



# IDS PROJECT ON LAPTOP DETAILS

Project team members

### Name

Saiprakash L Shetty

Dhanik Shetty

Sumanth Prasad

### **DETAILS OF THE DATASET**

Total number of columns:12
Total number of rows:1304

Categorical column:8
Numerical column:4

Data as missing values and NaN: 3.69% (578)

sample.describe()

|  |       | Inches      | Ram         | Weight      | Price_euros |
|--|-------|-------------|-------------|-------------|-------------|
|  | count | 1190.000000 | 1107.000000 | 1101.000000 | 1303.000000 |
|  | mean  | 14.997983   | 8.345077    | 2.049114    | 1123.686992 |
|  | std   | 1.417040    | 5.010674    | 0.677242    | 699.009043  |
|  | min   | 10.100000   | 2.000000    | 0.690000    | 174.000000  |
|  | 25%   | 14.000000   | 4.000000    | 1.540000    | 599.000000  |
|  | 50%   | 15.600000   | 8.000000    | 2.040000    | 977.000000  |
|  | 75%   | 15.600000   | 8.000000    | 2.300000    | 1487.880000 |
|  | max   | 18.400000   | 64.000000   | 4.700000    | 6099.000000 |

### 2. Data Cleaning

- In <u>categorical columns</u>, all the NaN values are replaced by previous row values.
- In <u>numerical columns</u>, all the NaN values are replaced by the mean of that column

```
#data cleaning for numerical column
sample['Ram']=sample['Ram'].fillna(sample['Ram'].mean())
sample['Ram']
```

#categoirical cleaning
sample['Company']=sample['Company'].fillna(method='ffill')
sample['Company']

# Before data cleaning

|   | Company | Product     | TypeName  | Inches | ScreenResolution                      | Cpu                              | Ram  | Memory                    | Gpu                                   | OpSys         | Weight   | Price_euros |
|---|---------|-------------|-----------|--------|---------------------------------------|----------------------------------|------|---------------------------|---------------------------------------|---------------|----------|-------------|
| 0 | Apple   | MacBook Pro | Ultrabook | 13.30  | IPS Panel Retina<br>Display 2560x1600 | Intel Core i5<br>2.3GHz          | 8.0  | 128GB<br>SSD              | Intel Iris<br>Plus<br>Graphics<br>640 | macOS         | NaN      | 1339.69     |
| 1 | NaN 🛑   | Macbook Air | Ultrabook | 13.30  | 1440x900                              | Intel Core i5<br>1.8GHz          | 8.0  | 128GB<br>Flash<br>Storage | Intel HD<br>Graphics<br>6000          | macOS         | 1.340000 | 898.94      |
| 2 | HP      | 250 G6      | Notebook  | 15.60  | Full HD 1920x1080                     | Intel Core i5<br>7200U<br>2.5GHz | 8.0  | 256GB<br>SSD              | Intel HD<br>Graphics<br>620           | No OS         | 1.860000 | 575.00      |
| 3 | Apple   | MacBook Pro | Ultrabook | 15.40  | IPS Panel Retina<br>Display 2880x1800 | Intel Core i7<br>2.7GHz          | 16.0 | 512GB<br>SSD              | AMD<br>Radeon<br>Pro 455              | macOS         | 1.860000 | 2537.45     |
| 4 | Apple   | MacBook Pro | Ultrabook | 13.30  | IPS Panel Retina<br>Display 2560x1600 | Intel Core i5<br>3.1GHz          | 10.0 | 256GB<br>SSD              | Intel Iris<br>Plus<br>Graphics<br>650 | macOS         | 1.370000 | 1803.60     |
| 5 | Acer    | Aspire 3    | Notebook  | 15.60  | 1366x768                              | AMD A9-<br>Series 9420<br>3GHz   | 4.0  | 500GB<br>HDD              | AMD<br>Radeon<br>R5                   | Windows<br>10 | 2.100000 | 400.00      |
| 6 | Apple   | MacBook Pro | Ultrabook | 15.40  | IPS Panel Retina<br>Display 2880x1800 | Intel Core i7<br>2.2GHz          | 16.0 | 256GB<br>Flash<br>Storage | Intel Iris<br>Pro<br>Graphics         | Mac OS<br>X   | 2.040000 | 2139.97     |
| 7 | NaN 🛑   | Macbook Air | Ultrabook | 13.30  | 1440x900                              | Intel Core i5<br>1.8GHz          | 8.0  | 256GB<br>Flash<br>Storage | Intel HD<br>Graphics<br>6000          | macOS         | 1.340000 | 1158.70     |

# After data cleaning

|   | Company | Product        | TypeName  | Inches | ScreenResolution                      | Cpu                           | Ram       | Memory                    | Gpu                             | OpSys         | Weight   | Price_euros |
|---|---------|----------------|-----------|--------|---------------------------------------|-------------------------------|-----------|---------------------------|---------------------------------|---------------|----------|-------------|
| 0 | Apple   | MacBook<br>Pro | Ultrabook | 13.3   | IPS Panel Retina<br>Display 2560x1600 | Intel Core i5<br>2.3GHz       | 8.000000  | 128GB SSD                 | Intel Iris Plus<br>Graphics 640 | macOS         | 2.049114 | 1339.69     |
| 1 | Apple   | Macbook Air    | Ultrabook | 13.3   | 1440x900                              | Intel Core i5<br>1.8GHz       | 8.000000  | 128GB<br>Flash<br>Storage | Intel HD<br>Graphics 6000       | macOS         | 1.340000 | 898.94      |
| 2 | HP      | 250 G6         | Notebook  | 15.6   | Full HD 1920x1080                     | Intel Core i5<br>7200U 2.5GHz | 8.000000  | 256GB SSD                 | Intel HD<br>Graphics 620        | No OS         | 1.860000 | 575.00      |
| 3 | Apple   | MacBook<br>Pro | Ultrabook | 15.4   | IPS Panel Retina<br>Display 2880x1800 | Intel Core i7<br>2.7GHz       | 16.000000 | 512GB SSD                 | AMD Radeon<br>Pro 455           | macOS         | 1.860000 | 2537.45     |
| 4 | Apple   | MacBook<br>Pro | Ultrabook | 13.3   | IPS Panel Retina<br>Display 2560x1600 | Intel Core i5<br>3.1GHz       | 8.345077  | 256GB SSD                 | Intel Iris Plus<br>Graphics 650 | macOS         | 1.370000 | 1803.60     |
| 5 | Acer    | Aspire 3       | Notebook  | 15.6   | 1366x768                              | AMD A9-Series<br>9420 3GHz    | 4.000000  | 500GB HDD                 | AMD Radeon<br>R5                | Windows<br>10 | 2.100000 | 400.00      |
| 6 | Apple   | MacBook<br>Pro | Ultrabook | 15.4   | IPS Panel Retina<br>Display 2880x1800 | Intel Core i7<br>2.2GHz       | 16.000000 | 256GB<br>Flash<br>Storage | Intel Iris Pro<br>Graphics      | Mac OS<br>X   | 2.040000 | 2139.97     |
| 7 | Apple   | Macbook Air    | Ultrabook | 13.3   | 1440x900                              | Intel Core i5<br>1.8GHz       | 8.000000  | 256GB<br>Flash<br>Storage | Intel HD<br>Graphics 6000       | macOS         | 1.340000 | 1158.70     |

### **BEFORE DATA CLEANING**

### df.isnull().sum() 67 Company Product TypeName Inches 113 ScreenResolution Cpu Ram 196 Memory Gpu 0 0pSys Weight 202 Price\_euros dtype: int64

### **AFTER DATA CLEANING**

df.isnull().sum() Company 0 Product TypeName Inches ScreenResolution 0 Cpu Ram Memory 0 Gpu 0pSys Weight 0 Price\_euros 0 dtype: int64



Number of laptops of a company
After cleaning Before cleaning Number of laptops used of the Company Number of laptops used of the Company Huawei Huawei Chuwi Chuwi Google Google Fujitsu LG Fujitsu LG Vero Xiaomi Vero Xiaomi Microsoft Microsoft Mediacom Razer Mediacom Razer Samsung Samsung Apple Toshiba Toshiba MSI MSI Acer Acer Asus Asus HP Dell Lenovo Dell Lenovo 150 200 250 300 100 150 200 250 300 50 100 0 50 count count

### 3. Normalization

Normalization usually means to scale a variable to have a values between 0 and 1

### Is Should we normalize data?

- Normalizing data eliminates the units of measurement for data, enabling us to more easily compare data from different places.
- Normalization helps in reducing complexity of the data.
- It could eliminate outliers(if any)
- Normalizing will ensure that a convergence problem does not have a massive variance, making optimization feasible.

