

Satikhel, Kathmandu

Subject : Optional Math				
Exam	Time	Class	Full Marks	Pass Marks
3 rd Terminal 2073 Poush	3 hrs	8 (G+W)	100	40

Group A
$$[(8+8)*2=32]$$

- 1. (a) Define column matrix with an example.
 - **(b)** If $A = \begin{bmatrix} x-3 & 4 \\ 5 & y+2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 4 \\ 5 & 3 \end{bmatrix}$ are equal matrices, find value of x and y.
- **2.** (a) If A = { factors of 9}, B = { factors of 8} then find $n(A \times A)$ and $(B \times A)$.
 - **(b)** Find the product of f(x) and g(x) where f(x) = x+3 and g(x) = x-5.
- **3.** (a) Which one is greater $\sqrt{2}$ or $\sqrt[3]{8}$?
 - **(b)** Simplify: $4\sqrt{8} + 3\sqrt{18} + \sqrt{32}$
- 4. (a) Find the image of the point A (a,-b) under rotation about origin through 180°.
 - **(b)** If $\vec{a} = (2, 5)$, find the magnitude of $2\vec{a}$.
- **5.** (a) Prove that $\frac{\cos A}{1-\sin A} = \frac{1+\sin A}{\cos A}$
 - **(b)** Find the value of $3\tan^2 30^\circ + 4\sin^2 30^\circ + 2\cos^2 45^\circ$
- **6.** (a) Convert 24^g into radian.
 - **(b)** Express $\tan \theta$ in terms of $\sin \theta$.
- **7.** (a) If $A=30^{\circ}$, prove that $\cos 2A = 2\cos^2 A 1$
 - (b) Write the co-ordinate of any point on x-axis & specify quadrant of point A (-2,-3).
- **8.** (a) Find the mid-point of the line AB joining the two points A (5,-1) and B (3,-7).
 - (b) If the slope of the line joining two points (2, y) and (3, 5) is 1, find the value of y.

Group B
$$[17 * 4 = 68]$$

9. If
$$P = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then find $P + Q - 2R$.

10. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$, verify that $A + B = B + A$ and $(A + B)^T = A^T + B^T$

11. Simplify:
$$\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} + \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$$

- 12. Define the Cartesian Product. Find the relation $R = \{(x,y) : x < y\}$ on $A \times A$, where $A = \{2,4,6\}$.
- **13.** If a relation $R = \{(1,2), (3,4), (6,7), (11,12), (15,16)\}$, find the domain, range and inverse relation.
- **14.** Use the synthesis division method to find the quotient and remainder when the polynomial $2x^3-5x^2-8x+11$ is divided by x-4.

15. Find
$$\overrightarrow{AB}$$
, \overrightarrow{BA} and $|\overrightarrow{AB}|$ if A(3,2) and B (0,6)

16. Prove that :
$$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = 2 \csc\theta$$

17. Prove that :
$$\frac{1-\sin^4 A}{\cos^4 A} = 1 + 2\tan^2 A$$

18. Factorize :
$$\tan^2\theta + 5\tan\theta + 6$$

- **19.** In a right angled \triangle ABC, if $\prec B = 90^{\circ}$, AC = 4cm and BC = $2\sqrt{3}$ cm, find other angles and sides.
- **20.** Derive the Distance Formula from Pythagorean Theorem.
- **21.** Prove that the points (1, 0), (2, 1) and (3, 0) are the vertices of the right angles isosceles triangle.
- 22. Find the ratio and value of 'a' if C (5, a) divides the line joining the points A (1, 5) and B (6,-5).
- **23.** Two angles of a triangle are in the ratio 5:4 and the third angle is 90^g. Find all the angles in degree.
- **24.** ABC is a triangle with vertices A(-2,2) ,B(2,2) and (2,6). Find the image of \triangle ABC under translation T = $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$.
- **25.** Find the co-ordinates of the image of ΔPQR with vertices P (1, 1), Q (3, 1) and R (3,-1) under the reflection on x-axis. Also show in the graph paper.

2