

Permeability and porosity trends for various rock types [CoreLab,1983]

Influence of grain size on the relationship between porosity and permeability
[Tiab & Donaldson, 1996]

- Darcy's Law (1856) empirical observations of flow to obtain permeability
- Slichter (1899) theoretical analysis of fluid flow in packed uniform spheres
- Kozeny (1927), Carmen (1939) capillary tube model

Capillary Tube Model

Define porosity
$$\phi = n_t \pi r^2 \sqrt{\tau}$$

Where r is radius of the capillary tube, n_t is number of tubes/ unit area

Define permeability
$$\longrightarrow k = \frac{\pi n_t r^4}{8\sqrt{\tau}}$$

Porosity-permeability relationship
$$k = \frac{\varphi r}{8\tau}$$

Example

For cubic packing shown, find ϕ and k.

Number of tubes per unit area: 4 tubes/(4r)²

Porosity
$$\phi = \frac{1}{4r^2} * \pi r^2 = \frac{\pi}{4}$$

Tortuosity
$$\tau = \left(\frac{L_a}{L}\right)^2 = 1$$

Permeability
$$k = \frac{\phi r^2}{8\tau} = \frac{\pi}{4} * \frac{r^2}{8(1)} = \frac{\pi r^2}{32}$$

Define specific surface area

S_{pv} – specific surface area per unit pore volume

 $S_{pv} = 2/r$ (for cylindrical pore shape)

S_{bv}- ...unit bulk volume

S_{gv}- ...unit grain volume

$$S_{bv} = \phi * S_{pv}$$

$$S_{gv} = \left(\frac{\phi}{1 - \phi}\right) S_{pv}$$

$$\tau = \left(\frac{L_a}{L}\right)^2$$

Carmen – Kozeny Equation

$$k = \frac{\phi r^2}{8\tau}$$

$$k = \frac{\phi}{k} = \frac{\phi}{k_z S_{pv}^2}$$

Where

Kz, Kozeny constant-shape factor to account for variability in shape and length

Carmen – Kozeny Equation

$$k = \frac{\phi r^2}{8\tau}$$

$$k = \frac{\phi}{kz} \frac{\sqrt{\frac{\phi}{kz}}}{\sqrt{\frac{\phi}{pv}}}$$

Where

Kz, Kozeny constant-shape factor to account for variability in shape and length

Carmen – Kozeny Equation

$$k_z = k_o * \tau$$

Tortuosity, τ

$$\tau = \left(\frac{L_a}{L}\right)^2$$

k_o is a shape factor

= 2 for circular

= 1.78 for square

Example: spherical particles with diameter, d_p

$$k = \frac{\phi}{k_z S_{pv}^2}$$

$$??$$

$$k = \frac{\phi^3 d_p^2}{72(1-\phi)^2 \tau}$$

Porosity Distribution

Expected porosity histogram [Amyx,et at., 1960]

Porosity Distribution

Actual porosity histogram [NBU42W-29, North Burbank Field]

Permeability Distribution

Expected Skewed normal and log normal histograms for permeability [Craig,1971]

Permeability Distribution

Actual permeability histogram [NBU42W-29, North Burbank Field]

Permeability Variation

Dykstra-Parsons Coefficient

$$V = \frac{k_{50} - k_{84.1}}{k_{50}}$$

Characterization of reservoir heterogeneity by permeability variation [Willhite, 1986]

Permeability Variation

Permeability to Air (md)	Number of Samples With Larger Permeability	Cumulative Frequency Distribution (%>k _j)
1,212	0	0
900	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5.8
730	2	11.8
714	3	17.7
650	4	23.5
591	5	29.4
565	6	3 5.3
500	7	41.2
450	8	47.1
440	9	52.9
430	10	58.8
420	11	64.7
407	12	70.6
381	13	76.5
324	14	82.4
315	15	88.2
283	16	94.1

Example of log normal permeability distribution [Willhite, 1986]

Permeability Variation

Actual Dykstra-Parsons probability plot [NBU42W-29, North Burbank Field]

Permeability Variation

Lorenz Coefficient

$$L_{k} = \frac{Area ABCA}{Area ADCA}$$

Flow capacity vs storage capacity distribution [Craig, 1971]

Permeability Variation

Lorenz Coefficient

$$L_k = \frac{Area \, ABCA}{Area \, ADCA}$$
$$= 0.643$$

Actual Lorenz plot [NBU42W-29, North Burbank Field]

Drawback of statistical approaches

Sequential ordering of data

Schematic of statistical approach of arranging data in comparison to true reservoir data, which is not ordered.

- reliance only on permeability variations for estimating flow in layers. Does not account for:
 - phase mobility, pressure gradient, Swirr and the k/ϕ ratio

Hydraulic Flow Unit

- unique units with similar petrophysical properties that affect flow.
 - Hydraulic quality of a rock is controlled by pore geometry
 - It is the distinction of rock units with similar pore attributes, which leads to the separation of units into similar hydraulic units.
 - not equivalent to a geologic unit. The definition of geologic units or facies are not necessarily the same as the definition of a flow unit.

Schematic illustrating the concept of flow units.

Start with CK equation

$$\sqrt{\frac{k}{\phi}} = \left(\frac{\phi}{1 - \phi}\right) \left(\frac{1}{\sqrt{k_o \tau} S_{gv}}\right)$$

Take the log

$$\log(RQI) = \log(\phi_r) + \log(FZI)$$

where the Reservoir quality index (RQI) is given by,

$$RQI\{\mu m\} = 0.0314 \sqrt{\frac{k\{md\}}{\phi}}$$

the Flow Zone Indicator (FZI) is,

$$FZI = \frac{1}{S_{gv}\sqrt{k_z}}$$

and the pore-to-grain volume ratio is expressed as

$$\phi_r = \frac{\phi}{1 - \phi}$$

Plot of RQI vs ϕ_r for East Texas Well [Amaefule, et al.,1993]

HFU [NBU42W-29, North Burbank Field]

