Introdução à Lógica Matemática

O que é lógica?

Lógica é o estudo do raciocínio dedutivo.

Segundo Irving Copi, uma definição mais adequada é: "A lógica é uma ciência do raciocínio", pois a sua ideia está ligada ao processo de raciocínio correto e incorreto que depende da estrutura dos argumentos envolvidos nele. Assim concluímos que a lógica estuda as formas ou estruturas do pensamento, isto é, seu propósito é estudar e estabelecer propriedades das relações formais entre as proposições.

Lógica:

LINGUAGEM

+

REGRAS DE DEDUÇÃO / INFERÊNCIA

+

SEMÂNTICA

Linguagem: É usada para descrever o conhecimento que se deseja representar.

Regras de Dedução: Servem para tirar conclusões a partir do conhecimento representado na linguagem.

Semântica: Serve para dar significado aos objetos descritos na linguagem.

A lógica é usada para guiar nossos pensamentos ou ações na busca da solução:

- a lógica está correta se conseguirmos atingir o nosso objetivo;
- é a habilidade fundamental para se resolver problemas de programação de computadores.

Temos que aprender a pensar de forma estruturada:

- desenvolver e aperfeiçoar a técnica de pensamento;
- seguir um raciocínio lógico e matemático.

A lógica trata da correção do pensamento;

- ensina-nos a usar corretamente as leis do pensamento:
- é a arte de pensar corretamente;
- a forma mais complexa do pensamento é o raciocínio;
- ordem da razão (nossa razão pode funcionar desordenadamente) ou ordem no pensamento.

Exemplo:

Todo mamífero é animal.

Todo cavalo é mamífero.

Portanto, todo cavalo é animal.

Brasil é país do planeta Terra.

Todos os Brasileiros são do Brasil.

Portanto, todos os Brasileiros são terráqueos.

Sempre que pensamos, quando falamos, pois a palavra falada é a representação do pensamento, quando escrevemos, pois a palavra escrita é a representação da palavra falada ou mesmo do nosso pensamento.

Daí a importância da lógica em nossa vida, pois quando pensamos, escrevemos ou falamos corretamente precisamos colocar **Ordem no Pensamento**.

Exemplos:

A gaveta está fechada.

A agenda está na gaveta.

Preciso primeiro abrir a gaveta, para depois pegar a agenda.

Ana é mais velha do que João.

João é mais velho do que Pedro.

Portanto, Ana é mais velha do que Pedro.

Um homem precisa atravessar um rio com um barco que possui capacidade de transportar apenas ele mesmo e mais uma de suas três cargas, que são: um lobo, um bode e uma caixa de alfafa. Indique as ações necessárias para que o homem consiga atravessar o rio sem perder suas cargas.

O lobo não pode ficar sozinho com o bode, senão ele o come;

O bode não pode ficar sozinho com a caixa de alfafa, senão a come;

Resposta:

Informações: um barco, um homem, um lobo, um bode e uma caixa de alfafa.

Ação: atravessar o rio sem perder as cargas.

Resultado: todas as cargas na outra margem do rio.

Algoritmo:

início

atravessar homem e bode voltar homem

atravessar homem e lobo

voltar homem e bode

atravessar homem e alfafa

voltar homem

atravessar homem e bode

fim

Levantamento Histórico

- Aristóteles → leis do discurso;
- Idade Média → lógica filosófica;
- Boole (1815-1864) → álgebra booleana;
- Peano (c.1865) → axiomatização da aritmética;
- Frege (1874)
 - → investigar fundamentos da matemática
 - → lógica moderna;
- Russel-Whitehead (1910)
 - → Princípia Matemática
 - → lógica moderna;
- Hilbert (1925) →
 - → formalização da noção de prova
 - → mecanização da matemática;

- Gentzen (1935) → teoria da prova;
- Godel (1931-1935)
 - → completude da lógica
 - → incompletude da aritmética;
- Investigar Fundamentos da Computação

Proposição Clássica

Conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, de modo que se possa atribuir, dentro de certo contexto, somente um de dois <u>valores lógicos</u> possíveis: <u>verdadeiro</u> (V) ou <u>falso</u> (F). Chamaremos de **proposição** ou **sentença**, a todo conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo.

