Question 1:

Two piston/cylinder arrangements, A and B, have their gas chambers connected by a pipe, as shown in figure. The cross-sectional areas are $A_A=75~{
m cm}^2$ and $A_B=25~{
m cm}^2$, with the piston mass in A being $m_A=25$ kg. Assume an outside pressure of 100 kPa and standard gravitation. Find the mass m_B so that none of the pistons have to rest on the bottom.

Question 2:

The figure is a graph of E_x . The potential at the origin is $-50~\mathrm{V}$. What is the potential at x = 3.0 m?

Question 3:

Find the electric fluxe through surface 3. Find the electric fluxe through surface 3.

Question 4:

A valve in the cylinder shown in figure has a cross-sectional area of $11\,{\rm cm}^2$ with a pressure of $735\,{\rm kPa}$ inside the cylinder and $99\,{\rm kPa}$ outside. How large a force is needed to open the valve?

Question 5:

Figure shows 1.0- μm -diameter dust particles ($m=1.0\times 10^{-15}~kg$) in a vacuum chamber. The dust particles are released from rest above a 1.0- μm -diameter hole, fall through the hole (there's just barely room for the particles to go through), and land on a detector at distance d below. Quantum effects would be noticeable if the detection-circle diameter increased by 10\% to $1.1~\mu m$. At what distance d would the detector need to be placed to observe this increase in the diameter?

A simple harmonic oscillator consists of a block attached to a spring with $k=200\,\mathrm{N/m}$. The block slides on a frictionless surface, with equilibrium point x=0 and amplitude $0.20\,\mathrm{m}$. A graph of the block's velocity v as a function of time t is shown in figure. The horizontal scale is set by $t_s=0.20\,\mathrm{s}$. What is its maximum kinetic energy?

Question 7:

An ideal gas is slowly compressed at a constant pressure of $2.0\,\mathrm{atm}$ from $10.0\,\mathrm{L}$ to $2.0\,\mathrm{L}$. This process is represented in figure as the path B to D. (In this process, some heat flows out of the gas and the temperature drops.) Heat is then added to the gas, holding the volume constant, and the pressure and temperature are allowed to rise (line DA) until the temperature reaches its original value ($T_A = T_B$). In the process BDA, calculate the total heat flow into the gas.

Question 8:

A diverging lens with a focal length of 50 cm is placed 100 cm from a flower. What is the magnification?

Question 9:

Sini'
$$\left(\frac{1}{m}\right) = \operatorname{arcsin}\left(\frac{1}{1-26}\right)$$

= $\operatorname{arcsin}\left(0.7353\right)$

Assume a transparent rod of diameter $d=2.00\,\mu\mathrm{m}$ has an index of refraction of 1.36. Determine the maximum angle θ for which the light rays incident on the end of the rod in figure are subject to total internal reflection along the walls of the rod.

7=67,2

- A. 72.2°
- B. 65.4°
- C. 67.2°
- D. 60.0°

90° - 47.33°.

Sim = 1.36 5m 42.670.

Question 10:

$$E_{1} = PE_{1} + kE_{1} = 0$$

$$E_{f} = mg = \frac{1}{2} + \frac{1}{2} I \omega^{2}$$

$$= 0$$

$$= mg = \frac{mgl}{I}$$

$$= \frac{1}{3} m l^{2}$$

$$= \sqrt{32}$$

$$= \sqrt{32}$$

A $1.0\,\mathrm{m}$ -long, $200\,\mathrm{g}$ rod is hinged at one end and connected to a wall. It is held out horizontally, then released. What is the speed of the tip of the rod as it hits the wall?

Question 11:

The figure is a graph of E_x . What is the potential difference between $x_i=1.0~\mathrm{m}$ and $x_f=3.0~\mathrm{m}$

? Question 12: x (m)-0.30

A simple harmonic oscillator consists of a $0.50\ kg$ block attached to a spring. The block slides back and forth along a straight line on a frictionless surface with equilibrium point x=0. At t=0 the block is at x=0 and moving in the positive x direction. A graph of the magnitude of the net force $ec{F}$ on the block as a function of its position is shown in figure. The vertical scale is set by

 $F_s = 75.0 \ N$. What is the maximum kinetic energy?

$$F = -\frac{F}{K} = \frac{75.0 \,\text{M}}{0.3 \,\text{M}} = 250 \,\text{N/m}.$$

$$F = \frac{1}{2} \,\text{KA}$$

$$= \frac{1}{2} \,\text{KA}$$

= 11.25]

Question 13:

An object is at x=0 at t=0 and moves along the x axis according to the velocity--time graph in figure. Through what total distance has the object moved between t=0 and t=18.0 s?

- A. 272m
- B. 136m
- C. 204m
- D. 182m

$$x = -12 \times 4 + \frac{1}{2} \times 2 \times (12) + \frac{1}{2} \times 3 \times 18$$

+ $18 \times 4 + \frac{1}{2} \times 5 \times 18 = 204 \text{ m}$

Question 14:

Figure is a graph of intensity versus wavelength for light reaching Earth from galaxy NGC 7319, which is about $3 imes 10^8$ light-years away. The most intense light is emitted by the oxygen in NGC 7319. In a laboratory that emission is at wavelength $\lambda = 513\,\mathrm{nm}$, but in the light from NGC 7319 it has been shifted to $525\,\mathrm{nm}$ due to the Doppler effect (all the emissions from NGC 7319 have been shifted). What is the radial speed of NGC 7319 relative to Earth?

Question 15:

The far point of a certain myopic eye is 50 cm in front of the eye. Assume that the lens is worn 2 cm in front of the eye. Find the focal length of the eyeglass lens that will permit the wearer to see clearly an object at infinity.

$$V_{5} = -0.48 \, \text{m}$$

$$\frac{1}{f} = \frac{1}{V} - \frac{1}{V} = -0.48 \, \text{m}$$

$$file: ///Users/huishen/Desktop/MetaPhyX/exam_html/metaphyx_paper_3.html}$$

Question 16:

In a set of experiments on a hypothetical one-electron atom, you measure the wavelengths of the photons emitted from transitions ending in the ground state n=1, as shown in the energy-level diagram in figure. You also observe that it takes $17.50~{\rm eV}$ to ionize this atom. If an electron made a transition from the n=4 to the n=2 level, what wavelength of light would it emit?

$$\mathsf{B.}\ 456\ \mathrm{nm}$$

$$\mathsf{C.}\ 423\ \mathrm{nm}$$

$$\mathsf{D.}\ 378\ \mathrm{nm}$$

$$= 378.3 nm$$

Question 17:

The alpenhorn (figure) was once used to send signals from one Alpine village to another. Since lower frequency sounds are less susceptible to intensity loss, long horns were used to create deep sounds. When played as a musical instrument, the alpenhorn must be blown in such a way that only one of the overtones is resonating. The most popular alpenhorn is about $3.4\,\mathrm{m}$ long, and it is called the F\# (or G\flat) horn.Model as a tube open at both ends. What is the fundamental frequency of this horn?

$$f = \frac{V}{2L}$$
 $f = \frac{343}{2 \times 3.4}$
 $f = \frac{50.44}{4}$

Question 18:

A heat engine's high temperature T_H could be ambient temperature, because liquid nitrogen at $77\,\mathrm{K}$ could be T_L and is cheap. The Carnot engine made use of heat transferred from air at room temperature (293 K) to the liquid nitrogen fuel (figure). What would be the efficiency of a Carnot engine?

$$h = 1 - \frac{TL}{TH} = 1 - \frac{77}{293} \approx 0.737$$

$$= \left[73.7\%\right]$$