```
Question 1:
      a) policy that keep every email (y= keep)

E[L(y,t)] = L(y,t=Spam) · Pr(t=Spam)
                    † Lly, t=NonSpun) · Pr[t=NonSpan]
                  = 1.01+0.(1-0.1)
          policy that remove every email (y= Remove)
          E(Lly, t)]= L(y, t= Span) · Pr(t= Span)
                    + L(y, t= Non Spam) Pr(t=Non Spam)
                 = 0-0,1+ 100.0.9
      b) want to find y=y* which minimize E[L(y,t) | x]
          E[L(y,t)|x] = L(y,t=Spam). Pr (t=Spam)x).
                 + Lly, t=Nonspam) Pr(t= (Vonspam (x)
          Suppose y*=keep
          F(L(y*t)|x) = Pr(t=Spam(x)
          Suppose y *= Remove
          E(L(y*,t)|x) = loo Pr(t=Nonspam(x)
                         = 100 (1-Pr (t=Spam |x)
                          = 100 - 100 Pr(+= spum(x)
```

We want toknow when the expected loss of Ramure is less than keep. given x. i.e. luu- luu Pr(t= Spum/x) < Pr(t= spum/x) 100 < 101 Pr(t=Span (x) Pr(t=Spun(x) > 100 Henre, when Pr(t=Spam/x) > 100 y* = remove otherwise y* = keep () want to find yx that minimize E(L(y,t)) x; [where i= 1,2,3,4 $X_i = [0]$ $X_2 = [1]$ $X_3 = [0]$ $X_4 - [1]$ for each $X_i = [X_{i,2}] \rightarrow \text{ input feature } X_2$ from part a, b we know: E(L(y,t)(xi) = L(y,t=Spam). Pr (t=Spam /xi) + Lly, t=Nonspam) Pr(t= (Vonspam) Xi) also, using Bages' Theorem. Pr(t=Spun(x:) = Pr(x: | t=Spun) Pr(t=Spun) by Pr(t=>pum)=v. (= Pr(xi | t=>pam) x o. (+ Pr(xi | t=nonSpam) XVL4

Hence,
$$Pr(t=Spam|x_1) = \frac{0.4xv.1}{0.4x0.1 + 0.098 \times 0.9} = \frac{200}{4691}$$

$$Pr(t=Spam|x_1) = \frac{0.3 \times 0.1}{0.3 \times 0.1 + 0.001 \times 0.9} = \frac{100}{103}$$

$$Pr(t=Spam|x_2) = \frac{0.2 \times 0.1}{0.2 \times 0.1 + 0.001 \times 0.9} = \frac{200}{2009}$$

$$Pr(t=Spam|x_2) = \frac{0.1 \times 0.1}{0.1 \times 0.1} = 1$$

$$Since Pr(t=Spam|x_1) Pr(t=Spam|x_2) Pr(t=Spam|x_2)$$

$$Pr(t=Spam|x_3) \leq \frac{100}{101}$$

$$Pr(t=Spam|x_4) = \frac{10$$

d)

Questin 2:	
<i>a</i>)	For a data set that is linearly separable, if two points lie in a half specary point on the line segment connectly them should also lie in the same half space. So, assuming that this data set is linearly
	every point on the line segment connectly them should also lie in the
	same half space. So, assuming that this duta set is linearly
	t=1 Hence Ux6 E-1,52 the corresponded to show (d in class t=1
	t=1 Hence tx6 t-1,52 the corresponded tshould in class t=1
	However when x=0 t=1, contradict to the previous
	therefore, the data set provided is me linearly separable
٤)	After applying x, in the dealer map, we have
	× × × t
	-1 1 1
	3 1 1
	1 1
	bot watable to travel at travers on to see
	bol weight infront of feature x be wi
	let weight infront of feature Mz be Wz
	Mence Zo Mar & Wix 25 translation we links 421
	plug in $x=1$, $x=1$, and $t=1$
	-W1 +W220
	plug in $x=1$, $x^2=1$ and $t=0$
	witwz co
	play in X=3 x2=9 and t=1, me know.
	3 W1 + 9 W2 20
	Combiny this 3, we know LW220
	Have, choose W12-3 W222 correctly classifies all examples
	classifies all emamples

