UNIDAD DIDÁCTICA 1

Unidades de medida y sistemas de numeración

ÍNDICE

- 1. Unidades de medida
- 2. Sistemas de
 - numeración

UNIDADES DE MEDIDA

MEDIDAS DE ALMACENAMIENTO

- La unidad básica de almacenamiento es el bit (0 o 1).
- El conjunto de 8 bits se denomina byte.
- La capacidad de las memorias se mide en múltiplos del byte.
- ¿Por qué las memorias muestran menos capacidad en el PC que la indicada por el vendedor?

MEDIDAS DE ALMACENAMIENTO

Múltiplos de bytes					
Sistema Internac	ional	ISO/IEC 80000-13			
(decimal)		(binario)			
Múltiplo	SI	Múltiplo	ISO/IEC		
(símbolo)		(símbolo)			
kilobyte (kB)	10 ³	kibibyte (KiB)	2 ¹⁰		
megabyte (MB)	10 ⁶	mebibyte	2^{20}		
		(MiB)			
gigabyte (GB)	10 ⁹	gibibyte (GiB)	230		
terabyte (TB)	10 ¹²	tebibyte (TiB)	2^{40}		
petabyte (PB)	10 ¹⁵	pebibyte (PiB)	2^{50}		
exabyte (EB)	10 ¹⁸	exbibyte (EiB)	2^{60}		
zettabyte (ZB)	10 ²¹	zebibyte (ZiB)	2 ⁷⁰		
yottabyte (YB)	10 ²⁴	yobibyte (YiB)	2 ⁸⁰		
Véase también: nibble • byte • sistema octal					

MEDIDAS DE ALMACENAMIENTO

Capacidad en el producto (decimal)	Rendimiento de Mac OS X (decimal)	Rendimiento de Windows (binario)
500 GB	500 GB	465 GB
1 TB (1000 GB)	1 TB (1000 GB)	931 GB
2 TB (2000 GB)	2 TB (2000 GB)	1,81 TB
3 TB (3000 GB)	3 TB (3000 GB)	2,72 TB
4 TB (4000 GB)	4 TB (4000 GB)	3,63 TB
5 TB (5000 GB)	5 TB (5000 GB)	4,54 TB
6 TB (6000 GB)	6 TB (6000 GB)	5,45 TB
8 TB (8000 GB)	8 TB (8000 GB)	7,27 TB
10 TB (10 000 GB)	10 TB (10 000 GB)	9,09 TB
12 TB (12 000 GB)	12 TB (12 000 GB)	10,91 TB
14 TB (14 000 GB)	14 TB (14 000 GB)	12,73 TB
16 TB (16 000 GB)	16 TB (16 000 GB)	14,55 TB
18 TB (18 000 GB)	18 TB (18 000 GB)	16,37 TB
20 TB (20 000 GB)	20 TB (20 000 GB)	18,18 TB

- El reloj del microprocesador genera una serie de señales o pulsos de forma constante y periódica que hacen que el resto del sistema funcione de manera sincronizada.
- A mayor frecuencia mayor rapidez.
- La placa base, el bus del sistema y la memoria también trabajan a una determinada frecuencia.

$$Hz = \frac{1}{S}$$

Múltiplos						
Valor	Símbolo	Nombre				
10 ¹ Hz	daHz	decahercio				
10 ² Hz	hHz	hectohercio				
10 ³ Hz	kHz	kilohercio				
10 ⁶ Hz	MHz	megahercio				
10 ⁹ Hz	GHz	gigahercio				

- Esta unidad también se usa para medir la tasa de refresco de las pantallas.
- Las pantallas no están emitiendo la imagen constantemente, sino que la imagen se refresca o actualiza a una frecuencia que se expresa en hercios.

- A mayor frecuencia más fluida y con menos intermitencias se verá la pantalla pero consumirá más energía.
- Si una pantalla tiene una frecuencia de actualización de 60Hz significa que cada segundo se refrescará la pantalla 60 veces.

MEDIDAS DE RENDIMIENTO

- FLOPS (operaciones de coma flotante por segundo).
- Se utiliza para medir el rendimiento en grandes ordenadores y en tarjetas gráficas (GPU).
- www.top500.org

MEDIDAS DE RENDIMIENTO

Rendimiento de una computadora					
Nombre	Unidad	FLOPS			
Kilo-FLOPS	kFLOPS	10 ³			
Mega-FLOPS	MFLOPS	10 ⁶			
Giga-FLOPS	GFLOPS	10 ⁹			
Tera-FLOPS	TFLOPS	10 ¹²			
Peta-FLOPS	PFLOPS	10 ¹⁵			
Exa-FLOPS	EFLOPS	10 ¹⁸			
Zetta-FLOPS	ZFLOPS	10 ²¹			
Yotta-FLOPS	YFLOPS	10 ²⁴			

MEDIDAS DE TRANSFERENCIA DE LA INFORMACIÓN

- bits por segundo.
- Mide la velocidad de transferencia en una conexión de red, en una unidad de disco, una memoria o entre un periférico y el ordenador.
- No confundir bps (bits por segundo) con Bps (bytes por segundo).

MEDIDAS DE TRANSFERENCIA DE LA INFORMACIÓN

Unidad de ancho de banda	Abrev.	Equivalencia
Bits por segundo	bps	1 bps = unidad fundamental de ancho de banda
Kilobits por segundo	kbps	1 kbps = 1.000 bps = 10 ³ bps
Megabits por segundo	Mbps	1 Mbps = $1.000.000$ bps = 10^6 bps
Gigabits por segundo	Gbps	1 Gbps = $1.000.000.000$ bps = 10^9 bps

MEDIDAS DE ELECTRICIDAD

- Vatio (W): Es una medida de potencia. Se utiliza para las fuentes de alimentación.
- Voltio (V): Es la medida de tensión o corriente eléctrica.
 Puede ser alterna (AC) o continua (DC). Internamente el ordenador funciona con DC. La fuente de alimentación sirve para transformar la AC a DC.

MEDIDAS DE ELECTRICIDAD

- Amperio (A): Es la medida de la intensidad de la corriente eléctrica. El amperio/hora se usa para medir la cantidad de energía que puede suministrar una batería durante una hora.
- Ohmio (Ohm, Ω): Mide la resistencia eléctrica.

SISTEMAS DE NUMERACIÓN

BINARIO

- Se basa en la base 2.
- Utiliza los símbolos 0 y 1.
- Un número binario es lo que se denomina bit que es la unidad mínima de información de la informática.

HEXADECIMAL

- Se basa en la base 16.
- Usa 16 símbolos (los números del 0 al 9 y las letras A, B, C, D, E y F).
- Se utiliza para representar las direcciones de memoria, las direcciones MAC, las direcciones IPv6, etc.

HEXADECIMAL

BINARIO	0000	0001	0010	0011	0100	0101	0110	0111
HEXADECIMAL	0	1	2	3	4	5	6	7
BINARIO								
HEXADECIMAL	8	9	Α	В	С	D	E	F

OCTAL

- Se basa en la base 8.
- Utiliza los símbolos del 0 al 7.

BINARIO	000	001	010	011	100	101	110	111
OCTAL	0	1	2	3	4	5	6	7

• Binario a decimal:

Binario:
$$1011010101$$

Potencias: $2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0$

Resultado: $512 + 0 + 128 + 64 + 0 + 16 + 0 + 4 + 0 + 1 = 725$
 $1011010101_{(2)} = 725_{(10)}$

- Binario a decimal:
 - 100₍₂
 - 1010₍₂
 - 1101₍₂
 - 10011₍₂
 - 11101₍₂

• Decimal a binario:

- Decimal a binario:
 - 4₍₁₀
 - 10₍₁₀
 - 13₍₁₀
 - 19₍₁₀
 - 29₍₁₀

• Octal a binario:

Nº Octal: 1 3 7 2 5
Binario: 001 011 111 010 101
13725(8) = 1011111010101(2)

- Octal a binario:
 - 715₍₈
 - 237₍₈
 - 542₍₈
 - 123₍₈
 - 416₍₈

• Binario a octal:

- Binario a octal:
 - 111001101₍₂
 - 10011111₍₂
 - 101100010₍₂
 - 1010011₍₂
 - 100001110₍₂

• Binario a hexadecimal:

 $1010101001000011110101_{(2)} = 2A90F5_{(16)}$

- Binario a hexadecimal:
 - 1011001110₍₂
 - 11001110₍₂
 - 10000001000100000₍₂
 - 110010101011111001011010₍₂
 - 111111100000₍₂

Hexadecimal a binario:

HEXADECIMAL: A4FQC

BINARIO: 1010 0100 1111 0000 1100

A4F0C(16) = 10100100111100001100(2)

- Hexadecimal a binario:
 - 2CE₍₁₆
 - CE₍₁₆
 - 10110₍₁₆
 - CABESA₍₁₆
 - FEO₍₁₆

OPERACIONES ARITMÉTICAS

• Suma:

A	В	SUMA	ACARREO
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

OPERACIONES ARITMÉTICAS

- Suma:
 - 00110111 + 10110101
 - 10101100 + 00101001
 - 01110001 + 01011100
 - 11010000 + 00010110
 - 11101010 + 11001110

GRACIAS

Vicente Peñuela González

vpeugon152@ieshnosmachado.org

Moodle