

LINEAR ALGEBRA

Julian Liersch AG Robotik, Universität Bremen

Prof. Dr. Dr. h.c. Frank Kirchner AG Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotik@dfki.de October 13, 2023 – Bremen, Deutschland

General setup

General information

- ▶ Our goal is to have a common language and understanding of the relevant content.
- ▶ The crash course shall provide you an opportunity to identify knowledge gaps.
- ▶ If something is too fast, feel free to pause the video.

Table of contents

- 1 Vector Spaces
- 2 Linear mappings
- 3 Matrices
- 4 Matrix identities

Vector Spaces

Content on vector spaces

Content

- Vector spaces and subspaces
- ► Linear (in-)dependence
- ► Bases and dimensions
- ► Inner products
- Orthogonality and -normality

Definition: Vector space

A triple $(V, +, \cdot)$ is called a vector space over $\mathbb F$ or a real vector space for $\mathbb F = \mathbb R$, if $V \neq \emptyset$, $(\mathbb F, +_{\mathbb F}, \cdot_{\mathbb F})$ is a field and the mappings $+: V \times V \to V$ as well as $\cdot: \mathbb F \times V \to V$ are such that the following properties regarding vector addition and scalar multiplication hold true:

Vector addition

$$\forall u, v, w \in V : (u+v) + w = u + (v+w)$$
 associativity
$$\forall u, v \in V : u+v = v+u$$
 commutativity
$$\exists \mathbf{0}_{V} \in V : \forall v \in V : \mathbf{0}_{V} + v = v$$
 identity element
$$\forall v \in V : \exists w \in V : v+w = \mathbf{0}_{V}$$
 inverse elements

Definition: Vector space

A triple $(V, +, \cdot)$ is called a *vector space over* $\mathbb F$ or a *real vector space* for $\mathbb F = \mathbb R$, if $V \neq \emptyset$, $(\mathbb F, +_{\mathbb F}, \cdot_{\mathbb F})$ is a field and the mappings $+: V \times V \to V$ as well as $\cdot: \mathbb F \times V \to V$ are such that the following properties regarding *vector addition* and *scalar multiplication* hold true:

Scalar multiplication

Convention

The set V by itself may be called a vector space if + and \cdot are irrelevant or trivial.

Examples of real vector spaces

- \triangleright Set of *n*-dimensional vectors \mathbb{R}^n with + and \cdot defined element-wise
- ▶ Set of square matrices $\mathbb{R}^{n \times n}$ with + and \cdot defined element-wise
- Set of real continuous functions on closed interval $I \subseteq \mathbb{R}$: $C(I) := \{f : I \to \mathbb{R} | f \text{ continuous} \} \text{ with } + \text{ and } \cdot \text{ defined element-wise}$

Definition: Subspaces

Let $(V,+,\cdot)$ be a vector space over $\mathbb F$ and $U\subseteq V$. If $(U,+_{|U\times U},\cdot_{|\mathbb F\times U})$ is also a vector space, it is called a *subspace of* V. This is denoted as $U\le V$.

Definition: Span and linear combination

Let $U \subseteq V$ be a subset of a vector space V over \mathbb{F} . Then the *span* of U is defined as

$$\mathrm{span}(U) := \left\{ \left. \sum_{i=1}^k \lambda_i v_i \right| k \in \mathbb{N}, orall i \in \{1,\ldots,k\} : \lambda_i \in \mathbb{F}, v_i \in V
ight\}$$

A combination of elements of U as $\sum_{i=1}^{k} \lambda_i v_i$ is called a *linear combination*.

Proposition: A span is a vector space

Let V be a vector space and $U \subseteq V$. Then $\operatorname{span}(U) \leq V$.

Definition: Linear (in-)dependence

Let V be a vector space. A finite set of vectors $\{v_1, \ldots, v_k\} \subseteq V$ is called *linear dependent*, if there is a set of scalars $\{\lambda_1, \ldots, \lambda_k\} \subseteq \mathbb{F}$ with $\lambda_i \neq 0$ for some $i \in \{1, \ldots, k\}$ and

$$\sum_{i=1}^k \lambda_i v_i = 0$$

If there is no such set of scalars, the set of vectors is called *linear independent*.

