HW_Week10_108020033

Che-Wei, Chang

2023-04-19 helped by 108020024, 108020031

Question 1)

We will use the interactive_regression() function from CompStatsLib again – Windows users please make sure your desktop scaling is set to 100% and RStudio zoom is 100%; alternatively, run R from the Windows Command Prompt.

```
# Import the library
library(compstatslib)
```

To answer the questions below, understand each of these four scenarios by simulating them:

Scenario 1: Consider a very narrowly dispersed set of points that have a negative or positive steep slope

knitr::include_graphics("Plot_1.png")

Scenario 2: Consider a widely dispersed set of points that have a negative or positive steep slope

knitr::include_graphics("Plot_2.png")

Scenario 3: Consider a very narrowly dispersed set of points that have a negative or positive shallow slope

knitr::include_graphics("Plot_3.png")

Scenario 4: Consider a widely dispersed set of points that have a negative or positive shallow slope

knitr::include_graphics("Plot_4.png")

a. Comparing scenarios 1 and 2, which do we expect to have a stronger R²?

```
# By two plots of scenario 1 and scenario 2, we can see that scenario 1 has a stronger R^2 # than scenario 2. This is because in scenario 1, the data points are very narrowly dispersed, # meaning there is less variation in the data and a stronger linear relationship between the # x and y variables. In contrast, scenario 2 has widely dispersed data points, meaning there # is more variation in the data and a weaker linear relationship between the x and y variables.
```

b. Comparing scenarios 3 and 4, which do we expect to have a stronger R²?

```
# By two plots of scenario 3 and scenario 4, we can see that scenario 3 has a stronger R^2
# than scenario 4. This is because in scenario 3, the data points are very narrowly dispersed,
# meaning there is less variation in the data and a stronger linear relationship between the
# x and y variables. In contrast, scenario 4 has widely dispersed data points, meaning there
# is more variation in the data and a weaker linear relationship between the x and y variables.
```

c. Comparing scenarios 1 and 2, which do we expect has bigger/smaller SSE, SSR, and SST? (intuitively)

```
# In scenarios 1 and 2, we expect scenario 1 to have smaller SSE, SSR, and SST.
#(i.e. scenario 2 has bigger SSE, SSR and SST.) This is because in scenario 1,
# the data points are more tightly clustered around the regression line, leading
# to a smaller error term and a stronger linear relationship. In contrast,
# in scenario 2, the data points are spread out, leading to a larger error
# term and a weaker linear relationship.
```

d. Comparing scenarios 3 and 4, which do we expect has bigger/smaller SSE, SSR, and SST? (intuitively)

```
# In scenarios 3 and 4, we expect scenario 3 to have smaller SSE, SSR, and SST.

# (i.e. scenario 4 has bigger SSE, SSR, and SST.) This is because in scenario 3,

# the data points are more tightly clustered around the regression line, leading

# to a smaller error term and a stronger linear relationship. In contrast,

# in scenario 4, the data points are spread out, leading to a larger error

# term and a weaker linear relationship.
```

Question 2)

Let's analyze the programmer_salaries.txt dataset we saw in class. Read the file using read.csv("programmer_salaries.txt", sep=" $^{"}$ ") because the columns are separated by tabs ().

```
# Read the data
df <- read.csv("programmer_salaries.txt", sep = "\t")</pre>
```

a. Use the lm() function to estimate the regression model Salary \sim Experience + Score + Degree Show the beta coefficients, R-square, and the first 5 values of y (fitted.values) and (residuals)

```
# Fit the regression model
model <- lm(Salary ~Experience + Score + Degree, df)
# extract the beta coefficients and R-square</pre>
```

```
coefficients <- coef(model)</pre>
R_square <- summary(model)$r.squared</pre>
# extract the first 5 values of y hat and residuals
y_hat <- head(fitted(model), 5)</pre>
res <- head(resid(model), 5)</pre>
# print the result
cat("beta: ", coefficients, "\n")
## beta: 7.944849 1.147582 0.196937 2.280424
cat("R-square: ", R_square, "\n")
## R-square: 0.8467961
cat("first 5 values of y hat: ", y_hat, "\n")
## first 5 values of y hat: 27.89626 37.95204 26.02901 32.11201 36.34251
cat("residuals: ", res, "\n")
## residuals: -3.896261 5.047957 -2.329011 2.187986 -0.5425072
  b. Use only linear algebra and the geometric view of regression to estimate the regression yourself:
       i. Create an X matrix that has a first column of 1s followed by columns of the independent variables
          (only show the code)
# Create the X matrix
X <- cbind(rep(1, nrow(df)), df$Experience, df$Score, df$Degree)</pre>
  ii. Create a y vector with the Salary values (only show the code)
# put the data into y variable
y <- df$Salary
# Create y vector
y_vec <- as.matrix(y)</pre>
 iii. Compute the beta_hat vector of estimated regression coefficients (show the code and values)
# Compute beta hat
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y_vec
beta_hat
```

