/12	
/99	

	==
÷	Hard I
:	H.H.
	j.
;	Prof. 7m
į	Ž
.4444	Hard Horn
÷	7.1
;	:
******	i
******	<u></u>
*******	=
******	4
	Hardy Marth
,43.	Hould

HAMILTON, BROOK, SMITH & REYNOLDS, P.C.

UTILITY PATENT APPLICATION TRANSMITTAL Only for new nonprovisional applications under 37 C.F.R. 1.53(b))

Attorney Docket No.	2825.1013002
First Named Inventor or Application Identifier	Hiten D. Madhani
Express Mail Label No.	EL387865125US

Title of Invention

TARGETS OF THE MAP KINASE PATHWAY IN THE DEVELOPMENTAL SWITCH IN YEAST

									7.4
	PLICATION ELEI		Al	DDR	ESS TO:	Assistant C Box Patent	Commissioner for Application on, D.C. 20231	Patents	$\frac{\mathrm{Je511}}{09}$
	600 concerning utility pat	ent application contents.							
	nsmittal Form an original, and a duplicate	e for fee processing)	6.	[]		-	ogram (Appendix)		
	d arrangement set forth be] 7.	[]		le and/or Amino able, all necessa	o Acid Sequence Su ary)	ıbmission	
	riptive title of the invent s References to Related				a. []	Computer Read	dable Copy		
- State	ment Regarding Fed spo	onsored R & D			b. []	Paper Copy (ic	dentical to compute	r copy)	
	rence to microfiche App ground of the Invention					[] Pages			
- Sum	mary of the Invention The Description of the Draw				c. []	Statement veri	fying identity of ab	ove copies	
	iled Description	-			ACCO	MPANYING A	APPLICATION PA	ARTS	
	ract of the Disclosure		8.	[]	Assignme	ent Papers (cove	er sheet & documer	nts)	
	g(s) (35 U.S.C. 113) [T rmal [XX] Informal	otal Sheets [11]	9.	[]	37 C.F.R (when the	R. 3.73(b) Staten re is an assignee)	nent [] Power	r of Attorne	:y
4. [] Oath or	Declaration/POA [To	otal Pages []]	10	. []	English 7	Translation Docu	ument (if applicabl	e)	
a. []	Newly executed (origin	nal or copy)	11	. []	Informati Statemen	ion Disclosure t (IDS)/PTO-14	[] Copie 49 Citatio	s of IDS ons	
b. []	Copy from a prior app (for continuation/division [NOTE B			. []	Prelimina	ary Amendment			
	i. [] <u>DELETION OF</u> Signed stateme	INVENTOR(S) ent attached deleting	13	. [X]	Return R (Should l	eceipt Postcard be specifically it	(MPEP 503) temized)	(2)	
	inventor(s) nar	med in the prior e 37 C.F.R. 1.63(d)(2)	14	i. []	Small En Statemen	atity [] St at(s) sta	tatement filed in praatus still proper and	ior applicat d desired	ion,
	ration By Reference (use re disclosure of the prior ap		1) 15	i. []	Certified	Copy of Priorit n priority is clai	y Document(s) imed)		
copy of	the oath or declaration is su	applied under Box 4b, is	16	5. []					
	ed as being part of the disc on and is hereby incorpora		ng						
	ITINUING APPLICAT		e box a	nd su	pply the re	quisite informat	ion:		
	entinuation [] Div								i
Prior app	lication information:	Examiner:				Group Art U	Jnit:	·	
		18. CORRES	PONE	ENC	E ADDRE	ESS			
NAME	Doreen M. Hog		(A) (A)	00.5					
ADDRESS	HAMILTON, BE	ROOK, SMITH & RE	YNOL	US, F	′.U.				
CITY	Lexington	STATE	MA			ZIP CODE	02421-4799		
COUNTRY	USA		(781)		240	FAX	(781) 861-9540)	
						•			

Signature	Lisa M. Treannie	Date	November 12, 1999
Submitted by Typed or Printed Name	Lisa M. Treannie	Reg. Number	41,386

10

15

Docket No.: 2825.1013002

-1-

11/12/99 EL387865125US Express Mail Label No. Date:

Inventors:

Hiten D. Madhani

Attorney's Docket No.:

2825.1013002

TARGETS OF THE MAP KINASE PATHWAY IN THE DEVELOPMENTAL SWITCH IN YEAST

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application 60/108,399, filed November 13, 1998, and U.S. Provisional Application 60/114,849, filed January 6, 5 1999. The entire teachings of these applications are incorporated herein by reference.

GOVERNMENT SUPPORT

Work described herein was supported, in whole or in part, by National Institutes of Health Grant Number GM 40266. The United States Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Two related developmental events, haploid invasive growth and diploid pseudohyphal development, are controlled by the Kss1 MAP kinase pathway in yeast. Haploid invasive growth occurs on rich medium, whereas filamentation in the diploid cell type requires nitrogen starvation. The diploid pathway results in dramatic cell elongation, which is not seen in haploids. These pathways serve as models for similar transitions in pathogenic fungi.

15

20

25

SUMMARY OF THE INVENTION

Wild yeast are often found in association with plants, particularly rotting fruit.

Not surprisingly, many bacterial and plant fungal pathogens secrete pectin-degrading enzymes, including polygalacturonases. These are thought to be key virulence factors.

In the bacterial pathogen *Erwinia chrysanthemi* there exists an elaborate interaction between the host and the pathogen in which the breakdown product of pectin, galacturonic acid, signals large changes in the expression of the pectinolytic machinery. To examine whether a similar interaction with the host might be occurring in yeast, global profiling experiments of gene expression in the presence of polygalacturonic acid or galacturonic acid were carried out.

Described herein is assessment of targets of the MAP kinase (MAPK) pathway in the developmental switch between haploid invasive growth and diploid pseudohyphal development in yeast, and identification of genes that show strong regulation by a MAPK pathway-specific transcription factor, Tec1. Also described herein are results of examination of expression profiles after administration of polygalacturonic acid (the main component of pectin) or galacturonic acid (the breakdown product of pectin), as well as the results of detailed studies of PGUI, a pectinase, which was shown to be the most strongly regulated target of the MAPK pathway.

Also described are global profiling experiments of gene expression in yeast which were carried out to examine whether a host-yeast interaction occurs in which the breakdown product of pectin signals or causes changes in the expression of components of the pectinolytic machinery. As discussed herein, results of these profiling experiments showed that both polygalacturonic acid and galacturonic acid altered gene expression in yeast, and that the patterns were distinct from those that would have been expected from the effects of all other sugars that have been studied in yeast (e.g., glucose, galactose, maltose, etc.), demonstrating the specificity of the response. Galacturonic acid, the breakdown product of pectin, was shown to cause strong repression of TOT10/YEL033W, a gene which is turned on in the filamentation MAPK pathway and is required for invasion and filamentation. Thus, a regulatory circuit in

10

15

20

25

yeast, in which a signal from the host (in the form of or mediated by galacturonic acid) feeds back on the filamentation/invasion pathway, has been identified, and a specific interaction between yeast and its host (e.g., a plant host) has been demonstrated for the first time.

As a result of the work described herein, targets of the MAPK pathway in fungi (e.g., yeast) and, particularly, genes that show strong regulation by Tecl, a MAPK pathway-specific transcription factor, have been identified. These genes and their interaction with or regulation by Tecl can be targeted in a method of modulating (inhibiting or enhancing) the developmental switch between haploid invasive growth and diploid filamentation. Compounds or molecules which modulate these genes, directly or through their regulation by Tecl, can be identified by means, for example, of an assay in which one or more of the genes (e.g., a gene encoding PGUI) is expressed in an appropriate host cell and the effects of a candidate modulator (inhibitor or enhancer) on its expression are determined. Candidate modulators shown to decrease expression are inhibitors of a gene shown, as described herein, to be regulated by Tecl; candidate modulators shown to increase expression are enhancers of such a Tecl-regulated gene. In addition, the TOT10/YEL033W gene, shown, as described herein, to participate in a regulatory circuit between yeast and a host (e.g., a plant host) can be targeted to modulate (decrease or increase) yeast-host interaction. It can be targeted, for example, to inhibit yeast invasion and/or filamentation and, thus, to inhibit adverse effects of fungi, including pathogenic and nonpathogenic yeast. Inhibitors (or enhancers) of TOT10/YEL033W can be identified, for example, in an assay in which the gene is expressed in an appropriate host cell and the effects of candidate inhibitors (or enhancers) are assessed. Inhibition of TOT10YEL033W, directly or indirectly (e.g., by inhibiting a gene or the product of a gene with which TOT10/YEL033W interacts) will result in inhibition of invasion and/or filamentation. Inhibitors and enhancers of genes regulated by Tecl and inhibitors of TOT10/YEL033W are the subject of this invention.

Compounds or molecules which activate or inhibit PGUI can also be identified. For example, activators of this pectinase can be identified by expressing PGUI in an

10

15

20

appropriate host cell (e.g., a bacterial or yeast cell), contacting the cells with (e.g., by culturing them in the presence of) candidate activators (compounds or molecules to be assessed for their effects on PGUI activity) and determining their effect on PGUI (e.g., whether they enhance or activate PGUI expression or activity, repress or decrease PGUI expression or activity or have no effect). Compounds which enhance or activate PHUI expression or activity are activators; those which repress or decrease its expression or activity are inhibitors). Activators and inhibitors of PGUI are also the subject of this invention.

