Problem Statement:

Design and Develop a program in language of your choice to solve the triangle problem defined as follows: Accept 3 integers which are supposed to be 3 sides of a triangle and determine if the 3 values represent as a equilateral, isoceles, scalene triangle or they do not form a triangle at all.

Objectives:

- To solve the triangle problem
- The test cases should be based on decision table approach.

Theory:

The system should accept 3 positive integers number (a,b,c) which represents 3 sides of a triangle Based on the input it should specify whether a triangle can be formed or not. If the above requirement is specified gets satisfied then the system should determine the type of the triangle, which are Equilateral (all 3 sides are equal), Isoceles (two sides are equal), scalene (all the sides are unequal). Else a suitable message should be displayed. Here we assume that user gives suitable positive integer number as input. From the given requirements we can draw the following conditions:

- c1: a < b+ c?
- cz: bkatc?
- c3: < < a+6?
- c4: a= 67
- c5 : a = c?
- c6: b=c?

Program:	
#include(stdia.h)	
#include(drype.h)	
#include < conio.h>	
#include < process.h>	
int main () K	
int a, b,c;	
clyser();	4
printf ("Enter the three side	es of a briangle");
scanf ("vavdvd", &a, &b, &c)	
if((a <b+c)&& &&="" (<="" (b<a+c)="" td=""><td>(<a+b)){< td=""></a+b)){<></td></b+c)&&>	(<a+b)){< td=""></a+b)){<>
)((== 6) && (b== c))}	
printf("Equilateral	Triangle");
· >	
else if((a!= b) && (a!=c)	&&(b!=c))\
printf ("Scalene Tri	angle");
γ	,
else {	
printf("Isoceles 7	relangle");
γ	
else(
printf ("Triangle ca	nnot be formed");
>	
getch();	
return 0;	
γ	
Decision Table:	
It is used to depict complex	Imical relationships b

The Decision Table is given below:

						100					
Conditions	Co	nditi	on E	ntries	s (F	Rudes	5)		part -		
	R.I	R2	83	R4	R5	86	87	RS	RA	RIO	RI
C1 a < b+c?	F	τ	T	T	т	ा	310	т	্য	т	Т
c2 b < a+c?	7.1	F	7	T	T	т	т	T	т	Т	Т
c3: c < a+ b7	-	**	F	T	T	т	τ	-3	т	т	Т
C4: a= b?	-	~ /	-	F	т	75	т	F	F	F	7
C5: 0=c?	1			T	F	T	F	Т	F	F	Т
C6: b=c?		-		т	Т	F	F	F	Т	F	Т
Actions	P	ictio	n Ent	ries					7		
at: Not a Triangle	×	×	×				- 0				
12: Scalene		¥.		ļ.,						×	
as. Isosceles							×	×	×		
sa: Equilateral		-	de.			81					X
as: Impossible			-	×	×	×					

test cases without using the internal structure of the program is question.

In decision table the symbol - indicates doesn't case value. The table shows 6 conditions and sections. All the condition in the decision table are binary. Hence its called Limited Entry Decision Table.

Test	Case Table:					:	
TCID	Test Case	O.	ь	c	Expected of p	Actualop	Status
1.	Testing for requirement 1	4	i:	2	Expected ofp Not triangle	Not Triangle	TC Pass
2.	Testing for requirement 1	1	4	2	Not Triangle	Not Triangle	TC Pass
3.	Testing for requirement 1	1	2	4	Not Triangle	Not Triangle	TC Pass
4	Testing for requirement 2.	5	5	S	Equilateral	Fajuilateal	TC Pass
5	Testing For requirement 2	2	2	3	Isoceles	Isoceles	TC Pass
6	Testing For requirement 2	2	3	2	Isoxeles	Isoceles	Tc Pass
7	Testing for requirement 2	3	2	2	Isoceles	Isoceles	TC Pass
8	Testing for requirement 2	3	4	S	Scalene	Scalene	TC Pass

Test Reposit:

Number of Test Cases Executed: 8

Number of Defects Raised: 0

Number of Test Cases Passed: 8

Number of Testcases Failed: 0

```
Select C:\Users\Me\Desktop\7\ST\ST_LAB\EXPTO-3\bin\Debug\EXPTO-3.exe — X

Enter three sides of the triangle

1

4

2

Triangle cannot be formed
```

```
■ Select C:\Users\Me\Desktop\\\7\ST\ST_LAB\EXPTO-3\bin\Debug\EXPTO-3.exe  

Enter three sides of the triangle

5
5
Equilateral Triangle

■ Select C:\Users\Me\Desktop\\7\ST\ST_LAB\EXPTO-3\bin\Debug\EXPTO-3.exe  

Enter three sides of the triangle

2
2
3
Isosceles Triangle

| Select C:\Users\Me\Desktop\\7\ST\ST_LAB\EXPTO-3\bin\Debug\EXPTO-3.exe  

| □
```

```
■ Select C:\Users\Me\Desktop\7\ST\ST_LAB\EXPTO-3\bin\Debug\EXPTO-3.exe  

Enter three sides of the triangle

3
4
5
Scalene Triangle
■
```

	Conclusion: We have solved the triangle problem by creating necessary conditions using if-else. - The Decision table approach works well and the	
	decision made were verified against the conditions	š.,
İ	References:	
	- Paul C Jorgensen 3 rd Edition.	
$\ $		
H		
ı		
H		
I		
-		
H		
I		
H		
H		

Problem Definition:

Design and Develop a program in language of your choice to solve the triangle problem defined as follows:

Accept 3 integers which ove 3 sides of a triangle and determine if the sides represent an equilateral, scalent, Isoceles triangle or do not form a triangle at all. Assume the upper limit for the size of any side is 10. Derive test cases of your program based on boundary-value analysis. Execute the test cases and discuss the result.

Objectives:

- Develop a program to check type of triangle given three sides
- Derive test cases based on boundary value analysis.

Theory:

Boundary Value Analysis: It depends on the culput and constraints on the output. So its least warried on the input. For this problem it takes 3 sides for input.

It yields (\$\frac{1}{4}n+1\$) test cases according to single fault assumption theory. Hence we say total test cases would be (4x3+1) => 12+1 => 13

The max limit of side size = 10, so a, b and < lie between.

0 40 410

0 < 6 < 10

0 < C < 10

The input of each side must be positive integer to determine type of triangle.

```
PROGRAM:
#include(stalio.h)
#include < ctype. h>
#include (conio.h)
#included process.h>
int main () <
  int a, b, c;
    claseres:
    printf("Enter three sides of a triangle");
    scanf ("vdvdvd", &a, &b, &c);
     if ((a>10)11(b>10)11(c>10)){
         pointf("out of range");
         getch();
       exit(o):
     3
     if ((a < b+c) dd (b < a+c) dd (c < b+a)) {
           if ((a==6) &d (b==e))<
              printf("Equilateral Triangle");
          else if ((a!=b)&& (a!=c)&& (b!=c)){
               printf ("Scalene Triangle");
          >
          else
               printf ("Isosceles Triangle"); }
      elset
           printf("Triangle cannot be Rosmed");
     getch();
      return 0;
```

TC	Test case	In	put D	ota	Expected	Actual	Status	
ID	Description	A	В	С	output	Output		
1.	For Ainput is not given	×	3	6	Not Triangle	Not Triangle	TC Pass	
2	For Binput is not given	3	×	6	Not triangle	Not Triangle	70 Pass	
3	For C input is not given	4	7	×	Not Triangle	Not Triangle	TC Pass	
4	I/p of c is negative	5	5	-1	Not Triangle	Not Triangle	TC Pass	
6	Two sides one same	5	10	t	Isosceles	Isosceles:	TC POSS	
	one side is different							
6	All sides of input	s	5	5	Equilateral	Equilateral	TC Poss	
	one equal							
7	Two sides one same	5	5	9	Isogales	Isosceles	TC Pass	
	one side is different							
60	If input is out of range	S	5	10	Not Triangle	Not Triangle	TC Pass	
q	Two sides one same	5	1	5	Isosceles	Isosceles	TC Pass	
	one side is different					2-1		
10	Two sides are some	5	2	5	Isosceles	Isosceles	TC Pass	
	one cide is different							
14	Two sides one same	5	9	5	Isoceles	Tsosceles	TC Pass	
	one side is different							
2	Two sides one same one side is different	5	10	5	Not Triangle	Not Triangle	TC Pass	
	(Azc-5, B is out of							

