Finding the determinant of a matrix (4×4) different than using co-factor?

This method will explain the step by step on how to use the diagonal (3×3) method and co-factor to determine the matrix (4×4) determinant.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- 1- Copy the 2^{nd} & 3^{rd} rows bellow 4^{th} row respectively.
- 2- Copy the 1^{st} , 2^{nd} and 3^{rd} column next to the 4^{th} column respectively as is shown below

Determinant =

$$a_{11} \left(a_{22} a_{33} a_{44} + a_{24} a_{32} a_{43} + a_{23} a_{34} a_{42} - a_{24} a_{33} a_{42} - a_{22} a_{34} a_{43} - a_{23} a_{32} a_{44} \right) \\ -a_{12} \left(a_{23} a_{34} a_{41} + a_{21} a_{33} a_{44} + a_{24} a_{31} a_{43} - a_{21} a_{34} a_{43} - a_{23} a_{31} a_{44} - a_{24} a_{33} a_{41} \right) \\ +a_{13} \left(a_{24} a_{31} a_{42} + a_{22} a_{34} a_{41} + a_{21} a_{32} a_{44} - a_{22} a_{31} a_{44} - a_{24} a_{32} a_{41} - a_{21} a_{34} a_{42} \right) \\ -a_{14} \left(a_{21} a_{32} a_{43} + a_{22} a_{33} a_{41} + a_{23} a_{31} a_{42} - a_{21} a_{33} a_{42} - a_{22} a_{31} a_{43} - a_{23} a_{32} a_{41} \right)$$

The steps to determine the determinant are: