A2 - Estatística Bayesiana

A weakly informative default prior distribution for logistic and other regression models

Professor: Luiz Max Carvalho Aluno: Ezequiel de Braga Santos

Julho 2024

- (a) Separação e não identificabilidade são problemas comuns em regressão logística. A primeira ocorre frequentemente em problemas aplicados, onde a variável resposta é perfeitamente predita por uma combinação linear de covariáveis. Nesse contexto, a abordagem Bayesiana surge como solução, inicialmente sendo proposto o uso da priori de Jeffreys, mas que esbarra em problemas de computação e interpretação. Assim, é proposto em [1] uma priori que produz estimativas estáveis e regularizadas, usando uma adaptação de mínimos quadrados ponderados com a família de distribuição t como priori. Outro problema comum é a esparsidade, quando a dimensão das features é muito alta comparada as amostras de treinamento. Nesse sentido, a priori proposta adiciona informação o suficiente para regularizar inferências extremas obtidas usando máxima verossimilhança ou prioris completamente não informativas, uma vez que prioris fracamente informativas encolhem as estimativas em direção a média quando os dados são esparsos, mas também exercem pouca influência com dados satisfatórios.
- (b) Um desafio ao elicitar uma priori padrão é acertar a escala, por isso há a necessidade de padronizar as variáveis para evitar a preocupação com coeficientes de valores muito grandes ou muito pequenos. O procedimento adotado consiste em fazer entradas binárias terem média 0, e as outras entradas são escalonadas para terem média 0 e desvio-padrão 0,5. Uma consequência disso é que restrições mais rigorosas são aplicadas aos preditores nas interações. Por exemplo, considere três variáveis simétricas x_1, x_2 e x_3 . Ao reescalonar, cada uma delas assumirá os valores $\pm 1/2$, o que resulta no ganho de $\pm 1/4$ numa interação dupla e $\pm 1/8$ numa interação tripla, o que representa apenas 1/4 do efeito principal, já que todos os coeficientes possuem as mesmas prioris. Isso significa que um salto alto de probabilidade na escala logit é improvável.
- (c) No algoritmo clássico de maximização da verossimilhança, é considerada uma aproximação linearizada da derivada da log-verossimilhança, usando um processo iterativo. Em cada passo, é calculado um pseudo-dado z_i e uma pseudo-variância $(\sigma_i^z)^2$:

$$z_i = X_i \hat{\beta} + \frac{\left(1 + \exp(X_i \hat{\beta})\right)^2}{\exp(X_i \hat{\beta})} \left(y_i - \frac{\exp(X_i \hat{\beta})}{1 + \exp(X_i \hat{\beta})}\right),$$
$$(\sigma_i^z)^2 = \frac{1}{n_i} \frac{\left(1 + \exp(X_i \hat{\beta})\right)^2}{\exp(X_i \hat{\beta})}.$$

A partir disso, aplica-se mínimos quadrados ponderados, com os pesos definidos por $(\sigma_i^z)^{-2}$, conforme procedimento geral descrito em [2]. Ao usar prioris $\beta_j \sim N(\mu_j, \sigma_j^2)$, é construído um algoritmo para estimar a moda a posteriori $\hat{\beta}$ usando pseudo-dados $z_* = (z, \mu), X_* = (X, I)$ e $w_* = (\sigma^z, \sigma)^{-2}$, conforme [3].

Por fim o algoritmo apresentado no artigo usa uma adaptação desse algoritmo junto com EM: a ideia é aproximar as distribuições a priori por mistura de gaussianas ($\beta_j \sim N(\mu_j, \sigma_j^2)$, $\sigma_j \sim \text{Inv} - \chi^2(\nu_j, s_j^2)$) e alternar passos de mínimos quadrados ponderados com algoritmo EM, tratando a média dos coeficientes como dados faltantes e estimando σ_j . Assim, o algoritmo pode ser descrito como:

- (i) Dado um β , calcula-se a aproximação normal da verossimilhança e determina z e σ^z (do algoritmo clássico);
- (ii) Passo E: aplica uma iteração de mínimos quadrados ponderados e encontra $\hat{\beta}$ com variância V_{β} . Calcula o valor esperado da log-posteriori como $\mathbb{E}[(\beta_j \mu_j)^2 \mid \sigma, y] \approx (\hat{\beta}_j \mu_j)^2 + (V_{\beta})_j j;$
- (iii) Passo M: maximiza o valor esperado anterior e obtém $\hat{\sigma}_j^2 = \frac{(\hat{\beta}_j \mu_j)^2 + (V_\beta)_{jj} + \nu_j s_j^2}{1 + \nu_j}$;
- (iv) Recalcula as derivadas usando os pseudo-dados e repete os passos anteriores.
- (d) Para essa análise foram usados os dados do American National Election Studies [4] e dados de um pequeno experimento biológico [1]. Para o primeiro, foram consideradas como covariáveis a renda, raça e gênero, com a variável resposta sendo a preferência por candidato republicano ou democrata. Além disso, foram considerados apenas os anos 1988, 1992, 1996 e 2000, após filtragem de dados faltantes/indefinidos. Para o segundo foi considerada o log da dose como covariável e a proporção de mortes como variável resposta. Para ambos, os preditores binários foram padronizados subtraindo a média e o restante, normalizados subtraindo a média e dividindo por duas vezes o desvio-padrão. Para cada um dos dados, foram ajustados modelos com prioris normal, student e cauchy, considerando as funções de ligação logit e probit. Para o ajuste, foi criado um modelo stan. A seguir seguem os resultados da média da distribuição preditiva a priori.

ANES

Figura 1: Média preditiva a priori - ANES (1988).

Figura 2: Média preditiva a priori - ANES (1992).

Figura 3: Média preditiva a priori - ANES (1996).

Figura 4: Média preditiva a priori - ANES (2000).

Bioensaio

Figura 5: Média predit $\dot{\gamma}$ va a priori - Bioensaio.

Comentários

Perceba que todas as prioris colocam massa em todas as regiões plausíveis, que é o desejado. Um comportamento observado é que os modelos probit colocam menos massa em torno da média observada. Além disso, como Cauchy é uma distribuição de cauda pesada, há uma concentração muito menor de probabilidade nessa mesma região quando comparada com normal e student, já que essas distribuição colocam massa de maneira mais "uniforme".

Observação: discuti essa questão com o Isaque até o último dia e não entendemos com confiança como fazer essa verificação em logística. De todo modo, coloquei os resultados que achamos razoáveis.

(e) Para as análises realizadas, foram escolhidos conjuntos de dados pequenos para evitar uma seleção de covariáveis: iris, lenses, hayes, bupa e ring. Todas as covariáveis presentes foram padronizadas (variáveis binárias passaram a ter média 0; variáveis restantes passaram a ter média 0 e desvio-padrão 0.5) e consideradas no ajuste dos modelos. Para cada um dos dados, foram consideradas as distribuições normal, student e cauchy como prioris, com as funções de ligação logit e probit, usando a função $stan_glm()$ do pacote rstanarm. Para diagnóstico dos modelos, foram usados mcse, n_eff , Rhat, trace plots e intervalos de credibilidade. Por fim, para comparar os modelos, foi utilizada validação cruzada, usando a função $loo_compare()$ do pacote loo. A seguir estão os resultados.

