2 Morphismen von Schemata

§6 Einbettungen

Definition 2.6.1

Sei $i:(Y,\mathcal{O})\to (X,\mathcal{O}_X)$ ein Morphismus von Schemata.

- (a) i heißt offene Einbettung, wenn i ein Isomorphismus auf ein offenes Unterschema von X ist.
- (b) i heißt abgeschlossene Einbettung, wenn i ein Homöomorphismus auf eine abgeschlossene Teilmenge Z := i(Y) von X ist und $i^{\sharp} : \mathcal{O}_X \to i_* \mathcal{O}_Y$ surjektiv ist. $(Z, i_* \mathcal{O})$ heißt dann abgeschlossenes Unterschema von X.

Beispiele 2.6.2

- (a) Sei $X = \operatorname{Spec} R$ affin. Die abgeschlossenen Teilmengen von X sind die V(I), $(I \subseteq R \text{ Ideal})$. V(I) wird zum abgeschlossenen Unterschema durch die Schemastruktur als $\operatorname{Spec}(R/I)$. Die abgeschlossene Einbettung $\operatorname{Spec}(R/I) \to \operatorname{Spec} R$ wird induziert von der Restklassenabbildung $R \to R/I$. Warnung: $V(I) = V(I^2)$, aber $R/I = R/I^2$ gilt im Allgemeinen nicht!
- (b) Seien k ein Körper, R = k[X, Y] und $I = (X^2, XY) \subsetneq (X)$. Es gilt V(I) = V(X) (y-Achse). In V(I) ist außerhalb von 0 = (0, 0) = V(X, Y), also auf

$$D(Y) = \operatorname{Spec}\left(k[X,Y]/I\right)_{Y} = \operatorname{Spec}(k[Y]_{Y})$$

das abgeschlossene Unterschema V(I), also $\operatorname{Spec}(R/I)$, isomorph zu $\operatorname{Spec}(R/I)$. ? Aber: $\mathcal{O}_{\operatorname{Spec}(R/I),0}$ enthält ein nilpotentes Element, nämlich X.

Erinnerung / Definition 2.6.3

(Übungblatt 3, Aufgabe 1)

Ein Schema (X, \mathcal{O}_X) heißt reduziert, wenn für jedes $x \in X$ der Halm $\mathcal{O}_{X,x}$ ein reduzierter Ring ist. Äquivalent: Für jedes offene $U \subseteq X$ ist $\mathcal{O}_X(U)$ ein reduzierter Ring.

Proposition 2.6.4

Zu jedem Schema (X, \mathcal{O}_X) gibt es ein eindeutiges abgeschlossenes Unterschema X_{red} von X, das folgende UAE erfüllt:

Ist $f:Y\to X$ ein Morphismus von einem reduzierten Schema Y, so gibt es genau einen Morphismus $\tilde{f}:Y\to X_{red}$ mit

 $f = i \circ \tilde{f}$. Dabei ist $X = X_{red}$ (gleich als topologische Räume).

Beweis (1) Sei $X = \operatorname{Spec} R$ affin. Setze $X_{red} := \operatorname{Spec}(R/\sqrt{(0)})$, dann ist X_{red} ein reduziertes abgeschlossenes Unterschema.

UAE: Sei Y reduziert, $f: Y \to X$ ein Morphismus mit zugehörigem Ringhomomorphismus $\alpha_f: R \to \mathcal{O}_Y(Y)$.

Zu zeigen: $\sqrt{(0)} \subseteq \operatorname{Kern}(\alpha_f)$

Sei also $a \in \sqrt{(0)}$, also $a^n = 0$ für $n \ge 1$. Daraus folgt: $(\alpha_f(a))^n = 0$. Und weil Y reduziert ist: $\alpha_f(a) = 0$.

(2) Allgemeiner Fall:

Benutze:

$$\left(R/\sqrt{(0)}\right)_f \cong R_f/\sqrt{(0)}$$

Folgerung 2.6.5

Zu jedem abgeschlossenen Unterschema Z von X gibt es ein eindeutig bestimmtes reduziertes Unterschema Z_{red} (die "reduzierte induzierte Struktur").

§7 Separierte Morphismen

Definition 2.7.1

(a) Ein Morphismus $f: X \to S$ von Schemata heißt separiert, wenn der "Diagonalmorphismus" $\Delta_f: X \to X \times_S X$ eine abgeschlossene Einbettung ist.

(b) X heißt separiert, wenn $X \to \operatorname{Spec} \mathbb{Z}$ separiert ist.

