Правила оформления домашних заданий

- Домашние задания выполняются строго на отдельных листах, скрепленных канцелярской скрепкой. Листы должны быть исписаны с двух сторон. Разрозненные листы, а также листы, скрепленные путем загибания уголка, не принимаются. Предпочтительна тонкая бумага, использование файлов для упаковки работы нежелательно.
- Каждая работа должна иметь титульный лист, на котором указаны фамилия автора, индекс его группы и номер выполненного варианта. На собственно титульном листе не должно быть решений, оборот титульного листа может быть исписан.

ДОМАШНЕЕ ЗАЛАНИЕ № 1

Линейное программирование

№ задания 1 2 3 4 Σ = max min

- 1. Составить двойственную задачу¹ и решить ее графически;
- 2. решить исходную задачу с использованием симплекс-таблиц;
- 3. решить двойственную задачу с использованием симплекс-таблиц;
- 4. сравнить найденные решения.

	Б	аллы	9	9	9	3	30	18
								10
$1. \begin{cases} 4x_1 - 10x_2 - 12.5x_3 - 6.5x_4 \to \max, \\ x_2 + 0.5x_3 - 1.5x_4 \geqslant 2, \\ -x_1 - 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \qquad i = \overline{1} : 4. \end{cases}$	2. {	$ \begin{cases} -3x_1 + \\ -x_1 + 2 \\ x_1 - x_2 \\ x_i \geqslant 0, \end{cases} $	$2x_{2} + x_{3} + x_{3}$	$-x_3$ x_3 : $\geqslant 2$ $= \overline{1}$	\rightarrow n $\leqslant 1$, $\frac{1}{:3}$.	nax,		
$3. \begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \rightarrow \min, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ -x_1 - 4x_2 + 3x_3 + 4x_4 \geqslant 1, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases}$	4. {	$\begin{cases} 6x_1 - 8x_1 \\ 1.5x_1 - \\ -3x_1 - \\ x_i \geqslant 0, \end{cases}$	$x_2 - 2x_2 - 3x_2 - i$	$9x_3 - x_3 + x_3 = \overline{1}$	-6x + 1. + 5x = 1.	$5x_4 \Rightarrow x_4 \geqslant$	\max , ≤ -1 , \leq ,	
$5. \begin{cases} 6x_1 + 9x_2 + 8x_3 \to \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \qquad i = \overline{1:3}. \end{cases}$	6. {	$\begin{cases} x_1 - 4x_2 \\ -x_1 + 1 \\ x_2 - 5x_3 \\ x_i \geqslant 0, \end{cases}$	$0.5x_3 + 4$	$x_3 - x_4 \ge x_4 \ge 1$	$18x$ $1 \geqslant 1$ $3,$ $\overline{3}$	$_{4}\rightarrow$	max,	
7. $\begin{cases} -x_1 + 4x_2 + 16x_3 - 6x_4 \to \min, \\ -x_1 + 4x_3 - 1.5x_4 \geqslant 1, \\ x_2 + 2x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \qquad i = \overline{1}: 4. \end{cases}$	8. ⟨	$\begin{cases} -0.5x_1 \\ x_1 + 4x_2 \\ 2x_1 + 3x_3 \\ x_i \geqslant 0, \end{cases}$	$-x_2$ $x_2 - 3$ $x_2 - i$	$ \begin{array}{r} -0. \\ x_3 - \\ x_3 - \\ \hline 1 \end{array} $	$5x_3$ $4x_4$ $2x_4$ $\overline{: 4}$.	$-4x$. $\leqslant \geqslant 3$.	$_{4} \rightarrow \max,$ $_{1}$	
$9. \begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \to \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_1 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \qquad i = \overline{1}: 4. \end{cases}$	10.	$\begin{cases} 3x_1 + x_1 \\ -2x_1 + x_2 \\ x_1 + x_2 \\ x_i \geqslant 0, \end{cases}$	$7x_{2} + x_{2} + x_{2} = 2$	+2.5 + 2x +2x -2x -2x -2x	$x_3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$	$1.5x$ $x_4 \geqslant 0$ $x_4 \geqslant 0$	$c_4 \to \min,$ $c_4 \to \min,$	
$11. \begin{cases} 25x_1 - 20x_2 - 8x_3 + 13x_4 \to \min, \\ x_1 + 2x_2 - 3x_4 \geqslant 4, \\ 3x_2 + x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \qquad i = \overline{1}: \overline{4}. \end{cases}$	12.	$\begin{cases} -3x_1 + 3x_1 + 3x_1 - 4 \\ 3x_1 - 4 \\ x_i \geqslant 0 \end{cases}$	$+4x_{2}$ $3x_{2}$ $-4x_{2}$	x + 4 - x_3 - $2x_3$ i = 1	$5x_3 - 5x_3 + 3 \over 1:4$	$+3x$ $x_{4} \leq x_{4} \leq x_{4} \leq x_{4}$	$c_4 \rightarrow \min,$ $-5,$ $-1,$	
$\textbf{13.} \begin{cases} x_1 - 15x_2 - 10x_3 + 6x_4 \rightarrow \max, \\ 5x_1 - 4x_2 + 2x_3 - 3x_4 \leqslant -6, \\ -x_1 - x_2 - 3x_3 + 5x_4 \leqslant 1, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases}$	14.	$\begin{cases} 18x_1 + 2x_1 + 3x_1 + 3x_2 \\ 4x_1 + 3x_2 \\ x_i \geqslant 0, \end{cases}$	$4x_2$ $3x_2$ - x_2 -	$-6x - 2x - 5x_3$ $i = $	$c_3 - c_3 > 2$ $\geqslant 3$, 1 : 4	x ₄ -	→ min,	

 $^{^{1}}$ В случае, когда исходная задача является задачей минимизации, ее следует привести к стандартной форме двойственной задачи, а двойственную задачу записать в стандартной форме прямой.

$$\begin{array}{lll} \mathbf{i.} & \begin{cases} -6x_1 + 4x_2 + 16x_3 - 4x_4 \to \min, \\ 3x_1 - 8x_3 + 2x_4 \leqslant -2, \\ -3x_1 + x_2 + 2x_3 \geqslant -4, \\ x_i \geqslant 0, & i = \overline{1}:4. \end{cases} \\ \mathbf{16.} & \begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \to \min, \\ x_1 + 4x_2 - 3x_3 - 4x_4 \leqslant -1, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, & i = \overline{1}:4. \end{cases} \\ \end{array}$$

23.
$$\begin{cases} 8x_1 + 9x_2 + 6x_3 \to \min, \\ 4x_1 + 2x_2 - 3x_3 \geqslant 4, \\ -3x_1 + x_2 + 5x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1} \cdot \overline{3}. \end{cases}$$
24.
$$\begin{cases} 3x_1 + 4.5x_2 + 4x_3 - 3x_4 \to \min, \\ -5x_1 - x_2 + 3x_3 + 3x_4 \leqslant -5, \\ 3x_1 - 2x_2 - 4x_3 + 3x_4 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1} \cdot \overline{4}. \end{cases}$$

$$\mathbf{25.} \begin{cases} 8x_1 + x_2 + 2x_3 + x_4 \to \min, \\ -4x_1 - 3x_2 + 4x_3 + x_4 \leqslant -1, \\ -2x_1 - x_2 + 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases} \\ \mathbf{26.} \begin{cases} 6x_1 + x_2 - 16x_3 - 4x_4 \to \max, \\ 3x_1 - 2x_2 - x_4 \leqslant 4, \\ 1.5x_1 + x_2 - 4x_3 \leqslant -1, \\ x_i \geqslant 0, \qquad i = \overline{1:4}. \end{cases}$$

7.
$$\begin{cases} 7x_1 + 1.5x_2 + 3x_3 + 2.5x_4 \to \min, \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ -x_1 - x_2 + 2x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
28.
$$\begin{cases} 13x_1 + 25x_2 - 20x_3 - 8x_4 \to \min, \\ 2x_1 - 3x_3 - x_4 \geqslant 3, \\ -3x_1 + x_2 + 2x_3 \geqslant 4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\begin{cases} x_1 - 4x_2 + 6x_3 - 18x_4 \rightarrow \max, \\ -x_1 + 1.5x_3 + x_4 \geqslant 1, \\ x_2 - 5x_3 + 4x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1} : \overline{4}. \end{cases}$$
 30.
$$\begin{cases} -3x_1 + 4x_2 + 4.5x_3 + 3x_4 \rightarrow \min, \\ 3x_1 + 3x_2 - x_3 - 5x_4 \leqslant -5, \\ 3x_1 - 4x_2 - 2x_3 + 3x_4 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1} : \overline{4}. \end{cases}$$

Правила оформления и защиты лабораторных работ

ii-paziiia oqopiiiaiiii ii saiiiii iia saiiii pasor

- 1. Все алгоритмы должны быть реализованы с использованием системы MatLAB или ее бесплатного аналога Octave;
- Реализованные алгоритмы должны работать для любого набора допустимых входных данных, в том числе и для матриц различного порядка;
- приступая к защите лабораторной работы, студент должен иметь при себе готовый отчет, содержание которого определяется заданием на конкретную лабораторную работу.

