$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Υ (10860) MASS

VALUE (MeV) DOCUMENT ID TECN COMMENT

10889.9 + 3.2 OUR AVERAGE

• • We do not use the following data for averages, fits, limits, etc.

- ¹ From a simultaneous fit to the $h_b(nP)\pi^+\pi^-$, n=1, 2 cross sections at 22 energy points within $\sqrt{s}=10.77$ –11.02 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
- ² From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n=1, 2, 3 cross sections at 25 energy points within $\sqrt{s} = 10.6 \text{--} 11.05$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relative phase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.
- 3 From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82-11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).
- 4 Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.
- ⁵ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.
- 6 The parameters of the $\varUpsilon(11020)$ are fixed to those in AUBERT 09E.
- ⁷ In a model where a flat nonresonant $\Upsilon(1S, 2S, 3S) \pi^+ \pi^-$ continuum interferes with a single Breit-Wigner resonance.
- 8 In a model where a non-resonant $b\,\overline{b}$ -continuum represented by a threshold function at $\sqrt{s}=2m_B$ is incoherently added to a flat component interfering with two Breit-Wigner resonances. Not independent of other AUBERT 09E results. Systematic uncertainties $9 \frac{1}{2}$ not estimated. Assuming four Gaussians with radiative tails and a single step in R.
- $^{
 m 10}$ In a coupled-channel model with three resonances and a smooth step in R.

Υ (10860) WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT

$51 + \frac{6}{7}$ OUR AVERAGE

• • • We do not use the following data for averages, fits, limits, etc. • • •

- 11 From a simultaneous fit to the $h_b(\rm nP)\pi^+\pi^-$, n=1, 2 cross sections at 22 energy points within $\sqrt{s}=10.77-11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
- ¹² From a simultaneous fit to the $\Upsilon({\rm nS})\pi^+\pi^-$, n=1, 2, 3 cross sections at 25 energy points within $\sqrt{s}=10.6$ –11.05 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relative phase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.
- ¹³ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).
- ¹⁴ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.
- 15 In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.
- 16 The parameters of the $\Upsilon(11020)$ are fixed to those in AUBERT 09E.
- ¹⁷ In a model where a flat nonresonant $\Upsilon(1S, 2S, 3S)\pi^+\pi^-$ continuum interferes with a single Breit-Wigner resonance.
- 18 In a model where a non-resonant $b\overline{b}$ -continuum represented by a threshold function at $\sqrt{s}{=}2m_B$ is incoherently added to a flat component interfering with two Breit-Wigner resonances. Not independent of other AUBERT 09E results. Systematic uncertainties not estimated.
- 19 Assuming four Gaussians with radiative tails and a single step in R.
- 20 In a coupled-channel model with three resonances and a smooth step in R.