Also the subject of this invention is a method of inhibiting (totally or partially) invasion of a host, particularly a plant host by a fungus (i.e., a method of inhibiting fungal invasion of a host). In the method, a compound or molecule which inhibits the MAPK pathway or specifically inhibits TOTIO/YELO33W is applied to a host (e.g., by application to a plant surface) in such a manner that it contacts the fungus (e.g., the yeast) and inhibits one or more components of the MAPK pathway, such as TOT10/YELO33W. For example, an inhibitor can be a compound which binds and inhibits TOT10/YELO33W; galacturonic acid; or a mimic of galacturonic acid which represses TOT10/YELO33W. In a specific embodiment, the method of inhibiting fungal invasion of a host comprises contacting a fungus (e.g., a yeast) with a compound which inhibits the MAPK pathway and/or inhibits TOT10/YELO33W, in sufficient quantity that inhibition of the MAPK pathway and/or inhibition of TOT10/YELO33W occurs, thereby inhibiting fungal invasion of the host. In a further embodiment, the host is a plant and the compound is applied to a plant surface (e.g., root, leaf, stem) or seed in such a manner that it contacts the fungus and inhibits (totally or partially) the ability of the fungus to invade.

25 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows genetic expression profiles of 18 genes regulated by the filamentation MAPK pathway.

Figure 2 lists MAPK pathway targets.

Figure 3 summarizes results of systematic knockout experiments.

Figure 4 is a photograph of results of an assay showing that filamentation MAPK pathway controls pectinolysis via PGUI.

Figure 5 shows genes selectively induced by the plant-specific carbohydrate polygalacturonic acid and its hydrolysis product.

Figure 6 shows genes selectively repressed by the plant-specific carbohydrate polygalacturonic acid and its hydrolysis product.

Figure 7 is a compilation of MAPK data, sorted as TEC1-high copy/tec1 Δ .

Figure 8 shows results of profiling experiments with polygalacturonic acid (PGA) and galacturonic acid (GA), sorted by PGA/YPD.

Figure 9 shows results of profiling experiments with polygalacturonic acid (PGA) and galacturonic acid (GA), sorted by GA/YPD.

Figure 10 shows a flow chart of homologous genes induced by the filamentation and mating MAPK pathways.

Figure 11 shows a listing of genes whose expression is reduced in STE12⁻, STE7⁻ but show greater than double an effect with Tec1.

DETAILED DESCRIPTION OF THE INVENTION

Described herein is work carried out to identify and study the targets of the MAP kinase pathway in order to understand how signaling cascades control a developmental switch in this *Saccharomyces cerevisiae* model system. The pathway consists of four kinases Ste20 (PAK), Ste11 (MEKK), Ste7 (MEK) and Kss1 (MAPK), which display both positive and negative control over the pathway, as well as a heterodimeric transcription factor Tec1-STE12. STE7, STE11 and STE20 also participate in the yeast mating MAPK pathway. Global expression patterns in haploid cells under rich medium conditions were examined in the following mutants: wild type tec1Δ Ste12Δ, Ste7Δ, TEC1-overexpression, and STE11-4 (an activated mutant of the MEKK). Expression profiling was carried out using nucleic acid arrays (chips) such as described in

15

WO95/11995. One chip set was used per sample (chips with obvious defects were redone).

18 genes were identified that show strong regulation by the pathway-specific transcription factor Tec1 (i.e. $3.5\text{-}20\mathrm{X}$ difference in expression comparing TEC1-overexpression to tec1 Δ). Almost all of these also show a consistent dependency on STE7, STE7, and STE12. One gene that was known previously to be regulated by the pathway, FLO11 (which encodes a cell surface protein required for pseudohyphal growth) is the second-most strongly regulated target. Detailed studies were performed on one of these targets, PGU1, which encodes a secreted carbohydrate-destroying enzyme. This enzyme breaks down a key component of plant cell walls, polygalacturonic acid (which is the main component of pectin).

Remarkably, galacturonic acid, the breakdown product of pectin, causes the strong repression of a gene, TOT10/YEL033W, which is turned on in the filamentation MAPK pathway and which these results have shown is required for invasion and filamentation. Thus, work described herein has identified a new regulatory circuit in yeast in which a signal from the host feeds back on the filamentation/invasion pathway. This is the first demonstration of a specific interaction between yeast and its plant host. Figures 1-11 show the data in detail.

Work described herein provides an analysis of data from haploid strains grown in rich medium conditions, and in diploid cells under nitrogen starvation conditions; that is, the conditions that promote pseudohyphal cells. Portion os this work was carried out to assess whether pseudohyphal cells respond to MAPK signaling differently compared to haploid cells. The experiments described compare the expression of strains overexpressing the transcription factor Tec1 to those lacking it.

25 They extend the assessment of targets of the MAP kinase pathway in a yeast developmental switch in haploid cells to examination of signaling in diploid cells. The data (Tables 1 and 2) were analyzed using a floor of 20 and a maximum-minimum filter of 80. Genes showing a greater than two-fold change in duplicate samples are listed. The results indicate that a largely different set of genes is induced by the MAPK

10

15

20

25

pathway during pseudohyphal conditions. One striking exception is the *FLO11* gene, which is the gene most strongly induced both in haploids and diploids by the pathway. The other genes fall mainly into the categories of cell-cycle regulated genes (such as histones and PCNA), nitrogen scavenging factors (e.g., Dur3, Car2). A number of other genes are regulated that do not at present fit into any pattern.

Accordingly, the invention relates to a method of inhibiting invasion of a host by a fungus, comprising contacting the fungus with a compound which inhibits expression of a gene expressed in the filamentation MAPK pathway and which enhances the filamentation MAPK pathway, in sufficient quantity that inhibition of the expression of the gene occurs, thereby inhibiting invasion of the host by the fungus. In one embodiment, the host is a plant, and the compound is applied to a plant surface (e.g., a leaf, a root, a stem, a flower) in such a manner that it contacts the fungus. An effective amount of the compound can be determined empirically by assessing expression levels of the gene to be inhibited. In a preferred embodiment, the gene is TOT10/YELO33W. In one embodiment, the fungus is a yeast, such as *Saccharomyces cerevisiae*.

Agents for use in the methods of the invention include nucleic acid molecules (e.g., antisense), polypeptides and proteins, antibodies and small organic molecules. Suitable formulations of agents for use in this invention can include, for example, powders, liquids, aerosols, gels and other formulations known to the skilled artisan. The present invention also pertains to pharmaceutical compositions comprising agents identified according to the invention for use in the treatment of fungal invasion. For instance, the agent identified according to the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition. The particular physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions. The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to medicinal chemists, and will depend on the ultimate pharmaceutical formulation

15

20

25

desired. In organisms other than plants, methods of administration of pharmaceutical compositions include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents.

The invention also relates to a method of inhibiting invasion of a host by a fungus, comprising contacting the fungus with a compound which alters activity of a gene product encoded by a gene expressed in the filamentation MAPK pathway, in sufficient quantity that alteration of the activity of said gene product occurs, thereby inhibiting invasion of the host by the fungus. For example, if the gene is one whose expression enhances (e.g., increases or potentiates) the filamentation MAPK pathway (e.g., a positive regulator of the pathway), then the compound should inhibit the expression of that gene. As used herein, inhibition is intended to included both qualitative and quantitative reduction, including complete abolishment. Conversely, if the gene is one whose expression inhibits (e.g., decreases or interferes with) the filamentation MAPK pathway (e.g., a negative regulator of the pathway), then the compound should enhance the expression of that gene. As used herein, enhancement is intended to include any qualitative or quantitative increase. For example, the gene can be TOT10/YELO33W.

Expression vectors for use in the invention typically contain a nucleic acid sequence of a gene of interest operably linked to at least one regulatory sequence. "Operably linked" is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allow expression of the nucleic acid sequence. Regulatory sequences are art-recognized and can be selected according to the host cell and type of expression (e.g., constitutive) to be obtained. Accordingly, the term "regulatory sequence" includes promoters, enhancers, and other expression control elements which are described in Goeddel, *Gene Expression Technology: Methods in Enzymology 185*, Academic Press, San Diego, CA (1990). It should be understood that

15

20

25

the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed.

Prokaryotic and eukaryotic host cells transfected by the described vectors are also provided by this invention. For instance, cells which can be transfected with the vectors of the present invention include, but are not limited to, bacterial cells such as *E. coli*, insect cells (baculovirus), or mammalian cells such as Chinese hamster ovary cells (CHO). Ligating the polynucleotide sequence into a gene construct, such as an expression vector, and transforming or transfecting into hosts, either eukaryotic (avian, insect or mammalian) or prokaryotic (bacterial cells), are standard procedures (see, for example, Broach, *et al.*, *Experimental Manipulation of Gene Expression*, ed. M. Inouye (Academic Press, 1983) p. 83; *Molecular Cloning: A Laboratory Manual*, 2nd Ed., ed. Sambrook *et al.* (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17).

The invention also relates to a method of identifying an agent which inhibits the filamentation MAPK pathway in a fungus, comprising the steps of providing an expression vector comprising a nucleic acid molecule of a gene which is expressed in the filamentation MAPK pathway; transforming a suitable host cell with said expression vector under conditions suitable for expression of said gene contacting said host cell with an agent to be tested; and comparing the expression of said gene in the presence of the agent with the expression of said gene in the absence of said agent, wherein if the expression of said gene is lower in the presence of the agent than in the absence of the agent, then the agent is an inhibitor of the filamentation MAPK pathway in a fungus. In one embodiment, the gene is TOT10/YELO33W.

Genes which are expressed in the filamentation MAPK pathway can be identified by standard methods in the art. In one embodiment, the gene is identified by expression profiling as having repressed expression in the presence of galacturonic acid as compared with in the absence of galacturonic acid. In another embodiment, the gene can be identified by expression profiling as being expressed in haploid fungal cells and not expressed in diploid fungal cells, or as being repressed by Tec1 expression.

