**Interp**(d, x, t, p)

1. Keterangan: Pada awalnya d dan x adalah vektor dari  $f[x_0,...,x_i]$  dan  $x_i$ , i = 0, 1, ..., n. Pada saat 'exit' p akan berisi  $p_n(t)$ .

- 2.  $p := d_n$
- 3. Kerjakan s/d langkah 4 untuk i = n-1, n--2, ..., 0
- 4.  $p := d_i + (t x_i)p$
- 5. ' exit'

## 3.2. Interpolasi dengan tabel beda hingga

#### 3.2.1. Beda Maju

Notasi:  $\Delta f(x_i) = f(x_{i+1}) - f(x_i)$  dengan  $x_i = x_0 + ih$ , i = 0, 1, 2, 3, ... Untuk  $r \ge 0$ ,

$$\Delta^{r+1}f(z) = \Delta^r f(z+h) - \Delta^r f(z)$$

 $\Delta^r f(z)$  disebut 'beda maju order r',  $\Delta$  disebut 'operator beda maju '

Contoh: 
$$\Delta^0 f(x) = f(x)$$
  
 $\Delta f(x) = \Delta^0 f(z+h) - \Delta^0 f(z)$   
 $= f(x+h) - f(x)$   
 $\Delta^2 f(x) = \Delta f(x+h) - \Delta f(x)$ 

Contoh hitungan : Kita gunakan polinomial  $x^3$  –  $2x^2$  + 7x – 5 dengan h = 1.0

| i | $x_i$ | $f(x_i)$ | $\Delta f$ | $\Delta^2 f$ | $\Delta^3 f$ | $\Delta^4 f$ |
|---|-------|----------|------------|--------------|--------------|--------------|
| 0 | 0.0   | -5.0     | 6          | 2            | 6            | 0            |
| 1 | 1.0   | 1.0      | 8          | 8            | 6            |              |
| 2 | 2.0   | 9.0      | 16         | 14           |              |              |
| 3 | 3.0   | 25.0     | 30         |              |              |              |
| 4 | 4.0   | 55.0     |            |              |              |              |

Korelasi antara 'beda maju' dengan ' beda terbagi'

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{\Delta f(x_0)}{h}$$

$$f[x_0, x_1, x_2] = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{\frac{x_2 - x_0}{x_2 - x_0}} = \frac{\Delta^2 f(x_0)}{2h^2}$$

Secara umum:  $f[x_0, x_1, ..., x_n] = \frac{\Delta^n f(x_0)}{n! h^n}$ 

Akan dijabarkan rumus interpolasi 'beda maju' dari rumus interpolasi 'beda terbagi' Newton. Didefinisikan  $\alpha = \frac{x - x_0}{h}$  yang menunjukkan letak titik x terhadap  $x_0$ . Jadi misalnya  $\alpha = 1.6$ , maka x terletak pada jarak 6/10 dari  $x_1$  ke arah  $x_2$ .

Diinginkan rumus untuk:

$$(x - x_0) (x - x_1) \dots (x - x_k)$$

dinyatakan dalam α

$$x - x_i = x_0 + \alpha h - (x_0 + jh) = (\alpha - j)h$$

Jadi

$$(x - x_0) (x - x_1) \dots (x - x_k) = \alpha(\alpha - 1) \dots (\alpha - k)h^{k+1}$$

sehingga

$$p_n(x) = f_0 + \alpha h \frac{\Delta f_0}{h} + \alpha (\alpha - 1) h^2 \frac{\Delta^2 f_0}{2! h^2} + \dots + \alpha (\alpha - 1) \dots (\alpha - n + 1) h^n \frac{\Delta^n f_0}{n! h^n}$$

Jika didefinisikan koefisien binomial sbb:

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1)...(\alpha - k + 1)}{k!}, k > 0 \text{ dan } \binom{\alpha}{0} = 1$$

maka didapat rumus interpolasi 'beda maju' sbb:

$$p_n(x) = \sum_{j=0}^n {\alpha \choose j} \Delta^j f(x_0)$$
 dengan  $\alpha = \frac{x - x_0}{h}$ 

Contoh hitungan: p(x=1.5) = ?

$$\alpha = \frac{x - x_0}{h} = \frac{1.5 - 1.0}{1.0} = 1.5$$

1) 
$$p_1(x) = f(x_0) + \alpha \Delta f(x_0)$$
  
= -5 + 1.5 (6) = 4

2) 
$$p_2(x) = f(x_0) + \alpha \Delta f(x_0) + \alpha (\alpha - 1) \Delta^2 f(x_0) / 2!$$
  
= -5 + 1.5 (6) + 1.5 (0.5)2/2! = 4.75

### 3.2.2. Beda Mundur

Notasi:  $\nabla f(z) = f(z) - f(z-h)$  $\nabla^{r+1} f(z) = \nabla^r f(z) - \nabla^r f(z-h) \quad r \ge 1$ 

