▶ R的資料物件

Data Frame: 以 List 方式儲存, 但長度相同 List: 每個元素的資料類型及長度可以不相同

R 裡的 factor 是較特別的 vector, 用來儲存類別變數

若資料為類別資料, 匯入資料時 R 會自動將類別型資料轉成 Factor

ex: 膚質為 A,B,C,D,E 五類, 年齡層為 old, young 兩類

matrix(): create matrix

建立一個 6 横列,3 直行, element 為 1~18 的 matrix, 欄位取名為 ID, 年資, 年齡如下

ID	Num	Age
1	7	13
2	8	14
3	9	15
4	10	16
5	11	17
6	12	18

```
a = matrix( 1:18 , nrow=6 )
colnames(a) = c( 'ID' , 'Num' , 'Age' )
```

```
output:
```

ID Num Age

[1,] 1 7 13

[2,] 2 8 14

[3,] 3 9 15

[4,] 4 10 16

[5,] 5 11 17

[6,] 6 12 18

> matrix 資料讀取

a[1,]

#取 matrix a 的第一横列

output:

[1] 1 7 13

a[,2]

#取 matrix a 的第二直行

output:

[1] 7 8 9 10 11 12

> as.data.frame() 將資料轉換成 data frame 格式(類似 table 的格式)

df = as.data.frame(a) #將 matrix a 轉換成 data frame 格式 df\$ID

#轉換成 data frame 格式就可以用\$加欄位名稱輕易的將該欄位的值 print 出

output:

> df\$ID

[1] 1 2 3 4 5 6

> subset(data, select = c(欄位 1, ..., 欄位 n), subset=(條件))

資料篩選, 效果和 SQL 語法 "select 欄位 from data where 條件"一樣

從 matrix a 中篩選 Num 欄位大於 9 的資料

#只 output column ID和 Age 兩 column

w1 = subset(a,select=c(ID,Age),subset=('Num'>9))

output:

ID Age

[1,] 4 16

[2,] 5 17

[3,] 6 18

#要 output 全部欄位就不需再 select column w2 = subset(a,subset=('Num'>9)) #條件可直接用欄位名稱 w3 = subset(a,subset=(a[,2]>9)) #也可指定欄位 index

output:

ID Num Age
[1,] 4 10 16
[2,] 5 11 17
[3,] 6 12 18

資料分類: 將 matrix a 的 Age 欄位小於 15 的值歸類為類別 A, 介於 15~17 的歸類為 B, 大於 17 的歸類為 C

```
deg= length(a) #建立與 a 横列數一樣的空 vector (6x1)
deg[a[,3]<15] = 'A' # a[,3]<15 output:true,true,false,...false
deg[a[,3]>=15 & a[,3]<18]= 'B'
deg[a[,3]>=18]= 'C'
deg # output: A A B B B C
cbind(a,deg) #a 與 deg 做欄合併
```

output:

ID Num Age deg
[1,] "1" "7" "13" "A"
[2,] "2" "8" "14" "A"
[3,] "3" "9" "15" "B"
[4,] "4" "10" "16" "B"
[5,] "5" "11" "17" "B"
[6,] "6" "12" "18" "C"

rm(): remove 變數、data frame、matrix.....等 objects

跑 R 程式時所有 object 會顯示在 Global Environment 視窗裡, 點選 Clear 可以清除全部 但如果只想清除某一個物件, 就可以用 rm(物件名稱)來移除特定物件

rm(effset)	#移除上圖中 effset 這個 data frame
rm(best.mtry)	#移除上圖中 best.mtry 這個變數

output:

> best.mtry

[1] 8 ←原本 best.mtry = 8 > rm(best.mtry) ← 移除變數 best.mtry

Error: object 'best.mtry' not found ←顯示沒有 best.mtry 這個變數

> aggregate(x, by, FUN, ...):對資料 x 做分群後各別運算 (檔案:income.csv)

#計算 Taipei, Taichung, Kaohsiung 男女性的平均收入

income_mat = read.table('D:/income.csv',sep=',',header = TRUE)

income_avg= with(income_mat,aggregate(income_mat[,4], by = list(city,g
ender),FUN=mean))

income_mat[,4] → 收入欄位

by = list(city,gender) → 對 city和 gender 欄位做分群

FUN=mean → 分群後取平均

	Group.1	Group.2	x
1	female	Kaohsiung	37315.00
2	male	Kaohsiung	42443.50
3	female	Taichung	34793.75
4	male	Taichung	34467.20
5	female	Taipei	35167.00
6	male	Taipei	31275.67

