# Some Notes about the things I encountered

Simon Pohmann

May 29, 2022

#### **Notation**

If E is an Elliptic Curve defined over a finite field of characteristic p, we write  $E^{(p)}$  for the curve defined by the equations of E after replacing all coefficients by their p-th power. Similarly, for an isogeny  $\phi: E \to E'$ , write  $\phi^{(p)}: E^{(p)} \to E'^{(p)}$  for the isogeny defined by the polynomials of  $\phi$  after replacing all coefficients by their p-th power. Furthermore, for a point  $P = (x: y: z) \in \mathbb{P}^2$  write  $P^{(p)} := (x^p: y^p: z^p)$ . Finally, for a set of points or endomorphisms S write  $S^{(p)} := \{s^{(p)} \mid s \in S\}$ . Note that

$$\cdot^{(p)} : \mathbf{Ell} \to \mathbf{Ell}, \quad E \mapsto E^{(p)}$$
 $\operatorname{Hom}_{\mathbf{Ell}}(E, E') \ni \phi \to \phi^{(p)}$ 

is a covariant endofunctor on the category Ell of Elliptic Curves defined over  $\bar{\mathbb{F}}_p$  and their isogenies.

Sometimes, we abuse terminology and speak of Elliptic Curves when we mean isomorphism classes of Elliptic Curves.

Many examples will be over  $\mathbb{F}_{101^2}$ . Let p=101 and  $q=p^2$ . We usually use the generator  $\alpha \in \mathbb{F}_q$  with minimal polynomial  $x^2+97x+2$ .

## 1 Example - The cases I, II and III

#### 1.1 Case I

Finding examples of case I is trivial - just take a curve E with  $j(E) \in \mathbb{F}_p$ . Then clearly  $E^{(p)} = E$  and so also  $E_0^{(p)} = E_0$  (since  $\cdot^{(p)}$  maps the path  $E \to E_0$  to  $E = E^{(p)} \to E_0^{(p)}$ ). Furthermore, it is easy to see that there are a lot of curve E such that the associated  $E_0$  is defined over  $\mathbb{F}_p$  (and we are again in case I).

#### 1.2 Case II

Here I was not quite sure if it even occurs. As it turns out, it does. Consider E with  $j(E) = 17\alpha + 45$ . Then  $[\mathcal{O}_{\mathcal{K}} : \mathbb{Z}[\pi]] = 2^3$  so E lies on the crater of the 3-isogeny graph. However there is a 3-isogeny  $E \to E^{(p)}$  since  $j(E^{(p)}) = j(E)^p = 84\alpha + 12$ . In fact, in



Figure 1: A 3-isogeny vulcano over  $\mathbb{F}_{101^2} = \mathbb{F}_{101}[\alpha]$  that satisfies case II (in the plot have  $z = \alpha$ ). Note that e.g.  $(39\alpha + 77)^{101} = 62\alpha + 31$ .

this case, the crater consists only of E and  $E^{(p)}$ . For a more interesting example, see Figure 1.

Further, when we consider the path  $E = E_0 \to ... \to E_n = E^{(p)}$  on the crater, there are more or less two possibilities for the  $\cdot^{(p)}$  conjugate path<sup>1</sup>.

- It could be that the conjugate of  $E_i \to E_{i+1}$  is the dual of  $E_{n-i-1} \to E_{n-i}$ , hence we just go the path  $E \to \dots \to E^{(p)}$  backwards.
- It could be that the conjugate of  $E_i \to E_{i+1}$  is  $E_{n+i} \to E_{n+i+1}$ , where

$$E_0, ..., E_n, E_{n+1}, ..., E_{n+m} = E_0$$

is the cycle along the whole crater.

Remember that (p) is functorial, hence we can also apply to isogenies  $E_i \to E_{i+1}$ 

However, as we will see, the first case is impossible.

Note that we have

**Proposition 1.1.** Let  $[\mathfrak{b}] \in \mathrm{Cl}(\mathcal{O})$  where  $\mathcal{O} = \mathrm{End}(E)$  for an ordinary Elliptic Curve  $E/\mathbb{F}_{n^2}$  such that  $[\mathfrak{b}].E = E^{(p)}$ . Then  $[\mathfrak{b}]^2 = [(1)]$ .

*Proof.* I think there is some mistake with my definition of the class group action, see also the next paragraph. With the current (probably wrong) definition, the following works. Otherwise, I suppose that anyway we have  $[\mathfrak{b}] = [(p,\pi)]$  and then the claim follows by Lemma 2.5.

We recall the definition of the class group action in the case  $[\mathfrak{b}].E^{(p)}$ . For an ideal  $\mathfrak{b}' \leq \operatorname{End}(E^{(p)})$ , have by definition

$$[\mathfrak{b}'].E^{(p)} = E^{(p)}/E^{(p)}[\mathfrak{b}'] = E^{(p)}/\bigcap_{\beta \in \mathfrak{b}'} \ker(\beta)$$

However,  $\mathfrak{b}$  is an ideal in  $\operatorname{End}(E)$ , which is only isomorphic to  $\operatorname{End}(E^{(p)})$ . Since  $\operatorname{End}^0(E)$  is a quadratic imaginary number field, it has one nontrivial field automorphism, and thus the isomorphism  $\operatorname{End}(E) \cong \operatorname{End}(E^{(p)})$  is not unique. But there is a unique canonical isomorphism, i.e. an isomorphism that is induced by an (equivalently any) isogeny  $\phi: E \to E^{(p)}$  as

$$\Phi_* : \operatorname{End}(E) \to \operatorname{End}(E^{(p)}), \quad \alpha \mapsto \frac{1}{\deg(\phi)} \ \phi \circ \alpha \circ \hat{\phi}$$

This is the isomorphism we use, i.e. we say

$$E^{(p)}[\mathfrak{b}] = E^{(p)}[\Phi_*(\mathfrak{b})]$$
 and  $[\mathfrak{b}].E^{(p)} = [\Phi_*(\mathfrak{b})].E^{(p)} = E^{(p)}/E^{(p)}[\mathfrak{b}]$ 

Now let  $\phi: E \to E/E[\mathfrak{b}] = E^{(p)}$  be a separable isogeny with kernel  $E[\mathfrak{b}]$  (by choosing the representative  $\mathfrak{b}$  of  $[\mathfrak{b}] \in \mathrm{Cl}(\mathcal{O})$  correspondingly, we can assume that). We have

$$\ker(\phi^{(p)}) = E[\mathfrak{b}]^{(p)} = \bigcap_{\beta \in \mathfrak{b}} \ker(\beta)^{(p)} = \bigcap_{\beta \in \mathfrak{b}} \ker(\beta^{(p)}) = \bigcap_{\beta \in \mathfrak{b}^{(p)}} \ker(\beta)$$

Now note that the Frobenius isogeny  $\pi: E \to E^{(p)}, P \mapsto P^{(p)}$  induces the canonical isomorphism  $\operatorname{End}(E) \to \operatorname{End}(E^{(p)})$  and so the image of  $\mathfrak{b}$  under that isomorphism is  $\mathfrak{b}' = \mathfrak{b}^{(p)} < \operatorname{End}(E^{(p)})$ . Thus

$$\bigcap_{\beta \in \mathfrak{b}^{(p)}} \ker(\beta) = \bigcap_{\beta \in \mathfrak{b}'} \ker(\beta) = E^{(p)}[\mathfrak{b}'] = E^{(p)}[\mathfrak{b}]$$

So by the uniqueness of the image curve for an isogeny with fixed kernel yields that  $E = \operatorname{im}(\phi^{(p)}) = [\mathfrak{b}].E^{(p)}$ . Thus  $[\mathfrak{b}]^2.E = [\mathfrak{b}].E^{(p)} = E$  and since the class group action is free, we see that  $[\mathfrak{b}]^2 = [(1)]$ .

From this we get the



Figure 2: A 3-isogeny vulcano over  $\mathbb{F}_{101^2} = \mathbb{F}_{101}[\alpha]$  that satisfies case III (in the plot have  $z = \alpha$ ).

**Corollary 1.2.** Assume that  $E = E_0 \to E_1 \to ... \to E_n = E$  is the cycle once around the crater (and  $j(E) \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ ). If  $E^{(p)} = E_i$  then n is even and i = n/2, i.e.  $E^{(p)}$  is on the other side of the crater<sup>2</sup>.

*Proof.* If l does not split in  $\mathcal{O}_{\mathcal{K}}$ , then the crater has at most two elements and this is trivial. So assume  $(l) = \mathfrak{l}_1\mathfrak{l}_2$ . It is known that then the action of  $[\mathfrak{l}_1]$  resp.  $[\mathfrak{l}_2]$  corresponds to walking around the crater in one direction resp. the other. So wlog  $[\mathfrak{l}_1].E_i = E_{i+1}$ .

Now assume that  $E^{(p)} = E_i$ , so  $[\mathfrak{b}].E = E_i = [\mathfrak{l}_1]^i.E$ . Since the action is free, it follows that  $[\mathfrak{b}] = [\mathfrak{l}_1]^i$  By the previous theorem, we have now  $[\mathfrak{l}_1]^{2i} = [\mathfrak{b}]^2 = [(1)]$  and so  $[\mathfrak{l}_1]^{2i}.E = E_{2i} = E$ . Thus i = n/2 and the claim follows.

In particular, the path between E and  $E^{(p)}$  is likely to have length  $\omega(\log(p))$ , since the crater is usually large. This is displayed e.g. Figure 1.

#### 1.3 Case III

We give the example displayed in Figure 3. Consider E with  $j(E)=64\alpha+5$ . Then  $j(E^{(p)})=j(E)^p=37\alpha+59$ . However, we have that E lies on the crater, together with curve of j-invariants

$$88\alpha + 70, 54\alpha + 52, 95\alpha + 11$$

Hence there is no 3-isogeny path from E to  $E^{(p)}$ . Note that  $[\mathcal{O}_{\mathcal{K}}: \mathbb{Z}[\pi]] = 2^2 \cdot 3^2$  but  $[\mathcal{O}_{\mathcal{K}}: \operatorname{End}(E)] = 2^2$ , which shows that E lies on the crater.

Now we want to have a closer look onto the class group action in this case. Have  $d(\operatorname{End}(E)) = -320$ , so  $\mathcal{K} = \mathbb{Q}(\sqrt{-5})$  and  $d(\mathcal{O}_{\mathcal{K}}) = -5$ . Hence, we have  $\operatorname{End}(E) \cong \mathbb{Z}[4\sqrt{-5}]$  and  $\mathcal{O}_{\mathcal{K}} \cong \mathbb{Z}[\sqrt{-5}]$ .

Sage tells us that  $h(\mathcal{O}_{\mathcal{K}}) = 2$  and  $h(\operatorname{End}(E)) = 8$ . With this, we can already see that

$$64\alpha + 5$$
,  $88\alpha + 70$ ,  $54\alpha + 52$ ,  $95\alpha + 11$ 

and

$$(64\alpha + 5)^p$$
,  $(88\alpha + 70)^p$ ,  $(54\alpha + 52)^p$ ,  $(95\alpha + 11)^p$ 

is the set of j-invariants of all Elliptic Curves with endomorphism ring  $\cong \text{End}(E)$ . On this set,  $\text{Cl}(\mathbb{Z}[4\sqrt{-5}])$  then acts freely and transitively. Now it would be of course interesting to find out how  $\text{Cl}(\mathbb{Z}[4\sqrt{-5}])$  really looks like.

## 2 Properties of the endomorphism ring vs the cases

**Proposition 2.1.** Let E be an ordinary Elliptic Curve defined over a finite field of characteristic p.

- End(E) has an element of norm p iff  $j(E) \in \mathbb{F}_p$ .
- End(E) has a nontrivial element (i.e.  $\neq \epsilon p$  for a unit  $\epsilon$ ) of norm  $p^2$  iff  $j(E) \in \mathbb{F}_{p^2}$ .

<sup>&</sup>lt;sup>2</sup>Note that this does not hold if  $E, E^{(p)}$  are not in the same crater, see Figure 2.



Figure 3: A 3-isogeny vulcano over  $\mathbb{F}_{101^2} = \mathbb{F}_{101}[\alpha]$  that satisfies case III (in the plot have  $z = \alpha$ ).

*Proof.* The directions  $\Leftarrow$  is clear, as the norm of the q-th power Frobenius endomorphism is q.

For the direction  $\Rightarrow$ , assume there is an element  $\alpha \in \operatorname{End}(E)$  with  $N(\alpha) = p$ . If  $\alpha$  is inseparable (as isogeny), then we have that it factors through the p-th power Frobenius endomorphism  $\pi$ , and thus  $\alpha = \lambda \circ \pi$  for an isomorphism  $\lambda : E^{(p)} \to E$ . Thus  $j(E^{(p)}) = j(E)$ .

On the other hand, if  $\alpha$  is separable, it must have kernel of size p, so  $\ker(\alpha) = E[p]$  since #E[p] = p (E is ordinary). Thus  $\ker(\alpha) \subseteq \ker([p])$  and we see that [p] factors through  $\alpha$  as  $[p] = \psi \circ \alpha$ . Now have that  $\deg(\psi) = p = p^2/\deg(\alpha)$  and clearly  $\psi$  is inseparable. The claim follows as above.

For the second point, assume  $\alpha \in \operatorname{End}(E)$  has norm  $N(\alpha) = p^2$  and  $\alpha \neq \pm p$ . If  $\alpha$  is purely inseparable, we are done. If  $\alpha$  is separable, its kernel must be  $E[p^2]$  and so it factors through  $[p^2]$ . Since  $[p^2]$  has inseparability degree  $p^2$ , we see that  $[p^2] = \pi^2 \circ \alpha$  where  $\pi$  is the p-th power Frobenius morphism. Since  $\alpha$  is an endomorphism of E, find  $\pi^2: E \to E$ , thus  $j(E) \in \mathbb{F}_{p^2}$ .

Finally, if  $\alpha$  has inseparability degree p, then its kernel must be E[p] and so  $\alpha = \beta \circ \pi$  where  $\beta : E^{(p)} \to E$  is separable with kernel  $E^{(p)}[p]$ . However, by the uniqueness of the separable isogeny with kernel  $E^{(p)}[p]$ , we know that (up to isomorphism) also [p] is  $\beta \circ \pi$ . This now implies that  $\alpha = \epsilon p$  for some unit  $\epsilon$ .

**Proposition 2.2.** Let D < 0. Then the curves E with  $\operatorname{End}(E) = \mathbb{Z}[\sqrt{D}]$  have  $j(E) \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$  if and only if

$$a^2 - b^2 D = p$$

has no solution  $a, b \in \mathbb{Z}$  and

$$a^2 - b^2 D = p$$

has a nontrivial solution  $a, b \in \mathbb{Z}$ .

Let  $E/\mathbb{F}_{p^2}$  be an ordinary Elliptic Curve and write  $\mathcal{O} := \operatorname{End}(E), \mathcal{K} := \operatorname{End}(E) \otimes \mathbb{Q}$ . Let  $\pi$  be the  $q = p^2$ -th power Frobenius endomorphism and let t be its trace. Assume  $p \neq 2$ .

**Lemma 2.3.** Have  $(p) = (p, \pi)(p, \pi - t)$  in  $\mathbb{Z}[\pi]$ ,  $\mathcal{O}$  resp.  $\mathcal{O}_{\mathcal{K}}$ .

Proof. Have

$$(p,\pi)(p,\pi-t) = (p^2,p\pi,p\pi-pt,\pi^2-t\pi) = (p^2,pt,p\pi,-p^2) = (up^2+vtp,\ldots) = (p)$$

where up + vt = 1 (note that  $t \perp p$  since E is ordinary).

**Lemma 2.4.**  $(p,\pi)$  is principal (in  $\mathcal{O}$ ) if and only if  $E/\mathbb{F}_p$ .

*Proof.* If  $(p, \pi)$  is principal, then its generator is an element of norm p, so  $E/\mathbb{F}_p$ . On the other hand, if  $E/\mathbb{F}_p$ , then the p-th power Frobenius endomorphism  $\pi_p$  satisfies  $p = \pi_p(t_p - \pi_p)$ ,  $\pi = \pi_p^2$  and  $\pi_p = u(\pi + p) + v\pi_p p$ , where  $t_p$  is its trace and ut + vp = 1.  $\square$ 

There must be some problem in my definition of the class group action, as it can happen that  $[(p,\pi)]$  is not [(1)], but  $E[(p,\pi)]$  is clearly trivial, so<sup>3</sup>  $(p,\pi).E = E/E[(p,\pi)] = E$ . However, this contradicts the freeness of the class group action.

