S1 Appendix: Proof of Theorems

In this section, we will identify specific f-divergence functions that can be used for the generative adversarial imputation network, and provide mathematical proof for the Pseudo-code of sc-fGAIN. We adopt some notations and assumptions in Yoon $et\ al^r$ s work[1], and assume that \mathbf{X} is independent of \mathbf{M} , where $p(\mathbf{x}, \mathbf{m}, \mathbf{h})$ denotes the joint distribution for the random variables $(\hat{\mathbf{X}}, \mathbf{M}, \mathbf{H})$, and $\hat{p}(\mathbf{x}), p(\mathbf{m}), p(\mathbf{h})$ are corresponding marginal distributions.

Proof of Theorem 1

We will use the following equation,

$$\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p(\mathbf{x}, \mathbf{h}, m_i = 1)}{p(\mathbf{x}, \mathbf{h}, m_i = 0)}.$$
 (1)

and Table 2 to prove the Theorem 1.

Set $p_i = p(\mathbf{x}, \mathbf{h}, m_i = 1)$, $q_i = p(\mathbf{x}, \mathbf{h}, m_i = 0)$, apply the Sigmoid function on the output of the discriminator network $S_{\phi}(x, h)$, that is $D_i = \frac{1}{1 + \exp(-S_{\phi}(x, h)_i)}$.

Below, we will derive the optimal discriminator D_i^* given different f-divergence functions:

• f =Cross-entropy (CE):

$$\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p_i}{q_i} = \frac{\exp(-\log(1 + \exp(-S_\phi(x, h)_i)))}{1 - \exp(-\log(1 + \exp(-S_\phi(x, h)_i)))} = \frac{\frac{1}{1 + \exp(-S_\phi(x, h)_i)}}{1 - \frac{1}{1 + \exp(-S_\phi(x, h)_i)}}$$

The above equation can be simplified as $\frac{p_i}{q_i} = \frac{D_i}{1 - D_i}$. Finally, we get the optimal discriminator $D_i^* = \frac{p_i}{p_i + q_i}$.

• f = Kullback-Leibler(FKL)

$$\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p_i}{q_i} = \exp(-\log\left(\frac{1}{S_\phi(x,h)_i} - 1\right) - 1)$$
The above equation can be simplified as $\frac{p_i}{q_i} = \frac{D_i}{e(1-D_i)}$. Finally, we get the optimal discriminator $D_i^* = \frac{p_i e}{p_i e + q_i}$.

• f =Reverse Kullback-Leibler (RKL)

$$\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p_i}{q_i} = \frac{1}{-\exp(-S_\phi(x,h)_i)}$$
 The above equation can be simplified as $\frac{p_i}{q_i} = \frac{D_i}{1 - D_i}$. Finally, we get the optimal discriminator $D_i^* = \frac{p_i}{p_i + q_i}$

• f =Jensen-Shannon (JS)

$$\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p_i}{q_i} = \frac{\frac{2}{1 + \exp(-S_\phi(x,h)_i)}}{2 - \frac{2}{1 + \exp(-S_\phi(x,h)_i)}}$$

The above equation can be simplified as $\frac{p_i}{q_i} = \frac{D_i}{1 - D_i}$.

Finally, we get the optimal discriminator $D_i^* = \frac{p_i}{p_i + q_i}$.

• $f = \mathbf{Pearson} \ \chi^2 \ (\mathbf{PC})$ $\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p}{q} = \frac{1}{2} S_\phi(x,h)_i + 1$ Finally, we get the optimal discriminator $D_i^* = \frac{exp(2(p_i - q_i)/q_i)}{1 + exp(2(p_i - q_i)/q_i)}$

Proof of Theorem 2

Given the optimal discriminator D_i^* , for each f-divergence function, the objective function $\mathcal{L}_{G,f}(D^*)$ can be expressed as:

•
$$f = CE$$

$$\mathcal{L}_{G,f}(D^*) = \sum_{i}^{d} \int_{\mathcal{X}} \int_{\mathcal{H}} \left(p_i \log(D_i^*) + q_i \log(1 - D_i^*) \right) dx dh$$
$$= \sum_{i}^{d} \int_{\mathcal{X}} \int_{\mathcal{H}} \left(p_i \log(\frac{p_i}{p_i + q_i}) + q_i \log(\frac{q_i}{p_i + q_i}) \right) dx dh$$

