Statistical Learning Theory

Foundations for Data Science Applications

Diogo Ribeiro ESMAD – Escola Superior de Média Arte e Design Lead Data Scientist, Mysense.ai

October 29, 2025

D. Ribeiro Statistical Learning Theory October 29, 2025 1/25

Outline

- Introduction and Motivation
- 2 Mathematical Foundations
- The Bias-Variance Tradeoff
- PAC Learning Theory
- 5 Model Selection and Cross-Validation
- 6 Applications and Case Studies
- Modern Extensions and Future Directions
- Summary and Conclusions

D. Ribeiro Statistical Learning Theory

From Statistics to Machine Learning

The Evolution of Learning from Data:

- Classical Statistics (1900-1970):
 - Fixed parametric models
 - Hypothesis testing framework
 - Small sample theory
 - Focus on inference and explanation
- Machine Learning (1980-present):
 - Algorithmic approach
 - High-dimensional data
 - Prediction-focused
 - Computational methods

Modern Data Science

- Massive datasets
- Complex patterns
- Real-time decisions
- Business impact

The Challenge

How do we learn reliable patterns from finite data that generalize to unseen examples?

D. Ribeiro Statistical Learning Theory

Real-World Learning Problems

Application	Input (X)	Output (Y)	Goal	
Netflix Recommendations	User history, ratings	Movie preferences	Predict rat- ings	
Medical Diagnosis	Symptoms, test results	Disease presence	Classification	
Financial Trading	Market data, news	Price movements	Forecast returns	
Fraud Detection	Transaction features	Fraud/legitimate	Binary classi- fication	
Drug Discovery	Molecular structure	Biological activity	Regression	

Common Pattern

We observe training examples $(x_1,y_1),\ldots,(x_n,y_n)$ drawn from unknown distribution P(X,Y) and want to predict Y for new X.

The Fundamental Learning Setup

Mathematical Framework:

Input space:
$$\mathcal{X} \subseteq \mathbb{R}^d$$
 (1)

Output space:
$${\cal Y}$$

Hypothesis class:
$$\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$$
 (3

Loss function:
$$\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$$

Unknown joint distribution:

$$(X,Y) \sim P(X,Y)$$

Training data: $S = \{(x_i, y_i)\}_{i=1}^n$ i.i.d. from P

Risk Functions:

Population Risk

Empirical Risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x_i), y_i)$$

 $R(h) = \mathbb{E}_{(X,Y) \sim P}[\ell(h(X), Y)]$

Training error

The Goal

Find $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} R(h)$ but we only

Risk Decomposition: Understanding Prediction Error

Fundamental Decomposition:

For any learning algorithm \hat{h} trained on dataset S:

$$R(\hat{h}) = R(\hat{h}) - R(h_{\mathcal{H}}^*) + R(h_{\mathcal{H}}^*) - R^* + R^*$$

$$= \underbrace{R(\hat{h}) - R(h_{\mathcal{H}}^*)}_{\text{Estimation Error}} + \underbrace{R(h_{\mathcal{H}}^*) - R^*}_{\text{Approximation Error}} + \underbrace{R^*}_{\text{Bayes Risk}}$$
(6)

where:

$$ullet$$
 $R^* = \inf_f R(f)$ is the Bayes risk (irreducible error)

•
$$h_{\mathcal{H}}^* = \operatorname{argmin}_{h \in \mathcal{H}} R(h)$$
 is the best function in our class

Bayes Risk	Approximation Error	Estimation Error	
Noise in data	Model bias	Finite sample effects	
 Measurement error 	 Limited hypothesis class 	 Random sampling 	
C. I I I .	Statistical Learning Theory	October 29, 2025 6 / 25	

Common Loss Functions

Regression Tasks:

Squared Loss:
$$\ell(y,\hat{y}) = (y-\hat{y})^2$$
 (7) 0-1 Loss: $\ell(y,\hat{y}) = \mathbb{I}[y \neq \hat{y}]$ (10) Absolute Loss: $\ell(y,\hat{y}) = |y-\hat{y}|$ (8) Hinge Loss: $\ell(y,\hat{y}) = \max(0,1-y\hat{y})$ (11) Huber Loss: $\ell(y,\hat{y}) = \begin{cases} \frac{1}{2}(y-\hat{y})^2 & \text{if } |y-\hat{y}| \leq \delta \\ \delta|y-\hat{y}| - \frac{1}{2}\delta^2 & \text{other Weistic Loss:} \end{cases}$ $\ell(y,\hat{y}) = \log(1+e^{-y\hat{y}})$ (12) (9) Cross-entropy: $\ell(y,\hat{y}) = -y\log(\hat{y}) - (1-y)\log(\hat{y})$ (13)

$$\ell(y,y) = |y - y|$$

$$\int \frac{1}{2}(y-$$

(7) 0-1 Loss:
$$\ell(y, \hat{y}) = \mathbb{I}[y \neq \hat{y}]$$
 (10)

$$\ell(y,y)$$

$$\kappa(g,g)$$

- 0-1: What we care about, but non-convex
 - Hinge: Convex surrogate, sparse solutions
 - Logistic: Smooth, probabilistic interpretation

- Squared: Differentiable, sensitive to outliers
- Absolute: Robust, non-differentiable at 0
- Huber: Best of both worlds

Bias-Variance Decomposition

Consider regression with squared loss. For a fixed point x, decompose the expected squared error:

$$\mathbb{E}[(\hat{f}(x) - y)^2] = \mathbb{E}[(\hat{f}(x) - f(x) + f(x) - y)^2]$$

$$= \mathbb{E}[(\hat{f}(x) - f(x))^2] + \mathbb{E}[(f(x) - y)^2] + 2\mathbb{E}[(\hat{f}(x) - f(x))(f(x) - y)]$$
(15)

$$= \mathbb{E}[(\hat{f}(x) - f(x))^2] + \sigma^2 + 0 \tag{16}$$

where $f(x) = \mathbb{E}[Y|X=x]$ and $\sigma^2 = \text{Var}[Y|X=x]$.

Further decomposition:

$$\mathbb{E}[(\hat{f}(x) - f(x))^2] = \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)] + \mathbb{E}[\hat{f}(x)] - f(x))^2]$$

$$= \operatorname{Var}[\hat{f}(x)] + (\mathbb{E}[\hat{f}(x)] - f(x))^2$$
(18)

$$= Variance + Bias^2$$
 (19)

Final Decomposition

(17)

Understanding Bias and Variance

Definition (Bias)

$$\mathsf{Bias}[\hat{f}(x)] = \mathbb{E}[\hat{f}(x)] - f(x)$$

Systematic error - how far off is our method on average?

$$\odot$$

True function ow bias Low bias ce

Low variance

Definition (Variance)

$$\mathsf{Variance}[\hat{f}(x)] = \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]$$

Random error - how much does our method vary across datasets?

The Tradeoff

Complex models: Low bias, high variance Simple models: High bias, low variance

D. Ribeiro

Interactive Demonstration: Polynomial Regression

Example: Fitting polynomials of different degrees to a noisy sine wave

```
import numpy as np
import matplotlib.pvplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn, pipeline import Pipeline
def true function(x):
    return 1.5 * np.sin(2 * np.pi * x)
def generate_data(n_samples=50, noise_std=0.3):
    X = np.random.uniform(0. 1. n samples)
    v = true function(X) + np.random.normal(0, noise std. n samples)
    return X.reshape(-1, 1), v
# Generate multiple datasets for bias-variance analysis
n datasets = 100
degrees = [1, 4, 15]
X test = np.linspace(0, 1, 100).reshape(-1, 1)
v test true = true function(X test.rayel())
for degree in degrees:
    predictions = []
    for _ in range(n_datasets):
        X train. v train = generate data()
        model = Pipeline([
            ('poly', PolynomialFeatures(degree)).
            ('linear', LinearRegression())
        1)
```

Model Complexity and the U-Shaped Curve

Training vs Test Error:

Key Observations:

- Underfitting region: Both training and test error are high
- Sweet spot: Test error is minimized
- Overfitting region: Gap between training and test error grows

Practical Implications

- Use validation to find optimal complexity
- Regularization helps control overfitting
- More data allows more complex models
- Early stopping prevents overfitting

PAC Learning Theory

Definition (PAC Learnability)

A hypothesis class $\mathcal H$ is **PAC-learnable** if there exists an algorithm A and polynomial function $p(\cdot,\cdot,\cdot,\cdot)$ such that:

For any distribution D over \mathcal{X} , any target concept $c \in \mathcal{H}$, and any $\epsilon, \delta > 0$: If $m > p(1/\epsilon, 1/\delta, \operatorname{size}(c), \operatorname{size}(\mathcal{X}))$, then

$$\mathbb{P}[\mathsf{error}(A(S)) \le \epsilon] \ge 1 - \delta$$

where S is a training set of size m drawn i.i.d. from D.

Interpretation:

- **Probably**: With high probability (1δ)
- Approximately: Within ϵ
- Correct: Low generalization error

Sample Complexity

The function $m(\epsilon, \delta)$ tells us how many examples we need to learn with accuracy ϵ and

October 29, 2025

VC Dimension: Measuring Hypothesis Class Complexity

Definition (Shattering)

A set of points $\{x_1,\ldots,x_k\}$ is **shattered** by hypothesis class $\mathcal H$ if for every possible labeling $\{y_1,\ldots,y_k\}\in\{0,1\}^k$, there exists $h\in\mathcal H$ such that $h(x_i)=y_i$ for all i.

Definition (VC Dimension)

The **VC** dimension of \mathcal{H} is the size of the largest set that can be shattered by \mathcal{H} .

 $VC(\mathcal{H}) = \max\{k : \exists \text{ set of size } k \text{ that can be shattered by } \mathcal{H}\}$

Examples:

- Linear classifiers in \mathbb{R}^d : VC dim = d+1
- ullet Decision trees of depth h: VC dim $pprox 2^h$
- Neural networks: Complex, depends on architecture
- Nearest neighbor: Infinite VC dimension
 Statistical

VOP pattorn

Linear in 200 annot shatter 4

13 / 25

Generalization Bounds

The power of VC theory: Provides distribution-free generalization guarantees.

Theorem (VC Generalization Bound)

Let \mathcal{H} be a hypothesis class with VC dimension d. Then with probability at least $1-\delta$, for all $h \in \mathcal{H}$:

$$R(h) \le R_n(h) + \sqrt{\frac{8d\log(2n/d) + 8\log(4/\delta)}{n}}$$

Sample Complexity: For (ϵ, δ) -PAC learning:

$$m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$$

Key insights:

Linear dependence on VC dimension

D. Ribeiro

If $|\mathcal{H}| = N < \infty$, then with probability $1 - \delta$:

For Finite Hypothesis Classes

$$R(h) \le R_n(h) + \sqrt{\frac{\log(N) + \log(1/\delta)}{2n}}$$

Sample complexity: $m = O\left(\frac{\log(N) + \log(1/\delta)}{\epsilon^2}\right)$

Statistical Learning Theory

The Model Selection Challenge

Scenario: We have multiple hypothesis classes $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_K$ and need to choose the best one.

Why is this hard?

