数值实验报告(三)

姓名	杜鸿宇	学号	20161412110	提交日期	2019.3.26
实验名称	第三次数值			MATLAB	
	(1) Page423 E11.6; (2) Page424 E11.8;				
实验内容	(2) Page424 E11.10; (4) Page424 E11.11;				
	(5) Page425 E11.13.				
	1 Page424 E11.6:				
	通过编程,我们得到如下的图像:				
	0.08 0.06 0.04 0.02 0.15 0.10 0.05 0.10 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05				
实验结果		h=0.1		h=1/8	
头 抛	对 h=0.1,w≈1.77 时,SOR 迭代效果最好,如图:				
	0.1 0.08 0.06 0.04 0.02 0.02	0 0 5	0.025 0.02 0.015 0.011 0.005 0 15	5 0 0 5	15
	,	w≈1.77		w≈0.4	
	对 h=1/6,w≈1.4 时,SOR 迭代效果最好,如图:				

w≈1.44

w≈0.4

对 h=1/4, w≈1.32 时, SOR 迭代效果最好, 如图:

w≈1.32

w≈0.4

我们看出随着 h 的减小, w 的最佳值一直在减小。

2 Page424 E11.8:

实验的矩阵选取 3、4、5 阶, 结果如下表:

$-4c/(\Delta x^2)$	3阶的特征值	4 阶的特征值	5 阶的特征值
-64	-54.6274	-90.4508	-134.3538
-100	-32.0000	-65.4508	-108.0000
-144	-9.3726	-34.5492	-72.0000
-	-	-9.5492	-36.0000
-	-	-	-9.6462

通过上面的试验证明了雅各比矩阵的特征值介于两个值之间。接着给出

n与相应矩阵的最大特征值的绝对值之间的图像。

通过这张图我们可以看出当 n 越来越大时,相应矩阵的特征值的绝对

值也越来越大。

3 Page424 E11.10:

本题中, 我选择的 SOR 中的 w 为 0.1: 0.01: 1.9。

根据观察总结变化规律:

- (1) k=10, w=0.1: 0.01: 1.99 的迭代矩阵 G 的谱半径: 先减小后增大。
- (2) k=10, w=0.1: 0.01: 1.99 的迭代矩阵 G 的收敛速度: 先增大后减小。
- (3) k=50, w=0.1: 0.05: 1.99 的迭代矩阵 G 的谱半径: 先减小后增大。
- (4) k=50, w=0.1: 0.05: 1.99 的迭代矩阵 G 的收敛速度: 先增大后减小。

k=10 时, 谱半径的图像: 最小值: 0.56

k=50 时, 谱半径的图像: 最小值: 0.90

k=50 时, 谱半径的图像: 最小值: 0.95

4 Page424 E11.11:

第一个图表将在分析中给出理论过程。

第二张图表如下:

k	雅可比		
	p(G)	R	
10	0.9595	0.018	
50	0.9981	0.0008	
100	0.9995	0.0002	

k	高斯-塞德尔	
	P(G)	R

10	0.9206	0.0362
50	0.9962	0.0016
100	0.9990	0.0004

k	最佳 SOR		
	P(G)	R	
10	0.5610	0.252	
50	0.8840	0.0535	
100	0.9397	0.0270	

5 Page424 E11.13:

在 G-S 迭代的情况下, 我们得到如下的 6 张图:

发现当 k=25 时减少的最快,当 k=1 时减少的最慢。从图像看出,G-S 迭代法具有很好的磨光性。接着把初始值设为 1:

我们只需要这一张图,因为无论 k 取多少都没有太多的变化,所以误差衰减的非常缓慢。

接着我们考虑 Jacobi 的情况, 首先给出初始的六张图:

k=25 时误差减少的最快,当 k=1时,误差减小的最慢。从图上可以看出雅可比迭代的磨光性更好,接着来看初始值都为 1的情况:

效果依旧不是很理想,无论迭代多少次,误差减少都很缓慢,没有什么 改观。

实验分析

1 Page423 E11.6:

(a) 用矩阵求解此问题的主要难处在于矩阵不好求。但通过对五点差分

法的分析, 我们发现前5列是一个4阶矩阵, 即为:

$$\begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 4 \end{bmatrix};$$

后 4 列是一个 9 阶矩阵, 即为:

$$\begin{bmatrix} 4 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 4 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 4 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 4 \end{bmatrix};$$

表示成分块矩阵的形式即可求解。

(b) 本题的算法是通过红黑点叠加结合 SOR 算法进行求解,红黑点可分别表示为:

$$\begin{split} u_{i,j}^{(k+1)} &= (1-w)u_{i,j}^{(k)} + w(u_{i+1,j}^{(k)} + u_{i-1,j}^{(k)} + u_{i,j+1}^{(k)} + u_{i,j-1}^{(k)} + h^2 f_{i,j})/4; \\ u_{i,j}^{(k+1)} &= (1-w)u_{i,j}^{(k)} + w(u_{i+1,j}^{(k+1)} + u_{i-1,j}^{(k+1)} + u_{i,j-1}^{(k+1)} + u_{i,j-1}^{(k+1)} + h^2 f_{i,j})/4; \end{split}$$

经过不断地迭代,就得到了最终的结果。但迭代停止有条件,即前后两

个迭代矩阵的范数绝对值之差小于等于 0.01:

$$|||A_k|| - ||A_{k+1}|| < 0.01$$

这样,就得到了最终的结果。

2 Page424 E11.8:

对于离散化的微分方程, 我们主要考虑矩阵:

$$\begin{bmatrix} 2 & -1 & \dots & \dots \\ -1 & \dots & \dots & \dots \\ \dots & \dots & \dots & -1 \\ \dots & \dots & -1 & 2 \end{bmatrix};$$

经过运算我们知道这个矩阵的特征值为,

$$2(1-\cos(j\pi/n));$$

其中 j=1,2,...,n-1。那么随着 n 的不断增大,我们发现对于固定的 j 特征值呈现出递减的趋势,那么随着 j 的不断增大,特征值整体也就不断地增大。题目中的矩阵为:

$$1/(\Delta x)^{2} \begin{bmatrix} -2 & 1 & \dots & \dots \\ 1 & \dots & \dots & \dots \\ \dots & \dots & \dots & 1 \\ \dots & \dots & 1 & 2 \end{bmatrix};$$

显然若不算前面的系数,矩阵特征值最小不超过-2*(1-(-1))=-4,所以特征值在给定的范围内。由由于 n 增大时,系数也增大,所以特征值一直减小,这就解释了 n 越大,特征值绝对值越大的原因。

3 Page424 E11.10:

SOR 方法此题是要解决如下的拉普拉斯问题的方程:

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} = 0$$
;

本题采用的是五点有限差分法,首先得到矩阵:

$$T_{n-1} = \begin{bmatrix} 2 & -1 & \dots & \dots \\ -1 & \dots & \dots & \dots \\ \dots & \dots & \dots & -1 \\ \dots & \dots & -1 & 2 \end{bmatrix}$$

接着由递推公式得到了一般的系数矩阵:

$$A = \begin{bmatrix} T_{n-1} + 2I_{n-1} & -I_{n-1} & \dots & \dots \\ -I_{n-1} & \dots & \dots & \dots \\ \dots & \dots & \dots & -I_{n-1} \\ \dots & \dots & \dots & -I_{n-1} + 2I_{n-1} \end{bmatrix}$$

接着我们考虑不同的松弛因子 w, 通过计算我们得到松弛迭代法的迭代矩阵:

$$L_{w} = (D - wL)^{-1}[(1 - w)D + wU]$$

由于系数矩阵是实对称的正定矩阵,则 0<w<2 时,SOR 迭代法收敛。 那么我们给出 SOR 迭代法的谱半径公式最小值:

$$\rho(L_{w}) = \frac{1 - \sqrt{1 - \rho(B)^{2}}}{1 + \sqrt{1 - \rho(B)^{2}}}$$

其中:

$$\rho(B) = \max(\frac{1}{2}(\cos\frac{p\pi}{n} + \cos\frac{q\pi}{n})); p, q = 1,...,n-1$$

