Chemistry Lecture #81: Boiling Point Elevation & Freezing Point Depression, Part 2

In this lecture we'll explain how to do two more types of problems involving boiling point elevation and freezing point depression.

21.6 g of NiSO₄ is added to 1.00 x 10^2 g of water. Find the boiling point.

Answer

We first need to find the molality, m of the solution.

1 mole
$$NiSO_4 = 155 g NiSO_4$$
 1000 g $H_2O = 1 kg H_2O$

$$\frac{21.6 \text{ g NisO}_4}{100 \text{ g H}_20} \times \frac{\text{mole NisO}_4}{155 \text{ g NisO}_4} \times \frac{1000 \text{ g H}_20}{\text{kg H}_20} = 1.39 \text{ m NisO}_4$$

NisO₄ is an ionic compound that dissociates into two ions when dissolved in water

$$H_2O$$

NiSO₄ (s) Ni²⁺ (aq) + SO₄²⁻(aq)

Since the number of solute particles has doubled, we multiply the molality by 2.

Molality =
$$1.39 \times 2 = 2.78 \ m$$

Knowing the molality of solute particles, we can calculate the boiling point.

$$\Delta T_{bp} = K_b m = (0.512 °C/m) (2.78 m) = 1.42 °C$$

$$bp = 100 + 1.42 = 101.42 ^{\circ}C$$

99.0 g of a nonionizing solute is dissolved into 669 g of water. The freezing point is -0.960 °C. What is the molecular mass of the solute?

Answer

We'll first solve for the molality of the solution, then use this to find the molecular mass of the solute.

$$\Delta T_{fp} = k_f m$$

0.960 °C = (1.86 °C/m) m
0.960 = 1.86 m
 $m = 0.516$ molal or 0.516 moles/kg H₂0

The unit of molecular mass for the solute is g solute/mole; this is the unit we want to get in the final answer. We've been given 99.0 g solute/669 g H_2O . We can convert g H_2O to Kg H_2O , then use the molality to convert Kg H_2O to moles.

$$1000 \text{ g H}_20 = \text{kg H}_20$$

0.516 moles/kg
$$H_2O$$
 0.516 moles = kg H_2O

$$\frac{99.0 \text{ g solute}}{669 \text{ g H}_20} \times \frac{1000 \text{ g H}_20}{\text{kg H}_20} \times \frac{\text{kg H}_20}{0.516 \text{ moles}} = \frac{287 \text{ g solute}}{\text{mole}}$$