

The Cognitive Edge: Promoting Energy-Efficient, Collaborative Sensing by IoT & Personal Devices

Archan Misra

SmartEdge 2019, March 14, 2019

My Research History

Mobile Sensing & Analytics

- Indoor Location
- Group Detection
- Queuing Detection

Key Research Thrusts

- Fusion of multi-modal sensing (inertial)
- Adaptive sampling & triggered sensing
- Multiple live deployments (campus, malls, museums) + licensing

Wearable Sensing & Systems

- Eating (*Annapurna*)
- In-Store Shopping (IRIS, I4S)
- VR+ mobile (Empath-D)

Key Research Thrusts

- Optimize (Energy, Accuracy, Latency) tradeoffs
- Multi-modal sensor fusion (inertial, image)

Wearable + IoT Systems

- Batteryless Wearables
- Wireless/RFID Sensing
- Fine-grained Gestural Tracking

Key Research Thrusts

- Batteryless Sensing
- Wireless (Commn, Power, Sensing)
- Collaborative ML at edge (voice, video, inertial, wireless)

Edge Computing at Present

- Offload computation to a nearby, powerful-computational entity
- Advantages
 - Low-latency, real time ML pipelines
 - Data privacy
 - Energy-efficiency
 - Content caching
- Isolated Interaction between individual device & "cloudlet"

This Talk: Edge for Coordination

Edge: A platform that allows real-time coordination between multiple loT & wearable/mobile devices

DS: Distributed & Triggered Sensing

- Use Cheaper Sensors to Trigger More Expensive Sensors in tight coordination
- Optimize Sensing & Communication Overhead (Stochastic Optimization)

EA: Collaborative ML-based Edge Inferencing

- Distribute Inferencing Pipelines across multiple pervasive devices
- Optimize processing latency & Energy Consumption

Research Vision: Fine-grained, ultra-low power, sensing & sense-making

- Campuses, Malls, Homes, Factory, Warehouses,
- New scenarios & uses!! -- Multiple occupants, device-free interaction, super-cheap wearables....

Wearable Sensing

- Drive sensor power consumption down from current (20-200mW) to an average of 100-500μW → usher in batteryless wearables
- Enable fine-grained gesture & limb tracking (2-5cm)

Sense-making

 Migrate complex ML-based analytics from premises/ cloud servers to edge devices, to support real time (latency= 10-50 msecs), reduced power (100mW) execution

Multi-disciplinary "Systems" approach
Embedded systems + Wireless + Signal Processing + Applied Machine Learning

Need: Making Sensing "Cheap" & "Abundant"

2E

Two-order Reduction in Energy (2E)

Tens of thousands of sensors → battery-powered operation (periodic replacement) is infeasible

- · Campuses, factories, warehouses
- Cheap novel sensors becoming available (e.g., short-range radar), but energy is a challenge

Low-Latency Complex Sense-making (LL)

Require sense-making at the edge → Deep ML algorithms are too heavyweight

- Telepresence, augmented reality, collaborative robotics
- Hardware co-processors still consume too much power (700mW+)

HR

High-resolution user & gesture tracking (HR)

Track multiple humans & gestures at O(cm) level precision

- Touchless device-free interaction with smart objects (e.g., Google's Project Soli) requires O(10cm) level tracking
- Pure-wearable based approaches: expensive & cumbersome

DS: Distributed & Triggered Sensing

- RF+ Wearable Monitoring in Smart Spaces
 - Batteryless Wearables
 - RF+ Wearables for Gym Activity Monitoring
- Human-Robot Naturalized Interaction

DS1. Battery Free Wearable/IoT Sensors

Vision

- Utilize battery-free sensors on wearables & IoT devices to provide fine-grained tracking
- Key breakthrough: Charge devices wirelessly via WiFi "power packet" transmissions

Applications

- Activity Tracking of Workers & Moving Equipment
- Product Monitoring in Warehouses
- · Elderly Monitoring in smart homes

Challenges

- Low energy density using omnidirectional WiFi antenna (< 1μW at 1.5m)
- WiFi AP coordination to charge multiple devices

The Wearable + AP System

The Wearable

The Harvester:

- Matching Circuit
- Rectifier

The Beamforming AP

- Ping detection (nRF24L01+)
- Rx Buffer for AoA
- Tx Phase Sync for Beamforming

The WiWear Wearable: Results

1 ontonno y 20d Dm.

