Lecture 4: Multivariate Regression, Part 2

Gauss-Markov Assumptions

Linear in Parameters:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \ldots + \beta_{k}X_{k} + \varepsilon$$

- Random Sampling: we have a random sample from the population that follows the above model.
- No Perfect Collinearity: None of the independent variables is a constant, and there is no exact linear relationship between independent variables.
- Zero Conditional Mean: The error has zero expected value for each set of values of k independent variables: $E(\varepsilon_i) = 0$
- Unbiasedness of OLS: The expected value of our beta estimates is equal to the population values (the true model).

Assumption MLR1: Linear in Parameters

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \varepsilon$$

- This assumption refers to the population or true model.
- Transformations of the x and y variables are allowed. But the dependent variable or its transformation must be a linear combination the β parameters.

- Level-log: $y = \beta_0 + \beta_1 \log(x) + \varepsilon$
 - o Interpretation: a one percent increase in x is associated with a $(\beta_1/100)$ increase in y.

- So a one percent increase in poverty results in an increase of .054 in the homicide rate
- This type of relationship is not commonly used.

- Log-level: $\log(y) = \beta_0 + \beta_1 x + \varepsilon$
 - Interpretation: a one unit increase in x is associated with a (100*β₁) percent increase in y.

```
gen | Ihom=log(homrate)
reg lhom poverty
    Source
                                       MS
               5.48717761
                                  5.48717761
     Model
  Residual
               13.4093807
                                                             R-squared =
              18.8965583
                                  .385644048
                              49
     Total
                   coef.
                                                 P>|t|
                                                            [95% Conf. Interval]
      1hom
                            Std. Err.
                                         4.43
                .1111757
                            .0250853
                                                 0.000
                                                            .0607384
                                                                         .1616131
   poverty
                .0500712
                            .3123567
                                          0.16
                                                 0.873
                                                                         .6781064
     _cons
```

 So a one unit increase in poverty (one percentage point) results in an 11.1% increase in homicide.

- Log-log: $\log(y) = \beta_0 + \beta_1 \log(x) + \varepsilon$
 - Interpretation: a one percent increase in x is associated with a β_1 percent increase in y.

. reg lhom lpd	V					
Source	SS	df	MS		Number of obs = $F(1, 48) =$	50
Model Residual	5.44961433 13.446944		961433 144667			0.0001 0.2884
Total	18.8965583	49 .385	644048		Root MSE =	
1hom	Coef.	Std. Err.	t	P> t	[95% Conf. In	nterval]
lpov _cons	1.305429 -1.818851	.2959795 .732326	4.41 -2.48	0.000 0.017		L.900536 .3464107

- So a one percent increase in poverty results in an 1.31% increase in homicide.
- These three are explained on p. 46

- Non-linear: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$
 - Interpretation: The relationship between x and y is not linear. It depends on levels of x.
 - O A one unit change in x is associated with a $β_1+2*β_2*x$ change in y.

. reg homrate c.pov##c.pov

Source	SS	df	MS
Model Residual	102.719645 222.565354	2 47	51.3598226 4.73543305
Total	325.284999	49	6.63846936

homrate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
poverty	.0020093	. 6535657	0.00	0.998	-1.312795	1.316814
c.poverty#c.poverty	.0186286	.0254157	0.73	0.467	0325012	.0697584
_cons	1.857401	4.070203	0.46	0.650	-6.330792	10.04559

What the c.## is going on?

- You could create a new variable that is poverty squared and enter that into the regression model, but there are benefits to doing it the way I showed you on the previous slide.
- "c." tells Stata that this is a continuous variable.
 - You can also tell Stata that you're using a categorical variable with i. – and you can tell it which category to use as the base level with i2., i3., etc.
 - More info here:
 http://www.ats.ucla.edu/stat/stata/seminars/stata11/f
 v seminar.htm

What the c.## is going on?

- ## tells Stata to control for the product of the variables on both sides as well as the variables themselves. In this case, since pov is on both sides, it controls for pov once, and pov squared.
 - Careful! Just one pound # between the variables would mean Stata would only control for the squared term – something we rarely if ever would want to do.
- The real benefit of telling Stata about squared terms or interaction terms is that Stata can then report accurate marginal effects using the "margins" command.

- Non-linear: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$
 - Both the linear and squared poverty variables were not statistically significant in the previous regression, but they are jointly significant. (Look at the F-test).
 - When poverty goes from 5 to 6%, homicide goes up by (.002+2*5*.019)=.192
 - When poverty goes from 10 to 11%, homicide goes up by (.002+2*10*.019)=.382
 - From 19 to 20: .762
 - So this is telling us that the impact of poverty on homicide is worse when poverty is high.
 - You can also learn this using the margins command:

- . margins, at (poverty=(5(1)20))
 - This gives predicted values of the homicide rate for values of the poverty rate ranging from 5 to 20. If we follow this command with the "marginsplot" command, we'll see a nice graph depicting the non-linear relationship between poverty and homicide.
 - . margins, dydx (poverty) at (poverty=(5(1)20))
 - This gives us the rate of change in homicide rate at different levels of poverty, showing that the change is greater at higher levels of poverty.

• . margins, at (poverty=(5(1)20))

Delta-method Margin Std. Err. t P> t [95% Conf. Interval] -at 1 2.333163 1.498207 1.56 0.1266808403 5.347165 2 2.540086 1.143902 2.22 0.031 .2388523 4.84132 3 2.784267 .8477508 3.28 0.002 1.078813 4.489722 4 3.065705 .6156911 4.98 0.000 1.827095 4.304316 5 3.3844 .4573197 7.40 0.000 2.464392 4.304409 6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858 16 9.349021 1.42075 6.58 0.000 6.490841 12.2072							
1 2.333163 1.498207 1.56 0.126 6808403 5.347165 2 2.540086 1.143902 2.22 0.031 .2388523 4.84132 3 2.784267 .8477508 3.28 0.002 1.078813 4.489722 4 3.065705 .6156911 4.98 0.000 1.827095 4.304316 5 3.3844 .4573197 7.40 0.000 2.464392 4.304409 6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000					P> t	[95% Conf.	Interval]
2 2.540086 1.143902 2.22 0.031 .2388523 4.84132 3 2.784267 .8477508 3.28 0.002 1.078813 4.489722 4 3.065705 .6156911 4.98 0.000 1.827095 4.304316 5 3.3844 .4573197 7.40 0.000 2.464392 4.304409 6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 <td< th=""><th>at</th><td></td><td></td><td></td><td></td><td></td><td></td></td<>	at						
3 2.784267 .8477508 3.28 0.002 1.078813 4.489722 4 3.065705 .6156911 4.98 0.000 1.827095 4.304316 5 3.3844 .4573197 7.40 0.000 2.464392 4.304409 6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 <td< th=""><th>1</th><td>2.333163</td><td>1.498207</td><td>1.56</td><td>0.126</td><td>6808403</td><td>5.347165</td></td<>	1	2.333163	1.498207	1.56	0.126	6808403	5.347165
4 3.065705 .6156911 4.98 0.000 1.827095 4.304316 5 3.3844 .4573197 7.40 0.000 2.464392 4.304409 6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.412417 10.82858	2	2.540086	1.143902	2.22	0.031	.2388523	4.84132
5 3.3844 .4573197 7.40 0.000 2.464392 4.304409 6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	3	2.784267	.8477508	3.28	0.002	1.078813	4.489722
6 3.740353 .3792478 9.86 0.000 2.977405 4.503301 7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	4	3.065705	.6156911	4.98	0.000	1.827095	4.304316
7 4.133562 .3655011 11.31 0.000 3.398269 4.868856 8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	5	3.3844	.4573197	7.40	0.000	2.464392	4.304409
8 4.564029 .3799787 12.01 0.000 3.799611 5.328448 9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	6	3.740353	.3792478	9.86	0.000	2.977405	4.503301
9 5.031753 .3970721 12.67 0.000 4.232947 5.830559 10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	7	4.133562	.3655011	11.31	0.000	3.398269	4.868856
10 5.536734 .4127955 13.41 0.000 4.706297 6.367172 11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	8	4.564029	.3799787	12.01	0.000	3.799611	5.328448
11 6.078972 .4416451 13.76 0.000 5.190497 6.967448 12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	9	5.031753	.3970721	12.67	0.000	4.232947	5.830559
12 6.658468 .5094949 13.07 0.000 5.633496 7.683439 13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	10	5.536734	.4127955	13.41	0.000	4.706297	6.367172
13 7.27522 .6383377 11.40 0.000 5.991051 8.55939 14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	11	6.078972	.4416451	13.76	0.000	5.190497	6.967448
14 7.92923 .8352808 9.49 0.000 6.248862 9.609598 15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	12	6.658468	.5094949	13.07	0.000	5.633496	7.683439
15 8.620497 1.097597 7.85 0.000 6.412417 10.82858	13	7.27522	.6383377	11.40	0.000	5.991051	8.55939
	14	7.92923	.8352808	9.49	0.000	6.248862	9.609598
16 9.349021 1.42075 6.58 0.000 6.490841 12.2072	15	8.620497	1.097597	7.85	0.000	6.412417	10.82858
	16	9.349021	1.42075	6.58	0.000	6.490841	12.2072

Followed by marginsplot:

- Interaction: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$
 - Interpretation: The relationship between x₁ and y depends on levels of x₂. And/or the relationship between x₂ and y depends on levels of x₁.
 - We'll cover interaction terms and other non-linear transformations later.
 - The best way to enter them into the regression model is to use the ## pattern as with squared terms so that the margins command will work properly and marginsplot will create cool graphs.

