

FCC TEST REPORT

FCC ID: 2AAD8-U1233

On Behalf of

HAOLIYUAN (SHENZHEN) ELECTRONIC CO., LTD

802.11ac Wireless USB Adapter

Model No.: U1233, WU1200

Prepared for : HAOLIYUAN (SHENZHEN) ELECTRONIC CO., LTD

3/F, Building A1, Junfeng Industrial Park Yonghe Road,

Fuyong, Bao'an District, Shenzhen, Guangdong, China

Prepared By: Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an

Address : District, 518103, Shenzhen, Guangdong, China

Report Number : T1905010-C01-R03

Date of Receipt : May 09, 2019

Date of Test : May 09, 2019 - May 17, 2019

Date of Report : May 17, 2019

Version Number : V0

TABLE OF CONTENTS

<u>L</u>	<u>Jescri</u>	otion	<u>Page</u>
1	TES	T SUMMARY	5
	1.1	MEASUREMENT UNCERTAINTY	5
2	GEI	NERAL INFORMATION	6
	2.1 2.2 2.3 2.4 2.5	GENERAL DESCRIPTION OF EUT. TEST MODE TEST FACILITY ACCESSORIES OF DEVICE (EUT) TESTED SUPPORTING SYSTEM DETAILS	7 7 7
3	TES	T INSTRUMENTS LIST	8
4	TES	T RESULTS AND MEASUREMENT DATA	9
	4.1	CONDUCTED EMISSIONS	9
	4.2 4.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTHPEAK TRANSMIT POWER	11 27
	4.4 4.5	POWER SPECTRAL DENSITYBAND EDGE	
	4.6	RADIATED EMISSION	
5	FRE	QUENCY STABILITY	80
6	TES	T SETUP PHOTO	96
7	EUT	PHOTOS	98

Report No.: T1905010-C01-R03

TEST REPORT DECLARATION

Applicant : HAOLIYUAN (SHENZHEN) ELECTRONIC CO., LTD

Address 3/F, Building A1, Junfeng Industrial Park Yonghe Road, Fuyong,

Bao'an District, Shenzhen, Guangdong, China

Manufacturer : HAOLIYUAN (SHENZHEN) ELECTRONIC CO., LTD

Address 3/F, Building A1, Junfeng Industrial Park Yonghe Road, Fuyong,

Bao'an District, Shenzhen, Guangdong, China

EUT Description : 802.11ac Wireless USB Adapter

(A) Model No. : U1233, WU1200

(B) Trademark : N/A

Measurement Standard Used:

FCC CFR Title 47 Part 15 Subpart E Section 15.407 ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Project Engineer

Simple Guan

Approved by (name + signature)......

Project Manager

Date of issue..... May 17, 2019

Revision History

Revision	Issue Date	Revisions	Revised By
V0	May 17, 2019	Initial released Issue	Simple Guan

1 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Frequency Stability: The manufacturer stated in the user's manual.

1.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013

2 General Information

2.1 General Description of EUT

Description : 802.11ac Wireless USB Adapter

Model Number : U1233, WU1200

There is no difference between all the models, except the Appearance

industrial design and model number, this report performs the model U1233.

Trademark : N/A

Diff

Test Voltage : DC 5V by SUB Port

802.11a/n(HT20)/ac(HT20): 5180~5240MHz

Operation frequency : 802.11n(HT40)/ac(HT40): 5190~5230MHz

802.11ac(HT80): 5210MHz

802.11a/n(HT20)/ac(HT20): 20MHz;

Channel separation: : 802.11n(HT40)/ac(HT40): 40MHz

802.11ac(HT80): 80MHz

Modulation type : CCK/OFDM/DBPSK/DAPSK

ANT1: Internal Antenna, Maximum Gain is 2.0dBi

ANT2: External Antenna, Maximum Gain is 5.0dBi

Software version : 1030.28

Hardware version : V1.0

Antenna Type

2.2 Test mode

Transmitting mode	Keep the EUT in transmitting with modulation.
	EUT was test with 99% duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Channel	Power level
Lowest	5dBm
Middle	5dBm
Highest	5dBm

2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

2.4 Accessories of Device (EUT)

Accessories1 : /
Manufacturer : /
Model : /
Power supply : /

2.5 Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1	Notebook	ACER	ZQT	N/A	DOC

