Appendix H: Fisheries Baseline Information and Field Results

#### **Attachment H-1**

#### Fish Habitat Maps







|                      | Quality at ng Site: | pH: 7.                    | 69                      | Temp (*           | C): 19.8           | EC (µS/cn             | 1): 1168             | DO (r                       | ng/L): 2.7                         | Turb (N                                                                             | TU): 0.59            | Gradient (%): <1      |                           |                                      |  |  |  |
|----------------------|---------------------|---------------------------|-------------------------|-------------------|--------------------|-----------------------|----------------------|-----------------------------|------------------------------------|-------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------------|--------------------------------------|--|--|--|
|                      |                     |                           |                         | Distance          | Bankfull           | Bankfull Depth        | Wetted               | Wett                        | ed Depth at % W                    | idth (m)                                                                            | Veloc                | cities at % Width (   | m/s)                      | Groundwate                           |  |  |  |
| Transect             | UTM-E               | UTM-N                     | Zone/ WPT               | from<br>Crossing  | Width (m)          | (m)                   | Width (m)            | 25%                         | 50%                                | 75%                                                                                 | 25%                  | 50%                   | 75%                       | Seeps                                |  |  |  |
| 1                    | 608224              | 5558828                   | Wc2T1                   | 100 m             | 11.0               | 2.0                   | 8.0                  | 1.02                        | 1.02                               | 0.69                                                                                | -                    |                       | -                         |                                      |  |  |  |
| 2                    | 608279              | 5558813                   | Wc2T2                   | 50 m              | 18.0               | 1.0                   | 12.0                 | 0.91                        | 0.72                               | 0.52                                                                                |                      |                       | -                         |                                      |  |  |  |
| 3 (Crossing)         | 608327              | 5558811                   | Wc2T3                   | 0 m               | 12.6               | 1.0                   | 9.4                  | 0.43                        | 0.90                               | 0.77                                                                                | < 0.03               | 0.11                  | 0.01                      | Unknown                              |  |  |  |
| 4                    | 608437              | 5558785                   | Wc2T4                   | 150 m             | 16.0               | 1.5                   | 12.0                 | 1.02                        | 0.89                               | 0.51                                                                                |                      | -                     |                           |                                      |  |  |  |
| 5                    | 608508              | 5558805                   | Wc2T5                   | 300 m             | 14.0               | 1.0                   | 10.0                 | 0.41                        | 0.92                               | 1.03                                                                                |                      |                       |                           |                                      |  |  |  |
|                      | LDB / RDB           | LDB / RDB                 | LDB/RDB                 |                   | Bank M             | Material (%)          |                      |                             | Sut                                | ostrate Composit                                                                    | ion (%)              |                       |                           |                                      |  |  |  |
| Transect             | Bank Slope<br>(deg) | Bank Stability<br>(L/M/H) | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm)  | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)             | Sm Gravel<br>(3-16mm)              | Lg Gravel<br>(17-64mm)                                                              | Cobble<br>(65-256mm) | Boulder<br>(>256mm)   |                           | Embeddedness<br>(None/Low/Mod./High) |  |  |  |
| 1                    | 80/25               | H/H                       | L/L                     | 100               | 0                  | 0                     | 0                    | 100                         | 0                                  | 0                                                                                   | 0                    | 0                     |                           |                                      |  |  |  |
| 2                    | 70/40               | H/H                       | L/L                     | 100               | 0                  | 0                     | 0                    | 100                         | 0                                  | 0                                                                                   | 0                    | 0                     |                           |                                      |  |  |  |
| 3 (Crossing)         | 80/40               | H/H                       | L/L                     | 100               | 0                  | 0                     | 0                    | 100                         | 0                                  | 0                                                                                   | 0                    | 0                     |                           | ***                                  |  |  |  |
| 4                    | 80/45               | H/H                       | E/L                     | 100               | 0                  | 0                     | 0                    | 100                         | 0                                  | 0                                                                                   | 0                    | 0                     |                           |                                      |  |  |  |
| 5                    | 35/50               | H/M                       | L/L                     | 100               | 0                  | 0                     | 0                    | 100                         | 0                                  | 0                                                                                   | 0                    | 0                     |                           |                                      |  |  |  |
| Transect             |                     | Cover Habitat (%)         |                         |                   |                    |                       |                      |                             |                                    | Habitat Type Ratio  Habitat Potential - Sport/Forage Fish (None/Poor/Moderate/Good) |                      |                       |                           |                                      |  |  |  |
| transect             | Canopy<br>Cover     | Overhanging Veg.          | Instream Veg.           | Undercut<br>Banks | Woody<br>Debris    | Surface<br>Turbulence | Water Depth          | Boulder<br>Cover            | (Pool/Riffle/Run)                  |                                                                                     | Spawn                | Rearing               | Migration                 | Overwinterin                         |  |  |  |
| T1 to T2             | 0                   | - 11                      | 25                      | 0                 | 0                  | 0                     | 5                    | 0                           | 0/0                                | / 100                                                                               | Poor / Poor          | Poor / Mod            | Poor / Mod                | None / None                          |  |  |  |
| T2 to T3             | 0                   | 0                         | 30                      | 0                 | 1                  | 0                     | 0                    | 0                           | 0/0                                | / 100                                                                               | Poor / Poor          | Poor / Mod            | Poor / Mod                | None / None                          |  |  |  |
| T3 to T4             | 0                   | 1                         | 20                      | 0                 | 0                  | 0                     | 5                    | 0                           | 0/0                                | / 100                                                                               | Poor / Poor          | Poor / Mod            | Poor / Mod                | None / None                          |  |  |  |
| T4 to T5             | 0                   | 1                         | 25                      | 0                 | 1                  | 0                     | 10                   | 0                           | 0/0                                | / 100                                                                               | Poor / Poor          | Poor / Mod            | Poor / Mod                | None / None                          |  |  |  |
|                      |                     | Minnow Trapping           |                         |                   | Electrofishi       | ng                    |                      | Pole Seinin                 | g                                  |                                                                                     | Cast Netting         |                       |                           |                                      |  |  |  |
| No. Fish<br>Observed | No.<br>Captured     | Effort<br>(hrs)           | CPUE<br>(# fish/hr)     | No.<br>Captured   | Effort<br>(s)      | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)               | CPUE<br>(# fish/10m <sup>2</sup> ) | No. Captured                                                                        | Effort<br>(s)        | CPUE<br>(# fish/10m²) | Restricted                | Activity Period                      |  |  |  |
| 1                    | 1-PRDC              | 10.5                      | 0.1                     | 0                 | 387                | 0                     | Unfeasible d         | lue to high inst<br>density | ream vegetation                    | Unfeasible due                                                                      | to high instream v   | regetation density    | October 1                 | st to May 31st                       |  |  |  |
| Proposed Cr          | ossing Period       | Propose                   | d Pipeline Cross        | sing              | Contin             | gency Pipeline C      | rossing              | Proposed Vehicle Crossing   |                                    |                                                                                     | Site Se              | ensitivity            | Watercourse Crossing Risk |                                      |  |  |  |
| Sun                  | nmer                | Iso                       | lated Open-cut          |                   |                    | Open-cut              |                      | Terr                        | porary Single-Spar                 | n Bridge                                                                            | idge Low to Moderate |                       |                           | Low                                  |  |  |  |



Plate 1: Looking upstream towards the proposed pipeline crossing at Maple Creek (Site 2; August 22, 2010).



Plate 2: Looking upstream from Transect 5 (T5) approximately 300 m downstream of the proposed pipeline crossing (August 22, 2010).



Plate 3: View downstream towards the proposed pipeline crossing from Transect 2 (T2), approximately 50 m upstream of the proposed crossing (August 22, 2010).



Plate 4: View looking upstream from approximately 150 m downstream of the proposed crossing (August 22, 2010).



| •—•           | Transect                |
|---------------|-------------------------|
| $\rightarrow$ | Flow Direction          |
| >>>>>         | Beaver Dam              |
|               | Beaver Lodge            |
| ¥             | Vegetated Drainage Drav |
| BM            | Bench Mark              |
| (MT)          | Minnow Trap             |

Water Depth (m)

>> Fish Observation

Habitat Type RF Class 1 Run (>1 m deep) Class 2 Run (0.75-1 m deep) Class 3 Run (0.5-0.75 m deep) R3 Class 1 Pool(>1.5 m deep) P1 Class 2 Pool (mod quality) P2 P3 Class 3 Pool (low quality) FL Flat FA Falls **BW** Backwater Impoundment

Fish Habitat Cover

Substrate Fi Organic Fines Sand Si Gr Gravel Co Cobble Bo Boulder

Bd Bedrock Ba Bare Ground GB Gravel Bar

**Habitat Cover Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes Debris Pile DP WD Woody Debris

LWD Large Woody Debris RW Rootwad V OHV Overhanging Vegetation -- UCB Undercut Bank

USB Unstable Bank Fallen Tree

Riparian Vegetation Banks / Approaches

Shrub MW Mixedwood Forest Coniferous Forest DF **Deciduous Forest** Sedges SE GF Grass/Forbs MO Moss Shrubs

3

Trees

 Shallow Slope Moderate Slope Moderately Steep Slope Steep Slope Escarpment



Vantage Pipeline Project

Maple Creek (Site 2) Fish Habitat Data (W1/2 15-14-26 W3M)

January 2011 REF.: 1282 (Fisheries)





Plate 2: View upstream towards the proposed Site 3 crossing location. Picture by Jacques Whitford AXYS during fisheries assessment for the Keystone pipeline project (June 17, 2008).

