# Kernseg: A new efficient change-points detection procedure for analyzing biological data

#### Alain Celisse

<sup>1</sup>UMR 8524 CNRS - Université Lille 1

<sup>2</sup>MODAL INRIA team-project

joint work with G. Rigaill, M. Pierre-Jean, and G. Marot

Stat4Bio - LaMME

Évry, April 3rd, 2019

# Change-point detection: 1-D signal (example)



# Change-point detection: 1-D signal (example)



## Detect abrupt changes...

## General purposes:

• Detect changes in (features of) the distribution (not only in the mean)

# Example 1: Changes in the distribution



Detecting changes in the mean is useless

4/4

# Example 1: Changes in the distribution

## Total copy number (TCN) and Allele B fraction (Frac B)



Intro.

$$(Frac \ B)_t = rac{N_{B,t}}{N_{A,t} + N_{B,t}}$$



## Detect abrupt changes...

#### General purposes:

Intro.

0000000000

- Detect changes in (features of) the distribution (not only in the mean)
- Complex data:
  - High-dimension: measures in  $\mathbb{R}^d$ , curves,...
  - Structured: audio/video streams, graphs, DNA sequence,...

Intro. KCP Dyn. prog. Approx. alg. How many? Experiments Conclusion

# Motivating example 2: Structured objects

Observe networks along the time



#### Goal:

Detect abrupt changes in some features of the network

#### Ex:

- Each network represented by one histogram
- Columns ↔ counts of specific motifs (stars, triangles,...)

# Motivating example 2: dynamic networks



## Detect abrupt changes. . .

#### General purposes:

Intro

- Detect changes in (features of) the distribution (not only in the mean)
- Complex data:
  - High-dimension: measures in  $\mathbb{R}^d$ , curves,...
  - Structured: audio/video streams, graphs, DNA sequence,...
- Fusion of heterogeneous data
  - Deal simultaneously with different types of complex data

# Example 1 (Cont'd): Fusion of TCN and Frac B

## Total copy number (TCN) and Allele B fraction (Frac B)



Intro.

$$(Frac \ B)_t = rac{N_{B,t}}{N_{A,t} + N_{B,t}}$$



Dyn. prog

## Detect abrupt changes. . .

#### General purposes:

Intro.

000000000

- Detect changes in (features of) the distribution (not only in the mean)
- Complex data:
  - High-dimension: measures in  $\mathbb{R}^d$ , curves,...
  - Structured: audio/video streams, graphs, DNA sequence,...
- Fusion of heterogeneous data
  - Deal simultaneously with different types of complex data
- Efficient algorithm allowing to deal with large data sets ("Big data" challenge)

## Outline

• KCP: Kernel change-points detection proc.

- Dyn. programming and reproducing kernels
- Faster approximate algorithm

• How many change-points?  $\rightarrow$  penalty

Experiments on biological data

I Kernel change-points procedure

## Basic notations

• Segmentation:  $\tau = (\tau_1, \dots, \tau_D)$ 

$$\{1,\ldots,n\} = [\tau_1,\tau_2[\cup[\tau_2,\tau_3[\cup\ldots\cup[\tau_{D-1},\tau_D[\cup[\tau_D,\tau_{D+1}[$$

with  $\tau_1 = 1$  and  $\tau_{D+1} = n + 1$ .

- $\mathcal{T}_n = \{\tau : \text{ segmentation of } \{1, \dots, n\}\}$
- $D_{\tau}$ : number fo segments of  $\tau$
- $\mathcal{T}_{p}^{D}$ : segmentations with D segments

## Basic notations

• Segmentation:  $\tau = (\tau_1, \dots, \tau_D)$  $\{1,\ldots,n\} = [\tau_1,\tau_2[\cup[\tau_2,\tau_3[\cup\ldots\cup[\tau_{D-1},\tau_D[\cup[\tau_D,\tau_{D+1}]$ with  $\tau_1 = 1$  and  $\tau_{D+1} = n + 1$ .

