Name: Subraja M Rollno: 611219106075 Date: 21\09\2022

▼ 1.Download the dataset from the source here.

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography- Location of the bank **Gender** - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

 $\mbox{\bf NumOfProducts}$ - Products owned by the customer from the company

HasCrCard- Has credit card or not (0 - no , 1 - yes)
IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

▼ 2.Load the Dataset

df = pd.read_csv("Churn_Modelling.csv")
df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsAc
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
999	5 9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1
999	6 9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1
999	7 9998	15584532	Liu	709	France	Female	36	7	0.00	1	0
999	8 9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1
999	9 10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1

→ 3 a) Univariate analysis

credit.plot(kind="hist",figsize=(8,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb33600e6d0>
2000
1750
1500
1250
750
500
250
400
500
600
700
800

geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb335ac8790>

sns.countplot(df['Gender'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fb335aa3690>

sns.distplot(df['Age'],hist=False)

plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3359c67d0>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3359f6d10>

cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3358fb910>

plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fb33584cfd0>

sns.distplot(df['EstimatedSalary'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb33582f610>

plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3357a49d0>

→ 3 b) Bivariate analysis

 $\verb|sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)|\\$

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3356d25d0>

sns.violinplot(x='Geography',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb33565d890>

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

sns.violinplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb335558990>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

 $\verb|sns.barplot(x='Exited',y='Tenure',data=df)|\\$

→ 3 c) Multivariate analysis

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

 Gender Female
 Geography France
 2261

 Germany
 1193

 Spain
 1089

 Male
 France
 2753

 Spain
 1388

 Germany
 1316

 Name:
 Geography
 dtype:
 int64


```
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
```

Gender Female 39.238389 Male 38.658237 Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)

```
Gender Geography
                                  4.950022
4.965633
5.000000
5.049401
5.050152
Female France
              Germany
             Spain
France
Germany
Male
Spain 5.057637
Name: Tenure, dtype: float64
```

 $\label{eq:gp4} $$ gp4 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].mean() $$ gp4.plot(kind="line",figsize=(10,8)) $$$ print(gp4)

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703
Name: E	stimatedSal	ary, dtype: float	164

(Female, 0, 0) (Female, 0, 1) (Female, 1, 0) (Female, 1, 1) (Male, 0, 0) (Male, 0, 1) (Male, 1, 0) (Male, 1, 1) Gender, HasCrCard, IsActiveMember

gp5 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp5.plot(kind='bar',figsize=(10,8))
print(gp5)

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546
		1	321

Name: Exited, dtype: int64

 $\label{eq:gp6} \begin{tabular}{ll} $\tt gp6 = \tt df.groupby('Exited')['Balance','EstimatedSalary'].mean() \\ \tt print(gp6) \end{tabular}$

Balance EstimatedSalary Exited 72745.296779 91108.539337 99738.391772 101465.677531

→ 4. Descriptive statistics

df.describe().T

	count	mean	std	min	25%	50%	75%	max
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7.500250e+03	10000.00
Customerld	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+07	1.575323e+07	15815690.00
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+02	7.180000e+02	850.00
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	4.400000e+01	92.00
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7.000000e+00	10.00
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	1.276442e+05	250898.09
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2.000000e+00	4.00
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	1.000000e+00	1.00
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	1.000000e+00	1.00
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	1.493882e+05	199992.48

▼ 5. Handling the missing values

```
df.isnull().sum()

RowNumber 0
CustomerId 0
Surname 0
CreditScore Geography 0
Gender 0
Age 1
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0
dtype: int64
```

There is no missing value in the dataset

→ 6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
sns.boxplot(df['CreditScore'])
sns.boxplot(df['CreditScore'])
plt.show()</pre>
```



```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```


sns.boxplot(df['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fb33450fd10>

sns.boxplot(df['EstimatedSalary'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3343ccd90>

0 25000 50000 75000 100000 125000 150000 175000 200000 EstimatedSalary

Outliers from Age and Credit Score columns are removed

> 7. Check for categorical column and perform encoding.

[] L, 4 cells hidden

- Removing unwanted columns and checking for feature importance

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
```

df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Ex
0	619.0	0	0	42.0	2	0.00	1	1	1	101348.88	
1	608.0	2	0	41.0	1	83807.86	1	0	1	112542.58	
2	502.0	0	0	42.0	8	159660.80	3	1	0	113931.57	
3	699.0	0	0	39.0	1	0.00	2	0	0	93826.63	
4	850.0	2	0	43.0	2	125510.82	1	1	1	79084.10	

```
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```


- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

```
Hast.rt.ard - 0.0054 - 0.0085 - 0.005 - 0.005 - 0.0052 - 1
```

▼ 8. Data Splitting

▼ 9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()

data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
```

data.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	-0.326878	0	0	0.342615	2	-1.225848	1	1	1	0.021886
1	-0.440804	2	0	0.240011	1	0.117350	1	0	1	0.216534
2	-1.538636	0	0	0.342615	8	1.333053	3	1	0	0.240687
3	0.501675	0	0	0.034803	1	-1.225848	2	0	0	-0.108918
4	2.065569	2	0	0.445219	2	0.785728	1	1	1	-0.365276

▼ 10.Train test split

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.25,random_state=101)
print(X_train.shape)
```

print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

(7500, 10) (2500, 10) (7500,) (2500,)