Programming Languages & Translators

PARSING

Baishakhi Ray

- <id, x> <op, *> <op, %>
 - Is it a valid token stream in C language?
 - Is it a valid statement in C language?

Input: if(x==y) 1 else 2;

Parser Input (Lexical Input):

KEY(IF) '(' ID(x) OP('==') ')' INT(1) KEY(ELSE) INT(2) ';'

Parser Output

A CFG consists of

- A set of terminal T
- A set of non-terminal N
- A start symbol S (S ϵ N)
- A set of production rules
 - $X \rightarrow Y_1 \dots Y_N$
 - X € N
 - $Y_i \in \{N, T, \varepsilon\}$
- Ex: S -> (S) | ε
 - $N = \{S\}$
 - $T = \{ (,), \varepsilon \}$

- 1. Begin with a string with only the start symbol S
- 2. Replace a non-terminal X with in the string by the RHS of some production rule:

$$X \rightarrow Y_1 \dots Y_n$$

3. Repeat 2 again and again until there are no non-terminals

$$X_1, \dots, X_i \times X_{i+1}, \dots, X_n \rightarrow X_1, \dots, X_i \times Y_1, \dots, Y_k \times X_{i+1}, \dots, X_n$$

For the production rule $X \rightarrow Y_1, \dots, Y_k$

$$\alpha_0 \to \alpha_1 \to \alpha_2 \to \alpha_3 \dots \to \alpha_n$$

$$\alpha_0 \stackrel{*}{\to} \alpha_n, n \ge 0$$

■ Let G be a CFG with start symbol S. Then the language L(G) of G is:

$$\{a_1 \dots a_i \dots a_n \mid \forall i a_i \in T \land S \xrightarrow{*} a_1 \dots a_i \dots a_n\}$$

- There are no rules to replace terminals.
- Once generated, terminals are permanent
- Terminals ought to be tokens of programming languages
- Context-free grammars are a natural notation for this recursive structure

Languages and Automata

- Formal languages are very important in programming languages
- Regular Languages
 - Weakest formal languages that are widely used
 - Many applications
- Many Languages are not regular

Automata that accept odd numbers of 1

How many 1s it has accepted?

- Only solution is duplicate state

Automata do not have any memory

- Regular Languages
 - Weakest formal languages that are widely used
 - Many applications
- Consider the language $\{(i)^i \mid i \ge 0\}$
 - **(**), (()), ((()))
 - **(**(1 + 2) * 3)
- Nesting structures
 - if .. if.. else.. else..

Regular languages cannot handle well

CFG: Simple Arithmetic expression

```
E → E + E

I E * E

I (E)

I id
```

Languages can be generated: id, (id), (id + id) * id, ...

CFG: Exercise

$$S \to aXa$$

$$X \to \varepsilon \mid bY$$

$$Y \to \varepsilon \mid cXc$$

Some Valid Strings are: aba, abcca, ...

Derivation

- A derivation is a sequence of production
 - S -> ... -> ... ->
- A derivation can be drawn as a tree
 - Start symbol is tree's root
 - For a production $X \rightarrow Y_1 \dots Y_n$, add children $Y_1 \dots Y_n$ to node X

Grammar

String

■ id * id + id

Derivation

$$E \rightarrow E + E$$

$$\rightarrow$$
 id * id + E

Parse Tree

- A parse tree has
 - Terminals at the leaves
 - Non-terminals at the interior nodes
- An in-order traversal of the leaves is the original input

■ The parse tree shows the association of operations, the input string does not

Parse Tree

- Left-most derivation
 - At each step, replace the left-most nonterminal

$$E \rightarrow E + E$$

- Right-most derivation
 - At each step, replace the right-most nonterminal

$$E \rightarrow E + E$$

$$-> E + id$$

$$-> E * E + id$$

Note that, right-most and left-most derivations have the same parse tree

Ambiguity

- Grammar
 - E -> E + E | E * E | (E) | id
- String
 - id * id + id

Ambiguity

- A grammar is ambiguous if it has more than one parse tree for a string
 - There are more than one right-most or left-most derivation for some string
- Ambiguity is bad
 - Leaves meaning for some programs ill-defined

Example of Ambiguous Grammar

S->SSIpIq

Resolving Ambiguity

Most direct way to rewrite the grammar unambiguously

$$id*id+id$$

$$E = E' + E | E'$$
 $E' = id * E' | id | (E) * E' | (E)$

Resolving Ambiguity

Impossible to convert ambiguous to unambiguous grammar automatically

- Instead of rewriting
 - Use ambiguous grammar
 - Along with disambiguating rules
 - Eg, precedence and associativity rules
 - Enforces precedence of * over +
 - associativity: %left +

Abstract Syntax Trees

A parser traces the derivation of a sequence of tokens

 But the rest of the compiler needs a structural representation of the program

- Abstract Syntax Trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees

- Grammar
 - E -> int I (E) I E + E
- String
 - -5 + (2 + 3)
- After lexical analysis
 - Int<5> '+' '(' Int<2> '+' Int<3> ')'

Abstract Syntax Trees: 5 + (2 + 3)

Parse Trees

Abstract Syntax Trees: 5 + (2 + 3)

Parse Trees

- Have too much information
 - Parentheses
 - Single-successor nodes

Abstract Syntax Trees: 5 + (2 + 3)

- Have too much information
 - Parentheses
 - Single-successor nodes

- ASTs capture the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use

Error Handling

- Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones
- Many kinds of possible errors (e.g., in C)

Error Kind		Example	Detected by
Lexical	Misspelling of identifiers, keywords, or operators.	\$	Lexer
Syntax	Misplaced operators, semicolons, braces, switch-case statements, etc.	x*%	Parser
Semantic	Type mismatches between operators and operands	int x; $y = x(3);$	Type Checker
Correctness	Incorrect reasoning	Using = instead of ==	tester/user

Error Handling

Error Handler should

- Discover errors accurately and quickly
- Recover from an error quickly
- Not slow down compilation of valid code

Types of Error Handling

- Panic mode
- Error productions
- Automatic local or global correction

Panic Mode Error Handling

Panic mode is simplest and most popular method

- When an error is detected
 - Discard tokens until one with a clear role is found
 - Typically looks for "synchronizing" tokens
 - Typically the statement of expression terminators
 - Example: delimiters (; }, etc.)
 - Continue from there

Panic Mode Error Handling

- Example:
 - (1++2)+3
- Panic-mode recovery:
 - Skip ahead to the next integer and then continue
- Bison: use the special terminal error to describe how much input to skip
 - E -> int I E + E I (E) I error int I (error)

Error Productions

- Specify known common mistakes in the grammar
- Example:
 - Write 5x instead of 5 * x
 - Add production rule E -> .. I E E
- Disadvantages
 - complicates the grammar

Error Corrections

- Idea: find a correct "nearby" program
 - Try token insertions and deletions (goal: minimize edit distance)
 - Exhaustive search

- Disadvantages
 - Hard to implement
 - Slows down parsing of correct programs
 - "Nearby" is not necessarily "the intended" program

Error Corrections

Past

- Slow recompilation cycle (even once a day)
- Find as many errors in one cycle as possible

Disadvantages

- Quick recompilation cycle
- Users tend to correct one error/cycle
- Complex error recovery is less compelling

Parsing algorithm: Recursive Descent Parsing

- The parse tree is constructed
 - From the top
 - From left to right

Terminals are seen in order of appearance in the token stream

Parsing algorithm: Recursive Descent Parsing

- Grammar:
 - E -> T | T + E
 - T -> int I int * T I (E)
- Token Stream: (int<5>)

