Lecture 15

BT 203 Biochemistry 3-0-0-6

Prof. Ajaikumar B. Kunnumakkara

CANCER BIOLOGY LABORATORY

Department of Biosciences and Bioengineering Indian Institute of Technology (IIT) Guwahati Assam, INDIA

Key Concepts

- What are Inborn error of metabolism?
- Disorders of carbohydrate, protein and lipid metabolism
- Which are the pathways affected?
- What are the symptoms, diagnostic investigations and Available therapies?

Inborn Errors of Metabolism

❖ Inborn errors of metabolism are inherited biochemical disorders with defect in specific enzyme that interferes with the normal metabolism

Subgroups

Carbohydrate Disorders

- Galactosemia
- Glycogen Storage Disease

Protein Disorders

- Amino Acids
 - Phenylketonuria
 - Maple Syrup Urine Disease
- Organic Acids
 - Methylmalonic Aciduria
 - Propionic Aciduria
- Urea Cycle
 - Citrullinemia
 - Argininosuccinic Aciduria

Fatty Acid Disorders

- Medium Chain Acyl CoA

 Dehydrogenase Deficiency
- Long Chain Acyl CoA
 Dehydrogenase Deficiency
- Very Long Chain Acyl CoA
 Dehydrogenase Deficiency

Disorders of Carbohydrate Metabolism

Galactosemia

- Autosomal recessive disorder of galactose metabolism
- 1/40,000 live births
- Three forms: classic galactosemia, galactokinase deficiency, galactose-4' –epimerase deficiency
- Symptoms: lethargy, poor feeding, jaundice, cataracts, prone to sepsis, mild growth failure, ataxia, learning disabilities, ovarian failure, probable infertility
- Screening: GALT activity, glucose, LFTs, total bilirubin, galactose-1-phosphate, normal lactate, normal pyruvate
- Treatment : Strict dietary lactose/galactose restriction

Disorders of Carbohydrate Metabolism

Glycerol kinase (GK) deficiency

- X-linked recessive defect in GK
- Symptoms: lethargy, vomiting, acidosis, ketotic hypoglycemia, developmental delay, cryptorchidism, seizures, adrenal hypoplasia, Duchnne muscular dystrophy
- Screening: elevated glycerol, deletion in glycerol kinase gene
- Treatment: Symptoms management by using corticosteroids, mineralocorticoids and/or glucose infusion

Phenylketonuria

- Autosomal recessive disorder in which phenylalanine can not be converted to tyrosine
- 1/20,000 live births
- Enzyme defect: Phenylalanine Hydroxylase (Chr 12q24.1)
- Symptoms: vomiting, irritability, peculiar 'musty' odor, eczematoid rash, fair-hair and skin
- Screening: Elevated Serum Phenylalanine
- Treatment: Strict dietary phenylalanine restriction

Tyrosinemia

	Enzyme Defect	Clinical Presentation	Diagnostic Studies	Treatment	Prognosis
Type I	Fumarylacetoacetate hydroxylase	Failure to thrive (FTT) Hepatomegaly Hepatoblastoma RTA Rickets	Succinylacetone in urine ↑ levels of tyrosine in plasma	Diet low in tyrosine and phenylalanine -NTBC	Infants are affected early with high risk of mortality
Type II	Tyrosine Aminotransferase	Corneal ulcers or dendritic keratitis 50% with intellectual disability Red papular lesions on their palms and soles No liver toxicity		Diet low in tyrosine	Diet may not be curative

Maple Syrup Urine Disease

- Autosomal recessive disorder of branched chain amino acid (valine, leucine and isoleucine metabolism
- ❖ 1/50,000 live births
- Enzyme defect: Defect in oxidative decarboxylation of keto acids- branched chain ketoacid dehydrogenase (BCKD)
- **❖** Symptoms: feeding difficulty, irregular respiration, loss of Moro reflex, severe seizures and rigidity
- ❖ Screening: Elevated Serum valine, leucine and isoleucine, presence of alloisoleucine, elevated urine organic acids- branched chain 2-keto and 2hydroxy acids
- ❖ Treatment : Strict dietary control of valine, leucine and isoleucine intake

