Lecture 3: Probability Models/Distributions and Intro to Value-at-Risk (VaR)/Expected Shortfall

Brian Thelen 258 West Hall bjthelen@umich.edu

Statistics 509 - Winter 2022

Lecture Overview

- Brief review of probability models and random variables
 - Random variables
 - Common distributions for random variables
 - Continuous Normal, exponential, gamma, t, generalized error, and pareto/generalized pareto
- Intro to Value-at-Risk and Expected Shortfall
 - Initial Computations
- Tail probabilities

Random Variables

Definition (random variable). A random variable is a function X from sample space Ω to the real numbers. We write

$$(X=x) \quad \text{as shorthand for } \{w \in \Omega; \ X(w) = x\}$$

$$(a \leq X \leq b) \quad \text{as shorthand for } \{w \in \Omega; \ a \leq X(w) \leq b\}$$

$$(X \leq b) \quad \text{as shorthand for } \{w \in \Omega; \ X(w) \leq b\}$$

$$(X \geq a) \quad \text{as shorthand for } \{w \in \Omega; \ X(w) \geq a\}$$

Remark. Random variables are (typically) classified as **discrete** or **continuous**

- Discrete corresponds to X taking values within a discrete set (could be infinite number)
- Continuous corresponds to X taking values over a continuum (e.g., an interval)

Remark. The discrete vs. continuous refers to the model.

- stock/bond price
- individual/company income levels

Cumulative Distributions

Definition. The cumulative distribution function (cdf) of a discrete/continuous rv X is always the function

$$F(x) = P(X \le x)$$

Picture: Example cdf of discrete rv/cdf of continuous rv

Remark. Note that

- cdf F is an increasing function, i.e., $F(x) \subseteq F(x')$ for x < x'.
- As $x \downarrow -\infty$, $F(x) \rightarrow 0$
- As $x \uparrow \infty$, $F(x) \rightarrow \backslash$

Remark. Suppose that X is the stock price of Google at the end of this coming week. What can we say about F(x) for x < 0.

Quantiles

Definition. For rv X with cdf F, the quantile function is sort of a generalized inverse of F, Specifically for 0 < q < 1,

$$F^{-1}(q) = \inf\{x: \ q \le P(X \le x)\}$$

or equivalently,

$$F^{-1}(q) =$$

Pictures

Example. Suppose X corresponds to the amount paid out an insurance claim (in thousands) and for positive x>0 has cumulative distribution function

$$F(x) = .1 + .9(1 - e^{-x/10})$$

- (a) What is probability of claim being between 5000 and 10000?
- (b) What is the probability of a claim paying out zero?
- (c) Derive the .99 quantile of the distribution of the insurance claims, and interpret this value in your own words.

Answer.

Moments of Distribution/Random Variable

Definition. For rv X with distribution function F, we define **central moments** μ_k as k阶中心矩

$$\mu_k = E\left[\left(\chi - E[\chi] \right)^k \right] \qquad k = 2, 3, 4, \dots$$

Definition. For sample x_1, x_2, \ldots, x_n , define sample mean as

$$\bar{x} = \frac{1}{9} \bar{\Sigma} X$$

and we define the **central sample moments** m_k for this data as

$$m_k = \int_{\mathsf{N}} \sum \left(\chi_i - \bar{\chi} \right)^k$$
 $k = 2, 3, 4, \ldots$ 可能会biased.但最终会收敛于真实值

Background: Typically assuming that sample x_1, x_2, \ldots, x_n corresponds to a sampling from some process/population with an underlying distribution function F.

Summary Statistics

从量纲角度思考,必定用到2阶矩

Background. Suppose that $X \sim F$ and have sample x_1, x_2, \ldots, x_n , and central moments of μ_k, m_k for k = 2, 3, 4.

Parameters/Statistics	Distn Parameter	Sample Statistic
Standard deviation	$\sigma = \sqrt{\mu_2}$	$SD(x) = \sqrt{M_{\lambda}}$
Skewness	$\frac{\mu_3}{(\mu_2)^{\frac{3}{2}}}$	m ₃
	$(\mu_2)^2$	W 3 3
(Excess) Kurtosis	$\frac{\mu_4}{\mu_2^2} - 3$	My
和正态分布对比		

Remarks.

