# Algoritmy 1 část 2



Radim BĚLOHLÁVEK Katedra informatiky Univerzita Palackého v Olomouci

## Základní datové struktury úvod

... více probereme později

## Co je datová struktura?

Volně řečeno, způsob, způsob uložení dat v počítači a způsob, jakým můžeme k datům přistupovat.

#### Základní datové struktury:

- pole
- seznam (někdy také spojový seznam; jednosměrný nebo dvousměrný)
- zásobník
- fronta
- strom (jedna z nejdůležitějších, existuje mnoho variant, uvidíme)
- graf
- další . . .

#### **Pole**

Anglicky "array".

Jednoduchá datová struktura: posloupnost datových položek (stejného typu).

Datovými položkami mohou být čísla (to bude náš nejčastější případ), textové znaky, ale i další položky (jiné datové struktury).

Pole A čísel (celých čísel) velikosti 8 obsahující po řadě čísla 4, -2, 0, 2, 15, 2, 7, 1:

| 4 | -2 | 0 | 2 | 15 | 2 | 7 | 1 |  |
|---|----|---|---|----|---|---|---|--|
|---|----|---|---|----|---|---|---|--|

- Píšeme např.:  $A = \langle 4, -2, 0, 2, 15, 2, 7, 1 \rangle$ .
- Přístup k prvkům pole velikosti n: A[i] ... i-tý prvek pole  $(1 \le i \le n)$ , i ... index, tj.  $A = \langle A[1], A[2], ..., A[n] \rangle$ , tedy A[1] = 4, A[2] = -2, A[3] = 0, ..., A[7] = 7, A[8] = 1.

Radim Bélohlávek (UP) Algoritmy 1, č. 2 ZS 4/150

Indexovali jsme "od jedničky" Někdy je výhodné indexovat "od nuly",
 tj. pak

$$A = \langle A[0], A[1], \dots, A[n-1] \rangle,$$

tedy 
$$A[0] = 4$$
,  $A[1] = -2$ ,  $A[2] = 0$ , ...,  $A[6] = 7$ ,  $A[7] = 1$ .

Při zápisu algoritmu musí být jasné, zda indexujeme "od nuly" nebo "od jedničky". Většinou budeme indexovat "od nuly".

- Při indexování "od jedničky":
  - $A[i] \leftarrow 3 \dots na$  i-té místo pole vloží číslo 3,
  - $t \leftarrow A[4] \dots$ do proměnné t vloží hodnotu čtvrtého prvku pole.

Při indexování "od nuly"":

- $A[i-1] \leftarrow 3 \dots na$  i-té místo pole vloží číslo 3,
- $t \leftarrow A[3] \dots$ do proměnné t vloží hodnotu čtvrtého prvku pole.
- $-A[i\ldots j]\ldots$ označuje část pole ("podpole", samo pole) od i-tého do j-tého prvku,

tedy 
$$A[i \dots j] = \langle A[i], A[i+1], \dots, A[j] \rangle$$
.

- Tedy A je  $A[0 \dots n-1]$ .

4 D > 4 B > 4 E > 4 E > 9 Q O

Při zápisu algoritmů budeme předpokládat, že velikost pole A je známa a budeme ji označovat n apod., popř se na ni budeme odkazovat length(A), l(A) apod.

Algoritmus, který "vynuluje" všechny prvky pole A.

Set-To-Zero(A)

1 for 
$$i \leftarrow 0$$
 to  $n-1$ 

2 **do** 
$$A[i] \leftarrow 0$$

nebo

Set-To-Zero(A)

1 **for** 
$$i \leftarrow 0$$
 **to**  $length(A) - 1$ 

2 **do** 
$$A[i] \leftarrow 0$$

nebo (při indexování "od jedničky")

Set-To-Zero(A)

1 for 
$$i \leftarrow 1$$
 to  $n$ 

2 **do** 
$$A[i] \leftarrow 0$$

## Třídění

#### Problém třídění

#### problém (třídění):

**vstup:**  $\langle a_1, \ldots, a_n \rangle$  (posloupnost *n* čísel)

**výstup:** permutace  $\langle b_1, \dots, b_n \rangle$  vstupní posloupnosti taková, že

$$b_1 \leq b_2 \leq \cdots \leq b_n$$

Tj. výstupní polsoupnost vznikne přerovnáním prvků vstupní posloupnosti tak, aby byla "setříděna".

Vstupní posloupnost je obvykle reprezentována polem

 $A[0 \dots n-1] = \langle a_1, \dots, a_n \rangle$ , které po skončení výpočtu podle algoritmu obsahuje setříděnou posloupnost, tj.  $A[0 \dots n-1] = \langle b_1, \dots, b_n \rangle$ .

vstup 
$$\langle 4, -2, 0, 2, 15, 2, 7, 1 \rangle$$

odpovídající výstup  $\langle -2,0,1,2,2,4,7,15 \rangle$ 

vstup 
$$\langle -2, 4, 5, 8, 10, 15, 37, 91 \rangle$$

odpovídající výstup  $\langle -2, 4, 5, 8, 10, 15, 37, 91 \rangle$ 

vstup  $\langle 16, 8, 4, 2, 1 \rangle$ 

odpovídající výstup  $\langle 1, 2, 4, 8, 16 \rangle$ 

### Proč je problém třídění důležitý:

- Vyskytuje se jako úloha při řešení mnoha úloh zpracování dat.
  - Setřídit pole naměřených hodnot (např. abychom v něm mohli lépe vyhledávat).
  - Setřídit zaměstnance podle věku, popř. podle příjmu.
  - Při přípravě bankovního výpisu z účtu setřídit transakce podle data.
     Atd.
- Algoritmy pro řešení složitějších problémů využívají algoritmy pro třídění.
- Často potřebujeme setřídit pole složitějších datových položek než jsou čísla. Např. při třídění zaměstnanců podle příjmu obsahuje pole strukturované záznamy obsahující kromě ůdaje o příjmu údaj o jménu, zaměstnaneckém čísle, apod. V poli se pak přeuspořádávají celé záznamy, nejen čísla. Pak je třeba zabezpečit, aby se zbytečně nepřemísťovaly velké objemy dat (velké záznamy). To lze vyřešit (přemísťujeme indexu záznamů, nikoli samotné záznamy). V principu se ale nic nemění, třídění probíhá podle jisté položky záznamu, která je číslem. Této položce se říká klíč.

- Metodický a historický význam. Algoritmy třídění používají řadu užitečných technik pro návrh algoritmů.
- Problém třídění je zajímavý z hlediska informatiky (známe zajímavé věci o složitosti tohoto problému, např. dolní odhad složitosti).
   Uvidíme později.

#### Dva pojmy: Algoritmus třídění

- patří mezi algoritmy třídění porovnáváním (provádí třídění porovnáváním), pokud pro setřídění čísel používá jen informaci získanou porovnáváním čísel (nepoužívá např. informaci o poslední cifře čísla). Takové algoritmy lze používat i pro třídění polí obsahujících jiné, vždy porovnatelné, položky (znaky abecedy apod.).
- pracuje "na místě" (in place), pokud až na konstantní (na velikosti pole nezávislý) počet prvků pole je během činnosti algoritmu uložen mimo pole (např. v pomocné proměnné temp pro výměnu prvků pole).

## První, "naivní" algoritmus

Přímo z definice problému třídění lze uvažovat tento algoritmus:

Procházej všechny možné permutace pole A, pro každou z nich ověř, zda je pole A setříděné. Pokud ano, skonči. Pokud ne, přejdi k další permutaci.

Je velmi neefektivní. V nejhorším případě musí projít všechny permutace n-prvkového pole, a těch je n! (n faktoriál). Víme, že časová složitost takového algoritmu je neúnosná a algoritmus můžeme zavrhnout, aniž bychom ho implementovali a exprimentálně testovali.

#### Cvičení

- 1. Navrhněte algoritmus, který generuje všechny permutace *n*-prvkového pole (popř. se k tomuto problému vraťte později).
- 2. Pomocí tohoto algoritmu implementujte výše popsaný algoritmus třídění.

#### Insertion Sort

Třídění vkládáním.

Idea tohoto algoritmu je podobná způsobu, jak třídíme n rozdaných karet: n karet leží na začátku na stole. Pravou rukou je bereme a vkládáme do levé ruky tak, že v levé ruce vzniká setříděná posloupnost karet (zleva od nejmenší po největší). Drží-li levá ruka k karet, pak další, (k+1)-ní, kartu zatřídíme tak, že ji zprava porovnáváme se setříděnými kartami a vložíme ji na správné místo.

```
Insertion-Sort(A[0..n-1])

1 for j \leftarrow 1 to n-1

2 do t \leftarrow A[j]

3 i \leftarrow j-1

4 while i \geq 0 and A[i] > t

5 do A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow t
```

A[0...j-1] obsahuje setříděnou posloupnost (karty v levé ruce).

Na začátku (při 1. vstupu do cyklu 1–7) je touto setříděnou posloupností A[0..0], tj. A[0].

Při vstupu do cyklu 1–7 s hodnotou j je je touto setříděnou posloupností A[0..j-1]

Do t se vloží hodnota, kterou je třeba zatřídit (postupně 2., 3., ... n-tý prvek), tj. hodnota A[j].

V cyklu na ř. 4–6 se najde místo pro zařazení prvku t procházením části pole A[0..j-1]. Prvky části pole se přitom posouvají vpravo (tím se uvolňuje místo pro t).

Na ř. 7 se t vloží na nalezené místo.

Je-li j < n-1, jdeme na ř. 1 a postupujeme stejně pro zařazení další hodnoty pole  ${\cal A}.$ 

**Příklad** (třídění algoritmem Insertion-Sort)

zobrazujeme stav pole A na ř. 1 a na ř. 7 postupně pro  $j=0,1,\ldots,n-1$ . Máme n=6.

Modře je setříděná část pole. Podtržený je zařazovaný prvek t.

vstup: 7 1 5 9 7 0

$$j=2$$
, ř. 1 1 7 5 9 7 0 ř. 7 1 5 7 9 7 0

$$j = 3$$
, ř. 1 1 5 7 9 7 0 ř. 7 1 5 7 9 7 0

$$j=4$$
, ř. 1  $\boxed{ 1 \hspace{.1cm} |\hspace{.06cm} 5 \hspace{.1cm} |\hspace{.06cm} 7 \hspace{.1cm} |\hspace{.06cm} 9 \hspace{.1cm} |\hspace{.06cm} \underline{7} \hspace{.1cm} |\hspace{.06cm} 0 }$  ř. 7  $\boxed{ 1 \hspace{.1cm} |\hspace{.06cm} 5 \hspace{.1cm} |\hspace{.06cm} 7 \hspace{.1cm} |\hspace{.06cm} \underline{7} \hspace{.1cm} |\hspace{.06cm} 9 \hspace{.1cm} |\hspace{.06cm} 0 \hspace{.1$ 

## Správnost algoritmu Insertion Sort

Správnost plyne z následující vlastnosti V:

Na začátku každého cyklu 1–7 obsahuje část A[0..j-1] prvky, které se před spuštěním algoritmu nacházely v této části a které jsou vzestupně uspořádané (setříděné).

To je snadno vidět.

Pro j = 1 je to zřejmé (tou částí je A[0]).

Pokud platí V pro vstup do cyklu s hodnotou j=k, pak V platí i pro vstup s hodnotou j=k+1, protože během cyklu s hodnotou j=k proběhne zařazení prvku A[k] do části A[0..k-1]. Při dalším vstupu do cyklu, tj. s hodnotou j=k+1 je tedy část A[0..j-1], tj. část A[0..k], setříděna.

Po skončení je j=n (cyklus se přestane vykonávat, když po zvýšení j o 1 není splněna podmínka  $j\leq n-1$ ), tedy část A[0..n-1] je setříděná, ale část A[0..n-1] je celé pole.

Důkaz správnosti je hotov.

## Složitost algoritmu Insertion Sort

Jaká je časová složitost T(n) v nejhorším případě?

Velikostí vstupu budeme chápat velikost vstupního pole, tj. n = length(A).

Určíme tedy počet t(A) instrukcí vykonaných v nejhorším případě pro setřídění pole A velikosti n.

Snadno se vidí, že nejhorším případem (vstupem, pro který se provede nejvíce instrukcí) je sestupně setříděné pole.

Přesně řečeno, je-li A sestupně setříděné pole, pak pro časovou složitost T(n) v nejhorším případě platí

$$T(n) = \max\{t(B) \mid B \text{ je pole velikosti } n\} = t(A).$$

Pak:

```
Insertion-Sort(A[0..n-1])
      for j \leftarrow 1 to n-1
          do t \leftarrow A[i]
                i \leftarrow i - 1
                while i > 0 and A[i] > t
                       do A[i+1] \leftarrow A[i]
                A[i+1] \leftarrow t
```

- Vnější cyklus 1–7 se provede (n-1)-krát.
- Při provedení cyklu 1–7 pro j se provede
  - 4 instrukce přiřazení (ř. 1, 2, 3, 7)
  - jkrát počet instrukcí z cyklu 4–6, tj. 4j instrukcí (dvě na ř. 4, po jedné na ř. 5 a 6)
  - plus 2 instrukce ř. 4, které způsobí, že cyklus 4–6 skončí,
- nakonec 1 instrukce přiřazení, po které je v j = n a cyklus 1–7 skončí.

#### Celkem se tedy provede

Radim Bělohlávek (UP)

4 D > 4 B > 4 B > 4 B > B ZS

17 / 150

Tedy  $T(n) = 2n^2 + 4n - 5$ , kvadratická složitost.

Viděli jsme (a uvidíme), že nejdůležitější informace o složitosti je dána nejrychleji rostoucím členem, což je  $2n^2$ .

Dále, že konstantu 2 můžeme zanedbat. Tak detailní analýza nás nezajímá; konstanta také závisí na tom, jak vypadají elementární instrukce, viz jedna instrukce swap(x,y) vs. 3 instrukce  $t\leftarrow x, x\leftarrow y, y\leftarrow t$ .

Tedy podstatné je, že funkce obsahuje jako nejrychleji rostoucí člen  $n^2$ .

Že pro nás je  $2n^2+4n-5$  "to samé" co  $n^2$  budeme později zapisovat jako  $2n^2+4n-5\in\Theta(n^2)$  (složitost je zhruba  $n^2$ ).

Je možné se k informaci, že složitost je zhruba  $n^2$  dostat rychleji?

Ano: Při analýze složitosti počítáme jen počet vykonání "nejdůležitější instrukce", tj. té, která se vykoná nejvícekrát.

Tou je (např.) instrukce porovnání A[i] > t na ř. 4. Ta se v nehorším případě vykoná

$$T(n) = \sum_{j=1}^{n-1} (j+1) = \sum_{j=1}^{n-1} j + \sum_{j=1}^{n-1} 1 = \frac{n(n-1)}{2} + n - 1 = \frac{n^2 + n - 2}{2}$$

krát, což je opět "to samé" co  $n^2$ .

Brát v potaz jen "nejdůležitější instrukce" usnadní analýzu složitosti.

Přitom neztratíme podstatnou informaci (jen zanedbáme konstanty a pomaleji rostoucí členy).

