МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр. 0382	Осинкин Е. А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучение представление и обработку целых чисел, также научиться организовывать ветвящиеся процессы на языке Ассемблера.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Выполнение работы.

Вариант 26.

i1:

$$f6 = < /2*(i+1) -4$$
, при a>b $< 5 - 3*(i+1)$, при a<=b

i2:

res:

Сначала определяются все сегменты программы, сегмент стека AStack, сегмент данных DATA SEGMENT, в котором объявляются переменные а,b,i,k,i1,i2,res и сегмент кода CODE SEGMENT. Выполнение программы начинается с процедуры MAIN, в которой первым делом задаётся сегмент данных, далее сравниваются два числа а и b, и в зависимости от результата вычисляются значения i1 и i2, переход к нужному случаю происходит посредством условного перехода jle(если a<=b), далее к метке Label_res переход осуществляется либо естественным образом, либо при помощи безусловного перехода jmp. Далее проверяется равенство к нулю, и в зависимости от результата определяется результат res, при этом используются условные переходы jne(k!=0), jge(i1>=i2).

Исходный программный код смотрите в приложении А. Файл листинга смотрите в приложении Б.

Тестирование. Результаты представлены в таблице 1.

Таблица 1 – Результаты тестирования

No॒	Входные данные	Выходные данные	Комментарий
1	a=5	i1=8	Правильно.
	b=5	i2=18	5-3*(-2+1)=8
	i=-2	res=8	9-3*(-2-1)=18
	k=0		min(8,18)=8
2	a=6	i1=-6(FFFA)	Правильно.
	b=5	i2=4	2*(-2+1)-4=-6
	i=-2	res=4	-(6*(-2)+8)=4
	k=1		max(-6,4)=4
3	a=5	i1=5	Правильно.
	b=5	i2=15	5-3*(-1+1)=5
	i=-1	res=15	9-3*(-1-1)=15

	k=1	max(5,15)=15

Выводы.

В ходе работы были изучены способы ветвления программы, условные и безусловные переходы, также написана программа, вычисляющая значение функции по заданным целочисленным параметрам.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: lab.asm
AStack SEGMENT STACK
    DW 12 DUP(?)
AStack ENDS
DATA SEGMENT
    a DW 6
    b DW 5
    i DW -2
    k DW 1
    i1 DW 0 ; f1=2*(i+1)-4 if a>b, if a<=b f1=5-3*(i+1) f1=2i-2 f1=-3i+2
    i2 DW 0 ; f2=-(6*i+8) if a>b, if a<=bx f2=9-3*(i-1) f2=-6i-8 f2=12-3i
    res DW 0; f3=min(i1,i2) if k=0, if k!=0 f3=max(i1,i2)
DATA ENDS
CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
    push DS
    sub AX, AX
    push AX
    mov AX, DATA
    mov DS, AX
    mov cx,i
               ;cx=i
    shl cx,1
               ;cx=2i
    mov ax, a
    cmp ax, b
    jle Label f1 2
Label f1 1:
    sub cx,2
               ;cx=2i-2
    mov il,cx
             ;cx=4i-4
    shl cx,1
               ;cx=5i-4
    add cx,i
    add cx,i
               ;cx=6i-4
    add cx, 12
              ;cx=6i+8
                ; cx = -(6i + 8)
    neg cx
    mov i2,cx
    jmp Label res
Label f1 2:
    sub cx, 2
              ;cx=2i-2
    add cx,i; cx=3i-2
    neg cx
               ;cx=2-3i
```

mov i1,cx

```
add cx, 10 ; cx=12-3i
   mov i2,cx
Label_res: ;f3=min(i1,i2) if k=0, if k!=0 f3=max(i1,i2)
    mov bx,i1 ;bx=i1
    mov res,cx ;res=i2
    cmp k,0
    jne Label_res_else ;if k!=0
    cmp bx, i2 ; i1?i2
    jge final
   mov res,bx
    jmp final
Label res else:
    cmp bx, i2
              ;i1?i2
    jle final
   mov res,bx
    jmp final
final:
   ret
Main ENDP
CODE ENDS
   END Main
```

приложение б

ФАЙЛЫ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: lab.lst

Micros 01:45:	oft (R)	Macro Assembler Version 5.10 11/25/21
1-1		Page
1 1		
0000		AStack SEGMENT STACK
0000	000C[DW 12 DUP(?)
	????	
]
0018		AStack ENDS
0010		ACCCC LINDO
0000		DATA SEGMENT
0000	0006	a DW 6
0002	0005	b DW 5
0004	FFFE	i DW -2
0006	0001	k DW 1
0008 f1=5	0000	i1 DW 0 ; $f1=2*(i+1)-4$ if a>b, if a<=b
		-3*(i+1) f1=2i-2 f1=-3i+2
000A f2=9	0000	i2 DW 0 ; $f2=-(6*i+8)$ if a>b, if a<=bx
		-3*(i-1) f2=-6i-8 f2=12-3i
000C k!=0 f	0000	res DW 0 ;f3=min(i1,i2) if $k=0$, if
		max(i1,i2)
000E		DATA ENDS
0000		CODE SEGMENT
		ASSUME CS:CODE, DS:DATA, SS:AStack
0000		Main PROC FAR
0000	1E	push DS

