

3 – Reti radio personali (WPAN)

Reti Mobili Distribuite

Prof. Antonio Capone

Le WPAN e gli standard IEEE 802.15

Area Personale

Area Personale

IEEE 802.15

<u>Wireless Personal Area Networks</u> (WPANsTM)

- Corto raggio
- Bassa potenza
- Basso costo
- Piccole reti
- Dispositivi di comunicazione all'interno di un "Personal Operating Space"
- WG creato dall'IEEE su spinta industriale mentre già era partita la specifica di Bluetooth

IEEE Wireless Standards

IEEE 802.15 Wireless Personal Area Network (WPAN) Working Group

Task Group 1 WPAN/Bluetooth™ Task Group 2 Coexistence

Task Group 3 WPAN High Rate

Task Group 3a WPAN Alt. Higher Rate

Task Group 4
WPAN Low Rate

IEEE 802.11 WLAN Working Group

IEEE 802.16
WMAN Working Group

IEEE 802.18
Radio Regulatory TAG

IEEE 802.19 Coexistence TAG

IEEE 802.20
Mobile BWA Working Group

IEEE 802.22 Wireless Regional Area Networks

La famiglia 802.15

Bluetooth

Bluetooth vs. 802.15.1

- □ Bluetooth è una specifica industriale per reti WPAN
- ☐ Il WG 802.15.1 ha adattato le specifiche industriali di Bluetooth per i livelli 1 e 2
- □ '96-'97: Progetto interno di Ericsson
- '98: nasce il Bluetooth SIG (Ericsson, IBM, Intel, Toshiba, Nokia)
- '99: altri membri si uniscono allo SIG
 (3Com, Lucent Technologies, Microsoft, Motorola)

BluetoothTM

- Re danese del medioevo, Harald Blaatand II, detto <u>Bluetooth</u> (940-981)
- Unificò la Danimarca e la Svezia

- Tecnologia radio
- A basso costo
- □ Raggio ridotto (10-20 m)
- Bassa complessità
- Piccole dimensioni
- Trasmissioni radio nella banda ISM 2.4 GHz
- Nato da un consorzio di costruttori
- □ Solo i primi due livelli sono standardizzati da IEEE 802.15.1

Scenari applicativi

□ Headset

Scenari applicativi

□ Sincronizzazione dati

Scenari applicativi

Access point

- □ Banda ISM a 2.4 GHz
- □ 79 (23 in Francia e Giappone) canali spaziati di 1 MHz (2402-2480 MHz)
- Modulazione G-FSK (1 Mb/s)
- Classi dei dispositivi

Classe Potenza (<u>mW</u>)		Potenza (dBm)	Distanza (Approssimativa)	
Classe 1	100 mW	20 dBm	~ 100 metri	
Classe 2	2,5 mW	4 dBm	~ 10 metri	
Classe 3	1 mW	0 dBm	~ 1 metro	

- □ Frequency Hopping (FH)
- \square 1600 hops/s (625 μ s per hop)
- □ La sequenza di FH è pseudo casuale e determinata dal clock e dall'indirizzo di un dispositivo master che regola l'accesso al canale
- \square Gli altri dispositivi slave seguono la sequenza f_k definita dal master

- ☐ La numerazione degli slot è definita dal clock del master
- La sequenza dall'identificativo del master e da un algoritmo di generazione

□ E' possibile trasmettere pacchetti che durano 1, 3 o 5 intervalli

E' possibile trasmettere pacchetti che durano 1, 3 o 5 intervalli

Piconet

- La più semplice struttura di rete Bluetooth è la piconet
- La piconet è una rete ad hoc formata da 2 o più dispositivi
- Un dispositivo svolge le funzioni di master e gli altri quelle di slave
- La comunicazione può avvenire solo tra master e slave e non direttamente tra gli slave
- □ Fino a 7 slaves possono essere attivi
- □ Gli altri possono essere in
 - Stand-by (non sono parte della piconet)
 - Parked (sono parte delle piconet ma non attivi fino ad un massimo di 256)

Piconet

Indirizzi

- Indirizzo MAC di 48 bit
- AMA (Active Member Address) 3 bit
- PMA (Parked Member Address) 8 bit

