Apprentissage et noyaux séparateur à vaste marge (SVM) Pour quoi faire ?

9 Novembre 2006

Stéphane Canu

stephane.canu@insa-rouen.fr

asi.insa-rouen.fr/~scanu

INSA Rouen - Département ASI

Laboratoire LITIS

A la recherche d'une règle de décision universelle

on cherche un algorithme \mathcal{A} capable de résoudre tous les problèmes

l'échantillon $(x_i, y_i)_{i=1,n}$

$$\underbrace{\mathbb{P}(err(f,x_i,y_i))}_{\text{erreur de }f} \xrightarrow[n \to \infty]{} \underbrace{\mathbb{P}_{\textbf{b}}(err)}_{\text{erreur de bayes}}$$

Tracez la frontière de décision entre ces deux classes?

A la recherche d'une règle de décision universelle

on cherche un algorithme \mathcal{A} capable de résoudre tous les problèmes

l'échantillon $(x_i, y_i)_{i=1,n}$

$$\underbrace{\mathbb{P}(err(f,x_i,y_i))}_{\text{erreur de }f} \xrightarrow[n \to \infty]{} \underbrace{\mathbb{P}_{\textbf{b}}(err)}_{\text{erreur de bayes}}$$

Tracez la frontière de décision entre ces deux classes?

Universelle : pour tous les problèmes

Introduction

c'est plus facile...
...avec un peu plus de points

Tracez la frontière de décision entre ces deux classes?

Une solution
⇒ Quels critères?

(1) Fidélité

Une solution

- ⇒ Quels critères?
 - (1) Fidélité
 - (2) Régularité

Une solution

- ⇒ Quels critères?
 - (1) Fidélité
 - (2) Régularité
 - (3) Décision locale

Une solution
⇒ Quels critères?

- (1) Fidélité
- (2) Régularité
- (3) Décision locale
- (4) Points frontière

l'échantillon $(x_i, y_i)_{i=1,n}$ $y_i \in \{-1, 1\}$ (codage -1/1) la fonction de décision : $\mathrm{signe}(f(x_i))$ (f fonction de discrimination) $\mathcal{H} = \{x \mid f(x) = 0\}$: frontière de décision.

Bien classer tout le monde :

$$signe(f(x_i)) = y_i \qquad i = 1, n$$

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

l'échantillon $(x_i, y_i)_{i=1,n}$ $y_i \in \{-1, 1\}$ (codage -1/1) la fonction de décision : $\mathrm{signe}(f(x_i))$ (f fonction de discrimination) $\mathcal{H} = \{x \mid f(x) = 0\}$: frontière de décision.

Bien classer tout le monde :

$$\mathsf{signe}(f(x_i)) = y_i \qquad i = 1, n \qquad \mathsf{crit\`ere} \; \mathsf{non} \; \mathsf{d\'erivable}$$
 $f(x_i)y_i \geq 0 \qquad \qquad i = 1, n$

(1) Fidélité - (3) Décision « locale »

l'échantillon
$$(x_i, y_i)_{i=1,n}$$

 $y_i \in \{-1, 1\}$ (codage -1/1)

la fonction de décision : signe $(f(x_i))$

(f fonction de discrimination)

 $\mathcal{H} = \{x \mid f(x) = 0\}$: frontière de décision.

Bien classer tout le monde :

$$\operatorname{signe}(f(x_i)) = y_i \qquad i = 1, n$$
 critère non dérivable

$$i = 1, n$$

$$f(x_i)y_i \ge 0$$

$$i = 1, n$$

i=1,n solution triviale f=0

$$f(x_i)y_i \ge k \qquad k > 0, \ i = 1, n$$

- (1) Fidélité | (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

l'échantillon
$$(x_i, y_i)_{i=1,n}$$

$$y_i \in \{-1, 1\}$$
 (codage -1/1)

la fonction de décision : signe $(f(x_i))$

(f fonction de discrimination)

$$\mathcal{H} = \{x \mid f(x) = 0\}$$
: frontière de décision.

Bien classer tout le monde :

$$\operatorname{signe}(f(x_i)) = y_i \qquad i = 1, n$$
 critère non dérivable

$$i = 1, n$$

$$f(x_i)y_i \ge 0$$

$$i = 1, n$$

i=1,n solution triviale f=0

$$f(x_i)y_i \ge k \qquad k > 0, \ i = 1, n$$
Marge

$$k > 0, \ i = 1, n$$

(1) Fidélité - (3) Décision « locale »

Fidélité et marge

$$f(x_i)y_i > k$$
 $k > 0, i = 1, n$ $\mathcal{H} = \{x \mid f(x) = 0\}$: frontière Marge :

$$\min_{i=1,n} d(\mathcal{H}, x_i) = \min_{i=1,n} \max(1 - f(x_i)y_i, 0)$$

Bien classer tout le monde (k = 1):

$$f(x_i)y_i > 1 \qquad i = 1, n$$

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Fidélité et marge

$$f(x_i)y_i > k$$
 $k > 0, i = 1, n$ $\mathcal{H} = \{x \mid f(x) = 0\}$: frontière Marge :

$$\min_{i=1,n} d(\mathcal{H}, x_i) = \min_{i=1,n} \max(1 - f(x_i)y_i, 0)$$

Bien classer tout le monde (k = 1):

$$f(x_i)y_i > 1 \qquad i = 1, n$$

1 est la marge minimale

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Fidélité et droit à l'erreur : minimiser l'erreur

 $f(x_i)y_i > 1$ i = 1, nIntroduisons une variable d'écart ξ_i

Bien classer a peu près tout le monde :

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$

où ξ_i est une variable d'écart

(1) Fidélité - (3) Décision « locale »

Fidélité et droit à l'erreur : minimiser l'erreur

 $f(x_i)y_i > 1 - \xi_i$ $\xi_i > 0, \ i = 1, n$ Introduisons une variable d'écart ξ_i

Bien classer a peu près tout le monde :

$$f(x_i)y_i > 1 \underbrace{-\xi_i} \qquad \xi_i > 0 , \ i = 1, n$$

où ξ_i est une variable d'écart

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Fidélité et droit à l'erreur : minimiser l'erreur

 $f(x_i)y_i > 1 - \xi_i$ $\xi_i > 0, i = 1, n$ Introduisons une variable d'écart ξ_i

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$

Bien classer a peu près tout le monde :

$$f(x_i)y_i > 1 \underbrace{-\xi_i}_{}$$
 $\xi_i > 0 , i = 1, n$

où ξ_i est une variable d'écart $\xi_i = 0$;

$$\xi_i = 0; \qquad \xi_i \ge 1 \quad ; \quad 0 < \xi_i < 1$$

mal classé

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$
 $\min_{\xi_i} \sum_{i=1}^n \xi_i$

les deux solutions vérifient $\xi_i = 0$, i = 1, n

par exemple

 \blacksquare « l'énergie » de f : la norme de sa dérivée (cf les splines)

(1) Fidélité - (3) Décision « locale »

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$

les deux solutions vérifient $\xi_i = 0, i = 1, n$

par exemple

- \blacksquare « l'énergie » de f : la norme de sa dérivée (cf les splines)
- \blacksquare la longueur de f la taille du code calculant f

(1) Fidélité - (3) Décision « locale »

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$
 $\min_{\xi_i} \sum_{i=1}^n \xi_i$

les deux solutions vérifient $\xi_i = 0, i = 1, n$

par exemple

- \blacksquare « l'énergie » de f : la norme de sa dérivée (cf les splines)
- \blacksquare la longueur de f la taille du code calculant f
- \blacksquare une norme de f au sens de \mathcal{H} (défini a priori) : $||f||_{\mathcal{H}}$

(1) Fidélité - (3) Décision « locale »