这是 Jacobi 迭代的谱半径,带入之后就得到我们要的最佳松弛因子。由于谱半径有最小值,所以 SOR 方法的谱半径整体呈现出先减小后增大的趋势(再具体的理论分析可通过数值代数证明),此时我们也得到了最佳迭代因子:

$$w_{opt} = \frac{2}{1 + \sqrt{1 - \rho(B)^2}}$$

由于题目中的矩阵出现了 10000*10000 阶的矩阵, 4G 的内存难以招架, 最终结果和理论的最小值有误差, 但非常的小。

4 Page424 E11.11:

第一张图表的内容:

Jacobi 矩阵的迭代矩阵为:

$$D^{-1}(D-A) = I - A/4$$

其中 D 是对角阵, A 是上一小文中的矩阵, 即考虑有限差分下的矩阵迭代情况。其计算公式为:

$$u_{ij}^{(k)} = \frac{1}{4} (u_{i+1, j}^{(k-1)} + u_{i-1, j}^{(k-1)} + u_{i, j+1}^{(k-1)} + u_{i, j-1}^{(k-1)} + \frac{h^2}{4} f_{ij},$$

$$u_{i0} = u_{in} = u_{0j} = u_{nj} = 0, i, j = 1, ..., n-1.$$

对应的矩阵 B 的特征值问题为:

$$\begin{cases} uV_{ij} = \frac{1}{4}(V_{i-1,j} + V_{i+1,j} + V_{i,j-1} + V_{i,j+1}), \\ V_{i0} = V_{in} = V_{oj} = V_{nj} = 0. \end{cases}$$

因为 B=I-A/4, 所以矩阵 B 的特征值为:

$$\mu_{pq} = \frac{1}{2} \left(c \frac{p\pi}{s} + c \frac{q\pi}{s} \right) p, q = 1, ... n - 1$$

于是:

$$\rho(B) = \cos\frac{\pi}{n} = \cosh\pi$$
;

接着 G-S 迭代法的谱半径是 Jacobi 的平方, 所以:

$$\rho(G-S) = [\cos(h\pi)]^2;$$

再有前面一问的结论, 我们得到 SOR 方法的谱半径公式:

$$(1-\sin(\pi h))/(1+\sin(\pi h));$$

接着,我们通过泰勒展开来求解收敛速度,得到:

$$R(B) = -\log \rho(B) = -\log(\cos(h\pi)) \approx (\pi^2/\log 10)h^2/2;$$

 $R(G-S) = -\log \rho(G-S) = -2\log(\cos(h\pi)) \approx (\pi^2/\log 10)h^2;$
 $R(SOR) = -\log \rho(SOR) \approx (2\pi/\log 10)h;$

这就是所有需要求的。

5 Page424 E11.13:

首先我们解释为什么 Jacobi 和 G-S 迭代过程中迭代图形速度会减慢,

这个需要从特征向量进行分析。对于矩阵 A 我们知道它的特征向量为:

$$(\sqrt{\frac{2}{n}}\sin(\frac{k\pi}{n+1}), \sqrt{\frac{2}{n}}\sin(\frac{2k\pi}{n+1}), ..., \sqrt{\frac{2}{n}}\sin(\frac{n\pi}{n+1}));$$

因此我们发现特征向量和初始值非常的相似,接着 Jacobi 迭代矩阵 B

和 A 有如下的关系:

$$B = I - A/2$$
;

所以 Jacobi 矩阵的特征向量也为上述特征值。由 Jacobi 矩阵的特征值

表达式:

$$1 - \frac{1}{2}2(1 - \cos\frac{k\pi}{n}) = \cos\frac{k\pi}{n};$$

同理 G-S 迭代的特征值为:

$$\cos^2\frac{k\pi}{n}$$
;

这样我们发现当 j 的值越趋近于 25 时, 两钟迭代下的矩阵特征值越趋

近于 0, 而再分析雅可比矩阵的迭代公式:

$$X_{n+1} = GX_n = \lambda X_n;$$

我们发现迭代快慢完全由特征值所控制,这就解释了为什么在 k=25 时最快,在 k=0 时最慢了。

由于这两种迭代的特征值都和 cos 有关,它们的特征值在 k 能取到 50 的时候显然呈现出对称的情况,那么再往后迭代速度将减慢并复制前面的迭代速率。另一方面由于其拥有很好的收敛性,所以磨光作用非常明显,非常的好。

