Network Measurement and Monitoring Activities

OSG Site-admin meeting Aug 6-7, 2009 Rich Carlson rcarlson@internet2.edu

Network Management 101

- There are 3 major functions that every OSG site-admin needs
 - Monitoring verifying the health and operation of the internal network
 - Measuring verifying the capacity and utilization of the peer networks
 - Advanced diagnostics identifying what has failed when a fault is found

Network Monitoring

- Collect statistics from routers and switches
- Display results in graphical form

Network Measurement

Verify performance levels between peer sites

Network Diagnostic

- Collect/Analyze data to respond to faults
- Detailed results can point to real problems

PNNL sending to:	Seattle	Salt Lake City	Washington
Throughput	966 Mbps	930 Mbps	328 Mbps
Min RTT	6 msec	23 msec	76 msec
Loss	0.0094%	0.0045%	.0049%
Reordering	6.04%	5.5%	5.15%

perfSONAR Overview

- A set of high level services for managing multi-domain measurement/monitoring infrastructures
- International community of developers
 - Implementing Open Grid Forum (OGF) Network Measurement (NM-WG) recommendations
- Multiple sets of interoperable software

perfSONARized tools

- Implement 1 or more perfSONAR services
 - Registration, Data Storage, ...
- Existing tools include
 - Cacti
 - BWCTL
 - NDT

- NPAD
- OWAMP
- PingER

Measurement/Monitoring Tools

- Client / Server based tools
 - Measure throughput
 - Measure delay & loss
 - Analyze infrastructure, switch/router configuration, and host configuration

Server Deployment options

- Source tar files build your own
- OS Distribution packages (yum, apt)
- Bootable CD

Finding a deployed server

http://www.perfsonar.net/activeServices

Client Deployment options

- Source tar files build your own
- OS distro packages
- Java based clients using web browser
- Client executables distributed via VDT
 - Allows testing from any CE/SE
 - Command syntax and output will be covered later in this talk

Monitoring Tools

- BWCTL Bandwidth Control
 - Allows single person operation over wide area testing environment
 - Runs NLANR 'iperf' program
- OWAMP One way Delay Measurement
 - Advanced 'ping' command
 - Allows single person operation over wide area testing environment

Sample BWCTL results

```
000
                                          rcarlson@triton:~/ndt — ssh — 116×33
-bash-3.2$ bwctl -i2 -t20 -s lhcmon.bnl.gov
bwctl: Unable to contact a local bwctld: Spawning local tool controller
bwctl: NuttcpAvailable(): We were unable to verify that nuttcp is working. Likely you do not have it installed. exit
status: 1: output: exec(nuttcp): No such file or directory
bwctl: Couldn't initialize tool "nuttcp". Disabling it.
bwctl: Using tool: iperf
bwctl: 28 seconds until test results available
RECEIVER START
bwctl: exec_line: iperf -B 207.75.164.104 -s -f a -m -p 5001 -t 20 -i 2
bwctl: start tool: 3458324284.538605
Server listening on TCP port 5001
Binding to local address 207.75.164.104
TCP window size: 85.3 KByte (default)
[ 12] local 207.75.164.104 port 5001 connected with 192.12.15.23 port 5001
[ 12] 0.0- 2.0 sec 19.5 MBytes 81.8 Mbits/sec
[ 12] 2.0- 4.0 sec 22.4 MBytes 94.0 Mbits/sec
[ 12] 4.0- 6.0 sec 22.4 MBytes 94.0 Mbits/sec
[ 12] 6.0- 8.0 sec 22.4 MBytes 94.0 Mbits/sec
[ 12] 8.0-10.0 sec 21.4 MBytes 89.7 Mbits/sec
[ 12] 10.0-12.0 sec 19.0 MBytes 79.8 Mbits/sec
[ 12] 12.0-14.0 sec 21.6 MBytes 90.6 Mbits/sec
[ 12] 14.0-16.0 sec 22.4 MBytes 94.1 Mbits/sec
[ 12] 16.0-18.0 sec 19.6 MBytes 82.4 Mbits/sec
[ 12] 18.0-20.0 sec 20.2 MBytes 84.6 Mbits/sec
[ 12] 0.0-20.1 sec 213 MBytes 88.5 Mbits/sec
[ 12] MSS size 1448 bytes (MTU 1500 bytes, ethernet)
bwctl: stop exec: 3458324308.780934
RECEIVER END
-bash-3.2$
```