It can also be written as:

$$\mathcal{L}_{G,f}(D^*) = \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{X}} \int_{\mathcal{H}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log(\frac{p(\mathbf{x}, \mathbf{h}, m_i = t)}{p(\mathbf{x}, \mathbf{h}, m_i = 0) + p(\mathbf{x}, \mathbf{h}, m_i = 1)}) dh dx$$

$$= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{X}} \int_{\mathcal{H}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log(\frac{p(\mathbf{x}, m_i = t | \mathbf{h}) p(m_i = t | h)}{p(\mathbf{x} | \mathbf{h}) p(m_i = t | h)}) dh dx$$

$$= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{X}} \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) p(\mathbf{x} | \mathbf{h}, m_i = t) \log(\frac{p(\mathbf{x} | \mathbf{h}, m_i = t)}{p(\mathbf{x} | \mathbf{h})}) dh dx$$

$$+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t | \mathbf{h})) dh$$

$$= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) D_{KL}(p(\mathbf{x} | \mathbf{h}, m_i = t) | |p(\mathbf{x} | \mathbf{h})) dh$$

$$+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t | \mathbf{h})) dh$$

Since KL divergence is non-negative, so the loss function $\mathcal{L}_{G,f}(D^*)$ is minimized if and only if $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = t) = \hat{p}(\mathbf{x}|\mathbf{h})$ for any $i \in \{1, ..., d\}$.

• f = FKL

$$\begin{split} \mathcal{L}_{G,f}(D^*) &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(-p(\frac{1}{D^*} - 1) + q(1 + \log(\frac{1}{D^*} - 1)) \right) dxdh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(p \log \frac{p}{q} \right) dxdh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(p \log p + q \log q - (p + q) \log q \right) dxdh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \sum_{t \in \{0,1\}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log \frac{P(x|h, m_i = t)}{P(x|h)} dxdh \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t|\mathbf{h})) dh \\ &- \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \sum_{t \in \{0,1\}} p(\mathbf{x}|\mathbf{h}, m_i = t) p(\mathbf{h}, m_i = t) \log \frac{P(x|h, m_i = t)}{P(x|h)} dxdh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t|\mathbf{h})) dh \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}) p(x|h) \log \frac{p(x, m_i = 0|h)}{p(x|h)} dxdh \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) D_{KL}(p(x|\mathbf{h}, m_i = t) ||p(x|\mathbf{h})) \\ &+ p(\mathbf{h}, m_i = t) \log(p_m(m_i = t|\mathbf{h})) dh \\ &+ \sum_{i=1}^d \int_{\mathcal{H}} p(h) D_{KL}(p(x|h) ||p(x|m_i = 0, h)) - p(h) \log p(m_i = 0|h) dh \end{split}$$

Similar to CE's proof, since KL divergence is non-negative, so $\mathcal{L}_{G,f}(D^*)$ is minimized if and only if $p(x|\mathbf{h}, m_i = t) = p(x|\mathbf{h})$ for the 1st and 2nd term.

• f = RKL

$$\begin{split} \mathcal{L}_{G,f}(D^*) &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(p \log(\frac{D^*}{1-D^*}) - \frac{q}{e} \frac{D^*}{1-D^*} \right) dx dh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(p \log(\frac{pe}{q}) - \frac{q}{e} \log(\frac{pe}{q}) \right) dx dh = \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(q \log \frac{q}{p} \right) dx dh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \left(q \log q + p \log p - (p+q) \log(p) \right) dx dh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \sum_{t \in \{0,1\}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log \frac{P(x|h, m_i = t)}{P(x|h)} dx dh \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t|\mathbf{h})) dh \\ &- \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \sum_{t \in \{0,1\}} p(\mathbf{x}|\mathbf{h}, m_i = t) p(\mathbf{h}, m_i = t) \log \frac{P(x|h, m_i = t)}{P(x|h)} dx dh \\ &= \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t|\mathbf{h})) dh \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p(m_i = t|\mathbf{h})) dh \\ &- \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(h) p(x|h) \log \frac{p(x, m_i = 1|h)}{p(x|h)} dx dh \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) D_{KL}(p(x|\mathbf{h}, m_i = t) ||p(x|\mathbf{h})) \\ &+ p(\mathbf{h}, m_i = t) \log(p_m(m_i = t|\mathbf{h})) dh \\ &+ \sum_{i=1}^d \int_{\mathcal{H}} p(h) D_{KL}(p(x|h) ||p(x|m_i = 1, h)) - p(h) \log p(m_i = 1|h) dh \end{split}$$

Similarly to FKL, since KL divergence is non-negative, so, to get $\mathcal{L}_{G,f}(D^*)$ minimized if and only if $p(x|\mathbf{h}, m_i = t) = p(x|\mathbf{h})$.

