Discrete Response Model Lecture 1

datascience@berkeley

Maximum Likelihood Estimation (1)

Maximum Likelihood Estimation

Suppose w = 4 and n = 10. Given this observed information, we would like to find the corresponding parameter value for π that produces the largest probability of obtaining this particular sample.

The following table can be formed to help find this parameter value:

π	$L(\pi \mid y_1,,y_n)$
0.2	0.000419
0.3	0.000953
0.35	0.001132
0.39	0.001192
0.4	0.001194
0.41	0.001192
0.5	0.000977

Maximum Likelihood Estimation (in R)

Maximum Likelihood Estimation (in R)

Likelihood Function of Binomial Probability Model


```
#Likelihood function plot
curve(expr = x^sum.y*(1-x)^(n-sum.y), xlim = c(0,1),
    xlab = expression(pi), ylab = "Likelihood
    function", main="Likelihood Function of Binomial Probability Model")
```

Note that $\pi = 0.4$ is the "most plausible" value of π for the observed data because this maximizes the likelihood function. Therefore, 0.4 is the <u>maximum likelihood estimate (MLE)</u>.

Berkeley school of information