Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

November 28, 2017

Format: $characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects))$ Note: All weaker objects automatically induces notions inherited from stronger objects. TODO assign free variables as parameters TODO define || abs cross-product and other missing refs

TODO distinguish new condition vs implied proposition

TODO link thms?

1 Mathematical Analysis

1.0.1 Formal Logic

(1)	$statement\big(s,(RegEx)\big) \Longleftrightarrow well\text{-}formedString\big(s,()\big)$
	$propositionig((p,t),()ig) \Longleftrightarrow ig(statementig(p,()ig)ig) \land$
	$(t=eval(p)) \wedge$
(2)	$(t = true \ \ \ \ t = false)$
(3)	$operator\bigg(o,\Big((p)_{n\in\mathbb{N}}\Big)\bigg) \Longleftrightarrow proposition\bigg(o\Big((p)_{n\in\mathbb{N}}\Big),()\bigg)$
	$operator \big(\neg, (p_1)\big) \Longleftrightarrow \Big(proposition \big((p_1, true), ()\big) \Longrightarrow \big((\neg p_1, false), ()\big)\Big) \land$
	$\left(proposition ((p_1, false), ()) \Longrightarrow ((\neg p_1, true), ()) \right)$
(4)	# an operator takes in propositions and returns a proposition
(4)	# an operator takes in propositions and returns a proposition
	() () NOTE () () () OD () () AND () () YOD
(5)	$operator(\neg) \iff \mathbf{NOT} \; ; \; operator(\lor) \iff \mathbf{OR} \; ; \; operator(\land) \iff \mathbf{AND} \; ; \; operator(\veebar) \iff \mathbf{XOR} $ $operator(\Longrightarrow) \iff \mathbf{IF} \; ; \; operator(\Longleftarrow) \iff \mathbf{OIF} \; ; \; operator(\Longleftrightarrow) \iff \mathbf{IFF}$
(5)	$operator(\Longrightarrow) \iff \mathbf{ir} \; ; operator(\longleftarrow) \iff \mathbf{Oir} \; ; operator(\longleftarrow) \iff \mathbf{ir} \; \mathbf{r}$
(0)	$propositionig((false \Longrightarrow true), true, ()ig) \land propositionig((false \Longrightarrow false), true, ()ig)$
(6)	# truths based on a false premise is not false; ex falso quodlibet principle
(7)	$(THM): (a \Longrightarrow b \Longrightarrow c) \Longleftrightarrow (a \Longrightarrow (b \Longrightarrow c)) \Longleftrightarrow ((a \land b) \Longrightarrow c)$
(8)	$predicate(P,(V)) \iff \forall_{v \in V} \left(proposition((P(v),t),())\right)$
	$0thOrderLogic(P,()) \iff proposition((P,t),())$
(9)	# individual proposition

	$1stOrderLogic(P,(V)) \Longleftrightarrow \bigg(\forall_{v \in V} \Big(0thOrderLogic(v,()) \Big) \bigg) \land$
	$\left(\forall_{v \in V} \left(proposition \left(\left(P(v), t \right), () \right) \right) \right)$
(10)	# propositions defined over a set of the lower order logical statements
	$quantifierig(q,(p,V)ig) \Longleftrightarrow ig(predicateig(p,(V)ig)ig) \land$
	$igg(egin{aligned} proposition igg(ig(q(p), t ig), () igg) \end{aligned} igg)$
(11)	# a quantifier takes in a predicate and returns a proposition
(12)	$quantifier(\forall,(p,V)) \iff proposition((\land_{v \in V}(p(v)),t),())$ $\# \text{ universal quantifier}$
(12)	π um versus quantinos
	$quantifier\big(\exists,(p,V)\big) \Longleftrightarrow proposition\bigg(\Big(\vee_{v \in V} \big(p(v)\big),t\Big),()\bigg)$
(13)	# existential quantifier
	$quantifier\big(\exists!,(p,V)\big) \Longleftrightarrow \exists_{x \in V} \Big(P(x) \land \neg \Big(\exists_{y \in V \setminus \{x\}} \big(P(y)\big)\Big)\Big)$
(14)	# uniqueness quantifier
(15)	$ \text{(THM)}: \forall_x p(x) \Longleftrightarrow \neg \exists_x \neg p(x) \\ \# \text{ De Morgan's law} $
(16)	$(\text{THM}): \forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg \big(\forall_x p(x,y)\big) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable
(17)	$========== N \ O \ T = U \ P \ D \ A \ T \ E \ D ==========$
(18)	proof=truths derived from a finite number of axioms and deductions
(19)	elementary arithmetics=system with substitutions, and some notion of addition, multiplication, and prime nuumbers for encoding metamathematics
(20)	Gödel theorem \Longrightarrow axiomatic systems equivalent in power to elementary mathematics either has unprovable statements or has contradictions
(21)	$sequenceSet((A)_{\mathbb{N}},(A)) \Longleftrightarrow (Amapinputn)((A)_{\mathbb{N}} = \{A(1),A(2),A(3),\ldots\})$
(22)	TODO: define union, intersection, complement, etc.
(23)	======== N O T = U P D A T E D ========

1.1 Axiomatic Set Theory

======== N O T = U P D A T E D ========	(24)
ZFC set theory=usual form of axiomatic set theory	(25)
$A \subseteq B = \forall_x x \in A \Longrightarrow x \in B$	(26)
$(A=B)=A\subseteq B\land B\subseteq A$	(27)
$\in \mathbf{basis} \Longrightarrow \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(28)
\in and sets works following the 9 ZFC axioms:	(29)
$\forall_x \forall_y \big(x\!\in\! y \veebar \neg (x\!\in\! y)\big) \ \# \ \mathrm{E}: \in \mathrm{is} \ \mathrm{only} \ \mathrm{a} \ \mathrm{proposition} \ \mathrm{on} \ \mathrm{sets}$	(30)
$\exists_{\emptyset} \forall_y \neg y \in \emptyset \ \# \ \mathrm{E}$: existence of empty set	(31)
$\forall_x\forall_y\exists_m\forall_uu\!\in\!m\Longleftrightarrow u\!=\!x\!\vee\!u\!=\!y\ \#\ \text{C: pair set construction}$	(32)
$\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \Longrightarrow y \in u) \ \# \ \text{C: union set construction}$	(33)
$x = \{\{a\}, \{b\}\}\ \#$ from the pair set axiom	(34)
$u = \cup x = \cup \{\{a\}, \{b\}\} = \{a, b\}$	(35)
$\forall_x \exists !_y R(x,y) \ \# \ ext{functional relation} \ R$	(36)
$\exists_{i}\forall_{x}\exists!_{y}R(x,y)\Longrightarrow y\in i\ \#\ \text{C: image }i\text{ of set }m\text{ under a relation }R\text{ is assumed to be a set}$ $\Longrightarrow\{y\in m P(y)\}\ \#\ \text{Restricted Comprehension}\Longrightarrow\{y P(y)\}\ \#\ \text{Universal Comprehension}$	(37)
$\forall_{x \in m} P(x) = \forall_x \big(x \in m \Longrightarrow P(x) \big) \text{ $\#$ ignores out of scope} \neq \forall_x \big(x \in m \land P(x) \big) \text{ $\#$ restricts entirety}$	(38)
$\forall_m \forall_n \exists_{\mathcal{P}(m)} \big(n \subseteq m \Longrightarrow n \subseteq \mathcal{P}(m) \big) \ \# \ \text{C: existence of power set}$	(39)
$\exists_{I} \Big(\emptyset \in I \land \forall_{x \in I} \big(\{x\} \in I\big)\Big) \ \# \text{ I: axiom of infinity } ; I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \Longrightarrow \mathbb{N} \text{ is a set}$	(40)
$\forall_x \Big(\big(\emptyset \notin x \land x \cap x' = \emptyset \big) \Longrightarrow \exists_y (\mathbf{set of each e} \in x) \Big) \ \# \ \mathrm{C: axiom of choice}$	(41)
$\forall_x x \neq \emptyset \Longrightarrow x \notin x \# F$: axiom of foundation covers further paradoxes	(42)
======== N O T = U P D A T E D ========	(43)

1.2 Classification of sets

```
space((set, structure), ()) \iff structure(set)
                                                        # a space a set equipped with some structure
# various spaces can be studied through structure preserving maps between those spaces
                                                                                                                      (44)
                                                          map(\phi, (A, B)) \iff (\forall_{a \in A} \exists !_{b \in B} (\phi(a, b))) \lor
                                                                                     (\forall_{a \in A} \exists !_{b \in B} (b = \phi(a)))
                                               \# maps elements of a set to elements of another set
                                                                                                                      (45)
                                                          domain(A, (\phi, A, B)) \iff (map(\phi, (A, B)))
                                                                                                                      (46)
                                                       codomain \big(B, (\phi, A, B)\big) \Longleftrightarrow \Big(map \big(\phi, (A, B)\big)\Big)
                                                                                                                      (47)
                                          image(B,(A,q,M,N)) \iff (map(q,(M,N)) \land A \subseteq M) \land
                                                                           \left(B = \{ n \in N \mid \exists_{a \in A} (q(a) = n) \} \right)
                                                                                                                      (48)
                                      preimage(A, (B, q, M, N)) \iff (map(q, (M, N)) \land B \subseteq N) \land
                                                                         \left(A = \{ m \in M \mid \exists_{b \in B} (b = q(m)) \} \right)
                                                                                                                      (49)
                                                       injection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                             \forall_{u,v\in M} (q(u)=q(v) \Longrightarrow u=v)
                                                                          \# every m has at most 1 image
                                                                                                                      (50)
                                                      surjection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                                      \forall_{n \in N} \exists_{m \in M} (n = q(m))
                                                                       \# every n has at least 1 preimage
                                                                                                                      (51)
                                                 bijection\big(q,(M,N)\big) \Longleftrightarrow \Big(injection\big(q,(M,N)\big)\Big) \land
                                                                                   (surjection(q,(M,N)))
                                                         \# every unique m corresponds to a unique n
                                                                                                                      (52)
                                         isomorphicSets((A,B),()) \iff \exists_{\phi}(bijection(\phi,(A,B)))
                                                                                                                      (53)
                                        infiniteSet(S,()) \iff \exists_{T \subset S} (isomorphicSets((T,S),()))
                                                                                                                      (54)
                                             finiteSet(S,()) \iff (\neg infiniteSet(S,())) \lor (|S| \in \mathbb{N})
                                                                                                                      (55)
         countablyInfinite(S,()) \iff (infiniteSet(S,())) \land (isomorphicSets((S,\mathbb{N}),()))
                                                                                                                      (56)
```

 $uncountably Infinite(S,()) \iff \left(infiniteSet(S,())\right) \land \left(\neg isomorphicSets((S,\mathbb{N}),())\right)$ $inverseMap(q^{-1},(q,M,N)) \iff (bijection(q,(M,N))) \land$ $\left(map\left(q^{-1},(N,M)\right)\right)\wedge$ $\left(\forall_{n\in\mathbb{N}}\exists!_{m\in\mathbb{M}}\left(q(m)=n\Longrightarrow q^{-1}(n)=m\right)\right)$ (58) $mapComposition(\phi \circ \psi, (\phi, \psi, A, B, C)) \iff map(\psi, (A, B)) \land map(\phi, (B, C)) \land$ $\forall_{a \in A} \Big(\phi \circ \psi(a) = \phi(\psi(a)) \Big)$ (59) $equivalence Relation (\sim (\$1,\$2),(M)) \iff (\forall_{m \in M} (m \sim m)) \land$ $(\forall_{m,n\in M}(m\sim n\Longrightarrow n\sim m))\land$ $(\forall_{m,n,p\in M}(m \sim n \land n \sim p \Longrightarrow m \sim p))$ # behaves as equivalences should (60) $equivalenceClass([m]_{\sim},(m,M,\sim)) \iff [m]_{\sim} = \{n \in M \mid n \sim m\}$ # set of elements satisfying the equivalence relation with m(61) $(THM): a \in [m]_{\sim} \Longrightarrow [a]_{\sim} = [m]_{\sim}; [m]_{\sim} = [n]_{\sim} \veebar [m]_{\sim} \cap [n]_{\sim} = \emptyset$

 $quotientSet(M/\sim,(M,\sim)) \iff M/\sim = \{equivalenceClass([m]_\sim,(m,M,\sim)) \in \mathcal{P}(M) \mid m \in M\}$ # set of all equivalence classes (63)

(THM): axiom of choice $\Longrightarrow \forall_{[m]_{\sim} \in M/\sim} \exists_r (r \in [m]_{\sim})$ # well-defined maps may be defined in terms of chosen representative elements r (65)

equivalence class properties

(62)

1.3 Construction of number sets

 $S^0 = id ; n \in \mathbb{N}^* \Longrightarrow S^n = S \circ S^{P(n)}$ (71)addition = $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} = +(m,n) = m+n = S^n(m)$ (72) $S^x = id = S^0 \Longrightarrow x = additive identity = 0$ (73) $S^n(x) = 0 \Longrightarrow x = \text{additive inverse} \notin \mathbb{N} \# \text{ git gud smh} - -$ (74) $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$, s.t.: $(m,n)\sim(p,q)\iff m+q=p+n\ \#$ span $\mathbb Z$ using differences then group equal differences (75) $\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$ (76) $+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \ \#$ well-defined and consistent (77) $\operatorname{multiplication} \dots M^x = id \Longrightarrow x = \operatorname{multiplicative} \operatorname{identity} = 1 \dots \operatorname{multiplicative} \operatorname{inverse} \notin \mathbb{N}$ (78) $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*)/\sim$, s.t.: $(x,y) \sim (u,v) \iff x \cdot v = u \cdot y$ (79)

 $\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{Q}} q \rightarrow [(q, 1)] ; \dots \{x \mid x^2 = 2\} \notin \mathbb{Q}$ (80)

 $\mathbb{R} = \mathbf{almost\ homomorphisms\ on\ } \mathbb{Z}/\!\sim \ \# \ \mathrm{http://blog.sigfpe.com/2006/05/defining-reals.html} \tag{81}$

1.4 Topology

 $topology(\mathcal{O},(M)) \Longleftrightarrow (\mathcal{O} \subseteq \mathcal{P}(M)) \land \\ (\emptyset, M \in \mathcal{O}) \land \\ ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \Longrightarrow \cap F \in \mathcal{O}) \land \\ (C \subseteq \mathcal{O} \Longrightarrow \cup C \in \mathcal{O}) \\ \text{$\#$ topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc.} \\ \text{$\#$ arbitrary unions of open sets always result in an open set} \\ \text{$\#$ open sets do not contain their boundaries and infinite intersections of open sets may approach and} \\ \text{$\#$ induce boundaries resulting in a closed set (83)} \\ \text{$topologicalSpace}((M,\mathcal{O}),()) \Longleftrightarrow topology(\mathcal{O},(M)) \ (84)} \\ \text{$open(S,(M,\mathcal{O})) \Longleftrightarrow (topologicalSpace((M,\mathcal{O}),())) \land \\ (S \subseteq M) \land (S \in \mathcal{O})} \\ \text{$\#$ an open set do not contains its own boundaries} \ (85)}$

 $closed\big(S,(M,\mathcal{O})\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ (S\subseteq M) \land \big(S\in\mathcal{P}(M)\setminus\mathcal{O}\big)$ # a closed set contains the boundaries an open set (86)

$$clopen(S, (M, \mathcal{O})) \iff (closed(S, (M, \mathcal{O}))) \land (open(S, (M, \mathcal{O})))$$
 (87)

 $neighborhood(U,(a,\mathcal{O})) \iff (a \in U \in \mathcal{O})$ # another name for open set containing a (88)

$$M = \{a, b, c, d\} \land \mathcal{O} = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\} \Longrightarrow$$

$$\left(open(X, (M, \mathcal{O})) \iff X = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\}\right) \land$$

$$\left(closed(Y, (M, \mathcal{O})) \iff Y = \{\emptyset, \{a, b, d\}, \{c, d\}, \{a, b\}, \{d\}, M\}\right) \land$$

$$\left(clopen(Z, (M, \mathcal{O})) \iff Z = \{\emptyset, \{a, b\}, \{c, d\}, M\}\right) \tag{89}$$

$$chaoticTopology(M) = \{0, M\}$$
; $discreteTopology = \mathcal{P}(M)$ (90)

