

Few Edges Are Enough: Few-Shot Network Attack Detection with Graph Neural Networks

IWSEC 2024, Kyoto, September 19th 2024

Tristan Bilot Nour El Madhoun Khaldoun Al Agha Anis Zouaoui

Université Paris-Saclay - LISN, Isep - LISITE, Iriguard

Normal activity within a network

Figure 1: Example of normal communication between network hosts.

A malicious host attempts attack

Figure 2: One host attempts attack on another host.

Model the network as a graph

Figure 3: Such a network can be modelled as a graph, where nodes are IP addresses and edges are network flows. This example shows a user attempting to exploit another machine on a local network.

Goal

- Detect various network attacks (e.g. DoS, scans, bruteforce, lateral movements, ...) leveraging the graph structure
- Reach high granularity (i.e. detection at the edge level)
- Reduce considerably the amount of hand-crafted labels
- Maintain a high precision with a low false positive rate

Most recent network-based attack detection methods use Graph Deep Learning and notably **Graph Neural Networks (GNNs)** due to their faculty to **capture complex and robust attack patterns** by leveraging the intrinsic graph structure of networks.

Current State-of-the-art (SOTA) methods can be classified in two main groups.

- Supervised Approaches
- Self-supervised Approaches

Challenges in Current Methods

Supervised Approaches (e.g. E-ResGAT, E-GraphSAGE) Train the model to predict labelled edges/nodes from specific types of attacks.

Pros:

 Detect existing attacks with high precision

Cons:

- Require hand-crafted labels
- Do not generalize to new attacks, or variants of attacks

Self-supervised Approaches (e.g. Anomal-E)

Train the model to predict parts of the network activity and identify **clusters** of edges/nodes as outliers.

Pros:

 Do not labelled data for training the encoder

Cons:

 May not differentiate between benign anomalies and actual attacks

E-ResGAT [1]

Represents the graph as a line graph where each node is an edge, with features. Uses a Graph Attention Network (GAT) with residual connections to compute node embeddings. Trained in a **supervised** way.

E-GraphSAGE [2]

Aggregates information from neighbors using their edge features. Computes edge embeddings by concatenating node embeddings. Also trained in a **supervised** way.

Anomal-E [3]

Uses E-GraphSAGE as encoder and trains it in a **self-supervised** way by maximising/minimizing mutual information between training graphs and positively augmented and negatively augmented graphs, respectively.

Challenges in Current Methods

Limits of Anomal-E

We give particular attention to Anomal-E as it was at the time of writing this paper the only self-supervised approach to achieve SOTA results.

- Anomal-E uses self-supervised learning to train the GNN encoder with **both benign and attack data**
- The learned embeddings are decoded with an Isolation Forest (IF),
 which is a one-class classifier trained on benign edge only.
- As a result, it leads to a supervised method, as benign and attack edges need to be identified
- We call these methods benign-supervised

Few-Shot Learning

We propose using **Few-Shot Learning (FSL)** as a balanced intermediary between fully supervised methods that cannot generalize to new attacks and fully unsupervised ones that yield too many false positives for a practical usage.

Pros:

- Requires only very few labelled examples
- Improved generalization compared to fully supervised methods

Cons:

• Still requires some historical attack data

Few Edges Are Enough (FEAE)

Figure 4: Architecture of FEAE

FEAE's Encoder

- We propose a lightweight GNN encoder layer that we can stack to capture spatial patterns from training network graphs
- We want to learn an embedding vector for each edge, which captures its semantic in the graph

FEAE's Encoder

- (1) Aggregate neighboring information via neighbors' edge features
- (2) Creates node embeddings from this aggregation
- (3) Derives edge embeddings by concatenating node embeddings

$$h_{\mathcal{N}(u)} = \sum_{v \in \mathcal{N}(u)} e_{uv}, \quad u \in \mathcal{N}, \tag{1}$$

$$h_{u} = \sigma \left(h_{\mathcal{N}(u)} \mathbf{W}_{\text{agg}} \right), \tag{2}$$

$$h_{uv} = [h_u, h_v] \mathbf{W}_{edge}, \tag{3}$$

 e_{uv} : feature vector of edge (u,v); $\mathcal{N}(u)$: neighboring nodes of node u; $h_{\mathcal{N}(u)}$: sum aggregation u's neighboring edges; h_u : embedding vector of node u; σ : ReLU activation function; \mathbf{W}_{agg} and \mathbf{W}_{edge} : trainable weight matrices; [,]: concatenation operation

