Serial Communication Protocol

PRELIMINARY

PLATINUM. Series

Additional products from

Counters **Frequency Meters** PID Controllers Clock/Timers **Printers Process Meters** On/Off Controllers Recorders Relative Humidity **Transmitters** Thermocouples **Thermistors** Wire Wireless

Rate Meters Timers Totalizers Strain Gauge Meters Voltmeters **Multimeters** Soldering Iron **Testers** pH pens pH Controllers pH Electrodes **RTDs Thermowells** Flow Sensors

For Immediate Assistance In the U.S.A. and Canada: 1-800-NEWPORT® In Mexico: (95) 800-NEWPORTsm Or call your local NEWPORT Office.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications. TRADEMARK NOTICE: N. NEWPORT, NEWPORT, and newportUS.com are trademarks of NEWPORT Electronics. Inc.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.

Newport Electronics, Inc. | www.newportUS.com 2229 South Yale Street info@newportUS.com Santa Ana, CA 92704

Table of Contents

	1.1	Dumaga	
	1.1	Purpose	4
	1.2	Definition of Terms and Acronyms	4
	1.3	Applicable Documents	5
2	Hard	lware	6
	2.1	Communications Interfaces	
	2.1.1	RS-232	
	2.1.2	RS-485	
	2.1.3	USB Virtual Comm	6
	2.1.4	Ethernet	6
3	Prot	ocol Description	7
	3.1	Protocol	7
	3.2	Command Structure	7
	3.3	Response Format	7
	3.4	Error Messages	7
4	Plati	num Series Messages	8
	4.1	Input Configuration	8
	4.2	Filter Constant	.11
	4.3	Current Reading	.11
	4.4	Peak Reading	.12
	4.5	Valley Reading	.12
	4.6	TC Calibration Type	.12
	4.7	TC Calibration Single Point	.13
	4.8	TC Calibration Double Point Low	.13
	4.9	TC Calibration Double Point High	.13
	4.10	Process Reading 1 (Low)	.13
	4.11	Process Range Input 1 (Low)	.14
	4.12	Process Range Reading 2 (High)	.15
	4.13	Process Range Input 2 (High)	.15
	4.14	Display Configuration	.15
	4.15	Excitation Voltage	.16
	4.16	Safety Configuration	.17
	4.17	Loop Break Configuration	.18
	4.18	Set Point Low Limit	.18
	4.19	Set Point High Limit	.18
	4.20	Serial Communication Address	.19
	4.21	USB Communication Address	.19
	4.22	Ethernet Communication Address	.19
	4.23	Serial Communication Config	.19
	4.24	Serial Data Mode Config	.21
	4.25	Serial Modbus Mode	.21
	4.26	Serial Data Format	.22
	4.27	Serial Communications Parameters	.23
	4.28	USB Communications Configuration	.24

4.29	USB Data Mode Configuration	2	25
4.30	USB Modbus Mode	2	Ę
4.31	USB Data Format		
4.32	Ethernet Communications Configuration		
4.33	Ethernet Data Mode Configuration	2	:6
4.34	Ethernet Data Format		
4.35	Ethernet Modbus Mode	2	!6
4.36	Setpoint 1		
4.37	Remote Setpoint Configuration	2	27
4.38	Setpoint 2		
4.39	Remote Process Range Setpoint Min	2	3
4.40	Remote Process Range Setpoint Max	2	96
4.41	Remote Process Range Input Max	2	26
4.42	Remote Process Range Input Min	2	9
4.43	PID Configuration	3	3(
4.44	PID Low Clamping Limit	3	3(
4.45	PID High Clamping Limit	3	1
4.46	PID P Parameter	3	1
4.47	PID I Parameter	3	1
4.48	PID D Parameter	3	1
4.49	Output Mode	3	32
4.50	Output Type	3	32
4.51	Output ON/OFF Configuration	3	33
4.52	Output Alarm Configuration		
4.53	Hi Value		
4.54	Low Value	3	35
4.55	On Delay		
4.56	Off Delay	3	36
4.57	HiHi Mode		
4.58	HiHi Offset		
4.59	Output Retransmission Reading 1		
4.60	Output Retransmission Output 1		
4.61	Output Retransmission Reading 2		
4.62	Output Retransmission Output 2		
4.63	Output Cycle Time/Pulse Width		
4.64	Output Range		
4.65	Time Format		
4.66	Multi Ramp/Soak Configuration		
4.67	Multi Ramp/Soak Profile Configuration		
4.68	Multi Ramp/Soak Segment Event Configuration		
4.69	Multi Ramp/Soak Profile Segment Ramp Time		
4.70	Multi Ramp/Soak Profile Segment Soak Process V		
4.71	Multi Ramp/Soak Profile Segment Soak Time		
4.72	Start Calibration		
4.73	Manufacturing Ice Point		
4.74	TC Calibration Positive Scale Value		
4.75	TC Calibration Negative Scale Value		
			_