Υ (10860) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁	$B\overline{B}X$	$(76.2 \ ^{+2.7}_{-4.0})\%$	
Γ_2	$B\overline{B}$	(5.5 ± 1.0)%	
	$B\overline{B}^*$ + c.c.	(13.7 ± 1.6)%	
Γ ₄	$B^*\overline{B}^*$	(38.1 ± 3.4) %	
	$B\overline{B}^{(*)}\pi$	< 19.7 %	90%
Γ ₆	$B\overline{B}\pi$	$(0.0 \pm 1.2)\%$	
•	$B^*\overline{B}\pi + B\overline{B}^*\pi \ B^*\overline{B}^*\pi$	$(7.3 \pm 2.3)\%$	
U	<u>Β</u> Β π Β <u>Β</u> ππ	$(1.0 \pm 1.4)\%$	000/
Γ ₉	$D D'''$ $D(*) \overline{D}(*)$	< 8.9 %	90%
Γ ₁₀	$B_s^{(*)} \overline{B_s^{(*)}}$	(20.1 ±3.1) %	10-3
Γ ₁₁	$B_s B_s$	$(5 \pm 5) \times (1.35 + 0.32)$ %	10 3
	$B_s \overline{B}_s^* + \text{c.c.}$	$(1.35\pm0.32)\%$	
¹ 13	$B_s^*\overline{B}_s^*$	(17.6 ±2.7) %	
	no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array}) \%$	
Γ_{15}	$e^{+}e^{-}\ K^{*}(892)^{0}\overline{K}{}^{0}$	(6.1 \pm 1.6) \times	10^{-6}
Γ_{16}	$K^*(892)^0 \overline{K}^0$	< 1.0 ×	
Γ_{17}	$\Upsilon(1S)\pi^+\pi^-$	(5.3 \pm 0.6) \times	
Γ ₁₈	Υ (2S) $\pi^+\pi^-$	(7.8 ± 1.3) \times	10^{-3}
Γ ₁₉	$\Upsilon(3S)\pi^+\pi^-$	(4.8 $^{+1.9}_{-1.7}$) $ imes$	10 ⁻³
Γ_{20}	$\Upsilon(1S) K^+ K^-$	($6.1~\pm1.8$) $ imes$	10^{-4}
Γ ₂₁	$h_b(1P)\pi^+\pi^-$	($3.5 \ ^{+1.0}_{-1.3}$) $ imes$	10 ⁻³
Γ ₂₂	$h_b(2P)\pi^+\pi^-$	$(5.7^{+1.7}_{-2.1}) imes$	10-3
Γ_{23}	$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	< 6.3 ×	10^{-3} 90%
Γ_{24}	$\chi_{b0}(1P)\omega$	< 3.9 ×	10^{-3} 90%
Γ ₂₅	$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	< 4.8 ×	10^{-3} 90%
Γ_{26}	$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	$(1.85\pm0.33) \times$	10^{-3}
Γ_{27}	$\chi_{b1}(1P)\omega$	$(1.57\pm0.30)\times$	10^{-3}
Γ ₂₈	$\chi_{b1}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	(5.2 ± 1.9) \times	
Γ ₂₉	$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	$(1.17\pm0.30)\times$	
Γ ₃₀	$\chi_{b2}(1P)\omega$	(6.0 ± 2.7) \times	
Γ ₃₁	$\chi_{b2}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	$(6 \pm 4) \times$	10^{-4}
Γ ₃₂	$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	< 3.8 ×	10^{-5} 90%

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

$$\Gamma_{33}$$
 $~\phi$ anything (13.8 $^{+2.4}_{-1.7}$) %

HTTP://PDG.LBL.GOV Page 3 Created: 5/30/2017 17:21

Γ ₃₄	D^0 anything $+$ c.c.	(108	± 8) %
Γ ₃₅	D_s anything $+$ c.c.	(46	± 6) %
Γ ₃₆	J/ψ anything	(2.0	6 ± 0.2	21) %
Γ ₃₇	B^0 anything $+$ c.c.	(77	± 8) %
Γ ₃₈	B^+ anything $+$ c.c.	(72	± 6) %

au(10860) PARTIAL WIDTHS

Γ(e ⁺ e ⁻)			Γ ₁₅
VALUE (keV)	DOCUMENT ID	TECN	COMMENT
0.31 ±0.07 OUR AVERAGE	Error includes scale f	actor of 1.3.	
$0.22 \pm 0.05 \pm 0.07$	BESSON	85 CLEO	$e^+e^- o$ hadrons
0.365 ± 0.070	LOVELOCK	85 CUSB	$e^+e^- ightarrow $ hadrons

au(10860) BRANCHING RATIOS

"OUR EVALUATION" is obtained based on averages of rescaled data listed below. The averages and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/.

$\Gamma(B\overline{B}X)/\Gamma_{\text{total}}$	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	Γ ₁ /Γ
0.762 ^{+0.027} _{-0.043} OUR EV	/ALUATIO	ON				
-0.045 0.71 ±0.06 OUR AV						
$0.737 \pm 0.032 \pm 0.051$ $0.589 \pm 0.100 \pm 0.092$	1063	²¹ DRUTSKOY ²² HUANG	10 07		$\Upsilon(5S) ightarrow \Upsilon(5S) ightarrow$	B^+X , B^0X
					()	
$\Gamma(B\overline{B})/\Gamma_{\text{total}}$						Γ_2/Γ
VALUE (units 10 ⁻²)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$5.5^{+1.0}_{-0.9}\pm0.4$		²³ DRUTSKOY	10	BELL	$\Upsilon(5S) ightarrow$	$B^{+}X$, $B^{0}X$
• • • We do not use t	he follow	ing data for averag	es, fit	s, limits,	etc. • • •	
<13.8	90	²² HUANG	07	CLEO	$\Upsilon(5S) ightarrow$	hadrons
$\Gamma(B\overline{B})/\Gamma(B\overline{B}X)$						Γ_2/Γ_1
VALUE	CL%	DOCUMENT ID)	TECN	СОММЕНТ	•
<0.22	90	AQUINES			$\gamma(5S)$ —	
Γ(<u>P</u> * + a a \ /Γ						Г. /Г
$\Gamma(B\overline{B}^* + \text{c.c.})/\Gamma_{tc}$	otal	DOCUMENT ID		TECH	6014145NT	Г ₃ /Г
<u>VALUE</u> 0.137±0.016 OUR AV	EDAGE	DOCUMENT ID		IECN	COMMENT	
0.137 ± 0.010 GON AV $0.137 \pm 0.013 \pm 0.011$	LIVAGE	²³ DRUTSKOY	10	DELL	$\Upsilon(ES)$	$B^{+}X, B^{0}X$
$0.137 \pm 0.013 \pm 0.011$ $0.143 \pm 0.053 \pm 0.027$		²² HUANG	07			
0.145 ± 0.055 ± 0.027		110/1110	01	CLLO	7 (33)	naurons
$\Gamma(B\overline{B}^* + c.c.)/\Gamma(a)$	$B\overline{B}X$)					Γ_3/Γ_1
VALUE		DOCUMENT ID)	TECN	COMMENT	
$0.24 \pm 0.09 \pm 0.03$	10	AQUINES	06	CLE3	$\Upsilon(5S)$ —	→ hadrons
HTTP://PDG.LBL	GOV	Page 4		Crea	ted: 5/30	/2017 17:21

