Hypothesis Testing — Swiftie

September 20, 2025

Big Picture

Think of hypothesis testing like this: you make a **claim** about Taylor Swift-world (streams, ticket sales, merch choices), then you check a **sample** of data to see if the claim holds up or if what you saw could just be luck. The same logic powers day-to-day decisions in **machine learning** (credit risk modeling, product A/B tests, model monitoring, feature selection).

1 Core Concepts (with Swift & ML intuition)

Null hypothesis (H_0)

- Meaning: The "nothing new here" claim; a concrete baseline.
- Swift example: After *The Eras Tour* film, the average daily streams stayed the same as before. For example, $H_0: \mu = 100$ streams/user/day.
- ML / credit risk example: A new scorecard does not change the default rate. H_0 : $p_{\text{default,new}} = p_{\text{default,old}}$.

Alternative hypothesis $(H_1 \text{ or } H_a)$

- Meaning: The competing claim you want evidence for.
- Swift example: Average daily streams increased ($\mu > 100$) or changed ($\mu \neq 100$).
- ML / credit risk example: The new model reduces default rate $(p_{\text{new}} < p_{\text{old}})$.

Significance level (α)

- **Meaning:** False-alarm tolerance; risk of claiming a change when there isn't one (Type I error).
- Common choice: $\alpha = 0.05 (5\%)$.
- Swift example: Willing to be wrong 5% of the time when declaring streams went up.
- ML / credit risk example: Require $p \le 0.01$ before shipping a new underwriting rule because errors are costly.

p-value

- Meaning (plain): If the null were true, how surprising is the data you observed? Smaller $p = \text{more surprising (i.e., stronger evidence against } H_0).$
- **Decision rule:** If $p \le \alpha \Rightarrow$ reject H_0 (evidence favors H_1). If $p > \alpha \Rightarrow$ do not reject H_0 .
- Swift example: p = 0.003 for "streams increased" \Rightarrow strong evidence of a boost.
- ML / credit risk example: p = 0.18 for "default rate dropped" ⇒ not enough evidence to change policy yet.

Misconception watch: p is not "the probability H_0 is true." It's about the data's surprise level given H_0 .

Type I & Type II errors; Power

- Type I (false positive): Say "something changed" when it didn't. Chance $\approx \alpha$.
- Type II (false negative): Miss a real change (fail to reject H_0 when H_1 is true).
- Power (1β) : Chance to detect a true effect. Bigger samples / bigger effects \Rightarrow higher power.
- Swift example: Too-small fan sample may miss a real lift in streams.
- ML / credit risk example: Under-powered test may miss a real drop in default rate after a new score threshold.

2 Z-Tests (means & proportions; large n or known σ)

2.1 One-sample z-test for a mean

Use when: Testing a mean with known population σ (or large n so the standard error is reliable).

Test statistic:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}.$$

Swift example (worked): Claim: "Average streams didn't change." $H_0: \mu = 100$. After the film you sampled n = 64 users: sample mean $\bar{x} = 105$. Assume historical $\sigma = 10$.

$$z = \frac{105 - 100}{10/\sqrt{64}} = \frac{5}{1.25} = 4.0.$$

Two-sided $p \approx 0.000063 \Rightarrow$ reject H_0 at $\alpha = 0.05$. Strong evidence streams increased. ML / credit risk uses:

- Did a new feature pipeline reduce the mean loss or mean processing time?
- Did a new model configuration change the average margin per approved customer?
- For small n or unknown $\sigma \Rightarrow$ use a **t-test** (same intuition; different reference distribution).¹

 $^{^1\}mathrm{In}$ practice, analysts often use a t-test for means because σ is rarely known.

2.2 One-sample z-test for a proportion

Use when: Testing a proportion with large enough n.

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}.$$

Swift example (worked): H_0 : "50% of fans click the pre-save link." You observe 560 of 1,000 did (56%).

$$z \approx \frac{0.56 - 0.50}{\sqrt{0.5 \cdot 0.5/1000}} \approx 3.795.$$

Two-sided $p \approx 0.00015 \Rightarrow \text{reject } H_0$. Pre-save rate is higher than 50%.

ML / credit risk uses:

- Did the new model cut the approval default rate proportion?
- Did a new fraud rule change the flag rate?
- In online A/B tests, compare conversion or acceptance rates between variants.

Two-sample variants: Compare two means (A vs. B) or two proportions (control vs. treatment) to decide whether to ship a model or policy change.

3 Chi-Square (χ^2) Tests (counts & categories)

3.1 Goodness-of-fit (does a categorical variable match an expected pattern?)

Statistic:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}, \quad \text{df = categories } -1.$$

Swift example: Expect equal preference (25% each) for four eras in a poll: *Folklore, Midnights*, 1989, Lover. Out of 1,000 votes you saw: 260, 240, 270, 230. Expected each = 250.

$$\chi^2 = \frac{(260 - 250)^2}{250} + \frac{(240 - 250)^2}{250} + \frac{(270 - 250)^2}{250} + \frac{(230 - 250)^2}{250} = 0.4 + 0.4 + 1.6 + 1.6 = 4.0.$$

With df = 3, $p \approx 0.26 \Rightarrow$ do not reject H_0 (looks close to even).

ML / credit risk uses:

- Does the class distribution match expectations after re-sampling? (e.g., churn positives per bucket)
- Do PD deciles (expected defaults) align with observed defaults? (Basic calibration check; see also Hosmer–Lemeshow below.)

3.2 Independence test (are two categorical variables associated?)

Statistic: Same χ^2 formula using a contingency table; df = (r-1)(c-1).

Swift example: Are age group (Under-25 vs 25+) and song type (Up-tempo vs Ballad) independent?

