Федеральное государственное автономное образовательное учреждение высшего образования Университет ИТМО

Отчет по лабораторной работе №3 «Администрирование систем и сетей»

Выполнили:

Чжоу Хунсян Группа: Р34131

Желаемая оценка: 3

Преподаватель:

Афанасьев Дмитрий Борисович

 $2024\ \Gamma.$ Санкт-Петербург

Оглавление

Основы Ethernet и конфигурирование VLAN	3
Цели	3
Топология	3
План работы	3
Процедура конфигурирования	4
Шаг 1. Настройте имена для S1 и S2 и отключите ненужные порты	
Шаг 2. Настройте IP-адреса устройств.	6
Шаг 3. Создайте VLAN	7
Шаг 4. Настройте сети VLAN на основе портов	8
Шаг 5. Сконфигурируйте сети VLAN на основе MAC-адресов	9
Шаг 6. Настройте маршрут от R1 к R2 через R3 в качестве резервного	o
маршрута от LoopBack0 R1 к LoopBack0 R2	10
Проверка	12
Справочные конфигурации	13
Протокол связующего дерева (STP)	16
Цели	
Топология	16
План работы	16
Процедура конфигурирования	
Шаг 1. Отключите ненужные порты. Этот шаг можно выполнять	
только в среде, описанной в Руководстве по выполнению	
лабораторных работ для подготовки к сертификации HCIA-Datacom	
V1.0	18
Шаг 2. Включите STP	19
Шаг 3. Измените параметры устройства, чтобы сделать S1 корневым	
мостом, а S2 — резервным корневым мостом	
Шаг 4. Измените параметры устройства, чтобы назначить порт	
GigabitEthernet0/0/2 коммутатора S4 корневым портом	23
Шаг 5. Измените режим связующего дерева на RSTP	
Шаг 6. Настройте граничные порты	26
Проверка	27
Справочные конфигурации	27
Агрегирование каналов Ethernet	
Цели	32
Топология	
План работы	
Процедура конфигурирования	
Шаг 1 Настройте агрегирование каналов вручную.	
· · · · · · · · · · · · · · · · · · ·	41

Основы Ethernet и конфигурирование VLAN

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Создание VLAN
- Конфигурирование портов доступа, магистральных портов и гибридных портов
- Конфигурирование VLAN на основе портов
- Конфигурирование VLAN на основе MAC-адресов
- Просмотр таблицы MAC-адресов и информации о VLAN

Топология

План работы

- 1. Создание VLAN.
- 2. Конфигурирование VLAN на основе портов.
- 3. Конфигурирование VLAN на основе MAC-адресов.

Процедура конфигурирования

Шаг 1. Настройте имена для S1 и S2 и отключите ненужные порты.

Задайте имена устройств.

S1

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname S1
[S1]

S2

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname S2
[S2]

S3

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname S3
[S3]

S4

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname S4
[S4]

R1

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname R1
[R1]

R3

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname R3
[R3]

Отключите порты GE0/0/11 и GE0/0/12 на S1. Этот шаг можно выполнять только в среде, описанной в Руководстве по выполнению лабораторных работ для подготовки к сертификации HCIA-Datacom V1.0.

S1

[S1]interface g0/0/11
[S1-GigabitEthernet0/0/11]shutdown
[S1-GigabitEthernet0/0/11]quit
[S1]interface g0/0/12
[S1-GigabitEthernet0/0/12]shutdown
[S1-GigabitEthernet0/0/12]quit

Отключите порты GE0/0/11 и GE0/0/12 на S2.

[S2]interface g0/0/11

[S2-GigabitEthernet0/0/11]shutdown

[S2-GigabitEthernet0/0/11]quit

[S2]interface g0/0/12

[S2-GigabitEthernet0/0/12]shutdown [S2-GigabitEthernet0/0/12]quit

Шаг 2. Настройте ІР-адреса устройств.

Установите для R1 и R3 IP-адреса 10.1.2.1/24 и 10.1.10.1/24 соответственно.

```
R1
```

```
[R1]interface g0/0/1
[R1-GigabitEthernet0/0/1]ip address 10.1.2.1 24
[R3]interface g0/0/2
[R3-GigabitEthernet0/0/2]ip address 10.1.10.1 24
# Установите для S3 и S4 IP-адреса 10.1.3.1/24 и 10.1.3.2/24 соответственно.
(Сценарий 1: интерфейсы коммутаторов S3 и S4 поддерживают переключение
из режима уровня 2 в режим уровня 3.)
[S3]interface GigabitEthernet0/0/1
[S3-GigabitEthernet0/0/1]undo portswitch
[S3-GigabitEthernet0/0/1]ip address 10.1.3.1 24
[S4]interface GigabitEthernet0/0/2
[S4-GigabitEthernet0/0/2]undo portswitch
[S4-GigabitEthernet0/0/2]ip address 10.1.3.2 24
# Установите для VLANIF3 на S3 и S4 IP-адреса 10.1.3.1/24 и 10.1.3.2/24
соответственно.
(Сценарий 2: интерфейсы коммутаторов S3 и S4 не поддерживают
переключение из режима уровня 2 в режим уровня 3.)
[S3]vlan 3
[S4]vlan 3
S3
[S3]interface g0/0/1
[S3-GigabitEthernet0/0/1]port link-type access
[S3-GigabitEthernet0/0/1]port default vlan 3
[S4]interface g0/0/2
[S4-GigabitEthernet0/0/1]port link-type access
[S4-GigabitEthernet0/0/1]port default vlan 3
# Создайте интерфейсы VLANIF и настройте IP-адреса.
S3
[S3]interface Vlanif 3
[S3-Vlanif3]ip address 10.1.3.1 24
```

S4

[S4]interface Vlanif 3
[S4-Vlanif3]ip address 10.1.3.2 24

Шаг 3. Создайте VLAN.

[S1]vlan batch 2 to 3 10 [S2]vlan batch 2 to 3 10

Шаг 4. Настройте сети VLAN на основе портов.

Настройте пользовательские порты на S3 и S4 в качестве портов доступа и назначьте их в соответствующие VLAN.

```
[S1]interface g0/0/1
[S1-GigabitEthernet0/0/1]port link-type access
[S1-GigabitEthernet0/0/1]port default vlan 2
[S1]interface g0/0/13
[S1-GigabitEthernet0/0/13]port link-type access
[S1-GigabitEthernet0/0/13]port default vlan 3
[S2]interface g0/0/14
[S2-GigabitEthernet0/0/14]port link-type access
[S2-GigabitEthernet0/0/14]port default vlan 3
# Настройте порты, соединяющие S1 и S2, в качестве магистральных портов и
разрешите прохождение только пакетов из VLAN 2 и VLAN 3.
[S1]interface g0/0/10
[S1-GigabitEthernet0/0/10]port link-type trunk
[S1-GigabitEthernet0/0/10]port trunk allow-pass vlan 2 3
[S1-GigabitEthernet0/0/10]undo port trunk allow-pass vlan 1
[S2]interface g0/0/10
[S2-GigabitEthernet0/0/10]port link-type trunk
[S2-GigabitEthernet0/0/10]port trunk allow-pass vlan 2 3
[S2-GigabitEthernet0/0/10]undo port trunk allow-pass vlan 1
```

Шаг 5. Сконфигурируйте сети VLAN на основе MAC-адресов.

Настройте на S2 привязку MAC-адреса ПК к VLAN 10.

```
[S2] vlan 10
[S2-vlan10] mac-vlan mac-address a008-6fe1-0c46
```

Hacтройте GigabitEthernet0/0/1, GigabitEthernet0/0/2 и GigabitEthernet0/0/3 на S2 в качестве гибридных портов и разрешите прохождение пакетов из VLAN на основе MAC-адресов.

```
[S2-vlan10]interface g0/0/1
[S2-GigabitEthernet0/0/1]port link-type hybrid
[S2-GigabitEthernet0/0/1]port hybrid untagged vlan 10
[S2]interface g0/0/2
[S2-GigabitEthernet0/0/2]port link-type hybrid
[S2-GigabitEthernet0/0/2]port hybrid untagged vlan 10
[S2]interface g0/0/3
[S2-GigabitEthernet0/0/3]port link-type hybrid
[S2-GigabitEthernet0/0/3]port hybrid untagged vlan 10
```

Настройте на портах, соединяющих S1 и S2, разрешение на прохождение пакетов из VLAN 10.

```
[S1]interface g0/0/10

[S1-GigabitEthernet0/0/10]port trunk allow-pass vlan 10

[S1-GigabitEthernet0/0/10]quit

[S2]interface g0/0/10

[S2-GigabitEthernet0/0/10]port trunk allow-pass vlan 10

[S2-GigabitEthernet0/0/10]quit
```

Настройте S2 и включите назначение VLAN на основе MAC-адресов на GE0/0/1,

GE0/0/2 и GE0/0/3.

```
[S2]interface g0/0/1
[S2-GigabitEthernet0/0/1]mac-vlan enable

[S2]interface g0/0/2
[S2-GigabitEthernet0/0/2]mac-vlan enable

[S2]interface g0/0/3
[S2-GigabitEthernet0/0/3]mac-vlan enable
```

Шаг 6. Настройте маршрут от R1 к R2 через R3 в качестве резервного маршрута от LoopBack0 R1 к LoopBack0 R2.

```
[S1]dis vlan
The total number of vlans is: 4
                                TG: Tagged;
               D: Down;
U: Up;
                                                    UT: Untagged;
MP: Vlan-mapping;
                                ST: Vlan-stacking;
#: ProtocolTransparent-vlan;
                                *: Management-vlan;
VID Type
             Ports
            UT:GE0/0/2(D)
                                GE0/0/3(D)
                                                GE0/0/4(D)
                                                                 GE0/0/5(D)
     common
                                GE0/0/7(D)
                GE0/0/6(D)
                                                GE0/0/8(D)
                                                                 GE0/0/9(D)
                GE0/0/11(D)
                                GE0/0/12(D)
                                                GE0/0/14(D)
                                                                 GE0/0/15(D)
                GE0/0/16(D)
                                                GE0/0/18(D)
                                                                 GE0/0/19(D)
                                GE0/0/17(D)
                GE0/0/20(D)
                                GE0/0/21(D)
                                                GE0/0/22(D)
                                                                 GE0/0/23(D)
                GE0/0/24(D)
     common UT:GE0/0/1(U)
             TG:GE0/0/10(U)
3
     common UT:GE0/0/13(U)
             TG:GE0/0/10(U)
10
     common TG:GE0/0/10(U)
VID Status Property
                           MAC-LRN Statistics Description
     enable
            default
                           enable
                                   disable
                                              VLAN 0001
2
     enable
            default
                           enable
                                   disable
                                              VLAN 0002
3
     enable
            default
                           enable
                                   disable
                                              VLAN 0003
10
     enable default
                           enable
                                   disable
                                              VLAN 0010
S2
[S2-GigabitEthernet0/0/3]dis vlan
The total number of vlans is: 4
              D: Down;
                                TG: Tagged;
                                                    UT: Untagged;
MP: Vlan-mapping;
                                ST: Vlan-stacking;
#: ProtocolTransparent-vlan;
                                *: Management-vlan;
VID Type
             Ports
            UT:GE0/0/1(U)
                                GE0/0/2(D)
                                                GE0/0/3(D)
                                                                 GE0/0/4(D)
                GE0/0/5(D)
                                GE0/0/6(D)
                                                GE0/0/7(D)
                                                                 GE0/0/8(D)
                GE0/0/9(D)
                                GE0/0/11(D)
                                                GE0/0/12(D)
                                                                 GE0/0/13(D)
                GE0/0/15(D)
                                GE0/0/16(D)
                                                GE0/0/17(D)
                                                                 GE0/0/18(D)
                GE0/0/19(D)
                                GE0/0/20(D)
                                                GE0/0/21(D)
                                                                 GE0/0/22(D)
                GE0/0/23(D)
                                GE0/0/24(D)
    common TG:GE0/0/10(U)
2
3
     common UT:GE0/0/14(U)
             TG:GE0/0/10(U)
     common UT:GE0/0/1(U)
                                GE0/0/2(D)
                                                GE0/0/3(D)
             TG:GE0/0/10(U)
                           MAC-LRN Statistics Description
VID Status Property
```

