

Introduction to Machine Learning

Lior Sidi & Noa Lubin

Meet us

Lior Sidi

- Data Science Tech Lead at Wix
- Ex: AutoML startup, Consultant,
 Deutsche Telekom Labs.
- Domains: NLP, RecSys, Design, User Centric AI (B2C products).
- BSc and MSc from BGU SISE.
- Scholar / Linkedin

Noa Lubin

- Machine Learning Team Lead at Diagnostic Robotics
- Ex: NASA, Amazon, Elbit, IAI
- **Domains**: NLP, health, space
- BSC EE Technion
- MSc CS NLP Bar Ilan
- Linkedin

"If you invent a breakthrough in AI, so machines can learn, that is worth 10 Microsofts"

— Bill Gates, Former Chairman, Microsoft. 2004

General Outline

- 1. What is ML?
- 2. What are the types of ML Problems?
- 3. How is ML in Practice?
- 4. How to estimate Model Performance?
- 5. How to prepare data for ML?
- 6. What type of ML algorithms are there?
- 7. How to improve ML models?

1. What is ML?

How is Machine Learning Relates to Programming

Traditional Programming

- Machines Follow Instruction
- Humans Learn From Experience

The Arthur Samuel's Checkers

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed."

— Arthur Samuel (1959)

Machine Learning is the ability to generalize from experience onto unseen example

How is Machine Learning Relates to Programming

Traditional Programming

Machine Learning

Agriculture Metaphor of ML

"Machine learning is like farming or gardening. Seeds is the algorithms, nutrients is the data, the gardner is you and plants is the programs."

A Study on Machine Learning: Overviews and Applications International conference on Recent Trends in Artificial Intelligence, IOT, Smart Cities & Applications (ICAISC-2020)

Seeds = Algorithms

Nutrients = Data

Gardener = You

Plants = Programs

The PTE View on ML

Machine Learning is the study of algorithms that

- improve their performance (P)
- at some task (T)
- with experience (E).

A well-defined learning task is given by <P, T, E>.

e.g., predict house pricing (T), according to last year's data (E), minimizing the square error (P).

https://courses.cs.washington.edu/courses/cse473/04au/lectures/14-ml-intro.pdf

Descriptive vs. Predictive vs. Prescriptive

Key Elements of Machine Learning

Representation: how to represent knowledge.
 The Model.

Evaluation: the way to evaluate candidate representations (programs/hypotheses).

3. Optimization: how to find the optimal representation in the evaluation terms.

Application of Machine Learning

Sample applications of machine learning:

- The
- List
- Is
- Just
- Too
- Long

Artificial Intelligence is the New Electricity — Andrew Ng

Abstract

On Wednesday, January 25, Andrew Ng — former Baidu Chief Scientist, Coursera co-founder, and Stanford Adjunct Professor — gave a talk at the Stanford MSx Future Forum. During the talk, Professor Ng shared his opinion on AI. He mainly discussed how artificial intelligence (AI) is transforming industry and business.

Machine Learning is the new Electricity

2. What are the types of ML Problems?

Types of ML

Additional Types of Learning

- Semi-Supervised learning
 - Training data includes a few desired outputs.
- Causal Inference Learning

Discover and estimate the causal relationship between variables

Supervised

https://www.quora.com/What-is-supervised-learning

Supervised tasks

Supervised tasks

Syllabus

week	Topics
1 Intro	Introduction, definition of ML, types of ML, KNN
2 Naive Bayes	-Refresher on the Bayes theorem -Naive Bayes theory -Spam detection use case including preprocessing phase
3 Linear Regression	 Ordinary Linear Regression - Analytical solution and Gradient Descent solution Common Pitfalls - weight is not importance L2 regularization on OLS L1 regularization on OLS
4 Logistic Regression	Regression vs ClassificationClassifier performance measurementBinary Logistic RegressionMulti-Class classification

week	Topics
5 SVM	- Support vector machines
6 Decision trees	Decision Tree as a Greedy MethodOptimization Criteria: Gini & Entropy+ L2Depth, Leaves and other Hyper Parameters
7 End2End ML	 Bias-variance tradeoff, validation set, cross-validation Overfitting and underfitting Regularization and hyperparameter tuning Features selection
8-9 Ensemble	Intro to Ensemble Methods - Aggregation - Bagging - Stacking - Boosting - Gradient Boosting

Regression Vs Classification

Classification

Regression

Supervised Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Type of Supervised Learning

- Output Data Type
 - Discrete Classification
 - Continuous Regression
 - Structured Structure Prediction (e.g. sentence tagging)
- Classification Types:
 - Multi-class
 - Multi-label
- Regression Types:
 - Dimensions Uni/Multivariate
 - Monotonic Isotonic Regression
 - Loss Function MSE, MAE
 - Regularization Type Lasso, Ridge, etc
 - Percentile Quantile Regression

This DT
is VBZ
a DT
tagged JJ
sentence NN

Unsupervised Learning

Clustering

Dimension Reduction

Unsupervised

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Example

Semi-supervised Learning Example

Antivirus:

- Some files are known to be safe
- Some are known to be malicious.
- Most are unknown

https://en.wikipedia.org/wiki/Semi-supervised learning

Reinforcement Learning

RL Example

https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

Causal Inference

3. How is ML in Practice?

Train vs Test Pipelines

Machine Learning Phases

$ML \in DS$

- 1. Understand the domain and explore the data
- Data integration, selection, cleaning and pre-processing.
- 3. Learning models ← ML part
- 4. Interpreting results.
- 5. Consolidating and deploying discovered knowledge.

Hidden Technical Debt in Machine Learning Systems

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

IV. DS project management

Steps to Predictive Modeling

Steps to Predictive Modeling

"Tachles" - In Reality

- 1. Build a Baseline model as soon as possible!
 - a. Understand the problem.
 - b. Have a SIMPLE data validation pipeline.
 - c. Train the SIMPLEST model.
- 2. Iteratively improve the model
 - Incremental add features, tune models, clean data etc.
 - b. Go Wild re-model the data, add sophisticated features, use SOTA approaches.

Task

Given a KPI define a feature in the product.

Transaction made weekly by user

- 1. Stock recommendation Which Stock should I buy today?
- 2. Decision support Should I buy Apple stock?

Hours spend daily by customer

- Decision support What will be the Microsoft stock price in the next 20 days?
- 2. Exploration Which stock is similar to Amazon stock?

Steps to Predictive Modeling

Define Task

Which Stock should I buy today?

- Story: Beginning of day a customer will get a list of stocks

Steps

- 1. Literature overview
- Data source
- 3. Data modeling: Entities
- 4. Labeling function: Rules, manual, data source

Define Data

Which Stock should I buy today?

- Story: Beginning of day a customer will get a list of stocks

Data sources - based on "what" we make a decision?

- Data All stock of S&P 500 after 2009 and before 2020.
- Entity stock
- Horizon next Day

Steps to Predictive Modeling

Ground Truth

Which Stock should I buy today?

- Story: Beginning of day a customer will get a list of stocks

Data sources - based on "what" we make a decision?

- Data All stock of S&P 500 after 2009 and before 2020.
- Entity stock
- Horizon next Day

Labeling - What is a good stock?

- A stock with low volatility in the next day -> low Sharp ratio
- A stock with high revenue potential -> 4% price increment

Labeling function

Date	Stock	Price
1/1/2020	TSLA	50
1/1/2020	AMZ	63
1/1/2020	APPL	42
2/1/2020	TSLA	55
2/1/2020	AMZ	60
2/1/2020	APPL	39
3/1/2020	TSLA	60

Date	Stock	Price	Volatile	Profit	Label
1/1/2020	TSLA	50	Low	High	1
1/1/2020	AMZ	63	Low	Low	0
1/1/2020	APPL	42	High	Low	0
2/1/2020	TSLA	55	High	High	0
2/1/2020	AMZ	60	High	Low	0
2/1/2020	APPL	39	Low	Low	0
3/1/2020	TSLA	60	Low	High	1

4. How to Estimate Model's Performance

Steps to Predictive Modeling

How To Evaluate?

