

Marco Listanti

Strato di rete

Protocolli "RIP", "OSPF" e "BGP"

Protocolli di instradamento

Protocolli di instradamento

- I protocolli d'instradamento intra-AS sono noti anche come Interior Gateway Protocol (IGP)
- I protocolli IGP più comuni sono:
 - RIP (Routing Information Protocol)
 - OSPF (Open Shortest Path First)
 - IGRP (Interior Gateway Routing Protocol) (protocollo proprietario Cisco)

Routing Information Protocol RIP

RIP

- RFC 1058
- Distance Vector Routing Protocol
 - la metrica dei rami dipende normalmente dal loro stato (sano/guasto)
 - Conteggio degli hop come metrica di costo (max = 15 hop)
- E' utilizzato in reti di piccole-medie dimensioni
- E' molto semplice, ma
 - la convergenza è lenta
 - lo stato di equilibrio può essere un sub-ottimo

RIP

- I messaggi RIP sono trasportati dal protocollo UDP (port number 520)
- Due tipi di messaggi
 - Request per chiedere ai vicini il distance vector
 - Response per annunciare il distance vector
- Ogni messaggio Response contiene un elenco comprendente fino a 25 sottoreti e la distanza tra l'origine del messaggio e ciascuna di queste
- I router adiacenti si scambiano periodicamente gli aggiornamenti d'instradamento
 - Valore di default 30 secondi

RIP v1

Header

- Command
 - request
 - response
- Version

Block

- IP address
 - rete, sottorete o
 host
- Metric
 - distanza dalla rete indicata nell'IP address

RIP v2

Command Version	Reserved						
Address Identifier	Reserved	— "		IP address			
IP Add	dress 1	sss					
Subne	t Mask	Address 1		rete, sottorete o host			
Next	Нор	A d dii		Subnet Mask			
Metric for	address 1		_	Capital Mask			
Address Identifier	Reserved			specifica come interpretare i bit dell'indirizzo			
IP Add	dress 2	35 6		DIT dell'Indirizzo			
Subne	t Mask	Address 2		Next Hop			
Next	Нор	ndd dis	dis.	r text r top			
Metric for	address 2			indica a quale next hop router il			
•				router emittente il messaggio RIP invierà i pacchetti diretti			
				all'indirizzo specificato			
Address Identifier	Reserved						
IP Address N				Metric			
Subne	t Mask			distanza dalla rete indicata			
Next	Fino a 25		nell'IP address				
Metric for	address N			Hell II dddi 633			

Esempio RIP: Inizializzazione (1)

Condizione iniziale

- Routing table vuote
- Metrica
 - Distanza

_	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	?	?	?	٠٠
	Link	local	?	?	?	?

	Destinazione	Α	В	С	D	Е
lΒ	Distanza	?	0	?	?	?
	Link	?	local	?	?	?

	Destinazione	Α	В	С	D	Е
C	Distanza	?	?	0	?	?
	Link	?	?	local	?	?

	Destinazione	Α	В	С	D	Е
D	Distanza	?	?	?	0	?
	Link	?	?	?	local	?

	Destinazione	Α	В	С	D	Е
Ε	Distanza	?:		?	?:	0
	Link	?	?	?	?	local

Esempio RIP: Inizializzazione (2)

Step 2:

A emette un messaggio verso B e D

Λ	Address	Α	 	
A	Metric	0	 	

_	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	?	?	?	٠٠
	Link	local	?	?	?	?

	Destinazione	Α	В	С	D	Е
lΒ	Distanza	1	0	?	?	?
	Link	1	local	?	?	?

	Destinazione	Α	В	С	D	Е
C	Distanza	?	?	0	?	?
	Link	?	?	local	?	?

	Destinazione	Α	В	С	D	Е
D	Distanza	1	?	?	0	?
	Link	3	?	?	local	?

	Destinazione	Α	В	С	D	Е
E	Distanza	?:	?	?	?:	0
	Link	?	?	?	?	local

Esempio RIP: Inizializzazione (3)

Step 3:

B emette un messaggio verso A, C e E

Ь	Address	Α	В	 	
	Metric	1	0	 	

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	1	?	?	٠٠
	Link	local	1	?	?	?

