GTSRB

Visão por Computador e Processamento de Imagem

Grupo 4:

André Araújo PG47842 Diana Ferreira PG46529 Nuno Mata PG44420

Contextualização

Modelo

Hiperparâmetro	Valor			
Número de Convolutional Layers	3			
Número de Normalization Layers	3			
Número de MaxPooling Layers	2			
Número de Flatten Layers	1			
Número de Camadas Densas	2			
Número de Neurônios	64:256 (por camada)			
Função de Ativação	LeakyReLU, Softmax			
Função de Loss	categorical crossentropy			
Número de Epochs	10:30			
Optimizer	Adam			
Learning Rate	0.0001			

Data Augmentation

De forma a conseguir implementar os métodos de Data Augmentation foi necessário o uso de módulos do TensorFlow:

- tf.image, para alteração, por exemplo, do brilho das imagens
- tfa.image, para a manipulação, por exemplo, a nível de rotações na imagem
- tf.clip_by_value, para alterações na gama de cores da imagem

- Rotação aleatória.
- Translação ao longo do eixo x.
- Translação ao longo do eixo y..
- Ajuste da tonalidade, saturação e valor de uma imagem RGB aleatoriamente no espaço de cor YIQ.

Conjunto de imagens sem a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Conjunto de imagens com a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

- Ajuste da luminosidade mediante um fator aleatório.
- Ajuste do contraste mediante um fator aleatório.
- Ajuste da tonalidade mediante um fator aleatório.
- Ajuste da saturação mediante um fator aleatório.

Conjunto de imagens sem a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Conjunto de imagens com a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Conjunto de imagens sem a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Conversão de uma ou mais imagens de RGB para Grayscale.

Conjunto de imagens com a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

- Ajuste da luminosidade mediante um fator aleatório.
- Flip da imagem verticalmente (de cabeça para baixo).
- Flip da imagem horizontalmente (da esquerda para a direita).

Conjunto de imagens sem a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Conjunto de imagens com a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Massive Data Augmentation - Versão 1

- Aplicação de rotação à imagem.
- Aplicação de translação ao longo do eixo x e y.
- Aplicação de uma dada transformação à imagem.
- 'Crops' de um tensor para um determinado tamanho (aleatoriamente).
- Ajuste da tonalidade das imagens RGE mediante um fator aleatório.
- Ajuste do contraste de uma ou mais imagens mediante um fator aleatório.
- Ajuste da saturação e valor de imagens RGB aleatoriamente no espaço de cor YIQ.

Conjunto de imagens sem a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Conjunto de imagens com a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

Massive Data Augmentation - Versão 2

Conjunto de imagens sem a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

- O mesmo que o anterior.
- + Conversão de uma ou mais imagens de RGB para GrayScale.

Conjunto de imagens com a aplicação de Data Augmentation e Técnicas de Processamento de Imagem

	test_loss	test_accuracy	val_loss	val_accuracy
Sem Data Augmentation	0.0696	0.9801	0.0026	1.0000
Dynamic Data Augmentation - Versão 1	0.0471	0.9871	0.0033	0.9992
Dynamic Data Augmentation - Versão 2	0.0635	0.9813	0.0047	0.9994
Dynamic Data Augmentation - Versão 3	0.0709	0.9799	0.0047	0.9991
Massive Data Augmentation - Versão 1	0.0334	0.9888	7.1010e-04	1.0000
Massive Data Augmentation - Versão 2	0.0315	0.9916	0.0010	1.0000

Comparação dos resultados (Sem Data Augmentation, com Dynamic Data Augmentation e com Massive Data Augmentation).

Comparação dos resultados (Dynamic Data Augmentation Versão 1, 2 e 3).

Comparação dos resultados (Massive Data Augmentation Versão 1 e 2).

Ensembles

- Técnicas que criam vários modelos de aprendizagem e depois faz a sua combinação de modo a obter melhores resultados.
- As redes utilizadas dizem respeito às treinadas anteriormente.
- Caso referente a Massive Data Augmentation.
- Os valores obtidos foram o expectável, ou seja, dentro dos 99% de accuracy (é possível observar melhorias).

```
198/198 - 1s - loss: 0.0232 - accuracy: 0.9929 - 1s/epoch - 6ms/step 198/198 - 1s - loss: 0.0365 - accuracy: 0.9876 - 1s/epoch - 6ms/step 198/198 - 1s - loss: 0.0280 - accuracy: 0.9923 - 1s/epoch - 6ms/step 198/198 - 1s - loss: 0.0261 - accuracy: 0.9933 - 1s/epoch - 6ms/step 198/198 - 1s - loss: 0.0205 - accuracy: 0.9946 - 1s/epoch - 6ms/step average accuracy: 99.213
```

[12630, 12408, 14, 149, 10, 49, 12561, 69] 0.9945368171021378

Conclusão

O nosso modelo que produziu melhores resultados foi o que usou Ensembles, juntamente com massive data augmentation:

Melhor accuracy: 99.46%

Accuracy média: 99.21%

Comparativamente ao modelo convolucional de redes neuronais, os melhores resultados, também usando massive data augmentation:

Melhor accuracy: 99.16%

Accuracy média: 98.48%

Trabalho 1

Visão por Computador e Processamento de Imagem

Grupo 4:

André Araújo PG47842 Diana Ferreira PG46529 Nuno Mata PG44420