3 Test Instruments list

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2018.09.21	1Year
Spectrum analyzer	ROHDE&SCHW ARZ	FSU 1166.1660.26		2018.09.21	1Year
Receiver	ROHDE&SCHW ARZ	ESR	1316.3003K03- 102082-Wa	2018.09.21	1Year
Receiver	R&S	ESCI	101165	2018.09.21	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2018.04.13	2Year
Horn Antenna	SCHWARZBEC K	BBHA 9120 D	BBHA 9120 D(1201)	2018.04.13	2Year
Active Loop Antenna	SCHWARZBEC K	FMZB 1519B	00059	2018.09.26	2Year
Cable	Resenberger	N/A	No.1	2018.09.21	1Year
Cable	Resenberger	N/A	No.2	2018.09.21	1Year
Cable	Resenberger	N/A	No.3	2018.09.21	1Year
Pre-amplifier	HP	HP8347A	2834A00455	2018.09.21	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2018.09.21	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2018.09.21	1Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2018.09.21	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2018.09.21	1 Year
Horn Antenna	A-INFOMW	LB-180100-KF	J211020657	2018.09.21	2 Year
Preamplifier			SK2018101801	2018.09.21	1 Year
Power Meter			MY41496625	2018.09.21	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000-40- 880	100631	2018.9.11	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	20140927-6	2018.09.11	1 Year

Page 8 of 98

4 Test results and Measurement Data

4.1 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,			
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	- (441)	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.	<u>. </u>		
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test setup:	LISN EUT	/ [-	EMI receiver		
Test results:	Pass				

Page 9 of 98

Measurement Data

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

EUT Description	802.11ac Wireless USB Adapter	Model No.	U1233
Temperature	24 °C	Humidity	56%
Pol	Line	Test date	2019/5/17
Test Voltage	AC 120V/60Hz	Test mode	802 11 ac20 (MID CH_ANT1+ANT2)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	า	
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1	*	0.1516	45.88	9.63	55.51	65.91	-10.40	QP	
2		0.1516	27.97	9.63	37.60	55.91	-18.31	AVG	
3		0.2280	38.69	9.65	48.34	62.52	-14.18	peak	
4		0.4858	27.60	9.68	37.28	56.24	-18.96	peak	
5		5.4569	24.56	10.08	34.64	60.00	-25.36	peak	
6		21.0505	26.55	10.18	36.73	60.00	-23.27	peak	
7		25.3440	27.61	10.33	37.94	60.00	-22.06	peak	

Pol Neutral Test date 2019/5/17

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1620	44.98	9.63	54.61	65.36	-10.75	QP	
2		0.1620	25.83	9.63	35.46	55.36	-19.90	AVG	
3		0.1829	43.72	9.64	53.36	64.35	-10.99	peak	
4		0.2190	41.06	9.65	50.71	62.86	-12.15	peak	
5		0.2368	39.08	9.65	48.73	62.21	-13.48	peak	
6		0.4650	28.37	9.68	38.05	56.60	-18.55	peak	
7		5.1180	27.26	10.06	37.32	60.00	-22.68	peak	

^{*:}Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

4.2 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01				
Limit:	N/A				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01.				
Test results:	Pass				

Measurement Data:

weasureme	TIIL Dala.		ı			1
Condition	Mode	Frequency	99%	-26 dB	Limit -26 dB	Verdict
		(MHz)	OBW	Bandwidth	Bandwidth	
			(MHz)	(MHz)	(MHz)	
ANT1	802.11a	5180	16.6887	16.6887	0	Pass
ANT1	802.11a	5200	16.6481	16.6481	0	Pass
ANT1	802.11a	5240	16.7629	16.7629	0	Pass
ANT2	802.11a	5180	16.7994	16.7994	0	Pass
ANT2	802.11a	5200	16.6035	16.6035	0	Pass
ANT2	802.11a	5240	16.7355	16.7355	0	Pass
ANT1	802.11ac20	5180	17.8635	17.8635	0	Pass
ANT1	802.11ac20	5200	17.8717	17.8717	0	Pass
ANT1	802.11ac20	5240	17.8769	17.8769	0	Pass
ANT2	802.11ac20	5180	17.8793	17.8793	0	Pass
ANT2	802.11ac20	5200	17.7785	17.7785	0	Pass
ANT2	802.11ac20	5240	17.8556	17.8556	0	Pass
ANT1	802.11ac40	5190	36.2211	36.2211	0	Pass
ANT1	802.11ac40	5230	36.0886	36.0886	0	Pass
ANT2	802.11ac40	5190	36.2128	36.2128	0	Pass
ANT2	802.11ac40	5230	36.1099	36.1099	0	Pass
ANT1	802.11ac80	5210	75.1897	75.1897	0	Pass
ANT2	802.11ac80	5210	75.176	75.176	0	Pass
ANT1	802.11n(HT20)	5180	17.8154	17.8154	0	Pass
ANT1	802.11n(HT20)	5200	17.8572	17.8572	0	Pass
ANT1	802.11n(HT20)	5240	17.8626	17.8626	0	Pass
ANT2	802.11n(HT20)	5180	17.8675	17.8675	0	Pass
ANT2	802.11n(HT20)	5200	17.7785	17.7785	0	Pass
ANT2	802.11n(HT20)	5240	17.8953	17.8953	0	Pass
ANT1	802.11n(HT40)	5190	36.247	36.247	0	Pass
ANT1	802.11n(HT40)	5230	36.0886	36.0886	0	Pass
ANT2	802.11n(HT40)	5190	36.2016	36.2016	0	Pass
ANT2	802.11n(HT40)	5230	35.9234	35.9234	0	Pass