	Destinazione	Α	В	С	D	Е
B	Distanza	1	0	?	?	?
	Link	1	local	?	?	?

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	?	?
	Link	2	2	local	?	?

Destinazione	Α	В	С	D	Е
Distanza	1	?	?	0	?
Link	3	?	?	local	?

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	?	?:	0
	Link	4	4	?	?	local

Esempio RIP: Inizializzazione (4)

Step 4:

D emette un messaggio verso A e

	Address	Α			D	
ע	Metric	1	i	i	0	-

	Destinazione	Α	В	С	D	Е
Α	Distanza	0	1	?	1	?
	Link	local	1	?	3	?

	Destinazione	Α	В	С	D	Е
lΒ	Distanza	1	0	?	?	?
	Link	1	local	?	?	?

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	?	?
	Link	2	2	local	?	?

Destinazione	Α	В	С	D	Е
Distanza	1	?	?	0	?
Link	3	?	?	local	?

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	?	1	0
	Link	4	4	?	6	local

Esempio RIP: Inizializzazione (5)

Step 5:

A emette un messaggio verso B e D

\Box	Address	Α	В	 D	
A	Metric	0	1	 1	

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	1	?	1	٠٠
	Link	local	1	?	3	?

	Destinazione	Α	В	С	D	Е
B	Distanza	1	0	?	2	?
	Link	1	local	?	1	?

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	?	?
	Link	2	2	local	?	?

	Destinazione	Α	В	С	D	Е
D	Distanza	1	2	?	0	?
	Link	3	3	?	local	?

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	?	1	0
	Link	4	4	?	6	local

Esempio RIP: Inizializzazione (6)

Step 6:

C emette un messaggio verso B e E

	Address	Α	В	С		
6	Metric	2	1	0	i	

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	1	?	1	?
	Link	local	1	?	3	?

	Destinazione	Α	В	С	D	Е
ΙB	Distanza	1	0	1	2	?
	Link	1	local	2	1	?

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	?	?
	Link	2	2	local	?	?

Destinazione	Α	В	С	D	Е
Distanza	1	2	?	0	?
Link	3	3	?	local	?

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	1	1	0
	Link	4	4	5	6	local

Esempio RIP: Inizializzazione (7)

Step 7:

E emette un messaggio verso B, C e D

Address	Α	В	С	D	Е
Metric	2	1	1	1	0

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	1	?	1	?
	Link	local	1	?	3	?

	Destinazione	Α	В	С	D	Е
lΒ	Distanza	1	0	1	2	1
	Link	1	local	2	1	4

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	2	1
	Link	2	2	local	5	5

Destinazione	Α	В	С	D	Е
Distanza	1	2	2	0	1
Link	3	3	6	local	6

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	1	1	0
	Link	4	4	5	6	local

Esempio RIP: Inizializzazione (8)

Step 8:

 B emette un messaggio verso A, C e E

Ь	Address	Α	В	С	D	Е
D	Metric	1	0	1	2	1

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	1	2	1	2
	Link	local	1	1	3	1

	Destinazione	Α	В	С	D	Е
ΙB	Distanza	1	0	1	2	1
	Link	1	local	2	1	4

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	2	1
	Link	2	2	local	5	5

	Destinazione	Α	В	С	D	Е
D	Distanza	1	2	2	0	1
	Link	3	3	6	local	6

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	1	1	0
	Link	4	4	5	6	local

RIP: guasto sul collegamento e recupero

- Se un router non riceve messaggi da un nodo adiacente per un intervallo di 180 sec, il nodo adiacente viene considerato spento o guasto
 - RIP modifica la tabella d'instradamento locale
 - Propaga l'informazione mandando annunci ai router adiacenti
 - I nodi adiacenti inviano nuovi messaggi (se la loro tabella d'instradamento è cambiata)
 - L'informazione che il collegamento è guasto si propaga su tutta la rete
 - L'utilizzo dell'inversione avvelenata (poison reverse) evita i loop (distanza infinita = 16 hop)

