Symbolic Weighted Language Models and Parsing over Infinite Alphabets

- 🛚 Florent Jacquemard 🖂 🧥 🗅
- 4 Inria & CNAM, Paris, France

— Abstract

We propose a framework for weighted parsing over infinite alphabets. It is based on language models called Symbolic Weighted Automata (swA) at the joint between Symbolic Automata (sA) and Weighted Automata (wA), as well as Transducers (swT) and Visibly Pushdown (sw-VPA) variants. Like sA, swA deal with large or infinite input alphabets, and like wA, they output a weight value in a semiring domain. The transitions of swA are labeled by functions from an infinite alphabet into the weight domain. This is unlike sA whose transitions are guarded by boolean predicates overs symbols in an infinite alphabet and also unlike wA whose transitions are labeled by constant weight values, and who deal only with finite automata. We present some properties of swA, swT and sw-VPA models, that we use to define and solve a variant of parsing over infinite alphabets. We also briefly describe the application that motivated the introduction of these models: a parse-based approach to automated music transcription.

- 17 **2012 ACM Subject Classification** Theory of computation \rightarrow Quantitative automata
- 18 Keywords and phrases Weighted Automata, Symbolic Automata, Visibly Pushdown, Parsing
- 19 Digital Object Identifier 10.4230/LIPIcs...
- 20 Funding Florent Jacquemard: Inria AEx Codex, ANR Collabscore, EU H2020 Polifonia
- 21 Acknowledgements I want to thank ...

1 Introduction

Parsing is the problem of structuring a linear representation on input (a finite word), according to a language model. Most of the context-free parsing approaches [15] assume a finite and reasonably small input alphabet. Such a restriction makes perfect sense in the context of NLP tasks such as constituency parsing, or of programming languages compilers or interpreters. Considering large or infinite alphabets can however be of practical interest, for instance, 27 when dealing with large characters encodings such as UTF-16, e.g. for vulnerability detection in Web-applications [8], for the analyse (e.g. validation or filtering) of data streams or serialization of structured documents (with textual or numerical attributes) [26], or for processing timed execution traces [3]. The latter case is related to a study that motivated the present work: automated music transcription. In this problem, a music performance, represented symbolically in the form of a sequence of timed musical events, is converted into a score in Common Western Music Notation [14], structured according to nested grouping and metric strength of events. It can therefore be stated as a parsing problem [12], over an 35 infinite alphabet of timed events. 36

Various extensions of language models for handling infinite alphabets have been studied. For instance, some automata with memory extensions allow restricted storage and comparison of input symbols, (see [26] for a survey), with pebbles for marking positions [25], registers [18], or the possibility to compute on subsequences with the same attribute values [2]. The automata at the core of model checkers compute on input symbols represented by large bitvectors [27] (sets of assignments of Boolean variables) and in practice, each transition accepts a set of such symbols (instead of an individual symbol), represented by Boolean

register: skip ref and details, add Mikolaj recent

XX:2 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

Figure 1 Classes of Symbolic/Weighted Automata. Σ_{fin} is a finite alphabet, Σ_{inf} is a countable alphabet, \mathbb{B} is the Boolean algebra, \mathbb{S} is a commutative semiring, $q \xrightarrow{\cdots} q'$ is a transition between states q and q'.

formula or Binary Decision Diagrams. Following a similar idea, in symbolic automata (sA) [7, 8], the transitions are guarded by predicates over infinite alphabet domains. With appropriate closure conditions on the sets of such predicates, all the good properties enjoyed by automata over finite alphabets are preserved.

Other extensions of language models help in dealing with non-determinism, by the computation of weight values. With an ambiguous grammar, there may exist several derivations (abstract syntax trees – AST) yielding one input word. The association of one weight value to each AST permits to select a best one (or n bests). This is roughly the principle of weighted parsing approaches [13, 24, 23]. In weighted language models, like e.g. probabilistic context-free grammars and weighted automata (wA) [11], a weight value is associated to each transition rule, and the rule's weights can be combined with a associative product operator \otimes into the weight of an AST. A second operator \oplus , associative and commutative, is moreover used to handle the ambiguity of the model, by summing the weights of the possibly several (in general exponentially many) AST associated to a given input word. Typically, \oplus will select the best of two weight values. The weight domain, equipped with these two operators shall be, at minima, a semiring where \oplus can be extended to infinite sums, such as the Viterbi semiring and the tropical min-plus algebra, see Figure 2.

In this paper, we present a uniform framework for weighted parsing over infinite input alphabets. It is based on symbolic weighted finite states language models (swM), generalizing sA, with functions into an arbitrary semiring instead of Boolean guards, and wA, by handling infinite alphabets, see Figure 1. In the transition rules of swM models, input symbols appear as variables, and the weight associated to a transition rule is a function of these variables. The models presented here are finite automata called symbolic-weighted (swA), transducers (swT), and pushdown automata with a visibly restriction [1] (sw-VPA). The latter model of automata computes on nested words [1], a structured form of words parenthesized with markup symbols, corresponding to a linearization of trees. In the context of parsing, they can represent (weighted) AST of CF grammars. More precisely, a sw-VPA A associates a weight value A(t) to a given a nested word t, which is the linearization of an AST. On the other hand, a swT can define a distance T(s,t) between finite words s and t over infinite alphabets. Then, the SW-parsing problem aims at finding t minimizing $T(s,t) \otimes A(t)$ (wrt the ranking defined by \oplus). The latter value is called the distance between s and A in [21]. Like weighted-parsing methods [13, 24, 23], our approach proceeds in two steps,

based on properties of the swM. The first step is an intersection (Bar-Hillel construction [15]) where, given a swT T, a sw-VPA A, and an input word s, a sw-VPA $A_{T,s}$ is built, such that for all t, $A_{T,s}(t) = T(s,t) \otimes A(t)$. In the second step, a best AST t is found by applying to $A_{T,s}$ a best search algorithm similar to the shortest distance in graphs [20, 17].

The main contributions of the paper are: (i) the introduction of automata, swA, transducers, swT (Section 3), and visibly pushdown automata sw-VPA (Section 4), generalizing
the corresponding classes of symbolic and weighted models, (ii) a polynomial best-search
algorithm for sw-VPA, and (iii) a uniform framework (Section 5) for parsing over infinite
alphabets, the keys to which are (iii.a) the swT-based definition of generic edit distances
between input and output (yield) words, and (iii.b) the use, convenient in this context, of
nested words, and sw-VPA, instead of syntax trees and grammars.

chap. intersection in [15]

expressiveness: VPA have restricted equality test. comparable to pebble automata? \rightarrow conclusion

2 Preliminary Notions

Semirings

100

101

102

103

105

106

109

110

111

112

113

We shall consider semirings for the weight values of our language models. A *semiring* $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ is a structure with a domain \mathbb{S} , equipped with two associative binary operators \oplus and \otimes , with respective neutral elements \mathbb{O} and $\mathbb{1}$, and such that:

 \oplus is commutative: $(\mathbb{S}, \oplus, \mathbb{O})$ is a commutative monoid and $(\mathbb{S}, \otimes, \mathbb{1})$ a monoid,

 \otimes distributes over \oplus : $\forall x, y, z \in \mathbb{S}$, $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$, and $(x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$,

 \bullet 0 is absorbing for \otimes : $\forall x \in \mathbb{S}, \ 0 \otimes x = x \otimes 0 = 0$.

Intuitively, in the models presented in this paper, \oplus selects an optimal value from two given values, in order to handle non-determinism, and \otimes combines two values into a single value, in a chaining of transitions.

