The Relational Data Model

Introduction

Model

Concepts
Properties
Keys
Integrity
Constraints

Entity Relationship

Entity Relationship

Implementing Relationships Drawing FR

Tutorial Exercises

Conclusion Suggested

The Relational Data Model

Natalia Criado Email: natalia.criado@kcl.ac.uk

Session Objectives

The Relational Data Model

Introduction

Relational Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram Implementin Relationships

Tutorial Exercises

Conclusion
Suggested

In this session, you will learn:

- Terminology of the relational model
- How tables are used to represent data
- Properties of database relations
- Meaning of entity integrity and referential integrity.
- How to use EntityRelationship (ER) modelling in database design.
- Basic concepts associated with ER model.
- Diagrammatic technique for displaying ER model
- How to build an ER model from a requirements specification.

Review

The Relational Data Model

Introduction

Relational Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested

The DBMS acts as an interface between what two components of an enterprise-class database system?

- A Database application and the database
- B Data and the database
- C The user and the database application
- D Database application and SQL

Review

The Relational Data Model

Introduction

Relational Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested

An application where only one user accesses the database at a given time is an example of a:

- A single-user database application
- B multiuser database application
- C e-commerce database application
- D data mining database application

Introduction

The Relational Data Model

Introduction

Relational Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram Implementing

Implementin Relationships Drawing ER

Tutorial Exercise

Conclusion
Suggested
Readings

■ The relational model was introduced by E. F. Codd¹

 Relational databases have become a predominant choice for the storage of information in new databases used for financial records, manufacturing and logistical information, personnel data,

¹IBM's San Jose Research Laboratory

Introduction

The Relational Data Model

Introduction

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Exercises

Conclusion Suggested

- Relational model
 - View data logically rather than physically
- Logical view of relational database is based on relation
 - Relation thought of as a table
- Table: two-dimensional structure composed of rows and columns
 - Contains group of related entities (entity set)

able name: STUDENT Database name: Ch03_TinyColleg					nyCollege						
STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS	STU_GPA	STU_TRANSFER	DEPT_CODE	STU_PHONE	PROF_NUM
321452	Bowser	William	С	12-Feb-1975	42	So	2.84	No	BIOL	2134	205
324257	Smithson	Anne	K	15-Nov-1981	81	Jr	3.27	Yes	CIS	2256	222
324258	Brewer	Juliette		23-Aug-1969	36	So	2.26	Yes	ACCT	2256	228
324269	Oblonski	Walter	Н	16-Sep-1976	66	Jr	3.09	No	CIS	2114	222
324273	Smith	John	D	30-Dec-1958	102	Sr	2.11	Yes	ENGL	2231	199
324274	Katinga.	Raphael	P	21-Oct-1979	114	Sr	3.15	No	ACCT	2267	228
324291	Robertson	Gerald	T	08-Apr-1973	120	Sr	3.87	No	EDU	2267	311
324299	Smith	John	В	30-Nov-1986	15	Fr	2.92	No	ACCT	2315	230

Characteristics of a Relational Table

The Relational Data Model

Introductio

Relational Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementin Relationship Drawing ER

Tutorial

Conclusion

1	A table is perceived as a two-dimensional structure composed of rows and columns.
2	Each table row (tuple) represents a single entity occurrence within the entity set.
3	Each table column represents an attribute, and each column has a distinct name.
4	Each intersection of a row and column represents a single data value.
5	All values in a column must conform to the same data format.
6	Each column has a specific range of values known as the attribute domain.
7	The order of the rows and columns is immaterial to the DBMS.
8	Each table must have an attribute or combination of attributes that uniquely identifies each row.

