#### Практическое занятие №51.

### Показательные и тригонометрические неравенства.

#### 1. Показательные неравенства





При решении показательных и логарифмических неравенств следует помнить, что показательная  $y = a^x$  и логарифмическая  $y = \log_a x$  функции являются возрастающими при a > 1 и убывающими при 0 < a < 1. Поэтому из неравенств  $a^x > a^y$  или  $\log_a x > \log_a y$  следует, что x > y, если a > 1, и x < y, если 0 < a < 1. При потенцировании или логарифмировании обеих частей неравенства по основанию a знак неравенства сохраняется прежним, если a > 1, и изменяется на противоположный, если 0 < a < 1. Если значение основания a неизвестно, то необходимо рассматривать два случая.

**5.55.** Решить неравенство:  $\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{64}$ .

Решение. Учитывая, что  $\frac{27}{64} = \left(\frac{3}{4}\right)^3$ , перепишем неравенство в

виде 
$$\left(\frac{3}{4}\right)^{6x+10-x^2} < \left(\frac{3}{4}\right)^3$$
.

Так как основание показательной функции  $a = \frac{3}{4} < 1$ , равносильным данному неравенству будет следующее неравенство с противопо-

ложным знаком:  $6x + 10 - x^2 > 3$ , или  $x^2 - 6x - 7 < 0$ , решением которого будет -1 < x < 7.

Ответ: (-1; 7).

**5.56.** Решить неравенство:  $4^x - 2 \cdot 5^{2x} - 10^x < 0$ .

Решение. Так как  $10^x > 0$ , то, разделив исходное уравнение на  $10^x$ , получим равносильное неравенство  $\left(\frac{2}{5}\right)^x - 2\left(\frac{5}{2}\right)^x - 1 < 0$ .

Обозначим 
$$\left(\frac{2}{5}\right)^x = y > 0$$
, имеем  $y - 2 \cdot \frac{1}{y} - 1 < 0$ , или  $y^2 - y - 2 < 0$ .

Разложим левую часть неравенства на множители (y-2)(y+1) < 0. Так как y > 0, y+1 > 0, то y-2 < 0, т.е. y < 2. Следовательно,

$$\left(\frac{2}{5}\right)^x < 2$$
. Логарифмируя по основанию  $a = \frac{2}{5} < 1$ , придем к неравенст-

ву с противоположным знаком:  $x > \log_{2/5} 2$ .

$$Om \ em: (\log_{2/5} 2; +\infty).$$

#### Задания для самостоятельного решения

Решите неравенство  $5 \cdot 2^{2x+2} - 21 \cdot 2^{x-1} + 1 \le 0$ 

$$9^x - 31 \cdot 3^x + 108 \le 0$$

$$2^{2x-1} - 7 \cdot 2^{x-1} + 5 \le 0$$

$$3^{x} + 10 \cdot 3^{-x} \le 11$$

$$2^{x} + 6 \cdot 2^{-x} \le 7$$

$$2^{x^2} \leq 64 \cdot 2^x$$

## 2. Тригонометрические неравенства

Для овладения навыками решения тригонометрических неравенств прежде всего надо научиться решать простейшие неравенства вида  $a_1 < \sin x < a_2$ ,  $b_1 < \cos x < b_2$ ,  $c_1 < \operatorname{tg} x < c_2$ ,  $d_1 < \operatorname{ctg} x < d_2$ , где  $a_1$ ,  $a_2$ ,  $b_1$ ,  $b_2$ ,  $c_1$ ,  $c_2$ ,  $d_1$ ,  $d_2$  — заданные числа. Для решения этих неравенств удобно использовать тригонометрический круг.

**7.169.** Решить неравенства: a) 
$$\sin x > \frac{1}{2}$$
; б)  $\sin x < \frac{1}{2}$ .

Решение. Так как в тригонометрическом круге  $\sin \alpha$  есть ордината конца подвижного радиуса, отложим на оси ординат отрезок, равный  $\frac{1}{2}$ , и проведем через точку K отрезок  $MN \parallel Ox$  (рис.7.3).

