Національний технічний університет України "Київський політехнічний інститут" ім. І. Сікорського Фізико-математичний факультет Кафедра математичного аналізу та теорії ймовірностей

Курсова робота

з курсу «Основи математичної статистики» на тему: «F-розподіл»

Виконала: студентка 3-го курсу, ФМФ, група ОМ-91 Онищенко Вероніка Максимівна

Перевірив: $\partial.\phi$.-м.н. професор Іванов О.В.

Зміст

1	Вст	уп	2								
2	Осн	новна частина	3								
	2.1	Визначення	3								
	2.2	Зв'язок із іншими розподілами	5								
	2.3	Моменти	5								
3	Вис	сновки	6								
4	Список літератури										
5	Дод	цаток 1	8								

1 Вступ

Дана робота допомагає зробити перехід між теорією ймовірностей та статистичним виведенням. Враховуючи вибірку з n спостережень, ми будемо досліджувати оцінки середнього значення, стандартного відхилення та різних інших параметрів вибірки. Будь-який конкретний розподіл вибірки дає уявлення про те, наскільки близька оцінка, швидше за все, вона буде близька до значення параметра, що оцінюється.

Також цей розділ присвячений розподілу, що пов'язаний із вибірковою дисперсією S^2 . Розподіли хі-квадратів, t і F відіграють важливу роль у статистиці. Для нормальних даних нам потрібно вміти працювати з розподілом вибіркової дисперсії, яка будується з квадратів, а для цього потрібно знайти розподіл для сум квадратів нормальних змінних. Окрім того, для того, щоб використовувати вибіркове стандартне відхилення як міру точності для середнього значення X, нам знадобиться розподіл, що поєднує квадратний корінь із хі-квадрат змінної з нормальною змінною, тобто t-розподіл. Нарешті, нам знадобиться **розподіл Фішера** або F-**розподіл**, який є основною темою даного дослідження, він слугує для порівняння двох незалежних хі-квадрат змінних.

2 Основна частина

2.1 Визначення

Розподіл Фішера або *F*-розподіл — це двопараметричне сімейство абсолютно неперервних розподілів. *F*-розподіл часто зустрічається як розподіл тестової статистики коли нульова гіпотеза вірна, особливо в тесті відношення правдоподібності, найважливіший випадок аналіз дисперсії.

Нехай X_1 і X_2 — незалежні хі-квадрат випадкові величини з ν_1 і ν_2 ступенями свободи, відповідно. Розподіл F з ν_1 ступенями свободи чисельника і ν_2 ступенями свободи знаменника визначається як розподіл відношення

$$F = \frac{X_1/\nu_1}{X_2/\nu_2}. (2.1)$$

Іноді ступеня свободи позначаються індексами F_{ν_1,ν_2} .

Припустимо, що ми маємо випадкову вибірку з m спостережень із нормальним розподілом $N(\mu_1, \sigma_1^2)$ та незалежну випадкову вибірку з n спостережень із нормальним розподілом $N(\mu_2, \sigma_2^2)$. Тоді для вибіркової дисперсії першої випадкової величини ми знаємо $(m-1)S_1^2/\sigma_1^2$ — це є χ^2_{m-1} й аналогічно для другої величини $(n-1)S_2^2/\sigma_2^2$ — це χ^2_{n-1} . А отже, виходячи з рівняння (2.1), маємо наступне:

$$F_{m-1,n-1} = \frac{\frac{(m-1)S_1^2/\sigma_1^2}{m-1}}{\frac{(n-1)S_2^2/\sigma_2^2}{n-1}} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}.$$
 (2.2)

Нагадаємо, що S_1^2 — це вибіркова дисперсія, що розраховується за формулою $S_1^2=\frac{1}{m}\sum_{i=1}^m(\xi_i-\overline{\xi})^2;$ S_2^2 обчислюється аналогічно.

Дослідимо F-розподіл при великих ступенях свободи. Припустимо, що ν_2 достатньо велике число. Тоді, використовуючи закон великих чисел, можна побачити, що знаменник рівняння (2.1) буде наближатися до 1 і F буде приблизно дорівнювати чисельнику χ^2 за його ступенями свободи. Аналогічно, якщо ν_1 і ν_2 одночасно будуть достатньо великими, то чисельник і знаменник будуть наближатися до 1, й тоді весь дріб F буде прямувати до 1.

Щільність випадкової величини з F-розподілом матиме вигляд

$$f(x) = \begin{cases} \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \cdot \frac{x^{\frac{\nu_1}{2} - 1}}{\left(1 + \frac{x\nu_1}{\nu_2}\right)^{\frac{\nu_1 + \nu_2}{2}}} \text{ при } x > 0, \\ 0 \text{ при } x \le 0. \end{cases}$$

На рис. 2 показані криві щільності F-розподілу для декількох варіантів ν_1 і $\nu_2=10$. Порівнюючи з рис. 1, стає зрозумілим, що ступені свободи в чисельнику мають велике значення для функції, що й зображено на рис. 2. Наприклад, при $\nu_1=1$ щільність випадкової величини не досягає значення x=0, так само, як на рис. 1 з $\nu=1$. Для $\nu_1=2$ щільність буде додатною при $\mathbf{x}=0$, так само, як на рис. 1 з $\nu=2$. Для $\nu_1>2$ щільність дорівнюватиме 0 при x=0, як і у випадку рис. 1 з $\nu>2$.

