Теорема 9 (второе достаточное условие для точки перегиба) Пусть $f''(x_0) = 0$, $a \ f'''(x_0) \neq 0$; то-

Пусть $f^{-}(x_0) \equiv 0$, а $f^{-}(x_0) \neq 0$; тогда точка x_0 является точкой перегиба функции f.

Доказательство. По формуле Тейлора, в силу условий $f''(x_0) = 0$, имеем

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f'''(x_0)}{3!}(x - x_0)^3 + o((x - x_0)^3),$$

 $x \to x_0$, и, поскольку $L(x) = f(x_0) + f'(x_0)(x - x_0)$, то

$$f(x) - L(x) = \frac{f'''(x_0)}{3!}(x - x_0)^3 + o((x - x_0)^3), x \to x_0$$

Отсюда следует (см. замечание о бесконечно малых перед доказательством теоремы 4 этого параграфа), что знак разности f(x) - L(x) меняется при изменении знака $x - x_0$. Это и означает, что x_0 является точкой перегиба.

Пример 3. Рассмотрим функцию $f(x) = e^{-x^2}$ и найдем её точки перегиба. Имеем

$$f'(x) = -2xe^{-x^2},$$

$$f''(x) = -2e^{-x^2} + 4x^2e^{-x^2} = 4(x^2 - \frac{1}{2})e^{-x^2} =$$

$$= 4(x + \frac{1}{\sqrt{2}})(x - \frac{1}{\sqrt{2}})e^{-x^2}.$$

Отсюда видно, что вторая производная функции f обращается в нуль в точках $x=\pm 1/\sqrt{2}$ и при переходе через них меняет знак. Следовательно, согласно теореме 8, эти точки являются точками перегиба функции f(рис. 65).

 ${f 3aдaчa}\ 11.$ Доказать, что если функция f непрерывна на интервале (a,b) и если для любых точек x_1 и $x_2,a< x_1< x_2< b,$ выполняется неравенство

$$\frac{f(x_1)+f(x_2)}{2} \leq f\left(\frac{x_1+x_2}{2}\right),$$

то (a,b) является интервалом выпуклости вверх для функции $\mathbf{f}.$