Algebra 2

Riccardo Zanotto

16 aprile 2017

Indice

1	Anelli e ideali			
	1.1	Definizioni	2	
	1.2	Prime proprietà	3	
	1.3	Quozienti e omomorfismi	6	
	1.4	Ideali contratti ed estesi	8	
	1.5	Esercizi svolti	9	
2	Anelli di polinomi			
	2.1	Polinomi in una variabile	9	
	2.2	Ideali monomiali	11	
	2.3	Riduzione di polinomi	12	
	2.4	Basi di Gröbner	14	
	2.5	Risoluzione dei sistemi di equazioni polinomiali \hdots	14	
3	Mo	duli	14	

1 Anelli e ideali

1.1 Definizioni

Definizione 1.1 (Anello). Un insieme A è detto anello se è dotato di due operazioni $(A, +, \cdot)$ tali che

- (A, +) è un gruppo commutativo, con elemento neutro 0_A
- · è associativo
- Esiste un elemento $1 \in A$ tale che $1 \cdot a = a \cdot 1 = a \forall a \in A$
- $\forall x, y, z \in A \text{ vale } x \cdot (x+z) = xy + xz \text{ e } (y+z) \cdot x = yx + zx$

Inoltre se il prodotto è commutativo, A è detto anello commutativo

Osservazione. In generale $0 \neq 1$, altrimenti A = 0 è l'anello banale, poiché $a = a \cdot 1 = a \cdot 0 = 0$

Esempio.

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ con le operazioni usuali sono anelli commutativi
- ullet Le matrici $n \times n$ sono un anello non commutativo

Definizione 1.2 (Unità). Un elemento $a \in A$ si dice *unità* se $\exists b \in A$ tale che ab = 1

Si indica con A^* l'insieme delle unità, o elementi invertibili.

Definizione 1.3 (Divisore di 0). Un elemento $a \in A$ si dice divisore di 0 se $\exists b \in A$ tale che ab = 0.

Si indica con $\mathcal{D}(A)$ l'insieme dei divisori di 0.

Se D(A) = 0, allora l'anello è detto dominio.

Definizione 1.4 (Nilpotente). Un elemento $a \in A$ si dice *nilpotente* se $\exists n \in \mathbb{N}$ tale che $a^n = 0$.

Si indica con N(A) l'insieme degli elementi nilpotenti, che è detto nilradicale. Se N(A)=0, l'anello A è detto ridotto.

Esempio. Prendiamo $A = \mathbb{Z}/n\mathbb{Z}$ con $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$. Allora i nilpotenti sono tutti e soli gli elementi del tipo $p_1^{b_1} \cdots p_k^{b_k}$ cpn $b_i > 0$. I divisori di 0 sono gli m tali che $\gcd(m,n) > 1$.

Proposizione 1.1. La somma di un nilpotente ed un invertibile è ancora invertibile.

Dimostrazione.

Detto $a \in A^*$ e $b \in N(A)$, consideriamo $a^{-1}(a+b) = 1-x$ e osserviamo che x è ancora nilpotente.

Detto n l'indice di nilpotenza di x, vale $(1-x)(1+x+\cdots+x^{n-1})=1-x^n=1$ cioè 1-x è invertibile; ma allora anche a(1-x)=a+b è invertibile.

Consideriamo ora dei sottoinsiemi particolari di un anello, che saranno fondamentali nello studio delle proprietà degli anelli, in quanto corrispettivi della nozione di sottogruppo.

Definizione 1.5 (Ideale). Un sottoinsieme $I \subset A$ di un anello è detto *ideale* se è un sottogruppo di (A, +) ed è chiuso rispetto alla moltiplicazione per elementi di A, ovvero $x \in A, i \in I \Longrightarrow xi \in I$.

Esempio.

- \bullet In \mathbb{Z} un ideale è formato ad esempio da tutti i multipli di 5.
- In $\mathbb{Z}[x]$ tutti i polinomi che non hanno termine noto formano un ideale.

Osserviamo che se $S \subset A$, è facile costruire un ideale I che contenga S; in par-

ticolare
$$(S) = \left\{ \sum_{i=1}^{k} a_i s_i \mid a_i \in A, s_i \in S \right\}$$
 si dice *ideale generato da S*.

Se S è finito, allora (S) è finitamente generato.

Definizione 1.6 (Principale). Un ideale $I \subset A$ è detto *principale* se $\exists a \in A$ per cui I = (a).

Definizione 1.7 (Primo). Un ideale $I \subset A$ è detto *primo* se $ab \in I \Longrightarrow a \in I \lor b \in I$.

L'insieme di tutti gli ideali primi Spec(A) è detto spettro di A.

Definizione 1.8 (Primario). Un ideale $I \subset A$ è detto primario se $ab \in I \Longrightarrow a \in I \vee b^n \in I$ per qualche $n \in \mathbb{N}$.

Definizione 1.9 (Massimale). Un ideale $I \subset A$ è detto massimale se $I \neq A$ e non esiste nessun ideale $J \neq A$ tale che $I \subset J$.

Esempi, esempi, esempi!!!

Esercizio 1.1. Se ogni ideale di A è primo, allora A è un campo.