Princípios das Proposições:

- 1. **Princípio da Identidade:** uma proposição é uma afirmação passível de assumir valor lógico **verdadeiro** ou **falso**
- 2. **Princípio da não-contradição:** uma proposição não pode ser verdadeira e falsa ao mesmo tempo
- 3. **Princípio do terceiro excluído:** toda proposição é verdadeira ou falsa, não havendo outra possibilidade

As proposições podem ser classificadas em **simples (atômicas)** e são representadas por letras minúsculas do alfabeto: **a, b, c, d, ..., p, q, etc** ou **compostas (moléculas)** que são representadas por letras maiúsculas do **A, B, C, ..., P, Q, etc.**

Exemplos de proposições simples:

```
p: O Brasil fica no planeta Terra (V)
```

q: O Brasil fica no Hemisfério Norte (F)

r: O planeta Terra fica no Sistema Solar (V)

s: 2 > 1 (V)

t: 5 = 1 (F)

Exemplos de **proposições compostas:**

P: Carlos é careca e João é baixo

Q: Carlos é cabeludo ou João é alto

R: **Se** Carlos é careca, **então** é bonito

O que não é uma Proposição?

- Sentenças exclamativas: "Caramba!", "Feliz aniversário!", "Feliz Ano Novo!".
- Sentenças interrogativas: "Como é seu nome?", "O jogo saiu de quanto?"
- Sentenças imperativas: "Estude mais", "Leia aquele livro".

Conectivos Lógicos e Cálculo Proposicional

Conectivos são usados para formar proposições a partir de outras.

Notação	Nome	Significado	Lê-se	Exemplos
г ~	negação	não	não p	p: 2+3=5 (V) e ~p: 2+3 ≠5 (F) p = ~p
٨	conjunção	e	р е q	p: a neve é branca (V) q: 2 < 5 (V) p ^ q (V) a neve é branca e 2 < 5
v	disjunção	ou	p ou q	p: Paris é a capital da França (V) q: Roma é a capital da Rússia (F) p V q (V) Paris é a capital da França ou Roma é a capital da Rússia
→	condicional	implica	se p então q se <condição> então <conclusão></conclusão></condição>	p: $2 > 1$ (V) e q: $3 > 1$ (V) p \rightarrow q (V) se $2 > 1$ então $3 > 1$
↔	bicondicional	equivalência	se, e somente se, p é condição necessária e suficiente para q q condição necessária e suficiente para p	p: Roma fica na Europa (V) q: tg ^π / ₃ = 3 (F) p ↔ q (F) Roma fica na Europa se, e somente se, tg ^π / ₃ = 3

Construção de Tabela-Verdade

As células de ambas as tabelas são preenchidas com <u>valores lógicos</u>: V ou F, de modo a esgotar todas as possíveis combinações. O número de linhas da tabela pode ser previsto efetuando o cálculo: 2ⁿ (2 elevado ao número de proposições simples).

Como exemplo, uma sentença com 2 proposições p e q tem-se uma tabela-verdade com $2^2 = 4$ linhas e uma sentença com 3 proposições p, q e r, tem-se uma tabela-verdade com $2^3 = 8$ linhas.

эт үч	sições p, q e i, tem se uma tabeta verdade com 2 o min				
2 proposições (2 ⁿ = 4)		3 proposições (2 ⁿ = 8)			
		$p = 2^2$	$q = 2^1$	$r = 2^0$	
		V	V	V	
$p = 2^1$	q =2°	V	V	F	
V	V	V	F	V	
V	F	V	F	F	
F	V	F	V	V	
F	F	F	V	F	
		F	F	V	
		F	F	F	

Conectivos Lógicos e suas Tabelas-Verdade

Toda <u>proposição simples</u> tem como resposta o **valor lógico: verdadeiro (V)** ou **falso (F)**. Já as <u>proposições compostas</u> têm seu valor lógico dependente unicamente dos **valores lógicos** das **proposições simples** que a compõe. Recorre-se a **tabela-verdade**, onde constam todas as possibilidades de valores lógicos.

Notação	Nome	Significado	Lê-se	Tab	ela-Vero	dade
¬ ~	negação	não	não p	p V F		~p F V
٨	conjunção	e	p e q	p V V F	q V F V F	p A q V F F F
V	disjunção	ou	р ои q	p V V F F	q V F V F	p v q V V V F
→	condicional	implica	se p então q se <condição> então <conclusão></conclusão></condição>	P V V F F	q V F V	p → q V F V V
\leftrightarrow	bicondicional	equivalência	se, e somente se, p é condição necessária e suficiente para q q condição necessária e suficiente para p	P V V F F	q V F V F	p ↔ q V F V

Observação:

Uma **proposição condicional** $p \rightarrow q$ **não afirma** que o consequente q **se deduz** ou é **consequência** do antecedente p. Assim, por exemplo, as proposições condicionais:

7 é um número ímpar → Brasília é uma cidade

não estão a afirmar que, de modo algum, que o fato de Brasília ser uma cidade **se deduz** do fato que 7 é um número ímpar.

não estão a afirmar que, de modo algum, que Santos Dumont nasceu no Ceará é uma **consequência** da proposição 3+5=9.

O que uma proposição condicional afirma é, unicamente, uma relação entre valores lógicos da proposição antecedente e da consequente, <u>de acordo com sua tabela-verdade</u>.

Exercícios sobre Conectivos Lógicos

1 – Sejam as proposições na tabela, traduza para a linguagem corrente.

, , ,	, , ,		
p = está frio e q = não está chovendo			
a) ~p			
b) p A q			
c) p v q			
d) q ↔ p			
e) p → q			
f) p v ~q			
g) ~p ^ ~q			
h) p ∧ ~q → p			

2 - Traduza para a linguagem simbólica da lógica as seguintes proposições matemáticas:

a) $x = 0$ ou $x > 0$	
b) x ≠ 0 e y ≠ 0	
c) x > 1 ou x + y = 0	

3) Dê a representação simbólica de um circuito elétrico com dois interruptores: a e b, fechados e ligados em paralelo, conforme o esquema elétrico. Considere quando o interruptor se encontra fechado, seu valor lógico será V:

4) Dê a representação simbólica de um circuito elétrico com dois interruptores: a e b, fechados, ligados em série conforme o esquema elétrico. Considere quando o interruptor se encontra fechado, seu valor lógico será V:

5) Dê a representação simbólica de um circuito elétrico com dois interruptores: a e b fechados, ligados em série conforme o esquema elétrico. Considere quando o interruptor se encontra fechado, seu valor lógico será V:

Equivalência Lógica e Tabelas-Verdade de Proposições Compostas

1) Negação de uma proposição conjuntiva ∧ (e) – Lei de Morgan:

Para negar uma proposição no formato de conjunção (p **A** q), faremos o seguinte:

- 1. nega-se a primeira parte (~p)
- 2. nega-se a segunda parte (~q)
- 3. troca-se **\(\((e) \)** por **\(\((ou) \)** Exemplo:

Não é verdade que João é médico e Pedro é dentista

Encontra-se entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida. Analisemos: o começo da sentença é "não é verdade que...". Ora, dizer que "não é verdade que..." é nada mais nada menos que negar o que vem em seguida. E o que vem em seguida? Uma estrutura de conjunção!