Beispiele

Sei X die affine Gerade mit doppeltem Nullpunkt. X ist nicht separiert (über k): Seien also $S = \operatorname{Spec} k, U = \mathbb{A}^1_k \setminus \{(0,0)\} = \operatorname{Spec}(k[X]_X)$ und X die Verklebung von \mathbb{A}^1_k mit sich selbst längs U. Es ist

$$U \times_S U = \mathbb{A}_k^2$$
 - "Achsenkreuz"
 $\Delta = \Delta_f(X) = \{(u, u) : u \in U\} \cup \{(0_1, 0_1), (0_2, 0_2)\}$

Es gilt

$$\bar{\Delta} = \Delta \cup \{(0_1, 0_2), (0_2, 0_1)\}$$

denn: jede Umgebung von $(0_1, 0_2)$ enthält Punkte von $\Delta!$

Bemerkung 2.7.2

Jeder Morphismus von affinen Schemata ist separiert.

Beweis Sei $X = \operatorname{Spec} B, Y = \operatorname{Spec} A, f : X \to Y, \alpha : A \to B, \alpha$ der Ringhomomorphismus zu f. Dann ist $X \times_Y X = \operatorname{Spec}(B \otimes_A B)$. Δ wird induziert von

$$\mu:\begin{array}{ccc} B\otimes_A B & \longrightarrow & B \\ b_1\otimes b_2 & \longmapsto & b_1\cdot b_2 \end{array}$$

 μ ist surjektiv, also ist Δ abgeschlossen. (Das ist so, weil ein surjektiver Ringhomomorphismus Primideale auf Primideale abbildet und deswegen alle Primideale, die

$$\bigcap_{\mathfrak{p} \text{ Primideal}} \mu^{-1}(\mathfrak{p})$$

enthalten, schon Urbilder von Primidealen waren.)

Bemerkung 2.7.3

Seien $f, g: X \to Y$ Morphismen von S-Schemata. Ist Y über S separiert, so ist

$$E(f,g) := \{ x \in X : f(x) = g(x) \}$$

abgeschlossen in X.

Beweis Sei $h: X \to Y \times_S Y$ der von f und g induzierte Morphismus.

Dann ist $E(f,g) = h^{-1}(\Delta)$, $(\Delta = \Delta_p(Y))$. Also ist E(f,g) abgeschlossen.

Proposition 2.7.4

Seien (X, \mathcal{O}_X) ein Schema, R ein diskreter Bewertungsring, K = Quot(R), T = Spec R. Dann gibt es eine natürliche Bijektion

$$\operatorname{Hom}(T,X) \longrightarrow \{(x_0,x_1,i): x_0,x_1 \in X \text{ mit } x_0 \in \overline{\{x_1\}}, i: \kappa(x_1) \to K \text{ K\"orperhomomorphismus}$$

 $\operatorname{mit} i(\mathcal{O}_{Z,x_0}) \subseteq R \text{ und } i(m_{Z,x_0}) = m_R \cap i(\mathcal{O}_{Z,x_0})\},$

wobei $Z = \overline{\{x_1\}}_{red}$ sei. Dann ist $\mathcal{O}_{Z,x_1} = \kappa(x_1) = \mathcal{O}_{X,x_1}/m_{x_1}$.

Beweis Für $f: T \to X$ sei $x_0 := f(m_R), x_1 = f(0), i = f_{x_1}^{\sharp}$. Da T reduziert ist, "ist" f ein Morphismus nach Z:

 f^{\sharp} induziert also einen Morphismus

$$\mathcal{O}_{Z,x_0} \longrightarrow \mathcal{O}_{T,m} = R$$

mit $f^{\sharp}(m_{Z,x_0}) \subseteq m$.

Umgekehrt induziert jedes $i: \mathcal{O}_{Z,x_0} \hookrightarrow R$ einen Morphismus

$$\operatorname{Spec} R = T \to \operatorname{Spec}(\mathcal{O}_{Z,x_0}) \to Z \to X$$

Satz 2

Sei $f:X\to Y$ ein Morphismus noetherscher Schemata. f ist genau dann separiert, wenn es zu jedem "Bewertungsdiagramm"

 $(T = \operatorname{Spec} R, R \text{ diskreter Bewertungsring}, U = \operatorname{Spec} K, K = \operatorname{Quot} R)$ höchstens einen Morphismus $h: T \to X$ gibt, der das Diagramm kommutativ macht.

Beispiele

Seien X die affine Gerade mit doppeltem Nullpunkt, $Y = \operatorname{Spec} k$ für einen Körper k, $R = k[X]_{(X)}$, K = k(X). Sei weiter $X' = \operatorname{Spec} k[X]$, dann existiert ein Morphismus, der das Bewertungsdiagramm kommutativ macht:

Also gibt es für beide offenen Teile von X, die gleich \mathbb{A}^1_k sind, je eine Fortsetzung.

Beweis " \Rightarrow " Sei ein Bewertungsdiagramm (mit den üblichen Bezeichnungen) gegeben. Zwei $h_1, h_2: T \to X$ Fortsetzungen von $h_0: U \to X$, induzieren einen Morphismus h:

Es ist
$$h_1(0) = h_0(0) = h_2(0)$$

$$\Rightarrow h(0) \in \Delta = \Delta_f(X) \Rightarrow h(m) \in \overline{\{h(0)\}} \subseteq \Delta$$

$$\Rightarrow h_1(m) = h_2(m)$$

"
—" Nach Übungsblatt 6, Aufgabe 1 genügt es zu zeigen: Δ ist abgeschlossen in
 $X\times_Y X.$

Behauptung (1)

Ist für jedes $x_1 \in \Delta$ auch $\overline{\{x_1\}} \subseteq \Delta$, so ist Δ abgeschlossen.

Seien also
$$x_1 \in \Delta, x_0 \in \overline{\{x_1\}}, Z := \overline{\{x_1\}}_{red}, \mathcal{O} := \mathcal{O}_{Z,x_0}, K = \mathcal{O}_{Z,y_1} = \kappa(x_1)$$

Behauptung (2)

Es gibt einen diskreten Bewertungsring $R \subseteq K$, der \mathcal{O} dominiert, das heißt $\mathcal{O} \subseteq R$ und $m_{\mathcal{O}} = m_R \cap \mathcal{O}$.

Dann gibt es nach Proposition 2.7.4 einen Morphismus $h: T = \operatorname{Spec} R \to X \times_Y X$ mit $h(0) = x_1$ und $h(m) = x_0$. Für $h_i = pr_i \circ h$, i = 1, 2, ist $f \circ h_1 = f \circ h_2$, $h_i: T \to X$. Da $x_1 \in \Delta$, ist $h_1(0) = h_2(0)$. Mit $h_0 := h|U$ folgt: $h_1 = h_2 \Rightarrow h(m) \in \Delta$.

Beweis (2) $m = m_{\mathcal{O}}$ ist endlich erzeugt, etwa $m = (x_1, \dots, x_n)$. Sei $\mathcal{O}' = \mathcal{O}[\frac{X_2}{X_1}, \dots, \frac{X_n}{X_1}]$ und $I = X_1 \cdot \mathcal{O}'$. (Œ $I \neq \mathcal{O}'$)

Krullscherr Hauptidealsatz: es gibt ein Primideal $\mathfrak{p} \subseteq \mathcal{O}'$ der Höhe 1 mit $I \subseteq \mathfrak{p}$ (Eisenbud Theorem 10.1)

 $\mathcal{O}'_{\mathfrak{p}}$ ist ein noetherscher lokaler Ring der Dimension 1. Sei $\tilde{\mathcal{O}}$ der ganze Abschluss von $\mathcal{O}'_{\mathfrak{p}}$ in K.

 $\Rightarrow \tilde{\mathcal{O}}$ ist normal, dim $\tilde{\mathcal{O}} = 1$, Œ $\tilde{\mathcal{O}}$ lokal, $\tilde{\mathcal{O}}$ ist noethersch (Satz von Krull-Akizuki, Eisenbud Theorem 11.13)

 $\Rightarrow \tilde{\mathcal{O}}$ ist diskreter Bewertungsring. Es gilt:

 $m_{\tilde{\mathcal{O}}} \cap \mathcal{O} \subseteq m_{\mathcal{O}}$: Klar.

$$m_{\tilde{\mathcal{O}}} \cap \mathcal{O} \supseteq m_{\mathcal{O}}, \text{ weil } X_1, \dots, X_n \in I.$$

Behauptung 1 ist (für $f = \Delta$) ein Spezialfall von

Proposition 2.7.5

Sei $f: W \to X$ Morphismus noetherscher Schemata. Dann gilt:

f(W) ist abgeschlossen

 $\Leftrightarrow f(W)$ ist abgeschlossen unter Spezialisierung: Für $x_1 \in f(W)$ und $x_0 \in \overline{\{x_1\}}$ ist $x_0 \in f(W)$.

Beweis " \Rightarrow " Klar.

"

"

"

"

Sei $Y = \overline{f(W)}$ (als abgeschlossenes Unterschema mit reduzierter Struktur)

Sei $y \in Y$; zu zeigen: $y \in f(W)$.

