Third Normal Form (3NF)

Dr. Bing Zhou

Third Normal Form - Motivation

- R (A, B, C)
 AB -> C and C -> B.
 - Example: A = street address, B = city, C = zipcode.
- What is the key?
 - There are two keys, $\{A,B\}$ and $\{A,C\}$.
- These (and similar) structures of FD's cause trouble when we decompose.
- *C*->*B* is a BCNF violation, so we must decompose into *AC*, *BC*.

We Cannot Enforce FD's

- The problem is that if we use AC and BC as our database schema, we cannot enforce the FD AB ->C by checking FD's in these decomposed relations.
- Example with A = street, B = city, and C = zip on the next slide.

An Unenforceable FD

street A	zip C
545 Tech Sq.	02138
545 Tech Sq.	02139

city B	zip C
Cambridge	02138
Cambridge	02139

Join tuples with equal zip codes.

street A	city B	zip C
545 Tech Sq.	Cambridge	02138
545 Tech Sq.	Cambridge	02139
	_	

Although no FD's were violated in the decomposed relations, FD street city -> zip (AB ->C) is violated by the database as a whole.

Preserving FDs in a Decomposition

- Consider the relation Teach(CourseNumber, DepartmentName, Professor, Semester, Year)
- The relation models which courses a professor teaches in which semester.
- Do not assume that each course is taught by at most one professor.
- University introduces two new rules:
 - 1. Each professor teaches ≤ 1 course per semester. PSY \rightarrow CD
 - 2. Each course is taught either in the fall every year or in the spring every year. $CD \rightarrow S$
- ▶ What are the keys? $\{P, S, Y\}$ and $\{C, D, P, Y\}$
- Decomposing using CD → S yields Teach1(C, D, S) and Teach2(C, D, P, Y). Both are in BCNF?
- ► How do you enforce PSY → CD?
- ▶ The BCNF decomposition algorithm does not preserve FDs.

Third Normal Form (3NF)

- ▶ A relation R is in *Third Normal Form* (3NF) if and only if for every non-trivial FD A_1 A_2 ... $A_n \rightarrow B$ for R, one of the following two conditions is true:
 - 1. $\{A_1, A_2, \dots, A_n\}$ is a superkey for R or
 - 2. B is an attribute in some key.
- ▶ Teach(C. D, P, S, Y) has FDs $PSY \rightarrow CD$ and $CD \rightarrow S$
- \blacktriangleright Keys are $\{P, S, Y\}$ and $\{C, D, P, Y\}$.
- CD → S violates BCNF.
- However, Teach is in 3NF because S is a part of a key.

3NF Let's Us Avoid the FD Problem

- 3rd Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problem situation.
- An attribute is *prime* if it is a member of any key.
- X ->A violates 3NF if and only if X is not a superkey, and also A is not prime.

Example

- In our problem situation with FD's AB ->C
 and C ->B, we have keys AB and AC.
- Thus A, B, and C are each prime.
- Although C ->B violates BCNF, it does not violate 3NF.

What 3NF and BCNF Give You

- There are two important properties of a decomposition:
 - Recovery: it should be possible to project the original relations onto the decomposed schema, and then reconstruct the original.
 - 2. Dependency preservation: it should be possible to check in the projected relations whether all the given FD's are satisfied.

3NF and BCNF, Continued

- We can get (1) with a BCNF decompsition.
- We can get both (1) and (2) with a 3NF decomposition.
- But we can't always get (1) and (2) with a BCNF decomposition.
 - street-city-zip is an example.

Decomposition into 3NF

- We can always decompose a relational schema into a set of schemas that are dependency-preserving, i.e.,
 - the decomposition is lossless-join,
 - each resulting relation is in 3NF, and
 - for each FD, there is a relation that allows that FD to be checked.
- 2. However, the relations are not in BCNF and contain some redundancy.

First Normal Form

 Table faithfully represents a relation, primarily meaning it has at least one candidate key, and each attribute is atomic

Name	Gender	Contact	Interest
Neil	М	Email:neil@ee.net,phone:1222456	Reading;Guitar
Devin	М	Email:studyzy@163.net,phone:13934563456	Swimming
Neil	М	Email:neil@ee.net,phone:1222456	Reading;Guitar

UserId	Name	Gender	Email	Phone	Interest
1	Neil	M	neil@ee.net	1222456	Reading; Guitar
2	Devin	M	studyzy@163.net	13934563456	Swimming

First Normal Form

 Table faithfully represents a relation, primarily meaning it has at least one candidate key, and each attribute is atomic

UserId	Name	Gender	Email	Phone
1	Neil	М	neil@ee.net	1222456
2	Devin	М	studyzy@163.net	13934563456

UserId	erId Interest	
1	Reading	
1	Guitar	
2	Swimming	

Second Normal Form

• It has to be in the first normal form + No non-prime attribute in the table is functionally dependent on a proper subset of any candidate

key

StudentId	CourseId	ChooseTime	ConfirmTime	CourseName
1	10	2013/8/26	2013/8/27	微积分
1	11	2013/8/27	2013/8/27	线性代数
2	10	2013/8/26	2013/8/27	微积分

StudentId	CourseId	ChooseTime	ConfirmTime
1	10	2013/8/26	2013/8/27
1	11	2013/8/27	2013/8/27
2	10	2013/8/26	2013/8/27

CourseId	CourseName	
10	微积分	
11	线性代数	

Third Normal Form

 It has to be in the second normal form + the left hand side is a super key OR the right hand side is prime

StudentId	Name	DepartmentId	DepartmentName
1	Neil	21	Math
2	Devin	22	Computer

- StudentId -> Name DepartmentID DepartmentName
- DepartmentId -> DepartmentName
- T1={DepartmentId, DepartmentName}
- T2={StudentID, Name, DepartmentID}

BCNF

 The left hand side of every non-trivial functional dependency must be a superkey

Fourth Normal Form

 The left hand side of every non-trivial Multi-valued dependency must be a superkey

Fifth Normal Form

- Beyond the scope of this class
- Every relation can be further decomposed into smaller relations unless the decomposed relation will have the same key as the original table

kNFs

- First Normal Form: each attribute is atomic.
- Second Normal Form: No non-trivial FD has a left side that is a proper subset of a key.
- Third Normal Form: we just discussed it.
- Fourth Normal Form: we just discussed it.
- Fifth Normal Form: outside the scope
- Sixth Normal Form: different versions exist. One version is newly developed for temporal databases.
- Seventh Normal Form: your ticket to fame and fortune.

Apply(SSN, cName, date, major)

Can apply to each college once for one major Colleges have non-overlapping application dates

FDS: SSN, cName -> date, major date -> cNam

Keys: SSN, Name

BCNF: No. AI (date, cName) ?

A2 (SSN, date, najor)

Good design? Not necessarily. 3rd Normel