International Mathematical Olympiad Training Camp 2004

Practice Tests

Day 1

- 1 Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with AC.
- 2 Prove that for every positive integer n there exists an n-digit number divisible by 5^n all of whose digits are odd.
- $\boxed{3}$ For a, b, c positive reals find the minimum value of

$$\frac{a^2 + b^2}{c^2 + ab} + \frac{b^2 + c^2}{a^2 + bc} + \frac{c^2 + a^2}{b^2 + ca}.$$

4 Given a permutation $\sigma = (a_1, a_2, a_3, ...a_n)$ of (1, 2, 3, ...n), an ordered pair (a_j, a_k) is called an inversion of σ if $a \leq j < k \leq n$ and $a_j > a_k$. Let $m(\sigma)$ denote the no. of inversions of the permutation σ . Find the average of $m(\sigma)$ as σ varies over all permutations.

Day 2

 $\boxed{1}$ Prove that in any triangle ABC,

$$0 < \cot\left(\frac{A}{4}\right) - \tan\left(\frac{B}{4}\right) - \tan\left(\frac{C}{4}\right) - 1 < 2\cot\left(\frac{A}{2}\right).$$

 $\boxed{2}$ Find all triples (x, y, n) of positive integers such that

$$(x+y)(1+xy) = 2^n$$

- 3 Suppose the polynomial $P(x) \equiv x^3 + ax^2 + bx + c$ has only real zeroes and let $Q(x) \equiv 5x^2 16x + 2004$. Assume that P(Q(x)) = 0 has no real roots. Prove that P(2004) > 2004
- 4 Let f be a bijection of the set of all natural numbers on to itself. Prove that there exists positive integers a < a + d < a + 2d such that f(a) < f(a + d) < f(a + 2d)

International Mathematical Olympiad Training Camp 2004

Selection Tests

Day 1

- 1 A set A_1, A_2, A_3, A_4 of 4 points in the plane is said to be Athenian set if there is a point P of the plane satisfying
 - (*) P does not lie on any of the lines A_iA_j for $1 \le i < j \le 4$; (**) the line joining P to the mid-point of the line A_iA_j is perpendicular to the line joining P to the mid-point of A_kA_l , i, j, k, l being distinct.
 - (a) Find all Athenian sets in the plane. (b) For a given Athenian set, find the set of all points P in the plane satisfying (*) and (**)
- 2 Determine all integers a such that $a^k + 1$ is divisible by 12321 for some k
- The game of *pebbles* is played on an infinite board of lattice points (i, j). Initially there is a *pebble* at (0,0). A move consists of removing a *pebble* from point (i,j) and placing a *pebble* at each of the points (i+1,j) and (i,j+1) provided both are vacant. Show taht at any stage of the game there is a *pebble* at some lattice point (a,b) with $0 \le a+b \le 3$

Day 2

1 Let ABC be a triangle, and P a point in the interior of this triangle. Let D, E, F be the feet of the perpendiculars from the point P to the lines BC, CA, AB, respectively. Assume that $AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2$.

Furthermore, let I_a , I_b , I_c be the excenters of triangle ABC. Show that the point P is the circumcenter of triangle $I_aI_bI_c$.

Proposed by C.R. Pranesachar, India

2 Show that the only solutions of te equation

$$p^k + 1 = q^m$$

, in positive integers k,q,m>1 and prime p are (i) (p,k,q,m)=(2,3,3,2) (ii) k=1,q=2, and p is a prime of the form $2^m-1,\,m>1\in\mathbb{N}$

International Mathematical Olympiad Training Camp 2004

 $\boxed{3}$ Determine all function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x+y) = f(x)f(y) - c\sin x \sin y$$

for all reals x, y where c > 1 is a given constant.

Day 3

1 Let ABC be a triangle and I its incentre. Let ϱ_1 and ϱ_2 be the inradii of triangles IAB and IAC respectively. (a) Show that there exists a function $f:(0,\pi)\mapsto \mathbb{R}$ such that

$$\frac{\varrho_1}{\varrho_2} = \frac{f(C)}{f(B)}$$

where $B = \angle ABC$ and $C = \angle BCA$ (b) Prove that

$$2(\sqrt{2}-1)<\frac{\varrho_1}{\varrho_2}<\frac{1+\sqrt{2}}{2}$$

Define a function $g: \mathbb{N} \to \mathbb{N}$ by the following rule: (a) g is nondecrasing (b) for each n, g(n) i sthe number of times n appears in the range of g,

Prove that g(1) = 1 and g(n+1) = 1 + g(n+1 - g(g(n))) for all $n \in \mathbb{N}$

- 3 Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds v_1 and v_2 respectively, where v_1 and v_2 are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that
 - (a) at any given time t, at least one of the runners is at a distance not more than $\frac{\left[\frac{v_1+v_2}{v_1+v_2}\right]}{v_1+v_2}$ units from the starting point. (b) there is a time t such that both the runners are at least $\frac{\left[\frac{v_1+v_2}{2}\right]}{v_1+v_2}$ units away from the starting point. (All disstances are measured along the track). [x] is the greatest integer function.

Day 4

International Mathematical Olympiad Training Camp 2004

1 Let x_1, x_2, x_3, x_n be n real numbers such that $0 < x_j < \frac{1}{2}$. Prove that

$$\frac{\prod\limits_{j=1}^{n} x_j}{\left(\sum\limits_{j=1}^{n} x_j\right)^n} \le \frac{\prod\limits_{j=1}^{n} (1 - x_j)}{\left(\sum\limits_{j=1}^{n} (1 - x_j)\right)^n}$$

 $\boxed{2}$ Find all primes $p \geq 3$ with the following property: for any prime q < p, the number

$$p - \left\lfloor \frac{p}{q} \right\rfloor q$$

is squarefree (i.e. is not divisible by the square of a prime).

- Regard a plane with a Cartesian coordinate system; for each point with integer coordinates, draw a circular disk centered at this point and having the radius $\frac{1}{1000}$.
 - a) Prove the existence of an equilateral triangle whose vertices lie in the interior of different disks;
 - b) Show that every equilateral triangle whose vertices lie in the interior of different disks has a sidelength ξ 96.

Radu Gologan, Romania [hide="Remark"] [The "¿ 96" in (b) can be strengthened to "¿ 124". By the way, part (a) of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537 well-known "Dedekind" theorem[/url].]

Day 5

- 1 Let ABC be an acute-angled triangle and Γ be a circle with AB as diameter intersecting BC and CA at $F(\neq B)$ and $E(\neq A)$ respectively. Tangents are drawn at E and F to Γ intersect at P. Show that the ratio of the circumcentre of triangle ABC to that if EFP is a rational number.
- 2 Let $P(x) = x^4 + ax^3 + bx^2 + cx + d$ and $Q(x) = x^2 + px + q$ be two real polynomials. Suppose that there exists an interval (r, s) of length greater than 2 SUCH THAT BOTH P(x) AND Q(x) ARE nEGATIVE FOR $X \in (r, s)$ and both are positive for x > s and x < r. Show that there is a real x_0 such that $P(x_0) < Q(x_0)$
- 3 An integer n is said to be good if |n| is not the square of an integer. Determine all integers m with the following property: m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

Proposed by Hojoo Lee, Korea