

毕业论文开题答辩

深度行人再识别学习

姓名学号: 王兴路 3140102282

指导老师: 李英明

年级专业: 2014 级信息工程

2018年3月16日

背景介绍与研究内容

技术路线与设计方案

进度安排与预期目标

背景介绍

- ▶ 行人再识别在智能视频监控、智能安防邻域应用广泛
- ▶ 摄像机网络已广泛布控于各种公共场合中,急需**跨摄像头**检索行人的技术
- ▶ 摄像头采集了**海量**数据,对海量数据进行压缩,建立索引并 快速查找

行人再识别定义

前提假设

- ▶ 检测器已经成功检测
- ▶ i.e., 再识别**不包括**检测步骤

(b) Person Re-identification

行人再识别定义

行人再识别 (Person Re-identification, aka. ReID)

输入某一行人的询问图片 (Probe), 在图像或者视频集合 (gallery) 中跨摄像头检索所有包含该行人的图片.

行人再识别定义

行人再识别 (Person Re-identification, aka. ReID)

输入某一行人的询问图片 (Probe), 在图像或者视频集合 (gallery) 中跨摄像头检索所有包含该行人的图片.

存在的挑战

背景介绍与研究内容

技术路线与设计方案

进度安排与预期目标

相关领域

少样本大规模分类

开放环境人脸识别

细粒度物体识别

关键词: 图像检索, 度量学习, 表征学习. 不均衡学习, etc.

相关工作

- ▶ Identification 转化为分类问题: 注意力机制提取特征 [2], [6], 全局 + 局部特征 [3]
- ▶ Verification 转化为两幅图片的验证问题/Verification: [4]
- ► Embedding 直接学习低维嵌入特征: 在三元损失的基础上强 掉难样本的重要性 [1], 全局 + 局部特征 [5], 注意力机制 [7]

▶ 特征提取

- ▶ 难样本挖掘
- ▶ 计算损失, 反向传播

基本方法: 训练

基本方法: 训练

- ▶ 特征提取
- ▶ 难样本挖掘
- ▶ 计算损失, 反向传播

基本方法: 训练

- ▶ 特征提取
- ▶ 难样本挖掘
- ▶ 计算损失, 反向传播

$$L_{tri} = \frac{1}{PK} \sum_{a \in batch} \left(\max_{p \in A} d_{a,p} - \min_{n \in B} d_{a,n} + \alpha \right)_{+}$$
 (1)

基本方法: 测试

- ▶ 数据增强 (**随机擦除/多次截取**), 特征提取
- ▶ 计算欧式或余弦距离矩阵
- 重排序 [8], 预测最终排名

方案: 多尺度注意力特征

方案: 根据关系图在全局挖掘难样本

Figure: 不同的形成 batch 的方法:左图:一般的三元损失随机选取三元组,中图:[1] 在保证一个类至少两个样本的情况下随机选取,右图:我们希望在形成 batch 时难样本就不是随机选取的

背景介绍与研究内容

技术路线与设计方案

进度安排与预期目标

进度安排

2017/11/18-2017/12/18 调研文献, 制定规划 2017/12/18-2018/01/19 实现基准模型: TriHard [1] 2018/01/19-2018/03/30 注意力机制和难样本挖掘的初步探索 2018/03/30-2018/05/16 在难样本挖掘方面进一步探索 2018/05/16-2018/06/08 撰写毕业论文,答辩

现阶段实验

name	top-1	top-1.rk	mAP
cuhk03label.res	86.28	93.88	82.49
cuhk03label.se.concat	89.33	96.34	86.42
cuhk03label.se.concat.dop	89.83	97.59	86.70
cuhk03label.res.dop	86.84	94.66	84.18
cuhk03label.se	88.28	95.51	84.74
cuhk03detect.res	82.79	91.11	80.08
cuhk03detect.se.concat	84.68	91.78	81.68
cuhk03detect.se.concat.dop	85.65	92.15	82.91
cuhk03detect.se	85.50	92.84	82.78
cuhk03detect.se.concat.35	85.03	92.09	82.65
cuhk03detect.se.concat.45	85.01	92.66	82.65
cuhk03detect.se.sum	84.75	91.22	82.06
cuhk03detect.se.sum.dop	85.93	91.53	83.21
cuhk03detect.res.new_avg	83.61	90.29	81.28
cuhk03detect.res.dop	83.70	91.85 _h	;
market1501 rec	95.61	1 06 1 0 m	ent of local supply & Electr

参考文献 |

- Alexander Hermans, Lucas Beyer and Bastian Leibe. "In defense of the triplet loss for person re-identification". In: arXiv preprint arXiv:1703.07737 (2017).
- Xihui Liu et al. "Hydraplus-net: Attentive deep features for pedestrian analysis". In: arXiv preprint arXiv:1709.09930 (2017).
- Longhui Wei et al. "GLAD: Global-Local-Alignment Descriptor for Pedestrian Retrieval". In: CoRR abs/1709.04329 (2017). arXiv: 1709.04329. URL: http://arxiv.org/abs/1709.04329.
- Zhang Yaqing et al. "Semantics-aware deep correspondence structure learning for robust person re-identification". In: *IJCAI Int. Jt. Conf. Artif. Intell.* 2016-Janua (2016), pp. 3545–3551. ISSN: 10450823.

参考文献 ||

- Xuan Zhang et al. "AlignedRelD: Surpassing Human-Level Performance in Person Re-Identification". In: CoRR abs/1711.08184 (2017). arXiv: 1711.08184. URL: http://arxiv.org/abs/1711.08184.
- Haiyu Zhao et al. "Spindle net: Person re-identification with human body region guided feature decomposition and fusion". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 1077–1085.
- Liming Zhao et al. "Deeply-Learned Part-Aligned Representations for Person Re-Identification". In: CoRR abs/1707.07256 (2017). arXiv: 1707.07256. URL: http://arxiv.org/abs/1707.07256.

参考文献 Ⅲ

Zhun Zhong et al. "Re-ranking Person Re-identification with k-reciprocal Encoding". In: *CoRR* abs/1701.08398 (2017).

arXiv: 1701.08398. URL:

http://arxiv.org/abs/1701.08398.

Thank you!

现阶段实验

Table: 数据集与评估协议的统计信息

Dataset	CUHK03	Market1501	CUHK01	DukeMTMC	VIPeR
identities	1.467	1,501	971	1,812	632
images	1,407	32,668	3,884	36,411	1,264
views	2	6	2	8	2
train IDs	1,367	751	871/485	702	316
test IDs	100	751	100/486	1110	316


```
cmc configs = {
 'cuhk03': dict(separate_camera_set=True,
    single gallery shot=True,
    first_match_break=False),
  'market1501': dict(separate_camera_set=False,#h
    single_gallery_shot=False, # hard
    first_match_break=True),
  'allshots': dict(separate_camera_set=False,#h
    single_gallery_shot=False, # hard
    first_match_break=False),
10
11
```