Chapitre 21: Intégration

Dans tout le chapitre : I désigne un intervalle de $\mathbb R$

1 Fonctions en escalier, fonctions continues par morceau

1.1 Subdivisions d'un segment

Définition 1.1.

- * Une <u>subdivision</u> du segment [a,b] est une famille $\sigma=(x_0,...,x_n)$, où $a=x_0< x_1<...< x_n=b$
- * les x_i sont les points de la subdivision
- * les intervalles $[x_i, x_{i+1}]$ (resp. $]x_i, x_{i+1}[)$ sont les composantes fermées (resp. ouverte) de σ
- * le pas de la subdivision σ est max $\{x_{i+1} x_i \mid i \in [0, n-1]\}$

Définition 1.2. Soit σ , σ' deux subdivisions d'un segment [a, b].

On dit que σ' <u>raffine</u> σ (ou : est plus fine que σ) si toute composante (ouverte) de σ' est incluse dans une composante (ouverte) de σ .

Proposition 1.3. Deux subdivisions σ_1 , σ_2 de [a,b] possèdent toujours un raffinement commun.

1.2 Fonctions en escalier

Définition 1.4.

- * Une fonction $\varphi:[a,b]\to\mathbb{R}$ sera dite <u>en escalier</u> s'il existe une subdivision σ de [a,b] telle que φ soit constante sur chaque composante de σ
- * On dit alors que σ est adaptée à φ

Proposition 1.5. L'ensemble $\mathcal{E}([a,b])$ des fonctions en escalier sur [a,b] est une sous-algèbre de $\mathbb{R}^{[a,b]}$ et, $\forall f \in \mathcal{E}([a,b]), |f| \in \mathcal{E}([a,b])$

1.3 Fonctions continues par morceaux

Définition 1.6. Une fonction $f : [a, b] \to \mathbb{R}$ est <u>continue par morceaux</u> s'il existe une subdivision $\sigma = (x_0, ..., x_n)$ de [a, b] telle que :

- * la restriction $f_{||x_i,x_{i+1}|}$ de f à chaque composante ouverte est continue
- * f admet des limites à gauche (resp. à droite) en tout point de la subdivision, sauf $a = x_0$ (resp. $b = x_0$)

Lemme 1.7. L'ensemble $C_{pm}^{\circ}([a,b])$ des fonctions continues par morceaux est la somme $C^{\circ}([a,b]) + \mathcal{E}([a,b])$.

Corollaire 1.8. Toute fonction continue par morceaux est bornée.

2 Convergence uniforme

2.1 Convergence simple

Définition 2.1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $I\to\mathbb{R}$.

On dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers $f:I\to\mathbb{R}$ si $\forall x\in I, f_n(x)\xrightarrow[n\to+\infty]{} f(x)$

On notera $f_n \xrightarrow[n \to +\infty]{CS} f$

Définition 2.2. Si $f: I \to \mathbb{R}$ est bornée, on définit sa norme uniforme : $||f||_{\infty} = \sup \{|f(t)| \mid t \in I\}$

Proposition 2.3. La norme uniforme $\|.\|_{\infty}$ est une <u>norme</u> sur l'espace vectoriel $L^{\infty}(I)$ des fonctions $I \to \mathbb{R}$ bornées :

- * Positivité : $\forall f \in L^{\infty}(I)$, $||f||_{\infty} \geq 0$
- * Séparation : $\forall f \in L^{\infty}(I), ||f||_{\infty} = 0 \implies f = 0$
- * Homogénéité : $\forall f \in L^\infty(I)$, $\forall \lambda \in \mathbb{R}$, $\|\lambda f\|_\infty = |\lambda| \cdot \|f\|_\infty$
- * Inégalité triangulaire : $\forall f, g \in L^{\infty}(I), \|f + g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}$

Définition 2.4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $I\to\mathbb{R}$ bornées et $f:I\to\mathbb{R}$ bornée.

On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si $||f_n-f||_{\infty} \xrightarrow[n\to+\infty]{} 0$

On note alors $f_n \xrightarrow[n \to +\infty]{CU} f$

Proposition 2.5. Soit $(\varphi_n)_{n\in\mathbb{N}}$ et $(\psi_n)_{n\in\mathbb{N}}$ deux suites de fonctions bornées sur I et $f,g:I\to\mathbb{R}$ bornées telles que

$$\begin{cases} \varphi_n \xrightarrow[n \to +\infty]{CU} f \\ \psi_n \xrightarrow[n \to +\infty]{CU} g \end{cases}$$

Alors:

*
$$\forall \lambda \in \mathbb{R}, \varphi_n + \lambda \psi_n \xrightarrow[n \to +\infty]{CU} f + \lambda g$$

*
$$|\varphi_n| \xrightarrow[n \to +\infty]{CU} f$$

Théorème 2.6. Soit $(\varphi_n)_{n\in\mathbb{N}}$ une suite de fonctions bornées et $f:I\to\mathbb{R}$ bornée telle que $\varphi_n\xrightarrow[n\to+\infty]{CU}f$. Alors, si pour tout $n\in\mathbb{N}$, φ_n est continue, f l'est aussi.

2.2 Approximation uniforme

Théorème 2.7. Soit $f \in C^{\circ}_{pm}([a,b])$.

Alors il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escalier telle que $\varphi_n \xrightarrow[n \to +\infty]{CU} f$

3 Définition de l'intégrale

3.1 Intégrale des fonctions en escalier

Définition 3.1. Soit $\varphi \in \mathcal{E}([a,b])$ et $\sigma = (a = x_0,...,x_n = b)$ une subdivision adaptée à φ .

On peut donc écrire

$$\varphi = \sum_{i=0}^{n} \lambda_{i} \mathbb{1}_{x_{i}} + \sum_{j=0}^{n-1} \mu_{j} \mathbb{1}_{]x_{j}, x_{j+1}[}$$

On définit alors l'intégrale de φ :

$$\int_{a}^{b} \varphi = \sum_{j=0}^{n-1} \mu_{j} (x_{j+1} - x_{j})$$

Proposition 3.2.

- * Cette intégrale est bien définie.
- * L'intégrale est une forme linéaire $\int\limits_a^b:\mathcal{E}([a,b]) o \mathbb{R}$
- * (Inégalité triangulaire & contrôle uniforme) : $\forall f \in \mathcal{E}([a,b]), |\int\limits_a^b \varphi| \leq \int\limits_a^b |\varphi| \leq (b-a)\|\varphi\|_{\infty}$
- * Relation de Chasles : si a < b < c, on a $\forall \varphi \in \mathcal{E}([a,b])$, $\int_{a}^{c} \varphi = \int_{a}^{b} \varphi + \int_{b}^{c} \varphi$

3.2 Lemme fondamental et définition

Théorème 3.3. Soit $f \in C^{\circ}_{pm}([a,b])$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite d'éléments de $\mathcal{E}([a,b])$ convergent uniformément vers f.

Alors:

* La suite
$$(\int_a^b \varphi_n)_{n\in\mathbb{N}}$$
 converge.

* Si
$$(\psi)_{n\in\mathbb{N}}\in\mathcal{E}([a,b])^{\mathbb{N}}$$
 vérifie également $\psi_n\xrightarrow[n\to+\infty]{CU}f$, alors $\lim_{n\to+\infty}\int\limits_a^b\varphi_n=\lim_{n\to+\infty}\int\limits_a^b\varphi_n$

Définition 3.4. Soit $f \in C^{\circ}_{pm}([a,b])$

On définit <u>l'intégrale de f</u>: $\int_a^b f = \int_a^b f(t)dt$ comme la limite $\lim_{n \to +\infty} \int_a^b \varphi_n$ où $(\varphi_n)_{n \in \mathbb{N}}$ est une suite de fonctions en escalier convergeant uniformément vers f.

3.3 Propriétés de base

Théorème 3.5.

- * L'intégrale est une forme linéaire $\int\limits_a^b:C_{pm}^\circ([a,b]) o\mathbb{R}$
- * Inégalité triangulaire et contrôle uniforme : $\forall f \in C_{pm}^{\circ}([a,b]), |\int\limits_a^b f| \leq \int\limits_a^b |f| \leq (b-a)\|f\|_{\infty}$
- * si $f,g \in C^{\circ}_{pm}([a,c])$ et que f et g coïncident sur le complémentaire d'un ensemble fini, alors $\int_a^b f = \int_a^b g$
- * Positivité : Soit $f \in C^{\circ}_{pm}([a,b])$ positive. Alors $\int_a^b f \ge 0$
- * <u>Croissance</u> : Soit $f, g \in C^{\circ}_{pm}([a, b])$ telles que $f \leq g$. Alors $\int_{a}^{b} f \leq \int_{a}^{b} g$