CHAPTER 6 DATABASE MANAGEMENT SYSTEMS

Management Information Systems, 10th edition, By Raymond McLeod, Jr. and George P. Schell © 2007, Prentice Hall, Inc.

1

Learning Objectives

- Understand the hierarchy of data.
- Learn database structures and how they work.
- Learn how to relate tables together in a database.
- Recognize the difference between a database and a database management system.
- Understand the database concept.
- Learn methods for determining data needs.

Learning Objectives (cont.)

- Understand the basic differences between structured query language and query-by-example.
- Learn about reports and forms.
- Become familiar with entity-relationship diagrams and class diagrams.
- Learn about the important personnel who are associated with databases.
- Learn the advantages and costs of database management systems.

3

Introduction

- Database management systems organize the large volume of data that firms use in their everyday business activities
- The data organization must also allow managers to find specific data easily and quickly for decision making
- The increased importance of databases as resources supporting decision making has required managers to learn more about database design and use

DATA ORGANIZATION

- Firms need very large amounts of data stored in their computer-based information systems simply because they conduct so many business transactions
- So much data exists that it would be useless for business decision making without an effective and efficient manner for organizing the data
- In order to use the data and avoid chaos, the "data" concept has to be broken down and reduced to smaller concepts
- These smaller concepts of data form the building blocks that can be combined to reproduce the original data in an organized, accessible format

5

The Data Hierarchy

- Business data is organized into a hierarchy of:
 - data fields that combine to form records; and
 - records that combine to form database files
- A data field is the smallest unit of data representing the smallest amount of data that might be retrieved from a computer at a given time
- A **record** is a collection of related data fields
- A **file** is a collection of related records, such as a file of all records containing course codes and title fields
- Table 6.1 shows an example of a database file

Table 6.1

The COURSE	Table
CODE	DESCRIPTION
MIS105	Information Systems Literacy
MIS315	Database Management Systems
POM250	Introduction to Operations Management
MGT300	Introduction to Management
MKT300	Introduction to Marketing
MKT444	Marketing Research
STA230	Descriptive Statistics
ACG201	Financial Accounting
ACG301	Cost Accounting
FIN305	Personal Finance
ECN375	Global Markets
ECN460	Banking Regulations
INT100	Cultural Diversity
INT201	Spanish for Business
INT202	French for Business

7

The Spreadsheet As a Simple Database

- A table of rows and columns can be represented in a spreadsheet
- The columns of the spreadsheet represent the data fields while the column headings contain data field names
- Rows of the table contain the field values
- Figure 6.1 illustrates an Excel spreadsheet containing the values from the COURSE table shown in Table 6.1

File Edit View Insert Format Tools Data Window Help 🏿 🚈 🇺 🜌 🚾 🍇 📝 喝 😭 🕶 Reply with Chang M33 В Code Description 2 MIS105 Information Systems Literacy Database Management Systems 3 MIS315 4 POM250 Introduction to Operations Management 5 MGT300 Introduction to Management 6 MKT300 Introduction to Marketing Marketing Research 7 MKT444 8 STA230 Descriptive Statistics 9 ACG201 Financial Accounting 10 ACG301 Cost Accounting 11 FIN305 Personal Finance Global Markets 12 ECN375 13 ECN460 Banking Regulations Cultural Diversity 14 INT100 15 INT201 Spanish for Business 16 INT202 French for Business

Figure 6.1 Spreadsheet Example of the COURSE Table

Flat Files

- A **flat file** is a table that does not have repeating columns
- A flat file provides the constant sequence of data fields that database management requires
- Flat files allow relational database structures to be normalized
- **Normalization** is a formal process for eliminating redundant data fields while preserving the ability of the database to add, modify, and delete records without causing errors

Table 6.2

The COU	The COURSE Table with Repeating Columns (Not a Flat File)					
AREA	CODE	DESCRIPTION	CODE	DESCRIPTION		
MIS POM MGT	105 250 300	Information Systems Literacy Introduction to Operations Mgt. Introduction to Management	315	Database Management Systems		
MKT STA	300 230	Introduction to Marketing Descriptive Statistics	444	Marketing Research		
ACG FIN	201 305	Financial Accounting Personal Finance	301	Cost Accounting		
ECN	375	Global Markets	460	Banking Regulations		