- Training error is optimistically biased
- More complex models always fit training data better
- Need unbiased estimate of generalization error
- Limited data for evaluation

Classical approach:

- Information criteria (AIC, BIC)
- Analytical penalties for complexity

The Holdout Method

- Split data: Train (60%) / Validation (20%) / Test (20%)
- 2 Train each model on training set
- Evaluate on validation set
- Select model with best validation performance
- Seport final performance on test set

Problems with Holdout

 Wastes data (especially problematic for small datasets)

Cross-Validation: Theory and Practice

k-Fold Cross-Validation Algorithm:

```
Algorithm 1 k-Fold Cross-Validation

1: Split data into k roughly equal folds

2: for i=1 to k do

3: Use fold i as validation set

4: Use remaining k-1 folds as training set

5: Train model and compute validation error e_{i_1}^{i_1}

6: end for

7: Return \text{CV}_k = \frac{1}{k} \sum_{i=1}^k e_i
```

Common choices:

```
• k = 5 or k = 10 (good bias-variance tradeoff) k = n (Leave-One-Out CV. LOOCV)
```

```
from sklearn.model selection import
     cross val score
from sklearn.linear model import Ridge
import numby as no
# Generate sample data
from sklearn.datasets import make_regression
X, y = make_regression(n_samples=100,
                       n features=20.
                       noise=0.1.
                       random state=42)
# Test different regularization strengths
alphas = np.logspace(-4, 2, 20)
cv scores = []
for alpha in alphas:
    model = Ridge(alpha=alpha)
    scores = cross val score(
        model. X. v.
        cv = 5.
        scoring='neg mean squared error'
    cv_scores.append(-scores.mean())
# Select best alpha
best_alpha = alphas[np.argmin(cv_scores)]
```

Advanced Cross-Validation Techniques

Nested Cross-Validation:

- Outer loop: Model assessment
- Inner loop: Hyperparameter selection
- Provides unbiased estimate of generalization
- Essential for fair model comparison

Stratified Cross-Validation:

- Maintains class proportions in each fold
- Important for imbalanced datasets
- Reduces variance in estimates

Group Cross-Validation

When data has natural clusters (e.g., patients, companies):

- Ensure same group doesn't appear in train and validation
- Prevents data leakage
- More conservative but realistic estimates

Bootstrap Methods

Alternative to CV:

- Sample with replacement
- Out-of-bag samples for validation
- Good for small datasets

Case Study 1: Feature Selection for House Price Prediction

Problem: Predict house prices with 80+ features, many potentially irrelevant.

```
import pandas as pd
from sklearn.model selection import validation curve
from sklearn feature selection import Select Best f regression
from sklearn.linear_model import LinearRegression
from sklearn, pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load boston
# Load data (Boston housing as example)
X, v = load_boston(return_X_v=True)
# Create pipeline with feature selection
pipe = Pipeline([
    ('scaler', StandardScaler()).
    ('selector', SelectKBest(f regression)).
    ('regressor', LinearRegression())
1)
# Test different numbers of features
param_range = range(1, X.shape[1] + 1)
train_scores, val_scores = validation_curve(
    pipe, X, y,
    param_name='selector_k'.
    param range=param range.
    cv=5.
    scoring='neg mean squared error'
```

Case Study 2: Regularization in High-Dimensional Regression

Problem: Gene expression data with 5,000 features and 100 samples.

```
from sklearn.linear_model import Ridge, Lasso
from sklearn.model selection import validation curve
import numpy as np
# Simulate high-dimensional data
np.random.seed(42)
n_samples, n_features = 100, 5000
X = np.random.randn(n samples, n features)
true coef = np.zeros(n features)
true_coef[:10] = np.random.randn(10) # Only first 10 are relevant
v = X @ true coef + 0.1 * np.random.randn(n samples)
# Compare Ridge and Lasso
alphas = np.logspace(-3, 2, 20)
ridge_train. ridge_val = validation_curve(
   Ridge(), X, v, param_name='alpha', param_range=alphas,
   cv=5. scoring='neg mean squared error'
lasso train. lasso val = validation curve(
   Lasso(max_iter=2000), X, y, param_name='alpha', param_range=alphas.
   cv=5. scoring='neg_mean_squared_error'
print("Ridge vs Lasso in high-dimensional setting:")
print("- Ridge: Continuous shrinkage, keeps all features")
print("- Lasso: Sparse solutions. automatic feature selection")
```

Case Study 3: Model Selection in Practice

Problem: Credit scoring with multiple algorithm choices.

