Theorem 1.1. Every strongly continuous one-parameter semigroup of Schwarz type on a properly infinite W*-algebra M is uniformly continuous.

<u>Proof.</u> Let $T = (T(t)_*)_{t \geq 0}$ be strongly continuous on M and suppose T not to be uniformly continuous. Then there exists a sequence $(T_n) \subset T$ and $\varepsilon > 0$ such that $\|T_n - Id\| \geq \varepsilon$ but $T_n \to Id$ in the strong operator topology. We claim that for every sequence (p_k) of mutually orthogonal projections and all bounded sequences (x_k) in M

$$\lim_{n} \| (\mathbf{T}_{n} - \mathrm{Id}) (\mathbf{p}_{k} \mathbf{x}_{k} \mathbf{p}_{k}) \| = 0$$

uniformly in k(N . This follows from an application of the Lemma of Phillips and the fact that the sequence $(p_k x_k p_k)$ is summable in the s*(M,M*)-topology (compare Elliot (1972)).

Let (p_k) be a sequence of mutually orthogonal projections in M such that every p_k is equivalent to 1 via some $u_k \in M$ [Sakai (1971), 2.2].

Without loss of generality we may assume $\|(T_n - Id)(u_n)\| \le n^{-1}$ since the semigroup T is strongly continuous. Thus we obtained the following:

- (1) $\lim_{n} \|(T_n Id)(p_k x_k p_k)\| = 0$ uniformly in $k \in \mathbb{N}$ for every bounded sequence (x_k) in M .
- (2) Every projection p_k is equivalent to 1 via some $\operatorname{u}_k^{\,\,arepsilon_k}$.
- (3) $\|(T_n Id)u_n\| \le n^{-1}$ for all $n \in \mathbb{N}$.

For the following construction see A-I, 3.6 and D-II, Sec. 2.

Let \hat{M} be an ultrapower of M, let $p:=(p_k)^* \in \hat{M}$, $T:=(T_n)^* \in L(\hat{M})$ and $u:=(u_k)^* \in \hat{M}$. Then T is identity preserving and of Schwarz type on \hat{M} . Since $u^*u=p$ and $uu^*=1$, it follows $pu^*=u^*$ and $(uu^*)\times(uu^*)=x$ for all $x\in \hat{M}$. Finally, T(pxp)=pxp for all $x\in \hat{M}$, which follows from (1), and $T(u^*)=T(pu^*)=pu^*=u^*$ and T(u)=u, which follows from (3). Using the Schwarz inequality we obtain

$$T(uu^*) = T(1) \le 1 = uu^* = T(u)T(u)^*$$
.