Rumus interpolasinya

$$p_n(x) = \sum_{j=0}^n \binom{j-1-\alpha}{j} \nabla^j f(x_0) \quad \text{dengan } \alpha = \frac{x_0 - x}{h}, \binom{-1-\alpha}{0} = 1$$

| i  | $x_i$ | $f(x_i)$ | $\nabla f$ | $ abla^2 f$ | $\nabla^3 f$ | $ abla^4 f$ |
|----|-------|----------|------------|-------------|--------------|-------------|
| -4 | 0.0   | -5.0     | 6          | 2           | 6            | 0           |
| -3 | 1.0   | 1.0      | 8          | 8           | 6            |             |
| -2 | 2.0   | 9.0      | 16         | 14          |              |             |
| -1 | 3.0   | 25.0     | 30         |             |              |             |
| 0  | 4.0   | 55.0     |            |             |              |             |

Contoh hitungan: p(x=3.5) = ?

$$\alpha = \frac{x_0 - x}{h} = \frac{-3.5 + 4.0}{1.0} = 0.5$$

1) 
$$p_1(x) = f(x_0) + (-\alpha)\nabla f(x_0)$$
  
= 55 + (-0.5) 30 = 40

2) 
$$p_2(x) = p_1(x) + (-\alpha)(-\alpha+1)\nabla^2 f(x_0)/2!$$
  
= 40 + (-0.5)(0.5)14/2! = 38.25

3) 
$$p_3(x) = p_2(x) + (-\alpha)(-\alpha+1)(-\alpha+2)\nabla^3 f(x_0)/3!$$
  
= 38.25 + (-0.5)(0.5)(1.5)6/3! = 37.875

#### 3.3. Lagrange

Polinomial Lagrange dibentuk dengan fomulasi berikut:

$$p_{n}(x) = \sum_{i=0}^{n} L_{i}(x) f(x_{i})$$

$$L_{i}(x) = \sum_{\substack{j=0 \ i \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} \quad i = 0,1,...,n$$

Contoh:

$$p_{i}(x) = \frac{x - x_{1}}{x_{0} - x_{1}} f(x_{0}) + \frac{x - x_{0}}{x - x_{01}} f(x_{1})$$

$$p_{2}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{12})} f(x_{2})$$

Contoh: hitung  $p_2(x)$  yang melalui titik-titik (0,15), (1,1), (3,25)

$$L_{0}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} = \frac{(x - 1)(x - 3)}{(0 - 1)(0 - 3)} = \frac{x^{2} - 4x + 3}{3}$$

$$L_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} = \frac{(x - 0)(x - 3)}{(1 - 0)(1 - 3)} = \frac{x^{2} - 3x}{-2}$$

$$L_{2}(x) = \frac{(x - x_{01})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} = \frac{(x - 0)(x - 1)}{(3 - 0)(3 - 1)} = \frac{x^{2} - x}{6}$$
Jadi  $p_{2}(x) = L_{0}(x) \times (-5) + L_{1}(x) \times (1) + L_{2}(x) \times (25) = 2x^{2} + 4x - 5$ 

#### 3.4. Beberapa fakta penting dari'beda terbagi'

1.  $f[x_0, x_1, ..., x_m] = \frac{f^{(m)}(\xi)}{m!}$  untuk  $\xi \in X\{x_0, x_1, ..., x_n\}$  dimana  $X\{x_0, ..., x_m\}$  artinya interval terkecil dimana  $x_0, x_1, ..., x_m$  tercakup! Contoh:

$$f[x_0] = \frac{f^{(0)}(\xi)}{0!} = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(\xi)$$

$$\xi \in [x_0, x_1]$$

$$f[x_0, x_1, x_2] = \frac{1}{2}f'(\xi)$$

$$\xi \in X\{x_0, x_1, x_2\}$$

2. Jika f(x) adalah polynomial derajad m, maka

adalah polynomial derajad 
$$m$$
, maka
$$f[x_0,...,x_n,x] = \begin{cases} \text{polinomial derajad } m-n-1 & n < m-1 \\ a_m & n = m-1 \\ 0 & n > m-1 \end{cases}$$

dengan  $f(x) = a_m x^m + a_{m-1} x^{m-1} + ... + a_1 x + a_0$ 

3. Kesalahan dalam interpolasi

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1)...(x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x)$$
dengan  $\xi_x \in H\{x_0,....,x_n,x\}$ 

4. 
$$\frac{d}{dx} f[x_0,...,x_n,x] = f[x_0,x,...,x_n,x,x]$$

# Bab

## 4. INTEGRASI NUMERIS

## 4.1. Rumus trapesium dan Simpson

Pada bab ini akan dibicarakan cara menghitung integral secara numeris dari

$$I(f) = \int_{a}^{b} f(x)dx$$

dimana [a,b] berhingga



Gambar 8 Konsep integrasi trapesium

Rumus trapesium pada dasarnya adalah mendekati f(x) dengan garis lurus yang melalui (a,f(a)) dan (b,f(b))

$$I_1(f) = \frac{b-a}{2} [f(a) - f(b)]$$

Metoda Numerik