MICROSOFT FLIGHT SIMULATOR 2002
САМОЛЕТЫ Ту-104А, Ту-104А-ТС, Ту-104В
РУКОВОДСТВО ПО ЛЕТНОЙ ЭКСПЛУАТАЦИИ
Выполнил: Черников О.Н.
СТАВРОПОЛЬ 2003 г.

1. ОБЩИЕ ДАННЫЕ

Среднемагистральный пассажирский самолет Ту-104А явился дальнейшей модификацией первого советского реактивного пассажирского самолета Ту-104. Самолет рассчитан на перевозку 70–85 пассажиров на расстояние до 3100 километров с крейсерской скоростью 750-850 км/час. Строился серийно на Харьковском авиазаводе № 135 и Омском авиазаводе № 166. В период с марта 1957 по февраль 1960 года построено 85 машин данной модификации. Эксплуатировался в Аэрофлоте с мая 1957 по 15 ноября 1979 гг. в следующих авиапредприятиях: Внуковском, Домодедовском, Шереметьевском, Пулковском, Бориспольском, Одесском, Тбилисском, Толмачевском, Иркутском, Ташкентском, Хабаровском.

Самолет Ту-104А-ТС является грузовой версией пассажирского Ту-104А. Вместо пассажирских салонов и буфетов Ту-104А-ТС имеет просторный грузовой отсек с расположенными по всему периметру пола стальными роликами для облегчения перемещения крупных грузов внутри самолета. Переделки в грузовой вариант были осуществлены в 1969-1971 гг силами авиаремонтных заводов. Всего было переделано около пяти машин.

Самолет Ту-104В отличается от Ту-104А увеличенным до 100 числом пассажирских кресел в салоне за счет уборки буфета-кухни в передней или задней частях основного пассажирского салона. Первый самолет Ту-104В был изготовлен 11 августа 1962 года и к началу 70-х годов подавляющее большинство Ту-104А было переделано в Ту-104В. Оставшиеся не переделанные Ту-104А работали в Тбилисском, Иркутском, Хабаровском авиапредприятиях и на международных линиях.

Поскольку самолеты Ту-104A-ТС и Ту-104B ни геометрически, ни динамически не отличаются от своего родителя Ту-104A, в дальнейшем под названием Ту-104A будут подразумеваться все три описанные выше машины.

Самолет Ту-104А представляет собой свободнонесущий цельнометаллический моноплан с низкорасположенным крылом. Крыло и оперение стреловидные, симметричного профиля, благодаря чему самолет имеет относительно большое Мкр \sim 0.85

Силовая установка состоит из двух турбореактивных двигателей РД-3М-500 взлетной тягой 9500 кгс. При использовании чрезвычайного режима сила тяги двигателя достигает 10500 кгс.

2. ГЕОМЕТРИЧЕСКИЕ ДАННЫЕ

Длина самолета, м	38,88
Размах крыла, м	34,54
Высота самолета, м	11,53
База шасси, м	15,32
Колея шасси, м	11,32
Максимальный диаметр фюзеляжа, м	3,50

3. ЗКСПЛУАТАЦИОННЫЕ И ЛЕТНЫЕ ДАННЫЕ

Практический потолок, м	12100
Потолок максимальной дальности, м	10100 - 10600
Потолок наивыгоднейший, м	9100 - 9600
Максимальная дальность полета, км	3100
Дальность полета с максимальной коммерческой загрузкой, км	2170
Скорость максимальной дальности, км/час*	795
Скорость наивыгоднейшая, км/час**	700
Максимальная крейсерская скорость, км/час**	850
Количество пассажиров при полетах на максимальную дальность, чел	. 70-85
Количество пассажиров при полетах с максимальной загрузкой	100
Потребная длина ВПП, м	2700
at .	

