Tutoraggio Ricerca Operativa 2019/2020 10. Altri esercizi: Sottosequenza crescente più lunga (Programmazione Dinamica) e Planarità (Teoria dei Grafi)

Alice Raffaele, Romeo Rizzi

Università degli Studi di Verona

09 giugno 2020

TE 18 febbraio 2020 - Esercizio 4

Si consideri la seguente sequenza di numeri naturali:

34	42	44	49	41	52	63	69	40	60	86	45	66	54	79	81	43	46	38	61	80	48	64	73	47

Sfruttiamo una tabella di Programmazione Dinamica per rispondere alle varie richieste dell'esercizio:

- Sottoproblemi: le sottosequenze possibili di varie lunghezze, da 1 a n;
- Vale la seguente relazione:

$$L[i] = \begin{cases} 1 + \max\{L[j]\}, & \text{per } 0 < j < i \text{ e } s[j] < s[i] \\ 1 & \text{se non esiste tale } j \end{cases}$$

La tabella ha tre righe: la centrale è occupata dai numeri della sequenza; nella riga sotto scriveremo i risultati dei vari sottoproblemi leggendo la sequenza da sinistra a destra; nella riga sopra invece procederemo al contrario, partendo dalla fine.

Esercizio 4 (I)

Trovare una sottosequenza crescente che sia la più lunga possibile. Specificare quanto è lunga e fornirla.

9	8	7	6	6	5	4	3	6	4	1	5	3	4	2	1	5	4	4	3	1	3	2	1	1
34	42	44	49	41	52	63	69	40	60	86	45	66	54	79	81	43	46	38	61	80	48	64	73	47

Il numero più alto che leggiamo sia sopra sia sotto è 9 e ce n'è più di uno \rightarrow Ci sono soluzioni ottime multiple. Una di queste è:

Esercizio 4 (II)

② Una sequenza è detta una *N-sequenza*, o sequenza crescente con un possibile ripensamento, se esiste un indice *i* tale che ciascuno degli elementi della sequenza esclusi al più il primo e l'*i*-esimo sono strettamente maggiori dell'elemento che immediatamente li precede nella sequenza. Trovare la più lunga *N*-sequenza che sia una sottosequenza della sequenza data. Specificare quanto è lunga e fornirla.

9	8	7	6	6	5	4	3	6	4	1	5	3	4	2	1	5	4	4	3	1	3	2	1	1
34	42	44	49	41	52	63	69	40	60	86	45	66	54	79	81	43	46	38	61	80	48	64	73	47
1	2	3	4	2	5	6	7	2	6	8	4	7	6	8	9	3	5	2	7	9	6	8	9	6

- Ripensamento: a un certo punto i possiamo avere un numero minore del precedente e da lì in poi ricominciare a crescere;
- Solo il numero in prima posizione e quello nella *i* non rispettano la regola di essere strettamente crescenti del numero che li precede:
 - In una sottosequenza tradizionale tale regola implica anche che valga per tutti gli altri precedenti;
 - Nella N-sequenza, non avendo precedenti, 34 è un'eccezione; invece 43 è il nostro ripensamento, eccezione per definizione.

Esercizio 4 (III)

9	8	7	6	6	5	4	3	6	4	1	5	3	4	2	1	5	4	4	3	1	3	2	1	1
34	42	44	49	41	52	63	69	40	60	86	45	66	54	79	81	43	46	38	61	80	48	64	73	47
1	2	3	4	2	5	6	7	2	6	8	4	7	6	8	9	3	5	2	7	9	6	8	9	6

- E' come se la sequenza di numeri fosse divisa in due, a un certo punto i, e per ottenere una massima N-sequenza si spezzasse in due il problema: massimizzando prima e dopo i;
- A questo punto, come fare a capire qual è l'elemento i?
- Proviamo a massimizzare prima la stringa da 1 a i-1: converrebbe perciò considerare la prima sottosequenza di lunghezza massima (ossia 9), che si ottiene con 34 - 42 - 44 - 49 - 52 - 63 - 69 - 79 - 81.
- L'elemento *i* sarebbe quindi il numero 43; a questo punto possiamo calcolare la più lunga sottosequenza crescente nel sottoproblema rimasto, ottenendo 5 come lunghezza:

	43	46	38	61	80	48	64	73	47
ı	1	2	1	3	4	3	4	5	3

• La N-sottosequenza sarebbe lunga 9+5=14.

