Chapter 6

Scatterplots, Association, and Correlation

D. Raffle 5/26/2015

Review: Comparing Variables

In previous chapters, we looked for relationships (associations) between variables by:

- · Comparing categorical variables with contingency tables and stacked barplots
- · Comparing numeric variables across groups with side-by-side boxplots
- · Looked at how variables change over time with timeplots

In this chapter, we will:

 $\cdot\;$ Look for relationships between two numeric variables

The Data

Recall the Motor Trend Cars data from previous chapters:

```
## Mazda RX4 21.0 6 160 110 2.620 16.46 V auto ## Mazda RX4 Wag 21.0 6 160 110 2.875 17.02 V auto ## Datsun 710 22.8 4 108 93 2.320 18.61 S auto ## Hornet 4 Drive 21.4 6 258 110 3.215 19.44 S manual ## Hornet Sportabout 18.7 8 360 175 3.440 17.02 V manual ## Valiant 18.1 6 225 105 3.460 20.22 S manual
```

We might want to know:

- · Is there a relationship between engine displacement (size) and horsepower?
- · Is weight related to fuel efficiency?

3/43

Overview

How to we find relationships between numeric (quantitative) variables?

- · Visually: using **scatterplots**
- · Numerically: using the **correlation coefficient**
- · Usually, we do both
- $\cdot \:$ In this course, we will only focus on $\mbox{\bf linear}$ relationships

Scatterplots

Scatterplots

How to make scatterplots:

- · Define one variable as the X variable, and one as Y
- $\,\cdot\,$ Draw a point for each observation, using the values of the X and Y variables as coordinates
- \cdot Typically, the X variable is on the horizontal axis and the Y variable on the vertical axis

What we look for:

- · Is there are trend or pattern?
- · Are there any outliers or unusual points?

6/43

Horsepower vs. Displacement

Horsepower vs. Displacement

Is there a relationship?

- · As engines get bigger, they tend to have more horsepower
- · We call this a **positive** association

Are there any unusual points?

- · There is a point well above the rest
- Notice that it's engine size is right in the middle (about 300 cu. in.), but its horsepower is larger than any other car

8/43

Weight vs. Fuel Efficiency

Weight vs. Fuel Efficiency

Is there a relationship?

- · As cars get heavier, they tend to have lower fuel efficiency
- · We call this a **negative** association

Are there any outliers?

· No points fall far away from the rest

10/43

Types of Relationships

There are many types of trends that can come up when we make scatterplots. In this class, we will focus on the most common:

- · Linear: The trend can be described fairly well by a straight line
- · Non-linear: Any other type of trend

Directions of Relationships

- · Positive: As one variable goes up, so does the other one
- · Negative: As one variable goes up, the other goes down

Why lines?

• In statistics, we often try to find the *simplest adequate method*. Lines are simple.

11/43

Strong Positive Linear Trend

Moderate Negative Linear Trend

Weak Positive Linear Trend

14/43

No Trend

15/43

Non-Linear Trend

16/43

Non-Linear Trend

Roles of Variables

How do we decide which is X and which is Y?

The X Variable is:

- · The **explanatory** or **independent** variable.
- \cdot We want to know if changes in this variable $\emph{explains}$ changes in Y

The Y Variable is:

- · The **response** or **dependent** variable
- \cdot We want to see if this variable $\emph{responds}$ when we change X

Which is which depends on what question we're asking.

18/43

Variable Role Examples

Horsepower vs. Engine Displacement

- · It makes sense that giving a car a bigger engine gives it more power.
- We can't just give a car more horsepower, horsepower *responds* to changes we make to the car.
- · Horsepower should be Y, and Engine Displacement should be X.

Fuel Efficiency vs. Weight

- · When we make a car heavier, it should mean that it takes more fuel to move it.
- Fuel efficiency *responds* to changes in the properties of the car.
- · Fuel Efficiency should be Y, and Weight should be X.

19/43

Measuring the Strength

How do we measure how strong the relationship is?

- · We use the correlation coefficient
- · $r=rac{\sum z_y imes z_x}{n-1}$
- · StatCrunch will find this for us

What is the correlation coefficient?