1.2 Prime proprietà

Vediamo ora alcune proprietà degli ideali, che saranno gli oggetti più studiati. Iniziamo col vedere che questi oggetti esistono realmente.

Proposizione 1.2. Sia A un anello non banale. Allora esiste sempre un ideale massimale $\mathfrak{m} \subset A$.

Dimostrazione.

Sia $\Sigma = \{I \mid I \subseteq A\}$ ordinato con l'inclusione. Osserviamo che $(0) \in \Sigma$.

Prendiamo una catena $\{I_j\}_{j\in J}$ e consideriamo $I=\bigcup_{j\in J}I_j$; dimostriamo che I è un ideale.

Infatti se $x, y \in I$ vuol dire che $x \in I_h$ e $y \in I_k$ per qualche indice; supponiamo senza perdita di generalità che $I_h \subset I_k$. Allora $x \in I_k$, perciò $x + y \in I_k \subset I$. La verifica che $ai \in I \forall a \in A, i \in I$ è banale.

Inoltre I è proprio, poiché $1 \notin I_j \forall j$, per cui $1 \not\ni I$. Perciò I è un maggiorante della catena che avevamo considerato. Concludiamo usando il lemma di Zorn su Σ , perciò esiste un ideale massimale.

Osservazione. Dato un elemento $a \notin A^*$, si dimostra che esiste un massimale \mathfrak{m} con $a \in \mathfrak{m}$, prendendo $\Sigma = \{I \mid I \subsetneq A, a \in I\}$.

Proposizione 1.3. Dato un anello A, il nilradicale si può esprimere come $N(A) = \bigcap_{P \ primi} P$.

Dimostrazione.

- \subset Dato $a \in N(A)$, allora $a^n = 0 \in P$ per ogni ideale P. Ma se P è primo, $0 = a^n = a \cdot a^{n-1}$, per cui o $a \in P$, o $a^{n-1} \in P$. Procedendo così ottengo in ogni caso che $a \in P$.
- ⊃ Dato un $a \notin N(A)$, voglio trovare un P primo per cui $a \notin P$. Sia $\Sigma = \{I \text{ ideale proprio} | a^n \notin I \forall n \in \mathbb{N} \}$ ordinato con l'inclusione. Data una catena $\{I_j\}_{j \in J}$, considero $I = \bigcup_{j \in J} I_j$ e vale ovviamente $a^n \notin I$. Inoltre $\Sigma \neq \emptyset$ poiché essendo a non nilpotente, $(0) \in \Sigma$. Per il lemma di Zorn, esiste allora un elemento $P \in \Sigma$ massimale; osserviamo che P è un ideale, e voglio mostrare che è primo. Siano $x, y \notin P$. Allora $(P, x) = P + (x) \supsetneq P$, per cui $(P, x) \notin \Sigma$, ovvero $a^n \in P + (x)$; analogamente $a^m \in P + (y)$. Questo vuol dire che $a^n = kx + p_1, a^m = hy + p_2$, perciò $a^{m+n} = khxy + p_1hy + p_2kx + p_1p_2 \in P + (xy)$, per cui $P + (xy) \notin \Sigma$. Ma allora $xy \notin P$, altrimenti $P + (xy) = P \in \Sigma$.

Costruiamo ora alcune operazioni tra ideali che risulteranno utili in seguito...

• Data una famiglia arbitraria di ideali $\{I_j\}_{j\in J}$, allora $\bigcap I_j$ è un ideale.

- Dati due ideali I_1, I_2 , si definisce la somma $I_1 + I_2 = (I_1, I_2) = \{i_1 + i_2 \mid i_1 \in I_1, i_2 \in I_2\}$, ovvero l'ideale generato da $I_1 \cup I_2$. In generale $\sum I_j = (\bigcup I_j)$.
- Dati due ideali I_1, I_2 , si definisce il prodotto $I_1 \cdot I_2 = \left\{ \sum x_j^{(1)} x_j^{(2)} \mid x_j^{(1)} \in I_1, x_j^{(2)} \in I_2 \right\}$
- Dati due ideali I, J, si definisce $I: J = \{a \in A \mid aJ \subset I\}$
- Dato un ideale I, si definisce radicale $\sqrt{I} = \{a \in A \mid \exists n \in \mathbb{N} a^n \in I\}$

Per quest'ultima operazione non è banale il fatto che si ottenga un altro ideale, ma si può dimostrare nella seguente

Proposizione 1.4. Dato un ideale I, il suo radicale \sqrt{I} è un ideale.

Dimostrazione.

Vediamo intanto che se $a \in \sqrt{I}$, allora $a^n \in I$ per un qualche n, per cui $(ka)^n = k^n a^n \in I \forall k \in A$, cioè $ka \in \sqrt{I}$.