A semiring $\mathbb S$ is commutative if \otimes is commutative. It is idempotent if for each $x \in dom(\mathbb S)$, $x \oplus x = x$. Every idempotent semiring $\mathbb S$ induces a partial ordering \leq_{\oplus} called the natural ordering of $\mathbb S$ [20] and defined, by: for all x and $y, x \leq_{\oplus} y$ iff $x \oplus y = x$. The natural ordering is sometimes defined in the opposite direction [10]; We follow here the direction that coincides with the usual ordering on the Tropical semiring min-plus (Figure 2). An idempotent semiring $\mathbb S$ is called total if it \leq_{\oplus} is total i.e. when for all $x, y \in \mathbb S$, either $x \oplus y = x$ or $x \oplus y = y$.

Lemma 1 (Monotony, [20]). Let $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ be an idempotent semiring. For all $x, y, z \in \mathbb{S}$, if $x \leq_{\oplus} y$ then $x \oplus z \leq_{\oplus} y \oplus z$, $x \otimes z \leq_{\oplus} y \otimes z$ and $z \otimes x \leq_{\oplus} z \otimes y$.

When the property of Lemma 1 holds, S is called *monotonic*. Another important semiring property in the context of optimization is superiority [16], which corresponds to the *non-negative weights* condition in shortest-path algorithms [9]. Intuitively, it means that combining elements with S always increase their weight. Formally, it is defined as the property S below.

Lemma 2 (Superiority, Boundedness). Let $(\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ be an idempotent semiring. The two following statements are equivalent:

```
i. for all x, y \in \mathbb{S}, x \leq_{\oplus} x \otimes y and y \leq_{\oplus} x \otimes y
ii. for all x \in \mathbb{S}, \mathbb{1} \oplus x = \mathbb{1}.
```

Proof. $(ii) \Rightarrow (i): x \oplus (x \otimes y) = x \otimes (\mathbb{1} \oplus y) = x$, by distributivity of \otimes over \oplus . Hence $x \leq_{\oplus} x \otimes y$. Similarly, $y \oplus (x \otimes y) = (\mathbb{1} \oplus x) \otimes y = y$, hence $y \leq_{\oplus} x \otimes y$. $(i) \Rightarrow (ii):$ by the second inequality of (i), with $y = \mathbb{1}$, $\mathbb{1} \leq_{\oplus} x \otimes \mathbb{1} = x$, *i.e.*, by definition of \leq_{\oplus} , $\mathbb{1} \oplus x = \mathbb{1}$.

XX:4 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

	domain	\oplus	\otimes	0	1
Boolean	$\{\bot, \top\}$	V	٨	Τ	Т
Counting	N	+	×	0	1
Viterbi	$[0,1] \subset \mathbb{R}$	max	×	0	1
Tropical min-plus	$\mathbb{R}_+ \cup \{\infty\}$	min	+	8	0

Figure 2 Some commutative, bounded, total and complete semirings.

In [16], when the property (i) holds, S is called *superior wrt* the ordering \leq_{\oplus} . We have seen in the proof of Lemma 2 that it implies that $\mathbb{1} \leq_{\oplus} x$ for all $x \in \mathbb{S}$. Similarly, by the first inequality of (i) with y = 0, $x \leq_{\oplus} x \otimes 0 = 0$. Hence, in a superior semiring, it holds that for all $x \in \mathbb{S}$, $\mathbb{1} \leq_{\oplus} x \leq_{\oplus} \mathbb{O}$. Intuitively, from an optimization point of view, it means that $\mathbb{1}$ is the best value, and \mathbb{O} the worst. In [20], \mathbb{S} with the property (ii) of Lemma 2 is called bounded - we shall use this term in the rest of the paper. It implies that, when looking for a best path in a graph whose edges are weighted by values of S, the loops can be safely avoided (because, for all $x \in \mathbb{S}$ and $n \ge 1$, $x \oplus x^n = x \otimes (\mathbb{1} \oplus x^{n-1}) = x$).

▶ **Lemma 3.** Every bounded semiring is idempotent.

Proof. By boundedness, $\mathbb{1} \oplus \mathbb{1} = \mathbb{1}$, and idempotency follows by multiplying both sides by x and distributing. 131

We shall need below infinite sums with \oplus . A semiring $\mathbb S$ is called *complete* [11] if it has an operation $\bigoplus_{i\in I} x_i$ for every family $(x_i)_{i\in I}$ of elements of $dom(\mathbb{S})$ over an index set $I\subset\mathbb{N}$, 133 such that:

i. infinite sums extend finite sums:

i. infinite sums extend finite sums:
$$\bigoplus_{i \in \emptyset} x_i = \emptyset, \quad \forall j \in \mathbb{N}, \bigoplus_{i \in \{j\}} x_i = x_j, \, \forall j, k \in \mathbb{N}, j \neq k, \bigoplus_{i \in \{j,k\}} x_i = x_j \oplus x_k,$$
ii. associativity and commutativity:
for all $I \subseteq \mathbb{N}$ and all partition $(I_j)_{j \in J}$ of $I, \bigoplus_{j \in J} \bigoplus_{i \in I_j} x_i = \bigoplus_{i \in I} x_i,$
iii. distributivity of product over infinite sum:

for all
$$I \subseteq \mathbb{N}$$
 and all partition $(I_j)_{j \in J}$ of I , $\bigoplus_{i \in I} \bigoplus_{j \in I} x_i = \bigoplus_{i \in I} x_i$,

iii. distributivity of product over infinite sum:
for all
$$I \subseteq \mathbb{N}$$
, $\bigoplus_{i \in I} (x \otimes y_i) = x \otimes \bigoplus_{i \in I} y_i$, and $\bigoplus_{i \in I} (x_i \otimes y) = (\bigoplus_{i \in I} x_i) \otimes y$.

Label Theory

121

122

123

127

128

138

140

We shall now define the functions labeling the transitions of SW automata and transducers, generalizing the Boolean algebras of [7] from Boolean to other semiring domains. We consider alphabets, which are countable sets of symbols denoted Σ , Δ ,... Given a semiring $(S, \oplus, 0, \otimes, 1)$, a label theory over S is a set $\bar{\Phi}$ of recursively enumerable sets denoted Φ_{Σ} , containing unary functions of type $\Sigma \to \mathbb{S}$, or $\Phi_{\Sigma,\Delta}$, containing binary functions $\Sigma \times \Delta \to \mathbb{S}$, and such that:

- for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$, we have $\Phi_{\Sigma} \in \bar{\Phi}$ and $\Phi_{\Delta} \in \bar{\Phi}$
- every $\Phi_{\Sigma} \in \bar{\Phi}$ contains all the constant functions from Σ into \mathbb{S} ,
- for all $\alpha \in \mathbb{S}$ and $\phi \in \Phi_{\Sigma}$, $\alpha \otimes \phi : x \mapsto \alpha \otimes \phi(x)$, and $\phi \otimes \alpha : x \mapsto \phi(x) \otimes \alpha$
- belong to Φ_{Σ} , and similarly for \oplus and for $\Phi_{\Sigma,\Delta}$
- for all $\phi, \phi' \in \Phi_{\Sigma}$, $\phi \otimes \phi' : x \mapsto \phi(x) \otimes \phi'(x)$ belongs to Φ_{Σ}
- 153 for all $\eta, \eta' \in \Phi_{\Sigma, \Delta}$ $\eta \otimes \eta' : x, y \mapsto \eta(x, y) \otimes \eta'(x, y)$ belongs to $\Phi_{\Sigma, \Delta}$

```
154 – for all \phi \in \Phi_{\Sigma} and \eta \in \Phi_{\Sigma,\Delta}, \phi \otimes_1 \eta : x, y \mapsto \phi(x) \otimes \eta(x, y) and

155 \eta \otimes_1 \phi : x, y \mapsto \eta(x, y) \otimes \phi(x) belong to \Phi_{\Sigma,\Delta}

156 – for all \psi \in \Phi_{\Delta} and \eta \in \Phi_{\Sigma,\Delta}, \psi \otimes_2 \eta : x, y \mapsto \psi(y) \otimes \eta(x, y) and

157 \eta \otimes_2 \psi : x, y \mapsto \eta(x, y) \otimes \psi(y) belong to \Phi_{\Sigma,\Delta}

158 – similar closures hold for \oplus.
```

partial appli needed?

