A题:80MHz~100MHz 频谱分析仪

一、任务

设计制作一个简易频谱仪。频谱仪的本振源用锁相环制作。频谱仪的基本结构图如图 1 所示。

二、要求

1. 基本要求

制作一个基于锁相环的本振源:

- (1) 频率范围 90MHz~110MHz:
- (2) 频率步进 100kHz;
- (3) 输出电压幅度 10~100mV, 可调:
- (4) 在整个频率范围内可自动扫描;扫描时间在 1~5s 之间可调;可手动扫描;还可预置在某一特定频率;
- (5) 显示频率;
- (6) 制作一个附加电路,用于观测整个锁定过程;
- (7) 锁定时间小于 1ms。

2. 发挥部分

制作一个 80MHz~100MHz 频谱分析仪:

- (1) 频率范围 **80MHz~100MHz**;
- (2) 分辨率 100kHz;
- (3) 可在频段内扫描并能显示信号频谱和对应幅度最大的信号频率;

- (4) 测试在全频段内的杂散频率(大于主频分量幅度的 2%为杂散频率) 个数;
- (5) 其他。

三、说明

在频谱仪滤波器的输出端应有一个测试端子, 便于测量。

四、评分标准

	项 目	主要内容	分数
	系统方案	方案选择、论证	4
	理论分析与计算	进行必要的分析、计算	4
设计	电路与程序设计	电路设计	4
报告		程序设计	4
	测试方案与测试结果	表明测试方案和测试结果	4
	设计报告结构及规范性	图表的规范性	4
	小计		20
	完成第(1)项		10
	完成第(2)项		10
	完成第(3)项		5
基本	完成第(4)项		
要求	完成第(5)项		5
	完成第(6)项		5
	完成第(7)项		5
	小计		50
	完成第(1)项		15
	完成第(2)项		5
发挥	完成第(3)项		15
部分	完成第(4)项		10
	其他		5
	小计		50
总分			

B题: 集成运放参数测试仪

一、任务

设计并制作一台能测试通用型集成运算放大器参数的测试仪,示意图如图1所示。

图 1

二、要求

1、基本要求

- (1) 能测试 V_{IO} (输入失调电压)、 I_{IO} (输入失调电流)、 A_{VD} (交流差模开环电压增益)和 K_{CMR} (交流共模抑制比)四项基本参数,显示器最大显示数为 3999;
- (2) 各项被测参数的测量范围及精度如下(被测运放的工作电压为±15V):

 V_{IO} : 测量范围为 $0\sim40\text{mV}$ (量程为 4mV 和 40mV),误差绝对值小于 3%读数+1 个字;

 I_{IO} : 测量范围为 $0\sim4\mu A$ (量程为 $0.4\mu A$ 和 $4\mu A$),误差绝对值小于 3%读数+1 个字; A_{VD} : 测量范围为 $60\mathrm{dB}\sim120\mathrm{dB}$,测试误差绝对值小于 $3\mathrm{dB}$;

 K_{CMR} : 测量范围为 $60dB\sim120dB$, 测试误差绝对值小于 3dB;

- (3)测试仪中的信号源(自制)用于 AVD、KCMR 参数的测量,要求信号源能输出频率为 5Hz、输出电压有效值为 4V 的正弦波信号,频率与电压值误差绝对值均小于 1%;
- (4) 按照本题附录提供的符合 GB3442-82 的测试原理图(见图 2~图 4),再制作一组符合该标准的测试 V_{IO} 、 I_{IO} 、 A_{VD} 和 K_{CMR} 参数的测试电路,以此测试电路的测试结果作为测试标准,对制作的运放参数测试仪进行标定。

2、发挥部分

(1)增加电压模运放 BW_G (单位增益带宽)参数测量功能,要求测量频率范围为 $100kHz\sim$ 3.5MHz,测量时间 ≤ 10 秒,频率分辨力为 1kHz;

为此设计并制作一个扫频信号源,要求输出频率范围为 40kHz~4MHz,频率误差绝对值小于 1%;输出电压的有效值为 2V±0.2 V;