Tesla

- Buy Confidence 80%
- Not Buy Confidence 20%

Amazon

- Buy Confidence 49%
- Not Buy Confidence 51%

Yandex

Estimating Performance

E.g. Choose best model Hyper parameter optimization

Estimating Performance - Data is Abundant

Datasets distribution: Training <> Validation == Test ~ Real world = Random

Validation used for Hypertuning and model Calibration

Testing used for final evaluation

Yandex

Rolling window cross validation

Cross Validation

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifian	Predict Positive (should buy)			
Classifier	Predict Negative (shouldn't buy)			

		Label			
		Condition Positive (Buy)	Condition Negative (Don't Buy)		
Classifier	Predict Positive (should buy)	True Positive (TP) = 20			
Classifier	Predict Negative (shouldn't buy)		True Negative (TN) = 1820		

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	
Classifier	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value Precision TP / (TP + FP) = 20 / (20 + 180) = 10%
Classifier	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value Precision TP / (TP + FP) = 20 / (20 + 180) = 10%
	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		True Positive Rate Recall Sensitivity TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value Precision TP / (TP + FP) = 20 / (20 + 180) = 10%
	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		True Positive Rate Recall Sensitivity TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity TN / (FP + TN) = 1820 / (180 + 1820) = 91%	Accuracy (TP + TN) / (TP + TN + FP + FN) F1 score (2*Precision*Recall) / (Precision + Recall)

5. How to prepare data for ML

Steps to Predictive Modeling

Classical vs Deep Learning Framework

Modeling (data & learning)

Baseline

Only last price value:

- Last day increment
- Moving average

Improvements

Based on last year data predict next day performance

- Aggregate last week data
- Extract technical indicator features

Feature extraction - Data modeling

Date	Stock	Price	Label					
1/1/2020	TSLA	50	1 \					
1/1/2020	AMZ	63	0	\				
1/1/2020	APPL	42	0					
2/1/2020	TSLA	55	0 -	Group by	Stock, weel	⟨ .		
2/1/2020	AMZ	60	0	Days pri		RSI	Sector	Lab
2/1/2020	APPL	39	0	increase	Chang e			
3/1/2020	TSLA	60	1	4	0.12	0.4	Auto	1

Feature extraction

Days price increase	Price Change	RSI	Sector	Label
4	0.12	0.4	Auto	1
2	0.35	0.7	Software	0
4	0.8	0.5	Energy	0
3	0.22	0.3	Materials	1
5	0.3	0.6	Health	0
1	0.1	0.3	Telco	1

Extract features

Days price increase norm	Price Change <0.3	RSI	Sector_ Auto
4/7	0	0.4	1
2/7	1	0.7	0
4/7	1	0.5	0
3 / 7	0	0.3	0
7/7	1	0.6	0
1 / 7	0	0.3	0

Feature Selection

Days price increase	Price Change	RSI	Sector	Label
4	0.12	0.4	Auto	1
2	0.35	0.7	Software	0
4	0.8	0.5	Energy	0
3	0.22	0.3	Materials	1
5	0.3	0.6	Health	0
1	0.1	0.3	Telco	1

Extract
features

Days price increase norm	Price Change <0.3	RSI	Sector_ Auto
4 \ 7	0	0.4	1
2/7	1	0.7	0
4/7	1	0.5	0
3 / 7	0	0.3	0
7/7	1	0.6	0
1/7	0	0.3	0

6. What types of ML Algorithms are there?

SCHOOL OF DATA SCIENCE

Steps to Predictive Modeling

Parametric vs. Non-parametric Models

Almost all models for machine learning have "parameters" or "weights" that need to be learned.

Parametric Models	Nonparametric models
The number of	The number of
parameters is constant,	parameters grows with
or independent of the	the number of training
number of training	examples.
examples.	

Can you think of an example?

Can you think of an example for parametric and non-parametric method?

shutterstock.com • 327662909

Generative vs. Discriminative

	Discriminative model	Generative model	
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$	
What's learned	Decision boundary	Probability distributions of the data	
Illustration			
Examples	Regressions, SVMs	GDA, Naive Bayes	

The Brief History of Machine Learning

Classical vs Deep Learning Framework

Feature Extraction

"Algorithm which transforms raw data into numeric values which can be used as input to a learning algorithm. Usually helps with **reducing** and **fixing** dimensionality."

e.g.