Рис. 1: Щільність χ^2 -розподілу для 1, 2, 3 Рис. 2: Криві щільності для F-розподілу. та 5 ступенів свободи.

За винятком кількох спеціальних варіанті, ступенів свободи, інтегрування f(x) — щільності для F-розподілу є достатньо важким процесом, тому критичні значення F (значення, які охоплюють задані "хвости" F-розподілу) наведені у таблицях з додатку 1. Наприклад, для значення $\nu_1=1,\ \nu_2=2$ і рівня значущості $\alpha=0,100,\ F=8,53,$ що записується P(F>8,53)=0,100. Також можна позначити $F_{0,1;1;2}=8,53,$ де $F_{\alpha;\nu_1;\nu_2}=c$ й означає $P(F_{\nu_1;\nu_2}>c)=\alpha.$

Що стосується областей нижнього "хвоста" оскільки $\frac{1}{F} = \frac{X_2/\nu_2}{X_1/\nu_1}$, обернене до F також має F-розподіл, але зі знов-таки оберненими ступенями свободи — це може бути використане для одержання значень нижнього "хвоста". Наприклад,

$$0,100 = P(F_{1;2} > 8,53) = P\left(\frac{1}{F_{1;2}} < \frac{1}{8,53}\right) = P(F_{2;1} < 0,117).$$

Це можна записати як $F_{0,9;2;1}=0,117,$ тому що $0,9=P(F_{2;1}>0,117).$ У загальному випадку маємо формулу

$$F_{p;\nu_1;\nu_2} = \frac{1}{F_{1-p;\nu_2;\nu_1}}. (2.3)$$

2.2 Зв'язок із іншими розподілами

t-розподіл Стьюдента

Нагадаємо, що для випадкової величини Z із нормальним розподілом та випадкової величини X із χ^2 -розподілом і незалежної від Z, а також ступенем свободи ν , t-розподіл Стьюдента визначається відношенням

$$T = \frac{Z}{\sqrt{\frac{X}{\nu}}},$$

з чого випливає, що квадрат t випадкової величини дорівнює F випадковій величині зі ступенями свободи $\nu_1=1$ та ν_2 , тобто $t_{\nu_2}^2=t_{\nu}^2=F_{1;\nu}$. Це можна використовувати для обчислення "хвостів" функції. Наприклад,

$$0,100 = P(F_{1:2} > 8,53) = P(T_2^2 > 8,53) = P(|T_2| > \sqrt{8,53}) = 2P(T_2 > 2,92),$$

очевидно, що $0,05 = P(T_2 > 2,92)$. А отже, можна зробити висновок і вивести наступну формулу:

$$t_{\alpha;\nu} = \sqrt{F_{2\alpha;1;\nu}},$$

при рівні значущості $0 < \alpha < 0.05$.

2.3 Моменти

Основні моменти для розподілу Фішера розраховуються за наступними формулами:

$$\mathbb{M}F = \frac{\nu_2}{\nu_2 - 2}$$
, при $\nu_2 > 0$.
$$\mathbb{D}F = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$$
, при $\nu_2 > 4$.

3 Висновки

Зіставлення можливих ризиків становить одну з ключових ролей професій фінансових аналітиків й актуаріїв. У даній роботі було введено нами поняття, інструменти та графіки для пояснення природи одного з існуючих ймовірнісних розподілів — розподілу Фішера, а також його застосування й зв'язок з іншими видами розподілів. Разом із прикладами ми дослідили та пояснили методи оберненого розрахунку нижніх "хвостів" графіка, задля знаходження існуючої ймовірності. За допомогою графіків візуально було підтверджено значущість ступенів свободи для функції, а також наведено основні ймовірнісні поняття для даного виду розподілу.

4 Список літератури

- 1. Jay L. Devore, Kenneth N. Berk. Modern Mathematical Statistics with Applications. Second edition. Springer Science + Business Media, LLC 2012, 336 p.
- 2. Larsen, Richard, and Morris Marx, An Introduction to Mathematical Statistics and Its Applications (4th ed.), Prentice Hall, Englewood Cliffs, NJ, 2005.
- 3. Olkin, Ingram, Cyrus Derman, and Leon Gleser, Probability Models and Applications (2nd ed.), Macmillan, New York, 1994.
- 4. F-distribution
- 5. Chi-squared distribution
- 6. Areas of Tails of Distributions