Tipi di collegamenti

- Bluetooth prevede due tipi di collegamenti
- SCO (Synchronous Connection Oriented)
 - Collegamento a capacità fissa bidirezionale (circuito)
 - Utilizzo di codici FEC
 - Velocità 64 kbit/s
- □ ACL (Asynchronous ConnectionLess)
 - Collegamento a pacchetto condiviso tra il master e gli slave attivi mediante meccanismo a polling
 - Diverse opzioni per formati dei pacchetti e protezioni di livello fisico (1, 3, 5 slots)
 - Velocità fino a 433.9 kbit/s simmetrica (usando pacchetti di 5 slot in entrambe le direzioni) e 723.2/57.6 kbit/s asimmetrica (usando pacchetti di 5 slot in una direzione di 1 slot nell'altra)

Accesso multiplo

Architettura dei protocolli

- □ Struttura non standard dei protocolli, poi adattata da 802.15.1
- RF + Basebandequivanenti a PHY+ MAC
- Piano di controllo per la creazione delle rete e dei collegamenti

Architettura dei protocolli

AT: attention sequence OBEX: object exchange

TCS BIN: telephony control protocol specification – binary

BNEP: Bluetooth network encapsulation protocol

SDP: service discovery protocol RFCOMM: radio frequency comm.

72 54 0-2745

Access code Header Payload

- ☐ Il pacchetto BT include tre parti:
 - Un access code utilizzato per la sincronizzazione e l'identificazione della piconet
 - Un header utilizzato per il Link Control (LC) incluso il meccanismo di ritrasmissione
 - Il payload il cui formato dipende dal tipo di collegamento e dal tipo di pacchetto (numero di slot, protezione, ecc.)

4 64 4

Preamble Synchronization word Trailer

Access code:

- Ci sono tre tipi di access code
- Channel Access Code (CAC): Definisce una piconet, la parola di sincronizzazione è derivata dall'indirizzo MAC del master
- Device Access Code (DAC): Usata per rintracciare un dispositivo (paging), deriva dal MAC del dispositivo
- Inquiry Access Code (IAC): Usata per scoprire quali sono i dispositivi nell'area (inquiry)

3	4	1	1	1	8	X3
AMA	Туре	Flow	ARQ	SQN	HEC	Codice FEC 1/3

☐ Header:

- Active Member Address (AMA)
- Typo di pacchetto: sono definiti 16 tipi di pacchetti in base alla lunghezza, al tipo di protezione e di collegamento
- Flow: controllo di flusso
- ARQ: ritrasmissione
- SQN: numero di sequenza
- HEC: checksum

	72	54	240 (2/3 FEC)			
FHS	Access code	Header	FHS payload			
	72	54	0-2744 ([1,2,3]/3 FEC)			
ACL	Access code	Header	ACL payload			
	72	54	0-2744 ([1,2,3]/3 FEC)			
sco	Access code	ess code Header		SCO payload		
	72	54	80	32-150 (2/3 FEC)		
DV	Access code	Header	SCO payload	ACL payload		

Link controller: ARQ

Link controller: stati

- Stand-by: il dispositivo è disattivo e la radio è spenta
- Connection: il dispositivo è connesso con altri dispositivi. Lo stato connection comprende altri sotto stati descritti in seguito
- Inquiry: il dispositivo cerca di scoprire se vi sono altri dispositivi nell'area e quali sono
- Inquiry Scan: il dispositivo si mette in ascolto del canale per brevi intervalli di tempo (basso duty cycle) per ricevere messaggi di Inquiry.

Link controller: stati

- Page: il dispositivo cerca di creare un piconet con un altro dispositivo di cui conosce l'indirizzo o di coinvolgerlo in una picone esistente
- □ Page Scan: il dispositivo si mette in ascolto del canale per brevi intervalli di tempo (basso duty cycle) per ricevere messaggi di Page.