^{*} на эшелоне максимальной дальности

4. ОГРАНИЧЕНИЯ

Максимальный взлетный вес, тс						
Максимальный посадочный вес, тс						
Максимально допустимая скорость, км/час *						
Максимальное число М						
Максимальные скорости, км/час:						
- при выпуске шасси	400					
- при закрылках, отклоненных на угол 10 град	400					
- при закрылках, отклоненных на угол 20 град	380					
- при закрылках, отклоненных на угол 35 град						
Предельный эксплуатационный угол атаки, град.	12					
Максимальный угол крена самолета на скоростях до Vпр=500 км/ч, град.	30					
Максимальный угол крена самолета на скоростях выше Vпр=500 км/ч, гра	д 45					
* на эшелонах 4100-8100 м						

5. ПОДГОТОВКА К ВЗЛЕТУ

5.1.Запуск двигателей

5.1.1. Перед запуском:

- Все АЗС на панели "Overhead" поставить в положение "Вкл"
- На панели запуска включить поочередно кнопки черного цвета запуска левого и правого двигателей, удерживая их в нажатом положении 10 секунд.

ВНИМАНИЕ! Запуск одновременно двух двигателей запрещается!

5.2.Перед рулением

5.2.1.На верхнем электрощитке:

- тумблеры выпуск/уборка фар поставить в положение «выпуск»
- тумблеры «Ано», «Пробл. маяк» и «обогрев ППД» поставить в положение «вкл»
- 5.2.2Опробовать рули высоты, направления и элероны и убедиться, что они в рабочем состоянии

^{**} на наивыгоднейшем эшелоне

- 5.2.3. Нажать на серую кнопку быстрого согласования курсовых приборов вверху центрального пульта пилота и удерживать ее до прекращения движения шкалы курса на УШ.
- тумблер света фар поставить в положение «Руль»
- произвести контроль по карте обязательных проверок

6. ВЗЛЕТ

- 6.1. После выруливания на ВПП следует прорулить 10-30 м в направлении взлета, чтобы убедиться в правильности установки самолета по оси ВПП и нейтральном положении колес передней стойки шасси.
- 6.2. Тумблер переключения света фар на верхнем электрощитке поставить в положение «Посадка»
- 6.3. После занятия исполнительного старта, необходимо, удерживая самолет на тормозах выпустить закрылки на угол 10 град. и установить триммер руля высоты на 0,5-1 деление по указателю. Удерживая самолет на тормозах плавно перевести РУД на взлетный режим работы двигателей (n= 4700+-50 об/мин.).

Убедившись в том, что все двигатели работают синхронно, снять самолет с тормозов.

Направление на разбеге до скорости 150 км/час выдерживается тормозами, а на больших скоростях – рулем направления. Штурвальную колонку на разбеге следует держать нейтрально.

На скорости 210-230 км/час отклонением колонки штурвала на себя начинается подъем передней ноги шасси. Движение колонки должно быть таким, чтобы на Vпр=230-240 м/час самолет имел угол атаки 6-7 град.

На скорости, меньшей скорости отрыва на 20 км/час, устанавливается взлетный угол атаки самолета 9-10 град, и в таком положении продолжается разбег до момента отрыва. Скорости отрыва самолета в зависимости от взлетного веса приведены в табл. 1

Таблина 1

С взл, тс	78	76	74,5	72,5	70	65	60	55
Vпр. отр.	310	305	300	295	290	280	270	260

После отрыва самолет переводится на разгон скорости. На высоте 5-10 м затормаживаются колеса, а на высоте не менее 25 м и скорости около 350 км/час убирается шасси, тумблер света фар переводится в нейтральное положение и убираются фары.

После уборки шасси и фар на высоте не менее 100 м убираются закрылки импульсами в два приема. Уборка шасси и закрылков должна производится на Vпр не более 400 км/час.

На высоте не менее 100 м двигатели переводятся на номинальный режим.

6.4. Взлет с ВПП ограниченных размеров, при высокой температуре воздуха, либо низком атмосферном давлении.

При взлете с ВПП для данных условий практически возможное уменьшение взлетного веса может оказаться недостаточным для уменьшения длины разбега. В этом случае целесообразно отклонить закрылки перед взлетом на 20 град. Увеличение угла отклонения закрылков позволяет уменьшить в среднем длину разбега на 12% и

скорость отрыва на 20 км/час. При этом зависимость скорости отрыва от взлетного веса приведена в табл.2.

Таблица 2

Свзл , тс	78	76	74,5	72,5	70	65	60	55
Vпр.	290	285	280	275	270	260	250	240
отр.								

7. ПОРЯДОК НАБОРА ВЫСОТЫ

После уборки закрылков и переведения РУД на номинальный режим (4425 об/мин) скорость полета в этот момент не должна превышать 400 км/час.