| Water C              | Quality at<br>ng Site: | pH: *8                       | 3.67                    | Temp (*          | C): *21.4          | EC (µS/cm             | ): *777              | DO (n             | ng/L): *6.6                        | Turb (NT               | U): *0.75            | Gradient (%): <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                           |  |
|----------------------|------------------------|------------------------------|-------------------------|------------------|--------------------|-----------------------|----------------------|-------------------|------------------------------------|------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|--|
|                      |                        |                              | 7                       | Distance         | Bankfull           | Bankfull Depth        | Wetted               | Wett              | ted Depth at % W                   | fidth (m)              | Veloc                | cities at % Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (m/s)                                 | Groundwate                                |  |
| Transect             | UTM-E                  | UTM-N                        | Zone/ WPT               | from<br>Crossing | Width (m)          | (m)                   | Width (m)            | 25%               | 50%                                | 75%                    | 25%                  | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75%                                   | Seeps                                     |  |
| 1                    |                        |                              | 6775                    |                  | *18.0              | *0.3                  | *16.0                |                   |                                    | ****                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                  |                                           |  |
| 2                    |                        |                              |                         | ****             | *12.0              | *3.0                  | *10.5                | ****              |                                    |                        | ****                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | A. S. |  |
| 3                    | 634331                 | 5542259                      | 12U                     | 55 m             | *13.0              | 0.0                   | *8.0                 |                   | *1.60                              | ***                    | ***                  | *0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | Unknown                                   |  |
| 4                    | -                      |                              |                         | ***              | *48.0              | *0.0                  | *45.0                |                   |                                    |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
| 5                    |                        |                              | - 144                   | -                | *35.0              | *0.0                  | *30.0                |                   | 322                                |                        |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                           |  |
| 5                    | LDB / RDB              | LDB / RDB                    | LDB/RDB                 |                  | Bank Material (%)  |                       |                      |                   | Sul                                | ostrate Compositi      | ion (%)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-5.0                                 | 28. 57                                    |  |
| Transect             | Bank Slope<br>(deg)    | Bank Stability<br>(L/M/H)    | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm) | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)   | Sm Gravel<br>(3-16mm)              | Lg Gravel<br>(17-64mm) | Cobble<br>(65-256mm) | Boulder<br>(>256mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Embeddedness<br>(None/Low/Mod./High)  |                                           |  |
| 1                    |                        | *L/L                         |                         | 100              | 0                  | .0                    | 0                    |                   |                                    |                        | ****                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
| 2                    |                        | *L / M                       |                         | 100              | 0                  | 0                     | 0                    | *85               | 944                                | *0                     | *15                  | •0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                           |  |
| 3                    |                        | *L/L                         |                         | 100              | 0                  | 0                     | 0                    | *70               | ***                                | *10                    | *20                  | *0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     |                                           |  |
| 4                    |                        | *L/L                         | ***                     | 100              | 0                  | 0                     | 0                    | ***               |                                    | ***                    | ***                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
| 5                    |                        | *L/L                         | ***                     | 100              | 0                  | 0                     | 0                    | ***               |                                    | ***                    | ****                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
| Transect             |                        |                              |                         | Cover Hat        | oitat (%)          |                       |                      |                   | Habitat T                          | ype Ratio              | ŀ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Sport/Forage Fish<br>Moderate/Good) |                                           |  |
| Transect             |                        | Overhead                     | d Cover                 |                  | Instream Cover     |                       |                      | (Pool/Riffle/Run) |                                    | Spawn                  | Rearing              | Migration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Overwintering                         |                                           |  |
| T1 to T2             |                        | *0                           | N.                      |                  |                    | *20                   |                      |                   | ***                                |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
| T2 to T3             |                        | *0                           |                         |                  | *35                |                       |                      |                   | ****                               |                        |                      | 8500 BGG S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4000000000                            | 740 OR 0                                  |  |
| T3 to T4             |                        | *0                           |                         |                  |                    | *40                   |                      |                   |                                    |                        | *None / Mod          | *None / Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *Mod / Mod                            | *Poor / Mod                               |  |
| T4 to T5             |                        | *0                           |                         |                  |                    | *35                   |                      |                   | 1                                  | 223                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
|                      |                        | Minnow Trapping              | g                       |                  | Electrofishi       | ng                    | -                    | Pole Seinin       | ng                                 | 1                      | Cast Netting         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                           |  |
| No. Fish<br>Observed | No.<br>Captured        | Effort<br>(hrs)              | CPUE<br>(# fish/hr)     | No.<br>Captured  | Effort<br>(s)      | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)     | CPUE<br>(# fish/10m <sup>2</sup> ) | No. Captured           | Effort<br>(s)        | CPUE<br>(# fish/10m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Restricted                            | Activity Period                           |  |
|                      |                        | 2000                         | Fishing effort co       | nducted during   | Keystone surv      | ey in 2008 resulted i | n BRMN throug        | h minnow trapp    | oing and electrofish               | ing                    |                      | Sall Control of Contro | October 1:                            | st to May 31st                            |  |
| roposed Cr           | ossing Period          | Dennes                       | ed Pipeline Cros        |                  |                    | gency Pipeline Cr     |                      |                   | posed Vehicle C                    |                        | Cit- C               | ensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Crossing Risk                             |  |
| roposea Cri          | ussing Period          | Propose                      | u ripeline cros         | sing             | Contir             | igency Pipeline Ci    | ossing               | Pro               | posed venicle C                    | ossing                 | Site Se              | nisiuvity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vvatercourse                          | crossing Risk                             |  |
| Summer               |                        | Horizontal Directional Drill |                         |                  | 1                  | Isolated Open-cut Tem |                      |                   | Temporary Single-Span Bridge       |                        | * Unkown             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * Unkown                              |                                           |  |

<sup>\*</sup> Data from 2008 Jacques Whitford AXYS Keystone XL Pipeline Fisheries Assessment

Due to restricted landowner access this site was not assessed during the 2010 field program. A field program is scheduled for spring 2011. Proposed timing window, and pipeline crossing method were determined in consultation with DFO and were based on the potential presence of fall spawning trout species (Schweitzer, pers. comm.). Proposed crossing method is subject to results of the spring 2011 survey.

#### Fish Habitat Data



Plate 3: Inlet to the lake downstream of the crossing location at Site 3. Picture by Jacques Whitford AXYS during fisheries assessment for the Keystone pipeline project (June 17, 2008).



Plate 4: Looking south towards the flooded area present in the spring of 2008 downstream of the proposed pipeline crossing location. Picture by Jacques Whitford AXYS during fisheries assessment for the Keystone pipeline project (June 17, 2008).

### (June 17, 2008). By: By: Date: No. AS TLR November 3, 2010 0 Diagram Not to Scale ospine Environmental Services Ltd.

Plate 1: Site overview of Piapot Creek immediately downstream of

(Site 3). Picture by Jacques Whitford AXYS during

the proposed Vantage pipeline crossing of Piapot Creek

fisheries assessment for the Keystone pipeline project

#### LEGEND Transect Flow Direction >>>> Beaver Dam Beaver Lodge Vegetated Drainage Draw Bench Mark

BM MT Minnow Trap

Water Depth (m) >> Fish Observation

| Hahita | t Type |
|--------|--------|
| Tabita | LIYPO  |

Substrate Fi Organic Fines Class 1 Run (>1 m deep) Sand Class 2 Run (0.75-1 m deep) Si Silt Class 3 Run (0.5-0.75 m deep) Gr Gravel Co Cobble

R3 Class 1 Pool(>1.5 m deep) P1 P2 Class 2 Pool (mod quality) P3 Class 3 Pool (low quality)

FL Flat FA Falls **BW** Backwater

Impoundment

Bo Boulder

Bd Bedrock

Ba Bare Ground

GB Gravel Bar

Habitat Cover **Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes DP Debris Pile Woody Debris

₩ WD RW

LWD Large Woody Debris Rootwad V OHV Overhanging Vegetation

-- UCB Undercut Bank USB Unstable Bank Fallen Tree

#### Riparian Vegetation

Shrub MW Mixedwood Forest Coniferous Forest CF DF **Deciduous Forest** SE Sedges Grass/Forbs GF MO Moss Shrubs

Trees

3

Banks / Approaches Shallow Slope

Moderate Slope Moderately Steep Slope Steep Slope \*\*\*\*\*\* Escarpment



Vantage Pipeline Project

Piapot Creek (Site 3) Fish Habitat Data (NE 19-12-23 W3M)

January 2011 REF.: 1282 (Fisheries)