\mathbf{Iris}

Priori	Função de ligação		mcse	Rhat	n_eff
		(Intercept)	0	1	2490
		X5.1	0	1	2160
		X3.5	0	1	2325
N(0, 2.5)	logit	X1.4	0	1	1881
		X0.2	0	1	2201
		mean_PPD	0	1	3124
		log-posterior	0	1	1484
		(Intercept)	0	1	2304
		X5.1	0	1	1794
		X3.5	0	1	2124
N(0, 2.5)	probit	X1.4	0	1	1433
		X0.2	0	1	1539
		mean_PPD	0	1	3224
		log-posterior	0	1	1523
		(Intercept)	0	1	2688
		X5.1	0	1	2255
		X3.5	0	1	2239
t(7, 0, 2.5)	logit	X1.4	0	1	1639
		X0.2	0	1	1985
		mean_PPD	0	1	3461
		log-posterior	0	1	1577
		(Intercept)	0	1	2449
		X5.1	0	1	2097
		X3.5	0	1	2107
t(7, 0, 2.5)	probit	X1.4	0	1	1696
		X0.2	0	1	2063
		mean_PPD	0	1	3642
		log-posterior	0	1	1589
		(Intercept)	0	1	2502
		X5.1	0	1	1491
		X3.5	0	1	1624
Cauchy(0, 2.5)	logit	X1.4	0.1	1	1154
		X0.2	0	1	1457
		mean_PPD	0	1	3634
		log-posterior	0	1	1524
		(Intercept)	0	1	2592
		X5.1	0	1	1819
		X3.5	0	1	1982
Cauchy(0, 2.5)	probit	X1.4	0	1	1218
		X0.2	0	1	1424
		mean_PPD	0	1	3269
		log-posterior	0	1	1604
	I	"3"	-		

Tabela 1: Resultados - Iris

Figura 6: Trace plots - Iris.

Figura 7: Intervalos de credibilidade - Iris.

	$\operatorname{elp_diff}$	se_diff
$iris_fit_32$	0.0	0.0
$iris_fit_12$	0.0	0.1
$iris_fit_22$	-0.1	0.1
$iris_fit_21$	-0.2	0.9
$iris_fit_11$	-0.2	1.0
$iris_fit_31$	-0.4	0.8

Tabela 2: Comparação dos modelos usando $loo_compare()$ - Iris.

Lenses

Priori	Função de ligação		mcse	Rhat	$n_{-}eff$
		(Intercept)	0	1	3076
		V2	0	1	3299
		V3	0	1	3940
N(0, 2.5)	logit	V4	0	1	3802
		V5	0	1	2604
		mean_PPD	0	1	4512
		log-posterior	0	1	1595
		(Intercept)	0	1	1536
		V2	0	1	2174
		V3	0	1	2673
N(0, 2.5)	probit	V4	0	1	3180
		V5	0	1	1515
		mean_PPD	0	1	4062
		log-posterior	0	1	1510
		(Intercept)	0	1	1940
		V2	0	1	3324
		V3	0	1	3355
t(7, 0, 2.5)	logit	V4	0	1	3052
		V5	0	1	1825
		mean_PPD	0	1	4829
		log-posterior	0	1	1831
		(Intercept)	0	1	1080
		V2	0	1	2247
		V3	0	1	2157
t(7, 0, 2.5)	probit	V4	0	1	2925
		V5	0.1	1	1062
		mean_PPD	0	1	4052
		log-posterior	0	1	1344
		(Intercept)	0	1	461
		V2	0	1	2638
		V3	0	1	2790
Cauchy(0, 2.5)	logit	V4	0	1	2931
		V5	0.2	1	542
		mean_PPD	0	1	4297
		log-posterior	0	1	1282
		(Intercept)	0	1	923
		V2	0	1	2318
		V3	0	1	2534
Cauchy(0, 0.5)	probit	V4	0	1	2539
		V5	0.1	1	1059
		mean_PPD	0	1	4164
		log-posterior	0	1	1618

Tabela 3: Resultados - Lenses

Figura 8: Trace plots - Lenses.

Figura 9: Intervalos de credibilidade - Lenses.

	$\operatorname{elp_diff}$	se_diff
$lenses_fit_21$	0.0	0.0
$lenses_fit_32$	0.0	0.7
$lenses_fit_11$	-0.2	0.3
$lenses_fit_31$	-0.7	1.1
$lenses_fit_12$	-1.6	1.9
lenses_fit_22	-2.3	2.2

Tabela 4: Comparação dos modelos usando $loo_compare()$ - Lenses.

