Name:	
Class:	

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 3

JUNE 2009

MATHEMATICS Extension 1

Time Allowed:

70 minutes

Instructions:

- Write your name and class at the top of each page.
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Standard integrals can be found on the last page.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/10	/11	/10	/10	/11	/11	/63

Q۱	iestion	1		Marks
a)	Solve	$log_e x + l$	$og_e(x-3) = log_e 4$	3
b)	b) Evaluate and leave in exact form			
	(i)	$cos^{-1}(\frac{1}{2})$	$(\frac{\sqrt{3}}{2})$	1
	(ii)	sin (2 <i>co</i>	$2S^{-1}\frac{4}{5}$	2
c)	Find	(i)	$\int \frac{2}{9+x^2} dx$	2
		(ii)	$\int \frac{dx}{\sqrt{1-9x^2}}$	2

Question 2

- a) Consider the function $f(x) = 8x x^2$
 - (i) Sketch y = f(x) clearly showing the x and y intercepts and the vertex.
 - (ii) State the largest domain containing x = 8 for which f(x)
 - has an inverse function, $f^{-1}(x)$ 1
 - (iii) State the domain of $f^{-1}(x)$
 - (iv) Find the equation of $f^{-1}(x)$ 2
 - (v) For what value(s) of x does $f(x) = f^{-1}(x)$?
 - (vi) Evaluate $f^{-1}(f(-1))$ 1
- b) Sketch the function $y = sin^{-1}x$ showing clearly the domain and range. 2

Ques	tion 3		Marks
Diffe	rentiate		
(i)	$y = e^{3x} log_e 3x$		2
(ii)	$y = log_e(\frac{x-2}{x})$		2
(iii)	$y = log_3 x$		2
(iv)	$y = log_e(cos x)$	(give answer in simplified form)	2
(v)	$y = \tan\left(\log_e x\right)$		2
Quest	ion 4		

(ii) Use this result or otherwise to evaluate
$$\int_0^{\frac{\pi}{4}} \sin^2 2x dx$$
 3

b) Differentiate
$$sin^2 3x$$
 and hence evaluate $\int_0^{\frac{\pi}{6}} sin 3x cos 3x dx$ 3

Find the shaded area and leave it in exact form.

- a) Find the general solution for $sin\theta = \frac{1}{\sqrt{2}}$
- b) Differentiate (i) $y = tan^{-1}3x$

$$(ii) y = sin^{-1}(cosx)$$
 2

- c) Sketch $y = 1 3\sin 2x$ between $0 \le x \le 2\pi$
- d) Sketch $y = cos^{-1}(cos x)$ 2

Question 6

- a) A spherical balloon is being inflated so that the surface area is increasing at the rate of $0.3cm^2s^{-1}$. When the balloon's radius is 4cm, find the rate of increase. $v = \frac{4}{3}\pi r^3$, $SA = 4\pi r^2$
- i) In the radius (correct to 3 decimal places) 2
- ii) In the volume (correct to one decimal place)
- b) In the diagram, a vertical pole AB, 3 metres high, is placed on top of a 1 metre high support. The pole subtends an angle of θ radians at the point P, which is x metres from the base O of the support.

- (i) Show that $\theta = tan^{-1}\frac{4}{x} tan^{-1}\frac{1}{x}$
- (ii) Show that θ has a stationary point when x = 2. 3
 Assume it is a maximum.
- (iii) Deduce that the maximum angle subtended at P is $\theta = tan^{-1} \frac{3}{4}$.

Teacher's Name: they intersect on $x = 8x - x^{2}$ = 4+ 116--9 x(x-7)=0 $x=7 \Rightarrow (7.7)$ b) y = sin-1 x Ovestion 3 (ci) $y = e^{3x} \log_e 3x$ $y' = e^{3x} \times 3x + 3e^{3x} \log_e 3x$ = ex + 3e3xt09e35c = $\log e(x-2) - \log ex$ $y = \frac{\log ex}{\log e3}$ (iv) y = loge(cos sc) (v) y = tan(loge x)= sec? (loge x) x x. sec²(loge sc) V' = -tanx

Teacher's Name: Student's Name/N°: Question 4 9)(i) $Sin^2x = \frac{1-\cos 2x}{2}$ b) $dx(sin^23x) = 2sin3x cos3x \times 3$ $\frac{1}{2\pi} = \frac{6\sin 3x \cos 3x}{\sin^2 3x} = \frac{6\sin 3x \cos 3x}{\sin^2 3x}$ uij Ssin22xdx = Jo sin3xcos3xdx LHS = $\frac{1}{6} \left[\sin^2 3x \right]^{\frac{1}{6}}$ = 6 (sin =) $= 2e^{2} - (e^{2} - e^{0})$ $= e^{2} + 1$ Question 5 a) $\sin \theta = \sqrt{2}$ b) ci) y = tan-13x 0= NT + (-1)1x4 $\frac{1}{1}$ $\frac{1}$

Feacher's Name:	Student's Name/N°:	
c) $y = 1 - 3\sin 2x$	y) y = 0	$os^{-1}(cos x)$
Period IT, Ampli	tude 3 Dom	gin: All real X
4	Rang	je: 0 ≤ y ≤ TT - cos x is even, so
1 / / / /		
T 11 21 21	<u>-</u> → 1s	y,
-2 1 2		
		7
		T
Question 6	an come in the second comment of the comment of	
$\frac{dA}{dt} = 0.3$	1=4 TC2 (ii) of	$= \frac{dr}{dr} \times \frac{dr}{dr}$
\$00,000 to the second to the s	X Y 3 444 4 - 27 YT ABANTSHARATORIUS AND A 1444414	
$\int dA = dA \times 0$	(<u>r</u> /+	= 4 _T r ² x 0.003 = 4 x T x 4 ² x 0.003
0.3 = 8 m c c	7	$= 0.6 \text{cm}^3/\text{s}$
0'3 = 8 TT x = 0.3 AT = 0.3 8 × TT x 4		
dr = 0.003c	<u>n/s</u>	
4		
(b) ci) tan & BPO = x	$\Rightarrow \angle BPO = fan^{-1}$	$\frac{4}{5C}$ $0 = \angle BPO - \angle AP($
tan LAPU = 3	c = 2 / APO = tan	1 5c : 0 = tan 12r - tan 1
$\frac{40}{2}$		(iii) Sub. $x = 2$ into
$\begin{array}{ccc} cii) & \frac{d0}{dx} & = & \frac{4}{x^2} \\ & & & \\ \hline & & & \\ \hline & & & \\ \end{array}$	1+(支)2	
1	,	0 - tan-12 - tan-12
x2+16	x2+1	tan0 = tan tan-12-tan-
$=-4x^2$	$-4+x^2+16$	tan (tan-12)-tan(t
$(x^2$	+ (6)(302+1)	$= 1 + \tan(\tan^{-1}2) \tan(1$
Jac - U it	$-3x^2 + 12 = 0$	J ← 5
Comment of the Commen	$x^2 = 4$ $x = 2 (x > 0)$	- 1 + 2 x \frac{1}{2}
	12-2, (270)	- 12