```
0001 2B CO
                          sub AX, AX
 0003 50
                     push AX
 0004 B8 ---- R
                           mov AX, DATA
 0007 8E D8
                          mov DS, AX
 0009 8B 0E 0004 R
                          mov cx,i ;cx=i
 000D D1 E1
                          shl cx,1
                                     ;cx=2i
 000F A1 0000 R
                          mov ax,a
 0012 3B 06 0002 R
                          cmp ax,b
 0016 7E 1D
                           jle Label f1 2
 0018
                       Label f1 1:
 0018 83 E9 02
                                sub cx,2; cx=2i-2
 001B 89 0E 0008 R
                          mov il,cx
 001F D1 E1
                          shl cx,1; cx=4i-4
 0021 03 0E 0004 R
                          add cx, i; cx=5i-4
 0025 03 0E 0004 R
                          add cx,i
                                     ;cx=6i-4
 0029 83 C1 0C
                               add cx, 12; cx = 6i + 8
 002C F7 D9
                          neg cx ; cx = -(6i + 8)
 002E 89 0E 000A R
                          mov i2,cx
 0032 EB 15 90
                                jmp Label res
0035
                       Label f1 2:
                                sub cx, 2 ; cx=2i-2
0035 83 E9 02
Microsoft (R) Macro Assembler Version 5.10
                                                       11/25/21
01:45:1
                                                        Page
1-2
0038 03 0E 0004 R
                          add cx,i
                                     ; cx = 3i - 2
                          neg cx
 003C F7 D9
                                     ;cx=2-3i
 003E 89 0E 0008 R
                         mov il,cx
 0042 83 C1 0A
                               add cx, 10 ;cx=12-3i
 0045 89 0E 000A R
                   mov i2,cx
 0049
                       Label res: ;f3=min(i1,i2) if k=0, if
```

k! = 0 f3

 $= \max(i1, i2)$

0049 8B 1E 0008 R mov bx,i1 ;bx=i1 004D 89 0E 000C R mov res,cx ;res=i2

0051 83 3E 0006 R 00 cmp k,0

0056 75 0D jne Label res else ;if k!=0

0058 3B 1E 000A R cmp bx,i2 ;i1?i2

005C 7D 14 jge final 005E 89 1E 000C R mov res,bx

0062 EB 0E 90 jmp final

0065 Label res else:

0065 3B 1E 000A R cmp bx,i2 ;i1?i2

0069 7E 07 jle final 006B 89 1E 000C R mov res,bx

006F EB 01 90 jmp final

0072 final:

0072 CB ret

0073 Main ENDP

0073 CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10 11/25/21

01:45:1

Symbols-1

Segments and Groups:

Name Length Align Combine

Class

Symbols:

Name Type Value Attr

A	L WORD 0000 DATA
В	L WORD 0002 DATA
FINAL	L NEAR 0072 CODE
I	L WORD 0004 DATA
I1	L WORD 0008 DATA
12	L WORD 000A DATA
K	L WORD 0006 DATA
LABEL_F1_1	L NEAR 0018 CODE
LABEL_F1_2	L NEAR 0035 CODE
LABEL_RES	L NEAR 0049 CODE
LABEL_RES_ELSE	L NEAR 0065 CODE
MAIN	F PROC 0000 CODE Length =
RES	L WORD 000C DATA
@CPU	TEXT 0101h
@FILENAME	TEXT lab
@VERSION	TEXT 510

76 Source Lines

76 Total Lines

21 Symbols

48030 + 461277 Bytes symbol space free

0 Warning Errors

O Severe Errors