Esercizio 4 (IV)

- In questo caso siamo fortunati e il risultato è giusto, ma sarebbe più corretto procedere considerando anche la prima riga;
- Infatti noi vogliamo massimizzare **allo stesso tempo** la sottosequenza da 1 a *i*-1 e quella da *i* alla fine;
- Non è detto che partendo dalla soluzione migliore della richiesta 1 si arrivi sempre alla soluzione ottima che sia una N-sequenza;
- Come possiamo fare?
 - Sfruttiamo sia la prima sia l'ultima riga;
 - Gli 1 nella prima riga: vuol dire che lì c'è stata un'interruzione e si è dovuti ripartire;
 - Nella riga sotto, per quel numero avremo un numero 'alto', nel senso che quello successivo sarà per forza più basso;
 - Sommiamo il numero rosso in posizione i-1 con quello verde in posizione i e cerchiamo la somma massima: avremo ottenuto così il nostro elemento i.
- Nell'esercizio in questione, la somma massima (9+5) si ottiene con i = 17 e il valore dell'i-esimo elemento è 43.

Esercizio 4 (V)

- Trovare la più lunga sottosequenza crescente che includa l'elemento di valore 40. Specificare quanto è lunga e fornirla.
 - Il 40 è il secondo elemento partendoda 34;
 - Rifaccio i conti per la sottosequenza di numeri dal 40 in poi, ottenendo:

40	60	86	45	66	54	79	81	43	46	38	61	80	48	64	73	47
1	2	3	2	3	3	4	5	2	3	1	4	5	4	5	6	4

• Quindi la soluzione alla richiesta ha lunghezza 7 e vale:

Esercizio 4 (VI)

Trovare una sottosequenza crescente che sia la più lunga possibile ma eviti di utilizzare i primi 4 elementi. Specificare quanto è lunga e fornirla.

9	8	7	6	6	5	4	3	6	4	1	5	3	4	2	1	5	4	4	3	1	3	2	1	1
34	42	44	49	41	52	63	69	40	60	86	45	66	54	79	81	43	46	38	61	80	48	64	73	47
1	2	3	4	2	5	6	7	2	6	8	4	7	6	8	9	3	5	2	7	9	6	8	9	6

- Per risolvere questo punto, è sufficiente scartare i primi quattro elementi e guardare nella prima riga il numero più alto;
- In questo caso, abbiamo due soluzioni ottime entrambe lunghe 6, e una è la seguente:

Esercizio 4 (VII)

Trovare una sottosequenza crescente che sia la più lunga possibile ma eviti di utilizzare gli elementi dal 13-esimo a 16-esimo. Specificare quanto è lunga e fornirla.

9	8	7	6	6	5	4	3	6	4	1	5	5	4	4	3	1	3	2	1	1
34	42	44	49	41	52	63	69	40	60	86	45	43	46	38	61	80	48	64	73	47
1	2	3	4	2	5	6	7	2	6	8	4	3	5	2	7	8	6	8	9	6

• Si tolgono gli elementi indicati e si ricompila la parte della tabella dal 17esimo elemento in poi, ottenendo una soluzione con lunghezza 9:

Esercizio 4 (VIII)

- Fornire un minimo numero di sottosequenze decrescenti tali che ogni elemento della sequenza fornita ricada in almeno una di esse. Specificare quante sono e fornirle.
 - Se due numeri nella sequenza hanno lo stesso numero assegnato nell'ultima riga, vuol dire che il secondo non è più grande del primo;
 - Possiamo quindi costruire delle sottosequenze decrescenti mettendo assieme tutti gli elementi che hanno lo stesso numero;
 - Otteniamo quindi 9 sottosequenze decrescenti, così composte:
 {34} {42, 41, 40, 38} {44, 43} {49, 45} {52, 46} {63, 60, 54, 48, 47} {69, 66, 61} {86, 79, 64} {81, 80, 73}

Grafi planari

Cosa ci serve sapere:

- Un grafo è *planare* quando può essere disegnato senza che nessuno dei suoi archi si intersechi con gli altri;
- Certificato del SI' per la planarità: fornire un planar embedding, i.e., disegnare il grafo spostando nodi e archi in modo da mostrare che il grafo sia planare;
- Certificato del NO per la planarità: se vale il teorema di Kuratowski;
- Teorema di Kuratowski (1930): un grafo è planare a meno che non contenga una suddivisione di $K_{3,3}$ o una suddivisione di K_5 come sottografo;
- Un minore di grafo *G* è un qualsiasi grafo che posso ottenere da *G* con opportune operazioni di *deletion* e *contraction*;
- Un grafo è planare a meno che non si possa ottenerne un $K_{3,3}$ o un K_5 con una sequenza di deletion e contraction (i.e., è planare se non ha né un $K_{3,3}$ né un K_5 minor);
- **Lemma di Wagner (1931)**: se *G* contiene una suddivisione di *H*, allora ha *H* come minore.

