.

3. Si la quantité du bien α passe à 100 et β reste à 50

Les préférences inchangées impliquent toujours $x_i = y_i$. Mais ici, on a un excès de bien α . L'ensemble des optima reste défini par :

$$\beta_1 = \beta_2 = 25, \quad \alpha_1 + \alpha_2 = 100$$

Ainsi, toutes les allocations où chaque agent reçoit 25 unités de β et une répartition quelconque de α totalisant 100 sont Pareto efficaces. Le surplus de α n'améliore pas l'utilité, donc n'influence pas la condition d'optimalité.