4.76	TC Calibration Offset Value	Error! Bookmark not defined.
4.77	RTD Calibration Scale Value	Error! Bookmark not defined.
4.78	RTD Calibration Offset Value	Error! Bookmark not defined.
4.79	Thermistor Calibration Scale Value	Error! Bookmark not defined.
4.80	Thermistor Calibration Scale Value 2	Error! Bookmark not defined.
4.81	Thermistor Calibration Offset Value	Error! Bookmark not defined.
4.82	Process Calibration Positive Scale Value	Error! Bookmark not defined.
4.83	Process Calibration Negative Scale Value	Error! Bookmark not defined.
4.84	Process Calibration Offset Value	Error! Bookmark not defined.
4.85	INIT Password	41
4.86	Program Password	41
4.87	Version Number	42
4.88	Version Upgrade	42
4.89	Bootloader Version	43
4.90	Set Factory Defaults	43

Revision 0.1 Page 3 of 43

1 Introduction

1.1 Purpose

The following document defines the use of the Platinum Series Serial Communications Protocol.

1.2 Definition of Terms and Acronyms

Sensor Element One of the physical sensing elements on a Smart Output

AC Alternating Current

DC Direct Current
CS Chip Select

ADC Analog to Digital Converter

DAC Digital to Analog Converter

RS485 Electrical signals used for serial communications
RS232 Electrical signals used for serial communications

CSV Comma Separated Values
COTS Commercially-Off-The-Shelf

ESD Electo Static Discharge

FW Firmware
HW Hardware
I/O Input/Output

LED Light Emitting Diode

Hexadecimal Values expressed using base 16 (24)

Revision 0.1 Page 4 of 43

1.3 Applicable Documents

Doc. #	Name / Description	Rev.#
	Omega Engineering Coding Standard	Rev 1.2.0

Revision 0.1 Page 5 of 43

2 Hardware

2.1 Communications Interfaces

The Platinum Series Protocol is designed to be an updated version of the original iSeries protocol which can be used over serial connections using RS-232, RS-485, USB and serial over Ethernet.

2.1.1 RS-232

This is for point to point connections at baud rates up to 115,200.

Hardware flow control is not supported.

2.1.2 RS-485

This can be used for multi-point connections. Up to 200 individual addresses can be assigned.

2.1.3 USB Virtual Comm

This is used for point to point connections the same as RS-232.

2.1.4 Ethernet

The serial protocol is transmitted using TCP/IP on port 2000.

Revision 0.1 Page 6 of 43

3 Protocol Description

3.1 Protocol

The protocol is command/response, based on 4 command classes:

Get (G), Put (P), Read (R) and Write (W). A Get is used to read the current value resident in RAM, a Put is used to write a parameter to RAM without committing it to non-volatile memory. A Read is used to retrieve the value of a parameter stored in non-volatile memory and a write is used to commit a parameter value to non-volatile memory.

3.2 Command Structure

The overall structure of a command packet is as follows:

- A start of frame (SOF) character usually ""
- A command class (GPRW)
- A command ID a hex number identifying the message.
- A mandatory space if there are parameters following the command ID.
- A parameter List.
- An end of frame (EOF) character usually a carriage return.

A unit address is optional.

An address is a hex-encoded number in the range 0-199 (00 - C7) hex) between the start of frame and the command class.

For example, to get the current process value, without an address would be:

```
"*G110 <CR>"
```

In this case the command class is 'G', the command ID is 110 (hex) and this command takes no parameters.

If this were addressed to unit 100 (hex value 64), the command would be:

"*64G110 <CR>"

3.3 Response Format

The response format depends on whether a command echo has been selected. If selected, the address (if present), command class and command ID precede the parameters returned.

For example, if an echo is selected, the previous command would return:

```
"G110+32.0<CR>" (no address)
```

"64G110+32.0<CR> (if the unit responding had address = 64 (hex).

If echo is not selected, in both cases, only "+32.0<CR>" would be returned.

For put (P) and Write (W) type transactions, only the command is echoed if echo is on. Thus,

"*Pxxx yyyyyy<CR>" will echo "Pxxx<CR>".

3.4 Error Messages

In the event of an error in the message format, an error string is returned:

"Command Failed Decode 0"

Revision 0.1 Page 7 of 43

4 Platinum Series Messages

4.1 Input Configuration

Input Configuration									
ID	Classes		Parameters						
0x100	GPRW	STYPE	SI1	SI2					

The parameters are as follows:

STYPE - Sensor Type		
Value	Туре	
0	Thermocouple	
1	RTD	
2	Process Input	
3	Thermistor	
4	Remote	

The meaning of the two sensor info fields, SI1 and SI2 depends on the sensor type indicated in the STYPE field.

For thermocouple type (STYPE = 0)

SI1 – Sensor Info 1 Thermocouple Type)		
Value	Туре	
0	J	
1	К	
2	Т	
3	Е	
4	N	
5	Reserved	
6	R	

Revision 0.1 Page 8 of 43

7	S
8	В
9	С
10	Reserved
11	Reserved

For thermocouple, the SI2 field is irrelevant.

