

The Road to IPv6 Support in kOps

Ciprian Hacman, DevOps Engineer, polypoly
Ole Markus, Head Architect, Sportradar
John Gardiner Myers, Principal Engineer, Proofpoint
Justin Santa Barbara, Software Engineer, Google

Introduction

- kOps is a cloud-aware Kubernetes installer
- Provisions the underlying cloud infrastructure
- Installs all the core components of Kubernetes
- Since kOps owns the lifecycle of both the cloud resources and Kubernetes, it can handle all aspects of creating native IPv6 Kubernetes clusters
- Focus so far has been on the AWS and GCE cloud providers

Why IPv6

- Larger address space allows for a simple, flat network architecture
- Easier to avoid IP conflicts between VPCs, accounts, companies
- Native routing for Pods allows for direct targeting behind load balancers without going through "kube-proxy" or "nodeport"
- Simpler CNI architecture

Single Stack

- We decided early on we would only support single-stack addressing for pod networking and dual-stack at the edge
- Supporting dual-stack is quite complex and negates the benefits of IPv6
- Not many would be able to migrate their single-stack IPv4-clusters to dual-stack anyway

Unique Local Addresses

- We started out working on provisioning clusters with addresses from the Unique Local Address range
- This does not unlock the real benefits of IPv6, as NAT is still required, but this way we can assess the IPv6 readiness of the Kubernetes components
- Requires overlay networking and tunnels between nodes

Ready, but not quite

- IPv6 must be configured in a lot of places: control plane, CNI agents,
 CNI configuration
- Immediately hit a challenge with AWS cloud provider, which was not able to assign IPv6 IPs to Node objects
- No way to set priority on the Node addressing. Confuses pods that talk to nodes on NodePort
- Testing was possible now. Periodic tests were set up and most related bugs

Pivot to global addresses

- AWS released a number of IPv6 features last fall
- Replaced LUA support for global addresses.
- Required a few changes in our network provisioning:
 - NAT64/DNS64, route tables, launch templates
 - Disable masqing and overlays
- Assigning IPv6 prefix to instances during configuration.
- Assign node object's podCIDR

Pivot to global addresses

NAME	IP
aws-cloud-controller-manager-g4698	172.20.63.64
cert-manager-5d46c5dc5b-7dpkk	2a05:d014:cd:4a01:1517::1b3f
cert-manager-cainjector-f47bf9bb5-dz448	2a05:d014:cd:4a01:1517::6815
cert-manager-webhook-6dd6f5dcb8-5pxqt	2a05:d014:cd:4a01:1517::ad83
cilium-64glr	172.20.49.163
cilium-c7gxn	172.20.87.60
cilium-ltqdt	172.20.63.64
cilium-operator-74bbb8fc4b-vd2b8	172.20.63.64
cilium-v6tzg	172.20.101.230
coredns-5dc785954d-d6cjx	2a05:d014:cd:4a01:7325::5cef
coredns-5dc785954d-hhwhd	2a05:d014:cd:4a01:7325::22b0
coredns-autoscaler-84d4cfd89c-nnlk8	2a05:d014:cd:4a01:7325::a317
dns-controller-57d57cdfbb-wzxh9	172.20.63.64
ebs-csi-controller-66fb77f96d-cswgw	2a05:d014:cd:4a01:1517::9873
ebs-csi-node-2qllj	172.20.49.163
ebs-csi-node-fxdl4	172.20.87.60
ebs-csi-node-sttfx	172.20.101.230
ebs-csi-node-wswrw	172.20.63.64
etcd-manager-events-ip-172-20-63-64.eu-central-1.compute.internal	172.20.63.64
etcd-manager-main-ip-172-20-63-64.eu-central-1.compute.internal	172.20.63.64
kops-controller-2fxkq	172.20.63.64

Pivot to global addresses

- We had a working cluster for about 5 minutes!
- On Ubuntu, a bug in systemd-networkd removed the instance primary IP.
- Other distros had various other issues with IPv6 prefix support as well, such as accepting router announcements.
- Eventually fixed the issues and now supports Debian 10 and Ubuntu 22.04

Custom node IPAM controller

- Custom node IPAM controller that is aware of the IPv6 prefix AWS assigns the node.
- Adds the assigned prefix to Node object's podCIDR
- Allows CNIs to be agnostic of the cloud specifics.
- Controller currently runs as part of kops-controller, but could theoretically be stand-alone or run as part of CCM

Public Topology

- Nodes are dual-stack
- Enables DNS64 in CoreDNS/NodeLocal DNS
 - Added the DNS64 plugin to kubernetes/dns
- Creates a NAT Gateway in each zone for NAT64

Private Topology

- Utility Subnets are dual-stack
 - Contains NAT Gateways and public Load Balancers
- Private Subnets are IPv6-only
 - Contains worker nodes
 - Enable DNS64 in the AWS DNS server for Subnet
 - Route NAT64 to NAT Gateway in zone's utility subnet
 - Route rest of IPv6 to Egress-only Internet Gateway
- "DualStack" Subnets
 - Contains control plane nodes
 - Because kOps uses instance targets for the API loadbalancer and NLBs only support IPv4 for instance targets
 - Like Public subnets, but no public IPv4s and use Egressonly Internet Gateway

Subnet assignments

- The Kubernetes Service network is fd00:5e4f:ce::/108
- NodeLocal DNS is fd00:90de:d95::1

Remaining work

- AWS Load Balancer Controller
 - Probably due to insufficient IAM permissions
 - Need to disable Cloud Controller Manager's Service controller
 - Need better defaults for IPv6 clusters
- External-dns
 - Support for AAAA records is work in progress

Status quo

- Cluster is working.
- Makes heavy use of NAT64/DNS64 to interact with popular registries, cloud APIs etc.
- Regularly runs the Kubernetes e2e tests on various IPv6 configurations.
- Many of the kOps addons don't work. External-dns still working on AAAA records support.
- Services of type LoadBalancer do not support IPv6 in the AWS cloud controller

Status of GCE support

- Straightforward to add GCE equivalents to AWS work
- Some minor differences
 - e.g. IPv6 ranges auto-assigned on GCE
- Sequence:
 - VMs get a /96 at boot
 - IPAM controller writes Node's PodCIDR
 - CNI assigns pods IPs from Node's PodCIDR
 - IPv6 doesn't require cloud-specific routing
- Almost works!

NAME	READY	STATUS	IP	NODE	
guestbook-2xkdo	1/1	Running	2600	:1900:4120:6e77::b	nodes-us-west2-a-dr7m
guestbook-kkfms	1/1	Running	2600	:1900:4120:6e77:0:2:0:3	nodes-us-west2-a-0q31
guestbook-kmtj9	1/1	Running	2600:	1900:4120:6e77:0:2:0:2	nodes-us-west2-a-0q31
redis-master-8m	p55 1/1	Running	260	0:1900:4120:6e77:0:2:0:	4 nodes-us-west2-a-0q31
redis-slave-bm47	77 1/1	Running	2600	:1900:4120:6e77::c	nodes-us-west2-a-dr7m
redis-slave-vnrs2	2 1/1	Running	2600:1	900:4120:6e77:0:2:0:5	nodes-us-west2-a-0q31

CNI Evolution for IPv6?

- CNI requirements for IPv6 are much simpler
 - No overlay network
 - No routing logic
 - Plenty of IPs for IPAM no IP reuse problems
- Does require new configuration
 - LoadBalancer services cannot do IPv4 -> IPv6 NAT
 - New roles e.g. who removes network-unavailable taint
- All surmountable, but new problems