The Relational Data Model

Introductio

Model

Concepts Propertie Keys

Keys Integrity Constraints Entity Relationship Model

Entity Relationship Diagram Implementin Relationship

Tutorial Exercises

Conclusion
Suggested
Readings

■ Relation: Is a table with columns and rows

■ Tuple: Is a row of the relation

Cardinality: Is the number of tuples in a relation

Attribute: Is a named column of a relation

 Domain: Is the set of allowable values for one or more attributes

Degree: Is the number of attributes in a relation

Relational Database

Is a collection of normalized relations with distinct relation names

The Relational Data Model

Introductio

Model

Concepts Propertie

Keys Integrity Constraints

Entity Relationship Model

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested
Readings

The Relational Data Model

Introductio

Model

Concepts

Keys Integrity Constraints Entity Relationship

Entity Relationship

Implementin Relationships Drawing ER

Tutorial Exercises

Conclusion

Attribute	Domain Name	Meaning	Domain Definition
branchNo street city postcode sex DOB	BranchNumbers StreetNames CityNames Postcodes Sex DatesOfBirth	The set of all possible branch numbers The set of all street names in Britain The set of all city names in Britain The set of all postcodes in Britain The sex of a person Possible values of staff birth dates Possible values of staff salaries	character: size 4, range B001–B999 character: size 25 character: size 15 character: size 8 character: size 1, value M or F date, range from 1-Jan-20, format dd-mmm-yy monetary: 7 digits, range 6000.00–40000.00

The Relational Data Model

Concepts

Formal terms	Alternative 1	Alternative 2
Relation	Table	File
Tuple	Row	Record
Attribute	Column	Field

Database Relations

The Relational Data Model

Introduction

Model

Concepts

Keys
Integrity
Constraints
Entity

Entity Relationship Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial

Conclusion

Relation schema

Named relation defined by a set of attribute and domain name pairs

Relational database schema

Set of relation schemas, each with a distinct name

Properties

The Relational Data Model

Introductio

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram Implementing

Models

Tutorial

Conclusion

- Relation name is distinct from all other relation names in relational schema
- Each cell of relation contains exactly one atomic (single) value
- Each attribute has a distinct name
- Values of an attribute are all from the same domain
- Each tuple is distinct; there are no duplicate tuples
- Order of attributes has no significance
- Order of tuples has no significance, theoretically

Keys

The Relational Data Model

Introduction

Relational Model

Propertie

Keys Integrity

Constraints Entity Relationship

Entity Relationship

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested
Readings

Primary Key

An attribute, or set of attributes, selected to identify tuples uniquely within relation

Foreign Key

Attribute, or set of attributes, within one relation that matches primary key of some (possibly same) relation

K	courseld	lastName	firstName	studentld fi	
	C002		Jim	L0002345	
Foreign Keys	A004			L0001254	
roreign keys	C002			L0002349	
	S042	McCloud	Simon	L0001198	
nship	Relatio				
courseName	Relatio	s	Primary Keys		
		s	Primary Keys		
courseName	courseld	s	Primary Keys		
courseName Accounts	courseld A004	5>	Primary Keys		

Example

The Relational Data Model

Introduction

Relational Model

Properties

Keys Integrity Constraints

Entity Relationship Model

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested

Table name: PRODUCT	Database name: Ch03_SaleCo
Primary key: PROD_CODE	
Foreign key: VEND_CODE	

PROD_CODE	PROD_DESCRIPT	PROD_PRICE	PROD_ON_HAND	VEND_CODE
001278-AB	Claw hammer	12.95	23	232
123-21UUY	Houselite chain saw, 16-in. bar	189.99	4	235
QER-34256	Sledge hammer, 16-lb. head	18.63	6	231
SRE-657UG	Rat-tail file	2.99	15	232
ZZX/3245Q	Steel tape, 12-ft. length	6.79	8	235

link

Table name: VENDOR Primary key: VEND_CODE Foreign key: none

VEND_CODE	VEND_CONTACT	VEND_AREACODE	VEND_PHONE
230	Shelly K. Smithson	608	555-1234
231	James Johnson	615	123-4536
232	Annelise Crystall	608	224-2134
233	Candice Wallace	904	342-6567
234	Arthur Jones	615	123-3324
235	Henry Ortozo	615	899-3425

Integrity Constraints

The Relational Data Model

Introductio

Relationa Model

Properties Keys Integrity

Constraints Entity Relationship

Entity Relationship

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested

Integrity constraints are used to ensure accuracy and consistency of data in a relational database:

- Entity Integrity
- Referential Integrity
- General Constraints

Entity Integrity

The Relational Data Model

Introduction

Relationa Model

Concepts Properties

Keys

Integrity Constraints Entity

Relationship Model

Entity Relationship

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion

ENTITY INTEGRITY	DESCRIPTION
Requirement	All primary key entries are unique, and no part of a primary key may be null.
Purpose	Each row will have a unique identity, and foreign key values can properly reference primary key values.
Example	No invoice can have a duplicate number, nor can it be null. In short, all invoices are uniquely identified by their invoice number.

TEAM

teamID	team_name
T1	Team Awesome
	Team Super
T3	Mega Super Awesome
T4	Team Ultra
T5	Super Ultra Mega Team
T5	Best Team in the World

Referential Integrity

The Relational Data Model

Introduction

Relationa Model

Propertie Keys

Integrity Constraints Entity

Entity Relationship Model

Entity Relationship Diagram

Implementin Relationship Drawing ER Models

Tutorial Exercises

Conclusion
Suggested

REFERENTIAL INTEGRITY	DESCRIPTION
Requirement	A foreign key may have either a null entry, as long as it is not a part of its table's primary key, or an entry that matches the primary key value in a table to which it is related. (Every non-null foreign key value <i>must</i> reference an existing primary key value.)
Purpose	It is possible for an attribute <i>not</i> to have a corresponding value, but it will be impossible to have an invalid entry. The enforcement of the referential integrity rule makes it impossible to delete a row in one table whose primary key has mandatory matching foreign key values in another table.
Example	A customer might not yet have an assigned sales representative (number), but it will be impossible to have an invalid sales representative (number).

TEAM

teamID	team_name
T1	Team Awesome
T2	Team Super
T3	Mega Super Awesome
T4	Team Ultra
T5	Super Ultra Mega Team
T6	Best Team in the World

PLAYER

FLATER				
playerID	first_name	last_name	teamID	
P1	Billy	McShower	T1	
P2	Rosa	Martinez	T1	
P3	Jack	Chan		
P4	Tortillia	Boy	T2	
P5	Gary	Nazcar	T2	
P6	Pony	Montana		
P7	Timmy	McShower		
P8	Arthur	Fonz	T8	
P9	Maria	Fernandez	T8	

General Constraints

The Relational Data Model

Integrity

Constraints

Additional rules specified by users or database administrators that define or constrain some aspect of the enterprise

Exercise

The Relational Data Model

Integrity Constraints

Entity

The following tables form part of a database held in a relational DBMS:

Hotel (Hotel_No, Name, Address) Room (Room_No, Hotel_No, Type, Price) Booking (Hotel_No, Guest_No, Date_From, Date_To, Room_No) Guest (Guest_No, Name, Address)

where Hotel contains hotel details and Hotel_No is the primary key; Room contains room details for each hotel and (Hotel_No, Room_No) forms the primary key; booking contains details of the bookings and the primary key comprises (Hotel_No, Guest_No and Date_From); and Guest contains guest details and Guest_No is the primary key.

- 1 Identify the foreign keys in this schema
- 2 Explain how the entity and referential integrity rules apply to these relations

Integrity Constraints

The Relational Data Model

Introductio

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested
Readings

- Many RDBMs enforce integrity rules automatically:
 - MySQL 5.1 implements entity integrity but not referential integrity (this does not mean that you don't have to define foreign keys)
 - MySQL 5.7 implements both entity integrity and referential integrity
- Safer to ensure that application design conforms to entity and referential integrity rules

Entity Relationship Model

The Relational Data Model

Introductio

Relationa Model

Properties
Keys
Integrity
Constraints
Entity

Entity Relationship Model

Entity

Relationship
Diagram
Implementing
Relationships
Drawing ER
Models

Tutorial Exercises

Conclusion
Suggested
Readings

- Entity Relationship Model represents conceptual database as viewed by end user
- ERDs depict databases main components:
 - Entity: anything about which data are to be collected and stored
 - Eg: STUDENT, COURSE are entities
 - Attribute: a characteristic of an entities
 - Eg: For a STUDENT entity name, surname, DOB are attributes
 - Relationship: describes an association among entities
 - Eg: STUDENT takes COURSE

Entity

The Relational Data Model

Introductio

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity

Entity Relationship Model

Entity Relationship Diagram Implementing Relationships

Tutorial Exercises

Conclusion Suggested

- Entities represent objects or things of interest:
 - Physical things like students, lecturers, employees, products
 - More abstract things like modules, orders, courses, projects
- Entities have
 - A general type or class, such as Lecturer or Module
 - Instances of that particular type, such as Natalia is an instance of Lecturer
 - Attributes (such as name, email address)

Examples of Entities

The Relational Data Model

Introduction

Model

Concept

Propert

Kevs

Integrity

Constrair

Entity Relationship

Relationsh Model

Relationship

Implementing Relationships Drawing ER

Tutorial

Conclusion

Suggested Readings

Physical existence			
Staff	Part		
Property	Supplier		
Customer	Product		
Conceptual exis	Conceptual existence		
Viewing	Sale		
Inspection	Work experience		

Attribute

The Relational Data Model

Introductio

Relationa Model

Properties Keys Integrity Constrain

Constraints Entity Relationship Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion

- Attribute
 - Property of an entity
- Attribute Domain
 - Set of allowable values for one or more attributes.

Relationships

The Relational Data Model

Introductio

Relational Model

Properties Keys Integrity

Entity Relationship Model

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested

- Relationships represent associations among entity types
- Main types:
 - One-to-many (1:M) relationship
 - Eg: STUDENT submits an ASSESMENT
 - Many-to-many (M:N or M:M) relationship
 - Eg: STUDENT takes COURSE
 - One-to-one (1:1) relationship
 - Eg: STUDENT manages KCL_ACCOUNT

Entity Relationship Diagram

The Relational Data Model

Introduction

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints

Entity Relationship Model

Entity Relationship Diagram

Implementin Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested
Readings

 Uses graphic representations represent the Entity Relationship Model

No one set of symbols dominates industry use, and none is necessarily better than another

Crow's Foot Notation: Entities

The Relational Data Model

Introduction

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion Suggested

- Entity is usually drawn as a box
- The box is labelled with the name of the class of objects represented by that entity
- Attributes are represented inside the box

Crow's Foot Notation: Attributes

The Relational Data Model

Introduction

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested

- Attributes have a name and a data type
- Different symbols are used to represent the different types of attributes

Crow's Foot Notation: Attributes I

The Relational Data Model

Introduction

Relationa

Model

Propertie

Kevs

Integrity

Entity

Relationshi

Entity Relationship Diagram

Relationships
Drawing ER

Tutorial

Exercises

Suggested Readings

Crow's Foot Notation: Attributes II

The Relational Data Model

Entity Relationship Diagram

Crow's Foot Notation: Attributes III

The Relational Data Model

Entity Relationship Diagram

Crow's Foot Notation: Attributes IV

The Relational Data Model

Introductio

Relationa

Properties Keys Integrity

Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial

Conclusion Suggested

COURSE				
PK		course_code	int	
		course_name	string	
		course_description	string	
	FK	department_code	int	

- INT
- FLOAT
- STRING
- DATE
- TIME
- DATETIME

Crow's Foot Notation: Attributes V

The Relational Data Model

MySQL uses different symbols:

Introductio

Relationa

Concepts

Properties Keys

Constraints Entity

Entity Relationship Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested
Readings

Crow's Foot Notation: Relationships

The Relational Data Model

Introductio

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion Suggested

- Relationships are represented as links between two entities
- The name may be given on top of the link (more than one relationships between entities)
- The ends of the link show cardinality

Crow's Foot Notation: Relationships II

The Relational Data Model

Introduction

Relational Model

Properties
Keys

Constraints
Entity

Relationship Model

Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

> Conclusion Suggested

from Zero to Many from One to Many from One to One i.e., one and only one from Zero to One

Understanding Relationships in ERD

The Relational Data Model

Introduction

Relational Model

Concepts Properties Keys

Constraints
Entity
Relationshir

Entity Relationship Diagram

> Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested

How many aircrafts are related to one type? How many types are related to one aircraft?

Understanding Relationships in ERD

The Relational Data Model

Introduction

Relational Model

Concepts Properties Keys

Constraints
Entity
Relationship

Entity Relationship Diagram

> Implementing Relationships Drawing ER

Tutorial

Conclusion
Suggested

How many aircrafts are related to one type? 0 or more How many types are related to one aircraft? One and just one

The Relational Data Model

Introductio

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested
Readings

Replace X with the appropriate cardinality (0 to 1, 0 to many, 1 to 1, 1 to many):

- A professor can teach X classes.
- Each class is taught by X professors.
- A professor can advise X students.
- Each student is advised X professors.

The Relational Data Model

Introductio

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Exercises

Conclusion

A customer can make many payments, but each payment is made by only one customer

Implementing Relationships

The Relational Data Model

Introduction

Relational Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Exercises

Conclusio

- 1:M relationship Relational modelling ideal
 Should be the norm in any relational database design
- 1:1 relationship Should be rare in any relational database design
- M:N relationships Cannot be implemented as such in the relational model

 M:N relationships can be changed into 1:M relationships

The 1:M Relationship

The Relational Data Model

Introductio

Relational Model

Properties
Keys
Integrity
Constraints
Entity

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion

- It is implemented by a FK
- Some software may draw the FK when you create the relationship. If not you should add it to your model

The Relational Data Model

Introduction

Relational Model

Properties Keys Integrity Constraints Entity Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested

A customer can make many payments, but each payment is made by only one customer

The 1:1 Relationship

The Relational Data Model

Introduction

Relational Model

Properties Keys Integrity Constraints Entity Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion
Suggested

- Sometimes means that entity components were not defined properly
- If one side optional, implemented as a FK in the optional side
- If not, implemented as a FK on any side

The N:M Relationship

The Relational Data Model

Introductio

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial

Exercises Conclusio

- Implemented by breaking it up to produce a set of 1:M relationships
- Avoid problems inherent to M:N relationship by creating a composite entity
- Includes as foreign keys the primary keys of tables to be linked

Composite entities

The Relational Data Model

Introductio

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion

- Also known as bridge entities
- Used to implement M:N relationships
- Composed of primary keys of each of the entities to be connected
- May also contain additional attributes that play no role in connective process

Converting the M:N Relationship into two 1:N relationships

The Relational Data Model

Entity Relationship Diagram

Implementing Relationships

Relationship Strength

The Relational Data Model

Introductio

Relationa Model

Properties
Keys
Integrity
Constraints
Entity
Relationship

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial Exercises

Conclusion

- Weak (non-identifying) relationships (dashed line)
 - Exists if PK of related entity does not contain PK component of parent entity
- Strong (identifying) relationships
 - Exists when PK of related entity contains PK component of parent entity

Relationship Strength

The Relational Data Model

Entity Relationship Diagram

Implementing Relationships

Drawing ER Models

The Relational Data Model

Introduction

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Relationship Drawing ER Models