| Water C<br>Crossii   | Quality at<br>ng Site: | pH:                       | 9.1                     | Temp (*          | C): *14.6          | EC (µS/cm             | ): *532              | DO (n             | ng/L); *8.7                  | Turb (NT               | 'U): *6.3                                                          | Gradient (%): <1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
|----------------------|------------------------|---------------------------|-------------------------|------------------|--------------------|-----------------------|----------------------|-------------------|------------------------------|------------------------|--------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| -                    |                        |                           |                         | Distance         | Bankfull           | Bankfull Depth        | Wetted               | Wett              | ed Depth at % W              | fidth (m)              | Velo                                                               | cities at % Width (                | (m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Groundwater                          |  |
| Transect             | UTM-E                  | UTM-N                     | Zone/ WPT               | from<br>Crossing | Width (m)          | (m)                   | Width (m)            | 25%               | 50%                          | 75%                    | 25%                                                                | 50%                                | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seeps                                |  |
| 111                  | (2000)                 | 0.000                     | 200                     | -                | *2.8               | *1.5                  | *2.8                 | *0.25             | *0.24                        | *0.18                  | *0.31                                                              | *0.95                              | *0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |
| 2                    | ***                    |                           | ***                     | ***              | *4.6               | *0.5                  | *4.6                 | *0.36             | *0.37                        | *0.37                  | *0.06                                                              | *0.17                              | *0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |
| 3 (Crossing)         | 648589                 | 5532245                   | NLFR1                   | 0 m              | 4.5                | 0.4                   | 4.5                  | 0.38              | 0.38                         | 0.44                   |                                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown                              |  |
| 4                    |                        | ***                       |                         | ***              | *4.8               | *0.3                  | *3.1                 | *0.31             | *0.31                        | *0.29                  | *0.34                                                              | *0.26                              | *0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |
| 5                    |                        |                           | ***                     | -                | *4.2               | *0.3                  | *4.2                 | *0.25             | *0.25                        | *0.31                  | *0.08                                                              | *0.20                              | *0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |
|                      | LDB / RDB              | LDB / RDB                 | LDB/RDB                 | *                | Bank Material (%)  |                       |                      |                   | Sut                          | ostrate Compositi      | on (%)                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| Transect             | Bank Slope<br>(deg)    | Bank Stability<br>(L/M/H) | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm) | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)   | Sm Gravel<br>(3-16mm)        | Lg Gravel<br>(17-64mm) | Cobble<br>(65-256mm)                                               | Boulder<br>(>256mm)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Embeddedness<br>(None/Low/Mod./High) |  |
| 1.                   |                        | *L/L                      | Fee: 2                  | 100              | 0                  | 0                     | 0                    | *20               | - C-0-1                      | *30                    | *48                                                                | *2                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| 2                    |                        | *L/L                      |                         | 100              | 0                  | 0                     | 0                    | *50               | -                            | *50                    | *0                                                                 | *0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| 3 (Crossing)         | 90 / 90                | L/L                       | M/M                     | 100              | 0                  | 0                     | 0                    | 50                | 0                            | 35                     | 10                                                                 | 5                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                  |  |
| 4                    | 9449                   | *L/L                      |                         | 100              | 0                  | 0                     | 0                    | *20               | ***                          | *50                    | *30                                                                | *0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| 5                    | 144                    | *L/L                      |                         | 100              | 0                  | 0                     | 0                    | *50               | 5244                         | *30                    | *18                                                                | *2                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| Transect             |                        |                           |                         | Cover Hal        | bitat (%)          |                       |                      |                   | Habitat T                    | ype Ratio              | Habitat Potential - Sport/Forage Fish<br>(None/Poor/Moderate/Good) |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| 110110000            |                        | Overhead                  | d Cover                 |                  | Instream Cover     |                       |                      | (Pool/Riffle/Run) |                              | Spawn                  | Rearing                                                            | Migration                          | Overwintering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |  |
| T1 to T2             |                        | *28                       | 3                       |                  |                    | *25                   |                      | -                 | (m)                          |                        |                                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| T2 to T3             |                        | *68                       | 5                       |                  | *45                |                       |                      | 10 / 10 / 80      |                              |                        | 0                                                                  |                                    | No. of Particular Part |                                      |  |
| T3 to T4             |                        | *5                        |                         |                  |                    | *5                    |                      |                   | 0 / 10                       | 0/90                   | Poor / Mod                                                         | Good / Good                        | Poor / Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None / Poor                          |  |
| T4 to T5             |                        | *70                       | )                       |                  |                    | *20                   |                      |                   |                              | -                      |                                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
|                      |                        | Minnow Trapping           | 9                       |                  | Electrofishi       | ng                    |                      | Pole Seinin       | g                            |                        | Cast Netting                                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |
| No. Fish<br>Observed | No.<br>Captured        | Effort<br>(hrs)           | CPUE<br>(# fish/hr)     | No.<br>Captured  | Effort (s)         | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)     | CPUE<br>(# fish/10m²)        | No. Captured           | Effort<br>(s)                                                      | CPUE<br>(# fish/10m <sup>2</sup> ) | Restricted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Activity Period                      |  |
|                      |                        | Fis                       | hing effort conduct     | ted during Keys  | tone survey in 2   | 2008 resulted in WH   | SC and BRST t        | hrough minnow     | trapping and elect           | rofishing              |                                                                    |                                    | April 1st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to May 31st                          |  |
| Proposed Cr          | ossing Period          | Propose                   | ed Pipeline Cross       | sing             | Contin             | gency Pipeline Cr     | rossing              | Pro               | posed Vehicle Co             | rossing                | Site Se                                                            | ensitivity                         | Watercours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Crossing Risk                      |  |
| Sun                  | nmer                   | Iso                       | olated Open-cut         |                  |                    | Open-cut              |                      |                   | Temporary Single-Span Bridge |                        |                                                                    | Low to Moderate                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low                                  |  |

Data from 2008 Jacques Whitford AXYS Keystone XL Pipeline Fisheries Assessment

#### Fish Habitat Data



Plate 1: View of the riparian area of Skull Creek at the proposed pipeline crossing (Site 4; October 18, 2010.)



Plate 2: View of habitat observed at the proposed pipeline crossing (Site 4; October 18, 2010).



Plate 3: Single span bridge at an active construction site immediately downstream of the proposed pipeline crossing at the time of October survey (October 18, 2010).



Plate 4: View of Skull Creek from high grade gravel road looking at outlet from the existing culvert, approximately 1.0 km downstream of the proposed crossing (August 22, 2010).



#### Transect Flow Direction >>>> Beaver Dam Beaver Lodge Vegetated Drainage Draw BM Bench Mark

MT Minnow Trap Water Depth (m) >> Fish Observation

## Habitat Type

Impoundment

R3

Substrate Fi Organic Fines Class 1 Run (>1 m deep) Sand Class 2 Run (0.75-1 m deep) Si Class 3 Run (0.5-0.75 m deep) Gr Gravel Co Cobble

Bo Boulder

Bd Bedrock

Ba Bare Ground

GB Gravel Bar

Class 1 Pool(>1.5 m deep) P1 P2 Class 2 Pool (mod quality) P3 Class 3 Pool (low quality) FL Flat FA Falls **BW** Backwater

#### **Habitat Cover**

**Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes DP Debris Pile WD Woody Debris LWD Large Woody Debris Rootwad

V OHV Overhanging Vegetation -- UCB Undercut Bank USB Unstable Bank

Fallen Tree

#### Riparian Vegetation

Shrub MW Mixedwood Forest CF Coniferous Forest Deciduous Forest DF Sedges SE Grass/Forbs GF MO Moss Shrubs

3

Trees

Banks / Approaches

 Shallow Slope Moderate Slope Moderately Steep Slope Steep Slope ----- Escarpment



Vantage Pipeline Project

Skull Creek (Site 4) Fish Habitat Data (NW 22-11-22 W3M)

January 2011 REF.: 1282 (Fisheries)



|                      | Quality at ing Site: | pH: *8                    | 3.91                    | Temp (*          | C): *19.2          | EC (µS/cm             | ): *1460             | DO (r            | mg/L): *8.8                        | Turb (NT               | U): *0.05            | Gradient (%): <1                    |                                 |                          |
|----------------------|----------------------|---------------------------|-------------------------|------------------|--------------------|-----------------------|----------------------|------------------|------------------------------------|------------------------|----------------------|-------------------------------------|---------------------------------|--------------------------|
| _                    |                      |                           |                         | Distance         | Bankfull           | Bankfull Depth        | Wetted               | Wett             | ted Depth at % W                   | fidth (m)              | Velo                 | cities at % Width (                 | m/s)                            | Groundwate               |
| Transect             | UTM-E                | UTM-N                     | Zone/ WPT               | from<br>Crossing | Width (m)          | (m)                   | Width (m)            | 25%              | 50%                                | 75%                    | 25%                  | 50%                                 | 75%                             | Seeps                    |
| 1 (Crossing)         | 651768               | 5529649                   | 5                       | 0                | 3.0                | 0.5                   | 3.0                  | 0.25             | 0.33                               | 0.41                   | ***                  | ***                                 | ***                             |                          |
| 2                    |                      | ***                       | ***                     | ***              | *0.6               | *0.7                  | *0.6                 | ***              | *0.15                              | ***                    | ***                  | *0.72                               | ***                             | 53000                    |
| 3                    |                      | ***                       | · · · · ·               | ***              | *1.0               | *0.5                  | *1.0                 | ***              | *0.26                              | ***                    | ***                  | *0.26                               | ***                             | Unknown                  |
| 4                    |                      |                           | (                       | ***              | *6.5               | *2.5                  | *6.5                 | ***              | *0.44                              | ***                    | ***                  | *0.04                               | ***                             |                          |
| 5                    |                      |                           | ***                     | ***              | *1,3               | *0.7                  | *1.3                 | ***              | *0.50                              | ***                    | ***                  | *0.11                               | ***                             |                          |
|                      | LDB / RDB            | DB LDB / RDB LDB/RDB      |                         |                  | Bank N             | Naterial (%)          |                      |                  | Sub                                | ostrate Composit       | ion (%)              |                                     | 121.                            |                          |
| Transect             | Bank Slope<br>(deg)  | Bank Stability<br>(L/M/H) | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm) | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)  | Sm Gravel<br>(3-16mm)              | Lg Gravel<br>(17-64mm) | Cobble<br>(65-256mm) | Boulder<br>(>256mm)                 |                                 | ddedness<br>w/Mod./High) |
| 1 (Crossing)         | 90 / 90              | M/L                       | L/L                     | 100              | 0                  | 0                     | 0                    | 75               | 5                                  | 20                     | 0                    | 0                                   |                                 | High                     |
| 2                    |                      | *L/L                      |                         | 100              | 0                  | 0                     | 0                    | *20              | ***                                | *80                    | •0                   | *0                                  | High                            |                          |
| 3                    |                      | *L/L                      | ( **** )                | 100              | 0                  | 0                     | 0                    | *10              | ***                                | *60                    | *30                  | *0                                  | High                            |                          |
| 4                    | ***                  | *L/L                      | 2000                    | 100              | 0                  | 0                     | 0                    | *100             | ***                                | *0                     | *0                   | *0                                  | High                            |                          |
| 5                    |                      | *L/L                      | 944                     | 100              | 0                  | 0                     | 0                    | *50              | ***                                | *50                    | *0                   | *0                                  | High                            |                          |
| Transect             |                      |                           |                         | Cover Hat        | bitat (%)          |                       |                      |                  | Habitat T                          | ype Ratio              |                      | Habitat Potential -<br>(None/Poor/M | Sport/Forage F<br>oderate/Good) | ish                      |
| 1100000              |                      | Overhead                  | d Cover                 |                  |                    | Instream Cover        |                      |                  | (Pool/Ri                           | ffle/Run)              | Spawn                | Rearing                             | Migration                       | Overwinterin             |
| T1 to T2             |                      | *5                        | ē.                      |                  | 3                  | *35                   | 0                    | -                | 5/75                               | 5 / 20                 |                      |                                     |                                 |                          |
| T2 to T3             |                      | *10                       | )                       |                  | *35                |                       |                      |                  | 0/5/95                             |                        |                      |                                     |                                 |                          |
| T3 to T4             |                      | *10                       | 0                       |                  |                    | *0                    |                      |                  |                                    |                        |                      | Poor / Mod                          | Poor / Mod                      | None / None              |
| T4 to T5             |                      | *18                       | 3                       |                  |                    | *15                   | 10                   |                  |                                    |                        |                      |                                     |                                 |                          |
|                      | i i                  | Minnow Trapping           | 9                       |                  | Electrofishin      | ng                    |                      | Pole Seinir      | ng                                 |                        | Cast Netting         |                                     |                                 |                          |
| No. Fish<br>Observed | No.<br>Captured      | Effort<br>(hrs)           | CPUE<br>(# fish/hr)     | No.<br>Captured  | Effort (s)         | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)    | CPUE<br>(# fish/10m <sup>2</sup> ) | No. Captured           | Effort<br>(s)        | CPUE<br>(# fish/10m <sup>2</sup> )  | Restricted                      | Activity Period          |
|                      |                      |                           | Fishing effort          | conducted durin  | ng Keystone su     | rvey in 2008 resulte  | d in the capture     | of FTMN and o    | observation of BRS                 | r                      |                      | •                                   | Un                              | known                    |
| Proposed Cr          | rossing Period       | Propose                   | ed Pipeline Cross       | sing             | Contin             | igency Pipeline C     | rossing              | Pro              | posed Vehicle Cr                   | rossing                | Site Se              | ensitivity                          | Watercourse                     | e Crossing Risk          |
| Sun                  | nmer                 | Iso                       | olated Open-cut         |                  |                    | Open-cut              |                      | Ramp and Culvert |                                    |                        | L                    | ow                                  | Low                             |                          |



