

Project Title	Project Valuation Analysis
Tools	Machine Learning
Domain	Data Analyst
Project Difficulties level	intermediate

Dataset : Dataset is available in the given link. You can download it at your convenience.

Click here to download data set

About Dataset

"Unicorn" is a term used in the venture capital industry to describe a privately held startup company with a value of over \$1 billion. The term was first popularized by venture capitalist Aileen Lee, founder of Cowboy Ventures, a seed-stage venture capital fund based in Palo Alto, California.

Unicorns can also refer to a recruitment phenomenon within the human resources (HR) sector. HR managers may have high expectations to fill a position, leading them to look for candidates with qualifications that are higher than required for a specific job. In essence, these managers are looking for a unicorn, which leads to a disconnect

between their ideal candidate versus who they can hire from the pool of people available.

Here's a detailed guide on how to carry out a Valuation Project using machine learning, including a step-by-step explanation and Python code example:

Project Overview

Objective: To analyze and predict the valuation of companies using various machine learning techniques.

Steps to Follow:

1. Define the Scope and Objective:

- Identify the companies you want to analyze.
- Define the specific objectives of your analysis (e.g., predicting company valuation based on financial metrics).

2. Data Collection:

- Gather relevant financial data from sources such as financial statements,
 market data, industry reports, etc.
- Common data points include revenue, EBITDA, net income, free cash flow, enterprise value, etc.

3. Data Preparation:

- o Clean the data to remove any inconsistencies or errors.
- Combine data from different sources into a single dataset.
- Use tools like Pandas for data cleaning and preparation.

4. Exploratory Data Analysis (EDA):

- o Perform EDA to understand the data distribution and identify patterns.
- o Use visualization tools like Matplotlib and Seaborn to visualize the data.

5. Feature Engineering:

- Create new features from existing data that might be useful for the machine learning model.
- Normalize or standardize the data if necessary.

6. Model Selection:

- Choose appropriate machine learning algorithms based on the problem (e.g., linear regression, decision trees, random forest, etc.).
- Split the data into training and testing sets.

7. Model Training and Evaluation:

- Train the machine learning model on the training set.
- Evaluate the model's performance on the testing set using appropriate metrics.

8. Model Tuning and Optimization:

- Tune the model's hyperparameters to improve performance.
- Use techniques like cross-validation to ensure the model is not overfitting.

9. **Deployment**:

- Deploy the model using tools like Flask or Django for web applications.
- Use the model to make predictions on new data.

Detailed Python Code Example

Step-by-Step Implementation

1. Data Collection:

 Assume you have a dataset named valuation_data.csv with columns like Company, Year, Revenue, EBITDA, Net_Income,

Free_Cash_Flow, Enterprise_Value, etc.

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score

# Load the dataset
data = pd.read_csv('valuation_data.csv')

# Display the first few rows of the dataset
print(data.head())
```

2. Data Preparation:

```
# Handle missing values
data = data.dropna()

# Convert categorical columns to numerical (if any)
data = pd.get_dummies(data, drop_first=True)

# Split the data into features and target variable
X = data.drop('Enterprise_Value', axis=1)
y = data['Enterprise_Value']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Standardize the data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

3. Exploratory Data Analysis (EDA):

```
# Visualize the distribution of the target variable
sns.histplot(y, kde=True)
plt.title('Distribution of Enterprise Value')
plt.show()

# Visualize correlations between features
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```

4. Model Selection and Training:

```
# Initialize the Linear Regression model
Ir_model = LinearRegression()

# Train the model on the training data
Ir_model.fit(X_train, y_train)

# Make predictions on the testing data
y_pred_Ir = Ir_model.predict(X_test)

# Initialize the Random Forest Regressor model
rf_model = RandomForestRegressor(random_state=42)

# Train the model on the training data
rf_model.fit(X_train, y_train)

# Make predictions on the testing data
y_pred_rf = rf_model.predict(X_test)
```

5. Model Evaluation:

Evaluate the Linear Regression model's performance

```
mse_Ir = mean_squared_error(y_test, y_pred_Ir)
r2_Ir = r2_score(y_test, y_pred_Ir)

print(f'Linear Regression Mean Squared Error: {mse_Ir}')
print(f'Linear Regression R-squared: {r2_Ir}')

# Evaluate the Random Forest model's performance
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)

print(f'Random Forest Mean Squared Error: {mse_rf}')
print(f'Random Forest R-squared: {r2_rf}')
```

6. Model Tuning and Optimization:

```
from sklearn.model selection import GridSearchCV
# Define the parameter grid for Random Forest
param grid = {
  'n estimators': [100, 200, 300],
  'max depth': [None, 10, 20, 30],
  'min samples split': [2, 5, 10]
# Perform Grid Search with cross-validation
grid search = GridSearchCV(estimator=rf model, param grid=param grid, cv=5,
n jobs=-1, verbose=2)
grid search.fit(X train, y train)
# Print the best parameters and best score
print(f'Best Parameters: {grid search.best params }')
print(f'Best Score: {grid search.best score }')
# Train the model with the best parameters
best rf model = grid search.best estimator
best rf model.fit(X_train, y_train)
# Make predictions on the testing data
```

```
y_pred_rf_optimized = best_rf_model.predict(X_test)

# Evaluate the optimized model's performance
mse_rf_optimized = mean_squared_error(y_test, y_pred_rf_optimized)
r2_rf_optimized = r2_score(y_test, y_pred_rf_optimized)

print(f'Optimized Random Forest Mean Squared Error: {mse_rf_optimized}')
print(f'Optimized Random Forest R-squared: {r2_rf_optimized}')
```

7. **Deployment** (Basic Example using Flask):

```
# Import necessary libraries
from flask import Flask, request, jsonify
import joblib
# Initialize the Flask app
app = Flask( name )
# Load the trained model
joblib.dump(best rf model, 'best rf model.pkl')
model = joblib.load('best rf model.pkl')
# Define a route for prediction
@app.route('/predict', methods=['POST'])
def predict():
  data = request.get ison()
  features = np.array([data['features']])
  prediction = model.predict(features)
  return jsonify({'prediction': prediction[0]})
# Run the app
if name == ' main ':
  app.run(debug=True)
```

Conclusion

By following these steps, you can create a comprehensive company valuation analysis using machine learning. This project will help you understand the valuation process, make data-driven predictions, and deploy a model for real-time predictions.

SAMPLE AND REPORT

Sobre o conjunto de dados

"Unicórnio" é um termo usado na indústria de capital de risco para descrever uma startup de capital fechado com valor superior a US\$ 1 bilhão. O termo foi popularizado pela primeira vez pela capitalista de risco Aileen Lee, fundadora da Cowboy Ventures, um fundo de capital de risco com sede em Palo Alto, Califórnia.

Unicórnios também podem se referir a um fenômeno de recrutamento no setor de recursos humanos (RH). Os gerentes de RH podem ter grandes expectativas para preencher um cargo, levando-os a procurar candidatos com qualificações superiores às exigidas para um cargo específico. Em essência, esses gerentes estão procurando um unicórnio, o que leva a uma desconexão entre seu candidato ideal e quem eles podem contratar do grupo de pessoas disponíveis.

Download da base de dados

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

```
In [2]:
base_dados =
pd.read_csv('/kaggle/input/unicorn-startups/unicorns till sep
2022.csv')
                                                                 In [3]:
base_dados.shape
                                                                 Out[3]:
(1186, 7)
                                                                 In [4]:
base_dados.head()
                                                                 Out[4]:
         Valuati
                 Date
  Comp
                        Count
                 Joine
                               City
         on
                                       Industry
                                                      Investors
  any
                        ry
         ($B)
                 d
                                                      Sequoia Capital
                                       Artificial
  ByteD
                 4/7/20
         $140
                        China
                               Beijing
                                                      China, SIG Asia
  ance
                                       intelligence
                 17
                                                      Investments, S...
```

1	Spac eX	\$127	12/1/2 012	United States	Hawth orne	Other	Founders Fund, Draper Fisher Jurvetson, Rothen
2	SHEI N	\$100	7/3/20 18	China	Shenz hen	E-commerce & direct-to-cons umer	Tiger Global Management, Sequoia Capital China
3	Stripe	\$95	1/23/2 014	United States	San Franci sco	Fintech	Khosla Ventures, LowercaseCapital, capitalG
4	Canv	\$40	1/8/20 18	Austra lia	Surry Hills	Internet software & services	Sequoia Capital China, Blackbird Ventures, Mat

In [5]:

base_dados.columns

```
In [6]:
# Renomeação
base_dados.rename(columns={'Unnamed: 0' : 'Id', 'Company' :
'Empresa', 'Valuation ($B)': 'Valor ($)', 'Date Joined': 'Data
de Adesão', 'Country' : 'País',
       'City' : 'Cidade', 'Industry' : 'Setor', 'Select
Investors': 'Investidores'}, inplace=True)
                                                       In [7]:
base_dados.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1186 entries, 0 to 1185
Data columns (total 7 columns):
    Column
                    Non-Null Count
                                    Dtype
                                    object
0
    Empresa
              1186 non-null
1 Valor ($) 1186 non-null object
    Data de Adesão 1186 non-null
                                   object
 2
                                   object
3
    País
                    1186 non-null
4 City
                    1186 non-null object
                    1186 non-null object
 5
    Setor
                    1168 non-null object
6
    Investors
dtypes: object(7)
memory usage: 65.0+ KB
Limpeza de Dados
                                                      In [8]:
# Modelando a coluna Valor ($)
```

```
base_dados['Valor ($)'] = pd.to_numeric(base_dados['Valor
($)'].apply(lambda x: x.replace('$', '')))
                                                             In [9]:
# Conversão data
base_dados['Data de Adesão'] = pd.to_datetime(base_dados['Data
de Adesão'])
                                                            In [10]:
# criando as colunas mês e ano
base_dados['Mês'] = pd.DatetimeIndex(base_dados['Data de
Adesão']).month
base_dados['Ano'] = pd.DatetimeIndex(base_dados['Data de
Adesão']).year
base_dados.head()
                                                            Out[10]:
             Data
         Val
                                                              M
  Empr
              de
                                                                  An
                           City
                    País
                                  Setor
                                                              ê
         or
                                             Investors
             Adesã
  esa
         ($)
                                                              S
              0
  ByteD
         140
             2017-
                                  Artificial
                                                                  20
                    China
                           Beijing
                                              Sequoia Capital
                                                              4
                                  intelligence
              04-07
                                                                  17
  ance
         .0
                                              China, SIG Asia
```

							Investments, S		
1	Spac eX	127 .0	2012- 12-01	Unite d State s	Hawth orne	Other	Founders Fund, Draper Fisher Jurvetson, Rothen	1 2	20 12
2	SHEI N	100	2018- 07-03	China	Shenz hen	E-commerc e & direct-to-co nsumer	Tiger Global Management, Sequoia Capital China	7	20 18
3	Stripe	95. 0	2014- 01-23	Unite d State s	San Franci sco	Fintech	Khosla Ventures, LowercaseCapital, capitalG	1	20 14
4	Canv	40. 0	2018- 01-08	Austr alia	Surry Hills	Internet software & services	Sequoia Capital China, Blackbird Ventures, Mat	1	20 18

