Chapitre I : les Suites

Théo André

Semestre 2

Sommaire

Ι	Les Suites	3
1	Introduction1.1 Généralités1.2 Suites Arithmétiques et Géométriques	
2	Limites2.1 Suites Convergentes2.2 Suites Divergentes2.3 Propriétés sur les Suites	7
3	Inégalités et limites 3.1 Suites Géométriques :	10 11

Première partie Les Suites

Chapitre 1

Introduction

1.1 Généralités

Complémentaire du cours : Fiche Cours Analyse Exo7.

On appelle suite, toute application de $\mathbb{N} \to \mathbb{R}$ (ex : $N \to \mathbb{R} \to \mathbb{R}$). La suite définie dans l'exemple donne une suite dont le terme principal est $(-1)^n$. Pour parler de suite, on peut utiliser les notations suivantes : $(u_n)_{n \in \mathbb{N}}$ ou (u_n) . Attention à ne pas utiliser le symbole u_n sans parenthèses, qui représente le nombre plutôt que la suite.

Définition: Soit (u_n) une suite réelle. On dit que (u_n) est majorée lorsque $\exists M \in \mathbb{R}, \forall n \mathbb{N}, u_n \leq M$.

Définition: Soit (u_n) une suite réelle. On dit que (u_n) est minorée lorsque $\exists M \in \mathbb{R}, \forall n \mathbb{N}, u_n \geq M$.

Définition: Soit (u_n) une suite réelle. On dit que (u_n) est bornée, si (u_n) est majorée et minorée (ou $|(u_n)|$ est majorée).

Soit (u_n) une suite réelle. On dit que (u_n) est croissante lorsque $\forall n \in \mathbb{N}, u_{n+1} \geq u_n$. Elle est décroissante lorsque $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$). La suite est dite monotone dans le cas où elle est soit croissante, soit décroissante.

1.2 Suites Arithmétiques et Géométriques

Suites Arithmétiques : Soit $n \in \mathbb{N}$, $r \in \mathbb{R}$ et (u_n) une suite. On dit que (u_n) est arithmétique de raison r lorsque $\forall n \in \mathbb{N}$, $u_{n+1} - u_n = r$.

Somme des premiers termes : La somme des premiers termes $u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ d'une suite arithmétique est donnée par la formule :

$$\frac{(n+1)(u_0+un)}{2}$$

Qui relie le nombre de terme (n+1) la somme du premier et du dernier terme, le tout divisé par 2.

Suites Géométriques : Soit $n \in \mathbb{N}$, $q \in \mathbb{R}$ et (u_n) une suite. On dit que (u_n) est géométrique de raison q lorsque u_n est de la forme $u_{n+1} = qu_n$.

Somme des premiers termes : La somme des premiers termes $u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ d'une suite géométrique est donnée par la formule :

$$u_0 \frac{1 - q^{n+1}}{1 - q}$$

Cette formule est valable pour $q \neq 1$ et comprends u_0 le premier terme ainsi que le nombre de termes (n+1).

Chapitre 2

Limites

2.1 Suites Convergentes

Soit (u_n) une suite réelle et $l \in \mathbb{R}$. On dit que (u_n) converge vers l lorsque :

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{R}, \forall n > N_{\epsilon}, \quad l - \epsilon < u_n < l + \epsilon$$

Exemple : On pose pour $n \in \mathbb{N}$, $u_n = \frac{1}{n}$. Montrons que $\lim_{n \to +\infty} u_n = 0$. C'est-à-dire que l'on a u_n converge vers 0.

On veut trouver un N_{ϵ} tel que : $\forall n \geq N_{\epsilon}$, $\left|\frac{1}{n} - 0\right| < \epsilon$. Posons donc $N_{\epsilon} = E(\frac{1}{\epsilon}) + 1 \in \mathbb{N}$. On a $n \geq N_{\epsilon} > \frac{1}{\epsilon}$. Donc $\frac{1}{n} < \frac{1}{\frac{1}{\epsilon}} = \epsilon$. Alors

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \forall n \geq N_{\epsilon}, \quad |u_n - 0| < \epsilon \iff (u_n) \text{ converge vers } 0$$

Definition: On dit que (u_n) admet l pour limite lorsqu'il existe un réel $l \in \mathbb{R}$ tel que (u_n) converge vers l.

propriété: Si une suite converge, alors sa limite est unique.

Démonstration. Raisonnons par l'absurde. On suppose que $u_n \longrightarrow l$ et $u_n \longrightarrow l'$ avec $l \neq l'$. Supposons l < l'. On décide alors d'appliquer la définition avec $\epsilon = \frac{l'-l}{2} > 0$. Donc :

$$\exists N_{\epsilon} \in \mathbb{R} \parallel \forall n \geq N_{\epsilon}, \quad l - \epsilon < u_n < l + \epsilon$$

$$\exists N_{\epsilon} \in \mathbb{R} \mid \forall n \geq N_{\epsilon}, \quad l' - \epsilon < u_n < l' + \epsilon$$

Posons alors $N = \max(N_{\epsilon}, N'_{\epsilon})$. Par suite, comme $N \geq N_{\epsilon}$, on a $(l - \epsilon) < u_n < l + \epsilon$. Et comme $N \geq N'_{\epsilon}$, on a $l' - \epsilon < u_n < (l' + \epsilon)$. Par suite il vient en substituant ϵ par $\frac{l' - l}{2}$:

$$\frac{l'+l}{2} < u_n < \frac{l'+l}{2}$$

Nous aboutissons à une contradiction. Notre hypothèse de départ était donc absurde, on en déduit que l est unique.

Remarque : dire que $u_n \longrightarrow l$ revient à dire que $u_n - l \longrightarrow 0$.

Exemple: $u_n = \frac{(-1)^n}{n}$. $|u_n - 0| = \frac{1}{n}$ or $\frac{1}{n} \xrightarrow{+\infty} 0$ Donc on peut dire que u_n tend vers 0.

2.2 Suites Divergentes

- **Définition**: Soit (u_n) une suite réelle, on dit que (u_n) est divergente lorsque (u_n) n'est pas convergente. *i.e.*: il n'existe pas de $l \in \mathbb{R}$ tel que (u_n) converge vers l, ou encore que (u_n) n'as pas de limite finie.
- (u_n) diverge vers $+\infty$ lorsque $\forall A > 0, \exists N_A \in \mathbb{N}, \forall n \geq N_A, u_n > A$
- (u_n) diverge vers $-\infty$ lorsque $\forall B < 0, \exists N_B \in \mathbb{N}, \forall n \geq N_B, u_n > B$

Exemple: Posons $u_n = 2^n$ et montrons que (u_n) diverge vers $+\infty$

 $u_n > A \iff 2^n > A \iff n > \frac{ln(a)}{ln(2)}$, en posant $N_A = E(\frac{ln(a)}{ln(2)}) + 1 \in \mathbb{N}$ Pour tout $n > N_A$, on a $n \geq E(\frac{ln(a)}{ln(2)}) + 1 > \frac{ln(a)}{ln(2)}$ Ainsi, $u_n > A$. On a montré que $\forall A > 0, \exists N_A \in \mathbb{N}, \forall n \geq N_A, u_n > A$.

2.3 Propriétés sur les Suites

Propriété: Si une suite est converge, alors elle est bornée.