11

Key Fields

- Table 6.3 depicts values in the BOOK table and illustrates the concept of a key
- The **key** in a table is a field (or combination of fields) which contains a value that uniquely identifies each record in the table
- A single field often serves as a key for a table.
- Distinguishing between two or three rows is not enough, key values must be unique for the entire table
- A **candidate key** is a field that uniquely identifies each table row but was not chosen to be the key

Table 6.3

The BOOK Table	
ISBN	TITLE
X-15B25	Database Examples
C-12-L	HTML for Beginners
19-63-P	Business Management
ABC-123	Product, Promotion, Placement, and Price
WJY5	Personal Sales Techniques
C-16-MN	Introduction to Accounting
43-U-523	Cost Accounting
HH-7384-GH	Operations Management Fundamentals
322-J	Risk and Returns
32K	Personal Productivity Software
5-53-921	Fundamentals of Hardware
9-7723-K	Stocks Versus Bonds
K-T-127	Human Resources for Today
7-32-881	Oracle Servers
7-32-7723	SQL Servers
A-129-X	Business Management
13-991	The Federal Reserve System
VZ-67	Business French
3-2907-X	Spanish at Work Statistics for Business
88-PDQ	Statistics for business

Key Fields (cont.)

- Some tables require the values of two or more fields to uniquely identify each row in the table
- An example would be when courses have projects
- Table 6.4 shows projects but note that no single data field value uniquely identifies each row
- Values in the *Code* field column repeat between rows. So do field values in all other columns
- The combined values in the *Code* and *Number* fields, however, do form a unique value

Relating Tables

- Sometimes it may be necessary to join tables that originally stand alone
- Consider Table 6.5, the DEPARTMENT table. It shows the six departments offering the courses in the COURSE table
- Note that the tables have no column in common.
- You might be able to guess which department offered each course based upon the values in the *Abbreviation* field but a computer needs an exact match, not a guess
- Table 6.6 depicts the COURSE table with the *Abbreviation* added

15

Table 6.4

The PROJECT Table					
CODE	Number	TITLE	DUE	POINTS	
MIS105	1	Home Page Development	9/15/2003	25	
MIS105	2	Working With Windows	11/13/2003	50	
MIS316	1	Alumni Database	12/5/2003	20	
MKT444	1	Finding Customers	10/31/2003	50	
MKT444	2	Segmenting Customers	11/21/2003	50	
MKT444	3	Customer Service	12/12/2003	40	
FIN305	1	Personal Portfolio	11/14/2003	35	
INT201	1	Nouns	9/17/2003	15	
INT201	2	Verbs	11/21/2003	25	
INT202	1	Nouns	9/17/2003	15	
INT202	2	Verbs	11/21/2003	25	

Table 6.5

The DEPARTMENT Table				
ABBREVIATION	Name	LOCATED	PHONE	
ISOM MGTMKT	Information Systems and Operations Management Management and Marketing	Cameron Hall Cameron Hall	910-3600 910-4500	
ACGFIN	Accounting and Finance	Dobo Hall	910-1800	
ECN	Economics	Randall	910-0900	
INT	International Business	Dobo Hall	910-0900	

17

Table 6.6

The COURSE	Table with Abbreviation Field Added	
CODE	DESCRIPTION	ABBREVIATION
MIS105	Information Systems Literacy	ISOM
MIS315	Database Management Systems	ISOM
POM250	Introduction to Operations Management	ISOM
MGT300	Introduction to Management	MGTMKT
MKT300	Introduction to Marketing	MGTMKT
MKT444	Marketing Research	MGTMKT
STA230	Descriptive Statistics	ISOM
ACG201	Financial Accounting	ACGFIN
ACG301	Cost Accounting	ACGFIN
FIN305	Personal Finance	ACGFIN
ECN375	Global Markets	ECN
ECN460	Banking Regulations	ECN
INT100	Cultural Diversity	INT
INT201	Spanish for Business	INT
INT202	French for Business	INT

DATABASE STRUCTURES

- Database structures are ways of organizing data in order to make data processing more efficient
- The structure is then implemented via a database management system (DBMS) which is a software application that:
 - stores the structure of the database;
 - stores the data itself;
 - stores the relationships among data in the database; and
 - forms and reports pertaining to the database including the data field description
- Because it contains the data field definitions, the database controlled by a DBMS is called a "self-describing set of related data"