```
In [11]:
```

```
base_dados[['Investidor_1', 'Investidor_2', 'Investidor_3',
'Investidor_4']] = base_dados['Investors'].str.split(',',
expand=True)
```

In [12]:

base_dados.drop(columns='Investors', inplace=True)

In [13]:

base_dados

Out[13]:

	Empr esa	V al or (\$	Da ta de Ad es ão	Paí s	City	Setor	M ê s	A n o	Invest idor_1	Investid or_2	Inves tidor_ 3	Inves tidor_ 4
0	ByteD ance	14 0. 0	20 17- 04- 07	Chi na	Beiji ng	Artifici al intelli gence	4	2 0 1 7	Sequ oia Capit al China	SIG Asia Investm ents	Sina Weib o	Softb ank Grou p
1	Space X	12 7. 0	20 12- 12- 01	Uni ted Sta tes	Haw thor ne	Other	1 2	2 0 1 2	Foun ders Fund	Draper Fisher Jurvetso n	Roth enber g Ventu res	None

2	SHEI N	10 0. 0	20 18- 07- 03	Chi na	She nzhe n	E-co mmer ce & direct- to-con sumer	7	2 0 1 8	Tiger Globa I Mana geme nt	Sequoia Capital China	Shun wei Capit al Partn ers	None
3	Stripe	95 .0	20 14- 01- 23			Fintec h	1	2 0 1 4	Khosl a Ventu res	Lowerca seCapit al	capit alG	None
4	Canv	40 .0	20 18- 01- 08	Aus trali a	Surr y Hills	softw 0 oia d		Venture	Matri x Partn ers	None		
1 1 8 1	Lead Squar ed	1.	20 22- 06- 21	Indi a	Ben galur u	Intern et softw are & servic es	6	2 0 2 2	Gaja Capit al Partn ers	Stakebo at Capital	West Bridg e Capit al	None

1 1 8 2	FourK ites	1.	20 22- 06- 21	Uni ted Sta tes	Chic ago	Suppl y chain, logisti cs, & delive ry	6	2 0 2 2	Hyde Park Ventu re Partn ers	Bain Capital Venture s	Hyde Park Angel s	None
1 1 8 3	Vulca nFor ms	1.	20 22- 07- 05	Uni ted Sta tes	Burli ngto n	Suppl y chain, logisti cs, & delive ry	7	2 0 2 2	Eclips e Ventu res	D1 Capital Partners	Indus try Ventu res	None
1 1 8 4	Single Store	1.	20 22- 07- 12	Uni ted Sta tes	San Fran cisc o	Data mana geme nt & analyt ics	7	2 0 2 2	Googl e Ventu res	Accel	Data Colle ctive	None
1 1 8 5	Unsto ppabl e Doma ins	1.	20 22- 07- 27	Uni ted Sta tes	Las Veg as	Intern et softw are & servic es	7	2 0 2 2	Boost VC	Draper Associat es	Gain gels	None

```
1186 rows × 12 columns
                                                      In [14]:
base_dados.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1186 entries, 0 to 1185
Data columns (total 12 columns):
    Column
                    Non-Null Count
                                    Dtype
_ _ _
                    1186 non-null
                                    object
 0
    Empresa
                1186 non-null
    Valor ($)
                                   float64
 1
    Data de Adesão 1186 non-null
                                    datetime64[ns]
 2
 3
                    1186 non-null object
    País
 4
    City
                                   object
                    1186 non-null
 5
                                   object
    Setor
                    1186 non-null
    Mês
 6
                    1186 non-null
                                    int32
 7
    Ano
                    1186 non-null
                                    int32
    Investidor_1 1168 non-null object
Investidor_2 1118 non-null object
10 Investidor_3 1027 non-null object
    11
dtypes: datetime64[ns](1), float64(1), int32(2), object(8)
memory usage: 102.0+ KB
                                                      In [15]:
# valores nulos
base_dados.isnull().sum()
```

```
Out[15]:
Empresa
                      0
Valor ($)
                      0
Data de Adesão
                      0
País
                      0
City
                      0
Setor
                      0
Mês
                      0
Ano
                      0
Investidor_1
                    18
Investidor_2
                   68
Investidor_3
                  159
Investidor_4 1176
dtype: int64
                                                          In [16]:
base_dados[base_dados.isnull().T.any()]
1176 rows × 12 columns
                                                          In [17]:
base_dados.isnull().sum()
                                                         Out[17]:
Empresa
                      0
Valor ($)
                      0
Data de Adesão
                      0
País
                      0
City
```

0 0 18 68 159 1176	
	In [18]:
S	In [19]:
ados.isnull().T.any()]	III [19].
S	
e()	In [20]:
1183	Out[20]:
	0 18 68 159 1176 s ados.isnull().T.any()]

Data de Adesão	695
País	48
City	286
Setor	34
Mês	12
Ano	13
Investidor_1	589
Investidor_2	648
Investidor_3	619
Investidor_4	10

dtype: int64

Data visualization

