Notes on Measure Theory

Tianyu Du

June 8, 2020

1 Sigma Algebra

Definition 1.1. For a set X, a set $A \subseteq \mathcal{P}(X)$ is a σ -algebra if it satisfies the following properties:

- 1. $\varnothing, X \in \mathcal{A}$;
- 2. for all $A \in \mathcal{A}$, $A^c \in \mathcal{A}$ as well;
- 3. for a sequence in \mathcal{A} , $\{A_i\}_{i\in\mathbb{N}}$, the union $\bigcup_{i\in\mathbb{N}}\in\mathcal{A}$ as well.

An element $A \in \mathcal{A}$ is called a \mathcal{A} -measurable set.

Remark 1.1. It's easy to show that the largest σ -algebra of set X is the power set $\mathcal{P}(X)$, and the smallest σ -algebra is $\{\emptyset, X\}$.

Theorem 1.1. Let $\{A_i\}_{i\in I}$ be the collection of all σ -algebra on X. Then, $\bigcap_{i\in I} A_i$ is also a σ -algebra on X.

Proof. Clearly, $\varnothing, X \in \bigcap_{i \in I} \mathcal{A}_i$ given that every \mathcal{A}_i is a σ -algebra.

For $A \in \bigcap_{i \in I} \mathcal{A}_i$, $A \in \mathcal{A}_i$ for all $i \in I$. Hence $A^c \in \mathcal{A}_i$ for all $i \in I$. Therefore, $A^c \in \bigcap_{i \in I} \mathcal{A}_i$. Let $\{F_j\}_{j \in \mathbb{N}}$ be a sequence such that $F_j \in \bigcap_{i \in I} \mathcal{A}_i$ for every j. Then $F_j \in A_i$ for all i, j since A_i 's are σ -algebras. Hence, $\bigcup_{j \in \mathbb{N}} F_j \in A_i$ for all $i \in I$, and $\bigcup_{j \in \mathbb{N}} F_j \in \bigcap_{i \in I} \mathcal{A}_i$.

Remark 1.2. The union of σ -algebras are not necessarily a σ -algebra. For example, consider

$$X = \{a, b, c\} \tag{1}$$

$$A_1 = \{\emptyset, \{a\}, \{b, c\}, X\}$$
 (2)

$$A_2 = \{\emptyset, \{b\}, \{a, c\}, X\}$$
(3)

$$\mathcal{A}_1 \cup \mathcal{A}_2 = \{ \varnothing, \{a\}, \{b\}, \{b, c\}, \{a, c\}, X \}$$
(4)

Both A_1 and A_2 are σ -algebras, but $A_1 \cup A_2$ is not a σ -algebra because $\{a\} \cup \{b\} \notin A_1 \cup A_2$.

Definition 1.2. For $\mathcal{M} \subseteq \mathcal{P}(X)$ (\mathcal{A} is not necessarily a σ -algebra), the smallest σ -algebra (by taking intersections) containing \mathcal{M} is defined as the σ -algebra generated by \mathcal{M} . The generated σ -algebra is simply the intersection of all σ -algebras that are supersets of \mathcal{M} .

$$\sigma(\mathcal{M}) = \bigcap_{\mathcal{A} \supseteq \mathcal{M} \text{ s.t. } \mathcal{A} \text{ is } \sigma\text{-algebra}} \mathcal{A}$$
 (5)

Definition 1.3. Let (X, τ) be a topological space, then the **Borel algebra** is σ -algebra generated by the collection of open sets τ .

$$\mathcal{B}(X) := \sigma(\tau) \tag{6}$$

Remark 1.3. We do not use the entire power set for analysis because it's too large to construct a sensible measure on (see Theorem 1.2).

Theorem 1.2. There is no measure μ on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ satisfying the following two conditions: (i) $\mu((a,b]) = b - a$ for every a < b and (ii) $\mu(x+A) = \mu(A)$ for all $a \in \mathbb{R}$ and $A \in \mathcal{P}(\mathbb{R})$.

Proof. Suppose, for contradiction, there exists such a measure μ , then $\mu((0,1]) = 1 < \infty$.

Claim: the only measure on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ satisfying $\mu((0,1]) < \infty$ and $\mu(x+A) = \mu(A)$ is the zero measure.

To prove the claim, let I := (0,1] and defien the following equivalence relation on I:

$$x \sim y \iff x - y \in \mathbb{Q} \tag{7}$$

the corresponding equivalence class of x on I can be written as

$$[x] = \{x + r : r \in \mathbb{Q} \land x + r \in I\} \tag{8}$$

The collection of all such equivalence classes, \mathcal{A} , is a disjoint decomposition of I. (for every $x \in I$, [x] must in \mathcal{A} and $x \in [x]$ trivially. If there exists different $[x] \neq [y]$ but $[x] \cap [y] \neq \emptyset$, take $z \in [x] \cap [y]$, by the transitivity of equivalence relation, $x \sim z \sim y$. Therefore, [x] = [y], contradiction.)

