Notice: This is not a final specification.

Some parameters are subject to change

COLOR CONTACT IMAGE SENSOR SML12R89-141031

Approved by customer						

WHEC WEIHAI HUALING OPTO-ELECTRONICS CO.,LTD.

No.159, Torch Road, Hi-Tech. IDZ Weihai Shandong, China.

Tel: +86-631-569-8128 (Overseas dep.)

+86-631-569-8618 (Domestic dep.)

Fax: +86-631-568-8608 E-mail: <u>sales@whec8.cn</u>

	Approved				
Rev	Description	Date	Approved	Designed	
A		2015.03.24	Liuzhenxiang	Duanping	
В	改为正式版本	2015.03.30	Liuzhenxiang	Duanping	
С	P15:C1 玻璃印刷黑油墨 P5/8:C2、C3 去掉 Dref P9: C4 原为 6.5V	2015.05.06	Liuzhenxiang	Duanping	Checked
					Designed

1. Description

This specification is applied to SML12R89-141031 Contact Image Sensor module .

2. Scope

This SML12R89-141031 is a CIS consists of a Rod Lens Array, two LED light sources and an array of linear MOS image sensor.

3. Outline

Item		Specification	Note		
Scanning wid	th	89 mm			
Sensor eleme	nt density	1,200 DPI	CNT=VDD		
Effective nun	nber	4,204 elements			
of sensor eler	nents	59 [#] ~4,263 [#]			
		(full 4,320 elements)			
Scanning	color	0.23×4 msec/line (R/G/B/IR)			
speed	B&W	0.23 msec/line			
Clock speed		8.0 MHz			
Rod lens arra	y	Two rows	L19		
Light source		Red $\lambda p = 630 \text{nm} \pm 15 \text{nm}$ 100a	mA		
		Green $\lambda p = 520 \text{nm} \pm 15 \text{nm}$ 100r	nA		
		Blue $\lambda p = 465 \text{nm} \pm 10 \text{nm}$ 100r	nA		
		IR $\lambda p = 810 \text{nm} \pm 20 \text{nm}$ 100	mA		
Power supply	,	+3.3V x 120 mA			
Data output		3 analog output	Synchronous		
		Block #1 1,728 pixels			
		Block #2 1,728 pixels			
	Block #3 864 pixels				
Dimensions		Figure 1			

Note: Clock Speed f must satisfy the following status:

f > (n +92) / tintf: Clock speed

n: Full sensor elements number of every Block

1,200DPI: 1,728 tint: Scanning speed

4. Image Data Output Characteristics (Ta = 25°C)

The shipment test in WHEC is done on the condition of this table.

Item	Symbol		Note			
		Red	Green	Blue	Ir	
DC supply voltage	VDD	+3.3V				
LED supply voltage	VLED	<3.0V	<5.0V	<5.0V	<2.0V	
LED supply current	ILED	$50\text{mA}\times2$	50mA×2	50mA×2	50mA×2	
White image target		$0.05 \sim 0.09$	9 OD			
Timing diagram		Figure 6				
Dark reference	Vref	800±200m	nV			4.1
Dark output	Vdmin	-150mV~-	-150mV			4.2
minimum	v uiiiiii	-130III V	130111 V			7.2
White output	Vpmax	400+ 100	400± 100 mV			
maximum	v pinax	700± 100 1	111 V			4.3
Dark output	Ud	Less than	Vpmax/2			4.4
uniformity	-		· P			.,.
White output	UEp	Less than5	50%			4.5
uniformity	- г		200 maio 070			
MTF		30%	30%	30%	20%	4.6
		MIN	MIN	MIN	MIN	142.697 lppi
Linearity	Gamma	1.0 ± 0.05				
Linearity	LU	Less than 7%			4.7	
uniformity	LU	Less man	/ 70			4.7

The output level of image signal like white and dark and MTF is defined at the point of "ts2" which described in section 6.A test target is set on the read position as outline in Figure 1.

4.1 Vref

Video reference voltage. Vref outputted from connector pin 7. Vdmin and Vdmax are based on vref.