**Lemma 2.5.** Assume  $j \neq 0,1728$ .  $[(p,\pi)]$  has order  $\leq 2$  in  $Cl(\mathcal{O})$  resp.  $Cl(\mathcal{O}_{\mathcal{K}})$ .

*Proof.* Since  $E/\mathbb{F}_{p^2}$ , we know that there is a nontrivial element  $\alpha$  of norm  $p^2$ . Now have in  $\mathcal{O}_{\mathcal{K}}$  that  $(\alpha)|(p)^2$  and with  $p=(p,\pi)(p,\pi-t)$  have thus  $(\alpha)=(p)$  or  $(\alpha)=(p,\pi)^2$  or  $(\alpha)=(p,\pi-t)^2$ . However, by assumption we only have units  $\pm 1$  in  $\mathcal{O}_{\mathcal{K}}$  resp.  $\mathcal{O}$ , so the first case is impossible, as it implies  $\alpha=\pm p$ .

Note that  $[(p,\pi)] = [(p,\pi-t)^{-1}]$ , so wlog assume  $(\alpha) = (p,\pi)^2$ . It follows that  $(p,\pi)^2$  is principal, so  $[(p,\pi)]^2 = [(1)]$ .

## 3 Ideals in $\mathcal{O}$ resp. $\mathcal{O}_{\mathcal{K}}$

Consider an ordinary Elliptic Curve  $E/\mathbb{F}_q$ ,  $\mathcal{O} := \operatorname{End}(E)$ ,  $\mathcal{K} := \mathcal{O} \otimes \mathbb{Q}$  and  $\mathcal{O}_{\mathcal{K}}$  the ring of integers in  $\mathcal{K}$ . Assume that  $j(E) \in \mathbb{F}_q$  is not contained in any proper subfield of  $\mathbb{F}_q$  and let  $\pi$  be the q-th power Frobenius endomorphism. Let t be its trace.

#### **Proposition 3.1.** $p \nmid d(\mathcal{O})$

Proof. Have that

$$d(\mathbb{Z}[\pi]) = t^2 - 4q \perp p$$

since  $t \perp p$  as E is ordinary. The claim follows since  $d(\mathcal{O}) \mid d(\mathcal{O})[\mathcal{O} : \mathbb{Z}[\pi]]^2 = d(\mathbb{Z}[\pi])$ .

**Proposition 3.2.** Let  $\mathfrak{a} \leq \mathcal{O}$ . Then  $\mathfrak{a} \cap \mathbb{Z} = (a)$  with  $a \mid [\mathcal{O} : \mathfrak{a}] \mid a^2$ . Note that if  $\mathfrak{a} = \mathfrak{p}$  is prime, then trivially a must be prime.

*Proof.* Clearly  $[\mathcal{O}:\mathfrak{a}] \in \mathfrak{a}$  as  $1 \in \mathcal{O}/\mathfrak{a}$  has order dividing  $\#(\mathcal{O}/\mathfrak{a}) = [\mathcal{O}:\mathfrak{a}]$ , so  $a \mid [\mathcal{O}:\mathfrak{a}]$ . On the other hand, have  $[\mathcal{O}:\mathfrak{a}] \mid [\mathcal{O}:a\mathcal{O}] = a^2$ .

**Lemma 3.3.** Let  $\mathfrak{p} \leq \mathcal{O}_{\mathcal{K}}$  be a prime with  $\mathfrak{N}(\mathfrak{p}) \perp [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$ . Then  $\mathfrak{p}$  has a set of generators in  $\mathcal{O}$ .

*Proof.* Suppose  $\mathfrak{p}$  is a prime over p, and let  $\mathcal{O} = \mathbb{Z}[\phi]$ . If  $MiPo(\phi) = f(X)g(X) \mod p$  splits, then have

$$p\mathcal{O}_{\mathcal{K}} = (p, f(\phi))(p, g(\phi))$$

and so the prime ideals over p are  $(p, f(\phi))$  and  $(p, g(\phi))$ . If MiPo $(\phi)$  mod p is irreducible, then have that  $p\mathcal{O}_{\mathcal{K}}$  is prime and thus the only prime ideal over p. Hence, all prime ideals over p (including  $\mathfrak{p}$ ) have a set of generators in  $\mathcal{O}$ .

**Corollary 3.4.** Let  $\mathfrak{a} \leq \mathcal{O}_{\mathcal{K}}$  be an ideal with  $\mathfrak{N}(\mathfrak{a}) \perp [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$ . Then  $\mathfrak{a}$  has a set of generators in  $\mathcal{O}$ .

<sup>&</sup>lt;sup>3</sup>We know that  $(p,\pi)$  is invertible, as  $\frac{1}{p}(p,\pi)(p,\pi-t)=(1)$ .

**Proposition 3.5.** Let  $\mathfrak{p} \leq \mathcal{O}$  be a prime and  $\mathfrak{p}' = \mathfrak{p}\mathcal{O}_{\mathcal{K}}$ . Then  $\mathcal{O}_{\mathfrak{p}} = (\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}'}$ .

*Proof.* We have  $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\alpha]$  and  $\mathcal{O} = \mathbb{Z}[f\alpha]$  where  $f = [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$ . Thus  $f \notin \mathfrak{p}$  and so  $f \in \mathcal{O}_{\mathfrak{p}}^*$ . Therefore  $\mathcal{O}_{\mathcal{K}} \subseteq \mathcal{O}_{\mathfrak{p}}$  and thus  $(\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}'} \subseteq \mathcal{O}_{\mathfrak{p}}$ .

**Proposition 3.6.** Let  $\mathfrak{I}(\mathcal{O})$  resp.  $\mathfrak{I}(\mathcal{O}_{\mathcal{K}})$  denote the set of invertible ideals of norm  $\perp [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$ . Then

$$\mathfrak{I}(\mathcal{O}) \to \mathfrak{I}(\mathcal{O}_{\mathcal{K}}), \quad \mathfrak{a} \mapsto \mathfrak{a}\mathcal{O}_{\mathcal{K}}$$

is a monoid isomorphism with inverse

$$\mathfrak{I}(\mathcal{O}_{\mathcal{K}}) \to \mathfrak{I}(\mathcal{O}), \quad \mathfrak{a} \mapsto \mathfrak{a} \cap \mathcal{O}$$

*Proof.* Clearly, this is a well-defined monoid homomorphism. Hence, we have to show that it is bijective.

By Corollary 3.4, we know that any  $\mathfrak{a} \leq \mathcal{O}_{\mathcal{K}}$  with  $\mathfrak{N}(\mathfrak{a}) \perp [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$  has generators in  $\mathcal{O}$ , thus  $(\mathfrak{a} \cap \mathcal{O})\mathcal{O}_{\mathcal{K}} = \mathfrak{a}$ . This shows that  $\mathfrak{a} \cap \mathcal{O}$  is a preimage of  $\mathfrak{a}$ , and so the map is surjective.

Assume now  $\mathfrak{a}, \mathfrak{b} \leq \mathcal{O}$  with  $\mathfrak{a}\mathcal{O}_{\mathcal{K}} = \mathfrak{b}\mathcal{O}_{\mathcal{K}}$  and  $\mathfrak{N}(\mathfrak{a}), \mathfrak{N}(\mathfrak{b}) \perp [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$ . We show that  $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{b}_{\mathfrak{p}}$  for all primes  $\mathfrak{p} \leq \mathcal{O}$ . Note that if  $\mathfrak{N}(\mathfrak{p}) \not\perp [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]$ , this holds trivially, as  $\mathfrak{a}_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}} = \mathfrak{b}_{\mathfrak{p}}$ . Otherwise, note that

$$\mathfrak{a}_{\mathfrak{p}}=\mathfrak{a}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}=\mathfrak{a}(\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}}=\mathfrak{a}\mathcal{O}_{\mathcal{K}}(\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}}=\mathfrak{b}\mathcal{O}_{\mathcal{K}}(\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}}=\mathfrak{b}_{\mathfrak{p}}(\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}}=\mathfrak{b}_{\mathfrak{p}}$$

as  $\mathcal{O}_{\mathfrak{p}}=(\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}}$ . This shows that  $\mathfrak{a}_{\mathfrak{p}}=\mathfrak{b}_{\mathfrak{p}}$  at all primes, so  $\mathfrak{a}=\mathfrak{b}$  and our map is injective. Furthermore, since  $(\mathfrak{a}\cap\mathcal{O})\mathcal{O}_{\mathcal{K}}=\mathfrak{a}$ , we see that it has the inverse

$$\mathfrak{I}(\mathcal{O}_{\mathcal{K}}) \to \mathfrak{I}(\mathcal{O}), \quad \mathfrak{a} \mapsto \mathfrak{a} \cap \mathcal{O}$$

which must then be well-defined.

