Tre: (Today Friday

MPUTATIONAL FINANCE: 422

Mean-Variance Portfolio Theory Next Twes.

Panos Parpas

(Slides courtesy of Daniel Kuhn)

p.parpas@imperial.ac.uk

Imperial College London

This Lecture

- Asset returns
- Portfolio returns
- Variance as a risk measure
- Mean-variance diagrams
 - Feasible set
 - Minimum-variance set
 - Efficient frontier
- Markowitz problem
- Parameter estimation

Further reading:

D.G. Luenberger: Investment Science, Chapters 6 & 8

Variance RISIZ ~

5.+ Expected ~10%, Returns

Average /Expection

Single-per 100

Asset Return I

- Asset; investment instrument that can be bought/sold.
- If you buy an asset today at a price X_0 and sell it in 1 year at a price X_1 , then the total return R on your investment is defined to be

$$R = \frac{X_1}{X_0} :$$

Similarly, the rate of return r is defined as

$$r = \frac{X_1 - X_0}{X_0}.$$

$$R = \frac{X_1 - X_0}{X_0}$$

The expression 'return' is used both for the total return and the rate of return. The context should make clear which interpretation is meant.

Asset Return II

By definition, we have

$$R = 1 + r$$

$$\Rightarrow X_1 = (1+r)X_0$$
.

Thus, the rate of return acts much like an interest rate.

• If X_1 is uncertain, then r must be uncertain, as well. In contrast, current interest rates are always certain.

Short Sales

- Sometimes it is possible to sell an asset that you do not own. This process is called short selling or shorting.
- How does it work?
 - 1. You borrow the asset from someone who owns it.
 - 2. You sell the asset to someone else at its current price X_0 .
 - \bigcirc At a later date, you buy the asset for X_1 .
 - 4. You return the asset to your lender.
- Your overall profit is $X_0 X_1 \Rightarrow$ short selling is profitable if the asset price declines.
- The potential loss of a short sale is unbounded!
 - ⇒ Short selling is often restricted or avoided.

Portfolios

- Suppose n different assets are available.
- We form a master asset or portfolio by apportioning an amount X_0 among the assets.
- We select amounts X_{0i} , i = 1, 2, ..., n, such that

$$+1$$
 (1 , \pm , \pm)
$$\sum_{i=1}^{n} X_{0i} = X_{0}, \quad \text{Budget}$$

$$\text{Constrain}$$

- where X_{0i} represents the amount invested in asset i.
- If short selling is allowed, some X_{0i} 's can be negative; otherwise we require $X_{0i} \ge 0$.
- The X_{0i} can be expressed as $X_{0i} = w_i X_0$, i = 1, 2, ..., n, where w_i is the weight of asset i in the portfolio.

Portfolio Return

- The asset weights sum to 1, that is, $\sum_{i=1}^{n} w_i = 1$.
- $R_i \models \text{total return of asset } i. \Rightarrow \text{The amount of money}$ generated at the end of the period by the ith asset is
- Thus, the total value of the portfolio after the period is

of her 4 period
$$-1$$
 $\sum_{i=1}^{n} R_i w_i X_0$.

 $R_i X_{0i} = R_i w_i X_0 .$

⇒ The portfolio's total return and rate of return are

 $R = \frac{\sum_{i=1}^n w_i R_i X_0}{X_0} = \sum_{i=1}^n w_i R_i$ and $r = \sum_{i=1}^n w_i r_i$.

Describing a Portfolio

ENDOCITYA

Assume that there are *n* assets in which you can invest.

Asset	£ invested	% invested	Return
1	X_{01}	$w_1 = X_{01}/X_0$	R_1
2	X_{02}	$w_2 = X_{02}/X_0$	R_2 ,
:	:	:	:
n	X_{0n}	$w_n = X_{0n}/X_0$	R_n
Total:	$X_0 = \sum_{i=1}^n X_{0i} \langle \cdot \rangle$	$1 = \sum_{i=1}^{n} w_i$	$R = \sum_{i=1}^{n} w_i R_i$

A portfolio can be described by £ invested or by portfolio weights. Using weights facilitates the calculation of the portfolio return.

Example

Security	£ Amount	% Weight	Return	. 1
	X_{Oi}	\boldsymbol{W}_i	R i	w _i
А	100	0.1	1.1	0.11
В	300	0.3	1.2	0.36
С	200	0.2	1.05	0.21
D	400	0.4	1.25	0.5
Total	1000	1		1.18

Randomness I

- For any asset, today's value X_0 is deterministic, while the future value X_1 is random.
- \Rightarrow The total return R and the rate of return r are random.

