

ADM No.:

Messrs. Fujikura Fiber Optics Vietnam Ltd.

Purchase specification

Product Name: 1550nm 10dB Coupler

Product Type: CPL-C-10DB-3P

Signature on the receipt

Prepared by:
H.Fujimoto
Chief Engineer
Speciality Fiber and Device
Production Engineering Department
Optical Fiber Division
Power & Telecommunication
Systems Company

光品製技 '19. 6.11 吉田

Checked by:

J.Yoshida
Senior Engineer
Speciality Fiber and Device
Production Engineering Department
Optical Fiber Division
Power & Telecommunication
Systems Company

Date

Approved by:
K. Okamoto
Senior Manger
Head of techinal sales group
Speciality Fiber and Device
Production Engineering Department
Optical Fiber Division
Power & Telecommunication
Systems Company

Approved by:
Y.Kurai
General Manager
Production Planning Group
Speciality Fiber and Device
Production Department
Optical Fiber Division
Power & Telecommunication
Systems Company

登録 '19. 6.11 事務局

Revision History Rev. Clause Revised Contents Reasons Date (y/m/d) Prepared by 1 2019/6/10 H.Fujimoto Original Issue

1. General

1.1 Products Covered by this specification

This specification covers The High Reliability Submerged Optical Fiber Coupler.

The High Reliability Submerged Optical Fiber Coupler is called as "product" or just "coupler" hereafter.

1.2 Product Name and Type

Product name and product type are shown below Table.1-2-1

Table. 1-2-1 Product Name and Type

Product Name	1550nm 10dB Coupler
Product Type	CPL-C-10DB-3P
Specification & Revision No.	B-19D3017
Customer Name	FiberHome Telecommunication Technologies Co., Ltd.
Application	High reliability submerged equipment

1.3 Outline Drawing

2. Specification

2.1 Environmental specification

The environmental specifications are specified in Table 2-1-1.

2.2 Dimensions

The dimensions are specified in Fig. 2-2-1~3 and Table 2-2-1.

2.3 Material

The materials are specified in Table 2-3-1.

Table 2-3-1. Material list

Name	Description	Remarks
Fiber	Fiber for submarine coupler	D resin fiber (OFB0303)
	(SM. 10/125. 03. UV)	AOP86-0003-27-01
Clear Neoceram	N-0 2-410(8-6)/40-70 #800	04-IP-D6-40
UV resin	8700-7W	
Elastic resin D	KE-4896-T	AOP81-6001- 31-18
Elastic resin C	SU	AOP81-6001- 31-19
UV elastic resin	Loctite 5091	
FEP ultra thin tube	NFL021	
SUS pipe	Type-30-500	Laser printed
Marking Pen	Marks-a-Lot Red	
	Marks-a-Lot Blue	
Packing case	Naname Pack	
Sponge for packing case		7-DRW-0624
Anti-static bag	Anti static bag TypeB	Size 350 x 470 (mm)
Shock Watch	L-35) , ,

2.4 Optical specification

The optical specifications customer required are specified in Table 2-4-1.

The customer required Optical Test conditions & specifications are specified in Table 2-4-2.

The FIL checking process flow is specified in Fig. 2-4-1.

2.5 Process flow

The process flow outline is described in Fig 2-5-1.

2.6 Temperature cycle & Screening Test

Test conditions are specified in Table 2-6-1 & 2-6-2.

The sample condition of the Temperature cycle & Screening is shown in Fig. 2-6-1 & 2-6-2.

FOV must adjust the setting pattern of Temperature Cycle 24H to satisfy the Test Condition of Temperature Cycle 24H.

FOV must adjust the setting pattern of Screening 48H to satisfy the Test Condition of Screening 48H.

Key parameters and drifts shall be measured before and after the screening processes.

2.7 Elongation Length

The Elongation Length must be within 11.0 + -0.75 mm ($10.25 \sim 11.75 \text{ mm}$).

2.8 Measurement Uncertainty

The measurement uncertainty is shown in Table. 2-8-1.

You are responsible to demonstrate these values and maintain the calibration of its measurement instrumentation.

The limits in the present specification are absolute and do not take account of measurement uncertainty.

The limits will be indented by this uncertainty to ensure that product meets specification.

2.9 Fiber Coloring

It defines the specification of fiber coloring and colored fiber appearance.

The purpose of fiber coloring is to distinguish each port fiber.

