Лекція 1

Аналіз даних. Основні поняття. Описова статистика.

К.ф.-м.н. Щестюк Н.Ю.

2.4 MILLIONGOOGLE
SEARCHES

IN AN INTERNET

IDENTITY THEFTS'

1-1

MINUTES USED ON SKYPE CALLS

300 HOURS OF VIDEO UPLOADED ON YOUTUBE®

LINKEDIN ACCOUNTS CREATED

347,222 TWEETS*

EMAILS SENT AND RECEIVED

обмін даними

- > Uber найбільша в світі служба таксі, не володіє жодним авто
- ➤ Facebook найпопулярніший власник медіа, не створює жодного контенту
- > Alibaba retailer, нічого не виробляє
- Airbnb сервіс короткострокової оренди житла, не володіє жодним помешканням
- сервіс для пошуку пари для шлюбу
- сукупний дохід > 1 мільярда доларів
- близько 4% шлюбів у США в 2012
- більше 33 млн користувачів у понад 150 країнах

Основні компоненти аналізу даних

"There are three kinds of lies: lies, damned lies, and statistics."

B. Disraeli

СТАТИСТИКА -

наука про збір, організацію, аналіз та трактування даних.

(оцінити варіативність та зменшити невизначеність)

За допомогою статистики вирішують наступні проблеми:

- оцінювання ризику вживання трансгенних продуктів харчування або нових вакцин
- передбачення кількості захворювань на грип за регіонами
- передбачення результатів наступних виборів
- управління самокерованими автомобілями
- голосові асистенти длч смартфонів

Історія та нові напрямки розвитку статистики

Карл Гаусс (1777-1855)

Карл Пірсон (1857-1936), Метод моментів, критерій «хіквадрат»

Рональд Фішер (1890-1962) Метод максимальної правдоподібності, Fisher's exact test

Ежи Нейман (1894-1977), Біхевіористська статистика

А.М. Колмогоров (1903-1987), Основи непар аметричної

Статистика обєктів нечислової

прир

Математичні методипланування експерименту

Статистична теорія рішень

прикладних програм аналізу даних

Вибіркове обстеження (Dalenius, 1974)

Потреба в статистичній інформації в предметній області

План вибіркового обстеження (методи, обсяг вибірки)

Збір даних

Обробка, очищення та аналіз даних (побудова моделей, перевірка гіпотез)

Трактування, презентація та використання результатів

Генеральна сукупність

Генеральна сукупність - усі об'єкти, які хотів би вивчати дослідник при необмеженій кількості ресурсів.

Як сформувати вибірку

Простий випадковий вибір Всі об'єкти мають однакову можливість бути вибраними. Випадковим чином обирається п об'єктів

Вибір з заміною Після того, як об'єкт вибрано, він повертається і може бути обраний повторно

Вибір без заміни
Після того, як об'єкт
вибрано, він вилучається і
не може бути обраний
повторно

Стратометричний вибір Сукупність ділиться на гомогенні групи (населення за рівнем освіти чи віковою групою)

Кластерний вибір Сукупність ділиться на кластери (місто на райони)

Систематичний вибір

Елементи сукупності

впорядковуються і

вибирається кожен k-ий

елемент (елементи на

конвейері з метою виявлення
дефектів)

Типи даних

- кількість дітей у сім'ї
- кількість медалей олімпійської збірної
- ріст
- вага
- заробітна плата

категоріальні

- імена
- назви міст
- група крові

бінарні

- так, ні
- 0, 1

впорядковані

- бакалавр, магістр, доктор,
- погоджуюсь, частково погоджуюсь, не погоджуюсь, важко відповісти

Основні поняття

Вибірковий метод

Генеральна сукупність — це множина всіх значень, яких може набувати дана випадкова величина.

 $\{x_1, \dots, x_n\}$ — це **вибірка** спостережень за випадковою **величиною** ξ із генеральної сукупності (*набір з незалежних і однаково розподілених випадкових величин* ("копій")).

n — обсяг (об'єм)вибірки, кількість елементів вибірки

Впорядкуємо вибірку за зростанням:

$$x_1^* \leq x_2^* \leq \ldots \leq x_n^*$$

Таким чином впорядковану вибірку називають **варіаційним рядом**.

Статистичний ряд

Статистичним рядом називається послідовність пар (z_i, n_i) , $i = \overline{1, l}$

Групований статистичний ряд (Frequency tables) – це

сукупність пар $(x_i^*, n_i^*), i = \overline{1,k}$, де x_i^* – середина і-того інтервалу,

 n_i^* — частота попадання у і-й інтервал.

Одна з рекомендацій щодо вибору числа інтервалів групування формула Стерджесса:

$$k = 1 + \log_2 n$$

ВІЗУАЛІЗАЦІЯ Полігон та гістограма частот

Полігон частот – ламана з вершинами у точках

$$(x_i^*, n_i^*), i = \overline{1,k}$$

Гістограма частот — це ступінчаста фігура, побудована з прямокутників, основами яких ϵ інтервали групування, а висоти n *

 $h_i^* = \frac{n_i^*}{\delta n},$

де δ — це ϵ довжина інтервалу групування. Площа гістограми дорівню ϵ 1.

гістограма

кругова діаграма

стовпчикова діаграма

діаграма розсіювання

лінійний графік

Емпірична функція

Емпірична функція розподілу визначається через

статистичний ряд співвідношенням [0, y ≤ x₍₁

$$F_{n}^{*}(y) = \frac{1}{n} \sum_{i=1}^{n} I(x_{i} < y) \qquad , \qquad F_{n}^{*}(y) = \begin{cases} \frac{n_{1}}{n}, & x_{(1)} < y \leq x_{(2)}; \\ \dots & \dots \\ \frac{n_{1} + n_{2} + \dots + n_{k}}{n}, & x_{(k)} < y \leq x_{(k+1)}; \\ \dots & \dots & \dots \\ 1, & y > x_{(n)}. \end{cases}$$

Кумулятивна крива – ламана з вершинами у точках

$$\left(x_{i}^{*} + \frac{\delta}{2}, \frac{1}{n} \sum_{i=1}^{i} n_{j}^{*} \right), i = 1, ... k$$

який тип діаграми краще застосовувати?

- Порівнювати значення: стовпчикова діаграма, лінійний графік, графік розсіювання
- Зрозуміти композицію: (виділити складові) стовпчикова діаграма, кругова діаграма
- Оцінити розподіл даних: лінійний графік, графік розсіювання, стовпчикова діаграма, гістограма
- > Зрозуміти тренд: лінійний графік, стовпчикова діаграма
- Зрозуміти відношення між даними: лінійний графік, графік розсіювання

Характеристики центральної тенденції

Середнє значення _ ∑ *x*

$$\bar{x} = \frac{\sum x}{N}$$

Середня ціна однокімнатної квартири \$25880, середня площа – 40 м² Медіана ділить вибірку навпіл

Медіана ціни однокімнатної квартири \$23000, медіана площі 40 м²

Мода найчастіше трапляється

Характеристики центральної тенденціі

Вибіркове середнє:

Вибіркове середнє для

згрупованої вибірки: групування

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i^*$$

$$\partial e k - uucno ihmepsanis$$

Мода (Md) — це елемент статистичного ряду з найбільшою частотою.

Медіана (Ме)- це значення середнього елемента вибірки

Середнє геометричне -
$$\bar{\chi}_g = \sqrt[n]{\chi_1 \cdot \chi_2 \cdot \dots \cdot \chi_n}$$

середнє значення

$$\bar{x} = \frac{3+2+5+6+7+2+3+3}{8} = \frac{31}{8} = 3.875$$

$$\bar{x} = \frac{\sum x}{N}$$

Місце серед членів ООН	Місце серед усіх територій	Країна Ф	Загальна очікувана тривалість * життя при народженні	Чоловіча очікувана тривалість ф життя при народженні	Жіноча очікувана тривалість життя при народженні
	1	Макао	84,36	81,39	87,47
1	2	III Андорра	82,51	80,33	84,84
2	3	• Японія	82,12	78,8	85,62
3	4	Сінгапур	81,98	79,37	84,78
4	5	🚣 Сан-Марино	81,97	78,53	85,72
	6	Г ОНКОНГ	81,86	79,16	84,79
5	7	В Австралія	81,63	79,25	84,14
6	8	I+I Канада	81,23	78,69	83,91
7	9	■ Франція	80,98	77,79	84,33
8	10	Ш веція	80,86	78,59	83,26

медіана

$$\frac{3+4}{2} = 3.5$$

значення, яке ділить вибірку навпіл

мода

3, 2, 5, 6, 7, 2, 3, 3 2, 2, 3, 3, 3, 5, 6, 7

значення, яке найчастіше трапляється

Квантилі

Вибірковий квантиль порядку p — це абсциса точки, яка лежить на кумулятивній кривій та має ординату p.

Медіана — це квантиль порядку
$$\frac{1}{2}$$
 .
Квартилі — квантилі порядку $\frac{1}{4}$, $\frac{2}{4}$. та $\frac{3}{4}$.
Децилі — квантилі порядку $\frac{1}{10}$, $\frac{2}{10}$, ..., $\frac{9}{10}$..., $\frac{1}{100}$, ...,

Характеристики розсіювання

Розмах (range) вибірки (ω), тобто різниця між найбільшим та найменшим елементами вибірки.

Дозволяє оцінити розкид елементів у вибірці.

Міжквартильний розмах (inter-quartile range або midspread) — це є різниця між нижнім і верхнім квартилем.

Дозволяє оцінити розкид 50% елементів вибірки і не враховує вплив викидів.

Характеристики розсіювання

Вибіркова дисперсія —
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Для групованих даних — $s^2 = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i^* - \overline{x})^2$

$$s_{0}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Незміщена вибіркова дисперсія

Середньоквадратичне відхилення — це квадратний корінь з

вибіркової дисперсії: $\sigma_B = \sqrt{s^2}$

	3337700		al Amale	4363		L. J. J. J. BITT. 1-1	<u> </u>	123 SAILL										
MERI JUES																		
П	1 VAR1	2 VAR2	3 VAR3	4 VAR4	5 VAR5	6 VAR6	7 VAR7	8 VAR8	9 VAR9	10 VAR10	11 VAR11	12 VAR12	13 NEWVAR13	14 NEWVAR1	15 NEWVAR15	16 NEWVAR16	17 NEWVAR17	18 NEWV
	.438	.534	2.215	.376	.410	1.030	.222	14.195	2.665	.330	4.261	3.052	-1.562	15.61	953	.771	3.709	,
	.291	.548	-2.984	.287	.641	1.531	.610	4.569	4.713	.181	-5.898	7.823	-11.534	-1.24	3.927	412	2.657	7 .
	.521	.353	3.409	.528	.826	084	.787	-6.207	4.217	.238	5.194	5.169	-8.495	23.80	-2.565	1.656	4.152	2 .
	.795	.906	.011	.360	.229	.011	.331	8.707	5.816	.416	6.034	4.816	2.255	1.04	3.045	2.488	5.996	5 2.
	.162	.234	4.709	.676	.524	.426	.312	1.193	3.921	.459	4.383	11.398	-19.419	32.949	-4.103	.238	1.958	3 .
	.457	.596	3.017	.545	.807	1.610	.613	-2.002	5.574	.223	7.810	1.882	-3.753	21.09	7912	1.388	3.762	1.
	.276	.553	-1.475	.428	.753	3.147	.672	7.417	5.475	.206	4.683	7.172	-2.573	_			2.583	1.
	.314	.319	.718	2D	Box Plots									? x 1		.659	2.930) .
	.729	.544	.712	G	raph Type	9:			_		-1	Г	OK	8.			5.493	
	.479	.826	2.444		Box-Whi		IIII	Reqular	լ 묲 💆	ariables:			ОК	.91				_
	.319	.671	.275		Whisker			Multiple				[5]	🔁 Can	cel 2	_		_	_
	.243	.425	1.873		Boxes	-	16.5	unupio	Catego	ries: none)	_						
	.421	.729	2.222		⊡ Doxes ∄ Columns	:			Variat	oles: none				1				_
	.403	.720	4.978	• 1	High-Lo								Options					-
	.443	.683	2.504	. 12	a i iiqii co	# Cluse								5				_
	.711	.565	8.893		BOX CATE	GORIES-		T No	on-Outlier M	lax	_Box —			4				-
	.293	.479	.324	·	Variable:	nono		75			Value:	Percentile						_
	.146	.889 .582	6.505 4.453								Tuide.		25	_	_			_
	.421	.381	.363		Integer l	_			edian 		<u>C</u> oeffic	ient: 25		3 9				-
	.547	.421	.988		Categor 🖰	ies: 10	4	25		ı.				7				_
	.463	.453	-1.581		C Boundai	ries: non			on-Outlier M	lin	_Whisker	r ———		2				-
	.323	.424	-1.224		Codes:			Middle	Point—		Val <u>u</u> e:	Non-Outli	er Range	- 4				
	.288	.359	2.319					V <u>a</u> lue:	Median	▼	_							_
	.540	.603	6.488		Multiple	Subsets		Chil	Mean		Coeff <u>i</u> c	ient: 1		12 p				_
	.480	.677	3.540		E Cha	ange Varia	blo	<u>5</u> tyle:	Median		O41:			12.	_		_	
	.384	.319	713		ZZ CIIC	iliye valla	bie	☐ Poo	led Varia	nce	Outliers	-		154				_
	.128	.613	.876		FIT —			- Multiple	Box Lay	nut —	Outl. &	Extremes		₹ 24	4 .006	-1.782	1.650	
	.468	.622	10.673	Г	Off				_					80	-9.748	.130	3.681	L .
	.484	.434	866	. II	,		<u> </u>	OS	Shifted		Coeffic	ient: 1.5)	14:	1 .023	592	3.650	-1.
	.638	.456	259	. 14	Linear				Overlaid						2.075	2.693	4.909	1.
	.169	.751	1.150		Custom:	none					Tri <u>m</u> distr	ıb. extren	ies: U	1 % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7107	-2.204	1.675	5 .
	.297	.881	6.614		ouoto	Hone		I-I-I □ Cc	nnect Mic	ddle Point	s			01				1 2.
	.759	.753	4.169											21				_
	.473	.573	.237	.275	.846	.740	.507	-2.469	5.965	.188	-1.289	6.205						-
	.784	.331	-1.267	.102	.896	690	.401	608	4.458	.071	2.192	6.596						+
	.506	.872	5.129	.356	.302	4.797	.548	7.194	4.159	.154	1.935	1.493						_
	.806	.786	1.666	.105	.646	702	.517	4.684	3.303	.443	4.105	9.124						_
	.369	.667	2.473	.332	.742	885	.534	5.623	6.470	.277	2.008	4.446						_
	.416	.598	3.109	.215	.872	.640	.444		3.822	.161	1.339	5.932						_
	.146	.512	2.867	.420	.613	-1.287	.481	-4.591	2.414	.176	11.479	4.184						_
	.283	.578	6.768	.589	.805	3.919	.787	-1.176	4.960	.251	-2.800	8.261			_			_
	.633	.729	4.161	.632	.651	609 _3 124	.343	-4.903	6.358	.596	-6.410 -20.611	2.558						
	410	77 7		448	480	_3 174	63.5	3 180	3 802	100	=20 611	5 628	_ 388	7.76	u = 836	014	. 3 597	7