TE 18 febbraio 2020 - Esercizio 5

Si consideri il grafo G, con pesi sugli archi, riportato in figura:

• Dire, certificandolo, (1) se il grafo G è planare oppure no; (2) se il grafo G' ottenuto da G rimpiazzando l'arco go con l'arco gh è planare oppure no.

Esercizio 5 (I)

Possiamo pensare G come composto da tre blocchi diversi. Nel blocco più a sinistra, l'arco sg interseca ec e fd:

"Abbassando" il lato ef si risolve il blocco a sinistra; analogamente si può fare per il blocco più a destra.

Esercizio 5 (II)

Collassiamo i blocchi più a sinistra e più a destra in due macronodi 1 e 3:

Esercizio 5 (III)

Proviamo a invertire tra loro $p \in q$:

n e o hanno collegamenti verso i macronodi 1 e 3 ightarrow Dobbiamo cercare di portarli all'esterno.

Esercizio 5 (IV)

Il grafo G è planare e questo è un suo planar embedding (pur con i macronodi 1 e 3).

Esercizio 5 (V)

Consideriamo ora il grafo G' ottenuto rimpiazzando l'arco go con l'arco gh. Anche qui, possiamo collassare i nodi in due macronodi 1 e 3 perché l'arco gh è nel blocco centrale; gli altri due sono a posto.

Esercizio 5 (VI

Invertiamo, come prima, i nodi p e q:

Esercizio 5 (VII)

Il problema sono ancora i nodi *n* e *o*; portiamoli all'esterno:

Notiamo che il macronodo 1 è collegato solo a $q, p \in h \to \mathsf{Spostiamolo}$ all'interno del blocco 2.

Esercizio 5 (VIII)

Anche il grafo G' è planare:

TE 28 settembre 2016 - Esercizio 6

Si consideri il grafo G, con pesi sugli archi, riportato in figura:

• Dire, certificandolo, se il grafo è planare oppure no. In ogni caso, disegnare il grafo in modo da minimizzare il numero di incroci tra archi.

21/30

Esercizio 6 (I)

Invertiamo $u \operatorname{con} x \operatorname{e} k \operatorname{con} h$:

Esercizio 6 (II)

Possiamo spostare il blocco più sotto all'interno del blocco in alto a sinistra e collassare il blocco in alto a destra nel macronodo 2:

Esercizio 6 (III)

Invertiamo $a \operatorname{con} b$, $c \operatorname{con} d \operatorname{ed} e \operatorname{con} f$:

Sistemiamo anche il blocco 3, facendo uscire il lato sz e ridisegnando gli altri archi da e verso w, i, j e $y \rightarrow G$ è planare.

Esercizio 6 (IV)

② Dire, certificandolo, se il grafo ottenuto da G sostituendo l'arco hx con un arco qx sia planare oppure no.

Concentriamoci sul blocco 2.

Esercizio 6 (V)

Invertendo u con x e k con h, il problema non si risolve perché gli archi qxe ph continuano a intersecarsi:

Anche rovesciando altri archi o spostando altri nodi, la situazione non si sgarbuglia

Proviamo a verificare se vale il Teorema di Kuratowski.

27 / 30

Esercizio 6 (VI)

Non c'è nessun nodo di grado 5 \rightarrow Non può esserci un K_5 minor \rightarrow Cerchiamo un $K_{3,3}$:

- Partizione A: $\{a, q, u\}$
- Partizione B: $\{b, v, x\}$

Nota: oltre a mostrare i tre nodi per parte, nel certificato bisogna far vedere i collegamenti (i.e., i cammini distinti) tra le due partizioni.

Esempi di errori comuni sulla non-planarità

- Incrocio di archi: evidenziare che due archi si incrociano non equivale a dare un certificato di non-planarità;
- Mancanza del certificato: affermare che un grafo non sia planare senza mostrare il K_5 minor o il $K_{3,3}$ minor non è valido;
- Cammini tra i 6 nodi del $K_{3,3}$ non specificati: il certificato risulterebbe incompleto se fossero elencati solo i nodi del $K_{3,3}$;
- Cammini con nodi interni in comune: se si consentisse alle suddivisioni di K_5 o $K_{3,3}$ di condividere nodi interni ai cammini, allora essere non funzionerebbero più come strumento per certificare la non-planarità.