1. Binary Strings

- (a) Show all binary strings of length 4, grouping them according to #(ones) = 0, 1, 2, 3, and 4.
- (b) Relate the #(binary strings) in each group in Problem (a) with the numbers C(4, m) for different m.
- (c) Assume that the successive bits from left to right in the binary strings of length 4 correspond to the items a, b, c, and d of the set $X = \{a, b, c, d\}$. Show the subset of X related to each binary string of length 4 in Problem (a).
- (d) How does the result in (c) help to show C(4,3) = #(binary string with 3 ones) in Problem (b)?
- (e) Why do we have #(binary strings of length 4) = $16 = C(4, 0) + C(4, 1) + \cdots + C(4, 4)$?
- (f) What does generalization of (e) give for arbitrary $n \ge 1$? (For n = 0, the only binary string of length 0 is the empty-string and thus C(n, 0) = 1 = #(binary strings of length 0).)
- (g) Show a matching (1-1 and onto relationship) between binary strings of length 4 with one 1 and binary strings of length 4 with one 0.
- (h) How does this help to show C(4, 1) = C(4, 3)?
- (i) What is the connection between the notions of "complement of a binary string" and "the complement of a subset"?.IP (j) How does (i) help to show that C(n, m) = C(n, n m), the symmetry property of Binomial numbers?
- 2. How can you use the formula $C(n,m) = \frac{n(n-1)(n-2)\cdots(n-m+1)}{m(m-1)(m-2)\cdots2.1}$ to show C(n,m) = C(n,n-m)? (Because one of m and n-m is going to be $\leq n/2$, we can assume $m \leq n/2$. By the way, why one of m and n-m is $\leq n/2$?)
- 3. Application m. C(n, m) = (n m + 1). C(n, m 1) for $1 \le m \le n$.
 - (a) Show the equation obtained by replacing m with n-m+1 throughout the above formula. (Note that $1 \le n-m+1 \le n$ if $1 \le m \le n$.)
 - (b) Now assume that C(n, m-1) = C(n, n-(m-1)), i.e., C(n, m-1) = C(n, n-m+1). Then, what can you obtain from the result in (a)?
- 4. Suppose we are given three facts: (1) a box has 10 fruits, (2) 6 of those fruits are big, and (3) 7 of those fruits are sour.
 - (i) List at least 8 new valid conclusions; state each conclusion in the strongest form. (The statement "3 fruits are not sour" is stronger, i.e., more informative than each of the statements "at least 3 fruits are not sour" and "at most 3 fruits are not sour"; the last one is stronger than "at most 4 fruits are not sour". However, the conclusion "at most 2 fruits are not sour" is wrong/invalid as is "at least 4 fruits are not sour". One can also have conclusions of the form "At least ... many fruits are sour or not big".)
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)
 - (f)
 - (g)
 - (h)

...

(ii) Replace now 10, 6, and 7 in the facts (1)-(3) by f, b, and s; also assume 0 < b, s < f. Restate your answers in (i) in terms f, b and s. (Hint: You may need to use maximum and minimum of two or more of b, s, f, f - b, f - s, etc.)