

NBS PUBLICATIONS

NBSIR 84-3016

A GENERALIZED METHOD FOR THE CALIBRATION OF FOUR-TERMINAL-PAIR TYPE DIGITAL IMPEDANCE METERS

National Bureau of Standards U.S. Department of Commerce Boulder, Colorado 80303

August 1984

NBSIR 84-3016

A GENERALIZED METHOD FOR THE CALIBRATION OF FOUR-TERMINAL-PAIR TYPE DIGITAL IMPEDANCE METERS

QC10 . U = 6 ric.

R.M. Judish R.N. Jones

Electromagnetic Technology Division National Engineering Laboratory National Bureau of Standards U.S. Department of Commerce Boulder, Colorado 80303

August 1984

Prepared for: Sandia National Laboratories Albuquerque, New Mexico

CONTENTS

		Page
1.	Introduction and Background	1
	Purpose and Scope	2
	Four-Terminal-Pair Interface and Adapters to	
•	Other Connector Types	3
4.	Theoretical Approach	5
-	4.1 Impedance Relationship through the Adapter	5
		7
		8
	Calibration Experiment	8
	5.1 Calibration Curves	
	5.2 Statistical Model for the Calibration Curve	10
	5.3 Least-Squares Solution for the Calibration Parameters	11
	Measurement of Unknowns	12
	6.1 Measurement of an Unknown r	12
	6.2 Uncertainty in r _{2u}	13
	6.3 Transformation to Impedance	14
7.	Example	14
	7.1 Standards Used in Calibration	14
	7.2 Least-Squares Estimation of the Calibration Parameters	19
	7.3 Measurement of Unknown I	26
	7.4 Transformation to Z	26
	7.5 Calibration Parameters with a 1 m Cable	31
	Summary	31
	References	33
	ndix A. FORTRAN Program Listing	34
	ndix B. Printout from Program for Data at 1 MHz	42
	ndix C Printout from Program for Data at 10 MHz	42

A Generalized Method for the Calibration of Four-Terminal-Pair Type Digital Impedance Meters

R. M. Judish and R. N. Jones*

National Bureau of Standards Boulder, Colorado 80303

Since the introduction of automated, four-terminal-pair type digital impedance meters, there has been a continuing interest in the development of calibration techniques which would satisfactorily verify the accuracy capabilities of these instruments. Various attempts have been made and all have helped to provide a certain degree of confidence in instrument performance, but until now, a generalized approach with a good mathematical and statistical background has been lacking. This paper describes a calibration procedure having such a background and illustrates its use. calibration is accomplished through the use of impedance standards which relate instrument readings to the values of the standards through a known functional relationship. The calibration procedure described estimates the parameters associated with the functional relationship and requires the use of a computer. Calibration is accomplished at the reference plane of the impedance standards and any adapter required to connect the standards to the instrument is assumed to be an integral part of the impedance meter.

Key words: calibration; digital impedance meter; impedance; least-squares; measurement; reflection coefficient; uncertainty

1. Introduction and Background

Until about a decade ago, most impedance measurements in the rf range were made by passive methods utilizing either null or resonance principles. Other methods such as the vector impedance meter were available but, in general, where the best accuracy was required, they were not as satisfactory.

^{*}Electromagnetic Technology Division.

With the introduction of the digital impedance meters utilizing a constant current source in conjunction with an internal resistance standard and a complex voltage ratio detector, came a new era in the measurement of impedance [1]. These new instruments have capabilities which make them far more useful. Their versatility, measurement speed, convenience, accuracy, and relatively low cost have made the older methods obsolete in many situations.

With the rapidly increasing acceptance and use of these instruments, we are encountering the problem of accuracy verification. Early approaches, for the most part, utilized spot checks with available standards and adapters, but at best such methods lack any significant degree of mathematical generality. In other words, even if there is a standard available to provide a check of the instrument accuracy at one point, there is no real assurance that the instrument is correct at some other point where a standard is not available. Thus, there exists a need for improved calibration methods to use with these instruments.

Although there are several different models of the four-terminal-pair (4TP) LCR (inductance, capacitance, resistance) meters in current use, it is believed that the procedure to be described is applicable for each one with the single provision that appropriate standards of impedance are available. The data presented in this report were generated using a Hewlett-Packard 1 Model 4275A LCR meter, serial number 1851J00419. This particular instrument is the property of the Boulder Laboratories of the National Bureau of Standards (NBS).

2. Purpose and Scope

The project is an initial effort to demonstrate the feasibility of the proposed calibration approach. To further develop the procedure to the point where all of the meter characteristics are analyzed and integrated into a

¹Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

complete calibration package is beyond the scope of this initial phase. Within this initial effort we will concentrate on analyzing data taken at frequencies of 1 and 10 MHz. At each of these frequencies two adapter conditions have been studied. The first condition is with a 4TP to 14 mm coaxial adapter connected directly to the front panel of the meter. The second condition utilized the same adapter, but with a 1 m long cable harness inserted between the front panel of the meter and the 4TP to 14 mm coaxial adapter. The latter is a configuration used in remote measurement applications. While there are many other situations and conditions that could have been undertaken, such as temperature, warm-up time, etc., they have been left for future effort if deemed necessary. The purpose here is primarily to learn how to implement the procedure, to study the error sources, and to gain some insight into how it can best be implemented in the future to solve the many and varied calibration needs for impedance meters of this general type.

3. Four-Terminal-Pair Interface and Adapters to Other Connector Types

In the background discussion, mention was made of the fact that the new generation digital LCR meters employ a measurement principle which is different from the older, more traditional methods. One result of the new method is that the measurement interface (the manner for connecting an unknown impedance for measurement) is a 4TP arrangement of coaxial connectors consisting of a "Hi" and a "Lo" coaxial connector for current and a "Hi" and a "Lo" coaxial connector for voltage. These are arranged in the manner shown in figure 1. Such an arrangement is necessary to facilitate the measurement process, but it does have some important practical disadvantages which include the following:

1. For most measurement applications, it is necessary to provide an adapter to either a single coaxial (a one-port) or to a double coaxial connector (a two-port).² Adapters for the measurement of leaded components are also provided by the manufacturer as well as remote probes for in situ measurements of circuit components. Calibration with these in use is not addressed in this effort. To do so would require the development of special standards.

²A two-port is often called a three-terminal measurement, especially for some capacitance or admittance measurements.

Figure 1. Measurement interface for 4TP-type LCR meter.

2. The calibration problem with these meters presents some difficulties mainly because the measurement interface is a coaxial 4TP configuration for which there are no established standards at NBS. Existing two-terminal (one-port) or three-terminal (two-port) impedance standards cannot be connected directly to the 4TP interface of these meters without some type of an adapter which will itself affect the measurement result.³ The Hewlett-Packard Company does market standards made specifically for instruments with 4TP-type measurement interfaces. These are resistance and capacitance elements whose values can be measured directly at dc or low frequencies and the high frequency values are then derived from a lumped circuit model by calculation using best estimates for residual impedance contained in the

³Because many LCR meters of the 4TP variety have a feature which allows for calibration at any measurement interface utilizing a procedure employing both short- and open-circuit references, the reader may take exception to the statements in 2, above. However, a simple experiment utilizing the 1 m remote measurement feature of the instrument will serve to illustrate the problem. This simple experiment is performed by precalibrating with an adapter connected directly to the instrument and then measuring an unknown device. Following this the 1 m remote measuring harness is inserted between the meter and the adapter and the calibration routine is again executed. When again measuring the same unknown device as before a significantly different result may be observed. This will illustrate the importance of generating correction factors for each measurement configuration.

model. To date, no concentrated attempt has been made at NBS to either duplicate or confirm this approach except for 4TP capacitors [2]. To do so hardly seems appropriate because even with a good absolute calibration at the 4TP interface, there is still a question of the calibration accuracy at the reference plane of an added adapter. It is to be noted, however, that over large portions of the frequency and impedance ranges of these meters, well-designed adapters do not seriously degrade the measurement accuracy.

In this effort, two specific measurement configurations were studied, each employing an adapter from the 4TP interface at the instrument panel to the GR900, 14-mm-type precision coaxial connector. In one configuration the 4TP to 14 mm adapter was attached directly to the instrument and in the second configuration a 1 m remote measurement harness was inserted between the front panel of the meter and the 4TP to 14 mm adapter. In these two configurations the "cable length" switch on the meter panel was set to "0" and "1m", respectively.

