Homework 6

Due date: 2018.12.26

Note for these two problems:

Please don't specify a representation for the γ -matrices. You can directly use the results of the Problem 1 of Homework 3, if needed.

Problem 1. A spinor ψ can be decomposed as

$$\psi = \psi_L + \psi_R \,,$$

where $\psi_L \equiv P_L \psi$, $\psi_R \equiv P_R \psi$, $P_L = (1 - \gamma^5)/2$ and $P_R = (1 + \gamma^5)/2$.

- 1) Show that $(P_L)^2 = P_L$, $(P_R)^2 = P_R$ and $P_L P_R = P_R P_L = 0$. [1 point]
- 2) Show that $\bar{\psi}_L = \bar{\psi} P_R$ and $\bar{\psi}_R = \bar{\psi} P_L$. [1 point]
- 3) Show that $\gamma^{\mu}P_L = P_R\gamma^{\mu}$ and $\gamma^{\mu}P_R = P_L\gamma^{\mu}$ [1 point]
- 4) Write the Lagrangian for the spinor ψ , that is, $\mathcal{L} = \bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi m \bar{\psi} \psi$, in terms of $\psi_L, \psi_R, \bar{\psi}_L$ and $\bar{\psi}_R$. [2 point]

Problem 2. Prove the Gordon identity [5 points],

$$2m\bar{u}(\vec{p}',s')\gamma^{\mu}u(\vec{p},s) = \bar{u}(\vec{p}',s')[(p'+p)^{\mu} + i\sigma^{\mu\nu}(p'-p)_{\nu}]u(\vec{p},s),$$

where m>0, $(\not p-m)u(\vec p,s)=0$, $(\not p'-m)u(\vec p',s')=0$, and $\sigma^{\mu\nu}=\frac{i}{2}[\gamma^\mu,\gamma^\nu]\equiv\frac{i}{2}(\gamma^\mu\gamma^\nu-\gamma^\nu\gamma^\mu)$.