M3TM model concept

- decoupled systems of spinless electrons, phonons and localized spins in Mean field approximation (MFA)
- laser pulse heats electron system
- energy distribution to lattice and spins (for FGT: no remagnetization so energy flow \dot{Q}_{es} (see next slide) unidirectional $e \rightarrow s$)
- spin flips (/magnon excitations) upon e-p scattering event from Elliott-Yafet spin mixing
- implicit angular momentum exchange between spins and lattice

M3TM equations

Dynamics of electronic, lattice and spin subsystems⁶

$$\begin{aligned} C_{\mathbf{e}} \frac{dT_{\mathbf{e}}}{dt} &= g_{\mathbf{e}-\mathbf{p}} (T_{\mathbf{p}} - T_{\mathbf{e}}) + S_0 G(t, z)) + \dot{Q}_{\mathbf{e}\mathbf{s}} \\ \\ C_{\mathbf{p}} \frac{dT_{\mathbf{p}}}{dt} &= -g_{\mathbf{e}-\mathbf{p}} (T_{\mathbf{p}} - T_{\mathbf{e}}) \end{aligned}$$

$$\frac{dm}{dt} = Rm \frac{T_{\rm p}}{T_C} \left(1 - \frac{m}{B_{\rm S} \left(\frac{Jm}{k_B T_{\rm e}} \right)} \right)$$

$C_{e(p)}$ electron (phonon) heat capacity

gep electron phonon coupling

 $\dot{Q}_{es} = Jm\dot{m}/V_{at}$ energy exchange of spin-and electron system

$$R = 8 \frac{a_{sf} g_{ep} T_C V_{at}}{\mu_{at} k_B T_{Dob}^2}$$

magnetization rate parameter

 a_{sf} spin flip probability upon e-p-scattering event

 B_S Brillouin function for effective spin S

parameter impact

easy first attempt: take parameters used before for a very similar model

Model	symbol	meaning	estimate	unit
M3TM	_	Atomic magnetic moment a	1.47×10^{-23}	Am ²
	7	Electron heat capacity constant ^a	1561	$\rm Jm^{-3}K^{-2}$
	$V_{\rm at}$	Atom spin density volume ^a	1.68×10^{-29}	m^3
	$T_{\rm C}$	Curie temperature ^b	191	K
	σ	pulse width ^b	85	fs
	$g_{\rm ep}$	Electron-phonon relaxation rate ^c	1.33×10^6	$ m Jm^{-3}K^{-1}ps^{-1}$
	C_p	phonon heat capacity ^c	6.28×10^6	${ m Jm^{-3}K^{-1}}$
	E_{D}	Debeye energy ^c	6.49×10^{-21}	J
	$a_{\rm sf}$	Spin-flip probability	0.14	unity

Lichtenberg et al., arXiv:2206.01452v1

Fitting with literature parameters

- parameters used to fit magnetization dynamics in paper cited above
- good fit of mag dynamics
- electron dynamics ≈ 3 times slower than in experiment
- equilibrium temperature too high in simulations

first try of fit adjustment

- increase c_p by a factor of 1.5 to adjust equilibrium magnetization
- increase g_ep by a factor of 3 to speed up electron dynamics
- decrease spin flip probability by a factor of 3 to stabilize magnetization dynamcis
- → electron dynamics well reproduced
- magnetization rate after e-p-equilibration seems to fast
- next try: increase a_{sf} at the cost of pump power to match the magnetization behaviour for t > τ_{ep}

state at the moment

- both T_e and m are nicely reproduced
- lattice dynamics data important to validate use of g_{ep}, c_p
- instead of rate parameter, also c_e can be changed to adapt peak of T_e and magnetization rate
- investigation for multiple fluences important (I'd like to talk again about the initial consitions and repetition rate/effective starting temperature)

Lattice response

- fitted is norm. $\Delta(C_pT_p)$ to norm. MSD
- above simulation parameters do not fit lattice response

Lattice response

- lattice equilibrates on similar timescale as electron temperature ≤ 1 ps
- lattice temperature descreases slighty over time due to $\dot{Q}_{\rm es} < 0$

Layer resolved data

- 50 nm ≈ 33 layers of FGT
- heat transport set to 0
- Lambert-Beer adsorption, 20 nm penetration depth
- constant g_{ep} for all layers

(temperature independent)

 last layer equilibrates ≈ 300 % faster than first layer

