

# Bauman Moscow State University Th. Computer Science Dept.

# **Finite State Machines and Regular Expressions**



Antonina Nepeivoda a\_nevod@mail.ru

## Lecture Outline

- Basic Notions
- Closures and Determinisation
  - $\varepsilon$ -Removal by Closure
  - Subset Construction and Determinisation
- **3** From NFA to Regular Expressions
  - Solving Language Equations
    - State Eliminating Method
- From Regular Expressions to NFA
  - Thompson NFA
  - Glushkov NFA



## Reminder: Neural Networks by McCulloch-Pitts



- — excitatory signal;
- inhibitory signal;

\_\_ an input neuron;

 $\sqrt{k}$  — an inner neuron firing whenever none of the inhibitory signals and at least k of excitatory signals fire.

Naturally imitate: disjunction, conjunction, negation, iteration, concatenation.



## **Regular Expressions by Kleene**

#### **OO** Academic Definition

Given alphabet  $\Sigma$ , a regular expression is either a letter in  $\Sigma$ ,  $\varepsilon$ , or a result of following operations, where  $r_1$ ,  $r_2$  are regular expressions:

- $r_1 \mid r_2$  union (alternation).  $\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$ ;
- $r_1 r_2$  concatenation (sequencing).  $\mathcal{L}(r_1 r_2) = \{ \omega_1 \omega_2 \mid \omega_1 \in \mathcal{L}(r_1) \& \omega_2 \in \mathcal{L}(r_2) \};$
- $(r_1)^*$  iteration (0 or more concatenations of  $r_1$  with itself);

$$\mathscr{L}((r_1)^*) = \{\varepsilon\} \bigcup_{i=1}^{\infty} \mathscr{L}(r_1).$$

#### Syntactic Sugar

- $r^+$  positive iteration (shortcut for  $r r^*$ );
- r? option (shortcut for  $(r \mid \varepsilon)$ ).



## **Regular Expressions by Kleene**

#### **OO** Academic Definition

Given alphabet  $\Sigma$ , a regular expression is either a letter in  $\Sigma$ ,  $\varepsilon$ , or a result of following operations, where  $r_1$ ,  $r_2$  are regular expressions:

- $r_1 \mid r_2$  union (alternation).  $\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$ ;
- $r_1 r_2$  concatenation (sequencing).

$$\mathcal{L}(r_1 r_2) = \{ \omega_1 \omega_2 \mid \omega_1 \in \mathcal{L}(r_1) \& \omega_2 \in \mathcal{L}(r_2) \};$$

•  $(r_1)^*$  — iteration (0 or more concatenations of  $r_1$  with itself);

$$\mathscr{L}((r_1)^*) = \{\varepsilon\} \bigcup_{i=1}^{\infty} \mathscr{L}(r_1).$$

Priorities: star > concatenation > union.

$$ab^* \mid c^*d \Leftrightarrow \left(a(b^*)\right) \mid \left((c^*)d\right).$$



## Terminological Clash

#### Academic regexes

- |, ·, \* (sometimes +, ?) operations;
- define regular languages;
- studied in university courses (compilers & formal languages)

#### REGEX (extended regexes)

- lookaheads, backreferences, etc;
- define non-context-free languages;
- used in practice (PCRE2 standart).

• Almost identical names are used for completely different (although related) notions.



#### Occam Razor: Non-Deterministic Finite Automata

Only excitatory signals are left on there, and all inner neurons fire whenever there is at least one input signal.

#### **Definition**

A non-deterministic finite automaton (NFA) is a tuple  $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , where:

- *Q state set*;
- $\Sigma$  terminal alphabet;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$  transition rules;
- $q_0 \in Q$  starting state;
- $F \subseteq Q$  final states.

#### Sometimes we use notation:

$$\langle q_1, a, q_2 \rangle \in \delta \Leftrightarrow \langle q_1, a, M \rangle \in \delta \& q_2 \in M.$$

Or, usually, simply:  $q_1 \stackrel{a}{\rightarrow} q_2$ .