- $\mathcal{T}_n = \{\tau : \text{ segmentation of } \{1, \dots, n\}\}$
- $D_{\tau}$ : number fo segments of  $\tau$
- $\mathcal{T}_{p}^{D}$ : segmentations with D segments

## Basic notations

• Segmentation:  $\tau = (\tau_1, \dots, \tau_D)$  $\{1,\ldots,n\} = [\tau_1,\tau_2[\cup[\tau_2,\tau_3[\cup\ldots\cup[\tau_{D-1},\tau_D[\cup[\tau_D,\tau_{D+1}]$ with  $\tau_1 = 1$  and  $\tau_{D+1} = n + 1$ .

- $\mathcal{T}_n = \{\tau : \text{ segmentation of } \{1, \dots, n\}\}$
- $D_{\tau}$ : number fo segments of  $\tau$
- $\mathcal{T}_{n}^{D}$ : segmentations with D segments

#### Outline

• For every  $1 \le D \le D_{\text{max}}$ ,

$$\hat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \mathcal{R}_{emp}(\tau)$$
,

Operation of the last of th

$$\widehat{D} = \operatorname{Argmin}_{1 \leq D \leq D_{\text{max}}} \left\{ \mathcal{R}_{emp}(\widehat{\tau}^D) + \operatorname{pen}(\widehat{\tau}^D) \right\}$$

Final segmentation:

$$\widehat{\tau} := \widehat{\tau}^{\widehat{D}}$$

#### Rks

- $\mathcal{R}_{emp}(\tau)$  quantifies the mistakes (cost) of  $\tau$
- ullet pen( au): penalty to be made precise

(Arlot, Celisse, Harchaoui (2018) 15/41

#### Outline

• For every  $1 \le D \le D_{\text{max}}$ ,

$$\widehat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \mathcal{R}_{emp}(\tau) ,$$

Oefine

$$\widehat{D} = \operatorname{Argmin}_{1 \leq D \leq D_{\mathsf{max}}} \left\{ \mathcal{R}_{\mathsf{emp}}(\widehat{\tau}^D) + \mathsf{pen}(\widehat{\tau}^D) \right\} \ .$$

Final segmentation

$$\widehat{\tau} := \widehat{\tau}^{\widehat{D}}$$

#### Rks

- $\mathcal{R}_{emp}(\tau)$  quantifies the mistakes (cost) of  $\tau$
- $\bullet$  pen $(\tau)$ : penalty to be made precise

(Arlot, Celisse, Harchaoui (2018) 15/41

#### Outline

• For every  $1 \le D \le D_{\text{max}}$ ,

$$\hat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \mathcal{R}_{emp}(\tau)$$
,

Oefine

$$\widehat{D} = \operatorname{Argmin}_{1 \leq D \leq D_{\mathsf{max}}} \left\{ \mathcal{R}_{\mathsf{emp}}(\widehat{\tau}^D) + \mathsf{pen}(\widehat{\tau}^D) \right\} \ .$$

§ Final segmentation:

$$\widehat{\tau} := \widehat{\tau}^{\widehat{D}}.$$

#### Rks

- $\mathcal{R}_{emp}(\tau)$  quantifies the mistakes (cost) of  $\tau$
- pen $(\tau)$ : penalty to be made precise

(Arlot, Celisse, Harchaoui (2018)) $_{15/41}$ 

#### Outline

• For every  $1 \le D \le D_{\text{max}}$ ,

$$\widehat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \mathcal{R}_{emp}(\tau)$$
,

② Define

$$\widehat{D} = \operatorname{Argmin}_{1 \leq D \leq D_{\mathsf{max}}} \left\{ \mathcal{R}_{\mathsf{emp}}(\widehat{\tau}^D) + \mathsf{pen}(\widehat{\tau}^D) \right\} \ .$$