Examples

- ▶ The set $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}\} \subseteq \mathbb{R}^2$ is linear dependent as $\begin{pmatrix} 1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix} = 0_{\mathbb{R}^2}$
- ▶ The set $\{(\frac{1}{0}), (\frac{0}{1})\} \subseteq \mathbb{R}^2$ is linear independent

Definition: Basis

A linear independent set $B \subseteq V$ with $\operatorname{span}(B) = V$ is called a *basis for V*.

Definition: Unit basis

Let $V = \mathbb{R}^n$ for some $n \in \mathbb{N}$, then the set $B := \{(\delta_j^i)_{i=1}^n\}_{j=1}^n$ yields a basis for V.It is called the unit basis. Its elements are usually denoted as $e_j := (\delta_j^i)_{i=1}^n \in \mathbb{R}^n$, where δ_j^i is the Kronecker delta, equal to 1 if i = i and else equal to 0.

Definition: Vector space dimension

Let V be a vector space with basis B. We call the cardinality of B the dimension of V and denote it as $\dim(V) := |B|$.

Definition: Inner product

Let $(V, +, \cdot)$ be a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, then a mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is called an *inner product* or *scalar product*, if the following conditions hold:

Requirements for inner products

$$\forall u,v \in V: \langle u,v \rangle = \overline{\langle v,u \rangle} \qquad \qquad \text{(conjugate) symmetry} \\ \forall \lambda,\mu \in \mathbb{F}, u,v,w \in V: \langle \lambda u + \mu v,w \rangle = \lambda \, \langle u,w \rangle + \mu \, \langle v,w \rangle \qquad \text{linearity in first argument}$$

 $\forall v \in V \setminus \{0_V\} : \langle v, v \rangle > 0$

positive definiteness

Definition: Inner product space

A vector space having a inner product is called an inner product space.

Example

The dot product defined as $\langle u, v \rangle := \sum_{i=1}^n u_i v_i$ is an inner product for \mathbb{R}^n yielding $(\mathbb{R}^n, +, \cdot, \langle \cdot, \cdot \rangle)$ an inner product space.

Definition: Orthogonal basis

Let B be a basis for an inner product space V, then B is called *orthogonal* if for all $u \neq v \in B$ the equality $\langle u, v \rangle = 0$ holds true.

Definition: Induced norm

Let V be an inner product space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. The mapping $||\cdot|| : V \to \mathbb{R}_0^+$ defined as $||v|| := \sqrt{\langle v, v \rangle}$ is called the *induced norm for* V.

Definition: Orthonormal basis

Let B be a orthogonal basis for an inner product space V. If for all $v \in B$ the equality ||v|| = 1 holds, B is called an *orthonormal* basis.

Linear mappings

Content on linear mappings

Content

- Definition of linear mappings
- ► Range and kernel
- Rank-nullity theorem

Definition: Linear mapping

Let V,W be vector spaces over a field $\mathbb F$ and $L:V\to W$ be a mapping. L is called a *linear mapping* or *linear*, if

$$\forall \lambda \in \mathbb{F}, v, w \in V : L(\lambda \cdot v + w) = \lambda \cdot L(v) + L(w)$$

Proposition: Linear mappings are uniquely defined by their definition on a basis

Let V, W be vector spaces and B be a basis for V. If $L_1, L_2 : V \to W$ are linear with $L_1(v) = L_2(v)$ for all $v \in B$, then $L_1(v) = L_2(v)$ for all $v \in V$.

Definition: Range

Let $L: V \to W$ be a linear mapping between vector spaces V, W. Then the *image* or *range* of L is defined as

$$Im(L) := L[V] = \{ w \in W | \exists v \in V : L(v) = w \}$$

Definition: Kernel

Let $L: V \to W$ be as above. Then the *kernel* or *null space of L* is defined as

$$\ker(L) := L^{-1}[\{\mathbf{0}_W\}] = \{v \in V | L(v) = \mathbf{0}_W\}$$

Proposition: The kernel and range of linear mappings are subspaces

For vector spaces V, W and $L: V \to W$ linear it is $Im(L) \le W$ and $ker L \le V$.

