

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждениевысшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

Кафедра прикладной математики, механики, управления и программного обеспечения

САЗОНТОВА МАРИЯ ДМИТРИЕВНА

РАЗРАБОТКА ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ АВТОМАТИЗАЦИИ РАБОТЫ СО СПРАВОЧНИКАМИ ОРГАНИЗАЦИЙ ДЛЯ ПРОЕКТА «МҮМАР»

КУРСОВОЙ ПРОЕКТ

по дисциплине «Фундаментальные структуры данных и алгоритмы» по образовательной программе подготовки бакалавров по направлению 09.03.04 - Программная инженерия

		Студент гр. Б8119-0	9.03.04прогин
			Сазонтова М.Д.
		(подпись)	_
Защищен с оценкой		Руководитель	
			Ученая степень
		ст. преподаватель	
	_	должность	О.А. Крестникова
(подпись)	(И.О. Фамилия)	(подпись)	(И.О. Фамилия)
« <u> </u>	2021 г.		

г. Владивосток

Оглавление

Введе	ение	3
1 Ана	ализ предметной области (ПО)	4
1.1	Модель ПО	4
Объе	екты предметной области:	4
1.2	Постановки задач обработки	6
2.Teo	оретическая часть	7
2.1	Хеш-таблица	7
2.1.1	Хеш-функция	7
2.1.2	Разрешение коллизий методом цепочек	9
2.1.3	Упорядоченный по убыванию связный список	9
2.2	Бинарное дерево поиска	10
3 Tpe	ебования к информационной системе	13
3.1	Функциональные требования	13
3.2	Требования к данным	14
3.2.1	Требования к входным данным	14
3.2.2	Требования к выходным данным	15
3.3	Требования к интерфейсу	15
4 Pea	лизация	16
4.1 Д	[иаграмма классов	16
4.2	Описание классов	17
4.3	Описание интерфейса	22
4.4	Тестирование	28
Закль	ючение	30
Спис	ок литературы	31

Введение

Зачастую сложно самому уследить за всеми акциями, которые предоставляют различные организации. Приложение «МуМар» поможет решить эту проблему путем систематизации данных об организациях и проводимых там акциях в удобном для пользователя формате таблицы с возможностью ее редактирования.

Целью курсового проекта является: разработка информационной системы для автоматизации работы со справочниками, содержащими основную информацию об организациях и проводимых ими акциях.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- 1. Провести анализ предметной области («МуМар») и построить ее модель.
- 2. Изучить теоретические основы методов построения справочников.
 - 3. Определить требования к информационной системе.
 - 4. Реализовать и провести тестирование.

1 Анализ предметной области (ПО)

Требуется разработать информационную систему для автоматизации работы со справочниками организаций, содержащими основную информаций об организациях и проводимых ими акциях.

Система должна решать следующие задачи:

- 1) хранить информацию об организациях и акциях, проводимых ими;
- 2) позволять просматривать всю информацию об организациях и акциях, проводимых ими;
- 3) позволять добавлять информацию об организациях и акциях, проводимых ими;
- 4) позволять удалять информацию об организациях и акциях, проводимых ими;
 - 5) позволять искать информацию об организациях и акциях;
- 6) предусмотреть проверку целостности информации, представленной в справочниках об организациях и акциях, проводимых ими, при добавлении, удалении и поиске элемента.

1.1 Модель ПО

Предметная область – справочник организаций для проекта «МҮМАР».

Профессионал предметной области – пользователи и представители организаций.

Объекты предметной области:

Объект Справочник проводимых организациями акций — информация о нем представляется в справочнике, который содержит информацию по каждой организации и проводимых акциях.

Название организации— строка, содержащая строчные и прописные символырусского и латинского алфавитов, цифры и знаки препинания.

Адрес – строка, содержащая строчные и прописные символы русского и латинского алфавитов, цифры и знаки препинания.

Название акции — строка, содержащая строчные и прописные символы русского илатинского алфавитов, цифры и знаки препинания.

На Рисунке 1.1 представлен пример справочника, который содержит информацию по каждой организации.

Общий Организации		
Название организации	Адрес	Название акции
Лотос	Некрасова,50	Скидка
Наркодиспансер	Некрасова,55	2+1
Психдиспансер	Станюковича,53	Акция
ВИЧ-центр	Борисенко,50	Подарок
Самбери	Алеутская,5	Распродажа
Кофехаус	Набережная,6	Скидка
Спортмастер	Калинина,4	Акция
Седанка-сити	Объездная,8	Гиперраспродажа
ФеяФрея	Помощь,2	3+1
ДНС	Звездная,7	Студентам
днс	Звездная,7	Скидка преподавателям

Рисунок 1.1. Справочник «Общий»

Объект **Справочник Организаций** – информация о нем представляется в справочнике, который содержит информацию по каждой организации.

Название организации— строка, содержащая строчные и прописные символырусского и латинского алфавитов, цифры и знаки препинания.

Адрес – строка, содержащая строчные и прописные символы русского и латинского алфавитов, цифры и знаки препинания.

На Рисунке 2 представлен пример справочника, который содержит информацию об организациях.

Общая Организации	
Название организации	Адрес
Кофехаус	Набережная,6
Самбери	Алеутская,5
Лотос	Некрасова,50
ВИЧ-центр	Борисенко,50
ДНС	Звездная,7
Седанка-сити	Объездная,8
Психдеспансер	Станюковаича,53
Нарекодеспансер	Некрасова,55
Спортмастер	Калинина,4
ФеяФрея	Помощь,2

Рисунок 2. Справочник «Организации»

1.2 Постановки задач обработки

Поиск в справочнике «Организации».

Входные данные: список организаций «Организации», название организации.

Выходные данные: организация с данным названием.

Связь: если «название организации» = «Организации». «название организации», то вывести «название организации» + данные о ней из справочника.

Поиск в справочнике «Общий».

Входные данные: список организаций «Общий», название организации.

Выходные данные: организация с данным названием.

Связь: если «название организации» = «Общий». «название организации» + данные о ней из справочника.

Проверка целостности при добавлении в «Общий».

Входные данные: название, адрес, акция, список «Организации», список «Обший».

Выходные данные: список акций и организаций.

Связь :При добавлении «название»+ «адрес»+ «акция» в «Общий», если «название»+ «адрес» нет в «Организации», добавить «название»+ «адрес» также в «Организации».

Проверка целостности при удалении из справочника «Организации».

Входные данные: список «Организации», список «Общий», название.

Выходные данные: список «Организаций», список «Общий»

Связь: Если «название»=«Общий». «название», то удалить «Организации». «название» и «Общий». «название».

2. Теоретическая часть

В рамках курсового проекта должны быть реализованы: хранение информации об организациях, их адресах, а также акциях, проводимых ими - а именно необходимо динамическое множество, поддерживающее операции добавления, поиска и удаления элемента. В таком случае удобно использовать хеш-таблицу и бинарное дерево поиска.

2.1 Хеш-таблица

Хеш-таблица [1] — это структура данных, позволяющая хранить пары, состоящие из ключа и значения, и выполнять следующие операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. Хеширование [1] — это определение ячейки для каждой пары ключ-значение с помощью заданной хеш-функции, принимающей ключ пары на вход и преобразовывающей его в номер ячейки таблицы.

В худшем случае поиск в хеш-таблице может занимать столько же времени, сколько поиск в списке $(\Theta(n))$, но на практике хеширование весьма эффективно. При выполнении некоторых естественных условий математическое ожидание времени поиска элемента в хеш-таблице есть O(1).

2.1.1 Хеш-функция

При наличии хеш-таблицы, которая может содержать А элементов, требуется функция, которая преобразует множество ключей L в целые числа в диапазоне [0, A-1]. Пусть элемент k должен храниться в ячейке с номером b, b $\in [0, A-1]$. Тогда хеш-функция h будет отображать множество ключей L на множество ячеек в таблице, то есть

$$h(k): L \rightarrow [0, 1, ..., A-1]$$

В данном случае элемент k хешируется в ячейку h(k), где h — хешфункция, а величина h(k) — хеш-значение ключа k. На практике обычно размер хеш-таблицы значительно меньше количества ключей [1].