New Specification No need uniform coloring No need Circumference coloring (Half-Circumference coloring is OK.) Color staining is OK. Coloring Fiber Cross section of port marked fiber

3. Shipping requirement

3.1 Packing

The packing process is specified in Fig.3-1-1 \sim 10 and Table 3-1-1.

3.2 Deliverable Data

The deliverable data format for ODD is specified in Table $3-2-1 \sim 3$.

The deliverable data format for CUSTOMER is specified in Fig. 3-2-1.

The deliverable electronic file data must be uploaded to the prescribed FTP server at least 5 working days before shipment.

<Details>

FOV sends the electronic data to ODD at least 5 working days before shipment.

ODD checks the measurement data, and gives approval to FOV at least 2 working days before shipment.

FOV ships the products after receiving ODD approval.

FOV	ODD	Comment	
Make packing list and electronic data			
Send electronic data to ODD Get approval	 → Receive electronic data from FOV Check electronic data Give approval to FOV (If there is something wrong, inform the result to FOV) 	At the very least 5 working days before the due date to send off products from FOV At least 2 working days before shipment	
Shipping			

Basically, the submission date of electronic data is set as 5 working day before shipment.

FOV informs ODD in advance and sends electronic data to ODD as soon as possible in special case.

Each PIC at FOV and ODD makes adjustments in detail before shipping.

3.2.1 Format of Display Form in Electronic TR Format: PDF

The format of display form in test report is defined in Table 3-2-1-1.

Table 3-2-1-1. Explanation of Parameter in Fig 3-2-1

Parameter	Display Form	Comment						
Test Date	yyyy/mm/dd	Final Inspection Day (yyyy: year, mm: month, dd: date)						
IL_P12	#.##	Insertion Loss	P1 -> P2					
IL_P13	#.##	P1 -> P3						
PDL_P12	#.##	Polarization	P1 -> P2					
PDL_P13	#.##	Dependent Loss	P1 -> P3					
ExL_P1	#.##	Excess Loss	Input Port1					

^{*1:} Insertion Loss, Polarization Dependent Loss, Return Loss: measurement data at room tempeature

3.2.2 Electronic TR Format: PDF

TR Format is shown in Fig 3-2-1.

File Name: serial_number.pdf [Example: FAC200141.pdf]

3.3 Packing List

The format of Packing List that is attached in each carton box is specified in Table 3-3-1.

3.4 List of Serial Number with bar code

The format of List of Serial Number with bar code that is attached in each carton box is specified in Table 3-4-1.

4. Build standard control & Key documents

4.1 Build Standard control

Any part of the device, fabrication and testing procedure, either listed in the Key Document List, cannot be changed without prior written consent from Fujikura.

Any major change in the build standard must be discussed at least six months prior to its intended implementation. If the changes will involve changes in external parts, such as fiber pigtail, package dimensions, etc., the FOV will supply samples of the new part at least 6 months in advance.

The FOV is responsible to fulfil orders (at the current shipping rate) without any changes for six months following the notification of the intended change in the build standard.

4.2 Key Document List

The FOV shall list, in the Quality Plan, all specifications used during the manufacture and inspection of couplers for Fujikura showing quality control points during the total manufacturing process.

These shall include as a minimum: manufacturing/assembly operations; inspections; component testing; device aging and screening.

The FOV shall generate, with Fujikura, a list of documents that are mutually agreed to be key document list. These documents may not be changed or deviated from without the written consent of Fujikura, with the exception of editorial changes, which may be performed at the manufacturer's discretion. The issue level of all key documents shall be reviewed during bill of document reviews.

5. QUALITY ASSURANCE REQUIREMENTS

5.1 Reliability Assurance

Systems installed by our customer are required to operate for periods of twenty-nine years: 29 years with the absolute minimum of repair or maintenance.

The reliability assurance requirement for the component covered by this specification is less than 0.1 FIT (UCL 60%) over 29 years.

A failure is a device whose Insertion Loss shift outside the limits given in the optical specification section, at any time during its 29 year life.

The ambient operating temperature range over which this reliability assurance requirement applies is 0 to 45°C.

5.2 Traceability

Fujikura shall have access to all piece parts and process control records, individual measurements, failure rate predictions, failure analysis reports and other documentation relevant to the Qualification Approval and Acceptance of all products used in, or considered for use in, Submerged Repeater Systems.

All the measurements data, screening, and predictions relevant to the parameters listed in this specification must be archived by the FOV and available for inspections for 29 years from the date of shipment.

