Q1 (a)
$$\chi \sim N(\mu, \sigma^2)$$

 $W = \left(\frac{\chi - \mu}{\sigma}\right) \sim N(0, 1)$ [location - scale]

(6)
$$X \sim Exp(X)$$

 $W = XX \sim Exp(2)$ [Scale]

(c)
$$X \sim V(-\theta, \theta)$$

$$W = \frac{X}{\theta} \sim V(-1, 1)$$
[scale]

(d)
$$X \sim Gamma(n, \theta)$$
 [Scale]
$$W = \theta \times \sim Gamma(n, 1)$$

(e)
$$X \sim \mathcal{N}(\theta, \theta^2)$$

$$W = \frac{X}{\theta} \sim \mathcal{N}(1, 1)$$
[Scale]

(f)
$$x \sim U(\theta - \frac{1}{2}, \theta + \frac{1}{2})$$

$$W = x - \theta \sim U(-\frac{1}{2}, \frac{1}{2})$$
[location]

So, any function of Yij has a distribution. free of O.

(b)
$$X_i = W_i / \theta$$
 for $i = 1, ..., n$, $W_i = 0 + \theta$.

 $\frac{X_i}{\theta} = W_i$; $i = 1, ..., n$
 $Y = \frac{W_i}{W_i^2}$ and $Z = \frac{W_{(i)}}{W_{(n)}}$, being functions of W_i ; $i = 1, ..., n$, have distributions free of θ .

QB: Let
$$x_1, \dots, x_n \sim f_{\beta}$$
, where
$$f_{\beta}(x) = \frac{3}{\beta} \left(\frac{x}{\beta}\right)^{3-1} ; \quad 0 < x < \beta$$

$$f_{\beta}(x) = \frac{3^n}{\beta^n} \frac{\left(\frac{\pi}{1}\pi^2\right)^{3-1}}{\left(\frac{\pi}{1}\pi^2\right)^{3-1}} \quad \mathbb{I}\left(x_m \le \beta\right)$$

The log-likelihood function:

$$ln(B) = n\log 3 - n\log B + (3-1) \sum_{i=1}^{n} \log 2^{i}$$

$$-n(3-1)\log B + \log \left\{\mathbb{I}\left(2^{i} \times S^{i}\right)\right\}.$$

$$= n\log 3 - n3\log B + (3-1) \sum_{i=1}^{n} \log 2^{i} + \log \left\{\mathbb{I}\left(2^{i} \times S^{i}\right)\right\}.$$

$$= n\log 3 - n3\log B + (3-1) \sum_{i=1}^{n} \log 2^{i} + \log \left\{\mathbb{I}\left(2^{i} \times S^{i}\right)\right\}.$$

$$= n\log 3 - n3\log B + (3-1) \sum_{i=1}^{n} \log 2^{i} + \log \left\{\mathbb{I}\left(2^{i} \times S^{i}\right)\right\}.$$

$$= n\log 3 - n3\log B + (3-1) \sum_{i=1}^{n} \log 2^{i} + \log \left\{\mathbb{I}\left(2^{i} \times S^{i}\right)\right\}.$$

$$= n\log 3 - n3\log B + (3-1) \sum_{i=1}^{n} \log 2^{i} + \log \left\{\mathbb{I}\left(2^{i} \times S^{i}\right)\right\}.$$

Verify that X(n) is the MLE of B. - 1

Further, observe that
$$y = \frac{x}{B}$$
 then
$$f_{Y}(y) = y + \frac{x}{B}$$

$$f_{Y}(y) = y + \frac{x}{B}$$

Thus, X belonge to a scale family.

So, any function of Xi/B, i=1,...,n, can be a pivot.

combining (1) and (2), we consider the pivot

$$T(x,\beta) = \frac{x_{(n)}}{\beta} = y_{(n)}$$

Distribution of T(x,)

cof of
$$T(x,\beta)$$
: $P(T(x,\beta) \leq t)$

$$= \left[P(\gamma_i \leq t) \right]^n$$

$$= \left(\left[A_{s} \right]_{f}^{o} \right)_{J}$$

:. PDF of T(x,B):

$$f_T(t) = n8t^{n3-1}$$
; $0 < t < 1$.