Рассмотрим хеш-функцию, основанную на методе деления. Хешфункция в данном случае будет отображать ключ k на одну из m ячеек хештаблицы путём получения остатка от деления k на m, то есть

$$h(k) = k \mod m$$

В рамках курсового проекта ключом является название организации, поэтому на вход функции h(k) будут поступать только названия организаций. В свою очередь, названия организаций будем представлять в виде суммы кодов символов в таблицы ASCII.

Предположим, что размер хеш-таблицы m = 10 и нам на вход поступают названия организаций из модели предметной области (см п. 1.1). Приведем несколько примеров работы хеш-функции:

$$h(\Pi \circ T \circ C) = (1051 + 1086 + 1090 + 1086 + 1089) \mod 10 = 2$$

h(Hapkoдиспансер) = (1053+1072+1088+1082+1086+1076+1080+1089+1087+1072+1085+1089+1077+1088) mod 10 = 4

 $h(\Pi$ сихдиспансер)=(1055+1089+1080+1093+1076+1080+1089+1087+1072+1085+1089+1077+1088)mod10=0

h(BИЧ-центр)=(1042+1048+1063+45+1094+1077+1085+1090+1088)mod10= 2

 $h(Ko\varphi exayc) = (1050 + 1086 + 1092 + 1077 + 1093 + 1072 + 1091 + 1089) mod 10 = (8650) mod 10 = 0$

 $h(\Phi e \pi \Phi p e \pi) = 8$

h(Спортмастер)=8

h(Седанка-сити)=5

h(ДНС)=4

h(Самбери)=1

При использовании такой хеш-функции можно заметить, что два и более ключей были хешированы в одну и ту же ячейку. Такая ситуация называется коллизией. Существует несколько способов разрешения коллизий, например метод цепочек или метод открытой адресации. Остановимся на методе цепочек.

2.1.2 Разрешение коллизий методом цепочек

При разрешении коллизии с помощью цепочек помещаются все элементы, хешированные в одну и ту же ячейку, в связный список. Связный список — это динамическая структура данных, состоящая из узлов, каждый из которых содержит как собственно данные, так и ссылки на следующий и/или предыдущий узел списка [1]. Ячейка содержит указатель на головной элемент списка всех элементов. Если таких элементов нет, ячейка содержит значение NULL. В рамках курсового проекта рассмотрим цепочку, представляющую собой двусвязный упорядоченный по убыванию список

2.1.3 Упорядоченный по убыванию связный список

Каждый узел двусвязного списка, помимо собственных данных, содержит два поля указателей — на следующий и на предыдущий узлы. Указатель на предыдущий узел головного элемента списка содержит нулевое значение. Указатель на следующий узел хвостового элемента также содержит нулевое значение [1]. Упорядоченный по убыванию список строится путем сравнения ключей по таблице кодов символов ASCII. На рисунке представлено использование двусвязного списка как способ разрешения коллизий в хеш-таблице. На Рисунке 3 представлен пример хеш-таблицы с цепочкой в ячейке 3.

Рисунок 3. Метод цепочек

2.2 Бинарное дерево поиска

Бинарное дерево поиска — структура данных, в которой каждый узел содержит поле данных, а также указатель на левый и правый дочерние узлы (потомки). Ключ левого потомка меньше или равен ключу родителя, ключ правого потомка больше или равен ключу родителя[1].

Бинарное дерево поиска поддерживает следующие операции: поиск узла, в котором хранится пара ключ-значение, добавление в дерево пары ключ-значение и удаление узла, в котором хранится пара ключ-значение.

Поиск узла

Пусть имеется дерево Tree и задан ключ парой (KeyAdress, KeyName). Необходимо проверить, если лиузел с этим ключом в дереве Tree, и если да, то вернуть ссылку на этот узел. Поиск выполняется рекурсивно. Если дерево пусто, то поиск останавливается, ключ не найден. Иначе, ключ сравнивает со значением ключа корневого узла X:

- 1) если (KeyAdress, KeyName)= X, вернуть ссылку на корневой узел. Поиск останавливается;
- 2) если пусто, то рекурсивно искать ключ (KeyAdress, KeyName) в левом поддереве Tree;
- 3) если пусто, то рекурсивно искать ключ (KeyAdress, KeyName) в правом поддереве Tree.