[,1]

##

iv. Compute a y_hat vector of estimated y values, and a res vector of residuals (show the code and the first 5 values of y_hat and res)

```
\# Compute y_hat and res
y_hat <- X %*% beta_hat</pre>
res <- y - y_hat
# Show the result
head(y_hat, 5)
##
             [,1]
## [1,] 27.89626
## [2,] 37.95204
## [3,] 26.02901
## [4,] 32.11201
## [5,] 36.34251
head(res, 5)
               [,1]
##
## [1,] -3.8962605
## [2,] 5.0479568
## [3,] -2.3290112
## [4,] 2.1879860
## [5,] -0.5425072
  v. Using only the results from (i) - (iv), compute SSR, SSE and SST (show the code and values)
# Calculate SSR, SSE, SST
SSR <- sum((y_hat - mean(y))^2)</pre>
SSE <- sum(res<sup>2</sup>)
SST \leftarrow sum((y - mean(y))^2)
cat("SSR: ", SSR, "\n")
## SSR: 507.896
cat("SSE: ", SSE, "\n")
## SSE: 91.88949
cat("SST: ", SST, "\n")
## SST: 599.7855
```

- c. Compute R-square for in two ways, and confirm you get the same results (show code and values):
 - i. Use any combination of SSR, SSE, and SST

```
# Calculate R square using SSR, SST
R_square_ssr_sst <- SSR / SST</pre>
cat("Using SSR, SST\n")
## Using SSR, SST
cat("R square: ", R_square_ssr_sst, "\n")
## R square: 0.8467961
# Calculate R square using SSE, SST
R_square_sse_sst <- 1 - (SSE/SST)</pre>
cat("Using SSE, SST\n")
## Using SSE, SST
cat("R square: ", R_square_sse_sst, "\n")
## R square: 0.8467961
  ii. Use the squared correlation of vectors y and y
# Compute R square using squared correlation of y and y_hat
R_square_corr <- cor(y, y_hat)^2</pre>
cat("R square: ", R_square_corr)
## R square: 0.8467961
```

Question 3)

We're going to take a look back at the early heady days of global car manufacturing, when American, Japanese, and European cars competed to rule the world. Take a look at the data set in file auto-data.txt. We are interested in explaining what kind of cars have higher fuel efficiency (mpg).

Note that the data has missing values ('?' in data set), and lacks a header row with variable names:

- a. Let's first try exploring this data and problem:
 - i. Visualize the data as you wish (report only relevant/interesting plots)

Histogram of mpg

hist(auto\$cylinders, breaks = 20, main = "Histogram of cylinders")

Histogram of cylinders

Histogram of displacement

hist(auto\$horsepower, breaks = 20, main = "Histogram of horsepower")

Histogram of horsepower

Histogram of weight

hist(auto\$acceleration, breaks = 20, main = "Histogram of acceleration")

Histogram of acceleration

Histogram of model_year

hist(as.numeric(auto\$origin), breaks = 20, main = "Histogram of origin")

