CS3319 Foundations of Data Science

9. Privacy

Jiaxin Ding John Hopcroft Center

Privacy Concerns from Users

• Netflix prize **De-anonymization** attack^[1]

Privacy

• **Privacy** is the ability of an individual or group to seclude themselves or information about themselves, and thereby express themselves selectively.

• When something is private to a person, it usually means that something is inherently special or sensitive to them.

Anonymization

• Hide the information that can be used to infer the identity

	No	Sensitive				
	Zip code	Age	Nationality	Condition		
1	130**	<30	*	AIDS		
2	130**	<30	*	Heart Disease		
3	130**	<30	*	Viral Infection		
4	130**	<30	*	Viral Infection		
5	130**	≥40	*	Cancer		
6	130**	≥40	*	Heart Disease		
7	130**	≥40	*	Viral Infection		
8	130**	≥40	*	Viral Infection		
9	130**	3*	*	Cancer		
10	130**	3*	*	Cancer		
11	130**	3*	*	Cancer		
12	130**	3*	*	Cancer		

Example Attack 1

• K-anonymity: at least k records share the same quasi-identifier (e.g. zip code, age, nationality)

	No	Sensitive			
	Zip code	Age	Nationality	Condition	
1	130**	<30 *		AIDS	
2	130**	<30	*	Heart Disease	
3	130**	<30	*	Viral Infection	
4	130**	<30	*	Viral Infection	
5	130**	≥40	*	Cancer	
6	130**	≥40	*	Heart Disease	
7	130**	≥40	*	Viral Infection	
8	130**	<u>≥</u> 40	*	Viral Infection	
9	130**	3*	*	Cancer	
10	130**	3*	*	Cancer	
11	130**	3*	*	Cancer	
12	130**	3*	*	Cancer	

Example Attack 1

- We have records from 2 hospitals
- If we know someone visited both hospital, what can we know?
- If we know her/his age is 28, what can we know?

		Non-Sensitive			Sensitive		Non-Sensitive			Sensitive
		Zip code	Age	-Nationality	Condition_		Zip code_	Age_	Nationality_	Condition
l	1	130**	<30	*	AIDS	1	130**	<35	*	AIDS
	2	130**	<30	*	Heart Disease	2	130**	<35	*	Tuberculosis
	3	130**	<30	*	Viral Infection	3	130**	<35	*	Flu
	4	130**	<30	*	Viral Infection	4	130**	<35	*	Tuberculosis
Ì	5	130**	≥40	*	Cancer	5	130**	<35	*	Cancer
	6	130**		*	Heart Disease	6	130**	<35	*	Cancer
	7	130**	≥ 4 0	*	Viral Infection	7	130**	≥35	*	Cancer
	8	130**	≥ 4 0	*	Viral Infection	8	130**	≥35	*	Cancer
Ì	9	130**	3*	*	Cancer	9	130**	≥35	*	Cancer
	10	130**	3*	*	Cancer	10	130**	≥35	*	Tuberculosis
	11	130**	3*	*	Cancer	11	130**	≥35	*	Viral Infection
Į	12	130**	3*	*	Cancer	12	130**	≥35	*	Viral Infection

Example Attack 2

- Anonymous communication graph
- Auxiliary knowledge
 - Alice has communicated to Bob, Cathy, and Ed
 - Cathy has communicated to everyone, except Ed

Encryption

 Alice sends a message to Bob such that any other does not learn the message without the key. Bob gets the correct message.

Encryption

• E.g. **RSA algorithm**.

Theorem:
$$(m^e)^d = m \pmod{n}$$

RSA: The first and most popular asymmetric encryption

$$E(m) = m^e \pmod{n}$$

$$D(c) = c^d \pmod{n}$$

Example:

Choose two primes: p=11, q=13, $n=p\times q=143$.
Choose public key e=7.
Extended Euclidean algorithm find private key d=103, s. t. ed =1(mod(p-1)(q-1)).
We want to encrypt m=9, $E(m)=9^7 \pmod{143}=48=c$ $D(c)=48^{103} \pmod{143}=9=m$

- Computing with a not-trusted third party
 - Alice stores encrypted data on a server controlled by Bob. Server returns correct query answers to Alice, without Bob learning anything about the data.

- Computing with a not-trusted third party
 - Homomorphic encryption (e.g. RSA)

$$E(m) = m^e \pmod{n}$$

$$D(c) = c^d \pmod{n}$$

$$E(m_1) = m_1^e E(m_2) = m_2^e$$

Ergo ... $E(m_1) \times E(m_2)$
 $= m_1^e \times m_2^e$
 $= (m_1 \times m_2)^e$
 $= E(m_1 \times m_2)$

Multiplicative Homomorphism

$$E(m_1) \times E(m_2) = E(m_1 \times m_2)$$

- Secure Multiparty Computation
 - The millionaire's problem: Alice and Bob want to know who of them has more money without letting the other know the exact amount of money one owns.

- The millionaire's problem protocol
 - Assume Alice has i million, and Bob has j million, i,j are integers in [1, 10]
 - Intuition:
 - We have 10 boxes, Alice has the keys, while Bob does not have the keys
 - Alice opens all boxes. For box k, if k<i, Alice puts 0 in it; else Alice puts 1. Afterwards,
 Alice closes all boxes
 - Bob picks up the jth box, and destroys all the other boxes
 - Alice opens the box and knows who is richer

Access Control

- A set of agents want to access a set of resources (could be files or records in a database).
- Access control rules specify who is allowed to access certain resources.