1	enable	default	enable	disable	VLAN 0001
2	enable	default	enable	disable	VLAN 0002
3	enable	default	enable	disable	VLAN 0003
10	enable	default	enable	disable	VLAN 0010

[S2]display mac-vlan vlan 10

MAC Address	MASK	VLAN	Priority
a008-6fe1-0c46	ffff-ffff-ffff	10	0

Total MAC VLAN address count: 1

Проверка

Ping на S4 для проверки связи с S3. Операция успешно выполняется:

```
[S4]ping 10.1.3.2
PING 10.1.3.2: 56  data bytes, press CTRL_C to break
Reply from 10.1.3.2: bytes=56  Sequence=1 ttl=255 time=30 ms
Reply from 10.1.3.2: bytes=56  Sequence=2 ttl=255 time=1 ms
Reply from 10.1.3.2: bytes=56  Sequence=3 ttl=255 time=1 ms
Reply from 10.1.3.2: bytes=56  Sequence=4 ttl=255 time=10 ms
Reply from 10.1.3.2: bytes=56  Sequence=5 ttl=255 time=30 ms
--- 10.1.3.2 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 1/14/30 ms
```

Ping на R1 для проверки связи с другими устройствами. Операция не выполняется:

```
[R1]ping 10.1.3.1
  PING 10.1.3.1: 56 data bytes, press CTRL_C to break
    Request time out
    Request time out
    Request time out
   Request time out
   Request time out
  --- 10.1.3.1 ping statistics ---
   5 packet(s) transmitted
    0 packet(s) received
   100.00% packet loss
[R1]ping 10.1.3.2
  PING 10.1.3.2: 56 data bytes, press CTRL_C to break
    Request time out
    Request time out
   Request time out
   Request time out
   Request time out
  --- 10.1.3.2 ping statistics --- 5 packet(s) transmitted
    0 packet(s) received
   100.00% packet loss
[R1]ping 10.1.10.1
  PING 10.1.10.1: 56 data bytes, press CTRL_C to break
   Request time out
    Request time out
   Request time out
   Request time out
   Request time out
  --- 10.1.10.1 ping statistics ---
    5 packet(s) transmitted
    0 packet(s) received
   100.00% packet loss
```

Таблицы МАС-адресов на коммутаторах

```
[S2]dis mac-address verbose

MAC address table of slot 0:

MAC Address VLAN/ PEVLAN CEVLAN Port Type LSP/LSR-ID MAC-Tunnel

4c1f-cc91-281d 3 - - GE0/0/14 dynamic 0/-

Total matching items on slot 0 displayed = 1
```

Справочные конфигурации

```
sysname S1
vlan batch 2 to 3 10
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
aaa
authentication-scheme default
 authorization-scheme default
 accounting-scheme default
domain default
 domain default_admin
 local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface GigabitEthernet0/0/1
 port link-type access
port default vlan 2
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
 port link-type trunk
undo port trunk allow-pass vlan 1
port trunk allow-pass vlan 2 to 3 10
interface GigabitEthernet0/0/11
shutdown
interface GigabitEthernet0/0/12
shutdown
interface GigabitEthernet0/0/13
port link-type access
port default vlan 3
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
```

```
#
interface GigabitEthernet0/0/17
#
interface GigabitEthernet0/0/18
#
interface GigabitEthernet0/0/19
#
interface GigabitEthernet0/0/20
#
interface GigabitEthernet0/0/21
#
interface GigabitEthernet0/0/22
#
interface GigabitEthernet0/0/23
#
interface GigabitEthernet0/0/24
#
interface GigabitEthernet0/0/24
#
interface NULL0
#
user-interface con 0
user-interface vty 0 4
#
return
```

```
sysname S2
vlan batch 2 to 3 10
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
vlan 10
mac-vlan mac-address a008-6fel-0c46 priority 0
#
aaa
authentication-scheme default
 authorization-scheme default
accounting-scheme default
domain default
domain default_admin
local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface GigabitEthernet0/0/1
port hybrid untagged vlan 10
mac-vlan enable
interface GigabitEthernet0/0/2
port hybrid untagged vlan 10
mac-vlan enable
interface GigabitEthernet0/0/3
port hybrid untagged vlan 10
mac-vlan enable
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
```

```
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
 port link-type trunk
 undo port trunk allow-pass vlan 1
port trunk allow-pass vlan 2 to 3 10
interface GigabitEthernet0/0/11
shutdown
interface GigabitEthernet0/0/12
shutdown
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
port link-type access
port default vlan 3
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
#
return
```

Протокол связующего дерева (STP)

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Включение и отключение STP/RSTP.
- Процедура изменения режима STP коммутатора.
- Процедура изменения приоритетов мостов для управления выбором корневого моста.
- Процедура изменения приоритетов портов для управления выбором корневого порта и назначенного порта.
- Процедура изменения стоимости портов для управления выбором корневого порта и назначенного порта.
- Процедура настройки граничных портов.
- Включение и отключение RSTP.

Топология

План работы

- 1. Включение STP.
- 2. Изменение приоритетов мостов, чтобы контролировать выбор корневого моста.

- 3. Изменение параметров порта, чтобы определить роль порта.
- 4. Изменение протокола на протокол RSTP.
- 5. Настройка граничных портов.

Процедура конфигурирования

Шаг 1. Отключите ненужные порты. Этот шаг можно выполнять только в среде, описанной в Руководстве по выполнению лабораторных работ для подготовки к сертификации НСІА-Datacom V1.0.

Отключите порт GigabitEthernet0/0/12 между S1 и S2.

