 1) Capitol: 1 Transformari elementareCare din următoarele operații efectuate asupra unei matrice este transformare elementară: a) adunarea unei linii la o coloană; b) înmulțirea unei linii cu scalarul a = 0; c) schimbarea a două linii între ele; d) adunarea unei linii la o altă linie.
 2) Capitol: 1 Transformari elementareNumim matrice elementară o matrice: a) cu rangul egal cu 1; b) care se obține din matricea unitate prin transformări elementare; c) cu determinantul nenul; d) obținută din matricea unitate printr-o singură transformare elementară.
 3) Capitol: 1 Transformari elementareO matrice elementară este obligatoriu: a) pătratică; b) dreptunghiulară; c) inversabilă; d) nesingulară.
 4) Capitol: 1 Transformari elementareTransformările elementare se pot aplica: a) numai matricelor pătratice; b) oricărei matrice; c) numai matricelor inversabile; d) numai matricelor cu rangul nul.
 5) Capitol: 1 Transformari elementareFie B o matrice obținută prin transformări elementare din matricea A. Atunci: a) rang A = rang B; b) rang A ≠ rang B; c) rang A < rang B; d) rang A > rang B.
 6) Capitol: 1 Transformari elementare Matricele A şi B se numesc echivalente dacă: a) au acelaşi rang; b) B se obține din A prin transformări elementare; c) sunt ambele pătratice şi de acelaşi ordin; d) au determinanții nenuli.
7) Capitol: 1 Transformari elementareDacă A, B sunt matrice echivalente (A □ B) atunci: a) A, B sunt matrice pătratice; b) rang A = rang B; c) dacă det A = 0 rezultă că și det B = 0; d) dacă det A = 1 rezultă că și det B = 1.
8) Capitol: 1 Transformari elementare Fie $\mathbf{A} \in M_n(\mathbf{R})$. Dacă $rang \mathbf{A} = r$, atunci prin transformări elementare se pot obține: a) cel puțin r coloane ale matricei unitate; b) cel mult r coloane ale matricei unitate; c) exact r coloane ale matricei unitate; d) toate coloanele matricei unitate.

9) Capitol: 1 Transformari elementare Fie $\mathbf{A} \in M_n(\mathbf{R})$ cu $\det \mathbf{A} \neq 0$. Atunci: a) $\operatorname{rang} \mathbf{A} = n$;
b) A este echivalentă cu matricea unitate I_n ($^{\mathbf{A} \square \mathbf{I}_n}$);
c) prin transformări elementare putem determina inversa A^{-1} ;
d) forma Gauss-Jordan a matricei \mathbf{A} este \mathbf{I}_n .
 10) Capitol: 1 Transformari elementarePentru a afla inversa unei matrice A∈M_n(R) prin transformări elementare, acestea se aplică: a) numai liniilor; b) numai coloanelor; c) atât liniilor cât și coloanelor; d) întâi liniilor și apoi coloanelor.
11) Capitol: 1 Transformari elementare $\mathrm{Dac}\Breve{a}$ $\mathbf{A} \in M_n(\mathbf{R})$ cu $\det \mathbf{A} = 1$, atunci forma Gauss-Jordan asociată va avea:
a) o singură linie a matricei unitate I_n ;
b) toate liniile și toate coloanele matricei unitate I_n ;
c) o singură coloană a matricei unitate I_n ;
d) numai o linie și o coloană a matricii unitate \mathbf{I}_n .
12) Capitol: 1 Transformari elementareMetoda de aflare a inversei unei matrice $\bf A$ cu transformări elementare, se poate aplica: a) oricărei matrice $\bf A \in M_{m,n}(\bf R)$; b) numai matricelor pătratice; c) matricelor pătratice cu $\det \bf A \neq 0$; d) tuturor matricelor cu $rang \bf A \neq 0$.
13) Capitol: 1 Transformari elementarePentru aflarea inversei unei matrice $\mathbf{A} \in M_n(\mathbf{R})$ prin transformări elementare, acestea se aplică: a) direct asupra lui \mathbf{A} ; b) asupra matricei transpuse \mathbf{A}^T ; c) matricei atașate $\mathbf{\bar{B}} = [\mathbf{A} : \mathbf{I}_n]$; d) matricei atașate $\mathbf{\bar{B}} = [\mathbf{I}_n : \mathbf{A}^T]$.
14) Capitol: 1 Transformari elementare $\overline{\mathbf{A}} \in M_n(\mathbf{R})$ şi $\overline{\mathbf{B}}$ matricea ataşată acesteia în metoda aflării inversei lui \mathbf{A} prin transformări elementare. Atunci: a) $\overline{\mathbf{B}} \in M_n(\mathbf{R})$; b) $\overline{\mathbf{B}} \in M_{n,2n}(\mathbf{R})$; c) $\overline{\mathbf{B}} \in M_{2n,n}(\mathbf{R})$; d) $\overline{\mathbf{B}} \in M_{2n,2n}(\mathbf{R})$.
15) Capitol: 1 Transformari elementare Fie $\mathbf{A} \in M_2(\mathbf{R})$ şi $\overline{\mathbf{B}}$ matricea ataşată lui \mathbf{A} pentru

determinarea lui \mathbf{A}^{-1} prin transformări elementare. Dacă $\mathbf{\overline{B}} \Box \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & -4 \end{pmatrix}$ atunci:

$$\overline{\mathbf{B}} \, \Box \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & -4 \end{pmatrix}$$
 atunci

a)
$$A^{-1} = \begin{pmatrix} 1 & -4 \\ 2 & 3 \end{pmatrix}$$

A⁻¹ =
$$\begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$$
;

$$\mathbf{A}^{-1} = \begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix};$$

d)
$$A^{-1}$$
 nu există.

16) Capitol: 1 Transformari elementare $Fie^{\mathbf{A} \in M_3(\mathbf{R})}$ şi $\overline{\mathbf{B}}$ matricea ataşată lui \mathbf{A} pentru

$$\mathbf{\overline{B}} \square \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 & 2 & 1 \\ 0 & 1 & 0 & 2 & 1 & 3 \end{pmatrix}$$
 atunci:

determinarea lui A^{-1} prin transformări elementare. Dacă

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$

a)
$$\begin{pmatrix} 2 & 1 & 3 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 3 \end{pmatrix};$$

b)
$$(3 \ 1 \ 3)$$

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

d)
$$A^{-1}$$
 nu există.

17) Capitol: 1 Transformari elementare Aducând matricea A la forma Gauss-Jordan obținem:

- a) A^{-1} ;
- b) rang A:
- c) det A:
- d) \mathbf{A}^T .

18) Capitol: 1 Transformari elementare Dacă matricea $\mathbf{A} \in M_{2,3}(\mathbf{R})$ este echivalentă cu matricea

$$\mathbf{A}' = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \text{ atunci:}$$

- a) $rang \mathbf{A} = 2$:
- b) $rang \mathbf{A} = 1$:
- c) rang A = 3:
- d) $rang \mathbf{A} = rang \mathbf{A}'$.

19) Capitol: 1 Transformari elementare Dacă matricea $^{\mathbf{A} \in M_3(\mathbf{R})}$ este echivalentă cu matricea

$$\mathbf{A'} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
 atunci rang \mathbf{A} este:
a) 2;
b) 3;
c) 1;
d) 0.

20) Capitol: 1 Transformari elementare Dacă $\bf A$ este echivalentă cu matricea unitate ${\bf I}_3$ (${\bf A} \square {\bf I}_3$), atunci:

- a) rang A = 3:
- b) $det \mathbf{A} \neq 0$;
- c) $A = I_3$;
- $\mathbf{d)} \ \mathbf{A}^{-1} = \mathbf{I}_3$

21) Capitol: 1 Transformari elementare Pivotul unei transformări elementare este întotdeauna:

- a) nenul;
- **b)** egal cu 0;
- c) egal cu 1;
- d) situat pe diagonala matricei.

, I C

$$\mathbf{A'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 atunci:

22) Capitol: 1 Transformari elementare Dacă matricea \mathbf{A} este echivalentă cu

- a) $rang \mathbf{A} = 3$;
- b) $rang \mathbf{A} = 1$:
- c) $det \mathbf{A} \neq 0$;
- d) A este inversabilă.

23) Capitol: 1 Transformari elementareDacă matricea A este echivalentă cu matricea

$$\mathbf{A'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha \end{pmatrix} \text{ atuncian}$$

- a) $rang \mathbf{A} = 0 \Leftrightarrow \alpha = 0$;
- b) $rang A = 1 \Leftrightarrow \alpha = 1$;
- c) rang $\mathbf{A} \ge 2$, $(\forall) \alpha \in \mathbf{R}$.
- d) $rang \mathbf{A} = 3 \Leftrightarrow \alpha \neq 0$.

24) Capitol: 1 Transformari elementareDacă matricile **A** și **A**' sunt echivalente (**A** \square **A**') atunci:

- a) au același rang;
- **b)** sunt obligatoriu matrice inversabile;
- c) sunt obligatoriu matrice pătratice;
- d) se obțin una din alta prin transformări elementare.

25) Capitol: 1 Transformari elementare Fie $\mathbf{A} \in M_3(\mathbf{R})$ cu $\det \mathbf{A} = \alpha$. Atunci forma Gauss-Jordan a

- a) are același rang cu matricea A, $(\forall)\alpha \in R$;
- **b)** are același rang cu matricea **A**, numai pentru $\alpha = 0$;
- c) coincide cu $I_3 \Leftrightarrow \alpha \neq 0$;
- d) are cel mult două coloane ale matricei unitate I_3 , dacă $\alpha = 0$.

26) Capitol: 1 Transformari elementareDouă sisteme liniare de ecuatii se numesc *echivalente* dacă:

- a) au același număr de ecuații;
- b) au același număr de necunoscute;
- c) au aceleași soluții;
- d) matricele lor extinse sunt echivalente.

,

- 27) Capitol: 1 Transformari elementare Matricea unui sistem liniar oarecare, în formă explicită, are:
- a) forma Gauss-Jordan;
- **b)** coloanele variabilelor principale, coloanele matricei unitate;
- c) toate elementele pe de liniile variabilelor secundare nule;
- d) elementele corespunzătoare de pe coloane variabilelor secundare, nenegative.

·-----

- **28)** Capitol: 1 Transformari elementareMetoda Gauss-Jordan de rezolvare a sistemelor liniare prin transformări elementare se aplică:
- a) numai sistemelor pătratice;
- b) oricărui sistem liniar;
- c) numai dacă rangul matricei sistemului este egal cu numărul de ecuații;
- **d)** doar sistemelor compatibile nedeterminate.

29) Capitol: 1 Transformari elementare Fie \mathbf{A} și $\overline{\mathbf{A}}$ matricea, respectiv matricea lărgită a unui sistem liniar. Aplicând metoda Gauss-Jordan de rezolvare, se aplică transformări elementare asupra:

- a) liniilor lui A și coloanelor lui \overline{A} ;
- b) liniilor și coloanelor lui \overline{A} ;
- c) liniilor lui $\bar{\mathbf{A}}$;
- d) numai coloanei termenilor liberi din $\bar{\mathbf{A}}$.

30) Capitol: 1 Transformari elementarePentru a obține matricea unui sistem liniar sub formă explicită, se aplică transformări elementare:

- a) numai coloanelor corespunzătoare variabilelor secundare;
- b) numai coloanei termenilor liberi;
- c) tuturor liniilor și coloanelor matricei extinse;
- d) pentru a face coloanele variabilelor principale alese, coloanele matricei unitate.

31) Capitol: 1 Transformari elementare Aplicând metoda Gauss-Jordan unui sistem liniar de ecuații,

matricea extinsă $\overline{\mathbf{A}}$ este echivalentă cu matricea $\overline{\mathbf{A}}' = \begin{pmatrix} 2 & 1 & -1 & 0 & 3 \\ 3 & 0 & 2 & 1 & 1 \end{pmatrix}$. Atunci:

- a) sistemul este compatibil determinat;
- b) sistemul este compatibil nedeterminat;
- c) sistemul este incompatibil;
- d) variabilele principale alese sunt x_2 și x_4 .

32) Capitol: 1 Transformari elementare Matricea extinsă, corespunzătoare unui sistem liniar, în formă

$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 2 & 0 & -1 & | & 4 \\ 0 & 1 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & 0 & | & -1 \end{pmatrix}$$

explicită este

- a) este incompatibil;
- **b)** este compatibil nedeterminat;
- **c)** are soluția de bază: $x_1 = 4$, $x_2 = 2$, $x_3 = -1$, $x_4 = 0$;
- d) are o infinitate de soluții.

33) Capitol: 1 Transformari elementare Matricea extinsă corespunzătoare unui sistem liniar în formă

Atunci sistemul liniar:

$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 2 & 1 & 3 \end{pmatrix}$$
Atunci sistemul liniar:

- explicită este
- a) sistemul este compatibil nedeterminat;
- **b)** variabilele principale alese sunt x_1, x_2, x_4 ;
- c) sistemul este incompatibil;
- d) soluția de bază corespunzătoare este: $x_1 = 1$, $x_2 = 2$, $x_3 = 0$, $x_4 = 3$.

34) Capitol: 1 Transformari elementareUn sistem liniar de 2 ecuații cu 4 necunoscute, cu rangul

matricei sistemului egal cu 2, are soluția de bază: $\mathbf{X} = (2,0,0,-1)^T$. Atunci \mathbf{X} este:

- a) admisibilă și nedegenerată;
- b) admisibilă și degenerată;
- c) neadmisibilă și nedegenerată;
- d) neadmisibilă și degenerată.

35) Capitol: 1 Transformari elementare Un sistem liniar cu 2 ecuatii și 3 necunoscute admite soluția de

bază $\mathbf{X} = (0, -1, 0)^T$. Știind că x_2, x_3 sunt variabile principale, atunci soluția \mathbf{X} este:

- a) admisibilă;
- b) neadmisibilă;
- c) degenerată;
- d) nedegenerată.

36) Capitol: 1 Transformari elementareFormei explicite a unui sistem liniar îi corespunde matricea
$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & -1 & 1 & 2 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$$
. Atunci soluția corespunzătoare este:

a)
$$x_1 = 2 + \alpha - \beta$$
, $x_2 = -2 + \alpha - \beta$, $x_3 = \alpha$, $x_4 = \beta$;

b)
$$x_1 = 2 - \alpha + \beta$$
, $x_2 = -2 - \alpha + \beta$, $x_3 = \alpha$, $x_4 = \beta$;

c)
$$x_1 = 2 + \alpha - \beta$$
, $x_2 = -2 - \alpha + \beta$, $x_3 = \alpha$, $x_4 = \beta$;

d)
$$x_1 = 2 - \alpha - \beta$$
, $x_2 = -2 + \alpha + \beta$, $x_3 = \alpha$, $x_4 = \beta$.

37) Capitol: 1 Transformari elementare Matricea extinsă corespunzătoare formei explicite a unui

a)
$$\mathbf{X} = \begin{pmatrix} 1 & 1 & -1 & 0 \end{pmatrix}^T$$
;

b)
$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 2 & 1 \end{pmatrix}^T$$
; c) $\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}^T$; d) $\mathbf{X} = \begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}^T$.

38) Capitol: 1 Transformari elementarePentru a se obține soluția de bază din forma explicită a unui sistem liniar de ecuații: a) variabilele principale se egalează cu 0; b) variabilele secundare se egalează cu 0; c) toate variabilele se egalează cu 1;

- d) se atribuie variabilelor secundare valori nenule distincte.

39) Capitol: 1 Transformari elementare Sistemele liniare de ecuații care admit soluții de bază sunt numai cele:

- a) compatibile nedeterminate;
- b) compatibile determinate;
- c) incompatibile;
- d) pătratice.

- **40) Capitol:** 1 Transformari elementare Soluția de bază $\mathbf{X} = (\alpha, 0, \beta, 0)^T$ a unui sistem liniar de două ecuații este neadmisibilă dacă:
- a) $\alpha > 0$ si $\beta > 0$:
- **b)** $\alpha < 0$ si $\beta < 0$
- c) $\alpha > 0$ si $\beta < 0$
- d) $\alpha < 0$ și $\beta > 0$
- **41) Capitol:** 1 Transformari elementare Soluția de bază $\mathbf{X} = (0,0,\alpha,\beta)^T$ corespunzătoare unui sistem liniar cu 2 ecuații principale și 4 necunoscute este degenerată dacă:
- a) $\alpha = 0$ $\beta \neq 0$.
- b) $\alpha \neq 0$, $\beta = 0$
- c) $\alpha = 0$, $\beta = 0$.
- d) $\alpha \neq 0$, $\beta \neq 0$.
- **42)** Capitol: 1 Transformari elementare Fie n_R și n_E numărul soluțiilor de bază distincte, respectiv al formelor explicite, corespunzătoare unui sistem liniar compatibil nedeterminat. Atunci:
- a) $n_B \leq n_E$:
- b) $n_B \ge n_E$:
- c) întotdeauna $n_B = n_E$:
- **d)** obligatoriu $n_B > n_E$.
- **43) Capitol:** 1 Transformari elementare Fie soluția de bază $\mathbf{X} = (1, \alpha, 0, \beta)^T$ corespunzătoare variabilelor principale x_1 și x_4 . Atunci **X** este admisibilă degenerată dacă:
- a) $\alpha > 0$ $\beta = 0$.
- b) $\alpha = 0$ $\beta = 0$

c)
$$\alpha = 0$$
, $\beta > 0$;

d)
$$\alpha > 0$$
, $\beta > 0$.

44) Capitol: 1 Transformari elementareForma explicită a unui sistem liniar are matricea de forma:

$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 1 & 0 & 1 & -1 \end{pmatrix}.$$
 Atunci soluția de bază corespunzătoare **X** este:

a)
$$\mathbf{X} = \begin{pmatrix} 1 & 2 & -1 & 0 \end{pmatrix}^T$$

b)
$$\mathbf{X} = \begin{pmatrix} 1 & -1 & 2 & 0 \end{pmatrix}^T$$

x =
$$\begin{pmatrix} 1 & 2 & 0 & -1 \end{pmatrix}^T$$
;

$$\mathbf{X} = \begin{pmatrix} -1 & 2 & 1 & 0 \end{pmatrix}^T$$

45) Capitol: 1 Transformari elementareForma explicită a unui sistem liniar are matricea de forma:

$$\overline{\mathbf{A}} = \begin{pmatrix} 2 & 0 & -1 & 1 & | & -1 \\ 1 & 1 & 1 & 0 & | & 0 \end{pmatrix}$$
. Atunci soluția de bază corespunzătoare \mathbf{X} este: **a)** admisibilă;

- a) admisibilă;
- b) degenerată;
- c) neadmisibilă;
- d) nedegenerată.

$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & \alpha \end{pmatrix}$$
matricea corespunzătoare unci sistemul este incompatibil dacă:

46) Capitol: 1 Transformari elementareFie formei explicite a unui sistem liniar. Atunci sistemul este incompatibil dacă:

- a) $\alpha = 0$:
- b) $\alpha = 1$:
- c) $\alpha = -1$;

$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & \alpha & 0 \end{pmatrix} \text{ mat}$$

matricea corespunzătoare formei 47) Capitol: 1 Transformari elementare Fie explicite a unui sistem liniar. Atunci sistemul este:

- a) compatibil nedeterminat, dacă $\alpha = 0$;
- **b)** compatibil determinat, dacă $\alpha = 1$;
- c) incompatibil, dacă $\alpha \neq 0$;
- d) incompatibil dacă $\alpha = 0$.

$$\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & \alpha & \beta \end{pmatrix}$$
 matricea corespunzătoare formei

48) Capitol: 1 Transformari elementareFie explicite a unui sistem liniar. Atunci sistemul este compatibil nedeterminat, dacă:

a)
$$\alpha = 0$$
, $\beta \neq 0$;

b)
$$\alpha \neq 0$$
, $\beta = 0$;

c)
$$\alpha = 0$$
, $\beta = 0$;

d)
$$\alpha \neq 0$$
, $\beta \neq 0$.

49) Capitol: 1 Transformari elementare Fie $\mathbf{X} = (1,1,\alpha,0,0)^T$ soluția de bază a unui sistem liniar de ecuații corespunzătoare variabilelor principale x_1, x_2, x_3 . Atunci:

- a) X este admisibilă, dacă $\alpha > 0$;
- **b)** X este degenerată, dacă $\alpha = 0$;
- c) X este neadmisibilă, dacă $\alpha = -1$;
- **d)** X este nedegenerată, dacă $\alpha = 1$.

50) Capitol: 1 Transformari elementareUn sistem liniar de 2 ecuații și 4 necunoscute are matricea

- a) admisibilă, dacă $\alpha = 1$ și $\beta = 0$;
- **b)** degenerată, dacă $\alpha < 0$ și $\beta = 0$;
- c) neadmisibilă, dacă $\alpha > 0$ și $\beta \ge 0$;
- d) nedegenerată, dacă $\alpha < 0$ și $\beta \le 0$.

51) Capitol: 1 Transformari elementare Un sistem de m ecuații liniare cu n necunoscute, m < n, are întotdeauna:

- a) mai mult de C_n^m forme explicite;
- **b)** cel mult C_n^m forme explicite;
- c) exact C_n^m forme explicite;
- d) m+n forme explicite.

52) Capitol: 1 Transformari elementare Un sistem de m ecuații liniare cu n necunoscute, m < n, are întotdeauna:

- a) exact C_n^m soluții de bază;
- **b)** cel mult C_n^m soluții de bază;
- c) cel puțin C_n^m soluții de bază;
- d) m+n soluții de bază.

53) Capitol: 1 Transformari elementare O soluție de bază pentru un sistem cu m ecuații liniare cu n necunoscute, m < n, este degenerată dacă are:

- a) exact m componente nenule;
- **b)** mai mult de *m* componente nenule;
- c) mai puţin de m componente nenule;
- **d)** mai mult de n-m componente nule.

54) Capitol: 1 Transformari elementareO soluție de bază pentru un sistem cu m ecuații liniare cu n necunoscute, m < n, este nedegenerată dacă:

a) are exact *m* componente nenule;

- b) are mai mult de *m* componente nenule;
 c) are mai puţin de *m* componente nenule;
 d) are exact *n-m* componente nule.

