EKSPONEN

Modul Matematika Kelas X

28 Desember 2020

ESPONEN

MODUL MATEMATIKA

Alwi Djener Al Zaqhino Personal YouTube | Brebes | Jawa Tengah

http://www.youtube.com/c/IndonesiaBelajaralwidjener

A. Definisi Bilangan Eksponensial dan Bentuk Pangkat

Bilangan Eksponen adalah bentuk dari sebuah bilangan yang dikalikan dengan bilangan yang sama dan di ulang-ulang, atau lebih mudahnya kita bisa menyebutnya sebagai perkalian yang diulang-ulang. Eksponen juga bisa dikenal sebagai pangkat yang akan menunjukkan nilai derajat kepangkatan.

Jika ${f a}$ adalah suatu bilangan riil dan n adalah suatu bilangan asli, maka ${m a}^{m n}$ di baca

"a pangkat n" di definisikan dengan

"a disebut bilangan pokok (basis) dan n adalah pangkat (eksponen)"

Contoh:

 $2^4 = 2 \times 2 \times 2 \times 2 = 16$

 $7^3 = 7 \times 7 \times 7 = 343$

B. Sifat Sifat Eksponensial

Dari definisi tersebut, dapat di turunkan menjadi sifat beriku :

1.
$$a^0 = 1 \operatorname{dengan} a \neq 0$$

2.
$$a^m \times a^n = a^{m+n}$$

$$3. \ \frac{a^m}{a^n} = a^{m-n}$$

4.
$$(a^m)^n = a^{m \times n}$$

5.
$$(ab)^m = a^m . b^m$$

$$6. \quad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

7.
$$a^{-n} = \frac{1}{a^n}$$

8.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Soal latihan!

1. Selesaikan soal berikut

a.
$$2^{-3} \times 2^{7}$$

b.
$$(-3)^6 \times (-3)^5$$

c.
$$\frac{3x^2y^5.10xy^3}{6x^2y^4}$$

2. Kerjakan Soal Bentuk Akar Berikut

a. Sederhanakan $\sqrt{128}$

b.
$$125^{\frac{2}{3}} - 81^{\frac{1}{4}} = ?$$

- c. Jika $L = a^{\frac{1}{2}}b^{-\frac{1}{3}}$ maka nilai L untuk a=100 dan b=64 adalah?
- d. Hitunglah $\left(\frac{27x^4y^9}{rv^3}\right)^{\frac{2}{3}}$
- e. Untuk harga $x=2^{12}\,$ maka tentukan nilai dari $\sqrt[3]{\sqrt{\sqrt{x}}}$ Adalah?

C. Fungsi Eksponen

Bentuk umum : $f(x) = k \cdot a^x$

Dengan syarat a>0 dan a≠1

Soal Latihan

1. Diketahui grafik fungsi $f(x) = 2.3^{1-x}$ grafik tersebut melalui titik?

a.
$$\left(2, \frac{1}{3}\right)$$
 c. $\left(2, \frac{4}{3}\right)$ e. $(2, -6)$

c.
$$\left(2, \frac{4}{3}\right)$$

b.
$$\left(2, \frac{2}{3}\right)$$
 d. $(2, -3)$

d.
$$(2, -3)$$

2. Grafik fungsi f(x) = k. 2^{5x-8} melalui titik (2,20). Nilai -3k adalah?

$$c. - 3$$

3. Grafik fungsi $f(x) = 6^{x+1} + 6^{1-x}$ memotong sumbu -Y di titik?

4. Jika
$$f(x) = 4^{x+1}$$
, maka f(a+b)?

a.
$$f(a)$$
. $f(b)$ c. $4f(a)$. $f(b)$ e. $\frac{1}{16}f(a)$. $f(b)$

$$b.f(a) + f(b) \qquad d.\frac{1}{4}f(a).f(b)$$

$$d.\frac{1}{4}f(a).f(b)$$

5. Jika $f(x) = 2^x$ maka nilai dari $\frac{f(x+3)}{f(x-1)} = ?$

a.
$$f(2)$$
 c. $f(16)$ e. $f(2x + 2)$

d.
$$f(\frac{x+3}{x-1})$$

D. Grafik Fungsi Eksponen

Sifat-sifat fungsi eksponen dapat ditentukan melalui grafik fungsi eksponen.

