Cosmic Ray Detection

References

Cosmic Ray Rejection with Attention Augmented Deep Learning - https://arxiv.org/pdf/2207.10411

deepCR - https://arxiv.org/pdf/1907.09500

Cosmic CONN - https://arxiv.org/pdf/2106.14922

Table of Contents

- DeepCR
- Cosmic- CoNN
- DeCam Data
- Attention UNet
- TransUNet
- Modified small TransUNet Architecture
- Results
- Plots and Activation Maps

DeepCr - UNet

Trained HST ACS/WFC imaging data of 3 categories

- extragalactic field
- globular cluster
- local group galaxies
 Improves on previously SOTA techniques like LA-Cosmic

Cosmic-CoNN UNet

- Trained on data from LCO (Las Cumbres Observatory) global network of 23 telescopes
- Median Weighted Loss Function
- Training on 1024x1024 images
- Group Normalization

Cosmic-CoNN Deep Learning Framework

Median Weighted Loss Function:

$$L(P, Y, M) = -\sum_{i,j} (Y_{ij}log(P_{ij}) + M_{ij}(1 - Y_{ij})log(1 - P_{ij}))$$

where P,Y, M are the predictions, labels and median weighted mask Respectively

Median Mask obtained from transformation on the median of consecutive exposures

- sky subtraction
- clipping 1-5 σ's
- Gaussian Smoothing (5x5 Kernel with $\sigma = 2$)
- Unit Normalisation and Clamping with lower bound (α)

Cosmic CONN Results

Dice Score vs Epochs for different types of models

Method	Dice score > 0.85	LCO Precision	Gemini 1×1 Precision	Gemini 2×2 Precision	
deepCR (baseline)	2980	89.19%	79.59%	84.88%	
deepCR + Median-Weighted loss	2080	92.98%	78.76%	83.08%	
$deepCR + 1024^2px$	n/a	89.35%	82.57%	86.55%	
deepCR + GN	1420	90.82%	77.07%	89.30%	
$deepCR + 1024^2px + GN$	1040	93.17%	84.54%	92.09%	
Cosmic-CoNN (MW loss $+ 1024^2$ px $+$ GN)	380	93.40%	86.80%	94.37%	

Number of epochs to achieve Dice Score > 0.85 and Precision at 95 % Recall

Decam Data

- Train: 50 images from each band (g,r,i,z)
- Test: 14 images from each band (g,r,i,z)
- Each image 2k x 4k 128
- 23040 Training and 2560 Validation patches (90% 10 % Split)
- 7168 Test Patches
- Synthetically generated CR Hits

Attention UNet

TransUNet Architecture

TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation - Chen et al.

Parameters used in Original Paper

ResNet-50 + ViT Encoder

- Base ViT :Input resolution (224,224)
- P = 16, D = 768
- MLP size = 3072
- No. of layers = 12
- No. of heads = 12
- Cascading Upsampler (CUP)
 Decoder
- Bilinear Upsampling
- Concatenate features from ResNet encoder

Training

- SGD with learning rate 0.01, momentum 0.9
- Weight decay 1e-4

Model Architecture Small TransUNet

Hyperparameters:

• Hidden dim : 60

MLP Dim : 64

Number of Transformer Layers : 6

Number of Attention Heads :6

Group Normalization instead of Batch Normalization is leading to better performance

RESULTS ON VALIDATION AND TEST SET

Model	Transformer Hyperparameters			Validation Set		Test Set		
	Attention Heads	Number of Layers	MLP Hidden Dim	Number of Parameters	Dice Score	TPR @ 0.01% FPR	Dice Score	TPR @ 0.01% FPR
deepcr_UNet	-	-	-	467233	0.960542	0.967410042	0.948221	0.9733
UNet	-	-	-	517889	0.966542	0.9751	0.954971	0.9781
Cosmic CoNN				466593	0.963951	0.9701	0.956387	0.976335
Att_UNet				465953	0.96486	0.9726	0.958781	0.9768
TUNet_2	12	12	100	638449	0.970698	0.9798	0.966935	0.9835
TUNet_3	6	6	100	476209	0.972248	0.9798	0.969509	0.9865
TUNet_4	6	6	64	450073	0.97175	0.9811	0.968877	0.9858
TUNet_9	12	6	64	450073	0.971124	0.98	0.966957	0.9853
TUNet_5	6	6	128	496537	0.970352	0.9787	0.963908	0.984
TUNet 6	6	8	64	495441	0.972432	0.9812	0.96857	0.9856

Training:

- Adam Optimizer
- Starting Learning Rate = 0.001
- Manually Reduced LR by 0.001 by monitoring validation loss
- Loss Function = (1-Dice Score +BCE Loss)/2 leads to faster convergence

Plots

Training Loss

Train vs Validation Loss

Validation Loss

Dice Score

Prediction Maps

Activation Maps

Mean Activation Map

Original Image UNet TransUNet

LCO Dataset

Train

0.4m 576*3

1m 670*3

2m 141*3

Total = 4161

Test - 119*3 = 357

Original Image

UNet

TransUNet