The following table defines a minimum set of records:

The following table defines a minimum set of records:
Manufacturing records and Process control data
Traceability of raw materials and parts
History of 4M changes
Software/Program revision history
All audits carried out by the FOV on their own processes and those of their sub-contractors,
plus records of all corrective actions resulting from audits, whether carried out internally or by external parties.
Test and measurements results
Failure analysis reports
Life test and qualification data
Screening results and predictions

Confidential 7 / 26 AOP81-6056-27-03 (01)

5.3 Qualification of Operator

The operators in charge of each process (inc. special process) must pass the qualification test and be approved by FOV's qualification system of operator's skill.

5.4 Periodical Performance Test

To confirm the making process condition, we are going to test the production quality called "Periodical Performance Test" in FJK.

FJK will issue the non commercial order, FOV should send the test samples to FJK.

Frequency 5pcs/12month

Test item Optical characteristics, Vibration test, Impact test, Pull test, etc.

5.5 Case of past troubles

FOV must prepare/organize the cases of past troubles about coupler production.

And when FOV accepts new persons (engineers, operators, staffs etc.), they have to be educated with the cases of past troubles.

5.5 Statistic Control

To control the manufacturing condition/status of production line,

- FOV has to report about the Process Capability every month using with the process loss inspection data.
- FOV has to make some control charts every week using with the process loss inspection data.

To control the optical characteristics of manufacturing products statistically,

FOV has to monitor the following characteristics by simple moving average each 10 and 100 devices.

Moreover FOV has to feed back the monitor results to the elongation process to keep the average spec of optical characteristics.

- Insertion Loss
- Polarization Dependent Loss
- FIL

Table 2-1-1 Environmental specification

	Item	()	Specification	1			Notes
1	Operating Condition	Temperature	℃	20	~	26	
	for CPL Clean Room	Humidity	%RH	10	\sim	90	
		Cleanliness Class	P/ft ³	Cla	ass 5,0	00	Fed. Std. 209D
2	Storage condition	Temperature	°C	-20	~	70	for 2 weeks
	Packing device	Humidity	%RH	0	~	90	
		Temperature	°C	15	~	30	for 27 years
		Humidity	%RH	0	~	50	
3	Storage condition	Temperature	°C	15	~	30	for 2 weeks
	Unpacking device	Humidity	%RH	0	~	50	
		Cleanliness Class	P/ft ³	Clas	s 100,	000	Fed. Std. 209D
		Temperature	°C	-20	~	50	for 27 years
		Humidity	%RH	0	~	20	
		Cleanliness Class	P/ft ³	Clas	s 100,	000	Fed. Std. 209D
4	Clean Bench	Cleanliness Class	P/ft ³	Cla	Class 1,000		Fed. Std. 209D
	for Elongation						
5	Drop Test	Height	cm	4.8	~	5.2	
		Times	times		100	•	

Fig. 2-2-1. Coupler outside drawing

Table 2-2-1. Port configuration

				unit : mm
Port	Color	Ls	Le	Ld
Port 1	Red	80 ~ 120	460 ~ 540	5050 ~ 5500
Port 2	Blue	80 ~ 120	460 ~ 540	5050 ~ 5500
Port 3	Red	80 ~ 120	460 ~ 540	2050 ~ 2500

Fig. 2-2-2. Label printing on SUS pipe (*******: numeric character)

Fig. 2-2-3. Label printing on SUS pipe

Note:

All dimensions and tolerances is in millimeters.

Table. 2-4-1 Customer required Optical specification

Item		unit		Spec	cifica	tion Max	Remarks
Operating wavelengtl	h	nm		1525	~	1570	
Insertion Loss	(IL)	dB	P1→P2		\leq	0.70	Including PDL, WDL
			P1→P3	9.20	~	11.20	-
Polarization	(PDL)	dB	P1→P2		\leq	0.04	
Dependent Loss	(PDL)	uБ	P1→P3		\leq	0.20	
Return Loss	(RL)	dB	Port 1	50	\leq		$\lambda = 1550 \text{ nm}$ Port1: by design
			Port 2, 3	50	\leq		$\lambda = 1550 \text{ nm}$ Port1: by design
Excess Loss	(ExL)	dB	P1		\leq	0.20	