**Example 3.7.** Let  $K = \mathbb{Q}(\sqrt{-3})$ , then  $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$  which is a PID. Let further  $\mathcal{O} = \mathbb{Z}[2\sqrt{-3}]$ , so  $f = [\mathcal{O}_K : \mathcal{O}] = 4$ .

**Proposition 3.8.** Let  $\mathfrak{a} \leq R$  be a radical ideal in a commutative unital ring R. If  $\alpha \in \mathfrak{p}$  for all primes  $\mathfrak{p} \supseteq \mathfrak{a}$  then  $\alpha \in \mathfrak{a}$ .

*Proof.* We have that  $\mathfrak{a}_{\alpha} \neq (1)$  otherwise  $\alpha^n \in \mathfrak{a}$ , so  $\alpha \in \mathfrak{a}$ . Thus  $\mathfrak{a}_{\alpha} \subseteq \mathfrak{m}$  for a maximal ideal  $\mathfrak{m} \leq R_{\alpha}$ . A preimage under  $R \to R_{\alpha}$  is now a prime  $\mathfrak{p}$  with  $\mathfrak{a} \subseteq \mathfrak{p}$  and  $\alpha \notin \mathfrak{p}$ .

**Corollary 3.9.** If  $q \perp d(\mathcal{O})$  is an integer and  $q \mid \alpha$  in  $\mathcal{O}_{\mathcal{K}}$ , then also  $q \mid \alpha$  in  $\mathcal{O}$ .

*Proof.* It suffices to prove this for primes q. Since  $q \nmid d(\mathcal{O})$ , we know that (q) is unramified, hence radical. Now observe that  $\mathcal{O}_{\mathfrak{p}} = (\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}}$  for primes  $\mathfrak{p}$  over q and so  $\alpha \in \mathfrak{p}$  for all primes  $\mathfrak{p}$  over q. The previous proposition now shows that  $\alpha \in (q)$ .

## 4 Norm equations

**Lemma 4.1.** Let D < 0 and  $\mathcal{O}$  be the imaginary quadratic order of discriminant D. Then  $1, \alpha$  with  $\alpha = \frac{D+\sqrt{D}}{2}$  is a  $\mathbb{Z}$ -basis of  $\mathcal{O}$  and

$$N(a+b\alpha) = \left(a + \frac{D}{2}b\right)^2 - \frac{D}{4}b^2$$

Proof.

$$\begin{split} N(\alpha) = & a^2 + ab\frac{D + \sqrt{D}}{2} + ab\frac{D - \sqrt{D}}{2} + \frac{D^2 - D}{4}b^2 = a^2 + Dab + \frac{D^2 - D}{4}b^2 \\ = & \left(a + \frac{D}{2}b\right)^2 - \frac{D}{4}b^2 \end{split}$$

**Corollary 4.2.** Let l be a prime and D < 0. Let  $\mathcal{O}$  be the quadratic imaginary order of discriminant D. If there exists a nontrivial element  $\alpha \in \mathcal{O}$  of norm  $l^e$  (i.e.  $\alpha \notin \mathbb{Z}$ ), then

$$e \ge \log_l(-D) - \log_l(4)$$

**Corollary 4.3.** Let  $E/\overline{\mathbb{F}}_p$  be an ordinary Elliptic Curve such that  $\operatorname{End}(E)$  has discriminant D. Suppose that  $j(E_0) \notin \mathbb{F}_p$ . Then the shortest l-isogeny path between E and  $E^{(p)}$  has length at least

$$\frac{1}{2}\log_l(-D) - \log_l(2)$$

*Proof.* First, define  $E_0$  to be the corresponding curve on the crater of the l-isogeny vulcano. Let  $v \in \mathfrak{N}$  be maximal with  $l^v \mid [\operatorname{End}(E_0) : \operatorname{End}(E)]$ , so  $\operatorname{End}(E_0)$  has discriminant  $D/l^v$ . Now we know that  $E_0^{(p)}$  is at the opposite side of the crater, and the size of the crater is the order of  $[\mathfrak{l}_1]$  in  $\operatorname{Cl}(\operatorname{End}(E_0))$  where  $l = \mathfrak{l}_1\mathfrak{l}_2$ . If e is this order, then we know that there must be a nontrivial element of order  $l^e$  in  $\operatorname{End}(E_0)$ , so

$$e > \log_l(-D/l^v) - \log_l(4)$$

Thus, the distance of  $E_0$  and  $E_0^{(p)}$  is at least

$$\frac{1}{2}e \ge \frac{1}{2}\log_l(-D/l^v) - \frac{1}{2}\log_l(4) = \frac{1}{2}\log_l(-D) - \frac{1}{2}v - \log_l(2)$$

However, the shortest path from E to  $E_0$  has length v, and similarly for the shortest path from  $E^{(p)}$  to  $E_0^{(p)}$ . Thus we find that the length of the shortest path from E to  $E^{(p)}$  is at least

$$\frac{1}{2}\log_l(-D) - \frac{1}{2}v - \log_l(2) + 2v \ge \frac{1}{2}\log_l(-D) - \log_l(2)$$

| j(E)             | $h(\operatorname{End}(E))$ | $[\mathcal{O}_{\mathcal{K}}: \operatorname{End}(E)]$ | $d(\operatorname{End}(E))$ | $[\operatorname{End}(E):\mathbb{Z}[\pi]]$ |
|------------------|----------------------------|------------------------------------------------------|----------------------------|-------------------------------------------|
| $\alpha$         | 36                         | 3                                                    | -36315                     | 1                                         |
| $4\alpha + 99$   | 64                         | 1                                                    | -40020                     | 1                                         |
| $61\alpha + 16$  | 2                          | 1                                                    | -24                        | 28                                        |
| $48\alpha + 73$  | 64                         | ?                                                    | -37440                     | ?                                         |
| $12\alpha + 79$  | 12                         | ?                                                    | -2548                      | ?                                         |
| $91\alpha + 34$  | 24                         | ?                                                    | -16468                     | ?                                         |
| $95\alpha + 20$  | 64                         | ?                                                    | -40548                     | ?                                         |
| $97\alpha + 12$  | 48                         | ?                                                    | -35475                     | ?                                         |
| $97\alpha + 8$   | 48                         | ?                                                    | -35620                     | ?                                         |
| $93\alpha + 8$   | 24                         | ?                                                    | -23643                     | ?                                         |
| $77\alpha + 16$  | 16                         | ?                                                    | -2340                      | ?                                         |
| $21\alpha + 48$  | 30                         | ?                                                    | -35179                     | ?                                         |
| $31\alpha + 59$  | 48                         | ?                                                    | -29355                     | ?                                         |
| $82\alpha + 39$  | 24                         | ?                                                    | -18603                     | ?                                         |
| $64\alpha + 38$  | 36                         | ?                                                    | -40075                     | ?                                         |
| $92\alpha + 74$  | 32                         | ?                                                    | -30195                     | ?                                         |
| $38\alpha + 18$  | 16                         | ?                                                    | -2340                      | ?                                         |
| $69\alpha + 25$  | 40                         | ?                                                    | -31588                     | ?                                         |
| 99a + 64         | 32                         | ?                                                    | -30195                     | ?                                         |
| $56\alpha + 4$   | 32                         | ?                                                    | -30195                     | ?                                         |
| $26\alpha + 90$  | 12                         | ?                                                    | -2548                      | ?                                         |
| $93\alpha + 49$  | 48                         | ?                                                    | -36708                     | ?                                         |
| $17\alpha + 16$  | 32                         | ?                                                    | -13908                     | ?                                         |
| $84\alpha + 67$  | 4                          | ?                                                    | -180                       | ?                                         |
| $100\alpha + 34$ | 56                         | ?                                                    | -40788                     | ?                                         |
| $30\alpha + 2$   | 16                         | ?                                                    | -2244                      | ?                                         |
| $21\alpha + 41$  | 2                          | ?                                                    | -52                        | ?                                         |
| $24\alpha + 59$  | 24                         | ?                                                    | -26643                     | ?                                         |
| $67\alpha + 94$  | 64                         | ?                                                    | -37204                     | ?                                         |
| $88\alpha + 99$  | 2                          | ?                                                    | -88                        | ?                                         |
| $47\alpha + 26$  | 48                         | ?                                                    | -24420                     | ?                                         |
| $12\alpha + 7$   | 16                         | ?                                                    | -2520                      | ?                                         |
| $55\alpha + 77$  | 24                         | ?                                                    | -17395                     | ?                                         |
| $95\alpha + 92$  | 8                          | ?                                                    | -987                       | ?                                         |
| $68\alpha + 12$  | 12                         | ?                                                    | -756                       | ?                                         |
| $82\alpha + 66$  | 28                         | ?                                                    | -4532                      | ?                                         |
| $91\alpha + 38$  |                            | ?                                                    | -6948                      | ?                                         |
|                  | 16                         | •                                                    | 0010                       | •                                         |
| $99\alpha + 20$  | 24                         | ?                                                    | -18603                     | ?                                         |