Добавление элемента

Пусть имеется дерево Tree и пара (K, V),

- 1) если Tree пустое, то создать новое дерево с родительским узлом (K,V);
- 2) если узел (K,V) меньше родительского, то происходит вставка в левое поддерево;
- 3) если узел (K,V) больше или равен родительскому, то происходит вставка в правое поддерево;

Реализация подразумевает, что при добавлении повторных ключей в дерево, новый ключ идет вправо.

Удаление узла

Пусть имеется дерево Tree с корневым узлом H и задана пара (K, V). Необходимо удалить из дерева Tree пару (K, V). Алгоритм удаления элемента:

- 1) Ищем элемент в дереве, если его нет возвращаем пусто
- 2) Если узел равен Head удаляем его
- 3) Если у узла нет потомков, удаляем его, а на его место встает елинственный потомок
- 4) Если у элемента есть оба потомка, то находим максимальный слева элемент и ставим его на место удаленного элемента

Ниже представлен пример бинарного дерева поиска:

Рисунок 4. Пример бинарного дерева поиска

3 Требования к информационной системе

3.1 Функциональные требования

Информационная система для автоматизации работы со справочниками организаций и акций, должна позволять:

- 1. Хранить информацию об организациях;
- 2. Просматривать всю информацию об организации; проверки: если справочник пустой, то ничего не должно выводится.
- 3. Добавлять информацию об организации;

проверки: при добавлении повторяющегося ключа, справочник не должен изменяться; при добавлении в справочник организаций и акций организации, которой нет в справочнике организаций, она добавляется и в справочник организаций; также справочник организаций и акций могут быть добавлены дубли организаций, не может быть добавлена организация с разными адресами.

4. Удалять информацию об организации и акции при выборе;

проверки: справочник организаций и акций не должен изменяться при попытке удалить организацию, которого нет в справочнике; при удалении из справочника организаций и акций организации, которая есть в справочнике организаций, она не должна удалятся из справочника организаций; при удалении организации из справочника организаций, она должна удалиться и из справочника организаций и акций;

5. Искать информацию о мероприятии;

проверки: если организация была найдено, то должна выводиться таблица, содержащая только эти организации; если не был найден, то должна выводится пустая таблица.

3.2 Требования к данным

3.2.1 Требования к входным данным

Основываясь на анализе ПО, входными данными для работы со справочниками является:

1. текстовый файл формата .tbl с произвольным названием, каждая строка файла содержит информацию об объектах одного из справочников, либо является строкой разделителем справочников "r\". Первым записывается справочник организаций и акций: Название Адрес Акция (через пробел), далее идет разделительная строка (программа записывает ее двумя невидимыми знаками, когда при ручном вводе данных ее записываем одним невидимым знаком через Enter), далее справочник организаций: Название Адрес (через пробел).

Пример текстового файла:

Лотос Некрасова, 50 Скидка

Нарекодеспансер Некрасова,55 2+1

Психдеспансер Станюковаича,53 Акция

ВИЧ-центр Борисенко, 50 Подарок

Самбери Алеутская,5 Распродажа

Кофехаус Набережная,6 Скидка

Спортмастер Калинина, 4 Акция

Седанка-сити Объездная, 8 Гиперраспродажа

ФеяФрея Помощь,2 3+1

ДНС Звездная,7 Студентам

ДНС Звездная,7 Преподавателям

Кофехаус Набережная,6

Самбери Алеутская,5

Лотос Некрасова,50

ВИЧ-центр Борисенко,50

ДНС Звездная,7

Седанка-сити Объездная,8

Психдеспансер Станюковаича,53

Нарекодеспансер Некрасова,55

Спортмастер Калинина,4

ФеяФрея Помощь,2

2. Название организации, адрес организации и название акции (см. п. 1.1)

3.2.2 Требования к выходным данным

- 1. Текстовый файл формата .tbl с произвольным названием вида, описанного в пункте 3.2.1
 - 2. Сообщения для пользователя:

«Попытка добавить уже имеющуюся или пустую организацию!»

«[BTree] Добавлен новый элемент в дерево»

«[BTree] Был удален элемент из дерева»

«[Хэш:Организация-Адрес] Добавлен новый элемент:»

«Элемент найден, адрес»

«Кол-во сравнений: »

«Ошибочка, Уважаемый:)»

«Элемент уже находится в справочнике»

«Нет таких элементов»

«Не все строки заполнены»

«Что то тут не чисто...»

