Topos of Creative Measurement (measurement as creation)

Olivier Croissant Emerging Pricing Technologies, Paris, France

16 septembre 2025

Guiding Idea

A quantum measurement is **not** a destructive "collapse" of information, but an **act of creation**: it **enriches** the universe of available truths by refining the logical context — **without** presupposing an external time. Formally, a measurement is modeled by a *geometric morphism* that transforms the topos of states *before* the measurement into a topos *after* the measurement, where the outcome becomes **decidable** (Boolean) in the relevant context. This operation is **atemporal** (no time parameter) and aligns with a reading of the Wheeler–DeWitt equation.

1 Starting Framework

- Quantum topos \mathcal{E} (e.g. contravariant presheaves on V(A)) with :
 - spectral presheaf Σ ,
 - classifier Ω (Heyting),
 - internal valuation $\mu : \operatorname{Sub}(\Sigma) \to [0,1]^{\leftrightarrow}$ (internalized Born rule).
- A measurement event is represented by a subobject $U \hookrightarrow \Sigma$ (the proposition "the outcome belongs to U").

${f 2}$ Measurement = localization + slicing (creation of decidability)

One associates to U two canonical steps:

1) Slicing (internal conditioning)

Pass to the slice topos \mathcal{E}/U , which internalizes that the universe is considered under the condition U.

- The valuation is *conditioned* : $\mu \rightsquigarrow \mu_{|U}$ on $\operatorname{Sub}(\Sigma)_{|U}$.
- Truths become contextual relative to U.

2) Logical localization (sheafification via Lawvere-Tierney)

Choose an internal topology $j_U: \Omega \to \Omega$ making the proposition U decidable (stable/closed).

- Form the subtopos $\operatorname{Sh}_{j_U}(\mathcal{E}/U)$ with sheafification functor $a_{j_U}: \mathcal{E}/U \to \operatorname{Sh}_{j_U}(\mathcal{E}/U)$ (left exact).
- In $\operatorname{Sh}_{j_U}(\mathcal{E}/U)$, the proposition "U" is **Boolean** (we have created decidability of the outcome).

Definition (Creative measurement). A creative measurement is the composite geometric morphism

$$\mathcal{E} \xrightarrow{\ /U \ } \mathcal{E}/U \xrightarrow{\ a_{j_U} \ } \mathcal{E}_U^{\mathrm{meas}} := \mathrm{Sh}_{j_U}(\mathcal{E}/U),$$

where j_U is chosen so that U becomes **decidable** in $\mathcal{E}_U^{\text{meas}}$.

Expected properties.

- (CM1) Monotonicity. If $V \subseteq U$, there is a canonical comparison morphism $\mathcal{E}_V^{\text{meas}} \to \mathcal{E}_U^{\text{meas}}$ compatible with forgetting; creation of decidability is monotone.
- (CM2) Logical information created. A measurement increases information : $\Delta \mathcal{H}(U) = H(\boldsymbol{\mu}) H(\boldsymbol{\mu}|_U) \geq 0$; for $V \subseteq U$, $\Delta \mathcal{I}(U) \geq \Delta \mathcal{I}(V)$.
- (CM3) Internal Born compatibility. $\mu_{|U}(X) = \mu(X \wedge U)/\mu(U)$.
- (CM4) Contextual locality. The decidability created by j_U is local to the slice \mathcal{E}/U ; it does not produce a global point of Σ in \mathcal{E} .
- (CM5) Naturalness (RG covariance). Under change of frame (diffeomorphisms, region refinement, change of abelian context), the construction is *pseudonatural* (functorial): it does not depend on a temporal background.

3 Creation of Information (independent of entropy)

Logical information created. The choice of an outcome U refines the internal Heyting algebra: we pass from an *open* truth value ("possible") to a *decidable* value (yes/no) in $\mathcal{E}_U^{\text{meas}}$. We can quantify this gain (à la Shannon/algorithmic) by

$$\Delta \mathcal{I}(U) := -\log \boldsymbol{\mu}(U)$$

(in bits, internally via $[0,1]^{\leftrightarrow}$). It is a *semantic* gain (refinement of truth), not a thermodynamic cost.

Independence with respect to entropy. The operation $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ is logical/categorical. By itself, it does not entail any variation of the von Neumann entropy of a closed physical state.

4 Timeless reading and Wheeler-DeWitt

In a theory where states satisfy a global constraint

$$\widehat{\mathcal{H}}\Psi=0.$$

(Wheeler-De Witt), "evolution" is not temporal but an order of refinement of truths:

- The internal universe of solutions is an object $S = \ker(\widehat{\mathcal{H}})$ in \mathcal{E} .
- A creative measurement selects a decidable subobject $\mathcal{S}_U \hookrightarrow \mathcal{S}$ via $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$.

Moral. The meaning of Wheeler–DeWitt is preserved: the fundamental dynamics is *timeless*; what we call "becoming" is the ascent in the lattice of contexts (creative measurements) that increase the available logical information.

5 Interface with CFS

In CFS, ρ and the closed chains A_{xy} encode causality. With the creative measurement:

- The outcome U (a proposition about spectra/invariants) becomes **decidable** in $\mathcal{E}_U^{\text{meas}}$.
- Causal types (time-/space-/light-like) are *internal predicates* which, once localized, evaluate *unambiguously* for the measured context.
- The internal causal action $\mathbf{S}[\boldsymbol{\mu}]$ is evaluated *conditionally* and may be *re-optimized* in $\mathcal{E}_{U}^{\text{meas}}$ (reading: informational *back-reaction*).

6 Minimal example (qubit, σ_z)

- \mathcal{E} : presheaves on the contexts $\{\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle\}$.
- Outcome $U = {\sigma_z = +1} \hookrightarrow \Sigma$.
- Slice \mathcal{E}/U : we condition all propositions by U.
- j_U : internal topology making U decidable.
- $\mathcal{E}_U^{\text{meas}}$: topos where " $\sigma_z = +1$ " is **Boolean** (decidable), without manufacturing a global truth for σ_x, σ_y .
- Information created:

$$\Delta \mathcal{I}(U) = -\log \boldsymbol{\mu}(U).$$

Summary

A creative measurement is a geometric morphism $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ (slicing + localization) that makes the outcome decidable in the appropriate context, increases logical information (without presupposing entropy) and respects atemporality as expected in a constrained Wheeler–DeWitt-type theory.