

Introduction: Time Series Forecasting

Problem setup

1. <u>Time series forecasting</u>: given past observations, predict future ones

- 2. Univariate vs. multivariate (this work)
- 3. Short, medium and <u>long-term</u> (this work)

Motivation

Are Transformers Effective for Time Series Forecasting?

```
Ailing Zeng<sup>1*</sup>, Muxi Chen<sup>1*</sup>, Lei Zhang<sup>2</sup>, Qiang Xu<sup>1</sup>

<sup>1</sup>The Chinese University of Hong Kong

<sup>2</sup>International Digital Economy Academy (IDEA)
```

```
{alzeng, mxchen21, qxu}@cse.cuhk.edu.hk {leizhang}@idea.edu.cn
```


Motivation

1. Consider a simple linear model per variable (no cross-feature correlations)

2. Compare it to « SOTA » transformers

Motivation

LogSparse and convolutional self-attention @LogTrans

ProbSparse and distilling self-attention @Informer

Series auto-correlation with decomposition @Autoformer

Multi-resolution pyramidal attention @Pyraformer

Frequency enhanced block with decomposition @FEDformer

"Surprisingly, Linear model surpasses the SOTA FEDformer (ICML'22) in most cases by 20%~50%!"

Main conclusions by Zeng et al.

- 1. Existing transformer-based methods don't work well in forecasting
- 2. Embarrassing **failure** in most **basic scenarios**

... yet they dominate NLP and vision. Why?

SAMFormer (Ilbert et al. 2024)

A transformer-based forecaster that actually works

Why transformers fail?

1. Consider a toy regression problem (L=512, H=96, D=7)

$$\mathbf{Y} = \mathbf{X}\mathbf{W}_{\mathrm{toy}} + \boldsymbol{\varepsilon}$$

- 2. Oracle = linear regression, closed-form solution
- 3. <u>Competitor</u>: shallow, linear transformer with **channel-wise attention** (DxD matrix, rather than LxL)

$$f(\mathbf{X}) = [\mathbf{X} + \mathbf{A}(\mathbf{X})\mathbf{X}\mathbf{W}_V\mathbf{W}_O]\mathbf{W}$$

Can provably solve our problem!

Why transformers fail?

1. Linear, shallow transformer severly overfits!

2. ... but it works better if we freeze the attention

Why transformers fail?

1. Let's look at the attention matrix

2. The attention get's stuck at identity ... and doesn't move afterward

Pathological behavior suggesting sharp local minima!

Why transformers fail?

And no, tuning/changing the optimizer doesn't help to solve this!

Why transformers fail?

1. Transformers have a sharp loss landscape and suffer from entropy collapse

2. Well-known in NLP and vision (Chen et al., 2022, Zhai et al. 2023), ignored in TS

How to fix this?

- **1.** Reparametrization (Zhen et al. 2023)
 - make attention matrix "more uniform" to avoid entropy collapse

$$\widehat{\mathbf{W}} = \frac{\gamma}{\|\mathbf{W}\|_2} \mathbf{W}$$

- 2. Sharpness-aware minimization (Foret et al. 2021, Chen et al. 2022)
 - converge toward weights that lie in neighborhoods having uniformly low loss

$$\mathcal{L}_{ ext{train}}^{ ext{SAM}}(oldsymbol{\omega}) = \max_{\|oldsymbol{\epsilon}\| <
ho} \mathcal{L}_{ ext{train}}(oldsymbol{\omega} + oldsymbol{\epsilon})$$

Observations:

- 1. Reparametrization helps a bit!
- 2. Optimizing with **SAM = desired solution!**

Congrats you now know how to solve a linear regression problem with transformers!

