Sets, Relations and Functions

1 The Axiom of Extension

Sets (or collections) have elements (or members). Any object (concrete or otherwise), may be an element of a set. This extends to sets, which may be an element of some other set. In fact, it is generally sufficient to only discuss sets of sets, as the properties will extend to all other sets. There are some ways to relate sets: belonging, inclusion and equality.

If an object x is an element of set A, we say that it belongs to A, or "x is contained in A". Denote this as $x \in A$.

If a set A is *included* in some set B, then A is a subset of B. Denote this as $A \subset B$ or $B \supset A$. Some related definitions: set inclusion is *reflexive* since a set is included in itself $(A \subset A)^1$; set inclusion is *transistive* as $A \subset B$ and $B \subset C$ implies $A \subset C$. (Conversely, belonging is neither reflexive or transistive).

Sets can also be related by equality (A = B), as defined by the Axiom of Extension.

Axiom 1 (Axiom of Extension). Two sets are equal if and only if they have the same elements.

In terms of inclusion, this can be rewritten as " $A \subset B$ and $B \subset A \Leftrightarrow A = B$ ".

A set is said to be a *proper* subset of another if $A \subset B$ and $A \neq B$; that is, all subsets are proper except from the set itslf, which is a subset but not proper.

Equality is symmetric, that is $A = B \Leftrightarrow B = A$, whereas set inclusion is antisymmetric (that is, $A \subset B$ and $B \subset A \Rightarrow A = B$)².

2 The Axiom of Specification

The basis of most Set Theoretic principles is to construct new sets from old sets. The most important such principle is the so called "Aussonderungsaxiom":

Axiom 2 (Axiom of Specification). To every set A and every condition S(x) there correponds a set B whose elements are exactly those elements x of A for which S(x) holds.

That is to say, anything one can say about a the elements of a set defines a subset. The condition must form a valid *sentence*. A sentence is formed using the atomic sentences of belonging $(x \in A)$ and equality (A = B), which are used to create more specific sentences using the following logical operators:

- and
- or
- if and only if
- not
- if then (equivalently *implies*)
- for some (equivalently there exists)
- for all.

¹Clearly, $A \subset B$ is the same as $A \subseteq B$ in this notation.

²Antisymmetry is defined by "if aRb and bRa, then a = b" for some binary relation R.

There are a few general rules for sentence construction³:

- 1. and, or and if and only if are placed between two sentences
- 2. not can be placed before a sentence enclosed by parentheses
- 3. the dashes in if then are replaced with sentences
- 4. follow for some or for all by a letter, in turn followed by a sentence

We can write the Axiom of Specification symbolically as: $B = \{x \in A : S(x)\}$. This set B is uniquely specified due to the Axiom of Extension.

Remark 1 (Russell paradox). Nothing contains everything (or equivalently, there is no universe)

Proof. Assume there is a set A which contains everything.

Consider the condition: not $(x \in x)$. Let us rewrite this as $(x \in x)$ for ease of use.

Constructing the set B from A where this condition holds:

$$B = \{x \ \epsilon \ A : x \ \epsilon' \ x\}$$

Following from the Axiom of Extension,

$$y \in B$$
 if and only if $(y \in A \text{ and } y \in Y)$

For A to contain everything, this must hold for any y. Consider y = B. If $B \in A$, then $B \in B \Leftrightarrow B \in B$. This is clearly a contradiction so A does not contain B and by extension, A cannot contain everything.

The Russell Paradox gives us an example of a condition that produces an illegal set. Some texts name these illegal sets as "classes".

3 Unordered Pairs

In order to make any progress it is necessary for us to make an assumption: there exists a set. This will be formulated more carefully later on but for now this is sufficient.

Given the assumption that there exists a set, one can easily construct the *empty set* using the Axiom of Specification, using the condition $x \neq x$. Clearly there are no elements of such a set. This set is unique by the Axiom of Extension. Denote this as $\{x \in A : x \neq x\} = \emptyset$.

For any set $A, \varnothing \subset A$ as every element in \varnothing is in A. This is a vacuous truth.⁴

Axiom 3 (Axiom of Pairing). For any two sets there exists a set that they both belong to.

That is, for some sets a and b, there exists a set A such that $a \in A$ and $b \in A$.

Consider the set that contains a and b and nothing else⁵. This can be constructed from the Axiom of Specification using the condition S(x) = "x = a or x = b". By the Axiom of

³Some general notes: the set of a single object is not the same as that object itself; "for some y ($x \in A$)" is equivalent to " $x \in A$ "; "for some x ($x \in A$)" and "for some y ($y \in A$)" are equivalent.

⁴The arguement can also be made from the other direction: the only case where $\emptyset \subset A$ is false is where there is some element in \emptyset that is not contained in A. Since \emptyset is empty, this doesn't make any sense and so the statement can never be false.

⁵The existence of such a set is actually equivalent to the Axiom of Pairing: if there is some set A such that $a \in A$ and $b \in A$, then we can construct a set with only a and b in using the sentence "x = a or x = b".

Extension, this set is unique. We call this the pair or, more specifically, the unordered pair formed by a and b. Denote this set as

$$\{x \in A : x = a \text{ or } x = b\} = \{a, b\}.$$
 (1)

Note that this isn't the same as the set of all elements in a or b but the set containing only two elements: a and b.

The *singleton* of a is a special case unordered pair $\{a, a\}$, denoted by $\{a\}$, where the set has a as its only element. $a \in A$ is equivalent to $\{a\} \subset A$.

Considering the unordered pair of any set and the empty set, it follows from the Axiom of Pairing that every set is an element of some other set. We can also infer the existance of infinitely many sets by construction: first consider the singletons \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$ etc.; now consider the pairs of such sets, and the pairs of these and the singletons and so on. Note that all of these sets are unique by the Axiom of Extension.

