Jack Jin

(347) 798-7976 | Elmhurst, New York, 11373 | jackj00125@gmail.com | https://www.linkedin.com/in/jack-jin-130804191/

EDUCATION

Massachusetts Institute of Technology

Cambridge, MA

Bachelor of Science in Computer Science and Engineering

Graduation Date: May. 2024

- GPA: 4.5/5.0
- Coursework: Intro to Machine Learning, Design and Analysis Algorithms, Software Construction,
 System Design, Computer Graphics, Computer Vision, Introduction to Algorithms, Computer Security

SKILLS

Python | Java | Typescript | C++ | R | Machine Learning & AI | Communication | Leadership | Willing to learn | Adaptable | Data Modeling and Analyzing | SQL | Assembly

PROJECTS

Image Classifier

Created an accurate image classifier for the CIFAR10 dataset using convolutional neural network. Employed optimization techniques to further improve performance.

- Used torchvision to download and initialize DataLoaders for CIFAR10 dataset.
- Created a CNN to efficiently analyze spatial information of the dataset, using the ReLU activation function, cross-entropy loss function and Adam optimizer. Model was evaluated at 69% accuracy.
- Strengthened model to 79.51% accuracy by adding more convolution layers, using batch normalization and introducing dropout.

Python-based Voxel Engine

Developed from scratch; improved computational efficiency by optimizing landscape rendering and user interaction.

- Engineered a Python-based engine using PyGame and ModernGL, achieving real-time world generation.
- Utilized GLM simplex noise algorithm and MIPmaps to generate realistic world landscapes and improve visuals.
- Optimized resource usage by around 500% through implementing face-culling of hidden voxel faces not exposed to a given voxel type such as air.

TSAI-based Space Weather Forecaster

Led model development; significantly increased predictive accuracy using innovative data sampling and model tuning strategies.

- Spearheaded the creation of a robust forecasting model using tsai, improving model reliability for space weather prediction.
- Applied diverse data sampling techniques, achieving optimal model performance with tailored train-test-validation splits.

Various Renders in C++

- Rendered objects within given scenes using OpenGL and GLOO. Employed MIPmaps for texture generation to efficiently manage texture memory and enhance rendering performance.
- Implemented advanced algorithms such as ray tracing and ray casting to accurately simulate light propagation, material interactions, and environmental effects, resulting in highly realistic visualizations.

EXPERIENCE

Massachusetts Institute of Technology UROP

Cambridge, MA

Student Researcher

June 2023 - Jan. 2024

- Collaborated with an MIT researcher to enhance space weather forecasting using AI-driven tools, focusing on developing more accurate predictive models.
- Investigated existing models and methodologies to deepen understanding of machine learning applications.
- Analyzed historical data and developed machine learning models to accurately predict solar flare occurrences, achieving an impressive 90% accuracy rate in forecasting various space weather parameters.
- Executed rigorous testing procedures on machine learning models to verify their reliability, with a success rate of 95% in accurately predicting geomagnetic storm events.