Common Models

WORD VECTORS (SPARSE)

Vectorization

A process of converting text into numbers

Vector Space

A representation of text as numeric vectors where each dimension is a feature

Count-Based Models

Bag of Words
Bag of N-Grams
TF-IDF
Similarity Features
Topic Models

- a bag of unstructured words
- context information is not preserved

Dipanjan Sarkar. 2018. Understanding Feature Engineering

Distributed = Word Vector **Representation** = Word Embedding

[0.3, 0.2, ...]

Bag-of-Words Models

- Count-based: TF, TF-IDF, N-grams

property)

Prediction-Based Models

- Based on distributed representations (a dense representations of words in a low-dimensional vector space): Word2Vec, FastText

Word = one point in the embedding space

Word is associated with a continuous vector representation

king = np.array([.2, -.5, .7, .2, -.9]) man = np.array([-.5, .2, -.2, .3, 0.]) woman = np.array([.7, -.3, .3, .6, .1])

Dimensions = latent [0.2, 0.1, ...] characteristics of a word

woman = np.array([.7, -.3, .3, .6, .1])

(grammatical or semantic

n dimensions = 5:1 x 5 vector

Vector Space Model

D - a document W - a word VS - a document vector space n dimension = n of distinct words W_{Dn} - a weight for word n in document D

$$VS = \{W_1, W_2, \dots, W_n\}$$

$$D = \{w_{D1}, w_{D2}, \dots, w_{Dn}\}$$

Text document – a numeric vector

Dimension – a specific word with its frequency or occurrence (0 and 1) or weighted values.

Marco Grobelnik et al. Text Mining Tutorial. 2015.

Vectorization

Common methods for extracting numerical features from text content:

- tokenizing strings and giving an integer id for each possible token
- counting the occurrences of tokens in each document
- normalizing and weighting tokens

Features and samples

- **feature**: each individual token occurrence frequency (normalized or not)
- sample: the vector of all the token frequencies for a given document

Corpus

- a matrix with one row per document and one column per token
- a sparse matrix

sparse matrix

Common Vectorizer Usage: CountVectorizer

from sklearn.feature_extraction.text import CountVectorizer

lowercase token pattern tokenizer

vectorizer =

CountVectorizer(stop_words='english',min_df=0. X = vectorizer.fit_transform(corpus)

X_matrix = X.toarray()

get all unique words in the corpus
vocab = vectorizer.get_feature_names()
show document feature vectors
pd.DataFrame(X_matrix, columns=vocab)

	bacon	beans	beautiful	blue	breakfast	brown	dog	eggs	fox	green	ham	jumps	king
0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	1	1	0	1	0	0	1	0
3	1	1	0	0	1	0	0	1	0	0	1	0	1
4	1	0	0	0	0	0	0	1	0	1	1	0	0
5	0	0	0	1	0	1	1	0	1	0	0	0	0
6	0	0	1	1	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	1	1	0	1	0	0	0	0

Bag of N-Grams

Dimension = Number of unique words

	bacon	beans	beautiful	blue	breakfast	brown	dog	€
0	0	0	1	1	0	0	0	
1	0	0	1	1	0	0	0	
2	0	0	0	0	0	1	1	
3	1	1	0	0	1	0	0	
4	1	0	0	0	0	0	0	
5	0	0	0	1	0	1	1	
6	0	0	1	1	0	0	0	
7	0	0	0	0	0	1	1	

Bag of Words

CountVectorizer(ngram_range=(1,1))

one Word = unigram (unique token)

	bacon eggs	beautiful sky	beautiful today	blue beautiful	blue dog	blue sky	breakfast sausages
0	0	0	0	1	0	0	0
1	0	1	0	1	0	0	0
2	0	0	0	0	0	0	0
3	1	0	0	0	0	0	1
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	0	1	0	0	1	0
7	0	0	0	0	0	0	0

Bag of N-Grams

CountVectorizer(ngram_range=(2,2))

two words = bi-grams (unique tokens)

ngram_range : tuple (min_n, max_n)

https://scikit-learn.org/stable/modules/feature_extraction.html

Bag of Words versus TF-IDF Model

Absolute term frequencies

king	lazy	love	quick	sausages	sky
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	0
1	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	0	0	0	0	2
0	1	0	1	0	0
0	1	0	1	0	0

1
3
2
3
2
4

King is important entity and more meaningful than quick!

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,j}}$$

Normalized term frequencies

term frequency-inverse document frequency

TF-IDF score

term frequency of i word per j document

df – number of documents containing i word

N - total number

of documents

TF-IDF

Document 1 The car is driven on the road.

Document 2: The truck is driven on the highway.

Document 1 Document 2

total documents =2 documents with "the" word = 2

Word	T	F	IDF /	TF*IDF		
vvoru	A B		IDI	Α	В	
The	1/7 1/7		$\log(2/2) = 0$	0	0	
Car	1/7 0		log(2/1) = 0.3	0.043	0	
Truck	0	1/7	log(2/1) = 0.3	0	0.043	
Is	1/7	1/7	log(2/2) = 0	0	0	
Driven	1/7	1/7	log(2/2) = 0	0	0	
On	1/7	1/7	log(2/2) = 0	0	0	
The	1/7	1/7	log(2/2) = 0	0	0	
Road	1/7	0	log(2/1) = 0.3	0.043	0	
Highway	0	1/7	log(2/1) = 0.3	0	0.043	

Common word

Meaningful word

(Mayank Tripathi. 2018)

TF-IDF in Python

from sklearn.feature_extraction.text import TfidfVectorizer

```
class sklearn.feature_extraction.text. TfidfVectorizer (input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern='(?u)\b\w\w+\b', ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class 'numpy.float64'>, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False) ¶ [source]
```

```
vectorizer = TfidfVectorizer()
model = vectorizer.fit_transform(norm_corpus)
model_matrix = model.toarray()
vocab = vectorizer.get_feature_names()
pd.DataFrame(model_matrix.round(2), columns=vocab)
```

columns = 20 unique features/words

rows = 8 documents
array(['sky blue beautiful', 'love blue beautiful sky',
'kings breakfast sausages ham bacon eggs toast beans',
'love green eggs ham sausages bacon',
'brown fox quick blue dog lazy', 'sky blue sky beautiful today
'dog lazy brown fox quick'], dtype=' <u51')< td=""></u51')<>

		bacon	beans	beautiful	blue	breakfast	brown	dog	eggs	fox	green
	0	0.00	0.00	0.60	0.53	0.00	0.00	0.00	0.00	0.00	0.00
	1	0.00	0.00	0.49	0.43	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	0.00	0.00	0.00	0.00	0.38	0.38	0.00	0.38	0.00
	3	0.32	0.38	0.00	0.00	0.38	0.00	0.00	0.32	0.00	0.00
	4	0.39	0.00	0.00	0.00	0.00	0.00	0.00	0.39	0.00	0.47
	5	0.00	0.00	0.00	0.37	0.00	0.42	0.42	0.00	0.42	0.00
,	6	0.00	0.00	0.36	0.32	0.00	0.00	0.00	0.00	0.00	0.00
	7	0.00	0.00	0.00	0.00	0.00	0.45	0.45	0.00	0.45	0.00