$\Gamma(B^*\overline{B}^*)/\Gamma_{\text{total}}$					Γ_4/Γ
<u>VALUE</u> 0.381±0.034 OUR AVER	AGE	DOCUMENT ID		TECN	COMMENT
$0.375^{+0.021}_{-0.019} \pm 0.030$	AGL	²³ DRUTSKOY	10	BELL	$\Upsilon(5S) \rightarrow B^+ X, B^0 X$
$0.436 \pm 0.083 \pm 0.072$		²² HUANG	07	CLEO	$\Upsilon(5S) ightarrow ext{hadrons}$
$\Gamma(B^*\overline{B}^*)/\Gamma(B\overline{B}X)$					Γ_4/Γ_1
, , , ,	EVTS	DOCUMENT ID		TECN	-, -
$0.74 \pm 0.15 \pm 0.08$	31	AQUINES	06	CLE3	$\varUpsilon(5S) ightarrow hadrons$
$\Gamma(B\overline{B}^{(*)}\pi)/\Gamma_{total}$	CI N/	DOCUMENT ID		TE CN	Γ ₅ /Γ
	<u>CL%</u> 90	DOCUMENT ID 22 HUANG	07	<u>TECN</u> CLEO	
<0.191	90	HUANG	07	CLEO	$I(55) \rightarrow \text{nadrons}$
$\Gamma(B\overline{B}^{(*)}\pi)/\Gamma(B\overline{B}X)$					Γ_5/Γ_1
	<u>CL%</u>	DOCUMENT ID		_	<u>COMMENT</u>
<0.32	90	AQUINES	06	CLE3	$\Upsilon(5S) o hadrons$
$\Gamma(B\overline{B}\pi)/\Gamma_{total}$					Γ ₆ /Γ
VALUE (units 10^{-2})	<u>EVTS</u>	DOCUMENT ID		TECN	
$0.0\pm1.2\pm0.3$	0	²³ DRUTSKOY	10	BELL	$\Upsilon(5S) \rightarrow B^{+,0} \pi^- X$
$\left[\Gamma\left(B^*\overline{B}\pi\right) + \Gamma\left(B\overline{B}^*\pi\right)\right]$	π)]/I	total			Γ ₇ /Γ
VALUE (units 10^{-2})	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
$7.3^{+2.3}_{-2.1}\pm0.8$	38	²³ DRUTSKOY	10	BELL	$\Upsilon(5S) \rightarrow B^{+,0} \pi^- X$
$\Gamma(B^*\overline{B}^*\pi)/\Gamma_{\text{total}}$					Г ₈ /Г
VALUE (units 10^{-2})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$1.0^{+1.4}_{-1.3}\pm0.4$	5	²³ DRUTSKOY	10	BELL	$\Upsilon(5S) \rightarrow B^{+,0} \pi^- X$
$\Gamma(B\overline{B}\pi\pi)/\Gamma_{total}$					٦ ₉ /Γ
VALUE	CL%	DOCUMENT ID			COMMENT
<0.089	90	²² HUANG	07	CLEO	$\varUpsilon(5S) ightarrow ext{hadrons}$
$\Gamma(B\overline{B}\pi\pi)/\Gamma(B\overline{B}X)$ VALUE	C1 %	DOCUMENT ID		TECN	Γ_9/Γ_1
	<i>CL%</i> 90				$\gamma(5S) o hadrons$
$\Gamma(B_s^{(*)}\overline{B}_s^{(*)})/\Gamma_{\text{total}}$		DOCUMENT ID		Γ ₁₀ /Ι	$\Gamma = (\Gamma_{11} + \Gamma_{12} + \Gamma_{13})/\Gamma$ TOMMENT
0.201 ^{+0.030} _{-0.031} OUR EVAL	_ UATIO		<u>-</u>	<u> </u>	
0.189 ⁺ 0.027 OUR AVER	AGE				
0.172 ± 0.030		²⁴ ESEN 1	.3 E	BELL 1	
$0.21 \begin{array}{l} +0.06 \\ -0.03 \end{array}$	2	S.E.			$C(5S) \rightarrow D_S X$
HTTP://PDG.LBL.G0	VC	Page 5		Crea	ted: 5/30/2017 17:21

• • • We do not use the following data for averages, fits, limits, etc. • • • DRUTSKOY 07 BELL $\Upsilon(5S) \rightarrow D^0 X$, $D_s X$ 27 ARTUSO 05B CLEO $e^+e^- \rightarrow D_x X$ $0.180 \pm 0.013 \pm 0.032$ $0.160 \pm 0.026 \pm 0.058$ $\Gamma(B_s^{(*)}\overline{B}_s^{(*)})/\Gamma(B\overline{B}X)$ Γ_{10}/Γ_{1} DOCUMENT ID $0.264^{+0.052}_{-0.045}$ OUR EVALUATION $\Gamma(B_s^* \overline{B}_s^*)/\Gamma(B_s^{(*)} \overline{B}_s^{(*)})$ $\Gamma_{13}/\Gamma_{10} = \Gamma_{13}/(\Gamma_{11}+\Gamma_{12}+\Gamma_{13})$ 87.8 ± 1.5 OUR AVERAGE 31 LOUVOT 09 BELL 10.86 $e^+e^- \rightarrow B_s^{(*)} \overline{B}_s^{(*)}$ $90.1^{+3.8}_{-4.0}\pm0.2$ 31 DRUTSKOY 07A BELL Superseded by LOUVOT 09 93 $^{+7}_{-9}$ ± 1 $\Gamma(B_s \overline{B}_s)/\Gamma(B_s^{(*)} \overline{B}_s^{(*)})$ $\Gamma_{11}/\Gamma_{10} = \Gamma_{11}/(\Gamma_{11}+\Gamma_{12}+\Gamma_{13})$ DOCUMENT ID TECN COMMENT 09 BELL $10.86 e^{+}e^{-} \rightarrow B_{c}^{(*)}\overline{B}_{c}^{(*)}$ $2.6^{+2.6}$ LOUVOT $\Gamma(B_s\overline{B}_s)/\Gamma(B_s^*\overline{B}_s^*)$ VALUE _______CL% _____DOCUMENT ID _____TECN ____COMMENT _______ 06 CLE3 $e^+e^ \Gamma(B_s \overline{B}_s^* + \text{c.c.})/\Gamma(B_s^{(*)} \overline{B}_s^{(*)})$ $\Gamma_{12}/\Gamma_{10} = \Gamma_{12}/(\Gamma_{11}+\Gamma_{12}+\Gamma_{13})$ VALUE (units 10^{-2}) EVTSTECN COMMENT DOCUMENT ID 6.7±1.2 OUR AVERAGE 09 BELL 10.86 $e^+e^- \to B_s^{(*)} \overline{B}_s^{(*)}$ $7.3^{+3.3}_{-3.0}\pm0.1$ LOUVOT $\Gamma(B_s\overline{B}_s^* + \text{c.c.})/\Gamma(B_s^*\overline{B}_s^*)$ VALUE