10

15

20

25

The invention also relates to a method of inhibiting fungal filamentation, comprising contacting the fungus with a compound which inhibits expression of a gene expressed in the filamentation MAPK pathway, in sufficient quantity that inhibition of the expression of the gene occurs, thereby inhibiting filamentation by the fungus.

The invention further relates to a method of identifying an agent which modulates PGUI gene expression, comprising the steps of providing an expression vector comprising a nucleic acid molecule encoding PGUI; transforming a suitable host cell with said expression vector under conditions suitable for expression of PGUI; contacting said host cell with an agent to be tested; and comparing the expression of PGUI in the presence of the agent with the expression of PGUI in the absence of said agent, wherein a difference in the expression of PGUI in the presence of the agent as compared with in the absence of the agent indicates that the agent modulates PGUI expression.

The invention also includes a method of reducing the adverse effects of fungal invasion of a host, comprising administering to the host an effective amount of an agent which inhibits PGUI expression in the fungus.

The invention further includes a method of inhibiting invasion of a host by a fungus, comprising contacting the fungus with a compound which enhances expression of a gene expressed in the filamentation MAPK pathway and which inhibits the pathway, in sufficient quantity that enhancement of the expression of the gene occurs, thereby inhibiting invasion of the host by the fungus.

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Table i

PSEUDOHYPHAL CONDITIONS

gene	Information
FL011 (YIR019C)	GPI-anchored cell surface flocculin req'd for invasion
DUR3 (YHL016C)	Urea Permease
HTA2 (YBL003C)	Histone H2A
HTB2 (YBL002W)	Histone H2B
ORF YNL300W	GPI-anchored S/T rich protein
ORF YOL162W	Allantoate permease family
ORF YLL057C	Similar to E. coli taurine dioxygenase
SVS1 (YPL163C)	S/T rich protein req'd for vanadate resistance
ORF YOL163W	Allantoate permease familhy
CAR2 (YLR438W)	Ornithine aminotransferase, arginine catabolism
TSL1 (YML100W)	Trehalose-6-phosphate synthase/phosphatase subunit
PRY2 (YKR013W)	Homolog of Plant Pathogen-Induced Gene
POL30 (YBR088C)	PCNA, DNA Replication, Repair and Cell Cycle Factor
PDC6 (YGR087C)	Pyruvate decarboxylase: isobutyl alcohol formation
ORF YOR247W	S/T rich protein related to Svs1

Floor=20, max-min>80, max/min>2, TEC1HC/ $tec1 \triangle > 2$ for both chip sets

Table 2

PSEUDOHYPHAL CONDITIONS

gene	tec1KO A	TEC1HC A	tec1KO B	tec1HC B
FLO11 (YIR019C)	46	505	61	471
DUR3 (YHL016C)	20	105	53	116
HTA2 (YBL003C)	29	145	32	180
HTB2 (YBL002W)	122	559	184	617
ORF YNL300W	349	1281	340	1031
ORF YOL162W	44	160	66	151
ORF YLL057C	64	227	63	243
SVS1 (YPL163C)	129	453	112	370
ORF YOL163W	53	160	43	179
CAR2 (YLR438W)	49	138	43	165
TSL1 (YML100W)	148	399	175	373
PRY2 (YKR013W)	436	1148	472	1012
POL30 (YBR088C)	129	313	103	261
PDC6 (YGR087C)	129	276	78	270
ORF YOR247W	669	1372	485	1323

Floor=20, max-min>80, max/min>2, TEC1HC/ $tec1 \triangle > 2$ for both chip sets

15

17

-13-

CLAIMS

What is claimed is:

- 1. A method of inhibiting invasion of a host by a fungus, comprising contacting the fungus with a compound which inhibits expression of a gene expressed in the filamentation MAPK pathway and which enhances said pathway, in sufficient quantity that inhibition of the expression of said gene occurs, thereby inhibiting invasion of the host by the fungus.
 - 2. A method according to Claim 1 wherein the gene is TOT10/YELO33W.
- 3. A method according to Claim 1 wherein the host is a plant and the compound is applied to a plant surface in such manner that it contacts the fungus.
 - 4. A method according to Claim 1 wherein the fungus is a yeast.
 - 5. A method of inhibiting invasion of a host by a fungus, comprising contacting the fungus with a compound which inhibits activity of a gene product encoded by a gene expressed in the filamentation MAPK pathway, in sufficient quantity that inhibition of the activity of said gene product occurs, thereby inhibiting invasion of the host by the fungus.
 - 6. A method according to Claim 5 wherein the gene is TOT10/YELO33W.
 - 7. A method according to Claim 5 wherein the host is a plant and the compound is applied to a plant surface in such manner that it contacts the fungus.
- 20 8. A method according to Claim 5 wherein the fungus is a yeast.

- 9. A method of identifying an agent which inhibits the filamentation MAPK pathway in a fungus, comprising the steps of:
 - a) providing an expression vector comprising a nucleic acid molecule of a gene which is expressed in the filamentation MAPK pathway;
 - b) transforming a suitable host cell with said expression vector under conditions suitable for expression of said gene;
 - c) contacting said host cell with an agent to be tested; and
 - d) comparing the expression of said gene in the presence of the agent with the expression of said gene in the absence of said agent,
- wherein if the expression of said gene is lower in the presence of the agent than in the absence of the agent, then the agent is an inhibitor of the filamentation MAPK pathway in a fungus.
 - 10. A. method according to Claim 9, wherein the gene is TOT10/YELO33W.
 - 11. A method according to Claim 9, wherein the fungus is yeast.
- 15 12. A method according to Claim 9, wherein the gene is identified by expression profiling as having repressed expression in the presence of galacturonic acid.
 - 13. A method according to Claim 9, wherein the gene is identified by expression profiling as being expressed in haploid fungal cells and not expressed in diploid fungal cells.
- 20 14. A method of inhibiting fungal filamentation, comprising contacting the fungus with a compound which inhibits expression of a gene expressed in the filamentation MAPK pathway, in sufficient quantity that inhibition of the expression of said gene occurs, thereby inhibiting filamentation by the fungus.

20

- 15. A method of identifying an agent which modulates PGUI gene expression, comprising the steps of:
 - a) providing an expression vector comprising a nucleic acid molecule encoding PGUI;
 - b) transforming a suitable host cell with said expression vector under conditions suitable for expression of PGUI;
 - c) contacting said host cell with an agent to be tested; and
 - d) comparing the expression of PGUI in the presence of the agent with the expression of PGUI in the absence of said agent,
- wherein a difference in the expression of PGUI in the presence of the agent as compared with in the absence of the agent indicates that the agent modulates PGUI expression.
- 16. A method of reducing the adverse effects of fungal invasion of a host,
 comprising administering to the host an effective amount of an agent which
 inhibits PGUI expression in the fungus.
 - 17. A method of inhibiting invasion of a host by a fungus, comprising contacting the fungus with a compound which enhances expression of a gene expressed in the filamentation MAPK pathway and which inhibits said pathway, in sufficient quantity that enhancement of the expression of said gene occurs, thereby inhibiting invasion of the host by the fungus.
 - 18. A method according to Claim 1 wherein the fungus is a yeast.

TARGETS OF THE MAP KINASE PATHWAY IN THE DEVELOPMENTAL SWITCH IN YEAST

ABSTRACT OF THE DISCLOSURE

Assessment of targets of the MAP kinase pathway in the developmental switch between haploid invasive growth and diploid pseudohyphal development in fungi, and identification of genes that show strong regulation by a MAPK pathway-specific transcription factor, Tec1, are described. Also described are methods of identifying an agent which inhibits the filamentation MAPK pathway in a fungus, and methods of inhibiting filamentation of a fungus or invasion of a host by a fungus.

Genetic Expression Profiles of 18 Genes Regulated by the Filamentation MAPK Pathway

MAPK Targets Include Proteins Khown or Predicted to Enter the Secretory Pathway

secreted endopolygalacturonase

PGU1

GPI-linked cell surface adhesion factor FL011

TOT10/YEL033W novel

3D1 Zinc finger protein

TOT12/YKR105C putative permease

TOT13/YOR225W putative membrane protein

GPI-linked cell surface adhesion factor FL05

DDR48 cell surface protein

TOT11/YLR042C GPI-linked cell surface protein

Homolog of mating morphogenesis protein Afr1 TOT7/YER158C

Homolog of Chitin Synthase III subunit TOT8/YIL117C

TOT20/YHL049C telomeric protein family member

TOT15/ YLR434C novel

TOT14/YBR113W putative membrane protein

TOT9/YIR013C Zinc finger protein

phosphate transporter, sugar permease family PH084

protein mannosyltransferase homolog KTR2

Sac1-related inositol phosphate 5-phosphatase homolog SJH1

Sytematic Knockout Experiments

GENE	Haploid Invasion D	iploid Filamentation
PGU1	+++	+++
FLO11	-	-
TOT10/YEL033W	+	+
SRD1	ND	ND
TOT12/YKR105C	+++	+++
TOT13/YOR225W	+++	+++
FLO5	+++	+++
DDR48	+++	+++
TOT11/YLR042C	+++	+++
TOT7/YER158C	+++	+++
TOT8/YIL117C	+++	+++
TOT20/YHL049C	ND	ND
TOT15YLR434C	+++	+++
TOT14/YBR113W	+++	+++
TOT9/YIR013C	+++	+++
PHO84	+++	+++
KTR2	+++	+++
SJH1	+++	+++

