

Breast Cancer Prediction Using CNNs

ماشين لرننغ

Team ماشین لرننغ Team

Table of Contents

01 **Problem Motivation** 04 **Experiments**

40,000

Patients died due to cancer misdiagnosis in 2013

01 Problem Motivation & Challenges

- Cancer Detection is described as spotting 3 blue cars from a satellite photo of a city.
- Pathologists do this for hundreds of tissue samples
- Breast Cancer accounts for 30% of all cancer in women

How can we detect cancer efficiently and allow pathologists to understand the output?

03 Dataset

DESCRIPTION

Diagnosis	Number of Images
Positive	78,786
Negative	198,738

- Dataset consists of 162
 slide images of breast
 cancer specimen scanned at
 40x
- 277,524 patches of size 50x50 extracted
- Dataset taken from Kaggle

04 Methodology

CNN to classify tissue samples as IDC+ or IDC-.

Implemented using tensorflow library

Saliency maps to view into the models "thinking" process. SmoothGrad and Vanilla Gradient maps.

Implemented using saliency library

We assumed we could tell if a saliency map is highlighting important features. We aren't pathologists

Model

Input

Labeled Images of IDC+ and IDC- samples Images are of size 50x50 and colored.

Output

Classification into one of the two categories. 1 dimensional vector output

We assumed the base model architecture will work on saliency maps from the saliency library.

This assumption lead to us experimenting with different architectures.

05 Experiments

Architecture Modification Results

Two different variations of a CNN were experimented on.

	Archi 1 Metrics						
# of Conv Layers	F1 IDC-	F1 IDC+	Accuracy	Recall IDC+	Recall		
2	84	86	85	88	85		
3	87	87	87	87	87		
<u>4</u>	<u>86</u>	<u>87</u>	<u>87</u>	<u>89</u>	<u>87</u>		
5	84	87	85	94	85		

Archi 1

Output: 1D vector Activation: Sigmoid Optimizer: Adam

	Archi 2 Metrics					
2	86	87	86	89	86	
3	81	85	83	94	83	
4	<u>85</u>	<u>87</u>	<u>86</u>	<u>92</u>	<u>86</u>	
5	84	87	86	93	86	

Archi 2

Output: 2D vector Activation: SoftMax Optimizer: sgd

In both cases, four convolutions layers performed best. They will be referred to as Model 1 and Model 2.

Model Surveying Results

The model was compared to a Logistic Regression model, an SVC model, and a Random Forest Classifier model

Model	F1 IDC-	F1 IDC+	Accuracy	Recall IDC+	Recall
Logistic Regression	76	75	76	78	76
Random Forest Classifier	82	82	82	84	82
Model 1	86	87	87	89	87
Model 2	85	87	86	92	86

Both Model 1 and 2 outperformed the other implemented models in all metrics

Saliency Maps Results

The saliency maps were generated using Model 2. The Saliency library required the output of the model to have to have SoftMax.

Saliency maps were able to highlight the features the small and big purple spots in the tissue samples.

Further Experiments Results P1

SIZE represents the number of images of each class

	Model 1 Metrics					
SIZE	F1 IDC-	F1 IDC+	Accuracy	Recall IDC+	Recali	
5k	78	82	81	92	81	
10k	87	84	86	75	85	
20k	86	87	87	89	87	
30k	85	84	85	81	85	
40k	83	86	84	92	84	

	Model 2 Metrics					
5k	77	81	79	89	79	
10k	87	86	87	85	87	
20k	85	87	86	92	86	
30k	85	87	86	91	86	
40k	86	87	86	86	86	

Model 1 Model 2

As SIZE increased, Model 2 performed better because it had a more stable accuracy.

Further Experiments Results P2

To further validate the difference between the models, the following graphs were compared.

Model 2 had less "spikes" and a more stable graph than Model 1's graphs. Model 2 was able to abstract the rules needed to predict the two classes.

Dataset outliers were included in the training process because they required a lot of manual work

Hardware limitations halted further development of the model.

Future study is required with increasing SIZE to include all the IDC+ images.

06 Conclusion and Further Work +

There should also be further study in checking how magnification of the images affect the accuracy of the model. This was tested in related work.

Pathologist should be included in the process of evaluating saliency maps and to further understand what is used in classifying cancer.

Thank You for Listening!!!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik.**