Real Variables: Problem Set II

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set II of Real Variables 2015 at NYU.

1 Solutions

Question 3. Royden 2.29.

Solution. Let X be any set of real numbers. For $x \in X$, x - x = 0, thus it is rationally equivalent. Hence, it is reflextive.

Question 3. Royden 2.38.

Solution. Let $f:[a,b]\to\mathbb{R}$ be Lipschitz with the associated Lipschitz constant c, and let $E_0\in[a,b]$ such that $\mathrm{m}(E_0)=0$. Fix $\epsilon>0$. As $\mathrm{m}(E_0)=0$, we have a countable collection of disjoint open intervals $\{I_k\}_{k=1}^\infty$ such that $E\subseteq \cup_{k=1}^\infty I_k$ and $\sum_{k=1}^\infty \mathrm{m}(I_k)<\frac{\epsilon}{c}$. Since $E\subseteq \cup_{k=1}^\infty I_k$, we have $f(E_0)\subseteq \cup_{k=1}^\infty f(I_k)$. By the monotonicity of measure, and Lipschitz property of f, we obtain

$$\operatorname{m}(f(E_0)) \le \sum_{k=1}^{\infty} \operatorname{m}(f(I_k)) \le c \sum_{k=1}^{\infty} \operatorname{m}(I_k) = \epsilon.$$

Since ϵ is arbitrary, we have $\mathrm{m}(f(E_0))=0$. Therefore, we have shown that a Lipschitz function maps a set of zero measure on to a set of measure zero.

Question 3. Royden 3.1.

Solution. Let f and g are continuous functions on [a,b]. Assume that f=g a.e. In other words, f=g on $[a,b]\setminus E_0$, where $\mathrm{m}(E_0)=0$. Let $x\in E_0$, and fix $\epsilon>0$. By the continuity of f and g, we have δ_f and δ_g such that

$$|x - x'| < \delta_f \implies |f(x) - f(x')| < \frac{\epsilon}{2}$$

$$|x - x'| < \delta_g \implies |g(x) - g(x')| < \frac{\epsilon}{2}$$
(1)

Now, consider the set $B(x,\min(\delta_f,\delta_g))\cap [a,b]$, where B denotes a ball with a center and radius. As E_0 is a zero measure set, there exists x^* in $B(x,\min(\delta_f,\delta_g))\cap [a,b]$ such that $f(x^*)=g(x^*)$. Furthermore, by (1), we have that $|f(x)-f(x^*)|<\frac{\epsilon}{2}$ and $|g(x)-g(x^*)|<\frac{\epsilon}{2}$. Consequently, by the trinagle inequality, we have

$$|f(x) - g(x)| \le |f(x) - f(x^*)| + |g(x) - g(x^*)| + |f(x^*) - g(x^*)| = \epsilon.$$

Since ϵ is arbitrary, we have shown that for $x \in E_0$, we have f(x) = g(x). Therefore, f = g on [a,b] holds. \square

Question 4. Royden 3.5.

Solution. Assume that the function f is defined on a measurable domain E and has a property that $\{x \in E \mid f(x) > c\}$ is measurable for each rational number c. Let $r \in \mathbb{R} \setminus \mathbb{Q}$. Consider the set $\{x \in E \mid f(x) > r\}$. Notice that

$${x \in E \mid f(x) > c} = \bigcup_{k=1}^{\infty} {x \in E \mid f(x) \ge c + \frac{1}{k}}.$$

By the density of the rationals, we can choose a sequence of rationals, $\{c_k\}$ such that for each k, we have $c_k \in \mathbb{Q}$ and $c_k \in (c, c+\frac{1}{k})$. In particular, we have that

$${x \in E \mid f(x) > c} = \bigcup_{k=1}^{\infty} {x \in E \mid f(x) \ge c_k}.$$

As $\{c_k\}$ is a rational sequence, $\{x \in E \mid f(x) \geq c_k\}$ is measurable for all k, and $\{x \in E \mid f(x) > c\}$ is measurable, as a countable union of measurable sets is measurable. Since r is an arbitrary irrational, we have shown that $\{x \in E \mid f(x) > a\}$ is measurable for any $a \in \mathbb{R}$. Therefore, f is measurable. \square

Question 5. Royden 3.7.

Solution. Let f be a function defined on a measurable set E. We wish to show that f is measurable if and only if an inverse image of any Borel set is measurable. We denote the Borel σ -algebra as \mathcal{B} .

Assume that an inverse image of any borel set is measurable. Then, as the (c, ∞) is a borel set for any c, we have that $f^{-1}((c, \infty))$, which can be re-written as $\{x \in E \mid f(x) > c\}$, is measurable for any c. This is precisely the definition of a measurable function. Hence, f is measurable.

Assume that f is measurable. Then, by the definition of a measurable function, we have that, for any c, $f^{-1}((c,\infty))$, is measurable. Observe that $f^{-1}((a,b))$ is measurable for any $a,b\in\mathbb{R}$, by taking $f^{-1}((a,\infty))\cap f^{-1}(\mathscr{B}$ Hence, $f^{-1}(B)$ is measurable for $B\in\mathscr{B}$.

Question 6. Royden 3.9.

Solution. Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E. Let $E_0 = \{x \in E \mid \{f_n(x)\} \text{ converges}\}$. By the Cauchy Criterion of real sequences, we can recharacterize E_0 as follows:

$$\begin{split} E_0 &=& \{x \in E \mid \forall K \in \mathbb{N}, \exists N \in \mathbb{N} \text{ such that } |f_n(x) - f_m(x)| < \frac{1}{K} \text{ for } n, m \geq N \} \\ &=& \bigcap_{K=1}^{\infty} \bigcup_{N=1}^{\infty} \{x \in E \mid |f_n(x) - f_m(x)| < \frac{1}{K} \text{ for } n, m \geq N \}. \end{split}$$

We have that for a measurable function f and g, |f-g| is measurable. Hence, $|f_n-f_m|$ is measurable. Consequently, $\{x\in E\ |\ |f_n(x)-f_m(x)|<\frac{1}{K}\ \text{for}\ n,m\geq N\}$ is a measurable set for all K and N. Then, E_0 is a countable intersection of countable union of measurable sets, and thus is measurable. We have shown that E_0 is measurable. \square