3.3 Требования к интерфейсу

Интерфейс должен быть оконным, все элементы и выводимые сообщения должны быть на русском языке.

4 Реализация

4.1 Диаграмма классов

Основываясь на анализе ПО и на функциональных требованиях к информационной системе, определены типы классов и связи между ними, которые представлены в виде UML-диаграммы классов на Рисунке 5.

Рисунок 5 UML-диаграмма классов

4.2 Описание классов

Класс LocalInformationHashTable–класс, описывающий хэш-таблицу с модульной хеш-функцией и методом цепочек по убыванию.

Поля:

- _Size размер хеш-таблицы
- OriginFrame форма, создавшая экземпляр
- Table таблица

Свойства:

Size - размер

Метолы:

- ➤ LocalInformationHashTable конструктор.
- ▶ hashFunc(info) Хэш-функция. Формальные параметры: info ключ (название организации). Входные данные: ключ. Выходные данные: ключ.

Предположим, что размер массива 10 и на вход поступает запись, содержащая название организации из анализа предметной области (см. п. 1).

```
hashFunc (Лотос) = 2
```

hashFunc (Наркодеспансер) = 4

hashFunc (Психдеспансер) = 0

hashFunc (ВИЧ-центр = 2

hashFunc (ФеяФрея)= 8

hashFunc (Спортмастер) =8

hashFunc (Седанка-сити) =5

hashFunc (ДНС) =4

hashFunc (Самбери) =1

hashFunc (Ko ϕ exayc) =0

➤ Add(info) — функция добавления информации в хэш-таблицу. Формальные параметры: информация для добавления. Входные данные: информация для добавления, хэш-таблица. Выходные данные: true/false в

случае удачного/неудачного добавления соответственно.

- ➤ FindByAdress(Adress) функция поиск в кеш-таблице по адресу. Формальные параметры: ключ адрес организации. Входные данные: хештаблица, ключ. Выходные данные: информацию об узле.
- ➤ Find(info) функция поиска элемента в хэш-таблице. Формальные параметры: информация равная информации искомого элемента. Входные данные: информация равная информации искомого элемента, хэш-таблица. Выходные данные: искомый элемент либо null;
- Ремоче(info) функция удаления информации из хэш-таблицы. Формальные параметры: информация равная информации удаляемого элемента. Входные данные: информация равная информации удаляемого элемента, хэш-таблица. Выходные данные: true/false в случае удачного/неудачного удаления соответственно.
- ➤ ClearHashTable() очистка хеш-таблицы. Формальные параметры: нет.Входные данные: хеш-таблица. Выходные данные: пустая хеш-таблица.

Вложенные типы:

Класс TwoLinkedList – класс, описывающий узел хеш-таблицы методом цепочек.

Поля:

- ➤ Head первый узел.
- ➤ Tail последний узел

Метолы:

- ➤ Clear() очистка списка. Формальные параметры: нет. Входные данные: нет. Выходные данные: нет.
- ▶ IsEmpty() проверка на пустоту. Формальные параметры: інет.
 Входные данные: нет. Выходные данные: нет.
- ➤ Add(info) добавление элемента по убыванию. Формальные параметры: info —элемент. Входные данные: элемент, список. Выходные данные: нет.

- ▶ Remove(info) удалить элемент из списка. Формальные параметры: info —элемент. Входные данные: элемент, список. Выходные данные: элемент.
- ➤ FindElemInfo(OrganizationName) поиск по названию организации. Формальные параметры: OrganizationName —название организации (одно из полей элемента). Входные данные: элемент список. Выходные данные: нет.
- ➢ FindElemInfo(info) поиск по всей информации. Формальные параметры: info —элемент. Входные данные: элемент, список. Выходные данные: элемент.
- ➤ FindElem(info) поиск элемента в списке. Формальные параметры: info элемент. Входные данные: ключ, список. Выходные данные: элемент.

Вложенные типы:

Класс ListElem – класс элемента в списке.

Свойства:

- Prev указатель на предыдущий узел.
- ➤ Info информация об узле.
- ▶ Next указатель на следующий узел.

Класс ВТree – класс, описывающий бинарное дерево поиска.

Поля:

- ➤ Head корень дерева.
- OriginFrame окно, из которого создаётся дерево.