## AFTER NORMALIZATION



```
Standardised mean
```

```
lines=std_std
fig, ax = plt.subplots(1, 1)
mean, var, skew, kurt = norm.stats(moments='mvsk')
#Here I delete some lines aimed to fill the list with values
Long = len(lines)
Maxim = max(lines) #MaxValue
Minim = min(lines) #MinValue
av = np.mean(lines) #Average
StDev = np.std(lines) #Standard Dev.
x = np.linspace(-10, +10, Long)
ax.plot(x, norm.pdf(x, av, StDev),'r-', lw=3, alpha=0.9, label='normal')
weights = np.ones_like(lines)/len(lines)
ax.hist(lines, weights = weights, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
```

### **Standardization**:

Standardization transforms data to have a mean of zero and a standard\_deviation of 1.

### Before standardization:

Mean before standardization:
Ram=8.35, Price\_euros=1123.69, Inches=15.00, Weight=2.05
Standard deviation before standardization:
Ram=4.62, Price\_euros=699.01, Inches=1.35, Weight=0.62

### After standardization:

```
std scale = preprocessing.StandardScaler().fit(sample[['Ram', 'Price euros', 'Inches', 'Weight']])
df_std = std_scale.transform(sample[['Ram', 'Price_euros', 'Inches', 'Weight']])
minmax_scale = preprocessing.MinMaxScaler().fit(df[['Ram', 'Price_euros','Inches','Weight']])
df_minmax = minmax_scale.transform(df[['Ram', 'Price_euros', 'Inches', 'Weight']])
print('Mean after standardization:\nRam={:.2f}, Price euros={:.2f},Inches={:.2f},Weight={:.2f}'
      .format(df std[:,0].mean(), df std[:,1].mean(), df std[:,2].mean(), df std[:,3].mean()))
print('\nStandard deviation after standardization:\nRam={:.2f}, Price_euros={:.2f},Inches={:.2f},Weight={:.2f}'
      .format(df_std[:,0].std(), df_std[:,1].std(), df_std[:,2].std(), df_std[:,3].std()))
Mean after standardization:
Ram=0.00, Price_euros=0.00, Inches=0.00, Weight=0.00
Standard deviation after standardization:
Ram=1.00, Price euros=1.00, Inches=1.00, Weight=1.00
```



### 4. Graph visualization:

### Histogram Plots

### 1.Ram of the laptops



- Right skewed
- Mode < median <mean.

### 2. Screen size in Inches of the laptops



- Left skewed
- Mode > median >mean.

### **Distribution Plots**

It tells us how normalised the graph is.





The Price\_euros distribution is much more normalised than that of Weight distribution plot.

### **Box Plots**

- Box plot tells about the outliers present in the data
- Weight column (in our data) contains a few number number of outliers



Price\_euros box plot



Weight box plot



Ram box plot

### **Box Plots After Removing Outliers**



Price\_euros box plot

Weight box plot

```
res=sample.Weight.quantile([0.25,0.75])
true_index=(res.loc[0.25]<sample.Weight) & (sample.Weight<res.loc[0.75])
sample.Weight=sample.Weight[true_index]
sample['Weight'].fillna(method="bfill",inplace=True)
sample.fillna(sample.median(skipna=True),inplace=True)
sample</pre>
```

### COUNTER PLOT





→Lenevo, Dell, HP are the most widely used laptops

→ Laptops with 8 GB RAM are most actively used in laptops

### **Scatter Plots**



Like distribution plots they also tell how normalized our data is ,unlike distribution scatter plots is for plot between two parameters(here Weight and Price\_euros)

### **5. Hypothesis Testing:**

Hypothesis testing is a statistical procedure that uses sample data to determine, whether a statement about the value of a population parameter should rejected or not.

Hypothesis testing is done for Ram column. population mean is 8.345 so we assume that the sample mean is same as population mean

Null hypothesis =Ho:  $\mu$ =8.345

Alternate hypothesis=Ha:  $\mu$ !=8.345

### Two sided hypothesis testing on Ram:

Failed to reject NULL hypothesis

```
#hypothesis testing for ram
def two_sided_hypo(sample_mean, pop_mean, std_dev, sample_size, alpha):
    actual z = abs(norm.ppf(alpha/2))
    hypo_z = (sample_mean - pop_mean) / (std_dev/sqrt(sample_size))
    print('actual z value :', actual_z)
    print('hypothesis z value :', hypo_z, '\n')
    if hypo z >= actual z or hypo z <= -(actual z): return True
    else: return False
alpha = 0.05
sample mean = sam['Ram'].mean()
pop mean = sample['Ram'].mean()
sample_size = 500
std_dev = sample['Ram'].std()
print('H0 : \mu =', pop mean)
print('H1 : μ !=', pop_mean)
print('alpha value is :', alpha, '\n')
reject = two sided hypo(sample mean, pop mean, std dev, sample size, alpha)
if reject: print('Reject NULL hypothesis')
else: print('Failed to reject NULL hypothesis')
H0 : \mu = 8.345076784101165
H1 : u != 8.345076784101165
alpha value is : 0.05
actual z value : 1.9599639845400545
hypothesis z value : 0.8271225772458872
```