ЛАБОРАТОРНАЯ РАБОТА№ 1

Венгерский метод решения задачи о назначениях

Цель работы: изучение венгерского метода решения задачи о назначениях.

Содержание работы

- 1. реализовать венгерский метод решения задачи о назначениях в виде программы на ЭВМ²;
- 2. провести решение задачи с матрицей стоимостей, заданной в индивидуальном варианте, рассмотрев два случая:
 - а) задача о назначениях является задачей минимизации,
 - б) задача о назначениях является задачей максимизации.

Содержание отчета

- 1. содержательная и математическая постановки задачи о назаначениях, а также исходные данные конкретного варианта;
- 2. краткое описание венгерского метода (можно в "псевдокодах");
- 3. текст программы;
- 4. результаты расчетов для задач из индивидуального варианта.

Индвидуальные варианты матрицы стоимостей

1. $\begin{bmatrix} 4 & 2 & 1 & 3 & 7 \\ 1 & 5 & 4 & 6 & 3 \\ 5 & 4 & 8 & 7 & 2 \\ 9 & 9 & 3 & 2 & 5 \\ 3 & 4 & 7 & 8 & 2 \end{bmatrix}.$	$ 2. \begin{bmatrix} 4 & 10 & 10 & 3 & 6 \\ 5 & 6 & 2 & 7 & 4 \\ 9 & 5 & 6 & 8 & 3 \\ 2 & 3 & 5 & 4 & 8 \\ 8 & 5 & 4 & 9 & 3 \end{bmatrix}. $	3. $\begin{bmatrix} 1 & 4 & 7 & 9 & 4 \\ 9 & 3 & 8 & 7 & 4 \\ 3 & 4 & 6 & 8 & 2 \\ 8 & 2 & 4 & 6 & 7 \\ 7 & 6 & 9 & 8 & 5 \end{bmatrix}$	4. $\begin{bmatrix} 3 & 5 & 2 & 4 & 8 \\ 10 & 10 & 4 & 3 & 6 \\ 5 & 6 & 9 & 8 & 3 \\ 6 & 2 & 5 & 8 & 4 \\ 5 & 4 & 8 & 9 & 3 \end{bmatrix}.$
5. $\begin{bmatrix} 9 & 11 & 3 & 6 & 6 \\ 10 & 9 & 11 & 5 & 6 \\ 8 & 10 & 5 & 6 & 4 \\ 6 & 8 & 10 & 4 & 9 \\ 11 & 10 & 9 & 8 & 7 \end{bmatrix}.$	$6. \begin{bmatrix} 10 & 8 & 6 & 4 & 9 \\ 11 & 9 & 10 & 5 & 6 \\ 5 & 10 & 8 & 6 & 4 \\ 3 & 11 & 9 & 6 & 6 \\ 8 & 10 & 11 & 8 & 7 \end{bmatrix}.$	7. $\begin{bmatrix} 11 & 4 & 11 & 6 & 11 \\ 7 & 5 & 6 & 7 & 12 \\ 9 & 7 & 8 & 10 & 10 \\ 9 & 11 & 6 & 10 & 9 \\ 7 & 10 & 4 & 8 & 8 \end{bmatrix}.$	8. $\begin{bmatrix} 7 & 4 & 3 & 8 & 2 \\ 4 & 5 & 1 & 6 & 3 \\ 8 & 4 & 5 & 7 & 2 \\ 1 & 2 & 4 & 7 & 2 \\ 3 & 9 & 9 & 2 & 5 \end{bmatrix}.$
$ 9. \begin{bmatrix} 4 & 7 & 1 & 5 & 5 \\ 6 & 8 & 3 & 7 & 6 \\ 6 & 4 & 5 & 7 & 7 \\ 4 & 2 & 3 & 4 & 9 \\ 8 & 1 & 8 & 3 & 8 \end{bmatrix}. $		11. $\begin{bmatrix} 5 & 6 & 8 & 2 & 7 \\ 7 & 9 & 1 & 4 & 4 \\ 6 & 8 & 3 & 4 & 2 \\ 8 & 7 & 9 & 3 & 4 \\ 9 & 8 & 7 & 6 & 5 \end{bmatrix}.$	12. $\begin{bmatrix} 6 & 10 & 4 & 5 & 8 \\ 8 & 10 & 7 & 9 & 11 \\ 4 & 8 & 9 & 10 & 6 \\ 5 & 9 & 6 & 11 & 10 \\ 6 & 11 & 6 & 3 & 9 \end{bmatrix}.$
13. $\begin{bmatrix} 10 & 4 & 9 & 8 & 5 \\ 9 & 3 & 5 & 7 & 8 \\ 2 & 5 & 8 & 10 & 5 \\ 4 & 5 & 7 & 9 & 3 \\ 8 & 7 & 10 & 9 & 6 \end{bmatrix}.$	14. $\begin{bmatrix} 8 & 4 & 5 & 7 & 2 \\ 7 & 4 & 3 & 8 & 2 \\ 1 & 2 & 4 & 7 & 2 \\ 3 & 9 & 9 & 2 & 5 \\ 4 & 5 & 1 & 6 & 3 \end{bmatrix}.$	$ \textbf{15.} \begin{bmatrix} 10 & 12 & 7 & 11 & 10 \\ 12 & 5 & 12 & 7 & 12 \\ 8 & 6 & 7 & 8 & 13 \\ 8 & 11 & 5 & 9 & 9 \\ 10 & 8 & 9 & 11 & 11 \end{bmatrix}$	$ \begin{bmatrix} 7 & 7 & 9 & 6 & 3 \\ 9 & 9 & 6 & 8 & 7 \\ 6 & 11 & 4 & 6 & 5 \\ 5 & 10 & 3 & 10 & 10 \\ 9 & 8 & 10 & 8 & 5 \end{bmatrix}. $
17. $\begin{bmatrix} 8 & 10 & 5 & 6 & 4 \\ 11 & 10 & 9 & 8 & 7 \\ 6 & 8 & 10 & 4 & 9 \\ 10 & 9 & 11 & 5 & 6 \\ 9 & 11 & 3 & 6 & 6 \end{bmatrix}.$	$18. \begin{bmatrix} 6 & 7 & 3 & 9 & 9 \\ 8 & 9 & 7 & 6 & 9 \\ 6 & 11 & 5 & 4 & 6 \\ 10 & 10 & 10 & 3 & 5 \\ 8 & 8 & 5 & 10 & 9 \end{bmatrix}.$		$\begin{bmatrix} 4 & 2 & 8 & 7 & 5 \\ 4 & 5 & 7 & 8 & 3 \\ 2 & 2 & 1 & 7 & 4 \\ 9 & 5 & 3 & 2 & 9 \\ 5 & 3 & 4 & 6 & 1 \end{bmatrix}.$
$ 21. \begin{array}{cccccccccccccccccccccccccccccccccccc$. 22. $\begin{bmatrix} 4 & 10 & 10 & 3 & 6 \\ 5 & 6 & 2 & 7 & 4 \\ 9 & 5 & 6 & 8 & 3 \\ 2 & 3 & 5 & 4 & 8 \\ 8 & 5 & 4 & 9 & 3 \end{bmatrix}$	$ 23. \begin{bmatrix} 1 & 4 & 7 & 9 & 4 \\ 9 & 3 & 8 & 7 & 4 \\ 3 & 4 & 6 & 8 & 2 \\ 8 & 2 & 4 & 6 & 7 \\ 7 & 6 & 9 & 8 & 5 \end{bmatrix} . \qquad 24 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