Siano ora $a,b \in I$, cioè $a^n \in I$ e $b^m \in I$ per certi interi. Dimostriamo che

 $(a+b)^{n+m} \in I$.

$$(a+b)^{m+n} = \sum_{k=0}^{m+n} \binom{n+m}{k} a^k b^{m+n-k}$$
$$= \sum_{k=0}^{n} \binom{n+m}{k} a^k b^{m+n-k} + \sum_{k=n+1}^{m+n} \binom{n+m}{k} a^k b^{m+n-k}$$

Osserviamo che nella prima sommatoria $m+n-k \geq m$, per cui possiamo raccogliere b^m ; analogamente nella seconda $k \geq n$, per cui raccogliamo a^n . Ma allora abbiamo una combinazione lineare di a^n e b^m che stanno entrambi in I, per cui tutta la somma sta in I.

Definiamo ora un ideale particolare:

Definizione 1.10 (Radicale di Jacobson).
$$J(A) = \bigcap_{\mathfrak{m} \subset A} \mathfrak{m}$$

Proposizione 1.5. $x \in J(A) \iff \forall y \in A \ 1 - xy \in A^*$

Dimostrazione.

⇐ Se $x \notin J(A)$, allora ∃m massimale tale che $x \notin \mathfrak{m}$, perciò l'ideale $(\mathfrak{m}, x) \supset \mathfrak{m}$ conincide con tutto l'anello A. Allora $A \ni 1 = m + xy$ con $m \in \mathfrak{m}$ e $y \in A$, ovvero $1 - xy \in \mathfrak{m}$ da cui $1 - xy \in A^*$, perché altrimenti $\mathfrak{m} = A$.

 \Longrightarrow Se $\alpha=1-xy\not\in A^*$, allora esiste un $\mathfrak m$ ideale massimale tale che $\alpha\in\mathfrak m$. Ma allora $x\not\in\mathfrak m,y\not\in\mathfrak m$, altrimenti si avrebbe $1\in\mathfrak m$ e perciò $\mathfrak m=A$. Dunque $x\not\in J(A)\subset\mathfrak m$.

Definizione 1.11 (Anello locale). Dato un anello A, se esiste un unico ideale \mathfrak{m} massimale, allora A è detto *locale* e di solito si indica con (A, \mathfrak{m})

Esempio. L'anello $\mathbb{Z}/p^n\mathbb{Z}$ è locale: gli unici ideali propri sono (p^i) con i=1,..,n-1 e in particolare l'unico ideale massimale è (p)

Definizione 1.12. Dato un anello A e due ideali $I, J \subset A$, si dice che I e J sono comassimali o coprimi se I+J=A

Proposizione 1.6. Siano $I, J \subset A$ due ideali comassimali, allora $I \cap J = IJ$

Dimostrazione.

Osserviamo intanto che l'inclusione $I \cap J \supset IJ$ è vera sempre.

Dimostriamo allora che se $\alpha \in I \cap J$, allora $\alpha \in IJ$. Infatti essendo I, J comassimali esistono $i \in I, j \in J$ tali che 1 = i + j.

Ma allora $\alpha = \alpha \cdot 1 = \alpha \cdot i + \alpha \cdot j$ ed entrambi i termini appartengono all'ideale IJ.

Osservazione. Il viceversa non è in generale vero: se consideriamo come anello K[x,y] e prendiamo gli ideali (x),(y), vale chiaramente $(x)\cap(y)=(xy)$, ma ad esempio nell'ideale (x)+(y) non troviamo le costanti.

Esempio. Su \mathbb{Z} , osserviamo che $(a) + (b) = (\gcd(a,b))$ mentre $(a) \cap (b) = (\operatorname{lcm}(a,b))$. Vediamo poi che se $\gcd(a,b) = 1$ allora $\operatorname{lcm}(a,b) = a \cdot b$, che è esattamente la proposizione.

Lemma 1.7 (di scansamento).

a) Siano A un anello, P un ideale primo, I_1, \ldots, I_n ideali. Vale

$$\bigcap I_i \subset P \Longrightarrow \exists j \mid I_j \subset P$$

Inoltre se $\bigcap I_i = P$ vale anche $I_i = P$.

b) Siano A un anello, $I \subset A$ un ideale, P_1, \ldots, P_n ideali primi. Vale

$$I \subset \bigcup P_i \Longrightarrow \exists j \mid I \subset P_j$$

Dimostrazione.

- a) Dimostriamo che $\forall i \ I_i \not\subset P \Longrightarrow \bigcap I_i \not\subset P$. L'ipotesi ci fornisce allora per ogni i un elemento $x_i \in I_i$ e $x_i \not\in P$. Ma allora $x_1 \cdots x_n \in \prod I_i \subset \bigcap I_i$, ma $x_1 \cdots x_n \not\in P$ poiché prodotto di elementi che non stanno in un ideale primo. Infine se $P = \bigcap I_i$, allora $I_i \supset \bigcap I_i = P$, e in particolare $P \subset I_j$, dove I_j è l'ideale tale che $I_j \subset P$ che abbiamo appena dimostrato esistere, da cui $P = I_j$.
- b) Dimostriamo per induzione su n che $\forall i \ I \not\subset P_i \Longrightarrow I \not\subset \bigcup P_i$. Il caso n=1 è banale, dimostriamo il passo induttivo $n-1 \to n$. Per ipotesi induttiva vale che $I \not\subset \bigcup_{i \neq k} P_i \ \forall k$, ovvero $\exists x_k \in I$ per cui $x_k \not\in \bigcup_{i \neq k} P_i$. Osserviamo che se per un qualche $k, \ x_k \not\in P_k$, allora la tesi segue poiché $\bigcup P_i = P_k \cup \bigcup_{i \neq k} P_i$.

