Ejercicio 4. Sean $a, b \in \mathbb{Z}$ números enteros

- (a) Encuentra el máximo común divisor d > 0 de la pareja de números enteros a = 2795 y b = 2314.
- (b) Encuentra números enteros r, s tales que d = ra + sb.
- (c) Haz lo mismo para la pareja a = 2842, b = 3567.

Solución 4.

- (a) Para calcular el mcd(2795, 2314) recurriremos al algoritmo de Euclides, que enuncia lo siguiente: "Sean $a, b \in \mathbb{N}$, sea r el resto de la división entera de a entre b. Entonces, mcd(a,b) = mcd(b,r)". Aplicando este resultado en un número finito de veces, tenemos que mcd(2795, 2314) = mcd(2314, 481) = mcd(481, 390) = mcd(390, 91) = mcd(91, 26) = mcd(26, 13) = mcd(13, 0) = 13. Luego, el máximo común divisor positivo de la pareja a = 2795 y b = 2314 es d = 13.
- (b) La expresión exigida en el enunciado es una identidad de Bezout, que se puede hallar igualmente empleando el algoritmo de Euclides. Así,
 - 1. 2795 = 2314 * 1 + 481
 - 2. 2314 = 481 * 4 + 390
 - 3.481 = 390 * 1 + 91
 - 4. 390 = 91 * 4 + 26
 - 5.91 = 26 * 3 + 13

Despejando de la última desigualdad 13 y sustituyendo las respectivas igualdades tenemos: 13 = 91 - 26*3 = 91 - (390 - 91*4)*3 = -390*3 + 91*13 = -390*3 + (481 - 390)*13 = -390*16 + 481*13 = -(2314 - 481*4)*16 + 481*13 = -2314*16 + (2795 - 2314)*77 = -2314*93 + 77*2795 = 77*2795 + (-93)*2314. Luego, r = 77 y s = -93.

(c) Aplicando nuevamente el algoritmo de Euclides tenemos mcd(3567, 2842) = mcd(2842, 725) = mcd(725, 667) = mcd(667, 58) = mcd(58, 29) = mcd(29, 0) = 29. Por tanto, d = 29.

Para la identidad de Bezout tenemos que

- 1. 3567 = 2842 * 1 + 725
- $2.\ 2842 = 725 * 3 + 667$
- 3.725 = 667 * 1 + 58
- 4. 667 = 58 * 11 + 29
- 29 = 667 58*11 = 667 (725 667) * 11 = 667*12 725*11 = (2842 725 * 3) * 12 725*11 = 2842 * 12 725 * 47 = 2842 * 12 (3567 2842) * 47 = 59*2842 + (-47)*3567 Así, r = 59 y s = -47.