Large Margin Classification

So far in the presentation, the difference between the SVC and Logistic Regression classifiers is in the Loss Function.

The SVC is also able to create a "buffer" on either side of the separating boundary.

By making this buffer as wide as possible, an SVC may generalize better.

The buffer is defined by

- Two additional lines
- Parallel to separating boundary
- Same distance (the *margin*) from the separating boundary

```
In [4]: svm_ch = svm_helper.Charts_Helper()
    _= svm_ch.create_data()
    fig, axs = svm_ch.create_margin(Cs=[10])
```


- The separating boundary is the solid line, whose equation is given in the title
- Each dashed line is
 - Parallel to, and at the same distance from, the separating boundary
 - The distance (measured by length of a line orthogonal to the boundary) from the separating boundary is called the *margin*

The buffer width is twice the margin

In the above plot

- All examples are correctly classified
- There are no examples in the buffer

Requiring these two properties is called *Hard Margin Classification*.

It is somewhat uncommon to be able to achieve the first property (perfect separation of classes).

A more natural Classification task is called *Soft Margin* classification which allows (but penalizes, via the Loss Function) violation of either property.

We re-run the above example with a larger margin, resulting in the presence (correctly classified) examples in the buffer		
		esence of

```
In [5]: svm_ch = svm_helper.Charts_Helper()
    _= svm_ch.create_data()
    fig, axs = svm_ch.create_margin(Cs=[10,.1])
```


Achieving a margin

We need to modify the per-example loss to achieve zero loss

- If the example is correctly classified (i.e., score is on correct side of separating boundary)
- and the example is not in the buffer (i.e., score is exceeds the margin)

This can be achieved by moving the "hinge point" of the Hinge Function

 \bullet From 0 to the margin m

This corresponds to a per-example Loss of

$$\mathcal{L}^{(\mathbf{i})} = \max\left(0, \mathrm{m} - \dot{\mathbf{y}}^{(\mathbf{i})} * s(\hat{\mathbf{x}})
ight)$$

The above expression achieves zero loss when

$$\hat{s}(\mathbf{x^{(i)}}) \geq \text{m}$$
 Positive example, $\dot{\mathbf{y}^{(i)}} = +1$

$$\hat{s}(\mathbf{x^{(i)}}) \leq -m$$
 Negative example, $\dot{\mathbf{y}}^{(i)} = -1$

As we shall see, a margin m=1 will suffice resulting in

$$\mathcal{L}^{(\mathbf{i})} = \max\left(0, 1 - \dot{\mathbf{y}}^{(\mathbf{i})} * s(\hat{\mathbf{x}}
ight)$$

which we shall encounter repeatedly.

Here's the plot

In [6]: svmh.plot_hinges(hinge_pt=1)

Achieving a large margin

As we observed above, a zero loss occurs when

$$\hat{s}(\mathbf{x^{(i)}}) \geq \text{m}$$
 Positive example, $\dot{\mathbf{y}^{(i)}} = +1$

$$\hat{s}(\mathbf{x^{(i)}}) \leq -m$$
 Negative example, $\dot{\mathbf{y}}^{(i)} = -1$

Hence, the per-example loss above only imposes a Classification Loss

- Penalizing incorrect predictions
- Penalizing correct predictions that are in the buffer

It does not force m to be large.

In order to do so, we need to impose a Margin Penalty inversely related to the size of m.

What would happen if we divided both sides of the inequality by m?

- ullet Zero loss occurs when the inequality's right hand side is 1
- Θ would be rescaled by a factor of $\frac{1}{m}$

This would result in a large margin m being associated with small Θ .

We define a Margin Penalty

$$rac{1}{2}\Theta_{-0}^T\cdot\Theta_{-0}$$

as part of the Loss (that is being minimized) in order to force large \boldsymbol{m}

- where Θ_{-0} is a minor variation of Θ as explained below

Notation Our convention is that each example $\mathbf{x}^{(i)}$ has first feature that is the constant 1:

$$\mathbf{x^{(i)}} = [1, \mathbf{x}_1^{(i)}, \dots, \mathbf{x}_n^{(i)}]$$

- ullet Design matrix ${f X}$ has been augmented with a first column of all 1's
- This allows us to write $\hat{s}(\mathbf{x^{(i)}}) = \Theta^T \cdot \mathbf{x^{(i)}}$
- Θ_0 is the intercept term

Other's (e.g., the Geron book) keep the intercept term *outside* of \mathbf{x}

- ullet Resulting in $\hat{s}(\mathbf{x^{(i)}}) = \Theta^T \cdot \mathbf{x^{(i)}} + \Theta_0$, where \mathbf{x} does not have a leading 1
- Geron changes notation from previous chapters (in the "Under the Hood" subsection, page 204)

To avoid confusion, we will write Θ_{-0} to be Θ excluding Θ_0

Aside

The mysterious $\frac{1}{2}$ in the Margin Penalty

- Doesn't really affect the overall cost in a significant way
- Will be useful in the mathematical derivations
 - Hint:

$$\circ \; rac{\partial \Theta^2}{\partial \Theta} = 2\Theta$$

- \circ The $\frac{1}{2}$ makes the derivative of the Margin Penalty with respect to Θ exactly Θ
- The derivative will be used in the optimization of SVM Cost

SVC Loss Function

The final Average Loss Function for the SVC combines

- Classification Loss per-example (penalize incorrect or in-the-buffer predictions)
- Margin Penalty (penalize small margins)

$$\mathcal{L} = rac{1}{2}\Theta_{-0}^T \cdot \Theta_{-0} + C * rac{1}{m} \sum_{i=1}^m \max\left(0, 1 - \dot{\mathbf{y}^{(i)}} * s(\hat{\mathbf{x}^{(i)}})
ight)$$

where

$$\hat{s}(\mathbf{x^{(i)}}) = \Theta^T \cdot \mathbf{x^{(i)}}$$

- The first term is the Margin Penalty
- ullet The second term is the average of the per-example losses \mathcal{L}_i
 - ullet weighted by a constant C

What is C?

- We have two loss terms: Margin Penalty and Average Classification Loss
- C allows us to express a weight for the relative importance of the two loss terms

You should recognize this form of loss function (two loss terms, with relative weight)
It is like a loss function with a Regularization Penalty
In fact, we will provide a mathematical derivation of the Loss that makes this more apparent.

Let's consider extreme cases of *C*:

 $C=\infty$ No misclassification or buffer violations allowed

C=0 Misclassification and buffer violations unimportant

A high value for C

- May prevent a solution
- Encourage overfitting
 - \blacksquare Less importance on forcing elements of Θ to be zero

A low value for C

- Encourages underfitting
 - ullet More importance on forcing elements of Θ to be zero

```
In [7]: print("Done")
```

Done