 55) Capitol: 1 Transformari elementarePentru a transforma un sistem liniar de ecuații într-unul echivalent se folosesc transformări elementare asupra:
 a) liniilor matricei extinse atasate sistemului;
 b) coloanelor matricei extinse atasate sistemului;
 c) liniilor şi coloanelor matricei extinse atasate sistemului;
 d) termenilor liberi ai sistemului.

 56) Capitol: 1 Transformari elementareMetoda grafică se foloseşte în rezolvarea sistemelor de inecuații liniare cu:
 a) două necunoscute;
 b) mai mult de trei necunoscute;
 c) oricâte necunoscute;
 d) cel putin trei necunoscute.
 - **57) Capitol:** 1 Transformari elementare O soluție de bază pentru un sistem cu m ecuații liniare cu n necunoscute, m < n, este admisibilă dacă:
 - a) are majoritatea componentelor pozitive;
 - **b)** are mai mult de m componente pozitive;
 - c) are mai puțin de *m* componente negative;
 - **d)** are toate componentele nenegative.

58) Capitol: 1 Transformari elementare Fie $\bf A$ o matrice nenulă de tipul (m, n). Atunci matricea $\bf A$ admite inversă dacă:

- a) $rang \mathbf{A} \neq 0$;
- b) m = n și $det \mathbf{A} \neq 0$;
- c) $det \mathbf{A} = 0$ si m = n;
- d) $det \mathbf{A} = 1_{Si} m = n$.

59) Capitol: 1 Transformari elementarePentru a transforma un sistem liniar de ecuații într-unul echivalent, se folosesc:

- a) transformări elementare aplicate liniilor matricei extinse atașate sistemului;
- b) transformări elementare aplicate liniilor și coloanelor matricei extinse atașate sistemului;
- c) operații de adunare a coloanelor matricei extinse atașate sistemului;
- d) toate operatiile care se pot efectua asupra unei matrice.
- **60) Capitol:** 1 Transformari elementareO soluție de bază a unui sistem liniar se obține dintr-o forma explicita:
- a) dând variabilelor principale valoarea 0;
- **b)** dând variabilelor secundare valoarea 0;
- c) dând variabilelor principale valori nenule;
- d) dând variabilelor secundare valori strict pozitive.

61) Capitol: 1 Transformari elementareUn sistem de m ecuații și n necunoscute (m < n) poate avea:

- a) mai mult de C_n^m forme explicite;
- **b)** exact C_n^m forme explicite;
- c) cel mult C_n^m forme explicite;
- **d)** oricate forme explicite.

62) Capitol: 1 Transformari elementareO soluție de bază pentru un sistem de m ecuații cu n necunoscute este degenerată dacă are: a) m componente diferite de zero; b) mai mult de m componente diferite de zero; c) mai puțin de m componente diferite de zero; d) exact m-1 componente nenule;
 63) Capitol: 1 Transformari elementareFie o matrice nenulă A de tipul m x n. Atunci rangul ei r satistace: a) r > m; b) r ≤ min (m,n); c) r > min (m,n); d) r = max (m,n);
 64) Capitol: 1 Transformari elementareO matrice elementară se obține din matricea unitate prin: a) o singură transformare elementară; b) două transformări elementare; c) cel mult doua transformări elementare; d) oricate transformari elementare;
 65) Capitol: 2 Elemente de algebra liniaraUn spațiu liniar X se numește spațiu liniar real dacă: a) elementele sale sunt numere reale; b) corpul peste care este definit coincide cu mulțimea numerelor naturale; c) mulțimea X este nevidă; d) operațiile definite pe X sunt operații cu numere reale.
 66) Capitol: 2 Elemente de algebra liniaraFie (P_n(X),+,·) spațiul liniar al polinoamelor de grad cel mult n. Atunci operațiile "+" și "·" reprezintă: a) adunarea și înmulțirea polinoamelor; b) adunarea polinoamenlor și înmulțirea polinoamelor cu scalari reali; c) adunarea numerelor reale și înmulțirea polinoamelor; d) adunarea polinoamelor și înmulțirea numerelor reale.
67) Capitol : 2 Elemente de algebra liniara $Fie^{(P_n(\mathbf{X}),+,\cdot)}$ spațiul liniar al polinoamelor de grad cel mult n . Atunci dimensiunea sa este: a) n ; b) $n+1$; c) n^2 ; d) $2n$.
68) Capitol: 2 Elemente de algebra liniaraMulţimea soluţiilor unui sistem liniar formează un spaţiu liniar dacă sistemul este: a) incompatibil; b) omogen si cu mai multe necunoscute decat ecuatii; c) compatibil determinat; d) pătratic, cu rangul matricei egal cu numărul necunoscutelor.
69) Capitol : 2 Elemente de algebra liniara Fie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$ astfel încât $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k = 0_n$. Atunci $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ sunt liniar independenți numai dacă: a) $(\forall)\alpha_i = 0, i = \overline{1,k}$;

b)
$$(\exists)\alpha_i=0$$
; $\alpha_i\neq 0$, $(\forall)i=\overline{1,k}$; $(\forall)i=\overline{1,k}$; $(\forall)i=\overline{1,k}$; $(\forall)i=\overline{1,k}$; $(\forall)i=\overline{1,k}$; $(\forall)i=\overline{1,k}$; $(\forall)i=\overline{1,k}$; astfel încât $((\forall)i=\overline{1,k})$; $(\forall)i=\overline{1,k}$;

71) Capitol: 2 Elemente de algebra liniaraFie \mathbf{X} un spațiu liniar și vectorii $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbf{X}$ astfel încât $\mathbf{x}_1 + \mathbf{x}_2 + \alpha \mathbf{x}_3 = \mathbf{0}_{\mathbf{X}}$ Atunci vectorii sunt:

- a) liniari dependenți, dacă $\alpha = 0$;
- **b)** liniar independenți, dacă $\alpha \neq 0$;
- c) liniar dependenți, dacă $\alpha \neq 0$;
- d) liniar independenți, dacă $\alpha = 0$.

72) Capitol: 2 Elemente de algebra liniara $Vectorii \quad \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$ sunt liniar independenti. Atunci:

- a) $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{k-1}$ sunt liniar independenți;
- b) $\mathbf{x}_i \neq \mathbf{0}_n$, $(\forall)i = 1, n$;
- c) $k \leq n$;
- d) $\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k = \mathbf{0}_n$.

73) Capitol: 2 Elemente de algebra liniara $Fie^{-\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3} \in R^3$ vectori oarecare astfel încât

 $\mathbf{x}_3 = \mathbf{x}_1 - 2\mathbf{x}_2$. Atunci:

- a) coordonatele lui \mathbf{x}_3 sunt 1 și -2;
- **b)** $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$ nu formează o bază în \mathbb{R}^3 ;
- c) X_1, X_2, X_3 sunt liniar dependenți;
- d) decarece $\mathbf{x}_1 2\mathbf{x}_2 \mathbf{x}_3 = \mathbf{0}_3 \implies \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ sunt liniar independenți.

74) Capitol: 2 Elemente de algebra liniaraFie B şi B' două baze din spațiul liniar R^3 şi S matricea schimbării de bază. Atunci S este:

- a) pătratică;
- b) inversabilă;
- **c)** dreptunghiulară;
- d) nesingulară ($det \mathbf{S} \neq 0$).

75) Capitol: 2 Elemente de algebra liniara Fie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$. Atunci ei formează o bază dacă:

a) sunt liniar independenți și $k \neq n$;

$\mathbf{b)} \mathbf{X}_i \neq 0_n \text{si} k = n;$
c) sunt liniar independenți și $k = n$;
d) $k = n$ sidin $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k = 0_n \Rightarrow \alpha_i = 0$, $(\forall)i = \overline{1,k}$.
76) Capitol: 2 Elemente de algebra liniara Fie $\mathbf{B} = \{\mathbf{x}_1, \mathbf{x}_2,, \mathbf{x}_k\}$ o bază în spațiul liniar \mathbf{X} . Atunci: a) $\dim \mathbf{X} = k$; b) $\dim \mathbf{X} > k$; c) $\dim \mathbf{X} < k$; d) $\mathbf{x}_i \neq 0_{\mathbf{X}}, \& \forall i = \overline{1,k}$.
77) Capitol: 2 Elemente de algebra liniaraFie \mathbf{S} matricea de trecere de la o bază \mathbf{B} la baza \mathbf{B}' și $u_{\mathbf{B}}$, respectiv $u_{\mathbf{B}'}$ coordonatele vectorului \mathbf{u} în cele două baze. Atunci au loc relațiile: a) $u_{\mathbf{B}} = \mathbf{S} u_{\mathbf{B}'}$ și $u_{\mathbf{B}'} = \mathbf{S}^{-1} u_{\mathbf{B}}$; b) $u_{\mathbf{B}} = \mathbf{S}^T u_{\mathbf{B}'}$ și $u_{\mathbf{B}'} = \mathbf{S}^{-1} u_{\mathbf{B}}$; c) $u_{\mathbf{B}} = \mathbf{S}^T u_{\mathbf{B}'}$ și $u_{\mathbf{B}'} = (\mathbf{S}^T)^{-1} u_{\mathbf{B}}$; d) $u_{\mathbf{B}} = \mathbf{S}^{-1} u_{\mathbf{B}'}$ și $u_{\mathbf{B}'} = \mathbf{S}^T u_{\mathbf{B}}$.
78) Capitol: 2 Elemente de algebra liniara Fie $\mathbf{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ o bază în \mathbb{R}^n . Atunci: a) $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ sunt liniar independenți; b) $k < n$; c) $k = n$; d) $k > n$.
79) Capitol: 2 Elemente de algebra liniaraÎn spaţiul liniar R ⁿ există: a) cel mult n baze; b) exact n baze; c) o singură bază; d) o infinitate de baze.
80) Capitol : 2 Elemente de algebra liniara Fie operatorul liniar $L: \mathbb{R}^2 \to \mathbb{R}^3$ și 0_2 , 0_3 vectorii nuli ai celor două spații. Atunci: a) $L(0_2) = 0_2$; b) $L(0_3) = 0_2$; c) $L(0_2) = 0_3$; d) $L(0_3) = 0_3$.
81) Capitol: 2 Elemente de algebra liniara $Dacă\ L:R^m\to R^n$ este un operator liniar, atunci: a) obligatoriu $m>n$; b) obligatoriu $m< n$; c) m și n sunt numere naturale oarecare, nenule; d) obligatoriu $m=n$. 82) Capitol: 2 Elemente de algebra liniara $Fie\ L:R^m\to R^n$ un operator liniar și $kerL$ nucleul său.
82) Capitoi: 2 Elemente de algebra liniarafie 2. N un operator liniar și nucleul sau.

```
Dacă \mathbf{x}_1, \mathbf{x}_2 \in ker L, atunci:
a) \mathbf{x}_1 + \mathbf{x}_2 \in ker L:
b) \alpha \mathbf{x}_1 \in ker L, (\forall) \alpha \in \mathbf{R}.
c) \alpha \mathbf{x}_1 + \beta \mathbf{x}_2 \in ker L, (\forall) \alpha, \beta \in \mathbf{R}.
d) L(\mathbf{x}_1) = \mathbf{x}_2.
 83) Capitol: 2 Elemente de algebra liniaraFie L: \mathbb{R}^n \to \mathbb{R}^m un operator liniar și \ker L nucleul său.
Dacă \mathbf{x} \in ker L, atunci:
a) L(\mathbf{x}) = \mathbf{0}_m.
b) L(\alpha \mathbf{x}) = \mathbf{0}_m, (\forall) \alpha \in \mathbf{R}.
c) L(\alpha \mathbf{x}) = \mathbf{0}_m, doar pentru \alpha = 0;
L(\mathbf{x}) = \mathbf{0}_n
 84) Capitol: 2 Elemente de algebra liniaraDacă L: \mathbb{R}^m \to \mathbb{R}^n este un operator liniar si A matricea sa
față de o pereche de baze B, B' atunci:
a) \mathbf{A} \in M_{m,n}(\mathbf{R}):
\mathbf{A} \in M_{n,m}(\mathbf{R}).
c) B. B' sunt baze în \mathbb{R}^m:
d) B este bază în R^m și B' este bază în R^n.
 85) Capitol: 2 Elemente de algebra liniaraFie L: \mathbb{R}^n \to \mathbb{R}^n un operator liniar și x un vector propriu
pentru L. Atunci:
a) (\exists !) \lambda \in \mathbb{R} astfel încât L(\mathbf{x}) = \lambda \mathbf{x}:
b) L(\lambda \mathbf{x}) = \mathbf{x}, (\forall) \lambda \in \mathbf{R}.
c) \mathbf{x} \neq \mathbf{0}_n.
d) L(\mathbf{x}) = \lambda \mathbf{x}, (\forall) \lambda \in \mathbf{R}
 86) Capitol: 2 Elemente de algebra liniaraFie L: \mathbb{R}^n \to \mathbb{R}^n un operator liniar și x un vector propriu
corespunzător valorii proprii \lambda. Atunci:
a) L(\mathbf{x}) = \lambda \mathbf{x}:
b) dacă L(\mathbf{x}) = \mathbf{0}_n atunci \mathbf{x} = \mathbf{0}_n:
c) L(\lambda \mathbf{x}) = \lambda^2 \mathbf{x}.
d) dacă L(\mathbf{x}) = \mathbf{0}_n atunci \lambda = 0.
 87) Capitol: 2 Elemente de algebra liniaraMatricea atașată unei forme liniare f: \mathbb{R}^n \to \mathbb{R} este o
matrice:
a) pătratică;
b) coloană;
c) linie;
d) inversabilă.
 88) Capitol: 2 Elemente de algebra liniaraDaca f: R^n \to R este o formă liniară, atunci:
```

a)
$$f(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{x}_1 + \mathbf{x}_2$$
, $(\forall) \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$;

b)
$$f(\mathbf{x}_1 + \mathbf{x}_2) = f(\mathbf{x}_1) + f(\mathbf{x}_2), \quad (\forall) \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n;$$

c)
$$f(\alpha \mathbf{x}) = \alpha \mathbf{x}$$
, $(\forall) \alpha \in \mathbf{R}$ şi $(\forall) \mathbf{x} \in \mathbf{R}^n$;

d)
$$f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}), \quad (\forall) \alpha \in \mathbb{R}_{\S i} (\forall) \mathbf{x} \in \mathbb{R}^n;$$

89) Capitol: 2 Elemente de algebra liniaraFie $L: \mathbb{R}^n \to \mathbb{R}^m$ un operator liniar. Atunci L devine o formă liniară dacă:

a)
$$n = 1$$
;

b)
$$m = 1$$
;

c)
$$n=1$$
 $\S i$ $m=1$;

d)
$$n=m$$
.

90) Capitol: 2 Elemente de algebra liniaraFie $Q: \mathbb{R}^n \to \mathbb{R}$ o formă pătratică și **A** matricea asociată acesteia. Atunci:

a)
$$A = A^T$$
:

b)
$$A \in M_{n,1}(R)$$
:

c)
$$\mathbf{A} \in M_n(\mathbf{R})$$
:

d) A este inversabilă.

$$\begin{cases} Q: \mathbf{R}^3 \to \mathbf{R} \\ Q(\mathbf{x}) = x_1^2 + 2x_2^2 + x_3^2 - 2x_1 x_2 \end{cases}$$

91) Capitol: 2 Elemente de algebra liniara Fie forma pătratică $Q: \mathbf{R}^3 \to \mathbf{R}$ $Q(\mathbf{x}) = x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2$ $(\forall)\mathbf{x} = (x_1, x_2, x_3)^T \in \mathbb{R}^3$. Atunci matricea asociată lui Q este:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix};$$

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -2 & 2 \end{bmatrix}.$$

92) Capitol: 2 Elemente de algebra liniaraForma pătratică $Q: \mathbb{R}^2 \to \mathbb{R}$ are matricea asociată

A =
$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$
. Atunci Q are expresia:
a) $Q(\mathbf{x}) = 2x_1^2 + x_2^2 - x_1x_2$.

a)
$$Q(\mathbf{x}) = 2x_1^2 + x_2^2 - x_1x_2$$
;

b)
$$Q(\mathbf{x}) = 2x_1^2 - x_2^2 + x_1x_2$$
;

Q(x) =
$$2x_1^2 - x_2^2 + 2x_1x_2$$
:

$$Q(\mathbf{x}) = 2x_1^2 + 2x_2^2 - x_1x_2$$

93) Capitol: 2 Elemente de algebra liniaraForma pătratică $Q: \mathbb{R}^3 \to \mathbb{R}$ are forma canonică asociată:

$$Q(\mathbf{y}) = 2y_1^2 + y_2^2 + \alpha y_3^2$$
. Atunci:

- a) Q este pozitiv definită, dacă $\alpha > 0$;
- **b)** Q este negativ definită, dacă $\alpha < 0$;
- c) Q este semipozitiv definită, dacă $\alpha = 0$;
- d) Q nu păstrează semn constant, dacă $\alpha < 0$.

94) Capitol: 2 Elemente de algebra liniaraForma pătratică $Q: \mathbb{R}^2 \to \mathbb{R}$ are matricea asociată

A =
$$\begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$$
. Atunci forma canonică asociată este:
a) $Q(\mathbf{y}) = -y_1^2 - y_2^2$:

- a) $Q(\mathbf{y}) = -y_1^2 y_2^2$.
- **b)** $Q(\mathbf{y}) = -y_1^2 + 3y_2^2$:
- Q(y) = $2y_1^2 y_2^2$.
- d) $Q(y) = -3y_1^2 + 7y_2^2$.

95) Capitol: 2 Elemente de algebra liniaraForma pătratică $Q: \mathbb{R}^2 \to \mathbb{R}$ are forma canonică asociată $Q(\mathbf{y}) = ay_1^2 + by_2^2$. Atunci Q este negativ definită dacă:

- a) a < 0, b > 0.
- **b)** a > 0, b < 0.
- c) a < 0, b < 0:
- d) a > 0, b > 0.

 $Q(\mathbf{y}) = \frac{1}{\Delta_1} y_1^2 + \frac{\Delta_1}{\Delta_2} y_2^2 + \frac{\Delta_2}{\Delta_3} y_3^2$ forma canonică asociată 96) Capitol: 2 Elemente de algebra liniaraFie formei pătratice $Q: \mathbb{R}^3 \to \mathbb{R}$. Atunci:

- a) dacă $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$, Q este pozitiv definită;
- **b)** dacă $\Delta_1 < 0$, $\Delta_2 < 0$, $\Delta_3 < 0$, Q este negativ definită;
- c) dacă $\Delta_1 > 0$, $\Delta_2 < 0$, $\Delta_3 > 0$, Q este semipozitiv definită;
- d) dacă $\Delta_1 < 0$, $\Delta_2 > 0$, $\Delta_3 < 0$, Q este negativ definită.

97) Capitol: 2 Elemente de algebra liniaraFie **A** matricea asociată formei pătratice $Q: \mathbb{R}^n \to \mathbb{R}$ și $\Delta_1, \Delta_2, \dots, \Delta_n$ minorii principali ai lui **A**. Pentru a aplica metoda lui Jacobi de aducere la forma canonică, trebuie obligatoriu ca:

a)
$$\Delta_i > 0$$
, $(\forall)i = 1, n$:

b)
$$(\exists)\Delta_i \neq 0$$
, pentru $i = \overline{1,n}$;

c)
$$(\forall)\Delta_i \neq 0$$
, pentru $i = \overline{1,n}$;

d)
$$\Delta_1 = \Delta_2 = \cdots = \Delta_n$$
.

- 98) Capitol: 2 Elemente de algebra liniaraFormei pătratice oarecare Q: Rⁿ → R i se poate asocia:
 a) o unică formă canonică;
 b) mai multe forme canonice, dar cu acelaşi număr de coeficienți pozitivi, respectiv negativi;
- c) o matrice pătratică și simetrică;

d) o matrice pătratică și inversabilă.

$$\begin{cases} Q: \mathbf{R}^n \to \mathbf{R} \\ Q(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \end{cases}$$
 spunem că e

99) Capitol: 2 Elemente de algebra liniaraForma pătratică pozitiv definită dacă:

a)
$$a_{ij} > 0$$
, $(\forall)i, j = \overline{1, n}$;

b)
$$Q(\mathbf{x}) > 0$$
, $(\forall) \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}_n$:

c)
$$a_{ij} \ge 0$$
, $(\forall)i, j = \overline{1,n}$;

d)
$$(\exists) \mathbf{x} \in \mathbf{R}^n$$
 astfel încât $Q(\mathbf{x}) > 0$.

$$Q: \mathbf{R}^n \to \mathbf{R}$$

$$Q(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$
90) Capitol: 2 Elemente de algebra linjara Forma pătratică

100) Capitol: 2 Elemente de algebra liniaraForma pătratică seminegativ definită dacă:

a)
$$a_{ij} < 0$$
, $(\forall)i, j = \overline{1,n}$;

b)
$$Q(\mathbf{x}) \le 0$$
, $(\forall) \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \ne \mathbf{0}_n$:

c)
$$(\exists)a_{ij} \leq 0$$
, pentru $i, j = \overline{1,n}$;

d)
$$(\exists) \mathbf{x} \in \mathbb{R}^n$$
 astfel încât $Q(\mathbf{x}) \leq 0$.

101) Capitol: 2 Elemente de algebra liniaraForma pătratică $Q: \mathbb{R}^3 \to \mathbb{R}$ are forma canonică asociată:

$$Q(\mathbf{y}) = -y_1^2 + y_2^2 - y_3^2$$
. Atunci:

- a) Q este seminegativ definită;
- **b)** Q este negativ definită;

c)
$$(\exists)\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^3$$
 astfel încât $Q(\mathbf{x}_1) < 0$ și $Q(\mathbf{x}_2) > 0$;

d)
$$(\forall) \mathbf{x} \in \mathbb{R}^3$$
, $\mathbf{x} \neq \mathbf{0}_3$ avem $Q(\mathbf{x}) < 0$.

$$\begin{cases} Q: \mathbf{R}^n \to \mathbf{R} \\ Q(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \\ & \text{are forma canonică} \end{cases}$$

asociată: $Q(\mathbf{y}) = \alpha_1 y_1^2 + \alpha_2 y_2^2 + \dots + \alpha_n y_n^2$. Atunci Q este degenerată dacă:

a)
$$(\exists)a_{ij} = 0$$
, pentru $i, j = \overline{1,n}$;

b)
$$(\exists) \mathbf{x} \in \mathbb{R}^n$$
 astfel încât $Q(\mathbf{x}) = 0$;

c)
$$(\exists)\alpha_i = 0$$
, pentru $i = \overline{1,n}$;

$$Q(\mathbf{x}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}_n$$

·

103) Capitol: 2 Elemente de algebra liniaraFie $Q(\mathbf{y}) = \alpha_1 y_1^2 + \alpha_2 y_2^2 + \alpha_3 y_3^2$ forma canonică asociată formei pătratice $Q: \mathbb{R}^3 \to \mathbb{R}$. Atunci Q nu păstrează semn constant dacă:

a)
$$\alpha_1 > 0$$
, $\alpha_2 < 0$, $\alpha_3 > 0$;

b)
$$\alpha_1 < 0$$
, $\alpha_2 = 0$, $\alpha_3 < 0$;

c)
$$\alpha_1 > 0$$
, $\alpha_2 > 0$, $\alpha_3 = 0$;

$$\alpha_1 > 0, \ \alpha_2 < 0, \ \alpha_3 \in R$$

104) Capitol: 2 Elemente de algebra liniara Metoda lui Jacobi de a obține forma canonică, se poate aplica în cazul formelor pătratice:

- a) pozitiv definite;
- **b)** semipozitiv definite;
- c) negativ definite;
- d) seminegativ definite.

$$\begin{cases} L: \mathbb{R}^3 \to \mathbb{R}^2 \\ L(\mathbf{x}) = (x_1 + x_3, 2x_1 - x_2)^T \end{cases}$$
 105) Capitol: 2 Elemente de algebra liniara
Fie operatorul liniar

 $(\forall)\mathbf{x} = (x_1, x_2, x_3)^T \in \mathbb{R}^3$. Atunci matricea operatorului în bazele canonice ale celor două spații are forma:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix};$$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -1 & 2 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$

106) Capitol: 2 Elemente de algebra liniaraMatricea operatorului $L: \mathbb{R}^2 \to \mathbb{R}^2$ față de baza canonică

 $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$. Atunci operatorul *L* are expresia: din R² are expresia

a)
$$L(\mathbf{x}) = (x_1 - x_2, 2x_1)^T$$
;

b)
$$L(\mathbf{x}) = (x_1 + 2x_2, -x_1)^T$$
;

c)
$$L(\mathbf{x}) = (2x_1, x_1 - x_2)^T$$
:

$$L(\mathbf{x}) = (x_1 - x_2, 2x_2)^T$$

107) Capitol: 2 Elemente de algebra liniaraPentru a se determina valorile proprii ale operatorului $L: \mathbb{R}^n \to \mathbb{R}^n$ cu matricea corespunzătoare **A**, se rezolvă ecuatia:

a)
$$det(\mathbf{A} - \lambda \mathbf{I}_n) = 0$$
;

b)
$$det(\mathbf{A}^T - \lambda) = 0$$
:

c)
$$det(\mathbf{A}^T - \lambda \mathbf{I}_n) = 0$$
;

$$d) \det(\mathbf{A}^T + \lambda \mathbf{I}_n) = 0.$$

108) Capitol: 2 Elemente de algebra liniara
Operatorul liniar
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
 are matricea
A tunci equatio caracterictică pontru obtinorea valorilor proprii era forme:

Atunci ecuația caracteristică pentru obținerea valorilor proprii are forma:

Attnice ecuação caracter
$$\begin{vmatrix}
1-\lambda & 2 \\
3 & -1-\lambda
\end{vmatrix} = 0$$

b)
$$\begin{vmatrix}
\lambda - 1 & 2 \\
3 & \lambda + 1
\end{vmatrix} = 0$$

c)
$$\begin{vmatrix}
1-\lambda & 3 \\
2 & -1-\lambda
\end{vmatrix} = 0$$

;

b)
$$\begin{vmatrix} \lambda - 1 & 2 \\ 3 & \lambda + 1 \end{vmatrix} = 0$$
;

$$\begin{vmatrix} 1 - \lambda & 3 \\ 2 & -1 - \lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 - \lambda \\ 3 - \lambda & -1 - \lambda \end{vmatrix} = 0$$

109) Capitol: 2 Elemente de algebra liniaraFie operatorul liniar $L: \mathbb{R}^2 \to \mathbb{R}^2$ cu matricea

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
 Atunci ecuația caracteristică corespunzătoare este:
a) $\lambda^2 + 2\lambda + 1 = 0$;

a)
$$\lambda^2 + 2\lambda + 1 = 0$$

b)
$$\lambda^2 - \lambda + 1 = 0$$
:

c)
$$\lambda^2 - 2\lambda + 1 = 0$$
:

d)
$$\lambda^2 - 2\lambda - 1 = 0$$
.

110) Capitol: 2 Elemente de algebra liniaraFie operatorul liniar $L: \mathbb{R}^3 \to \mathbb{R}^2$. Atunci:

- a) ecuatia caracteristică are gradul 3;
- **b)** ecuatia caracteristică are gradul 2;
- c) operatorului nu i se poate atașa ecuația caracteristică;
- **d)** matricea operatorului $A \in M_{3,2}(R)$.

111) Capitol: 2 Elemente de algebra liniara Operatorul $L: \mathbb{R}^2 \to \mathbb{R}^2$ are matricea Atunci, valorile proprii ale lui L sunt:

a)
$$\lambda_1 = 2$$
, $\lambda_2 = 0$;

b)
$$\lambda_1 = -1, \ \lambda_2 = -2;$$

c)
$$\lambda_1 = 2, \ \lambda_2 = -2$$
;

d)
$$\lambda_1 = -1, \ \lambda_2 = 0$$
.

112) Capitol: 2 Elemente de algebra liniaraFie

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 matricea atașată operatorului

 $L: \mathbb{R}^2 \to \mathbb{R}^2$. Atunci:

a) valorile proprii ale lui
$$L$$
 sunt: $\lambda_1 = 1$, $\lambda_2 = 1$;

b) valorile proprii ale lui L sunt: $\lambda_1 = 0$, $\lambda_2 = 2$;

c) operatorul nu are valori proprii reale deoarece $det \mathbf{A} = 0$;

d) sistemul caracteristic ataşat este
$$\begin{cases} (1-\lambda)x_1 + x_2 = 0 \\ x_1 + (1-\lambda)x_2 = 0 \end{cases}.$$

113) Capitol: 2 Elemente de algebra liniara Operatorul $L: \mathbb{R}^2 \to \mathbb{R}^2$ are valorile proprii $\lambda_1 = 1$ si $\lambda_2 = 2$. Atunci:

- a) dacă \mathbf{x}_1 este vector propriu pentru $\lambda_1 \Rightarrow \mathbf{x}_1$ este vector propriu pentru λ_2 ;
- **b)** dacă \mathbf{x}_1 este vector propriu pentru $\lambda_1 \Rightarrow \alpha \mathbf{x}_1$ este vector propriu pentru λ_1 , pentru $(\forall) \alpha \in R^*$;
- c) dacă \mathbf{x}_1 , \mathbf{x}_2 sunt vectori proprii pentru λ_1 , respectiv $\lambda_2 \Rightarrow \mathbf{x}_1$, \mathbf{x}_2 sunt liniar independenți;
- $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ d) există o bază fată de care matricea operatorului are forma

$$\begin{cases} L: \mathbf{R}^2 \to \mathbf{R}^2 \\ L(\mathbf{x}) = (x_1 + x_2, x_1)^T \end{cases} . \text{ Atuncian properties of the properties of$$

- a) $ker L = \{(0,0)^T\}.$
- $ker L = \{(\alpha, -\alpha)^T / \alpha \in \mathbb{R}\}.$
- c) $\ker L = \{(\alpha + \beta, \alpha)^T / \alpha, \beta \in R\}.$
- d) $ker L = \{(\alpha, 0)^T / \alpha \in R\}$.

115) Capitol: 2 Elemente de algebra liniaraCare din următoarele afirmații sunt adevărate?

- a) orice spatiu liniar este grup abelian;
- b) orice grup abelian este spațiu liniar;
- c) există spații liniare care nu sunt grupuri abeliene;
- d) există grupuri abeliene care nu sunt spații liniare.

- **116) Capitol:** 2 Elemente de algebra liniara Fie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^m$ și \mathbf{A} matricea componentelor acestora. Atunci:
- a) vectorii sunt liniar independenți dacă $rang \mathbf{A} = m$;
- **b)** vectorii sunt liniar dependenți dacă $rang \mathbf{A} < m$;
- c) vectorii sunt liniar dependenți dacă $rang \mathbf{A} \neq m$;
- d) vectorii sunt liniar independenți dacă $rang \mathbf{A} \neq 0$

117) Capitol: 2 Elemente de algebra liniaraÎn spațiul Rⁿ o mulțime de vectori liniar independenți poate avea:

- a) cel mult *n* vectori;
- **b)** cel puţin *n* vectori;
- c) exact *n* vectori;
- d) o infinitate de vectori.

118) Capitol: 2 Elemente de algebra liniaraFie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^m$ și \mathbf{A} matricea componentelor acestora. Atunci sunt liniar dependenți, dacă:

- a) rang A = m.
- b) $det \mathbf{A} \neq 0$.

c) $rang \mathbf{A} < m$; d) $det \mathbf{A} = 0$.
119) Capitol: 2 Elemente de algebra liniara Fie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbf{R}^m$ şi \mathbf{A} matricea componentelor acestora. Atunci sunt liniar independenți, dacă: a) $rang \mathbf{A} = m$; b) $det \mathbf{A} = 0$; c) $rang \mathbf{A} < m$; d) $det \mathbf{A} \neq 0$.
 120) Capitol: 2 Elemente de algebra liniaraFie vectorii x₁, x₂,, x_m ∈ Rⁿ liniar independenți. Atunci vectorii: a) formează o bază în Rⁿ, (∀)m,n∈ N; b) nu formează o bază în Rⁿ, pentur nici o valoare a lui m; c) formează o bază în Rⁿ, numai dacă m=n; d) nu conțin vectorul nul.
 121) Capitol: 2 Elemente de algebra liniaraMulțimea X₁, X₂,, X_m este formată din vectori liniar dependenți. Atunci: a) oricare dintre vectori se exprima ca o combinație liniară de ceilalți; b) cel puțin un vector se poate exprima ca o combinație liniară de ceilalți; c) nici unul din vectori nu se exprimă ca o combinație liniară de ceilalți; d) poate conține vectorul nul.
122) Capitol : 2 Elemente de algebra liniaraFie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^n$, $n > 3$, liniar independenți. Atunci: a) vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ formează o bază în \mathbb{R}^n ; b) vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ sunt liniar independenți, $(\forall)k = \overline{1,n}$; c) vectorii $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ formează o bază în \mathbb{R}^3 ; d) $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ sunt liniar independenți.
123) Capitol: 2 Elemente de algebra liniaraCare din următoarele afirmații sunt adevărate: a) orice submulțime a unei mulțimi de vectori liniar independenți este tot liniar independentă; b) o submulțime a unei mulțimi de vectori liniar dependenți este tot liniar dependentă; c) coordonatele unui vector în baza canonică din R ⁿ coincid cu componentele acestuia; d) dacă o mulțime de vectori nu conține vectorul nul, atunci este liniar independentă. 124) Capitol: 2 Elemente de algebra liniaraCoordonatele unui vector din R ⁿ : a) sunt unice relativ la o bază fixată; b) se schimbă la schimbarea bazei; c) sunt aceleași în orice bază; d) în baza canonică, coincid cu componentele vectorului.

125) Capitol: 2 Elemente de algebra liniaraUn sistem de n vectori din \mathbb{R}^n , care conține vectorul nul: a) este liniar independent; b) este liniar dependent;

- c) nu formează o bază în \mathbb{R}^n ;
- d) nu se poate spune nimic despre natura sa.

126) Capitol: 2 Elemente de algebra liniaraCoordonatele unui vector în două baze care diferă printr-un singur vector sunt:

- a) diferite;
- b) aceleași, cu excepția unei singure coordonate;
- c) aceleași, datorită unicității coordonatelor într-o bază;
- d) totdeauna nenule.

- 127) Capitol: 2 Elemente de algebra liniaraDimensiunea unui spațiu vectorial este egală cu:
- a) numărul vectorilor dintr-o bază;
- b) numărul maxim de vectori liniar independenți;
- c) numărul vectorilor din spațiul considerat;
- d) numărul de baze din spațiu.

- 128) Capitol: 2 Elemente de algebra liniara Matricea schimbării de bază este:
- a) o matrice pătratică;
- **b)** o matrice inversabilă;
- c) formată din coordonatele vectorilor unei baze descompuși în cealaltă bază;
- d) formată din coordonatele unui vector descompus în cele două baze.

- **129)** Capitol: 2 Elemente de algebra liniaraFie aplicația $L: \mathbb{R}^m \to \mathbb{R}^n$. Atunci L este un operator liniar dacă:
- a) $L(\mathbf{x}_1 + \mathbf{x}_2) = L(\mathbf{x}_1) + L(\mathbf{x}_2), \ (\forall) \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^m$:
- b) $L(\alpha \mathbf{x}) = \alpha L(\mathbf{x}), \ (\forall) \alpha \in \mathbb{R}, (\forall) \mathbf{x} \in \mathbb{R}^m$:
- c) $L(\mathbf{x}_1 + \mathbf{x}_2) = L(\mathbf{x}_1) + L(\mathbf{x}_2)$ Si $L(\alpha \mathbf{x}) = \alpha L(\mathbf{x}), (\forall) \alpha \in \mathbb{R}, (\forall) \mathbf{x}, \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^m$:
- d) m=n.

130) Capitol: 2 Elemente de algebra liniaraAplicația $L: \mathbb{R}^m \to \mathbb{R}^n$ este un operator liniar. Care din afirmațiile de mai jos sunt adevărate:

- a) $L(\mathbf{x}_1 + \mathbf{x}_2) = L(\mathbf{x}_1) + L(\mathbf{x}_2), \ (\forall) \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^m$
- b) $L(\alpha \mathbf{x}) = \alpha L(\mathbf{x}), \ (\forall) \mathbf{x} \in \mathbf{R}^m, (\forall) \alpha \in \mathbf{R}$.
- c) $L(\alpha \mathbf{x}_1 + \mathbf{x}_2) = \alpha L(\mathbf{x}_1) + \mathbf{x}_2, \ (\forall) \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^m, (\forall) \alpha \in \mathbb{R}$:
- $\text{d)} \ L(\alpha \mathbf{x}_1 + \mathbf{x}_2) = \alpha L(\mathbf{x}_1) + L(\mathbf{x}_2), \ (\forall) \mathbf{x}_1, \mathbf{x}_2 \in \mathbf{R}^m \ \Si \ (\forall) \alpha \in \mathbf{R} \ .$
- 131) Capitol: 2 Elemente de algebra liniara $Fie \mathbf{x}_1$ și \mathbf{x}_2 vectori proprii pentru operatorul liniar

 $L: \mathbb{R}^n \to \mathbb{R}^n$ corespunzători la două valori proprii distincte. Atunci:

- a) \mathbf{x}_1 și \mathbf{x}_2 sunt liniar independenți;
- **b)** \mathbf{x}_1 și \mathbf{x}_2 pot fi liniar dependenți;
- c) \mathbf{x}_1 și \mathbf{x}_2 sunt totdeauna liniar dependenți;
- d) \mathbf{x}_1 și \mathbf{x}_2 aparțin aceluiași spațiu propriu.

132) Capitol: 2 Elemente de algebra liniaraFie $L: \mathbb{R}^m \to \mathbb{R}^n$ un operator liniar și **A** matricea sa. Atunci:

- a) $\mathbf{A} \in M_{m,n}(\mathbf{R})$;
- b) $\mathbf{A} \in M_{n,m}(\mathbf{R})$;

```
c) \mathbf{A} \in M_n(\mathbf{R}).
d) obligatoriu. \det \mathbf{A} \neq 0.
 133) Capitol: 2 Elemente de algebra liniaraFie L: \mathbb{R}^3 \to \mathbb{R}^2 un operator liniar. Atunci:
a) L are cel puţin o valoare proprie reală;
b) L are numai valori reale proprii;
c) nu se poate pune problema valorilor proprii pentru L;
d) matricea lui L este dreptunghiulară.
 134) Capitol: 2 Elemente de algebra liniaraOperatorul L: \mathbb{R}^n \to \mathbb{R}^n are n valori proprii distincte
\lambda_1, \lambda_2, \dots, \lambda_n cărora le corespund vectorii proprii \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n. Atunci:
a) X_1, X_2, \dots, X_n formează o bază în \mathbb{R}^n;
b) X_1, X_2, ..., X_n sunt liniar dependenți;
c) \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n sunt din acelaşi subspațiu propriu;
d) X_1, X_2, \dots, X_n sunt liniar independenti.
 135) Capitol: 2 Elemente de algebra liniara Fie operatorul liniar L: \mathbb{R}^m \to \mathbb{R}^n liniar oarecare. Atunci:
a) ker L \subset \mathbb{R}^m.
b) ker L \subset \mathbb{R}^n
c) ker L = \{\theta_{R^n}\}.
d) ker L este subspatiu liniar.
136) Capitol: 2 Elemente de algebra liniaraUnui operator liniar L: \mathbb{R}^m \to \mathbb{R}^n i se poate asocia:
a) o matrice unică relativ la o pereche de baze fixate;
b) o infinitate de matrice relative la perechi de baze oarecare:
c) m \cdot n matrice;
d) cel mult m matrice.
137) Capitol: 2 Elemente de algebra liniara Nucleul unui operator liniar L: \mathbb{R}^m \to \mathbb{R}^n este:
a) un subspațiu liniar;
b) o multime de vectori liniari independenti din \mathbb{R}^m;
c) o multime de vectori liniar independenti din \mathbb{R}^n;
d) mulțimea formată numai din vectorul nul al lui \mathbb{R}^m.
 138) Capitol: 2 Elemente de algebra liniaraUn operator liniar L: \mathbb{R}^n \to \mathbb{R}^n are:
a) cel mult n valori proprii distincte;
b) o infinitate de valori proprii;
c) un singur vector propriu pentru fiecare valoare proprie;
d) o infinitate de vectori proprii, pentru fiecare valoare proprie.
 139) Capitol: 2 Elemente de algebra liniaraÎn spatiul \mathbb{R}^n, o multime de vectori liniar independenti
poate avea:
a) mai puțin de n vectori;
b) cel puțin n vectori;
c) exact n vectori;
```

d) cel putin 2*n* vectori;

140) Capitol: 2 Elemente de algebra liniara Fie vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^n$, liniar independenți. Atunci ei: a) formează o bază în \mathbb{R}^n , dacă m < n; **b)** nu formează o bază în \mathbb{R}^n , dacă m > n; c) formează o bază în R^n , dacă m=n; **d)** formează o bază în \mathbb{R}^n , pentru $(\forall)m,n\in\mathbb{N}^*$. **141) Capitol:** 2 Elemente de algebra liniaraCoordonatele unui vector din Rⁿ: a) sunt unice relativ la o bază; b) nu se schimbă la schimbarea bazei; **c)** sunt în număr de *n*; d) sunt totdeauna nenule. **142) Capitol:** 2 Elemente de algebra liniaraUn sistem de *m* vectori din Rⁿ care conține vectorul nul: a) este întotdeauna liniar dependent; **b)** este liniar dependent numai dacă m=n; c) poate forma o bază în R^n dacă m=n: **d)** nu formează o bază în \mathbb{R}^n . 143) Capitol: 2 Elemente de algebra liniaraDimensiunea unui spatiu liniar este egală cu: a) numărul vectorilor dintr-o bază; b) numărul de vectori liniar dependenți; c) numărul vectorilor din spațiul liniar; d) numărul de baze din spațiul liniar. **144)** Capitol: 2 Elemente de algebra liniaraMatricea unei forme pătratice oarecare este o matrice: a) inversabilă; b) pătratică; c) simetrică; d) cu elementele de pe diagonala principală, nenule. **145)** Capitol: 2 Elemente de algebra liniaraDacă avem relația $\mathbf{x}_1 = \alpha \mathbf{x}_2$ atunci vectorii: a) \mathbf{x}_1 și \mathbf{x}_2 sunt liniar independenți, $(\forall)\alpha\in R$: **b)** \mathbf{x}_1 si \mathbf{x}_2 sunt liniar dependenti numai dacă $\alpha \neq 0$; c) \mathbf{x}_1 și \mathbf{x}_2 sunt liniar dependenti, $(\forall)\alpha \in \mathbf{R}$: d) \mathbf{x}_1 și \mathbf{x}_2 sunt liniar independenți, dacă $\alpha \neq 0$. 146) Capitol: 2 Elemente de algebra liniaraO formă pătratică este pozitiv definitivă dacă forma canonică atașată acesteia: a) are coeficienții pozitivi; b) are o parte din coeficienti pozitivi; c) se obține numai cu metoda lui Gauss; d) are coeficienții cu semne alternate. 147) Capitol: 2 Elemente de algebra liniara O soluție de bază a unui sistem liniar se obține:

- a) dând variabilelor principale, valoarea 0;
- **b)** dând variabilelor secundare, valoarea 0;
- c) dând variabilelor principale, valori nenule;

d) dând variabilelor secundare, valori strict pozitive.
148) Capitol: 2 Elemente de algebra liniaraO formă liniară este pozitiv definită dacă: a) are toți coeficienții pozitivi; b) matricea atașată formei liniare are determinantul pozitiv; c) coeficienții matricei atașate formei liniare sunt toți pozitivi; d) pozitiva definire se referă numai la formele pătratice.
 149) Capitol: 2 Elemente de algebra liniara Dacă suma a n vectori din Rⁿ este egală cu vectorul nul atunci: a) vectorii sunt liniar independenți; b) vectorii sunt liniar dependenți; c) cel puțin unul se scrie ca o combinație liniară de restul; d) nu formează o bază în Rⁿ.
150) Capitol : 2 Elemente de algebra liniara D acă vectorii $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ formează o bază în spațiul liniar \mathbf{X} , atunci: a) $\dim \mathbf{X} \geq n$; b) $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ sunt liniar independenți; c) $\dim \mathbf{X} = n$; d) $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{n-1}$ sunt liniar independenți.
 151) Capitol: 2 Elemente de algebra liniaraMatricea asociată unui operator liniar oarecare L: R^m → Rⁿ: a) este simetrică; b) depinde de bazele considerate în cele două spații; c) este inversabilă, dacă m=n; d) este pătratică.
152) Capitol: 2 Elemente de algebra liniara N ucleul unui operator liniar $L: \mathbb{R}^m \to \mathbb{R}^n$: a) este format din vectorii proprii corespunzători lui L ; b) conține totdeauna vectorul nul al spațiului \mathbb{R}^m ; c) este subspațiu liniar; d) nu conține vectorul nul al spațiului \mathbb{R}^n .
153) Capitol : 2 Elemente de algebra liniara F ie vectorii $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{R}^5$, liniar independenți atunci ei: a) formează o bază în \mathbb{R}^5 ; b) nu formează o bază în \mathbb{R}^5 ; c) nu formează o bază în \mathbb{R}^4 ; d) formează o bază în \mathbb{R}^4 ;
154) Capitol : 2 Elemente de algebra liniara D acă vectorul \mathbf{X}_{n+1} se scrie ca o combinație liniară de vectorii $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n \in \mathbf{R}^n$, atunci: a) vectorii $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ sunt liniar independenți; b) $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ formează o bază în \mathbf{R}^n :

c) $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{x}_{n+1}$ sunt liniar dependenți; d) nu se poate spune nimic despre natura vectorilor $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$;
155) Capitol: 2 Elemente de algebra liniara $Fie\ L:R^m\to R^n$ un operator liniar. Atunci L admite o valoare proprie reală dacă: a) $m< n$; b) $m>n$; c) $m=n$ şi m impar; d) $m\neq n$;
156) Capitol: 2 Elemente de algebra liniara N ucleul unui operator liniar $L: \mathbb{R}^m \to \mathbb{R}^n$ este: a) un subspațiu liniar; b) o mulțime din \mathbb{R}^m ; c) o mulțime din \mathbb{R}^n ; d) mulțimea formată din vectorul nul al lui \mathbb{R}^m .
157) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară are întotdeauna: a) funcția obiectiv liniară; b) coeficienții funcției obiectiv nenuli; c) restricțiile liniare; d) matricea sistemului de restricții, pătratică.
 158) Capitol: 3 Elemente de programare liniaraÎn forma vectorială, o problemă de programare liniară are vectorii P₁, P₂,, P_n definiți de: a) liniile matricei A corespunzătoare sistemului de restricții; b) coloanele matricei A corespunzătoare sistemului de restricții; c) coeficienții funcției obiectiv f; d) termenii liberi ai sistemului de restricții.
159) Capitol: 3 Elemente de programare liniaraÎn forma standard o problemă de programare liniară are întotdeauna: a) coeficienții funcției obiectiv nenegativi; b) coeficienții necunoscutelor din sistemul de restricții, nenegativi; c) restricțiile de tip ecuație; d) coeficienții funcției obiectiv nenuli.
160) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de programare liniară condițiile de nenegativitate cer ca: a) coeficienții funcției obiectiv să fie nenegativi; b) termenii liberi ai sistemului de restricții să fie nenegativi; c) funcția obiectiv să ia valori nenegative; d) necunoscutele problemei să fie nenegative.
161) Capitol: 3 Elemente de programare liniaraPentru a aplica algoritmul Simplex de rezolvare a unei probleme de programare liniară, aceasta trebuie să fie în forma: a) canonică; b) vectorială; c) standard; d) artificială.

162) Capitol: 3 Elemente de programare liniaraPentru a aduce o problemă de programare liniară de

maxim la una de minim se folosește relația:

- a) max(f) = -min(f):
- b) max(f) = min(-f):
- c) max(f) = -min(-f).
- d) max(f) = min(f).

163) Capitol: 3 Elemente de programare liniara O mulțime $M \subset \mathbb{R}^n$ se numește convexă dacă:

- a) $(\exists) \mathbf{x}_1, \mathbf{x}_2 \in M$ a.î. $\lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2 \in M$, $(\forall) \lambda \in \mathbb{R}$;
- **b)** $(\forall) \mathbf{x}_1, \mathbf{x}_2 \in M, (\exists) \lambda \in [0,1]$ a.î. $\lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2 \in M$:
- c) $(\forall) \mathbf{x}_1, \mathbf{x}_2 \in M \text{ si } (\forall) \lambda \in [0,1] \text{ avem: } \lambda \mathbf{x}_1 + (1-\lambda) \mathbf{x}_2 \in M$;
- **d)** $(\exists)\mathbf{x}_1, \mathbf{x}_2 \in M \text{ si } (\exists)\lambda \in [0,1] \text{ a.î. } \lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2 \in M$.

164) Capitol: 3 Elemente de programare liniaraCombinația liniară " $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \lambda_3 \mathbf{x}_3$ " este convexă dacă:

- a) $\lambda_1 + \lambda_2 + \lambda_3 = 1$;
- **b)** $\lambda_i \in [0,1], (\forall) i = \overline{1,3}, \quad \lambda_1 + \lambda_2 + \lambda_3 = 1;$
- c) $\lambda_i \in [0,1]$, $(\forall)i = \overline{1,3}$ si $\lambda_1 + \lambda_2 + \lambda_3 = 0$;
- **d)** $\lambda_i \in \mathbb{R}$, $(\forall)i = \overline{1,3}$ si $\lambda_1 + \lambda_2 + \lambda_3 = 0$.

165) Capitol: 3 Elemente de programare liniara $Dacă M \subset \mathbb{R}^n$ este o mulțime convexă spunem că $\mathbf{x} \in M$ este vârf (punct extrem) al mulțimii M dacă:

- **a)** $(\exists) \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$, $(\exists) \lambda \in [0,1]$ a.î. $\mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2$;
- **b)** $(\exists) \mathbf{x}_1, \mathbf{x}_2 \in M$, $(\exists) \lambda \in [0,1]$ a.î. $\mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2$;
- c) nu $(\exists \mathbf{x}_1 \neq \mathbf{x}_2 \in M \text{ si nu } (\exists) \lambda \in (0,1)$ a.î. $\mathbf{x} = \lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2$;
- **d)** $(\forall) \mathbf{x}_1 \neq \mathbf{x}_2 \in \mathbb{R}^n$, $(\exists) \lambda \in (0,1)$ a.î. $\mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2$.

166) Capitol: 3 Elemente de programare liniara $Fie\ S_A$ mulțimea soluțiilor admisibile ale unei probleme de programare liniară. Atunci:

- a) $(\forall)\mathbf{x}_1, \mathbf{x}_2 \in S_A \Rightarrow \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in S_A, \ (\forall)\lambda \in [0, 1]$
- **b)** $(\forall)\mathbf{x}_1,\mathbf{x}_2 \in S_A$, $(\exists)\lambda \in [0,1]$ a.î. $\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2 \notin S_A$:
- c) $(\exists)\mathbf{x}_1, \mathbf{x}_2 \in S_A$ a.î. $\lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \notin S_A$, $(\forall)\lambda \in [0,1]$
- $\text{d)} \ (\exists) \mathbf{x}_{1}, \mathbf{x}_{2} \in S_{A} \ _{\S \mathbf{i}} \ (\exists) \lambda \in [0,1] \ _{a.\hat{1}.} \ \lambda \mathbf{x}_{1} + (1-\lambda) \mathbf{x}_{2} \not \in S_{A} \, .$

167) Capitol: 3 Elemente de programare liniaraFie S_A și S_{AB} mulțimea soluțiilor admisibile, respectiv mulțimea soluțiilor admisibile de bază a unei probleme de programare liniară. Atunci, dacă $\mathbf{x} \in S_{AB}$ rezultă că:

- a) nu $(\exists) \mathbf{x}_1, \mathbf{x}_2 \in S_A, \ \mathbf{x}_1 \neq \mathbf{x}_2 \ \text{Si} \ \text{nu} (\exists) \lambda \in (0,1) \ \text{a.i.} \ \mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2$;
- **b)** $(\forall) \mathbf{x}_1, \mathbf{x}_2 \in S_A, \mathbf{x}_1 \neq \mathbf{x}_2 \text{ avem } \mathbf{x} \neq \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2, (\forall) \lambda \in [0, 1]$
- c) $(\exists) \mathbf{x}_1, \mathbf{x}_2 \in S_A, \ \mathbf{x}_1 \neq \mathbf{x}_2 \ \text{si} \ (\exists) \lambda \in (0,1) \ \text{a.î.} \ \mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2 \ \text{si}$
- **d)** $(\forall) \mathbf{x}_1, \mathbf{x}_2 \in S_A \text{ si } (\forall) \lambda \in (0,1) \text{ avem: } \mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2.$

168) Capitol: 3 Elemente de programare liniara Fie S_A , S_{AB} , S_O mulțimile soluțiilor admisibile, de	bază
admisibile, respectiv optime pentru o problemă de programare liniară. Atunci:	

a)
$$S_A \supset S_{AB}$$
;

b)
$$S_O \supset S_A$$
;

- c) S_A , S_{AB} , sunt mulțimi convexe;
- d) S_A , S_O sunt multimi convexe.

- **169) Capitol:** 3 Elemente de programare liniaraÎn rezolvarea unei probleme de programare liniară cu algoritmul Simplex se aplică:
- a) întâi criteriul de intrare în bază, apoi criteriul de ieșire din bază;
- b) întâi criteriul de ieșire din bază, apoi criteriul de intrare în bază;
- c) criteriul de intrare și de ieșire din bază în orice ordine dorim;
- d) criteriul de optim la fiecare etapă a algoritmului.

170) Capitol: 3 Elemente de programare liniara $Dacă x_1 si x_2 sunt două soluții optime distincte$

($\mathbf{x}_{1},\mathbf{x}_{2}\in S_{o}$) ale unei probleme de programare liniară, atunci:

a)
$$\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in S_O$$
, $(\forall) \lambda \in [0, 1]$;

- **b)** S_O are o infinitate de elemente;
- c) $f(\mathbf{x}_1) = f(\mathbf{x}_2)$, cu $f(\mathbf{x})$ functia objectiv;
- **d)** S_O este finită.

171) Capitol: 3 Elemente de programare liniaraÎn faza I a metodei celor două faze, valoarea optimă a

funcției artificiale $g(\mathbf{x}^a) = 1$. Atunci:

- a) se trece la faza a doua;
- b) problema inițială nu are soluție;
- c) soluția optimă a fazei I este și soluția optimă a problemei inițiale;
- d) se mai introduce o variabilă artificială.

.....

- 172) Capitol: 3 Elemente de programare liniara Funcția artificială din metoda celor două faze:
- a) depinde doar de variabilele artificiale introduse;
- b) depinde doar de variabilele initiale;
- c) are coeficienții variabilelor artificiale egali cu 1;
- d) coincide cu funcția inițială la care se adaugă variabilele artificiale.

173) Capitol: 3 Elemente de programare liniaraProblema artificială se atașează unei probleme de programare:

- a) în formă canonică;
- **b)** în formă standard;
- c) pentru determinarea soluției optime a problemei inițiale;
- d) pentru determinarea unei soluții de bază admisibile a problemei inițiale.

174) Capitol: 3 Elemente de programare liniaraÎn rezolvarea unei probleme de transport metoda costului minim se aplică pentru determinarea:

- a) valorii funcției obiectiv;
- b) variabilei care intră în bază;
- c) unei soluții de bază admisibile inițiale;
- d) soluției optime.

175) Capitol: 3 Elemente de programare liniaraCantitățile δ_{ij} din criteriul de optim al problemelor de

transport se calculează pentru: a) toate celulele tabelului; b) celulele bazice; c) celulele nebazice; d) celulele cu costuri minime.
176) Capitol: 3 Elemente de programare liniara S oluția unei probleme de transport este optimă dacă: a) $(\forall)\delta_{ij}>0$; b) $(\exists)\delta_{ij}\leq0$; c) $(\forall)\delta_{ij}\leq0$; d) $(\exists)\delta_{ij}\geq0$.
177) Capitol: 3 Elemente de programare liniara Osoluție de bază admisibilă a unei probleme de transport este degenerată dacă: a) $(\exists) \delta_{ij} = 0$, cu (i,j) celulă nebazică; b) $(\exists) x_{ij} = 0$, cu (i,j) celulă bazică; c) $(\forall) x_{ij} = 0$, cu (i,j) celulă nebazică; d) $(\forall) \delta_{ij} = 0$, cu (i,j) celulă nebazică.
 178) Capitol: 3 Elemente de programare liniaraO soluție de bază admisibilă a unei probleme de transport cu 2 depozite și 5 centre de desfacere este degenerată dacă are: a) 6 componente nenule; b) 7 componente egale cu 0; c) cel mult 5 componente nenule; d) exact 5 componente nenule.
179) Capitol: 3 Elemente de programare liniara S oluția optimă a unei probleme de transport este unic dacă cantitățile δ_{ij} corespunzătoare acesteia sunt toate: a) strict pozitive; b) strict negative; c) egale cu 0; d) diferite de 0.
180) Capitol: 3 Elemente de programare liniara S oluția unei probleme de transport este optimă dacă: a) $(\forall)\delta_{ij} \geq 0$; b) $(\exists)\delta_{ij} \geq 0$; c) $(\forall)\delta_{ij} \leq 0$; d) $(\exists)\delta_{ij} \leq 0$.
181) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de transport va intra în bază variabila x_{ij} corespunzătoare cantității δ_{ij} dată de relația: a) $\delta_{ij} = min\{\delta_{kl} > 0\}$; b) $\delta_{ij} = max\{\delta_{kl} > 0\}$; c) $\delta_{ij} = min\{\delta_{kl} < 0\}$;

$\delta_{ij} = max\{\delta_{kl} < 0\}.$
 182) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de transport cu m depozite şi m centre de desfacere, variabilele nebazice ale unei soluții de bază admisibile sunt: a) toate pozitive; b) toate egale cu 0; c) în număr de 2m-1; d) în număr de m² - 2m+1.
183) Capitol: 3 Elemente de programare liniara Într-o problemă de transport, noțiunea de ciclu se atașează: a) celulelor bazice; b) celulelor nebazice; c) tuturor celulelor; d) numei celulelor care au costurile $c_{ij} < 0$.
 184) Capitol: 3 Elemente de programare liniaraCoeficienții funcției obiectiv a unei probleme de transport oarecare sunt: a) numere reale oarecare; b) toți egali cu 1; c) numere nenegative; d) egali cu costurile de transport;
185) Capitol: 3 Elemente de programare liniaraPentru o problemă de programare liniară, care dintre următoarele afirmații sunt adevărate: a) o soluție de bază admisibilă este punct extrem al mulțimii soluțiilor admisibile; b) un punct extrem al mulțimii soluțiilor admisibile este o soluție de bază admisibilă; c) orice soluție optimă este o soluție de bază admisibilă; d) orice soluție de bază admisibilă este soluție optimă.
186) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de programare liniară se folosesc variabile de compensare când: a) restricțiile sunt de forma "≤"; b) restricțiile sunt de forma "≥"; c) restricțiile sunt de forma "="; d) termenii liberi sunt negativi.
187) Capitol: 3 Elemente de programare liniaraO soluție de bază admisibilă are componente: a) nenegative; b) numai strict pozitive; c) negative; d) numere reale oarecare.
400) Carital: 2 Flamenta de programara liniara O problemă de programara liniară au cominte de ministr

188) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară cu cerințe de minim are mai multe soluții optime dacă:

a) $z_j - c_j \le 0$ și există vectori P_j care nu fac parte din baza cu $z_j - c_j = 0$, care au și coordonate strict pozitive;

b) $z_j - c_j \le 0$ şi există vectori P_j care nu fac parte din baza cu $z_j - c_j = 0$, care au toate coordonatele strict negative;

c) $z_j - c_j \le 0$ şi pentru vectorii P_j care nu fac parte din baza avem $z_j - c_j > 0$;

d) există diferențe $z_j - c_j > 0$ 189) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară cu cerința de minim pentru funcția obiectiv, admite optim infinit dacă: a) există vectori P_i cu toate coordonatele negative, care nu fac parte din bază și pentru care $z_j - c_j > 0.$ **b)** există vectori P_j cu coordonate pozitive care nu fac parte din bază și pentru care $z_j - c_j > 0$: c) $z_j - c_j \le 0$ și există vectori P_j cu coordonate pozitive, care nu fac parte din baza și pentru care avem $z_j - c_j < 0$. d) funcția obiectiv are coeficienți strict negativi. 190) Capitol: 3 Elemente de programare liniaraÎn forma standard, o problemă de programare liniară a) numărul restrictiilor cel mult egal cu al necunoscutelor; b) numărul restricțiilor cel puțin egal cu al necunoscutelor; c) funcția obiectiv numai cu coeficienți pozitivi; d) termenii liberi ai sistemului de restricții, nuli. 191) Capitol: 3 Elemente de programare liniaraDacă matricea unei probleme de programare liniară în forma standard are rangul egal cu numărul restricțiilor, atunci: a) problema nu are soluții admisibile; b) restricțiile sunt independente; c) problema are optim infinit; d) se introduc variabile artificiale. 192) Capitol: 3 Elemente de programare liniara Pentru a aduce o problemă de programare liniară la forma standard, se folosesc variabile: a) artificiale; **b)** de compensare; c) negative; d) de bază. 193) Capitol: 3 Elemente de programare liniara Solutiile admisibile ale unei probleme de programare liniară formează totdeauna o mulțime: a) finită; **b)** mărginită; c) convexă; d) nemărginită. 194) Capitol: 3 Elemente de programare liniara Soluțiile de bază admisibilă ale unei probleme de programare liniară formează o multime: a) finită; b) nemărginită; c) convexă; d) mărginită;

195) Capitol: 3 Elemente de programare liniara O soluție de bază admisibilă are numai componente:

- a) nenegative;
- b) strict pozitive;
- c) negative;

d) artificiale.
 196) Capitol: 3 Elemente de programare liniaraPentru aplicarea algoritmului Simplex, soluția de bază inițială a unei probleme de programare liniară trebuie să fie: a) degenerată; b) admisibilă; c) neadmisibila; d) cu toate componentele mai mici sau egale cu 0.
 197) Capitol: 3 Elemente de programare liniaraO soluție de bază admisibilă a unei probleme de transport cu m depozite și n centre are: a) cel mult m+n-1 componente nenule; b) cel puțin m+n-1 componente nenule; c) cel mult m+n-1 componente negative; d) numai componente nenegative.
 198) Capitol: 3 Elemente de programare liniaraPentru o problemă de transport care dintre următoarele afirmații sunt adevărate: a) admite totdeauna o soluție de bază admisibilă; b) o soluție de bază admisibilă are cel puțin m+n-1 componente strict pozitive; c) are totdeauna optim finit; d) funcția obiectiv este liniara;
199) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de transport metoda perturbării se aplică atunci când: a) soluția inițială este degenerată; b) pe parcursul rezolvării se obține o soluție degenerată; c) problema nu este echilibrată; d) problema are mai multe soluții optime.
200) Capitol: 3 Elemente de programare liniara Oproblemă de transport, pentru care există $\delta_{ij} = 0$ pentru o variabilă (componenta) nebazică a soluției optime, are:

- a) optim infinit;
- b) mai multe soluții optime;
- c) soluție optimă unică;
- d) soluția inițială degenerată.

201) Capitol: 3 Elemente de programare liniaraMetoda grafică de rezolvare a problemelor de programare liniară se aplică pentru probleme:

- a) cu cel puțin două necunoscute;
- b) cu cel mult două inecuații;
- c) cu două necunoscute;
- d) numai pentru probleme de minim.

202) Capitol: 3 Elemente de programare liniara Pentru o problemă de programare liniară, mulțime
a S_A a soluțiilor admisibile și mulțimea S_{AB} a soluțiilor admisibile de bază satisfac relațiile:

- a) $S_A \subset S_{AB}$;
- $S_A = S_{AB};$
- c) $S_A \supset S_{AB}$:

c) $S_A = S_A$,
d) $S_A \cup S_{AB} = S_A$.

 203) Capitol: 3 Elemente de programare liniara O problemă de programare liniară are: a) optim (finit sau nu) sau nici o soluție admisibilă; b) numai optim finit; c) intotdeauna o unica soluție optimă; d) intotdeauna optim nenegativ.
204) Capitol: 3 Elemente de programare liniaraPentru a aplica algoritmul de rezolvare a unei probleme de transport trebuie ca: a) problema să fie echilibrată și numărul depozitelor să fie egal cu al centrelor; b) problema să fie echilibrată și să avem o soluție de bază inițială nedegenerată; c) să avem o soluție de bază degenerată și mai multe depozite decât magazine; d) soluția optimă să fie unică.
205) Capitol: 3 Elemente de programare liniaraPentru a rezolva o problemă de transport neco

echilibrată:

- a) se introduce un nou depozit, dacă cererea este mai mare decât oferta;
- b) se introduce un nou centru, dcă cererea este mai mică decât oferta;
- c) se aplică metoda perturbării;
- d) se introduc variabile de compensare.

- 206) Capitol: 3 Elemente de programare liniara Pentru o problemă de programare liniară care dintre următoarele afirmații sunt adevărate:
- a) orice solutie de bază admisibilă este solutie optimă;
- b) orice soluție de bază este o soluție de bază admisibilă;
- c) orice soluție optimă este o soluție admisibilă;
- d) multimea soluțiilor admisibile este convexă.
- 207) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de programare liniară nu se folosesc variabile de compensare când:
- a) restrictiile sunt de forma "≤";
- **b)** restrictiile sunt de forma "≥";
- c) restricțiile sunt de forma "=";
- d) sistemul inițial de restricții este în forma standard.

208) Capitol: 3 Elemente de programare liniara O problemă de programare liniară de minim are mai multe soluții optime dacă avem satisfăcut criteriul de optim și:

- a) există vectori P_i din bază, cu $z_j c_j = 0$, care au coordonate pozitive;
- **b)** există vectori P_i care nu fac parte din bază, cu $z_j c_j = 0$, care au coordonate pozitive;
- c) pentru vectorii P_j care nu fac parte din bază, avem $z_j c_j < 0$;
- d) există vectori P_i care nu fac parte din bază, cu $z_j c_j = 0$, care au coordonate negative.
- 209) Capitol: 3 Elemente de programare liniara O problemă de programare liniară de minim admite optim infinit dacă:
- a) criteriul de optim nu este satisfăcut și vectorii din afara bazei au toate coordonatele negative;
- b) criteriul de optim este satisfăcut și vectorii din afara bazei au coordonatele negative;
- c) criteriul de optim nu este satisfăcut și vectorii din afara bazei au și coordonate pozitive;
- d) criteriul de optim este satisfăcut și vectorii din bază au toate coordonatele pozitive.

