Correction du Ds 1

du 15/09/2016

Exercice 1.

(d'après Bce 2013 Ect)

Soit M la matrice $M = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. On considère aussi les deux suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ définies à l'aide de leurs premiers termes $a_0 = 0$ et $b_0 = 1$ et les relations : $\forall n \in \mathbb{N}$: $\begin{cases} a_{n+1} = 2a_n + b_n \\ b_{n+1} = 2b_n. \end{cases}$

- **1.** (Montrer par récurrence que $M^n = \begin{bmatrix} b_n & a_n \\ 0 & b_n \end{bmatrix}$ pour tout entier naturel n.)
 - ▶ Hypothèse de récurrence

Pour
$$n \in \mathbb{N}$$
, on considère l'hypothèse de récurrence : $M^n = \begin{bmatrix} b_n & a_n \\ 0 & b_n \end{bmatrix}$. (H_n)

- ▶ Initialisation On a $M^0 = I_2$ par convention, soit $M^0 = \begin{bmatrix} b_0 & a_0 \\ 0 & b_0 \end{bmatrix}$ (H_0).

 (Par acquit de conscience, on vérifie aussi que $a_1 = 1$, et $b_1 = 2$, et ainsi (H_1).)
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose
$$(H_n)$$
 soit : $M^n = \begin{bmatrix} b_n & a_n \\ 0 & b_n \end{bmatrix}$.
Alors $M^{n+1} = M^n.M = \begin{bmatrix} b_n & a_n \\ 0 & b_n \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2b_n & 2a_n + b_n \\ 0 & 2b_n \end{bmatrix} = \begin{bmatrix} b_{n+1} & a_{n+1} \\ 0 & b_{n+1} \end{bmatrix}. (H_{n+1})$

▶ Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout $n \in \mathbb{N}$, $M^n = \begin{bmatrix} b_n & a_n \\ 0 & b_n \end{bmatrix}$. (H_n)

- **2.** (Reconnaître la suite $(b_n)_{n\in\mathbb{N}}$. Montrer que pour $n\in\mathbb{N}$, on a $a_{n+1}=2a_n+2^n$.)
 - Étude de (b_n) On a $\forall n \in \mathbb{N}$, $b_{n+1} = 2b_n$, donc la suite (b_n) est géométrique de raison 2. On a ainsi $\forall n \in \mathbb{N}$, $b_n = 2^n b_0 = 2^n$.
 - ▶ Relation de récurrence pour (a_n) On a donc bien $\forall n \in \mathbb{N}$, $a_{n+1} = 2a_n + b_n$ = $2a_n + 2^n$.
- **3.** Soit $(c_n)_{n\in\mathbb{N}}$ la suite définie par $c_n=\frac{a_n}{2^n}$, pour tout entier naturel n.
 - a) (Justifier que $(c_n)_{n\in\mathbb{N}}$ est arithmétique de raison $\frac{1}{2}$ et donner son premier terme.)
 - ▶ Reconnaissance de (c_n) : On calcule $\forall n \in \mathbb{N}, c_{n+1} = \frac{a_{n+1}}{2^{n+1}} = \frac{2a_n + 2^n}{2 \times 2^n} = c_n + \frac{1}{2}$. La suite (c_n) est donc arithmétique de raison $\frac{1}{2}$, et $c_0 = 0$.
 - ▶ Terme général de (c_n) : On a donc $\forall n \in \mathbb{N}, c_n = \frac{n}{2}$.
 - ▶ Terme général de (a_n) : On obtient donc $\forall n \in \mathbb{N}, \ a_n = 2^n c_n = n2^{n-1}$.

4. (En déduire les quatre coefficients de M^n pour tout entier n.)

D'après les expressions de (a_n) et (b_n) , on a donc $\forall n \in \mathbb{N}$, $M^n = \begin{bmatrix} 2^n & n2^{n-1} \\ 0 & 2^n \end{bmatrix} = 2^n \begin{bmatrix} 1 & \frac{n}{2} \\ 0 & 1 \end{bmatrix}$.

5. Application au calcul d'une somme

- a) (Justifier que les termes de la suite $(a_n)_{n\in\mathbb{N}}$ vérifient : $a_k=a_{k+1}-a_k-2^k$, pour tout $k\in\mathbb{N}$) On a vu que $\forall k\in\mathbb{N}$, $a_{k+1}=2a_k+2^k$. D'où $a_{k+1}-a_k-2^k=(2a_k+2^k)-a_k-2^k=a_k$.
- **b)** (Montrer que pour tout entier $n \in \mathbb{N}$, on $a : \sum_{k=0}^{n} (a_{k+1} a_k) = a_{n+1}$.)

 Par sommation télescopique, pour $n \in \mathbb{N}$, on a bien : $\sum_{k=0}^{n} (a_{k+1} a_k) = a_{n+1} a_0 = a_{n+1}$.
- c) (Pour tout entier naturel n, calculer $\sum_{k=0}^{n} 2^k$.)
 La formule de somme des termes d'une suite géométrique donne $\sum_{k=0}^{n} 2^k = 2^{n+1} 1$.
- **d)** (Déduire des questions précédentes et de 3. que $\sum_{k=0}^{n} k2^{k-1} = (n-1)2^n + 1$, pour tout $n \in \mathbb{N}$.)
 On calcule pour $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{n} (a_{k+1} - a_k - 2^k) = \sum_{k=0}^{n} (a_{k+1} - a_k) - \sum_{k=0}^{n} 2^k$$
$$= a_{n+1} - (2^{n+1} - 1) = (n+1)2^n - 2^{n+1} + 1 = (n+1-2)2^n + 1$$

On obtient bien : $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} k2^{k-1} = (n-1)2^n + 1$.

6. Application au calcul des puissances d'une autre matrice

On considère les matrices $A = \frac{1}{2} \begin{bmatrix} 5 & 1 \\ -1 & 3 \end{bmatrix}$ et $P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$.

- a) On vérifie que P est inversible et on trouve $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.
- b) On vérifie que $P^{-1}AP = M$.
- c) (Établir que $P^{-1}A^nP = M^n$. En déduire les quatre coefficients de A^n .)
 Les matrices A et M sont semblables, donc leurs puissances respectives le sont aussi, pour la même matrice de passage. En d'autres termes, on $a: \forall n \in \mathbb{N}: P^{-1}A^nP = M^n$.
 On a donc aussi: $\forall n \in \mathbb{N}: PM^nP^{-1} = A^n$.
 On écrit $M^n = 2^n(I_2 + \frac{n}{2}N)$ où $N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, et on obtient: $A^n = 2^n\left(I_2 + \frac{n}{2}PNP^{-1}\right)$.
 Or $PNP^{-1} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$, et on trouve donc $A^n = \begin{bmatrix} 2^n + n2^{n-2} & n2^{n-2} \\ -n2^{n-2} & 2^n n2^{n-2} \end{bmatrix}$.

Exercice 2.

(d'après Ecricome 2009 ect (adaptation libre))

On étudie la fonction f définie sur [0;1] par :

$$\forall x \in [0; 1[, f(x) = \frac{e^{-x}}{1-x}].$$

On définit aussi la fonction g définie sur [0;1] par :

$$\forall x \in [0; 1[, \quad g(x) = \frac{x}{1-x}]$$

Partie I : Étude de f et tracé de C

- **1.** (Montrer que les fonctions f et q sont de classe C^{∞} sur [0;1].)
 - f de classe \mathcal{C}^{∞} ?

La fonction f est le quotient des fonctions suivantes, qui sont de classe \mathcal{C}^{∞} sur [0;1]:

- $n_f: x \mapsto e^{-x}$ (fonction de référence)
- $d_f: x \mapsto 1 x$ (fonction polynomiale)

De plus le dénominateur d_f ne s'annule pas sur [0;1[, donc f est bien \mathcal{C}^{∞} sur [0;1[.

• q de classe C^{∞} ?

La fonction g est une fraction rationnelle (quotient de polynômes), dont le dénominateur $x \mapsto 1-x$ ne s'annule pas sur [0;1]. Elle est donc de classe \mathcal{C}^{∞} sur [0;1].

- 2. Valeurs et limites de f
 - a) (Calculer f(0).)

On a $\forall x \in [0; 1[, f(x) = \frac{e^{-x}}{1-x}]$. En particulier $f(0) = \frac{\exp(0)}{1} = 1$.

b) (Calculer $f(\frac{1}{2})$, sous forme exacte et approchée (on utilisera $\frac{1}{\sqrt{e}} \simeq 0,6.$)

On a
$$f\left(\frac{1}{2}\right) = \frac{\exp\left(\frac{1}{2}\right)}{1 - \frac{1}{2}} = \frac{\frac{1}{\sqrt{e}}}{\frac{1}{2}} = \frac{2}{\sqrt{e}}.$$

Ainsi $f\left(\frac{1}{2}\right) \simeq 2 \times 0.6 = 1.2.$

c) (Calculer $\lim_{x\to 1^-} f(x)$.) On a : $\lim_{x\to 1^-} e^{-x} = e^{-1} > 0$ d'où par quotient : $\lim_{x\to 1^-} f(x) = +\infty$. $\lim_{x\to 1^-} 1 - x = 0^+$

- 3. Étude de q
 - a) (Quel est le signe de g sur [0;1[?)

Pour $x \in [0; 1[$, le numérateur et le dénominateur de $g(x) = \frac{x}{1-x}$ sont ≥ 0 .

Ainsi on a $\forall x \in [0, 1], g(x) \ge 0$. De plus pour $x \in [0, 1]$, on a g(x) > 0.

b) (Montrer que $\forall x \in [0; 1[, g(x) = \frac{1}{1-x} - 1.)$ On a bien $\forall x \in [0; 1[, \frac{1}{1-x} - 1 = \frac{1}{1-x} - \frac{1-x}{1-x} = \frac{x}{1-x} = g(x).$

c) (Montrer que $\forall x \in [0; 1[, g'(x) = \frac{1}{(1-x)^2}]$.)

On dérive $\forall x \in [0; 1[:g(x)] = \frac{1}{1-x} - 1.$

d'où
$$g'(x) = -\frac{1-x}{-1} = \frac{1}{(1-x)^2}$$

Ds 1: correction

4. Variations de f

a) (Montrer que $\forall x \in [0; 1[, f'(x) = \frac{x e^{-x}}{(1-x)^2}]$.)

On dérive en posant (cette rédaction est un peu redondante en deuxième année)

$$\begin{cases} u = e^{-x} \\ v = 1 - x \end{cases} \longrightarrow \begin{cases} u' = -e^{-x} \\ v' = -1 \end{cases}$$

et il vient $\forall x \in [0; 1[, f'(x) = \frac{-(1-x) e^{-x} - (-1) e^{-x}}{(1-x)^2} = \frac{x e^{-x}}{(1-x)^2}.$

- **b)** (Vérifier que $\forall x \in [0; 1[$, on a f'(x) = f(x)g(x).) On a bien : $\forall x \in [0; 1[$, $f'(x) = \frac{e^{-x}}{1-x} \frac{x}{1-x} = f(x)g(x)$.
- c) (En déduire le tableau de variations de la fonction f sur [0;1[.) On a $\forall x \in [0;1[, f(x) \ge 0 \text{ d'où } f'(x) \ge 0, \text{ et la fonction } f \text{ est } \mathbf{croissante} \text{ sur } [0;1[. g(x) \ge 0])$

Plus précisément, f'(x) > 0 sur [0;1[, donc f est **strictement croissante** sur [0;1[.

5. Étude de la convexité de f

a) (Montrer que $\forall x \in I$, $f''(x) = \frac{x^2 + 1}{(1 - x)^3} e^{-x}$.) On a $\forall x \in [0; 1[, f'(x) = f(x) g(x),$

d'où
$$f''(x) = f'(x) g(x) + f(x) g'(x) = f(x) g(x) g(x) + f(x) g'(x)$$
$$= f(x) \left[g^2(x) + g'(x) \right] = \frac{e^{-x}}{1 - x} \left[\frac{x^2}{(1 - x)^2} + \frac{1}{(1 - x)^2} \right]$$

Il vient donc bien $\forall x \in [0; 1[, f''(x) = \frac{x^2 + 1}{(1 - x)^3} e^{-x}]$.

b) (En déduire la convexité de f sur [0;1].) D'après cette expression, on a $\forall x \in [0;1]$, $f''(x) \ge 0$, donc f est **convexe** sur [0;1].

6. Tracé de C, courbe représentative de f

a) (Que dire de la tangente à C en 0?) On a f'(0) = 0, donc cette tangente est horizontale, son équation est donc :

$$y = f(0) = 1.$$

- **b)** (Que dire de la courbe \mathcal{C} en 1?) On a $\lim_{1^{-}} f = +\infty$, donc \mathcal{C} admet une asymptote verticale en $x = 1^{-}$ vers le haut.
- c) (Tracer la courbe C avec une échelle adaptée.)
 Ci-contre.
 (On a aussi répondu à la question suivante en coloriant le domaine approprié.)

Ds 1: correction

Partie II : Encadrement de la valeur d'une intégrale

Dans cette partie, on détermine deux encadrements de l'intégrale $I = \int_{0}^{\frac{\pi}{2}} f(x) dx$.

- 7. (Interpréter l'intégrale I en terme d'une aire à représenter sur le schéma de la question 6.c)) Il s'agit de l'aire du domaine délimité :
 - en haut par \mathcal{C}

- à droite par la droite verticale $x=\frac{1}{2}$
- en bas par l'axe des abscisses (Ox)
- à gauche par la droite verticale x = 0.
- 8. (Montrer que $\forall x \in [0; \frac{1}{2}] \quad 1 \leqslant f(x) \leqslant \frac{2}{\sqrt{e}}$. En déduire l'encadrement $\frac{1}{2} \leqslant I \leqslant \frac{1}{\sqrt{e}}$.)

 Encadrement de f La fonction f est croissante sur [0; 1[, donc pour $0 \leqslant x \leqslant \frac{1}{2}$, on a
 - $f(0) \leq x \leq f\left(\frac{1}{2}\right)$, soit l'encadrement demandé en remplaçant les valeurs de f.
 - ▶ Encadrement de $\int_0^{\frac{1}{2}} f$ On intègre cet encadrement sur le segment $[0; \frac{1}{2}]$. Il vient bien $\frac{1}{2} \leqslant I \leqslant \frac{1}{2} \frac{2}{\sqrt{e}}$, soit l'encadrement souhaité.
- **9.** (Montrer que : $\forall x \in [0; \frac{1}{2}], \ \frac{1}{1-x} = 1 + x + \frac{x^2}{1-x}$. En déduire que : $I = \int_{0}^{\frac{1}{2}} (1+x) e^{-x} dx + \int_{0}^{\frac{1}{2}} x^2 f(x) dx$.)
 - L'identité algébrique

On a bien
$$\forall x \in [0; 1[, 1+x+\frac{x^2}{1-x} = \frac{(1+x)(1-x)}{1-x} + \frac{x^2}{1-x} = \frac{1-x^2+x^2}{(1-x)^2} = \frac{1}{1-x}$$

▶ Décomposition de l'intégrale : par linéarité, il vient :

$$\int_0^{\frac{1}{2}} f(x) dx = \int_0^{\frac{1}{2}} \frac{1}{1-x} e^{-x} dx = \int_0^{\frac{1}{2}} \left(1+x+\frac{x^2}{1-x}\right) e^{-x} dx$$
$$= \int_0^{\frac{1}{2}} (1+x) e^{-x} dx + \int_0^{\frac{1}{2}} \frac{x^2}{1-x} e^{-x} dx$$

10. (Effectuer une intégration par parties pour calculer $\int_{-\infty}^{\frac{1}{2}} (1+x) e^{-x} dx.$)

Calculons par parties l'intégrale $J = \int_0^{\frac{1}{2}} (1+x) e^{-x} dx$.