In what follows, we might omit the subscripts in \otimes_1 , \otimes_2 , \oplus_1 , \oplus_2 when there is no ambiguity, and keep them only for the special case $\Sigma = \Delta$, *i.e.* $\eta \in \Phi_{\Sigma,\Sigma}$. When the semiring $\mathbb S$ is complete, let us consider the following operators on the functions of a label theory.

$$\bigoplus_{\Sigma} : \Phi_{\Sigma} \to \mathbb{S}, \ \phi \mapsto \bigoplus_{a \in \Sigma} \phi(a)$$

$$\bigoplus_{\Sigma}^{1} : \Phi_{\Sigma,\Delta} \to \Phi_{\Delta}, \ \eta \mapsto \left(y \mapsto \bigoplus_{a \in \Sigma} \eta(a,y) \right) \quad \bigoplus_{\Delta}^{2} : \Phi_{\Sigma,\Delta} \to \Phi_{\Sigma}, \ \eta \mapsto \left(x \mapsto \bigoplus_{b \in \Delta} \eta(x,b) \right)$$

Similarly as for the above product and sum of functions, the superscripts in \bigoplus_{Σ}^{1} and \bigoplus_{Σ}^{2} shall be reserved to the ambiguous case of $\Phi_{\Sigma,\Sigma}$, in order to distinguish between the first and the second argument.

▶ **Definition 4.** A label theory $\bar{\Phi}$ is complete when its underlying semiring \mathbb{S} is complete, and for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$ and all $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma} \eta \in \Phi_{\Delta}$ and $\bigoplus_{\Delta} \eta \in \Phi_{\Sigma}$.

169 The following facts are immediate.

163

180

```
Lemma 5. For \bar{\Phi} complete \alpha \in \mathbb{S}, \phi, \phi' \in \Phi_{\Sigma}, \psi \in \Phi_{\Delta}, and \eta \in \Phi_{\Sigma,\Delta}:

i. \bigoplus_{\Sigma} \bigoplus_{\Delta}^2 \eta = \bigoplus_{\Delta} \bigoplus_{\Sigma}^1 \eta

ii. \alpha \otimes \bigoplus_{\Sigma} \phi = \bigoplus_{\Sigma} (\alpha \otimes \phi) and (\bigoplus_{\Sigma} \phi) \otimes \alpha = \bigoplus_{\Sigma} (\phi \otimes \alpha), and similarly for \oplus

iii. (\bigoplus_{\Sigma} \phi) \oplus (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \oplus \phi') and (\bigoplus_{\Sigma} \phi) \otimes (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \otimes \phi')

iv. (\bigoplus_{\Delta}^2 \eta) \oplus (\bigoplus_{\Delta}^2 \eta') = \bigoplus_{\Delta}^2 (\eta \oplus \eta'), and (\bigoplus_{\Delta}^2 \eta) \otimes (\bigoplus_{\Delta}^2 \eta') = \bigoplus_{\Delta}^2 (\eta \otimes \eta')

iv. \phi \otimes (\bigoplus_{\Delta}^2 \eta) = \bigoplus_{\Delta} (\phi \otimes_1 \eta), and (\bigoplus_{\Delta}^2 \eta) \otimes \phi = \bigoplus_{\Delta} (\eta \otimes_1 \phi), and similarly for \oplus

iv. \psi \otimes (\bigoplus_{\Delta}^1 \eta) = \bigoplus_{\Sigma} (\psi \otimes_2 \eta), and (\bigoplus_{\Delta}^1 \eta) \otimes \psi = \bigoplus_{\Sigma} (\eta \otimes_2 \psi), and similarly for \oplus
```

Intuitively, the operators \bigoplus_{Σ} return global minimum, $wrt \leq_{\oplus}$, of functions of $\bar{\Phi}$. A label theory is called *effective* when for all $\phi \in \Phi_{\Sigma}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma} \phi$, $\bigoplus_{\Sigma} \eta$, and $\bigoplus_{\Delta} \eta$ can be effectively computed from ϕ and η .

precise/restrict com

3 SW Automata and Transducers

We follow the approach of [21] for the computation of distances, between words and languages, using weighted transducers, and extend it to infinite alphabets. The models introduced in this section generalize weighted automata and transducers [11] by labelling each transition with a weight function (instead of a simple weight value), that takes the input and output symbols as parameters. These functions are similar to the guards of symbolic automata [7, 8], but they can return values in an generic semiring, whereas the latter guards are restricted to the Boolean semiring.

Let $\mathbb S$ be a commutative semiring, Σ and Δ be alphabets called respectively *input* and *output*, and $\bar{\Phi}$ be a label theory over $\mathbb S$ containing Φ_{Σ} , Φ_{Δ} , $\Phi_{\Sigma,\Delta}$.

Definition 6. A symbolic-weighted transducer (swT) over Σ , Δ , \mathbb{S} and $\bar{\Phi}$ is a tuple $T = \langle Q, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in}: Q \to \mathbb{S}$ (respectively out: $Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and $\bar{\mathsf{w}}$ is a triplet of transition functions $\mathsf{w}_{10}: Q \times Q \to \Phi_{\Sigma}$, $\mathsf{w}_{01}: Q \times Q \to \Phi_{\Delta}$, and $\mathsf{w}_{11}: Q \times Q \to \Phi_{\Sigma,\Delta}$.

We call number of transitions of T the number of pairs of states $q, q' \in Q$ such that w_{10} or w_{01} or w_{11} is not the constant \mathbb{O} . For convenience, we shall sometimes present transitions as functions of $Q \times (\Sigma \cup \{\varepsilon\}) \times (\Delta \cup \{\varepsilon\}) \times Q \to \mathbb{S}$, overloading the function names, such that, for all $q, q' \in Q$, $a \in \Sigma$, $b \in \Delta$,

$$\begin{array}{lll} \mathsf{w}_{10}(q,a,\varepsilon,q') & = & \phi(a) & \text{where } \phi = \mathsf{w}_{10}(q,q') \in \Phi_{\Sigma}, \\ \mathsf{w}_{01}(q,\varepsilon,b,q') & = & \psi(b) & \text{where } \psi = \mathsf{w}_{01}(q,q') \in \Phi_{\Delta}, \\ \mathsf{w}_{11}(q,a,b,q') & = & \eta(a,b) & \text{where } \eta = \mathsf{w}_{11}(q,q') \in \Phi_{\Sigma,\Delta}. \end{array}$$

The swT T computes on pairs of words $\langle s,t \rangle \in \Sigma^* \times \Delta^*$, s and t, being respectively called input and output word. More precisely, T defines a mapping from $\Sigma^* \times \Delta^*$ into $\mathbb S$, based on an intermediate function weight T defined recursively, for every states $q,q' \in Q$, and every strings $\langle s,t \rangle \in \Sigma^* \times \Delta^* \setminus \{\langle \varepsilon, \varepsilon \rangle\}$, by:

weight
$$_T(q, \varepsilon, \varepsilon, q') = 1$$
 if $q = q'$ and 0 otherwise (1)

weight $_T(q, s, t, q') = \bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma}} \mathsf{w}_{10}(q, a, \varepsilon, q'') \otimes \mathsf{weight}_T(q'', u, t, q')$
 $\downarrow q'' \in Q \\ t = bv, b \in \Delta$
 $\downarrow q'' \in Q \\ t = bv, b \in \Delta$
 $\downarrow q'' \in Q \\ t = au, t = bv$
 $\downarrow q'' \in Q \\ s = au, t = bv$

We recall that, by convention (Section 2), an empty sum with \bigoplus is equal to $\mathbb O$. Intuitively, using a transition $\mathsf{w}_{ij}(q,a,b,q')$ means for T: when reading respectively a and b at the current positions in the input and output words, increment the current position in the input word if and only if i=1, and in the output word iff j=1, and change state from q to q'. When $a=\varepsilon$ (resp. $b=\varepsilon$), the current symbol in the input (resp. output) is not read. Since $\mathbb O$ is absorbing for \otimes in $\mathbb S$, one term $\mathsf{w}_{ij}(q,a,b,q'')$ equal to $\mathbb O$ in the above expression will be ignored in the sum, meaning that there is no possible transition from state q into state q' while reading a and b. This is analogous to the case of a transition's guard not satisfied by $\langle a,b\rangle$ for symbolic transducers.

