<u>التمرين (1)</u>

نضع في بيشر حجما $V_1 = 50ml$ من ماء الجافيل الذي يحتوي على شوارد الهيبوكلوريت Clo^- تركيزها المولي C_1 ونضيف اليه حجما $V_2 = 50ml$ من محلول يود البوتاسيوم V_1 تركيزه المولي من قطرات من حمض الذي نعتبره بوفرة، نسمي المزيج التفاعلي بالمحلول (S).

المعادلة المنمذجة للتفاعل الحادث:

$$ClO^-{}_{(aq)} + 2I^-{}_{(aq)} + 2H^+{}_{(aq)} = Cl^-{}_{(aq)} + I_2{}_{(aq)} + H_2O_{(l)}$$

1-بين ان التفاعل الحادث هو تفاعل اكسدة - ارجاع .

2- انجز جدولا لتقدم التفاعل الحادث.

$$[I^-]=rac{c_2}{2}-2[I_2]:$$
بين أن تركيز شوارد اليود والهيبوكلوريت يعطيان بالعلاقتين أن تركيز شوارد اليود والهيبوكلوريت .
$$[Clo^-]=rac{c_1}{2}-[I_2]$$

- ii. لمتابعة هذا التفاعل البطيء والتام، نأخذ عند لحظات زمنية مختلفة بواسطة ماصة V=10ml من المزيج التفاعلي (S) نسكبه في بيشر ونظيف اليه الماء والجليد ، نعاير محتوى البيشر بواسطة محلول تيوكبريتات الصوديوم (S=10ml) تركيزه المولي S=10ml الثنائيات الداخلة في تفاعل المعايرة المولي S=10ml . الثنائيات الداخلة في تفاعل المعايرة S=10ml . S=10ml S
 - 1-اكتب معادلة تفاعل المعايرة وأعط خصائصه.
 - V_E عرف التكافؤ ، ثم جد العبارة الحرفية الموافقة للتركيز المولي لثنائي اليود I_2 بدلالة الحجم I_2 والحجم والتركيز المولى I_2 لتيوكبريتات الصوديوم .
 - 3-العلاقة السابقة مكنت من رسم المنحنى في الشكل الممثل لتغيرات تركيز ثنائي اليود بدلالة الزمن .
 - . احسب كلا من C_2 و C_1 علما أن المزيج ستوكيومتري أ-
 - t = 10min عين تراكيز الافراد المتواجد في المحلول (S) عند اللحظة
 - ج احسب السرعة الحجمية لتشكل ثنائي اليود I_2 عند t=5min و t=5min . كيف تتطور السرعة مع الزمن ؟ وما هو العامل الحركي المسؤول عن ذلك؟
 - د استنتج سرعة اختفاء شوارد اليود I^{-1} في نفس اللحظتين السابقتين.
 - ه عرف زمن نصف التفاعل ثم احسب قيمته.

<u>التمرين (2)</u>

نريد دراسة تطور أكسدة الكحول C_3H_7 - OH كثلته المولية M=60 $g.mol^{-1}$ كمينة الحجمية C_3H_7 - OH من أجل ذلك ho=0.785 $g.mL^{-1}$ بشوارد البرمنغنات(ذات اللون البنفسجي في المحلول الممدد) ، من أجل ذلك حضرنا في المخبر مزيجا مكونا من : محلولا مائيا محمضا من برمنغنات البوتاسيوم $W_1=100$ $W_2=1$ $W_1=100$ $W_2=1$ $W_1=100$ $W_1=100$ $W_1=100$ $W_1=100$ أفي لحظة نعتبر ها مبدأ لقياس الزمن ($W_1=1$) نضع المزيج السابق في كأس بيشر موضوع فوق خلاط مغناطيسي أنه أنه الطرق التالية :

قياس الناقلية - المعايرة اللونية - قياس الضغط، ما هي أفضل طريقة لمتابعة تطور هذا التفاعل مع ذكر السبب؟ ب - أحسب كمية المادة الابتدائية (no1) لشوارد البرمنغنات و (no2) للكحول في المزيج الابتدائي؟ ج - اكتب معادلة تفاعل الأكسدة الإرجاعية علما أن الثنائيتين الداخلتين في التفاعل المدروس هما:

الحادث ($MnO_{4\,(aq)}$ / $Mn^{2+}_{(aq)}$) ($C_3H_6O_{(aq)}$ / $C_3H_8O_{(aq)}$)

د- أنْجز جدول تقدّم أكسدة الكحول السابق، و استَّتَتَج التقدم الأعظمي x_{mox}?