▶ describeBy(y, x, mat=TRUE):以x做分群做y的敘述統計分析

install.packages("psych")

library("psych")

des.mat = describeBy(income_mat\$income,income_mat\$city,mat=TRUE)

row.names	item	group1	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
11	1	Kaohsiung	1	6	39024.50	5530.188	39858.5	39024.50	6765.104	31514	46118	14604	-0.13623769	-1.807453	2257.690
12	2	Taichung	1	9	34612.33	9878.924	37914.0	34612.33	14092.113	23300	47419	24119	-0.01216647	-1.989130	3292.975
13	3	Taipei	1	5	32832.20	5119.949	31525.0	32832.20	5596.815	27002	40274	13272	0.30614565	-1.742240	2289.711

> grep("欄位名稱", colnames(data)): 找特定欄位名稱在 data 中的第幾欄

eff.csv 為不同膚質(skintype),不同年齡層(age_deg)對各個產品(proid)的心得斷詞,如下表第一橫列表示膚質 B,年齡 young 的人用產品 1 有 expensive, good, whitening, smell_good 的感受

example 1: 匯入 eff.csv

example 2: 欄位 expensive 和 smell good 在第幾欄?

example 3: 想知道每個產品在不同膚質/年齡層提到的詞頻 (ex: skintype 為 C, age_deg 為 young, proid 為 2 的所有心得 expensive/cheap/good/bad/whitening/smell_good 提到幾次?)

			-							
article_id	proid	skintype	age_deg	expensive	cheap	good	bad	whitening	smell_good	
1	1	В	young	1	0	1	0	1	1	
2	1	С	old	0	1	1	0	1	0	
3	1	С	young	0	1	1	0	0	1	
4	1	С	old	0	1	1	0	0	1	
5	1	В	young	0	1	1	0	0	0	
6	1	С	old	1	0	0	1	1	1	
7	2	A	young	1	0	1	0	1	0	
8	2	A	young	1	0	0	1	0	0	
9	2	С	young	0	1	0	1	1	1	
10	2	С	young	1	0	0	1	0	1	
11	2	С	young	0	1	1	0	1	1	
12	2	Е	old	0	1	1	0	0	0	
13	2	D	young	0	1	0	1	0	1	
14	2	С	old	1	0	1	0	1	0	
15	2	С	old	1	0	1	0	1	1	
16	2	D	young	1	0	1	0	1	1	
17	2	A	young	0	1	0	1	0	0	
18	3	A	old	0	1	1	0	1	0	
19	3	A	old	1	0	1	0	0	0	
20	3	A	old	1	0	0	1	1	1	

#example 1

data = read.table('D:/eff.csv', sep=',', header = TRUE) # 檔案存放路徑: D:/eff.csv ,欄位用,分隔,資料第一橫列為欄位名稱

#example 2

grep("expensive", colnames(data))#expensive 欄位在 data 中第幾欄?grep("smell_good", colnames(data))#smell_good 欄位在 data 中第幾欄?

example 2 output:

> grep("expensive", colnames(data))

 $\lceil 1 \rceil$ 5

> grep("smell_good", colnames(data))

[1] 10

#example 3 透過 aggregate, 對 proid/skintype/age_deg 做 gorup by 後再做欄加總 wordCount= with(data,aggregate(data[,grep("expensive", colnames(data)): grep("smell_good", colnames(data))], by = list(proid,skintype,age_deg), FUN=sum))

#對 data 中的 expensive~smell_good 欄位依 proid, skintype, age_deg 做分群後做加總

output:

```
Group.1 Group.2 Group.3 expensive cheap good bad whitening smell_good
1
         3
                       old
                                    2
                                          2
                                                2
                                                    2
                 Α
                                                              3
                                                                          2
                                    1
                                          2
                                                              2
                                                                          2
2
         1
                 C
                       old
                                                2
                                                    1
         2
                       old
                                                              2
3
                 C
                                    2
                                          0
                                                2
                                                    0
                                                                          1
         3
                 C
                                    0
                                          1
                                                1
                                                              1
                                                                          1
4
                       old
                                                    0
         2
                       old
                                          1
                                                1
                                                              0
                                                                          0
5
                 Ε
                                    0
                                                    0
         2
                                     2
                                                    2
6
                     young
                                           1
                                                1
                                                               1
                                                                          0
                 Α
7
         1
                                     1
                                           1
                                                2
                                                    0
                                                               1
                                                                          1
                 В
                     young
         3
                                           2
                                                    2
                                                               2
                                                                          3
8
                 В
                     young
                                     4
                                                4
9
         1
                                           1
                                                    0
                                                               0
                                                                          1
                 C
                                     0
                                                1
                     young
         2
                                           2
                                                               2
                                                                          3
10
                                     1
                                                1
                                                    2
                 C
                     young
11
         3
                                     2
                                                    1
                                                               1
                                                                          1
                                           1
                                                1
                 C
                     young
12
         2
                 D
                      young
                                     1
                                           1
                                                1
                                                    1
                                                               1
                                                                          2
```