Esempio RIP: Guasto di un ramo (1)

Condizione iniziale

- rete a regime
- guasto del ramo AB

Metrica

Distanza

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	inf	inf	1	inf
	Link	local	1	1	3	1

	Destinazione	Α	В	С	D	Е
B	Distanza	inf	0	1	inf	1
	Link	1	local	2	1	4

	Destinazione	Α	В	С	D	Е
C	Distanza	2	1	0	2	1
	Link	2	2	local	5	5

	Destinazione	Α	В	С	D	Е
D	Distanza	1	2	2	0	1
	Link	3	3	6	local	6

	Destinazione	Α	В	С	D	Е
Ε	Distanza	2	1	1	1	0
	Link	4	4	5	6	local

Esempio RIP: Guasto di un ramo (2)

Step 1

Messaggio di A verso D

Λ	Address	Α	В	C	D	Ш
A	Metric	0	inf	inf	1	inf

Messaggio di B verso C ed E

D	Address	Α	В	С	D	Е
Δ	Metric	inf	0	1	inf	1

	Destinazione	Α	В	C	D	Е
ΙΑ	Distanza	0	inf	inf	1	inf
	Link	local	1	1	3	1

	Destinazione	Α	В	C	D	Ε
В	Distanza	inf	0	1	inf	1
	Link	1	local	2	1	4

Destinazione	Α	В	С	D	Е
Distanza	inf	1	0	2	1
Link	2	2	local	5	5

	Destinazione	Α	В	С	D	Е
D	Distanza	1	inf	2	0	1
	Link	3	3	6	local	6

	Destinazione	Α	В	С	D	Е
E	Distanza	inf	1	1	1	0
	Link	4	4	5	6	local

Esempio RIP: Guasto di un ramo (3)

Messaggio di C verso B, E

	Address	Α	В	С	D	Е
)	Metric	inf	1	0	2	inf

Messaggio di D verso A, E

7	Address	Α	В	C	D	Е
U	Metric	1	inf	2	0	1

Messaggio di E verso B, C, D

Address	Α	В	С	D	Е
Metric	inf	1	1	1	0

	Destinazione	Α	В	С	D	Е
ΙΑ	Distanza	0	inf	3	1	2
	Link	local	1	3	3	3

	Destinazione	Α	В	С	D	Е
В	Distanza	inf	0	1	2	1
	Link	1	local	2	4	4

	Destinazione	Α	В	С	D	Е
C	Distanza	inf	1	0	2	1
)	Link	2	2	local	5	5

	Destinazione	Α	В	С	D	Е
D	Distanza	1	2	2	0	1
	Link	3	6	6	local	6

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	1	1	0
	Link	6	4	5	6	local

Esempio RIP: Guasto di un ramo (4)

Step 3

Messaggio di A verso D

	Address	Α	В	С	D	Е
A	Metric	0	inf	3	1	2

Messaggio di B verso E, C

B	Address	Α	В	С	D	Е
D	Metric	inf	0	1	2	1

Messaggio di D verso A, E

\Box	Address	Α	В	С	D	Е
טן	Metric	1	2	2	0	1

Messaggio di E verso B, C, D

Address	Α	В	С	D	Е
Metric	2	1	1	1	0

_	Destinazione	Α	В	C	D	Е
ΙΑ	Distanza	0	3	3	1	2
	Link	local	3	3	3	3

	Destinazione	Α	В	С	D	Е
B	Distanza	3	0	1	2	1
	Link	4	local	2	4	4

	Destinazione	Α	В	С	D	Е
C	Distanza	3	1	0	2	1
	Link	5	2	local	5	5

	Destinazione	Α	В	С	D	Ε
D	Distanza	1	2	2	0	1
	Link	3	6	6	local	6

	Destinazione	Α	В	С	D	Е
E	Distanza	2	1	1	1	0
	Link	6	4	5	6	local

Open Shortest Path First OSPF

OSPF (Open Shortest Path First)