Urine of the diseased look like Maple Syrup

Homocystinuria

- Autosomal recessive disorder of methionine metabolism
- ❖ 1/200-335000 live births
- ***** Enzyme defect: Cystathionine-β-synthase
- Symptoms: developmental delay, osteoporosis and increased risk of thromboembolism, intellectual disability
- Screening: Elevated Serum methionine and homocsyteine
- ❖ Treatment : pyridoxine (vitamin B6), vitamin B12, folic acid

Propionic acidemia

- Autosomal recessive disorder of propionyl CoA carboxylase
- Enzyme defect: propionyl CoA carboxylase
- Symptoms: lethargy, acidosis, neutropenia, thrombocytopenia, coma
- Screening: Elevated Serum propionyl carnitine, glycine, methylcitrate
- Treatment : Diet control, carnitine and biotin (cofactor for enzyme)

Methylmalonic acidemia

- Autosomal recessive disorder of methylmalonyl CoA dismutase
- Enzyme defect: methylmalonyl CoA dismutase and cobalamin deficiency
- Symptoms: hyperammonemia, ketoacidosis, thrombocytopenia, cardiomyopathy
- Screening: Elevated Serum homocysteine, methylmalonic acid, ketone bodies
- Treatment: Diet control, B12 and betaine

Highlights

Inborn error of metabolism are inherited disorders

Occurs mainly due to defect in enzyme involved in particular pathway

❖ Symptoms are generally serious and require immediate treatment

Screening includes either the elevated or accumulated substrate or deficiency of end product

Treatment :No permanent cure available; symptoms are controlled via dietary restrictions

Disorders of Carbohydrate Metabolism

Glycogen Storage Disorders

Туре	Enzyme defect	Eponym	Hypoglycemia	Hyperlipidemia	Symptoms	Others
GSD type 1	Glucose-6-phosphatase	Von Gierke's	Yes	Yes	Growth failure	Lactic acidosis, hyperuricemia
GSD type 2	Acid maltase	Pompe's	No	No	Death by age ~ 2 years	Heart failure Myopathy
GSD type 3	Glycogen debrancher	Cori's or Forbes'	Yes	Yes		Myopathy
GSD type 4	Glycogen branching enzyme	Andersen	No	No	Failure to thrive, death at age ~ 5 years	Liver cirrhosis
GSD type 5	Muscle glycogen phosphorylase	McArdle	No	No		Renal failure by myoglobinuria
GSD type 6	Liver glycogen phosphorylase	Hers' disease	Yes	No		
GSD type 7	Muscle phosphofructokinase	Tarui's disease	No	No	Growth retardation	Hemolytic anemia
GSD type 9	Phosphorylase kinase PHKA2		No	Yes	Delayed motor development, growth retardation	
GSD type 11	Glucose transporter GLUT2	Fanconi-Bickel Syndrome	Yes	No		
GSD type 12	Aldolase A	Red cell aldolase deficiency	?	?		Exercise intolerance
GSD type 13	B-enolase		?	?		Exercise intolerance

Urea Cycle Defects

Urea Cycle Defects

Urea Cycle Defects	Incidence/ Inheritance	Deficiency	Symptom Onset	Presentation	Labs
CPS Deficiency	1:70-100,000 AR	Carbamoyl phosphate synthetase I	By 5 days of age	Lethargy, hypotonia, vomiting and poor feeding Death if undiagnosed	↑Ammonia ↑CSF Glutamine Respiratory alkalosis Low BUN ↑Glutamine, alanine, asparagine ↓Citrulline ↓Argninine ↓Urine orotic acid
Ornithine Transcarbamylase (OTC) Deficiency	1:70,000 X-linked (Most common)	Ornithine Transcarbamylase	24-48 hours	Lethargy, hypotonia, vomiting and poor feeding Death if undiagnosed	↑Ammonia ↑CSF Glutamine Respiratory alkalosis Low BUN ↑Glutamine, Alanine, Asparagine ↓Citrulline ↓Argninine ↑Urine orotic acid
Citrillinemia	AR	Arginoinosuccinate synthetase deficiency	Late onset; preceded by stressor		↑Ammonia ↓Argninine
Argininosuccinic Aciduria	AR	Argininocuccinate lyase deficiency	Late onset; preceded by stressor	Trichorrhexis nodosa Episodic coma	↑Ammonia ↓Argninine
Argininemia	AR	Arginase deficiency	Late onset; preceded by stressor	Progressive splastic diplegia, tremor, ataxia	↑Ammonia Normal Argninine