Tutorial Exercises

Conclusion
Suggested

Database design is an iterative process

- Identify main entities and relationships from business rules
- 2 Develop initial ERD
- 3 Identify attributes and primary keys that adequately describe entities
- 4 Implement relationships (Add FK, bridge entities, etc)
- Identify weak and strong relationships
- 6 Revise and review ERD

The Relational Data Model

Introductio

Relational Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram Implementing Relationships

Drawing ER Models

Tutorial Exercises

Conclusion Suggested KCL has asked you to design a database to record details of lecturers who deliver modules and the students who attend their modules. For each module, KCL wants to know the code, name, semester and year. The id, name, and speciality of each lecturer must be recorded. For each student, record details of his id, name and date of birth

The Relational Data Model

Introduction

Relation Model

Properties Keys Integrity

Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Implementing Relationships Drawing ER Models

Tutorial Exercises

Conclusion
Suggested
Readings

Specify all the referential and integrity constraints that hold on this schema

The Relational Data Model

Introduction

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram Implementing Relationships Drawing ER

Tutorial Exercises Draw ER diagrams for the following Business Rules, showing Entities, Relationships and Cardinality.

- A department has many employees. An employee works in only one department.
- A mother may have many children. A child has one mother.
- An author can write many books. A book may be written by many authors.
- A player plays for only one team. A team consists of many players.
- A manager manages at most one department. A department is managed by at most one manager.

The Relational Data Model

Tutorial Exercises

Customers have a number and a name. Tapes have a name, a code and a price. A Customer may rent many tapes. A tape can be rented by many customers

The Relational Data Model

Introduction

Relational Model Concepts

Properties Keys Integrity Constraints Entity Relationship Model

Entity
Relationship
Diagram
Implementing
Relationships
Drawing ER
Models

Tutorial Exercises A company has a number of employees that can be identified by Employee_ID. Each employee has a name, address and date of birth. The company also has several projects, which can be identified by Project number. The project details given to the company are project name and project start date. Each employee may be assigned to one or more project, or may not be assigned to a project. A project must have at least one more employee assigned, and may have any number of employees assigned

Suggested Readings

Conclusion

The Relational Data Model

Introductio

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial

Conclusion

In this session we have covered:

- The relational model
 - Concepts, properties, keys and integrity constraints
- The Entity Relationship Model
 - Entity Relationship Diagram (Crow's foot notation)

Lab Session

The Relational Data Model

Introductio

Relation Model

Concepts
Properties
Keys
Integrity
Constraints

Integrity Constraints Entity Relationship Model

Entity Relationship

Implementing Relationships Drawing ER

Tutorial

Conclusion

Suggested

This week lab session is about getting started with MySQL

Suggested Readings

The Relational Data Model

Introduction

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram Implementing

Tutorial

Conclusion
Suggested
Readings

- Chapters 3 and 7 of Fundamentals of Database Systems.
 Elmasri & Navathe.
- Chapters 3 and 11 of Database systems: a practical approach to design, implementation, and management. Connolly, Thomas M; Begg, Carolyn

Drawing Tools

The Relational Data Model

Introduction

Relationa Model

Concepts
Properties
Keys
Integrity
Constraints
Entity
Relationship
Model

Entity Relationship Diagram

Implementing Relationships Drawing ER

Tutorial

Conclusion Suggested

- Microsoft Visio, OneNote, Powerpoint, Illustrator
- You can also use web apps such as http://draw.io to help you sketch out your diagrams.

The Relational Data Model

Introduction

Relation Model

> Concepts Properties

Keys Integrity

Constraints Entity Relationship

Entity Relationship

Implementing Relationships Drawing ER

Tutorial

Exercises

Suggested

Ada Lovelace Day 2016

October 5 2016

14:00 - Anatomy Lecture Theatre 16:00 - Tutus

Celebrating Women in Science

This event is open to all staff and students. Book your place at adalovelaceday2016.eventbrite.co.uk

Faculty of Natural & Mathematical Sciences