Démonstration. Supposons que $u_n \longrightarrow l \in \mathbb{R}$, par définition :

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \forall n \geq N_{\epsilon}, |u_n - l| < \epsilon$$

On l'applique avec $\epsilon = 1 > 0$. Il existe alors $N_{\epsilon} \in \mathbb{N}$ tel que $\forall n > N_{\epsilon}$, $l-1 < u_n < l+1$. On pose alors $M = \max(u_0, u_1, u_2, ..., u_{N_{\epsilon-1}}, l+1)$ et $m = \min(u_0, u_1, u_2, ..., u_{N_{\epsilon-1}}, l-1)$ Alors pour tout $n \in \mathbb{N}$ on a bien

$$m \le u_n \le M$$

Ainsi, (u_n) est bornée.

Propriété : Si $u_n \longrightarrow 0$ et v_n est bornée. Alors le produit $u_n v_n \longrightarrow 0$

Démonstration. On veut montrer que $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \quad |u_n v_n| < \epsilon$. Come v_n est bornée, il existe $M \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, \quad |v_n| \leq M$. De plus, comme $u_n \longrightarrow 0$, il existe $N_0 \in \mathbb{N}$ tel que $\forall n \geq N_0, \quad |u_n| < \frac{\epsilon}{M} (\epsilon > 0)$. Par suite, il vient que :

$$\forall n \ge N_0, \quad |u_n v_n| < M|u_n| < M\frac{\epsilon}{M} = \epsilon$$

Ceci achève la preuve.

Propriétés a. : Si $u_n \longrightarrow l \Longrightarrow |u_n| \longrightarrow |l|$

Propriétés b. : Si $u_n \longleftrightarrow l, v_n \longrightarrow l' \Longrightarrow u_n + v_n \longrightarrow l + l'$

Propriétés c. : Si $u_n \longrightarrow l$, alors $\lambda u_n \longrightarrow \lambda l$

Propriétés d.: Si $u_n \longrightarrow l$ et $l \neq 0 \Longrightarrow \frac{1}{u_n} \longrightarrow \frac{1}{l}$

Démonstration. preuve de a. et b.

a. Il nous faut montrer que $||u_n|-|l||<\epsilon$ En utilisant les inégalités triangulaires généralisées on obtient que $||u_n|-|l||<\epsilon<|u_n-l|<\epsilon$

b. Montrons que $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \forall n \geq N_{\epsilon}, \quad |(u_n + v_n) - (l + l')| < \epsilon$: Comme $u_n \longrightarrow l$, il existe N_{ϵ_1} tel que $\forall n \geq N_{\epsilon_1}, \quad |u_n - l| < \frac{\epsilon}{2}$. Et que $v_n \longrightarrow l'$, il existe N_{ϵ_2} tel que $\forall n \geq N_{\epsilon_2}, \quad |v_n - l'| < \frac{\epsilon}{2}$. On en déduit l'inégalité suivante :

$$|(u_n + v_n) - (l + l')| = |(u_n - l) + (v_n - l')| < |u_n - l| - |v_n - l'| < 2\frac{\epsilon}{2} = \epsilon \quad \text{(par I.T.G)}$$

Propriété : Soit $f: I \to \mathbb{R}$ une fonction continue en un point $a \in I$. Soit (u_n) une suite d'éléments de I qui converge vers $a \in I$. Alors la suite $f(u_n) \longrightarrow f(a)$

Propriété e.: Soient u_n et v_n deux suites réelles : Si $u_n \to +\infty \Longrightarrow \frac{1}{u_n} \to 0$

Propriété f. : Soient u_n et v_n deux suites réelles : Si $u_n \to 0$ et $\forall n \in \mathbb{N}, u_n > 0 \Longrightarrow \frac{1}{u_n} \to +\infty$

Propriété g.: Soient u_n et v_n deux suites réelles : Si $u_n \to +\infty$, $v_n \to +\infty \Longrightarrow u_n + v_n \to +\infty$

Propriété h.: Soient u_n et v_n deux suites réelles : Si $u_n \to +\infty, v_n \to l \Longrightarrow u_n + v_n \to +\infty$

Démonstration. preuve de e.

