"Año de la Unidad, la Paz y el Desarrollo"

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA E.A.P. INGENIERÍA DE SISTEMAS

ASIGNATURA: Teoría de Autómatas

y Lenguajes Formales

DOCENTE: Dr. Ing. Sandra Cecilia Rodríguez Ávila

INTEGRANTES:

Caruajulca Tiglla Alex Eli
Chilón Tocto José Walter
Herrera Saucedo Aldomaro
Idrogo Bustamante Jhordan Smidh
Rodrigo Castro José Jaime

TEMA: Práctica Grupal - Gramáticas

GRUPO: "B"

AÑO: 2024

Ejercicio 3 a

3. S Sea la gramática para expresiones aritméticas binarias que involucran variables yasignaciones:

```
N={cprograma>, <lista-decl>, <decl>, <var>, <lista-sent>, < sent>, <expr>, <term>,
<entero>, <digito>}
T = {0, 1, a, b, c, VAR, PRINT, ;, :=, +, -}
S = cprograma>
```

Y las producciones P:

<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	$\langle sent \rangle \rightarrow PRINT \langle var \rangle (11)$
$<$ lista-decl $> \rightarrow \lambda$ (2)	$\langle expr \rangle \rightarrow \langle term \rangle$ (12)
$<$ lista-decl> \rightarrow $<$ decl> ; $<$ lista-decl> (3)	$\langle expr \rangle \rightarrow \langle expr \rangle + \langle term \rangle$ (13)
$<$ decl $> \rightarrow$ VAR $<$ var $>$ (4)	< <i>expr></i> → < <i>expr></i> - < <i>term></i> (14)
$\langle var \rangle \rightarrow a (5)$	<term> → <entero> (15)</entero></term>
$\langle var \rangle \rightarrow \mathbf{b}$ (6)	<term> → <var> (16)</var></term>
$\langle var \rangle \rightarrow c (7)$	<entero> → <dígito> (17)</dígito></entero>

Para las siguientes sentencias o tiras terminales:

- I. Determinar a través de árboles sintácticos o derivaciones directas, si forman parte dellenguaje definido por la gramática.
- II. Determinar la secuencia de números de las reglas utilizadas al hacer derivacionesizquierdas.

Solución


```
(15)

-> VARA; VAR b; d := 10; b := ∠entero > - < +em> - < +em> ; < sent >

(15)

-> VARA; VAR b; d := 10; b := ∠entero > < digito > - < +em> - < +em> ; < sent >

(13)

-> VARA; VAR b; d := 10; b := ∠digito > - < +em> - < +em> ; < sent >

(20)

-> VARA; VAR b; d := 10; b := 1 ∠digito > - < +em> - < +em> ; < sent >

(20)

-> VARA; VAR b; d := 10; b := 11 - ∠ +em> - < +em> ; < sent >

(16)

-> VARA; VAR b; d := 10; b := 11 - ∠ +em> ; ∠sent >

(15)

-> VARA; VAR b; d := 10; b := 11 - d - ∠entero > ; < sent >

(17)

-> VARA; VAR b; d := 10; b := 11 - d - ∠entero > ; < sent >

(17)

-> VARA; VAR b; d := 10; b := 11 - d - ∠entero > ; < sent >

(17)

-> VARA; VAR b; d := 10; b := 11 - d - ∠entero > ; < sent >

(17)

-> VARA; VAR b; d := 10; b := 11 - d - 1; ∠sent >

(18)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)

-> VARA; VAR b; d := 10; b := 11 - d - 1; PRINT ∠var >

(6)
```

Ejercicio 4

b.

b.

5.6				2*											-	
	xcs/										10					
I.	Disting	ir E	dao	atic	(e)	(10,	τ,	P, c	5)	Ca	pul	(9	or	gev	164	ce 5
	N=	{ X,	23		7=	{ 0	, Ь,	c,	23				3			
	P:	8-8	хс	9									1 1			
		X														
		3 -	ay	1 6	29	101										
T:	Desail time!	rollo	000	n i	00/1	1 8	sin-	ract	ico	9)arci	1/6	gar	atio	G G	na
	nadu					5			3							
					×		7									
				() X	1	6	7-5			tiva		aa	ck	9	Ī.
	4 4 4	45-	12/10						10		12 5		= 1	27		

Ejercicio 7

7. Para la siguiente gramática G1(N, T, P, S) cuyas reglas de producción son:

S
$$\rightarrow$$
 AB A \rightarrow aAb | aA | λ B \rightarrow Bb | λ

a) Describe el lenguaje generado por dicha gramática.

b) Esta gramática es ambigua. ¿Por qué?

Ejercicio 10

```
101
    6 = ( | 2, b, c, d), (x, 7, 2, o, P, D, A), P, Z)
    P_10::=0P X::=22 2::Ax Y::=22 2::=18 0::=6
        21: = 222 P: = 0 0: = 0 P: = c 8: = PQ ]
 1. Eliminación de producciones reflexivas
    S=:: X SE:: X
    75% - 056 - 75% - 5
 2. No tiene productiones initiles
 3: Producciones redundantes
    2::= Ax
   2:3 = 42
   5::= 5
   Resultado
   6=1/2, b, c, d) (x, y, 2, 0, p, 07, p, 2)
     P = { B : : - OP | X: : = 0 | 7: : = 0 | P : : = c}
```