Supponendo per assurdo $x_i \in P_i \quad \forall i$, consideriamo $\alpha = \sum_{i=1}^n \prod_{j \neq i} x_j =$

 $x_2 \cdots x_n + x_1 x_3 \cdots x_n + \cdots + x_1 \cdots x_{n-1}$.

Chiaramente $\alpha \in I$; inoltre $P_i \ni \alpha - x_i(\dots) = \prod_{j \neq i} x_j \notin P_i$ perché prodotto di fattori che non stanno in P_i . Assurdo.

1.3 Quozienti e omomorfismi

Cominciamo ad entrare nel vivo della teoria degli anelli, e vediamo quali sono le relazioni che sussistono tra anelli diversi, e qual è la struttura e l'utilità degli anelli quozienti.

Definizione 1.13 (Omomorfismo). Dati due anelli A, B, una funzione $f: A \to B$ si dice *omomorfismo di anelli* se valgono le seguenti proprietà:

- f(a+b) = f(a) + f(b)
- f(ab) = f(a)f(b)

6

•
$$f(1_A) = 1_B$$

Osservazione. Esiste un unico omomorfismo di anelli $f: \mathbb{Z} \to \mathbb{Z}$, ed è l'identità. Infatti \mathbb{Z} è un gruppo ciclico e fissando l'immagine di 1 si fissa l'omomoerfismo.

Definizione 1.14. Si chiama *nucleo* dell'omomorfismo l'ideale $ker(f) = \{a \in A \mid f(a) = 0\}.$

Si dice immagine dell'omomorfismo il sottoanello $Im(f) = \{b \in B \mid \exists a \in A \ f(a) = b\}$

Come per i gruppi, possiamo definire una relazione d'equivalenza su A: Fissato un ideale I, diciamo che $a\equiv b\pmod{I}$ se $a-b\in I$.

Le classi di equivalenza sono i laterali, che sono della forma a+I; l'insieme dei laterali è detto quoziente e si indica con A_{I} .

Proposizione 1.8. Il quoziente $^{A}\!\!/_{I}$ ha una struttura di anello con le operazioni indotte da A:

- (a+I) + (b+I) = (a+b) + I
- (a+I)(b+I) = ab+I

Possiamo allora definire un'importante mappa, la proiezione al quoziente:

$$\Pi: A \to {}^{A}\!\!/_{I}$$

$$a \mapsto a + I$$

In particolare osserviamo che se $J\subset A$ è un ideale di A, allora $\Pi(J)=J/I$ è un ideale di A/I. Perciò vale la seguente

Proposizione 1.9. Esiste una corrispondenza biunivoca tra gli ideali di $^{A}\!\!/_{I}$ e gli ideali $A\supset J\supset I$. Tale bigezione è data da $\Pi^{-1}(L)=\{b\in A\mid \Pi(b)\in L\}$

Vi sono inoltre i fondamentali teoremi di omomorfismo, analoghi a quelli sui gruppi

Teorema 1.10.

- 1) Sia $f: A \to B$ un omomorfismo. Allora $A/\ker(f) \cong Im(f)$
- 2) Data una catena di ideali $I \subset J \subset A$ vale

$$A/I/J/I \cong A/J$$

Dimostrazione.

1) Chiamiamo I = ker(f); sia $\varphi : \frac{A}{I} \to Im(f)$ definita da $\varphi(a+I) = f(a)$. Si osserva banalmente che φ è un omomorfismo. Supponiamo che $\varphi(a+I) = \varphi(b+I)$, ma allora f(a) = f(b) ovvero f(a-b) = 0 e $a-b \in I$; quindi φ è iniettiva. Inoltre è chiaramente surgettiva, perciò è un isomorfismo.

2) Definiamo $f: \frac{A}{I} \to A/J$ come $f([b]_I) = [b]_J$, ed è una buona definizione in quanto se $[b_1]_I = [b_2]_I$ allora $b_1 - b_2 \in I \subset J$. Vediamo subito che è

Per il punto 1), basta dimostrare che ker(f) = J/I; ma questo si vede subito in quanto $f([b]_I) = 0 \iff b \in J$, perciò $ker(f) = \{j+I \mid j \in I\}$ J} = J_I .

Osserviamo ora che ci sono delle ben precise relazioni tra le proprietà dell'ideale I e quelle dell'anello quoziente $^{A}\!/_{I}$. In particolare vale

Proposizione 1.11.

- l'ideale I è massimale $\iff A_I$ è un campo
- l'ideale I è primo \iff A_I è un dominio
- l'ideale I coincide con $\sqrt{I} \iff A/I$ è ridotto
- l'ideale I è primario $\iff N(A/I) = D(A/I)$

Teorema 1.12 (cinese del resto). Sia A un anello $e I_1, \ldots, I_n$ ideali a coppie coprimi. Allora vale ${}^{A}/I_{1} \times \cdots \times I_{n} \cong A/I_{1} \times \cdots \times A/I_{n}$

Dimostrazione.

