recture 7: Wave eq. Pt 2

Boundary Problems.

• In our model of the String, we gave a length I and fixed the ends: u(t,0) = 0. $t \ge 0$ Boundary Conditions

We may also describe the initial state of the string

We may also describe the initial state of the string

We assume $g(x) \in C^2([0,l])$ and here ((0,l)) to match (0,l)

· Since h & g aren't on IR, we must extend them to IR if we wish to apply our solution formula:

The wave equation $\frac{2^2y}{5x^2} = 0$ on [0,L] with the above boundary and initial Conditions admits a solution $N(t,x) = \frac{1}{2} \left[g(x+c\epsilon) + g(x-c\epsilon) \right] + \frac{1}{2c} \int_{x-c\epsilon}^{x+c\epsilon} h(z) dz$ only if $g(x) = \frac{1}{2} \left[g(x+c\epsilon) + g(x-c\epsilon) \right] + \frac{1}{2c} \int_{x-c\epsilon}^{x+c\epsilon} h(z) dz$ only if $g(x) = \frac{1}{2} \left[g(x+c\epsilon) + g(x-c\epsilon) \right] + \frac{1}{2c} \left[\frac{1}{2} \left[\frac{$

[Pf] By the linearity of the wave equation (& homogeneity), we can consider the h & g terms Separately. (How?)

Assume the term $\frac{1}{2}[g(x+ct)+g(x-ct)]$ is defined for all $t \in x$ and satisfies the boundary conditions on so, (f) for all (f), (f) and (f) (f) (g) (f) (g) (g

Says q is odd. At x=l g(l+c+)+g(l-c+)=0 for t≥0

gives g is odd with respect to l: g(l+ct) = -g(l-ct) = g(-l+ct)So that g is 2l-periodic.

On $\frac{1}{2C}\int_{X-Ct}^{X+Ct}h(\tau)d\tau = u(t,x)$, we see at x=0 $\frac{1}{2C}\int_{-Ct}^{Ct}h(\tau)d\tau = 0$ So, differentiating. (h(ct) + h(-ct))C = 0 on h is add. we note h is 2L periodic by doing the same at x=L. \square

ex.) Let $c=1, k=1$
Suppose $N_{\pm}(x) = \frac{1}{2}g(x) \mp \frac{1}{2}c\int_{0}^{\infty}h(x)dx$ (So $U(x,t): U_{\pm}(x-ct) + U_{-}(x+ct)$)
Let U+=0 (no forward wave) and the left-propagating Sortation
is u_
For small t, $9(1,x)$: $9-(x+t)$ as we solved for. What happens When the bump hits the boundary $x=0$?
- Since $u(t,x)$: $u_{-}(x+t)$, $g(x)=u(0,x)=u_{-}(x)$ and
$h(x) = \frac{\partial u}{\partial x} - (x).$
by extending as in thm. 4.5
g(s) h(x)
Computing the Solution, our bump "bounces" off the bounclary (as is real life)
t = 0.2
₹:0.5 ————————————————————————————————————

torcing Terms

We previously used the homogeneous wave equation $\frac{3^24}{8x^2} \cdot (\frac{3^24}{8x^2})$ in accordance with having no external forces. Let us now introduce an external force such as a how on a Violin.

(A)
$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \ell(t,x)$$

$$U(0,x) = g(x)$$

$$\frac{\partial U}{\partial t}(0,x) = h(x)$$

· To Solve this equation, we will manipulate our homogeneous solution in a version of variation of parameters called Duhamel's Principle. ND to Rocus on this, we consider the domain IR and sex initial Conditions to Zero: q(x)= h(x)=0

· Define the "Domain of Dependence"

ND "information travels at speed e"

The 4.7 for
$$f \in C'(\mathbb{R})$$
, the unique solution of (A) satisfying $g(x) = h(x) = 0$ is given by $g(x) = \frac{1}{2c} \int_{\mathbb{R}^n} f(s, x') dx' ds$

of For each 320, let & Ns(+,x) be the Solution of the homogeneous wave eqn. For t25 with initial Conditions $\eta_{\mathfrak{s}}(t,x)\big|_{t=0} = 0$ $\frac{\partial \eta_{\mathfrak{s}}}{\partial t}(t,x)\big|_{t=0} = f(\mathfrak{s},x)$