- RFC 2328
- È un protocollo "link state"
 - Utilizza il flooding di informazioni sullo stato dei link
 - Messaggi Link State Advertisement (LSA)
 - Utilizza l'algoritmo di Dijkstra per la determinazione del percorso a costo minimo
- Al momento di un cambiamento di stato di un link, il router emette un LSA verso tutti gli altri router
- Gli LSA sono trasferiti nel sistema autonomo utilizzando ilmeccanismo di flooding
 - I messaggi OSPF vengono trasportati direttamente in pacchetti IP
 - Non è utilizzato un protocollo di trasporto (TCP o UDP)
 - "Rapida" convergenza in caso di cambiamenti di stato

Vantaggi di OSPF

- Sicurezza
 - gli scambi tra router sono autenticati
- Multipath
 - quando più percorsi verso una destinazione hanno lo stesso costo, OSPF consente di usarli senza doverne scegliere uno, come invece avveniva in RIP
 - Equal Path Cost Multipath (ECMP)
- Su ciascun collegamento, vi possono essere più metriche di costo per differenti TOS
 - es: il costo di un link via satellite sarà "basso" per un pacchetto best effort; "elevato" per un pacchetto real time
- Supporto integrato per l'instradamento unicast e multicast
 - Per consentire l'instradamento multicast viene impiegato MOSPF (OSPF multicast) che utilizza il database topologico di OSPF
- Supporto alle gerarchie in un dominio d'instradamento

Link State Routing

Gli LSA sono emessi

- quando un router contatta un nuovo router adiacente
- quando un link si guasta
- quando il costo di un link varia
- periodicamente ogni fissato intervallo di tempo

La rete trasporta gli LSA mediante la tecnica di flooding

- un LSA è rilanciato da un router su tutte le sue interfacce tranne quella da cui è stato ricevuto
- gli LSA trasportano dei riferimenti temporali (time stamp) o numeri di sequenza per
 - evitare il rilancio di pacchetti già rilanciati
 - consentire un corretto riscontro dal ricevente

Tecnica Flooding

Obiettivi di OSPF

- Tutti i router di una rete abbiano un database topologico contenente lo stato della rete
- Tutti i router di una rete abbiano le stesse informazioni sullo stato dei link

Alla ricezione di un LSP

- un router esamina i campi di un LSP: link identifier, metrica, time stamp o numero di sequenza
- se il dato non è contenuto nel database, viene memorizzato e l'LSP è rilanciato su tutte le interfacce del router tranne quella di ricezione
- se il dato ricevuto è più recente di quello contenuto nel database, il suo valore è memorizzato e l'LSP è rilanciato su tutte le interfacce del router tranne quella di ricezione
- se il dato ricevuto è più vecchio di quello contenuto nel database, viene rilanciato un LSP con il valore contenuto nel database esclusivamente sull'interfaccia di arrivo dell'LSP
- se i due dati sono della stessa età non viene eseguita alcuna operazione

Tecnica Flooding

- La tecnica flooding ha i seguenti vantaggi
 - esplora tutti i possibili cammini tra origine e destinazione
 - è estremamente affidabile e robusta
 - almeno una copia di ogni LSP seguirà la via a minor costo
- Il traffico di controllo generato dipende dalle dimensioni della rete e può essere molto elevato

Suddivisione di grandi reti in aree

- Se la rete è di grandi dimensioni
 - Cresce il numero di record del database e quindi la memoria necessaria in ogni router
 - Cresce il tempo necessario al calcolo dei percorsi
 - Cresce il traffico di segnalazione dovuto all'invio degli LSP
- OSPF supporta un instradamento di tipo gerarchico
 - Una rete è suddivisa in aree
 - Sezioni indipendenti di rete
 - Database separati
 - Meccanismi di flooding indipendenti
 - Le singole aree sono interconnesse da un area di backbone

Suddivisione di grandi reti in aree (2)