4. Theoretical Approach

4.1 Impedance Relationship through the Adapter

The measurement of impedance for devices with 14 mm coaxial connectors requires the use of a 4TP to 14 mm coaxial adapter. The adapter becomes part of the device under test (DUT) and the LCR meter measures the impedance of this DUT in combination with the adapter. What is required is the impedance of the DUT. This is illustrated in figure 2.

In figure 2 the meter measures the impedance at reference plane 1 while the impedance at reference plane 2 is desired. If we view the adapter as a general network with terminal variables v and i, then we can express the relationship between these terminal variables at the two reference planes by the following equations [3].

$$v_1 = Av_2 - Bi_2$$

 $i_1 = Cv_2 - Di_2$ (4-1)

Figure 2. Measurement configuration and symbolism for meter calibration procedure.

Taking the ratio of v_1 to i_1 , and dividing the numerator and denominator of the right side by -Di $_2$ gives the following:

$$\frac{v_1}{i_1} = \frac{-\frac{A}{D}\frac{v_2}{i_2} + \frac{B}{D}}{-\frac{C}{D}\frac{v_2}{i_2} + 1}$$
 (4-2)

Noting that the ratio v/i is equal to the impedance Z, and letting A' = -A/D, B' = B/D, C' = -C/D we get:

$$Z_{1} = \frac{A'Z_{2} + B'}{C'Z_{2} + 1}.$$
 (4-3)

In theory, if there were no measurement error, we could obtain the unknown parameters A', B', C' by measuring the impedance Z_1 for three known values of Z_2 and solving three complex equations like eq (4-3) for the three complex unknowns.

However, in practice, Z_1 is measured with error. To account for this error the following statistical model is used:

$$Z_{1i} = \frac{A'Z_{2i} + B'}{C'Z_{2i} + 1} + e_{i}, \qquad (4-4)$$

where

 Z_{1i} is the measured impedance for the ith standard, Z_{2i} is the known impedance of the ith standard, e_i is a complex random error in the ith measured impedance, and A', B', C' are the unknown parameters.

One approach to estimate the parameters in eq (4-4) is via the method of least squares. However, one assumption for the valid use of ordinary least squares is that the $\mathbf{e_i}$ have a constant variance. Because the relationship in eq (4-4) is assumed valid for all values of Z in the complex plane, the constant variance assumption means the effect of the random errors is independent of Z. The application of least squares to eq (4-4) resulted in large residuals for large values of impedance. This suggests that the variance of the $\mathbf{e_i}$ is not constant for all values of Z but is a function of Z. A common procedure used to accommodate nonconstant variance of the error term $\mathbf{e_i}$ is to transform the data so that the assumption of equal variance is valid. In many instances this transformation has to be obtained empirically. Fortunately, there is a transformation based on physical relationships that achieves the required result.

4.2 Transformation to Reflection Coefficients

If we choose a, b as terminal variables (see fig. 2) instead of v, i, we are led to the following network equations [3]

$$b_1 = r_{11}a_2 + r_{12}b_2$$

 $a_1 = r_{21}a_2 + r_{22}b_2$ (4-5)

Taking the ratio of b_1 to a_1 and dividing the numerator and denominator of the right side by $r_{22}b_2$ gives:

$$\frac{b_1}{a_1} = \frac{\left(\frac{r_{11}}{r_{22}}\right) \frac{a_2}{b_2} + \frac{r_{12}}{r_{22}}}{\left(\frac{r_{21}}{r_{22}}\right) \frac{a_2}{b_2} + 1}$$
(4-6)

If we let $\alpha = r_{11}/r_{22}$, $\beta = r_{12}/r_{22}$, $\gamma = r_{21}/r_{22}$, and note that the ratio b_1/a_1 is the reflection coefficient r_1 at reference plane 1 in figure 2 and a_2/b_2 is the reflection coefficient r_2 at reference plane 2, then we can rewrite eq (4-6) as follows

$$\Gamma_1 = \frac{\alpha \Gamma_2 + \beta}{\gamma \Gamma_2 + 1}.$$
 (4-7)

The model in eq (4-7) transforms the reflection coefficient Γ_2 to a reflection coefficient Γ_1 through the parameters α , β , and γ . Thus, the model is a linear fractional transformation of Γ_2 to Γ_1 and the estimation of the parameters α , β , γ can be thought of as "calibrating" the adapter. The statistical methods to estimate these unknown parameters are discussed in the next section.

5. Calibration Experiment

5.1 Calibration Curves

Calibration is a process of intercomparing an unknown with a standard and assigning a value to the unknown based on the value of the standard. If the calibration is desired over an extended regime of interest, and a functional relationship can be shown to exist between the standard and unknown, then a calibration curve can be used to assign values to the unknown based on the values of the standard. For example, the functional relationship between y and x might be

$$y = \alpha + \beta x, \qquad (5-1)$$

where y is a reading or measurement from an instrument, and x is the known value of the standard.

The calibration of unknowns is affected by a two-step process. First, the calibration experiment produces data on n standards, say x_i , y_i ; i=1, . . . n where x_i is the known value of the ith standard and y_i is the corresponding measurement made by the instrument on the ith standard. In the example, these data are used to estimate the parameters α and β in eq (5-1). After obtaining the estimates for the parameters, denoted by α and β , and measuring a future unknown, y_f , the corresponding estimated value for x is found by solving eq (5-1). This gives

$$x_{f} = \frac{y_{f} - \hat{\alpha}}{\hat{\beta}}, \qquad (5-2)$$

where x_f is the estimated value. This procedure is illustrated in figure 3. The dots are the coordinates of the x,y data obtained in the calibration experiment. The solid line is the estimated calibration curve. A future reading, y_f , is related to the standards by drawing a line horizontally from this value and "reading" the x coordinate of the point of intersection. This gives the estimated value x_f .

Figure 3. Schematic diagram of a calibration curve.

A final requirement is an assessment of the uncertainty in x_f . There are several statistical issues concerning the construction of interval estimates for x_f , but these are beyond the scope of this paper. One approach is to use propagation of error formulas to estimate the variance of x_f in eq (5-2). This procedure is used to access the uncertainty for the calibration of LCR impedance meters and is discussed in a later section.

5.2 Statistical Model for the Calibration Curve

The model in eq (4-7) which relates the two reflection coefficients is analogous to the simple linear model presented in the last section. Geometrically, it is more difficult to visualize the relationship in eq (4-7) because the variables Γ_1 and Γ_2 as well as the parameters α , β , γ are complex quantities. However, this does not pose significant problems analytically.

In section 4.2 we defined Γ_2 to be the reflection coefficient at reference plane 2 in figure 2, while Γ_1 is the reflection coefficient at reference plane 1. If we choose a device for which we know the reflection coefficient Γ_2 and connect it to the adapter we can measure Γ_1 , which is the reflection coefficient obtained by the LCR meter. We assume that the relationship in eq (4-7) holds for all values of Γ inside the unit circle, however due to measurement error in Γ_1 the relationship will not be exact. This leads to the following statistical model:

$$\Gamma_{1i} = \frac{\alpha \Gamma_{2i} + \beta}{\gamma \Gamma_{2i} + 1} + e_{i},$$
 (5-3)

where

 ${\bf r}_{1\, {\rm i}}$ is the LCR meter reading when the ith standard is connected to the adapter,

 Γ_{2i} is the known reflection coefficient for the ith standard, e_i is a complex random error of measurement in Γ_{1i} , and $\sigma,~\beta,~$ and γ are unknown complex parameters.

In the remainder of this paper it is assumed that the errors $\mathbf{e_i}$ are random in nature and that any errors in the standard values are negligible compared to the $\mathbf{e_i}$. This assumption will be discussed in connection with the evaluation of the procedures to be presented in a later section.

5.3 Least-Squares Solution for the Calibration Parameters

The least-squares solution for the parameters in eq (5-3) is one that minimizes the following quantity:

$$S = \sum_{i=1}^{n} \left| e_i \right|^2, \tag{5-4}$$

where

$$e_{i} = r_{1i} - (\frac{\alpha r_{2i} + \beta}{\gamma r_{2i} + 1}),$$
 (5-5)

and n is the number of standards.

