IMO SL 2017A6

Let R be a ring, S be an abelian (additive) group, and $\iota: S \to R$ be a group homomorphism. Find all functions $f: R \to S$ such that for any $x, y \in R$,

$$f(\iota(f(x))\iota(f(y))) + f(x+y) = f(xy). \tag{*}$$

We say that $f: R \to S$ is ι -good if f satisfies the above functional equation. We say that f is non-periodic ι -good if f is ι -good and f has no non-zero period. The main goal is to find id_R -good functions, but working in generality allows better proofs. To classify ι -good functions, we reduce to non-periodic case.

Answer

Let I be a double-sided ideal of R and $[\cdot]: R \to R/I$ be the projection map. Let $\phi: R/I \to G$ be a group homomorphism such that $[\iota(\phi(x))] = x$ for all $x \in R/I$. Let $a \in Z(R/I)$ such that $a^2 = 1$. Then the function $f(x) = \phi(a(1 - [x]))$ is ι -good. These are all the ι -good functions in the following cases:

- 1. G is 2-torsion free and 3-torsion free.
- 2. G = R is a simple ring of characteristic not equal to 2 and $\iota = \mathrm{id}_R$. Since Z(R) is a field, this means that the good functions are $0, x \mapsto 1 x$, and $x \mapsto x 1$.
- 3. G = R is a field of characteristic 2 and $\iota = \mathrm{id}_R$. That is, the good functions are 0 and $x \mapsto x + 1$.

References

- https://artofproblemsolving.com/community/c6h1480146p8693244.
 Solution in AoPS by anantmudgal09 (post #75). We follow the main step of this solution when G is 2-torsion-free.
- https://artofproblemsolving.com/community/c6h1480146p29214012.

 Solution in AoPS by **BlazingMuddy** (author of this project, post #176). We follow the main step of this solution when R is a field. More generally, the steps allows computing f(x) when x is a unit of R.

Excellent functions

Let R be a ring and G be an abelian group. An excellent function from R to G is a function $f: R \to G$ such that for all $x, y \in R$,

$$f(x+y-xy) + f(1-(x+y)) = f(1-xy).$$
(**)

Excellent functions appear in the classification of non-periodic good functions. Namely, an injective non-periodic good function induces an excellent function.

Clearly, group homomorphisms are excellent functions. The main question is: when are there are no other excellent functions? We prove this in some subcases.

By plugging y=0 into (**), we get f(x)+f(1-x)=f(1) for all $x\in R$. By plugging y=1 instead, we get f(1)+f(-x)=f(1-x), which implies f(x)+f(1)=f(x+1) for all $x\in R$. Thus we also get f(-x)=-f(x) for all $x\in R$ and f(0)=0. By induction on $n\in \mathbb{Z}$, we get f(n)=nf(1) and f(x+n)=f(x)+nf(1) for all $x\in R$. By replacing (x,y) with (-x,-y) and using the equalities f(-x)=-f(x) and f(x+1)=f(x)+1, one gets

$$f(xy + x + y) = f(xy) + f(x + y). (3.1)$$

Now we continue with more equations. The above one yields

$$f((x+1)(y+1)) = f(xy) + f(x+y) + f(1).$$

By induction on $n \in \mathbb{Z}$, we get that for any $x, y \in R$,

$$f((x+n)(y+n)) = f(xy) + nf(x+y) + n^2f(1).$$
(3.2)

Plugging y=0 and replacing x with x-n, we get f(nx)=nf(x) for any $n\in\mathbb{Z}$ and $x\in R$. We now prove:

Lemma 0.1. For any $a, b \in R$, we have 2f(3a + b) = 2(3f(a) + f(b)). In particular, f must be a group homomorphism if G is 2-torsion free and 3-torsion free.