Plate 1: Looking south from high grade gravel road towards the proposed pipeline crossing at Bridge Creek (Site 5) during the August survey (August 19, 2010).



Plate 2: View towards the crossing location at Site 5 looking upstream (October 19, 2010).



Plate 3: At the proposed crossing location looking upstream (October 19, 2010).



Plate 4: Looking south towards traversed area of Bridge Creek (October 19, 2010).



| LOLIN         | <u> </u>                |
|---------------|-------------------------|
| •—•           | Transect                |
| $\rightarrow$ | Flow Direction          |
| >>>>>         | Beaver Dam              |
|               | Beaver Lodge            |
| $\forall$     | Vegetated Drainage Draw |
| BM            | Bench Mark              |
| MT            | Minnow Trap             |
|               | Water Depth (m)         |

>> Fish Observation

|      | Habi | tat Type |
|------|------|----------|
|      | RF   | Riffle   |
|      | R1   | Class    |
|      | R2   | Class :  |
|      | R3   | Class    |
| Draw | P1   | Class    |
|      | P2   | Class :  |
|      | P3   | Class    |
|      | FL   | Flat     |
|      | FA   | Falls    |
|      | BW   | Backw    |
|      | ID   | Impou    |

| Riffle                        | Fi | Organic Fines |
|-------------------------------|----|---------------|
| Class 1 Run (>1 m deep)       | Sa | Sand          |
| Class 2 Run (0.75-1 m deep)   | Si | Silt          |
| Class 3 Run (0.5-0.75 m deep) | Gr | Gravel        |
| Class 1 Pool(>1.5 m deep)     | Co | Cobble        |
| Class 2 Pool (mod quality)    | Bo | Boulder       |
| Class 3 Pool (low quality)    | Bd | Bedrock       |
| Flat                          | Ba | Bare Ground   |
| Falls                         | GB | Gravel Bar    |
| Backwater                     |    |               |
| Impoundment                   |    |               |

Substrate

| Habita | at Cover               |
|--------|------------------------|
| EM     | Emergent Macrophytes   |
| SM     | Submergent Macrophytes |
| FM     | Floating Macrophytes   |
| DP     | Debris Pile            |
| WD WD  | Woody Debris           |
| LWD    | Large Woody Debris     |
| RW     | Rootwad                |

| XX VVD | woody Debris           |
|--------|------------------------|
| X LWD  | Large Woody Debris     |
| RW     | Rootwad                |
| V OHV  | Overhanging Vegetation |
| UCB    | Undercut Bank          |
| USB    | Unstable Bank          |
| - Chi  | Fallen Tree            |

Riparian Vegetation Shrub MW Mixedwood Forest CF Coniferous Forest Steep Slope **Deciduous Forest** Sedges \*\*\*\*\*\*\* Escarpment Grass/Forbs

DF SE GF MO Moss Shrubs 0 Trees



Vantage Pipeline Project

Bridge Creek (Site 5) **Fish Habitat Data** (NW 12-11-22 W3M)

January 2011 REF.: 1282 (Fisheries)



|              | Quality at<br>ng Site: | pH: 8.                    | 62                           | Temp (                                                      | "C): 4.0           | EC (µS/cr             | n): 460              | DO (m                     | ng/L): 14.6                  | Turb (NT                        | TU): 3.05             | Gradient (%): <1               |                                  |                          |  |
|--------------|------------------------|---------------------------|------------------------------|-------------------------------------------------------------|--------------------|-----------------------|----------------------|---------------------------|------------------------------|---------------------------------|-----------------------|--------------------------------|----------------------------------|--------------------------|--|
| 1925 65.7    | 100000000              | 0.00000000                | E-03 1550 (E-03)             | Distance                                                    | Bankfull           | Bankfull Depth        | Wetted               | Wett                      | ed Depth at % W              | /idth (m)                       | Velor                 | cities at % Width              | (m/s)                            | Groundwater              |  |
| Transect     | UTM-E                  | UTM-N                     | Zone/ WPT                    | from<br>Crossing                                            | Width (m)          | (m)                   | Width (m)            | 25%                       | 50%                          | 75%                             | 25%                   | 50%                            | 75%                              | Seeps                    |  |
| 1            | 661177                 | 5520564                   | WC7 T1                       | 100 m                                                       | 5.0                | 0.5                   | 5.0                  | 0.22                      | 0.32                         | 0.30                            | -                     | -                              |                                  |                          |  |
| 2            | 661248                 | 5520576                   | WC7 T2                       | 50 m                                                        | 3.7                | 0.7                   | 3.7                  | 0.28                      | 0.30                         | 0.28                            |                       |                                |                                  |                          |  |
| 3 (Crossing) | 661304                 | 5520596                   | WC7 T3                       | 0 m                                                         | 3.2                | 0.7                   | 3.2                  | 0.42                      | 0.48                         | 0.42                            | 0.50                  | 0.52                           | 0.17                             | Unknown                  |  |
| 4            | 661407                 | 5520683                   | WC7 T4                       | 150 m                                                       | 2.2                | 0.7                   | 2.2                  | 0.53                      | 0.65                         | 0.55                            | 0.000                 |                                |                                  |                          |  |
| 5            | 661445                 | 5520795                   | WC7 T5                       | 300 m                                                       | 4.5                | 0.6                   | 4.5                  | 0.42                      | 0.60                         | 0.36                            |                       |                                |                                  |                          |  |
|              | LDB / RDB              | LDB / RDB                 | LDB/RDB                      | 1                                                           | Bank I             | Material (%)          | 0                    |                           | Sul                          | bstrate Compositi               | ion (%)               | i i                            |                                  |                          |  |
| Transect     | Bank Slope<br>(deg)    | Bank Stability<br>(L/M/H) | Bank Erosion<br>(L/M/H)      | Fines<br>(< 2mm)                                            | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)           | Sm Gravel<br>(3-16mm)        | Lg Gravel<br>(17-64mm)          | Cobble<br>(65-256mm)  | Boulder<br>(>256mm)            |                                  | ddedness<br>w/Mod./High) |  |
| 1            | 90 / 90                | H/H                       | M/M                          | 100                                                         | 0                  | 0                     | 0                    | 20                        | 0                            | 40                              | 40                    | 0                              | - 1                              | LOW                      |  |
| 2            | 90 / 90                | H/H                       | M/M                          | 100                                                         | 0                  | 0                     | 0                    | 20                        | 0                            | 60                              | 20                    | 0                              | 1                                | LOW                      |  |
| 3 (Crossing) | 90 / 90                | H/H                       | M/M                          | 100                                                         | 0                  | 0                     | 0                    | 65                        | 0                            | 30                              | 5                     | 0                              | ,                                | MOD                      |  |
| 4            | 90 / 90                | H/H                       | M/M                          | 100                                                         | 0                  | 0                     | 0                    | 40                        | 0                            | 45                              | 15                    | 0                              | +                                | HIGH                     |  |
| 5            | 90 / 90                | H/H                       | M/M                          | 100                                                         | 0                  | 0                     | 0                    | 45                        | 0                            | 45                              | 10                    | 0                              | MOD                              |                          |  |
| Transect     |                        | Cover Habitat (%)         |                              |                                                             |                    |                       |                      |                           |                              | ype Ratio                       | ,                     | Habitat Potential (None/Poor/N | Sport/Forage F<br>Moderate/Good) | ish                      |  |
| Transect     | Canopy<br>Cover        | Overhanging Veg.          | Instream Veg.                | Undercut<br>Banks                                           | Woody<br>Debris    | Surface<br>Turbulence | Water Depth          | Boulder<br>Cover          | (Pool/Ri                     | (Pool/Riffle/Run) Spawn Rearing |                       | Migration                      | Overwintering                    |                          |  |
| T1 to T2     | 0                      | 5                         | 30                           | 1                                                           | 1                  | 0                     | 0                    | 0                         | 5/4                          | 0 / 55                          | Mod / Good            | Mod / Mod                      | Good / Good                      | Poor / Poor              |  |
| T2 to T3     | 0                      | 5                         | 20                           | 1                                                           | 1                  | 0                     | 0                    | 1                         | 10/5                         | 60 / 40                         | Mod / Good            | Mod / Mod                      | Good / Good                      | Poor / Poor              |  |
| T3 to T4     | 0                      | 5                         | 30                           | 5                                                           | 1                  | 0                     | 0                    | 0                         | 0/5                          | 6/95                            | Mod / Good            | Good / Good                    | Good / Good                      | Poor / Poor              |  |
| T4 to T5     | 0                      | 5                         | 50                           | 0                                                           | 1                  | 0                     | 10                   | 0                         | 60 / 1                       | 5 / 35                          | Mod / Good            | Good / Good                    | Mod / Mod                        | Mod / Mod                |  |
| No. Fish     |                        | Minnow Trapping           | į.                           |                                                             | Electrofishi       | ng                    |                      | Pole Seinin               | g                            |                                 | Cast Netting          |                                |                                  |                          |  |
| Observed     | No.<br>Captured        | Effort<br>(hrs)           | CPUE<br>(# fish/hr)          | No.<br>Captured                                             | Effort<br>(s)      | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)             | CPUE<br>(# fish/10m²)        | No. Captured                    | Effort<br>(s)         | CPUE<br>(# fish/10m²)          | Restricted                       | Activity Period          |  |
| 86           | 3-BRST                 | 23                        | 0.13                         | 13-BRST<br>8-FTMN<br>1-PRDC<br>2-BRMN<br>23-LNDC<br>13-WHSC | 604                | 52.87                 | Unfeasib             | e due to veget            |                              | Unfeasib                        | ble due to lack of la |                                | October 1                        | st to May 31st           |  |
| Proposed Cr  | ossing Period          | Propose                   | d Pipeline Cross             | sing                                                        | Contir             | ngency Pipeline C     | rossing              | Proposed Vehicle Crossing |                              |                                 | Site Se               | ensitivity                     | Watercourse                      | e Crossing Risk          |  |
| Sun          | nmer                   | Horizon                   | Horizontal Directional Drill |                                                             |                    | Isolated Open-cut     |                      |                           | Temporary Single-Span Bridge |                                 |                       | te to High                     | Moderate                         |                          |  |



Plate 1: View towards the proposed pipeline crossing of Bone Creek (Site 7) looking northwest (October 19, 2010).



Plate 2: Looking downstream from Site 7 at the proposed crossing location (October 19, 2010).



Plate 3: Typical bank vegetation and submerged vegetation observed within the reach upstream of the proposed crossing location (October 19, 2010).



Plate 4: Typical habitat observed within the reach between Transect 4 and Transect 5 (150 m to 300 m downstream) in the area impacted by beaver activity (October 19, 2010).



#### Transect Flow Direction >>>> Beaver Dam Beaver Lodge Vegetated Drainage Draw

LEGEND

BM Bench Mark MT Minnow Trap

Water Depth (m) >> Fish Observation

### Habitat Type

**BW** Backwater

Impoundment

Class 1 Run (>1 m deep) Class 2 Run (0.75-1 m deep) Class 3 Run (0.5-0.75 m deep) R3

Class 1 Pool(>1.5 m deep) P1 Class 2 Pool (mod quality) P2 **P3** Class 3 Pool (low quality) FL Flat FA Falls

#### Fi Organic Fines Sand Si Silt

Substrate

Gr Gravel Co Cobble Bo Boulder Bd Bedrock Ba Bare Ground GB Gravel Bar

#### Habitat Cover

**Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes DP Debris Pile WD Woody Debris LWD Large Woody Debris Rootwad

V OHV Overhanging Vegetation -- UCB Undercut Bank USB Unstable Bank

Fallen Tree

#### Riparian Vegetation

Trees

3

Shrub MW Mixedwood Forest CF Coniferous Forest DF Deciduous Forest Sedges SE GF Grass/Forbs MO Moss Shrubs

Banks / Approaches Shallow Slope Moderate Slope ← H Moderately Steep Slope Steep Slope



Vantage Pipeline Project

Bone Creek (Site 7) **Fish Habitat Data** (SW 14-10-21 W3M)

January 2011 REF.: 1282 (Fisheries)



(not to scale)

| Water C              | Quality at<br>ng Site:               | pH: *8                    | 3.76                    | Temp (°          | C): *18.5                     | EC (µS/cm)            | : *1138              | DO (n           | ng/L): *6.3                  | Turb (NT               | 'U): *1.2                                                       | Gradient (%): <1      |            |                           |  |
|----------------------|--------------------------------------|---------------------------|-------------------------|------------------|-------------------------------|-----------------------|----------------------|-----------------|------------------------------|------------------------|-----------------------------------------------------------------|-----------------------|------------|---------------------------|--|
| 250                  | Canasa 1                             | 0.000                     | Test Attack             | Distance         | Bankfull                      | Bankfull Depth        | Wetted               | Wett            | ed Depth at % W              | fidth (m)              | Velo                                                            | cities at % Width (   | m/s)       | Groundwat                 |  |
| Transect             | UTM-E                                | UTM-N                     | Zone/ WPT               | from<br>Crossing | Width (m)                     | (m)                   | Width (m)            | 25%             | 50%                          | 75%                    | 25%                                                             | 50%                   | 75%        | Seeps                     |  |
| 1                    | -                                    | ***                       |                         |                  | *19.0                         | *1.6                  | *5.9                 | *0.73           | *1.50                        | -                      |                                                                 | *0.02                 |            |                           |  |
| 2                    |                                      | ***                       |                         | ***              | *6.5                          | *1.0                  | *4.5                 | *0.92           | *1.60                        | ***                    |                                                                 | *0.06                 | ***        |                           |  |
| 3 (Crossing)         | 672433                               | 5512629                   | 11                      | 0 m              | 10.0                          | 0.1                   | 10.0                 | 1.08            |                              | ***                    | ***                                                             |                       |            | Unknown                   |  |
| 4                    |                                      |                           | ***                     |                  | *7.1                          | *0.1                  | *7.6                 | *0.18           | *0.21                        | *0.23                  | *0.62                                                           | *0.37                 | *0.49      |                           |  |
| 5                    | 50+Hr 5                              |                           |                         | ****             | *8.0                          | *1:2                  | *6.2                 | *0.74           | *1.30                        | *1.10                  | *0.02                                                           | *0.02                 | *0.02      |                           |  |
|                      | LDB / RDB                            | LDB / RDB                 | LDB/RDB                 |                  | Bank N                        | Material (%)          |                      |                 | Sub                          | ostrate Compositi      | on (%)                                                          |                       | 2.0        | 55 59                     |  |
| Transect             | Bank Slope<br>(deg)                  | Bank Stability<br>(L/M/H) | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm) | Gravel<br>(2-64mm)            | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm) | Sm Gravel<br>(3-16mm)        | Lg Gravel<br>(17-64mm) | Cobble<br>(65-256mm)                                            | Boulder<br>(>256mm)   |            | ddedness<br>w/Mod./High)  |  |
| 1                    |                                      | *M/M                      |                         | 100              | 0                             | 0                     | 0                    | *100            |                              | *0                     | *0                                                              | *0                    |            |                           |  |
| 2                    | 1.00                                 | *H/M                      |                         | 100              | 0                             | 0                     | 0                    | *100            |                              | *0                     | *0                                                              | *0                    |            |                           |  |
| 3 (Crossing)         | 30 / 30                              | H/H                       | L/L                     | 100              | 0                             | 0                     | 0                    | 100             | 0                            | 0                      | 0                                                               | 0                     |            | ***                       |  |
| 4                    | -                                    | *H / M                    |                         | 100              | 0                             | 0                     | 0                    | *10             |                              | *45                    | *40                                                             | *5                    |            |                           |  |
| 5                    |                                      | *M / M                    |                         | 100              | 0                             | 0                     | 0                    | *100            |                              | *0                     | *0                                                              | *0                    |            |                           |  |
| Transect             | Cover Habitat (%) Habitat Type Ratio |                           |                         |                  |                               |                       |                      |                 | ype Ratio                    |                        | Habitat Potential - Sport/Forage Fish (None/Poor/Moderate/Good) |                       |            |                           |  |
| Transcot             |                                      | Overhead                  | d Cover                 |                  | Instream Cover                |                       |                      |                 | (Pool/Ri                     | ffle/Run)              | Spawn                                                           | Rearing               | Migration  | Overwinter                |  |
| T1 to T2             |                                      | *10                       | )                       |                  | *80                           |                       |                      |                 |                              | -                      |                                                                 | -                     |            |                           |  |
| T2 to T3             |                                      | *10                       | )                       |                  |                               | *80                   |                      |                 | 0/0/100                      |                        | 10001000 100 N N N N N N N N N N N N N N                        | 11.752.75             | 0.00049300 | 20.02                     |  |
| T3 to T4             |                                      | *0                        |                         |                  |                               | *30                   |                      |                 | 0/5/95                       |                        | Mod / Good Mod / Good                                           | Mod / Good            | Mod / Mod  | Poor / Poor               |  |
| T4 to T5             |                                      | *10                       | )                       |                  |                               | *80                   |                      |                 | 1 2                          |                        |                                                                 |                       |            |                           |  |
|                      |                                      | Minnow Trapping           | 9                       |                  | Electrofishing Pole Se        |                       |                      |                 | 19                           |                        | Cast Netting                                                    |                       |            |                           |  |
| No. Fish<br>Observed | No.<br>Captured                      | Effort<br>(hrs)           | CPUE<br>(# fish/hr)     | No.<br>Captured  | Effort<br>(s)                 | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)   | CPUE<br>(# fish/10m²)        | No. Captured           | Effort<br>(s)                                                   | CPUE<br>(# fish/10m²) | Restricted | Activity Period           |  |
|                      |                                      |                           | F                       | ishing effort co | nducted during                | Keystone survey in    | 2008 resulted in     | the capture of  | no fish                      | dri di                 |                                                                 |                       | October 1  | st to May 31st            |  |
| Proposed Cr          | ossing Period                        | Propose                   | ed Pipeline Cross       | sing             | Contingency Pipeline Crossing |                       |                      | Pro             | Proposed Vehicle Crossing    |                        |                                                                 | Site Sensitivity      |            | Watercourse Crossing Risi |  |
| Sun                  | nmer                                 | Horizo                    | ntal Directional Dr     | ill              |                               | Isolated Open-cut     |                      |                 | Temporary Single-Span Bridge |                        |                                                                 | Moderate              |            | Low                       |  |

#### Fish Habitat Data



Plate 1: View looking northwest towards Swift Current Creek and the associated coulee surrounding the proposed pipeline crossing (Site 11; August 22, 2010).