- Skewness is a measure of the asymmetry
- of the distribution
- Kurtosis is a measure of how heavy tailness distribution is

the

Continuous Random Variables

- For financial data/statistical analysis, RVs are often modeled as taking values over a continuum
 - RVs are called continuous and
 - the distribution is characterized via a probability density function (pdf), f(x),

function (pdf),
$$f(x)$$
,
$$f(x) \geq 0 \quad \text{for all x}, \quad \int_{-\infty}^{\infty} f(x) = 1$$

$$P(a < X < b) = \int_{a}^{b} f(x) \, dx$$

ullet The cdf of X is continuous and is given by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Expected Value/Variance/St Dev of Continuous RVs

Definition. Suppose X is a continuous random variable with a pdf f. The **expected value of** X is given by

$$E(X) = \int \chi f(x) dx$$

provided that $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$. Otherwise we say the expectation is undefined. Provided the expected value exists, the variance of X is then defined as

$$Var(X) = E\left[(X - E(X))^2\right] = \int [X - E[X]) dx$$

$$E(X^2) = \int x^2 f(X) dx$$

The standard deviation of X is

$$SD(X) = V M X$$

Properties of Continuous RVs

Suppose X is a continous rv with pdf f and cdf F, and a < b and c are real numbers. Then

(i)
$$P(X=c) = f(c) = F'(c)$$

(ii)

$$P(a \le X \le b) = P(a < X < b)$$

= $P(a < X \le b) = P(a \le X < b)$

(iii) Can write $P(a \le X \le b)$ in terms of cdf, i.e.,

$$P(a \le X \le b) = \text{Flb}-\text{Fa}$$

Expectation/Variance/Quantiles of Functions of RVs

Results. Suppose X is a rv and Y = a + bX. Then

- (a) If mean E(X) exists, then $E(Y) = M + b \in X$
- (b) If mean and variance of X exists, then $Var(a+bX) = \sqrt[b]{2} Var X$.
- (c) If b>0, quantiles are related via $y_q=$ $\alpha + b \times q$
- (c') If b < 0, quantiles are related via $y_q = \alpha + b \chi_{l-q}$
- (d) If h is a strictly increasing function and Y = h(X), then quantiles of Y are given by

$$y_q = h (\chi_q)$$

(d)' If h is a strictly decreasing function and Y=h(X), then quantiles of Y are given by

$$y_q = h(\chi_{\cdot, q})$$

Proof.

Continuous Distribution: Normal Distribution

Definition: Normal Distribution. A pdf f is said to correspond to a normal distribution with a mean of μ and standard deviation of σ if

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$$

Remarks/notation for normal distributions

- If X is a normal rv with parameters μ, σ^2 , write $X \sim \mathcal{N}(\mu, \sigma^2)$
- $\mathcal{N}(0,1)$ is referred to as standard normal distribution and the corresponding pdf and cdf are denoted by ϕ and Φ , i.e.,

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$\Phi(x) = \int_0^x \text{fixed}_x$$

• No nice closed form for Φ , but it is easily computed via R.

More on the Normal Distribution

Expected Value/Variance/Skewness/Kurtosis of

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$E(X) = \mu$$
 $\operatorname{Var}(X) = \sigma^2$ $\operatorname{SD}(X) = \sigma$ $\operatorname{Skew}(X) =$ 因为对称所以是0 $\operatorname{Kurt}(X) = 0$ excess kurtosis

Normal Distribution R-functions

```
dnorm(x, mean=0, sd=1) # density function
pnorm(q, mean=0, sd=1) # cdf
qnorm(p, mean=0, sd=1) # quantile
rnorm(n, mean=0, sd=1) # generates random deviates
```

Can drop the "mean=" and "sd="

