Смяна на координатната система

Афинни координатни системи

Следващата теорема е известна от курса по алгебра.

Теорема 1 (смяна на координатите при смяна на базиса) Нека V е n-мерно реално линейно пространство, $e=(e_1,\ldots,e_n)$ и $e'=(e'_1,\ldots,e'_n)$ са базиси на V и T е матрицата на прехода от базиса е към базиса e'. Нека съответните на e и e' координатни изоморфизми са съответно $x,x':V\to\mathbb{R}^n$. Тогава x=Tx', тоест за всеки вектор $v\in V$ имаме x(v)=T.x'(v). (Тоест e'=e.T, $e.x(v)=v=e'.x'(v)\Rightarrow x(v)=T.x'(v)$, или: ако T е матрицата на прехода от "стария" към "новия" базис, то ("старите" координати)=T ("новите" координати).)

Забележка 1 В ситуацията от горната теорема матрицата на прехода T също може да се напише чрез координатните изоморфизми. Тъй като T се състои от координатните стълбове спрямо базиса e на векторите e'_1, \ldots, e'_n от базиса $e' = (e'_1, \ldots, e'_n)$, тоест $T = (x(e'_1), \ldots, x(e'_n))$, то можем да пишем T = x(e'). Тогава теоремата казва, че ако v = e'.x(v), то x(v) = x(e').x(v), което е очевидно следствие от линейността на x.

Теорема 2 (смяна на координатите при смяна на афинната координатна система) Нека $K = Oe_1 \dots e_n$ и $K' = O'e'_1 \dots e'_n$ са афинни координатни системи в n-мерното афинно пространство A, координатният вектор на O' спрямо K е s, а матрицата на прехода от базиса $e = (e_1, \dots, e_n)$ към базиса $e' = (e'_1, \dots, e'_n)$ е T. Нека съответните на K и K' координатни изображения са съответно $x, x' : A \to \mathbb{R}^n$. Тогава x = s + Tx', тоест за всяка точка $P \in A$ имаме $x(P) = s + T \cdot x'(P)$, тоест $x(P) = x(O') + x(e') \cdot x'(P)$.

Забележка 2 Ако разглеждаме K като "стара" координатна система, а K' като "нова" (тоест "новата" е зададена чрез координатите на елементите си спрямо "старата" (чрез s и T)), то теоремата дава "старите" координати x чрез "новите" x'. Ако ни трябва как "новите" се изразяват чрез "старите", то трябва да решим x = s + Tx' относно x', тоест относно "новите" координати. Получаваме $x' = T^{-1}(-s + x)$, тоест $x' = -T^{-1}s + T^{-1}x$.

Забележка 3 В горните неща никъде не се използват някакви специфични свойства на полето на реалните числа, така че всичко важи без промяна и ако вместо $\mathbb R$ се вземе произволно поле F, тоест ако V е линейно пространство над произволно поле.

Ориентация

Твърдение 1 Нека $K = Oe_1 \dots e_n$ и $K' = O'e'_1 \dots e'_n$ са афинни координатни системи в афинното пространство A, смяната на координатите между които се задава с формулата x = s + Tx'. Тогава K и K' са еднакво (съответно противоположно) ориентирани $\Leftrightarrow \det T > 0$ (съответно < 0).

Ортонормирани координатни системи

Определение 1 Реалната квадратна матрица T се нарича opmoгoнaлнa, ако е обратима и $T^{-1} = T^t$.

Ако освен това $\det T > 0$, то T се нарича специална ортогонална.

Твърдение 2 Нека T е реална квадратна матрица. Тогава T е ортогонална $\Leftrightarrow TT^t = E \Leftrightarrow T^tT = E$.

Пример 1 Единичната матрица E е специална ортогонална.

Пример 2 Диагоналната матрица $D=\begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}$ е ортогонална $\Leftrightarrow d_i=\pm 1,$

 $i = 1, \dots, n$. Тя е специална ортогонална, ако освен това броят на -1 е четен.

Пример 3 $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ е специална ортогонална матрица. $\begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$ е ортогонална матрица, която не е специална ортогонална.

Твърдение 3 1. Ако T е ортогонална матрица, то $\det T = \pm 1$.

2. Ако T е специална ортогонална матрица, то $\det T = 1$.

Твърдение 4 1. Произведение на (специални) ортогонални матрици е (специална) ортогонална матрица.

2. Обратната на (специална) ортогонална матрица е (специална) ортогонална матрица.

Твърдение 5 Нека U е евклидово линейно пространство, $e = (e_1, \ldots, e_n)$ е ортонормиран базис на U, $e' = (e'_1, \ldots, e'_n)$ е система от n вектора в U и T е матрицата, стълбовете на която са координатните вектори на e'_1, \ldots, e'_n спрямо базиса e, тоест e' = e.T. (B частност, ако e' също е базис на U, то T е матрицата на прехода от e към e'.) Тогава:

- 1. e' е ортонормиран базис на $U \Leftrightarrow T$ е ортогонална.
- 2. e' е ортонормиран и еднакво ориентиран c е базиc на $U \Leftrightarrow T$ е специална ортогонална.

Следствие 1 Реалната $n \times n$ -матрица T е (специална) ортогонална \Leftrightarrow редовете u образуват (положително ориентиран) ортонормиран базис на $\mathbb{R}^n \Leftrightarrow$ стълбовете u образуват (положително ориентиран) ортонормиран базис на \mathbb{R}^n .

Твърдение 6 Нека $K = Oe_1 \dots e_n$ и $K' = O'e'_1 \dots e'_n$ са афинни координатни системи в евклидовото афинно пространство A, смяната на координатите между K и K' се задава с формулата x = s + Tx' и K е ортонормирана. Тогава

- 1. K' също е ортонормирана \Leftrightarrow матрицата T е ортогонална.
- 2. K' е ортонормирана и еднакво ориентирана с $K \Leftrightarrow T$ е специална ортогонална.

Забележка 4 Нека K и K' са афинни координатни системи в A и смяната на координатите между тях се задава с x=s+Tx'. Ако ни трябват координатите относно K' изразени чрез координатите относно K, то трябва да решим това уравнение относно x' и получаваме $x'=T^{-1}(-s+x)$, тоест $x'=-T^{-1}s+T^{-1}x$. В общия случай пресмятането на T^{-1} е трудоемко, но ако K и K' са ортонормирани, то T е ортогонална и $T^{-1}=T^t$. Следователно в тоя случай няма никакво пресмятане за определянето на обратната матрица и $x'=T^t(-s+x)$, тоест $x'=-T^ts+T^tx$.