CL%

COMMENT ID

RONVICINI 06 CLE3 $e^+e^ \Gamma_{12}/\Gamma_{13}$ $\Gamma(\text{no open-bottom})/\Gamma_{\text{total}}$ Γ_{14}/Γ DOCUMENT ID $0.038^{+0.051}_{-0.005}$ OUR EVALUATION

$\Gamma(K^*(892)^0\overline{K}^0)/\Gamma_{ ext{total}}$ Γ_{16}/Γ								
<1.0 × 10 ⁻⁵	90		SHEN		13A	BELL	e^+e^-	$\rightarrow K^*(892)^0 \overline{K}^0$
$\Gamma(\Upsilon(1S)\pi^+\pi^-)$								Γ ₁₇ /Γ
VALUE (units 10 ⁻³)			UMENT IL					
5.3±0.3±0.5	325	³² CHE	ΞN	80	BELL	10.87	e ⁺ e ⁻ -	$\rightarrow \Upsilon(1S)\pi^+\pi^-$
$\Gamma(\Upsilon(2S)\pi^+\pi^-)$	$)/\Gamma_{tota}$	ı						Γ ₁₈ /Γ
VALUE (units 10^{-3})	EVTS	DOC	UMENT IL)	TECN	COMM	IENT	
$7.8 \pm 0.6 \pm 1.1$	186	³² CHE	ΞN	80	BELL	10.87	e^+e^-	$\rightarrow \Upsilon(2S)\pi^+\pi^-$
$\Gamma(\Upsilon(3S)\pi^+\pi^-)$)/Γ _{tota}	ı						Γ ₁₉ /Γ
VALUE (units 10 ⁻³)	EVTS	DOC	UMENT IL)	TECN	COMM	IENT	
$4.8^{igoplus 1.8}_{-1.5} \pm 0.7$	10	³² CHE	ΞN	80	BELL	10.87	e ⁺ e ⁻ -	$\rightarrow \gamma(3S)\pi^{+}\pi^{-}$
$\Gamma(\Upsilon(1S)K^+K^-)$	⁻)/Γ _{tot}	al						Γ ₂₀ /Γ
VALUE (units 10^{-4})	EVTS	DOC	UMENT IL)	TECN	COMM	IENT	
$6.1^{+1.6}_{-1.4}\pm1.0$	20	³² CHE	ΞN	80	BELL	10.87	e ⁺ e ⁻ -	$\rightarrow \Upsilon(1S)K^+K^-$
$\Gamma(h_b(1P)\pi^+\pi^-)$ VALUE	·)/Γ(<i>1</i>	(2 <i>S</i>)π	+π-) DOCUME	NT ID		<u>TECN</u>	COMMEN	Γ ₂₁ /Γ ₁₈
$0.45 \pm 0.08 ^{+0.07}_{-0.12}$			ADACH	I	12	BELL	10.86 e	$^+e^- o$ hadrons
$\Gamma(h_b(2P)\pi^+\pi^-)$ VALUE	•	$(2S)\pi$	+π-) <u>DOCUME</u>	NT ID		TECN	COMMEN	Γ ₂₂ /Γ ₁₈
		_						
$0.77\pm0.08^{+0.22}_{-0.17}$			ADACH		12	BELL	10.86 e	$^+e^- o$ hadrons
$\Gamma(h_b(1P)\pi^+\pi^-$)/ Г (<i>h</i> _l	₅ (2 <i>P</i>)1	$\tau^+\pi^-)$					Γ_{21}/Γ_{22}
VALUE			CUMENT				MMENT	
$0.616 \pm 0.052 \pm 0.03$	17	MI	ZUK	16	5 BEI	LL e ⁺	$e^- \rightarrow$	$h_b(1P, 2P)\pi^+\pi^-$
$\Gamma(\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ Γ_{23}/Γ								
VALUE <6.3 × 10 ⁻³	CL%	<u>DO</u>	CUMENT .	ID	TEC	CN CO	MMENT	
$< 6.3 \times 10^{-3}$	90	³³ HE		14	4 BEI	LL γ ($5S) \rightarrow$	$\pi^+\pi^-\pi^0\gamma \Upsilon(1S)$
$\Gamma(\chi_{b0}(1P)\omega)/\Gamma$								Γ ₂₄ /Γ
VALUE <3.9 × 10 ^{−3}	<u>CL%</u>	<u>DO</u>	<u>CUMENT</u>	ID	TEC	CN CO	MMENT	
$<3.9 \times 10^{-3}$	90	33 HE		14	4 BEI	LL γ ($5S) \rightarrow$	$\pi^+\pi^-\pi^0\gamma \Upsilon(1S)$
$\Gamma(\chi_{b0}(1P)(\pi^+\eta))$	$(\pi^{-}\pi^{0})_{l}$	$_{non-\omega})$	$/\Gamma_{total}$					Γ ₂₅ /Γ
VALUE <4.8 × 10 ^{−3}	<u>CL%</u>	<u>DO</u>	CUMENT .	ID	TEC	CN CO	MMENT	
$<4.8 \times 10^{-3}$	90	³³ HE		14	4 BEI	LL Υ($5S) \rightarrow$	$\pi^+\pi^-\pi^0\gamma \Upsilon(1S)$

```
\Gamma(\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{total}
                                                                                                                  \Gamma_{26}/\Gamma
VALUE (units 10^{-3})
                                               <sup>33</sup> HE
1.85 \pm 0.23 \pm 0.23
                                                                                BELL
                                                                                           \Upsilon(5S) \rightarrow
                                                                                               \pi^{+}\pi^{-}\pi^{0}\gamma \gamma(1S)
\Gamma(\chi_{b1}(1P)\omega)/\Gamma_{total}
VALUE (units 10^{-3})
                                              DOCUMENT ID
                                                                        TECN COMMENT
                                         <sup>33</sup> HE
                                                                       BELL \gamma(5S) \rightarrow \pi^+ \pi^- \pi^0 \gamma \gamma(1S)
                                60
                                                                14
\Gamma(\chi_{b1}(1P)(\pi^+\pi^-\pi^0)_{\text{non}-\omega})/\Gamma_{\text{total}}
                                              DOCUMENT ID
VALUE (units 10^{-3}) EVTS
                                                                       TECN COMMENT
                                                                       BELL \Upsilon(5S) \rightarrow \pi^+ \pi^- \pi^0 \gamma \Upsilon(1S)
                                          <sup>33</sup> HE
0.52\pm0.15\pm0.11
                                                                14
\Gamma(\chi_{h2}(1P)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{total}
                                                                                                                  \Gamma_{29}/\Gamma
VALUE (units 10^{-3})
                                              DOCUMENT ID
                                                                       TECN COMMENT
                                                                       BELL \gamma(5S) \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma\gamma(1S)
                                          <sup>33</sup> HE
1.17 \pm 0.27 \pm 0.14
\Gamma(\chi_{b2}(1P)\omega)/\Gamma_{total}
VALUE (units 10^{-3})
                                              DOCUMENT ID
                                                                        TECN COMMENT
                                                                        BELL \Upsilon(5S) \rightarrow \pi^+ \pi^- \pi^0 \gamma \Upsilon(1S)
                                         <sup>33</sup> HE
0.60\pm0.23\pm0.15
\Gamma(\chi_{b2}(1P)\omega)/\Gamma(\chi_{b1}(1P)\omega)
                                                                                                               \Gamma_{30}/\Gamma_{27}
                                           DOCUMENT ID TECN COMMENT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                            14 BELL \Upsilon(5S) \rightarrow \pi^+\pi^-\pi^0\gamma \Upsilon(1S)
                                      34 HF
0.38 \pm 0.16 \pm 0.09
\Gamma(\chi_{b2}(1P)(\pi^+\pi^-\pi^0)_{\mathsf{non}-\omega})/\Gamma_{\mathsf{total}}
                                              DOCUMENT ID TECN COMMENT
VALUE (units 10^{-3})
                                                                14 BELL \gamma(5S) \rightarrow \pi^+\pi^-\pi^0\gamma\gamma(1S)
0.61\pm0.22\pm0.28
\Gamma(\chi_{b2}(1P)(\pi^{+}\pi^{-}\pi^{0})_{\text{non}-\omega})/\Gamma(\chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{\text{non}-\omega})
                                          DOCUMENT ID
                                                                TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • •
                                      34 HF
                                                                14 BELL \Upsilon(5S) \rightarrow \pi^+ \pi^- \pi^0 \gamma \Upsilon(1S)
1.20 \pm 0.55 \pm 0.65
\Gamma(\gamma X_b \to \gamma \Upsilon(1S)\omega)/\Gamma_{\text{total}}
                                                                       TECN COMMENT
< 3.8 \times 10^{-5}
                                      ^{35}\,\mathrm{HE}
                                                                       BELL \Upsilon(5S) \rightarrow \pi^+ \pi^- \pi^0 \gamma \Upsilon(1S)
\Gamma(\phi \text{ anything})/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{33}/\Gamma
VALUE
                                                  DOCUMENT ID
                                                                                TECN COMMENT
0.138\pm0.007^{+0.023}_{-0.015}
                                                                        07 CLEO \Upsilon(5S) \rightarrow \phi X
                                                  HUANG
\Gamma(D^0 \text{ anything } + \text{c.c.})/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{34}/\Gamma
<u>VALU</u>E
                                                   DOCUMENT ID
                                                                                TECN COMMENT
                                                                               BELL \Upsilon(5S) \rightarrow D^0 X
1.076 \pm 0.040 \pm 0.068
                                                  DRUTSKOY
                                                                        07
                                                                                 Created: 5/30/2017 17:21
HTTP://PDG.LBL.GOV
                                                       Page 8
```

