Lepton Universality in Weal Interactions

T-> e/r+ Verr + Vz

T- gt (I-YS) Vz

T- L

$$\Gamma(\overline{z} - 1 e^{-1}\overline{v}_{e} v_{z}) = \frac{g_{z}^{2}}{n_{w}^{2}} \frac{g_{e}^{2}}{n_{w}^{2}} \stackrel{\text{NE}}{\sim} e^{-1} e^{-1}\overline{v}_{e} v_{z}$$

There space of $\overline{z} \rightarrow e^{-1}\overline{v}_{e} v_{z}$

$$\frac{\Gamma(\overline{C} \rightarrow \overline{N} - -)}{\Gamma(\overline{C} \rightarrow e^{-} - -)} = \frac{g_{\mu}^{2}}{g_{e}^{2}} \frac{\rho_{C \rightarrow e}}{\rho_{C \rightarrow e}}$$

T((-1 / +x) = BR (- + / +x)

Produce N T leptons.

BR = # decays int / # potel T

MT = 1.78 GEN mpr= 106 Mer me= 0.5 Mer.

					Scale factor/	
τ – DECAY MODES		Fraction	(Γ_i)	(F)	Confidence leve	I (MeV/c
Modes with	n on	e charge	ed	partio	:le	
particle $^- \geq 0$ neutrals $\geq 0 K^0 u_ au$		(85.24	±	0.06) %	-
("1-prong")						
particle $^- \geq 0$ neutrals $\geq 0 K_L^0 u_ au$		(84.58	\pm	0.06) %	
$\mu^- \overline{ u}_\mu u_ au$	[g]	(17.39	\pm	0.04) %	88
$\mu^{\dot{-}} \overline{ u}_{\mu} u_{ au} \gamma$	[e]	(3.67	\pm	0.08	$) \times 10^{-3}$	88
$e^- \overline{ u}_e u_{ au}$	[g]	(17.82	\pm	0.04) %	88
$e^{-}\overline{ u}_{e} u_{ au}\gamma$	[e]	(1.83	\pm	0.05) %	88
$h^- \geq 0 K_L^0 \; u_ au$		(12.03	\pm	0.05) %	88
$h^- u_ au$		(11.51	\pm	0.05) %	88
$\pi^- u_ au$	[g]	(10.82	\pm	0.05) %	88
$\mathcal{K}^- u_ au$	[g]	(6.96	\pm	0.10	$) \times 10^{-3}$	82
$h^- \geq 1$ neutrals $ u_{ au}$		(37.01	\pm	0.09) %	
$h^{-} \geq 1\pi^{0} \nu_{\tau} (\text{ex.} K^{0})$		(36.51			,	
$h^-\pi^0 u_{T}$		(25.93				87
$\pi^-\pi^0 u_ au$	[g]				,	87
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$					$) \times 10^{-3}$	87
$K^-\pi^0\nu_{\tau}$	[g]) × 10 ⁻³	81
$h^- \geq 2\pi^0 u_ au \ h^- 2\pi^0 u_ au$		(10.81			,	
$h^- 2\pi^0 u_{ au}$ $h^- 2\pi^0 u_{ au} (ext{ex.} K^0)$		(9.48			,	86
$\pi^{-}2\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$	[-1	(9.32				86 86
$\pi^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$	[g]	< 9.20	Ξ	0.10	× 10 ⁻³ CL=95%	

Compute plan spece.

New Size BR(eit) = estivate
$$\frac{gr^2}{ge^2}$$
 $\left(\frac{gr}{ge}\right)^2 = 0.976$ $\Rightarrow \frac{gm}{ge} = 1.001 \pm 0.002$

Me ore the Seme for Weaking.

What about $\tau \leftarrow M$ chiversol; by?

BR: $V \rightarrow eV_e V_h$ $\simeq 100\%$
 $V \rightarrow eV_e$ $\sim 100\%$
 $\sim 100\%$
 $V \rightarrow eV_e$ $\sim 100\%$
 \sim

π^+ DECAY MODES

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

Mode		Fraction (Γ_i /	Confidence level						
$\mu^+ u_{\mu}$		[a] (99.98770:	4) %						
$\mu^{\dot{+}} u_{\mu} \gamma$		[b] (2.00 :	± 0.25	$) \times 10^{-4}$					
$e^+ u_e$		[a] (1.230 :	± 0.004	$) \times 10^{-4}$					
$e^+ u_e\gamma$		[b] (7.39	± 0.05	$) \times 10^{-7}$					
		(1.036	± 0.006	$) \times 10^{-8}$					
$e^+ u_ee^+e^-$		(3.2	± 0.5	$) \times 10^{-9}$					
$\mu^+ u_\mu u\overline{ u}$		< 9		\times 10 ⁻⁶	90%				
$e^+ u_e^- u_{\overline{ u}}$		< 1.6		\times 10 ⁻⁷	90%				
Lepton Family number (LF) or Lepton number (L) violating modes									
$\mu^+ \overline{ u}_e$	L	[c] < 1.5		$\times 10^{-3}$	90%				
$\mu^+ u_{f e}$	LF	[c] < 8.0		$\times 10^{-3}$	90%				
$\mu^-\mathrm{e}^+\mathrm{e}^+ u$	LF	< 1.6		$\times 10^{-6}$	90%				
	$\begin{array}{c} \mu^+\nu_{\mu} \\ \mu^+\nu_{\mu}\gamma \\ e^+\nu_{e} \\ e^+\nu_{e}\gamma \\ e^+\nu_{e}\pi^0 \\ e^+\nu_{e}e^+e^- \\ \mu^+\nu_{\mu}\nu\overline{\nu} \\ e^+\nu_{e}\nu\overline{\nu} \end{array}$ Lepton Family number (<i>LF</i>)	$\begin{array}{c} \mu^+\nu_\mu \\ \mu^+\nu_\mu\gamma \\ e^+\nu_e \\ e^+\nu_e\gamma \\ e^+\nu_e\pi^0 \\ e^+\nu_ee^+e^- \\ \mu^+\nu_\mu\nu\overline{\nu} \\ e^+\nu_e\nu\overline{\nu} \\ \\ \textbf{Lepton Family number (\textit{LF}) or Lept} \\ \mu^+\overline{\nu}_e \\ \mu^+\nu_e \\ L_F \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

why no $\pi^- \rightarrow \pi^0 r^{-} V_p$ QCO.

K+ DECAY MODES	Fract	ion (Γ_i/Γ)	Confid	dence level(N	леV/ <i>c</i>)
	Leptonic and sem	ileptonic modes			
$e^+\nu_e$	(1.582±0.007) ×	$^{10^{-5}}$		247
$\mu^{+} \nu_{\mu}$ $\pi^{0} e^{+} \nu_{e}$	(63.56 ± 0.11)%		S=1.2	236
$\pi^0 e^+ \nu_e$	(5.07 \pm 0.04)%		S=2.1	228
Called K_{e3}^+ .					
$\pi^{0} \mu^{+} \nu_{\mu}$	(3.352±0.033) %		S=1.9	215
Called $K_{\mu 3}^+$.					
$\pi^0 \pi^0 e^+ \nu_e$	(2.55 ±0.04)×	$_{10}^{-5}$	S=1.1	206
$\pi^{+}\pi^{-}e^{+}\nu_{e}$	(4.247±0.024) ×	$_{10}^{-5}$		203
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	(1.4 ± 0.9) \times	$^{10^{-5}}$		151
$\pi^{0}\pi^{0}\pi^{0}e^{+\nu_{e}}$	<	3.5 ×	10^{-6}	CL=90%	135
	Hadronic	modes			
$\pi^{+}\pi^{0}$	($20.67\ \pm0.08$) %		S=1.2	205
$\pi^{+}\pi^{0}$ $\pi^{+}\pi^{0}\pi^{0}$ $\pi^{+}\pi^{+}\pi^{-}$	($1.760 \pm 0.023)~\%$		S=1.1	133
$\pi^{+}\pi^{+}\pi^{-}$	($5.583 \pm 0.024) \%$			125

$$\pi^{f} \qquad \qquad \pi^{f} \qquad \qquad \pi^{f} \qquad \qquad \pi^{g} \qquad \qquad \pi^{g$$

W+X pt Kf Den & GF TIL My (MK2-W)

 $d' = \cos \theta \cdot d + \sin \theta s$. Mixture of $d_1 s$. $s' = -\sin \theta d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$. $u = \cos \theta \cdot d + \cos \theta s$.

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

We present here an analysis of leptonic decays based on the unitary symmetry for strong interactions, in the version known as "eightfold way," and the $V\!-\!A$ theory for weak interactions. ^{2,3} Our basic assumptions on J_{μ} , the weak current of strong interacting particles, are as follows:

(1) J_{μ} transforms according to the eightfold representation of SU_3 . This means that we neglect currents with $\Delta S = -\Delta Q$, or $\Delta I = 3/2$, which should belong to other representations. This limits the scope of the analysis, and we are not

able to treat the complex of K^0 leptonic decays, or $\Sigma^+ \rightarrow n + e^+ + \nu$ in which $\Delta S = -\Delta Q$ currents play a role. For the other processes we make the hypothesis that the main contributions come from that part of J_μ which is in the eightfold representation.

(2) The vector part of J_{μ} is in the same octet as the electromagnetic current. The vector contribution can then be deduced from the electromagnetic properties of strong interacting particles. For $\Delta S = 0$, this assumption is equivalent to vector-

To determine θ , let us compare the rates for $K^+ \rightarrow \mu^+ + \nu$ and $\pi^+ \rightarrow \mu^+ + \nu$; we find

$$\Gamma(K^+ \rightarrow \mu\nu)/\Gamma(\pi^+ \rightarrow \mu\nu)$$

=
$$\tan^2\theta M_K (1 - M_{\mu}^2/M_K^2)^2/M_{\pi} (1 - M_{\mu}^2/M_{\pi}^2)^2$$
. (3)

From the experimental data, we then get^{5,6}

$$\theta = 0.257. \tag{4}$$

For an independent determination of θ , let us consider $K^+ \to \pi^0 + e^+ + \nu$. The matrix element for this process can be connected to that for $\pi^+ \to \pi^0 + e^+ + \nu$, known from the conserved vector-current hypothesis (2nd assumption). From the rate⁶ for $K^+ \to \pi^0 + e^+ + \nu$, we get

$$\theta = 0.26. \tag{5}$$

The two determinations coincide within experimental errors; in the following we use $\theta = 0.26$. We go now to the leptonic decays of the baryons, of the type $A - B + e + \nu$. The matrix element of

a g coid

GFT
$$\frac{2}{4}\left(\frac{9u^2}{4u^2}\right)^2$$
 Sin^2 θ . DS = 1.

Flowor eigenstefes \neq weak Risenstefes d'(s).

	K+ DECAY MODES		cale factor/ idence level(N	<i>p</i> MeV/ <i>c</i>)
$\Gamma(K^{f} + \gamma^{f} V_{r}) = 64\%$	$e^+ u_e \ \mu^+ u_\mu \ \pi^0e^+ u_e$	Leptonic and semileptonic modes $ (1.582 \pm 0.007) \times 10^{-5} \\ (63.56 \ \pm 0.11 \) \ \% \\ (5.07 \ \pm 0.04 \) \ \% $	S=1.2 S=2.1	247 236 228
p(k° -> pr/) = 7×10 9	Called K_{e3}^+ . $\pi^0 \mu^+ u_\mu$ Called $K_{\mu 3}^+$.	(3.352±0.033) %	S=1.9	215
. 4	$\pi^{0}\pi^{0}e^{+}\nu_{e}$ $\pi^{+}\pi^{-}e^{+}\nu_{e}$ $\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	(2.55 \pm 0.04) × 10 ⁻⁵ (4.247 \pm 0.024) × 10 ⁻⁵ (1.4 \pm 0.9) × 10 ⁻⁵	S=1.1	206 203 151
Kt //	$\pi^{0} \pi^{0} \pi^{0} e^{+} \nu_{e}$ $\pi^{+} \pi^{0}$ $\pi^{+} \pi^{0} \pi^{0}$	$<$ 3.5 \times 10 ⁻⁶ Hadronic modes (20.67 ±0.08) % (1.760±0.023) %	S=1.2 S=1.1	135 205 133
	$\pi^+\pi^+\pi^-$	(5.583±0.024) %		125
y No h	neutral	Curreat Overfirt.		
S /	flovor	Chertist.		
$\frac{d}{s}$	ot allow	wed.		

if wo exists.