			$\nu_1 = \text{numerator df}$												
		α	1	2	3	4	5	6	7	8	9				
	1	.100 .050 .010 .001	39.86 161.45 4052.2 405284	49.50 199.50 4999.5 500000	53.59 215.71 5403.4 540379	55.83 224.58 5624.6 562500	57.24 230.16 5763.6 576405	58.20 233.99 5859.0 585937	58.91 236.77 5928.4 592873	59.44 238.88 5981.1 598144	59.86 240.54 6022.5 602284				
	2	.100 .050 .010 .001	8.53 18.51 98.50 998.50	9.00 19.00 99.00 999.00	9.16 19.16 99.17 999.17	9.24 19.25 99.25 999.25	9.29 19.30 99.30 999.30	9.33 19.33 99.33 999.33	9.35 19.35 99.36 999.36	9.37 19.37 99.37 999.37	9.38 19.38 99.39 999.39				
	3	.100 .050 .010 .001	5.54 10.13 34.12 167.03	5.46 9.55 30.82 148.50	5.39 9.28 29.46 141.11	5.34 9.12 28.71 137.10	5.31 9.01 28.24 134.58	5.28 8.94 27.91 132.85	5.27 8.89 27.67 131.58	5.25 8.85 27.49 130.62	5.24 8.81 27.35 129.86				
	4	.100 .050 .010 .001	4.54 7.71 21.20 74.14	4.32 6.94 18.00 61.25	4.19 6.59 16.69 56.18	4.11 6.39 15.98 53.44	4.05 6.26 15.52 51.71	4.01 6.16 15.21 50.53	3.98 6.09 14.98 49.66	3.95 6.04 14.80 49.00	3.94 6.00 14.66 48.47				
	5	.100 .050 .010 .001	4.06 6.61 16.26 47.18	3.78 5.79 13.27 37.12	3.62 5.41 12.06 33.20	3.52 5.19 11.39 31.09	3.45 5.05 10.97 29.75	3.40 4.95 10.67 28.83	3.37 4.88 10.46 28.16	3.34 4.82 10.29 27.65	3.32 4.77 10.16 27.24				
= denominator df	6	.100 .050 .010 .001	3.78 5.99 13.75 35.51	3.46 5.14 10.92 27.00	3.29 4.76 9.78 23.70	3.18 4.53 9.15 21.92	3.11 4.39 8.75 20.80	3.05 4.28 8.47 20.03	3.01 4.21 8.26 19.46	2.98 4.15 8.10 19.03	2.96 4.10 7.98 18.69				
$\nu_2 = \text{deno}$	7	.100 .050 .010 .001	3.59 5.59 12.25 29.25	3.26 4.74 9.55 21.69	3.07 4.35 8.45 18.77	2.96 4.12 7.85 17.20	2.88 3.97 7.46 16.21	2.83 3.87 7.19 15.52	2.78 3.79 6.99 15.02	2.75 3.73 6.84 14.63	2.72 3.68 6.72 14.33				
	8	.100 .050 .010 .001	3.46 5.32 11.26 25.41	3.11 4.46 8.65 18.49	2.92 4.07 7.59 15.83	2.81 3.84 7.01 14.39	2.73 3.69 6.63 13.48	2.67 3.58 6.37 12.86	2.62 3.50 6.18 12.40	2.59 3.44 6.03 12.05	2.56 3.39 5.91 11.77				
	9	.100 .050 .010 .001	3.36 5.12 10.56 22.86	3.01 4.26 8.02 16.39	2.81 3.86 6.99 13.90	2.69 3.63 6.42 12.56	2.61 3.48 6.06 11.71	2.55 3.37 5.80 11.13	2.51 3.29 5.61 10.70	2.47 3.23 5.47 10.37	2.44 3.18 5.35 10.11				
	10	.100 .050 .010 .001	3.29 4.96 10.04 21.04	2.92 4.10 7.56 14.91	2.73 3.71 6.55 12.55	2.61 3.48 5.99 11.28	2.52 3.33 5.64 10.48	2.46 3.22 5.39 9.93	2.41 3.14 5.20 9.52	2.38 3.07 5.06 9.20	2.35 3.02 4.94 8.96				
	11	.100 .050 .010 .001	3.23 4.84 9.65 19.69	2.86 3.98 7.21 13.81	2.66 3.59 6.22 11.56	2.54 3.36 5.67 10.35	2.45 3.20 5.32 9.58	2.39 3.09 5.07 9.05	2.34 3.01 4.89 8.66	2.30 2.95 4.74 8.35	2.27 2.90 4.63 8.12				
	12	.100 .050 .010 .001	3.18 4.75 9.33 18.64	2.81 3.89 6.93 12.97	2.61 3.49 5.95 10.80	2.48 3.26 5.41 9.63	2.39 3.11 5.06 8.89	2.33 3.00 4.82 8.38	2.28 2.91 4.64 8.00	2.24 2.85 4.50 7.71	2.21 2.80 4.39 7.48				

