

(continued from outside back cover)

Electrooxidation of methanol on highly active and stable Pt–Sn–Ce/C catalyst for direct methanol fuel cells A. Murthy, E. Lee and A. Manthiram (USA)	154
Activity, selectivity and stability of praseodymium-doped CeO_2 for chlorinated VOCs catalytic combustion B. de Rivas, N. Guillén-Hurtado, R. López-Fonseca, F. Coloma-Pascual, A. García-García, J.I. Gutiérrez-Ortiz and A. Bueno-López (Spain)	162
Comparison of the efficiency and mechanism of catalytic ozonation of 2,4,6-trichloroanisole by iron and manganese modified bauxite F. Qi, B. Xu, L. Zhao, Z. Chen, L. Zhang, D. Sun and J. Ma (PR China)	171
High efficiency of the cylindrical mesopores of MWCNTs for the catalytic wet peroxide oxidation of C.I. Reactive Red 241 dissolved in water M. Soria-Sánchez, E. Castillejos-López, A. Maroto-Valiente, M.F.R. Pereira, J.J.M. Órfão and A. Guerrero-Ruiz (Spain, Portugal)	182
Nanocrystalline TiO_2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution A. Panniello, M.L. Curri, D. Diso, A. Licciulli, V. Locaputo, A. Agostiano, R. Comparelli and G. Mascolo (Italy)	190
Significant enhanced performance for Rhodamine B, phenol and Cr(VI) removal by Bi_2WO_6 nanocomposites via reduced graphene oxide modification H. Ma, J. Shen, M. Shi, X. Lu, Z. Li, Y. Long, N. Li and M. Ye (China)	198
Organic dye-sensitized TiO_2 as a versatile photocatalyst for solar hydrogen and environmental remediation S.K. Choi, H.S. Yang, J.H. Kim and H. Park (Republic of Korea)	206
Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed M. Virginie, J. Adánez, C. Courson, L.F. de Diego, F. García-Labiano, D. Niznansky, A. Kiennemann, P. Gayán and A. Abad (France, Spain, Czech Republic)	214
$\text{CeO}_2/\text{H}_2\text{O}_2$ system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7 F. Chen, X. Shen, Y. Wang and J. Zhang (PR China)	223
Kinetics of photocatalytic disinfection in TiO_2 -containing polymer thin films: UV and visible light performances A. Kubacka, M. Ferrer and M. Fernández-García (Spain)	230
Coupled NO_x storage and reduction and selective catalytic reduction using dual-layer monolithic catalysts Y. Liu, M.P. Harold and D. Luss (USA)	239