ANT1: OBW 802.11a 5200MHz

ANT1: OBW 802.11a 5240MHz

ANT2: OBW 802.11a 5180MHz

ANT2: OBW 802.11a 5200MHz

ANT2: OBW 802.11a 5240MHz

ANT1: OBW 802.11ac20 5180MHz

ANT1: OBW 802.11ac20 5200MHz

ANT2: OBW 802.11ac20 5180MHz

ANT2: OBW 802.11ac20 5240MHz

ANT1: OBW 802.11ac40 5230MHz

ANT2: OBW 802.11ac40 5230MHz

ANT2: OBW 802.11ac80 5210MHz

ANT1: OBW 802.11n(HT20) 5200MHz

ANT2: OBW 802.11n(HT20) 5180MHz

ANT2: OBW 802.11n(HT20) 5240MHz

ANT1: OBW 802.11n(HT40) 5230MHz

ANT2: OBW 802.11n(HT40) 5230MHz

4.3 Peak Transmit Power

Test Requirement:						
r oot r toquironionti	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01					
Limit:	For the band 5.15-5.25GHz, 5.25-5.35GHz, 5.47-5.725GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.725-5.85GHz, the maximum conducted output power over					
	the frequency bands of operation shall not exceed 1W.					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	Measurement using an RF average power meter					
rest prosedure.	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit					
	with a constant duty cycle.					
	 b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. 					
	 c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. 					
	(ii) If the transmitter does not transmit continuously, measure the					
	duty cycle, x, of the transmitter output signal as described in section B).					
	duty cycle, x, of the transmitter output signal as described in					
	duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of					

Measurement Data

Condition	Mode	Frequency	Conducted	Duty	Total	Limit	Verdict
		(MHz)	Power (dBm)	Factor	Power	(dBm)	
				(dB)	(dBm)		
ANT1	802.11a	5180	2.74	0.13	2.87	24	Pass
ANT1	802.11a	5200	3.074	0.13	3.204	24	Pass
ANT1	802.11a	5240	2.321	0.13	2.451	24	Pass
ANT2	802.11a	5180	2.702	0.13	2.832	24	Pass
ANT2	802.11a	5200	3.025	0.13	3.155	24	Pass
ANT2	802.11a	5240	2.463	0.13	2.593	24	Pass

Mode	Frequency	Conducted Power		Duty	Total Power	Limit	Verdict
	(MHz)	(dBm)		Factor	(dBm)	(dBm)	
		ANT1	ANT2	(dB)			
802.11ac20	5180	2.091	2.387	0.14	5.39	23.36	Pass
802.11ac20	5200	2.582	2.526	0.14	5.70	23.36	Pass
802.11ac20	5240	1.836	1.858	0.14	5.00	23.36	Pass
802.11ac40	5190	1.731	2.311	0.27	5.31	23.36	Pass
802.11ac40	5230	1.656	2.245	0.27	5.24	23.36	Pass
802.11ac80	5210	1.454	1.482	0.53	5.01	23.36	Pass
802.11n(HT20)	5180	1.611	2.624	0.14	5.30	23.36	Pass
802.11n(HT20)	5200	1.659	2.485	0.14	5.24	23.36	Pass
802.11n(HT20)	5240	1.077	2.298	0.14	4.88	23.36	Pass
802.11n(HT40)	5190	1.63	2.183	0.27	5.20	23.36	Pass
802.11n(HT40)	5230	1.632	1.933	0.27	5.07	23.36	Pass

Note:

^{1,} As Directional gain = $10 \log[(10^{G1/20} + 10G^{2/20})^2/N_{ANT}] dBi=6.64>6dBi$, so limit=24-(6.64-6.00)=23.36dBm.