#### Ke složitosti Insertion Sort

- nejlepší případ = vstupní pole setříděné, provede se řádově lineární počet kroků tj. složitost v nejlepším případě je  $\Theta(n)$
- složitost v průměrném případě je (jako v nejhorším případě) kvadratická
- přes kvadratickou složitost je algoritmus velmi rychlý pro malá pole, rychlejší než pokročilejší algoritmy (např. Quick Sort, viz dále)
- používá se v kombinaci s Quick Sort: třídíme pomocí Quick Sort, ale když dosáhne velikost pole např. 10 nebo menší, použije se Insertion Sort
- existuje významné vylepšení, Shell Sort (D. L. Shell 1959):
  - porovnává vzdálené prvky, vzdálenost postupně zmenšuje
  - např. ob 10, pak ob 5, pak ob 3, pak ob 1
  - při průchodu ob k provede k-krát Insertion Sort na k prolínajících se posloupností ve vstupním poli
  - poslední průchod = normální Insertion Sort

Radim Bělohlávek (UP) Algoritmy 1, č. 2 ZS 20/150

#### Cvičení

- 1. Upravte algoritmus Insertion Sort tak, aby výsledná posloupnost byla setříděná sestupně.
- 2. Upravte algoritmus Insertion Sort tak, aby se zařazované prvky (prvky vkládané do t) vkádaly do setříděné části zleva.

#### **Selection Sort**

Třídění výběrem.

```
Idea: Najdi v A[0..n-1] nejmenší prvek a vyměň ho s A[0].
Najdi v A[1..n-1] nejmenší prvek a vyměň ho s A[1].
Najdi v A[n-2..n-1] nejmenší prvek a vyměň ho s A[n-2].
Selection-Sort(A[0..n-1])
    for i \leftarrow 0 to n-2
      do iMin \leftarrow i
3
          for i \leftarrow j+1 to n-1
4
            do if A[i] < A[iMin] then iMin \leftarrow i
5
          t \leftarrow A[i]: A[i] \leftarrow A[iMin]; A[iMin] \leftarrow t
```

**Příklad** (třídění algoritmem Selection-Sort)

zobrazujeme stav pole A po skončení cyklu 3–4 (před provedením ř. 5) a po provedení ř. 5 postupně pro  $j=0,1,\ldots,n-2$ . Máme n=6.

Modře je setříděná část pole. Podtržený je prvek na pozici odpovídající indexu *iMin*.

vstup: 7 1 5 9 7 0

$$j=0$$
, před ř. 5 7 1 5 9 7 0 po ř. 5 0 1 5 9 7 7  $\underline{7}$   $j=1$ , před ř. 5 0 1 5 9 7 7 po ř. 5 0 1 5 9 7 7  $\underline{7}$   $j=2$ , před ř. 5 0 1 5 9 7 7 po ř. 5 0 1 5 9 7 7  $\underline{7}$   $\underline{7}$ 

V posledním poli jsou všechny prvky setříděné, protože zbývající

po ř. 5

posloupnost A[5...5] obsahuje jediný prvek (9), a tedy A[5...5] je setříděné.

i = 4, před ř. 5

## Správnost algoritmu Selection Sort

Správnost plyne z následující vlastnosti V:

Po provedení každého cyklu 1–5 obsahuje část A[0..j] prvních j prvků celé setříděné posloupnosti.

To je snadno vidět.

Pro j = 0 je to zřejmé (tou částí je A[0]).

Pokud platí V pro j=k, pak V platí i pro j=k+1, protože v cyklu pro j=k+1 zůstanou prvky z A[0..k] na místě a do A[k+1] se přesune nejmenší prvek z A[k+1..n-1].

Důkaz správnosti je hotov.

## Složitost algoritmu Selection Sort

Jaká je časová složitost T(n) v nejhorším případě?

 $\dots T(n)$  je polynom stupně 2, tj. nejrychleji rostoucí člen je  $c \cdot n^2$ .

## Selection Sort vs Insertion Sort

- Selection Sort (S): po k průchodech je na prvních k pozicích v poli prvních k nejmenších prvků pole Insertion Sort (I): po k-1 průchodech jsou na prvních k pozicích v poli setříděné prvky, které byly na začátku v této části
- S: při zpracování prvku k prochází prvky napravo od něj
   I: při zpracování prvku k prochází prvky nalevo od něj
- nevýhoda S: vždy musí projít od prvku k na konec pole I ne, při A[k] > A[k-1] zpracování prvku k hned skončí (např. když vstupní pole je částečně setříděno)
- v nejhorším případě je počet porovnání I stejný jako S
   v nejhorším případě je I horší: provádí více zápisů do paměti (řádově n², S jen řádově n)
  - S je tedy lepší, když zápis je náročná operace (flash paměti)

#### O-notace a růst funkcí

#### ... odbočka od algoritmů třídění

Viděli jsme, že při analýze složitosti algoritmů docházíme k funkcím jako je např.  $2n^2+4n-5$  (viz časová složitost Insertion Sort v nejhorším případě). Řekli jsme si, že taková informace o složitosti může být "zbytečně" přesná, tj. že může postačovat hrubší informace. V tomto případě např. může stačit vědět, že složitostí v nejhorším případě je polynom druhého stupně. Zakryjeme nepodstatné nebo méně podstatné (např. konstantu 4, členy 4n - 5) a zdůrazníme podstatné  $(n^2)$ .

To je výhodné zejména při porovnávání algoritmů podle jejich složitosti.

Ukážeme si nyní prostředky pro takovou hrubší analýzu. Tyto prostředky patří mezi základní pojmy používané v analýze složitosti (a jsou užitečné i v jiných oblatech).

Příslušná oblast se nazývá O-notace ("big Oh notation").

## Proč hrubší analýzu?

Proč tedy místo  $2n^2 + 4n - 5$  uvažovat jen  $n^2$ ?

Jde totiž o to, jak rychle složitost jako funkce T(n) "roste", když se n (neomezeně) zvyšuje (jak se T chová pro velké velikosti vstupu), tj. jde o tzv. **asymptotický růst funkcí**.

Z tohoto pohledu je člen -5 nevýznamný (konstanta, nepřispívá k růstu), člen 2n má větší význam, ale přispívá k růstu mnohem méně než člen  $2n^2$ . Je tedy přirozené členy -5 a 4n zanedbat.

Proč ale zanedbat konstantu 4? Dva důvody.

- 1. Představuje konstantní faktor růstu, to podstatné je  $n^2$ .
- 2. Velikost konstanty závisí na (pseudo)kódu.

Příklad (algoritmus, který vymění hodnoty polí A a B):

Swap-Arrays
$$(A[0..n-1],B[0..n-1])$$
  
1 **for**  $i \leftarrow 0$  **to**  $n-1$   
2 **do**  $temp \leftarrow A[i]$   
3  $A[i] \leftarrow B[i]$ 

 $B[i] \leftarrow temp$ 

Nyní v pseudokódu, ve kterém exsituje instrukce *swap* (ta vymění dvě hodnoty).

Swap-Arrays
$$(A[0..n-1], B[0..n-1])$$
  
1 **for**  $i \leftarrow 0$  **to**  $n-1$   
2 **do**  $swap(A[i], B[i])$ 

První algoritmus má časovou složitost 4n+1 (v cyklu proběhne 1 přiřazení hodnoty proměnné i a 3 přiřazení na 2, 3, 4, nakonec zvýšení i na hodnotu n a ukončení cyklu).

Druhý algoritmus má časovou složitost 2n + 1.

Je tedy rozumné konstantu zanedbat a setřít tím závislosti na konkrétním pseudokódu.

Radim Bělohlávek (UP) Algoritmy 1, č. 2 ZS 29 / 150

Co zanedbáním konstanty u "hlavního" členu získáme?

- jednoduchost a přehlednost,
- vyzdvihneme podstatné, potlačíme nepodstatné.

#### Co ztratíme

přesnost analýzy.

Vysoká konstanta (např. v  $68n^2$ ) signalizuje velký počet instrukcí vykonávaných uvnitř cyklu. Rozdíl mezi  $68n^2$  a  $2n^2$  zpravidla není jen v jiném zápisu jednoho algoritmu (např. použitím různých pseudokódů). Tedy, algoritmus se složitostí  $68n^2$  má skutečně větší složitost než ten s  $2n^2$ .

Zanedbáme-li konstanty, zůstane v obou případech jen  $n^2$  a informace o výše popsaném rozdílu se ztratí.

# Základní pojmy pro porovnávání růstu funkcí

f, g apod. označují funkce z množiny  $\mathbb N$  přirozených čísel (popř. z množiny  $\mathbb R$  reálných čísel) do množiny  $\mathbb N$  (popř.  $\mathbb R$ ).

V následujících pojmech se vyskytuje tento pohled:

f je "shora ozemena" funkcí (neroste asymptoticky rychleji než funkce) g, jestliže

- nezáleží na tom, v jakém vztahu jsou hodnoty f(n) a g(n) pro malé hodnoty n (zajímá nás chování pro velké hodnoty n);
- počínaje jistou hodnotou  $n_0$  je f(n) menší nebo rovna jistému c-násobku hodnoty g(n) (zanedbáváme konstantní faktory růstu).

Pro danou funkci g (píšeme také g(n)) budeme definovat množiny funkcí tvaru

 $M(g(n)) = \{f \mid f \text{ je funkce s vlastností } V\}$ . Např.  $M(n^3) = \{f \mid \text{ pro každé } n \in \mathbb{N} \text{ je } |f(n) - n^3| \leq 2\}$  je množina všech funkcí, jejichž hodnota se od  $n^3$  neliší o víc než o 2. Tedy např.  $n^3 - 1 \in M(n^3)$ .

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

# O(g) ... asymptotická horní mez (odhad)

**Definice** Pro funkci g(n) je

$$O(g(n)) = \{f(n) \mid \text{ existuje } c > 0 \text{ a } n_0 \in \mathbb{N} \text{ tak},$$
  
že pro každé  $n \geq n_0$  je  $0 \leq f(n) \leq cg(n)\}$ 

 $h \in O(g(n))$  znamená, že h je jednou z funkcí z množiny O(g(n)). Často se také píše h = O(g(n)) (zavádějící, ale má výhody). Ilustrace:

**Příklad** Dokažme  $2n^2 - 4 = O(n^2)$ .

Je tedy  $f(n) = 2n^2 - 4$  a  $g(n) = n^2$ .

Zvolme c = 2,  $n_0 = 2$ .

Pro každé  $n \ge n_0$  platí  $0 \le f(n) \le cg(n)$ .

Tato podmínka totiž znamená, že pro každé  $n \ge 2$  je  $0 \le 2n^2 - 4 \le 2n^2$ , což zřejmě platí.

**Příklad** Dokažme  $3n^2 + 10 = O(n^2)$ .

Je tedy  $f(n) = 3n^2 + 10$  a  $g(n) = n^2$ .

Zvolme c = 4.

Požadovaná nerovnost pak je  $3n^2+10\leq 4n^2$ , což je ekvivalentní  $10\leq n^2$ , což platí pro  $\sqrt{10}\leq n$ .

Zvolíme-li tedy  $n_0 = 4$ , našli jsme c a  $n_0$  vyhovující podmínkám definice.

Lze ale zvolit i c = 5.

Požadovaná nerovnost pak je  $3n^2+10\leq 5n^2$ , což je ekvivalentní  $5\leq n^2$ , což platí pro  $\sqrt{5}\leq n$ .

Zvolíme-li tedy  $n_0 = 3$ , našli jsme jiná c a  $n_0$ , prokazující  $3n^2 + 10 = O(n^2)$ .

**Příklad** Dokažme  $2n^2 + 4n - 2 = O(n^2)$ .

Je tedy  $f(n) = 2n^2 + 4n - 2$  a  $g(n) = n^2$ .

Zvolme c = 3.

Požadovaná nerovnost pak je  $2n^2 + 4n - 2 \le 3n^2$ , což je ekvivalentní  $n^2 - 4n + 2 \ge 0$ . Pro n > 3 tato nerovnost platí.

c=3 a  $n_0=3$  (nebo  $n_0=4,5,...$ ) jsou tedy hodnoty, pro které nerovnost platí, což ukazuje  $2n^2+4n-2=O(n^2)$ .



**Příklad** Dokažme  $n^2 = O(2n^2 - 14n)$ .

Je tedy  $f(n) = n^2$  a  $g(n) = 2n^2 - 14n$ .

Zvolme c = 1.

Požadovaná nerovnost pak je  $n^2 \le 2n^2 - 14n$ , což je ekvivalentní  $n^2 - 14n \ge 0$ , což platí pro každé n > 14.

Zvolíme-li tedy  $n_0 = 14$ , našli jsme c a  $n_0$  vyhovující podmínkám definice.



**Příklad** Dokažme  $3n^2 + 10 = O(n^3)$ .

Je tedy  $f(n) = 3n^2 + 10$  a  $g(n) = n^3$ .

Zvolme c = 1.

Požadovaná nerovnost pak je  $3n^2 + 10 \le n^3$ , což je ekvivalentní  $0 \le n^3 - 3n^2 - 10$ , což platí např. pro každé  $n \ge 4$ . Zvolíme-li tedy  $n_0 = 4$ , našli jsme c a  $n_0$  vyhovující podmínkám definice.

**Příklad** Dokažme, že neplatí  $0.5n^3 = O(20n^2)$ .

Je tedy  $f(n) = 0.5n^3$  a  $g(n) = 20n^2$ .

Zvolme libovolné c > 0.

Požadovaná nerovnost pak je  $0.5n^3 \le 20cn^2$ , což je ekvivalentní  $0.5n \le 20c$ , tj.  $n \le 40c$ .

Požadovaná nerovnost tedy neplatí pro žádné  $n \ge 40c$ . Neexistuje tedy  $n_0$  tak, aby požadovaná nerovnost platila pro každé  $n \ge n_0$ .

Čísla c a  $n_0$  požadovaná definicí tedy neexistují, proto  $0.5n^3=O(20n^2)$  neplatí.

# $\Omega(g)$ ... asymptotická dolní mez (odhad)

**Definice** Pro funkci g(n) je

$$\Omega(g(n)) = \{f(n) \mid \text{ existuje } c > 0 \text{ a } n_0 \in \mathbb{N} \text{ tak},$$
   
 že pro každé  $n \geq n_0$  je  $0 \leq cg(n) \leq f(n)\}$ 



**Příklad** Dokažme  $n^2 = \Omega(2n^2 - 4)$ .

Je tedy  $f(n) = n^2$  a  $g(n) = 2n^2 - 4$ . Zvolme c = 1/2 a  $n_0 = 1$ . Pak pro  $n \ge n_0$  platí  $cg(n) = n^2 - 2 \le n^2$ . Důkaz je hotov.

**Příklad** Dokažme  $2n^2 - 4 = \Omega(n^2)$ .

Je tedy  $f(n) = 2n^2 - 4$  a  $g(n) = n^2$ . Zvolme c = 1 a  $n_0 = 3$ . Pak pro  $n > n_0$  platí  $cg(n) = n^2 < 2n^2 - 4$ . Důkaz je hotov.

**Příklad** Dokažme, že pro každou funkci f(n) a libovolnou k > 0 je  $f(n) = \Omega(kf(n))$ .

Zvolme c=1/k a  $n_0=1$ . Podmínky definice pak zřejmě platí.

