6.867 Machine Learning Fall 2017

Lecture 3. Regularization, Model Selection

Advertisement Campaign

Planning Marketing Budget Across Channels: TV, Radio and NewsPaper

10 Markets

- Data across 200 Markets
 - Spending for TV, Radio, NewsPaper
 - Resulting Sales

	TV	Radio	Newspaper	Sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
6	8.7	48.9	75	7.2
7	57.5	32.8	23.5	11.8
8	120.2	19.6	11.6	13.2
9	8.6	2.1	1	4.8
10	199.8	2.6	21.2	10.6

Questions

Sample Data

- Is there a relationship between Sales and Marketing Budget?
- If yes, can we "predict" Sales given Marketing Budget across Channels?
- And, how "important" are each of the channels? do they interact?

How Much Data is Enough?

Fraction of Data

How Much Data is Enough?

Advertisement Data

Recall: Linear Regression

Ideal Solution:

$$f(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$

Linear approximation yields

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{i=0}^p w_i x_i, \text{ with } x_0 = 1$$

Linear regression: find w that minimizes

$$\sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{x}_n)^2$$

- Questions:
 - Are we overfitting? Are there systematic ways to avoid overfitting?

Bias-Variance Tradeoff

- ullet Consider any estimator f(X)
- Loss can be written as

$$\mathbb{E}[(Y - f(X))^2] =$$

$$\mathbb{E}[(Y - \mathbb{E}[Y|X])^2]$$

inherent loss

$$+\mathbb{E}[(\mathbb{E}[Y|X] - \mathbb{E}[f(X)])^2]$$

(bias)²

$$+\mathbb{E}[(f(X) - \mathbb{E}[f(X)])^2]$$

variance

Bias-Variance Tradeoff with Linear Regression

- Increasing model complexity
 - Higher Variance, Low bias
- Decreasing model complexity
 - Lower Variance, Higher bias
- In Linear Regression
 - The model complexity is captured by "set" of feasible parameters
- Therefore, we can achieve bias-variance tradeoff
 - By changing restrictions on choice of allowed model parameter
 - This is precisely achieved via Regularization

Regularized Linear Regression

ullet Ridge regression: for $\lambda>0$

minimize
$$\sum_{n} (y_n - \mathbf{w}^T \mathbf{x}_n)^2 + \lambda \mathbf{w}^T \mathbf{w}$$

• It is Lagrangian formulation of

minimize
$$\sum_{n} (y_n - \mathbf{w}^T \mathbf{x}_n)^2$$
over
$$\mathbf{w}^T \mathbf{w} \le \eta$$

• Goal:

minimize $g(\mathbf{w})$, where

$$g(\mathbf{w}) = (\mathbf{Y} - X\mathbf{w})^T (\mathbf{Y} - X\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

Now

$$\nabla g(\mathbf{w}) = -2X^T \mathbf{Y} + 2X^T X \mathbf{w} + 2\lambda \mathbf{w}$$

• Therefore, solution is

$$\mathbf{w} = (X^T X + \lambda \mathbf{I})^{-1} X^T \mathbf{Y}$$

Understanding Ridge Regression

- Consider a simple setting:
 - one dimensional feature and target; and $\sum_{n} x_n = 0$

$$X^T X = \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} = N \begin{bmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x^2} \end{bmatrix}$$

$$X^T \mathbf{Y} = \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = N \begin{bmatrix} \bar{y} \\ \bar{x} \bar{y} \end{bmatrix}$$

Understanding Ridge Regression

Therefore, solution of Ridge regression:

$$\mathbf{w} = \begin{bmatrix} (1 + \frac{\lambda}{N})^{-1} \bar{y} \\ (\bar{x}^2 + \frac{\lambda}{N})^{-1} \bar{x} \bar{y} \end{bmatrix}$$

ullet That is, by increasing λ , the model parameters simply shrink!

That is why it is also called Shrinkage

Advertisement data with few different regularization parameter

Advertisement data with few different regularization parameter

50% data used

regularization parameter

- Advertisement data with few different regularization parameter
 - Regularization is particularly useful when data is limited
 - In large data limit, "maximum likelihood" is reasonable

Bias-Variance with Ridge Regression

- Recall simple example
 - ullet As regularization parameter λ increases, model parameter shrinks
 - And bias increases

Covariance of model parameter

Cov[
$$\mathbf{w}$$
] = Cov[$A\mathbf{Y}$], where $A = (X^TX + \lambda \mathbf{I})^{-1}X^T$
= A Cov[\mathbf{Y}] A^T
= $\sigma^2(X^TX + \lambda \mathbf{I})^{-1}(X^TX)(X^TX + \lambda \mathbf{I})^{-1}$

Bias-Variance with Ridge Regression

• For simple example with one dimensional feature (and $\sum_{n} x_n = 0$)

$$\operatorname{Cov}[\mathbf{w}] = \frac{\sigma^2}{N} \begin{bmatrix} \left(1 + \frac{\lambda}{N}\right)^{-2} & 0 \\ 0 & \bar{x^2}(\bar{x^2} + \frac{\lambda}{N})^{-2} \end{bmatrix}$$