На высоте 200-300 м, уменьшив вертикальную скорость до 2-3 м/с, следует начать разгон самолета до приборной скорости $600 \, \text{км/час}$. До набора высоты $6000 \, \text{м}$ следует удерживать приборную скорость $600 \, \text{км/чаc}$. Данные по набору высоты со взлетным весом $76 \, \text{тс}$ приведены в табл. $3 \, \text{гd}$

Таблица 3

таолица 3									
Н, км	Vпр, км/час	Vист, км/час	Т, мин	Пройденное расстояние, км	Расход топлива, кгс				
взлет	0-560	560	2,0	0	600				
1	600	620	3,5	15	1050				
2	600	650	5,0	30	1300				
3	600	680	7,5	60	1750				
4	600	715	10,0	90	2200				
5	600	750	12,5	125	2600				
6	600	775	15,0	160	2950				
7	575	800	18,0	200	3350				
8	545	800	21,0	240	3750				
9	515	800	24,5	290	4150				
10	485	800	28,5	340	4600				

После достижения высоты 6000м дальнейший набор высоты производить согласно таблице 3.

При таком порядке набора высоты самолет за 28,5 минут набирает высоту 10000 метров, проходит расстояние по горизонту 340 километров и расходует топлива 4600 кгс (с учетом расхода топлива на взлет 500 кгс)

8. СНИЖЕНИЕ

8.1 Порядок снижения с эшелона

В горизонтальном полете до начала снижения рассчитывается время начала снижения, посадочный вес и центровка самолета.

Нормальный посадочный вес самолета Ту-104А не более 63 тс. Максимально допустимый посадочный вес Ту-104А 65 тс.

Порядок снижения с эшелона полета показан в табл. 4

Таблина 4

Таолица т	X 7	NT	M	17	17	D	D	D
Высота	Vу сн,	Nдв,	M	Vпр,	Vист,	Время	Рассто	Расход
начала	м/с	об/м		км/ч	км/ч	снижения	яние,	топлива,
снижения		ин				, мин-сек	КМ	КГ
, M								
10000	10	4050	0,75	-	810	15-50	187	680
90000	10	4020	0,75	-	820	14-10	164	630
8400	10	4000	0,75	-	827	13-10	150	595
7800	10	3980	0,75	-	835	12-10	136	555
7200	10	3950	0,75	-	842	11-10	122	515
6600	10	3920	0,75	-	849	10-10	108	470
6000	10	3900	0,75	-	856	9-10	94	410
5000	10	3850	-	600	753	7-30	72	320
4000	10	3700	-	500	600	5-50	53	255
3000	10	3700	-	500	570	4-10	37	190
2000	10	3670	-	500	540	2-30	22	120
1000	10	3600	-	500	512	0-50	7	45
500	-	-	-	-	-	0-00	0	0

Из таблицы 4 видно, что при вводе самолета на снижение необходимо уменьшить режим работы двигателей так, чтобы при постоянном числе М=0,75, вертикальная скорость снижения установилась 10 м/с. На высоте около 6000 м при числе М=0,75 приборная скорость достигнет 600 км/час. Дальнейшее снижение производить на этой скорости до высоты 4000 м, затем уменьшить Vпр до 500 км/час. При таком снижении самолет с высоты 10000 м до высоты 3000 м снижается за 11,5-12 минут, пройдя расстояние около 150 километров. В районе аэропорта назначения (зоне подхода) в радиусе 60-80 км с высоты 3000 м до эшелона перехода снижение производить на Vпр=450-500 км/час. В процессе всего снижения режим работы двигателей уменьшать так, чтобы на числе М=0,75, Vпр=600, 500 и 450 км/ч вертикальная скорость снижения сохранялась 10м/с. С эшелона перехода до высоты полета по кругу снижение выполнять на Vпр=400 км/ч, обеспечивая режимом работы двигателей вертикальную скорость снижения 7 м/с.

8.2. Экстренное (аварийное) снижение

При необходимости экстренного снижения следует немедленно перевести двигатели на режим малого газа и плавным движением колонки штурвала от себя перевести самолет на снижение.

На самолете Ту-104A при достижении вертикальной скорости 25-27 м/с и числа M=0,81-0,83 плавным движением колонки штурвала на себя самолет постепенно переводится в режим установившегося снижения с числом M=0,85-0,86 .

