ゼミノート#1

Etale Morphisms

七条彰紀

2018年9月27日

[1]

1 定義

- 定義 1.1 (Infinitesimal Thickening, Formally Smooth/Unramified/Etale) (i) $i: Y_0' \hookrightarrow Y' ::$ closed embedding について,defining ideal :: $\ker i^\#$ が nilpotent †1であるとき, Y_0' を Y' の infinitesimal thickening(無限小肥大?)と呼ぶ.あるいは i を infinitesimal thickening と呼ぶ.
 - (ii) Y' :: affine Y-scheme, $Y'_0(\hookrightarrow Y')$:: infinitesimal thickening of Y' とする. $f: X \to Y$ について,以下の図式を見よ.

この時,次の写像が定まる.

$$\begin{array}{cccc} \operatorname{Hom}_Y(Y',X) & \to & \operatorname{Hom}_Y(Y_0',X) \\ & \to & \mapsto & \to \end{array}$$

この写像が surjective injective であるとき, それぞれ formally smooth, formally unramified, formally etale という.

定義 1.2 ((Locally) Of Finite Presented Module/Algebra/Sheaf/Morphism)

(i) R-module :: M が finitely presented module であるとは、次の完全列が存在すること.

$$A^{\oplus r} \longrightarrow A^{\oplus s} \longrightarrow M \longrightarrow 0$$

- (ii) surjective ring homomorphism :: ϕ : $R[x_1,\ldots,x_s] \to A$ が存在し、 $\ker \phi$ が finitely generated ideal であるとき、A :: finitely presented R-algebra (of finite presentation over R) という.
- (iii) \mathcal{F} :: quasi-coherent sheaf on a scheme X とする. \mathcal{F} :: locally finitely presented とは、任意の affine open subscheme of X :: Spec $A \subseteq X$ について, $\Gamma(\operatorname{Spec} B, \mathcal{F})$ が finitely presented B-module であること.

^{†1} i.e. $\exists n > 0$, $(\ker i^{\#})^n = 0$

- (iv) $f: X \to Y$:: locally of finite presentation であるとは、任意の $\operatorname{Spec} B \subseteq Y$ と $\operatorname{Spec} A \subseteq f^{-1}(\operatorname{Spec} B)$ について、A :: finitely presented B-algebra であるということ、あるいは(同値な条件として)、affine open cover of Y :: $Y = \bigcup_i \operatorname{Spec} B_i$ が存在して、任意の $\operatorname{Spec} A_{ij} \subseteq f^{-1}(\operatorname{Spec} B_i)$ について、 A_{ij} :: finitely presented B_i -algebra であるということ、
- (v) $f: X \to Y$ が quasi-compact であるとは、任意の affine open subset of X :: Spec A について $f^{-1}(\operatorname{Spec} A)$:: quasi-compact であること。あるいは(同値な条件として)、affine open cover of Y :: $Y = \bigcup_i \operatorname{Spec} B_i$ が存在して、 $f^{-1}(\operatorname{Spec} B_i)$:: quasi-compact であること。
- (vi) $f: X \to Y$ が quasi-separated であるとは、また diagonal morphism :: $\Delta: X \to X \times_Y X$ †2 が quasi-compact であること、
- (vii) $f: X \to Y$ が locally of finite presentation かつ quasi-compact かつ quasi-separated である時, f: finitely presented という.

環 R や scheme :: Y を noetherian とすれば、(locally) of finite presentation と (locally) of finite type は 同値に成る. 一般に (locally) of finite presentation の方が強い条件である(例を参照せよ).

定義 1.3 (Smooth/Unramified/Etale)

morphism :: $f: X \to Y$ は、formally smooth / unramified / etale かつ finitely presented ならば smooth / unramified / etale という.

unramified については、finite type のみ要求する定義もある. finitely presented を要求するのは EGA からのもので、我々が主に参照している [3] もこの定義を取っている.

2 定義に対する例

例 2.1

locally of finite presentation かつ quasi-compact だが NOT quasi-separated である例を挙げる. 以下のように設定する.

- k :: field,
- $Y = \operatorname{Spec} k[x_1, x_2, \ldots],$
- $z = (x_1, x_2, \dots) \in Y$,
- $U = Y \{z\}.$

この時, U は quasi-compact でない. これは U :: quasi-compact $\iff z$:: finitely generated からわかる \dagger^3 .

 $^{^{\}dagger 2}$ Δ は以下のように pullback の普遍性から得られる射である

^{†3} 私のノート: https://github.com/ShitijyouA/MathNotes/blob/master/Hartshorne_AG_Ch2/section2_ex.pdf 補題 Ex2.13.2 (II) に証明がある.

X を、二つの Y のコピーを U で貼り合わせたものとし、 $X_1, X_2 \subseteq X$ をその Y のコピーとする。すなわち $X_1, X_2 \cong Y$. この同型を $\phi_i \colon X_i \to Y$ と名付ける。このとき、 $f \colon X \to Y$ を ϕ_1, ϕ_2 の U に沿った貼り合わせとする。こうすると $f|_{X_i} = \phi_i$ となる。

I f :: locally of finite presentation. Y :: affine scheme で, $f^{-1}(Y) = X_1 \cup X_2$ であり, $X_1, X_2 \cong Y$ であった. なので f :: locally of finite presentation.

■f:: quasi-compact. 同じく, $X_1, X_2::$ quasi-compact なので $f^{-1}(Y) = X_1 \cup X_2$ が quasi-compact.

 $\blacksquare f :: \mathsf{NOT} \ \mathsf{quasi}$ -separated. $\mathrm{sp}(X \times_Y X) \ \mathsf{E} \ \Delta : X \to X \times_Y X \ \mathsf{E}$ を考えると次のように成る.

$$\Delta \colon x \mapsto (\phi_1^{-1}(x), \phi_2^{-1}(x)).$$

一方, $X_1 \times_Y X_2$ ($\subset X \times X$) は, $X_1, X_2 \cong Y$) が affine なので affine. そこで逆像 $\Delta^{-1}(X_1 \times_Y X_2)$ を取ると, これは U である. 既に述べたとおり, これは NOT quasi-compact.

例 2.2

■Smooth (BUT NOT Etale) Morphism. 次のように定める.

$$f : \operatorname{Spec} k[x, y] \to \operatorname{Spec} k[t]$$

 $(x, y) \mapsto x^2 + y^2$

これは affine scheme の間の射なので quasi-separated. $f^{-1}(\operatorname{Spec} k[t]) = \operatorname{Spec} k[x,y]$ が noetherian scheme なので finitely presented. あとは formally smooth であることを示せば良い.

■Unramified (BUT NOT Etale) Morphism. 次のように定める:

$$\begin{array}{ccc} g \colon \operatorname{Spec} \mathbb{Q}[x] \sqcup \operatorname{Spec} \mathbb{Q}[y] \to \operatorname{Spec} \mathbb{Q}[t] \\ & x \mapsto t & \text{on } \operatorname{Spec} \mathbb{Q}[x] \\ & y \mapsto t & \text{on } \operatorname{Spec} \mathbb{Q}[y] \end{array}$$

f の場合と同様に、formally unramified だけ示せば良い.

■Etale Morphism.

$$\begin{array}{cccc} h \colon & \operatorname{Spec} \mathbb{Q}[u, u^{-1}, y] / (y^d - u) & \to & \operatorname{Spec} \mathbb{Q}[t, t^{-1}] \\ & (u, y) & \mapsto & u \end{array}$$

 $A=\mathbb{Q}[t,t^{-1}], B=\mathbb{Q}[u,u^{-1},y]/(y^d-u)$ とおくと、h に対応する環準同型は $h^\#\colon A\to B; t\mapsto ua \bmod (y^d-u)$ 、f の場合と同様に、formally etale だけ示せば良い、

以下の図式を考える.

$$B \xrightarrow{\alpha} R/I$$

$$h^{\#} \bigwedge_{\phi} \bigwedge_{\pi} \pi$$

$$A \xrightarrow{\phi} R$$

ここで $I\subseteq R$ はイデアルで, $I^N=0$ となる整数 N>0 が存在する.与えられた α から図式を可換にする β を構成し,このような β が α に対し唯一つであることを示す.まず β は $t\in B$ の像のみで定まることに注意

する. 図式が可換であることと, 次が成立することは同値.

$$\beta h^{\#}(t) = \beta(u) = \phi(t), \qquad \pi \beta(u) = \alpha(u)$$

よって $\beta(u)=\phi(t)$ で β を定めれば良い. このように定めれば後者も成立する. また, この構成から明らかに β はただ一つ.

■Formally Etale BUT NOT Etale Morphism. \emptyset (2.1) の morphism :: $f: X \to Y$ がそうである. このことを示すには、Formally etale であることだけ確かめれば十分.

3 命題

命題 **3.1** ([3] Prop1.3.6 (i))

 $f: X \to Y$ を morphism of schemes とする. この時 $\Omega_{X/Y}$ は次のように成る.

(i) $f :: smooth \implies \Omega_{X/Y} :: locally free sheaf of finite rank.$

(ii) f :: unramified $\iff \Omega_{X/Y} = 0$.

(iii) $f :: \text{ etale } \Longrightarrow \Omega_{X/Y} = 0.$

(証明). 証明は [2] §25 の内容を一部使う. 特に §25 始めから Thm25.1 の直前までがわかっていれば良い.

主張は local なものだから、 $X=\operatorname{Spec} B,Y=\operatorname{Spec} A$ と仮定して良い。f:: smooth より B:: finitely presented A-algebra. f に対応する準同型を $\phi\colon A\to B$ とする.

(i) を示すために、 $\Omega_{B/A}$:: projective B-module を示す(projective ならば locally free であることは [4] section 10.84 に証明がある).これはすなわち、B-module の以下の図式に対し、図式を可換にする \tilde{D} : $\Omega_{B/A} \to M$ が存在するということである.

$$\Omega_{B/A}$$
 \bigvee_{D}^{D} $M \stackrel{t}{\longrightarrow} N$

ここで t :: surj.

次の図式を考える.

$$B \xrightarrow{f_D} B[N]$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{h}$$

$$A \longrightarrow B[M]$$

ここで B[M] は [2] §25 でいう B*M である $^{\dagger 4}$. B[N] も同様. f_D は A-derivation :: D に対応する射 $b\mapsto (b,D(b))$ である. $B[M]\to B[N]$ は $(b,m)\mapsto (b,t(m))$ で与えられる射で,したがって全射であり核は $0\oplus (\ker t)$. これは square-zero ideal である.そして $\phi::$ formally smooth であるから,図式を可換にする $B\to B[M]$ が存在する.これに対応する A-derivation が所望の \tilde{D} である.

^{†4} これらは B-algebra で、加群としては $B \oplus M$ で、乗法は $(b,m) \cdot (b',m') = (bb',bm'+b'm)$ で定まる。重要な特性として、 $\pi_M : B[M] \to B; (b,m) \mapsto b$ の kernel は square-zero で、 π_M の A-algebra section (section which is A-albgebra morphism) と A-derivation $B \to M$ が一対一に対応する。

(ii) を示す. R :: ring, $I \subseteq R$:: ideal を $I^2 = 0$ を満たすものとする. 以下が可換図式だったとしよう.

$$B \xrightarrow{\theta} R/I$$

$$\downarrow^{\phi} \qquad \uparrow^{\pi}$$

$$A \longrightarrow R$$

この時, λ を lifting of θ と呼ぶ. [2] §25 より^{†5},

$$\operatorname{Hom}_A(\Omega_{B/A}, I) = \operatorname{Der}_A(B, I) = \{\lambda - \lambda' \mid \lambda, \lambda' :: \text{ lifting of } \theta\}$$

となっている. ϕ :: formally unramified なので、lifting of θ は一つしか無い.よって $\operatorname{Hom}_A(\Omega_{B/A},I)=0$. 任意の R,I についてこれが成立するので、これは $\Omega_{B/A}=0$ と同値.

formally etale \implies formally unramified なので (ii) \implies (iii) は明らか.

命題 3.2 ([3] Prop1.3.6 (iii))

exact seq

命題 3.3

 $f\colon X \to Y$ を、locally of finite presentation とする. f :: smooth と次の条件は同値である:

任意の点 $x \in X$ について、x と $y = f(x) \in Y$ の間に affine neighborhood

$$x \in \operatorname{Spec} A \subset X$$
, $y = f(x) \in \operatorname{Spec} B \subseteq Y$ (with $f(\operatorname{Spec} B) \subseteq \operatorname{Spec} A$)

が存在し、ある n,s と $f_1,\ldots,f_s,g\in A[x_1,\ldots,x_n]$ について

$$B \cong \left(\frac{A[x_1,\ldots,x_n]}{(f_1,\ldots,f_s)}\right)[1/g].$$

さらに、Jacobian matrix $(n \times (n-r)$ -matrix)

$$\left[\frac{\partial f_i}{\partial x_j}\right]_{i,j}$$

の部分 (n-r) 正方行列は、いずれも可逆(行列式が B の unit element).

さらに、f:: etale と、この条件でn=rであることは同値である.

命題 **3.4** ([4], Tag 02G7)

 $f: X \to Y$ が unramified morphism ならば、任意の $y \in Y$ について、fiber of $f:: X_y$ は disjoint union of spectra of finite separable field extensions of k(y).

命題 **3.5** ([4], Tag 04HM)

 $f\colon X\to Y$ を separated etale morphism とする. $y\in Y$ に対し $f^{-1}(s)=\{x_1,\ldots,x_n\}$ とする(点が有限個であることは命題 (3.4) による). tale neighbourhood $:: \nu:(U,u)\to (Y,y)$ が存在し, $X_U=X\times_Y U$ の disjoint union decomposition

$$X_U = | V_{i,j}$$

について $V_{i,j} \cong U$.

^{†5} あるいは私のノート https://github.com/ShitijyouA/MathNotes/blob/master/Hartshorne_AG_Ch2/section8_ex.pdf の Ex8.6(a) の解答より.

4 命題に対する例

5 演習問題

参考文献

- [1] Ian Morrison Joe Harris. *Moduli of Curves (Graduate Texts in Mathematics)*. Springer, 1998 edition, 8 1998.
- [2] Hideyuki Matsumura. Commutative Ring Theory (Cambridge Studies in Advanced Mathematics). Cambridge University Press, revised edition, 5 1989.
- [3] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.