Daí, como negaremos que "João é médico e Pedro é dentista"? Da forma explicada acima:

- 1. Nega-se a primeira parte (~p) = João não é médico
- 2. Nega-se a segunda parte (\sim q) = Pedro não é dentista
- 3. Troca-se **A** (e) por **V** (ou), e o resultado final será o seguinte:

JOÃO NÃO É MÉDICO OU PEDRO NÃO É DENTISTA

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim$$
(p Λ q) = \sim p V \sim q

Como se chega a essa conclusão? Através da comparação entre as tabelas-verdade das duas proposições acima. Primeiramente, analisaremos a primeira parte da igualdade: ~(p **A** q). Começa-se com a estrutura básica da tabela-verdade para 2 proposições: p e q.

p	q
V	V
V	F
F	V
F	F

Faz-se a próxima coluna, que é a da conjunção **∧ (e)**. Tem-se:

p	q	р л q
V	V	V
V	F	F
F	V	F
F	F	F

Por fim, constrói-se a quarta coluna que é a negativa da terceira. Sabe-se que com a negativa, o que é verdadeiro vira falso, e o que é falso vira verdadeiro. Logo, tem-se:

p	q	р л q	~(p A q)
V	V	V	F
V	F	F	V
F	V	F	V
F	F	F	V

Guarda-se essa última coluna (em destaque). Ela representa o resultado lógico da estrutura ~(p **A** q). Agora, analisando a segunda parte da igualdade: ~p **V** ~q, constrói-se a sua tabela-verdade. Teremos:

p	q	~p	~q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

Agora, passemos à coluna final: ~p **V** ~q. Aqui se faz necessário lembrar-se de como funciona uma disjunção **V** (ou). Para que seja verdadeira, basta que uma das sentenças também o seja. Daí, teremos:

p	q	~p	~q	~p v ~q
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Finalmente, comparemos a coluna resultado (em destaque) da primeira parte da igualdade ~(p ∧ q) com o resultado (também em destaque) da segunda parte da igualdade (~p ∨ ~q). Tem-se:

Resultados idênticos! Do ponto de vista lógico, a negação de p e q: \sim (p Λ q), equivale a negarmos p, negarmos q e trocar o conectivo Λ (e) por V(ou): (\sim p V \sim q).

2) Negação de uma proposição disjuntiva V (ou) – Lei de Morgan:

$$\sim$$
(p **V** q)

Para negar uma proposição no formato de conjunção (p **V** q), faremos o seguinte:

- 4. nega-se a primeira parte (~p)
- 5. nega-se a segunda parte (~q)
- 6. troca-se V(ou) por $\Lambda(e)$

Exemplo:

Não é verdade que Pedro é dentista ou Paulo é engenheiro

Pensemos: a frase começa com um "não é verdade que...", ou seja, o que se segue está sendo negado! E, depois, segue-se ainda uma estrutura em forma de disjunção. Obedecendo aos passos descritos acima, faremos:

- 1. Nega-se a primeira parte (~p) = Pedro não é dentista
- 2. Nega-se a segunda parte (~q) = Paulo não é engenheiro
- 3. Troca-se **V** (ou) ou **A** (e) e o resultado final será o seguinte:

PEDRO NÃO É DENTISTA E PAULO NÃO É ENGENHEIRO

Na linguagem apropriada, concluímos que:

$$\sim$$
(p **V** q) = \sim p $\wedge \sim$ q

Pode-se fazer a comprovação da negação de proposição composta disjuntiva (♥), via tabelas-verdade, desta conclusão acima. Toma-se a primeira parte da igualdade ~(p ♥ q). Teremos, de início:

p	q
V	V
V	F
F	V
F	F

Daí, constrói-se a coluna da disjunção (p **V** q). Teremos:

10

p	q	р v q
V	V	V
V	F	V
F	V	V
F	F	F

Por fim, constrói-se a quarta coluna que é a negativa da terceira. Sabe-se que com a negativa, o que é verdadeiro vira falso, e o que é falso vira verdadeiro. Logo, tem-se:

p	q	p v q	~(p v q)
V	V	V	F
V	F	V	F
F	V	V	F
F	F	F	V

Guarda-se essa última coluna (em destaque). Ela representa o resultado lógico da estrutura ~(p **v** q). Agora, analisando a segunda parte da igualdade: ~p **n** ~q, constrói-se a sua tabela-verdade. Teremos:

p	q	~p	~q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

Finalizando, fazendo a conjunção ~p **∧** ~q, teremos os seguintes resultados:

р	q	~p	~q	~p ^ ~q
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Finalmente, comparemos a coluna resultado (em destaque) da primeira parte da igualdade ~(p **V** q) com o resultado (também em destaque) da segunda parte da igualdade (~p **A** ~q). Tem-se:

~(p v q)	~p ^ ~q
F	F
F	F
F	F
V	V

Resultados idênticos! Do ponto de vista lógico, a negação de p e q: \sim (p Λ q), equivale a negarmos p, negarmos q e trocar o conectivo V(ou) por Λ (e): (\sim p Λ \sim q).

3) Negação de uma proposição condicional → (implica):

$$\sim (p \rightarrow q) = p \wedge \sim q$$

Seguindo a mesma ideia de construção das proposições anteriores: primeiro analisa-se o termo antes da igualdade e depois o termo após a igualdade. Fica-se com a seguinte tabela-verdade:

p	q	$p \rightarrow q$	~(p → q)	~p	p ∧ ~q
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F

Resultados idênticos! Do ponto de vista lógico, para a negação da condicional de p que implica q: \sim (p \rightarrow q), equivale a utilizarmos a conjunção Λ (e) entre p e a negação de q: (p Λ \sim q).

4) Negação de uma proposição bicondicional ↔ (equivalente):

$$\sim$$
(p \leftrightarrow q) = [(p $\land \sim$ q) \lor (q $\land \sim$ p)]

Seguindo a mesma ideia de construção das proposições anteriores: primeiro analisa-se o termo antes da igualdade e depois o termo após a igualdade. Fica-se com a seguinte tabela-verdade:

p	q	(p ↔ q)	~(p ↔ q)	~p	~q	p ∧ ~q	q ∧ ~p	(p A ~q) V (q A ~p)
V	V	V	F	F	F	F	F	F
V	F	F	V	F	V	V	F	V
F	V	F	V	V	F	F	V	V
F	F	V	F	V	V	F	F	F

Resultados idênticos! Do ponto de vista lógico, a negação da bicondicional de p equivalente a q: \sim (p \leftrightarrow q), é igual a utilizarmos o conectivo V(ou) conectando a proposição composta: p Λ (e) a negação de q: (p Λ \sim q) com a proposição composta q Λ (e) e a negação de p: (q Λ \sim p).

5) Tabela resumo das equivalências e negações de proposições compostas:

~(p \(\) q)	~p v ~q	
~(p v q)	~p ^ ~q	
$\sim (p \rightarrow q)$	p ∧ ~q	
$\sim (p \leftrightarrow q)$	[(p \Lambda ~q) \V (q \Lambda ~p)]	

Exercícios sobre a tabela-verdade de proposições compostas

- 1) Ache a tabela-verdade das seguintes proposições:
 - a) ~p **v** q
 - b) $\sim (\sim p \rightarrow q)$
 - c) ~(p \ ~q)
 - d) ~(~p ∧ ~q)

Outros Conectivos Conhecidos

Notação	Nome	Significado	Lê-se		Tabela-Verdade		e
				p	q	р л q	p q
	Traço			V	V	V	F
	de	~ ^	negação da conjunção	V	F	F	V
	Sheffer			F	V	F	V
				F	F	F	V
				p	q	р v q	p↓q
	Adaga			V	V	V	F
↓ ↓	de	~ V	negação da disjunção	V	F	V	F
	Quine			F	V	V	F
				F	F	F	V
				p	q	p ↔ q	р <u>v</u> q
	⊻ disjunção ~			V	V	V	F
<u>v</u>		~ ↔	negação da bicondicional	V	F	F	V
				F	V	F	V
				F	F	V	F

