이차전지 산업분석

2025.03.15 3조 박민호 김근제 이태웅 이하원

Index

- 1. 산업 개요
- 2. 밸류체인 분석
- 3. 시장 분석
- 4. 시장 전망

1. 이차전지 산업개요

전기차·ESS·IT 기기의 핵심 동력원인 이차전지 분야에서의 기술 경쟁과 시장 성장이 가속화

이차전지(Secondary/Rechargeable Battery)란?

이차 전지(secondary battery)란?

- 충전하여 여러번 사용할 수 있는 전지
- 일차 전지(primary battery)에 비해 경제적 · 환경적
- 대표적인 종류: 리튬이온 배터리(LiB), 납축전지, 나트륨이온 배터리

주요 활용 분야

- 전기차 (EV): 가장 큰 수요처, 배터리 원가가 차량 가격의 40%에 육박
- 에너지저장장치 (ESS): 신재생에너지와 연계한 대형 배터리
- 소형 IT 기기: 스마트폰, 노트북, 웨어러블 기기 등

대표적 예시

- LFP (리튬인산철): 저렴한 가격, 높은 안정성, 긴 수명, 낮은 에너지 밀도
- NCM (삼원계): 비싼 가격, 낮은 안정성, 높은 에너지 밀도

시장 현황

- 전기차(EV) 수요 증가를 바탕으로 지속적인 성장 예상
- 전기차 캐즘, 미, 중 등 주요국 지원금 폐지, 관세 등 단기적인 시장 악재
- 내연기관에서 전기차(EV)로의 구조적 전환을 바탕으로 장기적으론 지속적인 성장 예상

1. 이차전지 산업개요

이차전지 산업은 전기차 시장, 정부 정책 방향성, 원자재 가격 등 제반 환경 변화에 극히 민감하게 변화

P (정치적 요인)

- 트럼프 행정부의 정책 변화 가능성
 - 미국의 전기차 및 배터리 산업 지원 정책(IRA 등) 조정 가능성
- 중국의 배터리 산업 보호
- 희토류·흑연·리튬 등 핵심 **원자재 수출 제한 검토**, 자국 중심의 배터리 공급망 강화

S (사회적 요인)

- 친환경 에너지 전환에 대한 소비자 인식 변화
- 전기차 시장 지속 성장, 하지만 **가격 민감도** 상승
- EV 시장의 대중화와 보급형 모델 수요 증가
 - 저가형 배터리(LFP) 중심의 시장 재편 예상

E (경제적 요인)

- 리튬, 니켈, 코발트 등의 배터리 **원자재 가격** 변동성
- 전기차 배터리 생산비 절감 압박
- LFP 배터리 확대 및 원자재 내재화로 비용 절감
- 배터리 리사이클링 및 자원 순환 시장 성장
- 원자재 가격 상승에 따라 배터리 재활용 시장 확대
- EU, 미국 등 주요국 배터리 재활용 규제 및 인센티브 도입

T (기술적 요인)

- 전기차 및 이차전지 기술 발전 필요성 증가
 - 삼원계(NCM) vs. LFP 배터리 경쟁 심화
 - 차세대 배터리(전고체, 나트륨이온) 연구개발 중요
- 기업들의 **수직 계열화**(Vertical integration) 전략 강화
 - Tesla, CATL 등 원자재부터 배터리 제조까지 직접 통제

1. 이차전지 산업개요

미국, 중국, 유럽 등 주요 국가들은 전기차 지원금을 폐지 혹은 축소하려는 경향 또한 미국-중국간 전기차 기업들의 무역 전쟁이 본격화

L (제도적 요인 - 중국)

- 2023년 이후 중앙정부의 전기차 보조금 폐지 하지만 세금 리베이트 등 '숨겨진' 보조금을 통한 전기차 수출 지원
- 리튬 · 흑연 · 희토류 **수출 제한** 검토
 - 자국 중심으로 배터리 공급망을 재편하려는 움직임
- 美 견제로 유럽시장 진출 가속화
- 유럽 내 현지 배터리 생산 기지 설립 및 점유율 확대

L (제도적 요인 - 미국)

- 트럼프 2기 취임 직후 전기차 의무화 정책 철회
- 전기차 판매 목표치 철회, 충전소 구축을 위한 자금 집행 중단
- 美 공화당, 전기차 **보조금 폐지**·추가적 세금 법안 발의
- 7,500 달러 지원금 폐지 및 전기차에 1,000달러 추가 세금 부과
- IRA의 개정 가능성으로 기업의 세제 혜택 유지 여부 불확실
 - 기존 IRA를 통해 한국에서 생산된 양극재 세재 혜택이 적용되었으나 혜택 축소 또는 폐지 가능성 존재

