Weekly Homework 1

Math Gecs

December 19, 2023

Exercise 1

Define the double factorial via $(2n-1)!! = (2n-1)(2n-3)\cdots 1$. Compute the unique pair (a,c) with c>0 and $a\in(0,\infty)$ such that

$$\lim_{n \to \infty} \frac{c^n (4n-1)!!}{(2n-1)!!(2n-1)!!} = a.$$

Source: Stanford Mathematics Competition (2023 - Problem 10)

Answer 1. $\left(\frac{\sqrt{2}}{2}, \frac{1}{4}\right)$

Solution 1. We claim that $(a,c) = \left(\frac{\sqrt{2}}{2}, \frac{1}{4}\right)$ is the answer.

First, rewrite

$$P_n = \frac{(4n-1)!!}{(2n-1)!!(2n-1)!!} = \prod_{k=1}^n \frac{(4k-1)(4k-3)}{(2k-1)^2}$$

and as $(4k-1)(4k-3) \le 4(2k-1)^2 = (2k-1)(4k-2)$, it follows that $P_n \le 4^n$, so if $c < \frac{1}{4}$, the value of this limit would be 0.

From the other end, we claim that $P_n \geq \left(\frac{1}{2} + \frac{1}{4n}\right) 4^n$, implying that indeed $c = \frac{1}{4}$.

To do so, we proceed by induction. Note that $P_1 = 3$ which satisfies the hypothesis. Now, note that

$$P_{n+1} = P_n \cdot \frac{(4n+3)(4n+1)}{(2n+1)^2} = 4P_n \cdot \left(1 - \frac{1}{(4n+2)^2}\right) \ge 4P_n \cdot \left(\frac{1}{2} + \frac{1}{4n}\right) \cdot \left(1 - \frac{1}{(4n+2)^2}\right) 4^{n+1}$$

and

$$\left(\frac{1}{2} + \frac{1}{4n}\right) \left(1 - \frac{1}{(4n+2)^2}\right) = \frac{1}{2} + \frac{1}{4n} - \frac{1}{2(4n+2)^2} - \frac{1}{4n(4n+2)^2}$$
$$= \frac{1}{2} + \frac{1}{4n} - \frac{3}{16n} + \frac{1}{16n+8}$$
$$\geq \frac{1}{2} + \frac{16n+16}{4(4n+1)}$$

so our induction is complete.

Finally, we show that $Q_n = P_n 4^{-n} \to \frac{\sqrt{2}}{2}$. To do so, consider writing

$$Q(z) = \prod_{n=0}^{\infty} \left(1 - \frac{z^2}{\pi^2(n + \frac{1}{2})^2}\right) = \prod_{n=0}^{\infty} \left(1 - \frac{z}{\pi(n + \frac{1}{2})}\right) \left(1 + \frac{z}{\pi(n + \frac{1}{2})}\right)$$

and note that our desired answer is $Q\left(\frac{\pi}{4}\right)$.

Our (surprising) claim is that in fact $Q(z) = \cos(z)$: writing $\cos(z)$ as a Taylor series gives that it is a polynomial with first coefficient 1, and the zeros of Q(z) are exactly those of $\cos(z)$ (with the same multiplicities, as $\cos(z)$ and $\cos(z)' = \sin(z)$ share no zeros). To show formal convergence, we appeal to the Weierstrass Factorization Theorem, which guarantees such a representation (maybe insert a more formal convergence statement).

Now, we have $Q\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ and we are done.

Solution 2. Note that $(4n-1)!! = \frac{(4n)!}{(4n)!} = \frac{(4n)!}{(2n)!2^{2n}}$ and similarly $(2n-1)!! = \frac{(2n)!}{n!2^n}$. So, we can rewrite

$$\frac{(4n-1)!!}{(2n-1)!!(2n-1)!!} = \frac{(4n)!}{(2n)!(2n)!}$$

Define $f(n) \sim g(n)$ if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 1$. Then, we claim that

$$\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}}$$

Indeed, by Stirling's Approximation,

$$\binom{2n}{n} \sim \frac{\sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n}}{(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n)^2} = \frac{2^{2n}}{\sqrt{\pi n}}$$

Hence,

$$\frac{\binom{4n}{2n}}{\binom{2n}{n}} \sim \frac{\frac{2^{4n}}{\sqrt{2\pi n}}}{\frac{2^{2n}}{\sqrt{\pi n}}} = \frac{4^n}{\sqrt{2}}$$

This immediately implies $(a, c) = \left(\frac{\sqrt{2}}{2}, \frac{1}{4}\right)$.

Exercise 2

Find all positive integers n such that $3_{n-1} + 5_{n-1}$ divides $3_n + 5_n$.

Source: St.Petersburg 1996

Answer 2. 1

Solution 3. This only occurs for n = 1. Let $s_n = 3^n + 5^n$ and note that

$$s_n = (3+5)s_{n-1} - 3 \cdot 5 \cdot s_{n-2}$$

So s_{n-1} must also divide $3 \cdot 5 \cdot s_{n-2}$.

If n > 1, then s_{n-1} is coprime to 3 and 5, then s_{n-1} must divide s_{n-2} , which is impossible since $s_{n-1} > s_{n-2}$.