For each $[x] \in \mathcal{A}$, take exactly one $a_x \in [x]$ and define set $A := \{a_x : [x] \in \mathcal{A}\}$. As a result, set A satisfies the following two properties:

- 1. $\forall x \in I, \exists a_x \in A \ s.t. \ a_x \in [x].$
- $2. \ \forall x, y \in A, \ x \sim y \implies x = y.$

Since $\mathbb{Q} \cup (-1,1]$ is countable, let $(r_n)_{n \in \mathbb{N}}$ be an enumeration of all elements in it.

For each $n \in \mathbb{N}$, define $A_n := r_n + A$.

Note that for any m, n such that $A_m \cap A_n \neq \emptyset$, take $x \in A_m \cap A_n$. By definition,

$$x = r_n + a_n \tag{9}$$

$$x = r_m + a_m \tag{10}$$

where $a_n, a_m \in A$ and $r_n, r_m \in \mathbb{Q}$. Consequently,

$$a_n - a_m = r_m - r_n \in \mathbb{Q} \tag{11}$$

Therefore, $a_n \sim a_m$. By the second property of A, $a_n = a_m$. Thus, $r_m = r_n$ and m = n. Take the counterposition of what we just proved, $m \neq n \implies A_m \cap A_n = \emptyset$.

Let $z \in (0,1]$, there exists some $a \in A$ such that $z \in [x]$. That is, z = x + r for some $r \in \mathbb{Q} \cap (-1,1]$. There must exist some $m \in \mathbb{N}$ such that $r_m = r$, and consequently, $z \in A_m$.

Therefore, $(0,1] \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq (-1,2]$ (the second relation is obvious). Moreover,

$$\mu((0,1]) \le \mu(\bigcup_{n \in \mathbb{N}} A_n) \le \mu((-1,2]) = \mu((-1,0]) + \mu((0,1]) + \mu((1,2]) = 3\mu((0,1])$$
 (12)

Note that we just proved $\bigcup_{n\in\mathbb{N}} A_n$ is a disjoint union, hence,

$$\mu((0,1]) \le \sum_{n=1}^{\infty} \mu(A_n) \le 3\mu((0,1]) \tag{13}$$

$$\implies ((0,1])\mu \le \sum_{n=1}^{\infty} \mu(A+r_n) \le 3\mu((0,1]) \tag{14}$$

$$\implies \mu((0,1]) \le \sum_{n=1}^{\infty} \mu(A) \le 3\mu((0,1]) \tag{15}$$

Since $\mu((0,1])$ is finite, the only value $\mu(A)$ can take is zero, and $\mu(I) = 0$ as well. Consequently, for any set $S \in \mathcal{P}(\mathbb{R})$, if $S \subseteq I$, then $\mu(S) \leq \mu(I)$ and $\mu(S) = 0$. Otherwise, let $l = \lfloor \inf(S) \rfloor$ and $u = \lceil \sup(S) \rceil$.

$$I \subseteq S \subseteq \bigcup_{n=l}^{u} (n, n+1] \tag{16}$$

Therefore,

$$0 \le \mu(S) \le \sum_{n=l}^{u} \mu(n + (0,1]) = \sum_{n=l}^{u} \mu((0,1]) = 0$$
(17)

It's shown that $\mu(S) = 0$ for every $S \subseteq \mathcal{P}(\mathbb{R})$.

This leads to a contradiction to the first property required $(\mu((a,b]) = b - a)$.

2 Measurable Spaces and Measurable Maps

Definition 2.1. Let (X_1, A_1) and (X_2, A_2) be two measurable spaces. A function $f: X_1 \to X_2$ is a **measurable map** with respect to A_1 and A_2 if

$$f^{-1}(A_2) \in \mathcal{A}_1 \quad \forall A_2 \in \mathcal{A}_2 \tag{18}$$

That is, the pre-image of every set in A_2 is an element in A_1 as well.

Theorem 2.1. Let (X, \mathcal{A}) be a measurable space, then the indicator function for any $A \in \mathcal{A}$,

 $\mathcal{X}_A: X \to \mathbb{R}$, is measurable with respect to \mathcal{A} and $\mathcal{B}(\mathbb{R})$.

$$\mathcal{X}_A(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{19}$$

Proof. Since \mathcal{X}_A can only take values from $\{0,1\}$, the pre-image of any set $\not\subseteq \{0,1\}$ is undefined. We only need to consider pre-images of subsets of $\{0,1\}$:

$$\mathcal{X}_A^{-1}(\varnothing) = \varnothing \tag{20}$$

$$\mathcal{X}_A^{-1}(\{0,1\}) = X \tag{21}$$

$$\mathcal{X}_A^{-1}(\{0\}) = A^c \tag{22}$$

$$\mathcal{X}_{A}^{-1}(\{1\}) = A \tag{23}$$

Therefore, \mathcal{X}_A is measurable.

Theorem 2.2. The composition of measurable maps is measurable.

Theorem 2.3. For measurable spaces (X, \mathcal{A}) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and measurable maps $f, g : \Omega \to \mathbb{R}$, f + g, f - g and |f| are measurable.

3 Lebesgue Measures

Definition 3.1. step function

Theorem 3.1. Step functions are measurable.