Table. 2-4-2 Customer required Optical Test condition & specification

F	Table, 2-4-2 Customer required Optical Test condition & specification							
Item		unit		Spec	cifica	ition	Remarks	
				min		Max		
Operating wavelen	igth	nm		1525	~	1570		
Insertion Loss	(IL)	dB	P1→P2		\leq	0.68	*1, 3)	
			P1→P3	9.25	~	11.15	*1, 3)	
Temperature	(TDL)	dB	P1→P2		\leq	0.05	*2, 3) Sampling: 5% / shipping	
Dependent Loss			P1→P3		\leq	0.15	*2, 3) Sampling: 5% / shipping	
Polarization	(PDL)	dB	P1→P2		\leq	0.035	*1, 3)	
Dependent Loss	(PDL)	uБ	P1→P3		\leq	0.17	*1, 3)	
Return Loss	(RL)	dB	Port 2	51	\leq		$\lambda = 1550 \text{nm} *1$	
			Port 3	51	\leq			
Excess Loss	(ExL)	dB	P1		<	0.18	*1, 3)	
Fluctuation in Inse	rtion	dB	P1→P2	-0.060	~	0.060	*1, 3)	
Loss (FIL) *6)			P1→P3	-0.080	~	0.080	*1, 3)	

*1) Measurement temperature : 23° C

*2) Measurement temperature : 0 °C, 23 °C, 45 °C

*3) Measurement wavelength: $1525.0 \sim 1570.0 \text{nm}$: $\lambda = 1525.0$, 1550.0, 1570.0 nm *4) IL fluctuation: Compare the IL before and after screening at the same wavelength.

Table. 2-8-1 Measurement Uncertainty

Parameter				Uncertainty
Insertion Loss	(IL)	dB	P1→P2	±0.02 dB
			P1→P3	±0.05 dB
Polarization	(PDL)	dB	P1→P2	±0.005 dB
Dependent Loss	(FDL)	ub	P1→P3	±0.03 dB
Return Loss	(RL)	dB		±1 dB

Fig. 2-4-1 FIL checking process flow

Fig. 2-5-1 Process flow outline

•Temperature cycle 24H

Table 2-6-1 Condition of Temperature cycle 24H

Temperature Range	-40 / +85 °C
Time	8 hours / cycle
Total time	24 hours (3 cycles)
Holed time	more than 1 hour

Tempe	rature	Time	Elapsed	
(℃)			Time	
From	To	(min)	(min)	
23	23	10	10	
23	87	50	60	↑
87	85	30	90	
85	85	80	170	Repeat
85	-40	160	330	3 times
-40	-40	110	440	(480x3)
-40	23	50	490	\
23	23	30	520	Hold 30 min
				at 23°C *1

•Screening 48H (Temperature cycle 48H)

Table 2-6-2 Condition of Screening 48H

Tuest 2 e 2 contention of servening terr				
Temperature Range	-40 / +70 °C			
Time	8 hours / cycle			
Total time	48 hours (6cycles)			
Holed time	more than 1 hour			
Criteria	FIL (P1 \rightarrow P2) -0.060 ~ 0.060 dB			
	FIL (P1 \rightarrow P3) -0.080 ~ 0.080 dB			

*1 : To prevent the dew condensation

Note :

If you can not keep the Hold Time minimum 1 hour, you have to modify the setting pattern.

Bind port fibers with Fushigi tape.

Fig. 3-1-1 Outline of port fiber binding

Fig.3-1-2 Appearance of packing case

Minimum requirement of serial number label (A)

Format of Bar code ("Product type" + " " + "Serial number"; Code 128 without check digit) Product type

Serial number Fujikura Ltd.

Fig.3-1-3 Sample format of Serial number label (A) on inner package

Fig. 3-1-4-e Basic way of packing the case into the anti static bag: Q'ty of Packing Case = 5, 7, 9: Example) Q'ty = 5

a) Pack in a vertical row(Max 5 cases) b) Unbalance number of Packing case Fig. 3-1-4-f Improper packing way (Bad Examples: 2 samples)

Fig. 3-1-5 Attaching position of the bag label & the serial number label(A) on the anti-static bag

Product Type	CPL-980/C-WDM-3P	
		(*1)
P/O No.		
Quantity (pcs)		
Bag No. / Total Bag	Date:	

(*1) : Format : "P/O Number" + " - " + "Bag No." + "/" + "Quantities in Bag" Bar code type : code128 without check digit

Fig. 3-1-6 Example of Bag label Format

Sponge

Fig. 3-1-7 The way to pack the products into inner carton box

Product Type	CPL-C-10DB-3P					
(*1)						
P/O No.						
Quantity (pcs/Box)						
Carton No. / Total.		Date:				