Reminder

A mapping $f: X \to Y$ is called *injective*, if for each $y \in f[X] = \{y \in Y | \exists x \in X : f(x) = y\}$ there is **exactly one** $x \in X$ with f(x) = y. Short:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Proposition: Relation to kernel

A linear mapping $L: V \to W$ is injective iff (short for if and only if) its kernel is trivial, meaning $\ker(L) = \{\mathbf{0}_V\}$.

Theorem: Rank-nullity theorem

Let $L: V \to W$ be a linear mapping between two vector spaces V and W. Then the following identity holds:

$$\dim(\operatorname{Im}(L)) + \dim(\ker(L)) = \dim(V)$$

Definition: Rank and nullity

The dimension of the image of L is also called rank and the dimension of the kernel nullity.

Corollary

Injective linear mappings $L: V \to W$ are surjective (and thus bijective), if $\dim(V) = \dim(W)$.

Matrices

Content on matrices

Content

- ▶ Identification of linear mappings with matrices
- Matrix operations
- ▶ Determinant, inverse matrices and the general linear group
- ► Eigenvector decomposition

Observation

Let V, W be finite dimensional real vector spaces with basis $B_V := \{v_1, \dots v_n\}$,

 $B_W := \{w_1, \dots, w_m\}$ respectively and $L: V \to W$ be linear.

▶ For all $v_i \in B_V$ there are $\mu_{ji} \in \mathbb{F}$ such that $L(v_i) = \sum_{i=1}^m \mu_{ji} w_i$.

Matrix representation of linear mappings

As L is fully described by its operation on B_V and each $L(v_i)$ can be written as a unique [!] linear combination of B_W , L is (for given B_V and B_W) uniquely defined by the μ_{ji} as above. These are usually arranged in a matrix $M_{B_W}^{B_V}(L) \in \mathbb{R}^{m \times n}$ which can be identified with the linear mapping:

$$L \simeq M_{B_W}^{B_V}(L) := \begin{pmatrix} \mu_{11} & \cdots & \mu_{1n} \\ \vdots & \ddots & \vdots \\ \mu_{m1} & \cdots & \mu_{mn} \end{pmatrix}$$

Convention for further slides

For simplicity, we will focus on B_V and B_W being unit bases and drop explicit mentioning of the used bases.

Definition: Matrix-vector multiplication

Let V,W be finite dimensional real vector spaces and $L:V\to W$ be linear with matrix representation $M(L)\in\mathbb{R}^{m\times n}$. The matrix-vector multiplication $\cdot:\mathbb{R}^{m\times n}\times\mathbb{R}^n\to\mathbb{R}^m$ is defined via the evaluation of L at V as

$$M(L) \cdot v := L(v) = (\sum_{i=1}^{n} \mu_{ji} v_i)_{i=1}^{m}$$

Definition: Matrix-matrix multiplication

Let V_1, V_2, V_3 be finite dimensional real vector spaces with dimensions $n_1, n_2, n_3 \in \mathbb{N}$ respectively and $L_1: V_1 \to V_2, L_2: V_2 \to V_3$ be linear mappings. For $M(L_1) \in \mathbb{R}^{n_2 \times n_1}, M(L_2) \in \mathbb{R}^{n_3 \times n_2}$ we can define the *matrix-matrix multiplication* $\cdot : \mathbb{R}^{n_3 \times n_2} \times \mathbb{R}^{n_2 \times n_1} \to \mathbb{R}^{n_3 \times n_1}$ via the composition of L_2 and L_1 :

$$M(L_2) \cdot M(L_1) := M(L_2 \circ L_1)$$

Matrix-matrix multiplication mnemonic

The product $A \cdot B$ can be calculated as dot products of the rows of A and columns of B:

$$\mathbb{R}^{n_2 \times n_3}
ightarrow B = \left(egin{array}{cccc} b_{11} & \cdots & b_{1n_3} \ dots & \ddots & dots \ b_{n_21} & \cdots & b_{n_2n_3} \end{array}
ight)$$