Table 1: Table of class numbers of  $\operatorname{End}(E)$  for Elliptic Curves  $E/\mathbb{F}_{101^2} = \mathbb{F}_{101}[\alpha]$ . Note that the j-values are not uniformly chosen, in particular, j-values that lead to a conductor  $[\mathcal{O}_{\mathcal{K}}:\mathbb{Z}[\pi]]$  with "big" prime power divisors have been ignored, as the current implementation of computing the endomorphism ring would take ages for them.

11

## 5 Example - The ordinary endomorphism ring

The information in this section is all known material - I just wanted to understand properly how one can compute the endomorphism ring, and what problems occur.

Consider the finite field

$$\mathbb{F}_q = \mathbb{F}_{37^2} = \mathbb{F}_{37} + \alpha \mathbb{F}_{37}$$

where  $\alpha^2 + 33\alpha + 2 = 0$ . Further, consider the Elliptic Curve  $E/\mathbb{F}_q$  with j-invariant  $3\alpha$ , given by

$$E: y^2 = x^3 + (15\alpha + 17)x + (5\alpha + 3)$$

Then we find that the q-th power Frobnenius endomorphism  $\pi$  satisfies the minimal equation

$$\pi^2 + 47\pi + 1369$$

and in particular, its trace is -47. Hence, the number field  $\mathcal{K} := \mathcal{O} \otimes \mathbb{Q}$  where  $\mathcal{O} = \operatorname{End}(E)$  contains  $\sqrt{47^2 - 4 \cdot 1369} = \sqrt{-3^3 \cdot 11^2}$ . We observe that  $\mathcal{K} = \mathbb{Q}(\sqrt{-3})$  and has discriminant -3. Furthermore the ring of integers is  $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1}{2}(1+\sqrt{-3})]$ .

Knowing the number field, we want to find the endomorphism ring. First, observe that the Frobenius order  $\mathbb{Z}[\pi]$  has conductor 33. Now consider the endomorphism

$$\phi := 2\pi + 47$$

The advantage is that we can evaluate  $\phi$  on points of E, but evaluating  $\pi + 47/2$  is not so easy. Clearly  $[\mathbb{Z}[\pi] : \mathbb{Z}[\phi]] = 2$  and so  $\mathbb{Z}[\phi]$  has conductor 66.

#### **Torsion points**

In order to find whether  $\phi/n \in \mathcal{O}$ , we factor  $66 = 2 \cdot 3 \cdot 11$  and compute the corresponding torsion groups. This turns out to be quite difficult.

Assume  $\mathbb{F}_{37^{12}} = \mathbb{F}_{37}[\beta]$  with

$$MiPo_{\mathbb{F}_{37}}(\beta) = x^{12} + 4x^7 + 31x^6 + 10x^5 + 23x^4 + 18x^2 + 33x + 2$$

Then E[2] is generated by

$$P_1 = (11\beta^{11} + 19\beta^{10} + \beta^9 + 27\beta^8 + 8\beta^7 + 16\beta^6 + 17\beta^5 + 32\beta^4 + 12\beta^3 + 14\beta^2 + 24\beta + 32 : 0 : 1)$$

$$Q_1 = (15\beta^{11} + 7\beta^{10} + 33\beta^9 + 11\beta^8 + 6\beta^7 + 12\beta^6 + 26\beta^5 + 7\beta^4 + 33\beta^3 + 25\beta^2 + 8\beta + 19 : 0 : 1)$$

Further E[3] is generated by

$$P_2 = (19\beta^{11} + 34\beta^{10} + 3\beta^9 + 29\beta^8 + 7\beta^7 + 3\beta^6 + 18\beta^5 + 21\beta^4 + 23\beta^3 + 30\beta^2 + 23\beta + 25$$

$$: 6\beta^{11} + 25\beta^{10} + 4\beta^9 + 13\beta^8 + 10\beta^7 + 23\beta^6 + 20\beta^5 + 30\beta^4 + 24\beta^3 + 6\beta^2 + 17\beta + 5:1)$$

$$Q_2 = (31\beta^{11} + 24\beta^{10} + 35\beta^9 + 32\beta^8 + 2\beta^7 + 10\beta^6 + 23\beta^5 + 35\beta^4 + 22\beta^3 + 13\beta^2 + 12\beta + 12$$

$$: 18\beta^{11} + 2\beta^{10} + 32\beta^9 + 26\beta^8 + 17\beta^7 + 5\beta^6 + 19\beta^5 + 31\beta^4 + 31\beta^3 + \beta^2 + 22\beta + 1:1)$$

For E[11] we must even go to the extension degree 110. So assume  $\mathbb{F}_{37^{220}} = \mathbb{F}_{37}[\gamma]$ . Then E[11] is generated by  $P_3$  and  $Q_3$ . For the values of  $\text{MiPo}_{\mathbb{F}_{37}}(\gamma)$  and  $P_3, Q_3$  see Section 6.

Now we can compute  $\phi(P_1)$ ,  $\phi(Q_1)$ ,  $\phi(P_2)$ ,  $\phi(Q_2)$ ,  $\phi(P_3)$ ,  $\phi(Q_3)$  and see that none of them is zero. Since  $\deg(\phi) = [\mathcal{O} : \mathbb{Z}[\phi]] \mid [\mathcal{O}_{\mathcal{K}} : \mathbb{Z}[\phi]] = 2 \cdot 3 \cdot 11$ , we see that the kernel of  $\phi$  is trivial. Thus no  $\phi/n$  is contained in  $\mathcal{O}$ . Therefore we see that

$$\mathcal{O} \cap \mathbb{Z}[\sqrt{D}] = \mathbb{Z}[\phi]$$

The inclusion  $\supseteq$  is clear, and for the other direction, note that  $\mathcal{O} \cap \mathbb{Z}[\sqrt{D}] = \mathbb{Z} + t\sqrt{D}\mathbb{Z}$  and  $\mathbb{Z}[\phi] = \mathbb{Z} + s\sqrt{D}\mathbb{Z}$ . Since  $\mathbb{Z}[\phi] \subseteq \mathcal{O} \cap \mathbb{Z}[\phi]$  find thus  $t \mid s$ . Now observe that by choice of  $\phi$ , have  $\phi^2 \in \mathbb{Z}$  and so  $\phi = s\sqrt{D}$ . However,  $\phi/\frac{s}{t} = t\sqrt{D} \in \mathcal{O}$ . By the above, it follows that  $\frac{s}{t} = 1$ , i.e. s = t.

