PATENT ABSTRACTS OF JAPAN

(11) Publication number:

05-009068

(43) Date of publication of application: 19.01.1993

(51)Int.CI.

CO4B 35/46 H01B 3/12 H01B 3/12

(21) Application number: 03-183579

(71)Applicant: MURATA MFG CO LTD

(22) Date of filing:

27.06.1991

(72)Inventor: NISHIYAMA TOSHIKI

HAMACHI YUKIO

SAKABE YUKIO

(54) NONREDUCIBLE DIELECTRIC PORCELAIN COMPOSITION

(57) Abstract:

PURPOSE: To obtain a nonreducible dielectric porcelain compsn. which can be fired without converting the structure into a semiconductor even under low partial pressure of oxygen, has ≥3,000 dielectric constant and ≥11.0 logIR insulation resistance and satisfies such temp. characteristics of dielectric constant that capacity at 25° C as a standard varies within ±15% range over a wide temp. range of -55 to +125° C.

CONSTITUTION: This nonreducible dielectric porcelain compsn. contains 100mol% base and 0.2-4.0mol% BaO, 0.2-3.0mol% MnO and 0.5-5.0mol% MgO as secondary components. The base consists of 92.0-99.4mol% BaTiO3, contg. ≤0.04wt.% alkali metal oxides as impurities, 0.3-4.0mol% one or more kinds of oxides of rare earth elements (Re2O3) selected from Tb2O3, Dy2O3, Ho2O3 and Er2O3 and 0.3-4.0mol% Co2O3.

LEGAL STATUS

[Date of request for examination]

02.02.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

2958819

[Date of registration]

30.07.1999

[Number of appeal against examiner's decision of

rejection]

Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平5-9068

(43) 公開日 平成5年(1993) 1月19日

(51) Int. Cl. 5

識別記号 庁内整理番号 FΙ

技術表示箇所

C 0 4 B 35/46

D 7310-4 G

H 0 1 B 3/12 9059 - 5 G

3 4 1 9059 - 5 G

審査請求 未請求 請求項の数1

303

(全5頁)

(21) 出願番号

特願平3-183579

(22) 出願日

平成3年 (1991) 6月27日

(71) 出願人 000006231

株式会社村田製作所

京都府長岡京市天神二丁目26番10号

(72) 発明者 西 山 俊 樹

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72) 発明者 浜 地 幸 生

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72) 発明者 坂 部 行 雄

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(74) 代理人 弁理士 岡田 全啓

(54) 【発明の名称】非還元性誘電体磁器組成物

(57) 【要約】

【目的】 低酸素分圧下でも組織が半導体化せず焼成可 能で、誘電率が3000以上、絶縁抵抗がlogIRで 11. 0以上で、誘電率の温度特性が25℃の容量値を 基準とし、-55℃~125℃の広い範囲で±15%の 範囲内にあることを満足する非還元性誘電体磁器組成物 を得る。

【構成】 不純物としてのアルカリ金属酸化物含有量 が、0.04重量%以下のBaTiO3とTb2O3, Dy₂O₃, Ho₂O₃, Er₂O₃の中の1種類以上 の希土類酸化物 (Re₂O₃) とCo₂O₃との配合比 が、BaTiO3 92. 0~99. 4モル%とRe2 O 3 0. 3~4. 0モル%とCo2 O3 0. 3~4. 0モ ル%との範囲内の主成分100モル%に、BaOO.2 ~4. 0モル%とMnOO. 2~3. 0モル%とMgO 0.5~5.0モル%とからなる副成分を含有する非還 元性誘電体磁器組成物である。

【特許請求の範囲】

【請求項1】 不純物として含まれるアルカリ金属酸化 物の含有量が0.04重量%以下のBaTiOaと、T b₂ O₃ , Dy₂ O₃ , Ho₂ O₃ , Er₂ O₃ の中か ら選ばれる少なくとも1種類の希土類酸化物 (Re₂O a) と、Co₂O₃との配合比が、

BaTiO3 92.0~99.4モル%、

0.3~4.0モル%、および Re₂O₃

C O 2 O 3 0.3~4.0モル%

の範囲内にある主成分100モル%に対し、

副成分として、

BaO 0.2~4.0モル%、

MnO 0.2~3.0モル%、および

MgO 0.5~5.0モル%

を含有する、非還元性誘電体磁器組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は非還元性誘電体磁器組 成物に関し、特にたとえば、ニッケルなどの卑金属を内 部電極材料とする積層コンデンサなどの誘電体材料とし 20 て用いられる、非還元性誘電体磁器組成物に関する。