Final segmentation:

$$\widehat{\tau} := \widehat{\tau}^{\widehat{D}}$$

#### Rks

- $\mathcal{R}_{emp}(\tau)$  quantifies the mistakes (cost) of  $\tau$
- pen $(\tau)$ : penalty to be made precise

(Arlot, Celisse, Harchaoui (2018)) $_{15/41}$ 

# Cost of a segmentation

## Reproducing kernel

- X<sub>1</sub>,..., X<sub>n</sub>: initial observations (structured objects)
   Ex: DNA sequences, networks, texts, ...
- ullet  $k(\cdot,\cdot) o\mathbb{R}$  : reproducing kernel (sdp, ...)
- $k(\cdot,\cdot)$  similarity measure between "objects"

Ex: Gaussian kernel

$$k_{\alpha}(x_i, x_j) = \exp\left[-(x_i - x_j)^2/h\right], \ h > 0$$

#### Empirical risk

$$\mathcal{R}_{emp}(\tau)$$

$$=\frac{1}{n}\sum_{i=1}^{n}k(X_{i},X_{i})-\frac{1}{n}\sum_{\ell=1}^{D}\left[\frac{1}{\tau_{\ell+1}-\tau_{\ell}}\sum_{i=\tau_{\ell}}^{\tau_{\ell+1}-1}\sum_{j=\tau_{\ell}}^{\tau_{\ell+1}-1}k(X_{i},X_{j})\right]$$

=Cost of  $[\tau_{\ell}, \tau_{\ell+1}]$ 

# Cost of a segmentation

## Reproducing kernel

- X<sub>1</sub>,..., X<sub>n</sub>: initial observations (structured objects)
   Ex: DNA sequences, networks, texts, ...
- ullet  $k(\cdot,\cdot) o\mathbb{R}$  : reproducing kernel (sdp, ...)
- $k(\cdot,\cdot)$  similarity measure between "objects"

Ex: Gaussian kernel

$$k_{\alpha}(x_i, x_j) = \exp\left[-(x_i - x_j)^2/h\right], \ h > 0$$

#### Empirical risk

$$\mathcal{R}_{emp}( au)$$

$$= \frac{1}{n} \sum_{i=1}^{n} k(X_i, X_i) - \frac{1}{n} \sum_{\ell=1}^{D} \left[ \frac{1}{\tau_{\ell+1} - \tau_{\ell}} \sum_{i=\tau_{\ell}}^{\tau_{\ell+1} - 1} \sum_{j=\tau_{\ell}}^{\tau_{\ell+1} - 1} k(X_i, X_j) \right]$$
=Cost of  $[\tau_{\ell}, \tau_{\ell+1}]$ 

16/41

• Polynomial kernel:

**KCP** 

$$k_{\alpha,c}(x,y) = (x.y+c)^{\alpha}, \quad c,\alpha \geq 0$$
.

•  $\chi^2$ -kernel:

$$k_I(p,q) = \exp\left[-\sum_{i=1}^I \frac{(p_i - q_i)^2}{p_i + q_i}\right]$$
.

Combination of kernels:

With 
$$x = (x_1, x_2)$$
 and  $y = (y_1, y_2)$ ,  $(\alpha \in [0, 1])$ 

$$k_{\alpha}(x, y) = \alpha k_1(x_1, y_1) + (1 - \alpha)k_2(x_2, y_2).$$

#### Outline

• For every  $1 \le D \le D_{\text{max}}$ ,

$$\widehat{\tau}^D \in \underset{\tau \in \mathcal{T}_n^D}{\operatorname{Argmin}}_{\tau \in \mathcal{T}_n^D} \mathcal{R}_{emp}(\tau)$$
,