[S1]interface g0/0/12 [S1-GigabitEthernet0/0/12]shutdown [S2]interface g0/0/12 [S2-GigabitEthernet0/0/12]shutdown

Шаг 2. Включите STP.

```
# Включите STP глобально.
[S1]stp enable
# Измените режим связующего дерева на STP.
[S1]stp mode stp
[S2]stp mode stp
[S3]stp mode stp
[S4]stp mode stp
# Выведите на экран статус связующего дерева. В данном случае для примера
```

Выведите на экран статус связующего дерева. В данном случае для примера используется S1.

```
[S1]display stp
-----[CIST Global Info][Mode STP]--
CIST Bridge
                      :32768.4c1f-cc58-5272
                      :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
:Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Config Times
Active Times
CIST Root/ERPC
                      :32768.4c1f-cc13-5610 / 20000
CIST RegRoot/IRPC :32768.4c1f-cc58-5272 / 0
CIST RootPortId
                      :128.14
BPDU-Protection
                      :Disabled
TC or TCN received :36
TC count per hello :0
STP Converge Mode
                      :Normal
                     :0 days 0h:0m:42s
Time since last TC
Number of TC
                      :11
Last TC occurred
                      :GigabitEthernet0/0/14
```

Выведите на экран краткую информацию о связующем дереве на каждом

коммутаторе.

[S1]display stp brief						
	MSTID	Port	Role	STP State	Protection	
	0	GigabitEthernet0/0/10	DESI	FORWARDING	NONE	
	0	GigabitEthernet0/0/11	DESI	FORWARDING	NONE	
	0	GigabitEthernet0/0/13	DESI	FORWARDING	NONE	
	Θ	GigabitEthernet0/0/14	ROOT	FORWARDING	NONE	
[S2]display stp brief						
	MSTID	Port	Role	STP State	Protection	
	Θ	GigabitEthernet0/0/10	ALTE	DISCARDING	NONE	
	0	GigabitEthernet0/0/11	ALTE	DISCARDING	NONE	
	0	GigabitEthernet0/0/13	DESI	FORWARDING	NONE	
	0	GigabitEthernet0/0/14	ROOT	FORWARDING	NONE	
[S3]display stp brief						
	MSTID	Port	Role	STP State	Protection	
	Θ	GigabitEthernet0/0/1	ALTE	DISCARDING	NONE	
	0	GigabitEthernet0/0/2	ALTE	DISCARDING	NONE	
	0	GigabitEthernet0/0/3	ROOT	FORWARDING	NONE	
[S4]display stp brief						
	MSTID	Port	Role	STP State	Protection	
	0	GigabitEthernet0/0/1	DESI	FORWARDING	NONE	
	Θ	GigabitEthernet0/0/2	DESI	FORWARDING	NONE	
	0	GigabitEthernet0/0/3	DESI	FORWARDING	NONE	
					_	

На основании идентификатора корневого моста и информации о порте каждого коммутатора текущая топология выглядит следующим образом:

- DP назначенный порт
- АР альтернативный порт
- RP корневой порт

Шаг 3. Измените параметры устройства, чтобы сделать S1 корневым мостом, а S2 — резервным корневым мостом.

```
# Измените приоритеты мостов S1 и S2.
[S1]stp root primary
[S2]stp root secondary
# Выведите на экран статус STP на S1.
[S1]display stp
      -[CIŚT Global Info][Mode STP]--
CIST Bridge
                         .4c1f-cc58-5272
                    : 0
Config Times
                    :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Active Times
                    :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
                   : 0
CIST Root/ERPC
                         .4c1f-cc58-5272 / 0
CIST RegRoot/IRPC
                    : 0
                          .4c1f-cc58-5272 / 0
CIST RootPortId
                    :0.0
BPDU-Protection
                    :Disabled
CIST Root Type
                    :Primary root
TC or TCN received
                  : 40
TC count per hello :0
STP Converge Mode
                    :Normal
Time since last TC :0 days 0h:0m:4s
Number of TC
                    :15
                   :GigabitEthernet0/0/10
Last TC occurred
# Выведите на экран краткую информацию о статусе STP на всех устройствах.
[S1]display stp brief
MSTID Port
                                   Role
                                         STP State
                                                        Protection
                                         FORWARDING
                                                          NONE
  0
        GigabitEthernet0/0/10
                                   DESI
  0
        GigabitEthernet0/0/11
                                   DEST
                                         FORWARDING
                                                          NONE
  0
        GigabitEthernet0/0/13
                                   DESI
                                         FORWARDING
                                                          NONE
        GigabitEthernet0/0/14
                                   DESI
                                         FORWARDING
                                                          NONE
[S2]display stp brief
 MSTID Port
                                   Role STP State
                                                        Protection
                                   ROOT
                                         FORWARDING
                                                          NONE
        GigabitEthernet0/0/10
  0
  0
        GigabitEthernet0/0/11
                                   ALTE
                                         DISCARDING
                                                          NONE
        GigabitEthernet0/0/13
                                   DESI
                                         FORWARDING
                                                          NONE
        GigabitEthernet0/0/14
                                   DESI FORWARDING
                                                          NONE
[S3]display stp brief
 MSTID Port
                                   Role
                                         STP State
                                                        Protection
        GigabitEthernet0/0/1
                                   ROOT
                                         FORWARDING
                                                          NONE
  Θ
        GigabitEthernet0/0/2
                                    ALTE
                                         DISCARDING
                                                          NONE
       GigabitEthernet0/0/3
                                   ALTE
                                         DISCARDING
                                                          NONE
[S4]display stp brief
 MSTID Port
                                    Role
                                         STP State
                                                        Protection
        GigabitEthernet0/0/1
                                    ROOT
                                          FORWARDING
                                                          NONE
        GigabitEthernet0/0/2
                                                          NONE
  0
                                    ALTE
                                         DISCARDING
        GigabitEthernet0/0/3
                                    DESI FORWARDING
                                                          NONE
```

На основании идентификатора корневого моста и информации о порте каждого коммутатора текущая топология выглядит следующим образом:

Шаг 4. Измените параметры устройства, чтобы назначить порт GigabitEthernet0/0/2 коммутатора S4 корневым портом.

