Partie II

Fonctions logarithme de base a

 Fonctions exponentielle de base a

Fonction puissance

I. <u>Fonction logarithme de base</u>« a »:

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R}$$

$$\forall x, y > 0: f(xy) = f(x) + f(y)$$

$$x = y = 1 \Longrightarrow f(1) = 0$$

$$\forall x, y > 0; xf'(xy) = f'(y)$$

$$y = 1, \quad \forall x > 0; f'(x) = f'(1)/x$$

$$\forall x > 0; f(x) = f'(1) \ln(x) + C$$

$$f(x) = k \ln(x) \circ uk = f'(1) \neq 0$$

$$\exists a \in \mathbb{R}_{+}^{*} - \{1\}; \ln(a) = \frac{1}{k}$$

donc:

$$f(x) = \frac{ln(x)}{ln(a)}$$

avec $a \in \mathbb{R}_+^* - \{1\}$

Définition:

Soit aun nombre réel strictement positif et différent de 1.

On appelle logarithme de base a, la fonction notée log_a définie sur \mathbb{R}_+^* par

$$log_a: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$x \mapsto \frac{ln(x)}{ln(a)}$$

Propriétés:

- $log_a(1) = 0$ et $log_a(a) = 1$
- Pour tout x, y > 0 $log_a(xy) = log_a(x) + log_a(y)$
- Pour tout x, y > 0

$$log_a\left(\frac{x}{y}\right) = log_a(x) - log_a(xy)$$

• Pour tout $r \in \mathbb{Q}$ pour tout $x \in \mathbb{R}_+^*$ $log_a(x^r) = rlog_a(x)$

De plus pout tout a, b deux réels strictement positifs différents de 1 et pour tout $x \in \mathbb{R}_+^*$ on a

$$log_b(x) = log_b(a) \cdot log_a(x)$$

appelée: Formule de changement de base pour les logarithmes.

Il suffit pour cela de remarquer que:

$$log_b(x) = \frac{ln(x)}{ln(b)} = \frac{ln(a)}{ln(b)} \cdot \frac{ln(x)}{ln(a)}$$
$$= log_b(a) \cdot log_a(x)$$

Variations de la fonction logarithme de base a:

Pour : a > 1

x	01 <i>a</i> + ∞	
	+	
$log_a(x)$	+∞ 1 7 0 -∞	

D -				4
$D \cap$	ıır	•	α	- 1
Po	uı		α	

10u1. u < 1		
x	$0a1 + \infty$	
$\left(\log_a(x)\right)' = \frac{1}{x \ln(a)}$		
$log_a(x)$	+8 1 0 -8	

Graphe de log_a pour a > 1

Le logarithme et le calcul scientifique:

Un peu d'histoire:

Issac Newton (1643-1727)

Edmond Halley (1656-1742)

.

John NAPIER (1550-1617) (NEPER)

Cas particulier :Le logarithme décimal

$$1 = 10^{0} \to 0$$

$$10 = 10^{1} \to 1$$

$$100 = 10^{2} \to 2$$

$$1000 = 10^{3} \to 3 \cdots$$

$$log_{10}(x) = log(x) = \frac{ln(x)}{ln(10)}$$

$$avec log(10) = \frac{ln(10)}{ln(10)} = 1$$

$$log(10^{0}) = 0 \cdot log(10) = 0 \to 0$$

$$log(10^{1}) = 1 \cdot log(10) = 1 \to 1$$

$$log(10^{2}) = 2 \cdot log(10) = 2 \to 2$$

$$log(10^{3}) = 3 \cdot log(10) = 3 \to 3$$

On étend le procédé aux puissances négatives de 10 :

$$0.1 \rightarrow log(10^{-1}) = (-1) \cdot log(10) = -1 \rightarrow -1$$

 $0.01 \rightarrow log(10^{-2}) = (-2) \cdot log(10) = -2 \rightarrow -2$
 $0.001 \rightarrow log(10^{-3}) = (-3) \cdot log(10) = -3 \rightarrow -3$
 $log(1) = 0$
 $log(10) = 1, log(100) = 2$
 $log(1000) = 3, log(10000) = 4$
 $log(0.1) = -1, log(0.01) = -2$
 $log(0.001) = -3, log(0.0001) = -4$

II. <u>Fonction exponentielle de</u> base « a »:

Soit *a* un nombre réel strictement positif différent de 1.

La fonction log_a logarithme de base « a » étant une bijection de \mathbb{R}_+^* vers \mathbb{R} elle admet donc une fonction réciproque définie de \mathbb{R} vers \mathbb{R}_+^* , de plus

Pour tout $x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}$ tels que $y = log_a(x)$ on a

$$y = log_a(x) \iff y = \frac{ln(x)}{ln(a)}$$
$$\iff ln(x) = yln(a)$$
$$\iff e^{ln(x)} = e^{yln(a)} = e^{ln(a^y)}$$
$$\iff x = a^y$$

Définition:

On appelle exponentielle de base a la bijection définie de \mathbb{R} vers \mathbb{R}_+^* réciproque de la fonction log_a , notée par exp_a et définie par

$$\forall x \in \mathbb{R}; \ exp_a(x) = e^{xln(a)} = a^x$$

et qui vérifie :

$$y = log_a(x) \Leftrightarrow x = a^y; \ \forall y \in \mathbb{R}$$

Proposition:

La fonction exp_a réciproque de log_a est une fonction dérivable sur $\mathbb R$ et sa dérivée est donnée par

$$(exp_a(x))' = (exp(xln(a)))' = ln(a)exp_a(x)$$

de plus:

si a > 1, exp_a est strictement croissante sur \mathbb{R}

et

$$\lim_{x \to -\infty} exp_a(x) = 0 \qquad \lim_{x \to +\infty} exp_a(x) = +\infty$$

si a < 1, exp_a est strictement décroissante sur $\mathbb R$

et

$$\lim_{x \to -\infty} exp_a(x) = +\infty \qquad \lim_{x \to +\infty} exp_a(x) = 0$$

Tableau de variation de exp_a :

Pour : a > 1

x	-∞	0	+ ∞
$ \begin{aligned} \left(exp_a(x)\right)' \\ &= ln(a)exp_a(x) \end{aligned} $		+	
$exp_a(x)$		+∞ 1 0	

Pour: a < 1

1001. 4 < 1	
x	$-\infty$ 0 $+\infty$
$ \begin{aligned} \left(exp_a(x)\right)' \\ &= ln(a)exp_a(x) \end{aligned} $	_
$exp_a(x)$	+∞ 1 0

Graphe de exp_a pour a > 1

Proposition:

- 1. $exp_a(0) = 1$ et $exp_a(1) = a$
- 2. Pour tout $x, y \in \mathbb{R}$: $exp_a(x + y) = exp_a(x)exp_a(y)$
- 3. Pour tout $x, y \in \mathbb{R}$: $exp_a(x - y) = exp_a(x)/exp_a(y)$
- 4. Pour tout $x \in \mathbb{R}$ et pour tout $r \in \mathbb{Q}$: $exp_a(rx) = (exp_a(x))^r$
- 5. De plus pour tout $a, b \in \mathbb{R}_+^* \{1\}$ $exp_{ab}(x) = exp_a(x)exp_b(x)$

Preuve:

Pour démontrer les points 1°,2°,3° et 4° il suffit de calculer le logarithme base *a* des membres de gauches et de droite de chacune des égalités

Le dernier point est dû au fait que

$$exp_{ab}(x) = (ab)^{x} = e^{xln(ab)}$$
$$= e^{x(lna+lnb)} = e^{xlna}e^{xlnb}$$
$$= exp_{a}(x)exp_{b}(x)$$

Remarque:

la définition de la fonction exponentielle de base a pour a > 0 et différent de 1 permet de donner un sens à la notation a^x .

Néanmoins on peut prolongé cette notation au cas où a=1 on posant $1^x=1$ pour tout x dans \mathbb{R}

De plus les fonctions logarithme népérien et exponentielle sont des cas particulier pour a = e.

III. Fonction puissance

Pour tout $n \in \mathbb{N}$

$$x \in \mathbb{R} \to x^n$$

Pour *n* impair

$$x \in \mathbb{R} \to (x)^{\frac{1}{n}} = \sqrt[n]{x}$$

Pour *n* pair :

$$x \in [0, +\infty[\to x^n \in [0, +\infty[$$

$$x \in [0, +\infty[\to (x)^{\frac{1}{n}} = \sqrt[n]{x} \in [0, +\infty[$$

Pour
$$a > 0$$
, $x \in \mathbb{R} \to a^x$

Pour tout
$$x \in \mathbb{R}_+^*$$
 et $\alpha \in \mathbb{R}$

$$x^{\alpha} = e^{\alpha ln(x)}$$

Définition:

On appelle fonction puissance toute fonction φ_a définie par

$$\varphi_a\colon \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$$

$$x \mapsto \varphi_a(x) = x^a$$
 Avec
$$x^a = exp\big(aln(x)\big)$$
 et $a \in \mathbb{R}$

Proposition:

Pour tout a, b dans \mathbb{R} et x, y > 0 on a

$$1^{a} = 1$$

$$x^{0} = 1$$

$$ln(x^{a}) = aln(x)$$

$$x^{a}y^{a} = (xy)^{a}$$

$$x^{a}x^{b} = x^{a+b}$$

$$(x^{a})^{b} = x^{ab}$$

Proposition:

La fonction φ_a est une fonction dérivable sur \mathbb{R}_+^* de dérivée

$$\frac{d}{dx}[\varphi_a(x)] = ax^{a-1}$$

et ainsi

$$(\varphi_a)' = a\varphi_{a-1}$$

Preuve:

$$\underbrace{x \in \mathbb{R}^*_+ \mapsto ln(x)}_{ln} \xrightarrow{a \cdot x} \underbrace{exp}_{exp} \\
\frac{d}{dx} [\varphi_a(x)] = \frac{d}{dx} [x^a] = \frac{d}{dx} [exp(alnx)] \\
= a \frac{d}{dx} (lnx) \left[\frac{d}{dx} (exp) \right] (alnx) \\
= \frac{a}{x} exp(alnx) = \frac{a}{x} x^a = ax^{a-1} \\
avec \varphi_{a-1}(x) = x^{a-1}$$

Proposition:

$$\lim_{x \to 0} x^a = \lim_{x \to 0} exp(aln(x)) = \begin{cases} 0, & a > 0 \\ +\infty, & a < 0 \end{cases}$$

$$\lim_{x \to +\infty} x^{a} = \lim_{x \to +\infty} exp(aln(x)) = \begin{cases} +\infty, & a > 0 \\ 0, & a < 0 \end{cases}$$

De plus pour a>0 : φ_a admet un prolongement par continuité en 0 on écrit alors que pour a>0 $0^a=0$

Tableau de variation de la fonction puissance:

Pour : a > 0

x	01 + ∞
$(x^a)' = ax^{a-1}$	+
x^a	+ ® 7 1 0

Pour: a < 0

x	01 + ∞
$(x^a)' = ax^{a-1}$	_
x^a	+∞ 1 0

De plus vue que

$$\frac{\varphi_a(x)}{x} = \varphi_{a-1}(x)$$

On en déduit que:

Si a>1 la fonction φ_a est dérivable en 0 de nombre dérivé $(\varphi_a)'(0)=0$

et si 0 < a < 1la fonction φ_a est non dérivable en 0.

Pour a = 1 la fonction φ_1 est l'identité et donc dérivable de dérivée égale à 1 en 0

Graphe de la fonction puissance:

Comparaison des fonctions logarithme et puissance:

Théorème:

$$\lim_{x \to +\infty} \frac{ln(x)}{x} = 0$$

$$\lim_{x\to 0} x ln(x) = 0$$

Preuve:

Pour tout t > 0, on a $t \ge \sqrt{t}$, ce qui pour $x \ge 1$, permet d'écrire :

$$0 \le \ln(x) = \int_{1}^{x} \frac{dt}{t} \le \int_{1}^{x} \frac{dt}{\sqrt{t}} = 2\sqrt{x} - 2 < 2\sqrt{x}$$

Ce qui entraine que pour tout $x \ge 1$:

$$0 \le \frac{\ln(x)}{x} < \frac{2}{\sqrt{x}} \to 0$$
 quand $x \to +\infty$, d'où la limite.

On pose
$$x = \frac{1}{y}$$
, quand sachant que $y \to +\infty$, $x \to 0$

$$\lim_{x \to 0} x \ln(x) = -\lim_{y \to +\infty} \frac{\ln(y)}{y} = 0$$

Proposition:

Si *a*, *b* sont deux réels strictement positifs, on a

$$\lim_{x \to +\infty} \frac{\left(ln(x)\right)^b}{x^a} = 0$$

et

$$\lim_{x \to 0} x^a |\ln(x)|^b = 0$$

Preuve:

Il suffit d'écrire

$$\frac{\left(\ln(x)\right)^b}{x^a} = \left(\frac{\ln(x)}{x^{a/b}}\right)^b = \left(\frac{b}{a}\right)^b \left(\frac{\ln(x^{a/b})}{x^{a/b}}\right)^b$$

En posant $x^{a/b} = y$ avec $y \to +\infty$ quand $x \to +\infty$, il vient du théorème précédent que

$$\lim_{x \to +\infty} \frac{\left(ln(x)\right)^b}{x^a} = 0$$

La deuxième limite est obtenue en posant

$$x = \frac{1}{y}$$

Comparaison des fonctions exponentielle et puissance:

Théorème:

Si a, b deux sont deux réels strictement positifs, on a

$$\lim_{x \to +\infty} \frac{exp(ax)}{x^b} = +\infty$$

$$\lim_{x \to -\infty} |x|^b exp(ax) = 0$$

Merci de votre attention

au prochain cours