

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra II

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Índice general

1.	Gru	pos resolubles	5
	1.1.	Series de un grupo	5
		1.1.1. Series de composición	7
	1.2.	Grupos resolubles	18
		1.2.1. Preliminares	18
		1.2.2. Definición	21
2.	G - \mathfrak{c}	conjuntos y p -grupos 2	27
	2.1.	Órbitas de un elemento	31
	2.2.	p-grupos	37
		2.2.1. p -subgrupos de Sylow	10

Álgebra II Índice general

1. Grupos resolubles

Este Capítulo trata sobre los grupos resolubles, propiedad interesante de un grupo que tendrá numerosas aplicaciones, como por ejemplo en la solución de ecuaciones por radicales. Sin embargo, la definición de grupo resoluble ha de esperar, pues primero tenemos que hacer un estudio de las "series de un grupo".

1.1. Series de un grupo

Definición 1.1 (Serie de un grupo). Sea G un grupo, una serie de G es una cadena de subgrupos G_0, G_1, \ldots, G_r de forma que:

$$G = G_0 > G_1 > G_2 > \ldots > G_r = \{1\}$$

En dicho caso, diremos que la serie tiene longitud r.

Ejemplo. En S_3 , podemos considerar la serie:

$$S_3 > A_3 > \{1\}$$

Definición 1.2 (Refinamiento). Sea G un grupo, si consideramos sobre él dos series:

$$G = H_0 > H_1 > \dots > H_s = \{1\}$$
 (1.1)

$$G = G_0 > G_1 > G_2 > \dots > G_r = \{1\}$$
 (1.2)

Diremos que (1.2) es un refinamiento de (1.1) si todo grupo que aparece en (1.1) también aparece en (1.2). Ha de ser por tanto $r \ge s$.

Decimos que (1.2) es un <u>refinamiento propio</u> de (1.1) si en (1.1) hay grupos que no aparecen en (1.2). En dicho caso, ha de ser r > s.

Ejemplo. En A_4 , podemos considerar la serie:

$$A_4 > V > \{1\}$$

Un refinamiento propios de la misma es:

$$A_4 > V > \langle (1\ 2)(3\ 4) \rangle > \{1\}$$

Definición 1.3 (Series propia y normal). Sea G un grupo, si consideramos una serie de G:

$$G = G_0 > G_1 > \ldots > G_r = \{1\}$$

- Decimos que es una serie propia si todas las inclusiones entre los subgrupos son propias, es decir, si $G_{k+1} \subseteq G_k$, para todo $k \in \{0, ..., r-1\}$.
- Decimos que es una <u>serie normal</u> si todas las relaciones de subgrupo que aparecen son de subgrupo normal, es decir, si $G_k \triangleright G_{k+1}$, para todo $k \in \{0, \ldots, r-1\}$. En dicho caso, lo notaremos como:

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_r = \{1\}$$

Ejemplo. Todas las series anteriores eran series normales propias:

$$S_3 \rhd A_3 \rhd \{1\}$$

$$A_4 \rhd V \rhd \{1\}$$

$$A_4 \rhd V \rhd \langle (1\ 2)(3\ 4) \rangle \rhd \{1\}$$

Definición 1.4 (Índices y factores de una serie). Dada una serie normal de un grupo G:

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_r = \{1\}$$

• Llamamos <u>factores</u> de la serie a los cocientes:

$$G_{k-1}/G_k \qquad \forall k \in \{1, \dots, r\}$$

■ Llamamos <u>índices</u> de la serie a los correspondientes <u>índices</u> de los factores. Si i_k es el <u>índices</u> del factor G_{k-1}/G_k para todo $k \in \{1, ..., r\}$, entonces notaremos:

$$G = G_0 \overset{i_1}{\triangleright} G_1 \overset{i_2}{\triangleright} \dots \overset{i_r}{\triangleright} G_r = \{1\}$$

Ejemplo. Por ejemplo, en la serie:

$$S_3 \triangleright A_3 \triangleright \{1\}$$

Tenemos los factores:

$$S_3/A_3 \cong C_2$$
$$A_3/\{1\} \cong A_3$$

Y los índices:

$$S_3 \stackrel{2}{\triangleright} A_3 \stackrel{3}{\triangleright} \{1\}$$

Si consideramos ahora la serie:

$$A_4 \stackrel{3}{\triangleright} V \stackrel{2}{\triangleright} \langle (1\ 2)(3\ 4) \rangle \stackrel{2}{\triangleright} \{1\}$$

Los factores que obtenemos son:

$$A_4/V$$
 $V/\langle (1\ 2)(3\ 4)\rangle$ $\langle (1\ 2)(3\ 4)\rangle/\{1\}$

Definición 1.5. Sea G un grupo, si tenemos dos series normales de G:

$$G = G_0 \rhd G_1 \rhd \ldots \rhd G_r = \{1\}$$

$$G = H_0 \rhd H_1 \rhd \ldots \rhd H_s = \{1\}$$

Se dice que son isomorfas si r = s y existe $\sigma \in S_r$ de forma que:

$$G_{k-1}/G_k \cong H_{\sigma(k)-1}/H_{\sigma(k)} \qquad \forall k \in \{1, \dots, r\}$$

Ejemplo. En $\mathbb{Z}/24\mathbb{Z}$ consideramos las series:

$$\mathbb{Z}/24\mathbb{Z} \rhd 2\mathbb{Z}/24\mathbb{Z} \rhd 4\mathbb{Z}/24\mathbb{Z} \rhd 8\mathbb{Z}/24\mathbb{Z} \rhd 24\mathbb{Z}/24\mathbb{Z} = \{0\}$$
$$\mathbb{Z}/24\mathbb{Z} \rhd 3\mathbb{Z}/24\mathbb{Z} \rhd 6\mathbb{Z}/24\mathbb{Z} \rhd 12\mathbb{Z}/24\mathbb{Z} \rhd 24\mathbb{Z}/24\mathbb{Z} = \{0\}$$

Que son dos series isomorfas, para la permutación $\sigma = (1\ 2\ 3\ 4)$

1.1.1. Series de composición

Pasamos ya al estudio de las series que nos interesarán, que son las series de composición.

Definición 1.6 (Serie de composición). Una serie de G se dice que es una serie de composición de G si es una serie normal sin refinamientos normales propios. En una serie de composición, será usual referirnos a los factores como factores de composición, y a los índices como índices de composición.

Ejemplo. Ejemplos de series de composición son:

- Las dos series anteriores sobre Z/24Z son series de composición.
- Anteriormente vimos que la serie $A_4 \triangleright V \triangleright \{1\}$ no era de composición, ya que podíamos refinarla más: $A_4 \triangleright V \triangleright \langle (1\ 2)(3\ 4) \rangle \triangleright \{1\}$, aunque ya esta última sí que es de composición.

Por ahora, para estudiar si una serie es o no de composición, no nos queda otra que realizar un análisis exhaustivo del retículo de subgrupos del grupo que consideremos, analizando solo las inclusiones de subgrupos que sean normales, algo que mostraremos en los siguientes ejemplos.

Ejemplo. Sea \mathbb{K} un cuerpo, sobre $GL_2(\mathbb{K})$ consideramos las matrices triangulares superiores::

$$T = \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \mid a, d \in \mathbb{K}^*, b \in \mathbb{K} \right\}$$

Que tiene infinitos elementos y no es un grupo abeliano, ya que:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & d \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & d \end{array}\right)$$

Si consideramos ahora:

$$U = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \mid b \in \mathbb{K} \right\}$$

Tenemos que $T \triangleright U \triangleright \{1\}$ es una serie de composición.

Notemos que:

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + \left(\begin{array}{cc} 0 & b \\ 0 & 0 \end{array}\right)$$

Si ahora para n > 2 cogemos como T el conjunto de las matrices triangulares superiores y luego cogemos:

$$N = \{\text{matrices triangulares superiores con diagonal de ceros}\}\$$

$$U_r = I + N^r$$

Tomando potencias los elementos van subiendo en la diagonal. Podemos considerar:

$$T \rhd U_1 \rhd U_2 \rhd \ldots \rhd U_n = I$$

Ejemplo. Tratamos de buscar cuántas series de composición hay en los siguientes grupos:

 \bullet En S_3 , recordamos que el retículo de subgrupos que teníamos era:

Figura 1.1: Diagrama de Hasse para los subgrupos de S_3 .

Como $A_3 = \langle (1\ 2\ 3) \rangle \lhd S_3$ (por tener índice 2) y ningún otro subgrupo de S_3 es normal salvo el trivial, la única serie de composición de S_3 es:

$$S_3 \rhd A_3 \rhd \{1\}$$

■ En D_4 :

Figura 1.2: Diagrama de Hasse para los subgrupos de D_4 .

Como todos los índices del grafo son 2, todas las relaciones de inclusión mostradas en el grafo en realidad son relaciones de normalidad (\triangleleft), por lo que tenemos 7 series de composición distintas (una por cada forma que tengamos de llegar desde D_4 hasta {1} en el grafo mediante caminos descendientes):

$$D_{4} \rhd \langle r^{2}, s \rangle \rhd \langle sr^{2} \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r^{2}, s \rangle \rhd \langle s \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r^{2}, s \rangle \rhd \langle r^{2} \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r^{2}, sr \rangle \rhd \langle r^{2} \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r^{2}, sr \rangle \rhd \langle sr \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r^{2}, sr \rangle \rhd \langle sr \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r^{2}, sr \rangle \rhd \langle sr^{3} \rangle \rhd \{1\}$$

$$D_{4} \rhd \langle r \rangle \rhd \langle r^{2} \rangle \rhd \{1\}$$

■ Para A_4 :

Como $V \triangleleft A_4$, tenemos como series de composición:

$$A_4 \rhd V \rhd \langle (1\ 2)(3\ 4) \rangle \rhd \{1\}$$

$$A_4 \rhd V \rhd \langle (1\ 3)(2\ 4) \rangle \rhd \{1\}$$

$$A_4 \rhd V \rhd \langle (2\ 3)(2\ 3) \rangle \rhd \{1\}$$

Además, como ninguna de las relaciones $\langle (i\ j\ k) \rangle < A_4$ es normal, no tenemos más series de composición.

• En $D_5 = \langle r, s \mid r^5 = s^2 = 1, sr = r^4 s \rangle$ tenemos:

Solo tenemos la serie de composición:

$$D_5 \rhd \langle r \rangle \rhd \{1\}$$

Ya que D_5 no tiene más subgrupos normales, a parte del trivial.

• En el grupo de los cuaternios:

Figura 1.3: Diagrama de Hasse para los subgrupos del grupo de los cuaternios.

Como todas las aristas del grafo están numeradas con índice 2, todas las relaciones de subgrupo son normales, por lo que tenemos 3 series de composición, una por cada camino posible:

$$Q_2 \rhd \langle i \rangle \rhd \langle -1 \rangle \rhd \{1\}$$

$$Q_2 \rhd \langle j \rangle \rhd \langle -1 \rangle \rhd \{1\}$$

$$Q_2 \rhd \langle k \rangle \rhd \langle -1 \rangle \rhd \{1\}$$

 \blacksquare En $S_3 \times \mathbb{Z}_2$: Por una parte, en S_3 teníamos una única serie de composición:

$$S_3 \triangleright A_3 \triangleright \{1\}$$

Y en \mathbb{Z}_2 la única opción a considerar es $\mathbb{Z}_2 \triangleright \{0\}$. Podemos considerar ahora las series de composición resultantes de considerar todas las combinaciones:

$$S_3 \times \mathbb{Z}_2 \rhd S_3 \times \{0\} \rhd A_3 \times \{0\} \rhd \{(1,0)\}$$

$$S_3 \times \mathbb{Z}_2 \rhd A_3 \times \mathbb{Z}_2 \rhd A_3 \times \{0\} \rhd \{(1,0)\}$$

$$S_3 \times \mathbb{Z}_2 \rhd A_3 \times \mathbb{Z}_2 \rhd \{1\} \times \mathbb{Z}_2 \rhd \{(1,0)\}$$

Que obtenemos primero variando algunos y luego otras. Esto es posible ya que los subgrupos del producto eran productos de subgrupos, en el Teorema ??.

Como $mcd(6,2) = 2 \neq 1$, vamos a tener que hay subgrupos que no son producto de uno por producto de otro, por lo que tendremos otra serie de composición:

$$S_3 \times \mathbb{Z}_2 \stackrel{2}{\triangleright} H_1 \stackrel{2}{\triangleright} H_2 \stackrel{3}{\triangleright} \{1\}$$

Con $H_1, H_2 < S_3 \times \mathbb{Z}_2$ que no especificaremos pero diremos que $H_1 \cong S_3$ y $H_2 \cong A_3$.

Definición 1.7 (Grupo simple). Un grupo G se dice simple si no es trivial y no tiene subgrupos normales propios

Ejemplo. \mathbb{Z}_3 es un grupo simple, ya que su retículo de subgrupos es:

Un resultado que veremos luego (el Teorema de Abel) nos dirá que los grupos A_n para $n \ge 5$ son grupos simples.

Resultados sobre series de composición

Proposición 1.1. Un grupo abeliano es simple si y solo si es un grupo cíclico de orden primo.

Demostración. Por doble implicación:

 \Leftarrow) Si G es cíclico de orden primo, no va a tener subgrupos propios, por lo que será simple.

 \Longrightarrow) Si G es abeliano, entonces todos sus subgrupos serán normales. Si es simple, no tendrá subgrupos propios (ya que si no serían normales, luego no sería simple). Sea $1 \neq x \in G$, sabemos que $\langle x \rangle < G$, de donde ($\{1\} \neq \langle x \rangle$ y G no tiene subgrupos propios) $G = \langle x \rangle$, por lo que G es cíclico.

Si |G| = nm, entonces $1 \neq \langle x^m \rangle < G$, por lo que G tendría subgrupos propios, luego no sería simple. Por tanto, |G| ha de ser primo.

Ejemplo. Estudiando un poco el caso de grupos cíclicos infinitos, si $G = \mathbb{Z}$, un grupo cíclico finito, \mathbb{Z} no es simple, ya que tiene subgrupos propios (que además son normales, por ser \mathbb{Z} abeliano).

Proposición 1.2. Si un grupo G tiene una serie de composición, entonces sus factores de composición son grupos simples.

Demostración. Sea una serie de composición de longitud r:

$$G = G_0 \triangleright G_1 \triangleright \dots \triangleright G_r = \{1\} \tag{1.3}$$

Supongamos que existe un índice $i \in \{1, ..., r\}$ de forma que G_{i-1}/G_i no sea un grupo simple. En cuyo caso, existirá un subgrupo propio normal suyo no trivial $\{1\} \neq H \triangleleft G_{i-1}/G_i$. Si usamos ahora el Tercer Teorema de Isomorfía considerando la proyección $p_i: G_{i-1} \rightarrow G_{i-1}/G_i$, tenemos que:

$$p_i^*(H) \lhd G_{i-1}$$

Además, como H es un subgrupo del cociente, tenemos que $\{G_i\} \subseteq H$, luego:

$$G_i = \ker(p_i) = p_i^*(G_i) \subseteq p_i^*(H) \triangleleft G_{i-1}$$

Y por ser $G_i \triangleleft G_{i-1}$, deducimos que también $G_i \triangleleft p_i^*(H)$. Hemos encontrado un subgrupo normal de G que estaría entre G_i y G_{i-1} :

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_{i-1} \triangleright p_i^*(H) \triangleright G_i \triangleright \ldots \triangleright G_r = \{1\}$$
 (1.4)

Por lo que (1.4) es un refinamiento de (1.3), que era una serie de composición, contradicción, que venía de suponer que un factor de la serie de composición no era simple.

Proposición 1.3. Todo grupo finito tiene una serie de composición.

Demostración. Sea G un grupo finito, distinguimos casos:

- Si G es el grupo trivial, es fácil hayar la serie de composición.
- Si G es simple, entonces no tiene subgrupos normales propios, por lo que tiene una única serie de composición:

$$G \triangleright \{1\}$$

- Si |G| = p primo, vimos en la Proposición ?? que entonces G es cíclico, y la Proposición 1.1 nos dice que G es simple, por lo que estamos en el caso anterior.
- Si |G| no es primo y G no es simple, por inducción sobre n = |G|, suponemos que es cierto para todo grupo H con |H| < |G| (observemos que el punto anterior nos sirve como caso base).

Como G es finito, tiene un número finito de subgrupos, entre los que podemos encontrar (por ser G no simple) G_1 , un subgrupo normal propio maximal¹ de G. Como $|G_1| < |G|$ (G_1 es subgrupo propio), por hipótesis de inducción tenemos una serie de composición para G_1 :

$$G_1 \triangleright G_2 \triangleright \ldots \triangleright G_r = \{1\}$$

Además, como G_1 era el subgrupo normal maximal de G, sabemos que no existe $H \triangleleft G$ con $G_1 \triangleleft H \triangleleft G$, por lo que la serie:

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \ldots \triangleright G_r = \{1\}$$

Es de composición.

Teorema 1.4 (de Refinamiento de Schreier). Sea G un grupo, dos series normales de G tienen refinamientos isomorfos.

Demostración. Consideramos dos series normales de G:

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_{i-1} \triangleright G_i \triangleright \ldots \triangleright G_r = \{1\}$$
 (1.5)

$$G = H_0 \triangleright H_1 \triangleright \dots \triangleright H_{i-1} \triangleright H_i \triangleright \dots \triangleright H_s = \{1\}$$
 (1.6)

Fijado $i \in \{1, ..., r\}$, tenemos $G_i \triangleleft G_{i-1} < G$, y para todo $j \in \{1, ..., s\}$ tenemos $H_j \triangleleft H_{j-1} < G$, donde podemos aplicar el primer apartado del Cuarto Teorema de Isomorfía, obteniendo la siguiente relación entre los grupos:

$$G_{ij} = G_i(H_j \cap G_{i-1}) \triangleleft G_i(H_{j-1} \cap G_{i-1}) = G_{ij-1} \quad \forall j \in \{1, \dots, s\}$$

En los casos extremos (es decir, en j = 0 y j = s), tendremos:

$$G_{i0} = G_i(H_0 \cap G_{i-1}) = G_iG_{i-1} = G_{i-1}$$

$$G_{is} = G_i(H_s \cap G_{i-1}) = G_i\{1\} = G_i$$

De esta forma, tenemos para todo $i \in \{1, ..., r\}$ que:

$$G_{i-1} = G_{i0} \triangleright G_{i1} \triangleright \ldots \triangleright G_{is-1} \triangleright G_{is} = G_i$$

Que podemos meter en todos los eslabones de la serie (1.5):

$$G = G_0 = G_{10} \triangleright G_{11} \triangleright \dots \triangleright G_{1s} = G_1 = G_{20} \triangleright G_{21} \triangleright \dots \triangleright G_{2s} = G_2 = G_{30} \triangleright \dots$$
$$\dots \triangleright G_{r-1s} = G_{r-1} = G_{r0} \triangleright \dots \triangleright G_{rs} = G_r = \{1\}$$

¹Es decir, que no existe $K \triangleleft G$ con $G_1 \triangleleft K$.

Obteniendo un refinamiento de longitud r(s+1) - (r-1) = rs + 1: En cada eslabón (teníamos r) hemos metido s+1 eslabones, de los que se repetían $(G_{is} = G_{i+1,0}, \text{ para } i \in \{0, \dots, r-1\})$ r-1 eslabones.

Si repetimos el procedimiento para la serie (1.6), fijado $j \in \{1, ..., s\}$, para todo $i \in \{0, ..., r\}$ podemos aplicar el primer apartado del Cuarto Teorema de Isomorfía, obteniendo que:

$$H_{ij} = H_i(G_i \cap H_j - 1) \triangleleft H_i(G_{i-1} \cap H_{j-1}) = H_{i-1j} \quad \forall i \in \{1, \dots, r\}$$

En los casos extremos tendremos:

$$H_{0j} = H_{j-1}$$
$$H_{rj} = H_j$$

Por lo que para todo $j \in \{1, ..., s\}$, tenemos:

$$H_{j-1} = H_{0j} \rhd H_{1j} \rhd \ldots \rhd H_{r-1j} \rhd H_{rj} = H_j$$

Y podemos obtener un refinamiento de (1.6) al igual que hicimos antes, metiendo la cadena superior entre cada uno de los eslabones de la serie original:

$$G = H_0 = H_{01} \triangleright H_{11} \triangleright \dots \triangleright H_{r1} = H_1 = H_{02} \triangleright H_{12} \triangleright \dots \triangleright H_{r2} = G_2 = H_{03} \triangleright \dots$$
$$\dots \triangleright H_{rs-1} = H_{s-1} = H_{0s} \triangleright H_{1s} \triangleright \dots \triangleright H_{rs} = H_s = \{1\}$$

Que tiene longitud s(r+1) - (s-1) = rs + 1, al igual que antes.

Ahora, por la segunda parte del Cuarto Teorema de Isomorfía, tenemos que:

$$\frac{G_{ij-1}}{G_{ij}} = \frac{G_i(H_j \cap G_{i-1})}{G_i(H_j \cap G_{i-1})} \cong \frac{H_j(G_{i-1} \cap H_{j-1})}{H_j(G_i \cap H_{j-1})} = \frac{H_{i-1j}}{H_{ij}}$$

Por lo que los dos refinamientos encontrados son isomorfos.