## The index $[\mathcal{O}:\mathbb{Z}[\phi]]$

From the consideration of the torsion points, we see that  $\mathcal{O} \cap \mathbb{Z}[\sqrt{D}] = \mathbb{Z}[\phi]$ . However, since  $[\mathcal{O}_{\mathcal{K}} : \mathbb{Z}[\sqrt{D}]] \leq 2$ , we deduce that  $[\mathcal{O} : \mathbb{Z}[\phi]] \leq 2$  and so

$$\mathcal{O} = \mathbb{Z}[\pi]$$

## 6 $P_3$ and $Q_3$

The minimal polynomial of  $\gamma$  is

```
x^220 + 31*x^219 + 13*x^218 + 21*x^217 + 23*x^216 + 9*x^215
+\ 2*x^214 + 35*x^212 + 10*x^211 + 29*x^210 + 25*x^209 + 20*x^208
+ 17*x^207 + 30*x^206 + 5*x^205 + 15*x^204 + 11*x^203 + 10*x^202
+ 11*x^201 + 32*x^200 + 5*x^199 + 28*x^198 + 7*x^197 + 13*x^196
+\ 10*x^195 + 32*x^194 + 17*x^193 + 19*x^192 + 36*x^191
+\ 17*x^190 + 31*x^189 + 14*x^188 + 6*x^187 + 30*x^186 + 8*x^185
+ 22*x^184 + 2*x^183 + 9*x^182 + 11*x^181 + 6*x^180 + 23*x^179
+ 14*x^178 + 36*x^177 + 16*x^176 + 34*x^175 + 14*x^174
 33*x^173 + 14*x^172 + 7*x^171 + 36*x^170 + 18*x^169 + 27*x^168
 5*x^167 + 31*x^166 + 6*x^165 + 15*x^164 + 14*x^163 + 17*x^162
+ 7*x^161 + 16*x^160 + 6*x^159 + 29*x^158 + 11*x^157 + 8*x^156
+\ 15*x^155 + 20*x^154 + 17*x^153 + 7*x^152 + 8*x^151 + 6*x^150
+ 12*x^149 + 36*x^148 + 7*x^147 + 3*x^146 + 25*x^145 + 13*x^144
 6*x^143 + 17*x^142 + 22*x^141 + 9*x^140 + 18*x^139 + 36*x^138
+ x^137 + 6*x^136 + 36*x^135 + 33*x^134 + 32*x^133 + 35*x^132
+ 33*x^131 + 7*x^130 + 3*x^129 + 7*x^128 + 20*x^127 + 31*x^126
+ 26*x^125 + 6*x^124 + 9*x^123 + 10*x^122 + 25*x^121 + 33*x^120
+ 33*x^119 + 30*x^118 + 34*x^117 + 22*x^116 + 8*x^115 + 10*x^114
 36*x^113 + 26*x^112 + 8*x^111 + 33*x^110 + 30*x^109 + 11*x^108
+ 14*x^107 + 22*x^106 + 26*x^105 + 11*x^104 + 35*x^103
```

```
+34*x^102 + 33*x^101 + 27*x^100 + 14*x^99 + 31*x^98 + 24*x^97
+ x^96 + 6*x^95 + 36*x^93 + 32*x^92 + 18*x^91 + 36*x^90 + 3*x^89
+ 22*x^88 + 36*x^87 + 6*x^86 + 20*x^85 + 25*x^84 + 8*x^82
+34*x^81 + 7*x^80 + 25*x^79 + 21*x^78 + 17*x^77 + 29*x^76
+\ 5*x^75 + 19*x^74 + 19*x^73 + 8*x^72 + 8*x^71 + 26*x^70
+7*x^69 + 27*x^68 + 10*x^67 + 31*x^66 + 4*x^65 + 29*x^64
+\ 36*x^62 + 3*x^61 + 27*x^60 + 13*x^59 + 23*x^58 + 33*x^57
+ 14*x^56 + 19*x^55 + 12*x^54 + 20*x^53 + 32*x^52 + 18*x^51
+\ 20*x^49 + 20*x^48 + x^47 + 17*x^46 + 16*x^45 + 4*x^44
+ 12*x^43 + 7*x^42 + 34*x^41 + 9*x^40 + 16*x^39 + 10*x^38
+25*x^37 + 10*x^36 + 10*x^35 + 28*x^34 + 33*x^33 + 22*x^32
+ 24*x^31 + 33*x^30 + 6*x^29 + 8*x^28 + 8*x^27 + 16*x^26
+\ 31*x^25 + 7*x^24 + 26*x^23 + 36*x^22 + 29*x^21 + 36*x^20
+ 7*x^19 + x^18 + 26*x^17 + 18*x^16 + 23*x^15 + 10*x^14
+ 4*x^13 + x^12 + 24*x^11 + 25*x^10 + 34*x^9 + 33*x^8
+33*x^7 + 8*x^6 + 12*x^5 + x^4 + 15*x^3 + 27*x^2 + 9*x + 2
```