Consideriamo l'omomorfismo di proiezione $\varphi: A \to A/I_1 \times \cdots \times A/I_n$ che manda a in $([a]_{I_1}, \ldots, [a]_{I_n})$. Dimostriamo che è surgettiva.

Prendiamo $(a_1, \ldots, a_n) \in A/I_1 \times \cdots \times A/I_n$; poiché gli ideali sono a coppie comassimali, $\forall i, j$ esistono $\alpha_i^{(j)} \in I_i, \alpha_j^{(i)} \in I_j$ tali che $\alpha_i^{(j)} + \alpha_j^{(i)} = 1$.

Costruiamo $L_i = \prod_{j \neq i} a_j^{(i)}$ e poi $a = \sum_{i=1}^n a_i L_i$. Allora vediamo che $\varphi(a) = (a_1, \dots, a_n)$, poiché $L_i \equiv 0 \pmod{I_j}$ se $j \neq i$, mentre $L_i \equiv \prod (1 - \alpha_i^{(j)}) \equiv 1 \pmod{I_i}$.

Osserviamo che ker $\varphi = \bigcap I_i$. Dimostriamo che $\bigcap I_i = \prod I_i$; per induzione, basta che $(I_n, \prod_{i \leq n-1} I_i) = (1)$. Ma allora prendiamo $L_n \in \prod_{i \leq n-1} I_i$ e vediamo che vale $L_n \equiv 1 \pmod{I_n}$. \square

Osservazione. Se come anello consideriamo $\mathbb{R}[x]$ e come ideali quelli generati da polinomi di primo grado $I_i = (x - a_i)$, vediamo che gli L_i sono proprio i polinomi interpolanti di Lagrange.

Ideali contratti ed estesi

Siano A, B due anelli e $f: A \to B$ un omomorfismo. Prendiamo poi $I \subset A$ e $J \subset B$ ideali.

Definizione 1.15.

- L'ideale contratto di J è $J^c=f^{-1}(J)=\{a\in A\mid f(a)\in J\}$
- L'ideale esteso di I è $I^e = (f(I)) = \{\sum b_i f(a_i) \mid a_i \in I\}$ cioè l'ideale generato dall'immagine di I

Vale la seguente proprietà

Proposizione 1.13.

- 1. J^c è un ideale $\forall J \subset B$ ideale.
- 2. se f è surgettiva, allora f(I) è un ideale.

Dimostrazione.

- 1. Siano $a, b \in J^c$, allora $f(a), f(b) \in J$; ma allora $J \ni f(a) + f(b) = f(a+b)$ cioè $a + b \in J^c$. Inoltre se $c \in A$, $J \ni f(c)f(a) = f(ca)$ cioè $ca \in J^c$
- 2. Vale banalmente $f(I) \subset (f(I))$; prendiamo ora $b \in I^e$ ovvero $b = \sum b_i f(a_i)$. Poiché f è surgettiva, esistono $c_i \in A$ tali che $b_i = f(c_i) \ \forall i$. Allora $b = f(\sum c_i a_i) \in f(I)$.

Esercizio 1.2. Valgono le uguaglianze $I^{ece} = I$ e $J^{cec} = J$

Proposizione 1.14. La contrazione di un ideale primo è primo.

Dimostrazione.

Sia $J \subset B$ un ideale primo; supponiamo $ab \in J^c$, ovvero $f(ab) \in J$. Ciò vuol dire $f(a)f(b) \in J$, ed essendo primo abbiamo $f(a) \in J$ oppure $f(b) \in J$, cioè $a \in J^c$ o $b \in J^c$

1.5 Esercizi svolti

Problema 1.1. Se A è un anello finito, allora $A = D(A) \cup A^*$

Problema 1.2. Dato un anello A e un ideale $I \subset A$ tale che $\forall x \notin I \ x \in A^*$, dimostrare che A è locale e I è il suo massimale.

Problema 1.3. Dato un anello A in cui ogni ideale primo è principale, allora ogni ideale è principale (A è un PIR).

Problema 1.4. D(A) è unione di ideali primi; inoltre $D(A) = \bigcup \sqrt{\operatorname{Ann}(a)}$

Problema 1.5. Se \sqrt{I} è massimale, allora I è primario.

2 Anelli di polinomi

2.1 Polinomi in una variabile

Sia A un anello e consideriamo l'anello di polinomi A[x]. Prendiamo il morfismo di inclusione $i:A\hookrightarrow A[x]$, siano $I\subset A, J\subset A[x]$ e studiamo I^e,J^c . Si vede subito che vale

Proposizione 2.1.

- $J^c = J \cup A$
- $I^e = I[x]$

Vale inoltre la importante

Proposizione 2.2. Dato $I \subset A$ ideale, $A[x]/_{I[x]} \cong (A/_I)[x]$

Dimostrazione.

Consideriamo $\varphi: A[x] \to \left(\frac{A}{I} \right)[x]$ tale che $\varphi\left(\sum a_i x^i\right) = \sum \pi(a_i) x^i$ dove π è la proiezione al quoziente.