[0002]

【従来の技術】従来の誘電体磁器材料は、中性または還 元性の低酸素分圧下で焼成すると、還元され、半導体化 を起こすという性質を有していた。そのため、内部電極 材料としては、誘電体磁器材料の焼結する温度で溶融せ ず、かつ誘電体磁器材料を半導体化させない高い酸素分 圧下で焼成しても酸化されない、たとえばPd,Ptな どの貴金属を用いなければならなかった。これは、製造 される積層コンデンサの低コスト化の大きな妨げとなっ ていた。

【0003】そこで、上述の問題点を解決するために、 たとえばNi などの卑金属を内部電極の材料として使用 することが望まれていた。しかし、このような卑金属を 内部電極の材料として使用して、従来の条件で焼成する と、電極材料が酸化してしまい、電極としての機能を果 たさない。そのため、このような卑金属を内部電極の材 料として使用するためには、酸素分圧の低い中性または 還元性の雰囲気において焼成しても半導体化せず、コン デンサ用の誘電体材料として、十分な比抵抗と優れた誘 40 電特性とを有する誘電体磁器材料が必要とされていた。 これらの条件をみたす誘電体磁器材料として、たとえば 特開昭62-256422号のBaTiO3-CaZr O₃ - Mn O - Mg O系の組成や、特公昭 6 1 - 1 4 6 11号のBaTiO₃ - (Mg, Zn, Sr, Ca) O $-B_2O_3-SiO_2$ 系の組成が提案されてきた。

[0004]

【発明が解決しようとする課題】しかしながら、特開昭 62-256422号に開示されている非還元性誘電体 磁器組成物では、CaZrOaや焼成過程で生成するC 50 電体磁器組成物を積層セラミックコンデンサの誘電体材

aTi〇gが、Mnなどとともに二次相を生成しやすい ため、高温における信頼性の低下につながる危険性があ った。また、この組成物は、容量の経時変化(エージン グ率、%/dec)が、大きく実用的でないという問題 点もあった。

【0005】また、特公昭61-14611号に開示さ れている組成物は、得られる誘電体の誘電率が2000 ~2800であり、Pdなどの貴金属を使用している従 来からの磁器組成物の誘電率である3000~3500 10 と比較すると劣っていた。したがって、この組成物をコ ストダウンのために、そのまま従来の材料と置き換える のは、コンデンサの小型大容量化という点で不利であ り、問題が残されていた。

【0006】さらに、この組成物の誘電率の温度変化率 (TCC) は、20℃の容量値を基準として、-25℃ から+85℃の温度範囲では±10%であるが、+85 ℃を超える高温では、10%を大きく超えてしまい、E IAに規定されているX7R特性をも大きくはずれてし まうという欠点があった。

【0007】それゆえに、この発明の主たる目的は、低 酸素分圧下であっても、組織が半導体化せず焼成可能で あり、かつ誘電率が3000以上、絶縁抵抗がlogI Rで11.0以上であり、さらに誘電率の温度特性が、 25℃の容量値を基準として、-55℃~125℃の広 い範囲にわたって±15%の範囲内にあることを満足す る、非還元性誘電体磁器組成物を提供することである。 [0008]

【課題を解決するための手段】この発明は、不純物とし て含まれるアルカリ金属酸化物の含有量が0.04重量 %以下のBaTiO3 と、Tb2O3, Dy2O3, H o₂ O₃ , E r₂ O₃ の中から選ばれる少なくとも 1 種 類の希土類酸化物(Re2O3)と、Co2O3との配 合比が、BaTiO₃ 92.0~99.4モル%と、 Re₂O₃ 0.3~4.0モル%と、Co₂O₃ 0.3~4.0モル%との範囲内にある主成分100モ ル%に対し、副成分として、Ba〇 0.2~4.0モ ル%と、MnO 0.2~3.0モル%と、MgO 0.5~5.0モル%とを含有する、非還元性誘電体磁 器組成物である。

[0009]

【発明の効果】この発明にかかる非還元性誘電体磁器組 成物は、中性または還元性の雰囲気において1300~ 1360℃の温度で焼成しても、組織が還元されて半導 体化することがない。さらに、この非還元性誘電体磁器 組成物は、10gIRで11.0以上の高い絶縁抵抗値 を示すとともに、3000以上の高誘電率を示し、容量 温度変化率もEIAに規定されているX7R特性を満足 する。