# $\Theta(g)$ ... asymptotická oboustranná (těsná) mez (odhad)

**Definice** Pro funkci g(n) je

$$\Theta(g(n))=\{f(n)\mid ext{ existují } c_1>0,\ c_2>0 ext{ a } n_0\in\mathbb{N} ext{ tak},$$
 že pro každé  $n\geq n_0$  je  $0\leq c_1g(n)\leq f(n)\leq c_2g(n)\}$ 



Důležitý vztah:

**Věta** 
$$f(n) = \Theta(g(n))$$
 právě když  $f(n) = O(g(n))$  a  $f(n) = \Omega(g(n))$ .

#### Důkaz

1.  $f(n) = \Theta(g(n))$  implikuje f(n) = O(g(n)) a  $f(n) = \Omega(g(n))$ : Jednoduše přímo z definice.

Radim Bělohlávek (UP)

2. f(n) = O(g(n)) a  $f(n) = \Omega(g(n))$  implikuje  $f(n) = \Theta(g(n))$ :

f(n)=O(g(n)) znamená, že existuje  $c_2>0$  a  $n_{2,0}$  tak, že pro  $n\geq n_{2,0}$  je  $f(n)\leq c_2g(n).$ 

 $f(n)=\Omega(g(n))$ , tedy existuje  $c_1>0$  a  $n_{1,0}$  tak, že pro  $n\geq n_{1,0}$  je  $0\leq c_1g(n)\leq f(n)$ .

Položíme-li tedy  $n_0=\max(n_{1,0},n_{2,0})$ , pak tedy existují  $c_1,c_2>0$  a  $n_0$  tak, že pro každé  $n\geq n_0$  je  $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ , což znamená  $f(n)=\Theta(g(n))$ .

Příklad použití Věty:

Víme, že  $2n^2 - 4 = O(n^2)$  a  $2n^2 - 4 = \Omega(n^2)$ . Z Věty tedy plyne  $2n^2 - 4 = \Theta(n^2)$ .

# o(g) ...asymptotická ostrá (netěsná) horní mez (odhad)

As. horní odhad nemusí být těsný. Např.  $3n = O(n^2)$  není těsný, zatímco  $3n^2 = O(n^2)$  je těsný (protože je i  $n^2 = O(3n^2)$ ). Netěsné horní odhady se značí o(g) a f = o(g) pak znamená, že f je asymptoticky ostře menší než g.

**Definice** Pro funkci g(n) je

$$o(g(n)) = \{f(n) \mid \text{ pro každou } c > 0 \text{ existuje } n_0 > 0 \text{ tak,}$$
  
že pro každé  $n \ge n_0$  je  $0 \le f(n) < cg(n)\}$ 

Např.  $3n = o(n^2)$ , ale  $3n^2 \neq o(n^2)$ . Proč?  $3n = o(n^2)$ : Nechť c > 0 je libovolná. Pak pro každé n > 3/c + 1 je zřejmě  $3n < cn^2$ . Tedy stačí zvolit  $n_0 = \lceil 3/c + 1 \rceil$ .

 $3n^2 \neq o(n^2)$ : Je  $f(n) = 3n^2$ ,  $g(n) = n^2$ . Pro c = 3 zřejmě neexistuje  $n_0$  tak, že pro každé  $n \geq n_0$  platí f(n) < cg(n).

4 D > 4 A > 4 B > 4 B > B 9 Q Q

44 / 150

# $\omega(g)$ ... asymptotická ostrá dolní mez (odhad)

**Definice** Pro funkci g(n) je

$$\omega(g(n)) = \{f(n) \mid \text{ pro každou } c > 0 \text{ existuje } n_0 > 0 \text{ tak,}$$
  
že pro každé  $n \ge n_0$  je  $0 \le cg(n) < f(n)\}$ 

Např.  $3n^2 = \omega(n)$ , ale  $3n^2 \neq \omega(n^2)$ . Proč? Zdůvodnění je podobné jako v příkladě uvedeném u o(g(n)).

# Asymptotické značení v rovnostech a nerovnostech

Asympt. značení se s výhodou používá v aritmetických výrazech.

Víme, že  $3n^2 + 5 = \Theta(n^2)$  chápeme jako  $3n^2 + 5 \in \Theta(n^2)$ .

Výraz jako  $3n^2 + \Theta(n)$  chápeme tak, že jde o některý z výrazů  $3n^2 + f(n)$ , kde f(n) je některou funkcí z množiny  $\Theta(n)$ .

Např.  $3n^2+4n-3=3n^2+\Theta(n)$  znamená, že existuje funkce  $f(n)\in\Theta(n)$ , pro kterou  $3n^2+4n-3=3n^2+f(n)$ . Tato rovnost platí (pro f(n)=4n-3).

Podobně chápeme nerovnosti se symboly asymptotické notace na pravé straně.

Výrazy se symboly asymptotické notace na obou stranách rovnosti, jako např.  $n^2 + \Theta(n) = \Theta(n^2)$  chápeme takto:

Pro každou funkci  $f(n) \in \Theta(n)$  existuje funkce  $g(n) \in \Theta(n^2)$ , pro kterou je  $n^2 + f(n) = g(n)$ .

Platí 
$$n^2 + \Theta(n) = \Theta(n^2)$$
?

Pro procvičení uveď te rovnosti a nerovnosti s výskyty symbolů asymptotické notace, které jsou pravdivé, i ty, které jsou nepravdivé.

## Základní pravidla

**Věta** (tranzitivita odhadů)

Pokud 
$$f = O(g)$$
 a  $g = O(h)$ , pak  $f = O(h)$ .

Pokud 
$$f = \Omega(g)$$
 a  $g = \Omega(h)$ , pak  $f = \Omega(h)$ .

Pokud 
$$f = \Theta(g)$$
 a  $g = \Theta(h)$ , pak  $f = \Theta(h)$ .

Pokud 
$$f = o(g)$$
 a  $g = o(h)$ , pak  $f = o(h)$ .

Pokud 
$$f = \omega(g)$$
 a  $g = \omega(h)$ , pak  $f = \omega(h)$ .

#### Důkaz

Dokažme první tvrzení.

$$f(n) = O(g(n))$$
 znamená, že existuje  $c_1 > 0$  a  $n_{1,0}$  tak, že pro  $n \ge n_{1,0}$  je  $f(n) \le c_1 g(n)$ .

$$g(n)=O(h(n))$$
 znamená, že existuje  $c_2>0$  a  $n_{2,0}$  tak, že pro  $n\geq n_{2,0}$  je  $g(n)\leq c_2h(n)$ .

Položme 
$$c = c_1c_2$$
 a  $n_0 = \max(n_{1,0}, n_{2,0})$ . Pak pro  $n \ge n_0$  platí  $f(n) \le c_1g(n) \le c_1c_2h(n) = ch(n)$ , tedy  $f(n) = O(h(n))$ .

#### Věta (reflexivita odhadů)

$$f = O(f)$$
.

$$f = \Omega(f)$$
.

$$f = \Theta(f)$$
.

#### Důkaz

$$f=O(f)$$
: Stačí položit  $c=1$  a  $n_0=1$ . Stejně pro  $f=\Omega(f)$  a  $f=\Theta(f)$ .

#### **Věta** (symetrie odhadů)

$$f = \Theta(g)$$
 právě když  $g = \Theta(f)$ .

#### Důkaz

Nechť 
$$f = \Theta(g)$$
. Pak existují  $c_1, c_2 > 0$  a  $n_0$  tak, že pro  $n \ge n_0$  je

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
. Položme  $c_1' = 1/c_1$  a  $c_2' = 1/c_2$ .

Pak máme 
$$c_1', c_2' > 0$$
 a  $n_0$  taková, že pro  $n \geq n_0$  platí

$$0 \le c_2' f(n) \le g(n) \le c_1' f(n)$$
, tedy  $g = \Theta(f)$ .

Věta (symetrie horních a dolních odhadů)

f = O(g) právě když  $g = \Omega(f)$ .

f = o(g) právě když  $g = \omega(f)$ .

#### Důkaz

Dokažme první tvrzení.

f(n) = O(g(n)) znamená, že existuje c > 0 a  $n_0$  tak, že pro  $n \ge n_0$  je 0 < f(n) < cg(n).

Položme c'=1/c. Pak c'>0 a pro  $n\geq n_0$  je  $0\leq c'f(n)\leq g(n)$ , tedy  $g=\Omega(f)$ .

Podobně se dokáže, že z  $g = \Omega(f)$  plyne f(n) = O(g(n)).

#### Příklady použití výše uvedených základních vztahů

... na cvičení

#### Další příklady:

Ukažte, že pro funkci  $h(n) = \max(f(n), g(n))$  platí  $h(n) = \Theta(f(n) + g(n))$ . Ukažte, že  $o(f(n)) \cap \omega(f(n)) = \emptyset$ .

# Asymptotické značení v popisu složitosti

Má tedy smysl říct, že čas. složitost v nejhoším případě algoritmu A je O(f(n)).

Význam: pro časovou složitost T(n) algoritmu A je T(n) = O(f(n)).

Víme tedy např., že časová složitost v nejhorším případě algoritmů Insertion-Sort, Selection-Sort, Bubble-Sort (poslední uvidíme za chvíli) je  $O(n^2)$ .

Víme ale dokonce to, že časová složitost v nejhorším případě algoritmů Insertion-Sort, Selection-Sort, Bubble-Sort je  $\Theta(n^2)$ . Totiž, např. pro Insertion-Sort jsme odvodili, že  $T(n)=4n^2+2n-5$  a víme, že  $4n^2+2n-5=\Theta(n^2)$ .

Jak jsme viděli u algoritmu Insertion-Sort, zjistit, že to je  $T(n) = O(n^2)$  je snadnější než určit T(n) přesně.

**Příklad** Určete nějakou f(n) tak, že časová složitost (v nejhorším případě) následujícího algoritmu, který sečte všechny možné násobky čísel z pole A s čísly z pole B, je T(n) = O(f(n)).

 $\mathsf{Sum}\text{-}\mathsf{Of}\text{-}\mathsf{Products}(A[0..n-1],B[0..n-1])$ 

- 1  $sum \leftarrow 0$
- 2 for  $i \leftarrow 0$  to n-1
- 3 **do for**  $j \leftarrow 0$  **to** n-1
- 4 **do**  $sum \leftarrow sum + A[i] * B[j]$
- 5 return sum

Dva vnořené cykly, každý se provede n-krát. Je tedy hned vidět, že  $T(n) = O(n^2)$ .

Je také ovšem hned vidět, že  $T(n) = \Theta(n^2)$ , což je přesnější odhad.

Podobně má smysl říct, že časová složitost v nejlepším případě algoritmu A je  $\Omega(f(n))$ . Znamená to, že pro časovou složitost (v nejlepším případě) T(n) algoritmu A platí  $T(n) = \Omega(f(n))$ .

Vysvětlete, proč časová složitost algoritmu Insertion-Sort v nejlepším případě je  $\Omega(n)$ .

Je časová složitost algoritmu Insertion-Sort v nejlepším případě  $\Theta(n)$ ?

Proč neplatí, že časová složitost algoritmu Insertion-Sort v nejlepším případě je  $\Omega(n^2)$ ?

Vysvětlete, proč časová složitost algoritmu Selection-Sort v nejlepším případě je  $\Omega(n^2)$ .

# Asymptotické značení a polynomy

Nechť  $f(n) = \sum_{i=0}^{d} a_i n^i$  a  $a_d > 0$  (polynom stupně d). Pak platí:

- pro  $k \ge d$  je  $p(n) = O(n^k)$ ,
- pro  $k \leq d$  je  $p(n) = \Omega(n^k)$ ,
- pro k = d je  $p(n) = \Theta(n^k)$ ,
- pro k > d je  $p(n) = o(n^k)$ ,
- pro k < d je  $p(n) = \omega(n^k)$ .

#### **Bubble Sort**

Bublinkové třídění.

Nejmenší prvek "probublá" vlevo, pak "probublá" druhý nejmenší, atd.

```
Bubble-Sort(A[0..n-1])

1 for j \leftarrow 0 to n-2

2 do for i \leftarrow n-1 downto j+1

3 do if A[i] < A[i-1]

then temp \leftarrow A[i]; A[i] \leftarrow A[i-1]; A[i-1] \leftarrow temp
```

Příklad (třídění algoritmem Bubble-Sort)

Zobrazujeme stav pole A po provedení řádku 4 pro jednotlivé hodnoty j a i=j+1 (tj. po provedení vnitřního cyklu); pro j=0 také pro jednotlivé hodnoty i. Je n=6. Modře je setříděná část pole.

1 5

ZS

j = 4, i = 5: 0

## Správnost algoritmu Bubble Sort

Proč je Bubble-Sort správný?

Zdůvodněte sami.

Návod: Po provedení každého cyklu pro hodnotu j je část A[0..j] setříděná a obsahuje prvky  $\leq$  prvky z A[j+1..n-1].

## Složitost algoritmu Bubble Sort

Časová složitost T(n) v nejhoršímm případě je  $\Theta(n^2)$ .

Zdůvodněte. Nejdřív bez určení T(n).

Potom určete T(n).

## Varianty algoritmu Bubble Sort

#### Optimalizace vynecháním některých průchodů

Pozorování: Platí nejen to, že po každém průchodu cyklu pro j (tj. po provedení vnitřního cyklu pro j) je setříděná část A[0..j], ale dokonce to, že část pole A až po místo, kde došlo k poslední výměně na ř. 4, je setříděná a tvoří počáteční část setříděného pole A, které vznikne po skončení výpočtu.

Přesněji, došlo-li k poslední výměně ve vnitřním cyklu pro hodnotu i, je setříděná část A[0..i-1] a tato část tvoří počáteční část setříděného pole A, které vznikne po skončení výpočtu (A[0..i] je také setříděná, ale nemusí tvořit počáteční část setříděného pole A).

V dalším průchodu můžeme tedy přeskočit provádění vnějšího cyklu pro další hodnoty j a můžeme pokračovat pro j=i.

Nedošlo-li k žádné výměně, je A[0..n-1] celé setříděné, a lze tedy výpočet ukončit (přejít na j=n-1).

(V původní verzi se nic nepřeskakuje a pokračuje se pro j+1.)

Tím dojde k urychlení. Modifikovaný algoritmus lze snadno popsat a implementovat (proveďte).

Modifikovaný algoritmus je efektivnější než původní verze. Např. posloupnost, která je již setříděná, zpracuje v jednom průchodu (po průchodu pro j=0 se "přeskočí" na j=n-1, a dojde tedy k ukončení).

Přesněji: Oba algoritmy mají v nejhorším případě složitost  $\Theta(n^2)$ . V modifikované verzi se totiž v nejhorším případě (vstupní pole je setříděné sestupně), nic nepřeskakuje.

V nejlepším případě (vstupní pole je setříděné vzestupně) má původní algoritmus složitost  $\Theta(n^2)$ , ale modifikovaný  $\Theta(n)$ .

Coctail Sort (také Bidirectional Buble Sort, Shaker Sort)

Pozorování: Velmi malé prvky umístěné (před tříděním) v poli vpravo se dostanou na správné místo rychle (nejmenší prvek se tam dostane při prvním průchodu pro j=0). (Těmto "rychlým" prvkům se říká zajíci.)

Ale: Velké prvky umístěné v poli vlevo se dostávají na správné místo pomalu. Musí totiž být "předběhnuty" menšími prvky zleva. Pokud je např. nějvětší prvek (před tříděním) v A[0], dostane se na správné místo až při posledním provedení ř. 4 (tj. pro j=n-2 a i=n-1). (Těmto "pomalým" prvkům se říká želvy.)

