Exercice 1: Algorithme de Shanks

Considérons un groupe multiplicatif \mathbb{G} et plaçons-nous dans le sous-groupe $\langle g \rangle$ d'ordre connu q engendré par $g \in \mathbb{G}$ (autrement dit, nous avons $\langle g \rangle = \{1, g, g^2, \dots, g^{q-1}\}$). Proposer un algorithme de résolution de logarithme discret par compromis temps-mémoire de complexité $O(\sqrt{q})$ opérations de groupe en temps et $O(\sqrt{q})$ éléments de groupe en mémoire.

Indication. On pourra remarquer que pour tout élément $h = g^x \in \langle g \rangle$, l'entier x s'écrit sous la forme $x = x_1T + x_0$ avec $0 \le x_0 < T$ et $0 \le x_1 < T$ pour $T = \lceil \sqrt{q} \rceil + 1$.

Exercice 2 : Auto-réducibilité du logarithme discret

Soit \mathbb{G} un groupe, et considérons le groupe cyclique d'ordre q engendré par $g \in \mathbb{G}$. Considérons enfin un algorithme \mathcal{A} qui prend en entrée un élément de $\langle g \rangle$ et retourne un élément de \mathbb{Z}_q , en temps τ (dans le pire des cas). Supposons qu'il existe un sous-ensemble E de $\langle g \rangle$ avec $|E| \geq \epsilon q$ et $\epsilon \in]0,1]$ pour lequel lorsque \mathcal{A} est exécuté sur un élément $g \in E$, l'élément $g \in E$ retourné par $g \in E$ vérifie $g \in E$ et $g \in E$ retourné par $g \in E$ retour

Montrer qu'il existe un algorithme \mathcal{B} qui résout le problème du logarithme discret dans $\langle g \rangle$ en un temps espéré $O(\tau/\epsilon)$.

Exercice 3: Notions de sécurité

3.a] Supposons qu'on ait un système de chiffrement à clef publique qui soit sémantiquement sûr (IND-CPA). Démontrez qu'il n'existe pas d'algorithme polynomial capable de calculer la clef secrète à partir de la clef publique.

Un algorithme de chiffrement asymétrique est sémantiquement sûr face aux attaques adaptatives à chiffré choisi (« INDistinguishability under Adaptive Chosen Ciphertext Attack » — IND-CCA2) si tout adversaire $\mathcal A$ fonctionnant en temps polynomial n'a qu'un avantage négligeable au jeu suivant, paramétré par un bit b:

- 1. Le challenger fabrique une paire de clefs (pk, sk) et transmet pk à A.
- 2. A peut faire des calculs, et peut faire déchiffrer les messages de son choix par le challenger.
- 3. \mathcal{A} envoie deux messages $M_0 \neq M_1$ au challenger.
- 4. Le challenger calcule $C \leftarrow \{M_b\}_{pk}$ puis envoie le chiffré C à \mathcal{A} .
- 5. \mathcal{A} peut faire déchiffrer les messages de son choix par le challenger, tant qu'ils sont différents de C.
- 6. A renvoie un bit \hat{b} . Il « gagne » si $b = \hat{b}$.
- **3.b**] Montrez que le chiffrement Elgamal n'est pas IND-CCA2 (il est pourtant sémantiquement sûr face à des *clairs* choisis).

Exercice 4: Chiffrement commutatif et protocole à 3 passes

Un algorithme de chiffrement (symmétrique) est commutatif si $E(K_1, E(K_2, x)) = E(K_2, E(K_1, x))$. On suppose que tout le monde partage un grand nombre premier p. Chaque participant se choisit une clef secrète k au hasard dans l'ensemble $2, 3, \ldots, p-1$. La définition du chiffrement est :

$$E(k, x) = x^k \mod p \qquad (0 \le x < p)$$

- **4.a** Le chiffrement est-il commutatif?
- **4.b**] Vous connaissez un autre mécanisme de chiffrement qui est commutatif. Lequel?
- **4.c** Quelle est la complexité du chiffrement, en fonction de la taille de p?
- **4.d** Comment peut-on faire pour déchiffrer?
- **4.e**] Pourquoi est-il difficile de récupérer la clef à partir d'une paire clair-chiffré connue? Et de deux?

Le « protocole à 3 passes » de Shamir (inventé vers 1980) est le suivant. Les deux participants nommés A et B ont chacun une clef symétrique K_a et K_b , respectivement, qu'ils ne connaissent pas mutuellement. Avec un algorithme de chiffrement commutatif, A transmet un message chiffré à B:

```
 \begin{array}{l} --A \to B : \{M\}_{K_a} \\ --B \to A : \{\{M\}_{K_a}\}_{K_b} \\ --A \to B : \{M\}_{K_b} \end{array}
```

- **4.f**] Comment A calcule le 3ème message? Comment B récupère M à la fin?
- **4.g**] Ce protocole est-il sûr face à des adversaires actifs?

Exercice 5 : Sécurité sémantique du chiffrement Elgamal

Considérons le groupe \mathbb{Z}_p^{\times} (il est cyclique) muni d'un de ses générateurs g (une « racine primitive modulo $p \gg$).

- **5.a**] g peut-il être un résidu quadratique? (supposer que c'est vrai; qu'est-ce qui se passe?)
- **5.b**] A quelle condition sur x est-ce que g^x est un résidu quadratique?
- **5.c**] Considérons un triplet Diffie-Hellman (u, v, w). Si w est un résidu quadratique, que peut-on dire de u et v?
- **5.d**] Même question si w n'est pas un résidu quadratique?
- **5.e**] Déduisez-en un algorithme qui obtient un avantage non-négligeable pour résoudre le problème DDH sur le groupe.
- **5.f**] Quelles sont les conséquences sur le chiffrement Elgamal?
- **5.g**] Pour éviter ce problème, on peut faire le chiffrement Elgamal en remplaçant g par g^2 . Qu'est-ce que ça change?

Exercice 6 : Signature de Schnorr en présence de *nonce-reuse*

Montrez qu'un adversaire qui dispose de la clef publique et deux signatures σ_1 et σ_2 de deux messages $M_1 \neq M_2$ peut aisément calculer la clef secrète du signataire.