(2)增加自动测量(含自动量程转换)功能。该功能启动后,能自动按 V_{IO} 、 I_{IO} 、 A_{VD} 、 K_{CMR} 和 BW_G 的顺序测量、显示并打印以上 5 个参数测量结果;

(3) 其他。

三、评分标准

	项 目	满分
	设计与总结报告:方案比较、设计与论证,理论分析与计算,电	
基本要求	路图及有关设计文件,测试方法与仪器,测试数据及测试结果分	50
	析。	
	实际制作完成情况	
	完成第(1)项	30
发挥部分	完成第(2)项	
	其他	5

四、说明

- 1、为了制作方便,被测运放的型号选定为 8 引脚双列直插的电压模运放 F741 (LM741、μA741、F007等)通用型运算放大器;
- 2、为了测试方便, 自制的信号源应预留测量端子;
- 3、测试时用到的打印机自带。

附录:

参照 GB3442-82 标准, V_{IO} 、 I_{IO} 、 A_{VD} 和 K_{CMR} 参数的测试原理图分别如图 2、图 3 和图 4 所示。图 3 和图 4 中的信号源可采用现成的信号源。为了保证测试精度,外接测试仪表(信号源和数字电压表)的精度应比自制的运放参数测试仪的精度高一个数量级。

(1) V_{IO} 、 I_{IO} 电参数测试原理图

- ① 在 K_1 、 K_2 闭合时,测得辅助运放的输出电压记为 V_{L0} ,则有: $V_{I0} = \frac{R_i}{R_i + R_f} \cdot V_{L0}$
- ② 在 K_1 、 K_2 闭合时,测得辅助运放的输出电压记为 V_{L0} ;在 K_1 、 K_2 断开时,测得辅助运放的输出电压记为 V_{LI} ,则有: $I_{IO} = \frac{R_i}{R_i + R_f} \cdot \frac{V_{LI} V_{LO}}{R}$

(2) AvD 电参数的测试原理与测试原理图

.

设信号源输出电压为 V_S , 测得辅助运放输出电压为 V_{L0} , 则有

$$A_{VD} = 20 \lg \left(\frac{V_S}{V_{LO}} \cdot \frac{R_i + R_f}{R_i} \right) \text{ (dB)}$$

(3) KCMR 电参数的测试原理与测试原理图

设信号源输出电压为 V_S ,测得辅助运放输出电压为 V_{L0} ,则有

$$K_{CMR} = 20 \lg \left(\frac{V_S}{V_{LO}} \cdot \frac{R_i + R_f}{R_i} \right) \text{ (dB)}$$

附录说明

- 1、测试采用了辅助放大器测试方法。要求辅助运放的开环增益大于 60dB,输入失调电压和失调电流值小;
- 2、为了保证测试精度,要求对 R、 R_i 、 R_f 的阻值准确测量, R_1 、 R_2 的阻值尽可能一致; I_{IO} 与 R 的乘积远大于 V_{IO} ; I_{IO} 与 R_i // R_f 的乘积应远小于 V_{IO} 。测试电路中的电阻值建议取: R_i =100 Ω 、 R_f =20 k Ω ~100k Ω 、 R_1 = R_2 =30k Ω 、 R_L =10 k Ω 、R=1M Ω ;
- 3、建议图 3、4 中使用的信号源输出为正弦波信号,频率为 5Hz、输出电压有效值为 4 V。

.

C题: 单相交流电流源

一、任务

制作一个电压控制单相交流电流源。将该电流源连接到不同电路中,要求输出电流都能够跟踪给定电流。

二、要求

电流源与电路的连接如图所示,通过给定 Uin 控制电流 id, i 和 Uin 的关系为 i=Uin。图中电感为 5mH,电阻可以在 $0 \subseteq 10$ 欧姆之间变化

基本部分:

- **1**,Uin 为分别直流 2V 和-2V,控制电流源输出分别为 2A 和-2A。电阻在 0 至 10 欧姆之间变化,电流控制误差< ± 0.02 A。电阻为 10 欧姆时,电流源效率>95%
- **2**, Uin 为分别交流 2VRMS 和交流 1VRMS 时,控制电流源输出交流 2A RMS 和交流 1A RMS。电阻在 0至 10 欧姆之间变化,电流的幅值误差<0.05A,相位误差<3.6°。电阻为 10 欧姆时,电流源效率>95%
- **3**,如果电路中接入交流电源,如图所示,更改 i 和 Uin 的比例关系为 i 和 Uin 的关系为 i=0.1 Uin,将交流电源 U_{AC} 的电压作为电流源控制电压,交流电源 U_{AC} 的变化范围为 10VAC RMS 至 20VAC RMS,50Hz。

交流电源 UAC 分别为 20VAC RMS 和 10VAC RMS 变化时,要求控制电流源输出交流 2A RMS 和交流 1A RMS。电流的幅值误差<0.05A,相位误差<3.6°,电流源效率>95%。 交流电源 UAC 从电网经过隔离变压器和自耦变压器获得。

发挥部分:

- 1,在基本要求3的基础上,加入相位偏移功能,可设置电流i和控制电压Uin的相位差在-90°至正90°范围内变化,电流的幅值误差<0.05A,相位误差<3.6°,电流源效率>95%。
- **2**,在发挥部分 1 的基础上,扩展相位偏移功能,可设置电流 i 和控制电压 Uin 的相位差在-180°至正 180°范围内变化,电流的幅值误差<0.05A,相位误差<3.6°,流进电流源的功率可以及时消耗。

D题: 小车协同行驶系统

一、任务

设计一套小车协同行驶系统。系统由两辆具有循迹功能、行驶速度可调的小车(A车和B车)组成,A车具有接收声音、可控激光笔、显示字符等装置,B车具有声音提示装置并在车上安装直径 10 厘米的圆形靶。要求用 TI 的 MCU 控制两辆小车在场地上沿引导线行驶,并完成题目要求的功能。行驶场地的路径如图 1 所示,ABHCDEA 圆角矩形为外圈、ABGCDFA 圆角矩形为外圈。

图1 小车协同行驶场地示意图

二、要求

1.基本部分

- (1) A 车在 A 点且车头朝向 B 点、B 车在 C 点且车头朝向 D 点,A 车收到击掌声后两车立即同时出发,以 0.4 米/秒速度沿外圈逆时针方向行驶,A 车行驶一圈后到达 B 点时两车同时停车且 B 车发出声音提示。
- (2) A 车在 AB 段中点且车头朝向 B 点, B 车在 A 车后方间隔 20 厘米处, A 车收到击掌声后两车立即同时出发,以不低于 0.3 米/秒的速度行驶,并在 B-C 路段、D-A 路段分别完成交替领先(即在 AB 段 A 车领先、在 CD 段 B 车领先),A 车行驶一圈到达 B 点时两车同时停车且 B 车发出声音提示,要求两车速度准确、且停车间距为 20 厘米。
- (3) A 车在 A 点且车头朝向 B 点,B 车在 D 段中点且车头朝向 C 点,A 车收到击掌声后两车立即同时出发并按自选路径行驶,A 车行驶一圈后到 B 点停车、B 车行驶一圈后到 C 点停车且发出声音提示,要求两车持续行驶且速度基本一致、同时到达终点停车。

.

2.发挥部分

- (1) 静止的 A 车能连续识别放在地面上的不同数字(5-8)或者视角内没有数字并能显示,识别新数字并显示刷新的时间不超过 10 秒。
- (2) A 车在 A 点且车头朝向 B 点,B 车在 D 段中点且车头朝向 C 点,A 车识别放在路面上数字(1-4)后两车立即同时出发,A 车接数字规定的路径(见说明)行驶,B 车根据 A 车的路径确定行驶路径;A 车行驶一圈后到 B 点停车、B 车行驶一圈后到 C 点停车,要求两车持续行驶、同时到达各自终点停车。
- (3) A 车在 AB 段中点且车头朝向 B 点、B 车在 CD 段中点且车头朝向 D 点,A 车收到击掌声后两车立即同时出发并持续沿内圈行驶,要求在 A 车和 B 车行驶过程中,A 车控制激光笔持续将光斑打在 B 车上的圆形靶上。以在 40 秒时间内行车距离远、光斑打在圆形靶上时间长为优。

