Name: ID:

Brac University

Semester: Fall 2023
Course No: CSE251

Course Title: Electronic Devices and Circuits

Sections: 1 to 24

Final Examination Full Marks: 30 Time: 1.5 hours Date: Dec 15, 2023

Answer any 3 questions. All the questions carry equal marks.

Question 1

For the following circuit with MOSFETs, assume that V_T =1 V, k_n' = 20 μ A/ V^2 and the aspect ratio W/L is 1 for all the MOSFETS.

- a) If the gate voltage to M3 MOSFET, $V_x = 0.492$ V, and MOSFET M2 is in <u>triode mode</u>, find the voltage V_1 . Verify the modes for both M1 and M2 [3]
- b) Find *V_y*. [2]
- c) If W/L=4, then $V_1 = 2.04$ V. Find V_x for this case. [2]
- d) Can you explain, whether there will be any changes in the output voltage at V_y for W/L = 4 from that in 'b)'. Also, comment on whether a larger or smaller value of W/L ratio is preferred in this case. [2+1]

The <u>Half-wave rectifier</u> circuit has been cascaded with an inverter. You are given the following information about the circuit: [For HW: $V_0 = V_{dc} \pm V_{ripple}/2$]

$E = 6\sin(400\pi t) V$	$K_n = 2 mA/V^2$	$V_T = 1 V$	$V_{Do} = 0.7 V$
-------------------------	-------------------	-------------	------------------

- (a) **Determine** the peak-to-peak ripple value of the half-wave rectifier output, V_a . What is the lowest value of V_a ? [3+1]
- (b) At the lowest value of V_a , **determine** the output V_b of the inverter. [4]
- (c) Now disconnect the capacitor. In this case, **find out** the voltage V_b for the lowest value of V_a . [2]
- (d) **[BONUS]** Draw an approximate plot of V_b without the capacitor connection. [2]

In the circuit above, $V_{bb}=5~V$, $V_{cc}=15~V$, $R_1=40~k\Omega$, $R_2=60~k\Omega$, $R_3=2~k\Omega$ and $R_4=1~k\Omega$. Also, the current gain, $I_C/I_B=100$.

- a) Draw the equivalent circuit of BJT during saturation and active modes. [1]
- b) Analyze the following circuit to calculate the values of I_b , I_C , I_E , V_{CE} and V_C using the method of assumed states. You must validate your assumptions. [Hint: try to find the Thevenin equivalent of the bottom circuit from the B terminal and ground] [6]
- c) Assume, V_{bb} is changed <u>from 5V to 5.1V</u>, what happens to the outputs of the circuits? Calculate I_b , I_C , I_E , V_{CE} and V_C again. Now for a 0.1V increase in input V_{bb} , what is the change of I_c ? Use $\Delta I_C = I_{C(NEW)} I_{C(OLD)}$ [3]
- d) **[BONUS]** Explain any use case of the differences in voltage increase between input and output. What could the use case be to such a phenomenon? [1]

- a) For the MOSFET in Figure-1, $V_T = 1 V$ and $k_{n'} = 2 mA/V^2$. Assume that the MOSFET is in <u>Saturation mode</u>. Determine the gate voltage, V_g and the minimum supply voltage, V_{ss} to operate the device in this condition. [Hint: $V_{OV} = V_{DS}$] [3+2]
- b) In Figure-2, the MOSFET switching network turns ON the following conditions MUST be fulfilled
 - i. 'A' MUST be ON
 - ii. 'B' and 'C' MUST be ON or 'D' MUST be ON

Deduce the logic function, F, using Boolean variables A, B, C, and D to implement these conditions. [2]

- c) Assume, only A and D switches are ON in the switching network of Figure-2. Find out the output voltage, V_{out} . Let, $R_{ON} = 0.1 \, k\Omega$ and use the SR model. [3]
- d) **[BONUS]** In Figure-2, assume the input on a NOT gate is connected to V_{out} . **Explain** mathematically whether it will be possible to turn OFF the NOT gate when V_{out} is LOW. Assume, $V_T = 0.5 \, V$, $V_{out} = V_{out(LOW)}$ of question(b). [2]

In the circuit above, the BJTs have the following specification: β =100, Forward Active Region: $V_{BE} = 0.7 \ V$, $I_C = \beta I_B$, Saturation Region: $V_{BE} = 0.8 \ V$, $V_{CE} = 0.2 \ V$, or the MOSFETs: $V_T = Threshold \ Voltage \ of \ M1 \ and \ M2$.

- a) **Determine** i_{g1} and i_{g2} . [1]
- b) The SR model of MOSFET is more efficient than the S model- Justify this statement. [1]
- c) Assume, B1 and B2 are in the **Saturation region.** Calculate ic2. [2]
- d) Assume, B1 is in the Forward Active region. Calculate Vin. [4]
- e) **Draw the VTC** of Part- B assuming, $V_T = 8 V$. [Use <u>S model</u> of MOSFETs]. [2]

Equations for MOSFET
$$I_D = 0, \text{ if } V_{GS} < V_T$$

$$I_D = k \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right], \text{ if } V_{GS} \ge V_T \text{ and } V_{DS} < (V_{GS} - V_T)$$

$$I_D = \frac{1}{2} k (V_{GS} - V_T)^2, \text{ if } V_{GS} \ge V_T \text{ and } V_{DS} \ge (V_{GS} - V_T)$$