

Ayudantía 11

Cálculo 2

Problema 1

Calcule la derivada direccional de:

- (a) la función $f(x,y) = e^x \sin(y)$ en el punto $(0,\pi/3)$ en la dirección del vector $\vec{v} = (-6,8)$.
- (b) la función $f(x,y) = x^3y^4 + x^4y^3$ en el punto (1,1) en la dirección del ángulo $\theta = \pi/6$.

Problema 2

Sea $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ una función con derivadas parciales continuas. Consideremos los puntos

La derivada direccional de f en A en la dirección del vector \overrightarrow{AB} es 3 y la derivada direccional de f en A en la dirección del vector \overrightarrow{AC} es 26. Determine la derivada direccional de f en A en la dirección del vector \overrightarrow{AD} .

Problema 3

Determine y clasifique los puntos críticos de la función $f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$

Problema 4

Determine el máximo y minimo absoluto de f(x,y) = 3 + xy - x - y sobre la región triangular cerrada con vértices en (0,0), (1,0) y (0,1).

Problema 5**

Considere la función $f:\mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} 0, & y \le 0 \text{ o } y \ge x^2; \\ \left(\frac{y}{x^2}(1 - \frac{y}{x^2})\right)^2, & 0 < y < x^2; \\ 0, & y \ge x^2. \end{cases}$$

Pruebe que

- a) f es continua en todo punto $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$
- b) Todas las derivadas direccionales de f en (0,0) existen y son iguales a 0.
- c) f no es diferenciable en (0,0).