Examen parcial de Física - ONES 6 de juny de 2016

Model A

Qüestions: 100% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Quan una ona transversal es propaga per un medi, una partícula del medi...

- a) vibra en la mateixa direcció de propagació.
- b) vibra en la direcció perpendicular a la direcció de propagació.
- c) roman fixa.
- d) es mou continuament seguint la línia de propagació.

T2) La funció d'ones d'una ona harmònica és $y(x,t) = 0.4\sin(25\pi x + 50\pi t)$, on x i y s'expressen en metres, i t en segons. Si diem v a la velocitat de propagació i λ a la longitud d'ona, quina de les següents afirmacions és CERTA:

- a) L'ona es propaga cap a la dreta, amb v = 0.5 m/s i $\lambda = 4$ cm.
- b) L'ona es propaga cap a l'esquerra, amb v=2 m/s i $\lambda=8$ cm.
- c) L'ona es propaga cap a l'esquerra, amb v = 0.5 m/s i $\lambda = 4$ cm.
- d) L'ona es propaga cap a la dreta, amb v = 2 m/s i $\lambda = 8$ cm.

T3) Sabent que el camp elèctric d'una ona electromagnètica harmònica, plana i linealment polaritzada és $E(x,t) = 6k \cos(2x+0.3t) \text{ V/m}$, indiqueu quina de les següents afirmacions és correcta:

- a) L'ona avança en el sentit positiu de les Z i $\vec{B}(x,t) = -2\hat{i} \sin(2x 0.3t)$ mT.
- b) L'ona avança en el sentit negatiu de les X i $\vec{B}(x,t) = -20\hat{j} \cos(2x+0.3t)$ nT.
- c) L'ona avança en el sentit positiu de les X i $\vec{B}(x,t) = 0.2\hat{j} \cos(2x 0.3t) \mu T$.
- d) Cap de les anteriors.

T4) Una ona electromagnètica harmònica es propaga segons l'eix z positiu. Si l'expressió del camp elèctric és $\vec{E}(z,t) = E_0 \sin(kz - wt)\vec{j}$, quina és l'expressió del camp magnètic?

a)
$$\vec{B}(z,t) = (E_o/c)\sin(kz - wt)\vec{j}$$
.
b) $\vec{B}(z,t) = cE_o\sin(kz - wt)\vec{j}$.
c) $\vec{B}(z,t) = -(E_o/c)\sin(kz - wt)\vec{i}$.
d) $\vec{B}(z,t) = -cE_o\sin(kz - wt)\vec{i}$.

b)
$$\vec{B}(z,t) = cE_o \sin(kz - wt)\vec{j}$$
.

c)
$$\vec{B}(z,t) = -(E_o/c)\sin(kz - wt)\vec{i}$$

d)
$$\vec{B}(z,t) = -cE_o \sin(kz - wt)\vec{i}$$

T5) La intensitat mitjana d'una ona electromagnètica plana és $\bar{I}=0.2~{\rm W/m^2}$. Quant val l'amplitud B_0 del camp magnètic? (Recordeu que $\mu_0 = 4\pi \cdot 10^{-7} \text{ T m/A i } c = 3 \times 10^8$ m/s)

a)
$$B_0 = 5.8 \times 10^{-8} \text{ T}.$$

b)
$$B_0 = 2.9 \times 10^{-8} \text{ T}.$$

c)
$$B_0 = 4.1 \times 10^{-8} \text{ T.}$$

d)
$$B_0 = 2.05 \times 10^{-8} \text{ T}.$$

T6)	Una antena de TV rep un senyal electromagnètic de camp elèctric màxim 6 V/m i potència
	mitjana de 600 kW. Calculeu la distància mitjana a l'emissora ($\mu_0 = 4\pi \cdot 10^{-7} \text{ Tm/A}$,
	$c = 3 \times 10^8 \text{ m/s}$).

a) 1.0 m.

b) 1 km.

c) 0.314 km.

d) 0.1 km.

T7) Enviem un feix de llum no polaritzada d'intensitat $I_0 = 8 \times 10^{-3} \text{ W/m}^2$ cap a un conjunt format per tres làmines polaritzadores paral·leles. Si l'eix de polarització de cadascuna de les làmines forma el mateix angle θ respecte de l'eix de la làmina anterior, quant ha de valer θ perquè la intensitat de la llum en sortir del conjunt de polaritzadors sigui $I = 2.25 \times 10^{-3} \text{ W/m}^2$?

a) $\theta = 30^{\circ}$.

b) $\theta = 60^{\circ}$. c) $\theta = 45^{\circ}$. d) $\theta = 15^{\circ}$.

T8) Quin és l'índex de refracció del diamant, sabent que l'angle crític en la transmissió per aire és de 25°? (Preneu $n_{\rm aire} \sim 1$).

a) 2.27.

b) 2.37.

c) 2.10.

d) 2.51.

