HANG YUAN

Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123 Tel. (+86) 15824969252 | Email: Hang.Yuan20@student.xjtlu.edu.cn | Web: https://enderhangyuan.github.io/Google Scholar: https://scholar.google.com/citations?hl=zh-CN&user=xaBXiK8AAAAJ

EDUCATION

Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China | B.Eng.

2020-Current

Year 3 | Major in Mechatronics and Robotics Systems

- Major GPA: 3.52/4.00 Cumulative GPA: Top 15% ranking
- Outstanding Student (School-wide top 5%), XJTLU

2021-2022

• Excellent Student Cadre (University-wide top 0.1%), Jiangsu Province

2022-2023

• Excellent Student Cadre & Outstanding Class Cadre (University-wide top 1%), XJTLU

2020-2021

• Entrepreneurship Star (University-wide top 1%), XJTLU

2021-2022 & 2022-2023

SELECTED PUBLICATIONS

Journal:

- [1] **Yuan, H.**, Yuan, W., Duan, S. *et al.* (2023) Microfluidic-Assisted *Caenorhabditis elegans* Sorting: Current Status and Future Prospects. *Cyborg and Bionic Systems*, *4*, 0011. https://spj.science.org/doi/10.34133/cbsystems.0011.
- [2] Zhang, J.[†], Liu, S.[†], **Yuan, H.**[†] *et al.* (2023) Deep Learning for Microfluidic-Assisted *Caenorhabditis elegans* Multi-Parameter Identification Using YOLOv7. *Micromachines*, *14*, 1339. https://doi.org/10.3390/mi14071339.
- [3] Yuan, W., **Yuan**, **H.**, Jiao, K. *et al.* (2023) Facile Microembossing Process for Microchannel Fabrication for Nanocellulose-Paper-Based Microfluidics. *ACS Applied Materials & Interfaces*, *15*(5), 6420-6430. https://pubs.acs.org/doi/10.1021/acsami.2c19354.

Conference:

- [4] **Yuan H.**, Yong, R., Liu, S. *et al.* (2023) A Centrifugation-Assisted Lateral Flow Assay Platform for Bioassay Sensitivity and Visualization Enhancement. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'23). [Poster]
- [5] **Yuan H.**, Zhang W. (2019) A Novel Hedgehog-Inspired Pin-Array Robot Hand with Multiple Magnetic Pins for Adaptive Grasping. In: Yu H. *et al.* (eds.) *Intelligent Robotics and Applications:* 12th *International Conference on (ICIRA)*, *Proceedings* 5(12), 684-695. https://doi.org/10.1007/978-3-030-27541-9 56.
- [6] Yuan, W., Yuan H., Duan, S. et al. (2023) Highly-integrated SERS-Based Immunoassay NanoPADs for Early Diagnosis of Alzheimer's Disease. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'23). [Poster]
- [7] Liu, S., Li, Y., **Yuan, H.** *et al.* (2023) A Bio-inspired Lateral Flow Assay for Improving the Sensitivity of Low Volume Samples. 19th International Meeting on Chemical Sensors (IMCS 2023). [Oral presentation]

GRANTED PATENTS

- [1] **Yuan H.**, Zhang W. A Cluster-Tube Self-Adaptive Robot Hand with Controllable Force for Rapid Grasping, CN109571539A[P], 2019.
- [2] Yuan H. A Hedgehog-Inspired Magnetic-Driven Self-Adaptive Pin-Array Robot Hand, CN109397278A[P], 2019.
- [3] Yuan H. A Parallel and Magnetic-Driven Robot Hand with Linkage Mechanisms, CN109531610A[P], 2019.

RESEARCH EXPERIENCES

Centrifugation-Assisted Lateral Flow Assay (CLFA) Platform | Research Leader

01.2022-Current

XJTLU Intelligent Microsystems Laboratory

Supervisor: Pengfei Song

- Addressed the limited sensitivity and uncontrollable incubation time of traditional LFA.
- Developed a CLFA platform that offers adjustable rotation speeds and enables smartphone-based quantitative bioassay detection, displaying results on the custom-designed UI and mobile application.
- Developed a bio-inspired microfluidic channel to enhance the sensitivity of LFA in bioassays.
- Outcomes: two international conference papers (Publications [4, 7]).

Microfluidic-Assisted Caenorhabditis elegans (C. elegans) Sorting | Research Leader

07.2022-06.2023

XJTLU Intelligent Microsystems Laboratory

Supervisor: Pengfei Song

- Provided a comprehensive review of the up-to-date microfluidic-assisted *C. elegans* sorting developments from several angles to suit researchers with different backgrounds.
- Accepted as a cover paper and featured by the renowned organization AAAS & EurekAlert!.
- Developed a deep learning model using YOLOv7 to automatically detect and recognize *C. elegans* in microfluidic chips, enabling efficient identification and measurement of multiple phenotypes (*e.g.*, size and movement speed).
- Outcomes: two journal papers (Publications [1, 2]).

Nanocellulose-Paper-Based Microfluidic Platform | Assistant Research Leader

07.2022-Current

XJTLU Intelligent Microsystems Laboratory

Supervisor: Xinyu Liu & Pengfei Song

- Developed a facile microembossing process using plastic micro-molds to efficiently fabricate microchannels on nanocellulose paper (nanopaper), optimizing the pattern parameters and saving time.
- Developed fundamental microfluidic devices and functional nanopaper-based analytical devices (NanoPADs).
- Performed colorimetric experiments and tested the droplet generation.
- Detected untreated glial fibrillary acidic protein (GFAP) in human plasma without pretreatment using SERS on NanoPADs, enabling highly sensitive early screening of Alzheimer's disease.
- Outcomes: one journal paper and one international conference paper (Publications [3, 6]).

Self-Adaptive Robot Hands | Visiting Student

01.2018-08.2019

Key Laboratory for Advanced Materials Processing Technology of Tsinghua University Supervisor: Wenzeng Zhang

- Developed a hedgehog-inspired pin-array robot hand with multiple magnetic pins for adaptive grasping.
- Developed a self-adaptive robot hand with controllable gripping force and a magnetic-driven robot hand for parallel gripping, enabling quickly grasping objects with diverse shapes.
- Outcomes: three granted patents, and one international conference paper (Publication [5]).

TEACHING ACTIVITIES

Student lecturer, XJTLU Optional Course

03.2021-03.2022

Delivered lectures for the optional "Unlocking Robot Hands" course on mechanical design and robot hands.

Student Mentor, XJTLU-Affiliated school

09.2021-08.2022

• Taught extracurricular courses to high school students, including robotics, 3D printing, tea culture, and astronomy.

SELECTED AWARDS

• Two 1st Prize of 21st National University Robot Competition (RoboMaster Championship) 2022-2023

• The 1st Prize of China Engineering Robotics Competition and International Open Championship 2021-2022

SKILLS

Computer Skills & Software:

- Programming: C, Arduino, MATLAB
- *CAD/CAE*: SolidWorks, AutoCAD, ANSYS (workbench), Rhino
- Graphic design: Adobe Illustrator, Adobe Premiere, Adobe Photoshop, KeyShot, Origin

Language: Mandarin (Native), English (English-only instruction)