→ Dynamic programming

Oefine

$$\widehat{D} = \operatorname{Argmin}_{1 \leq D \leq D_{\mathsf{max}}} \left\{ \mathcal{R}_{\mathsf{emp}}(\widehat{\tau}^D) + \mathsf{pen}(\widehat{\tau}^D) \right\} \ .$$

Final segmentation:

$$\hat{\tau} := \hat{\tau}^{\hat{D}}$$

## Dynamic programming (Step 1 in KCP)

- Solving  $\widehat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \{ \mathcal{R}_{emp}(\tau) \}$ : computationally hard  $(1 < D < D_{max})$
- General principle:

$$L(D+1;t) = \min_{1 \le s \le t-1} \{L(D;s) + C(s,t)\}$$

- L(D; s): cost of the best segmentation of [1, s + 1]
- C(s,t): cost of segment [s,t+1]
- Outputs the exact solution

- Time complexity:  $O(n^2)$  (if evaluating C(s,t) is linear time)
- Space complexity:  $O(n^2)$  (storing the cost matrix)

## Dynamic programming (Step 1 in KCP)

- Solving  $\widehat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \{\mathcal{R}_{emp}(\tau)\}$ : computationally hard  $(1 \leq D \leq D_{\max})$
- General principle:

$$L(D+1;t) = \min_{1 \le s \le t-1} \{ L(D;s) + C(s,t) \}$$

- L(D; s): cost of the best segmentation of [1, s + 1] with D segments
- C(s,t): cost of segment [s,t+1[
- Outputs the exact solution

- Time complexity:  $O(n^2)$  (if evaluating C(s, t) is linear time)
- Space complexity:  $O(n^2)$  (storing the cost matrix)

## Dynamic programming (Step 1 in KCP)

- Solving  $\hat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \{\mathcal{R}_{emp}(\tau)\}$ : computationally hard  $(1 \leq D \leq D_{\text{max}})$
- General principle:

$$L(D+1;t) = \min_{1 \le s \le t-1} \{L(D;s) + C(s,t)\}$$

- L(D; s): cost of the best segmentation of [1, s+1[ with D segments
- C(s, t): cost of segment [s, t + 1]
- Outputs the exact solution

- Time complexity:  $O(n^2)$  (if evaluating C(s, t) is linear time)
- Space complexity:  $O(n^2)$  (storing the cost matrix)

## Dynamic programming (Step 1 in KCP)

- Solving  $\hat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \{\mathcal{R}_{emp}(\tau)\}$ : computationally hard  $(1 \leq D \leq D_{\text{max}})$
- General principle:

$$L(D+1;t) = \min_{1 \le s \le t-1} \{L(D;s) + C(s,t)\}$$

- L(D; s): cost of the best segmentation of [1, s+1[ with D segments
- C(s,t): cost of segment [s,t+1[
- Outputs the exact solution

- Time complexity:  $O(n^2)$  (if evaluating C(s, t) is linear time)
- Space complexity:  $O(n^2)$  (storing the cost matrix)

## Dynamic programming (Step 1 in KCP)

- Solving  $\widehat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \{\mathcal{R}_{emp}(\tau)\}$ : computationally hard  $(1 \leq D \leq D_{\max})$
- General principle:

$$L(D+1;t) = \min_{1 \le s \le t-1} \{L(D;s) + C(s,t)\}$$

- L(D;s): cost of the best segmentation of [1,s+1[ with D segments
- C(s, t): cost of segment [s, t + 1]
- Outputs the exact solution

- Time complexity:  $O(n^2)$  (if evaluating C(s, t) is linear time)
- Space complexity:  $O(n^2)$  (storing the cost matrix)

## Embedding dynamic programming in the kernel framework

#### Main limitations of the naive formulation

$$C\left(\tau_{\ell}, \tau_{\ell+1}\right) = \frac{1}{\tau_{\ell+1} - \tau_{\ell}} \sum_{i=\tau_{\ell}}^{\tau_{\ell+1} - 1} \sum_{j=\tau_{\ell}}^{\tau_{\ell+1} - 1} k(X_{i}, X_{j})$$

- Computing  $C(\tau_{\ell}, \tau_{\ell+1})$  is quadratic
- A naive formulation of the dyn. prog. is  $O(n^4)$  in time and  $O(n^2)$  in space (if we store the cost matrix  $\{C(i,j)\}_{1 \le i,j \le n+1}$ .