Filamentation MAPK Pathway Controls Pectinolysis via PGU1

Gene Induction by the Plant-Specific Carbohydrate Polygalacturonic Acid and Its Hydrolysis Product

Genes Selectively Induced by Polygalacturonic Acid

gene	GA/-	PGA/-	Protein Information Stress-induced transcriptional repressor
ADP!	7.10 7.10		Protein of unknown function
(-) 0/17HHX	- c) () ()	Drotain of unknown function
YPL080C	Z.80	07.0	
YPR098C	1.16	5.49	Protein of unknown function
VHI 040C	2.04	2.00	Putative MFS Permease
VOI 080C	1.35	4.74	Protein with similarity to Rnh/0p and Panzp
PH084	1.39	4.70	phosphate transport, sugar permease nomonog
YMR293C	1.29	4.07	Protein with similarity to amidase
VI R184W	1.33	3.24	Protein of unknown function
VII 011W	1.01	3.01	Protein with similarity to PAU1 family
CVT	1.02	2.82	Cytochrome c1
ATP11	1.29	2.65	Fi-ATP synthase assembly protein
YOR091W	1.17	2.51	Protein of unknown function
PA113	1.02	2.46	Stress-induced protein of the PAU1 family
SK01	0.47	2.35	ATF/CREB transcriptional repressor
MS14	0.73	2.06	Rab guanine nucleotide dissociation innibitor
	Regula	ited by F	Regulated by Filamentation MAPK Pathway*

Genes Selectively Induced by Galacturonic Acid

PGA/- Protein Information 1.69 Vacuolar sorting protein, dynamin GTPase GA/-4.03 gene VPS1

Gene Repression by the Plant-Specific Carbohydrate Polygalacturonic Acid and its Hydrolysis Product

Genes Selectively Repressed by Polygalacturonic Acid

gene	GA∕-	PGA/-	Protein Information
COP1/SEC33	0.63	0.63 0.17	alpha subunit of coatamer complex
YOL002C	1.36	0.18	Protein of unknown function
YDL173W	96.0	0.24	Protein of unknown function
C002	1.37	0.25	coenzyme Q (ubiquinone) biosynthesis
YIL176C (f)	0.86	0.30	Protein with similarity to PAU1 family
YFL032W	0.80	0.30	Protein of unknown function
RPS33A	1.10	0.34	Ribosomal protein S28A
ARC35	1.25	0.39	Component of ARP2/3 complex
RPS26A	0.87	0.39	Ribosomal protein S26A
RPS10A	1.02	0.46	Ribosomal protein S10A

Genes Selectively Repressed by Galacturonic Acid

Protein Information	Protein of unknown function*	Vacuolar import and degradation of Fbp1	Spindle pole body duplication factor	ATF/CREB transcriptional repressor
PGA/-	0.38	1.46	1.02	2.35
GA/-	0.12	0.24	0.29	0.47
	>			SK01

*Regulated by the Filamentation MAPK Pathway

t			delle accred as TEC1-high copylects, Tyl elements have	Tyl elem		pegund ueed	-	the state of the s		1
738. A)	_		:		;	:				+
73 W A)				:	1	eTE(1.4	VPD Tit	148-USA	+	÷
19C). 163W)					1	200	320 Cell su	2020 Cell sertite & lexistal		÷
53W)	262	4.			2		28 6 1791	(- 1991) 1. Compages, post un highesty 104 analyse		
M. 73W A)	0, 0	9 6		1	30	96	29 11 tein	It bein Linkhay (mother)	!	1
(C			147		48	99:	660 St. 1.98	Tangardo Gua Typoga 100		
100	16	33	20	1	20 2	975	968 27 1910	Pr Lang. Confidence that to recent the confidence of the confidenc		$^{+}$
	5.7	50	ì	i	20	201	250 000	Section 1.		Ť
500	199	06		1	336	207	544 1474010	And Control of the Co	1	i
OBF VHR214C-B exon 1 (_1)	261	9		1	7.5	,			-	+
	115	20	7	,			184 12 1918		1	†
	99	30	-	;	DI C	1 2 2	76 11 3410	(1) [up)09 [up,1]0		1
OFF YLPASAC	105	2	:			150	257 Pr 101	-	1	i
OPF YBR113W	5.	06	,	i		22	273 11 121	18 (410 £ 100 h 140 £ 10	1	1
î.	672		,	:	1	120	51 Pr. 191	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	9	9 8	2	:	1	114	TZ HIGh. 16	h af including the property of market of sugar and the sugar special control of the sugar special contr	:	;
153C)	2	DI C			120	702	2168 Pt 121	P. LEED (Upit M Unction		
. ([_]) .	157	200	į		0.50	128	146 Hanna	Name of its une faires of these lovely and in this way to the state of	! !	
KTR2 (YKRO61W)	0 0	2 6	!			136	21.15	31ge; nicesin nices with the nices w		,
W.	2	200			95	201	223 Ti and	Park I for the training the state of the sta		1
93W)	210		20		108	104	20 11.192	H. CARL INDEREST AND ARRANGED & MONTH IN CONTROL OF THE CONTROL OF		1
DANT (YJR150C)	2 5		:	:	163	233	200 g. ibit	bit A deligible many is a second of the seco		
159W) (_0	132	9.0		;	20	69	195 11 571	17 (17.52, university and university	_	1
ORF YILLIZE	0.4	2.5	167	,	162	472	267 Pr. 19		ign one o but	1 5
ORE YHREIAC B exon 2 (1)	000	2			55	117		Price in with publishing to be received in the received for all naturally state of a religious transfer of a topology of the received for a second control of the received for a second for the received for the r	-	
W.	n s	401		•	304	424	406 (200 1	oseu.	_	٠.
GAP1 (YKRO39W)	104	36			1.7	8.7	175 5122	The state of the s	:	. ;
- Mo	2	13			7.3	110	_	ri egin vi'li giniferit 28 Enth.		١,
2	0 0	, 4			27	113	20 Fr 16	Fr 1819 HILD SIMILABLES AS CAMPAGED FOR A COMMAND AND A CO	1	
ORF YGLOBEW	5 6		7.4	H 4	69	63	131 10 42			
GPMZ (YDLOZ 1W)	0 4	202		;	101	63	202	to the with similarity to 35220, Marked Line Overcome accumulation problem of the RT (smily of accident of applicable accumulation) alternative of the RT (smily of accident of applicable accumulation) alternative of the RT (smily of accident of a	_	
ORF YFR024C A exon		: 5			54	127	89 Pr 10	ton paying/the chief the thing the thing of		i
MAXIMA MARINA		27		6.0	7.	7.8	180	1) to be uniting to some wife and an analysis of the some some some some some some some som	-	
GCTI (TOTALENT)	153	57			121	104	139 36	in Vigiliary or waster as the subject of the second pass the including letter and Vieth. 7099 in a succession of the second pass that it is not subject to the subject of the second pass that is not subject to the subject of the second pass that is not subject to the subject of the second pass that is not subject to the subject of the second pass that is not subject to the second pass that is not subject t		
HINE II DESCRIP	20	75			50		2	The second section of the second section is a second section of the second section sec	1	
OHE INCOME	40	ິຄ			7.0	9	0 0	A COLUMN OF THE PROPERTY OF TH	1	
City Control of Chick	179	6	,		280	755	11 70	THE PARTY OF THE PROPERTY OF T		
1	1042	655			731	1731	100	1/2/1 SYNTHESIS TO THE STATE OF	1	1
OBC MENT	153			54	0.4		2 2 2 2	Control of the Contro	1	
	104				133	9.		1 to	-	•
1000	102			118	96	140	101	11 - 12 To 1 Last a control of the C	1	-1
1000	071			176	186	181	uus a oo	And I (All III) College and All (All III) William College and All (All III) William College and All III William College and All III) William College and All III William College and All III) William College and All III William College and A	-	
i wasan			_	0.0	121	- 65	-	(gai) Win (initially C. Internative received in Idamire) by Wellish	-	
ORE YOU TOWN			3	36	9	202	101	the in Control of the		
i T Mega				217	135	7281	128 4 11	THE BACKETS IN CITY AND PROPERTY AND ACCOUNTS AND ACCOUNT		
TX6M)	60.0			. 92	120	50	103 11 1		i -	
2/5	,				50	105	20 Rep1	apit at a faster C, 40 kba attentit, million 20 kba	_	
. (Mosz	1	800		7.6	125	236	105 51	1 to in Juniary 1991.	. !	į
Aidr.	255	•			182	3483	2891 4,14	Committee of the commit		
TIP1 (YBP067C)	2232		_			168	445 11 5	11 to mith wear printed to 1st kingsofinates IVR 1993 of the transfer of the state wear	1	
ZIC -	9/1		:			8	185 016	O.J.C. Eperilis 33.11n. Spot. can interest with the 1905 op: 1 My animas in "o"		1
L289W)	53			20.0	1		1999 Arda	Arguin urgingte synthetage ichtinibiose especiale indage!	1	:
OLOSOW)	179			418		1775	943 11 4	18 John (Mathematical Control of	: -	ì
ORF YORZ48W (.f)	887				****	1	-	Iron to no note that med he as I had a still hours . 150 150 150 150	<u>.</u>	i
CTO (VEB145C)	239			429	230			AND A CONTROL OF THE PROPERTY	+	1
Otaw	1947		1008 20	156	607	2000		ALL MAN AND BASE, DER KINGGAL, CORNELLS CHILDER CAN AND CHARGE AND	1	1
P005C)	1555			1815	136	136	961517	recon studio an dodaten	1 1	;
ORF YORKSC	67		,	a (127	43 620	1868-IN WITH AIRPLANT IS MEILE PRESS. AND ALL VILOUES AND GEBON. C. LIN BEACH, THE BEACH AND ACTUAL PRESS. AND AND ACTUAL AND A	-	ì
W800	105			337	274	859	1692 231	231100. and the pine tith pickets rapolited for valuabile and the perspectation and		1
PL1630)	369			870	695	1218	1022 Est.	THE PROPERTY AND THE PROPERTY OF THE PROPERTY	-	
11.196C)	765			25.30	148	349	337 112	11.450 (Luther of full 109 - 100 - 1	:	•
145W	165		٠	-		0.4	112 117	Krigan j	-	
HOOM	9			- 0		126	11001	the control of the first the light of the first state of the first sta		
VID24 (YBB105C)	121		63	0 7		7.6	90 11	we, fein, Et M		Į.
ORF YORSEN	. 9		38	. ;			260 83	Bita guburt Liey ip/1 & Bith hot 199 Lieu igyl C Ligase 1997 that a Bit Town		l
LSC2 (YGP244C)	7.		45	148	S. C	; d	142	odenne. I et energe and de tradatat de fact et la regulated for la multiple and de energe et energe et energe		

Gener YLITOTIC 20 48 133 2.40 ORF YLR344W exon 1 () 33 138 208 4.18 ORF YLR344W exon 1 () 33 138 208 4.18 ORF YHR217C () 20 29 120 1.45 ORF YHR217C () 20 26 120 1.30 ORF YLR216C 20 56 114 2.80 ORF YLL030C 20 56 114 2.80 ORF YLL030C 27 55 135 2.04 ORF YLL030C 23 3.1 109 1.35 ORF YLL030C 28 36 114 1.29 ORF YLR184W 66 88 214 1.33 ORF YLL030W 66 88 214 1.33 ORF YLL030W 153 154 460 1.01 ORF YLR184W 566 88 214 1.33 ORF YLL030W 9x 00 2 () 156 351 459 2.25 CYT1 (YOR065W) 91 93 257 1.02 ORF YLL030W () 251 355 693 1.41 ORF YML039W exon 2 () 159 486 524 2.53 ATP11 (YNL315C) 51 66 135 1.29 ORF YML039W exon 2 () 192 486 524 2.53 ORF YLL030W 9x 00 2 () 192 486 524 2.53 ORF YLR184W 9x 01 () 385 895 964 2.32 ORF YLR030W exon 1 () 385 895 964 2.32 ORF YLR030W exon 2 () 71 95 175 1.34 ORF YMR143W exon 1 () 385 895 964 2.32 ORF YMR030W exon 2 () 71 95 175 1.34 ORF YMR160SW exon 2 () 71 95 175 1.34 ORF YMR160SW exon 2 () 71 95 175 1.34 ORF YMR160SW exon 1 () 385 895 964 2.32 ORF YML030W exon 1 112 166 241 1.48 ORF YML030W 9x 11 112	NAME=GA	\ <u>\</u>	ΣΛ 'C	γCΛ	AYPD P	GAYPD
SAF ILLOTO SAF S	30110					6.65
ORF YHR217C (_F)						6.30
ORF YHR217C (f) 20 26 120 1.30 ORF YHR217C (f) 20 56 114 2.80 ORF YHR208C 20 56 114 2.80 ORF YPR09BC 37 43 203 1.16 ORF YPR09BC 37 43 203 1.16 ORF YPR09BC 27 55 135 2.04 ORF YPR09BC 23 31 109 1.35 2.04 ORF YPR09BC 23 31 109 1.35 2.04 ORF YPR08BC 23 31 109 1.35 2.04 ORF YMR208C 23 31 109 1.35 2.04 ORF YMR208C 28 36 114 1.29 ORF YMR208C 28 1.25 1.29 ORF YMR208C 28 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2						6.00
ORF YPLOGOC 20 56 114 2.80 ORF YPROGOC 37 43 203 1.16 ORF YPLOGOC 27 55 135 2.04 ORF YPLOGOC 27 55 135 2.04 ORF YPLOGOC 23 31 109 1.35 ORF YPLOGOC 24 3 31 109 1.35 ORF YPLOGOC 25 3 31 109 1.35 ORF YPLOGOC 26 36 114 1.29 ORF YPLOGOC 27 3 36 114 1.29 ORF YPLOGOC 27 3 36 114 1.29 ORF YPLOGOC 27 3 36 114 1.29 ORF YPLOGOC 27 1.20 ORF						6.00
ORF YPROSBC 37 43 203 1.16 ORF YPRUAGOC 27 55 135 2.04 ORF YPLUAGOC 27 55 135 2.04 ORF YPLUAGOC 23 31 109 1.35 PHO84 (YML123C) 33 46 155 1.39 ORF YMRESSC 28 36 114 1.29 ORF YMRESSC 28 36 114 1.29 ORF YMRESSC 28 36 114 1.33 ORF YLIDITW 153 154 460 1.01 ORF YMROSZW exon 2 (f) 156 1 351 1.45 460 1.01 ORF YMROSZW exon 2 (f) 156 1 351 1.45 460 1.01 ORF YMROSZW exon 2 (f) 156 1 351 1.45 460 1.01 ORF YMROSZW exon 2 (f) 192 486 524 1.25 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02						5.70
ORF YMEDIAGE						5.49
ORF YOLGOOC 23 31 109 1.35 ORF YOLGOOC 23 31 109 1.35 ORF YOLGOOC 23 31 109 1.35 ORF YOLGOOC 28 36 114 1.29 ORF YOLGOOC 29 1.55 1.06 1.35 1.29 ORF YOLGOOC 29 1.99 1.93 2.57 1.02 ORF YOLGOOC 59 1.92 1.85 1.55 1.35 1.29 ORF YOLGOOC 59 1.99 1.85 1.29 ORF YOLGOOC 59 1.99 1.48 1.17 ORF YOLGOOC 59 1.48 1.17 ORF YOLGOOC 29 1.48 1.02 ORF YOLGOOC 29 1.00 ORF YOLGOOC 29 2.00 ORF YOLGOOC 20 1.10 ORF YOLGOOC 20 1.10 ORF YOLGOOC 20 1.11 O						5.00
ORF YURDOSW ORF YU						4.74
PRICES (MRESS) ORF YLRIBAW 66 88. 214 1.33 ORF YLRIBAW 66 88. 214 1.33 ORF YLRIBAW 66 88. 214 1.33 ORF YJRO27W exon 2 (.f) 156 351 459 2.25 CYT1 (YOR066W) 91 93 257 1.02 ORF YLRIBAW ORF YML039W exon 2 (.f) 192 486 524 2.53 ATP11 (YNL315C) 51 66 135 1.29 ORF YORO91W ORF YORO91W ORF YRRIA3W exon 1 (.j) 385 895 964 2.32 ORF YJRO28W exon 2 (.f) 71 95 175 1.34 PAU3 (YCR104W) (.f) 180 184 43 1.02 SKO1 (YNL167C) 43 20 101 0.47 PRE3 (YLRIDO1W) exon 1 112 166 241 1.48 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YNL06W ORF YNL06W ORF YNL06W ORF YRRIBAW ORF						4.70
ORF YIRDSW 66 88. 214 1.33 ORF YILO1W 153 154 460 1.01 ORF YILO1W 153 154 460 1.01 ORF YILO1W 153 154 460 1.01 ORF YILO2W exon 2 (.f) 156 351 459 2.25 CYT1 (YOR065W) 91 93 257 1.02 ORF YLL02SW (.f) 251 355 693 1.41 ORF YILO2SW (.f) 251 355 693 1.41 ORF YILO2SW (.f) 251 355 693 1.41 ORF YILO3SW exon 2 (.f) 192 486 524 2.53 ATP11 (YNL315C) 51 66 135 1.29 ORF YORO91W 59 69 148 1.17 ORF YMR143W exon 1 (.j) 385 895 964 2.32 ORF YJR029W exon 2 (.f) 71 95 175 1.34 PAU3 (YCR104W) (.f) 180 184 443 1.02 ORF YJR029W exon 2 (.f) 71 95 175 1.34 PAU3 (YCR104W) (.f) 180 184 443 1.02 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YNR045C exon 2 (.f) 81 45 135 0.56 ULY3 (YJR016C) 195 197 197 198 0.06 ORF YPR39C 91 122 187 1.34 SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ULY3 (YJR016C) 119 72 182 0.61 ORF YBR10SC 82 20 120 0.24 ULY3 (YJR016C) 134 175 81 0.56 ULY3 (YJR016C) 134 175 81 0.56 ULY3 (YJR016C) 134 175 81 0.31 ORF YMR045C exon 1 (.f) 374 263 169 0.70 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 137 0.3237 1446 1.02 ORF YPL082W 1151 199 34 0.86 ORF YPL082W 218C 218C 218C 218C 218C 218C 218C 218C						4.07
ORF YILD11W 153 154 460 1.01 ORF YIRD2TW exon 2 (.f) 156 351 459 2.25 ORF YIRD2TW exon 2 (.f) 156 351 459 2.25 ORF YIRD2SW (.f) 251 355 693 1.41 ORF YILD2SW (.f) 251 355 693 1.41 ORF YILD2SW (.f) 192 486 524 2.53 ATP11 (YNL315C) 51 66 135 1.29 ORF YOR091W 59 69 148 1.17 ORF YMR143W exon 1 (.i) 385 895 964 2.32 ORF YJR02SW exon 2 (.f) 71 95 175 1.34 PAU3 (YCR104W) (.f) 180 184 443 1.02 SKO1 (YNL167C) 43 20 101 0.47 PRE3 (YJL001W) exon 1 112 166 241 1.48 ORF YMR045C exon 2 (.f) 77 100 161 1.30 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YNL066W 77 100 161 1.30 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C exon 2 (.f) 93 132 197 1.42 ORF YRR045C 91 122 187 1.34 ORF YRR045C 91 122 187 1.34 ORF YRR045C 91 122 187 1.34 ORF YRR045C 119 72 182 0.61 ORF YRR045C 1170 1227 610 1.05 ORF YRR045C 1170 1227 610 1.05 ORF YRR045C 200 249 78 1.25 ORF YRR045C 200 249 78 1.25 ORF YRR045C 1151 19978 4528 0.87 ORF YRR045C 1151 19978 45						3.24
ORF YJR027W exon 2 (_f)						3.01
ORF YURO25W (.f) 91 93 257 1.02' ORF YUL025W (.f) 251 355 693 1.41 ORF YUL025W (.f) 192 486 524 2.53 ATP11 (YNL315C) 51 66 135 1.29 ORF YOR091W 59 69 148 1.17 ORF YOR091W 59 69 148 1.17 ORF YOR091W 0.59 69 148 1.17 ORF YOR143W exon 1 (.j) 385 895 964 2.32 ORF YOR091W 0.59 69 148 1.17 ORF YOR143W exon 1 (.j) 385 895 964 2.32 ORF YOR143W exon 2 (.f) 71 95 175 1.34 PAU3 (YCR104W) (.f) 180 184 443 1.02 SKO1 (YNL167C) 43 20 101 0.47 PRE3 (YJL001W) exon 1 112 166 241 1.48 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YNL006W 77 100 161 1.30 MSI4 (YOR370C) 63 46 130 0.73 ORF YPR139C 91 122 187 1.34 SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YJR016C) 119 72 182 0.61 ORF YBR19SC 82 20 120 0.24 LYS4 (YDR234W) 479 244 576 0.51 USY (YJR013W) 113 33 115 0.29 ORF YOR009W 144 310 158 2.15 NDC1 (YML031W) 113 33 115 0.29 ORF YOR009W 144 175 81 1.31 ORF YDL073C 143 180 88 1.26 ORF YJL223C (.f) 134 175 81 1.31 ORF YDL073C 143 180 88 1.26 ORF YJL223C (.f) 3170 3237 1446 1.02 ORF YDL073C 143 180 88 1.26 ORF YJL223C (.f) 370 3237 1446 1.02 ORF YDL073C 194 497 422 239 0.85 ORF YDL073W 17 91 82 0.51 ORF YOR093W 17 19 1 82 0.51 ORF YOR093W 17 19 3237 1446 1.02 ORF YDL073C 20 249 78 1.25 ORF YDL073W 20 249 78 1.25 ORF YDL073C 20 249 78 1.25 ORF YDL073W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS26A (YGL189C) 1151 9978 4526 0.87 ORF YDL073W 122 98 37 0.86 ORF YDL073W 122 98 37 0.86 ORF YDL073W 122 98 37 0.86 ORF YDL073W 124 115 20 0.63 ORF YDL073W 127 120 0.63 ORF YDL073W 121 136 0.48 ORF YDL074C 115 15 99 34 0.86 ORF YDL074C 115 115 99 34 0.86 ORF YDL173W 141 136 0.44 ORF YDL175W 141 136 0.44 OR						2.94
ORF YLL025W (_f)						2.82
ORF YML039W exon 2 (_f) 192						2.76
ATP11 (YNL315C)						
ORF YOR091W 59 69 148 1.17 ORF YMR143W exon 1 (.i) 385 895 964 2.32 ORF YJR029W exon 2 (.f) 71 95 175 1.34 PAUJ (YCR104W) (.f) 180 184 443 1.02 SKC1 (YNL167C) 43 20 101 0.47 PRE3 (YJL001W) exon 1 112 166 241 1.48 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YMR045C exon 2 (.f) 170 122 187 1.34 ORF YMR045C exon 2 (.f) 170 170 170 170 170 170 170 170 170 170		 				2.73
ORF YMR143W exon 1 (_i)						2.65
ORF YIMP1629W exon 2 (.f) 71 95 175 1.34 PAU3 (YCR104W) (.f) 180 184 443 1.02 SKOI (YNL167C) 43 20 101 0.47 PRE3 (YLL001W) exon 1 112 166 241 1.48 ORF YMR045C exon 2 (.f) 93 132 197 1.42 ORF YNL006W 77 100 161 1.30 MSI4 (YOR370C) 63 46 130 0.73 ORF YPR139C 91 122 187 1.34 SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YNB016C) 119 72 182 0.61 ORF YBR105C 82 20 120 0.24 LYS4 (YDR234W) 479 244 576 0.51 ORF YOR009W 144 310 158 2.15 ORF YOR009W 144 310 158 2.15 ORF YOL073C 143 180 88 1.26 ORF YUL23C (.f) 134 175 81 1.31 ORF YPL081W) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.86 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YRR050C exon 1 (.f) 374 263 169 0.70 ORF YRR050C exon 1 (.f) 374 263 169 0.70 ORF YBR050C exon 1 (.f) 374 263 169 0.70 ORF YBR050C exon 1 (.f) 374 263 169 0.70 ORF YBR050C exon 1 (.f) 374 263 169 0.70 ORF YBR050C exon 1 (.f) 374 263 169 0.70 ORF YRR050C exon 1 (.f) 315 34 0.86 ORF YRR050C exon 1 (.f) 317 2 20 66 0.12 ORF YRR050C exon 1 (.f) 317 2 20 66 0.12 ORF Y						2.51
