Amplitude Demodulation

Amplitude Demodulation

Tasks

- Design a low pass filter for a modulating frequency of 100 Hz and $f_c = 19$ kHz
- Design a low pass filter for a modulating frequency of 10 kHz and f_c = 455 kHz
- Design a Π filter for a modulating frequency of 10 kHz and $f_c = 455$ kHz

Amplitude Demodulation- Task 1

Task - Detector circuit with Simple AGC

Let the carrier frequency be $f_c = 455 \ kHz$ and maximum modulating signal frequency be $f_m = 10 \ kHz$

Inorder to design a lowpass filter with upper cutoff frequency 10 kHz,

$$f_H = \frac{1}{2\pi R_d C_d}$$

$$10 \ kHz = \frac{1}{2\pi R_d C_d}$$

Select $C_d = 0.001 \mu F$. Then $R_d = 16.1 k\Omega$. Choose $R_d = 15 k\Omega$ or $22 k\Omega$ standard resistor values.

Make a π filter (for better performance) using these R_d and C_d values.

Task 2

Amplitude Demodulation

Procedure

- Connect the diode to the output of AM signal(See Figure.) as in the circuit diagram .
- 2. Connect load resistance R_L and observe the outputwaveform on a CRO and plot it.
- 3. Connect the π filter circuit of R_d and C_d and observe the output waveform on a CRO and plot it.
- Obtain the demodulated output without dc offset by connecting capacitor C₃. Observe it on a CRO and plot it.
- 5. Connect the lowpass filter using C_a and R_a for obtaining AGC voltage level. Observe it on a CRO and plot it.
- Vary the modulation index by changing carrier or modulating signal levels.
 Plot the simple AGC charateristics with modulation index on x-axis and AGC voltage level on y-axis.
- 7. Eliminte the dc offset and observe the modulating signal from the $10\mu F$ capacitor as shown in the circuit diagram.