Randomness II

- Suppose there are n assets with random rates of return r_1, r_2, \ldots, r_n .
- These have expected values $\mathrm{E}(r_1)=\bar{r}_1, \mathrm{E}(r_2)=\bar{r}_2,\ldots$ $\ldots,\mathrm{E}(r_n)=\bar{r}_n.$
- We denote the variance of r_i by σ_i^2 and the covariance of r_i with r_j by σ_{ij} ($\Rightarrow \sigma_{ii} = \sigma_i^2$).
- Otherwise, we make no assumptions about the (joint) distribution of r_1, r_2, \ldots, r_n .

Randomness III

Scatter plot of two jointly normally distributed returns r_1 and r_2 with $\bar{r}_1=1$, $\bar{r}_2=1.5$, $\sigma_1^2=\sigma_2^2=1$, and $\sigma_{12}=0.8$.

Mean and Variance of Portfolio Return

The return of a portfolio is given by
$$r = \sum_{i=1}^{n} \widehat{w_i r_i}$$
.

The expected (or mean) return of a portfolio is given by
$$\bar{r} = E(r) = E\left(\sum_{i=1}^{n} w_i r_i\right) = \sum_{i=1}^{n} w_i E(r_i) = \sum_{i=1}^{n} w_i \bar{r}_i.$$

The variance of the return of a portfolio is given by

$$\sigma^{2} = \operatorname{var}(r) = \operatorname{E}\left[\left(\sum_{i=1}^{n} w_{i} r_{i} - \sum_{i=1}^{n} w_{i} \bar{r}_{i}\right)^{2}\right]$$

$$= \operatorname{E}\left[\left(\sum_{i=1}^{n} w_{i} (r_{i} - \bar{r}_{i})\right) \left(\sum_{j=1}^{n} w_{j} (r_{j} - \bar{r}_{j})\right)\right]$$

 $= \mathbb{E}\left[\sum_{i,j=1}^{n} \widetilde{w_i w_j} (r_i - \bar{r}_i) (r_j - \bar{r}_j)\right] = \sum_{i,j=1}^{n} w_i \sigma_{ij}^{\mathcal{E}} w_j.$

Variance as a Risk Measure

■ The variance of the return can be interpreted as a measure of the risk associated with an asset/portfolio.

Diversification

Q: Why should we form portfolios?

A: Portfolios can reduce risk (variance) w/o sacrificing mean return.

Example: Consider n assets with independent and identically distributed (iid) returns, that is,

tically distributed (iid) returns, that is,
$$ar{r}_i = ar{r}$$
 and $\sigma_i^2 = \sigma^2 \quad \forall \, i = 1, 2, \dots, n$.

What are the mean and variance $\bar{r}_{\rm P}$ and $\sigma_{\rm P}^2$ of the portfolio with $w_1=w_2=\cdots=w_n=1/n$?

⇒ Portfolios reduce risk!

mean return: $\bar{r}_{\rm P} = \alpha \bar{r}_1 + (1-\alpha)\bar{r}_2$

W1=0, W2=1-The portfolio with $w_1 = \alpha$ and $w_2 = 1 - \alpha$ has:

$$r_{1} = 2 \times 10^{-1}$$

$$r_{1} = 2 \times 6 \times 10^{-1}$$

$$r_{2} = 2 \times 6 \times 10^{-1}$$

$$r_{3} = 2 \times 6 \times 10^{-1}$$

$$r_{4} = 2 \times 6 \times 10^{-1}$$

$$r_{5} = 2 \times 6 \times 10^{-1}$$

variance: $\sigma_{\rm P}^2 = \alpha^2 \sigma_1^2 + 2\alpha (1 - \alpha) \sigma_{12} + (1 - \alpha)^2 \sigma_2^2$

 $6 = \sqrt{(26^{2} + 20(1-0)^{6})6^{2}}$

The Feasible Set

Given n assets, what does the set of all possible portfolios look like in the (σ, \bar{r}) plane?

The feasible set defined with short selling allowed contains the one defined without short selling.

