The accuracy is:

Scegli un'alternativa:

- a. The number of correct significant digits in approximating some quantity.
- b. The number of digits with which a number is expressed.
- o. None of the above.

La risposta corretta è: The number of correct significant digits in approximating some quantity.

Given two random variables X and Y, Bayes Theorem implies that $p(y|x)=rac{p(x|y)p(y)}{p(x)}$ where:

Scegli un'alternativa:

- \bigcirc a. p(x|y) is called prior distribution on x.
- \bigcirc b. p(x|y) is called posterior distribution on y.
- n c. p(x|y) is called likelihood on y.

La risposta corretta è: p(x|y) is called likelihood on y.

Given two random variables X and Y, Bayes Theorem implies that $p(y|x) = rac{p(x|y)p(y)}{p(x)}$ where:

Scegli un'alternativa:

- \bigcirc a. p(y|x) is called prior distribution on x.
- \bigcirc b. p(y|x) is called likelihood on y.
- \odot c. p(y|x) is called posterior distribution on y.

La risposta corretta è: p(y|x) is called posterior distribution on y.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(e^t,t)$, then, if h(t)=f(g(t)):

Scegli un'alternativa:

- \bigcirc a. $h'(t)=te^t$.
- 0 b. $h'(t) = 2e^{2t}$.
- 0 c. $h'(t) = e^{2t}(t+1)$.

La risposta corretta è: $h'(t) = e^{2t}(t+1)$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(\sin(t),\cos(t))$, then, if h(t)=f(g(t)):

Scegli un'alternativa:

- \circ a. $h'(t) = \sin(2t) \sin^2(t)$.
- 0 b. $h'(t) = \sin(t) \sin^2(2t)$.
- c. $h'(t) = \sin(t)\cos(t) \sin^2(t)$.

×

La risposta corretta è: $h'(t) = \sin(2t) - \sin^2(t)$.

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1^2+x_2^2$, $g:\mathbb{R}^2 o \mathbb{R}^2$, $g(x_1,x_2)=(x_2,x_1)$, then, if $h(x_1,x_2)=f(g(x_1,x_2))$:

Scegli un'alternativa:

- a. $\nabla h(x_1, x_2) = (2x_1, 2x_2).$
- \bigcirc b. $\nabla h(x_1, x_2) = (2x_2, 2x_1)$.
- \bigcirc c. $\nabla h(x_1, x_2) = (1, 1)$.

La risposta corretta è: $\nabla h(x_1, x_2) = (2x_1, 2x_2)$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t,\log t)$, then, if h(t)=f(g(t)):

Scegli un'alternativa:

- \circ a. h'(t) = t + 1.
- 0 b. $h'(t) = t^2 + 1$.
- \circ c. h'(t) = 2t.

La risposta corretta è: h'(t) = 2t.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t^2,t)$, then, if h(t)=f(g(t)):

Scegli un'alternativa:

$$oldsymbol{0}$$
 a. $h'(t) = t(2t-1)^2 + t$.

$$oldsymbol{0}$$
 b. $h'(t) = 4t^2 + 2t + 1$.

$$oldsymbol{\circ}$$
 c. $h'(t) = t(2t+1)^2 - 2t^2$.

La risposta corretta è: $h'(t) = t(2t+1)^2 - 2t^2$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_2^2$, $g:\mathbb{R}^2 o\mathbb{R}^2$, $g(x_1,x_2)=(x_1e^{x_2},x_2)$, then, if $h(x_1,x_2)=f(g(x_1,x_2))$:

Scegli un'alternativa:

- igcup a. $abla h(x_1,x_2)=(2x_1e^{x_2}(e^{x_2}+x_1),2e^{x_2}).$
- \bigcirc b. $\nabla h(x_1,x_2)=(2x_1e^{2x_2}(e^{x_1}+x_1),2x_2)$.

La risposta corretta è: $abla h(x_1,x_2)=(2x_1e^{x_2}(e^{x_2}+x_1),2x_2).$

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t,t^2)$, then, if h(t)=f(g(t)):

Scegli un'alternativa:

- @ a. $h'(t) = 3t^2$.
- \bigcirc b. $h'(t)=3t^3$.
- \bigcirc c. $h'(t)=t^2$.

