Recitation 12 - NP-Completeness

Sebastian Laudenschlager

sebastian.laudenschlager@colorado.edu

April 20, 2018

Introduction

- Most algorithms we've looked at thus far has had a polynomial running time.
 - Input size $n \Rightarrow \mathcal{O}(n^k)$ for some constant k.
- Not all problems can be solved in polynomial time, however.
- Some problems can't be solved at all, regardless of how much time we're given.
- NP-complete problems: status unknown.
 - No polynomial time algorithm has been found for an NP-complete problem.
 - No one has proved that no polynomial algorithm can exist for any NP-complete problem.
- This is the famous P = NP question.

Slippery slope into NP-Complete land

- Some NP-complete problems are only slight variations on problems we've seen before:
 - SSSP: no problem. Longest path is NP-complete.
 - Euler tour of a graph is a cycle that traverses each edge exactly once. This can be solved in $\mathcal{O}(E)$ time. A Hamiltonian cycle of a graph is a cycle containing each vertex. The problem of finding a Hamiltonian cycle is NP-complete.

Complexity classes

- The class P consists of problems solvable in polynomial time.
 - $\Rightarrow \mathcal{O}(n^k)$ for constant k.
- The class NP consists of problems that are verifiable in polynomial time.
 - Given a "certificate" of a solution, we can verify its correctness in polynomial time (as a function of problem size).
- Note that any problem in P is also in NP, since we can generate the solution of a problem in P in polynomial time without a certificate.
- The NP-complete (NPC) class refers to any problem that is as hard as any problem in NP.
 - If any NPC problem can be solved in polynomial time, then all NPC problems can be solved in polynomial time.

Complexity classes, cont.

- It is conjectured that P ≠ NP, simply given the large number of NP-complete problems in existence. It would be remarkable if it turned out that all of them could be solved in polynomial time.
- From a practical perspective, why would you care about complexity classes?
 - If you could show that the problem you are trying to solve is NP-complete, you could then spend your time developing an efficient approximation algorithm instead of trying to solve the problem exactly.

Decision vs. Optimization

- NP-completeness applies to decision problems, not optimization problems.
 - Decision problems are problems to which we get either 1 or 0 (yes or no).
 - Optimization problems involve finding the best solution out of many feasible solutions, e.g. SSSP.
- So how can we apply NP-completeness to optimization problems?
- ullet ightarrow cast an optimization problem as a decision problem.
 - Impose a bound on the value to be optimized.
 - For example, in shortest path we could ask: Given a directed graph G, source vertex s and destination vertex t, and an integer k, does a path exist from s to t consisting of at most k edges?
 - Solve shortest path, count edges in shortest path and compare to decision parameter *k*.
- If an optimization problem is easy, its related decision problem is easy as well.

Reductions

- We want to show that two problems are equally hard (even when both are decision problems).
- Let A be a decision problem we wish to solve (in polynomial time).
- Assume we already know how to solve some other decision problem B in polynomial time, and that we can transform any instance α of A into some instance β of B such that
 - The transformation itself takes polynomial time.
 - The answers to the two problems are the same, i.e. the answer for α is 1 iff answer to β is 1.
- This is called a reduction algorithm.
- Given a reduction algorithm, we can solve A:
 - Transform an instance α in A to an instance β in B.
 - Run the polynomial decision algorithm for B on β .
 - Use the answer for β as the answer for α .

Reductions, cont.

- Goal: Use polynomial-time reductions to show that no polynomial-time algorithm can exist for a particular problem B.
- Suppose we have a decision problem A for which we know no polynomial-time algorithm can exist.
- Also suppose that we have a polynomial-time reduction to transform an instance in A to an instance in B.
- For a contradiction, assume that *B* has a polynomial-time algorithm.
- Then we could use a reduction to conclude that A has a polynomial-time algorithm, which contradicts our assumption.
- Proof methodology: Can't assume no polynomial algorithm exists for A (for NP-complete). Instead, prove B is NP-complete on the assumption that A is also NP-complete.

Boolean Satisfiability

- Our methodology for proving that a problem is NP-complete requires a reduction to a problem we *know* is NP-complete.
- But at this point we don't know any such algorithms.
- The problem we choose to use is that of Boolean Satisfiability, i.e. the problem of deciding whether a string of boolean variables, chained together with *AND*, *OR*, and *NOT* operations, can return 1 (true).
- Cook-Levin Theorem states that Boolean Satisfiability is NP-complete.

Subset-sum problem

- Given a finite set S of positive integers and a target t > 0, does there exist a subset $S' \subseteq S$ whose elements sum to t?
- SUBSET-SUM = $\{(S, t) : \exists \text{ subset } S' \subseteq S \text{ such that } \sum_{s \in S'} s = t\}.$

Subset-sum is NP-complete

Proof:

- First show that SUBSET-SUM $\in NP$.
- Easy to check whether a finite set of integers add up to t.
 → polynomial time verification.
- To show that SUBSET-SUM is NP-complete, we reduce an instance of 3-CNF-SAT to one of SUBSET-SUM.
- Given a 3-CNF formula $\phi = x_1, x_2, \dots, x_n$ with k clauses C_1, C_2, \dots, C_k (each of which contains three literals), we aim to construct an instance (S,t) of SUBSET-SUM.
- Want to show that ϕ is satisfiable iff there exists a subset of S whose sum is exactly t.
- Let's assume (WLOG) that no clause contains both a variable and its negation, for that automatically satisfies the clause.
- Also assume that each variable appears in some clause, otherwise it wouldn't matter what value we assigned to it.

- Construct set S and target t as follows:
 - Create two numbers in S for each variable x_i and two numbers in S for each clause C_i .
 - Each number has n + k digits.
 - The target t has a 1 in each variable digit and 4 in each clause digit.
 - For each variable x_i , S contains two integers v_i and v'_i . Each v_i and v'_i has a 1 in the variable digit x_i and a 0 in every other variable digit. In addition, if x_i appears in clause C_j , then the corresponding clause digit gets assigned a 1.
 - Furthermore, each clause C_j contains two integers s_j and s'_j . Each s_j and s'_j has a 0 in the variable digits. s_j gets a 1 in the C_j digit and s'_j gets a 2 in the C_j digit.

- Note: The greatest sum of any of the digit positions is 6. Why?
- Thus, if we use, e.g. base 10 to interpret these numbers, no carry can occur from lower to higher digits.
- We can perform this reduction in polynomial time, i.e. each of the n + k digits can be produced in constant time, and there are 2n + 2k such numbers, each of which has n + k digits.
- Now we just need to show that the 3-CNF-SAT FORMULA ϕ is satisifiable iff there exists a subset $S' \subseteq S$ whose sum is t.

- \Rightarrow : Suppose that ϕ has a satisfying assignment.
- For i = 1, ..., n, if $x_i = 1$ in this assignment, then include v_i in S', otherwise include v_i' .
- So we only include the v_i and v'_i numbers that correspond to literals with value 1.
- Since we include only one of v_i or v_i' and since we labeled the variable digits for s_j and s_j' with 0, the sum of any variable digit in S' must be 1 (which matches that of the target t).
- Because we have a satisfying assignment, each clause must contain a 1, meaning each clause digit has at least one 1 (could be 1, 2, or 3) contributed to its sum by v_i or v'_i in S'.
- To get the clause digit sum to add to 4, we include in S' the appropriate slack values.

- \Leftarrow : Suppose that there is a subset $S' \subseteq S$ that sums to t.
- S' must include one of v_i or v_i' for each i = 1, ..., n.
- If $v_i \in S'$, set $x_i = 1$, otherwise if $v_i' \in S'$, set $x_i = 0$.
- To get any clause digit C_j to sum to 4, S' must include one v_i or v'_i that has value 1 in C_j , since the slack variables account for a value of at most 3.
- If S' includes a v_i that has a 1 in position C_j , then x_i appears in clause C_j . We have set this $x_i = 1$ when $v_i \in S'$, so clause C_j is satisfied.
- If S' includes a v_i' with a 1 in position C_j , then $\neg x_i$ appears in C_j , which we have set to $x_i = 0$ when $v_i' \in S'$, which again satisfies the clause C_j .
- ullet That satisfies all clauses, so ϕ itself is satisfied.

Example of 3-CNF-SAT to Subset-sum reduction

- Consider the following 3-CNF-SAT formula:
- $\bullet \ \phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3).$
- n = 3 variables, k = 4 clauses.
- Let's apply the reduction to subset-sum.
- Fill out the following table using our reduction algorithm:

Example, cont.

-	x_1	<i>x</i> ₂	<i>X</i> 3	C_1	C_2	C_3	C_4
v_1	-	-	-	-	-	-	-
v_1'	-	-	-	-	-	-	-
<i>v</i> ₂	-	-	-	-	-	-	-
v_2'	-	-	-	-	-	-	-
<i>V</i> 3	-	-	-	-	-	-	-
v_3'	-	-	-	-	-	-	-
s_1	-	-	-	-	-	-	-
s_1'	-	-	-	-	-	-	-
s ₂	-	-	-	-	-	-	-
s_2'	-	-	-	-	-	-	-
s 3	-	-	-	-	-	-	-
s_3'	-	-	-	-	-	-	-
<i>S</i> ₄	-	-	-	-	-	-	-
s_4'	-	-	-	-	-	-	-
t		_		-	-	-	-

Example, cont.

-	x ₁	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	<i>C</i> ₃	C_4
<i>v</i> ₁	1	0	0	1	0	0	1
v_1'	1	0	0	0	1	1	0
<i>v</i> ₂	0	1	0	0	0	0	1
v_2'	0	1	0	1	1	1	0
<i>V</i> 3	0	0	1	0	0	1	1
$\overline{v_3'}$	0	0	1	1	1	0	0
s_1	0	0	0	1	0	0	0
s_1'	0	0	0	2	0	0	0
s ₂	0	0	0	0	1	0	0
s_2'	0	0	0	0	2	0	0
<i>s</i> ₃	0	0	0	0	0	1	0
s_3'	0	0	0	0	0	2	0
<i>S</i> ₄	0	0	0	0	0	0	1
s_4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

Example, cont.

- Sample satisfying assignment: $x_1 = 0, x_2 = 0, x_3 = 1$.
- We now have our *S* for the subset problem:

$$S = \{v_1, v_1', v_2, v_2', v_3, v_3', s_1, s_1', s_2, s_2', s_3, s_3', s_4, s_4'\}$$

$$= \{1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2\}$$

$$(1)$$

- We also have our subset S', i.e. $S' = \{v'_1, v'_2, v_3, s_1, s'_1, s'_2, s_3, s_4, s'_4\}.$
- Note that the members of S' sum to t: