VECTOR CALCULUS (2) Scalar And vector Fields Il Scalar Point for: - Let R be a region of space at each point of which a scalar &= &(x,y,z) is given, then & is called a scalar for and R' the scalar field. Eg. Temperature distribution in a medium etc.

2) Vector Point In: - Let R be a region of space at each point of which a rector $\overline{V} = \overline{V}(x_1y_1y_2)$ is given, then V is called a rector point for, and R is called a rector field.

Gradient 21 a Scalar Field

The surface d=C and has magnitude equal to the rate of charge of along this normal. $\nabla = 1/2$ of along this normal: $\nabla = [12 + 32 + 123]$ Divergence

The diragence of a continuously differentiable vector point function vis denoted by div v

 $div \vec{v} = \vec{v} \cdot \vec{v} = (\hat{i}_{3x} + \hat{j}_{3y} + \hat{k}_{3y}) \cdot (\hat{v}_{1} + \hat{v}_{2} + \hat{v}_{3k})$ The divergence of a rector point function is a straight of scalar quantity.

In particular, if $\nabla \cdot \vec{v} = 0$, the vector field is called.

Solenoidal Hield and \vec{v} is called Solenoidal rector function.

Physical Tetrahistation Physical Interpretation dir v gives the rate of outflow per unit volume at a point of the fluid. CURL OF VECTOR POINT FUNCTION The curl (or rotation) of a differentiable rector boint on i denoted by cul i and is defined as Cul v= VXV= (ig+ig+k=g)XV Note:-If curl = 0 - Prote:-It comentational.

Field I is instational.

On entation 1 V2 V2 Cul of a rector point for is a rector quantity. Physical Interpretation The angular velocity at any point is equal to half the cent of linear relocity at that point of the body. w= \frac{1}{2} Curl \vec{v} \square \frac{Proof}{2} (From book). Directional Derivative The directional derivative of a scalar for of at a point in the direction of a unit vector 2 is defined as component of $\nabla \phi$ in the direction of 2. It is given by $\nabla \phi \cdot \hat{\mathcal{A}}$. Physically directional derivative of plat a point P

Note Directional derivative is maximum in its own direction Il Find grad &, where &(xidid)= xy+yx+32, at point (1/1/1) Sd & (X1313) = x3+ +32 + +32 = (2xy+3)+f(x2+2yx)+ f(23) .: grad & J(1,1,1) = {(2+1)+}(1+2)+ (2) - 31+31+2P Q2 Find the values of a and be such that the surfaces $ax^2-byz = (a+2)x$ and $ux^2y + 3^3 = 4$ cut orthogonally at (1,-1,2). Let \$1 = ax - by 3 - (a+2) x = 0 - 1 $\phi_2 = 4x^2y + 3^3 - 4 = 0 - 2$ Then [79]=130 + 230 + 230 + 230 = 1 (2ax-2a-2) + f (-bz)+ k (-by) 74] (17-1,2)= (a-2)î-26î+bê. [7/2] = 2/3/2 + 1/3/2 + R 3/3 = î(8xy)+j(4x²)+ F(33²) 7/2](1,-1,2)=-8î+4j+12k.

The surfaces of, and of will cut orthogonally if. 7%. 7/2 = 0 => -8(a-2)-8b+12b=0 => -8a+4b=-16 => 2a-b=+4 -3 Also since (1,-1,2) lies on (1) and (2) => a+2b-(a+2)=0 = b=1 wing in 3 Q Find the directional derivative of the fin. \$ = 2xy +32 at the point (1,-1,3) in the direction of the vector 2+21+2F. Ø= 2xy+3 又为一个可以十分到十分到 三 2岁年27年27年 · [70] (10-1,3) = -2î+2î+6 F let]=1+2j+2t 司分=当(1+30+2F) Directional derivative of & in the direction of 2 is 74.2=(-21+2分+6户)。当(1+2分+2户) 一步了一定(1)+2(2)+6(2)]=-14

(q)

Find div
$$\vec{F}$$
 and cull \vec{F} where $\vec{F} = 9 \text{ had } (x^3 + y^3 + y^3 - 3 \times y + y^3 - y + y^3 - y$

(3)

I For a solenoidal F, prove that curl curl curl curl F======= sol For a solenoidal F, $\nabla \cdot \vec{F} = \sigma$ Now coul = -(√×=) $\begin{bmatrix} \overrightarrow{a} \times (\overrightarrow{L} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{L} \\ -(\overrightarrow{a} \cdot \overrightarrow{L}) \overrightarrow{c} \end{bmatrix}$ Curl Curl F= \(\nabla \times (\nabla \times F)\) = (V.F)V - (V.V)P $= (0)\nabla - \nabla^2 F^2$ = - VF Curl Curl Curl F = VX[VX(-VF]] 三[小(一个到(一个到) = 0 + TF7 二岁节.

