Dzielić i zwyciężać

Czyli jak szybko pokroić szczypiorek i nie tylko ...

dr Beata Laszkiewicz

Czy szczypiorek i jego krojenie ma coś wspólnego z informatyką?

Strategia I krojenia szczypiorku o dł. n = 16

Strategia II krojenia szczypiorku o dł. n = 16

Ile operacji krojenia wykonaliśmy?

Metoda 1

- w każdym kroku odcinaliśmy jedną jednostkę;
- dla n=16 wykonaliśmy 15 operacji.

Metoda 2

- w każdym kroku, wykonując jedno krojenie, zmniejszaliśmy długość szczypiorku o połowę;
- dla n=16 wykonaliśmy 4 operacje.

Ile operacji wykonujemy?

n	Metoda 1	Metoda 2	
4	3	2	
8	7	3	
16	15	4	
32	31	5	
64	63	6	
128	127	7	
	•••	•••	
1024	1023	10	
•••	99 99	9 ~ 17	
100 000	???	555	

Słowo wstępu...

Wiele ważnych algorytmów ma strukturę rekurencyjną: W celu rozwiązania danego problemu algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów.

Naturalnym podejściem w rozwiązywaniu problemów jest dążenie do wykorzystania znanych rozwiązań problemów.

Metoda rozwiązania problemu

- podziel problem na podproblemy,
- znajdź rozwiązania podproblemów,
- połącz rozwiązania podproblemów w rozwiązanie głównego problemu.

Metoda Dziel i Zwyciężaj

Aby skonstruowany algorytm był efektywny, należy dodać kilka warunków:

- problem jest dzielony na takie same lub bardzo podobne podproblemy,
- liczba podproblemów wynosi co najmniej 2,
- podproblemy są rozwiązywane na podzbiorach zbioru danych, w których liczba elementów jest niemal jednakowa i stanowi stałą cześć (np. połowę) całego zbioru danych rozwiązywanego problemu.

Potęgowanie liczb

Problem: Oblicz a^n , dla $n \in N$.

Algorytm naiwny:
$$a^n = \underbrace{a \cdot a \cdot a \dots \cdot a}_{n}$$

```
wynik \leftarrow 1;
for i \leftarrow 1, 2, 3, ..., n
wynik \leftarrow wynik * a;
```

Złożoność: n

Potegowanie liczb

$$a^{n} = \begin{cases} 1, & gdy \ n = 0 \\ a^{n/2} * a^{n/2}, & gdy \ n \ jest \ parzyste \\ a^{(n-1)/2} * a^{(n-1)/2} * a, & gdy \ n \ jest \ nieparzys \end{cases}$$

gdy n jest nieparzyste

Czas działania:
$$T(n) = T\left(\frac{n}{2}\right) + kn$$

Złożoność: $\log_2 n$ - logarytmiczna

Potęgowanie dla n=16

Metoda klasyczna

$$a^{16} = a^{15} * a$$

$$\downarrow a^{14} * a$$

$$\downarrow a^{13} * a$$

$$\downarrow a^{12} * a$$

$$\downarrow a^{2} * a$$

$$\downarrow a^{1} * a$$

$$\downarrow a^{0} * a$$

$$\downarrow 1$$

Metoda D & Z

Metoda D & Z
$$a^{16} = a^8 * a^8$$

$$a^4 * a^4$$

$$a^2 * a^2$$

$$a^1 * a^1$$

$$a^0 * a$$

$$a^1 * a^1$$

Ile jest mnożeń?

Inne klasyczne przykłady

- jednoczesne wyszukiwanie minimum i maksimum w nelementowym nieuporządkowanym np. ciągu liczb,
- sortowanie przez scalanie,
- i wiele, wiele innych.

Część I:

JEDNOCZESNE WYSZUKIWANIE MIN-MAX

Jak znaleźć najmniejszy i największy element w ciągu *n* elementów?

Najprostsze rozwiązanie:

- Znaleźć minimum przeglądając liniowo ciąg danych
- Znaleźć maksimum przeglądając liniowo ciąg danych

Koszt:
$$(n-1)+(n-1) = 2(n-1)$$

Jednoczesne wyszukiwanie min i max

Schemat działania

Jeśli w ciągu jest jeden element, to ustaw go jako min i jako max. Jeśli w ciągu są 2 elementy, to ustal, który będzie min, a który max. Jeśli w ciągu są więcej niż 2 elementy, to:

- podziel ciąg na 2 części: Z₁ oraz Z₂
- wykonaj ten sam algorytm dla Z₁, ustal min₁ oraz max₁
- wykonaj ten sam algorytm dla Z₂, ustal min₂ oraz max₂
- wybierz min z min₁, min₂
- wybierz max z max₁, max₂

Algorytm MinMax

Dane: n – liczba elementów

T – n-elementowy nieuporządkowany ciąg liczb

p – początek szukania

k – koniec szukania

Wynik: min – najmniejszy element ciągu

max – największy element ciągu

Uwagi:

T[i] oznacza i-ty element ciągu liczb

```
MinMax(T,p,k,min,max)
if (k-p=0) then
     min \leftarrow T[p]
     max \leftarrow T[k]
else
     if (k-p=1) then
            if (T[k] < T[p]) then
                  min \leftarrow T[k]
                  max \leftarrow T[p]
            else
                  min \leftarrow T[p]
                  max \leftarrow T[k]
     else
         s \leftarrow (p+k) \text{ div } 2;
         MinMax(T,p,s,min1, max1)
         MinMax(T,s+1,k,min2,max2)
         if (min1<min2) then min ← min1 else min ← min2
             (\max 1>\max 2) then \max \leftarrow \max 1 else \max \leftarrow \max 2
```

Złożoność algorytmu MinMax

Niech T(n) oznacza złożoność algorytmu MinMax. Wtedy:

$$T(n) = \begin{cases} 0 & \text{dla } n = 1\\ 1 & \text{dla } n = 2\\ 2T\left(\frac{n}{2}\right) + 2 & \text{dla } n > 2 \end{cases}$$

Dla n będącego potęgą liczby 2 ($n=2^k$) złożoność MinMax jest równa:

$$T(n) = \frac{3}{2}n - 2$$

Obliczenie złożoności:

$$T(n) = 2T\left(\frac{n}{2}\right) + 2 =$$

$$= 2\left(2T\left(\frac{n}{4}\right) + 2\right) + 2 = 4T\left(\frac{n}{4}\right) + 4 + 2 =$$

$$= 4\left(2T\left(\frac{n}{8}\right) + 2\right) + 4 + 2 = 8T\left(\frac{n}{8}\right) + 8 + 4 + 2 = \dots$$

$$= 2^{k-1}T\left(\frac{n}{2^{k-1}}\right) + 2^{k-1} + 2^{k-2} + \dots + 2^3 + 2^2 + 2^1 =$$

$$= 2^{k-1}T\left(\frac{2^k}{2^{k-1}}\right) + 2^k - 2 =$$

$$= 2^{k-1} \cdot 1 + n - 2 = n \cdot 2^{-1} + n - 2 = \frac{3}{2}n - 2$$

Część II:

SORTOWANIE PRZEZ SCALANIE

Sortowanie

- przez wybór: $O(n^2)$
- przez wstawianie : $O(n^2)$
- bąbelkowe : $O(n^2)$
- quicksort : $O(n^2)$;
- przez scalanie : $O(nlog_2n)$

Uwaga: Wszystkie złożoności podane w wersji pesymistycznej! Średnia złożoność quicksort to $O(nlog_2n)$.

Sortowanie przez scalanie

Schemat działania

Jeśli w ciągu jest jeden element, to nic nie rób. Jeśli w ciągu jest więcej niż jeden element, to:

- podziel ciąg Z na 2 części: Z₁ oraz Z₂
- wykonaj ten sam algorytm dla Z₁ (posortuj tą samą metodą)
- wykonaj ten sam algorytm dla Z₂ (posortuj tą samą metodą)
- scal Z₁ oraz Z₂ w jeden posortowany ciąg Z

Algorytm MergeSort

```
Dane: n – liczba elementów
        T – n elementowy nieuporządkowany ciąg liczb
        p – początek sortowania
        k – koniec sortowania
Wynik: T – n-elementowy uporządkowany ciąg liczb
MergeSort(T,p,k)
if (k-p=0) then;
else
     s \leftarrow (p+k) \text{ div } 2
     MergeSort(T,p,s)
     MergeSort(T,s+1,k)
     Merge(T, p, s, k)
```

Złożoność algorytmu MergeSort

Niech T(n) oznacza złożoność algorytmu MergeSort. Wtedy:

$$T(n) = \begin{cases} 0 & \text{dla } n = 1\\ 1 & \text{dla } n = 2\\ 2T\left(\frac{n}{2}\right) + n - 1 & \text{dla } n > 2 \end{cases}$$

Dla n będącego potęgą liczby 2 ($n=2^k$) złożoność MergeSort jest równa:

$$T(n) = n \log_2 n - n + 1$$

Obliczenie złożoności:

$$T(n) = 2T\left(\frac{n}{2}\right) + n - 1 =$$

$$= 2\left(2T\left(\frac{n}{4}\right) + \frac{n}{2} - 1\right) + n - 1 = 4T\left(\frac{n}{4}\right) + n - 2 + n - 1 =$$

$$= 4\left(2T\left(\frac{n}{8}\right) + \frac{n}{4} - 1\right) + n - 2 + n - 1 =$$

$$= 8T\left(\frac{n}{8}\right) + n - 4 + n - 2 + n - 1 = \dots$$

$$= 2^{k-1}T\left(\frac{n}{2^{k-1}}\right) + (k-1)n - \left(2^{k-2} + 2^{k-3} + \dots + 2^{1} + 2^{0}\right) =$$

$$= 2^{k-1}T\left(\frac{2^{k}}{2^{k-1}}\right) + (k-1)n - 2^{k-1} + 1 =$$

$$= 2^{k-1} \cdot 1 + kn - n - 2^{k-1} + 1 = kn - n + 1 = n\log_{2} n - n + 1$$

Nasz problem:

Jak scalić 2 uporządkowane ciągi w 1 uporządkowany ciąg?

KIEDYŚ może to się tu znajdzie....

Część III:

PRZESZUKIWANIE BINARNE

Przeszukiwanie binarne

- wykorzystuje strukturę ciągu: dane są uporządkowane
- wykorzystuje metodę dziel i zwyciężaj
- Liczba elementów w ciągu przeszukiwanym jest połową (jest zmniejszana) w każdym kroku algorytmu

Przeszukiwanie binarne - algorytm

```
Dane: t – ciąg n-elementowy
```

e – element, którego szukamy

Wynik: s, 1<=s<=n, taki że t[s]=e lub

s = -1, jeśli element y nie występuje w ciągu t

Algorytm rekurencyjny

```
BinSearch(t,p,k,e)
if (k < p) return -1;
else
     s = (p+k)/2
     if (t[s]==e) return s;
     else
          if (t[s]>e) return BinSearch(t,p,s-1,e)
          else return BinSearch(t,s+1,k,e)
```

Algorytm iteracyjny

```
s = (p+k)/2;
while (k \ge p \text{ and } t[s]! = e)
     if (t[s]>e)
           k = s-1;
     else
           p = s+1;
      s = (p+k)/2;
if (k<p) return -1; else return s;
```

Złożoność algorytmu

Odpowiedź na pytanie o liczbę podziałów ciągu w najgorszym przypadku tzn.

Jak wiele razy musimy odrzucać połowę aktualnego ciągu, aby otrzymać jeden element?

Ciąg n-elementowy może być połowiony co najwyżej $\log_2 n$ razy.

Część IV (materiał dodatkowy):

PRZESZUKIWANIE INTERPOLACYJNE

Przeszukiwanie interpolacyjne

- Przeszukiwanie binarne może nie być tak szybkie, jak byśmy oczekiwali; przykład: "nazwisko na B" w książce telefonicznej
- Jak szukamy:

Przeszukiwanie binarne:

porównujemy czy element e jest większy, mniejszy czy równy elementowi ciągu

Przeszukiwanie interpolacyjne:

Sprawdzamy i korzystamy z informacji jak bardzo element e jest większy, mniejszy od elementu w ciągu

Porównanie

Przeszukiwanie binarne:

$$s \leftarrow \frac{p+k}{2} = p + \frac{1}{2}(k-p)$$

Przeszukiwanie interpolacyjne:

$$s \leftarrow p + \frac{y - t[p]}{t[k] - t[p]}(k - p)$$

Dzielimy ciąg danych, ale próbujemy "strzelić" bliżej części ciągu, którą jesteśmy zainteresowani

Algorytm przeszukiwania interpolacyjnego

Dane, wyniki: jak w przeszukiwaniu binarnym

Metoda: jak w przeszukiwaniu binarnym, z wyjątkiem obliczania s

Uwaga: w praktyce komputerowa realizacja przeszukiwania interpolacyjnego nie wygrywa z przeszukiwaniem binarnym:

- dla małych n liczba log n jest mała
- Inne operacje zwiększają łączną liczbę operacji

Złożoność algorytmu: $O(log_2(log_2n))$

Twierdzenie o rekurencji uniwersalnej

Jeżeli
$$T(n)=aT\left(\left\lceil\frac{n}{b}\right\rceil\right)+O(n^d)$$
 dla pewnych stałych $a>0$, $b>1$ oraz $d\geq 0$, to

$$T(n) = \begin{cases} O(n^d), & gdy \, d > \log_b a, \\ O(n^d \log n), & gdy \, d = \log_b a, \\ O(n^{\log_b a}), & gdy \, d < \log_b a. \end{cases}$$

To twierdzenie mówi nam o czasach działania większości programów typu "dziel i zwyciężaj", z którymi się spotkaliśmy i spotkamy.

Zapamiętaj!

- Jedną z technik projektowania jest metoda dziel i zwyciężaj:
 - problem jest dzielony na takie same lub bardzo podobne podproblemy,
 - liczba podproblemów wynosi co najmniej 2,
 - podproblemy są rozwiązywane na podzbiorach zbioru
 danych, w których liczba elementów jest niemal jednakowa i
 stanowi stałą cześć (np. połowę) całego zbioru danych
 rozwiązywanego problemu.
 - struktura algorytmu opartego na tej technice jest często rekurencyjna.

Informatyka jest jak kurz... jest wszędzie – i już!

Dziękuję za uwagę!

Beata Laszkiewicz