XGBoost (classification)

Drug dosage	Drug usefulness
5	No
8	Yes
11	Yes
18	No

Assuming that we have this very simple dataset

Step 1: make the initial prediction

Drug dosage	Drug usefulness
5	No
8	Yes
11	Yes
18	No

Drug dosage	Drug usefulness
5	No
8	Yes
11	Yes
18	No

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Drug
dosageDrug
usefulness5No8Yes11Yes18No

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5
In other words, does not matter how many dosages we take, the initial prediction for the usefulness for the drug is 50%

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Plot it out, we have

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

3.1 All the tree starts from a leaf, with all the residuals

-0.5, 0.5, 0.5, -0.5

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

3.1 All the tree starts from a leaf, with all the residuals

-0.5, 0.5, 0.5, -0.5

3.2 Calculate the Similarity score using

Note that for regression:

$$Similarity\ score = \frac{(\sum residuals)^2}{number\ of\ residuals + 2}$$

$$Similarity\ score = \frac{(\sum residuals)^2}{\sum previous\ prob_i \times (1 - previous\ prob_i) + \lambda}$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

3.1 All the tree starts from a leaf, with all the residuals

3.2 Calculate the Similarity store using

Note that for regression:

$$Similarity\ score = \frac{(\sum residuals)^2}{number\ of\ residuals + 2}$$

For this case we have

Similarity score =
$$\frac{(-0.5 + 0.5 + 0.5 - 0.5)^2}{\sum previous\ prob_i \times (1 - previous\ prob_i) + \lambda} = 0$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

3.1 All the tree starts from a leaf, with all the residuals

- 3.2 Calculate the Similarity score
- 3.3 Further split the tree

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

3.1 All the tree starts from a leaf, with all the residuals

- 3.2 Calculate the Similarity score
- 3.3 Further split the tree

Similar to regression xgboost tree, we can start from the first data point, calculate the similarity score, and the gain. Then move to the next two points

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

3.1 All the tree starts from a leaf, with all the residuals

- 3.2 Calculate the Similarity score
- 3.3 Further split the tree

After gone through all the thresholds, we can tell that this tree gives the highest "Gain"

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Plot it out, we have

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

We can continue split these residuals (following the same method)...

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

- For regression cover = number of residuals
- For classification $cover = \sum [previous prob_i \times (1 previous prob_i)]$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

So for regression, if we don't set cover by ourself, we always can just have one residual in one leaf

• For regression *cover = number of residuals*

• For classification $cover = \sum [previous prob_i \times (1 - previous prob_i)]$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

So for regression, if we don't set cover by ourself, we always can just have one residual in one leaf

- For regression *cover = number of residuals*
- For classification $cover = \sum [previous prob_i \times (1 previous prob_i)]$

For classification, it's more complicated

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

So for regression, if we don't set cover by ourself, we always can just have one residual in one leaf

- For regression cover = number of residuals
- For classification $cover = \sum [previous prob_i \times (1 previous prob_i)]$

For classification, it's more complicated

For example, the cover for this leaf is

coven =
$$0.5 \times (1 - 0.5) = 0.25$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

So for regression, if we don't set cover by ourself, we always can just have one residual in one leaf

- For regression cover = number of residuals
- For classification $cover = \sum [previous prob_i \times (1 previous prob_i)]$

For classification, it's more complicated

For example, the cover for this leaf is

$$cover = 0.5 \times (1 - 0.5) = 0.25$$

So this leaf will be removed

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

So for regression, if we don't set cover by ourself, we always can just have one residual in one leaf

- For regression *cover = number of residuals*
- For classification $cover = \sum [previous prob_i \times (1 previous prob_i)]$

For classification, it's more complicated

For example, the cover for this leaf is

cover =
$$0.5 \times (1 - 0.5) + 0.5 \times (1 - 0.5) = 0.5$$

So this leaf will be removed, too

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Note that for a xgboost tree, there are two limitations we can implement:

- How many levels of the tree can grow (like any other tree methods)
- How many residuals in each leaf: this is defined as cover

cover, by default, is defined as

So for regression, if we don't set cover by ourself, we always can just have one residual in one leaf

- For regression cover = number of residuals
- For classification $cover = \sum [previous prob_i \times (1 previous prob_i)]$

So as you can see, by default, too many leaf will be removed in this example, if we use the default cover. In order to make this example working, let's just set cover=0

In some packages, cover is called min_child_weight

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective: 0.5

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

Note that for regression xgboost: $output = \frac{sum\ of\ residuals}{number\ of\ residuals + \lambda}$

$$output = \frac{\sum residuals}{\sum previous \ prob_i \times (1 - previous \ prob_i) + \lambda}$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

$$output = \frac{\sum residuals}{\sum previous \ prob_i \times (1 - previous \ prob_i) + \lambda}$$

So for this leaf, we have (assuming lambda=0):

$$output = \frac{-0.5}{0.5 \times (1 - 0.5) + 0} = -2$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

So the first tree is completed

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

Step 6: Start making predictions

So the first tree is completed

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

So the first tree is completed

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)

The equation is $\log(odds) = \log(\frac{p}{1-p})$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used) for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

So the first tree is completed

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)

The equation is
$$\log(odcs) = \log(\frac{p}{1-p})$$

The previous probability is 0.5, so log(odds) = 0

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

So the first tree is completed

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

So the first tree is completed

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

So the first tree is completed

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

Then we need to convert log(odds) back to probability as:

$$p = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

So the first tree is completed

So for the first sample, the prediction of probability is

$$p = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}} = \frac{e^{-0.6}}{1 + e^{-0.6}} = 0.35$$

Then is need to convert log(od s) back to probability as:

$$= \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

The original prediction is 0.5, and the new prediction is 0.35 (get reduced from the original), and it is getting closer to the truth So the first tree is completed

So for the first sample, the prediction of probability is

$$p = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}} = \frac{e^{-0.6}}{1 + e^{-0.6}} = 0.35$$

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

Then is need to convert log(od s) back to probability as:

$$= \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

We repeat the process from Step 1 to Step 6 but with updated prediction, every time we get reduced residuals, until the residuals do not change much anymore ...

Drug dosage	Drug usefulness	Residuals
5	No	-0.5
8	Yes	0.5
11	Yes	0.5
18	No	-0.5

Step 1: make the initial prediction

For example, the probability of the dosage is effective:

Step 2: we get the residuals for all the samples

Step 3: grow a xgboost tree to the residuals (Similar method used for regression)

Step 4: Prune the tree (like the xgboost for regression)

Step 5: Determine the output value

Step 6: Start making predictions

6.1: first we need to convert the previous prob to log(odds)=0

6.2: making prediction with

We repeat the process from Step 1 to Step 6 but with updated prediction, every time we get reduced residuals, until the residuals do not change much anymore ...

So the final xgboost tree for classification will be something like this:

