Конспект к экзамену по билетам (математический анализ) (3-й семестр)

Латыпов Владимир (конспектор)

t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Виноградов Олег Леонидович (лектор) olvin@math.spbu.ru

14 января 2023 г.

Оглавление

Or	лавл	ение	2	
	0.1	Как работать с этим сжатым конспектом	4	
	0.2	Названия билетов (ровно как в оригинале)	<u>Z</u>	
	0.3	Термины, незнание которых приводит к неуду по экзамену	8	
1	Криволинейные интегралы на плоскости			
	1.1	Простейшие свойства криволинейных интегавлов	9	
	1.2	Точные и замкнутые формы	11	
	1.3	Гомотопные пути	14	
2	Теория функции комплексной переменной 1			
	2.1	Комплексная дифференцируемость	16	
	2.2	Интегральная формула Коши и её следствия	18	
	2.3	Теорема единственности, аналитическое продолжение и много-		
		значные функции	20	
	2.4	Ряды Лорана и выечты	20	
3	Мера и интеграл			
	3.1	Простейшие свойства полуколец и сигма-алгебр	22	
	3.2	Простейшие свойства объема и меры	22	
	3.3	Непрерывность меры	22	
	3.4	Внешняя мера	22	
	3.5	Мера, порожденная внешней мерой	22	
	3.6	Теорема Каратеодори о стандартном распространении меры	22	
	3.7	Свойства стандартного распространения меры. Единственность стан	-	
		дартного распространения (без доказательства, с примером суще-		
		ственности сигма-конечности)	22	
	3.8	Полукольцо ячеек. Конечная аддитивность классического объема	22	
	3.9	Счетная аддитивность классического объема	22	
	3.10	Мера параллелепипеда. Мера не более чем счетного множества .	22	
	3.11	Представление открытого множества в виде объединения ячеек.		
		Измеримость борелевских множеств по Лебегу	22	
	3.12	Приближение измеримых множеств открытыми и замкнутыми.		
		Регулярность меры Лебега	22	
	3.13	Приближение измеримых множеств борелевскими. Общий вид из-		
		меримого множества	22	
	3.14	Сохранение измеримости при гладком отображении	22	
	3.15	N-свойство Лузина и сохранение измеримости	22	

3.16	Канторово множество и канторова функция. Пример гомеомор-	
	физма, не сохраняющего измеримость по Лебегу	22
3.17	Лемма о мере образа при известной мере образа ячейки. Инвари-	
	антность меры Лебега относительно сдвига	22
3.18	Описание мер, инвариантных относительно сдвига	22
3.19	Существование неизмеримого по Лебегу множества	22
3.20	Мера Лебега, при линейном отображении. Инвариантность меры	
	Лебега относительно движений	22
3.21	Простейшие свойства измеримых функций	22
3.22	Измеримость граней и пределов	22
3.23	Приближение измеримых функций простыми и ступенчатыми	22
3.24	Действия над измеримыми функциями	22
3.25	Непрерывность и измеримость по Лебегу. С-свойство Лузина (фор-	
	мулировка)	22
3.26	Сходимость по мере и почти везде: определения, примеры, фор-	
	мулировки теорем Лебега и Ф.Рисса	22
3.27	Монотонность интеграла	22
	Интеграл по множеству и его подмножеству	22
	Теорема Леви	22
3.30	Пренебрежение множествами нулевой меры при интегрировании.	
	Интегралы от эквивалентных функций	22
3.31	Однородность интеграла	22
3.32	Аддитивность интеграла по функции	22
3.33	Теорема Леви для рядов. Суммируемость функции и ее модуля.	
	Достаточные условия суммируемости	22
3.34	Неравенство Чебышева и его следствия: конечность суммируемой	
	функции почти везде, неотрицательная функция с нулевым ин-	
	тегралом	22
3.35	Счетная аддитивность интеграла по множеству. Приближение ин-	
	теграла интегралом по множеству конечной меры	22
3.36	Теорема Фату	22
3.37	Теорема, Лебега о мажорированной сходимости	22
	Абсолютная непрерывность интеграла	22
3.39	Функции Бэра: теорема Бэра, лемма о последовательности дроб-	
	лений, измеримость функций Бэра	22
3.40	Критерий Лебега интегрируемости функции по Риману. Сравне-	
	ние интегралов Римана и Лебега	22
3.41	Восстановление меры множества по мерам сечений (часть 1: слу-	
	чаи ячейки, открытого множества и множества типа жэсигма ко-	
	нечной меры)	22
3.42	Восстановление меры множества по мерам сечений (часть 2: слу-	
	чай множества нулевой меры и переход к произвольному множе-	
	ству)	22
3.43	Меры n -мерных шара и конуса	22
3.44	Мера декартова произведения	22

0.1. Как работать с этим сжатым конспектом

Составлено в соответствии с лекциями, а также учебником проф. О. Л. Виноградова

Максимально *сжатый* (как в анекдоте про работорговца) матанал: для каждого параграфа сначала сначала вводится список сущностей, а потом описания билетов, относящхся к параграфу — там указания о том, как доказывсать теоремы и в отдельных случаях — специфические определения.

0.2. Названия билетов (ровно как в оригинале)

- 1. Критерий Больцано - Коши равномерной сходимости. Полнота пространства ограниченных функций.
- 2. Признак Вейерштрасса равномерной сходимости рядов (с примерами).
- 3. Преобразование Абеля. Признаки Абеля, Дирихле и Лейбница равномерной сходимости рядов (с примерами).
- 4. Перестановка пределов и почленный переход к пределу.
- 5. Равномерная сходимость и непрерывность (с примерами). Полнота пространтва непрерывных на компакте функций.
- 6. Равномерная сходимость и предельный переход под знаком интеграла (с примерами).
- 7. Предельный переход под знаком производной (с примерами).
- 8. Пример всюду непрерывной нигде не дифференцируемой функции. Кривые Пеано.
- 9. Радиус сходимости степенного ряда: формула Коши Адамара, примеры.
- 10. Равномерная сходимость степенных рядов. Теорема Абеля. Интегрирование степенных рядов.
- 11. Дифференцирование степенных рядов.
- 12. Единственность степенного ряда. Примеры различного поведения рядов Тейлора. Достаточные условия разложимости функции в ряд Тейлора.
- 13. Синус, косинус и экспонента комплексного аргумента.
- 14. Разложения логарифма и арктангенса в степенной ряд. Ряд Лейбница.
- 15. Формула Стирлинга.
- 16. Биномиальный ряд Ньютона, частные случаи. Разложение арксинуса.
- 17. Числа Бернулли. Разложения функций ... в степенные ряды.
- 18. Разложение синуса в бесконечное произведение.

- 19. Разложение котангенса на простые дроби. Вычисление сумм
- 20. Многочлены Бернулли. Вычисление сумм
- 21. Разложение функции по многочленам Бернулли.
- 22. Формула Эйлера Маклорена.
- 23. Приложения формулы Эйлера Маклорена с оценкой остатка.
- 24. Простейшие свойства криволинейных интегралов.
- 25. Оценка криволинейного интеграла. Криволинейный интеграл как предел интегральных сумм.
- 26. Признак совпадения подобласти с областью. Соединение точек области ломаной.
- 27. Формула Ньютона Лейбница для криволинейных интегралов. Единственность первообразной.
- 28. Точность формы и независимость интеграла от пути. Условие точности формы в круге.
- 29. Точность формы, замкнутой в круге.
- 30. Правило Лейбница дифференцирования интегралов.
- 31. Дифференциальные условия замкнутости формы. Пример замкнутой, но неточной формы.
- 32. Расстояние между множествами.
- 33. Первообразная формы вдоль пути. Формула Ньютона Лейбница для первообразной вдоль пути.
- 34. Равенство интегралов по гомотопным путям.
- 35. Точность формы, замкнутой в односвязной области. Интеграл по ориентированной границе области.
- 36. Условия комплексной дифференцируемости (с примерами).
- 37. Голоморфные функции с постоянной вещественной частью, мнимой частью, модулем.
- 38. Различные формулировки интегральной теоремы Коши. Первое доказательство (для непрерывной производной).
- 39. Различные формулировки интегральной теоремы Коши. Второе доказательство (лемма Гурса).
- 40. Интегральная формула Коши.
- 41. Аналитичность голоморфной функции.

42. Следствия из аналитичности голоморфной функции. Теорема Мореры. Свойства, равносильные голоморфности.

- 43. Неравенства Коши для коэффициентов степенного ряда. Теорема Лиувилля.
- 44. Основная теорема высшей алгебры.
- 45. Изолированность нулей голоморфной функции (с леммой). Кратность нулей.
- 46. Теорема единственности для голоморфных функций (с примерами).
- 47. Теорема о среднем. Принцип максимума модуля.
- 48. Свойства рядов Лорана.
- 49. Разложение голоморфной функции в ряд Лорана.
- 50. Устранимые особые точки.
- 51. Полюса. Мероморфные функции.
- 52. Существенно особые точки: теорема Сохоцкого (с доказательством), теорема Пикара (без доказательства).
- 53. Теорема Коши о вычетах.
- 54. Правила вычисления вычетов. Вычисление опасного интеграла <данные удалены>
- 55. Лемма Жордана. Интегралы Лапласа. Вычисление опасного интеграла <данные удалены> (спойлер: здесь замешан Си).
- 56. Вычет в бесконечности. Теорема о полной сумме вычетов.
- 57. Простейшие свойства полуколец и сигма-алгебр.
- 58. Простейшие свойства объема и меры.
- 59. Непрерывность меры.
- 60. Внешняя мера.
- 61. Мера, порожденная внешней мерой.
- 62. Теорема Каратеодори о стандартном распространении меры.
- 63. Свойства стандартного распространения меры. Единственность стандартного распространения (без доказательства, с примером существенности сигма-конечности).
- 64. Полукольцо ячеек. Конечная аддитивность классического объема.
- 65. Счетная аддитивность классического объема.
- 66. Мера параллелепипеда. Мера не более чем счетного множества.

67. Представление открытого множества в виде объединения ячеек. Измеримость борелевских множеств по Лебегу.

- 68. Приближение измеримых множеств открытыми и замкнутыми. Регулярность меры Лебега.
- 69. Приближение измеримых множеств борелевскими. Общий вид измеримого множества.
- 70. Сохранение измеримости при гладком отображении.
- 71. N-свойство Лузина и сохранение измеримости.
- 72. Канторово множество и канторова функция. Пример гомеоморфизма, не сохраняющего измеримость по Лебегу.
- 73. Лемма о мере образа при известной мере образа ячейки. Инвариантность меры Лебега относительно сдвига.
- 74. Описание мер, инвариантных относительно сдвига.
- 75. Существование неизмеримого по Лебегу множества.
- 76. Мера Лебега, при линейном отображении. Инвариантность меры Лебега относительно движений.
- 77. Простейшие свойства измеримых функций.
- 78. Измеримость граней и пределов.
- 79. Приближение измеримых функций простыми и ступенчатыми.
- 80. Действия над измеримыми функциями.
- 81. Непрерывность и измеримость по Лебегу. С-свойство Лузина (формулировка).
- 82. Сходимость по мере и почти везде: определения, примеры, формулировки теорем Лебега и Ф.Рисса.
- 83. Монотонность интеграла.
- 84. Интеграл по множеству и его подмножеству.
- 85. Теорема Леви.
- 86. Пренебрежение множествами нулевой меры при интегрировании. Интегралы от эквивалентных функций.
- 87. Однородность интеграла.
- 88. Аддитивность интеграла по функции.
- 89. Теорема Леви для рядов. Суммируемость функции и ее модуля. Достаточные условия суммируемости.

90. Неравенство Чебышева и его следствия: конечность суммируемой функции почти везде, неотрицательная функция с нулевым интегралом.

- 91. Счетная аддитивность интеграла по множеству. Приближение интеграла интегралом по множеству конечной меры.
- 92. Теорема Фату.
- 93. Теорема, Лебега о мажорированной сходимости.
- 94. Абсолютная непрерывность интеграла.
- 95. Функции Бэра: теорема Бэра, лемма о последовательности дроблений, измеримость функций Бэра.
- 96. Критерий Лебега интегрируемости функции по Риману. Сравнение интегралов Римана и Лебега.
- 97. Восстановление меры множества по мерам сечений (часть 1: случаи ячейки, открытого множества и множества типа жэсигма конечной меры).
- 98. Восстановление меры множества по мерам сечений (часть 2: случай множества нулевой меры и переход к произвольному множеству).
- 99. Меры n-мерных шара и конуса.
- 100. Мера декартова произведения.

0.3. Термины, незнание которых приводит к неуду по экзамену

1. <Дофига всего> (Будет здесь + надо раскидать по всем параграфам в секции «Определения»)

Глава 1

Криволинейные интегралы на плоскости

1.1. Простейшие свойства криволинейных интегавлов

Определения сущнностей, вводимых в параграфе

Определение (Интеграл вектор функции). Простой, не криволинейный интеграл вектор функции ($\mathbb{R} \to \mathbb{R}^n$, причём можно рассматривать как $\mathbb{C} \cong \mathbb{R}^2$).

Эквивалентные определения:

- Предел интегральной суммы (с операцией умножения скаляра на вектор) про ранге дроблений $\to 0$. (Основное определение)
- Вектор интегралов координат (практически полезное определение).

Определение (Дифференциальная форма). Бывает вещественная, бывает — комплексная.

Дифференциальная форма ω — это функция от двух точек на плоскости (первая — «центр», вторая — «приращение»), линейная по последним двум плоскостям.

Следовательно, она представима в виде:

$$\omega(x, y, dx, dy) = P(x, y) dx + Q(x, y) dy$$
(1.1.1)

Применяя каррирование, представляем w как векторное поле (то есть в каждой точке плоскости определён вектор), где значение функции — скалярное произведение этого вектора и вектора приращения:

$$\omega = \left\langle \begin{pmatrix} P \\ Q \end{pmatrix}, \begin{pmatrix} \mathbf{d}x \\ \mathbf{d}y \end{pmatrix} \right\rangle \tag{1.1.2}$$

Комплексная форма — лишь способ записать (инстанциировать) некое подмножество де-факто вещественных форм — записать в виде комплексной функции (фактические — обе действуют $\mathbb{R}^2 \to \mathbb{R}^2$):

Криволинейный интеграл второго рода

По умолчанию под криволинейный интегралом на плоскости подразумеваем его.

Определения, не предполагающие непраерывность/гладкость пути/функции:

$$\int_{\gamma}\omega=\lim_{\lambda\to0}\sum_{k=0}^{n-1}\left(P\left(\xi_{k},\eta_{k}\right)\Delta x_{k}+Q\left(\xi_{k},\eta_{k}\right)\Delta y_{k}\right)\tag{1.1.3}$$

Для комплексного случая:

$$\int_{\gamma} \omega = \lim_{\lambda \to 0} \sum_{k=0}^{n-1} f(\zeta_k) \Delta z_k$$
 (1.1.4)

Будем пользоваться более удобным опредедением, требующем гладкость пути и непрерывность функции (потом докажем, что при этих ограничениях определения эквивалентны):

$$\int_{\gamma} \omega = \int_{a}^{b} \left(P(\varphi, \psi) \varphi' + Q(\varphi, \psi) \psi' \right) \tag{1.1.5}$$

И для комплексного случая:

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t) dt$$
 (1.1.6)

Замечание. Для кусочно гладкого пути всё определяем по аддитивности, все свойства сохраняются.

Пример. Интеграл степенной комплексной функции по окружности

$$\int_{\gamma_r} (z - z_0)^n dz = \begin{cases} 0, & n \neq -1, \\ 2\pi i, & n = -1 \end{cases}$$
 (1.1.7)

Определение (Криволинейный интеграл **первого** рода). Теперь интегрируем вещественнозначной функции по кривой на плоскости (как \mathbb{R}^2 или \mathbb{C}):

$$\int_{\gamma} f ds = \int_{a}^{b} f \circ \gamma(t) |\gamma'| \tag{1.1.8}$$

Билет 24: Простейшие свойства криволинейных интегралов

- При инвертировании получаем отрицание интеграла
- Линейность по коэфициентам формы
- Независимость от параметризации
- Аддитивность по пути
- Интеграл по контуру не зависит от выбора начальной точки
- Предельный переход и почленное интегрирование рядов непрерывных функций
- Для интеграла первого рода всё то же самое за исключением первого свойства: там не противоположны, а равны

Билет 25: Оценка криволинейного интеграла. Криволинейный интеграл как предел интегральных сумм

Теорема 1 (Оценка модуля интеграла). *Через интеграл первого рода, а его — через максиум модуля по пути и длину пути.*

Теорема 2 (Криволинейный интеграл как предел интегральных сумм). Доказательство. Доказываем, что модуль разности $\to 0$, преобразуя через неравенство треугольника и оценку интеграла. Добиваем равномерной непрерывностью.

1.2. Точные и замкнутые формы

Определения и основные результаты

Определение (Линейно связное подмножество нормированного линейного пространства). Любые две точки можно соеднить путём, целиком лежащим во множестве. (путь — непрерывное отображение из отрезка в пространство)

Определение (Звёздное подмножество линейного пространства относительно точки). Отрезок от любой точки множества до центра лежит в множестве

Определение (Область). Открытое линейно связное множество

Определение (Связное (просто, не линейно) метрическое пространство (или подмножество МП)). Нельзя разбить на два непустых открытых подмножества (\Leftrightarrow одновременно открытые и замкнутые подмножества — X и \emptyset).

Определение (Регулярный кусочно-гладкий путь). Производная нигде не обращается в ноль.

Определение (Первообразная формы). функция $D \subset \mathbb{R}^2 \to \mathbb{R}$, т.ч. её частные производные — коэфициенты формы (коэфициенты в этом определении непрерывны). Другими словами, $\mathrm{d}F = \omega$. Первообразная существует далеко не у всех... Ведь нужно описать вектор-функцию сразу из двух координат частными производными одной

Определение (Точная в области форма). Существует первообразная на всей области.

Определение (Замкнутая в области форма). Локально точна: У каждой точки существует окрестность, где точна.

У локальной точности есть простой дифференциальный критерий. И в односвязных областей замкнутые формы точны.

Определение (Первообразная формы вдоль пути). Такая $\Phi \in C[a,b]$, что для любой точки отрезка τ существует окрестность плоскости и локальная первообразная в ней, т.ч. $\Phi \equiv F \circ \gamma$ в некоторой окрестности τ .

Замечание. За счёт самопересечений первообразная— не обязательно функция на носителе пути.

Замечание. Обратим внимание на то, в каком порядке и для каких случаев мы вводим понятия и как связываем:

- 1. Интеграл первого и второго рода как предел интегральных сумм
- 2. ---"---как интеграл вектор-функции с производной пути
- 3. Первообразная точной формы
- 4. Первообразная замкнутой формы вдоль пути (определение через локальные первообразные + теорема о конструировании + Ньютона-Лейница)

1 и 2 связаны теоремой билета 25

(1-2) и 3 — Ньютон-Лейбниц для точных форм (Билет 27)

3 и 4 — определение и построение интеграла вдоль пути

(1-2) и 4 — Ньютон-Лейбниц для интеграла вдоль пути (Билет 33)

Билет 26: Признак совпадения подобласти с областью. Соединение точек области ломаной

Лемма 1 (Признак совпадения подобласти с областью). *Подобласть области* — пустое множество, но открыто и замкнуто в этой области. Что это, детишки? Вся область!

Доказательство. ...

Теорема 1 (Соединение точек области ломаной). Любые две точки области можно соединить ломанной (а это, отметим, носитель кусочно-гладкого пути).

…в учебнике ещё вывод теорем о факторизации по отношению эквивалетности для частного случая (линейной)связности (про то, что это факторизация), но можно просто сказать, что это было на линале…

Лемма: к. лин. св. открытого — открытые (\to области). По 1

Билет 27: Формула Ньютона — Лейбница для криволинейных интегралов. Единственность первообразной

Формула Ньютона — Лейбница для криволинейных интегралов Выводится из определения и соответствующей формулы для интеграла по отрезку. (потом по аддитивности для кусочно гладких)

Следствие 1.1. Eсли $dF\equiv 0$, то $F={\rm const}$

Единственность первообразной Первообразные отличаются на константу и только на неё.

Билет 28: Точность формы и независимость интеграла от пути. Условие точности формы в круге

Точность формы и независимость интеграла от пути Точна \Leftrightarrow интеграл не зависит от пути \Leftrightarrow интеграл по *любому* контуру =0.

Условие точности формы в круге Точна \Leftrightarrow интеграл по любому *прямоугольному* контуру =0.

Билет 29: Точность формы, замкнутой в круге

Форма замкнута в круге \to точна в нём (на самом деле, это верно не только для круга, но и вообще для любой односвязной области — это будет доказано позднее)

Билет 30: Правило Лейбница дифференцирования интегралов

Производная интеграла по параметру — это интеграл частной производной самой функции по параметру.

Билет 31: Дифференциальные условия замкнутости формы. Пример замкнутой, но неточной формы

Теорема 2 (Дифференциальные условия замкнутости формы). $P'y, Q'_x$ существуют и непрерывны. Тогда форма замкнута $\Leftrightarrow P'y = Q'_x$.