(*1): Format: "P/O Number" + " - " + "Carton No." + "/" + "Total box" + "Quantities in Box" Bar code type: code128 without check digit

Fig. 3-1-8 Example of Inner carton box label format

Fig. 3-1-9 Packing in outer carton box

Table 3-1-1. Packing condition with pallet

Outer carton box Q'ty	1	2	3	4	5	6	7	8
Pallet type	PAL0003		PAL0006					
Max Layer	1			2				

Fig 3-1-10. Example of pallet loading

Table 3-2-1. Deliverable data format: Measurement raw data

121	I.a. I.a.	1	to a set				1.44	data and			1		T	7 —	
kind	opa cpl_no	process	in_port	meas_num	ws_num	ws	date_st (*1)	date_end (*2)	meas_time	station	worker	meas_id	cross_sw		
			_	_	_	_	_		_				-		
\searrow	t1 t2	t3	ws_il	il_t1	il_t1_cross	il_t2	il_t2_cross	il_t3	il_t3_cross	pdl_t1	pdl_t1_cross	pdl_t1_mon			
	_														
K	pdl_t2														
	pdl_t2	pdl_t2_cros	s pdl_t2_mon	pdl_t3	pdl_t3_cross	pdl_t3_mon	pdl_splice	pdl_splice_cross	exloss_t1	exloss_t2	exloss_t3	iso_t1	iso_t2	iso_t3	
															7
	\mathcal{C}	coupling t1	coupling_t2	coupling t3	w peak t1	w_peak_t2	w_peak_t3	ws_ct	ct_t1	ct_t2	ct_t3	ct_splice	judge_score	judge_total	
								•							
															\
		\mathcal{C}	spec_id	il_fit_ws	il_t1_fit	il_t2_fit	il_t3_fit	pwr_init	nur init araas	pwr_init_mon	nout +1	nout +1 aross	Inout +1 man	1 —	
		マ	spec_iu	III_IIL_WS	ןוו_נו_וונ	III_LZ_IIL	III_LO_IIL	Ibm.luic		s [pwr_init_mon	Ipout_t1	[pout_t1_cross	pout_t1_mon		
														<i>\\</i>	
					1			pout_t3_cross	1				Т -	7	
			<u></u>	Inout +2	nout to arous								Inflorence man		
			,	pout_tz	pout_tz_cross	s [pout_t2_mon	i [pout_ts	pout_t3_cross	pout_t3_mon	[p0	p0_mon	p0_cross	p0_cross_mon	_	
			,	pout_tz		s pout_t2_mor	i įpout_ts	pout_t3_cross	pout_t3_mon	[p0	p∪_mon	p0_cross	Tho cross mon		
			r	pout_tz	_pout_tz_cross	s pout_tz_mor	i [pout_ts	pout_t3_cross	pout_t3_mon	p0	<u>lpυ_mon</u>	pU_cross	po_cross_mon		
			ř	_						p0	pu_mon	pU_cross	TPO_CTOSS_MOT		
			r	_					prog_no	p0	pu_mon	p0_cross			
			·	_	mon_diff_t1										
			·	_											
			·	_											

- *1 date_st format is YYYY/MM/DD hh:mm:ss
- *2 date_end format is YYYY/MM/DD hh:mm:ss

Note:

Deliverable data should be availabe with Microsoft(R) Excel 2000.

Table 3-2-2. Deliverable data format: Return Loss

No	CPL Name	SUS Pipe No		RL 1550		Shipping date (*2)	Remarks	
NO	CPL Name	SUS PIPE NO	P1 _(*1)	P2 (*1)	P3 _(*1)	Shipping date (*2)	Kelliaiks	

*1 Port configuration as below (Customer configuration. Not FOV configuration)

*2 Shipping date format as below

YYYY/MM/DD

Note:

Deliverable data should be available with Microsoft(R) Excel 2000.

22 / 26 AOP81-6056-27-03 (01)

Table 3-2-3. Deliverable data format: Relation table between CPL name and SUS pipe No.

No	CPL Name	SUS Pipe No	Fiber Lot No.	Customer Name	PO	Specification	Shipping date (*1)	Remarks

*1 Shipping date format as below

YYYY/MM/DD

Note:

Deliverable data should be available with Microsoft(R) Excel 2000.