Метолы:

- ➤ NewElem(info)— добавление нового элемента в дерево. Формальные параметры: info —данные нового элемента. Входные данные: корень дерева, данные нового элемента. Выходные данные: true/false в случае удачи/неудачи соответственно.
 - ➤ ClearTree() очистка дерева. Формальные параметры: нет.

Входные данные: дерево. Выходные данные: нет.

- ▶ FindElem(elem, info) поиск элемента в дереве. Формальные параметры: elem корень дерева, info искомые данные. Входные данные: корень дерева, исходные данные, дерево. Выходные данные: найденный элемент либо null.
- ➤ FindElemByAdress (elem, Adress) поиск элемента в дереве по адресу. Формальные параметры: elem корень дерева, Adress адрес искомого элемента. Входные данные: корень дерева, логин искомого элемента, дерево. Выходные данные: найденный элемент либо null.
- ➤ FindElemByOrganizationName(elem,OrganizationName) поиск элемента в дереве по названию организации\. Формальные параметры: elem корень дерева, OrganizationName название искомого элемента. Входные данные: корень дерева, название искомого элемента, дерево. Выходные данные: найденный элемент либо null.
- ➤ FindMaxElem(elem) поиск максимального элемента в дереве.
 Формальные параметры: elem корень дерева/поддерева. Входные данные: корень дерева/поддерева, дерево. Выходные данные: найденный элемент либо null
- ▶ FindMinElem (elem) поиск минимального элемента в дереве.
 Формальные параметры: elem корень дерева/поддерева. Входные данные: корень дерева/поддерева, дерево. Выходные данные: найденный элемент либо null
- ➤ DeleteElem (info) удаление элемента из дерева. Если список значений оказывается пустым, удаляется сам узел. Формальные параметры: информация равная информации удаляемого элемента. Входные данные: информация равная информации удаляемого элемента, дерева. Выходные данные: true/false в случае удачи/неудачи соответственно.
- ➤ DeleteElemSubfunc(elem)— метод (вызывается в методе DeleteElem) удаляет элемент, у которого нет детей или ребенок только один, и корректно меняет связи. Формальные параметры: ударяемый элемент.

Входные данные: корень дерева, удаляемый элемент. Выходные данные: нет.

- ➤ GetParent(child) поиск родителя элемента-наследника(если таковой есть) Формальные параметры элемент child. Входные данные: корень дерева, элемент child. Выходные данные значения элементов дерева.
- ▶ PrintTree() получение информации о дереве. Формальные параметры: нет. Входные данные: дерево, ключ ,значение узла. Выходные данные: строка с информацией.
- ргint_Tree_Hidden(TreeElem p, int level, ref string result) внутренняя подфункция для получения информации о дереве. Формальные параметры: р − текущий элемент, level − глубина, result − ссылка строки для вывода. Входные данные: дерево, р − текущий элемент, level − глубина, result − ссылка строки для вывода. Выходные данные: нет.
- рrint_NLR(TreeElem Head) Прямой обход(кто первый тот и выводится). Формальные параметры: корень дерева. Входные данные: корень дерева. Выходные данные: значение элементов дерева.

Вложенные типы:

Класс TreeElem - класс, описывающий структуру элемента.

Поля:

- ▶ Info информация элемента.
- ▶ Left ссылка на левый узел.
- > Right ссылка на правый узел.

4.3 Описание интерфейса

На Рисунке 6 представлено главное окно программы. В верхней части окна располагаются кнопки «Загрузить» - для заполнений справочников из файла, и «Сохранить» - для сохранения текущего справочника в файл и «Открыть дебаг-меню» - для открытия окна отладки.

Рисунок 6. Главное окно программы

В приложении можно переключаться между справочниками, используя вкладки «Общий» и «Организации» в верхней части окна (Рисунок 7). Кнопки в нижней части окна «Поиск», «Добавить» и «Удалить» работают с выбранным с помощью вкладок справочником.

Рисунок 7. Переключение между справочниками

Рассмотрим работу кнопок «Поиск», «Добавить», «Удалить» в «Организации».

При нажатии кнопки «Найти» откроется диалоговое окно (Рисунок 8), в котором пользователю выбрать параметры поиска справочнике.

