Paper Number(s): E2.4

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2001

EEE PART II: M.Eng., B.Eng. and ACGI

COMMUNICATIONS II

Friday, 22 June 2:00 pm

There are FIVE questions on this paper.

Answer ANY THREE questions.

All questions carry equal marks.

Please use a separate answer book for Sections A and B.

Time allowed: 2:00 hours

JOENETOS

Examiners:

Ward, D.B., Barria, J.A., Gurcan, M.K.

and Gurcan, M.K.

SECTION A Communications Principles (Please use separate answer book)

1. (a) Justify the representation:

$$n(t) = \sum_{k} a_k \cos(2\pi f_k t + \theta_k)$$

for band-limited white noise of which a representative frequency is f_k , and the θ_k are random phases which are independent and uniformly distributed over 0 to 2π .

[5]

(b) Show that this bandpass noise can be written as

$$n(t) = n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)$$

and explain what band of frequencies are present in each of $n_c(t)$ and $n_s(t)$.

[5]

(c) Derive expressions for the average power in each of $n_c(t)$ and $n_s(t)$.

[5]

(d) By deriving a phasor representation for n(t), explain why $n_c(t)$ and $n_s(t)$ are commonly referred to as the in-phase and quadrature terms, respectively.

[5]

2. (a) Describe the process of pulse code modulation (PCM) of an analog signal, and state what is meant by quantization noise.

[4]

(b) For a uniform quantizer, derive an expression for the mean-square quantization error in terms of the step size.

[4]

(c) If the input to a uniform *n*-bit quantizer is the sine wave $A_m \sin(2\pi f_m t)$, derive an expression for the signal-to-noise ratio (in decibels) at the output of the quantizer. Assume that the dynamic range of the quantizer is $-A_m$ to A_m .

[4]

(d) Consider a binary source alphabet where a symbol 0 is represented by 0 volts, and a symbol 1 is represented by 1 volt. Assume these symbols are transmitted over a baseband channel having uniformly distributed noise with a probability density function:

$$f(n) = \begin{cases} \frac{1}{2}, & |n| < 1 \\ 0, & \text{otherwise.} \end{cases}$$

Assume that the decision threshold T is within the range of 0 to 1 volt.

- i. If the symbols are equally likely, show that the probability of error is independent of the choice of threshold.
- ii. If the probability of occurrence of symbol 0 is p, derive an expression for the probability of error. Hence determine the optimum value of the threshold if $p = \frac{1}{3}$.

[8]

3. (a) A signal m(t) with a uniform power spectral density (PSD) and a bandwidth of 4 kHz, is modulated with a carrier of frequency $f_c = 500$ kHz to produce a DSB-SC signal. The modulated signal is transmitted over a channel with a noise PSD of $S_n(f)$ as shown below. The power of the DSB-SC signal is 1μ W at the receiver input. The received signal is bandpass filtered, multiplied by $2\cos(2\pi f_c t)$, and then lowpass filtered to obtain the output. Determine the output signal-to-noise ratio.

(b) Consider an AM receiver using a square-law detector whose output is proportional to the square of the receiver input x(t), as indicated in the following figure.

The AM waveform is:

$$s(t) = A[1 + \mu\cos(2\pi f_m t)]\cos(2\pi f_c t)$$

where μ is the modulation index. Assume that the additive noise at the receiver input is white Gaussian bandpass noise with zero mean. Show that the output signal-to-noise ratio of the receiver is given by:

$$SNR_{out} = \frac{2\mu^2 \rho^2}{1 + \rho(2 + \mu^2)}$$

where ρ is the carrier-to-noise ratio at the input to the receiver. Assume that a capacitor is included at the output of the receiver to block DC.

You may find the following identities useful:

$$\cos^{2}(A) = \frac{1}{2}(1 + \cos(2A))$$

$$\sin^{2}(A) = \frac{1}{2}(1 - \cos(2A))$$

$$\cos(A)\sin(A) = \frac{1}{2}\sin(2A)$$

[12]

[8]

4. (a) Using the Huffman coding procedure, construct a coding scheme for an alphabet whose symbols occur independently with probabilities 0.1, 0.4, 0.25, 0.1, 0.15. Calculate the average codeword length of the resulting source code and compare it with the source entropy.

[8]

(b) State the source coding theorem, explaining and giving units for all terms used.

[3]

(c) What is the channel capacity of an additive Gaussian noise channel with bandwidth of 10 kHz, if the required signal-to-noise ratio at the receiver input is 20 dB? Hence, for a three-symbol alphabet having probabilities 0.2, 0.35, 0.45, calculate the maximum symbol rate that allows reliable communication over this channel.

[5]

(d) A discrete source produces the symbols A and B with probabilities $p_A = \frac{3}{4}$ and $p_B = \frac{1}{4}$ at a rate of 100 symbols/second. The symbols are grouped in blocks of two and encoded as follows:

Grouped symbols	Binary code
AA	1
AB	01
BA	001
BB	000

Is this code optimum (justify your decision)? If not, how efficient is it?

[4]

SECTION B Networks (Please use separate answer book)

- 5. Answer any two of the following subsections (a), (b) and (c).
- (a) Discuss the principle of connection-oriented services and connectionless services. Discuss the relevance of characterising a service by means of its quality of service (QoS) features.

 [10]
- (b) Describe and discuss the importance of Media Access Control (MAC) techniques for broadcast communications networks. Describe the main advantages and disadvantages of a centralised MAC scheme.

 [10]

(c) Describe and discuss the importance of the network layer in the OSI protocol reference model and routing in packet switched networks.

[10]

Communications II - 2001 - SOLUTIONS Examinations: Session Confidential MODEL ANSWER and MARKING SCHEME First Examiner Paper Code Second Examiner Question Page 1 out of 16 Question labels in left margin Marks allocations in right marginn(+) = Eak Cos(anfkt+Ok) 1.105 - white noise has a flat power spectral density: > < of -ft -fc for Af small, the shaded component can be represented by a randomly-phosed sinusoid of frequency fx, and rardon phase Ok, and applitude ax. - summing these random sinusoids over the entire bound gives the representation required. 5 1.163 - let fk = (fk-fc) +fc : nk(t) = ak Cos [211 (fk-fc) t + Ok + 211fct] but Cos (A+B) = CosA CosB - Sin A SinB : nk(t) = ak Gos (an (fk-fe)t +OK) Gos (2016t) - ak Sin (211/fk-fc) t+0x) Sin (211/fct) in (t) = Enkt) = net) Cos (Zinfet) - not) Sin (Zinfet)

in $(t) = \frac{1}{k} \cdot (kt) = n_c(t) \cdot (c) \cdot (2\pi f_c t) - n_s(t) \cdot \sin(2\pi f_c t)$ where $n_c(t) = \frac{1}{k} \cdot a_k \cdot (a_{tt}(f_k - f_c)t + \theta_k)$ $n_s(t) = \frac{1}{k} \cdot a_k \cdot \sin(2\pi f_k - f_c)t + \theta_k)$ Each of $n_c(t) \cdot (n_s(t) + n_s(t)) \cdot \cos(n_s(t) + e^{-1} \cos(n_s(t) + e^{-1} \cos(n_s(t)))$ Since f_k are centred around f_c , hence frequences $(f_k - f_c)$ present in $n_c(t) \cdot (n_s(t)) \cdot (a_{tt}(t) + e^{-1} \cos(n_s(t)))$ in $n_c(t) \cdot (n_s(t)) \cdot (a_{tt}(t) + e^{-1} \cos(n_s(t)))$ in $n_c(t) \cdot (n_s(t)) \cdot (a_{tt}(t) + e^{-1} \cos(n_s(t)))$ in $n_c(t) \cdot (n_s(t)) \cdot (a_{tt}(t) + e^{-1} \cos(n_s(t)))$ in $n_c(t) \cdot (n_s(t)) \cdot (a_{tt}(t) + e^{-1} \cos(n_s(t)))$ in $n_c(t) \cdot (n_s(t)) \cdot (a_{tt}(t) + e^{-1} \cos(n_s(t)))$ in $n_c(t) \cdot (n_s(t)) \cdot (n_s(t)) \cdot (n_s(t))$ in $n_c(t) \cdot ($

