CS2109S: Introduction to AI and Machine Learning

Lecture 11: Unsupervised Learning

11 November 2023

Announcement

- We'll release the midterm grades soon (later today or tomorrow)
- The mockup final will also be released soon
 - We're trying to integrate it on a new platform for better experience

Recap

- Deep Neural Networks neural networks with >3 layers
- Convolution Neural Networks
 - Motivation: handling **spatial structure**, translation **invariant**
 - Convolution (multiply-sum), Pooling (downsampling) Layer, and Common Architectures
 - Applications: image recognition, image segmentation, object detection
- Recurrent Neural Networks
 - Motivation: handling sequential data
 - Recurrent Neural Networks and Variants:
 - neural networks with loop y_t , $h_t = RNN(x_t, h_{t-1})$
 - Applications: machine translation, summarization, etc
- Attention, Transformers, GPT, and ChatGPT
 - Attention: focus on things that matters. Massive neural networks; train with billions of data.
- Issues with Deep Learning: overfitting, gradient vanishing/exploding

ERRATA

Convolution: 2D

$$f_{conv}(X) = W * X$$

Image Input

X

0	-1	0	
-1	5	-1	
0	-1	0	

Kernel / Filter *W*

3	3	-2
-3	-3	4
3	3	<mark>-4</mark>

Feature Map

What if we want to detect other features (e.g., mouth)?

*

Recurrent Neural Networks (RNN)

Feed-forward networks

$$\mathbf{y} = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h} \right)$$
$$\mathbf{h} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x} \right)$$

Recurrent Neural Networks

$$\mathbf{y} = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h} \right) \qquad \mathbf{y}_t = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h}_t \right)$$

$$\mathbf{h} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x} \right) \qquad \mathbf{h}_t = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x}_t + \left(\mathbf{W}^{[hh]} \right)^{\mathsf{T}} \mathbf{h}_{t-1} \right)$$

Best

Outline

- Unsupervised Learning
- K-means clustering
 - Algorithm
 - Measuring the goodness of clusters
 - Picking the number of clusters
 - Variants
- Hierarchical clustering
 - Algorithm
 - Dendograms
 - Distance Metrics
 - Applications
- Dimensionality Reduction
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)

Outline

- Unsupervised Learning
- K-means clustering
 - Algorithm
 - Measuring the goodness of clusters
 - Picking the number of clusters
 - Variants
- Hierarchical clustering
 - Algorithm
 - Dendograms
 - Distance Metrics
 - Applications
- Dimensionality Reduction
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)

Supervised Learning

Given a set of m input-output pairs (training samples) $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, learn to make a prediction.

Unsupervised Learning

Given a set of m data points $\{x^{(1)}, \dots, x^{(m)}\}$, learn the pattern in the data.

- Clustering: try to identify clusters in the data
- Dimensionality reduction: try to find a lower-dimensional representation of the data

Outline

- Unsupervised Learning
- K-means clustering
 - Algorithm
 - Measuring the goodness of clusters
 - Picking the number of clusters
 - Variants
- Hierarchical clustering
 - Algorithm
 - Dendograms
 - Distance Metrics
 - Applications
- Dimensionality Reduction
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)

Classification

Clustering

Clustering

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K) \text{ closest to } x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K) \text{ closest to } x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

Not a decision boundary, just to help tell which datapoints are closest to which clusters

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K)$ closest to $x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

K = 2

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K) \text{ closest to } x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

K = 2

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K) \text{ closest to } x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

K = 2

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K) \text{ closest to } x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

K = 2

- Randomly initialize K centroids: μ_1, \dots, μ_K
- Repeat until convergence:
 - For i = 1, ..., m:
 - $c^{(i)} \leftarrow \text{index of cluster centroid}$ $(\mu_1, ..., \mu_K) \text{ closest to } x^{(i)}$
 - For k = 1, ..., K:
 - $\mu_k \leftarrow$ centroid of data points $x^{(i)}$ assigned to cluster k

No more change: converged!

K-Means: Convergence

Tutorial 10!

This is a stable configuration (the centroids will not move)

K-Means: Measuring the Goodness

K-Means: Picking the Number of Clusters

Business Needs

K-Means: Variants

- Pick K initial centroids from the random points in the data
- K-Medoids: pick the data points that are close to the centroids, and use them as the centroids.
 - "Snap" the centroids to the nearest data points

Outline

- Unsupervised Learning
- K-means clustering
 - Algorithm
 - Measuring the goodness of clusters
 - Picking the number of clusters
 - Variants

Hierarchical clustering

- Algorithm
- Dendograms
- Distance Metrics
- Applications
- Dimensionality Reduction
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)

Hierarchical Clustering

- Every data point is a cluster
- Loop (until all points are in one cluster):
 - Find a pair of cluster that is "nearest", merge them together

Hierarchical Clustering: 1D

- Every data point is a cluster
- Loop (until all points are in one cluster):
 - Find a pair of cluster that is "nearest", merge them together

Dendogram

Hierarchical Clustering: 1D

- Every data point is a cluster
- Loop (until all points are in one cluster):
 - Find a pair of cluster that is "nearest", merge them together

Dendogram

Hierarchical Clustering: 1D

- Every data point is a cluster
- Loop (until all points are in one cluster):
 - Find a pair of cluster that is "nearest", merge them together

Dendogram

Hierarchical Clustering: 2D

- Every data point is a cluster
- Loop (until all points are in one cluster):
 - Find a pair of cluster that is "nearest", merge them together

How do we compute the distance between clusters?

