Summary: Minimization (Chapter 9)

Problem and Notation: minimize $f(\mathbf{x})$, and let $\mathbf{g} = \nabla f$

Basic Iterative Method

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{z}_k$$
, for $k = 1, 2, 3, ...$

Newton: Take $\alpha_k = 1$ and $\mathbf{H}_k \mathbf{z}_k = -\mathbf{g}_k$, where **H** is the Hessian matrix of $f(\mathbf{x})$

Gradient Descent: $\mathbf{z}_1 = -\mathbf{g}_1$, otherwise

SDM: $\mathbf{z}_k = -\mathbf{g}_k$

CGM:
$$\mathbf{z}_k = -\mathbf{g}_k + \beta_{k-1}\mathbf{z}_{k-1}$$
, where $\beta_k = \frac{\mathbf{g}_{k+1} \cdot (\mathbf{g}_{k+1} - \mathbf{g}_k)}{\mathbf{g}_k \cdot \mathbf{g}_k}$

 α_k : a line search is used to obtain $f(\mathbf{x}_k + \alpha_k \mathbf{z}_k) < f(\mathbf{x}_k)$

Special Case: if $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} - \mathbf{x} \cdot \mathbf{b}$, where **A** is symmetric and positive definite, then

$$\alpha_k = \frac{\mathbf{g}_k \cdot \mathbf{g}_k}{\mathbf{g}_k \cdot \mathbf{A} \mathbf{g}_k}$$
 and $\beta_k = \frac{\mathbf{g}_{k+1} \cdot \mathbf{g}_{k+1}}{\mathbf{g}_k \cdot \mathbf{g}_k}$

Levenberg-Marquardt: Assume $f(\mathbf{x}) = \mathbf{f} \cdot \mathbf{f}$. Take $\alpha_k = 1$ and $\mathbf{S}_k \mathbf{z}_k = -\mathbf{g}_k$, where

$$\mathbf{S}_k = \mathbf{G}_k + \mu_k \mathbf{D}_k,$$

$$\mathbf{D}_k = \mathrm{diag}(\mathbf{G}_k),$$

$$\mathbf{G}_k = 2\mathbf{J}_k^T \mathbf{J}_k$$

Also, **J** is the Jacobian matrix for $\mathbf{f}(\mathbf{x})$ and μ_k is specified (e.g., $\mu_1 = 10$, $\mu_k = \frac{1}{2}\mu_{k-1}$).