$ u_1 = \text{numerator df} $												
10	12	15	2:0	25	30	40	50	60	120	1000		
60.19	60.71	61.22	61.74	62.05	62.26	62.53	62.69	62.79	63.06	63.30		
241.88	243.91	245.95	248.01	249.26	250.10	251.14	251.77	252.20	253.25	254.19		
6055.8	6106.3	6157.3	6208.7	6239.8	6260.6	6286.8	6302.5	6313.0	6339.4	6362.7		
605621	610668	615764	620908	624017	626099	628712	630285	631337	633972	636301		
9.39 19.40 99.40 999.40	9.41 19.41 99.42 999.42	9.42 19.43 99.43 999.43	9.44 19.45 99.45 999.45	9.45 19.46 99.46 999.46	9.46 19.46 99.47 999.47	9.47 19.47 99.47	9.47 19.48 99.48	9.47 19.48 99.48 999.48	9.48 19.49 99.49 999.49	9.49 19.49 99.50 999.50		
5.23	5.22	5.20	5.18	5.17	5.17	5.16	5.15	5.15	5.14	5.13		
8.79	8.74	8.70	8.66	8.63	8.62	8.59	8.58	8.57	8.55	8.53		
27.23	27.05	26.87	26.69	26.58	26.50	26.41	26.35	26.32	26.22	26.14		
129.25	128.32	127.37	126.42	125.84	125.45	124.96	124.66	124.47	123.97	123.53		
3.92	3.90	3.87	3.84	3.83	3.82	3.80	3.80	3.79	3.78	3.76		
5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.70	5.69	5.66	5.63		
14.55	14.37	14.20	14.02	13.91	13.84	13.75	13.69	13.65	13.56	13.47		
48.05	47.41	46.76	46.10	45.70	45.43	45.09	44.88	44.75	44.40	44.09		
3.30	3.27	3.24	3.21	3.19	3.17	3.16	3.15	3.14	3.12	3.11		
4.74	4.68	4.62	4.56	4.52	4.50	4.46	4.44	4.43	4.40	4.37		
10.05	9.89	9.72	9.55	9.45	9.38	9.29	9.24	9.20	9.11	9.03		
26.92	26.42	25.91	25.39	25.08	24.87	24.60	24.44	24.33	24.06	23.82		
2.94	2.90	2.87	2.84	2.81	2.80	2.78	2.77	2.76	2.74	2.72		
4.06	4.00	3.94	3.87	3.83	3.81	3.77	3.75	3.74	3.70	3.67		
7.87	7.72	7.56	7.40	7.30	7.23	7.14	7.09	7.06	6.97	6.89		
18.41	17.99	17.56	17.12	16.85	16.67	16.44	16.31	16.21	15.98	15.77		
2.70	2.67	2.63	2.59	2.57	2.56	2.54	2.52	2.51	2.49	2,47		
3.64	3.57	3.51	3.44	3.40	3.38	3.34	3.32	3.30	3.27	3,23		
6.62	6.47	6.31	6.16	6.06	5.99	5.91	5.86	5.82	5.74	5,66		
14.08	13.71	13.32	12.93	12.69	12.53	12.33	12.20	12.12	11.91	11,72		
2.54	2.50	2.46	2.42	2.40	2.38	2.36	2.35	2.34	2.32	2.30		
3.35	3.28	3.22	3.15	3.11	3.08	3.04	3.02	3.01	2.97	2.93		
5.81	5.67	5.52	5.36	5.26	5.20	5.12	5.07	5.03	4.95	4.87		
11.54	11.19	10.84	10.48	10.26	10.11	9.92	9.80	9.73	9.53	9.36		
2.42	2.38	2.34	2.30	2.27	2.25	2.23	2.22	2.21	2.18	2.16		
3.14	3.07	3.01	2.94	2.89	2.86	2.83	2.80	2.79	2.75	2.71		
5.26	5.11	4.96	4.81	4.71	4.65	4.57	4.52	4.48	4.40	4.32		
9.89	9.57	9.24	8.90	8.69	8.55	8.37	8.26	8.19	8.00	7.84		
2.32	2.28	2.24	2.20	2.17	2.16	2.13	2.12	2.11	2.08	2.06		
2.98	2.91	2.85	2.77	2.73	2.70	2.66	2.64	2.62	2.58	2.54		
4.85	4.71	4.56	4.41	4.31	4.25	4.17	4.12	4.08	4.00	3.92		
8.75	8.45	8.13	7.80	7.60	7.47	7.30	7.19	7.12	6.94	6.78		
2.25	2.21	2.17	2.12	2.10	2.08	2.05	2.04	2.03	2.00	1.98		
2.85	2.79	2.72	2.65	2.60	2.57	2.53	2.51	2.49	2.45	2.41		
4.54	4.40	4.25	4.10	4.01	3.94	3.86	3.81	3.78	3.69	3.61		
7.92	7.63	7.32	7.01	6.81	6.68	6.52	6.42	6.35	6.18	6.02		
2.19	2.15	2.10	2.06	2.03	2.01	1.99	1.97	1.96	1.93	1.91		
2.75	2.69	2.62	2.54	2.50	2.47	2.43	2.40	2.38	2.34	2.30		
4.30	4.16	4.01	3.86	3.76	3.70	3.62	3.57	3.54	3.45	3.37		
7.29	7.00	6.71	6.40	6.22	6.09	5.93	5.83	5.76	5.59	5.44		

			$\nu_1=$ numerator df											
		α	1	2	3	4	5	6	7	8	9			
	13	.100 .050	3.14 4.67	2.76 3.81	2.56 3.41	2.43 3.18	2.35 3.03	2.28 2.92	2.23 2.83	2.20	2.16 2.71			
		.010 .001	9.07 17.82	6.70 12.31	5.74 10.21	5.21 9.07	4.86 8.35	4.62 7.86	4.44 7.49	4.30 7.21	4.19 6.98			
	14	.100 .050 .010 .001	3.10 4.60 8.86 17.14	2.73 3.74 6.51 11.78	2.52 3.34 5.56 9.73	2.39 3.11 5.04 8.62	2.31 2.96 4.69 7.92	2.24 2.85 4.46 7.44	2.19 2.76 4.28 7.08	2.15 2.70 4.14 6.80	2.12 2.65 4.03 6.58			
	15	.100 .050	3.07 4.54	2.70 3.68	2.49 3.29	2.36 3.06	2.27 2.90	2.21 2.79	2.16 2.71	2.12 2.64	2.09 2.59			
		.010 .001 .100	8.68 16.59 3.05	6.36 11.34 2.67	5.42 9.34 2.46	4.89 8.25 2.33	4.56 7.57 2.24	4.32 7.09 2.18	4.14 6.74 2.13	4.00 6.47 2.09	3.89 6.26 2.06			
	16	.050 .010 .001	4.49 8.53 16.12	3.63 6.23 10.97	3.24 5.29 9.01	3.01 4.77 7.94	2.85 4.44 7.27	2.74 4.20 6.80	2.66 4.03 6.46	2.59 3.89 6.19	2.54 3.78 5.98			
	17	.100 .050 .010 .001	3.03 4.45 8.40 15.72	2.64 3.59 6.11 10.66	2.44 3.20 5.19 8.73	2.31 2.96 4.67 7.68	2.22 2.81 4.34 7.02	2.15 2.70 4.10 6.56	2.10 2.61 3.93 6.22	2.06 2.55 3.79 5.96	2.03 2.49 3.68 5.75			
inator df	18	.100 .050 .010 .001	3.01 4.41 8.29 15.38	2.62 3.55 6.01 10.39	2.42 3.16 5.09 8.49	2.29 2.93 4.58 7.46	2.20 2.77 4.25 6.81	2.13 2.66 4.01 6.35	2.08 2.58 3.84 6.02	2.04 2.51 3.71 5.76	2.00 2.46 3.60 5.56			
$\nu_2 =$ denominator df	19	.100 .050 .010	2.99 4.38 8.18 15.08	2.61 3.52 5.93 10.16	2.40 3.13 5.01 8.28	2.27 2.90 4.50 7.27	2.18 2.74 4.17 6.62	2.11 2.63 3.94 6.18	2.06 2.54 3.77 5.85	2.02 2.48 3.63 5.59	1.98 2.42 3.52 5.39			
	20	.100 .050 .010	2.97 4.35 8.10	2.59 3.49 5.85	2.38 3.10 4.94	2.25 2.87 4.43	2.16 2.71 4.10	2.09 2.60 3.87	2.04 2.51 3.70	2.00 2.45 3.56	1.96 2.39 3.46			
	21	.001 .100 .050 .010	14.82 2.96 4.32 8.02	9.95 2.57 3.47 5.78	8.10 2.36 3.07 4.87	7.10 2.23 2.84 4.37	6.46 2.14 2.68 4.04	6.02 2.08 2.57 3.81	5.69 2.02 2.49 3.64	5.44 1.98 2.42 3.51	5.24 1.95 2.37 3.40			
	22	.001 .100 .050 .010	14.59 2.95 4.30 7.95 14.38	9.77 2.56 3.44 5.72 9.61	7.94 2.35 3.05 4.82 7.80	6.95 2.22 2.82 4.31 6.81	6.32 2.13 2.66 3.99 6.19	5.88 2.06 2.55 3.76 5.76	5.56 2.01 2.46 3.59 5.44	5.31 1.97 2.40 3.45 5.19	5.11 1.93 2.34 3.35 4.99			
	23	.100 .050 .010	2.94 4.28 7.88 14.20	2.55 3.42 5.66 9.47	2.34 3.03 4.76 7.67	2.21 2.80 4.26 6.70	2.11 2.64 3.94 6.08	2.05 2.53 3.71 5.65	1.99 2.44 3.54 5.33	1.95 2.37 3.41 5.09	1.92 2.32 3.30 4.89			
	24	.100 .050 .010	2.93 4.26 7.82 14.03	2.54 3.40 5.61 9.34	2.33 3.01 4.72 7.55	2.19 2.78 4.22 6.59	2.10 2.62 3.90 5.98	2.04 2.51 3.67 5.55	1.98 2.42 3.50 5.23	1.94 2.36 3.36 4.99	1.91 2.30 3.26 4.80			