$\Gamma(D_s \text{ anything } + c.c.$	c.)/Γ _{total}					Γ ₃₅ /Γ	
VALUE		DOCUMENT ID		TECN	COMMENT		
0.46 ± 0.06 OUR AVE		6					
$0.472 \pm 0.024 \pm 0.072$		⁶ DRUTSKOY			$\Upsilon(5S) \rightarrow$		
$0.44 \pm 0.09 \pm 0.04$	3(⁶ ARTUSO	05 B	CLE3	$e^+e^- \rightarrow$	$D_X X$	
$\Gamma(J/\psi \text{ anything })/\Gamma_{t}$	total					Г ₃₆ /Г	
VALUE (units 10^{-2})		DOCUMENT ID		TECN	COMMENT		
$2.060\pm0.160\pm0.134$		DRUTSKOY	07	BELL	$\Upsilon(5S) ightarrow$	$J/\psi X$	
$\Gamma(B^0 \text{ anything } + c.$	c.)/Γ _{total}					Γ ₃₇ /Γ	
*	<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMENT</u>		
$0.770^{f +0.058}_{-0.056} \pm 0.061$	352	DRUTSKOY	10	BELL	$\Upsilon(5S) ightarrow$	$B^0 X$	
$\Gamma(B^+ \text{ anything } + c$.c.)/Г+++-					Γ ₃₈ /Γ	
•	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	- 30/ -	
$0.721^{+0.039}_{-0.038}\pm0.050$	711	DRUTSKOY	10	BELL	$\Upsilon(5S) ightarrow$	B^+X	
21 Not independent of DRUTSKOY 10 values for $\Upsilon(5S) \to B^{\pm,0}$ anything. 22 Using measurements or limits from AQUINES 06. 23 Assuming isospin conservation. 24 Supersedes DRUTSKOY 07. 25 Supersedes ARTUSO 05B. Combining inclusive ϕ , D_s , and B measurements. Using $B(D_s^+ \to \phi \pi^+) = 4.4 \pm 0.6\%$ from PDG 06. 26 Using $B(D_s^+ \to \phi \pi^+) = (4.4 \pm 0.6)\%$ from PDG 06. 27 Uses a model-dependent estimate $B(B_s \to D_s X) = (92 \pm 11)\%$. 28 Supersedes LOUVOT 09. 29 With $N(B_s^{(*)} \overline{B}_s^{(*)}) = (7.11 \pm 1.30) \times 10^6$.							
The ratios $N(B_s^* \overline{B}_s^*)$ a correlation coeffici	ient of -0.7	2.					
31 From a measurement of $\sigma(e^+e^- \to B_s^*\overline{B}_s^*) / \sigma(e^+e^- \to B_s^{(*)}\overline{B}_s^{(*)})$ at $\sqrt{s}=10.86$ GeV. 32 Assuming that the observed events are solely due to the $\Upsilon(5S)$ resonance. 33 Assuming that all the $b\overline{b}$ events are from $\Upsilon(5S)$ resonance decays and using $\sigma(e^+e^- \to b\overline{b})=0.340\pm0.016$ nb from ESEN 13. Correlated with other results from HE 14. 34 Accounting for correlated systematics. 35 Assuming that all the $b\overline{b}$ events are from $\Upsilon(5S)$ resonance decays and using $\sigma(e^+e^- \to b\overline{b})=0.340\pm0.016$ nb from ESEN 13. Correlated with other results from HE 14. For a state X_b with mass between 10.55 GeV/c² and 10.65 GeV/c², the obtained 90% upper limit as a function of m_{X_b} varies from 2.6×10^{-5} to 3.8×10^{-5} . 36 ARTUSO 05B reports $[\Gamma(\Upsilon(10860) \to D_s \text{ anything } + \text{ c.c.})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)] = 0.0198\pm0.0019\pm0.0038$ which we divide by our best value $B(D_s^+ \to \phi\pi^+) = (4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.							