Test Report

Product Name: 1550nm 10dB Coupler
Product Type CPL-C-10DB-3P

Serial Number:

Fiber Lot:

Serial No]

Test Date (MM-DD-YYYY): Test Temperature:

Parameter	Specification (dB)	Wavelength (nm)	Measured (dB)	Judge
IL_P12	≤ 0.70	1525.0	, ,	Pass / Fail
IL_P12	≤ 0.70	1550.0		Pass / Fail
IL_P12	≤ 0.70	1570.0		Pass / Fail
IL_P13	9.2 ~ 11.2	1525.0		Pass / Fail
IL_P13	9.2 ~ 11.2	1550.0		Pass / Fail
IL_P13	9.2 ~ 11.2	1570.0		Pass / Fail
PDL_P12	≤ 0.04	1525.0		Pass / Fail
PDL_P12	≤ 0.04	1550.0		Pass / Fail
PDL_P12	≤ 0.04	1570.0		Pass / Fail
PDL_P13	≤ 0.20	1525.0		Pass / Fail
PDL_P13	≤ 0.20	1550.0		Pass / Fail
PDL_P13	≤ 0.20	1570.0		Pass / Fail
ExL_P1	≤ 0.20	1525.0		Pass / Fail
ExL_P1	≤ 0.20	1550.0		Pass / Fail
ExL_P1	≤ 0.20	1570.0		Pass / Fail

Note) Bar cord type: code128 without check digit

File Type : File Name :

Fig 3-2-1. Format of Electronic Test Report (PDF)

Test Report

Product Name: 1550nm 10dB Coupler
Product Type CPL-C-10DB-3P
Social Numbers FAC2011054

Test Date (MM-DD-YYYY): MM-DD-YYYY

Test Temperature: 23°C

Parameter	Specification (dB)	Wavelength (nm)	Measured (dB)	Judge
IL_P12	≤ 0.70	1525.0	0.41	Pass
IL_P12	≤ 0.70	1550.0	0.43	Pass
IL_P12	≤ 0.70	1570.0	0.41	Pass
IL_P13	9.2 ~ 11.2	1525.0	10.50	Pass
IL_P13	9.2 ~ 11.2	1550.0	10.70	Pass
IL_P13	9.2 ~ 11.2	1570.0	10.50	Pass
PDL_P12	≤ 0.04	1525.0	0.01	Pass
PDL_P12	≤ 0.04	1550.0	0.01	Pass
PDL_P12	≤ 0.04	1570.0	0.01	Pass
PDL_P13	≤ 0.20	1525.0	0.09	Pass
PDL_P13	≤ 0.20	1550.0	0.09	Pass
PDL_P13	≤ 0.20	1570.0	0.09	Pass
ExL_P1	≤ 0.20	1525.0	0.08	Pass
ExL_P1	≤ 0.20	1550.0	0.08	Pass
ExL_P1	≤ 0.20	1570.0	80.0	Pass

Note) Bar cord type: code128 without check digit

Fig 3-2-2. Format of Electronic Test Report (PDF)

(3): The working day of packing process: Format yyyy-mm-dd Fig 3-3-1. Sample Format of Packing List (paper size : A4, Portrait orientation)

(2): Customer's PO No

Fig 3-3-2. Example of Packing List

	Serial No	 Serial No
∥∥∥∥∥∥∥∥∥∥∥∥ Serial No	Serial No	 ∭∭∭∭∭∭∭∭ Serial No
∥∥∥∥∥∥∥∥∥∥∥ Serial No	Serial No	 Serial No
	•	•
∥∭∥∥∭∥∥∭∭∭ Serial No	Serial No	 Serial No
∥∥∥∥∥∥∥∥∥∥∥ Serial No	Serial No	
∭∭∭∭∭∭∭∭ Serial No	Serial No	 Serial No

Note) Bar cord type: code128 without check digit

Fig 3-4-1. Example Format of List of serial number with barcode label (paper size : A4, Portrait orientation)

F	AC2010131	FAC2010141		FAC2010191
 				
F	AC2010132	FAC2010142	••••	FAC2010192
F	AC2010133	FAC2010143		FAC2010193
	•			
	•	•		•
	•	•		•
F	AC2010138	FAC2010148	••••	FAC2010198
F	AC2010139	FAC2010149	••••	FAC2010199
F	AC2010140	FAC2010150	••••	FAC2010200

Note): No need to sort the serial numbers, when you make a list of serial number with bar code label, Bar code type: code128 without check digit

Fig 3-4-2. Example of List of serial number with barcode label