THE UNIVERSITY OF CHICAGO

RESEARCH COMPUTING CENTER

Introduction to Geocoding

May 21, 2019

What is Geocoding?

Geocoding uses a description of a location, most typically a **postal address** or place name, to find **geographic coordinates** from spatial reference data such as building polygons, land parcels, street addresses, postal codes, etc.

Topics

- 1. TIGER Basics
- 2. Geocoding vs. Address Matching
- 3. Online Geocoders
- 4. Geocoding Errors

Hands on Training

- 1. RCC Geocoder
- 2. Google Geocoder API
- 3. OSM Geocoder
- 4. Comparison

TIGER = Topologically Integrated Geographic Encoding and Referencing

Initial TIGER database created in 1990

TIGER Basics

- A system for recording the location of geographic features associated with U.S. Census.
- The system includes the location and attributes of census related point, line and area features.

What information is stored?

- Census Feature Class Codes (CFCC)
 - Road = A, Transport terminal = D
- Census geography (Federal Information Processing Standard- FIPS)
 - E.g. State, county, census tract
- Feature name
- Address range
- Source material

Τ	TLID	FEDIRP	FENAME	FETYPE	FEDIRS	CFCC	FRADDL	TOADDL	FRADDR	TOADDR	ZIPL	ZIPR	SOURCE	CENSU
Г	71807274		Zion Church	Rd		A41	1042	1044	1043	1045	29016	29016	В	0
	71807276		Zion Church	Rd		A41	1041	1001	1040	1000	29016	29016	В	0
	71807672		Zion Church	Rd		A41	1046	1098	1047	1099	29016	29016	В	0
	71828518		Zion	Ave		A41	1600	1610	1601	1611	29201	29201	Α	0
	71828519		Zion	Ave		A41	1612	1658	1613	1699	29201	29201	Α	0
Į	71828521		7inn	Ave		Δ41	1660	1710	1701	1721	29201	29201	Δ	n
T														

Geocoding

The process of finding the location of an address on a map.

The location can be a pair of (X, Y) coordinate or a street address, postal delivery location, or building.

- X longitude (+ for E hemisphere; for W hemisphere)
- Y latitude (+ for N hemisphere; for S hemisphere)

In GIS, geocoding requires a reference dataset that contains address attributes for the geographic features in the area of interest.

The Basics of Geocoding X, Y Coordinates x 3,339,584 y 3,339,584 y 1,669,792 y 1,669,792 y 1,669,792 y 1,669,792

The process of relating two or more data files using a common address field.

A process that compares an address or a table of addresses to the address attributes of a reference dataset to determine whether a particular address falls within an address range associated with a feature in the reference dataset.

If an address falls within a feature's address range, it is considered a match and a location can be returned.

Reference map

These unique geocodes provide the link between geographic Census TIGER polygons and attribute census data

Cottbg	Pers_per_fam	Age-40-44	Marhid-wichid	Marhid-worthis	Medirent	Oc-technician	Med-hhine	Owner_occ
790026008	2.88	62	54	96	436	38	32361	209
790026009	2.96	36	105	79	324	41	16127	134
790027001	2.42	7	0	20	426	33	20437	66
790027002	2.91	61	70	85	476	22	29700	263
790027003	2.60	36	54	44	436	14	27917	125
790027004	2.79	53	45	56	406	27	37679	156
790027005	2.75	17	12	24	433	28	19792	48
790028001	2.63	0	18	9	566	13	11250	17
790028002	2.88	56	47	34	338	20	20509	94
790101001	3.22	108	136	197	292	29	29261	403
790101002	3.24	160	241	201	383	52	40625	554

What is address matching?

 Address matching is the process of assigning an actual address to a geographic location / area based on some reference files.