$\nu_1 = \text{numerator df}$												
10	12	15	20	25	30	40	50	60	120	1000		
2.14	2.10	2.05	2.01	1.98	1.96	1.93	1.92	1.90	1.88	1.85		
2.67	2.60	2.53	2.46	2.41	2.38	2.34	2.31	2.30	2.25	2.21		
4.10	3.96	3.82	3.66	3.57	3.51	3.43	3.38	3.34	3.25	3.18		
6.80	6.52	6.23	5.93	5.75	5.63	5.47	5.37	5.30	5.14	4.99		
2.10	2.05	2.01	1.96	1.93	1.91	1.89	1.87	1.86	1.83	1.80		
2.60	2.53	2.46	2.39	2.34	2.31	2.27	2.24	2.22	2.18	2.14		
3.94	3.80	3.66	3.51	3.41	3.35	3.27	3.22	3.18	3.09	3.02		
6.40	6.13	5.85	5.56	5.38	5.25	5.10	5.00	4.94	4.77	4.62		
2.06	2.02	1.97	1.92	1.89	1.87	1.85	1.83	1.82	1.79	1.76		
2.54	2.48	2.40	2.33	2.28	2.25	2.20	2.18	2.16	2.11	2.07		
3.80	3.67	3.52	3.37	3.28	3.21	3.13	3.08	3.05	2.96	2.88		
6.08	5.81	5.54	5.25	5.07	4.95	4.80	4.70	4.64	4.47	4.33		
2.03	1.99	1.94	1.89	1.86	1.84	1.81	1.79	1.78	1.75	1.72		
2.49	2.42	2.35	2.28	2.23	2.19	2.15	2.12	2.11	2.06	2.02		
3.69	3.55	3.41	3.26	3.16	3.10	3.02	2.97	2.93	2.84	2.76		
5.81	5.55	5.27	4.99	4.82	4.70	4.54	4.45	4.39	4.23	4.08		
2.00	1.96	1.91	1.86	1.83	1.81	1.78	1.76	1.75	1.72	1.69		
2.45	2.38	2.31	2.23	2.18	2.15	2.10	2.08	2.06	2.01	1.97		
3.59	3.46	3.31	3.16	3.07	3.00	2.92	2.87	2.83	2.75	2.66		
5.58	5.32	5.05	4.78	4.60	4.48	4.33	4.24	4.18	4.02	3.87		
1.98	1.93	1.89	1.84	1.80	1.78	1.75	1.74	1.72	1.69	1.66		
2.41	2.34	2.27	2.19	2.14	2.11	2.06	2.04	2.02	1.97	1.92		
3.51	3.37	3.23	3.08	2.98	2.92	2.84	2.78	2.75	2.66	2.58		
5.39	5.13	4.87	4.59	4.42	4.30	4.15	4.06	4.00	3.84	3.69		
1.96	1.91	1.86	1.81	1.78	1.76	1.73	1.71	1.70	1.67	1.64		
2.38	2.31	2.23	2.16	2.11	2.07	2.03	2.00	1.98	1.93	1.88		
3.43	3.30	3.15	3.00	2.91	2.84	2.76	2.71	2.67	2.58	2.50		
5.22	4.97	4.70	4.43	4.26	4.14	3.99	3.90	3.84	3.68	3.53		
1.94	1.89	1.84	1.79	1.76	1.74	1.71	1.69	1.68	1.64	1.61		
2.35	2.28	2.20	2.12	2.07	2.04	1.99	1.97	1.95	1.90	1.85		
3.37	3.23	3.09	2.94	2.84	2.78	2.69	2.64	2.61	2.52	2.43		
5.08	4.82	4.56	4.29	4.12	4.00	3.86	3.77	3.70	3.54	3.40		
1.92	1.87	1.83	1.78	1.74	1.72	1.69	1.67	1.66	1.62	1.59		
2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.94	1.92	1.87	1.82		
3.31	3.17	3.03	2.88	2.79	2.72	2.64	2.58	2.55	2.46	2.37		
4.95	4.70	4.44	4.17	4.00	3.88	3.74	3.64	3.58	3.42	3.28		
1.90	1.86	1.81	1.76	1.73	1.70	1.67	1.65	1.64	1.60	1.57		
2.30	2.23	2.15	2.07	2.02	1.98	1.94	1.91	1.89	1.84	1.79		
3.26	3.12	2.98	2.83	2.73	2.67	2.58	2.53	2.50	2.40	2.32		
4.83	4.58	4.33	4.06	3.89	3.78	3.63	3.54	3.48	3.32	3.17		
1.89	1.84	1.80	1.74	1.71	1.69	1.66	1.64	1.62	1.59	1.55		
2.27	2.20	2.13	2.05	2.00	1.96	1.91	1.88	1.86	1.81	1.76		
3.21	3.07	2.93	2.78	2.69	2.62	2.54	2.48	2.45	2.35	2.27		
4.73	4.48	4.23	3.96	3.79	3.68	3.53	3.44	3.38	3.22	3.08		
1.88	1.83	1.78	1.73	1.70	1.67	1.64	1.62	1.61	1.57	1.54		
2.25	2.18	2.11	2.03	1.97	1.94	1.89	1.86	1.84	1.79	1.74		
3.17	3.03	2.89	2.74	2.64	2.58	2.49	2.44	2.40	2.31	2.22		
4.64	4.39	4.14	3.87	3.71	3.59	3.45	3.36	3.29	3.14	2.99		

			ν_1 = numerator df										
		ce	1	2	3	4	5	6	7	8	9		
	25	.100 .050 .010	2.92 4.24 7.77 13.88	2.53 3.39 5.57 9.22	2.32 2.99 4.68 7.45	2.18 2.76 4.18 6.49	2.09 2.60 3.85 5.89	2.02 2.49 3.63 5.46	1.97 2.40 3.46 5.15	1.93 2.34 3.32 4.91	1.89 2.28 3.22 4.71		
	26	.100 .050 .010	2.91 4.23 7.72 13.74	2.52 3.37 5.53 9.12	2.31 2.98 4.64 7.36	2.17 2.74 4.14 6.41	2.08 2.59 3.82 5.80	2.01 2.47 3.59 5.38	1.96 2.39 3.42 5.07	1.92 2.32 3.29 4.83	1.88 2.27 3.18 4.64		
	27	.100 .050 .010	2.90 4.21 7.68 13.61	2.51 3.35 5.49 9.02	2.30 2.96 4.60 7.27	2.17 2.73 4.11 6.33	2.07 2.57 3.78 5.73	2.00 2.46 3.56 5.31	1.95 2.37 3.39 5.00	1.91 2.31 3.26 4.76	1.87 2.25 3.15 4.57		
	28	.100 .050 .010	2.89 4.20 7.64 13.50	2.50 3.34 5.45 8.93	2.29 2.95 4.57 7.19	2.16 2.71 4.07 6.25	2.06 2.56 3.75 5.66	2.00 2.45 3.53 5.24	1.94 2.36 3.36 4.93	1.90 2.29 3.23 4.69	1.87 2.24 3.12 4.50		
	29	.100 .050 .010	2.89 4.18 7.60 13.39	2.50 3.33 5.42 8.85	2.28 2.93 4.54 7.12	2.15 2.70 4.04 6.19	2.06 2.55 3.73 5.59	1.99 2.43 3.50 5.18	1.93 2.35 3.33 4.87	1.89 2.28 3.20 4.64	1.86 2.22 3.09 4.45		
denominator df	30	.100 .050 .010 .001	2.88 4.17 7.56 13.29	2.49 3.32 5.39 8.77	2.28 2.92 4.51 7.05	2.14 2.69 4.02 6.12	2.05 2.53 3.70 5.53	1.98 2.42 3.47 5.12	1.93 2.33 3.30 4.82	1.88 2.27 3.17 4.58	1.85 2.21 3.07 4.39		
r₂ = denon	40	.100 .050 .010 .001	2.84 4.08 7.31 12.61	2.44 3.23 5.18 8.25	2.23 2.84 4.31 6.59	2.09 2.61 3.83 5.70	2.00 2.45 3.51 5.13	1.93 2.34 3.29 4.73	1.87 2.25 3.12 4.44	1.83 2.18 2.99 4.21	1.79 2.12 2.89 4.02		
	50	.100 .050 .010 .001	2.81 4.03 7.17 12.22	2.41 3.18 5.06 7.96	2.20 2.79 4.20 6.34	2.06 2.56 3.72 5.46	1.97 2.40 3.41 4.90	1.90 2.29 3.19 4.51	1.84 2.20 3.02 4.22	1.80 2.13 2.89 4.00	1.76 2.07 2.78 3.82		
	60	.100 .050 .010	2.79 4.00 7.08 11.97	2.39 3.15 4.98 7.77	2.18 2.76 4.13 6.17	2.04 2.53 3.65 5.31	1.95 2.37 3.34 4.76	1.87 2.25 3.12 4.37	1.82 2.17 2.95 4.09	1.77 2.10 2.82 3.86	1.74 2.04 2.72 3.69		
	100	.100 .050 .010	2.76 3.94 6.90 11.50	2.36 3.09 4.82 7.41	2.14 2.70 3.98 5.86	2.00 2.46 3.51 5.02	1.91 2.31 3.21 4.48	1.83 2.19 2.99 4.11	1.78 2.10 2.82 3.83	1.73 2.03 2.69 3.61	1.69 1.97 2.59 3.44		
	200	.100 .050 .010	2.73 3.89 6.76 11.15	2.33 3.04 4.71 7.15	2.11 2.65 3.88 5.63	1.97 2.42 3.41 4.81	1.88 2.26 3.11 4.29	1.80 2.14 2.89 3.92	1.75 2.06 2.73 3.65	1.70 1.98 2.60 3.43	1.66 1.93 2.50 3.26		
	1000	.100 .050 .010	2.71 3.85 6.66 10.89	2.31 3.00 4.63 6.96	2.09 2.61 3.80 5.46	1.95 2.38 3.34 4.65	1.85 2.22 3.04 4.14	1.78 2.11 2.82 3.78	1.72 2.02 2.66 3.51	1.68 1.95 2.53 3.30	1.64 1.89 2.43 3.13		

