IF3191- Pengenalan OS

Henny Y. Zubir STEI - ITB

STEI/HY/Agt 2008 IF3055 - Intro Page 1

Ikhtisar

- Overview Sistem Komputer
- Mengapa Belajar OS?
- Review Hardware
 - Arsitektur, komponen, memori, control unit,
 I/O, perangkat penyimpanan, interrupt
- Konsep Dasar OS
 - Sejarah OS, overview fungsi OS, struktur OS

Overview Sistem Komputer

Banking system	Airline reservation	Web browser	Application programs
Compilers	Editors	Command interpreter	System
Operating system		programs	
Machine language			
Microarchitecture		Hardware	
Physical devices			

STEI/HY/Agt 2008 IF3055 - Intro Page 3

Komponen Sistem Komputer

- 1. **Hardware** menyediakan sumber daya komputasi dasar (CPU, memori, perangkat I/O)
- 2. **Sistem operasi** mengontrol dan mengkoordinasikan penggunaan H/W antra berbagai program aplikasi utk beragam user
- 3. **Program aplikasi** mendefiniskan cara penggunaan sumber daya sistem utk memecahkan persoalan komputasi user (kompilator, sistem basisdata, video games, aplikasi bisnis)
- 4. **Users** (orang, mesin, komputer lainnya)

Translasi Program

Source

int a, b, c, d; . . . a = b + c; d = a - 100;

Assembly Language

Code for a = b + c load R3,b load R4,c add R3,R4 store R3,a

; Code for d = a - 100 load R4,=100 subtract R3,R4 store R3,d

Machine Language

2 Ptb

STEI/HY/Agt 2008 IF3055 - Intro Page 7

Unit Memori

STEI/HY/Agt 2008 IF3055 - Intro

Control Unit

Control Unit

Primary Memory

R3,b

R4,c

load load

Operasi Control Unit:

- •Fase **Fetch**: instruksi diperoleh dari memori
- •Fase Execute: operasi ALU, referensi data memori, I/O, dll

STEI/HY/Agt 2008 IF3055 - Intro Page 9

(b) A superscalar CPU

STEI/HY/Agt 2008 IF3055 - Intro

Media Penyimpanan: Struktur

- Memori utama media penyimpanan volatile yg dpt diakses langsung oleh CPU
- Penyimpanan sekunder ekstensi memori utama yg menyediakan kapasitas penyimpanan non-volatile yg sangat besar
- Disk magnetik piringan logam/kaca yg kuat yg ditutupi dgn bahan perekam magnetis
 - Permukaan disk secara lojik dibagi menjadi **track**, yg terdiri dari **sektor**
 - disk controller menentukan interaksi lojik antara perangkat dan komputer

STEI/HY/Agt 2008 IF3055 - Intro Page 11

Media Penyimpanan: Hirarki Typical access time Typical capacity <1 KB 1 nsec Registers 2 nsec 1 MB Cache 10 nsec Main memory 64-512 MB 10 msec 5-50 GB Magnetic disk 100 sec 20-100 GB Magnetic tape Hirarki media: Kecepatan akses Biaya volatilitas Page 12 STEI/HY/Agt 2008

IF3055 - Intro

Media Penyimpanan: Disk

STEI/HY/Agt 2008 IF3055 - Intro

Operasi I/O (1)

- (a)Contoh tahap memulai perangkat I/O dan membangkitkan interrupt
- (b) Bagaimana CPU diinterupsi

STEI/HY/Agt 2008 IF3055 - Intro Page 15

Operasi I/O

- Perangkat I/O dan CPU dpt melakukan eksekusi secara konkuren
- Tiap device controller bertanggung jawab utk tipe perangkat tertentu
- Tiap device controller memiliki **buffer lokal**
- CPU memindahkan data dari/ke memori utama ke/dari buffer lokal
- I/O berlangsung dari perangkat ke buffer lokal di controller
- Device controller membangkitkan interrupt untuk memberi tahu CPU bahwa operasinya telah selesai

Interrupt: Fungsi Umum

- Interrupt mengalihkan kontrol eksekusi dari instruksi yg sdg berlangsung ke ISR
- Alamat instruksi yg diinterupsi hrs disimpan
- Sementara eksekusi suatu ISR berlangsung, interrupt lain yg masuk hrs di-disable
- Trap merupakan interrupt yg dibangkitkan software karena adanya error atau permintaan user
- Sistem operasi merupakan interrupt-driven

STEI/HY/Agt 2008 IF3055 - Intro Page 17

Interrupt: Penanganan Interrupt

- OS memelihara state CPU dgn menyimpan isi register dan PC
- Menentukan tipe interrupt yg terjadi:
 - polling
 - vectored interrupt system
- Kode segmen yg terpisah menentukan tindakan apa yg harus dilakukan utk tiap tipe interrupt

