Análisis de presencias con procesos de puntos

Tutorial intermedio de spatstat

Gerardo Martín 2022-06-29

Simulación de presencias

Especificación de un centroide

Código - generando favorabilidad "verdadera"

```
centroide <- cellStats(r, mean)
r.df <- data.frame(rasterToPoints(r))
covar <- cov(r.df[, 3:5])
md <- mahalanobis(r.df[, 3:5], center = centroide, cov = coval
head(md)
## [1] 5.846738 6.383437 6.443874 7.296541 6.475630 6.066614</pre>
```

Código - viendo la favorabilidad

```
md.r <- rasterFromXYZ(data.frame(r.df[, 1:2], md))
md.exp <- exp(-0.5*md.r)
plot(md.exp)</pre>
```


4

Código - simulando los puntos

Código - favorabilidad y puntos

plot(md.exp); points(puntos.2)

Formateo para spatstat

Cargando las funciones

```
source("Funciones-spatstat/imFromStack.R")
source("Funciones-spatstat/winFromRaster.R")
source("Funciones-spatstat/plotQuantIntens.R")
```

Formateo rápido

Análisis exploratorio

Autocorrelación

```
K <- envelope(puntos.2.ppp, fun = Kest, nsim = 39)
## Generating 39 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
##
## Done.</pre>
```

K

10

Autocorrelación - notas

- 1. Pareciera que el proceso está levemente autocorrelacionado
- 2. No sabemos de momento si afectará al modelo
- 3. Debemos poner atención al modelo ajustado

Respuestas a variables

Ver archivo de gráficas

```
plotQuantIntens(imList = r.im,
                noCuts = 5,
                Quad = Q,
                p.pp = puntos.2.ppp,
                dir = "",
                name = "Respuestas-centroide")
## pdf
## 2
```

12

Consideraciones para proponer modelos

Curvas con forma de campana ightarrow fórmula cuadrática

Consideraciones para proponer modelos

Ecuación lineal:

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n$$

Ecuación polinomial de 2^o grado

$$y = \alpha + \beta_1 x_1 + \beta_1' x_1^2 + \dots + \beta_n x_n + \beta_n' x_n^2$$

Recordemos que $y = \log \lambda$

¿Qué variables podemos incluir en el mismo modelo?

Regla de oro: Aquellas que no estén correlacionadas

- \cdot Que x_1 no sea predictor de x_2
- · No se puede atribuir efecto de x_1 ó x_2 sobre λ
- · Necesitamos medir correlación entre pares de variables (pairs)

Medición de correlación entre covariables

```
pairs(r)

## Warning in graphics::par(usr): argument 1 does not name a gra

## Warning in graphics::par(usr): argument 1 does not name a gra

## Warning in graphics::par(usr): argument 1 does not name a gra
```

Warning in graphics::par(usr): argument 1 does not name a gra

Warning in graphics::par(usr): argument 1 does not name a gra

80 120

Warning in graphics::par(usr): argument 1 does not name a gra

Variables compatibles

Podemos incluir en el mismo modelo:

- 1. Var.1 y Var.3
- 2. Var.2 y Var.3

Por lo tanto las fórmula polinomial

$$\log \lambda = \alpha + \beta_1 x_1 + \beta_1' + x_1^2 + \beta_2 x_2 + \beta_2' + x_2^2 +$$

En R:

Ajustando los modelos

Comparando los modelos

```
AIC(m1); AIC(m2)
## [1] -473.2666
## [1] -468.7745
```

Analizar los efectos estimados

sum.m1 <- summary(m1)</pre>

knitr::kable(sum.m1\$coefs.SE.CI[, 1:4])

	Estimate	S.E.	C195.lo	CI95.hi
(Intercept)	-57.0868149	16.1815344	-88.8020396	-25.3715903
Var.1	0.4649718	0.1498312	0.1713081	0.7586355
Var.3	0.1973027	0.0970164	0.0071541	0.3874513
I(Var.1^2)	-0.0011954	0.0003795	-0.0019391	-0.0004517
I(Var.3^2)	-0.0006754	0.0003126	-0.0012881	-0.0000626

Diagnóstico - Residuales

```
par(mar = c(2,2,2,2))
diagnose.ppm(m1, main = "", cex.axis = 0.25)
```


Diangnóstico - Residuales

```
par(mar = c(2,2,2,2))
diagnose.ppm(m2, main = "", cex.axis = 0.25)
```



```
K1 <- envelope(m1, fun = Kest, nsim = 39)</pre>
## Generating 39 simulated realisations of fitted Poisson model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
##
## Done.
K2 \leftarrow envelope(m2, fun = Kest, nsim = 39)
## Generating 39 simulated realisations of fitted Poisson model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
##
## Done.
```

$$plot(K1, cex = 0.5)$$

$$plot(K2, cex = 0.5)$$

K2

Resumen del análisis

- · AIC menor para m1
- · Residuales dentro de tolerancia para m1
- · Prueba de ripley correcta para ambos modelos
 - No parece necesario modelar autocorrelación (lo haremos a continuación)
- · Evidencia favorece a m1

Revisando la predicción

plot(m1, se = F, main = "")

Guardando los resultados

Modelando los efectos espaciales

Modelos de interacción

- · Estiman efecto aleatorio para puntos cercanos
- · Sirven para procesos de exclusión o agregación moderada
- · Hay varios tipos de interacciones entre puntos

¿Qué es interacción?

