Loss Functions

Loss	Use Case	Pros	Cons
Function			
Mean Squared	Regression	Simple to compute and	Sensitive to outliers, can
Error (MSE)		differentiate.	lead to slow convergence.
Mean Absolute	Regression	Robust to outliers.	Less smooth gradients
Error (MAE)			compared to MSE, can be
			slower to converge.
Huber Loss	Regression (robust	Balances sensitivity and	Requires tuning of the
	to outliers)	robustness to outliers.	hyperparameter $\delta \cdot \delta$.
Cross-Entropy	Classification	Effective for	Can be sensitive to class
Loss	(binary and	classification tasks,	imbalance.
	multiclass)	especially with softmax	
		output.	
Binary Cross-	Binary	Suitable for binary	Can suffer from vanishing
Entropy	Classification	classification, handles	gradients for extreme
		probabilities well.	predictions.
Categorical	Multiclass	Standard for multiclass	Assumes mutually
Cross-Entropy	Classification	classification with one-	exclusive classes, not
		hot encoded labels.	suitable for multi-label
			classification.
Sparse	Multiclass	Efficient for large number S	milar issues as
Categorical	Classification with	of classes, avoids one-hot	categorical cross-entropy
Cross-Entropy	integer labels	encoding.	with class imbalance.
Hinge Loss	Support Vector	Good for maximum	Not differentiable at the
	Machines (SVMs)	margin classifiers,	margin, less commonly
			used in deep learning.

		promotes clear class	
		separation.	
Poisson Loss	Poisson regression	Suitable for modeling	Assumes Poisson
	and count data	count data, consistent	distribution, not suitable
		with Poisson-distributed	for other types of data.
		targets.	
Cosine	Similarity Learning E	fective for tasks	May not work well for
Proximity		focusing on similarity	tasks requiring absolute
		(e.g., embeddings).	value prediction.
Focal Loss	Object detection	Addresses class	Introduces an additional
	and classification	imbalance by focusing on	hyperparameter
	(imbalanced data)	hard examples.	y∖gammay, requires
			tuning.

- Mean Squared Error (MSE): Measures the average squared differences between predicted and actual values. Widely used in regression tasks.
 - PyTorch Syntax: torch.nn.MSELoss()
- Mean Absolute Error (MAE): Measures the average absolute differences between predicted and actual values. Less sensitive to outliers compared to MSE.
 - PyTorch Syntax: torch.nn.L1Loss()
- Huber Loss: A combination of MSE and MAE, providing robustness to outliers and smooth gradients.
 - PyTorch Syntax: torch.nn.SmoothL1Loss()
- Cross-Entropy Loss: Measures the difference between two probability distributions, commonly used for classification tasks.

- PyTorch Syntax: torch.nn.CrossEntropyLoss()
- Binary Cross-Entropy: A special case of cross-entropy for binary classification problems.
 - PyTorch Syntax: torch.nn.BCELoss()
- Categorical Cross-Entropy: Used for multiclass classification where each output class is one-hot encoded.
 - PyTorch Syntax: torch.nn.CrossEntropyLoss()
- Sparse Categorical Cross-Entropy: Similar to categorical cross-entropy but uses integer labels for classes.
 - PyTorch Syntax: torch.nn.CrossEntropyLoss() (with integer labels)
- Hinge Loss: Used primarily for training Support Vector Machines (SVMs), promoting a large margin between classes.
 - PyTorch Syntax: torch.nn.HingeEmbeddingLoss()
- Poisson Loss: Suitable for count data and Poisson regression, assuming targets follow a Poisson distribution.
 - PyTorch Syntax: torch.nn.PoissonNLLLoss()
- Cosine Proximity: Measures the cosine similarity between predicted and actual vectors, useful in similarity learning tasks.
 - PyTorch Syntax: torch.nn.CosineEmbeddingLoss()
- Focal Loss: Modifies cross-entropy to focus on hard-to-classify examples, useful for imbalanced classification tasks. This loss function is not built-in to PyTorch but can be implemented manually. Here is an example implementation:

