组会

21.04.24 许晓丹

EACL 2021

Expanding, Retrieving and Infilling: Diversifying Cross-Domain Question Generation with Flexible Templates

Xiaojing Yu

Texas A&M University

vicky_yu@tamu.edu

Anxiao (Andrew) Jiang

Texas A&M University

ajiang@cse.tamu.edu

Motivation

- 1. 在神经方法中,VAE、beam search等要靠牺牲生成的质量来提高生成的多样性;
- 2. 在基于规则的方法中,template往往非常严格,且需要预定义大量内容。

把以上二者结合起来:

数据集中收集flexible template,再用神经方法去填充内容细节。

Model

Model — Expand

Stage 1: Dataset Expansion

LCS

SQL query: SQL pattern + content words

Question: template pattern + content words

Model — Expand

Algorithm 1 LCS-based Template Extraction

```
Input: question set Q = [q_1, q_2..., q_M]; keyword
    set W
Output: Template set: T_{len}
 1: for all q_i \in Q do
       Initialize dictionary d_i
       for all q_j \in Q do
          c = LCS(q_i, q_j)
         if c \cap W \neq \emptyset then
            if c \notin d_i.keys then
 6:
               d_i[c] = 0
            end if
            d_i[c] + = 1
             Record position index for content
10:
          end if
11:
       end for
12:
       for all c \in d_i.keys do
13:
          if d_i[c] < 20 then
14:
             delete d_i[c] from d_i
15:
          end if
16:
       end for
       t_{len} = \arg\max_{c}(length(d_i.keys))
       Update T_{len} by adding t_{len}
20: end for
21: return T_{len}
```

- Each template should appear over 20 times.
- Each template should includes at least one of the keywords: *where, what, which, when, why, who, how, name, tell* .

Model — Retrieve

Stage 2: Template Retrieval

Model — Retrieve

Instance-level-Classification

$$P(\cdot|x) = Softmax(W_s^T tanh(e_x))$$
$$P(\cdot|t) = Softmax(W_s^T tanh(e_t))$$

$$\mathcal{L}_t = -\sum_{(x,t,n)\in S} (logP(n|x) + logP(n|t))$$

Model — Generate

generation分解成一系列sub-generation,由template token分隔开;decoder需要在content-filling state和template-copying state之间切换。

Model — Generate

用<A>/<D>对question和template进行重写;

```
Template: <BEG> Which <A> has the largest <A>? <END>  
Question: <BEG> Which <A> one <D> has the largest <A> population  
among U.S. cities <D>? <END>  
\widehat{y}_i = \begin{cases} Softmax(GRU(\widehat{y}_{i-1}, h_{i-1}^{dec})), \ s_i = 1, \\ t_n', \ s_i = 0. \end{cases}
```

用s来维护目前的state;

$$s_{i} = \begin{cases} 1, \ \widehat{y}_{i-1} = \langle A \rangle, \\ 0, \ \widehat{y}_{i-1} = \langle D \rangle, \\ s_{i-1}; otherwise. \end{cases}$$

Model — Diverse

为了增加内容表达的多样性,引入隐变量z:

$$\mathcal{L}_{q} = -E_{z \sim Q}(\sum_{i=1:N} log(P_{\theta_{q}}(y_{i}|x,t',z,y_{1:i-1}))) + D_{KL}(Q(z|x,t')||P_{\theta_{q}}(z))$$

多样性:

sentence structure;

content-filling

DataSet: WikiSQL / Spider

Models		Quality		Dive		
Mudels	Coverage ↑	ParseAcc ↑	maxBLEU ↑	Self-BLEU ↓	Self-WER↑	Distinct-4 ↑
QGLV	70.50	73.89	37.75	92.86	17.39	33.46
TEMPS	11.34	3.38	5.36	84.50	36.49	59.34
BEAMS	71.49	68.09	42.17	79.80	37.39	54.97
ERIT(ours.)	72.44	72.79	28.43	56.30	67.00	78.73
w/o lv	70.28	69.53	24.30	57.96	64.39	75.31

Table 1: Automatic evaluation for diverse question generation on WikiSQL. w/o lv refers to our model without incorporating the latent variable.

Models		Quality		Diversity			
Models	Coverage ↑	ParseAcc ↑	maxBLEU ↑	Self-BLEU ↓	Self-WER↑	Distinct-4 ↑	
QGLV	13.76	3.97	14.45	96.90	11.73	38.16	
TEMPS	6.58	3.87	4.00	59.25	7.59	19.73	
BEAMS	13.68	4.16	15.68	89.39	21.12	50.17	
ERI(ours.)	15.89	18.09	14.42	67.41	53.23	66.96	
w/o lv	12.67	16.70	12.62	62.25	55.58	64.51	

Table 2: Automatic evaluation for diverse question generation on Spider. w/o lv refers to our model without incorporating the latent variable.

Models	Fluency ↑	Consistency ↑	Diversity
QGLV	4.56	4.64	1.63
TEMPS	1.13	1.31	1.81
BEAMS	4.16	4.25	2.34
ERI	4.56	3.68	4.31

Table 3: Human evaluation results.

Experiments—Ablation

Models	BLEU ↑	NIST↑	ROUGH ↑	METEOR ↑
QGLV	32.19	4.74	64.02	64.25
*Graph2Seq	38.97	-	_	_
ERI	48.12	5.24	76.52	75.76
w/o A/D	43.30	4.85	72.41	73.76
$\mathbf{w} \; \mathbf{T}$	31.42	4.18	63.44	63.94
w/o T	29.76	4.05	62.37	63.17

Table 5: Performance on different sub-module combinations on WikiSQL. *: the value is cited from Xu et al. (2018)

Models	BLEU ↑	NIST↑	ROUGH ↑	METEOR ↑
QGLV	12.60	2.39	44.37	38.74
ERI	21.30	3.11	53.83	51.04
w/o A/D	19.02	2.93	52.45	50.41
w T	12.40	2.41	45.8	39.99
w/o T	13.36	2.35	45.05	40.27

Table 6: Performance on different sub-module combinations on Spider.

ICLR 2021

RETRIEVAL-AUGMENTED GENERATION FOR CODE SUMMARIZATION VIA HYBRID GNN

Shangqing Liu¹*, Yu Chen²†, Xiaofei Xie¹†, Jingkai Siow¹, Yang Liu¹

- ¹ Nanyang Technology University
- ² Rensselaer Polytechnic Institute

Motivation & Work

- 1) Retrieval-based——泛化能力不强;
- 2) Generation-based——更好的泛化能力,但是无法利用相似的样例;
- 1. retrieval-augmented mechanism 结合以上两种方法的优点;

2. 为了克服GNN捕获全局图结构的限制,提出了Hybrid GNN,融合attention-based dynamic graph和static graph。

Model

Model — — Retrieval-augmented Static Graph Construction

首先把code转换成Code Property Graph——built on abstract syntax tree (AST)

Figure 2: An example of Code Property Graph (CPG).

Model — — Retrieval-augmented Static Graph Construction

相似度打分:
$$z = 1 - \frac{dis(c,c')}{max(|c|,|c'|)}$$

计算attention: $\mathbf{A}^{aug} \propto \exp(\mathrm{ReLU}(\mathbf{H}_c\mathbf{W}^C)\mathrm{ReLU}(\mathbf{H}_{c'}\mathbf{W}^Q)^T)$

$$\boldsymbol{H}_c' = z \boldsymbol{A}^{aug} \boldsymbol{H}_{c'}$$

$$comp = H_c + H'_c$$

Retrieved Summary-based Augmentation

Model — — Attention-based Dynamic Graph Construction

计算邻接矩阵:
$$\boldsymbol{A}_{v,u}^{dyn} = \frac{\text{ReLU}(\boldsymbol{h}_v^T \boldsymbol{W}^Q)(\text{ReLU}(\boldsymbol{h}_u^T \boldsymbol{W}^K) + \text{ReLU}(\boldsymbol{e}_{v,u}^T \boldsymbol{W}^R))^T}{\sqrt{d}}$$

行归一化:
$$ilde{A}^{dyn} = \operatorname{softmax}(A^{dyn})$$

Model — Hybrid Message Passing

Static Message Passing:

$$\boldsymbol{h}_{v}^{k} = \text{SUM}(\{\boldsymbol{h}_{u}^{k-1} | \forall u \in \mathcal{N}_{(v)}\})$$

Dynamic Message Passing:

$$oldsymbol{h}_{v}^{'k} = \sum_{u} ilde{oldsymbol{A}}_{v,u}^{dyn} (oldsymbol{W}^{V} oldsymbol{h}_{u}^{'k-1} + oldsymbol{W}^{F} oldsymbol{e}_{v,u})$$