210) Capitol: 3 Elemente de programare liniara de programare liniară de minim admite soluție optimă unică dacă:

a) criteriul de optim este satisfăcut și toți vectorii din afara bazei au diferențele $z_j - c_j < 0$;

b) criteriul de optim este satisfăcut și toți vectorii din afara bazei cu diferențele $z_j - c_j = 0$ au și coordonate pozitive;
c) criteriul de optim este satisfăcut și vectorii din afara bazei cu diferențele $z_j - c_j = 0$ au coordonatele negative;
d) criteriul de optim nu este satisfăcut și toți vectorii din afara bazei au diferențele $z_j - c_j > 0$.
 211) Capitol: 3 Elemente de programare liniaraÎn forma standard, o problemă de programare liniară are: a) numărul restricțiilor cel mult egal cu al necunoscutelor; b) restricțiile de tip ecuație; c) restricțiile de tip inecuație; d) variabile artificiale.
212) Capitol: 3 Elemente de programare liniaraDacă matricea unei probleme de programare liniară în forma standard are rangul egal cu numărul restricțiilor atunci: a) problema are întotdeauna soluții de bază admisibile; b) restricțiile sunt independente; c) problema are soluție optimă unică; d) s-au introdus variabile artificiale.
 213) Capitol: 3 Elemente de programare liniaraPentru a aduce o problemă de programare liniară la forma standard se folosesc: a) variabile artificiale; b) variabile de compensare; c) variabile de bază; d) transformări elementare.
214) Capitol: 3 Elemente de programare liniaraSoluţiile optime ale unei probleme de programare liniară formează totdeauna o mulţime: a) finită; b) mărginită; c) convexă; d) finită şi convexă.
215) Capitol: 3 Elemente de programare liniaraO soluție de bază admisibilă nedegenerată are întotdeaune componentele principale: a) nenegative; b) strict pozitive; c) negative; d) egale cu 0.
 216) Capitol: 3 Elemente de programare liniaraO problemă de transport cu 3 centre şi 4 depozite, are soluția de bază inițială nedegenerată, dacă aceasta are: a) 3 componente pozitive; b) 6 componente pozitive; c) 7 componente pozitive; d) 4 componente pozitive.
217) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară poate fi rezolvată ci algoritmul Simplex numai dacă: a) este în forma standard; b) numărul necunoscutelor este egal cu cel al restricțiilor;

c) este echilibrată; d) funcția obiectiv are coeficienți nenegativi.	
 218) Capitol: 3 Elemente de programare liniaraPentru a rezolva o problemă de transport trebuie a) numărul depozitelor să fie egal cu al centrelor; b) problema să fie echilibrată; c) soluția inițială să fie obligatoriu degenerată; d) costurile de transport să fie numere întregi. 	ca:
 219) Capitol: 3 Elemente de programare liniaraMetoda celor două faze se aplică: a) numai când problema inițială este de minim; b) pentru determinarea unei soluții de bază admisibile a problemei inițiale; c) pentru determinarea soluției optime a problemei inițiale; d) cu o funcție obiectiv diferită de funcția inițială. 	
 220) Capitol: 3 Elemente de programare liniaraO problemă de transport: a) are întotdeauna soluție optimă finită; b) poate avea optim infinit; c) poate avea mai multe soluții optime; d) este totdeauna echilibrată. 	
 221) Capitol: 3 Elemente de programare liniaraPentru a determina soluția inițială a unei problem transport: a) se aplică metoda diagonalei; b) se aplică transformări elementare; c) se folosește întotdeauna metoda perturbării; d) problema trebuie să fie echilibrată. 	ne de
222) Capitol: 3 Elemente de programare liniaraPentru aplicarea algoritmului Simplex este neces a) sistemul în forma standard să admită soluție unică; b) sistemul în forma standard să aibă cel puțin o soluție de bază admisibilă; c) coeficienții funcției obiectiv să fie nenegativi; d) problema inițială să fie obligatoriu de maxim.	sar ca
223) Capitol : 3 Elemente de programare liniaraSoluția unei probleme de transport este optimă d a) costurile de transport $c_{ij} \ge 0$; b) toti $\delta_{ij} \le 0$; c) toti $\delta_{ij} \ge 0$; d) există δ_{ij} strict pozitiv.	acă:

224) Capitol: 3 Elemente de programare liniaraCriteriul de optim al unei probleme de programare de minim este satisfăcut dacă:

- **a)** toate diferențele $z_j c_j \le 0$;
- **b)** există diferențe $z_j c_j \le 0$;
- c) toate diferențele $z_j c_j \ge 0$;
- **d)** toți vectorii P_j din afara bazei au diferențele $z_j c_j \le 0$.

225) Capitol: 3 Elemente de programare liniaraO problemă de transport are optim infinit:

a) dacă se aplică metoda perturbării;

b) niciodată;
c) dacă toți $\delta_{ij} \leq 0$;
d) dacă există $\delta_{ij} > 0$.
226) Capitol: 3 Elemente de programare liniaraO problemă de transport are întotdeauna: a) optim finit; b) cel puţin o soluţie de bază admisibilă; c) optim negativ; d) o infinitate de soluţii optime.
227) Capitol: 3 Elemente de programare liniara Funcția obiectiv a problemei artificiale are: a) totdeauna optim finit; b) coeficienții mai mari decât 1; c) optim negativ; d) coeficienți nenegativi.
 228) Capitol: 3 Elemente de programare liniaraDacă funcția artificială are optim strict pozitiv, atunci a) problema inițială nu are soluții; b) în bază au rămas variabile artificiale; c) problema inițială are optim infinit; d) soluția optimă a problemei inițiale coincide cu soluția optimă a problemei artificiale.
 229) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de transport coeficienții funției obiectiv reprezintă: a) cheltuieli de depozitare; b) cheltuieli de desfacere; c) cheltuieli de transport; d) costuri de achiziție a mărfii de transportat.
230) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de transport vom avea si costuri de transport egale cu 0, dacă: a) soluția inițială este degenerată; b) problema inițială este neechilibrată; c) problema are mai multe soluții optime; d) se aplică metoda perturbării.
231) Capitol: 3 Elemente de programare liniara Într-o problemă de transport va intra în bază variabila corespunzătoare lui: a) $\delta_{ij} > 0$, maxim; b) $\delta_{ij} > 0$, minim; c) $\delta_{ij} < 0$, maxim; d) $\delta_{ij} < 0$, minim.
232) Capitol: 3 Elemente de programare liniaraCiclul unei celule nebazice este format: a) din cel puţin 4 celule; b) din cel mult 4 celule; c) dintr-un număr par de celule; d) numai cu celule nebazice.
233) Capitol: 3 Elemente de programare liniaraProblemele de transport:

- a) sunt cazuri particulare de probleme de programare liniară;
- b) au optim finit sau infinit;
- c) au numai optim finit;
- d) sunt totdeauna echilibrate.

- 234) Capitol: 3 Elemente de programare liniaraÎntr-o problemă de transport criteriul de ieșire se aplică:
- a) celulelor cu număr impar din ciclul celulei care intră în bază;
- b) celulelor cu număr par din ciclul celulei care intră în bază;
- c) tuturor celulelor din ciclul celulei care intră în bază;
- d) celulelor cu costuri minime din ciclul celulei care întră în bază.

235) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară cu cerințe de minim are următorul tabel Simplex:

В	C_{B}	P_0	2	-1	-3	0	0
			P_1	P_2	P_3	P_4	P_5
P ₁	2	1	1	0	2	-1	1
P_2	-1	3	0	1	3	2	1
z _j -c _j		-1	0	0	4	-4	1

Atunci:

- a) intră în bază P₃;
- **b)** intră în bază P₅;
- c) iese din bază P_1 ;
- d) iese din bază P₂.

236) Capitol: 3 Elemente de programare liniaraFie următorul tabel Simplex al unei probleme de programare liniară:

В	C_{B}	P_0	-1	-3	2	0	0
			P_1	P_2	P_3	P_4	P ₅
P ₃	2	1	0	2	1	1	1
P_1	-1	1	1	-1	0	2	-1
z _j -c _j		1	0	α	0	0	3

Atunci:

- a) $\alpha = 2$:
- b) $\alpha = 5$:
- c) $\alpha = 4$
- d) $\alpha = 8$

237) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară are următorul tabel Simplex:

В	C_{B}	P_0	2	1	3	0
			P_1	P_2	P_3	P_4
P ₃	3	2	0	-1	1	-1
\mathbf{P}_1	2	1	1	1	0	3
z _i -c _i		f	α	-2	0	3

Atunci:

- a) f = 3, $\alpha = 2$; b) f = 8, $\alpha = 2$; c) f = 8, $\alpha = 0$;

d)
$$f = 3$$
, $\alpha = -1$.

238) Capitol: 3 Elemente de programare liniara O problemă de programare liniară cu cerințe de minim are următorul tabel Simplex:

В	C_{B}	P_0	2	0	-1	0
			P_1	P_2	P_3	P_4
P_2	0	1	1	1	0	-3
P_3	-1	3	-1	0	1	-1
z _j -c _j		-3	-1	0	0	1

Atunci soluția optimă a problemei este:

- a) $\mathbf{x}_0 = (0, -1, 0, 0)^T$:
- **b)** $\mathbf{x}_0 = (1,3,0,0)^T$; **c)** $\mathbf{x}_0 = (0,1,3,0)^T$:
- d) problema are optim infinită.

239) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară cu cerințe de minim are următorul tabel Simplex:

В	C_{B}	P_0	2	2	-1	0
			P_1	P_2	P_3	P_4
P ₂	2	2	0	1	-2	-1
P_1	2	1	1	0	1	-2
z _j -c _j		f	0	0	-1	-6

Atunci:

- a) f = 3 și soluția optimă este $\mathbf{x}_0 = (2,1,0,0)^T$; b) f = 6 și soluția optimă este $\mathbf{x}_0 = (2,1,0,0)^T$; c) f = 6 și soluția optimă este $\mathbf{x}_0 = (1,2,0,0)^T$;

- d) problema admite soluție optimă unică.

240) Capitol: 3 Elemente de programare liniaraO problemă de programare liniară cu cerințe de minim are următorul tabel Simplex:

В	C_{B}	P_0	-1	-2	-1	0	0
			P_1	P_2	P_3	P_4	P_5
P_2	-2	3	1	1	0	-1	1
P_3	-1	1	4	0	1	2	1
z _j -c _j		-7	-5	0	0	0	-3

Atunci:

- a) vectorul P₁ va intra în bază;
- **b)** vectorul P₃ va ieşi din bază;
- c) problema admite soluția optimă unică $\mathbf{x}_0 = (0,3,1,0,0)^T$;
- d) problema are o infinitate de solutii optime.

241) Capitol: 3 Elemente de programare liniaraCare din elementele următorului tabel Simplex nu sunt corecte?

В	C_{B}	P_0	2	1	3	0	0
			P_1	P_2	P_3	P_4	P ₅
P ₃	3	1	2	0	1	1	1

P ₂	1	2	1	1	0	1	-1
z _j -c _j		3	3	0	0	4	-2

- a) elementele de pe coloana C_B;
- **b)** differentele $z_1 c_1$ si $z_5 c_5$;
- c) valoarea funcției obiectiv;
- d) componentele vectorului P₃.

242) Capitol: 3 Elemente de programare liniaraÎn următorul tabel Simplex, pentru o problemă de programare liniara cu cerinta de minim:

В	C_{B}	P_0	2	-1	2	0	0
			P_1	P_2	P_3	P_4	P ₅
P_1	2	3	1	-1	2	0	1
P ₄	0	1	0	3	-1	1	3
z _j -c _j		6	0	-1	2	0	2

- a) diferența $z_2 c_2$ este greșit calculată;
- **b)** intră în bază P₃ sau P₅;
- c) iese din bază P_4 dacă intră P_5 ;
- d) iese din bază P₄ dacă intră P₃.

243) Capitol: 3 Elemente de programare liniaraÎn tabelul Simplex de mai jos, cu cerințe de minim pentru funcția obiectiv

В	C_{B}	P_0	2	-2	3	0
			P_1	P_2	P_3	P_4
P_4	0	3	-1	0	-1	1
P_2	-2	1	2	1	-2	0
z _j -c _j		-2	-6	0	α	0

- a) $\alpha = -8$ și problema admite soluție unică;
- **b)** $\alpha = 1$ și P_3 intră în bază, iar P_2 iese din bază;
- c) $\alpha = 1$ și problema admite optim infinit;
- d) $\alpha = -5$ și problema admite o infinitate de soluții.

244) Capitol: 3 Elemente de programare liniaraÎn tabelul Simplex de mai jos

В	C_{B}	P_0	2	2	-1	1	0	0
			P_1	P_2	P_3	P_4	P ₅	P ₆
P_1	2	4	1	0	0	1	0	1
P ₃	-1	1	0	-1	1	0	0	1
P ₅	0	3	0	1	0	2	γ	1
z _j -c _j		f	0	α	β	1	0	1

constantele f, α , β , γ au următoarele valori:

a)
$$f = 8$$
, $\alpha = -1$, $\beta = -1$, $\gamma = 1$;
b) $f = 7$, $\alpha = -1$, $\beta = 0$, $\gamma = 1$;
c) $f = 7$, $\alpha = -1$, $\beta = 0$, $\gamma = 1$;

b)
$$f = 7$$
, $\alpha = -1$, $\beta = 1$, $\gamma = 1$;

c)
$$f = 7$$
, $\alpha = -1$, $\beta = 0$, $\gamma = 1$;

d)
$$f = 10$$
, $\alpha = -1$, $\beta = 0$, $\gamma = -1$.

245) Capitol: 3 Elemente de programare liniaraDin tabelul Simplex de mai jos pentru o problemă de programare liniară cu cerințe de minim:

В	C_{B}	P_0	-1	2	3	0	0
			P_1	P_2	P_3	P_4	P ₅
P_3	3	6	-3	0	1	-1	2
P_2	2	4	4	1	0	-1	-4
z _j -c _j		26	0	0	0	-5	-2

rezultă că:

- a) problema are optim infinit;

- b) $\mathbf{x}_0 = (0,6,4,0,0)^T$ soluție optimă unică; c) $\mathbf{x}_0 = (0,3,2,0,0)^T$ soluție optimă unică; d) $\mathbf{x}_0 = (0,4,6,0,0)^T$ soluție optimă, dar nu este unică.

246) Capitol: 3 Elemente de programare liniaraDin tabelul Simplex de mai jos pentru o problemă de programare liniară cu cerințe de minim:

В	C_{B}	P_0	2	1	3	0	0
			P_1	P_2	P_3	P_4	P_5
P_3	3	4	0	1	1	0	1
P_1	2	1	1	-1	0	0	-2
P ₄	0	3	0	2	0	1	1
z _j -c _j		14	0	0	0	0	-1

rezultă că:

- **a)** $\mathbf{x}_0 = (1,0,4,3,0)^T$ este soluție optimă;
- **b)** $\mathbf{x}_0 = (4,1,3,0,0)^T$ este soluție optimă;
- c) problema are o infinitate de soluții optime;
- d) problema admite optim infinit.

247) Capitol: 3 Elemente de programare liniaraÎn tabelul Simplex de mai jos pentru o problemă de programare liniară cu cerințe de minim:

В	C_{B}	P_0	2	0	-1	0	0
			P_1	P_2	P_3	P_4	P_5
P ₃	-1	3	2	0	1	-2	-2
P_2	0	1	3	1	0	1	3
z _j -c _j		-3	-4	0	0	2	2

- a) poate intra în bază P₄ sau P₅;
- **b)** va ieşi din bază numai P_2 ;
- c) poate ieși din bază P₂ sau P₃;
- **d)** soluția de bază admisibilă găsită este $\mathbf{x} = (0,1,3,0,0)^T$.

248) Capitol: 3 Elemente de programare liniara1. Problema de transport de forma:

	c_1		C_2		C3		
D_1		1		3		2	20
D_2		4		2		1	20
D ₃		1		2		2	α

Ī				
	30	20	15	

este:

- a) echilibrată, dacă $\alpha = 15$;
- **b)** neechilibrată, dacă $\alpha = 15$;
- c) echilibrată, dacă $\alpha = 25$;
- d) echilibrată pentru $(\forall)\alpha>0$, deoarece are același număr de depozite și de centre de desfacere.

249) Capitol: 3 Elemente de programare liniara1. Soluția de bază admisibilă a unei probleme de transport este dată de tabelul:

		C_1		C_2		C_3		C_4	
D_1		2		1		3		2	30
	15		α						
D_2		1		4		1		3	20
			5		15		β		
D_3		5		2		2		1	30
							30		
		15		20		15		30	

Atunci:

a)
$$\alpha = 30, \beta = 20$$
:

b)
$$\alpha = 15, \beta = 5$$
;

c)
$$\alpha = 15, \beta = 0$$
;

d)
$$\alpha = 20, \ \beta = 10$$

250) Capitol: 3 Elemente de programare liniara1. Într-o problemă de transport ciclul celulei (1,3) care intră în bază este:

$$\begin{array}{cccc}
10 \\
(1,1) & \longrightarrow & (1,3) \\
\uparrow & & \downarrow \\
(2,1) & \longleftarrow & (2,3) \\
5 & & 15
\end{array}$$

Atunci va ieşi din bază variabila:

- **a)** x_{11} ;
- **b)** x_{21} ;
- **c)** x_{23} ;
- d) oricare dintre x_{11} și x_{23} .

251) Capitol: 3 Elemente de programare liniara1. O soluție de bază admisibilă a unei probleme de transport este dată de tabelul:

		C_1		C_2		C_3
D_1		2		1		3
	10		10			
D_2		1		4		2
			25		5	
D_3		3		2		5
						15

Atunci:

- a) cantitatea totală de marfă care trebuie transportată este de 65 u.m.;
- **b)** cantitatea de marfă din depozitul D₂ este de 25 u.m.;

c)
$$\delta_{13} = 3$$
;

d)
$$\delta_{13} = -4$$

252) Capitol: 3 Elemente de programare liniara1. Fie problema de transport dată de următorul tabel:

	C_1	C_2	C_3	
D_1	2	3	3	20
D_2	4	3	2	20
D_3	1	5	2	30
	15	35	20	

Aplicând metoda costului minim se determină mai întâi valoarea lui:

- **a)** x_{11} ;
- **b)** x_{13} ;
- **c)** x_{31} ;
- **d)** x_{11} sau x_{31} .

253) Capitol: 3 Elemente de programare liniara1. Fie problema de transport:

		C_1		C_2				
D_1		2		1	20			
D_2		1		3	20			
		10		10				

Atunci problema:

- a) este echilibrată deoarece numărul de depozite este egal cu numărul de centre de desfacere;
- b) este echilibrată deoarece depozitele conțin aceeași cantitate de marfă;
- c) este echilibrată deoarece centrele de desfacere solicită aceeași cantitate de marfă;
- d) este neechilibrată.

254) Capitol: 3 Elemente de programare liniara1. Fie soluția de bază admisibilă a unei probleme de transport dată de tabelul:

			C_1		C_2		C_3
ĺ	D_1		2		1		3
ĺ		15		5			
I	D_2		1		4		2
ſ				10		20	

Atunci δ_{21} se calculează după relația:

a)
$$\delta_{21} = 1 - 2 + 1 - 4$$
;

a)
$$\delta_{21} = 1 - 2 + 1 - 4$$
;
b) $\delta_{21} = 0 - 15 + 5 - 10$;
c) $\delta_{21} = -1 + 2 - 1 + 4$;

$$\delta_{21} = -1 + 2 - 1 + 4$$

d)
$$\delta_{21} = -0 + 15 - 5 + 10$$
.

255) Capitol: 3 Elemente de programare liniara1. Soluția de bază inițială a unei probleme de transport este dată de tabelul:

		C_1	C_2
D_1		1	2
	20		
D_2		1	3

	10		5	
D_3		2		2
			10	

Atunci valoarea funcției obiectiv f, corespunzătoare acestei soluții este:

- a) f = 45.
- **b)** f = 65
- c) f = 35.

256) Capitol: 3 Elemente de programare liniara 1. Într-o problemă de transport variabila x_{11} intră în bază și are următorul ciclu:

$$\begin{array}{cccc}
\theta = & & 15 \\
(1,1) & \longrightarrow & (1,2) \\
\uparrow & & \downarrow \\
(2,1) & \longleftarrow & (2,2) \\
10 & & 5
\end{array}$$

Atunci:

- a) $\theta = 15$:
- b) $\theta = 5$:
- c) $\theta = 10$:
- **d)** x_{21} iese din bază.

$$\sum^{\infty} a_n$$

257) Capitol: 4 Serii numerice. Serii de puteriFie seria $\sum_{n=1}^{\infty} a_n$, convergentă. Atunci, asociind termenii în grupe finite:

- a) seria poate deveni divergentă;
- b) seria rămâne convergentă;
- c) seria rămâne convergentă numai dacă $a_n \ge 0$, $(\forall) n \in \mathbb{N}^*$.
- d) suma seriei nu se modifică.

258) Capitol: 4 Serii numerice. Serii de puteriCare dintre următoarele operații poate modifica natura unei serii divergente:

- a) asocierea termenilor seriei în grupe finite;
- b) adăugarea unui număr finit de termeni la termenii seriei;
- c) eliminarea unui număr finit de termeni ai seriei;
- d) înmultirea termenilor seriei cu un scalar nenul.

259) Capitol: 4 Serii numerice. Serii de puteriSuma unei serii convergente se modifică când:

- a) asociem termenii seriei în grupe finite;
- b) adăugăm un număr finit de termeni pozitivi la termenii seriei;
- c) suprimăm un număr finit de termeni ai seriei;
- d) înmultim termenii seriei cu un scalar nenul.