```
base_dados.groupby('Setor')[['Investidor_1', 'Investidor_2',
'Investidor_3', 'Investidor_4']].count()
```

Out[21]:

In [21]:

	Investid or_1	Investid or_2	Investid or_3	Investid or_4
Setor				
500 Global, Rakuten Ventures, Golden Gate Ventures	0	0	0	0

Andreessen Horowitz, DST Global, IDG Capital	0	0	0	0
Artificial Intelligence	11	11	11	0
Artificial intelligence	74	70	66	2
Auto & transportation	40	38	32	1
B Capital Group, Monk's Hill Ventures, Dynamic Parcel Distribution	0	0	0	0
Consumer & retail	28	25	20	0
Cybersecurity	58	58	56	0
Data management & analytics	45	45	42	1
Dragonfly Captial, Qiming Venture Partners, DST Global	0	0	0	0

E-commerce & direct-to-consumer	103	99	92	0
Edtech	32	31	30	0
Fintech	239	229	215	0
GIC. Apis Partners, Insight Partners	0	0	0	0
Hardware	38	38	34	0
Health	94	90	81	1
Hopu Investment Management, Boyu Capital, DC Thomson Ventures	0	0	0	0
Internet	2	2	2	1
Internet software & services	224	216	200	0

Jungle Ventures, Accel, Venture Highway	0	0	0	0
Kuang-Chi	0	0	0	0
Mobile & telecommunications	36	33	29	2
Mundi Ventures, Doqling Capital Partners, Activant Capital	0	0	0	0
Other	65	55	44	0
Sequoia Capital China, ING, Alibaba Entrepreneurs Fund	0	0	0	0
Sequoia Capital China, Shunwei Capital Partners, Qualgro	0	0	0	0
Sequoia Capital, Thoma Bravo, Softbank	0	0	0	0
SingTel Innov8, Alpha JWC Ventures, Golden Gate Ventures	0	0	0	0

Supply chain, logistics, & delivery	65	64	60	2
Temasek, Guggenheim Investments, Qatar Investment Authority	0	0	0	0
Tiger Global Management, Tiger Brokers, DCM Ventures	0	0	0	0
Travel	14	14	13	0
Vertex Ventures SE Asia, Global Founders Capital, Visa Ventures	0	0	0	0
Vision Plus Capital, GSR Ventures, ZhenFund	0	0	0	0

```
In [22]:
```

```
base_dados.loc[base_dados['Setor'] == 'Artificial
intelligence', 'Setor'] = 'Artificial Intelligence'
base_dados.loc[base_dados['Setor'] == 'Finttech', 'Setor'] =
'Fintech'
```

```
agrupado = base_dados.groupby('Setor')[['Investidor_1',
   'Investidor_2', 'Investidor_3', 'Investidor_4']].count()
agrupado
```

Out[23]:

	Investid or_1	Investid or_2	Investid or_3	Investid or_4
Setor				
500 Global, Rakuten Ventures, Golden Gate Ventures	0	0	0	0
Andreessen Horowitz, DST Global, IDG Capital	0	0	0	0
Artificial Intelligence	85	81	77	2
Auto & transportation	40	38	32	1
B Capital Group, Monk's Hill Ventures,	0	0	0	0

Dynamic Parcel Distribution				
Consumer & retail	28	25	20	0
Cybersecurity	58	58	56	0
Data management & analytics	45	45	42	1
Dragonfly Captial, Qiming Venture Partners, DST Global	0	0	0	0
E-commerce & direct-to-consumer	103	99	92	0
Edtech	32	31	30	0
Fintech	239	229	215	0
GIC. Apis Partners, Insight Partners	0	0	0	0
Hardware	38	38	34	0

Health	94	90	81	1
Hopu Investment Management, Boyu Capital, DC Thomson Ventures	0	0	0	0
Internet	2	2	2	1
Internet software & services	224	216	200	0
Jungle Ventures, Accel, Venture Highway	0	0	0	0
Kuang-Chi	0	0	0	0
Mobile & telecommunications	36	33	29	2
Mundi Ventures, Doqling Capital Partners, Activant Capital	0	0	0	0
Other	65	55	44	0

Sequoia Capital China, ING, Alibaba Entrepreneurs Fund	0	0	0	0
Sequoia Capital China, Shunwei Capital Partners, Qualgro	0	0	0	0
Sequoia Capital, Thoma Bravo, Softbank	0	0	0	0
SingTel Innov8, Alpha JWC Ventures, Golden Gate Ventures	0	0	0	0
Supply chain, logistics, & delivery	65	64	60	2
Temasek, Guggenheim Investments, Qatar Investment Authority	0	0	0	0
Tiger Global Management, Tiger Brokers, DCM Ventures	0	0	0	0
Travel	14	14	13	0

Vertex Ventures SE Asia, Global Founders Capital, Visa Ventures	0	0	0	0
Vision Plus Capital, GSR Ventures, ZhenFund	0	0	0	0

In [24]:

```
agrupado['Total_Investidors'] = agrupado[['Investidor_1',
    'Investidor_2', 'Investidor_3', 'Investidor_4']].sum(axis=1)
agrupado.drop(columns=['Investidor_1', 'Investidor_2',
    'Investidor_3', 'Investidor_4'], inplace=True)
agrupado1 = agrupado.sort_values(by= 'Total_Investidors',
ascending=False)
agrupado1
```

Out[24]:

	Total_Inve stidors
Setor	
Fintech	683

Internet software & services	640
E-commerce & direct-to-consumer	294
Health	266
Artificial Intelligence	245
Supply chain, logistics, & delivery	191
Cybersecurity	172
Other	164
Data management & analytics	133
Auto & transportation	111
Hardware	110

Mobile & telecommunications	100	
Edtech	93	
Consumer & retail	73	
Travel	41	
Internet	7	
Sequoia Capital China, ING, Alibaba Entrepreneurs Fund	0	
Tiger Global Management, Tiger Brokers, DCM Ventures	0	
Temasek, Guggenheim Investments, Qatar Investment Authority	0	
Vertex Ventures SE Asia, Global Founders Capital, Visa Ventures	0	

SingTel Innov8, Alpha JWC Ventures, Golden Gate Ventures	0	
Sequoia Capital, Thoma Bravo, Softbank	0	
Sequoia Capital China, Shunwei Capital Partners, Qualgro	0	
500 Global, Rakuten Ventures, Golden Gate Ventures	0	
Mundi Ventures, Doqling Capital Partners, Activant Capital	0	
Kuang-Chi	0	
Jungle Ventures, Accel, Venture Highway	0	
Andreessen Horowitz, DST Global, IDG Capital	0	

Hopu Investment Management, Boyu Capital, DC Thomson Ventures	0
GIC. Apis Partners, Insight Partners	0
Dragonfly Captial, Qiming Venture Partners, DST Global	0
B Capital Group, Monk's Hill Ventures, Dynamic Parcel Distribution	0
Vision Plus Capital, GSR Ventures, ZhenFund	0

```
In [25]:
```

```
# valores unicos do Setor (%)
agrupado =
round(base_dados['Setor'].value_counts(normalize=True) * 100,
2)
agrupado
```

Out[25]:

Setor Fintech 20.15

```
Internet software & services
18.89
E-commerce & direct-to-consumer
8.68
Health
7.93
Artificial Intelligence
7.17
Supply chain, logistics, & delivery
5.48
0ther
5.48
Cybersecurity
4.89
Data management & analytics
3.79
Auto & transportation
3.37
Hardware
3.20
Mobile & telecommunications
3.12
Edtech
2.70
Consumer & retail
2.36
Travel
1.18
Internet
0.17
Sequoia Capital China, ING, Alibaba Entrepreneurs Fund
0.08
B Capital Group, Monk's Hill Ventures, Dynamic Parcel
Distribution
                 0.08
Andreessen Horowitz, DST Global, IDG Capital
0.08
Vertex Ventures SE Asia, Global Founders Capital, Visa Ventures
0.08
```