Вертикальную скорость снижения при этом установить 30-35 м/с.

На высоте около 6000-6500 м при максимально допустимом числе М приборная скорость становится 740-750 км/час. Дальнейшее снижение следует производить на этой скорости.

На высоте 5000 м плавно перевести самолет в горизонтальный полет. Дальнейшее снижение производить согласно п. 8.1.

9. ПОСАДКА САМОЛЕТА

9.1.Посадка самолета в нормальных условиях

Перед заходом на посадку производится расчет элементов захода на посадку с учтом посадочного веса, его центровки, состояния ВПП, скорости и направления ветра, температуры и атмосферного давления на аэродроме.

На высоте 400 м при пролете траверза ДПРМ на скорости 380-400 км/ч выпускаются шасси. По расчетному курсовому углу (КУР) выполняется третий разворот с креном 15-20 град. В сложных условиях и не более 30 град. при визуальном полете. После выполнения третьего разворота выпускаются закрылки на 20 град. Выпуск закрылков производится импульсами в два приема, на скорости не более 380 км/ч. К началу четвертого разворота необходимо установить скорость 360-370 км/ч и на этой скорости выполнить разворот с креном 20 град.

После выхода из четвертого разворота уменьшается скорость до 340 км/ч и выпускаются закрылки в два прима до 35 град. Усилия на штурвальной колонке в процесс выпуска закрылков снимаются триммером руля высоты.

После выпуска закрылков самолет переводится на снижение, устанавливается приборная скорость 300 км/ч, выпускаются фары и тумблер света фар устанавливается в положение «Посадка».

В процессе снижения режим работы двигателей должен быть таким, чтобы чтобы вертикальная скорость была постоянной (около 3 м/с), при этом частота вращения двигателя 3800-3900 об/мин.

После пролета ДПРМ уменьшается частота вращения двигателей до 3500 об/мин и устанавливается вертикальная скорость снижения 3-4 м/с

Пролет БПРМ производить на скорости 280-305 км/ч

После пролета БПРМ устанавливается скорость снижения, равная Vпос+40км/ч, а вертикальная - 4 м/с, но не более 6 м/с.

По мере подхода к точке выравнивания плавным движением колонки штурвала на себя перевести самолет на больший угол атаки, не допуская уменьшения скорости менее Vпос+40км/ч. Движения рулями должны быть строго координированными. Нарушение координации движения может вызвать очень опасную боковую раскачку самолета.

К началу выравнивания на высоте 15 м плавно дросселируются двигатели и плавно увеличивается угол атаки до посадочного. Самолет приземляется на углах атаки 9-10 град.

Посадочная приборная скорость Vпос в зависимости от посадочного веса дана в табл. 5

Таблица 5

Посадочный вес,	53	55	58	60	63	65
тс						
Vпос, км/ч	225	230	240	250	260	265

После приземления начинается пробег. Для уменьшения длины пробега на скорости 220 км/ч приступить к плавному торможению, сохраняя прямолинейность движения рулем направления. Стремление самолета опускать нос в процессе торможения предотвращается движением штурвальной колонки на себя. По мере уменьшения скорости, когда руль высоты становится малоэффективным, плавным движением колонки штурвала самолет опускается на переднюю ногу шасси и усиливается торможение колес. Направление во второй половине пробега сохраняется плавным торможением колес.

Учитывая, что двигатели при малом газе создают положительную тягу (700-800 кгс), рекомендуется на пробеге выключать один из двигателей для уменьшения длины пробега. При посадке с боковым ветром следует выключать подветренный двигатель. По окончании пробега убираются закрылки и тумблер света фар переводится в положение «Руль».

9.2.Применение тормозных парашютов

Тормозные парашюты применяются:

- при посадке с максимально допустимым весом
- при ограниченных размерах ВПП, а также, когда расчетная длина пробега без парашюта близка к длине ВПП
- в случае посадки с попутным ветром или попутным наклоном полосы
- при посадке на скользкую полосу
- при посадке с убранными закрылками и в случае прерванного взлета

Тормозные парашюты разрешатся также выпускать во всех случаях по усмотрению командира экипажа (при посадке с неисправным шасси, отказе системы торможения, приземлении с небольшим перелетом и т.п.)