Aim of the problem is to detect the presence or absence of cardiovascular disease in person based on the given features. Features available are:

- Age | Objective Feature | age | int (days)
- Height | Objective Feature | height | int (cm) |
- Weight | Objective Feature | weight | float (kg) |
- Gender | Objective Feature | gender | categorical code |
- Systolic blood pressure | Examination Feature | ap_hi | int |
- Diastolic blood pressure | Examination Feature | ap_lo | int |
- Cholesterol | Examination Feature | cholesterol | 1: normal, 2: above normal, 3: well above normal |
- Glucose | Examination Feature | gluc | 1: normal, 2: above normal, 3: well above normal |
- Smoking | Subjective Feature | smoke | binary |
- Alcohol intake | Subjective Feature | alco | binary |
- Physical activity | Subjective Feature | active | binary |
- Presence or absence of cardiovascular disease | Target Variable | cardio | binary |

```
In [1]:
```

```
# import the necessary libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [2]:
```

```
# read the csv file
cardio_df = pd.read_csv("cardio_train.csv", sep=";")
```

```
In [3]:
```

```
cardio_df.head()
```

Out[3]:

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	1
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0

PERFORM EXPLORATORY DATA ANALYSIS

```
In [4]:
```

```
# Drop id
cardio_df = cardio_df.drop(columns = 'id')
```

```
In [5]:
```

```
# since the age is given in days, we convert it into years
cardio_df['age'] = cardio_df['age']/365
```

```
In [6]:
```

```
cardio df.head()
```

Out[6]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	50.391781	2	168	62.0	110	80	1	1	0	0	1	0
1	55.419178	1	156	85.0	140	90	3	1	0	0	1	1
2	51.663014	1	165	64.0	130	70	3	1	0	0	0	1
3	48.282192	2	169	82.0	150	100	1	1	0	0	1	1
4	47.873973	1	156	56.0	100	60	1	1	0	0	0	0

In [7]:

```
# checking the null values
cardio_df.isnull().sum()
```

Out[7]:

age gender height 0 weight 0 ap_hi 0 ap lo cholesterol 0 gluc smoke alco active cardio dtype: int64

In [8]:

```
# Checking the dataframe information
cardio_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70000 entries, 0 to 69999

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	age	70000 non-null	float64
1	gender	70000 non-null	int64
2	height	70000 non-null	int64
3	weight	70000 non-null	float64
4	ap_hi	70000 non-null	int64
5	ap_lo	70000 non-null	int64
6	cholesterol	70000 non-null	int64
7	gluc	70000 non-null	int64
8	smoke	70000 non-null	int64
9	alco	70000 non-null	int64
10	active	70000 non-null	int64
11	cardio	70000 non-null	int64
dtype	es: float64(2)), int64(10)	

In [9]:

memory usage: 6.4 MB

Statistical summary of the dataframe
cardio_df.describe()

Out[9]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	
count	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	700
mean	53.339358	1.349571	164.359229	74.205690	128.817286	96.630414	1.366871	1.226457	

std	age 6.759594	gender 0.476838	height 8.210126	weight 14.395757	ap hi 154.011419	ap lo 188.472530	cholesterol 0.680250	gluc 0.572270
min	29.583562	1.000000	55.000000	10.000000	-150.000000	-70.000000	1.000000	1.000000
25%	48.394521	1.000000	159.000000	65.000000	120.000000	80.000000	1.000000	1.000000
50%	53.980822	1.000000	165.000000	72.000000	120.000000	80.000000	1.000000	1.000000
75%	58.430137	2.000000	170.000000	82.000000	140.000000	90.000000	2.000000	1.000000
max	64.967123	2.000000	250.000000	200.000000	16020.000000	11000.000000	3.000000	3.000000
1								

VISUALIZE DATASET

In [10]:

sns.pairplot(cardio_df)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x7f94685c6278>


```
In [ ]:
```

CREATE TRAINING AND TESTING DATASET

```
In [11]:
# split the dataframe into target and features
df target = cardio df['cardio']
df_final = cardio_df.drop(columns =['cardio'])
In [12]:
cardio df.columns
Out[12]:
dtype='object')
In [13]:
df final.shape
Out[13]:
(70000, 11)
In [14]:
df_target.shape
Out[14]:
(70000,)
In [15]:
#spliting the data in to test and train sets
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(df_final, df_target, test_size = 0.2
In [16]:
X train.shape
Out[16]:
(56000, 11)
In [17]:
y_train.shape
Out[17]:
(56000,)
In [18]:
X_test.shape
Out[18]:
```

```
(14000, 11)
In [19]:
X_test.shape
Out[19]:
(14000, 11)
```

TRAIN AND TEST XGBOOST MODEL IN LOCAL MODE (NOTE THAT SAGEMAKER BUILT-IN ALGORITHMS ARE NOT USED HERE)

```
In [20]:
```

```
# install xgboost
!pip install xgboost
```

Requirement already satisfied: xgboost in /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages (1.3.3)

Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/python3

Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/python3 .6/site-packages (from xgboost) (1.5.3)

Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/python3 .6/site-packages (from xgboost) (1.19.5)

In [21]:

```
# use xgboost model in local mode

# note that we have not performed any normalization or scaling since XGBoost is not sensi
tive to this.
# XGboost is a type of ensemble algorithms and works by selecting thresholds or cut point
s on features to split a node.
# It doesn't really matter if the features are scaled or not.

from xgboost import XGBClassifier

# model = XGBClassifier(learning_rate=0.01, n_estimators=100, objective='binary:logistic')
model = XGBClassifier()

model.fit(X_train, y_train)

/home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/xgboost/sklearn.py:888:
```

/home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_e ncoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as int egers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)

[18:47:57] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evalua tion metric used with the objective 'binary:logistic' was changed from 'error' to 'loglos s'. Explicitly set eval metric if you'd like to restore the old behavior.

Out[21]:

```
# make predictions on test data
predict = model.predict(X test)
In [23]:
predict
Out[23]:
array([1, 0, 0, ..., 1, 0, 0])
In [24]:
# Assess trained model performance on training dataset
predict train = model.predict(X train)
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_train, predict_train)
plt.figure()
sns.heatmap(cm, annot=True)
Out[24]:
<AxesSubplot:>
                                       -22000
                                       20000
                        5.4e+03
        2.2e+04
                                       18000
                                       16000
                                       14000
                                       - 12000
                                       10000
        7.6e+03
                        2.1e+04
                                       8000
                                       6000
          0
                          1
In [25]:
# print metrics for training dataset
from sklearn.metrics import precision score, recall score, accuracy score
print("Precision = {}".format(precision score(y train, predict train)))
print("Recall = {}".format(recall_score(y_train, predict_train)))
print("Accuracy = {}".format(accuracy_score(y_train, predict_train)))
Precision = 0.7902157164869029
Recall = 0.7298537730814388
Accuracy = 0.7671607142857143
In [26]:
# print metrics for testing dataset
print("Precision = {}".format(precision score(y test, predict)))
print("Recall = {}".format(recall_score(y_test, predict)))
print("Accuracy = {}".format(accuracy score(y test, predict)))
Precision = 0.7381722915703498
Recall = 0.6970314318975553
Accuracy = 0.7299285714285715
In [27]:
```

plot the confusion matrix

from sklearn.metrics import confusion matrix

```
cm = confusion_matrix(y_test, predict)
plt.figure()
sns.heatmap(cm, annot=True)
```

Out[27]:

<AxesSubplot:>

In [28]:

In []:

```
y_predict_optim = grid.predict(X_test)
```

In []:

```
y_predict_optim
```

In []:

```
# print metrics for testing dataset

print("Precision = {}".format(precision_score(y_test, y_predict_optim)))
print("Recall = {}".format(recall_score(y_test, y_predict_optim)))
print("Accuracy = {}".format(accuracy_score(y_test, y_predict_optim)))
```

PERFORM DIMENSIONALITY REDUCTION USING PCA (USING SAGEMAKER)

```
In [30]:
```

```
# Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python
# Boto3 allows Python developer to write software that makes use of services like Amazon
S3 and Amazon EC2

import sagemaker
import boto3
from sagemaker import Session

# Let's create a Sagemaker session
sagemaker_session = sagemaker.Session()
bucket = Session().default_bucket()
prefix = 'pca' # prefix is the subfolder within the bucket.
```

```
# This is the IAM role that you created when you created your notebook instance. You pass
the role to the training job.
# Note that AWS Identity and Access Management (IAM) role that Amazon SageMaker can assum
e to perform tasks on your behalf (for example, reading training results, called model ar
tifacts, from the S3 bucket and writing training results to Amazon S3).
role = sagemaker.get execution role()
In [31]:
import io # The io module allows for dealing with various types of I/O (text I/O, binary
I/O and raw I/O).
import numpy as np
import sagemaker.amazon.common as smac # sagemaker common libary
# Code below converts the data in numpy array format to RecordIO format
# This is the format required by Sagemaker PCA
buf = io.BytesIO() # create an in-memory byte array (buf is a buffer I will be writing to
df matrix = df final.to numpy() # convert the dataframe into 2-dimensional array
smac.write_numpy_to_dense_tensor(buf, df_matrix)
buf.seek(0)
# When you write to in-memory byte arrays, it increments 1 every time you write to it
# Let's reset that back to zero
Out[31]:
In [32]:
import os
# Code to upload RecordIO data to S3
# Key refers to the name of the file
key = 'pca'
#following code uploads the data in record-io format to S3 bucket to be accessed later fo
r training
boto3.resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train', key)).upload fi
leobj(buf)
# Let's print out the training data location in s3
s3 train data = 's3://{}/train/{}'.format(bucket, prefix, key)
print('uploaded training data location: {}'.format(s3_train_data))
uploaded training data location: s3://sagemaker-us-east-2-542063182511/pca/train/pca
In [33]:
# create output placeholder in S3 bucket to store the PCA output
output location = 's3://{}/{}/output'.format(bucket, prefix)
print('training artifacts will be uploaded to: {}'.format(output location))
training artifacts will be uploaded to: s3://sagemaker-us-east-2-542063182511/pca/output
In [34]:
# This code is used to get the training container of sagemaker built-in algorithms
# all we have to do is to specify the name of the algorithm, that we want to use
# Let's obtain a reference to the pca container image
# Note that all models are named estimators
```

You don't have to specify (hardcode) the region, get image uri will get the current reg

#Let's get the execution role for the notebook instance.

```
from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(boto3.Session().region_name, 'pca')

The method get_image_uri has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
Defaulting to the only supported framework/algorithm version: 1. Ignoring framework/algorithm version: 1.

In []:
```

DEPLOY THE TRAINED PCA MODEL

In [38]:

In []:

```
In [36]:
# Deploy the model to perform inference
pca reduction = pca.deploy(initial instance count = 1,
                                          instance type = 'ml.m4.xlarge')
----!
In [37]:
from sagemaker.predictor import csv serializer, json deserializer
# Content type overrides the data that will be passed to the deployed model, since the de
ployed model expects data in text/csv format.
# Serializer accepts a single argument, the input data, and returns a sequence of bytes i
n the specified content type
# Deserializer accepts two arguments, the result data and the response content type, and
return a sequence of bytes in the specified content type.
# Reference: https://sagemaker.readthedocs.io/en/stable/predictors.html
# pca reduction.content type = 'text/csv'
pca_reduction.serializer = csv serializer
pca reduction.deserializer = json deserializer
```

```
# make prediction on the test data

result = pca_reduction.predict(np.array(df_final))

The csv_serializer has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
The json_deserializer has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
```

```
# We have pass in the container, the type of instance that we would like to use for train
ing
# output path and sagemaker session into the Estimator.
# We can also specify how many instances we would like to use for training

pca = sagemaker.estimator.Estimator(container,
```

```
role,
                                         train_instance_count=1,
                                         train instance type='ml.c4.xlarge',
                                         output path=output location,
                                         sagemaker session=sagemaker session)
# We can tune parameters like the number of features that we are passing in, mode of algo
rithm, mini batch size and number of pca components
pca.set hyperparameters (feature dim=11,
                         num_components=6,
                         subtract mean=False,
                         algorithm mode='regular',
                         mini batch size=100)
# Pass in the training data from S3 to train the pca model
pca.fit({'train': s3 train data})
# Let's see the progress using cloudwatch logs
In [ ]:
result # results are in Json format
In [40]:
# Since the results are in Json format, we access the scores by iterating through the sco
res in the predictions
predictions = np.array([r['projection'] for r in result['projections']])
In [41]:
predictions
Out[41]:
array([[-2.89103657e-01, 3.99437475e+00, -1.25495701e+01,
         6.42405853e+01, 3.68210945e+01, -2.17848068e+02],
       [ 1.09570193e+00, -4.77767706e+00, 1.23644390e+01,
         4.45821114e+01, 4.56663399e+01, -2.41025101e+02],
       [ 1.33668399e+00, 1.79976070e+00, -9.73582458e+00,
         5.34248428e+01, 5.57539673e+01, -2.23016754e+02],
       [ 9.36102509e-01, 6.50153160e+00, 2.10844498e+01,
         4.50918350e+01, 7.45691071e+01, -2.82263916e+02],
       [ 1.15454197e-03, -8.17430115e+00, -2.97180176e+00,
       5.16770020e+01, 5.14335823e+01, -2.34024872e+02], [ 3.68915290e-01, -1.09633231e+00, -4.88934517e+00,
         6.41318741e+01, 4.39791260e+01, -2.28002136e+02]])
In [42]:
predictions.shape
Out[42]:
(70000, 6)
In [43]:
# Delete the end-point
pca reduction.delete endpoint()
```

TRAIN AND EVALUATE XGBOOST MODEL ON DATA AFTER DIMENSIONALITY REDUCTION (USING SAGEMAKER)

```
In [ ]:
predictions.shape
In [ ]:
# Convert the array into dataframe in a way that target variable is set as the first colu
mn and is followed by feature columns
# This is because sagemaker built-in algorithm expects the data in this format
train_data = pd.DataFrame({'Target':df_target})
train data
In [ ]:
for i in range(predictions.shape[1]):
   train data[i] = predictions[:,i]
In [ ]:
train data.head()
In [ ]:
train_data_size = int(0.9 * train_data.shape[0])
train data size
In [ ]:
# shuffle the data in dataframe and then split the dataframe into train, test and validat
ion sets.
import sklearn
train data = sklearn.utils.shuffle(train data)
train, test, valid = train_data[:train_data_size], train_data[train_data_size:train_data
size + 3500], train data[train data size + 3500:]
In [ ]:
train.shape, test.shape, valid.shape
In [ ]:
X test, y test = test.drop(columns = ['Target']), test['Target']
In [ ]:
# save train data and validation data as csv files
train.to_csv('train.csv', header = False, index = False)
valid.to csv('valid.csv', header = False, index = False)
In [ ]:
prefix = 'XGBoost-Classifier'
key = 'XGBoost-Classifier'
In [ ]:
# read the data from csv file and then upload the data to s3 bucket
with open('train.csv','rb') as f:
    # The following code uploads the data into S3 bucket to be accessed later for trainin
    boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train', k
ey)).upload_fileobj(f)
# Let's print out the training data location in s3
```

```
s3_train_data = 's3://{}/train/{}'.format(bucket, prefix, key)
print('uploaded training data location: {}'.format(s3 train data))
In [ ]:
# reading the data from csv file and then upload the data to s3 bucket
with open('valid.csv','rb') as f:
   # The following code uploads the data into S3 bucket to be accessed later for trainin
   boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'valid', k
ey)).upload fileobj(f)
# Let's print out the validation data location in s3
s3 valid data = 's3://{}/{}/valid/{}'.format(bucket, prefix, key)
print('uploaded validation data location: {}'.format(s3 valid data))
In [ ]:
# creates output placeholder in S3 bucket to store the linear learner output
output location = 's3://{}/output'.format(bucket, prefix)
print('training artifacts will be uploaded to: {}'.format(output location))
In [ ]:
# This code is used to get the training container of sagemaker built-in algorithms
# all we have to do is to specify the name of the algorithm, that we want to use
# Let's obtain a reference to the XGBoost container image
# Note that all models are named estimators
# You don't have to specify (hardcode) the region, get image uri will get the current reg
ion name using boto3. Session
container = get_image_uri(boto3.Session().region_name, 'xgboost','0.90-2')
In [ ]:
# We have pass in the container, the type of instance that we would like to use for train
# output path and sagemaker session into the Estimator.
# We can also specify how many instances we would like to use for training
Xgboost classifier = sagemaker.estimator.Estimator(container,
```

In []:

```
# Create "train", "validation" channels to feed in the model
# Source: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-
paths.html

train_input = sagemaker.session.s3_input(s3_data = s3_train_data, content_type='csv',s3_
data_type = 'S3Prefix')
valid_input = sagemaker.session.s3_input(s3_data = s3_valid_data, content_type='csv',s3_
data_type = 'S3Prefix')
```

```
Xgboost_classifier.fit({'train': train_input, 'validation': valid_input})
In [ ]:
TASK #10: DEPLOY AND TEST THE TRAINED XGBOOST
MODEL
In [ ]:
# Deploy the model to perfrom inference
Xqboost classifier = Xqboost classifier.deploy(initial instance count = 1,
                                         instance type = 'ml.m4.xlarge')
In [ ]:
# Content type over-rides the data that will be passed to the deployed model, since the d
eployed model expects data in text/csv format, we specify this as content -type.
# Serializer accepts a single argument, the input data, and returns a sequence of bytes i
n the specified content type
#Reference: https://sagemaker.readthedocs.io/en/stable/predictors.html
from sagemaker.predictor import csv serializer, json deserializer
Xgboost classifier.serializer = csv serializer
In [ ]:
# make prediction
XGB prediction = Xgboost classifier.predict(np.array(X test))
In [ ]:
XGB prediction
In [ ]:
# custom code to convert the values in bytes format to array
def bytes 2 array(x):
    #makes entire prediction as string and splits based on ','
    l = str(x).split(',')
    #Since the first element contains unwanted characters like (b,',') we remove them
    1[0] = 1[0][2:]
    #same-thing as above remove the unwanted last character (')
    1[-1] = 1[-1][:-1]
    #iterating through the list of strings and converting them into float type
    for i in range(len(l)):
       l[i] = float(l[i])
    #converting the list to into array
    1 = np.array(1).astype('float32')
    #reshape one-dimensional array to two-dimentaional array
    return 1.reshape(-1,1)
```

In []:

In []:

predicted values = bytes 2 array(XGB prediction)

```
predicted values
In [ ]:
y test = np.array(y test)
y \text{ test} = y \text{ test.reshape}(-1,1)
In [ ]:
y test
In [ ]:
# plot metrics
from sklearn.metrics import precision score, recall score, accuracy score
print("Precision = {}".format(precision score(y test, predicted values, average='macro')
) )
print("Recall = {}".format(recall score(y test, predicted values, average='macro')))
print("Accuracy = {}".format(accuracy score(y test, predicted values)))
In [ ]:
# plot confusion matrix
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_test, predicted_values)
plt.figure()
sns.heatmap(cm, annot=True)
In [ ]:
# Delete the end-point
Xgboost classifier.delete endpoint()
In [ ]:
cardio df [ cardio df['ap hi'] == 16020]
cardio df [ cardio df['age'] > 64.8]
In [ ]:
cardio df.hist(bins = 30, figsize = (20,20), color = 'r')
# get the correlation matrix
corr matrix = cardio df.corr()
corr matrix
# plotting the correlation matrix
plt.figure(figsize = (16,16))
sns.heatmap(corr_matrix, annot = True)
plt.show()
In [ ]:
xgb model = XGBClassifier(learning rate=0.01, n estimators=100, objective='binary:logisti
c')
from sklearn.model selection import GridSearchCV
grid = GridSearchCV(xgb model, param grid, refit = True, verbose = 4)
grid.fit(X train, y train)
```