Выведите на экран информацию STP на S4. [S4]display stp -[CIST Global Info][Mode STP]-CIST Bridge :32768.4c1f-cc13-5610 :Hello 2s MaxAge 20s FwDly 15s MaxHop 20 :Hello 2s MaxAge 20s FwDly 15s MaxHop 20 Config Times Active Times CIST Root/ERPC : 0 .4c1f-cc58-5272 / 20000 CIST RegRoot/IRPC :32768.4c1f-cc13-5610 / 0 CIST RootPortId :128.1 BPDU-Protection :Disabled TC or TCN received : 94 TC count per hello :0 STP Converge Mode :Normal Time since last TC :0 days 0h:3m:31s Number of TC :17 Last TC occurred :GigabitEthernet0/0/1 ----[Port1(GigabitEthernet0/0/1)][FORWARDING]-

Стоимость корневого маршрута от S4 до S1 имеет значение 20000.

Измените стоимость STP порта GigabitEthernet 0/0/1 коммутатора S4 на 50000. [S4]interface g0/0/1 [S4-GigabitEthernet0/0/1]stp cost 50000

Выведите на экран краткую информацию о статусе STP.

```
[S4]display stp brief
MSTID Port
                                          STP State
                                    Role
                                                         Protection
       GigabitEthernet0/0/1
                                    ALTE
                                          DISCARDING
                                                           NONE
       GigabitEthernet0/0/2
                                    ROOT
                                          FORWARDING
                                                           NONE
  0
  0
       GigabitEthernet0/0/3
                                    ALTE DISCARDING
                                                           NONE
```

Выведите на экран информацию о текущем статусе STP.

```
[S4]display stp
       -[CIST Global Info][Mode STP]----
                     :32768.4c1f-cc13-5610
CIST Bridge
Config Times
                     :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
                     :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Active Times
CIST Root/ERPC
                          .4c1f-cc58-5272 / 40000
                     : 0
CIST RegRoot/IRPC
                     :32768.4c1f-cc13-5610 / 0
CIST RootPortId
                     :128.2
BPDU-Protection
                     :Disabled
TC or TCN received
                     :164
TC count per hello
                    : 0
STP Converge Mode
                     :Normal
Time since last TC
Number of TC
                    :0 days 0h:2m:50s
                     :20
Last TC occurred
                     :GigabitEthernet0/0/2
```

Текущая топология выглядит следующим образом:

Шаг 5. Измените режим связующего дерева на RSTP.

Измените режим связующего дерева на всех устройствах.

```
[S1]stp mode rstp
[S2]stp mode rstp
[S3]stp mode rstp
[S4]stp mode rstp
```

Выведите на экран статус связующего дерева. В данном случае для примера используется S1.

```
[S1]display stp
       --[CIST Global Info][Mode RSTP]-----
Bridge :0 .4c1f-cc58-5272
CIST Bridge
                         :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
:Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Config Times
Active Times
CIST Root/ERPC
                                 .4c1f-cc58-5272 / 0
                         : 0
CIST RegRoot/IRPC
                                 .4c1f-cc58-5272 / 0
                         :0
CIST RootPortId
                         :0.0
BPDU-Protection
                          :Disabled
CIST Root Type
                          :Primary root
TC or TCN received TC count per hello
                         :43
                         : 0
STP Converge Mode
                         :Normal
Time since last TC :0 days 0h:4m:53s
Number of TC :18
                         :18
Last TC occurred :GigabitEthernet0/0/10
```

Шаг 6. Настройте граничные порты.

Порты GigabitEthernet 0/0/10-0/0/24 коммутатора S3 подключены только к терминалам, поэтому их необходимо настроить в качестве граничных портов. #[S3]interface range GigabitEthernet 0/0/10 to GigabitEthernet 0/0/24 #[S3-port-group]stp edged-port enable

Проверка

1. Отметьте корневой мост и роль каждого порта в лабораторной среде на основании фактической конвергенции сети.

Справочные конфигурации

```
sysname S1
stp mode rstp
stp instance 0 root primary
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
#
aaa
authentication-scheme default
authorization-scheme default
accounting-scheme default
domain default
domain default_admin
local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
interface GigabitEthernet0/0/11
```

```
interface GigabitEthernet0/0/12
shutdown
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
#
return
```

```
#
sysname S2
stp mode rstp
stp instance 0 root secondary
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
```

```
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
interface GigabitEthernet0/0/11
interface GigabitEthernet0/0/12
shutdown
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
return
```

```
sysname S3
stp mode rstp
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
aaa
 authentication-scheme default
authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user admin password simple admin
 local-user admin service-type http
```

```
interface Vlanif1
interface MEth0/0/1
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
interface GigabitEthernet0/0/11
interface GigabitEthernet0/0/12
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
return
```

```
#
sysname S4
#
stp mode rstp
#
cluster enable
ntdp enable
ndp enable
#
drop illegal-mac alarm
#
```

```
diffserv domain default
drop-profile default
aaa
 authentication-scheme default
authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface GigabitEthernet0/0/1
stp instance 0 cost 50000
interface GigabitEthernet0/0/2
shutdown
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
interface GigabitEthernet0/0/11
interface GigabitEthernet0/0/12
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
#
return
```

Агрегирование каналов Ethernet

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Ручная настройка агрегирования каналов.
- Настройка агрегирования каналов в статическом режиме LACP.
- Определение активных каналов в статическом режиме LACP.
- Настройка некоторых функций статического режима LACP.

Топология

План работы

- 1. Настройка агрегирования каналов вручную.
- 2. Настройка агрегирования каналов в режиме LACP.
- 3. Изменение параметров для определения активных каналов.
- 4. Изменение режима балансировки нагрузки.

Процедура конфигурирования

Шаг 1 Настройте агрегирование каналов вручную.

Создайте Eth-Trunk.

```
[S1] int Eth-Trunk 1
[S2] int Eth-Trunk 1
```

Сконфигурируйте режим агрегирования каналов для Eth-Trunk.

