MA 2631 Conference 6

October 7, 2021

- 1. In a small town, there are 50 births a year. Assume that the probability that a newborn is a girl is 50%. How likely is it that in a given year, there are at least 25 and at most 27 girls born. Calculate this probability
 - a) exactly.
 - b) by an approximation with the normal distribution.
- 2. Consider a biased coin that shows heads in $\frac{2}{3}$ of all cases and tails only in $\frac{1}{3}$ of all cases. The coin is flipped consecutively (and independently) 200 times.
 - a) What is the probability that tails shows up the first time at the 10th flip?
 - b) Calculate the probability *heads* shows up more than 150 times (using a suitable approximation).
- 3. Assume that the joint probability mass distribution $p_{X,Y}$ of the random variable X and Y is given by

$$p_{X,Y}(0,0) = \frac{1}{3}$$
 $p_{X,Y}(0,1) = \frac{1}{4};$
 $p_{X,Y}(1,0) = \frac{1}{4}$ $p_{X,Y}(1,1) = \frac{1}{6}.$

- a) Calculate the marginal probability mass distributions p_X and p_Y .
- b) What is the probability mass distribution of the random variable $Z = X^2 + Y$?
- 4. Assume that X and Y are jointly distributed random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} cye^{-x} & \text{if } 0 \le x < \infty, \ 0 \le y \le 1; \\ 0 & \text{else.} \end{cases}$$

for some $c \in \mathbb{R}$.

- a) Calculate c.
- b) Calculate the marginal probability density functions f_X and f_Y .
- c) What is the probability $P[3X + Y^2 > 4]$?