PAU3 (YCR104W) (-f) 180 184 443 1.02 SK01 (YNL167C) 43 20 101 0.47 PRE3 (YJL001W) exon 1 112 166 241 1.48 ORF YMR045C exon 2 (-f) 93 132 197 1.42 ORF YNL006W 77 100 161 1.30 0.73 ORF YPR139C 91 122 187 1.34 SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YJR016C) 119 72 182 0.61 ORF YRR05C 82 20 120 0.24 LY54 (YDR234W) 479 244 576 0.51 ORF YOR009W 144 310 158 2.15 ORF YOL073C 143 180 88 1.26 ORF YNL22C (-f) 134 175 81 1.31 ORF YNL22C (-f) 134 175 81 1.31 ORF YOR248W (-f) 497 422 239 0.85 ORF YRR242C 1170 1227 610 1.05 ORF YOR248W (-f) 497 422 239 0.85 ORF YNL019W 177 91 82 0.51 ORF YOR29W exon 1 159 135 75 0.85 ORF YNL019W 177 91 82 0.51 ORF YOR29W exon 1 (-f) 3170 3237 1446 1.02 ORF YOR29W exon 1 (-f) 374 263 169 0.70 ORF YOR29W exon 1 (-f) 374 263 169 0.70 ORF YNR03C 200 249 78 1.25 ORF YNR03C 200 249 78 1.25 ORF YNR03C 200 249 78 1.25 ORF YRR03C 200 249 78		· · · · · · · · · · · · · · · · · · ·				2.50
PAGS (YCN167W) (_1)						2.46 2.46
SKOT (YNLIOTIV) SYNTEM STATE						
ORF YMR045C exon 2 (_f) 93 132 197 1.42 ORF YNL006W 77 100 161 1.30 MSI4 (YOR370C) 63 46 130 0.73 ORF YPR139C 91 122 187 1.34 SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YJR016C) 119 72 182 0.61 ORF YBR10SC 82 20 120 0.24 LYS4 (YDR234W) 479 244 576 0.51 ORF YOR009W 144 310 158 2.15 NDC1 (YML031W) 113 33 115 0.29 ORF YOL073C 143 180 88 1.26 ORF YJL223C (_f) 134 175 81 1.31 ORF YJL223C (_f) 134 175 81 1.31 ORF YDR242C 1170 1227 610 1.05 ORF YDR248W (_f) 497 422 239 0.85 ORF YDR248W (_f) 497 422 239 0.85 ORF YDR248W (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 ORF YMR05C exon 1 (_f) 374 263 169 0.70 ORF YBR03SC 200 249 78 1.25 ORF YBR03SC 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YGL03W 122 98 37 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 124 136 34 0.96 ORF YDL173W 141 136 34 0.96 ORF YDL175W 141 151 20 0.63 PROCESS=assemble,pl GENES=6365 SOURCE=	SKO1 (YNL167C)	1	-			2.35
ORF YNLO06W 77 100 161 1.30 MSI4 (YOR370C) 63 46 130 0.73 ORF YPR139C 91 122 187 1.34 SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YJR016C) 119 72 182 0.61 ORF YBR108C 82 20 120 0.24 LYS4 (YDR234W) 479 244 576 0.51 ORF YOR009W 144 310 158 2.15 NDC1 (YML031W) 113 33 115 0.29 ORF YOL073C 143 180 88 1.26 ORF YJL223C (f) 134 1.75 81 1.31 ORF YMR242C 1170 1227 610 1.05 ORF YOR248W (f) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YOR293W exon 1 (f) 3170 3237 1446 1.02 ORF YOR293W exon 1 (f) 374 263 169 0.70 ORF YOR293W exon 1 (f) 374 263 169 0.70 ORF YR035C 200 249 78 1.25 ORF YR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.86 COCQ (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YDL173W METHOD=bulk SOURCE=GA.sc PROCESS=assemble,pl						2.15
NSIA (YOR370C) 63 46 130 0.73	ORF YMR045C exon 2 (_f)					2.12
MSI4 (TORSYOL)	ORF YNL006W					2.09
SPO15 (YKR001C) 35 141 59 4.03 HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YJR016C) 119 72 182 0.61 ORF YBR105C 82 20 120 0.24 LYS4 (YDR234W) 479 244 576 0.51 ORF YOR009W 144 310 158 2.15 NDC1 (YML031W) 113 33 115 0.29 ORF YOL073C 143 180 88 1.26 ORF YJL23C (£) 134 175 81 1.31 ORF YMR22C 1170 1227 610 1.05 ORF YOR248W (£) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YMR019W 177 91 82 0.51 ORF YOR293W exon 1 (£) 3170 3237 1446 1.02 ORF YMR050C exon 1 (£) 374 263 169 0.70 ORF YNR03C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (£) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YPL032W 121 98 37 0.80 ORF YPL032W 122 98 37 0.80 ORF YPL032W 121 98 37 0.80 ORF YPL032W 122 98 37 0.80 ORF YPL032W 141 136 34 0.96 ORF YPL073W 141 136 34 0.96 ORF YDL173W METHOD-bulk SOURCE=GA.sc PROCESS-scaling METHOD-bulk SOURCE	MSI4 (YOR370C)					2.06
HHO1 (YPL127C) 81 45 135 0.56 ILV3 (YJR016C) 119 72 182 0.61 ORF YBR105C 82 20 120 0.24 LYS4 (YDR234W) 479 244 576 0.51 ORF YOR009W 144 310 158 2.15 NDC1 (YML031W) 113 33 115 0.29 ORF YOL073C 143 180 88 1.26 ORF YJL223C (_f) 134 175 81 1.31 ORF YMR242C 1170 1227 610 1.05 ORF YOR248W (_f) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YHL019W 177 91 82 0.51 ORF YMR040C exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 ORF YNR03BC 200 249 78 1.25 ORF YNL010W) 103 20 39 0.19 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YL073W 122 98 37 0.80 ORF YL176C (_f) 1756 1899 589 1.10 ORF YDL145C 118 74 20 0.63 ORF YDL173W 141 136 34 0.96 ORF YDL175C 118 74 20 0.63 PROCESS=assemble,pl GENES=6365 SOURCE=						2.05
NR Color	SPO15 (YKR001C)					1.69
CRF YBR105C 82 20 120 0.24	HHO1 (YPL127C)					1.67
Name	ILV3 (YJR016C)					1.53
DRF YOR009W	ORF YBR105C	· · · · · · · · · · · · · · · · · · ·				1.46
NDC1 (YML031W)	LYS4 (YDR234W)					1.20
ORF YOL073C 143 180 88 1.26 ORF YOL073C 134 175 81 1.31 ORF YMR242C 1170 1227 610 1.05 ORF YOR248W (_f) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YML019W 177 91 82 0.51 ORF YOR293W exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR03SC 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL02C 111 151 20 1.36 ORF YDL02C 111 151 20 1.36 ORF YDL02C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=	ORF YOR009W					1.10
ORF YUL23C (_f) 134 175 81 1.31 ORF YMR242C 1170 1227 610 1.05 ORF YOR248W (_f) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL091W exon 1 159 135 75 0.85 ORF YML019W 177 91 82 0.51 ORF YMR090W 177 91 82 0.51 ORF YMR050C exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 <td>NDC1 (YML031W)</td> <td></td> <td></td> <td></td> <td></td> <td>1.02</td>	NDC1 (YML031W)					1.02
ORF YMR242C 1170 1227 610 1.05 ORF YMR242C 1170 1227 610 1.05 ORF YOR248W (_f) 497 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YML019W 177 91 82 0.51 ORF YMR050C exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YDL173W 141 136 34 0.96 ORF YDL173W 141 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=assemble.pl GENES=6365 SOURCE=	ORF YOL073C					0.62
ORF YMR242C 179 422 239 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YML019W 177 91 82 0.51 ORF YMR050C exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96	ORF YJL223C (_f)					0.60
ORF YOL081W exon 1 159 135 75 0.85 ORF YPL081W exon 1 159 135 75 0.85 ORF YML019W 177 91 82 0.51 ORF YOR293W exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YDL145C 118 74 20 0.63	ORF YMR242C					0.52
ORF YML019W 177 91 82 0.51 ORF YML019W 177 91 82 0.51 ORF YOR293W exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl PAT-3 <td>ORF YOR248W (_f)</td> <td>497</td> <td></td> <td></td> <td></td> <td>0.48</td>	ORF YOR248W (_f)	497				0.48
ORF YOR293W exon 1 (_f) 3170 3237 1446 1.02 ORF YMR050C exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl PAT-3	ORF YPL081W exon 1					0.47
ORF YOR293V exon 1 (_f) 374 263 169 0.70 RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl BAT-2	ORF YML019W					0.46
RPS26A (YGL189C)	ORF YOR293W exon 1 (_f)	3170	3237			0.46
RPS26A (YGL189C) 11511 9978 4526 0.87 ORF YNR035C 200 249 78 1.25 ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl PAT-2	ORF YMR050C exon 1 (_f)	374	263			0.45
ORF YEL033W 172 20 66 0.12 TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=		11511				0.39
TSL1 (YML100W) 103 20 39 0.19 RPS33A (YOR167C) (_f) 1726 1899 589 1.10 ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=	ORF YNR035C	200	249			0.39
SET (1ME 100W)	1	172				0.38
ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=	TSL1 (YML100W)	103	20			0.38
ORF YFL032W 122 98 37 0.80 ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=						0.34
ORF YIL176C (_f) 115 99 34 0.86 COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=		122				0.30
COQ2 (YNR041C) 84 115 21 1.37 ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=		115				0.30
ORF YDL173W 141 136 34 0.96 ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=		84		 		
ORF YOL002C 111 151 20 1.36 ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=		141				0.24
ORF YDL145C 118 74 20 0.63 PROCESS=scaling METHOD=bulk SOURCE=GA.sc PROCESS=assemble.pl GENES=6365 SOURCE=		111				0.1
PROCESS=scaling METHOD=bulk SOURCE=GA.scl PROCESS=assemble.pl GENES=6365 SOURCE=			L		0.63	0.1
PROCESS=assemble.pl GENES=6365 SOURCE=						
DAT-0			SOURCE=	: :		
IPHOCESS=IIILEI GENES-05 DITT-500 INTOC.	PROCESS=filter	GENES=53	DIFF=80	MAX=	RAT=2	

