Part IV: Proofs (15 points each; 60 points)

a) Let A be an $n \times n$ matrix. Prove that

$$AB = BA$$
 for all B iff $A = \alpha I_n$

where I_n is the $n \times n$ identity matrix and $\alpha \in \mathbb{R}$.

b) Prove: For an invertible $n \times n$ matrix.	Show that A^{-1} is symmetric if A is symmetric.

c) **Prove:** If V = U + W, then

$$U \cap W = \{\mathbf{0}\}$$

These are exactly the same, not two different things.

$$\iff \text{every } \boldsymbol{v} \in V \text{ can be written uniquely as } \boldsymbol{v} = \boldsymbol{u} + \boldsymbol{w} \text{ for some } \boldsymbol{u} \in U \text{ and } \boldsymbol{v} \in V$$

$$\iff (\forall \boldsymbol{v} \in V)(\forall \boldsymbol{u}, \boldsymbol{u}' \in U)(\forall \boldsymbol{w}, \boldsymbol{w}' \in W)(\boldsymbol{v} = \boldsymbol{u} + \boldsymbol{w} = \boldsymbol{u}' + \boldsymbol{w}' \implies \boldsymbol{u} = \boldsymbol{u}' \text{ and } \boldsymbol{w} = \boldsymbol{w}')$$

Remark: $V = U \oplus W$ is defined as V = U + W and $U \cap W = \{0\}$. This result means that $V = U \oplus W$ iff every $\mathbf{v} \in V$ is uniquely decomposed as $\mathbf{v} = \mathbf{u} + \mathbf{w}$ where $\mathbf{u} \in U$ and $\mathbf{w} \in W$. For this reason, this is often taken as the definition of $V = U \oplus W$.

- d) **Prove:** Suppose $\mathbb{R}^n = U \oplus W$ and A and B are matrices so that
 - $\operatorname{rng}(A) = U$, $A^2 = A$, and $\boldsymbol{x} A\boldsymbol{x} \in W$ for all $\boldsymbol{x} \in \mathbb{R}^n$,
 - $\operatorname{rng}(B) = U$, $B^2 = B$, and $\boldsymbol{x} B\boldsymbol{x} \in W$ for all $\boldsymbol{x} \in \mathbb{R}^n$.

Show that A = B.