Assumption MLR2: Random Sampling

- We have a random sample of n observations from the population.
- Think about what your population is. If you modify the sample by dropping cases, you may no longer have a random sample from the original population, but you may have a random sample of another population.
 - Ex: relationship breakup and crime
- We'll deal with this issue in more detail later.

Assumption MLR3: No perfect collinearity

- None of the independent variables is a constant.
- There is no exact *linear* relationship among the independent variables.
- In practice, in either of these situations, one of the offending variables will be dropped from the analysis by Stata.
- High collinearity is not a violation of the regression assumptions, nor are nonlinear relationships among variables.

Assumption MLR3: No perfect collinearity, example

٦f

Source

QQ

. reg dfreq7 male hisp white black first asian other age6 dropout6 dfreq6

МS

Number of ohe =

6791

Source	SS	aī	MS		Number of obs	
+					F(9, 6784)	
Model					Prob > F	= 0.0000
Residual	1522043.58	6784 224.	357839		R-squared	= 0.1256
+					Adj R-squared	= 0.1244
Total	1740653.14	6793 256.	242182		Root MSE	= 14.979
dfreq7	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male	1.784668	.3663253	4.87	0.000	1.066556	2.502781
hisp		.5786788	0.74	0.457	7041247	1.564659
-						
white	1.225733	2.248439	0.55	0.586	-3.181912	5.633379
black	2.455362	2.267099	1.08	0.279	-1.988863	6.899587
first	(dropped)					
asian	2740142	2.622909	-0.10	0.917	-5.415739	4.86771
other	1.309557	2.32149	0.56	0.573	-3.241293	5.860406
age6	2785403	.1270742	-2.19	0.028	5276457	029435
dropout6	.6016927	.485114	1.24	0.215	3492829	1.552668
dfreq6	.3819413	.0128743	29.67	0.000	.3567037	.4071789
cons	4.617339	3.365076	1.37	0.170	-1.979265	11.21394
`						

$$E(u \mid x_1, x_2, ..., x_k) = 0$$

- For any combination of the independent variables, the expected value of the error term is zero.
- We are equally likely to under-predict as we are to over-predict throughout the multivariate distribution of x's.
- Improperly modeling functional form can cause us to violate this assumption.

- Another common way to violate this
 assumption is to omit an important variable that
 is correlated with one of our included variables.
- When x_j is correlated with the error term, it is sometimes called an **endogenous** variable.

Unbiasedness of OLS

Under assumptions MLR1 through MLR4,

$$E(\hat{\beta}_j) = \beta_j \quad \forall j \in [0, k]$$

- In words: The expected value of each population parameter estimate is equal to the true population parameter.
- It follows that including an irrelevant variable, β_n =0 in a regression model does not cause biased estimates. Like the other variables, the expected value of that parameter estimate will be equal to its population value, 0.

Unbiasedness of OLS

- Note: none of the assumptions 1 through 4 had anything to do with the distributions of y or x.
- A non-normally distributed dependent (y) or independent (x) variable does **not** lead to biased parameter estimates.

Omitted Variable Bias

- Recall that omitting an important variable can cause us to violate assumption MLR4. This means that our estimates may be biased.
- How biased is it?
- Suppose the true model is the following:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

But we only estimate the following:

$$y = \beta_0 + \beta_1 x_1 + u$$

Omitted Variable Bias

- Why would we do that? Unavailability of the data, ignorance . . .
- Wooldredge (pp. 89-91) shows that the bias in β_1 in the second equation is equal to:

$$E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$$

 $E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$ Where $\tilde{\delta}_1$ refers to slope in the regression of x_2 on x_1 . This indicates the strength of the relationship between the included and excluded variables.

Omitted Variable Bias

- It follows that there is no omitted variable bias if there is no correlation between the included and excluded variables.
- The sign of the omitted variable bias can be determined from the correlation of x_1 and x_2 and the sign of β_2 .
- The magnitude of omitted variable bias depends on how important the omitted variable is (size of β_2), and the size of the correlation between x_1 and x_2 .