Shimada K., Matsukawa T., Noguchi Y., Kurita T. (2011) Appearance-Based Smile Intensity Estimation by Cascaded Support Vector Machines. In: Koch R., Huang F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6468. Springer, Berlin, Heidelberg

Some Realities on DL

Don't be fool by the hype

- Can be beaten by GBT for tabular data (CatBoost, XGBoost, LightGBM).
- No Feature Engineering Yuppie.
 Yet... Network Architecture Search (NAS),
 Annoying GPU issues, Loss design, hours of training
- 3. Overkill sometimes and infeasible Example: try to train a DL to predict if a number is even or odd...

Yandex No Free Lunch Theorem - Best Model Does Not Exists

A superior black-box optimisation strategy, which is better than anything else for any kind of problem, is impossible.

Deep cannot be always better.

https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

Modeling - Linear

Modeling - Linear

Modeling - Maximum Margin

- A Linear classifier
- Maximize the margin
- Simple Linear SVM LSVM

Modeling - K nearest neighbors

Modeling - K nearest neighbors

- 1. To classify a new input vector x
- Examine the k closest training data points to x
- 3. Assign the object to the most frequently occurring class

Modeling - K nearest neighbors

- 1. To classify a new input vector x
- Examine the k closest training data points to x
- 3. Assign the object to the most frequently occurring class

What about?

- K is Odd vs Even K?
- How can we apply Voting?

KNN Best Practices

When to Consider

- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

Modeling - K nearest neighbors

Defining Distance Measures

Definition: Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) between O_1 and O_2 is a real number denoted by $D(O_1,O_2)$

Distance function behavior

- $dis(x,y) \ge 0$
- dis(x,y)=0 iff x==y
- dis(x,y) = dis(y,x)
- $dis(x, z) \le dis(x, y) + dis(y, z)$

Distance Function

$$L1(X_1, X_2) = ManhattenDistance(\begin{bmatrix} x_{11} \\ x_{1i} \\ x_{1n} \end{bmatrix}, \begin{bmatrix} x_{21} \\ x_{2j} \\ x_{2n} \end{bmatrix}) = \sum_{i=1}^{n} |x_{1i} - x_{2i}|$$

$$L2(X_1, X_2) = Euclidean Distance(\begin{bmatrix} x_{11} \\ x_{1i} \\ x_{1n} \end{bmatrix}, \begin{bmatrix} x_{21} \\ x_{2i} \\ x_{2n} \end{bmatrix}) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})}$$

CosineSimilarity(X₁, X₂) =
$$\frac{\sum_{i=1}^{n} (x_{1i} * x_{2i})}{\sqrt{\sum_{i=1}^{n} x_{1i}^{2}} * \sqrt{\sum_{i=1}^{n} x_{2i}^{2}}}$$
 (x₁₁, x₁₂)

Using euclidean distance

Price Change <0.3	RSI	Sector_ Auto	Label	
0	0.4	1	1	$\sqrt{(0-1)^2 + (0.4-0.7)^2 + (1-0)^2}$
1	0.7	0	0	$=\sqrt{1+0.09+1}=$
1	0.5	0	0	
0	0.3	0	1	$\sqrt{(0-0)^2+(0.4-0.3)^2+(1-0)^2}$
1	0.6	0	0	$=\sqrt{0+0.01+1}=1.0$
0	0.3	0	1	

What do you think about the distance values?

Using Manhattan distance

Price Change <0.3	RSI	Sector_ Auto	Label	
0	0.4	1	1	0-1 + 0.4-0.7 + 1-0
1	0.7	0	0	= 1 + 0.3 + 1 = 2
1	0.5	0	0	
0	0.3	0	1	0-0 + 0.4-0.3 + 1-0
1	0.6	0	0	= 0 + 0.1 + 1 = 1
0	0.3	0	1	

Any ideas about issues with using absolute?

Curse of Dimensionality

Hughes phenomenon (1968) (Peaking Paradox)

a. Curse of Dimensionality

b. Hughes phenomenon

http://37steps.com/2322/hughes-phenomenon/

Why Nearest Neighbours Fails in High Dimensions?

Kevin Murphy's book: Machine Learning - A probabilistic Perspective

Beyer et. al. Theorem

The difference between the maximum and minimum distances to a given query point does not increase as fast as the nearest distance to any point in high dimensional space.