$$\mathbb{R}^{n_1 \times n_2} \ni A = \begin{pmatrix} a_{11} & \cdots & a_{1n_2} \\ \vdots & \ddots & \vdots \\ a_{n_11} & \cdots & a_{n_1n_2} \end{pmatrix} \quad \begin{pmatrix} \sum_{i=1}^{n_2} a_{1i}b_{i1} & \cdots & \sum_{i=1}^{n_2} a_{1i}b_{in_3} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n_2} a_{n_1i}b_{i1} & \cdots & \sum_{i=1}^{n_2} a_{n_1i}b_{in_3} \end{pmatrix} = A \cdot B \in \mathbb{R}^{n_1 \times n_3}$$

Definition: Transpose

Let $A := (a_{ij})_{i,j=1}^{i=n,j=m} \in \mathbb{R}^{n \times m}$ be a matrix, then $A := (a_{ji})_{i,j=1}^{i=n,j=m} \in \mathbb{R}^{m \times n}$ is called the transpose of A.

Definition: Symmetric matrices

If for $A \in \mathbb{R}^{n \times n}$ the equality $A^T = A$ holds, A is called *symmetric*.

Definition: Orthogonal matrices

Let V be an n-dimensional inner product space and $A \in \mathbb{R}^{n \times n}$. Then A is called *orthogonal* if $A^{-1} = A^T$

Definition: Square matrix

A matrix $A \in \mathbb{R}^{n \times m}$ is called *square matrix* if n = m.

Definition: Unit matrix

For $n \in \mathbb{N}$, the matrix $\mathbb{I}_n := \left(\delta_i^j\right)_{i,j=1}^n$ is called the *identity matrix of rank n*.

Definition: Inverse matrix

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. If there is a matrix $B \in \mathbb{R}^{n \times n}$ with $A \cdot B = B \cdot A = \mathbb{I}_n$, A is called *invertible* and $B =: A^{-1}$ is called the *inverse of* A.

Proposition: Existence of inverse

A square matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if and only if it has full rank, meaning

$$\dim(\operatorname{Im}(v \mapsto A \cdot v)) = n$$

Equivalently it is invertible if its nullity is 0, meaning

$$\dim(\ker(v\mapsto A\cdot v))=0$$

This also means the mapping $v \mapsto A \cdot v$ is bijective for invertible matrices.

Definition: Determinant

For a square matrix $A \in \mathbb{R}^{n \times n}$, the determinant of A is defined via the Leibniz-formula as

$$\det(A) := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(i),i}$$

Here S_n is the group of permutations of $\{1, \ldots, n\}$ and $\operatorname{sgn}(\sigma)$ is the sign of σ , which equals +1 if the number of inversions the permutation composes of is even and -1 if it is odd.

Proposition: Link to invertibility

A square matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if its determinant is non-zero.

Equivalently, if det(A) = 0, then dim(ker(A)) > 0.

Definition: Group

Let $G \neq \emptyset$ and $*: G \times G \rightarrow G$. Then (G, *) is called a *group*, if:

$$\forall a, b, c : (a * b) * c = a * (b * c)$$

 $\exists e \in G : \forall a \in G : e * a = a * e = a$

 $\forall a \in G : \exists b \in G : a * b = e \land b * a = e$

existence of neutral element

associativity

existence of inverse elements

Proposition and definition: General linear group

The set of invertible matrices $GL_n := \{A \in \mathbb{R}^{n \times n} | \det(A) \neq 0\}$ together with the matrix-matrix multiplication forms a group. It is called the *general linear group* and its neutral element is \mathbb{T}_n .

Definition: Diagonalizable

A square matrix $A \in \mathbb{R}^{n \times n}$ is called *diagonalizable*, if there is an invertible matrix $P \in GL_n$ such that $D := P^{-1}AP$ is a diagonal matrix. This means the elements of D are only non-zero on the main diagonal as such:

$$D = egin{pmatrix} d_{11} & 0 & \cdots & 0 & 0 \ 0 & d_{22} & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & d_{n-1,n-1} & 0 \ 0 & 0 & \cdots & 0 & d_{nn} \end{pmatrix}$$

Definition: Eigenvectors and -values

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. If $A \cdot v = \lambda v$ for $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^n \setminus \{0\}$ holds, λ is called an *eigenvalue for A* and v is called an *eigenvector with eigenvalue* λ .