Як вибирати показник розсіювання?

1. Якщо за характеристику центральної тенденції вибрано медіану, то слід вибрати міжквартильний розмах.

2. Якщо за характеристику центральної тенденції вибрано вибіркове середнє, то слід вибрати дисперсію та середньоквадратичне відхилення.

Коефіцієнт асиметрії (skewness) обчислюється як:

$$a_{s} = \frac{m_{3}}{\sigma_{B}^{3}} \qquad m_{3} = \frac{1}{n} \sum_{i} n_{i} (x_{i} - \overline{x})^{3}$$

Якщо коефіцієнт асиметрії додатній:

- Розподіл має довгий правий хвіст
- Вибіркове середнє більше за медіану
- Медіана більша за моду

Якщо коефіцієнт асиметрії від'ємний:

- Розподіл має довгий лівий хвіст
- Вибіркове середнє менше за медіану
- Медіана менша за моду

Коефіцієнт ексцесу

Вибірковим коефіцієнтом ексцесу (kurtosis) називається величина

$$e_k = \frac{m_4}{\sigma_R^4} - 3$$
 $m_4 = \frac{1}{n} \sum_i n_i (x_i - \overline{x})^4$

Якщо коефіцієнт ексцесу < 3, то пік розподілу пологіший, ніж у нормального — розподіл плосковершинний.

Якщо коефіцієнт ексцесу > 3, то пік розподілу крутіший, ніж у нормального — розподіл гостровершинний.

IHTEPTIPETALIS

РЕЗУЛЬТАТІВ парадокс Сімпсона

Факультет А

Факультет Б

	Подало заяв	Прийнято	Відсоток прийнятих		
Чоловіки	900	450	50%		
Жінки	100	80	80%		
Чоловіки	100	10	10%		
Жінки	900	180	20%		

парадокс Сімпсона

Факультет А

Факультет Б

Обидва

50%		
80%		
10%		
20%		
46% 26%		

Методика та філософія викладання

Теоретичний матеріал подається у вигляді презентацій та викладень на дошці

Засвоєння теоретичного матеріалу відбувається за рахунок участі у дискусіях, тестуванні, колоквіуму

Практичні навички формуються при виконанні індивідуальних завдань

Умови визначення

навчального рейтингу

№	Вид роботи	Кількість	Макс. кількість балів
1	Дискусія (тест) на лекціях	7	14
2	Участь у проекті	3	36
3	колоквіум	1	20
4	Ісит	1	30

Дякую за увагу!

