# 量子计算实验预习报告

何金铭 PB21020660

# 1 实验基本原理

# 1.1 量子比特

一个 qubit 的态  $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , 可以表示成:

$$|\Psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle. \tag{1}$$

可以表示为 Bloch 球上的一个点

# 1.2 量子逻辑门

理论上可以证明,对于任意的多比特量子逻辑门,都可以通过两比特受控非门结合单比特量子逻辑门的方式实现。我们称单比特量子逻辑门和受控非门形成一组普适的量子逻辑门

其数学上对应了  $SU(2^n)$  群可以用 SU(2) 的群元素来生成

| 名称       | 符号    | 矩阵表示                                                                                             |
|----------|-------|--------------------------------------------------------------------------------------------------|
| Hadamard | - H - | $rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$                                    |
| Pauli-X  | - X - | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$                                                   |
| Pauli-Y  | - Y   | $\left[egin{matrix} 0 & -i \ i & 0 \end{array} ight]$                                            |
| Pauli-Z  | - Z - | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$                                                  |
| C-Not    |       | $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ |

图 1: 常用量子逻辑门的符号和矩阵表示

#### 1.3 量子测量

一个态  $|\Psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ ,测量后得到的概率为  $|\alpha|^2$  和  $|\beta|^2$  也可以选择另一组正交基  $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), |-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$  进行测量,测量之后,坍缩到  $|+\rangle$  或者  $|-\rangle$  的几率分别为  $\frac{1}{2}|\alpha+\beta|^2, \; \frac{1}{2}|\alpha-\beta|^2.$ 

#### 1.4 量子算法

量子算法在某些问题上有指数级的优势,比如 Shor 算法可以在多项式时间内分解大整数,Grover 算法可以在  $\sqrt{N}$  时间内搜索一个无序数据库。下面以 Deutsch 算法这个 toy model 为例, 说明量子

算法的优势。

函数 f(x), 其定义域为 0.1, 且  $f(x) \in \{0,1\}$ , 那么这样的函数共有四种情况, 如下图所示:

| $f_1$ | f <sub>1</sub> (x) |  |  |
|-------|--------------------|--|--|
| 输入    | 输出                 |  |  |
| 0     | 0                  |  |  |
| 1     | 0                  |  |  |

| $f_2$ | (x) |
|-------|-----|
| 输入    | 输出  |
| 0     | 1   |
| 1     | 1   |

| $f_3(x)$ |    |  |
|----------|----|--|
| 输入       | 输出 |  |
| 0        | 0  |  |
| 1        | 1  |  |

| $f_4(x)$ |    |  |
|----------|----|--|
| 输入       | 输出 |  |
| 0        | 1  |  |
| 1        | 0  |  |

图 2: 常函数与平衡函数举例:  $f_1(x)$  与  $f_2(x)$  是常函数,  $f_3(x)$  与  $f_4(x)$  是平衡函数。

现在我们需要判断 f(x) 是常函数还是平衡函数,采用经典计算的方法,需要分别计算 f(0) 和 f(1),然后判断 f(0) 和 f(1) 是否相等,共需进行两次计算。如果采用量子计算中的 Deutsch 算法,则只需一次计算就能够判定。如下图所示,是 Deutsch 算法的量子线路图。该量子算法需要两个量子比特,其初态是  $|a\rangle = |01\rangle$ 



图 3: Deutsch 算法的量子线路图

## 经过计算可得:

- 若 f(x) 是常函数,则  $|d\rangle=\pm|0\rangle(\frac{|0\rangle-|1\rangle}{\sqrt{2}})$ ,测量结果为 0;
- 若 f(x) 是平衡函数,则  $|d\rangle=\pm|1\rangle(\frac{|0\rangle-|1\rangle}{\sqrt{2}})$ ,测量结果为 1。

总结一下 Deutsch 算法的过程, 我们将量子比特制备到  $|0\rangle$  和  $|1\rangle$  的叠加态, 只需进行一次计算, 就可以根据末态的测量结果是 0 还是 1, 来判断 f(x) 是常函数还是平衡函数。根据经典算法,则需进行两次计算。将 Deutsch 算法的定义域从  $\{0,1\}$  推广到  $\{0,1\}^n$ , 其解决方法即是 D-J 算法。D-J

算法是最早提出的量子算法之一, 虽然 D-J 算法解决的问题不具备太多实际意义, 但该算法向人们 展示了,解决某些问题时,量子计算能够比经典计算更高效。下面我们将讨论如何在实验上实现这 一算法。