Suppose we wish to know the effect of arrest on high school gpa. Suppose it is a simple world in which the true equation is as follows:

$$gpa = \beta_0 + \beta_1 arrest_1 + \beta_2 sc_2 + u$$

Where sc refers to self-control. Unfortunately, we are using a dataset without a good measure of self-control. So instead, we estimate the following model:

$$gpa_i = 2.9 - .3arrest_i + u_i$$

$$gpa_i = 2.9 - .3arrest_i + u_i$$

- This model has known omitted variable bias because self-control is not included. What is the direction of the bias?
- The correlation between arrest and self-control is expected to be negative.
- The expected sign of self-control is postive. Students with poor self-control get lower grades.
- So $\beta_2 \tilde{\delta}_1$ is negative, and likely fairly large. Our estimate of the effect of arrest on gpa is too negative (biased) because self-control affects both arrest and gpa.

Let's say that the "true" model for state-level homicide uses poverty and female-headed household rates:

Source Model 1	SS	df					. reg homrate poverty fem_hh								
Model 1		ai	M	5		Number of obs									
Residual	82.681499 142.6035	2 47	91.340 3.0341			Prob > F	= 0.000 = 0.561								
Total 3	25.284999	49	6.6384	6936		Root MSE	= 1.741								
homrate	Coef.	std. I	Err.	t	P> t	[95% Conf.	Interval								
fem_hh	1.142388	.10517 .21907 1.7709	723	1.29 5.21 -4.79	0.202 0.000 0.000	0755742 .7016716 -12.05053	.34758 1.58310 -4.92503								

- Thus, the "true" effect of poverty on homicide is .136.
- But if we omit female headed households from the model we obtain a much higher estimate of the effect of poverty on homicide (.475).
- This has positive bias because the poverty rate is correlated with the rate of female-headed households, and the relationship between female-headed households and poverty is positive.

- Recall, the bias in our estimate: $E(\beta_1) \beta_1 = \beta_2 \delta_1$
- B2 is equal to 1.14, and δ 1 is equal to .297:

. reg fem_hh p	overty					
Source	SS	df	MS		Number of obs	
Model Residual	39.0979508 63.2203985	1 39.09 48 1.317	79508 709164		F(1, 48) Prob > F R-squared Adj R-squared	= 0.0000 = 0.3821
Total	102.318349	49 2.088	312958		Root MSE	= 1.1476
fem_hh	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
poverty _cons	.2967648 6.578087	.0544682 .678227	5.45 9.70	0.000 0.000	.1872491 5.21442	.4062806 7.941754

- So the overall bias is .297*1.14=.339
- And the difference between the two estimates is .475-.136 = .339

Assumption MLR5: Homoscedasticity

$$var(u | x_1, x_2, ..., x_j) = \sigma^2$$

In the multivariate case, this means that the variance of the error term does not increase or decrease with any of the explanatory variables x₁ through x_j.

$$\operatorname{var}(\hat{\beta}_{j}) = \frac{\sigma^{2}}{SST_{j}(1 - R_{j}^{2})}$$

- σ² is a population parameter referring to error variance. It's an unknown, and something we have to estimate.
- SST_j is the total sample variation in x_j . All else, equal, we would like to have more variation in x, since it means more precise estimates of the slopes. We can get more total sample variation by increasing variation in x or increasing sample size.

$$\operatorname{var}(\hat{\beta}_{j}) = \frac{\sigma^{2}}{SST_{j}(1 - R_{j}^{2})}$$

- R²_j is the r-squared from the regression of x_j on all other x's.
- This is where multicollinearity comes into play. If there is a lot of multicollinearity, this auxiliary r-squared will be quite large, and this will inflate the variance of the slope estimate.

$$\operatorname{var}(\hat{\beta}_{j}) = \frac{\sigma^{2}}{SST_{j}(1 - R_{j}^{2})}$$

- 1/(1- R^2_j) is termed the variance inflation factor (VIF). It reflects the degree to which the variance of the slope estimate is inflated due to multicollinearity, compared to zero multicollinearity ($R^2_j = 0$).
- Some researchers have attempted to set up cutoff points above which multicollinearity is a problem. But these should be used with caution.

- A high VIF may not be a problem since total variance depends on two other factors, and even very high variance is not a problem if β is relatively much larger.
- You can obtain VIFs using, not surprisingly, the "vif" command after a regression model in Stata.

When OLS is BLUE

 Gauss-Markov Theorem: under assumptions MLR1 through MLR5, OLS estimates are the best (i.e. most efficient) linear unbiased estimates of the population model.

Next time:

Homework: Problems 3.8, 3.10i and ii, C3.8

Read: Wooldridge Chapter 4