Common reference files

A point/polygon reference file where each feature contains <u>1</u>
 discrete address location

E.g. Parcel or parcel centroids

 A point/polygon reference file where each feature contains <u>a</u> series of address locations

E.g.
$$Zip + 4$$

A line reference file where each feature contains <u>address ranges</u>

E.g. TIGER roads (streets)

Zip code boundaries / centroids as geographic reference

Zip code + 4 as geographic reference

Shirley, 2003

Parcel Boundaries – polygons with a discrete address

Parcel Centroids – points with a discrete address

TIGER roads – line file with address ranges and directional information

Commonly used road segment attributes and how they are named in TIGER 2000, TIGER 2014 Address Range Feature County, and The National Map transportation layers.

Attribute	TIGER 2000	TIGER 2014	The National Map
Prefix direction of road (N. Smith St.)	FEDIRP	n/a	n/a
Name of road (N. Smith St.)	FENAME	FULLNAME	Full_Street_Name
Type of road (N. Smith St .)	FETYPE	n/a	n/a
Suffix direction of road (Canal Street E .)	FEDIRS	n/a	n/a
Start of address ranges on left side of road	FRADDL	LFROMHN	Low_Address_Left
End of address ranges on left side of road	TOADDL	LTOHN	High_Address_Left
Start of address ranges on right side of road	FRADDR	RFROMHN	Low_Address_Right
End of address ranges on left side of road	TOADDR	RTOHN	High_Address_Right
Zip code on left side of road	ZIPL	ZIPL	Zip_Left
Zip code on right side of road	ZIPR	ZIPR	Zip_Right
Code to determine the kind of road (residential, highway, etc.)	CFCC	ROAD_MTFCC	Road_Class

Parsing Addresses – breaking up street addresses into component pieces, i.e., prefix, number, name, type, and suffix

Table 8.2

Addresses that have been parsed into their component parts and standardized.

Location	Address	Prefix	Number	Street name	Street type	Suffix
White House	1600 Pennsylva- nia Avenue NW		1600	Pennsylvania	AVE	NW
National Gallery of Art	401 Constitution Avenue NW		401	Constitution	AVE	NW
U.S. Capitol	1 1st Street NE		1	1st	ST	NE
Office of the Federal Register	800 North Capitol Street NW	N	800	Capitol	ST	NW
Washington National Cathedral	3101 Wisconsin Avenue NW		3101	Wisconsin	AVE	NW
United States Holocaust Memo- rial Museum	100 Raoul Wallenberg Place SW		100	Raoul Wallenberg	PL	SW

- Attribute query, Topological structure of street data (i.e. direction), Attributed with to and from address range
- Linear interpolation a method used in geocoding to place an address location among a range of addresses along a street segment.

Attribute query of address characteristics

- --- city, State zip code
- --- street name, type

Direction based on street number

Left \rightarrow 1100 to 1198

Right → 1101 to 1199

1147 is the odd number → RIGHT

Attributed with to and from address range

1147 is between 1101 to 1199

Locating 1147 Main Street on map

Linear Interpolation

Address difference: 1147 - 1101 = 46

Address range: 1199 - 1101 = 98

Address % along its street segment = 46 / 98 = 47%

Coordinate change in X = 6391 - 5000 = 1391

Interpolated X = (0.47 * 1391) + 5000 = 5653.77

Where is 2200 Gervais Street?

Geocoders

Local	Online
Local geocoder (city of Chicago Geostreets) Create geocoder based on street	U.S. Census Geocoder OSM ESRI World Geocoder
centerlines	OpenCage Texas A&M Geoservices
ESRI street map premium	SAS Proc Geocode Google/Bing/Mapquest API

ESRI World Geocoder

- Pros:
 - Most accurate option
 - Fast processing
- Cons:
 - Expensive and difficult credit :

Google/Bing/Mapquest API

Pros:

- Can use Stata. R, and other tools
- Many are already be familiar with these services

Cons:

- Limited free queries per IP per day
- Less transparent on quality of matches
- Enterprise API key is expensive

U.S. Census Geocoder

- Pros:
 - Completely free
 - Easy to use
- Cons:
 - Limited to 1,000 addresses
 - Lower accuracy than alternatives