1.5 Induced topology

$$metric\Big(d\big(\$1,\$2\big),(M)\Big) \Longleftrightarrow \left(map\Big(d,\Big(M\times M,\mathbb{R}_0^+\Big)\Big)\right)$$

$$\Big(\forall_{x,y\in M}\big(d(x,y)=d(y,x)\big)\Big) \wedge$$

$$\Big(\forall_{x,y\in M}\big(d(x,y)=0\Longleftrightarrow x=y\big)\Big) \wedge$$

$$\Big(\forall_{x,y,z}\Big(\big(d(x,z)\leq d(x,y)+d(y,z)\big)\Big)\Big)$$
behaves as distances should (91)

$$metricSpace((M,d),()) \iff metric(d,(M))$$
 (92)

$$openBall \big(B, (r, p, M, d)\big) \Longleftrightarrow \Big(metricSpace\big((M, d), ()\big)\Big) \land \big(r \in \mathbb{R}^+, p \in M\big) \land \big(B = \{q \in M \mid d(p, q) < r\}\big)$$
(93)

$$\begin{split} & metricTopology\big(\mathcal{O},(M,d)\big) \Longleftrightarrow \Big(metricSpace\big((M,d),()\big)\Big) \land \\ & \Big(\mathcal{O} = \{U \in \mathcal{P}(M) \,|\, \forall_{p \in U} \exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \land B \subseteq U\Big)\}\Big) \end{split}$$

every point in the neighborhood has some open ball that is fully enclosed in the neighborhood (94)

$$metricTopologicalSpace((M, \mathcal{O}, d), ()) \iff metricTopology(\mathcal{O}, (M, d))$$
 (95)

$$limitPoint(p,(S,M,d)) \iff (S \subseteq M) \land \forall_{r \in \mathbb{R}^+} \Big(openBall(B,(r,p,M,d)) \cap S \neq \emptyset\Big)$$
every open ball centered at p contains some intersection with S (96)

$$interiorPoint\big(p,(S,M,d)\big) \Longleftrightarrow (S \subseteq M) \land \bigg(\exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \subseteq S \Big) \bigg)$$

```
# there is an open ball centered at p that is fully enclosed in S
                                                                                                                                                                                                                                                                                                                                                                                                  (97)
                                                                                                                   closure(\bar{S},(S,M,d)) \iff \bar{S} = S \cup \{limitPoint(p,(S,M,d)) | p \in M\}
                                                                                                                                                                                                                                                                                                                                                                                                 (98)
                                                                                                             dense\big(S,(M,d)\big) \Longleftrightarrow (S \subseteq M) \land \bigg( \forall_{p \in M} \Big( p \in closure\big(\bar{S},(S,M,d)\big) \Big) \bigg)
                                                                                                                                                               \# every of point in M is a point or a limit point of S
                                                                                                                                                                                                                                                                                                                                                                                                 (99)
                                                                                                                                                        eucD(d,(n)) \iff (\forall_{i \in \mathbb{N} \land i \leq n} (x_i \in \mathbb{R})) \land \left(d = \sqrt[2]{\sum_{i=1}^n x_i^2}\right)
                                                                                                                                                                                                                                                                                                                                                                                             (100)
                                                                                                                                             metricTopology\Big(euclideanTopology,\Big(\mathbb{R}^n,eucD\big(d,(n)\big)\Big)\Big)
                                                                                                                          ==== N O T = U P D A T E D =======
                                                        L1: \forall_{p \in U = \emptyset}(...) \Longrightarrow \forall_p ((p \in \emptyset) \Longrightarrow ...) \Longrightarrow \forall_p ((\mathbf{False}) \Longrightarrow ...) \Longrightarrow \emptyset \in \mathcal{O}_{euclidean}
                                                                                                                                                                                      L2: \forall_{p \in \mathbb{R}^n} B(r, p, \mathbb{R}^n, d) \subseteq \mathbb{R}^n \Longrightarrow M \in \mathcal{O}_{euclidean}
                                                                      L4: C \subseteq \mathcal{O}_{euclidean} \Longrightarrow \forall_{U \in C} \forall_{p \in U} \exists_{r \in \mathbb{R}^+} (B_r(p) \subseteq U \subseteq \cup C) \Longrightarrow \cup C \in \mathcal{O}_{euclidean}
                                                                                                                                                       L3: U, V \in \mathcal{O}_{euclidean} \Longrightarrow p \in U \cap V \Longrightarrow p \in U \land p \in V \Longrightarrow
                                                                                                                                                                                                      \exists_{r \in \mathbb{R}^+} B(r, p, \mathbb{R}^n, d) \land \exists_{s \in \mathbb{R}^+} B(s, p, \mathbb{R}^n, d) \Longrightarrow
                                                                                                                                      B(min(r,s), p, \mathbb{R}^n, eucD) \subseteq U \land B(min(r,s), q, \mathbb{R}^n, d) \subseteq V \Longrightarrow
                                                                                                                                                           B(min(r,s),p,\mathbb{R}^n,eucD) \in U \cap V \Longrightarrow U \cap V \in \mathcal{O}_{euclidean}
                                                                                                                                                                                                                                                                     # natural topology for \mathbb{R}^d
                                                                                                                                                        \# could fail on infinite sets since min could approach 0
                                                                                                                                                   = N O T = U P D A T E D ========
                                                                                                                                                                                                                                                                                                                                                                                             (101)
                 subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N)) \iff topology(\mathcal{O},(M)) \land (N \subseteq M) \land (\mathcal{O}|_{N} = \{U \cap N \mid U \in \mathcal{O}\})
                                                                                                                                                                                                                                                             \# crops open sets outside N
                                                                                                                                                                                                                                                                                                                                                                                             (102)
                                                                                                          (THM): subsetTopology(\mathcal{O}|_N, (M, \mathcal{O}, N)) \land topology(\mathcal{O}|_N, (N)) \Leftarrow
                                                                                                           ===== N O T = U P D A T E D ========
                                                                                                                                                                                             L1: \emptyset \in \mathcal{O} \Longrightarrow U = \emptyset \Longrightarrow \emptyset \cap N = \emptyset \Longrightarrow \emptyset \in \mathcal{O}|_{N}
                                                                                                                                                                        L2: M \in \mathcal{O} \Longrightarrow U = M \Longrightarrow M \cap N = N \Longrightarrow N \in \mathcal{O}|_{N}
                                       L3: S, T \in \mathcal{O}|_N \Longrightarrow \exists_{U \in \mathcal{O}} (S = U \cap N) \land \exists_{V \in \mathcal{O}} (T = V \cap N) \Longrightarrow S \cap T = (U \cap N) \cap (V \cap N)
                                                                                                                                                                                                             =(U\cap V)\cap N\wedge U\cap V\in\mathcal{O}\Longrightarrow S\cap T\in\mathcal{O}|_{N}
                                                                                                                                                                                                                                                                  L4: TODO: EXERCISE
                                                                                                                    (103)
productTopology\Big(\mathcal{O}_{A\times B}, \big((A,\mathcal{O}_A),(B,\mathcal{O}_B)\big)\Big) \Longleftrightarrow \Big(topology\big(\mathcal{O}_A,(A)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big
                                                                                                                                                       (\mathcal{O}_{A\times B} = \{(a,b)\in A\times B \mid \exists_S(a\in S\in\mathcal{O}_A)\exists_T(b\in T\in\mathcal{O}_B)\})
                                                                                                                                                                                                                                                  # open in cross iff open in each
                                                                                                                                                                                                                                                                                                                                                                                             (104)
```

1.6 Convergence

$$sequence (q,(M)) \Longleftrightarrow map(q,(\mathbb{N},M)) \quad (105)$$

$$sequence Converges To((q,a),(M,\mathcal{O})) \Longleftrightarrow (topological Space((M,\mathcal{O}),())) \land \\ \left(sequence(q,(M))\right) \land (a \in M) \land \left(\forall_{U \in \mathcal{O} | a \in U} \exists_{N \in \mathbb{N}} \forall_{n > N} (q(n) \in U)\right)$$
each neighborhood of a has a tail-end sequence that does not map to outside points (106)

(THM): convergence generalizes to: the sequence $q: \mathbb{N} \rightarrow \mathbb{R}^d$ converges against $a \in \mathbb{R}^d$ in \mathcal{O}_S if:
$$\forall_{r > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} (||q(n) - a|| < \epsilon) \text{ $\#$ distance based convergence} \qquad (107)$$

1.7 Continuity

$$\begin{array}{c} continuous(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}_{M}),()\big)\Big) \land \\ \\ \Big(topologicalSpace\big((N,\mathcal{O}_{N}),()\big)\Big) \land \Big(\forall_{V \in \mathcal{O}_{N}}\Big(preimage\big(A,(V,\phi,M,N)\big) \in \mathcal{O}_{M}\Big)\Big) \\ \\ \# \ preimage \ of \ open \ sets \ are \ open \end{array}$$

$$\begin{array}{c} homeomorphism(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})) \Longleftrightarrow \Big(inverseMap\Big(\phi^{-1},(\phi,M,N)\Big)\Big) \\ \\ \Big(continuous\big(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})\big)\Big) \land \Big(continuous\Big(\phi^{-1},(N,\mathcal{O}_{N},M,\mathcal{O}_{M})\big)\Big) \\ \\ \# \ structure \ preserving \ maps \ in \ topology, \ ability \ to \ share \ topological \ properties \end{array}$$

$$\begin{array}{c} isomorphicTopologicalSpace\Big(\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big),(\big)\Big) \Longleftrightarrow \\ \\ \exists_{\phi}\Big(homeomorphism\big(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})\big)\Big) \end{array}$$

$$(110)$$

1.8 Separation

$$T0Separate \big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y} \exists_{U\in\mathcal{O}}\Big(\big(x\in U\land y\notin U\big)\lor \big(y\in U\land x\notin U\big)\Big)\Big) \\ \# \ \text{each pair of points has a neighborhood s.t. one is inside and the other is outside} \ \ (111)$$

$$T1Separate\big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\Big(\big(x\in U\land y\notin U\big)\land \big(y\in V\land x\notin V\big)\Big)\Big) \\ \# \ \text{every point has a neighborhood that does not contain another point} \ \ \ (112)$$

$$T2Separate\big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\big(U\cap V=\emptyset\big)\Big) \\ \# \ \text{every point has a neighborhood that does not intersect with a nhbhd of another point - Hausdorff space} \ \ \ (113)$$

1.9 Compactness

$$openCover(C, (M, \mathcal{O})) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land (C \subseteq \mathcal{O}) \land (\cup C = M)$$
collection of open sets whose elements cover the entire space (115)

$$finiteSubcover\left(\widetilde{C},(C,M,\mathcal{O})\right) \Longleftrightarrow \left(\widetilde{C} \subseteq C\right) \land \left(openCover\left(C,(M,\mathcal{O})\right)\right) \land \\ \left(openCover\left(\widetilde{C},(M,\mathcal{O})\right)\right) \land \left(finiteSet\left(\widetilde{C},()\right)\right) \\ \# \text{ finite subset of a cover that is also a cover}$$
 (116)

$$compact((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land$$

$$\Big(\forall_{C\subseteq\mathcal{O}}\Big(openCover\big(C,(M,\mathcal{O})\big) \Longrightarrow \exists_{\widetilde{C}\subseteq C}\Big(finiteSubcover\big(\widetilde{C},(C,M,\mathcal{O})\big)\Big)\Big)\Big)$$
every covering of the space is represented by a finite number of nhbhds (117)

$$compactSubset(N,(M,\mathcal{O})) \iff \left(compact((M,\mathcal{O}),())\right) \land$$

$$\left(subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N))\right) \land \left(compact((N,\mathcal{O}|_{N}),())\right)$$
(118)

$$bounded(N,(M,d)) \iff \left(metricSpace((M,d),()) \right) \land (N \subseteq M) \land$$

$$\left(\exists_{r \in \mathbb{R}^+} \forall_{p,q \in n} \left(d(p,q) < r \right) \right)$$
(119)

(THM) Heine-Borel thm.:
$$metricTopologicalSpace((M, \mathcal{O}_d, d), ()) \Longrightarrow$$

$$\forall_{S\subseteq M} \left(\left(closed(S, (M, \mathcal{O}_d)) \wedge bounded(S, (M, \mathcal{O}_d)) \right) \iff compactSubset(S, (M, \mathcal{O}_d)) \right)$$
when metric topologies are involved, compactness is equivalent to being closed and bounded (120)

1.10 Paracompactness

$$\begin{aligned} openRefinement\Big(\widetilde{C},(C,M,\mathcal{O})\Big) &\Longleftrightarrow \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \wedge \Big(openCover\Big(\widetilde{C},(M,\mathcal{O})\big)\Big) \wedge \\ \Big(\forall_{\widetilde{U} \in \widetilde{C}} \exists_{U \in C} \Big(\widetilde{U} \subseteq U\Big)\Big) \end{aligned}$$

a refined cover can be constructed by removing the excess nhbhds and points that lie outside the space (121)

$$(THM): finiteSubcover \Longrightarrow openRefinement$$
 (122)

$$locallyFinite(C,(M,\mathcal{O})) \iff \left(openCover(C,(M,\mathcal{O}))\right) \land$$
$$\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \left(finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\},())\right)$$

each point has a neighborhood that intersects with only finitely many sets in the cover (123)

1.11 Connectedness and path-connectedness

$$connected((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \Big(\neg \exists_{A,B \in \mathcal{O} \backslash \emptyset} \big(A \cap B \neq \emptyset \land A \cup B = M\big)\Big)$$

$$\# \text{ if there is some covering of the space that does not intersect} \qquad (130)$$

$$(\text{THM}) : \neg connected\left(\Big(\mathbb{R} \backslash \{0\}, subsetTopology\Big(\mathcal{O}_{euclidean}|_{\mathbb{R} \backslash \{0\}}, \big(\mathbb{R}, euclideanTopology, \mathbb{R} \backslash \{0\}\big)\Big)\Big), ()\Big)$$

$$\Longleftrightarrow \Big(A = (-\infty, 0) \in \mathcal{O}_{euclidean}|_{\mathbb{R} \backslash \{0\}}\Big) \land \Big(B = (0, \infty) \in \mathcal{O}_{euclidean}|_{\mathbb{R} \backslash \{0\}}\Big) \land \Big(A \cap B = \emptyset) \land \Big(A \cup B = \mathbb{R} \backslash \{0\}\big) \qquad (131)$$

$$(\text{THM}) : connected\Big((M, \mathcal{O}), ()) \Longleftrightarrow \forall_{S \in \mathcal{O}}\Big(clopen\Big(S, (M, \mathcal{O}) \Longrightarrow \big(S = \emptyset \lor S = M\big)\Big)\Big) \qquad (132)$$

$$pathConnected\Big((M, \mathcal{O}), ()) \Longleftrightarrow \Big(subsetTopology\Big(\mathcal{O}_{euclidean}|_{[0,1]}, \big(\mathbb{R}, euclideanTopology, [0,1]\big)\Big)\Big) \land$$

$$\left(\forall_{p,q\in M}\exists_{\gamma}\left(continuous\left(\gamma,\left([0,1],\mathcal{O}_{euclidean}|_{[0,1]},M,\mathcal{O}\right)\right)\land\gamma(0)=p\land\gamma(1)=q\right)\right) \qquad (133)$$

$$(THM): pathConnected \Longrightarrow connected$$
 (134)