Proposed model: SAMformer

Let's put it all together now:

- 1. Shallow transformer with a channel-wise attention
- 2. RevIN layer to be robust to train/test time shift
- 3. We optimize it with **SAM**

1. Datasets

Dataset	ETTh1/ETTh2	ETTm1/ETTm2	Electricity	Exchange	Traffic	Weather
# features	7	7	321	8	862	21
# time steps	17420	69680	26304	7588	17544	52696
Granularity	1 hour	15 minutes	1 hour	1 day	1 hour	10 minutes

2. <u>Baselines</u>

- TSmixer: MLPmixer model from Google (SOTA in 2023)

- <u>Transformers</u>: Informer (AAAI'21), FEDformer (ICML'22), Pyraformer (ICLR'22), Autoformer (NeurIPS'21), LogTrans (NeurIPS'19)

with S	AM	without SAM							
SAMformer	TSMixer	Transformer	TSMixer	In*	Auto*	FED*	Pyra [†]	LogTrans [†]	
Overall MSE improvement	5.25 %	16.96 %	14.33 %	72.20 %	22.65 %	$\boldsymbol{12.36\%}$	61.88 %	70.88%	

- 1. SAMFormer is **14% better** than TSMixer
 - much better than all transformer-based models
- 2. <u>Sharpness-aware minimization</u> improves TSMixer as well

SAMFormer is smaller and more consistent than TSMixer

- the **same model** for all datasets/horizons
- Avg Ratio = nbre params TSMixer / nbre params SAMFormer

Dataset	H =	96	H = 1	192	H = 3	336	H = f	720	Total
	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	
ETT	50272	124142	99520	173390	173392	247262	369904	444254	-
Exchange	50272	349344	99520	398592	173392	472464	369904	669456	_
Weather	50272	121908	99520	171156	173392	245028	369904	442020	-
Electricity	50272	280676	99520	329924	173392	403796	369904	600788	2
Traffic	50272	793424	99520	842672	173392	916544	369904	1113536	-
Avg. Ratio	6.64	4	3.83	5	2.6	4	1.7	7	3.73

SAMFormer is robust to random initialization

- very low variance for random seeds

SAMFormer is on par with MORAI foundation model

- MORAI (Salesforce + Singapore University)
- trained on LOTSA with <u>27B samples</u> from <u>9 domains</u>
- comes in 3 sizes: small (14M), base (91M) and Large (311M)

		Moiraismall	Moirai _{Base}	MOIRAI _{Large}	SAMformer
ETTh1	MSE MAE	0.400 0.424	$\frac{0.434}{0.438}$	0.510 0.469	0.41
ETTh2	MSE MAE	0.341 0.379	0.345 0.382	0.354 0.376	0.344
ETTm1	MSE MAE	0.448 0.409	0.381 0.388	0.390 <u>0.389</u>	0.373
ETTm2	MSE MAE	0.300 0.341	0.272 0.321	0.276 0.320	0.2685
Electricity	MSE MAE	0.233 0.320	0.188 0.274	$\frac{0.188}{0.273}$	0.181
Weather	MSE MAE	<u>0.242</u> <u>0.267</u>	0.238 0.261	0.259 0.275	0.26

Ablation study: why channel-wise attention?

- Candidate 1: SAMformer with temporal attention (as used in all other transformers)
- Overall Improvement : Improvement of SAMFormer over Temporal

Model	Metrics	Н	ETTh1	ETTh2	ETTm1	ETTm2	Electricity	Exchange	Traffic	Weather	Overall Improvement
Temporal Attention	MSE	336	$0.510_{\pm 0.014} \\ 0.549_{\pm 0.017}$	$\begin{array}{c} 0.414_{\pm 0.020} \\ 0.396_{\pm 0.014} \end{array}$	$\begin{array}{c} 0.542_{\pm 0.063} \\ 0.615_{\pm 0.056} \\ 0.620_{\pm 0.046} \\ 0.694_{\pm 0.055} \end{array}$	$\begin{array}{c} 0.394_{\pm 0.033} \\ 0.436_{\pm 0.081} \end{array}$	$\begin{array}{c} 0.294_{\pm 0.024} \\ 0.290_{\pm 0.016} \end{array}$	$0.434_{\pm 0.063} \\ 0.473_{\pm 0.014}$	$0.647_{\pm 0.131}$		12.97%
	MAE	192 336	$\begin{array}{c} 0.492_{\pm 0.010} \\ 0.517_{\pm 0.012} \end{array}$	$0.443_{\pm 0.015} \\ 0.440_{\pm 0.012}$	$\begin{array}{c} 0.525_{\pm 0.040} \\ 0.566_{\pm 0.032} \\ 0.550_{\pm 0.024} \\ 0.584_{\pm 0.027} \end{array}$	$0.421_{\pm 0.019} \\ 0.443_{\pm 0.039}$	$0.385_{\pm 0.014} \\ 0.383_{\pm 0.009}$	$\begin{array}{c} 0.498_{\pm 0.033} \\ 0.517_{\pm 0.008} \end{array}$	$0.467_{\pm 0.072}$ $0.469_{\pm 0.070}$		18.09%

Ablation study: why channel-wise attention?