FEAE's SSL Module

- At this point, we want to decode edge embeddings to optimize a certain objective
- We want to train the encoder to differentiate between benign and malicious edges using minimal labeled edges
- We propose a hybrid SSL loss that also integrates few-shot learning (FSL)

Contrastive-based loss

- Goal : create similar embeddings for edges with similar semantics
- (4-5) Calculates edge embeddings for the original graph G and an altered (negative) graph G
- (6) Calculates a *summary* from G that summarizes all its semantics

$$\mathbf{H} = \mathrm{enc}(G),\tag{4}$$

$$\widetilde{\mathbf{H}} = \operatorname{enc}(\widetilde{G}),$$
 (5)

 \mathbf{H} and $\widetilde{\mathbf{H}}$: edge embeddings of the graph and its negative augmentation, respectively; G = A(G) with A an augmentation function.

$$\vec{s} = \sigma\left(\mathcal{R}(\mathbf{H})\right),\tag{6}$$

 \mathcal{R} is the mean readout operation and σ is the sigmoid function.

Contrastive-based loss

- (7) Calculates the prob. of an edge to exist (positive)
- (8) Calculates the prob. of an edge to not exist (negative)
- (9) Computes Binary Cross Entropy (BCE) along all edges

$$\mathcal{D}\left(\mathbf{H}_{uv}, \vec{s}\right) = \sigma\left(\mathbf{H}_{uv}\mathbf{W}\vec{s}\right),\tag{7}$$

$$\mathcal{D}(\widetilde{\mathbf{H}}_{uv}, \vec{s}) = \sigma\left(\widetilde{\mathbf{H}}_{uv}\mathbf{W}\vec{s}\right),\tag{8}$$

 \mathcal{D} : discriminator function, which returns the probability of an edge being either positive or negative; \mathbf{H}_{uv} and $\widetilde{\mathbf{H}}_{uv}$: respectively represent the positive and negative embeddings for (u,v).

$$\mathcal{L}_{c} = -\mathbb{E}_{G}\left[\log \mathcal{D}\left(\mathbf{H}_{uv}, \vec{s}\right)\right] + \sum_{uv \in \widetilde{E}} \mathbb{E}_{\widetilde{G}}\left[\log \left(1 - \mathcal{D}\left(\widetilde{\mathbf{H}}_{uv}, \vec{s}\right)\right)\right], \quad (9)$$

E and \widetilde{E} represent the edges in the positive graph and negative graph,

Reconstruction-based loss

- Goal : create different embeddings for the few-shot malicious edges
- (10) Reconstructs an approximation $\hat{\mathbf{X}}_{uv}$ of edge features \mathbf{X}_{uv}
- (11-12) Computes edge features' reconstruction error with MSE

$$\hat{\mathbf{X}}_{uv} = \sigma \left(\mathbf{H}_{uv} \mathbf{W}_{rec} \right), \tag{10}$$

$$\mathcal{L}_{\text{few}} = \sum_{uv \in \mathcal{E}_{\text{mal}}} \left(\mathbf{X}_{uv} - \hat{\mathbf{X}}_{uv} \right)^2, \tag{11}$$

$$\mathcal{L}_{\overline{\text{few}}} = \sum_{uv \in E \setminus \mathcal{E}_{\text{mal}}} \left(\mathbf{X}_{uv} - \hat{\mathbf{X}}_{uv} \right)^2, \tag{12}$$

 $\mathcal{E}_{\mathsf{mal}}$ is a set of k few-shot edges; $E \setminus \mathcal{E}_{\mathsf{mal}}$ is the set of remaining (unlabeled) non-few-shot edges, and \mathbf{X}_{uv} represents the original features of edge (u,v); σ : sigmoid function; $\mathbf{W}_{\mathsf{rec}}$: weight matrix.

Reconstruction-based loss

Figure 5: FEAE's reconstruction-based loss. a) calculation of edge embeddings by the GNN encoder; b) maximization of the reconstruction error for few-shot edges; c) minimization of the reconstruction error for all other edges.

Overall loss of the SSL module

$$\mathcal{L}_{\text{FEAE}} = \mathcal{L}_{\text{c}} + \alpha \mathcal{L}_{\overline{\text{few}}} - \beta \mathcal{L}_{\text{few}}$$
 (13)

where \mathcal{L}_c is the contrastive loss, $\mathcal{L}_{\overline{\text{few}}}$ is the reconstruction loss of few-shot edges and \mathcal{L}_{few} is the loss of all other edges. α and β are trade-off coefficients to balance the reconstruction error of few-shot and non-few-shot examples.