Since the e_i are complex numbers, the least-squares solution is implemented in the following manner. S in eq (5-4) can be rewritten as:

$$S = \sum_{i=1}^{n} [Re(e_i)^2 + Im(e_i)^2], \qquad (5-6)$$

where we denote the real and imaginary parts of a complex number by Re and Im, respectively. Substitution of eq (5-5) into eq (5-6) gives

$$S = \sum_{i=1}^{n} \{ [Re(r_{1i}) - Re(\frac{\alpha r_{2i} + \beta}{\gamma r_{2i} + 1})]^2 + [Im(r_{1i}) - Im(\frac{\alpha r_{2i} + \beta}{\gamma r_{2i} + 1})]^2 \}.$$
 (5-7)

If we now make the following notational changes:

$$y_{i} = \text{Re}(\Gamma_{1i}) \qquad i = 1, 3, 5, \cdots, 2n - 1$$

$$f_{i}(x_{i}, \underline{\theta}) = \text{Re}(\frac{\alpha \Gamma_{2i} + \beta}{\gamma \Gamma_{2i} + 1}) \qquad i = 1, 3, 5, \cdots, 2n - 1$$

$$\varepsilon_{i} = \text{Re}(e_{i}) \qquad i = 1, 3, 5, \cdots, 2n - 1$$

$$y_{i} = \text{Im}(\Gamma_{1i}) \qquad i = 2, 4, 6 \cdots \cdot 2n,$$

$$f_{i}(x_{i}, \underline{\theta}) = \text{Im}(\frac{\alpha \Gamma_{2i} + \beta}{\gamma \Gamma_{2i} + 1}) \qquad i = 2, 4, 6 \cdots \cdot 2n,$$

$$\varepsilon_{i} = \text{Im}(e_{i}) \qquad i = 2, 4, 6 \cdots \cdot 2n,$$

and

$$\underline{\theta} = [Re(\alpha), Im(\alpha), Re(\beta), Im(\beta), Re(\gamma), Im(\gamma)].$$

We can rewrite the model in eq (5-3) as

$$y_{i} = f_{i}(x_{i}, \underline{\theta}) + \varepsilon_{i}. \tag{5-8}$$

The least-squares solution for θ in eq (5-8) is one that minimizes

$$S = \sum_{i=1}^{2n} (y_i - f_i(x_i, \underline{\theta}))^2$$
 (5-9)

and it can be shown that the expressions in eqs (5-7) and (5-9) are equivalent. It should be noted that the expressions $f_i(x_i,\underline{\theta})$ are nonlinear in the parameters, i.e., α , β , and γ , thus eq (5-9) has to be solved by nonlinear iterative least squares techniques. This poses no great difficulty as software is readily available that can solve nonlinear least-squares problems [4].

The nonlinear least-squares solution has been implemented at NBS and tested using data obtained at 1 and 10 MHz. The results are discussed in section 7.

6. Measurement of Unknowns

6.1 Measurement of an Unknown r

After obtaining estimates for the calibration parameters α , β , and γ , it is possible to estimate the reflection coefficient Γ_2 for an unknown DUT. Letting Γ_{1u} be the LCR reading for an unknown DUT, then the estimated reflection coefficient, Γ_2 , is obtained by inverting eq (4-7) for Γ_2 which gives:

$$\Gamma_{2u} = \frac{\Gamma_{1u} - \hat{\beta}}{\hat{\alpha} - \Gamma_{1u} \hat{\gamma}}$$
 (6-1)

where

 Γ_{1u} is the measured Γ when the DUT is connected to the adapter, $\hat{\alpha}$, $\hat{\beta}$, $\hat{\gamma}$ are the estimates of the calibration parameters, and Γ_{2u} is the estimated Γ for the DUT.

6.2 Uncertainty in Γ_{2u}

In order to estimate the uncertainty in Γ_{2u} we need to know the uncertainty in the parameter estimates $\hat{\alpha}$, $\hat{\beta}$, $\hat{\gamma}$ and in the meter reading Γ_{1u} . These are the quantities which appear on the right side of eq (6-1). The least-squares solution described in section 5.3 provides an estimate of the standard deviation of Γ_1 . This is given by

$$\hat{\sigma} = S/[2(n - p)],$$
 (6-2)

where

S = sum of squares in eq (5-7) at the solution,

n = number of standards in the calibration experiment, and

p = number of parameters estimated.

The estimated standard deviations for $\hat{\alpha}$, $\hat{\beta}$, $\hat{\gamma}$ are also obtained from the least-squares solution. We will not describe how we obtain these estimates, but will denote these by S_{α} , S_{β} , and S_{γ} .

An approximation for the standard deviation of r_{2u} can be obtained by using propagation of error formulas [5]. Application of this procedure to eq (6-1) gives this standard deviation, denote this by $S(r_{2u})$. The details of these procedures are beyond the scope of this report but will be demonstrated with sample data in the next section.

⁶The quantities Γ, α, β, λ are complex numbers. We can treat these analytically as two real variables. Thus, each complex quantity actually has two standard deviations, one associated with the real part and one associated with the imaginary part. We use the notation $S\alpha$, for example, to represent the standard deviation for either the real or imaginary part of α for notational convenience.

6.3 Transformation to Impedance

It was mentioned in section 4.1 that the objective was to obtain the impedance for the DUT. The calibration procedure described so far gives the reflection coefficient for the DUT and its associated standard deviation. These are Γ_{2u} and $S(\Gamma_{2u})$. The impedance is obtained from the reflection coefficient by the transformation

$$Z_{2u} = \frac{50(1 + r_{2u})}{(1 - r_{2u})}.$$
 (6-3)

Finally, we require an estimate of the uncertainty in Z_{2u} . We can obtain an estimate of the standard deviation of Z_{2u} by the application of propagation of error formulas. We have the necessary quantities to accomplish this, namely Γ_{2u} and $S(\Gamma_{2u})$. We will now present the application of the procedures described to sample data obtained at 1 and 10 MHz.

7. Example

7.1 Standards Used in Calibration

The calibration experiment discussed in section 5.2 required known values for n standards. At 1 MHz the standards used to calibrate the meter were a short-circuit, open-circuit, 50 and 100 Ω terminations, a 1000 pF capacitor, and inductors of 1, 2.5, 5, 10, and 25 μ H. These values relative to 50 Ω are displayed in figure 4. The standards used at 10 MHz were a short-circuit, an open-circuit, 50 and 100 Ω terminations, a 1 μ H inductor, and capacitors of 200 and 1000 pF. These values relative to 50 Ω are displayed in figure 5.

At each frequency the standard was connected to the adapter and the impedance was measured by the LCR meter. These were then transformed to reflection coefficients by:

$$\Gamma = \frac{Z - 50}{7 + 50}.\tag{7-1}$$

These data are presented in tables 1 and 2.

[&]quot;Prior to the measurements the manufacturer's suggested calibration procedure was not used. The meter was turned on and allowed to warm up as specified in the operating manual. For these tests, the LCR meter was <u>not</u> "zeroed" on open and short circuit terminations. This procedure was used because it was felt that the stored set of default values provided a more stable reference for the measurements than the daily measurements of opens and shorts.

Figure 4. The reflection coefficients of the various impedance standards used at 1 MHz.

Figure 5. The reflection coefficients of the various impedance standards used at $10\ \mathrm{MHz}$.

Table 1. Calibration data, 1 MHz; with adapter connected to LCR meter.

Standard		Impedar	nce (Ω)	Reflection coefficient		
		Standard value	LCR reading	Standard value LCR reading		
			Z ₁		r ₁	
Short	Re Im	0.00000	0.00646 0.11945	-1.00000 0.00000	-0.99973 0.00478	
50 Ω	Re	50.02500	50.06500	0.00025	0.00065	
	Im	0.08730	0.05400	0.00087	0.00054	
100 Ω	Re	99.83000	99.93900	0.33258	0.33306	
	Im	-0.19790	-0.16900	-0.00088	-0.00075	
0pen	Re	0.00000	-25.72000	1.00000	1.00000	
	Im	-159000.00000	-73680.00000	-0.00063	-0.00136	
1000 pF	Re	0.00000	0.00000	0.82016	0.81944	
	Im	-159.06700	-158.72000	-0.57214	-0.57316	
1 µН	Re	0.07970	0.09770	-0.96789	-0.96620	
	Im	6.07200	6.17770	0.23860	0.24246	
2.5 µН	Re	0.16980	0.20430	-0.81709	-0.81431	
	Im	15.62000	15.70530	0.56574	0.56757	
5 μΗ	Re	0.26180	0.28000	-0.44740	-0.44829	
	Im	30.76200	30.71800	0.88586	0.88482	
10 µН	Re	0.47440	0.50000	0.17351	0.17365	
	Im	59.66100	59.67400	0.97691	0.97646	
25 µH	Re	1.41370	1.39000	0.79400	0.79421	
	Im	149.38000	149.43600	0.59853	0.59841	

Table 2. Calibration data, 10 MHz; with adapter connected to LCR meter.