- $\cdot \, \, r$ is the strength of the linear relationship between two numeric variables
- · It tells us how well a straight line explains the relationship

Interpreting Correlation

- \cdot $-1 \le r \le 1$
- \cdot The **value** of r tells us the strength
- The **sign** of r tells us the direction
- r=1: the points make a **perfect** straight line with a **positive** slope
- $\cdot \; r = -1$: the points make a **perfect** straight line with a **negative** slope
- $\cdot r = 0$: there is no linear relationship at all

Notes:

- · You can sometimes get high correlations even if the relationship isn't linear
- You should always see a scatterplot along with a correlation coefficient to know whether or not it's meaningful

Strong Positive Linear Trend

Moderate Negative Linear Trend

Weak Positive Linear Trend

No Trend

Non-Linear Trend

Non-Linear Trend

Using the Correlation Coefficient

So how do we use r?

- · First, make a scatterplot
- There needs to be a **linear** association, or r is meaningless
- · Check the sign: is the relationship positive or negative?
- · Check the value: how strong is the relationship?
- $\cdot\,$ Are there outliers? The correlation is very sensitive to them.

Note:

• We often use the terms **weak**, **moderate**, and **strong** to describe the relationship, but these are up to interpretation.

28/43

Horsepower vs. Engine Displacement

Horsepower vs. Engine Displacement

More Properties of Correlation

- \cdot r is unitless
- \cdot r is not affected by changes of center or scale
- · If we change units, the correlation will not change (e.g., lbs
 ightarrow kg)
- · The correlation of X and Y is the same as the correlation between Z_x and Z_y (their z-scores)
- $\cdot\,\,$ The correlation stays the same if we flip X and Y
- Correlation only applies to relationships between **numeric** variables. If there is an association involving categorical variables, it is **not** correlation.

Weight (lbs) vs. Fuel Efficiency

Weight (kg) vs. Fuel Efficiency

Weight vs. Fuel Efficiency (Z-Scores)

Fuel Efficiency vs. Weight

In StatCrunch

Scatterplots:

- 1. Graph \rightarrow Scatter Plot
- 2. X Column o Select your explanatory (X) variable
- 3. Y Column o Selected your response (Y) variable
- 4. Compute!

Correlation:

- 1. Stat \rightarrow Summary Stats \rightarrow Correlation
- 2. Select Column(s) \rightarrow Hold Shift/Ctrl/Command to select multiple variables (note: if you select more than two variables, it will find all pair-wise correlations)
- 3. Compute!

36/43

Correlation \neq Causation

Must people are familiar with the phrase "correlation does not equal causation," but what does that really mean?

- Even if we find a correlation between two variables, it does not mean that one causes the other.
- This is especially common when two things both increase or decrease over time.
- · Both may be caused by other, unknown variables.
- We call these unknown variables **lurking variables** or **confounding variables**.

For example:

• What if we looked at the correlation between national ice cream sales and the number of forest fires, recorded for each month of the year?

37/43

Ice Cream Sales and Forest Fires

Ice Cream Sales and Forest Fires

It certainly looks like there is a relationship.

- As the number of forest fires increase, the amount of ice cream being sold does as well
- If you open a pint of Ben & Jerries, does this light a patch of brush in California?
- · The more likely explanation is the there is at least one lurking variable

What could it be?

- · Both could be related to the month in which the information was collected
- · Additionally, certain months tend to be hotter and drier.
- Both of these conditions lead to people wanting ice cream and forest fires being easier to start

39/43

Forest Fires vs. Month

40/43

Ice Cream Sales vs. Month

Reporting Correlation

Employee Salaries and Productivity, r = .8:

- · Bad: Raising salaries increases productivity.
- · Good: Employees with higher salaries tend to be more productive.

Red Wine and Cholesterol, r = -0.99:

- · Bad: This proves that drinking more red wine lowers cholesterol.
- **Good**: There is a strong negative association between red wine consumption and cholesterol level.

Parents' and Children's Education Levels (association, not correlation):

- · Bad: A child that has two educated parents will graduate from college.
- Good: Children whose parents are educated are more likely to graduate from college

Summary

- We can use scatterplots to find relationships and outliers between two numeric variables
- $\cdot\,\,$ The X variable is the **explanatory** variable
- $\cdot\,\,$ The Y variable is the **response** variable
- · A relationship between variables is called **association**
- We can measure the strength of a **linear relationship** between two **numeric variables** using **correlation**
- · Correlation doesn't neccessarily imply causation, there may be lurking variables