Peran OS

- OS sebagai *extended machine*
 - Menyembunyikan detil kerumitan yg harus dilakukan
 - Menyediakan antarmuka bagi user → lebih mudah digunakan
- OS sebagai *resource manager*
 - Tiap program memperoleh alokasi waktu, ruang, dll

STEI/HY/Agt 2008 IF3055 - Intro

Page 19

Beberapa Definisi OS

- Resource allocator mengelola dan mengalokasikan sumber daya
- **Control program** mengontrol eksekusi program user dan operasi perangkat I/O
- Kernel suatu program yg berjalan terusmenerus selama komputer dinyalakan (selain dari itu merupakan program aplikasi)

Mengapa Belajar OS?

- Memahami model operasi
 - Mempermudah penggunaan sistem
 - Memungkinkan penulisan kode program secara efisien
- Memahami perancangan sistem
- Bagaimana caranya?
 - Teori & konsep
 - Analogi
 - Terjun langsung → get your hands dirty

STEI/HY/Agt 2008 IF3055 - Intro Page 21

Sejarah Sistem Operasi

- Generasi I (1945 1955)
 - Tabung hampa, plugboards
- Generasi II (1955 1965)
 - Transistor, sistem batch
- Generasi III (1965 1980)
 - IC & Multiprogramming
- Generasi IV (1980 sekarang)
 - PC

Sistem Batch (2)

- Job (file perintah OS) dipersiapkan secara offline
- Sekumpulan (batch) job diberikan pd OS sekaligus
- OS memproses job satu per satu
- Tidak ada interaksi manusia-komputer
- OS mengoptimasi penggunaan sumberdaya

Sistem Batch Multiprogramming (1)

- Beberapa job berada di memori utama pd saat yg sama
- Penggunaan CPU digilirkan antar job

STEI/HY/Agt 2008 IF3055 - Intro

Page 25

Sistem Batch Multiprogramming (2)

- Fitur OS yg diperlukan utk multiprogramming:
 - I/O routine yg disediakan oleh sistem
 - Manajemen memori sistem harus mengalokasikan memori utk beberapa job
 - Penjadwalan CPU sistem harus memilih diantara beberapa job yg siap utk dijalankan
 - Alokasi perangkat

Sistem Time-sharing

- CPU digilirkan diantara beberapa job yg berada di memori dan disk (CPU dialokasikan utk suatu job hanya jika job tsb berada di memori)
- Job dipindahkan dari/ke memori ke/dari disk
- Menyediakan komunikasi on-line antara user dan sistem; perintah kendali diberikan bukan dari card reader, melainkan dari keyboard user
- Sistem on-line harus tersedia bagi user utk mengakses data dan kode

STEI/HY/Agt 2008 IF3055 - Intro

Page 27

Sistem Personal Computer

- Personal computers sistem komputer yg didedikasikan utk satu user
- Perangkat I/O keyboards, mouse, layar peraga, printer sederhana
- Dpt mengadopsi teknologi yg dikembangkan utk OS yg besar
- Penggunaan personal seringkali tidak memerlukan CPU atau fitur proteksi yg canggih

Sistem Paralel (1)

- Sistem multiprosesor dgn > 1 CPU yg saling berkomunikasi
- Tightly coupled system prosesor menggunakan memori dan clock yg sama; komunikasi biasanya melalui memori yg digunakan
- Keuntungan sistem paralel:
 - Peningkatan throughput
 - Ekonomis
 - Peningkatan keandalan

STEI/HY/Agt 2008 IF3055 - Intro Page 29

Sistem Paralel (2)

- Symmetric multiprocessing (SMP)
 - Tiap proses menjalankan OS yg sama
 - Banyak proses dpt dijalankan sekaligus tanpa menurunkan performansi
 - Kebanyakan OS modern mendukung SMP
- Asymmetric multiprocessing
 - Tiap prosesor diberi tugas khusus; prosesor master menjadwalkan dan mengalokasikan pekerjaan ke prosesor slave
 - Lebih banyak digunakan pd sistem yg sangat besar

Sistem Real-time

- Sering digunakan pd perangkat kendali dgn aplikasi khusus spt pengendalian eksperimen, sistem kendali industri, dan beberapa sistem peraga
- Constraint waktu yg tepat dan terdefinisi dgn baik
- Hard real-time system
 - Data disimpan di memori jangka pendek atau ROM, media penyimpanan sekunder terbatas atau tidak ada
 - Konflik dgn sistem time-sharing, tidak didukung oleh OS biasa
- Soft real-time system
 - Penggunaan terbatas pd kendali industri atau robotika
 - Bermanfaat utk aplikasi yg memerlukan fitur OS canggih (multimedia, virtual reality)

