Big Data Application - Project progress report 1

Group information

ID	Name
21127170	Nguyễn Thế Thiện
21127326	Nguyễn Trần Trung Kiên
21127329	Châu Tấn Kiệt

Problem summary

Problem

Title: Real-time anime recommendation system based on user ratings.

Description:

Analyze real-time anime ratings data using Big Data and Machine Learning tools, in order to recommend animes a user has yet to watch, based on the user's rating history.

Input: User's rating history on watched animes.

Output: Ranking list for recommended animes fitting user's tastes.

Dataset

Anime Dataset 2023 [1] by username Sajid from Kaggle, which is a collection of user and anime ratings on one of the largest anime databases and communities - MyAnimeList (myanimelist.net).

The files contributing to the dataset:

users-score-2023.csv (1.16GB): **The main data** consisting of user ratings on anime titles, provided by 270K users on 16K anime titles, with a total of 24.3M samples, **99.48% sparsity rate** for only the observed users and anime titles.

anime-dataset-2023.csv (15.92MB): Details of around 25K anime titles on MyAnimeList.

user-details-2023.csv (73.93MB): Details of around 730K users registered on MyAnimeList.

Main tasks

- 1. **Data ingestion**: Set up Redis database with imported data from the dataset files, and set up data streaming connection.
- 2. **Data streaming & preprocessing**: Apache Spark Streaming simulates real-time data from Redis database, then clean and prepare the raw data before feeding into the recommendation system.
- 3. **Real-time RS model training**: Pre-built model from MLlib is trained by feeding real-time data, from Spark Streaming.

- 4. **RS in use**: Input user's rating history to predict a ranking list for recommended animes which user has not watched.
- 5. **Real-time dashboard**: Visualize analyzed data and predictions with NetworkX-assisted Matplotlib.

Plan progress

- 1. Preparation: 60% done.
- Set up Redis database and data streaming to Spark.
- Figure data preprocessing strategies, perform data preprocessing on dataset using Spark.
- Set up RS model from MLlib, learn its required input and output forms for training and testing.
- Figure out how to save RS model into a file for further training.
- 2. Tool testing and systematic setups: 0% done.
- Perform real-time data processing using Redis and Spark, with data visualization using NetworkX and Matplotlib.
- Set up a basic user interface to apply the use of RS.
- Test RS model training on small scale with multiple batches, with saving and loading RS model.
- 3. Main events: 0% done.
- Perform real-time RS model training on dataset.
- Research and experiment documentation.
- Application of RS model into the problem.
- 4. **Project conclusion**: 0% done.
- Research and experiment documentation and presentation with Canva [7].
- Graphical demonstration.

Assignments

Note: The assignments here are summarized from the submitted work by each member of the group. For evidence, check out their corresponding directories.

Who	Task(s)	Done	Not done	Upcoming obstacles	Directory
Kiên	Set up real- time data streaming from database	 Redis installation and configuration Upload datasets to Redis in the correct formats 	Set up data streaming to Spark to perform data preprocessing	Connect with Spark Streaming for batch data preprocessing	Redis DB

Who	Task(s)	Done	Not done	Upcoming obstacles	Directory
Thiện	Figure & apply data preprocessing strategies	 Load dataset in the correct format Perform data transformation on categorical columns (anime dataset) Explanation on the strategies used 	 Data cleaning: missing values, noisy data Data transforming: standardization of numerical columns Data reduction: dimensionality, support (one hot encoding) 	Data transforming: extract features from text columns (anime names, synopsis)	Preprocessing
Kiệt	Choose and set up RS model, explanation on why choosing	 Setting up the recommendation system models Read datasets and train/test split Explore the reason to use the ALS model 	None	 Integrating Spark with Redis database Solve the problem with real- time data on Redis while using ALS with micro- batch processing 	RS model

Self-assessment

Struggles

- 1. **Underestimated the difficulty and time of tasks**: Data preprocessing and data storing took more time than it should, especially when with little experience.
- 2. **Unexpected happenings from the outside**: Juggling multiple tasks and being overwhelmed.
- 3. **Post-vacation blues**: Some members have yet to recover from Lunar New Year vacation to keep high work efficiency, though relieved by task planning and active communication.

Problems:

- 1. **Problem re-definition**: Arised worries during data preprocessing about how to deal with empty values, such as what the problem really is and the steps to solving the problem. "The more I read, the less I know".
- 2. **Dealing with high dimensionality**: One-hot encoding on unordered labels gives too many columns, either dimension reduction (UBCF-IBCF) or multiple minimum support metrics could work.

References

- [1] Sajid Uddin (2023). Anime Dataset 2023. *Kaggle: Your Machine Learning and Data Science Community*. https://www.kaggle.com/datasets/dbdmobile/myanimelist-dataset?resource=download
- [2] Salvatore Sanfilippo (2009). Redis 7.4.2 (2025). https://redis.io
- [3] Matei Zaharia (2014). Apache Spark 3.5.4 (2024). https://spark.apache.org/
- [5] John D. Hunter (2003). Matplotlib 3.10.0 (2024). https://matplotlib.org/
- [6] Aric Hagberg, Pieter Swart, Dan Schult (2005). NetworkX 3.4.2 (2024). https://networkx.org/
- [7] Melanie Perkins, Cliff Obrecht, Cameron Adams (2013). Canva. https://canva.com