Histogram of origin

ii. Report a correlation table of all variables, rounding to two decimal places (in the cor() function, set use="pairwise.complete.obs" to handle missing values)

```
# Remove the car_name col since it is not numeric
new_auto <- auto[,-9]</pre>
round(cor(new_auto, use = "pairwise.complete.obs"), 2)
##
                 mpg cylinders displacement horsepower weight acceleration
## mpg
                 1.00
                          -0.78
                                       -0.80
                                                  -0.78
                                                         -0.83
                                                                       0.42
## cylinders
                -0.78
                           1.00
                                        0.95
                                                   0.84
                                                          0.90
                                                                      -0.51
## displacement -0.80
                           0.95
                                        1.00
                                                   0.90
                                                          0.93
                                                                      -0.54
## horsepower
                -0.78
                           0.84
                                        0.90
                                                   1.00
                                                          0.86
                                                                      -0.69
## weight
                -0.83
                          0.90
                                        0.93
                                                   0.86
                                                         1.00
                                                                      -0.42
                                       -0.54
## acceleration 0.42
                          -0.51
                                                  -0.69 -0.42
                                                                       1.00
## model_year
                0.58
                          -0.35
                                       -0.37
                                                  -0.42 -0.31
                                                                       0.29
## origin
                0.56
                          -0.56
                                       -0.61
                                                  -0.46 -0.58
                                                                       0.21
##
                model_year origin
## mpg
                     0.58 0.56
## cylinders
                     -0.35 -0.56
## displacement
                     -0.37 -0.61
## horsepower
                     -0.42 -0.46
## weight
                     -0.31 -0.58
## acceleration
                      0.29
                             0.21
## model_year
                      1.00
                             0.18
## origin
                      0.18
                             1.00
```

iii. From the visualizations and correlations, which variables appear to relate to mpg?

```
\# From the table, we can see that cylinders, displacement, horsepower, weight are all negatively \# related to mpg.Besides, acceleration, model\_year, origin are all positively related to mpg.
```

iv. Which relationships might not be linear? (don't worry about linearity for rest of this HW)

```
# import the library
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
    method from
##
     +.gg
            ggplot2
# Show the plot
ggpairs(new_auto)
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
```

```
## Warning: Removed 6 rows containing missing values or values outside the scale range
## ('geom_point()').
## Removed 6 rows containing missing values or values outside the scale range
## ('geom_point()').
## Removed 6 rows containing missing values or values outside the scale range
## ('geom point()').
## Warning: Removed 6 rows containing non-finite outside the scale range
## ('stat density()').
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 6 rows containing missing values
## Warning: Removed 6 rows containing missing values or values outside the scale range
## ('geom_point()').
## Removed 6 rows containing missing values or values outside the scale range
## ('geom_point()').
## Removed 6 rows containing missing values or values outside the scale range
## ('geom_point()').
## Removed 6 rows containing missing values or values outside the scale range
## ('geom_point()').
```


This table shows that which pairs are linear and which pairs are not linear.

From the table we create above, we choose some pairs that are not linear to show. plot(auto\$mpg, auto\$acceleration, main = "mpg v.s. acceleration")

mpg v.s. acceleration

plot(auto\$mpg, auto\$model_year, main = "mpg v.s. model_year")

mpg v.s. model_year

displacement v.s. model_year

plot(auto\$horsepower, auto\$model_year, main = "horsepower v.s. model_year")

horsepower v.s. model_year

weight v.s. acceleration

plot(auto\$weight, auto\$model_year, main = "weight v.s. model_year")

weight v.s. model_year

acceleration v.s model year

v. Are there any pairs of independent variables that are highly correlated (r > 0.7)?

```
# cylinder and displacement (r = 0.95)

# cylinder and horsepower (r = 0.84)

# cylinder and weight (r = 0.90)

# displacement and horsepower (r = 0.90)

# displacement and weight (r = 0.93)

# horsepower and weight (r = 0.86)
```

- b. Let's create a linear regression model where mpg is dependent upon all other suitable variables (Note: origin is categorical with three levels, so use factor(origin) in lm(...) to split it into two dummy variables)
 - i. Which independent variables have a 'significant' relationship with mpg at 1% significance?

```
## displacement 0.023978644 0.0076532690 3.133124 1.862685e-03

## weight -0.006710384 0.0006551331 -10.242779 6.375633e-22

## model_year 0.777026939 0.0517840867 15.005130 2.332943e-40

## origin1 -2.853228228 0.5527363020 -5.162006 3.933208e-07
```

ii. Looking at the coefficients, is it possible to determine which independent variables are the most effective at increasing mpg? If so, which ones, and if not, why not? (hint: units!)

```
# No , because different variables have different scale of units, it is not effective # that we use these beta estimates that we haven't standardized to determine which # independent variables are the most effective at increasing mpg.
```