L (제도적 요인 - 유럽)

- EU 내 전기차 전환 정책은 지속, 하지만 경기 둔화로 일부 국가의 보조금 정책 후퇴
- 독일·스웨덴: 팬데믹 시기 보조금 확대 후 2023년 축소·폐지했으나, 세액 공제 형태로 다시 부활
- 프랑스: 전기차 보조금 1/3 축소, 대신 이산화탄소 배출이 많은 차량에 대한 처벌 강화
- 일부 ICE(내연기관) 기업 보유국은 내연기관차에 대한 보조금 정책 유지
- 독일·이탈리아·프랑스: 내연기관차에게 보조금 지급 및 Fit for 55 시행 연기 요청을 통한 전기차 전환 속도 조절 움직임
- 중국산 전기차에 대한 견제 강화
- EU는 중국산 전기차에 최대 45.3% 관세 부과 확정 및 유럽 내 생산된 전기차에 대한 보조금 지급 확대

Index

- 1. 산업 개요
- 2. 밸류체인 분석
- 3. 시장 분석
- 4. 시장 전망

2. 밸류체인 분석

업스트림, 미드스트림, 다운스트림의 산업이 세계적으로 광범위하게 분산되어 있는 이차전지는 트럼프의 보호무역주의 하에서 변동성이 가장 높은 산업으로 밸류체인에 대한 이해가 필수적

이차전지 밸류체인 개괄

Upstream

원자재 확보(생산)

- 리튬, 니켈 코볼트 등 핵심원자재 확보가 가장 중요
- -원자재 확보 방안으로는 광산, 염호 등에서의 채굴 및 채취와 타 공정 부산물 중 광물 추출이 가능한 물질을 확보하는 것이 있음
- -리튬과 코볼트는 특정 지역에 편중, 니켈은 비교적 고르게 분포함

Midstream

원자재 제련 (가공)

- 고순도의 정제원료를 경제성 있게 제련하는 것이 핵심
- 원자재를 제련하여 고순도화, 이는 최종재의 성능, 수명, 안전성에 직결

핵심 소재 및 셀 제조 (소재 제조)

- 정제 원료 기반 전구체 등의 기초 소재 및 배터리 핵심소재(양극재, 음극재, 전해액, 분리막) 제조
- 배터리 셀의 경우 최종재 생산지 인근에서 제조하는 것이 유리

Downstream

배터리 팩 제조 (완성재 제조)

- 배터리 셀-> 모듈->배터리 팩의 생산 과정
- 전기차(EV), 에너지저장시스템(ESS) 등 최종재의 형태는 다양

End of life

배터리 재활용 (재사용)

- 폐배터리 재사용, 재활용 가능
- 배터리의 재사용 혹은 폐배터리 내부 희토류 추출

2. 밸류체인 분석 - 업스트림

업스트림에서는 원재료의 생산국과 매장국이 핵심 요소로 작용 첨단 제조업 분야의 자급률을 높이기 위한 원자재 확보는 필수적이며 각 국가들의 전략자산으로 사용

리튬

- 리튬은 특정 지역에 매장량 편중
- 세계 1위 리튬 매장국은 **칠레**, 생산국은 **호주** (2023년 기준)

니켈

- 니켈은 다른 광물에 비해 비교적 고르게 분포
- **인도네시아**가 최대 보유국이자 생산국 (2023년 기준)

코발트

- 코발트의 약 80%가 콩고에서 생산 (과점)
- 중국은 대규모 투자로 콩고의 코발트 광산의 약 70%를 보유하여 시장을 사실상 독점

8

자료 : AMIS, 2023)US Geological Survey, Statista

2. 밸류체인 분석 - 미드스트림 : 원자재 가공 및 핵심소재 제조

미드스트림은 니켈, 코발트, 리튬을 경제성있게 제련 및 고순도화하여 셀 핵심소재인 양극재, 음극재, 전해액, 분리막 등을 생산하고, 용도에 따른 배터리 셀 제조

원자재 세정 및 정제

- 리튬, 니켈, 코발트 등은 원광 형태로 수집되어 세정 및 정제 과정이 필요
- 리튬: 중국은 리튬 가공 시설의 약 **70%** 차지, **산 출처**에 따라 제련 방식 상이
- 광산: 가열, 여과 등의 추가적 세부 가공
- 염호: 염수 증발 과정 거침
- 코발트: 중국은 전 세계 제련 코발트의 약 64% 공급 (황산 코발트 등)
- 니켈: 건식 및 습식 제련을 통해 니켈 화합물로 가공, 최종 제품 순도에 따라 용도 구분, 순도가 99.9% 이상인 니켈만이 배터리 생산에 투입