Standard		Impedance (Ω) Standard value LCR reading Z_2		Reflection coefficient Standard value LCR readin ^r 2 ^r 1		
Short	R _e	0.00000 0.00000	0.03240 1.13870	-1.00000 0.00000	-0.99767 0.04547	
50 Ω	$^{R}_{I_{m}}^{e}$	50.06400 0.00294	49.87800 0.90600	0.00064 0.00003	-0.00114 0.00908	
100 Ω	$^{R}_{I_{m}}^{e}$	99.93000 -1.25200	99.52100 -0.87550	0.33307 -0.00557	0.33122 -0.00392	
0pen	$^{R}_{I_{m}}^{e}$	0.00000 -15915.00000	-21.96000 -72730.00000	0.99998 -0.00628	0.99995 -0.01375	
1000 pF	$^{R}_{I_{m}}$	0.00000 -15.35900	0.05569 -14.18000	-0.82755 -0.56139	-0.84936 -0.52390	
1 µН	R _e I _m	0.03070 63.05100	0.28747 63.34900	0.22774 0.97323	0.23130 0.96835	
200 pF	R _e I _m	0.00000 -79.55100	0.06723 -77.04000	0.43364 -0.90108	0.40692 -0.91259	

Table 3. Least-squares estimates of calibration parameters; with adapter connected to LCR meter.

	_			
	Real	MHz Imaginary	Real) MHz Imaginary
α S _α	0.99983 0.00040	-0.00218 0.00040	0.99823 0.00127	-0.02415 0.00127
β S _β	-0.00065 0.00036	0.00066 0.00036	-0.00511 0.00110	0.00852 0.00110
Y S _Y	-0.00120 0.00041	-0.00111 0.00041	-0.00716 0.00130	-0.00973 0.00130
Residual standard deviation $\hat{\sigma}$	0.00096		0.00285	
Degrees of freedom	14 8			

7.2 Least-Squares Estimation of the Calibration Parameters

A Fortran program, written on a CDC CYBER 750, solves the least-squares formulation presented in section 5.3. This program was then run using the data in tables 1 and 2 to test the procedure. The program listing is presented in appendix A, and program printouts for data at 1 and 10 MHz are given in appendices B and C, respectively. The estimated parameters and standard deviations using these data are presented in table 3.

Table 3 gives the real and imaginary parts of the estimated parameters and their associated standard deviations. For example, at 1 MHz the real part of α was estimated to be 0.99983 with a standard deviation of 0.0004. The residual standard deviation, $\hat{\sigma}$, is computed from eq (6-2).

If the model in eq (5-3) is adequate then the residuals are estimates of the random errors, e_i , given in eq (5-5). The residuals r_i are computed by

$$Re(r_{i}) = Re(r_{1i}) - Re\left(\frac{\hat{\alpha} r_{2i} + \hat{\beta}}{\hat{\gamma} r_{2i} + 1}\right)$$
 (7-1)

$$Im(r_i) = Im(r_{1i}) - Im(\frac{\hat{\alpha} r_{2i} + \hat{\beta}}{\hat{\gamma} r_{2i} + 1}).$$
 (7-2)

These residuals are displayed in figures 6 through 9. In these figures the residuals computed in eqs (7-1) and (7-2) are plotted on the z axis against the standard values which are on the x-y plane. These plots illustrate the magnitude of the residuals as a function of location of the standard values for r in the unit circle. Other graphs of these residuals are presented in figures 10 and 11. In these graphs the imaginary part of the residual is plotted on the y axis against the real part of the residual on the x axis. The residuals appear as vectors in these graphs and should be uniformly distributed around the origin. An outlier, or abnormally large vector, would need to be investigated before the estimation results could be accepted. It is not within the scope of this paper to discuss all the diagnostic procedures associated with the examination of these residuals. These will be developed further in later work.

Figure 6. The real part of the residuals at 1 MHz.

Figure 7. The imaginary part of the residuals at 1 MHz.

Figure 9. The imaginary part of the residuals at 10 MHz.

Plot of residuals: Imaginary versus real at 1 MHz. Figure 10.

Figure 11. Plot of residuals: Imaginary versus real at 10 MHz.

7.3 Measurement of Unknown Γ

Having obtained estimates of the calibration parameters we can now apply the methods presented in section 6.1 and 6.2 to obtain the reflection coefficient and the associated standard deviation for an unknown device. To demonstrate the procedure a program was written which evaluates eq (6-1) to obtain Γ_{2u} and its standard deviation $S(\Gamma_{2u})$. The data used for Γ_{1u} are the original LCR meter readings which are presented in tables 1 and 2 as Γ_1 . The "estimated values," Γ_{2u} , and the known standard values Γ_2 which they estimate are presented in tables 4 and 5. The difference between Γ_{2u} and Γ_2 is also tabulated.

In these tables the real and imaginary part of Γ_{2u} and Γ_2 are presented and the numbers right underneath these are estimates of the errors in these quantities. For Γ_{2u} these are the quantities $S(\Gamma_{2u})$ computed by propagation error formulas. For Γ_2 these are estimates of the systematic errors in the standards. The differences between Γ_{2u} and Γ_2 can be compared to the standard deviation of Γ_{2u} , $S(\Gamma_{2u})$ to get a feel for the adequacy of the proposed procedures. Examination of these differences indicates that the assumption of the error e_i being mostly random is not likely. The e_i contain a systematic component due to the large systematic errors in Γ_2 . Therefore, the standard deviations $S(\Gamma_{2u})$ are not really estimates of the random error in Γ_{2u} since a significant systematic error is present.

7.4 Transformation to Z

Having obtained Γ_{2u} we can now transform these to impedances by eq (6-3), and estimate the standard deviation from propagation of error techniques. This was done using the values for Γ_{2u} in tables 4 and 5. The results, Z_{2u} corresponding to Γ_{2u} are presented in tables 6 and 7, along with the known impedances, Z_2 . The entries in these tables are in the same format as those in tables 4 and 5, except the values are for impedance rather than reflection coefficient.

Table 4. Calibration of Γ at 1 MHz; with adapter connected to LCR meter.

Device	"Estimated"		Known standard		Difference	
	meter r R _e (Г _{2и})	eadings I _m (r _{2u})	valu R _e (г ₂)	es I _m (Γ ₂)	$R_e(r_{2u}) - R_e(r_2)$	I _m (Γ _{2u}) - I _m (Γ ₂)
Short	-1.00046 0.00114*	0.00084 0.00114*	-1.00000 0.00000†	0.00000 0.00000†	-0.00046	0.00084
50 Ω	0.00130 0.00103	-0.00012 0.00103	0.00025 0.00050	0.00087 0.00040	0.00105	-0.00099
100 Ω	0.33363 0.00103	-0.00081 0.00103	0.33258 0.00045	-0.00088 0.00045	0.00105	0.00007
0pen	0.99961 0.00111	-0.00094 0.00111	1.00000 0.00000	-0.00063 0.00000	-0.00039	-0.00031
1000 pF	0.82002 0.00110	-0.57138 -0.00110	0.82016 0.00004	-0.57214 0.00006	-0.00014	0.00076
1 µН	-0.96781 0.00119	0.23932 0.00119	-0.96789 0.00025	0.23860 0.00027	0.00008	0.00072
2.5 μH	-0.81647 0.00126	0.56596 0.00126	-0.81709 0.00061	0.56574 0.00065	0.00062	0.00022
5 µН	-0.44983 0.00133	0.88492 0.00133	-0.44740 0.00103	0.88586 0.00091	-0.00243	0.00093
10 µН	0.17369 0.00132	0.97696 0.00132	0.17351 0.00108	0.97691 0.00081	0.00018	0.00005
25 µН	0.79441 0.00120	0.59814 0.00120	0.79400 0.00072	0.59853 0.00075	0.00041	-0.00039

^{*}These entries are $S(\Gamma_{2u})$ which are the standard deviations obtained from propagation of errors.

[†]These entries are estimated limits to the systematic error in the standard values.

Table 5. Calibration of Γ at 10 MHz.