NAME=GA	:	,			
gene	YPD	GA	PGA	GAYPD	PGA/YPD
ORF YLR344W exon 1 (_i)	33	138	208	4.18	6.30
SPO15 (YKR001C)	35	141	59	4.03	1.69
ORF YPL080C	20	56	114	2.80	5.70
ORF YML039W exon 2 (_f)	192	486	524		2.73
ORF YIL101C	20	48	133		6.65
ORF YMR143W exon 1 (_i)	385			2.32	2.50
ORF YJR027W exon 2 (_f)	156		459	2.25	2.94
ORF YOR009W	144		158		1.10
CRF YHL040C	27				5.00
PRE3 (YJL001W) exon 1	. 112			1.48	2.15
ORF YHR217C (_r_i)	20			1.45	6.00
ORF YMR045C exon 2 (f)	93	·	197		
ORF YLL025W (_f)		355			
	251				2.76
PHO84 (YML123C)	33				4.70
COQ2 (YNR041C)	84	115		1.37	0.25
ORF YOL002C	111			· · · · · · · · · · · · · · · · · · ·	0.18
ORF YOL080C	23	31			4.74
ORF YPR139C	91	122			
ORF YJR029W exon 2 (_f)	71				
ORF YLR184W	66		·		
ORF YJL223C (_f)	134				
ORF YHR217C (_f)	20	26	120		6.00
ORF YNL006W	77	100		1.30	2.09
ATP11 (YNL315C)	51	66	135	1.29	2.65
ORF YMR293C	28	36	114	1.29	4.07
ORF YOL073C	143	180	88	1.26	0.62
ORF YNR035C	200	249	78	1.25	0.39
ORF YOR091W	59	69	148	1.17'	2.51
ORF YPR098C	37	43	203	1.16	5.49
RPS33A (YOR167C) (_f)	1726	1899	589	1.10	0.34
ORF YMR242C	1170		610	1.05	
PAU3 (YCR104W) (_f)	180				2.46
CYT1 (YOR065W)	91	93	· 		2.82
ORF YOR293W exon 1 (_f)	3170	3237	1446	1.02	0.46
ORF YIL011W	153	154		1.01	3.01
ORF YDL173W	141	136			0.24
RPS26A (YGL189C)	11511	9978		0.87	0.39
ORF YIL176C (_f)	115	99	·		0.30
ORF YOR248W (_f)	497	422			
ORF YPL081W exon 1	159	135			
ORF YFL032W	122	98			0.30
MSI4 (YOR370C)	63	46			2.06
	374	263			0.45
ORF YMR050C exon 1 (_f)					
ORF YDL145C	118				0.17
ILV3 (YJR016C)	119				1.53
HHO1 (YPL127C)	81	45			
ORF YML019W	177	91	 _		
LYS4 (YDR234W)	479				1.20
SKO1 (YNL167C)	43				
NDC1 (YML031W)	113				1.02
ORF YBR105C	82				1.46
TSL1 (YML100W)	103				0.38
ORF YEL033W	172	20		0.12	0.38
PROCESS=scaling	METHOD=bulk		<u> </u>	<u> </u>	
PROCESS=assemble.pl	GENES=6365	SOURCE=			
PROCESS=filter	GENES=53	DIFF=80	MAX=	RAT=2	
=	1				

