Теория автоматов и формальных языков Введение

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

18 сентября 2020

О чем этот курс?

Теория автоматов и формальных языков изучает:

- Математические модели для описания языков
- Абстрактные машины для работы с языками

Также рассматриваются:

- Подходы к описанию синтаксиса языков
- Подходы к описанию "смысла" программ и предложений
- Принципиальные ограничения механизмов для работы с языками

Какие бывают языки?

- Естественные
 - Русский, английский...

Какие бывают языки?

- Естественные
 - Русский, английский...
- Искусственные
 - ▶ Эсперанто, ложбан...
 - ▶ Клингонский, эльфийский...

Какие бывают языки?

- Естественные
 - Русский, английский...
- Искусственные
 - Эсперанто, ложбан...
 - Клингонский, эльфийский...
 - ► C++, Python, Java, C#, Haskell, OCaml, Perl, Coq, Agda...

Где можно встретить языки?

В повседневной жизни:

- при разговоре, в переписке
- на заборах, на стенах гробниц
- в собственной голове при формулировке мыслей...

Где можно встретить языки?

В повседневной жизни:

- при разговоре, в переписке
- на заборах, на стенах гробниц
- в собственной голове при формулировке мыслей...

При работе с различными языковыми процессорами:

- текстовыми редакторами
- компиляторами, интерпретаторами, трансляторами
- средами разработки...

Где можно встретить языки?

В повседневной жизни:

- при разговоре, в переписке
- на заборах, на стенах гробниц
- в собственной голове при формулировке мыслей...

При работе с различными языковыми процессорами:

- текстовыми редакторами
- компиляторами, интерпретаторами, трансляторами
- средами разработки...

Все нуждаются в формализованном представлении языка

Два аспекта спецификации языка программирования

- Синтаксис правила построения программ из символов
 - Форма
- Семантика правила истолкования программ
 - Смысл

Пример: английский язык

You know nothing, Jon Snow

- Синтаксис
 - **.** . . .
 - ▶ Порядок слов в предложении: подлежащее, дополнение сказуемое, все остальное
 - Обращение обособляется запятыми
 - **.** . . .
- Семантика
 - Говорящий обращается к Джону Сноу, утверждая, что Джон ничего не знает

Пример: язык арифметических выражений

$$1*(2+3)/4-5$$

- Синтаксис
 - ▶ Терм: последовательность цифр или любое выражение в скобках
 - Слагаемое: последовательность термов, соединненых знаками умножения и деления
 - ► Выражение: последовательность слагаемых, соединенных знаками сложения и вычитания (перед первым слагаемым может стоять минус)
- Семантика
 - Значение арифметического выражения

Пример: язык арифметических выражений

$$1*(2+3)/4-5$$

- Синтаксис
 - ▶ Терм: последовательность цифр или любое выражение в скобках
 - Слагаемое: последовательность термов, соединненых знаками умножения и деления
 - ► Выражение: последовательность слагаемых, соединенных знаками сложения и вычитания (перед первым слагаемым может стоять минус)
- Семантика
 - Значение арифметического выражения
 - **★** -3.75
 - **★** -4

Пример: синтаксис if-выражений

```
if temperature > 23:
  print('Wear shorts.')
else:
  print('Wear long pants.')
```

```
if ( temperature > 23 ) {
  cout<<"Wear shorts.\n";
}
else
  cout<<"Wear long pants.\n";
}</pre>
```

```
if temperature > 23
then print "Wear shorts."
else print "Wear long pants."
```

```
(if (> temperature 23)
  (print "Wear shorts.")
  (print "Wear long pants."))
```

Что такое язык?

Что такое язык?

Язык — множество строк

Что такое множество?

Что такое множество?

Множество — набор уникальных элементов

Что такое множество?