	Up-tempo	Ballad	Row total
Under-25	200	100	300
25+	150	150	300
Column total	350	250	600

Expected counts:
$$\begin{bmatrix} 175 & 125 \\ 175 & 125 \end{bmatrix}$$
. Then

$$\chi^2 \approx 17.14$$
, df = 1, $p < 0.0001$.

Conclusion: Preference is associated with age group.

ML / credit risk uses:

- Feature selection: χ^2 test between categorical feature and target (default vs not) to keep features with signal (often summarized via Cramér's V).
- Bias/fairness diagnostics: Check if approval depends on protected group more than expected.
- **Monitoring:** Are bucketed feature distributions shifting by month? (time × category association)

For small counts or expected cells < 5, consider **Fisher's exact test** instead of χ^2 .

4 The 5-Step Recipe (from question to decision)

- 1. State H_0 and H_1 . "Average streams didn't change" vs "they increased."
- 2. Choose α and a test. z/t for means or proportions; χ^2 for counts.
- 3. Compute the test statistic (z or χ^2) from the sample.
- 4. Get the p-value and compare to α . $p \le \alpha \Rightarrow$ reject H_0 ; $p > \alpha \Rightarrow$ don't reject.
- 5. Interpret in plain English and check practical significance and assumptions.

5 Assumptions & Practical Tips

- Sampling & independence: Random or representative samples; observations roughly independent.
- Large-sample rules: z-tests and χ^2 need sufficient counts. For means with small n and unknown σ , use t-tests.
- Effect size vs significance: A tiny p can hide a trivial effect. Always check the magnitude (e.g., +0.3% streams may be operationally moot).
- Multiple testing: If you try many songs/markets/hyper-parameters, adjust (e.g., Bonferroni or FDR) to control false discoveries.
- Power planning: Decide up front what effect size matters and compute required n.

6 Deeper ML / Credit-Risk Examples

Feature selection with χ^2 (classification)

Target Y = default (1/0). Candidate categorical feature X = employment sector (binned). Test independence of X vs Y. Keep features with small p; optionally rank strength with Cramér's V.

Comparing models (A/B) with two-sample proportion z-test

Goal: See if the default rate differs for accounts scored/approved by Model A vs Model B. $H_0: p_A = p_B, H_1: p_A \neq p_B$ (or one-sided if you only care about "B lower than A"). Use to decide whether to ship Model B. Also compare approval rates, fraud flag rates, conversion rates.

Calibration check (Hosmer–Lemeshow, χ^2 -based)

Bin predicted PDs into deciles, compare expected vs observed defaults in each decile with a χ^2 -type statistic. Use to detect mis-calibration (e.g., model predicts PD=10% in a bin but observed is 15%). Swift analogy: bin fans by "propensity to stream" and compare predicted vs observed streamers in each bin.

Monitoring drift post-deployment

Use χ^2 tests on categorical/binned features across time (Month 1 vs Month 6). A related companion metric is **Population Stability Index (PSI)** for tracking shifts across bins.

Policy/Risk threshold tuning

Z-test for proportions: When you raise the approval threshold, test if bad-rate (defaults/approvals) dropped without tanking approval rate. **Two-sample mean/t tests:** Check business KPIs (mean margin, loss given default) before vs after.

Fairness checks

 χ^2 independence: Is approval independent of protected group after controlling for risk? Proportion z-tests: Compare error rates (e.g., false positives) across groups.

7 Worked Numbers (copy-paste ready)

Z for a mean (Swift streams)

$$n=64, \ \bar{x}=105, \ \mu_0=100, \ \sigma=10.$$
 $z=\frac{105-100}{10/\sqrt{64}}=4.0 \Rightarrow \text{two-sided } p\approx 0.000063 \Rightarrow \text{reject } H_0.$

Z for a proportion (Swift pre-save rate)

$$n = 1000, \ \hat{p} = 0.56, \ p_0 = 0.50.$$
 $z \approx 3.795 \Rightarrow \text{two-sided } p \approx 0.00015 \Rightarrow \text{reject } H_0.$

χ^2 independence (Age × Song type)

Observed
$$\begin{bmatrix} 200 & 100 \\ 150 & 150 \end{bmatrix}$$
; Expected $\begin{bmatrix} 175 & 125 \\ 175 & 125 \end{bmatrix}$. $\chi^2 \approx 17.14$, df = 1, $p < 0.0001 \Rightarrow$ associated, not independent.

8 Quick Formula Sheet

$$Z \text{ for a mean:} \quad z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$$

$$Z \text{ for a proportion:} \quad z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

$$Two\text{-sample proportion z-test:} \quad z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \quad \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

 χ^2 (GOF/Independence): $\chi^2 = \sum \frac{(O-E)^2}{E}$, df = categories – 1 (GOF) or (r-1)(c-1) (independence)

Power ideas: Bigger n reduces standard error \Rightarrow higher chance to detect real effects.

9 Picking the Right Test (cheat sheet)

- Mean (big n or known σ) \Rightarrow **Z-test** (practically: often **t-test**). Swift: Did average listens per fan change?
- Proportion ⇒ Z-test for proportions.

 Swift: Did pre-save rate exceed 50%? Credit risk: Did bad-rate drop with new model?
- One categorical vs target pattern $\Rightarrow \chi^2$ goodness-of-fit. Swift: Are era preferences evenly split?
- Two categorical variables $\Rightarrow \chi^2$ independence (or Fisher exact if small counts). Credit risk: Is default associated with employment band?

TL;DR

Use hypothesis tests to turn noisy data into decisions. Frame a clear H_0/H_1 , pick the right test (z/χ^2) , compute a p-value, and always read the result alongside **effect size**, **power**, and **assumptions**—whether you're checking if Swift streams jumped or if your new credit model truly cut default risk.