Proof. By replacing x with 2x and using n=2 in (3.2), we get that for any $x,y\in R$,

$$2f((x+1)(y+2)) = 2(f(xy) + f(2x+y) + 2f(1)).$$

By symmetry, for any $x, y \in R$,

$$2f((x+2)(y+1)) = 2(f(xy) + f(x+2y) + 2f(1)).$$

We can now write 2f((x+3)(y+3)) in two ways:

$$2(f(xy) + 3f(x+y) + 9f(1)) = 2f((x+3)(y+3)) = 2(f(xy) + f(2x+y) + f(x+2y) + 9f(1)).$$

After some cancellations, we simplify to

$$6f(x+y) = 2(f(2x+y) + f(x+2y)).$$

The lemma follows by change of variables (x,y) = (2a+b, -(a+b)) and slight algebraic manipulation. \square

Some further directions. The set of excellent functions, say E(R,G), form a group under addition. Thus, we can consider the quotient $Q(R,G) = E(R,G)/\operatorname{Hom}(R,G)$. The main goal can be rephrased as Q(R,G) = 0 for all R and G.

To prove Q(R,G)=0 by first principles, we would check that f(x+y)=f(x)+f(y) for any $x,y\in E(R,G)$. Now we fix x and y, and consider the evaluation homomorphism $\phi:\mathbb{Z}[X,Y]\to R$ given by $X\mapsto x$ and $Y\mapsto y$. Then one can check that $f\circ\phi\in E(\mathbb{Z}[X,Y],G)$, and if f is a group homomorphism, then f(x+y)=f(x)+f(y). Thus, the goal reduces to proving $Q(\mathbb{Z}[X,Y],G)=0$ for all groups G. We can still make further reductions.

The first lemma says that Q(R,G) is 6-torsion for any R and G. Thus we can write $Q(R,G) = Q_2(R,G) \times Q_3(R,G)$, where $Q_p(R,G)$ is the set of p-torsion elements for p=2,3. When R is free as an abelian group, e.g. $R=\mathbb{Z}[X,Y]$, we can reduce even further. For p=2,3, by shifting with a group homomorphism, each element of $Q_p(R,G)$ has a representative that sends a fixed \mathbb{Z} -basis of R, say \mathcal{B} , to zero. Then f is p-torsion as an element of E(R,G), so in fact $f \in E(R,G[p])$, where G[p] is the set of p-torsion elements of G. If f is

non-zero, then we can choose an appropriate \mathbb{F}_p -linear functional $\alpha: G[p] \to \mathbb{F}_p$ such that $\alpha \circ f \in E(R, \mathbb{F}_p)$ is non-zero either. Since it still sends the basis \mathcal{B} to zero, $\alpha \circ f$ is not a group homomorphism, which means $Q(R, \mathbb{F}_3) \neq 0$. This means that the goal reduces entirely to two equalities: $Q_2(\mathbb{Z}[X,Y], \mathbb{F}_2) = 0$ and $Q_3(\mathbb{Z}[X,Y], \mathbb{F}_3) = 0$.

If p=3, then the second lemma says more. For any ring R and $f \in E(R, \mathbb{F}_3)$ and $a, b \in R$, we have f(3a+b)=3f(a)+f(b)=f(b). In particular, f naturally induces an excellent function in $E(R/(3),\mathbb{F}_3)$. That is, we get $E(R,\mathbb{F}_3)\equiv E(R/(3),\mathbb{F}_3)$. Thus, the equality $Q_3(\mathbb{Z}[X,Y],\mathbb{F}_3)=0$ reduces further to $Q_3(\mathbb{F}_3[X,Y],\mathbb{F}_3)=0$.

Basic results

Here, we collect basic results regarding ι -good functions, mainly those obtained by plug-and-chug. An important observation is that if f(a) = f(b) and f(c) = f(d), then we have $f(a+c) = f(b+d) \iff f(ac) = f(bd)$. Taking c = d gives $f(a+c) = f(b+c) \iff f(ac) = f(bc) \iff f(ca) = f(cb)$ whenever f(a) = f(b). Taking c = d = 1, we get that f(a) = f(b) implies f(a+1) = f(b+1). By induction on $n \in \mathbb{N}$, we get that f(a) = f(b) implies f(a+n) = f(b+n). We also get that f(a) = f(b) implies f(na) = f(nb).