Ejercicio. Se pide calcular un refinamiento isomorfo aplicando el método de Schreier a las dos siguientes series normales:

$$G = G_0 \rhd G_1 \rhd G_2 \rhd G_3 = \{1\}$$

 $G = H_0 \rhd H_1 \rhd H_2 = \{1\}$

Teorema 1.5 (Jordan-Holder). Si un grupo G admite una serie de composición, cualquier serie normal puede refinarse a una serie de composición.

Además, dos series de composición de un mismo grupo son isomorfas siempre.

Demostración. Tomamos una serie de composición de G:

$$G = G_0 \rhd G_1 \rhd \ldots \rhd G_r = \{1\}$$

Y también una serie normal de G:

$$G = H_0 \rhd H_1 \rhd \ldots \rhd H_s = \{1\}$$

Por el Teorema de Schreier (la serie de composición es normal), existe un refinamiento de ambos isomorfo. Sin embargo, como la primera serie es de composición, su refinamiento coincide con ella misma. Para la segunda serie, obtendremos un refinamiento isomorfo a la primera:

$$G = \overline{G_0} \rhd \overline{G_1} \rhd \ldots \rhd \overline{G_r} = \{1\}$$

Con este último Teorema de Jordan-Holder se tiene claro ya el interés en las series de composición, ya que cada grupo admite un única (salvo isomorfismos) serie de composición.

Podemos pensar en calcular series de composición de un grupo conocida una serie de composición en un grupo isomorfo, resultado que podemos esperar que sea cierto (y que de hecho vamos a probar a continuación); sin embargo, el recíproco no es cierto en general: si tenemos dos series de composición, una de un grupo G y otra de otro grupo K que son isomorfas, en general G y K no van a ser isomorfos.

Ejemplo. Por ejemplo, anteriormente vimos en un ejemplo que la única serie de composición que podemos considerar en S_3 es:

$$S_3 \triangleright A_3 \triangleright \{1\}$$

En \mathbb{Z}_6 , que no es isomorfo a S_3 por ser abeliano, si observamos su retículo:

Figura 1.4: Diagrama de Hasse para los subgrupos de \mathbb{Z}_6 .

Vemos que una serie de composición de \mathbb{Z}_6 es:

$$\mathbb{Z}_6 \rhd \langle 2 \rangle \rhd \{0\}$$

Además, sabemos ahora por el Teorema de Jordan-Holder que \mathbb{Z}_6 no tiene más series de composición, ya que la otra posibilidad sería la serie:

$$\mathbb{Z}_6 > \langle 3 \rangle > \{0\}$$

Pero como esta no es isomorfa a la primera y sabemos que todas las series de composición de un mismo grupo son isomorfas, sabemos que esta segunda no es de composición. Veamos que las series:

$$S_3 \stackrel{2}{\triangleright} A_3 \stackrel{3}{\triangleright} \{1\}$$

$$\mathbb{Z}_6 \overset{2}{\triangleright} \langle 2 \rangle \overset{3}{\triangleright} \{0\}$$

Son isomorfas. Para ello, basta ver que:

$$S_3/A_3 \cong \mathbb{Z}_2 \cong Z_6/\langle 2 \rangle$$

 $A_3/\{0\} \cong A_3 \cong \mathbb{Z}_3 \cong \langle 2 \rangle \cong \langle 2 \rangle/\{0\}$

Proposición 1.6. Sean G y K dos grupos isomorfos, entonces todas las series de composición de G son isomorfas a todas las series de composición de K.

El objetivo principal de esta asignatura es clasificar los grupos finitos. Como estos grupos van a tener series de composición cuyos factores serán grupos simples, nos centraremos en clasificar los grupos simples, para luego clasificar los grupos finitos.

La teoría de clasificación de grupos simples comenzó en 1960 y fue completada en 2004, con una demostración de 15000 páginas en lo que se conoce como el "Teorema enorme". En la demostración intervinieron matemáticos como Gorestein (1923 - 1992). Esta clasificación de los grupos simples se hizo en:

- 18 familias infinitas de grupos simples.
- 26 grupos simples, llamados grupos esporádicos.
 Como curiosidad, el grupo esporádico más pequeño tiene orden 7920 y el más grande, 10⁵⁴.

Cualquier grupo finito simple pertenece a una de estas 18 familias, o es isomorfo a alguno de los 26 grupos esporádicos.

Entre las 18 familias de grupos simples destacamos 2, que son las que nos interesan por ahora:

- Los grupos cíclicos de orden primo, que ya hemos demostrado que se tratan de grupos simples.
- Los grupos alternados A_n con $n \ge 5$.

Veremos ahora este segundo resultado, en el ya prometido Teorema de Abel.

Teorema 1.7 (de Abel). A_n es simple, para $n \ge 5$.

Demostración. Sea $\{1\} \neq N \triangleleft A_n$, veamos que ha de ser $N = A_n$. En la Proposición ?? vimos que dado² $j \in X_n \setminus \{1,2\}$, teníamos que:

$$A_n = \langle (1 \ 2 \ j) \rangle$$

Y la demostración terminará viendo que N contiene a un elemento de esta forma. Bajo estas hipótesis, sabemos que va a existir (por ser N finito) $1 \neq \sigma \in N$, la permutación de N que mueve menos elementos. Por ser σ par (estamos en A_n), ha de mover más de dos elementos. Veamos que mueve exactamente 3:

²Donde $X_n = \{1, 2, ..., n\}.$

1. Si σ es producto de ciclos disjuntos de longitud 2: supongamos que σ mueve, al menos, los elementos x_1, x_2, x_3 (distintos entre sí), con lo que podemos escribir:

$$\sigma = (x_1 \ x_2)(x_3 \ x_4) \dots$$

Sea $\tau = (x_3 \ x_4 \ x_5)$ para ciertos $x_4, x_5 \in X_n$ distintos de x_1, x_2, x_3 y distintos entre sí, definimos:

$$\sigma_1 = (x_3 \ x_4 \ x_5) \sigma(x_3 \ x_4 \ x_5)^{-1} \in N$$

 σ_1 está en N por ser $N \triangleleft A_n$. Si consideramos:

$$[\tau, \sigma] = \tau \sigma \tau^{-1} \sigma^{-1} = \sigma_1 \sigma^{-1} \in N$$

• Supongamos que σ mueve a x_5 , en cuyo caso:

$$\sigma = (x_1 \ x_2)(x_3 \ x_4)(x_5 \ \sigma(x_5)) \dots$$

$$\sigma_1 = (x_1 \ x_2)(x_3 \ \sigma(x_5))(x_4 \ x_5) \dots$$

Con lo que:

$$[\tau, \sigma] = (x_3 \ \sigma(x_5))(x_4 \ x_5)(x_3 \ x_4)(x_5 \ \sigma(x_5))$$

Luego $[\tau, \sigma]$ deja fijos a x_1 y x_2 y mueve a los mismos que movía σ . Por ello, $[\tau, \sigma] \in N$ y $[\tau, \sigma]$ mueve menos elementos que σ , contradicción, que viene de suponer que σ mueve a x_5 .

• Si suponemos que σ no mueve a x_5 :

$$\sigma_1 = (x_1 \ x_2)(x_4 \ x_5)$$

Tenemos:

$$[\tau,\sigma] = (x_3 \ x_5 \ x_4)$$

Que mueve menos elementos que σ , contradicción.

Por tanto, σ no puede ser producto de transposiciones, ya que llegamos a contradicciones.

2. Si σ tiene un ciclo de longitud mayor o igual que 3 en el que mueve a x_1, x_2 y x_3 :

$$\tau = (x_3 \ x_4 \ x_5)$$
$$\sigma_1 = \tau \sigma \tau^{-1} \in N$$

Supongamos que σ mueve más de 3 elementos, por lo que mueve al menos (por ser una permutación par) 5. En dicho caso:

$$\sigma_1 = (x_1 \ x_2 \ x_4 \ \ldots) \neq \sigma$$

Por lo que:

$$[\tau, \sigma] = \sigma_1 \sigma^{-1} \in N$$

Y $[\tau, \sigma]$ deja fijos a los mismos que σ y a x_2 . En dicho caso, tenemos que $[\tau, \sigma]$ mueve menos que σ .

En definitiva, concluimos que σ contiene a un ciclo de longitud 3, a saber: $(i\ j\ k)$, todos ellos elementos distintos.

• Si i, j, k, 1, 2 son todos distintos:

$$(1\ i)(2\ j)(i\ j\ k)(1\ i)(2\ j) = (1\ 2\ k) \in N$$

• Si i = 1 y j, k, 2 fueran distintos, $\exists h$ distinto de los anteriores de forma que:

$$(2 j)(k h)(1 j k)(2 j)(k h) = (1 2 h) \in N$$

• Si i = 2 y j, k, 1 fueran distintos, $\exists h$ distintos de los anteriores de forma que:

$$\dots = (1 \ 2 \ h) \in N$$

En definitiva, N contiene al generador de A_n , de donde:

$$N = \langle (1 \ 2 \ j) \rangle = A_n$$

1.2. Grupos resolubles

Antes de pasar con la definición de grupos resolubles, hemos de respasar ciertos conceptos relacionados con la operación de conmutador que ya definimos sobre los elementos de G, recordamos que era la aplicación $[\cdot,\cdot]: G\times G\to G$ dada por:

$$[x, y] = xy(yx)^{-1} = xyx^{-1}y^{-1}$$
 $\forall x, y \in G$

1.2.1. Preliminares

Sobre el conmutador solo vimos la Proposición $\ref{eq:constraint}$, que nos decía que dados dos elementos h,k de un grupo G:

$$hk = kh \iff [h, k] = 1$$

Proposición 1.8. Sea G un grupo $y x, y \in G$, se verifican:

- $i) [x, y]^{-1} = [y, x].$
- $ii) \ \ z[x,y]z^{-1} = [zxz^{-1},zyz^{-1}], \ \forall z \in G.$

Demostración. Veamos cada apartado:

i) Basta con ver:

$$[x,y][y,x] = xy(yx)^{-1}yx(xy)^{-1} = xy(xy)^{-1} = 1$$

ii) Sea $z \in G$, basta aplicar la definición del conmutador:

$$z[x,y]z^{-1} = zxy(yx)^{-1}z^{-1} = \frac{zxy(x^{-1}y^{-1}z^{-1})}{[zxz^{-1}, zyz^{-1}]} = zxz^{-1}zyz^{-1}(zyz^{-1}zxz^{-1})^{-1} = zxyz^{-1}(zx^{-1}y^{-1}z^{-1})$$
$$= \frac{zxy(x^{-1}y^{-1}z^{-1})}{z^{-1}}$$

Proposición 1.9. Sea G un grupo, el conjunto:

$$\langle [x,y] \mid x,y \in G \rangle$$

es un subgrupo normal de G.

Demostraci'on. Llamando Λ a dicho conjunto, para ver que es un subgrupo, si $a,b\in\Lambda$, entonces $\exists n,m\in\mathbb{Z}$ de forma que:

$$a = ([x, y])^n$$
 $b = ([x, y])^m$

En dicho caso:

$$ab^{-1} = ([x, y])^n ([x, y])^{-m} = ([x, y])^{n-m}$$

Con $n - m \in \mathbb{Z}$, por lo que $ab^{-1} \in \Lambda$, de donde $\Lambda < G$.

Ahora, para ver que $\Lambda \lhd G$, sea $a \in \Lambda$, existirán $n \in \mathbb{Z}$, $x, y \in G$ de forma que $a = ([x, y])^n$. Sea $z \in G$:

• Si n = 1:

$$z[x,y]z^{-1} = [zxz^{-1}, zyz^{-1}] \in \Lambda$$

■ Si n = -1:

$$z([x,y])^{-1}z^{-1} = z[y,x]z^{-1} = [zyz^{-1},zxz^{-1}] \in \Lambda$$

• Supuesto para n-1, para n:

$$z([x,y])^n z^{-1} = z[x,y]z^{-1}z([x,y])^{n-1}z^{-1} = (z[x,y]z^{-1})(z([x,y])^{n-1}z^{-1})$$

Con $z[x,y]z^{-1} \in \Lambda$ por ser $[x,y] \in \Lambda$ y $z([x,y])^{n-1}z^{-1} \in \Lambda$ por hipótesis de inducción. Como $\Lambda < G$, concluimos que $z([x,y])^nz^{-1} \in \Lambda$. Escribiendo m=-n:

$$(z([x,y])^m z^{-1})^{-1} = z^{-1}([x,y])^{-m} z \in \Lambda$$

Por ser $\Lambda < G$, concluimos que $z([x,y])^m z^{-1} \in \Lambda$.

En definitiva, $\Lambda \triangleleft G$.

Definición 1.8 (Subgrupo conmutador). Sea G un grupo, llamamos subgrupo conmutador de G al subgrupo:

$$[G,G] = \langle [x,y] \mid x,y \in G \rangle$$

Observemos que como $hk = kh \iff [h, k] = 1$, este grupo está generado por los conmutadores de los elementos que no conmutan entre sí:

$$[G, G] = \langle [x, y] \mid xy \neq yx \rangle$$

Proposición 1.10. Sea G un grupo, G/[G,G] es abeliano. Más aún, es el menor subgrupo normal de G que hace que el cociente sea abeliano. Es decir, si $N \triangleleft G$:

$$G/N$$
 es abeliano \iff $[G,G] < N$

G/[G,G] recibe el nombre de grupo abelianizado de G.

Demostración. Si demostramos la doble implicación, como [G,G] < [G,G], tendremos que G/[G,G] es abeliano, por lo que solo tenemos que probar esto:

 \Longrightarrow) Si consideramos la proyección al cociente $p:G\to G/N$, sea $a\in[G,G]$, entonces existirán $n\in\mathbb{Z}$ y $x,y\in G$ de forma que:

$$a = ([x, y])^n$$

Si calculamos la imagen de a por p (que recordamos que es un homomorfismo):

$$p(a) = (p([x,y]))^n = (p(xy(yx)^{-1}))^{-1} = (p(xy))^n (p(yx))^{-n}$$

$$\stackrel{(*)}{=} (p(x))^n (p(y))^n (p(y))^{-n} (p(x))^{-n} = 1$$

Donde en (*) hemos usado que G/N es abeliano. Tenemos que $a \in \ker(p) = N$.

 \iff Sean $x, y \in G$, entonces:

$$xy(yx)^{-1} = [x, y] \in [G, G] < N$$

Pero:

$$(xN)(yN) = xyN = yxN = (yN)(xN) \iff xy(yx)^{-1}N = N$$

Por lo que (xN)(yN) = (yN)(xN), para todos $x, y \in G$.

Corolario 1.10.1. Si G es un grupo:

$$G \ abeliano \iff [G, G] = \{1\}$$

Demostración. Como $G \cong G/\{1\}$:

$$G$$
 abeliano \iff $G/\{1\}$ abeliano \iff $[G,G] < \{1\} \iff$ $[G,G] = \{1\}$

Ejercicio. Se pide comprobar que:

$$[A_3, A_3] = \{1\}$$
$$[S_3, S_3] = A_3$$
$$[A_4, A_4] = V$$

1.2.2. Definición

Definición 1.9 (Serie derivada). La serie derivada de un grupo G es la cadena de subgrupos normales:

$$G = G^0 \triangleright G' \triangleright G'' \triangleright \ldots \triangleright G^{(k)} \triangleright \ldots$$

Donde:

$$G^{(k+1)} = [G^{(k)}, G^{(k)}]$$

De esta forma, el subgrupo G' = [G, G] recibe el nombre de subgrupo derivado de G, o primer derivado de G.

Un grupo G se dice <u>resoluble</u> si existe un índice k de forma que $G^{(k)} = \{1\}$. Es decir, la serie derivada de G alcanza el $\{1\}$.

Ejemplo. Veamos que:

• Si G es abeliano, entonces G es resoluble:

$$G' = [G, G] = \{1\}$$

Por lo que la serie derivada es:

$$G\rhd G'=\{1\}$$

• S_3 es resoluble:

$$S_3' = [S_3, S_3] = A_3$$

 $S_3'' = A_3' = [A_3, A_3] = \{1\}$

Y la serie derivada es:

$$S_3 \triangleright A_3 \triangleright \{1\}$$

• A_4 es resoluble:

$$A'_4 = [A_4, A_4] = V$$

 $A''_4 = V' = [V, V] = \{1\}$

Y la serie derivada es:

$$A_4 \rhd V \rhd \{1\}$$

• S_4 es resoluble, ya que $S_4' = [S_4, S_4] = A_4$ y ya tenemos la serie de A_4 :

$$S_4 \triangleright A_4 \triangleright V \triangleright \{1\}$$

En general, si G es un grupo cuyo grupo derivado es resoluble, entonces G será resoluble.

• A_5 no es resoluble:

$$A_5' = [A_5, A_5] \neq \{1\}$$

Ya que A_5 no es abeliano, pero como A_5 es simple, no tiene subgrupos normales propios, con lo que $A'_5 = A_5$. La serie derivada será:

$$A_5 \triangleright A_5 \triangleright A_5 \triangleright \dots$$

En general, ningún grupo no abeliano y simple es resoluble.

• S_n no es resoluble para $n \ge 5$, ya que:

$$[S_n, S_n] = A_n \qquad \forall n \geqslant 3$$

Y como ya vimos lo que le pasa a A_n para $n \ge 5$, la serie derivada de S_n será:

$$S_n \rhd A_n \rhd A_n \rhd \dots$$

Teorema 1.11 (Caracterización de grupos resolubles para grupos finitos). Si G es un grupo finito, son equivalentes:

- i) G es resoluble.
- ii) G tiene una serie normal con factores abelianos.
- iii) Los factores de composición de G son cíclicos de orden primo.
- iv) G tiene una serie normal con factores cíclicos.

Demostración. Veamos todas las implicaciones:

 $i) \Longrightarrow ii$) Si G es resoluble, la serie derivada será de la forma:

$$G = G^0 \rhd G' \rhd \ldots \rhd G^{(r)} = \{1\}$$

Que es una serie normal con factores abelianos, ya que los factores son de la forma:

$$G^{(k-1)}/G^{(k)} = G^{(k-1)}/\left[G^{(k-1)}, G^{(k-1)}\right]$$

Que ya vimos en la Proposición 1.10 que siempre era un grupo abeliano.

 $ii) \Longrightarrow iii)$ Si tenemos una serie normal con factores abelianos:

$$G = G_0 \rhd G_1 \rhd \ldots \rhd G_s = \{1\}$$

Por el Teorema de Jordan-Holder, podemos refinarla a una serie de composición, donde nos fijaremos ahora en lo que pasa entre dos eslabones de la serie original:

$$\ldots \rhd G_r \rhd H_{r1} \rhd H_{r2} \rhd \ldots \rhd H_{rs} \rhd G_{r+1} \rhd \ldots$$

Por hipótesis los factores son abelianos, es decir, los grupos:

$$G_{k-1}/G_k \qquad \forall k \in \{1, \dots, s\}$$

son abelianos. Por consiguiente, como todo subgrupo de un grupo abeliano también es abeliano, tenemos que los siguientes cocientes también son abelianos:

$$H_{r1}/G_{r+1}$$
 H_{r2}/G_{r+1} ··· H_{rs}/G_{r+1} < G_r/G_{r+1}

Por tanto, los factores:

$$G_r/H_{r1} \cong \frac{G_r/G_{r+1}}{H_{r1}/G_{r+1}}$$

$$H_{r1}/H_{r2} \cong \frac{H_{r1}/G_{r+1}}{H_{r2}/G_{r+1}}$$

$$\vdots$$

$$H_{rs-1}/H_{rs} \cong \frac{H_{rs-1}/G_{r+1}}{H_{rs}/G_{r+1}}$$

Son abelianos, por ser isomorfos a un cociente de un grupo abeliano. En definitiva, todos los factores de composición son abelianos, finitos y simples (por ser factores de composición), luego son cíclicos de orden primo, por la Proposición 1.1.

- $iii) \Longrightarrow iv$) Como las series de composición son, en particular, series normales, cualquier³ serie de composición de G será normal con factores cíclicos.
- $iv) \Longrightarrow i$) Consideramos una serie normal con factores cíclicos (luego abelianos):

$$G = G_0 \rhd G_1 \rhd \ldots \rhd G_r = \{1\}$$

Veamos que $G^{(k)} < G_k$, para todo $k \in \{1, ..., r\}$: como G_{k-1}/G_k es abeliano por ser un factor, entonces por la Proposición 1.10:

$$[G_{k-1}, G_{k-1}] = G^{(k)} < G_k$$

En particular:

$$G^{(r)} < G_r = \{1\}$$

Y tenemos ya que la serie derivada alcanza el mínimo:

$$G = G^0 \rhd G' \rhd \ldots \rhd G^{(r)} = \{1\}$$

Por lo que G es resoluble.

Ejemplo. Aplicaciones del Teorema son:

• Vimos ya que S_4 era resoluble, veámoslo de otra forma:

$$S_4 \triangleright A_4 \triangleright V \triangleright \{1\}$$

Es una serie normal con factores cíclicos abelianos:

$$S_4/A_4 \qquad A_4/V \qquad V/\{1\}$$

³Gracias al Teorema de Jordan-Holder.

• En D_n :

$$D_n \rhd \langle r \rangle \rhd \{1\}$$

Es una serie normal con factores cíclicos abelianos, luego D_n es resoluble.

Una estrategia <u>muy usada</u> a la hora de comprobar si un grupo es resoluble o no es buscar si nuestro grupo tiene un subgrupo normal resoluble que haga que el cociente sea resoluble, con lo que podemos aplicar el tercer apartado de la siguiente Proposición:

Proposición 1.12. Se verifica que:

- i) Todo subgrupo de un grupo resoluble es resoluble.
- ii) Todo cociente de un grupo resoluble es resoluble.
- iii) Si $N \triangleleft G$ y N y G/N son resolubles, entonces G es resoluble.

Demostración. Veamos cada una:

i) Supongamos que la serie derivada de G es:

$$G = G^0 \rhd G' \rhd G'' \rhd \dots \rhd G^{(r)} = \{1\}$$

Si H < G, entonces $H^{(k)} < G^{(k)}$ para todo $k \in \{1, ..., r\}$. Como tenemos que $G^{(r)} = \{1\}$, tendremos que $H^{(r)} = \{1\}$, por lo que H es resoluble.

ii) Supuesto que G es resoluble con la serie anterior, consideramos $N \triangleleft G$. Por inducción, tendremos que:

$$(G/N)^{(k)} = G^{(k)}N/N$$

Y como $G^{(r)} = \{1\}$, entonces:

$$(G/N)^{(r)} = \{1\} \Longrightarrow G/N \text{ resoluble}$$

iii) Si $N \triangleleft G$ y G/N son resolubles: por ser G/N resoluble, entonces $\exists s$ de forma que:

$$G^{(s)}N/N = (G/N)^{(s)} = \{1\}$$

En dicho caso:

$$G^{(s)} < N$$

Y como N es resoluble, $\exists t$ de forma que $N^{(t)} = \{1\}$. En dicho caso:

$$G^{(s+t)} < N^{(t)} = \{1\}$$

Para concluir los resultados sobre grupos resolubles, veamos qué pasa con el producto de grupos resolubles:

Corolario 1.12.1. Cualquier producto finito de grupos resolubles es resoluble.

Demostración. Suponiendo que G_1 y G_2 son resolubles, cada uno tendrá su serie derivada. Tenemos:

$$G_2 \cong \{1\} \times G_2 < G_1 \times G_2$$

Con $\{1\} \times G_2$ resoluble por ser isomorfo a G_2 . Además, $\{1\} \times G_2 \triangleleft G_1 \times G_2$. Busquemos el cociente:

$$G_1 \times G_2/\{1\} \times G_2 \cong G_1$$

Que es resoluble, por lo que usando el apartado 3 de la Proposición superior, concluimos que $G_1 \times G_2$ es resoluble.

Por hipótesis de inducción, fijada una coordenada, movemos todas las demás.

2. G-conjuntos y p-grupos

Definición 2.1. Sea G un grupo y X un conjunto no vacío, una acción¹ de G sobre X es una aplicación:

$$\begin{array}{cccc} ac: & G \times X & \longrightarrow & X \\ & (g,x) & \longmapsto & ac(g,x) \end{array}$$

Que verifica:

- $i) \ ac(1,x) = x \quad \forall x \in X.$
- $ii) \ ac(g, ac(h, x)) = ac(gh, x) \quad \forall x \in X, \ \forall g, h \in G.$

En dicho caso, diremos que G actúa² (o que opera) sobre X.

Si G actúa sobre X, diremos que este conjunto X es el G-conjunto a izquierda. A la aplicación ac se le llama aplicación de la G-estructura.

Notación. Si $ac: G \times X \to X$ es una acción de G sobre X, es común denotar:

$$ac(q, x) = {}^{g}x = q \cdot x = q * x$$

En este documento, usaremos la notación $ac(g, x) = {}^gx$.

Ejemplo. Si G es un grupo y X es un conjunto no vacío, ejemplos de acciones de G sobre X son:

1. La acción trivial:

$$\begin{array}{cccc} ac: & G \times X & \longrightarrow & X \\ & (g,x) & \longmapsto & x \end{array}$$

2. Si tenemos una acción $ac: G \times X \to X$ y H < G, podemos considerar la acción por restricción $ac: H \times X \to X$, dada por:

$$ac(h, x) = ac(i(h), x) \qquad \forall h \in H, x \in X$$

Donde consideramos la aplicación inclusión $i: H \to G$ dada por i(h) = h, para todo $h \in H$.

3. Dado $n \in \mathbb{N}$, si $X = \{1, ..., n\}$ y $G = S_n$, la <u>acción natural</u> de S_n sobre X será la acción $ac : S_n \times X \to X$ dada por:

$$ac(\sigma, k) = {}^{\sigma}k = \sigma(k) \qquad \forall \sigma \in S_n, k \in X$$

¹En realidad esta es la definición de acción por la izquierda, pero no vamos a trabajar con las acciones por la derecha, por lo que hablaremos simplemente de acciones.

 $^{^{2}}$ En realidad deberíamos decir que "G actúa por la izquierda sobre X".

Proposición 2.1. Sea G un grupo y X un conjunto no vacío, dar una acción de G sobre X equivale a dar un homomorfismo de grupos de G en Perm(X).

Demostración. Veamos que es posible:

■ Por una parte, dada una acción de G sobre X, $ac: G \times X \to X$, podemos definir la aplicación:

$$\begin{array}{ccc} \phi: & G & \longrightarrow & \operatorname{Perm}(X) \\ & g & \longmapsto & \phi(g) \end{array}$$

Donde $\phi(g)$ es una aplicación $\phi(g): X \longrightarrow X$ dada por:

$$\phi(g)(x) = {}^g x \qquad \forall x \in X$$

Veamos en primer lugar que ϕ está bien definida, es decir, que $\phi(g) \in \text{Perm}(X)$ para cada $g \in G$. Para ello, veamos antes que ϕ cumple:

- $\phi(1) = id_X$, ya que la aplicación $x \mapsto ac(1, x)$ es la aplicación identidad en X, por ser ac una acción de G sobre X.
- $\phi(g)\phi(h) = \phi(gh)$, ya que al evaluar en cualquier $x \in G$:

$$(\phi(g)\phi(h))(x) = \phi(g)(\phi(h)(x)) = \phi(g)(hx) = {}^{g}(hx) \stackrel{(*)}{=} {}^{gh}x = \phi(gh)(x)$$

Donde en (*) hemos usado que ac es una acción de G sobre X.

Ahora, veamos que dado $g \in G$, la aplicación $\phi(g)$ es biyectiva (es decir, está en Perm(X)), ya que su aplicación inversa es $\phi(g^{-1})$:

$$\phi(g^{-1})\phi(g) = \phi(g^{-1}g) = \phi(1) = \phi(gg^{-1}) = \phi(g)\phi(g^{-1})$$

Y anteriormente vimos que $\phi(1) = id_X$, por lo que $\phi(g) \in \text{Perm}(X)$, para todo $g \in G$ y la aplicación ϕ está bien definida.

Además, por las dos propiedades anteriores, tenemos que ϕ es un homomorfismo de grupos.

■ Sea $\phi: G \to \operatorname{Perm}(X)$ un homomorfismo de grupos, definimos la aplicación $ac: G \times X \to X$ dada por:

$$ac(g, x) = \phi(g)(x) \quad \forall g \in G, x \in X$$

Veamos que es una acción:

$$ac(1,x) = \phi(1)(x) = x \qquad \forall x \in X$$

$$ac(g, ac(h, x)) = \phi(g)(\phi(h)(x)) = \phi(gh)(x) = ac(gh, x) \qquad \forall x \in X, \quad \forall g, h \in G$$

Definición 2.2 (Representación por permutaciones). Sea G un grupo y X un conjunto no vacío, si tenemos una acción de G sobre X, el homomorfismo ϕ dado por esta acción según la Proposición 2.1 recibirá el nombre de representación de G por permutaciones.

Además, llamaremos a $\ker(\phi)$ núcleo de la acción, ya que:

$$\ker(\phi) = \{ g \in G \mid \phi(g) = id_X \} = \{ g \in G \mid {}^g x = x \quad \forall x \in X \}$$

En el caso de que $\ker(\phi) = \{1\}$, diremos que la acción es <u>fiel</u>.

Ejemplo. A continuación, dadas varios ejemplos de acciones, consideraremos en cada caso su representación por permutaciones:

1. La representación por permutaciones de la acción trivial es el homomorfismo $\phi: G \to Perm(X)$ dado por:

$$\phi(g) = id_X \qquad \forall g \in G$$

2. Si tenemos una acción $ac: G \times X \to X$ sobre un grupo G y un conjunto no vacío X que tiene asociada una representación por permutaciones ϕ , entonces la acción por restricción $ac: H \times X \to X$ tendrá asociada como representación por permutaciones el homomorfismo $\phi_H: H \to X$ dado por:

$$\phi_H = \phi \circ i$$

Siendo $i: H \to G$ la aplicación inclusión.

3. En el caso de la acción natural de S_n sobre $X = \{1, ..., n\}$, tenemos que la representación por permutaciones es el homomorfismo $\phi: S_n \to S_n$ dado por:

$$\phi(\sigma) = \sigma \qquad \forall \sigma \in S_n$$

Es decir, $\phi = id_{S_n}$.

4. Sea G un grupo, podemos definir la acción por traslación como:

$$\begin{array}{cccc} ac: & G \times G & \longrightarrow & G \\ & (g,h) & \longmapsto & gh \end{array}$$

Y el homomorfismo asociado a la acción como representación por permutaciones será $\phi: G \to \operatorname{Perm}(G)$ dado por:

$$\phi(g)(h) = gh \qquad \forall g, h \in G$$

Como además:

$$\ker(\phi) = \{ g \in G \mid gh = h \quad \forall h \in G \} = \{ 1 \}$$

Tenemos que es una acción fiel.

Teorema 2.2 (Cayley). Todo grupo finito es isomorfo a un subgrupo de un grupo de permutaciones.

Demostración. Sea G un grupo finito, consideramos la acción por traslación:

$$\begin{array}{cccc} ac: & G \times G & \longrightarrow & G \\ & (g,h) & \longmapsto & gh \end{array}$$

Y su representación por permutaciones, $\phi: G \to \operatorname{Perm}(G)$ dado por:

$$\phi(g)(h) = gh \qquad \forall g \in G, \forall h \in G$$

Como la acción por traslación es una acción fiel, tendremos que $\ker(\phi) = \{1\}$ y aplicando el Primer Teorema de Isomorfía sobre ϕ , obtenemos que:

$$G \cong G/\{1\} \cong Im(\phi)$$

Donde $Im(\phi) = \phi_*(G)$, que en la Proposición ?? vimos que es un subgrupo de Perm(G).