Link controller: stati

- Se un dispositivo vuole connettersi ad un altro dispositivo di cui conosce l'indirizzo esegue la procedura di page
- Dall'inidirizzo si ricava il Device Access Code (DAC)
- Un dispositivo in stand-by entra periodicamente in page scan e si mette in ascolto per ricevere il suo DAC
- A causa delle regole di uso della banda ISM la procedura di page non può avvenire su una frequenza fissa
- □ Il dispositivo in page scan segue una sequenza di scan pseudo casuale su 32 frequenze

- □ Per limitare il consumo energetico il page scan viene eseguito per 10 ms su una frequenza e poi si passa in sleep per un tempo tipicamente dell'ordine di qualche secondo (da 1.28 a 3.85 s)
- Ad ogni scan si cambia frequenza in base alla sequenza pseudo-casuale
- □ Il dispositivo in page può calcolare la sequenza di scan ma normalmente non conosce la fase (clock)
- Quindi trasmette il DAC in sequenza sulle varie frequenze

- In 10 ms il dispositivo in page riesce a scandire 16 delle 32 frequenze
- □ La scansione viene ripetuta fino a che non si riceve risposta
- Se dopo un tempo di sleep non vi è risposta si passa alle altre 16 frequenze

- La risposta consiste nello stesso DAC
- □ Nella maggior parte dei casi in al più 2 tempi di sleep la connessione viene stabilita
- Il dispositivo in page risponde con un pacchetto FHS che contiene tutte le informazioni sul dispositivo, compreso il clock.
- □ La connessione è stabilita
- □ Il dispositivo che era in page assume il ruolo di Master e quello in scan quello di Slave

Procedura di Inquiry

- La procedura di Inquiry serve per scoprire altri dispositivi
- E' simile a quella di page ma l'access code è uno speciale uguale per tutti, Inquiry Access Code (IAC)
- Anche la sequenza di inquiry scan è pseudo casuale
- □ La risposta è un pacchetto FHS
- Può esserci una collisione nelle risposte da più dispositivi
- Se dopo un inquiry il dispositivo passa in scan può calcolare la sequenza di page scan dal pacchetto FHS e ridurre il tempo di connessione

Modalità a basso consumo

- □ Nello stato di connection un dispositivo slave può entrare in modalità a basso consumo energetico
- □ Hold: in questo stato lo slave sospende l'ascolto del canale per un tempo concordato con il master (mantiene il suo AMA)
- Sniff: in questo stato lo slave ascolta il canale a intervalli regolari (mantiene il suo AMA)
- □ Park: in questo stato lo slave rilascia il suo AMA e ottiene un PMA. Ascolta il canale della piconet con un duty cycle di norma molto basso in attesa di un messaggio di unpark del master

Protocolli: Link Management

- □ Il protocollo di link management si occupa dei messaggi per il setup dei collegamenti, la sicurezza e il controllo
- Creazione dei collegamenti ACL e SCO
- Gestione delle procedure di sicurezza
- Aggiunta e rimozione degli slaves da una piconet
- I messaggi LMP hanno priorità sugli altri

Protocolli: Sicurezza

Protocolli: Sicurezza

Protocolli: Sicurezza

Protocolli: L2CAP

- □ Logical Link Control and Adaptation Protocol (L2CAP)
- ☐ Funzioni di adattamento (segmentazione e riassemblamento) e multiplazione

- Rappresentano soluzioni di base caratteristiche di applicazioni
- Servono a garantire inter-operabilità
- Generic Access Profile
- Service Discovery Application Profile
- □ Cordless Telephony Profile
- ☐ Intercom Profile
- □ Serial Port Profile
- ☐ Headset Profile
- □ Dial-up Networking Profile
- ☐ Fax Profile
- LAN Access Profile
- ☐ Generic Object Exchange Profile

- Object Push Profile
- □ File Transfer Profile
- Synchronization Profile
- Advanced Audio Distribution
- PAN
- Audio Video Remote Control
- Basic Printing
- Basic Imaging
- □ Extended Service Discovery
- Generic Audio Video Distribution
- □ Hands Free
- ☐ Hardcopy Cable Replacement

Scatternet

- Partecipazione a più piconet
- Master solo in una
- Gestione delle assenze mediante hold e sniff
- Scatternet formation e routing fuori standard

Scatternet (2)

□ Le scatternet permettono ove necessario di gestire i link diretti

Bluetooth v2.0

- □ v2.0 nel 2004, v2.1 nel 2007
- Adaptive Frequency Hopping (AFH) v1.2
- extended Synchronous Connections (eSCO)
- Multicast/Broadcast
- □ Enhanced Data Rate (EDR) velocità fino a 3 Mb/s usando Differential encoded Phase Shift Keying (DPSK) a 4 e 8 simboli (stessa banda)

