TUM EI 70360: MACHINE LEARNING AND OPTIMIZATION FALL 2023

LECTURER: REINHARD HECKEL TEACHING ASSISTANT: TOBIT KLUG

Problem Set 12

Issued: Tuesday, Jan. 16, 2024 Due: Thursday, Jan. 25, 2024

Problem 1 (Number of parameters and compute of the GPT model). Consider the decoder-only transformer considered in class with the following parameters. For all tasks omit sub-leading terms such as non-linearities, biases, and normalization.

vocab_size: size of the vocabulary

dim_embd: dimension or size of the embeddings

n_heads: number of heads
n_layers: number of layers

context_length: the (maximal) context length, that is the maximal number of input tokens

- 1. Compute the total number of non-embedding trainable parameters N of the transformer, i.e., the total number of trainable parameters excluding the number of parameters associated with embeddings.
- 2. Now compute the total number of non-embedding compute in floating point operations (FLOPs) per tokens for a forward pass. Make the following assumption: The multiplication of two matrices **A** and **B**, where **A** is $i \times j$ and **B** is $j \times k$ gives a matrix **C** of dimension $i \times k$. For each element of **C**, you perform j multiply-accumulate operations (since you're multiplying and then summing up j pairs of elements). Each of these involves one multiplication and one addition. Therefore, for each element of **C**, you have 2j FLOPs. Extending this to the entire matrix **C** (which has ik elements), the total number of FLOPs is 2ijk.
- 3. Assume that the cost of a backward pass is roughly two times a forward pass, and assume that we have a transformer in the regime $dim_embd >> context_length/12$. Justify the common statement 'the non-embedding compute per token for training is roughly 6N'.