This listing of claims will replace all prior versions, and listings, of claims in the application:

## LISTING OF CLAIMS

(Amended) A compound of formula I or a pharmaceutically acceptable salt thereof 1.

wherein A is a heteroaryl selected from the group consisting of

wherein R<sup>1</sup> is selected from the group consisting of C<sub>3</sub>-C<sub>10</sub> alkyl, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, up to per-halosubstituted  $C_1$ - $C_{10}$  alkyl and or up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl;

B is an up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, substituted by -Y -Ar -M-L1 and optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, and Xn,

wherein n is 0-2 and each X is independently selected from the group consisting of -CN,  $-CO_{2}R^{5}, -C(O)NR^{5}R^{5'}, -C(O)R^{5}, -NO_{2}, -OR^{5}, -SR^{5}, -NR^{5}R^{5'}, -NR^{5}C(O)OR^{5'}, -NR^{5}C(O)R^{5'}, C_{1}-CO_{2}R^{5}, -C(O)NR^{5}R^{5'}, -C(O)R^{5}, -NO_{2}, -OR^{5}, -NR^{5}R^{5'}, -NR^{5}C(O)OR^{5'}, -NR^{5}C(O)R^{5'}, -NR^{5}C(O$  $C_{10} \ alkyl, \ C_2 - C_{10} \ alkenyl, \ C_1 - C_{10} \ alkoxy, \ C_3 - C_{10} \ cycloalkyl, \ C_6 - C_{14} \ aryl, \ C_7 - C_{24} \ alkaryl, \ C_3 - C_{13} \ alkenyl, \ C_{10} - C_{10} \ alkoxy, \ C_{10} - C_{10} \ alkenyl, \ C_{10} - C_{10} \ alkoxy, \ C_{10} - C_{10} \ alkenyl, \ C_{10} - C_{10} \ alkoxy, \ C_{10} - C_{10} \ alkenyl, \ C_{10} - C_{10} \$ heteroaryl,  $C_4$ - $C_{23}$  alkheteroaryl, substituted  $C_1$ - $C_{10}$  alkyl, substituted  $C_2$ - $C_{10}$  alkenyl, substituted  $C_1$ - $C_{10}$  alkoxyl, substituted  $C_3$ - $C_{10}$  cycloalkyl , up to per-halosubstituted  $C_6$ - $C_{14}$  aryl, up to per-halosubstituted  $C_6$ - $C_{15}$ -C

halosubstituted C<sub>3</sub>-C<sub>13</sub> heteroaryl, and substituted C<sub>4</sub>-C<sub>23</sub> alkheteroaryl Ar and -M-L<sup>1</sup>;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)R^5$ ,  $-C(O)NR^5R^{5'}$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^{5'}$ ,  $-NO_2$ ,  $-NR^5C(O)R^{5'}$ ,  $-NR^5C(O)OR^{5'}$  and halogen up to per-halosubstitution;

wherein  $R^5$  and  $R^{5'}$  are independently selected from H,  $C_1$ - $C_{10}$  alkyl,  $C_2$ - $C_{10}$ \_alkenyl,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{13}$  heteroaryl,  $C_7$ - $C_{24}$  alkaryl,  $C_4$ - $C_{23}$  alkheteroaryl, up to perhalosubstituted  $C_1$ - $C_{10}$  alkyl, up to perhalosubstituted  $C_2$ - $C_{10}$ \_alkenyl, up to perhalosubstituted  $C_3$ - $C_{10}$  cycloalkyl, up to perhalosubstituted  $C_6$ - $C_{14}$  aryl and up to perhalosubstituted  $C_3$ - $C_{13}$  heteroaryl,

wherein 
$$\pm \underline{M}$$
 is -O-, -S-, -N(R<sup>5</sup>)-, -(CH<sub>2</sub>)-m, -C(O)-, -CH(OH)-, -(CH<sub>2</sub>)mO-, -NR<sup>5</sup>C(O)NR<sup>5</sup>R<sup>5</sup>'-, -NR<sup>5</sup>C(O)-, -C(O)NR<sup>5</sup>, -O(CH<sub>2</sub>)m<sup>7</sup>, -(CH<sub>2</sub>)mS-, -(CH<sub>2</sub>)mN(R<sup>5</sup>)-, -O(CH<sub>2</sub>)m<sup>7</sup>, -CHX<sup>a</sup>-, -CX<sup>a</sup><sub>2</sub>-, -S-(CH<sub>2</sub>)m- and or -N(R<sup>5</sup>)(CH<sub>2</sub>)m-, m = 1-3, and X<sup>a</sup> is halogen; and

Ar  $\underline{L^1}$  is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur <u>atoms</u>, which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by  $Z_{n1}$ , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)NR^5R^5$ ,  $-C(O)NR^5$ ,  $-NO_2$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^5$ ,  $-NR^5C(O)OR^5$ ,  $-C(O)R^5$ ,  $NR^5C(O)R^5$ ,  $C_1-C_{10}$  alkyl,  $C_3-C_{10}$  cycloalkyl,  $C_6-C_{14}$  aryl,  $C_3-C_{13}$  heteroaryl,  $C_7-C_{24}$  alkaryl,  $C_4-C_{23}$  alkheteroaryl, substituted  $C_1-C_{10}$  alkyl, substituted  $C_3-C_{10}$  cycloalkyl, substituted  $C_7-C_{24}$  alkaryl and <u>or</u> substituted  $C_4-C_{23}$  alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)NR^5R^{5'}$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NO_2$ ,  $-NR^5R^{5'}$ ,  $-NR^5C(O)R^{5'}$  and  $-NR^5C(O)OR^{5'}$ , and

wherein  $R^2$  is  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{14}$  heteroaryl, substituted  $C_6$ - $C_{14}$  aryl or substituted  $C_3$ - $C_{14}$  heteroaryl,

D+



į

wherein if  $R^2$  is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $V_n$ ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, -  $CO_2R^5$ , -C(O)NR $^5R^5$ ', -OR $^5$ , -SR $^5$ , -NR $^5R^5$ ', -C(O)R $^5$ , -OC(O)NR $^5R^5$ ', -NR $^5C$ (O)OR $^5$ ', -SO $_2R^5$ , -SOR $^5$ , -NR $^5C$ (O)R $^5$ ', -NO $_2$ , C $_1$ -C $_{10}$  alkyl, C $_3$ -C $_{10}$  cycloalkyl, C $_6$ -C $_{14}$  aryl, C $_3$ -C $_{13}$  heteroaryl, C $_7$ -C $_{24}$  alkaryl, C $_4$ -C $_{24}$  alkheteroaryl, substituted C $_1$ -C $_{10}$  alkyl, substituted C $_3$ -C $_{10}$  cycloalkyl, substituted C $_6$ -C $_{14}$  aryl, substituted C $_3$ -C $_{13}$  heteroaryl, substituted C $_7$ -C $_{24}$  alkaryl and substituted C $_4$ -C $_{24}$  alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5</sup>, -NR<sup>5</sup>R<sup>5</sup>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>C(O)R<sup>5</sup>, -NR<sup>5</sup>C(O)OR<sup>5</sup> and -NO<sub>2</sub>; wherein R<sup>5</sup> and R<sup>5</sup> are each independently as defined above.

wherein if V is a substituted group, it is substituted by one or more halogen, up to perhalosubstitution.

6

- 3. (Cancelled)
- 4. (Amended) A compound of claim 1, wherein

BAYER-9C1.

 $\pm$  M is selected from the group consisting of -O-, -S-, -CH<sub>2</sub>-, -SCH<sub>2</sub>-, -CH<sub>2</sub>S-, -CH(OH), -C(O)-, -CX<sup>a</sup><sub>2</sub>, -CX<sup>a</sup>H-, -CH<sub>2</sub>O- and -OCH<sub>2</sub>-, and X<sup>a</sup> is halogen.

## 5. (Amended) A compound of claim 4, wherein

B is phenyl, naphthyl, a 5-6 membered monocyclic heteroaryl group having 1-4 hetero atoms independently selected from the group consisting of O, S and N or a 8-10 member bicyclic heteroaryl groups having 1-4 hetero atoms independently selected from the group consisting of O, S and N;

Ar  $\underline{L}^1$  is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinolinyl, isoquinolinyl, imidazolinyl and benzothiazolyl, unsubstituted or substituted by halogen, up to per-halo substitution, and

Z and X are independently selected from the group consisting of  $-R^6$ ,  $-OR^6$  and  $-NHR^7$ , wherein  $R^6$  is hydrogen,  $C_1$ - $C_{10}$ -alkyl or  $C_3$ - $C_{10}$ -cycloalkyl and  $R^7$  is selected from the group consisting of hydrogen,  $C_3$ - $C_{10}$ -alkyl,  $C_3$ - $C_6$ -cycloalkyl and  $C_6$ - $C_{10}$ -aryl, wherein  $R^6$  and  $R^7$  can be substituted by halogen  $\Theta$  up to per-halosubstitution.

- 6. (Original) A compound of claim 1, wherein R<sup>1</sup> is t-butyl and R<sup>2</sup> is unsubstituted or substituted phenyl.
  - 7. (Amended) A compound of claim 4, wherein B is of the formula,



. ...<u>T</u>

DY

wherein L is phenyl, or a six membered aromatic structure containing 1 or 2 nitrogen atoms, Ar  $\underline{L}^1$  is phenyl or pyridinyl,  $\underline{Y}$   $\underline{M}$  is -O-, -S- or  $-CH_2$ -, and X and Z are independently Cl, F,  $NO_2$  or  $CF_3$ .

- 8. (Original) A compound of claim 7, wherein R<sup>1</sup> is t-butyl.
- 9. (Original) A compound of claim 1 of the formula

wherein B and R<sup>2</sup> are as defined in claim 1.

10. (Original) A compound of claim 9, wherein  $R^2$  is selected from substituted and unsubstituted members of the group consisting of phenyl and pyridinyl, wherein if  $R^2$  is a substituted group, it is substituted by one or more of the substituents selected from the group consisting of halogen and  $W_n$ , wherein n = 0-3, and W is selected from the group consisting of NO<sub>2</sub>, -C<sub>1</sub>-3 alkyl, -NH(O)CH<sub>3</sub>, -CF<sub>3</sub>, -OCH<sub>3</sub>, -F, -Cl, -NH<sub>2</sub>,-SO<sub>2</sub>CH<sub>3</sub>, pyridinyl, phenyl, up to per-halosubstituted phenyl and C<sub>1</sub>-C<sub>6</sub> alkyl substituted phenyl.