Les fonctions u, v définies ci-dessous sont bien de classe C^1 sur $[0; \frac{1}{2}]$:

Il vient donc:

$$\begin{cases} u = 1 + x \\ v' = e^{-x} \end{cases} \longrightarrow \begin{cases} u' = 1 \\ v = -e^{-x} \end{cases}$$

$$J = \left[-(1+x) e^{-x} \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} -e^{-x} = -\frac{3}{2} \exp\left(\frac{1}{2}\right) + 1 - \left[e^{-x}\right]_0^{\frac{1}{2}} = 2 - \frac{5}{2\sqrt{e}}.$$

- **11.** (En utilisant 8., montrer que $\frac{1}{24} \leqslant \int_0^{\frac{1}{2}} x^2 f(x) dx \leqslant \frac{1}{12\sqrt{e}}$. En déduire un deuxième encadrement de I.)
 - ▶ Encadrement de l'intégral

On a
$$\forall x \in]0; \frac{1}{2}[, 1 \le f(x) \le \frac{2}{\sqrt{e}}, d$$
'où $\int_0^{\frac{1}{2}} x^2 dx \le \int_0^{\frac{1}{2}} x^2 f(x) dx \le \frac{2}{\sqrt{e}} \int_0^{\frac{1}{2}} x^2 dx.$

Or $\int_0^{\frac{1}{2}} x^2 dx = \left[\frac{x^3}{3}\right]^{\frac{1}{2}} = \frac{1}{24}$ d'où l'encadrement demandé.

▶ Encadrement de l'intégrale

On vient d' obtenir : $\frac{1}{24} \le \int_0^{\frac{1}{2}} f(x) dx - \int_0^{\frac{1}{2}} (1+x) e^{-x} dx \le \frac{1}{12\sqrt{e}}$, soit d'après la question 10. $\frac{1}{24} + 2 - \frac{5}{2\sqrt{e}} \le \int_0^{\frac{1}{2}} f(x) dx \le \frac{1}{12\sqrt{e}} + 2 - \frac{5}{2\sqrt{e}}$

Exercice 3.

(d'après EmLyon 2013 Ece)

Partie I - Calcul d'une intégrale dépendant d'un paramètre

On considère l'application $g:[0;1] \longrightarrow \mathbb{R}$ définie, pour tout $t \in [0;1]$, par :

$$g(t) = \begin{cases} -t \ln(t) & \text{si } 0 < t \le 1\\ 0 & \text{si } t = 0 \end{cases}$$

- **1.** (Montrer que g est continue sur [0;1].)
 - ► Continuité sur]0;1] La fonction g est le produit des deux fonctions suivantes, continues sur]0;1]: $t\mapsto -t$ (fonction polynôme) donc g est continue sur]0;1]. $t\mapsto \ln(t)$ (fonction de référence)
 - ▶ Continuité en 0 Vérifions que $\lim_{t\to 0} g(t) = g(0)$.

La fonction g est donc bien continue sur [0; 1].

2. (À l'aide d'une intégration par parties, calculer, pour tout $x \in]0;1[$, l'intégrale $\int_x^1 g(t) dt.$) Les fonctions u,v définies ci-dessous sont bien de classe C^1 sur $[0;\frac{1}{2}]$:

$$\begin{cases} u'(t) = -t \\ v(t) = \ln(t) \end{cases} \rightsquigarrow \begin{cases} u(t) = -\frac{t^2}{2} \\ v'(t) = \frac{1}{t}. \end{cases}$$

On peut donc intégrer par parties et il vient :

$$\int_{x}^{1} g(t) dt = \left[-\frac{t^{2}}{2} \ln(t) \right]_{x}^{1} - \int_{x}^{1} -\frac{t^{2}}{2} \times \frac{1}{t} dt = \frac{x^{2}}{2} \ln(x) + \frac{1}{2} \int_{x}^{1} t dt = \frac{x^{2}}{2} \ln(x) + \frac{1 - x^{2}}{4}.$$

3. (En déduire que l'intégrale $\int_0^1 g(t) dt$ converge et que : $\int_0^1 g(t) dt = \frac{1}{4}$.) On passe à la limite $x \to 0$ dans l'expression ci-dessus.

Par croissances comparées, $\frac{x^2}{2}\ln(x) \to 0$, et on trouve $\lim_{x\to 0^+} \int_x^1 g(t) dt = \frac{1}{4}$.

Ainsi l'intégrale $\int_0^1 g(t) dt$ converge et vaut bien $\frac{1}{4}$.

Remarque

On intègre la fonction g, qui est **continue** sur le **segment** [0;1]. Contrairement à ce que sous-entend l'énoncé, **aucun argument supplémentaire** n'est nécessaire pour justifier de cette convergence.

