WHAT IS CLAIMED IS:

- 1. A diagnostic agent comprising a diagnostic metal and a compound, wherein the compound comprises:
- 5 iv) 1-10 targeting moieties;
 - v) a chelator; and

30

9, and MMP-14.

vi) 0-1 linking groups between the targeting moiety and chelator;

wherein the targeting moiety is a matrix metalloproteinase

inhibitor; and

wherein the chelator is capable of conjugating to the diagnostic metal.

- 2. A diagnostic agent according to claim 1, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <1000 nM.
- 3. A diagnostic agent according to claim 1, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <100 nM.
 - 4. A diagnostic agent according to claim 1, comprising 1-5 targeting moieties.
- 25 5. A diagnostic agent according to claim 1, comprising one targeting moiety.
 - 6. A diagnostic agent of claim 1, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases selected from the group consisting of MMP-1, MMP-2, MMP-3, MMP-
 - 7. A diagnostic agent of claim 6, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases
- 35 selected from the group consisting of MMP-2, MMP-9, and MMP-14.

8. A diagnostic agent according to claim 1 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

R is independently OH or -CH₂SH;

- R¹ is independently selected at each occurrence from the group:

 H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and

 heterocycle-S-CH₂-;
 - R^2 is independently C_{1-20} alkyl;
- 15 X is independently C=0 or SO_2 , provided when X is C=0, \mathbb{R}^3 is

$$-$$
N 4 5 0 , and when X is SO₂, R³ is independently selected from the group: aryl substituted with 0-2 R⁶, and heterocycle substituted with 0-2 R⁶;

- 20 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- R⁵ is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the chelator;
 - R^6 is independently aryloxy substituted with 0-3 R^7 ;
- 30 R⁷ is independently halogen or methoxy;

or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3-O$ -phenyl- CH_2- , optionally substituted with a bond to the linking group or a bond to the chelator;

or alternatively,

- $\rm R^1$ and $\rm R^2$ may be taken together to form a bridging group of the formula -(CH₂)₃-NH-, optionally substituted with a bond to the linking group or a bond to the chelator; or
- R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $-C(=0)-NR^{29}R^{30}$;
- 20 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to the linking group or a bond to the chelator, provided that when R^8 is phenyl, R^{10} is $C(=0)-CR^{12}-NH-CH(CH_3)-COOH;$
- 25 R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system substituted with R⁶ and optionally substituted with a bond to the linking group or a bond to the chelator;

R¹⁰ and R¹¹ are independently H, or C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with 0-3 R²⁷, a bond to the linking group or a bond to the chelator;

10 or alternatively,

5

R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with a bond to the linking group or a bond to the chelator; and

 \mathbb{R}^{12} is independently \mathbb{C}_{1-20} alkyl;

 R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups; R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and

25 R³¹ is a benzyloxy group substituted with C1-4 alkyl.

9. A diagnostic agent according to claim 8 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the 30 formulae (Ia) or (Ib):

R is OH;

R¹ is independently selected at each occurrence from the group: H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-6} alkyl;

- 10 X is C=O;
 - R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- 15 R⁵ is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the chelator;
- 20 R^6 is independently aryloxy substituted with 0-3 R^7 ;
 - R⁷ is independently halogen or methoxy;
 - or alternatively,

- R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3-O$ -phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the chelator;
- 30 or alternatively,
 - R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to the linking group or a bond to the chelator; or

 $\rm R^{1}$ and $\rm R^{2}$ taken together with the nitrogen and carbon atom through which they are attached form a C5-7 atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $\rm -C(=0)-NR^{29}R^{30}$;

R⁸ is OH;

5

10 R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted with a bond to the linking group or a bond to the chelator;

20 substituted with a bond to the linking group or a bond to the chelator, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from 0, N, , said ring system optionally substituted with 0-3 R²⁷, a bond to the linking group or a bond to the chelator;

or alternatively,

30 R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system

optionally substituted with a bond to the linking group or a bond to the chelator; and

 R^{12} is independently C_{1-6} alkyl;

- R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups; R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and
- 10 R^{31} is a benzyloxy group substituted with C1-4 alkyl.
 - 10. A diagnostic agent according to claim 8 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):
- 15 wherein:

R is -OH;

 R^2 is C_{1-6} alkyl;

X is C=0;

$$R^3$$
 is R^4 R^5

- 20 R^1 and R^4 are taken together to form a bridging group of formula $-(CH_2)_3-0$ -phenyl- CH_2- ;
 - R^5 is NH(C1-6alkyl), substituted with a bond to the linking group or a bond to the chelator.
- 25 11. A diagnostic agent according to claim 8, wherein:
 R is -OH;

 R^9 is C_1 alkyl substituted with a bond to Ln;

 ${\bf R}^{10}$ and ${\bf R}^{11}$ taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right

30 system is substituted with 0-3 R^{27} ;

 \mathbb{R}^{27} is =0, C1-4 alkyl, or phenyl substituted with \mathbb{R}^{28} ; and

 ${\rm R}^{28}$ is a phenoxy group substituted with 0-2 OCH3 groups.

- 12. A diagnostic agent according to claim 8 wherein the R is -OH;
- R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $-C(=0)-NR^{29}R^{30}$;
- R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and R^{31} is a benzyloxy group substituted with C1-4 alkyl.
- 15 13. A diagnostic agent according to claim 1 wherein the linking group is of the formula:

$$((W^1)_{h^-}(CR^{13}R^{14})_g)_{x^-}(Z)_{k^-}((CR^{13}a_R^{14}a)_{g'}-(W^2)_{h'})_{x'};$$

- W1 and W2 are independently selected at each occurrence from the group: 0, S, NH, NHC(=0), C(=0)NH, NR 15 C(=0), C(=0)NR 15 , C(=0), C(=0)0, OC(=0), NHC(=S)NH, NHC(=0)NH, SO₂, SO₂NH, (OCH₂CH₂)76-84, (OCH₂CH₂)s, (CH₂CH₂O)s', (OCH₂CH₂CH₂)s", (CH₂CH₂CH₂O)t, and (aa)t';
 - aa is independently at each occurrence an amino acid;

25

Z is selected from the group: aryl substituted with 0-3 R¹⁶,

C3-10 cycloalkyl substituted with 0-3 R¹⁶, and a 5-10

membered heterocyclic ring system containing 1-4

heteroatoms independently selected from N, S, and O and
substituted with 0-3 R¹⁶;

- $_{
 m R}13$, $_{
 m R}13$ a, $_{
 m R}14$, $_{
 m R}14$ a, and $_{
 m R}15$ are independently selected at each occurrence from the group: H, =0, COOH, SO3H, PO3H, C1-C5 alkyl substituted with 0-3 $_{
 m R}16$, aryl substituted with 0-3 $_{
 m R}16$, benzyl substituted with 0-3 $_{
 m R}16$, and C1-C5 alkoxy substituted with 0-3 $_{
 m R}16$, NHC(=0)R17, C(=0)NHR17, NHC(=0)NHR17, and a bond to the chelator;
- a bond to the chelator, COOR¹⁷, C(=0)NHR¹⁷, NHC(=0)R¹⁷, OH, NHR¹⁷, SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with 0-3 R¹⁷, C₁-5 alkyl substituted with 0-1 R¹⁸, C₁-5 alkoxy substituted with 0-1 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;
- R17 is independently selected at each occurrence from the group:

 H, alkyl substituted with 0-1 R¹⁸, aryl substituted with

 0-1 R¹⁸, a 5-10 membered heterocyclic ring system

 containing 1-4 heteroatoms independently selected from N,

 S, and O and substituted with 0-1 R¹⁸, C3-10 cycloalkyl

 substituted with 0-1 R¹⁸, polyalkylene glycol substituted

 with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸,

 cyclodextrin substituted with 0-1 R¹⁸, amino acid

 substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with

 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide

 substituted with 0-1 R¹⁸, wherein the peptide is comprised

 of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl,

 bis(phosphonomethyl)glycine, and a bond to the chelator;
- $_{30}$ $_{R}^{18}$ is a bond to the chelator;

5

15

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x' is selected from 0, 1, 2, 3, 4, and 5; and
x' is selected from 0, 1, 2, 3, 4, and 5.

- 14. A diagnostic agent according to claim 13 wherein W^1 and W^2 are independently selected at each occurrence from the group: 0, NH, NHC(=0), C(=0)NH, NR¹⁵C(=0), C(=0)NR¹⁵, C(=0), C(=0)0, OC(=0), NHC(=S)NH, NHC(=0)NH, SO₂, (CH₂CH₂O)76-84-, (OCH₂CH₂O)_S, (CH₂CH₂O)_S, (OCH₂CH₂O)_S, (CH₂CH₂O)_S, (CH
- 20 aa is independently at each occurrence an amino acid;
- Z is selected from the group: aryl substituted with 0-1 R¹⁶,

 C3-10 cycloalkyl substituted with 0-1 R¹⁶, and a 5-10

 membered heterocyclic ring system containing 1-4

 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁶;
- R13, R13a, R14, R14a, and R15 are independently selected at each occurrence from the group: H, =0, COOH, SO3H, C1-C5 alkyl substituted with 0-1 R16, aryl substituted with 0-1 R16, benzyl substituted with 0-1 R16, and C1-C5 alkoxy substituted with 0-1 R16, NHC(=0)R17, C(=0)NHR17, NHC(=0)NHR17, NHR17, R17, and a bond to the chelator;

```
k is 0 or 1;
   s is selected from 0, 1, 2, 3, 4, and 5;
    s' is selected from 0, 1, 2, 3, 4, and 5;
   s" is selected from 0, 1, 2, 3, 4, and 5; and
5 t is selected from 0, 1, 2, 3, 4, and 5.
    15 A diagnostic agent according to claim 13 wherein
    wherein:
    W^{1} is C(=0)NR^{15};
   h is 1;
10
    g is 3;
    R^{13} and R^{14} are independently H;
    x is 1;
    k is 0;
   g'is 0;
15
    h' is 1;
    W^2 is NH; and
     x' is 1.
   16. A diagnostic agent according to claim 13 wherein
20
     x is 0;
     k is 1;
     Z is aryl substituted with 0-3 R^{16};
     g' is 1;
 25 W^2 is NH;
     {\tt R}^{13a} and {\tt R}^{14a} are independently H;
     h' is 1; and
     x' is 1.
 30 17. A diagnostic agent according to claim 13 wherein
     W^1 is C(=0)NR^{15};
      h is 1;
      g is 2;
      R^{13} and R^{14} are independently H;
 35 x is 1;
```

```
k is 0;
    g' is 1;
    {
m R}^{13a} and {
m R}^{14a} are independently H; or C1-5 alkyl substituted
    with 0-3 R^{16};
5 R16 is SO3H;
    W^2 is NHC(=0) or NH;
    h' is 1; and
    x' is 2.
10 18. A diagnostic agent according to claim 13 wherein
    W^1 is C(=0)NH;
    h is 1;
     g is 3;
     {\tt R}^{13} and {\tt R}^{14} are independently H;
   k is 0;
15
     g' is 0;
     x is 1;
     W^2 is -NH(C=0) - or -(OCH_2CH_2)76-84-;
     h' is 2; and
    x' is 1.
20
     19. A diagnostic agent according to claim 13 wherein
     x is 0;
     k is 0;
 25 g' is 3;
     h' is 1;
      W^2 is NH; and
      x' is 1.
    20. A diagnostic agent according to claim 13 wherein
 30
      x is 0;
      Z is aryl substituted with 0-3 R^{16};
      k is 1;
      g' is 1;
```

 $R^{13}aR^{14}a$ are independently H; W^2 is NHC(=0) or -(OCH2CH2)76-84-; and x' is 1.

21. A diagnostic agent according to claim 13 wherein W^1 is C=0; g is 2; $R^{13} \text{ and } R^{14} \text{ are independently H;}$

k is 0; 10 g'is 0; h' is 1;

 W^2 is NH; and

x' is 1.

- 15 22. A compound according to claim 1 wherein the linking group is absent.
- 23. A diagnostic agent according to claim 1 wherein the chelator is a metal bonding unit having a formula selected20 from the group:

$$E^{1}$$
 A^{2}
 A^{1}
 A^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{5}
 A^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{2}
 A^{4}
 E^{4}
 E^{5}
 E^{6}
 A^{1}
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 E^{6}
 E^{6}
 E^{6}
 E^{7}
 E^{1}
 E^{2}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
 E^{6}
 E^{6}
 E^{7}
 E^{1}
 E^{1}
 E^{2}
 E^{2}
 E^{3}
 E^{4}

$$A^{1}$$
 E^{1}
 A^{2}
 E^{3}
 A^{4}
 E^{5}
 A^{5}
 A^{5}
 A^{5}
 A^{6}
 A^{7}
 A^{7}
 A^{7}
 A^{8}
 A^{8

- A¹, A², A³, A⁴, A⁵, A⁶, A⁷, and A⁸ are independently selected at each occurrence from the group: N, NR²⁶, NR¹⁹, NR¹⁹R²⁰, S, SH, -S(Pg), O, OH, PR^{19} , $PR^{19}R^{20}$, $-O-P(O)(R^{21})-O-$, $P(O)R^{21}R^{22}$, a bond to the targeting molety and a bond to the linking group;
- 10 Pg is a thiol protecting group;
- E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₆ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ aryl-substituted with 0-3 R²³, and a 5-10 membered heterocyclic

ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

- \mathbb{R}^{19} and \mathbb{R}^{20} are each independently selected from the group: bond to the linking group, a bond to the targeting moiety, 5 hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{1-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms 10 independently selected from N, S, and O, C6-10 aryl-C1-10 alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ arylsubstituted with 0-3 R²³, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an 15 electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;
- R^{21} and R^{22} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, 20 -OH, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring 25 system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl- substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 30 heteroatoms independently selected from N, S, and O and substituted with $0-3 R^{23}$;

- \mathbb{R}^{23} is independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety; =0, F, Cl, Br, I, -CF3, -CN, -CO₂R²⁴, -C(=0)R²⁴, $-C(=0)N(R^{24})_2$, -CHO, $-CH_2OR^{24}$, $-OC(=0)R^{24}$, $-OC(=0)OR^{24}a$, $-OR^{24}$, $-OC(=0)N(R^{24})_2$, $-NR^{25}C(=0)R^{24}$, $-NR^{25}C(=0)OR^{24}a$, 5 $-NR^{25}C(=0)N(R^{24})_2$, $-NR^{25}SO_2N(R^{24})_2$, $-NR^{25}SO_2R^{24a}$, $-SO_3H$, $-SO_2R^{24a}$, $-SR^{24}$, $-S(=0)R^{24a}$, $-SO_2N(R^{24})_2$, $-N(R^{24})_2$, $-NHC(=S)NHR^{24}$, $=NOR^{24}$, NO_2 , $-C(=O)NHOR^{24}$, $-C(=O)NHNR^{24}R^{24}a$, -OCH2CO2H, 2-(1-morpholino)ethoxy, C1-C5 alkyl, C2-C4 10 alkenyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6 alkoxyalkyl, aryl substituted with 0-2 R^{24} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O; and wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is 15 a bond to the linking group or targeting moiety; R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, H, C1-C6 alkyl, phenyl, benzyl, C1-C6 alkoxy, halide, nitro, cyano, and trifluoromethyl; and R²⁶ is a co-ordinate bond to a metal or a hydrazine protecting 20 group; or a pharmaceutically acceptable salt thereof.
 - 24. A diagnostic agent according to claim 23 wherein:
- 25 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: NR^{19} , $NR^{19}R^{20}$, S, SH, OH, a bond to the targeting moiety and a bond to the linking group;
- 30 E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₀ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl

substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

- wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 and R^{23} is a bond to the linking group or the targeting moiety;
- hydrogen, C1-C10 alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³, and an electron, then the other is also an electron;
- is independently selected at each occurrence from the group: a bond to the targeting moiety, a bond to the linking group, =0, F, Cl, Br, I, $-CF_3$, -CN, $-CO_2R^{24}$, $-C(=O)R^{24}$, and $-C(=CO_2R^{24})$, and $-C(=CO_2R^{24})$, and
 - $\rm R^{24},\ R^{24a},\ and\ R^{25}$ are independently selected at each occurrence from the group: a bond to the linking group, H, and C1-C6 alkyl.
- 30
 25. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{6}
 E^{7}
 A^{7}
 A^{8}
 A^{3}
 A^{5}
 A^{6}
 A^{8}

 A^1 is a bond to the linking group;

5 A^2 , A^4 , and A^6 are each N;

 A^3 , A^5 , A^7 and A^8 are each OH;

 E^1 , E^2 , and E^4 are C2 alkyl;

 R^{23} is =0.

10

15 26. A diagnostic agent according to claim 23 wherein the chelator is of the formula:
Ch is

 E^3 , E^5 , E^7 , and E^8 are C_2 alkyl substituted with 0-1 R^{23} ;

20 wherein:

A5 is a bond to Ln;

 ${\tt A}^1$, ${\tt A}^3$, ${\tt A}^7$ and ${\tt A}^8$ are each OH;

 A^2 , A^4 and A^6 are each NH;

 ${\rm E}^{1}$, ${\rm E}^{3}$, ${\rm E}^{5}$, ${\rm E}^{7}$, and ${\rm E}^{8}$ are ${\rm C}_{2}$ alkyl substituted with 0-1 ${\rm R}^{23}$;

25 E^2 , and E^4 , are C_2 alkyl;

 R^{23} is =0.

27. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

 ${\tt A}^1$, ${\tt A}^2$, ${\tt A}^3$ and ${\tt A}^4$ are each N;

 ${\tt A}^{5}$, ${\tt A}^{6}$ and ${\tt A}^{8}$ are each OH;

10

5

 ${\tt A}^7$ is a bond to ${\tt L}_n$;

 E^{1} , E^{2} , E^{3} , E^{4} are each independently C2 alkyl; and

 ${\rm E}^5$, ${\rm E}^6$, ${\rm E}^7$, ${\rm E}^8$ are each independently ${\rm C}_2$ alkyl substituted with 0-1 ${\rm R}^{23}$;

15

 R^{23} is =0.

28. A diagnostic agent according to claim 23 wherein the

 E^1 — A^2 chelator is of the formula: A^1 ;

20

 A^1 is NR^{26} ;

 ${\rm R}^{26}$ is a co-ordinate bond to a metal or a hydrazine protecting group;;

E1 is a bond;

 A^2 is NHR¹⁹;

5

- ${\bf R}^{19}$ is a heterocycle substituted with ${\bf R}^{23}$, the heterocycle being selected from pyridine and pyrimidine;
- R^{23} is selected from a bond to the linking group, C(=0)NHR²⁴ and C(=0)R²⁴; and
 - ${\rm R}^{24}$ is a bond to the linking group.
- 29. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

wherein:

 A^1 and A^5 are each -S(Pg);

Pg is a thiol protecting group;

20 E^1 and E^4 are C_2 alkyl substituted with 0-1 R^{23} ;

 R^{23} is =0;

 A^2 and A^4 are each -NH;

 E^2 is CH_2 ;

 E^3 is C_{1-3} alkyl substituted with 0-1 R^{23} ;

- 25 A^3 is a bond to Ln.
 - 30. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

$$A^{1}$$
 E^{1} A^{2} E^{2} A^{3} E^{3} A^{4} E^{4} E^{5} A^{5} E^{6}

wherein:

A¹ is a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

5 A^2 is NH;

 E^2 is C_2 alkyl substituted with $0-1R^{23}$;

 A^3 is $-O-P(O)(R^{21})-O$;

E3 is C1 alkyl;

 A^4 and A^5 are each -0-;

10 E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0- $1R^{23}$;

E⁵ is C₁ alkyl;

 R^{21} is -OH; and

 R^{23} is =0.

15

31. A diagnostic agent according to claim 1 having the formula:

$$(Q)_{d-L_n-C_h}$$

20

wherein, Q is a compound of Formulae (Ia) or (Ib):

- 25 R is independently OH or -CH₂SH;
 - R¹ is independently selected at each occurrence from the group: H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and heterocycle-S-CH₂₋;

 R^2 is independently C_{1-20} alkyl;

X is independently C=0 or SO_2 , provided when X is C=0, R^3 is

5

15

and when X is SO_2 , R^3 is independently selected from the group: aryl substituted with $0-2 R^6$, and heterocycle substituted with 0-2 R6;

 \mathbb{R}^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl; 10

 ${\ensuremath{\mathsf{R}}}^5$ is independently at each occurrence from the group: NH(C1-6 alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n ;

 R^6 is independently aryloxy substituted with 0-3 R^7 ;

 ${\tt R}^7$ is independently halogen or methoxy;

20 or alternatively,

 ${\tt R}^1$ and ${\tt R}^4$ may be taken together to form a bridging group of the formula $-(CH_2)_3-O$ -phenyl- CH_2 -, optionally substituted with a bond to Ln; 25

or alternatively,

 ${\tt R}^1$ and ${\tt R}^2$ may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to 30 L_n ; or

- R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $-C(=0)-NR^{29}R^{30}$;
- R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to L_n , provided that when R^8 is phenyl, R^{10} is $-C(=0)-CR^{12}-NH-CH(CH_3)-COOH$;

10

15

5

- R^9 and R^{9} ' are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n ;
- R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} or a bond to L_n ;

or alternatively,

 R^9 and R^{10} are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with a bond to L_n ;

 R^{12} is independently C₁₋₂₀ alkyl;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

5 L_{n} is a linking group having the formula:

$$((W^1)_{h^-}(CR^{13}R^{14})_g)_{x^-}(Z)_{k^-}((CR^{13}a_R^{14}a)_{g'}-(W^2)_{h'})_{x'};$$

- 15 aa is independently at each occurrence an amino acid;
- Z is selected from the group: aryl substituted with 0-3 R¹⁶,

 C3-10 cycloalkyl substituted with 0-3 R¹⁶, and a 5-10

 membered heterocyclic ring system containing 1-4

 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁶;
- R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =0, COOH, SO3H, PO3H, C1-C5 alkyl substituted with 0-3 R¹⁶, aryl substituted with 0-3 R¹⁶, benzyl substituted with 0-3 R¹⁶, and C1-C5 alkoxy substituted with 0-3 R¹⁶, NHC(=0)R¹⁷, C(=0)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to Ch;
- $_{\rm R}^{16}$ is independently selected at each occurrence from the group: a bond to Ch, COOR 17 , C(=0)NHR 17 , NHC(=0)R 17 , OH, NHR 17 , SO3H, PO3H, -OPO3H2, -OSO3H, aryl substituted with 0-3 R 17 ,

 C_{1-5} alkyl substituted with 0-1 R^{18} , C_{1-5} alkoxy substituted with 0-1 R^{18} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;

5

R¹⁷ is independently selected at each occurrence from the group:

H, alkyl substituted with 0-1 R¹⁸, aryl substituted with

0-1 R¹⁸, a 5-10 membered heterocyclic ring system

containing 1-4 heteroatoms independently selected from N,

S, and O and substituted with 0-1 R¹⁸, C3-10 cycloalkyl

substituted with 0-1 R¹⁸, polyalkylene glycol substituted

with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸,

cyclodextrin substituted with 0-1 R¹⁸, amino acid

substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with

0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide

substituted with 0-1 R¹⁸, wherein the peptide is comprised

of 2-10 amino acids, 3,6-0-disulfo-B-D-galactopyranosyl,

bis(phosphonomethyl)glycine, and a bond to Ch;

20 R^{18} is a bond to C_h ;

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;

g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x is selected from 0, 1, 2, 3, 4, and 5;
x' is selected from 0, 1, 2, 3, 4, and 5;

 $C_{
m h}$ is a metal bonding unit having a formula selected from the group:

10

 $_{\rm A}^{1}$, $_{\rm A}^{2}$, $_{\rm A}^{3}$, $_{\rm A}^{4}$, $_{\rm A}^{5}$, $_{\rm A}^{6}$, $_{\rm A}^{7}$, and $_{\rm A}^{8}$ are independently selected at each occurrence from the group: N, $_{\rm NR}^{26}$, $_{\rm NR}^{19}$, $_{\rm NR}^{19}$, $_{\rm NR}^{19}$, S, SH, $_{\rm S}^{20}$, O, OH, $_{\rm PR}^{19}$, $_{\rm PR}^{19}$, $_{\rm C}^{20}$, $_{\rm C}^{21}$)-O-,

 $P(0)R^{21}R^{22}$, a bond to the targeting moiety and a bond to the linking group;

Pg is a thiol protecting group;

5

10

- E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₆ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ aryl-substituted with 0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;
- R^{19} and R^{20} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, 20 hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R²³, C₁₋₁₀ cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered 25 heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C6-10 aryl-C1-10 alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} arylsubstituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an 30 electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

R²¹ and R²² are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety,
-OH, C1-C10 alkyl substituted with 0-3 R²³, C1-C10 alkyl
substituted with 0-3 R²³, aryl substituted with 0-3 R²³,
C3-10 cycloalkyl substituted with 0-3 R²³,
heterocyclo-C1-10 alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C6-10 aryl-C1-10 alkyl substituted with 0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

15

 \mathbb{R}^{23} is independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, =0, F, Cl, Br, I, -CF3, -CN, -CO $_2$ R 24 , -C(=0)R 24 , $-C(=0)N(R^{24})_2$, -CHO, $-CH_2OR^{24}$, $-OC(=0)R^{24}$, $-OC(=0)OR^{24}a$, $-OR^{24}$, $-OC(=0)N(R^{24})_2$, $-NR^{25}C(=0)R^{24}$, $-NR^{25}C(=0)OR^{24}a$, 20 $-NR^{25}C(=0)N(R^{24})_2$, $-NR^{25}SO_2N(R^{24})_2$, $-NR^{25}SO_2R^{24}a$, $-SO_3H$, $-SO_2R^{24a}$, $-SR^{24}$, $-S(=0)R^{24a}$, $-SO_2N(R^{24})_2$, $-N(R^{24})_2$, $-NHC(=S)NHR^{24}$, $=NOR^{24}$, NO_2 , $-C(=O)NHOR^{24}$, $-C(=O)NHNR^{24}R^{24}a$, -OCH2CO2H, 2-(1-morpholino)ethoxy, C1-C5 alkyl, C2-C4 alkenyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6 25 alkoxyalkyl, aryl substituted with $0-2\ R^{\textstyle 24}$, and a 5-10membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O; and wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is a bond to the linking group or targeting moiety; 30 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to the linking group, a bond to the

```
targeting moiety, H, C1-C6 alkyl, phenyl, benzyl, C1-C6 alkoxy,
    halide, nitro, cyano, and trifluoromethyl; and
    \mathbb{R}^{26} is a co-ordinate bond to a metal or a hydrazine protecting
    group; or
 5
    a pharmaceutically acceptable salt thereof.
         A diagnostic agent according to Claim 31, wherein:
    h' is 1;
10 W^2 is NH; and
    x' is 1.
    33. A diagnostic agent according to Claim 31, wherein:
    x is 0;
    Z is aryl substituted with 0-3 R^{16};
15
    k is 1;
    g' is 1;
    R<sup>13aR<sup>14a</sup> are independently H;</sup>
    W^2 is NHC(=0) or -(OCH2CH2)76-84-; and
20
   x' is 1.
    34. A diagnostic agent according to Claim 31, wherein:
    W^1 is C=0;
    g is 2;
    R^{13} and R^{14} are independently H;
    k is 0;
    g'is 0;
    h' is 1;
    W^2 is NH; and
30 x' is 1.
          A diagnostic agent according to Claim 31, wherein:
    2-{[5-(3-{2-[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-
    bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-
```

```
amino]-acetylamino}-propylcarbamoyl)-pyridin-2-yl]-
          hydrazonomethyl}-benzenesulfonic acid;
          2-{[5-(4-{[(6-Hydroxycarbamoy1-7-isobuty1-8-oxo-2-oxa-9-aza-
         bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-
          amino]-methyl}-benzylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-
          benzenesulfonic acid;
          2-[7-({N-[3-(2-{[7-(N-hydroxycarbamoy1)(3S,6R,7S)-4-aza-6-(2-(2-x))})]})
10
         methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
          1(15),12(16),13-trien-3-
          yl]carbonylamino}acetylamino)propyl]carbamoyl}methyl)-1,4,7,10-
          tetraaza-4,10-bis(carboxymethyl)cyclododecyl]acetic acid;
15
          methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
          1(15),12(16),13-trien-3-yl]-
          carbonylamino}methyl)phenyl]methyl}carbamoyl)methyl]-1,4,7,10-
          tetraaza-4,10-bis(carboxymethyl)cyclododecyl}acetic acid;
20
          2-(7-\{[N-(1-\{N-[3-(2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-
          (2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
          1(15),12(16),13-trien-3-
          yl]carbonylamino}acetylamino)propyl]carbamoyl}-2-
25
          sulfoethyl)carbamoyl]methyl}-1,4,7,10-tetraaza-4,10-
          bis(carboxymethyl)cyclododecyl)acetic acid;
          2-[7-({N-[1-(N-{[4-({[7-(N-hydroxycarbamoy1)(3S,6R,7S)-4-aza-6-
          (2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
30
          1(15),12(16),13-trien-3-yl]-
          carbonylamino}methyl)phenyl]methyl}carbamoyl)-2-
          sulfoethyl]carbamoyl}methyl)-1,4,7,10-tetraaza-4,10-
          bis(carboxymethyl)cyclododecyl]acetic acid;
          2-({2-((N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-(2-((N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-(2-((3S,6R,7S)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(2-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-aza-6-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6R)-4-(3S,6
35
          methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
```

```
1(15),12(16),13-trien-3-
    yl]carbonylamino}acetylamino)propyl]carbamoyl}methyl)(carboxymet
    hyl)amino}ethyl){2-[bis(carboxymethyl)amino]ethyl}amino]acetic
    acid;
5
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
    1(15),12(16),13-trien-3-y1]-
    carbonylamino}methyl)phenyl]methyl}carbamoyl)methyl](carboxymeth
10
    y1)amino}ethy1){2-[bis(carboxymethy1)amino]ethy1}amino]acetic
    acid;
    N-[3-(2-\{[7-(N-hydroxycarbamoy1)(3S,6R,7S)-4-aza-6-(2-K)]
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
15
    1(15),12(16),13-trien-3-yl]carbonylamino}acetylamino)propyl]-
    4,5-bis[2-(ethoxyethylthio)acetylamino]pentanamide;
    N-\{[4-(\{[7-(N-hydroxycarbamoy1)(3S,6R,7S)-4-aza-6-(2-4)\}]\}
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
20
    1(15),12(16),13-trien-3-yl]carbonylamino}methyl)-phenyl]methyl}-
    4,5-bis[2-(ethoxyethylthio)acetylamino]-pentanamide;
    1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha, \omega-
    dicarbonylPEG3400-2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-
25
    (2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
    1(15), 12(16), 13-trien-3-yl]carbonylamino}-N-(3-
    aminopropyl) acetamide;
    1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha, \omega-
30
    dicarbonylPEG3400-[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
    1(15),12(16),13-trien-3-yl]-N-{[4-
    (aminomethyl)phenyl]methyl}carboxamide conjugate;
35
    2-[2-({5-[N-(5-(N-hydroxycarbamoy1)(5R)-5-{3-[4-(3,4-
    dimethoxyphenoxy)phenyl]-3-methyl-2-
```

oxopyrrolidinyl}pentyl)carbamoyl](2-pyridyl)}amino)(1Z)-2-azavinyl]benzenesulfonic acid;

2-(2-{[5-(N-{3-[3-(N-hydroxycarbamoyl)(4S)-4-({4-[(45 methylphenyl)methoxy]piperidyl}carbonyl)piperidyl]-3oxopropyl}carbamoyl)(2-pyridyl)]amino}(1Z)-2azavinyl)benzenesulfonic acid; and

10

36. A diagnostic agent according to claim 1 wherein the diagnostic metal is selected from the group consisting of: a paramagnetic metal, a ferromagnetic metal, a gamma-emitting radioisotope, or an x-ray absorber.

- 37. A diagnostic agent according to claim 36 wherein the diagnostic metal is radioisotope selected from the group consisting of $99 \rm m_{TC}$, $95 \rm m_{TC}$, $111 \rm m_{TC}$, $62 \rm m_{TC}$, $64 \rm m_{TC}$, and $68 \rm m_{TC}$.
- 20 38. A diagnostic agent according to claim 37 further comprising a first ancillary ligand and a second ancillary ligand capable of stabilizing the radioisotope.
- 39. A diagnostic agent according to Claim 37, wherein the radioisotope is 99mTc.
 - 40. A diagnostic agent according to Claim 37, wherein the radioisotope is $^{111}{\rm In}$.

- 41. A diagnostic agent according to claim 36 wherein the paramagnetic metal ion is selected from the group consisting of Gd(III), Dy(III), Fe(III), and Mn(II).
- 5 42. A diagnostic agent according to claim 36 wherein the x-ray absorber is a metal is selected from the group consisting of: Re, Sm, Ho, Lu, Pm, Y, Bi, Pd, Gd, La, Au, Au, Yb, Dy, Cu, Rh, Ag, and Ir.
- 10 43. A diagnostic composition comprising a compound according to claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 44. A kit comprising a compound of Claim 1, or a pharmaceutically acceptable salt form thereof and a pharmaceutically acceptable carrier.
 - 45. A kit according to Claim 44, wherein the kit further comprises one or more ancillary ligands and a reducing agent.
 - 46. A kit according to Claim 45, wherein the ancillary ligands are tricine and TPPTS.
- 47 A kit according to Claim 45, wherein the reducing agent is tin(II).
 - 48. A diagnostic agent comprising an echogenic gas and a compound, wherein the compound comprises:
 - i) 1-10 targeting moieties;
- 30 ii) a surfactant (Sf); and

20

(iii) 0-1 linking groups between the targeting moiety and surfactant;

wherein the targeting moiety is a matrix metalloproteinase inhibitor; and

wherein the surfactant is capable of forming an echogenic gas filled lipid sphere or microbubble.

- 49. A diagnostic agent according to claim 48, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <1000 nM.
- 50. A diagnostic agent according to claim 48, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <100 nM.
- 10 51. A diagnostic agent according to claim 48, comprising 1-5 targeting moieties.
 - 52. A diagnostic agent according to claim 48, comprising one targeting moiety.
- 53. A diagnostic agent according to claim 48, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases selected from the group consisting of MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14.
 - 54. A diagnostic agent according to claim 48, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases selected from the group consisting of MMP-2, MMP-9, and MMP-14.
 - 55. A diagnostic agent according to claim 48, wherein the targeting moiety is of the formulae (Ia) or (Ib):

R is independently OH or -CH₂SH;

5

15

20

25

- R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;
- 5 R^2 is independently C_{1-20} alkyl;
 - X is independently C=O or SO_2 , provided when X is C=O, \mathbb{R}^3 is

$$-N \stackrel{R^4}{\longrightarrow} R^5$$
 , and when X is SO₂, R³ is independently selected from the group: aryl substituted with 0-2 R⁶, and heterocycle substituted with 0-2 R⁶;

- R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- 15 R⁵ is independently at each occurrence from the group: NH(C₁-6 alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the surfactant;

 R^6 is independently aryloxy substituted with 0-3 R^7 ;

 ${\ensuremath{\mathsf{R}}}^7$ is independently halogen or methoxy;

- 25 or alternatively,
 - R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3-0$ -phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the surfactant;

or alternatively,

30

10

- R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to the linking group or a bond to the surfactant; or
- 5 R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

10

 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to the linking group or a bond to the surfactant, provided that when R^8 is phenyl, R^{10} is - $C(=0)-CR^{12}-NH-CH(CH_3)-COOH$;

15

R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO₂ and S, said ring system substituted with R⁶ and optionally substituted with a bond to the linking group or a bond to the surfactant;

25

30

R¹⁰ and R¹¹ are independently H, or C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with 0-3 R²⁷, a bond to the linking group or a bond to the surfactant;

or alternatively,

5

- ${
 m R}^9$ and ${
 m R}^{10}$ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, ${
 m SO}_2$ and S, said ring system optionally substituted with a bond to the linking group or a bond to the surfactant; and
- 10 R^{12} is independently C_{1-20} alkyl; R^{27} is =0, C_{1-4} alkyl, or phenyl substituted with R^{28} ; R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups; R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C_{5-7} atom saturated ring system

 15 substituted with R^{31} ; and R^{31} is a benzyloxy group substituted with C_{1-4} alkyl.
- 56. A diagnostic agent according to claim 55 wherein
 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

25 R is OH;

30

 R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-6} alkyl;

X is C=0;

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

5

10

- R⁵ is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the surfactant;
- R^6 is independently aryloxy substituted with 0-3 R^7 ;
- R⁷ is independently halogen or methoxy;

15

- or alternatively,
- R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3-0$ -phenyl- CH_2- , optionally substituted with a bond to the linking group or a bond to the surfactant;

or alternatively,

- R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to the linking group or a bond to the surfactant; or
- R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

R8 is OH:

R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted with a bond to the linking group or a bond to the surfactant;

10

15

5

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from 0, N, , said ring system optionally substituted with 0-3 R^{27} , a bond to the linking group or a bond to the surfactant;

20 or alternatively,

R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted with a bond to the linking group or a bond to the surfactant; and

 R^{12} is independently C₁₋₆ alkyl;

 R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups; R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and

 \mathbb{R}^{31} is a benzyloxy group substituted with C1-4 alkyl.

57. A diagnostic agent according to claim 55 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

wherein:

R is -OH;

 R^2 is C_{1-6} alkyl;

10 X is C=0;

25

30

$$R^3$$
 is R^5

 R^1 and R^4 are taken together to form a bridging group of formula $-(CH_2)_3-O$ -phenyl- CH_2- ;

R⁵ is NH(C1-6alkyl), substituted with a bond to the linking group or a bond to the surfactant.

58. A diagnostic agent according to claim 55 wherein: R is -OH;

 \mathbb{R}^9 is \mathbb{C}_1 alkyl substituted with a bond to $\mathbb{L}n$;

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right system is substituted with 0-3 R^{27} ;

 R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; and R^{28} is a phenoxy group substituted with 0-2 OCH3 groups.

59. A diagnostic agent according to claim 55 wherein the R is -OH:

 $\rm R^1$ and $\rm R^2$ taken together with the nitrogen and carbon atom through which they are attached form a $\rm C_{5-7}$ atom saturated ring system substituted with one or more substituents selected from

the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

 ${\bf R}^{29}$ and ${\bf R}^{30}$ taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with ${\bf R}^{31}$; and

 \mathbb{R}^{31} is a benzyloxy group substituted with C1-4 alkyl.

60. A diagnostic agent according to claim 48 wherein the linking group is of the formula:

 $((W^1)_{h^-}(CR^{13}R^{14})_g)_{x^-}(Z)_{k^-}((CR^{13}a_R^{14}a)_{g'^-}(W^2)_{h'})_{x'};$

10

20

25

30

 W^1 and W^2 are independently selected at each occurrence from the group: O, S, NH, NHC(=0), C(=0)NH, NR¹⁵C(=0), C(=0)NR¹⁵, C(=0), C(=0)0, OC(=0), NHC(=S)NH, NHC(=0)NH, SO₂, SO₂NH, - (OCH₂CH₂)₇₆₋₈₄, (OCH₂CH₂)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂)_S", (CH₂CH₂CH₂O)_t, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R¹⁶, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁶, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁶;

R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R¹⁶, aryl substituted with 0-3 R¹⁶, benzyl substituted with 0-3 R¹⁶, and C₁-C₅ alkoxy substituted with 0-3 R¹⁶, NHC(=0)R¹⁷, C(=0)NHR¹⁷, NHC(=0)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to the surfactant;

- R16 is independently selected at each occurrence from the group: a bond to the surfactant, $COOR^{17}$, $C(=O)NHR^{17}$, $NHC(=O)R^{17}$, OH, NHR^{17} , SO_3H , PO_3H , $-OPO_3H_2$, $-OSO_3H$, aryl substituted with 0-3 R^{17} , C_{1-5} alkyl substituted with 0-1 R^{18} , C_{1-5} alkoxy substituted with 0-1 R^{18} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;
- ${\it R}^{17}$ is independently selected at each occurrence from the group: 10 H, alkyl substituted with 0-1 R^{18} , aryl substituted with $0-1\ R^{18}$, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{18} , C_{3-10} cycloalkyl substituted with 0-1 R^{18} , polyalkylene glycol substituted 15 with 0-1 R^{18} , carbohydrate substituted with 0-1 R^{18} , cyclodextrin substituted with 0-1 R^{18} , amino acid substituted with 0-1 ${
 m R}^{18}$, polycarboxyalkyl substituted with $0-1\ \mathrm{R}^{18}$, polyazaalkyl substituted with $0-1\ \mathrm{R}^{18}$, peptide substituted with 0-1 ${\ensuremath{\mathsf{R}}}^{18}$, wherein the peptide is comprised 2.0 of 2-10 amino acids, 3,6-0-disulfo-B-D-galactopyranosyl, bis(phosphonomethyl)glycine, and a bond to the surfactant;

 R^{18} is a bond to the surfactant;

25

5

k is selected from 0, 1, and 2;
h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; x is selected from 0, 1, 2, 3, 4, and 5; and x' is selected from 0, 1, 2, 3, 4, and 5.

5

10

61. A diagnostic agent according to claim 60 wherein W^1 and W^2 are independently selected at each occurrence from the group: 0, NH, NHC(=0), C(=0)NH, NR¹⁵C(=0), C(=0)NR¹⁵, C(=0), C(=0)0, OC(=0), NHC(=S)NH, NHC(=0)NH, SO₂, - (CH₂CH₂O)₇₆₋₈₄₋, (OCH₂CH₂O)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂O)_S, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-1 R¹⁶, C3-10 cycloalkyl substituted with 0-1 R¹⁶, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁶;

20

25

 R^{13} , R^{13} a, R^{14} , R^{14} a, and R^{15} are independently selected at each occurrence from the group: H, =0, COOH, SO3H, C1-C5 alkyl substituted with 0-1 R^{16} , aryl substituted with 0-1 R^{16} , benzyl substituted with 0-1 R^{16} , and C1-C5 alkoxy substituted with 0-1 R^{16} , NHC(=0) R^{17} , C(=0) R^{17} , NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to the surfactant;

k is 0 or 1;

- s is selected from 0, 1, 2, 3, 4, and 5; 30 s' is selected from 0, 1, 2, 3, 4, and 5; s" is selected from 0, 1, 2, 3, 4, and 5; and t is selected from 0, 1, 2, 3, 4, and 5.
 - 62. A diagnostic agent according to claim 60

```
wherein:
    W^{1} is C(=0)NR^{15};
    h is 1;
    g is 3;
5 R^{13} and R^{14} are independently H;
    x is 1;
    k is 0;
    g'is 0;
    h' is 1;
10 W^2 is NH; and
    x' is 1.
    63. A diagnostic agent according to claim 60
    x is 0;
15 k is 1;
    Z is aryl substituted with 0-3 R<sup>16</sup>;
    g' is 1;
    W^2 is NH;
    R^{13a} and R^{14a} are independently H;
20 h' is 1; and
    x' is 1.
    64. A diagnostic agent according to claim 60
    W^1 is C(=0)NR^{15};
25 h is 1;
    g is 2;
    R^{13} and R^{14} are independently H;
    x is 1;
    k is 0;
30 g' is 1;
    R^{13a} and R^{14a} are independently H; or C1-5 alkyl substituted
    with 0-3 R<sup>16</sup>;
    R^{16} is SO_3H;
  W^2 is NHC(=0) or NH;
```

```
h' is 1; and
    x' is 2.
    65. A diagnostic agent according to claim 60
5 W^1 is C(=0)NH;
    h is 1;
    g is 3;
    R^{13} and R^{14} are independently H;
    k is 0;
   g' is 0;
10
    x is 1;
    W^2 is -NH(C=0) - or - (OCH_2CH_2)76-84^-;
    h' is 2; and
    x' is 1.
15
    66. A diagnostic agent according to claim 60
    x is 0;
    k is 0;
    g' is 3;
20 h' is 1;
     W^2 is NH; and
     x' is 1.
     67. A diagnostic agent according to claim 60
25 x is 0;
     Z is aryl substituted with 0-3 R^{16};
    k is 1;
     g' is 1;
     R13aR14a are independently H;
 30 W^2 is NHC(=0) or -(OCH2CH2)76-84-; and
     x' is 1.
     68. A diagnostic agent according to claim 60
     W^1 is C=0;
 35 g is 2;
```

```
R^{13} and R^{14} are independently H; k is 0; g'is 0; h' is 1; W^2 is NH; and x' is 1.
```

- 69. A diagnostic agent according to claim 48 wherein the linking group is present.
- 70. A diagnostic agent according to claim 48 wherein Sf is a surfactant which is a lipid or a compound of the

 ${\tt A}^9$ is selected from the group: OH and ${\tt OR}^{32}$;

 A^{10} is OR^{32} ;

20

 R^{32} is $C(=0)C_{1-20}$ alkyl;

 ${\tt E}^9$ is C₁₋₁₀ alkylene substituted with 1-3 ${\tt R}^{33}$;

- 25 R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=0)R^{34}, -C(=0)N(R^{34})_2,$ $-CH_2OR^{34}, -OR^{34}, -N(R^{34})_2, C_1-C_5 \text{ alkyl}, \text{ and } C_2-C_4 \text{ alkenyl};$
- R^{34} is independently selected at each occurrence from the group: R³⁵, H, C1-C6 alkyl, phenyl, benzyl, and trifluoromethyl;

 \mathbb{R}^{35} is a bond to \mathbb{L}_n ;

and a pharmaceutically acceptable salt thereof.

5 71. A diagnostic agent according to claim 48 wherein the surfactant is a lipid or a compound of the

E⁹—A¹⁰

10 A^9 is OR^{32} ;

 A^{10} is OR^{32} ;

 R^{32} is $C(=0)C_{1}-15$ alkyl;

15

 ${\tt E}^9$ is C1-4 alkylene substituted with 1-3 ${\tt R}^{33};$

- R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=0)R^{34}, -CH_2OR^{34}, -OR^{34},$ and C_1-C_5 alkyl;
 - R^{34} is independently selected at each occurrence from the group: R^{35} , H, C1-C6 alkyl, phenyl, and benzyl; and
- 25 R^{35} is a bond to L_n .
 - 72. A diagnostic agent according to claim 48, wherein

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{5}
 A^{5}
 E^{6}

wherein:

A¹ ia a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

5 A^2 is NH;

 E^2 is C_2 alkyl sunsttuted wth $0-1R^{23}$;

 A^3 is $-O-P(O)(R^{21})-O$;

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -0-;

10 E^4 and E^6 are each independently $C_{1\text{--}16}$ alkyl substituted with 0-1R²³;

 E^5 is C_1 alkyl;

 A^5 is -0-;

 R^{21} is -OH; and

 R^{23} is =0. 15

25

A diagnostic agent according to claim 48 wherein the compound is of the formula:

 $(Q)_{d-L_n-Sf}$ 20

wherein, Q is a compound of Formulae (Ia) or (Ib):

R is independently OH or $-CH_2SH$;

- R¹ is independently selected at each occurrence from the group:
 H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and
 heterocycle-S-CH₂-;
- 5 R^2 is independently C_{1-20} alkyl;
 - X is independently C=0 or SO_2 , provided when X is C=0, R^3 is

 $\overset{\text{H}}{\text{O}}$, and when X is SO_2 , R^3 is independently selected from the group: aryl substituted with 0-2 R^6 , and heterocycle substituted with 0-2 R^6 ;

- R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- 15 R^5 is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n ;
- 20 R^6 is independently aryloxy substituted with 0-3 R^7 ;
 - R⁷ is independently halogen or methoxy;
 - or alternatively,

25

- R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3-O$ -phenyl- CH_2- , optionally substituted with a bond to L_n ;
- 30 or alternatively,

- R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to L_n ; or
- R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

10

- R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to L_n , provided that when R^8 is phenyl, R^{10} is -C(=0) $-CR^{12}$ -NH-CH(CH₃)-COOH;
- 15 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n ;
- R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} or a bond to L_n ;

- or alternatively,
- R^9 and R^{10} are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially

unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO_2 and S, said ring system optionally substituted with a bond to L_n ;

5 R^{12} is independently C_{1-20} alkyl;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

 L_n is a linking group having the formula:

10

 $((W^1)_{h^-}(CR^{13}R^{14})_g)_{x^-}(Z)_{k^-}((CR^{13}a_{R}^{14}a)_{g'}-(W^2)_{h'})_{x'};$

aa is independently at each occurrence an amino acid;

20

- Z is selected from the group: aryl substituted with 0-3 R¹⁶, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁶, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁶;
- R13, R13a, R14, R14a, and R15 are independently selected at each occurrence from the group: H, =0, C00H, S03H, P03H, C1-C5 alkyl substituted with 0-3 R16, aryl substituted with 0-3 R16, benzyl substituted with 0-3 R16, and C1-C5 alkoxy substituted with 0-3 R16, NHC(=0)R17, C(=0)NHR17, NHR17, R17, and a bond to Sf;

- R¹⁶ is independently selected at each occurrence from the group: a bond to Sf, COOR¹⁷, C(=O)NHR¹⁷, NHC(=O)R¹⁷, OH, NHR¹⁷, SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with 0-3 R¹⁷, C₁-5 alkyl substituted with 0-1 R¹⁸, C₁-5 alkoxy substituted with 0-1 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;
- \mathbb{R}^{17} is independently selected at each occurrence from the group: H, alkyl substituted with 0-1 R¹⁸, aryl substituted with 10 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀ cycloalkyl substituted with 0-1 R¹⁸, polyalkylene glycol substituted with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸, 15 cyclodextrin substituted with 0-1 R¹⁸, amino acid substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide substituted with 0-1 R^{18} , wherein the peptide is comprised 20 of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl, bis(phosphonomethyl)glycine, and a bond to Sf;

 R^{18} is a bond to Sf;

5

k is selected from 0, 1, and 2;
h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; x is selected from 0, 1, 2, 3, 4, and 5; x' is selected from 0, 1, 2, 3, 4, and 5;

5 Sf is a surfactant which is a lipid or a compound of the

 A^9 is selected from the group: OH and OR^{32} ;

A¹⁰ is OR³²;

10

20

25

 R^{32} is $C(=0)C_{1-20}$ alkyl;

15 E^9 is C_{1-10} alkylene substituted with 1-3 R^{33} ;

 R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=0)R^{34}, -C(=0)N(R^{34})_2,$ $-CH_2OR^{34}, -OR^{34}, -N(R^{34})_2, C_1-C_5 \text{ alkyl}, \text{ and } C_2-C_4 \text{ alkenyl};$

 \mathbb{R}^{34} is independently selected at each occurrence from the group: \mathbb{R}^{35} , H, C1-C6 alkyl, phenyl, benzyl, and trifluoromethyl;

 \mathbb{R}^{35} is a bond to \mathbb{L}_n ; or

Sf is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 A^{4}
 E^{4}
 A^{5}
 A^{5}

```
wherein:
```

A¹ ia a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

 A^2 is NH;

5 E^2 is C_2 alkyl sunsttuted wth $0-1R^{23}$;

 A^3 is $-O-P(O)(R^{21})-O;$

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -0-;

 ${\tt E}^4$ and ${\tt E}^6$ are each independently ${\tt C}_{1\text{--}16}$ alkyl substituted with 0-

10 $1R^{23}$;

E⁵ is C₁ alkyl;

 A^5 is -0-;

 R^{21} is -OH; and

 R^{23} is =0; or

15 a pharmaceutically acceptable salt thereof.

74. A diagnostic agent according to Claim 73, wherein:

R is -OH;

 R^2 is C1-6 alkyl;

20 X is C=O;

 R^1 and R^4 are taken together to form a bridging group of formula $-(CH_2)_3-O-phenyl-CH_2-;$

R⁵ is NH(C1-6alkyl), substituted with a bond to the linking group or a bond to the surfactant.

75. A diagnostic agent according to Claim 73, wherein:

R is -OH;

 ${\tt R}^9$ is ${\tt C}_1$ alkyl substituted with a bond to Ln;

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right system is substituted with 0-3 R^{27} ;

 \mathbb{R}^{27} is =0, C1-4 alkyl, or phenyl substituted with \mathbb{R}^{28} ; and

R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups;

Sf is a surfactant which is a lipid or a compound of the

E⁹—A¹⁰
5 formula: A⁹

 A^9 is OR^{32} ;

 A^{10} is OR^{32} :

10

 R^{32} is $C(=0)C_{1}-15$ alkyl;

 E^9 is C_{1-4} alkylene substituted with 1-3 R^{33} ;

- 15 R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=0)R^{34}, -CH_2OR^{34}, -OR^{34},$ and C_1-C_5 alkyl;
- R^{34} is independently selected at each occurrence from the group: 20 R^{35} , H, C1-C6 alkyl, phenyl, and benzyl; and

 \mathbb{R}^{35} is a bond to \mathbb{L}_n .

76. A diagnostic agent according to Claim 73, wherein:

25 R is -OH;

 \mathbb{R}^9 is \mathbb{C}_1 alkyl substituted with a bond to $\mathbb{L}n$;

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right system is substituted with 0-3 R^{27} ;

30 R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; and R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups;

Sf is a surfactant which is a lipid or a compound of the of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{5}
 A^{5}
 E^{6}

5 wherein:

A¹ ia a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

 A^2 is NH;

 E^2 is C_2 alkyl sunsttuted wth $0-1R^{23}$;

10 A^3 is $-O-P(O)(R^{21})-O$;

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -0-;

 E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0- $1R^{23}$;

15 E^5 is C_1 alkyl;

 A^5 is -0-;

 R^{21} is -OH; and

 $^{-1}$ R²³ is =0.

20 77. A diagnostic agent according to Claim 73, wherein: wherein

R is -OH;

 $\rm R^1$ and $\rm R^2$ taken together with the nitrogen and carbon atom through which they are attached form a $\rm C_{5-7}$ atom saturated ring

25 system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$:

 ${\bf R}^{29}$ and ${\bf R}^{30}$ taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system

30 substituted with R^{31} ; and

 \mathbb{R}^{31} is a benzyloxy group substituted with C1-4 alkyl.

d is selected from 1, 2, 3, 4, and 5;

- W is independently selected at each occurrence from the group: O, NH, NHC(=0), C(=0)NH, NR 15 C(=0), C(=0)NR 15 , C(=0), C(=0)O, OC(=0), NHC(=S)NH, NHC(=0)NH, SO₂, (OCH₂CH₂)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂)_S, (CH₂CH₂CH₂O)_t, and (aa)_t;
- 10 aa is independently at each occurrence an amino acid;
- Z is selected from the group: aryl substituted with 0-1 R¹⁶,

 C3-10 cycloalkyl substituted with 0-1 R¹⁶, and a 5-10

 membered heterocyclic ring system containing 1-4

 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁶;
- R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R¹⁶, aryl substituted with 0-1 R¹⁶, benzyl substituted with 0-1 R¹⁶, and C₁-C₅ alkoxy substituted with 0-1 R¹⁶, NHC(=0)R¹⁷, C(=0)NHR¹⁷, NHC(=0)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to Sf;
- 25 k is 0 or 1;
 s is selected from 0, 1, 2, 3, 4, and 5;
 s' is selected from 0, 1, 2, 3, 4, and 5;
 s" is selected from 0, 1, 2, 3, 4, and 5; and
 t is selected from 0, 1, 2, 3, 4, and 5.

30

78. A diagnostic agent according to Claim 73, wherein: W^1 is $C(=0)NR^{15}$; h is 1;

```
g is 3;
    {\tt R}^{13} and {\tt R}^{14} are independently H;
    x is 1;
    k is 0;
  g'is 0;
    h' is 1;
    W^2 is NH; and
     x' is 1.
10 79. A diagnostic agent according to Claim 73, wherein:
     x is 0;
     k is 1;
     Z is aryl substituted with 0-3 R^{16};
     g' is 1;
15 W^2 is NH;
     R^{13a} and R^{14a} are independently H;
     h' is 1; and
     x' is 1.
20 80. A diagnostic agent according to Claim 73, wherein:
      W^1 is C(=0)NR^{15};
      h is 1;
      g is 2;
      {\tt R}^{13} and {\tt R}^{14} are independently H;
     x is 1;
 25
      k is 0;
      g' is 1;
      \mathrm{R}^{13}\mathrm{a} and \mathrm{R}^{14}\mathrm{a} are independently H; or C1-5 alkyl substituted
      with 0-3 R^{16};
 30 R^{16} is SO_3H;
       W^2 is NHC(=0) or NH;
       h' is 1; and
       x' is 2.
```

```
81. A diagnostic agent according to Claim 73, wherein:
    W^1 is C(=0)NH;
    h is 1;
    g is 3;
 5 R^{13} and R^{14} are independently H;
    k is 0;
    g' is 0;
    x is 1;
    W^2 is -NH(C=0) - or -(OCH_2CH_2)_{76-84};
10 h' is 2; and
    x' is 1.
    82. A diagnostic agent according to Claim 73, wherein:
    x is 0;
15
   k is 0;
    g' is 3;
    h' is 1;
    W^2 is NH; and
    x' is 1.
20
    83. A diagnostic agent according to Claim 73, wherein:
    x is 0;
    Z is aryl substituted with 0-3 R^{16};
    k is 1;
25 g' is 1;
    R<sup>13a</sup>R<sup>14a</sup> are independently H;
    W^2 is NHC(=0) or -(OCH2CH2)<sub>76-84</sub>-; and
    x' is 1.
30
   84. A diagnostic agent according to Claim 73, wherein:
    W^1 is C=0;
    g is 2;
    R^{13} and R^{14} are independently H;
    k is 0;
```

g'is 0;
h' is 1;
W² is NH; and
x' is 1.

5

85. A diagnostic agent according to Claim 1, wherein the compound is selected from the group consisting of:

10

84. A diagnostic agent according to Claim 48, wherein:wherein the echogenic gas is a perfluorocarbon gas or sulfur hexafluoride.

15

87. A diagnostic agent according to claim 86 wherein said perfluorocarbon is selected from the group consisting of perfluoromethane, perfluoroethane, perfluoropropane, perfluorobutane, perfluorocyclobutane, perfluoropentane, and perfluorohexane.

88. A diagnostic composition comprising a compound according to claim 48 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

25

20

89. A diagnostic composition comprising a compound according to claim 48 or a pharmaceutically acceptable salt form

thereof, an echogenic gas and a pharmaceutically acceptable carrier.

90. A diagnostic composition comprising a compound according to claim 48 further comprising: 1,2-dipalmitoyl-sn-glycero-3-phosphotidic acid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, and N-(methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine.

10

- 91. A method of detecting, imaging or monitoring the presence of matrix metalloproteinase in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent of claim 1; and
 - b) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.
- 20 92. A method of detecting, imaging or monitoring the presence of matrix metalloproteinase in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent of claim 48; and
- c) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.
- 93. A method of detecting, imaging or monitoring a pathological disorder associated with matrix metalloproteinase activity in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent of claim 1; and
- b) acquiring an image of a site of concentration of said
 diagnostic agent in the patient by a diagnostic imaging technique.

- 94. A method of detecting, imaging or monitoring a pathological disorder associated with matrix metalloproteinase activity in a patient comprising the steps of:
- a) administering to said patient a diagnostic agent according to claim 48; and
 - c) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.

10

- 95. A method of detecting, imaging or monitoring atherosclerosis in a patient comprising the steps of:
 - a) administering a diagnostic agent according to claim 1;
 and
- b) acquiring an image of a site of concentration of said diagnostic agent in the body by a diagnostic imaging technique.
- 96. A method of detecting, imaging or monitoring 20 atherosclerosis in a patient comprising the steps of:
 - c) administering a diagnostic agent according to claim48; and
 - d) acquiring an image of a site of concentration of said diagnostic agent in the body by a diagnostic imaging technique.
 - 97. A method according to claim 95, wherein the atherosclerosis is coronory atherosclerosis or cerebrovascular atherosclerosis.
- 30 98. A method according to claim 96, wherein the atherosclerosis is coronory atherosclerosis or cerebrovascular atherosclerosis.
- 99. A method of identifying a patient at high risk for transient ischemic attacks or stroke by determining the degree of active atherosclerosis in a patient comprising carrying out the method of claim 96.

100. A method of identifying a patient at high risk for transient ischemic attacks or stroke by determining the degree of active atherosclerosis in a patient comprising carrying out the method of claim 97.

5

10

15

- 101. A method of identifying a patient at high risk for acute cardiac ischemia, myocardial infarction or cardiac death by determining the degree of active atherosclerosis by imaging the patient by the method of claim 96.
 - 102. A method of identifying a patient at high risk for acute cardiac ischemia, myocardial infarction or cardiac death by determining the degree of active atherosclerosis by imaging the patient by the method of claim 97.
 - 103. A method of simultaneous imaging of cardiac perfusion and extracellular matrix degradation in a patient comprising the steps of:
- a) administering a diagnostic agent according to claim 1, wherein the diagnostic metal is a gamma-emitting radioisotope; and
 - (b) administering a cardiac perfusion compound, wherein the compound is radiolabeled with a gamma-emitting radioisotope which exhibits a gamma emission energy that is spectrally separable from the gamma emission energy of the diagnostic metal conjugated to the targeting moiety in step (a); and
- (c) acquiring, by a diagnostic imaging technique, 30 simultaneous images of the sites of concentration of the spectrally separable gamma-emission energies of the compounds administered in steps (a) and (b).