È chiaramente surgettiva; inoltre $ker\varphi$ è esattamente I[x], perciò il risultato segue dal primo teorema di omomorfismo.

Corollario. Se $I \subset A$ è primo, allora $I^e = I[x]$ è primo in A[x]

Infatti, se A_I è dominio, anche A_I è dominio; ma questo è esattamente A_I , perciò I[x] è primo.

Detto R = A[x] con A anello, cerchiamo di identificare N(R), D(R) e R^* .

Proposizione 2.3. Sia $f = \sum a_i x^i \in R$. Allora

1.
$$f \in R^* \iff a_0 \in A^* \ e \ a_1, \dots, a_n \in N(A)$$

2.
$$f \in N(R) \iff a_i \in N(A) \ \forall i$$

3.
$$f \in D(R) \iff \exists a \in A \ tale \ che \ af = 0$$

Dimostrazione.

- 2, \Leftarrow Detti m_i gli indici di nilpotenza di a_i , si vede facilmente che $f^{m_1+\dots+m_n+1}=0$
- 1, \Leftarrow Usando la freccia appena dimostrata di 2, sappiamo che $g(x) = a_1x + \cdots + a_nx^n \in N(R)$; ma allora $f = a_0 + g$ è somma di un invertibile e un nilpotente, quindi è ancora invertibile.
- $1,\Rightarrow \mathrm{Sia}\ g=\sum b_ix^i$ di grado m tale che fg=1; guardando il termine noto sappiamo $a_0b_0=1$ perciò a_0 e b_0 sono invertibili. Considerando poi i termini di grado maggiore abbiamo $0=a_nb_m$ e $0=a_nb_{m-1}+a_{n-1}b_m$, da cui moltiplicando la seconda per a_n otteniamo $a_n^2b_{m-1}=0$. Continuando così ricaviamo $a_n^{r+1}b_{m-r}=0$; se prendiamo r=m abbiamo $a_n^{m+1}b_0=0$ ed essendo b_0 invertibile, abbiamo a_n nilpotente.

Riapplichiamo ora questo ragionamento a $f-a_nx^n$ che è ancora invertibile.

 $2, \Rightarrow \text{ Se } f$ è nilpotente, anche $xf \in N(R)$; ma allora $1 + xf \in R^*$ e per la 1 si deve avere $a_0, \ldots, a_n \in N(A)$.

2.2 Ideali monomiali

Prendiamo ora un campo k e consideriamo l'anello $A=k[x_1,\ldots,x_n]$. Diamo una notazione per rendere le scritture più compatte: chiamiamo $X=(x_1,\ldots,x_n)$ e se $\alpha=(a_1,\ldots,a_n)$ allora X^{α} indica il monomio $x_1^{a_1}\cdots x_n^{a_n}$. In generale un $f\in k[X]$ si scrive come $f=\sum c_{\alpha}X^{\alpha}$ con $c_{\alpha}\in k$, e la somma è finita.

Definizione 2.1. Un ideale $I \subset A$ è detto monomiale se $\exists E \in \mathbb{N}^n$ tale che $I = (X^{\alpha}, \alpha \in E)$

Proposizione 2.4. Dato un ideale I monomiale, $f = \sum c_{\beta} X^{\beta} \in I$ se e solo se $X^{\beta} \in I \ \forall \beta$

Dimostrazione.

Una freccia è ovvia. Se invece
$$f \in I$$
, allora $f = \sum_{\alpha \in E} P_{\alpha}(X) X^{\alpha}$ con $P_{\alpha}(X) = \sum d_{\gamma,\alpha} X^{\gamma}$ con i $d \in k$. Quindi $\sum c_{\beta} X^{\beta} = f = \sum d_{\gamma,\alpha} X^{\alpha+\gamma}$, perciò ogni X^{β} è della forma $X^{\alpha+\gamma}$ ovvero $X^{\beta} \in I$

Osserviamo che agli ideali monomiali corrispondono in maniera ovvia certi sottoinsiemi di \mathbb{N}^n grazie alla mappa $X^{\alpha} \mapsto (a_1, \dots, a_n)$.

Definizione 2.2. Un sottoinsieme non vuoto $E \subset \mathbb{N}^n$ si dice \mathcal{E} -sottoinsieme se $\forall \alpha \in E, \forall \beta \in \mathbb{N}^n$ anche $\alpha + \beta$ sta in E.

 $F \subset E$ si dice frontiera di E se $\forall \alpha \in E \ \exists \gamma \in F, \beta \in \mathbb{N}^n$ tali che $\alpha = \gamma + \beta$

Lemma 2.5 (Dickson). Ogni \mathcal{E} -sottoinsieme E ha una frontiera finita.

Dimostrazione.

Facciamo una induzione su n.

Se n=1, allora $E\subset \mathbb{N}$; ma poiché \mathbb{N} è ben ordinato, la frontiera è semplicemente $\min(E)$.

Passo induttivo $n \Rightarrow n+1$: $E \subset \mathbb{N}^{n+1}$.

Consideriamo la proiezione $\Pi: \mathbb{N}^{n+1} \to \mathbb{N}^n$ che ignora l'ultima coordinata. Allora $\Pi(E)$ è ancora un \mathcal{E} -sottoinsieme: infatti $\Pi(\alpha) + \gamma = \Pi(\alpha + (\gamma, 0))$.

Per ipotesi induttiva $\Pi(E)$ ha una frontiera finita $\hat{F} = \{\hat{\gamma}_1, \dots, \hat{\gamma}_k\}$. Siano $\gamma_i \in E$ tali che $\Pi(\gamma_i) = \hat{\gamma}_i$, e $\tilde{F} = \{\gamma_i\}$.

Prendiamo \bar{a} il massimo delle componenti n+1-esime dei γ_i , e per ogni $a < \bar{a}$ poniamo $E_a = E \cap (\mathbb{N}^n \times \{a\})$.

Si vede che $\Pi(E_a)$ è ancora un \mathcal{E} -sottoinsieme di \mathbb{N}^n e quindi ha frontiera finita $\hat{F}_a = \{\gamma_{a,1}, \ldots, \gamma_{a,k_a}\}$; rimontiamo questo insieme in E: $F_a = \{(\gamma_{a,i}, a) \mid i = 1, \ldots, k_a\}$.

Allora la frontiera di E è $F = \tilde{F} \cup \left(\bigcup_{a < \bar{a}} F_a\right)$.

Sia infatti $\alpha = (a_1, \dots, a_n, a_{n+1}) \in E$; se $a_{n+1} \geq \bar{a}$, allora esiste un $\beta \in \tilde{F}$ tale che $\alpha - \beta \in \mathbb{N}^{n+1}$; se $a_{n+1} < \bar{a}$, allora $\alpha \in E_{a_{n+1}}$ per cui $\exists \gamma \in F_{a_{n+1}}$ per cui $\alpha - \gamma \in \mathbb{N}^{n+1}$.

Corollario. Ogni ideale monomiale è finitamente generato

Proposizione 2.6. Dato un \mathcal{E} -sottoinsieme $E \subset \mathbb{N}^n$, esiste un'unica frontiera di cardinalità minima.

Dimostrazione.

Siano $F = \{a_1, \ldots, a_k\}$ e $G = \{b_1, \ldots, b_k\}$ due frontiere minimali di E; allora $E = \bigcup (a_i + \mathbb{N}^n) = \bigcup (b_i + \mathbb{N}^n)$.

In particolare per ogni i esiste un $j = \eta(i)$ tale che $a_i \in b_j + \mathbb{N}^n$. Se η non fosse surgettiva, allora G non sarebbe minimale. Quindi $\eta : \{1, \ldots, k\} \to \{1, \ldots, k\}$ è una permutazione.

Analogamente esiste una permutazione ϵ tale che $b_i \in a_{\epsilon(i)} + \mathbb{N}^n$. Ma allora $a_i + \mathbb{N}^n \subset b_{\eta(i)} + \mathbb{N}^n \subset a_{\epsilon(\eta(i))} + \mathbb{N}^n$; poiché F è frontiera minimale, deve essere $\epsilon \circ \eta = \text{id}$ e allora $a_i = b_{\eta(i)}$, cioè F e G sono lo stesso insieme.

Vediamo ora alcune operazioni tra ideali monomiali. Siano $I = (m_1, \ldots, m_k)$ e $J = (n_1, \ldots, n_h)$; allora

- $I + J = (m_1, \dots, m_k, n_1, \dots, n_h)$
- $I \cap J = (\operatorname{lcm}(m_i, n_i))$
- $I: m = \left(\frac{m_i}{\gcd(m_i, m)}\right)$

Ricordiamo inoltre il seguente ed utile lemma:

Lemma 2.7. Se I
in m ideale monomiale, m e n due monomi coprimi, allora $(I, mn) = (I, m) \cap (I, n)$

Dimostrazione.

L'inclusione $(I, mn) \subset (I, m) \cap (I, n)$ è banale. Se ora $v \in (I, m) \cap (I, n)$ un monomio, o $v \in I$ (e allora il lemma è vero), oppure $v \notin I$ e perciò $m \mid v$ e $n \mid v$; essendo (m, n) = 1, vale $mn \mid v$.

Infine enunciamo alcune caratterizzazioni di ideali monomiali:

Proposizione 2.8. Sia I un ideale monomiale. Allora

- $I \ \dot{e} \ primo \iff I = (x_{i_1}, \dots, x_{i_k}), \ ovvero \ \dot{e} \ generato \ da \ variabili$
- ullet I è radicale \iff I è generato da prodotti di variabili squarefree
- $I \ \hat{e} \ primario \iff I = (x_{i_1}^{k_1}, \dots, x_{i_s}^{k_s}, m_1, \dots, m_t) \ con \ m_i \in k[x_{i_1}, \dots, x_{i_s}]$
- $I \ \hat{e} \ irriducibile \iff I = (x_{i_1}^{k_1}, \dots, x_{i_s}^{k_s})$

2.3 Riduzione di polinomi

Cerchiamo ora di trovare un modo di fare la divisione di polinomi anche in più variabili, generalizzando il procedimento in una variabile: se dobbiamo dividere f(x) per g(x), dividiamo intanto il termine di grado massimo di f(x) per il termine di grado massimo di g(x).