Example: to set input type to Type K thermocouple: "*W100 010<CR>"

For RTD Sensor type (STYPE = 1)

SI1 – Sensor Info 1 RTD Configuration		
Value	Туре	
0	2 Wire	
1	3 Wire	
2	4 Wire	

SI2 – Sensor Info 1 RTD ACRV Ohm Types			
Value	Туре		
0	385 Curve, 100 ohms		
1	385 Curve, 500 ohms		
2	385 Curve, 1000 ohms		
3	392 Curve, 100 ohms		
4	3916Curve, 100 ohms		

Revision 0.1 Page 9 of 43

For Process Input (STYPE = 2)

SI1 – Process Range			
Value	Range		
0	4 – 20 mA		
1	0 – 24 mA		
2	*NS		
3	*NS		
2	*NS		
5	+/- 10 Vdc		
6	+/ - 1.0 Vdc		
7	+/ - 0.1 Vdc		

*NS – Not currently supported.

SI2 – Sensor Info 2 Process Manual/Live		
0	Live	
1	Manual	

For Thermistor Type (STYPE = 3)

SE1 – Sensor Info 1 - Thermistor Type					
0	2.25 K				
1	5K				
2	10K				

The Sensor Info 2 Field is irrelevant when STYPE = 3

For Remote Sensor Type (STYPE = 4)

This is not currently supported and is for future expansion.

4.2 Filter Constant

	Filter Constant								
ID	Classes		Parameters						
0x101	GPRW	FC							

The parameters are as follows:

	FC						
Value	Effect						
0	No filtering (1 X rate)						
1	X 2 filtering						
2	X 4 filtering						
3	X 8 filtering						
4	X 16 filtering						
5	X 32 filtering						
6	X 64 filtering						
7	X 128 filtering						

Example: To set input filter to x2 "*W101 1<CR>"

4.3 Current Reading

	Current Reading								
ID	Classes		Parameters						
0x110	G								

This does not take any parameters.

Example: To get current process reading: "*G110<CR>"

4.4 Peak Reading

	Peak Reading								
ID	Classes		Parameters						
0x111	G								

This command does not take any parameters.

4.5 Valley Reading

	Valley Reading								
ID	Classes		Parameters						
0x112	G								

This command does not take any parameters.

4.6 TC Calibration Type

	TC Calibration Type								
ID	Classes		Parameters						
0x120	GPRW	Mode							

The parameters are as follows:

Mode						
Value	Effect					
0	No Calibration					
1	1 Point					
2	2 Point					
3	Ice Point					

Revision 0.1 Page 12 of 43

4.7 TC Calibration Single Point

	TC Calibration Single Point						
ID	Classes	Parameters					
0x121	GPRW	Value (float)					

4.8 TC Calibration Double Point Low

TC Calibration Double Point Low						
ID	Classes	Parameters				
0x122	GPRW	Value (float)				

4.9 TC Calibration Double Point High

	TC Calibration Double Point High						
ID	Classes	Parameters					
0x123	GPRW	Value (float)					

4.10 Process Reading 1 (Low)

Process Reading 1 (Low)							
ID	Classes		Parameters				
0x130	GPRW	PR	ML	Value (float)			

PR – Process Range				
Value Range				
0	4 – 20 mA			

Revision 0.1 Page 13 of 43

1	0 – 24 mA
2	*NS
3	*NS
4	*NS
5	+/- 10 Vdc
6	+/ - 1.0 Vdc
7	+/ - 0.1 Vdc

ML – Manual/Live				
Value	Range			
0	Manual Mode			
1	Live Mode			

^{*}NS – not currently supported.

4.11 Process Range Input 1 (Low)

	Process Range Input - Low							
ID	Classes	asses Parameters						
0x131	GPRW	PR	PR ML Value (float)					

The parameters PR and ML, are the same as defined for command ID = 0x130.

4.12 Process Range Reading 2 (High)

	Process Range Reading (High)						
ID	Classes		Parameters				
0x132	GPRW	PR	PR ML Value (float)				

The parameters PR and ML, are the same as defined for command ID = 0x130.

4.13 Process Range Input 2 (High)

	Process Range Input - High						
ID	Classes		Parameters				
0x133	GPRW	PR	PR ML Value (float)				

The parameters PR and ML, are the same as defined for command ID = 0x130.

