Informativity in adaptation: Supervised and unsupervised learning of linguistic cue distributions

Dave F. Kleinschmidt, Rajeev Raizada, and T. Florian Jaeger, University of Rochester

dkleinschmidt@bcs.rochester.edu, raizada@bcs.rochester.edu, fjaeger@bcs.rochester.edu

Our question:

Do people use category labels during adaptation?

Language learning doesn't stop once you reach adulthood: talkers use linguistic cues to realize their intentions in different ways. To adapt to a new talker, you have to learn the way they use cues. If you know their intented meaning, this learning should be a lot easier. Learning with known category labels is called supervised learning, and learning from cues only is called unsupervised learning.

Why we ask:

Categories are distributions of cues Productions vary within talker Productions vary across talkers Requires distributional learning for Acquisition: learn language's distributions Adaptation: learn talker's distributions Are they the same underlying process? Why is acquisition **slow** and adaptation **fast**? Adults have more information from experience Other cues label sounds with intended cateogry

Distributional learning of /b/ and /p/ What we did: Listeners hear b/p minimal pair word

VOT (ms)

Sample of VOTs implies /b/ VOTs are drawn from a and /p/ clusters with particular bimodal distribution means and variances

Learning is measured by how well listener's category boundary matches predicted boundary

...with and without labels and click on matching picture. Trial is either:

provide teaching signal (supervision): only beach matches, talker intended /b/

measure /b/-/p/ category boundary: both *beach* and peach match, ambiguous

Experiment 1

Results

Accuracy on labeled trials: 98%

Discussion

- 1) Learning was good: category boundaries match distributions
- 2) People used labels to choose responses (98% accurate)
- 3) But labels didn't change learning (no difference between supervised and unsupervised)
- 4) Was it too easy?

Experiments 2+3

Results

Category boundaries

Discussion

Discussion

- 1) Learning was worse for large shifts (category boundaries much lower than distributions predict)
- 2) Still **no effect of labels** (unsupervised = supervised).
- 3) Were labeled trials distributed too sparsely over VOT?

Experiment 4

Mix labeled trials over whole VOT range

From Experiments 1-3: Unsupervised

Results

1) Still no effect of labels Category boundaries (or only marginal if any) Shift (ms 50 30 -25 20 50

/b/-/p/ boundary (ms VOT)

Conclusions

Surprisingly, people do not appear to use informative labels for adaptation, even though they do for classification.

Two possible reasons why:

- 1) Other studies use intrinsic labels (lexical or audio-visual cues).
- 2) Goldilocks problem: too easy or hard for label use to be detectable. Unlabeled trials contain a lot of distributional information, and high-shift conditions are very unnatural