Álgebra I. Tarea 2: Grupos

Universidad de El Salvador. Fecha límite: 22.03.2018

Por cualquier pregunta, no duden en contactarme por correo electrónico cadadr@gmail.com.

Ejercicio 2.1. Calcule el producto $(fr)^7 \in D_3$.

Ejercicio 2.2. Demuestre que $\mathbb{Q} \setminus \{-1\}$ es un grupo abeliano respecto a la operación

$$x * y := xy + x + y.$$

Ejercicio 2.3. Sea X un conjunto y $\mathbf{2}^{X}$ el conjunto de sus subconjuntos. Para $A, B \subseteq X$, definamos la **diferencia** simétrica por

$$A\Delta B := (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

Demuestre que 2^X es un grupo abeliano respecto a Δ .

Ejercicio 2.4. Para dos parámetros fijos $a,b \in \mathbb{R}$ definamos una función

$$\phi_{a,b} \colon \mathbb{R} \to \mathbb{R},$$

$$x \mapsto ax + b.$$

Consideremos el conjunto

$$Aff_1(\mathbb{R}) := \{ \phi_{a,b} \mid a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R} \}.$$

Verifique que $Aff_1(\mathbb{R})$ es un grupo respecto a la composición habitual de aplicaciones y que no es abeliano.

Ejercicio 2.5. Supongamos que G es un grupo donde cada elemento $g \in G$ satisface $g^2 = 1$. Demuestre que G es abeliano.

Ejercicio 2.6. Encuentre todos los subgrupos del grupo simétrico S_3 .

Ejercicio 2.7.

- 1) Escriba la tabla de multiplicación de D_4 , el grupo de simetrías del cuadrado. Verifique la descripción de sus subgrupos que hemos mencionado en las lecciones.
- 2) Escriba la tabla de multiplicación del grupo de simetrías de un rectángulo que no es un cuadrado. (Note que este tiene menos simetrías que un cuadrado.)

Ejercicio 2.8. Consideremos el conjunto de puntos (x, y) en el plano real que satisfacen la ecuación $y = x^3$:

$$X(\mathbb{R}) := \{(x, y) \in \mathbb{R}^2 \mid y = x^3\}.$$

Definamos la siguiente operación sobre $X(\mathbb{R})$: para dos puntos $P,Q \in X(\mathbb{R})$, consideremos la recta ℓ que pasa por P y Q, o la tangente si P = Q. Sea R la intersección de ℓ con otro punto de $X(\mathbb{R})$. Entonces, definimos la suma de P y Q como

$$P \oplus O := -R$$
;

es decir, el punto simétrico a R respecto al origen.

- 1) Demuestre que $X(\mathbb{R})$ es un grupo abeliano respecto a \oplus .
- 2) Demuestre que el conjunto

$$X(\mathbb{Q}) := \{(x, y) \in \mathbb{Q}^2 \mid y = x^3\}$$

(cuyos elementos se denominan "puntos racionales" de la curva X) forman un subgrupo de $X(\mathbb{R})$.

Nota: este ejercicio requiere un buen conocimiento del álgebra de nivel de Baldor.

Ejercicio 2.9. Sea G un grupo y H, $K \subset G$ dos subgrupos. Demuestre que $H \cup K$ es un grupo si y solamente si $H \subseteq K$ o $K \subseteq H$.

Ejercicio 2.10. Hemos visto que el centro del grupo simétrico es trivial:

$$Z(S_n) = \{id\}$$
 para $n \ge 3$.

Demuestre que para el grupo alternante sobre 4 elementos

$$Z(A_4) = \{id\}.$$

Nota: más adelante veremos en el curso que $Z(A_n)=\{id\}$ para $n\geq 4.$