# 2 实验具体实现

# 2.1 DiVincenzo 判据

2000年, DiVincenzo 讨论了实现量子计算的物理要求,并提出了如下的7条判据:

- 1. 可扩展的具有良好特性的量子比特系统;
- 2. 能够制备量子比特到某个基准态;
- 3. 具有足够长的相干时间来完成量子逻辑门操作;
- 4. 能够实现一套通用量子逻辑门操作;
- 5. 能够测量量子比特;
- 6. 能够使飞行量子比特和静止量子比特互相转化;
- 7. 能够使飞行量子比特准确地在不同的地方之间传送。

后面两条是针对量子计算机之间通信提出的要求、前面五条是实现量子计算的要求。

## 2.2 金刚石中的 NV 色心

NV (Nitrogen-Vacancy) 色心是金刚石中的一种点缺陷。金刚石晶格中一个碳原子缺失形成空 位,近邻的位置有一个氮原子,这样就形成以了一个 NV 色心。我们这里所说的 NV 色心,指的是 带负电荷 NV- 顺磁中心。NV 色心的有六个电子,两个来自氮原子,三个来自与空位相邻的碳原 子, 另外一个是俘获的 (来自施主杂质的) 电子。



图 4: 金刚石和金刚石中的 NV 色心原子结构

# 2.3 自旋态初始化和读出



图 5: 室温下金刚石 NV 色心的能级结构示意图。会辐射出光子的跃迁用实线箭头表示,非辐射跃迁用虚线箭头表示

上图是室温下金刚石 NV 色心的能级结构。NV 色心的基态为自旋三重态,三重态基态与激发态间跃迁相应的零声子线为 637 nm, 红色区域为声子边带。基态的自旋三重态 ( $|m_s=0\rangle$ ,  $|m_s=1\rangle$ ,  $|m_s=1\rangle$ ,  $|m_s=1\rangle$  在无磁场时是简并的,它们与  $|m_s=0\rangle$  态之间的能隙 (零场劈裂) 对应微波频率为 2.87 GHz。激发态的能级自旋分裂对应的微波频率为 1.4 GHz。

首先 532 nm 的激光激发基态电子,由于电子跃迁是电偶极跃迁与电子自旋无关,所以跃迁前后的自旋是守恒的。 $|m_s=0\rangle$  的基态电子到  $|m_s=0\rangle$  的声子边带,而  $|m_s=\pm 1\rangle$  的基态电子到  $|m_s=\pm 1\rangle$  的声子边带。之后  $|m_s=0\rangle$  的电子绝大多数都直接跃迁到基态辐射荧光,而  $|m_s=\pm 1\rangle$  的电子则有一部分直接跃迁到基态辐射荧光,而另一部分通过无辐射跃迁到单重态再到三重态的  $|m_s=0\rangle$  态。经过多个周期之后,基态  $|m_s=\pm 1\rangle$  上的布居度会越少越少,而  $|m_s=0\rangle$  上的布居度会越来越多。这相当于,在激光的照射下,布居度从  $|m_s=\pm 1\rangle$  转移到了  $|m_s=0\rangle$ ,从而实现了自旋极化。温下NV 色心电子自旋的极化率可达 95% 以上。

如果我们选取基态的  $|m_s=0\rangle$  和  $|m_s=1\rangle$  作为量子比特,NV 色心的自旋极化就对应于将量子比特的初态极化到  $|0\rangle$  态。

由于  $|m_s=\pm 1\rangle$  态有更大的概率通过无辐射跃迁,回到基态。所以  $|m_s=0\rangle$  态的荧光比  $|m_s=\pm 1\rangle$  态的荧光强度大,实验上得出大约大 20-40%。根据  $|m_s=0\rangle$  态和  $|m_s=\pm 1\rangle$  对应荧光强度的差别,就可以区分 NV 色心的自旋态,即实现对自旋量子比特状态的读出。由于由于单次实验得到的  $|m_s=0\rangle$  态和  $|m_s=\pm 1\rangle$  的荧光强度并不明显,室温下对 NV 色心电子自旋量子比特的测量一般为多次实验重复测量,测得的结果为某个观测量(如  $|m_s=0\rangle\langle m_s=0|$ )的平均值。