Tautologias, Contradição e Contingências

Uma proposição composta formada por duas ou mais proposições simples p, q, r, ... será dita uma **Tautologia** se ela <u>for sempre verdadeira</u>, independentemente dos valores lógicos das proposições p, q, r, ... que a compõem. De outra forma: para saber se uma proposição composta é uma **Tautologia**, construiremos a sua tabela-verdade e, se a última coluna da tabela-verdade só apresentar, somente, valor lógico verdadeiro. Exemplo:

A proposição

$$(p \land q) \rightarrow (p \lor q)$$

é uma tautologia, pois é sempre verdadeira, independentemente dos valores lógicos de p e q, como se pode observar na tabela-verdade.

p	q	(p A q)	(p v q)	$(p \land q) \rightarrow (p \lor q)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Uma proposição composta formada por duas ou mais proposições simples p, q, r, ... será dita uma **contradição** se ela <u>for sempre falsa</u>, independentemente dos valores lógicos das proposições p, q, r ... que a compõem. Ou seja, construindo a tabela-verdade de uma proposição composta, se todos os resultados da última coluna forem FALSOS, então estaremos diante de uma **contradição**. Exemplo:

A proposição:

$$p \leftrightarrow \sim p$$

é uma contradição, pois sempre é falsa independentemente do valor lógico de p, como é possível observar na tabela-verdade abaixo:

p	~p	p ↔ ~p
V	F	F
F	V	F

Uma proposição composta será dita uma **contingência** sempre que não for uma tautologia ou uma contradição. Pega-se a proposição composta e constrói-se sua tabela-verdade. Se você verificar que aquela proposição composta <u>nem é uma tautologia</u> (só resultados V), e <u>nem é uma contradição</u> (só resultados F), então, pela via de exceção, será dita uma **contingência**. Exemplo:

A proposição:

$$p \leftrightarrow (p \land q)$$

é uma contingência porque nem é uma tautologia e nem é uma contradição. Veja-se sua tabela-verdade a seguir.

p	q	(p A q)	p ↔ (p ∧ q)
V	V	V	V
V	F	F	F
F	V	F	V
F	F	F	V

Exercícios sobre tautologias, contradição e contingências

- 1) Demonstre através da tabela-verdade se as proposições a seguir são uma tautologia, uma contradição ou uma contingência.
 - a) $[(p \ \mathbf{V} \ q) \ \mathbf{\Lambda} \ (p \ \mathbf{\Lambda} \ s)] \rightarrow p$
 - b) a **\(\cdot \(\cdot \)**
 - c) a Λ (a \rightarrow b) Λ \sim b
 - d) $(a \rightarrow ((a \rightarrow b) \rightarrow b)$

Referências Bibliográficas

FILHO, Edgar de Alencar. Iniciação à Lógica Matemática. São Paulo: ed. Nobel, 2015

LIMA, Cleone. Notas de Aula – Fundamentos de Lógica e Algoritmos. Natal: IFRN, 2012

PENA, Fernando Sousa da; MIRANDA, Maria Virgínia. Teoria dos Conjuntos. Lisboa: Instituto Piaget, 2006

LIPSCHUTZ, Seymour. **Teoria dos Conjuntos, 1ª ed – Coleção Schaum.** São Paulo: ed. McGraw-Hill, 1976

Diagrama de Venn. Disponível em

http://wikiciencias.casadasciencias.org/wiki/index.php/Diagrama_de_Venn> Acesso em 29 de setembro de 2017

Silogismo. Disponível em <<u>https://www.infoescola.com/filosofia/silogismo/</u>> Acesso em 27 de outubro de 2017