Рисунок 8. Окно для выбора параметра поиска

При выборе варианта «Поиск по названию организации» и нажатии кнопки «Вот это» в диалоговом окне программа выведет окно для ввода названия организации (Рисунок 9).

Рисунок 9. Поиск организации по названию в справочнике «Организации»

После ввода названия и нажатия кнопки «Поиск», останутся только те записи

в справочнике, которые удовлетворяют условиям поиска (Рисунок 10).

Рисунок 10. Результаты поиска по названию

После закрытия диалогового окна справочник не вернётся в своё первоначальное состояние. Для этого необходимо выбрать в параметрах поиска «Сбросить поисковик» и нажать кнопку «Вот это» (Рисунок 11)

Рисунок 11. Сброс фильтра поиска по названию организации

Кнопка «Добавить» откроется диалоговое окно (Рисунок 12), в котором пользователю необходимо ввести название и адрес организации, которую необходимо добавить в справочник.

!!! Меню	×
Добавить новую запись	
Организация:	
Адрес:	
Добавить Отмена	

Рисунок 12. Добавление организаций в справочник «Организации»

Если данные введены корректно (нет дублей), то после нажатия кнопки «Добавить» данные добавятся в справочник.

При нажатии кнопки «Удалить» откроется диалоговое окно, в котором пользователю необходимо ввести название и адрес организации, которую надо удалить (Рисунок 13).

🖳 Меню	×
Удалить запи	СР
Организация:	
Адрес:	
Удалить	Отмена

Рисунок 13. Удаление в справочнике «Организации»

При удалении организации из справочника «Организации», она удаляется и из справочника «Общий».

Рассмотрим работу кнопок «Поиск», «Добавить» и «Удалить» в справочнике «Общий».

Кнопка «Поиск» дублируется из справочника «Организации».

При нажатии кнопки «Удалить» откроется диалоговое окно, в котором пользователю необходимо ввести акцию, название и адрес организации, которую надо удалить (Рисунок 14).

<u></u> Меню		×
Удали	ть запись	
Название орган	низации:	~
Адресс:		~
Акция:		~
	Удалить	

Рисунок 14. Удаление в справочнике «Общий»

При удалении организации из справочника «Общий», она не удаляется из справочника «Организации».

При нажатии кнопки «Добавить» откроется диалоговое окно (Рисунок 15), в котором пользователю необходимо ввести данные об организации (название, адрес и проводимую ею акцию)

🖳 Меню				×
Добав	ить н	овую запись		
Название орган	низации:		V	2
Адресс:			V	-
Акция:				<i>·</i>
		Добавить		

Рисунок 15. Добавление организации в справочнике «Общий».

При добавлении организации в справочнике «Общий», она автоматически добавляется в справочник «Организации». При нажатии кнопки «Открыть дебаг-меню» в верхней части окна, появляется окно откладки (Рисунок 16), в котором представлена техническая информация, которая обновляется автоматически.

Рисунок 16. Окно отладки

При некорректно вводе данных для пользователя выводится окно с сообщением об ошибке (Рисунок 17), текст сообщения меняется в зависимости от формы и особенностей ввода.

Рисунок 17.Окно ошибок

4.4 Тестирование

Тестирование проводилось методом черного ящика, результаты которого представлены в Таблицах 1, 2.