المزيج $V' = 10 \, mL$ حجما $V' = 10 \, mL$ من المزيج النفاعل أخذنا في لحظة t حجما $V' = 10 \, mL$ من المزيج النفاعلي ووضعناه في الماء البارد ثم عايرنا شوارد البرمنغنات MnO_4 المتبقية بواسطة محلول لكبريتات الحديد الثنائي ذي التركيز V_{eq} هو V_{eq} و الذي سمح المتنتاج تقدم التفاعل في اللحظة أعيدت هذه الخطوات في لحظات مختلفة فتحصلنا على البيان V_{eq} عكما في الشكل

أ - لماذا وضعت العينة المراد معايرتها في الماء البارد؟

ب- كيف نكشف عن حدوث التكافؤ تجريبيا ؟

? عرف زمن نصف التفاعل $t_{1/2}$ ، ثم حدد قيمته

2- يمكن نمذجة تفاعل المعايرة بالمعادلة التالية:

 $MnO_{4^-(aq)} + 8H^+_{(aq)} + 5Fe^{2+}_{(aq)} = 5Fe^{3+}_{(aq)} + Mn^{2+}_{(aq)} + 4H_2O_{(l)}$ • C' و $V_{\delta a}$ مادة المتبقية و $V_{\delta a}$ و $V_{\delta a}$

 $^\circ$ و $^\circ$ و $^\circ$ و $^\circ$ بدلالة $^\circ$ بدلالة $^\circ$ و $^\circ$

 $t = 10 \, \text{min}$ جمع كبريتات الحديد الثنائي المستعمل في المعايرة عند اللحظّة $t = 10 \, \text{min}$

د- أحسب في اللُّحظةُ t = 10 min على التفاعل ثمُّ استنتج السرعة الحجمية لإختفاء الكحول ؟

<u>التمرين(3)</u>

لدراسة حركية تحول كيميائي تام، غمرنا في لحظة t=0 صفيحة من النحاس كتلتها m=3,175g في حجم قدره m=3,175g تام من محلول نترات الفضة $(Ag^+(aq)+NO_3^-(aq))$ تركيزه المولي C_0 . سمحت لنا متابعة تطور هذا V=200mL التحول من رسم البيان الممثل في الشكلV=20 الذي يعبر عن تغيرات كتلة الفضة المتشكلة بدلالة الزمن $Cu(s)+2Ag^+(aq)=Cu^{2+}(aq)+2Ag(s)$ معادلة التفاعل المنمذج لهذا التحول هي: $Cu(s)+2Ag^+(aq)=Cu^{2+}(aq)+2Ag(s)$

- 1. هل التحول الحادث سريع أم بطيء؟ برر إجابتك.
- حدد الثنائيتين النصفيتين للأكسدة والإرجاع.
 - x_{\max} انشئ جدولاً لتقدم التفاعل واحسب قيمة النقدم الأعظمي x_{\max}

6. عَرّف زمن نصف التفاعل
$$t_{13}$$
 وحدّد قيمته بيانيا.

$$v_{Ag}(t) = \frac{1}{M_{Ag}} \cdot \frac{dm_{Ag}(t)}{dt}$$

حيث: M_{As} الكتلة المولية للفضة.

$$t=0$$
 الحسب سرعة التفاعل في اللحظة

$$M(Cu) = 63.5g \cdot mo\ell^{-1}$$
, $M(Ag) = 108g \cdot mo\ell^{-1}$

التمرين(4)

 $\lambda_{CH,COO^-} = 4,09 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 5,01 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{HO^-} = 19,9 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,000 \times 10^{-3} S.m^2.mol^{-1} \, \,$

 $t \, (\min)$

الشكل-20

 $m_{Ag}(mg)$

- I. بهدف الدراسة الحركية لتفاعل التصبن لأستر E صيغته الجزيئية المجملة $C_4H_8O_2$ نمزج في بيشر حجما $C_1=0.1 \mod /L$ من محلول الصود $C_1=0.1 \mod /L$ تركيزه المولي $V_1=100 \mod L$ مع $V_1=100 \mod L$. $V_1=100 \mod L$
 - ا عط جميع الصيغ نصف المفصلة للأستر E مع تسمية كل منها.
 - C_2H_5OH والايثانول CH_3COOH والايثانول حمض الايثانويك والايثانول C_2H_5OH

اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحاصل في البيشر بين محلول الصود والأستر E مستعملا الصيغ نصف المفصلة.

