Local Reasoning for Reconfigurable Distributed Systems

Emma Ahrens

Supervised by Dr. Radu Iosif¹ and Prof. Dr. Joost-Pieter Katoen

March 2, 2021

Contents

- 1. Separation Logic & BIP
- 2. BIP Configurations
- 3. Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring

Table of Contents

- 1. Separation Logic & BIP
- 2. BIP Configurations
- Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring

Hoare Logic

Verification

If C is a program, then we specify assertions P and Q and prove:

$$\{P\}C\{Q\}.$$

Extension of Hoare Logic

- Extension of Hoare Logic
- Combines boolean (∧) and spatial (*) connectives

- Extension of Hoare Logic
- Combines boolean (∧) and spatial (*) connectives
- Originally: Verification of programs with pointers

- Extension of Hoare Logic
- Combines boolean (A) and spatial (*) connectives
- Originally: Verification of programs with pointers
- Abstract Separation Logic for verification of programs on arbitrary resources

- Extension of Hoare Logic
- Combines boolean (A) and spatial (*) connectives
- Originally: Verification of programs with pointers
- Abstract Separation Logic for verification of programs on arbitrary resources
- Supports local reasoning

- Extension of Hoare Logic
- Combines boolean (∧) and spatial (*) connectives
- Originally: Verification of programs with pointers
- Abstract Separation Logic for verification of programs on arbitrary resources
- Supports local reasoning

- Extension of Hoare Logic
- Combines boolean (∧) and spatial (*) connectives
- Originally: Verification of programs with pointers
- Abstract Separation Logic for verification of programs on arbitrary resources
- Supports local reasoning

- Extension of Hoare Logic
- Combines boolean (∧) and spatial (*) connectives
- Originally: Verification of programs with pointers
- Abstract Separation Logic for verification of programs on arbitrary resources
- Supports local reasoning

- Extension of Hoare Logic
- Combines boolean (∧) and spatial (*) connectives
- Originally: Verification of programs with pointers
- Abstract Separation Logic for verification of programs on arbitrary resources
- Supports local reasoning

Architecture description language for component-based distributed systems

- Architecture description language for component-based distributed systems
- Short for behavior, interaction, priority

- Architecture description language for component-based distributed systems
- Short for behavior, interaction, priority
- Behavior represented by set of components that contain finite-state transition system and ports

- Architecture description language for component-based distributed systems
- Short for behavior, interaction, priority
- Behavior represented by set of components that contain finite-state transition system and ports
- Interactions connect ports of components


```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with I(x,y)*C(y)*I(y,z) \land state(y,\tau) do

2 disconnect(I,y,z);

3 disconnect(I,x,y);

4 delete(C,y);

5 connect(I,x,z)
```



```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with I(x,y) * C(y) * I(y,z) \land state(y,\tau) do

2 disconnect(I,y,z);

3 disconnect(I,x,y);

4 delete(C,y);

5 connect(I,x,z)
```



```
1 with I(x,y) * C(y) * I(y,z) \land state(y,\tau) do

2 disconnect(I,y,z);

3 disconnect(I,x,y);

4 delete(C,y);

5 connect(I,x,z)
```



```
1 with l(x,y)*C(y)*l(y,z) \land state(y,\tau) do

2 disconnect(I,y,z);

3 disconnect(I,x,y);

4 delete(C,y);

5 connect(I,x,z)
```



```
1 with l(x,y) * C(y) * l(y,z) ∧ state(y,T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with l(x,y) * C(y) * l(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```

Objectives

To verify reconfiguration programs using Hoare logic, we need to

• define BIP Configurations,

Objectives

To verify reconfiguration programs using Hoare logic, we need to

- · define BIP Configurations,
- define Separation Logic on BIP configurations,

Objectives

To verify reconfiguration programs using Hoare logic, we need to

- · define BIP Configurations,
- define Separation Logic on BIP configurations,
- · define Reconfiguration Language, and

Objectives

To verify reconfiguration programs using Hoare logic, we need to

- · define BIP Configurations,
- define Separation Logic on BIP configurations,
- · define Reconfiguration Language, and
- specify inference rules and prove their soundness.

Table of Contents

1. Separation Logic & BIP

2. BIP Configurations

- 3. Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring

Signature

Definition

The signature of a BIP system is

$$\langle C, I \rangle = \langle C_1, \ldots, C_n, I_1, \ldots, I_m \rangle,$$

where

- $C = \{C_1, \dots, C_n\}$ is a finite set of component symbols with arity 1, and
- $I = \{I_1, ..., I_m\}$ is a finite set of interaction symbols with arity $\alpha(I_j) \ge 2$ for each $I_j \in I$.

Signature

Token Ring

- Only one component type C and one interaction type I with arity $\alpha(I) = 2$.
- The signature is ⟨ C, I ⟩.

Definition

The *component type* $C_i \in C$ is associated to

$$(\mathbb{S}_i, \mathbb{P}_i, s_i^0, \leadsto_i),$$

where

• S_i is a finite set of states,

Definition

The *component type* $C_i \in C$ is associated to

$$(\mathbb{S}_i, \mathbb{P}_i, s_i^0, \sim_i),$$

where

- S_i is a finite set of states,
- $\mathbb{P}_i \subseteq \{I_j^{\ell} \mid I_j \in I, \ 1 \le \ell \le \alpha(j)\}\$ is a finite set of ports,

Definition

The *component type* $C_i \in C$ is associated to

$$(\mathbb{S}_i, \mathbb{P}_i, s_i^0, \sim_i),$$

where

- S_i is a finite set of states,
- $\mathbb{P}_i \subseteq \{I_j^{\ell} \mid I_j \in I, \ 1 \le \ell \le \alpha(j)\}$ is a finite set of ports,
- $s_i^0 \in S_i$ is the initial state and

Definition

The *component type* $C_i \in C$ is associated to

$$(\mathbb{S}_i, \mathbb{P}_i, s_i^0, \sim_i),$$

where

- S_i is a finite set of states,
- $\mathbb{P}_i \subseteq \{I_j^{\ell} \mid I_j \in I, \ 1 \le \ell \le \alpha(j)\}$ is a finite set of ports,
- $s_i^0 \in \mathbb{S}_i$ is the initial state and
- $\leadsto_i \subseteq \mathbb{S}_i \times \mathbb{P}_i \times \mathbb{S}_i$ is a finite set of transition rules.

BIP System

Definition

A BIP system is $\mathfrak{S} := \langle \ C_1^{\mathfrak{S}}, \dots, C_n^{\mathfrak{S}}, I_1^{\mathfrak{S}}, \dots, I_m^{\mathfrak{S}} \ \rangle$, where

- $C_i^{\mathfrak{S}} \subseteq \mathcal{U}$, $1 \leq i \leq n$, are relations over the universe \mathcal{U} with arity 1, and
- $I_j^{\approx} \subseteq \mathcal{U}^{\alpha(j)}$, $1 \le j \le m$, are relations over the universe \mathcal{U} with arity $\alpha(j)$.

This system can be written as

$$\mathfrak{S} = \langle C^{\mathfrak{S}} = \{a, b, c, d\}, I^{\mathfrak{S}} = \{(a, b), (b, c), (c, d), (d, a)\} \rangle$$

for pairwise distinct elements $a, b, c, d \in \mathcal{U}$.

This system can be written as

$$\mathfrak{S} = \langle C^{\mathfrak{S}} = \{a, b, c, d\}, I^{\mathfrak{S}} = \{(a, b), (b, c), (c, d), (d, a)\} \rangle$$

for pairwise distinct elements $a, b, c, d \in \mathcal{U}$.

This system can be written as

$$\mathfrak{S} = \langle C^{\mathfrak{S}} = \{a, b, c, d\}, I^{\mathfrak{S}} = \{(a, b), (b, c), (c, d), (d, a)\} \rangle$$

for pairwise distinct elements $a, b, c, d \in \mathcal{U}$.

BIP Configurations

Definition

Let $S = \bigcup_{i=1}^{n} S_i$. A state snapshot is a function

$$\varsigma: \mathcal{U} \times \mathcal{C} \to \mathbb{S},$$

where $\varsigma(u, C_i) \in \mathbb{S}_i$ for every $1 \le i \le n$.

BIP Configurations

Definition

Let $S = \bigcup_{i=1}^{n} S_i$. A state snapshot is a function

$$\varsigma: \mathcal{U} \times \mathcal{C} \to \mathbb{S},$$

where $\varsigma(u, C_i) \in \mathbb{S}_i$ for every $1 \le i \le n$.

Definition

A *BIP Configuration* is a triple $(\mathfrak{S}, \varsigma, \nu)$, where

- ς is a state snapshot, and
- $v : \mathcal{V} \to \mathcal{U}$ maps each variable to an element in the universe.

Set of configurations $\Sigma_{\langle C,I \rangle}$.

Separation Algebra

$$(\mathfrak{S}_0,\varsigma,\nu)$$

Separation Algebra

$$(\mathfrak{S}_1,\varsigma,\nu)$$

Separation Algebra

$$(\mathfrak{S}_0, \varsigma, \nu) \bullet (\mathfrak{S}_1, \varsigma, \nu)$$

Behavioral Semantics

Behavioral Semantics

Behavioral Semantics

Table of Contents

- 1. Separation Logic & BIP
- 2. BIP Configurations
- 3. Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring

Separation Logic on BIP

$$\phi ::= \operatorname{emp} \mid C_i(x) \mid I_j(x_1, \dots, x_{\alpha(j)}) \mid \operatorname{state}(x, s) \mid A(t_1, \dots, t_{\alpha(A)}) \mid$$

$$\operatorname{true} \mid \neg \phi \mid \phi * \psi \mid \phi \land \psi \mid \exists x. \phi,$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * C(y) * I(y, z)$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * C(y) * I(y, z)$$

$$(\mathfrak{S}, \varsigma, \nu) \not\models C(x)$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * C(y) * I(y, z)$$

$$(\mathfrak{S}, \varsigma, \nu) \not\models C(x)$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * true$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * C(y) * I(y, z)$$

$$(\mathfrak{S}, \varsigma, \nu) \not\models C(x)$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * \text{true}$$

$$(\mathfrak{S}, \varsigma, \nu) \models C(x) * I(x, y) * \text{true} \land \text{state}(x, H) \land \text{state}(y, T)$$