The expression (1) can be seen as a stateful definition of an edit-distance between a word $s \in \Sigma^*$ and a word $t \in \Delta^*$, see also [22]. Intuitively, $\mathsf{w}_{10}(q,a,\varepsilon,r)$ is the cost of the deletion of the symbol $a \in \Sigma$ in s, $\mathsf{w}01(q,\varepsilon,b,r)$ is the cost of the insertion of $b \in \Delta$ in t, and $\mathsf{w}_{11}(q,a,b,r)$ is the cost of the substitution of $a \in \Sigma$ by $b \in \Delta$. The cost of a sequence of such operations transforming s into t, is the product, with \otimes , of the individual costs of the operations involved; And the distance between s and t is the sum, with \oplus , of all possible products. Formally, the weight associated by T to $\langle s, t \rangle \in \Sigma^* \times \Delta^*$ is:

$$T(s,t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_{T}(q,s,t,q') \otimes \operatorname{out}(q')$$
 (2)

► Example 7. In Common Western Music Notation [14], several symbols may be used to represent a unique sounding event. For instance, several notes can be combined with a tie, like in , and one note can be augmented by half its duration with a dot like in . We propose a small transducer model that compares an input sequence of sounding events (music "performance") to an output sequence of written events (music "score"). Let us

consider the tropical (min-plus) semiring $\mathbb S$ of Figure 2 and let $\Sigma = \mathbb R_+$ be an input alphabet of event dates and $\Delta = \{e, -\} \times \mathbb R_+$ be an output alphabet of symbols with timestamps. A symbol $\langle e, d \rangle \in \Delta$ represents an event starting at date d, and $\langle -, d \rangle$ is a continuation of the previous event.

We consider a swT with two states q_0 and q_1 whose purpose is to compare a recorded performance $s \in \Sigma^*$ with notated music sheet $t \in \Delta^*$. One timestamp $d_i \in \Sigma$ may corresponds to one notated event $\langle \mathbf{e}, d_i' \rangle \in \Delta$, in which case the weight value computed by the swT is the time distance between both (see transitions w_{11} below). If $\langle \mathbf{e}, d_i' \rangle$ is followed by continuations $\langle -, d_{i+1}' \rangle$..., they are just skip with no cost (transitions w_{01} or weight 1).

232

233

235

236

238

260

Moreover, it may happen that the performers plays an extra note accidentally, but only once in a row. This is modelled by the transition w_{10} with an arbitrary weight value $\alpha \in S$, switching from state q_0 (normal) to q_1 (error). The transitions in the second column below switch back to the normal state q_0 . At last, we let q_0 be the only initial and final state, with in $(q_0) = \text{out}(q_0) = \mathbb{1}$, and in $(q_1) = \text{out}(q_1) = \mathbb{0}$.

The *Symbolic Weighted Automata* are defined similarly as the transducers of Definition 6, by simply omitting the output symbols.

▶ **Definition 8.** A symbolic-weighted automaton (swA) over Σ , \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in} : Q \to \mathbb{S}$ (respectively $\mathsf{out} : Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and w_1 is a transition functions from $Q \times Q$ into Φ_{Σ} .

As above in the case of swT, when $w_1(q,q') = \phi \in \Phi_{\Sigma}$, we may write $w_1(q,a,q')$ for $\phi(a)$.

The computation of A on words $s \in \Sigma^*$ is defined with an intermediate function weight_A, defined as follows for $q, q' \in Q$, $a \in \Sigma$, $u \in \Sigma^*$,

$$\begin{array}{ll} \text{weight}_A(q,\varepsilon,q) = \mathbb{1} \\ \text{256} & \text{weight}_A(q,\varepsilon,q') = \mathbb{0} \quad \text{if } q \neq q' \\ \\ \text{257} & \text{weight}_A(q,au,q') = \bigoplus_{q'' \in Q} \mathsf{w}_1(q,a,q'') \otimes \mathsf{weight}_A(q'',u,q') \\ \\ \text{258} & \end{array}$$

and the weight value associated by A to $s \in \Sigma^*$ is defined as follows:

$$A(s) = \bigoplus_{q,q' \in Q} \mathsf{in}(q) \otimes \mathsf{weight}_A(q,s,q') \otimes \mathsf{out}(q') \tag{4}$$

 $_{261}$ $\,$ The following property will be useful to the approach on symbolic weighted parsing presented $_{262}$ $\,$ in Section 5.

Proposition 9. Given a swT T over Σ , Δ , $\mathbb S$ commutative, bounded and complete, and $\bar{\Phi}$ effective, and a swA A over Σ , $\mathbb S$ and $\bar{\Phi}$, there exists an effectively constructible swA $B_{T,A}$ over Δ , $\mathbb S$ and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{T,A}(t) = \bigoplus_{s \in \Sigma^*} A(s) \otimes T(s,t)$.

Proof. Let $T = \langle Q, \mathsf{in}_T, \bar{\mathsf{w}}, \mathsf{out}_T \rangle$, where $\bar{\mathsf{w}}$ contains w_{10} , w_{01} , and w_{11} , from $Q \times Q$ into respectively Φ_{Σ} , Φ_{Δ} , and $\Phi_{\Sigma,\Delta}$, and let $A = \langle P, \mathsf{in}_A, \mathsf{w}_1, \mathsf{out}_A \rangle$ with $\mathsf{w}_1 : Q \times Q \to \Phi_{\Sigma}$. The

state set of $B_{T,A}$ will be $Q' = P \times Q$. The entering, leaving and transition functions of $B_{T,A}$ 268 will simulate synchronized computations of A and T, while reading an output word of Δ^* . 269 Its state entering functions is defined for all $p \in P$, $q \in Q$ by $\mathsf{in}'(p,q) = \mathsf{in}_A(p) \otimes \mathsf{in}_T(q)$. The 270 transition function w'_1 will roughly perform a synchronized product of transitions defined by w_1 , w_{01} (T reading in output word and not in input word) and w_{11} (T reading in output 272 word and input word). Moreover, w'_1 also needs to simulate transitions defined by w_{10} : T 273 reading in intput word and not in output word. Since $B_{T,A}$ will read only in the output 274 word, such a transition corresponds to an ε -transition of swA, but swA have been defined 275 without ε -transitions. Therefore, in order to take care of this case, we perform an on-the-fly suppression of ε -transition in the swA in construction, following the algorithm of [19]. 277 Initially, for all $p_1, p_2 \in P$, and $q_1, q_2 \in Q$, let

$$\mathsf{w}_1'\big(\langle p_1,q_1\rangle,\langle p_2,q_2\rangle\big)=\mathsf{w}_1(p_1,p_2)\otimes\big[\mathsf{w}_{01}(q_1,q_2)\oplus\bigoplus_\Sigma\mathsf{w}_{11}(q_1,q_2)\big].$$

Iterate the following for all $p_1 \in P$ and $q_1, q_2 \in Q$: for all $p_2 \in P$ and $q_3 \in Q$,

$$\mathsf{w}_1'ig(\langle p_1,q_1
angle,\langle p_2,q_3
angleig)\oplus=igoplus_\Sigma\mathsf{w}_{10}(q_1,q_2)\otimes\mathsf{w}_1'ig(\langle p_1,q_2
angle,\langle p_2,q_3
angleig)$$

proof correctness 28

and
$$\operatorname{\mathsf{out'}}(p_1,q_1) \oplus = \bigoplus_{\Sigma} \mathsf{w}_{10}(q_1,q_2) \otimes \operatorname{\mathsf{out'}}(p_1,q_2)$$

The construction time and size for $B_{T,A}$ are $O(||T||^3.||A||^2)$, where the sizes ||T|| and ||A|| are their number of states.

revise with nb of tr.28 and states

288

▶ Corollary 10. Given a swT T over Σ , Δ , $\mathbb S$ commutative, bounded and complete, and $\bar{\Phi}$ effective, and $s \in \Sigma^+$, there exists an effectively constructible swA $B_{T,s}$ over Δ , $\mathbb S$ and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{T,s}(t) = T(s,t)$.