1.12 Homotopic curve and the fundamental group

======== N O T = U P D A T E D ========	(135)
$homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \Longleftrightarrow (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land (\gamma(0) = \delta(0) \land \gamma(1) = \delta(1)) \land ((0, 1), M)) \land ($	
$(\exists_{H} \forall_{\lambda \in [0,1]}(continuous(H,(([0,1] \times [0,1], \mathcal{O}_{euclidean^{2}} _{[0,1] \times [0,1]}),(M,\mathcal{O})) \wedge H(0,\lambda) = \gamma(\lambda) \wedge H(1,\lambda) = \delta(\lambda))))$ # H is a continuous deformation of one curve into another	(136)
$homotopic(\sim) \Longrightarrow equivalenceRelation(\sim)$	(137)
$loopSpace(\mathcal{L}_p, (p, M, \mathcal{O})) \Longleftrightarrow \mathcal{L}_p = \{ map(\gamma, ([0, 1], M)) continuous(\gamma) \land \gamma(0) = \gamma(1) \})$	(138)
$concatination(\star,(p,\gamma,\delta)) \iff (\gamma,\delta \in loopSpace(\mathcal{L}_p)) \land \\ (\forall_{\lambda \in [0,1]}((\gamma \star \delta)(\lambda) = \begin{cases} \gamma(2\lambda) & 0 \leq \lambda < 0.5 \\ \delta(2\lambda - 1) & 0.5 \leq \lambda \leq 1 \end{cases}))$	(139)
$group((G, \bullet), ()) \iff (map(\bullet, (G \times G, G))) \land (\forall_{a,b \in G} (a \bullet b \in G)) (\forall_{a,b,c \in G} ((a \bullet b) \bullet C = a \bullet (b \bullet c))) (\exists_{e} \forall_{a \in G} (e \bullet a = a = a \bullet e)) \land (\forall_{a \in G} \exists_{a^{-1}} (a \bullet a^{-1} = e = a^{-1} \bullet a))$	(1.40)
# characterizes symmetry of a set structure	(140)
$isomorphic(\cong,(X,\odot),(Y,\ominus))) \Longleftrightarrow \exists_f \forall_{a,b \in X} (bijection(f,(X,Y)) \land f(a \odot b) = f(a) \ominus f(b))$	(141)
$fundamentalGroup((\pi_{1,p}, \bullet), (p, M, \mathcal{O})) \iff (\pi_{1,p} = \mathcal{L}_p/\sim) \land \\ (map(\bullet, (\pi_{1,p} \times \pi_{1,p}, \pi_{1,p}))) \land \\ (\forall_{A,B \in \pi_{1,p}}([A] \bullet [B] = [A \star B])) \land \\ (group((\pi_{1,p}, \bullet), ()))$	
# an equivalence class of all loops induced from the homotopic equivalence relation	(142)
$fundamentalGroup_1 \not\cong fundamentalGroup_2 \Longrightarrow topologicalSpace_1 \not\cong topologicalSpace_2$	(143)
there exists no known list of topological properties that can imply homeomorphisms	(144)
CONTINUE @ Lecture 6: manifolds	(145)
======== N O T = U P D A T E D ========	(146)

1.13 Measure theory

$$sigma Algebra(\sigma,(M)) \Leftrightarrow (M \neq \emptyset) \land (\sigma \subseteq P(M)) \land (M \in \sigma) \land (\forall A \subseteq \sigma$$

$$euclideanSigma(\sigma_s, ()) \Longleftrightarrow \left(borelSigmaAlgebra\left(\sigma_s, \left(\mathbb{R}^d, euclideanTopology\right)\right)\right)$$
 (157)

$$lebesgueMeasure(\lambda, ()) \iff \left(measure\left(\lambda, \left(\mathbb{R}^d, euclideanSigma\right)\right) \right) \land$$

$$\left(\lambda \left(\times_{i=1}^d \left([a_i, b_i)\right)\right) = \sum_{i=1}^d \left(\sqrt[2]{(a_i - b_i)^2}\right) \right)$$
natural measure for \mathbb{R}^d (158)

$$\begin{aligned} measurableMap\big(f,(M,\sigma_{M},N,\sigma_{N})\big) &\iff \Big(measurableSpace\big((M,\sigma_{M}),()\big)\Big) \wedge \\ \Big(measurableSpace\big((N,\sigma_{N}),()\big)\Big) \wedge \Big(\forall_{B \in \sigma_{N}}\Big(preimage\big(A,(B,f,M,N)\big) \in \sigma_{M}\Big)\Big) \\ & \# \text{ preimage of measurable sets are measurable} \end{aligned} \tag{159}$$

$$pushForwardMeasure(f \star \lambda_{M}, (f, M, \sigma_{M}, \mu_{M}, N, \sigma_{N})) \iff \left(measureSpace((M, \sigma_{M}, \mu_{M}), ())\right) \land \left(measurableSpace((N, \sigma_{N}), ())\right) \land \left(measurableMap(f, (M, \sigma_{M}, N, \sigma_{N}))\right) \land \left(\forall_{B \in N} \left(f \star \lambda_{M}(B) = \mu_{M} \left(preimage(A, (B, f, M, N))\right)\right)\right) \land \left(measure(f \star \lambda_{M}, (N, \sigma_{N}))\right) \right)$$
natural construction of a measure based primarily on measurable map (160)

$$nullSet\big(A,(M,\sigma,\mu)\big) \Longleftrightarrow \Big(measureSpace\big((M,\sigma,\mu),()\big)\Big) \land (A \in \sigma) \land \big(\mu(A) = 0\big) \tag{161}$$

$$almostEverywhere(p,(M,\sigma,\mu)) \Longleftrightarrow \Big(measureSpace\big((M,\sigma,\mu),()\big)\Big) \land \Big(predicate\big(p,(M)\big)\Big) \land \\ \Big(\exists_{A \in \sigma} \Big(nullSet\big(A,(M,\sigma,\mu)\big) \Longrightarrow \forall_{n \in M \setminus A} \big(p(n)\big)\Big)\Big)$$

the predicate holds true for all points except the points in the null set

in terms of measure, almost nothing is not equivalent to nothing

(162)

1.14 Lebesque integration

$$simpleTopology(\mathcal{O}_{simple}, ()) \Longleftrightarrow \mathcal{O}_{simple} = subsetTopology\left(\mathcal{O}|_{\mathbb{R}^+_0}, \left(\mathbb{R}, euclideanTopology, \mathbb{R}^+_0\right)\right)$$

$$simpleSigma\left(\sigma_{simple}, ()\right) \Longleftrightarrow borelSigmaAlgebra\left(\sigma_{simple}, \left(\mathbb{R}^+_0, simpleTopology\right)\right)$$

$$simpleFunction(s, (M, \sigma)) \Longleftrightarrow \left(measurableMap\left(s, \left(M, \sigma, \mathbb{R}^+_0, simpleSigma\right)\right)\right) \land$$

```
igg( finiteSetigg( imageigg( B,ig( M,s,M,\mathbb{R}_0^+ igg) igg), () igg) igg)
                                                                                                                                                                                                                # if the map takes on finitely many values on \mathbb{R}_0^+
                                                                                                            characteristicFunction(X_A,(A,M)) \iff (A \subseteq M) \land (map(X_A,(M,\mathbb{R}))) \land
                                                                                                                                                                                                                                                                             \left( \forall_{m \in M} \left( X_A(m) = \begin{cases} 1 & m \in A \\ 0 & m \notin A \end{cases} \right) \right) 
                                                                                                                                                                                                                                             (THM): simpleFunction(s, (M, \sigma_M)) \Longrightarrow
                                                                                                                                                                                                                        \left(finiteSet\bigg(image\bigg(Z,\Big(M,s,M,\mathbb{R}_0^+\Big)\bigg),()\right)\right) \land
\left(characteristicFunction(X_A, (A, M))\right) \land \left( \forall_{m \in M} \left( s(m) = \sum_{z \in Z} \left( z \cdot X_{preimage(A, (\{z\}, s, M, \mathbb{R}_0^+))}(m) \right) \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                  (167)
                                                                                                                                exEuclideanSigma(\overline{\sigma_s}, ()) \iff \overline{\sigma_s} = \{A \subseteq \overline{\mathbb{R}} \mid A \cap R \in euclideanSigma\}
                                                                                                         # ignores \pm \infty to preserve the points in the domain of the measurable map
                                                                                                                                                                                                                                                                                                                                                                                                                  (168)
                                  nonNegIntegrableig(f,(M,\sigma)ig) \Longleftrightarrow igg(measurableMapig(f,ig(M,\sigma,\overline{\mathbb{R}},exEuclideanSigmaig)ig)igg) \land
                                                                                                                                                                                                                                                                                                                                         (\forall_{m \in M} (f(m) \ge 0))
                                                                                          \left(measureSpace\Big(\Big(\overline{\mathbb{R}},exEuclideanSigma,lebesgueMeasure\Big),()\Big)\right) \land
           \left( \underline{nonNegIntegrable} \big( f, (M, \sigma) \big) \right) \wedge \left( \int_{M} (f d\mu) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( z \cdot \mu \bigg( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \right) \right) \right) | f(x) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( z \cdot \mu \bigg( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \right) \right) | f(x) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( z \cdot \mu \bigg( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \right) \right) | f(x) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( z \cdot \mu \bigg( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \right) \Big) | f(x) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( z \cdot \mu \bigg( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \right) \Big) | f(x) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( z \cdot \mu \bigg( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big) | f(x) = \underbrace{sup} \big( \{ \sum_{z \in Z} \left( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big) | f(x) = \underbrace{sup} \big( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big) | f(x) = \underbrace{sup} \big( \underbrace{preimage} \bigg( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big) | f(x) = \underbrace{sup} \big( \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) | f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) | f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big) | f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big) | f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M, \mathbb{R}_{0}^{+} \Big) \Big) \Big| f(x) = \underbrace{preimage} \big( A, \Big( \{z\}, s, M
                  \forall_{m \in M}(s(m) \leq f(m)) \land simpleFunction(s, (M, \sigma)) \land finiteSet\left(image\left(Z, \left(M, s, M, \mathbb{R}_{0}^{+}\right)\right), ()\right)\}))
                                                                                                                                                                                                                                                                \# lebesgue measure on z reduces to z
                                                                                                                                                                                                                                                                                                                                                                                                                 (170)
                                                                                                                                                                                                                            explicitIntegral \iff \int (f(x)\mu(dx)) = \int (fd\mu)
                                                                                                                                                                                                                                      # alternative notation for lebesgue integrals
                                                                                                                                                                                                                                                                                                                                                                                                                 (171)
                        (\text{THM}): nonNegIntegral \bigg( \int (fd\mu), (f,M,\sigma,\mu) \bigg) \wedge nonNegIntegral \bigg( \int (gd\mu), (g,M,\sigma,\mu) \bigg) \Longrightarrow
```

(THM) Markov inequality:
$$\left(\forall_{z \in \mathbb{R}_{0}^{+}} \left(\int (f d\mu) \geq z \cdot \mu \left(\operatorname{preimage} \left(A, \left([z, \infty), f, M, \overline{\mathbb{R}} \right) \right) \right) \right) \right) \wedge$$

$$\left(\operatorname{almostEverywhere} \left(f = g, (M, \sigma, \mu) \right) \Longrightarrow \int (f d\mu) = \int (g d\mu) \right)$$

$$\left(\int (f d\mu) = 0 \Longrightarrow \operatorname{almostEverywhere} \left(f = 0, (M, \sigma, \mu) \right) \right) \wedge$$

$$\left(\int (f d\mu) \leq \infty \Longrightarrow \operatorname{almostEverywhere} \left(f < \infty, (M, \sigma, \mu) \right) \right)$$

$$(172)$$

(THM) Mono. conv.:
$$\left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \left(f_n, \left(M, \sigma, \overline{R}, exEuclideanSigma \right) \right) \land 0 \leq f_{n-1} \leq f_n \} \right) \land$$

$$\left(map \left(f, \left(M, \overline{\mathbb{R}} \right) \right) \right) \land \left(\forall_{m \in M} \left(f(m) = \sup \left(f_n(m) \mid f_n \in (f)_{\mathbb{N}} \right) \right) \right) \Longrightarrow \left(\lim_{n \to \infty} \left(\int_M (f_n d\mu) \right) = \int_M (f d\mu) \right)$$

$$\# \text{ lengths now depend on } M, \sigma \text{ and limits can be pulled in or out of an integral}$$

$$(173)$$

$$(\text{THM}): \operatorname{nonNegIntegral}\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \wedge \operatorname{nonNegIntegral}\left(\int (gd\mu), (g, M, \sigma, \mu)\right) \Longrightarrow \\ \left(\forall_{\alpha \in \mathbb{R}_0^+} \left(\int \left((f + \alpha g)d\mu\right) = \int (fd\mu) + \alpha \int (gd\mu)\right)\right) \\ \text{\# integral acts linearly and commutes finite summations}$$

$$(174)$$

$$(\text{THM}): \left((f)_{\mathbb{N}} = \{ f_n \, | \, \land measurableMap \bigg(f_n, \bigg(M, \sigma, \overline{R}, exEuclideanSigma \bigg) \bigg) \land 0 \leq f_n \} \right) \Longrightarrow \left(\int \left(\left(\sum_{n=1}^{\infty} (f_n) \right) d\mu \right) = \sum_{n=1}^{\infty} \left(\int (f_n d\mu) \right) \right)$$

 $\# \sum_{n=1}^{\infty} f_n$ can be treated as $\lim_{n\to\infty} \sum_{i=1}^n f_n$ since $f_n \ge 0$ and it commutes with integral from monotone conv.

$$integrable \big(f,(M,\sigma)\big) \Longleftrightarrow \left(measurableMap\Big(f,\Big(M,\sigma,\overline{\mathbb{R}},exEuclideanSigma\Big)\Big)\right) \land \\ \left(\forall_{m\in M}\Big(f(m)=max\big(f(m),0\big)-max\big(0,-f(m)\big)\Big)\right) \land \\ \left(measureSpace(M,\sigma,\mu) \Longrightarrow \left(\int \Big(max\big(f(m),0\big)d\mu\Big) < \infty \land \int \Big(max\big(0,-f(m)\big)d\mu\Big) < \infty \right)\right) \\ \# \text{ extra condition prevents the occurrence of the indeterminate } \infty - \infty \tag{176}$$

$$integral \bigg(\int (f d\mu), (f, M, \sigma, \mu) \bigg) \Longleftrightarrow \bigg(nonNegIntegral \bigg(\int \big(f^+ d\mu \big), \big(max(f, 0), M, \sigma, \mu \big) \bigg) \bigg) \wedge \\ \bigg(nonNegIntegral \bigg(\int \big(f^- d\mu \big), \big(max(0, -f), M, \sigma, \mu \big) \bigg) \bigg) \wedge \bigg(integrable \big(f, (M, \sigma) \big) \bigg) \wedge \\ \bigg(nonNegIntegral \bigg(\int \big(f^- d\mu \big), \big(max(0, -f), M, \sigma, \mu \big) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg) \bigg) \wedge \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg(nonNegIntegral \bigg(nonNegIntegral \bigg(f, (M, \sigma) \bigg) \bigg(nonNegIntegral \bigg(n$$

$$\left(\int (fd\mu) = \int (f^+d\mu) - \int (f^-d\mu)\right)$$
arbitrary integral in terms of nonnegative integrals (177)

$$(THM) : \left(map(f,(M,\mathbb{C}))\right) \Longrightarrow \left(\int (fd\mu) = \int (Re(f)d\mu) - \int (Im(f)d\mu)\right)$$

$$(178)$$

$$(THM) : integral\left(\int (fd\mu), (f,M,\sigma,\mu)\right) \wedge integral\left(\int (gd\mu), (g,M,\sigma,\mu)\right) \Longrightarrow \left(almostEverywhere(f \leq g,(M,\sigma,\mu)) \Longrightarrow \int (fd\mu) \leq \int (gd\mu)\right) \wedge \left(\bigvee_{m \in M} (f(m), g(m), \alpha \in \mathbb{R}) \Longrightarrow \int ((f+\alpha g)d\mu) = \int (fd\mu) + \alpha \int (gd\mu)\right)$$