```
Mundi Ventures, Dogling Capital Partners, Activant Capital
0.08
SingTel Innov8, Alpha JWC Ventures, Golden Gate Ventures
0.08
Dragonfly Captial, Qiming Venture Partners, DST Global
0.08
Sequoia Capital China, Shunwei Capital Partners, Qualgro
0.08
Kuang-Chi
0.08
500 Global, Rakuten Ventures, Golden Gate Ventures
0.08
Hopu Investment Management, Boyu Capital, DC Thomson Ventures
0.08
Vision Plus Capital, GSR Ventures, ZhenFund
0.08
GIC. Apis Partners, Insight Partners
0.08
Jungle Ventures, Accel, Venture Highway
0.08
Tiger Global Management, Tiger Brokers, DCM Ventures
0.08
Seguoia Capital, Thoma Bravo, Softbank
0.08
Temasek, Guggenheim Investments, Qatar Investment Authority
0.08
Name: proportion, dtype: float64
                                                        In [26]:
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
plt.title('Total de investidores nos setores')
plt.bar(agrupado1.index, agrupado1.Total_Investidors)
plt.xticks(rotation=45, ha='right')
```

```
plt.subplot(1,2,2)
plt.title('Análise Setores (%)')
plt.bar(agrupado.index, agrupado.values)
plt.xticks(rotation = 45, ha = 'right')
plt.show()
               Total de investidores nos setores
                                                        Análise Setores (%)
                                           15.0
                                           12.5
     400
                                           10.0
     300
                                            7.5
     200
                                           5.0
     100
                                            2.5
                                                                    In [27]:
analise =
round(base_dados['País'].value_counts(normalize=True)*100, 2)
analise = analise.head(10).copy()
```

```
In [28]:
analise
                                                          Out[28]:
País
United States
                  53.63
China
                  14.67
India
                   5.90
United Kingdom
                   3.88
Germany
                   2.45
France
                   2.02
Israel
                   1.85
Canada
                   1.60
Brazil
                   1.43
South Korea
                   1.43
Name: proportion, dtype: float64
                                                          In [29]:
# Gerando gráfico de pizza dost top 10 países com fintech
plt.figure(figsize=(15,6))
plt.title('Os 10 países geradores de Unicórnios')
plt.pie(
    analise,
    labels=analise.index,
    shadow=True,
    startangle=360,
    autopct='%1.1f%%'
plt.show()
```

Os 10 países geradores de Unicórnios