Доказательство. Очевидно. ■

Пример (Пример замкнутой, но неточной формы). Мнимая часть комплексной формы: $\frac{1}{z}$

Билет 32: Расстояние между множествами

Определение (расстояние между множествами). инфинум расстояний между точками множеств

Теорема 3 (О достижении расстояния). Расстояние между множествами достигается расстоянием между некоей парой точек. Оба непустые подмножества \mathbb{R}^n , одно (F) замкнуто, второе (K) — обязательно компактно.

Доказательство. 1. Сначала доказываем для случая двух компактных — получаем секвенциальную компактность $K \times F$. Функция расстояния непрерывна \Rightarrow inf достигается.

2. Если F не ограничено, покажем, что расстояние достигается на компактном F', полученным ограничением сферой радиуса $R_K + \rho(K,F) + 1$.

Доказательство. Иначе бы достигалось, то есть была бы общая точка.

Следствие 1.2. *Те же условия:* $\rho(K, F) = \rho(K, \partial F)$

Доказательство. Если бы достигалось во внутренней точке, на отрезке между «достигаторами» была бы точка ближе. ■

Билет 33: Первообразная формы вдоль пути. Формула Ньютона — Лейбница для первообразной вдоль пути

Теорема 4 (Существование и единственность* первообразной замкнутой формы вдоль пути). *С точностью до постоянного слагаемого

Доказательство. (!) Доказываем локальную постоянность F_1-F_2 на отрезке, используя определение и соответствующее свойство для обычных первообразных.

 $\ \ \, iggl)
ho \left(\gamma^*, D^\complement
ight) [=\sigma] > 0$ по 1.1 За счёт равномерной непрерывности γ берём дробление ранга $< 2\delta$, где $\omega(\gamma,\delta)_{[a,b]} < \sigma$.

Рассмотрим края и центры отрезков дроблений. $\gamma([t_j,t_{j+\frac{1}{2}}])\subset B(z_j,\sigma)[=B_j]\subset D$. Замкнутая в круге (B_j) форма имеет первообразную. Пересечения соседних — круговые луночки — непустые области (т.к. открыто и выпукло (пересечение таких), непусто — т.к. содержит срединное z). В пересечении соседние локальные первообразные отличаются на константу \Rightarrow стыкуем со сдвигом на C_2-C_1 . \to завершаем конструкцию за конечное число шагов.

Определение интеграла вдоль пути выполнено по построению + потому что объединение окрестностей — открытое множество. ■

Следствие 1.1 (Формула Ньютона-Лейбница для интегралов вдоль пути). *Интеграл* (второго рода) замкнутой формы по пути (не обязательно гладкому) — разность первообразной вдоль пути.

Доказательство. Рассматриваем то же дробление, что и в теореме, расписываем

1.3. Гомотопные пути

Определения

Определение (Гомотопные пути). Два пути γ_1,γ_2 гомотопны (либо как с фиксированными концами, либо как замкнутые), если существует такое непрерывное преобразование $\Gamma:I\times I\to D$, т.ч.:

- 1. partial $\Gamma 0 \equiv s$, partial $\Gamma 1 \equiv t$
- 2. При каждом уровне смешения: (Для фиксированных концов они сохраняются), а (Для замкнутых остаются замкнутыми)

Замечание. То есть аргументы Γ имеют смысл «доли первого пути в смеси» и «процента пробегания аргумента пути», при этом при каждом уровне смешения частичное применение будет путём того же типа, что и преобразуемые.

Замечание. Гомотопность — отношение эквивалентности

Определение (Односвязная область). Любой замкнутый путь в ней стягивается в точку (интуитивно нет «дырок», которые этому мешают)

Пример. Например, звёздная (в частности, выпклая и круговая)

Определение (Открытое и замкнутое кольцо). $K_{r,R}(z_0)$ или $\overline{K}_{r,R}(z_0)$ — расстояние до центра — между r и R

Определение (Ориентированная граница области). Если ∂G представима в виде конечного объединения регулярных простых контуров, т.ч. при обходе G остаётся слева, это ориентированная граница области.

«Остаётся слева»: какая-то часть (не включая начало) направленного отрезка из пути в сторону производной, повёрнутой на 90° против часовой, лежит в области.

Билет 34: Равенство интегралов по гомотопным путям

Теорема 1 (Равенство интегралов по гомотопным путям). *От формы требуется лишь замкнутость*.