^{2,} Sum Power = Measured Power + Duty Factor

Duty Cycle:

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
ANT1	802.11a	5180	97.08	0.13
ANT1	802.11a	5200	97.09	0.13
ANT1	802.11a	5240	97.05	0.13
ANT2	802.11a	5180	97.03	0.13
ANT2	802.11a	5200	97.04	0.13
ANT2	802.11a	5240	97.08	0.13
ANT1	802.11ac20	5180	96.8	0.14
ANT1	802.11ac20	5200	96.91	0.14
ANT1	802.11ac20	5240	96.87	0.14
ANT2	802.11ac20	5180	96.9	0.14
ANT2	802.11ac20	5200	96.87	0.14
ANT2	802.11ac20	5240	96.77	0.14
ANT1	802.11ac40	5190	93.93	0.27
ANT1	802.11ac40	5230	93.94	0.27
ANT2	802.11ac40	5190	93.95	0.27
ANT2	802.11ac40	5230	93.93	0.27
ANT1	802.11ac80	5210	88.45	0.53
ANT2	802.11ac80	5210	88.44	0.53
ANT1	802.11n(HT20)	5180	96.85	0.14
ANT1	802.11n(HT20)	5200	96.82	0.14
ANT1	802.11n(HT20)	5240	96.88	0.14
ANT2	802.11n(HT20)	5180	96.88	0.14
ANT2	802.11n(HT20)	5200	96.87	0.14
ANT2	802.11n(HT20)	5240	96.88	0.14
ANT1	802.11n(HT40)	5190	93.91	0.27
ANT1	802.11n(HT40)	5230	93.94	0.27
ANT2	802.11n(HT40)	5190	93.88	0.27
ANT2	802.11n(HT40)	5230	93.93	0.27

ANT1: Duty Cycle 802.11a 5200MHz

ANT2: Duty Cycle 802.11a 5180MHz

ANT2: Duty Cycle 802.11a 5240MHz

ANT1: Duty Cycle 802.11ac20 5200MHz

ANT2: Duty Cycle 802.11ac20 5180MHz

ANT2: Duty Cycle 802.11ac20 5200MHz

ANT2: Duty Cycle 802.11ac20 5240MHz

ANT1: Duty Cycle 802.11ac40 5230MHz

ANT2: Duty Cycle 802.11ac40 5230MHz

ANT1: Duty Cycle 802.11ac80 5210MHz

ANT2: Duty Cycle 802.11ac80 5210MHz

ANT1: Duty Cycle 802.11n(HT20) 5200MHz

ANT1: Duty Cycle 802.11n(HT20) 5240MHz

ANT2: Duty Cycle 802.11n(HT20) 5180MHz

ANT2: Duty Cycle 802.11n(HT20) 5240MHz

ANT1: Duty Cycle 802.11n(HT40) 5230MHz

ANT2: Duty Cycle 802.11n(HT40) 5230MHz

4.4 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01					
Limit:	≤11.00dBm/MHz for 5150MHz-5250MHz, 5250-5350MHz and 5470-5725 MHz ≤30.00dBm/500KHz for 5725MHz-5850MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of 					
	the spectrum.					
	Make the following adjustments to the peak value of the spectrum, if applicable:					
	a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.					
	b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.					
	4) The result is the PSD.					
Test results:	Pass					

Measurement Data

Antenna	Mode	Frequency (MHz)	Max PSD	Limit (dBm)	Verdict
			(dBm)		
ANT1	802.11a	5180	-4.643	11	Pass
ANT1	802.11a	5200	-4.096	11	Pass
ANT1	802.11a	5240	-4.325	11	Pass
ANT2	802.11a	5180	-4.581	11	Pass
ANT2	802.11a	5200	-3.865	11	Pass
ANT2	802.11a	5240	-4.465	11	Pass

Mode	Frequency	Max PSD (dBm)		Sum PSD	Limit (dBm)	Verdict
	(MHz)	ANT1	ANT2	(dBm/MHz)		
802.11ac20	5180	-5.472	-5.302	-2.38	10.36	Pass
802.11ac20	5200	-5.076	-5.058	-2.06	10.36	Pass
802.11ac20	5240	-5.093	-5.045	-2.06	10.36	Pass
802.11ac40	5190	-8.854	-8.6	-5.71	10.36	Pass
802.11ac40	5230	-7.991	-7.767	-4.87	10.36	Pass
802.11ac80	5210	-11.088	-11.2	-8.13	10.36	Pass
802.11n(HT20)	5180	-6.103	-4.96	-2.48	10.36	Pass
802.11n(HT20)	5200	-5.691	-5.058	-2.35	10.36	Pass
802.11n(HT20)	5240	-5.752	-5.398	-2.56	10.36	Pass
802.11n(HT40)	5190	-8.494	-8.714	-5.59	10.36	Pass
802.11n(HT40)	5230	-8.729	-7.85	-5.26	10.36	Pass

Note:

^{1,} As Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] dBi=6.64>6dBi$, so limit=11-(6.64-6.00)=10.36dBm/1MHz.

Test plots as followed:

ANT1: PSD 802.11a 5180MHz

ANT1: PSD 802.11a 5200MHz

ANT1: PSD 802.11a 5240MHz

ANT2: PSD 802.11a 5180MHz

ANT2: PSD 802.11a 5240MHz

ANT1: PSD 802.11ac20 5180MHz

ANT1: PSD 802.11ac20 5200MHz

ANT2: PSD 802.11ac20 5180MHz