```
In [30]:
```

```
# Tabela Analítica
agrupamento = base_dados.groupby(by=['País', 'Ano', 'Mês',
'Empresa']).count().reset_index()
```

agrupamento

Out[30]:

País	An	M	Empre	Va	Dat	С	Se	Investi	Investi	Investi	Investi
	/\II	ê	СПРІС	lor	а	it	OC	1117030	IIIVCSti	IIIVCSti	111703(1

		0	S	sa	(\$)	de Ade são	У	tor	dor_1	dor_2	dor_3	dor_4
0	Arge ntina	20 21	8	Uala	1	1	1	1	1	1	1	0
1	Austr alia	20 18	1	Canva	1	1	1	1	1	1	1	0
2	Austr alia	20 19	3	Airwall ex	1	1	1	1	1	1	1	0
3	Austr alia	20 21	5	Safety Culture	1	1	1	1	1	1	1	0
4	Austr alia	20 21	7	Culture Amp	1	1	1	1	1	1	1	0
11 81	Unite d State	20 22	8	Flow	1	1	1	1	1	0	0	0

	S											
11 82	Unite d State s	20 22	8	Incredi ble Health	1	1	1	1	1	1	1	0
11 83	Unite d State s	20 22	8	Orna Therap eutics	1	1	1	1	1	1	1	0
11 84	Vietn am	20 21	1 0	Sky Mavis	1	1	1	1	1	1	1	0
11 85	Vietn am	20 21	1 2	МоМо	1	1	1	1	1	1	1	0

1186 rows × 12 columns

In [31]:

agrupamento.loc[agrupamento['País'] == 'Brazil']

Out[31]:

	Pa ís	An o	M ê s	Empresa	Val or (\$)	Data de Ades ão	C it y	Se	Investi dor_1	Investi dor_2	Investi dor_3	Investi dor_4
1 6	Br azi	20 18	7	Movile	1	1	1	1	1	1	1	0
1 7	Br azi	20 18	1	iFood	1	1	1	1	1	1	1	0
1 8	Br azi	20 19	6	Loggi	1	1	1	1	1	1	0	0
1 9	Br azi	20 19	9	QuintoA ndar	1	1	1	1	1	1	1	0
2 0	Br azi I	20 19	1 0	EBANX	1	1	1	1	1	1	0	0

2	Br azi I	20 19	1 2	Wildlife Studios	1	1	1	1	1	1	0	0
2 2	Br azi I	20 20	1	Loft	1	1	1	1	1	1	1	0
2 3	Br azi I	20 20	1 2	C6 Bank	1	1	1	1	1	0	0	0
2 4	Br azi I	20 20	1 2	Creditas	1	1	1	1	1	1	1	0
2 5	Br azi I	20 21	1	Madeira Madeira	1	1	1	1	1	1	1	0
2 6	Br azi I	20 21	8	Nuvems hop	1	1	1	1	1	1	1	0

2 7	Br azi I	20 21	8	Unico	1	1	1	1	1	1	1	0
2 8	Br azi I	20 21	9	CloudW alk	1	1	1	1	1	1	1	0
2 9	Br azi I	20 21	1 0	CargoX	1	1	1	1	1	1	1	0
3 0	Br azi I	20 21	1 2	Olist	1	1	1	1	1	1	1	0
3	Br azi I	20 22	2	Neon	1	1	1	1	1	1	1	0
3 2	Br azi I	20 22	5	Dock	1	1	1	1	1	1	1	0

In [32]:

agrupamento = base_dados.groupby(by=['País'])['Valor

```
($)'].sum().reset_index().sort_values('Valor ($)',
ascending=False)
```

agrupamento

Out[32]:

	País	Valor (\$)
4 6	United States	2069 .89
9	China	678. 59
4 5	United Kingdom	205. 45
2 0	India	202. 92
1 8	Germany	80.8 8

1 7	France	58.4 2	
1	Australia	54.4 0	
7	Canada	49.2	
2 3	Israel	48.0	
6	Brazil	40.0 8	
3 8	South Korea	34.1 3	
3	Bahamas	32.0 0	
2	Indonesia	29.1	

1		3
4 0	Sweden	23.6
3 0	Netherlands	22.4 6
3 6	Singapore	20.7
1 9	Hong Kong	20.3
2 9	Mexico	18.7 0
4 3	Turkey	15.7 7
1	Finland	12.4 6

4	Switzerland	12.3
2 2	Ireland	10.0 5
3 5	Seychelles	10.0
1 5	Estonia	9.90
4	Belgium	8.95
2 5	Japan	8.82
2	Austria	7.61
1 0	Colombia	7.40

1 3	Denmark	6.70
3 9	Spain	6.15
2 6	Lithuania	6.13
3 2	Norway	5.70
4 7	Vietnam	5.27
4 4	United Arab Emirates	5.05
3	Philippines	3.00
1	Croatia	3.00

1		
3 7	South Africa	2.59
8	Chile	2.50
4 2	Thailand	2.50
0	Argentina	2.45
3	Nigeria	2.00
2 7	Luxembourg	2.00
3 4	Senegal	1.70
2	Malaysia	1.70

8			
5	Bermuda	1.60	
1 4	Ecuador	1.50	
1 2	Czech Republic	1.20	
2 4	Italy	1.00	

In [33]:

linkcode

```
plt.figure(figsize=(15,6))
plt.title('Análise do Valor por País')
plt.plot(agrupamento['País'], agrupamento['Valor ($)'])
plt.xticks(rotation = 45, ha= 'right')
plt.show()
```


Reference link