Доказательство. $\rho\left(\Gamma(I\times I),D^{\complement}\right)[=\sigma]>0$ по 1.1 Используя равномерную непрерывность Γ , докажем через локальную постоянность h(s). ■

Билет 35: Точность формы, замкнутой в односвязной области. Интеграл по ориентированной границе области

Лемма 1. В односвязной области любые пути с общими концами гомотопны.

Доказательство. Конструируем из их объединения контур, стягиваем в точку. Гомотопия: сначала превращаемся в точку, потом в партнёра. ■

Теорема 2 (Форма замкнута в односвязной области \to точна). Интеграл по любому контуру — ноль, так как он стягивается в точку. \to точна по теореме параграфа 2.

Теорема 3 (Интеграл замкнутой формы по ориентированной границе области). ...равен нулю, если G ограничена и вместе c границей лежит в D.

Доказательство. Составим контур, стягивающийся в точку: обойдём все дыры, соединяя их простыми непересекающимися путями (почему есть такие пути — 6/д) — по каждому пути пройдём туда и сюда (не забываем обойти внешнюю границу). Он стягивается в точку (6/д) — интеграл по границе равен нулю (перемычки проходим туда-сюда — они самоуничтожаются).

Глава 2

Теория функции комплексной переменной

2.1. Комплексная дифференцируемость

Определения и основные результаты

Определение (Функция комплексно дифференцируема). Если аппроксимируема комплексно-линейной

Важно, что далеко не любая дифференцируемая $\mathbb{R}^2 \to \mathbb{R}^2$ — КД: мы обязаны описать поведение функции в окрестности не матрицей 2×2 , а лишь двумя координатами, которые подставляются в умножение комплексных чисел. И выполняться это должно в окрестности (эквивалентно, по любому направлению). Замечание. Эквивалентное определение: существование конечного предела разностных отношений при $z \to z_0$.

Определение (Функция голоморфна/аналитична). Комплексно дифференцируема в некоторой окрестности каждой точки. Для открытого множества — эквивалентно просто комплексной дифференцируемости на множестве.

Билет 36: Условия комплексной дифференцируемости (с примерами)

Теорема 1 (Критерий комплексной дифференцируемости Коши-Римана). f дифференцируемо $\Leftrightarrow u,v-$ дифференцируемы и $\begin{cases} u'_x=v'_y \\ u'_y=-v'_x \end{cases}$.(То есть по своей переменной — равны, по чужой — противоположны) Доказательство. \Rightarrow ... \Rightarrow ...

Замечание. Эквивалентно тому, что матрица Якоби имеет вид: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. То есть антисимметричная и с равными элементами на диагонали.

Замечание. Краткая запись: $f'_x+if_y=0$ Замечание. Ещё одна, ещё более краткая запись — для извращенцев: $\tilde{f}'_{\overline{z}}=0$

Билет 37: Голоморфные функции с постоянной вещественной частью, мнимой частью, модулем

Теорема 2. Постоянство голоморфной функции $f \in \mathcal{A}(D)$ следует из постоянства:

- 1. Rf
- 2. If
- 3. |f|

Доказательство. 1, 2: критерий Коши-Римана + признак постоянства в области (следствие Ньютона-Лейбница).

3: заметим, что частные производные $|f|^2$ — нули, распишем их. Переписав через Коши-Римана и решив это как систему уравнений относительно частных производных. Определитель — не ноль, значит решение для частных производных только нулевое f — постоянна. \blacksquare

Билет 38: Различные формулировки интегральной теоремы Коши. Первое доказательство (для непрерывной производной)

Теорема 3 (Интегральная теорема Коши). *Голоморфная функция задаёт замкнутую форму*.

Эквивалентные утверждения (тоже называют интегральной теоремой Коши):

- 1. Равенство интегралов по гомотопным путям
- 2. Равенство нулю интеграла по контуру, стягивающемуся в точку.
- 3. Равенство нулю интеграла по контуру в обносвязной области
- 4. Локальная точность
- 5. Равенство нулю интеграла по ориентированной границе (тут достаточно, чтобы $f \in \mathcal{A}G, C(\overline{G})$. Доказательство: строим приближающую последовательность \leftarrow то, что так можно без доказательства).

Первое доказательство: требующее непрерывной дифференцируемости. (требующее — так как коэфициенты формы здесь должны быть непрерывными)

Запишем коэфициенты формы в вещественном выражении, а равенства Коши-Римана — в виде $P_y' = Q_x'$. Получим дифференциальные условия точности формы. \blacksquare

Замечание. Первообразная формы в вещественном и комплексном смысле — совпадает.