# **7.169.** Решить неравенства: a) $\sin x > \frac{1}{2}$ ; 6) $\sin x < \frac{1}{2}$ .

Решение. Так как в тригонометрическом круге  $\sin \alpha$  есть ордината конца подвижного радиуса, отложим на оси ординат отрезок, равный  $\frac{1}{2}$ , и проведем через точку K отрезок  $MN \parallel Ox$  (рис.7.3).



Рис: 7.3

Рис. 7.4

Рис. 7.5

Получим  $\angle NOA = \frac{\pi}{6}$ , а  $\angle MOA = \frac{5\pi}{6}$ , ибо их синусы равны  $\frac{1}{2}$ . Очевидно, что неравенству  $\sin x > \frac{1}{2}$  соответствуют все точки дуги MPN (отмечены на рис. 7.3 штриховкой), т.е. заключены от  $\frac{\pi}{6}$  до  $\frac{5\pi}{6}$ . С учетом периода функции  $\sin x$ , равного  $2\pi$ , ответ запишется в виде интервала  $\left(\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2\pi n\right)$ .

Решениями неравенства  $\sin x < \frac{1}{2}$  будут все точки дуги MQN. Если полагать, что угол с конечной стороной OM равен  $\frac{5\pi}{6}$ , то точки дуги MQN будут описаны интервалом  $\left(\frac{5\pi}{6} + 2\pi n; \frac{13\pi}{6} + 2\pi n\right)$ , так как если двигаться по дуге MQN в положительном направлении (против часовой стрелки), то угол с конечной стороной ON будет равен  $2\pi + \frac{\pi}{6} = \frac{13\pi}{6}$ . Запись ответа несколько упростится, если считать угол с

конечной стороной OM равным  $-\pi - \frac{\pi}{6} = -\frac{7\pi}{6}$ . Тогда «охвату» точек дуги MQN будет соответствовать интервал  $\left(-\frac{7\pi}{6} + 2\pi n; \frac{\pi}{6} + 2\pi n\right)$ .

Omsem: a) 
$$\left(\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2\pi n\right)$$
; 6)  $\left(-\frac{7\pi}{6} + 2\pi n; \frac{\pi}{6} + 2\pi n\right)$ ,  $n \in \mathbb{Z}$ .

**7.170.** Решить неравенство:  $\frac{1}{3} < \cos x < \frac{1}{2}$ .

Решение. Так как в тригонометрическом круге  $\cos \alpha$  есть абсцисса конца подвижного радиуса, отложим на оси Ox отрезки, равные  $\frac{1}{3}$  и  $\frac{1}{2}$ , и проведем через точки K и L  $MM' \parallel Oy$ ,  $NN' \parallel Oy$  (см. рис. 7.4).

Получим 
$$\angle MOA = \arccos \frac{1}{3}$$
,  $\angle M'OA = -\arccos \frac{1}{3}$ ,  $\angle NOA = \frac{\pi}{3}$ ,

 $\angle N'OA = -\frac{\pi}{3}$ . Очевидно, решениями неравенства будут все точки дуг *MN* и *M'N'*, т.е. (с учетом периода функции  $\cos x$ , равного  $2\pi$ ) интервалы соответственно

$$\left(-\arccos\frac{1}{3} + 2\pi n; -\frac{\pi}{3} + 2\pi n\right)$$
  $u\left(\frac{\pi}{3} + 2\pi n; \arccos\frac{1}{3} + 2\pi n\right)$ .

 $Om \, \theta \, e \, m: \quad \left(-\arccos\frac{1}{3} + 2\pi n; \quad -\frac{\pi}{3} + 2\pi n\right) \, \cup \, \left(\frac{\pi}{3} + 2\pi n; \, \arccos\frac{1}{3} + 2\pi n\right),$   $n \in \mathbb{Z}.$ 

Список использованных интернет-ресурсов:

1. https://urait.ru/

Кремер, Н. Ш.

Математика для колледжей: учебное пособие для поступающих в вузы / под редакцией Н. Ш. Кремера. — 10-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2020. — 346 с. — (Профессиональное образование). — Текст: непосредственный.

2. <a href="https://23.edu-reg.ru/">https://23.edu-reg.ru/</a>