Exercise Sheet 6 - Mathematics

Write out your answers to all exercises and submit via Canvas by next Tuesday, 11am. We will mark and give feedback to exercise 6.3.

Exercise 6.1

Consider the sets $A = \{a, b, c, d\}$, $B = \{1, 2, 3, 4\}$ and the relation $R = \{(a, 1), (b, 1), (c, 2), (c, 4), (d, 3)\} \subseteq A \times B$.

- (a) Draw a diagram of the situation in the style of Box 75.
- (b) Is R a function from A to B?
- (c) Is R^{-1} a function from B to A?
- (d) Let $A' \subseteq A$ be the set $\{b,c,d\}$ and $B' \subseteq B$ be the set $\{1,2,3\}$. Write out the elements of $R \cap (A' \times B')$ and show that it is a bijective function from A' to B'.
- (e) In the style of the previous question, choose subsets $A' \subseteq A$ and $B' \subseteq B$ so that $R \cap (A' \times B')$ is a function that is injective but not surjective.
- (f) Do this again but now aim for $R \cap (A' \times B')$ being a function that is surjective but not injective.

Exercise 6.2

Consider the following three Java method definitions. For each say whether it implements a function, and if so, whether the function is injective, surjective, or bijective. Whenever your answer is no, give a reason.

- (a) String method_a(String x) {return x + "aa";}
- (b) int method_b(String x) {return x.length();}
- (c) String method_c(String x) {return Time() + x;}

(Assume that Time () is a method that returns the current actual time as a string.)

Exercise 6.3 – feedback

Consider the following two equations involving complement, forward image, and pre-image of a function $f: A \to B$, where $X \subseteq A$ and $Y \subseteq B$:

(i)
$$f[\overline{X}] = f[X]$$

(i)
$$f[\overline{X}] = \overline{f[X]}$$
 (ii) $f^{-1}[\overline{Y}] = \overline{f^{-1}[Y]}$

- (a) Draw a general picture of (i) in the style of Box 75.
- (b) Use this to construct a concrete counterexample that shows that (i) is not valid.
- (c) Draw a general picture of (ii) in the style of Box 75.
- (d) Show that (ii) is correct by showing $f^{-1}[\overline{Y}] \subseteq \overline{f^{-1}[Y]}$ and $\overline{f^{-1}[Y]} \subseteq f^{-1}[\overline{Y}]$.

Exercise 6.4

The *unit circle* \mathbb{C} is the set of points $P = \begin{pmatrix} x \\ y \end{pmatrix}$ in \mathbb{R}^2 for which $x^2 + y^2 = 1$ holds. Let \mathbb{L} be the set of all lines in \mathbb{R}^2 that contain the origin $O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Find a bijection between $\mathbb C$ and $\mathbb L$.