$$(THM) \text{ Dominant convergence: } \left((f)_{\mathbb{N}} = \{f_n \mid \wedge measurableMap\left(f_n, \left(M,\sigma,\overline{R},exEuclideanSigma\right)\right)\}\right) \wedge \left(map(f,(M,\overline{\mathbb{R}}))\right) \wedge \left(almostEverywhere\left(f(m) = \lim_{n \to \infty} (f_n(m)), (M,\sigma,\mu)\right)\right) \wedge \left(nonNegIntegral\left(\int (gd\mu), (g,M,\sigma,\mu)\right)\right) \wedge \left(|\int (gd\mu)| < \infty\right) \wedge \left(almostEverywhere(|f_n| \leq g,(M,\sigma,\mu))\right) + \text{if all } f_n(m) \text{ are bounded by some integrable } |g(m)| \Longrightarrow \text{ # then all } f_n(m) \text{ including } f \text{ satisfy bounded and integrable } properties$$

$$\left(\forall_{\phi \in \{f\} \cup (f)_n} \left(integrable(\phi,(M,\sigma))\right)\right) \wedge \left(\lim_{n \to \infty} \left(\int (|f_n - f|d\mu) = 0\right)\right) \wedge \left(\lim_{n \to \infty} \left(\int (f_n d\mu)\right) = \int (fd\mu)\right)$$

$$(180)$$

1.15 Vector space and structures

$$vectorSpace((V,+,\cdot),()) \Longleftrightarrow \left(map(+,(V\times V,V))\right) \land \left(map(\cdot,(\mathbb{R}\times V,V))\right) \land \\ (\forall_{v,w\in v}(v+w=w+v)) \land \\ (\forall_{v,w,x\in v}((v+w)+x=v+(w+x))) \land \\ (\exists_{\boldsymbol{o}\in V}\forall_{v\in V}(v+\boldsymbol{o}=v)) \land \\ (\forall_{v\in V}\exists_{-v\in V}(v+(-v)=\boldsymbol{o})) \land \\ (\forall_{a,b\in \mathbb{R}}\forall_{v\in V}(a(b\cdot v)=(ab)\cdot v)) \land \\ (\exists_{1\in \mathbb{R}}\forall_{v\in V}(1\cdot v=v)) \land \\ (\forall_{a,b\in \mathbb{R}}\forall_{v\in V}((a+b)\cdot v=a\cdot v+b\cdot v)) \land \\ (\forall_{a,e\in \mathbb{R}}\forall_{v\in V}(a\cdot (v+w)=a\cdot v+a\cdot w)) \\ \notin behaves similar as vectors should i.e., additive, scalable, linear distributive \\ (181)$$

$$innerProduct(\langle\$1,\$2\rangle,(V,+,\cdot)) \Longleftrightarrow \left(vectorSpace((V,+,\cdot),())\right) \land \left(map(\langle\$1,\$2\rangle,(V\times V,\mathbb{R}))\right) \land \\ (\forall_{v,w\in V}(\langle v,w\rangle=\langle w,v\rangle)\right) \land$$

$$\left(\forall_{v,w,x \in V} \forall_{a,b \in \mathbb{R}} \left(\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle \right) \right) \land$$

$$\left(\forall_{v \in V} \left(\langle v, v \rangle \right) \ge 0 \right) \land \left(\forall_{v \in V} \left(\langle v, v \rangle \right) = 0 \Longleftrightarrow v = \mathbf{0} \right)$$

the sesquilinear or 1.5 linear map inner product provides info. on distance and orthogonality (182)

$$innerProductSpace\Big(\big(V,+,\cdot,\langle\$1,\$2\rangle\big),()\Big) \Longleftrightarrow innerProduct\big(\langle\$1,\$2\rangle,(V,+,\cdot)\big) \tag{183}$$

$$\begin{aligned} vectorNorm\big(||\$1||,(V,+,\cdot)\big) &\Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \wedge \Bigg(map \Big(||\$1||,\Big(V,\mathbb{R}_0^+\Big)\Big) \Big) \wedge \\ & \Big(\forall_{v \in V} \big(||v|| = 0 \Longleftrightarrow v = \mathbf{0}\big) \Big) \wedge \\ & \Big(\forall_{v \in V} \forall_{s \in \mathbb{R}} \big(||sv|| = |s|||v||\big) \Big) \wedge \\ & \Big(\forall_{v,w \in V} \big(||v+w|| \leq ||v|| + ||w||\big) \Big) \end{aligned}$$

magnitude of a point in a vector space (184)

$$normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \wedge \Big(vectorNorm\big(||\$1||,(V,+,\cdot)\big)\Big) \tag{185}$$

$$vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \land \\ \Big(metric\Big(d\big(\$1,\$2\big),(V)\Big) \lor \Big(map\Big(d,\Big(V\times V,\mathbb{R}_0^+\Big)\Big)\Big) \\ \Big(\forall_{x,y\in V}\Big(d(x,y)=d(y,x)\big)\Big) \land \\ \Big(\forall_{x,y\in V}\Big(d(x,y)=0\Longleftrightarrow x=y\big)\Big) \land \\ \Big(\forall_{x,y,z\in V}\Big(\big(d(x,z)\le d(x,y)+d(y,z)\big)\Big)\Big) \Big) \\ \# \text{ behaves as distances should}$$
 (186)

$$metricVectorSpace\Big(\Big(V,+,\cdot,d\big(\$1,\$2\big)\Big),()\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \land \\ \Big(vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big)\Big) \tag{187}$$

$$innerProductNorm\Big(||\$1||, \big(V, +, \cdot, \langle\$1, \$2\rangle\big)\Big) \Longleftrightarrow \Big(innerProductSpace\Big(\big(V, +, \cdot, \langle\$1, \$2\rangle\big), ()\Big)\Big) \land \\ \Big(\forall_{v \in V}\Big(||v|| = \sqrt[2]{\langle v, v \rangle}\Big) \Longrightarrow vectorNorm\big(||\$1||, (V, +, \cdot)\big)\Big)$$
(188)

$$normInnerProduct\Big(\langle\$1,\$2\rangle, \big(V,+,\cdot,||\$1||\big)\Big) \Longleftrightarrow \Big(normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big)\Big) \wedge \\ \Big(\forall_{u,v\in V}\Big(2||u||^2+2||v||^2=||u+v||^2+||u-v||^2\Big)\Big) \wedge \\ \Big(\forall_{v,w\in V}\Big(\langle v,w\rangle=\frac{||v+w||^2-||v-w||^2}{4}\Big) \Longrightarrow innerProduct\Big(\langle\$1,\$2\rangle,(V,+,\cdot)\Big)\Big)$$
(189)

$$normMetric\Big(d\big(\$1,\$2\big),\big(V,+,\cdot,||\$1||\big)\Big) \Longleftrightarrow \Big(normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big)\Big) \land \\$$

$$\left(\forall_{v,w\in V} \left(d(v,w) = ||v-w||\right) \Longrightarrow \underbrace{vectorMetric} \left(d(\$1,\$2),(V,+,\cdot)\right)\right) \tag{190}$$

$$\begin{split} metricNorm\bigg(||\$1||,\Big(V,+,\cdot,d\big(\$1,\$2\big)\Big)\bigg) &\Longleftrightarrow \bigg(metricVectorSpace\Big(\Big(V,+,\cdot,d\big(\$1,\$2\big)\Big),()\Big)\bigg) \wedge \\ & \bigg(\forall_{u,v,w\in V}\forall_{s\in\mathbb{R}}\Big(d\big(s(u+w),s(v+w)\big) = |s|d(u,v)\Big)\bigg) \wedge \\ & \bigg(\forall_{v\in V}\big(||v|| = d(v,\boldsymbol{\theta})\big) \Longrightarrow vectorNorm\big(||\$1||,(V,+,\cdot)\big)\bigg) \end{split} \tag{191}$$

$$orthogonal\Big((v,w), \big(V,+,\cdot,\langle\$1,\$2\rangle\big)\Big) \Longleftrightarrow \Big(innerProductSpace\Big(\big(V,+,\cdot,\langle\$1,\$2\rangle\big),()\Big)\Big) \land \\ (v,w\!\in\!V) \land \big(\langle v,w\rangle\!=\!0\big)$$

the inner product also provides info. on orthogonality (192)

$$normal\Big(v, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big)\Big) \Longleftrightarrow \Big(innerProductSpace\Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), ()\Big)\Big) \land (v \in V) \land \big(\langle v, v \rangle = 1\big)$$

$$\text{$\#$ the vector has unit length} \qquad (193)$$

(THM) Cauchy-Schwarz inequality: $\forall v, w \in V (\langle v, w \rangle \leq ||v|| ||w||)$ (194)

$$basis((b)_n, (V, +, \cdot, \cdot)) \Longleftrightarrow \left(vectorSpace((V, +, \cdot), ())\right) \land \left(\forall_{v \in V} \exists_{(a)_n \in \mathbb{R}^n} \left(v = \sum_{i=1}^n (a_i b_i)\right)\right)$$
(195)

$$orthonormal Basis \Big((b)_n, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow \Big(inner Product Space \Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), () \Big) \Big) \wedge \\ \Big(basis \big((b)_n, (V, +, \cdot) \big) \Big) \wedge \Big(\forall_{v \in (b)_n} \Big(normal \Big(v, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Big) \Big) \wedge \\ \Big(\forall_{v \in (b)_n} \forall_{w \in (b)_n \setminus \{v\}} \Big(orthogonal \Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Big) \Big)$$
 (196)

1.16 Subvector space

$$subspace((U,\circ),(V,\circ)) \Longleftrightarrow \left(space((V,\circ),())\right) \land (U \subseteq V) \land \left(space((U,\circ),())\right)$$

$$(197)$$

$$subspaceSum(U+W,(U,W,V,+)) \Longleftrightarrow \left(subspace((U,+),(V,+))\right) \wedge \left(subspace((W,+),(V,+))\right) \wedge \left(U+W=\{u+w \mid u \in U \wedge w \in W\}\right)$$
(198)

$$subspaceDirectSum\big(U \oplus W, (U, W, V, +)\big) \Longleftrightarrow \big(U \cap W = \emptyset\big) \land \Big(subspaceSum\big(U \oplus W, (U, W, V, +)\big)\Big) \tag{199}$$

$$\left(W^{\perp} = \left\{ v \in V \mid w \in W \land orthogonal\left((v, w), \left(V, +, \cdot, \left\langle\$1, \$2\right\rangle\right)\right) \right\} \right) \tag{200}$$

$$orthogonal Decomposition \bigg(\Big(W, W^{\perp} \Big), \big(W, V, +, \cdot, \langle \$1, \$2 \rangle \big) \bigg) \Longleftrightarrow \\ \bigg(orthogonal Complement \Big(W^{\perp}, \big(W, V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \bigg) \wedge \bigg(subspace Direct Sum \bigg(V, \Big(W, W^{\perp}, V, + \Big) \bigg) \bigg)$$
 (201)

(THM) if V is finite dimensional, then every vector has an orthogonal decomposition: (202)

1.17 Banach and Hilbert Space

$$\frac{cauchy\bigg((s)_{\mathbb{N}},\Big(V,d\big(\$1,\$2\big)\Big)\bigg)}{\bigg(\forall_{\epsilon>0}\exists_{N\in\mathbb{N}}\forall_{m,n\geq N}\big(d(s_m,s_n)<\epsilon\big)\bigg)}$$

distances between some tail-end point gets arbitrarily small (203)

$$complete\bigg(\Big(V,d\big(\$1,\$2\big)\Big),()\bigg) \Longleftrightarrow \left(\forall_{(s)_{\mathbb{N}} \subseteq V} \exists_{s \in V} \bigg(cauchy\bigg((s)_{\mathbb{N}},\Big(V,d\big(\$1,\$2\big)\Big)\bigg) \Longrightarrow \lim_{n \to \infty} \big(d(s,s_n)\big) = 0\right)\right)$$

or converges within the induced topological space

in complete spaces, the weaker notion of cauchy is enforced to be equivalent to convergence (204)

$$banachSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big) \Longleftrightarrow \Big(normMetric\Big(d\big(\$1,\$2\big),\big(V,||\$1||\big)\Big)\Big) \land \Big(complete\Big(V,d\big(\$1,\$2\big)\Big),()\Big)$$

$$\# \text{ a complete normed vector space} \qquad (205)$$

$$\begin{aligned} hilbertSpace\Big(\big(V,+,\cdot,\langle\$1,\$2\rangle\big),()\Big) &\Longleftrightarrow \Big(innerProductNorm\Big(||\$1||,\big(V,+,\cdot,\langle\$1,\$2\rangle\big)\Big)\Big) \wedge \\ & \Big(normMetric\Big(d\big(\$1,\$2\big),\big(V,||\$1||\big)\Big)\Big) \wedge \Big(complete\Big(V,d\big(\$1,\$2\big)\big),()\Big) \end{aligned}$$

a complete inner product space (206)

 $(THM): hilbertSpace \Longrightarrow banachSpace$ (207)

$$separable((V,d),()) \iff \left(\exists_{S\subseteq V} \left(dense(S,(V,d)) \land countablyInfinite(S,())\right)\right)$$

needs only a countable subset to approximate any element in the entire space (208)

$$(\operatorname{THM}): \operatorname{\textit{hilbertSpace}}\left(\left(\left(V,+,\cdot,\langle\$1,\$2\rangle\right),()\right),()\right) \Longrightarrow \\ \left(\exists_{(b)_{\mathbb{N}}\subseteq V} \left(\operatorname{\textit{orthonormalBasis}}\left((b)_{\mathbb{N}},\left(V,+,\cdot,\langle\$1,\$2\rangle\right)\right) \wedge \operatorname{\textit{countablyInfinite}}\left((b)_{\mathbb{N}},()\right)\right) \Longleftrightarrow \\ \operatorname{\textit{separable}}\left(\left(V,\sqrt{\langle\$1-\$2,\$1-\$2\rangle}\right),()\right)\right)$$

separability in hilbert spaces is equivalent to the existence of a countable orthonormal basis (209)

1.18 Matrices, Operators, and Functionals

$$|InvarOperator(L,(V,+_{V},v,W,+_{W},w))| \Leftrightarrow |Inap(L,(V,W))| \wedge (vectorSpace((V,+_{V},v),0))| \wedge (vectorSpace((V,+_{V},v),0))| \wedge (vectorSpace((W,+_{W},w),0))| \wedge (vectorSpace((W,+_{W},w),0))| \wedge (vectorSpace((W,+_{W},w),0))| \wedge (vectorSpace((W,+_{W},w),0))| \wedge (vectorSpace((W,+_{W},w),0))| \wedge (vectorSpace((W,+_{W},w),v))| \wedge (vectorSpace((W,+_{W},w),v))| \otimes (vectorSpace((W,+_{W},w,v)))| \otimes (vectorSpace((W,+_{W},w,v))| \otimes (vectorSpace$$

the null or solution space; always a subspace due to linearity $Av + Aw = \mathbf{0} = A(v+w)$ (224)

(THM) general linear solution:
$$(Ax_p = b) \land (x_n \in Ker(A)) \Longrightarrow (Ax_p + Ax_n = b + 0 = A(x_p + x_n) = b)$$
 (225)

$$independentOperator(A,()) \Longleftrightarrow \Big(matrix(A,(n,m))\Big) \land \Big(\neg \exists_{v \in \mathbb{R}^m \setminus \boldsymbol{o}_m} (Av = 0) \Longleftrightarrow Ker(A) = \{\boldsymbol{o}_m\}\Big)$$
also equivalent to invertible operator (226)

$$dimensionality(N,(A)) \Longleftrightarrow \left(matrix(A,(n,m))\right) \land \left(N = \inf\left(\{|(b)_n| | basis((b)_n,(A))\}\right)\right) \quad (227)$$

$$rank(r,(A)) \iff \left(matrix(A,(n,m))\right) \land \left(dimensionality(r,(A))\right)$$
 (228)

$$(\text{THM}): \left(matrix (A, (n, m)) \right) \Longrightarrow \left(dimensionality (Ker(A)) = n - rank (r, (A)) \right)$$
number of free variables (229)

$$transposeNorm\big(||x||,()\big) \Longleftrightarrow \Big(||x|| = \sqrt{x^T x}\Big) \quad (230)$$

(THM):
$$P = P^T = P^2$$
 (231)

$$orthogonal Vectors ((x,y),()) \Longleftrightarrow (||x||^2 + ||y||^2 = ||x+y||^2) \Longleftrightarrow$$

$$\left(x^T x + y^T y = (x+y)^T (x+y) = x^T x + y^T y + x^T y = y^T x\right) \Longleftrightarrow$$

$$\left(0 = \frac{x^T x + y^T y - (x^T x + y^T y)}{2} = \frac{x^T y + y^T x}{2} = x^T y\right) \Longleftrightarrow \left(0 = \sum_i (x_i y_i) \vee \int (x(u)y(u)du)\right)$$

$$\# \text{ vector and functional orthogonality}$$
 (232)

$$orthogonal Operator\Big(Q, \left(V, +, \cdot, \langle \$1, \$2 \rangle\right)\Big) \Longleftrightarrow \\ \\ \left(orthonormal Basis\Big(Q^T, \left(V, +, \cdot, \$1^T, \$2\right)\right)\right) \lor \left(Q^TQ = I\right) \quad (233)$$

$$(\text{THM}): \textit{orthogonalOperator}\Big(Q, \left(V, +, \cdot, \langle \$1, \$2 \rangle \right) \Big) \Longrightarrow \Big(Q^T Q Q^{-1} = I Q^{-1} = Q^T = Q^{-1} \Big) \quad (234)$$

$$orthogonal Projection(P_Ab, (A, b)) \iff \left(matrix(A, (n, m)) \right) \land \left(matrix(b, (m, 1)) \right) \land$$

$$\left(\exists_{c \in \mathbb{R}^m} \left(A^T(b - P_Ab) = 0 = A^T(b - Ac) \right) \iff \right.$$

$$A^Tb = A^TAc \iff c = \left(A^TA \right)^{-1}A^Tb \iff P_Ab = Ac = \left(A\left(A^TA \right)^{-1}A^T \right)b \right)$$

$$\# A, A^T \text{ may not necessarily be invertible}$$
 (235)

$$(THM): independent Operator(A, ()) \Longrightarrow independent Operator(A^TA, ())$$
 (236)

$$eigenvectors(X,(A,V,+,\cdot,||\$1||)) \Longleftrightarrow (normedVectorSpace((V,+,\cdot,||\$1||),())) \land (X = \{v \in V \mid ||v|| = 1 \land eigenvector(v,(A,V,+,\cdot))\})$$
 (237)

```
det(det(A), (A, V, +, \cdot, ||\$1||)) \iff (eigenvectors(X, (A, V, +, \cdot, ||\$1||))) \wedge
                                                                                                                                                                                                                                                                     (det(A) = \prod_{x \in X} (eigenvalue(\lambda, (x, A, V, +, \cdot))))
                                                                                                                                                                                                                                       # DEFINE; exterior algebra wedge product area??
                                                                                                                                                                  tr(tr(A), (A, V, +, \cdot, ||\$1||)) \iff (eigenvectors(X, (A, V, +, \cdot, ||\$1||))) \land
                                                                                                                                                                                                                                                                          (tr(A) = \sum_{x \in X} (eigenvalue(\lambda, (x, A, V, +, \cdot))))
                                                                                                                                                                                                                                                                                                                                                                                                         # DEFINE (239)
                                                                                                                                                                                                                                (THM): independentOperator(A,()) \iff det(A) \neq 0
                                                                                                              (THM): A = A^T = A^2 \Longrightarrow Tr(A) = dimensionality(N, (A)) \# counts dimensions
                                                                                                                                                                                                                                                                                                                                                                                                                                                               (241)
                                                                                                                                                                                                                                                                          (normalOperator(A,())) \iff A^T A = AA^T
                                                                                                                                                                                                                                                                                                                                                                                                         # DEFINE (242)
                                                                                            diagonalOperator(A,()) \iff (normalOperator(A,())) \land (triangularOperator(A,()))
                                                                                characteristicEquation((A - \lambda I)x = 0, (A)) \iff (Ax = \lambda x \Longrightarrow Ax - \lambda x = (A - \lambda I)x = 0) \land
                                                                                                                                                                                   (x \neq \textbf{0} \Longrightarrow \underbrace{eigenvalue}_{}(0, (x, A - \lambda I) \Longrightarrow \prod_{\lambda_i \in \Lambda} = 0 = \det(A - \lambda I)))
                                                                                                                                                                                                                                                                                                                                       \# characterizes eigenvalues
                                                                                                                                                                                                                                                                                                                                                                                                                                                               (244)
                                                eigenDecomposition(S\Lambda S^{-1}, (A, V, +, \cdot, ||\$1||)) \iff (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)
                                                                                                                         (diagonal Operator(\Lambda, ()) \{1\}^n = (\lambda)_n = \{\lambda \in \mathbb{R} \mid s \in S^T \land eigenvalue(\lambda, s, A, V)\})
                                                                                                                                                                               (independentOperator(S,())) \land (\exists_{S-1}(AS = S\Lambda \Longrightarrow A = S\Lambda S^{-1}))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                (245)
                               (\texttt{THM}): \underbrace{eigenDecomposition}(S\Lambda S^{-1}, (A, V, +, \cdot, \cdot, ||\$1||)) \Longrightarrow A^2 = (A)(A) = S\Lambda S^{-1}S\Lambda S^{-1} = S\Lambda^2 S^{-1}
                                             (THM): spectral Decomposition(Q\Lambda Q^T, (A, V, +, \cdot, ||\$1||)) \iff (symmetric Operator(A, ())) \implies
(\exists_Q(eigenDecomposition(Q\Lambda Q^{-1},(A,V,+,\cdot,\$1^T\$1))\land orthogonalOperator(Q,(V,+,\cdot,\$1^T\$2))\land (\lambda)_n\in\mathbb{R}^n))
                                                                                                         # if symmetric and eigenvalues are real, then there exists orthonormal eigenbasis
                                                                                                                                                                                                                                                                                                                                                                                                                                                                (247)
                                                                                                                                                                  hermitian Adjoint(A^H, (A)) \iff (A^H = \overline{A}^T) \iff (\langle A, A \rangle = \overline{A}^T A \in \mathbb{R})
                                                                                                                                                                                                                                                                                                                                   # complex analog to adjoint (248)
                                                                                                                                                                                                                                                                                         hermitianOperator(A,()) \iff A = A^H
                                                                                                                                                                                                                                                                               # complex analog to symmetric operator (249)
                                                                                                                                                                                                                                                                        unitaryOperator(Q^{H}Q,(Q)) \iff Q^{H}Q = I
                                                                                                                                                                                                                                                                             # complex analog to orthogonal operator (250)
                                                                                                                                           positive Definite Operator(A, (V, +, \cdot, ||\$1||)) \iff (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor (\forall_{x \in V \setminus \{
                                                                                                                                                        (\forall_{x \in eigenvectors(X,(A,V,+,\$1^T\$1))}(eigenvalue(\lambda,(x,A,V,+,\cdot)) \Longrightarrow \lambda > 0))
```

acts like a positive scalar where any vector only scales and cannot reflect against its perpendicular axis (251)

$$(THM): positive Definite Operator(A^TA) \iff \forall_{x \in V \setminus \{0\}} (x^T A^T A x = (Ax)^T (Ax) = ||Ax|| > 0)$$
 (252)

$$semiPositiveDefiniteOperator(A,(V,+,\cdot,||\$1||)) \Longleftrightarrow (\forall_{x \in V \backslash \{\boldsymbol{o}\}}(x^TAx \geq 0)) \lor (\forall_{x \in eigenvectors(X,(A,V,+,\$1^T\$1))}(eigenvalue(\lambda,(x,A,V,+,\cdot)) \Longrightarrow \lambda \geq 0))$$

acts like a nonnegative scalar (253)

$$(THM): symmetricOperator(A^TA) \longleftarrow (A^TA = (A^TA)^T = A^TA^{TT} = A^TA) \quad (254)$$

$$similar Operators((A,B),()) \iff (matrix(A,(n,n))) \land (matrix(B,(n,n))) \land (\exists_M (B=M^{-1}AM))$$
 (255)

(THM):
$$(similar Operators((A, B), ()) \land Ax = \lambda x) \Longrightarrow (\exists_M (M^{-1}Ax = \lambda M^{-1}x = M^{-1}AMM^{-1}x = BM^{-1}x))$$

similar operators have the same eigenvalues but M^{-1} shifted eigenvectors (256)

$$singular Value Decomposition(Q\Sigma R^T, (A, V, +, \cdot, \langle \$1, \$2\rangle)) \Longleftrightarrow (orthogonal Operator(R, (V, +, \cdot, \$1^T\$2))) \wedge \\ (orthogonal Operator(Q, (Img(A), +, \cdot, \$1^T\$2))) \wedge (semi Positive Definite Operator(\Sigma, (V, +, \cdot, \$1^T\$1))) \wedge \\ (AR = Q\Sigma) \wedge (A = Q\Sigma R^{-1} = Q\Sigma R^T) \wedge (symmetric Operator(A^TA)) \wedge (symmetric Operator(AA^T)) \wedge \\ (A^TA = R\Sigma^T Q^T Q\Sigma R^T = R\Sigma^T \Sigma R^T) \wedge (spectral Decomposition(R(\Sigma^T \Sigma) R^T, (A^TA, V, +, \cdot, \$1^T\$1))) \wedge \\ (AA^T = Q\Sigma R^T R\Sigma^T Q^T = Q\Sigma \Sigma^T Q^T) \wedge (spectral Decomposition(Q(\Sigma\Sigma^T) Q^T, (AA^T, V, +, \cdot, \$1^T\$1))) \wedge \\ (diagonal Operator(\Sigma^T \Sigma) \Longrightarrow normal Operator(\Sigma^T \Sigma) = \Sigma\Sigma^T = \Sigma_{\sigma^2}) \wedge (\Sigma = \Sigma_{\sqrt[3]{\sigma^2}} = \Sigma_{|\sigma|}) \\ (\text{THM}) \text{ based on the spectral theorem:} \tag{257}$$

$$\begin{array}{c} leftInverseOperator(A_L^{-1},(A)) \Longleftrightarrow (matrix(A,(n,m))) \wedge (rank(A) = n < m) \wedge \\ (A_L^{-1}A = I = ((A^TA)^{-1}A^T)A) \end{array} \tag{258}$$

$$rightInverseOperator(A_R^{-1},(A)) \Longleftrightarrow (matrix(A,(n,m))) \land (rank(A) = m < n) \land (AA_R^{-1} = I = A(A^T(AA^T)^{-1})) \quad (259)$$

1.19 Functional analysis

$$denseMap\Big(L, \big(D, H, +, \cdot, \langle \$1, \$2 \rangle \big)\Big) \Longleftrightarrow (D \subseteq H) \land \Big(linearOperator\big(L, (D, +, \cdot, H, +, \cdot)\big)\Big) \land \\ \Big(linearOperator\big(L, (D, +, \cdot, H, +, \cdot)\big)\Big) \land \Big(linearOperator\big(L, (D, +, \cdot, H, +, \cdot)\big)\Big) \land \Big(linearOperator\big(L, (D, +, \cdot, H, +, \cdot)\big)\Big) \Big)$$
(260)

$$mapNorm\Big(||L||, \big(L, V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big) \Big) \Longleftrightarrow \\ \Big(linearOperator\big(L, \big(V, +_{V}, \cdot_{V}, W, +_{W}, \cdot_{W}\big)\big)\Big) \wedge \\ \Big(normedVectorSpace\Big(\big(V, +_{V}, \cdot_{V}, ||\$1||_{V}\big), ()\Big) \Big) \wedge \Big(normedVectorSpace\Big(\big(W, +_{W}, \cdot_{W}, ||\$1||_{W}\big), ()\Big)\Big) \wedge \\ \Big(||L|| = sup\Big(\Big\{\frac{||Lf||_{W}}{||f||_{V}} \,|\, f \in V\Big\}\Big) = sup\Big(\Big\{||Lf||_{W} \,|\, f \in V \wedge ||f|| = 1\Big\}\Big) \Big)$$
 (261)

$$boundedMap\Big(L, \big(V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) \Longleftrightarrow$$

$$\Big(mapNorm\Big(||L||, \big(L, V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) < \infty\Big) \quad (262)$$

$$\neg boundedMap\Big(L, \big(V, +_V, \cdot_V, ||\$1||_V, W, +_W, \cdot_W, ||\$1||_W\big)\Big) \Longleftarrow (U \subset V) \land \Big(\infty = \max Vorm\Big(||L||_U, \big(L, U, +_U, \cdot_U, ||\$1||_U, W, +_W, \cdot_W, ||\$1||_W\big)\Big) \le ||L||\Big) \quad (263)$$

$$extensionMap\Big(\widehat{L},(L,V,D,W)\Big) \Longleftrightarrow (D \subseteq V) \wedge \Big(linearOperator\big(L,(D,+_D,\cdot_D,W,+_W,\cdot_W)\big)\Big) \wedge \\ \Big(linearOperator\Big(\widehat{L},(V,+_V,\cdot_V,W,+_W,\cdot_W)\Big)\Big) \wedge \Big(\forall_{d \in D}\Big(\widehat{L}(d) = L(d)\Big)\Big) \quad (264)$$

$$adjoint\Big(L^{T}, \big(L, V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big) \Longleftrightarrow \Big(hilbertSpace\Big(\big(V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}\big), ()\Big)\Big) \wedge \Big(hilbertSpace\Big(\big(W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big), ()\Big)\Big) \wedge \Big(linearOperator\big(L, (V, +_{V}, \cdot_{V}, W, +_{W}, \cdot_{W})\big)\Big) \wedge \Big(\forall_{v \in V} \forall_{w \in W}\Big(\Big(\langle Lv, w \rangle_{W} = \langle v, L^{T}w \rangle_{V}\Big) \vee \Big((Lv)^{T}w = v^{T}L^{T}w\Big)\Big)\Big)$$

$$\# \text{ target operator that acts similar to the domain operator} \tag{265}$$

$$selfAdjoint\Big(L, \big(V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big) \Longleftrightarrow$$

$$L = adjoint\Big(L^{T}, \big(L, V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big)$$

$$\# \text{ also a generalization of symmetric matrices} \qquad (266)$$

$$compactMap(L,(V,+_{V},\cdot_{V},W,+_{W},\cdot_{W})) \Longleftrightarrow \left(boundedMap(L,(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}))\right) \land$$

$$\left(\forall_{v \in V} \left(openBall(B,(1.0,v,V,d_{V}(\$1,\$2)))\right) \Longrightarrow$$

$$compactSubset(closure(\overline{L(B)},image(L(B),(B,L,V,W)),W,d_{W}(\$1,\$2)),(W,\mathcal{O}_{W}))\right)\right)$$
 (267)

(THM) Spectral thm.

