Credit Card Approval

Dương Minh Hiếu - DA18

Credit Card Approval

INTRODUCTION THE DATASET

Describe the dataset, the purpose of the model

MODEL BUILDING

Build and select the best model for prediction

DATA PREPARATION

Explore, analyze and scale data

PREDICT & EVALUATE

Predict and evaluate the performance of the model

Datasets problem

- Diểm tín dụng là phương pháp sử dụng thông tin và dữ liệu cá nhân của người đăng ký thẻ tín dụng để dự đoán khả năng trả nợ trong tương lai. Ngân hàng có thể quyết định có cấp thẻ tín dung cho người nộp đơn.
- Mục đích: cần xây dựng mô hình học máy để dự đoán xem
 KH "tốt", "bình thường", "xấu"

Datasets Description

Application record

- + Gồm các thông tin cơ bản của KH như applicant gender, DOB, education type, assets that applicant had, etc.
- + Có 18 biến: 12 biến phân loại, 5 biến liên tục và 1 biến ID

Credit record

- + Gồm các thông tin thanh toán khoản vay của KH
- + 1 biến phân loại, 1 biến liên tục và 1 biến ID

Action

- 1. Từ 2 datasets, áp dụng vào **build models**:
- Logistic Regression
- Naive Bayes
- SVM
- Decision Tree
- Random Forest
- KNN
- Boosting: AdaBoost, Gradient
 Boosting, XGBoost
- 2. So sánh các chỉ số Accuracy, Fl score, Precision, Recall để **chọn mô hình** phù hợp (ưu tiên phân loại KH "xấu" chính xác nhất)

Graphic

Insights from application details record:

- Đa số kH là nữ, số lượng KH nữ gấp đôi số lượng KH là nam
- KH có sở hữu BDS, KH nữ chiếm đa số, 47.5% gấp hơn 2 lần KH nam 21.9%
- KH sở hữu ô tô, KH nam và nữ xấp xỉ nhau, 20.1% KH nam và 17.1% KH nữ

Graphic

Income type

Đại đa số KH đang đi làm hoặc tự kinh doanh: 19.4% KH nam và 32.2% KH nữ đang đi làm; 8.4% KH nam và 14.5% KH nữ đang tự kinh doanh.

Education type

Phần lớn KH có trình độ ĐH và Trung học: 8.5% KH nam và 18.3% KH nữ đã học ĐH; 22.5% KH nam và 46.3% KH nữ đã học trung học

Family status

Đa số KH đã kết hôn: 24.9% KH nam và 43.5% KH nữ

Graphic

Nghề nghiệp phổ biến là Laborers, core staff, sales staff, manager, driver, high skill tech staff, accountant

Nơi ở phổ biến:

House/apartment

Xử lý file credit_card

Quy định NNNH

Nhóm 1: Dư nơ đủ chuẩn (Các khoản nơ được thanh toán trong hạn + Các khoản nơ quá han dưới 10 ngày)

Nhóm 2: Dư nợ cần chú ý (Các khoản nợ quá han từ 10 – 90 ngày)

Nhóm 3: Dư nơ dưới tiêu chuẩn (Các khoản nơ quá han từ 30 – 90 ngày)

Nhóm 4: Nơ nghi ngờ mất vốn (Các khoản nơ quá han từ 90 – 180 ngày)

Nhóm 5: Nợ có khả năng mất vốn (Các khoản nơ quá han hơn 180 ngày)

Credit_record [Status]

C: paid off that month

X: No loan for the month

0: 1-29 days past due

1: 30-59 days past due

2: 60-89 days overdue

3: 90-119 days overdue

4: 120-149 days overdue

5: Overdue or bad debts, write-offs for more than 150 days

Phân nhóm

Nhóm - Good_Debt: status C, **X.** 0

Nhóm - **Neutral Debt**: status 1,2

Nhóm - **Bad_Debt**: status **3**, 4, 5

[]	# Xếp hạng tín dụng của KH theo đa số của loại nhóm nợ
	<pre>credit_record.loc[(credit_record['Good_Debt'] > credit_record['Neutral_Debt']),</pre>
	<pre>credit_record.loc[(credit_record['Good_Debt'] > credit_record['Bad_Debt']), 'CREDIT_APPROVAL_STATUS'] = 2</pre>
	<pre>credit_record.loc[(credit_record['Neutral_Debt'] > credit_record['Good_Debt']),</pre>
	<pre>credit_record.loc[(credit_record['Neutral_Debt'] > credit_record['Bad_Debt']), 'CREDIT_APPROVAL_STATUS'] = 1</pre>
	<pre>credit_record.loc[(credit_record['Bad_Debt'] > credit_record['Good_Debt']), 'CREDIT_APPROVAL_STATUS'] = 0</pre>
	<pre>credit_record.loc[(credit_record['Bad_Debt'] > credit_record['Neutral_Debt']), 'CREDIT_APPROVAL_STATUS'] = 0</pre>

Data preparation

- Thêm 2 cột: Age (quy đổi từ Day of birth), Years_employ (quy đổi từ Days_employ)
- Normalize: amt_income_total
- **Mã hoá**: code_gender, flag_own_car...
- Merge 2 file theo ID number
- Drop: ID, flag_phone, days_birth, days_employ
- => Dataset còn 17 features để phân tích

Data preparation

Model building

-0.4

- 0.2

	precision	recall	f1-score	support
Bad_Debt Neutral_Debt Good_Debt	0.39 0.41 0.92	0.25 0.43 0.92	0.31 0.42 0.92	36 881 6624
	precision	recall	f1-score	support
0.0	0.12	0.19	0.15	36
1.0	0.34	0.40	0.37	881
2.0	0.92	0.89	0.90	6624
	precision	recall	f1-score	support
0.0	0.44	0.33	0.38	36

0.24

0.91

STT	Model	Accuracy rate
1	Random Forest	86%
2	KNN	83%
3	Adaboost	79%
4	XGBoost	69%
5	Decision Tree	63%
6	GradientBoost	61%
7	LR	55%
8	MNB	52%
9	GNB	48%
10	SVM	38%

1.0

2.0

0.29

0.88

881

6624

0.36

0.85

AdaBoost - Confusion matrix

	precision	recall	f1-score	support
Bad_Debt	0.44	0.33	0.38	36
Neutral_Debt	0.24	0.36	0.29	881
Good_Debt	0.91	0.85	0.88	6624
accuracy			0.79	7541
macro avg	0.53	0.51	0.52	7541
weighted avg	0.83	0.79	0.80	7541

Bad Debt

TP = 11 FN = 5 + 20 = 25 FP = 3 + 10 = 13 TN = 7492

Neutral Debt

TP = 323 FN = 3 + 555 = 558 FP = 5 + 1003 = 1008 TN = 5652

Good Debt

TP = 5611 FN = 10 + 1003 = 1013 FP = 20 + 555 = 575 TN = 342

Introduction Data preparation

Model building Predict & evaluate

Thank you for your great support!