Coctail Sort pracuje tak, že opakovaně provádí dvojice operací:

- 1. V nesetříděné části A[p..q] pole nech "probublat nejmenší" prvek zprava doleva na pozici A[p].
- 2. V nesetříděné části A[p+1..q] pole nech "probublat největší" prvek zleva doprava na pozici A[q].

Pak pokračuj s 1. pro A[p+1..q-1], atd. než je pole celé setříděné (tj. poslední provedení 1. nebo 2. se provede pro část tvaru A[k..k+1]).

Modifikovaný algoritmus lze snadno popsat a implementovat (proveďte).

Coctail Sort lze vylepšit optimalizací vynecháním některých průchodů, jako jsme to provedli v případě původního Bubble Sort.

Vylepšený algoritmus lze snadno popsat a implementovat (proveďte).

### **Quick Sort**

Česky také "Quick Sort".

Charles Anthony Richard Hoare, 1961. Algorithm 64: Quicksort. Communications of ACM. 4 (7): 321

Algoritmus typu "rozděl a panuj" (divide and conquer).

Přirozeně se nabízí rekurzívní formulace a implementace algoritmu.

Pro setřídění části pole A[p..r] algoritmus Quick-Sort postupuje následovně.

Fáze "rozděl": Zvolí q (prvek A[q] se nazývá pivot) a přemístí prvky pole tak, že všechny prvky v části A[p..q-1] jsou menší nebo rovny A[q] a všechny prvky v části A[q+1..r] jsou větší než A[q].

Volbu pivota a přemístění provede funkce Partition.

Fáze "panuj": Setřídí části A[p..q-1] a A[q+1..r]. Setřídí je opět algoritmem Quick-Sort (nejdřív jednu, pak druhou).

Jedná se o tzv. rekurzívní algoritmus. Totiž, při provádění algoritmu Quick-Sort (ve fázi "panuj") se "volá" sám Quick-Sort. To však nevede k zacyklení (k nekonečné smyčce), protože algoritmus je "volán" pro stále kratší části pole A, a při volání pro část tvaru A[p..p] se provádění okamžitě ukončí (A[p..p] je totiž setříděná). To uvidíme.

```
Quick-Sort(A, p, r)

1 if p < r

2 then q \leftarrow \text{Partition}(A, p, r)

3 Quick-Sort(A, p, q - 1)

4 Quick-Sort(A, q + 1, r)
```

Pro p < r provede Quick-Sort(A, p, r) setřídění části A[p..r].

Tedy Quick-Sort(A, 0, n-1) setřídí celé pole A[0..n-1].

Přitom Partition(A, p, r) provede výše popsané přemístění prvků pole A a vrátí index q pivota.

```
Partition(A, p, r)

1 x \leftarrow A[r]

2 i \leftarrow p - 1

3 for j \leftarrow p to r - 1

4 do if A[j] \leq x

5 then i \leftarrow i + 1

6 \text{swap}(A[i], A[j])

7 \text{swap}(A[i+1], A[r])

8 return i + 1
```

ř. 1: pivotem je hodnota A[r], ta se uloží do x

Na pole se lze dívat následovně. Při vstupu do cyklu 3–6 platí:

(a) Pro 
$$p \le k \le i$$
 je  $A[k] \le x$ .  
 $(A[p..i]$  je konstruovanou částí s prvky  $\le x$ .)  
(b) Pro  $i+1 \le k \le j-1$  je  $A[k] > x$ .

- (b) FIO  $i+1 \le k \le j-1$  je A[k] > x. (A[i+1..j-1] je konstruovanou částí s prvky > x.)
- (c) Část A[j..r-1] je dosud nezpracovanou částí.
- (d) A[r] = x.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ りゅう

#### **Příklad** (Partition(A,0,7))

Modře je A[p..i], červeně je A[i+1..j-1], **3** je pivot, p=0, r=7.

vstup: 1 9 8 0 2 6 7 3

průběh (stavy pole po provedení ř. uvedeného za polem při uvedených i,j)

| 1 | 9 | 8 | 0 | 2 | 6 | 7 | 3 |   |
|---|---|---|---|---|---|---|---|---|
| Т | 9 | 0 | U |   | O | 1 |   |   |
| 1 | 9 | 8 | 0 | 2 | 6 | 7 | 3 |   |
| 1 | 9 | 8 | 0 | 2 | 6 | 7 | 3 |   |
| 1 | 9 | 8 | 0 | 2 | 6 | 7 | 3 |   |
| 1 | 0 | 8 | 9 | 2 | 6 | 7 | 3 |   |
| 1 | 0 | 2 | 9 | 8 | 6 | 7 | 3 |   |
| 1 | 0 | 2 | 9 | 8 | 6 | 7 | 3 |   |
| 1 | 0 | 2 | 9 | 8 | 6 | 7 | 3 |   |
| 1 | 0 | 2 | 3 | 8 | 6 | 7 | 9 | Ī |
|   |   |   |   |   |   |   |   | _ |

$$\begin{bmatrix} \ddot{r}, 3, p = 0, r = 7, i = -1, j = 0 \\ \ddot{r}, 6, i = 0, j = 0 \text{ (} \ddot{r}, 5, 6 \text{ se provedly)} \end{bmatrix}$$

$$| \ \check{\mathsf{r}}. \ \mathsf{6}, \ i=0, \ j=1 \ (\check{\mathsf{r}}. \ \mathsf{5}, \ \mathsf{6} \ \mathsf{se} \ \mathsf{neprovedly}) |$$

$$[\check{r}. 6, i = 0, j = 2 (\check{r}. 5, 6 \text{ se neprovedly})]$$

$$j$$
 ř. 6,  $i = 1$ ,  $j = 3$  (ř. 5, 6 se provedly)

] ř. 6, 
$$i = 2$$
,  $j = 4$  (ř. 5, 6 se provedly)

$$\begin{bmatrix} \dot{r}, 6, i = 2, j = 5 \\ \dot{r}, 5, 6 \text{ se neprovedly} \end{bmatrix}$$

$$[ \check{r}. 6, i = 2, j = 6 (\check{r}. 5, 6 \text{ se neprovedly} )]$$

ř. 7, 
$$i = 2$$
, výměna  $A[3]$  a  $A[7]$ 

## Správnost algoritmu Quick Sort

Z rekurzívního popisu algoritmu pseudokódem je zřejmé, že algoritmus je správný, pokud je správná procedura Partition.

Pro zdůvodnění její správnosti použijeme výše uvedené vlastnosti (a)–(d).

(a)-(d) platí při prvním vstupu do cyklu 3-6.

Platí-li (a)–(d) při vstupu do průchodu cyklu 3–6 pro hodnotu j, platí i po provedení tohoto průchodu.

Po skončení cyklu 3–6 je tedy A[p..r-1] srovnaná takto:

$$A[p], \dots, A[i] \le A[r] < A[i+1], \dots, A[r-1] > A[r]$$
, pivot je  $A[r]$ .

Nakonec se provede výměna na ř. 7 (A[r] a A[i+1]) a pole je správně srovnané.

## Složitost algoritmu Quick Sort

Časová složitost:

v nejhorším případě je  $\Theta(n^2)$ ,

v průměrném případě je  $\Theta(n \log n)$ .

Proto je Quick Sort efektivním algoritmem.

(Zdůvodníme a rozvedeme později.)

## Neformální úvahy o složitosti Quick Sort

Trvání výpočtu Quick Sort pro dané vstupní pole závisí na tom, jak vyvážená jsou pole vytvářená funkcí Partition, tj. zda levý a pravý úsek mají (přibližně) stejnou velikost.

Viděli jsme, že pro vstupní pole

1 | 9 | 8 | 0 | 2 | 6 | 7 | 3

vznikne po provedení Partition pole

1 0 2 3 8 6 7 9 , které je vyvážené.

Pro vstupní pole

3 9 8 0 2 6 7 1

ale vznikne po provedení Partition pole

0 1 8 3 2 6 7 9 , které není vyvážené.

Nejhorším případem je např.

3 9 8 1 2 6 7 0

Po provedení Partition totiž vznikne pole

0 9 8 1 2 6 7 3, které je maximálně nevyvážené (prázdná levá část, podobně by mohla vzniknout prázdná pravá část).

Radim Bělohlávek (UP)

Algoritmy 1, č. 2

ZS 71/150

#### Nejhorší případ

Pokud vznikne maximálně nevyvážené pole při každém volání Partition (např. když je vstupní pole vzestupně nebo setupně setříděné), lze trvání výpočtu t(A) algoritmem Quick Sort pro pole A velikosti n odvodit následovně. Předpokládejme, že vstupní pole A[p..r] vypadá takto:  $A = \langle 2, 3, 4, 5, 6, 1 \rangle$  (vzestupně, ale poslední prvek je nejmenší; říkejme, že A je typu B).

Pro  $p \geq r$ : Při vstupu do Quick-Sort je proveden test na ř. 1. Protože  $p \geq r$ , provádění (aktuálního volání) Quick-Sort se ukončí. Byla provedena 1 instrukce (ř. 1). Protože  $1 = \Theta(1)$  (podobně  $c = \Theta(1)$  pro každou konstantu c), Ize říct, že bylo provedeno  $\Theta(1)$  kroků.

Pro p < r: Provede se test na ř. 1. Pak se provede Partition(A,p,r). Snadno se vidí, že toto provedení trvá  $\Theta(r-p+1)$  kroků (r-p+1) je počet prvků pole). Po provedení Partition je levý úsek prázdný, A[p] obsahuje pivot (nejmenší prvek A[p..r]) a pravá část A[p+1..r] je typu B. Na ř. 3 se provede Quick-Sort(A,p,p-1), trvání je dle případu "Pro  $p \ge r$ "  $\Theta(1)$ . Na ř. 4 se provede Quick-Sort(A,p+1,r), trvání je t(A[p+1..r]).

Trvání t(A[p..r]) algoritmu Quick-Sort pro A[p..r] je tedy

$$t(A[p..r]) = 1 + \Theta(r - p + 1) + \Theta(1) + t(A[p + 1..r]).$$

Pro A[0..n-1] (p=0, r=n-1) tedy dostaneme

$$t(A[0..n-1]) = 1 + \Theta(n) + \Theta(1) + t(A[1..n-1]) = \Theta(n) + t(A[1..n-1]) + \Theta(1),$$

protože  $1+\Theta(1)=\Theta(1)$ . Podobně,  $\Theta(1)+\Theta(1)=\Theta(1)$  (ověřte; uvědomte si, že to říká: součet dvou konstantních funkcí je konstantní funkce). Tedy

$$t(A[0..n-1]) = \Theta(n) + t(A[1..n-1]) + \Theta(1) =$$

$$\Theta(n) + \Theta(n-1) + t(A[2..n-1]) + \Theta(1) =$$

$$\Theta(n) + \Theta(n-1) + \Theta(n-2) + t(A[3..n-1]) + \Theta(1) = \cdots =$$

$$\Theta(n) + \Theta(n-1) + \Theta(n-2) + \cdots + \Theta(2) + \Theta(1) + \Theta(1) =$$

$$\Theta(n) + \Theta(n-1) + \Theta(n-2) + \cdots + \Theta(2) + \Theta(1).$$

Radim Bělohlávek (UP) Algoritmy 1, č. 2 ZS 73/150

Platí

$$\Theta(n) + \Theta(n-1) + \Theta(n-2) + \cdots + \Theta(2) + \Theta(1) = \Theta(n^2).$$

Ověřte to. Využijte při tom  $n+(n-1)+\cdots+2+1=\frac{(n+1)\cdot n}{2}=\Theta(n^2)$ , což víme. (Návod: dokažte např. matematickou indukcí přes n.)

Je tedy

$$t(A[0..n-1]) = \Theta(n^2).$$

Protože pole A typu B je nejhorším případem, platí pro časovou složitost T(n) Quick-Sort v nejhorším případě

$$T(n) = \Theta(n^2).$$

Připomeňme si, že u Insertion-Sort pro sestupně setříděnou posloupnost je  $t(A[0..n-1]) = \Theta(n)$  (nejlepší případ pro Insertion-Sort).

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

#### Nejlepší případ

Když vznikne při každém volání Partition maximálně vyvážené pole. Tj. když při každém volání Partition na pole s k prvky vznikne pole, jehož jedna část má  $\left\lfloor \frac{k}{2} \right\rfloor$  a druhá  $\left\lceil \frac{k}{2} \right\rceil - 1$  prvků.

Je-li A[0..n-1] takové pole, je časová složitost Quick-Sort v nejlepším případě T(n)=t(A[0..n-1]).

Platí tedy

$$T(n) \leq 2T(n/2) + \Theta(n)$$

(porovnání na ř. 1:  $\Theta(1)$ , Partition na ř. 2:  $\Theta(n)$ , dvě volání Quick-Sort na ř. 3, 4: jedno má trvání  $T(\lfloor \frac{n}{2} \rfloor) \leq T(\frac{n}{2})$ , druhé  $T(\lceil \frac{n}{2} \rceil - 1) \leq T(\frac{n}{2})$ ).

Lze ukázat (pomocí tzv. Master Theorem, později), že pak

$$T(n) = \Theta(n \lg n).$$

#### Intuice pro průměrný případ

Nejhorší případ:  $T(n) = \Theta(n^2) \dots$  max. nevyvážené pole.

Nejlepší případ:  $T(n) = \Theta(n \lg n) \dots \max$ . vyvážené pole.

Pro složitost v průměrném případě je zásadní fakt, že trvání Quick-Sort je v případě, kdy Partition produkuje pole, která nejsou ani max. vyvážená, ani max. nevyvážená, asymptoticky stejné jako v případě, kdy Partition produkuje max. vyvážená pole!

Příklad. Předpokládejme, že Partition produkuje pole rozdělené v poměru 9 : 1 (např. 11prvkové pole, levá část má 9 prvků, pravá 1). Podobně jako v případě max. vyváženého pole získáme pro

$$t(n) \leq t(\frac{9}{10}n) + t(\frac{1}{10}n) + \Theta(n).$$

Zde t(n) označuje trvání Quick-Sort za uvedených podmínek (tj. dělení 9 : 1). Lze ukázat (Master Theorem), že řešením je opět funkce  $t(n) = \Theta(n \lg n)$ .

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

## **Merge Sort**

Merge-Sort(A, p, r)

1 **if** p < r

then  $q \leftarrow \lfloor (p+r)/2 \rfloor$ 

A[q+1..r] setříděné pole A[p..r].

Merge-Sort(A, 0, n-1) setřídí A[0.n-1].

Třídění sléváním (slučováním, angl. merge). J. von Neumann, 1945.

Algoritmus typu "rozděl a panuj": Sertřiď levou polovinu pole, setřiď pravou polovinu pole, "slij" obě poloviny pole.

```
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q+1, r)
5 Merge(A, p, q, r)

Merge-Sort(A, p, q) setřídí A[p..q],

Merge-Sort(A, q+1, r) setřídí A[q+1..r],

Merge(A, p, q, r) vytvoří "slitím" ze setříděných částí A[p..q] a
```

Radim Bělohlávek (UP)

Algoritmy 1, č. 2

ZS 77/150



vstup:

Třídění probíhá takto:



Na posledním ř. jsou výsledky Merge-Sort $(A, 0, 0), \ldots$ 

Merge-Sort(A, 7, 7),

Na předchozím ř. jsou výsledky Merge-Sort $(A, 0, 1), \ldots$ 

Merge-Sort(A, 6, 7),

Na prvním ř. je výsledek Merge-Sort(A, 0, 7), tedy setříděné pole.