This makes a proximity query meaningless and unstable because there is poor discrimination between the nearest and furthest neighbor.

Example: Detecting Suspicious URL Names

- DDOS
- Botnets
- Derive by download
- Phishing How phishing is different from other attacks?

Task:

- Build an analytics tools to explore and detect NEW types of malicious URLs.
- What we wish to gain? Precision / Recall
- How you can represent domain Names?

Appendix - helix

Review Homework

Part 1 - Implement k-Nearest Neighbours (KNN)

Part 2.1 - Learn and evaluate kNN algorithm on artificial data + Analyse the properties of KNN

Part 3 - bonus

Change

- Nodes = attribute decision
- Leaf nodes = classification decision

- Nodes = attribute decision
- Leaf nodes = classification decision

- Nodes = attribute decision
- Leaf nodes = classification decision

Ensemble Learning

Use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.

Empirically, ensembles tend to yield better results when there is a significant diversity among the models.

7. How to improve ML models?

Steps to Predictive Modeling

Estimating Performance - Data is Abundant

Datasets distribution: Training <> Validation == Test ~ Real world = Random

Hypertuning, Calibration: Validation

Evaluation: Testing

Bias Variance Tradeoff - Regression

High bias (underfit)

"Just right"

Bias Variance Tradeoff - Classification

Total Error

Assume a simple model $y = f(x) + \epsilon$, $E(\epsilon) = 0$, $Var(\epsilon) = \sigma_{\epsilon}^2$,

$$\operatorname{Err}(x_0) = \operatorname{E}[(y - h(x_0))^2 | X = x_0]$$

$$= \sigma_{\epsilon}^2 + \left[\operatorname{E}h(x_0) - f(x_0)\right]^2 + \operatorname{E}[h(x_0) - \operatorname{E}h(x_0)]^2$$

$$= \sigma_{\epsilon}^2 + \operatorname{Bias}^2(h(x_0)) + \operatorname{Var}(h(x_0))$$

$$= \operatorname{Irreducible} \operatorname{Error} + \operatorname{Bias}^2 + \operatorname{Variance}$$

Optional pencil and paper exercise: prove it in details

Bias Variance Tradeoff

Yandex

Yandex

Over and Underfitting

Prediction Error

High

Bias Variance Analysis - Learning Curve

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

Bias Variance Analysis - Learning Curve

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

Yandex

Hypertunning

Choosing the set of "optimal" hyperparameters for a training algorithm

KNN:

Decision Tree:

Hypertunning

Choosing the set of "optimal" hyperparameters for a training algorithm

KNN:

- Number of K
- Distance function
- Distance function params
- Post processing

Decision Tree:

- Split criteria
- Tree depth
- Minimum instances per split
- Data discretization

Review Homework

Part 2.2 - Finding the optimal k

Part 2.3 - Using cross validation

Steps to Predictive Modeling

Yandex

Productization

- Make the Model (and the Data) accessible for prediction
- Monitor model's performance what type of performance?
- Concept drift changes in data, labels and their relation
- Feedback loop label more data and retrain the model

Calibration

Calibration in classification means turning transform classifier scores into class membership probabilities.

Steps to Predictive Modeling

- Data Science is a practical profession
- There are many topics -> understand over memorize
- Understand the product task + Have a clear end2end intuition of the project
- Build a Baseline model as soon as possible!
- Keep Asking questions
- There is no silver bullet / free lunch theory

Reading Materials

- 1. A few useful things to know about machine learning.pdf
- 2. CIS 419:519 Introduction to Machine Learning.pdf
- 3. Empirical Risk Minimization.pdf
- 4. Introduction to Statistical Learning Theory.pdf
- 5. On the Surprising Behavior of Distance Metrics in High Dimensional Space.pdf
- 6. Statistical learning theory a primer.pdf
- 7. Statistical Machine Learning-Introduction.pdf
- 8. 2012b A Geometrical Explanation of Stein Shrinkage.pdf
- 9. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF MULTIVARIATE NORMAL DISTRIBUTION STEIN.pdf
- 10. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS FISHER 1936
 Annals of Eugenics Wiley Online Library.pdf

QA