Combinational Logic Circuits

There are 2 types of quantities: analog and digital. Analog ones are those continuously varying. Digital ones are discrete. In conventional logic systems, there are only 2 states: TRUE and FALSE.

 $\frac{\textbf{Axioms}}{\text{Let }L_k=1 \text{ and } \overline{L_k}=0, \text{ then}$

 $\bigvee_{i} L_{i} = \bigvee_{i} L_{i} \bigvee_{j} \overline{L_{j}} = 1$ $\bigvee_{i} \overline{L_{i}} = 0$ Operator OR Operator AND $\bigwedge_{i} L_{i} = 1$ $\bigwedge_{i} \overline{L}_{i} = \bigwedge_{i} L_{i} \bigwedge_{j} \overline{L}_{j} = 0$

And

Logic gates

In logic gates, we use Boolean algebra and we use +, Σ to represent OR; and *, Π to represent AND:

Name	Gate	Operation
NOT	A ————————————————————————————————————	$X = \bar{A}$
AND	А х	X = AB
OR	A	X = A + B
NAND	А X	$X = \overline{AB}$
NOR	A X	$X = \overline{A + B}$
Exclusive OR (XOR)	AX	$X = \bar{A}B + A\bar{B} = A \oplus B$
Exclusive NOR (XNOR)	$A \longrightarrow X$	$X = AB + \overline{A}\overline{B}$

Boolean algebra Theorems

Name	Operation	
Commutative Laws	AB = BA	
Commutative Laws	A + B = B + A	
Associative Laws	A(BC) = (AB)C	
A330clative Laws	A + (B + C) = (A + B) + C	
Idempotent Laws	AA = A	
Tacinpotent Laws	A + A = A	
Laws of Identities	A(1) = A	
Laws of facilities	A + 0 = A	
Laws of Null Elements	A(0) = 0	
Laws of Ivali Elements	A + 1 = 1	
Laws of Complements	$A\bar{A}=0$	
Laws of Complements	$A + \bar{A} = 1$	
Laws of Absorption	A + AB = A	
Laws of Absorption	A(A+B)=A	
Distributive Laws	A(B+C) = AB + AC	
Distributive Laws	(A+B)(A+C) = A+BC	
Law of Double Negation	$ar{ar{A}}=A$	
	$\overline{\prod A_{\iota}} = \sum \overline{A_{\iota}}$	
	$\prod_{l \in I} n_l = \sum_{i \in I} n_i$	
De Morgan's Theorem	$\frac{l \in I}{\sum}$ $\frac{l \in I}{\prod}$ -	
	$A_{i} = A_{i}$	
	$\widehat{i\in I}$ $\widehat{i}\in \widehat{I}$	

Example:

Simplify the following circuit:

Therefore, only 1 component is required.

Circuit analysis and synthesis

For any logic circuit, for example:

Analysis:

This circuit can be described by:

$$X = (A + \bar{C})B(\bar{A} + C)$$

Which can be simplified into:

$$X = (A + \bar{C})B(\bar{A} + C)$$

$$= (A\bar{A} + AC + \bar{A}\bar{C} + \bar{C}C)B$$

$$= (\bar{A}\bar{C} + AC)B$$

$$= \bar{A}B\bar{C} + ABC$$

Synthesis:

This can be implemented by a circuit:

Standard forms

To minimize the number of logic ICs in a circuit, it is convenient to express logic functions in sum of products form (SOP) or product of sums form (POS):

SOP:

Example:

Find the function that can represent the following truth table:

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$X = \bar{A}BC + A\bar{B}C + ABC$$

$$= \bar{A}BC + A\bar{B}C + ABC + ABC$$

$$= AC(B + \bar{B}) + BC(A + \bar{A})$$

$$= AC + BC$$

This Minimized SOP form requires two 2-input AND gates and one 2-input OR gate.

Then, by De Morgan's Theorem:

$$X = \frac{AC + BC}{(\overline{AC})(\overline{BC})}$$

This expression requires three 2-input NAND gates, which use one type of IC only.

POS:

The minimized SOP form above can be expressed as:

$$X = AC + BC$$
$$= (A + B)C$$

This is called the Minimized POS form and requires 1 AND gate and 1 OR gate.

Then, if we apply De Morgan's Theorem:

$$X = \underbrace{(A+B)C}_{=\overline{A+B}+\overline{C}}$$

Which needs only 3 NOR gates to implement:

We can see that:

Also, a NOT function can be performed by NAND gate and NOR gate:

Configuration	Expression	
A A'	$\overline{A(1)} = \overline{A}$	
A A'	$\overline{A+0}=\overline{A}$	

Karnaugh map (K-map) and minimization technique

Procedures:

1. Express logical expressions in SOP form:

$$X = \sum \left(\prod L_k \right)$$

2. Mark [1] in boxes which describe the terms:

$$\prod L_k$$

in the expression $X = \sum (\prod L_k)$

- 3. Encircle adjacent [1]s start with largest size possible which obey 2^s , 1 < s < n
- 4. Some circles may overlap, eliminate those with ALL [1]s encircled more than once by other circles.
- 5. Find the invariant L_k s of each circle. Then form the simplest SOP form with $L_k = 1, \overline{L_k} = 0$

**IF we want to get the simplest POS form using K-map, we encircle [0]s instead, all other procedures are the same

More examples:

1. If all the entries in the K-map is filled with [1], then the expression is: X = 1

2. To get the simplest form of the expression we need to pretend there are 8 repeating K-maps around the K-map we are considering:

3. Another example to show the importance of the idea above:

Tutorial

Use K-map to obtain the Minimised SOP and POS form of the following:

- 1. $X = \underline{ABC} + \underline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \underline{ABC}$ [X = B + C]
- 2. $X = \bar{A}BC + AB\bar{C} + \bar{A}B\bar{C} + ABC + \bar{A}B\bar{C}$ $[X = \bar{A} + B]$
- 3. $X = \overline{AB} + \overline{AD} + ABD + BCD$ $[X = \overline{AB} + \overline{AD} + BD]$
- 4. $X = \bar{A}\bar{B} + \bar{A}\bar{C}D + AC + \bar{B}C$ $[X = \bar{A}\bar{B} + \bar{A}\bar{C}D + A\bar{C}]$
- 5. $X = AB\bar{C} + B\bar{C}D + \bar{A}BD + \bar{A}CD + \bar{A}\bar{B}C$ $[X = \bar{A}\bar{B}C + \bar{A}BD + \bar{A}B\bar{C}]$