[S1-Eth-Trunk1]mode manual load-balance

Добавьте порт в Eth-Trunk.

```
# (cnoco6 1)
[S1]interface gi 0/0/10
[S1-GigabitEthernet0/0/10]eth-trunk 1

[S1]interface gi 0/0/11
[S1-GigabitEthernet0/0/11]eth-trunk 1

[S1]interface gi 0/0/12
[S1-GigabitEthernet0/0/12]eth-trunk 1

# (cnoco6 2)
[S2] int eth-trunk 1
[S2-Eth-Trunk1]trunkport gi 0/0/10 to 0/0/12
```

Выведите на экран статус Eth-Trunk.

```
[S1-GigabitEthernet0/0/12]display eth-trunk 1
Eth-Trunk1's state information is:
                            Hash arithmetic: According to SIP-XOR-DIP
WorkingMode: NORMAL
Least Active-linknumber: 1 Max Bandwidth-affected-linknumber: 8
                            Number Of Up Port In Trunk: 3
Operate status: up
PortName
                              Status
                                          Weight
GigabitEthernet0/0/10
                              Up
                                          1
GigabitEthernet0/0/11
                              Up
                                          1
GigabitEthernet0/0/12
                              Up
                                          1
```

Шаг 2 Настройте агрегирование каналов в режиме LACP.

Удалите порты-участники из Eth-Trunk.

```
[S1]int Eth-Trunk 1
[S1-Eth-Trunk1]undo trunkport gi 0/0/10 to 0/0/12
[S2]int Eth-Trunk 1
[S2-Eth-Trunk1]undo trunkport gi 0/0/10 to 0/0/12
```

Измените режим агрегирования.

```
[S1-Eth-Trunk1]mode lacp
[S2-Eth-Trunk1]mode lacp
```

Добавьте порт в Eth-Trunk.

```
[S1-Eth-Trunk1]trunkport gi 0/0/10 to 0/0/12
[S2-Eth-Trunk1]trunkport gi 0/0/10 to 0/0/12
```

Выведите на экран статус Eth-Trunk.

```
[S1-Eth-Trunk1]display eth-trunk 1
Eth-Trunk1's state information is:
Local:
LAG ID: 1
                            WorkingMode: STATIC
Preempt Delay: Disabled
                            Hash arithmetic: According to SIP-XOR-DIP
System Priority: 32768
                            System ID: 4c1f-cc53-6a36
Least Active-linknumber: 1 Max Active-linknumber: 8
                            Number Of Up Port In Trunk: 3
Operate status: up
ActorPortName
                       Status PortType PortPri PortNo PortKey PortState Weight
GigabitEthernet0/0/10 Selected 1GE
                                     32768 11 305
                                                                10111100 1
GigabitEthernet0/0/11 Selected 1GE
GigabitEthernet0/0/12 Selected 1GE
                                         32768 12
                                                        305
                                                                 10111100 1
                                                        305
                                                                10111100 1
                                         32768 13
Partner:
```

ActorPortName	SysPri	SystemID	PortPri	PortNo	PortKey	PortState
GigabitEthernet0/0/10	32768	4c1f-cce6-16e9	32768	11	305	10111100
GigabitEthernet0/0/11	32768	4c1f-cce6-16e9	32768	12	305	10111100
GigabitEthernet0/0/12	32768	4c1f-cce6-16e9	32768	13	305	10111100

Шаг 3 В обычных условиях в состоянии передачи данных должны находиться только GigabitEthernet0/0/11 и GigabitEthernet0/0/12, а GigabitEthernet0/0/10 должен использоваться в качестве резервного порта. Когда количество активных портов становится меньше 2, Eth-Trunk отключается.

```
# Установите приоритет LACP для S1, чтобы сделать S1 активным устройством. [S1]lacp priority 100
```

Настройте самый высокий приоритет портам GigabitEthernet0/0/11 и GigabitEthernet0/0/12.

```
[S1]int g 0/0/10
[S1-GigabitEthernet0/0/10]lacp priority 40000
```

Задайте верхний и нижний пороги активных портов.

```
[S1]int eth-trunk 1
[S1-Eth-Trunk1]max active-linknumber 2
[S1-Eth-Trunk1]least active-linknumber 2
```

Включите функцию внеочередного занятия линии.

```
[S1-Eth-Trunk1]lacp preempt enable
```

Выведите на экран статус текущего Eth-Trunk.

```
[S1-Eth-Trunk1]dis eth-trunk 1
Eth-Trunk1's state information is:
Local:
                           WorkingMode: STATIC
LAG ID: 1
Preempt Delay Time: 30
                           Hash arithmetic: According to SIP-XOR-DIP
System Priority: 100
                           System ID: 4c1f-cc53-6a36
Least Active-linknumber: 2 Max Active-linknumber: 2
                           Number Of Up Port In Trunk: 2
Operate status: up
ActorPortName
                               PortType PortPri PortNo PortKey PortState Weight
                      Status
GigabitEthernet0/0/10
                      Unselect 1GE
                                        40000
                                                       305
                                                               10100000 1
                                               11
GigabitEthernet0/0/11
                      Selected 1GE
                                        32768
                                                       305
                                               12
                                                               10111100
                                                       305
GigabitEthernet0/0/12 Selected 1GE
                                        32768
                                               13
                                                               10111100
Partner:
ActorPortName
                      SysPri
                               SystemID
                                               PortPri PortNo PortKey PortState
GigabitEthernet0/0/10
                      32768
                               4c1f-cce6-16e9 32768 11
                                                             305
                                                                     10110000
                                               32768
                                                              305
GigabitEthernet0/0/11
                      32768
                               4c1f-cce6-16e9
                                                       12
                                                                     10111100
GigabitEthernet0/0/12 32768
                               4c1f-cce6-16e9
                                               32768
                                                       13
                                                              305
                                                                      10111100
```

Отключите GigabitEthernet0/0/12, чтобы смоделировать неисправность канала.

```
[S1]int gi 0/0/12
[S1-GigabitEthernet0/0/12]shutdown
[S1-GigabitEthernet0/0/12]dis eth-trunk 1
Eth-Trunk1's state information is:
```

Local:

LAG ID: 1 WorkingMode: STATIC

Preempt Delay Time: 30 Hash arithmetic: According to SIP-XOR-DIP

System Priority: 100 System ID: 4c1f-cc53-6a36
Least Active-linknumber: 2 Max Active-linknumber: 2
Operate status: up Number Of Up Port In Trunk: 2

ActorPortName Status PortType PortPri PortNo PortKey PortState Weight GigabitEthernet0/0/10 Selected 1GE 40000 11 305 10111100 GigabitEthernet0/0/11 Selected 1GE 32768 12 305 10111100 GigabitEthernet0/0/12 Unselect 1GE 32768 305 10100010 1 13

Partner:

ActorPortName PortPri PortNo PortKey PortState SysPri SystemID GigabitEthernet0/0/10 32768 4c1f-cce6-16e9 32768 305 10111100 11 GigabitEthernet0/0/11 4c1f-cce6-16e9 32768 305 10111100 32768 12 0000-0000-0000 0 GigabitEthernet0/0/12 Θ 0 10100011

Отключите GigabitEthernet 0/0/11, чтобы смоделировать неисправность канала.

