How does the computer store numbers and other information?

Bits and Bytes

- A bit is a single binary digit 0 or 1
- Short for binary digit
- Tukey Legendary statistician and the father of "Exploratory Data Analysis" coined the term
- A byte is a collection of 8 bits 0001 0011
 Usually written with a space between the two sets of 4 digits for readability

Bits and Characters

- ASCII American Standard Code for Information Interchange
- Character encoding scheme each upper and lower case letter in the English alphabet and other characters such as # and \$ represented as a sequence of 7 bits
- First introduced in the 1960s
- Today Universal Character Set (aka Unicode) is more common UTF-8, UTF-16 and UTF-32

Glyph	ASCII	Unicode
#	0010 0011	0000 0000 0010 0011
\$	0010 0100	0000 0000 0010 0100
Α	0100 0001	0000 0000 0100 0001
а	0110 0001	0000 0000 0110 0001
©		0000 0000 1010 1001
æ		0000 0000 1110 0110
Δ		0000 0011 1001 0100
α		0000 0011 1011 0001

ASCII and Unicode mappings are compatible for the 2^7 = 128 ASCII characters. The bottom 4 characters do not have encodings in ASCII

Representing Numbers

Recall that when we write a 3-digit number, e.g.,

105

We are using the decimal system and we mean: 1 hundred, 0 tens, 5 ones,

That is: $(1 * 10^2) + (0 * 10^1) + (5 * 10^0)$ where the digits range from 0, 1, 2, ..., 9

What is the decimal value of the following 8-digit binary number?

00110001

Value	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
Position	7	6	5	4	3	2	1	0	
Base 2	0	0	1	1	0	0	0	1	00110001
Decimal	0	0	32	16	0	0	0	1	32+16+1 = 49

Representing Numbers in Binary

- We can do the same to represent numbers in binary
- The binary number:

1101001

Now we have powers of 2 and digits 0 and 1:

$$(1 * 2^6) + (1 * 2^5) + (0 * 2^4) + (1 * 2^3)$$

$$+ (0 * 2^{2}) + (0 * 2^{1}) + (1 * 2^{0})$$

• In decimal this is 64+32+8+1 = 105!

Different Types of Numbers

- Integer types are stored in the computer as described
- But what about numeric types, e.g.

- Notice that the computer cannot store 1/3 because it only has so many digits to use
- The computer uses the notion of scientific notation to store numbers

Scientific Notation

· General form:

a: mantissa b: exponent

10: base And sign +/-

$$0.023 \rightarrow 2.3 * 10^{-2}$$

$$-2100 \rightarrow -2.1 * 10^3$$

How does this impact our work?

- There is a limit to how precisely we can represent numbers.
- Need to be aware of this when doing calculations.
- For example, in many cases it is better to do calculations on the log scale.
- Example: instead of multiplying two numbers, take sum of logs, then exponentiate back only when strictly necessary.

Double-Precision Floating Point

• 8 bytes (64 bits)

• Sign bit: 1 bit

• Exponent: 11 bits

Mantissa/significand: 53 bits (stored as 52)

$$(-1)^{\text{sign}}(1.b_{51}b_{50}...b_0)_2 \times 2^{e-1023}$$

or

$$(-1)^{\text{sign}} \left(1 + \sum_{i=1}^{52} b_{52-i} 2^{-i} \right) \times 2^{e-1023}$$

EXAMPLES IN R

Colors: (rgb)

Representation of Colors, Data, and HTML basics

Representation of Data

HTML table, Excel Spreadsheet, plain text

ManyEyes html

		Population Using Internet	Percent of Generation that goes online	Percent of the online population that watch video online
1	Millenials	35%	95%	80%
2	Gen X	21%	86%	66%
3	Younger Boomers	20%	81%	62%
4	Older Boomers	13%	76%	55%
5	Silent Generation	5%	58%	44%
6	G.I.Generation	3%	30%	20%
7	Total Population		79%	66%

ManyEyes text

Populat	ion Us	sing Inter	net	Percent	of	Gener
Millenials	35%	95%	80%			
Gen X 21%	86%	66%				
Younger Boomers	20%	81%	62%			
Older Boomers	13%	76%	55%			
Silent Generation	on	5%	58%	44%		
G.I.Generation	3%	30%	20%			
Total Population	n		79%	66%		

	txt	html	xlsx
browser	Render w/ no markup	Format according to markup	Open file in Excel
Excel	Display as Excel	Display as Excel	Display
TextEditor	Display ASCII characters	See markup as well as content	See nothing or gibberish

ManyEyes xlsx

Hypertext Markup Language (HTML)

Useful for data scientists: Primarily to know what to do when we need to go through html files to get to data.

What is HTML?

- <u>Hypertext Markup Language</u>
- Describes the structure of web pages by adding annotations to the content
- HTML elements are the building blocks
- Elements are labeled by tags paragraph, table, image, etc.
- Web browsers do not display tags, but use them to decide how to display the content

An HTML Document

```
<html>
<head></head>
<body>
<h1>BML Report</h1>
<h2>Introduction</h2>

Research by
<a href="http://google.com">D'Souza</a> shows
that...

<img src="image.jpg">
</body>
</html>
```

Tree Data Structure

html are octagons head body BML Report Introduction Research a shows that by D'Souza

Tree Hierarchy

- One root node
- Root node has child nodes and each of these can have child nodes and so on
- Any node must have one and only one parent

Element Syntax

- Each HTML element has an element name, e.g.
 - body: the main content of the page
 - h1 : largest header
 - p : paragraph
 - br : line break

Element Content

• Simple content is plain text:

```
<h1>This is a title</h1>
```

• Complex content includes other elements.

```
This paragraph includes
<a href="http://...">a link</a>
and sentences.
```

How many child elements does this node contain?

3: the text before the <a>, the <a> node and the text after the <a> node

Element Syntax

- The end tag is a slash and the name surrounded by angle brackets: </h1>
- Some HTML elements have no content:

is for a line break

Attribute Syntax

- Attributes provide additional information to an HTML element.
- Attributes always come in name/value pairs like this: name="value"
- Attributes are always specified in the start tag of an HTML element.

Well-formed XHTML

- Well-formed HTML is called XHTML.
- Tag names follow strict rules for matching case
- Attribute values must be in quotes
- Elements must be properly nested (i.e. you can draw a tree with it)

Examples of HTML

An HTML Table

- Tables are defined with the tag.
- A table has rows marked up with the
 tag.
- Each row is divided into data cells with the
 tag. (td stands for table data).
- A data cell can contain text, images, lists, paragraphs, forms, horizontal rules, tables, etc.
- Headings in a table are defined with the tag.

Table in HTML

```
Appears as:
  <th>A</th>
    <th>B
                           В
  \langle tr \rangle
                         25,000
    1
    25,000
                        100,000
  7
                      Can you draw the tree for
  100,000
                      this document?
```


table

tr

Unordered Lists

 Unordered lists have items marked with bullets.

 Paragraphs, line breaks, images, links, other lists, etc. can be placed in a list Appears as:

- Coffee
- Milk

Ordered Lists

 Ordered lists have items marked with numbers.

Appears as:

- 1. Coffee
- 2. Milk

Paragraphs and Sections

<h1>My BML Report</h1>
<h2>Introduction</h2>

>

The BML model is a simple traffic model...

We studied the BML model behavior for...

Appears as:

My BML Report

Introduction

The BML model is a simple traffic model...

We studied the BML model behavior for...

Images

 The img tag is used to embed images in a Web page

<img src="images/bml34.png"
width="400">

- The src attribute gives the file name for the image
- The width attribute is optional
- This tag is empty the start and end tag are collapsed.

Appears as:

Links

D'Souzzadiscovered

Appears as: Introduction

D'Souzza discovered

<a> is an anchor tag

The content is the text that is "clickable"

The link can be to another place within the document

A BML Report

Raw HTML for the Report

```
<html>
<head></head>
<body>
<h1>BML Model Simulation Study</h1>
<h2>Introduction</h2>
The BML model is a simple traffic model... 
<h2>Earlier Findings</h2>
>
 <a href="http://mae.ucdavis.edu/dsouza/">D'Souzza</a>
                                                          discovered
A total traffic jam might look like this
 <img src="images/bml34.png" width="200"/>
</body>
</html>
```

A prettied up BML Report

Raw HTML for the Stylized Report

```
<html>
<head>
type="text/css" href="bmlStyle.css" />
</head>
<body>
<h1>BML Model Simulation Study</h1>
<h2 class="bml">Introduction</h2>
The BML model is a simple traffic model... 
<h2>Earlier Findings</h2>
>
 <a href="http://mae.ucdavis.edu/dsouza/">D'Souzza</a>
                                                      discovered ....
<g>>
 A total traffic jam might look like this
 <img src="images/bml34.png" width="200"/>
</body>
</html>
```

Cascading Style Sheet (CSS)

```
selector { property: value; }
```

Selector may be:

- HTML tag name h1 { color: green; }
- attribute value for id #idXYZ { color: blue; }
- class .bml { font-size: 2em; }

bmlStyle.css

```
body
{ background-color: #d0e4fe; }

h1
{ color: orange; text-align: center; }

h2.bml
{ color: green; text-align: center; }

p
{ font-family: "Times New Roman"; font-size: 20px; }
```