Particle spectrograph

Wave operator and propagator

$\tau_{1^-}^{\#2}\alpha$	0	0	0	$-\frac{2i}{kr_1+2k^3r_1}$	$\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$	0	$\frac{6k^2r_{1}-4t_3}{(1+2k^2)^2r_1t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{\sqrt{2}}{k^2 r_1 + 2k^4 r_1}$	$\frac{3k^2r_{1-2t_3}}{(k+2k^3)^2r_1t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$-\frac{1}{k^2 r_1}$	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	0	$\frac{2i}{kr_1+2k^3r_1}$
${\tau_1^{\#1}}_{+}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{3\sqrt{2}}{(3+k^2)^2 t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_1^{\#2} + ^{lphaeta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}Ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	2 k ² t ₃
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$-\frac{1}{3}\overline{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\vec{l}\sqrt{2}kt_2$	0	0	0	0
	$-\alpha\beta$	$-\alpha\beta$	$-\alpha\beta$	$+^{\alpha}$	$+^{\alpha}$	ä	Ļα

ω_{0}^{-}	0	0	0	$k^2 r_2 + t_2$				
¹ 0 ₊	0	0	0	0	#1 ² αβχ	0	0	(
+	kt_3	<i>t</i> ₃			$_{eta}\omega_{2}^{\sharp}$			
, ⁰ +	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0	$f_{2}^{\#1}$	0	0	
ω_{0}^{+}	t_3	$i \sqrt{2} kt_3$	0	0	$\omega_{2^{+}\alpha\beta}^{*1} \ f_{2^{+}\alpha\beta}^{*1} \ \omega_{2^{-}}^{*1}$	0	0	
						$ +^{\alpha\beta} $	$\dagger^{\alpha \beta}$	v.R.v
	$\omega_0^{\#1}$ †	$f_{0}^{#1}$ †	$f_0^{#2}$ †	$\omega_{0}^{\#1} \dagger$		$\omega_2^{\#1} + \alpha^{\beta}$	$f_2^{\#1}$.	7
'nΙ				1				ī

2

0 ==

 $\tau_2^{#1\,\alpha\beta}$

Total constraints:

 \sim

 $\sigma_1^{\#2}\alpha\overline{\beta}$

 $^{\circ}$

 $t_1^{\#1}^{\alpha\beta} + ik \ \sigma_1^{\#1}^{\alpha\beta}$

 $t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta}$
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	0	0	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{1}{k^2 r_1}$
	Î		<i>k</i> ² <i>r</i> ₁

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
,	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} \uparrow$	$\sigma_{0}^{\#1}$ \dagger

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

	Massive particle			
? /	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$