## **Asymmetry of NFA Definition**

- Classical works (Kleene, Brzozowski): multiple NFA starting states are allowed.
- Modern formal language theory: the unique starting state in NFA is assumed.
- Equivalent (we can add an unique starting state with  $\varepsilon$ -transitions to the multiple states), but confusing (e.g. in Brzozowski minimisation).



## **Encoding into Grammars**

#### **Observation**

- Transition  $q_1 \xrightarrow{a} q_2$  can be seen as a rewriting rule  $[q_1] \to a[q_2]$ , assuming that  $[q_i]$  are some intermediate constructors, while  $a \in \Sigma$  is a terminal constructor.
- In order to model computation termination, for every final state  $q_F$ , we can add the rewriting rule  $[q_F] \to \varepsilon$ .



We rename the starting nonterminal  $[q_0]$  to S, for uniformity.



#### Sources of Non-Determinism in an NFA

• Transition sets wrt (with respect to) a letter  $\gamma \in \Sigma$  that are not singletons.



•  $\varepsilon$ -transitions (so-called silent actions).





#### Closures

Given  $\omega \in \Sigma^*$ , a  $\omega$ -closure of a state q in NFA  $\mathscr{A}$  is a set of states reachable from q by the action  $\omega$ .

We say that  $\omega$  is in the language of the NFA  $\mathscr{A}$  ( $\omega \in \mathscr{L}(\mathscr{A})$ )  $\Leftrightarrow \omega$ -closure of the starting state of  $\mathscr{A}$  contains a final state.

Special case:  $\varepsilon$ -closures: sets of states reachable via doing nothing.



Given such closures, they can be considered as new «states».



## Simple Example of $\varepsilon$ -Removal

An NFA  $\mathscr{A}$  with the  $\varepsilon$ -closures of its states being highlighted:



The closures are then merged into single states, and given a transition from  $q_i \stackrel{\gamma}{\to} q_j$ , where  $q_i$  belongs to closure  $M(q_i)$ , and  $q_j$  to  $M(q_j)$ , transition  $M(q_i) \stackrel{\gamma}{\to} M(q_j)$  is added.



A closure is marked as a final ⇔ it contains at least one final state.



#### $\varepsilon$ -Closures and Chain Rules

- Any transition  $q_i \xrightarrow{\varepsilon} q_j$  corresponds to a chain rule  $[q_i] \to [q_j]$  in the corresponding grammar G.
- state  $\varepsilon$ -closure is a closure set of the corresponding non-terminal N:  $C(N) = \left\{ N_i \mid \exists N_1', \dots N_k' (N \to N_1' \& \dots \& N_k' \to N_i) \right\}$ I.e.  $\langle N, N_i \rangle$  are pairs in **a transitive closure**  $\to_c^+$  of the relation  $\to_c$ :  $A_i \to_c A_i \Leftrightarrow (A_i \to A_i \in G).$
- Before removing all chain rules, for every  $N' \in C(N)$  and a non-chain rule  $N' \to \Phi$ , we add the transition  $N \to \Phi$  to the set of grammar rules. Exactly as in the  $\varepsilon$ -closure algorithm for NFA.

#### Initial grammar:

$$S \rightarrow Q_1$$
  $S \rightarrow Q_3$   $Q_1 \rightarrow aQ_2$   
 $Q_3 \rightarrow bQ_4$   $Q_2 \rightarrow Q_5$   $Q_4 \rightarrow Q_5$   
 $Q_5 \rightarrow \varepsilon$ 

After removing chain rules:

$$S \to aQ_2 \quad S \to bQ_4$$
$$Q_2 \to \varepsilon \quad Q_4 \to \varepsilon$$

Note: unreachable non-terminals  $Q_1$ ,  $Q_3$ ,  $Q_5$  are deleted from the resulting grammar.

#### $\omega$ -Closures and Subset Construction

The closure sets wrt transitions by non- $\varepsilon$  actions can be also merged in similar sense.