Hayes

Priori	Função de ligação		mcse	Rhat	n_eff
		(Intercept)	0	1	3331
		X2	0	1	4687
		X1	0	1	3038
N(0, 2.5)	logit	X1.1	0	1	3539
		X2.1	0	1	3539
		mean_PPD	0	1	5106
		log-posterior	0	1	1698
		(Intercept)	0	1	3766
		X2	0	1	4893
		X1	0	1	3453
N(0, 2.5)	probit	X1.1	0	1	3661
		X2.1	0	1	4033
		mean_PPD	0	1	4817
		log-posterior	0	1	1806
		(Intercept)	0	1	3353
		X2	0	1	4878
		X1	0	1	3349
t(7, 0, 2.5)	logit	X1.1	0	1	3316
		X2.1	0	1	3819
		mean_PPD	0	1	4420
		log-posterior	0	1	1588
		(Intercept)	0	1	3492
		X2	0	1	4530
		X1	0	1	3947
t(7, 0, 2.5)	probit	X1.1	0	1	3459
		X2.1	0	1	3743
		mean_PPD	0	1	4770
		log-posterior	0	1	1704
		(Intercept)	0	1	3517
		X2	0	1	4536
		X1	0	1	3316
Cauchy(0, 2.5)	logit	X1.1	0	1	3750
		X2.1	0	1	3160
		mean_PPD	0	1	3960
		log-posterior	0	1	1895
		(Intercept)	0	1	3835
		X2	0	1	5214
		X1	0	1	3639
Cauchy $(0, 2.5)$	probit	X1.1	0	1	3655
J (- , -)	•	X2.1	0	1	4280
		mean_PPD	0	1	4538
		log-posterior	0	1	1826
	I	-0	•	-	

Tabela 5: Resultados - Hayes

Figura 10: Trace plots - Hayes.

Figura 11: Intervalos de credibilidade - Hayes.

	$\operatorname{elp_diff}$	se_diff
hayes_fit_22	0.0	0.0
hayes_fit_32	0.1	0.0
hayes_fit_31	-0.1	0.3
hayes_fit_11	-0.2	0.3
hayes_fit_12	-0.2	0.1
hayes_fit_21	-0.2	0.3

Tabela 6: Comparação dos modelos usando $loo_compare()$ - Hayes.