#### $P_3$ is given by

```
(23*z220^219 + 5*z220^218 + 26*z220^217 + 27*z220^216)
+ 26*z220^215 + 12*z220^214 + 11*z220^213 + 10*z220^212
+ 29*z220^211 + 9*z220^210 + 16*z220^209 + 24*z220^208
+\ 18*z220^207 + 11*z220^206 + 11*z220^205 + 6*z220^204
+\ 24*z220^203 + 3*z220^202 + 34*z220^201 + 18*z220^200
+ 17*z220^199 + 9*z220^198 + 26*z220^197 + 2*z220^196
+31*z220^195 + 7*z220^194 + 15*z220^193 + 11*z220^192
+\ 15*z220^191 + 28*z220^190 + 13*z220^189 + 6*z220^188
+7*z220^187 + 28*z220^186 + 9*z220^185 + 9*z220^184
+\ 7*z220^183 + 27*z220^182 + 36*z220^181 + 35*z220^180
+\ 30*z220^179 + 32*z220^178 + 16*z220^177 + 15*z220^176
+ 16*z220^175 + 9*z220^174 + 21*z220^173 + 6*z220^172
+\ 15*z220^171 + 3*z220^170 + 25*z220^169 + 23*z220^168
+ z220^167 + 8*z220^166 + 34*z220^165 + 14*z220^164
+ 12*z220^163 + 20*z220^162 + 4*z220^161 + 9*z220^160
+ z220^159 + 25*z220^158 + 16*z220^157 + z220^156
+\ 21*z220^155\ +\ 10*z220^154\ +\ 7*z220^153\ +\ 13*z220^152
+ 32*z220^151 + 31*z220^150 + 17*z220^148 + 24*z220^147
+ 26*z220^146 + 28*z220^145 + 27*z220^144 + 4*z220^143
+ 5*z220^142 + 14*z220^141 + 26*z220^140 + 10*z220^139
+ 14*z220^138 + 19*z220^137 + 20*z220^136 + 18*z220^135
+\ 16*z220^134 + 11*z220^133 + 23*z220^132 + 35*z220^131
+ 22*z220^130 + 31*z220^129 + 34*z220^128 + 17*z220^127
+ z220^126 + 15*z220^125 + 2*z220^124 + 22*z220^123
+ 27*z220^122 + 6*z220^121 + 10*z220^120 + 7*z220^119
+ 4*z220^118 + 26*z220^117 + z220^116 + 32*z220^115
```

```
+29*z220^114 + 32*z220^113 + 18*z220^112 + 3*z220^111
+\ 28*z220^110 + 20*z220^109 + 17*z220^108 + 17*z220^107
+ 32*z220^106 + 32*z220^105 + 26*z220^104 + 24*z220^103
+ 17*z220^102 + 8*z220^101 + 3*z220^100 + 2*z220^99
+ 16*z220^98 + 29*z220^97 + 19*z220^96 + 27*z220^95
+4*z220^94 + 29*z220^93 + 24*z220^92 + 19*z220^91
+ 2*z220^90 + 2*z220^89 + 32*z220^88 + 23*z220^87
+ 32*z220^86 + 15*z220^85 + 24*z220^84 + 36*z220^83
+ 29*z220^82 + 18*z220^81 + 2*z220^80 + z220^79
+ 33*z220^78 + 34*z220^77 + 4*z220^76 + 11*z220^75
+ 21*z220^74 + 15*z220^73 + 10*z220^72 + 24*z220^71
+ 22*z220^70 + 22*z220^69 + 31*z220^68 + 32*z220^67
+ 28*z220^66 + z220^65 + 17*z220^64 + 13*z220^63
+ 32*z220^62 + 20*z220^61 + 32*z220^60 + 21*z220^59
+34*z220^58 + 11*z220^57 + 29*z220^56 + 12*z220^55
+ 22*z220^54 + 11*z220^53 + 36*z220^52 + 35*z220^51
+ 19*z220^50 + 35*z220^49 + 8*z220^48 + 16*z220^47
+ 16*z220^46 + 27*z220^45 + 32*z220^44 + 12*z220^43
+ 15*z220^42 + 6*z220^41 + 36*z220^40 + 27*z220^39
+\ 17*z220^38 + 20*z220^37 + 33*z220^36 + 34*z220^35
+34*z220^34 + 3*z220^33 + 12*z220^32 + 12*z220^31
+ 12*z220^30 + 5*z220^29 + 10*z220^28 + 13*z220^27
+ 36*z220^26 + 16*z220^25 + 16*z220^24 + 15*z220^23
+ 36*z220^22 + 18*z220^21 + 13*z220^20 + 26*z220^19
+\ 25*z220^18 + 21*z220^17 + 35*z220^16 + 3*z220^14
+ 31*z220^13 + 8*z220^12 + 7*z220^11 + 10*z220^10
+ 10*z220^9 + 6*z220^8 + 5*z220^7 + 33*z220^6
+6*z220^5 + 4*z220^4 + 31*z220^3 + 27*z220^2 + 27*z220 + 14
: 8*z220^219 + 17*z220^218 + 27*z220^217 + 14*z220^216
+6*z220^215 + 19*z220^214 + 18*z220^213 + 6*z220^212
+30*z220^211 + 24*z220^210 + 33*z220^209 + 19*z220^208
+\ 27*z220^207 +\ 16*z220^206 +\ 24*z220^205 +\ 3*z220^204
+4*z220^203 + 25*z220^202 + 29*z220^201 + 31*z220^200
+ 23*z220^199 + 7*z220^198 + 28*z220^197 + 4*z220^196
+ 26*z220^195 + 36*z220^194 + 18*z220^193 + 24*z220^192
+\ 29*z220^191 + 25*z220^190 + 23*z220^189 + 14*z220^188
+ 33*z220^187 + 19*z220^186 + 14*z220^184 + 21*z220^183
+ 10*z220^182 + 13*z220^181 + 21*z220^180 + 24*z220^179
+33*z220^178 + 19*z220^177 + 7*z220^176 + 36*z220^175
+\ 30*z220^174 + 34*z220^173 + 27*z220^172 + 3*z220^171
+34*z220^170 + 5*z220^169 + 36*z220^168 + 19*z220^167
+\ 27*z220^166 + 14*z220^165 + 10*z220^164 + 2*z220^163
```

```
+\ 31*z220^162 + 22*z220^161 + 7*z220^160 + 14*z220^159
+\ 5*z220^158 + 3*z220^157 + 22*z220^156 + 32*z220^155
+ 21*z220^154 + 17*z220^153 + 34*z220^152 + 9*z220^151
+33*z220^150 + 32*z220^149 + 24*z220^148 + 16*z220^147
+\ 19*z220^146 + 6*z220^145 + 26*z220^144 + 24*z220^143
+34*z220^141 + 25*z220^140 + 17*z220^139 + 25*z220^138
+ 19*z220^137 + 36*z220^136 + 7*z220^134 + 32*z220^133
+\ 24*z220^132 + 6*z220^131 + 12*z220^130 + 30*z220^129
+ 35*z220^128 + 13*z220^127 + 29*z220^126 + 2*z220^125
+24*z220^124 + 36*z220^123 + 34*z220^122 + 2*z220^121
+33*z220^120 + 10*z220^119 + 33*z220^118 + 2*z220^117
+\ 17*z220^116 + 33*z220^115 + 14*z220^114 + 22*z220^113
+\ 27*z220^112 + 20*z220^111 + 23*z220^110 + 34*z220^109
+6*z220^108 + 33*z220^107 + 14*z220^106 + 28*z220^105
+ 29*z220^104 + 36*z220^103 + 22*z220^102 + 35*z220^101
+ 8*z220^100 + 10*z220^99 + 10*z220^98 + 16*z220^97
+ 19*z220^96 + 17*z220^95 + 21*z220^94 + 13*z220^93
+24*z220^92 + 36*z220^91 + 25*z220^90 + 25*z220^89
+ 22*z220^88 + 27*z220^87 + 28*z220^86 + 11*z220^85
+\ 3*z220^84 + 14*z220^82 + 31*z220^81 + 7*z220^80
+ 33*z220^79 + 33*z220^78 + 2*z220^77 + 15*z220^76
+ 17*z220^75 + 32*z220^74 + 4*z220^73 + 18*z220^72
+ 10*z220^71 + 34*z220^70 + 9*z220^69 + 3*z220^68
+\ 20*z220^67 + 33*z220^66 + 23*z220^65 + 5*z220^64
+ 20*z220^63 + 36*z220^62 + 29*z220^61 + 2*z220^60
+ 25*z220^59 + 14*z220^58 + 16*z220^57 + 31*z220^56
+ 22*z220^55 + 31*z220^54 + 33*z220^53 + 19*z220^52
+ 22*z220^51 + 23*z220^50 + 36*z220^49 + 11*z220^48
+ 15*z220^47 + 15*z220^46 + 35*z220^45 + 7*z220^44
+ 27*z220^43 + 28*z220^42 + 15*z220^41 + 31*z220^40
+ 12*z220^39 + 19*z220^38 + 21*z220^37 + 18*z220^36
+ 3*z220^35 + 36*z220^33 + z220^32 + 35*z220^31
+ 21*z220^30 + 2*z220^29 + 13*z220^28 + 19*z220^27
+6*z220^26 + 22*z220^24 + 26*z220^23 + 9*z220^22
+ 7*z220^21 + 31*z220^20 + 31*z220^19 + 9*z220^18
+\ 23*z220^17 + 23*z220^16 + 6*z220^15 + 27*z220^14
+\ 36*z220^13 + 4*z220^12 + 26*z220^11 + 30*z220^10
+9*z220^9 + 8*z220^8 + 15*z220^7 + 26*z220^6
+ 17*z220^5 + 29*z220^4 + 24*z220^3 + 8*z220^2
+ 29*z220 : 1)
```

