Counting subsets of a finite set

Theorem: A finite set with n elements has 2^n subsets.

- {1,2} has 4 subsets: \emptyset is a subset of the empty set \emptyset ,

 - ► the one element sets $\{1\}$ and $\{2\}$,

 the two element set $\{1,2\}$.

The book gives one explanation for why this is true on page 13. We will give a slighly different one.

$$\{a,b,c\}$$
 $\{a,b\},\{a,c\},\{a,c\},\{b,c\},+3$
 $\{a,b\},c\}$
 $\{a,b,c\}$

Suppose we have a finite set A with n elements. We will list the elements as a_1, a_2, \ldots, a_n . $A = \{x_1, x_2, x_3\}$

$$A = \{a_1, a_2, \dots, a_n\}.$$

Here, we've decided to put the elements of A in order, but it doesn't matter what order you use.

A = $\{h,ppo\}$ graph, f

$$a = hopo$$
 $a_2 = ellephant$
 $a_3 = grayfn$
 $a_4 = rhino$

A subset B of A is determined by going through the elements of A and marking each element as either "in" our "out" of the subset. So we can describe a subset of A by giving a list

$$I, I, O, I, O, \dots, I$$

where we have an I if that element is in the subset, or an O if it isn't.

Counting example

Suppose $A = \{-1, 4, 7, 8\}$. We put the elements of A in that order, so $a_1 = -1$, $a_2 = 4$, $a_3 = 7$, and $a_4 = 8$. Let $B = \{-1, 7\}$ so that $B \subseteq A$.

Then B corresponds to the list

$$[1, 0, 1, 0]$$
 $\{-1, 7, 7, 1,$

since -1 is IN B, 4 is OUT of B, 7 is IN B, and 8 is OUT of B.

The list O, I, O, O corresponds to the subset $\{4\}$ since only 4 is IN this set.

Theorem: The number of subsets of a set A with n elements is the same as the number of ordered sequences of I and O of length n, and this number is 2^n .

Proof: Let $S = \{I, O\}$. We've seen above how a sequence of I and O correspond to a subset. The set of sequences of I and O of length n is exactly S^n . By our earlier counting result, $|S^n| = |S|^n = 2^n$.

subsets of a set with n elements in 27.