Bupa

$N(0,2.5) = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Priori	Função de ligação		mcse	Rhat	n_eff
$N(0,2.5) \text{logit} \begin{cases} V2 & 0 & 1 & 2326 \\ V3 & 0 & 1 & 2326 \\ V4 & 0 & 1 & 2462 \\ V5 & 0 & 1 & 3093 \\ V6 & 0 & 1 & 3625 \\ mean.PPD & 0 & 1 & 4253 \\ log-posterior & 0 & 1 & 4747 \\ V1 & 0 & 1 & 4747 \\ V2 & 0 & 1 & 4849 \\ V3 & 0 & 1 & 3298 \\ V6 & 0 & 1 & 4408 \\ V1 & 0 & 1 & 4253 \\ V5 & 0 & 1 & 4110 \\ V6 & 0 & 1 & 4408 \\ mean.PPD & 0 & 1 & 4408 \\ log-posterior & 0 & 1 & 4408 \\ V6 & 0 & 1 & 4408 \\ log-posterior & 0 & 1 & 4368 \\ V6 & 0 & 1 & 4368 \\ V1 & 0 & 1 & 4368 \\ V1 & 0 & 1 & 4368 \\ V1 & 0 & 1 & 3248 \\ V2 & 0 & 1 & 3948 \\ V3 & 0 & 1 & 3017 \\ V2 & 0 & 1 & 3948 \\ V3 & 0 & 1 & 3017 \\ V2 & 0 & 1 & 3017 \\ V2 & 0 & 1 & 3289 \\ V5 & 0 & 1 & 2787 \\ V6 & 0 & 1 & 4763 \\ mean.PPD & 0 & 1 & 4667 \\ log-posterior & 0.1 & 1 & 1494 \\ V1 & 0 & 1 & 4567 \\ V2 & 0 & 1 & 3879 \\ V5 & 0 & 1 & 2990 \\ V6 & 0 & 1 & 4534 \\ mean.PPD & 0 & 1 & 4534 \\ mean.PPD & 0 & 1 & 4584 \\ V1 & 0 & 1 & 2990 \\ V6 & 0 & 1 & 3818 \\ mean.PPD & 0 & 1 & 3844 \\ V1 & 0 & 1 & 2990 \\ V6 & 0 & 1 & 3818 \\ (Intercept) & 0 & 1 & 3844 \\ V1 & 0 & 1 & 2990 \\ V6 & 0 & 1 & 3818 \\ (Intercept) & 0 & 1 & 3844 \\ V1 & 0 & 1 & 5021 \\ V2 & 0 & 1 & 3817 \\ V3 & 0 & 1 & 2805 \\ V6 & 0 & 1 & 3825 \\ V6 & 0 & 1 & 3826 \\ mean.PPD & 0 & 1 & 3868 \\ mean.PPD & 0 & 1 & 386$			(Intercept)	0	1	4261
$N(0,2.5) \text{logit} \begin{cases} V3 & 0 & 1 & 236\\ V4 & 0 & 1 & 3093\\ V6 & 0 & 1 & 3093\\ V6 & 0 & 1 & 3625\\ mean.PPD & 0 & 1 & 4253\\ log-posterior & 0 & 1 & 1713\\ \hline \\ N(0,2.5) & Probit & (Intercept) & 0 & 1 & 4895\\ \hline \\ V1 & 0 & 1 & 4849\\ \hline \\ V2 & 0 & 1 & 4849\\ \hline \\ V3 & 0 & 1 & 3298\\ \hline \\ V5 & 0 & 1 & 4110\\ \hline \\ V6 & 0 & 1 & 4408\\ \hline \\ N6 & 0 & 1 & 4408\\ \hline \\ V6 & 0 & 1 & 4408\\ \hline \\ V6 & 0 & 1 & 4408\\ \hline \\ V6 & 0 & 1 & 4368\\ \hline \\ V1 & 0 & 1 & 4368\\ \hline \\ V5 & 0 & 1 & 410\\ \hline \\ V6 & 0 & 1 & 4368\\ \hline \\ V1 & 0 & 1 & 4368\\ \hline \\ V1 & 0 & 1 & 4368\\ \hline \\ V1 & 0 & 1 & 3948\\ \hline \\ V2 & 0 & 1 & 3948\\ \hline \\ V3 & 0 & 1 & 3017\\ \hline \\ V2 & 0 & 1 & 3948\\ \hline \\ V3 & 0 & 1 & 3017\\ \hline \\ V2 & 0 & 1 & 3948\\ \hline \\ V3 & 0 & 1 & 3017\\ \hline \\ V4 & 0 & 1 & 3289\\ \hline \\ V5 & 0 & 1 & 4631\\ \hline \\ V6 & 0 & 1 & 4631\\ \hline \\ V1 & 0 & 1 & 4631\\ \hline \\ V1 & 0 & 1 & 4631\\ \hline \\ V2 & 0 & 1 & 3879\\ \hline \\ V3 & 0 & 1 & 3999\\ \hline \\ V5 & 0 & 1 & 3879\\ \hline \\ V3 & 0 & 1 & 2999\\ \hline \\ V6 & 0 & 1 & 4534\\ \hline \\ \\ mean.PPD & 0 & 1 & 4534\\ \hline \\ \\ mean.PPD & 0 & 1 & 4384\\ \hline \\ V1 & 0 & 1 & 2990\\ \hline \\ V6 & 0 & 1 & 3944\\ \hline \\ V1 & 0 & 1 & 5021\\ \hline \\ V2 & 0 & 1 & 3817\\ \hline \\ Cauchy(0, 2.5) & logit & V4 & 0 & 1 & 2907\\ \hline \\ V6 & 0 & 1 & 3817\\ \hline \\ V3 & 0 & 1 & 3848\\ \hline \\ \\ Cauchy(0, 2.5) & logit & V4 & 0 & 1 & 2907\\ \hline \\ V5 & 0 & 1 & 3818\\ \hline \\ Cauchy(0, 2.5) & logit & V4 & 0 & 1 & 2907\\ \hline \\ V5 & 0 & 1 & 3818\\ \hline \\ Cauchy(0, 2.5) & logit & V4 & 0 & 1 & 2907\\ \hline \\ V5 & 0 & 1 & 3868\\ \hline \\ \\ \\ \\ Cauchy(0, 2.5) & logit & V4 & 0 & 1 & 2907\\ \hline \\ V5 & 0 & 1 & 3818\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			V1	0	1	4241