Plots/Histograms for Normal Distn

R-code and Output Plots

```
## Plots for Normal Case ##
mii < -1
sigma <- 2
x \leftarrow seg(-6.8, by = .01) # vector of x-values
p \leftarrow seq(0,1, by = .01) # vector of probabilities
n < -1000
dnormo <- dnorm(x, mu, sigma) # pdf values</pre>
pnormo <- pnorm(x, mu, sigma) # cdf values</pre>
qnormo <- qnorm(p, mu, sigma) # quantiles</pre>
rnormo <- rnorm(n, mu, sigma) # random deviates</pre>
# Doing 3 plots and histogram
windows()
par(mfrow=c(2,2)) # setting up for a 2 x 2 arrangement of subplots
plot(x,dnormo,xlab='x',ylab='f(x)',type='l',main='pdf plot')
plot(x,pnormo,xlab='x',ylab='F(x)',type='l',main='cdf plot')
plot(p,qnormo,xlab='p',ylab='quantile',type='l',main='quantile plot')
hist(rnormo,xlab='x',breaks=25,main='Histogram of 1000 Normal(1,2)',freq=FALSE)
par(col="blue")
lines(x,dnormo)
```

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕♀○

Output Plots from R-code

Example.

Example Suppose $X \sim \mathcal{N}(2,2)$ and $Y = e^X$ – find .99-quantile of Y.

Answer.
$$\frac{|y-2|}{\sqrt{52}} \sim (0,1)$$

 $y = e^{-2+\sqrt{52} \cdot 0(0.99)}$

Example Suppose log-return $\tilde{R} \sim \mathcal{N}(0, (.02)^2)$. Derive .01-quantile of log-return and the .01-quantile of the return.

Answer.

Continuous Distribution: Exponential

Definition (exponential distribution). A pdf f is said to correspond to an exponential distribution with parameter λ if it is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

The cdf for $x \geq 0$ is given by

$$F(x) = \int_0^x f(u) du$$
$$= \int_0^x \lambda e^{-\lambda u} du = -\frac{\lambda}{2}$$

and F(x) = 0 for x < 0. A rv X with the above pdf

• is an exponential rv, and write $X \sim \text{Exp}(\lambda)$

More on Exponential Distribution

Expected Value/Variance of $X \sim \mathsf{Exp}(\lambda)$

$$E(X) = \lambda^{-1}$$
 $Var(X) = \lambda^{-2}$
 $SD(X) = \lambda^{-1}$

Exponential Distribution R-functions

• Note that $\mathsf{rate} = \lambda$ R中把 lambda 叫作 rate ,来源于泊松分布

```
dexp(x, rate=a) # density function
pexp(q, rate=a) # cdf
qexp(p, rate=a) # quantile
rexp(n, rate=a) # generates random deviates
```

Continuous Distribution: Double Exponential

Definition (double exponential distribution). A pdf f is said to correspond to a double exponential distribution with mean μ and parameter λ if it is given by

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x-\mu|}$$

The cdf is given by

$$F(x) = \begin{cases} \frac{1}{2}e^{-\lambda|x-\mu|} & x < \mu \\ & \text{本质上通过指数分布转换} \\ 1 - \frac{1}{2} e^{-\lambda|x-\mu|} & x \ge \mu \end{cases}$$

Remark. For rv X with above pdf, write $X \sim \mathsf{DExp}(\mu, \lambda)$.

Pictures

Expected Value/Variance of $X \sim \mathsf{DExp}(\mu, \lambda)$

$$E(X) = M$$
 $Var(X) = \frac{2}{\lambda^2}$
 $SD(X) = \frac{5}{\lambda}$
 $Skew(X) = 0$
 $Kurt(X) = 3$ (两倍正态分布)

Double exponential Distribution R-functions

- These are in startup.R on Canvas put startup.R in R work directory
- Need to do command of source('startup.R')

```
ddexp(x,mu,lambda) # density function
pdexp(x,mu,lambda) # cdf
qdexp(p,mu,lambda) # quantile
rdexp(n,mu,lambda) # generates random deviates
```

Example.

Example Suppose log-return \tilde{R} is double exponential with mean of 0 and standard deviation of .02. Derive the .01-quantile of log-return and the .01-quantile of the return.