再对 G-S 迭代做进一步分析, G-S 迭代的特征向量和 Jacobi 的有如下的关系:

$$\xi_{ij} = \lambda^{rac{i+j}{2}} V_{ij}$$
 ;

再写出 G-S 迭代的特征方程组:

$$G\xi = \lambda^2 \xi$$
:

其中特征值时 Jacobi 特征值的平方。为了使其满足题目的迭代关系,上式方程组两边都需要进行减速,即平方项需要去掉,并且特征向量中的 (i+j)/2 也需要去掉,由于特征向量中去掉的项更多,所以平方项需要加大,即对于 Jacobi 来说是加速的,这也就说明了 G-S 迭代的效率要高于 Jacobi 迭代的效率,但由于对 Jacobi 来说初始值即为特征向量,所以迭代的精度会更高。

最后我们来解释为什么全部以 1 为初始值要慢很多。以 G-S 为例,它在特征向量为初始值的前提下迭代的累加是特征值的次方的次方倍数。这个一个非常快的迭代。但改为 1之后,我们先给出 G-S 迭代矩阵:

```
\begin{bmatrix} 0 & 1/2 & \dots & \dots \\ 1/2 & \dots & \dots & \dots \\ \dots & \dots & \dots & 1/2 \\ \dots & \dots & 1/2 & 0 \end{bmatrix};
```

对于 1讲过一次迭代之后变为:

[1/2,1,...,1,1/2];

两次迭代之后变为:

[1/4,3/4,...,3/4,1/4];

以此类推, 我们发现收敛速度实际上非常缓慢, 所以迭代很多次之后效

果也依旧不是非常理想。

代码附件:

5 Page423 E11.6:

```
(1)
```

```
a=4*ones(1,56);
D=diag(a,0);
A1=zeros(56);
for i=0:4
   for j=4*i+2:4*i+4
      A1(j,j-1)=-1;
   end
end
for i=1:4
   for j=20+(i-1)*9+2:20+(i-1)*9+9
      A1(j,j-1)=-1;
   end
end
for i=1:5
   for j=i*4+1:i*4+4
      A1 (j, j-4) = -1;
   end
end
for i=1:3
   for j=20+i*9+1:20+i*9+9
      A1(j,j-9)=-1;
   end
end
A2=A1';
```

```
A=D+A1+A2;
b1=0.02*ones(1,56);
b=b1';
x=inv(A)*b;
Z=zeros(11);
Z(7:10,2) = x(1:4);
Z(7:10,3) = x(5:8);
Z(7:10,4) = x(9:12);
Z(7:10,5) = x(13:16);
Z(7:10,6) = x(17:20);
Z(2:10,7) = x(21:29);
Z(2:10,8) = x(30:38);
Z(2:10,9) = x(39:47);
Z(2:10,10) = x(48:56);
[e,f]=meshgrid(1:11,1:11);
mesh(e,f,Z)
 (2)
A=zeros(11);
w=0.4;
n=0;
while n \ge 0
   a1=norm(A);
   for i=2:6
       for j=7:10
A(j,i) = (1-w) *A(j,i) + w* (A(j-1,i) + A(j+1,i) + A(j,i-1) + A(j,i+1) + 0.02) /4;
       end
   end
   for i=7:10
       for j=2:10
A(j,i) = (1-w) *A(j,i) + w* (A(j-1,i) + A(j+1,i) + A(j,i-1) + A(j,i+1) + O.02) /4;
   end
   a2=norm(A);
   n=n+1;
   if abs(a1-a2) \le 0.01
       break
   end
end
[e,f]=meshgrid(1:11,1:11);
mesh(e, f, A)
```

```
2 Page424 E11.8:
y=[];
m = [3:1:90];
k=1;
for n=3:1:90
   x=1/(n+1);
   u=1/(x^2);
   A(1,1:2) = [-2*u,u];
   A(n, n-1:n) = [u, -2*u];
   for i=2:n-1
       A(i,i-1:i+1) = [u,-2*u,u];
   end
   eig(A);
   y(1,k) = max(abs(eig(A)));
   k=k+1;
end
plot(m, y, '-*')
title('picture');
xlabel('n的数值');
ylabel('特征值最大值的绝对值');
3 Page424 E11.10:
k=100;
b=-1*ones(1,k-1);
a=4*ones(1,k);
D=diag(a);
I=diag(b,1);
J=diag(b,-1);
B=D+I+J;
A1=zeros(k*k, k*k);
A1 (1:k, 1:k) = B;
for i=1:k-1
   A1 (k*i+1:k*(i+1), k*i+1:k*(i+1))=B;
A2=zeros(k*k, k*k);
A3=zeros(k*k, k*k);
I1=diag(-ones(1,k));
for i=2:k
   A2 (k*(i-1)+1:k*i,k*(i-2)+1:k*(i-1))=I1;
end
A3=A2';
A=A2+A1+A3;
L=triu(A,1);
U=tril(A,-1);
D=A-L-U;
```

```
p=[];v=[];
z=1;
for w=0.1:0.05:1.99
   M = (1/w) * D + L;
   N = (1/w-1) * D-U;
   G=inv(M)*N;
   p(1,z) = max(abs(eig(G)));
   v(1,z) = -\log 10(p(1,z));
   z=z+1;
end
w1=[0.1:0.05:1.99];
p;
v ;
plot(w1,p,'-r*')
grid on;
min(p)
4 Page424 E11.11:
k=10;
b=-1*ones(1,k-1);
a=4*ones(1,k);
D=diag(a);
I=diag(b,1);
J=diag(b,-1);
B=D+I+J;
A1=zeros(k*k, k*k);
A1 (1:k, 1:k) = B;
for i=1:k-1
   A1 (k*i+1:k*(i+1), k*i+1:k*(i+1)) = B;
end
A2=zeros(k*k,k*k);
A3=zeros(k*k, k*k);
I1=diag(-ones(1,k));
for i=2:k
   A2 (k*(i-1)+1:k*i, k*(i-2)+1:k*(i-1))=I1;
end
A3=A2';
A = A2 + A1 + A3;
L=triu(A,1);
U=tril(A,-1);
D=A-L-U;
z=1;
%SOR 分解的谱半径和收敛速度
p1=[];v1=[];
for w=0.1:0.001:1.99
```

```
M = (1/w) *D+L;
   N = (1/w-1) * D-U;
   G=inv(M)*N;
   p1(1,z) = max(abs(eig(G)));
   v1(1,z) = -\log 10(p1(1,z));
   z=z+1;
end
min(p1)
%G-S 迭代法
M2=D+L;
N2=-U;
G2=inv(M)*N;
p2=max(abs(eig(G)))
v2 = -log10(p2);
%Jacobi 迭代法
M2=D;
N2 = -U - L;
G2=inv(M2)*N2;
p3=max(abs(eig(G2)))
v3 = -log10 (p3)
4 Page425 E11.16:
a=2*ones(1,50);
b=-1*ones(1,49);
D=diag(a,0);
U=diag(b,1);
L=diag(b,-1);
A=D+U+L;
M=D+L; N=-U;
G=inv(M)*N;
k=25;
x = [];
for j=1:50
   x1=sin((j*k*pi)/(51));
   x(j,1) = x1;
end
X=X;
for i=1:10
   X(:,i+1) = G*X(:,i);
end
Х;
[e,f] = meshgrid(0:10,1:50);
mesh(e,f,X)
U=diag(b,1);
```

```
L=diag(b,-1);
A=D+U+L;
M=D+L; N=-U;
G=inv(M)*N;
k=20;
x=[];
for j=1:50
  x1=1;
  x(j,1) = x1;
end
X=X
for i=1:10
  X(:,i+1)=G*X(:,i);
end
Х;
[e,f] = meshgrid(0:10,1:50);
mesh(e,f,X)
```