4 SW Visibly Pushdown Automata

The model presented in this section generalizes Symbolic VPA [6] from Boolean semirings to arbitrary semiring weight domains. It will compute on nested words over infinite alphabets, 290 associating to every such word a weight value. Nested words are able to describe structures 291 of labeled trees, and in the context of parsing, they will be useful to represent AST. Let Ω be a countable alphabet that we assume partitioned into three subsets Ω_i , Ω_c , Ω_c , 293 whose elements are respectively called *internal*, call and return symbols. Let $(S, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ 294 be a commutative and complete semiring and let $\bar{\Phi} = \langle \Phi_i, \Phi_c, \Phi_r, \Phi_{ci}, \Phi_{cc}, \Phi_{cr} \rangle$ be a label 295 theory over S where Φ_i , Φ_c , Φ_r and Φ_{cx} (with $x \in \{i, c, r\}$) stand respectively for Φ_{Ω_i} , Φ_{Ω_c} , 296 Φ_{Ω_r} and Φ_{Ω_c,Ω_x} . 297

▶ **Definition 11.** A Symbolic Weighted Visibly Pushdown Automata (sw-VPA) over $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$, \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, P, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$, where Q is a finite set of states, P is a finite set of stack symbols, $\bar{\mathsf{in}} : Q \to \mathbb{S}$ (respectively $\bar{\mathsf{out}} : Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) a state, and $\bar{\mathsf{w}}$ is a sextuplet composed of the transition functions: $\bar{\mathsf{w}}_i : Q \times P \times Q \to \Phi_{\mathsf{ci}}$, $\bar{\mathsf{w}}_i^e : Q \times Q \to \Phi_i$, $\bar{\mathsf{w}}_c : Q \times P \times Q \times P \to \Phi_{\mathsf{cc}}$, $\bar{\mathsf{w}}_c^e : Q \times P \times Q \to \Phi_c$, $\bar{\mathsf{w}}_r : Q \times P \times Q \to \Phi_r$.

Similarly as in Section 3, we extend the above transition functions as follows for all $q, q' \in Q$,

 $p \in P, a \in \Omega_i, c \in \Omega_c, r \in \Omega_r$, overloading their names:

The intuition is the following for the above transitions. w_i and w_i^e both read an input internal symbol a and change state from q to q', without changing the stack. Moreover, w_i reads a pair made of $c \in \Omega_c$ and $p \in P$ on the top of the stack (c is compared to a by the weight function $\eta_{ci} \in \Phi_{ci}$) and w_i^e , w_c^e , w_r^e apply if and only if the stack is empty. w_c and w_c^e read the input call symbol c', push it to the stack along with p', and change state from q to to q'. Moreover, w_c reads c and p at the top of the stack (c is compared to c'). w_r and w_r^e read the input return symbol c, and change state from c to c to c. Moreover, c reads and pop from stack a pair made of c and c, (c is compared to c).

Formally, the transitions of the automaton A are defined in term of an intermediate function weight_A , like in Section 3. A configuration, denoted by $q[\gamma]$, is here composed of a state $q \in Q$ and a stack content $\gamma \in \Gamma^*$, where $\Gamma = \Omega_{\mathsf{c}} \times P$. Hence, weight_A is a function from $[Q \times \Gamma^*] \times \Omega^* \times [Q \times \Gamma^*]$ into $\mathbb S$ (the empty stack is denoted by \bot).

$$\begin{aligned} & \text{weight}_A \big(q[\bot], \varepsilon, q'[\bot] \big) = \mathbb{1} \text{ if } q = q' \text{ and } \mathbb{0} \text{ otherwise} \end{aligned}$$

$$\begin{aligned} & \text{supple}_A \big(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], a \, u, q'[\gamma'] \big) = \bigoplus_{q'' \in Q} \mathsf{w}_\mathsf{i}(q, c, p, a, q'') \otimes \mathsf{weight}_A \big(q'' \left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], u, q'[\gamma'] \big) \end{aligned}$$

$$\end{aligned} \\ & \text{weight}_A \big(q[\bot], a \, u, q'[\gamma'] \big) = \bigoplus_{q'' \in Q} \mathsf{w}_\mathsf{i}^\mathsf{e}(q, a, q'') \otimes \mathsf{weight}_A \big(q''[\bot], u, q'[\gamma'] \big) \end{aligned}$$

$$\mathsf{weight}_A \big(q \left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], c' \, u, q'[\gamma'] \big) = \bigoplus_{\substack{q'' \in Q \\ p' \in P}} \ \mathsf{w_c} \big(q, c, p, c', p', q'' \big) \otimes \mathsf{weight}_A \big(q'' \left[\begin{array}{c} \langle c', p' \rangle \\ \langle c, p \rangle \\ \gamma \end{array} \right], u, q'[\gamma'] \big)$$

$$\mathsf{weight}_A\big(q[\bot], c\,u, q'[\gamma']\big) = \bigoplus_{\substack{q'' \in Q \\ p \in P}} \mathsf{w}^\mathsf{e}_\mathsf{c}(q, c, p, q'') \otimes \mathsf{weight}_A\big(q''[c\,p], u, q'[\gamma']\big)$$

$$\begin{aligned} & \operatorname{weight}_A \left(q \left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array} \right], r \, u, q'[\gamma'] \right) = \bigoplus_{q'' \in Q} \operatorname{w_r} \left(q, c, p, r, q'' \right) \otimes \operatorname{weight}_A \left(q''[\gamma], u, q'[\gamma'] \right) \\ & \operatorname{weight}_A \left(q[\bot], r \, u, q'[\gamma'] \right) = \bigoplus_{q'' \in Q} \operatorname{w_r^e} \left(q, r, q'' \right) \otimes \operatorname{weight}_A \left(q''[\bot], u, q'[\gamma'] \right) \\ & \operatorname{weight}_A \left(q[\bot], r \, u, q'[\gamma'] \right) = \bigoplus_{q'' \in Q} \operatorname{w_r^e} \left(q, r, q'' \right) \otimes \operatorname{weight}_A \left(q''[\bot], u, q'[\gamma'] \right) \end{aligned}$$

The weight associated by A to $s \in \Omega^*$ is defined according to empty stack semantics:

$$A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_{A}(q[\bot], s, q'[\bot]) \otimes \operatorname{out}(q'). \tag{6}$$

Example 12. structured words with timed symbols... intro language of music notation?
 (markup = time division, leaves = events etc)

todo example VPA

Every swA $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, over Σ , $\mathbb S$ and $\bar{\Phi}$ is a particular case of sw-VPA $\langle Q, \emptyset, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$ over Ω , $\mathbb S$ and $\bar{\Phi}$ with $\Omega_{\mathsf{i}} = \Sigma$ and $\Omega_{\mathsf{c}} = \Omega_{\mathsf{r}} = \emptyset$, and computing with an always empty stack: $\mathsf{w}^{\mathsf{e}}_{\mathsf{i}} = \mathsf{w}_1$ and all the other functions of $\bar{\mathsf{w}}$ are the constant $\mathbb O$.

XX:10 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

Like VPA and symbolic VPA, the class of sw-VPA is closed under the binary operators of the underlying semiring.

