Lecture 5. Regularisation

COMP90051 Statistical Machine Learning

Semester 2, 2019 Lecturer: Ben Rubinstein

This lecture: Regularisation

Process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting

- Major technique & theme, throughout ML
- Addresses one or more of the following related problems
 - Avoids ill-conditioning (a computational problem)
 - Avoids overfitting (a statistical problem)
 - Introduce prior knowledge into modelling
- This is achieved by augmenting the objective function
- In this lecture: we cover the first two aspects. We will cover more of regularisation throughout the subject

Example 1: Feature importance

- Linear model on three features
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$

Question: Which feature is more important?

Question: Which feature is more important?

1

2

3

I don't know

Example 1: Feature importance

- Linear model on three features
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$

Example 1: Irrelevant features

- Linear model on three features, first two same
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$
 - * First two columns of X identical
 - * Feature 2 (or 1) is irrelevant

3	3	7
6	6	9
21	21	79
34	34	2

Effect of perturbations on model predictions?

- * Add Δ to w_1
- * Subtract Δ from w_2

Example 1: Irrelevant features

- Linear model on three features, first two same
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$
 - * First two columns of X identical
 - * Feature 2 (or 1) is irrelevant

3	3	7
6	6	9
21	21	79
34	34	2

 Effect of perturbations on model predictions?

- * Add Δ to w_1
- * Subtract Δ from w_2

Question: Which feature is more important?

1

2

3

I don't know

Problems with irrelevant features

- In example, suppose $[\widehat{w}_0,\widehat{w}_1,\widehat{w}_2,\widehat{w}_3]'$ is "optimal"
- For any δ new $[\widehat{w}_0, \widehat{w}_1 + \delta, \widehat{w}_2 \delta, \widehat{w}_3]'$ get
 - * Same predictions!
 - * Same sum of squared errors!
- Problems this highlights
 - * The solution is not unique
 - Lack of interpretability
 - Optimising to learn parameters is ill-posed problem

Irrelevant (co-linear) features in general

- Extreme case: features complete clones
- For linear models, more generally
 - * Feature X_{i} is irrelevant if
 - * $X_{\cdot j}$ is a linear combination of other columns

$$X_{\cdot j} = \sum_{l \neq j} \alpha_l \, X_{\cdot l}$$

... for some scalars α_l . Also called multicollinearity

- * Equivalently: Some eigenvalue of X'X is zero
- Even near-irrelevance/colinearity can be problematic
 - * V small eigenvalues of X'X
- Not just a pathological extreme; easy to happen!

Example 2: Lack of data

- Extreme example:
 - Model has two parameters (slope and intercept)
 - * Only one data point

Underdetermined system

III-posed problems

- In both examples, finding the best parameters becomes an ill-posed problem
- This means that the problem solution is not defined
 - * In our case w_1 and w_2 cannot be uniquely identified
- Remember normal equations solution of linear regression: $\widehat{w} = (X'X)^{-1}X'y$
- With irrelevant/multicolinear features, matrix X'X has no inverse

convex, but not strictly convex

Re-conditioning the problem

- Regularisation: introduce an additional condition into the system
- The original problem is to minimise $\|y Xw\|_2^2$
- The regularised problem is to minimise

$$\|y - Xw\|_2^2 + \lambda \|w\|_2^2$$
 for $\lambda > 0$

The solution is now

$$\widehat{\boldsymbol{w}} = (\boldsymbol{X}'\boldsymbol{X} + \boldsymbol{\lambda}\boldsymbol{I})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

- This formation is called ridge regression
 - Turns the ridge into a peak
 - * Adds λ to eigenvalues of X'X: makes invertible

strictly convex

Regulariser as a prior

- Without regularisation, parameters found based entirely on the information contained in the training set \boldsymbol{X}
 - Regularisation introduces additional information
- Recall our probabilistic model $Y = x'w + \varepsilon$
 - * Here Y and ε are random variables, where ε denotes noise
- Now suppose that w is also a random variable (denoted as W) with a Normal prior distribution

$$W \sim \mathcal{N}(0,1/\lambda)$$

- I.e. we expect small weights and that no one feature dominates
- Is this always appropriate? E.g. data centring and scaling
- We could encode much more elaborate problem knowledge

Computing posterior using Bayes rule

The prior is then used to compute the posterior

- Instead of maximum likelihood (MLE), take maximum a posteriori estimate (MAP)
- Apply log trick, so that log(posterior) = log(likelihood) + log(prior) log(marg)
- Arrive at the problem of minimising $\| \boldsymbol{y} \boldsymbol{X} \boldsymbol{w} \|_2^2 + \lambda \| \boldsymbol{w} \|_2^2$

this term doesn't affect optimisation

Regularisation in Non-Linear Models

Model selection in ML

Example regression problem

How complex a model should we use?

Underfitting (linear regression)

Model class Θ can be **too simple** to possibly fit true model.

Overfitting (non-parametric smoothing)

Model class Θ can be so complex it can fit true model + noise

Actual model ($x\sin x$)

The right model class Θ will sacrifice some training error, for test error.

