- 1. Find all of the ideals in each of the following rings. Which of these ideals are maximal and which are prime?
 - (a) \mathbb{Z}_{18}
 - (b) \mathbb{Z}_{25}
 - (c) $M_2(\mathbb{R})$
 - (d) **Q**
- 2. Find all homomorphisms $\phi : \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/15\mathbb{Z}$.
- 3. Prove that \mathbb{R} is not isomorphic to \mathbb{C} . Define a map $\phi : \mathbb{C} \to \mathbb{M}_2(\mathbb{R})$ by $\phi(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that ϕ is an isomorphism of \mathbb{C} to its image under ϕ .
- 4. Prove that the Gaussian integers, $\mathbb{Z}[i]$, form an integral domain.
- 5. Prove that if R is a field, the only ideals of R are $\{0\}$ and R itself.
- 6. Suppose $\phi: R \to S$ is a ring homomorphism. Prove each of the following statements.
 - (a) If R is a commutative ring, then $\phi(R)$ is a commutative ring.
 - (b) $\phi(0_R) = 0_S$.
 - (c) If ϕ is onto, then $\phi(1_R) = 1_S$.
 - (d) If R is a field and $\phi(R) \neq \{0\}$, then $\phi(R)$ is a field.
- 7. Let R be a ring and let $\{R_{\alpha}\}$ be a collection of subrings of R for $\alpha \in A$. Prove that $\bigcap_{\alpha \in A} R_{\alpha}$ is also a subring and show by example that the union of two subrings may not be a subring. Note that A is just an index set.
- 8. Let R be a ring and let $\{I_{\alpha}\}$ be a collection of ideals of R for $\alpha \in A$. Prove that $\bigcap_{\alpha \in A} I_{\alpha}$ is also a subring and show by example that the union of two subrings may not be a subring. Note that A is just an index set.