La risposta corretta è: $h'(t)=3t^2$.

lf

$$A = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

then:

Scegli un'alternativa:

@ a. $K_2(A) = 1$.

 \bigcirc b. $K_2(A)=4$.

 $\mathbb O$ c. $K_2(A)=rac{1}{2}$.

La risposta corretta è: $K_2(A) = 1$.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

Scegli un'alternativa:

- \bigcirc a. $K_2(A) = 4$.
- b. $K_2(A) = 2.$
- \circ c. $K_2(A) = \frac{4}{3}$.

If vector $v = (10^6, 0)^T$ is approximated by vector $\tilde{v} = (999996, 1)^T$, then in $||\cdot||_2$ the relative error between v and \tilde{v} is:

Scegli un'alternativa:

- a. $\sqrt{17} \cdot 10^{-6}$.
- b. None of the above.
- \odot c. $4 \cdot 10^{-6}$.

×

La risposta corretta è: $\sqrt{17} \cdot 10^{-6}$.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

Scegli un'alternativa:

$$\circ$$
 a. $K_2(A) = \frac{1}{2}$.

$$\bigcirc$$
 b. $K_2(A) = 4$.

c.
$$K_2(A) = 2.$$

A random variable $X:\Omega \to \mathcal{T}$ is continuous when:

Scegli un'alternativa:

- \bigcirc a. \mathcal{T} is countable.
- $ext{ }$ $ext{ }$
- \bigcirc c. Ω is continuous.

La risposta corretta è: $\mathcal{T}=\mathbb{R}$.

A random variable $X: \Omega \to \mathcal{T}$ is discrete when:

Scegli un'alternativa:

- \bigcirc a. $\mathcal{T} = \mathbb{R}$.
- \odot b. Ω is countable.
- c. T is countable.

La risposta corretta è: \mathcal{T} is countable.

×

$$A = \left[egin{matrix} 4 & 2 \ 1 & 3 \end{matrix}
ight]$$

Then:

Scegli un'alternativa:

- \bigcirc a. $x=(1,2)^T$ is an eigenvector of A.
- $\ \ \,$ b. $\ \, x=(2,1)^T$ is an eigenvector of A.
- \bigcirc c. $x=(0,0)^T$ is an eigenvector of A.

La risposta corretta è: $x=(2,1)^T$ is an eigenvector of $\emph{A}.$

lf

$$A = egin{bmatrix} 4 & 2 \ 1 & 3 \end{bmatrix}$$

Then:

Scegli un'alternativa:

- igcirc a. $\lambda=5$ is the eigenvalue associated with the eigenvector $x=(2,1)^T$.
- $ext{ }$ b. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(2,1)^T$.
- \odot c. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(1,2)^T$.

La risposta corretta è: $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(2,1)^T$.

$$A = egin{bmatrix} 4 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

Then:

Scegli un'alternativa:

- \bigcirc a. $x=(1,1,0)^T$ is an eigenvector of A.
- \bigcirc b. $x = (0,1,0)^T$ is an eigenvector of A.
- \bigcirc c. $x=(0,-1,1)^T$ is an eigenvector of A.

La risposta corretta è: $x=(0,1,0)^T$ is an eigenvector of A.

$$A = egin{bmatrix} 4 & 0 \ 0 & 2 \end{bmatrix}$$

Then:

Scegli un'alternativa:

- $\ \bigcirc$ a. $x=(0,0)^T$ is an eigenvector of A.
- $\ \ \,$ b. $x=(1,0)^T$ is an eigenvector of A.
- \bigcirc c. $x = (1,1)^T$ is an eigenvector of A.

La risposta corretta è: $x=(1,0)^T$ is an eigenvector of A.

lf

$$A = egin{bmatrix} 2 & 0 \ 0 & 1 \end{bmatrix}$$

Then:

Scegli un'alternativa:

- ullet a. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(1,0)^T$.
- \circ b. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(0,1)^T$.
- \circ c. $\lambda=1$ is the eigenvalue associated with the eigenvector $x=(1,0)^T$.

La risposta corretta è: $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(1,0)^T$.