5

Examinations: Session Confidential MODEL ANSWER and MARKING SCHEME Paper Code First Examiner Page 2 out of Second Examiner Question Marks allocations in right margin Ouestion labels in left margin Power in no (t) is: (. (c) E { no (t)} = E { { { { { E } akal Cos (2 til / k - fe) t + Ok)} × 605 (211(fp-fc) + +01) } = { E E { akal Cos (2016/k-fc) t+0k) (05 (2016/fc) ++0e)} Since phase terms are independent, it follows that E } akal Cos (2mlfk-fe) + OK) Cod 2mlff-fe) ++Ol) }=0 , K#l E { } = E { ax2 (ox2 (2n(fk-fi)+ +0x)} and grap property, k=l = E } ak { E } Cos (211/fk-fi)t+0k) } K= l sure ax & Ox are independent. But E & Cos2 (2m (fix-fc)t + Ox) = 2 . Power in $n_c(t)$ is $\xi = \frac{\xi a_k^2 \hat{\zeta}}{2}$ For nott), similarly we have E { n3(t)} = E E E QKQ Sin (201(fk-fc)t+OK) Sin(201(fp-fc)t+OI)} Agan, we have: E & Sin (2016/k-fe) + + OK) Sin (2016/p-fe) t + OK) \$=0 kfl

sure Ox are independent E { Sin² (2n/fk-fc) (+0k)} = 2 k=l. : Power in $n_s(t)$ is $\frac{E}{k} = \frac{E\{a_k^*\}}{a}$ also.

5

5

MODEL ANSWER and MARKING SCHEME

First Examiner

Paper Code

Second Examiner

Question

Page 3 out of

Question labels in left margin

Marks allocations in right margin

1.(01)

Let $g(t) = n_c(t) + j n_s(t)$ $g(t) e^{j2\pi f_c t} = n_c(t) \left(\cos 2\pi f_c t + j \sin 2\pi f_c t \right)$ $t j n_s(t) \left(\cos 2\pi f_c t + j \sin 2\pi f_c t \right)$ $= n_c(t) \left(\cos 2\pi f_c t + j n_c(t) \sin 2\pi f_c t \right)$ $-n_s(t) \sin 2\pi f_c t + j n_s(t) \cos 2\pi f_c t$

in(t) = Re{g(t) e janfet}

Phasor diagram is:

where we see that $n_c(t)$ is in-phase water comparent of rotating phasor $\forall n_s(t)$ is 90° out of phase (in quadrature) with rotating phasor.

ar (mais) dalam y a mana mai na 14 dalama n (mai ma	Examinations :			dential	
	MODEL ANSWER and MARKING SCHEME				
First Exa		Paper Code	Dogo A out of		
Second I	Examiner	Question	Page 4 out of	j.	
Question	labels in left margin		Marks allocations in right	margin	
2.(0)	PCM consists of:				
	1. Sampling at or a	bore Nyquist.	rato		
	2. quantizing each s			3.	
	3. encooling unto a de	gital stream.		,	
	Quantization noise is in		2. Vis caused		
	by the fact that envors			1.	
	is nounded to the neares	st quantization	level.		
2(6)	For a uniform quantizer	war separation	of A volts between		
	levels, quantization error	•	• .		
	by -0/2 : 9< 1/2 . V is a,	governmentely unifor	mly austribited		
	······································		/		
	p(q) =	otheruse			
	()	otheruse			
	Mean square error is thus	3			
	E { e 2 } = \int_{\infty}^{\infty} q^2	() ~ ~/			
		P(4) Oq	• • • • • • • • • • • • • • • • • • •		
	- C ^A /2	. (-			
	= 5 ^{A/2} 9	2 5 de			
	,				
	12.			3	
			r		

İ,

MODEL ANSWER and MARKING SCHEME

First Examiner

Paper Code

Second Examiner

Question

Page 5 out of

Question labels in left margin

Marks allocations in right margin

2.(0)