```
chain(x, x) \leftarrow emp,

chain(x, z) \leftarrow \exists y . C(x) * I(x, y) * chain(y, z)
```

$$\begin{aligned} & \mathsf{chain}(x,x) \leftarrow \mathsf{emp}, \\ & \mathsf{chain}(x,z) \leftarrow \exists y \; . \; C(x) * \mathit{I}(x,y) * \mathsf{chain}(y,z) \end{aligned}$$

chain

$$\operatorname{chain}(x,x) \leftarrow \operatorname{emp},$$
 $\operatorname{chain}(x,z) \leftarrow \exists y . C(x) * I(x,y) * \operatorname{chain}(y,z)$

$$\operatorname{chain}(x, x) \leftarrow \operatorname{emp},$$

$$\operatorname{chain}(x, z) \leftarrow \exists y . C(x) * I(x, y) * \operatorname{chain}(y, z)$$

$$\operatorname{chain}(x, x) \leftarrow \operatorname{emp},$$

$$\operatorname{chain}(x, z) \leftarrow \exists y . C(x) * I(x, y) * \operatorname{chain}(y, z)$$

Table of Contents

- 1. Separation Logic & BIP
- 2. BIP Configurations
- 3. Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring

Reconfiguration Language on BIP

```
\ell ::= \operatorname{new}(C_i, x) \mid \operatorname{delete}(C_i, x) \mid \operatorname{connect}(I_j, x_1, \dots, x_{\alpha(j)}) \mid \operatorname{disconnect}(I_j, x_1, \dots, x_{\alpha(j)}) \mid \operatorname{skip} \mid  when \phi do \ell \mid \operatorname{with} \psi do \ell \mid \ell ; \ell' \mid \ell + \ell' \mid \ell^*
```

Hoare Triple

Hoare Triple

For
$$P, Q \in SL_{\mathcal{R}}^{BIP} \langle C, I \rangle$$
, $\ell \in \mathcal{L} \langle C, I \rangle$:
{ P } ℓ { Q }.

Valid Hoare Triple

For all
$$(\mathfrak{S}, \varsigma, \nu) \in \Sigma_{\langle C, I \rangle}$$

$$(\mathfrak{S}, \varsigma, \nu) \models P$$
 implies $(\mathfrak{S}', \varsigma', \nu') \models Q$

for all
$$(\mathfrak{S}', \varsigma', \nu') \in [\ell](\mathfrak{S}, \varsigma, \nu)$$
.

Semantics of Reconfiguration Language on BIP

```
• new(C_i, x)

\Rightarrow \{ emp \} new(C_i, x) \{ C_i(x) \land state(x, s_i^0) \}
```

Semantics of Reconfiguration Language on BIP