Proposition 13. Let A_1 and A_2 be two sw-VPA over the same Ω , $\mathbb S$ and $\bar{\Phi}$. There exists two effectively constructible sw-VPA $A_1 \oplus A_2$ and $A_1 \otimes A_2$, such that for all $s \in \Omega^*$, $(A_1 \oplus A_2)(s) = A_1(s) \oplus A_2(s)$ and $(A_1 \otimes A_2)(s) = A_1(s) \otimes A_2(s)$.

Proof. The construction is essentially the same as in the case of the Boolean semiring [6].

Let us assume that the semiring $\mathbb S$ is commutative, bounded, and complete, and that $\bar{\Phi}$ is an effective label theory. We propose a Dijkstra algorithm computing, for a sw-VPA A over Ω , $\mathbb S$ and $\bar{\Phi}$, the minimal weight for a word in Ω^* . Let $b_{\perp}: Q \times Q \to \mathbb S$ be such that:

$$b_{\perp}(q, q') = \bigoplus_{s \in \Omega^*} \mathsf{weight}_A \big(q[\bot], s, q'[\bot] \big) \tag{7}$$

Since S is complete, the infinite sum in (7) is well defined, and, providing that S is total, it is the minimum in Ω^* , $wrt \leq_{\oplus}$, of the fonction $s \mapsto \mathsf{weight}_A(q[\sigma], s, q'[\sigma])$. The term $q[\bot], s, q'[\bot]$ of this sum is the central expression in the definition (6) of $A(s_0)$, for the minimum s_0 of the function weight_A .

Let \top be a fresh stack symbol which does not belong to Γ , and let $b_{\top}: Q \times P \times Q \to \Phi_{\mathsf{c}}$ be such that, for every two states $q, q' \in Q$ and stack symbol $p \in P$:

$$b_{\top}(q, p, q') : c \mapsto \bigoplus_{s \in \Omega^*} \mathsf{weight}_A \left(q \begin{bmatrix} \langle c, p \rangle \\ \top \end{bmatrix}, s, q' \begin{bmatrix} \langle c, p \rangle \\ \top \end{bmatrix} \right) \tag{8}$$

■ Algorithm 1 Best search for sw-VPA

initially let $Q = (Q \times Q) \cup (Q \times P \times Q)$, and let $d_{\perp}(q_1, q_2) = d_{\top}(q_1, p, q_2) = \mathbb{1}$ if $q_1 = q_2$ and $d_{\perp}(q_1, q_2) = d_{\top}(q_1, p, q_2) = \mathbb{0}$ otherwise while $Q \neq \emptyset$ do

| extract $\langle q_1, q_2 \rangle$ or $\langle q_1, p, q_2 \rangle$ from Q such that $d_{\perp}(q_1, q_2)$, resp.

| $\bigoplus_{c \in \Omega_c} d_{\top}(q_1, p, q_2)(c)$, is minimal in \mathbb{S} wrt \leq_{\oplus} | update d_{\perp} with $\langle q_1, q_2 \rangle$ or d_{\top} with $\langle q_1, p, q_2 \rangle$ (Figure 3).

Algorithm 1 constructs iteratively markings $d_{\perp}: Q \times Q \to \mathbb{S}$ and $d_{\top}: Q \times P \times Q \to \Phi_{\mathsf{c}}$ that converges eventually to b_{\top} and b_{\perp} .

The infinite sums in the updates of d in Algorithm 1, Figure 3 are well defined since S is complete. ** effectively computable by hypothese that the label theory is effective** The algorithm performs $2 \cdot |Q|^2$ iterations until P is empty, and each iteration has a time complexity $O(|Q|^2 \cdot |P|)$. That gives a time complexity $O(|Q|^4 \cdot |P|)$. It can be reduced by implementing P as a priority queue, prioritized by the value returned by d.

The correctness of Algorithm 1 is ensured by the invariant expressed in the following lemma.

357

358

359

364

365

350

(total?

detail with nb tr. and states

complete **

For all $q_0, q_3 \in Q$,

$$\begin{array}{lll} d_{\top}(q_1,p,q_3) & \oplus = & d_{\top}(q_1,p,q_2) \otimes \bigoplus_{\Omega_{\mathsf{i}}} \mathsf{w}_{\mathsf{i}}(q_2,p,q_3) \\ \\ d_{\bot}(q_1,p,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes \bigoplus_{\Omega_{\mathsf{i}}} \mathsf{w}_{\mathsf{i}}^{\mathsf{e}}(q_2,q_3) \\ \\ d_{\top}(q_0,p,q_3) & \oplus = & \bigoplus_{\Omega_{\mathsf{c}}}^2 \left[\left(\mathsf{w}_{\mathsf{c}}(q_0,p,p',q_1) \otimes_2 d_{\top}(q_1,p',q_2) \right) \otimes_2 \bigoplus_{\Omega_{\mathsf{r}}} \mathsf{w}_{\mathsf{r}}(q_2,p',q_3) \right] \\ \\ d_{\bot}(q_0,q_3) & \oplus = & \bigoplus_{\Omega_{\mathsf{c}}} \left(\mathsf{w}_{\mathsf{c}}^{\mathsf{e}}(q_0,p,q_1) \otimes d_{\top}(q_1,p,q_2) \otimes \bigoplus_{\Omega_{\mathsf{r}}} \mathsf{w}_{\mathsf{r}}(q_2,p,q_3) \right) \\ \\ d_{\bot}(q_1,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes \bigoplus_{\Omega_{\mathsf{r}}} \mathsf{w}_{\mathsf{r}}^{\mathsf{e}}(q_2,q_3) \\ \\ d_{\top}(q_1,p,q_3) & \oplus = & d_{\top}(q_1,p,q_2) \otimes d_{\top}(q_2,p,q_3), \text{if } \langle q_2,\top,q_3 \rangle \notin P \\ \\ d_{\bot}(q_1,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes d_{\bot}(q_2,q_3), \text{if } \langle q_2,\bot,q_3 \rangle \notin P \end{array}$$

Figure 3 Update d_{\perp} with $\langle q_1, q_2 \rangle$ or d_{\perp} with $\langle q_1, p, q_2 \rangle$.

```
▶ Lemma 14. For all (q_1, q_2) \notin \mathcal{Q}, d_{\perp}(q_1, q_2) = b_{\perp}(q_1, q_2) / d_{\perp}(q_1, q_2)
```

The proof is by contradiction, assuming a counter-example minimal in the length of the witness word. 368

Lemma 15. For all
$$\langle q_1, p, q_2 \rangle \notin \mathcal{Q}$$
, $d_{\top}(q_1, p, q_2) = b_{\top}(q_1, p, q_2)$,

For computing the minimal weight of a computation of A, we use the fact that, at the 370 termination of Algorithm 1, $\bigoplus_{s \in \Omega^*} A(s) = \bigoplus_{q,q' \in Q} \mathsf{in}(q) \otimes d_{\perp}(q,q') \otimes \mathsf{out}(q')$. In order to obtain effectively a witness (word of Ω^* with a computation of A of minimal 371

372 weight), we require the additional property of convexity of weight functions. 373

▶ Proposition 16. For a sw-VPA A over Ω , S commutative, bounded, total and complete, 374 and Φ effective, one can construct in PTIME a word $t \in \Omega^*$ such that A(t) is minimal wrt 375 the natural ordering for \mathbb{S} .