If S(x) is a condition on x, then the set of all x that satisfy this condition is given by $\{x: S(x)\}$, granted that this is a valid set. Rewriting the generic set constructed by the Axiom of Specification,

$${x \in A : S(x)} = {x : x \in A \text{ and } S(x)}.$$

As an aside, it is worth clarifying that the objects in a set are unique insofar as $\{a, a\} = \{a\}$. This is a subtle point, and it doesn't necessarily imply that, for example, $\{2, 2, 3\} = \{2, 3\}$. Just because two objects have the same value doesn't necessarily imply that they are the same object. Thus, the 2 and the 2 in the lefthand side of the example may be distinct objects, despite having the same value. In our discussion, we use letters to represent abstract objects and so if the same letter is used, they represent the same object and thus can't be in the same set twice.

4 Unions and Intersections

Axiom 4 (Axiom of Unions). For every collection of sets there exists a set that contains all the elements that belong to at least one set of the given collection.

In other words, let $x \in U$ only if $x \in X$ for some X in collection C^6 . Currently, this set U could contain elements not belonging to any of the sets in the collection. To construct a set that only contains elements belonging to some set in C, use the Axiom of Specification with the condition:

$$\{x \in U : x \in X \text{ for some } X \text{ in } \mathcal{C}\}$$

Change the notation and name this new set U. This set is the *union* of the collection of sets (that is the set of sets) C, which is unique by the Axiom of Extension. Denote this as

$$\bigcup \{X : X \in \mathcal{C}\}. \tag{2}$$

We shall now prove various facts regarding unions.

Remark 2. $\bigcup \{X : X \in \emptyset\} = \emptyset$

Proof. $\bigcup \{X : X \in \emptyset\}$ is the set of all elements of the sets that are, in turn, elements of \emptyset . This set has no elements, so by extension the set of these non-existant sets is also empty. \square

 $^{^6\}mathrm{Set}$ and collection can be used interchangably but both are used here to make it easier to discern what is being referred to.

Remark 3.
$$\bigcup \{X : X \in \{A\}\} = A$$

Proof. Similarly, $\bigcup \{X : X \in \{A\}\}$ is the set of all elements in each set in the collection $\{A\}$. As this is a singleton, this is just the set A, by definition.

There is special notation for the union of pairs of sets:

$$\bigcup \{X : X \in \{A, B\}\} = A \cup B. \tag{3}$$

Remark 4. $x \in A \cup B$ if and only if $x \in A$ or $x \in B$

Proof. If $x \in A$ or $x \in B$, by definition $x \in \{A, B\}$ so $x \in A \cup B$ immediately follows.

If $x \in A \cup B$, then the definition of the union states that $x \in X$ for some X in $\{A, B\}$. This is equivalent to saying $x \in A$ or $x \in B$.

Thus, we can write:

$$A \cup B = \{x : x \in A \text{ or } x \in B\}. \tag{4}$$

Using this, we prove the following elementary properties of the union of pairs:

Remark 5. $A \cup \emptyset = A$

Proof.

$$A \cup \varnothing = \{x : x \in A \text{ or } x \in \varnothing\}$$

 $x \in \emptyset$ is always false so

$$A \cup \varnothing = \{x : x \in A\} = A$$

Remark 6 (Commutativity). $A \cup B = B \cup A$

Proof.

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$
$$= \{x : x \in B \text{ or } x \in A\}$$
$$= B \cup A$$

where we use the fact that the logical operator or is commutative.

Remark 7 (Associativity). $A \cup (B \cup C) = (A \cup B) \cup C$

Proof.

$$A \cup (B \cup C) = A \cup (\{x : x \in B \text{ or } x \in C\})$$

$$= \{x : x \in A \text{ or } (x \in B \text{ or } x \in C)\}$$

$$= \{x : (x \in A \text{ or } x \in B) \text{ or } x \in C\}$$

$$= (A \cup B) \cup C$$

where we used the fact that the logical operator or is associative.

Remark 8 (Idempotence). $A \cup A = A$

Proof.

$$A \cup A = \{x : x \in A \text{ or } x \in A\}$$
$$= \{x : x \in A\}$$
$$= A$$

Remark 9. $A \subset B$ if and only if $A \cup B = B$

Proof. If $A \cup B = \{x : x \in A \text{ or } x \in B\} = B$, then there must be no case where $x \in A$ where $x \in B$ is not also true. Thus, any element $x \in A$ must also be in B, so $A \subset B$ by definition. If $A \subset B$, every element in A is also in B. Thus,

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$
$$= \{x : x \in B\}$$
$$= B.$$

Remark 10. $\{a\} \cup \{b\} = \{a, b\}$

Proof.

$${a} \cup {b} = {x : x \in {a} \text{ or } x \in {b}}$$

= ${x : x = a \text{ or } x = b}$
= ${a, b}$

Define $\{a, b, c\} = \{a\} \cup \{b\} \cup \{c\}.$

Remark 11. $\{a, b, c\} = \{x : x = a \text{ or } x = b \text{ or } x = c\}$

Proof.

$$\{a, b, c\} = \{a\} \cup \{b\} \cup \{c\}$$

$$= \{x : x = a \text{ or } x = b\} \cup \{c\}$$

$$= \{x : x \in \{x : x = a \text{ or } x = b\} \text{ or } x \in \{c\}\}$$

$$= \{x : x = a \text{ or } x = b \text{ or } x = c\}.$$

This remark means that, for every three sets, there exists a unique set that contains the three sets and nothing else. This is the *unordered triple* formed by them. Clearly, one can extend this arguement to *quadruples* and so on.