```
• \operatorname{new}(C_i, x)

\Rightarrow \{ \operatorname{emp} \} \operatorname{new}(C_i, x) \{ C_i(x) \land \operatorname{state}(x, s_i^0) \}

• \operatorname{delete}(C_i, x)

\Rightarrow \{ C_i(x) \} \operatorname{delete}(C_i, x) \{ \operatorname{emp} \}
```

Semantics of Reconfiguration Language on BIP

```
    new(C<sub>i</sub>, x)
        ⇒ { emp } new(C<sub>i</sub>, x) { C<sub>i</sub>(x) ∧ state(x, s<sub>i</sub><sup>0</sup>) }
    delete(C<sub>i</sub>, x)
        ⇒ { C<sub>i</sub>(x) } delete(C<sub>i</sub>, x) { emp }
    connect(I<sub>j</sub>, x, y)
        ⇒ { emp } connect(I<sub>j</sub>, x<sub>1</sub>,..., x<sub>α(j)</sub>) { I<sub>j</sub>(x<sub>1</sub>,..., x<sub>α(j)</sub>) }
```

```
• \operatorname{new}(C_i, x)

\Rightarrow \{ \operatorname{emp} \} \operatorname{new}(C_i, x) \{ C_i(x) \land \operatorname{state}(x, s_i^0) \}

• \operatorname{delete}(C_i, x)

\Rightarrow \{ C_i(x) \} \operatorname{delete}(C_i, x) \{ \operatorname{emp} \}

• \operatorname{connect}(I_j, x, y)

\Rightarrow \{ \operatorname{emp} \} \operatorname{connect}(I_j, x_1, \dots, x_{\alpha(j)}) \{ I_j(x_1, \dots, x_{\alpha(j)}) \}

• \operatorname{disconnect}(I_j, x, y)

\Rightarrow \{ I_j(x_1, \dots, x_{\alpha(j)}) \} \operatorname{disconnect}(I_j, x_1, \dots, x_{\alpha(j)}) \{ \operatorname{emp} \}
```

```
    new(C<sub>i</sub>, x)

   \Rightarrow { emp } new(C_i, x) { C_i(x) \land state(x, s_i^0) }

    delete(C<sub>i</sub>, x)

   \Rightarrow \{ C_i(x) \}  delete(C_i, x) \{  emp \} 

    connect(I<sub>i</sub>, x, y)

