

D9.1. Find the value of I_o in the network of Figure D9.1; assume an ideal op amp.

$$I_0 = \frac{84}{10k} = 8.4 \text{ m/s}$$

D9.2 Figure D9.2 is a differential voltage amplifier, often called an instrumentation amplifier, which has a high input resistance, and therefore more appropriate for applications with a high source resistance (like the medical applications previously mentioned). It is also commonly used to measure sensor outputs from bridge circuits. Assuming ideal op amps; what is an expression for the output voltage in terms of the two inputs?

• Ex1

(10 points) Consider the following circuit including an ideal operational amplifier.

(6 points) Apply KCL on node A and Find vo in terms of v1, v2, R1, R2, R3, and R4.

$$\frac{\sqrt{A-V_0}}{R_1} + \frac{\sqrt{A-V_1}}{R_1} = 0$$

$$V_0 = \frac{V_0 + \frac{R_2V_0}{R_1} - \frac{R_2V_1}{R_1}}{R_1} = 0$$

$$V_0 = \frac{R_0 - R_1}{R_1 + \frac{R_2V_0}{R_2} + \frac{R_2V_0}{R_2}}{R_1 + \frac{R_2V_0}{R_2} + \frac{R_2V_0}{R_2}} + \frac{R_2V_0}{R_2} = 0$$

• Ex2

(10 points) Consider the following circuit including an ideal operational amplifier.

11-2)

- (a) (4 points) Find V_0 and V_1 . $\sqrt[n]{V_0} = \frac{4}{V}$
- (b) (3 points) Find I_{1.0} 0.02A

- **9.14.** For the circuit shown in Figure P9.14, assume the voltage source is given by $v_s = 0.1 \cos(2000 t) V$.
 - (a) Write an expression for v_o , the output voltage across the load resistor, R_L ?
 - (b) What is the maximum current through R_L ?
 - (c) What is the maximum current from the output of the op amp?

9.24. Determine the output voltage, v_o , across R_L in Figure P9.24, assuming an ideal op amp.

$$\frac{\sqrt{s}}{R_{1}} + \frac{\sqrt{s} - \sqrt{o}}{R_{2}} = 0$$

$$(a) \cdot \cdot \cdot \sqrt{o} = (1 + \frac{R_{1}}{R_{1}}) \cdot \sqrt{c} = (1 + \frac{3.8 \, \text{k}}{200}) \cdot \sqrt{s}$$

$$= 20 \, \text{Vs} = 2.005 \, (20001)$$

(a) Write an expression for v_o , the output voltage across the load resistor, R_L ?

$$\frac{\sqrt{s}-0}{R_1} + \frac{\sqrt{s}-\sqrt{s}}{R_2} = 0$$

$$V_0 = (1 + \frac{R_0}{R_1}) \cdot V_0 = (1 + \frac{3.8 \, \text{k}}{200}) \, V_0$$

$$= 20 \, V_0 = \frac{2 \cos(2000t)}{2000t}$$

(b) What is the maximum current through R_L ?

$$\frac{2\cos(2\cos t)}{2k} \qquad \text{Imax} = \frac{2}{2k} = \ln A$$

(c) What is the maximum current from the output of the op amp?

$$V_{s} = \frac{1}{10} \cos(2000t) = max = 0.1$$
 $V_{o} = max = 2$

$$v_o = - \left[rac{R_2}{R_{1A}} v_{iA} + rac{R_2}{R_{1B}} v_{iB}
ight]$$

9.31. For the circuit in Figure P9.31, determine an expression for the output voltage, v_o , in terms of the input voltages, v_A , v_B , and v_C ; assume an ideal op amp.

9.41. Determine the maximum gain and bandwidth of the filter shown in Figure P9.41; assume an ideal op amp.

