Le but de ce problème est d'établir le résultat non trivial selon lequel : si une fonction f possède sur \mathbf{R} un développement en série trigonométrique, celui-ci est unique (et ce, indépendamment de toute hypothèse de régularité sur f!).

Ce théorème est dû à Cantor, et c'est en cherchant à en affiner les hypothèses que celui-ci a été amené à créer la théorie des ensembles.

Les trois lemmes que nous établirons sont parfaitement autonomes, ont un intérêt en soi, et utilisent des raisonnements de nature tout à fait différente.

Lemme 1 : Une fonction f, continue de \mathbf{R} dans \mathbf{C} , possédant en tout point de \mathbf{R} une pseudo-dérivée seconde nulle, est affine sur \mathbf{R} .

Définissons avant tout la pseudo-dérivée seconde d'une fonction f définie au voisinage d'un réel x_0 : c'est la limite, si elle existe, de $\frac{f(x_0+h)+f(x_0-h)-2f(x_0)}{h^2}$ quand h tend vers zéro. Cette limite est notée $f^{[2]}(x_0)$.

On vérifierait sans aucune difficulté que l'ensemble des fonctions possédant en x_0 une pseudo-dérivée seconde est un espace vectoriel, et que l'application $f \mapsto f^{[2]}(x_0)$ est linéaire.

- 1. Soit f une fonction de classe \mathbb{C}^2 sur \mathbb{R} . Prouver que f possède en tout point de \mathbb{R} une pseudo-dérivée seconde, et la calculer. Examiner la réciproque.
- **2.** Que peut-on dire de la pseudo-dérivée seconde d'une fonction numérique f en un point x_0 réalisant un maximum local de f?
- 3. Prouver que pour établir le lemme, il suffit de le prouver pour les fonctions numériques.
- **4.** Soit donc f une fonction numérique continue sur \mathbf{R} , possédant en tout point de \mathbf{R} une pseudo-dérivée seconde nulle. Soient a et b deux réels vérifiant a < b, et ε un réel strictement positif.

On définit une fonction
$$g$$
 sur $[a,b]$ en posant : $g(x) = f(x) - \frac{f(b) - f(a)}{b-a}(x-a) + \varepsilon \frac{(x-a)(x-b)}{2}$.

- a. Prouver que g possède en tout point de]a,b[une pseudo-dérivée seconde, et la calculer.
- **b.** En déduire que pour tout x de [a,b], on a $g(x) \le g(a)$.
- **c.** Faire un travail analogue avec une autre fonction auxiliaire ressemblant beaucoup à g, et en déduire que f est affine sur [a,b].
 - **d.** Prouver que f est affine sur \mathbf{R} .

Lemme 2 : Soient (a_n) et (b_n) deux suites de complexes telles que, pour tout réel x, la suite $(a_n\cos(nx) + b_n\sin(nx))$ tende vers zéro. Alors les deux suites (a_n) et (b_n) tendent vers zéro.

Soient donc (a_n) et (b_n) deux suites de complexes satisfaisant aux hypothèses du lemme.

- 1. Prouver que la suite (a_n) tend vers zéro, et que $(b_n\sin(nx))$ tend aussi vers zéro pour tout x.
- **2.** Supposons que la suite (b_n) ne tend pas vers zéro.

- **a.** Prouver l'existence d'une suite strictement croissante d'entiers (φ_n) telle que pour tout x de \mathbf{R} , la suite $(\sin(\varphi_n x))$ tende vers zéro.
- **b.** Prouver alors l'existence d'une suite strictement croissante d'entiers (α_n) telle que pour tout x de \mathbf{R} , la suite $(\sin(\alpha_n x))$ tende vers zéro, et vérifiant pour tout n de \mathbf{N} : $\alpha_{n+1} \ge 5\alpha_n$.
 - ${f c.}$ Prouver qu'il est possible de choisir des entiers k_n pour que les segments J_n suivants soient emboîtés :

$$J_n = \left\lceil \frac{\pi/4 + 2k_n\pi}{\alpha_n}, \frac{3\pi/4 + 2k_n\pi}{\alpha_n} \right\rceil$$

(indication : on écrira les inégalités qu'il faut réaliser pour que les J_n soient emboîtés, et on réfléchira à la question suivante : que doit-on supposer sur deux réels u et v pour être certain qu'il y a un entier entre les deux ?)

- d. Conclure à une impossibilité.
- **e.** Quelle différence profonde existant entre les suites $(\cos nx)$ et $(\sin nx)$ explique que le résultat que l'on désirait prouver soit trivial pour la suite (a_n) et nettement plus délicat pour la suite (b_n) ?

Lemme 3 : Soit φ la fonction continue sur \mathbf{R} définie par $\varphi(x) = \frac{\sin^2 x}{x^2}$ pour $x \neq 0$ et $\varphi(0) = 1$. Alors pour toute série de complexes convergente $\sum a_n$, on a $\lim_{h\to 0} \sum_{n=0}^{\infty} a_n \varphi(nh) = \sum_{n=0}^{\infty} a_n$.

On posera, pour h dans \mathbf{R}^* , $S(h) = \sum_{n=0}^{\infty} a_n \varphi(nh) = \sum_{n=0}^{\infty} a_n \frac{\sin^2 nh}{n^2h^2}$. Il est à peu près clair que la série définissant S converge toujours, et pour des raisons de parité, nous nous limiterons à son étude sur \mathbf{R}^{+*} .

- 1. Prouver que la fonction dérivée φ' est sommable sur \mathbf{R}^{+*} .
- 2. On pose, pour n dans \mathbf{N}^* , $R_n = \sum_{k=n+1}^{\infty} a_k$. Grâce à une transformation d'Abel (?), prouver, pour tout réel ε strictement positif, l'existence d'un entier N tel que :

$$\forall p \geq N, \forall q \geq N, \forall h \in \mathbf{R}^{+*} \left| \sum_{n=p+1}^{q} a_n \varphi(nh) \right| \leq \varepsilon \left(2 + \int_{0}^{+\infty} |\varphi'(t)| dt \right).$$

3. Prouver le lemme.

Théorème de Cantor : Soit f une fonction possédant sur \mathbf{R} un développement en série trigonométrique. Alors celuici est unique.

On posera pour tout réel x, $f(x) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$. Définissons alors une fonction F en posant :

$$F(x) = \sum_{n=1}^{\infty} \left[\frac{a_n}{n^2} \cos(nx) + \frac{b_n}{n^2} \sin(nx) \right].$$

1. Prouver que F est définie, continue sur **R**, et calculer ses coefficients de Fourier.

- 2. Prouver que F possède en tout point une pseudo-dérivée seconde, et la calculer.
- 3. On suppose que f(x) = 0 pour tout réel x. Il s'agit de prouver que tous les coefficients a_n et b_n sont nuls. Le théorème de Cantor découlera alors immédiatement de ce résultat (en écrivant deux développements en série trigonométrique égaux, et en envisageant leur différence...).
 - **a.** Prouver l'existence de deux réels b et c tels que : $\forall x \in \mathbf{R}, \ F(x) = a_0 \frac{x^2}{2} + bx + c$.
 - **b.** Prouver que $a_0 = b = c = 0$, et conclure.

Fin du problème.