II. تابعنا تطور هذا التفاعل عن طريق قياس الناقلية G للوسط التفاعلي خلال فترات زمنية مختلفة وسجلنا النتائج في الجدول الآتي:

t(s)	0	30	60	90	120	150	180	210
G(mS)	46,20	18,60	12,40					

- . فسر تناقص الناقلية G مع تطور التفاعل (1)
- $G=K imes\sigma$ ثسمي K ثابت الخلية و σ الناقلية النوعية حيث K
- . λ_i والناقليات النوعية المولية الشاردية K, C_1 , V_1 , V_T بدلالة t=0 في اللحظة و G_0 الناقليات النوعية المولية الشاردية أ
 - ب) بالاستعانة بجدول تقدم التفاعل، بيّن أن عبارة الناقلية G في اللحظة t تعطى بالعلاقة:

$$G = G_0 + \frac{K}{V_{\scriptscriptstyle T}} x (\lambda_{\scriptscriptstyle CH_3COO^-} - \lambda_{\scriptscriptstyle HO^-})$$

 $1cm\longrightarrow 5mS$ ورقة ملمترية G=f(t) بأخذ سلم الرسم: 30s

$$\frac{K}{V_T}$$
 =185,5 (SI) أن $t=0$ عرّف سرعة النفاعل واحسب قيمتها عند اللحظة والمختلفة عند المختلفة واحسب المختلفة عند المختلفة ا

$$G(t_{1/2}) = rac{G_0 + G_f}{2}$$
 :عند زمن نصف التفاعل $t_{1/2}$ تعطى بالعلاقة: $G(t)$ عند زمن نصف التفاعل عند $t_{1/2}$ - استنتج قيمة $t_{1/2}$

 X_{\max} نجز جدولا يصف تقدّم التفاعل، ثمّ استنتج قيمة التقدّم الأعظمي X_{\max}

2. المتابعة الزمنية للتّحول الكيميائي الحادث:

سمحت إحدى طرق المتابعة الزمنية للتّحول الكيميائي الحادث من تمثيل منحنى الشكل(3) الممثل لتغيرات $\left[Cr_2O_7^{2-} \right]$ بدلالة الزمن.

بيّن أنّ $\left[Cr_2O_7^{2-} \right]$ يعطى في كل لحظة بالعبارة:

(mol + x) و $mol.L^{-1}$ ب $[Cr_2O_7^{2-}]$ د $[Cr_2O_7^{2-}]$ و (t) = 0,48-19,34.x(t)

 $t_{1/2}$ عرف زمن نصف التفاعل $t_{1/2}$ ، ثم حدّد قيمته بيانيا.

يشكّل حمض الإيثانويك ذو الصيغة CH_3COOH المكوّن الأساسي للخل التّجاري بعد الماء، ويستعمل هذا الحمض كمتفاعل في العديد من تفاعلات تصنيع الكثير من المواد العطرية والمذيبات. حمض الإيثانويك يمكن اصطناعه في المخبر بأكسدة الإيثانول $(2K^+(aq) + Cr_2O_7^{2-}(aq))$ بواسطة محلول ثاني كرومات البوتاسيوم $(2K^+(aq) + Cr_2O_7^{2-}(aq))$ يهدف هذا التّمرين إلى دراسة حركية تفاعل اصطناع حمض الإيثانويك، وتحديد ثابت حموضة التّنائية يهدف هذا التّمرين إلى دراسة حركية تفاعل اصطناع حمض الإيثانويك، وتحديد ثابت حموضة التّنائية $(CH_3COOH(aq)/CH_3COO^-(aq))$

 $M\left(C_2H_5OH\right)=46g.mol^{-1}$ ، الكتلة المولية $ho=0.8g.mL^{-1}$ ، الكتلة المولية الكتلة ال

I- دراسة حركية تفاعل اصطناع حمض الإيثانويك:

1. وصف تطور التّحول الكيميائي الحادث:

نمزج في حوجلة، في لحظة نعتبرها مبدأ للأزمنة t=0، حجما $V_1=100mL$ من محلول ثاني كرومات البوتاسيوم تركيزه المولي $c=0,5mol.L^{-1}$ مع حجم t=0 من الإيثانول النّقي، بوجود حمض الكبريت المركز بكفاية، فينتج حمض الإيثانويك وفق تحول تام وبطىء ننمذجه بتفاعل أكسدة – إرجاع، معادلته:

 $2Cr_2O_7^{2-}(aq) + 3C_2H_5OH(aq) + 16H^+(aq) = 4Cr^{3+}(aq) + 3CH_3COOH(aq) + 11H_2O(l)$

1.1. بين أنّ التَّفاعل الكيميائي الحادث هو تفاعل أكسدة - إرجاع، ثمّ اكتب الثَّنائيتين المشاركتين في التَّفاعل.

2.1. وضَح دور حمض الكبريت المركز في هذا التحول.

 $n_0(C_2H_5OH) = 60mmol$ ، $n_0(Cr_2O_7^{2-}) = 50mmol$: هي: الابتدائية هي: 3.1 الأبتدائية هي: 3.1