

Table of Content

- Motivation and introduction
- DSM Overview
- Stereo Processing Pipeline
- Results
- Next Steps

Objectives

- Using existing tools (Open source (MicMAc), Proprietary (Agisoft Matashape))
- Produce DSMs using available Pleaides Imagery (Salzburg, Shalla Lake)
- Compare results with reference (where available) and method efficiency

Motivation

Could not find DSMs for anywhere in Africa on all the Open source platforms!!!

Objectives

- Using existing tools (open source (MicMAc), Proprietry (Agisoft Matashape))
- Produce DSMs using available Pleaides Imagery (Salzburg, Shalla Lake)
- Compare results with reference (where available) and method/tool efficiency

DSM Overview

 Disaster Management (Flood Modeling and prediction, Damage Assessment)

Urban Planning
 (Visibility (LOS)
 assessment, Solar
 Potential,
 Telecommunication
 etc.)

 Environmental Monitoring, Land use change.

Markis et.al. 2023

UP42

Some DSM Generation Methods

- Lidar: Most advanced and accurate
 - High acquisition and processing costs, not readily available
- Aerial Imagery: (Aerial Photogrammetry) using Drones, UAVs etc.
- Satellite Stereo Photogrammetry(VHR): Similar to Aerial Imagery but offers significant advantages.
 - Very large areas can be acquire relatively quicker and cheaper (EoS). E.g. 0.50m res Pleiades-1A 20km Swath at nadir (stereo imaging capability 20km x 280km).
 - Significant overlap is achieved unlike ariel photos.

Stereo Photogrammetry: Overview

- The principle of Stereo Photogrammetry is used in Ariel Photogrammetry and Satellite Image Photogrammetry.
- Stereo Photogrammetry is based on the principle of Stereo Matching.
- Stereo Matching is used for finding corresponding pixels in a pair of images, which allows
 3D reconstruction by Triangulation, using well known intrinsic and extrinsic orientation
 of the cameras.
- It is very similar to Structure from motion.
 - But SfM uses more images from various angles, and requires further scaling to real world coordinates.

Available Software for Stereo Image Processing (Satellites)

- Commercial
 - pix4D
 - Agisoft Metashape

- NASA ASP (Ames Stereo Pipeline)
- MicMac

- 1. Image Alignment
- 2. Tie Point Creation
- 3. Bundle Adjustment (with or without GCPs)
- 4. Disparity estimation
- 5. Depth Map Creation/Point Cloud Generation
- 6. Point cloud cleaning and classification
- 7. DSM Creation (Interpolate depth map/point cloud to create final DSM)

Further Optional Steps

• Alignment to existing Lidar Points

DSM from Stereo Photogrammetry Pipeline (In Detail)

Camera Calibration using RPC (Agisoft)

- Adjusts the cameras to the exact intrinsic and extrinsic positions when the images are taken, correcting for sensor and acquisition specific errors (jitters e.t.c).
- Pleaides product ships with both exact(DIM) and approximate (RPC) sensor model (ASP Docs).
- RPC model represents calibrated intrinsic and extrinsic parameters of the sensor.
- Rigorously corrected for sensor specific errors or artifacts (already corrected Ephemeris and Attitude). But Bundle Adjustment may be used to further optimize this.

Image Alignment

- The images in a stereo pair are aligned to ensure similar position and orientation in the feature space.
- Alignment process is needed to narrow down the amount of image pixels that must be searched through to find correspondences among the two images used in stereo.*computers eyes and brains don't work like ours*
- Enables the use of Epipolar Geometry in Tie point search (next step). (1D rather than 2D search for matching points).
- Popular in literature is Affine Epipolar**
- More on Epipolar Geometry (<u>See here</u>)

Epipolar geometry in an image pair (Gutjahr et al., 2014)

Tie Point Generation

Done simultaneously with Alignment in Agisoft Correlation Algorithms in ASP Tapioca in MicMac

- Within the image space, similar points are identified in the overlapping region of the image.
- A collection of algorithms are run to compute these correspondences between pixels in the left and right images. (SIFT is used in MicMac, Agisoft)
- The resulting map of these correspondences is a disparity map.
- The resulting points have x and y image coordinates. But no depth at this point.
- Popular Algorithms are Semi-Global Matching(SGM), More Global Matching (MGM), Block Matching etc.

Bundle Adjustment

- This is iterative triangulation on all images (stereo) to ensure minimum error between points measures in the image and on the ground.
- It utilizes all possible intrinsic and extrinsic parameters to iteratively determine the exact conditions at the time of capture, keeping possible errors to the minimum.
- Optimally done with Ground Control Points (GCPs)
- Does not necessarily contribute to vertical or horizontal accuracy of resulting DSM

Depth Map Creation/Point Cloud Generation/DSM Creation

In ASP (Stereo Triangulation)
In Agisoft Depth Map is created automatically when DSM creation tool is
run)
In MicMac, Malt command

- Through the process of Triangulation, disparity map is converted to Depth Map.
 - Depth Map is a 3D image map for which every pixel has a
 x, y and z dimension. E.g. In ASP, result in a 4 band
 raster representing x, y z ad z error.
- Point Cloud is created (points instead of a continuous surface). Similar to tie points but now with x,y,z dimensions and scaled to real world coordinates (based on specified project reference system)
- This is where the ASP tool stops.

DSM Generation

DSM Creation from Depth Map/Point Cloud: Here interpolation (for point cloud) and georeferencing is done to bring the results into real world coordinates.

Optional Further Steps

- Alignment to existing Lidar Points (works like GCPs) to optimize vertical and horizontal accuracy. (Ames and Agisoft Supported)
- In Agisoft, point cloud cleaning and classification can be done easily (here ground points can be classified separately from surface points)
- Mesh(Agisoft), Tiled
 Model(Agisoft), Ortho Photo
 (Agisoft, Micmac) can further be
 created.

Agsisoft Metashape

- Also built in C++ but is proprietary
- Possesses a GUI
- Offers free 30 day trial to get started
- Easy to use (backend processing not always clearly explained)
- Offers easily understood tutorials and documentation

Agsisoft Metashape Results - Urban (Salzburg)

Agsisoft Metashape Results - Urban (Salzburg)

Agsisoft Metashape Results (Shalla)

MicMac

- Command line tool built in C++
- Free and Open Source
- Does it have a GUI
- Fairly complicated to use (general expressions, not very beginner friendly)
- Offers numerous tutorials to learn

Next Steps

- Get results for Micmac
- Compare efficiency in terms of
 - o Processing Time
 - Backend Processing Transparency
 - Documentation (Ease of Use)
- Test out my Salzburg DSM result in a coupled 1D-2D flood modell using HEC-RAS
- Explore further the Ames Stereo Pipeline (ASP)