T9) La figura representa una fibra òptica de quars d'índex de refracció $n_1 = 1.5$. Per que la fibra funcioni correctament, l'angle d'entrada de la llum incident ha de ser $\alpha \leq 15^{\circ}$. Quant val l'índex de refracció n_2 del recobriment?

a) $n_2 = 1.5$.

b) $n_2 = 1.523$. c) $n_2 = 1.4775$. d) $n_2 = 1.333$.

T10) Quina potència té un làser d'heli-neon de longitud d'ona 636 nm que emet 3.2×10^{16} fotons per segon? (h = 6.625×10^{-34} J·s).

a) 1.0 mW.

b) 0.1 kW.

c) 0.01 W.

d) 10 MW.

Cognoms i Nom:

Codi:

Examen parcial de Física - ONES 6 de juny de 2016

Model B

Qüestions: 100% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Sabent que el camp elèctric d'una ona electromagnètica harmònica, plana i linealment polaritzada és $\vec{E}(x,t) = 6\hat{k} \cos(2x+0.3t) \text{ V/m}$, indiqueu quina de les següents afirmacions és correcta:
 - a) L'ona avança en el sentit positiu de les Z i $\vec{B}(x,t)=-2\hat{i} \sin(2x-0.3t)$ mT.
 - b) L'ona avança en el sentit negatiu de les X i $\vec{B}(x,t) = -20\hat{j} \cos(2x+0.3t)$ nT.
 - c) L'ona avança en el sentit positiu de les X i $\vec{B}(x,t)=0.2\hat{j} \cos(2x-0.3t)~\mu T$.
 - d) Cap de les anteriors.
- **T2)** Una ona electromagnètica harmònica es propaga segons l'eix z positiu. Si l'expressió del camp elèctric és $\vec{E}(z,t) = E_o \sin(kz wt)\vec{j}$, quina és l'expressió del camp magnètic?
 - a) $\vec{B}(z,t) = (E_o/c)\sin(kz wt)\vec{j}$.
 - b) $\vec{B}(z,t) = -cE_o \sin(kz wt)\vec{i}$.
 - c) $\vec{B}(z,t) = cE_o \sin(kz wt)\vec{j}$.
 - d) $\vec{B}(z,t) = -(E_o/c)\sin(kz wt)\vec{i}$.
- T3) La intensitat mitjana d'una ona electromagnètica plana és $\bar{I}=0.2~\rm{W/m^2}$. Quant val l'amplitud B_0 del camp magnètic? (Recordeu que $\mu_0=4\pi\cdot 10^{-7}~\rm{T}$ m/A i $c=3\times 10^8$ m/s)
 - a) $B_0 = 5.8 \times 10^{-8} \text{ T}.$

b) $B_0 = 2.9 \times 10^{-8} \text{ T.}$

c) $B_0 = 4.1 \times 10^{-8} \text{ T.}$

- d) $B_0 = 2.05 \times 10^{-8} \text{ T.}$
- T4) Una antena de TV rep un senyal electromagnètic de camp elèctric màxim 6 V/m i potència mitjana de 600 kW. Calculeu la distància mitjana a l'emissora ($\mu_0 = 4\pi \cdot 10^{-7}$ Tm/A, $c = 3 \times 10^8$ m/s).
 - a) 1 km.
- b) 0.314 km.
- c) 1.0 m.
- d) 0.1 km.
- $\mathbf{T5}$) Quan una ona transversal es propaga per un medi, una partícula del medi . . .
 - a) vibra en la direcció perpendicular a la direcció de propagació.
 - b) roman fixa.
 - c) es mou continuament seguint la línia de propagació.
 - d) vibra en la mateixa direcció de propagació.

T6) Quin és l'índex de refracció del diamant, sabent que l'angle crític en la transmissió per aire és de 25°? (Preneu $n_{\rm aire} \sim 1$).

a) 2.10.

b) 2.27.

c) 2.37.

d) 2.51.

T7) Quina potència té un làser d'heli-neon de longitud d'ona 636 nm que emet 3.2×10^{16} fotons per segon? (h = 6.625×10^{-34} J·s).

a) 10 MW.

b) 0.01 W.

c) 0.1 kW.

d) 1.0 mW.

T8) La figura representa una fibra òptica de quars d'índex de refracció $n_1 = 1.5$. Per que la fibra funcioni correctament, l'angle d'entrada de la llum incident ha de ser $\alpha \leq 15^{\circ}$. Quant val l'índex de refracció n_2 del recobriment?

a) $n_2 = 1.523$.

b) $n_2 = 1.4775$.

c) $n_2 = 1.333$.

d) $n_2 = 1.5$.

T9) Enviem un feix de llum no polaritzada d'intensitat $I_0 = 8 \times 10^{-3} \text{ W/m}^2$ cap a un conjunt format per tres làmines polaritzadores paral·leles. Si l'eix de polarització de cadascuna de les làmines forma el mateix angle θ respecte de l'eix de la làmina anterior, quant ha de valer θ perquè la intensitat de la llum en sortir del conjunt de polaritzadors sigui $I = 2.25 \times 10^{-3} \text{ W/m}^2$?

a) $\theta = 60^{\circ}$.

b) $\theta = 30^{\circ}$. c) $\theta = 15^{\circ}$. d) $\theta = 45^{\circ}$.