#### **Subset Automaton Construction**

Let an  $\varepsilon$ -free NFA  $\mathscr{A}$  be given. Its **subset automaton**  $D(\mathscr{A})$  can be constructed as follows.

- $q_0$  becomes the starting state  $\{q_0\}$  of  $D(\mathscr{A})$ .
- Given a state M in  $D(\mathscr{A})$  and  $\gamma \in \Sigma$ , construct a closure set  $M_{\gamma} = \{q_i \mid \exists q_j \in M(q_j \xrightarrow{\gamma} q_i)\}$ . If  $M_{\gamma}$  is non-empty and does not yet introduced as a state of  $D(\mathscr{A})$ , add it to set of states of  $D(\mathscr{A})$ .
- The final states of  $D(\mathcal{A})$  are labelled with the sets containing at least one final state of  $\mathcal{A}$ .

In fact, the states of  $D(\mathscr{A})$  are  $\omega$ -closures of  $\mathscr{A}$ -states, where  $\omega \in \Sigma^*$ .

## **Subset Automaton: a Simple Example**

Let us consider the following NFA with  $\gamma$ -closures of its states:



- a-closure of starting state  $\{q_0\}$  is  $\{q_0, q_1\}$ .
- b-closure of starting state  $\{q_0\}$  is the state  $\{q_0\}$  itself.
- a-closure of the state  $\{q_0, q_1\}$  is  $\{q_0, q_1, q_2\}$ .
- b-closure of the state  $\{q_0, q_1\}$  is  $\{q_0, q_2\}$ .
- a-closure of the state  $\{q_0, q_1, q_2\}$  is  $\{q_0, q_1, q_2\}$  itself, while b-closure is the state  $\{q_0, q_2\}$ .
- a-closure of the state  $\{q_0, q_2\}$  is  $\{q_0, q_1\}$ , while b-closure is  $\{q_0\}$ .



## **Subset Automaton: a Simple Example**

Let us consider the following NFA with  $\gamma$ -closures of its states:



Hence, its subset automaton is:





#### **Deterministic Finite Automata**

#### **Definition**

A deterministic finite automaton (DFA) is a tuple  $\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , where:

- Q is a state set,  $\Sigma$  is a terminal alphabet;
- $\delta$  is a transition set  $\langle q_i, \gamma, q_j \rangle$ , where  $q_i, q_j \in Q$ ,  $\gamma \in \Sigma$ , and for any  $q_i, \gamma$  there is at most one  $q_j$  such that  $q_i \xrightarrow{\gamma} q_j \in \delta$ ;
- $q_0 \in Q$  is a starting state,  $F \subseteq Q$  is a set of final states.

Language  $\mathcal{L}(\mathcal{A})$  of DFA  $\mathcal{A}$  is a set  $\{\omega \mid \exists q \in F(q_0 \xrightarrow{\omega} q)\}$ , i.e. there exists a final state that is  $\omega$ -closure of  $q_0$ .

By construction, the subset automaton has no non-determinism in the transition set:

- $\varepsilon$ -transitions are eliminated in the preliminary  $\varepsilon$ -free NFA;
- the non-singleton transition sets are processed in the subset construction.



## **Traps and Trims**

• A trap state is a state s.t. any its  $\omega$ -closure is non-final.

#### Trim DFA

- For any  $q_i$ ,  $\gamma$  there is **at most** one  $q_j$  s.t.  $q_i \stackrel{\gamma}{\rightarrow} q_j \in \delta$ ;
- is naturally constructed via subset technique;
- default in RoFL course, useful for most operations.

#### Trim DFA example



#### Complete DFA

- For any  $q_i$ ,  $\gamma$  there is **exactly** one  $q_i$  s.t.  $q_i \xrightarrow{\gamma} q_i \in \delta$ ;
- usually requires introducing **trap** (sink) states;
- useful for constructing complementation.

