

Organic matter in coastal soils:

Soil organic matter in a survey of coastal fields

Each % organic matter represents about 2,100 lb total N/acre ft

To what depth does N mineralization occur?

> 50% in the top foot

Contribution of soil organic matter fractions to available soil nitrogen

Long-term controlled incubation

30 coastal soils incubated for 8 weeks

- On average between 1-2% of soil organic N in the top foot of soil was mineralized
- 1-2% organic N_{min} x 2,000 lb soil N/acre ≈ 20-40 lb N / % soil organic matter

N mineralization dynamics over time

- Drying and screening soil disrupts aggregates, and soil microbes
- Rewetting causes a burst of microbial activity, indicative of longer-term N_{min}

Mean of 15 soils incubated for 70 days:

'Soil health index'

- Integrated measure of soil biology, and nutrient supplying power
- Requires measurement of soil C mineralization, water extractable organic C and N (WEOC, WEON)

the Solvita® soil respiration test

Laboratory surrogate measurements

'Solvita' CO₂-C mineralization protocol

Evaluated 35 soils from annual crop rotations

- 20 organically managed soils from Sacramento Valley
- 15 conventionally managed soils from Sacramento and Salinas Valleys

Laboratory surrogate measurements

Combining Solvita CO₂, WEOC and WEON into the NRCS Soil Health Index improved N_{min} prediction

Solvita CO₂ moderately correlated with soil N_{min}

In-season soil N_{min} plays a relatively small role in crop N supply

2012-13 organic processing tomato N sufficiency project:

- assessed post-transplant soil residual NO₃-N in 22 fields
- determined late-season crop N sufficiency

N mineralization from crop residue

Greatest activity occurs in the initial 6-8 weeks after incorporation

N mineralization from crop residue **Laboratory incubation:**

N mineralization from crop residue

- a high percentage of residue N is mineralized within weeks of incorporation
- within 4-6 weeks after incorporation, the rate of additional N_{min} slows
- the majority of residue effects on soil N availability can be directly measured by soil nitrate testing before fertilizing the subsequent crop

Does soil type affect residue breakdown? **Net N_{min} average of 7 vegetable crop residues:** (% of initial total N content) 100 —⇒—clay 80 60 40 20 Weeks of incubation @ 68 °F

N mineralization from organic fertilizers and amendments

N mineralization dynamics depend on:

- Percent N
- C:N ratio
- 'Fresh' or composted

% N mineralized in full field season, Oregon:

(Gale et al., JEQ 35:2321-2332, 2006)

Relationship between %N and C:N ratio

	% C	% N	C:N ratio
Blood meal	49	15	3
Fish powder	45	12	4
Dewatered poultry manure	30	3.5	9
Poultry manure compost	20	2.5	8
Dairy manure compost	25	2.0	13

N availability of high-N organic fertilizers:

- Five high-N materials (> 10% N)
 - blood meal
 - feather meal
 - fish powder
 - two types of seabird guano
- **❖** Incubated in moist soil at 77 °F for 8 weeks

How about liquid organic fertilizers?

% N

Tradename	Feedstock	total	organic
Agrolizer*	fish	5.1	1.0
Marizyme*	fish	4.2	0.5
Phytamin 522	fish	5.4	4.1
Phytamin 434	guano, fish	3.5	1.0
Phytamin 421	soy meal & plant extracts	4.0	3.0
Biolyzer	grain fermentation	2.6	2.3

^{*}removed from OMRI list

How about liquid organic fertilizers?

% N available

Tradename	% N	in 4 weeks
Agrolizer*	5.1	85
Marizyme*	4.2	89
Phytamin 522	5.4	88
Phytamin 434	3.5	80
Phytamin 421	4.0	80
Biolyzer	2.6	58

^{*}removed from OMRI list

In summary:

- in-season soil N_{min} can be estimated (imperfectly); soil N_{min} is likely to be a reasonably small component of crop fertility
- vegetable crop residue N_{min} dynamics relatively quick; most of the prior crop influence can be picked up by PSNT sampling
- organic management increases N_{min} potential, but without significant residual NO₃-N in-season fertilization likely to be needed
- in-season organic fertilizers tend to be quite fast-acting