Minimum-Variance Set

- The left boundary of the feasible set is called the minimum variance set.
- The point with lowest possible variance is called the minimum variance point.
- Decision criteria:
 - Given 2 portfolios with the same mean return, a risk-averse investor will prefer the one with the smaller risk (variance).
 - Given 2 portfolios with the same risk (variance), a greedy investor will prefer the one with the higher mean return.
- ⇒ Only the upper half of the minimum variance set is of interest to investors. This set is termed efficient frontier.

Efficient Frontier

- The minimum-variance set is obtained by minimizing the risk/variance for any given mean return.
- The efficient frontier is the top portion of the minimumvariance set.

Harry Markowitz

Harry Max Markowitz (born August 24, 1927) won the Nobel Prize in Economics in 1990 for his pioneering work on portfolio theory.

The Markowitz Model I

- Markowitz formulated the problem to determine the efficient frontier as a mathematical optimization problem.
- Assume there are n risky assets with
 - mean returns $\bar{r}_1, \bar{r}_2, \ldots, \bar{r}_n$
 - covariances σ_{ij} for $i, j = 1, 2, \dots, n$.
- The portfolio with weights w_1, w_2, \ldots, w_n has

 - mean return $\bar{r}_{\mathrm{P}} = \sum_{i=1}^n w_i \bar{r}_i$ variance $\sigma_{\mathrm{P}}^2 = \sum_{i,j=1}^n w_i \sigma_{ij} w_j$.

minimize
$$w_i$$
, $w_i = \frac{1}{2} \sum_{i,j=1}^n w_i \sigma_{ij} w_j$ $w_i = \frac{1}{2} \sigma_P^2$ $w_i = \frac{1}{2} \sum_{i=1}^n w_i = \frac{1}{2} \sum_{i=$

target parameter $\bar{r}_{\rm P}$.

The minimum-variance set is obtained by plotting the minimal $\sigma_{\rm P}^2$ for different parameter values $\bar{r}_{\rm P}$.

Solution of the Markowitz Model I

minimize
$$\frac{1}{2}\sum_{i,j=1}^{n}w_{i}\sigma_{ij}w_{j}$$
 Lagrange multipliers: subject to $\sum_{i=1}^{n}w_{i}\bar{r}_{i}-\bar{r}_{P}=0$ constraint #1 () (salars. The associated Lagrangian function L is given by

The associated Lagrangian function L is given by $L(\mathbb{R}^n, \mathbb{R}, \mathbb{R}) \longrightarrow \mathbb{R}$

$$L = \frac{1}{2} \sum_{i,j=1}^{n} w_{i} \sigma_{ij} w_{j} - \lambda \left(\sum_{i=1}^{n} w_{i} \bar{r}_{i} - \bar{r}_{P} \right) - \mu \left(\sum_{i=1}^{n} w_{i} - 1 \right).$$

$$= \frac{1}{665} \sum_{i,j=1}^{n} w_{i} \sigma_{ij} w_{j} - \lambda \times const \# - \mu \times (constraint \# 2).$$

COMPUTATIONAL FINANCE 40

Solution of the Markowitz Model II

Differentiate the Lagrangian w.r.t. w_1, w_2, \ldots, w_n , λ , and μ , and set all derivatives = 0:

$$w_i:$$

$$\sum_{j=1}^n \sigma_{ij}w_j - \lambda \bar{r}_i - \mu = 0 \quad \text{for } i = 1, 2, \dots, n$$
 $\lambda:$
$$\sum_{i=1}^n w_i \bar{r}_i = \bar{r}_P \quad \sum_{j=1}^n w_j \sigma_{ij} w_j - \lambda \left(\sum_{i=1}^n w_i \bar{r}_i - \bar{r}_P\right) - \mu \left(\sum_{i=1}^n w_i - 1\right)$$
 $\mu:$
$$\sum_{i=1}^n w_i = 1 \quad \text{for } i = 1, 2, \dots, n$$

$$\sum_{j=1}^n w_i \bar{r}_j = \bar{r}_P \quad \sum_{j=1}^n w_j \sigma_{ij} w_j - \lambda \left(\sum_{j=1}^n w_j \bar{r}_j - \bar{r}_P\right) - \mu \left(\sum_{j=1}^n w_j - 1\right)$$

 $\Rightarrow n+2$ equations for n+2 unknowns $w_1, w_2, \ldots, w_n, \lambda, \mu$.

These equations characterize the efficient portfolios!