DFA with the trap state

for 
$$\Sigma = \{a, b\}$$





## **Complementation and Traps**

- By switching finality of all states in DFA  $\mathscr{A}$ , we can construct a DFA  $\mathscr{A}'$  accepting exactly the set of words that are rejected by the initial DFA, i.e.  $\mathscr{L}(\mathscr{A}') = \Sigma^* \setminus \mathscr{L}(\mathscr{A})$ .
- The language complementation requires complete DFA.



• Without a trap state, complementation operation loses words starting with b, or containing either aa or bb.

#### **Back to Neural Nets**

- Regular languages are closed under concatenation and union (trivially).
- Regular languages are closed under complementation (via subset construction and switching finality) ⇒ inhibitory signals can be modelled.

#### **99** Theorem

Regular languages are closed under all boolean operations.

*Proof:*  $\mathcal{L}_1 \cap \mathcal{L}_2 = (\overline{\mathcal{L}_1} \cup \overline{\mathcal{L}_2})^1$ . Hence, k-signal neurons can be modelled as well.

More regular languages properties: subword-closed, subsequence-closed, closed wrt morphic images and inverse morphic images.



<sup>&</sup>lt;sup>1</sup>More straightforward intersection construction is given in Lecture IV.

## What a DFA can Tell about its Language?

Given any DFA of a language  $\mathscr{L}$ , one can establish:

- whether  $\mathcal{L}$  has <u>forbidden prefixes</u> i.e. words that never can start any word from  $\mathcal{L}$ . Existence of forbidden prefixes is equivalent to existence of trap states in the DFA.
- whether  $\mathcal{L}$  is finite the finiteness holds iff there are no loops in the non-trap part of the DFA.

However, if a finite  $\mathscr{L}$  contains at least two words  $\omega_1, \omega_2$  s.t.  $\forall v(\omega_1 \neq \omega_2 v \& \omega_2 \neq \omega_1 v)$ , there is more than one trim DFA recognizing it. Moreover, if  $\mathscr{L}$  is infinite, then there is infinite set of DFAs recognizing  $\mathscr{L}$ .

In Lecture III, we will give a construction of DFA that can be considered as an unique encoding of the regular language recognized by the DFA.

## What a DFA can Tell about its Language?

If  $\mathscr{L}$  is infinite, then for every  $n \in \mathbb{N}$ , there is an infinite set of the words with the length exceeding n: i.e.  $\{\omega \mid |\omega| > n\}$  is infinite.

By the pigeonhole principle, given a DFA  $\mathscr{A}$  with N states and any word  $\omega = a_1...a_M$  of the length at least N recognized by  $\mathscr{A}$ , the sequence of states along the path  $q_0 \stackrel{\omega}{\to} q_F$  contains at least one intermediate state  $q_i$  twice or more.

Consider 
$$\underbrace{a_1 a_2 \dots a_{k-1}}_{\text{path from } q_0 \text{ to } q_i} \underbrace{a_k \dots a_{k+m}}_{\text{path from } q_i \text{ to } q_F} \in \mathscr{L}(\mathscr{A})$$

Excluding or repeating the  $a_k...a_{k+m}$  substring, we still get words in  $\mathcal{L}(\mathscr{A})$ :

• 
$$a_1 a_2 \dots a_{k-1}$$
  $\overbrace{a_k \quad a_{k+m}} \quad a_{k+m+1} \dots a_M \in \mathcal{L}(\mathcal{A})$   
 $j \text{ loops from } q_i \text{ to } q_i$ 

• 
$$a_1 a_2 \dots a_{k-1} (a_k \dots a_{k+m})^j a_{k+m+1} \dots a_M \in \mathcal{L}(\mathcal{A})$$

Moreover, again by pigeonhole principle, if  $q_i$  is the first repeated state along the trace, then  $k + m \le N$ .