1 antenna x 20dBm: ~3μW

8 antenna x 20dBm: > 200μW

Long distance:

• 3 meters: 33µW

Previous study (30dBm): 100μW at 2 feet, 10μW at 10 feet

Work with users:

Room: 4.5m x 3.5m

Table: 1.1m x 1.9m

Each user at a corner

Batteryless RFID: Table-Of-Interest

- User wears batteryless RFID tags (with accelerometer)
- RFID scanner (edge device) operates in two modes
 - Regular: omnidirectional, lowpower
 - Activity: directional, high-power
- RF perturbations of objectmounted tags provides trigger (Regular -> Activity)

Accurate Batteryless Activity Tracking

	Eating	Reading	Typing
Eating	531	13	7
Reading	6	543	19
Typing	2	19	514

W8-Scope: IoT-based Exercise Monitoring

Goals:

Quantified insights on weight stack-based exercises > provide personalized digital coaching

Techniques:

 Simple weight stack sensor (accelerometer+ magnetometer) to track & understand exercises

Results:

 Longitudinal Data Collection at 2 gyms→95+% accuracy & adaptation to medium-term evolutionary behavior

Magnetic Sensor on Wt. Stack → {Weight, Type, User}

(Radar+ Wearable) Sensing of Exercise Activities

Goals:

- Fine-grained, accurate monitoring of exercise gestures of multiple users
- Help track exercise type, intensity (rep/set count), exercise correctness

Techniques:

- Sensor fusion: Multiple short-range radars plus batteryless tags
- Dynamic gestures and body movements recognition

farsens + Fence volume

Short-range radar

Batteryless RFID tags with accelerometer

Challenges:

- Multiple reflecting objects
- Proper placement and no. of sensors
- Low sensor sampling rate

Next: Batteryless "WorkStyle" Analytics

Wearable+ Infrastructure for Office Activity Sensing:

- Batteryless mic+ accel on employee badge
- Short-range Radar+ WiFi AP
- Applications: employee productivity | wellness and work interaction analytics

Takeaways

DS2: Human-Robot Interaction

Vision:

- Robots providing more natural assistance to workers
- Based on deeper understanding of worker context, using inputs from wearable & IoT devices

Key Novelties

 Augment vision-based analysis with other pervasive sensors (sound, inertial sensors, etc.)

New Opportunities

Augmental robotics: co-working by robot & human

AR+ Robot: Multi-modal Interaction

Vision-based Object Recognition

Meta-2: 2560*1440

Gesture & Pointing Tracking

Edge-Supported Multi-Modal Interaction (Collaborative)

Takeaways

• **New opportunities**: Edge-Coordinated Activation of wearable devices.

Edge devices augmenting the sensing capabilities of wearable devices

EA: Edge-Augmented Analytics

- Collaborative ML-based Inferencing among IoT Devices
 - People Counting & Tracking over Multiple Cameras
- Cognitive Edge: Matchmaking IoT Devices

EA1: Collaborative IoT & The Edge

- Collaborative Sensing
 - Adjust Inferencing Pipeline
- Dependable Systems
 - Resilience to Adversarial Attacks

Collaborative Inferencing (Impl.)

Cooperative ML@Edge: Utilize Priors

Spatiotemporal Priors

- Share Object Trajectory & Features with peer cameras (sensors)
- Optimize ML execution on frames with multiple objects (different priors)

Ongoing Results

Initial analyses on the Performance Evaluation of Tracking and Surveillance 2009 benchmark dataset

Procedure

- Spatial relationship between two overlapping views "learned" from shared objects
- Homography matrix for mapping coordinates to a common plane
- Combine detections from multiple views using Non-Maximum Suppression (consider as same bounding box if overlap ratio > 0.3)

Resilient, Collaborative Edge

- Cascade tamper-proof "state synopsis" across IoBT devices
 - E.g., each camera passes on a time-stamped, signed set of priors
- Bayesian distribution estimation of each device's reliability/ reputation
 - Prob (device j was incorrect | observations at device i)
 - Time & Space-dependent conditional probabilities

1. Object Recognition (e.g., YOLO)

3. Object Tracking (e.g., Segmentation, Feature Matching)

2. transfer $(P_1, v, \langle t_2, t_3 \rangle)$ t_1 $t \in \langle t_2, t_3 \rangle$

Compromised/Malicious Camera 1 can lead to cascaded failures

- Adapt the pipeline optimization logic
 - Incorporate device's reputation in optimization framework

Early Results

PETS Dataset (8 cameras)

Early Results (Robustness)

Rapid Drop in Reputation Score with Increasing Malicious Behavior (p)

Robust to Multiple Cameras Lying

Cooperative ML@Edge: Real-time ML State

Collaborative ML Execution

- Take advantage of multiple "correlated" observers (sensor multiplicity)
- Adapt the ML pipelines "on the fly" to take advantage of correlated intermediate states
 - Exchange intermediate ML state
- Communication ↓ Computation ↑

Statistics-driven Dynamic Optimization

- Exchange (distribution, FFT) of activation values
 → fuse ML+ signal proc.
- Change structure of downstream proc.
 - Quantization, Pruning, Factorization
- Real-time exchange and short-circuiting of processing pipeline
 - Shave off O(100msec) latency in computation→ exploit power of distributed IoBT devices

Processing time is shorter and more accurate if information is shared

Cooperative ML: Modified SSD

Calibration Stage

Compute homography transformation matrices among cameras → spatial mapping among the views

Collaborative Inference Stage

- Receive bounding box detections and associated confidence scores from each neighboring cameras
- Use respective homography transformation matrix to calculate approximate regions of interests of people and derive probability distribution mask (PDM)
- Concatenate prior masks from all neighboring cameras and feed to Collaborative SSD DNN along with the video frame from the current camera

Modified SSD: Results

Evaluated on PETS Multi-Camera Benchmark Dataset

	Inference Time	Power / 12.5 FPS per Movidius stick
SSD Baseline	80ms	1.1W
Collaborative SSD	85ms	1.1W

Inference Latency and Power usage for SSD Models in Intel Movidius

Takeaways

• **New opportunities**: Edge-Coordinated Activation of wearable devices.

Edge devices augmenting the sensing capabilities of wearable devices

 ML Coordination between a set of distributed edge (IoT) & wearable devices

EA2: Vision: Cognitive Edge for IoT

Edge as a (3) Training & Model Matchmaker/ broker for Compression IoT (mobile) devices 00 ML-as-as-Service Monitor for Resiliency (1) "Scene" summary RBM 2 feature statistics RBM 1 (4) Priors & Collaborative Output RBM 2 (2) Establish RBM 1 $ightharpoonup v^{(i)}$ **Collaborative M**

Challenges for The Cognitive Edge

Find Useful Spatiotemporal Correlations among Devices

- Minimizing Communication Overhead
- Handling Disparate Sensing Modalities
- Handle Redundancy in Dense IoT Deployments

Enable trusted interactions among Devices

- Find Correlations from non-sensitive Metadata/Features
- Identify and isolate malicious/non-conformant devices

Handle Dynamic Workloads

- Mobile devices that temporarily reside in specific areas
- Changes in spatiotemporal human/event patterns

SMU "Cognitive IoT" Testbed

- 30 Cameras deployed on SMU's campus (May 2019)
 - Extend to additional audio+ other sensors
- Centrally-controlled programmable deployment of adaptive ML algorithm
 - Ability to deploy experiments & analytics remotely

International

IoT Testbeds

Takeaways

 New opportunities: Edge-Coordinated Activation of wearable devices.

Edge devices augmenting the sensing capabilities of wearable devices

 ML Coordination between a set of distributed edge (IoT) & wearable devices

 Edge as a Dynamic Matchmaker between Dumb IoT Devices

Conclusion

- Need for greater interaction between wearable devices & edge computing/network entities
 - Latency is key → ensure that the 'edge' is both nearby and has high compute capability
 - Many VR/AR applications will need such 'edge augmentation' for both computation and sensing
- Need for inferencing orchestration among edge devices
 - Significant opportunities for scaling up ML-based applications
 - Need for standardized models for distributing computational state

(E) archanm@smu.edu.sg
(U) https://sites.google.com/view/archan-misra