- At round t, only store  $C(\cdot, t) \in \mathbb{R}^n$ .
- Update  $C(\cdot, t+1)$  from  $C(\cdot, t)$  on the fly.

## Main limitations of the naive formulation

$$C\left(\tau_{\ell}, \tau_{\ell+1}\right) = \frac{1}{\tau_{\ell+1} - \tau_{\ell}} \sum_{i=\tau_{\ell}}^{\tau_{\ell+1} - 1} \sum_{j=\tau_{\ell}}^{\tau_{\ell+1} - 1} k(X_{i}, X_{j})$$

- Computing  $C(\tau_{\ell}, \tau_{\ell+1})$  is quadratic
- A naive formulation of the dyn. prog. is  $O(n^4)$  in time and  $O(n^2)$  in space (if we store the cost matrix  $\{C(i,j)\}_{1 \le i,j \le n+1}$ ).

#### Improved formulation

- At round t, only store  $C(\cdot, t) \in \mathbb{R}^n$ .
- Update  $C(\cdot, t+1)$  from  $C(\cdot, t)$  on the fly.
- $\longrightarrow$  Reduced time and space complexity to  $O(n^2)$  and O(n) resp.

Experiments

## Embedding dynamic programming in the kernel framework

#### Main limitations of the naive formulation

$$C( au_{\ell}, au_{\ell+1}) = rac{1}{ au_{\ell+1} - au_{\ell}} \sum_{i= au_{\ell}}^{ au_{\ell+1}-1} \sum_{j= au_{\ell}}^{ au_{\ell+1}-1} k(X_{i},X_{j})$$

- Computing  $C(\tau_{\ell}, \tau_{\ell+1})$  is quadratic
- A naive formulation of the dyn. prog. is  $O(n^4)$  in time and  $O(n^2)$  in space (if we store the cost matrix  $\{C(i,j)\}_{1 \le i, i \le n+1}$ .

### Improved formulation

- At round t, only store  $C(\cdot, t) \in \mathbb{R}^n$ .
- Update  $C(\cdot, t+1)$  from  $C(\cdot, t)$  on the fly.
- $\longrightarrow$  Reduced time and space complexity to  $O(n^2)$  and O(n) resp. 21/41

# Runtime of the improved dyn. prog.: Kernseg



ntro. KCP **Dyn. prog**. Approx. alg. How many? Experiments Conclusion

# Comparison Kernseg - ECP $(D_{\sf max} = 100)$



#### Rks:

- ECP: based on a kernel and Binary Segmentation
- Chooses among candidate change-points using permutations

III Faster approx. optimization algo.

### From quadratic-to linear-time cost

#### Computational limitation

$$C(\tau_{\ell}, \tau_{\ell+1}) = \frac{1}{\tau_{\ell+1} - \tau_{\ell}} \sum_{i=\tau_{\ell}}^{\tau_{\ell+1} - 1} \sum_{j=\tau_{\ell}}^{\tau_{\ell+1} - 1} k(X_i, X_j)$$

- With general kernel, the cost of  $[\tau_{\ell}, \tau_{\ell+1}]$  is quadratic  $\rightarrow$   $n \approx 5.10^4$  in less than 2 minutes
- $n \ge 10^6$  not realistic with a  $O(n^2)$  time complexity
- If  $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathbb{D}^p}$ , then

$$\sum_{1 \le i,j \le s} k(x_i, x_j) = \left\langle \sum_{i=1}^s \phi(x_i), \sum_{j=1}^s \phi(x_j) \right\rangle_{\mathbb{R}^p} = \left\| \sum_{i=1}^s \phi(x_i) \right\|_{\mathbb{R}^p}^2$$