- Start with top level non-terminal E
 - Try the rules for E in order

```
E -> TIT + E

T -> int I int * TI (E)

E

T

mismatch: int does not match arrowhead (backtrack
```

int

```
( int<5> ) ↑
```

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

backtrack

```
( int<5> )
```

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

Match! Advance input

```
( int<5> )
```

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

(int<5>)

Match! Advance input

$$E \rightarrow TIT + E$$

$$T \rightarrow int I int * TI(E)$$

(int<5>)

Match! Advance input

$$E \rightarrow E' \mid E' + E$$

 $E' \rightarrow -E' \mid id \mid (E)$

Input: id + id

A Recursive Descent Parser. Preliminaries

- TOKEN: type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

The global next point to the next token

A Top Down Parsing Algorithm

```
void A() {
  Choose an A-production: A - > S_1 S_2 \dots S_k;
  for (i=1 or k) {
    if (S_i \text{ is a nonterminal})
                                                                Recursion without
                                                                backtracking
        Call S_i();
     else if (X_i == current input TOKEN tok). /*terminal*/
            next++;
```

A (Limited) Recursive Descent Parser

- Define boolean functions that check the token string for a match of
 - A given token terminal

```
bool term (TOKEN tok) { return *next++ == tok; }
```

■ The nth production of S:

```
bool S_n() \{ ... \}
```

Try all productions of S:

```
bool S() { ... }
```

A (Limited) Recursive Descent Parser

```
Grammar:
■ For production E → T
                                                               E \rightarrow TIT + E
  bool E<sub>1</sub>() { return T(); }
                                                               T \rightarrow int I int * TI(E)
For production E → T + E
 bool E2() { return T() && term(PLUS) && E(); }
For all productions of E (with backtracking)
 bool E() {
   TOKEN *save = next;
   return (next = save, E_1()) || (next = save, E_2());
```

A (Limited) Recursive Descent Parser (4)

```
Grammar:
Functions for non-terminal T
                                                                   E \rightarrow TIT + E
 bool T<sub>1</sub>() { return term(INT); }
                                                                   T \rightarrow int I int * TI(E)
 bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
 bool T_3() { return term(OPEN) && E() && term(CLOSE); }
 bool T() {
        TOKEN *save = next;
        return (next = save, T_1()) || (next = save, T_2()) || (next = save, T_3());
```

Recursive Descent Parsing

- To start the parser
 - Initialize next to point to first token
 - Invoke E() (start symbol)

Example

```
Grammar:
E \rightarrow TIT + E
T \rightarrow int \mid int * T \mid (E)
Input: (int)
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E_1()) || (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
     return (next = save, T_1())
         \parallel (next = save, T_2())
         || (next = save, T_3()); \}
```


Example

```
Grammar:
E \rightarrow TIT + E
T \rightarrow int \mid int * T \mid (E)
Input: int
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E_1()) || (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
     return (next = save, T_1())
         \parallel (next = save, T_2())
         \| (\text{next} = \text{save}, T_3()); \}
```

When Recursive Descent Does Not Work

```
cxGrammar:
E \rightarrow TIT + E
T \rightarrow int I int * T I (E)
Input: int * int
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E<sub>2</sub>() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
           return (next = save, E_1()) | (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
      return (next = save, T_1())
           | | (next = save, T_2()) |
              (next = save, T_3()); }
```

Recursive Descent Parsing: Limitation

- If production for terminal X succeeds
 - Cannot backtrack to try different production for X later
- General recursive descent algorithms support such full backtracking
 - Can implement any grammar
- Presented RDA is not general
 - But easy to implement
- Sufficient for grammars where for any non-terminal at most one production can succeed
- The grammar can be rewritten to work with the presented algorithm
 - By left factoring

