Problem A. 远哥迟到的七夕礼物

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

远哥十分热爱 ACM,常常因此没时间陪伴他的小姐姐。这不,远哥七夕的时候还在多校赛训练,这让小姐姐十分苦恼。于是,远哥现在想补给她的小姐姐一份七夕礼物。远哥听说在遥远的地方有一片仙境,仙境中散落了许多星星,这些星星有一个美好的诅咒,收集到了这里的所有星星就能和小姐姐定终身。

远哥来到了这片仙境,他发现所有星星散落在不同的云上。远哥不会飞,但他有一种魔法: 如果有 n 片云,他可以给每片云按照 $1 \sim n$ 进行编号(不可重复),然后他可以给任意两片云之间建一条路,建一条路的花费为这两片云编号的按位与或者按位异或的值(远哥可以自己选择),远哥想收集所有的星星,你能帮他算出他的最小花费吗?

远哥可以靠轻功先到达任意一片云。但之后就不能再使用了,想移动只能靠他的魔法了。

Input

一个整数 n, $(2 \le n \le 10000)$, 表示有 n 片云。

Output

一个整数表示远哥的最小花费。

Examples

standard input	standard output
2	0
3	1

Note

假设两片云的编号为 1 和 2,那么给这两片云建一条路的花费可以是:选择按位与: 1&2=0选择按位异或: $1\oplus 2=3$

Problem B. 罗老师修车

Input file: standard input
Output file: standard output

Time limit: 2 seconds
Memory limit: 512 megabytes

罗老师非常热心,不仅在训练中,生活中也是如此。

有一天,罗老师在路上看到一位女同学的自行车坏了,便欣然上去帮忙。得知是这位女同学自行车的车架坏了,罗老师想亲自帮她焊上以展现自己的高 *chao* 水准。已知自行车的车架是一个三角形,所以罗老师需要三根铁棒,于是他去找修车师傅帮忙。

修车师傅很坏,他不会直接给罗老师三根可以组成三角形的铁棒。他给了罗老师一堆长度已知的铁棒,编号为 $1 \sim n$,并且让他在编号为 [l,r] 这个区间里面拿三根。这样的操作会有多次,拿过的铁棒要放回原来的位置(别问为什么)。同时,修车师傅有时候还会替换其中一根铁棒。罗老师不知道什么样的三根铁棒可以组成一个三角形,于是他只能随便拿三根。聪明的你能否帮帮罗老师,在罗老师随便拿的情况下,能否每次都拿到三个可以组成三角形的铁棒呢?

Input

第一行为两个整数 n, m, 表示有 n 根铁棒, $1 \le n \le 200000$; m 次操作, $1 \le m \le 50000$ 。

接下来有 n 个数 a_i , $(1 \le a_i \le 10^9)$, 表示初始时候每根铁棒的长度。

接下来有m行,每行表示一次操作,每行有三个数,opij。

当 op 为 0 时,表示修车师傅要替换位置 i 的铁棒为长度 j,即使得 $a_i = j$ 。

当 op 为 1 时, 你需要回答出在 [i,j] 这个区间内, 罗老师任选三根铁棒能否组成三角形。 $(j-i+1 \ge 3, 1 \le i \le j \le n)$ 。

Output

当 op = 0 时,你只需要在你的程序中修改一些信息,无需输出。

当 op = 1 时,如果罗老师任取三根铁棒能够组成三角形,输出"llsnb!",否则输出"llsml!"。

Examples

standard input	standard output
5 3	llsml!
1 2 3 4 5	llsml!
1 1 5	
0 4 5	
1 2 4	
6 6	llsml!
1 2 3 4 5 6	llsnb!
1 1 3	llsml!
1 4 6	llsnb!
0 6 9	
1 4 6	
0 2 3	
1 2 4	

Problem C. Petrichor_x 爱打牌

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

众所周知,Petrichor_x 是个不爱动脑筋的小孩,他现在又遇到了一个问题,你能帮帮可怜无助又弱小的他吗?

现在问题背景是这样的:

在某个月黑风高的夜晚,Petrichor_x 因为太过于饥肠辘辘,就和室友合点了一份外卖。然而不幸的是,由于时间太晚,外卖小哥被保安叔叔拦在了新世纪外。

那么现在问题来了!由于 Petrichor_x 很懒惰, Petrichor_x 想与室友通过打牌的方式决定谁去拿外卖。 为了尽早去拿外卖, Petrichor_x 决定速战速决,制定了一个新的获胜规则:

每个人抽一些牌,然后选取其中的一些牌打出,使得打出的牌中任意两张牌的点数都 **不互质**。最后打出卡牌数量较多的一方获得胜利。

现在 Petrichor_x 抽到了 n 张牌,为了能获胜,你帮他计算出所能打出的最多卡牌数量吗?

Input

第一行为一个整数 $n(1 \le n \le 20)$,表示 Petrichor_x 抽到的卡牌数量。接下来的一行为 n 个整数 $a_i(1 \le a_i \le 10^9)$,表示第 i 张牌的点数。

Output

输出一个整数,表示 Petrichor_x 所能打出的最多卡牌数量。

Examples

standard input	standard output
1	1
2	
5	2
72 81 47 29 97	

2019 暑期集训新队员选拔赛第 5 场上海大学, 2019 年 8 月 22 日

Problem D. 996

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

近日,996 的话题被热烈讨论,作为某 IT 行业的老板,决定在公司设立一段时间让公司职员放假。

老板决定每天至多只让一位员工进行加班,其他员工可以按点下班,但当有员工在加班时,不允许有员工放假。

员工在两次加班之间一定要放假一天(即一天都不用来上班)。

每天只能允许一位员工放假,并且当天不能有员工加班。

所以现在老板手上有一份加班表, 问老板的放假计划能否实现。

Input

第一行有两个数 n, m , n 表示总天数, m 表示员工总数, 员工编号为 $1 \sim m$. $(1 \leq n, m \leq 10^6)$

第二行有 n 个整数 $a_1,a_2,...,a_n$ $(0 \le a_i \le n)$, a_i 表示第 i 天需要加班的员工的编号。如果 $a_i = 0$ 表示 当天没有员工加班。

Output

假如老板的放假计划可以实现,输出 "YES",否则输出 "NO"。

Examples

standard input	standard output
4 2	YES
0 1 0 2	
4 2	NO
0 1 1 0	
3 2	NO
1 0 1	
3 2	NO
0 1 2	

Note

在放假开始前,每个员工都是强制加班的

对于第一个样例:一共有 4 天,有 2 名员工,老板可以安排 1 号员工在第一天放假,第二天加班,2 号员工在第三天放假,第四天加班。所以输出 "YES"

对于第二个样例,一共有 4 天,有 2 名员工,1 号员工在第二天加班与第三天加班之间没有机会放假,所以输出 "NO"

对于第三个样例,一共有 3 天,有 2 名员工,由于放假前员工都是加班的,所以可以认为所有员工第 0 天都在加班,所以对于 1 号员工在第零天加班与第一天加班之间没有机会放假,所以输出 "NO"

对于第四个样例,一共有3天,有2名员工,因为1号员工在第2天需要加班,所以在第1天1号员工需要放假。而2号员工在第3天需要加班,所以在此之前他也需要放假,但是,第1天1号员工需要放假,所以2号员工不能在这一天放假,第2天1号员工需要加班,所以2号员工也不能放假,所以2号员工在第零天加班与第一天加班之间没有机会放假,所以输出"NO"

Problem E. 重修监察寮

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

在 xx 上任后, 他想重新修建分布在各地的监察寮。他希望每座监察寮之间的距离在 d 以内。

而重修一座监察寮的方式如下:

假设原来监察寮建在 a_i , 现在的监察寮建在 a'_i 的位置,

则需要保证 $|a'_i - a'_{i+1}| \le d, (1 \le i \le n-1)$

重修每座监察寮的成本为 $|a_i - a_i'|$ 。

由于他不希望在这个工程上开支过大,所以希望修建成本最小,问是否存在这样的修建方案,如果有,最小成本是多少。

要求 a_1 与 a_n 的位置不能改变,同一个位置可以修建多个监察寮。

Input

第一行有 2 个整数 n,d ,n 表示监察寮的数量,d 表示重修后每座监察寮之间最远的距离 $2 \le n \le 100, 0 \le d \le 10^9$

第二行有 n 个整数 $a_1,a_2,...,a_n$, $a_i(0 \le i \le n)$ 表示原先监察寮的位置 $1 \le a_i \le 10^9$

Output

如果不存在可行方案,则输出"impossible"。

否则,输出一个正整数,表示修建的最小成本。

Examples

standard input	standard output
3 1	impossible
6 4 0	
4 2	4
3 0 6 3	

Note

 a_1 与 a_n 的位置不改变

Problem F. Petrichor_x 的课堂测验

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

众所周知,Petrichor_x 是个不爱动脑筋的小孩,他现在又遇到了一个问题,你能帮帮可怜无助又弱小的他吗?

现在问题背景是这样的:

在某日的微积分课堂测试中,高数老师出了这样一个问题:求解 $\frac{1}{\pi} \int_0^{+\infty} (\frac{1}{a^2+x^2})^b \mathrm{d}x$ 而愚蠢的 Petrichor_x 只知道 $\int_0^{+\infty} \frac{1}{1+x^2} \mathrm{d}x = \frac{\pi}{2}$,为了不让可怜的 Petrichorx 挂科,你能帮帮他吗?可被证明答案必为有理数 $\frac{P}{Q}$,请输出 $(P \cdot Q^{-1}) \mod (10^9+7)$ 。

Input

第一行为两个整数 a, b $(1 \le a \le 10^9, 1 \le b \le 10^7)$

Output

输出一个非负整数,表示答案。

Examples

standard input	standard output
1 1	50000004
2 5	996055610

Note

对于样例一而言,我们求得的积分结果是 $\frac{1}{\pi}\int_0^{+\infty}\frac{1}{1+x^2}\mathrm{d}x=\frac{1}{\pi}\frac{\pi}{2}=\frac{1}{2}$ 。 $\frac{1}{2}\mod(10^9+7)=1\cdot 2^{-1}\mod(10^9+7)=500000004$,其中 2^{-1} 是指 2 在模 10^9+7 意义下的逆元。

Problem G. 魔塔

Input file: standard input
Output file: standard output

Time limit: 3 seconds
Memory limit: 512 megabytes

从前有一位公主被魔王困在了一个魔塔之中,从远方来了一个骑士,想将公主救出魔塔。

在这个魔塔中有许多怪兽和药、骑士需要与怪兽战斗才能救出公主。

但是怪兽都很笨,只能待在一个格子之中,只有当骑士想要经过这个格子时,才会与其战斗,而骑士必须迎战,只有当骑士目前的血量大于与怪兽战斗消耗的血量时,骑士才能顺利经过这个点。与怪兽战斗 需要消耗一定的时间。

当骑士经过有药的点,骑士可以选择喝下这瓶药来回复自己的血量,但这需要消耗一定的时间;也可以 选择不喝,不喝不会消耗时间。

这些怪兽和药都是依靠魔王的魔力支持的,所以当骑士离开某个存在怪兽或药的格点时,该格点的怪兽与药可以**重生**。骑士每走过一个格子,都需要1的时间(喝药与打怪的时间另算)。

对于任意一个格点、保证只有一个怪兽、或者只有一瓶药、或者什么都没有。

保证骑士的起点位置与公主所在的位置不会存在怪兽或者药。

骑士在起点时是满血状态,问骑士救出公主所需的最短时间。

Input

第一行有 5 个整数 n, m, h, c, d: n, m 表示这个宫殿的长和宽; h 表示该骑士的最大血量, c 表示怪兽的数量, d 表示药的数量。 $(1 \le n, m, h \le 50, 1 \le c, d \le 2500)$

第二行有 4 个整数 sx, sy, tx, ty: 分别表示骑士的起点位置与公主所在的位置(保证这两个位置上不会存在怪兽或者药。 $(1 \le sx, tx \le n, 1 \le sy, ty \le m)$

接下来有 c 行,每一行会有 4 个整数,x,y,z,t:x,y 表示怪兽在宫殿中的位置,z 表示骑士与其战斗所消耗的血量,t 表示骑士与其战斗所花费的时间。 $(1 \le x \le n, 1 \le y \le m, 1 \le z \le 50, 1 \le t \le 10^5)$

接下来有 d 行,每一行会有 4 个整数,x,y,z,t:x,y 表示药在宫殿中的位置,z 表示骑士喝药后回复的血量,t 表示骑士喝药所花费的时间。 $(1 \le x \le n, 1 \le y \le m, 1 \le z \le 50, 1 \le t \le 10^5)$

Output

输出一个整数,假如骑士可以在 10^5 (含 10^5)的时间内见到公主,输出最短时间;如果骑士不能在这个时间内见到公主,或者无法继续前行,输出-1

Example

standard input	standard output
3 4 15 6 3	10
1 1 3 4	
1 2 10 5	
1 3 8 3	
1 4 5 6	
2 1 20 5	
3 2 20 5	
3 3 20 5	
2 2 10 3	
2 3 5 2	
2 4 2 9	

2019 暑期集训新队员选拔赛第 5 场 上海大学, 2019 年 8 月 22 日

Note

怪兽与药均可无限重生,喝药必须喝完,但骑士喝药后回复到的血量不能超过骑士的最大血量,骑士的血量不能为 0 或负。

大家可能迷宫走多了,这个迷宫没有障碍物。

Problem H. Petrichor_x 的简单数论

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

众所周知,Petrichor_x 是个不爱动脑筋的小孩,他现在又遇到了一个问题,你能帮帮可怜无助又弱小的他吗?

现在问题背景是这样的:

那是在临近期末考的某一日, Petrichor_x 在复习数论的时候发现了这样一个问题:

给定一个素数 p, 以及 n 个非负整数 $a_1, a_2, ..., a_n$, 请问有多少对 $i, j (1 \le i < j \le n)$ 能够满足 $a_i^2 + a_j^2 \equiv k - a_i \cdot a_j \pmod{p}$ 。

Petrichor_x 百思不得其解,只好向聪明的你们来请教做法。

Input

第一行包含 3 个整数 $n, p, k (1 \le n \le 10^5, 2 \le p \le 10^9, 0 \le k \le p-1)$,保证 p 为质数。接下来的一行为 n 个非负整数 $a_i (0 \le a_i < p)$

Output

输出一个非负整数,表示答案。

Examples

standard input	standard output
2 37 5	1
30 10	
3 3 2	0
0 1 2	
10 17 11	2
1 2 3 4 5 6 7 8 9 10	

2019 暑期集训新队员选拔赛第 5 场上海大学, 2019 年 8 月 22 日

Problem I. Ei

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

这道题你们肯定非常熟悉,因为它前天已经出现过了。

"4*2 等于多少?""8!""Ei!"

"蔡队你号码多少啊?""15Eixxxxxxxx!"

小蔡同学总是梦想着当别人的爸爸,于是当别人说出"8"时,他总会应一声"Ei!"。可是小蔡同学又不想被别人以其人之道还治其人之身,于是当他需要说出"8"时,他会自己把"8"说成"Ei"。

那么现在问题来了,当小蔡同学想要说出一段含有"8"的话时,有时候他会反应不过来,所以你能告诉他应该说什么吗?

然而小蔡同学说出来之后,大家又听不懂了,你又能否告诉大家他本来想说的是啥?

Input

一个字符串 S, $1 \le |S| \le 300000$ 。

保证输入的字符均为 ASCII 可见字符。

Output

如果输入的字符串中含有"8",那么说明这个字符串是小蔡同学想说的,你需要输出他实际说出来的字符串。

如果输入的字符串中含有 "Ei", 那么说明这个字符串是小蔡同学实际说出来的, 你需要还原出原本的字符串。

Examples

standard input	standard output
LIN88	LINEiEi
13Eixxxxxxxx!	138xxxxxxxx!

Note

保证以上两种情况只会出现一种。