11. Cancelled

Dt

- 12. Cancelled
- 13. Cancelled
- 14. Cancelled
- 15. (Amended) A method for the treatment of disease mediated by rafkinase, comprising administering an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof to a host in need thereof:

wherein A is a heteroaryl selected from the group consisting of

$$\mathbb{R}^{2}$$
 and  $\mathbb{R}^{2}$ 

wherein  $R^1$  is selected from the group consisting of  $C_3$ - $C_{10}$  alkyl,  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_1$ - $C_{10}$  alkyl and or up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl;

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $X_n$ ,

wherein n is 0-3 and each X is independently selected from the group consisting of -CN,  $CO_2R^5$ ,  $-C(O)NR^5R^5$ ,  $-C(O)R^5$ ,  $-NO_2$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^5$ ,  $-NR^5C(O)OR^5$ ,  $-NR^5C(O)R^5$ ,  $C_{1-}$   $C_{10}$  alkyl,  $C_{2-10}$ -alkenyl,  $C_{1-10}$ -alkoxy,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{14}$  aryl,  $C_7$ - $C_{24}$  alkaryl,  $C_3$ - $C_{13}$  heteroaryl,  $C_4$ - $C_{23}$  alkheteroaryl, substituted  $C_1$ - $C_{10}$  alkyl, substituted  $C_{2-10}$ -alkenyl, substituted  $C_{1-10}$ -alkoxy, substituted  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_6$ - $C_{14}$  aryl, up to per-halosubstituted  $C_3$ - $C_{13}$  heteroaryl, substituted  $C_4$ - $C_{23}$  alkheteroaryl and  $-\frac{V}{Ar}$ - $\frac{M}{L}$ ;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)R^5$ ,  $-C(O)NR^5R^5$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^5$ ,  $-NO_2$ ,  $-NR^5C(O)R^5$ ,  $-NR^5C(O)OR^5$  and halogen up to per-halosubstitution;

wherein  $R^5$  and  $R^{5'}$  are independently selected from H,  $C_1$ - $C_{10}$  alkyl,  $C_{2-10}$ -alkenyl,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{13}$  heteroaryl,  $C_7$ - $C_{24}$  alkaryl,  $C_4$ - $C_{23}$  alkheteroaryl, up to perhalosubstituted  $C_1$ - $C_{10}$  alkyl, up to per-halosubstituted  $C_2$ - $C_{10}$ -alkenyl, up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_6$ - $C_{14}$  aryl and up to per-halosubstituted  $C_3$ - $C_{13}$  heteroaryl,

wherein  $\underbrace{M}$  is - O-, -S-, -N(R<sup>5</sup>)-, -(CH<sub>2</sub>)-<sub>m</sub>, -C(O)-, -CH(OH)-, -(CH<sub>2</sub>)<sub>m</sub>O-, -(CH<sub>2</sub>)<sub>m</sub>S-, -(CH<sub>2</sub>)<sub>m</sub>N(R<sup>5</sup>)-, -O(CH<sub>2</sub>)<sub>m</sub>-, -CHX<sup>a</sup>-, -CX<sup>a</sup><sub>2</sub>-, -S-(CH<sub>2</sub>)<sub>m</sub>- and or -N(R<sup>5</sup>)(CH<sub>2</sub>)<sub>m</sub>-,

m = 1-3, and  $X^a$  is halogen; and

Ar  $\underline{L}^1$  is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur <u>atoms</u> which is unsubstituted or substituted by halogen up to perhalosubstitution and optionally substituted by  $Z_{n1}$ , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN,  $-C(O)R^5$ ,

-CO<sub>2</sub>R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5'</sup>, -C(O)NR<sup>5</sup>, -NO<sub>2</sub>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>R<sup>5'</sup>, -NR<sup>5</sup>C(O)OR<sup>5'</sup>,

-NR $^5$ C(O)R $^5$ ', C $_1$ -C $_{10}$  alkyl, C $_3$ -C $_{10}$  cycloalkyl, C $_6$ -C $_{14}$  aryl, C $_3$ -C $_{13}$  heteroaryl, C $_7$ -C $_{24}$  alkaryl, C $_4$ -C $_{23}$  alkheteroaryl, substituted C $_1$ -C $_{10}$  alkyl, substituted C $_3$ -C $_{10}$  cycloalkyl, substituted C $_7$ -C $_{24}$  alkaryl and or substituted C $_4$ -C $_{23}$  alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents

independently selected from the group consisting of –CN, -CO $_2$ R $^5$ ,

-C(O)NR $^5$ R $^5$ ', -OR $^5$ , -SR $^5$ , -NO $_2$ , -NR $^5$ R $^5$ ', -NR $^5$ C(O)R $^5$ ' and -NR $^5$ C(O)OR $^5$ ', and

wherein  $R^2$  is  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{14}$  heteroaryl, substituted  $C_6$ - $C_{14}$  aryl or substituted  $C_3$ - $C_{14}$  heteroaryl,

wherein if  $R^2$  is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $V_n$ ,

