ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

1 Билет 101

- 1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;4] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,182\leqslant Z\leqslant 1,21)$.
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant 1$. Наблюдения показали, что в среднем она составляет 88,8889%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 89%
- 4. Создайте эмперические совокупности \cos и \log вида $\cos(1), \cos(2), ..., \cos(98)$ и $\log(1), \log(2), ..., \log(98)$. Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \cos , её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков cos и log на совокупности натуральных чисел от 1 до 98.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	17	3	13
X = 300	21	23	23

Из Ω случайным образом без возвращения извлекаются 10 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{5X_1 + 2X_2 + X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{4X_1 + 4X_2 + X_3 + X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

2 Билет 102

1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей

- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2]и [0;6] соответственно. Для случайной величины $Z=\frac{\bar{Y}}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,532 \leqslant Z \leqslant 4,716).$
- 3. Случайная величина Y принимает только значения из множества $\{10,7\}$, при этом P(Y=10)=0.24. Распределение случайной величины Х определено следующим образом:

$$X|Y = \begin{cases} 4*y, \text{свероятностью } 0.53 \\ 9*y, \text{свероятностью } 1 - 0.53 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

4. Создайте эмперические совокупности \exp и \log вида $\exp(1), \exp(2), ..., \exp(77)$ и $\log(1), \log(2), ..., \log(77)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности ехр, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков exp и log на совокупности натуральных чисел от 1 до 77.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	1	6	23
X = 300	13	30	27

Из Ω случайным образом без возвращения извлекаются 13 элементов. Пусть $ar{X}$ и $ar{Y}$ – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y}); 2)$ стандартное отклонение $\sigma(\bar{X}); 3)$ ковариацию $Cov(\bar{X}, \bar{Y})$

6. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-9	X=-8	X=-7
Y = 8	0.09	0.005	0.23
Y = 9	0.249	0.095	0.331

Дарья получила, что $\mathrm{E}(\mathrm{Y}|\mathrm{X}+\mathrm{Y}=1)=8.2921.$ Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

Подготовил

Рабов П.Е. Рябов

Утверждаю:

Первый заместитель руководителя департамента

Дата 01.06.2021

Режии Феклин В.Г.