Definition: Eigenvalue-problem

To find eigenvectors and values for a square matrix, one can find non-trivial solutions ($v \neq 0$) of the following linear equation system, the eigenvalue problem:

$$(A - \lambda \mathbb{I}_n) \cdot v = 0$$

Non-trivial solutions exist for λ such that $\dim(\ker(A - \lambda \mathbb{I}_n)) > 0$, which is the case iff $p_A(\lambda) := \det(A - \lambda \mathbb{I}_n) = 0$. The mapping $p_A : \mathbb{R} \to \mathbb{R}$ is called the *characteristic polynomial* of A.

Theorem: Eigenvector decomposition

If for a matrix A a set of linearly independent eigenvectors $\{v_1, \ldots, v_n\} \subseteq \mathbb{R}^n$ with corresponding eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ exists, then the matrix is diagonalizable using

$$P:=\left(\begin{smallmatrix} v_1\cdots v_n\end{smallmatrix}
ight)\in\mathbb{R}^{n imes n}$$
 and $\Lambda:=\left(\delta^j_i\lambda_i
ight)_{i,j=1}^n\in\mathbb{R}^{n imes n}$ as

$$P^{-1}AP = \Lambda$$

Notes

- ▶ To prove the identity, observe that $Av_i = \lambda_i v_i$ holds for all $i \in \{1, ... n\}$ yielding $AP = P\Lambda$.
- ▶ Outlook: For non-square matrices the *singular value decomposition* (short *SVD*) yields a similar identity.

Definition: Positive (semi-)definite

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then A is called *positive definite* if

$$\forall v \in \mathbb{R}^n \setminus \{\mathbf{0}_{\mathbb{R}^n}\}: \quad v^T A v > 0$$

If only $v^T A v \ge 0$ holds, A is called *positive semi-definite* instead.

Remarks

- lacktriangle If A is positive semi-definite, it is diagonalizable and all its eigenvalues are non-negative.
- ▶ If A is positive definite, it is diagonalizable and all its eigenvalues are positive.

Matrix identities

Content on matrix identities

Content

- ► Transpose matrices
- Inverse matrices
- Determinant of matrices

Identities regarding transpose

Let $A, B \in \mathbb{R}^{n \times m}$ and $c \in \mathbb{R}$, then

$$(A+B)^{T} = A^{T} + B^{T}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(cA)^{T} = cA^{T}$$
$$p_{A^{T}}(\lambda) = p_{A}(\lambda)$$

If A is additionally invertible, we have

$$(A^{-1})^T = (A^T)^{-1}$$

thus conventionally we write $A^{-T} := (A^{-1})^T$.

Identities regarding inverse

Let $A, B \in GL_n(\mathbb{R})$ and $c \in \mathbb{R} \setminus \{0\}$, then

$$A + B$$
 is not necessarily invertible! (e.g. $B = -A$)

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(cA)^{-1} = c^{-1}A^{-1}$$

$$\lambda \neq 0$$
 eigenvalue of $A \Rightarrow \lambda^{-1}$ eigenvalue of A^{-1}

Identities regarding determinant

Let $A, B \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R} \setminus \{0\}$, as well as A invertible if needed, then

$$\det(cA) = c^n \det(A)$$
 $\det(AB) = \det(A) \det(B)$
 $\det(A^T) = \det(A)$
 $\det(A^{-1}) = \det(A)^{-1}$
 $\det(A) = \prod_{i=1}^n \lambda_i$

where λ_i are the eigenvalues of A, if needed repeated to occur as often as their algebraic multiplicity.

Summary

We recapped

- definitions regarding vector spaces,
- definitions regarding linear mappings,
 - as well as the rank-nullity theorem
- ▶ and content on matrices as representations of linear mappings:
 - matrix operations,
 - the general linear group
 - and eigenvector decomposition.
- ▶ Additionally, some identities regarding to matrices.

Thank You!

Feel free to ask questions in the forums!