$\nu_1 = \text{numerator df}$												
10	12	15	20	25	30	40	50	60	120	1000		
1.87	1.82	1.77	1.72	1.68	1.66	1.63	1.61	1.59	1.56	1.52		
2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.84	1.82	1.77	1.72		
3.13	2.99	2.85	2.70	2.60	2.54	2.45	2.40	2.36	2.27	2.18		
4.56	4.31	4.06	3.79	3.63	3.52	3.37	3.28	3.22	3.06	2.91		
1.86	1.81	1.76	1.71	1.67	1.65	1.61	1.59	1.58	1.54	1.51		
2.22	2.15	2.07	1.99	1.94	1.90	1.85	1.82	1.80	1.75	1.70		
3.09	2.96	2.81	2.66	2.57	2.50	2.42	2.36	2.33	2.23	2.14		
4.48	4.24	3.99	3.72	3.56	3.44	3.30	3.21	3.15	2.99	2.84		
1.85	1.80	1.75	1.70	1.66	1.64	1.60	1.58	1.57	1.53	1.50		
2.20	2.13	2.06	1.97	1.92	1.88	1.84	1.81	1.79	1.73	1.68		
3.06	2.93	2.78	2.63	2.54	2.47	2.38	2.33	2.29	2.20	2.11		
4.41	4.17	3.92	3.66	3.49	3.38	3.23	3.14	3.08	2.92	2.78		
1.84	1.79	1.74	1.69	1.65	1.63	1.59	1.57	1.56	1.52	1.48		
2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.79	1.77	1.71	1.66		
3.03	2.90	2.75	2.60	2.51	2.44	2.35	2.30	2.26	2.17	2.08		
4.35	4.11	3.86	3.60	3.43	3.32	3.18	3.09	3.02	2.86	2.72		
1.83	1.78	1.73	1.68	1.64	1.62	1.58	1.56	1.55	1.51	1.47		
2.18	2.10	2.03	1.94	1.89	1.85	1.81	1.77	1.75	1.70	1.65		
3.00	2.87	2.73	2.57	2.48	2.41	2.33	2.27	2.23	2.14	2.05		
4.29	4.05	3.80	3.54	3.38	3.27	3.12	3.03	2.97	2.81	2.66		
1.82	1.77	1.72	1.67	1.63	1.61	1.57	1.55	1.54	1.50	1.46		
2.16	2.09	2.01	1.93	1.88	1.84	1.79	1.76	1.74	1.68	1.63		
2.98	2.84	2.70	2.55	2.45	2.39	2.30	2.25	2.21	2.11	2.02		
4.24	4.00	3.75	3.49	3.33	3.22	3.07	2.98	2.92	2.76	2.61		
1.76	1.71	1.66	1.61	1.57	1.54	1.51	1.48	1.47	1.42	1.38		
2.08	2.00	1.92	1.84	1.78	1.74	1.69	1.66	1.64	1.58	1.52		
2.80	2.66	2.52	2.37	2.27	2.20	2.11	2.06	2.02	1.92	1.82		
3.87	3.64	3.40	3.14	2.98	2.87	2.73	2.64	2.57	2.41	2.25		
1.73	1.68	1.63	1.57	1.53	1.50	1.46	1.44	1.42	1.38	1.33		
2.03	1.95	1.87	1.78	1.73	1.69	1.63	1.60	1.58	1.51	1.45		
2.70	2.56	2.42	2.27	2.17	2.10	2.01	1.95	1.91	1.80	1.70		
3.67	3.44	3.20	2.95	2.79	2.68	2.53	2.44	2.38	2.21	2.05		
1.71	1.66	1.60	1.54	1.50	1.48	1.44	1,41	1.40	1.35	1.30		
1.99	1.92	1.84	1.75	1.69	1.65	1.59	1,56	1.53	1.47	1.40		
2.63	2.50	2.35	2.20	2.10	2.03	1.94	1,88	1.84	1.73	1.62		
3.54	3.32	3.08	2.83	2.67	2.55	2.41	2,32	2.25	2.08	1.92		
1.66	1.61	1.56	1.49	1.45	1.42	1.38	1.35	1.34	1.28	1.22		
1.93	1.85	1.77	1.68	1.62	1.57	1.52	1.48	1.45	1.38	1.30		
2.50	2.37	2.22	2.07	1.97	1.89	1.80	1.74	1.69	1.57	1.45		
3.30	3.07	2.84	2.59	2.43	2.32	2.17	2.08	2.01	1.83	1.64		
1.63	1.58	1.52	1.46	1.41	1.38	1.34	1.31	1.29	1.23	1.16		
1.88	1.80	1.72	1.62	1.56	1.52	1.46	1.41	1.39	1.30	1.21		
2.41	2.27	2.13	1.97	1.87	1.79	1.69	1.63	1.58	1.45	1.30		
3.12	2.90	2.67	2.42	2.26	2.15	2.00	1.90	1.83	1.64	1.43		
1.61	1.55	1.49	1.43	1.38	1.35	1.30	1.27	1.25	1.18	1.08		
1.84	1.76	1.68	1.58	1.52	1.47	1.41	1.36	1.33	1.24	1.11		
2.34	2.20	2.06	1.90	1.79	1.72	1.61	1.54	1.50	1.35	1.16		
2.99	2.77	2.54	2.30	2.14	2.02	1.87	1.77	1.69	1.49	1.22		