Ejemplo. Podemos considerar las traslaciones de G sobre conjuntos especiales:

■ La acción por traslación de G sobre $\mathcal{P}(G)$ será $ac: G \times \mathcal{P}(G) \to \mathcal{P}(G)$ dada por:

$$ac(g, A) = gA = \{ga \mid a \in A\} \subseteq G \qquad \forall A \in \mathcal{P}(G)$$

■ Podemos también considerar la acción por traslación en el cociente por las clases laterales por la izquierda³: si H < G, consideramos el cociente de G sobre H por la izquierda y la acción $ac: G \times G/_{H^{\sim}} \to G/_{H^{\sim}}$ dada por:

$$ac(g, xH) = {}^g(xH) = gxH = \{gxh \mid h \in H\}$$

6. La acción por conjugación se define como $ac: G \times G \to G$ dada por:

$$ac(g,h) = {}^g h = ghg^{-1}$$

Que es una acción, ya que:

$$^{1}h = 1h1^{-1} = h$$
 $\forall h \in G$
 $^{g}(^{h}l) = g^{h}lg^{-1} = ghlh^{-1}g^{-1}ghl(gh)^{-1} = {}^{gh}l$ $\forall g, h, l \in G$

El homomorfismo asociado es:

$$\phi: G \to \operatorname{Perm}(X)$$

$$\phi(g)(h) = ghg^{-1} \quad \forall g, h \in G$$

Y a $\phi(g)$ lo llamábamos (en el ej 14 de la relación 4, φ_g) automorfismo interior definido por G, con imagen:

$$Im(\phi) = Int(G)$$

El núcleo en este caso es:

$$\ker(\phi) = \{ g \in G \mid ghg^{-1} = h \} = \{ g \in G \mid gh = hg \quad \forall h \in G \} = Z(G)$$

 $^{^3}$ No es necesario considerar $H \triangleleft G$, ya que solo consideramos conjuntos no vacíos, por lo que no es necesario que el cociente tenga estructura de grupo.

7. La acción por conjugación en partes de G se define como la aplicación $ac: G \times \mathcal{P}(G) \to \mathcal{P}(G)$ dada por:

$$ac(g, A) = {}^{g}A = gAg^{-1} = \{gag^{-1} \mid a \in A\} \subseteq G \qquad \forall A \in \mathcal{P}(G)$$

8. Podemos definir la acción por conjugación de G también sobre Subg(G):

$$Subg(G) = \{ H \subseteq G \mid H < G \}$$

Como la aplicación $ac: G \times Subg(G) \to Subg(G)$ dada por:

$$ac(q, H) = {}^{g}H = qHq^{-1} < G$$

Ya que en la Proposición ?? vimos que gHg^{-1} era un subgrupo de G, al que llamaremos subgrupos conjugado de G.

2.1. Órbitas de un elemento

Definición 2.3 (Órbita). Sea G un grupo y X un G-conjunto, definimos en X una relación de equivalencia \sim dada por:

$$y \sim x \iff \exists g \in G \mid y = {}^g x$$

La clase de equivalencia de cada $x \in X$ se llama órbita de x, denotada por:

$$Orb(x) = \{ y \in X \mid y = {}^g x, g \in G \}$$

Tenemos de esta forma que el conjunto cociente X/\sim es el conjunto de las órbitas.

Ejemplo. Sobre $X = \{1, 2, 3, 4\}$: En S_4 consideramos $ac : S_4 \times X \to X$, la acción natural de S_4 sobre X:

$$ac(\sigma, k) = {}^{\sigma}k = \sigma(k)$$

■ Si tenemos $H = \langle (1\ 2\ 3) \rangle$. Queremos calcular las órbitas de los elementos del H:

$$Orb(1) = \{k \in X \mid \exists \sigma \in H \text{ con } \sigma(k) = 1\} = \{1, 2, 3\}$$

$$Orb(2) = \{1, 2, 3\}$$

$$Orb(3) = \{1, 2, 3\}$$

$$Orb(4) = \{4\}$$

Donde pensamos en Orb(k) como en los elementos de X desde los que podemos llegar a k con una permutación de H.

• En A_4 :

$$A_4 = \{1, (12)(34), (13)(24), (14)(23), (123), (124), (134), (234), (132), (142), (143), (243), (243)\}$$

Como tenemos todos los 3-ciclos:

$$Orb(1) = X$$

Y también tendremos que Orb(k) = X, para $k \in X$.

 \blacksquare En V, que contiene a todos los 2-ciclos, la situación será la misma:

$$Orb(k) = X \qquad \forall k \in X$$

■ En $H = \langle (1\ 2\ 3\ 4) \rangle$ sucede lo mismo:

$$Orb(k) = X \qquad \forall k \in X$$

Definición 2.4. Si el conjunto de órbitas X/\sim es unitario, decimos que la acción es transitiva.

Este nombre se debe a que dados $x, y \in X$, siempre $\exists g \in G$ de forma que:

$$y = {}^g x$$

Definición 2.5 (Estabilizador). Sea G un grupo y X un G-conjunto, definimos el grupo de estabilizadores de $x \in X$ en G como:

$$Stab_G(x) = \{ g \in G \mid {}^g x = x \}$$

También se le llama grupo de isontropía.

Proposición 2.3. Sea G un grupo y X un G-conjunto:

$$Stab_G(x) < G \qquad \forall x \in X$$

Ejemplo. Si nuevamente sobre $X = \{1, 2, 3, 4\}$ volvemos a considerar la acción natural de S_4 sobre X:

• En $H = \langle (1 \ 2 \ 3) \rangle$:

$$Stab_{H}(1) = \{ \sigma \in H \mid \sigma(1) = 1 \} = \{ 1 \}$$

 $Stab_{H}(2) = \{ 2 \}$
 $Stab_{H}(3) = \{ 3 \}$
 $Stab_{H}(4) = H$

• En A_4 :

$$Stab_{A_4}(1) = \{1, (2\ 3\ 4), (2\ 4\ 3)\} = \langle (2\ 3\ 4)\rangle$$

 $Stab_{A_4}(2) = \langle (1\ 3\ 4)\rangle$
 $Stab_{A_4}(3) = \langle (1\ 2\ 4)\rangle$
 $Stab_{A_4}(4) = \langle (1\ 2\ 3)\rangle$

 \blacksquare En V:

$$Stab_V(k) = \{1\} \qquad \forall k \in X$$

• En $H = \langle (1 \ 2 \ 3 \ 4) \rangle$:

$$Stab_H(k) = \{1\} \qquad \forall k \in X$$

Vamos a poder establecer una relación entre el órden de las órbitas y del conjunto cociente.

Proposición 2.4. Sea G un grupo finito que actúa sobre X, entonces para cada $x \in X$, Orb(x) es un conjunto finito y:

$$|Orb(x)| = [G : Stab_G(x)]$$

En particular, el cardinal de la órbita es un divisor del orden de G.

Demostración. Fijado $x \in X$, si consideramos $Stab_G(x) < G$ y las clases laterales por la izquierda, $G/_{Stab_G(x)} \sim$. Podemos considerar la aplicación $\phi : G/_{Stab_G}x \longrightarrow Orb(x)$ dada por:

$$\phi(gStab_G(x)) = {}^g x \qquad \forall g \in G$$

• Veamos que está bien definida. Para ello, sean $g, g' \in G$ de forma que:

$$gStab_G(x) = g'Stab_G(x)$$

Entonces, existirá $h \in Stab_G(x)$ de forma que g = g'h. En dicho caso:

$${}^{g}x = {}^{g'h}x = {}^{g'}({}^{h}x) = {}^{g'}x$$

Por lo que $\phi(gStab_G(x)) = \phi(g'Stab_G(x)).$

• Veamos que es sobrevectiva: sea $y \in Orb(x)$, vemos que $\exists g \in G$ de forma que:

$$y = {}^g x$$

Por lo que $y = \phi(qStab_G(x))$.

• Para la inyectividad, sean $g, g' \in G$ de forma que:

$$^{g}x = \phi(gStab_{G}(x)) = \phi(g'Stab_{G}(x)) = ^{g'}x$$

Entonces, podemos escribir:

$$x = g^{-1}(gx) = g^{-1}(g'x) = g^{-1}g'x$$

De donde concluimos que $g^{-1}g' \in Stab_G(x)$, por lo que $gStab_G(x) = g'Stab_G(x)$.

La demostración es cierta sin suponer que G sea un grupo finito, salvo para concluir que |Orb(x)| es un divisor de |G|.

Ejemplo. En el ejemplo de antes:

■ Tenemos:

$$|Orb(1)| = \{1, 2, 3\}$$

Y también que:

$$[H: Stab_H(1)] = \frac{|H|}{|Stab_H(1)|} \Longrightarrow |Stab_H(1)| = 1$$

Proposición 2.5. Sea G un grupo que actúa sobre X, si $x, y \in X$ están en la misma órbita, entonces $Stab_G(x)$ y $Stab_G(y)$ son subgrupos conjugados.

Demostración. Si x e y están en la misma órbita, entonces Orb(x) = Orb(y), por lo que $\exists g \in G$ de forma que $y = {}^gx$. En dicho caso, también tenemos que: $x = {}^{g^{-1}}y$. Veamos que:

$$Stab_G(y) = gStab_G(x)g^{-1}$$

Para ello:

 \subseteq) Sea $h \in Stab_G(x)$:

$$g^{hg^{-1}}y = g^{h}(g^{-1}y) = g^{h}x = g^{h}(h^{2}x) = g^{2}x = y$$

Entonces, $ghg^{-1} \in Stab_G(y)$, por lo que $gStab_G(y)g^{-1} \subseteq Stab_G(y)$.

 \supseteq) Sea ahora $h \in Stab_G(y)$:

$$g^{-1}hgx = x \Longrightarrow g^{-1}Stab_G(y)g \subseteq Stab_G(x)$$

Y multiplicando por g y g^{-1} tenemos la otra inclusión:

$$Stab_G(y) \subseteq gStab_G(x)g^{-1}$$

Definición 2.6. Sea G un grupo y X un G-conjunto, un elemento $x \in X$ se dice que es fijo por la acción si ${}^g x = x, \forall g \in G$.

