Supplementary materials for: Pointing models for users operating under different speed accuracy strategies

Anonymous authors

June 27, 2024

1 Linear fits for the Gaussian bivariate fit per strategy for the GO dataset

1.1 $\mu_i = \mathbf{const} + x_1 \, \mathbf{strategy}$

Dep. Variable:	у	R-squared:	0.989
Model:	OLS	Adj. R-squared:	0.985
Method:	Least Squares	F-statistic:	260.7
Date:	Wed, 26 Jun 2024	Prob (F-statistic):	0.000517
Time:	15:51:57	Log-Likelihood:	1.9113
No. Observations:	5	AIC:	0.1775
Df Residuals:	3	BIC:	-0.6036
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
const	4.7274	0.095	49.594	0.000	4.424	5.031
x1	2.1766	0.135	16.146	0.001	1.748	2.606
Omni	bus:	nan	n D u:	rbin-Wa	tson:	2.571
Prob	(Omnibu	ıs): nan	l Jar	que-Ber	a (JB):	0.374
Skew	:	-0.00)4 Pr c	b(JB):		0.829
Kurto	osis:	1.66	0 Co ı	nd. No.		1.41

Notes:

1.2 $\mu_t = \mathbf{const} + x_1 \, \mathbf{strategy}$

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:	у	R-squared:	0.953
Model:	OLS	Adj. R-squared:	0.937
Method:	Least Squares	F-statistic:	60.91
Date:	Wed, 26 Jun 2024	Prob (F-statistic):	0.00438
Time:	15:51:57	Log-Likelihood:	4.2886
No. Observations:	5	AIC:	-4.577
Df Residuals:	3	BIC:	-5.358
Df Model:	1		
Covariance Type:	nonrobust		
coef	std err t	P > t = [0.025 - 0.97]	' 5]

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	1.2822	0.059	21.640	0.000	1.094	1.471
x1	0.6540	0.084	7.804	0.004	0.387	0.921
Omni	ibus:	nan	Du:	rbin-Wa	tson:	1.877
Prob	(Omnibu	ıs): nan	Jar	que-Bera	a (JB):	0.365
Skew	:	-0.01	.2 Pro	b(JB):		0.833
Kurto	osis:	1.67	6 Coı	nd. No.		1.41

Notes:

 $\left[1\right]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.3 $\sigma_i = \mathbf{const} + x_1 \mathbf{strategy}$

Dep. Variable:	У	R-squared:	0.527
Model:	OLS	Adj. R-squared:	0.370
Method:	Least Squares	F-statistic:	3.344
Date:	Wed, 26 Jun 2024	Prob (F-statistic):	0.165
Time:	15:51:57	Log-Likelihood:	1.2574
No. Observations:	5	AIC:	1.485
Df Residuals:	3	BIC:	0.7040
Df Model:	1		
Covariance Type:	nonrobust		
coef	std err t	m P > t ~~ [0.025 ~~ 0.975]	5]

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	1.0330	0.109	9.509	0.002	0.687	1.379
x1	0.2810	0.154	1.829	0.165	-0.208	0.770
Omnibus: nan		Du	Durbin-Watson:		1.842	
Prob(Omnibu	s): nan	Jai	rque-Ber	a (JB):	0.794
Skew:		-0.369	9 Pr	ob(JB):		0.672
\mathbf{Kurto}	sis:	1.193	3 Co	nd. No.		1.41

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.4 $\sigma_t = \mathbf{const} + x_1 \mathbf{strategy}$

Dep. Variable:	у	R-squared:	0.879
Model:	OLS	Adj. R-squared:	0.839
Method:	Least Squares	F-statistic:	21.85
Date:	Wed, 26 Jun 2024	Prob (F-statistic):	0.0185
Time:	15:51:57	Log-Likelihood:	11.223
No. Observations:	5	AIC:	-18.45
Df Residuals:	3	BIC:	-19.23
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	t	$\mathbf{P}> \mathbf{t} $	[0.025	0.975]
const x1	0.3679 0.0979	0.015 0.021	24.852 4.675	0.000 0.018	0.321 0.031	$0.415 \\ 0.165$
Omn		nar		rbin-Wa	0.00-	2.705
\mathbf{Prob}	(Omnibu	ıs): nar	ı Jar	que-Bera	a (JB):	0.437
\mathbf{Skew}	:	-0.67	75 Pro	$\mathrm{ob}(\mathrm{JB})$:		0.804
Kurte	osis:	2.47	6 Co 1	nd. No.		1.41

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.5 $\rho = \mathbf{const} + x_1 \mathbf{strategy}$

Dep. Variable:	у	R-squared:	0.023
Model:	OLS	Adj. R-squared:	-0.303
Method:	Least Squares	F-statistic:	0.07043
Date:	Wed, 26 Jun 2024	Prob (F-statistic):	0.808
Time:	15:51:57	Log-Likelihood:	4.6223
No. Observations:	5	AIC:	-5.245
Df Residuals:	3	BIC:	-6.026
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025]	0.975]
const	0.3573	0.055	6.446	0.008	0.181	0.534
x1	0.0208	0.078	0.265	0.808	-0.229	0.270
Omni	bus:	nan	Du	rbin-Wa	tson:	2.545
Prob(Omnibu	ıs): nan	Jar	que-Ber	a (JB):	0.357
Skew:		0.137	Pro	ob(JB):		0.837
Kurto	osis:	1.721	Co	nd. No.		1.41

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2 Extra figures

2.1 The EMG and Gaussian models compared

Figure 1: The EMG model fit to data from the JGP dataset. Each panel is data from a participant (first three participants removed due to them having different number of trials). For each participant, we adjusted the Gaussian model, and compared to the EMG model with AIC.