$$\left(self Adjoint \Big(L, \big(V, +, \cdot, \langle \$1, \$2 \rangle, V, +, \cdot, \langle \$1, \$2 \rangle \big) \right) \right) \wedge \left(compact Map \big(L, \big(V, +, \cdot, V, +, \cdot \big) \big) \right) \Longrightarrow$$

$$\left(\exists_{(e)_{\mathbb{N}} \subseteq V} \Big(orthonormal Basis \Big((e)_{\mathbb{N}}, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \wedge \forall_{e_n \in (e)_{\mathbb{N}}} \Big(eigenvector \big(e_n, (L, V, +, \cdot \big) \big) \Big) \right) \right) \Longrightarrow$$

$$\left(\exists_{(\lambda)_{\mathbb{N}} \subseteq \mathbb{R}^n} \forall_{e_n \in (e)_{\mathbb{N}}} \exists_{\lambda_n \in (\lambda)_{\mathbb{N}}} \left(eigenvalue \big(\lambda_n, (e_n, L, V, +, \cdot \big) \big) \wedge \lim_{n \to \infty} (\lambda_n = 0) \wedge L = \sum_{n=1}^{\infty} \Big(\lambda_n e_n e_n^T \Big) \right) \right)$$

$$\# \text{ DEFINE } (268)$$

1.20 Function spaces

$$curLp(\mathcal{L}^p, (p, M, \sigma, \mu)) \iff (p \in \mathbb{R}) \land (1 \le p < \infty) \land$$

$$\left(\mathcal{L}^{p} = \{ map(f, (M, \mathbb{R})) \mid measurableMap(f, (M, \sigma, \mathbb{R}, euclideanSigma)) \land \int (|f|^{p} d\mu) < \infty \} \right) \quad (269)$$

$$vecLp(\mathcal{L}^{p}, (+, \cdot, p, M, \sigma, \mu)) \iff \left(curLp(\mathcal{L}^{p}, (p, M, \sigma, \mu))\right) \wedge \left(\forall_{f, g \in \mathcal{L}^{p}} \forall_{m \in M} \left((f + g)(m) = f(m) + g(m)\right)\right) \wedge \left(\forall_{f \in \mathcal{L}^{p}} \forall_{s \in \mathbb{R}} \forall_{m \in M} \left((s \cdot f)(m) = (s)f(m)\right)\right) \wedge \left(vectorSpace\left((\mathcal{L}^{p}, +, \cdot), ()\right)\right)$$
(270)

$$integralNorm(\wr \wr \$1 \wr \wr, (+, \cdot, p, M, \sigma, \mu)) \iff \left(vecLp(\mathcal{L}^p, (+, \cdot, p, M, \sigma, \mu))\right) \land \left(map\left(\wr \wr \$1 \wr \wr, \left(\mathcal{L}^p, \mathbb{R}_0^+\right)\right)\right) \land \left(\forall_{f \in \mathcal{L}^p} \left(0 \leq \wr \wr f \wr \wr = \left(\int \left(|f|^p d\mu\right)\right)^{1/p}\right)\right)$$
(271)

$$\begin{split} & (\text{THM}): integralNorm \big(\wr \wr \$1 \wr \wr, (+, \cdot, p, M, \sigma, \mu) \big) \Longrightarrow \\ & \bigg(\forall_{f \in \mathcal{L}^p} \Big(\wr \wr f \wr \wr = 0 \Longrightarrow almostEverywhere \big(f = \boldsymbol{0}, (M, \sigma, \mu) \big) \Big) \bigg) \end{split}$$

not an expected property from a norm (272)

$$\begin{split} Lp\Big(L^p,\big((+,\cdot,p,M,\sigma,\mu)\big)\Big) &\Longleftrightarrow \Big(integralNorm\big(\wr\wr\$1\wr\wr,(+,\cdot,p,M,\sigma,\mu)\big)\Big) \land \\ & \left(L^p = quotientSet\bigg(\mathcal{L}^p/\sim,\bigg(\mathcal{L}^p,\big(\wr\wr\$1+\big(-\$2\big)\wr\wr=0\big)\Big)\bigg)\bigg)\right) \end{split}$$

functions in L^p that have finite integrals above and below the x-axis (273)

$$(\text{THM}): banachSpace\bigg(\Big(Lp\big(L^p,(+,\cdot,p,M,\sigma,\mu)\big),+,\cdot,\wr\wr\$1\wr\wr\bigg),()\bigg) \quad (274)$$

$$(\text{THM}): \\ \begin{array}{l} \textit{hilbertSpace} \left(\left(Lp \left(L^p, (+,\cdot,2,M,\sigma,\mu) \right), +, \cdot, \frac{\wr \wr \$1 + \$2 \wr \wr^2 - \wr \wr \$1 - \$2 \wr \wr^2}{4} \right), () \right) \\ \end{array} \right) \\ \end{array}$$

$$curL\Big(\mathcal{L}, \big(V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) \Longleftrightarrow \Big(banachSpace\Big(\big(W, +_{W}, \cdot_{W}, ||\$1||_{W}\big), ()\Big)\Big) \land \\ \Big(normedVectorSpace\Big(\big(V, +_{V}, \cdot_{V}, ||\$1||_{V}\big), ()\Big)\Big) \land \\ \Big(\mathcal{L} = \{f \mid boundedMap\Big(f, \big(V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\}\Big)$$
 (276)

$$(\text{THM}): banachSpace\left(\left(curL\left(\mathcal{L},\left(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\right)\right),+,\cdot,mapNorm\right),()\right) \quad (277)$$

(THM): $||L|| \ge \frac{||Lf||}{||f||}$ # from choosing an arbitrary element in the mapNorm sup (278)

$$(\text{THM}): \left(cauchy \left((f)_{\mathbb{N}}, (\mathcal{L}, +, \cdot, mapNorm) \right) \Longrightarrow cauchy \left((f_n v)_{\mathbb{N}}, \left(W, +_W, \cdot_W, ||\$1||_W \right) \right) \right) \Longleftrightarrow$$

$$\left(\forall_{\epsilon' > 0} \forall_{v \in V} \left(||f_n v - f_m v||_W = ||(f_n - f_m)v||_W \le ||f_n - f_m|| \cdot ||v||_V \right) < \epsilon \cdot ||v||_V = \epsilon' \right)$$
a cauchy sequence of operators maps to a cauchy sequence of targets (279)

$$\text{(THM) BLT thm.: } \left(\left(dense \left(D, (V, \mathcal{O}, d_V) \right) \wedge bounded Map \left(A, \left(D, +_V, \cdot_V, ||\$1||_V, W, +_W, \cdot_W, ||\$1||_W \right) \right) \right) \Longrightarrow \\ \left(\exists !_{\widehat{A}} \left(extension Map \left(\widehat{A}, (A, V, D, W) \right) \right) \wedge ||\widehat{A}|| = ||A|| \right) \right) \Longleftrightarrow \\ \left(\forall_{v \in V} \exists_{(v)_{\mathbb{N}} \subseteq D} \left(\lim_{n \to \infty} (v_n = v) \right) \right) \wedge \left(\widehat{A}v = \lim_{n \to \infty} (Av_n) \right)$$
 (280)

2 Probability Theory

2.1 Definitions

$$randomExperiment(E,(\Omega)) \iff \Omega = \{\omega | \mathbf{experiment} = E \to \mathbf{outcome} = \omega\}$$
 (281)

$$probabilitySpace((\Omega, \mathcal{F}, P), ()) \iff measureSpace((\Omega, \mathcal{F}, P), ()) \land (P(\Omega) = 1)$$
 (282)

$$event(F,(\Omega,\mathcal{F},P)) \iff (probabilitySpace((\Omega,\mathcal{F},P),())) \land (F \in \mathcal{F})$$

F can represent both singleton outcomes and outcome combinations and \mathcal{F} can represent # a countable event that contains outcomes with even number of coin tosses before the first head # $\mathcal{P}(\mathbb{R})$ sets are not considered because definite uniform measures diverge everywhere

$\mathcal{P}(\mathbb{N})$ sets can be assigned a meaningful convergent measure e.g., $\forall_{k \in \mathbb{R}^+} \forall_{f \in F} P(\{f\}) = k^{-f}$ (283)

$$(THM): \left(probabilitySpace \left((\Omega, \mathcal{F}, P), () \right) \land F, A, B \in \mathcal{F} \right) \Longrightarrow$$

$$\left(F^{C} \bigcup F = \Omega \land F^{C} \bigcap F = \emptyset \Longrightarrow P\left(F^{C} \right) + P(F) = 1 \Longrightarrow P\left(F^{C} \right) = 1 - P(F) \right) \land$$

$$\left(P\left(A \bigcup B \right) = P(A) + P(B) - P\left(A \bigcap B \right) = P(A) + P(B) - \left(1 - P\left(A^{C} \bigcup B^{C} \right) \right) =$$

$$P(A) + P(B) - 1 + P\left(A^{C} \right) + P\left(B^{C} \right) - P\left(A^{C} \bigcap B^{C} \right) =$$

$$P(A) + P(B) - 1 + 1 - P(A) + 1 - P(B) - \left(1 - P\left(A \bigcup B \right) \right) = P\left(A \bigcup B \right) \land$$

$$\left(P\left(\bigcup_{i=1}^{n} (A_i) \right) = \sum_{k=1}^{n} \left((-1)^{k-1} \sum_{I \subset \mathbb{N}_{1}^{n} \land |I| = k} \left(P\left(\bigcap_{i \in I} (A_i) \right) \right) \right) \right)$$

$$(284)$$

$$(\text{THM}): \left(measureSpace \left((\Omega, \mathcal{F}, P), () \right) \land (A)_{\mathbb{N}}, (B)_{\mathbb{N}} \subseteq \mathcal{F} \land A, B \in \mathcal{F} \right) \Longrightarrow$$

$$CL285 \left(B_n = A_n \setminus \bigcup_{i=1}^{n-1} (A_i) \right) \land \bigcup_{CL285}^{DL285} \left(\forall_{i \in \mathbb{N}} \forall_{j \in \mathbb{N} \setminus \{i\}} \left(B_i \cap B_j = \emptyset \right) \right) \land \bigcup_{CL285}^{EL285} \left(\bigcup_{i \in \mathbb{N}} (A_i) = \bigcup_{i \in \mathbb{N}} (B_i) \right) \land$$

$$\frac{1IL285}{DL285} \left(P\left(\bigcup_{i \in \mathbb{N}} (B_i) \right) = \sum_{i \in \mathbb{N}} \left(P(B_i) \right) \right) \land \bigcap_{limit}^{2IL285} \left(\sum_{i \in \mathbb{N}} \left(P(B_i) \right) = \lim_{m \to \infty} \left(\sum_{i=1}^{m} \left(P(B_i) \right) \right) \land$$

$$\frac{3IL285}{DL285} \left(\lim_{m \to \infty} \left(\sum_{i=1}^{m} \left(P(B_i) \right) \right) = \lim_{m \to \infty} \left(P\left(\bigcup_{i=1}^{m} (B_i) \right) \right) \land$$

$$\frac{4IL285}{EL285} \left(\lim_{m \to \infty} \left(P\left(\bigcup_{i=1}^{m} (B_{i})\right) \right) = \lim_{m \to \infty} \left(P\left(\bigcup_{i=1}^{m} (A_{i})\right) \right) \right) \wedge \frac{MSCont}{EL285} \left(P\left(\bigcup_{i \in \mathbb{N}} (A_{i})\right) = \lim_{m \to \infty} \left(P\left(\bigcup_{i=1}^{m} (A_{i})\right) \right) \right) \wedge \frac{MSConvL}{MSCont} \left(\forall_{j \in \mathbb{N}} (A_{j} \subseteq A_{j+1}) \Longrightarrow P\left(\bigcup_{i \in \mathbb{N}} (A_{i})\right) = \lim_{m \to \infty} \left(P(A_{m}) \right) \right) \wedge \frac{MSConvL}{MSConvL} \left(\forall_{j \in \mathbb{N}} (A_{j+1} \subseteq A_{j}) \Longrightarrow P\left(\bigcap_{i \in \mathbb{N}} (A_{i})\right) = \lim_{m \to \infty} \left(P(A_{m}) \right) \right) \wedge \frac{MSConvL}{MSConvL} \left(\forall_{j \in \mathbb{N}} (A_{j+1} \subseteq A_{j}) \Longrightarrow P\left(\bigcap_{i \in \mathbb{N}} (A_{i})\right) = \lim_{m \to \infty} \left(P(A_{m}) \right) \right) \wedge \frac{MSSetOrder}{measure} \left(A \subseteq B \Longrightarrow P(A) \le P(B) \right) \wedge \frac{MSSetBound}{measure} \left(\bigcup_{i \in \mathbb{N}} (A_{i}) \le \sum_{i \in \mathbb{N}} \left(P(A_{i}) \right) \right)$$

$$(285)$$

Random variables

```
randomVariable(X, (\Omega, \mathcal{F}, P)) \iff (probabilitySpace(\Omega, \mathcal{F}, P)) \land (map(X, (\Omega, \mathbb{R}))) \land
                                                    (measurableMap(X,(\Omega,\mathcal{F},\mathbb{R},euclideanSigma)))
```

maps elementary outcomes to a numeric value and the measurable space to the real line and borel sets

$$PL(P_X, (X, \Omega, \mathcal{F}, P)) \Longleftrightarrow \left(randomVariable(X, (\Omega, \mathcal{F}, P)) \right) \land$$

$$\left(\forall_{B \in \sigma_S} \left(P_X(B) = P(\{\omega \in \Omega \mid X(\omega) \in B\}) = \left(P \circ X^{-1} \right)(B) = P(X \in B) \right) \right)$$

probability of borel set events occuring and equips probabilities to numeric valued borel sets (287)

> $(THM): probabilitySpace(\mathbb{R}, euclideanSigma, P_X)$ (288)

$$generatedSigmaAlgebra \big(\sigma(\mathcal{M}), (\mathcal{M}, S) \big) \Longleftrightarrow \big(\mathcal{M} \subseteq \mathcal{P}(S) \big)$$
$$\Big(sigmaAlgebra \big(\sigma(\mathcal{M}), (S) \big) = \bigcap \big(\{ \mathcal{H} \, | \, \mathcal{M} \subseteq sigmaAlgebra (\mathcal{H}, S) \} \big) \Big)$$

the smallest sigma algebra containing the generating sets (289)

$$piSystem(\mathcal{G},(\Omega)) \iff (\mathcal{G} \subseteq \mathcal{P}(\Omega)) \land (\forall_{A,B \in \mathcal{G}} (A \cap B \in \mathcal{G})) \quad (290)$$

(THM) pi measure extension: $(piSystem(\mathcal{G},(\Omega)) \land probabilitySpace(\Omega,\sigma(\mathcal{G}),\lambda) \land probabilitySpace(\Omega,\sigma(\mathcal{G}),\lambda))$

$$\begin{array}{c} \operatorname{probabilitySpace} \left(\Omega, \sigma(\mathcal{G}), \mu\right) \wedge \exists_{\left(S\right)_{\mathbb{N}} \subseteq \Omega} \left(\bigcup \left(\left(S\right)_{\mathbb{N}}\right) = \Omega \wedge \lambda(\Omega) < \infty\right)\right) \Longrightarrow \\ \left(\forall_{G \in \mathcal{G}} \left(\lambda(G) = \mu(G)\right) \Longrightarrow \forall_{F \in \sigma(\mathcal{G})} \left(\lambda(F) = \mu(F)\right)\right) \end{array}$$

PL in terms of a simpler generating pi system (291)

$$(THM): \left(piSystem(\{(-\infty,x] | x \in \mathbb{R}\}, (\mathbb{R}))\right) \wedge \left(euclideanSigma = \sigma(\{(-\infty,x] | x \in \mathbb{R}\})\right)$$
(292)

PL of the semi infinite pi system on the real numbers

specifies PL following pi measure extension theorem but simpler than definitions on complex borel sets (2

$$(\text{THM}): CDF(F_X, (X, \Omega, \mathcal{F}, P)) \Longrightarrow \left(\lim_{x \to -\infty} (F_X(x)) = 0\right) \land \left(\lim_{x \to \infty} (F_X(x)) = 1\right) \land \left(\forall_{x_1, x_2 \in \mathbb{R}} (x_1 \le x_2 \Longrightarrow F_X(x_1) \le F_X(x_2))\right) \land \left((e)_{\mathbb{N}} \subseteq \mathbb{R}_0^+\right) \land \left(\lim_{n \to \infty} (e_n = 0)\right) \land \left(\forall_{x \in \mathbb{R}} \left(\lim_{\epsilon \to 0^+} (F(x + \epsilon)) = \lim_{n \to \infty} (F(x + e_n)) = \lim_{n \to \infty} (F(x + e_n)) = \lim_{n \to \infty} \left(P(\{\omega \in \Omega \mid X(\omega) \le x + e_n\})\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right) = P\left(\left\{\bigcup_{n = 1}^{\infty} (\{\omega \in \Omega \mid X(\omega) \le x + e_n\}\right)\right)$$

depends on the nested decreasing subsets induced by the limit from right (294

$$PMF(H_X, (X, \Omega, \mathcal{F}, P)) \iff \left(randomVariable(X, (\Omega, \mathcal{F}, P))\right) \land$$

$$\left(\forall_{x \in \mathbb{R}} \left(H_X(x) = P(\{\omega \in \Omega \mid X(\omega) = x\}) = P(X = x)\right)\right)$$
type of probability law (295)

00000000000000SPLITSECTIONSFIXPMFTORELATETOPL (296)

$$indicatorRandomVariable(I_A, (\Omega, \mathcal{F}, P)) \iff (randomVariable(I_A, (\Omega, \mathcal{F}, P))) \land$$

$$(\forall_{A \in \mathcal{F}} \forall_{\omega \in \Omega} (I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases})) \quad (297)$$

