Análise de Sentimentos Aplicada à Política

Lucas Romão Silva

Prof Dr. Roberto Hirata Jr.

13 de setembro de 2017

Sumário

1	The	First Chapter	1
2	Mat	teriais e Métodos	3
	2.1	Considerações	3
	2.2	Contextualização	3
	2.3	Logistic Regression	4
		2.3.1 Método do Gradiente	6

Capítulo 1
The First Chapter

Capítulo 2

Materiais e Métodos

2.1 Considerações

Ao longo deste capítulo, se usará n para se referir à quantidade de elementos fornecidas ao nosso modelo, cada entrada é i é um vetor $x_i \in \mathbb{R}^m$. Para cada i associaremos duas variáveis t_i e y_i que se referem ao valor esperado e ao valor obtido através do treinamento, respectivamente.

2.2 Contextualização

Os problemas tratados por *Machine Learning* classificam-se de forma geral em três tipos:

- Aprendizado supervisionado: nesse caso tem-se os elementos de entrada e para cada um desses elementos, tem-se associado um rótulo t_i . Nesse caso o modelo deve ser treinado com base nos elementos dados para que se possa prever o rótulo de uma nova entrada;
- Aprendizado não-supervisionado: nesse caso tem-se apenas os elementos de entrada. O objetivo deste tipo de problema é tentar modelar uma distribuição ou estrutura comum entre os dados para que se possa entendê-los melhor;
- Aprendizado semi-supervisionado: nesse último caso alguns elementos possuem um rótulo associado. Problemas desse tipo aplicam técnicas gtanto de aprendizado supervisionado como de não-supervisionado.

Neste trabalho será tratado um problema de aprendizado supervisionado que é o da classificação.

Na classificação temos k classes e cada elemento i da entrada é associado a uma classe $t_i = \{1..k\}$. O objetivo do problema da classificação é dado entrada $X = (x_1, x_2, \ldots, x_n)$ e $t = (t_1, \ldots, t_n)$ treinar um modelo capaz de prever classes para um x qualquer.

Há diversos algoritmos na literatura que se propõem a resolver o problema da classificação. Bishop (2006)[1] enuncia diversos dos algoritmos comumente utilizados para a classificação, cada algoritmo possui seus prós e contras e utiliza diferentes abordagens.

Para este trabalho escolheu-se implementar os algoritmos *Logistic Regression* e *Supor Vector Machines*, que será chamado simplesmente de SVM por facilidade.

Tanto para o *Logistic Regression* quanto SVM será explicado a princípio o problema será inicialmente abordado a partir da classificação binária e, a partir dela, será descrito como estender para o problema com mais de duas classes, que será é o caso deste trabalho.

2.3 Logistic Regression

Para classificar um dado elemento x entre as possíveis classes C_1 e C_2 , é utilizado um discriminante linear da forma $y(x) = w^T x + w_0$ sendo w o vetor de pesos associado. A classe atribuída a um vetor x é baseado no sinal de y(x), se $y(x) \ge 0$ ele é designado à classe C^1 , caso contrário é designado à classe C^2 .

No caso da classificação binária, usamos que $t_n \in \{0,1\}$

Nesse caso, diz-se que uma superfície de decisão é definida pelo hiperplano y(x) = 0 onde sua posição é determinada pelo elemento w_0 que chamaremos de viés. Uma vez que tanto nosso vetor de pesos w quanto nossos vetores x do conjunto de treino possuem m elementos, iremos criar vetores novos $w' = (w_0, w), x' = (1, x)$.

O nosso modelo será construído de forma probabilística, uma vez que o objetivo será obter um vetor w de modo que possamos estimar as probabilidades condicionais $P(C^1|x)$ e consequentemente $P(C^2|x) = 1 - P(C^1|x)$, isto é, a probabilidade de um vetor x pertencer à uma determinada classe.

Para utilizarmos nosso discriminante y(x) para atribuir as probabilidades, utiliza-se a função sigmóide definida por:

$$\sigma(a) = \frac{1}{1 + exp(-a)} \tag{2.1}$$

Com \exp sendo a função exponencial. Aplicando ao nosso modelo obtêmse a expressão:

$$P(C^1|x) = y(x) = \sigma(w^T x) \tag{2.2}$$

Importante notar que apesar de utilizarmos o vetor x nas equações, é possível aplicarmos uma transformação linear $\phi: \mathcal{R}^m \to \mathcal{R}^d$ à entrada x para obtermos $\phi(x)$. O uso de transformação linear no nosso conjunto de entrada nos permite transformar o domínio para que se obtenha uma separação melhor entre as classes ou até mesmo fazer a redução da dimensão do domínio.

Com essa equação em mãos, nosso objetivo é minimizar o erro na classificação dos dados. Tomamos como erro o negativo do logaritmo da verosimilhança de nossa função que é dada por:

$$E(w) = -\sum_{i=1}^{n} p(t|w) = -\sum_{i=1}^{n} \{t_n ln(y_n) + (1 - t_n) ln(1 - y_n)\}$$
 (2.3)

A fim de minimizar o erro, utiliza-se métodos de otimização linear (note que por mais que se use uma transformação linear ϕ sobre x nosso problema ainda é linear sobre w).

Dois métodos são comumente usados: método do gradiente e método de Newton-Raphson. Esses métodos são utilizados tanto para o caso da classificação binária quanto o caso da classificação com k > 2. A diferença entre um problema e outro será abordada com mais especificidade a seguir.

Uma dúvida natural que surge ao ter que resolver um problema de otimização é o caso de parar o procedimento em um mínimo local ao invés de um mínimo local da função. Entretanto, temos que nossa função E(w) é côncava, isto é, $E(\lambda w + (1-\lambda)w') = \lambda E(w) + (1-\lambda)w' \ \forall w,w' \in R^m, \lambda \in [0,1]$, tal propriedade nos garante que existe um único minizador.

2.3.1 Método do Gradiente

Para este método, minimiza-se a função objetivo, no caso E(w) utilizando apenas o gradiente da função junto de um passo α . Com ambos valores em mãos, o valor w é atualizado usando a equação:

$$w^{(novo)} = w^{(antigo)} + \alpha \nabla E(w)$$
 (2.4)

Com $\nabla E(w)$ sendo o gradiente do vetor de pesos. O gradiente é calculado usando o fato de que a derivada da função sigmóide com respeito a um vetor a é dada por:

$$\frac{d\sigma}{da} = \sigma(1 - \sigma) \tag{2.5}$$

Usando 2.5 tem-se a seguinte equação para o gradiente:

$$\nabla E(w) = X^T(y - t) \tag{2.6}$$

Onde $y_n = P(C^1|x_n) = \sigma(w^Tx)$ e t_n tal qual assumido no começo da seção.

O algoritmo de atualização do vetor de pesos descrito a seguir vale tanto para o método do gradiente quanto para o de Newton-Raphson, portanto para o segundo será focado apenas nas diferenças entre os dois.

Referências Bibliográficas

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 1 edition, 2006.