Stochastic Processes 2023: Assignment Deadline: 12 noon on 10 March 2023

Attempt all questions.

The assignment carries 90 marks and contributes 20% of your final assessment.

- 1. Let X_i , i = 1, 2, ..., n denote random variables which are independent and Bernoulli distributed with $P(X_i = 1) = p$ and $P(X_i = 0) = q = 1 p$. Suppose that p is a random variable with a uniform distribution on [0,1].
 - (a) What is the distribution of S_n ?

[10 Marks].

- 2. Let N be a Poisson random variable with mean λ , with characteristic function $\exp(\lambda(e^{it}-1))$. Let $X_1, X_2, ...$ be i.i.d. with characteristic function ϕ and independent of N.
 - (a) Compute the characteristic function of the random sum

$$S = \sum_{i=1}^{N} X_i.$$

[10 Marks].

- 3. Recall a problem we did in the second problem solving session. Let $(\Omega, \mathcal{F}, \mathbf{P}; \{\mathcal{F}_n\}, \{X_n\})$ be our standard infinite product space with $\mathbf{P} = \mu^{\infty}$ where μ is some probability law on \mathbf{R} . On the same standard space, let τ be the stopping time $\inf\{k \geq 2 : X_k > X_{k-1}\}$. Which of the following events are in \mathcal{F}_{τ} ? Please justify your answer.
 - (a) $\{S_{\tau-1} > 10\}$ (as usual, S_n are the partial sums)
 - (b) $\inf\{k \geq 2 : X_k \leq X_{k-1}\}$

[15 Marks].

- 4. Let $X(t), t \geq 0$ be a standard Poisson process and let τ_n denote the first t for which $X(t) \geq n$.
 - (a) What is the mean and variance of τ_n ?

[20 Marks].

5. You start with a fortune of one million dollars. At every time $n \ge 1$ you decide on a risk factor $0 \le q_n \le 1$; then you flip a fair coin and your fortune is multiplied by 3^{q_n} if you win and by $(1/9)^{q_n}$ if you lose. Your goal is to get to nine million dollars.

We proceed to construct a rigorous probability model for this scenario, as follows. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the infinite product $(\Omega_0, \mathcal{F}_0, \mathbf{P}_0)^{\infty}$ where Ω_0 is the set $\{0, 1\}$, $\mathcal{F}_0 = 2^{\Omega_0}$ and each \mathbf{P}_0 is the uniform measure on Ω_0 . Let $\mathcal{F}_n = \sigma(\omega_1, \ldots, \omega_n)$ be the standard filtration. Let $\{q_n\}$ be any predictable process. Let us define Z_n , your fortune at time n, in units of millions. Let us also define a stopping time τ that occurs if and when your goal is achieved.

- (a) Give an explicit expression for both Z_n and τ .
- (b) Under what conditions on $\{q_n\}$ is Z_n a submartingale?
- (c) Under what conditions on $\{q_n\}$ is Z_n a supermartingale?

[20 Marks].

- 6. We return to the homework in Week 2. Let $X(t), t \ge 0$ to be a standard Poisson process with rate 1. Let X(0) = 0, and let Y(t) = x + X(t) t, $t \ge 0$, where 0 < x < a. Let τ_a denote the first time t > 0 for which $Y(t) \ge a$, and let τ_0 denote the first time t that Y(t) = 0.
 - (a) If a=2, find the probability that τ_0 is less than τ_a , starting at $x\in(0,a)$.

HINT: Let $Q(x) = P_x(\tau_0 < \tau_2)$. Note that, for $0 \le x \le 1$, one may write:

$$Q(x) = e^{-x} + \int_0^x e^{-y} Q(x - y + 1) dy.$$

[15 Marks].