Week 3 Note

Support Vector Machines(SVMs)

- ullet The perpendicular distance γ between the decision boundary and the closest training example is called the margin
- The decision boundary can be chosen so as to maximise the margin
- Training examples that are exactly on the margin are called support vectors
- Given a set of training examples

$$J = \{(ec{x}^{(1)}, y^{(1)}), (ec{x}^{(2)}, y^{(2)}), ..., (ec{x}^{(N)}, y^{(N)})\}$$

where $(\vec{x}^{(i)},y^{(i)})\in X imes Y$ are drawn from a fixed albeit unkown joint probability distribution $P(\vec{x},y)=P(y|\vec{x})P(\vec{x})$

- Goal: to learn a function g able to generalise to unseen(test) examples of the same probability distribution $P(\vec{x},y)$
 - $\circ \ g:X o Y$, mapping input space to output space
 - $\circ \;\; g$ as a probability distribution approximating $P(y|ec{x})$

Hypothesis Set

$$h(ec{x}) = egin{cases} +1 & & if \; ec{w}^T ec{x} + b > 0 \ -1 & & if \; ec{w}^T ec{x} + b < > 0 \end{cases}, orall ec{w} \in \mathbb{R}^d, orall b \in \mathbb{R}^d$$

ullet Perpendicular Distance From a Point $ec{x}^{(n)}$ to a Hyperplane $h(ec{x})=0$

$$dist(h,ec{x}^{(n)}) = rac{|h(ec{x}^{(n)})|}{||ec{w}||} = rac{y^{(n)}h(ec{x}^{(n)})}{||ec{w}||}$$

where $||w|| = \sqrt{ec{w}^T ec{w}}$ is the Euclidean norm(the length of the vector $ec{w}$)

- Find \vec{w} and b that maximise the margin
- Constraint: all training examples must be correctly classified

$$\min_{n} dist(h, ec{x}^{(n)}) \ \downarrow \ rg \max_{ec{w}, b} \{ \min_{n} dist(h, ec{x}^{(n)}) \}$$

Constraint:

$$Subject\ to\ y^{(n)}h(ec{x}^{(n)}) > 0, orall (ec{x}^{(n)}, y^{(n)}) \in J$$

$$rg \max_{ec{w},b} \{ \min_{n} (rac{y^{(n)}h(ec{x}^{(n)})}{||ec{w}||}) \} \ rg \max_{ec{w},b} \{ rac{1}{||ec{w}||} \min_{n} (y^{(n)}h(ec{x}^{(n)})) \}$$

Constraint:

$$Subject\ to\ y^{(n)}h(ec{x}^{(n)}) > 0, orall (ec{x}^{(n)},y^{(n)}) \in J \ Subject\ to\ \min_n y^{(n)}h(ec{x}^{(n)}) = 1, orall (ec{x}^{(n)},y^{(n)}) \in J$$

- Why are these two constraints equivalent?
 - \circ Rescaling $ec{w}$ and b does not change the position of the hyperplane, nor the distances of the training examples to it

o If there is a hyperplane that can separate the training examples, its \vec{w} and b can be divided by $\min_n y^{(n)} h(\vec{x}^{(n)})$ so that $y^{(n)} h(\vec{x}^{(n)}) = 1$ for the closet example

$$\argmax_{\vec{w},b}\{\frac{1}{||\vec{w}||}\}$$

$$\underset{\vec{w},b}{\downarrow}$$

$$\arg\min_{\vec{w},b}\{||\vec{w}||\}$$

Constraint:

$$egin{aligned} Subject \ to \ \min_n y^{(n)} h(ec{x}^{(n)}) &= 1, orall (ec{x}^{(n)}, y^{(n)}) \in J \ stricter \ Subject \ to \ y^{(n)} h(ec{x}^{(n)}) &\geq 1, orall (ec{x}^{(n)}, y^{(n)}) \in J \ looser \end{aligned}$$

The optimal solution will satisfy the equality in $y^{(n)}h(x^{(n)}) \geq 1$ for at least one training example

$$\mathop{\rm arg\,min}_{\vec{w},b} \{\frac{1}{2}||\vec{w}||^2\}$$

Constraint:

$$Subject\ to\ y^{(n)}(ec{w}^T\phi(ec{x}^{(n)}+b)\geq 1, orall (ec{x}^{(n)},y^{(n)})\in J$$

Convexity

- Convex Sets
 - \circ A set C is convex if the line segment between any two points in C lies in C
 - \circ For any two points $ec{x}^{(1)}, ec{x}^{(2)} \in C$ and any $\lambda \in (0,1)$, we have:

$$\lambdaec x^{(1)}+(1-\lambda)ec x^{(2)}\in C$$

- Convex Functions
 - ° A convex function $f(\vec{x})$ is a function with a convex domain C that satisfies the following condition for any $\vec{x}^{(1)}, \vec{x}^{(2)} \in C$ and $\lambda \in (0,1)$

$$f\left(\lambdaec{x}^{(1)}+(1-\lambda)ec{x}^{(2)}
ight)\leq \lambda f\left(ec{x}^{(1)}
ight)+(1-\lambda)f\left(ec{x}^{(2)}
ight)$$