Supposons que $u_n \to +\infty$ montrons que $\frac{1}{u_n} \to 0$. i.e. : $\forall \epsilon > 0 \exists N_{\epsilon} \in \mathbb{N}, \forall n > N_{\epsilon}, \left| \frac{1}{u_n} \right| < \epsilon$ Soit $\epsilon > 0$ Comme $u_n \to +\infty, \exists N \in \mathbb{N} u_n > \frac{1}{\epsilon}$, on a :

$$\forall n \in \mathbb{N}, n \ge N, \left| \frac{1}{u_n} \right| = \frac{1}{u_n} < \epsilon$$

Chapitre 3

Inégalités et limites

Proposition a.: Soient u_n et v_n deux suites réelles que; $\forall n \in \mathbb{N} u_n \leq v_n$. Si $u_n \to l$ et $v_n \to l' \Longrightarrow l \leq l'$

Proposition b.: Soient u_n et v_n deux suites réelles telles que; $\forall n \in \mathbb{N} u_n \leq v_n$. Si $u_n \to +\infty \Longrightarrow v_n \to +\infty$

Rermarque: On peut passer à la limite dans des inégalités large mais pas pour toutes les inégalités strictes.

Démonstration. a. Supposons par l'absurde que l>l'.

Comme u_n tend vers $l \Longrightarrow \exists N_1 \in \mathbb{N}, \forall n > n_1, |u_n - l| < \epsilon$ et comme v_n tend vers $l' \Longrightarrow \exists N_2 \in \mathbb{N}, \forall n \geq N_2, |v_n - l'| < \epsilon$

Posons $N_3 = \max(N_2, N_1)$

On a alors:

$$u_{N_3} > l - \epsilon = l - \frac{l - l'}{2} = \frac{l + l'}{2}$$

$$v_{N_3} > l + \epsilon = l' + \frac{l - l'}{2} = \frac{l + l'}{2}$$

Ainsi $u_{N_3} > \frac{l+l'}{2} > v_{N_3}$

Or $u_N \leq v_N$ Contradiction.

Donc l < l'

b. Montrons que $v_n \to +\infty$ i.e. : $\forall A > 0 \exists N_A \in \mathbb{N}, \forall n \geq N_A n v_n > A$ Soit A>0. Comme $u_n \to +\infty \exists N \in \mathbb{N}$ tel que $\forall n \geq N, u_n > A$ Posons $N_A = N$ pour tout $n \geq N_A = N$ on a $v_n > u_n > A \Longrightarrow v_n > A$

Théorème des Gendarmes : Soient $(u_n), (v_n), (w_n)$ trois suites réelles telles que :

$$\forall n \in \mathbb{N}, u_n \leq v_n \leq w_n$$

et telles que $u_n \to l$ et $w_n \to l \Longrightarrow v_n \to l$

Démonstration. Montrons que $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \forall n \geq N_{\epsilon}, |v_n - l| > \epsilon$ Soit $\epsilon > 0$

Comme $u_n \to l$, il existe $N_A \in \mathbb{N}$ tel que $\forall n \geq n_A, |u_n - l| < \epsilon$ Comme $w_n \to l$, il existe $N_A \in \mathbb{N}$ tel que $\forall n \geq n_A, |w_n - l| < \epsilon$ et soit $N_\epsilon = \max(N_1, N_2) \in \mathbb{N}$ Pour tout $n \geq N_\epsilon$, on a :

$$l - \epsilon < u_n \le v_n \le w_n < l + \epsilon \Longrightarrow |v_n - l| < \epsilon$$

3.1 Suites Géométriques :

Propriété a. : Soit $q \in \mathbb{R}$, Si q > 1 alors $q^n \to +\infty$

Propriété b. : Soit $q \in \mathbb{R}$, Si |q| < 1 alors $q^n \to 0$

Propriété c.: Soit $q \in \mathbb{R}$, Si $q \leq 1$ alors (q^n) diverge.