- I router che interconnettono aree diverse sono detti Area Border Router - ABR
 - Gli ABR appartengono ad aree diverse
 - Ogni area ha almeno un ABR
 - Ogni area è almeno connessa all'area di backbone
 - Almeno un ABR è connesso all'area di backbone

Un ABR

- contiene i database di tutte le aree a cui appartiene
- emette degli appositi messaggi (summary records) che contengono la lista delle sottoreti raggiungibili attraverso le aree a cui appartiene

Instradamenti esterni

- Un AS è connesso ad altri AS attraverso uno o più "AS Border Router" (ASBR)
- Se un area ha un unico ASBR è sufficiente indicare a tutti i router interni all'area l'instradamento di default verso l'esterno
- Se gli ASBR sono più di uno, ognuno di essi indicherà ai router interni il costo della via verso l'esterno
 - External record

Suddivisione di grandi reti in aree (3)

Il database di un router dell'area A conterrà

- I record dei link a1, a2, a3, comunicati dai router A1, A3, AB2, AB4
- I summary record relativi alle sottoreti comprese nell'area di backbone e nell'area C, comunicati dai router AB2 e AB4
 - Ad ogni sottorete sarà associato il costo di raggiungimento
 - Analogia con i protocolli distance vector
- Gli external record emessi dai router BBO e BB1 e rilanciati dai router AB2 e AB4
 - Ad ogni destinazione sarà associato il costo di raggiungimento

Open Shortest Path First

- OSPF è il protocollo IGP più utilizzato nelle di grandi dimensioni:
 - è basato sullo scambio di LSP detti Link State Advertisement (LSA)
 - supporta metriche relativi a diversi valori del campo TOS
 - supporta l'uso del concetto di variable length subnet mask (CIDR)
 - supporta il servizio di autenticazione tra router
 - supporta l'indicazione di specific routes
 - riduzione delle dimensione delle tabelle di routing con l'uso del concetto di Designated Router (DR)
 - supporta l'indicazione di virtual link per l'interconnessione di aree non contigue

Terminologia OSPF

Area

- è un insieme logico di reti e di router (es. geografico, amministrativo, ...)
- ha lo scopo di limitare la dimensione dei database di descrizione della topologia di rete all'interno dei router
- all'interno di un area i router devono avere database identici che descrivono la topologia di rete
- informazioni sulla parte di rete esterna all'area sono contenute dagli Area Border Router (ABR)
- un Area Border Router trasmette LSA contenenti informazioni sulle reti esterne all'interno dell'area (costo di raggiungimento)
- tutte le reti OSPF devono essere composte da almeno un area, denominata area di backbone

Terminologia OSPF

Intra-Area Router (IAR)

- sono i router che sono situati all'interno di una area OSPF
- scambiano LSA con tutti gli altri router dell'area
- gestiscono il database relativo alla topologia dell'area

Area Border Router (ABR)

- sono i router che sono connessi a due o più aree OSPF
- gestiscono i database topologici di tutte le aree a cui sono connessi
- trasmettono all'interno di ogni area LSA relativi alle reti presenti in ogni area

AS Boundary Router (ASBR)

- sono i router che sono situati a bordi del dominio OSPF
- scambiano LSA contenenti informazioni di raggiungibilità di reti di altri AS
- inviano LSA all'interno del dominio con informazioni sui percorsi esterni

OSPF strutturato gerarchicamente

Tipologie di LSA

Link State Advertisements (LSA)

- sono i messaggi scambiati tra router OSPF per aggiornare i link state database e i percorsi inter-area e inter-AS
- Router link advertisement
 - indicano lo stato dei link uscenti da un router, sono inviati all'interno di una singola area
- Summary link advertisement
 - sono generati dagli ABR e individuano le reti contenute nelle altre aree ed i relativi costi di raggiungimento, sono inviati all'interno di tutte le aree gestite da un ABR
- AS external link advertisement
 - sono generati dagli ASBR e indicano i cammini verso le reti esterne al dominio OSPF, sono inviati all'interno di tutte le aree di un dominio OSPF

Header pacchetti OSPF

Link State Advertisment (1)

- Tutti i tipi di LSA hanno lo stesso header
 - Link State Age
 - indica il tempo (in secondi) di emissione dell'advertisement
 - Link State Type
 - 1: Router link
 - 2: Network link
 - 3: Summary link
 - inter-area, intra-AS route
 - 4: Summary link
 - route verso l'AS Boundary Router
 - 5: AS External link
 - route verso reti esterne all'AS

OSPF Link State Header

Link State Age	2	
Options	1	
Link State Type	1	
Link State ID	4	÷
Advertising Router	4	++0++O
Link State Sequence Number	4	C
Link State Checksum	2	
Length	2	
M.S.	DIET DI	EPT

ONetworking Group

Link State Advertisment (2)

Link State ID

- Indica il tipo di link a cui si riferisce il messaggio
- Tipo 1 e 4: indirizzo IP del Router emittente
- Tipo 3 e 5: indirizzo IP della rete a cui si riferisce il messaggio
- Tipo 2: indirizzo IP del DR emittente

Advertising Router

- Indirizzo IP del router che ha emesso il messaggio
- Tipo 1 : identico al campo Link State ID
- Tipo 2: indirizzo IP del DR
- Tipo 3 e 4: indirizzo IP del ABR
- Tipo 5: indirizzo IP del ASBR

OSPF Link State Header

Link Stage Age	2	
Options	1	
Link State Type	1	
Link State ID	4	 •
Advertising Router	4	++°++C
Link State Sequence Number	4	
Link State Checksum	2	
Length	2 DIET	Dee
		DEP

ONetworking Group

Link State Advertisement (3)

Ripetuto per tutti

di TOS

valori

Link State Advertisement (4)

External Link Ad

Network Mask

maschera della rete a cui si riferisce il pacchetto, l'indicazione della rete è contenuta nell'header

Metric

costo del cammino

Forwarding Address

 Indirizzo IP a cui deve essere inviato il traffico diretto alla rete indicata

External Route Tag

suffisso ad uso degli ASBR

Equal Cost Multi Path (ECMP)

ECMP

- ECMP è una tecnica che rende possibile l'uso di "equal cost path" tra le sottoreti sorgente e destinazione tra cui distribuire il traffico
- Gli "equal cost path" calcolati dall'algoritmo di Dijkstra sono memorizzati nella tabella di bilanciamento del carico (Load Balancing Table)
- Il throughput di rete aumenta di un valore variabile tra il 50% e 110%
- I percorsi alternativi possono essere utilizzati come backup reciproco in caso di guasto in rete

ECMP: esempio

- Il traffico tra S e D è ripartito sui tre cammini in modo uguale
- Solo il nodo sorgente supporta l'ECMP, gli altri nodi si comportano come nel caso si single path

Flow Hashing ECMP

Funzione Hash

- Funzione che trasforma dati di grandi dimensioni e di lunghezza variabile in una stringhe di dimensioni piccole e di lunghezza costante
- Spesso l'obiettivo è quello di utilizzare l'hash di un dato come indice di accesso ad per il lookup in una tabella

Flow Hashing ECMP

- Esegue la ripartizione del traffico sui cammini disponibili a costo uguale per bilanciare il carico in rete
- Calcola l'hash dell'header del pacchetto che viene utilizzato come input per il lookup della output port dello switch
- E' conservata la corretta sequenza dei pacchetti
 - I pacchetti di uno stesso flusso (es. stessa coppia sorgente, destinazione) sono instradati sullo stesso path

Flow Hashing ECMP: implementazione

- La tabella di routing contiene per ogni destinazione entry multipli associati ai path con costo uguale
- L'hash dell'header di un pacchetto è usato come indice per l'accesso alla tabella di routing per la decisione della porta di uscita dal router
- Oltre all'informazione dell'interfaccia di ingresso, i campi di un pacchetto IP/TCP utilizzati per la funzione di hash sono normalmente
 - IP protocol
 - Source & Destination IP
 - Source & Destination Port
- Poichè la funzione hash è deter stesso per un dato input, tutti i pacchetti appartenenti allo stsso flusso (stesso header) saranno instradati sullo stesso path