Strictly convex: satisfies the condition with <

- Importance of Convexity in Machine Learning/Optimisation
 - Any minimum in a convex function is a global minimum
 - A strictly convex function has at most one stationary (critical) point. If such a point exists, it is a global minimum
- ullet Concave: A function $f(ec{x})$ is concave if $-f(ec{x})$ is convex
- First-Derivative Characterisation of Convexity
 - \circ A differentiable function $f(ec{x})$ is convex iff its domain C is convex and it satisfies the following condition for any pair $ec{x}^{(0)}, ec{x} \in C$

$$f(ec{x}) \geq \underbrace{f(ec{x}^{(0)}) + igtriangledown f(ec{x}^{(0)}) \cdot (ec{x} - ec{x}^{(0)})}_{ ext{Equation of the tangent line}}$$

 \circ Strictly convex: satisfies the condition with > for any $ec{x}^{(1)}
eq ec{x}^{(2)}$

- Second-Derivative Characterisation of Convexity
 - A twice differentiable function $f(\vec{x})$ is convex iff:
 - lacktriangle Its domain C is a convex set and
 - lacktriangle Its Hessian $H_f(ec{x})$ is positive semidefinite for all $ec{x} \in C$
 - \circ If a twice differentiable function $f(ec{x})$
 - has a convex set C as its domain and
 - lacktriangle its Hessian $H_f(ec{x})$ is positive definite for all $ec{x} \in C$
 - It is a strictly convex function.(sufficient but not necessary condition)
 - First-Order(Partial) Derivatives
 - \circ (First-order) derivatives tell us the rate of change of f(x) as we increase x

$$rac{d}{dx}f(x)=rac{df}{dx}=f'(x)=f^{(1)}(x)$$

 \circ (First-order) partial derivatives tell us the rate of change of $f(ec{x})$ as we increase a specific variable x_i

$$rac{\partial f}{\partial x_i}$$

- $^{\circ}$ (Partial) derivatives tell us whether $f(ec{x})$ is increasing /decreasing (along a specific axis) and how rapidly
- Second-Order(Partial) Derivatives
 - \circ Second-order derivative: This is the derivative of the derivative of f(x), denoted as $rac{d^2f(x)}{dx^2}$. In simpler terms, it gives the rate of change of the slope f'(x).

$$rac{d^2}{dx^2}f(x)=rac{d}{dx}\left(rac{df}{dx}
ight)=rac{d^2f}{dx^2}=f''(x)=f^{(2)}$$

 $^{\circ}$ `Second-order partial derivative``: This is the partial derivative of the partial derivative of f(x). It shows the rate of change of the slope along a specific axis, relative to that same axis or another one.

$$egin{aligned} rac{\partial^2 f}{\partial x_i^2} &= rac{\partial}{\partial x_i} \left(rac{\partial f}{\partial x_i}
ight) \ rac{\partial^2 f}{\partial x_i \partial x_j} &= rac{\partial}{\partial x_i} \left(rac{\partial f}{\partial x_j}
ight) \end{aligned}$$

- Hessian Matrix of Second-Order Partial Derivatives
 - \circ Consider $f(ec{x})$, where $ec{x}=(x_0.x_1,...,x_d)^T$

$$H(f(ec{x})) = H_f(ec{x}) = egin{bmatrix} rac{\partial^2 f}{\partial x_0^2} & rac{\partial^2 f}{\partial x_0 \partial x_1} & \cdots & rac{\partial^2 f}{\partial x_0 \partial x_n} \ rac{\partial^2 f}{\partial x_1 \partial x_0} & rac{\partial^2 f}{\partial x_1^2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ dots & dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_1 \partial x_1} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1^2} \ \end{pmatrix}$$

Univariate Case

- \circ The function is convex iff $f''(x) \geq 0$ for all x
- If f''(0) > 0 for all x, a function is strictly convex(sufficient but not necessary condition)
- \circ The function is concave iff $f''(x) \leq 0$ for all x
- \circ If f''(0) < 0 for all x, a function is strictly concave(sufficient but not necessary condition)
- \circ If f'(x)=0 and f''(x)<0, then x is a (local) maximum(sufficient but not necessary condition)

Multivariate Case

- \circ The function is convex iff $H_f(ec{x}) \geq 0$ (positive semidefinite) for all $ec{x}$
- \circ If $H_f(ec x)>0$ (positive definite) for all ec x, a function is strictly convex(sufficient but not necessary condition)
- \circ if abla f(ec x)=0 and $H_f(ec x)>0$, then x is a (local) minimum(sufficient but not necessary condition)

Positive Semidefinite Matrix

o A d imes d symmetric matrix A is positive semidefinite iff for any non-zero vector $ec{z} \in \mathbb{R}^d$, the following is true:

$$\vec{z}^T A \vec{z} \geq 0$$

e.g.

$$ec{z}^T A ec{z} = egin{pmatrix} z_1 & z_2 \end{pmatrix} egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} egin{pmatrix} z_1 \ z_2 \end{pmatrix} = egin{pmatrix} z_1 & z_2 \end{pmatrix} egin{pmatrix} z_1 \ z_2 \end{pmatrix} = z_1^2 + z_2^2$$

Satisfying the above with > defines a "positive definite" matrix

- Second-Derivative Characterisation of Convexity
 - A twice differentiable function $f(\vec{x})$ is convex iff:
 - lacktriangle its domain C is a convex set and
 - lacktriangledown its Hessian $H_f(ec{x})$ is positive semidefinite for all $ec{x} \in C$
 - $\circ \ \ \text{ For any } \vec{z}, \vec{x} \text{, we have } \vec{z} H_f(\vec{x}) \vec{z} \geq 0 \\$
- Eigenvalues and Eigenvectors

- The eigenvalues of H capture the direction of the principal curvatures of the function $f(\vec{x})$, where the curvature is most pronounced
- \circ The eigenvalues of H capture the curvature itself
- \circ If all eigenvalues are ≥ 0 , the curvature is always positive, "upwards"
- $\circ~$ The eigenvalues are ≥ 0 iff $H_f(ec{x}) \geq 0$

The Dual Representation for SVM

Dual representation of SVM

• Primal Representation

$$\argmin_{\vec{w},b}\{\frac{1}{2}||\vec{w}||^2\}$$

Subject to: $y^{(n)}(ec{w}^T\phi(ec{x}^{(n)})+b)\geq 1\ orall (ec{x}^{(n)},y^{(n)}\in J)$

Dual Representation

$$rg \max_{a} ilde{L}(ec{a}) \sum_{n=1}^{N} a^{(n)} - rac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a^{(n)} a^{(m)} y^{(n)} y^{(m)} k(ec{x}^{(n)}, ec{x}^{(m)})$$

where:
$$k(ec{x}^{(n)}, ec{x}^{(m)}) = \phi(ec{x}^{(n)})^T \phi(ec{x}^{(m)})$$

Subject to:
$$a^{(n)} \leq 0$$
, $orall n \in \{1,...,N\} \sum\limits_{n=1}^N a^{(n)} y^{(n)} = 0$

Kernel trick

- There is a way to compute $k(\vec{x}^{(n)}, \vec{x}^{(m)}) = \phi(\vec{x}^{(n)})^T \phi(\vec{x}^{(m)})$ without having to ever compute $\phi(x)$. This is called the Kernel Trick
- ullet This calculation can be generalised to basis expansions composed of all terms of order up to p

$$k(\vec{x}, \vec{z}) = \phi(\vec{x})^T \phi(\vec{z}) = (1 + \vec{x}^T \vec{z})^p$$

- Mercer's Condition
 - \circ Consider any finite set of points $\vec{x}^{(1)},...,\vec{x}^{(M)}$ (not necessarily the training set)
 - $\circ \;\;$ Gram matrix: An M imes M similarity matrix K , whose elements are given by $K_{i,j} = k(ec x^{(i)},ec x^{(j)})$
 - \circ Mercer's condition states that K must be symmetric and positive semidefinite.
 - lacksquare Symmetric: $k(ec{x}^{(i)},ec{x}^{(j)})=k(ec{x}^{(j)},ec{x}^{(i)})$
 - lacksquare Positive semidefinite: $ec{z}Kec{z}\geq 0\ orall ec{z}\in \mathbb{R}^M$

If these conditions are satisfied, the inner product defined by the kernel in the feature space respects the properties of inner products.

- ullet Given valid kernels $k_1(x,z)$ and $k_2(x,z)$, the following will also be valid kernels:
 - \circ $k(x,z)=ck_1(x,z)$
 - $\qquad \text{where } c \geq 0 \text{ is a constant.}$
 - $\circ \ k(x,z) = f(x)k_1(x,z)f(z)$
 - where $f(\cdot)$ is any function.
 - $\circ \ \ k(x,z)=q(k_1(x,z))$
 - where $q(\cdot)$ is a polynomial with non-negative coefficients.
 - $\circ \ \ k(x,z)=e^{k_1(x,z)}$
 - \circ $k(x,z)=k_1(x,z)+k_2(x,z)$
 - $\circ ~~k(x,z)=k_1(x,z)k_2(x,z)$
- Gaussian kernel, a.k.a. Radial Basis Function (RBF) kernel

$$k(ec{x},ec{x}^{(n)}) = e^{-rac{||x-x^{(n)}||^2}{2\sigma^2}}$$

The embedding ϕ is infinite dimensional