2) множество номеров $n>n_{\varepsilon}$, т.ч. $|a_n-a|\geq \varepsilon$ конечно или пусто. Пусть n'_{ε} — наибольший из этих номеров, если такие номера имеются, и $n'_{\varepsilon}=n_{\varepsilon}$ в противном случае. Тогда $\forall n>n'_{\varepsilon}:|a_n-a|<\varepsilon$, т.е. с увеличением номеров n члены последовательности (a_n) могут только приблизиться к a.

Итак, если для последовательности (a_n) для некоторого $\varepsilon_0 > 0$ выполняется пункт 1), то естественно считать, что (a_n) не стремится к a при возрастании n. Если же $\forall \varepsilon > 0$ наблюдается ситуация, описываемая в пункте 2), то это вполне согласуется с представлениями о стремлении a_n к a. Таким образом, мы приходим к следующему определению.

Определение 2. Последовательность (a_n) сходится (стремится) κ числу a при $n \to +\infty$, если $\forall \varepsilon > 0$ $\exists n_{\varepsilon} \in \mathbb{N}$, m.ч. $\forall n > n_{\varepsilon} : |a_n - a| < \varepsilon$. При этом пишут $\lim_{n \to +\infty} a_n = a$, или $a_n \to a$ при $n \to +\infty$.

Переформулируем определение предела в терминах окрестностей:

$$\lim_{n \to +\infty} a_n = a \stackrel{def}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N}, \text{ т.ч. } \forall n > n_{\varepsilon} : a_n \in U(a, \varepsilon).$$

Значит, последовательность (a_n) сходится к a тогда и только тогда, когда в любой заданный интервал $(a - \varepsilon, a + \varepsilon)$ попадают все члены последовательности, начиная с некоторого номера $n_\varepsilon+1$. А тогда вне любой окрестности $U(a,\varepsilon)$ может находиться лишь конечное число членов последовательности. Верно и обратное, что если вне произвольной ε -окрестности числа a имеется лишь конечное число членов последовательности (это число зависит от рассматриваемой окрестности), то a является пределом последовательности.

Пример. Пусть $a_n = (-1)^n$. Для $\varepsilon < 2$ в окрестностях $U(\pm 1, \varepsilon)$ содержится бесконечно много членов последовательности, но и вне их также находится бесконечно много членов последовательности. Следовательно, -1 и 1 не могут быть пределами рассматриваемой последовательности. Далее, у любого числа $a \neq \pm 1$ легко построить окрестность, не содержащую ни одного члена данной последовательности: достаточно взять $\varepsilon \doteq \min(|a-1|,|a+1|)$. Значит, никакое действительное число не является пределом исследуемой последовательности.

Дадим определение стремления последовательности к $-\infty$, $+\infty$ и ∞ . Для этого в окрестном определении предела надо заменить