Hashing ECMP: implementazione

- Poichè la funzione hash è deterministica l'output è lo stesso per lo stesso per un dato input
- Tutti i pacchetti appartenenti allo stesso flusso (header identico) saranno instradati sullo stesso path

- 4 next hop
- 3 flussi
- Ogni next hop è associato ad un valore dell'hash

Border Gateway Protocol BGP

BGP

- Rappresenta lo standard dei protocolli EGP
- BGP mette a disposizione di ciascun AS un modo per
 - ottenere informazioni sulla raggiungibilità delle sottoreti da parte di AS confinanti (iBGP)
 - propagare le informazioni di raggiungibilità a tutti i router interni di un AS (eBGP)
 - determinare percorsi "buoni" verso le sottoreti sulla base delle informazioni di raggiungibilità e delle politiche dell'AS
- BGP consente a ciascuna sottorete di comunicare la propria esistenza al resto di Internet
- BGP è un protocollo path vector
 - annuncia i cammini (path) verso le sottoreti (prefissi) di destinazione

Connessioni eBGP e iBGP

I gateway router eseguono ambedue i protocolli eBGP and iBGP

BGP: generalità

BGP session

Telecomunicazioni - Prof. Marco Listanti - A.A. 2019/2020

- due BGP router (peers)
 - scmbiano i messaggi BGP utilizzando una connessione TCP
 - Annunciano i cammini verso le reti di destinazione (network prefix)
- Quando il router 3a (AS3 gateway router) annuncia il cammino AS3,X a rouer 2c (AS2 gateway router) assicura che AS3 rilancerà i pacchetti verso la destinazione X

Networking Group

Terminologia BGP

BGP speaker

- un router che supporta il protocollo BGP
- un BGP router non necessariamente coincide con un border router

30 30 A53 A53 A51

BGP Neighbors

- una coppia di BGP speaker che si scambiano informazioni di instradamento inter-AS
- possono essere di due tipi
 - Interni: se appartengono allo stesso AS
 - Esterni: se appartengono ad AS diversi

BGP session

la connessione TCP che supporta il colloquio tra due BGP speaker

Sessione eBGP

····· Sessione iBGP

Attributi del percorso e rotte BGP

- Quando un router annuncia un prefisso per una sessione BGP, include anche un certo numero di attributi BGP
 - prefisso + attributi = "rotta"
- Due dei più importanti attributi sono:
 - AS-PATH: elenca i sistemi autonomi attraverso i quali è passato l'annuncio del prefisso
 - NEXT-HOP: quando si deve inoltrare un pacchetto tra due sistemi autonomi, questo potrebbe essere inviato su uno dei vari collegamenti fisici che li connettono direttamente
- Quando un router gateway riceve un annuncio di rotta, utilizza le proprie politiche d'importazione per decidere se accettare o filtrare la rotta

BGP path advertisement

- Il router 2c riceve un messaggio di path advertisement A53,X (protocollo eBGP) dal router 3a
- In base alla policy di AS2, il router 2c accetta il cammino AS3,X, e lo rilancia (protocollo iBGP) a tutti i router di AS2
- In base alla policy di AS2, il router 2a annuncia (protocollo eBGP) il cammino AS2, AS3, X al router 1c

BGP path advertisement

- I gateway router possono apprendere l'esistenza di path multipli verso una destinazione
 - Il router 1c acquisisce il path AS2,AS3,X dal router 2a
 - Il router 1c acquisisce il path AS3,X dal router 3a
 - In base alla policy di AS1, il gateway router 1c sceglie il path AS3,X e annuncia il path all'interno di AS1 (protocollo iBGP)

Politiche d'instradamento BGP

- A, B, C sono reti di provider
- W, Y sono reti d'utente
- X è una rete stub dual-homed (interconnessa a due reti)
 - X non vuole supportare il traffico di transito da B a C
 - X non annuncerà a B la rotta verso C

