HPFAR_EL2, Hypervisor IPA Fault Address Register

The HPFAR EL2 characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configuration

AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR[31:0].

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

The HPFAR_EL2 is written for:

- Translation or Access faults in the second stage of translation.
- An abort in the second stage of translation performed during the translation table walk of a first stage translation, caused by a Translation fault, an Access flag fault, or a Permission fault.
- A stage 2 Address size fault.
- If FEAT_RME is implemented, a Granule Protection Check fault in the second stage of translation.

For all other exceptions taken to EL2, this register is unknown.

Note

The address held in this register is an address accessed by the instruction fetch or data access that caused the exception that gave rise to the Instruction Abort exception or Data Abort exception. It is the lower address that gave rise to the fault that is reported. Where different faults from different addresses arise from the same instruction, such as for an instruction that loads or stores an unaligned address that crosses a page boundary, the architecture does not prioritize which fault is reported.

Attributes

HPFAR EL2 is a 64-bit register.

Field descriptions

63	63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32																												
NS					RI	ES(0														FII	PA							
	FIPA								RE	<u>50</u>																			
31	30 29	28 2	7 26	25	24	23 :	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Execution at EL1 or EL0 makes HPFAR_EL2 become unknown.

NS, bit [63] When FEAT SEL2 is implemented:

Faulting IPA address space.

NS	Meaning
0b0	Faulting IPA is from the Secure IPA
	space.
0b1	Faulting IPA is from the Non-secure
	IPA space.

For Data Abort exceptions or Instruction Abort exceptions taken to Non-secure EL2:

- This field is res0.
- The address is from the Non-secure IPA space.

If FEAT_RME is implemented, for Data Abort exceptions or Instruction Abort exceptions taken to Realm EL2:

- This field is res0.
- The address is from the Realm IPA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [62:48]

Reserved, res0.

FIPA, bits [47:4]

FIPA encoding when FEAT_D128 is implemented

FIPA, bits [43:0]

Bits [55:12] of the Faulting Intermediate Physical Address.

For implementations with fewer than 55 physical address bits, the corresponding upper bits in this field are res0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous exception that set the HPFAR_EL2 from any of the Memory Copy and Memory Set instructions is within the address range of the current stage 2 translation granule, aligned to the size of the current stage 2 translation granule, of the address that generated the Data abort.

Bits[(n-1):0] of the value are unknown, where 2^n is the current stage 2 translation granule size in bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

FIPA encoding when FEAT_LPA is implemented and FEAT_D128 is not implemented

434241403938373635343332

RES0	FIPA	
		FIPA
31302928	2726252423222120	19181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [43:40]

Reserved, res0.

FIPA, bits [39:0]

Bits [51:12] of the Faulting Intermediate Physical Address.

For implementations with fewer than 52 physical address bits, the corresponding upper bits in this field are res0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous exception that set the HPFAR_EL2 from any of the Memory Copy and Memory Set instructions is within the address range of the current stage 2 translation granule, aligned to the size of the current stage 2 translation granule, of the address that generated the Data abort.

Bits[(n-1):0] of the value are unknown, where 2ⁿ is the current stage 2 translation granule size in bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

FIPA encoding when FEAT_LPA is not implemented

4342414039383736	35343332										
RES0	FIPA										
		FIPA									
3130292827262524	23222120	19181716151413121110 9	8	7	6	5	4	3	2	1	0

Bits [43:36]

Reserved, res0.

FIPA, bits [35:0]

Bits[47:12] Faulting Intermediate Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are res0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous exception that set the HPFAR_EL2 from any of the Memory Copy and Memory Set instructions is within the address range of the current stage 2 translation granule, aligned to the size of the current stage 2 translation granule, of the address that generated the Data abort.

Bits[(n-1):0] of the value are unknown, where 2^n is the current stage 2 translation granule size in bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [3:0]

Reserved, res0.

Accessing HPFAR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HPFAR EL2

op0	op1	CRn	CRm	op2			
0b11	0b100	0b0110	0b0000	0b100			

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        X[t, 64] = HPFAR_EL2;
elsif PSTATE.EL == EL3 then
        X[t, 64] = HPFAR_EL2;
```

MSR HPFAR_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0110	0b0000	0b100

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    HPFAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    HPFAR_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.