```
In [2]: 1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
```

4 **import** math

Team

• Group Name: Lone Wolf

Name: Gao Mo

Email: david113mo@gmail.com)

· Country: United States

· College: Carnegie Mellon University

Specialization: Data Science

Problem description

• A Company that sells many kinds of products requires us to replace the in-house software designed to predict retailing with an Al/ML driven method. The models that we implement should take seasonality and other additional factors into account.

Data Cleaning & Tranformation

Out[11]:

	Product	date	Sales	Price Discount (%)	In- Store Promo	Catalogue Promo	Store End Promo	Google_Mobility	Covid_Flag	•
0	SKU1	2/5/2017	27750	0	0	0	0	0.0	0	_
1	SKU1	2/12/2017	29023	0	1	0	1	0.0	0	
2	SKU1	2/19/2017	45630	17	0	0	0	0.0	0	
3	SKU1	2/26/2017	26789	0	1	0	1	0.0	0	
4	SKU1	3/5/2017	41999	17	0	0	0	0.0	0	

Out[12]:

	Product	date	Sales	Price Discount (%)	In- Store Promo	Catalogue Promo	Store End Promo	Google_Mobility	Covid_Flag	,
0	SKU1	2/5/2017	27750	0	0	0	0	0	0	
1	SKU1	2/12/2017	29023	0	1	0	1	0	0	
2	SKU1	2/19/2017	45630	17	0	0	0	0	0	
3	SKU1	2/26/2017	26789	0	1	0	1	0	0	
4	SKU1	3/5/2017	41999	17	0	0	0	0	0	

- In [13]:
- I **from** dateutil **import** parser
- 2 data.date = data.date.apply(lambda x: parser.parse(x))
- 3 data.head()

Out[13]:

	Product	date	Sales	Price Discount (%)	In- Store Promo	Catalogue Promo	Store End Promo	Google_Mobility	Covid_Flag	V_D/
0	SKU1	2017- 02-05	27750	0	0	0	0	0	0	
1	SKU1	2017- 02-12	29023	0	1	0	1	0	0	
2	SKU1	2017- 02-19	45630	17	0	0	0	0	0	
3	SKU1	2017- 02-26	26789	0	1	0	1	0	0	
4	SKU1	2017- 03-05	41999	17	0	0	0	0	0	

In [14]:

data.Sales = data.Sales.apply(lambda x: math.log(x) if x!=0 else x)
data.head()

Out[14]:

	Product	date	Sales	Price Discount (%)	In- Store Promo	Catalogue Promo	Store End Promo	Google_Mobility	Covid_Flag ¹
0	SKU1	2017- 02-05	10.230991	0	0	0	0	0	0
1	SKU1	2017- 02-12	10.275844	0	1	0	1	0	0
2	SKU1	2017- 02-19	10.728321	17	0	0	0	0	0
3	SKU1	2017- 02-26	10.195747	0	1	0	1	0	0
4	SKU1	2017- 03-05	10.645401	17	0	0	0	0	0

```
In [15]: 1 mean_sales = data.Sales.describe().mean()
2 std_sales = data.Sales.describe().std()
3 outliers = mean_sales + 1.5*std_sales
6 outliers
```

Out[15]: 800.8543863355369

Out[16]:

	Product	date	Sales	Price Discount (%)	In- Store Promo	Catalogue Promo	Store End Promo	Google_Mobility	Covid_Fla
0	SKU1	2017- 02-05	10.230991	0	0	0	0	0	
1	SKU1	2017- 02-12	10.275844	0	1	0	1	0	1
2	SKU1	2017- 02-19	10.728321	17	0	0	0	0	1
3	SKU1	2017- 02-26	10.195747	0	1	0	1	0	1
4	SKU1	2017- 03-05	10.645401	17	0	0	0	0	1
1213	SKU6	2020- 10-18	11.478531	54	0	1	0	-7	
1214	SKU6	2020- 10-25	11.659603	52	0	1	0	-8	
1215	SKU6	2020- 11-01	11.932859	54	1	0	1	-7	
1216	SKU6	2020- 11-08	10.182822	44	1	0	1	-5	
1217	SKU6	2020- 11-15	10.181649	44	0	0	0	-7	