How to "vary" model complexity

- Method 1: Explicit model selection
- Method 2: Regularisation
- Usually, method 1 can be viewed a special case of method 2

1. Explicit model selection

- Try different classes of models. Example, try polynomial models of various degree d (linear, quadratic, cubic, ...)
- Use <u>held out validation</u> (cross validation) to select the model
- 1. Split training data into D_{train} and $D_{validate}$ sets
- 2. For each degree d we have model f_d
 - 1. Train f_d on D_{train}
 - 2. Test f_d on $D_{validate}$
- 3. Pick degree \hat{d} that gives the best test score
- 4. Re-train model $f_{\hat{d}}$ using all data

2. Vary complexity by regularisation

Augment the problem:

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin} \left(L(data, \boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta}) \right)$$

• E.g., ridge regression

$$\widehat{\boldsymbol{w}} \in \underset{\boldsymbol{w} \in W}{\operatorname{argmin}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$

- Note that regulariser $R(\theta)$ does not depend on data
- Use held out validation/cross validation to choose λ

Example: Polynomial regression

- 9th-order polynomial regression
 - * model of form

$$\hat{f} = w_0 + w_1 x + \dots + w_9 x^9$$

* regularised with $\lambda \| \mathbf{w} \|_2^2$ term

Regulariser as a constraint

• For illustrative purposes, consider a modified problem: minimise $\|y - Xw\|_2^2$ subject to $\|w\|_2^2 \le \lambda$ for $\lambda > 0$

- Lasso (L₁ regularisation) encourages solutions to sit on the axes
 - \rightarrow Some of the weights are set to zero \rightarrow Solution is sparse

Regularised linear regression

Algorithm	Minimises	Regulariser	Solution
Linear regression	$\ \boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\ _2^2$	None	$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ (if inverse exists)
Ridge regression	$\ \mathbf{y} - \mathbf{X}\mathbf{w}\ _{2}^{2} + \lambda \ \mathbf{w}\ _{2}^{2}$ $\mathcal{C}_{av} \leq \sum_{k=1}^{4} \mathbf{v} \leq \mathbf{v}$	L ₂ norm	$(\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$
Lasso	$\ \mathbf{y} - \mathbf{X}\mathbf{w}\ _{2}^{2} + \lambda \ \mathbf{w}\ _{1}$ $\mathbf{Laplacl}$	L ₁ norm	No closed-form, but solutions are sparse and suitable for high-dim data

Bias-variance trade-off

Analysis of relations between train error, test error and model complexity

Assessing generalisation capacity

- Supervised learning: train the model on existing data, then make predictions on <u>new data</u>
- Training the model: ERM / minimisation of training error
- Generalisation capacity is captured by risk / <u>test error</u>
- Model complexity is a major factor that influences the ability of the model to generalise
- In this section, our aim is to explore relations between training error, test error and model complexity

Training error and model complexity

- More complex model training error goes down
- Finite number of points \rightarrow usually can reduce training error to 0 (is it always possible?)

(Another) Bias-variance decomposition

Squared loss for supervised-regression predictions

$$l\left(Y,\hat{f}(\boldsymbol{X}_0)\right) = \left(Y - \hat{f}(\boldsymbol{X}_0)\right)^2$$

Lemma: Bias-variance decomposition

$$\mathbb{E}\left[l\left(Y,\hat{f}(X_0)\right)\right] = \left(\mathbb{E}[Y] - \mathbb{E}[\hat{f}]\right)^2 + Var[\hat{f}] + Var[Y]$$

Risk / test error for x_0 (bias)² variance irreducible error

^{*} Prediction randomness comes from randomness in test features AND training data

Decomposition proof sketch

- Here (x) is omitted to de-clutter notation
- $\mathbb{E}\left[\left(Y-\hat{f}\right)^2\right] = \mathbb{E}\left[Y^2 + \hat{f}^2 2Y\hat{f}\right]$
- = $\mathbb{E}[Y^2] + \mathbb{E}[\hat{f}^2] \mathbb{E}[2Y\hat{f}]$
- = $Var[Y] + \mathbb{E}[Y]^2 + Var[\hat{f}] + \mathbb{E}[\hat{f}]^2 2\mathbb{E}[Y]\mathbb{E}[\hat{f}]$
- $= Var[Y] + Var[\hat{f}] + (\mathbb{E}[Y]^2 2\mathbb{E}[Y]\mathbb{E}[\hat{f}] + \mathbb{E}[\hat{f}]^2)$
- = $Var[Y] + Var[\hat{f}] + (\mathbb{E}[Y] \mathbb{E}[\hat{f}])^2$

^{*} Green slides are non-examinable

Training data as a random variable

Training data as a random variable

Model complexity and variance

- simple model low variance
- complex model
 high variance

Model complexity and bias

- simple model
 high bias
- complex model

 low bias

Bias-variance trade-off

- simple model
 high bias, low variance
- complex model low bias, high variance

Test error and training error

Summary

- Regularisation
 - ★ Irrelevant/multicolinear features → ill-posed problems
 - * Model complexity
 - * Bias-variance trade-off

Next lecture: Towards neural nets with perceptron