Homologous Genes Induced by Filamentation and Mating MAPK Pathways

Cold Cold Cold Cold Cold Cold Cold Cold							-		Γ	Table 7.1. I man
1285 1286 129		WT	1901	IS		ste7	일		TE11-4	YPD INCELLINES
1285 1686 31 110 1090 33 33 33 31 31 31 31 3		:	il H	5138	N		80i	3378	7977	Mating portionale arise to scheme to the territories and the scheme modification
10	A1 (YDH461W)	1000	'	1668	31	_	110	1090	36	Translaton initiation factor ett 274, Contains Cassillan 271 Canal
7879 6017 621 1993 4780 466 966 1169 121 178 802<	B1 (YJR047C)	100		2 2 2	34		09	378	73	
1	S3 (YOR202W)	33	;	2 6	108	-	993	4780	4674	Mating pheromone a factor, exported from cell by Steep
11	A2 (YNL145W)	1/8/		100	191		178	802	598	Pheromone alpha-factor receptor, seven-transmentionare domain process.
Column C	E2 (YFL026W)	9		0 0	00	1	49	117	59	Mitochondrial protein myolyed in respiratory function and fron homotogasts, principly of principly of the control of the contr
Columb	IF YDI.120W	111	100	700	1 4		011	212	258	Member of major feachtator superfamily (MtS) multidrug-reststance (Mt 5- M188) frace; it spirits
108	3F YIL121W	28		169	200		, a	127	83	Protein of unknown function
EGC 714 159 214 415 <td>JE VOLUZEC</td> <td>01</td> <td>8</td> <td>140</td> <td>77</td> <td>1</td> <td>;</td> <td>741</td> <td>1989</td> <td>Protein with similarity to members of the minochondral server (MCI) family</td>	JE VOLUZEC	01	8	140	77	1	;	741	1989	Protein with similarity to members of the minochondral server (MCI) family
(5) 639 480 122 20 <th< td=""><td>SE VKI 120W</td><td>06</td><td>9</td><td>714</td><td>168</td><td></td><td>7 7 7</td><td>4 + 4</td><td>130</td><td>Protein with strong similarity to other subbelomentally-encoded proteins such as Cos.5p. (1931); (1931</td></th<>	SE VKI 120W	06	9	714	168		7 7 7	4 + 4	130	Protein with strong similarity to other subbelomentally-encoded proteins such as Cos.5p. (1931); (1931
104 76 20 20 58 102 103 103 103 104 105 10	Se (VGB295C)	63	6	480	122		-	9	9	Chair southase II. responsible for primary septum disk.
102 48 20 79 79 79 79 79 79 79 7	S (VRB03RW)	01	4	76	2(-	2 6	0 4	3.4	Protein of unknown function
102 48 21 20 75 104 104 104 105 104 105 104 105 10	DE VI BA97C	10	3	48	20		2	2 5	00	Payment unknown fillstick)
1 168	Wight Inviole	2	2	48	2	-	50	יות	000	through the content of the phenomen of the phenomen response trapems pathway
117 129 536 64 26 26 104 196 196 196 196 172 196 1	ALC LIDE INSTITUTE	16	8	124	3,		51	9	0 4	O Granton in Contraction of the
10 538 69 64 342 19 10 107 64 25 26 104 19 10 20 186 51 489 1768 36 10 20 16 <t< td=""><td>AT THROOM</td><td>11</td><td>7</td><td>59</td><td>2</td><td></td><td>30</td><td>/9</td><td>2000</td><td>Program in the control of the contro</td></t<>	AT THROOM	11	7	59	2		30	/9	2000	Program in the control of the contro
1) 107 64 25 26 104 105 104 105 104 105 104 105 104 107 104 107 104 107	1F YKL 13/W	00		538	19	œ.	64	342	1881	3-Agguinni michig succini
198	3A2 (YGL032C)		10	8.4	12	2	52	104	114	Protein of unknown function (1 AROOOW and 1 incert a confine to
Marcon Color Col	7F YHR214W (_f)	2	-	200	8 1 1	0	687	1758	3671	3-Isopropylmdate debydratase, second step in tencine blosylinesis patriway.
198	U1 (YGL009C)	220		COR	5	7.0	6.9	115	134	Process with similarity to PubSp and Sng2p, member of the ATP binding cooking (ADS 2 Agreement)
Name	1812 (YPL058C)	34	98	172	•		1 0	151	357	Inhibitor of C4289-Chilp and C4.286-Chilp kinase complexes involved in cell tytic arrest by thatink
156	AB1 (YJL157C)	25	28	244	9	-	9 0	200	123	Annoons permease of low capacity and high affinity.
Marcon 1 114 115 115 116 116 117 118 117 118 117 118 117 118	ED2 (VNI 142W)	1,	26	115	4	0	200	1010	1158	Dibotrovacad debydratase (DAD), three step in value and soleceine binsynthese pathway
114 36 30 20 114 467 712 86 20 20 107 713 89 37 20 107 129 89 37 20 110 140 143 143 44 21 126 150 152 124 21 126 150 152 124 21 126 150 152 124 21 126 150 152 124 21 126 150 152 124 21 126 150 150 150 114 150 150 150 150 150 150 150	V2 /V IB016C)	,6	6.	785	25	9	902	101	36	I Nuclear reneun required for ribosome biogenesis, has 3 canonical RNA recognition (RNA) domains and one occurred to the recognition (seems) comments in the contract of the resolution (seems).
12 114 114 115 115 114 115	ODA (VPI 043W)	-	4	98		0	2	101	10.) Preschortexylamic glycine ligace (GARSase) + Phosphortexyltermylelycinamilme eyclo-ligace (Alkhase), bitulicitatur progen
Name	TO SOLOWING	50	-	313		7	4		200	
129 20 210	DES,/ (TGLESPAY)		72	98		0	50	707	0	1 for the state of the stat
My exon 1 129 89 37 20 71 129 72 125 257 143 143 44 41 134 148 165 46 20 78 124 24 21 120 78 128 374 21 24 452 165 165 24 20 120 245 162 21 22 452 245 310 81 78 324 168 107 56 57 163 168 107 56 57 163 168 107 56 57 163 168 421 130 487 168 176 84 65 168 349 131 384	THE YMHOUSE		1	59		0	20	116	N.	Trough for which of the same week or never from alone (actor areas), and nothing highly of year of 15
No.	ISB2 (YGR014W)	-	100	0		1	20	7.1	4	S Protein required for high temperature gravity, two to 1 for the street eventue.
Month Month <th< td=""><td>IPT5 (YGL178W) exon 1</td><td>-10</td><td></td><td>200</td><td></td><td>O.</td><td>125</td><td>257</td><td></td><td>Devoien required for manifemence of cell wait integrity and to ma server a server.</td></th<>	IPT5 (YGL178W) exon 1	-10		200		O.	125	257		Devoien required for manifemence of cell wait integrity and to ma server a server.
MA EXCOPT	VCS2 (YNL283C)	7	0	120		4	277	651		P. Ribosomal protein \$22B (yeast \$24) (fp50) (Y 5.24/Km 5.15/km 5.15/k
143 145 46 20 120	PS24B (YLR367W) exon	1	17	747		7	7	134		S Membrane transporter of A.P. binding casseing (ABC) superfamily responsing to payor in a jugar against a
148	TEG (YKL209C)	1	43	143		*		120	! !	9 Secreted pepanin-like provesse that degrades alpha-jastor (barmpepani)
77 124 24 24 452	AB1 (YII 015W)	-	48	165		0	2 7	47		1) -sering/1-threanne deaminase (citabolic 1-sering/1-threspaine dehydratase)
100 100	LIA1 (VCI 064C)		7.7	124		44	4	46.0	1	3 Prosen with similarity to Sed to
1667 1494 541 601 1423 152 152 152 152 153 152 153 1	CONTRACTOR	9	7.8	374		17	221	7		of the manufactor in Balton and other plucials (GB Z49212)
95) 245 310 81 78 324 324 324 324 324 324 324 324 324 324	JH- YEHIDOW	16	87	1494		4.1	601	142		Progin will guidant to the set and another than 5, mainting resistance (MI's-MDR) progen laundy
1 245 310 81 76 324 1 168 107 56 57 153 1 17 94 39 43 126 1 248 421 130 487 1 249 178 84 65 310 347 349 119 131 384	ORF YMR305C	110		150	-	12	114	Ĩ		3 Member of major facilitates suferiaring the column of morning and column of the column of
1 248 312 56 67 153 1 17 94 39 42 42 1 248 176 84 65 318 1 347 349 119 131 384	ORF YPR156C) 1 21 1	11 0		1.	7.8	35,	-!	The state of the s
1 168 197 194 39 43 126 187 190 487 190 191 191 191 191 191 191 191 191 191	ET4 (YMR319C)		40	2 2			25	15:	-	g Annoning permetase of high capacity and how alturity
117 94 130 487 1 248 176 84 65 316 347 349 119 131 384	MEP3 (YPR138C)		89	ڪ[∶ 	:		, c	121	_	1 իրտար այլի չլույելում էր որջել ընպես ով 5 թոյունը
(L) 398 421 134 65 318 (M) 248 159 131 384	ORF YBR214W	-	117	6	1	200	5	48	1	6 Protein of unknown function
7 248 176 84 89 89 89 884 884 884 884 884 884 884	ORF YGR151C (.)	cal.	398	451		40	2 4	3.5	5.	3 Sermethiconnine protein timese of the MAP kingse family required for cell cycle arrest and for cell toxical during manner
347 349 119 131	FILS (YBI 016W)	.4	248	17.6		40	0 0	0	25	(2) Роски оf инкломи пин. Цил.
	Mencoporado		347	345		18	2	7		