wherein n=0-3 and each V is independently selected from the group consisting of -CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5'</sup>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>R<sup>5'</sup>, -OC(O)NR<sup>5</sup>R<sup>5'</sup>, -NR<sup>5</sup>C(O)OR<sup>5'</sup>, -NR<sup>5</sup>C(O)OR<sup>5'</sup>, -SO<sub>2</sub>R<sup>5</sup>, -SOR<sup>5</sup>, -NR<sup>5</sup>C(O)R<sup>5'</sup>, -NO<sub>2</sub>, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, C<sub>6</sub>-C<sub>14</sub> aryl, C<sub>3</sub>-C<sub>13</sub> heteroaryl, C<sub>7</sub>-C<sub>24</sub> alkaryl, C<sub>4</sub>-C<sub>24</sub> alkheteroaryl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>3</sub>-C<sub>10</sub> cycloalkyl, substituted C<sub>6</sub>-C<sub>14</sub> aryl, substituted C<sub>3</sub>-C<sub>13</sub> heteroaryl, substituted C<sub>7</sub>-C<sub>24</sub> alkaryl and substituted C<sub>4</sub>-C<sub>24</sub> alkheteroaryl,

where V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5</sup>, -NR<sup>5</sup>R<sup>5'</sup>, -OR<sup>5</sup>, -SR<sup>5</sup>,

 $-NR^5C(O)R^{5'}$ ,  $-NR^5C(O)OR^{5'}$  and  $-NO_2$ ,

wherein R<sup>5</sup> and R<sup>5'</sup> are each independently as defined above.

16. (Original) A method as in claim 15, wherein  $R^2$  is selected from substituted or unsubstituted members of the group consisting of phenyl and pyridinyl, and the substituents for  $R^2$  are selected from the group consisting of halogen, up to per-halosubstitution and  $V_n$ , wherein n=0-3, and each V is independently selected from the group consisting of substituted and unsubstituted  $C_1$ - $C_6$  alkyl,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{10}$  aryl, -NO<sub>2</sub>, -NH<sub>2</sub>, -C(O)-C<sub>1</sub>- $\epsilon$  alkyl, -C(O)N-(C<sub>1</sub>- $\epsilon$  alkyl)<sub>2</sub>, -C(O)NH-C<sub>1</sub>- $\epsilon$  alkyl, -O-C<sub>1</sub>- $\epsilon$  alkyl, -NHC(O)H, -NHC(O)OH, -N(C<sub>1</sub>- $\epsilon$  alkyl)C(O)-C<sub>1</sub>- $\epsilon$  alkyl, -N-(C<sub>1</sub>- $\epsilon$  alkyl, -N-(C<sub>1</sub>- $\epsilon$  alkyl, -NHC(O)-C<sub>1</sub>- $\epsilon$  alkyl, -NHC(O)O-C<sub>1</sub>- $\epsilon$  alkyl, and -SO<sub>2</sub>-C<sub>1</sub>- $\epsilon$  alkyl, wherein if V is a substituted group, it is substituted by one or more

11

halogen, up to per-halosubstitution.



- 17. (Cancelled)
- 18. (Amended) A method of claim 15, wherein B is

$$\frac{\overset{\mathsf{X}}{\overset{\mathsf{1}}{\mathsf{0}}}\overset{\mathsf{2}}{\mathsf{Q}}}{-\overset{\mathsf{Q}^{1}}{\mathsf{Q}}}\frac{\mathsf{Z}_{\mathsf{n1}}}{\mathsf{Z}_{\mathsf{n1}}}$$

$$\begin{array}{c|c} X_{0-2} \\ \\ \\ -L-M-L^1-Z_{n1} \end{array}$$

wherein

 $\Psi$  M is selected from the group consisting of -O-, -S-, -CH<sub>2</sub>-, -SCH<sub>2</sub>-, -CH<sub>2</sub>S-, -CH(OH)-, -C(O)-, -CX<sup>a</sup><sub>2</sub>, -CX<sup>a</sup>H-, -CH<sub>2</sub>O- and -OCH<sub>2</sub>-,

X<sup>a</sup> is halogen,

Q  $\underline{L}$  is a six member aromatic structure containing 0-2 nitrogen, unsubstituted or substituted by halogen, up to per-halosubstitution;

 $Q^4$   $L^1$  is a mono- or bicyclic aromatic structure of 5-10 members with 3 to 10 carbon atoms and 0-2 members of the group consisting of N, O and S, unsubstituted or substituted by halogen up to per-halosubstitution,

X, Z, and n1 are as defined in claim 15.

19. (Amended) A method as in claim 18, wherein

Q  $\underline{L}$  is phenyl or pyridinyl, unsubstituted or substituted by halogen, up to perhalosubstitution,

DY

 $Q^4$   $L^1$  is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinolinyl, isoquinolinyl, imidazolinyl and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, and

Z and X are independently selected from the group consisting of  $-R^6$ ,  $-OR^6$  and  $-NHR^7$ , wherein  $R^6$  is hydrogen,  $C_1$ - $C_{10}$ -alkyl or  $C_3$ - $C_{10}$ -cycloalkyl and  $R^7$  is selected from the group consisting of hydrogen,  $C_3$ - $C_{10}$ -alkyl,  $C_3$ - $C_6$ -cycloalkyl and  $C_6$ - $C_{10}$ -aryl, wherein  $R^6$  and  $R^7$  can be substituted by halogen or up to per-halosubstitution.