Hierarchical Database Structures

- The IDS database management system was one of the first DBMS and conformed to the **hierarchical database structure**
- The hierarchical structure is formed by data groups, subgroups, and further subgroups
- Figure 6.2 shows navigation from the DEPARTMENT table to the COURSE table using a hierarchical database structure

Network Database Structures

- Network database structures were developed to allow retrieval of specific records
- They allow any given record to point to any other record in the database
- Networks solve the problem of having to backtrack all the way to a joining "branch" of the database
- However, this wide range of possible connections is also the weakness of applying network structures to practical problems since it was just too complex to allow every record to point to every other record

Relational Database Structures

- The breakthrough came from basic research conducted independently by C. J. Date and E. F. Codd using relational algebra
- They were able to show that relational databases created out of a series of interrelated tables were, in fact, far more flexible and versatile than either the hierarchical or network database structures
- Whereas the hierarchical and network database structures rely on **physical relationships** in the form of storage addresses, relational database structures use **implicit relationships** that can be implied from the data (see Figure 6.3)

A RELATIONAL DATABASE EXAMPLE

- A database named *Schedule* has been created from tables used earlier in the chapter and some others
- The database is implemented in Microsoft Access 2002 (also known as Access XP).
- Databases break information into multiple tables because if information were stored in a single table, many data field values would be duplicated

25

The Schedule Database

- The example is implemented on Microsoft Access dbms but would be similar on any relational dbms product
- The COURSE table in Access (Figure 6.4) is a list of data field values. The table itself had to be defined in Access before values were entered into the data fields
- Figure 6.5 shows the definition of the *Code* field
- Figure 6.6 illustrates that Abbreviation field values will be looked up from a list of values in the DEPARTMENT table
- Table 6.7 shows a single table of course and department fields before they were separated into different tables

Figure 6.4 The COURSE Table in Access

==	COURSE : Table					
		Code	Description	Abbreviation		
	+	ACG201	Financial Accounting	ACGFIN		
	+	ACG301	Cost Accounting	ACGFIN		
	+	ECN375	Global Markets	ECN		
	+	ECN460	Banking Regulations	ECN		
	+	FIN305	Personal Finance	ACGFIN		
	+	INT100	Cultural Diversity	INT		
	+	INT201	Spanish for Business	INT		
	INT202 French for Business INT		INT			
■ MGT300 Introduction to Management		MGTMKT				
	+	MIS105	Information Systems Literacy	ISOM		
	+	MIS315	Database Management Systems	ISOM		
	+	MKT300	Introduction to Marketing	MGTMKT		
	+	MKT444	Marketing Research	MGTMKT		
	+	POM250	Introduction to Operations Management	ISOM		
	+	STA230	Descriptive Statistics	ISOM		

Unsepara	ted Table of Course and	Department Da	ta Fields		
CODE	DESCRIPTION	ABBREVIATION	Name	LOCATED	PHONE
MIS105	Information Systems Literacy	ISOM	Information Systems and Operations Management	Cameron Hall	910-3600
MIS315	Database Management Systems	ISOM	Information Systems and Operations Management	Cameron Hall	910-3600
POM250	Introduction to Operations Management	ISOM	Information Systems and Operations Management	Cameron Hall	910-3600
MGT300	Introduction to Management	MGTMKT	Management and Marketing	Cameron Hall	910-4500
MKT300	Introduction to Marketing	MGTMKT	Management and Marketing	Cameron Hall	910-4500
MKT444	Marketing Research	MGTMKT	Management and Marketing	Cameron Hall	910-4500
STA230	Descriptive Statistics	ISOM	Information Systems and Operations Management	Cameron Hall	910-3600
ACG201	Financial Accounting	ACGFIN	Accounting and Finance	Dobo Hall	910-1800
ACG301	Cost Accounting	ACGFIN	Accounting and Finance	Dobo Hall	910-1800
FIN305	Personal Finance	ACGFIN	Accounting and Finance	Dobo Hall	910-1800
ECN375	Global Markets	ECN	Economics	Randall	910-0900
ECN460	Banking Regulations	ECN	Economics	Randall	910-0900
INT100	Cultural Diversity	INT	International Business	Dobo Hall	910-0900
INT201	Spanish for Business	INT	International Business	Dobo Hall	910-0900
INT202	French for Business	INT	International Business	Dobo Hall	910-0900

