IEEE 802.15.4 Study

Yeon Hee Lee

Superframe structure

- 1) Active period
- 2) Inactive period (coordinator → Low-power mode)

Figure 66—An example of the superframe structure

Superframe structure

1) Active period

- ✓ Active period는 같은 size의 16개 slot으로 나뉨
- ✓ Active period는 2가지 part로 나뉨
 - Contention Access period (CAP)
 - Contention Free period(CFP)

Figure 66—An example of the superframe structure

Active period

- CAP(Contention Access Period)
 - ✔ Beacon 다음으로 시작하며 device가 통신을 원하는 구간 (device간의 경쟁구간)
 - ✓ slotted CSMA-CA mechanism으로 동작

Figure 4—Superframe structure without GTSs

Figure 5—Superframe structure with GTSs

Active period

- CFP(Contention Free Period)
 - ✔ Optional 구간 (CAP의 상황에 따라 GTS 할당이 이루어지지 않을수도 있음=Option임)
 - ✓ Station에게 GTS(guranteed time slot)를 할당하여 비경쟁적으로 동작
 - PAN coordinator가 GTS 구간동안 통신할 Devices를 정해줌 (중앙통제)
 - ✔ GTS는 최대 7개까지 할당이 가능하며, 한 개 이상의 slot을 가짐

GTS(Guaranteed time slots)

- PAN coordinator가 최대 7개의 GTS 할당 가능
- 2개 이상의 Slot period를 차지할 수 있음

Figure 5—Superframe structure with GTSs

Figure 4—Superframe structure without GTSs

Superframe Structure

Beacon

- ✓ 각 Superframe의 첫 번째 slot에서 전송됨 (Superframe을 시작할 때 사용)
- ✓ 네트워크 안의 다른 device와 동기화를 위해 사용
- ✓ PAN coordinator가 전송
- ✔ 네트워크 정보 포함, 프레임 구조 및 보류중인 노드 메시지 알림

Figure 66—An example of the superframe structure

Superframe Structure

Superframe

- SD (Superframe Duration) : Superframe의 Active portion의 길이
 - \checkmark SD = aBaseSuperframeDuration*2^{SO} symbols
- BI (Beacon Interval) : Beacon frame간 간격
 - ✓ BI = $aBaseSuperframeDuration*2^{B0}$ symbols
- BO (Beacon Order) : Superframe의 길이 결정
 - \checkmark $0 \le BO \le 14$

Figure 66—An example of the superframe structure

- SO (Superframe Order) : Superframe에서 Active 구간의 길이 결정
 - \checkmark 0 \leq SO \leq BO \leq 14
 - ▶ 만약, BO가 15이면 Superframe에서 1개의 unit slot 길이가 SD의 길이와 같아지므로 Beacon을 보내지 않고, 네트워크가 Non-beacon-enabled mode로 동작함

Superframe

- Symbol
 - ✔ PHY계층에 따라 달라지는 Bit의 mapping 단위
 - ✓ Ex) PHY 2450MHz Bit rate/Symbol rate = 4

Table 1—Frequency bands and data rates

PHY (MHz)	Frequency	Spreading	parameters	Data parameters				
	band (MHz)	Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols		
868/915	868-868.6	300	BPSK	20	20	Binary		
	902–928	600	BPSK	40	40	Binary		
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS		
	902–928	1600	ASK	250	50	5-bit PSSS		
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal		
	902–928	1000	O-QPSK	250	62.5	16-ary Orthogonal		
2450	2400–2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal		

• Superframe – SlotD 길이 계산

- 1 symbol = 4bit / bit rate = 250 kbps = 250000 bit
- aBaseSlotDuration(A) = 60 symbols
- aNumSuperframe(B) = 16
- $\ensuremath{\mbox{\mbox{$\triangleleft$}}}: SlotD = aBaseSlotDuration \times 2^{SO}[symbols] \\ = 60 \times 2^{SO}[symbols] = 0.96 \times 2^{SO}[ms]$

Why?

SlotD = aBaseSlotDuration * 2^{SO} symbols

= $60 \text{ sym} * 2^{SO} \text{ symbols}$

= 60 sym * 4 bit / 250 kbps = 0.96 ms

• Superframe – SD 길이 계산

- 1 symbol = 4bit / bit rate = 250 kbps = 250000 bit
- aBaseSlotDuration(A) = 60 symbols
- aNumSuperframe(B) = 16
- \triangleleft : $\stackrel{SD}{=} aBaseSuperframeDuration \times 2^{SO}[symbols]$ = $960 \times 2^{SO}[symbols] = 15.36 \times 2^{SO}[ms]$

Why?

SD = aBaseSuperframeDuration * 2^{SO} symbols

- = aBaseSuperframeDuration = A*B = 960 symbols = 3840 bits
- \rightarrow 960 sym * 4 bit / 250 kbps = 15.36 ms

Superframe – ві 길이 계산

- 1 symbol = 4bit / bit rate = 250 kbps = 250000 bit
- aBaseSlotDuration(A) = 60 symbols
- aNumSuperframe(B) = 16
- $\exists I = aBaseSuperframeDuration \times 2^{SO}[symbols]$ = $960 \times 2^{SO}[symbols] = 15.36 \times 2^{SO}[ms]$

• Why?

 $BI = aBaseSuperframeDuration * 2^{BO}$ symbols

- = aBaseSuperframeDuration = $A*B \rightarrow 960$ symbols = 3840 bits
- \rightarrow 960 sym * 4 bit / 250 kbps = 15.36 ms

Superframe

Duty Cycle

✓ 전체 구간에서의 Active 구간의 비율을 말함

$$\checkmark 2^{-(BO-SO)} = \frac{SD = aBaseSuperframeDuration*2^{SO} symbols}{BI = aBaseSuperframeDuration*2^{BO} symbols}$$

BO-SO	0	1	2	3	4	5	6	7	8	9	≥10
Duty cycle	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

Figure 66—An example of the superframe structure