Left Factoring

A ->
$$\alpha\beta1$$
 | $\alpha\beta2$

- The input begins with a nonempty string derived from α , we do not know whether to expand A to $\alpha\beta1$ or $\alpha\beta2$.
- We can defer the decision by expanding A to α A'.
- Then, after seeing the input derived from α , we expand A' to $\beta 1$ or $\beta 2$ (left-factored)
- The original productions become:

$$A \rightarrow \alpha A', A' \rightarrow \beta 1 \mid \beta 2$$

Left Factoring

Recall the grammar

```
E \rightarrow T + E I T
T \rightarrow int I int * T I (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring Example

Grammar

$$E \rightarrow T + E I T$$

T \rightarrow int I int * T I (E)

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E I \epsilon$
 $T \rightarrow (E) I int Y$
 $Y \rightarrow * T I \epsilon$

When Recursive Descent Does Not Work

- Consider a production S → S a bool S₁() { return S() && term(a); } bool S() { return S₁(); }
- S() goes into an infinite loop
- A left-recursive grammar has a non-terminal S

```
S \rightarrow + Sa for some a
```

Recursive descent does not work for left recursive grammar

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha I \beta$$

- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

$$S' \rightarrow \alpha S' \mid \epsilon$$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 | \dots | S \alpha_n | \beta_1 | \dots | \beta_m$$

- All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' I \dots I \beta_m S'$$

 $S' \rightarrow \alpha_1 S' I \dots I \alpha_n S' I \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha I \delta$$

 $A \rightarrow S \beta$
is also left-recursive because
 $S \rightarrow + S \beta \alpha$

This left-recursion can also be eliminated

Example

- S-> Aa I b
- $A \longrightarrow AclSdl\epsilon$
- Remove Recursion.

- S->Aalb.
- A -> b d A' l A'
- A'-> cA' la d A' la l €

Eliminating Left Recursion

- 1. Arrange the non-terminals in some order A_1, A_2, \ldots, A_n .
- 2. *for* (*each i from* 1 *to n*) {
- 3. *for* (*each j from* 1 *to* i 1) {
- Replace each production of the form $A_i \to A_j \gamma$ with the productions $A_i \to \delta_1 \gamma \, | \, \delta_2 \gamma \, | \, \dots \, | \, \delta_k \gamma$, where $A_j \to \delta_1 \, | \, \delta_2 \, | \, \dots \, | \, \delta_k$ are all current A_j productions.
- **-** }
- 5. Eliminate the immediate left recursion among the A_i productions
- **6.**

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

LL(1) vs. Recursive Descent

- In recursive-descent
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- In LL(1)
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - The next input symbol is t
 - There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)
- LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T
T \rightarrow int \left| int * T \right| (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring Example

Grammar

$$E \rightarrow T + E I T$$

T \rightarrow int I int * T I (E)

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E I \epsilon$
 $T \rightarrow (E) I int Y$
 $Y \rightarrow * T I \epsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$
 $Y \rightarrow * T \mid \varepsilon$

■ The LL(1) parsing table:

		next input tokens					
Left-most		int	*	+	()	\$
	Е	TX			TX		
non- terminals	X			+E		3	3
	Т	int Y			(E)		
	Υ		*T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E → T X"
 - This can generate an int in the first position
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if $Y \rightarrow \varepsilon$

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at [S,a]
- Reject on reaching error state
- Accept on end of input & empty stack

First & Follow

- During top down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α), α is any string of grammar symbols
 - A set of terminals that begin strings derived from α .
 - If $\alpha \stackrel{*}{\rightarrow} \epsilon$, then ϵ is in FIRST(α).
 - if $\alpha \stackrel{*}{\to} cY$, the c is in FIRST(α).

- FOLLOW(A), A is a nonterminal
 - the set of terminals that can appear immediately to the right of A.
 - A set of terminals "a" such that S $\stackrel{*}{\rightarrow} \alpha A a \beta$ for some α and β .

Constructing Parsing Tables: The Intuition

- Consider non-terminal A, production A \rightarrow a, & token t
- $T[A,t] = \alpha$ in two cases:
- If $\alpha \rightarrow^* t \beta$
 - α can derive a t in the first position
 - We say that t ∈ First(a)
- If A \rightarrow α and α \rightarrow * ε and S \rightarrow * β A t δ
 - Useful if the current non-terminal is A, input is t, and A cannot derive
 - In this case only option is to get rid of A (by deriving ε)
 - We say t ∈ Follow(A)

Computing First Sets

Definition

First(X) = { t | X \to * ta} \cup { ϵ | X \to * ϵ }, X can be single terminal, single non-terminal, or string including both

- Algorithm sketch:
- 1. First(t) = $\{t\}$, t is terminal
- 2. $\epsilon \in First(X)$
 - if $X \to \epsilon$
 - if $X \to A_1 \dots A_n$ and ε ∈ First(A_i) for $1 \le i \le n$
- 3. First(α) \subseteq First(X) if X \rightarrow A₁ ... A_n α
 - ∎ ε ∈ First(A_i) for 1 ≤ i ≤ n

First Sets. Example

grammar

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \varepsilon$

First sets

First(E)
$$\supseteq$$
 = First(T) = {int, (}
First(X) = {+, ε }
First(Y) = {*, ε }

Computing Follow Sets

Definition:

```
Follow(X) = { t | S \rightarrow* \beta X t \delta }
```

- Intuition:
 - If X → A B then First(B) ⊆ Follow(A) and Follow(X) ⊆ Follow(B)
 - If B \rightarrow * ε then Follow(X) ⊆ Follow(A)
 - If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)
 - For each production $A \rightarrow \alpha X \beta$
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$

Follow Sets. Example

Recall the grammar

```
E \rightarrow TX X \rightarrow + E I \epsilon

T \rightarrow (E) I int Y Y \rightarrow * T I \epsilon
```

Follow sets

```
Follow( + ) = { int, ( }
Follow( ( ) = { int, ( }
Follow( E ) = { ), $ }
Follow( * ) = { int, ( }
Follow( T ) = { +, ) , $ }
Follow( ) ) = { +, ) , $ }
Follow( int) = { *, +, ) , $ }.
Follow( X ) = { $, ) }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow a$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - T[A, t] = a
 - If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - $T[A, \$] = \alpha$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \epsilon$

■ The LL(1) parsing table:

Rules: For each production $A \rightarrow \alpha$ in G do: For each terminal $t \in First(\alpha)$ do $T[A, t] = \alpha$ If $\epsilon \in First(\alpha)$, for each $t \in Follow(A)$ do

If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do

 $T[A, t] = \alpha$

 $T[A, \$] = \alpha$

		next input tokens					
Left-most		int	*	+	()	\$
	Е	TX			TX		
non- terminals	X			+E		3	3
	Т	int Y			(E)		
	Υ		*T	3		3	3

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1) [Eg: S->Salb]
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - other: e.g., LL(2)
- Most programming language CFGs are not LL(1)
 - too weak
 - However they build on these basic ideas

Bottom-Up Parsing

- Bottom-up parsing is more general than (deterministic) top-down parsing
 - just as efficient
 - Builds on ideas in top-down parsing
- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:

```
E \rightarrow T + E \mid T
T \rightarrow int * T \rightarrow int | (E) •
```

Consider the string: int * int + int

Bottom-Up Parsing

• Revert to the "natural" grammar for our example:

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E) .
```

- Consider the string: int * int + int
- Bottom-up parsing reduces a string to the start symbol by inverting productions:

```
int * int + int T \rightarrow int

int * T + int T \rightarrow int * T

T + int T \rightarrow int

T + T

T + T

E \rightarrow T

T + E
```

Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

int * int + int	$T \rightarrow int$
int * T + int	T → int * T
T + int	T → int
т + т	$E \rightarrow T$
T + E	$E \rightarrow T + E$
E	

Bottom-Up Parsing

A bottom-up parser traces a rightmost derivation in reverse

$$T \rightarrow int$$
 $T \rightarrow int * T$
 $T \rightarrow int$
 $E \rightarrow T$
 $E \rightarrow T + E$