The Database Concept

- The logical integration of records across multiple physical locations is called the **database concept.** It is not dependent on the user's perception of logical location
- Two primary goals of the database concept are to minimize data redundancy and to achieve data independence
- **Data independence** means placing the data specifications in tables and dictionaries that are physically separate from the programs
- **Data dictionary** refers to the definition of data stored within the database and controlled by the DBMS

CREATING A DATABASE

- In the conceptual model you:
 - –Determine the data that you need
 - –Describe the data
 - -Enter the data into the database

33

Determine the Data Needs

The two main approaches to determine data needs are:

- The Process-Oriented Approach:
 - 1. The *problem* is defined
 - 2. The *decisions* required to solve the problem are identified
 - 3. For each decision the required *information* is described
 - 4. The *processing* necessary to produce the information is determined
 - 5. The *data* required by the processing is specified
- The Enterprise Modeling Approach
 - the firm's entire data needs are determined and then stored in the database
- The **enterprise data model** is shown in Figure 6.8

Data Modeling Techniques

- Modeling the firm's data needs is supported by techniques that:
 - Describe the data
 - Describe how the data aggregates into tables
 - Describe how tables relate to each other
- Entity-relationship diagrams are used to describe relationships between conceptual collections of data so that their related records can be joined together
- Class diagrams are used to describe both the data relationships and the actions that operate on the data in the relationships

Entity-Relationship Diagrams

- **ER Diagrams** deal with data in **entities** (conceptual collections of related data fields) and the relationships between entities
- If we need to describe the data needed for a new information system to keep track of firms and their employees as well as their products, we can imagine that three separate data entities will exist: **firm**, **employee**, and **product** (Figure 6.9)
- When firms hire employees, however, there is an independent relationship between those two entities (Figure 6.10)
- Figure 6.11 demonstrates how we specify that one record in the firm entity can be related to many records in the product entity and also that one record in the firm entity can relate to many records in the employee entity
- Figure 6.12 is a "many-to-many" example

Class Diagrams

- When both the data used in an application and the actions associated with the data can be graphically represented they are called class diagrams and they are one of several object-oriented design models
- Class diagrams consist of the named class, fields in the class, and actions (sometimes referred to as methods) that act upon the class
- The class diagram in Figure 6.13 illustrates the entity-relationship diagram we have just completed

USING THE DATABASE

- Consider a database on a personal computer
- Forms, reports, and queries are common methods for accessing the database held in a database management system
- A query language is the means for asking questions of the database
- Many database management systems provide an easy-to-use interface for the user

Reports and Forms

- The majority of users' interactions with databases are via reports and forms
- Graphical user interfaces (GUIs) are provided by most database management software vendors to make the development of forms and reports easier
- The greatest difference between forms and reports is in their format
- Figure 6.14 shows a form for entering courses into the database
- Figure 6.15 illustrates a form and subform combination

45

Figure 6.14 A Data Entry Form for the Course Table

Reports and Forms (cont.)

- **Reports** are aggregated database data formatted in a manner that aids decision making
- Figure 6.16 is a report that shows each department with a list of each course taught and projects required for the course
- Figure 6.17 illustrates that the DEPARTMENT table relates down to the COURSE table which, in turn, relates down to the PROJECT table
- Unless there was a related entry in the PROJECT table, no COURSE record was displayed. If no record from the COURSE table was used (for example, neither economics course had a project) then a DEPARTMENT record was not displayed