Device	"Estimated" meter readings		Known standard values		Difference	
	R _e (r _{2u})	I _m (r _{2u})	R _e (г ₂)	I _m (Γ ₂)	$R_e(r_{2u}) - R_e(r_2)$	$I_{m}(r_{2u}) - I_{m}(r_{2})$
Short	-1.00204 0.00354*	0.00338 0.00354*	-1.00000 0.00000	0.00000 0.00000 [†]	-0.00204	0.00338
50 Ω	0.00396 0.00305	0.00066 0.00305	0.00064 0.00049	0.00003 0.00008	0.00332	0.00063
100 Ω	0.33623 0.00305	-0.00539 0.00305	0.33307 0.00045	-0.00557 0.00045	0.00316	0.00018
0pen	0.99965 0.00343	-0.00771 0.00343	0.99998 0.00000	-0.00628 0.00001	-0.00033	-0.00143
1000 pF	-0.82613 0.00363	-0.56385 0.00363	-0.82755 0.00123	-0.56139 0.00182	0.00142	-0.00246
1 µН	-0.22398 0.00359	0.97246 0.00359	0.22774 0.00092	0.97323 0.00030	-0.00376	-0.00077
200 pF	0.43176 0.00359	-0.90048 0.00359	0.43364 0.00061	-0.90108 0.00030	-0.00188	0.00054

^{*}These entries are $S(\Gamma_{2u})$ which are the standard deviations obtained from propagation of errors.

[†]These entries are estimated limits to the systematic error in the standard values.

Table 6. Calibration of Z at 1 MHz.

Device		imated"		tandard ues	Difference	ce
	R _e (Z _{2u})	readings I _m (Z _{2u})	$R_{e}(Z_{2})$	$I_{m}(Z_{2})$	$R_e(Z_{2u}) - R_e(Z_2)$	$I_m(Z_{2u}) - I_m(Z_2)$
Short	-0.01155 0.02849*	0.02090 0.02849*	0.00000	0.00000 0.00000 [†]	-0.01155	0.02090
50 Ω	50.13004 0.10309	-0.01198 0.10309	50.02500 0.05000	0.08730 0.04000	0.10504	-0.09928
100 Ω	100.06759 0.23120	-0.18219 0.23120	99.83000 0.10000	-0.19790 0.10000	0.23759	0.01571
0pen	3.72E+4 10.62E+5	-9.05E+4 10.62E+5	0.00000	-1.59E+5 100.00000	3.74E+4	6.85E+4
1000 pf	F 0.15153 0.30698	-159.21656 0.30698	0.00000 0.00000	-159.06700 0.02000	0.15153	-0.14956
1 µН	0.07729 0.03018	6.09026 0.03018	0.07970 0.00500	6.07200 0.00600	-0.00241	0.01826
2.5 µН	0.18061 0.03477	15.63470 0.03477	0.16980 0.01000	15.62000 0.01500	0.01081	0.01470
5 µН	0.25240 0.04606	30.67236 0.04606	0.26180 0.02000	30.76200 0.03000	-0.00940	-0.08964
10 μΗ	0.46987 0.08058	59.67123 0.08058	0.47440 0.04000	59.66000 0.06000	-0.00453	0.01023
25 µН	1.39296 0.29879	149.52158 0.29879	1.41370 0.11000	149.38000 0.15000	-0.02074	0.14158

^{*}These entries are $S(\Gamma_{2u})$ which are the standard deviations obtained from propagation of errors.

[†]These entries are estimated limits to the systematic error in the standard values.

Table 7. Calibration of Z at $10\ \text{MHz}$ with adapter connected directly to LCR meter.

Device	"Calibrated" meter readings			standard lues	Difference	
	$R_{e}(Z_{2u})$	I _m (Z _{2u})	$R_{e}(Z_{2})^{va}$	$I_{m}(Z_{2})$	$R_e(Z_{2u}) - R_e(Z_2)$	$I_{m}(Z_{2u}) - I_{m}(Z_{2})$
Short	-0.05119 0.08826	0.08415 0.08826	0.00000 0.00000	0.00000 0.00000	-0.05119	0.08415
50 Ω	50.39772 0.30834	0.06657 0.30834	50.06400 0.05000	0.00294 0.00080	0.33372	0.06363
100 Ω	100.64417 0.69511	-1.22179 0.69511	99.93000 0.10000	-0.12520 0.10000	0.71417	0.03021
0pen	539.75235 5.78E+2	-12.94E+3 5.78E+2	0.00000 0.00000	-1.5915E+4 15.00000	539.75235	29.70E+2
1000 pF	-0.00564 0.09924	-15.43647 0.09924	0.00000	-15.35900 0.06000	-0.00564	-0.07747
1 µН	0.13374 0.23198	62.82566 0.23198	0.3070 0.00600	63.05100 0.06000	-0.10304	-0.22534
200 pF	0.11461 0.31685	-79.42231 0.31685	0.00000 0.00000	-79.55100 0.06000	0.11466	0.12869

^{*}These entries are $S(\Gamma_{2u})$ which are the standard deviations obtained from propagation of errors.

 $^{^{\}dagger}$ These entries are estimated limits to the systematic error in the standard values.

Table 8. Least-squares estimates of calibration parameters with 1 m cable inserted.

	1	MU-	1.0) MII-
	Real	MHz Imaginary	Real) MHz Imaginary
α S _α	0.99965 0.00033	-0.00286 0.00033	0.99883 0.00089	-0.02638 0.00089
β S _β	0.00055 0.00034	0.00033 0.00034	0.00972 0.00068	0.00967 0.00068
Y S Y	0.00052 0.00044	-0.00144 0.00044	0.00802 0.00849	-0.00779 0.00849
Residual standard deviation σ	0.0	0053	0.00145	
Degrees of freedom	4		8	

7.5 Calibration Parameters with a 1 m Cable

To further demonstrate the estimation procedure, data were obtained at 1 and 10 MHz with a 1 m remote measurement harness inserted between the front panel of the meter and the adapter. Only the resulting parameter estimates are given. These are presented in table 8. At 1 MHz data were not obtained for the inductors of 1, 2.5, 5, 10, and 25 μ H, therefore only five standards were used.

8. Summary

A method has been presented which permits a calibration of the LCR meter when an adapter is connected to the test port. This allows the measurement of impedance for devices with 14 mm precision coaxial connectors.

The estimation procedures for the parameters and associated uncertainties described in this report assume that the errors are random (see sect. 5.2). However, application of the method on actual data indicates that this is probably not the case. The propagation of error formula used to estimate the various standard deviations; i.e., $S(r_{2u})$ and $S(Z_{2u})$ depend on the nature of

randomness in these errors. While in actuality these uncertainty estimates are reasonable bounds based on practical considerations, they do not have the same interpretation statistically, as if the errors were random.

The major contribution to the systematic error is from the uncertainty in the values of the standards. Recall in section 5.2 it was assumed this error is negligible. Examination of the error limits for the values of the standard indicate that this error is not negligible as in many cases it is the same order of magnitude as the residual standard deviation computed from eq (6-2) and given in table 3.

For example, at 1 MHz the computed residual standard deviation given in table 3 is 0.00096. In the event the errors are random this is an estimate of the "average" error in Γ_{1i} or the measured reflection coefficient. However, we see from table 4 that the uncertainties for the real and imaginary parts of the standard reflection coefficient values for the inductor are the same order of magnitude (0.00025 to 0.00108). It is beyond the scope of this paper to address how to accommodate the errors in the standards. This will be done in future work.

At this point it is not clear how the procedure, even if successful, might be utilized and made practical to the measurement community. A requirement to use the procedure would be computer capable of solving nonlinear systems of equations. Additionally, future work should be done to detrmine the minimum number of standards needed at each frequency to carry out a reliable calibration.

We wish to acknowledge the help given us by Cletus A. Hoer who suggested the theoretical approach that was used in developing this procedure and also the assistance of Stanley R. Booker of the Sandia Corporation, Albuquerque, New Mexico, for a great deal of technical support and advice during the work. Finally, we acknowledge the support of the Sandia Corporation which funded the project and thank them for it.

9. References

- [1] Maeda, K.; Narimatsu, Y. Multifrequency LCR meters test components under realistic conditions. Hewlett-Packard J. pp. 24-31; 1979 February.
- [2] Jones, R. N. Evaluation of three-terminal and four-terminal pair capacitors at high frequencies. Nat. Bur. Stand. (U.S.) Tech. Note 1024; 1980 September.
- [3] Kerns, D. M.; Beatty, R. W. Basic theory of waveguide junctions and introductory microwave network analysis. New York: Pergamon Press, pp. 36, 37; 1967.
- [4] Donaldson, J. R.; Tryon, P. V. Nonlinear least squares regression using STARPAC. Nat. Bur. Stand. (U.S.) Tech. Note 1068-2; Oct. 1983.
- [5] Ku, H. H. Notes on the use of propagation of error formulas. Nat. Bur. Stand. (U.S.) J. Res. 70C(4); 1966. Reprinted in KU; 1969.

Appendix A. FORTRAN Program Listing

PAGE

84/05/01. 11.17.43

FTN 4.8+552

DMUMO

OPT=1

74/175

DPUGRAM LCR

74/175

```
CALL NLSS(Y) XM,NN,1,20,MUDFL,COEF,6,RES,LOSTAK,-1,-1,00,-1,-1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WPITE(6,9) DEVICE(I),ZYM(INDX(I)),ZHAT(INDX(I)),RESZ(INDX(I)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1XM(INDX(I),1),XS(INDX(I)),SORT(VCVXHAT(1,1,1)),DIFG(INDX(I)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     12xH(INDX(I),)),2S(INDX(I)),SORT(VCV7(1,1),)),DIFZ(INDX(I)),
2 7YH(INDX(I),1),ZHAT(INDX(I),1),RESZ(INDX(I)+1),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7 FORMAT(* **/** **A10,7(3x, F9.5, 3x), / / * * + 10x, 7(3x, F9.5, 3x), / )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Y(INDX(I)+1), GHAT(INDX(I)+1), RES(INDX(I)+1),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE(6,7) DEVICE(I), Y(INDX(I)), GHAT(INDX(I)), RES(INDX(I)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2*RESIDUAL+,7X, *STANDARD+,7X, *STANDARD+,7X, +DEV1ATION+,6X,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          9 FORMAT(+ +,/++ +, Aln, 7(F14,5,1X), /+ +,10X,7(F14,5,1X),/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1+STANDARD+0/0+ +012xo+LCR READING+04xo+LCR READING+06xo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6 FORMAT( + +, //, + +, 28x, +PREDICTED+, 37x, +ESTIMATED+,7x,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3XM(IND Y(I)+1,1),XS(INDX(I)+1),SQRT(VCVXHAT(2,2,1)),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    32xM(TNDX(I)+1,1),2S(INDX(I)+1),SORT(VCVZ(2,2,1)),
                                                                                                             1-1.0-1.0-1.01011112060RSD0PV0SOPV0SOPV0SORESDVCV06)
                                                                                                                                         CALL PREPREICGEF, Y, XM, N, VCV, RSD, XHAT, VCVXHAT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOPMAT(1H1,27X,*REFLECTION COFFFICIENT*,//)
                                                                                                                                                                     CALL PRERRZIN, XHAT, VCVXHAT, ZXHAT, VCVZ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8 FORMAT(141,1/4 +,34x,+IMPEDANCE+,1/1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL IMPEDIGHAT, ZHAT, NONN, INDX)
                                                                                                                                                                                                                                                                                                                                                    ZS(IND+1) - AIMAG(ZXHAT(I))
                                                                                                                                                                                                                                                                                            XS(IND+1) - AIMAG(XHAT(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DIF2(I) = ZXM(I_p1) - ZS(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DIFG(I) = XM(I_JI) - XS(I)
                                                                                                                                                                                                                                                                                                                   2S(IND) - REAL(ZYHAT(T))
                                                                                                                                                                                                                                                                XS(IND) . PEAL(XHAT(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RES7(I)=ZYM(I)-ZHAT(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                        GMAT(I) -Y(I) -RES(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4DIFG(INDX(I)+I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4DIFZ(INDX(I)+I)
CUFF (5) = DAR (4)
                           CHEF (5)=PAR(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3 + DIFFERENCE+)
                                                                                                                                                                                                   Nel-1 001 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00 20 I-1, NN
                                                                                                                                                                                                                                                                                                                                                                                                              OU 12 I-1, NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00 40 Islan
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 30 I-1,N
                                                       WRITE(4,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WRITE (6,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         VRITE(6,8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WRITE (6,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VRITE(6,6)
                                                                                                                                                                                                                               I-1+2-UNI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             30 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          40 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                                                                                                  100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      12
                              9
                                                                                                                                                                                                                                                                                                                      10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                100
                                                                                                                                                                          6.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                105
```

SURROUTINE REFL	L 74/175 OPT-1	PMOMP	FTN 4.8+552	84/05/01. 11.17.43	PAGE
	SURRDUTINE REFL(Y, XH, GY, GX, N, NN, IND)	M.GY, GX, N, NA, IND)			
	COMPLEX CZX(10),CZV	»XM(NN»1)»GY(Nu)»GX(NN»1)»IND(N) »C?Y(10)»GAMAX»GAMAY»ZO	2		
II.	IND(I)=5+(I-I)+1				
	CZY(I)=CMPLX(Y/IND()	CZ*(I)=CMPL*(*M(IND(I))*X*(IND(I)+I*I)) CZ*(I)=CMPL*(Y(IND(I))*Y(IND(I)+I))			
31	10 CONTINUE 20=CMPLX(50=00)				
10	DO 20 I = I v				
	GAMMAY=(CZY(I)-ZO)/(CZY(I)+ZO)	(CZ4(I)+20)			
	GX(IND(I), 1) = REAL(G	AL (GAMMAX)			
	GX(IND(I)+1,1) =AIMA(AIMAG (GAMMAX)			
13	GY(IND(I)) = REAL (GARMAY) CY TYD (I) + 1 1 A I				
20					
	RETURN				
	END				

8	SUSRDUTINE IMPER	LWDER	74/175 DPT=1	nor-1	and Lond	FIN 4.9+552	84/05/01. 11.17.43	PAGE	= 1
~		SURR	UBROUTINE IMPEDITY DIMENSION Y(NN) > Z	NA) » Z (N	DIMENSINE IMPED(Y,Z,N,N,N,IND)				
BD.		00 10 18 IND(1) = 2 + CV(1) = 2 + CV(1) = CV	CCT 10 I = 1, WC (CCT))+1 Y(IND()	CCTTCT				
10		200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZO=CMPLX(50,00.) DO 20 I=1,N ZY=ZO+(1.+CY(1))/(1 Z(IND(1))=REAL(ZY)	1))/(1:	CY(I))				
15		20 CONTINUE PETURN FND	IINUE						

	SYBROUTING MODEL		74/175 OPT	p T = 1	O M C M O	FTN 4.8+552	84/05/01. 11.17.43	PAGE
н		SUBROUTINE MODEL(COEF,NCOEF, PEAL COFF(5),XM(NN,1),PV(NN)	470E	L (COEF	COEF, NCOEF, XM, NN, M, IXM, PV)			
NO.		DD 5 I=1.NN.2 AYRR COEF(1) AXII COEF(2) AXIR COFF(2) AXRR COFF(2)	N.2 F(1)* F(2)* F(2)*	X X X X X X X X X X X X X X X X X X X	1) 1,1) 1,1)			
10		CXRR = CDEF(5) + x + (1p1) CXII = CDEF(6) + x + (1+1p1) CXRI = CDEF(5) + x + (1+1p1) CYIR = CDEF(6) + x + (1p1) BP = CDEF(3)	F(5)* F(5)* F(5)*	1	1) 1,1) 1,1)			
FT		BI=COFF(4) CREAL=CYPR-CXII+1 CIMAG=CXIR+CXRI PV(I)=((AXRR-AXII 1/(CRFAL++2 + CIMA	+C × I I + C × I I + C × C I	+1.0 II+BR)# MAG++2)	+0 +BR)*CREAL+(AYIR+AXRI+BI)*CIMAG G**2)	MAG)		
2.0		PV(I+1)=((AXIR+AX 1/CREAL++2 + CIMA 5 CONTINUE 8 ETURN END	A X I R + C I + C I	A X R I + 8] M A G + # 2)	(R] + 9 I)	CIMAGO		