By taking c = d = -1 and replacing a and b with a + 1 and b + 1, we get that f(a) = f(b) implies f(-(a+1)) = f(-(b+1)). Then f(a) = f(b) implies f(-a) = f(-b), and in fact we get more:

$$f(a) = f(b) \iff f(a+1) = f(b+1) \iff f(-a) = f(-b).$$

By induction, we get $f(a) = f(b) \iff f(a+n) = f(b+n)$ for any $n \in \mathbb{Z}$.

By plugging x = y = 0 into (*), we get $f(\iota(f(0))^2) = 0$. We now show:

Theorem 0.2. For any $c \in R$ such that f(c) = 0, we have f(x+c) = f(x+1) for any $x \in R$. In particular, f(1) = 0, and if f is non-periodic, then $f(c) = 0 \iff c = 1$ and so $\iota(f(0))^2 = 1$.

Proof. We first show that $f(c^2) = f(c^3) = 0$. First, for any $d \in R$ such that f(d) = 0, plugging y = d into (*) yields

$$f(0) + f(x+d) = f(xd) \quad \forall x \in R.$$

Now we have $f(c^2) = f(0) + f(2c)$ and $f(c^3) = f(0) + f(c^2 + c) = 2f(0) + f(2c + 1)$. Thus our goal reduces to showing that f(2c) = -f(0) and f(2c+1) = -2f(0). Since f(c+1) = -f(0), the former yields f(2c) = f(c+1), and so

$$f(2c+1) = f(c+2) = f(2c) - f(0) = -f(0) - f(0) = -2f(0).$$

We now show that f(2c) = -f(0). Since $f(c) = f(\iota(f(0))^2) = 0$, it suffices to show that $f(2\iota(f(0))^2) = -f(0)$. Indeed, we have f(0) + f(c+1) = f(c) = 0, so f(c+1) = -f(0). Plugging x = 0 and y = c+1 into (*) yields $f(-\iota(f(0))^2) = 2f(0)$. Plugging x = 0 and $y = -\iota(f(0))^2$ into (*) yields $f(2\iota(f(0))^2) = -f(0)$.

We now go back to the main goal. We write down $f(xc^4)$ in two ways:

$$f(xc^4) = f(0) + f(xc^2 + c^2) = f(0) + f((x+1)c^2) = 2f(0) + f(x+1+c^2),$$

$$f(xc^4) = f(0) + f(xc + c^3) = f(0) + f((x + c^2)c) = 2f(0) + f(x + c + c^2).$$

Replacing x with $x - c^2$, we are done.

Plugging y = 1 into (*) yields f(0) + f(x+1) = f(x) or f(x+1) = f(x) - f(0) for all $x \in R$. Next, for any $x \in R$, we have $f(\iota(f(0))\iota(f(x))) = f(0) - f(x)$. Replacing x with $\iota(f(0))\iota(f(x))$, we get

$$f(\iota(f(0))^2 - \iota(f(0))\iota(f(x))) = f(\iota(f(0))\iota(f(x) - f(0))) = f(x).$$

By the previous lemma,

$$f(\iota(f(0))^2 - \iota(f(0))\iota(f(x))) = f(1 - \iota(f(0))\iota(f(x))) = f(-\iota(f(0))\iota(f(x))) - f(0),$$

and thus

$$f(-\iota(f(0))\iota(f(x))) = f(x) + f(0) = f(x-1) \quad \forall x \in R.$$
(1.1)

Since f(a) = f(b) implies f(-a) = f(-b), we get

$$f(0) - f(x) = f(\iota(f(0))\iota(f(x))) = f(1 - x). \tag{1.2}$$

Then we get f(x) + f(1-x) = f(0), and thus

$$f(x) + f(-x) = 2f(0) \quad \forall x \in R. \tag{1.3}$$

Lemma 0.3. Suppose that f is non-periodic ι -good. Then for any $x \in R$, we have $\iota(f(0))\iota(f(x)) = \iota(f(x)) = \iota(f(0))$.

Proof. Plug $(\iota(f(1-x))\iota(f(0)),\iota(f(0))\iota(f(x)))$ in place of (x,y) in (*). Using $\iota(f(0))^2 = 1$ and (1.2), we get

$$f(\iota(f(x))\iota(f(1-x))) + f(\iota(f(1-x))\iota(f(0)) + \iota(f(0))\iota(f(x))) = f(\iota(f(1-x))\iota(f(x))).$$

On the other hand, (*) with x = 1 - y gives $f(\iota(f(1-y))\iota(f(y))) = f(y-y^2)$ for all $y \in R$. Simplifying gives

$$f(\iota(f(1-x))\iota(f(0)) + \iota(f(0))\iota(f(x))) = 0 \iff \iota(f(1-x))\iota(f(0)) + \iota(f(0))\iota(f(x)) = 1.$$

Since f(x) + f(1-x) = f(0), adding $\iota(f(x))\iota(f(0))$ to the left hand side gives

$$\iota(f(0))^{2} + \iota(f(x))\iota(f(0)) = \iota(f(0))\iota(f(x)) + 1.$$

The lemma is proved, since $\iota(f(0))^2 = 1$.

Finally, we classify injective non-periodic ι -good functions. This involves the theory of excellent functions.

Lemma 0.4. Suppose that all excellent functions $R \to G$ are group homomorphisms.¹ Suppose that f is non-periodic ι -good and injective. Then there exists $a \in Z(R)$ with $a^2 = 1$ and a group homomorphism $\phi: R \to G$ with $\iota \circ \phi = \mathrm{id}_R$ such that $f(x) = \phi(a(1-x))$ for all $x \in R$.

Proof. Take $a = \iota(f(0))$; we proved $a^2 = 1$. By (1.2) and injectivity, we get $a\iota(f(x)) = 1 - x$ and thus $\iota(f(x)) = a(1-x)$ for all $x \in R$. The previous lemma then yields ax = xa for all $x \in R$, and thus $a \in Z(R)$. Using the equation $\iota(f(x)) = a(1-x)$, (*) simplifies to

$$f((1-x)(1-y)) + f(x+y) = f(xy).$$

Then the function $x \mapsto f(1-x)$ is excellent, and thus is a group homomorphism, say ρ . Finally, choosing $\phi(x) = \rho(ax) = f(1-ax)$ works.

Period congruence: from general to non-periodic

Here, we relate general good functions with non-periodic good functions. The main result is as follows.

Theorem 0.5. The ι -good functions are in an explicit bijection with the disjoint union of non-periodic $\phi\iota$ -good functions across all double-sided ideals $I \subseteq R$, where $\phi: R \to R/I$ is the projection map.

¹That is, Q(R,G) = 0, using the notation from the excellent function section.

More explicitly, the bijection is given by the following two results. We will omit o for this section at some equations for readability purposes.

Theorem 0.6. Let I be a two-sided ideal of R and $\phi: R \to R/I$ be the projection map. Let $\iota: S \to R$ be a function, and let $f: R/I \to S$ be $\phi\iota$ -good function. Then $f \circ \phi: R \to S$ is an ι -good function.

Proof. By (*) on f, for any $x, y \in R/I$,

$$f(\phi \iota f(x) \ \phi \iota f(y)) + f(x+y) = f(xy).$$

Now replace x and y with $\phi(x)$ and $\phi(y)$ with $x, y \in R$:

$$f(\phi \iota f \phi(x) \ \phi \iota f \phi(y)) + f(\phi(x) + \phi(y)) = f(\phi(x)\phi(y)).$$

Rearranging, we get that for any $x, y \in R$,

$$f\phi(\iota f\phi(x)\ \iota f\phi(y)) + f\phi(x+y) = f\phi(xy).$$

This proves that $f \circ \phi$ is an ι -good function.