N(0,2.5) logit V4			V2	0	1	4173
V5			V3	0	1	2326
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(0, 2.5)	logit	V4	0	1	2462
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V5	0	1	3093
$N(0,2.5) = \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V6	0	1	3625
$N(0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			mean_PPD	0	1	4253
$N(0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			log-posterior	0	1	1713
$N(0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(Intercept)	0	1	4805
$N(0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V1	0	1	4747
$N(0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V2	0	1	4849
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V3	0	1	3298
$t(7,0,2.5) \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N(0, 2.5)	probit	V4	0	1	3218
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V5	0	1	4110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V6	0	1	4408
$t(7,0,2.5) \begin{array}{c ccccccccccccccccccccccccccccccccccc$			mean_PPD	0	1	4096
$t(7,0,2.5) \text{logit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			log-posterior	0	1	1622
$t(7,0,2.5) \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-		(Intercept)	0	1	4368
$t(7,0,2.5) \text{logit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$		logit	V1	0	1	4567
$t(7,0,2.5) \text{logit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V2	0	1	3948
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V3	0	1	3017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t(7, 0, 2.5)		V4	0	1	3289
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V5	0	1	2787
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V6	0	1	4763
$(Intercept) 0 1 4631$ $V1 0 1 4063$ $V2 0 1 3879$ $V3 0 1 2919$ $V5 0 1 3696$ $V6 0 1 4534$ $mean_PPD 0 1 4024$ $log-posterior 0 1 1881$ $(Intercept) 0 1 3944$ $V1 0 1 5021$ $V2 0 1 3817$ $V3 0 1 2805$ $Cauchy(0, 2.5) logit V4 0 1 2907$ $V5 0 1 3622$ $V6 0 1 3868$ $mean_PPD 0 1 4144$			mean_PPD	0	1	4567
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			log-posterior	0.1	1	1494
$t(7,0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(Intercept)	0	1	4631
$t(7,0,2.5) \text{probit} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V1	0	1	4063
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V2	0	1	3879
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V3	0	1	2919
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t(7, 0, 2.5)	probit	V4	0	1	2990
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V5	0	1	3696
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V6	0	1	4534
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			mean_PPD	0	1	4024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			log-posterior	0	1	1881
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(Intercept)	0	1	3944
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V1	0	1	5021
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V2	0	1	3817
V5 0 1 3622 V6 0 1 3868 mean_PPD 0 1 4144			V3	0	1	2805
V6 0 1 3868 mean_PPD 0 1 4144	Cauchy(0, 2.5)	logit	V4	0	1	2907
mean_PPD 0 1 4144			V5	0	1	3622
			V6	0	1	3868
log-posterior 0 1 1787			mean_PPD	0	1	4144
			log-posterior	0	1	1787

Tabela 7: Resultados - Bupa

Priori	Função de ligação		mcse	Rhat	${\rm n_eff}$
		(Intercept)	0	1	4597
		V1	0	1	4095
		V2	0	1	4582
		V3	0	1	2765
Cauchy(0, 2.5)	probit	V4	0	1	2974
		V5	0	1	4173
		V6	0	1	3542
		mean_PPD	0	1	3993
		log-posterior	0	1	1664

Tabela 8: Resultados - Bupa

Figura 12: Trace plots - Bupa.

Figura 13: Intervalos de credibilidade - Bupa.

	$\operatorname{elp_diff}$	se_diff
bupa_fit_21	0.0	0.0
bupa_fit_32	-0.2	0.1
bupa_fit_11	-0.3	0.1
bupa_fit_31	-0.6	0.8
bupa_fit_12	-0.7	0.4
bupa_fit_22	-0.8	0.5

Tabela 9: Comparação dos modelos usando $loo_compare()$ - Bupa.

Ring

Priori	Função de ligação		mcse	Rhat	n_eff
		(Intercept)	0	1	2593
		V3	0	1	2781
N(0, 2.5)	logit	V4	0	1	3267
		mean_PPD	0	1	3739
		log-posterior	0	1	1524
		(Intercept)	0	1	2859
		V3	0	1	2869
N(0, 2.5)	probit	V4	0	1	3186
		mean_PPD	0	1	3952
		log-posterior	0	1	1951
		(Intercept)	0	1	2708
		V3	0	1	2766
t(7, 0, 2.5)	logit	V4	0	1	2866
		mean_PPD	0	1	3967
		log-posterior	0	1	1643
		(Intercept)	0	1	2719
		V3	0	1	2605
t(7, 0, 2.5)	probit	V4	0	1	3214
		mean_PPD	0	1	3779
		log-posterior	0	1	1655
		(Intercept)	0	1	2347
		V3	0	1	2888
Cauchy(0, 2.5)	logit	V4	0	1	2771
		mean_PPD	0	1	3774
		log-posterior	0	1	1650
		(Intercept)	0	1	2612
		V3	0	1	2893
Cauchy(0, 2.5)	probit	V4	0	1	2972
		mean_PPD	0	1	3712
		log-posterior	0	1	1625

Tabela 10: Resultados - Ring

Figura 14: Trace plots - Ring.

Figura 15: Intervalos de credibilidade - Ring.

	$\operatorname{elp_diff}$	se_diff
$ring_fit_11$	0.0	0.0
$ring_fit_21$	-0.2	0.2
$ring_fit_31$	-0.5	0.3
$ring_fit_32$	-2.2	1.6
$ring_fit_12$	-2.4	1.7
ring_fit_22	-2.4	1.8

Tabela 11: Comparação dos modelos usando loo_compare() - Ring.

Comentários

Um comportamento observado em todas as amostragens é Rhat = 1 e mcse = 0(ou quase 0), indicando convergência e baixo ruído. Além disso, a grande maioria das amostras apresentam $n_{-}eff$ alto, indicando baixa correlação na amostragem. Ademais, todos os trace plots apresentam boas misturas, com a cadeia mudando de estado com frequência. Há apenas algumas situações em que a cadeia fica presa em alguns estados durante poucas iterações, como é o caso da figura (8e). Outro comportamento comum foi a alteração das estimativas ao alterar a função de ligação (encurtamento do intervalo de credibilidade e deslocamento da média), conforme as figuras (7), (11), (13), (15). Uma mudança perceptível ao alterar a priori foi observada apenas na variável V5dos dados Lenses, conforme a figura (9). Por fim, nenhuma das validações cruzadas indicaram preferência significativa por alguma priori, como pode ser observado nas tabelas (2), (9), (6, (4) e (11). Houve apenas uma preferência no ordenamento para a t em 3 conjuntos de dados. Uma justificativa para isso é que os modelos foram ajustados considerando apenas as prioris normal, student e cauchy, com parâmetros fixos, o ideal seria considerar um conjunto de hiperparâmetros para variar as prioris. Além disso, deveríamos analisar a adequação dos modelos propostos para cada um dos dados, mas exigiria uma análise mais aprofundada.

(f) Não vou fornecer a prova formal, mas apenas indicar a ideia da prova fornecida em [5]. Primeiro, para a condição necessária: se \boldsymbol{X}_j é um separador solitário, então $\mathbb{E}[\beta_j|\boldsymbol{y}]$ não existe. O primeiro passo consiste em escrever

$$p(\boldsymbol{y}|\boldsymbol{\beta}) = \prod_{i \in A_1} f_1 \left(x_{i,j} \beta_j + \boldsymbol{x}_{i,(-j)}^{\top} \beta_{(-j)} \right) \prod_{k \in A_0} f_0 \left(x_{k,j} \beta_j + \boldsymbol{x}_{k,(-j)}^{\top} \beta_{(-j)} \right),$$

onde $f_1(t)$ é a função sigmóide, $f_0(t) = 1 - f_1(t)$, e $\beta_{(-j)}$ e $\boldsymbol{x}_{i,(-j)}$ denotam os vetores sem a j-ésima entrada. A partir disso, usa-se a suposição de separação para mostrar que

$$p(\boldsymbol{y} \mid \boldsymbol{\beta}) \ge \prod_{i \in A_1} f_1\left(\boldsymbol{x}_{i,(-j)}^{\top} \beta_{(-j)}\right) \prod_{k \in A_0} f_0\left(\boldsymbol{x}_{k,(-j)}^{\top} \beta_{(-j)}\right).$$

Usando esse fato, mostra-se que

$$\int_{0}^{\infty} \beta_{j} p(\beta_{j} \mid \boldsymbol{y}) d\beta_{j} \geq \frac{\int_{0}^{\infty} \beta_{j} p(\beta_{j}) d\beta_{j}}{p(\boldsymbol{y})} \left[\int_{\mathbb{R}^{p-1}} \prod_{i \in A_{1}} f_{1} \left(\boldsymbol{x}_{i,(-j)}^{\top} \beta_{(-j)} \right) \prod_{k \in A_{0}} f_{0} \left(\boldsymbol{x}_{k,(-j)}^{\top} \beta_{(-j)} \right) p(\beta_{(-j)}) d\beta_{(-j)} \right].$$

Por fim, usa-se o fato de que $\int_0^\infty \beta_j p(\beta_j) d\beta_j = \infty$ (distribuição Cauchy) e como o restante da expressão é finito, conclui-se a prova.

Para a suficiência, o primeiro passo é mostrar que $\mathbb{E}[\beta_j \mid \boldsymbol{y}]^+$ é finito. A partir disso, usa-se o fato da não separação para concluir que ou existe

- $i' \in A_1$ tal que $x_{i',j} < 0$, ou
- $k' \in A_0$ tal que $x_{k',j} > 0$.

Agora, assumindo a primeira condição como verdade, para todo β_i , define-se

$$G(\beta_j) = \{ \boldsymbol{\beta}_{(-j)} \in \mathbb{R}^{p-1} : x_{i',(-j)}^{\top} \boldsymbol{\beta}_{(-j)} < \epsilon \beta_j \},$$

para $\epsilon = \frac{|x_{i',j}|}{2} = -\frac{x_{i',j}}{2}$. Então, $\forall \boldsymbol{\beta}_{(-j)} \in G(\beta_j), \ \boldsymbol{x}_{i'}^{\top} \boldsymbol{\beta} < -\epsilon \beta_j \text{ e } f_1(\boldsymbol{x}_{i'}^{\top} \boldsymbol{\beta}) < f_1(-\epsilon \beta_j)$. Usando isso, conclui-se que

$$\mathbb{E}[\beta_j \mid \boldsymbol{y}]^+ < \int_0^\infty \beta_j p(\beta_j) \left[\int_{G(\beta_j)} f_1(-\epsilon \beta_j) p(\boldsymbol{\beta}_{(-j)}) d\boldsymbol{\beta}_{(-j)} + \int_{\mathbb{R}^{p-1} \setminus G(\beta_j)} p(\boldsymbol{\beta}_{(-j)}) d\boldsymbol{\beta}_{(-j)} \right] d\beta_j.$$

A partir disso, a ideia é cotar essas integrais para mostrar a finitude da expressão. Para o caso em que a segunda condição é verdade, é feito apenas um ajuste e a prova segue. Do mesmo modo, para mostrar que a parte negativa $\mathbb{E}[\beta_j \mid \boldsymbol{y}]^-$ é finita, usa-se uma ideia bem parecida para encontrar uma cota inferior.

Os códigos e dados utilizados se encontram neste repositório: https://github.com/ EzequielEBS/a2-bayesian-statistics.

Referências

- [1] Andrew Gelman, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. A weakly informative default prior distribution for logistic and other regression models. *The Annals of Applied Statistics*, 2(4):1360 1383, 2008.
- [2] P. McCullagh and J. A. Nelder. Generalized linear models. Chapman & Hall, 1989.
- [3] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. *Bayesian Data Analysis*. Chapman & Hall/CRC, 2003.
- [4] American National Election Studies. 2020 time series study, 2021.
- [5] Joyee Ghosh, Yingbo Li, and Robin Mitra. On the use of cauchy prior distributions for bayesian logistic regression, 2017.