Irréductibilité de X_t

Rado Rakotonarivo, Julien David

24 janvier 2018

Définition 0.0.1. On définit par $x \triangle y$ la **différence symétrique** entre x et y telle que

$$x \triangle y = \{ u \in x : u \notin y \ et \ v \in y : v \notin x \} \tag{1}$$

On peut voir la différence symétrique de manière ensembliste comme étant $x \triangle y = x \cup y \setminus x \cap y$ cependant quelques précisions sont à mentionner :

- $x \cup y$ ne constitue pas forcément une enveloppe convexe.
- $--|x \cup y| = |x| + |y| \text{ si } x \cap y = \emptyset.$
- $x \triangle y$ est maximal quand x et y n'ont aucun sommet en commun.

Lemme 0.0.1. Le cardinal de $x \triangle y$ constitue une borne inférieure de la distance entre x et y dans le graphe de X_t , on notera cette distance $\delta(x,y)$ et on a:

$$\delta(x,y) \ge |x \triangle y| \tag{2}$$

Démonstration. Considérons x et $y \in \Omega$. Comme $x \triangle y$ constitue l'ensemble des sommets sur lesquels x diffère de y et réciproquement, passer de x en y avec un nombre minimal d'étapes consiste à choisir un chemin qui fera en sorte de réduire $x \triangle y$ d'un sommet à chaque étape. Par conséquent, il faut au moins $|x \triangle y|$ étapes pour passer de x en y.

Remarque 0.0.1. Pour passer d'un état x à un état y de Ω , l'idéal serait de directement ajouter des sommets de y et de supprimer ceux de x, mais certaines configurations ne le permettent pas. Il faut alors trouver des états transitiores entre x et y.

Lemme 0.0.2. Soit S un d-simplexe. Le nombre d'arêtes ν_S de S est donné par la relation suivante :

$$\nu_{\mathcal{S}} = \frac{d(d+1)}{2} \tag{3}$$

Démonstration. La preuve est immédiate vu que $\nu_{\mathcal{S}}$ est exactement le nombre de manières de relier deux à deux les d+1 sommets de \mathcal{S} , i.e. $\nu_{\mathcal{S}} = \binom{d+1}{2} = \frac{d(d+1)}{2}$.

Lemme 0.0.3. Pour tout simplexe $x \in \Omega$ et pour tout $y \in \Omega$. Si on ne peut pas réduire $|x \triangle y|$ en ajoutant un point dans $y \setminus x$, alors il existe un simplexe z, un état transitoire entre x et y, avec $\delta(x,z) = 2$ et $|x \triangle y| = |z \triangle y|$, tel qu'on peut ajouter un point dans $y \setminus z$ dans le chemin de z vers y.

Démonstration. Considérons un simplexe x et un état y de Ω et \mathcal{H} l'hypercube $[0,k]^d$.

Les seuls cas où l'on ne puisse ajouter aucun point de $y \setminus x$ sont les cas où les éléménts de $y \setminus y$ sont tous des points intérieurs à Conv(x) et/ou des points sur les droites qui supportent les arêtes de x. Pour exemple voir le point (1) de la figure 1. Comme on considère le cas de figure où x est un simplexe, ces droites sont au nombre de $\frac{d(d+1)}{2}$ d'après le lemme 0.0.2.

Puisque x est un simplexe, la seule transition sortante de x ne peut résulter que d'un ajout de point. L'idée est donc de prouver qu'on peut toujours ajouter un point extérieur à $x \triangle y$ et d'enlever ensuite un élément de $x \setminus y$. On se retrouverait alors dans un état z qui est un simplexe avec $\delta(x,z)=2$.

Deux choses sont à prouver :

- 1. On peut toujours trouver un point u extérieur à $x \setminus y$
- 2. On peut toujours ajouter un point de $z \setminus y$ lors de la transition de z vers y

Claim 1 Comme on se trouve dans le cas où l'on ne peut ajouter aucun points de $y \setminus x$, l'idée est de montrer que le nombre de points de \mathcal{H} auquel on a soustrait les points que l'on ne peut ajouter n'est pas nul. En particulier un point nous u suffit.

Prenons u parmi les sommets de l'hypercube. \mathcal{H} a 2^d sommets, au plus (d+1) sommets de \mathcal{H} sont des sommets de x et enfin, au plus 2 sommets de \mathcal{H} peuvent se trouver sur les ν_x droites supportant les arêtes de x. On pose, n_a le nombre de sommets de \mathcal{H} restants. On a :

$$n_a \ge 2^d - (d+1) - d(d+1)$$
 (4)

On vérifie que (4) est positif non nul dès que $d \ge 6$. Pour d < 6, on considère les quantités suivantes :

— $n_h = (k+1)^d$, le nombre de points entiers dans $[0,k]^d$

— n_s le nombre de points entiers dans un simplexe, où

$$n_s \le \begin{cases} \frac{(k-1)(k-2)}{2} & \text{si } d=2\\ \frac{(k+2)(k+1)^{d-1}}{2} & \text{si } d \ge 3 \end{cases}$$

— n_c le nombre de points entiers sur les droites supportant les arêtes du simplexe, avec :

$$n_c = (k+1) + (d-1)k + \binom{d}{2}(k-1)$$

Le nombre de points «non-interdits» n_r est alors donné par la relation $n_r \ge n_h - n_s - n_c$.

Lemme 0.0.4. Pour tout x et $y \in \Omega$, $\exists z \in \Omega$, tel que $|x \triangle y| > |z \triangle y|$, pour lequel on a $\delta(x, z) \leq 3$.

Démonstration. Considérons x et $y \in \Omega$, tel que P(x,y) = 0. Passer de x en y consiste en à trouver un nombre fini d'opérations d'ajouts et de suppressions de sommets; chaque opération correspond à une transition vers un état z qui doit être à priori plus proche de y. On observe alors les cas suivants :

- 1. x est n'est pas un simplexe.
 - (a) $x \subset y$: On ajoute $v \in y \setminus x$ et $z = x \cup \{v\}$, alors $\delta(x, z) = 1$
 - (b) $x \not\subset y$: On supprime $v \in x \setminus y$ et $z = x \{v\}$, alors $\delta(x, z) = 1$
- 2. x est un simplexe.
 - (a) Si on peut ajouter $v \in y \setminus x$ alors on le fait, alors $z = x \cup \{v\}$ et $\delta(x,z) = 1$
 - (b) Sinon:
 - i. Ajouter un point u extérieur à $x \triangle y$
 - ii. Supprimer un élémént de $x \setminus y$
 - iii. Ajouter un élément de $y \setminus x$ Dans ce cas on trouve un z tel que $\delta(x,z)=3$

D'après le lemme 0.0.3, on peut toujours ajouter un point u extérieur à $x \triangle y$. Dans tous les cas $\delta(x, z) \le 3$. Voir figure 1.

Corollaire 0.0.1. Pour tout état x et y de Ω , on a:

$$\delta(x,y) \le |x| + |y| + 4(d+1) \tag{5}$$

FIGURE 1 – Ici pour x et $y \in [0,4]^2$, avec $|x \triangle y| = 6$. On trouve un $z_3 \in \Omega$, tel que $|x \triangle y| > |z_3 \triangle y| = 5$, pour lequel on a $\delta(x,z_3) = 3$.

Démonstration. La preuve est immédiate en applicant le lemme 0.0.4. Soient x et $y \in \Omega$. Considérons deux simplexes x^* et y^* tels que $\delta(x, x^*) = |x| - (d+1)$, et de même $\delta(y, y^*) = |y| - (d+1)$. On a la relation suivante :

$$\delta(x, y) \le \delta(x, x^*) + \delta(x^*, y^*) + \delta(y, y^*) \tag{6}$$

Comme x^* est un simplexe, au plus il faudra $3(|x^*| + |y^*|) = 3 \times 2(d+1)$ étapes, à la marche, pour atteindre y^* en partant de x^* . Par conséquent :

$$\delta(x,y) \le |x| - (d+1) + |y| - (d+1) + 6(d+1) = |x| + |y| + 4(d+1)$$
 (7)

Corollaire 0.0.2. X_t est une chaîne de Markov irréductible.

Démonstration. L'irréductibilité découle du corollaire 0.0.1. En effet, pour prouver l'irréductibilité de X_t , il suffit de trouver un r_0 tel que pour tout x et $y \in \Omega$ quand $r \geq r_0$ alors $P^r(x,y) > 0$. On prend alors $r_0 = |x| + |y| + 4(d+1)$.