- 20. (Amended) A method as in claim 18, wherein Q  $\underline{L}$  is phenyl,  $Q^{\dagger} \underline{L}^{1}$  is phenyl or pyridinyl,  $\underline{Y} \underline{M}$  is -O-, -S- or  $-CH_{2}$ -, and X and Z are independently Cl, F,  $NO_{2}$  or  $CF_{3}$ .
- 21. (Amended) A method as in claim 15, which comprises administering a compound of one of the formulae formula



Dr

wherein B and R<sup>2</sup> are as defined in claim 15.

- 22. (Original) A method as in claim 21, wherein  $R^2$  is selected from substituted and unsubstituted members of the group consisting of phenyl or pyridinyl, wherein if  $R^2$  is a substituted group, it is substituted by one or more substituents selected from the group consisting of halogen and  $W_n$ , wherein n = 0-3, and W is selected from the group consisting of -NO<sub>2</sub>, -C<sub>1</sub>-3 alkyl, -NH(O)CH<sub>3</sub>, -CF<sub>3</sub>, -OCH<sub>3</sub>, -F, -Cl, -NH<sub>2</sub>, -SO<sub>2</sub>CH<sub>3</sub>, pyridinyl, phenyl, up to perhalosubstituted phenyl and C<sub>1</sub>-C<sub>6</sub> alkyl substituted phenyl.
- 23. (Previously amended) A method as in claim 15, comprising administering an amount of compound of formula I effective to inhibit raf kinase.
- 24. (Previously amended) A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
- 25. (Previously amended) A pharmaceutical composition comprising an effective amount of a compound of claim 2 and a pharmaceutically acceptable carrier.

D4

26. (New) A method for treating a solid cancer, melanoma or adenoma, comprising administering an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof to a host in need thereof:

wherein A is

wherein  $R^1$  is selected from the group consisting of  $C_3$ - $C_{10}$  alkyl,  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_1$ - $C_{10}$  alkyl and up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl;

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $X_n$ ,

wherein n is 0-3 and each X is independently selected from the group consisting of –CN,  $CO_2R^5$ , -C(O)NR<sup>5</sup>R<sup>5'</sup>, -C(O)R<sup>5</sup>, -NO<sub>2</sub>, -OR<sup>5</sup>, - SR<sup>5</sup>, - NR<sup>5</sup>R<sup>5'</sup>,

-NR $^5$ C(O)OR $^5$ ', -NR $^5$ C(O)R $^5$ ', C $_1$ -C $_{10}$  alkyl, C $_{2-10}$ -alkenyl, C $_{1-10}$ -alkoxy, C $_3$ -C $_{10}$  cycloalkyl, C $_6$ -C $_{14}$  aryl, C $_7$ -C $_{24}$  alkaryl, C $_3$ -C $_{13}$  heteroaryl, C $_4$ -C $_{23}$  alkheteroaryl, substituted C $_1$ -C $_{10}$  alkyl, substituted C $_2$ -I $_0$ -alkenyl, substituted C $_3$ -C $_{10}$  cycloalkyl, up to per-halosubstituted C $_6$ -C $_{14}$  aryl, up to per-halosubstituted C $_3$ -C $_{13}$  heteroaryl substituted C $_4$ -C $_{23}$  alkheteroaryl and M-L $_1$ ;

where X is a substituted group, it is substituted by one or more substituents independently

selected from the group consisting of -CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)R<sup>5</sup>,



-C(O)NR<sup>5</sup>R<sup>5</sup>', -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>R<sup>5</sup>', -NO<sub>2</sub>, -NR<sup>5</sup>C(O)R<sup>5</sup>', -NR<sup>5</sup>C(O)OR<sup>5</sup>' and halogen up to perhalosubstitution;

wherein  $R^5$  and  $R^5$  are independently selected from H,  $C_1$ - $C_{10}$  alkyl,  $C_{2-10}$ -alkenyl,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{13}$  heteroaryl,  $C_7$ - $C_{24}$  alkaryl,  $C_4$ - $C_{23}$  alkheteroaryl, up to perhalosubstituted  $C_1$ - $C_{10}$  alkyl, up to per-halosubstituted  $C_{2-10}$ -alkenyl, up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_6$ - $C_{14}$  aryl and up to per-halosubstituted  $C_3$ - $C_{13}$  heteroaryl,

wherein M is - O-, -S-, -N(R<sup>5</sup>)-, -(CH<sub>2</sub>)-<sub>m</sub>, -C(O)-, -CH(OH)-, -(CH<sub>2</sub>)<sub>m</sub>O-, -(CH<sub>2</sub>)<sub>m</sub>S-, -(CH<sub>2</sub>)<sub>m</sub>N(R<sup>5</sup>)-, -O(CH<sub>2</sub>)<sub>m</sub>-, -CHX<sup>a</sup>-, -CX<sup>a</sup><sub>2</sub>-, -S-(CH<sub>2</sub>)<sub>m</sub>- or -N(R<sup>5</sup>)(CH<sub>2</sub>)<sub>m</sub>-, m = 1-3, and X<sup>a</sup> is halogen; and

