Risikomatrix Tests

1. Untersuchung verschieder Risikomatrizen nach eigenem Benchmark

ID	g verschieder Risikomatrizen nach Bild/ Screenshot	Benchmark-Score	Ordnungsmaß	Range-Compression	Overlap	Quantifying Errors	Quelle
10	Ments 2 Boundaries Marginet and Community Secretary of the structure management of Community Annual	0,6364	0,9039	0,5519	0,8889	0,3750	[1]
12	Month 2 Techno Bushmanth Soldment of an inchesse Margani and Schree The Committee of Schree T	0.6377	0.8746	0,5417	0.8750	0,4167	[3]
13	Scatterplate due simulations histographs and Schamers 1	0,6749	0.8670	0,5580	0.8920	0,5156	[4]
2	Spatingle of encounter bindges and Shares	0,6836	0,9238	0.5843	0,8916	0,4833	Matrix 2: DIN EN 50126 Matrix
4	Matrix 2. Robbe-Oats Real-housets. Somewhat the contraction to things at any discourse. The contraction of the contraction to the contraction of	0.6903	0,9103	0,6594	0,9313	0,4167	[5]
9	Naise 2: Incline Guide 1. Statistical or an incline shall place and frame () American () Americ	0,6983	0,9403	0,5333	0,9000	0,5625	[7]
1	Have 2. Relaxment was had a support of the support	0,6992	0,9425	0,5563	0,9219	0,5278	[8]
11	Continuate duri unique visualista del Solumos Continuate duri unique visualista del Continuación del Contin	0,7069	0,9695	0,6185	0,888	0,5000	[9]
6	Mails 2 Rounds, 6, Sulfrigue M, (DET) Lestered de enclared missipale en Sincere () The Control of the Control of Sincere () The Control of the Control of Sincere () The Control of Sincere (0,7212	0,9558	0,5880	0,9200	0,5625	[6]
3	Moris 2 Petrolahan Consoling Biokenomis Serimpetal for intradem budget and Gessen 1	0,7269	0,9354	0,5880	0,9200	0,5938	[10]

8	Soliterate du mondrates résidantes una Schause 1	0,7451	0.9579	0,7144	0,9652	0,4900	[2]
14	Scrimpile de simulations highlighes und schwere Scrimpile de simulations highlighes und schwere Scrimpile de simulation de sim	0,7516	0,9441	0,6736	0,9472	0,5700	Matrix unabhängig ersteilt
15	Music 2 Instituting Robinsonius bulling of an equipment of a continue o	0,7619	0,9694	0,6910	0,9639	0,5600	[11]
5	Scatterplat for simulation histographs and Schwee State of the simulation of the si	0,7697	0,9879	0,6679	0,9199	0,6250	r., Louis A. Cox (2008). What's wrong with risk matrices? [Siehe Table IV in Abschnitt: "Discussion of Weak Consistency" auf Seite 502]. Risk Analysis, 28 (2), 497–512
7	Scalingful for smallerinn Haufgeber und Schwere 1 1	0,7714	0,9821	0,6253	0,9000	0,6875	r., Louis A. Cox (2008). What's wrong with risk matrices? [Siehe Table IV in Abschnitt: "Discussion of Weak Consistency" auf Seite 502]. Risk Analysis, 28 (2), 497–512
16	Scatterplat der simulation trisulapiate und scheme Scatterplat der simulation trisulation tri	0,7849	0,9947	0,6727	0,9387	0,6527	Matrix anhand Erkenntnisse der statistischen Auswertung unabhängig erstellt
17	Martin 2 Anchon	0,7907	0.9917	0,7276	0,9653	0,6042	Matrix anhand Erkenntnisse der statistischen Auswertung unabhängig erstellt

2. Statistiken

	Benchmark-Score	Ordnungsmaß	Range-Compression	Overlap	Quantifying Errors
Verteilung	0,8000 0,8000 0,4000 0,2000 0,0000 	0.500 0.500	0,000 0,000 0,000 0,000 0,000 0,000 0,000	1,000 0,7500 0,500 0,000	0,8000 0,8000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Wertintervalle	[0,6364 0,7907]	[0,8670 0,9947]	[0,5333 0,7276]	[0,8750 0,9653]	[0,3750 0,6875]

3. Grenzentestung des Benchmark Modells

Untersuchtes Merkmal	Matrix	Benchmark Ergebnis
Range Compression (schlecht)	Name 2 Purps Compression exhausts 13 Sectionary for exhausts with a section of the section of t	Benchmart-Score: 0.7065106513140409 Ordouscemail: 0.0356646243665699 Baope-Concession: 0.34660000000000000000000000000000000000
Range Compression (gut)	Makin Tanga Cimpromini pal 10 Auditori in Archiver Visioni pal pal pal 11 Auditori in Archiver Visioni pal pal 12 Auditori in Archiver Visioni pal 12 Auditori in Archiver Visioni pal 13 Auditori in Archiver Visioni pal 14 Auditori in Archiver Visioni pal 15 Auditori in Archiver Visioni pal 16 Auditori in Archive Visioni pal 16 Auditori in Archiver Visioni pal 17 Auditori in Archiver Visioni pal 18 Audito	Benchmark-Score: 0.0074479778089977 <u>Ordnupopmail:</u> 0.8924072283961024 <u>Ranger-Commessation:</u> 0.789375 <u>Ouestigs:</u> 0.98802961477847659 <u>Quantifying Errors:</u> 0.0
Ordnungsmaß (gut)	Maria 2 discopposed per Transaction of the control	Benchmark-Score: 0.730457958916783 Oldunupamaii: 0.9976772787520993 Banos-Commossion: 0.42559163973402048 Openiar. 0.8775574020481632 Openiar. 0.8775555555556
Ordnungsmaß (schlecht)		Benchmark-Score: 0.4405580910709231 Chdnurostmaß: 0 Ranoes-Commession: 0.81468 Operfax: 0.9805892307892308 Cauentifying Errors: 0.0
Overlap (gut)	Manis 1. Resp. Compression pat Surgicial control desire subject of Compression Annual Compression of Compression Annual Compression of Compression Annual Compress	Benchmark-Score: 0.6074479778098977 <u>Ordnunosmais</u> , 0.8924072283961024 <u>Range-Comression</u> , 0.789375 <u>Ordnin</u> , 0.880294197647059 <u>Quantifying Errors</u> , 0.0
Quantifying Errors (gut)	Marco S Sentingly from part of the control of the c	Benchmark-door: 0.3844) Ontorostends, 0 latons-Contensision, 0.300000000000004 Dantile 0 Caustiline, Enror. 1