Bluetooth v3.0

- □ v.30 nel 2009
- □ Velocità fino a 24 Mb/s
- ... ma usando un livello MAC/PHY alternativo, ovvero WiFi
- si usa BT solo per la negoziazione tra i dispositivi

Zigbee

Low Rate - WPAN

- Gran parte delle applicazioni in ambito di Wireless Networking richiede capacità trasmissive medio-alte
- □ A partire dagli anni '90, grandi risorse investite in questo ambito: WLAN(IEEE 802.11), BlueTooth (IEEE 802.15), Wi-Max (IEEE 802.16)
- Necessità di una tecnologia che supporti la creazione e la gestione di reti a basso rate, corto raggio e basso costo
- □ Le reti LR-WPAN si inseriscono in questo segmento applicativo

Low Rate - WPAN

Data Rate

Caratteristiche

- Basso costo sia dell'hardware (circa 2\$) sia del software
- □ Corto raggio di copertura (singolo sensore: ~10m)
- Bassa latenza, se necessario
- Basso consumo energetico!

Applicazioni

Verso Zigbee ...

- □ A partite dalla metà degli anni '90, ogni produttore progetta e realizza soluzioni proprietarie di reti di sensori
- Ne conseguono problemi di compatibilità e di costi elevati
- □ Si rende necessaria una standardizzazione: nasce il Working Group 4 nell'ambito del progetto IEEE 802.15 (2001)
- Lo standard IEEE 802.15.4, che si occupa di definire il livello fisico e quello MAC della tecnologia, viene pubblicato nel Maggio 2003
- □ La tecnologia prende il nome commerciale di

Zigbee: pila protocollare

Zigbee: pila protocollare

End developer applications, designed using application profiles

Application interface designed using general profile

Topology management, MAC management, routing, discovery protocol, security management

Channel access, PAN maintenance, reliable data transport

Transmission & reception on the physical radio channel

Zigbee: frequenze e velocità

	BAND	COVERAGE	DATA RATE	# OF CHANNEL(S)
2.4 GHz	ISM	Worldwide	250 kbps	16
868 MHz		Europe	20 kbps	1
915 MHz	ISM	Americas	40 kbps	10

Zigbee: frequenze e velocità

868MHz / 915MHz PHY

Confronto ZigBee e Bluetooth

ZigBee

- DSSS- 11 chips/ symbol
- ☐ 62.5 K symbols/s
- ☐ 4 Bits/ symbol
- □ Peak Information Rate~128 Kbit/second

Bluetooth

- ☐ FHSS
- 1 M Symbol / second
- □ Peak Information Rate~720 Kbit / second

A. Capone: Reti mobili distribuite

Confronto ZigBee e Bluetooth

ZigBee:

- Network join time = 30ms typically
- Sleeping slave changing to active = 15ms typically
- Active slave channel access time = 15ms typically

Bluetooth:

- Network join time = >3s
- Sleeping slave changing to active = 3s typically
- Active slave channel access time = 2ms typically

Confronto ZigBee e Bluetooth

	Bluetooth	ZigBee
AIR INTERFACE	FHSS	DSSS
PROTOCOL STACK	250 kb	28 kb
BATTERY	rechargeable	non-rechargeable
DEVICES/NETWORK	8	255
LINK RATE	1 Mbps	250 kbps
RANGE	~10 meters (w/o	pa) ~30 meters

Zigbee: dispositivi

Lo standard definisce due tipi di dispositivi:

- □ Full Function Device (FFD):
 - può trasmettere trame di Beacon
 - può comunicare direttamente con altri FFD
 - può effettuare routing
 - può fungere da coordinatore della rete
 - è tipicamente alimentato a corrente
- Reduced Function Device (RFD):
 - non può effettuare routing
 - non possono comunicare direttamente tra loro
 - comunica solamente con FFD
 - è tipicamente alimentato a batteria
 - può andare periodicamente in modalità sleep

Zigbee: topologia

Sono inoltre definite tre possibili topologie:

1 - STAR TOPOLOGY

Zigbee: topologia

2 - MESH TOPOLOGY

Zigbee: topologia

3 - CLUSTERED STARS

Livello fisico

- Activation and deactivation of the radio transceiver
- Energy detection (ED) within the current channel
 - Detect energy level for each channel (used to implement scanning functionalities)
- Link quality indicator (LQI) for received packets
- ☐ Clear channel assessment (CCA)
 - Used to implement the carrier sense multiple access with collision avoidance (CSMA-CA)
- Channel frequency selection
- Data transmission and reception

Livello fisico: overview

Tecnica trasmissiva: Direct Sequence Spread Spectrum (DSSS)

Frequenza	Zona	Bit-Rate	Numero Canali
868 Mhz	Europa	20 kbit/s	1
915 Mhz	USA	40 kbit/s	10
2.45 Ghz	Ovunque	250 kbit/s	16

Livello fisico

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters			
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
868/915	868-868.6	300	BPSK	20	20	Binary	
	902–928	600	BPSK	40	40	Binary	
868/915 (optional)	868–868.6	400	ASK	250	12.5	20-bit PSSS	
	902–928	1600	ASK	250	50	5-bit PSSS	
868/915 (optional)	868–868.6	400	O-QPSK	100	25	16-ary Orthogonal	
	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal	
2450	2400–2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal	

- 3 channels available in 868MHz bands
- □ 30 channels available in the 915MHz bands
- □ 16 channels available in the 2.4GHz bands

Livello fisico: formato di trama

4 Byte	1 Byte	1 Byte		Variabile
PREAMBOLO	START of FRAME DELIMITER (SFD)	FRAME LENGHT (7bit)	Reserved (1 bit)	PSDU
Synchronization Header (SHR)		Protocol Header (PHR)		Payload

Livello MAC: overview

- Sono definite due modalità di funzionamento:
 - **Beacon Enabled** (slotted CSMA/CA)
 - Non Beacon Enabled (unslotted CSMA/CA)

Livello MAC: overview

■ Beacon Enabled (slotted CSMA/CA)

- Durata della trama: da 15ms a 252sec (15.38ms*2n where $0 \le n \le 14$)
- Guranteed Time Slot assegnati nella trama di beacon

Slotted CSMA/CA

- L'unità di misura temporale è il backoff period (BP), di default pari a 20 tempi di simbolo
- □ Vengono definite tre variabili:
 - NB, numero di tentativi di accesso al canale relativi ad una trasmissione
 - CW, numero di BP liberi al termine del tempo di backoff necessari affinchè possa cominciare la trasmisione
 - BE, esponente che determina il massimo numero di BP necessari affinchè possa iniziare la procedura di CCA (Clear Channel Assessment)
- ☐ La procedura di trasmissione (e l'eventuale ack susseguente) deve terminare entro la fine del CAP.
- Nel caso non fosse possibile, il MAC deve sospendere il random backoff e attendere l'inizio del CAP successivo
- Nel caso in cui sia settato ad 1 il bit macBattLifeExt, il countdown di backoff può avvenire soltanto durante i primi sei BP che seguono il beacon.

Slotted CSMA Procedure

Unslotted CSMA/CA

■ Modalità di accesso CSMA/CA classica (data - ACK) senza sincronizzazione

Un-slotted CSMA Procedure

Livello MAC: funzionalità

- □ Beacon Management (Sincronizzazione)
- ☐ Gestione dell'accesso al canale
- □ Guaranteed Time Slot (GTS) Management
- Associazione e disassociazione
- □ Frame Acknoldgement

Livello MAC: formato di trama

2 I	Byte	1 Byte	0/2	0/2/8	0/2	0/2/8	Variabile	2 Byte	
	FRAME SEQUENCE		Destinatio n PAN Identifier	Destinatio n Address	Source PAN Identifier	Source Address	FRAME PAYLOAD	FCS	
				Campi di Ir	ndirizzamento				
			MAC	Header			MAC Payload	Codice CRC	

Identifica, tra l'altro, tipo di trama, tipo di indirizzamento, sicurezza

L'indirizzo di un device può essere di tipo *long* (48 bit, IEEE) o *short* (16 bit, assegnato dal PAN coordinator)

