

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

Ayudantes: Francisca Caprile, Catalina Ortega, Matías Fernández e

Ignacio Vergara

Ayudantía 6 (Repaso I1)

22 de Septiembre

 $2^{\underline{0}}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado
- B. Barías

Ejercicio 1 — Inducción, Il 2023-1

Sea $D = a_1, a_2, ..., a_n \subseteq \mathbb{N}$ tal que n es impar y $a_1 < a_2 < ... < a_n$ se define median(D) como la mediana del conjunto D tal que $median(D) = a_{\frac{n+1}{2}}$. Además se define un intervalo de naturales I = [a, b] como los números naturales entre a y b incluyéndolos (por ejemplo, I = [3, 6] = 3, 4, 5, 6).

Demuestre usando inducción fuerte que para todo conjunto finito D y para todo intervalo de naturales I, si I contiene más de la mitad de los elementos de D, entonces la mediana de D está en el intervalo I. Formalmente esto es equivalente a demostrarque si $|I \cap D| > \frac{|D|}{2}$, entonces $median(D) \in I$ (|A| corresponde a la cantidad de elementos que tiene el conjunto A)

Ejercicio 2 — Lógica proposicional, Examen 2022-1

Una fórmula proposicional α se dice que es una cláusula conjuntiva si es de la forma $\alpha = a_1 \wedge a_2 \wedge \ldots \wedge a_n$ para algún $n \geq 1$ y cada a_i es un literal con $1 \leq i \leq n$, esto es, a_i es una variable proposicional o la negación de una variable proposicional. Por ejemplo, $p \wedge \neg q \wedge r$ y $\neg q \wedge s \wedge q \wedge s$ son cláusulas conjuntivas.

Sean $\alpha = a_1 \wedge \ldots \wedge a_n$ y $\beta = b_1 \wedge \ldots \wedge b_m$ dos cláusulas conjuntivas satisfacibles, no necesariamente con el mismo conjunto de variables proposicionales. Demuestre que $\alpha \models \beta$ si, y solo si, $\{b_1, \ldots, b_m\} \subseteq \{a_1, \ldots, a_n\}$.

Ejercicio 3 — Lógica de predicados (I1-2023-1)

Para una fórmula proposicional $\alpha(p_1,...,p_n)$ con variables proposicionales $p_1,...,p_n$ se define el conjunto:

valuaciones(
$$\alpha$$
) = {($v_1, ..., v_n \mid \alpha(v_1, ..., v_n) = 1$ }

En otras palabras, valuaciones(α) es el conjunto de todas las valuaciones que satisfacen a α .

Dadas α_1 y α_2 dos fórmulas en lógica proposicional, decimos que α_1 es #-equivalente a α_2 si se cumple que el número de valuaciones que satisfacen a α_1 es igual al número de valuaciones que satisfacen a α_1 . Es decir, | valuaciones(α_1) |=| valuaciones(α_2) |.

Si α_1 y α_2 son #-equivalentes, escribiremos $\alpha_1 \equiv_{\#} \alpha_2$.

(a) Sea $\alpha_1, \alpha_2, ..., \alpha_n$ una secuencia de fórmulas proposicionales tal que $\alpha_i \models \alpha_{i+1}$ para cada $1 \leq i < n$. Demuestre que si $\alpha_1 \equiv_\# \alpha_n$, entonces $\alpha_i \equiv \alpha_j$, para todo $i \neq j$.

(b) Demuestre que $\equiv_{\#}$ no cumple con el teorema de composición. En otras palabras, que no cumple que para todo par de fórmulas $\alpha_1(p_1,...,p_n)$ y $\alpha_2(p_1,...,p_n)$, si $\alpha_1 \equiv_{\#} \alpha_2$, entonces $\alpha_1(\beta_1,\beta_2,...\beta_n) \equiv_{\#} \alpha_2(\beta_1,\beta_2,...\beta_n)$ para cualquier fórmula $\beta_1,\beta_2,...\beta_n$

Ejercicio 4 — Conjuntos y relaciones, I2 2017-2

Sean A, B, C y D conjuntos, y sea $S = \{A_0, A_1, \ldots\}$ uma colección enumerable de conjuntos. Demuestre las siguientes propiedades:

a)
$$A \subseteq B \land C \subseteq D \Rightarrow A \times C \subseteq B \times D$$

b)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

c)
$$\left(\bigcap_{i\in\mathbb{N}} A_i\right) \times B = \bigcap_{i\in\mathbb{N}} \left(A_i \times B\right)$$