# 2.4 自旋态操控



图 6: 自旋磁共振原理示意图

一个自旋系统  $\vec{\mu}=\gamma\vec{S}=\gamma\frac{\hbar}{2}\vec{\sigma}$  在外场  $\vec{B}$  的作用下,会根据系统哈密顿量进行演化:  $H=-\vec{\mu}\cdot\vec{B_0}$ 

## 2.4.1 自旋进动

在外场  $\vec{B}$  的作用下,自旋会进动,进动频率为  $\omega = \gamma B_0$ 

$$\langle S_z \rangle = \frac{\hbar}{2} cos\alpha;$$

$$\langle S_x \rangle = \frac{\hbar}{2} sin\alpha cos(\omega_0 t + \alpha_0);$$

$$\langle S_y \rangle = -\frac{\hbar}{2} sin\alpha sin(\omega_0 t + \alpha_0);$$
(2)

对于上述结果,可以有一个直观的几何解释。如下图所示,磁矩的 XY 分量大小是  $\frac{1}{2}\hbar sin\alpha$ ,并且绕着外磁场方向 Z 轴转动,转动频率为  $\omega_0$ 。这个过程也叫作拉莫进动, $\omega_0$  被称作拉莫频率。



图 7: 磁矩绕着外磁场方向做拉莫进动

# 2.4.2 共振微波驱动



图 8: 微波频率与拉莫进动频率一致时, 磁矩绕着外磁场方向 z 轴做章动

考虑在施加一个 XY 平面内圆偏振的微波场:

$$\begin{cases} B_x = B_1 cos\omega t \\ B_y = B_1 sin\omega t \end{cases}$$

通过求解薛定谔方程, 可以得到:

$$P_{\uparrow} = |a(t)|^2 = \frac{\omega_1^2}{\omega_1^2 + (\omega_0 - \omega)^2} sin^2 \delta t.$$

其中,

$$\delta = \sqrt{\omega_1^2 + (\omega_0 - \omega)^2}.$$

该过程也可以几何的理解。前面提到,当有静磁场的时候,自旋绕着静磁场方向做进动。当施加一个额外交变磁场,自旋会感受一个力矩,使其从z轴向-z轴方向翻转。这个过程也叫作自旋的拉比振荡,翻转频率也称作拉比频率。



图 9: 拉比振荡曲线示意图

实现了拉比振荡, 即说明实现了对 NV 色心自旋的相干操控, 量子比特在  $|0\rangle$  态和  $|1\rangle$  态之间振荡。共振驱动的情况下,当  $\omega_1 t = \pi$  时,量子比特从  $|0\rangle$  态完全转到了  $|1\rangle$  态,即实现了一个非门操

作,这个脉冲也叫作  $\pi$  脉冲。当  $\omega_1 t = \frac{\pi}{2}$  时,我们得到  $|0\rangle$  态和  $|1\rangle$  的叠加态,即  $|0\rangle \to \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$ 。这是量子计算中非常重要的逻辑门,这个脉冲也叫作  $\frac{\pi}{2}$  脉冲。

# 2.5 实验装置



图 10: 实验装置图

## 2.5.1 光学模块

上图中的激光发生模块,光路模块和信号采集模块统称光学模块。激光脉冲发生模块产生 532 nm 的绿色激光脉冲,用于 NV 色心状态的初始化和读出。光路模块将绿色的激光聚焦到金刚石上,金刚石中的 NV 色心在绿色激光的照射下,会发出红色荧光。在金刚石之后,经过滤波,再将荧光聚焦到光电探测器中。光电探测器将光信号转化成电信号,发送给信号采集模块。

#### 2.5.2 微波模块

前面提到,对于 NV 色心自旋状态的操控,是通过施加微波脉冲实现的。微波模块中,微波源产生特定频率的微波信号,经过微波开关调制成脉冲形式,然后经过微波功率放大器,实现功率增强。最后进入微波辐射模块,辐射到金刚石上。

#### 2.5.3 控制脉冲发生模块

控制脉冲发生模块,负责产生 TTL 信号,输送给微波模块、激光脉冲发生模块和信号采集模块。一方面,用于触发微波开关和激光器的输出,调制微波脉冲和激光脉冲。另一方面,用于同步各个不同器件之间的时序

# 3 实验内容

#### 3.1 连续波实验

测量 NV 色心连续波谱的时候,收集的是其发出的荧光信号,这其中的物理基础是,NV 色心的自旋态能够被激光初始化,并且发出荧光的亮度是依赖于自旋状态的。施加微波到色心上,可以改变自旋在  $|m_s=0\rangle$  态和  $|m_s=\pm1\rangle$  态的布居,从而改变荧光强度。因为 NV 色心的荧光亮度是