Vector Notation

Define

- $w = (w_1, w_2, \dots, w_n) \in \mathbb{R}^n$ vector of portfolio weights;
- $\bar{r} = (\bar{r}_1, \bar{r}_2, \dots, \bar{r}_n) \in \mathbb{R}^n$ vector of exp. asset returns;
- $e = (1, 1, \dots, 1) \in \mathbb{R}^n$ vector of 1's;
- $\mathbf{0} = (0, 0, \dots, 0) \in \mathbb{R}^n$ vector of 0's;
- covariance matrix of asset returns

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Markowitz Revisited

In vectorial notation, the Markowitz problem reads:

minimize
$$\frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w} = \frac{1}{2} \underbrace{\boldsymbol{\xi}}_{ij} \underbrace{\boldsymbol{w}_{i}^{\top}}_{ij} \underbrace{\boldsymbol{\xi}_{ij}^{\top}}_{ij} \underbrace{\boldsymbol{w}_{i}^{\top}}_{ij} \underbrace{\boldsymbol{v}_{i}^{\top}}_{ij} \underbrace{\boldsymbol{v}_{i}$$

The associated Lagrangian function can be rewritten as

$$L(\boldsymbol{w}, \lambda, \mu) = \underbrace{\frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w} - \lambda \left(\boldsymbol{w}^{\top} \bar{\boldsymbol{r}} - \bar{r}_{\mathrm{P}} \right) - \mu \left(\boldsymbol{w}^{\top} \boldsymbol{e} - 1 \right)}_{\text{$\boldsymbol{v} \in \mathcal{V}_{\mathrm{NS}}, \boldsymbol{v} \in \mathcal{V}_{\mathrm$$

while the optimality conditions become
$$\sum \boldsymbol{w} - \lambda \bar{\boldsymbol{r}} - \mu \boldsymbol{e} = \boldsymbol{0}, \quad \bar{\boldsymbol{r}}^{\top} \boldsymbol{w} = \bar{r}_{\mathrm{P}} \quad \text{and} \quad \boldsymbol{e}^{\top} \boldsymbol{w} = 1.$$

$$\underbrace{\{\xi + \xi^{\top}\}_{\mathcal{W}} - \lambda \hat{\boldsymbol{r}} - \mu \hat{\boldsymbol{e}} = \boldsymbol{0}, \quad \xi + \xi^{\top} = 2\xi \quad (\xi \text{ is symmetric.})\}_{\mathcal{H}}}_{\mathcal{H}}$$

Solution of Optimality Conditions

The optimality conditions

$$\Sigma m{w} - \lambda ar{m{r}} - \mu m{e} = m{0} \,,$$
 , $m{ar{r}}^ op m{w} = ar{m{r}}_ ext{P}$ and $m{e}^ op m{w} = 1$

can be written as one vectorial equation

This is solvable if Σ has full rank and \bar{r} is not a multiple of e.

Markowitz Model w/o Short Selling

minimize
$$\frac{1}{2}\sum_{i,j=1}^n w_i\sigma_{ij}w_j \qquad \text{for} \quad \text{f$$

- This problem cannot be reduced to the solution of a set of linear equations. It is termed a quadratic program.
- Such problems can be solved via special computer programs (use e.g. the function 'quadprog' in Matlab).

COMPUTATIONAL FINANCE 4

Parameter Estimation 5

- Means, variances, and covariances of the asset returns must be estimated from historical data.
- Select a basic period length p (e.g. p = 1/12 for monthly periods).
- For a given asset, assume that we have n samples of returns r_1, r_2, \ldots, r_n corresponding to non-overlapping periods of length p.
- Assume that these returns are
 - independent and
 - identically distributed with common mean value \bar{r} and variance σ^2 .

Estimation of \bar{r}

ullet The best estimate \hat{r} of the (unknown) mean rate of return \bar{r} is obtained by averaging the samples:

- Note: the value \hat{r} is itself random! If we used a different set of n samples, we would obtain a different \hat{r} .
- What are the mean and variance of \hat{r} ?

•
$$\mathbf{E}(\hat{r}) = \mathbf{E}(\frac{1}{n}\sum_{i=1}^{n}r_i)$$
 $= \bar{r}$ become $\mathbf{f}(r) = \bar{r}$

 $\mathbf{var}(\hat{r}) = \mathbf{E}[(\hat{r} - \bar{r})^2] = \mathbf{E}[\frac{1}{n} \sum_{i=1}^n (r_i - \bar{r})]^2 = \frac{1}{n} \sigma^2$ $\Rightarrow \hat{r} \text{ is an unbiased estimator for } \hat{r}.$

Estimation of (σ^2) **I**

- An estimate $\hat{\sigma}^2$ of the (unknown) variance of the rate of
- return σ^2 is given by the sample variance:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (r_i - \hat{r})^2.$$

- Note that this formula uses the sample mean \hat{r} as an input.
- The value of $\hat{\sigma}^2$ is also random!