## Pigeonhole Principle and Pumping

Let p be the number of states in an  $\varepsilon$ -free finite automaton  $\mathscr A$  recognizing infinite language  $\mathscr L$ . Then any word  $\omega$  s.t.  $|\omega| \geq p$ , can be inside a loop

decomposed as 
$$\omega = \underbrace{\omega_1 \quad \omega_2 \quad \omega_3}$$
, moreover:

- 1  $|\omega_2| > 0$ , since there are no  $\varepsilon$ -transitions.
- $|\omega_1\omega_2| \le p$ , by the pigeonhole principle for the states of  $\mathscr{A}$ .
- 3  $\forall j \in \mathbb{N}(\omega_1 \omega_2^j \omega_3 \in \mathcal{L}(\mathcal{A}))$ , as the loop can be entered arbitrarily many times (j = 0) is also valid).

If  $\mathcal{L}$  is regular, the minimal p value for which any  $\omega \in \mathcal{L}$ , s.t.  $|\omega| \geq p$ , admits the given decomposition satisfying 1, 2, 3, is called pumping length of the language  $\mathcal{L}$ .



## All Regular Languages Can Be Pumped

## **One Ordinary Pumping Lemma for Regular Languages**

If  $\mathcal{L}$  is a regular language, then there exists such a  $p \in \mathbb{N}$ , that  $\forall \omega \in \mathcal{L} \Big( |\omega| \ge p \Rightarrow \exists \omega_1, \omega_2, \omega_3 \big( \omega = \omega_1 \omega_2 \omega_3 \& |\omega_2| > 0 \& |\omega_1 \omega_2| \le p \& \forall j \in \mathbb{N} \big( \omega_1 \omega_2^j \omega_3 \in \mathcal{L} \big) \Big) \Big).$ 

- a non-regular language can have a finite (prefix) pumping length,
   e.g. {ωωυ | ω ≠ ε};
- the pumping length can be less than the number of states in any  $\varepsilon$ -free NFA or DFA recognizing the language, e.g. as in  $\{\omega \mid \omega \in \{a,b\}^* \& \omega \text{ starts and ends with the same letter}\}.$



## **Pumping Length of Finite Languages**

Let us "prove" that the following language is non-regular.

$$\mathcal{L}_{NQ} = \left\{ \omega \mid \forall v_1, v_2, u(u \neq \varepsilon \Rightarrow \omega \neq v_1 u u v_2) \& \omega \in \{a, b\}^* \right\}$$

Let N be the pumping length of  $\mathcal{L}_{NQ}$ . Consider any  $\omega \in \mathcal{L}_{NQ}$  s.t.  $|\omega| \geq N$ . Hence,  $\omega = \omega_1 \omega_2 \omega_3$ ,  $1 \leq |\omega_2|$  (and  $|\omega_1 \omega_2| \leq N$ , but that is not relevant there), and  $\omega_1 \omega_2^2 \omega_3 \in \mathcal{L}_{NQ}$ , which contradicts the description of the language.

The "proof" looks plausible, but it is incorrect: in fact,  $\mathcal{L}_{NQ} = \{\varepsilon, a, b, ab, ba, aba, bab\}$ . Hence, the pumping length of  $\mathcal{L}_{NQ}$  is equal to 4 and exceeds the maximal length of words belonging to  $\mathcal{L}_{NQ}$ .



## **Pumping Length of Finite Languages**

Let us "prove" that the following language is non-regular.

$$\mathcal{L}_{NQ} = \left\{ \omega \mid \forall v_1, v_2, u(u \neq \varepsilon \Rightarrow \omega \neq v_1 u u v_2) \ \& \ \omega \in \{a, b\}^* \right\}$$

Let N be the pumping length of  $\mathcal{L}_{NQ}$ . Consider any  $\omega \in \mathcal{L}_{NQ}$  s.t.  $|\omega| \geq N$  — there is no such  $\omega$ . Hence,  $\omega = \omega_1 \omega_2 \omega_3$ ,  $1 \leq |\omega_2|$  (and  $|\omega_1 \omega_2| \leq N$ , but that is not relevant there), and  $\omega_1 \omega_2^2 \omega_3 \in \mathcal{L}_{NQ}$ , which contradicts the description of the language.

If  $\mathcal L$  is finite, its pumping length is equal to  $\max_{\omega \in \mathcal L} |\omega| + 1$ .

Hence, before considering  $\omega \in \mathcal{L}$  whose length exceeds the pumping length, be sure that  $\mathcal{L}$  is infinite.



# **Guessing NFA Language**

Let us look at the complement NFA again:



We have guessed its language given by a regular expression:

$$a(ba)^* | (a|b)^* (aa|bb) (a|b)^* | b(a|b)^*$$

We could use another one, e.g.:

recall that this is the option operator

$$b(a|b)^* \mid a(ba)^* \underbrace{\left((a|bb)(a|b)^*\right)}_{\text{equivalent to } ((a|bb)(a|b)^*|\varepsilon)}_{\text{?}}$$

How can we construct such expressions algorithmically rather than barely guess?

## **One More Encoding: Equations**

Sometimes it is convenient to gather all the right-hand sides of the rules with a same left-hand side together. Then, if we replace  $\rightarrow$  by = sign, we get an equation system determining non-terminal languages:

$$S \rightarrow \mathbf{a}[q_1] \qquad [q_2] \rightarrow \mathbf{a}[q_3] \\ S \rightarrow \mathbf{a}[q_2] \qquad [q_2] \rightarrow \mathbf{b}[q_4] \\ [q_1] \rightarrow \mathbf{a}[q_1] \qquad [q_3] \rightarrow \varepsilon \\ [q_1] \rightarrow \mathbf{a}[q_2] \qquad [q_4] \rightarrow \varepsilon \\ [q_3] = \varepsilon \\ [q_4] = \varepsilon$$

$$S = \mathbf{a}[q_1] \mid \mathbf{a}[q_2] \\ [q_1] = \mathbf{a}[q_1] \mid \mathbf{a}[q_2] \\ [q_2] = \mathbf{a}[q_3] \mid \mathbf{b}[q_4] \\ [q_3] = \varepsilon \\ [q_4] = \varepsilon$$

If there is no rule part  $[q_1] = a[q_1]$ , these languages could be found by exhaustive substitutions of the right-hand sides.

E.g. 
$$\mathcal{L}([q_3]) = \mathcal{L}([q_4]) = \{\varepsilon\}$$
, while  $\mathcal{L}([q_2]) = \{a\mathcal{L}([q_3])\} \cup \{b\mathcal{L}([q_4])\} = \{a, b\}$ .

How to deal with self-referring rules as  $[q_1] = a[q_1]$ ?



#### Arden's Lemma

#### **1** Theorem

If a language  $\mathcal{L}$  satisfies the equation  $\mathcal{L} = \mathcal{L}_1 \mathcal{L} \cup \mathcal{L}_2$ , where  $\varepsilon \notin \mathcal{L}_1$ , then  $\mathcal{L} = \mathcal{L}_1^* \mathcal{L}_2$ .

*Proof:* Let us consider arbitrary  $\omega \in \mathcal{L}$ .

- If  $\omega \in \mathcal{L}_2$ , then the statement trivially holds.
- Otherwise,  $\exists \omega_1 \in \mathcal{L}_1, \omega' \in \mathcal{L}(\omega = \omega_1 \omega')$ . The suffix  $\omega'$  also belongs to  $\mathcal{L}_1\mathcal{L} \cup \mathcal{L}_2$ , and  $|\omega'| < |\omega|$ , since  $\omega_1 \neq \varepsilon$ . Now we can repeat the same reasoning for  $\omega'$ , and due to finiteness of  $|\omega|$  and well-foundedness of  $(\mathbb{N}, <)$  we will eventually get  $\omega' \in \mathcal{L}_2$ .  $\square$

Arden's lemma allows one to solve the equation systems in Gaussian style, via non-terminal elimination + substitution, assuming there are no chain rules in the grammar.