依赖于自旋态的。改变施加的微波频率,当共振的微波改变了自旋状态,荧光亮度会相应的发生改变。因此,但微波频率与能级间隔共振时,谱线上会出现低谷。

## 3.2 拉比振荡实验

对于 NV 色心而言, 实现拉比振荡的脉冲序列如下: 首先打开激光, 将 NV 色心自旋态初始化到  $|m_s=0\rangle$ , 然后关闭激光, 打开微波。微波脉冲的频率等于共振频率, 最后再施加激光, 将 NV 色心自旋态读出。施加的微波脉冲宽度不同, 自旋演化的状态就不同。将微波脉冲宽度与荧光计数对应起来, 就可以得到拉比振荡的曲线。本实验中需要用到  $|m_s=0\rangle \to |m_s=1\rangle$  和  $|m_s=0\rangle \to |m_s=-1\rangle$  两个跃迁频率,所以微波模块中有个两个微波源,在进行拉比振荡实验的时候,用两个波源(记为"波源 1"和"波源 2")分别测定两个频率的拉比振荡。

# 3.3 回波实验

在磁共振实验中,回波实验是指,通过施加去耦脉冲的方式,让自旋相干信号重聚的过程。图 3.5 所示是回波实验的脉冲序列。首先用激光将 NV 色心自旋态初始化到  $|m_s=0\rangle$  态,然后施加  $\frac{\pi}{2}$  脉冲,将自旋制备到  $|0\rangle$  态和  $|1\rangle$  态的叠加态,自由演化时间  $\tau=t$ 1 后,施加  $\pi$  脉冲,然后再等待自由演化时间  $\tau=t$ ,施加第二个  $\frac{\pi}{2}$  脉冲,将相干信息转化成布居度读出。

## 3.4 T<sub>2</sub> 实验

 $T_2$  实验,也叫作自旋回波实验,其目的是测量 NV 色心自旋的退相干时间。因为量子系统不是一个孤立系统,其与环境的相互作用,会引起退相干效应。图 3.7 所示是  $T_2$  实验的脉冲序列。首先用激光将 NV 色心自旋态初始化到  $|m_s=0\rangle$  态,然后施加  $\frac{\pi}{2}$  脉冲,将自旋制备到  $|0\rangle$  态和  $|1\rangle$  态的叠加态,自由演化时间  $\tau=\frac{t}{2}$  后,施加  $\pi$  脉冲,然后再等待自由演化时间  $\tau=\frac{t}{2}$ ,施加第二个  $\frac{\pi}{2}$  脉冲,将相干信息转化成布居度读出。

#### 3.5 D-J 算法实验

我们将量子比特和辅助比特均编码到 S=1 的电子自旋上。 $U_f(x)$  的定义与公式 1.8 一致,即  $U_f(x)=(-1)^{f(x)}|x\rangle$ ,其中 f(x) 表示四个不同的函数, $f_1(x)=0$  和  $f_2(x)=1$  是常函数, $f_3(x)=f_4(x)=1-x$  是平衡函数,其输入输出情况如图 1.4 所示。对于两能级体系, $U_{fi}$  的矩阵表示见图 3.10。实现量子算法时,我们将  $|0\rangle$  和  $|-1\rangle$  编码成量子比特, $|1\rangle$  为辅助能级。在系统用激光初始化到  $|0\rangle$  后,输入态用 MW1 的  $\frac{\pi}{2}$  脉冲作用在  $|0\rangle$  上而制备得到。控制门  $(U_{fi})$  通过  $2\pi$  脉冲的四种组合实现。当 MW2 的  $2\pi$  微波脉冲作用在辅助态  $|1\rangle$  上时,会在  $|0\rangle$  上产生  $\pi$  相位,等效于  $|0\rangle$  和  $|-1\rangle$  张成的子空间进行绕 z 轴的  $\pi$  旋转。常函数作用结束后,末态是  $\pm \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ 。 平衡函数作用结束后,末态是士  $\frac{|0\rangle - |1\rangle}{\sqrt{2}}$ 。 两种未态分别对应正向的回波,和反向的回波。因此,我们就以通过回波测量,来判断  $U_{fi}$  操作对应的是常函数还是平衡函数。