   \Rightarrow { emp } connect(I_i, x_1, \dots, x_{\alpha(i)}) { I_i(x_1, \dots, x_{\alpha(i)}) }
disconnect(I<sub>i</sub>, x, y)
   \Rightarrow \{I_i(x_1,...,x_{\alpha(i)})\}\ disconnect(I_i,x_1,...,x_{\alpha(i)})\ \{emp\}
skip
   \Rightarrow \{P\} \text{ skip } \{P\}
```

• when ϕ do ℓ

$$\Rightarrow \frac{\{P \land \phi\} \ \ell \ \{Q\}}{\{P\} \text{ when } \phi \text{ do } \ell \ \{Q\}}$$

• when ϕ do ℓ

$$\Rightarrow \frac{\{P \land \phi\} \ell \{Q\}}{\{P\} \text{ when } \phi \text{ do } \ell \{Q\}}$$

• with ψ do ℓ

$$\Rightarrow \frac{\{\exists y_1, \dots, y_i. \ P \land \psi[x_1/y_1, \dots, x_i/y_i] * \text{true} \} \ \ell \ \{ \ Q \ \}}{\{ \ P \ \} \ \text{with} \ \psi \ \text{do} \ \ell \ \{ \ Q \ \},}$$

where
$$\{x_1, \ldots, x_i\} \subseteq \text{fv}(\psi)$$
 and $y_1, \ldots, y_n \in \mathcal{V}$,

Structural Reconfiguration Rules

Structural Reconfiguration Rules

$$\frac{\{P\} \ell_0 \{P'\} \quad \{P'\} \text{ havoc } \{Q'\} \quad \{Q'\} \ell_1 \{Q\}\}}{\{P\} \ell_0; \ell_1 \{Q\},}$$

$$\frac{\{P\} \ \ell_0 \ \{Q\} \qquad \{P\} \ \ell_1 \ \{Q\}}{\{P\} \ \ell_0 + \ell_1 \ \{Q\},}$$

Structural Reconfiguration Rules

$$\frac{\{P\} \ell_0 \{P'\} \quad \{P'\} \text{ havoc } \{Q'\} \quad \{Q'\} \ell_1 \{Q\}\}}{\{P\} \ell_0; \ell_1 \{Q\},}$$

$$\frac{\{P\} \ell_0 \{Q\} \quad \{P\} \ell_1 \{Q\}}{\{P\} \ell_0 + \ell_1 \{Q\},} \qquad \frac{\{P\} \ell \{P\} \quad \{P\} \text{ havoc } \{P\}}{\{P\} \ell^* \{P\},}$$

Frame Rule

$$\frac{\{P\} \ell \{Q\}}{\{P*F\} \ell \{Q*F\}}$$

where

- Modifies(ℓ) \cap fv(F) = \emptyset ,
- ℓ does not contain with ψ do, sequential composition, and the Kleene operator.

Frame Rule

$$\frac{\{\,P\,\}\,\,\ell\,\,\{\,Q\,\}}{\{\,P*F\,\}\,\,\ell\,\,\{\,Q*F\,\}}$$

where

- Modifies(ℓ) \cap fv(F) = \emptyset ,
- ℓ does not contain with ψ do, sequential composition, and the Kleene operator.

Theorem

The reconfiguration rules are sound.

Table of Contents

- 1. Separation Logic & BIP
- 2. BIP Configurations
- Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring

Havoc Triple

Havoc Triple

For $P, Q \in SL_{\mathcal{R}}^{BIP} \langle C, I \rangle$ and L is language over alphabet Σ :

$$\{P\}L\{Q\}.$$

Valid Havoc Triple

For all
$$(\mathfrak{S}, \varsigma, \nu)$$
, $(\mathfrak{S}, \varsigma', \nu) \in \Sigma_{(C, I)}$
 $(\mathfrak{S}, \varsigma, \nu) \models P \text{ and } (\mathfrak{S}, \varsigma, \nu) \overset{w}{\leadsto}_o (\mathfrak{S}, \varsigma', \nu) \text{ for some } w \in L \text{ implies } (\mathfrak{S}, \varsigma', \nu) \models Q.$

Examples of Havoc Triples

$$P := I(w, x) * C(x) * I(x, y)$$
{ $P \land state(x, H)$ } $I(w, x)$ { $P \land state(x, T)$ }

Examples of Havoc Triples

$$P := I(w, x) * C(x) * I(x, y)$$

$$\{ P \land \text{state}(x, H) \} I(w, x) \{ P \land \text{state}(x, T) \}$$

$$\{ P \land \text{state}(x, H) \} I(x, y) \{ \text{false} \}$$

Examples of Havoc Triples

$$P := I(w, x) * C(x) * I(x, y)$$
 $\{ P \land state(x, H) \} \ I(w, x) \{ P \land state(x, T) \} \}$
 $\{ P \land state(x, H) \} \ I(x, y) \{ false \} \}$
 $\{ P \land state(x, H) \} \ (I(w, x) \cdot I(x, y))^* \{ P \land state(x, H) \} \}$

Selection of Havoc Rules

$$\frac{\{P\} L_1 \{Q\} \{Q\} L_2 \{R\}}{\{P\} L_1 \cdot L_2 \{R\}} (\cdot)$$

$$\frac{\{\,P\,\}\,\,L_1\,\,\{\,Q\,\}\qquad \{\,P\,\}\,\,L_2\,\,\{\,Q\,\}}{\{\,P\,\}\,\,L_1\,\cup\,L_2\,\,\{\,R\,\}}\,(\cup)\qquad \qquad \frac{\{\,P\,\}\,\,L\,\,\{\,P\,\}}{\{\,P\,\}\,\,L^*\,\,\{\,P\,\}}\,(*)$$

Frontier

Frontier

Frontier

Composition Rule

$$\{ P_{1} * \mathcal{F} (P_{1}, P_{2}) \} L_{1} \{ Q_{1} * \mathcal{F} (P_{1}, P_{2}) \}$$

$$\frac{\{ P_{2} * \mathcal{F} (P_{2}, P_{1}) \} L_{2} \{ Q_{2} * \mathcal{F} (P_{2}, P_{1}) \}}{\{ P_{1} * P_{2} \} L_{1} \bowtie L_{2} \{ Q_{1} * Q_{2} \}} (\bowtie)$$

Composition Rule

$$\begin{array}{l} \{\; P_{1} * \mathcal{F} \; (P_{1}, P_{2}) \} \;\; L_{1} \;\; \{\; Q_{1} * \mathcal{F} \; (P_{1}, P_{2}) \} \\ \\ \frac{\{\; P_{2} * \mathcal{F} \; (P_{2}, P_{1}) \} \;\; L_{2} \;\; \{\; Q_{2} * \mathcal{F} \; (P_{2}, P_{1}) \} }{\{\; P_{1} * P_{2} \;\} \;\; L_{1} \bowtie L_{2} \;\; \{\; Q_{1} * Q_{2} \;\} } \; (\bowtie) \end{array}$$

Theorem

The havoc rules are sound.

Table of Contents

- 1. Separation Logic & BIP
- 2. BIP Configurations
- 3. Separation Logic on BIP
- 4. Reconfiguration Language & Reconfiguration Rules
- 5. Havoc Rules
- 6. Application on Token Ring