Hybrid Message Passing:

$$\boldsymbol{f}_v^k = \operatorname{GRU}(\boldsymbol{f}_v^{k-1}, \operatorname{Fuse}(\boldsymbol{h}_v^k, \boldsymbol{h}_v^{'k}))$$

Fuse
$$(\boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{z} \odot \boldsymbol{a} + (1 - \boldsymbol{z}) \odot \boldsymbol{b}$$
 $\boldsymbol{z} = \sigma(\boldsymbol{W}_z[\boldsymbol{a}; \boldsymbol{b}; \boldsymbol{a} \odot \boldsymbol{b}; \boldsymbol{a} - \boldsymbol{b}] + \boldsymbol{b}_z)$

Model — Decoder

max-pooling得到的graph representation

f

Fuse

weighted final state of retrieved summary

DataSet: C Code Summarization Dataset

Construction: in-domain/out-of-domain

Table 1: Automatic evaluation results (in %) on the CCSD test set.

Methods		In-domain		Out-of-domain			Overall		
Methous	BLEU-4	ROUGE-L	METEOR	BLEU-4	ROUGE-L	METEOR	BLEU-4	ROUGE-L	METEOR
TF-IDF	15.20	27.98	13.74	5.50	15.37	6.84	12.19	23.49	11.43
NNGen	15.97	28.14	13.82	5.74	16.33	7.18	12.76	23.93	11.58
CODE-NN	10.08	26.17	11.33	3.86	15.25	6.19	8.24	22.28	9.61
Hybrid-DRL	9.29	30.00	12.47	6.30	24.19	10.30	8.42	28.64	11.73
Transformer	12.91	28.04	13.83	5.75	18.62	9.89	10.69	24.65	12.02
Dual Model	11.49	29.20	13.24	5.25	21.31	9.14	9.61	26.40	11.87
Rencos	14.80	31.41	14.64	7.54	23.12	10.35	12.59	28.45	13.21
GCN2Seq	9.79	26.59	11.65	4.06	18.96	7.76	7.91	23.67	10.23
GAT2Seq	10.52	26.17	11.88	3.80	16.94	6.73	8.29	22.63	10.00
SeqGNN	10.51	29.84	13.14	4.94	20.80	9.50	8.87	26.34	11.93
HGNN w/o augment & static	11.75	29.59	13.86	5.57	22.14	9.41	9.98	26.94	12.05
HGNN w/o augment & dynamic	11.85	29.51	13.54	5.45	21.89	9.59	9.93	26.80	12.21
HGNN w/o augment	12.33	29.99	13.78	5.45	22.07	9.46	10.26	27.17	12.32
HGNN w/o static	15.93	33.67	15.67	7.72	24.69	10.63	13.44	30.47	13.98
HGNN w/o dynamic	15.77	33.84	15.67	7.64	24.72	10.73	13.31	30.59	14.01
HGNN	16.72	34.29	16.25	7.85	24.74	11.05	14.01	30.89	14.50

Table 2: Human evaluation results on the CCSD test set.

Metrics	NNGen	Transformer	Rencos	SeqGNN	HGNN
Relevance	3.23	3.17	3.48	3.09	3.69
Similarity	3.18	3.02	3.32	3.06	3.51

Table 3: Examples of generated summaries on the CCSD test set.

Example	Example 1	Example 2		
Source Code	<pre>static void strInit(Str *p) { p->z = 0; p->nAlloc = 0; p->nUsed = 0; }</pre>	<pre>void ReleaseCedar(CEDAR *c) { if (c == NULL) return; if (Release(c->ref) == 0) CleanupCedar(c); }</pre>		
Ground-Truth	initialize a str object	release reference of the cedar		
NNGen	free the string	release the virtual host		
Transformer	reset a string	release of the cancel object		
Rencos	append a raw string to the json string	release of the cancel object		
SeqGNN	initialize the string	release cedar communication mode		
HGNN	initialize a string object	release reference of cedar		

Table 4: Automatic evaluation results (in %) on the PCSD test set.

Methods	BLEU-4	ROUGE-L	METEOR
NNGen	21.60	31.61	15.96
CODE-NN	16.39	28.99	13.68
Transformer	17.06	31.16	14.37
Rencos	24.02	36.21	18.07
HGNN w/o static	24.06	38.28	18.66
HGNN w/o dynamic	24.13	38.64	18.93
HGNN	24.42	39.91	19.48