

Xiaolei Shi, Robert L. Thornton, Lambertus Hesselink

Contact: xiaolei@stanford.edu

- VSAL:VerySmall ApertureLaser system
- Near field optical data storage
- the minimum spotsize is determinedby the aperture size

Spot size & Field Intensity

Overview

Problem:

Power throughput scales: $\sim (W/\lambda)^4$

Solution:

C-aperture, ~1000× enhancement

Physics:

Polarization & resonance effects

Introduction: Nano-apertures

• Bethe theory (1944): radiation through circular aperture in perfect

conducting plate

H.A. Bethe 1967 Nobel Prize laureate in Physics.

PowerThrou ghput = \frac{TotalTrans mittedPowe r}{IncidentPo werOverApe rtureArea}

Introduction: Nano-Apertures

Need new aperture design to enhance power throughput!!

Simulation Setup

- XFDTD simulation
- Babinet's principle

- incident $\lambda = 1 \mu m$ (geometry scales with λ)
- •linearly polarized planewave
- aperture in perfect conductor plate

Simulation Results

C - aperture

100nm 30 20 10 0

Peak Intensity at 48nm: 36

Power throughput: 4.41

Spot Size (FWHM): 128nm 136nm*

100nm Square aperture

Peak Intensity at 48nm: <u>0.019</u>

Power throughput: 0.0078

Spot Size (FWHM): 140nm 80nm

Incident light polarized in x direction, $\lambda = 1 \mu m$

*Spot size can be smaller

C-aperture vs.100nm square aperture

Near field spot size is comparable

Power throughput is enhanced by ~1000 times

Polarization Effect

Power Throughput vs. Slit width

Polarization effect:

Aperture size in the direction that perpendicular to the incident polarization direction greatly affects the power throughput.

Resonance Effect

Experiment 1

Incident light: x polarized, wavelength λ

Experiment 2

Numerical tests show the existence of resonance

Summary

Problem:

Power throughput scales: $\sim (W/\lambda)^4$

Solution:

C-aperture, ~1000× enhancement

Physics:

Polarization & resonance effects

Contact: xiaolei@stanford.edu