Slévání prováděné funkcí Merge je vyznačeno dvojicemi šipek, které vedou od slévaných částí pole ke slitému úseku. Např. slitím

vznikne Radim Bělohlávek (UP)

```
Merge(A, p, q, r)
01 n_1 \leftarrow q - p + 1
02 n_2 \leftarrow r - q
03 vytvoř nová pole L[0..n_1] a R[0..n_2]
04 for i \leftarrow 0 to n_1 - 1
           do L[i] \leftarrow A[p+i]
05
06
      for i \leftarrow 0 to n_2 - 1
           do R[i] \leftarrow A[q+1+i]
07
08 L[n_1] \leftarrow \infty
09 R[n_2] \leftarrow \infty
10 i \leftarrow 0
11 i \leftarrow 0
12
     for k \leftarrow p to r
13
           do if L[i] < R[i]
                  then A[k] \leftarrow L[i]
14
                         i \leftarrow i + 1
15
                  else A[k] \leftarrow R[i]
16
17
                        i \leftarrow i + 1
```

### Poznámky k Merge(A, p, q, r)

Merge využívá kromě pole A[p..r] další paměť, totiž pomocná pole L a R o celkové velikosti r-p+3 (velikost A+2). Merge, a tedy i Merge-Sort tedy netřídí "na místě" (in place). To je rozdíl oproti všem předchozím algoritmům i oproti Heap Sort (příště).

Merge je přímočarý algoritmus. Slévání probíhá tak, že se nejdříve slévané části zkopírují do L a R a pak se v 12-17 vždy vezme menší z dosud nezpracovaných prvků L[i] a R[j] polí L a R a vloží se na další pozici pole A, tj. na A[k].

Používá techniku "zarážky". Zarážkou je v tomto případě hodnota  $\infty$ , která je větší než každá jiná hodnota.

## Správnost algoritmu Merge Sort

Z pseudokódu je jasné, že Merge Sort je správný, pokud má Merge následující vlastnost:

Jsou-li části A[p..q] a A[q+1..r] před provedením funkce Merge vzestupně uspořádané, je po ukončení funkce Merge vzestupně uspořádané celé pole A[p..r].

Snadno se vidí, že tato vlastnost platí.

## Složitost algoritmu Merge Sort

Časová složitost T(n) v nejhorším případě:

Vstup A[0..n-1].

Pro jednoduchost předpokládejme, že počet prvků pole je mocinou dvojky, tj. že  $n=2^k$  pro celé číslo k. Později uvidíme, že tento předpoklad neovlivní výsledek naší analýzy složitosti.

Uvědomme si nejprve, že složitost Merge (vstupem je A, p, q, r, velikostí je n=r-p+1) je  $\Theta(n)$ . Merge totiž provede dva cykly 4–5 a 6–7, jejichž délka je v součtu n, cyklus 12–17 délky n, ř. 3 s trváním max. n+2 a několik dalších instrukcí (každá s trváním nezávislým na n).

Z pseudokódu plyne, že platí

$$T(n) = \Theta(1) \text{ pro } n = 1, \quad T(n) = 2T(n/2) + \Theta(n) \text{ pro } n > 1. \quad (*)$$

Pro n=1 je to zřejmé (konstantní čas, protože dojde jen k porovnání na ř. 1). Pro n>1: Dojde k dvěma voláním Merge-Sort, každé pro vstup velikosti n/2, proto člen 2T(n/2), poté Merge s trváním  $\Theta(n)$ .

Z rovnice (\*) plyne, že  $T(n) = \Theta(n \lg n)$ .

To lze odvodit z tzv. Master Theorem, se kterým se seznámíme později.

Lze to však také odvodit přímo, což uděláme. Přepíšeme (\*) tak, že výrazy  $\Theta(1)$  a  $\Theta(n)$  nahradíme  $c_1$  a  $c_2n$  a pro zjednodušení vezmeme  $c = \max\{c_1, c_2\}$  (i bez zjednodušení dojdeme k  $T(n) = \Theta(n \lg n)$ , promyslete):

$$T(n) = c \text{ pro } n = 1, \quad T(n) = 2T(n/2) + cn \text{ pro } n > 1.$$

Hodnotu T(n) pak můžeme znázornit pomocí binárního stromu. [OBRÁZEK NA PŘEDNÁŠCE A DALŠÍ SLAJD]

83 / 150



Hodnota T(n) je rovna součtu hodnot ve všech uzlech stromu. V první úrovni je jeden uzel s hodnotou cn. Součet hodnot uzlů v první úrovni je tedy cn. Ve druhé úrovni jsou dva uzly s hodnotami cn/2. Součet hodnot uzlů v druhé úrovni je tedy cn. Ve třetí úrovni jsou čtyři uzly s hodnotami cn/4. Součet hodnot uzlů v druhé úrovni je tedy cn. Atd. V poslední úrovni je n uzlů s hodnotami c. Součet hodnot uzlů v poslední úrovni je tedy cn.

Součet hodnot uzlů v každé úrovni je tedy cn. Protože strom má  $\lg n + 1$  úrovní, je celkový součet hodnot všech uzlů roven  $(\lg n + 1)cn = cn \lg n + cn$ . Tedy

$$T(n) = cn \lg n + cn = \Theta(n \lg n).$$

**Cvičení** Zapište algoritmus, který kombinuje dobré vlastnosti Merge-Sort a Insertion-Sort, totiž efektivitu pro třídění velkých polí a efektivitu pro třídění malých polí. Algoritmus třídí jako Merge-Sort velká pole až do velikosti k. Je-li pole velikosti menší nebo rovno k, probíhá třídění metodou Insertion-Sort. Algoritmus implementujte a proveď pokusy s nastavením hodnoty k. Začněte s k=10.

## **Heap Sort**

Třídění haldou (hromadou).

Třídění, které využívá datovou strukturu zvanou halda.

(Binární) halda je pole, ve kterém uložení prvků simuluje jejich přirozené uložení v binárním stromu, které respektuje jistá přirozená pravidla. Uložení prvků v haldě má výhody (rychlý přístup k prvkům, haldu lze rychle vytvořit).

Příklad haldy:

| ſ |    |   |   |   |   |   |   |   | - |   |
|---|----|---|---|---|---|---|---|---|---|---|
| l | 12 | 9 | 8 | 9 | 7 | 6 | 7 | 5 | 3 | 4 |

Její reprezentace binárním stromem: [OBRAZEK]

Halda ještě jednou, s vyznačenými indexy:

Prvek A[0] je rodičem prvků A[1] a A[2] (12 je rodičem 9 a 8, A[1] a A[2] jsou levý a pravý potomek A[0]),

A[1] je rodičem A[3] a A[4] (9 je rodičem 9 a 7),

A[2] je rodičem A[5] a A[6] (8 je rodičem 6 a 7),

A[3] je rodičem A[7] a A[8] (9 je rodičem 5 a 3),

A[4] je rodičem A[9], další prvky halda neobsahuje.

Z indexu i prvku lze snadno určit (spočítat) index Parent(i) jeho rodiče, index Left(i) jeho levého potomka i index Right(i) jeho pravého potomka:

Parent(i)

1 return  $\lfloor (i-1)/2 \rfloor$ 

Left(i)

1 return 2i + 1

Right(i)

1 return 2i + 2

Vyzkoušejte na předchozím příkladě (např. Parent(7) = 3, Left(0) = 1, Right(3) = 8). Dokažte, že to platí obecně.

**Definice** Pole A[0..n-1] se nazývá **max-halda**, pokud pro každý  $i=1,\ldots,n-1$  platí, že  $A[i] \leq A[\mathsf{Parent}(i)]$  (této nerovnosti říkáme vlastnost max-haldy).

A[0..n-1] se nazývá **min-halda**, pokud pro každý  $i=1,\ldots,n-1$  platí, že  $A[i] \geq A[\mathsf{Parent}(i)]$ .

Výše uvedené pole je max-halda. "Halda" bude znamenat "max-halda".

Tedy, největší prvek (max-)haldy je A[0].

Pro pole A označujeme length(A) velikost pole. Tedy, je-li A[0..n-1] pole, je length(A)=n.

V úvahách níže může haldu tvořit jen část pole A. Velikost této části budeme značit heap-size(A). Tedy část A[0..heap-size(A)] tvoří haldu. Je-li heap-size(A) = length(A), pak celé pole tvoří haldu.

Uvažujeme-li pro haldu A[0..n-1] odpovídající binární strom  $T_A$ , můžeme zavést tyto pojmy:

-výška prvku A[i] je výška uzlu reprezentujícího tento prvek v  $T_A$ , tj. počet hran nejdelší cesty, která vede z tohoto uzlu k některému z listů stromu  $T_A$  (list je uzel, který nemá potomka). Např. výška prvku A[1] je 2, výška prvku A[2] je 1.

-výška haldy je výška A[0], tj. výška kořene stromu  $T_A$ . Např. výška uvedené haldy je 3.

Výška haldy A[0..n-1] je  $\Theta(\lg n)$  (Ověřte na příkladě. Pak dokažte obecně, uvědomte si, že stačí dokázat, že výška je  $\lfloor \lg n \rfloor$ ).

To je hlavní důvod efektivity třídění haldou. Základní operace totiž pracují v čase (tj. mají časovou složitost v nejhorším případě) asymptoticky shora omezeném výškou haldy, tj. mají časovou složitost v nejhorším případě  $O(\lg n)$ .

Uvedeme tři funkce: Max-Heapify, Build-Max-Heap, Heap-Sort (vlastní metoda třídění haldou).

## Max-Heapify(A,i)

Předpokládá se, že části pole A, které odpovídají stromu s kořenem A[Left(i)] (tj. stromu, jehož kořen je prvek s indexem Left(i)) i stromu s kořenem A[Right(i)] tvoří haldy. Cílem je zařadit správně prvek A[i] tak, aby část pole odpovídající stromu s kořenem A[i] tvořila haldu.

```
Max-Heapify(A, i)
1 I \leftarrow Left(i)
2 r \leftarrow \text{Right}(i)
3 if l \le heap\text{-}size(A) and A[l] > A[i]
         then largest \leftarrow l
5
         else largest \leftarrow i
    if r \le heap\text{-}size(A) and A[r] > A[largest]
6
         then largest \leftarrow r
8
     if largest \neq i
9
         then swap(A[i],A[largest])
10
                 Max-Heapify(A, largest)
```

#### Příklad Max-Heapify

Vstup *A*: | 12 5 3

Předpokládejme, že heap-size(A)=10.

Volání Max-Heapify(A, 1), modře je zařazovaný prvek.

Na začátku tedy: 12

Stavy pole A:

volání Max-Heapify(A, 1), před provedením ř. 10:

volání Max-Heapify(A, 4), před provedením ř. 10:

volání Max-Heapify(A, 9), před provedením ř. 10:

$$12 \mid 9 \mid 8 \mid 7 \mid 4 \mid 6 \mid 7 \mid 5 \mid 3 \mid 2 \mid (i = largest = 9, další volání Max-Heanify (4 /argest) se tedy perroyede)$$

Max-Heapify(A, largest) se tedy neprovede).

Znázorněte průběh zařazování prvku A[1] v binárním stromu.

## Časová složitost Max-Heapify

V nejhorším případě zařazovaný prvek "propluje" až do listu stromu. Má-li tedy zařazovaný prvek výšku h, je složitost v nejhorším případě O(h) (h je třeba chápat jako funkci, jejíž hodnota závisí na n, pro kořen je  $h = \lfloor \lg n \rfloor$ , pro prvek v úrovni pod kořenem je  $h = \lfloor \lg n/2 \rfloor$ , v další úrovni je  $h = \lfloor \lg n/4 \rfloor$ ). Protože výška celého stromu s n prvky je  $\lfloor \lg n \rfloor$ , je  $h \leq \lfloor \lg n \rfloor$ . Tedy složitost Max-Heapify v nejhorším případě je  $O(\lfloor \lg n \rfloor)$  (je-li totiž  $f \in O(g)$  a  $g \leq g'$ , je  $f \in O(g')$ ). Protože  $O(\lfloor \lg n \rfloor) = O(\lg n)$ , je složitost Max-Heapify v nejhorším případě  $O(\lg n)$ .

To lze odvodit také z Master Theorem (později).

#### Správnost Max-Heapify

Je snadno vidět (zdůvodněte).

## Build-Max-Heap(A)

Používá funkci Max-Heapify k vytvoření max-haldy z vstupního pole A[0..n-1].

ldea: Prvky vstupního pole, které tvoří v odpovídajícím stromu listy, tvoří jednoprvkové max-haldy (nemají totiž potomky). To jsou právě prvky  $A[\lfloor n/2 \rfloor], \ldots, A[n-1]$  (ověřte, nejprve na příkladě, pak dokažte). Build-Max-Heap prochází ostatní prvky od  $A[\lfloor n/2 \rfloor - 1]$  až po A[0] a každý zařadí funkcí Max-Heapify.

```
Build-Max-Heap(A[0..n-1])

1  heap-size(A) \leftarrow n

2  for i \leftarrow \lfloor n/2 \rfloor - 1 downto 0

3  do Max-Heapify(A, i)
```

#### Příklad Build-Max-Heap

Vstup A: 1 | 5 | 3 | 7 | 2 | 4 | 8 | 9 | 6 | 4

Volání Build-Max-Heap(A), zobrazujeme stavy pole po provedení ř. 3, modře je zařazený prvek, podtženy jsou prvky na pozicích, přes které se zařazený prvek dostal na své místo.

| 1 | 5 | 3 | 7        | <u>4</u> | 4 | 8 | 9 | 6 | 2 | i=4, po provedení ř. 3 |
|---|---|---|----------|----------|---|---|---|---|---|------------------------|
| 1 | 5 | 3 | 9        | 4        | 4 | 8 | 7 | 6 | 2 | i=3, po provedení ř. 3 |
| 1 | 5 | 8 | 9        | 4        | 4 | 3 | 7 | 6 | 2 | i=2, po provedení ř. 3 |
| 1 | 9 | 8 | 7        | 4        | 4 | 3 | 5 | 6 | 2 | i=1, po provedení ř. 3 |
| 9 | 7 | 8 | <u>6</u> | 4        | 4 | 3 | 5 | 1 | 2 | i=0, po provedení ř. 3 |

Znázorněte průběh v binárním stromu.

### Časová složitost Build-Max-Heap

Snadno lze odvodit, že časová složitost Build-Max-Heap v nejhorším případě je  $O(n \lg n)$ : V Build-Max-Heap dojde k  $\lfloor n/2 \rfloor$  voláním funkce Max-Heapify, jejíž časová složitost v nejhorším případě je  $O(\lg n)$  (viz výše). Tedy časová složitost Build-Max-Heap v nejhorším případě je  $O(\lfloor n/2 \rfloor \lg n) = O(n \lg n)$ . Tento odhad ale není těsný, existuje lepší horní odhad! Lze totiž ukázat [odvození nebudu u zkoušky požadovat], že časová složitost Build-Max-Heap v nejhorším případě je O(n) (to je přesnější horní odhad, protože  $n = o(n \lg n)$ ).