 $L^1$  is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur atoms which is unsubstituted or substituted by halogen up to perhalosubstitution and optionally substituted by  $Z_{n1}$ , wherein n1 is 0 to 3 and each Z is independently -CN,  $-C(O)R^5$ ,  $-CO_2R^5$ ,  $-C(O)NR^5R^5$ ,  $-C(O)NR^5$ ,  $-NO_2$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^5$ ,  $-NR^5C(O)OR^5$ ,  $-NR^5C(O)R^5$ ,  $-C_{10}$  alkyl,  $-C_{10}$  cycloalkyl,  $-C_{10}$  alkyl,  $-C_{10}$  alkyl, substituted  $-C_{10}$  alkyl, substitute

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN,  $-\text{CO}_2\text{R}^5$ ,

-C(O)NR $^5$ R $^5$ ', -OR $^5$ , -SR $^5$ , -NO $_2$ , -NR $^5$ R $^5$ ', -NR $^5$ C(O)R $^5$ ' and -NR $^5$ C(O)OR $^5$ ', and

wherein  $R^2$  is  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{14}$  heteroaryl, substituted  $C_6$ - $C_{14}$  aryl or substituted  $C_3$ - $C_{14}$  heteroaryl,

wherein if  $R^2$  is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $V_n$ ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, -  $CO_2R^5$ , -C(O)NR<sup>5</sup>R<sup>5'</sup>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>R<sup>5'</sup>, -OC(O)NR<sup>5</sup>R<sup>5'</sup>,

-NR $^5$ C(O)OR $^5$ ', -NR $^5$ C(O)OR $^5$ ', -SO $_2$ R $^5$ , -SOR $^5$ , -NR $^5$ C(O)R $^5$ ', -NO $_2$ , C $_1$ -C $_{10}$  alkyl, C $_3$ -C $_{10}$  cycloalkyl, C $_6$ -C $_{14}$  aryl, C $_3$ -C $_{13}$  heteroaryl, C $_7$ -C $_{24}$  alkaryl, C $_4$ -C $_{24}$  alkheteroaryl, substituted C $_1$ -C $_{10}$  alkyl, substituted C $_3$ -C $_{10}$  cycloalkyl, substituted C $_6$ -C $_{14}$  aryl, substituted C $_3$ -C $_{13}$  heteroaryl, substituted C $_7$ -C $_{24}$  alkaryl and substituted C $_4$ -C $_{24}$  alkheteroaryl,

where V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5</sup>, -NR<sup>5</sup>R<sup>5'</sup>, -OR<sup>5</sup>, -SR<sup>5</sup>,

 $-NR^5C(O)R^{5'}$ ,  $-NR^5C(O)OR^{5'}$  and  $-NO_2$ ,

wherein R<sup>5</sup> and R<sup>5</sup> are each independently as defined above.

- 27. (New) A method as in claim 26, wherein the compound of formula I displays IC50s between 10nM and  $10\mu M$  as determined by an in-vitro raf kinase assay.
- 28. (New) A method according to claim 26, wherein the disease is a cancer dependent upon the raf protein signal transduction cascade and is treated by inhibiting raf kinase.
- 29. (New) A method according to claim 26, wherein the solid cancer is a carcinoma of the lungs, pancreas, thyroid, bladder or colon.
  - 30. (New) A compound of formula I or a pharmaceutically acceptable salt thereof

wherein A is



74

wherein  $R^1$  is  $C_3$ - $C_{10}$  alkyl,  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_1$ - $C_{10}$  alkyl or up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl;

B is phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, naphthyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl substituted by -M-L $^{\rm l}$ ; and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, and  $X_n$ ,

wherein n is 0-2 and each X is independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)NR^5R^5$ ,  $-C(O)R^5$ ,  $-NO_2$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^5$ ,  $-NR^5C(O)OR^5$ ,  $-NR^5C(O)R^5$ ,  $-C_{10}$  alkyl,  $-C_{10}$  alkenyl,  $-C_{10}$  alkoxy,  $-C_{10}$  cycloalkyl,  $-C_{10}$  alkaryl,  $-C_{10}$  alkaryl,  $-C_{10}$  alkaryl,  $-C_{10}$  alkenyl, substituted  $-C_{10}$  alkyl, substituted  $-C_{10}$  alkenyl, substituted  $-C_{10}$  alkoxyl, substituted  $-C_{10}$  alkoxyl, up to perhalosubstituted  $-C_{10}$  alkaryl, up to perhalosubstituted  $-C_{10}$  and substituted  $-C_{10}$  alkenyl and substituted  $-C_{10}$  alkenyl and substituted  $-C_{10}$  alkenyl and  $-C_{10}$  alkenyl an

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)R^5$ ,  $-C(O)NR^5R^{5'}$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^{5'}$ ,  $-NO_2$ ,  $-NR^5C(O)R^{5'}$ ,  $-NR^5C(O)OR^{5'}$  and halogen up to per-halosubstitution;

wherein  $R^5$  and  $R^{5'}$  are independently selected from H,  $C_1$ - $C_{10}$  alkyl,  $C_2$ - $C_{10}$ -alkenyl,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{13}$  heteroaryl,  $C_7$ - $C_{24}$  alkaryl,  $C_4$ - $C_{23}$  alkheteroaryl, up to perhalosubstituted  $C_1$ - $C_{10}$  alkyl, up to perhalosubstituted  $C_2$ - $C_{10}$ -alkenyl, up to perhalosubstituted