2030년 4대 핵심소재 비율 전망

자료: KPMG 경제연구원: 배터리 생태계 경쟁 역학 구도로 보는 미래 배터리 산업

배터리셀 4대 핵심소재

	양극재	음극재	분리막	전해질
특징	양극의 특성을 나타내는 활물질 리튬 코발트 산화물을 기본으로 니켈과 다른 금속 원소가 더해져 만들어짐 양극재에 쓰이는 금속의 종류와 비율에 따라서 용량이나 전압 등 주요 성능이 차별화	양극에서 나온 리튬이온을 저장 및 방출하여 전류를 흐르게 하는 역할 음극재에는 구조적인 안정성을 갖추고 화학 반응이 낮은 흑연이 사용됨 음극재는 배터리 수명을 결정	미세한 구멍을 통해 리튬이온의 이동을 돕고 양극과 음극의 물리적 접촉을 차단 전기 절연성과 열 안정성이 핵심	양극과 음극 사이에서 리튬이온 이동통로를 제공하는 매개채 최근에는 배터리 성능 향상을 위하여 고체 전해질인 전고체에 대한 연구도 활발히 진행

2. 밸류체인 분석 - 미드스트림 : 원자재 가공 및 핵심소재 제조

미드스트림은 니켈, 코발트, 리튬을 경제성있게 제련 및 고순도화하여 셀 핵심소재인 양극재, 음극재, 전해액, 분리막 등을 생산하고, 용도에 따른 배터리 셀 제조

배터리 셀 제조

- 배터리 셀 산업은 일반적으로 배터리 산업을 의미, 리튬이온 배터리의 핵심 단위인 **배터리 셀**을 중심으로 형성
- 배터리 셀은 양극, 음극, 분리막, 전해액을 케이스에 조립하여 제조되며, **케이스 형태**에 따라 각형, 원통형, 파우치형으로 구분 각형, 원통형, 파우치형은 에너지 밀도, 생산 공정 및 난이도에서 차이
- 배터리 셀 제조사는 한국, 중국, 일본을 중심으로 치열한 경쟁을 벌이며, 광물 제련 기업과의 합작 법인 설립 및 투자를 통해 수직 계열화 및 생산 원가 절감 추진 중

	각형 셀	파우치형 셀	원통형 셀
장점	외부 충격에 강해 내구성 뛰어남	배터리 셀을 빈틈없이 채울 수 있어 에너지 밀도가 높음 다양한 사이즈와 모양으로 제작 가능	대량 생산 및 생산 공정이 쉬운 편에 속함
단점	내부 공간활용 측면에서 불리 및 상대적으로 에너지 밀도가 낮음	생산 비용이 높은 편	다른 배터리에 비해 용량이 상대적으로 작아 전기차 장착시 여러개의 배터리가 필요
공정	대량생산이 용이하며 극판을 감는 와인딩 방식 사용	생산공정이 복잡한 층층히 담는 스태킹 방식 사용	대량생산이 용이하며 극판을 감는 와인딩 방식 사용

2. 밸류체인 분석 - 다운스트림

다운스트림은 최종재인 EV, ESS등에 맞게 모듈화 및 패킹하는 과정

배터리는 최소단위인 셀, 셀을 조립한 단위인 모듈, 모듈을 구조에 맞게 배열한 팩으로 이루어짐 최종 완성재인 배터리 팩은 전기차(EV), 핸드폰 등 IT기기, 에너지저장장치(ESS)등 다양한 분야에 활용

11

2. 밸류체인 분석 - 다운스트림

사용 완료 후 배터리를 상태와 목적에 따라 재사용하거나 폐배터리 내 금속을 추출하여 신규 배터리 제조에 재활용

배터리 재사용

주로 전기차용 중·대형배터리를 수거하여 배터리의 잔존수명 및 안전성 검사 등의 과정을 통해 일정 등급 이상의 폐배터리를 선별하여 ESS, UPS(무정전전원장치) 등의 용도로 다시 사용하는 것을 의미

배터리 재활용

재사용이 불가능한 폐배터리는 분해, 용해 등의 공정을 통해 코발트, 니켈과 같이 배터리에 쓰이는 원재료 추출 및 양극재 생산 단계에 재투입하여 새로운 배터리 생산에 재활용

