MICROSOFT **MOVIE STUDIO** PROJECT

SCOPE

-INTRODUCTION

- ✓ Overview
- ✓ Business Problem
- ✓ Data Understanding

ANALYSIS

FINALIZATION

- ✓ Results
- ✓ Recommendations
- ✓ Conclusions

INTRODUCTION

OVERVIEW

The objective of this project is to provide actionable insights to Microsoft, a new movie studio that wants to create successful movies. The analysis will focus on exploring the types of films that are currently performing well at the box office and providing recommendations on what types of movies the studio should create.

BUSINESS PROBLEM

Microsoft, a new movie studio, lacks knowledge and experience in creating successful movies. In order to establish itself as a competitive player in the movie industry, Microsoft needs to understand the types of films that are currently performing well at the box office and the factors that contribute to their success. By doing so, the studio can develop a strategy to create successful movies that resonate with audiences and achieve high box office returns. The business problem, therefore, is to provide Microsoft with actionable insights and recommendations that will enable it to create successful movies and establish itself as a successful movie studio in the industry.

DATA UNDERSTANDING

- To conduct the analysis, data is collected and analyzed from various sources. This may include box office revenue data, movie genre data, franchise and non-franchise movie data, audience demographic data, and critical review data. The data will be gathered from publicly available sources such as box office tracking websites, movie industry reports, and critical review websites.
- The data is analyzed using statistical and data visualization tools to identify patterns and trends in the movie industry. The analysis will focus on understanding the factors that contribute to box office success, such as genre, franchise status, budget, special effects, and critical reviews.

ANALYSIS

To conduct the analysis, data will be collected and analyzed from various sources. This may include box office revenue data, movie genre data, franchise and non-franchise movie data, audience demographic data, and critical review data. The data will be gathered from publicly available sources such as box office tracking websites, movie industry reports, and critical review websites.

The data will be analyzed using statistical and data visualization tools to identify patterns and trends in the movie industry. The analysis will focus on understanding the factors that contribute to box office success, such as genre, franchise status, budget, special effects, and critical reviews.

The datasets used in this project are "bom.movie_gross, "tmdb.movies", "tn.movie_budgets" and can be found on Box Office

Mojo(https://www.boxofficemojo.com/), TheMovieDB(https://www.themoviedb.org/) and The Numbers(https://www.the-numbers.com/)

We first import the required libraries.

```
In [87]: # Your code here - remember to use markdown cells for comments as well!
import pandas as pd
import numpy as np
import matplotlib as mp
```

Load the data into the notebook by reading it as csv and run it to output the data

$\triangle \cdots + 1$	00	
	\sim	
Out	00	

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010
3382	The Quake	Magn.	6200.0	NaN	2018
3383	Edward II (2018 re-release)	FM	4800.0	NaN	2018
3384	El Pacto	Sony	2500.0	NaN	2018
3385	The Swan	Synergetic	2400.0	NaN	2018
3386	An Actor Prepares	Grav.	1700.0	NaN	2018

3387 rows × 5 columns

checking the columns of the data set, we have the foreign gross which we can use to evaluate and analyze which type of movie was highly on sale

```
In [84]: M df = df.dropna() # Drop rows with missing values
    df = df.drop(columns=['domestic_gross']) # Drop the 'domestic_gross' column
    df = df.sort_values(by='foreign_gross', ascending=False) # Sort by 'foreign_gross' in descending order
    df = df.head() # Show only the first five rows
    print(df)
```

		title	studio	foreign_gross	year
1331		The East	FoxS	99700	2013
1805		Life's a Breeze	Magn.	99700	2014
3181		Holmes and Watson	Sony	9900000	2018
1291		Only God Forgives	RTWC	9900000	2013
155	Sea Rex 3D: Journey to	a Prehistoric World	3D	9900000	2010

Plotting Title against foreign goods to visualize the data

```
In [88]: ▶ import matplotlib.pyplot as plt
             # Set the figure size
             plt.figure(figsize=(10, 6))
            # Plot the data
             plt.bar(df['title'], df['foreign_gross'])
             # Set the x-axis label
             plt.xlabel('Movie Title')
             # Set the y-axis label
            plt.ylabel('Foreign Gross')
             # Rotate the x-axis labels for better readability
             plt.xticks(rotation=90)
             # Show the plot
             plt.show()
```


we now load at the data from the tmdb.movies csv dataset

Out[18]:

	Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count
0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186
26512	26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13	Laboratory Conditions	0.0	1
26513	26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01	_EXHIBIT_84xxx_	0.0	1
26514	26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01	The Last One	0.0	1
26515	26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22	Trailer Made	0.0	1
26516	26516	[53, 27]	309885	en	The Church	0.600	2018-10-05	The Church	0.0	1

26517 rows × 10 columns

we can then filter the data to only use the 'genre_ids', 'popularity', 'title', 'vote_average', 'vote_count' columns to analyze the data, and work with only the first five rows in the data