260) Capitol: 4 Serii numerice. Serii de puteriFie seria numerică $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbb{R}$. Care din afirmațiile de mai jos sunt adevărate:

a) dacă
$$\sum_{n=1}^{\infty} a_n$$
 converge, atunci $\sum_{n=1}^{\infty} a_n$ converge; $\sum_{n=1}^{\infty} a_n$ diverge, atunci $\lim_{n\to\infty} a_n \neq 0$; converge; $\sum_{n=1}^{\infty} a_n$ diverge, atunci $\lim_{n\to\infty} a_n \neq 0$; $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\lim_{n\to\infty} a_n \neq 0$; dim $a_n \neq 0$; $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\lim_{n\to\infty} a_n \neq 0$; $\lim_{n\to\infty} S_n = 2$ Dacă $\lim_{n\to\infty} S_n = 2$ Dacă $\lim_{n\to\infty} S_n = 2$, atunci: a) seria converge; b) seria diverge; c) nu se poate preciza natura seriei; d) seria are suma $S=2$.

262) Capitol: 4 Serii numerice. Serii de puteriFie $(S_n)_{n\in\mathbb{N}}$ şirul sumelor parțiale atașat seriei $\sum_{n=1}^{\infty} a_n = S_n = S_n$

264) Capitol: 4 Serii numerice. Serii de puteriSeria armonică generalizată $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ este o serie:

- a) convergentă, dacă $\alpha > 0$;
- **b)** divergentă, dacă $\alpha < 0$;
- c) convergentă, dacă $\alpha > 1$;
- d) divergentă, dacă $\alpha = 1$.

265) Capitol: 4 Serii numerice. Serii de puteri $Fie^{(S_n)_{n\in\mathbb{N}}}$ şirul sumelor parțiale atașat unei serii de

termeni pozitivi $\sum_{n=1}^{n} a_n$, $(a_n \ge 0)$. Atunci şirul $(S_n)_{n \in \mathbb{N}}$ este întotdeauna:

- a) mărginit;
- b) monoton crescător;
- c) monoton descrescător;
- d) convergent.

266) Capitol: 4 Serii numerice. Serii de puteriFie seriile cu termenii pozitivi $\sum_{n=1}^{\infty} a_n$ şi $\sum_{n=1}^{\infty} b_n$ astfel încât $a_n \le b_n$, $(\forall) n \in \mathbb{N}^*$. Atunci:

a)
$$\sum_{n=1}^{\infty} a_n$$
 converge dacă $\sum_{n=1}^{\infty} b_n$ converge;

b)
$$\sum_{n=1}^{\infty} a_n$$
 diverge dacă $\sum_{n=1}^{\infty} b_n$ diverge;

$$\sum_{n=1}^{\infty} b_n \qquad \sum_{n=1}^{\infty} a_n \qquad \text{converge dacă} \quad \sum_{n=1}^{\infty} a_n \qquad \text{converge;}$$

d)
$$\sum_{n=1}^{\infty} b_n$$
 diverge dacă $\sum_{n=1}^{\infty} a_n$ diverge.

267) Capitol: 4 Serii numerice. Serii de puteriFie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ și seria $\sum_{n=1}^{\infty} \frac{1}{n}$

armonică $\sum_{n=1}^{\infty} \frac{1}{n}$. Atunci:

$$\sum_{n=1}^{\infty}a_{n} \quad \text{converge dacă} \quad a_{n} \leq \frac{1}{n^{2}} \; ;$$

$$\sum_{n=1}^{\infty} a_n \quad \text{diverge dacă} \quad a_n \ge \frac{1}{n};$$

$$\sum_{n=1}^{\infty} a_n \quad \text{converge dacă} \quad a_n \leq \frac{1}{n};$$

$$\sum_{n=1}^{\infty} a_n \quad \text{diverge dacă} \quad a_n \leq \frac{1}{n} .$$

.....

268) Capitol: 4 Serii numerice. Serii de puteriFie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ şi $\sum_{n=1}^{\infty} b_n$. Dacă $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$, atunci:

a) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (C) $\Rightarrow \sum_{n=1}^{\infty} b_n$ (C);

b) nu se poate preciza natura seriei $\sum_{n=1}^{\infty} a_n$, dacă seria $\sum_{n=1}^{\infty} b_n$ (D);

c) dacă
$$\sum_{n=1}^{\infty} b_n$$
 (D) $\Rightarrow \sum_{n=1}^{\infty} a_n$ (D);

d) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (D), seria $\sum_{n=1}^{\infty} b_n$ poate fi convergentă sau divergentă.

269) Capitol: 4 Serii numerice. Serii de puteriCriteriile de comparație se aplică seriilor:

- a) cu termeni oarecare;
- b) cu termeni pozitivi;
- c) cu termeni alternanți;
- d) de puteri.

270) Capitol: 4 Serii numerice. Serii de puteriFie seriile de termeni pozitivi $\sum_{n=1}^{\infty} a_n$ şi $\sum_{n=1}^{\infty} b_n$, care

$$\lim_{n\to\infty}\frac{a_n}{b_n}=k$$
 satisfac relația
$$\lim_{n\to\infty}\frac{a_n}{b_n}=k$$
 . Atunci:

a) dacă $k \in (0,1)$, seriile au aceeași natură

b)
$$k=2$$
 şi $\sum_{n=1}^{\infty} a_n$ (C) \Rightarrow $\sum_{n=1}^{\infty} b_n$ (C);

c)
$$k=1$$
 $\sup_{n=1}^{\infty} \sum_{n=1}^{\infty} b_n$ (D) $\Rightarrow \sum_{n=1}^{\infty} a_n$ (D);

d)
$$k = \sqrt{2}$$
 $\sup_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$ (C).

271) Capitol: 4 Serii numerice. Serii de puteriFie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$. Dacă $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$, atunci:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \frac{1}{2};$$

$$\sum_{n=1} a_n \quad \text{converge;}$$

$$\sum_{n=1} a_n \text{ diverge;}$$

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \frac{1}{\sqrt{2}}.$$

272) Capitol: 4 Serii numerice. Serii de puteriFie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ şi notăm cu

$$\lambda_1 = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
 și $\lambda_2 = \lim_{n \to \infty} \sqrt[n]{a_n}$. Atunci:

a) dacă
$$\lambda_1 < 1 \Rightarrow \lambda_2 > 1$$
;

$$\lambda_2 = \frac{1}{2} \Rightarrow \lambda_1 = 2 ;$$

c)
$$\lambda_1 = \lambda_2$$
;

d) dacă
$$\lambda_2 = \sqrt{2} \Rightarrow \lambda_1 = \sqrt{2}$$
.

273) Capitol: 4 Serii numerice. Serii de puteriPentru seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ avem $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$. Atunci:

a) pentru
$$\lambda \in [0,1) \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diverge;

b) pentru
$$\lambda \in (0,1] \Rightarrow \sum_{n=1}^{\infty} a_n$$
 converge;

c) dacă
$$\lambda \ge 2 \implies \sum_{n=1}^{\infty} a_n$$
 diverge;

d) dacă
$$\lambda \in \left(0, \frac{1}{2}\right) \Rightarrow \sum_{n=1}^{\infty} a_n$$
 converge.

274) Capitol: 4 Serii numerice. Serii de puteriPentru seria cu termeni pozitivi n=1 $\lim_{n\to\infty} \sqrt[n]{a_n} = \sqrt{2}$. Atunci:

$$\sum_{n=1}^{\infty} a_n$$
 converge;

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\frac{1}{2};$$

$$\sum_{n=1}^{\infty} a_n$$
 diverge;

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\sqrt{2}$$
 d)

275) Capitol: 4 Serii numerice. Serii de puteri $Fie^{\sum_{n=1}^{\infty} a_n}$, $a_n \ge 0$ astfel încât $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = 2$ Atunci:

$$\sum_{n=1}^{\infty} a_n$$
 converge;

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=2$$
b)

$$\lim_{n\to\infty} \sqrt[n]{a_n} = 2$$
;

c)
$$\lim_{n\to\infty} \sqrt[n]{u_n} - 2$$

d)
$$\sum_{n=1}^{\infty} a_n$$
 diverge;

276) Capitol: 4 Serii numerice. Serii de puteriFie $\sum_{n=1}^{\infty} a_n \, a_n \ge 0 \quad \text{astfel încât} \quad \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$ Atunci:

a)
$$\sum_{n=1}^{\infty} a_n$$
 (C) dacă $\mu \in (-\infty, 1)$;

$$\sum_{n=1}^{\infty} a_n$$
 (C) numai dacă $\mu \in (0,1)$;

c) dacă
$$\mu = 0 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 (D);

d) dacă
$$\mu \in (1,2) \implies \sum_{n=1}^{\infty} a_n$$
 (C).

277) Capitol: 4 Serii numerice. Serii de puteriSeria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ partiale $(S_n)_{n \in \mathbb{N}}$ mărginit. Atunci:

$$\sum_{n=1}^{\infty} a_n$$
 converge;

b) sirul
$$(S_n)_{n \in \mathbb{N}}$$
 converge;

c) nu se poate preciza natura seriei
$$\sum_{n=1}^{\infty} a_n$$
;

$$\sum_{n=1}^{\infty} a_n$$
 diverge;

278) Capitol: 4 Serii numerice. Serii de puteriÎn aplicarea criteriului lui Raabe-Duhamel seriei $\sum_{n=1}^{\infty} a_n$ $a_n \ge 0$ $a_n \ge 0$ se cere calculul limitei:

$$\lim_{n\to\infty} n \left(\frac{a_{n+1}}{a_n} - 1\right);$$

$$\lim_{n\to\infty} n \left(\frac{a_{n+1}}{a_n} + 1 \right)$$

$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right);$$

$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} + 1 \right)$$

Leibniz afirmă că seria:

279) Capitol: 4 Serii numerice. Serii de puteriFie seria alternată $\sum_{n=1}^{\infty} (-1)^n a_n$ cu $a_n \ge 0$. Criteriul lui

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{cu} \quad a_n \ge 0. \text{ Criterial lu}$$

a) converge, dacă $a_n \to 0$ monoton descrescător;

b) diverge, dacă
$$a_n \to 1$$
 monoton crescător;

c) converge, dacă și numai dacă
$$\lim_{n\to\infty} a_n = 0$$
;

d) diverge, dacă
$$(a_n)_{n\in\mathbb{N}}$$
 este monoton crescător.

280) Capitol: 4 Serii numerice. Serii de puteriFie seria
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$
, $a_n \ge 0$ astfel încât $\lim_{n \to \infty} a_n = 0$. Atunci seria converge dacă:

a) $(a_n)_{n \in \mathbb{N}}$ este monoton crescător;

b)
$$(a_n)_{n\in\mathbb{N}}$$
 este monoton descrescător;

$$\frac{a_{n+1}}{-} < 1$$

c)
$$a_n$$
 ;

$$\lim_{n\to\infty} \sqrt[n]{a_n} > 1$$

281) Capitol: 4 Serii numerice. Serii de puteriSeria
$$\sum_{n=1}^{\infty} u_n$$
 este o serie alternată dacă: $u \cdot u \cdot u > 0$, $(\forall) n \in \mathbb{N}$

a)
$$u_n \cdot u_{n+1} > 0, \ (\forall) n \in \mathbb{N}$$
;

b)
$$u_n \cdot u_{n+1} \le 0$$
, $(\forall) n \in \mathbb{N}$;

c)
$$u_n = (-1)^n a_n, \ a_n \in \mathbb{R}$$
;

d)
$$u_n = (-1)^{n+1} a_n, \ a_n \ge 0$$
.

282) Capitol: 4 Serii numerice. Serii de puteri
$$F$$
ie seria de termeni oarecare $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbb{R}$. Care din următoarele afirmații sunt adevărate?

a) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (C) $\Rightarrow \sum_{n=1}^{\infty} /a_n /$ (C);

b) dacă
$$\sum_{n=1}^{\infty}/a_n/$$
 (C) $\Rightarrow \sum_{n=1}^{\infty}a_n$ (C);

c) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (D) $\Rightarrow \sum_{n=1}^{\infty} /a_n /$ (D);

d) dacă
$$\sum_{n=1}^{\infty}/a_n/$$
 (D) $\Rightarrow \sum_{n=1}^{\infty}a_n$ (C).

283) Capitol: 4 Serii numerice. Serii de puteriFie seria $\sum_{n=1}^{\infty} a_n, \quad a_n \in \mathbb{R} \quad \underset{\text{astfel încât}}{\lim} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{2}.$ Atunci:

a) seria
$$\sum_{n=1}^{\infty}/a_n/$$
 converge;

b) seria
$$\sum_{n=1}^{\infty} a_n$$
 converge;

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2};$$

d) nu se poate preciza natura seriei
$$\sum_{n=1}^{n} a_n$$
.

284) Capitol: 4 Serii numerice. Serii de puteriO serie cu termeni oarecare $\sum_{n=1}^{n} a_n$, $a_n \in \mathbb{R}$ se numește semiconvergentă dacă:

$$\sum_{n=1}^{\infty} a_n \qquad \text{(D) $\frac{1}{9}$i} \quad \sum_{n=1}^{\infty} / \left. a_n \right. / \label{eq:a}$$

$$\sum_{n=1}^{\infty} a_n \qquad \sum_{n=1}^{\infty} / a_n /$$
b) (C) şi $\sum_{n=1}^{\infty} / a_n /$

$$\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} /a_n / (C)$$
 şi $\sum_{n=1}^{\infty} /a_n / (C)$;

$$\mathbf{d)} \quad \sum_{n=1}^{\infty} a_n \quad (D) \text{ si } \sum_{n=1}^{\infty} /a_n / (D).$$

285) Capitol: 4 Serii numerice. Serii de puteriFie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$. Atunci:

a) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (C) $\Rightarrow \sum_{n=1}^{\infty} / a_n /$ (C);

b) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (D) $\Rightarrow \sum_{n=1}^{\infty} /a_n /$ (D);

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} /a_n /$$

d) dacă
$$\sum_{n=1}^{\infty} a_n$$
 (D) nu se poate preciza natura seriei $\sum_{n=1}^{\infty} /a_n / a_n$.

286) Capitol: 4 Serii numerice. Serii de puteri Seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ are limita

$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$$
. Atunci, dacă:

a)
$$\mu = \frac{1}{2} \implies \sum_{n=1}^{\infty} a_n$$
 converge;

b)
$$\mu = 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diverge;

c)
$$\mu = 0 \implies \sum_{n=1}^{\infty} a_n$$
 diverge;

d)
$$\mu = 3 \implies \sum_{n=1}^{\infty} a_n$$
 converge.

287) Capitol: 4 Serii numerice. Serii de puteriSeria de puteri $\sum_{n=1}^{\infty} a_n x^n$, $a_n \in \mathbb{R}$ $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = 1$. Atunci:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = 1$$
;

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$$

- c) seria converge pentru $x \in (-1,1)$;
- d) seria converge pentru $x \in [-1,1]$.

288) Capitol: 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n x^n$, $a_n \in \mathbb{R}$ are limita $\lim \sqrt[n]{|a_n|} = 0$

- a) seria are raza de convergență r=0;
- **b)** seria converge, pentru $(\forall)x \in \mathbb{R}$:
- c) seria converge numai în x = 0;

$$\lim_{n\to\infty}\frac{\mid a_{n+1}\mid}{\mid a_{n}\mid}=0$$

 $\sum_{n=1}^{\infty} a_n (x - x_0)^n \quad \text{cu } a_n \in \mathbb{R} , \text{ are}$ 289) Capitol: 4 Serii numerice. Serii de puteriSeria de puteri

$$\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = +\infty$$
Atunci seria:

- a) converge, $(\forall)x \in \mathbb{R}$:
- **b)** diverge pentru $x = x_0$;
- c) are raza de convergență r=0;
- **d)** converge numai în pentru $x = x_0$.

 $\sum_{n=0}^{\infty} a_n (x+1)^n$ 290) Capitol: 4 Serii numerice. Serii de puteriSeria de puteri r = 1. Atunci seria:

- a) converge, pentru $x \in (-1,1)$:
- **b)** converge, pentru $x \in (0,2)$;
- c) converge, pentru $x \in (-2,0)$;
- **d)** diverge, dacă $x \in (3, \infty)$.

291) Capitol: 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0$. Atunci seria:

- a) converge, numai în $x = x_0$;
- **b)** diverge, $(\forall)x \in \mathbb{R}^*$:
- c) converge, numai pentru $x \in (-x_0, x_0)$;
- **d)** converge, $(\forall)x \in \mathbb{R}$.

 $\sum a_n (x - x_0)^n$ 292) Capitol: 4 Serii numerice. Serii de puteri Seria de puteri are raza de convergentă

r > 0. Atunci teorema lui Abel afirmă că seria converge pe intervalul: a) $(-x_0 - r, x_0 + r)$. **b)** $(x_0 - r, x_0 + r)$: c) $(-x_0 + r, x_0 + r)$: d) $(-x_0-r,-x_0+r)$. **293) Capitol:** 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{2}$. Atunci: $x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$. a) seria converge numai pentru **b)** raza de convergentă este r = 2; $r = \frac{1}{2};$ c) raza de convergență este $r = \frac{1}{2};$ d) seria diverge $(\forall) x \in (-\infty, -2) \cup (2, +\infty).$ $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$. Atunci coeficienții seriei 294) Capitol: 4 Serii numerice. Serii de puteriFie seria de puteri sunt dați de relația: a) $a_n = (-1)^n$: $a_n = \frac{1}{n}$ $a_n = (-1)^n \frac{1}{n}$ $a_n = (-1)^n \frac{x^n}{n}$ **295) Capitol:** 4 Serii numerice. Serii de puteriFie r raza de convergență a seriei de puteri $\sum_{n=1}^{\infty} a_n x^n$ Atunci seria: Atunci seria: a) converge $(\forall)x \in \mathbb{R}$, dacă $r = +\infty$; **b)** diverge $(\forall)x \in \mathbb{R}$, dacă r = 0; c) converge întotdeauna în x = 0; **d)** diverge $(\forall)x \in \mathbb{R}$, dacă $r = +\infty$. **296)** Capitol: 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ are raza de convergență r=1. Atunci domeniul maxim de convergență al seriei este:

a) $x \in (-1,1)$; b) $x \in (-1,1]$; c) $x \in [-1,1)$; d) $x \in [-1,1]$.

a) seria converge,
$$(\forall)x \in (-r,r)$$
;

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=r$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{r};$$

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n\to\infty}\sqrt[n]{|a_n|}$$

298) Capitol: 4 Serii numerice. Serii de puteriSeria Taylor atașată unei funcții f(x) în punctul x_0 :

- a) este o serie numerică;
- b) este o serie de puteri;

c) are coeficienții de forma
$$a_n = \frac{f^{(n)}(x_0)}{n}$$

d) are coeficienții de forma
$$a_n = \frac{f^{(n)}(x_0)}{n!}.$$

299) Capitol: 4 Serii numerice. Serii de puteriSeria MacLaurin atașată unei funcții f(x):

- a) este o serie numerică;
- **b)** este o serie de puteri centrată în $x_0 \in \mathbb{R}$ oarecare;
- c) este o serie de puteri centrată în 0;
- d) este un caz particular de serie Taylor.

300) Capitol: 4 Serii numerice. Serii de puteriFie $f:I\subseteq R\to R$ o funcție oarecare. Care dintre condițiile de mai jos sunt necesare pentru a-i atașa acesteia o serie Taylor în punctul x_0 :

- a) obligatoriu, $x_0 \in I$;
- **b)** f(x) admite derivate de orice ordin în x_0 ;
- c) f derivabilă pentru $(\forall) x \in \mathbb{R}$;
- d) $x_0 \in \mathbb{R}$, oarecare.

301) Capitol: 4 Serii numerice. Serii de puteriCoeficienții numerici ai unei serii MacLaurin atașate unei functii f(x) au forma:

$$a_n = \frac{f(0)}{n!}$$
;

b)
$$a_n = \frac{f^{(n)}(0)}{n!}$$
;

$$a_n = (-1)^n \frac{f^{(n)}(x)}{n!};$$

$$a_n = \frac{f^{(n)}(0)}{n!} x^n$$

302) Capitol: 4 Serii numerice. Serii de puteri Seria de puteri satisface proprietatea $\lim a_n = 1$. Atunci seria: a) converge numai în x=1; **b)** diverge, $(\forall)x \in \mathbb{R}$; c) converge, $(\forall)x \in (-1,1)$. **d)** diverge, dacă $x \neq 1$. 303) Capitol: 4 Serii numerice. Serii de puteriSeria de puteri $\sum_{n=1}^{\infty} (-1)^n x^n$ a) diverge $(\forall)x \in \mathbb{R}$ a) diverge, $(\forall)x \in \mathbb{R}$. **b)** converge, pentru x=1; c) are raza de convergentă r=1; **d)** converge, $(\forall)x \in (-1,1)$ 304) Capitol: 4 Serii numerice. Serii de puteriPentru a studia convergența unei serii alternate se aplică: a) criteriul raportului; b) criteriul lui Raabe-Duhamel; c) criteriul lui Leibniz; d) oricare dintre criteriile de convergentă pentru serii numerice. **305) Capitol:** 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n x^n$ este convergentă pe P numai a) raza de convergentă r=0: **b)** raza de convergentă $r = +\infty$; $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0$ $\lim a_n = +\infty$ $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ 306) Capitol: 4 Serii numerice. Serii de puteriSeria de puteri dacă și numai dacă: a) raza de convergentă r=0; **b)** raza de convergență $r = +\infty$; $\lim_{n\to\infty} \sqrt[n]{|a_n|} = +\infty$ $\lim a_n \neq 0$ **307) Capitol:** 4 Serii numerice. Serii de puteriFie seria numerică $\sum_{n=1}^{\infty} a_n$ seria: **a)** converge, $(\forall)a_n \in \mathbb{R}$:

b) converge, dacă $a_n \ge 0$;

c) diverge, $(\forall)a_n \in \mathbb{R}$:

d) nu se poate preciza natura seriei.

308) Capitol: 4 Serii numerice. Serii de puteriDacă pentru șirul sumelor partiale

seria
$$\sum_{n=1}^{\infty} a_n$$

a) este convergentă și are suma S=1;

$$\lim S_n \neq 0$$

- **b)** este divergentă deoarece $\lim_{n\to\infty} S_n \neq 0$
- c) ar putea converge;
- d) ar putea diverge.

309) Capitol: 4 Serii numerice. Serii de puteri $\operatorname{Dac\check{a}}$ pentru seria $\sum_{n=1}^{n}a_n$, $a_n\geq 0$ șirul sumelor parțiale este mărginit, atunci seria:

- a) este convergentă;
- **b)** este divergentă;
- c) poate fi convergentă sau divergentă;
- d) diverge, dacă șirul sumelor parțiale este monoton crescător.

310) Capitol: 4 Serii numerice. Serii de puteri
Fie seria
$$\sum_{n=1}^{\infty} a_n, \quad a_n \geq 0 \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$$
 . Atunci seria:

- a) diverge, dacă $\lambda \ge 1$;
- **b)** converge, dacă $\lambda < 1$;
- c) converge, dacă $\lambda = 0$;
- **d)** diverge, dacă $\lambda = 0$.

311) Capitol: 4 Serii numerice. Serii de puteriFie seria
$$\sum_{n=1}^{\infty} a_n \atop a_n \geq 0 \quad \text{si} \quad \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$$
 seria:

- a) este divergentă, dacă $\mu = 0$;
- **b)** este convergentă, dacă $\mu < 1$;
- c) este divergentă, dacă $\mu > 1$;
- **d)** este convergentă, dacă $\mu = +\infty$.

312) Capitol: 4 Serii numerice. Serii de puteriFie seria
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
, $a_n \ge 0$, $\lim_{n \to \infty} a_n = 0$. Atunci seria:

- a) este convergentă, conform criteriului lui Leibniz;
- b) este divergentă, conform criteriului general de divergență;
- c) este convergentă, dacă $a_n \ge a_{n+1}$ pentru orice $n \in \mathbb{N}^*$;
- **d)** este convergentă, dacă $a_n < a_{n+1}$ pentru orice $n \in \mathbb{N}^*$.

313) Capitol: 4 Serii numerice. Serii de puteri
$$F$$
ie seria $\sum_{n=1}^{\infty} a_n \lim_{n \to \infty} a_n = 1$. Atunci seria:

- a) este convergentă și are suma S=1;
- **b)** este divergentă;
- c) este convergentă, dacă $a_n > 0$:
- d) nu se poate preciza natura seriei; se aplică criteriul lui Raabe-Duhamel.

Sorii numorico. Sorii do nutori
$$S$$
orii $n=1$

314) Capitol: 4 Serii numerice. Serii de puteriSeria $\sum_{n=1}^{\infty} a_n$ $\lim_{n \to \infty} a_n = 0$ este divergentă dacă:

$$\lim_{n\to\infty} a_n = 0$$

$$\lim_{n\to\infty}a_n=1$$

$$b)^{n\to\infty} ;$$

$$\lim_{n\to\infty}a_n=+\infty$$

$$\lim_{n\to\infty} a_n = 0, \ a_n \le a_{n+1} \ \text{pentru orice} \ n \in \text{N}^*.$$

315) Capitol: 4 Serii numerice. Serii de puteri
$$F$$
ie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ și $\lim_{n \to \infty} \sqrt[n]{a_n} = \lambda$. Atunci seria:

- a) este convergentă, pentru $\lambda > 1$:
- **b)** este divergentă, pentru $\lambda > 1$;

$$\lambda = \frac{1}{\sqrt{2}}$$

- c) este convergentă, pentru $\lambda = \frac{1}{\sqrt{2}}$.
- d) este divergentă, dacă $\lambda = +\infty$.

316) Capitol: 4 Serii numerice. Serii de puteri
Fie seria
$$\sum_{n=1}^{\infty} a_n , \text{ cu} \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = 0$$
. Atunci seria:

- a) este convergentă, pentru $a_n \ge 0$:
- **b)** este divergentă, pentru $a_n \ge 0$;
- c) este convergentă, $(\forall)a_n \in \mathbb{R}$:
- **d)** este divergentă, $(\forall)a_n \in \mathbb{R}$.

317) Capitol: 4 Serii numerice. Serii de puteriFie seria
$$\sum_{n=1}^{\infty} a_n x^n \sin \left| \frac{a_{n+1}}{a_n} \right| = 0$$
. Atunci seria:

- a) este convergentă. $(\forall)x \in \mathbb{R}$:
- **b)** este divergentă, $(\forall)x \in \mathbb{R}$;
- c) este convergentă, numai în x=0;
- **d)** este divergentă, pentru $(\forall)x < 0$.

318) Capitol: 4 Serii numerice. Serii de puteriPentru seria
$$\sum_{n=1}^{\infty} a_n x^n$$
 avem $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho$. Atunci raza de convergență r este:

$$r = \frac{1}{\rho}, \text{ dacă } 0 < \rho < +\infty;$$

b)
$$r = 0$$
, dacă $\rho = 0$;

c) r=0, dacă $\rho=+\infty$; **d)** r = 1, dacă $\rho = 1$. **319) Capitol:** 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n x^n$ seria: are raza de convergentă r=0. Atunci seria: a) este convergentă, numai în x=0; **b)** este divergentă, $(\forall)x \in \mathbb{R}$: c) este convergentă, pentru $x \in (0, \infty)$; d) este convergentă, $(\forall)x \in R$. **320) Capitol:** 4 Serii numerice. Serii de puteriDacă seria $\sum_{n=1}^{n} a_n (x-x_0)^n$ are raza de convergență r=0, atunci seria: **a)** este convergentă, $(\forall)x \in (-x_0, x_0)$. **b)** este divergentă, $(\forall)x \in \mathbb{R} \setminus \{x_0\}$: c) este convergentă, numai în $x = x_0$; d) este divergentă, $(\forall)x \in R$. $\sum_{n=1}^{\infty} a_n (x - x_0)^n \quad \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$ Atunci seria: 321) Capitol: 4 Serii numerice. Serii de puteriSeria a) este convergentă, $(\forall)x \in \mathbb{R}$; **b)** este divergentă, $(\forall)x \in (-x_0, x_0)$. c) este divergentă, pentru orice $x > x_0$; d) este convergentă, numai în x=0. **322) Capitol:** 4 Serii numerice. Serii de puteriFie seria numerică $\sum_{n=1}^{n} a_n$. Atunci seria: a) converge, dacă $\lim_{n\to\infty} a_n = 0$ **b)** converge, dacă șirul a_n converge; c) diverge, dacă $\lim_{n\to\infty} a_n \neq 0$ **d)** converge, dacă a_n este crescător. 323) Capitol: 4 Serii numerice. Serii de puteriO serie cu termeni pozitivi: a) este convergentă, dacă termenul general tinde la 0; **b)** este divergentă, dacă termenul general nu tinde la 0; c) are totdeauna şirul sumelor parțiale crescător; d) converge totdeauna la 0.

324) Capitol: 4 Serii numerice. Serii de puteriFie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ şi $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$. Atunci seria: a) diverge, dacă $\lambda > 2$;

b) converge, dacă $\lambda < 1$; c) diverge, dacă $\lambda \neq 0$;	
d) converge, dacă $\lambda = 1$.	

325) Capitol: 4 Serii numerice. Serii de puteriFie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ și $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$ seria este divergență docă: seria este divergentă, dacă:

a)
$$\mu = 1$$
;
 $\mu = \frac{1}{2}$;
b) $\mu > 1$;
d) $\mu = -\infty$.

326) Capitol: 4 Serii numerice. Serii de puteriO serie cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$.

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=0$$
 a) converge, dacă
$$\lim_{n\to\infty}a_n=1$$
 b) diverge, dacă
$$\lim_{n\to\infty}a_n=+\infty$$
 c) diverge, dacă
$$\lim_{n\to\infty}a_n=0$$
 d) converge, dacă
$$\lim_{n\to\infty}a_n=0$$

327) Capitol: 4 Serii numerice. Serii de puteriSeria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ este:

a) convergentă, dacă
$$\lim_{n\to\infty} \sqrt[n]{a_n} = 0$$
b) divergentă, dacă $\lim_{n\to\infty} \sqrt[n]{a_n} = 2$

$$\lim_{n\to\infty} \sqrt[n]{a_n} = 1$$
c) convergentă, dacă $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$

c) convergentă, dacă
$$\stackrel{n\to\infty}{\lim} \sqrt[n]{a_n} = 0$$

d) divergentă, dacă $\stackrel{n\to\infty}{\lim} \sqrt[n]{a_n} = 0$

328) Capitol: 4 Serii numerice. Serii de puteriFie seria
$$\sum_{n=1}^{\infty} a_n \lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1\right) = 0$$
. Atunci seria:

a) este convergentă, dacă $a_n \ge 0$:

b) este divergentă, dacă $a_n \ge 0$;

c) este convergentă dacă a_n este șir crescător;

d) este convergentă, oricare ar fi $a_n \in \mathbb{R}$.

329) Capitol: 4 Serii numerice. Serii de puteriO serie de puteri are raza de convergentă r = 2. Atunci seria:

```
a) converge pentru x \in (-2,2);
```

$$x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$

- b) converge pentru
- c) converge numai pentru x=2;
- d) diverge, dacă x > 2.

330) Capitol: 4 Serii numerice. Serii de puteriO serie de termeni pozitivi, $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$: ... a ...

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$$
 a) converge, dacă

$$\lim \frac{a_{n+1}}{2} = \sqrt{2}$$

 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\sqrt{2}$ **b)** diverge, dacă

$$\lim a_n = +\infty$$

 $\lim_{n\to\infty}a_n=+\infty$ c) converge, dacă $n\to\infty$

$$\lim_{n\to\infty} \sqrt[n]{a_n} = 2$$

 $\lim_{n\to\infty} \sqrt[n]{a_n} = 2$

331) Capitol: 4 Serii numerice. Serii de puteriSeria de puteri $\sum_{n=1}^{\infty} a_n x^n$ are $\lim_{n\to\infty} \sqrt[n]{|a_n|} = +\infty$. Atunci

- a) converge, $(\forall)x \in \mathbb{R}$;
- **b)** converge, numai pentru x = 0;
- c) converge, numai pentru x > 0;
- **d)** diverge, pentru $x \neq 0$.

332) Capitol: 4 Serii numerice. Serii de puteriFie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ și

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$$
Atunci:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = 1$$
;

- **b)** seria converge;
- c) se poate aplica criteriul lui Raabe-Duhamel, pentru a se determina natura seriei;
- d) seria diverge.

333) Capitol: 4 Serii numerice. Serii de puteriSeria armonică generalizată $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ cu $\alpha \in \mathbb{R}$:

- a) converge, dacă $\alpha = 1$;
- **b)** diverge, dacă $\alpha < 1$;
- c) diverge, dacă $\alpha = 2$;
- d) converge, dacă $\alpha = 2$.

334) Capitol: 4 Serii numerice. Serii de puteriFie seria cu termeni alternanți $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n \ge 0$. Dacă

 $\lim a_n = 1$, atunci: a) seria converge; b) seria diverge, conform criteriului general de divergență; c) seria diverge conform criteriului lui Leibniz; d) nu se poate preciza natura seriei. **335) Capitol:** 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ r=1. Atunci seria: , are raza de convergență r=1. Atunci seria: a) converge, pentru $x \in (-1,1)$: **b)** diverge, pentru $x \in (-\infty, -2) \cup (0, +\infty)$; c) converge, pentru $x \in (0,2)$; **d)** converge, pentru $x \in (-2,0)$. **336) Capitol:** 4 Serii numerice. Serii de puteri $\sum_{n=1}^{\infty} a_n (x-1)^n$ r=1. Atunci seria: , are raza de convergență r = 1. Atunci seria: a) converge, pentru $x \in (-1,1)$. **b)** diverge, pentru $x \in (-\infty, 0) \cup (2, +\infty)$: c) converge, pentru $x \in (0,2)$: **d)** converge, pentru $x \in (-2,0)$. **337) Capitol:** 4 Serii numerice. Serii de puteriSeria de puteri $\sum_{n=1}^{\infty} a_n (x-1)^n$ $r=\infty$. Atunci seria: , are raza de convergență $r = \infty$. Atunci seria: a) converge, pentru $x \in (-1,1)$: **b)** diverge, pentru x > 1; c) converge, pentru $x \in \mathbb{R}$; **d)** diverge, pentru $x \neq 0$. 338) Capitol: 4 Serii numerice. Serii de puteri
Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergență r=0. Atunci seria: a) converge, $(\forall)x \in \mathbb{R}$. **b)** converge, numai pentru x = 0; c) diverge, numai pentru x = 0; **d)** diverge, $(\forall)x \in \mathbb{R}^*$ **339) Capitol:** 5 Functii reale de n variabile realeFie punctele $P_1(x_1, x_2)$ și $P_2(y_1, y_2) \in \mathbb{R}^2$. Atunci

distanta dintre ele se calculează conform formulei:

a)
$$d(P_1, P_2) = \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$$
;

b)
$$d(P_1, P_2) = \sqrt{(x_1 - x_2)^2} + \sqrt{(y_1 - y_2)^2}$$
:

c)
$$d(P_1, P_2) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
;

d)
$$d(P_1, P_2) = \sqrt{(x_1 + y_1)^2 + (x_2 + y_2)^2}$$
.

340) Capitol: 5 Functii reale de n variabile realeFie $P(x_1, x_2) \in \mathbb{R}^2$; atunci distanța de la O(0,0) la Peste:

a)
$$d(O,P) = \sqrt{(x_1 + x_2)^2}$$
;

b)
$$d(O,P) = \sqrt{x_1^2 + x_2^2}$$
;

c)
$$d(O,P) = \sqrt{(x_1 - x_2)^2}$$
;

d)
$$d(O,P) = \sqrt{x_1^2 - x_2^2}$$

341) Capitol: 5 Functii reale de n variabile realeFie şirul de puncte $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^n$. Atunci sirul:

- a) converge, dacă cel puțin un șir al coordonatelor converge;
- b) converge, dacă toate șirurile coordonatelor converg;
- c) diverge, dacă cel puțin un șir al coordonatelor diverge;
- d) diverge, numai dacă toate șirurile de coordonate diverg.

342) Capitol: 5 Functii reale de n variabile realeFie f(x,y) o funcție de două variabile și notăm cu l_g limita globală, respectiv l_1 , l_2 limitele parțiale ale acesteia într-un punct (x_0, y_0) . Care din următoarele afirmații sunt adevărate?

a) dacă
$$(\exists)l_g$$
 atunci $(\exists)l_1,l_2$ și $l_1=l_2=l_g$;

b) dacă
$$(\exists)l_1, l_2$$
 și $l_1 = l_2$ atunci $(\exists)l_g$ și $l_g = l_1 = l_2$;

c) dacă
$$(\exists)l_1, l_2$$
 și $l_1 \neq l_2$ atunci $(\not\exists)l_g$;

d) dacă
$$(\not\exists)l_g$$
 atunci $(\not\exists)l_1,l_2$.

343) Capitol: 5 Functii reale de n variabile realeFie $f:D\subseteq \mathbb{R}^2\to \mathbb{R}$ și $(x_0,y_0)\in D$. Atunci derivata parțială a lui f(x,y) în raport cu variabila x în punctul (x_0,y_0) se calculează cu relația: $\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)-f(x_0,y_0)}{x-x_0}.$

a)
$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{(x, y) \to (x_0, y_0)} \frac{f(x, y) - f(x_0, y_0)}{x - x_0}$$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$
b)

c)
$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$
;

c)
$$\frac{\partial x}{\partial x} (x_0, y_0) = \lim_{y \to y_0} y - y_0$$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y) - f(x_0, y_0)}{x - x_0}$$

344) Capitol: 5 Functii reale de n variabile realePunctele critice ale functiei $f(x, y) \in C^2(\mathbb{R}^2)$ se obtin:

- a) rezolvând ecuația f(x, y) = 0:
- **b)** cu ajutorul hessianei atașate funcției f;

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \\ \vdots \\ \frac{\partial^2 f}{\partial x^2} = 0 \end{cases}$$

$$\begin{cases} \frac{\partial^2 f}{\partial x^2} = 0 \\ \frac{\partial^2 f}{\partial x^2} = 0 \end{cases}$$

d) ca solutii ale sistemului

345) Capitol: 5 Functii reale de n variabile reale Funcția oarecare f(x, y, z) satisface condițiile din criteriul lui Schwarz. Atunci au loc egalitățile:

a)
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2};$$

$$\frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x};$$

$$\mathbf{b)} \ \, \overline{\partial x \partial z} = \overline{\partial z \partial x}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial z};$$

c)
$$\partial x \partial y - \partial x \partial z$$

$$\frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y}$$

346) Capitol: 5 Functii reale de n variabile realeDacă $P_0(x_0,y_0)$ este punct critic pentru funcția f(x,y) atunci:

a) P_0 este punct de extrem local pentru f(x, y);

b)
$$\frac{\partial f}{\partial x}(P_0) = 0$$
 si $\frac{\partial f}{\partial y}(P_0) = 0$;

c)
$$df(P_0) = 0$$
;

$$\frac{\partial^2 f}{\partial x^2}(P_0) = \frac{\partial^2 f}{\partial y^2}(P_0)$$

347) Capitol: 5 Functii reale de n variabile realeCriteriul lui Schwarz afirmă că funcția f(x, y) are:

- a) derivatele partiale de ordinul întâi egale;
- b) derivatele partiale de ordinul doi egale;
- c) derivatele partiale mixte de ordinul doi egale;
- d) derivatele de ordinul întâi sunt continue.

348) Capitol: 5 Functii reale de n variabile realeCare din următoarele afirmații sunt adevărate:

- a) orice punct critic este punct de extrem local;
- b) orice punct de extrem local este punct critic;
- c) într-un punct critic derivatele parțiale de ordinul întâi sunt nule;
- d) punctele de extrem local se găsesc printre punctele critice.

349) Capitol: 5 Functii reale de n variabile realeO funcție $f: \mathbb{R}^n \to \mathbb{R}$ are întotdeauna:

- a) n derivate partiale de ordinul I;
- **b)** *n* derivate de ordinul I egale;

c) n derivate parțiale de ordinul II mixte; d) n^2 derivate parțiale de ordinul II.
 350) Capitol: 5 Functii reale de n variabile realeO funcție f: Rⁿ → R are întotdeauna: a) cel mult n puncte critice; b) cel puțin n puncte de extrem local; c) numărul de puncte critice este același cu cel al punctelor de extrem; d) numărul punctelor critice și de extrem nu depind de n.
351) Capitol : 5 Functii reale de n variabile realeHessiana atașată funcției oarecare $f: \mathbb{R}^n \to \mathbb{R}$: a) este o matrice pătratică de ordin n ; b) este formată cu derivatele parțiale de ordinul I ale funcției; c) are toate elementele de pe diagonala principală, egale; d) este formată cu derivatele parțiale de ordinul II ale funcției.
352) Capitol : 5 Functii reale de n variabile realePunctul $P_0 \in \mathbb{R}^n$ este punct critic pentru funcția $f: \mathbb{R}^n \to \mathbb{R}$ dacă derivatele parțiale: a) de ordinul I sunt egale în P_0 ; b) de ordinul II sunt continue în P_0 ; c) de ordinul I se anulează în P_0 ; d) de ordinul II de anulează în P_0 .
353) Capitol : 5 Functii reale de n variabile realeFie $f: \mathbb{R}^2 \to \mathbb{R}$. Criteriul lui Schwarz afirmă că: $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x};$ a) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y};$ b) $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2};$ c) $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2};$ d) derivatele parțiale de ordin II sunt continue.
 354) Capitol: 5 Functii reale de n variabile realeCriteriul lui Schwarz implică faptul că funcția f: Rⁿ → R are: a) matricea hessiană simetrică; b) derivatele parțiale de ordinul II mixte, egale; c) puncte de extrem local; d) puncte critice.
355) Capitol: 5 Functii reale de n variabile realeO funcție oarecare $f: \mathbb{R}^n \to \mathbb{R}$ are: a) cel mult n puncte critice;

- b) cel puțin n puncte de extrem local;c) n puncte de minim și n puncte de maxim;
- d) numărul punctelor critice și de extrem nu depinde de n.

356) Capitol: 5 Functii reale de n variabile reale $\operatorname{Dac\check{a}}$ punctul P_0 este punct de maxim pentru funcția f, atunci:

a) $d^2 f(P_0)$ este pozitiv definită;
b) $d^2 f(P_0)$ este negativ definită;
c) $d^2 f(P_0) = 0$;
d) P_0 este punct critic pentru f .
357) Capitol: 5 Functii reale de n variabile reale $Dacă$ punctul P_0 este punct de minim pentru funcția f
atunci: $d^2 f(P)$
a) $d^2 f(P_0)$ este pozitiv definită;
b) $d^2 f(P_0)$ este negativ definită;
c) $d^2 f(P_0) = 0$;
d) P_0 este punct critic pentru f .
358) Capitol: 5 Functii reale de n variabile reale $Dacă$ Δ_1, Δ_2 sunt minorii diagonali ai hessienei $H(P_0)$, atunci punctul critic $P_0(x_0, y_0)$ este punct de minim dacă: a) $\Delta_1 > 0, \ \Delta_2 > 0$; b) $\Delta_1 > 0, \ \Delta_2 < 0$; c) $\Delta_1 < 0, \ \Delta_2 < 0$; d) $\Delta_1 < 0, \ \Delta_2 > 0$. 359) Capitol: 5 Functii reale de n variabile reale $Daca$ Δ_1, Δ_2 sunt minorii diagonali ai hessienei $H(P_0)$, atunci punctul critic $P_0(x_0, y_0)$ este punct de maxim dacă:
•
a) $\Delta_1 > 0$, $\Delta_2 > 0$; b) $\Delta_1 > 0$, $\Delta_2 < 0$;
b) -1 0 , -2 0 ; c) $\Delta_1 < 0$, $\Delta_2 < 0$;
c) 1 2 ; d) $^{\Delta_{1}} < 0, \Delta_{2} > 0$.
d) 1 / 2 .
360) Capitol : 5 Functii reale de n variabile realeDacă $\Delta_1, \Delta_2, \Delta_3$ sunt minorii diagonali ai hessienei $H(P_0)$, atunci punctul critic $P_0(x_0, y_0, z_0)$ este punct de maxim dacă: a) $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$; b) $\Delta_1 < 0$, $\Delta_2 > 0$, $\Delta_3 < 0$; c) $\Delta_1 > 0$, $\Delta_2 < 0$, $\Delta_3 > 0$; d) $\Delta_1 < 0$, $\Delta_2 < 0$, $\Delta_3 < 0$.
361) Capital: 5 Eunctii roolo do n variabilo roolo $Daca = \frac{\Delta_1, \Delta_2, \Delta_3}{2}$ sunt minorii diagonali ai bassianai

361) Capitol: 5 Functii reale de n variabile realeDacă $^{\Delta_1, \Delta_2, \Delta_3}$ sunt minorii diagonali ai hessienei $H(P_0)$, atunci punctul critic $P_0(x_0, y_0, z_0)$ este punct de minim dacă: a) $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$;

b)
$$\Delta_1 < 0, \ \Delta_2 > 0, \ \Delta_3 < 0$$
;

```
c) \Delta_1 > 0, \ \Delta_2 < 0, \ \Delta_3 > 0;
```

d)
$$\Delta_1 < 0, \ \Delta_2 < 0, \ \Delta_3 < 0$$
.

, ------

362) Capitol: 5 Functii reale de n variabile realeO funcție oarecare f(x, y) are:

- a) 2 derivate parțiale de ordinul I și 2 derivate parțiale de ordinul II;
- b) 2 derivate parțiale de ordinul I și 4 derivate parțiale de ordinul II;
- c) 4 derivate parțiale de ordinul I și 2 derivate parțiale de ordinul II;
- d) 2 derivate parțiale de ordinul II mixte (dreptunghiulare).

363) Capitol: 5 Functii reale de n variabile realeO funcție oarecare f(x, y, z) are:

- a) 3 derivate parțiale de ordinul I și 3 derivate parțiale de ordinul II;
- b) 3 derivate parțiale de ordinul I și 6 derivate parțiale de ordinul II;
- c) 3 derivate parțiale de ordinul I și 9 derivate parțiale de ordinul II;
- d) 6 derivate parțiale de ordinul II mixte (dreptunghiulare).

364) Capitol: 5 Functii reale de n variabile realePunctele critice ale funcției f(x, y):

a) sunt soluțiile ecuației f(x, y) = 0;

$$\begin{cases} \frac{\partial f}{\partial x} = 0\\ \frac{\partial f}{\partial y} = 0 \end{cases}$$

b) sunt solutiile sistemului

$$\begin{cases} \frac{\partial^2 f}{\partial x^2} = 0\\ \frac{\partial^2 f}{\partial x^2} = 0 \end{cases}$$

- c) sunt solutiile sistemului $\int dy^2$
- d) sunt întotdeauna în număr de două.

365) Capitol: 5 Functii reale de n variabile realeFie punctele $P_1(1,1), P_2(2,2) \in \mathbb{R}^2$. Atunci distanța dintre ele este egală cu:

- a) $d(P_1, P_2) = 1$;
- **b)** $d(P_1, P_2) = 2$;
- c) $d(P_1, P_2) = \sqrt{2}$;
- d) $d(P_1, P_2) = 3$.

366) Capitol: 5 Functii reale de n variabile realeFie şirul $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^2$ cu termenul general de forma

$$x_n = \left(\frac{1}{n}, \frac{n}{n+1}\right)$$
. Atunci:

- a) șirul converge la $x_0 = (1,1)$;
- **b)** limita sirului este $x_0 = (0,1)$;
- c) șirul diverge și are limita $x_0 = (+\infty, 1)$;
- d) șirul nu are limită.

367) Capitol: 5 Functii reale de n variabile realeFie şirul $(x_n)_{n\in\mathbb{N}} \in \mathbb{R}^2$ cu termenul general

$$x_n = \left(\frac{(-1)^n}{n}, \frac{n^2}{n+1}\right). \text{ Atunci:}$$

- a) șirul converge și are limita $x_0 = (0,1)$;
- **b)** şirul diverge şi are limita $x_0 = (0, +\infty)$;
- c) șirul diverge și nu are limită;
- **d)** şirul converge la una din limitele $x_0 = (-1,1)$ sau $x_0 = (1,1)$.

$$f(x, y) = \frac{x^2}{y}$$
. Atunci:

368) Capitol: 5 Functii reale de n variabile realeFie functia

$$\frac{\partial f}{\partial x} = \frac{2x}{y}$$

- a) $\partial x y$:

369) Capitol: 5 Functii reale de n variabile realeDerivatele parțiale ale funcției $f(x, y) = \ln(xy)$ sunt:

$$\frac{\partial f}{\partial t} = \frac{1}{1}$$

- a) $\frac{\partial f}{\partial x} = \frac{1}{xy}$;
- $\frac{\partial f}{\partial x} = \frac{1}{x}$:
- c) $\frac{\partial f}{\partial y} = \frac{1}{xy}$:

370) Capitol: 5 Functii reale de n variabile realeFie funcția $f(x, y) = xy^2$, care dintre următoarele egalități sunt corecte?

a)
$$\frac{\partial f}{\partial x} = 2xy$$
;

$$\frac{\partial f}{\partial x} = y^2$$

371) Capitol: 5 Funcții reale de n variabile realeDiferențiala de ordinul I a funcției $f(x, y) = xy^2$ calculată în punctul $P_0(1,2)$ are expresia:

a)
$$df(P_0) = 2dx + 4dy$$
;

b)
$$df(P_0) = 4dx + 2dy$$
;

c)
$$df(P_0) = 4dx + 4dy$$
;

d)
$$df(P_0) = 2dx + 2dy$$
.

372) Capitol: 5 Functii reale de n variabile realeDiferențiala de ordin I a funcției $f(x, y) = xy^2 + 2x^3y$ în punctul $P_0(1,1)$ are expresia:

a)
$$df(P_0) = 3dx + 5dy$$
:

b)
$$df(P_0) = 7dx + 4dy$$
:

c)
$$df(P_0) = 4dx + 7dy$$
:

d)
$$df(P_0) = dx + dy$$
.

373) Capitol: 5 Functii reale de n variabile realeDiferențiala de ordin I a funcției $f(x, y) = xe^y$ are expresia:

a)
$$df(x, y) = e^y dx + xye^y dy$$
;

$$\mathbf{b)} \ \mathrm{d} f(x,y) = x \mathrm{d} x + e^{y} \mathrm{d} y :$$

c)
$$df(x, y) = e^y dx + xe^y dy$$
:

$$df(x, y) = xe^{y}dx + xye^{y}dy$$

374) Capitol: 5 Functii reale de n variabile realeFie f(x,y) o funcție care satisface criteriul lui

Schwarz şi care are
$$\frac{\partial^2 f}{\partial x \partial y} = xy^2$$
. Atunci:

a)
$$\frac{\partial^2 f}{\partial y \partial x} = x^2 y$$

$$\frac{\partial^2 f}{\partial y \partial x} = xy^2$$

b)
$$\frac{\partial y \partial x}{\partial x}$$

$$\frac{\partial^2 f}{\partial x^2} = x^2 y$$

$$\frac{\partial^2 f}{\partial x^2} = xv^2$$

$$H(x,y) = \begin{pmatrix} 6x & -2 \\ -2 & 6y \end{pmatrix}$$

 $H(x,y) = \begin{pmatrix} 6x & -2 \\ -2 & 6y \end{pmatrix}$ hessiana ataşată funcției 375) Capitol: 5 Functii reale de n variabile realeFie

f(x,y). Dacă $P_1(2,-1)$ și $P_2(-2,-1)$ sunt puncte critice ale lui f, atunci:

- a) P_1 , P_2 sunt puncte de maxim;
- **b)** P_1 este punct de maxim şi P_2 este punct de minim;
- c) P_1 nu este punct de extrem, iar P_2 este punct de maxim;
- **d)** P_1 este punct de minim, iar P_2 nu este punct de extrem.

376) Capitol: 5 Functii reale de n variabile reale Funcția f(x,y) are derivatele parțiale ordinul I de

forma: $\frac{\partial f}{\partial x} = y^2 + 2x \ln y$, $\frac{\partial f}{\partial y} = 2xy + \frac{x^2}{y}$. Atunci:

a)
$$\frac{\partial^2 f}{\partial x^2} = y^2 + 2 \ln y$$
;

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x};$$

b)
$$\partial x \partial y - \partial y \partial x$$
;

$$\frac{\partial^2 f}{\partial y^2} = 2x - \frac{x^2}{y^2};$$

$$H(x, y) = \begin{pmatrix} 2\ln y & 2y + \frac{2x}{y} \\ 2\left(y + \frac{x}{y}\right) & 2x - \frac{x^2}{y^2} \end{pmatrix}$$

d)

$$\begin{cases} f: \mathbf{R}^2 \to \mathbf{R} \\ f(x,y) = xy + 1 \end{cases}$$
 are:

- a) punctul critic P(-1,1);
- b) o infinitate de puncte critice;
- c) unicul punct critic: O(0, 0);

$$H(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

d) hessiana de forma:

$$\begin{cases} f: \mathbf{R}^2 \to \mathbf{R} \\ f(x,y) = x + y - 1 \end{cases}$$
 are

- a) punctul critic P(1,1);
- b) nici un punct critic;
- c) un punct de minim;
- d) un punct de maxim.

 $H(P_0) = \begin{pmatrix} 2\alpha & \beta \\ \beta & 1 \end{pmatrix}$ hessiana ataşată funcției 379) Capitol: 5 Functii reale de n variabile realeFie f(x, y) în punctul critic P_0 . Atunci P_0 :

- a) este punct de minim local, dacă $\alpha = \beta = 1$;
- **b)** este punct de maxim local, dacă $\alpha = -1$, $\beta = -2$;
- c) nu este punct de extrem local, dacă $\alpha = 1$ și $\beta = 2$;
- d) este punct de maxim local, dacă $\alpha = -3$, $\beta = 2$

380) Capitol: 5 Functii reale de n variabile reale $Fie\ P_0$ un punct critic al funcției $\ f(x,y)$ și hessiana

 $H(P_0) = \begin{pmatrix} 3 & 2\alpha \\ 2\alpha & 1 \end{pmatrix}$. Atunci P_0 va fi punct de minim pentru corespunzătoare acestuia de forma: funcția f dacă:

- a) $\alpha = 0$;
- b) $\alpha = -1$:

$$\alpha = \frac{\sqrt{3}}{2};$$

$$\alpha = \frac{1}{2}$$

381) Capitol: 5 Functii reale de n variabile realeHessiana functiei f(x, y) în punctul critic P_0 , este de

$$H(P_0) = \begin{pmatrix} \alpha & -\beta \\ -\beta & -1 \end{pmatrix}$$
. At unci P_0 este punct de maxim local pentru f dacă: $1 < 0, \quad \alpha - \beta^2 > 0$.

a)
$$\alpha - 1 < 0$$
, $\alpha - \beta^2 > 0$:

b)
$$\alpha > 0$$
, $-\alpha + \beta^2 < 0$;

c)
$$\alpha < 0$$
, $\alpha + \beta^2 > 0$;

d)
$$\alpha < 0$$
, $\alpha - \beta^2 > 0$.

382) Capitol: 5 Functii reale de n variabile realeHessiana funcției f(x, y) în punctul critic P_0 , are

$$H(P_0) = \begin{pmatrix} \alpha + 2 & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & \alpha^2 \end{pmatrix}.$$
 At unci P_0 este punct de minim local pentru f dacă:

a)
$$\alpha + 2 > 0$$
 şi $\alpha^3 + 4\alpha^2 > 0$;

b)
$$\alpha > -2$$
 $\text{si} \ \alpha^3 > 0$;

c)
$$\alpha < -2$$
 Si $\alpha^3 + 4\alpha^2 > 0$:

d)
$$\alpha + 2 > 0$$
 şi $\alpha^3 < 0$.

383) Capitol: 5 Functii reale de n variabile realeDacă funcția f(x,y) are derivatele parțiale de ordinul

$$\begin{cases} \frac{\partial f}{\partial x} = x(x+2y-1) \\ \frac{\partial f}{\partial y} = y(2x+y-1) \\ \text{, atunci } f \text{ are:} \end{cases}$$

I de forma

- a) un punct critic;
- b) două puncte critice;
- c) o infinitate de puncte critice;
- d) patru puncte critice.

$$H(P_0) = \begin{pmatrix} \alpha & 2-\alpha \\ 2-\alpha & 1 \end{pmatrix}$$
 hessiana funcției $f(x, y)$

384) Capitol: 5 Functii reale de n variabile realeFie în punctul critic P_0 . Atunci pentru:

a)
$$\alpha = -1 \implies P_0$$
 este punct de maxim local;

b)
$$\alpha = 4 \implies$$
 nu se poate preciza natura lui P_{0} ;

$$\alpha = \frac{1}{2}$$
 $\Rightarrow P_0$ nu este punct de extrem local;

d)
$$\alpha = 3 \implies P_0$$
 este punct de minim local.

385) Capitol: 5 Functii reale de n variabile realeHessiana atașată funcției f(x,y) are forma

$$H(x, y) = \begin{pmatrix} 2y^3 & 6xy^2 \\ 6xy^2 & 6x^2y^2 \end{pmatrix}$$
. Atunci diferențiala de ordin II a funcției are forma:

$$d^2 f(x, y) = 2y^3 dx^2 + 6xy^2 dx dy + 6x^2y^2 dy^2.$$

- a) $d^2 f(x, y) = 2y^3 dx^2 + 6xy^2 dx dy + 6x^2 y^2 dy^2$
- **b)** $d^2 f(x, y) = 2y^3 dx^2 + 6x^2 y^2 dx dy + 6xy^2 dy^2$
- $d^2 f(x, y) = 2y^3 dx^2 + 12xy^2 dx dy + 6x^2 y^2 dy^2.$
- d) nu putem scrie diferențiala de ordin II deoarece nu se cunoaște forma funcției f(x, y).
- **386)** Capitol: 5 Functii reale de n variabile realeDiferențiala de ordin I a funcției f(x, y) are forma df(x, y) = (x + y)dx + (x + 2)dy. Atunci funcția f(x, y):
- a) nu are puncte critice;
- **b)** are punctele critice $P_1(0,0)$ si $P_2(-2,0)$;
- c) are punctul critic unic P(-2,2);
- d) are cel puțin două puncte critice.

$$H(x, y) = \begin{pmatrix} 2y & 2x \\ 2x & 0 \end{pmatrix}$$
 hessiana ataşată funcției

387) Capitol: 5 Functii reale de n variabile realeFie f(x, y). Atunci diferențiala de ordin II a funcției f are forma:

a)
$$d^2 f(x, y) = 2ydx^2 + 2xdxdy + 2xdy^2$$
;

- **b)** $d^2 f(x, y) = 4x dx dy + 2y dy^2$.
- c) $d^2 f(x, y) = 2ydx^2 + 2xdxdy$:
- **d)** $d^2 f(x, y) = 2ydx^2 + 4xdxdy$.

 $H(x, y) = \begin{pmatrix} 2y & 2x \\ 2x & 0 \end{pmatrix}$ hessiana ataşată funcției

388) Capitol: 5 Functii reale de n variabile realeFie

f(x, y). Dacă $P_1(1,-1)$ și $P_2(-1,1)$ sunt punctele critice ale lui f, atunci:

- a) P_1 punct de maxim, P_2 punct de minim;
- **b)** P_1 nu este punct de extrem, P_2 este punct de maxim;
- c) P_1 , P_2 nu sunt puncte de extrem local;
- **d)** P_1 este punct de maxim, P_2 nu este punct de extrem local.

$$H(P_0) = \begin{pmatrix} \alpha - 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha + 1 \end{pmatrix}$$
 hessian

- 389) Capitol: 5 Functii reale de n variabile realeFie corespunzătoare funcției f(x, y, z) în punctul critic P_0 . Atunci:
- a) P_0 este punct de minim local, dacă $\alpha > 1$;
- **b)** P_0 este punct de maxim local, dacă $\alpha < 1$;
- c) P_0 nu este punct de extrem local, dacă $\alpha = \frac{1}{2}$;
- **d)** P_0 este punct de maxim local, dacă $\alpha = -2$.

390) Capitol: 5 Functii reale de n variabile realeFie P_0 punct critic al funcției f(x,y) și

$$d^2 f(P_0) = -2dx^2 + dy^2$$
. Atunci:

- a) P_0 este punct de minim local;
- **b)** P_0 este punct de maxim local;
- c) P_0 nu este punct de extrem local;
- d) nu putem preciza natura lui P_0 .

391) Capitol: 5 Functii reale de n variabile realeFie P_0 un punct critic al funcției f(x, y) și $d^2 f(P_0) = 4dx^2 - dxdy + dy^2$ Atunci:

- a) P_0 este punct de minim local;
- **b)** P_0 este punct de maxim local;
- c) P_0 nu este punct de extrem local;
- d) nu putem preciza natura lui P_0 .

392) Capitol: 5 Functii reale de n variabile realeFie P_0 un punct critic al funcției f(x, y, z) și $d^2 f(P_0) = dx^2 + 4dy^2 + d^2z$ Atunci:

- a) P_0 este punct de minim local;
- **b)** P_0 este punct de maxim local;
- c) P_0 nu este punct de extrem local;
- d) nu putem preciza natura lui P_0 .

393) Capitol: 5 Functii reale de n variabile realeFuncția f(x,y) are derivatele parțiale de ordin I de

forma $\frac{\partial f}{\partial x} = x^2 - 3x + 2$, respectiv $\frac{\partial f}{\partial y} = y^2 - 1$. Atunci numărul punctelor critice ale lui f este:

- **a)** 1:
- **b)** 2;
- **c)** 3;
- **d)** 4.

394) Capitol: 5 Functii reale de n variabile realeDiferențiala de ordin I a funcției $f(x, y, z) = xy + y^2z$ are forma:

- a) $df(x, y, z) = (y + y^2 z)dx + (x + 2yz)dy + (xy + y^2)dz$:
- **b)** $df(x, y, z) = ydx + (x + 2yz)dy + y^2dz$;
- c) df(x, y, z) = xdx + ydy + zdz;
- **d)** $df(x, y, z) = ydx + (x + y^2z)dy + (xy + y^2)dz$.

395) Capitol: 5 Functii reale de n variabile realeDiferențiala de ordin I a funcției f(x, y, z) = xyz are forma:

- a) df(x, y, z) = xydx + yzdy + yzdz.
- b) df(x, y, z) = xzdx + xydy + yzdz.
- c) df(x, y, z) = yzdx + xzdy + xydz.
- d) df(x, y, z) = xdx + ydy + zdz.

$$f(x, y) = \frac{x^2 + y^2 + x - y}{x + y}$$

396) Capitol: 5 Funcții reale de n variabile realeFie funcția

 $l_1 = \lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right), \quad l_2 = \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right)$ limitele iterate ale funcției în O(0,0). Atunci: **a)** l_1, l_2 nu există;

- **b)** $l_1 = l_2 = 1$;
- c) $l_1 = l_2 = -1$:
- d) $l_1 = 1$, $l_2 = -1$.

397) Capitol: 5 Functii reale de n variabile realeFie funcția $f(x, y) = e^{xy}$. Atunci:

a)
$$\frac{\partial f}{\partial x} = e^{xy}$$
; $\frac{\partial f}{\partial x} = e^{xy}$

 $\frac{\partial f}{\partial x} = xe^{xy} ;$

c)
$$\frac{\partial f}{\partial x} = ye^{xy}$$

 $\frac{\partial f}{\partial x} = xye^{xy}$

d) ∂x .

398) Capitol: 5 Functii reale de n variabile realeFie funcția $f(x, y) = e^{x+y}$. Atunci:

a)
$$\frac{\partial f}{\partial x} = (x+y)e^{x+y}$$
;
 $\frac{\partial f}{\partial x} = xe^{x+y}$

$$\mathbf{b)} \ \, \frac{\partial x}{\partial x} = xe^{-x}$$

$$\frac{\partial f}{\partial x} = ye^{x+y}$$

c)
$$\frac{\partial x}{\partial f}$$
;

d) $\frac{\partial}{\partial x} = e^{x+y}$

a) •-------

$$H(P_0) = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \text{ he}$$

hessiana atasată funcției

399) Capitol: 5 Functii reale de n variabile realeFie

f(x, y, z) în punctul critic P_0 . Atunci:

- a) P_0 este punct de minim;
- **b)** P_0 este punct de maxim;
- c) P_0 nu este punct de extrem local;
- d) nu se poate preciza natura lui P_0 .

400) Capitol: 5 Functii reale de n variabile realeFie funcția f(x, y, z) = x + y + z. Atunci:

- a) funcția f are un singur punct critic;
- **b)** funcția f nu are puncte critice;
- c) funcția f nu are puncte de extrem local;
- d) hessiana ataşată funcției H(x, y, z) coincide cu matricea unitate.

401) Capitol: 5 Functii reale de n variabile realeFie $H(P_0) = \begin{pmatrix} \alpha & \beta \\ \beta & 0 \end{pmatrix}$ hessiana ataşată funcției

f(x, y) în punctul critic P_0 . Atunci, dacă:

- a) $\alpha > 0$, $\beta > 0$ $\Rightarrow P_0$ punct de minim local;
- **b)** $\alpha < 0, \ \beta < 0 \Rightarrow P_0 \text{ punct de maxim local;}$
- c) $\alpha < 0, \ \beta > 0 \implies P_0$ nu este punct de extrem local;
- d) $\alpha > 0$, $\beta < 0 \implies P_0$ nu este punct de extrem local;

$$H(x, y) = \begin{pmatrix} 2y^3 & 6xy^{\alpha} \\ \beta xy^2 & 6x^2y \end{pmatrix}$$
 matricea hessiană

402) Capitol: 5 Functii reale de n variabile realeFie

atașată funcției f(x,y). Atunci, dacă funcția f(x,y) satisface criteriul lui Schwarz, avem:

- a) $\alpha = 3, \ \beta = 6$.
- **b)** $\alpha = 2, \ \beta = 6$
- c) $\alpha = 1, \beta = 2$.
- d) $\alpha = 2, \ \beta = 2$.

$$H(x, y, z) = \begin{pmatrix} 2y & 2x & \alpha \\ \beta x & 0 & 3z^2 \\ 0 & \gamma z^2 & 6yz \end{pmatrix}_{\text{hess}}$$

403) Capitol: 5 Functii reale de n variabile realeFie

functiei $f(x, y, z) = x^2y + yz^3$. Deoarece f satisface criteriul lui Schwarz, avem:

- a) $\alpha = 2, \beta = 3, \gamma = 6$.
- **b)** $\alpha = 0, \ \beta = 3, \ \gamma = 3$
- c) $\alpha = 0, \ \beta = 2, \ \gamma = 3$
- d) $\alpha = 2, \beta = 6, \gamma = 3$.