For a sine wave An Sin (an fint), the average power is: $P_S = \frac{An^2}{2}$

Average noise pouer (from (b)) is:

$$P_{N} = \frac{\Delta^{2}}{12}$$

The range of the quantizer is $2 \text{ Am} = L\Delta$ where L is the no. of levels, which for a n-bit quantizer is $L = 2^n - 1 \approx 2^n$

$$\therefore \Delta = \frac{\partial \Delta m}{\partial r} \qquad \forall \Delta^2 = \frac{4 A m^2}{2^{2n}}$$

$$:SNR = \frac{P_S}{P_N} = \frac{A_m^2}{2} \times \frac{12 \times 2^{2n}}{4 A_m^2}$$

$$=$$
 $3/2 \times 2^{2n}$

In decibels,

MODEL ANSWER and MARKING SCHEME

First Examiner

Paper Code

Second Examiner

Question

Page 6 out of

Question labels in left margin

Marks allocations in right margin

2(ds

PDF's of received signals:

"O" transmitted

2 Peo

"I" transutted

(I)

for equally-likely symbols:

$$Pe = Po Peo + P, Pei = \frac{1}{2}(Peo + Pei)$$

$$= \frac{1}{2}(\frac{1}{2}(1-T) + \frac{1}{2}T)$$

$$= \frac{1}{4}(1-T+T) = \frac{1}{4}$$

=
$$\frac{1}{4} (1-T+T) = \frac{1}{4}$$
 a undependent of T

(並

if Po=P .: P1= 1-P

3.

3.

1.

l.

	Examinations:	- Session	Confide	ntial
	MODEL ANSWER and	MARKING SC	HEME	# 14 th - 14 th
First Exa		Paper Code		
	Examiner	Question	Page 7 out of	
		-	Marks allocations in right n	nargin
Question	n labels in left margin			,
3(2)	For DSB-SC, transmitted signs	elis Am	(+) (05 wct	1.
	d received signal is:	Jant	- ne(+) Siniwet	1.
	$r(t) = \left(Am(t) + n_c t\right)$,		
	After conservent detection this			i.
	$y(t) = A m(t) +$ Signal pover is: $P_5 = A^2 v$	$\frac{n_{ctt}}{n^{2}}$		
	Noise power is: PN = n2	(+)		
	Power in DSB-SC is: (Av	nt) los wet	$\sum_{n=1}^{\infty} A^{2} / \frac{1}{m^{2}(t)}$	2.
	but this equals μW $A^2 m^2 U = 2\mu W$			
	Poues in nelle) is some asi	barolpass	noise n(t) guan by shaded area	h.
	Man 10-12	i R = (5,(f) af	
And the second s	-fc o fc fc+4kHo.	= 2	$1 \times \frac{1}{2} (2 \times 4000 \times 10^{-12})$) 2
	Ps/0 - 2 10-6		•	
A PROPERTY OF THE PROPERTY OF	$SNR = \frac{P_s}{P_N} = \frac{Z \times 10^{-6}}{8 \times 10^{-9}}$	- 250	ay au	
		÷	₹ •	
1	· ·			1