- <u>Candidate 2</u>: SAMformer with **identity weight matrix** attention
- Overall Improvement : Improvement of SAMFormer over Identity Attention

Model	Metrics	H	ETTh1	ETTh2	ETTm1	ETTm2	Electricity	Exchange	Traffic	Weather	Overall Improvement
Attention	MSE	192 336	$\begin{array}{c} 0.467_{\pm 0.074} \\ 0.512_{\pm 0.070} \end{array}$	$\begin{array}{c} 0.374_{\pm 0.031} \\ 0.372_{\pm 0.024} \end{array}$	$\begin{array}{c} 0.384_{\pm 0.042} \\ 0.408_{\pm 0.032} \end{array}$	$0.248_{\pm 0.016} \\ 0.303_{\pm 0.022}$	$\begin{array}{c} 0.189_{\pm 0.022} \\ 0.211_{\pm 0.019} \end{array}$	$0.320_{\pm 0.070} \\ 0.443_{\pm 0.071}$	$\begin{array}{c} 0.416_{\pm 0.037} \\ 0.437_{\pm 0.041} \\ 0.500_{\pm 0.155} \\ 0.468_{\pm 0.021} \end{array}$	$\begin{array}{c} 0.236_{\pm 0.002} \\ 0.277_{\pm 0.003} \end{array}$	11.93%
Identity	MAE	192 336	$0.490_{\pm 0.049}$	$0.413_{\pm 0.022} \\ 0.413_{\pm 0.015}$	$0.399_{\pm 0.030}$ $0.411_{\pm 0.019}$	$0.321_{\pm 0.012} \\ 0.354_{\pm 0.018}$	$0.291_{\pm 0.029}$ $0.309_{\pm 0.021}$	$0.418_{\pm 0.043}$ $0.498_{\pm 0.041}$	$\begin{array}{c} 0.301_{\pm 0.039} \\ 0.314_{\pm 0.042} \\ 0.350_{\pm 0.106} \\ 0.325_{\pm 0.023} \end{array}$	$0.278_{\pm 0.002}$ $0.305_{\pm 0.003}$	4.18%

SAM vs weight reparametrization

Final word on weight matrix reparametrization

- proved to be efficient in NLP ... but didn't work for us

Observations:

- Transformers ignores diagonal elements
- SAMformer strongly encourages feature self-correlation (as in ViTs)
- Weight reparametrization oversmoothes the attention matrix

SAM vs weight reparametrization

Oversmoothing = rank collapse

- we prove that

Proposition 2.2 (Upper bound on the nuclear norm)

Let $\mathbf{X} \in \mathbb{R}^{D \times L}$ be an input sequence. Assuming $\mathbf{W}_{Q}\mathbf{W}_{K}^{\top} = \mathbf{W}_{K}\mathbf{W}_{Q}^{\top} \succcurlyeq \mathbf{0}$, we have $\|\mathbf{X}\mathbf{W}_{Q}\mathbf{W}_{K}^{\top}\mathbf{X}^{\top}\|_{*} \leq \|\mathbf{W}_{Q}\mathbf{W}_{K}^{\top}\|_{2}\|\mathbf{X}\|_{\mathrm{F}}^{2}$.

Roughly = rank of the attention matrix

Minimized by reparametrization

- maximizing the entropy of the attention = rank collapse
- rank collapse = uninformative channel-wise attention

SAM vs weight reparametrization

Oversmoothing = rank collapse

SAM + weight reparametrization

A bit of smoothing + SAM doesn't help much!

SAMformer: conclusions

- 1. We studied **pitfalls of transformers** in time series forecasting
 - Sharp loss landscape = lack of generalization
- Our proposal SAMformer
 - SAMformer = RevIN + channel-wise attention + SAM optimization
 - **SOTA** in long-term multivariate time series forecasting
 - Consistent = same architecture of different horizons/datasets
 - **Lightweight** = the smallest SOTA model
 - On par with large foundation model MORAI