Theorem 0.7. Let $f: R \to S$ be an ι -good function, and define

$$I_f := \{c \in R : \forall x \in R, f(x+c) = f(x)\}.$$

Then I_f is a double-sided ideal of R.

Furthermore, let $\phi: R \to R/I_f$ to be the usual projection map. Then the reduction $\tilde{f}: R/I_f \to S$ of f is a non-periodic $\phi \circ \iota$ -good function.

Proof. Clearly, I_f is a monoid under addition. Since R is a ring, it is group under addition. So, it remains to show that $cy, yc \in I_f$ for any $c \in I_f$ and $y \in R$.

Comparing (*) using y = c and y = 0 gives f(xc) = f(0) for all $x \in R$. Then replacing y with yc yields

$$f(x) + f(\iota f(x)\iota f(0)) = f(0) = f(xyc) = f(x+yc) + f(\iota f(x)\iota f(yc)) = f(x+yc) + f(\iota f(x)\iota f(0)),$$

so f(x + yc) = f(x) for all $x, y \in R$. That is, $yc \in I_f$ for any $y \in R$. Similarly, we also get $cy \in I_f$ for any $y \in R$. This shows that I_f is a double-sided ideal.

Now write $f = \tilde{f} \circ \phi$. Plugging into (*), we get that for any $x, y \in R$,

$$\begin{split} \tilde{f}\phi(\iota\tilde{f}\phi(x)\iota\tilde{f}\phi(y)) + \tilde{f}\phi(x+y) &= \tilde{f}\phi(xy) \\ \tilde{f}(\phi\iota\tilde{f}\phi(x)\phi\iota\tilde{f}\phi(y)) + \tilde{f}(\phi(x)+\phi(y)) &= \tilde{f}(\phi(x)\phi(y)). \end{split}$$

Since ϕ is surjective, this implies that \tilde{f} is $\phi\iota$ -good. Finally, one can check from the definition of I_f that \tilde{f} is non-periodic.

Solution for subcases

Here we prove lemmas that allow us to solve the problem for the desired subcases. By Lemma 0.4, most of the work reduces to showing that f is injective.

Lemma 0.8. If G is 2-torsion free, then every non-periodic ι -good function is injective.

Proof. Let $a, b \in R$ such that f(a) = f(b). Since f(a) = f(b), f(b) = f(a), and f(a + b) = f(b + a), we get f(ab) = f(ba). Then we have f(-ab) = f(-ba) and f(-a) = f(-b). This implies f(a - b) = f(b - a).

Finally, substitute x = a - b into (1.3). We get 2f(a - b) = 2f(0). Since G is 2-torsion free, we get

$$f(a-b) = f(0) \iff f(a-b+1) = 0 \iff a-b+1 = 1 \iff a = b.$$

This proves that f is injective.

Corollary 0.9. Suppose that G is 2-torsion free and 3-torsion free. Then all non-periodic ι -good functions are of form $x \mapsto \phi(a(1-x))$ for some $a \in Z(R)$ with $a^2 = 1$ and group homomorphism $\phi : R \to G$ with $\iota \circ \phi = \mathrm{id}_R$. All ι -good functions are of form $x \mapsto x \mapsto \phi(a(1-[x]))$ for some $a \in Z(R/I)$ with $a^2 = 1$ and group homomorphism $\phi : R/I \to G$ with $[\iota(\phi(x))] = x$ for all $x \in R/I$.

Combined with Lemma 0.1, we are done if G is 2-torsion free and 3-torsion free. Removing the 3-torsion free assumption on Lemma 0.1 would also mean removing the 3-torsion assumption here.

Subcase: Simple ring