STEI/HY/Agt 2008 IF3055 - Intro Page 31

Sistem Terdistribusi (1)

- Mendistribusikan komputasi pd beberapa prosesor
- Loosely coupled system tiap prosesor memiliki memori lokal tersendiri; prosesor saling berkomunikasi melalui berbagai jalur komunikasi (bus kecepatan tinggi, saluran telepon)
- Keunggulan sistem terdistribusi
 - Penggunaan bersama sumber daya
 - Peningkatan komputasi pemerataan beban
 - Keandalan
 - Komunikasi

Sistem Terdistribusi (2)

- Network OS
 - Menyediakan penggunaan file bersama
 - Menyediakan skema komunikasi
 - Independen thd komputer lainnya di jaringan
- Distributed OS
 - Tingkat otonomi antar komputer lebih rendah
 - Seolah-olah ada satu OS yg mengontrol jaringan

STEI/HY/Agt 2008 IF3055 - Intro Page 33

Migrasi Konsep dan Fitur OS

STEI/HY/Agt 2008 IF3055 - Intro

Ragam OS yg Ada Saat Ini

- Mainframe OS
- Multiprosesor OS
- PC OS
- Realtime OS
- Network OS
- Embedded OS
- Smart Card OS

STEI/HY/Agt 2008 IF3055 - Intro Page 35

Konsep Dasar OS

- Komponen dasar OS:
 - Manajemen proses
 - Manajemen file
 - Manajemen I/O dan media penyimpanan
 - Sistem proteksi
 - Jaringan

Layanan OS

- Eksekusi program me-load program ke memori dan menjalankannya
- Operasi I/O utk membantu program user melakukan I/O krn program user tdk dpt melakukan operasi I/O secara langsung
- Manipulasi sistem file membaca, menulis, membuat, dan menghapus file
- **Komunikasi** pertukaran informasi antar proses yg berjalan pd komputer yg sama atau berbeda
- Pendeteksian kesalahan menjamin kebenaran komputasi utk mendeteksi kesalahan pd CPU, memori, perangkat I/O, atau program user

STEI/HY/Agt 2008 IF3055 - Intro

Page 37

Manajemen Proses

- Process: program yg dieksekusi.
- Proses memerlukan sumberdaya (waktu CPU, memori, file, dan perangkat I/O) utk menyelesaikan tugasnya
- Fungsi OS dalam manajemen proses:
 - Membuat dan menghapus proses
 - Menunda dan memulai kembali proses
 - Mendukung mekanisme utk sinkronisasi dan komunikasi antar proses

Manajemen Memori Utama

- **Memori**: array words atau bytes yg berukuran besar, masing2 dgn alamatnya sendiri
- Datanya dpt diakses secara cepat oleh CPU dan perangkat I/O
- Bersifat volatile, isinya dpt hilang jika terjadi kegagalan sistem
- Peran OS dlm manajemen memori:
 - Mengetahui bagian memori yg sedang diakses dan siapa yg mengakses
 - Menentukan proses mana yg akan di-load jika ada ruang memori yg tersedia
 - mengalokasikan dan mendealokasikan ruang memori ketika diperlukan

STEI/HY/Agt 2008 IF3055 - Intro Page 39

Manajemen Media Penyimpanan Sekunder

- Media penyimpanan sekunder merupakan back up thd memori utama
- Kebanyakan sistem komputer modern menggunakan disk sbg media penyimpanan on-line utk program dan data
- Peran OS dalam manajemen disk:
 - Pengelolaan ruang kosong
 - Alokasi penyimpanan
 - Penjadwalan disk

Manajemen Sistem I/O

- Sistem I/O terdiri dari
 - Sistem buffer-caching
 - Antarmuka device-driver umum
 - Drivers utk H/W spesifik

STEI/HY/Agt 2008 IF3055 - Intro Page 41

Manajemen File

- **File**: kumpulan informasi terkait yg didefinisikan oleh pembuatnya
- Umumnya, file merepresentasikan program dan data
- Peran OS dalam manajemen file:
 - Membuat dan menghapus file dan direktori
 - Mendukung primitif utk manipulasi file dan direktori
 - Pemetaan file ke media penyimpanan sekunder
 - Back up file pada media penyimpanan yg stabil

STEI/HY/Agt 2008 IF3055 - Intro

Sistem Proteksi

- **Proteksi**: mekanisme utk mengontrol akses oleh program, proses, atau user thd sumberdaya sistem dan pengguna
- Mekanisme proteksi haruslah:
 - Membedakan antara penggunaan sah dan tidak sah
 - Menspesifikasikan kontrol yg diterapkan
 - Menyediakan sarana utk menerapkannya