 $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_6$ - $C_{14}$  aryl and up to per-halosubstituted  $C_3$ - $C_{13}$  heteroaryl,

D4

 $L^1$  is phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, naphthyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl, optionally substituted by halogen up to perhalosubstitution and optionally substituted by  $Z_{n1}$ ,

wherein n1 is 0 to 3 and each Z is independently –CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5'</sup>, -C(O)NR<sup>5</sup>, -NO<sub>2</sub>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>R<sup>5'</sup>, -NR<sup>5</sup>C(O)OR<sup>5'</sup>, -C(O)R<sup>5</sup>, NR<sup>5</sup>C(O)R<sup>5'</sup>, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, C<sub>6</sub>-C<sub>14</sub> aryl, C<sub>3</sub>-C<sub>13</sub> heteroaryl, C<sub>7</sub>-C<sub>24</sub> alkaryl, C<sub>4</sub>-C<sub>23</sub> alkheteroaryl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>3</sub>-C<sub>10</sub> cycloalkyl, substituted C<sub>7</sub>-C<sub>24</sub> alkaryl or substituted C<sub>4</sub>-C<sub>23</sub> alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO<sub>2</sub>R<sup>5</sup>,

$$-C(O)NR^5R^{5'}$$
,  $-OR^5$ ,  $-SR^5$ ,  $-NO_2$ ,  $-NR^5R^{5'}$ ,  $-NR^5C(O)R^{5'}$  and  $-NR^5C(O)OR^{5'}$ , and

wherein  $R^2$  is optionally substituted phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, naphthyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl, wherein if  $R^2$  is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $V_n$ ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, -

D4

 $CO_2R^5$ ,  $-C(O)NR^5R^{5'}$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^{5'}$ ,  $-C(O)R^5$ ,  $-OC(O)NR^5R^{5'}$ ,  $-NR^5C(O)OR^{5'}$ ,  $-SO_2R^5$ ,  $-SO_2R^5$ ,  $-SO_2R^5$ ,  $-SO_2R^5$ ,  $-SO_2R^5$ ,  $-NR^5C(O)R^{5'}$ ,  $-NO_2$ ,  $C_1-C_{10}$  alkyl,  $C_3-C_{10}$  cycloalkyl,  $C_6-C_{14}$  aryl,  $C_3-C_{13}$  heteroaryl,  $C_7-C_{24}$  alkaryl,  $C_4-C_{24}$  alkheteroaryl, substituted  $C_1-C_{10}$  alkyl, substituted  $C_3-C_{10}$  cycloalkyl, substituted  $C_6-C_{14}$  aryl, substituted  $C_3-C_{13}$  heteroaryl, substituted  $C_7-C_{24}$  alkaryl and substituted  $C_4-C_{24}$  alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5</sup>, -NR<sup>5</sup>R<sup>5</sup>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>C(O)R<sup>5</sup>, -NR<sup>5</sup>C(O)OR<sup>5</sup> and -NO<sub>2</sub>; wherein R<sup>5</sup> and R<sup>5</sup> are each independently as defined above.

- 31. (New) A compound as in claim 30 wherein  $R^2$  is phenyl, substituted phenyl, pyridinyl or substituted pyridinyl,  $L^1$  is phenyl or pyridinyl, M is -O-, -S- or -CH<sub>2</sub>, X and Z are independently Cl, F, CF<sub>3</sub>, NO<sub>2</sub> or CN, and  $R^1$  is t-butyl.
- 32. (New) A compound as in claim 1 wherein B is optionally substituted diphenyl ether, diphenyl thioether, diphenyl amine, phenylpyridinyl ether, pyridinylmethylphenyl, phenylpyridinylthioether, phenylbenzothiazolyl ether, phenylbenzothiazolyl thioether, phenylpyrimidinyl ether, phenylquinoline thioether, phenylnaphthyl ether, pyridinylnapthyl ether, pyridinylnaphthyl thioether, and phthalimidylmethylphenyl and R<sup>2</sup> is phenyl, substituted phenyl, pyridinyl or substituted pyridinyl.
  - 33. (New) A compound of formula I or a pharmaceutically acceptable salt thereof



wherein A is



wherein  $R^1$  is  $C_3$ - $C_{10}$  alkyl,  $C_3$ - $C_{10}$  cycloalkyl, up to per-halosubstituted  $C_1$ - $C_{10}$  alkyl or up to per-halosubstituted  $C_3$ - $C_{10}$  cycloalkyl;

B is phenyl, pyridinyl, naphthyl, quinolinyl or isoquinolinyl, substituted by -M-L<sup>1</sup>; and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $X_n$ ,

wherein n is 0-2 and each X is independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)NR^5R^5$ ,  $-C(O)R^5$ ,  $-NO_2$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^5$ ,  $-NR^5C(O)OR^5$ ,  $-NR^5C(O)R^5$ , -N