### From quadratic-to linear-time cost

#### Computational limitation

$$C\left(\tau_{\ell},\tau_{\ell+1}\right) = \frac{1}{\tau_{\ell+1}-\tau_{\ell}}\sum_{i=\tau_{\ell}}^{\tau_{\ell+1}-1}\sum_{j=\tau_{\ell}}^{\tau_{\ell+1}-1}k(X_{i},X_{j})$$

- With general kernel, the cost of  $[\tau_{\ell}, \tau_{\ell+1}]$  is quadratic  $\rightarrow$   $n \approx 5.10^4$  in less than 2 minutes
- $n \ge 10^6$  not realistic with a  $O(n^2)$  time complexity
- If  $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathbb{D}^p}$ , then

$$\sum_{1 \leq i,j \leq s} k(x_i, x_j) = \left\langle \sum_{i=1}^s \phi(x_i), \sum_{j=1}^s \phi(x_j) \right\rangle_{\mathbb{R}^p} = \left\| \sum_{i=1}^s \phi(x_i) \right\|_{\mathbb{R}^p}^2$$

## Low-rank matrix approximation (Drineas Mahoney (05))

- Gram matrix:  $K = \{k(X_i, X_j)\}_{1 \le i, j \le n}$
- $I, J \subset \{1, \dots, n\}$  with  $I = \{1, \dots, n\}$  and Card(J) = p.
- $K_{J,J}^-$ : pseudo-inverse of  $K_{J,J}$

Nyström approximation of size p

$$K \approx \widetilde{K} = K_{I,J} \times K_{J,J}^- \times K_{J,I}.$$

Then

$$\widetilde{K} = Z^{\top}Z$$
, where  $Z \in \mathcal{M}_{p,n}(\mathbb{R})$ ,

which means that

$$\widetilde{k}(x_i, x_j) = Z_i^{\top} Z_j, \quad \text{with } Z_i, Z_j \in \mathbb{R}^p.$$

### Approximate optimization algorithm

### Fast (approximate) procedure (ApKern)

- ② Apply Binary Segmentation to the  $Z_i$ s and output a sequence of approximate solutions:

$$\left\{ \widehat{\tau}_{BS}^{D}\right\} _{1\leq D\leq D_{\max }}.$$

#### Computational complexity

- Time:  $O(n \log(n) \vee np^2)$
- Space: O(n)
- Allows for  $n > 10^6$

# Comparison ApKern - RBS ( $D_{\sf max} = 100$ )



 $\mathbb{IV}$  How many chapts? o designing a penalty

### Model selection-based procedure: KCP

#### Outline

• For every  $1 \le D \le D_{\text{max}}$ ,

$$\hat{\tau}^D \in \operatorname{Argmin}_{\tau \in \mathcal{T}_n^D} \mathcal{R}_{emp}(\tau)$$
,

2 Define

$$\widehat{D} = \operatorname{Argmin}_{1 \leq D \leq D_{\mathsf{max}}} \left\{ \mathcal{R}_{\mathsf{emp}}(\widehat{\tau}^D) + \mathsf{pen}(\widehat{\tau}^D) \right\} \ .$$

→ Model selection result

Final segmentation:

$$\widehat{\tau} := \widehat{\tau}^{\widehat{D}}$$
.

# Penalty shape and minimal length

• Arlot, C., Harchaoui (18) proved an oracle inequality for

$$\mathsf{pen}\left(\tau\right) = c_1 \frac{D_\tau}{n} + c_2 \frac{1}{n} \log \underbrace{\begin{pmatrix} n-1 \\ D_\tau - 1 \end{pmatrix}}_{=\mathsf{Card}\left(\mathcal{T}_n^{D_\tau}\right)}$$

- $c_1, c_2 > 0$ : estimated by slope heuristic
- ullet With a constraint on the minimal length  $\ell$  of any segment:

$$\operatorname{\mathsf{pen}}_{\ell}( au) = c_1 \frac{D_{ au}}{n} + c_2 \frac{1}{n} \log \binom{n - D_{ au}(\ell - 1) - 1}{D_{ au} - 1}$$

-> Particularly relevant with low signal-to-noise ratio data

### Penalty shape and minimal length

• Arlot, C., Harchaoui (18) proved an oracle inequality for

$$\mathsf{pen}\left(\tau\right) = c_1 \frac{D_\tau}{n} + c_2 \frac{1}{n} \log \underbrace{\begin{pmatrix} n-1 \\ D_\tau - 1 \end{pmatrix}}_{=\mathsf{Card}\left(\mathcal{T}_n^{D_\tau}\right)}$$

- $c_1, c_2 > 0$ : estimated by slope heuristic
- ullet With a constraint on the minimal length  $\ell$  of any segment:

$$\mathsf{pen}_{\ell}\left( au
ight) = c_1 rac{D_{ au}}{n} + c_2 rac{1}{n} \log inom{n - D_{ au}(\ell - 1) - 1}{D_{ au} - 1}$$

→ Particularly relevant with low signal-to-noise ratio data.

**V** Biological experiments: LOH

## Data from ACNR package (Pierre-Jean, Neuvial (14))



- $n = 5\,000$ ,  $D^* = 11$ , purity is 100% and 50%
- $k(x, y) = k_{TCN}(x_1, y_1) + k_{BAF}(x_2, y_2)$

### Parameters values and accuracy

### Tuning the kernel parameters

- $k_{TCN}$  and  $k_{BAF}$ : Gaussian kernels  $e^{-\frac{(x-y)^2}{h}}$
- Bandwidth:

$$h = 2\left(\frac{\widehat{\sigma}}{\sqrt{2}}\right)^2$$
, with  $\widehat{\sigma}^2 = \frac{1}{n/2} \sum_{i=1}^{n/2} (X_{2i} - X_{2i-1})^2$ 

#### Accuracy measure of the segmentation

ullet Segmentation au as a matrix  $M^ au = \left\{ M_{i,j}^ au 
ight\}$  such that

$$M_{i,j}^{\tau} = \sum_{d=1}^{D^{\tau}} \frac{\mathbb{1}_{\{\tau_d \le i, j < \tau_{d+1}\}}}{\tau_{d+1} - \tau_d}$$

• 
$$\|M\|_F = \sqrt{\operatorname{tr}(M^\top M)}$$

$$Accuracy(\tau) = \left\| M^{\tau} - M^{\tau^*} \right\|_{F}$$

### Parameters values and accuracy

### Tuning the kernel parameters

- $k_{TCN}$  and  $k_{BAF}$ : Gaussian kernels  $e^{-\frac{(x-y)^2}{h}}$
- Bandwidth:

$$h = 2\left(\frac{\widehat{\sigma}}{\sqrt{2}}\right)^2$$
, with  $\widehat{\sigma}^2 = \frac{1}{n/2} \sum_{i=1}^{n/2} (X_{2i} - X_{2i-1})^2$ 

#### Accuracy measure of the segmentation

ullet Segmentation au as a matrix  $M^ au = \left\{ M_{i,j}^ au 
ight\}$  such that

$$M_{i,j}^{\tau} = \sum_{d=1}^{D^{\tau}} \frac{\mathbb{1}_{\{\tau_d \le i, j < \tau_{d+1}\}}}{\tau_{d+1} - \tau_d}$$

•  $\|M\|_F = \sqrt{\operatorname{tr}(M^\top M)}$ 

$$Accuracy(\tau) = \left\| M^{\tau} - M^{\tau^{\star}} \right\|_{\Gamma}$$

### Easy case: high purity



- Accuracy (chpts location) expressed with Frobenius norm
- Everyone works well at  $\widehat{D}$  (except RBS)
- (TCN,BAF) not significantly better! (easy case)