- That is
 - $\sum_i \mathrm{Var}(w_i)$ is decreasing with increase in λ
- ullet In summary: as λ increases
 - bias increases and variance decreases giving us desired trade-off

Model Selection

Use cross-validation:

Other Forms of Regularization

p-norm regularization

minimize
$$\sum_{n} (y_n - \mathbf{w}^T \mathbf{x}_n)^2 + \lambda \|\mathbf{w}\|_p^p$$

$$\downarrow \downarrow$$
minimize
$$\sum_{n} (y_n - \mathbf{w}^T \mathbf{x}_n)^2$$
over
$$\|\mathbf{w}\|_p \le \eta$$

- Ridge with p = 2
- LASSO with p = I

LASSO

- Brief history
 - LASSO = Least Absolute Shrinkage and Selection Operator
 - Automated selection of "relevant features"
 - A large number of features is useful to capture complex models, e.g.
 - variety of representations for capturing structure of image
 - or, higher order polynomials
 - But limited data does not allow meaningful selection
 - Regularization like Ridge Regression tends to select everything
 - LASSO, on the other hand, tries to choose sparsest model parameter

Ridge vs LASSO

Ridge regression is a Shrinkage estimator

minimize
$$(y-w)^2 + \lambda w^2 \Rightarrow w = \frac{y}{1+\lambda}$$

Lasso is thresholding estimator

minimize
$$(y-w)^2 + \lambda |w|$$

$$\bullet \text{ Then } w = \begin{cases} y - \frac{\lambda}{2} & \text{if } y > \frac{\lambda}{2} \\ y + \frac{\lambda}{2} & \text{if } y < -\frac{\lambda}{2} \\ 0 & \text{if } y \in [-\frac{\lambda}{2}, \frac{\lambda}{2}] \end{cases}$$

That is, small values are forced to 0

LASSO

Linear Regression Soln

$$w_0 = 2.939$$

$$w_{\text{\tiny TV}} = 0.046$$

$$w_{\text{Radio}} = 0.189$$

$$w_{\text{NewsPaper}} = -0.001$$

Advertisement data with LASSO

newspaper parameter

regularization parameter

LASSO vs Ridge

- Advertisement data with LASSO vs Ridge
 - R-square over various parameter values

Solving LASSO

LASSO requires solving optimization problem

minimize
$$g(\mathbf{w}) \equiv \sum_{n} (y_n - \mathbf{w}^T \mathbf{x}_n)^2 + \lambda \|\mathbf{w}\|_1$$

- There is no closed form solution
 - We need a generic algorithm
 - Optimization to our rescue!

Gradient Descent

• Optimization:

minimize
$$g(\mathbf{w})$$
 over $\mathbf{w} \in \mathbb{R}^d$

Iterative algorithm: in iteration t+1

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha_t \nabla g(\mathbf{w}^t)$$

where

$$\alpha_t \ge 0$$
, $\lim_{t \to \infty} \alpha_t = 0$, $\sum_t \alpha_t = \infty$

Solving LASSO

LASSO requires solving optimization problem

minimize
$$g(\mathbf{w}) \equiv \sum_{n} (y_n - \mathbf{w}^T \mathbf{x}_n)^2 + \lambda \|\mathbf{w}\|_1$$

- (Sub-)gradient algorithm: iterative algorithm
 - ullet Initially, start with ${f w}^{(0)}={f 1}$
 - \bullet Iteratively, obtain $\mathbf{w}^{(t+1)} = [w_i^{(t+1)}]$ for $t \geq 0$ where

$$w_i^{(t+1)} = w_i^{(t)} - \alpha^{(t)} \frac{\partial g(\mathbf{w}^{(t)})}{\partial w_i}$$
$$\frac{\partial \mathbf{w}}{\partial w_i} = -2 \sum_n (y_n - \mathbf{w}^T x_n) x_{ni} + \lambda \operatorname{sign}(w_i^t)$$

Projected Gradient Descent

• Optimization:

minimize $g(\mathbf{w})$ over $\mathbf{w} \in \mathcal{C}$, where \mathcal{C} is a convex set

• Iterative algorithm: in iteration t+1

$$\mathbf{v}^{t+1} = \mathbf{w}^t - \alpha_t \nabla g(\mathbf{w}^t)$$
$$\mathbf{w}^{t+1} = \text{Proj}_{\mathcal{C}}(\mathbf{v}^{t+1})$$

$$\alpha_t \ge 0$$
, $\lim_{t \to \infty} \alpha_t = 0$, $\sum_t \alpha_t = \infty$

Stochastic Gradient Descent

Optimization for model learning:

minimize
$$g(\mathbf{w})$$
 over $\mathbf{w} \in \mathbb{R}^d$

$$g(\mathbf{w}) = \sum_{n} (y_n - \mathbf{w}^T x_n) = \sum_{n} L(\mathbf{w}; x_n, y_n)$$

Gradient has form

$$\nabla g(\mathbf{w}) = \sum_{n} \nabla L(\mathbf{w}; x_n, y_n)$$

Poor man's gradient descent

$$\mathbf{w}^{n+1} = \mathbf{w}^n - \alpha_n \nabla L(\mathbf{w}^n; x_n, y_n)$$

and potentially do this by passing over the dataset multiple times