au(10860) REFERENCES

MIZUK SANTEL HE ESEN SHEN ADACHI LI CHEN DRUTSKOY AUBERT LOUVOT CHEN DRUTSKOY HUANG AQUINES BONVICINI PDG ARTUSO BESSON LOVELOCK	16 16 14 13 13A 12 12 10 10 09E 09 08 07 07A 07 06 06 06 05B 85 85	PRL 117 142001 PR D93 011101 PRL 113 142001 PR D87 031101 PR D88 052019 PRL 108 032001 PRL 108 181808 PR D82 091106 PR D81 112003 PRL 102 012001 PRL 102 012001 PRL 102 012801 PRL 100 112001 PRL 98 052001 PR D76 012002 PR D75 012002 PR D75 012002 PRL 96 152001 PRL 96 022002 JP G33 1 PRL 95 261801 PRL 54 381 PRL 54 377	R. Mizuk et al. D. Santel et al. X.H. He et al. S. Esen et al. C.P. Shen et al. I. Adachi et al. J. Li et al. KF. Chen et al. B. Aubert et al. R. Louvot et al. KF. Chen et al. A. Drutskoy et al. C.F. Chen et al. C.F. Chen et al. A. Drutskoy et al. A. Drutskoy et al. A. Drutskoy et al. C.S. Huang et al. G. S. Huang et al. G. Bonvicini et al. WM. Yao et al. M. Artuso et al. D. Besson et al. D. M.J. Lovelock et al.	(BELLE Collab.) (CLEO Collab.)
--	--	--	---	---