2. 밸류체인 분석 배터리 생태계

배터리 생태계 구성 및 경쟁 역학 구도

Index

- 1. 산업 개요
- 2. 밸류체인 분석
- 3. 시장 분석
- 4. 시장 전망

이차전지의 수요량의 대부분은 EV가 차지

PHEV
Plug-Im Hybrid
Electric Vehicles

5 5 1

22

23

24

BEV

EV 시장은 정부 정책 방향성 등 제반 환경 변화에 극히 민감하게 변화하는 산업

이차전지 수요 성장률이 EV 판매 성장률보다 낮아질 가능성 존재

- 글로벌 EV와 이차전지 증가율 간극 최근 2년간 감소
- '17년 이후 EV 판매 증가율이 이차전지 수요 증가율을 상회하였으나, 최근 2년간 더뎌진 전동화, 기대를 하회하는 판매량 등 BEV 집중화 전략이 희석되기 시작하며 이들간 **간극 감소**
- 이차전지 수요에서 EV 판매량 증가와 더불어 더 중요한 것은 이차전지 타입별 성장. BEV와 Non BEV의 배터리 소요량이 크게 차이 나기 때문
- 차량 한 대당 소요되는 이차전지 용량이 증가하는 추세
- 차량 타입별 연평균 성장률에서 BEV와 PHEV의 성장률이 과거 5년 대비 향후 5년 <mark>대폭 감소</mark>할 것으로 <mark>전망</mark>
- 배터리 수요가 EV 판매량보다 둔화될 가능성, 즉 EV 판매량 기울기보다 배터리 성장 기울기가 하회할 가능성

ESS와 소형 IT 기기의 전망

ESS			
기업	내용		
마이크로소프트	재생에너지 프로젝트에 100억달러 투자(2026~2030년 공급) 핵융합 스타트업 헬리온 에너지와 계약(2028년부터 공급)		
오픈AI	태양광 스타트업 엑소와트에 2000만달러 펀딩 헬리온 에너지에 3억7500만달러 투자		
테슬라	인도에 잉여전력저장장치 '파워월' 생산 공장 설립 추진 태양광 기업 솔라시티 인수		
구글	지역발전 스타트업 페르보와 파트너십 체결		
애플	자체 재생에너지 생산량 지난해 대비 30% 증가		

- ESS 수요 성장률, 소형 이차 전지 및 EV 전지 상회 전망
- -23년~30년 글로벌 ESS 시장은 연평균 21%씩 성장해 2030년 누적 442GWh 규모에 이를 것으로 전망됨
- 신재생에너지 확대, 인공지능(AI) 데이터센터, 배터리 가격 하락 등으로 높은 성장성 전망(우드맥킨지, SNE 및 BI)

	소형 IT 기기							
구분	2024	2025	2026	2027	2028	2029	2030	연평균 성장률
E모빌 리티	28.6	32.0	35.8	40.1	44.9	50.3	56.4	15.70 %
웨어러 블기기	4.5	5.0	5.5	6.1	6.8	7.5	8.3	28.70 %
기타	87.7	89.2	90.9	92.6	94.5	96.6	98.8	1.70%
합계	120.8	126.2	132.2	138.8	146.2	154.4	163.5	5.20%

- 소형전지 수요는 스마트폰 등 휴대용 IT기기, 전동 공구(파워툴 등), 마이크로 모빌리티 등으로 구분, 소폭의 성장세 시현중
- IT기기의 수요 성장률은 소폭 개선될 것으로 기관 전망
- 전동공구 수요 정체와 스마트폰 시장 포화 등으로 소형 이차전지 생산사들의 수익 정체
- 스마트폰, 파워툴, 마이크로 모빌리티, IT 기기 등 소형 이차전지 시장의 성장률은 '24~'29년 CAGR 5%로 전망(SNE, '24년 10월) ₁₈

Index

- 1. 산업 개요
- 2. 밸류체인 분석
- 3. 시장 분석
- 4. 시장 전망

리튬의 가격 불안정 및 전세계적인 원재료 수요 증가와 글로벌 주요 EV 시장에 대한 매크로 둔화

1.원재료 확보 관련 난황 및 주요 EV 시장 매크로 둔화

원재료 관련 이슈

원재료 수요 증가

전세계적으로 전기차 및 재생에너지 기기 등 이차전지 **수요의 증가**로 그에 따라 **원재료 수요**가 높아짐

리튬의 가격 불안정성

리튬의 경우 매장량이 적고 가격변동성이 높아 최근에 가장 많이 사용되는 LFP 배터리의 **원가 문제**가 지속적으로 제기됨

매크로 이슈 북미 GDP 성장률 전망 유럽 GDP 성장률 전망 중국 GDP 성장률 전망 18,000 16,000 16,000 14 000 25 000 12,000 12,000 20,000 10 000 10,000 8 000 15,000 8,000 6.000 6,000 10,000 4 000 4,000 5.000 2,000