Using BWCTL: commands

bwctl -i2 -t20 -c bwctl.losa.net.internet2.edu

bwctl -i2 -t20 -s bwctl.newy.net.internet2.edu

- bwctl = name of program
- i2 = report intermediate results every 2 seconds
- t20 run test for 20 seconds
- s name = remote end will send data to you
- c name = you will send data to the remote host

3rd party testing: command

bwctl -i2 -t20 -c bwctl.salt.net.internet2.edu -s bwctl.atla.net.internet2.edu

User can run a test between 2 remote hosts

OWping Results

```
000
                                           rcarlson@nms-rlat:~ - ssh - 116×34
[rcarlson@nms-rlat ~]$ ping -c3 owamp.losa.net.internet2.edu
PING eth-1.nms-rlat.losa.net.internet2.edu (64.57.17.162) 56(84) bytes of data.
64 bytes from nms-rlat.losa.net.internet2.edu (64.57.17.162): icmp seq=1 ttl=60 time=56.6 ms
64 bytes from nms-rlat.losa.net.internet2.edu (64.57.17.162): icmp seq=2 ttl=60 time=56.7 ms
64 bytes from nms-rlat.losa.net.internet2.edu (64.57.17.162): icmp seq=3 ttl=60 time=56.6 ms
--- eth-1.nms-rlat.losa.net.internet2.edu ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 56.692/56.697/56.705/0.275 ms
[rcarlson@nms-rlat ~]$ owping owamp.losa.net.internet2.edu
Approximately 13.2 seconds until results available
--- owping statistics from [2001:468:2:12::17:34]:35621 to [owamp.losa.net.internet2.edu]:55664 ---
SID: 00170162ce21d9957fb85e80c7f6958a
first: 2009-08-03T21:48:06.786
last: 2009-08-03T21:48:15.918
100 sent, 0 lost (0.000%), 0 duplicates
one-way delay min/median/max = 28.1/28.2/28.3 ms, (err=3.13 ms)
one-way jitter = 0.1 ms (P95-P50)
TTL not reported
no reordering
--- owping statistics from [owamp.losa.net.internet2.edu]:34879 to [2001:468:2:12::17:34]:35622 ---
      00170034ce21d9959d6ffc11d84cfeac
first: 2009-08-03T21:48:06.907
last: 2009-08-03T21:48:17.704
100 sent, 0 lost (0.000%), 0 duplicates
one-way delay min/median/max = 28.5/28.6/28.6 ms, (err=3.13 ms)
one-way jitter = 0 ms (P95-P50)
TTL not reported
no reordering
[rcarlson@nms-rlat ~]$ [
```

Using OWPING

- owping owamp.losa.net.internet2.edu
 - owping = program name
 - owamp... = name of server
- Output results
 - Separate statistics for both directions
 - Number of packets sent and lost
 - One-way delay statistics min/median/max
 - Number of IP hops in path
 - Number of packets that arrives out-of-order

Advanced Diagnostic tools

- Existing NDT tool
 - Allows users to test network path for a limited number of common problems
- Existing NPAD tool
 - Allows users to test local network infrastructure while simulating a long path

Network Diagnostic Tool (NDT)

- Measure performance to users desktop
- Identify real problems for real users
 - Network infrastructure is the problem
 - Host tuning issues are the problem
- Make tool simple to use and understand
- Make tool useful for users and network administrators

NDT Client test

```
rcarlson@nms-rexp:~ - ssh - 116×35
[rcarlson@nms-rexp ~]$ web100clt -4 -n ndt.kans.net.internet2.edu -1
Testing network path for configuration and performance problems -- Using IPv4 address
Checking for Middleboxes . . . . . . . . . . . . . . Done
checking for firewalls . . . . . . . . . . . . . . . Done
running 10s outbound test (client to server) . . . . . 983.18 Mb/s
running 10s inbound test (server to client) . . . . . 977.73 Mb/s
The slowest link in the end-to-end path is a 1.0 Gbps Gigabit Ethernet subnet
Information: Other network traffic is congesting the link
Server 'ndt.kans.net.internet2.edu' is not behind a firewall. [Connection to the ephemeral port was successful]
Client is not behind a firewall. [Connection to the ephemeral port was successful]
        ----- Web100 Detailed Analysis -----
Web100 reports the Round trip time = 47.32 msec; the Packet size = 8948 Bytes; and
No packet loss was observed.
This connection is receiver limited 1.63% of the time.
This connection is network limited 98.08% of the time.
   Web100 reports TCP negotiated the optional Performance Settings to:
RFC 2018 Selective Acknowledgment: ON
RFC 896 Nagle Algorithm: ON
RFC 3168 Explicit Congestion Notification: OFF
RFC 1323 Time Stamping: ON
RFC 1323 Window Scaling: ON; Scaling Factors - Server=10, Client=10
The theoretical network limit is 154.82 Mbps
The NDT server has a 32768 KByte buffer which limits the throughput to 5410.20 Mbps
Your PC/Workstation has a 16673 KByte buffer which limits the throughput to 2752.82 Mbps
The network based flow control limits the throughput to 1732.74 Mbps
Client Data reports link is ' 7', Client Acks report link is ' 7'
Server Data reports link is ' 7', Server Acks report link is ' 7'
Packet size is preserved End-to-End
Server IP addresses are preserved End-to-End
Client IP addresses are preserved End-to-End
[rcarlson@nms-rexp ~]$
```

Finding Results of Interest

- Duplex Mismatch
 - This is a serious error and <u>nothing</u> will work right. Reported on *main* page, on *Statistics* page, and **mismatch**: on *More Details* page
- Packet Arrival Order
 - Inferred value based on TCP operation.
 Reported on Statistics page, (with loss statistics) and order: value on More Details page

Finding Results of Interest

- Packet Loss Rates
 - Calculated value based on TCP operation.
 Reported on Statistics page, (with out-of-order statistics) and loss: value on More Details page
- Path Bottleneck Capacity
 - Measured value based on TCP operation.
 Reported on main page

NPAD/pathdiag

- A new tool from researchers at Pittsburgh Supercomputer Center
- Finds problems that affect long network paths
- Uses Web100-enhanced Linux based server
- Web based Java client

Long Path Problem

Long Path Problem

- E2E application performance is dependant on distance between hosts
- Full size frame time at 1000 Mbps
 - Frame = 1500 Bytes
 - Time = 12 usec
 - In flight for 1 msec RTT = 83 packets
 - In flight for 70 msec RTT = 5833 packets

TCP Congestion Avoidance

- Cut number of packets by ½
- Increase by 1 per RTT
 - LAN (RTT=1msec)
 - In flight changes to 41 packets
 - Time to increase back to 83 is 42 msec
 - WAN (RTT = 70 msec)
 - In flight changes to 2917 packets
 - Time to increase back to 5833 is 3.4 minutes!

NPAD Client test

```
rcarlson@nms-rexp:~ - ssh - 117×42
[rcarlson@nms-rexp ~]$ ping -c3 speedtest2.pnl.gov
PING speedtest2.pnl.gov (192.101.102.24) 56(84) bytes of data.
64 bytes from speedtest2.pnl.gov (192.101.102.24): icmp_seq=1 ttl=60 time=6.55 ms
64 bytes from speedtest2.pnl.gov (192.101.102.24): icmp_seq=2 ttl=60 time=6.52 ms
64 bytes from speedtest2.pnl.gov (192.101.102.24): icmp_seq=3 ttl=60 time=6.51 ms
--- speedtest2.pnl.gov ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 6.518/6.532/6.555/0.067 ms
[rcarlson@nms-rexp ~]$ diag-client speedtest2.pnl.gov 8100 76 500
Using: rtt 76 ms and rate 500
Connected.
Control connection established.
port = 8003
Starting test.
Parameters based on 6 ms initial RTT
peakwin=4750117 minpackets=3 maxpackets=1283 stepsize=128
Target run length is 575094 packets (or a loss rate of 0.00017388%)
Test la (11 seconds): Coarse Scan
Test 2a (9 seconds): Search for the knee
Test 2b (9 seconds): ...
Test 2c (17 seconds): ...
Test 3a (9 seconds): Measure static queue space
Test 3b (9 seconds): ...
Test 3c (17 seconds): ...
Accumulate loss statistics, no more than 130 seconds:
Test 4a (10 seconds): Accumulate loss statistics
Test 4b (10 seconds): ...
Test 4c (10 seconds): ...
Test 4d (10 seconds): ...
Test 4e (10 seconds): ...
Test 4f (10 seconds): ...
Test 4g (10 seconds): ...
Test 4h (10 seconds): ...
Test 4i (10 seconds): ...
Test 4j (10 seconds): ...
Test 4k (10 seconds): ...
Test 41 (10 seconds): ...
Test 4m (10 seconds): ...
report url ServerData/nms-rexp.seat.net.internet2.edu:2009-08-03-22:34:23.html
[rcarlson@nms-rexp ~]$
```


NPAD Sample results

Diagnostic Testing Results

- SC'04 buffer problem on SGI server limited throughput to 20 Mbps
- PNNL buffer limits in router causing TCP loss
- UMich forwarding table overflowed some flows using CPU forwarding
- OU Regional upgrade caused 100x slowdown
- MAX Regional network uplink saturated
- I2 Linux kernel mm penalizes applications that don't fill kernel buffers

Putting it all together – SCP file transfer

Bob and Carol are collaborating on a project. Bob needs to send a copy of the data (50 MB) to Carol every ½ hour. Bob and Carol are 2,000 miles apart. How long should each transfer take?

- 5 minutes?
- 1 minute?
- 5 seconds?

What should we expect?

Assumptions:

- 100 Mbps Fast Ethernet is the slowest link
- 50 msec round trip time

Bob & Carol calculate:

- 50 MB * 8 = 400 Mbits
- 400 Mb / 100 Mb/sec = 4 seconds

Initial SCP Test Results

Initial NDT testing shows Duplex Mismatch at one end

SCP results after Duplex Mismatch Corrected

Intermediate Results

Time dropped from 18 minutes to 40 seconds.

But our calculations said it should take 4 seconds!

- 400 Mb / 40 sec = 10 Mbps
- Why are we limited to 10 Mbps?
- Are you satisfied with 1/10th of the possible performance?

Default TCP window settings

Calculating the Window Size

Remember Bob found the round-trip time was 50 msec

Calculate window size limit

- 85.3KB * 8 b/B = 698777 b
- 698777 b / .050 s = 13.98 Mbps

Calculate new window size

- (100 Mb/s * .050 s) / 8 b/B = 610.3 KB
- Use 1MB as a minimum

With TCP windows tuned

SCP results with tuned windows

Intermediate Results

SCP still runs slower than expected

- Hint: SCP uses internal buffers
- Patch available from PSC

SCP Results with tuned SCP

Final Results

Fixed infrastructure problem

Fixed host configuration problem

Fixed Application configuration problem

 Achieved target time of 4 seconds to transfer 50 MB file over 2000 miles

Conclusions

- Primary tools still useful
- Advanced tools are being developed
- Developing tools will make things even easier
- Demand 10 MB/s as the minimum acceptable throughput rate