SAS Proc Geocode

- Pros:
 - Free (inside UI)
 - Handles unlimited addresses
- Cons:
 - Basic knowledge of SAS required
 - Lower accuracy than alternatives

OSM

- Pros:
 - Free
 - Across the globe coverage
 - Setup local server
- Cons:
 - Lower accuracy than alternatives

Local Geocoders

- Pros:
- Highly accurate
- Usually free to use
- Cons:
 - Limited to a single city
 - Need to create or learn for each city

Local Geocoders: StreetMap Premium

- Pros:
 - Highly accurate
 - One time cost
- Cons:
 - Expensive, need to purchase separate dataset for each state

StreetMap Premium

Enriched global data optimized for map display, geocoding, and routing. Ready-to-use on premises.

RCC-GIS Geocoding Service: Formatting Data for Processing

https://gis.rcc.uchicago.edu/content/rcc-gis-geocoding-service

Based on ESRI world Geocoder

Acceptable headers:

ID

ADDRESS

NEIGHBORHOOD

CITY

SUBREGION

REGION or STATE or ST

POSTAL or ZIP or ZIP CODE

COUNTRYCODE

Generating Google Geocoder API Key

1. Go to the **Google** Cloud Platform Console.

https://developers.google.com/maps/documentation/geocoding/get-api-key

- 1. From the Project drop-down menu, select or **create** the project for which you want to add an **API key**.
- 2. From the Navigation menu, select **APIs** & Services > Credentials.
- 3. On the Credentials page, click **Create** credentials > **API key**. ...
- 4. On the dialog, click Restrict **Key**

https://maps.googleapis.com/maps/api/geocode/json?address=university+of

```
+chicago&key=AlzaSyCa9 mrD7EwhR5MUJx,uX62O0CiXoVLUaw
```

```
"results" : [
    "address components":[
        "long name": "5801",
        "short name": "5801",
        "types":["street_number"]
        "long name": "South Ellis Avenue",
        "short name": "S Ellis Ave",
        "types" : [ "route" ]
        "long name": "Hyde Park",
        "short name": "Hyde Park",
        "types": [ "neighborhood", "political" ]
        "long name": "Chicago",
        "short name": "Chicago",
        "types": [ "locality", "political" ]
        "long name": "Chicago",
        "short name": "Chicago",
        "types": [ "administrative area level 3", "political" ]
        "long name": "Cook County",
        "short name": "Cook County",
        "types": [ "administrative area level 2", "political" ]
```

```
"long name": "Illinois",
   "short name": "IL",
   "types": [ "administrative area level I", "political" ]
    "long name": "United States",
   "short name": "US",
   "types": [ "country", "political" ]
   "long_name": "60637",
   "short name": "60637",
   "types":["postal code"]
"formatted address": "5801 S Ellis Ave, Chicago, IL 60637, USA",
"geometry" : {
  "location" : {
   "lat": 41.7886079,
   "lng": -87.5987133
  "location_type": "ROOFTOP",
  "viewport" : {
   "northeast" : {
     "lat": 41.7899568802915,
     "lng": -87.5973643197085
   "southwest": {
     "lat": 41.7872589197085,
     "Ing": -87.60006228029151
"place id": "Chl|RUhmExYpDogRyvXSAM9lf18",
"plus code": {
  "compound code": "QCQ2+CG Chicago, Illinois, United States",
  "global_code": "86HJQCQ2+CG"
```

Hybrid Geocoding Approaches

Geocoding Error

S Western Ave is one-way street (the green triangles for blvd are on the wrong side)

Geocoding Error

ESRI world locator could not locate W 43rd St.

Final Note

Address matching based on the Linear Interpolation rule is not 100 percent correct.

However, this is the most widely accepted approach (practical and efficient) for GIS geocoding.

Same as in MapQuest and Google Maps and other cloud based.

Questions?

Please ask now or email me! rpitingolo@urban.org

Thank You!