• $f = \mathbf{JS}$

$$\begin{split} \mathcal{L}_{G,f}(D^*) &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} \log(2D^*) + q \log(2-2D^*) \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p \log\left(\frac{2p}{p+q}\right) + q \log\left(\frac{2q}{p+q}\right) \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log\left(\frac{p(\mathbf{x}, \mathbf{h}, m_i = t)}{p(\mathbf{x}, \mathbf{h}, m_i = 0) + p(\mathbf{x}, \mathbf{h}, m_i = 1)}\right) dh dx \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log\left(2\right) dx dh \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(\mathbf{x}, \mathbf{h}, m_i = t) \log\left(\frac{p(\mathbf{x}, m_i = t | \mathbf{h}) p_m(m_i = t | h)}{p(\mathbf{x} | \mathbf{h}) p_m(m_i = t | h)}\right) dh dx + C \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\chi} \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) p(\mathbf{x} | \mathbf{h}, m_i = t) \log\left(\frac{p(\mathbf{x} | \mathbf{h}, m_i = t)}{p(\mathbf{x} | \mathbf{h})}\right) dh dx \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) p(\mathbf{x} | \mathbf{h}, m_i = t) \log(p_m(m_i = t | \mathbf{h})) dh + C \\ &= \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) D_{KL}(p(\cdot | \mathbf{h}, m_i = t) | |p(\cdot | \mathbf{h})) dh \\ &+ \sum_{t \in \{0,1\}} \sum_{i=1}^d \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) \log(p_m(m_i = t | \mathbf{h})) dh + C \end{split}$$

C denotes a constant, therefore, the loss function is minimized if $D_{KL}(p||q) = 0$, that is, $p(x|\mathbf{h}, m_i = t) = p(x|\mathbf{h})$

Proof of Theorem 3

Theorem 2 has proved that, $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0) = \hat{p}(\mathbf{x}|\mathbf{h})$ is valid for f = CE, FKL, RKL, and JS. If **H** is independent of **M**, and **H** is conditionally independent of **X** given **M**, it is easy to verify that $\hat{p}(\mathbf{x}|m_i = 1) = \hat{p}(\mathbf{x}|m_i = 0)$, for all $i \in \{1, ..., d\}$. Follow the same argumentation as[1] for the cross-entropy case, there are more parameters than the number of equations, so the density \hat{p} is not unique.

To get a unique density solution, a hinting mechanism is needed such that \mathbf{H} reveals some information of \mathbf{M} to the discriminator D, which means that they are not independent. In the last section, we adopt the method proposed in [1] to sample the hint variable using the Eq. 2, and assume \mathbf{B} and \mathbf{M} are independent. This hinting mechanism can ensure that the generator is capable of replicating the desired distribution of the data, that is the Theorem 4.

Proof of Theorem 4

The proof is similar to the CE scenario[1]. Theorem 2 has shown that $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0)$ holds for the f-divergence of CE, FKL, RKL and JS. Because Hint matrix is defined as

$$\mathbf{H} = \mathbf{B} \odot \mathbf{M} + 0.5(1 - \mathbf{B}). \tag{2}$$

, $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{b}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0) = \hat{p}(\mathbf{x}|\mathbf{b}, m_i = 0)$ is valid. Since **B** and **M** are independent, it is easy to prove $\hat{p}(\mathbf{x}|m_i = 1) = \hat{p}(\mathbf{x}|m_i = 0)$. It means, for any two vectors $\mathbf{m_1}, \mathbf{m_2} \in \{0, 1\}^d$ that differ only on one component, we have $\hat{p}(\mathbf{x}|\mathbf{m_1}) = \hat{p}(\mathbf{x}|\mathbf{m_2})$.

