

1. Qual destes dispositivos é adequado para exames SPECT?

A: A (B): B C: C D: D

3. Para aquisição desta imagem MRI através duma sequência spin-echo, o gradiente de codificação em fase deve ser aplicado nas direcções?

A: x ou z

By y ou z

D: simultaneamente x e z

C: x ou y

4. Que afirmação está certa?

A: A relação contraste-ruído dum sistema imagiológico melhora com a redução da relação sinal-ruído.

B: A função de transferência da modulação é a transformada de Fourier da função de espalhamento da linha.

C: Em PET a relação sinal-ruído diminui com o tempo de aquisição.

D: A função de espalhamento da aresta é a transformada de Fourier da relação contraste-ruído.

D: 4

5 –

a) Qual dos sinogramas corresponde à imagem?

A: 1 B: 2 C:)3

b) Nestes sinogramas, a escala horizontal corresponde a

A: ângulo da projecção de Radon B:distância ao centro da imagem

C: densidade do objecto integrada na direcção de D: amplitude da projecção de Ram-Lak

projecção

- 6 . A figura acima representa uma ecografia cardíaca.
- a) O eixo "t" tem aproximadamente que limites?

A: 3 ms	Β: 10 μs
C: 400 ns	Φ . 200 μs

b) O gráfico marcado "1" corresponde a que modo de apresentação?

A modo A	B: modo B							
C: modo D	D: modo M							

c) O gráfico marcado "2" corresponde a que modo de apresentação?

A: modo A	B: modo B
C: modo D	modo M

7 — A figura da esquerda representa uma lente acústica esférica fixa com diâmetro de 2 cm e raio R=10 cm. A figura da direita representa um transdutor linear segmentado do mesmo diâmetro, a que se aplicam impulsos com atrasos relativos. A lente acústica é feita de um material com velocidade do som 3000 m/s. Qual deve ser o atraso entre os impulsos aplicados aos segmentos centrais e os impulsos aplicados aos segmentos mais periféricos do transdutor segmentado para obter o mesmo efeito.

A 157 ns	B: 131 ns	C: 112 ns	D: 98.2 ns
$\kappa = \sqrt{0,1^2 - 0,0}$	012 = 0,0995	m	
V= d (=) J= 5	$\frac{1}{1} - \frac{0.1}{300}$	$=$ 33.3 μ S	
	y t2 = 0,00	$\frac{1}{100} \approx 33.3 \mu$ S $\approx 31.167 \mu$	45

] 4 -	t ₂ =	1,67×10 ⁻⁷	s = 167 ms	$\rightarrow \bigcirc$

2 – .Um tomógrafo MRI com campo B₀=3 T executa uma sequência spin-echo "standard". O impulso de radiofrequência (RF) inicial tem uma duração de 1 ms. A fatia seleccionada passa pelo isocentro do tomógrafo.

a) Qual deve ser a intensidade do campo magnético da onda de RF gerado?

Α: 2,97 μΤ	Β: 1,96 μΤ
C: 9,43 µT	D: 5,87 μT

C: 9,43	μΙ							D:	5,87 µ	ιľ							
∝ =	ω_1	\mathcal{T}_{RF}	<= >	ω_1	= 7	X RF	(=)	γ.	Bo	=	C _{RF}	(=)	Y=	Ex Constitution	K F·Bo	=	