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$
 $\min_{\xi_i} \sum_{i=1}^n \xi_i$
 $\min_{f} ||f||_{\mathcal{H}}$ $(f(x) = \sum_{j \in J} w_i \phi_i(x) + b)$

par exemple

- \blacksquare « l'énergie » de f : la norme de sa dérivée (cf les splines)
- \blacksquare la longueur de f la taille du code calculant f
- \blacksquare une norme de f au sens de \mathcal{H} (défini a priori) : $||f||_{\mathcal{H}}$
- un terme de régularisation : une fonctionelle positive assurant l'unicité de la solution
 - (1) Fidélité (3) Décision « locale »
 - (2) Régularité (4) Points « frontière »

$$f(x_i)y_i > 1 - \xi_i \qquad \xi_i > 0, \ i = 1, n$$

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$

$$\min_{f} \|f\|_{\mathcal{H}}^2$$

$$\mathbb{P}(err) \leq \underbrace{\sum_{i=1}^{n} \mathbb{I}_{\left\{ \text{signe}(f(x_i)) \neq y_i \right\}}}_{\text{Fid\'elit\'e}} + \varphi\left(\frac{1}{\text{marge}} \right)$$

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Cas linéaire : quelle solution choisir ?

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$
 $\min_{\xi_i} \sum_{i=1}^n \xi_i$
 $\min_{f} ||f||_{\mathcal{H}}^2$

$$\mathbb{P}(err) \leq \underbrace{\sum_{i=1}^{n} \mathbb{I}_{\left\{ \text{signe}(f(x_i)) \neq y_i \right\}}}_{\text{Fid\'elit\'e}} + \varphi\left(\frac{1}{\text{marge}} \right)$$

lacksquare minimiser $\mathbb{P}(err)\Leftrightarrow$ maximiser la marge

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Celle qui maximise la marge

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$

$$\min_{f} ||f||_{\mathcal{H}}^2$$

$$\mathbb{P}(err) \leq \underbrace{\sum_{i=1}^{n} \mathbb{I}_{\left\{ \text{signe}(f(x_i)) \neq y_i \right\}}}_{\text{Fid\'elit\'e}} + \varphi\left(\frac{1}{\text{marge}}\right)$$

- minimiser $\mathbb{P}(err) \Leftrightarrow \mathsf{maximiser}$ la marge
- maximiser la robustesse \Leftrightarrow maximiser la marge
 - (1) Fidélité (3) Décision « locale »
 - (2) Régularité | (4) Points « frontière »

Valeur de la marge dans le cas monodimensionnel

$$f(x_i)y_i > 1 - \xi_i$$
 $\xi_i > 0, i = 1, n$

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$

$$\min_{f} \|f\|_{\mathcal{H}}^{2} \quad \Leftrightarrow \quad \min_{\mathbf{w}} \sum_{j=1}^{\infty} w_{j}^{2}$$

$$\mathbb{P}(err) \leq \underbrace{\sum_{i=1}^{n} \mathbb{I}_{\left\{ \text{signe}(f(x_i)) \neq y_i \right\}}}_{\text{Fid\'elit\'e}} + \varphi\left(\frac{1}{\text{marge}}\right)$$

- \blacksquare minimiser $\mathbb{P}(err) \Leftrightarrow$ maximiser la marge
- maximiser la robustesse ⇔ maximiser la marge
- \blacksquare maximiser la marge \Leftrightarrow minimiser $||f||_{\mathcal{H}}^2$
- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Apprendre : choisir une hypothèse

- lacksquare se donner un ensemble ${\cal H}$ assez grand
- trouver $f \in \mathcal{H}$: $f(x_i)y_i > 1 \xi_i$ $\xi_i > 0$, i = 1, n

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$

$$\min_{f} \|f\|_{\mathcal{H}}^2$$

soit $(\phi_j)_{j\in J}$ une base orthonormé de fonctions (polynômes, fourier, ondelettes...)

$$f(x) = \sum_{j=1}^{\infty} w_j \phi_j(x) + b$$

l'ensemble des hypothèses est alors de la forme

$$\mathcal{H} = \left\{ f \mid f(x) = \sum_{j=1}^{\infty} w_j \phi_j(x) + b \right\}$$

f est « linéaire » en ϕ et non linéaire en x

Principe: « qui se ressemble s'assemble »

Principes:

- Mesure de similarité
 (pas nécéssairement symètrique)
- Zone d'influence

Les noyaux :

- fonction de deux variables

Estimateur à base de noyaux

Malédiction de la dimensionnaleté

noyaux défini positifs noyau multidimensionnel produit :

$$K_b(\mathbf{u}, \mathbf{v}) = \prod_{\ell=1}^L K_b(u_\ell, v_\ell)$$

noyaux « radiaux » $\rho = \|\mathbf{u} - \mathbf{v}\|^2$ (distance entre les deux variables)

noyaux « projectifs »
$$\mathbf{u}^{ op}\mathbf{v} = \sum_{\ell=1}^L u_\ell v_\ell$$

formule de « passage »

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u}^\top \mathbf{v}$$

Quelques exemples de noyaux

le noyau gaussien

$$K_b(u,v) = \frac{1}{Z} \exp^{-\frac{\rho}{b}}$$

le noyau de Cauchy

$$K_b(u,v) = \frac{1}{Z} \quad \frac{1}{1 + \frac{\rho}{b}}$$

le noyau uniforme

$$K_b(u,v) = \frac{1}{Z} \mathbb{I}_{\{\rho \le b\}}$$

le noyau de Fourier régularisé

$$K_b(u,v) = \frac{1}{Z} \cosh\left(\pi - \frac{|u-v|}{b}\right)$$

le noyau scalaire

$$K_b(\mathbf{u}, \mathbf{v}) = (\mathbf{u}^{\top} \mathbf{v} + 1)^b$$

le noyau de Laplace

$$K_b(u,v) = \frac{1}{Z} \exp^{-\frac{|u-v|}{b}}$$

le noyau d'Hermite

$$K_b(u,v) = \frac{1}{Z} (b - \rho) \exp^{-\frac{\rho}{b}}$$

le noyau d'Epanechnikov

$$K_b(u, v) = \frac{1}{Z} (b - \rho) \, \mathbb{I}_{\{\rho \le b\}}$$

le noyau sigmoïde

$$K_b(\mathbf{u}, \mathbf{v}) = \frac{1}{Z} \tanh (b(\mathbf{u}^{\top} \mathbf{v}) + b_0)$$

le noyau de Hardy

$$K_b(u, v) = \frac{1}{(\mathbf{u}^\top \mathbf{v} + 1)^b}$$

noyaux de chaines de caractères, de graphes, d'automates...

Comment choisir H?

$$f(x) = \sum_{j=1}^{\infty} w_j \phi_j(x)$$

Influence locale ⇒ Noyaux. Influence fixe (Parzen + MAP)

$$f(x) = \sum_{i=1}^{n} y_i K_b(x, x_i)$$

Influence ajustée

$$f(x) = \sum_{i=1}^{n} a_i K_b(x, x_i)$$

(1) Fidélité - (3) Décision « locale »

Comment choisir H?

$$f(x) = \sum_{j=1}^{\infty} w_j \phi_j(x)$$

Influence locale ⇒ Noyaux. Influence fixe (Parzen + MAP)

$$f(x) = \sum_{i=1}^{n} y_i K_b(x, x_i)$$

Influence ajustée

$$f(x) = \sum_{i=1}^{n} a_i K_b(x, x_i)$$

on construit \mathcal{H} à partir du noyau K

(1) Fidélité - (3) Décision « locale »

Comment choisir construire H (les hypothèses?)

- au commencement était le noyau...
 - noyau: k(x,y) $\forall x,y \in \Omega$
 - ...positif $\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \alpha_j k(x_i, x_j) > 0$
 - $\mathbb{L} \mathcal{H}_0 = \{ f \in \mathbb{R}^{\Omega} | f(x) = \sum_{i=1}^n \alpha_i k(x, x_i), n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \Omega \}$
 - \blacksquare et un produit scalaire on \mathcal{H}_0

$$\langle f(.), g(.) \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, x_j)$$

- lacksquare propriétés du produit scalaire sur \mathcal{H}_0
 - $\langle f(.), k(x,.) \rangle_{\mathcal{H}_0} = f(x)$ Evaluation
 - $\langle k(x,.), k(y,.) \rangle_{\mathcal{H}_0} = k(x,y)$ (reproduction)

le noyau représente une grande partie de la connaissance a priori

L'astuce du noyau

Théorème de Mercer : Si K est un noyau défini positif, il existe une famille $(\phi_j)_{j\in\mathcal{J}}$ orthonormée telle que :

$$K_b(\mathbf{x}, \mathbf{y}) = \sum_{j \in J} \phi_j(\mathbf{x}) \phi_j(\mathbf{y})$$
(1)

toute fonction $f \in \mathcal{H}$ s'écrit alors :

$$f(\mathbf{x}) = \sum_{j \in J} w_j \phi_j(\mathbf{x}) = \sum_{i=1}^n a_i K_b(\mathbf{x}, \mathbf{x}_i)$$

$$||f||_{\mathcal{H}}^2 = \mathbf{w}^\top \mathbf{w} = \mathbf{a}^\top K \mathbf{a}$$

où K est la matrice d'influence.

$$K_{ij} = K_b\left(\mathbf{x}_i, \mathbf{x}_j\right)$$

(1) Fidélité - (3) Décision « locale »

L'astuce du noyau

Théorème de Mercer : Si K est un noyau défini positif, il existe une famille $(\phi_j)_{j \in \mathcal{J}}$ orthonormée telle que :

$$K_b(\mathbf{x}, \mathbf{y}) = \sum_{j \in J} \phi_j(\mathbf{x}) \phi_j(\mathbf{y})$$
 (2)

toute fonction $f \in \mathcal{H}$ s'écrit alors :

$$f(\mathbf{x}) = \sum_{j \in J} w_j \phi_j(\mathbf{x}) = \sum_{i=1}^n a_i K_b(\mathbf{x}, \mathbf{x}_i)$$

$$||f||_{\mathcal{H}}^2 = \mathbf{w}^\top \mathbf{w} = \mathbf{a}^\top K \mathbf{a}$$

où *K* est la matrice d'influence.

$$K_{ij} = K_b\left(\mathbf{x}_i, \mathbf{x}_j\right)$$

 $\dim \infty$

dim n

Quel critère minimiser?

$$f(x_i)y_i > 1 - \xi_i \qquad \xi_i > 0, \ i = 1, n$$

$$\min_{\xi_i} \sum_{i=1}^n \xi_i$$
 Fidélité

$$\min_{\mathbf{w}} \sum_{j=1}^{\infty} w_j^2 \dots$$

Régularité

Comment choisir la fonction de discrimination?

$$f(x) = \sum_{j=1}^{\infty} w_j \phi_j(x)$$

- (1) Fidélité (3) Décision « locale »
- (2) Régularité (4) Points « frontière »

Ensemble d'hypothèses + Critère = Le problème SVA

$$\mathcal{H} = \left\{ f : \mathbb{R}^L \to \mathbb{R} \middle| \exists \mathbf{a}, \mathbf{c} ; f(\mathbf{x}) = \sum_{j=1}^m c_j \varphi_j(\mathbf{x}) + \sum_{\ell=1}^n a_\ell K_b(\mathbf{x}, \mathbf{x}_\ell) \right\}$$

où n_{sup} est le nombre de vecteurs supports problème de minimisation sous contraintes :

$$\begin{cases} & \min_{\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i=1}^{n} \xi_{i} \\ & \text{avec} \quad y_{i}f(\mathbf{x}_{i}) > 1 - \xi_{i} \quad i = 1, n \\ & \text{et} \quad \xi_{i} > 0 \quad i = 1, n \end{cases}$$
 (3)

où :
$$f(\mathbf{x}) = \sum_{k=1}^{\infty} w_k \phi_k(\mathbf{x}) + \sum_{j=1}^{m} c_j \varphi_j(\mathbf{x})$$

(1) Fidélité - (3) Décision « locale »

Ensemble d'hypothèses + Critère = Le problème SVA

$$\mathcal{H} = \left\{ f : \mathbb{R}^L \to \mathbb{R} \middle| \exists \mathbf{a}, \mathbf{c} \; ; \; f(\mathbf{x}) = \sum_{j=1}^m c_j \varphi_j(\mathbf{x}) + \sum_{\ell=1}^{n_{\mathsf{sup}}} a_\ell K_b(\mathbf{x}, \mathbf{x}_\ell) \right\}$$

où n_{sup} est le nombre de vecteurs supports problème de minimisation sous contraintes :

$$\begin{cases} \min & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i=1}^{n}\xi_{i} \\ \text{avec} & y_{i}f(\mathbf{x}_{i}) > 1 - \xi_{i} \qquad i = 1, n \\ \text{et} & \xi_{i} > 0 \qquad i = 1, n \end{cases}$$
 (4)

où :
$$f(\mathbf{x}) = \sum_{k=1}^{\infty} w_k \phi_k(\mathbf{x}) + \sum_{j=1}^{m} c_j \varphi_j(\mathbf{x})$$

(1) Fidélité - (3) Décision « locale »

Minimisation sous contraintes (cas séparable)

$$\begin{cases} & \min_{\mathbf{w}} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} \\ \text{avec} & y_i f(\mathbf{x}_i) > 1 \qquad i = 1, n \end{cases}$$

Minimisation sous contraintes (cas séparable)

$$\begin{cases} & \min_{\mathbf{w}} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} \\ & \mathbf{w} & y_i f(\mathbf{x}_i) > 1 \qquad i = 1, n \end{cases}$$
 \Leftrightarrow

$$\min_{\mathbf{w}, \mathbf{c}} \max_{\lambda} \mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda)$$
 Lagrangien

$$\mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \lambda_i \left(y_i f(\mathbf{x}_i) - 1 \right)$$
les exemples

Minimisation sous contraintes (cas séparable)

$$\begin{cases} & \min_{\mathbf{w}} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} \\ \text{avec} & y_i f(\mathbf{x}_i) > 1 \qquad i = 1, n \end{cases}$$
 \Leftrightarrow

$$\min_{\mathbf{w}, \mathbf{c}} \max_{\lambda} \mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda)$$
 Lagrangien

$$\mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} (\lambda_i) (y_i f(\mathbf{x}_i) - 1)$$
 les exemples

Multiplicateur de Lagrange λ_i = influence de l'exemple i dans la solution interprètation : $\lambda_i = 0 \rightarrow$ pas d'influence $\lambda_i > 0 \rightarrow$ exemple support

Reformulation dans l'espace des exemples

$$\mathcal{L}(\mathbf{w}, \mathbf{a}, \lambda) = \frac{1}{2} ||f||^2 - \sum_{i=1}^{n} \lambda_i (y_i f(\mathbf{x}_i) - 1)$$

dont on tire les conditions de Kuhn et Tucker :

$$\begin{cases}
\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda)}{\partial \mathbf{w}} = 0 \\
\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda)}{\partial \mathbf{c}} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\mathbf{w} - \sum_{i=1}^{n} \lambda_i y_i \phi(\mathbf{x}_i) = 0 \\
\sum_{i=1}^{n} \lambda_i y_i \varphi(\mathbf{x}_i) = 0
\end{cases}$$

conséquence pour f:

$$f(\mathbf{x}) = \sum_{k=1}^{\infty} w_k \phi_k(\mathbf{x}) = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{N} \lambda_i y_i \phi(\mathbf{x}_i) \right) \phi_k(\mathbf{x})$$
$$= \sum_{i=1}^{N} \underbrace{\lambda_i y_i}_{a_i} \underbrace{\sum_{k=1}^{\infty} \phi_k(\mathbf{x}) \phi(\mathbf{x}_i)}_{K_b(\mathbf{x}, \mathbf{x}_i)}$$

Reformulation dans l'espace des exemples

$$\mathcal{L}(\mathbf{w}, \mathbf{a}, \lambda) = \frac{1}{2} ||f||^2 - \sum_{i=1}^{n} \lambda_i (y_i f(\mathbf{x}_i) - 1)$$

dont on tire les conditions de Kuhn et Tucker :

$$\begin{cases} \frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda)}{\partial \mathbf{w}} &= 0 \\ \frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{c}, \lambda)}{\partial \mathbf{c}} &= 0 \end{cases} \Leftrightarrow \begin{cases} \mathbf{w} - \sum_{i=1}^{n} \lambda_i y_i \phi(\mathbf{x}_i) &= 0 \\ \sum_{i=1}^{n} \lambda_i y_i \varphi(\mathbf{x}_i) &= 0 \end{cases}$$

conséquence pour f:

$$f(\mathbf{x}) = \sum_{k=1}^{\infty} w_k \phi_k(\mathbf{x}) = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{N} \lambda_i y_i \phi(\mathbf{x}_i) \right) \phi_k(\mathbf{x})$$
$$= \sum_{i=1}^{N} \underbrace{\lambda_i y_i}_{a_i} \underbrace{\sum_{k=1}^{\infty} \phi_k(\mathbf{x}) \phi(\mathbf{x}_i)}_{K_b(\mathbf{x}, \mathbf{x}_i)}$$

Stratégie calcul de K calcul des λ calcul des a calcul de f

calcul des λ : problème Dual (2)

$$\begin{cases} & \min_{\lambda} & \frac{1}{2}\lambda^{\top}H\lambda + \mathbf{c}^{\top}\lambda \\ & \sum_{i=1}^{N}\lambda_{i}y_{i}\varphi_{j}(x_{i}) = 0 \quad j = 1, m \\ & \text{et} & 0 \leq \lambda_{i} \leq C \qquad i = 1, n \end{cases}$$

où H est la matrice de terme général $H_{ij} = y_i y_j K_b(\mathbf{x}_i, \mathbf{x}_j)$ et \mathbf{c} un vecteur de 1.

Reformulation de Girosi (97)

$$\min_{\mathbf{a}} ||f(\mathbf{x}_i) - y_i||_{\mathcal{H}}^2 + \mu \sum_{i=1}^n |a_i|$$

(1) Fidélité - (3) Décision « locale »

Solution pratique : Problème d'optimisation

- dans le pire des cas...Simplex
- Solution « hors lignes » :
 - Contraintes actives $(\mathcal{O}(n^{1.5}))$
 - asi.insa-rouen.fr/~gloosli
 - asi.insa-rouen.fr/~arakotom
 - Points intérieurs : lent
 - stochastiques : SMO
 - libsvm rapide et complet
 - coresvm (pas très fiable)
- Solution « en ligne » : LaSVM
 - La SVM : très très rapides 8 10⁶ exemples...

si n est grand : plus efficace que les autres méthodes

Conclusion

- Les méthodes à noyaux
 - approximateur universel
 - minimum global unique
 - Parcimonieux (des coef. = 0)
 - ⇒ très rapide (en général)
- Classification : les SVM
 - SVM vs Réseaux de neurones (PMC) : optimisation
 - SVM vs Parzen : parcimonie et vitesse ($L^2 vs L^1$)
 - SVM vs régression logistique : parcimonie et vitesse
 - SVM : des résultats
- Régression : le kLAR
 - kLAR vs Réseaux de neurones (PMC) : optimisation
 - kLAR vs Noyaux (FBR) : optimisation
 - \blacksquare kLAR vs splines : parcimonie et vitesse ($L^2 vs L^1$)
- autres applications : one class SVM, kACP, kPLS...

Références

- SVM
 - V. Vapnik: The Nature of Statistical Learning Theory. Springer, 1995.
 - N. Cristianini and J. Shawe-Taylor : An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, UK, 2000
 - B. Scholkopf et A. Smola: Kernel Machines, 2002
- Reconnaissance des formes statistiques
 - R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification (2nd ed.), John Wiley and Sons, 2001.
 - T. Hastie, R. Tibshirani, and J. Fridman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2001
- et sur le réseau
 - http://kernel-machines.org
 - http://www.ph.tn.tudelft.nl/PRInfo/
 - http://citeseer.nj.nec.com/
 - http://asi.insa-rouen.fr/~scanu