(4) 其它。

三、说明

- 1. 作品中的小车尺寸不大于 25cm(长)、15cm(宽)。小车尺寸包括小车本体、以及小车所安装的传感器等总体的尺寸大小,但不包括 B 车上的圆形靶。
- 2. 行驶场地底色为白色,行驶路径用 1 厘米宽的黑色引导线来标志。除供 A 车识别的数字之外,行驶场地上不得有其他任何指示标记。
- 3. 在两个小车跟随行驶过程中,除了两个小车间的相互通信外,不得有车外遥控和其他通信指令辅助。
- 4. 发挥部分(2)中,数字对应的行驶路径:
 - 1 == A-B-H-C-D-E-A-B
 - 2 == A-B-G-C-D-F-A-B
 - 3 == A-B-G-C-D-E-A-B
 - 4 == A-B-H-C-D-F-A-B
- 5. 发挥部分(2)中,行车距离以两车行驶距离少者计,两车存在途中停车情况时不计光 斑打在圆形靶上的时间。

E题: 调幅信号处理实验电路

一、任务

设计并制作一个调幅信号处理实验电路。其结构框图如图 1 所示。输入信号为调幅度 50%的 AM 信号。其载波频率为 250MHz~300MHz,幅度有效值 V_{irms} 为 $10\mu V\sim 1mV$,调制频率为 300Hz~5kHz。低噪声放大器的输入阻抗为 50 Ω ,中频放大器输出阻抗为 50 Ω ,中频滤波器中心频率为 10.7MHz,基带放大器输出阻抗为 600Ω 、负载电阻为 600Ω ,本振信号自制。

图1 调幅信号处理实验电路结构框图

二、要求

1. 基本要求

- (1) 中频滤波器可以采用晶体滤波器或陶瓷滤波器, 其中频频率为10.7MHz;
- (2) 当输入AM信号的载波频率为275MHz,调制频率在300Hz~5kHz范围内任意设定一个频率,Virms=1mV时,要求解调输出信号为Vorms=1V±0.1V的调制频率的信号,解调输出信号无明显失真;
- (3) 改变输入信号载波频率 250MHz~300MHz,步进 1MHz,并在调整本振频率后,可实现 AM 信号的解调功能。

2. 发挥部分

- (4) 当输入AM 信号的载波频率为275MHz, V_{irms} 在 $10\mu V\sim 1mV$ 之间变动时,通过自动增益控制(AGC)电路(下同),要求输出信号 V_{orms} 稳定在 $1V\pm 0.1V$;
- (5) 当输入AM 信号的载波频率为250MHz~300MHz(本振信号频率可变), $V_{\rm irms}$ 在 10μ V~1mV 之间变动,调幅度为50%时,要求输出信号 $V_{\rm orms}$ 稳定在 1V±0.1V:
- (6) 在输出信号 V_{orms} 稳定在 $1V\pm0.1V$ 的前提下,尽可能降低输入 AM 信号的载波信号电平:

- (7) 在输出信号 V_{orms} 稳定在 $1V\pm0.1V$ 的前提下,尽可能扩大输入 AM 信号的载波信号频率范围;
 - (8) 其他。

三、说明

- 1.采用+12V 单电源供电,所需其它电源电压自行转换;
- 2. 中频放大器输出要预留测试端口 TP。

四、评分标准

	项目	主要内容	分数
设计报告	系统方案	比较与选择 方案描述	2
	理论分析与计算	低噪声放大器设计中 频滤波器设计 中频 放大器设计 混频器 的设计 基带放大器设计程 控增益的设计	8
	电路与程序设计	电路设计与程序设计	4
	测试方案与测试结果	测试方案及测试条件测 试结果完整性 测试结果分析	4
	设计报告结构及规范性	摘要 设计报告正文的结构图 表的规范性	2
	合计		20
基本要求	完成第(1)项		6
	完成第(2)项		20
	完成第(3)项		24
	合计		50
发挥 部分	完成第(1)项		10
	完成第(2)项		20
	完成第(3)项		10
	完成第(4)项		5
	(5) 其他		5
	50 120		
总分			