CS306: Introduction to IT Security Fall 2020

Lecture 3: Perfect Secrecy

Instructor: Nikos Triandopoulos

September 15, 2020

3.0 Announcements

CS306: Lab sections schedule

labs

CS306-Lx Thursdays

ZOOM ID: LAB SPECIFIC!

х	В	С	D	Е	F
time	9:30 - 10:20	11:00 - 11:50	12:30 - 13:20	14:00 - 14:50	15:30 - 16:20
Zoom ID	91573945614	93061161569	94976630644	92834271191	94520991826
TAs	Dean, Joseph, Joshua, Uday	Dean, Devharsh, Joseph, Joshua	Dean/Devharsh, Joshua, Mohammad, Uday	Devharsh, Joseph, Mohammad, Uday	Dean, Joseph, Mohammad, Uday

CS306: Other announcements

- Lab #2 this Thursday
- Homework #1 this Friday

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction	Lecture 1	-
2	Sep 8	Symmetric-key encryption	Lecture 2	Lab 1
3	Sep 15	Symmetric-key crypto II		
4	Sep 22	Public-key crypto I		
5	Sep 29	Public-key crypto II		
6	Oct 6	Access control & authentication		
<u>-</u>	Oct 13	No class (Monday schedule)		
7	Oct 20	Midterm	All materials covered	

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27	Software & Web security		
9	Nov 3	Network security		
10	Nov 10	Database security		
11	Nov 17	Cloud security		
12	Nov 24	Privacy		
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Last week

- Introduction to the field of IT security
 - Basic concepts and terms
 - Symmetric encryption

Today

- Symmetric-key Cryptography
 - Perfect secrecy
 - The One-Time Pad cipher
- Demo
 - Why encryption matters?
 - Using the Wireshark packet analyzer

3.1 Perfect secrecy

Security tool: Symmetric-key encryption scheme

Abstract cryptographic primitive, a.k.a. cipher, defined by

- ◆ a message space M; and
- a triplet of algorithms (Gen, Enc, Dec)
 - Gen, Enc are probabilistic algorithms, whereas Dec is deterministic
 - Gen outputs a uniformly random key k (from some key space \mathcal{K})

Perfect correctness

For any $k \in \mathcal{K}$, $m \in \mathcal{M}$ and any ciphertext c output of $Enc_k(m)$, it holds that

$$Pr[Dec_k(c) = m] = 1$$

Towards defining perfect security

- defining security for an encryption scheme is not trivial
 - e.g., what we mean by << Eve "cannot learn" m (from c) >> ?
- our setting so far is a random experiment
 - ullet a message m is chosen according to $\mathcal{D}_{\mathcal{M}}$
 - ullet a key k is chosen according to $\mathcal{D}_{\mathcal{K}}$
 - $Enc_k(m) \rightarrow c$ is given to the adversary

how to define security?

Attempt 1: Protect the key k!

Security means that

the adversary should **not** be able to **compute the key k**

Intuition

- it'd better be the case that the key is protected!...
- Problem

- this definition fails to exclude clearly insecure schemes
- e.g., the key is never used, such as when Enc_k(m) := m

Attempt 2: Don't learn m!

Security means that

the adversary should **not** be able to **compute the message m**

- Intuition
 - it'd better be the case that the message m is not learned...
- Problem
 - this definition fails to exclude clearly undesirable schemes
 - e.g., those that protect m partially, i.e., they reveal the least significant bit of m

Attempt 3: Learn nothing!

Security means that

the adversary should not be able to learn any information about m

- Intuition
 - it seems close to what we should aim for perfect secrecy...
- Problem
 - ullet this definition ignores the adversary's prior knowledge on ${\mathcal M}$
 - ullet e.g., distribution $\mathcal{D}_{\mathcal{M}}$ may be known or estimated
 - ◆ m is a valid text message, or one of "attack", "no attack" is to be sent

Attempt 4: Learn nothing more!

Security means that

the adversary should not be able to learn any additional information on m

How can we formalize this? Eve's view remains the same! Eve $\frac{1}{c}$ Enc_k(m) \rightarrow c $\frac{1}{c}$ attack w/ prob. 0.8 no attack w/ prob. 0.2 $\frac{1}{c}$ no attack w/ prob. 0.2

