Plane Poiseuille Flow and the Orr-Sommerfeld Problem

- \bullet Here, we consider viscous 2D flow between a pair of flat plates separated by a distance 2H.
- Let the domain be $\Omega = [0:L] \times [-H,H]$, with H = 1.
- On the top and bottom, we have $\mathbf{u} = \mathbf{0}$.
- On the left and right we use periodic boundary conditions and force the flow with a body force, $\mathbf{f} = [f_x, 0]$, where f_x corresponds to the mean pressure drop required to sustain the flow at a steady-state condition.
- The steady-state base flow is $\mathbf{u} = (U_0, 0) := \mathbf{U}$, with

$$U_0(y) = 1 - y^2, (1)$$

which is illustrated by the parabolic velocity profile in the figure below.

Figure 1: Top: parabolic base flow, with streamfunction contour lines indicating the addition of small amplitude TS waves. Bottom: perturbation velocity field for TS waves.

Periodic Boundary Conditions

• The Navier-Stokes equations with boundary and initial conditions read,

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \tilde{p} + \frac{1}{Re} \nabla^2 \mathbf{u} + \mathbf{f}, \tag{2}$$

$$\nabla \cdot \mathbf{u} = 0, \tag{3}$$

$$\mathbf{u}(x, \pm H, t) = 0, \quad \mathbf{u}(0, y, t) = \mathbf{u}(L, y, t), \quad \mathbf{u}(x, y, 0) = \mathbf{u}^{0}(x, y).$$
 (4)

- Here, \tilde{p} is the periodic perturbation pressure.
- Let p(x, y, t) be the actual pressure (normalized by density in this nondimensional formulation).
- Unlike velocity, p is not L-periodic. There is a mean pressure drop, $<\frac{\partial p}{\partial x}>$, that is a constant.
- Consequently, we break the pressure into two parts,

$$p(x, y, t) = \tilde{p}(x, y, t) + \langle \frac{\partial p}{\partial x} \rangle x,$$
 (5)

where \tilde{p} is the unknown pressure field which is L-periodic,

$$p(0,y,t) = p(L,y,t). (6)$$

• Notice that

$$-\nabla p = -\nabla \tilde{p} - \langle \frac{\partial p}{\partial x} \rangle \hat{\imath} \tag{7}$$

$$= -\nabla \tilde{p} + f_x \hat{\imath} \tag{8}$$

• The required body force to move the viscous flow through the channel is thus

$$f_x = -\langle \frac{\partial p}{\partial x} \rangle. \tag{9}$$

• It is straightforward to show that

$$f_x = \frac{2}{Re} \tag{10}$$

will maintain the parabolic profile with centerline velocity $U_0(y=0)=1$.

- Ex 1: Check this assertion both numerically and analytically.
- Ex 2: If you start with $\mathbf{u}^0 = 0$ and the correct body force, roughly how long will it take for the peak velocity to reach 0.99?

The Orr-Sommerfeld Problem

- Although plane Poiseuille flow solves the incompressible Navier-Stokes equations, it is not the only possible solution.
- At sufficiently high Reynolds numbers, the flow can of course be turbulent.
- There is also a family of solutions known as Tollmein-Schlicting (TS) waves that are conditionally stable/unstable, depending on the domain length (L/H) and half-height Reynolds number, $Re = UH/\nu$, where U is (in this case) the centerline velocity of the base parabolic profile.
- The TS waves are solutions of the Orr-Sommerfeld (OS) problem, which is a semianalytical approach to probe the stability of plane-Poiseuille and other boundarylayer flows.
- Let $\alpha = \frac{1}{2\pi} \frac{L}{H}$ be a nondimensional measure of the domain length.
- For $\alpha = 1.02056$ (corresponding to a domain that is $\approx 2\%$ longer than $2\pi H$), it is found that the TS waves will grow for any $Re > Re_c$, where $Re_c \approx 5772.6$ is the lowest realizable critical Reynolds number.
- If $\alpha \neq 1.02056$, the critical Reynolds number is larger, which means that the system is more stable.