```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with l(x, y) * C(y) * l(y, z) ∧ state(y, T) do
2 disconnect(I, y, z);
3 disconnect(I, x, y);
4 delete(C, y);
5 connect(I, x, z)
```



```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with I(x,y) * C(y) * I(y,z) ∧ state(y, T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with l(x,y) * C(y) * l(y,z) ∧ state(y,T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```



```
1 with l(x,y) * C(y) * l(y,z) ∧ state(y,T) do
2    disconnect(I,y,z);
3    disconnect(I,x,y);
4    delete(C,y);
5    connect(I,x,z)
```

Correctness of Reconfiguration Program

Theorem

The reconfiguration program P_{delete} is correct, meaning that

```
{ token_ring^{\mathsf{T}}(a) } P_{\mathsf{delete}} { token_ring(a) }.
```

Correctness of Reconfiguration Program

```
F := [\operatorname{chain}^*(z, x, h - 1, t) \land \operatorname{state}(x, H)] \lor [\operatorname{chain}^*(z, x, h, t - 1) \land \operatorname{state}(x, T)]
{ token_ring<sup>T</sup>(a) }
\{\exists x, y, z. \ C(x) * I(x, y) * C(y) * I(y, z) * F \land state(y, \tau) \}
with I(x,y) * C(y) * I(y,z) \wedge state(y,\tau) do
    disconnect(I,y,z)
\{C(x) * I(x, y) * C(y) * F \land state(y, \tau)\}
   havoc
\{C(x) * I(x, y) * C(y) * F \land state(y, \tau)\}
   disconnect(I,x,y)
\{C(x) * C(y) * F \land state(y, \tau)\}
   havoc
\{C(x) * C(y) * F \land state(y, \tau)\}
   delete(C,v)
\{ C(x) * F \}
   havoc
\{ C(x) * F \}
    connect(I,x,z)
\{ C(x) * I(x,z) * F \}
{ token_ring(x) }
```

4日 → 4周 → 4 三 → 4 三 → 9 Q P

Conlusion

Achievements

- BIP Configurations
- Separation Logic on BIP
- Reconfiguration Language on BIP
- Inference rules
- Correctness of reconfiguration programs on token rings → the resulting configuration is still deadlock-free

Future Work

- Completeness of inference rules
- Apply on dining philosophers problem
- Proof correctness of reconfiguration programs for other systems
- Automatize proofs

References I

Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis.

Rigorous component-based system design using the BIP framework.

IEEE Softw., 28(3):41-48, 2011.

Marius Bozga and Radu Iosif. Verifying safety properties of inductively defined parameterized systems.

CoRR, abs/2008.04160, 2020.

Cristiano Calcagno, Peter W. O'Hearn, and Hongseok Yang.
Local action and abstract separation logic.

In 22nd IEEE Symposium on Logic in Computer Science

In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 366–378. IEEE Computer Society, 2007.

References II

An axiomatic basis for computer programming. *Commun. ACM*, 12(10):576–580, 1969.

Peter W. O'Hearn, John C. Reynolds, and Hongseok Yang.
Local reasoning about programs that alter data structures.
In Laurent Fribourg, editor, Computer Science Logic, 15th
International Workshop, CSL 2001. 10th Annual Conference of
the EACSL, Paris, France, September 10-13, 2001,
Proceedings, volume 2142 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2001.

John C. Reynolds.

Separation logic: A logic for shared mutable data structures. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002.