Intro Differentiable Manifolds

Walter Neumann

Transcribed by Ron Wu

This is an advanced undergraduate course. Offered in Spring 2015 at Columbia University. Course textbooks: Lee, Introduction to Smooth Manifolds; Bröcker, Introduction to Differential Topology. Office hours: MW 9:00-10:00pm.

Contents

1	Smooth Manifolds & Smooth Maps	2
	1.1 Manifolds	2
	1.2 Lie Groups	3
	1.3 Coordinate Maps	3
2	Tangent & Cotangent Bundles	3

1 Smooth Manifolds & Smooth Maps

1.1 Manifolds

Lecture 1 (1/21/15)

Definition 1. M, a topological space, is a manifold of dimension n if

- M Hausdorff space, i.e. Given any 2 points $p_1 \neq p_2 \in M$, $\exists U_1, U_2$ open, $p_1 \in U_1, p_2 \in U_2, U_1 \cap U_2 = \emptyset$.
- second countable, i.e. countable basis for its topology. (A basis of topology of X is a collection of open subsets $U_{\alpha} \subset X$ s.t. every open subset of X is a union of some $U'_{\alpha}s$.)
- M is locally homeomorphic to \mathbb{R}^n , i.e. $\forall p \in M \exists$ open neighborhood $p \in U \subset M$ and a homeomorphism (i.e. continuous map that has continuous inverse)

$$\psi: U \to \psi(U) \subset \mathbb{R}^n$$

 $\psi(U)$ is an open subset in \mathbb{R}^n .

Example 2. (of manifold) \mathbb{R}^n is second countable, because it has basis B(p,r) open ball centered at $p \in \mathbb{Q}$ and radius $r \in \mathbb{Q}_{>0}$.

There are only two connected 1-manifold up to homeomorphism:

- $\mathbb{R} \cong (0,1)$ not compact
- $S^1 \cong \text{circle}$, that is compact

One can classify connected 2-manifolds

- not compact ones, e.g. \mathbb{R}^2 , infinite cylinder, cylinder with points removal, etc, are very complicated. Hard to classify.
- compact ones upto homeomorphism are grouped to two kinds:
 - \circ can be embedded in \mathbb{R}^3 , and they are orientable S^1 , 1-hole donut, 2-hole donut, 3-hole donut,... the hole is called genus.
 - \circ cannot be embedded in \mathbb{R}^3 , and they are non orientable \mathbb{RP}^2 , Klein bottle, ... later we will learn how to construct them.

For connected 3-manifolds, there is a classification theorem, conjugated in 1970's and proved ten years ago.

In dimension 4, it is proven that there is no algorithms to decide that 2 arbitrary 4-manifold are homeomorphic or not, so no classification can be made. It relates to some undecidable problems in group theory.

Example 3. (of non manifolds due to non second countable) "the long line"

Consider

$$1, 2, 3, ..., w_1, w_1 + 1, ..., w_2, w_2 + 1, ...$$

where w_{α} are not ordinary numbers. But from set theory, they can be ordered too. Then

$$\underbrace{(0,1)\cup[1,2)\cup\ldots}_{(0,\infty)}\bigcup_{w_{\alpha}}^{w}[w_{\alpha},w_{\alpha+1})$$

is not second countable.

The non second countable ones do not exist in nature. But non-Hausdorff ones are quite natural, so some people define manifold without Hausdorff.

Example 4. (of non manifolds due to non-Hausdorff) Consider

$$X = \mathbb{R}^n \cup 0'$$

0' is another copy of 0. Put basis: usual open balls $B^n(p,r)$, which don't contain 0' and combining the sets

$$B^{n}(p,r) \cup \{0'\} \text{ for } r > |p|$$

therefore 0, 0' are not separatable.

- 1.2 Lie Groups
- 1.3 Coordinate Maps
- 2 Tangent & Cotangent Bundles

Lecture 2

(1/26/15)

Lecture 3

(1/28/15)Lecture 4

(2/2/15)

Lecture 5 (2/4/15)

Lecture 6 (2/9/15)