4.14 Display Configuration

Display Configuration									
ID Classes Parameters									
0x200	GPRW	DP	DP UNIT COLOR BRT						

The parameters are as follows:

DP - Decimal Point				
Value	Effect			
0	Display as F.FFF			
1	Display as FF.FF			

Revision 0.1 Page 15 of 43

Units					
Value	Effect				
0	No units applied				
1	Values converted to oC				
2	Values converted to oF				

Color					
Value	Effect				
1	GREEN				
2	RED				
3	AMBER				

BRT - Brightness						
Value Brightness						
0	LOW					
1	MEDIUM					
2	HIGH					

4.15 Excitation Voltage

Excitation Voltage								
ID Classes Parameters								
0x210	GPRW	EV	EV					

The parameters are as follows:

EV – Excitation Voltage

Revision 0.1 Page 16 of 43

Value	Voltage
0	0 Volts
1	5 Volts
2	10 Volts
3	12 Volts
4	24 Volts

4.16 Safety Configuration

	Safety Configuration								
ID	Classes		Parameters						
0x220	GPRW	POR	OR	LBE					

The parameters are as follows:

POR – Power On Run			
Value Voltage			
0	Go to standby when powered on		
1	Go to run when powered on		

OR – Operate Run				
Value Voltage				
0	Disabled			
1	Enabled			

LBE - Loop Break Enabled		
Value	Enabled/Disabled	

0	Disabled
1	Enabled

4.17Loop Break Configuration

	Loop Break Configuration							
ID	Classes		Parameters					
0x221	GPRW	LBE	BE MINMS MINLS SECMS SECLS					

LBE - Loop Break Enabled		
Value	Enabled/Disabled	
0	Disabled	
1	Enabled	

The parameters MINMS, MINLS define the minutes in the loop break time. MINMS is the most significant part of the minutes, MINLS the least significant. Both are in hex format.

For example, to encode 100 minutes, MINMS = 6, MINLS = 4. (64 hex).

The second's portion of the loop break time is similarly defined in SECMS, SECLS.

4.18 Set Point Low Limit

	Set Point Low Limit		
ID	Classes	Parameters	
0x222	GPRW	Value (float)	

4.19 Set Point High Limit

Set Point High Limit				
ID Classes Parameters				

Revision 0.1 Page 18 of 43

0x223	GPRW	Value (float)
-------	------	---------------

4.20 Serial Communication Address

Serial Communications Address									
ID	Classes		Parameters						
0x300	GPRW	AMS	ALS						

The parameters are as follows:

AMS and ALS are the most significant and least significant nibble of the serial communications address in hex format. The address must be in the range 0 to 199 (decimal).

For example, if an address of 100 (decimal) is to be used, the hex value of the address would be 0x64 so AMs would be '6' and ALS would be '4'.

4.21 USB Communication Address

	USB Communications Address								
ID	Classes		Parameters						
0x301	GPRW	AMS	ALS						

The format and parameter usage is the same as for the serial communications address.

4.22 Ethernet Communication Address

	Ethernet Communications Address								
ID	Classes		Parameters						
0x302	GPRW	AMS	ALS						

The format and parameter usage is the same as for the serial communications address.

4.23 Serial Communication Config

Revision 0.1 Page 19 of 43

Serial Communications Configuration									
ID	Classes		Parameters						
0x310	GPRW	PROT	DM	LFE	ECHO	SEP			

The parameters are as follows:

PROT- Protocol		
Value	Protocol	
0	Omega Protocol	
1	Modbus Protocol	

Data Mode – Data Mode		
Value	Voltage	
0	Command	
1	Continuous	

LFE – Line Feed Enabled			
Value	Voltage		
0	Don't insert line feed on responses		
1	Insert line feed		

ECHO – Response Echo Enabled			
Value Voltage			
0	No echo.		

1	Echo command in response
---	--------------------------

SEP - Separation Character (Omega Protocol)				
Value	Effect			
0	Use <space> character between records</space>			
1	Use <cr> between records</cr>			

The Serial Communications Configuration must be set before the Serial Data Mode (ID = 0x311)

4.24 Serial Data Mode Config

	Serial Communications Data Mode Config				
ID	Classes	Parameters			
0x311	GPRW	MODE	Interval - seconds (variable length - float)		

MODE – (Omega Protocol)		
0	Interactive command mode	
1	Continuous mode	

Serial Modbus Mode Config

The interval is specified as a floating point number in seconds when the continuous mode is specified.

Example: setting serial to continuous mode with 5 second interval:

4.25 Serial Modbus Mode

Serial Modbus Mode					
ID	Classes	Parameters			

Revision 0.1 Page 21 of 43

[&]quot;*P311 1 5.0<CR>"

MODE		
------	--	--

MODE - Modbus				
Value	Mode			
0	RTU			
1	ASCII			

4.26 Serial Data Format

Serial Data Format								
ID	Classes		Parameters					
0x312	GPRW	AS	AS RE PE VE UE					

AS – Alarm Status Enabled in Continuous Mode				
Value	Voltage			
0	Don't send alarm status in cont. mode			
1	Send alarm status			

RE – Readings Enabled in Continuous Mode				
Value	Voltage			
0	Don't send readings in cont. mode			
1	Send readings			

PE – Peak Readings Enabled in Continuous Mode				
Value	Voltage			
0	Don't send peak readings in cont. mode			
1	Send peak readings			

Revision 0.1 Page 22 of 43

VE – Valley Readings Enabled in Continuous Mode				
Value	Voltage			
0	Don't send valley readings in cont. mode			
1	Send valley readings			

UE – Valley Readings Enabled in Continuous Mode				
Value	Voltage			
0	Don't append measurement units in cont. mode			
1	Append measurement units in cont. mode.			