Finding Confidence interval

i) Find a, b such that

$$P(a \leq T(x, \beta) \leq b) = (1-\alpha)$$

We choose a, b & ymmetrically such trait

$$P(T(x, \beta) \le \alpha) = \frac{\alpha}{2}$$
 and $P(T(x, \beta) \ge b) = \frac{\alpha}{2}$

i.e.,
$$\alpha = \frac{\alpha}{2} \Leftrightarrow \alpha = (\frac{\alpha}{2})^{\frac{1}{2}} n \delta$$

i.e.,
$$a = \frac{\alpha}{2} \iff a = (\frac{\alpha}{2})^{\frac{1}{2}} \text{ from (3)}$$

Similarly, $1 - b = \frac{\alpha}{2} \iff b = (1 - \frac{\alpha}{2})^{\frac{1}{2}} \text{ from (3)}$

Thus,
$$P\left[\begin{bmatrix} \frac{\alpha}{2} \end{bmatrix}^{\gamma} \text{ is } T\left(\frac{x}{\beta}\right) \leq \begin{bmatrix} 1-\frac{\alpha}{2} \end{bmatrix}^{\gamma} \text{ is } \right]$$

$$= (1-\alpha).$$

$$2) \text{ Next we solve the equations is in. i. b.:}$$

$$T(\frac{x}{\beta}) = \alpha = (\frac{\alpha}{2})^{\gamma} \text{ in } r^{\gamma} - (f)$$

$$\Rightarrow \frac{x(n)}{\beta} = (\frac{\alpha}{2})^{\gamma} \text{ in } r^{\gamma}$$

$$\Leftrightarrow \hat{\beta}_{n}(\alpha) = \frac{x(n)}{(\alpha/2)^{\gamma}} \text{ in } r^{\gamma}$$

and
$$T(x,\beta) = b = (1-\alpha/2)^{1/n\delta}$$
 — $(x,\beta) = b = (1-\alpha/2)^{1/n\delta}$.

3) Finally, observe that $T(X,B) = \frac{X(n)}{B}$ is a strictly decreasing function of B.

Thus,
$$P\left(\frac{X(n)}{(1-\alpha/2)^{1/2}} \le \beta \le \frac{X(n)}{(\alpha/2)^{1/2}} = (1-\alpha).$$

Ans: $\left[\frac{\chi_{(n)}}{(1-\alpha/2)^{\gamma_{n}}}, \frac{\chi_{(n)}}{(\alpha/2)^{\gamma_{n}}}\right] \stackrel{\text{is}}{=} a \left(1-\alpha\right)_{-}$

Confidence inderval booses on MLE of B.

94: (a) X: ~ U (A-1/2); i=1,...12

(1) W; = (X:-0) ~ U (-1/2 , 1/2) ; i=1,.., N

Any function of Wisi=1,..., is a valid pivot.

Observe that, E(xi) = 0

So, Xn is a good estimator of O.

Therefore, we choose the pivot $\overline{W}_n = (\overline{X}_n - \theta)$

By CLT,

 $T(\underline{x},\theta) = \sqrt{n} \frac{\overline{x}_n - \theta}{\sqrt{var(x_i)}} \xrightarrow{d} \mathcal{N}(0,i)$

where var $(x_1) = \frac{1}{12}$ (verify)

We choose $T(x, \theta) = a\sqrt{3n}(x_n - \theta)$ as an appropriate pivot.

(2) We know that

$$P\left(-\tau_{\alpha/2} \leq \tau(x,\theta) \leq \tau_{\alpha/2}\right) \approx (1-\alpha)$$

by CLT, where Tay is the upper of/2 point of N(0,1) distribution.

$$T(x,\theta) = \frac{7\alpha}{2} \iff \hat{\theta}_n(b) = \frac{7\alpha}{2} = \frac{7\alpha}{2\sqrt{3n}}$$

and
$$T(x,\theta) = -\frac{7a}{2} \iff \hat{\theta}_n(a) = \frac{7}{2} + \frac{7a}{2\sqrt{3}n}$$