Answer.
$$\hat{R} \sim \text{Dexp}(0,.02)$$

$$\lambda = \frac{\sqrt{2}}{0.02} \quad \frac{1}{2} e^{-\lambda x} = 0.01 \quad 9e^{-\frac{\sqrt{202}}{\sqrt{2}}} \ln 0.02$$

$$9e^{-\frac{\sqrt{202}}{\sqrt{2}}} = \frac{e^{-1}}{\sqrt{2}}$$

Generalized Error Distributions

Definition. A rv X has a Generalized Error Distribution with parameter ν if 只有一个参数 关注x的某

parameter
$$u$$
 if 只有一个参数,关注x的幂
$$f_{ged,\nu}(x) = \kappa_{\nu} e^{-\frac{1}{2}\left|\frac{x}{\lambda_{\nu}}\right|^{\nu}}$$

- κ_{ν} and λ_{ν} are constants determined by ν and Var(X)=1 (for more details consult section 5.6 in Ruppert)
- for u=2 have 正态分布 and u=1 have 双指数分布
- can generalize to location-scale family, by

$$Y=\mu+\lambda X$$
 mu越小,tail越heavy

- Now have 3 parameters of μ, λ, ν
- μ is the mean and λ^2 is the variance
- Notation of $Y \sim \mathsf{GED}(\mu, \lambda^2, \nu)$

More on GED-Distribution

Exp Value/Variance/St Dev/Skewness/Kurtosis of GED-RVs

For $X \sim \mathsf{GED}(\mu, \lambda^2, \nu)$

$$E(X) = \bigwedge$$

$$Var(X) = \chi^{2}$$

$$SD(X) = \lambda$$

$$Skew(X) = 0$$

$$Kurt(X) = \sum_{V} \sum_{V}$$

GED-Distribution R-functions (\(\Gamma(3/\(\gamma)\)\)

Above is from package fGarch

Continuous Distribution: Gamma

Definition (gamma distribution) A pdf f is said to correspond to a gamma distribution with parameters $\alpha, \lambda > 0$ if

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where $\Gamma(\alpha)$ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{(\alpha - 1)} e^{-x} dx.$$

- 1 λ is called the scale parameter
- ② lpha is called the shape parameter $^{
 m alpha=1}$ 就是指数分布

If X is a random variable with above pdf, write $X \sim \mathsf{Gamma}(\lambda, \alpha)$.

Plots of Gamma pdf's

若干个指数分布的和

More on Gamma Distribution

Expected Value/Variance/St Dev of Gamma RVs

For $X \sim \mathsf{Gamma}(\lambda, \alpha)$

$$E(X) = \frac{\alpha}{\lambda}$$

$$Var(X) = \frac{\alpha}{\lambda^2}$$

$$SD(X) = \frac{\alpha}{\lambda}$$

Gamma Distribution R-functions

```
dgamma(x, shape, rate=a) # density function
pgamma(q, shape, rate=a) # cdf
qgamma(p, shape, rate=a) # quantile
rgamma(n, shape, rate=a) # generates random deviates
```

Can drop the "rate="

Properties/attributes of Gamma distribution

- Flexible distribution overall shape
 - ullet exponential is a special case with lpha=1
 - relies on $\Gamma(1) = 1$ which is easy to verify
- Sum of iid exponential rvs is gamma If $X_1, X_2, ..., X_n$ are iid $\mathsf{Exp}(\lambda)$, then the sum

$$Y = \sum_{i=1}^{n} X_i \sim G_{\text{amma}}(\lambda, n)$$

• Sum of iid gamma rvs is gamma
If X_1, X_2, \ldots, X_n are iid Gamma (λ, α) , then Gamma需要相同

$$Y = \sum_{i=1}^{n} X_i \sim \operatorname{Ganna}(\lambda, na)$$

• Chi-square with ν degrees of freedom is Gamma $(\frac{1}{2}, \frac{\nu}{2})$ and corresponds to distribution of $\sum_{i=1}^{\nu} Z_i^2$ when $Z_1, Z_2, \ldots, Z_{\nu}$ are iid $\mathcal{N}(0,1)$.

Continuous Distribution: t-distribution

Definition. Suppose $Z \sim \mathcal{N}(0,1)$ and $W \sim \chi^2_{\nu}$ are independent.