[S1]int gi 0/0/11

[S1-GigabitEthernet0/0/11]shutdown

[S1-GigabitEthernet0/0/11]display eth-trunk 1

Eth-Trunk1's state information is:

Local:

LAG ID: 1 WorkingMode: STATIC

Preempt Delay Time: 30 Hash arithmetic: According to SIP-XOR-DIP

System Priority: 100 System ID: 4c1f-cc53-6a36
Least Active-linknumber: 2 Max Active-linknumber: 2
Operate status: down Number Of Up Port In Trunk: 0

ActorPortName PortType PortPri PortNo PortKey PortState Weight Status GigabitEthernet0/0/10 Unselect 1GE 40000 11 305 10100000 1 GigabitEthernet0/0/11 10100010 1 Unselect 1GE 32768 12 305 GigabitEthernet0/0/12 Unselect 1GE 305 10100010 1 32768 13

Partner:

ActorPortName SysPri SystemID PortPri PortNo PortKey PortState GigabitEthernet0/0/10 32768 4c1f-cce6-16e9 32768 11 305 10110000

GigabitEthernet0/0/11 0 0000-0000-0000 0 0 0 10100011 GigabitEthernet0/0/12 0 0000-0000-0000 0 0 0 10100011

Шаг 4 Измените режим балансировки нагрузки.

Включите порты, отключенные на предыдущем шаге.

```
[S1]int g 0/0/11
[S1-GigabitEthernet0/0/11]undo shutdown
[S1]int g 0/0/12
[S1-GigabitEthernet0/0/12]undo shutdown
```

Подождите около 30 секунд и проверьте статус Eth-Trunk 1.

```
[S1-GigabitEthernet0/0/12]display eth-trunk 1
Eth-Trunk1's state information is:
Local:
LAG ID: 1
                               WorkingMode: STATIC
Preempt Delay Time: 30
                              Hash arithmetic: According to SIP-XOR-DIP
System Priority: 100
                               System ID: 4c1f-cc53-6a36
Least Active-linknumber: 2 Max Active-linknumber: 2
Operate status: up
                              Number Of Up Port In Trunk: 2
ActorPortName
                     Status PortType PortPri PortNo PortKey PortState Weight
GigabitEthernet0/0/10 Selected IGE
GigabitEthernet0/0/11 Selected IGE
GigabitEthernet0/0/12 Unselect IGE
                                             40000 11
                                                             305
                                                                      10111100 1
                                                   12
                                             32768
                                                             305
                                                                      10111100 1
                                             32768 13
                                                             305
                                                                      10100000 1
Partner:
ActorPortName SysPri SystemID GigabitEthernet0/0/10 32768 4c1f-cce6-
                                                PortPri PortNo PortKey PortState
                                   4c1f-cce6-16e9 32768 11 305
                                                                             10111100
GigabitEthernet0/0/11 32768
GigabitEthernet0/0/12 32768
                                   4c1f-cce6-16e9 32768
                                                                     305
                                                             12
                                                                              10111100
                                                            12
13
                                   4c1f-cce6-16e9 32768
                                                                     305
                                                                              10110000
[S1-Gigabi
```

Измените режим балансировки нагрузки Eth-Trunk на балансировку нагрузки на основе IP-адреса назначения.

```
[S1-GigabitEthernet0/0/12]interface Eth-Trunk 1
[S1-Eth-Trunk1]load-balance dst-ip
```

Справочные конфигурации

```
#
sysname S1
lacp priority 100
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
aaa
 authentication-scheme default
 authorization-scheme default
accounting-scheme default
domain default
 domain default_admin
 local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface Eth-Trunk1
 mode lacp-static
 least active-linknumber 2
 load-balance dst-ip
lacp preempt enable
max active-linknumber 2
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
eth-trunk 1
lacp priority 40000
interface GigabitEthernet0/0/11
eth-trunk 1
interface GigabitEthernet0/0/12
 eth-trunk 1
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
```

```
interface GigabitEthernet0/0/15
#
interface GigabitEthernet0/0/16
#
interface GigabitEthernet0/0/17
#
interface GigabitEthernet0/0/18
#
interface GigabitEthernet0/0/19
#
interface GigabitEthernet0/0/20
#
interface GigabitEthernet0/0/21
#
interface GigabitEthernet0/0/22
#
interface GigabitEthernet0/0/23
#
interface GigabitEthernet0/0/24
#
interface GigabitEthernet0/0/24
#
interface NULL0
#
user-interface con 0
user-interface vty 0 4
#
return
```

```
#
sysname S2
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
#
aaa
 authentication-scheme default
authorization-scheme default
 accounting-scheme default
 domain default
domain default_admin
local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface MEth0/0/1
interface Eth-Trunk1
mode lacp-static
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
```

```
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
eth-trunk 1
interface GigabitEthernet0/0/11
eth-trunk 1
interface GigabitEthernet0/0/12
eth-trunk 1
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
return
```

Связь между VLAN

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Использование подинтерфейсов терминирования dot1q для реализации связи
- между VLAN
- Использование интерфейсов VLANIF для реализации связи между VLAN
- Процесс передачи данных между VLAN

Топология

План работы

- 1. Настройка подинтерфейсов терминирования dot1q для реализации связи между VLAN.
- 2. Настройка интерфейсов VLANIF для реализации связи между VLAN.