If $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$ and

$$Ax = \lambda x$$

For $\lambda \in \mathbb{R}$, then:

Scegli un'alternativa:

- \bigcirc a. For any $c \in \mathbb{R}$, $c \neq 0$, cx is an eigenvector of A.
- \bigcirc b. cx is an eigenvector of A if and only if c=1.
- c. None of the above.

La risposta corretta è: For any $c \in \mathbb{R}$, $c \neq 0$, cx is an eigenvector of A.

$$A = egin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

Then:

Scegli un'alternativa:

- igcup a. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(0,1,0)^T$.
- \odot b. $\lambda=-1$ is the eigenvalue associated with the eigenvector $x=(0,0,1)^T$.
- $\$ c. $\lambda=1$ is the eigenvalue associated with the eigenvector $x=(1,0,0)^T$.

La risposta corretta è: $\lambda=-1$ is the eigenvalue associated with the eigenvector $x=(0,0,1)^T$.

In $\mathcal{F}(10,2,-2,2)$, if $x=\pi$, y=e, and z=fl(x)-fl(y), then:

Scegli un'alternativa:

- \circ a. $fl(z) = 0.43 \times 10^{1}$.
- Ob. $fl(z) = 0.44 \times 10^{1}$.
- c. $fl(z) = 0.40 \times 10^{1}$.

La risposta corretta è: $fl(z) = 0.40 \times 10^{1}$.

In $\mathcal{F}(10,2,-2,2)$, if $x=\pi$, y=e, and z=fl(x)*fl(y), then:

Scegli un'alternativa:

- a. $fl(z) = 0.84 \times 10^1$.
- b. $fl(z) = 0.0837 \times 10^2$.
- \circ c. $fl(z) = 0.837 \times 10^1$.

La risposta corretta è: $fl(z) = 0.84 \times 10^1$.

In $\mathcal{F}(10,6,-3,3)$, if x=192.403, y=0.635782, and z=fl(x)+fl(y), then:

Scegli un'alternativa:

- a. $fl(z) = 0.193039 \times 10^3$.
- \circ b. $fl(z) = 0.193038 \times 10^3$.
- \circ c. $fl(z) = 0.193038782 \times 10^3$.

La risposta corretta è: $fl(z) = 0.193039 \times 10^3$.

In $\mathcal{F}(10,2,-2,2)$, if $x=\pi$, y=e, and z=fl(x)+fl(y), then:

Scegli un'alternativa:

- \bigcirc a. $fl(z) = 0.585 \times 10^1$.
- Ob. $fl(z) = 0.58 \times 10^{1}$.
- $c. fl(z) = 0.59 \times 10^1.$

La risposta corretta è: $fl(z) = 0.58 \times 10^{1}$.

If $f:\mathbb{R}^n o\mathbb{R}$, $f\in\mathcal{C}^1(\mathbb{R}^n)$, then x^* is a minimum point if and only if:

Scegli un'alternativa:

- igcirc a. $abla f(x^*) = 0$ and $abla^2 f(x^*)$ is positive semi-definite.
- b. $\nabla f(x^*) = 0.$
- \bigcirc c. $abla f(x^*) = 0$ and $abla^2 f(x^*)$ is positive definite.

La risposta corretta è: $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite.

Gradient descent methods:

Scegli un'alternativa:

- \square a. If α is suitable chosen, $f \in C^1$, for any x_0 , always converges to a stationary point of f(x).
- \bullet b. If α is suitable chosen, $f \in C^1$, for any x_0 , always converges to a minimum of f(x).
- \bigcirc c. Always converges to a minimum of f(x).

La risposta corretta è: If α is suitable chosen, $f \in C^1$, for any x_0 , always converges to a stationary point of f(x).

Gradient descent methods solves the optimization problem

$$\min_{x} f(x)$$

By:

Scegli un'alternativa:

- a. Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1} = x_k \alpha \nabla f(x_k)$ for $\alpha > 0$ step-size.
- \odot b. Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1}=x_k+lpha
 abla f(x_k)$ for lpha>0 step-size.
- \odot c. Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1}=x_k-\alpha \nabla f(x_k)$ for lpha
 eq 0 step-size.

La risposta corretta è: Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1} = x_k - \alpha \nabla f(x_k)$ for $\alpha > 0$ step-size.