4.2 Vdmin

As shown in Figure 2, Vdmin is the minimum in the dark output signal (turning off the LED). Every other parameters are defined by Vdmin as a reference.

4.3 Vpmax

As shown in Figure 2, Vpmax is the maximum white output signal and is defined by: Vpmax=MAX[Vp(n)]

Vp(n) is the output signal of the n-th pixel using a white image target.

Preliminary:

4.4 Ud

As shown in Figure 2, Ud is the output signal in the dark (turning off the LED) and is defined by:

Ud=Vdmax-Vdmin

Vdmax is the maximum output signal of the n-th pixel in the dark Vdmin is the minimum output signal of the n-th pixel in the dark

4.5 UEp

UEp is the white output non-uniformity with dark signal subtracted and is defined by:

$$UEp = ((VEpmax - VEpmin) / (VEpmax)) \times 100\%$$

VEpmax = MAX[VEp(n)]; is the maximum effective output signal

VEpmin = MIN[VEp(n)]; is the minimum effective output signal

VEp(n) is the effective output signal of every pixel and is defined by:

$$VEp(n) = Vp(n) - Vd(n)$$

4.6 MTF

MTF is defined by:

 $MTF = MIN\{ [(Vmax-Vmin) / VEp] \} x 100\%$

Vmax is the maximum output signal using the MTF image target

Vmin is the minimum output signal using the MTF image target

VEp is the effective output signal.

4.7 LU

LUg is measured following procedure and defined:

Step1. Test Target

The white image target is used as a test target. This target must not be moved while this test is being operated.

Step2. LED adjustment

Tred, Tgrn, Tblu, Tir should be adjusted according to Figure 8 procedure.

Step3. Dark and White correction

Dark and White correction must be done for every each pixel.

Step4. LED on time set

Tred, Tgrn, Tblu, Tir should be changed as following:

Tred/2, Tgrn/2, Tblu/2, Tir/2

Step5. Compute LUg

LUg should be computed for each color as:

$$LUg = /Dgave - Dgextm /$$

Dgave is the average of Vg(n). Vg(n) should be got more than 8 times sampling.

Step6. LED on time set

Tred,Tgrn, Tblu,Tir should be changed as followed and compute LUg regarding to Step5:

Tred/4, Tgrn/4, Tblu/4, Tir/4

Step7. LED on time set

Tred should be changed as followed and compute LUg regarding to Step5: Tred/8, Tgrn/8, Tblu/8, Tir/8

4.8 Correction of Dark and White uniformity

For the best performance two points correction (dark and white) is strongly recommended.

Note: Vref is the reference voltage for video signals. It can be used as the reference voltage. Do not use the GND in stead of Vref.

C2

Figure 2. Output Signals Waveform

5. Maximum Rating

Item	Symbol	Specification	Note
DC supply voltage	VDD	$+3.3V \pm 0.17V$	
Input voltage	VIN	0 ~ VDD+0.3V	SI, CLK
Ambient temperature	То	0 ~ +50 °C	Operating
Ambient temperature	Ta	-20 ~ +60 °C	Non-operating
Ambient humidity		10 ~ 90%RH	Avoid a build
Amolent numbers		10 ~ 90 / 0 K 11	up condensation
Maximum operating		65 °C 30minuts MAX	
Temperature		03 C Johnnus WAX	

LED

Parameter	Symbol	Red	Green	Blue	IR	Notes
DC Forward Current	IF	60 mA	60 mA	60 mA	60 mA	
Pulse Forward Current	IFP	60 mA	60mA	60mA	60mA	
DC Reverse Voltage	VR	5 V	5V	5V	5V	