Two equivalent views of perfect secrecy

a posteriori = a priori

For every $\mathcal{D}_{\mathcal{M}}$, $m \in \mathcal{M}$ and $c \in \mathcal{C}$, for which Pr[C = c] > 0, it holds that

$$Pr[M = m \mid C = c] = Pr[M = m]$$

For every m, m' $\in \mathcal{M}$ and c $\in C$, it holds that

$$Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c]$$

random experiment
$$\mathcal{D}_{\mathcal{M}} \rightarrow \mathbf{m} = \mathbf{M}$$
 $\mathcal{D}_{\mathcal{K}} \rightarrow \mathbf{k} = \mathbf{K}$ $\mathbf{Enc_k(m)} \rightarrow \mathbf{c} = \mathbf{C}$

Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is **perfectly secret** if for every $\mathcal{D}_{\mathcal{M}}$, every message $m \in \mathcal{M}$ and every ciphertext $c \in C$ for which Pr[C = c] > 0, it holds that

$$Pr[M = m \mid C = c] = Pr[M = m]$$

- intuitively
 - the a posteriori probability that any given message m was actually sent is the same as the a priori probability that m would have been sent
 - observing the ciphertext reveals nothing (new) about the underlying plaintext

Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is **perfectly secret** if for every messages m, m' $\in \mathcal{M}$ and every c $\in \mathcal{C}$, it holds that

$$Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c]$$

- intuitively
 - ullet the probability distribution $\mathcal{D}_{\mathcal{C}}$ does not depend on the plaintext
 - i.e., M and C are **independent** random variables
 - the ciphertext contains "no information" about the plaintext
 - "impossible to distinguish" an encryption of m from an encryption of m'

3.2 The one-time pad

The one-time pad: A perfect cipher

A type of "substitution" cipher that is "absolutely unbreakable"

- invented in 1917 Gilbert Vernam and Joseph Mauborgne
- "substitution" cipher
 - individually replace plaintext characters with shifted ciphertext characters
 - independently shift each message character in a random manner
 - to encrypt a plaintext of length n, use n uniformly random keys k_1, \ldots, k_n
- "absolutely unbreakable"
 - perfectly secure (when used correctly)
 - based on message-symbol specific independently random shifts

The one-time pad (OTP) cipher

Fix n to be any positive integer; set $\mathcal{M} = C = \mathcal{K} = \{0,1\}^n$

- Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
 - Gen $\rightarrow \{0,1\}^n$
- Enc: given a key and a message of equal lengths, compute the bit-wise XOR
 - Enc(k, m) = Enc_k(m) \rightarrow k \oplus m (i.e., mask the message with the key)
- **Dec**: compute the bit-wise XOR of the key and the ciphertext
 - Dec(k, c) = Dec_k(c) := k \bigoplus c
- Correctness
 - trivially, $k \oplus c = k \oplus k \oplus m = 0 \oplus m = m$

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m₁ and m₂ and ciphertexts c, it holds that

$$Pr[E_K(m_1) = c] = Pr[E_K(m_2) = c],$$

where probabilities are measured over the possible keys chosen by Gen.

Proof

- events "Enc_K(m_1) = c", " $m_1 \oplus K = c$ " and " $K = m_1 \oplus c$ " are equal-probable
- K is chosen at random, irrespectively of m₁ and m₂, with probability 2⁻ⁿ
- thus, the ciphertext does not reveal anything about the plaintext

OTP characteristics

A "substitution" cipher

encrypt an n-symbol m using n uniformly random "shift keys" k₁, k₂, . . . , k_n

2 equivalent views

•
$$\mathcal{K} = \mathcal{M} = C$$

"shift" method

view 1 {0,1}ⁿ

bit-wise XOR (m \bigoplus k)

or

view 2 G, (G,+) is a group addition/subtraction (m +/- k)

Perfect secrecy

since each shift is random, every ciphertext is equally likely for any plaintext

Limitations (on efficiency)

"shift keys" (1) are as long as messages & (2) can be used only once

Perfect, but impractical

In spite of its perfect security, OTP has two notable weaknesses

- the key has to be as long as the plaintext
 - limited applicability
 - key-management problem
- the key cannot be reused (thus, the "one-time" pad)
 - if reused, perfect security is not satisfied
 - e.g., reusing a key once, leaks the XOR of two plaintext messages
 - this type of leakage can be devastating against secrecy

These weakness are detrimental to secure communication

securely distributing fresh long keys is as hard as securely exchanging messages...

Importance of OTP weaknesses

Inherent trade-off between efficiency / practicality Vs. perfect secrecy

- historically, OTP has been used efficiently & insecurely
 - repeated use of one-time pads compromised communications during the cold war
 - NSA decrypted Soviet messages that were transmitted in the 1940s
 - that was possible because the Soviets reused the keys in the one-time pad scheme
- modern approaches resemble OTP encryption
 - efficiency via use of pseudorandom OTP keys
 - "almost perfect" secrecy