Множество — набор уникальных элементов

- $x \in X$: x элемент множества X (x принадлежит X)
- $x \notin X$: x не является элементом множества X (x не принадлежит X)
- Уникальность, неупорядоченность:
 {13, 42} = {42, 13} = {42, 13, 42}
- Универсальное множество (универсум \mathcal{U}): множество всех мыслимых объектов
 - ▶ $\mathbb{N} = \{1, 2, 3, \dots\}$
 - $ightharpoonup \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

A является **подмножеством** B тогда и только тогда, когда все элементы A являются элементами B

$$A \subseteq B \iff \forall x : x \in A \Rightarrow x \in B$$

A является **подмножеством** B тогда и только тогда, когда все элементы A являются элементами B

$$A \subseteq B \iff \forall x : x \in A \Rightarrow x \in B$$

- $\{13,42\} \subseteq \{7,13,37,42,99\}$
- $\{1,3,5,...\}\subseteq\mathbb{N}$
- $\mathbb{N} \subseteq \mathbb{Z}$
- ∀A : A ⊆ A
- Пустое множество (\varnothing): множество без элементов
 - $\forall x: x \notin \emptyset$
 - $\triangleright \forall A : \varnothing \subseteq A$

Множества A и B равны тогда и только тогда, когда A является подмножеством B и B является подмножеством A

$$A = B \iff A \subseteq B \text{ u } B \subseteq A$$

Множества A и B равны тогда и только тогда, когда A является подмножеством B и B является подмножеством A

$$A = B \iff A \subseteq B \text{ u } B \subseteq A$$

A является **строгим подмножеством** B тогда и только тогда, когда A является подмножеством B, но они не равны друг другу

$$A \subset B \iff A \subseteq B \text{ if } A \neq B$$

Множества A и B равны тогда и только тогда, когда A является подмножеством B и B является подмножеством A

$$A = B \iff A \subseteq B \text{ in } B \subseteq A$$

A является **строгим подмножеством** B тогда и только тогда, когда A является подмножеством B, но они не равны друг другу

$$A \subset B \iff A \subseteq B \text{ if } A \neq B$$

- $\forall x : \varnothing \subset \{x\}$
- $\mathbb{N} \subset \mathbb{Z}$
- \bullet $\mathbb{Z} \not\subset \mathbb{N}$
- $\forall A: A = A \text{ in } A \not\subset A$

Множество всех подмножеств (powerset)

Множество всех подмножеств множества A состоит из всех подмножеств A

$$2^A = \{B \mid B \subseteq A\}$$

- $\forall A : \varnothing \in 2^A$
- $\forall A : A \in 2^A$
- $A = \{0,1\} \Rightarrow \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$

Множество всех подмножеств (powerset)

Множество всех подмножеств множества A состоит из всех подмножеств A

$$2^A = \{B \mid B \subseteq A\}$$

- $\forall A : \varnothing \in 2^A$
- $\forall A : A \in 2^A$
- $A = \{0,1\} \Rightarrow \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$

Сколько элементов может быть в множестве всех подмножеств?

Операции над множествами

```
Объединение: A \cup B = \{x \mid x \in A \text{ или } x \in B\}
Пересечение: A \cap B = \{x \mid x \in A \text{ и } x \in B\}
Разность: A \setminus B = \{x \mid x \in A \text{ и } x \notin B\}
Дополнение: \overline{A} = \{x \mid x \in \mathcal{U} \text{ и } x \notin A\} = \mathcal{U} \setminus A
```

Строки: неформально

Строки: неформально

Строка — последовательность символов

Алфавит

• Алфавит (Σ) — конечное множество (атомарных, неделимых) символов

```
 \{a, b, c, \dots, z\} 
 \{\alpha, \beta, \gamma, \dots, \omega\}
```

- ▶ {0,1}
- ▶ {<u>let</u>, <u>in</u>, <u>where</u>, . . . }

Цепочка

- **Цепочка** (предложение, слово, строка) любая конечная последовательность символов алфавита
 - cat
 - ▶ κατ
 - 011000110110000101110100
 - ▶ main = putStrLn . show . inc 2 where inc = \x -> x + 1
- ullet Пустая цепочка arepsilon цепочка, не содержащая ни одного символа
 - ightharpoonup arepsilon не является символом алфавита