Ī	T-
	then validation performance of these k is generally better than validation performance and the test performance is highly corresponded to validation performance k*andk*tz have the same rate and k*-z is only a little billess than those two.
	the tot performance of these is generally refres
	Than validation performance
	and the test performance is highly corresponded to validation performance
	k*andk*te have the same rate and k*-2 is only a little bil
	less than those two.
))	
3.2	4
6/	train on most train.
	The value returned by run-check-grad is 5.42 C
	train on majot-train. The value returned by run check-grad is 3.42 C-8 its really small so our implementative shalld be correct
	the hyperparameters I tound worked best is
	"learn't but and "and it was ". V.
	"learning-rate": 0-06, "num-iterations": 80
	diff = 3.4218230576089815e-08
	the train classification error is 8.83125
	the valid classification error is 0.099999999999998
	the test classification error is 0.099999999999999999999999999999999999
	the train CE is 0.20287437419432514
	the valid CE is 0.3128086775228016
	the test CE is 0.28134677646493883
	training as no nint train and
	train on maix-train-small
	The value returned by run check grad is 3.32 C-8 its really small so our implementative shalld be correct
	it would until a use in viguentation challed be moved
	it's really show so the implementation should be correct
	the hyperpolamaters I tound worked best is
	"learning_rate": 1 "num_iterations": 8
	diff = 3.3193286201672526e-08
	the train classification error is 8.9
	the valid classification error is 0.3400000000000000000000000000000000000
	the test classification error is 0.21999999999999
	the train CE is 0.007723205012628585
	the valid CE is 8.9884916856159195
	the test CE is 0.7807530284634275
i	

C) cross entropy grouph for mnixt-train-

cros) entropy graph for muloi-train small:

from two graphs, we can see that cross entropy for train tollows a decreasing trend while the cross entropy for validation set when train is small, fluctuate a lot. for choosing the best parameters. I also plot a graph for according, first set the burning rate and to lad at the plot on acurracy verses iteration to choose the bust iteration. for the train duta since we have enough duta, we can follow the convention bet knownly rate between ul and out which I Chouse 0.06 for the small trainduce since we only have to trainly example Heme the number of iteratin must be small to avoid werfitting (I choose 8) Henre learny rate need to be large to make a difference . Ichose (

Question4:	ſw, ¬
a)	$kt W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$
	let f(w)= w*= = = = = = = = = = = = = = = = = =
	we can set to jud w that minimze f; we can set to just expand f to get Wij in the form
t Cw1	= 1 = a (yw = = w; x (i)) 2 + 2 = w; 2
1(m)	= = = (\(\frac{\lambda}{2} \alpha^{\lambda} \(\frac{\lambda}{2} \) \(\frac
	- = = (a(i)g(i)(-x(i)) + a(i) x is = wjx(i))+wjy
	$= -\frac{N}{2} \left(\alpha^{(i)} y^{(i)} x^{(i)'} + \frac{N}{2} \left(\alpha^{(i)} x^{(j)'} + \frac{M}{2} w_j x^{(i)'} \right) + \frac{N}{2} v_j x^{(i)'} \right) + \frac{N}{2} v_j x^{(i)'} + \frac{N}{2} \left(\alpha^{(i)} x^{(j)'} + \frac{M}{2} w_j x^{(i)'} \right) + \frac{N}{2} v_j x^{(i)'} \right)$
- 5	- E(aci)y(i)xii) + E E acxii)njx(i) + wi)
۷-	Z(aigioxis)+ZZaixis'wixist)Ij=jw
=======================================	- = (aig(i))+== (aixii-xii+) I;) w
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	J= (=

Set all the
$$\frac{f(w)}{g(i)} = 0$$
, we have

$$\frac{m}{2} \underbrace{\sum_{j=1}^{N} \sum_{i=1}^{N} (a_{i}y^{(i)}x^{i}y^{(j)})}_{j=1} \underbrace{\sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} (a_{i}y^{(i)}x^{i}y^{(j)})}_{j=1} \underbrace{\sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N}$$

d) as 1->00 the algorithm behave the same as normal linear regression since each ai is the same = In (n i, the num of training examples) since each ai is the same, we don't emphasis any more nor penalize any point, here it should be have like a normal linear regression as 170 ai >0 which means for each X's loss function emphasis alot on (yio-w xio) term which similar to set k=1 in kNIV classifier. Which of course non'l perform too Well in validation set. We are see that our prediction is correct from 4c graph which as a V' shape because when he find a balance between locally usighted and also covering enough neighbour will minimize the cost which get assured from the local minimum is in the middle