Solutions to Crypto Midterm

1.

(a)

$$egin{aligned} Pr[C=0|M=0] &= Pr[k \in \{0,26\}] = rac{2}{31}, \ Pr[C=0|M=16] &= Pr[k=10] = rac{1}{31}, \ Pr[C=0|M=0]
eq Pr[C=0|M=16]. \end{aligned}$$

(b) We select the keys $\{0,1,2,3,4,26,27,28,29,30\}$ with probability $\frac{1}{52}$ and other keys with probability $\frac{1}{26}$, then the shift cipher is still perfectly secure.

Actually, you just need to guarantee that $Pr[k \in \{0,26\}] = Pr[k \in \{1,27\}] = \dots = Pr[k \in \{4,30\}] = Pr[k = 5] = Pr[k = 6] = \dots = Pr[k = 25]$ holds.

2.

(a) No. When n>2, $\sqrt{\log n}<\log n$, $f_1(n)=2^{-\sqrt{\log n}}>2^{-\log n}$. $2^{-\log n}=n^{-1}\neq O(n^{-2})$ is non-negligible. Therefore, $f_1(n)$ is non-negligible.

(b) Yes. For all constants c, we have $0 < n^{c-\log\log\log n} < n^{-1}$ for all n satisfies $\log\log\log n \ge c+1$ (all $n > 2^{2^{2^{c+1}}}$). By Squeeze Lemma:

$$\lim_{n o \infty} n^{-1} = 0 \Rightarrow \lim_{n o \infty} rac{n^c}{n^{\log \log \log n}} = 0$$

(c) Yes. With Stirling's approximation, we know

$$n! \sim \sqrt{2\pi n} (rac{n}{e})^n$$

Therefore

$$f_3(n) \sim \sqrt{2\pi n} (rac{1}{e})^n$$

For all constants c, we have

$$\lim_{n o\infty}n^c\cdot f_3(n)\sim \lim_{n o\infty}rac{\sqrt{2\pi}n^{c-rac{1}{2}}}{e^n}=0$$

(d) No. Suppose that $g(n) = \frac{n}{n+1}$, which satisfies the requirements that 0 < g(n) < 1 for all $n \ge 1$, $f_4(n)$ is non-negligible, because

$$\lim_{n o\infty}f_4(n)=\lim_{n o\infty}(g(n))^n=\lim_{n o\infty}(rac{n}{n+1})^n=1$$

(e) No. Because h(n) is negligible, when $n\to\infty, h(n)\to 0$, but when $n\to 0$, the negligible function may not be negligible. For example, when $g(n)=e^{-n}$, for any h(n)

$$\lim_{n o\infty}f_5(n)=\lim_{n o\infty}rac{1}{e^{h(n)}}=1$$

3.

 G^{\prime} is a PRG.

Firstly, we define $H(y)=y_{[0,n)}||G(y_{[n,2n)})$, where y is a random 2n-bit string. Since G is a PRG, For any PPT Algorithm D, there is a negligible function $negl_1$ such that

$$|Pr[D(H(y)) = 1] - Pr[D(G'(x)) = 1]| \le negl_1(n).$$

Otherwise, we can construct a distinguisher D' based on a D: $D'(s) = D(s_{[0,n)}||G(s_{[n,2n)}))$ such that

$$|Pr[D'(r) = 1] - Pr[D'(G(x)) = 1]|$$

= $|Pr[D(H(r)) = 1] - Pr[D(G'(x)) = 1]|$

is non-negligible, which contradicts that G is a PRG.

Similarly, we can prove that for ant PPT Algorithm D, there is a negligible function $negl_2$ such that

$$|Pr[D(H(y)) = 1] - Pr[D(r) = 1]| \le negl_2(n),$$

where r is a random 3n-bit string.

In conclusion, for ant PPT Algorithm \it{D} , there are negligible functions \it{negl}_1 and \it{negl}_2 such that

$$\begin{aligned} &|Pr[D(G'(x))=1]-Pr[D(r)=1]|\\ =&|(Pr[D(G'(x))=1]-Pr[D(H(y))=1])+(Pr[D(H(y))=1]-Pr[D(r)=1])|\\ \leq&|Pr[D(H(y))=1]-Pr[D(r)=1]|+|Pr[D(H(y))=1]-Pr[D(G'(x))=1]|\\ \leq&negl_1(n)+negl_2(n) \end{aligned}$$

is negligible, which means that G^\prime is also a PRG.

4.

 Π' is CPA secure.