Then $X=\frac{Z}{\sqrt{\frac{W}{\nu}}}$ has a t-distribution with ν degrees of freedom, synthesis and has a next given by synthesis.

and has a pdf given by

$$f_{t,\nu}(x) = \left[\frac{\Gamma\left\{\frac{\nu+1}{2}\right\}}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)}\right] \frac{1}{\left\{1 + \left(\frac{x^2}{\nu}\right)\right\}^{\frac{\nu+1}{2}}}$$

可以不是整数

分母会成为 K X(V+1)

- General t distribution with parameter $\nu>0$ denote by t_{ν}
- Scaled t-distribution for $Y = \mu + \lambda X$, where $X \sim t_{\nu}$ and $\lambda > 0$. Notation is $Y \sim t_{\nu}(\mu, \frac{\lambda^2}{\lambda^2})$ and this is classical t^{lambda} $t \in \mathbb{R}$
- There is a standardized t and need to be careful (see textbook), in particular $t_{\nu}^{std}(\mu, \sigma^2)$ corresponds to re-scaled t-distn so as to have mean 0 and variance of σ^2 for $\nu > 2$

More on *t*-Distribution

Exp Value/Variance/St Dev/Skewness/Kurtosis of t-RVs

For $X \sim t_{\nu}(\mu, \lambda^2)$

$$E(X) = M$$
 $Var(X) = \lambda^2 \frac{V}{V-2}$ 需要v>2
 $SD(X) = \lambda \int \frac{V}{V-2}$
 $Skew(X) = 0$
 $Kurt(X) = \frac{b}{V-4}$ 需要v>4

t-Distribution R-functions

```
dt(x, df) # density function 都是standardize的t pt(q, df) # cdf qt(p, df) # quantile rt(n, df) # generates random deviates
```

Invoke "help(TDist)" in R for more information

Heavy-Tailed Distributions

Remark. Often the rvs X will represent

- Stock price
- Bond price
- Currency exchange rate
- Insurance claims
- Aggregate price of stocks
 - SP500
 - Russell 2000

收益率:

$$f_r(x)=f_x(-x)$$

F $r(x)=1-F_x(-x)$

Dow Jones Industrial Average

Remark. From the viewpoint of risk, focus is often on the tail probabilities – for example if X is your loss (negative return), interested in

$$P(X > x) = 1 - F(x).$$

The above is called a tail probability

Pictures

Overview of Value-at-Risk - VaR

Example. Value-at-Risk VaR The basic idea of VaR is that it helps to quantify the amount of capital needed for covering a loss in a portfolio. Consider the following: Var说明了在给定概率下,可能亏损的最大值估计loss的分布,再进行投资

$$P_t$$
 = value of portfolio at time t
$$P_{t+\triangle t} = \text{value of portfolio at time } t + \triangle t$$

$$\underline{R_t} = \frac{P_{t+\triangle t} - P_t}{P_t} = \text{net return at time } t + \triangle t \text{ 也是时刻的风险}$$

$$q = \text{(small) probability of not covering losses}$$

The Value-at-Risk at time t, VaR $_t$, is defined by

$$P\left(P_{t+\triangle t}-P_t+\mathsf{VaR}_t<0\right)=P\left(R_t+\mathsf{VaR}_t<0\right)=q$$
 where
$$= \bigcap_{\mathbf{VaR},\mathbf{E}} \mathbf{VaR}_t = \frac{\mathsf{VaR}_t}{P_t} = \mathsf{relative} \; \mathsf{Value-at-Risk}$$

More on Value-at-Risk - VaR

Remark. By previous slide,

- (i) $-VaR_t$ is the q-quantile of the distn of raw return $P_{t+\triangle t}-P_t$
- (ii) $-VaR_t$ is the q-quantile of the distn of return R_t

Remark. For this class sometimes consider log-returns, i.e.,

$$\tilde{R}_t \equiv \log \left[\frac{P_{t+\Delta t}}{P_t} \right] \approx R_t$$

where the approximation is justified when R_t is relatively close to

0. Can always convert quantiles for \tilde{R} to quantiles of R easily.

Log(Gross Return) vs Net Return

Formulas

Notation/Shortfall Distribution

- Given a target probability q, and if time t is fixed, we may drop t and write VaR_a 这里的X是loss
- Suppose X represents loss (negative return). Then given a level q, the CDF of the shortfall distribution is defined by

$$\Theta_q(x) = P(X \le x | \underline{X > VaR_q}) = \frac{\text{P[VaR < X \le VaR_q)}}{\text{P[VaR < X)}}$$

Expected shortfall

ted shortfall
$$= \frac{F(x) - F(V \cap R_q)}{(-F(V \cap R_q))}$$

$$ES_q = E(X|X > VaR_q) = \frac{1}{q} \int_{x > VaR_q} x f(x) \, dx$$

$$= \underbrace{F(x) - F(V \cap R_q)}_{x > VaR_q}$$

Risk Analysis focused on estimation of VaR_q and ES_q .