6)

Integration of vectors (1) Work: - It F represents the variable force exting on a particle along on arc AB, then total work done = (F7. d) + When the path of integration is closed curve; the notation is 6 in place of S # if \$ \overline{F}.d\overline{d}=0, the field \overline{F} is called conservative i.e. no work is done and the energy is conserved. If $F = \nabla \phi_{M}$ show that the work done in moving a particle in the force field F from $A(x_1,y_1,y_1)$ to B(x2, 72, 32) is independent of the path joining the 2 points. Proof Work done = SF. dr = SVp.dr

 $= \int_{A}^{A} \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right) \cdot \left(\frac{\partial$

(7)

tive (instational field), the
Thus in a conservative (invotational field), the
In debends on the
and not on the path joining the points.
and not out the
Note: F is consentative in
$ C_{11}0 = 0 \iff F = \nabla D$
1. botontial of the field
Cetere & is the scalar potential of the field:
where of is the scalar potential and also work done field. Find its realer potential and also work done
liell. Find its realer potential and also work and
field. Find ets scalar podemed. in moving a particle from (1,-2,1) to (311,4)
in moving a particle from
$Curl \vec{F} = \begin{bmatrix} \hat{\gamma} & \hat{\beta} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{bmatrix}$
Jan 3 3
$9xy+3^3 x^2 33^2x$
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$= \hat{i}(0-0) \oplus \hat{j}(33^{2}-33^{2}) + \hat{k}(2x-2x) = 0$
: F is conservative.
7 - 1 (306 + ADØ + RDØ)
: 戸=マター介景+分野+Rラダ
-> (2x4+3) i+ (x) j+ (3x) k= 1 5x 10 50 30
$= 7 \frac{30}{30} = 200 + 33 \frac{3}{30} = 20 = 20 = 33 \frac{2}{30} = 33 \frac{2}{30$
25 25 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30
Also dø = 30 de + 30 dy + 30 dz
Also de = \frac{1000 de + 33 \text{2}}{300 de + 33 \text{2}} \de (2xy + 33) de + x 2 dy + 33 \text{2} dx + 3
7 dp= (2xy+8 Jan 1-3 dr + 3 x ds)
-0.0121411100
$= d(x^3y) + d(3^3x)$
$=d(x^2y+3^3x)$

which is the scalar potential of the vector field \vec{F} .

Seq. work done = $\int_{A} \vec{F} \cdot d\vec{r} = \int_{A} \vec{F} \cdot d\vec{r} = \int_{A} \vec{F} \cdot d\vec{r}$ Ly) $= \left[x^{3}y + 3^{3}x + C \right]_{U_{1}-2,1}^{(3,1,4)}$ = (9+192)-(-2+1)=202 unity: Surface Integral Any integral which is to be evaluated over a surface, is called a surface integral. on the xy-plane, 1. Il a given surface S is projected on we call it's projection as R. then $\iint_{\mathcal{F}} \vec{F} \cdot \hat{\mathbf{A}} d\mathbf{S} = \iint_{\mathcal{R}} \vec{F} \cdot \hat{\mathbf{A}} \frac{d\mathbf{X} d\mathbf{Y}}{|\hat{\mathbf{A}} \cdot \hat{\mathbf{X}}|}$ 3 If R is projection of S on yz-plane SF. nds = SF. ndydz dxdy = purjection of ds on xy-plone

S = decay | range If R is projection of Son 3x-plane = dSCAY | ARE-ABCON

(F) Ads-((F) 1) drain A TO IT E $\iint \vec{F} \cdot \hat{n} \, ds = \iint \vec{F} \cdot \hat{n} \, dz \, dx$