2175 0013 00/699/17/12 85

COMMUNICATIONS IN ALGEBRA, 13(8), 1699-1712 (1985)

43 uM

THE V-OPERATION AND INTERSECTIONS OF QUOTIENT RINGS OF INTEGRAL DOMAINS

Muhammad Zafrullah

Al-Faateh University, Department of Mathematics, P.O. Box 13211 - Tripoli, Libya

Throughout this note the letters D and K denote a commutative integral domain with 1 and its quotient field respectively.

Let F(D) denote the set of fractional ideals of D. The opeation v: $F(D) \rightarrow F(D)$ defined by $A \rightarrow (A^{-1})^{-1} = A$ is a *-operation (of [2]) called the <u>v-operation</u>. A fractional ideal A ε F(D) is called a $\underline{v-ideal}$ if A = A. Further, $A \in F(D)$ is called a $\underline{t-i-}$ $\frac{ ext{deal}}{ ext{deal}}$ if for each finitely generated ideal B \subset A, B $_{ ext{V}}$ \subset A. A max $\underline{ ext{i}}$ mal t-ideal is an integral ideal maximal w.r.t. being a t-ideal. A maximal t-ideal is prime. Let $\left\{\begin{smallmatrix}D\end{smallmatrix}\right\}$ be a family of overrings (rings between D and K) of D with D = \bigcap D . Then, according to [2] Theorem 32.5, the operation A + \bigcap_{i} AD on F(D) is a *- \bigcirc peration. This operation is said to be $\underline{\text{induced}}$ by the family $\{D_{\underline{i}}\}$. In this note we record the consequences of the following theorem.

Theorem 1. Let $\{M_i\}$ be a family of prime ideals of D such that D = \bigcap D . If A is an integral ideal of D with A $^{-1}$ \neq D then A_{v} , and hence \hat{A} , is contained in at least one M_{i} .

1699

Copyright © 1985 by Marcel Dekker, Inc.

0092-7872/85/1308-1699\$3.50/0

Theorem 1 improves a result of Tang [7]. This result says that, for every finitely generated ideal A of D with $A^{-1} \neq D$, A must be contained in a prime ideal P which is minimal over (a):(b) = $\{r \in D \mid rb \in (a)\}$ for some a,b \in D with b \notin aD ((ii) Theorem E of [7]). Theorem 1 shows that the restriction of being finitely generated is superfluous.

Using Theorem 1 we prove that in a noetherian domain D each maximal prime of a principal ideal (cf [5]) is a maximal t-ideal. We also show that for every fractional ideal A of a noetherian domain D, $A_V = \bigcap_P (AD_P)_V$ where P ranges over maximal primes of principal ideals of D. Moreover if A is an integral v-ideal of a noetherian domain D we show that $A = \bigcap_P (AD_P \cap D)$ where P ranges over maximal primes of principal ideals of D which contain A. Clearly if each of the P is also minimal over A then $A = \bigcap_P (AD_P \cap D)$ is a unique primary decomposition of A. From this it follows that if D is a noetherian domain whose maximal t-ideals are of rank one then every integral v-ideal of D has a unique primary decomposition. We also discuss analogues of these results for generalizations of noetherian domains.

Two *-operations * and * are said to be equivalent over D if for each finitely generated fractional ideal A, A = A . Let D = \bigcap b where $\{D_i\}$ is a family of quotient rings of D. We study, in the spirit of Theorem 1, the situation in which the *-operation induced by $\{D_i\}$ is equivalent to the v-operation

This note is planned as follows. In section 1 we provide a brief introduction to the theory of *-operations. In section 2 we prove Theorem 1 and use it to study v-ideals in noetherian

domains. Finally in section 3 we study the various cases where a *-operation is equivalent to the v-operation. Any unexplained notions will be standard as in [2] or [5].

1. The *-operations - an introduction

To facilitate the reading of this note we give, in this section, a brief out-line of the theory of *-operations. These operations have been treated in detail by Gilmer [2] (sections 32 and 34) and by Jaffard [4].

Let F(D) be the set of fractional ideals of D. A function *: F(D) + F(D) described as $A + A^*$, is called a *-operation on D if for all A, $B \in F(D)$

- (1). $A = A^*$ and $(AB)^* = A B^*$ if A is principal
- (2). A \subset A* and if A \subset B then A* \subset B*
- $(3), (A^*)^* = A^*.$

If A ε F(D) with A* = A then A is called a *-ideal. In particular A* is a *-ideal. A *-ideal A is called a *-ideal of finite type if A = B* where B is a finitely generated fractional ideal. The *-operation on the product of two fractional ideals A, B satisfies the following equations:

$$(AB)^* = (A^* B)^* = (A B^*)^* = (A^* B^*)^*.$$

Every *-operation gives rise to another operation *_f , say, defined by A *f = U B* where B ranges over all finitely generated D-submodules of A. Clearly a *_f -operation satisfies (1) - (3) and hence is a *-operation again. It is also clear that if A is a *-ideal then it is a *-ideal. A *-operation is said to be of finite character if it coincides with its *_f operation. It is easy to establish that each *_f -operation is of finite character.

1702

The following results, which can be traced back to [2] and [4], will be of use to us.

- (i). Let $\{D_i^{-1}\}_{i=0}^{\infty}$ be a family of overrings of D with $D=\bigcap_{i=0}^{\infty} D_i$. Then $A+\bigcap_{i=0}^{\infty} AD_i$ is a *-operation and for all $A\in F(D)$, $AD_i^{-1}=A*D_i^{-1}$.
- (ii). If a *-operation is of finite character and if an integral ideal A is a *-ideal it belongs to at least one ma-ximal *-ideal. Maximal *-ideals are defined in the same way as maximal t-ideals.
- (iii). If * is of finite character then a maximal *-ideal is prime.

We shall be mainly concerned with the v-operation, the special *-operation defined in the introduction. Note here that the t-operation is the v_f -operation. As we have already observed, a v-ideal is a t-ideal. In fact it can be easily shown that

- (iv). For every *-operation and for each A in F(D) A* \subset A and (A)* = A. In other words a v-ideal is a *-ideal for every *-operation on F(D).
 - (v). If A is a v-ideal then so are

A : B =
$$\{ x \in K \mid xB \subset A \}$$

K
A : B = $\{ x \in D \mid xB \subset A \}$

- (vi). Finally for each A ϵ F(D), A⁻¹ is a *-ideal for every *-o peration on D. Thus (A⁻¹)* = A⁻¹ = (A⁻¹). That is A⁻¹ is a v-ideal. Moreover, it is easy to see that (A_V)⁻¹ = A⁻¹.
- 2. Theorem 1 and primary decomposition in noetherian domains

We use (i) and (iv) of section 1 to prove Theorem 1.

<u>Proof of Theorem 1</u>. The family $\{D_{M_i}^{i}\}$ is I

D defines a *-operation A + \bigcap_{i} AD = A*. If A is not contained in any of these primes then $(A_{v})^{*} \stackrel{i}{=} \bigcap_{v}$ AD = \bigcap_{v} D = D. Consequently A = D. But A = $(A_{v})^{*} \stackrel{i}{=} \bigcap_{v}$ AD = \bigcap_{v} D a contradiction.

Let a, b ε D such that b ε aD, then a minimal prime of aD:bD is called an associated prime of aD (cf. [1]) or, as we shall call it, an associated prime (of D). Clearly if P is minimal over aD:bD then PD is minimal over (aD:bD)D = aD : bD. Now since, by (v) of section 1, aD:bD is a v-ideal it must be contained in a maximal t-ideal. Due to minimality PD becomes the maximal t-ideal containing aD:bD From this it was concluded in [8] that an associated prime ideal P of D is such that PD is a t-ideal. Using lemma 4 of [8] we can show that an associated prime P is itsey a t-ideal. Tang [7] proves that D = \bigcap D where P ranges over associated primes of D. Tang also proves in [7] that if A is finitely generated ideal of D with A \longrightarrow D then A is contained in at least one associated prime of D ([7] Th. E). Using Theorem 1 we improve this result to the following corollary.

Corollary 1. Let A be any integral ideal of D and suppose that $\Lambda^{-1} \neq D$. Then A is contained in at least one associated prime of D.

Proof. According to Theorem 1 the proof follows from the fact that $D = \bigcap_{p} D_{p}$ where P ranges over the associated primes of D.

Corollary 2. Let P be a finitely generated maximal t-ideal of D and let $\{M_i\}$ be a family of prime ideals of D with $D = \bigcap_{i = M} D_i$. Then P is contained in at least one M_i . Proof. The proof follows from the fact that $P = P_t = P_v$; because P is finitely generated.

A prime ideal P of D is called a maximal prime of an ideal A if P is maximal within the zero divisors of D/A. Moreover a prime ideal Q is called a prime divisor of A if there exists a multiplicative set S in D such that QD_S is a maximal prime of AD_S . According to Nagata [6] (p. 19) the maximal primes of A are precisely the maximal elements of the set of prime divisors of A. According to Lemma 2 of [1] and 7.5 of [6] prime divisors and the associated primes of (an ideal and hence of) a principal ideal coincide in a noetherian domain. Now since maximal primes of an ideal are maximal among prime divisors we conclude that in a noetherian domain every maximal prime of a principal ideal is an associated prime of a principal ideal. We recall from [5], Theorem 123, that D = \bigcap D where P ranges over maximal primes of principal ideals and that for noetherian domains this intersec tion is locally finite. Note that $\bigcap D_p$ is locally finite each non-zero non-unit of D is contained in only a finite number of prime ideals P appearing in $\bigcap D_{D}$. We use this observation to prove the following result.

Theorem 2. Let D be a noetherian domain and let S be the set of maximal primes of principal ideals of D. Then S is precisely the set of maximal t-ideals of D. Moreover for any integral ideal A of D,A, $_{V}$ = \bigcap A,D, where P ranges over S.

Proof. Since in a noetherian domain every prime ideal is \underline{fi} nitely generated, by Corollary 2, every maximal t-ideal M is contained in some member P of S. Now M CP and P being a t-ideal imply that M = P. Further since P ε S are mutually incomparable, because of their maximality, each P ε S is a maximal t-ideal. That $A_{V} = \bigcap A_{V}D_{D}$, is obvious.

Corollary 3. Let D be a noetherian domain. Then the following hold.

- (i). For each ideal A of D which is not contained in any maximal prime of a principal ideal, A_{ν} = D.
- (ii). For each ideal A which properly contains a maximal $% \left(\frac{1}{2}\right) =0$ principal ideal, A $_{V}$ = D.
- (iii). If A is an integral v-ideal then A = \cap (AD \cap D) where P ranges over the finite set of maximal primes of principal ideals which contain A.

Proof. (i) and (ii) are obvious applications of Theorem 2. For (iii) we observe that A is contained in only a finite number of maximal primes of principal ideals. Let P_1, P_2, \ldots, P_n be the set of these prime ideals. Then

$$\begin{array}{lll} A &=& A = & \cap & AD_p = & (AD_p \cap \dots \cap AD_p) \cap \{D_p \mid P \not\supset A \}. \text{ Now} \\ A &=& A\cap D = & (AD_p \cap D) \cap \dots \cap (AD_p \cap D). \end{array}$$

Note that $A_V = \bigcap_V A_V D_V$ of Theorem 2 does not impart any real information, because this will happen for any integral domain and for any family $\{P_i\}_{i \in I}$ of primes with $D = \bigcap_V D_V$. The situation can be slightly improved by using the noetherian property, or a generalization of it. An integral domain D is called coherent if for any two finitely generated ideals A and B the ideal $A \cap B$ is finitely generated. Clearly a noetherian domain is coherent.

Lemma 1. Let D be a coherent integral domain. Then for any finitely generated fractional ideal A of D, $(AD_{S})_{V} = A_{S}D_{S}$.

Proof. In [8], ((i) of Lemma 4) it is shown that if A is a finitely generated fractional ideal then $A^{-1}D_S = (AD_S)^{-1}$. Now if $A = (x_1, \dots, x_n)$ then $A^{-1} = \cap (1/x_1)$ and because of the coherence

 \cap (1/x $_{\rm i}$) is finitely generated. Consequently Lemma 4 of [8] can be applied to A $^{-1}$ also and so

$$(AD_S)_V = ((AD_S)^{-1})^{-1} = (A^{-1}D_S)^{-1} = (A^{-1})^{-1}D_S = A_VD_S.$$

Theorem 3. Let D be a coherent integral domain and let

 $\{D_i^c\}_{i=1}^{\infty}$ be a family of quotient rings of D such that D = \bigcap D . Then for each finitely generated fractional ideal A of D,

$$A_{v} = \bigcap_{i} (AD_{i})_{v}.$$

Proof. Since A + \bigcap_i AD is a *-operation A = (A) * = \bigcap_i AD By Lemma 1, \bigcap_i AD = \bigcap_i AD .

Corollary 4. If A is a fractional ideal of a noetherian domain then A = \cap (AD) where P ranges over maximal primes of principal ideals of D.

Note that if in (iii) of Corollary 3, each of P_i is minimal over A then $A = \bigcap\limits_{i} (AD_{p} \cap D)$ is a unique primary decomposition. Consequently if D is a noetherian domain with all maximal t-ideals of rank one then every integral v-ideal of D has unique primary decomposition. A more general result is possible.

Theorem 4. Let D be an integral domain such that every maximal t-ideal of D is of rank one. Suppose also that every non-zero non-unit of D belongs to only a finite number of maximal t-ideals. Then every integral v-ideal of D has a unique primary decomposition.

Proof. Here $D=\bigcap_P$ where P ranges over maximal t-ideals of D. So $A=A_V=\bigcap_P AD_P=(AD_P\cap D)\bigcap_{1}\bigcap_P AD_P$ where P are the rank one maximal t-ideals which contain A. Now since each P is a minimal prime and hence a minimal prime of A, $Q_1=AD_P\cap D$ is a P-primary component of A which appears in each primary decomposition of A, if any exists. From this if tollows that $A=Q_1\cap Q_2\cap \ldots \cap Q_n$ is a unique primary decomposition of A.

Corollary 5. In a Krull domain D, for every integral ideal A, A has a unique primary decomposition.

3. The equivalence of a *-operation with the v-operation

Recall that two *-operations * and * are equivalent on D if for all finitely generated A ε F(D) A = A. It is natural to ask that if $\{P_i\}$ is a family of prime ideals of D with D = \bigcap D, under what conditions is the *-operation A \rightarrow \bigcap AD equivalent to the v-operation. The following result provides an answer to this question.

Theorem 5. Let $\{D_i\}_{i \in I}$ be a family of quotient rings of D such that D = $\bigcap_i D_i$. The operation A + \bigcap AD is equivalent to the v-operation if and only if for all finitely generated A \in F(D), $AD_i = A_i D_i$.

Proof. Let $A^* = A_v$ for all finitely generated $A \in F(D)$. Then $A_v^D = A^*D_i = AD_i$ (cf. 32.5 of [2]). Conversely if $AD_i = A_v^D$ for each finitely generated $A \in F(D)$ then $\bigcap AD_i = \bigcap A_v^D = (A_v^D)^* = A_v^D$.

The case of an integral domain with a family $\{D_i\}$ of i ϵ I overrings with $D=\bigcap_i$ and $AD_i=A_iD_i$ for each finitely generated A is too general and hence is not of immediate interest. So we restrict our attention to the case where, in each D_i for every finitely generated $A \epsilon F(D)$, $AD_i=(A_iD_i)_v=A_iD_i$.

Corollary 6. Let $D_{\hat{i}}$ be a family of quotient rings of D with $D=\cap D_{\hat{i}}$. Suppose that in each $D_{\hat{i}}$ every finitely generated ideal is a v-ideal. Then the *-operation A + \cap AD $_{\hat{i}}$ is equivalent to the v-operation.

Proof. Let A be a finitely generated fractional ideal of D. Then $AD_i = (AD_i)_V$ and by Lemma 4 of $\begin{bmatrix} 8 \end{bmatrix}$ $(AD_i)_V = (A_i)_V$. Further

as (A D) = AD we have A D C AD and as, in D, A C A we have AD C A D and hence AD = A D for each i ε I. Now by Theorem 5 the result follows.

The class of integral domains whose finitely generated fractional ideals are v-ideals is again a very large class of rings. Before we try to characterise this class it seems best to indicate some applications of Corollary 6 in cases of permanent interest. Recall that an integral domain D is a Prüfer domain if every finitely generated ideal of D is invertible. Recall also that D is a Bezout domain if every finitely generated ideal of D is principal. Because an invertible ideal is a v-ideal we conclude that in both Prüfer and Bezout domains finitely generated ideals are v-ideals. Thus we have the following corollary.

Corollary 7. Let $\{D_i\}_{i=1}^{n}$ be a family of quotient rings of D such that $D=\bigcap_i$. If each D_i is a Prüfer (Bezout) domain then the *-operation induced by $\{D_i\}$ is equivalent to the v-operation.

A more familiar special case of Prüfer (Bezout) domains is the class of valuation rings i.e. the integral domains whose ideals are linearly ordered under inclusion. A valuation overring V of D is called essential if V is a quotient ring of D. A direct consequence of Corollary 7 is the following well known result.

Corollary 8. (cf. 44.13 of [2]). Let $\{V_i\}$ be a family of essential valuation overrings of D such that D = $\bigcap V_i$. Then the *-operation A + $\bigcap AV_i$ is equivalent to the v-operation.

To this point we have studied the equivalence of a *-operation induced by a special family of quotient rings of D with the

v-operation. It is natural to look for integral domains for which every family $\{D_i^{}\}_{i=0}^{\infty}$ of quotient rings with $D=\bigcap_{i=0}^{\infty}$ induces a *-operation equivalent to the v-operation. For this we have the following result.

Theorem 6. The following are equivalent for a commutative integral domain D.

- (1) Every finitely generated fractional ideal of D is a v-ideal.
- (2) For every finitely generated fractional ideal A and for every multiplicative set S, $AD_S = AD_S$.
- (3) For every finitely generated fractional ideal A of D and for every maximal ideal M, $AD_{M} = A_{V}D_{M}$.
- (4) For any family $\{D_i\}$ of quotient rings of D with $D = \bigcap_i$ the *-operation A + \bigcap AD is equivalent to the v-operation.

Proof. (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1) are abvious. Further, (2) \Rightarrow (4) follows from Theorem 5 and (4) \Rightarrow (3) is a straightforward application of 32.5 of [2].

Restricting our attention to the more special case where D has the property that $(AD_S)_v = A_SD_v$ for all finitely generated A and for every multiplicative set S, we have the following result.

Theorem 7. Let D be an integral domain with the property that for every multiplicative set S and for every finitely generated fractional ideal A, $(AD_S)_V = A_SD_S$. Then the following are equivalent for D.

- (1) Every finitely generated fractional ideal of D is a v-ideal.
- (2) Every finitely generated ideal of $\mathbf{D}_{\mathbf{S}}^{}$ is a v-ideal.
- (3) Every finitely generated fractional ideal of D $_{\rm p}$ is a v-ideal for each prime ideal P.
- (4) Every finitely generated ideal of D is a ν -ideal for each maximal ideal M of D.

Proof. (1) \Rightarrow (2). Let A be a finitely generated fractional ideal of D. Then, by (1), A = A and so AD = A D. But then by hypothesis A D = (AD) . Whence it follows that every finitely generated ideal A of D is a v-ideal for any multiplicative set S.

(2) \Rightarrow (3) and (3) \Rightarrow (4) are obvious. So we prove (4) \Rightarrow (1) to complete the proof. (4) \Rightarrow (1). Recall that for every integral (and hence for every fractional) ideal A, $A = \bigcap AD_M$ where M ranges over maximal ideals of D. Now by (4) and by hypothesis for every maximal ideal M, $AD_M = (AD_M)_V = A_M D_M$. Whence $A = \bigcap A_M D_M = A_M D_M$

We call D an FGV-domain if every finitely generated ideal of D is a v-ideal. As a result of this definition, every maximal ideal of an FGV-domain is in fact a t-ideal and hence a maximal t-ideal. We note that, according to Lemma 1, a coherent (and hence a noetherian) domain satisfies the hypothesis of Theorem 7. Thus we have the following corollary.

Corollary 9. A coherent (or noetherian) domain D is FGV if and only if for each maximal ideal M, D is an FGV-domain.

Theorem 7 is based on the notion of quasi-local FGV-domains. Clearly a valuation domain is an FGV-domain but the nature of our results demands that we should also look for non-valuation FGV-domains. We note that an integrally closed local FGV-domain is a valuation domain. This follows from the following theorem.

Theorem 8. An integrally closed FGV-domain is a Prufer domain.

Proof. Let K be the quotient field of D. Then as D is integrally closed, by 34.8 of [2], for all f, g \in K[X], (A $_{\rm fg}$) $_{\rm v}$ = (A $_{\rm fg}$) $_{\rm v}$ where A $_{\rm f}$ denotes the content of the polynomial f. But as D is an

FGV-domain $(A_{fg})_v = A_{fg}$ and $(A_f)_v = A_f$. Whence for all f, $g \in K[X]$, $A_{fg} = A_f A_f$ and this is a sufficient condition, by 28.6 of [2], for D to be a Prüfer domain.

So if we are looking for non-valuation quasilocal FGV-domains we are looking for quasi-local FGV-domains which are not integrally closed. In the following we give two examples of these integral domains.

- (a). <u>Pseudovaluation domains (PVD's)</u>. According to Hedstrom and Houston, and integral domain is a PVD if it is a quasi-local domain with maximal ideal M and if it satisfies one of the following equivalent properties, (cf. [3] Prop. 1.2).
- (1). For each pair I, J of ideals of D either I \subset J or MJ \subset MI.
- (2). x^{-1} M \subset M whener $x \in K D$.
- (3). D has a unique valuation overring V with maximal ideal M.
- (4). There exists a valuation overring such that every prime ideal of D is also a prime ideal of V.

According to Corollary 1.8. of [3] the valuation domain of (3) and (4) above is two-generated as a D-module if and only if every finitely generated ideal of D is a v-ideal.

(b). Gorenstein rings. According to theorem 222 of [5], a one dimensional local domain R is a Gorenstein ring if and only if each ideal of R is a v-ideal. Thus a one-dimensional local Gorenstein domain is an example of an FGV domain. (I am thankful to the referee for suggesting this neat alternative for an earlier, rather involved, statement).

Acknowledgement

I thank Valentina Barucci and Stefania Gabelli for reading the script thoroughly and critically.

REFERENCES

- [1] J. Brewer and W. Heinzer, <u>Associated primes of principal</u> ideals, Duke Math. J. 41 (1974) 1-7.
- [2] R. GIlmer, Multiplicative ideal theory, Marcel Dekker, New York (1972).
- [3] J. Hedstrom and E. Houston, <u>Pseudovaluation domains</u>, <u>Houston</u>

 <u>J. Math. 4</u> No. 2 (1978) 199-207.
- [4] P. Jaffard, Les systemes d'ideaux, Dunod, Paris (1960).
- [5] I. Kaplansky, <u>Commutative rings</u>, <u>Allyn and Bacon</u>, <u>Boston</u> (1970).
- [6] M. Nagata, Local rings, Interscience Tracts in pure and applied Mathematics No. 13, New York (1962).
- [7] H. Tang, <u>Gauss' Lemma</u>, <u>Proc. Amer. Math. Soc. 35</u> (1972) 372-376.
- [8] M. Zafrullah, On finite conductor domains, Manuscripta Math. 24 (1978) 191-204.

Received: January 1984 Revised: April 1985