First Examiner Second Examiner Question Page 8 out of Question labels in left margin Marks allocations in rig 3(b) Received signal is: x(t) = (A(1+plosant) + nc) (os wet - ns Sin wet Squared signal is: -2 (A(1+plosant) + nc) ns (os wet - ns Sin wet But (os 4 - 1/2 (1+(os 2A)) Sin 4 = 1/2 (1+(os 2A)) GaASin A = 1/2 (1-(os 2A)) GaASin A = 1/2 (1-(os 2A)) (b) -2 (A(1+plosant) + nc) ns (os wet Sin wet But (os 4 - 1/2 (1+(os 2A)) Sin 4 = 1/2 (1-(os 2A)) GaASin A = 1/2 (1-(os 2A)) GaASin A = 1/2 (1-(os 2A)) All theree, a floor the LPT we are left with: y(t) = 1/2 [A(1+plosant) + nc] - 1/2 ns 2 - 1/2 ns 3 Aflor removing DX terms we have: y(t) = 1/2 nc (0s wint + nc 2 + ns 2) y(t) = 1/2 nc (0s wint + nc 2 + ns 2)	fidential
Question labels in left margin Question labels in left margin Received signal is: x(t) = (A(1+µlosumt) + ne) (os wet - ns Sin wet Squared signal is: (A(1+µlosumt) + ne) Cos wet - ns Sin wet - a(A(1+µlosumt) + ne) ns Cos wet Sin wet But (os A = ½ (1+(os 2A)) Sin A = ½ (1-(os 2A)) Gos Asin A = ½ Sin 2A Neuce, af cos the LFF we are left with: y(t) = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A (1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 2 - ½ ns² = ½ [A(1+µlosumt) + ne] 3 - ½ ns² = ½ [A(Managaran da Garagan d
Received signal is: $x(t) = (A(1+\mu losumt) + nc) (oswet - ns Sinwet)$ Squared signal is: $= (A(1+\mu losumt) + nc)^2 (os^2 wet - ns^2 Sin^2 wet)$ $= (A(1+\mu losumt) + nc) ns (oswet Sinwet)$ But $(os^2 A = \frac{1}{2}(1 + (os 2A))$ $Sin^2 A = \frac{1}{2}(1 - (os 2A))$ $(osASin^2 A = \frac{1}{2}Sin^2 AA)$ Thence, after the LPF we are left with: $y(t) = \frac{1}{2} [A(1+\mu losumt) + nc]^2 - \frac{1}{2} ns^2$ $= \frac{1}{2} [A(1+\mu losumt) + nc]^2 - \frac{1}{2} ns^2$ $= \frac{1}{2} [A(1+\mu losumt) + nc]^2 + 2 ns^2 [A(1+\mu losumt) + 2 ns^2 [A(1+\mu losumt$	
Squared signal is: Squared signal is: = (A (1+µlosumt) + nc] Cos² wet - ns² Sin² wet - 2 (A (1+µlosumt) + nc) ns Cos wet Sin wet But Cos² A=½ (1+Cos 2A) Sin² A=½ (1-Cos 2A) Cos ASin A=½ Sin 2A thence, after the LPF we are left with: y(t)=½ [A (1+µlosumt) + nc]² - ½ ns² =½ {A² + 2A²µlos wit + A²² t + 2Ac nc} + 2 Aµinc Cos wit + nc² + ns² } After remaining DX terms we have: yo(t) = A²µlos wit + Anc(t) + Aµinc(t) Cos wit =	ht margin
Squared signal is: (A (1+µCosumt) + nc) Cosuct - ns Sinuct Squared signal is: (A (1+µCosumt) + nc] Cos² wct - ns² Sin² wct -2 (A (1+µCosumt) + nc) ns Cosuct Sinuct But Cos² A = ½ (1+Cos 2A) Sin² A = ½ (1-Cos 2A) Cos A Sin A = ½ Sin AA Thence, after the UP we are left with: (4) = ½ [A (1+µCosumt) + nc]² - ½ ns² =½ {A² + 2A²µCosumt + A²µ² + 2Acnc} +2 Aµnc Cosumt + nc² + ns² } After removing X terms we have: yo(+) = A²µCos unt + Anc(+) + Aµnc(+) Cosumt =	
= (A (1+µlosunt)+nc] cos² wct - ns² Sin² wct - 2 (A(1+µlosunt)+nc) ns cos wct Sin wct But cos² A= ½ (1+cos 2A) Sin ² A = ½ (1-cos 2A) Cos ASin A = ½ Sin a A Neuce, af cos the LPT we are left with: y(t) = ½ [A (1+µlosunt) + nc]² - ½ ns² =½ [A² + 2A² µ Cos wnt + A² µ² + 2Ac nc + 2 Aµ nc Cos wnt + nc² + ns² } Af los removing X terms we have: yo(t) = A² µ Cos wnt + Anc(t) + Aµ nc(t) Cos wnt yo(t) = A² µ Cos wnt + Anc(t) + Aµ nc(t) Cos wnt	1.
