CSE 431/531: Algorithm Analysis and Design (Fall 2024) Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Announcements: Quiz 5

- Posted on Ublearns
- Should take < 30 minutes, 2 attempts
- Due Mon 23 Sep @ 11:59PM

Outline

- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- Summary
- 4 Exercise Problems

A Better Solution for Example

Input: k: the size of cache n: number of pages We use [n] for $\{1,2,3,\cdots,n\}$.

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means

evicting empty page)

```
Input: k: the size of cache n: number of pages We use [n] for \{1,2,3,\cdots,n\}. \rho_1,\rho_2,\rho_3,\cdots,\rho_T\in[n]: sequence of requests Output: i_1,i_2,i_3,\cdots,i_T\in\{\text{hit},\text{empty}\}\cup[n]: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)
```

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Input: k: the size of cache

We use [n] for $\{1, 2, 3, \dots, n\}$.

n: number of pages

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit, empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means

evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

Input: k: the size of cache

We use [n] for $\{1,2,3,\cdots,n\}$.

n: number of pages

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means

evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the "competitive ratio" of online algorithms

• FIFO(First-In-First-Out): Evict the first-in page in cache

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested
- LIFO (Last In First Out): Evict the last-in page in cache

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested
- LIFO (Last In First Out): Evict the last-in page in cache
- All the above algorithms are not optimum!
- Indeed all the algorithms are "online", i.e, the decisions can be made without knowing future requests. Online algorithms can not be optimum.

FIFO requests

FIFO requests

FIFO

requests

1

2

3

4

1

FIFO

x 1 2 3

requests

1

2

3

4

1

FIFO

x 1

x 1 2

x 1 2 3

★ 4 2 3

Optimum Offline Caching

Furthest-in-Future (FF)

- Algorithm: every time, evict the page that is not requested until furthest in the future, if we need to evict one.
- The algorithm is **not** an online algorithm, since the decision at a step depends on the request sequence in the future.

Furthest-in-Future (FF)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Offline Caching Problem

Input: k: the size of cache

n: number of pages

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \cdots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$

- empty stands for an empty page
- "hit" means evicting no pages

Offline Caching Problem

```
Input: k: the size of cache n: number of pages  \rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n] \text{: sequence of requests}   p_1, p_2, \cdots, p_k \in \{\text{empty}\} \cup [n] \text{: initial set of pages in cache}
```

- **Output:** $i_1, i_2, i_3, \dots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$
 - empty stands for an empty page
 - "hit" means evicting no pages

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1.

4 ? ? ? 1 2 ? 3

 $S: \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

- $oldsymbol{0}$ S: any optimum solution
- p^* : page in cache not requested until furthest in the future.
 - In the example, $p^* = 3$.

- p^* : page in cache not requested until furthest in the future.
 - In the example, $p^* = 3$.
- **3** Assume S evicts some $p' \neq p^*$ at time 1; otherwise done.
 - In the example, p'=2.

- $oldsymbol{0}$ S: any optimum solution
- ② p^* : page in cache not requested until furthest in the future.
 - In the example, $p^* = 3$.
- **3** Assume S evicts some $p' \neq p^*$ at time 1; otherwise done.
 - In the example, p'=2.

Proof.		

• Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.

• Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$.
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- **1** From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$.
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- **1** From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- From now on, S' will "copy" S.

- Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1.
- **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3).
- From now on, S' will "copy" S.

• If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on.

- ① If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on.
- **3** Assume S did not evict $p^*(=3)$ before we see p'(=2).

- ① If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on.
- **3** Assume S did not evict $p^*(=3)$ before we see p'(=2).

• If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise.

1 If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise.

• If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise.

• If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise.

- **1** If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise.
- $oldsymbol{0}$ So far, S' has 1 less page-miss than S does.

- If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise.
- \odot So far, S' has 1 less page-miss than S does.
- f 0 The status of S' and that of S only differ by 1 page.

 $\ensuremath{\mathbf{@}}$ We can then guarantee that S' make at most the same number of page-misses as S does.

- We can then guarantee that S' make at most the same number of page-misses as S does.
 - Idea: if S has a page-hit and S' has a page-miss, we use the opportunity to make the status of S' the same as that of S.

 \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1.

 \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1.

 \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1.

Theorem The furthest-in-future strategy is optimum.

```
1: for t \leftarrow 1 to T do
2: if \rho_t is in cache then do nothing
3: else if there is an empty page in cache then
4: evict the empty page and load \rho_t in cache
5: else
6: p^* \leftarrow page in cache that is not used furthest in the future evict p^* and load \rho_t in cache
```

A:

• The running time can be made to be $O(n + T \log k)$.

A:

- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.

A:

- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.
 - We can find the next time a page is requested easily.

A:

- The running time can be made to be $O(n + T \log k)$.
- For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested.
 - We can find the next time a page is requested easily.
- Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future.

time	0	1	2	3	4	5	6	7	8	9	10	11	12	
pages		P1	P5	P4	P2	P5	Р3	P2	P4	Р3	P1	P5	P3	

P1: | 1 | 10

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: | 2 | 5 | 11

pages	priority values

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values

X

P1: 1 10

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	10

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	10

XX

P1: 1 10

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	10
P5	5

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	10
P5	5

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	10
P5	5
P4	8

P1:

P2:

P3:

P4:

P5:

pages	priority values
P1	10
P5	5
P4	8

P1:

P2:

P3:

P4:

P5:

pages	priority values
P5	5
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	7
P5	5
P4	8

P1:

P2:

P3:

P4:

P5:

pages	priority values
P2	7
P5	5
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	7
P5	11
P4	8

P1:

P2:

P3:

P4:

P5:

pages	priority values
P2	7
P5	11
P4	8

P1:

P2:

P3:

P4:

P5:

pages	priority values
P2	7
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	7
Р3	9
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	7
Р3	9
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	∞
Р3	9
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	∞
Р3	9
P4	8

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	∞
Р3	9
P4	∞

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	∞
Р3	9
P4	∞

P2: 4 7

P3: | 6 | 9 | 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	∞
Р3	12
P4	∞

P2: 4 7

P3: | 6 | 9 | 12

P4: 3 8

P5: 2 5 11

pages	priority values
P2	∞
Р3	12
P4	∞

P2: 4 7

P3: | 6 | 9 | 12

P4: 3 8

P5: 2 5 11

pages	priority values
Р3	12
P4	∞

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	∞
Р3	12
P4	∞

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P1	∞
Р3	12
P4	∞

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
Р3	12
P4	∞

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P5	∞
Р3	12
P4	∞

P2: 4 7

P3: | 6 | 9 | 12

P4: 3 8

P5: 2 5 11

pages	priority values
P5	∞
Р3	12
P4	∞

P2: 4 7

P3: 6 9 12

P4: 3 8

P5: 2 5 11

pages	priority values
P5	∞
Р3	∞
P4	∞

```
1: for every p \leftarrow 1 to n do
```

2: $times[p] \leftarrow \text{array of times in which } p \text{ is requested, in increasing order} \qquad \qquad \triangleright \text{ put } \infty \text{ at the end of array}$

3:
$$pointer[p] \leftarrow 1$$

4: $Q \leftarrow$ empty priority queue

5: **for** every $t \leftarrow 1$ to T **do**

6:
$$pointer[\rho_t] \leftarrow pointer[\rho_t] + 1$$

7: if
$$\rho_t \in Q$$
 then

8: $Q.increase-key(\rho_t, times[\rho_t, pointer[\rho_t]])$, **print** "hit",

continue

- 9: **if** Q.size() < k **then**
- 10: **print** "load ρ_t to an empty page"
- 11: **else**
- 12: $p \leftarrow Q.\text{extract-max}(), \text{ print "evict } p \text{ and load } \rho_t$ "
- 13: $Q.\mathsf{insert}(\rho_t, times[\rho_t, pointer[\rho_t]])
 ightharpoonup \mathsf{add} \ \rho_t \ \mathsf{to} \ Q \ \mathsf{with} \ \mathsf{key}$ value $times[\rho_t, pointer[\rho_t]]$