#### Správnost Build-Max-Heap

Plyne z následující vlastnosti: Při každém vstupu do cyklu 2–3 tvoří stromy s kořeny odpovídajícími prvkům s indexy  $i+1,\ i+2,\dots n$  max-haldy.

To je pravda při prvním vstupu do cyklu 2–3, protože tyto stromy jsou jednoprvkové (ony kořeny jsou zároveň listy).

Pokud vlastnost platí při vstupu pro hodnotu i=k, pak platí i při dalším vstupu (tj. pro i=k-1), protože při průchodu pro i=k se na ř. 3 prvek A[k] zařadí tak, že strom s kořenem odpovídajícím A[k] tvoří max. haldu.

Při posledním vstupu na ř. 2 je i=-1 (pak dojde k ukončení), a tedy speciálně strom s kořenem odpovídajícím prvku A[i+1], což je A[0], tvoří max-haldu. To znamená, že celé pole A[0..n-1] tvoří max-haldu.

## Heap-Sort(A)

Idea: Vytvoříme max-haldu z vstupního pole A[0..n-1]. A[0] tedy obsahuje největší prvek. Vyměníme ho s A[n-1] a dále pracujeme jen s A[0..n-2] (heap-size(A) snížíme o 1). Nový prvek A[0] zařadíme pomocí Max-Heapify(A,0). Tak vznikne halda A[0..n-2] s největším prvkem A[0]. A[0] vyměníme s A[n-2] a tak dále.

```
Heap-Sort(A[0..n-1])

1 Build-Max-Heap(A)

2 for i \leftarrow n-1 downto 1

3 do swap(A[0],A[i])

4 heapsize(A) \leftarrow heapsize(A) - 1

5 Max-Heapify(A,0)
```

#### Příklad Heap-Sort

Vstup A: 1 5 3 7 2 4 8 9 6 4

Po provedení ř. 1 je (viz příklad k Build-Max-Heap):

9 7 8 6 4 4 3 5 1 2

Znázorníme stavy pole A při každém vstupu do cyklu (po provedení ř. 2) a (pokud se v cykllu pokračuje) po provedení ř. 3. Modře je setříděná část pole, podtrženy jsou prvky vyměněné na ř. 3.

| 9 | 7 | 8 | 6 | 4 | 4 | 3        | 5        | 1        | 2        | i = 9; po ř. 2   |
|---|---|---|---|---|---|----------|----------|----------|----------|------------------|
| 2 | 7 | 8 | 6 | 4 | 4 | 3        | 5        | 1        | <u>9</u> | i = 9; po ř. 3   |
| 8 | 7 | 4 | 6 | 4 | 2 | 3        | 5        | 1        | 9        | i = 8; po ř. 2   |
| 1 | 7 | 4 | 6 | 4 | 2 | 3        | 5        | <u>8</u> | 9        | i = 8; po ř. 3   |
| 7 | 6 | 4 | 5 | 4 | 2 | 3        | 1        | 8        | 9        | i = 7; po ř. 2   |
| 1 | 6 | 4 | 5 | 4 | 2 | 3        | <u>7</u> | 8        | 9        | ] i = 7; po ř. 3 |
| 6 | 5 | 4 | 1 | 4 | 2 | 3        | 7        | 8        | 9        | i = 6; po ř. 2   |
| 3 | 5 | 4 | 1 | 4 | 2 | <u>6</u> | 7        | 8        | 9        | i = 6; po ř. 3   |

| 5 | 4 | 4        | 1        | 3        | 2        | 6 | 7 | 8 | 9 $i = 5$ ; po ř. 2 |
|---|---|----------|----------|----------|----------|---|---|---|---------------------|
| 2 | 4 | 4        | 1        | 3        | <u>5</u> | 6 | 7 | 8 | 9 $i = 5$ ; po ř. 3 |
| 4 | 3 | 4        | 1        | 2        | 5        | 6 | 7 | 8 | 9 $i = 4$ ; po ř. 2 |
| 2 | 3 | 4        | 1        | <u>4</u> | 5        | 6 | 7 | 8 | 9 $i = 4$ ; po ř. 3 |
| 4 | 3 | 2        | 1        | 4        | 5        | 6 | 7 | 8 | 9 $i = 3$ ; po ř. 2 |
| 1 | 3 | 2        | <u>4</u> | 4        | 5        | 6 | 7 | 8 | 9 $i = 3$ ; po ř. 3 |
| 3 | 1 | 2        | 4        | 4        | 5        | 6 | 7 | 8 | 9 $i = 2$ ; po ř. 2 |
| 2 | 1 | <u>3</u> | 4        | 4        | 5        | 6 | 7 | 8 | i = 2; po ř. 3      |
| 2 | 1 | 3        | 4        | 4        | 5        | 6 | 7 | 8 | 9 $i = 1$ ; po ř. 2 |
| 1 | 2 | 3        | 4        | 4        | 5        | 6 | 7 | 8 | 6 $i = 1$ ; po ř. 3 |

Znázorněte průběh v binárním stromu.

### Časová složitost Heap-Sort

Časová složitost Build-Max-Heap v nejhorším případě je O(n). Pak je proveden (n-1)-krát cyklus, ve kterém se na ř. 3 a 4 provedou 2 instrukce a na ř. 5 se provede Max-Heapify s časovou složitostí v nejhorším případě  $O(\lg n)$ . Celkem je tedy časová složitost Heap-Sort v nejhorším případě  $O(n+(n-1)(2+\lg n))$ , což je  $O(n\lg n)$ .

Všimněte si, že k  $O(n \lg n)$  dojdeme i s odhadem  $O(n \lg n)$  pro Build-Max-Heap.

#### Správnost Heap-Sort

Plyne z následující vlastnosti: Po provedení ř. 3 obsahuje část A[i..n-1] n-i největších prvků pole A, které jsou vzestupně setříděné.

Tato vlastnost platí při prvním průchodu cyklem 2–5, zachovává se každým průchodem cyklem a její platnost při posledním průchodu znamená, že A[0..n-1] je vzestupně setříděné.

# Dolní odhad složitosti algoritmů třídění porovnáváním

Dosud probrané algoritmy mají společný rys: nepoužívají jinou informaci o prvcích pole než tu, kterou lze získat jejich porovnáváním (tj.  $A[i] \leq A[j]$ , A[i] = A[j], A[i] < Aj apod.).

Takovým algoritmům se říká algoritmy třídění porovnáváním.

Nepoužívají např. informaci o hodnotě čísel, které se třídí (viz např. Counting Sort uvedený později).

Důležitý výsledek:

**Věta** Časová složitost v nejhorším případě libovolného algoritmu třídění porovnáváním je  $\Omega(n \lg n)$ .

Důkaz na dalším slajdu.

Tj. složitost je asymptoticky zdola omezena funkcí  $n \lg n$ . Protože Merge Sort i Heap Sort mají složitost v nejhorším případě  $O(n \lg n)$  (shora omezena funkcí  $n \lg n$ ), oba jsou tzv. **asymptoticky optimální algoritmy**.

#### Důkaz předchozí věty

Je založen na vhodné abstrakci pojmu algoritmus třídění porovnáním.

Algoritmus  $\approx$  binární strom. Přesně:

činnost algoritmu pro pole s n prvky  $\approx$  binární strom s uzly a hranami, které jsou označené následovně.

Uzly obsahují výrazy  $i: j \ (1 \le i, j \le n)$ , např.  $1: 2, 1: 3, \ldots$ 

Z uzlu vychází dvě hrany, jedna je označena  $\leq$ , druhá >.

Každý list stromu je označen permutací čísel  $1, \ldots, n$ , která označuje, jak je třeba vstupní posloupnost přerovnat tak, aby vznikla uspořádaná posloupnost. Např.  $\langle 1, 3, 2 \rangle$  říká, že je třeba 3. prvek vstupní posloupnosti přesunout na 2. místo (ve výsledné posloupnosti) a 2. prvek vstupní posloupnosti na 3. místo.

Činnost každého algoritmu třídění porovnáváním pro vstupy velikosti n lze reprezentovat takovým stromem.

Strom algoritmu Insert Sort pro n = 3 je na dalším slajdu.

105 / 150

Převzato z knihy Cormen et al.: Introduction to algorithms. MIT Press.

#### Chapter 8 Sorting in Linear Time



**Figure 8.1** The decision tree for insertion sort operating on three elements. An internal node annotated by i:j indicates a comparison between  $a_i$  and  $a_j$ . A leaf annotated by the permutation  $(\pi(1), \pi(2), \ldots, \pi(n))$  indicates the ordering  $a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$ . The shaded path indicates the decisions made when sorting the input sequence  $(a_1 = 6, a_2 = 8, a_3 = 5)$ ; the permutation (3, 1, 2) at the leaf indicates that the sorted ordering is  $a_3 = 5 \le a_1 = 6 \le a_2 = 8$ . There are 3! = 6 possible permutations of the input elements, so the decision tree must have at least 6 leaves.

Vysvětlení na přednášce.

Argument: Uvažujme strom reprezentující činnost daného algoritmu pro vstupní posloupnost velikosti *n*.

- 1. Označme h hloubku tohoto stromu, označme l počet listů tohoto stromu.
- 2. Strom musí v listech obsahovat aspoň n! permutací (pro každou permutaci  $\pi$  existuje vstupní posloupnost taková, že k jejímu uspořádání je třeba provést  $\pi$ ). Tedy  $n! \leq I$ .
- 3. Binární strom hloubky h má nejvýše  $2^h$  listů, tedy  $l \le 2^h$ .

Celkem tedy  $n! \le l \le 2^h$ .

Tedy (logaritmováním nerovnosti) lg  $n! \le h$  a protože platí lg  $n! = \Omega(n \lg n)$  (to nebudeme dokazovat), je zřejmé, že  $h = \Omega(n \lg n)$ .

To znamená, že v nejhorším případě (výpočet odpovídající nejdelší cestě od kořene k listu, délka této cesty je h) musí algoritmus provést aspoň  $\Omega(n \lg n)$  porovnání. Důkaz je hotov.

Pozn.: h je třeba chápat jako funkci s argumentem n.

Radim Bělohlávek (UP)

Algoritmy 1, č. 2

Algoritmy 2, č. 2

Algoritmy 3, č. 2

## **Counting Sort**

Algoritmus třídění, který využívá jinou informaci než porovnávání. Lze použít pro třídění celých čísel  $0 \dots k$ .

Základní myšlenka: Vstupní pole A[0..n-1], výstupní (setříděné) pole je B[0..n-1].

Pro jednoduchost předpokládajme, že všechny prvky A jsou navzájem různé. Kam má přijít prvek A[n-1] v poli B? Označmě C[i] počet prvků v A menších než nebo rovných i.

Pak A[n-1] přijde na pozici s indexem C[A[n-1]]-1, A[n-2] přijde na pozici s indexem C[A[n-2]]-1, ...

A[0] přijde na pozici s indexem C[A[0]] - 1.

Tj. provedeme  $B[C[A[n-1]]-1] \leftarrow A[n-1]$ ,  $B[C[A[n-2]]-1] \leftarrow A[n-2]$ , ...,  $B[C[A[0]]-1] \leftarrow A[0]$ .

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ 壹 ※ 夕♀♡

**Příklad** k = 7, n = 5.

Tedy provedeme

$$B[C[A[n-1]]-1] \leftarrow A[n-1]$$
, tj.  $B[C[A[4]]-1] \leftarrow A[4]$ , tj.  $B[1] \leftarrow 1$ ,

$$B[C[A[n-2]]-1] \leftarrow A[n-2]$$
, tj.  $B[C[A[3]]-1] \leftarrow A[3]$ , tj.  $B[2] \leftarrow 2$ ,

$$B[C[A[2]] - 1] \leftarrow A[2], \text{ tj. } B[3] \leftarrow 5,$$

$$B[C[A[1]] - 1] \leftarrow A[1], \text{ tj. } B[0] \leftarrow 0,$$

$$B[C[A[0]] - 1] \leftarrow A[0], \text{ tj. } B[4] \leftarrow 7,$$

tedy 
$$B = \boxed{0 \mid 1 \mid 2 \mid 5 \mid 7}$$
.

```
Counting-Sort(A, B, k)
    for i \leftarrow 0 to k
        do C[i] \leftarrow 0
   for j \leftarrow 0 to n-1
        do C[A[i]] \leftarrow C[A[i]] + 1
            //C[i] obsahuje počet prvků v A rovných i
5 for i \leftarrow 1 to k
6
        do C[i] \leftarrow C[i] + C[i-1]
            //C[i] obsahuje počet prvků v A \leq i
    for i \leftarrow n-1 downto 0
        do B[C[A[j]] - 1] \leftarrow A[j]
9
             C[A[i]] \leftarrow C[A[i]] - 1
```

**Příklad** k = 7, n = 5. Obměna předcházejícího, pole obsahje stejné prvky.  $A = \begin{bmatrix} 7 & 1 & 5 & 1 & 1 \end{bmatrix}$  Pak  $C = \begin{bmatrix} 0 & 3 & 3 & 3 & 4 & 4 & 5 \end{bmatrix}$ .

Tedy provedeme

$$B[C[A[n-1]]-1] \leftarrow A[n-1]$$
, tj.  $B[C[A[4]]-1] \leftarrow A[4]$ , tj.  $B[2] \leftarrow 1$ , a po provedení ř. 9 je  $C = \boxed{0 \ | \ 2 \ | \ 3 \ | \ 3 \ | \ 4 \ | \ 4 \ | \ 5}$ 

$$B[C[A[n-2]]-1] \leftarrow A[n-2]$$
, tj.  $B[C[A[3]]-1] \leftarrow A[3]$ , tj.  $B[1] \leftarrow 1$ , a po provedení ř. 9 je  $C = \boxed{0 \mid 1 \mid 3 \mid 3 \mid 3 \mid 4 \mid 4 \mid 5}$ 

$$B[C[A[2]] - 1] \leftarrow A[2], \text{ tj. } B[3] \leftarrow 5,$$

a po provedení ř. 9 je 
$$C = \begin{bmatrix} 0 & 1 & 3 & 3 & 3 & 4 & 5 \end{bmatrix}$$

$$B[C[A[1]] - 1] \leftarrow A[1], \text{ tj. } B[0] \leftarrow 1,$$

a po provedení ř. 9 je 
$$C = \boxed{0 \mid 0 \mid 3 \mid 3 \mid 3 \mid 4 \mid 5}$$

$$B[C[A[0]] - 1] \leftarrow A[0]$$
, tj.  $B[4] \leftarrow 7$ ,

tedy 
$$B = \boxed{1 \mid 1 \mid 1 \mid 5 \mid 7}$$
.

Tedy během provádění algortimu (po ř. 9) je C[i] rovno počtu prvků v A s hodnotou < i plus počtu prvků v A s hodnotou = i, které ještě nebyly zařazeny do B.

Radim Bělohlávek (UP) Algoritmy 1, č. 2 ZS 111 / 150

# **Složitost Counting Sort**

- ř. 1–2:  $\Theta(k)$  instrukcí.
- ř. 3–4:  $\Theta(n)$  instrukcí.
- ř. 5–6:  $\Theta(k)$  instrukcí.
- ř. 7–9:  $\Theta(n)$  instrukcí.