Конкатенация строк

- Конкатенация строк α и β ($\alpha \cdot \beta = \alpha \beta$) результат приписывания строки β в конец строки α
 - $\forall \alpha \beta \gamma : (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
 - $\forall \alpha : \alpha \cdot \varepsilon = \varepsilon \cdot \alpha = \alpha$

Пример: арифметические выражения

- Алфавит $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$
- 1*(2+3)/4-5= $1\cdot*(2+3)/4-5=$ $1*(2+3)\cdot/4-5=$ $1\cdot*(\cdot2\cdot+\cdot3\cdot)\cdot/\cdot4\cdot-\cdot5=$ $1*(2+3)/4-5\cdot\varepsilon$
- Является ли ε арифметическим выражением?

Операции над строками

- Обращение (реверс) цепочки a^R цепочка, символы которой записаны в обратном порядке
 - ▶ Если x = abc, то $x^R = cba$
 - $\epsilon^R = \varepsilon$
- n-я степень цепочки a^n конкатенация n повторений цепочки
 - $ightharpoonup a^0 = \varepsilon$
 - $a^n = a \cdot a^{n-1} = a^{n-1} \cdot a$
- **Длина цепочки** |a| количество составляющих ее символов
 - ▶ |*babb*| = 4
 - ▶ $|babb|_a = 1, |babb|_b = 3, |babb|_c = 0$
 - $|\varepsilon|=0$

Формальный язык

- ∑ алфавит
 - $\Sigma = \{0, 1\}$
- Σ^* множество, содержащее все цепочки в алфавите Σ , включая пустую цепочку
 - $\Sigma^* = \{ \varepsilon, 0, 1, 00, 11, 01, 10, 000, 001, 011, ... \}$
 - Сколько может быть элементов в Σ*?

Формальный язык

- Σ алфавит
 - $\blacktriangleright \ \Sigma = \{0,1\}$
- Σ^* множество, содержащее все цепочки в алфавите Σ , включая пустую цепочку

 - Сколько может быть элементов в Σ^* ?
- $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$
 - $\Sigma^+ = \{0, 1, 00, 11, 01, 10, 000, 001, 011, \dots\}$
 - Сколько может быть элементов в Σ^+ ?

Формальный язык

- Σ алфавит
 - ▶ $\Sigma = \{0, 1\}$
- Σ^* множество, содержащее все цепочки в алфавите Σ , включая пустую цепочку

 - ▶ Сколько может быть элементов в ∑*?
- $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$
 - $\Sigma^+ = \{0, 1, 00, 11, 01, 10, 000, 001, 011, \dots\}$
 - Сколько может быть элементов в Σ^+ ?
- Формальный язык в алфавите Σ подмножество множества всех цепочек в этом алфавите.
 - lacktriangle Для любого языка L (в алфавите Σ) справедливо $L\subseteq \Sigma^*$
 - ► $L = \{0, 00, 000, \dots\} \subset \{0, 1\}^*$
 - $L = \{0,0101,011011011,\dots\} \subset \{0,1\}^*$

- Язык, на котором дано описание языка
 - ▶ Естественный язык

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)

- Язык, на котором дано описание языка
 - ▶ Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)
 - Синтаксические диаграммы

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)
 - Синтаксические диаграммы
 - Грамматики
 - **.** . . .

- Язык, на котором дано описание языка
 - ▶ Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)
 - Синтаксические диаграммы
 - Грамматики
 - **.** . . .