By Shifting t-> t-s, our previous formula gives
$$N_5(t,x) = \frac{1}{2C} \int_{X-C(t-s)}^{X+C(t-s)} f(s,x') dx'$$

we Claim that the solution of (A) is given by U(+,x) = 10 no(+,x)ds = 10 = (x+c(+-5)) R(s,x) E/x ds

$$\frac{\partial u}{\partial t}(t,x) = \eta_5(t,x)|_{S=t} + \int_0^t \frac{\partial \eta_5}{\partial t}(t,x) ds \qquad 3a$$

$$\frac{\partial u}{\partial t}(n,x) = \eta_0(0,x) + \int_0^\infty ...ds = 0$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial n_s}{\partial t} (t,x) \Big|_{t=s} + \int_0^t \frac{\partial^2 n_s}{\partial t^2} (t,x) ds$$

$$\left(+ \frac{\partial n_s}{\partial t} (t,x) \Big|_{t=s} \text{ which is } \Theta \right)$$

$$\int_0^t \frac{\partial^2 \eta_s}{\partial t^2} (t, x) ds = \int_0^t c^2 \frac{\partial^2 \eta_s}{\partial x^2} (t, x) ds = c^2 \frac{\partial^2 \eta_s}{\partial x^2}$$

5.t.
$$\frac{\partial^2 u}{\partial t^2} = f + C^2 \frac{\partial^2 u}{\partial x^2}$$
 as desired.

$$W = U_1 - U_2$$
 Solves $\frac{3^2 \omega}{3c^2} - C^2 \frac{9^2 \omega}{3x^2} : 0$, $ux(0,x)=0$, $\frac{3\omega}{3c}(0,x)=0$.

$$\begin{cases} \frac{\partial^{2} U}{\partial t^{2}} - c^{2} \frac{\partial^{2} U}{\partial x^{2}} = \beta \\ \frac{\partial U}{\partial t} (0, x) = \beta \\ \frac{\partial U}{\partial t} (0, x) = h \end{cases}$$

$$\frac{\partial U}{\partial x}(0,x) = 0$$

Set
$$N = V + W$$
 for V Solving (A)

and W Solving $\begin{cases} 2^2 w \\ 3^2 v - (2^2 w) \\ w(0, x) = 0 \end{cases}$
 $\begin{cases} w(0, x) = 0 \\ \frac{2w}{2t}(0, x) = 0 \end{cases}$

$$W(t,x)$$
: $\frac{1}{2}[g(t,x)] = \frac{1}{2}[g(x+c+)+g(x-c+)] + \frac{1}{2}[\int_{x-c+}^{x+c+} h(s)ds]$

for a given (t_0, χ_0) , the Domain of Dependence means that there is a "range of influence" of (t_0, χ_0) of extens points at which (t_0, χ_0) influences the Solution $2llt_1\chi$)

ex.) Consider a string of length ℓ with propagation speech $\ell=1$. Let $f(t,x)=\cos(wt)\sin(w_0x)$ for $w_0=\pi/\ell$, w>0.

Since $Sin(w_0, x)$ is odd & 21-periodic, f(x) satisfies the conditions of thm 4.5 for each t. Set g^2h^20 .

$$\mathcal{U}(t,x) = \frac{1}{2} \int_{0}^{t} \int_{x-t+s}^{x+t-s} \cos(\omega s) \sin(\omega_0 x') \, dx' ds$$

$$= \frac{1}{2w_0} \int_{0}^{t} \cos(\omega s) \left[\cos(\omega_0 (x-t+s)) - \cos(\omega_0 (x+t-s))\right] \, ds$$

 $I = (05(w5) \left[\cos(wx)(05(w6(5-t)) - 5in(wx)5in(w6(5-t)) - (05(w6x)(05(w6(t-5)) + 5in(w6x)5in(w6(t-5)) \right]$ $= 2 \cos(w5) 8in(w6x)5in(w6(t-5))$

 $u(t,x) = \frac{\sin(w_0x)}{w_0} \int_0^t \cos(ws) \sin(w_0(t-s)) ds$

 $\begin{array}{ll}
& & & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$

=
$$\frac{1}{2} \left[\frac{1}{w - w_0} (\cos(w_0 \epsilon) - \cos(w \epsilon)) - \frac{1}{w + b} (\cos(w_0 \epsilon) - \cos(w \epsilon)) \right]$$

 \vdots Simplify

for w = wo, we obtain

M(+, x) = \frac{3in(ubx)}{ub^2-uv^2} \[(cos(uve) - Cos(uve) \] \] assume uvexwo \]
-dual oscillation wharge scale on period /w
given by the "how driving brequency" & Small Scale on Period /wo depending on l

for $W=w_0$, $u(t,x)=\frac{t}{2w_0}$ Bin(w_0x) sin(w_0t) ~ growing amplitude

akin to <u>resonance</u> (absorbing energy from the driving sharce

Continually)

w= wo/10