Доказательство. (=).

⇒ Те же рассуждения, но в обратном порядке ■

Билет 39: Различные формулировки интегральной теоремы Коши. Второе доказательство (лемма Гурса)

Лемма 1 (Э. Гурс). Интеграл формы с голоморфным коэффициентом по прямоугольному контуру, лежащему в области вместе со внутренностью, равен нулю.

Доказательство. Пусть $\left|\int_{\gamma_0} f(z)\,\mathrm{d}z\right| [=M]>0.$

Итеративно представляем интеграл по контуру как сумму интегралов четырёх прямоугольников, на которые разбиваем, выбираем наибольший модуль интеграла. Получим последовательность прямоугольников, $\int \geqslant \frac{M}{4k}$.

По лемме о вложенных прямоугольниках, существует точка, принадлежащая всем. Рассморим прямоугольник внутри радиуса, где погрешность производной мала.

Прийдём к противоречию, оценивая интеграл через супремум функции и длину контура. ■

Второе доказательство. интегральной теоремы Коши.

По лемме Гурса, точна в любом круге, значит, замкнута.

2.2. Интегральная формула Коши и её следствия

Билет 40: Интегральная формула Коши

Теорема 1 (Интегральная формула Коши). *Доказательство*. 1. Если не принадлежит области, просто по теореме для интегралу формы, замкнутой в области, это ноль.

2. Иначе — обойдём её по вокруг. Он константа (за счёт голоморфности). Тогда доказательство стремления к нулю даст нам постоянную нулёвость.

Следствие 0.1 (Теорема о среднем). Значение голоморфной функции в центре круга — среднее значение по окружности.

Доказательство. Применим формулу Коши и параметризуем окружность как $\zeta = z_0 + re^{it}, t \in [-\pi,\pi].$

Билет 41: Аналитичность голоморфной функции

Теорема 2 (Аналитичность голоморфной функции). Комплексно дифференцируемая в круге функция расклазывается в степенной ряд в этом круге с центром в центре круга.

11 (2.2.1)

Билет 42: Следствия из аналитичности голоморфной функции. Теорема Мореры. Свойства, равносильные голоморфности

Билет 43: Неравенства Коши для коэффициентов степенного ряда. Теорема Лиувилля

Билет 44: Основная теорема высшей алгебры

2.3. Теорема единственности, аналитическое продолжение и многозначные функции

Билет 45: Изолированность нулей голоморфной функции (с леммой). Кратность нулей

Билет 46: Теорема единственности для голоморфных функций (с примерами)

Билет 47: Теорема о среднем. Принцип максимума модуля

2.4. Ряды Лорана и выечты

Билет 48: Свойства рядов Лорана

Билет 49: Разложение голоморфной функции в ряд Лорана

Билет 50: Устранимые особые точки

Билет 51: Полюса. Мероморфные функции

Билет 52: Существенно особые точки: теорема Сохоцкого (с доказательством), теорема Пикара (без доказательства)

Билет 53: Теорема Коши о вычетах

Билет 54: Правила вычисления вычетов. Вычисление опасного интеграла <данные удалены

Билет 55: Лемма Жордана. Интегралы Лапласа. Вычисление опасного интеграла <данные удалены> (спойлер: здесь замешан Си)

Билет 56: Вычет в бесконечности. Теорема о полной сумме вычетов

Глава 3

Мера и интеграл

- 3.1. Простейшие свойства полуколец и сигма-алгебр
- 3.2. Простейшие свойства объема и меры
- 3.3. Непрерывность меры
- 3.4. Внешняя мера
- 3.5. Мера, порожденная внешней мерой
- 3.6. Теорема Каратеодори о стандартном распространении меры
- 3.7. Свойства стандартного распространения меры. Единственность стандартного распространения (без доказательства, с примером существенности сигма-конечности)
- 3.8. Полукольцо ячеек. Конечная аддитивность классического объема
- 3.9. Счетная аддитивность классического объема
- 3.10. Мера параллелепипеда. Мера не более чем счетного множества
- 3.11. Представление открытого множества в виде объединения ячеек. Измеримость борелевских множеств по Лебегу
- 3.12. Приближение измеримых множеств открытыми и замкнитыми. Регилярность меры Лебега