= (A (1+µlosant) +nc] Cos² wet - ns² Sin² wet - 2 (A(1+µlosant) +nc) ns Cos wet Sin wet But Cos² A= ½ (1+Cos 2A) Sin A = ½ (1-Cos 2A) Gos ASin A = ½ Sin 2A thence, af low the LPT we are left with: y(t) = ½ [A (1+µlosant) + nc]² - ½ ns² =½ {A² + 2A²µlosant + A²n² + 2Acnc} + 2 Aµnc Cos wnt + nc² +ns² } Af low removing DX terms we have: yo(t) = A²µlos unt + Anc(t) + Aµnc(t) Cos unt = 30(t) = A²µlos unt + Anc(t) + Aµnc(t) Cos unt	
-2 (A((+µ(osunt)+nc)) ns (osuct Sinuct But (os² A=½ (1+(os2A)) Sini² A=½ (1-(os2A)) CosaSini A=½ Sin & A Neuce, af low the LPF we are left with: y(t)=½ [A(1+µ(osunt)+nc]² -½ ns² =½ {A² + 2A²µ(osunt + A²µ² + 2Acnc +2 Aµ nc (osunt + nc² +ns²)} Af low removing DX terms we have: yo(t) = A²µ(osunt + Anc(t) + Aµnc(t) (osunt = 1)	
But $\cos^2 A = \frac{1}{2}(1 + \cos 2A)$ $\sin^2 A = \frac{1}{2}(1 - \cos 2A)$ $\cos A \sin A = \frac{1}{2}\sin 2A$ thence, after the LPT we are left with: $y(t) = \frac{1}{2}\left[A(1 + \mu \cos u_n t) + n_c\right]^2 - \frac{1}{2}n_s^2$ $= \frac{1}{2}\int A^2 + 2A^2 \mu \cos u_n t + \frac{A^2 \mu^2}{2} + 2A_c n_c$ $+ 2A_{\mu} n_c \cos u_n t + n_c^2 + n_s^2\int$ After removing $2X$ terms we have: $y_0(t) = A^2 \mu \cos u_n t + A n_c(t) + A_{\mu} n_c(t) \cos u_n t$	
Sin' $A = \frac{1}{2}(1-\cos 2A)$ Gos ASin' $A = \frac{1}{2}\sin 2A$ Neure, after the LPF we are left with: $y(t) = \frac{1}{2}\left[A(1+\mu \cos u_n t) + n_c\right]^2 - \frac{1}{2}n_s^2$ $= \frac{1}{2}\left[A^2 + 2A^2\mu \cos u_n t + \frac{A^2\mu^2}{2} + 2A_c n_c\right]$ $+ 2A\mu n_c \cos u_n t + n_c^2 + n_s^2$ After removing DX terms we have: $y_0(t) = A^2\mu \cos u_n t + A n_c(t) + A\mu n_c(t) \cos u_n t$	
CosASin'A = ½ Sin àA Neuce, af low the LPF we are left with: $ y(t) = \frac{1}{2} \left[A(1 + \mu los unt) + n_c \right]^2 - \frac{1}{2} n_s^2 $ $ = \frac{1}{2} \left\{ A^2 + 2A^2 \mu los unt + \frac{A^2 \mu^2}{2} + 2A_c n_c $ $ + 2 A \mu n_c los unt + n_c^2 + n_s^2 \right\} $ Aflow removing DX terms we have: $ y_0(t) = A^2 \mu los unt + A n_c(t) + A \mu n_c(t) los unt $	
thence, after the LPF we are left with: $y(t) = \frac{1}{2} \left[A(1 + \mu losumt) + n_c \right]^2 - \frac{1}{2} n_s^2$ $= \frac{1}{2} \left\{ A^2 + 2A^2 \mu losumt + \frac{A^2 \mu^2}{2} + 2A_c n_c + 2 A \mu n_c losumt + n_c^2 + n_s^2 \right\}$ After removing IX terms we have: $y_0(t) = A^2 \mu los unt + A n_c(t) + A \mu n_c(t) los unt$	
$y(t) = \frac{1}{2} \left[A(1+\mu \cos u_{m}t) + n_{c} \right]^{2} - \frac{1}{2} n_{s}^{2}$ $= \frac{1}{2} \left\{ A^{2} + 2A^{2}\mu \cos u_{m}t + \frac{A^{2}\mu^{2}}{2} + 2A_{c}n_{c} + 2A_{m}n_{c} \cos u_{m}t + n_{c}^{2} + n_{s}^{2} \right\}$ $After removing IX terms we have:$ $y_{0}(t) = A^{2}\mu \cos u_{m}t + A n_{c}(t) + A\mu n_{c}(t) \cos u_{m}t$	
42 Amne Coswnt + A ² m ² + 2Aene + 2 Amne Coswnt + nc ² + ns ² } After removing DX terms we have: yo(+) = A ² m Coswnt + Ane(+) + Amne(+) Coswnt	
42 Aprinc Coswint + nc² + ns² } After removing DX terms we have: yo(+) = A²pi Cos wint + Anc(+) + Aprinc(+) Coswint	
After removing DX terms we have: yo(+) = A ² µ Cos unt + A ne(+) + A µ ne(+) Cos unt	2.
After removing DX terms we have: yo(+) = A ² µ Cos unt + A ne(+) + A µ ne(+) Cos unt	
$t \approx n_c^2(t) \cdot t \approx n_s^2(t)$	
· · · · · · · · · · · · · · · · · · ·	/.
Signal terms: Azu Cos unt	