- **T10)** La funció d'ones d'una ona harmònica és $y(x,t) = 0.4\sin(25\pi x + 50\pi t)$, on x i y s'expressen en metres, i t en segons. Si diem v a la velocitat de propagació i λ a la longitud d'ona, quina de les següents afirmacions és CERTA:
 - a) L'ona es propaga cap a la dreta, amb v = 0.5 m/s i $\lambda = 4$ cm.
 - b) L'ona es propaga cap a la dreta, amb v = 2 m/s i $\lambda = 8$ cm.
 - c) L'ona es propaga cap a l'esquerra, amb v = 0.5 m/s i $\lambda = 4$ cm.
 - d) L'ona es propaga cap a l'esquerra, amb v = 2 m/s i $\lambda = 8$ cm.

Respostes correctes

Qüestió	Model A	Model B
T1)	b	d
T2)	b	d
T3)	d	c
T4)	c	a
T5)	c	a
T6)	b	c
T7)	a	b
T8)	b	b
T9)	c	b
T10)	c	d

Resolució del Model A

- **T1)** Per les ones transversals, la direcció de propagació és perpendicular a la direcció de vibració del medi.
- **T2)** La funció d'ones d'una ona harmònica és en general $y(x,t) = A\sin(kx \pm wt)$, on el signe + correspon a una ona que es propaga cap a l'esquerra. La velocitat de propagació és $v = \omega/k = 50\pi/25\pi = 2$ m/s i la longitud d'ona $\lambda = 2\pi/k = 8$ cm.
- **T3)** La direcció i sentit de propagació és el de l'eix de les x negatives (signe + de la funció trigonomètrica). També:

$$\vec{B}(x,t) = c^{-1}(\hat{u} \times \vec{E}(x,t)) = 20\hat{j}\cos(2x + 0.3t) \text{ nT}.$$

Per tant, cap de les propostes és la correcta.

- T4) Per trobar l'expressió del camp magnètic utilitzarem la relació $\vec{B} = (1/c)(\hat{n} \times \vec{E})$, és un vector unitari segons la direcció i sentit de la propagació. En aquest cas és $\hat{n} = \vec{k}$ i per tant, $\vec{B} = (1/c)(\vec{k} \times E_o \sin(kz wt)\vec{j}) = (E_0/c)\sin(kz wt)(\vec{k} \times \vec{j}) = (E_0/c)\sin(kz wt)(-\vec{i})$.
- **T5)** Calcularem l'amplitud B_0 a partir de la intensitat utilitzant la relació $\bar{I} = cB_{ef}^2/\mu_0 = cB_0^2/2\mu_0 \Rightarrow B_0 = \sqrt{2\mu_0 I/c} = 4.1 \times 10^{-8} \text{ T}.$
- **T6)** Sabent que la intensitat mitjana es pot escriure:

$$\frac{E_0^2}{2\mu_0 c} = \bar{I} = \frac{P}{4\pi r^2},$$

tenim que

$$r^2 = \frac{c\mu_0 P}{2\pi E_0^2},$$

per la qual cosa r = 1 km.

- T7) La llum incident és no polaritzada, per tant al passar pel primer polaritzador es redueix la seva intensitat en un factor dos. La llum emergent està polaritzada i segons la llei de Malus, al passar pel segon polaritzador redueix la seva intensitat en un factor $\cos^2 \theta$. Finalment el feix passa pel tercer polaritzador, que forma el mateix angle θ respecte al segon polaritzador. Per tant, la intensitat de la llum que surt del conjunt dels tres polaritzadors és $I = I_0/2 \cos^2 \theta \cos^2 \theta$, d'on resulta $\cos^4 \theta = 2I/I_0 \Rightarrow \theta = 30^\circ$.
- T8) La llei de Snell aplicada a la transmissió diamant-aire ve donada per

$$n_D \sin(\phi_c) = n_A \sin(90^\circ).$$

Així,
$$n_D = \frac{1}{\sin(25^\circ)} = 2.37$$
.

- **T9)** Aplicant la llei de la refracció a la transmissió aire-fibra, ha de ser $1 \sin \alpha = 1.5 \sin \beta \Rightarrow \beta \leq 9.94^{\circ}$, on hem dit β a l'angle amb que el raig incident es refracta. Per que la fibra funcioni correctament, s'ha de produir reflexió total a la superfície nucli-recobriment, per tant ha de ser $1.5 \sin(90^{\circ} 9.94^{\circ}) = n_2 \sin 90^{\circ}$ d'on s'obté $n_2 = 1.4775$.
- **T10)** La potència del làser es pot calcular com l'energia del feix per unitat de temps o, el que és el mateix, com $P = N_{\text{fotons}}/s \times E_{\text{1fotó}}$. Com que l'energia d'un fotó és $E_{\text{1fotó}} = hc/\lambda$, tenim que $P = 0.01 \,\text{W}$.