Plate 2: Looking northwest towards the beaver impounded area and boulder substrate immediately downstream of the proposed crossing location (October 20, 2010).



Plate 3: Area immediately upstream of the proposed crossing location at Site 11 from the crossing location (October 20, 2010).



Plate 4: View south looking at the reach upstream of the proposed crossing location (October 20, 2010).

# LEGEND Diagram Not to Scale Environmental Services Ltd.

#### Transect Flow Direction >>>> Beaver Dam Beaver Lodge Vegetated Drain BM Bench Mark MT Minnow Trap Water Depth (m

| :GEN     | <u>D</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| -        | Transect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ha   |
| -        | Flow Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF   |
| XXXXX    | Beaver Dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R1   |
| _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R2   |
|          | Beaver Lodge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R3   |
| ¥        | Vegetated Drainage Draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P1   |
| (BM)     | Bench Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2   |
|          | Deficit Walk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P3   |
| MT       | Minnow Trap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FL   |
| -        | Water Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FA   |
| <b>~</b> | The state of the s | BV   |
| $\sim$   | Fish Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID   |

| labi | tat Type                      | Subs | strate        |
|------|-------------------------------|------|---------------|
| F    | Riffle                        | Fi   | Organic Fines |
| 1    | Class 1 Run (>1 m deep)       | Sa   | Sand          |
| 2    | Class 2 Run (0.75-1 m deep)   | Si   | Silt          |
| 3    | Class 3 Run (0.5-0.75 m deep) | Gr   | Gravel        |
| 1    | Class 1 Pool(>1.5 m deep)     | Co   | Cobble        |
| 2    | Class 2 Pool (mod quality)    | Bo   | Boulder       |
| 3    | Class 3 Pool (low quality)    | Bd   | Bedrock       |
| L    | Flat                          | Ba   | Bare Ground   |
| Α    | Falls                         | GB   | Gravel Bar    |
| W    | Backwater                     |      |               |
| •    | Impoundment                   |      |               |
|      |                               |      |               |

### **Habitat Cover**

**Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes Debris Pile DP ₩ WD Woody Debris LWD Large Woody Debris RW Rootwad V OHV Overhanging Vegetation -- UCB Undercut Bank

USB Unstable Bank

Fallen Tree

### Riparian Vegetation

Shrub MW Mixedwood Forest CF Coniferous Forest DF **Deciduous Forest** Sedges SE GF Grass/Forbs MO Moss Shrubs 3 Trees

#### Banks / Approaches Shallow Slope

Moderate Slope Moderately Steep Slope Steep Slope Escarpment



Vantage Pipeline Project

Swift Current Creek (Site 11) **Fish Habitat Data** (NE 14-9-20 W3M)

January 2011 REF.: 1282 (Fisheries)



|                      | Quality at<br>ing Site: | pH; 8.                    | 91                      | Temp (°                      | °C): 16.8          | EC (µS/ci             | m): 929              | DO (                                                                           | mg/L): 2.3                         | Turb (N1               | TU): 15.7             |                                    | Gradient (%): | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|-------------------------|---------------------------|-------------------------|------------------------------|--------------------|-----------------------|----------------------|--------------------------------------------------------------------------------|------------------------------------|------------------------|-----------------------|------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transect             | UTM-E                   | UTM-N                     | Zone/ WPT               | Distance                     | Bankfull           | Bankfull Depth        | Wetted               | Wet                                                                            | ted Depth at % W                   | /idth (m)              | Velocities at % Width |                                    | (m/s)         | Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Transect             | O I M-E                 | OTW-N                     | ZOTIE/ VVF I            | Crossing                     | Width (m)          | (m)                   | Width (m)            | 25%                                                                            | 50%                                | 75%                    | 25%                   | 50%                                | 75%           | Seeps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 2                  |                         |                           |                         |                              |                    | Acc                   | ess Restricted at    | the time of th                                                                 | e field surveys                    |                        |                       |                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 (Crossing)         | 683029                  | 5507387                   | WC12 T3                 | 0 m                          | 16.0               | 0.3                   | 16.0                 | 0.45                                                                           | 0.68                               | 0.53                   |                       |                                    |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                    | 682874                  | 5507596                   | WC12 T4                 | 150 m                        | 9.0                | 0.2                   | 9.0                  | 0.25                                                                           | 0.23                               | 0.28                   |                       |                                    |               | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5                    | 682790                  | 5507612                   | WC12 T5                 | 300 m                        | 3.0                | 0.2                   | 2.7                  | 0.15                                                                           | 0.15                               | 0.10                   | < 0.03                | 0.27                               | 0.17          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | LDB / RDB               | LDB / RDB                 | LDB/RDB                 |                              | Bank N             | Material (%)          |                      |                                                                                | Sul                                | ostrate Composit       | ion (%)               |                                    |               | el<br>Nacional de la composition della composition |
| Transect             | Bank Slope<br>(deg)     | Bank Stability<br>(L/M/H) | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm)             | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)                                                                | Sm Gravel<br>(3-16mm)              | Lg Gravel<br>(17-64mm) | Cobble<br>(65-256mm)  | Boulder<br>(>256mm)                |               | ddedness<br>w/Mod./High)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 2                  |                         | 51 W                      | 00 100                  |                              |                    | Acc                   | ess Restricted at    | the time of the                                                                | e field surveys                    |                        |                       |                                    | 57            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 (Crossing)         | 90 / 90                 | H/H                       | L/L                     | 65                           | 0                  | 30                    | 5                    | 35                                                                             | 10                                 | 40                     | 10                    | 5                                  | [ ]           | MOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                    | 90 / 90                 | H/H                       | M/M                     | 90                           | 0                  | 10                    | 0                    | 30                                                                             | 15                                 | 5                      | 35                    | 15                                 | ,             | ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                    | 90 / 90                 | H/H                       | L/L                     | 80                           | 0                  | 20                    | 0                    | 10                                                                             | 20                                 | 45                     | 20                    | 5                                  | NONE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Transect             | 17:                     |                           |                         | Cover Hal                    | bitat (%)          |                       | Habitat T            | tat Type Ratio Habitat Potential - Sport/Forage Fish (None/Poor/Moderate/Good) |                                    |                        |                       |                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Transcot             | Canopy<br>Cover         | Overhanging Veg.          | Instream Veg.           | Undercut<br>Banks            | Woody<br>Debris    | Surface<br>Turbulence | Water Depth          | Boulder<br>Cover                                                               | (Pool/Riffle/Run)                  |                        | Spawn                 | Rearing                            | Migration     | Overwintering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| T1 to T2<br>T2 to T3 |                         |                           |                         |                              |                    | Acc                   | ess Restricted at    | the time of th                                                                 | e field surveys                    |                        |                       |                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T3 to T4             | 0                       | 1                         | 15                      | 0                            | 0                  | 0                     | 25                   | 5                                                                              | 0/0                                | / 100                  | Poor / Poor           | Mod / Mod                          | Mod / Mod     | None / None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T4 to T5             | 0                       | 1                         | 5                       | 0                            | 0                  | 0                     | 0                    | 20                                                                             | 0/7                                | 0 / 30                 | Poor / Poor           | Mod / Mod                          | Mod / Mod     | None / None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No. Fish             | /*                      | Minnow Trapping           |                         | Electrofishing               |                    |                       |                      | Pole Seining                                                                   |                                    |                        | Cast Netting          |                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Observed             | No.<br>Captured         | Effort<br>(hrs)           | CPUE<br>(# fish/hr)     | No.<br>Captured              | Effort<br>(s)      | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)                                                                  | CPUE<br>(# fish/10m <sup>2</sup> ) | No. Captured           | Effort<br>(s)         | CPUE<br>(# fish/10m <sup>2</sup> ) | Restricted    | Activity Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 90                   | 7-BRST                  | 10.3                      | 0.68                    | 13-BRST<br>46-FTMN<br>2-LNDC | 374                | 0.36                  | 15-BRST              | 300                                                                            | 0.27                               | 2-FTMN                 | 1200                  | 0.22                               | October 1     | st to May 31st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Proposed Cr          | rossing Period          | 11000000000               | d Pipeline Cross        |                              | Contin             | gency Pipeline C      | rossing              | 1,010,00                                                                       | posed Vehicle C                    |                        | Site Se               | ensitivity                         | Watercours    | e Crossing Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sun                  | nmer                    | Horizo                    | ntal Directional Dr     | il                           |                    | Isolated Open-cut     |                      | Ten                                                                            | nporary Single-Spa                 | n Bridge               | Low to I              | Moderate                           |               | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sun<br>Notes:        | nmer                    | Horizo                    | ntal Directional Dr     | II                           |                    | Isolated Open-cut     |                      | Ten                                                                            | nporary Single-Spa                 | n Bridge               | Low to I              | Moderate                           |               | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Proposed pipeline crossing method was determined in consultation with DFO and was based on the potential presence of fall spawning trout species, such as brook trout, and sedimentation concerns during construction (Schweitzer, pers. comm.).

#### Fish Habitat Data



Plate 1: Looking downstream from Transect 5 (T5), approximately 300 m downstream of the proposed crossing at the proposed pipeline crossing of Rock Creek (Site 12; August 23, 2010).



Plate 2: Looking upstream along the large pond area of Rock Creek from Transect 4 (T4) approximately 150 m downstream of the proposed crossing (August 23, 2010).



Plate 3: Typical boulder substrate observed between T4 and T5, and at the proposed crossing location at Site 12 (August 23, 2010).



