AMENDMENTS TO THE CLAIMS:

Please amend claims 1 and 2, as follows. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (Currently amended): A thermoelectric element comprising:

a thin film of p-type thermoelectric material,

a thin film of n-type thermoelectric material, and

the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material being formed on the electrically insulating substrate and being electrically connected,

(i) the p-type thermoelectric material comprising at least one complex oxide selected from the group consisting of:

complex oxides represented by Formula (2): $Bi_f Pb_g M^1_h Co_i M^2_j O_k$, wherein M^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y, and lanthanoids; M^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; $1.6 \le i \le 2.2$; $0 \le j \le 0.5$; and $0 \le k \le 10$; and

(ii) the n-type thermoelectric material comprising at least one complex oxide selected from the group consisting of:

complex oxides represented by Formula (3): $\operatorname{Ln_m} R^{\dagger}_{n} \operatorname{Ni_p} R^{2}_{q} \Theta_{r}$, wherein Ln is one or more elements selected from the group consisting of lanthanoids; R^{\dagger} is one ore-more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R^{2} is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta; $0.5 \leq m \leq 1.7$; $0 \leq n \leq 0.5$; $0.5 \leq p \leq 1.2$; $0 \leq q \leq 0.5$; and $2.7 \leq r \leq 3.3$;

complex oxides represented by the Formula $\operatorname{Ln}_x R^5_y \operatorname{Ni}_p R^6_q$, O_r , wherein Ln is lanthanoid; R^5 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi, and Nd; R^6 is one or more elements selected from the group consisting of Ti, V, Cr, and Cu; $0.5 \le x \le 1.2$; $0 \le y \le 0.5$; $0.5 \le p \le 1.2$; $0.01 \le q' \le 0.5$; and $2.8 \le r' \le 3.2$;

complex oxides represented by Formula (5): $A_x Z n_y O_z$, wherein A is Ga or Al; $0 \le x \le 0.1$; $0.9 \le y \le 1$; and $0.9 \le z \le 1.1$; and

complex oxides represented by Formula (6): $Sn_{xx}In_{yy}O_{zz}$, wherein $0 \le xx \le 1$; $0 \le yy \le 2$; and $1.9 \le zz \le 3$.

Claim 2 (Currently amended): The thermoelectric element according to Claim 1, wherein the p-type thermoelectric material comprises at least one complex oxide selected from the group consisting of complex oxides represented by the formula: $Bi_fPb_gM^1_hCo_2O_k$, wherein M^1 is one or more elements selected from the group consisting of Sr, Ca and Ba; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; and $8 \le k \le 10$;

the n-type thermoelectric material comprises at least one complex oxide selected from the

group consisting of complex oxides represented by the formula: Ln, Rt, NiO, wherein Ln is

lanthanoid; R[†] is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi;

 $0.5 \le m \le 1.2$; $0 \le n \le 0.5$; and $2.7 \le r \le 3.3$, and complex oxides represented by the formula:

Ln₂R⁵, Ni₂R⁶, O₂, wherein Ln is lanthanoid; R⁵ is one or more elements selected from the group

consisting of Na, K, Sr, Ca, Bi, and Nd; and R⁶ is one or more elements selected from the group

consisting of Ti, V, Cr, Mn, Fe, Co, and Cu; $0.5 \le x \le 1.2$; $0 \le y \le 0.5$; $0.5 \le p \le 1.2$; $0.01 \le q' \le 0.5$;

and $2.8 \le r' \le 3.2$.

Claim 3 (Original): The thermoelectric element according to Claim 1, wherein the thin film

of p-type thermoelectric material and the thin film of n-type thermoelectric material are electrically

connected by one of the following methods:

bringing one end portion of the thin film of p-type thermoelectric material into direct contact

with one end portion of the thin film of n-type thermoelectric material;

bringing one end portion of the thin film of p-type thermoelectric material into contact with

one end portion of the thin film of n-type thermoelectric material via an electrically conductive

material;

-4-

bringing one end portion of the thin film of p-type thermoelectric material into direct contact with one end portion of the thin film of n-type thermoelectric material and covering the contact portion with an electrically conductive material.

Claim 4 (Original): The thermoelectric element according to Claim 1, wherein the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material are formed on the same surface or on different surfaces of the electrically insulating substrate.

Claim 5 (Original): The thermoelectric element according to Claim 1, wherein the electrically insulating substrate is a substrate comprising a plastic material.

Claim 6 (Original): The thermoelectric element according to Claim 1, wherein thermoelectromotive force is at least 60 μ V/K in a temperature range of 293 K to 1073K.

Claim 7 (Original): The thermoelectric element according to Claim 1, wherein electrical resistance is 1 K Ω or lower in a temperature range of 293 K to 1073 K.

Claim 8 (Original): A thermoelectric module comprising a plurality of the thermoelectric elements of Claim 1, wherein the thermoelectric elements are electrically connected in series such that an unconnected end portion of a p-type thermoelectric material of one thermoelectric element

U.S. Patent Application Serial No. 10/593,644 Response filed October 24, 2008

Reply to OA dated July 24, 2008

is electrically connected to an unconnected end portion of an n-type thermoelectric material of

another thermoelectric element.

Claim 9 (Original): A thermoelectric conversion method comprising positioning one end of

the thermoelectric module of Claim 8 at a high-temperature portion and positioning the other end

of the module at a low-temperature portion.

-6-