(4) Finally as
$$T(X,\theta)$$
 is a strictly decreasing function of θ , we have

$$P_{\theta}\left(\overline{x}_{n}-\frac{\overline{\zeta}_{3/2}}{2\sqrt{3}n}\right)\leq Q\leq \overline{x}_{n}+\frac{\overline{\zeta}_{3/2}}{2\sqrt{3}n}\geq 2\left(1-x\right).$$

So,
$$\left[\frac{x_n - \frac{c_{av_2}}{2\sqrt{3n}}}{, x_n + \frac{c_{av_2}}{a\sqrt{3n}}}\right]$$
 is an approximate confidence interval with coefficient (1-a).

(b)
$$X_i \sim f_{\theta}(x)$$
 where $f_{\theta}(x) = \frac{2x}{\theta^2}$; $0 < x < \theta$, $\theta > 0$.

Let
$$W_i = \frac{x_i}{\theta}$$
; $i=1,...,N$.

Then the pdf of Wi is:

$$f_{W}(\omega) = 2\omega, \quad o(\omega < 1)$$

which is fee of O.

So, any function of Wisi=1,..., is a valid pivot.

Further, verify that, X(n) is the MLE of P.

Combining the above two facts, we choose

$$T(x,\theta) = \frac{x(n)}{\theta}$$

[Complete the proceedure as in 9.3]

95. We know that $F_T(T;\theta) \sim U(0,1)$ distribution.

Let α_1, α_2 Balisfies $\alpha_1 + \alpha_2 = \alpha$.

Then
$$\int_{\alpha_1}^{1-\alpha_2} dx = 1 - \alpha_1 - \alpha_2 = 1 - \alpha$$

i.e.,
$$P(\alpha_1 \leq F_T(\tau; \theta) \leq \alpha_2) = (1-\alpha).$$

As $F_T(T; V(T)) = \alpha_1$, V(T) is the solution of the equation $F_T(T; \theta) = \alpha_1$.

Similarly, L(T) is the solution of $F_T(T;\theta) = \alpha_2$.

Finally, as $F_T(T;\theta)$ is strictly decreasing wiret. θ ,

 $\{\alpha_1 \leq F_T(T;\theta) \leq \alpha_2\} \Leftrightarrow \{L(T) \leq \theta \leq U(T)\}$

Hence,
$$P_{\theta}(L(T) \leq \theta \leq U(T)) = (1-\alpha)$$
.

Hence, $P_{\theta}(L(T) \leq \theta \leq U(T)) = (1-\alpha)$.

Henre [L(T), U(T)] is a confidence Porternal with coefficience $(1-\alpha)$.

$$x \sim \text{Beta}(\theta, 1)$$

$$f_{x}(x) = \frac{10+1}{10} \quad x = 1$$

$$y = -\left(\log x\right) \quad \Rightarrow \quad x = e$$

$$J = \left| \frac{\partial x}{\partial y} \right| = \frac{-yy}{e} / y^2$$

$$f_y(y) = \theta \quad e^{\frac{\theta - 1}{y} - \frac{1}{y}} / y^2 \quad \text{ocy} < \infty$$

$$= \theta \frac{-2}{4} e^{-\frac{1}{2}} = 0 < \frac{1}{2} < \infty$$

The confidence coefficient of [7/207] is:

$$P_{\theta} \left[\frac{y}{2} \leq \theta \leq y \right] = P_{\theta} \left[\theta \leq y \leq 2\theta \right]$$

$$= \int_{0}^{2\theta} \frac{1}{\theta} \left(\frac{\theta}{\theta}\right)^{2} e^{-\theta/y} dy$$

$$= \int_{e}^{-2} e^{-2} dy = e^{-2}.$$
 [ANS]

98: Let $X_i \sim U(0,\theta)$; $i=1,\dots,n$

Given the pivot $T(X, \theta) = \frac{X(n)}{\theta}$,

choose a, b such that

$$P\left(T(x,\theta) \leq \alpha\right) = \frac{\alpha}{2}$$
and
$$P\left(T(x,\theta) \geq b\right) = \frac{\alpha}{2}$$

From the CDF of T(x,0) we get

$$a = \begin{pmatrix} \frac{\pi}{2} \end{pmatrix}^{1/n}$$
 and $b = \begin{pmatrix} 1 - \frac{\pi}{2} \end{pmatrix}^{1/n}$

By solving $T(x,\theta) = a$ and $T(x,\theta) = b$; and as $T(x,\theta)$ is a decreasing function of θ ,

The get

$$P_{\theta} \left[\frac{x_{(n)}}{(1-\alpha/2)^{\gamma_n}} \right] \leq \theta \leq \frac{x_{(n)}}{(\alpha/2)^{\gamma_n}} \right] = (1-\alpha).$$

$$L(x)$$

$$U(x).$$

Next, consider $\theta' \neq \theta$.

Let us find the prob.

Pa $\left[L(x) \leq \theta' \leq U(x) \right]$

$$= P_{\theta} \left[\theta' \left(\frac{\alpha}{2} \right)^{\gamma_n} \leq \chi_{(n)} \leq \theta' \left(1 - \frac{\alpha}{2} \right)^{\gamma_n} \right] - \boxed{1}$$

Let 0'<0 then

$$\begin{aligned}
\mathbf{\hat{I}} &= P\left[\mathbf{x}_{(n)} \leq \theta' \left(1 - \frac{\mathbf{x}}{2}\right)^{y_{n}}\right] - P\left[\mathbf{x}_{(n)} \leq \theta' \left(\frac{\mathbf{x}}{2}\right)^{y_{n}}\right] \\
&= \left(\frac{\theta'}{\theta}\right)^{m} \left(1 - \frac{\mathbf{x}}{2}\right) - \left(\frac{\theta'}{\theta}\right)^{m} \frac{\mathbf{x}}{2} \\
&= \left(\frac{\theta'}{\theta}\right)^{m} \left(1 - \mathbf{x}\right) \leq \left(1 - \mathbf{x}\right) \leq \left(1 - \mathbf{x}\right) \cdot -\mathbf{\hat{Q}}
\end{aligned}$$

Let 0'>0 then

$$\begin{array}{ll}
\boxed{D} = P_{\theta} \left[\theta' \left(\frac{\alpha}{2} \right)^{n} \leq x_{(n)} \leq \min \left\{ \frac{\theta'}{1 - \frac{\alpha}{2}} \right\}^{n}, \theta \right] \\
= \min \left\{ 1, \left(\frac{\theta'}{\theta} \right)^{n} \left(1 - \frac{\alpha}{2} \right) \right\} - \left(\frac{\theta'}{\theta} \right)^{n} \left(\frac{\alpha}{2} \right) \\
= \min \left\{ 1 - \left(\frac{\theta'}{\theta} \right)^{n} \frac{\alpha}{2}, \left(\frac{\theta'}{\theta} \right)^{n} \left(1 - \alpha \right) \right\}
\end{array}$$

 $1-\left(\frac{\theta}{\theta}\right)^{\frac{n}{2}} \leq 1-\alpha$ for sufficiently $\bigcirc \leq (1-\alpha) . - \bigcirc$

Combining 2 and 3 we get that the confidence interval is unbiased.

 $Q_{\frac{1}{2}}$ (a) X_{i} $\stackrel{\text{lid}}{\sim}$ $\mathcal{N}(\mu_{0}, \sigma^{2})$; i=1,...,n, which belongs to the exponential family.

From the joint distribution

$$\int_{-\infty}^{\infty} (x) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{\infty} (x_i - \mu_0)^2\right\}$$

We get that $T(x) = \sum_{i=1}^{n} (x_i - \mu_0)^2$ is a complete sufficient statistic (CSS). [Note that No B known]

Observe that,

$$\left(\frac{X_i-\mu_0}{\sigma}\right) \stackrel{\text{IID}}{\sim} N\left(0,1\right); \quad i=1,...,N$$

$$\Rightarrow \sum_{i=1}^{n} \left(\frac{x_i^2 - \mu_0}{\sigma} \right)^2 = \frac{T(x)}{\sigma^2} \sim \chi_{(n)}^2 \text{ distin.}$$

$$E(T(x)) = n\sigma^2$$

$$\Rightarrow$$
 $E\left(\frac{1}{\pi}T(x)\right) = \sigma^2$.

$$S_0$$
, $\frac{1}{m} \sum_{i=1}^{n} (x_i^2 - \mu_0)^2 = S_0^2$ is the UMVUE of S_0^2 .