Here hypothesis testing is done for 'Weight' column. Null hypothesis =Ho:  $\mu$  <=2.049 Alternate hypothesis=Ha:  $\mu$  >2.049

```
def one_sided_hypo(sample_mean, pop_mean, std_dev, sample_size, alpha):
    actual_z = abs(norm.ppf(alpha))
    hypo_z = (sample_mean - pop_mean) / (std_dev/sqrt(sample size))
    print('actual z value :', actual_z)
    print('hypothesis z value :', hypo z, '\n')
    if hypo z >= actual z: return True
    else: return False
alpha = 0.05
sample_mean =sam['Weight'].mean()
pop mean = sample['Weight'].mean()
sample size = 500
std dev =sample['Weight'].std()
print('H0 : μ <=', pop_mean)</pre>
print('H1 : \mu >', pop_mean)
print('alpha value is :', alpha, '\n')
reject = one_sided_hypo(sample_mean, pop_mean, std_dev, sample_size, alpha)
if reject: print('Reject NULL hypothesis')
else: print('Failed to reject NULL hypothesis')
#variation with different parameters can be shown here
H0 : u \le 2.049113728777479
H1 : \mu > 2.049113728777479
alpha value is : 0.05
actual z value : 1.6448536269514729
```

Failed to reject NULL hypothesis

hypothesis z value : 0.9137550256019928

### **6. Correlation:**

- It measures the strength and direction of a linear relationship between two variables
- r value always lies b/w -1 to 1

- A correlation of:
  - 1 indicates a perfect positive correlation.
  - -1 indicates a perfect negative correlation.
  - 0 indicates there is no relationship between the different variables.
  - Values between -1 and 1 denote the strength of the correlation.

# print(df.corr(method='pearson'))

|             | Inches   | Ram      | Weight   | Price_euros |
|-------------|----------|----------|----------|-------------|
| Inches      | 1.000000 | 0.215903 | 0.824278 | 0.063014    |
| Ram         | 0.215903 | 1.000000 | 0.364566 | 0.733122    |
| Weight      | 0.824278 | 0.364566 | 1.000000 | 0.236923    |
| Price_euros | 0.063014 | 0.733122 | 0.236923 | 1.000000    |

```
#linear regression
def linear_regression(x, y):
    x = [[i] \text{ for } i \text{ in } x]
    # Create linear regression object
    regr = linear_model.LinearRegression()
    # Train the model using the training sets
    regr.fit(x, y)
    #prediction
    y_preds = regr.predict(x)
    print('Coefficients: \n', regr.coef_)
    print("RMSE: %.2f" % RMSE(y, y_preds))
    plt.scatter(x, y, color='m')
    plt.plot(x, y_preds, color='g')
    plt.show()
y = sample['Ram'].sample(50)
x = sample['Price_euros'].sample(50)
linear_regression(x, y)
```

Correlation between Ram and Price\_euros .

Coefficients: [0.00042643]

RMSE: 22.35

We conclude by the plot that as Ram increase, the price of the laptop also increases



```
#linear regression
def linear_regression(x, y):
    x = [[i] \text{ for } i \text{ in } x]
    # Create linear regression object
    regr = linear_model.LinearRegression()
    # Train the model using the training sets
    regr.fit(x, y)
    #prediction
    y_preds = regr.predict(x)
    print('Coefficients: \n', regr.coef_)
    print("RMSE: %.2f" % RMSE(y, y preds))
    plt.scatter(x, y, color='m')
    plt.plot(x, y_preds, color='g')
    plt.show()
x = sample['Inches'].sample(50)
y = sample['Weight'].sample(50)
linear_regression(x, y)
```

Correlation between Inches (Screen size) Weight of the laptop.

### Coefficients:

[0.0005117]

RMSE: 1.37

We can say the number of laptops with screensize-Inches Within 15-16 and weight 1 -2.5 kg are the ones which are heavily used



$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Line Equation for dependency of Weight (x) and Inches(y)

$$\hat{\beta}_1 = 3.3094$$

$$\hat{\beta}_0 = 8.9354$$

$$y = \hat{\beta}_1 \times + \hat{\beta}_0$$

# THANK YO