4.27 Serial Communications Parameters

Serial Communications Parameters									
ID	Classes		Parameters						
0x313	GPRW	MODE	BR	PAR	DB	SB			

MODE - Serial Mode			
Value	Mode		
0	RS232		
1	RS485		

BR - Serial Baud Rate				
Value	Rate			
0	300 Baud			
1	600 Baud			
2	1200 Baud			

3	2400 Baud					
4	4800 Baud					
5	9600 Baud					
6	19200 Baud					
7	38400 Baud					
8	57600 Baud					
9	115200 Baud					

PAR - Parity						
Value	Parity					
0	None					
1	Odd					
2	Even					

DB - Data Bits						
Value	Bits					
0	7					
1	8					

SB - Stop Bits						
Value	Bits					
0	1					
1	2					

4.28 USB Communications Configuration

Revision 0.1 Page 24 of 43

USB Communications Configuration									
ID	Classes		Parameters						
0x320	GPRW	PROT	PROT DM LFE ECHO SEP						

This is for use with a virtual com serial port. The usage of the parameters is the same as for the Serial Communications Message.

4.29 USB Data Mode Configuration

USB Communications Data Mode Config								
ID	Classes		Parameters					
0x321	GPRW	MODE	Interval - seconds (float)					

The usage of the parameters for this command is the same as for the Serial Communications Data Mode (ID = 0x311)

4.30USB Modbus Mode

USB Modbus Mode								
ID	Classes		Parameters					
0x323	GPRW	MODE						

MODE - Modbus				
0	RTU			
1	ASCII			

4.31 USB Data Format

Serial Data Format										
ID	Classes		Parameters							
0x312	GPRW	AS	AS RE PE VE UE							

The usage of the parameters for this command is the same as for the Serial Data Format (ID = 0x312).

4.32 Ethernet Communications Configuration

Ethernet Communications Configuration									
ID	Classes	Parameters							
0x330	GPRW	PROT	PROT DM LFE ECHO SEP						

The usage of the parameters for this command is the same as for the Serial Communications Configuration (ID = 0x310).

4.33 Ethernet Data Mode Configuration

	Ethernet Communications Data Mode Config						
ID	Classes		Parameters				
0x331	GPRW	MODE	Interval - seconds (float)				

The usage of the parameters for this command is the same as for the Serial Communications Data Mode (ID = 0x311).

4.34 Ethernet Data Format

Ethernet Data Format									
ID	Classes		Parameters						
0x332	GPRW	AS	AS RE PE VE UE						

The usage of the parameters for this command is the same as for the Serial Data Format command (ID = 0x312).

4.35 Ethernet Modbus Mode

Ethernet Modbus Mode					
ID	Classes	Parameters			

Revision 0.1 Page 26 of 43

|--|--|

MODE - Modbus		
0	RTU	
1	ASCII	

4.36 Setpoint 1

Setpoint 1				
ID Classes Parameters				
0x400	GPRW	Setpoint Value - variable length (float)		

4.37 Remote Setpoint Configuration

Remote Setpoint Configuration									
ID	Classes		Parameters						
0x401	GPRW	EN	PR						

EN – Enable Remote Setpoint				
Value	Action			
0	Enable Remote Setpoint			
1	Disable Remote Setpoint			

PR - Output Process Range				
Value	Range			
0	4 - 20 V			
1	0 – 24 V			
2	0 – 10 V			

Revision 0.1 Page 27 of 43

3 0 – 1 V	
-----------	--

4.38 Setpoint 2

Setpoint 2					
ID	Classes	Parameters			
0x410	GPRW	TYPE	Setpoint Value - variable length (float)		

TYPE - Setpoint Type				
Value	Action			
0	Setpoint value given as fixed constant			
1	Setpoint value is deviation (+/-) Setpoint 1 value			

4.39 Remote Process Range Setpoint Min

Remote Process Range Setpoint Minimum					
ID	Classes	Parameters			
0x420	GPRW	PR	Setpoint Value (float – variable length)		

The parameters are as follows:

PR - Output Process Range

Revision 0.1 Page 28 of 43

Value	Range
0	4 - 20 V
1	0 – 24 V
2	0 – 10 V
3	0 – 1 V

4.40 Remote Process Range Setpoint Max

Remote Process Range Setpoint Maximum								
ID	Classes		Parameters					
0x422	GPRW	PR	Setpoint Value (float – variable length)					

The process range parameter PR is as defined for the Remote Process Range Setpoint Min command (ID = 0x420).

4.41 Remote Process Range Input Max

Remote Process Range Input Maximum								
ID	Classes		Parameters					
0x423	GPRW	PR	Setpoint Value (float – variable length)					

The process range parameter PR is as defined for the Remote Process Range Setpoint Min command (ID = 0x420).