Œ $Y = \operatorname{Spec} A$ affin, sei $B = \mathcal{O}_W(W)$. f wird also induziert von $\alpha : A \to B$ und α ist injektiv, weil f dominant ist (AG I, Proposition 6.8 (b)). Sei $y' \subseteq y$ ein minimales Primideal, dann gilt $y \in \overline{\{y'\}}$. Also genügt es zu zeigen: $y' \in f(W)$ (das ist die Voraussetzung)

Es gilt
$$f^{-1}(y') = \operatorname{Spec}(\underbrace{B \otimes_A \kappa(y')})$$
. Zu zeigen: $R \neq \{0\}$

Es ist $\kappa(y') = {}^{A}y'/{}_{y'}A_{y'}$ und $A_{y'}$ ist ein Körper, weil A reduziert ist. ? Damit gilt: $R = B \otimes_A A_{y'}$. Weiter gilt: $A \subseteq B \Rightarrow A \otimes_A A_{y'} \subseteq B \otimes_A A_{y'} = R$. Und $A_{y'}$ ist ein flacher A-Modul, weil er eine Lokalisierung ist.

Beispiele

$$A = k[X, Y]/(X \cdot Y), y' = (X) \Rightarrow A_{y'} = k(Y).$$

Folgerung 2.7.6

Für noethersche Schemata gilt:

(a) Affine und abgeschlossene Einbettungen sind separiert.

- (b) Die Komposition separierter Morphismen ist separiert.
- (c) "separiert" ist stabil unter Basiswechsel.
- (d) $g \circ f$ separiert $\Rightarrow f$ separiert.
- (e) "separiert" ist lokal bezüglich der Basis, das heißt:

 $f: X \to Y$ separiert \Leftrightarrow es existiert eine offene Überdeckung (U_i) von Y, sodass

$$f|f^{-1}(U_i):f^{-1}(U_i)\to U_i$$
 separiert

Beweis Übung!

§8 Eigentliche Morphismen

Definition 2.8.1

Sei $f: X \to Y$ ein Morphismus von Schemata.

- (a) f heißt lokal von endlichem Typ, wenn es eine offene Überdeckung $(U_i)_{i\in\mathcal{I}}$, mit $U_i = \operatorname{Spec} A_i$, von Y gibt und für jedes $i \in \mathcal{I}$ eine offene Überdeckung $(U_{ij})_{j\in\mathcal{J}_i}$, mit $U_{ij} = \operatorname{Spec} B_{ij}$, von $f^{-1}(U_i)$ existiert, sodass für alle i, j B_{ij} vermöge f^{\sharp} zu einer endlich erzeugten A_i -Algebra wird.
- (b) f heißt von endlichem Typ, wenn in (a) alle J_i endlich gewählt werden können.
- (c) f heißt endlich, wenn in (a) jedes J_i einelementig gewählt werden kann (also $f^{-1}(U_i) =: \operatorname{Spec} B_i$) und B_i ein endlich erzeugter A_i -Modul ist.

Bemerkung 2.8.2

In Definition 2.8.1 kann "es gibt eine offene affine Überdeckung" ersetzt werden durch "für jedes offene affine $U \subseteq Y$ gilt".

Beweis (a) Übungsblatt 5, Aufgabe 2, (b) und (c) analog.

Bemerkung 2.8.3

Ist $f: X \to Y$ endlich, so ist $f^{-1}(y)$ für jedes $y \in Y$ eine endliche Menge.

Beweis Sei Œ $Y = \operatorname{Spec} A$ affin. Dann ist auch $X = \operatorname{Spec} B$ affin. Es ist $f^{-1}(y) = \operatorname{Spec}(B \otimes_A \kappa(y))$. $B \otimes_A \kappa(y)$ ist eine $\kappa(y)$ -Algebra und, da B ein endlich erzeugter A-Modul ist, ist $B \otimes_A \kappa(y)$ ein endlich dimensionaler $\kappa(y)$ -Vektorraum. Es ist dim $(B \otimes_A \kappa(y)) = 0$ (?), also $\operatorname{Spec}(B \otimes_A \kappa(y))$ endlich.

Definition 2.8.4

Ein Morphismus $f: X \to Y$ heißt eigentlich, wenn er von endlichem Typ, separiert und universell abgeschlossen ist, das heißt für jeden Basiswechsel

$$X \times_Y Y' \longrightarrow X$$

$$f' \downarrow \qquad \qquad f \downarrow \qquad \qquad Y' \longrightarrow Y$$

ist f' abgeschlossen.

Beispiele

 $f: \mathbb{A}^1_k \to \operatorname{Spec} k$ ist abgeschlossen. Basiswechsel:

 f^{\prime} ist nicht abgeschlossen, denn:

V = V(XY - 1) ist abgeschlossene Teilmenge von \mathbb{A}^2_k , aber $f'(V) = \mathbb{A}^1_k - \{0\}$ ist nicht abgeschlossen.

Satz 3

Seien X,Y noethersche Schemata, $f:X\to Y$ ein Morphismus von endlichem Typ. f ist genau dann eigentlich, wenn es zu jedem Bewertungsdidagramm

genau eine Fortsetzung h gibt.