Sunity Grashul decture - 2 Time-Complexity

Complexity: - Complexity of an algorithm M is the function f(n) which gives one running time and/or storage space requirement of me algorithm in term of the size n of the input data.

=> the storage space required by an algorithm is simply a multiple of the data size n.

in the term Complexity shall refer to me algorithm.

1) Consider one jollenny logic for calculating sum of natural no.'s.

for (i = 0 ', i <=n ', i ee)

SUN = 700		time	bluen time each
3	Mow ma	ny time ontrol goes. tim	er unit. instruction.
Observation are:	V ·	1 1 unit	181=1
Assignment i=1	ے ۔	& unit	(n+1) & 2 =) 2 n+2
Comparison i <= n	\ n+!		n. 2 = 2n
	$\bigvee \gamma$	2 unit	1
indement 179	n	lunit	nal => n
. Addition Sum + 1			n
Assimment Sum= Sum+i	n	lunit	$n \approx 1 = n$
Assignment sum = sum +1		, 1	1.0.01901010
		Total	1+20+2+20+0+0

Scanned by CamScanner

 \Rightarrow 6n+3

Page-2.

According to Poig- O Notation

Ne have to ignore me implementation dependent-jactur I elimenate me constant factors.

 $f(n) = 6n+3/\approx 6/n \approx O(n)$

The cases which are one usually investigates in amplexity theory are:-

- . worst case : → the maximum value of f(n) for any possible input
- the expected value of f(n) · Arange Cose :-
- · Best case: no minimum value of f(n)

The complexity of an algorithm shall mean one function which gives one ourning time of me junction which terms of one input size.

We use Big- O Notation , to compare me Junchen Jan Die Standard Junction

Bij-0 => means on one order of ie O(n) =) means on one order of ?

Page - 3	
	١

Expressing time	Complexity By f(n)
	0 (g(n))
J(n)	0(1)
20 unit $1.0^2 \pm 3$	$O(n^2)$
$\frac{1}{9}n^2+3$	$O(n^2)$
500n ² -25	O(03)
$n^{3}+n^{2}-1$	
5n3+3n+6	0 (n3)

Boblems on Complexity:-

Davit C= a; Assignment statement seme land a=b; Assignment statement some former will take seme land be execute.

Tanit b=c; I anit b=c;

total term is denoted by O(1)Constant term is denoted by

if (a>5)

There are thecking mis

proof ("a is larger");

There are I/o production

else

so he don't another he else go me don't curider he pombé (" bis larger")] there are I/o modurchais so me don't curider he have bleen by them.

if (a7b) =) central only goes once mere so it usu bake some consistant unit of the. say it is Qunit $\approx 2 \approx 0(1)$ 3) · dogit of linear search for(i=0; i<n°, iee) if (a [i] = = ele) E Pring (" element fer nd"); break; Assignment n&2 = 2n 2 unit n times · Comparison n&2 = 2n 2 unit n times 1++ increment na1 = 1 unt n times if (condition) 161 = 1 once when · Body & if. 1 unit element found. 1+20+20+ \approx 5n +2

 $\oint f(n) = 5n + 2$ According to Bij-O Notation $f(n) = 5n + 2 \approx 5n \approx 0$ $f(n) = 5n + 2 \approx 5n \approx 0$ $f(n) = i \approx n \approx i = i \approx 2$ $3 = i = i \approx 2$

Assummy n = 1024So for which value of i we will go inside me leops i = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

ie we will have 10 it-restrans.

 $2^{10} = 1024$ $\log \log u = 10$

log n = m men a^m = n

taking 1024 as $\frac{n}{2}$ leg n = 10 ≈ 0 (log n)

\$\frac{(i=n; i>); i=i/a) Assumy n= 1024 ne go insole me los is for which valuisof i, i=1024, 512, 256, 128, 64, 32, 16, 8, 6, je bohul 11 iterations :. (ay 1024 = 10 11 iteration of log to log n =) 10 9 iterations us 4 not make any drasti change while computing one three complexity) $\approx o(ly,n)$ Independent lesps for (i=1; l'<=n; l'et) mis fr (j=1; j<n; j=j2) s mis will enewle ~ log_n Ames.

so j hop will encute non =) n2 times. Li lesp will enout no times. : bold time beleen in n+ 02 Acc. 10 Bij-0 smeller values se reglected. DR for (=1; iz=n; iee) $\Rightarrow \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 \\ 3 & 3 \end{pmatrix}$ (21, j=1, , 4, ---. i=2 j j=1.--- ie Cyn. i=n; men j=1 - - lyzh. mere fore so jon lup us le eneule (nos ley n in Jusp us'4 encente n' times hohel time beleen

y/+ nøleyn ~ O(nleyn)

Pg-9

For Dependent despos

Of for (i=0; i<=n; i+p)

for (j=1; j<=n; j+p) // for one most super noter lesp $\sum_{i=0}^{n} (n-y+y) \Rightarrow \sum_{i=0}^{n} n$ After opening => n+n+n---
me \(\frac{1}{2} \) for \(i=0 \) \(i=1 \) \(i=2 \) i=n. \Rightarrow n (n+1) $\Rightarrow n^2 + n'$ According to Bij-0 reglect one small $\approx 0(n^2)$ 02 for (i=1°, i<=n; i++) { for (j=1; j<=i; j++) = 9 am taking here I not not affect will not affect ≤ (i-1+1) $\stackrel{!}{\underset{i=1}{=}} i \Rightarrow 1+2+3+---- r$ natural no. of dum. $\frac{n(n+1)}{2} \approx \frac{n^2}{2} + \frac{n}{2}$ $\approx \frac{n^2}{2} \approx \frac{O(n^2)}{2}$ 03. for (i=1; i<=n; i+e)

{
pr(j=1; j<=n; j+e) à jus (k=1; K<=n; k++) always apply U-L+1 gr me innermosts S=1 S=1

Scanned by CamScanner

$$\frac{3-11}{N}$$

$$\frac{3$$

$$\frac{\int g - 12}{\int rr(j=0;j;k=n;j;n+1)}$$

$$\int rr(j=0;j;k=n;j;n+1)$$

$$\int rr(k=0;k=j:j;k+1)$$

$$\int rr(k=0;k=j:j;k+1)$$

$$\int rr(k=0;k=j:j;k+1)$$

$$\int rr(k=0;k=j:j;k+1)$$

$$\int rr(k=0;k=j:j;k+1)$$

$$\int rr(k=0;j:k+1)$$

$$\begin{array}{c}
\frac{rg-14}{3r} \\
\frac{r}{3r} \left(\frac{i=0}{2}, \frac{i$$

$$\frac{p_{3}-15}{2}$$

$$\frac{p_{3}-15}{2}$$

$$(0^{2}+1^{2}+---n-1+m_{4})-(1+1+---n-1+m_{4})$$

$$\frac{p_{3}}{p_{3}}$$

			7g-16				
D = A-	a d Cax	wth 2	Stunda	old of	unchien	5 nt	
Rati	1- 1	n	n log n	nz	n ³	2	
n 3(4)	logn		15	25	125	22	
5	3	2		100	3	103	
10	4	10	40	,	C	30	

100