Il primo problema è dunque decidere qual è il termine di grado massimo di un polinomio in più variabili, e questo si può fare in diversi modi; partiamo dunque dalla seguente definizione.

Definizione 2.3. Una relazione d'ordine < su \mathbb{N}^n è detto ordinamento monomiale se:

- < è totale
- \bullet < è un buon ordinamento, ovvero se ogni sotto
insieme non vuoto ha minimo
- < rispetta la somma, ovvero se $\alpha < \beta$ anche $\alpha + \gamma < \beta + \gamma$ per ogni $\gamma \in \mathbb{N}^n$

Vi sono diversi ordinamenti monomiali possibili, i più usati sono i seguenti:

- lex: $\alpha <_L \beta \iff$ la prima coordinata non nulla di sinistra di $\beta \alpha$ è positiva.
- $deg lex: \alpha <_{DL} \beta \iff |\alpha| < |\beta|, oppure |\alpha| = |\beta| e \alpha <_L \beta.$
- $\deg \operatorname{rev} \operatorname{lex}$: $\alpha <_{DRL} \beta \iff |\alpha| < |\beta|$ oppure $|\alpha| = |\beta|$ e la prima cooordinata non nulla da destra di $\beta \alpha$ è negativa.

Fissato ora un ordinamento monomiale <, possiamo parlare di multigrado e termine di testa: dato un polinomio $f = \sum c_{\alpha} X^{\alpha}$, posso considerare

- $Deg_{\leq}(f) = \max\{\alpha \in \mathbb{N}^n \mid c_{\alpha} \neq 0\}$ il multigrado
- lt $(f) = c_{\delta}X^{\delta}$ dove $\delta = Deg_{<}(f)$ è il termine di testa, o "leading term"

Siamo ora pronti a fare la divisione:

Definizione 2.4. Dati $f, g, h \in A = k[x_1, \dots, x_n]$ diciamo che $f = \sum t_{\alpha}$ riduce ad h modulo g, e scriviamo $f \xrightarrow{g} h$ se $\exists \alpha$ per cui $\mathrm{lt}(g) \mid t_{\alpha} \in h = f - \frac{t_{\alpha}}{\mathrm{lt}(g)} \cdot g$

Esempio. Conti...

Quello che ci interessa davvero però è ridurre modulo molti polinomi, perciò introduciamo la seguente notazione

Definizione 2.5. Dati $f, f_1, \ldots, f_s \in A$ diciamo che f riduce ad h modulo $F = \{f_1, \ldots, f_s\}$ e scriviamo $f \xrightarrow{F}_* h$ se esistono i_1, \ldots, i_k e polinomi h_1, \ldots, h_{k-1} tali che $f \xrightarrow{f_{i_1}} h_1 \xrightarrow{f_{i_2}} \ldots \xrightarrow{f_{i_k}} h$

Diciamo inoltre che h è ridotto rispetto ad F se non posso fare altre riduzioni, ovvero o h=0 oppure per ogni termine t di h vale che $\operatorname{lt}(f_i) \nmid t$

Ispirandoci al processo di riduzione, possiamo definire un algoritmo di divisione nella maniera seguente

```
 \begin{aligned} \mathbf{Data:} \ & f, f_1, \dots, f_s; < \\ \mathbf{Result:} \ & f = \sum u_i f_i + r, \ \mathrm{con} \ r \ \mathrm{ridotto} \ \mathrm{modulo} \ \{f_1, \dots, f_s\} \ \mathrm{e} \\ & Def_{<}(f) \geq \max(Deg_{<}(r), Deg_{<}(u_i f_i)) \ \forall i \\ u_i &= 0, r = 0, h = f; \\ \mathbf{while} \ & h \neq 0 \ \mathbf{do} \\ & \mathbf{if} \ \exists i \ tale \ che \ \mathrm{lt}(f_i) \ | \ \mathrm{lt}(h) \ \mathbf{then} \\ & | \ \mathrm{scegli} \ j \ \mathrm{il} \ \mathrm{minimo} \ \mathrm{indice} \ \mathrm{per} \ \mathrm{cui} \ \mathrm{vale} \ \mathrm{la} \ \mathrm{divisibilita}; \\ & | \ u_j &= u_j + \frac{\mathrm{lt}(h)}{\mathrm{lt}(f_j)}; \\ & | \ h &= h - \frac{\mathrm{lt}(h)}{\mathrm{lt}(f_j)} \cdot f_j; \\ & \mathbf{else} \\ & | \ r &= r + \mathrm{lt}(h); \\ & | \ h &= h - \mathrm{lt}(h); \\ & \mathbf{end} \end{aligned}
```

Algorithm 1: Algoritmo di divisione

2.4 Basi di Gröbner

Caratterizzazione Alg Buchberger Eliminazione 0-dimensionale

2.5 Risoluzione dei sistemi di equazioni polinomiali

Varietà affine Risultante Estensione Nullstellensatz

3 Moduli