Model	CV Score	Std Error	Train Time	Interpretable?
Logistic Regression	0.845	0.012	0.1s	Yes
Random Forest	0.867	0.015	2.3s	Partial
Gradient Boost- ing	0.874	0.011	45s	Partial
Neural Network	0.871	0.018	15s	No
SVM (RBF)	0.863	0.014	8s	No

Statistical Considerations:

- Is difference between 0.874 and 0.871 significant?
- Paired t-test on CV folds
- Practical vs statistical significance

Business Considerations:

- Interpretability requirements (regulation)
- Prediction speed (real-time scoring)
- Training cost (model updates)
- Maintenance complexity

Beyond Classical Theory: Modern Challenges

The Double Descent Phenomenon:

- Classical theory: U-shaped test error curve
- Modern observation: Second descent in overparameterized regime
- Challenges bias-variance decomposition
- Common in deep learning

High-Dimensional Statistics:

- $p \gg n$ scenarios (genomics, finance)
- Curse of dimensionality
- Blessing of dimensionality (concentration)
- Sparsity assumptions crucial

Modern Theory Needs

- Implicit regularization in SGD
- Benign overfitting conditions
- Role of initialization and architecture
- Distribution-dependent bounds

Emerging Frontiers in Learning Theory

Causal Learning:

- Beyond correlation to causation
- Structural causal models
- Invariant risk minimization
- Domain adaptation and robustness

Meta-Learning:

- Learning to learn across tasks
- Few-shot learning

Continual Learning:

- Model-agnostic meta-learning (MAML)
- Bayesian optimization for hyperparameters

Federated Learning:

- Distributed learning with privacy
- Communication constraints
- Non-IID data distributions
- Differential privacy guarantees

Robust Learning:

- Adversarial examples
- Distribution shift
- Worst-case guarantees
- Certified defenses

Practical Implications

Modern ML applications require:

Key Takeaways

Fundamental Concepts:

- Risk decomposition: Understand sources of error
- Bias-variance tradeoff: Balance simplicity and complexity
- PAC learning: Formal guarantees for learnability
- VC dimension: Measure of hypothesis class complexity
- Cross-validation: Practical model selection. tool

Practical Guidelines:

 Start with simple baselines D Ribeiro

Modern Challenges:

- High-dimensional data requires new techniques
- Deep learning challenges classical theory
- Robustness and fairness are crucial
- Causality matters for decision-making

The Big Picture

Statistical learning theory provides:

- Principled foundation for ML
- Tools for understanding when/why methods work
- Guidance for method selection
- Framework for developing new algorithms

Next Steps in the Data Science Track

Immediate Next Topics:

- Feature Engineering & Selection
 - Automated feature engineering
 - Dimensionality reduction
 - Feature importance methods
- Causal Inference
 - From correlation to causation
 - Experimental design
 - Observational causal methods
- Model Interpretability
 - SHAP, LIME, and friends
 - Global vs local explanations
 - Interpretable model classes

Hands-on Projects:

- Implement bias-variance decomposition from scratch
- Build cross-validation framework
- Apply theory to real dataset
- Compare multiple algorithms systematically

Further Reading:

- Hastie, Tibshirani, Friedman: Elements of Statistical Learning
- Shalev-Shwartz, Ben-David: Understanding Machine Learning
- Vapnik: The Nature of Statistical

Learning Theory - ABARENTE SQC

Thank You

Questions & Discussion

Diogo Ribeiro

ESMAD – Escola Superior de Média Arte e Design Lead Data Scientist, Mysense.ai

dfr@esmad.ipp.pt https://orcid.org/0009-0001-2022-7072

Slides and code available at: github.com/diogoribeiro7/academic-presentations

Statistical Learning Theory

Next: Feature Engineering & Selection