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN,  $-CO_2R^5$ ,  $-C(O)R^5$ ,  $-C(O)NR^5R^{5'}$ ,  $-OR^5$ ,  $-SR^5$ ,  $-NR^5R^{5'}$ ,  $-NO_2$ ,  $-NR^5C(O)R^{5'}$ ,  $-NR^5C(O)OR^{5'}$  and halogen up to per-halosubstitution;

wherein  $R^5$  and  $R^{5'}$  are independently selected from H,  $C_1$ - $C_{10}$  alkyl,  $C_2$ - $C_{10}$ \_alkenyl,  $C_3$ - $C_{10}$  cycloalkyl,  $C_6$ - $C_{14}$  aryl,  $C_3$ - $C_{13}$  heteroaryl,  $C_7$ - $C_{24}$  alkaryl,  $C_4$ - $C_{23}$  alkheteroaryl, up to perhalosubstituted  $C_1$ - $C_{10}$  alkyl, up to perhalosubstituted  $C_2$ - $C_{10}$ \_alkenyl, up to perhalosubstituted  $C_3$ - $C_{10}$  cycloalkyl, up to perhalosubstituted  $C_6$ - $C_{14}$  aryl and up to perhalosubstituted  $C_3$ - $C_{13}$  heteroaryl,

wherein M is -O-, -S-, -N(R<sup>5</sup>)-, -(CH<sub>2</sub>)-<sub>m</sub>, -C(O)-, -CH(OH)-, -(CH<sub>2</sub>)<sub>m</sub>O-, -NR<sup>5</sup>C(O)NR<sup>5</sup>R<sup>5</sup>'-, -NR<sup>5</sup>C(O)-, -C(O)NR<sup>5</sup>, -O(CH<sub>2</sub>)<sub>m</sub>-, -(CH<sub>2</sub>)<sub>m</sub>S-, -(CH<sub>2</sub>)<sub>m</sub>N(R<sup>5</sup>)-,

 $-O(CH_2)_{m^-}$ ,  $-CHX^a$ -,  $-CX^a_{2^-}$ ,  $-S-(CH_2)_{m^-}$  or  $-N(R^5)(CH_2)_{m^-}$ , m = 1-3, and  $X^a$  is halogen; and

 $L^1$  is phenyl, pyridinyl, naphthyl, quinolinyl or isoquinolinyl, optionally substituted by halogen up to per-halosubstitution and optionally substituted by  $Z_{n1}$ ,

wherein n1 is 0 to 3 and each Z is independently –CN, -CO<sub>2</sub>R<sup>5</sup>, -C(O)NR<sup>5</sup>R<sup>5</sup>, -C(O)NR<sup>5</sup>, -NO<sub>2</sub>, -OR<sup>5</sup>, -SR<sup>5</sup>, -NR<sup>5</sup>R<sup>5</sup>, -NR<sup>5</sup>C(O)OR<sup>5</sup>, -C(O)R<sup>5</sup>, NR<sup>5</sup>C(O)R<sup>5</sup>, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, C<sub>6</sub>-C<sub>14</sub> aryl, C<sub>3</sub>-C<sub>13</sub> heteroaryl, C<sub>7</sub>-C<sub>24</sub> alkaryl, C<sub>4</sub>-C<sub>23</sub> alkheteroaryl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>3</sub>-C<sub>10</sub> cycloalkyl, substituted C<sub>7</sub>-C<sub>24</sub> alkaryl and or substituted C<sub>4</sub>-C<sub>23</sub> alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN,  $-CO_2R^5$ ,

-C(O)NR  $^5R$   $^{5'}$  , -OR  $^5$  , -SR  $^5$  , -NO  $_2$  , -NR  $^5R$   $^{5'}$  , -NR  $^5C(O)R$   $^{5'}$  and -NR  $^5C(O)OR$   $^{5'}$  , and

wherein R<sup>2</sup> is unsubstituted phenyl, unsubstituted pyridinyl, substituted phenyl or substituted pyridinyl

wherein if  $R^2$  is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and  $V_n$ ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, - $CO_2R^5$ , - $C(O)NR^5R^5$ , - $OR^5$ , -OR

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, - $CO_2R^5$ , - $C(O)R^5$ , - $C(O)NR^5R^5$ , - $NR^5R^5$ , - $NR^5$ , - $NR^5C(O)R^5$ , - $NR^5C(O)OR^5$  and - $NO_2$ ; wherein  $R^5$  and  $R^5$  are each independently as defined above.

74

- 34. (New) A compound of claim 33 wherein one of the following combinations is satisfied:
- R<sup>2</sup>= unsubstituted phenyl, B=phenyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- R<sup>2</sup>= unsubstituted phenyl, B=pyridinyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- $R^2$ = unsubstituted phenyl, B = naphthyl and  $L^1$  is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- $R^2$ = unsubstituted pyridinyl, B= phenyl and  $L^1$  is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- R<sup>2</sup>= unsubstituted pyridinyl, B= pyridinyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- R<sup>2</sup>= unsubstituted pyridinyl, B= naphthyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- R<sup>2</sup>= substituted phenyl, B=phenyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- R<sup>2</sup>= substituted phenyl, B=pyridinyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- $R^2$ = substituted phenyl, B = naphthyl and  $L^1$  is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- $R^2$ = substituted pyridinyl, B= phenyl and  $L^1$  is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl,
- $R^2$ = substituted pyridinyl, B= pyridinyl and  $L^1$  is phenyl, naphthyl, pyridinyl, quinolinyl or isoquinolinyl, or
  - R<sup>2</sup>= substituted pyridinyl, B= naphthyl and L<sup>1</sup> is phenyl, naphthyl, pyridinyl, quinolinyl or

isoquinolinyl.