: Pg = A4 m2

MODEL ANSWER and MARKING SCHEME

First Examiner

Paper Code

Second Examiner

Question

Page 9 out of

Question labels in left margin

Marks allocations in right margin

3(65

Noise terms: Anc(+) + Amount Cosumt + 2 nc2(+) + 2 ns2(+)

$$P_{N} = A^{2} \partial_{N}^{2} + A^{2} \mu^{2} \partial_{N}^{2} + \partial_{N}^{4}$$

where
$$\partial_N^2 = E \{ n_c^2(t) \} = E \{ n_s^2(t) \}$$

Carrier to noise ratio is
$$p = \frac{A_{A}^{2}}{3N^{2}}$$

Sibing with Pr gues:

Output SNR is:

$$SNR_0 = \frac{P_5}{PN} = \frac{A^4 \mu^2}{28N^4} \frac{1}{1 + \rho(2 + \mu^2)}$$

-but
$$\frac{A^4}{Z\partial N^2} = 2\rho^2$$

$$::SNR_0 = \frac{2\rho^2 \mu^2}{1 + \rho(2 + \mu^2)}$$

2

1.

′,

3.

Examinations: Session Confidential MODEL ANSWER and MARKING SCHEME Paper Code First Examiner Second Examiner Question Page 10 out of Marks allocations in right margin Question labels in left margin 4(a) 0-4 0.25 00 010 0.15 0.1 1116 4. 01.10 Aug cooleward lepgth, L= Epklk = 0.4x1 + .25x2 +.15x3 +.1x4 +.1x4 2. = 2.15 bits/symbol Entropy, H= E Px log, Px. = 2.1037 bits/symbol a.Source cooling theorem: 4(6) Given a discrete memoryless source of entropy H (bits/symbol) the average coolinard leggth L (bits/symbol) for any-3, cooling scheme is bounded as L>H.

	Examinati		- Session	THE STATE OF THE S	Con	fidential
First Exa		WEK and	Paper Code			Mariana
Second E			Question		// out of	
Question	labels in left margin		**************************************	Marks all	ocations in rig	ht margin
4(c)						
	C = B log_ (1+5N)	2)				
	= 10×103 log2 (1	•				
	= 66 582 bi					ん
		,				
	Information rato is:	R= rH	bits/sec.			
	where Nis Sym	bol rato.	·		٠.	
	By the channel capaci		oven, REC			
	., rH < (
	:: r < c/	Н			•	2.
	Entropy for given alph	abelt.				
	H=	= Zpk!	109, PK			
			buts/symb	×/		. 1
		(7 971000		•	
	:, Maximum symb	iol rato	ıš :			
	•				1 	
	Trax = C/H	= 665	82		**************************************	
		1.51				,
	•			÷		/`
		= 44	$\times 10^3$ symbol	ls/séc.	<i>:</i>	
			•			
				: .		
		• •		÷ .		
						l