Suppose that Π' is not CPA secure and there is an adversary \mathcal{A}' that can win the CPA-game of Π' with non-negligible probability. We construct an adversary \mathcal{A} to break Π based on \mathcal{A}' :

- 1. \mathcal{A} run \mathcal{A}' for the first time and receive m_0, m_1 ;
- 2. \mathcal{A} send m_0, m_1 to \mathcal{C} ;
- 3. ${\mathcal C}$ uniformly choose a bit $b \overset{\$}{\leftarrow} \{0,1\}$ and send $c = Enc_{\Pi(k)}(m_b)$ to ${\mathcal A}$;
- 4. $\mathcal A$ choose a random bit $r_k \overset{\$}{\leftarrow} \{0,1\}$ and send $c||r_k$ to $\mathcal A'$;
- 5. \mathcal{A}' send a guess b' to \mathcal{A} ;
- 6. ${\cal A}$ run ${\cal A}'$ for the second time and receive m_0', m_1' ;
- 7. ${\mathcal A}$ query ${\mathcal C}$'s oracle for message m_0' and get the ciphertext $c'=Enc_{\Pi(k)}(m_0')$;
- 8. \mathcal{A} sends $c'||r_k$ to \mathcal{A}' ;
- 9. \mathcal{A}' sends a guess b'' to \mathcal{A} .
- 10. If b''=0 then ${\mathcal A}$ outputs b' , otherwise it outputs $\overline{b'}$.

We denote $Pr[\mathcal{A}'\ wins|r_k=LSB(k)]=rac{1}{2}+\epsilon_1(n)$ and $Pr[\mathcal{A}'\ wins|r_k
eq LSB(k)]=rac{1}{2}+\epsilon_2(n)$. In this way,

$$\begin{aligned} & Pr[\mathcal{A} \ wins] \\ & = Pr[\mathcal{A} \ wins|r_k = LSB(k)] \times Pr[r_k = LSB(k)] + Pr[\mathcal{A} \ wins|r_k \neq LSB(k)] \times Pr[r_k \neq LSB(k)] \\ & = \frac{1}{2} Pr[\mathcal{A} \ wins|r_k = LSB(k)] + \frac{1}{2} Pr[\mathcal{A} \ wins|r_k \neq LSB(k)] \\ & = \frac{1}{2} (Pr[b' = b|r_k = LSB(k)] \times Pr[b'' = 0|r_k = LSB(k)] + Pr[\overline{b'} = b|r_k = LSB(k)] \times Pr[b'' = 1|r_k = LSB(k)]) \\ & + \frac{1}{2} (Pr[b' = b|r_k \neq LSB(k)] \times Pr[b'' = 0|r_k \neq LSB(k)] + Pr[\overline{b'} = b|r_k \neq LSB(k)] \times Pr[b'' = 1|r_k \neq LSB(k)]) \\ & = \frac{1}{2} (Pr[\mathcal{A}' \ wins|r_k = LSB(k)] \times Pr[\mathcal{A}' \ wins|r_k = LSB(k)] + Pr[\mathcal{A}' \ loses|r_k = LSB(k)] \times Pr[\mathcal{A}' \ loses|r_k = LSB(k)]) \\ & + \frac{1}{2} (Pr[\mathcal{A}' \ wins|r_k \neq LSB(k)] \times Pr[\mathcal{A}' \ wins|r_k \neq LSB(k)] + Pr[\mathcal{A}' \ loses|r_k \neq LSB(k)] \times Pr[\mathcal{A}' \ loses|r_k \neq LSB(k)]) \\ & = \frac{1}{2} [(\frac{1}{2} + \epsilon_1(n))^2 + (\frac{1}{2} - \epsilon_1(n))^2] + \frac{1}{2} [(\frac{1}{2} + \epsilon_2(n))^2 + (\frac{1}{2} - \epsilon_2(n))^2] \\ & = \frac{1}{2} (\frac{1}{2} + 2 \times \epsilon_1^2(n)) + \frac{1}{2} (\frac{1}{2} + 2 \times \epsilon_2^2(n)) \\ & \geq \frac{1}{2} + \epsilon_1^2(n) \end{aligned}$$

where $\epsilon_1(n)$ is non-negligible, which contradicts Π is CPA secure.

5.

(a) We can simply query a message x of one block to the oracle $\mathcal O$. The oracle returns the value $y=x\oplus E_k(IV)$. Hence, $E_k(IV)$ is found by computing $x\oplus y$.

(b) Set $m=x_l||x_2$ and $x_l=E_k(IV)\oplus IV.$ We then have $y_l=IV$ and $y_2=h\oplus IV.$ Thus,

$$x_2 = E_k(y_1) \oplus y_2 = E_k(IV) \oplus IV \oplus h.$$