- c. Let's try to resolve some of the issues with our regression model above.
 - i. Create fully standardized regression results: are these slopes easier to compare? (note: consider if you should standardize origin)

```
# Since all features are all standardized, these slopes are easier to compare.
auto_std <- data.frame(scale(new_auto))
fit_std <- lm(scale(mpg) ~ ., data = auto_std)
summary(fit_std)</pre>
```

```
##
## lm(formula = scale(mpg) ~ ., data = auto_std)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
## -1.22701 -0.27591 -0.01496 0.23912 1.67099
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               -0.001748
                            0.021520 -0.081 0.93532
## cylinders
                -0.107374
                            0.070356
                                     -1.526
                                              0.12780
## displacement 0.265420
                            0.100256
                                       2.647
                                             0.00844 **
## horsepower
                -0.083479
                            0.067896
                                      -1.230
                                              0.21963
## weight
                                      -9.929
                                              < 2e-16 ***
                -0.701446
                            0.070648
## acceleration 0.028429
                            0.034875
                                       0.815
                                              0.41548
## model_year
                 0.355179
                            0.024115 14.729 < 2e-16 ***
## origin
                 0.146347
                            0.028542
                                       5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.4258 on 384 degrees of freedom
     (6 observations deleted due to missingness)
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

ii. Regress mpg over each non-significant independent variable, individually. Which ones become significant when we regress mpg over them individually?

```
# Extract the list of non-significant independent variables
non_sig_vars <- names(which(summary(fit_std)$coefficients[, 4] >= 0.05))[-1]
# Loop over each non-significant variable and fit a regression model
for (var in non_sig_vars) {
  formula_str <- paste("scale(mpg) ~", var)</pre>
  cat("Variable:", var, "\n")
  model <- lm(formula_str, data = auto_std)</pre>
  print(summary(model))
  cat("\n")
}
## Variable: cylinders
## Call:
## lm(formula = formula_str, data = auto_std)
## Residuals:
##
       Min
                  1Q
                     Median
                                    3Q
                                            Max
## -1.82455 -0.43297 -0.08288 0.32674 2.29046
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.483e-15 3.169e-02
                                        0.00
## cylinders
             -7.754e-01 3.173e-02 -24.43
                                               <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.6323 on 396 degrees of freedom
## Multiple R-squared: 0.6012, Adjusted R-squared: 0.6002
## F-statistic: 597.1 on 1 and 396 DF, p-value: < 2.2e-16
##
##
## Variable: horsepower
## Call:
## lm(formula = formula_str, data = auto_std)
##
## Residuals:
##
                  1Q
                      Median
                                    3Q
## -1.73632 -0.41699 -0.04395 0.35351 2.16531
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.008784
                           0.031701 -0.277
                                               0.782
                                              <2e-16 ***
## horsepower -0.777334
                           0.031742 - 24.489
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6277 on 390 degrees of freedom
     (6 observations deleted due to missingness)
```

```
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
##
##
## Variable: acceleration
##
## lm(formula = formula_str, data = auto_std)
##
## Residuals:
      Min
               1Q Median
                               ЗQ
                                      Max
## -2.3039 -0.7210 -0.1589 0.6087 2.9672
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.025e-17 4.554e-02
                                     0.000
## acceleration 4.203e-01 4.560e-02
                                     9.217
                                              <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9085 on 396 degrees of freedom
## Multiple R-squared: 0.1766, Adjusted R-squared: 0.1746
## F-statistic: 84.96 on 1 and 396 DF, p-value: < 2.2e-16
```

iii. Plot the distribution of the residuals: are they normally distributed and centered around zero? (get the residuals of a fitted linear model, e.g. regr <- lm(...), using regr\$residuals

```
regr <- lm(mpg ~ . + factor(origin), data = auto_std)
hist(regr$residuals, breaks = 20, main = "Histogram of residuals")</pre>
```

Histogram of residuals

By the plot, we think that they are normally distributed and centered around zero. # But I think that we use normality test to check whether the data is normally distributed # is better than just look the plot.