Tipos de interacciones

0.1 0.05

0.01

0.005

0.001

FUNCTION	Model
AreaInter	area-interaction process
${ t BadGey}$	multiscale Geyer saturation proce
Concom	connected component interaction
Geyer	Geyer saturation process
Hybrid	hybrid of several interactions
Ord	Ord model, user-supplied potentia
OrdThresh	Ord model, threshold potential
Saturated	saturated model, user-supplied po
${ t SatPiece}$	multiscale saturation process
Triplets	Gever triplet interaction process 32

Para generar un modelo de interacción

1. Establecer tamaño del búfer

```
rr \leftarrow data.frame(r=seg(1,5,by=1))
p <- profilepl(rr, Strauss,</pre>
                 puntos.2.ppp \sim Var.1 + Var.3 + I(Var.1^2) + I(Var.1^2)
           covariates = r.im, aic=T, rbord = 0.5)
## comparing 5 models...
## 1, 2, 3, 4, 5.
## fitting optimal model...
## done.
```

Para generar un modelo de interacción

Para generar un modelo de interacción

Un radio de tamaño 2 minimiza la pseudo-verosimilitud, de modo que el modelo de interacción con la fórmula de m1 es:

Efectos estimados

sum.int <- summary(m1.int)
knitr::kable(sum.int\$coefs.SE.CI[, 1:4])</pre>

	Fatimanta	CF	CIOF Io	CIOE h:
	Estimate	S.E.	CI95.lo	CI95.hi
(Intercept)	-68.4382995	38.7998381	-144.4845847	7.6079858
Var.2	0.5668834	0.2965100	-0.0142655	1.1480322
Var.3	0.5331550	0.4226373	-0.2951989	1.3615089
I(Var.2^2)	-0.0024765	0.0012598	-0.0049457	-0.0000074
I(Var.3^2)	-0.0017398	0.0014341	-0.0045507	0.0010710
Interaction	-0.0127375	0.0102314	-0.0327907	0.0073157

Efectos estimados - comparación

```
coef(m1)
   (Intercept) Var.1 Var.3 I(Var.1<sup>2</sup>) I(Var.3<sup>2</sup>
##
## -5.708681e+01 4.649718e-01 1.973027e-01 -1.195420e-
03 -6.753759e-04
coef(m1.int)
    (Intercept) Var.2 Var.3 I(Var.2<sup>2</sup>) I(Var.3<sup>2</sup>)
##
    -68.438299459 0.566883377
                                        0.533154977
##
0.002476525 - 0.001739840
##
     Interaction
## -0.012737533
```

Diangóstico

```
K.int <- envelope(m1.int, Kest, nsim = 39)

## Generating 39 simulated realisations of fitted Gibbs model .
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
##
## Done.</pre>
```

plot(K.int)

K.int

Fitted trend

Proceso Cox log-Gaussiano

¿Qué es?

- · En MPPs
 - · Intensidad es explicada por covariables si
 - · Covariables rara vez explican puntos agregados
- · Gaussiano = Distribución normal
 - · Efecto aleatorio con distribución normal multivariada

$$\log \lambda_i = \alpha + \beta_1 x_{1.i} + \dots + G(u_i, v_i)$$

- α es el intercepto global - $G(u_i)$ es el intercepto aleatorio para cada píxel - Cuando todas las x=0, la intensidad en el píxel i es $\exp(\alpha+G(u_i))$

¿Con qué se ajusta un LGCP en R?

- · Frecuentista spatstat (rápido poco preciso)
- · Bayesiano
 - · RINLA (moderadamente rápido, moderadamente preciso)
 - lgcp (muuuuy lento, bastante preciso)
- Frecuentista son aproximaciones, y Bayesiano son estimaciones verdaderas

Ajustando un LGCP con spatstat

Ajustando un LGCP con spatstat

sum.lgcp <- summary(m1.lgcp)</pre>

knitr::kable(sum.lgcp\$coefs.SE.CI[, 1:4])

S.E. 0403861 0933978	-52.3	CI95.lo 3629657 0855706	Cl95.hi -13.0053753 0.4516833
0933978	0.0	0855706	0.4516833
0994261	0.0	0603370	0.4500800
0003974	-0.0	0019254	-0.0003678
0000107	-0.0	0014595	-0.0002102
			0.0019291

Comparando con MPP

knitr::kable(sum.m1\$coefs.SE.CI[, c(1, 2, 3, 4)])

	Estimate	S.E.	C195.lo	CI95.hi
(Intercept)	-57.0868149	16.1815344	-88.8020396	-25.3715903
Var.1	0.4649718	0.1498312	0.1713081	0.7586355
Var.3	0.1973027	0.0970164	0.0071541	0.3874513
I(Var.1^2)	-0.0011954	0.0003795	-0.0019391	-0.0004517
I(Var.3^2)	-0.0006754	0.0003126	-0.0012881	-0.0000626

Predicciones

plot(m1.lgcp, what = "intensity")

m1.lgcp Intensity


```
K.lgcp <- envelope(m1.lgcp, Kest, nsim = 39)
## Generating 39 simulated realisations of fitted cluster model
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
##
## Done.</pre>
```

plot(K.lgcp)

K.lgcp

Conclusiones

- · Modelo Poisson
 - · Más simple, y no parece tener problemas
 - · IC de estimaciones más amplios que LGCP
- Interacción
 - · IC más amplios que MPP
- LGCP
 - Función K más cercana a expectativa teórica ### Alternativas de modelación
- · Respuestas bisagra: Regresión por partes
- Respuestas no lineales: Suavizadores GAM
- · Interacciones entre variables