- The figure below (from Wikipedia) shows the real component of the eigenvalue for the OS problem that has the *least negative* real part.
- Any point in this (α, Re) parameter space for which $\lambda > 0$ indicates that the TS waves will grow in time.
- To better understand this, we take a quick look at the linearized Navier-Stokes equations.

Figure 2: OS eigenvalues as a function of α and Re.

Linearized Navier-Stokes

• Consider solutions to the Navier-Stokes equations of the form

$$\mathbf{u}(x, y, t) = \mathbf{U} + \epsilon \mathbf{u}', \tag{11}$$

$$p(x, y, t) = P + \epsilon p', \tag{12}$$

where $\mathbf{U} = [U_0(y), 0]$ is the base flow, $\mathbf{u}'(\mathbf{x}, t)$ is an order-unity perturbation velocity, and $\epsilon \ll 1$ is the perturbation amplitude.

- Here, P = 0 is the base pressure for the steady state Poiseuille flow and $\epsilon p'$ is the perturbation pressure.
- Since \mathbf{u} and \mathbf{U} are both solutions to the NS equations, we can derive an equation for the evolution of the perturbation field, $\epsilon \mathbf{u}' = \mathbf{u} \mathbf{U}$,

$$\frac{\partial \mathbf{u}}{\partial t} - \frac{1}{Re} \nabla^2 \mathbf{u} + \nabla p = -\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{f}, \qquad \nabla \cdot \mathbf{u} = 0,$$

$$- \frac{\partial \mathbf{U}}{\partial t} - \frac{1}{Re} \nabla^2 \mathbf{U} + \nabla P = -\mathbf{U} \cdot \nabla \mathbf{U} + \mathbf{f}, \qquad \nabla \cdot \mathbf{U} = 0,$$

$$\epsilon \frac{\partial \mathbf{u}'}{\partial t} - \frac{\epsilon}{Re} \nabla^2 \mathbf{u}' + \epsilon \nabla p' = -NL, \qquad \epsilon \nabla \cdot \mathbf{u}' = 0.$$

• Here, the nonlinear term is

$$NL := (\mathbf{U} + \epsilon \mathbf{u}') \cdot \nabla (\mathbf{U} + \epsilon \mathbf{u}') - \mathbf{U} \cdot \nabla \mathbf{U}$$
(13)

$$= \epsilon \left(\mathbf{U} \cdot \nabla \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{U} \right) + \epsilon^2 \mathbf{u}' \cdot \nabla \mathbf{u}'. \tag{14}$$

- The idea behind the *linearized* NS equations is to drop terms governing the evolution of \mathbf{u}' that are $O(\epsilon^2)$ in size and to retain only those that are $O(\epsilon)$. (Think $\epsilon \approx 10^{-5}$ or smaller...)
- Doing so leads to the *linear PDE* for the perturbation field

$$\frac{\partial \mathbf{u}'}{\partial t} - \frac{1}{Re} \nabla^2 \mathbf{u}' + \nabla p' = -(\mathbf{U} \cdot \nabla \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{U}), \quad \nabla \cdot \mathbf{u}' = 0, \quad (15)$$

where ϵ has been factored out of this homogeneous system.

• The Orr-Sommerfeld analysis proceeds by seeking solutions of the form

$$\mathbf{u}'(x,y,t) = \hat{\mathbf{u}}(y) e^{i(\alpha x - \omega t)} \tag{16}$$

$$p'(x, y, t) = \hat{p}(y) e^{i(\alpha x - \omega t)}. \tag{17}$$

- Notice that, unlike the case of the Taylor-Green vortices, where the wavenumber for the pressure is twice that of the velocity, the wavenumber for the pressure in the case of this *linear* PDE is exactly the same as that of the velocity.
 - This result is also conditioned on U being constant in the x direction.
- In (16)–(17), α is governed by our periodic domain length and $i\omega$ is an unknown complex eigenvalue associated with (15).