Таблица 1. Тестирование работы со справочником организаций

		Входн	ные данные	Вых	Выходные данные	
Описание тестовой ситуации		Хеш таблица с методом цепочек	Название организации, Адрес	Хеш-таблица с методом цепочек	Результат	
		_				
1	Добавление корректных данных		ДВФУ Аякс,10	ДВФУ Аякс,10	Данные добавлены	
2	Добавление		ДВФУ		Данные не добавлены	
	некорректных данных	ДВФУ Аякс,10		ДВФУ Аякс,10	Данные не добавлены	
3	Проверка уникальности ключа	ДВФУ Аякс,10	ДВФУ Аякс,10	ДВФУ Аякс,10	Запись не добавлена	
4	Добавление при коллизии	ДВФУ Аякс,10	Банк Тихая,5	ДВФУ Аякс,10 && Банк Тихая,5	Данные добавлены	
5	Добавление не уникального ключа	ДВФУ Аякс,10	ДВФУ Аякс,16	ДВФУ Аякс,10	Данные не добавлены	
			Поиск		_	
6	Запись не существует		ДВФУ		Пустой справочник «Организации»	
7	Запись существует	ДВФУ Аякс,10	ДВФУ	ДВФУ Аякс,10	ДВФУ Аякс,10 в справочнике «Организации»	
8	Поиск при коллизии	ДВФУ Аякс,10 && Банк Тихая,5	ДВФУ	ДВФУ Аякс,10&& Банк Тихая,5	ДВФУ Аякс,10 всправочнике «Организации»	
			Удаление		_	
9	Запись не существует	ДВФУ Аякс,10	Банк Тихая,5	ДВФУ Аякс,10	Данные не удалены	
10	Запись существует	Хеш-таблица: ДВФУ Аякс,10 «Общий»: ДВФУ Аякс,10 Скидка	ДВФУ Аякс,10		Данные удалены из справочников «Организации» и «Общий»	
11	Удаление при коллизии	ДВФУ Аякс,10 && Банк Тихая,5	ДВФУ Аякс,10	Банк Тихая,5	Данные удалены	

Таблица 2. Тестирование работы с общим справочником

	Входн	Входные данные		анные	
Описание тестовой	Бинарное	Название	Енцариоз		
ситуации	дерево	организации,	Бинарное деревопоиска	Результат	
	поиска	адрес и акция			
Добавление					

1	Добавление ко данных при суш связанной з	ествовании		ДВФУ Аякс,10 2+1	ДВФУ		Данные добавлены + занесены в справочник Организации »
2	Добавление ко данных при суш связанной з	ествовании	ДВФУ Аякс,10 2+1		ДВФУ Аякс, 2+1	,10	Данные не добавлены
3	Добавление при наличии ключа вдереве		ДВФУ	ДВФУ Аякс,10 2+1	ДВФУ->ДВО (Если акция повторяласт ДВФУ(если акция	не ь) и	Дубль добавлен вправо Данные не добавлены
4	Добавление при наличии ключа вдереве		ДВФУ	Банк Тихая,5 Акция	повторялась) ДВФУ->Банк, если Банк больше Банк<-ДВФУ, если Банк меньше		Данные добавлены
Поиск							
5	Запись не суг	цествует		ДВФУ			Пустой справочник «Общий»
6	Запись существует		ДВФУ	ДВФУ	ДВФУ		Название организации, дрес и акция «Общий»
7	Существует н		ДВФУ ДВФУ	ДВФУ	ДВФУ ДВФУ		Две рганизации с адресом, названием и акцией в справочнике «Общий»
				Удаление		•	
8	Запись не существует		ДВФУ А	Аякс,10 2+1		«O	равочник бщий» не меняется
9	Запись существует	ДВФУ Аякс,10 2+1	ДВФУ А	Аякс,10 2+1		Данн	ые удалены
10	Некорректны е входные данные	ДВФУ Аякс,10 2+1			ДВФУ Аякс,10 2+1	Данные не удалены	
11	Замена в дереве	ООН<- ДВФУ- >ШКОЛА	Д	ВФУ	ООН- >ШКОЛА	При удалении у меняется на потомка или максимальны слева	

Заключение

Целью курсового проекта было: разработать информационную систему для автоматизации работы со справочниками организаций.

Цель достигнута. Для достижения поставленной цели были выполнены следующие задачи:

- 1) проведён анализ предметной области проекта «МҮМАР» и построена её модель,
 - 2) изучены теоретические основы методов построениясправочников,
 - 3) определены требования к информационной системе,
 - 4) информационная система была реализована и протестирована,
 - а. изучен язык разработки С# версии 9.0;
 - b. изучен .NET Framework 4.8.04084;
- с. во время разработки Microsoft Visual Studio Community 2019 была использована в качестве среды выполнения

Список литературы

- 1) Томас X. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, 3-е изд.: Пер. с англ. М.: ООО «И.Д.Вильямс», 2013. 1328 с.: ил. парал. тит. англ.
- 2) Роберт Седжвик. Фундаментальные алгоритмы на C++. Анализ/Структуры данных/Сортировка/Поиск: Пер. с англ К.: Издательство «ДиаСофт», 2001.-688 с.