Plate 4: View towards the proposed crossing location of Rock Creek at Site12 (August 23, 2010).

### LEGEND By: By: Date: No. AS TLR October 28, 2010 0 Diagram Not to Scale ospine' Environmental Services Ltd.

Transect Flow Direction >>>> Beaver Dam Beaver Lodge Vegetated Drainage Draw BM Bench Mark MT Minnow Trap

Water Depth (m) >> Fish Observation

Habitat Type Class 1 Run (>1 m deep) Class 2 Run (0.75-1 m deep) R3 Class 3 Run (0.5-0.75 m deep) P1

Class 1 Pool(>1.5 m deep) Class 2 Pool (mod quality) P2 P3 Class 3 Pool (low quality) FL Flat FA Falls **BW** Backwater

Impoundment

Substrate

Fi Organic Fines Sand Si Silt Gr Gravel Co Cobble Bo Boulder Bd Bedrock Ba Bare Ground

GB Gravel Bar

Habitat Cover

**Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes DP Debris Pile ₩ WD Woody Debris LWD Large Woody Debris RW Rootwad V OHV Overhanging Vegetation

-- UCB Undercut Bank USB Unstable Bank

Fallen Tree

Riparian Vegetation

Shrub MW Mixedwood Forest CF Coniferous Forest DF **Deciduous Forest** Sedges SE GF Grass/Forbs MO Moss Shrubs 3 Trees

Banks / Approaches

 Shallow Slope Moderate Slope Moderately Steep Slope Steep Slope Escarpment



Vantage Pipeline Project

Rock Creek (Site 12) **Fish Habitat Data** (NW 36-8-19 W3M)

January 2011 REF.: 1282 (Fisheries)



|              | Quality at<br>ing Site: | pH: 8                             | 42                      | Temp (            | °C): 4.5           | EC (µS/cm                     | n): 3312             | DO (r            | mg/L): 6.3                          | Turb (N7                     | TU): 16.4             |                                    | Gradient (%): < | 1                        |  |
|--------------|-------------------------|-----------------------------------|-------------------------|-------------------|--------------------|-------------------------------|----------------------|------------------|-------------------------------------|------------------------------|-----------------------|------------------------------------|-----------------|--------------------------|--|
|              |                         |                                   |                         | Distance          | Bankfull           | Bankfull Depth                | Wetted               | Wett             | ted Depth at % W                    | fidth (m)                    | Velocities at % Width |                                    | m/s)            | Groundwate               |  |
| Transect     | UTM-E                   | UTM-N                             | Zone/ WPT               | from<br>Crossing  | Width (m)          | (m)                           | Width (m)            | 25%              | 50%                                 | 75%                          | 25%                   | 50%                                | 75%             | Seeps                    |  |
| 1            | 697408                  | 5511901                           | WC13 T1                 | 100 m             | 1.9                | 0.3                           | 1.9                  | 0.20             | 0.21                                | 0.24                         | ***                   |                                    |                 |                          |  |
| 2            | 697452                  | 5511929                           | WC13 T2                 | 50 m              | 1.0                | 0.1                           | 1.0                  | 0.30             | 0.13                                | 0.13                         |                       |                                    |                 |                          |  |
| 3 (Crossing) | 697480                  | 5511977                           | WC13 T3                 | 0 m               | 2.0                | 0.1                           | 2.0                  | 0.38             | 0.35                                | 0.31                         | < 0.03                | < 0.03                             | < 0.03          | Unknown                  |  |
| 4            | 697600                  | 5512013                           | WC13 T4                 | 150 m             | 1.8                | 0.2                           | 1.8                  | 0.23             | 0.26                                | 0.24                         | _                     |                                    | _               |                          |  |
| 5            | 697692                  | 5512126                           | WC13 T5                 | 300 m             | 4.6                | 0.3                           | 4.6                  | 0.28             | 0.32                                | 0.32                         |                       |                                    |                 |                          |  |
|              | LDB / RDB               | LDB / RDB                         | LDB/RDB                 |                   | Bank N             | Material (%)                  |                      |                  | Sut                                 | ostrate Composit             | ion (%)               |                                    |                 |                          |  |
| Transect     | Bank Slope<br>(deg)     | Bank Stability<br>(L/M/H)         | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm)  | Gravel<br>(2-64mm) | Cobbles<br>(64-256mm)         | Boulders<br>(>256mm) | Fines<br>(<2mm)  | Sm Gravel<br>(3-16mm)               | Lg Gravel<br>(17-64mm)       | Cobble<br>(65-256mm)  | Boulder<br>(>256mm)                |                 | ddedness<br>v/Mod./High) |  |
| 1            | 90 / 45                 | H/L:                              | M/M                     | 100               | 0                  | 0                             | 0                    | 75               | 20                                  | 0                            | 4                     | 1.                                 | L               | ow                       |  |
| 2            | 10 / 10                 | H/H                               | L/L                     | 100               | 0                  | 0                             | 0                    | 75               | 25                                  | 0                            | 0                     | 0                                  |                 | OD                       |  |
| 3 (Crossing) | 90 / 90                 | M/M                               | L/L                     | 100               | 0                  | 0                             | 0                    | 99               | 0                                   | 0                            | 0                     | 17                                 | MOD             |                          |  |
| 4            | 30 / 90                 | H7M                               | L/L                     | 100               | 0                  | 0                             | 0                    | 100              | 0                                   | 0                            | 0                     | 0                                  | ***             |                          |  |
| 5            | 90 / 10                 | M/H                               | L/L                     | 100               | 0                  | 0                             | 0                    | 99               | 1                                   | 0                            | 0                     | 0                                  | HIGH            |                          |  |
| Transect     |                         |                                   |                         |                   |                    |                               |                      |                  | Habitat Potential -<br>(None/Poor/M | Sport/Forage F oderate/Good) | ish                   |                                    |                 |                          |  |
| Transcot     | Canopy<br>Cover         | Overhanging Veg                   | Instream Veg.           | Undercut<br>Banks | Woody<br>Debris    | Surface<br>Turbulence         | Water Depth          | Boulder<br>Cover | (Pool/Ri                            | ffle/Run)                    | Spawn                 | Rearing                            | Migration       | Overwinteri              |  |
| T1 to T2     | 0                       | 0                                 | 10                      | 0                 | 0                  | 5                             | 0                    | 1                | 0/0                                 | / 100                        | Poor / Poor           | Poor / Poor                        | Poor / Mod      | None / Non               |  |
| T2 to T3     | 0                       | 0                                 | 10                      | 0                 | 0                  | 0                             | 0                    | 0                | 75/                                 | 5/20                         | Poor / Poor           | Poor / Poor                        | Poor / Mod      | None / Non               |  |
| T3 to T4     | 0                       | 0                                 | 20                      | 0                 | 0                  | 0                             | 0                    | 0                | 10/0                                | 0/90                         | Poor / Poor           | Poor / Poor                        | Poor / Mod      | None / Non               |  |
| T4 to T5     | 0                       | 0                                 | 20                      | 0                 | 0                  | 0                             | 5                    | 0                | 75/                                 | 0 / 25                       | Poor / Poor           | Poor / Poor                        | Poor / Mod      | None / Non               |  |
| No. Fish     |                         | Minnow Trapping                   |                         |                   | Electrofishi       | 9                             |                      | Pole Seining     |                                     |                              | Cast Netting          |                                    |                 |                          |  |
| Observed     | No.<br>Captured         | Effort<br>(hrs)                   | CPUE<br>(# fish/hr)     | No.<br>Captured   | Effort<br>(s)      | CPUE<br>(# fish/100m)         | No.<br>Captured      | Effort<br>(s)    | CPUE<br>(# fish/10m <sup>2</sup> )  | No. Captured                 | Effort<br>(s)         | CPUE<br>(# fish/10m <sup>2</sup> ) | Restricted      | Activity Period          |  |
| 116          | 37-BRST<br>71-FTMN      | 15.25                             | 7.08                    | 2-BRST            | 455                | 1.55                          | 6-BRST               | 180              | 0.5                                 | Unfeasible due               | to vegetation & la    | ck of deep pools                   | Un              | known                    |  |
| Proposed Cr  | rossing Period          | Period Proposed Pipeline Crossing |                         |                   | Contin             | Contingency Pipeline Crossing |                      |                  | Proposed Vehicle Crossing           |                              |                       | Site Sensitivity                   |                 | Watercourse Crossing Ris |  |
| Sun          | nmer                    | Isc                               | lated Open-cut          |                   |                    | Open-cut                      |                      | Existin          | ng Culvert Crossing                 | (Hwy 13)                     | Low to I              | Moderate                           |                 | .ow                      |  |



Plate 1: View upstream towards Highway 13 from the proposed pipeline crossing location at Grassy Creek (Site 13; October 21, 2010).



(not to scale)

Plate 2: View looking upstream from Transect 5 (T5) approximately 300 m downstream of the proposed pipeline crossing at Site 13 (October 21, 2010).



Plate 3: View southwest towards the proposed crossing location at Site 13 looking at the area surrounding Grassy Creek (October 21, 2010).



Plate 4: Culvert inlets crossing Highway 13 looking downstream from Transect 2 (T2), approximately 50 m upstream of the proposed pipeline crossing location (October 21, 2010).



Transect
Flow Direction
Beaver Dam
Beaver Lodge
Vegetated Drainage Draw
Bench Mark
Minnow Trap

▼ Water Depth (m)
➤ Fish Observation

Habitat Type

RF Riffle
R1 Class 1 Run (>1 m deep)
R2 Class 2 Run (0.75-1 m deep)
R3 Class 3 Run (0.5-0.75 m deep)

P1 Class 3 Run (0.5-0.75 m deep)
P2 Class 2 Pool (mod quality)
P3 Class 3 Pool (low quality)
FL Flat

FA Falls
BW Backwater
IP Impoundment

Substrate

Fi Organic Fines
Sa Sand
Si Silt
Gr Gravel
Co Cobble

Gr Gravel
Co Cobble
Bo Boulder
Bd Bedrock
Ba Bare Ground
GB Gravel Bar

Habitat Cover

EM Emergent Macrophytes

SM Submergent Macrophytes
FM Floating Macrophytes
DP Debris Pile
WD Woody Debris
LwD Large Woody Debris

RW Rootwad

V OHV Overhanging Vegetation

USB Undercut Bank
Unstable Bank

Fallen Tree

Riparian Vegetation

3

Trees

SH Shrub

MW Mixedwood Forest

CF Coniferous Forest

DF Deciduous Forest

SE Sedges

GF Grass/Forbs

MO Moss

Shrubs

Banks / Approaches

Shallow Slope
Moderate Slope
Moderately Steep Slope
Steep Slope
Escarpment



Vantage Pipeline Project

Grassy Creek (Site 13) Fish Habitat Data (SW 16-9-17 W3M)

January 2011 REF.: 1282 (Fisheries)



|              | Quality at<br>ing Site:                 | pH: 8.                          | 62                      | Temp (            | °C): 18.6                     | EC (µS/cn             | n): 3352             | DO (                      | ng/L): 7.9                         | Turb (NT               | U): 10.76            |                                       | Gradient (%): <         | 1                        |  |
|--------------|-----------------------------------------|---------------------------------|-------------------------|-------------------|-------------------------------|-----------------------|----------------------|---------------------------|------------------------------------|------------------------|----------------------|---------------------------------------|-------------------------|--------------------------|--|
|              | 1 1000000000000000000000000000000000000 | Vennest wat                     |                         | Distance          | Bankfull                      | Bankfull Depth        | Wetted               | Wett                      | ed Depth at % W                    | fidth (m)              | Veloc                | cities at % Width                     | (m/s)                   | Groundwate               |  |
| Transect     | UTM-E                                   | UTM-N                           | Zone/ WPT               | from<br>Crossing  | Width (m)                     | (m)                   | Width (m)            | 25%                       | 50%                                | 75%                    | 25%                  | 50%                                   | 75%                     | Seeps                    |  |
| 1 (Crossing) | 700658                                  | 5512611                         | WC14 T1                 | 100 m             | 18.0                          | 0.0                   | 1.5                  | 0.23                      | 0.10                               | ***                    | ***                  |                                       |                         |                          |  |
| 2            | 700586                                  | 5512599                         | WC14 T2                 | 150 m             | 8.0                           | 0.5                   | 8.0                  | 0.50                      | 0.61                               | 0.61                   | 2000                 |                                       |                         |                          |  |
| 3            | 700546                                  | 5512598                         | WC14 T3                 | 200 m             | 1.5                           | 0.1                   | 1.4                  | 0.14                      | 0.16                               | 0.12                   | 0.13                 | 0.36                                  | 0.03                    | Unknown                  |  |
| 4            | 700524                                  | 5512535                         | WC14 T4                 | 350 m             | 11.0                          | 0.5                   | 11.0                 | 0.50                      | 0.51                               | 0.49                   |                      |                                       | _                       | 5-740-772340             |  |
| 5            | 700537                                  | 5512471                         | WC14 T5                 | 500 m             | 0.3                           | 0.0                   | 0.3                  |                           | 0.20                               |                        |                      | -                                     |                         |                          |  |
|              | LDB / RDB                               | LDB / RDB                       | LDB/RDB                 |                   | Bank N                        | Material (%)          |                      |                           | Sut                                | ostrate Composit       | on (%)               |                                       |                         |                          |  |
| Transect     | Bank Slope<br>(deg)                     | Bank Stability<br>(L/M/H)       | Bank Erosion<br>(L/M/H) | Fines<br>(< 2mm)  | Gravel<br>(2-64mm)            | Cobbles<br>(64-256mm) | Boulders<br>(>256mm) | Fines<br>(<2mm)           | Sm Gravel<br>(3-16mm)              | Lg Gravel<br>(17-64mm) | Cobble<br>(65-256mm) | Boulder<br>(>256mm)                   |                         | ddedness<br>w/Mod./High) |  |
| 1 (Crossing) | 90 / 90                                 | H/H                             | L/L                     | 100               | 0                             | 0                     | 0                    | 100                       | 0                                  | 0                      | 0                    | 0                                     |                         |                          |  |
| 2            | 90 / 90                                 | M/M                             | L/L                     | 85                | 10                            | 4                     | <b>1</b> :           | 90                        | 0                                  | 0                      | 10                   | 0                                     |                         | MOD                      |  |
| 3            | 90 / 90                                 | H/H                             | E7E:                    | 90                | 0                             | 5                     | 5                    | 5                         | 25                                 | 35                     | 25                   | 10                                    | NONE                    |                          |  |
| 4            | 90 / 90                                 | H/H                             | L/L                     | 100               | 0                             | 0                     | 0                    | 99                        | 0                                  | 0                      | 0                    | 31                                    | LOW                     |                          |  |
| 5            | 90 / 90                                 | H/H                             | L/L                     | 100               | 0                             | 0                     | 0                    | 100                       | 0                                  | 0                      | 0                    | 0                                     |                         |                          |  |
| Transect     |                                         | Cover Habitat (%)               |                         |                   |                               |                       |                      |                           |                                    | ype Ratio              |                      | - Sport/Forage Fish<br>Moderate/Good) |                         |                          |  |
| Hallscot     | Canopy<br>Cover                         | Overhanging Veg.                | Instream Veg.           | Undercut<br>Banks | Woody<br>Debris               | Surface<br>Turbulence | Water Depth          | Boulder<br>Cover          | (Pool/Riffle/Run)                  |                        | Spawn                | Rearing                               | Migration               | Overwinter               |  |
| T1 to T2     | 0                                       | 0                               | 85                      | 0                 | 0                             | 0                     | 0                    | 0                         | 50 / 0                             | 0 / 50                 | None / Mod           | Poor / Mod                            | None / Poor             | None / No                |  |
| T2 to T3     | 0                                       | 5                               | 10                      | 1                 | 0                             | 0                     | 40                   | 10                        | 90 /                               | 10/0                   | None / Mod           | Poor / Mod                            | Poor / Mod              | None / No                |  |
| T3 to T4     | 0                                       | 5                               | 0                       | 0                 | 0                             | 0                     | 45                   | 10                        | 90 /                               | 10/0                   | None / Mod           | Poor / Mod                            | Poor / Mod              | None / No                |  |
| T4 to T5     | 0                                       | 0                               | 100                     | 0                 | 0                             | 0                     | 0                    | 0                         | 0/0                                | / 100                  | None / Mod           | Mod / Mod                             | None / Poor             | None / Nor               |  |
| No. Fish     |                                         | Minnow Trapping                 |                         |                   | Electrofishing                |                       |                      |                           | Pole Seining                       |                        |                      |                                       |                         |                          |  |
| Observed     | No.<br>Captured                         | Effort<br>(hrs)                 | CPUE<br>(# fish/hr)     | No.<br>Captured   | Effort<br>(s)                 | CPUE<br>(# fish/100m) | No.<br>Captured      | Effort<br>(s)             | CPUE<br>(# fish/10m <sup>2</sup> ) | No. Captured           | Effort<br>(s)        | CPUE<br>(# fish/10m <sup>2</sup> )    | Restricted              | Activity Perior          |  |
| 983          | 875-FTMN                                | 10                              | 87.5                    | 5-BRST            | 271                           | 5.49                  | 31-BRST<br>72-FTMN   | 300                       | 19.07                              | 0                      | 900                  | 0                                     | April 1st               | to May 31st              |  |
| Proposed Cr  | rossing Period                          | riod Proposed Pipeline Crossing |                         |                   | Contingency Pipeline Crossing |                       |                      | Proposed Vehicle Crossing |                                    |                        | Site Sensitivity     |                                       | Watercourse Crossing Ri |                          |  |
| Sur          | nmer                                    | Isc                             | lated Open-cut          |                   | Open-cut                      |                       |                      | Swamp Matting             |                                    |                        | Moderate             |                                       | Low                     |                          |  |



Plate 1: View upstream from Transect 1 (T1), approximately 100 m upstream of the proposed pipeline crossing of Notukeu Creek in SW 14-9-17 W3M (Site 14) during August survey (August 26, 2010).



Plate 2: View upstream from T1 during the October survey, following beaver impoundment (October 21, 2010).



Plate 3: Beaver dam observed during the October survey upstream of the proposed pipeline crossing location (October 21, 2010).



Plate 4: View downstream from the proposed pipeline crossing location at Site 14 (August 26, 2010).



#### Transect Flow Direction >>>> Beaver Dam Beaver Lodge

Vegetated Drainage Draw BM Bench Mark

MT Minnow Trap Water Depth (m) >> Fish Observation

# Habitat Type

Class 1 Run (>1 m deep) Class 2 Run (0.75-1 m deep) R3 Class 3 Run (0.5-0.75 m deep) Class 1 Pool(>1.5 m deep) P1

Class 2 Pool (mod quality) P2 P3 Class 3 Pool (low quality) FL Flat FA Falls

Bo Boulder Bd Bedrock Ba Bare Ground GB Gravel Bar **BW** Backwater Impoundment

Substrate

Si

Fi Organic Fines

Sand

Silt

Gr Gravel

Co Cobble

Habitat Cover **Emergent Macrophytes** SM Submergent Macrophytes FM Floating Macrophytes Debris Pile DP WD Woody Debris LWD Large Woody Debris Rootwad

V OHV Overhanging Vegetation -- UCB Undercut Bank USB Unstable Bank Fallen Tree

#### Riparian Vegetation

Shrub MW Mixedwood Forest CF Coniferous Forest DF **Deciduous Forest** Sedges SE GF Grass/Forbs MO Moss Shrubs 3 Trees

#### Banks / Approaches

 Shallow Slope Moderate Slope Moderately Steep Slope Steep Slope \*\*\*\*\*\*\* Escarpment



Vantage Pipeline Project

Notukeu Creek (Site 14) **Fish Habitat Data** (SW 14-9-17 W3M)

January 2011 REF.: 1282 (Fisheries)