(b) As,
$$\frac{T(x)}{\sigma^2} = \frac{nS_0^2}{\sigma^2} \sim \chi_{(n)}^2$$
, which is free of σ^2 , it serves as an appropriate pivot for σ^2 based on UMVVE.

9.10 (c)
$$X_i$$
 $\sum_{i=1,...,N_i}$ $\sum_{i=1,...,N_i}$ with common

pdf
$$f_{\theta}(x) = \theta \in (x > 0)$$

The transformation $W_i = \Phi X_i^\circ$ yeilds Common pdf of W_i° as

$$f_{W}(\omega) = e^{\omega}; \omega > 0$$

which is free of O.

Consider another pivot based on UMVUE of 1/4;

$$T(x,\theta) = \sum_{i=1}^{n} W_i = \theta \sum_{i=1}^{n} x_i$$
 as $\frac{1}{n} \sum_{i=1}^{n} x_i^*$ is the UMVUE of $\frac{1}{n} \sqrt{\theta}$.

Note that, \(\sum \ W: \sum \ \Qamma (-n, 1).

Let (a, b) be such that

P(
$$W_1 \le \alpha$$
) = $\frac{\alpha}{2}$ and P($W_1 \ge b$) = $\frac{\alpha}{2}$

$$\Rightarrow \int_{0}^{\infty} e^{\omega} d\omega = \left[-e^{\omega} \right]_{0}^{\alpha} = 1 - e^{\alpha} = \frac{\alpha}{2}$$

$$\Rightarrow 1-\frac{\alpha}{2}=e^{-\alpha} \Rightarrow \alpha=-\log\left(1-\frac{\alpha}{2}\right)$$

Similarly,
$$b = -\log(\alpha/2)$$
.

$$P\left(-\log\left(1-\frac{\alpha}{2}\right) \leq W_1 \leq -\log\left(\frac{\alpha}{2}\right) = (1-\alpha)$$

$$\Rightarrow P_{\theta} \left(- \frac{\log \left(1 - \alpha/2 \right)}{\times_{1}} \leq \theta \leq - \frac{\log \left(\alpha/2 \right)}{\times_{1}} \right) = (1 - \alpha).$$

..
$$\left[-\frac{\log\left(1-\alpha/2\right)}{x_1} \right] - \frac{\log\left(\alpha/2\right)}{x_1}$$
 is confidence interval of

$$P\left(\sum_{i\neq j}W_{i}\leq\alpha\right)=\frac{\alpha}{2}$$
 and $P\left(\sum_{i\neq j}W_{i}\geq b\right)=\frac{\alpha}{2}$.

=>
$$\frac{1}{1-\frac{\alpha}{2}}; n, 1 = a$$
 and $b = \frac{2}{\frac{\alpha}{2}}; n, 1$

Thus,
$$P\left(8_{1-\alpha/2}; n, 1 \leq \sum_{i=1}^{\infty} W_{i} \leq 8_{\alpha/2}; n, 1\right) = (1-\alpha)$$

$$\Rightarrow P_{\theta}\left(3_{1-\alpha/2};n,1\right) \leq \theta \sum_{i=1}^{m} x_{i} \leq 3_{\alpha/2};n,1\right) = (1-\alpha)$$

$$\Rightarrow P_{\theta}\left(\frac{8_{1-\alpha/2};n,1}{\sum_{i=1}^{\infty}x_{i}^{\alpha}} \leq \theta \leq \frac{8_{\alpha/2};n,1}{\sum_{i=1}^{\infty}x_{i}}\right) = (1-\alpha)$$

Thus,
$$\left[\frac{8_{1}-4_{2}; n-1}{\sum_{i>1}}, \frac{8_{4/2}; n_{5}!}{\sum_{i}}\right]$$
 is a $(1-a)$ -confidence interval for θ .