Partie II - Exemple de densité

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $\forall t \in \mathbb{R}: f(t) = \begin{vmatrix} -t \ln t + t^{1/3} & \text{si } 0 < t < 1 \\ 0 & \text{sinon} \end{vmatrix}$

- **4.** (Montrer que f est continue sur $]-\infty;1[$ et sur $]1;+\infty[$. Et en 0?)
 - ▶ Sur les intervalles $]-\infty;0]$,]0;1[et $]1;+\infty[$, la fonction f est continue
 - Continuité de f en 0 Elle y est continue à gauche. Vérifions que $\lim_{t\to 0^+} f(t) = 0$.

- Le premier terme $t \ln(t)$ tend bien vers 0 (croissances comparées, voir plus haut)
- le deuxième $t^{\frac{1}{3}}$ a un exposant > 0, et tend donc aussi vers 0 quand $t \to 0^+$.

Ainsi, on a bien $\lim_{t\to 0^+} f(t) = 0 = f(0)$, donc f est continue en 0.

- Étude de continuité en 1 On a $\lim_{t\to 1^-} f(t) = \ln(1) + 1^{\frac{1}{3}} = 1$, et f(1) = 0. La fonction f est donc discontinue en 1.
- **5.** (Etablir que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et que $\int_{-\infty}^{+\infty} f(t) dt = 1.$)
 - ▶ Intégrabilité en $\pm \infty$ L'étude est immédiate car sans objet : on intègre 0.
 - \blacktriangleright En la discontinuité 1 La fonction f y admet deux limites à gauche et à droite finies. L'intégrale de f converge donc des deux côtés en 1.
 - ► Calcul On a bien : $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = \int_{0}^{1} (g(t) + t^{\frac{1}{3}}) \, \mathrm{d}t = \frac{1}{4} + \left[\frac{3}{4}t^{\frac{4}{3}}\right]_{0}^{1} = \frac{1}{4} + \frac{3}{4} = 1.$
- **6.** (Montrer que f est une densité.)

La fonction $f: \rightarrow \text{est} \geqslant 0$

- ightharpoonup est continue sur $\mathbb R$ sauf en un nombre fini de points
- ightharpoonup enfin, son intégrale sur $\mathbb R$ converge et vaut 1.

La fonction f est donc une densité.

7. a) (Montrer que f est de classe C^2 sur]0;1[et calculer f'(t) et f''(t) pour tout $t \in]0;1[$.)

Les fonctions suivantes sont de classe C^{∞} sur]0;1[: $t \mapsto -t$ (fonction polynôme) $t \mapsto \ln(t)$ (fonction de référence) $t \mapsto t^{\frac{1}{3}}$ (fonction puissance)

Ainsi, la fonction f l'est aussi, et est en particulier de classe C^2 .

On trouve: $\forall t \in]0; 1[, f'(t) = -\ln(t) - 1 + \frac{1}{3}t^{-\frac{2}{3}}$

$$f''(t) = -\frac{1}{t} - \frac{2}{9}t^{-\frac{5}{3}}.$$

- **b)** (En déduire que l'équation f'(t) = 0 admet une unique solution α , et montrer : $\frac{1}{e} < \alpha < 1$.)
 - ightharpoonup Existence et unicité de α

Sur l'intervalle]0;1[, la fonction f' est \rightarrow continue

strictement décroissante.

Par le théorème de la bijection monotone, la fonction f' induit (ou « réalise ») donc une bijection $]0;1[\to]\lim_{1^-}f';\lim_{0^+}f'[.\text{ Or }|\lim_{t\to 0^+}f'(t)=+\infty \text{ (croissances comparées)}|\lim_{t\to 1^-}f'(t)=-\frac{2}{3} \text{ (simple calcul)}$

donc $0 \in]\lim_{1^{-}} f'; \lim_{0^{+}} f'[$, et il existe un unique $\alpha \in]0; 1[$ tel que $f'(\alpha) = 0$.

- ▶ Encadrement de α Calculons $f'\left(\frac{1}{e}\right) = \frac{1}{3} > 0$. Ainsi, la fonction f' change de signes entre $\frac{1}{e}$ et 1, donc s'y annule, et $\frac{1}{e} < \alpha < 1$.
- c) (Compléter le programme suivant mettant en œuvre l'algorithme de dichotomie pour α .)