5 Symbolic Weighted Parsing

377

388

Let us now apply the models and results of the previous sections to the problem of parsing 378 over infinite alphabet. Let Σ be a countable input alphabet, and $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$ be a countable output alphabet. Let $(\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ be a commutative, bounded, and complete 380 semiring and let Φ be an effective label theory over \mathbb{S} , containing Φ_{Σ} , Φ_{Σ,Ω_i} , as well as Φ_i , 381 Φ_{c} , Φ_{r} , Φ_{cr} (following the notations of Section 4). We assume given the following input: 382 - a swT T over Σ , Ω_i , \mathbb{S} , and $\bar{\Phi}$, defining a measure $T: \Sigma^* \times \Omega_i^* \to \mathbb{S}$, 383 - a sw-VPA A over Ω , \mathbb{S} , and $\bar{\Phi}$, defining a measure $A: \Omega^* \to \mathbb{S}$, 384 – an input word $s \in \Sigma^*$. 385 For all $s \in \Sigma^*$ and $t \in \Omega^*$, let $d(s,t) = T(s,t|_{\Omega_i})$, where $t|_{\Omega_i} \in \Omega_i^*$ is the projection of t 386 onto Ω_i , obtained from t by removing all symbols in $\Omega \setminus \Omega_i$. Symbolic weighted parsing is the 387 problem, given the above input, to find $t \in \Omega^*$ minimizing $d(s,t) \otimes A(t)$ wrt \leq_{\oplus} , i.e. s.t.

$$d(s,t) \otimes A(t) = \bigoplus_{t' \in \mathcal{T}(\Omega)} d(s,t') \otimes A(t')$$
(9)

XX:12 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

Following the terminology of [21], sw-parsing is the problem of computing the distance (9) between the input s and the output weighted language of A, and returning a witness t. Every 391 labeled tree t can be linearized into a nested word $lin(t) \in \Omega^*$, assuming e.g. that Ω_i contain 392 the symbols labelling the leaves (symbols of rank 0) and Ω_c and Ω_r contain respectively one left and right parenthesis $\langle b \rangle$ and $b \rangle$ for each symbol b labelling inner nodes (symbols of 394 rank > 0). With this representation, the projection $\lim_{t \to 0} (t)|_{\Omega_t}$ is then the sequence of leaves 395 of t, enumerated in a dfs-traversal. We show in Appendix A how to convert a (sw) tree 396 automaton A into a sw-VPA computing A(lin(t)) for every tree t. That also holds, for the 397 set of ASTs of a weighted CF-grammar. Therefore, sw-parsing generalizes the problem of searching, the best derivation of a weighted CF-grammar that yields a given input, sometimes 399 referred as weighted parsing, see e.g. [13] and [23] for a more general weighted parsing framework. The latter indeed corresponds to the particular case where the alphabet is finite, T computes identity and A is obtained from the weighted CF grammar. 402

Proposition 17. The problem of Symbolic Weighted parsing can be solved in PTIME in
the size of the input swT T, sw-VPA A and input word s, and the computation time of the
functions of the label theory.

⁴⁰⁶ **Proof.** (sketch) We follow a *Bar-Hillel* construction, also called parsing by intersection.

We first extend the swT T over Σ , $\Omega_{\rm i}$, $\mathbb S$, and $\bar{\Phi}$, into a swT T' over Σ and Ω (and the same semiring and label theory), such that for all $s \in \Sigma^*$, and $u \in \Omega^*$, $T'(s,u) = T(s,u|_{\Omega_{\rm i}})$. The

transducer T' simply skips every symbol $b \in \Omega \setminus \Omega_i$, by the addition to the transition of

T, of new transitions of the form $w_{01}(q, \varepsilon, b, q')$. Then, given an input word $s \in \Sigma^*$, using

Corolary 10, we compute the swA $B_{T',s}$, such that for all $t \in \Omega^*$, $B_{T',s}(t) = d(s,t)$.

Next, we compute the sw-VPA $B_{T',s}\otimes A$, using Proposition 13. It remains to compute a

best nested-word $w \in \Omega^*$ using the best-search procedure of Proposition 16.

414 Conclusion

We have introduced weighted language models (SW transducers and visibly pushdown automata) computing over infinite alphabets, and applied them to the problem of parsing with infinitely many possible input symbols (typically timed events). This approach extends conventional parsing and weighted parsing by computing a derivation tree modulo a generic distance between words, defined by a SW transducer given in input. This enables to consider finer word relationships than strict equality, opening possibilities of quantitative analysis via this method.

422 Ongoing and future work include

 423 – The study of other theoretical properties of SW models, such as the extension of the best search algorithm from 1-best to n-best [17], and to k-closed semirings [20] (instead of bounded, which corresponds to 0-closed).

- ...there is room to improve the complexity bounds for the algorithms ... modular approach with oracles ...

- present here an offline algorithm for best search, semi-online implementation for AMT (bar-by-bar approach) with an on-the-fly automata construction.

References

R. Alur and P. Madhusudan. Adding nesting structure to words. *Journal of the ACM (JACM)*, 56(3):1–43, 2009.

433 2 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL), 12(4):1–26, 2011.

- P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and timed languages. *Information and Computation*, 182(2):137–162, 2003.
- M. Caralp, P.-A. Reynier, and J.-M. Talbot. Visibly pushdown automata with multiplicities:
 finiteness and k-boundedness. In *International Conference on Developments in Language Theory*, pages 226–238. Springer, 2012.
- H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison, and
 M. Tommasi. Tree Automata Techniques and Applications. http://tata.gforge.inria.fr,
 2007.
- L. D'Antoni and R. Alur. Symbolic visibly pushdown automata. In *International Conference* on Computer Aided Verification, pages 209–225. Springer, 2014.
- 7 L. D'Antoni and M. Veanes. The power of symbolic automata and transducers. In *International Conference on Computer Aided Verification*, pages 47–67. Springer, 2017.
- $\bf 8$ L. D'Antoni and M. Veanes. Automata modulo theories. Communications of the ACM, $\bf 64(5):86-95,\ 2021.$
- E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
 1(1):269–271, 1959.
- M. Droste and W. Kuich. Semirings and formal power series. In Handbook of Weighted
 Automata, pages 3–28. Springer, 2009.
- M. Droste, W. Kuich, and H. Vogler. Handbook of weighted automata. Springer Science &
 Business Media, 2009.
- F. Foscarin, F. Jacquemard, P. Rigaux, and M. Sakai. A Parse-based Framework for Coupled Rhythm Quantization and Score Structuring. In *Mathematics and Computation in Music* (MCM), volume 11502 of Lecture Notes in Artificial Intelligence, Madrid, Spain, 2019. Springer.
- 458 13 J. Goodman. Semiring parsing. Computational Linguistics, 25(4):573-606, 1999.
- 459 14 E. Gould. Behind Bars: The Definitive Guide to Music Notation. Faber Music, 2011.
- D. Grune and C. J. Jacobs. Parsing Techniques. Number 2nd edition in Monographs in
 Computer Science. Springer, 2008.
- L. Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In In
 COLING, 2008.
- L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the Ninth International
 Workshop on Parsing Technology, Parsing '05, pages 53-64, Stroudsburg, PA, USA, 2005.
 Association for Computational Linguistics.
- 467 18 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134:329–363, November 1994.
- 469 19 S. Lombardy and J. Sakarovitch. The removal of weighted ε -transitions. In *International Conference on Implementation and Application of Automata*, pages 345–352. Springer, 2012.
- M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. *Journal of Automata, Languages and Combinatorics*, 7(3):321–350, 2002.
- M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.
- M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. International Journal of Foundations of Computer Science, 14(06):957–982, 2003.
- R. Mörbitz and H. Vogler. Weighted parsing for grammar-based language models. In *Proceedings*of the 14th International Conference on Finite-State Methods and Natural Language Processing,
 pages 46–55, Dresden, Germany, Sept. 2019. Association for Computational Linguistics.
- 24 M.-J. Nederhof. Weighted deductive parsing and Knuth's algorithm. Computational Linguistics,
 29(1):135–143, 2003.
- F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.

 ACM Trans. Comput. Logic, 5(3):403–435, July 2004.

XX:14 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

- L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In *Computer Science Logic*, volume 4207 of *LNCS*. Springer, 2006.
- 486 27 M. Y. Vardi. Linear-time model checking: automata theory in practice. In *International Conference on Implementation and Application of Automata*, pages 5–10. Springer, 2007.