Celkem tedy  $\Theta(k+n)$  instrukcí, složitost Counting Sort v nejhorším případě je tedy  $\Theta(k+n)$ .

Je-li k = O(n) (např.  $k \le n$  nebo obecně  $k \le cn$  pro c > 0), je tedy složitost v nejhorším případě  $\Theta(n)$ .

### Radix Sort

Základní myšlenku tohoto algoritmu používali operátoři mechanických třídiček děrných štítků. První odkaz 1929, algoritmus radix sort 1954 (Seward).

Základní myšlenka: Třídíme *d*-místná čísla (na každém z *d* míst jsou číslice 0...9). Třídění proběhne v *d* průchodech. V 1. průchodu se čísla setřídí podle jejich poslední číslice, v 2. průchodu pak podle jejich předposlední číslice, ..., v průchodu *i* pak podle číslice na pozici *i* (zprava), ..., v posledním průchodu nakonec podle první číslice.

Přitom třídění při každém průchodu musí být stabilní. Tj. je-li při vstupu do průchodu i číslo a ve vstupním poli před číslem b a mají-li a a b shodné číslice na pozici i (podle které třídění probíhá), je číslo a před číslem b i ve výstupním poli průchodu i.

| Příklad $d = 3$ .     |                   |                   |                    |                   |             |
|-----------------------|-------------------|-------------------|--------------------|-------------------|-------------|
| 644                   | 50 <b>1</b>       |                   | 5 <mark>0</mark> 1 |                   | <b>0</b> 99 |
| 728                   | 64 <mark>4</mark> |                   | 1 <b>1</b> 8       |                   | <b>1</b> 18 |
| 501                   | 72 <mark>8</mark> | ,                 | 7 <b>2</b> 8       | ,                 | <b>1</b> 28 |
| $128 \longrightarrow$ | 12 <mark>8</mark> | $\longrightarrow$ | 1 <b>2</b> 8       | $\longrightarrow$ | <b>5</b> 01 |
| 099                   | 11 <b>8</b>       |                   | 6 <b>4</b> 4       |                   | <b>6</b> 44 |
| 118                   | 099               |                   | 0 <b>9</b> 9       |                   | <b>7</b> 28 |

Proč musí být třídění v jednotlivých průchodech stabilní?

Zformulujte obecnou definici stabilního třídicího algoritmu.

Lze třídít od 1. číslice (v 1. průchodu) po poslední (v posledním průchodu)? (Co by to obnášelo?)

```
Radix-Sort(A, d)
```

- 1 for  $i \leftarrow 1$  to d
- 2 **do** Stable-Sort(A, i)

 $A \dots$  vstupní pole,  $d \dots$  počet číslic čísel v poli A

Přitom Stable-Sort je libovolný stabilní třídicí algoritmus, Stable-Sort(A, i) setřídí A podle číslic na pozici i zprava. Takovým algoritmem je např. Counting Sort (proč je stabilní?).

Implementujte Radix-Sort (cvičení).

Které z algoritmů Insertion Sort, Selection Sort, Bubble Sort, Quick Sort, Merge Sort, Heap Sort jsou stabilní?

Radix Sort lze použít nejen pro třídění polí *d*-místných čísel s číslicemi 0...9, tj. polí s prvky tvaru

d.číslice |(d-1).číslice  $|\cdots|$  2.číslice |1.číslice |, ale obecně i polí s prvky, které lze chápat jako zřetězení d položek. Tj. prvky, které mají d pozic. V každé z nich se vyskytují prvky, které lze navzájem porovnávat, a tedy podle nich třídit.

### Příklady

d-místná čísla s číslicemi  $0 \dots k$ , tj. pro d=5 a k=7 je prvkem pole např.  $\boxed{7 \mid 0 \mid 1 \mid 6 \mid 7}$ .

Řetězce znaků délky d, tj. pro d = 5 je prvkem pole např.

$$|K| a |r| 1 |0|$$
, tj. řetězec Kar $10$ .

Příkladem setříděného pole se 4 prvky je *Ala*02 *Jan*11 *Jan*20 *Kar*10

Data ve tvaru rok-měsíc-den (pak tedy d=3), tj. prvkem pole je např.

2011 2 16 , tj. 2011–2–16.

Příkladem setříděného pole se 5 prvky je

1918-10-28 | 1939-3-15 | 1948-2-25 | 1968-8-21 | 1989-11-17 |.

◆□▶◆□▶◆□▶◆□▶ □ 900

Řetězce bitů dané délky, rozdělené na d podřetězců délky r (důležitý příklad). Např. řetězce délky 32 lze chápat jako zřetězení 8 podřetězců (d=8) délky 4 (r=8). Prvkem pole pak bude např.  $0011 \mid 1010 \mid 1111 \mid 0001 \mid 0000 \mid 1101 \mid 0101 \mid 0101$ .

Správnost Radix-Sort se snadno vidí (podrobně zdůvodněte).

## Složitost Radix Sort

Předpokládejme, že prvky pole A jsou d-místná čísla s číslicemi  $0 \dots k$ . Pole A obsahuje n prvků.

Pokud časová složitost v nejhorším případě algoritmu Stable-Sort je  $\Theta(n+k)$ , je časová složitost v nejhorším případě algoritmu Radix-Sort  $\Theta(d(n+k))$ .

Důkaz: Stable-Sort se provede d-krát, tedy se celkem provede  $d\Theta(n+k)$  kroků a  $d\Theta(n+k) = \Theta(d(n+k))$  (uvědomte si, co tato rovnost znamená).

Všimněte si, že argumentem složitosti jsou tři čísla, n, k, d. To je při popisu složitosti algoritmů běžná praxe, n je velikost vstupu, d, k jsou parametry.

Chápeme-li d a k jako konstanty, je tedy složitost v nejhorším případě  $\Theta(n)$ .

### Třídění bitových řetězců

Předpokládejme nyní, že prvky pole A jsou b-bitové řetězce (mohou reprezentovat čísla, znaky apod.). Předpokládejme, že správné uspořádání těchto prvků je shodné s jejich uspořádáním coby řetězců z 0 a 1 (neboli coby čísel zapsaných binárně).

K setřídění pole je možné použít Radix-Sort následujícím způsobem: Na b-bitový řetězec se díváme jako na posloupnost d r-bitových řetězců. Protože obecně nemusí být b=dr, první z nich může mít méně než r bitů (to je pouze technický problém). Platí  $d=\lceil b/r \rceil$ .

Každý r-bitový řetězec reprezentuje číslo z intervalu 0 až  $2^r-1$ . Můžeme tedy použít Radix-Sort s hodnotami d a  $k=2^r-1$ .

 $\mathsf{Z}$  výše uvedeného vztahu pro složitost Radix-Sort plyne, že řasová složitost v nejhorším pžípadě je

$$\Theta(d(n+k)) = \Theta(\lceil b/r \rceil (n+2^r-1)) = \Theta((b/r)(n+2^r)).$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

ZS

119 / 150

Jak zvolit r, tj. jak bitový řetězec rozdělit?

Jak zvolit při daných n a b hodnotu r tak, aby složitost byla nejmenší, tj. aby hodnota  $(b/r)(n+2^r)$  byla nejmenší? Je jasné, že musí být  $r \leq b$ . Rozlišme dva případy.

- 1.  $b < |\lg n|$ .
  - Pak volba r = b (nebo r = b/2, b/3, ...) zajistí složitost  $\Theta(n)$  (a ta je asymptoticky optimální).

Proč: Pak je totiž  $n+2^r=\Theta(n)$  ( $2^r$  roste pomaleji než n, protože  $2^r<2^{\lfloor \lg n\rfloor}\leq 2^{\lg n}=n$ ). Tedy  $(b/r)(n+2^r)=(n+2^r)=\Theta(n)$ .

- 2.  $b \ge |\lg n|$ .
  - Pak volba  $r = |\lg n|$  zajistí asymptoticky optimální složitost.

Proč: Pak je složitost  $\Theta(b/\lfloor\lg n\rfloor(n+2^{\lfloor\lg n\rfloor}))=\Theta(bn/\lg n)$ . Ta je optimální. Totiž, když  $r>\lfloor\lg n\rfloor$ , pak protože  $2^x$  roste rychleji než x, je  $(b/r)(n+2^r)\geq b/\lfloor\lg n\rfloor(n+2^{\lfloor\lg n\rfloor})=\Theta(bn/\lg n)$ , tedy  $(b/r)(n+2^r)=\Omega(bn/\lg n)$ .

A když  $r < \lfloor \lg n \rfloor$ , pak  $b/r > b/\lfloor \lg n \rfloor$  a přitom  $(n+2^r) = \Theta(n)$ , z čehož plyne  $(b/r)(n+2^r) = \Omega(bn/\lg n)$ .

Radim Bělohlávek (UP) Algoritmy 1, č. 2 ZS 120 / 150

### **Bucket Sort**

Předpokládá, že prvky vstupního pole jsou čísla z intervalu [0,1), která vznikla náhodným procesem s rovnoměrným rozdělením (ve smyslu teorie pravděpodobnosti). Pro naše potřeby stačí říct, že to znamená: Pravděpodobnost, že prvek A[i] je v intervalu [a,b]  $(0 \le a \le b < 1)$  je  $b-a(=\frac{b-a}{1-0})$ .

Základní myšlenka: Interval [0,1) rozdělíme na n intervalů stejné velikosti, tj. na [0,1/n), [1/n,2/n), ..., [(n-1)/n,1). Pro každý z těchto intervalů vytvoříme spojový seznam (dynamické pole) B[i] (interval i je [i/n,(i+1)/n), nazývá se také "bucket").

Projdeme prvky pole A a každý z nich vložíme do příslušného intervalu, tj. do příslušného seznamu B[i]. Díky předpokladu obsahují seznamy málo prvků.

Každý seznam setřídíme.

Prvky setříděných seznamů  $B[0], \ldots, B[n-1]$  vložíme po řadě do výstupního pole. Získáme tak setříděné pole.

Radim Bělohlávek (UP) Algoritmy 1, č. 2 ZS 121 / 150

#### **Příklad** n = 10.

- 1. sloupec = indexy
- 2. sloupec = vstupní pole
- 3. sloupec = prvky zařazené v seznamech B[i]



(pokračování)

- 1. sloupec = indexy
- 2. sloupec = prvky v seznamech B[i] po setřídění seznamů
- 3. sloupec = výstupní, setříděné pole

| i | B[i]          |      |      |      |                   | A[i] |
|---|---------------|------|------|------|-------------------|------|
| 0 | Ø             |      | _    |      |                   | 0.11 |
| 1 | $\rightarrow$ | 0.11 |      |      |                   | 0.21 |
| 2 | $\rightarrow$ | 0.21 | 0.25 |      |                   | 0.25 |
| 3 | $\rightarrow$ | 0.32 | 0.35 | 0.38 |                   | 0.32 |
| 4 | Ø             |      |      |      | $\longrightarrow$ | 0.35 |
| 5 | Ø             |      |      |      |                   | 0.38 |
| 6 | Ø             |      |      |      |                   | 0.71 |
| 7 | $\rightarrow$ | 0.71 | 0.74 |      |                   | 0.74 |
| 8 | Ø             |      |      |      |                   | 0.91 |
| 9 | $\rightarrow$ | 0.91 | 0.95 |      |                   | 0.95 |

## Pseudokód Bucket Sort

```
Bucket-Sort(A[0..n-1])

1 for i \leftarrow 0 to n-1

2 do vlož A[i] do seznamu B[\lfloor n \cdot A[i] \rfloor]

3 for i \leftarrow 0 to n-1

4 do Sort(B[i])

5 vlož postupně prvky z B[0], \ldots, B[n-1] do pole A
```

Pro setřídění seznamu B[i] na ř. 4 (Sort(B[i])) lze použít např. Insertion-Sort (lze snadno implementovat pro třídění seznamů).

Správnost Bucket-Sort se snadno vidí (podrobně zdůvodněte).

### Složitost Bucket-Sort

Na ř. 1–2 se provede  $\Theta(n)$  kroků.

Na ř. 5 se provede  $\Theta(n)$  kroků.

**V nejhorším případě** To je případ, kdy všechny prvky z A byly umístěny do jednoho seznamu B[i]. Má-li algoritmus Sort složitost v nejhorším případě  $\Theta(f(n))$ , pak protože  $f(n) = \Omega(n)$ , je  $\Theta(n) + \Theta(f(n)) + \Theta(n) = \Theta(f(n))$ , a tedy složitost Bucket-Sort v nejhorším případě je  $\Theta(f(n))$ . Zvolíme-li tedy Insertion-Sort, je to  $\Theta(n^2)$ .

**V průměrném případě** Lze ukázat (s použitím jednoduchého aparátu teorie pravděpodobnosti), že je  $\Theta(n)$  (ukážeme později). Klíčový je při tom fakt, že složitost setřídění seznamu B[i] v průměrném případě je O(2-1/n).

# Který algoritmus třídění je tedy nejlepší?

Dva algoritmy s řádově stejnou složitostí se mohou prakticky chovat rozdílně. To je dáno i tím, že konstanty ukryté v O-notaci jejich odhadu složitosti jsou různé. Dále je to dáno povahou vstupních dat (mohou být příznivá pro jeden, ale nepříznivá pro jiný algoritmus).

Pravidlo: Volíme algoritmus s menší čas. složitostí (např. Heap-Sort místo Insertion-Sort). U dvou algoritmů se stejnou řádovou složitostí zvolíme podle jejich praktického chování (měříme doby trvání na reálných datech, tj. na typických datech, pro která budou algoritmy používány).

Z algoritmů porovnáváním je velmi rychlý Quick-Sort (malá režie).

Použít Quick-Sort nebo Radix-Sort? Složitost v průměrném případě pro Quick-Sort je  $\Theta(n \lg n)$ , v nejhorším případě pro Radix-Sort, když  $b \leq \lg n$ , je  $\Theta(n)$ . Režie (konstanta ukrytá v O-notaci) u Radix-Sort je ale větší než u Quick-Sort. Každý z řádově n kroků Radix-Sort může tedy trvat podstatně déle než každý z řádově  $n \lg n$  kroků Quick-Sort. Který z nich zvolit nakonec záleží na charakteristice vstupních dat a na implementaci (např. Quick-Sort obvykle efektivně využívá cache paměti).

### Závěrem ke třídění

- Ukázali jsme si nejdůležitější třídicí algoritmy.
- Existuje mnoho jejich variant.
- Existují další třídicí algoritmy. Doporučuji projít přehled, např. na internetu (Wikipedia apod.).
- Probrané algoritmy jsou určeny pro třídění v operační paměti.
   Nevěnovali jsme se tzv. externímu třídění, tj. třídění velkých dat, která se nevejdou celá do paměti (viz další slajd).
- K jednotlivým algoritmům se budeme průběžně vracet.