Figure 3. Duty Ratio vs Allowable Forward Current

6. Electrical Characteristics (Ta = 25 °C)

Item	Symbol	Condition	Specification			Unit
			Min.	Typ.	Max.	
DC Supply Voltage	VDD	GND reference	3.13	3.3	3.47	V
DC Supply Current	IDD	VDD = 3.3V		100	120	mA
LED Forward	VFred	IF=30mA	2.1	2.3	2.5	V
Voltage		IF=40mA	2.1	2.4	2.6	V
		IF=60mA	2.3	2.5	2.7	V
	VFgreen		3.3	3.6	4.0	V
		IF=40mA	3.4	3.8	4.1	V
		IF=60mA	3.6	4.0	4.4	V
	VFblue	IF=30mA	3.3	3.7	4.1	V
		IF=40mA	3.4	3.8	4.2	V
		IF=60mA	3.6	4.0	4.3	V
	VFir	IF=30mA	1.2	1.4	1.5	V
		IF=40mA	1.2	1.4	1.6	V
		IF=60mA	1.4	1.5	1.6	V
Input voltage	VIH	SI,CLK	2.4			V
(Note 1)	VIL	SI,CLK			0.5	V
Input Current (Note 2)	IIH	SI,CLK VIH=5.0V			5	mA
•	IIL		-0.5			μΑ
Clock frequency	f	CLK	7.5	8.0	8.5	Hz
SI setup time	tsu	SI-CLK	60		to	ns
SI hold time	th	SI-CLK	60		5×to	ns
Data output stability time	Ts2	CLK-SIG	20	30	40	ns

Note1): 74HC244 or equivalent is recommended for input signal.

Note2): These are reference values, tsu th ts2 are determined according to the evaluation of user's device.

Figure 4. Timing diagram

7. Reliability

The following table satisfies the reliability when the CIS is operated continuously under standard operating conditions as specified in section 4.

Item	Variable Amount (%)	Note
White output	Initial level +10% -20%	1000Hr
	Initial level +10% -30%	5000Hr

8. Precautions before use:

8.1 Glass surface

The glass surface should be kept clean. Don't wipe the glass surface with hand. Don't use the CIS module in a dust-polluted environment. If the glass surface gets dirty, wipe the glass surface gently with a clean cloth soaked in alcohol. The glass surface should be wiped very carefully.

8.2 Extracting / Inserting the connector

The maximum number of times that the connector should be extracted and connected is 10. If the connector is inserted / extracted more than 10 times, the connector 'burrs' will be eroded, thereby making the connector ineffective.

8.3 Stable operation

(1) The connector pins should not be touched by bare hand or electrostatic charge materials.

(2) Noise

- a. Insert a low frequency noise suppressing capacitor(100uF) between VDD(+3.3V) and GND. A high frequency noise suppressing capacitor is already integrated into the circuit.
- b. Ensure that the sensor connecting cables are 30cm or less in length. The CLK and GND, SIG and GND and VLED and LEDr, respectively should form twisted cable pairs.

(3) Latch up

When the supply voltage is higher than the absolute maximum, latch up will cause the sensor to break, even if the voltage is caused by a surge. If the current varies rapidly in the external circuit, or when the power is turned on an off very frequently, ensure that the voltage of each terminal does not exceed the values indicated in below.

(4) LED circuit

As shown in Figure 5, LED circuit just has 2 and 10 ohm resistance. Be careful not to connect the LED circuit to power supply directly without current limit resisters.

(5) Absolute maximum ratio

Item	Symbol	Condition	Specification		Unit
			Min	Max	
Supply Voltage	VDD	GND reference	-0.3	+4.5 C4	V
Input voltage	Vin	SI,CLK	GND-0.3	VDD+0.3	V

Figure 5. Block Diagram

Figure 6. Timing Diagram (This is the WHEC shipping test condition.)

Figure 7. Color mode Timing Diagram(This is the WHEC shipping test condition)

 ς Figure 8. Flow Chart of Color mode Adjustment (This is the WHEC shipping test condition)

☐ **B&W Mode with Mono-Color Light Source**

This is the example for Red mono-color application. Refer the adjustment flow chart at Figure 10.

Figure 9. Mono-Color Light Source Timing Diagram

Figure 10. Flow chart of Mono-Color Adjustment

Figure 11. B&W mode with White Light Source Timing Diagram

Figure 12. Flow Chart of B&W mode with White Light Source Adjustment

WHEC

Figure 13. Typical Performance Curve Unless otherwise specified,Ta=25°C

T.B.D

WHEC

Figure 1 Dimensions

22

NC