Процедура конфигурирования

Шаг 1 Настройте основные параметры устройств.

Присвойте имена маршрутизаторам R1, R2, R3 и S1.

```
[R1] sysname R1
[R2] sysname R2
[R3] sysname R3
[S1] sysname S1
```

Настройте IP-адреса и шлюзы для R2 и R3.

```
[R2]int g 0/0/1

[R2-GigabitEthernet0/0/1]ip ad 192.168.2.1 24

[R2]ip route-static 0.0.0.0 0 192.168.2.254

[R3]int g 0/0/1 [R3-GigabitEthernet0/0/1]ip ad 192.168.3.1 24

[R3]ip route-static 0.0.0.0 0 192.168.3.254
```

Ha S1 назначьте R2 и R3 в разные VLAN.

```
[S1] vlan batch 2 3
[S1] int g 0/0/2
[S1-GigabitEthernet0/0/2]port link-type access
[S1-GigabitEthernet0/0/2]port default vlan 2
[S1] int g 0/0/3
[S1-GigabitEthernet0/0/3]port link-type access
[S1-GigabitEthernet0/0/3]port default vlan 3
```

Шаг 2 Настройте подинтерфейсы терминирования dot1q для реализации связи между VLAN.

Настройте магистральный порт на S1.

```
[S1]int g 0/0/1
[S1-GigabitEthernet0/0/1]port link-type trunk
[S1-GigabitEthernet0/0/1]port trunk allow-pass vlan 2 3
```

Настройте подинтерфейс терминирования dot1q на маршрутизаторе R1.

```
[R1]int g 0/0/1.2
[R1-GigabitEthernet0/0/1.2]dot1q termination vid 2
```

Проверьте связь между VLAN.

```
[R1-GigabitEthernet0/0/1.2]arp broadcast enable
[R1-GigabitEthernet0/0/1.2]ip ad 192.168.2.254 24
[R1]int g 0/0/1.3
[R1-GigabitEthernet0/0/1.3]dot1q termination vid 3
[R1-GigabitEthernet0/0/1.3]arp broadcast enable
[R1-GigabitEthernet0/0/1.3]ip ad 192.168.3.254 24
```

```
# Проверьте связь между VLAN.
[R2]ping 192.168.3.1
PING 192.168.3.1: 56 data bytes, press CTRL_C to break
    Request time out
    Reply from 192.168.3.1: bytes=56 Sequence=2 ttl=254 time=140 ms
   Reply from 192.168.3.1: bytes=56 Sequence=3 ttl=254 time=80 ms
   Reply from 192.168.3.1: bytes=56 Sequence=4 ttl=254 time=70 ms
   Reply from 192.168.3.1: bytes=56 Sequence=5 ttl=254 time=90 ms
  --- 192.168.3.1 ping statistics ---
   5 packet(s) transmitted
    4 packet(s) received
   20.00% packet loss
   round-trip min/avg/max = 70/95/140 ms
[R2]tracert 192.168.3.1
traceroute to 192.168.3.1(192.168.3.1), max hops: 30 ,packet length: 40,press
CTRL_C to break
1 192.168.2.254 50 ms 40 ms 50 ms
2 192.168.3.1 80 ms 90 ms 80 ms
```

Шаг 3 Настройте интерфейсы VLANIF для реализации связи между VLAN.

Удалите конфигурацию, созданную на предыдущем шаге.

```
[S1]int g 0/0/1
[S1-GigabitEthernet0/0/1]undo port trunk allow-pass vlan 2 3
[S1-GigabitEthernet0/0/1]undo port link-type

[R1]undo int g 0/0/1.2
[R1]undo int g 0/0/1.3
```

Создайте интерфейс VLANIF на коммутаторе S1.

```
[S1]int vlanif 2

[S1-Vlanif2]ip ad 192.168.2.254 24

[S1]int vlanif 3

[S1-Vlanif3]ip ad 192.168.3.254 24
```

Проверьте связь между VLAN.

```
[R2]ping 192.168.3.1
  PING 192.168.3.1: 56 data bytes, press CTRL_C to break
    Reply from 192.168.3.1: bytes=56 Sequence=1 ttl=254 time=100 ms
    Reply from 192.168.3.1: bytes=56 Sequence=2 ttl=254 time=60 ms
   Reply from 192.168.3.1: bytes=56 Sequence=3 ttl=254 time=60 ms
   Reply from 192.168.3.1: bytes=56 Sequence=4 ttl=254 time=60 ms
   Reply from 192.168.3.1: bytes=56 Sequence=5 ttl=254 time=40 ms
  --- 192.168.3.1 ping statistics ---
   5 packet(s) transmitted
    5 packet(s) received
   0.00% packet loss
   round-trip min/avg/max = 40/64/100 ms
[R2]tracert 192.168.3.1
traceroute to 192.168.3.1(192.168.3.1), max hops: 30 ,packet length: 40,press
CTRL_C to break
1 192.168.2.254 10 ms 20 ms 20 ms
2 192.168.3.1 40 ms 50 ms 40 ms
```

Справочные конфигурации

```
#
sysname S1
#
vlan batch 2 to 3
#
cluster enable
ntdp enable
ndp enable
#
drop illegal-mac alarm
#
diffserv domain default
#
drop-profile default
#
aaa
authentication-scheme default
authorization-scheme default
accounting-scheme default
```

```
domain default
 domain default_admin
 local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
interface Vlanif2
ip address 192.168.2.254 255.255.255.0
interface Vlanif3
ip address 192.168.3.254 255.255.255.0
interface MEth0/0/1
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
port link-type access
port default vlan 2
interface GigabitEthernet0/0/3
port link-type access
port default vlan 3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
interface GigabitEthernet0/0/11
interface GigabitEthernet0/0/12
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
#
return
```

Вывод

Мы снова сделали все по инструкции, но в инструкции были опечатки (как и в презентациях лекций хуавея) и некоторые команды из-за этого не работают, однако у нас хватило ума понять это и написать правильно.