4.42 Remote Process Range Input Min

Remote Process Range Input Minimum								
ID	Classes		Parameters					
0x421	GPRW	PR	Setpoint Value (float – variable length)					

The process range parameter PR is as defined for the Remote Process Range Setpoint Min command (ID = 0x420).

Revision 0.1 Page 29 of 43

4.43 PID Configuration

PID Configuration									
ID	Classes		Parameters						
0x500	GPRW	CA	AC						

CA - Control Action						
Value	Action					
0	Output active if P.V. < Setpoint					
1	Output active if P.V. > Setpoint					

AC – Adaptive Control						
Value	Action					
0	Enable Adaptive Control					
1	Disable Adaptive Control					

4.44 PID Low Clamping Limit

PID Low Clamping Limit										
ID	Classes		Parameters							
0x501	GPRW	CLMS	CLLS							

The hex-encoded byte fields CLMS, CLLS form the hex representation of the limit (percent) 0-100 For example, if the limit were to be 35 (decimal) the hex representation would be 23, so CLMS would equal 2 and CLLS 3.

Revision 0.1 Page 30 of 43

4.45 PID High Clamping Limit

PID High Clamping Limit									
ID	Classes		Parameters						
0x502	GPRW	CLMS	CLLS						

The encoding of the high clamping limit is the same as for the low clamping limit.

4.46 PID P Parameter

	PID P-Parameter						
ID	Parameters						
0x503	GPRW	P-parameter Value (float – variable length)					

4.47 PID I Parameter

PID I-Parameter						
ID Classes Parameters						
0x504	GPRW	I-parameter Value (float – variable length)				

4.48 PID D Parameter

PID D-Parameter						
ID Classes Parameters						
0x505	GPRW	D-parameter Value (float – variable length)				

Revision 0.1 Page 31 of 43

4.49 Output Mode

Output Mode									
ID	Classes		Parameters						
0x600	GPRW	NOUT	MODE						

NOUT – the output number (1-4)

MODE - Output Mode		
Value	Mode	
0	Output maintained in OFF state	
1	Output control by PID control function	
2	Output controlled by ON-OFF control function	
3	Output retransmits the scaled process variable	
4	Output set by ALARM 1 state	
5	Output set by ALARM 2 state	
6	Output set by Ramp & Soak RE.ON control bit	
7	Output set by Ramp & Soak SE.ON control bit	

4.50 Output Type

	Output Type								
ID	Classes		Parameters						
0x601	G	NOUT							

NOUT – the output number

This returns the output type for the specified output as a hex encoded string as follows:

C	Output Types		
Code Returned (hex encoded)	Туре		
000	No output available		
001	Single Poll Relay		
002	SSR output		
004	Double Poll Relay		
008	DC Pulse output		
010	Analog Output		
020	Isolated Analog Output		

4.51 Output ON/OFF Configuration

	Output On/Off Config				
ID	Classes	Parameters			
0x610	GPRW	NOUT	RD	Dead Band Value (float – variable length)	

NOUT is the output number (1-4)

RD – Reverse/Direct		
Value	Action	
0	Reverse	
1	Direct	

4.52 Output Alarm Configuration

Output Alarm Configuration		
ID	Classes	Parameters

0x620 G	NAL	TYP	MODE	COLOR	HHEN	LAT	CNT	РО
---------	-----	-----	------	-------	------	-----	-----	----

NAL is the alarm number (1-2)

TYP- Alarm Type		
0	Alarm not active	
1	Alarm triggered if PV > ALM.H	
2	Alarm trigger if PV < ALM.L	
3	Alarm trigger if PV > ALM.H or PV < ALM.L	
4	Alarm trigger if PV > ALM.L and PV < ALM.H	

MODE - Alarm Mode		
Value	Mode	
0	Alarm setpoint is fixed constant	
1	Alarm is offset from Setpoint 1	
2	Alarm is offset from Setpoint 2	

Color		
Value	Alarm Color	
0	No color	
1	GREEN	
2	RED	
3	AMBER	

HHEN – HiHi Mode		
Value	Action	
0	Enable Hi Hi Mode	
1	Disable Hi Hi Mode	

Revision 0.1 Page 34 of 43

LAT- Alarm Latch Control		
Value Action		
0	Alarm does not latch	
1	Alarm state will be latched, clear by front panel	
2	Alarm state will be latched, clear by digital input	
3	Alarm state latched, clear by front panel or input	

CNT – Contact Polarity				
Value	Polarity			
0	Contacts OPEN until activated			
1	Contacts CLOSED until activated			

PO – Power On Enable		
0	Not active on power-on	
1	Active on power-on	

4.53Hi Value

Alarm Hi Value						
ID	Classes		Parameters			
0x621	GPRW	NAL	NAL Hi Value (float – variable length)			

NAL = alarm number (1-2)

4.54Low Value

Alarm Low Value						
ID	Classes	lasses Parameters				
0x622	GPRW	NAL Low Value (float – variable length)				