# Stručně k vnějšímu třídění

- Jsou-li data tak velká, že se nevejdou do operační paměti počítače, je třeba k jejich setřídění použít externí paměť (např. pevný disk).
- Algoritmy třídění, které používají externí paměť, se nazývají algoritmy externího (vnějšího) třídění. Z tohoto pohledu jsou dosud probrané algoritmy algoritmy interního (vnitřního) třídění.
- Algoritmy vnějšího třídění obvykle kombinují třídění v operační paměti (části dat, která se tam vejde) a slévání setříděných částí do větších částí, které jsou ukládány na disk.
- Princip slévání je stejný jako ten, použitý v algoritmu Merge-Sort.
   Slévání ale probíhá z více vstupních polí (v Merge-Sort se slévají dvě vstupní pole).
- Příklad: Pro setřídění 1 GB dat (např. čísel) na počítači, kde je k dispozici 100MB operační paměti:

# Stručně k vnějšímu třídění

- Načti 100MB dat do paměti a setřiď je algoritmem vnitřního třídění (např. Quick-Sort). Setříděnou posloupnost zapiš to nového souboru i na disk. To zopakuj 10x (pro  $i=1,\ldots,10$ ).
  - Vytvoř v paměti 11 velkých bloků  $B_1, \ldots, B_{10}, C$  (např. po 9 MB). Každý blok  $B_i$  naplň daty ze souboru i (od začátku souboru). Vytvoř nový výstupní soubor.
  - Pomocí slévání z 10 bloků B<sub>i</sub> naplň blok C. Obsah bloku C zapiš do výstupního souboru, blok C považuj za prázdný. Pokud se při slévání některý z bloků B<sub>i</sub> vyprázdní, načti do něj dalších 9 MB dat ze souboru i. Opakuj, dokud nejsou všechna data ze vstupních souborů zapsána ve výstupním souboru.

# Pořádkové statistiky

# Pořádkové statistiky

**Definice** *i***-tá pořádková statistika** množiny s *n* prvky je *i*. nejmenší prvek dané množiny (*i*. prvek po setřídění posloupnosti).

Nejmenší prvek (minimum) ...1. pořádková statistika.

Největší prvek (maximum) ... n. pořádková statistika.

Medián ("prostřední prvek").

*n* liché: medián =  $\frac{n+1}{2}$ . pořádková statistika.

n sudé:

dolní medián =  $\lfloor \frac{n+1}{2} \rfloor$ . pořádková statistika (pokud neřekneme jinak, bude medián znamenat dolní medián)

horní medián =  $\lceil \frac{n+1}{2} \rceil$ . pořádková statistika

## problém (výběr):

**vstup:** A[0...n-1] (pole n čísel) a číslo i  $(1 \le i \le n)$ 

výstup: i. pořádková statistika prvků z A

#### Příklady

vstup 
$$A = \langle 2, 1, 4, 6, 2, 8, 1 \rangle$$
,  $i = 1$ , výstup  $= 1$ , vstup  $A = \langle 2, 1, 4, 6, 2, 8, 1 \rangle$ ,  $i = 2$ , výstup  $= 1$ , vstup  $A = \langle 2, 1, 4, 6, 2, 8, 1 \rangle$ ,  $i = 3$ , výstup  $= 2$ , ... vstup  $A = \langle 2, 1, 4, 6, 2, 8, 1 \rangle$ ,  $i = 7$ , výstup  $= 8$ .

Lze tedy použít následující algoritmus.

Naive-Select(
$$A[0..n-1]$$
,  $i$ )  
1 Sort( $A$ )  
2 **return**( $A[i]$ )

Časová složitost v nejhorším případě algoritmu Naive-Select je rovna časové složitosti v nejhorším případě algoritmu Sort (tj. např.  $O(n \lg n)$  pro Heap-Sort).

Ukážeme algoritmus, s časovou složitostí v průměrném případě O(n).

Nejprve tento **problém**: Jak najít nejmenší a největší prvek v  $A[0\dots n-1]$ ?

**Možnost 1**: Odděleně najít nejmenší (n-1 porovnání) a největší (n-1 porovnání), celkem 2n-2 porovnání.

Možnost 2: porovnávat po dvojicích.

Porovnáme první dva prvky, menší dáme do min, větší do max (1 porovnání). Vezmeme další dojici prvků porovnáme je mezi sebou, menší z nich pak s min, vetší s max a příslušným způsobem aktualizujeme hodnoty min a max (3 porovnání).

Zbyde-li nakonec jeden prvek (při lichém počtu prvků), porovnáme ho s min, pak příp. s max a aktualizujeme min a max (nejvýše 2 porovnání).

Celkem tedy nejvýše  $1+3\lfloor (n-2)/2\rfloor+2=3(\lfloor (n-2)/2\rfloor+1)=3\lfloor n/2\rfloor$  porovnání.

# i. pořádková statistika v průměrném čase $\Theta(n)$

Základní myšlenka: Rekurzívní postup.

Hedáme i. prvek v poli, které vznikne setříděním vstupního pole  $A[p \dots r]$  (na začátku  $A[0 \dots n-1]$ ).

Použijeme Partition z algoritmu Quick-Sort s náhodným výběrem pivota. q je index pivota, pro k=q-p+1 je pivot tedy k. prvkem v poli A.

Pokud i = k, je hledaný prvek A[q].

Pokud i < k, je hledaný prvek i. prvek v poli, které vznikne setříděním levé části,  $A[p \dots q-1]$ .

Pokud i>k, je hledaný prvek i-k. prvek v poli, které vznikne setříděním levé části,  $A[q+1\dots r]$ .

Rozdíl oproti Quick-Sort: Po provedení Partition se zabýváme vždy jen jednou částí (levou nebo pravou).

```
Randomized-Select(A, p, r, i)
    if p = r
      then return A[p]
    q \leftarrow \mathsf{Randomized}\text{-}\mathsf{Partition}(A, p, r)
   k \leftarrow q - p + 1
5 if i = k
      then return A[q]
    else if i < k
      then return Randomized-Select(A, p, q-1, i)
8
    else return Randomized-Select(A, q + 1, r, i - q + p - 1)
9
Vrátí i. pořádkovou statistiku pole A.
```

Randomized-Partition(A, p, r)

- 1  $k \leftarrow \mathsf{Random}(p, r)$
- 2 swap(A[k], A[r])
- 3 **return** Partition(A, p, r)

Provede Partition s náhodným výběrem pivota. Funkce Random(p, r) vrátí náhodné celé číslo z intervalu [p, r].

### Správnost Randomized-Select

Je zřejmá z popisu základní myšlenky algoritmu.

Je jen třeba si uvědomit, že nikdy nedojde k volání Randomized-Select(A, p, q-1, i) pro q-1 < p (ř. 8), ani Randomized-Select(A, q+1, r, k-q) pro r < q+1 (ř. 9).

#### Zdůvodněte.

Uvědomte si, že q-1 < p (ř. 8) znamená p=q a že r < q+1 (ř. 9) znamená q=r.

### Časová složitost Randomized-Select

## nejhorší případ $\Theta(n^2)$

Např. když pivot je vždy největším prvkem v poli  $A[p \dots r]$  a hledáme nejmenší prvek (i = 1).

Pak dojde k n-1 voláním Randomized-Partition (pro pole s  $n, n-1, \ldots 2$  prvky). Volání Randomized-Partition na pole s k prvky trvá  $\Theta(k)$  kroků. Celkem je tedy třeba  $\Theta(n+(n-1)+\cdots+2)=\Theta(n^2)$  kroků.

**průměrný případ**  $\Theta(n)$ , pokud jsou v poli po dvou různé prvky. Lze ukázat pomocí aparátu teorie pravděpodobnosti (komentář na přednášce).

# i. pořádková statistika v nejhorším čase O(n)?

Takový algoritmus existuje (Select, viz např. Cormen et al.: Introduction to Algorithms, MIT Press, 2005, Section 9.3).

### Základní myšlenka:

- 1. Rozděl pole na  $\lceil n/5 \rceil$  skupin po 5 prvcích (poslední má  $\leq$  5 prvky).
- 2. Najdi v každé skupině medián (setřiď pole, medián pak vyber ze setříděného).
- 3. Rekurzívním použitím Select nakonec najdi medián x z  $\lceil n/5 \rceil$  mediánů z 2.
- 4. Použij Partition s pivotem x na vstupní pole. Nechť k je index prvku x v poli po provedení Partition.
- 5. Je-li i=k, vrať A[k]. Je-li i< k, použij Select pro nalezení i. nejmenšího prvku v levé části. Je-li i>k, použij Select pro nalezení (i-k). nejmenšího prvku v pravé části.

# Stavba potrubí

Bylo nalezeno n nalezišť ropy a vybudováno n vrtů. Souřadnice vrtu i jsou  $\langle x_i, y_i \rangle$ . Je třeba postavit ropovod, na který se vrty napojí. Ropovod má být rovnoběžný s osou x. Každý vrt na něj bude napojen potrubím, které vede kolmo na ropovod. Jak určit souřadnici y má ropovod mít, aby součet délek všech potrubí napojených na ropovod byl co nejmenší? Ukažte, že existuje algoritmus se složitostí  $\Theta(n)$  v nejhorším případě, který y určí.

Návod: Nakreslete si obrázek. Použijte předchozí algoritmus na hledání pořádkové statistiky se složitostí  $\Theta(n)$  v nejhorším případě.

# Analýza quicksort v průměrném případě

- pokročilejší problém
- naše první analýza časové složitosti algoritmu v průměrném případě
- ukážeme i obecný princip
- budeme uvažovat R-Quick-Sort = Quick-Sort s náhodným výběrem pivota
- chceme ukázat, že pro časovou složitost T(n) v průměrném případě platí

$$T(n) = O(n \log_2 n).$$

– Pro zjednodušení předpokládáme, že prvky v poli jsou navzájem různé.

```
Quick-Sort(A, p, r)
    if p < r
      then q \leftarrow Partition(A, p, r)
3
            Quick-Sort(A, p, q-1)
4
            Quick-Sort(A, q + 1, r)
Partition(A, p, r)
1 x \leftarrow A[r]
2 \quad i \leftarrow p-1
3 for i \leftarrow p to r-1
        do if A[i] \leq x
5
              then i \leftarrow i + 1
6
                    swap(A[i], A[i])
    swap(A[i+1],A[r])
8
    return i+1
```

Quicksort s náhodným výběrem pivota:

```
R-Quick-Sort(A, p, r)

1 if p < r

2 then q \leftarrow \text{Randomized-Partition}(A, p, r)

3 R-Quick-Sort(A, p, q-1)

4 R-Quick-Sort(A, q+1, r)
```

```
Randomized-Partition(A, p, r)

1 k \leftarrow \text{Random}(p, r)

2 \text{swap}(A[k], A[r])

3 \text{return Partition}(A, p, r)
```

#### První pozorování pro setřídění pole A s n prvky:

- celkový počet kroků (instrukcí provedených v R-Quick-Sort) je určen počtem kroků provedených v Partition (tento počet je "dominující", zbylé kroky jsou "režie": další kroky mimo Partition)
- Partition je zavolána max. n krát (výběr pivota max. n krát)
- počet kroků provedených v jednom volání Partition je
   Θ(počet porovnání na ř. 4)
   (je zhruba konstanta krát počet porovnání na ř. 4)

Přesněji tedy: Jsou-li

 $A_1,\ldots,A_k$  všechna vstupní pole délky n,  $t(A_\omega)$  je počet kroků pro setřídění pole  $A_\omega$  a  $X(A_\omega)$  je počet porovnání na ř. 4 Partition při setřídění pole  $A_\omega$ , pak:

#### Lemma

$$t(A_{\omega}) \leq O(n) + c\dot{X}(A_{\omega}),$$

kde c>0 je konstanta (udává, kolik instrukcí se provede s jedním porovnáním na ř. 4).

Označme

$$E(X) = \frac{X(A_1) + \cdots + X(A_k)}{k},$$

tj. E(X) je průměrný počet porovnání na ř. 4 (průměr přes všechna vstupní pole).

Protože

$$T(n)=\frac{t(A_1)+\cdots+t(A_k)}{k},$$

platí vzhledem k

$$t(A_{\omega}) \leq O(n) + c\dot{X}(A_{\omega}),$$

zřejmě

$$T(n) \leq O(n) + cE(X).$$

Pro ověření  $T(n) = O(n \log_2 n)$  stačí tedy ukázat, že

$$E(X) = O(n \log_2 n).$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩♡

Označme pro vstupní pole  $A_{\omega}$ :

$$z_i(A_\omega) = i$$
-tý nejmenší prvek v poli  $A_\omega$ ,  $Z_{ij}(A_\omega) = \{z_i, \dots, z_j\}$  pro  $i < j$   $X_{ij}(A_\omega) = \begin{cases} 1 & \text{pokud při setřídění } A_\omega \text{ dojde k porovnání } z_i \text{ a } z_j \\ 0 & \text{v opačném případě} \end{cases}$ 

Uvědomme si, že platí

$$X(A_{\omega}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}(A_{\omega})$$

a dále z vlastností průměru (tzv. linearita: E(X + Y) = E(X) + E(Y)):

$$E(X) = E(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij}) =$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(\text{dojde k porovnání } z_i \text{ a } z_j).$$

4 D > 4 D > 4 Z > 4 Z > 2 \*) \(\)

Jak odvodit pravděpodobnost  $P(\text{dojde k porovnání } z_i \text{ a } z_j)$ ?

K porovnání při  $A_\omega$  dojde, právě když z prvků v  $Z_{ij}(A_\omega)=\{z_i,\ldots,z_j\}$ 

- jako první je za pivota zvolen  $z_i$ , nebo
- je jako první za pivota zvolen z<sub>i</sub>.
- Jinak se totiž  $z_i$  a  $z_j$  ocitnou v různých polovinách a nedojde k jejich porovnání.

## Tedy

 $P(\text{dojde k porovnání } z_i \text{ a } z_j) =$ 

 $P(\text{jako první je za pivota zvolen } z_i) + P(\text{jako první je za pivota zvolen } z_j)$ 

Protože  $Z_{ij}(A_\omega)$  má j-i+1 prvků a protože výběr každého prvku za pivota má stejnou pravděpodobnost, je

$$P(\text{jako první je za pivota zvolen } z_i) = \frac{1}{j-i+1}$$

a

$$P(\text{jako první je za pivota zvolen } z_j) = \frac{1}{j-i+1},$$

Tedy

$$P( ext{dojde k porovnání } z_i \text{ a } z_j) = rac{1}{j-i+1} + rac{1}{j-i+1} = rac{2}{j-i+1}.$$

Z dříve odvozeného

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(\text{dojde k porovnání } z_i \text{ a } z_j)$$

tedy máme

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} = \sum_{i=1}^{n-1} O(\log_2 n) = (n-1)O(\log_2 n) = O(n\log_2 n)$$

Použili jsme přitom  $\sum_{k=1}^{n} \frac{2}{k} = O(\log_2 n)$  (nebudeme dokazovat).

Radim Bělohlávek (UP)

Algoritmy 1, č. 2

# Průběh zkoušky

Viz www stránky předmětu.

Termíny budou vypsány ve STAGu.

Student obdrží otázky a bude mít cca 20 min na přípravu (tužka a papír). Pak půjde k ústnímu zkoušení (cca 25 min).

Je třeba znát látku v rozsahu probíraném na přednáškách. Tj.:

- Probrané pojmy (problém, algoritmus, složitost, O-notace, . . . ). Umět s pojmy pracovat.
- Probrané algoritmy, jak pracují, umět simulovat činnost algoritmů.
- Složitosti probraných algoritmů.
- Porozumět jednoduchému algoritmu zapsanému v pseudokódu.
- Zapsat v pseudokódu jednoduchý algoritmus.