P

Formalizing running time

We used ad-hoc metrics

- #comparison for comparison sort
- #multiplications for matrix multiplication

We need a generic notion of running time

Back to Turing machine!

Formalized running time

Definition: Let $f: \{0,1\}^* \to \{0,1\}^*$ and let $T: \mathbb{N} \to \mathbb{N}$ be some function and let M be a Turing machine. We say that M computes f if for every $x \in \{0,1\}^*$, whenever M is initialized to the start configuration on input x, then it halts with f(x) written on its output tape. We say M computes f in T(n)-time if its computation on every input x requires at most T(|x|) steps.

Formalized running time

Definition: Let $f: \{0,1\}^* \to \{0,1\}^*$ and let $T: \mathbb{N} \to \mathbb{N}$ be some function and let M be a Turing machine. We say that M computes f if for every $x \in \{0,1\}^*$, whenever M is initialized to the start configuration on input x, then it halts with f(x) written on its output tape. We say M computes f in T(n)-time if its computation on every input x requires at most T(|x|) steps.

Robustness of definition

- non-binary alphabet Γ : encode a symbol using $\log |\Gamma|$ bits ($\log |\Gamma|$ -X blowup)
- TM with k tapes: encode to one tape via interleaving, and simulate each step by sweeping back and forth (T(n)) steps for each original step, quadratic blowup)

Decision problems

Decision Problems:

- The output is *yes* or *no* (1 or 0)
- The function $f: \{0,1\}^* \to \{0,1\}$ is essentially a subset of $\{0,1\}^*$ and called a *language*
- Goal: decide if the given input belongs to the language

Definition: Let $L \subseteq \{0,1\}^*$ and let $T: \mathbb{N} \to \mathbb{N}$ be some function and let M be a Turing machine. We say that M decides L in T(n) time if for every $x \in \{0,1\}^*$, whenever M is initialized to the start configuration on input x, then it halts in at most T(|x|) steps, and accepts if and only if $x \in L$.

The class P

Definition (class DTIME): Let $T: \mathbb{N} \to \mathbb{N}$ be some function. A language L is in $\mathbf{DTIME}(T(n))$ iff there is a Turing machine that decides L in time O(T(n)).

Definition (class P): Let $P = \bigcup_{c \ge 1} DTIME(n^c)$

E.g., the graph connectivity (reachability) problem

Example: Graph Connectivity

Input: a directed graph *G* (with *n* nodes)

Output: decide if *G* is connected

Algorithm: compute the transitive (adjacency matrix multiplication, in $O(n^4)$ steps)

Complexity: DTIME (n^4) , and also P

Why Polynomial?

Cobham-Edmonds Thesis (1965):

P = The collection of tractable computational problems

Platform-independence

- any problem in P can be solved in polynomial time on any reasonable computational model
- Strong Church-Turing Thesis: "Every physically realizable computation model can be simulated by a TM with polynomial overhead"

Encoding-independence

• if a problem is in P for one encoding, it will be in P even if input instances are encoded in a different manner

Low-order polynomial

- Most P problems in practice have low orders $(\Theta(n^3))$ or $\Theta(n^5)$
- Even if the current best algorithm is $\Theta(n^{100})$, much better running time will likely soon be discovered

Closure properties

• The class P is closed under addition, multiplication, composition, etc.