Data Frame

			Octets:	2	1	4 to 20	n	2
MAC sublayer				Frame Control	Data Sequence Number	Address Information	Data Payload	FCS
					MH	łR	MSDU	MFR
Octets: 4 1 1			5 + (4 to 20) + n					
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length	MPDU				
	SI	PHR	PSDU					
	11 + (4 to 20) + n							
	PPDU							

☐ Fino a 104 bytes payload

Trasmesso immediatamente dopo il pacchetto dati

Command Frame

- Consente la configuratione e il controllo remoti di dispositivi client
- Consente l'implementazione di un controllo di rete centralizzato anche in reti di grandi dimensioni

Beacon Frame format

 Il pacchetto di beacon fornisce il sincronismo di trama e specifica l'assegnamento dei GTS

Costruzione della rete

- Un device di tipo FFD cerca un canale libero e sceglie un PANid (Channel Scanning). Inizia quindi la trasmissione del Beacon
- Un device che vuole associarsi ad una rete preesistente inizia la scansione dei canali, alla ricerca delle trame di Beacon
- Terminata la scansione, sceglie la rete a cui associarsi, settando quindi i parametri corretti in base a quanto specificato dal corrispondente beacon e inviando un Associate Request Command al PAN Coordinator
- □ Il PAN Coordinator risponde quindi con un Association Response Command

Costruzione della rete: Scanning

- Active Scanning (only for FFDs):
 - a beacon request message is sent out to trigger beacon transmission

- Upon termination of the scanning procedure a PAN ID is chosen
- Passive Scanning (for FFDs and RMDs): similar to Active Scanning but without explicit Beacon Request messages

Costruzione della rete: Association

Livello Rete: formato di trama

L'indirizzo di rete deve essere uguale allo short MAC address

2 Byte	2 Byte	2 Byte	1 Byte		1 Byte	Variabile
FRAME CONTROL	Destination Address	Source Address	Broadcast Radius		Broadcast Sequence Number	FRAME PAYLOAD
1						
		NWK Header			NWK Payload	
	Idantifica tua lla					

Identifica, tra l'altro, tipo di trama, versione, indicazioni di route-discovery

Massimo numero di hop che un messaggio può attraversare(come TTL in IP)

Zigbee Routing: overview

- □ Definito nella Zigbee Specification, pubblicata dalla Zigbee Alliance (7/2005)
- Vengono definiti tre tipi di device:
 - ZB Coordinator (FFD)
 - ZB Router (FFD)
 - ZB End-Device (RFD o FFD)
- L'algoritmo di routing è "orientato" a Zigbee (si tiene cioè conto dell'esistenza di due tipi di device fisici)
- □ L'algoritmo è stato costruito integrando:
 - Ad-hoc On-demand Distance Vector (AODV)
 - Cluster Tree Algorithm

Ad-hoc On-demand Distance Vector

- □ Semplice protocollo di instradamento ad hoc di tipo on-demand o reattivo
- Vedremo più avanti quando ci occuperemo più in generale di reti ad hoc come funziona

Cluster Tree Algorithm: creazione dell'albero

- La procedura viene iniziata da un device che abbia la possibilità di diventare coordinator (FFD)
- L'FFD in questione chiede al proprio MAC di selezionare i canali disponibili: dopo averne scelto uno, attribuisce un PAN*identifier* alla rete e attribuisce a se stesso il *Network Address* numero 0 (Coordinator)
- ☐ A questo punto, altri nodi possono associarsi al *Network Coordinator*. Essi possono diventare *ZB Router* (FFD) oppure *ZB End-Device*
- □ I ZB Router possono a loro volta permettere ad altri nodi di associarsi alla rete
- Il meccanismo di assegnamento degli indirizzi ai nodi viene gestito in maniera completamente distribuita e gerarchica

Cluster Tree Algorithm: creazione dell'albero

 L'indirizzamento gerarchico consente un facile instradamento dei pacchetti nell'albero

Address Assignment Rule

□ The size A(d) of the range of addresses assigned to a router node at depth $d < L_m$ is defined by:

$$A(d) = \begin{cases} 1 + D_{\rm m} + R_{\rm m} & \text{if } d = L_{\rm m} - 1\\ 1 + D_{\rm m} + R_{\rm m} A(d+1) & \text{if } 0 \le d < L_{\rm m} - 1 \end{cases}$$

- \square Nodes at depth L_m and end-devices are assigned a single address.
- ☐ Simple Assignment Rule:
 - \square A mote at level d is assigned addresses in range [x,x + A(d)-1]
 - ☐ It will assign
 - $[x+(i-1)A(d+1)+1,x+iA(d+1)] \text{ to its i-th router child } (1 \le R_m)$
 - $X+R_mA(d+1)+j$ to its jth end-device child $(1 \le j \le Dm)$.

