

PLANO DE ENSINO

Data de Emissão: 15/01/2017

Instituto de Informática

Departamento de Informática Aplicada

Dados de identificação

Disciplina: DESAFIOS DE PROGRAMAÇÃO

Período Letivo: 2017/1 Período de Início de Validade: 2017/1

Professor Responsável pelo Plano de Ensino: JOAO LUIZ DIHL COMBA Sigla: INF01056 Créditos: 4 Carga Horária: 60

Súmula

Principais tipos de algoritmos computacionais. Projeto de algoritmos e experimentação prática. Implementação de algoritmos.

Técnicas e estratégias para resolução de problemas.

Currículos

Currículos Etapa Aconselhada **Natureza**

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Eletiva

Objetivos

O objetivo deste curso é analisar e discutir algoritmos e técnicas de programação necessários para resolução de problemas desafiadores que aparecem em Maratonas de Programação. O curso é estruturado em uma seqüência de aulas teóricas e práticas, onde tópicos são individualmente discutidos, seguindo a ordem: apresentação do problema, implementação da solução pelos alunos, verificação da solução com os robôs de correção, discussão das soluções e avaliação dos tópicos. Como objetivo final, o aluno é preparado para analisar um problema, determinar qual o melhor método de solução, quais as estruturas de dados adequadas e qual a implementação mais eficiente para a resolução correta do problema.

Conteúdo Programático

Semana: 1

Título: Aula 01/02

Conteúdo: Introdução. Objetivos da Disciplina. Ambiente de programação. Tipos de problemas. Programação: problemas básicos.

Semana: 2

Título: Aula 03/04

Conteúdo: Problemas sobre Estruturas de Dados. Revisão de C++ e Standard Template Library

Semana: 3

Título: Aula 05/06

Conteúdo: Maratona de Programação 1

Semana: 4

Título: Aula 07/08

Conteúdo: Problemas sobre grafos - parte 1

Semana: 5

Título: Aula 09/10

Conteúdo: Problemas sobre grafos - parte 2

Semana: 6

Título: Aula 11/12

Conteúdo: Maratona de Programação 2

Semana: 7

Título: Aula 13/14

Conteúdo: Problemas sobre Programação Dinâmica - parte 1

Semana: 8

Título: Aula 15/16

Conteúdo: Problemas sobre Programação Dinâmica - parte 2

Semana: 9

Título: Aula 17/18

PLANO DE ENSINO

Data de Emissão: 15/01/2017

Conteúdo: Problemas diversos

Semana: 10

Título: Aula 19/20

Conteúdo: Maratona de Programação 3

Semana: 11

Título: Aula 21/22

Conteúdo: Problemas de Matemática

Semana: 12

Título: Aula 23/24

Conteúdo: Problemas diversos

Semana: 13

Título: Aula 25/26

Conteúdo: Maratona de Programação 4

Semana: 14

Título: Aula 27/28

Conteúdo: Problemas sobre geometria

Semana: 15

Título: Aula 29/30

Conteúdo: Maratona de Programação 5

Metodologia

As aulas são apresentadas em blocos de 2 aulas na sequência, onde a primeira parte consiste na apresentação teórica de um tema, e a segunda aula consiste na solução em laboratório de exercícios referentes a aula apresentada. Esta combinação de teoria e prática permite ao aluno consolidar o conhecimento da disciplina.

As 30 aulas serão distribuídas da seguinte forma:

- 10 aulas teóricas
- 10 aulas práticas
- 10 aulas para provas práticas (5 maratonas de programação, cada uma compreendendo 2 aulas)

Carga Horária

Teórica: 20 Prática: 40

Experiências de Aprendizagem

As seguintes atividades discentes são realizadas na disciplina:

- leitura do livro texto
- estudo das técnicas algorítimicas correspondentes a cada aula
- realização de pelo menos 3 exercícios práticos por aula téorica
- realização de 5 maratonas de programação que correspondem a provas da disciplina, onde os assuntos descritos em aula são avaliados

Critérios de avaliação

A avaliação constará de notas de cinco maratonas de programação e pelos problemas de programação distribuídos em aula. A nota final será calculada da seguinte forma:

(MP1 * 1.0 + MP2 * 1.0 + MP3 * 1.0 + MP4 * 1.0 + MP5 * 1.0 + NTF * 1.0 + NTM * 2.0 + NTD * 2.0), onde:

- MP1: Nota da maratona de programação 1
- MP2: Nota da maratona de programação 2

PLANO DE ENSINO

Data de Emissão: 15/01/2017

- MP3: Nota da maratona de programação 3
- MP4: Nota da maratona de programação 4
- · MP5: Nota da maratona de programação 5
- NTF: Notas dos trabalhos de nível fácil
 - NTM: Notas dos trabalhos de nível médio
- NTD: Notas dos trabalhos de nível difícil

O cálculo das notas dos trabalhos (NT) se dará da seguinte forma:

- · Problemas podem ser submetidos em times de até 3 pessoas em AULA somente
- · FORA DA AULA, problemas somente podem ser resolvidos individualmente.
- · Em cada aula prática será distribuída uma lista de 3 problemas: 1 fácil, 1 médio, 1 difícil.

A solução dos problemas devem ser submetidos via Moodle SOMENTE QUANDO ACEITOS na UVA. A data limite para recebimento de soluções será definida no Moodle.

- · Cada problema resolvido (ACEITO na UVA) durante a aula prática vale 1.5 ponto (informar instrutor durante a aula).
- · Cada problema resolvido (ACEITO na UVA) que for entregue até o prazo estipulado vale 1 ponto.
- . O cálculo das notas NTF, NTM e NTD respectivamente divide o número de pontos obtidos em cada categoria pelo número de problemas da categoria. Não haverá truncamento nesse cálculo.
- · Entrega das soluções: arquivo fonte de cada solução (trabalhos em grupo precisam ser entregues por cada integrante do grupo)

A maratona de programação será realizada com times de até 3 integrantes. O cálculo da nota de cada maratona de programação irá considerar o número de problemas resolvidos e o tempo corrigido de cada time. Os resultados das avaliações (maratonas) serão entregues ao final de cada maratona.

IMPORTANTE: O plágio não será tolerado nesta disciplina. A detecção de qualquer submissão de solução de problemas baseada em soluções apresentadas em edições anteriores da disciplina ou disponível na internet acarretará na reprovação imediata do aluno.

Atividades de Recuperação Previstas

Os alunos podem realizar exercícios teóricos adicionais aos solicitados com intuito de melhorar e/ou recuperar a nota obtida na disciplina

Bibliografia

Básica Essencial

Skiena, Steven S.; Revilla, Miguel A.. Programming challenges :the programming contest training manual. New York: Springer, 2003. ISBN 0387001638.

Stevem Halim e Felix Halim. Competitive Programming 3. Lulu, ISBN 000. Disponível em: https://sitesgooglecom/site/stevenhalim/

Básica

Skiena, Steven S.. The algorithm design manual. London: Springer, c2008. ISBN 9781848000698.

Complementar

Zeitz, Paul. The art and craft of problem solving. Hoboken: John Wiley, c2007. ISBN 9780471789017.

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

Nenhuma observação incluída.