> merge(x, y): join 兩個 data frame

```
emp = read.table('D:/employee.csv',sep=',',header = TRUE)
dep = read.table('D:/department.csv',sep=',',header = TRUE)
merge(emp,dep) #只輸入兩 table 名稱會自動找兩 table 相同欄位名稱當做 key
merge(emp,dep, by='department') #兩 table 依 department 欄位 join
```

如果想用某欄位做 join, 但兩個 table 欄位命名不一樣的時候可用下面的方法

```
emp = read.table('D:/employee.csv',sep=',',header = TRUE)
dep2 = read.table('D:/department2.csv',sep=',',header = TRUE)
merge(emp,dep2, by.x= 'department', by.y='dep')
#emp 裡部門欄位名稱為 department, dep2 裡部門欄位名稱為 dep
```

其他:

```
merge(dataset1, dataset2, by="countryID", all.x=TRUE) →left join merge(dataset1, dataset2, by="countryID", all.y=TRUE) →right join
```

randomForest(x,y, ntree = ?, mtry = ?, importance=TRUE,…) 隨機森林演算法 y 為要預測的項目(response), x 為會影響預測項目的因子(factor), ntree 和 mtry 要自己調整, importance=TRUE 會算出各個因子對預測項目的重要程度

```
install.packages("randomForest")
library(randomForest)
ind = sample(2, nrow(product), replace = TRUE, prob=c(0.8, 0.2))
product.tr = product[ind == 1,]
                                       #training set
product.te = product[ind == 2,]
                                       #testing set
# factor: product.tr[,c(7:65)], response: product.tr[,'rebuy']
rf.tr = randomForest(product.tr[,c(7:65)], product.tr[,'rebuy'], ntree
=500, mtry=8,importance=TRUE)
table.rf.tr = rf.tr$confusion[,1:2]
sum(diag(table.rf.tr))/sum(table.rf.tr)
                                          #計算預測正確率
rf.tr$confusion
varImpPlot(rf.tr,cex=0.7)
                                           #越有影響的因子越靠近圖的右上角
print(rf.tr)
rf.tr$importance
                                           #print 各因子重要程度
#testing set 套入 training 出來的 model 看預測結果
pre.test = predict(rf.tr, product.te)
table.test = table(product.te$rebuy,pre.test)
sum(diag(table.test))/sum(table.test)
                                            #testing set 預測正確率
```

ts(): time series object

```
# Time-series
data.ts <- ts(c(2,5,4,6,3,7,9,8),start=c(2009,2),frequency=4) #4 季
data.ts
start(data.ts)
end(data.ts)
plot(data.ts, type="b")
# ts(c(1:30),start=c(2009,2),frequency=12) #12 個月
```

output:

> data.ts

```
install.packages("fmsb") # R畫 radar chart 的套件
library("fmsb")
```

par(mar=c(1, 2, 2, 1)) # decrease default margin
color=c('#FFD9EC','#97CBFF','#B9B9FF','#FFED97') #create color vector
layout(matrix(1:4, ncol=2)) #draw 4 plots to device

lapply(1:4, function(i) {

radarchart(rbind(rep(100,4), rep(0,4), radar_data[i,2:6]),title=rada
r_data[i,1],vlcex=0.9,pfcol=color[i])
})

radar_data[i,2:6] → 第 i 編號 A~E 面向的分數

rep(100,4) > 雷達圖各面向的滿分是 100, 資料總共有四筆, 所以有 4 個 100

rep(0,4) \rightarrow 雷達圖各面向最低 0 分,資料總共有四筆,所以有 4 個 0

title = radar_data[i,1] → 圖的標題為 radar_data 第一直航的第 i 個 element

pfcol=color[i] → 指定第 i 個雷達圖的顏色

proid	А	В	С	D	Е
10577	43	27	34	27	91
13052	94	58	87	91	41
69750	76	42	20	88	67
12345	56	71	90	67	41

▶ 最後畫一下台灣地圖療癒一下^^

install.packages("ggmap")
library(ggmap)
map.taiwan <- get_map(location="Taiwan", zoom=8)
ggmap(map.taiwan)</pre>