Contoh:

1. Gambarlah grafik fungsi $f(x) = 3^x$, x€R

Penyelesaian:

Untuk menggambar grafik $f(x)=\mathbf{3}^x$, dapat di tentukan dengan membuat tabel yang menunjukan hubungan antara y=f(x) dan x, dengan mengambil beberapa titik x sembarang

$$f(-3) = 3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

$$f(-2) = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

$$f(-1) = 3^{-1} = \frac{1}{3}$$

$$f(0) = 3^0 = 1$$

$$f(1) = 3^1 = 3$$

$$f(2) = 3^2 = 9$$

$$f(3) = 3^3 = 27$$

X	 -3	-2	-1	0	1	2	3	
Y	 1/27	1/9	1/3	1	3	9	27	

Dengan menggambarkan titik titik tersebut pada bidang kartesius, kemudian titik titik tersebut di hubungkan dan menghasilkan sebuah kurva, di peroleh grafik fungsi

$$f(x)=3^x$$

Dengan cara yang sama, kita dapat menentukan/menggambarkan grafik fungsi $f(x) = \left(\frac{1}{3}\right)^x$

$$f(-2) = \left(\frac{1}{3}\right)^{\dots} = \dots = \dots$$

$$f(-1) = \left(\frac{1}{3}\right)^{\dots} = \dots = \dots$$

$$f(0) = \left(\frac{1}{3}\right)^{...} = .. = ..$$

$$f(1) = \left(\frac{1}{3}\right)^{...} = ... = ...$$

$$f(2) = \left(\frac{1}{3}\right)^{...} = ... = ...$$

X	 -2	-1	0	1	2	
Υ	 					••••

Sifat Grafik Eksponen

- Untuk a>1, Fungsi monoton naik
- Untuk 0<a<1, Fungsi monoton turun
- Mempunyai asimtot datar sumbu x ,untuk $y = ka^x$
- Untuk persamaan $y = ka^x + C$ asimtot nya y=C

E. Persamaan Eksponen

•
$$a^{f(x)} = a^p$$
, maka $f(x) = p$

•
$$a^{f(x)} = a^{g(x)}$$
, maka $f(x)=g(x)$

•
$$a^{f(x)} = b^{f(x)}$$
, maka f(x)=0

$$\bullet \ f(x)^{h(x)} = g(x)^{h(x)},$$

1.
$$f(x)=g(x)$$

2.
$$h(x)=0$$
, dengan syarat $f(x),g(x)\neq 0$

$$\bullet \ h(x)^{f(x)} = h(x)^{g(x)}$$

1.
$$f(x)=g(x)$$

2.
$$h(x)=0$$
, dengan syarat $f(x),g(x)\neq 0$

3.
$$h(x)=1$$

4. h(x)=-1, dengan syarat f(x) dan g(x) ,kedua nya genap/ganjil

F. Pertidaksamaan Eksponen

A. Untuk 0 < a < 1, jika:

1.
$$a^{f(x)} < a^{g(x)} \rightarrow f(x) > g(x)$$

$$2. \ a^{f(x)} \leq a^{g(x)} \rightarrow f(x) \geq g(x)$$

3.
$$a^{f(x)} > a^{g(x)} \rightarrow f(x) < g(x)$$

$$4. \ a^{f(x)} \ge a^{g(x)} \rightarrow f(x) \le g(x)$$

B. Untuk a > 1, jika:

1.
$$a^{f(x)} < a^{g(x)} \rightarrow f(x) < g(x)$$

$$2. \ a^{f(x)} \leq a^{g(x)} \rightarrow f(x) \leq g(x)$$

3.
$$a^{f(x)} > a^{g(x)} \rightarrow f(x) > g(x)$$

$$4.a^{f(x)} \ge a^{g(x)} \to f(x) \ge g(x)$$

a adalah bilangan pokok.