

System performance as a function of calibration methods, sample size and sampling variability in likelihood ratio-based forensic voice comparison

Bruce X. Wang and Vincent Hughes {xw961|vincent.hughes}@york.ac.uk Department of language and linguistic science, University of York

Introduction

In Forensic Voice Comparison (FVC)

- Likelihood ratio (LR) framework
- Growing pressure on experts
- Established procedures

Introduction

- Objectivity vs. Subjectivity

Introduction

Previous LR-based FVC studies looked in the effect of

 size of training, test and reference data [1,2,3]

Showing that the effect of sampling variability is inevitable regardless of

- the size of training, test and reference data
- configurations of training, test and reference data

Questions

System performance <==> sampling variability

Can calibration reduce the level of uncertainty?

Previous studies [6, 7] have tested the effectiveness of different calibration methods. However,

- limited sets of data
- scores → Gaussian distribution

Questions

Given the limit of sample size in the real world, how does system perform when

scores are skewed

&

sample size is limited?

Can we incorporate uncertainty into the LR itself in LR computation?

Can certain calibration methods reduce the level of uncertainty when the sample size is small?

Current study

We simulated scores from skewed distributions to test four calibration methods:

- Logistic regression [8]
- Empirical lower and upper bound (ELUB) [9]
- Regularised logistic regression [7]
- Bayesian model [10]

Aiming to investigate:

- a. overall system validity and
- b. the reliability of the system validity

Claimed to incorporate uncertainty into the LR itself, such that LRs will be closer to 1 when uncertainty is high (i.e. when sample size is small).

Data

Skewed scores simulated from the acoustics of filled pause um,

- 90 SSBE speakers from DyViS [11]
- Quadratic curves → F1, F2, F3 and f0
- Multivariate kernel density (MVKD) [12]

Five tokens, speaker 114 DyViS.

Data

Score simulation:

- Distribution parameters
- sn[13] function in R[14]

um score	Mean	SD	Skewness	Kurtosis
Log SS	2.6	6.6	-0.7	3.5
Log DS	-78	56.6	-0.7	3.1

Distributions of simulated SS and DS log scores (1000 samples per set).

Sample size

training and test scores were sampled 100 times per sample size:

- 20 to 100 speakers
- 10-speaker increasements
- SS scores 20 ~ 100
- DS scores 380 ~9900

Calibration

Calibration was replicated 100 times using four calibration methods for each sample size.

Schematic of the simulation process using score distribution parameters, replicated 100 times for each sample size.

Evaluation

System validity: Log LR cost (C_{IIr}) mean of 100 replications.

System reliability: C_{IIr} range, Max. C_{IIr} – Min. C_{IIr} in 100 replications.

A C_{llr} of less than 1 indicates that the system is capturing useful information.

Systems with better performance should yield both lower C_{IIr} mean and range.

Results

Take-home message

- Calibration methods **vs.** score skewness **vs**. sample sizes
- System validity (C_{IIr} mean) vs. reliability (C_{IIr} range)
 - e.g., logistic regression vs. rlogistic regression/the Bayesian model
- Experts' decisions
 - lower uncertainty > higher validity (i.e. the potential of a very low C_{llr})

Corresponding author:

Bruce Wang

Email: xw961@york.ac.uk

Twitter: https://twitter.com/P0rfav0r

References

- [1] G. S. Morrison, 'Special issue on measuring and reporting the precision of forensic likelihood ratios: Introduction to the debate', *Science & Justice*, vol. 56, no. 5, pp. 371–373, Sep. 2016, doi: 10.1016/j.scijus.2016.05.002.
- [2] S. Ishihara and Y. Kinoshita, 'How Many Do We Need? Exploration of the Population Size Effect on the Performance of Forensic Speaker Classification'. In *Interspeech*, Brisbane Australia, 2008, p.1941 1944.
- [3] V. Hughes, 'Sample size and the multivariate kernel density likelihood ratio: How many speakers are enough?', *Speech Communication*, vol. 94, pp. 15–29, 2017, doi: 10.1016/j.specom.2017.08.005.
- [4] B. X. Wang, V. Hughes, and P. Foulkes, 'The effect of speaker sampling in likelihood ratio based forensic voice comparison', *International Journal of Speech, Language and the Law*, vol. 26, no. 1, pp. 97–120, Aug. 2019, doi: 10.1558/ijsll.38046.
- [5] Watt, D., Harrison, P., Hughes, V., French, P., Llamas, C., Braun, A., & Robertson, D. (2020). Assessing the effects of accent-mismatched reference population databases on the performance of an automatic speaker recognition system. *International Journal of Speech Language and the Law*, 0(0). https://doi.org/10.1558/ijsll.41466
- [6] T. Ali, L. Spreeuwers, R. Veldhuis, and D. Meuwly, 'Sampling variability in forensic likelihood-ratio computation: A simulation study', *Science & Justice*, vol. 55, no. 6, pp. 499–508, Dec. 2015, doi: 10.1016/j.scijus.2015.05.003.
- [7]G. S. Morrison and N. Poh, 'Avoiding overstating the strength of forensic evidence: Shrunk likelihood ratios/Bayes factors', *Science & Justice*, vol. 58, no. 3, pp. 200–218, May 2018, doi: 10.1016/j.scijus.2017.12.005.
- [8] N. Brümmer *et al.*, 'Fusion of Heterogeneous Speaker Recognition Systems in the STBU Submission for the NIST Speaker Recognition Evaluation 2006', *IEEE Trans. Audio Speech Lang. Process.*, vol. 15, no. 7, pp. 2072–2084, Sep. 2007, doi: 10.1109/TASL.2007.902870.
- [9] P. Vergeer, A. van Es, A. de Jongh, I. Alberink, and R. Stoel, 'Numerical likelihood ratios outputted by LR systems are often based on extrapolation: When to stop extrapolating?', *Science & Justice*, vol. 56, no. 6, pp. 482–491, Dec. 2016, doi: 10.1016/j.scijus.2016.06.003.
- [10]N. Brümmer and A. Swart, 'Bayesian Calibration for Forensic Evidence Reporting', in *Interspeech*, Singapore, 2014, pp. 388–392.
- [11] F. Nolan, K. McDougall, G. De Jong, and T. Hudson, 'The DyViS database: style-controlled recordings of 100 homogeneous speakers for forensic phonetic research', *International Journal of Speech, Language and the Law*, vol. 16, no. 1, pp. 31–57, Sep. 2009, doi: 10.1558/ijsll.v16i1.31.
- [12] Aitken, C. G. G., & Lucy, D. (2004). Evaluation of trace evidence in the form of multivariate data. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 53(1), 109–122. https://doi.org/10.1046/j.0035-9254.2003.05271.x
- [13] A. Azzalini, The R package 'sn': The Skew-Normal and Related Distributions such as the Skew-t. 2020.
- [14] Core team R, RStudio: Integrated Development for R. RStudio, Inc., 2020.