題目 (動態凸包)

現在有Q個操作,每個操作會是以下兩種中的一種:

- 加入一條直線 y = mx + k
- 詢問在 x = t 處最大的 y 值
- $1 \le Q \le 10^5$
- $|m|, |k| \leq 10^9$
- $1 \le t \le 10^5$

用 set 維護上凸包上的線段,維護線段控制的左右界,每次加入直線先搜他控制的區間,往左右殺掉其他線段,查詢的時候二分搜是哪條線段代值進去。注意 iterator 使用、全整求線交點......

太麻煩了,而且常數不小 ,而且我沒寫過 有沒有簡單一點的辦法?

李超線段樹:

- 對要查詢的值域開線段樹,葉子代表單一一個 x 的值
- 每個節點存一條對中點來說 y 最大的直線
 - 對中點一定是有用的
 - 可能還對這個區間的其他一部分有用

原本節點上有一條直線 這次詢問想插入另外一條直線

一個節點只能存一條線誰要留下來?另一條線要去哪裡?

一條直線在中點輸掉之後不能直接扔掉,因為他還沒輸光,區間 內某些 x 的範圍可能還需要他

在中點輸掉的話,一定也會在左右其中一邊輸光 只有其中一邊可能還會需要用到這條直線,遞迴把他交給線段樹 上那半邊的子樹處置,另外半邊已經不需要他了

到葉子還輸的話那這條線徹底不會被任何人需要

從根節點出發,到葉節點為止:

- 代中點 x 座標比較兩條直線,贏家留在節點上
- 比較兩條直線的斜率
 - 如果贏家的斜率比較大,輸家往左子樹遞迴插入
 - 如果贏家的斜率比較小,輸家往右子樹遞迴插入
- 一直往子樹丟包直線 時間複雜度 O(線段樹高 $) = O(\log N)$

李超線段樹 – 單點查詢

直線被扔到隔壁節點,代表這個範圍的 x 全都用不到這條直線 一個 x 可能用到的直線,都存在他的祖先們身上

- 找到代表這個 x 值的葉子
- lacksquare 檢查所有祖先存的直線,每個都代一次,回答最大的 y

時間複雜度 O(線段樹高 $) = O(\log N)$

李超線段樹 - 實做

包裝直線作為函數使用

```
struct Line {
    int a, b; // y = ax + b
    Line(int _a = 0, int _b = 0): a(_a), b(_b) {}
    int operator()(int x) { return a * x + b; }
};
```

李超線段樹 - 實做

插入直線

- 代中點 x 座標比較兩條直線,贏家留在節點上
- 比較兩條直線的斜率
- 遞迴插入

```
void insert(int id, int l, int r, Line ln) {
    int m = (l + r) / 2;
    if(lns[id](m) < ln(m)) swap(lns[id], ln);
    if(l == r) return;
    if(lns[id].a > ln.a) insert(L(id), l, m, ln);
    else insert(R(id), m + 1, r, ln);
}
```

李超線段樹 - 實做

單點查詢

- 找到代表這個 x 值的葉子
- 檢查所有祖先存的直線,每個都代一次,回答最大的 y

```
int qry(int id, int l, int r, int x) {
    int m = (l + r) / 2;
    int res = lns[id](x);
    if(l == r) return res;
    if(x <= m) res = max(res, qry(L(id), l, m, x));
    else res = max(res, qry(R(id), m + 1, r, x));
    return res;
}</pre>
```

題目 (Line Add Get Min, Library Checker)

你有 N 條直線 $y = a_i x + b_i$ 。請你處理 Q 個詢問:

- 加入一條直線 y = ax + b
- 詢問 x = p 處最小的 y 值
- $1 \le N, Q \le 2 \times 10^5$
- $|a_i|, |p| \leq 10^9$
- $|b_i| \leq 10^{18}$

題目 (Line Add Get Min, Library Checker)

你有 N 條直線 $y = a_i x + b_i$ 。請你處理 Q 個詢問:

- 加入一條直線 y = ax + b
- 詢問 x = p 處最小的 y 值
- $1 \le N, Q \le 2 \times 10^5$
- $|a_i|, |p| \leq 10^9$???!!
- $|b_i| \leq 10^{18}$

剛剛對 x 的值域 $1, 2, ..., 10^5$ 開線段樹

現在事先收集會被詢問到的 x 座標對會被問到的 x 開線段樹

詢問是浮點數的時候也可以

如果事先不知道詢問位置呢?

如果事先不知道詢問位置呢?

動態開點,用不到的節點不要理他

李超線段樹 - 插入線段

如果插入的不是直線,而是有左右範圍限制的線段呢?

९(´▽`*)₅插圖

李超線段樹 - 插入線段

一般線段樹是怎麼做區間修改的?

一般線段樹是怎麼做區間修改的? 找 $O(\log N)$ 個節點覆蓋詢問的區間,修改那些節點

一般線段樹是怎麼做區間修改的? 找 $O(\log N)$ 個節點覆蓋詢問的區間,修改那些節點

找 $O(\log N)$ 個節點覆蓋線段範圍,對那些節點插入直線

李超線段樹 - 插入線段

一般線段樹是怎麼做區間修改的? 找 $O(\log N)$ 個節點覆蓋詢問的區間,修改那些節點

找 $O(\log N)$ 個節點覆蓋線段範圍,對那些節點插入直線

時間複雜度:插入一次 $O(\log N)$,總共 $O(\log^2 N)$

李超線段樹 - 應用

■ 斜率優化 ✓

李超線段樹 - 應用

- 斜率優化 ✓
- 四邊形優化 ✓

不只是直線,有**優超性**的函數都可以