- 매크로 성장 둔화는 임의소비재인 EV 가격 민감도 증가로 이어질 가능성
- 경기 약세의 경우 EV 가성비 선호 예상, 상대적으로 고효율/고비용 원재료(삼원계이차전지 등) 장착 고가 EV 대비 저효율/저비용(LFP 기반 등)의 저가 EV 선호 예상
- 실제 다수 OEM의 EV에서 최근 두드러지는 현상은 '보급형', '중소형', '하이브리드 전환' 강조, 이는 곧 가성비의 다른 표현

20

LFP타입 이차전지의 중국 독점적 생산 시장

2. 이차전지의 발전 방향

- 글로벌 배터리 타입별 추이를 살펴보면 LPF타입의 배터리의 침투율이 증가하는 것을 확인
- 중국 제외 배터리 타입별 추이와 같이 살펴보면 LFP타입 이차전지는 중국이 거의 독점적 생산

원자재 가격 절감 및 안전성 확보, 에너지 밀도를 고려한 이차전지의 개발 방향 및 양산 예정 시기

2. 이차전지의 발전 방향

원가 절감

현재 주력

에너지 밀도 향상

	나트륨 이온 배터리
에너지 밀도(삼원계 대비)	40 - 50%
원가(삼원계 배터리 대비)	40-50% 추정
분리막	필름
해결 과제	에너지밀도 향상 ,양산
장점	긴 배터리 수명, 낮은 원가
단점	에너지 밀도 낮음
양산예상시기	2027년
주요추진국가	중국(한국, 일본은 주목X)
양극재	나트륨

	리튬 인산철(LFP)	삼원계
에너지 밀도(삼원계 대비)	70-80%	100%
원가(삼원계 배터리 대비)	70-80%	100%
분리막	필름	필름
해결 과제	에너지밀도 향상 ,원가 절감	희귀 금속 재활용
장점	상대적 저렴, 안정적	높은 에너지 밀도, 기술 성숙도
단점	높은 리튬 가격, 저온 성능 저하	불안정한 코발트 가격 및 확보 어려움
양산예상시기	양산중	양산중
주요추진국가	중국	한국, 일본
양극재	리튬-인산 철	리튬-니켈-코발트-망간

	전고체 배터리
에너지 밀도(삼원계 대비)	이론상 200%
원가(삼원계 배터리 대비)	매우 높은 원가
분리막	Х
해결 과제	이온전도도 낮음, 비싼 가격
장점	안전함 , 에너지 밀도 높음
단점	해결과제가 많음, 높은 기술력 필요
양산예상시기	2030년 내외
주요추진국가	한국, 일본, 미국, 유럽, 중국
양극재	리튬.니켈.코발트.망간

자료 : 20240911 하나증권 이차전지 전망 리포트

나트륨 이온 배터리와 전고체 배터리 관련 시장 전망 및 출시 계획

3. 미래의 배터리 기술

나트륨 이온 배터리

글로벌 나트륨 이온 배터리 시장 전망

- 2024년 2억 7,400만 달러
 2031년 223억 7,000만 달러
 CAGR 88.9%로 성장기대
- 중국 기업을 중심으로 활발한 R&D 투자
 - CATL, BYD 등 최근 2세대 나트륨 이온 배터리 발표

전고체 배터리

글로벌 전고체 배터리 시장 전망

- 2024년 150억~200억 달러
 2026년 1500억~2000억 달러
 CAGR 100% 이상의 성장 기대
- 도요타 벤츠, 폭스파겐, 닛산, BYD 등 각국의 대기업이 2030년 내외로 전고체 배터리 대중화 목표를 밝힘

글로벌 배터리 재활용 시장 전망 및 사용 후 배터리 자원 발생량

배터리 재활용 시장 전망

글로벌 사용 후 배터리 재활용 시장

2025년 207억 2040년 2089억달러 CAGR 17%씩 성장 전망

글로벌 사용 후 배터리 자원 발생량

글로벌 사용 후 배터리 발생량 글로벌 전기차 폐차량

2023년 20GWh 2023년 - 18만대

2040년 3339GWh 전망 2025년 -56만대

_ .. 2040년 - 4227만대 전망

배터리 재활용 원료 무게

2023년 32만t

2040년 620만t 전망

감사합니다