Error Detection and Correction

Outline for Today

- 1. Exclusive-or operation (XOR, \oplus)
 - Definition
 - Some interesting applications
 - Hamming Distance

Exclusive Or

For boolean variables p and q, we use 0 for false and 1 for true.

Definition: For boolean variables p and q, the **exclusive or** of p and q, denoted $p \oplus q$, is defined by:

$$\begin{array}{c|cccc} \oplus & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

For same length bit strings x, y (called **words**), we apply the operation bitwise. So suppose that $x = x_1x_2...x_n$, and $y = y_1y_2...y_n$, where for every i, x_i and y_i are bits. Then $z = x \oplus y$, where $z = z_1...z_n$, and $z_i = x_i \oplus y_i$.

Definition: Let x be a bit string. Then \overline{x} is the complement of x, in which every bit is flipped compared to x. That is, if $x = x_1x_2...x_n$, then $\overline{x} = y_1y_2...y_n$, where for every $i, y_i = 1$ if $x_i = 0$, and $y_i = 0$ if $x_i = 1$.

Basic Properties of \oplus

- 1. Commutativity: $x \oplus y = y \oplus x$
- 2. Associativity: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- 3. **Identity:** Let 0 represent the bit string with all 0 entries. Then for any bit string x, $x \oplus 0 = x$.
- 4. **Complement:** Let 1 represent the bit string with all 1 entries. Then $x \oplus 1 = \overline{x}$.
- 5. **Inverse:** $x \oplus x = 0$ and $x \oplus \overline{x} = 1$.

Applying \oplus to Non-negative Integers

- Convert each operand to binary
- Add leading zeros as needed to make the bit strings the same length
- ullet Apply the \oplus operation to the two bit strings/words
- Convert the result to the corresponding non-negative integer

Small Applications of \oplus

- bit selection
- toggling
- exchange
- \bullet storage for doubly-linked lists

More detailed discussion of these: course pack

Selecting a Bit

Problem: Given three boolean variables x, y and u, compute w such that w = x if u = 0 and w = y if u = 1.

Solution: Set $w = ((x \oplus y) \land u) \oplus x$

Proof:			in-class exercise				
X	У	u	$x \oplus y$	$(x \oplus y) \wedge u$	$((x \oplus y) \land u) \oplus x$		
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Forming a Word by Selecting Bits from Two Words

Now we extend the bit selection idea to words.

Suppose that x, y and u are words (same length bit strings). We want to define a word w such that, for every i,

$$w_i = x_i$$
 if $u_i = 0$, and

$$w_i = y_i \text{ if } u_i = 1.$$

Since we apply \oplus and \wedge bitwise when we apply them to bit strings, it follows from our previous proof that:

$$w = ((x \oplus y) \land u) \oplus x.$$

Example: Let x = 10110 and y = 01011, and set u = 00110. What is w?

Toggling a Boolean Variable

Goal: Given two boolean variables p and q, write a single assignment statement that toggles the value of another boolean variable x between p and q.

- If x = p, then the assignment statement should set x to q
- If x = q, then the assignment statement should set x to p

Solution: Assume that x is either equal to p or q. Our assignment statement is $x = x \oplus (p \oplus q)$.

р	q	X	$p \oplus q$	$x \oplus (p \oplus q)$
0	0	0		
0	1	0		
0	1	1		
1	0	1		
1	0	0		
1	1	1		

Exercise: complete truth table to verify that the assignment statement is correct.

Word Toggling

For two words p and q, we want an assignment statement that toggles a variable x between p and q.

- ullet If x=p, then the assignment statement should set x to q
- If x = q, then the assignment statement should set x to p

In our previous proof, we showed (bit by bit) that the assignment statement $x = x \oplus (p \oplus q)$ toggles between p and q, assuming that x is initially either p or q.

Exchanging Values of Two Boolean Variables

Problem: Swap the values of two boolean variables x and y without using a temporary variable.

Solution: Use the following 3 assignment statements:

- $x = x \oplus y$
- $y = x \oplus y$
- $x = x \oplus y$

Proof: Suppose that initially x = R and y = S. We need to show that after the 3 assignment statements, x = S and y = R.

After the first assignment, $x = R \oplus S$. After the second assignment,

$$y = (R \oplus S) \oplus S$$

- $= R \oplus (S \oplus S)$ by associativity
- $= R \oplus 0$ by inverse property
- = R by identity property.

After the 3rd assignment, $x = (R \oplus S) \oplus R = S$ by the associativity and inverse properties. \square

Exchanging Values of Two Words

Problem: Swap the values of two words x and y without using a temporary variable.

Since \oplus is a bitwise operator, our proof on the previous slide works, and the following assignment statements work:

$$x = x \oplus y$$

$$y = x \oplus y$$

$$x = x \oplus y$$

Question: What happens if x and y are two references to the same memory location?

Doubly-Linked Lists

Avoid clever tricks like the plague!

-Edsger Dijkstra

Goal: Instead of storing two pointers, a left pointer and a right pointer, only store one value.

Trick: Only store the XOR of the left and right pointers.

- Works if you are arriving at a node from one of the neighbors
- Won't work if you are using an outside pointer to a node

Question: Why does it work??

Hamming Distance

Definition: The **Hamming distance** between two words x and y is the number of 1s in $x \oplus y$.

Note: You can also think of the Hamming distance as the number of bit flips needed to change x into y.

Definition: A distance function $d: S \times S \to \mathbb{R}$ is **metric** if it satisfies the following properties:

- Non-negativity: $\forall x \forall y d(x, y) \ge 0$
- Distinctness: $\forall x \forall y d(x,y) = 0 iff x = y$
- Symmetric: $\forall x \forall y d(x, y) = d(y, x)$
- Triangle inequality: $\forall x \forall y \forall z d(x,y) + d(y,z) \ge d(x,z)$

Definition: A **metric space** is a set S with an associated metric distance function d.

Hamming Distance

Claim: For any non-negative integer k, Hamming distance defines a metric distance function over the set of all words of length k.

Lemma: Let (S, d) be a metric space. Let $k \in \mathbb{N}$, and let $d'(x, y) = \sum_{1 \le i \le k} d(x_i, y_i)$, for all $x = (x_1, x_2, ..., x_k)$ and $y = (y_1, ..., y_k)$ in S^k . Then (S^k, d') is a metric space also.

Proof: Exercise

Hamming Distance is Metric

Theorem: For any non-negative integer k, Hamming distance defines a metric distance function over the set of all words of length k.

By our lemma, all we need to prove is that Hamming distance defines a metric space over $\{0,1\}$, the set of all words of length 1.

But this is easy (exercise).