Figure 4.5-BGPnew: a simple BGP scenario

Politiche d'instradamento BGP

- A annuncia a B e C del percorso AW
- B annuncia a X del percorso BAW
- B non annuncia a C del percorso BAW se:
 - B non ha nessun "interesse commerciale" nella rotta CBAW poiché nessuna tra le reti A, C e W è cliente di B
 - B vuole costringere C ad instradare verso W attraverso A
 - B vuole instradare solo da/verso i suoi clienti

Figure 4.5-BGPnew: a simple BGP scenario

Routing table BGP e OSPF (1)

Un router modifica la sua routing table inserendo i prefissi di rete remoti

dest	interface
•••	
X	1

- I router 1a, 1b, 1d acquisiscono il path verso la rete X dal router 1c mediante il protocollo iBGP
 - Il router 1d introduce il record relativo alla rete X, il next-hop è 1c (protocollo IGP)

Networking Group

Routing table BGP e OSPF (2)

Un router modifica la sua routing table inserendo i prefissi di rete remoti

dest	interface
X	2

- I router 1a, 1b, 1d acquisiscono il path verso la rete X dal router 1c mediante il protocollo iBGP
 - Il router 1a introduce il record relativo alla rete X, il next-hop è 1d (protocollo IGP)

Networking Group

Routing Hot Potato

- Il router 2d apprende (via iBGP) i routing alternativi verso X: router 2a o 2c
- Hot potato routing
 - Si sceglie il router gateway (es. il router 2a) che viene raggiunto dal cammino con costo minore, indipendentemente dal costo dei cammini inter-AS

Terminologia BGP

AS number

identificatore a 16-bit che identifica univocamente un AS

AS path

è la lista di AS che sono attraversati in un cammino

Politiche di routing

- nel protocollo BGP non sono definite regole fisse per la scelta dei cammini inter-AS, ma le regole sono definite dal gestore di ogni AS
 - un AS multi-homed può rifiutare di operare come AS di transito
 - un AS multi-homed può operare come AS di transito solo per alcuni AS
 - un AS può scegliere a quale altro AS affidare il traffico di transito
- Tra le possibili scelte un BGP speaker sceglie quella da preferire in base alla politica di routing fissata dal gestore
- In caso di cammini alternativi, un BGP speaker li mantiene tutti ma ne comunica uno solo agli altri AS

Selezione dei percorsi BGP

- Un router può ricavare più di una rotta verso un determinato prefisso, e deve quindi sceglierne una
- Regole di eliminazione
 - Alle rotte viene assegnato come attributo un valore di preferenza locale. Si selezionano quindi le rotte con i più alti valori di preferenza locale
 - Si seleziona la rotta con valore AS-PATH più breve
 - Si seleziona quella il cui router di NEXT-HOP è più vicino: instradamento "hot potato"
 - Se rimane ancora più di una rotta, il router si basa sugli identificatori BGP

Messaggi BGP

- I messaggi BGP vengono scambiati attraverso connessioni TCP
- Messaggi BGP
 - OPEN
 - apre la connessione TCP tra router BGP e autentica il mittente
 - UPDATE
 - annuncia un nuovo percorso (o cancella quello vecchio)
 - KEEPALIVE
 - mantiene la connessione attiva in mancanza di messaggi UPDATE
 - NOTIFICATION
 - riporta gli errori in un precedente messaggio
 - usato anche per chiudere il collegamento

Protocolli inter-AS vs. protocolli intra-AS

Politiche

- Inter-AS: il controllo amministrativo desidera avere il controllo su come il traffico viene instradato e su chi instrada attraverso le sue reti.
- Intra-AS: unico controllo amministrativo, e di conseguenza le questioni di politica hanno un ruolo molto meno importante nello scegliere le rotte interne al sistema
- Scala
- L'instradamento gerarchico fa "risparmiare" sulle tabelle d'instradamento, e riduce il traffico dovuto al loro aggiornamento
- Prestazioni
- Intra-AS: orientato alle prestazioni
- Inter-AS: le politiche possono prevalere sulle prestazioni