Figure 6.16 Report of Departments Showing Courses Offered and Course Projects

Courses by Department -- show projects

Departmen				
	and Finan Personal F			
111000	Personal P	nance Proiect	Due Date	Maximum Paints
	1	Personal Portfolio	11/14/2003	35
	al Business		111142000	•••
	Spanish for			
	»puravit,jor	Proiect	Due Date	Maximum Points
	1	Nouns	9/17/2003	15
	2	Verbs	11/21/2003	25
INT202	French for	Business		
		Project	Due Date	Maximum Points
	1	Nouns	9/17/2003	15
	2	Verbs	11/21/2003	25
nformatio	n Systems a	nd Operations Management		
MIS10	Information	ı Systems Literacy		
		Project	Due Date	MaximumPoints
		Home Page Development	9/15/2003	25
	2	Working With Windows	11/13/2003	50
MIS31	Database N	danagement Systems		
		Project	Due Date	Maximum Points
	1	Alumni Database	12/5/2003	20
	nt and Mar			
MKT44	Marketing.		n n	N
		Project	Due Date	MaximumPoints
		Finding Oustomers	10/31/2003	50
	2	Segmenting Oustomers	11/21/2003	50
	3	Oustomer Service	12/12/2003	40

Figure 6.17 Report of Departments and Courses Alone

Courses by Department -- no projects

Department	
Accounting and Final	nce
ACG 201	Financial Accounting
ACG301	Cost Accounting
FIN305	Personal Finance
Economics	
ECN375	Global Markets
ECN460	Banking Regulations
International Busines	s
INT100	Cultural Diversity
INT 201	Spanish for Business
INT 202	French for Business
Information Systems	and Operations Management
MIS105	Information Systems Literacy
MIS315	Database Management System's
POM250	Introduction to Operations Management
STA230	Descriptive Statistics
Management and Ma	rketing
MGT300	Introduction to Management
MKT300	Introduction to Marketing
MKT444	Marketing Research

Query-by-Example

- Some users wish to go beyond reports and forms to directly ask questions of the database
- A query is a request for the database to display selected records and generally selects a limited number of data fields, then constrains the records to a set of criteria
- Figure 6.18 represents how that query could be represented
- The format is called **query-by-example (QBE)** because the DBMS software presents a standardized form that the user completes so that the system can generate a true query
- The result of the query is the table in Figure 6.19

Query-by-Example (cont.)

- Structured query language (SQL) is the code that relational database management systems use to perform their database tasks
- While the user may see Figure 6.18 as the QBE, this is actually translated by database management system into the structured query language example shown in Figure 6.20
- DBMS software contains graphical user interfaces and "wizard" programs to walk users through queries in a user friendly manner
- Online analytical processing (OLAP) is another feature becoming more common in database management system software

53

Figure 6.19 Results of the Query-by-Example

	Code	Description	Title
•	MIS105	Information Systems Literacy	Home Page Development
	MIS105	Information Systems Literacy	Working With Windows
*			

Figure 6.20 Structured Query Language Code to Find Projects for the MIS105 Course

Structured Query Language Code to Find Projects for the MIS105 Course

SELECT COURSE.Code, COURSE. Description, PROJECT.Title FROM COURSE, PROJECT WHERE COURSE.Code = PROJECT.Code AND COURSE.Code = "MIS105"

MANAGING THE DATABASE

- Database management systems perform functions that most users never see
- The infrastructure is needed so that the database can be maintained and modified and also to assure its efficient operation

55

Resources

- The **performance statistics processor** component of the DBMS maintains information that identifies what data is being used, who is using it, when it is being used, and so forth
- As the database management system runs, it keeps a transaction log that notes every database action taken as well as the exact time the action was taken
- A **backup** copy of the database is also made periodically

Database Personnel

- The database administrator (DBA) has both technical and managerial responsibilities over the database resource.
- **Database programmers** create the databse applications required by firms for their corporate use
- The database end-user, by virtue of the decisions made and the amount of data retrieved, also has a major impact on database design, use, and efficiency

57

DATABASE MANAGEMENT SYSTEMS IN PERSPECTIVE

- The DBMS makes it possible to create a database, maintain its contents, and disseminate the data to a wide audience of users without costly computer programming
- Its ease of use allows managers and professional staff to access database contents with only modest training
- Every facet of information technology has both advantages and disadvantages and database management systems are no exception

DBMS Advantages and Disadvantages

- The DBMS enables both firms and individual users to:
 - Reduce data redundancy
 - Achieve data independence
 - Retrieve data and information rapidly
 - Improve security
- A decision to use a DBMS commits a firm or user to:
 - Obtain expensive software
 - Obtain a large hardware configuration
 - Hire and maintain a DBA staff

59

END OF CHAPTER 6