4.55 On Delay

	Alarm On Delay			
ID	ID Classes Parameters			
0x623	0x623 GPRW NAL On Delay - seconds (float – variable length)			

NAL = alarm number (1 - 2)

4.56 Off Delay

Alarm Off Delay				
ID	ID Classes Parameters			
0x624	0x624 GPRW NAL Off Delay - seconds (float – variable length)			

NAL – alarm number (1-2)

4.57 HiHi Mode

	HiHi Mode							
ID	Classes		Parameters					
0x625	GPRW	NAL	NAL ON/OFF					

NAL – alarm number

	ON/OFF
0	On
1	Off

4.58 HiHi Offset

Alarm HiHi Offset					
ID	ID Classes Parameters				
0x626	0x626 GPRW NAL Offset (float – variable length)				

4.59 Output Retransmission Reading 1

Output Retransmission Reading 1						
ID	Classes		Parameters			
0x630	GPRW	NOUT Reading Value (float – variable length)				

NOUT – output number (1-4)

4.60 Output Retransmission Output 1

Output Retransmission Output 1					
ID	Classes		Parameters		
0x631	GPRW	NOUT Output Value (float – variable length)			

NOUT – output number (1-4)

4.61 Output Retransmission Reading 2

Output Retransmission Reading 2					
ID	Classes		Parameters		
0x632	0x632 GPRW NOUT Reading Value (float – variable length)				

NOUT = output number (1-4)

Revision 0.1 Page 37 of 43

4.62 Output Retransmission Output 2

	Output Retransmission Output 2							
ID	Classes	Parameters						
0x633	GPRW	NOUT	Output Value (float – variable length)					

NOUT – output number (1-4)

4.63 Output Cycle Time/Pulse Width

Output Cycle Time/Pulse Width							
ID	Classes		Parameters				
0x650	GPRW	NOUT	Cycle Time - seconds (float - variable length)				

NOUT – output number

4.64 Output Range

	Output Range								
ID	Classes		Parameters						
0x660	GPRW	NOUT	RANGE						

RANGE						
Value	Range					
0	0 – 10V					
1	0 – 5V					
2	0-20V					
3	4-20V					
4	0-24V					

Revision 0.1 Page 38 of 43

4.65 Time Format

Time Format									
ID	Classes		Parameters						
0x700	GPRW	FMT							

FMT - Time Format					
0	MM.SS displayed				
1	HH.MM displayed				
2	S.MMM displayed				

4.66 Multi Ramp/Soak Configuration

Ramp/Soak Config									
ID	Classes		Parameters						
0x720	GPRW	RS							

RS – Ramp Soak Mode						
0	Ramp/Soak Disabled					
1	Ramp/Soak Enabled					
2	Ramp/Soak Remote Control					

4.67 Multi Ramp/Soak Profile Configuration

	Multi Ramp/Soak Profile Config								
ID	Classes		Parameters						
0x721	RW	PMS	PLS	SC	TE				

Revision 0.1 Page 39 of 43

PMS, PLS form the profile number in hex form. PMS is the most significant hex digit, PLS the least significant. For example, segment 31 (0x1f) would be encoded as PMS = '1', PLS = 'F'

SC is the segment count (0 - 15) encoded as a single hex digit.

TE- Tr	acking Enabled
0	Disabled
1	Enabled

4.68 Multi Ramp/Soak Segment Event Configuration

Multi Ramp/Soak Event Config									
ID	Classes		Parameters						
0x730	RW	NSEG	RE	SE					

PMS, PLS identify the profile number as in Multi Ramp/Soak Profile Configuration (ID = 0x721).

NSEG is the segment number encoded as a single hex digit (0-F)

RE - Ramp enabled (1) or disabled (0) for segment

SE – Soak enabled (1) or disabled (0) for segment.

4.69 Multi Ramp/Soak Profile Segment Ramp Time

Multi Ramp/Soak Segment Ramp Time							
ID	Classes		Parameters				
0x731	RW	NSEG	Ramp Time Seconds (float, variable length)				

NSEG is a single hex digit identifying the segment number

4.70 Multi Ramp/Soak Profile Segment Soak Process Value

Multi Ramp/Soak Segment Soak Process Value
--

Revision 0.1 Page 40 of 43

ID	Classes	Parameters				
0x732	RW	NSEG	Soak Value (float, variable length)			

NSEG is a single hex digit identifying the segment number

4.71 Multi Ramp/Soak Profile Segment Soak Time

	Multi Ramp/Soak Segment Soak Time							
ID	Classes		Parameters					
0x733	RW	NSEG	Soak Time - seconds (float, variable length)					

PMS, PLS pair identify the profile number as in the Multi-Ramp Profile Config message (ID = 0x721) NSEG is a single hex digit identifying the segment number

4.72 INIT Password

	INIT Password										
ID	Classes		Parameters								
0xF00	GPRW	EN	PWD3	PWD2	PWD1	PWD0					

EN – Enable Init (1) / Disable Init (0)

The parameters PWD0-3 form a hex encoded number. The range of each must be 0-9. For example, '1234' would be encoded as PWD3 = 1, PWD2 = 2, PWD1 = 3, PWD0 = 4

4.73 Program Password

Program Password										
ID	Classes		Parameters							
0xF01	GPRW	EN	PWD3	PWD2	PWD1	PWD0				

EN – Enable Programming (1) / Disable Programming (0)

The parameters PWD0-3 form a hex encoded number. The range of each must be 0-9.