Dendogram will be similar to 1D

Hierarchical Clustering: Notes

- Many options to compute the distance between clusters
 - See image on the right
 - Euclidean distance
 - Manhattan distance
- High space and time complexity: impractical for large datasets

Hierarchical Clustering: Applications

- **Customer Segmentation:** Utilizing hierarchical clustering enables the segmentation of customers according to their purchasing behavior, preferences, or demographic data.
- Gene Expression Analysis: The application of hierarchical clustering can aid in the analysis of gene expression data, revealing patterns or clusters of genes exhibiting similar expression profiles.
- **Recommender Systems:** Hierarchical clustering serves as a valuable tool in constructing recommender systems, grouping similar users or items based on their preferences or behavior.
- Social Network Analysis: The implementation of hierarchical clustering is beneficial for analyzing social networks, uncovering communities or groups of individuals sharing similar social connections or interests.

Outline

- Unsupervised Learning
- K-means clustering
 - Algorithm
 - Measuring the goodness of clusters
 - Picking the number of clusters
 - Variants
- Hierarchical clustering
 - Algorithm
 - Dendograms
 - Distance Metrics
 - Applications
- Dimensionality Reduction
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)

Dimensionality Reduction

Many machine learning problems have data with **high-dimensional features**. For example:

HD images have 1280×720=921600 features

Curse of dimensionality: number of samples to learn a hypothesis class increase exponentially with the number of features

Reconstruction

Reconstruction

Reconstruction

Intuition behind:

- Singular Value Decomposition (SVD)
- Principal Component Analysis (PCA)

Elements are ordered by importance

Singular Value Decomposition

Assume: $n \gg m$

"Mixtures" of "face templates" to make each individual face in X

Elements are ordered by importance

Singular Value Decomposition

Assume: $n \gg m$

Dimensionality reduction:

Remove some of the "non-useful" components/basis (e.g., face templates)

$$m{U}$$
 unitary, $m{U}m{U}^T = m{U}^Tm{U} = m{I}$: $m{U}m{U}^Tm{X} = m{I}m{X} = m{X}$, $m{\widetilde{U}}m{\widetilde{U}}^Tm{X} pprox m{I}m{X} = m{X}$

Reduction: $\widetilde{U}^T X = Z \in \mathbb{R}^{r \times m}$

Reconstruction: $\widetilde{U}Z = \widetilde{X} \approx X$

"Mixtures" of "face templates" to make each individual face in X

Singular Value Decomposition (SVD)

Algorithm:

- Outside of the scope of this course
- If you are really curious:
 - https://web.stanford.edu/class/cme335/spr11/lecture6.pdf

Implementations:

- Numpy: numpy.linalg.svd
 - https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
- Matlab: svd
 - https://www.mathworks.com/help/matlab/ref/double.svd.html

Principal Component Analysis (PCA)

Statistical interpretation of SVD. Trying to capture components that maximize the *statistical variations* of the data.

Steps:

- 1. Compute mean over samples: $\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$
- 2. Compute mean-centered data: $\widehat{x}_i = x_i \overline{x}$
- 3. Create the covariance matrix of the mean-centered data: $Cov(\widehat{m{X}}) = \widehat{m{X}}^T\widehat{m{X}}$
- 4. Compute SVD for $Cov(\widehat{m{X}})$ to get the U matrix (new basis)

Reduction: $\widetilde{U}^TX = Z \in \mathbb{R}^{r \times m}$

Reconstruction: $\widetilde{\boldsymbol{U}}\boldsymbol{Z}=\widetilde{\boldsymbol{X}}\approx \boldsymbol{X}$

PCA: Picking the Number of Components

- Average squared projection: $\frac{1}{m}\sum_{i=1}^{m}\|\boldsymbol{x}_i-\widetilde{\boldsymbol{x}}_i\|^2$
- Total variation: $\frac{1}{m}\sum_{i=1}^{m}||x_i||^2$
- Choose minimum k, such that

$$X = U\Sigma V^{T}$$

$$X^{T}X = (U\Sigma V^{T})^{T}U\Sigma V^{T}$$

$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$

$$= V\Sigma^{T}\Sigma V^{T}$$

$$= V \begin{bmatrix} \sigma_{1}^{2} \\ \sigma_{2}^{2} \end{bmatrix} V^{T}$$

$$\vdots \sigma_{n}^{2}$$

PCA: Applications

- Compression: save space, speed up learning
- Visualization (k=2 or 3)

Summary

- Unsupervised Learning: learn the pattern of the data without label
- K-means clustering
 - Algorithm: find centroids based on the data points, assign each point to the closest centroid
 - Measuring the goodness of clusters: distance of each point to their centroid
 - Picking the number of clusters: **elbow method**, business needs
 - Variants: **K-medoids**, etc
- Hierarchical clustering
 - Algorithm: each point is a cluster, connect a pair of "closest" clusters, repeat
 - Dendograms: a way to **visualize** hierarchical clusters
 - Distance Metrics: min, max, average, etc
 - Applications
- Dimensionality Reduction: finding new basis that best captures the data
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA): statistical interpretation of SVD

Coming Up Next Week

- AI & Ethics
- Recap of the entire materials
- Details on the final assessment

To Do

- Lecture Training 11
 - +100 Free EXP
 - +50 Early bird bonus
- Problem Set 7 is due today!
- Problem Set 8 is out!