PAGE

```
NIMENSIAN 9P&P(6),Y(20),Y(20),VCV(6,6)
NIMENSIAN 8JAK(2,9),OF1(2,8),SIG(8,8),SIGX(2,2),VCVXHAT(2,2,10)
CAMPLEX A,B,C,YC(10),ANUM,DEN,XC(10),XHAT(10)
SUGROUTINE PREPRG (BPAR, Y, X, N, VCV, PSD, XHAT, VCVXHAT)
                                                                                                                                                                                                                                                                                             = (-YC(I)*(B-YC(I)))/(DEN**2)
                                                                                                                                             IND = 2*(I-1)+1
YC(1) = CMPLX(Y(IND),Y(IND+1))
                                                             COMPLEX DXDA, DXDA, DXDC, DXDY
                                                                              A = CMPLX(9PAP(1), RPAR(2))
                                                                                              R = CMPLX(RPAR(3), RPAP(4))
C = CMPLX(RPAR(5), BPAP(5))
                                                                                                                                                                                                                                                                                                             DXDY = (A - 8*C)/(DEN++2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -AIMAG(DXDA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - - AIMAG(DXDC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -AIMAG(DXDR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RJAK(1,4) = AIMAG(DXDR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            - AIMAG(DXDC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - AIMAG(DXDA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RJAK(2,4) = REAL(0X0B)
RJAK(1,5) = REAL(0X0C)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - REAL(DXDA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            - REAL (DXDB)
                                                                                                                                                                                                                                                             DXDA = ANUM / (DEN##2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . REAL(DXDA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SIG(J+5,J+6) = RSD**2
                                                                                                                                                                                                                                            XHAT(I) - ANUM / DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                             SIG(J,K) = VCV(J,K)
                                                                                                                                                                                                                                                                              DXD9 = 1. / DEN
                                                                                                                                                                                                                               DEN = YC(I)*C-A
                                                                                                                                                                                                                                                                                                                                                             SIG(J,K) = 0.0
                                                                                                                                                                                                              ANUM . B-YC(I)
                                                                                                                            00 10 I ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RJAK (2,3) =
                                                                                                                                                                                             N 41 = 1 02 UÚ
                                                                                                                                                                                                                                                                                                                                             no 40 4=1,8
                                                                                                                                                                                                                                                                                                                                                                                                                            DD 60 K-1,6
                                                                                                                                                                                                                                                                                                                              00 30 3 11 8
                                                                                                                                                                                                                                                                                                                                                                                                               On 50 J=1,6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00 70 J=1,2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RJAK (2,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RJAK(1,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RJAK (1,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RJAK(2,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9 JAK (1,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RJAK (1,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RJAK (2,5)
                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINIE
                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                               DXDC
                                                                                                                                                                                                                                                                                                                                                                               90
                                                                                                                                                                                10
                                                                                                                                                                                                                                                                                                                                                                                                                                                               50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               40
                                                                                                                                               10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                30
                                                                                                                                                                                                                                                                                                                20
                                                                                                                                                                                                                                                                                                                                                                                               23
```

CALL VYULFP (DF1, RJAK, 2, 8, 2, 2, 2, SIGX, 2, IER) CALL VMULFF(RJAK,SIG,2,8,8,2,8,0F1,2,1ER)

00 80 1-1,9

-AIMAG(DXNY)

RJAK(2,7) = -AIMAG(DXP) RJAK(2,8) = PEAL(DXDY)

0.00

RJAK(1,8) = AIMAG(DXNY)

- REAL (DXDC)

RJAK (2,6)

P JAK (1,7)

PEAL (DYDY)

VCVXHAT(Jakal) = SIGX(Jak)

90 CONTINUE 80 CONTINUE 20 CONTINUE

~

PAGE

Appendix B. Printout from Program for Data at 1 MHz

SUMMARY OF INITIAL CONDITIONS

CRITERIA						
SELECTION R						
ROW NUMBER				0		~
ROW			10	~	*	ന
FAILING NOTES F C						
COUNT NOTES ROW NUMBER	0	C		2	~	2
STEP SIZE FOR APPROXIMATING DERIVATIVE (STP)	.24177224E-04	.24177224F-04	.24177224E-04	.24177224E-04	.24177224F-04	.24177224E-04
SCALE (SCALE)	DE FAULT	DEFAULT	DEFAULT	DEFAULT	DEFAULT	DEFAULT
PAPAMETER STARTING VALUE FIXED (PAR)	.99983286	21787324E-02	64927592F-03	.66179193E-03	12051309E-02	11060094E-02
FIXED	CN	ON	C.S.	Č.	Š	ON
PAPAME INDEX FIXED	-	2	m	•	30	c

NOTES. A PLUS (+) IN THE COLUMNS HEADED F OR C HAS THE FOLLOWING MFANING.

F - NUMMER OF OBSERVATIONS FAILING STEP SIZE SELECTION CRITERIA EXCEEDS NUMBER OF EXEMPTIONS ALLOWED.

C - HIGH CURVATURE IN THE MODEL IS SUSPECTED AS THE CAUSE OF ALL FAILURES NOTED.

NUMBER OF RELIABLE DIGITS IN MODEL RESULTS PROPORTION OF OBSERVATIONS EXEMPTED FROM SELECTION CRITERIA	(NETA)	13
NUMBER OF DASERVATIONS EXEMPTED FROM SELECTION CPITERIA		2
NUMBER OF OBSERVATIONS NUMBER OF INDEPENDENT VARIABLES	Ē Ē	20
MAXIMUM NUMBER OF ITERATIONS ALLOWED	(HIT)	21
MAXIMUM NUMMER OF MODEL SUBROUTINF CALLS ALLOWED		4.2
CONVERGENCE CRITERION FOR TEST GASED ON THE		
FORECASTED RELATIVE CHANGE IN RESIDUAL SUM OF SOUARES MAXIMUM SCALED RELATIVE CHANGE IN THE PARAMETERS	(STOPSS)	.3696E-09
MAXIMUM CHANGE ALLOWED IN THE PAPAMFTERS AT THE FIRST ITERATION	(OFLTA)	100.0
PESTOUAL SUM OF SOUARES FOR INPUT PAPAMETER VALUES		.1298E-04
RESIDUAL STANDARD DEVIATION FOR INPUT PARAMETER VALUES	(050)	.9527E-03

RESULTS FROM LEAST SOUARES FIT

STO	61	1.17	1.18	000	040-	21	1.15	.10	.89	.74	•25	-2.93	-1.13	•23	90.	.52	50
RESIDUAL	45679892E-03	.10456500E-02	.10572545E-02	38943048E-03	31648677E-03	13772847E-03	.75480679E-03	.82323014E-04	.71695563E-03	.62295851E-03	.21341790E-03	24161078E-02	93175282E-03	.17715874E-03	.45399380E-04	.41470102E-03	39555772E-03
STD DEV OF PRED VALUE	. 60367921E-03	.36064664E-03	. 35864060E-03	. 55500617E-03	.55500581E-03	.70372369E-03	. 70372139E-03	.53010822E-03	.53010912E-03	.47043147E-03	.47043062E-03	. 49493393E-03	.49493610E-03	.56055822E-03	.56055606E-03	.54083506E-03	.54083670E-03
PREDICTED VALUE	99927342 .39404579E-02	39579124E-03	.33200570 82270156E-13	1 .0003890	10407335E-32	.81958042	57391594	96628358	.24174132	81493357	. 56735335	44587659	. 88574987	.17347613	.97641824	.79379523	.59880858
DEPENDENT VAPIABLE	99973022	.64995881E-03	.33305296	• 99999955	13572203E-02	.81944269	57315113	96620135	.24245B2B	A1431050	.56755677	44829270	. 68491912	.17365329	.97646364	.79420993	.59841302
PREDICTOR VALUES	-1.000000	.25069907E-03 .87256300E-03	.3325780A RR145107F-03	0666666	6289307AE-03	.82015993	57213590	-,96798761	*23859994	81709247	. 56573844	44740355	.88546218	.17351279	.97491212	.79399708	.59853145
R O V	1 2	m •¢*	€0 ×6		œ.	0	10	11	12	13	14	3	16	17	18	19	20

VARIANCE-CHVAPIANCE AND CHRPELATINY MATRICES OF THE ESTIMATED (UNFIXED) PARAMETERS

SMALL	
ARF	
RESIDUALS	
THAT	
NULLAMINS	HE DIAGONAL
NC	11 3/
ASED	A 9 0 \
α	U.
ADDROXIMATION RASED ON BSSUMPTION THAT RESIDUALS ARE SMALL	COVARTANCES APE ABOVE THE DIAGONAL
1	0

- VARIANCES ARE ON THE DIAGONAL - COPRELATION COEFFICIENTS ARE BELOW THE DIAGONAL

٠	7599177E-07 .3220294E-08 .3119581E-07 .6180738E-07 7721998E-12
ar.	.3220987E-08 .7598968E-07 .5180503E-07 3119581E-07 .1693838E-05
•	6232540E-07 1159842E-07 .172646E-12 .1301910E-06 2100809
m	1158859E-07 .6232449E-07 .130804E-05 .1326345E-05 .4162191
~	.1397059E-12 .1407413E-06 .4308450 8011901E-01 .4605280 .1951609E-01
	.1607426E-06 .8691315E-06 8011101E-01 4308498 .1952035E-01 4605346
COLUMN	in com of to co