An Example

- □ Address allocations for $R_m = 2$, $D_m = 2$ and $L_m = 3$.
 - A(2)=2+2+1=5
 - A(1)=1+2+2A(2)=1
 - A(0)=1+2+2A(1)=2 9
 - PAN Coordinator can assign addresses in the range [0,28]

Tree-Based Routing: Principles

- □ Routing Along the Tree:
 - If destination address is one of children end devices:
 - route directly
 - Else if destination address belongs to one of children routers' adresses set:
 - send to corresponding children router
 - Else
 - □ Send to parent node

Routing Along the Tree: Shortcomings

- Routing may be not optimized
 - Route always along the treee
 - Routing is "quality-agnostic"
 - E.g.: A wants to send to B

ZigBee Application Profiles

- Needs:
 - A common language for exchanging data
 - A well defined set of processing actions
 - Device interoperability across different manufacturers
 - Simplicity and reliability for the end users
- Profile Definition (9 Profile Libraries Currently Specified)
 - A set of devices required in the application area
 - A set of clusters to implement the functionality
 - □ A set of attributes to represent device state
 - □ A set of commands to enable the communication
 - Specification of which clusters are required by which devices
 - Specific functional description for each device

Profile Components

- ☐ E.g.: Personal Health Care Profile
- Data Collection Unit
 - The Data Collection Unit (DCU) gathers the data from the different on-body medical and non-medical devices and delivers it to a gateway.
- □ Electrocardiograph
 - This is a device that records and measures the electrical activity of the heart over time.
- Pulse Monitor
 - A pulse monitor measures a proxy value for the heart rate.
- Sphygmomanometer
 - A sphygmomanometer (blood pressure meter) is a device that measures the blood pressure.

Profiles Snapshot

High Rate PAN (IEEE 802.15.3)

Cenni a IEEE 802.15.3

IEEE 802.15.3 (High Rate WPAN)

- ☐ IEEE 802.15.3-2003 è lo standard MAC e fisico per le WPAN ad alto rate (11 to 55 Mb/s).
- □ 3a (WPAN High Rate Alternative PHY)
 - IEEE 802.15.3a è stato un tentativo di migliorare il livello fisico di IEEE 802.15.3 utilizzando le comunicazioni Ultra-wide band per applicazioni multimediali.
 - Il risultato più importante di IEEE 802.15.3a è stato di riunire 23 proposte originali in 2 proposte:
 - Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB, WiMedia Alliance
 - □ Direct Sequence UWB (DS-UWB), **UWB Forum**.
 - Nel Gennaio 2006 i membri di IEEE 802.15.3a hanno deciso di sospendere i lavori a causa dello stallo nella decisione finale fra le due proposte. I due consorzi inizieranno comunque a sviluppare prodotti commerciali, e, nel caso siano di successo, di tornare sui passi e sviluppare uno standard.

Cenni a IEEE 802.15.3

- □ 3b (MAC Amendment)
 - IEEE 802.15.3b sta lavorando su alcuni miglioramenti a 802.15.3 per migliorare l'implementazione l'interoperabilità a livello MAC.
- □ 3c (WPAN Millimeter Wave Alternative PHY)
 - IEEE 802.15.3c è stato formato nel marzo 2005 con l'intento di sviluppare un livello fisico alternativo con onde millimetriche.
 - Il sistema mmWave WPAN opererà in una banda non licenziata nell'intervallo 57-64 GHz, permettendo la coesistenza con gli altri sistemi 802.15.
 - L'obiettivo è di raggiungere data rate molto alti, oltre i 2 Gbit/s per applicazioni multimediali a larga banda come video on demand, HDTV, home theater, real time streaming e connessioni wireless.