## Resolución numérica de ecuaciones Integrales

Alfonso de Lucas Iniesta y Luis Lucas García

Universidad de Alicante - Facultad de Ciencias - Grado en física

Diciembre de 2024

## Índice

- Introducción
- Motivación
- Resolución de Volterra
- Oscilaciones libres en una cuerda
- Confusiones y Aplicaciones
- 6 Bibliografía

#### Introducción

Función desconocida y(x).

## Definiciones [2]

Ecuación de Fredholm primera especie,

$$f(x) = \int_a^b K(x, s) y(s) ds$$
 (1)

Ecuación de Fredholm de segunda especie,

$$y(x) = f(x) + \lambda \int_{a}^{b} K(x,s)y(s) ds$$
 (2)

#### Introducción

#### Definiciones

Ecuación de Volterra de primera especie,

$$f(x) = \int_{a}^{x} K(x, s)y(s) ds$$
 (3)

Ecuación de Volterra de segunda especie,

$$y(x) = f(x) + \int_{a}^{x} K(x,s)y(s) ds$$
 (4)

En todos los casos, y(x) es la función desconocida. K(x,s) es denotado como el **núcleo** y f(x) se presume conocida. Cuando f(x) = 0 decimos que la ecuación integral es **homogénea**.

#### Motivación

¿Por qué razones querríamos nosotros estudiar las ecuaciones integrales?

- Condiciones de contorno particulares
- Más ventajosa y elegante en la resolución de ciertos problemas
- Resolución de problemas específicos





Figura: Los matemáticos Vito Volterra a la izquierda y Erik Ivar Fredholm a la derecha

# Método del rectángulo [1]

Tomando una escuación de Volterra de segunda especie cualquiera (4). Vamos a utilizar la regla de aproximación más simple. Si queremos la solución en un intervalo [0, T], podemos separar este intervalo en N subintervalos con forma  $\Delta s = \frac{T}{N}$  y  $t_n = n \frac{T}{N}$ , con  $n = 0, 1, \ldots, N$ .

### Regla del rectángulo

Tomando una primera aproximación sencilla de la integral (base por altura), tomando el valor de k(t,s) al inicio del intervalo, se tiene que:

$$y(t_n) = g(t_n) + n \frac{T}{N} \sum_{i=0}^{n-1} k(t_n, t_i) y(t_i)$$
 (5)

Esta expresión nos resulta familiar, y es que podemos expresar este problema en forma de matriz. Si lo escribimos en índices:

$$y_n = g_n + \frac{T}{N} \sum_{i=0}^{n-1} k_n^i y^i$$

## Otros métodos de la integral

### Regla del trapecio

Si tomamos una aproximación algo más complicada para la integral en la ecuación, obtendríamos que queda:

$$y(t_n) = g(t_n) + \frac{T}{2N} \sum_{i=0}^{n-1} \left( k(t_n, t_i) y(t_i) + k(t_n, t_{i+1}) y(t_{i+1}) \right)$$
 (6)



Figura: Reglas de integración numérica del rectángulo y el trapecio.

# Resolución de un caso particular [5]



Figura: Solución de un problema de la referencia [2]

#### Análisis de ambos métodos



Figura: Error y tiempo de ejecución para cada uno de los métodos de resolución de la figura 3

# Oscilaciones libres en una cuerda [3]



Figura: Nuestra cuerda

### Oscilaciones libres en una Cuerda

Sea y(x, t) la posición en el instante t de un punto de la cuerda con abcisa x. Sea  $\lambda$  la densidad lineal de la cuerda, supuesta constante por simplicidad.

#### Fuerza de Inercia

Siguiendo la 2ª Ley de Newton, la fuerza de inercia de la cuerda por unidad de longitud viene dada por:

$$-\lambda \frac{\partial^2 y(\xi, t)}{\partial t^2} \tag{7}$$

Donde el signo menos proviene de que la fuerza de inercia se opone a las oscilaciones de la cuerda.

### Oscilaciones libres en una Cuerda

De esta manera la expresión va a tomar la forma siguiente:

#### Forma de la ecuación

$$y(x,t) = -\lambda \int_0^L K(x,\xi) \frac{\partial^2 y(\xi,t)}{\partial t^2} d\xi$$
 (8)

Si consideramos que la cuerda realiza oscilaciones armónicas, es decir, y(x,t) = y(x)sen(wt), donde w > 0 es la frecuencia (fija) e y(x) es la amplitud de las socilaciones resulta que:

$$y(x,t) = \lambda w^2 \int_0^L K(x,\xi) y(\xi) sen(wt) d\xi$$
 (9)

Donde:

$$K(x,\xi) = \begin{cases} \frac{x(L-\xi)}{T_0L}, \ 0 \le x \le \xi \\ \frac{(L-x)\xi}{T_0L}, \ \xi \le x \le L \end{cases}$$

### Oscilaciones libres en una Cuerda

Para finalizar, recordando que y(x,t) = y(x)sen(wt) y diviendo por sen(wt) a ambos lados de (9) tenemos que:

#### Forma de la ecuación

$$y(x) = \lambda w^2 \int_0^L K(x,\xi) y(\xi) d\xi$$
 (10)

La cual es la expresión de una ecuación de Fredholm de segunda especie, en este caso homogénea.

#### Resolución numérica de las Oscilaciones

Nuevamente emplearemos la regla del rectángulo y del trapecio, de forma que, en este caso la expresión queda de la siguiente manera.

#### Rectángulo y trapecio

Rectángulo:

$$y_n = g_n + \frac{T}{N} \sum_{i=0}^{N-1} k_n^i y^i$$
 (11)

Trapecio:

$$y(t_n) = g(t_n) + \frac{T}{2N} \sum_{i=0}^{N-1} \left( k(t_n, t_i) y(t_i) + k(t_n, t_{i+1}) y(t_{i+1}) \right)$$
(12)

#### Armónicos de la cuerda



Figura: Oscilaciones de la cuerda con extremos fijos. Resolviendo la ecuación integral.

## Conclusiones y Aplicaciones

- Herramienta rápida y elegante
- Procesos de coagulación
- Dinámica pobalcional
- Estabilidad de reactores nucleares
- Teoría de fotoesferas en Astrofísica [4]



# Bibliografía I

- [1] P. Linz. «Numerical methods for Volterra integral equations of the first kind» En: The Computer Journal 12.4 (ene. de 1969), págs. 393-397. ISSN: 0010-4620. DOI: 10.1093/comjn1/12.4.393. eprint: https: //academic.oup.com/comjnl/article-pdf/12/4/393/1026131/ 120393.pdf. URL: https://doi.org/10.1093/comjnl/12.4.393.
- [2] Frank Navarro Rojas. «Ecuaciones en diferencias de Volterra y aproximación numérica para ecuaciones integrales». Tesis de mtría. Universidad Nacional Mayor de San Marcos. Programa Cybertesis PERÚ, 2011.
- [3] M. Rahman. Integral Equations and Their Applications. WIT, 2007. ISBN: 9781845641016. URL: https://books.google.es/books? id=6UjQCwAAQBAJ.
- [4] V.V. Sobolev. Course in Theoretical Astrophysics. Course in Theoretical Astrophysics n.º 531. National Aeronautics y Space Administration, 1969. URL: https://books.google.es/books?id=GPZEAAAAIAAJ.

## Bibliografía II

[5] WolframAlpha. Solución de una ecuación integral de Volterra: Nuevo en Wolfram Language 11. [Consultado: 15/12/2024]. URL: https://www.wolfram.com/language/11/symbolic-and-numeric-calculus/solve-a-volterra-integral-equation.html.es.