(THM): measures on $\mathbf{R} = \mathbf{discrete}$, continuous, and singular components (298)

$$discreteRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (randomVariable(X, (\Omega, \mathcal{F}, P))) \land (\exists_{E \subset \mathbb{R}}(countablyInfinite(E) \land P_X(E) = 1)) \land (\cup ((e)_{\mathbb{N}}) = E) \land (\forall_{i \in \mathbb{N}}(e_i \in E))$$
 (299)

$$(\text{THM}): (discrete Random Variable}(X, (\Omega, \mathcal{F}, P))) \Longrightarrow (1 = P(E) = \sum_{i \in \mathbb{N}} (P_X(\{e_i\})) = \sum_{i \in \mathbb{N}} (P(X = e_i))) \wedge (\forall_{B \in \sigma_S} (P_X(B) = \sum_{x \in E \cap B} (P(X = x))))$$
(300)

$$bernoulliRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (discreteRandomVariable(X, (\Omega, \mathcal{F}, P))) \land (E = \{0, 1\}) \land (p \in \mathbb{R}) \land (P_X = P(X = x) = \begin{cases} 1 & x = 1 \\ 0 & x = 0 \end{cases}$$
 (301)

$$uniformRandomVariable(X,(\Omega,\mathcal{F},P)) \iff (discreteRandomVariable(X,(\Omega,\mathcal{F},P))) \land \\ (n = |finiteSet(E)|) \land (\forall_{i \in \mathbb{N} \land i \leq n} (P_X(\{e_i\}) = P(X = e_i) = \frac{1}{n})) \quad (302)$$

 $geometricRandomVariable(X,(\Omega,\mathcal{F},P)) \iff (discreteRandomVariable(X,(\Omega,\mathcal{F},P))) \land$

$$(countablyInfinite(E)) \land (p \in \mathbb{R}) \land (\forall_{i \in \mathbb{N}} (P_X(\{e_i\}) = P(X = e_i) = (1 - p)^{i - 1}p)) \quad (303)$$

$$binomialRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (discreteRandomVariable(X, (\Omega, \mathcal{F}, P))) \land (n = |finiteSet(E)|) \land (p \in \mathbb{R}) \land (\forall_{i \in \mathbb{N}} (P_X(\{e_i\}) = P(X = e_i) = \binom{n}{i} p^i (1 - p)^{n - i}))$$
(304)

$$poissonRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (discreteRandomVariable(X, (\Omega, \mathcal{F}, P))) \land (countablyInfinite(E)) \land (\lambda \in \mathbb{R}^+) \land (\forall_{i \in \mathbb{N}} (P_X(\{e_i\}) = P(X = e_i) = \frac{e^{-\lambda}\lambda^i}{i!})) \quad (305)$$

$$absolutelyContinuous((f,g),(M,\sigma)) \iff (measure(f,(M,\sigma))) \land (measure(g,(M,\sigma))) \land (\forall_{A \in \sigma}(g(A) = 0 \Longrightarrow f(A) = 0)) \quad (306)$$

(THM) Radon-Nikodym:
$$(measurableSpace((M,\sigma),())) \land (finiteMeasure(\mu,(M,\sigma))) \land (finiteMeasure(\nu,(M,\sigma))) \land (absolutelyContinous((\nu,\mu),(M,\sigma))) \Longrightarrow$$

$$(\exists_{map(f,(M,\overline{\mathbb{R}}^+))} \forall_{A \in \sigma} (\nu(A) = \int_A (fd\mu)))$$

$$\# \text{ connects } P_X = F_X = \int (f_x dx) \quad (307)$$

 $continuous Random Variable(X, (\Omega, \mathcal{F}, P)) \iff (random Variable(X, (\Omega, \mathcal{F}, P))) \land \\ (absolutely Continuous((P_X, lebesgue Measure), (\mathbb{R}, euclidean Sigma))) \\ \# \text{ the probabilities lie on nonzero lebesgue measure sets}$ (308)

 $contUniformRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (continuousRandomVariable(X, (\Omega, \mathcal{F}, P))) \land$ $(a, b \in \mathbb{R}) \land (a < b) \land (P_X = F_X(x) = \begin{cases} 0 & x < a \\ \frac{x}{b-a} & a \le x \le b) \\ 1 & x > b \end{cases}$ (309)

$$exponentialRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (continuousRandomVariable(X, (\Omega, \mathcal{F}, P))) \land (\lambda \in \mathbb{R}^+) \land (P_X = F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0 \\ 0 & x \leq 0 \end{cases}$$
 (310)

$$memorylessRandomVariable(X,()) \Longleftrightarrow (\forall_{\omega \in \Omega}(X(\omega) \ge 0)) \land (\forall_{s,t \in \mathbb{R}_0^+}(P(X > s) = P(X > s + t \mid x > t))) \quad (311)$$

$$gaussian Random Variable(X, (\Omega, \mathcal{F}, P)) \iff (continuous Random Variable(X, (\Omega, \mathcal{F}, P))) \land$$

$$(\mu \in \mathbb{R}) \land (\sigma \in \mathbb{R}^+) \land (P_X = F_X(x) = \int (\frac{\exp(-\frac{(x-\mu)^2}{2\sigma^2})}{\sigma\sqrt{2\pi}} dx)) \quad (312)$$

(THM): DEFINE gaussian is stable and is an attractor (313)

$$simplifiedCauchyRandomVariable(X, (\Omega, \mathcal{F}, P)) \iff (continuousRandomVariable(X, (\Omega, \mathcal{F}, P))) \land (P_X = F_X(x) = \int (\frac{1}{\pi(1+x^2)} dx)) \quad (314)$$

$$singular Random Variable(X, (\Omega, \mathcal{F}, P)) \Longleftrightarrow (random Variable(X, (\Omega, \mathcal{F}, P))) \land (\forall_{x \in \mathbb{R}} (P_X(\{x\}) = 0)) \land (\exists_{F \in euclidean Sigma} (P_X(F) = 1 \land lebesgue Measure(F) = 0))$$

```
# an example is uniform measure on the Cantor set
                                                                                                                               preimageSigma(\sigma(X), (X, \Omega, \mathcal{F}, P)) \iff (randomVariable(X, (\Omega, \mathcal{F}, P))) \land
(\sigma(X) = \{A \subseteq \Omega \mid B \in euclideanSigma \land preimage(A, (B, X, \Omega, \mathbb{R}))\}) \land (subSigmaAlgebra(\sigma(X), (\mathcal{F}, \Omega)))\}
                                                                                                                                                                                                                                                         \# X(\omega) \in B determines all events A that occurs
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (316)
                                                                           nRandomVariable((X)_n, (\Omega, \mathcal{F}, P)) \iff (\forall_{i \in \mathbb{N} \land i < n} (randomVariable(X_i, (\Omega, \mathcal{F}, P)))) \land
                                                                                                                                                                                                                            (measurableMap((X)_n, (\Omega, \mathcal{F}, \mathbb{R}^n, euclideanSigma^n)))
                                                                                                                                 # if the preimage of a measurable set of n dimensional vectors is an event
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (317)
                                           (THM): PL(P_{X,Y}, ((X,Y), \Omega, \mathcal{F}, P)) \iff (\forall_{B \in \sigma_S^2} (P_{X,Y}(B) = P(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in B\})))
                                                                                                                                                                                                                                                                                                                                                                                                                                     # joint PL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (318)
                                                                                                                                                                                                                                                                              (THM): CDF(F_{X,Y}, ((X,Y), \Omega, \mathcal{F}, P)) \iff
                                                                                                           \forall_{x,y\in\mathbb{R}}(F_{X,Y}(x,y)=P(\{\omega\in\Omega\,|\,X(\omega)\leq x\}\cap\{\omega\in\Omega\,|\,Y(\omega)\leq y\})=P(X\leq x,Y\leq y))
                                                                                                                                                                                                                                                                                                                                                                                                                             # joint CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (319)
                                          (\mathrm{THM}): \underbrace{CDF}(F_{X,Y}, ((X,Y), \Omega, \mathcal{F}, P)) \Longleftrightarrow (\lim_{\substack{x \to -\infty \\ y \to -\infty}} (F_{X,Y}(x,y)) = 0) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\ y \to \infty}} (F_{X,Y}(x,y)) = 1) \land (\lim_{\substack{x \to \infty \\
                                                                                                                                                          (\forall_{x_1,x_2,y_1,y_2\in\mathbb{R}}((x_1\!\le\!x_2\wedge y_1\!\le\!y_2)\Longrightarrow (F_{X,Y}(x_1,y_1)\!\le\!F_{X,Y}(x_2,y_2))))\wedge
                                                                                                                                                                                                                                                                              (\forall_{x,y\in\mathbb{R}}(\lim_{\substack{\epsilon_x\to 0^+\\\epsilon_y\to 0^+}}(F(x+\epsilon_x,y+\epsilon_y)=F(x+y))))
                                                                                                                                                        (\forall_{x \in \mathbb{R}} (\lim_{x \to \infty} (F_{X,Y}(x,y)) = F_X(x))) \wedge (\forall_{y \in \mathbb{R}} (\lim_{x \to \infty} (F_{X,Y}(x,y)) = F_Y(y)))
                                                                                                                                                                                                                   # limit evaluation order or trajectory should not matter
```

2.3 CONDITIONALS Probability Theory

(321) $(THM): (\mathbf{cantor} \ \mathbf{set} \cong \mathcal{P}(\mathbb{N}) \land (\mathbb{R}, eucledianSigma, lebesgueMeasure)) \Longrightarrow \mathcal{P}(\mathbf{cantor} \ \mathbf{set}) = 0 \ \# : O \ (322)$ $conditionalProbability \Big(\mathcal{P}(A|B), (A, B, \Omega, \mathcal{F}, P) \Big) \Longleftrightarrow \big(probabilitySpace(\Omega, \mathcal{F}, P) \big) \land (A, B \in \mathcal{F}) \land \\ \big(\mathcal{P}(B) > 0 \big) \land \Big(\mathcal{P}(A|B) = \frac{\mathcal{P}(A \cap B)}{\mathcal{P}(B)} \lor \mathcal{P}(B) \mathcal{P}(A|B) = \mathcal{P}(A \cap B) \Big) \\ \# \ calculates \ \mathcal{P}(A) \ \text{for the subset spanned by } B \\ \# \ conditioning \ \text{on } 0 \ \text{probability Space} \big(\Omega, \mathcal{F}, P \big) \land \mathcal{P}(B) > 0 \big) \Longrightarrow \forall_{F \in \mathcal{F}} \Big(\mathcal{P}'(F) = \mathcal{P}(F|B) \Big) \land probabilitySpace \Big(\Omega, \mathcal{F}, P' \big) \ (324)$ $independentEvents \Big((A, B), (\Omega, \mathcal{F}, P) \big) \Longleftrightarrow \big(A, B \in \mathcal{F} \big) \land \big(\mathcal{P}(A \cap B) = \mathcal{P}(A) \mathcal{P}(B) \big) \\ \# \ depends \ \text{on the } P, \ \text{not only on } A, B \ (325)$ $setPartition \Big((X)_{\mathbb{N}}, (Y) \big) \Longleftrightarrow \Big(\bigcup_{i \in \mathbb{N}} (X_i) = Y \Big) \land \Big(\forall_{i \in \mathbb{N}} \forall_{j \in \mathbb{N} \setminus \{i\}} \big(X_i \cap X_j = \emptyset \big) \Big) \ (326)$

$$(\text{THM}): \left(probabilitySpace}(\Omega, \mathcal{F}, P) \wedge \{A\} \cup (B)_{\mathbb{N}} \subseteq \mathcal{F} \wedge setPartition \left((B)_{\mathbb{N}}, (\Omega) \right) \right) \Longrightarrow$$

$$\left(P(A) = \sum_{i \in \mathbb{N}} \left(P(A|B_i)P(B_i) \right) \wedge \left(P(A|B_i)P(B_i) = P(A)P(B_i|A) = \left(\sum_{j \in \mathbb{N}} \left(P(B_i|A) \right) \right) P(B_i|A) \right) \right) \wedge$$

$$\left(P\left(\bigcap_{i \in \mathbb{N}} (B_i) \right) = P(B_1) \prod_{i=2}^{\infty} \left(P\left(B_i | \bigcap_{j=1}^{i-1} (B_j) \right) \right) \right)$$

from the subspace definition of conditional probability and algebraic manipulations (327)

$$finIndEvents\Big((A)_{\mathbb{N}_k}, (\Omega, \mathcal{F}, P)\Big) \Longleftrightarrow \Big(probabilitySpace(\Omega, \mathcal{F}, P)\Big) \land (k \in \mathbb{N}) \land$$

$$(A_{\mathbb{N}_k} \subseteq \mathcal{F}) \land \left(\forall_{I_0 \in \mathcal{P}(\mathbb{N}_k) \backslash \emptyset} \left(P\left(\bigcap_{i \in I_0} (A_i)\right) = \prod_{i \in I_0} \left(P(A_i)\right) \right) \right)$$
every combination of subsets must be independent (328)

$$infIndEvents\big((A)_{I},(\Omega,\mathcal{F},P)\big) \Longleftrightarrow$$

$$\left(\forall_{I_{F}\subseteq I}\bigg(finiteSet(I_{F})\Longrightarrow finIndEvents\Big((A)_{I_{F}},(\Omega,\mathcal{F},P)\Big)\bigg)\right) \quad (329)$$

$$subSigmaAlgebra\big(\mathcal{B},(\mathcal{F},\Omega)\big) \Longleftrightarrow \Big(sigmaAlgebra\big(\mathcal{F},(\Omega)\big)\Big) \wedge \Big(sigmaAlgebra\big(\mathcal{B},(\Omega)\big)\Big) \wedge (\mathcal{B} \subseteq \mathcal{A}) \quad (330)$$

$$independent Sigma Algebras ((\mathcal{A}, \mathcal{B}), (\Omega, \mathcal{F}, P)) \iff (probability Space(\Omega, \mathcal{F}, P)) \land$$

$$\left(sub Sigma Algebra(\mathcal{A}, (\mathcal{F}, \Omega))\right) \land \left(sub Sigma Algebra(\mathcal{B}, (\mathcal{F}, \Omega))\right) \land$$

$$\left(\forall_{A \in \mathcal{A}} \forall_{B \in \mathcal{B}} \left(independent Events((A, B), (\Omega, \mathcal{F}, P))\right)\right)$$
(331)

$$infIndSigmaAlgebras((\mathcal{A})_{I}, (\Omega, \mathcal{F}, P)) \Longleftrightarrow \Big(\forall_{i \in I} \big(subSigmaAlgebra(\mathcal{A}_{i}), (\mathcal{F}, \Omega)\big)\Big) \land \\ \big(\forall_{i \in I} (F_{i} \in \mathcal{A}_{i})\big) \land \Big(infIndEvents\big((F)_{I}, (\Omega, \mathcal{F}, P)\big)\Big) \quad (332)$$

$$infinitelyOften \big(\{A_n \text{ i-o}\}, ()\big) \Longleftrightarrow \left(B_n = \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \in \mathcal{F}\right) \wedge \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcup_{i=n}^{\infty} (A_i) \cap \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcap_{i=n}^{\infty} (A_i) \cap \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcap_{i=n}^{\infty} (A_i) \cap \left(\{A_n \text{ i-o}\} = \bigcap_{n \in \mathbb{N}} \bigcap_{i=n}^{\infty} (A_i) \cap \left(\{A_n \text{ i-o}\} = \bigcap_{n$$

the event that infinitely many A_n 's will occur

B_n occur if some event within the nth-tail-end event $A_i|i\geq n$ occur, which follows from \cup # $\{A_n \text{ i-o}\}$ occur if every tail-end event B_n occur for all n, which follows from \cap # similarly, $\{A_n \text{ i-o}\}$ occur, for all values of n, the nth-tail-end event occur (333)