Disorders of Lipid Metabolism

PHENOTYPE	I	lla	Ilb	III	IV	v
Lipoprotein, elevated	Chylomicrons	LDL	LDL and VLDL	Chylomicron and VLDL remnants	VLDL	Chylomicrons and VLDL
Triglycerides Cholesterol (total)	$\uparrow\uparrow\uparrow$	N ↑↑↑	\uparrow	$\uparrow\uparrow$	↑↑ N/↑	$\uparrow\uparrow\uparrow$
LDL-cholesterol HDL-cholesterol Plasma appearance	↓ ↓↓↓ Lactescent	↑↑↑ N/↓ Clear	↑↑ ↓ Clear	↓ N Turbid	↓ ↓↓ Turbid	↓ ↓↓↓ Lactescent
Xanthomas Pancreatitis	Eruptive +++	Tendon, tuberous 0	None 0	Palmar, tuberoeruptive 0	None 0	Eruptive +++
Coronary atherosclerosis Peripheral atherosclerosis	0	++++	++++	+++	+/-	+/-
Molecular defects	LPL and ApoC-II	LDL receptor, ApoB-100, PCSK9, LDLRAP, ABCG5, and ABCG8		ApoE	ApoA-V	ApoA-V and GPIHBP1
Genetic nomenclature	FCS	FH, FDB, ADH, ARH, sitosterolemia	FCHL	FDBL	FHTG	FHTG

Abbreviations: ADH, autosomal dominant hypercholesterolemia; Apo, apolipoprotein; ARH, autosomal recessive hypercholesterolemia; FCHL, familial combined hyperlipidemia; FCS, familial chylomicronemia syndrome; FDB, familial defective ApoB; FDBL, familial dysbetalipoproteinemia; FH, familial hypercholesterolemia; FHTG, familial hypertriglyceridemia; LPL, lipoprotein lipase; LDLRAP, LDL receptor associated protein; GPIHBP1, glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein1; N, normal.

Disorders of Lipid Metabolism

GENETIC DISORDER	PROTEIN (GENE) DEFECT	LIPOPROTEINS ELEVATED	CLINICAL FINDINGS	GENETIC TRANSMISSION	ESTIMATED INCIDENCE
Lipoprotein lipase deficiency	LPL (LPL)	Chylomicrons	Eruptive xanthomas, hepatosplenomegaly, pancreatitis	AR	1/1,000,000
Familial apolipoprotein C-II deficiency	ApoC-II (APOC2)	Chylomicrons	Eruptive xanthomas, hepatosplenomegaly, pancreatitis	AR	<1/1,000,000
ApoA-V deficiency	ApoA-V (APOA5)	Chylomicrons, VLDL	Eruptive xanthomas, hepatosplenomegaly, pancreatitis	AD	<1/1,000,000
GPIHBP1 deficiency	GDIHBP1	Chylomicrons	Eruptive xanthomas, pancreatitis	AD	<1/1,000,000
Familial hepatic lipase deficiency	Hepatic lipase (LIPC)	VLDL remnants	Pancreatitis, CHD	AR	<1/1,000,000
Familial dysbetalipoproteinemia	ApoE (APOE)	Chylomicron and VLDL remnants	Palmar and tuberoeruptive xanthomas, CHD, PVD	AR AD	1/10,000
Familial hypercholesterolemia	LDL receptor (LDLR)	LDL	Tendon xanthomas, CHD	AD	1/500
Familial defective apoB-100	ApoB-100 (APOB)	LDL	Tendon xanthomas, CHD	AD	<1/1000
Autosomal dominant hypercholesterolemia	PCSK9 (PCSK9)	LDL	Tendon xanthomas, CHD	AD	<1/1,000,000
Autosomal recessive hypercholesterolemia	LDLRAP	LDL	Tendon xanthomas, CHD	AR	<1/1,000,000
Sitosterolemia	ABCG5 or ABCG8	LDL	Tendon xanthomas, CHD	AR	<1/1,000,000

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; ARH, autosomal recessive hypercholesterolemia; CHD, coronary heart disease; LDL, low-density lipoprotein; LPL, lipoprotein lipase; PVD, peripheral vascular disease; VLDL, very-low density lipoprotein.