Examinations: Session Confidential MODEL ANSWER and MARKING SCHEME Paper Code First Examiner Second Examiner Question Page 12 out of Question labels in left margin Marks allocations in right margin Each group of 2 source symbols is considered as a new symbol. 4(d) The new apphabet has probabilities AA: 3/4 x 3/4 = .5625 NB: 3/4 x 1/4 = .1875 BA: 1/4 x 3/4 = .1875 BB: 4x4 = .0625 Entropy of new alphabet, H= - E Px log2 Px = 1.6026 bits /2 symb) = 0.8113 bits/symb. Aug. coole length, L= Epklk = .5625x1 + .1875x2+ .1875x3 + .0625x3 = 1.6875 6cts/(2 synb) =0.84375 buts/symb. 3 Since L>H, this code is not optimen Efficiency is 8113 184375 = 96% efficient

Examinations: - Session

MODEL ANSWER and MARKING SCHEME

First Examiner

Paper Code

Second Examiner

Question

Page 13 out of

Question labels in left margin

Marks allocations in right margin

5

5(a)

The a layer board Metwork Arecharterine, layer come offer at least two different type of services to the layer above them: connection-oriented and connectionless. Connection-oriented service is modelled after the telephone system. The service user frint establishes a connection, user the connection, and then terminates the connection. Dr contract, connectionless service is modelled after the posted system. Each memory cames the full destination address, and each one is nowled through the system malependant of all the others.

Each service can be characterized by a quality of service (QoS). Some service are reliable in the sense that they never lose dates. Usually a reliable service is implemented by having the receipt of cach mersage; so the sender is some that it arrived. The ach. present instructed and delays, which are often worth it, but are sometimes undesirable. One application in which delay is not acceptable is dogitated voice thefti. It is preferable for telephone users to hear a bit of house on the line from time to tring than to untracks a delay I silence gaps) to wait for achiraled genetic.

Examinations: Session Confidential MODEL ANSWER and MARKING SCHEME First Examiner Paper Code Page 14 out of Second Examiner Question Question labels in left margin Marks allocations in right margin Macha Arus Control (MAC) 5/51 In a broadcent petroth, only one device can succenfully transmit on the shared medium at a trip. Therefore an access control technique is required In a centralised schene, a controller is designated to growt accent to the network In a desentualised metwork, the station collectively perform a MAR function to Spranically determine the order in which' A centralized metroch scharp bas certain advantage such as: - it may affect greater writed over accen my providing such things as provides and guaranted - in allows the logic at each station to be as single as jossible -it words problems of co-ordinate on the other band its principal disadvantages milude - it results in a suight point of failure - it may act as a hottle nech reducip efficiency - if propagator delay in high, the overhead may be un acceptable

MODEL ANSWER and MARKING SCHEME

First Examiner

Paper Code

Second Examiner

Question

Page 15 out of

Question labels in left margin

Marks allocations in right margin

5(4)

The petwork layer: provide upper layers with independence from the data transmission and switching technologies used to connect the systems. I hely design issue is determining loss packets are norted from source to destination. If too many packets are presented in the network at the same time, they may form bottlenechs. The control of such congestion belongs to the network layer. It is also up to the network layer to overcome the problems related to heterogeneous networks that are interiorned (e.g. addressep).

Pachet switching represents an attempt to combine the advantage of menage and we unit switching while minimising the advantage of boths. There are two works for the network to handle a stream of pachets: data gran and virtual virtual virtual

(i) in the datagrou approach exact packet in taceted independently (shis is a connectionless service). Therefore, there is a profrihility that the packets could be delivered to its destination in a different sequence from the one in which they were sent. It is up to the destination node to figure out low to residered them.

5

Examinations: Session Confidential MODEL ANSWER and MARKING SCHEME First Examiner Paper Code Page 16 out of 16 Second Examiner Question Question labels in left margin Marks allocations in right margin 50 justo a vintral vinuit approach, a legical connection is established before any packet are sent (this in a correction - oriented service). Therefore the originating nede sends a call request to the destruction made (during this phane a norte is created). Once the call requirt on been accepted by the destination made a call accept peachet is sent to the originating made. At this point, both terminal stations may exchange data over the established logical connection or violal write. Eventually one of the stations terminates the connection