тс	Test Case	In	out 0	ata	Expected	Actual	
IO	Description	A	8	c	Output	Output	Status
13	Two sides one same one side is different	j	5	S	Isosceles	Isosceles	TE Pass
14	Two sides are same one side is different	2	5	5	Tsosceles	Isosceles	TC Poss
15	Two sides are same one side is different	9	5	5	Isosceles	Isosceles :	TC Pass
16	Two sides are same one side is out of range	10	5	5	Not Triangle	Not Triangle	TC Pass
	al maga						

- (am/) 1/

3 4 4 4

30.--

Test	Report:
	Number of Test Cases executed: 16
	Number of defects raised: 0
	Number of Test cases passed: 16
	Number of Test cases failed: 0
Concle	rsion:
-	The triangle problem is implemented by using boundary value analysis.
-	Implementation of test cases is done and verified.
Referen	nces:
	Poul c Jorgensen 3rd Edition.
	*

Problem Statement:

Design and Develop a program to solve the triangle problem defined as follows: Accept 3 integers which are 3 sides of a triangle and determine if the values represent an equilateral, Scalene, Isosceles Triangle or do not form a triangle at all. Assume size of any side to be upper limit of 10. Denive test cases of your program based on equilance class partitioning, execute the test cases and discuss the result.

Objectives:

- To solve the triangle problem and identify type of thiangle.
- Use equivalence postitioning to execute test cases.

Theosy:

Equivalence Class Partitioning: It focuses on the input domain, use can obtain richer set of test cases. What are the possibilities for the three integers a, b, c?
They can be equal, exactly one pair can be equal.
The max limit of each side is 10 units accordingly.
So a, b and c lie between.

050510

086810

050510

This technique tries to uncover/to define test cases that uncover classes of errors, therefore reducing the total number of test cases that can be developed.

```
PROGRAM:
#include(stalio.h)
#include < ctype. h>
#include (conio.h)
#included process.h>
int main () <
  int a, b, c;
    claseres:
    printf("Enter three sides of a triangle");
    scanf ("vdvdvd", &a, &b, &c);
     if ((a>10)11(b>10)11(c>10)){
         pointf("out of range");
         getch();
       exit(o):
     3
     if ((a < b+c) dd (b < a+c) dd (c < b+a)) {
           if ((a==6) &d (b==e))<
              printf("Equilateral Triangle");
          else if ((a!=b)&& (a!=c)&& (b!=c)){
               printf ("Scalene Triangle");
          >
          else
               printf ("Isosceles Triangle"); }
      elset
           printf("Triangle cannot be Rosmed");
     getch();
      return 0;
```

Tc	Тс	Imp	od b	ata			
ID	Description	Α	В	6	Expected Output	Actual Output	Status
1	MN1	5	5	5	Equilateral	Equilateral	Pass
2	WN2	2	2	3	Isosceles	Tsosceles	Poss
			3	13.	545 W		-
3	MN3	3	4	5	Scalene	Scalene	Pass
			1	1 3			
4	WN4	4	_1	2	Not Triangle	Not Triangle	Pass
				550			
5	WR1	-1	5	5	Out of Range	out of thinge	Pass
6	WR2	5	-1	5	Out of Range	out of farge	Poss
7	ERIN	5	5	-1	out of Parge	Out of Range	Pass
8	WR4	11	5	5	Out of Range	Out of Range	Pass
9	MRS	5	11	5	Out of Range	out of Rouge	Pass
10	WR6	5	5	11	out of Parge	Out of Range	Pass

Test	Report:
	Number of Test Cases executed: 10
	Number of Defects reported: 0
	Number of Test cases passed: 10
	Number of Test cases failed: 0
iondu	usion:
***	we have implemented a program to solve the
	triangle problem.
-	used the equivalence class postitioning technique
	to create and verify against test eases.
Refere	
	- Paul c Jorgensen 3rd Edition