Master the Tidyverse

Garrett Grolemund

Data Scientist, Educator July 2018 RStudio

Your Turn

Re-introduce yourself to the people at your table. Then login to your rstudio.cloud project.

Restart your R Session: Session > Restart R

Tidy data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each case is in its own row
- 3. Each value is in its own cell

country	year	cases	pop
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

```
filter(df, year == 2000)
```


country	year	cases	pop
Afghanistan	2000	2666	20595360
Brazil	2000	80488	174504898
China	2000	213766	1280428583

```
filter(df, year == 2000)
select(df, -year)
```


country	cases	pop	rate
Afghanistan	2666	20595360	0.00013
Brazil	80488	174504898	0.00046
China	213766	1280428583	0.00017

```
filter(df, year == 2000)
select(df, -year)
mutate(df, rate = cases / pop)
```


country	cases	pop	rate
Afghanistan	2666	20595360	0.00013
Brazil	80488	174504898	0.00046
China	213766	1280428583	0.00017


```
filter(df, year == 2000)
select(df, -year)
mutate(df, rate = cases / pop)
summarise(df, avg = mean(rate))
```


country	cases	pop	rate
Afghanistan	2666	20595360	0.00013
Brazil	80488	174504898	0.00046
China	213766	1280428583	0.00017


```
df %>%
  filter(year == 2000) %>%
  select(-year) %>%
  mutate(rate = cases / pop) %>%
  summarise(avg = mean(rate))
```


Today

Functions for specific types of data.

Non-Tidy R

Lists

```
$city
[1] "New York" "New York" "London"
[4] "London" "Beijing" "Beijing"

$size
[1] "large" "small" "large" "small"
[5] "large" "small"

$amount
[1] 23 14 22 16 121 121

attr(,"row.names")
[1] 1 2 3 4 5 6
```

Models

```
Call:
lm(formula = lifeExp ~ year, data = gapminder)
Residuals:
         1Q Median 3Q Max
-39.949 -9.651 1.697 10.335 22.158
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -585.65219 32.31396 -18.12 <2e-16 ***
            year
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11.63 on 1702 degrees of freedom
Multiple R-squared: 0.1898, Adjusted R-squared: 0.1893
F-statistic: 398.6 on 1 and 1702 DF, p-value: < 2.2e-16
```


List Columns

A table is ...an organizational structure ...that you can manipulate.

country	r.squared	data	model
Botswana	0.03	year .resid 1952 -5.3071154 1957 -3.6144580 1962 -2.0158007 1967 -0.5411434 1972 1.8815140 1977 4.8731713 1982 6.7348287 1987 8.5694860 1992 7.3891434 1997 -3.1031993 2002 -9.3285420 2007 -5.5378846	Call: lm(formula = lifeExp ~ year, data = .) Coefficients: (Intercept) year -65.49586 0.06067
Lesotho	0.08	year .resid 1952 -5.2410256 1957 -2.8098543 1962 -0.5876830 1967 -0.3205117 1972 0.4766597 1977 2.4398310 1982 4.8320023 1987 6.4561737 1992 8.4833450 1997 3.8785163 2002 -7.5643124 2007 -10.0431410	Call: lm(formula = lifeExp ~ year, data = .) Coefficients: (Intercept) year -139.16529 0.09557

Day 2

ReIntroduction and Data Types	9:00 - 10:45
Morning Break	10:45 - 11:00
Iteration	11:00 - 12:30
Lunch	12:30 - 1:30
Modeling	1:30 - 3:15
Afternoon Break	3:15 - 3:30
List Columns	3:30 - 5:00

Master the Tidyverse

Garrett Grolemund

Data Scientist, Educator October 2017 RStudio