#### $Q_3$ is given by

```
(35*z220^219 + 22*z220^218 + 36*z220^216 + 24*z220^215)
+ 19*z220^214 + 32*z220^213 + 13*z220^212 + 19*z220^211
```

```
+3*z220^210 + 36*z220^209 + 29*z220^208 + 35*z220^206
+ 31*z220^205 + 32*z220^204 + 23*z220^203 + 21*z220^202
+ 10*z220^201 + 32*z220^200 + 32*z220^199 + 21*z220^198
+ 16*z220^197 + 23*z220^196 + 32*z220^195 + 12*z220^194
+9*z220^193 + 35*z220^192 + 8*z220^191 + 19*z220^190
+33*z220^189 + 13*z220^188 + 11*z220^187 + 35*z220^186
+\ 25*z220^185 + 28*z220^184 + 5*z220^183 + 7*z220^182
+\ 24*z220^181 + 35*z220^180 + 33*z220^179 + 18*z220^178
+\ 5*z220^177 + 31*z220^176 + 18*z220^175 + 30*z220^174
+\ 27*z220^173 + 3*z220^172 + 8*z220^171 + 24*z220^170
+ 14*z220^169 + 2*z220^168 + 16*z220^167 + 14*z220^166
+\ 18*z220^165 + 22*z220^164 + 32*z220^163 + 28*z220^162
+ 7*z220^161 + 19*z220^160 + 3*z220^159 + 14*z220^158
+\ 27*z220^157 + 35*z220^156 + 8*z220^155 + 25*z220^154
+ 11*z220^153 + 19*z220^152 + 21*z220^151 + 10*z220^150
+\ 2*z220^149 + 4*z220^148 + 4*z220^147 + 31*z220^146
+ 26*z220^145 + 17*z220^143 + 14*z220^142 + 12*z220^141
+ 17*z220^140 + 22*z220^139 + 30*z220^138 + 30*z220^137
+\ 15*z220^136 + 16*z220^135 + 25*z220^134 + 8*z220^133
+\ 28*z220^132 + 5*z220^131 + 14*z220^130 + 26*z220^129
+ 13*z220^128 + 10*z220^127 + 13*z220^126 + 10*z220^125
+ 17*z220^124 + 33*z220^123 + 9*z220^122 + 9*z220^121
+ 10*z220^120 + 12*z220^119 + 4*z220^118 + 6*z220^117
+ 33*z220^116 + 21*z220^115 + 14*z220^114 + 33*z220^113
+ 11*z220^112 + 4*z220^111 + 3*z220^110 + 3*z220^109
+\ 3*z220^108 + 3*z220^107 + 27*z220^106 + 8*z220^105
+\ 25*z220^104 + 10*z220^103 + 24*z220^102 + 2*z220^101
+ 12*z220^100 + 35*z220^99 + 30*z220^98 + 14*z220^97
+ 8*z220^96 + 16*z220^95 + 24*z220^94 + 23*z220^93
+34*z220^91 + 3*z220^90 + 13*z220^89 + 10*z220^88
+ 20*z220^87 + 14*z220^86 + 9*z220^85 + 36*z220^84
+ 33*z220^83 + 12*z220^82 + 20*z220^81 + 5*z220^80
+ 27*z220^79 + 27*z220^78 + 9*z220^77 + 23*z220^76
+4*z220^{75} + 26*z220^{74} + 8*z220^{73} + 11*z220^{72}
+25*z220^71 + 35*z220^70 + 19*z220^69 + 36*z220^68
+\ 35*z220^67 + 24*z220^66 + 8*z220^65 + 32*z220^64
+\ 10*z220^63 + 3*z220^62 + 18*z220^61 + 35*z220^60
+ 17*z220^59 + 30*z220^58 + 2*z220^57 + 25*z220^56
+ 7*z220^55 + 20*z220^54 + 27*z220^53 + z220^52
+ 10*z220^51 + 2*z220^50 + 18*z220^49 + 30*z220^48
+ 32*z220^47 + 20*z220^46 + 4*z220^45 + 16*z220^43
+ 16*z220^42 + 11*z220^41 + 8*z220^40 + 12*z220^39
+ 15*z220^38 + 25*z220^37 + 33*z220^36 + 4*z220^35
```

```
+ 11*z220^34 + 6*z220^33 + 7*z220^32 + 32*z220^31
+ 19*z220^30 + 19*z220^29 + 16*z220^28 + 10*z220^27
+\ 7*z220^26\ +\ 10*z220^25\ +\ 33*z220^24\ +\ 25*z220^23
+ 21*z220^2 + 35*z220^2 + 15*z220^2 + z220^1 + 15*z220^2 + z220^1 + z20^1 + z2
+ 19*z220^18 + 16*z220^17 + 10*z220^16 + 18*z220^15
+ 17*z220^14 + 2*z220^13 + 35*z220^12 + 30*z220^11
+ 17*z220^10 + 30*z220^9 + 26*z220^8 + 9*z220^7
+ 34*z220^6 + 4*z220^5 + 12*z220^4 + 16*z220^3
+\ 27*z220^2 +\ 12*z220 +\ 36
: 21*z220^219 + 24*z220^218
+ 33*z220^217 + 31*z220^216 + 29*z220^215 + 16*z220^214
+ 26*z220^213 + 7*z220^212 + 15*z220^211 + 9*z220^210
+ 19*z220^209 + 18*z220^208 + 16*z220^207 + 23*z220^206
+\ 27*z220^205 + 16*z220^204 + 5*z220^203 + 10*z220^202
+ 2*z220^201 + 19*z220^200 + 19*z220^199 + 8*z220^198
+ 30*z220^197 + 9*z220^196 + 27*z220^195 + 7*z220^194
+20*z220^193 + 8*z220^192 + 29*z220^191 + 10*z220^190
+ 32*z220^189 + 9*z220^188 + 4*z220^187 + 31*z220^186
+ 8*z220^185 + 4*z220^184 + 8*z220^183 + 11*z220^182
+ 13*z220^181 + 5*z220^180 + 29*z220^179 + 13*z220^178
+\ 20*z220^177 + 9*z220^176 + 3*z220^175 + 32*z220^174
+\ 3*z220^173 + 25*z220^172 + 33*z220^171 + 36*z220^170
+ 11*z220^169 + 22*z220^168 + 18*z220^167 + 7*z220^166
+\ 4*z220^165 + 9*z220^164 + 33*z220^163 + 33*z220^162
+\ 18*z220^161 + 3*z220^160 + 35*z220^159 + 31*z220^158
+\ 20*z220^157 + 28*z220^155 + 33*z220^154 + 30*z220^153
+28*z220^152 + 18*z220^151 + z220^150 + 34*z220^149
+ 16*z220^148 + 23*z220^147 + 30*z220^146 + 3*z220^144
+\ 28*z220^143 + 8*z220^142 + 35*z220^140 + 11*z220^139
+ 16*z220^138 + 20*z220^137 + 31*z220^136 + 11*z220^135
+24*z220^134 + 29*z220^133 + 29*z220^132 + 8*z220^131
+\ 25*z220^130 + 11*z220^129 + 35*z220^128 + 36*z220^127
+ 33*z220^126 + 18*z220^125 + 8*z220^124 + 9*z220^123
+31*z220^122 + 29*z220^121 + 7*z220^120 + 4*z220^119
+\ 3*z220^118 + 13*z220^117 + 35*z220^116 + 17*z220^115
+ 6*z220^114 + 3*z220^113 + 13*z220^112 + 5*z220^111
+ 31*z220^100 + 32*z220^109 + 17*z220^108 + 28*z220^107
+21*z220^106 + 14*z220^105 + 25*z220^104 + 17*z220^103
+33*z220^102 + 19*z220^101 + 4*z220^100 + 2*z220^99
+7*z220^98 + 34*z220^97 + 15*z220^96 + 7*z220^95
+ 34*z220^94 + 22*z220^93 + 22*z220^92 + 11*z220^91
+ 33*z220^90 + 32*z220^89 + 19*z220^88 + 21*z220^87
```

```
+ 23*z220^86 + 34*z220^85 + 35*z220^84 + 23*z220^83
+ 27*z220^82 + 25*z220^81 + 26*z220^80 + 2*z220^79
+ 33*z220^78 + 32*z220^77 + 8*z220^76 + 32*z220^75
+ 15*z220^74 + 17*z220^73 + 31*z220^72 + 7*z220^71
+ 8*z220^70 + 8*z220^69 + 22*z220^68 + 7*z220^67
+ 14*z220^66 + 15*z220^65 + 26*z220^64 + 26*z220^63
+ 35*z220^62 + 19*z220^61 + 18*z220^60 + 22*z220^59
+ 25*z220^57 + 4*z220^56 + 5*z220^55 + 4*z220^54
+\ 20*z220^53 + 32*z220^52 + 17*z220^51 + 14*z220^50
+\ 31*z220^49 + 9*z220^48 + 30*z220^47 + 20*z220^46
+ 7*z220^45 + 16*z220^43 + 23*z220^42 + 12*z220^41
+ 21*z220^40 + 14*z220^39 + 8*z220^38 + 14*z220^37
+35*z220^36 + 14*z220^35 + 22*z220^34 + 8*z220^33
+ z220^32 + 24*z220^31 + 21*z220^30 + 33*z220^29
+ 21*z220^28 + 22*z220^26 + 33*z220^25 + 13*z220^24
+ 13*z220^23 + 5*z220^22 + 35*z220^21 + 3*z220^20
+ 31*z220^19 + 13*z220^18 + 33*z220^17 + 30*z220^16
+ 16*z220^15 + 30*z220^14 + 16*z220^13 + 11*z220^12
+ 35*z220^11 + 22*z220^10 + 11*z220^9 + 8*z220^8
+ z220^7 + 25*z220^6 + 8*z220^5 + 27*z220^4 + z220^3
+ 29*z220^2 + 34*z220 + 29 : 1)
```