This equation also holds true for any two vectors $\mathbf{m_1}$ and $\mathbf{m_2}$ in $\{0,1\}^d$, because we can always find a sequence of vectors between $\mathbf{m_1}$ and $\mathbf{m_2}$, such that all the adjacent vectors differ from each other in only one component. Consequently, the imputed data distribution $\hat{p}(\mathbf{x}|\mathbf{m})$ is the same for all possible vectors $\mathbf{m} \in \{0,1\}^d$. This unique imputed data density, denoted by $\hat{p}(\mathbf{x}|\mathbf{1})$, corresponds to the true data \mathbf{X} 's density $p(\mathbf{x})$, that is, $\hat{p}(\mathbf{x}|\mathbf{m}) = \hat{p}(\mathbf{x}|\mathbf{1}) = p(\mathbf{x})$. The proof is based on the Theorem 2, so it is true for f = CE, FKL, RKL, JS.

Theorem 1-4 theoretically confirm that the generative adversarial imputation network method remains valid if and only if the loss function is defined using four f-divergence, including CE, FKL, RKL, and JS divergence. The flexibility offered by the f-divergence formulation allows sc-fGAIN to accommodate various types of data and distributions, making it a more universal approach for imputing missing values.

S1 Appendix: Tables

References

[1] J. Yoon, J. Jordon and M. Schaar, Gain: Missing data imputation using generative adversarial nets, in *International conference on machine learning*, 2018.

Table 1: Objective functions of the Discriminator in the sc-fGAIN models based on different f-divergence function.

circo raircorori.	
Divergence	Objective function
CE	$\mathcal{L}_D = \mathbb{E}_{\hat{X}, M, H} \mathbf{M}^T \left(\log D(\hat{\mathbf{X}}, \mathbf{H}) \right) + (1 - \mathbf{M})^T \left(\log \left(1 - D(\hat{\mathbf{X}}, \mathbf{H}) \right) \right)$
FKL	$\mathcal{L}_D = \mathbb{E}_{\hat{X}, M, H} \mathbf{M}^T \left(\log \frac{D(\hat{\mathbf{X}}, \mathbf{H})}{1 - D(\hat{\mathbf{X}}, \mathbf{H})} \right) + (1 - \mathbf{M})^T \left(-\frac{D(\hat{\mathbf{X}}, \mathbf{H})}{e(1 - D(\hat{\mathbf{X}}, \mathbf{H}))} \right)$
RKL	$\mathcal{L}_D = \mathbb{E}_{\hat{X}, M, H} \mathbf{M}^T \left(1 - \frac{1}{D(\hat{\mathbf{X}}, \mathbf{H})} \right) + (1 - \mathbf{M})^T \left(\log \frac{e(1 - D(\hat{\mathbf{X}}, \mathbf{H}))}{D(\hat{\mathbf{X}}, \mathbf{H})} \right)$
JS	$\mathcal{L}_{D} = \mathbb{E}_{\hat{X}, M, H} \mathbf{M}^{T} \left(\log 2D(\hat{\mathbf{X}}, \mathbf{H}) \right) + (1 - \mathbf{M})^{T} \left(\log \left(2 - 2D(\hat{\mathbf{X}}, \mathbf{H}) \right) \right)$
PC	$\mathcal{L}_D = \mathbb{E}_{\hat{X},M,H} \mathbf{M}^T \left(-\log rac{1 - D(\hat{\mathbf{X}}, \mathbf{H})}{D(\hat{\mathbf{X}}, \mathbf{H})} ight)$
	$+ (1 - \mathbf{M})^T \left(-\frac{1}{4} (\log \frac{1 - D(\hat{\mathbf{X}}, \mathbf{H})}{D(\hat{\mathbf{X}}, \mathbf{H})})^2 + \log \frac{1 - D(\hat{\mathbf{X}}, \mathbf{H})}{D(\hat{\mathbf{X}}, \mathbf{H})} \right)$

Table 2: Comparison of RMSE score (2000 genes) in the A549 cell line

10010 21 Comparison of 101102 coole (2000 Sense) in the 11010 cent into							
Missing rate Method	0.1	0.2	0.3	0.4	0.5		
MAGIC	0.10309	0.09844	0.10168	0.11060	0.12283		
scImpute	0.15627	0.15312	0.15401	0.15424	0.15479		
PBLR	0.10545	0.13518	0.15233	0.16398	0.17242		
sc-fGAIN(CE)	0.15206	0.15113	0.14939	0.15550	0.14953		
sc-fGAIN(FKL)	0.12846	0.11287	0.11960	0.13058	0.12606		
sc-fGAIN(RKL)	0.18133	0.17231	0.14557	0.14608	0.17078		
sc-fGAIN(JS)	0.14958	0.15509	0.15329	0.15407	0.14922		