用VaR转换表示shortall分布

Example. Suppose portfolio value is currently 100 million dollars and $\alpha = .01$.

- (a) Suppose that distribution of return R_t is normal with a mean of .02 and a standard deviation of .03. Derive VaR and VaR.
- (b) Suppose that distribution of return R_t is DExp with a mean of .02 and a standard deviation of .03. Derive VaR and VaR.
- (c) Derive the shortfall distribution and expected shortfall for parts (a) and (b).

注意负号

(c)
$$F(x) = \frac{[N(0.0), 0.03) - 0.99}{0.01}$$

 $f(x) = \frac{f_N(0.02, 0.03)}{0.01}$
 $F(x) = \frac{f_N(0.02, 0.03)}{0.01}$

Tail probabilities 1-cdf: 大于x的概率

• For double-exponential distribution with mean μ and scale parameter λ , tail probability is

$$1 - F(x) = \frac{1}{2}e^{-\lambda|x-\mu|}$$

For normal distribution, tail probability is

$$1 - F(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\sim \frac{\sigma}{\sqrt{2\pi}x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ as } x \to \infty$$

where the similar (\sim) notation here means that

ratio converges to 1,
 因此不是heavy tail
$$\frac{1-F(x)}{\frac{\sigma}{\sqrt{2\pi}x}e^{-\frac{(x-\mu)^2}{2\sigma^2}}}\to 1 \quad \text{ as } x\to\infty.$$

Remark. In both cases, the tail probabilities go to 0 exponentially fast. There are cases where the tail probabilities go to 0 slower than exponential.

Background: Similarity of Tail Probabilities

Remarks.

- For double exponential, normal distribution, and GED, the tail probabilities go to 0 exponentially fast.
- A number of models for financial data involve tail probabilities that go to 0 slower than exponential
 - In some widely utilized models, tail probabilities go to 0 inversely related to a polynomial – example would be

$$1 - F(x) \sim \frac{1}{x^p} \quad \text{as } x \to \infty$$

where p > 0

Remark. Want to investigate for two different cdfs F and G whether tail probabilities are similar, i.e., $(1-F(x))\sim (1-G(x))$. To do this we need a definition of functions being similar at ∞ .

Comparison of GED with t-distribution

Implications for fitting tails vs. main body of distributions

Continuous Distribution: Pareto

Definition: Pareto Distribution. A pdf f is said to correspond to a Pareto distribution with location parameter of μ and shape parameter a > 0 if

$$f(x) = \frac{a\mu^a}{x^{a+1}}$$

The cdf is given by

$$F(x) = \int_{-\infty}^{x} f(u) du$$

$$= \begin{cases} -\frac{M}{2} & \text{30 Spotail} \\ 0 & \text{XCM} \end{cases}$$

••

Notation: If X has Pareto distribution with parameters of μ, a , write $X \sim \mathsf{PD}(\mu, a)$.

Pictures:

Continuous Distribution: Generalized Pareto

- There is a Generalized Pareto distribution
- The parameterization of the generalized Pareto distribution is not a simple "generalization" of Pareto

Definition: Generalized Pareto Distribution. The pdf f for the Generalized Pareto distribution with location parameter of μ , shape parameter $\xi > 0$, and scale parameter $\sigma > 0$ is

$$f(x) = \frac{1}{\sigma} \left(1 + \frac{\xi(x - \mu)}{\sigma} \right)^{\left(-\frac{1}{\xi} - 1 \right)}$$
 $x \ge \mu$

The cdf is given by
$$F(x) = \begin{cases} 1 - (1 + \frac{e(x-\mu)}{6}) \\ 0 \end{cases}$$

$$\chi \in M$$

Notation: If X has generalized Pareto distribution with $G = \frac{1}{n}$ parameters of μ, ξ, σ , write $X \sim \mathsf{GPD}(\mu, \xi, \sigma)$.

More on the Generalized Pareto Distn

越大tail越heavy, tail很light
 的时候可以达到double
 exponential

Remark. The tail probabilities for $X \sim \mathsf{GPD}(\mu, \xi, \sigma)$ are

$$1 - F(x) = \left(1 + \frac{\xi(x - \mu)}{\sigma}\right)^{-1/\xi} \times \longrightarrow \infty$$

$$\sim \left[\frac{\xi(x - \mu)}{6}\right]^{-\frac{1}{\xi}} \sim \left[\frac{\xi x}{6}\right]^{-\frac{1}{\xi}} = \frac{\xi^{-\frac{1}{\xi}}}{\xi^{-\frac{1}{\xi}}} \left(\frac{1}{x}\right)^{\frac{1}{\xi}}$$

Relationship be Pareto/Generalized Pareto It can be shown $\Im \pi$ that the Pareto distribution $PD(\mu, a)$ and the generalized Pareto distribution $PD(\mu, \xi, \sigma)$ are equal when

$$\xi = \frac{1}{\alpha}$$
 and $\sigma = \frac{M}{\alpha}$

Generalized Pareto Distribution R-functions

- Must install fExtremes package
- Then do command of library(fExtremes)

```
dgpd(x, xi = 1, mu = 0, beta = 1, log = FALSE) # density function
pgpd(q, xi = 1, mu = 0, beta = 1, lower.tail = TRUE) # cdf
qgpd(p, xi = 1, mu = 0, beta = 1, lower.tail = TRUE) # quantile
rgpd(n, xi = 1, mu = 0, beta = 1) # generates random deviates
```

Note that "beta" is same as our "sigma"

Limit of Generalized Pareto - $\xi \to 0$

Remark. The tail distribution of $GPD(\mu, \xi, \sigma)$ satisfies

$$(1 - F(x)) \sim \left(\frac{\xi}{\sigma}\right)^{-\frac{1}{\xi}} \cdot \frac{1}{x^{\frac{1}{\xi}}}$$

- As $\xi \to 0$, tails becoming lighter and lighter as polynomial power $\frac{1}{\xi}$ increases
- For $\mu=0$, the limit of the Generalized Pareto distribution as $\xi \downarrow 0$ is the exponential distribution derived from simple limit result in mathematics that

$$\lim_{M \to \infty} \left(1 + \frac{\beta}{M} \right)^M = e^{\beta}$$

Remark Assuming that $\mu = 0$, can show that

$$\lim_{\xi \to 0} (1 - F(x)) = \lim_{\xi \to 0} \left(\left| H \frac{\xi x}{6} \right|^{-V\xi} \right) = e^{-\frac{\lambda^2}{6}}$$

i.e., tail distribution is like an . Exp

Example: Plots of Tail Probabilities

Remark. Below is plot of tail probabilities for normal, exponential, and Pareto

• Normalized to starting point of (1 - F(4)), i.e., plotting conditional probability of $P(X \ge x | X \ge 4)$

Pareto Tail Distributions

Remark. Often people are most interested in the tails of a distribution (related to risk).

Definition. A rv X is said to have a Pareto (right) tail distribution if

$$1 - F(x) \sim$$
 多项式tail

Remark. Often people are most interested if distribution X looks Pareto/Generalized Pareto in the "tail" part of the distribution

 Willing to emphasize less the fit of the distribution in the middle

Example Suppose

$$F(x) = 1 - \frac{e^{\frac{1}{x^2}}}{e \cdot x^2}$$

What is the approximate tail distribution?

$$x > 1$$

$$x \to \omega \longrightarrow |-F(x) = \frac{1}{e^{x^2}}$$

Answer. Pareto Tail

Transformations of Random Variables

Linear Transformations of Normal RV

Theorem. Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$, b is any real number, a > 0, and Y = aX + b. The $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Corollary. Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$ and

$$Z = \frac{X - \mu}{\sigma}$$

Then Z is standard normal, i.e., $Z \sim N(0)$

Linear Transformations - Uniform/Double Exp/Pareto RVs

Remark. There are similar results for uniform, double exponential, GED, t, and Pareto rvs. a>0