(THM) BCL 1:
$$\left(\sum_{n \in \mathbb{N}} (P(A_n)) < \infty \right) \Longrightarrow \left(P(\{A_n \text{ i-o}\}) = 0 \right)$$
 \Longleftrightarrow

$$\frac{1IL300}{infinitelyOften} \left(P\left(\bigcap_{n \in \mathbb{N}} (B_n)\right) = \lim_{n \to \infty} \left(P(B_n)\right) = \lim_{n \to \infty} \left(P\left(\bigcup_{i=n}^{\infty} (A_i)\right) \right) \right) \wedge$$

$$\frac{2IL300}{MSSetBount} \left(\lim_{n \to \infty} \left(P\left(\bigcup_{i=n}^{\infty} (A_i)\right)\right) \leq \lim_{n \to \infty} \left(\sum_{i=n}^{\infty} \left(P(A)_i\right)\right) \right) \wedge$$

$$\frac{3IL300}{Cond300} \left(\lim_{n \to \infty} \left(\sum_{i=n}^{\infty} \left(P(A)_i\right)\right) = 0\right) \wedge \frac{Impl300}{1IL300} \left(0 \leq P\left(\{A_n \text{ i-o}\}\right) \leq 0\right)$$
 (334)

$$(\mathrm{THM})\,:{}^{\log p}\Big(\forall_{x\in[0,1]}\big(\log(1-x)\!\leq\!-x\big)\Big)\quad(335)$$

$$(\text{THM}): sump \left(\left(\frac{1Cond302}{1Cond302} \left(\bigvee_{i \in \mathbb{N}} \left(p_i \in [0, 1] \right) \right) \wedge \frac{2Cond302}{1Cond302} \left(\sum_{i \in \mathbb{N}} (p_i) = \infty \right) \right) \Longrightarrow \prod_{i \in \mathbb{N}} (1 - p_i) = 0 \right) \Longleftrightarrow \prod_{i \in \mathbb{N}} (1 - p_i) = 0 \Longrightarrow \prod_{i \in \mathbb{N}} (1 - p_i) = \exp \left(\log \left(\prod_{i \in \mathbb{N}} (1 - p_i) \right) \right) = \exp \left(\log \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \right) \wedge \prod_{i \in \mathbb{N}} (1 - p_i) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} (1 - p_i) \right) \right) \otimes \exp \left(\lim_{n \to \infty} \left(\prod_{i = 1}^{n} \left(\prod_{i = 1}^{n}$$

$$(\text{THM}) \text{ BCL 2: } \left(\left(\frac{1Cond303}{n \in \mathbb{N}} \left(P(A_n) \right) = \infty \right) \wedge \frac{2Cond303}{n} \left(\inf IndEvents \left((A)_{\mathbb{N}} \right) \right) \right) \Longrightarrow P\left(\{A_n \text{ i-o}\} \right) = 1$$

$$\iff \frac{1IL303}{MSSetBound} \left(1 - P\left(\{A_n \text{ i-o}\} \right) = P\left(\{A_n \text{ i-o}\}^C \right) = P\left(\bigcup_{n \in \mathbb{N}} \left(B_n^C \right) \right) \leq \sum_{n \in \mathbb{N}} \left(P\left(B_n^C \right) \right) \right) \wedge$$

$$\frac{2IL303}{DeMorgans} \left(\sum_{n \in \mathbb{N}} \left(P\left(B_n^C \right) \right) = \sum_{n \in \mathbb{N}} \left(P\left(\bigcap_{i=n}^{\infty} \left(A_i^C \right) \right) \right) = \sum_{n=1}^{\infty} \left(\prod_{i=n}^{\infty} \left(P\left(A_i^C \right) \right) \right) = \sum_{n=1}^{\infty} \left(\prod_{i=n}^{\infty} \left(1 - P(A_i) \right) \right) \right) \wedge$$

$$\frac{3IL303}{1Cond303} \left(\sum_{n=1}^{\infty} \left(\prod_{i=n}^{\infty} \left(1 - P(A_i) \right) \right) = \sum_{n=1}^{\infty} (0) = 0 \right) \wedge \frac{Impl303}{1Il303} \left(0 \leq 1 - P\left(\{A_n \text{ i-o}\} \right) \leq 0 \iff P\left(\{A_n \text{ i-o}\} \right) = 1 \right)$$

$$(337)$$

TODOFIXUPSECTIONINGANDFORMATTING (338)

 $S^n = (x,y)^n \subset Z \# \text{ sample set consists of } n \text{ input-output pairs } (340)$

 $S^n \Longrightarrow map(f_{S^n},(X,Y)) \# \text{ learned predictor function}$ (341)

V # loss function (342)

$$I_n[f] = \frac{1}{n} \sum_i (V(f(x_i), y_i)) \# \text{ empirical predictor error}$$
 (343)

$$I[f] = \int_{Z} (V(f(x_i), y_i) d\mu(x_i, y_i)) \# \text{ expected predictor error}$$
 (344)

 f_{\star} # optimal or lowest expected error hypothesis (345)

 $\lim_{n\to\infty} (I[f_n]) = I[f_{\star}] \# \text{ consistency: expected error of learned approaches best hypothesis}$ (346)

 $\lim_{n\to\infty} (I_n[f_n]) = I[f_n] \text{ } \# \text{ } \text{generalization: empirical error of learned hyptohesis approximates expected error } (347)$

 $|I_n[f_n] - I[f_n]| < \epsilon(n, \delta)$ with P $1 - \delta$? # generalization error: measure performance of learning algorithm

$$\forall_{\epsilon>0} \left(\lim_{n\to\infty} \left(P(\{|I_n[f_n] - I[f_n]| \ge \epsilon\}) = 0 \right) \right)$$

(348)

 $X \# \text{random variable}; \mu \# \text{probability measure}$ (349)

measureSpace(X, F, P) (350)

$$IID(A,(X,P)) \iff (A \in F \subseteq X) \land P_{a_1,a_2,...}(a_1 = t_1, a_2 = t_2,...) = \prod_i (P_{a_1}(a_i = t_i))$$

outcomes are independent and equally likely (351)

$$E[X] = \int_{Range} (xd(P(x))) \quad (352)$$

0 (353)

2.4 Underview

(354)

 $curve-fitting/explaining \neq prediction \hspace{1cm} (355)$

 $ill-defined problem + solution space constraints \Longrightarrow well-defined problem$ (356)

x # input ; y # output (357)

 $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} \# \text{ training set}$ (358)

$f_S(x) \sim y \; \# \; { m solution}$	(359)
$each(x,y) \in p(x,y) \ \# \text{ training data } x,y \text{ is a sample from an unknown distribution } p$	(360)
$V(f(x),y) = d(f(x),y) \; \# \; ext{loss function}$	(361)
$I[f] \! = \! \int_{X imes Y} \! V(f(x),y) p(x,y) dx dy \; \# \; ext{expected error}$	(362)
$I_n[f] = \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \; \# \; \text{empirical error}$	(363)
$probabilisticConvergence(X,()) \Longleftrightarrow \forall_{\epsilon>0} \lim_{n\to\infty} Pxn - x \leq \epsilon = 0$	(364)
I-Ingeneralization error	(365)
well-posed := exists, unique, stable; elseill-posed	(366)

3 Machine Learning

3.0.1 Overview

$X \ \# \ \mathrm{input} \ ; \ Y \ \# \ \mathrm{output} \ ; \ S(X,Y) \ \# \ \mathrm{dataset}$	(367
learned parameters = parameters to be fixed by training with the dataset	(368
hyperparameters = parameters that depends on a dataset	(369
validation = partitions dataset into training and testing partitions, then evaluates the	
accuracy of the parameters learned from the training partition in predicting the outputs of the testing partition # useful for fixing hyperparameters	(370
cross-validation=average accuracy of validation for different choices of testing partition	(371
$\mathbf{L1}\!=\!\mathbf{scales}$ linearly; $\mathbf{L2}\!=\!\mathbf{scales}$ quadratically	(372
$d\!=\!{ m distance}\!=\!{ m quantifies}$ the the similarity between data points	(373
$d_{L1}(A,B) = \sum_{p} A_p - B_p \ \# \ { m Manhattan \ distance}$	(374
$d_{L2}(A,B) \! = \! \sqrt{\sum_{p} (A_p \! - \! B_p)^2} \; \# \; ext{Euclidean distance}$	(375

kNN classifier = classifier based on k nearest data points	(376)
s=class score=quantifies bias towards a particular class	(377)
$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(378)
$l \! = \! \mathrm{loss} \! = \! \mathrm{quantifies}$ the errors by the learned parameters	(379)
$l \! = \! rac{1}{ c_i } \sum_{c_i} \! l_i \; \# \; ext{average loss for all classes}$	(380)
$l_{SVM_i} = \sum_{y_i \neq c_i} \max(0, s_{y_i} - s_{c_i} + 1) \ \# \ \text{SVM hinge class loss function:}$ # ignores incorrect classes with lower scores including a non-zero margin	(381)
$l_{MLR_i} \! = \! -\log\!\left(\!rac{e^{s_{c_i}}}{\sum_{y_i}e^{y_i}} ight) \# ext{ Softmax class loss function}$	
# lower scores correspond to lower exponentiated-normalized probabilities	(382)
R=regularization=optimizes the choice of learned parameters to minimize test error	(383)
$\lambda \ \# \ ext{regularization strength hyperparameter}$	(384)
$R_{L1}(W) = \sum_{W_i} W_i \; \# \; ext{L1 regularization}$	(385)
$R_{L2}(W)\!=\!\sum_{W_i}\!W_i{}^2~\#~ ext{L2}~ ext{regularization}$	(386)
$L'\!=\!L\!+\!\lambda R(W)$ # weight regularization	(387)
$ abla_W L = \overrightarrow{rac{\partial}{\partial W_i}} L = ext{loss gradient w.r.t. weights}$	(388)
$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \text{ $\#$ loss gradient w.r.t. input weight in terms of external and local gradients}$	(389)
$s\!=\!{f forward\ API}$; $rac{\partial L_L}{\partial W_I}\!=\!{f backward\ API}$	(390)
$W_{t+1}\!=\!W_t\!-\! abla_{W_t}L$ # weight update loss minimization	(391)
TODO:Research on Activation functions, Weight Initialization, Batch Normalization	(392)
review 5 mean var discussion/hyperparameter optimization/baby sitting learning	(393)

4 Glossary

chaoticTopology discreteTopology topology topologicalSpace open closed clopen neighborhood chaoticTopology discreteTopology metric ${\it metric Space}$ openBall metricTopology metricTopologicalSpace limitPoint interiorPoint closure dense eucD euclideanTopology subset Topology productTopology metric metricSpace openBall metricTopology metric Topological SpacelimitPoint interiorPoint closure dense eucD euclideanTopology subsetTopologyproductTopology sequence sequence Converges Tosequence sequence Converges Tocontinuous homeomorphism isomorphicTopologicalSpace continuous homeomorphism isomorphicTopologicalSpace T0Separate T1Separate T2Separate T0Separate T1Separate T2SeparateopenCover finiteSubcover compact compactSubsetbounded openCover finite Subcovercompact compactSubset bounded

openRefinement locallyFinite paracompact openRefinement locallyFinite paracompact connected pathConnected connected pathConnected sigmaAlgebra measurableSpace measurableSetmeasure measureSpace finiteMeasuregenerated Sigma AlgebraborelSigmaAlgebra euclideanSigma lebesgueMeasure measurableMappushForwardMeasure nullSet almostEverywhere sigmaAlgebra measurableSpace measurableSetmeasure measureSpace finiteMeasure generatedSigmaAlgebra borelSigmaAlgebra euclideanSigma lebesgueMeasure measurableMappushForwardMeasure nullSet almostEverywhere simpleTopology simpleSigma simpleFunction characteristicFunction exEuclideanSigma nonNegIntegrablenonNegIntegral explicitIntegral integrable integral simpleTopology simpleSigma simpleFunction characteristicFunction exEuclideanSigma nonNegIntegrablenonNegIntegralexplicitIntegral integrable integral vectorSpace innerProduct innerProductSpace vectorNorm

normedVectorSpace vectorMetric metricVectorSpace innerProductNormnormInnerProductnormMetric metricNorm orthogonal normal basis orthonormalBasis vectorSpace innerProduct innerProductSpace vectorNormnormedVectorSpace vectorMetricmetricVectorSpace innerProductNormnormInnerProductnormMetric metricNorm orthogonal normal basis orthonormalBasis subspace subspaceSum ${\bf subspace Direct Sum}$ orthogonalComplement orthogonalDecomposition subspace subspaceSum subspaceDirectSumorthogonal Complementorthogonal Decompositioncauchy complete banachSpace hilbertSpace separable cauchy complete banachSpace hilbertSpace separable linearOperator matrix eigenvector eigenvalue identityOperator inverseOperatortransposeOperator symmetric Operator triangular Operator decomposeLUImg Ker independentOperator dimensionality rank

orthogonal VectorsorthogonalOperator orthogonalProjection eigenvectors det diagonalOperator characteristicEquation eigenDecomposition spectralDecomposition hermitianAdjoint hermitianOperator unitaryOperator positiveDefiniteOperator semiPositive Definite Operatorsimilar Operators similar Operators singular Value Decomposition linear Operatormatrix eigenvector eigenvalue identityOperator inverseOperatortransposeOperatorsymmetricOperator triangularOperator decomposeLUImg Ker independent Operator dimensionality rank transposeNorm orthogonal VectorsorthogonalOperator orthogonalProjection eigenvectors det diagonalOperator characteristicEquation eigenDecompositionspectral DecompositionhermitianAdjoint hermitianOperator unitaryOperator positive Definite OperatorsemiPositive Definite Operatorsimilar Operators similar Operators singular Value Decomposition denseMap mapNorm boundedMapextensionMap adjoint selfAdjoint

compactMap

boundedMap

denseMap

mapNorm

transposeNorm

extensionMap 2IL285 discreteRandomVariable1Cond3033IL285 bernoulliRandomVariable 2Cond303 adjoint 4IL285uniformRandomVariable 1IL303 selfAdjoint compactMapgeometricRandomVariable 2IL303 MSCont curLp MSConvL binomialRandomVariable 3IL303 poissonRandomVariable Impl303 vecLp**MSConvU** integral NormMSSetOrderabsolutely Continousconditional Probability**MSSetBound** continuous Random Variableindependent Events Lp cont Uniform Random Variable $\operatorname{cur} L$ randomVariable setPartition finIndEvents curLp exponentialRandomVariable vecLpgeneratedSigmaAlgebra memorylessRandomVariableinfIndEvents integralNorm piSystem gaussianRandomVariable subSigmaAlgebraLpCDF simplified Cauchy Random Variabile dependent Sigma Algebras $\operatorname{cur} L$ singularRandomVariable inf Ind Sigma AlgebrasPMF random ExperimentpreimageSigma infinitelyOften indicatorRandomVariable ${\bf discrete Random Variable}$ nRandomVariable Cond300 probabilitySpace measureSpace bernoulliRandomVariable conditionalProbability 1IL300 event uniformRandomVariableindependentEvents 2IL300 setPartition**CL285** geometricRandomVariable 3IL300 **DL285** binomialRandomVariable finIndEventsImpl300 **EL285** poissonRandomVariable infIndEvents logp 1IL285 absolutely Continous subSigmaAlgebra sump continuousRandomVariable independent Sigma Algebras1Cond3022IL285 contUniform Random Variable $\inf Ind Sigma Algebras$ 3IL285 2Cond3024IL285 exponentialRandomVariable infinitelyOften 1IL302 MSContmemorylessRandomVariableCond300 2IL302 MSConvLgaussianRandomVariable 1IL3003IL302 MSConvUsimplifiedCauchyRandomVariab24L300 Impl302 MSSet Order singular Random Variable 1Cond3033IL300 **MSSetBound** preimageSigma Impl300 2Cond303randomExperiment nRandomVariable logp 1IL303 probabilitySpace randomVariable sump 2IL303 $1 \operatorname{Cond} 302$ measureSpace 3IL303 generatedSigmaAlgebra $2 \, \mathrm{Cond} \, 302$ Impl303 event CL285 piSystem 1IL302 CDF 2IL302 DL285EL285PMF 3IL302

Impl302

indicatorRandomVariable

1IL285