

Customizing OpenAI Gym Lunar Lander

Introdução aos Sistemas Inteligentes e Autónomos

Ambiente

Este ambiente simula um problema clássico de otimização da trajetória de um foguetão. O combustível é infinito, permitindo que o agente aprenda a voar e aterrar. O foguetão Lander é projetado com uma força inicial aleatória aplicada ao centro de massa. O objetivo é obter uma pontuação mínima de 200 pontos por episódio para considerá-lo uma solução.

Existem quatro **ações** discretas:

- Não fazer nada
- Ligar motor de orientação esquerdo
- Ligar motor de orientação direito
- Ligar motor principal

O **estado** é um vetor 8D que representa:

- As coordenadas da posição do foguetão
- As velocidades linear de eixos, x e y, e, também, a velocidade angular
- Ângulo
- Contato das pernas com o solo.

Ambiente

Para cada passo, a **recompensa**:

- aumenta/diminui quanto mais próximo/distante o lander está da plataforma de aterragem.
- aumenta/diminui quanto mais lento/rápido o lander está se movendo.
- diminui quanto mais inclinado (ângulo não horizontal) o lander estiver.
- aumenta em 10 pontos para cada perna em contato com o solo.
- diminui em 0,03 pontos a cada frame que o motor lateral está ligado.
- diminui em 0,3 pontos a cada frame que o motor principal está ligado.

O episódio recebe uma recompensa adicional de -100 ou +100 pontos para colisão ou aterragem segura, respetivamente.

Modificações

Recompensa 1

Quando terminado:

- Dentro do espaço de aterragem, valorizamos:
 - O agente por estar na zona de aterragem.
 - As pernas estarem em contato com o solo, e a velocidade e o ângulo de aterragem não serem demasiado bruscos.
 - O agente estar no centro da zona de aterragem.
- Fora do espaço de aterragem penalizamos, visto que não cumpriu o objetivo

Durante o episódio é feita uma pequena penalização, para certificar que a aterragem é feita o mais rápido possível.

Recompensa 2

Esta estrutura de recompensas é muito semelhante à *recompensa 1.* A única diferença é que não penalizamos o agente por estar no ar.

Recompensa 3

Esta estrutura de recompensa é muito idêntica à *recompensa 1*, a diferença entre elas é que quando o módulo de aterragem está no ar, o módulo de aterragem é menos penalizado do que a *recompensa 1*.

Algoritmos Escolhidos

Decidimos experimentar três algoritmos diferentes: **PPO**, **A2C** e **DQN**

Para avaliar os algoritmos, utilizámos a duração de um episódio e a recompensa de um episódio. O gráfico de duração porque queremos que o módulo de aterragem aterre o mais rapidamente possível, e utilizámos o gráfico de recompensa para ver e analisar o estado e a estabilidade de um treino.

Resultados

Notamos que o algoritmo Proximal Policy Optimization (PPO) foi ligeiramente melhor.

Por isso, decidimos treinar o agente com ele, utilizando as três estruturas de recompensas diferentes criadas por nós (mencionadas acima) que achámos que fariam sentido.

Resultados

Sem modificações

Com modificações

Conclusão

Com esta análise, verificámos que o nosso modelo com alterações melhorou ligeiramente em comparação com o modelo sem alterações. Como a duração de um episódio é maioritariamente mais curta e as recompensas permanecem lineares e constantes e, fora disso, também achamos que a nível de renderização, o nosso modelo por norma parece-se comportar melhor, consideramos que as nossas alterações foram positivas e melhoraram o modelo.