БНФ — Бэкуса-Наура форма

- Символ элементарное понятие языка
 - + означает сложение в языке арифметических выражений
- Метапеременная сложное понятие языка
 - ▶ Переменной <выражение> можно обозначить выражение
- Формула
 - <определяемый символ>::=<посл.1>|...|<посл.n>
 - ▶ В правой части формулы альтернатива конкатенаций строк, составленных из символов и метапеременных
- Пример: число
 - <число>::=<цифра>|<цифра><число>
 - <цифра>::= 0 | 1 | · · · | 9

Расширенная форма Бэкуса Наура (EBNF)

- Более емкие операции
- Итерация

•
$$<$$
x $> ::= {} эквивалентно: $<$ x $> ::= ε | $<$ y $><$ x $>$$$

- Условное вхождение
 - ▶ <х> ::= [<у>] эквивалентно: <х> ::= ε | <у>
- Скобки для группировки
 - (<x>|<y>)<z> эквивалентно: <x><z>|<y><z>

Пример: арифметические выражения

- Терм: последовательность цифр или любое выражение в скобках
- **Слагаемое**: последовательность **термов**, соединненых знаками умножения и деления
- Выражение: последовательность слагаемых, соединенных знаками сложения и вычитания (перед первым слагаемым может стоять минус)

```
< expr > ::= [-] < factor > \{ (+ | -) < factor > \}

< factor > ::= < term > \{ (* | /) < term > \}

< term > ::= < number > | '(' < expr > ')'
```

- Язык, на котором дано описание языка
 - ▶ Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)
 - Синтаксические диаграммы
 - Грамматики
 - **.** . . .

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)
 - Синтаксические диаграммы
 - Грамматики
 - **...**

Описание языка: формальная грамматика

- Порождающая грамматика G это четверка $\langle V_T, V_N, P, S \rangle$
 - V_T алфавит терминальных символов (терминалов)
 - $ightharpoonup V_N$ алфавит нетерминальных символов (нетерминалов)

$$\star V_T \cap V_N = \emptyset$$

★
$$V ::= V_T \cup V_N$$

- ▶ Р конечное множество правил вида $\alpha \to \beta$
 - $\star \quad \alpha \in V^* V_N V^*$
 - \star $\beta \in V^*$
- ▶ S начальный нетерминал грамматики,
 - **★** *S* ∈ *N*

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1, -\} V_N = \{S, N, A\}$$

$$S \rightarrow 0$$

 $S \rightarrow N$
 $S \rightarrow -N$
 $N \rightarrow 1A$
 $A \rightarrow 0A$
 $A \rightarrow 1A$
 $A \rightarrow \varepsilon$

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1, -\} V_N = \{S, N, A\}$$
 $S \rightarrow 0$
 $S \rightarrow N$
 $S \rightarrow -N$
 $N \rightarrow 1A$
 $A \rightarrow 0A$
 $A \rightarrow 1A$
 $A \rightarrow \varepsilon$

Пример: язык чисел в двоичной системе счисления

$$V_{T} = \{0, 1, -\} V_{N} = \{S, N, A\}$$

$$S \rightarrow 0 \mid N \mid -N$$

$$N \rightarrow 1A$$

$$A \rightarrow 0A \mid 1A \mid \varepsilon$$

$$S \rightarrow 0 \mid [-]N$$

$$N \rightarrow 1A$$

$$A \rightarrow (0 \mid 1)A \mid \varepsilon$$

Отношение непосредственной выводимости

- $\alpha \to \beta \in P$
- $\gamma, \delta \in V^*$
- $\gamma\alpha\delta\Rightarrow\gamma\beta\delta$: $\gamma\beta\delta$ непосредственно выводится из $\gamma\alpha\delta$ при помощи правила $\alpha\to\beta$

Отношение непосредственной выводимости: пример

$$S \rightarrow 0 \mid N \mid -N$$

$$N \rightarrow 1A$$

$$A \rightarrow 0A \mid 1A \mid \varepsilon$$

$$S \Rightarrow -N$$

$$-N \Rightarrow -1A$$

$$-1A \Rightarrow -11A$$

Отношение выводимости

Отношение выводимости является рефлексивно-транзитивным замыканием отношения непосредственной выводимости

