AMENDMENTS TO THE CLAIMS

1. (original) A method for the synthesis of severely sterically hindered secondary aminoether alcohols of the formula

wherein R¹ and R² are each selected from the group consisting of alkyl, hydroxylalkyl radicals having 1 to 4 carbon atoms or in combination with the carbon atom to which they are attached they form a cycloalkyl group having 3 to 8 carbon atoms, and R³ is selected from the group consisting of hydrogen, alkyl or hydroxyalkyl radicals having 1 to 4 carbon atoms, and R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are the same or different and are selected from the group consisting of hydrogen, alkyl and hydroxyalkyl radicals having 1 to 4 carbons provided that at least one of R⁴ or R⁵ bonded to the carbon atom directly bonded to the nitrogen atom is an alkyl or hydroxyalkyl radical when R³ is hydrogen, the process involving reacting an acid halide or organic carboxylic acid anhydride, a ketene, or mixture of any two or of all three thereof, of the formula

$$R^{12}-C-X$$
, $R^{12}-C-O-C-R^{13}$ or R^{X}

wherein R^{12} and R^{13} are the same or different and each is selected from the group consisting of alkyl radicals having 1 to 4 carbon atoms, aryl radicals bearing hydrogen or C_1 - C_{10} alkyl groups substituted thereon, and mixtures thereof, X is halogen selected from the group consisting of F, Cl, Br, I, and mixtures thereof, and R^x and R^y are the same or different and are selected from the group consisting of hydrogen, alkyl radicals having 1 to 4 carbon, aryl radicals bearing substituents selected from the group consisting of hydrogen and one or more alkyl radicals, and mixtures thereof, or R^x and R^y in

combination with the carbon to which they are attached form a cycloalkyl radical having 3 to 8 carbons, with an organic sulfonic acid of the formula

$$R^{14}$$
— $\left(SO_3H\right)_O$

wherein Q is an integer selected from 1 to 4, R^{14} is selected from the group consisting of alkyl radicals having 1 to 4 carbon atoms, haloalkyl radicals of the formula $C_nH_{(2n+1)-z}X_z$ wherein n is 1 to 4, X is selected from the group consisting of F, Cl, Br, I, and mixtures thereof, and z ranges from 1 to 5, aryl radicals of the formula

$$R^{16}$$
 R^{15}
 R^{17}
 R^{18}
 R^{19}

wherein R¹⁵, R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are the same or different and are selected from hydrogen and alkyl radicals having 1 to 20 carbon atoms, and mixtures thereof, to yield an acyl sulfonate of the formula

$$R^{12/13} C - O - SO_2 - R^{14}$$
, $R^{y} C - C - O - SO_2 R^{14}$

or mixtures thereof, which is then reacted with a dioxane of the formula

$$\begin{array}{c}
R^{11} \\
R^{10} \\
R^{9} \\
R^{8}
\end{array}$$

$$\begin{array}{c}
R^{4} \\
R^{5} \\
R^{7}
\end{array}$$

wherein R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, and R¹¹ are the same or different and are selected from hydrogen, alkyl and hydroxyalkyl radicals having 1 to 4 carbons to yield

Preliminary Amendment Family Number: P2004J003

$$R^{12/13} - \overset{O}{C} - \overset{R^{10}}{C} \overset{R^8}{-} \overset{R^6}{C} \overset{R^4}{-} \overset{I}{C} - \overset{I}{C} -$$

or mixtures thereof, which is then aminated with an alkylamine of the formula

$$\begin{array}{ccc}
 & R^{1} \\
 & -R^{2} \\
 & R^{3}
\end{array}$$

wherein R¹, R², and R³ are as previously defined to yield

or mixtures thereof, which is then hydrolyzed with base to yield

2. (original) The method of claim 1 for the synthesis of severely sterically hindered secondary aminoether alcohols using the acid halide of the formula

U.S. National Phase of PCT/US2005/003053

Preliminary Amendment Family Number: P2004J003

3. (original) The method of claim 1 for the synthesis of severely sterically hindered secondary aminoether alcohols using the organic carboxylic acid anhydride of the formula

4. (original) The method of claim 1 for the synthesis of severely sterically hindered secondary aminoether alcohols using ketene, of the formula

$$R^{x}$$
 C = C = O

5. (currently amended) The method according to any one of the preceding claims claim 1, 2, 3 or 4 wherein R^1 , R^2 and R^3 are methyl radicals.

6. (currently amended) The method according to any one of the preceding claims claim 1, 2, 3 or 4 wherein R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, are hydrogen and R^x and R^y are hydrogen or phenyl.

7. (currently amended) The method according to any one of the preceding claims claim 1, 2, 3 or 4 wherein R¹⁵, R¹⁶, R¹⁸, and R¹⁹ are hydrogen and R¹⁷ is hydrogen or methyl.

8. (currently amended) The method according to any one of the preceding claims claim 1, 2, 3 or 4 wherein the base is selected from alkali metal hydroxide alkali metal alkoxide, alkali metal carbonate.

9. (currently amended) The method according to any one of the preceding claims claim 1, 2, 3 or 4 wherein R¹, R² and R³ are methyl, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, and R¹¹

are hydrogen, R¹⁵, R¹⁶, R¹⁸, and R¹⁹ are hydrogen, R¹⁷ is hydrogen or methyl and R^x

and Ry are hydrogen or phenyl.

10. (currently amended) The method of any one of the preceding claims claim 1, 2, 3 or

4 wherein the acyl sulfonate is made by reacting organic carboxylic acid halide, organic

carboxylic acid anhydride, ketene, mixtures of any two or of all three thereof with the

organic sulfonic acid at a temperature in the range of about -20 to 150°C at a pressure

between about 1 bar to 100 bars, the acyl sulfonate is reacted with dioxane at a dioxane to

acyl sulfonate ratio of about 1:1 to about 10:1 at a temperature between about 50°C to

about 200°C, the resulting cleavage product is reacted with alkyl amine in an amine to

cleavage product sulfonate group ratio in the range of about stoichiometric to about 10:1

at a pressure of about atmospheric (1 bar) to about 100 bars, at a temperature of about

40° to about 200°C, and wherein the aminated product is hydrolyzed with base at

between about 20°C to about 110°C.

11. (currently amended) The method of any one of the preceding claims claim 1, 2, 3

or 4 wherein the mixing of the anhydride, acid halide, ketene or mixture of any two or of

all three thereof, the organic sulfonic acid and the dioxane is combined in a single step.

the reaction mixture being heated at a temperature between about 50°C to about 200°C to

produce a cleavage product, the cleavage product and the alkylamine being reacted at an

amine to cleavage product ratio ranging from about stoichiometric to about 10:1 at a

pressure of about atmospheric (1 bar) to about 100 bars, at a temperature of about 40°C

to about 200°C, and wherein the aminated product is hydrolyzed with base at between

about 20°C to about 110°C.

12. (currently amended) The method of any one of the preceding claims claim 1, 2, 3 or

 $\underline{4}$ wherein Q is 1.