Consideramos el conjunto de todos los elementos que se quedan fijos por todos los elementos de G:

$$Fix(X) = \{x \in X \mid {}^g x = x, \quad \forall g \in G\}$$

Proposición 2.6. Sea G un grupo y X un G-conjunto:

$$x \in Fix(X) \iff Orb(x) = \{x\} \iff Stab_G(x) = G$$

Observemos que si X es finito, $X/\sim = \{Orb(x_1), \dots, Orb(x_n)\}$:

$$|X| = \sum_{k=1}^{n} |Orb(x_k)| = |Fix(X)| + \sum_{x_k \notin Fix(X)} |Orb(x_k)|$$
$$= |Fix(X)| + \sum_{x_k \notin Fix(X)} [G : Stab_G(x_k)]$$

Acción por traslación

Sea G un grupo no trivial, la acción por traslación se define como $ac: G \times G \to G$ dada por:

$$ac(g,h) = gh \qquad \forall g,h \in G$$

De esta forma:

$$Orb(h) = \{g \in G \mid {}^gh = gh\} = G$$

Como solo tenemos una órbita, la acción por traslación es transitiva.

$$Stab_G(h) = \{g \in G \mid gh = h \mid \forall g \in G\} = \{g \in G \mid gh = h\} = \{1\}$$

Ahora:

$$Fix(G) = \{h \in G \mid {}^{g}h = h \quad \forall g \in G\} = \{h \in G \mid gh = h \quad \forall g \in G\} = \emptyset$$

Acción por conjugación

Sea G un grupo, la acción por conjugación se define como $ac:G\times G\to G$ dada por:

$$ac(g,h) = {}^gh = ghg^{-1} \qquad \forall g,h \in G$$

$$Orb(h) = \{{}^{g}h \mid g \in G\} = \{ghg^{-1} \mid g \in G\} = Cl_{G}(h)$$

Es la clase de conjugación de h en G (relación 4, ejercicio 30).

$$Stab_G(h) = \{g \in G \mid gh = ghg^{-1} = h\} = \{g \in G \mid gh = hg\} = C_G(h)$$

Centralizador de G en h (mismo ejercicio).

$$|Cl_G(h)| = [G: C_G(h)]$$

Y en el caso finito:

$$[G: C_G(h)] = \frac{|G|}{|C_G(h)|}$$

Por lo que $|Cl_G(h)|$ será un divisor de |G|.

$$Fix(X) = \{ h \in G \mid {}^{g}h = h \quad g \in G \} = \{ h \in G \mid ghg^{-1} = h \quad \forall g \in G \}$$
$$= \{ h \in G \mid gh = hg \quad g \in G \} = Z(G)$$

Ejemplo. Calcular las clases de conjugación de D_4 :

$$D_4 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} = \{s^i r^j \mid i = 0, 1, j = 0, 1, 2, 3\}$$

$$Cl_{D_4}(1) = \{s^i r^j 1 (s^i r^j)^{-1}\} = \{1\}$$

$$Cl_{D_4}(r) = \{s^i r^j r (s^i r^j)^{-1}\} = \{s^i r^j r r^{-j} s^{-i}\} = \{s^i r s^i\} = \{r, s r s\} = \{r, r^3\}$$

$$Cl_{D_4}(r^2) = \{s^i r^2 s^i\} = \{r^2\}$$

$$Cl_{D_4}(s) = \{s, s r^2\}$$

$$Cl_{D_4}(sr) = \{s r, s r^3\}$$

$$|G| = |Z(G)| + \sum_{h \notin Z(G), h \in \Gamma} |Cl_G(h)| = |Z(G)| + \sum_{h \notin Z(G), h \in \Gamma} [G : Cl_G(h)]$$

(Γ indica que cogemos un elemento de cada clase) Es la fórmula de las clases de conjugación de G. Esta fórmula podemos generalizarla para cualquier subgrupo normal $H \triangleleft G$, en la fórmula de clases generalizada:

$$|H| = |H \cap Z(G)| + \sum_{h \in \Gamma} [H : C_H(h)]$$

Donde Γ son las órbitas con más de un elemento (C_G es el centralizador de G).

Acción por conjugación sobre subgrupos

Consideramos ahora la acción $ac: G \times Subg(G) \to Subg(G)$ dada por:

$$ac(g, H) = gHg^{-1}$$

Veamos los conjuntos que venimos manejando:

$$Orb(H) = \{ {}^{g}H = gHg^{-1} \mid g \in G \}$$

Es decir, en la órbita de un conjunto están todos sus conjugados.

Proposición 2.7.

$$Orb(H) = \{H\} \iff H \lhd G$$

El estabilizador:

$$Stab_G(H) = \{g \in G \mid {}^gH = H\} = \{g \in G \mid gH = Hg\} = N_G(H)$$

Al que llamaremos conjunto <u>normalizador</u> de H en G, ya que son los elementos de G que hacen que H sea normal.

En este ejercicio vimos que:

Proposición 2.8.

$$C_G(S) \leqslant N_G(S)$$

Y además que:

$$H \triangleleft N_G(H)$$

El normalizador es el mayor grupo normal en G que tiene a H como subgrupo normal.

Vemos finalmente los subgrups que quedan fijos mediante la acción:

$$Fix(Subg(G)) = \{ H < G \mid {}^{g}H = H \quad \forall g \in G \} = \{ H < G \mid gHg^{-1} = H \quad \forall g \in G \}$$
$$= \{ H < G \mid H \lhd G \}$$

Coincide con el conjunto de subgrupos normales de G.

Si G es finito:

$$|Orb(H)| = [G:N_G(H)]$$

El número de grupos conjugados es un divisor de |G|.

2.2. p-grupos

Definición 2.7 (p-grupo). Si p es un número primo, un grupo G se dice que es un p-grupo si todo elemento tiene orden una potencia de p.

Si G es un grupo, diremos que H < G es un p-subgupo de G si H es un p-grupo.

Ejemplo. \mathbb{Z}_8 es un ejemplo de 2-grupo.

Teorema 2.9 (de Cauchy). Si G es un grupo finito y p es un primo que divide a |G|, entonces G tiene un elemento de orden p, y por tanto tendrá un subgrupo de orden p que será un p-subgrupo.

Demostración. Si consideramos:

$$X = \{(a_1, a_2, \dots, a_p) \in G^p \mid a_1 a_2 \dots a_p = 1\}$$

Si |G| = n, entonces $|X| = n^{p-1}$, ya que elegimos libremente las p-1 primeras coordenadas (variación con repetición) y la última viene condicionada.

Sea
$$\sigma = (1 \ 2 \dots p) \subseteq S_p \ y$$
:

$$H = \langle \sigma \rangle = \{1, \sigma, \dots, \sigma^{p-1}\} \subseteq S_p$$

Consideramos también la acción natural $ac: H \times X \to X$ dada por:

$$ac(\sigma^k, (a_1, a_2, \dots, a_p)) = (a_{\sigma^k(1)}, a_{\sigma^k(2)}, \dots, a_{\sigma^k(p)}) \quad \forall k \in \{0, \dots, p-1\}$$

Veamos que:

$$|Orb(a_1, ..., a_p)| = [H : Stab_H(a_1, ..., a_p)] = \frac{|H|}{|Stab_H(a_1, ..., a_p)|}$$

De donde tenemos que $|Orb(a_1, \ldots, a_p)|$ es un divisor de |H|. En dicho caso, $|Orb(a_1, \ldots, a_p)|$ será 1 o p, por ser |H| = p.

Sean r el número de órbitas con un elemento y s el número de órbitas con p elementos, entonces:

$$|X| = r + sp = n^{p-1}$$

Veamos ahora cómo son los elementos de $Orb(a_1, \ldots, a_n)$:

$$Orb(a_1, \ldots, a_p) = \{(a_1, \ldots, a_p), (a_2, \ldots, a_p, a_1), \ldots, (a_p, a_1, \ldots, a_{p-1})\}$$

La órbita será unitaria si y solo si $a_1 = a_2 = \ldots = a_p$. Además, sabemos de la existencia de órbitas con un elemento $(r \ge 1)$, como $Orb(1, 1, \ldots, 1)$. Busquemos más: por hipótesis, $p \mid n$ y además $r = n^{p-1} - sp$, de donde $p \mid r$, por lo que $r \ge 2$ (ya que lo divide un primo).

En conclusión, $\exists a \in G \setminus \{1\}$ de forma que Orb(a, a, ... a) es unitaria, de donde $a^p = 1$, por lo que O(a) = p. Tenemos que $\langle a \rangle$ es un p-subgrupo de orden p.

Corolario 2.9.1. Sea G un grupo finito y p un número primo:

$$G \text{ es } un \text{ } p\text{-}grupo \iff \exists n \in \mathbb{N} \text{ } con \text{ } |G| = p^n$$

Demostración. Veamos la doble implicación.

- \iff Si $|G| = p^n$ para cierto $n \in \mathbb{N}$, entonces tendremos que $O(x)|p^n$ para todo $x \in G$, de donde $O(x) = p^k$ para cierto $k \in \mathbb{N}$, luego G es un p-grupo.
- \Longrightarrow) Suponemos que q es un primo que divie al orden de |G|, luego por el Teorema de Cauchy debe existir $x \in G$ de forma que O(x) = q. En dicho caso, como G es un p-grupo, $q = p^r$ para cierto $r \in \mathbb{N}$, de donde r = 1 y q = p.

De esta forma, el único primo que divide a |G| es p, luego $|G|=p^n$, para algún $n \in \mathbb{N}$.

Si consideramos el centro de un p-grupo:

Teorema 2.10 (de Burnside). Si G es un p-grupo finito no trivial, entonces $|Z(G)| \ge p$, y en particular, $|Z(G)| \ne \{1\}$.

Demostración. Distinguimos casos:

- Si G es abeliano, Z(G) = G y tenemos que $|Z(G)| = |G| = p^n$ para cierto $n \in \mathbb{N}$, por lo que $|Z(G)| \ge p$. En particular, G no es trivial.
- Si G es no abeliano, entonces Z(G) < G y por la fórmula anterior de las clases:

$$p^n = |G| = |Z(G)| + \sum_{h \notin Z(G), h \in \Gamma} [G : C_G(h)]$$

Como G es finito, $[G:C_G(h)]$ divide a $|G|=p^n$ para cualquier $h\in\Gamma$ y para cierto $n\in\mathbb{N}$. Es decir:

$$[G:C_G(h)]=p^k$$
 para algún $k \in \mathbb{N}, \quad \forall h \in \Gamma$

En ningún caso puede ser k=0, ya que diríamos que $C_G(h)=G$ y:

$$C_G(h) = \{ g \in G \mid gh = hg \}$$

De donde $h \in Z(G)$, por lo que h no estaría en Γ .

En dicho caso, $p \mid [G : C_G(h)]$ para todo $h \in \Gamma$, $p \mid |Z(G)|$ (despejar |Z(G)| de la anterior igualdad), de donde $|Z(G)| \ge p$.

Corolario 2.10.1. Si G es un grupo y p es un número primo, si $|G| = p^n$, entonces:

$$|Z(G)| \neq p^{n-1}$$

En particular, todos los grupos de orden p^2 son abelianos.

Demostración. Supongamos que $|G| = p^n$ y que $|Z(G)| = p^{n-1}$. De esta forma:

$$|G/Z(G)| = p$$

En dicho caso, G/Z(G) es cíclico, luego G es abeliano (relación 4 ejercicio 4). En dicho caso, G coincide con su centro, G = Z(G), luego $p^n = p^{n-1}$, contradicción.

En particular, si G es un grupo con $|G| = p^2$ con p primo, como Z(G) < G, |Z(G)| a de dividir a p^2 , luego:

- Si |Z(G)| = 1, entonces Z(G) = 1, que contradice a Burnside.
- Si |Z(G)| = p, no puede ser.
- Falta que $|Z(G)| = p^2$, luego Z(G) = G.

Este corolario nos dice que todos los grupos de orden p^2 son resolubles, por ser abelianos.

Teorema 2.11. Sea G un grupo finito con |G| = n y sea p un número primo, entonces para toda potencia p^k que divida a n, existe un subgrupo H < G con orden $|H| = p^k$.

Demostración. Por inducción sobre k:

- Si k=1: tenemos el Teorema de Cauchy.
- Primera hipótesis de inducción: el resultado es cierto para todo l < k: si $p^l ||G|$, entonces $\exists H < G$ con $|H| = p^l$.

Veamos qué ocurre con k, es decir, si $|G| = p^k r = n$ para cierto $r \in \mathbb{N}$.

Por inducción sobre r:

- Si r=1: tomamos H=G.
- Segunda hipótesis de inducción: si r > 1, suponemos el resultado cierto para todo grupo de orden divisible por p^k que sea de la forma $p^k m$ con m < r, es decir, $\exists H < G$ con $|H| = p^k$, veamos qué ocurre con G:

Para ello, distinguimos casos:

- o Si existe K < G, $K \neq G$ de forma que $p \nmid [G : K]$. En dicho caso: |G| = [G : K]|K| y $p^k \mid |G|$, entonces p^k dividirá a |K|. Usando la Segunda Hipótesis de inducción, tendremos H < K < G de forma que $|H| = p^k$.
- o Si para cualquier $K < G, K \neq G$ se tiene que $p \mid [G : K]$, entonces usando la fórmula de las clases:

$$|Z(G)| = G - \sum_{h \notin Z(G), h \in \Gamma} [G : C_G(h)]$$

Y como p divide a todos los $[G : C_G(h)]$, concluimos que $p \mid |Z(G)|$. Por el Teorema de Cauchy, podemos encontrar K < Z(G) de forma que |K| = p.

Por ser $K \subseteq Z(G)$, entonces $K \triangleleft G$ y podemos considerar el conjunto cociente G/K, con orden:

$$|G/K| = \frac{|G|}{|K|} = \frac{|G|}{p}$$

De donde $p^{k-1} \mid |G/K|$.

Por la Primera Hipótesis de inducción, existe otro L < G/K con $|L| = p^{k-1}$. Por el Tercer Teorema de Isomorfía, sabemos que $\exists K \lhd H < G$ de forma que:

$$L = H/K$$

De donde:

$$|H| = |H/K||K| = p^{k-1}p = p^k$$

Ejemplo. Por ejemplo, si G es un grupo de la forma $|G| = 24 = 2^3 \cdot 3$, tendremos un subgrupo de orden 2, otro de orden 4 y otro de orden 8.

2.2.1. p-subgrupos de Sylow

En 1872, un noruego llamado Peter LM Sylow (1832-1918) definió unos grupos y llegó a unos resultados sobre ellos.

Definición 2.8 (p-subgrupos de Sylow). Si G es un grupo finito y p un número primo que divide a |G|, un p-subgrupo de Sylow de G es un p-subgrupo de G cuyo orden es la máxima potencia de p que divide a |G|.

Es decir, si $|G| = p^k m$ con mcd(p, m) = 1 y p primo, un p-subgrupo H < G es de Sylow si $|H| = p^k$.

Ejemplo. Si tenemos un grupo G con $|G| = 24 = 2^3 \cdot 3$, vamos a tener:

- P < G un 2-subgrupo de Sylow, con |P| = 8.
- $\ \ \, \ \, Q < G$ un 3—subgrupo de Sylow, con |Q|=3.

Corolario 2.11.1 (Primer Teorema de Sylow). Para todo grupo finito G y todo divisor primo p de su orden, existe al menos un p-subgrupo de Sylow.

Demostración. Es evidente a partir del Teorema 2.11.

Observación. Si G es un grupo y p es un número primo con:

$$|G| = p^k m \mod(p, m) = 1$$

Y P es un p-grupo de Sylow con P < H < G, entonces usando la fórmula de los índices:

$$[G:P] = [G:H][H:P]$$

En dicho caso, $[H:P] \mid [G:P] = m$, por lo que p no dividirá a [H:P]. Además:

$$[G:H] \mid [G:P] \Longrightarrow p \nmid [G:H]$$

Es decir, si encontramos un grupo que contiene a P como subgrupo, p no dividirá a dichos índices.

Al siguiente Lema también le llaman Segundo Teorema de Sylow, aunque nos reservamos este nombre para el resultado que se demustra a partir del Lema.

Lema 2.12. Si P es un p-subgrupo de Sylow de un grupo finito G y H es un p-subgrupo de de $N_G(P)$, entonces H está contenido en P.

Es decir, los p-subgrupos del normalizador de un p-subgrupo de Sylow están contenidos en diho subgrupo.

Demostración. Como $P \triangleleft N_G(P)$ y $H \triangleleft N_G(P)$, tenemos que $HP \triangleleft N_G(P)$ y $H \cap P \triangleleft H$. Estamos en la situación:

Por el Segundo Teorema de Isomorfía:

$$HP/P \cong H/H \cap P$$

Ahora, si $r = [HP: P] = [H: H \cap P]$, entonces $p \nmid r$. Ahora, como $r = [H: H \cap P]$ y como H es un p-subgrupo, $p^k \mid r$ para cierto $k \in \mathbb{N}$ (como es un p-grupo, tendremos k > 0). Como $p \nmid r$ (por la observación anterior) y $p^k \mid r$, entonces r = 1, de donde HP = P y H < P.

Teorema 2.13 (Segundo Teorema de Sylow). Sea G un grupo finito, p un número primo, supongamos que $|G| = p^k m$ con mod(p, m) = 1 y n_p denota el número de p-subgrupos de Sylow de G, entonces:

i) Todo p-subgrupo de G está contenido (como subgrupo) en un p-subgrupo de Sylow de G.

- ii) Cualesquiera dos p-subgrupos de Sylow de G son conjugados.
- iii) $n_p \mid m \ y \ n_p \equiv 1 \mod p$.

Ejemplo. Vamos a calcular grupos de Sylow:

■ En $C_n = \langle x \mid x^n = 1 \rangle$ para cierto $n \in \mathbb{N}$, por el Primer Teorema de Sylow tendremos grupos de Sylow de las potencias máximas de los primos que aparecen en la factorización de n. Es decir, si n se descompone como:

$$n = p_1^{t_1} p_2^{t_2} \dots p_m^{t_m}$$

Para cada $k \in \{1, 2, \dots, m\}$, existe un p_k -subgrupo de Sylow, que será cíclico y tendrá orden $p_k^{t_k}$, luego los subgrupos de Sylow serán de la forma: $C_{p_k^{t_k}}$.

- En S_3 , como $|S_3| = 6 = 2 \cdot 3$, tendremos 2—subgrupos de Sylow y 3—subgrupos de Sylow. Veamos cuántos tenemos:
 - 2—subgrupos de Sylow, es decir, subgrupos de orden 2 de S_3 . Como $n_2 \mid 3$ y ha de ser $n_2 \equiv 1 \mod 2$, tendremos que n_2 valdrá 1 o 3.

Figura 2.1: Diagrama de Hasse para los subgrupos de S_3 .

como los 3 subgrupos de la derecha son conjugados entre sí (compruébese), tendremos que $n_2 = 3$.

• Los 3-subgrupos de Sylow será un subgrupo de orden 3 de S_3 , que será el único que hay: $\langle (1\ 2\ 3) \rangle = A_3 \lhd S_3$.

Si queremos verlo por el Segundo Teorema de Sylow:

$$\begin{array}{c} n_3 \mid 2 \\ n_3 \equiv 1 \mod 3 \end{array} \right\} \Longrightarrow n_3 = 1$$

- En A_4 , tenemos $|A_4| = 12 = 2^3 \cdot 3$. Tendremos:
 - o 2—subgrupo de Sylow de orden 4. Busquemos por el Segundo Teorema de Sylow:

$$\begin{array}{c} n_2 \mid 3 \\ n_2 \equiv 1 \mod 2 \end{array} \right\} \Longrightarrow n_2 \in \{1, 3\}$$

Concluimos que $n_2 = 1$, de donde el 2—subgrupo de Sylow es V, que era normal en A_4 .

o 3-subgrupo de Sylow de orden 3:

$$\begin{array}{c} n_3 \mid 4 \\ n_3 \equiv 1 \mod 3 \end{array} \right\} \Longrightarrow n_3 \in \{1,4\}$$

Y serán los subgrupos de A_4 generados por los 3-ciclos.

- En S_4 , $|S_4| = 24 = 2^3 \cdot 3$:
 - Para los 2—subgrupos:

$$n_2 \mid 3$$
 $n_2 \equiv 1 \mod 2$
 $\implies n_2 \in \{1, 3\}$

Si suponemos que $n_2 = 1$, sea Q un grupo con |Q| = 8 que sea el 2—subgrupo de Sylow. En dicho caso, todas las trasposiciones deben estar contenidas en Q (por ser de orden 2), pero todas las trasposiciones generan a S_4 , luego $Q = S_4$, contradicción.

Por tanto, tenemos $n_2=3$, tenemos 3 2—subgrupos de Sylow: Q_1, Q_2 y Q_3 . El grupo de Klein V es un 2—subgrupo, y es normal en S_4 . Por tanto, va a estar contenido en algún Q_k ($k \in \{1,2,3\}$). Supongamos que $V < Q_1$. Como todos ellos son conjugados, $\exists \alpha, \beta \in S_4$ de forma que:

$$Q_2 = \alpha Q_1 \alpha^{-1}$$
$$Q_3 = \beta Q_1 \beta^{-1}$$

Y si multiplicamos (como $V \triangleleft S_4$):

$$V = \alpha V \alpha^{-1} < \alpha Q_1 \alpha^{-1} = Q_2$$
$$V = \beta V \beta^{-1} < \beta Q_1 \beta^{-1} = Q_3$$

De donde deducimos que $V < Q_k$ para todo $k \in \{1, 2, 3\}$. Los Q_k contendrán a V y a alguna transposición:

$$Q_1 = V\langle (1\ 2)\rangle$$

$$Q_2 = V\langle (1\ 3)\rangle$$

$$Q_3 = V\langle (1\ 4)\rangle$$

 \circ Para el caso n_3 :

$$n_3 \mid 8$$
 $n_3 \equiv 1 \mod 3$
 $\Longrightarrow n_3 \in \{1, 4\}$

Serán los subgrupos de la forma:

$$\langle (1\ 2\ 3)\rangle, \langle (1\ 2\ 4)\rangle, \langle (1\ 3\ 4)\rangle, \langle (2\ 3\ 4)\rangle$$

Que son los 3—subgrupos de Sylow.