- $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_n \in V^*$
- $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$
- $\alpha_0 \stackrel{*}{\Rightarrow} \alpha_n$: α_n выводится из α_0

Отношение выводимости: пример

$$\begin{array}{ccc} S & \rightarrow & 0 \mid N \mid -N \\ N & \rightarrow & 1A \\ A & \rightarrow & 0A \mid 1A \mid \varepsilon \end{array}$$

$$S \Rightarrow -N \Rightarrow -1A \Rightarrow -11A \stackrel{*}{\Rightarrow} -1101A \Rightarrow -1101$$

Отношение выводимости: свойства

- Транзитивность: $\forall \alpha, \beta, \gamma \in V^*: \alpha \stackrel{*}{\Rightarrow} \beta, \beta \stackrel{*}{\Rightarrow} \gamma$ следовательно $\alpha \stackrel{*}{\Rightarrow} \gamma$
- Рефлексивность: $\forall \alpha \in V^*: \alpha \stackrel{*}{\Rightarrow} \alpha$
- $\alpha_0 \stackrel{+}{\Rightarrow} \alpha_n$: вывод использует хотя бы одно правило грамматики
- $\alpha_0 \stackrel{k}{\Rightarrow} \alpha_n$: вывод происходит за k шагов

Левосторонний вывод

На каждом шагу заменяем самый левый нетерминал

$$\begin{array}{ccc} S & \rightarrow & AA \mid s \\ A & \rightarrow & AA \mid Bb \mid a \\ B & \rightarrow & c \mid d \end{array}$$

$$S \Rightarrow AA \Rightarrow BbA \Rightarrow cbA \Rightarrow cbAA \Rightarrow cbaA \Rightarrow cbaA$$

Аналогично определяется правосторонний вывод

Язык, порождаемый грамматикой $G = \langle V_T, V_N, P, S
angle$

$$L(G) = \{ \omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} \omega \}$$

Эквивалентность грамматик

Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

Эквивалентность грамматик

Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

$$V_T = \{0, 1, -\}$$
 $V_N = \{S, N, A\}$

$$S \rightarrow 0 \mid N \mid -N$$

$$N \rightarrow 1A$$

$$A \rightarrow 0A \mid 1A \mid \varepsilon$$

$$V_{T} = \{0, 1, -\}$$

$$V_{N} = \{S, A\}$$

$$S \rightarrow 0 \mid 1A \mid -1A$$

$$A \rightarrow 0A \mid 1A \mid \varepsilon$$

Контекстно-свободная грамматика

Контекстно-свободная грамматика — грамматика, все правила которой имеют вид $A \to \alpha, A \in V_N, \alpha \in V^*$

Дерево вывода

Дерево является **деревом вывода** для $G = \langle V_N, V_T, P, S \rangle$, если:

- ullet Каждый узел помечен символом из алфавита V
- Метка корня S
- Листья помечены терминалами, остальные узлы нетерминалами
- Если узлы n_0, \dots, n_k прямые потомки узла n, перечисленные слева направо, с метками A_0, \dots, A_k ; метка n-A, то $A \to A_0 \dots A_k \in P$

Пример дерева вывода

$$\textit{G} = \langle \{\textit{S},\textit{A}\}, \{\textit{a},\textit{b}\}, \{\textit{S} \rightarrow \textit{aAS} \mid \textit{a},\textit{A} \rightarrow \textit{SbA} \mid \textit{ba} \mid \textit{SS}\}, \textit{S} \rangle$$

$$S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabbaS \Rightarrow aabbaa$$

Вывод и дерево вывода

Теорема

Пусть $G = \langle V_N, V_T, P, S \rangle$ — KC-грамматика Вывод $S \stackrel{*}{\Rightarrow} \alpha$, где $\alpha \in V^*, \alpha \neq \varepsilon$ существует \Leftrightarrow существует дерево вывода в грамматике G с результатом α

Упражнение: доказать теорему