Two Sample Problem: the ratio of two population variances

Suppose that we have two independent random samples:

$$\{X_1,\ldots,X_n\}$$
 from $N(\mu_X,\sigma_X^2)$, and $\{Y_1,\ldots,Y_m\}$ from $N(\mu_Y,\sigma_Y^2)$,

where μ_X , μ_Y , σ_X^2 and σ_Y^2 are unknown, n and m are respective sample sizes of X and Y

Now we want to compare the two population variances by considering a $100(1-\alpha)\%$ C.I. for σ_X^2/σ_Y^2 .

First, we consider the intuitive point estimator S_X^2/S_Y^2 for σ_X^2/σ_Y^2 , where $S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ and $S_Y^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y})^2$.

Since the two random samples are from the normal distribution, we can establish the confidence interval of σ_X^2/σ_Y^2 by using the result that

$$\frac{\sigma_Y^2 S_X^2}{\sigma_X^2 S_Y^2}$$

has a F distribution with n-1 and m-1 degrees of freedom. Notationally, we have

$$F \stackrel{def}{=} \frac{\sigma_Y^2 S_X^2}{\sigma_X^2 S_Y^2} \sim F(N-1, M-1)$$

How to construct a confidence interval for σ_X^2/σ_Y^2 ?

Starting from

$$P(\mathbf{f}_{1-\alpha/2}(n-1, m-1) < \mathbf{f}_{\alpha/2}(n-1, m-1)) = 1-\alpha,$$

where $F_{1-\alpha/2}(n-1, m-1)$ and $F_{\alpha/2}(n-1, m-1)$ are quantities such that

respectively. Thus, substituting for $\digamma \stackrel{def}{=} \frac{\sigma_Y^2 S_X^2}{\sigma_X^2 S_Y^2}$, we have

$$P(F_{1-\alpha/2}(n-1, m-1) < \frac{\sigma_Y^2 S_X^2}{\sigma_Y^2 S_Y^2} < F_{\alpha/2}(n-1, m-1)) = 1 - \alpha.$$

After some algebra, we obtain

$$P(\frac{1}{\mathbf{F}_{\alpha/2}(n-1, m-1)} \frac{S_X^2}{S_Y^2} < \frac{\sigma_X^2}{\sigma_Y^2} < \frac{1}{\mathbf{F}_{1-\alpha/2}(n-1, m-1)} \frac{S_X^2}{S_Y^2}) = 1 - \alpha.$$

Using a property of the F distribution that

$$F_{\text{ods}}(m-1, n-1) = \frac{1}{F_{\text{-N/2}}(n-1, m-1)}$$

density
unve of F

finally we have that after sampling, a $100(1-\alpha)\%$ C.I. for $\frac{\sigma_X^2}{\sigma_Y^2}$ is given by

$$\Big[\frac{1}{\digamma_{\alpha/2}(n-1,\,m-1)}\frac{s_X^2}{s_Y^2}, \quad \digamma_{\alpha/2}(m-1,\,n-1)\frac{s_X^2}{s_Y^2}\Big].$$

Example: On page 18, we had data sets of the weight of two independent random samples of tomatoes grown using each of the two fertilizers (in ounces):

Based on the assumption of same population (unknown) variances, we got a 95% confidence interval, [-1.366, 4.688], for the mean difference $\mu_X - \mu_Y$. Here we want to justify the assumption of the same population variances by constructing a 98% confidence interval of σ_X^2/σ_Y^2 .

From the results we found before, we have n=8, $s_X^2=5.125$, m=7, and $s_Y^2=9.905$. Thus, a 98% confidence interval of σ_X^2/σ_Y^2 is given by

$$\[\frac{1}{\mathbf{F}_{0.01}(7, 6)} \frac{5.125}{9.905}, \quad \mathbf{F}_{0.01}(6, 7) \frac{5.125}{9.905}\] = [0.0626, 3.7202],\]$$

where $F_{0.01}(7, 6) = 8.26$ and $F_{0.01}(6, 7) = 7.19$. Note that 1 is inside the interval, so our result allows for the possibility of σ_X^2/σ_Y^2 being equal to 1, i.e., we were correct in assuming that $\sigma_X^2 = \sigma_Y^2$ before.