DASC7606 – 2A Deep Learning

Artificial Neural Networks

Dr Bethany Chan
Professor Francis Chin
2024

Artificial Intelligence

→ Machine Learning.

→ Deep Learning

Require an expert (professional) to define the input (features) and rules

Limited success with rule-based expert system:

e.g., chess, go game, chatbot, image search, spam, .

- Start from a child's brain (simple algorithm) that learns instead of an adult's brain (complicated algorithm)
 - i.e., iterative improvement (gradient descent)

Simple algorithm:

guess, [check error, guess again intelligently]*

Linear models ("line" specified by coefficients θ to approximate a hidden function f) to solve classification and regression problems

- $h(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_N x_N$
- $h(x_i) = x_i \theta = \theta_0 + \theta_1 x_{i,1} ... + \theta_N x_{i,N}$ (true answer y_i)
- Parameters θ are to be learned (modifying θ)
- Modifying θ using gradient descent:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

Depends on

- cost function $J(\theta)$
- Slope (magnitude and opposite direction (descent))
- Learning rate

Linear Models where gradient descent is used on the loss/cost function to adjust the line (learn θ):

Linear Regression
$$J(\theta) = \frac{1}{2M} \sum_{i=1}^{M} (h(x_i) - y_i)^2$$
 (MSE)

M is the number of data points

$$x_i = i$$
th data point, an (N+1)-dim vector (e.g., no of bedrooms, size, age,...)

$$h(x_i) = x_i \theta = \theta_0 + \theta_1 x_{i,1} ... + \theta_N x_{i,N} = \text{prediction for } y_i$$

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{M} \sum_{i=1}^{M} (h(\boldsymbol{x}_i) - y_i) \, x_{i,j} \text{ for } j = 0,...,N$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \frac{\alpha}{M} \mathbf{X}^{\mathrm{T}} (\mathbf{X} \boldsymbol{\theta} - \boldsymbol{y})$$
 in vectorized form,

where X = Mx(N+1) matrix; $\theta = (N+1)x1$ vector matrix

Classification: Predict the probability of an event occurring

Logistic Regression uses

Sigmoid function
$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

where
$$h(x_i) = \sigma(s_i) \in [0,1]$$

and
$$s_i = \mathbf{x}_i \mathbf{\theta} = \theta_0 x_{i,0} + \dots \theta_j x_{i,j} + \dots \theta_N x_{i,N}$$
 (linear equation)

 $s \rightarrow -\infty$

$$J(\mathbf{\theta}) = -\frac{1}{M} \sum_{i=1}^{M} \left[y_i \log h(\mathbf{x}_i) + (1 - y_i) \log(1 - h(\mathbf{x}_i)) \right]$$
(cross entropy cost function)

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{i}} = -\frac{1}{M} \sum_{i=1}^{M} (y_{i} - h(\boldsymbol{x}_{i})) x_{i,j}$$

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{M} \sum_{i=1}^{M} (h(x_i) - y_i) x_{i,j} \text{ for } j = 0,...,N$$

Same equation as Linear Regression

6

s=0

Outline

- The story behind Deep Learning
- Al and Rule-based systems
- Supervised learning, classification & regression problems, linear models
- Linear regression and gradient descent
- Logistic regression and classification
- Performance measures of prediction
- Multi-classification

Logistic Function and classification

$$\sigma(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

Outcomes of Binary Classification

predict 1 if f(x) > threshold predict 0 otherwise

Actual 0 Actual 1

Predicted 0 true negative false negative

- True positives:
 - data points predicted as positive that are actually positive
- False positives:
 - data points predicted as positive that are actually negative
- True negatives:
 - data points predicted as negative that are actually negative
- False negatives:
 - data points predicted as negative that are actually positive

Performance Measures of Predictions

predict 1 if f(x) > threshold predict 0 otherwise

	Actual 0	Actual 1
Predicted 0	true negative	false negative
Predicted 1	false positive	true positive

precision means how "accurate" is the answer. i.e., measure the positive patterns that are correctly predicted from the total predicted patterns.

$$\frac{\text{true positives}}{\text{predicted positives}} = \frac{\text{true positives}}{\text{false positives} + \text{true positives}}$$

Performance Measures of Predictions

predict 1 if f(x) > threshold predict 0 otherwise

Predicted 0 true negative false negative
Predicted 1 false positive true positive

recall ("sensitivity" or "true positive rate") means how "good" is the answer, i.e., ability to find correct ones.

$$\frac{\text{recall}}{\text{actual positives}} = \frac{\text{true positives}}{\text{false negatives} + \text{true positives}}$$

or probability of positive result, given it is truly positive. or fraction of positive patterns that are correctly classified.