STEI/HY/Agt 2008 IF3055 - Intro

Page 43

Jaringan (Sistem Terdistribusi)

- Sistem terdistribusi merupakan kumpulan prosesor yg masing2 memiliki memori lokal dan clock sendiri
- Pd sistem ini prosesor terhubung melalui jaringan komunikasi
- Sistem terdistribusi menyediakan akses ke berbagai sumber daya sistem
- Akses ke sumber daya yg digunakan bersama memungkinkan:
 - Peningkatan kecepatan komputasi
 - Peningkatan ketersediaan data
 - Peningkatan keandalan

System Call

- System call menyediakan antarmuka antar program yg sedang berjalan dan OS
- 3 metode yg umum digunakan utk melewatkan parameter ant program yg sdg berjalan dan OS:
 - Melewatkan parameter pd register
 - Menyimpan parameter pd tabel di memori dan alamat tabel dilewatkan sbg parameter di register
 - Menyimpan (*push*) parameter pd stack oleh program dan mengeluarkan (*pop*) dari stack oleh OS

STEI/HY/Agt 2008 IF3055 - Intro

System Call: Contoh (1)

Process management

Call	Description	
pid = fork()	Create a child process identical to the parent	
pid = waitpid(pid, &statloc, options)	Wait for a child to terminate	
s = execve(name, argv, environp)	Replace a process' core image	
exit(status)	Terminate process execution and return status	

File management

Call	Description	
fd = open(file, how,)	Open a file for reading, writing or both	
s = close(fd)	Close an open file	
n = read(fd, buffer, nbytes)	Read data from a file into a buffer	
n = write(fd, buffer, nbytes)	Write data from a buffer into a file	
position = lseek(fd, offset, whence)	Move the file pointer	
s = stat(name, &buf)	Get a file's status information	

STEI/HY/Agt 2008 IF3055 - Intro Page 47

System Call: Contoh (2)

Directory and file system management

zarottery and me cyclom management		
Call	Description	
s = mkdir(name, mode)	Create a new directory	
s = rmdir(name)	Remove an empty directory	
s = link(name1, name2)	Create a new entry, name2, pointing to name1	
s = unlink(name)	Remove a directory entry	
s = mount(special, name, flag)	Mount a file system	
s = umount(special)	Unmount a file system	

Miscellaneous

Call	Description	
s = chdir(dirname)	Change the working directory	
s = chmod(name, mode)	Change a file's protection bits	
s = kill(pid, signal) Send a signal to a process		
seconds = time(&seconds)	Get the elapsed time since Jan. 1, 1970	

STEI/HY/Agt 2008 IF3055 - Intro

Struktur OS: Struktur Sederhana (1)

 Monolitik → tanpa struktur, tidak moduler

91b

STEI/HY/Agt 2008 IF3055 - Intro Page 49

Struktur OS: Struktur Sederhana (2)

- MS-DOS menyediakan fungsionalitas dgn ruang seminimal mungkin
 - Tidak dibagi dlm modul
 - Meskipun ada sedikit struktur, namun antarmuka dan tingkat fungsionalitasnya tdk terpisah dgn baik

Struktur OS: Struktur Sederhana (3)

- UNIX original UNIX memiliki struktur yg terbatas
- Terdiri dari 2 bagian
 - Program sistem
 - Kernel (terdiri dari semua yg dibawah antarmuka system-call dan diatas H/W)

	(the users)	
i	shells and commands compilers and interpreters system libraries	8
sys	tem-call interface to the ke	rnel
signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory
ke	ernel interface to the hardwa	are
terminal controllers	device controllers disks and tapes	memory controllers physical memory

STEI/HY/Agt 2008 IF3055 - Intro Page 51

Struktur OS: Struktur Berlapis (1)

- OS dibagi dlm beberapa lapisan:
 - lapisan plg bawah (layer 0) \rightarrow hardware
 - Lapisan paling atas (layer N) → antarmuka user
- Dgn modularitas, lapisan dipilih sedemikian shg masing2 hanya menggunakan fungsi dan layanan yg disediakan lapisan di bawahnya

Struktur OS: Struktur Berlapis (2)

• Contoh: THE

Layer	Function	
5	The operator	
4	User programs	
3	Input/output management	
2	Operator-process communication	
1	Memory and drum management	
0	Processor allocation and multiprogramming	

STEI/HY/Agt 2008 IF3055 - Intro Page 53

Struktur OS: Struktur Berlapis (3)

• Contoh: OS2

2 Ptb

STEI/HY/Agt 2008 IF3055 - Intro