## **Equation Solving Example**

Let us construct the language of the grammar:

$$\begin{split} S \to aT & S \to aS \\ T \to aT & T \to bT & T \to bF & F \to \varepsilon \end{split}$$

First, construct the system and substitute *F*:

$$S = (aS) \mid (aT)$$
$$T = ((a \mid b)T) \mid b(\varepsilon)$$

Solve the second equation:  $T = (a \mid b)^*b$ 

Then substitute the solution:  $S = (aS) \mid (a(a \mid b)^*b)$ .

The resulting language is:  $S = a^*a(a \mid b)^*b$ 

The NFA that corresponds to the grammar is given below:





## **Equation Solving Example**

Let us construct the language of the grammar:

$$\begin{split} S \to aT & S \to aS \\ T \to aT & T \to bT & T \to bF & F \to \varepsilon \end{split}$$

The resulting language is:  $S = a^*a(a \mid b)^*b$ 

The NFA that corresponds to the grammar is given below. After solving T-based equation and substituting F value, in fact we again constructed an NFA, whose transitions are marked with regexes.



If we assume that S is preceded by the "very starting state" S', then  $\mathcal{L}(S)$  can be also considered as a transition in the NFA containing only S' and F states.

## **Finding NFA Language**

The extended NFAs allow one to use transitions marked with regexes.

#### State Exclusion Method

- For the sake of uniformity, we introduce "the very starting state" S, having  $\varepsilon$ -transition to  $q_0$ , and "the very final state" T, having ingoing  $\varepsilon$ -transitions from  $q \in F$ . All the states except S and T are now ordinary.
- In order to exclude the state q s.t.  $q \xrightarrow{\tau} q$ , for all pairs  $q_A, q_B$ , where  $q_A \xrightarrow{\Phi} q$ ,  $q \xrightarrow{\Psi} q_B$ , add the transition  $q_A \xrightarrow{\Phi(\tau)^* \Psi} q_B$ , then we can delete q.
- When only *S* and *T* are left, where  $S \xrightarrow{\rho} T$ , the expression  $\rho$  is the regex equivalent to the NFA.



# From NFA to Regex: There and Back Again

- Given an NFA, it can be modified to DFA ⇒ linear-time parsing is straightforward.
- Given a regex, there is no known technique to make it deterministic<sup>2</sup>.

How can we program a conversion of a regular expression to an NFA recognising the same language?

Some regular languages never can be expressed by those, e.g  $\{\omega \mid \omega[|\omega|-2]=a\}$ 

## **Construction-by-Definition: Thompson NFA**

Any regular expression  $\tau$  has a recursive structure. Let us use this structure to model the corresponding NFA.

• 
$$\tau = \gamma, \gamma \in \Sigma \Rightarrow \mathscr{A}(\tau)$$
 is 
$$q_{s}(\tau) \xrightarrow{\tau} q_{r}(\tau)$$
•  $\tau = \tau_{1} \mid \tau_{2} \Rightarrow \mathscr{A}(\tau)$  is 
$$q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{2})$$
•  $\tau = \tau_{1}\tau_{2} \Rightarrow \mathscr{A}(\tau)$  is 
$$q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{2})$$
•  $\tau = \tau_{1}^{*} \Rightarrow \mathscr{A}(\tau)$  is 
$$q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau$$



## **High Ambiguity of Thompson NFA**

The Thompson NFA for expression  $(a^*)^*$  contains a loop following silent actions  $\Rightarrow$  DFS-based parsing is to be augmented by an analogue of  $\varepsilon$ -closure construction.



Thompson's parsing algorithm constructs all closures dynamically: given a string to parse  $\omega$ , its configurations are  $\langle \omega_2, Q(\omega_1) \rangle$ , where  $Q(\omega_1)$  is a  $\omega_1$ -closure set of the  $\varepsilon$ -closed starting state  $\{q_0\}$ , and  $\omega = \omega_1 \omega_2$ .

An example: parse trace by an of the NFA for  $(a^*)^*$ .

| The example, purse trace by ad by the MTH for (d). |                               |                               |                                  |
|----------------------------------------------------|-------------------------------|-------------------------------|----------------------------------|
| Step                                               | 0                             | 1                             | 2                                |
| $\omega_2$                                         | aa                            | a                             | ε                                |
| Closure                                            | $\{q_0, q_1, q_2, q_4, q_5\}$ | $\{q_3, q_2, q_4, q_1, q_5\}$ | $\{q_3, q_2, q_4, \\ q_1, q_5\}$ |



## **High Flexibility of Thompson NFA**

- Follows regex structure precisely, can be divided to modules.
- Works fine for any module having exactly one final state ⇒ *extended NFA* construction is available for free.

Let us introduce the complementation operation  $\sim$ , implemented by determinisation and switching finality, and construct an extended Thompson NFA for  $\sim ((aa)^*) \mid \sim ((bb)^*)$ .



Complementation submodules are highlighted. States q<sub>4</sub> and q<sub>8</sub> are introduced in order to make final states of the submodules unique.

## **Term-Driven Parsing by Regex**

Let us consider regex  $\tau = (a|b(a|c))^*$ .

Although Thompson NFA for  $\tau$  is non-deterministic, we can always determine parse trace according to  $\tau$  as follows:

- if a string starts by a, then we follow the first alternative under the iteration and repeat the iteration;
- if a string starts by b, then we follow the second alternative and choose the next parse step deterministically with respect to the letter following the b-occurrence.





## **Term-Driven Parsing by Regex**



Distinct occurrences of same letter a in  $\tau$  correspond to distinct parse positions, hence, the parse path considers *linearised* regex terms, marked by their positions. Hence, Linearize((a | b(a|c))\*) is  $(a_0 | b_1(a_2|c_3))^*$ . Now the natural parsing position in  $(a_0 | b_1(a_2|c_3))^*$  is determined by the corresponding linearised letter read last.

Given  $\tau \in \mathcal{RE}$ , its linearisation Linearize( $\tau$ ) can be constructed by subscripting letters in  $\tau$  with their positions (counting from 0).



#### Position NFA aka Glushkov NFA

We are ready to construct an NFA for the term-driven parsing.

#### Glushkov NFA for Regular Expression τ

- Construct  $\tau' = \text{Linearize}(\tau)$ .
- Construct sets  $First(\tau')$  and  $Last(\tau')$  linearised letters that can start and end the expression  $\tau'$ .
- Construct follow-set Follow( $\tau'$ ) of pairs  $\langle \gamma_i, \gamma_j \rangle$  of linearised letters s.t.  $\gamma_i$  can follow  $\gamma_i$  in  $\tau'$ .
- Add the starting state S and states labelled by letters of τ'. Make S final, if τ accepts ε; make all the states from Last(τ') final.
- Given  $\gamma_i \in \text{First}(\tau')$ , add a transition  $S \xrightarrow{\gamma} [\gamma_i]$  to  $\delta$  of Glushkov $(\tau)$ .
- Given  $\langle \alpha_i, \beta_j \rangle \in \text{Follow}(\tau')$ , add a transition  $[\alpha_i] \xrightarrow{\beta} [\beta_j]$  to  $\delta$  of Glushkov $(\tau)$ .



# History of Glushkov Automaton

1960s-1980s

Introduced by V.M. Glushkov in 1961. Till 1990s, mainly of theoretical interest.

1990s

Formalisation of SGML unambiguity notion in terms of Glushkov NFA (Wood&Bruggemann).

00s

Glushkov NFA is proved to generate (or be generated by) well-known NFA models by equivalence or simulation relations. Breaking fast implementation of Glushkov-NFA-based approach in RE2 library (still 20× faster than DFA-based Go regex library)



# History of Glushkov Automaton

1990s

Formalisation of SGML unambiguity notion in terms of Glushkov NFA (Wood&Bruggemann).

00s

Glushkov NFA is proved to generate (or be generated by) well-known NFA models by equivalence or simulation relations. Breaking fast implementation of Glushkov-NFA-based approach in RE2 library (still 20× faster than DFA-based Go regex library)

10-20s

"The Mother of All Automata" (Broda, 2017)

Development of Glushkov models for extended set of regex operations.