【0010】したがって、この発明にかかる非還元性誘

3

料として用いれば、内部電極材料としてNiなどで代表される卑金属材料を用いることができる。そのため、従来のPdなどの貴金属を用いたものに比べて、特性を落とすことなく、大幅なコストダウンを行うことが可能となる。

【0011】この発明の上述の目的,その他の目的,特 徴および利点は、図面を参照して行う以下の実施例の詳 細な説明から一層明らかとなろう。

[0012]

【実施例】出発原料として、不純物として含まれるアル 10 カリ金属酸化物の含有量が異なる $BaTiO_3$, Ba/*

*Ti モル比補正のための $BaCO_3$, 希土類酸化物, CO_2O_3 , MnO, MgOを準備した。これらの原料を表1に示す組成割合となるように秤量して、秤量物を得た。なお、試料番号 $1\sim23$ については、アルカリ金属酸化物の含有量が0.03重量%の $BaTiO_3$ を使用し、試料番号24については、アルカリ金属酸化物の含有量が0.05重量%の $BaTiO_3$ を使用し、試料番号25については、アルカリ金属酸化物の含有量が0.05

[0013]

【表1】

*印はこの発明の範囲外

07重量%のBaTiOs を使用した。

計算 BaTiO3 Re2O3 CO2O3 BaO MnO MgO 任務) (任務) (任務) (任務) (任務) (任務) (任務) (任務)					*印はこの発明の範囲外				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	試料	BaTiO ₃	Re ₂ O ₃		Co ₂ O ₉	BaO	MnO	Mg0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	番号	(ቶሴ%)	(£1%)		(* #%)	(£11%)	(£1%)	(EN%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	97. 0	Dy ₂ O ₃	1.5	1.5	1.5	1.0	1.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	99. 0	Dy ₂ O ₈	0.5	0.5	1.5	1.0	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 *	99. 6	Dy ₂ O ₃	0.2	0. 2	1.5	1.0	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 *	90.0	Dy ₂ O ₈	5.0	5. 0	1.5	1.0	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	93. 0	Dy203	3.0	4.0	1.5	1.0	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	97.5	H0203	1.5	1.0	2.0	1.0	2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	96. 5	Ho ₂ O ₃	1.5	. 2. 0	0.5	1.5	2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	96. 5	Ho ₂ O ₃	1.5	2.0	0.3	1.5	2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 *	96. 5	Ho ₂ O ₃	1.5	2.0	0.1	1.5	2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	96. 5	H020s	1.5	2.0	3.0	1.5	2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	96. 5	Ho ₂ O ₃	1.5	2.0	4.0	1.5	2.0	
14 97.5 Tb_2O_3 1.0 1.5 1.5 3.0 3.0 $15*$ 97.5 Tb_2O_3 1.0 1.5 1.5 3.5 3.0 16 97.5 Tb_2O_3 1.0 1.5 1.5 0.3 3.0 $17*$ 97.5 Tb_2O_3 1.0 1.5 1.5 0.1 3.0 $18*$ 96.0 Er_2O_3 1.5 2.5 1.5 1.0 0.4 19 96.0 Er_2O_3 1.5 2.5 1.5 1.0 0.6 20 96.0 Er_2O_3 1.5 2.5 1.5 1.0 3.0 21 96.0 Er_2O_3 1.5 2.5 1.5 1.0 4.0 22 96.0 Er_2O_3 1.5 2.5 1.5 1.0 5.0 $23*$ 96.0 Er_2O_3 1.5 2.5 1.5 1.0 6.0 $24*$ 96.0 Dy_2O_3 1.5 2.5	12*	96. 5	Ho ₂ O ₃	1.5	2.0	5.0	1.5	2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	97. 5	Tb ₂ O ₈	1.0	1.5	1.5	2.5	3.0	
16 97.5 Tb ₂ O ₈ 1.0 1.5 1.5 0.3 3.0 17* 97.5 Tb ₂ O ₈ 1.0 1.5 1.5 0.1 3.0 18* 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 0.4 19 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 0.6 20 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 3.0 21 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 4.0 22 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 5.0 23* 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 6.0 24* 96.0 Dy ₂ O ₈ 1.5 2.5 1.5 1.0 1.0	14	97. 5	Tb ₂ O ₃	1.0	1.5	1.5	3.0	3.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15*	97.5	Tb ₂ O ₃	1.0	1.5	1.5	3.5	3.0	
18* 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 0.4 19 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 0.6 20 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 3.0 21 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 4.0 22 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 5.0 23* 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 6.0 24* 96.0 Dy ₂ O ₃ 1.5 2.5 1.5 1.0 1.0	16	97.5	Tb ₂ O ₃	1.0	1.5	1.5	0.3	3.0	
19 96.0 Er_2O_3 1.5 2.5 1.5 1.0 0.6 20 96.0 Er_2O_3 1.5 2.5 1.5 1.0 3.0 21 96.0 Er_2O_3 1.5 2.5 1.5 1.0 4.0 22 96.0 Er_2O_3 1.5 2.5 1.5 1.0 5.0 23* 96.0 Er_2O_3 1.5 2.5 1.5 1.0 6.0 24* 96.0 Dy_2O_3 1.5 2.5 1.5 1.0 1.0	17*	97.5	Tb2Os	1.0	1.5	1.5	0.1	3.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18*	96. 0	Er 208	1.5	2, 5	1.5	1.0	0.4	
21 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 4.0 22 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 5.0 23* 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 6.0 24* 96.0 Dy ₂ O ₃ 1.5 2.5 1.5 1.0 1.0	19	96. 0	Er203	1.5	2.5	1.5	1.0	0.6	
22 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 5.0 23* 96.0 Er ₂ O ₃ 1.5 2.5 1.5 1.0 6.0 24* 96.0 Dy ₂ O ₃ 1.5 2.5 1.5 1.0 1.0	20	96.0	Er ₂ O ₃	1.5	2.5	1.5	1.0	3. 0	
23* 96.0 Er ₂ O ₈ 1.5 2.5 1.5 1.0 6.0 24* 96.0 Dy ₂ O ₈ 1.5 2.5 1.5 1.0 1.0	21	96.0	Er ₂ O ₃	1.5	2.5	1.5	1.0	4.0	
24 * 96.0 Dy ₂ 0 ₈ 1.5 2.5 1.5 1.0 1.0	22	96.0	Er203	1.5	2.5	1.5	1.0	5. 0	
	23*	96. 0	Er ₂ O ₃	1.5	2.5	1.5	1.0	6.0	
25* 96.0 Dy ₂ 0 ₃ 1.5 2.5 1.5 1.0 1.0	24*	96. 0	Dy 203	1.5	2.5	1.5	1.0	1.0	
	25*	96. 0	Dy 2 0 3	1.5	2.5	1.5	1.0	1.0	

【0014】得られた秤量物に酢酸ビニル系バインダを 5 重量%添加した後、PSZボールを用いたボールミルで十分に湿式混合した。次に、この混合物中の分散媒を蒸発、乾燥した後、整粒の工程を経て粉末を得た。得られた粉末を2 to n/c m² の圧力で、直径10 mm、厚さ1 mmの円板状にプレス成形して、成形体を得た。【0015】次いで、このようにして得られた成形体

を、空気中において400℃で3時間保持の条件で脱バインダを行った後、 H_2/N_2 の体積比率が3/100の還元雰囲気ガス気流中において、表2に示す温度で2時間焼成し、磁器を得た。

[0016]

【表2】

*印はこの発明の範囲外

	* 印はこの発明の製田外											
料は	焼成温度	誘電率	誘電損失	容量温度变化率(%)			絶縁抵抗					
番号	(°C)	ε	tan 8 (%)	- 55℃	+125℃	CMAX	log IR					
1	1340	3110	1, 6	-9.7	+2.5	9. 7	11.8					
2	1340	3360	1. 7	-9.1	-0.3	9. 1	11.7					
3 *	1360	3320	1. 6	~14.8	+18.6	35.7	11.6					
4 *	1300	2910	1. 7	-8.2	-1.7	8.2	10. 4					
5	1300	3280	1. 9	-9.2	+3.6	9.2	11.6					
6	1340	3330	1. 7	-9.2	-0.8	9.2	11.5					
7	1360	3190	1.8	-10.9	+2.4	10.9	11.6					
8	1340	3220	1.8	-9.8	+2.8	9.8	11.7					
9 *	組織が半導体化したため測定不可能											
10	1340	3280	1.9	-10.7	-3.2	10.7	11.6					
11	1360	3060	1.8	-11.1	-3.9	11.1	11.5					
12*		1360℃でも焼結不足のため測定不可能										
13	1340	3180	1.8	-5.7	+7.9	9. 8	11.7					
14	1340	3210	1.7	-7.4	+8.1	8.1	11.6					
15*	1320	3030	1.6	-3.4	+8.6	8.6	9.7					
16	1340	3160	1.7	-7. 3	+0.3	7. 3	11.7					
17*	1340	2940	9.6	-9. 7	-3.6	9. 7	8.1					
18*	1340	3130	1.7	-15. 8	-3.6	15.8	10.4					
19	1340	3220	1. 7	-9. 1	-4.8	9. 1	11.6					
20	1360	3190	1.9	-4. 5	-9.7	9.7	11.5					
21	1340	3080	1.7	-6.8	+4.8	6.8	11.4					
22	1320	3010	1.6	-7.6	+1.8	7.6	11. 2					
23*	1300	2820	1.6	-7.2	+3.6	7.2	10.3					
24*	1340	2620	1.6	-7.8	+3.3	7.8	11.5					
25*	1340	2460	1.5	-8.2	+3.7	10.8	11.4					