A Nested-Words and Parse-Trees

The hierarchical structure of nested-words, defined with the *call* and *return* markup symbols suggest a correspondence with trees. The lifting of this correspondence to languages, of tree automata and VPA, has been discussed in [1], and [4] for the weighted case. In this section, we describe a correspondence between the symbolic-weighted extensions of tree automata and VPA.

Let Ω be a countable ranked alphabet, such that every symbol $a \in \Omega$ has a rank $\mathsf{rk}(a) \in [0..M]$ where M is a fixed natural number. We denote by Ω_k the subset of all symbols a of Ω with $\mathsf{rk}(a) = k$, where $0 \le k \le M$, and $\Omega_{>0} = \Omega \setminus \Omega_0$. The free Ω -algebra of finite, ordered, Ω -labeled trees is denoted by $\mathcal{T}(\Omega)$. It is the smallest set such that $\Omega_0 \subset \mathcal{T}(\Omega)$ and for all $1 \le k \le M$, all $a \in \Omega_k$, and all $t_1, \ldots, t_k \in \mathcal{T}(\Omega)$, $a(t_1, \ldots, t_k) \in \mathcal{T}(\Omega)$. Let us assume a commutative semiring $\mathbb S$ and a label theory Φ over $\mathbb S$ containing one set Φ_{Ω_k} for each $k \in [0..M]$.

Definition 18. A symbolic-weighted tree automaton (swTA) over Ω , S, and $\bar{\Phi}$ is a triplet $A = \langle Q, \mathsf{in}, \bar{\mathsf{w}} \rangle$ where Q is a finite set of states, $\mathsf{in}: Q \to \Phi_{\Omega}$ is the starting weight function, and $\bar{\mathsf{w}}$ is a tuplet of transition functions containing, for each $k \in [0..M]$, the functions $\mathsf{w}_k: Q \times Q^k \to \Phi_{\Omega_{>0},\Omega_k}$ and $\mathsf{w}_k^e: Q \times Q^k \to \Phi_{\Omega_k}$.

We define a transition function $w: Q \times (\Omega_{>0} \cup \{\varepsilon\}) \times \Omega \times \bigcup_{k=0}^{M} Q^{k} \to \mathbb{S}$ by:

$$\begin{array}{lll} \mathsf{w}(q_0,a,b,q_1\ldots q_k) & = & \eta(a,b) & \quad \text{where } \eta = \mathsf{w}_k(q_0,q_1\ldots q_k) \\ \mathsf{w}(q_0,\varepsilon,b,q_1\ldots q_k) & = & \phi(b) & \quad \text{where } \phi = \mathsf{w}_k^{\mathsf{e}}(q_0,q_1\ldots q_k). \end{array}$$

where $q_1 \dots q_k$ is ε if k = 0. The first case deals with a strict subtree, with a parent node labeled by a, and the second case is for a root tree.

Every swTA defines a mapping from trees of $\mathcal{T}(\Omega)$ into \mathbb{S} , based on the following intermediate function weight_A: $Q \times (\Omega \cup \{\varepsilon\}) \times \mathcal{T}(\Omega) \to \mathbb{S}$

$$\mathsf{weight}_{A}(q_0, a, t) = \bigoplus_{q_1 \dots q_k \in Q^k} \mathsf{w}(q_0, a, b, q_1 \dots q_k) \otimes \bigotimes_{i=1}^k \mathsf{weight}_{A}(q_i, b, t_i) \tag{10}$$

where $q_0 \in Q$, $a \in \Omega_{>0} \cup \{\varepsilon\}$ and $t = b(t_1, \dots, t_k) \in \mathcal{T}(\Omega)$, $0 \le k \le M$.

513 Finally, the weight associated by A to $t \in \mathcal{T}(\Omega)$ is

$$A(t) = \bigoplus_{q \in Q} \mathsf{in}(q) \otimes \mathsf{weight}_A(q, \varepsilon, t) \tag{11}$$

Intuitively, $w(q_0, a, b, q_1 \dots q_k)$ can be seen as the weight of a production rule $q_0 \to b(q_1, \dots, q_k)$ of a regular tree grammar [5], that replaces the non-terminal symbol q_0 by $b(q_1, \dots, q_k)$, provided that the parent of q_0 is labeled by a (or q_0 is the root node if $a = \varepsilon$). The above production rule can also be seen as a rule of a weighted CF grammar, of the form $[a, b] q_0 := q_1 \dots q_k$ if k > 0, and $[a] q_0 := b$ if k = 0. In the first case, b is a label of the rule, and in the second case, it is a terminal symbol. And in both cases, a is a constraint on the label of rule applied on the parent node in the derivation tree. This features of observing the parent's label are useful in the case of infinite alphabet, where it is not possible to memorize a label with the states. The weight of a labeled derivation tree t of the weighted CF grammar associated to A as above, is weight $_A(q,t)$, when q is the start non-terminal. We shall now establish a correspondence between such derivation tree t and some word describing a linearization of t, in a way that weight $_A(q,t)$ can be computed by a sw-VPA.

XX:16 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

```
Let \hat{\Omega} be the countable (unranked) alphabet obtained from \Omega by: \hat{\Omega} = \Omega_{\mathsf{i}} \uplus \Omega_{\mathsf{c}} \uplus \Omega_{\mathsf{r}}, with \Omega_{\mathsf{i}} = \Omega_{\mathsf{0}}, \, \Omega_{\mathsf{c}} = \{ \langle_a | \, a \in \Omega_{>0} \}, \, \Omega_{\mathsf{r}} = \{ \,_a \rangle \mid a \in \Omega_{>0} \}.
We associate to \hat{\Omega} a label theory \hat{\Phi} like in Section 4, and we define a linearization of trees of \mathcal{T}(\Omega) into words of \hat{\Omega}^* as follows:

\begin{aligned} & | & \mathsf{lin}(a) = a \text{ for all } a \in \Omega_{\mathsf{0}}, \\ & | & \mathsf{lin}(b(t_1, \ldots, t_k)) = \langle_b | & \mathsf{lin}(t_1) \ldots | & \mathsf{lin}(t_k) |_b \rangle \end{aligned} \text{ when } b \in \Omega_k \text{ for } 1 \leq k \leq M.

Proposition 19. For all swTA A over \Omega, \mathbb{S} commutative, and \bar{\Phi}, there exists an effectively constructible sw-VPA A' over \hat{\Omega}, \mathbb{S} and \hat{\Phi} such that for all t \in \mathcal{T}(\Omega), A'(\mathsf{lin}(t)) = A(t).

Proof. Let A = \langle Q, \mathsf{in}, \bar{\mathsf{w}} \rangle where \bar{\mathsf{w}} is presented as above by a function We build A' = \langle Q', P', \mathsf{in}', \bar{\mathsf{w}}', \mathsf{out}' \rangle, where Q' = \bigcup_{k=0}^{M} Q^k is the set of sequences of state symbols of A, of length at most M, including the empty sequence denoted by \varepsilon, and where P' = Q' and \bar{\mathsf{w}} is defined by:
```

All cases not matched by one of the above equations have a weight \mathbb{O} , for instance $\mathsf{w}_\mathsf{r}(\bar{u}, \langle_c, \bar{p}, _d\rangle, \bar{q}) = \mathbb{O}$ if $c \neq d$ or $\bar{u} \neq \varepsilon$ or $\bar{q} \neq \bar{p}$.

Todo list

543	register: skip refs and details, add Mikolaj recent	1
544	chap. intersection in [15]	3
545	expressiveness: VPA have restricted equality test. comparable to pebble automata?	
546	$\rightarrow \text{conclusion} $	3
547	partial appli needed?	5
548	precise/restrict complexity	5
549	proof correctness	8
550	revise with nb of tr. and states	8
551	todo example VPA	9
552	total?	10
553	complete **	10
554	detail with nb tr. and states	10
555	total?	11