4.74 Version Number

	Version Number									
ID	ID Classes Parameters									
0xF20	G									

This command returns the current firmware version number as a hex encoded string. The format is:

- Major (2 bytes)
- Minor (2 bytes)
- Fix (2 bytes)
- Build (2 bytes)

Example: If the current version is 01.00.05.00 the command "*GF20<CR>" would return "01000500"

4.75 Version Upgrade

	Version Upgrade									
ID	Classes		Parameters							
0xF21	Р	SEL								

This command forces a firmware upgrade, followed by a reboot.

The SEL parameter determines the method to be used.

SEL – Firmware Upgrade Method								
1	EIP Serial Port							
2	User Serial Port							
3	USB Thumb drive.							

Example: to upgrade using the USB Thumb drive the drive would be inserted into the USB port, followed by the serial command "*PF21 3<CR>"

Revision 0.1 Page 42 of 43

4.76 Bootloader Version

	Bootloader Version Number									
ID	ID Classes Parameters									
0xF22	G									

This retrieves the bootloader version number in exactly the same manner as the version number command (ID = 0xF20).

4.77 Set Factory Defaults

	Bootloader Version Number									
ID	Classes		Parameters							
0xF30	Р	EN								

To reset factory defaults, use the command "*PF30 1<CR>"

Revision 0.1 Page 43 of 43

Warranty/Disclaimer

NEWPORT Electronics, Inc. warrants this unit to be free of defects in materials and workmanship for a period of **one** (1) **year** from the date of purchase. In addition to NEWPORT's standard warranty period, NEWPORT Electronics will extend the warranty period for **four** (4) **additional years** if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used humans, misused i n o r o n o r NEWPORT a s assumes n o responsibility set forth i n basic WARRANTY / DISCLAIMER language, and additionally purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit

FOR <u>WARRANTY</u> RETURNS, please have the following information available BEFORE contacting NEWPORT:

- P.O. number under which the product was PURCHASED.
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:

- 1. P.O. number to cover the COST of the repair,
- 2. Model and serial number of product, and
- 3. Repair instructions and/or specific problems relative to the product.

NEWPORT's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

NEWPORT is a registered trademark of NEWPORT Electronics, Inc. Patent pending.

© Copyright 2015 NEWPORT Electronics, Inc. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT Electronics, Inc.

Newport Electronics, Inc.

2229 South Yale Street • Santa Ana, CA • 92704 • U.S.A.

TEL: (714) 540-4914 • FAX: (203) 968-7311

Toll Free: 1-800-639-7678 • www.newportUS.com • e-mail:info@newportUS.com

ISO 9001 Certified

Newport Technologies, Inc.

976 Bergar • Laval (Quebec) • H7L 5A1 • Canada

TEL: (514) 335-3183 • FAX: (514) 856-6886

Toll Free: 1-800-639-7678 • www.newport.ca • e-mail:info@newport.ca

Newport Electronics, Ltd.

One Omega Drive • River Bend Technology Centre

Northbank, Irlam • Manchester M44 5BD • United Kingdom

Tel: +44 161 777 6611 • FAX: +44 161 777 6622

Toll Free: 0800 488 488 • www.newportuk.co.uk • e-mail:sales@newportuk.co.uk

Newport Electronics B.V. - Benelux

Managed by the United Kingdom Office

TEL: +31 20 3472121 • FAX: +31 20 6434643

Toll Free: 0800 0993344 • www.newport.nl • e-mail: info@newport.nl

Newport Electronics spol s.r.o.

Frystatska 184, 733 01 Karviná • Czech Republic

TEL: +420 59 6311899 • FAX: +420 59 6311114

Toll Free: 0800-1-66342 • www.newport.cz • e-mail: info@newport.cz

Newport Electronics GmbH

Daimlerstrasse 26 • D-75392 Deckenpfronn • Germany

TEL: 49 7056 9398-0 • FAX: 49 7056 9398-29

Toll Free: 0800 / 6397678 • www.newport.de • e-mail: sales@newport.de

Newport Electronique S.A.R.L. - France

Managed by the United Kingdom Office

TEL: 01 57 32 48 17 • FAX: 01 57 32 48 18

Toll Free: 0805 541 038 • www.newport.fr • e-mail: sales@newport.fr

Mexico and Latin America FAX: 001 (203) 359-7807

TEL En Español: 001 (203) 359-7803

NEWPORTnet[™] On-Line Service

Internet e-mail

www.newportUS.com

info@newportUS.com