【0017】得られた磁器の両面に、銀ペーストを塗布 して、焼き付けることにより、銀電極を形成してコンデ ンサとした。そして、このコンデンサの室温における誘 電率ε, 誘電損失tanδ, 絶縁抵抗値(logIR) 果を表2に示す。

【0018】なお、誘電率 ϵ , 誘電損失 $tan\delta$ につい ては、温度25℃、周波数1kHz、交流電圧1Vの条 件で測定した。また、絶縁抵抗値については、温度25 ℃において直流電圧500Vを2分間印加して測定し、 その結果を対数値(10gIR)で示す。さらに、温度 変化率 (TCC) については、25℃の容量値を基準と した時の-55℃, 125℃における変化率 (ΔC-55 /C₂₅, ΔC₊₁₂₅/C₂₅) および−55℃~+125℃ の間において、容量温度変化率が最大である値の絶対 値、いわゆる最大変化率(| Δ C / C 25 | max) につい て示す。

【0019】表2から明らかなように、この発明にかか る非還元性誘電体磁器組成物は、優れた特性を示す。

【0020】この発明において主成分および副成分の範 囲を上述のように限定する理由は次の通りである。

【0021】まず、主成分の範囲の限定理由について説 明する。

[0022] 主成分であるBaTiO3 の構成比率を9 2. 0~99. 4モル%とするのは、構成比率が92.

0モル%未満の場合には、希土類元素およびС ○ 2 ○ 3 の構成比率が多くなるため、試料番号4に示すように、 絶縁抵抗値および誘電率の低下が生じ好ましくない。ま た、BaTiO3の構成比率が99.4モル%を超える および容量の温度変化率(TCC)を測定した。その結 30 場合には、希土類元素およびCo₂ О₃ の添加の効果が なく、試料番号3に示すように、高温部(キュリー点付 近)の容量温度変化率が大きく(+)側にはずれ好まし くない。さらに、BaTiOs中のアルカリ金属酸化物 含有量を0.04%以下とするのは、0.04%を超え ると、試料番号24および25に示すように、誘電率の 低下が生じ、実用的でなくなり好ましくない。

【0023】次に、副成分の範囲の限定理由について説 明する。

【0024】BaO添加量を0.2~4.0モル%とす 40 るのは、添加量が0.2モル%未満の場合には、試料番 号9に示すように、雰囲気焼成中に組織が半導体化し、 絶縁抵抗値の著しい低下をまねくので好ましくない。ま た、添加量が4.0モル%を超える場合には、試料番号 12に示すように、焼結性が低下するので好ましくな

【0025】また、MnO添加量を0.2~3.0モル %とするのは、添加量が0.2モル%未満の場合には、 試料番号17に示すように、組織の耐還元性向上に効果 がなくなり、絶縁抵抗値の著しい低下をまねくので好ま 50 しくない。また、添加量が3.0モル%を超える場合に

7

は、試料番号15に示すように、絶縁抵抗値の低下が生じるので好ましくない。

[0026] 最後に、MgO添加量を $0.5\sim5.0$ モル%とするのは、添加量が0.5モル%未満の場合には、試料番号18に示すように、容量温度変化率をフラットにする効果がなく、特に低温側で(-)側にはずれる傾向があるとともに、絶縁抵抗値向上の効果もなくな

るので好ましくない。また、添加量が 5.0 モル%を超える場合には、試料番号 2.3 に示すように、誘電率 ϵ および絶縁抵抗値の低下が生じるので好ましくない。

【0027】なお、表2に示す特性データは、単板コンデンサにおいて得られたデータであるが、同じ組成物をシート成形し、チップ加工を行った積層コンデンサにおいても、今回のデータとほぼ同等の結果が得られる。