Estimation of σ^2 **II**

$$\begin{array}{lll} \hat{\sigma}^2 \text{ is an unbiased estimator of } \sigma^2 \colon & \\ E(\hat{\sigma}^2) &=& E(\frac{1}{n-1} \sum_{i=1}^n [r_i - \frac{1}{n} \sum_{j=1}^n r_j]^2) \\ &=& E(\frac{1}{n-1} \sum_{i=1}^n [(r_i - \bar{r}) - \frac{1}{n} \sum_{j=1}^n (r_j - \bar{r})]^2) & \\ &=& E(\frac{1}{n-1} \sum_{i=1}^n [(r_i - \bar{r})^2 - \frac{2}{n} \sum_{j=1}^n (r_i - \bar{r})(r_j - \bar{r}) \\ &+& \frac{1}{n^2} \sum_{j,k=1}^n (r_j - \bar{r})(r_k - \bar{r})]) & \text{ where } \\ &=& \frac{1}{n-1} (\sum_{i=1}^n E[(r_i - \bar{r})^2] - \frac{1}{n} \sum_{i,j=1}^n E[(r_i - \bar{r})(r_j - \bar{r})]) \\ &=& \frac{1}{n-1} (n\sigma^2 - \frac{1}{n}n\sigma^2) & \text{ for all } \\ &=& \sigma^2 & \text{ figure } \end{array}$$

If the returns are normally distributed, it can be shown that

$$\sqrt{\operatorname{var}(\hat{\sigma}^2)} = \frac{2\sigma^4}{n-1} \longrightarrow 0 \quad \text{as } n \to 6$$

COMPLITATIONAL FINANCE 40

Estimation of Covariances

- Assume that $r_{A,1}, r_{A,2}, \ldots, r_{A,n}$ and $r_{B,1}, r_{B,2}, \ldots, r_{B,n}$ are the returns of assets A and B over non-overlapping periods of length p.
- An estimate $\hat{\sigma}_{AB}$ of the (unknown) covariance σ_{AB} is given by the sample covariance:

$$\hat{\sigma}_{AB} = \frac{1}{n-1} \sum_{i=1}^{n} (r_{A,i} - \hat{r}_A)(r_{B,i} - \hat{r}_B).$$

- Note that this formula uses the sample means \hat{r}_A and \hat{r}_B as inputs.
- The value of $\hat{\sigma}_{AB}$ is random!
- It can be shown that $E(\hat{\sigma}_{AB}) = \sigma_{AB}$.

Monthly Returns of Google Stock Price

Date		Close	Retur	n	Squared Err.
	Feb 09	340.	45		
	Jan 09	338.	53 5	.67E-03	5.97E-04
	Dec-08	307.	65 1	.00E-01	4.94E-03
	Nov 08	292.	96 5	.01E-02	4.02E-04
	Oct-08	359.	36 -1	.85E-01	4.62E-02
	Sep 08	400.	52 -1	.03E-01	1.77E-02
	Aug 08	463.	29 -1	.35E-01	2.74E-02
	Jul 08	473.	75 -2	.21E-02	2.72E-03
	Jun 08	526.	42 -1	.00E-01	1.69E-02
	May-08	585	5.8 -1	.01E-01	1.73E-02
	Apr 08	574.	29 2	.00E-02	1.01E-04
	Mar-08	440.	47 3	.04E-01	7.49E-02
	Feb 08	471.	18 -6	.52E-02	9.08E-03
	Jan 08	564	l.3 -1	.65E-01	3.81E-02
	Dec-07	691.	48 -1	.84E-01	4.58E-02
	Nov 07	6	93 -2	.19E-03	1.04E-03
	Oct-07	7	07 -1	.98E-02	2.49E-03
	Sep 07	567.	27 2	.46E-01	4.67E-02
	Aug 07	515.	25 1	.01E-01	5.02E-03
	Jul 07	5	10 1	.03E-02	3.92E-04
	Jun 07	522	2.7 -2	.43E-02	2.96E-03
				•	

Price

HE (Leave things as they ever + CAPM in C.W)

(Relate C.W on 2/09, some deadfine) some Qs.