0.0.1 Re-framed Moth-flame Optimization Algorithm (Re-framed MFO)

Objectives:

Objective Problem	
$f(\mathbf{x}_i)$	fitness of \mathbf{x}_i .
n	the dimension of the search space.
$[lb_{\mathbf{x}}, ub_{\mathbf{x}}]$	the interval of objective variable ${\bf x}$, in our cases, it is defined in the IOHprofiler, $[lb_{\bf x},ub_{\bf x}]=[-5,+5].$
Objective Solution	
\mathbf{x}_i	it can be imagined as one individual in Swarm-Intelligence Algorithms, $\mathbf{x}_i \in R^n$.

Parameters:

T	maximum iteration, the budget in our cases, in our case, it is defined in IOHprofiler.
M	population size, $M=30$.
\mathbf{y}_i	the best flame position for one individual $\mathbf{y}_i \in \mathbb{R}^n$.
z_{1_i}	a weight value.
z_2	a kind of threshold.
w	the shape of spiral, $w = 1$, $w \in (0, +\infty)$.

Functions:

- Initialization Process:

(1) Initialize $\mathbf{x}_i(t=0)$:

$$\mathbf{x}_i(t=0) = \mathcal{U}(lb_{\mathbf{x}}, ub_{\mathbf{x}}), i = 1...M$$

(2) Initialize $\mathbf{x}_s(t=1)$:

$$\langle \mathbf{x}_i(t) \rangle = \mathbf{Sort}(\{\mathbf{x}_i(t)\}), i = 1...M$$

(3) Initialize a weighting value $z_{\mathbf{1}_i}(t)$:

$$z_{1_i}(t) = rand \times \left(-2 - \frac{t}{T}\right) + 1 \tag{3}$$

(4) Initialize the threshold $z_2(t)$:

$$z_2(t) = \mathbf{Round}(M - t \times \frac{M-1}{T})$$
 4

- Optimization Process:
 - (1) Update $\mathbf{x}_i(t)$ to generate $\hat{\mathbf{x}}_i(t+1)$:

$$\hat{\mathbf{x}}_i(t+1) = \begin{cases} & (\mathbf{x}_{s_i}(t) - \mathbf{x}_i(t)) \times e^{w \times z_{1_i}(t)} \times \cos(2\pi \times z_{1_i}(t)) + \mathbf{x}_{s_i}(t), & i \leq z_2(t) \\ & (\mathbf{x}_{s_{z_2(t)}}(t) - \mathbf{x}_i(t)) \times e^{w \times z_{1_i}(t)} \times \cos(2\pi \times z_{1_i}(t)) + \mathbf{x}_{s_{z_2(t)}}(t), & \text{o.w.} \end{cases}$$

(2) Dealing with outliers C:

$$\mathbf{x}_{i,n}^{\mathsf{fixed}}(t+1) = \begin{cases} ub_x &, & \mathbf{x}_{i,n}(t+1) > ub_{\mathbf{x}} \\ \mathbf{x}_{i,n}(t+1) &, & \mathsf{o.w} \\ lb_x &, & \mathbf{x}_{i,n}(t+1) < lb_{\mathbf{x}} \end{cases}$$

(3) Select $\mathbf{x}_i(t+1)$ from $\hat{\mathbf{x}}_i(t+1)$:

$$\mathbf{x}_i(t+1) = \hat{\mathbf{x}}_i(t+1)$$

(4) Update $\mathbf{x}_s(t)$ to generate $\mathbf{x}_s(t+1)$:

$$\langle \mathbf{x}_i(t+1) \rangle = \mathbf{Sort}(\{\mathbf{x}_i(t)\} \cup \{\mathbf{x}_i(t+1)\}), i = 1...M$$
 8

(5) Update $z_{1_i}(t)$ to generate $z_{1_i}(t+1)$:

$$z_{1_i}(t) = rand \times \left(-2 - \frac{t}{T}\right) + 1$$

(6) Update $z_2(t)$ to generate $z_2(t+1)$:

$$z_2(t) = \mathbf{Round}(M - t \times \frac{M-1}{T})$$
 10

Algorithm 1 Re-framed MFO with population size M; search space $n, [lb_{\mathbf{x}}, ub_{\mathbf{x}}]$; stop condition T; initialization method $Init_{\mathbf{x}}$, optimization method $Opt_{\mathbf{x}}$, treatment C of outliers, and selection S to objective solutions; initialization method $Init_{\Delta}$ and optimization method Opt_{Δ} to step-size Δ .

```
1: t \leftarrow 0
```

- 2: $\mathbf{X}(t) \leftarrow Init_{\mathbf{x}}(n, M, [lb_{\mathbf{x}}, ub_{\mathbf{x}}])$ as Eq.??
- ▷ initialize initial population▷ evaluate

3: $F(t) \leftarrow f(\mathbf{X}(t))$

 \triangleright initialize w-relative step-size

4: $w \leftarrow Init_{\Delta:w}(w)$ 5: $\mathbf{X}_s(t) \leftarrow Init_{\Delta:\mathbf{X}_s}(\mathbf{X}(t))$ as Eq.??

- ▷ initialize x-relative step-size
- 6: $z(t) \leftarrow Init_{\Delta:z}(t,T)$ as Eq.??, Eq.??
- \triangleright initialize z-relative step-size

- 7: **while** stop condition T **do**
- 8: $\hat{\mathbf{X}}(t+1) \leftarrow Opt_{\mathbf{x}}(\mathbf{X}(t), \mathbf{X}_s(t), z(t), w)$ as Eq.??> generate temporarily updated population
- 9: $\hat{\mathbf{X}}(t+1) \leftarrow C(\hat{\mathbf{X}}(t+1))$ as Eq.6

b treatment to outliers

10: $F(t+1) \leftarrow f(\hat{\mathbf{X}}_i(t+1))$

- ▷ evaluate
- 11: $\mathbf{X}(t+1) \leftarrow S(\mathbf{X}_i(t), \mathbf{\hat{X}}_i(t+1))$ as Eq.?? \triangleright select and generate finally updated population
- 12: $\mathbf{X}_s(t+1) \leftarrow Init_{\Delta:\mathbf{x}_s}(\mathbf{X}(t),\mathbf{X}(t+1))$ as Eq.?? \triangleright update dynamic x-relative vector step-size \mathbf{x}_s
- 13: $z_1(t+1) \leftarrow Opt_{\Delta:z_1}(t+1,T)$ as Eq.??, Eq.??
- \triangleright update z-relative step-size

- 14: $t \leftarrow t + 1$
- 15: end while