## Difficult case (low purity): Minimum length



- ECP:  $\ell = 30$  constraint encoded by default
- ullet Global improvement with  $\ell=30$  (especially for linear kernel)
- Gaussian and ECP kernels: best performance

## Influence of the kernel – joint signal



- RBS fails: bad choice of  $\widehat{D}$
- Best perf.: Gaussian and ECP kernels (characteristic)
- Strong improvement with (TCN, BAF) (difficult case)

### Influence of the kernel – joint signal



- RBS fails: bad choice of  $\widehat{D}$
- Best perf.: Gaussian and ECP kernels (characteristic)
- Strong improvement with (TCN, BAF) (difficult case)

### Influence of the kernel – joint signal



- RBS fails: bad choice of  $\widehat{D}$
- Best perf.: Gaussian and ECP kernels (characteristic)
- Strong improvement with (TCN, BAF) (difficult case)

### Estimated the number of segments quality



- Slight loss of accuracy when estimating
- Does not modify the ranking of kernel-based procedures

# Quality of the approximate procedure (ApKern)



- p has to be large enough  $(p \ge \operatorname{rk}(K)?)$
- Close to the optimal solution
- Quite stable results w.r.t. p

## Pros/cons of ApKern

#### **Assets**

- Dealing with  $n \ge 10^6$  in a few seconds is possible!
- Enjoys a good accuracy
- Reducing the dimension (low-rank approx.) allows for using any available discrete optimization algorithm (dynamic programming, BS, ...)

#### Drawbacks

- Choosing p (and the  $X_i$ s) remains an open practical question
- No ongoing model selection result to choose the number fo segments (Binary Segmentation)

# Pros/cons of ApKern

#### **Assets**

- Dealing with  $n \ge 10^6$  in a few seconds is possible!
- Enjoys a good accuracy
- Reducing the dimension (low-rank approx.) allows for using any available discrete optimization algorithm (dynamic programming, BS, ...)

#### **Drawbacks**

- Choosing p (and the  $X_i$ s) remains an open practical question
- No ongoing model selection result to choose the number fo segments (Binary Segmentation)

## Take-home message/discussion

#### Recap

- KCP: no (strong) distributional assumption and theoretical guarantees
- Kernseg: R package with an improved complexity
  - Time:  $O(n^2)$  (exact) or  $O(n \log n)$  (approx.)
  - Space: O(n)
- Achieves state-of-the-art performances on biological data generated with the ACNR package (Characteristic kernels)

#### Open questions

- Explore other structured objects (dynamic networks, ...)
- Optimize the kernel (approx.?): supervised or not
- . . . .

#### Thank you!

### Take-home message/discussion

#### Recap

- KCP: no (strong) distributional assumption and theoretical guarantees
- Kernseg: R package with an improved complexity
  - Time:  $O(n^2)$  (exact) or  $O(n \log n)$  (approx.)
  - Space: O(n)
- Achieves state-of-the-art performances on biological data generated with the ACNR package (Characteristic kernels)

#### Open questions

- Explore other structured objects (dynamic networks, ...)
- Optimize the kernel (approx.?): supervised or not
- . . .

Thank you!

### Take-home message/discussion

#### Recap

- KCP: no (strong) distributional assumption and theoretical guarantees
- Kernseg: R package with an improved complexity
  - Time:  $O(n^2)$  (exact) or  $O(n \log n)$  (approx.)
  - Space: O(n)
- Achieves state-of-the-art performances on biological data generated with the ACNR package (Characteristic kernels)

#### Open questions

- Explore other structured objects (dynamic networks, ...)
- Optimize the kernel (approx.?): supervised or not
- . . .

#### Thank you!