

Applied Computational Fluid Dynamics

Project:
MIRA Model and NASA N2A HWB

By: Group 6

Ashwin Sunder, Yash Gandhi & Lucas Schurbaum

Table of Contents

- Original Investigation
- Task
- Meshing
- Physics
- Mesh Independence
- Results
 - Lift & Drag
 - Pressure Distribution
 - Flow Visualization
- Conclusion

Original Investigation

- By: Gregory M. Gatlin, Dan D. Vicroy, and Melissa B. Carter
 - NASA Langley Research Center. 2012
- Wind tunnel
- Hybrid Wing Body Configuration
 - Configurable

Computational Investigation

- By: Dan Almosnino
 - Aerion Technologies Corporation / Desktop Aeronautics. 2016
- Inviscid Euler equations solver
- Results close to experimental data

Task

- Reproduce experimental results
 - Angle of attack sweep
 - cP-plots
 - Flow visualization
- Half model was provided
 - Dimensions given
- Group specifications:

Mesh: Polyhedral

Turbulence model: k-ω SST (Menter)

Angle of attacks: 4.19°, 8.36° & 12.53°

- Free hand on simulation settings
 - Problem solving on our own jurisdiction

Dimension	5.8% Model	Full Scale	Units	Misc.
Wing Span, 2b	12.354	213	feet	Reference Length for Lateral Coefficients
Wing Twist	-8.87	-8.87	degrees	At wing tip (linear variation)
Body Length, L	8.583	147.983	feet	
Reference Area, S _{ref}	33.499	9958.8	feet ²	
Reference Length, L _{ref}	5.046	87	feet	
Moment Reference Point	4.6297	79.82	feet	0.5394L
Balance Support Point	5.8364	N/A	feet	0.68L

- Bullet shaped flowfield designed in CATIA V5
 - Specifications given
- Base size (B):
 - First: 1.54 m
 - Final: 0.85 m
- Surface mesh (aircraft):
 - Target size: 5 %B
 - Min size: 0.5 %B
 - Curvature: 80 Pts/circle
 - Growth rate: 1.15
- Surface mesh in base settings non-sufficient
 - Refinements needed

- Surface refinements:
 - Leading-edge dented
 - Custom leading-edge volume
 - Trailing-edge in volume mesh not straight
 - Computed sharp edges
 - Applied curve control
- Improvement of surface mesh

- Prism layers (20 layers)
 - Fuselage
 - Based on reference length
 - Near wall thickness adjusted to inner wing value for cell quality
 - Inner and outer wing
 - Based on the average chord length between sections
 - Vertical stabilizer
 - Reference length of 0.15 m
 - Nose
 - Reduced total thickness of 0.021 m (standard: 0.0246 m)
 - Later: Disabled due to near core layer aspect ratio of 2.0

- Volume mesh (Polyhedral)
 - Overall
 - Volume growth rate of 1.05
 - Maximum cell size 1000 %B
 - Nearfield
 - Surface and volume mesh
 - Custom size of 10 %B
 - Wake refinements
 - Fuselage / Wing
 - Isotropic size 10 %B
 - Growth rate 1.05
 - Vertical stabilizer
 - Isotropic size 25 %B
 - Growth rate 1.3

Flow field (Bullet shape)			
Radius	26 m		
Length	39 m		
Default Controls			
Base size	0.85m		
Target surface size	50 %		
Minimum surface size	10 %		
Surface Curvature	80 pts/circle		
Surface Growth rate	1.15		
Number of Prism Layers	20		
Prism Layer near Wall Thickness	5.8E-6m		
Prism Layer Total Thickness	0.0246m		
Volume Growth Rate	1.05		

Custom Controls			
Main Body (Surface Control):			
Target Surface size	5%		
Minimum Surface Size	0.5%		
Wake Refinement	45m / 0°		
Isotropic size	10%		
Growth Rate	1.05		
Sharp Edges (Curve Control):			
Target Surface size	0.1%		
Leading Edge (Surface Control):			
Target Surface size	0.05%		
Inner Wing Section (Volume			
Control):			
Prism Layer near Wall Thickness	5.8E-6m		
Prism Layer Total Thickness	0.0101m		
Outer Wing Section (Volume			
Control):			
Prism Layer near Wall Thickness	5.5E-6m		
Prism Layer Total Thickness	0.00662m		
Vertical Stabilizer (Surface			
Control):			
Target Surface size	0.5%		
Minimum Surface Size	0.05%		
Wake Refinement	45m / 0°		
Isotropic size	25%		
Growth Rate	1.3		
Prism Layer near Wall Thickness	5.2E-6m		
Prism Layer Total Thickness	0.00383m		
Nose Section (Volume Control):			
Prism Layer Total Thickness	0.021m		
Nearfield (Volume Control):			
Isotropic size (Surface & Volume)	10%		

Physics

- RANS simulation with:
 - Steady state
 - Changed to unsteady for 12.53° AoA
 (Timestep: 0.001s; Inner Iterations: 10; 2nd order Temp. Discret.)
 - Segregated solver
 - Low Mach number of 0.2
 - Constant density
 - Constant dynamic viscosity after Sutherland's law
 - Assumed turbulent flow
 - k-ω SST turbulence model
 - Constitutive option on quadratic
 - All y+ wall treatment
 - Additional:
 - Solution interpolation
 - Cell quality remediation

Mesh independence

- For 4.19° angle of attack
- Several iterations of mesh
 - From 5.26M to 19.56M cells
 - Variation of the Base Size

Base Size	Number of	C _L	%	C _D	%
(m)	Cells (Mio.)	_	Deviation	_	Deviation
1.54	5.26	0.19918	0.91%	0.01216	2.80%
1.225	6.85	0.19907	0.85%	0.01206	1.90%
0.85	11.10	0.19882	0.72%	0.01192	0.77%
0.77	13.92	0.19842	0.52%	0.01189	0.50%
0.60	19.56	0.19739	0,00%	0.01183	0.00%

- Mesh with approximately 11 million cells was chosen as base mesh:
 - Good solution accuracy
 - Faster convergence
 - Justifiable hardware load

Lift and Drag

- For lower AoA very good results
 - Constant offset
- At 12.53° AoA big deviation
 - Less Lift
 - More Drag

AoA (°)	C _L	C _L	Abs. error	Rel. error
	simulation	experiment		(%)
4.19	0.1988	0.2331	-0.0343	-14.71
8.36	0.4153	0.4443	-0.0290	-6.51
12.53	0.5185	0.6380	-0.1195	-18.73

AoA (°)	C _D	C _D	Abs. error	Rel. error
	simulation	experiment		(%)
4.19	0.0119	0.0147	-0.0028	-18.63
8.36	0.0239	0.0264	-0.0025	-9.54
12.53	0.0691	0.0468	+0.0223	+47.71

AoA 12.53°

- When looking at:
 - Lift and Drag
 - C_P distribution
 - Streamlines over Wing
 - Q-Criterion
- Visible flow separation over inner wing
- However: Experimental results suggest no separation
- Differences Sim to wind tunnel:
 - Unknown test conditions
 - Sim model quality
 - Leading edge prone for bad surface mesh

Pressure distributions

- Generally good results
- Some deviation
 - Experimental data has disturbances
 - Simulation suggests clean results

Thesis:

- Wind tunnel model may have had:
 - Panel gaps
 - Unclean pressure measurement bores

Pressure distributions

Flow visualization

Conclusion

- Simulation with mesh and physics was setup
- Extensive mesh independence study
- Simulation successfully conducted
- Sufficiently accurate drag, lift and pressure coefficients for lower AoAs
 - However, some pressure peaks not reproducible in simulation
- At highest AoA experienced flow separation
 - Switch to unsteady solver
 - Separation likely did not occur in reference experiment
- Likely deviation to experiments due to:
 - Unknown test parameters
 - Model geometry

References

- Gatlin, G. M., Vicroy, D.D., Carter, M.B., "Experimental Investigation of the Low-Speed Aerodynamic Characteristics of a 5.8-Percent Scale Hybrid Wing Body Configuration", NASA Langley Research Center, June 2012
- Almosnino, D, "A Low Subsonic Study of the NASA N2A Hybrid Wing-Body Using an Inviscid Euler-Adjoint Solver", Aerion Technologies Corporation / Desktop Aeronautics, Palo Alto, June 2016

Thank you for your Attention!