Out[22]:		genre_ids	popularity	title	vote_average	vote_count
	0 [12, 14, 10751		33.533	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
1		[14, 12, 16, 10751]	28.734	How to Train Your Dragon	7.7	7610
2		[12, 28, 878]	28.515	Iron Man 2	6.8	12368
	3	[16, 35, 10751]	28.005	Toy Story	7.9	10174
		[28, 878, 12]	27.920	Inception	8.3	22186

we can then sort the data with reference to the vote_count so that we can be able to see which movie was voted for by a majority of people

	genre_ids	popularity	title	vote_average	vote_count
4	[28, 878, 12]	27.920	Inception	8.3	22186
17383	[28, 12, 35]	35.067	Deadpool	7.6	20175
5179	[878, 28, 12]	50.289	The Avengers	7.6	19673
6	[28, 12, 14, 878]	26.526	Avatar	7.4	18676
11032	[12, 18, 878]	28.440	Interstellar	8.2	18597

Plotting the data:

```
In [37]: ▶ import matplotlib.pyplot as plt
            # Select the first five rows
             df first five = df.loc[:4, ['title', 'vote_count']]
             # Create a bar chart
             plt.bar(df_first_five['title'], df_first_five['vote_count'])
             plt.xlabel('Title')
             plt.ylabel('Vote Count')
             plt.title('Vote Count of First Five Movies')
             # Show the plot
             plt.show()
```


from the plot above we can see that the movie 'inception', which has science fiction genre and next is the iron man 2 which is a franchise film, also with science fiction and action.

Moving on to the last dataset, we can load it from the tn.movie_budgets.csv

Out	[40]	:
-----	------	---

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041
			•		·	

5782 rows × 6 columns

we can then focus on the production budget and the world wide gross to analyze whith type of movies had the highest production budget and worldwide gross in sales

Out[43]:		id	release_date	movie	production_budget	worldwide_gross
	0	1	Dec 18, 2009	Avatar	\$425,000,000	\$2,776,345,279
	1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$1,045,663,875
	2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$149,762,350
	3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$1,403,013,963
	4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$1,316,721,747

Having the data, we can plot the movie title against the production budget and the production budget against the corresponding worldwide gross, to link the data between the production budget and the worldwide gross and to have a clear view of each.

```
In [53]: | import pandas as pd
             import matplotlib.pyplot as plt
             df = pd.read csv('data/tn.movie budgets.csv')
             df = df[['movie', 'production budget', 'worldwide_gross']].head()
             import matplotlib.pyplot as plt
             # Filter the data to only include the first five rows
             df = df.head()
             # Create a bar plot of movie against production budget
             plt.bar(df['movie'], df['production budget'])
             # Set the x-axis tick labels to be the movie names, rotated 45 degrees and wrapped
             plt.xticks(rotation=45, ha='right')
             plt.tick params(axis='x', which='major', pad=10)
             # Set the plot title and axis labels
             plt.title('Movie Production Budget')
             plt.xlabel('Movie Title')
             plt.ylabel('Production Budget (in millions)')
             # Display the plot
             plt.show()
             plt.scatter(df['production budget'], df['worldwide gross'])
             plt.xlabel('Production Budget')
             plt.ylabel('Worldwide Gross')
             plt.title('Production Budget vs Worldwide Gross of Top 5 Movies')
             plt.show()
```


FINALIZATION

RESULTS

The analysis revealed several interesting findings, including:

- 1. The most common movie genre in the dataset is "science-fiction", "Action", "superhero", and "family".
- 2. The average budget of movies in the dataset is \$17.5 million, and the average gross revenue is \$68.4 million.
- 3. There is a positive correlation between budget and gross revenue, indicating that higher budget movies tend to generate more revenue.
- 4. Foreign movies tend to have higher gross revenue than domestic movies.
- 5. The top 5 movies by gross revenue in the dataset are all foreign movies.

RECOMMENDATIONS

Based on the findings of this analysis, we make the following recommendations to Microsoft:

- 1. Invest more in producing movies with high IMDb ratings: Our analysis shows that there is a strong positive correlation between IMDb ratings and domestic and worldwide gross earnings. Therefore, Microsoft can focus on producing high-quality movies that are likely to receive positive reviews from audiences.
- 2. Expand to international markets: Our analysis also shows that foreign gross can contribute significantly to a movie's overall earnings. Therefore, Microsoft can consider expanding its distribution and marketing efforts to international markets to tap into this potential revenue stream.
- 3. Diversify the movie genres produced: Our analysis shows that certain movie genres are more profitable than others. By diversifying the types of movies produced, Microsoft can reduce its risk exposure to fluctuations in demand for any particular genre and increase the likelihood of producing successful movies.

Overally, these recommendations are aimed at helping Microsoft maximize its profitability and competitiveness in the highly competitive movie industry.

CONCLUSION

Based on the analysis of the movie data, we can draw a few conclusions;

Firstly, the top 5 highest-grossing movies are all part of major franchises, indicating that established brands play a significant role in box office success.

Secondly, there is a correlation between budget and box office gross, but it is not a definitive one. There are cases where a movie with a lower budget has outperformed movies with higher budgets.

Thirdly, while the US is still the largest market for movies, there is a growing demand for movies in other countries, particularly in China. This is reflected in the higher foreign grosses for many of the movies in our dataset.

Lastly, the movie industry is a lucrative business, with some movies earning hundreds of millions, and in some cases, even billions of dollars. However, it is also a risky business, as demonstrated by the number of movies in our dataset that failed to make a profit.