Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-10 (cancelled)

Claim 11 (previously presented): A system for delivering a stent into an anatomical structure, the system comprising:

an outer tubular structure having a proximal end and a distal end, wherein the outer tubular structure has a translucent region at its distal end and the translucent region has a length that substantially coincides with a constrained length of a stent within the outer tubular structure;

an inner elongated structure having a proximal end and a distal end, the inner elongated structure being located within the outer tubular structure such that the distal end of the inner elongated structure substantially coincides with the distal end of the outer tubular structure;

a stent accommodating area on the distal end of the inner elongated structure; and

an external tubular structure contact area projecting from a surface of the inner elongated structure and located proximal to the stent accommodating area, the external tubular structure contact area frictionally sliding against an interior surface of the outer tubular structure.

Claims 12-44 (cancelled)

But

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

Claim 45 (previously presented): A method of deploying a stent with respect to an anatomical structure, the method comprising:

providing a stent delivery system, the system comprising:

an outer tubular structure having a proximal end and a distal end, wherein the outer tubular structure has a translucent region at its distal end and the translucent region has a length that substantially coincides with a constrained length of a stent within the outer tubular structure;

an inner elongated structure having a proximal end and a distal end, the inner elongated structure being located within the outer tubular structure such that the distal end of the inner elongated structure substantially coincides with the distal end of the outer tubular structure;

a stent accommodating area on the distal end of the inner elongated structure accommodating a stent; and

an external tubular structure contact area projecting from a surface of the inner elongated structure and located proximal to the stent accommodating area, the external tubular structure contact area able to frictionally slide against an interior surface of the outer tubular structure;

inserting the stent delivery system through an insertion point in a body until the distal ends of the external tubular structure and the inner elongated structure are in a position within the anatomical structure;

moving the outer tubular structure proximally while maintaining the position of the inner elongated structure, thus exposing the stent accommodating area and releasing at least part of the stent into the anatomical structure;

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

17

continuing the proximal movement of the outer tubular structure with respect to the inner elongated structure until the stent is completely deployed into the anatomical structure; and

withdrawing the stent delivery system from the insertion point in the body.

Claim 46 (cancelled)

Claim 47 (previously presented): The system of claim 11, further comprising:

a gap between an external surface of the inner elongated structure and the interior surface of the outer tubular member.

Claim 48 (previously presented): The system of claim 11, further comprising:

at least one marker band on the inner elongated structure proximate the stent accommodating area.

Claim 49 (previously presented): The method of claim 45, wherein the stent delivery system further comprises:

a gap between an external surface of the inner elongated structure and the interior surface of the outer tubular member.

Claim 50 (previously presented): The method of claim 45, wherein the stent delivery system further comprises:

at least one marker band on the inner elongated structure proximate the stent accommodating area.

Claim 51 (previously presented): The method of claim 45, further comprising: before completely deploying the stent into the anatomical structure, moving the inner elongated structure proximally while maintaining the position of the outer tubular

11 pm

11 eplai

47

11

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLL

structure, thus retracting at least part of the stent from the anatomical structure back into the stent accommodating area; and

re-positioning the stent delivery system to a new position with respect to the anatomical structure.

Claim 52 (previously presented): The method of claim 45, wherein the external tubular structure contact area on the inner elongated structure is constructed of Pellethane.

Claim 53 (new): The system of claim 11, wherein the external tubular structure contact area on the inner elongated structure is constructed of Pellethane.

Claim 54 (new): The system of claim 11, wherein the external tubular structure contact area on the inner elongated structure comprises a plurality of external tubular structure contact areas projecting from the surface of the inner elongated structure.

Claim 55 (new): The system of claim 54, wherein each external tubular structure contact area on the inner elongated structure is separated from other external tubular structure contact areas.

Claim 56 (new): The system of claim 55, wherein each subsequently proximal external tubular structure contact area on the surface of the inner elongated structure increases in durometer from the distal end to the proximal end of the inner tubular structure.

Claim 57 (new): The system of claim 56, wherein the most distal external tubular structure contact area on the surface of the inner elongated structure has a durometer measure of approximately 55D.

eplin

eglar

//

1 (

11/

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNERLL

56 cancel

Claim 58 (new): The system of claim 57, wherein each subsequent proximal external tubular structure contact area has a durometer measure greater than approximately 55D.

56

Claim 59 (new): The system of claim 58, wherein there are three external tubular structure contact areas.

56

Claim 60 (new): The system of claim 59, wherein the durometer measures of the three external tubular structure contact areas on the surface of the inner tubular structure from the distal end proximally are approximately 55D, approximately 65D, and approximately 75D.

111:0

Claim 61 (new): The system of claim 11, further comprising a <u>stent</u> located in the stent accommodating area and within the outer tubular structure when the stent is constrained.

11

Claim 62 (new): The method of claim 45, wherein the external tubular structure contact area on the inner elongated structure comprises a plurality of external tubular structure contact areas projecting from the surface of the inner elongated structure.

11

Claim 63 (new): The method of claim 62, wherein each external tubular structure contact area on the inner elongated structure is separated from other external tubular structure contact areas.

56

Claim 64 (new): The method of claim 63, wherein each subsequently proximal external tubular structure contact area on the surface of the inner elongated structure increases in durometer from the distal end to the proximal end of the inner tubular structure.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

56

Claim 65 (new): The method of claim 64, wherein the most distal external tubular structure contact area on the surface of the inner elongated structure has a durometer measure of approximately 55D.

Consel 54 Claim 66 (new): The method of claim 65, wherein each subsequent proximal external tubular structure contact area has a durometer measure greater than approximately 55D.

56

Claim 67 (new): The method of claim 66, wherein there are three external tubular structure contact areas.

56

Claim 68 (new): The method of claim 67, wherein the durometer measures of the three external tubular structure contact areas on the surface of the inner tubular structure from the distal end proximally are approximately 55D, approximately 65D, and approximately 75D.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP