ТРАНСФОРМАЦИИ 2-ПЕНТАФТОРФЕНИЛХРОМОНА С АМИНАМИ В БИО- И ФОТОАКТИВНЫЕ СОЕДИНЕНИЯ

Черняков К.А.^(1,2), Щербаков К.В.⁽²⁾, Панова М.А.⁽²⁾, Бургарт Я.В.⁽²⁾, Салоутин В.И.⁽²⁾

⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Пентафторфлавон имеет большие возможности для модификаций в S_NAr^F -реакциях, являющихся синтетически простым и экономически выгодным процессом. В докладе показано, что введение в структуру флавона аминной компоненты является перспективным направлением для синтеза био- и фотоактивных соединений. При этом обсуждены особенности химической модификации пентафторфлавона с алкил- и гетариламинами. Установлено, что результатом S_NAr^F -реакции с алкиламинами является селективный синтез 4-N-монозамещённых флавонов, среди которых найдены соединения с высокой противогрибковой, антигонорейной и противогриппозной активностью. С гетероциклическими аминами реализованы маршруты получения моно-, олиго- и перзамещённых флавонов. Моно- и перкарбазолилзамещённые продукты проявили фотолюминесцентные свойства.

Высокая противогриппозная активность (SI 214)

Высокая противогриппозная активность (SI 214)

Высокая противогонорейная активность (MVK 1.0 мкМ) и противогонорейная активность (MVK 1.0 мкМ)

Квантовый выход (
$$\Phi_F$$
 0.42) и время жизни люминесценции (τ 5.81 нс)

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках государственного задания (№ гос. рег. темы 124020500047-5).