We recommend to set $\alpha < \beta$, particularly when the dataset contains a significant number of malicious edges.

Decoder

- **Goal** : we aim to differentiate between malicious and benign edges given their embeddings
- (14) Simply feed the trained embeddings into a **MLP with sigmoid** activation to get a final prediction. The model is then trained to predict the few-shot edges as attack and all other edges as benign.
- Using this hybrid SSL loss allows to train the model effectively using only very few labels

$$\hat{\mathbf{y}} = \sigma \left(\mathsf{MLP} \left(\mathbf{H} \right) \right). \tag{14}$$

Datasets

- NF-CSE-CIC-IDS2018-v2 [4]. This dataset is a Netflow version of the original CSE-CIC-IDS2018 dataset [5], containing approximately 18.9 million network flows. Among these flows, around 12% correspond to attack samples, which are divided into 6 attack families including BruteForce, Bot, DoS, DDoS, Infiltration, Web attacks.
- NF-UNSW-NB15-v2 [4]. Also converted to Netflow format, this version of the UNSW-NB15 dataset [6] comprises 2.3 million flows, with attack samples accounting for 4% of the dataset, distributed across 9 attack families including Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic, Reconnaissance, Shellcode, Worms.

How the number of few-shot labels k impacts detection?

Figure 6: FEAE's performance with respect to k. Setting k=1 is enough to approach the F1-score of fully supervised methods.

What looks the embedding space like?

Figure 7: Left: Some edge embeddings produced by Anomal-E. Note that the few- shot edges are just for comparison as they are not leveraged in the original Anomal-E. Right: Edge embeddings generated by ${\rm FEAE}$.

How FEAE performs compared to baselines?

Data	Model		NF-C	SE-CIC-II	OS2018-v2	2 NF-U	INSW-NB	15-v2
			F1	Precision	\mathbf{Time}	F1	Precision	Time
A, X, Y	E-GraphSAGE		96.02	98.82	0.31	95.35	92.49	0.32
A, X, Y	LineGAT		93.84	96.84	4.3	95.33	91.81	14.2
A, X, Y	LineGCN		89.29	95.42	0.43	95.35	91.83	0.58
A, X, Y	${ m LineSAGE}$		94.94	97.10	1.00	95.90	93.11	2.08
A, X, Y_{ber}	Anomal-E (IF)		94.46	96.86	85.1	91.14	85.78	9.2
$A, X, Y_{\rm ber}$	Anomal-E (IF)	$+ \text{ aug}_1$	96.53	98.84	81.3	87.38	84.13	7.9
A, X, Y_{few}	Anomal-E (Few	-Shot)	95.3	97.28	24.5	92.47	86.42	1.45
A, X, Y_{few}	FEAE		96.40	99.12	19.6	92.60	89.56	1.22
A, X, Y_{few}	$FEAE + aug_1$		97.44	99.76	18.4	92.84	90.77	1.19

Figure 8: Experimental results. Colors : **Supervised**, Benign-supervised, Few-shot approaches.

Findings & Conclusion

Findings & Conclusion

Findings

- Benign-supervised approaches like Anomal-E yield suboptimal results and require knowledge of all labels
- Switching to a few-shot learning approach improves detection precision
- The architecture proposed in FEAE improves further performance using only 1 edge label per attack family

Future research

Future research work

- Evaluate the generalization capabilities of few-shot approaches to new attacks
- Improve scalability to very large networks

Thank you!

Do you have any questions?

References i

- L. Chang and P. Branco, "Graph-based solutions with residuals for intrusion detection: The modified e-graphsage and e-resgat algorithms," arXiv preprint arXiv:2111.13597, 2021.
- W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, "E-graphsage: A graph neural network based intrusion detection system for iot," in *NOMS 2022-2022 IEEE/IFIP Network Operations* and Management Symposium, pp. 1–9, IEEE, 2022.
- E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, "Anomal-e: A self-supervised network intrusion detection system based on graph neural networks," *Knowledge-Based Systems*, vol. 258, p. 110030, 2022.
- M. Sarhan, S. Layeghy, and M. Portmann, "Towards a standard feature set for network intrusion detection system datasets," *Mobile networks and applications*, pp. 1–14, 2022.

References ii

I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, *et al.*, "Toward generating a new intrusion detection dataset and intrusion traffic characterization.," *ICISSp*, vol. 1, pp. 108–116, 2018.

N. Moustafa and J. Slay, "Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set)," in 2015 military communications and information systems conference (MilCIS), pp. 1–6, IEEE, 2015.