Extended Topic Models with Numerical Features

Gökhan Çapan, Ali Caner Türkmen

March 21, 2016

Introduction

- ▶ Unsupervised learning, recover *latent* topics in documents
- ► Can be thought of as clustering. Loosely equivalent to link prediction.

Latent Dirichlet Allocation

▶ (Blei et al., 2003)

Comparison of Topic Models

▶ (Blei et al., 2003)

Coupled Topic Model Applications

► Gokhan lit survey

LDA ≡ Bayesian NMF up to parameterization

► (Jordan Blei) (Cemgil, 2009)

Coupled Matrix Factorization for Recovering Topics

- Represent data with well-known algebraic structures
- Jointly guide topic assignments from multimodal datasets, in a probabilistically sound framework
- ► Easily extensible to semi-supervised learning, kernel methods
- ► (T. and Cemgil, 2016)

Extended Coupled NMF for Topic Learning with Count Features

- $y_{ij}|W,H \sim GPO(\sum_t w_{it}h_{tj},\phi)$
- $ightharpoonup x_{kj}|V,H\sim GPO(\sum_t v_{kt}h_{tj},\gamma)$
- Guide topic modeling with numeric count data
- ▶ Can assume priors p(W), p(H), p(V) for Bayesian learning

Data Set and Features

- ▶ Data Set: News articles sampled from Anadolu Agency website. 1337 documents (can be expanded), 3000 tokens after adjusting for document frequency.
- ► Features: Complexity features such as word count, sentence count, average sentence length, comma count. (TBD)
- Novel Features: Etymological counts. Count the number of words from their etymological origins. Number of Arabic, Farsi, French words, etc. Source: TR Wiktionary Database Dump.

Learning

- ► EM-like updates with multiplicative NMF update rules
- Gibbs sampling assuming appropriate priors (tentative, out of scope for this project)

Conclusion

We propose two key contributions

- ► Put the topic modeling problem in a coupled NMF framework, extending with numerical features
- ▶ Use etymological counts for the Turkish language