For negative class, it is known as **specificity** ability to correctly reject actual positive without a condition.

$$\frac{\text{specificity}}{\text{actual negatives}} = \frac{\text{true negatives}}{\text{true negatives}} + \frac{\text{true negatives}}{\text{true negatives}}$$

Accuracy of Predictions

predict 1 if f(x) > threshold predict 0 otherwise

	Actual 0	Actual 1
Predicted 0	true negative	false negative
Predicted 1	false positive	true positive

Accuracy of Predictions

predict 1 if f(x) > threshold predict 0 otherwise

	Actual 0	Actual 1
Predicted 0	true negative	false negative
Predicted 1	false positive	true positive

$$recall = \frac{true positives}{actual positives} = \frac{true positives}{false negatives} + true positives$$

Higher threshold => more difficult to be positive => more false negative

↑ threshold	↑ precision	↓ recall
↓ threshold	↓ precision	↑ recall

Combining Precision and Recall

- Ideally both precision and recall are 1
- With different thresholds, we can have higher precision and recall values
- Depending on applications
 - Disease screening higher recall
 - Prosecution of criminals higher precision
 - Identify terrorists both

$$\mathbf{F1} = 2*\frac{\text{precisi}on*\text{recall}}{\text{precisi}on+\text{recall}}$$

 Harmonic mean instead of simple average to penalize extreme values

Receiver Operating Characteristic (ROC)

True Positive Rate (TPR) = true positives Actual positive

False Positive Rate (FPR) = false positives Actual negative

False glarm

true positives Actual positive

false positives + true positives

false positives Actual negative

FPR=0

True Positive Rate

ROC curve plots TPR (recall) against FPR (probability of false alarm).

Threshold=1 \Rightarrow miss all TP cases

Threshold= $0 \Rightarrow many false alarms$

- Decrease threshold= move right and upward
- Area Under Curve (AUC),
 ranged between 0 and 1,
 higher the better

 Threshold = 1
- Best performance No positive data points is TPR=1 and FPR=0, AUC=1

Outline

- The story behind Deep Learning
- Al and Rule-based systems
- Supervised learning, classification & regression problems, linear models
- Linear regression and gradient descent
- Logistic regression and classification
- Performance measures of prediction
- Multi-classification

Multi-classification example

MNIST (Mixed National Institute of Standards and Technology) database

```
000000000000000
22122222222222222222
33333333333333333333
444444444444444
55555555555555555555
```

Multi-Classification

Pr(Class x) = Probability of Class x being the correct class

Class with **highest** probability is the predicted

Softmax function: not only normalizes a set of scores to numbers in [0,1] but also makes sure that the numbers all add up to 1

Sigmoid vs. Softmax

For **sigmoid** (2-class):

Class 1 probability:
$$\sigma(s) = \frac{1}{1+e^{-s}}$$

Class 2 probability:
$$1 - \sigma(s) = \frac{e^{-s}}{1 + e^{-s}} = \frac{1}{1 + e^s}$$

For **softmax** (*K*-class):

Given scores S_1, S_2, \dots, S_K

Class k probability: $\frac{e^{s_k}}{\sum e^{s_i}}$

For **softmax** (2-class):

Class 1 probability:
$$\frac{e^{s_1}}{e^{s_1} + e^{s_2}} = \frac{1}{1 + e^{s_2 - s_1}}$$

Class 2 probability:
$$\frac{e^{s_2}}{e^{s_1} + e^{s_2}} = \frac{1}{1 + e^{s_1 - s_2}}$$

- Question: Why do we have to pass each value through an exponential before normalizing them? Why can't we just normalize the values themselves?
- Answer: This is because the goal of softmax is to make sure one value is very high (close to 1) and all other values are very low (close to 0).
- Softmax uses exponential to make sure this happens.

Loss function for multi-classification

Categorical Cross Entropy

Loss
$$(h(x), y)$$

= $-\sum_{C} y \log(h(x))$

Ex:

Predicted h(x)	Label y
[0.94, 0.01, 0.05]	[0, 1, 0]

Loss =
$$-[0 * \log(0.94) + 1 * \log(0.01) + 0 * \log(0.05)] = -\log(0.01)$$

Outline

- The Perceptron and Deep Neural Networks
- Power of NN: Computing logic functions and arbitrary functions

The Perceptron

Notation:

- Weight w and parameter θ are used interchangeably.
- w_0 and b are the same with $x_0=1$

Common Activation Functions

Output values [0,1] For logistic regression

Output values [-1,1]
Hyperbolic tangent
Zero centered

Good for backpropagation

Unit step (threshold)

Multi-Output Perceptron

Multi-Layered Perceptron

Multi-Layered Perceptron (simplified diagram)

Deep Neural Network

- Deep Learning uses NN (instead of linear models) for G. Why?
- NN can approximate any function (to be shown)

Outline

- The Perceptron and Deep Neural Networks
- Power of NN: Computing logic functions and arbitrary functions

Computing OR

X ₁	X ₂	OR(x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	1

Activation function

$$w_0 = ?$$
 when $x_1 = x_2 = 0$
 $w_0 < 0$

$$w_1 = ?$$
 when $x_1=1$, $x_2=0$
 $w_1 + w_0 > 0$

$$w_2 = ?$$
 w_2 same as w_1

Computing OR

X ₁	X ₂	OR(x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	1

x_1	X ₂	$OR(x_1, x_2)$
0	0	
0	1	
1	0	
1	1	

Computing AND

X ₁	X ₂	$AND(x_1, x_2)$
0	0	0
0	1	0
1	0	0
1	1	1

$$w_0 = ?$$
 when $x_1 = x_2 = 0$
 $w_0 < 0$, say $w_0 = -150$

$$w_1 = w_2 = ?$$
 when $x_1 = 1$, $x_2 = 0$
 $w_1 + w_0 < 0$
when $x_1 = 1$, $x_2 = 1$
 $w_1 + w_2 + w_0 > 0$
 $w_i > 0$; $|w_i| < |w_0|$;
 $2|w_i| > |w_0|$;
 33
Say $w_i = 100$

Computing AND

X ₁	X ₂	$AND(x_1, x_2)$
0	0	0
0	1	0
1	0	0
1	1	1

X ₁	X ₂	$AND(x_1,x_2)$
0	0	
0	1	
1	0	
1	1	

What is XOR?

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

 $x_1 \oplus x_2$

y – one car passes

- $y = x_1 \oplus x_2 = 1$ iff either x_1 or x_2 is 1, but not both
- Real world examples:
 - 2 cars with a narrow road
 - 2-way switch
 - Parity bit

What about XOR?

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

$$x_1 \oplus x_2$$

$$w_0 = ?$$
 $w_0 < 0$, say $w_0 = -50$
when $x_1 = x_2 = 0$

$$w_1 = w_2 = ?$$
 $w_i + w_0 > 0$
 $say w_i = 100$
 $w_1 + w_2 + w_0 < 0$
 $when x_1 = 1, x_2 = 1$
????

Historical Perspective

1954

Quickly found it couldn't compute simple **functions** such as **XOR** (MIT book by Minsky)

What about XOR?

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Minsky and Papert (1969) showed that a single artificial neuron is incapable of implementing some simple functions such as the XOR logical function, parity, connectivity

Can Multilayer Perceptron Help?

- Since each perceptron is a linear function, no matter how many perceptrons or layers, the final output remains linear.
- Hence multilayer neural network is no more powerful than a single perceptron in solving XOR (which is nonlinear).
- Pitfall: activation function is nonlinear. Is this argument valid?

NOT

x_1	
0	1
1	0

$$W = (?,?)$$

$$W = (?,?)$$
 $W_{NOT} = (100, -200)$

Logical complete with NOT, AND and OR i.e., any logical function can be computed.

$$(\overline{x}_1 AND \overline{x}_2) OR (x_1 AND \overline{x}_2)$$

How many logical functions?

Answer: $2^4 = 16$

x_1	x_2	
0	0	1
0	1	0
1	0	1
1	1	0

 $(\overline{x}_1 AND x_2) OR (x_1 AND \overline{x}_2)$

x_1	x_2	
0	0	0
0	1	1
1	0	1
1	1	0

 $W_{NOT} = (100, -200)$

 $W_{IND} = (-100, 200)$

 $W_{AND} = (-150, 100, 100)$

 $W_{OR} = (-50, 100, 100)$

W = (-150, 100, 100)

W = (-50, 100, 100)

"NOR" gate can be constructed with two layers

$$x_1 \oplus x_2 = (\overline{x}_1 \text{ AND } x_2) \text{ OR } (x_1 \text{AND } \overline{x}_2)$$

x_1	x_2	
0	0	0
0	1	1
1	0	1
1	1	0

Remember

$$W_{AND} = (-150, 100, 100)$$

 $W_{OR} = (-50, 100, 100)$

$$W = (?,?,?)$$

$$W = (?,?,?)$$

$$W = (?,?,?)$$

Computing $(\overline{x}_1 AND x_2)$

X ₁	X ₂	$AND(x_1,x_2)$
0	0	0
0	1	0
1	0	0
1	1	1

X ₁	X ₂	$(\overline{x}_1 \text{ AND } x_2)$
0	0	0
0	1	1
1	0	0
1	1	0

say
$$w_0 = -150 \ w_1 = w_2 = ?$$

$$w_1 = -100$$
; $w_2 = 200$

$(\overline{x}_1 AND x_2) OR (x_1 AND \overline{x}_2)$

x_1	x_2	
0	0	0
0	1	1
1	0	1
1	1	0

$$W_{AND} = (-150, 100, 100)$$

 $W_{OR} = (-50, 100, 100)$
 $(\overline{x}_1 AND x_2) = (-150, -100, 200)$

Linearly-Separable Classification

- Linearly-separable means there is a hyperplane, which can split two classes of input points into two half-spaces.
- In 2D plane, linearly-separable means there is a line separating points of one class from points of the other class.
- Classification problem can be solved by NN
- In general, the weights of NN corresponding to the hyperplane

$$W_0 + W_1 X_1 + W_2 X_2 + ... + W_n X_n$$

Non-Linearly Separable Data

Non-linearly Separable classification problems can be solved by NN with more layers using "AND", "OR", "NOT" functionality

Different Non-Linearly Separable Problems

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Abitrary (Complexity Limited by No. of Nodes)	A B A	B	

What about arbitrary functions?

$$g(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Assuming $0 \le x \le 1$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Any function

NN with sufficient complexity can approximate any measurable function to any desired degree of accuracy. Thus, it is the basis to model numerous advanced applications