1218 rows × 12 columns

EDA

```
mean_discount = data.groupby('Product').agg({'Price Discount (%)':
In [18]:
           1
              mean_discount
           2
Out[18]:
             Product Price Discount (%)
                           10.892157
               SKU1
           0
               SKU2
                           13.838235
           1
               SKU3
                           38.156863
           2
           3
               SKU4
                           35.215686
               SKU5
                           20.705882
           4
           5
               SKU6
                           32.020202
In [19]:
           1
              mean_discount.Product.to_list()
              mean_discount['Price Discount (%)'].to_list()
Out[19]:
          [10.892156862745098,
           13.838235294117647,
           38.15686274509804,
           35.21568627450981,
           20.705882352941178,
           32.02020202020202]
```

Out[20]: Text(0, 0.5, 'Avg Percent Discount')


```
In [21]: 1 sum_sales = data.groupby('Product').agg({'Sales': 'sum'}).reset_index
2 sum_sales
```

Out[21]:

	Product	Sales
0	SKU1	2116.525251
1	SKU2	1688.185204
2	SKU3	2111.827918
3	SKU4	1870.350004
4	SKU5	1868.228443
5	SKU6	2015.735406

Out[22]: Text(0, 0.5, 'Sales (Normalized)')

Out[23]:

	Product	date	Sales	Price Discount (%)	In- Store Promo	Catalogue Promo	Store End Promo	Google_Mobility	Covid_Fla
1	SKU1	2017- 02-12	10.275844	0	1	0	1	0	
9	SKU1	2017- 04-09	10.908796	17	1	0	0	0	ı
43	SKU1	2017- 12-03	11.102443	17	1	0	0	0	ı
53	SKU1	2018- 02-11	10.422400	0	1	0	1	0	ı
61	SKU1	2018- 04-08	10.466982	0	0	0	0	0	ı
1125	SKU6	2019- 02-10	10.526615	38	0	0	0	0	ı
1133	SKU6	2019- 04-07	10.432114	38	0	0	0	0	ı
1167	SKU6	2019- 12-01	10.614622	38	0	0	0	0	ı
1178	SKU6	2020- 02-16	9.301551	53	1	0	1	3	
1186	SKU6	2020- 04-12	8.818186	53	1	0	0	-27	

71 rows × 12 columns

In [24]: 1 holiday = holiday_data.groupby('Product').agg({'Sales': 'sum'}).reser
2 holiday

Out[24]:

	Product	Sales
0	SKU1	118.413039
1	SKU2	94.512051
2	SKU3	116.205709
3	SKU4	102.394454
4	SKU5	99.427015
5	SKU6	110.155410

```
In [25]:
             X = holiday.Product.to_list()
             total = sum_sales.Sales.to_list()
             holiday_count = holiday.Sales.to_list()
           3
           4
           5
             X_{axis} = np.arange(len(X))
           6
           7
             plt.bar(X, total, label = 'Total Sales')
             plt.bar(X, holiday_count, label = 'Holiday Sales')
           8
             plt.xticks(X_axis, X)
          10
             plt.xlabel("Products")
          11
             plt.ylabel("Sales (Normalized)")
          12
             plt.title("Product vs. Sales (Holiday/Total)")
          13
             plt.legend()
          14
          15
             plt.show()
```

Product vs. Sales (Holiday/Total)


```
In [45]:
           1
             data = data[data.Sales > 7]
           2
             for i in data.Product.unique():
                  prod = data[data['Product'] == i]
           3
                 plt.plot(prod.date, prod.Sales.to_list(), label = i)
           4
           5
             plt.legend()
             plt.title('Products vs. Sales over time')
           7
           8
             plt.xlabel("Date")
             plt.ylabel("Sales (Normalized)")
```

Out[45]: Text(0, 0.5, 'Sales (Normalized)')


```
In []: 1
```