- The real part of $i\omega$ is plotted above.
- If the real part is positive, the solution will grow for any nontrivial perturbation amplitude, ϵ .
- Numerically, this means that even round-off error is sufficient to trigger this exponential growth.
- We refer to such a system as being *linearly unstable*, because a small-amplitude perturbation (linear in ϵ) is sufficient to trigger the instability.
- By contrast, something that is linearly stable, requires a large-amplitude perturbation, which effectively modifies the base profile, to trigger an instability.

Finding Solutions to the OS Problem

- The semi-analytical approach to "solving" the OS problem is to plug the expansions (16)–(17) into the linearized system and to then formally eliminate p' from the equations, which leads to a 4th-order PDE governing $\hat{\mathbf{u}}(y)$.
- From there, one can solve the associated eigenproblem for each point in the (α, Re) parameter space, which is how Fig. 2 was obtained.
- The eigenproblem is quite ill-conditioned because the governing system is *non-normal*—the eigenfunctions are nearly parallel.
- We will take a different approach to investigating this problem.
- With our highly accurate NS solver, however, we can perturb the base-flow solution by adding a mode that "looks like" the TS-wave perturbation.

• We consider ICs of the form

$$u^{0}(x,y) = U + \epsilon \cos(2\pi x/L) \sin(\pi y/H)$$
(18)

$$v^{0}(x,y) = V - \epsilon \sin(2\pi x/L) \cos(\pi y/H), \tag{19}$$

with $U = 1 - y^2$, V = 0, and $\epsilon \approx 10^{-5}$.

- We then solve the fully-nonlinear Navier-Stokes equations, recognizing that these differ from the OS equations by a term that is $O(\epsilon)$.
- For unstable cases, we should see growth (or decay) in the perturbation energy,

$$E(t) := \int_{\Omega} (\mathbf{u} - \mathbf{U}) \cdot (\mathbf{u} - \mathbf{U}) \, dV, \tag{20}$$

that has the following form

$$E(t) = E(0) e^{2\omega_i t}. (21)$$

- Here, ω_i is the imaginary part of $\omega := \omega_r + i \omega_i$.
- The "2" in the exponential comes from energy being the square of the velocity.

- An additional diagnostic is simply to check, under the given (α, Re) parameters, whether the initial perturbation grows or decays as $t \to \infty$. If $\alpha = 1.02056$ and $Re > Re_c \approx 5772.22$ (a result found by Orszag using spectral methods in 1971), then we should have growth for sufficiently large t.
- For shorter times, one may observe decay because our IC contains multiple eigenmodes, all of which will decay save for the critical one.
- If $\alpha = 1$ (i.e., $L = 2\pi H$), the critical Reynolds number is larger than 5772.22.
- There are known eigenvalues (easily computed with an OS solver) for many Reynolds numbers.
- From the Nek5000 os7000 example, we have the following for $\alpha = 1$.

$$\omega_i \text{ (growth)} \qquad \omega_r \text{ (frequency)}$$

$$Re=7000 \quad 0.001715391802 \qquad 0.2529293654$$

$$Re=7500 \quad 0.002234975649 \qquad 0.2498915356$$

• Notice that the growth rate is lower for Re = 7000 than for 7500, as might be expected.

Summary

- Here we have considered plane Poiseuille flow in a periodic domain, which raises two questions:
 - What is f_x if $U = 1 y^2$?
 - How long does it take to reach the steady state?
- We have also considered the Orr-Sommerfeld question, which is a challenging problem in linear stability theory.
- This problem raises several questions, including
 - For what (α, Re) parameters do we see instabilities?
 - What is the growth/decay rate for a given unstable/stable configuration?
- We have shown how we might answer these questions by running some NS solutions in a 2D rectangular domain with homogeneous Dirichlet conditions.