²В программе необходимо предусмотреть два режима работы: "итоговый", когда программа печатает только матрицу назначений, и "отладочный", когда на каждой итерации на экран поитерационно выводится вспомогательная информация о текущей эквивалентной матрице стоимостей, текущей системе независимых нулей, выделенных столбцах и строках, нулях со штрихами, *L*-цепочке и т.д.

	12	3 6 7 10 5	3	2	5	26.	$\begin{bmatrix} 4 \\ 7 \\ 9 \\ 2 \\ 8 \end{bmatrix}$	8 6 3 1 3	10 4 6 5 4	2 8 7 3 8	6 6 3 8 3		27.	$\begin{bmatrix} 3\\9\\4\\8\\7 \end{bmatrix}$	7 4 6 3 7	9 8 7 4 9	11 7 9 6 8	$\begin{bmatrix} 6\\4\\3\\7\\5 \end{bmatrix}$	28.	[3 9 5 7 5	5 9 6 3 4	2 3 9 6 8	4 2 8 10 9	$\begin{bmatrix} 9 \\ 6 \\ 4 \\ 7 \\ 4 \end{bmatrix}.$
29.	10 8 6	11 9 10 8 10	11 5 10	5 6 4	$\begin{bmatrix} 6 \\ 4 \\ 9 \end{bmatrix}$.	30.		9 10 11	1 8	0 8 9	5 6 6	6 4 6												