ESTIMATES FROM LEAST SQUARES FIT

DENCE LIMITS Upper	1,0006926	•12563700E-03	.14355382E-02	32114407E-03	22341931E-03			
APPROXIMATE 95 PERCENT CONFIDENCE LIMITS LOWER	.99997252	14223313E-02	11243340E-03	20968776E-02	19891648E-02			
RATIO	2494 .	-1.797	1.834	-2.925	-2.688	.1297513E-04	.9627019E-03	489
SO OF PAP	.40092712E-03	.350A0526E-03	.36080602E-03	.41156255E-03	.41156543E-03	.1297	. 9627019E	1.351489
PARAMETER	. 99983257	64834716E-03	.66155239E-03	12040108F-02	11062920F-02	RESIDUAL SUY OF SOUARES	RESIDUAL STANDARD DEVIATION BASFO ON DEGREES OF FPFEDOM	APPROXIMATE CONDITION NUMBER
FIXED	2 2	Ž	ON	0	DN	SU4	STAN	ATE C
INDEX		u en	*	20	•	RES IDUAL	RESIDUAL BASED ON	APPROXI

LCP RFADING	PPENICTED SING LCP READING	RESIDUAL	STANDAPD	ESTIMATED STANDARD	STANDARD	DIFFERENCE
99973 .00478	73 99927 78 -00394	00046	-1.00000	-1.00046	.00114	9 9000
.00065	00040 00153	• C0105 -• 00099	.00025	.001130	.00103	00105
.33306	.33291 7500082	•00100	.33248 00088	.33363	.00103	00106
1.00000	1.00039	00039	1.00000	.99961	.00111	. 00039
.81944	.81959 .1657392	00014	.82016	.82032 57139	.00110	.00014
95620	06628 46 .24174	.00006	96789	96781	.00119	00008
81431 -56757	31 81493 57 . 56735	.00062	81709	81647	.00126	00062
44829 .88482	29 44588 92 88575	00242	. 88586	44983 68492	.00133	*0000
.17355	.17348 46 .97542	.00008	.17351	.97696	.00132	00018
.59841	21 .79380 41 .59881	.00041	.59853	.79441	.00120	00041

DIFFERENCE	.01155	-10504	23759	-37202.87638	15153	.00241	01081	.00940	.00453	.02074
STANDARD	.02849	.10309	.23120	106217.48951	.30698	.03018	.03477	•04606	.08058	.29879
ESTIMATED Standard	01155	50.13004	100.05759	37202.87638 -90523.73256	.15153 -159.21556	.07729 5.09026	.18061	.25240 30.67235	.46987 59.67123	1.39296
STANDARD	00000000	50.02500 .08730	99.83000	0.00000-	0.00000	.07970	.16980	.26190 30.76200	.47440	1.41370
RESIDUAL	01152	.10480	.23735	31535,33570 19628,54609	.15080	00240	.01080	0,00040	00453	02083
PREDICTED LCP READING	.01798 .09858	49.95025	99.70165 18439	-31561.05570 -84308.54609	-158.57066	.10010	.19350	.28940 30.80749	.50453 59.65378	1.41083
LCR PEANING	.1194	30.05500 .05400	99.93900	-25.72000	0.00000	.09770	.20430	.28000	.50000 59.67400	1.39000
	SHORT	90 DHM	100 DHM	DPEN	1000 PF	1 MICRO H	2.5 MICROH	S MICRO H	10 MICRO H	25 MICRO H

Appendix C. Printout from Program for Data at 10 MHz

SUMMARY OF INITIAL CONDITIONS

OBSERVATIONS FAILING STEP SIZE SELECTION CRITERIA COUNT NOTES ROW NUMBER F C		
OBSERVATION COUNT	00000	,
STEP SIZE FOR APPROYIMATING DERIVATIVE (STP)	.30331054E-04 .30331054E-04 .30331054E-04 .30331054E-04	
SCALE (SCALE)	DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT	
PARAMETER STARTING VALUE Fixen (Par)	.99873452 24129722E-01 51155919E-02 .85197609E-02 71569793E-02	
PARAMET INDEX FIXEN		
INDE	まとうみちら	,

NOTES. A PLUS (+) IN THE COLUMNS HEADED F OR C MAS THE FOLLOWING MEANING.

F - NUMBER OF OBSERVATIONS FAILING STEP SIZE SELECTION CRITERIA EXCEEDS NUMBER OF EXEMPTIONS ALLOWED.

C - HIGH CURVATURE IN THE MONEL IS SUSPECTED AS THE CAUSE OF ALL FAILURES NOTED.

DEL RESULTS • TED FROM SELECTION CRITERIA FROM SELECTION CRITERIA	(EYMPT)	13 1000 14
JUMBER OF INDEPENDENT VARIABLES JAXIMIM NUMBER OF ITERATIONS ALLOWEN	(M)	1 21
NAXIMUM NUMBER OF MODEL SUBROUTINE CALLS ALLOWED::ONVERGENCE CRITERION FOR TEST BASED ON THE		45
FORECASTED 9 ELATIVE CHANGE IN RESIDUAL SUM OF SQUARES MAXIMUM SCALED RELATIVE CHANGE IN THE PARAMETERS ((STOPSS)	.3696E-09
MAXIMUM CHANGE ALLOWED IN THE PARAMETERS AT THE FIRST ITERATION ((DELTA)	100.0
ESIDUAL SIJM OF SQIJARFS FOR INPIJT PARAMETER VALUFS		.6492E-04
ESIDUAL STANDARD DEVIATION FOR INPUT PARAMETER VALUES	(RSD)	. 2849E-02

PESULTS FROM LEAST SOURES FIT

STD	92	1.69	1.27	•21	1.22	0.05	17	71	.62	-1.21	-2.25	640	-1.00	•32
RESIDUAL	18654146E-02	.34038080E-02	.33312928E-02	.54982648E-03	·31723681E-02	.13013620E-03	34251833E-03	14425641E-02	.12983821E-02	25155072E-02	35918635E-02	73439952E-03	19022466E-02	.60880009E-03
STD DEV OF PRED VALUE	. 201114495-02	.20111434F-D2	.11021767E-02	.110217818-02	.11504787E-02	.1150479DF-02	. 20091553E-02	.200914326-02	.194184776-02	.19418407E-02	.23289248E-02	.23289090F-02	.21282573E-02	.21282429E-02
PPEDICTED VALUE	99 F80455	.42051669E-01	44704050E-D2	.85315732E-02	.32804819	40460R3BE-02	1.0002995	12306616E-01	85066159	52138041	. 23499662	. 96908845	. 40882137	91320074
DEPENDENT Vapiable	99767008	.45465477E-01	11391122E-02	.90813997F-02	• 331220 ⁵ 5	39159476E-02	66946666.	13749280E-01	84936330	52389592	.23130475	.96835405	.40691912	91259194
PREDICTOR VALUES	-1.0000000	•0	.63959152E-03	*29362404E-04	• 43306858	55492532E-02	• 99999026	52P33184E-02	82755292	5613A771	.22774248	.97323461	.43364350	90108452

VARIANCE-COVARIANCE AND CORRELATION MATRICES OF THE ESTIMATED (UNFIXED) PARAMETERS

- APPPORTMATION BASED ON ASSUMPTION THAT PESTOUALS ARE SMALL

- COVARTANCES ARE ABOVE THE DIAGONAL
 VARIANCES ARE ON THE DIAGONAL
 CORRELATION CORREST

	7
	ê
	<u> </u>
	F DIAGONA
	Ŀ
	-
	3
	2
	9.6
١	
•	2
THE PARTY OF THE P	S ARE BELOW THE
ī	S
•	느
3	屲
u	=
	ပ
-	=
,	11
5	3
	C
4	U
,	7
	ō
3	-
4	5
;	3
7	E
4	œ
	2
•	CHRRELATION CHEFFICIENTS
	-

•	.1895180E-05 4039527E-07 1248654E-06 .2536751E-06 .3730892E-11
5	4038790E-07 1895193E-06 .2535655E-06 .1248670E-06 .1702873E-05
*	.1479292E-06 6585402E-07 5537708E-12 .1214662E-05 .8681469E-01
m	6695297E-07 1479238E-05 1214859E-05 4458308E-06 .1763629
2	7512985F-12 -152217F-05 1053709 4752222E-01 1140270 2430442E-01
1	.1622216E-05 4631309E-06 4762125E-01 .1053718 242997E-01
COLUMN	ଳାର୍ଗଟ୍ଟେସ

ESTIMATES FROM LEAST SQUARES FIT

APPROXIMATE 95 PERCENT CONFIDENCE LIMITS LOWER		-,76550154E-02 -,25539855E-02 .59721852E-02 .11063221E-01 -,10170564E-01 -,41431112F-02	12745933E-01			
RATIO	783.7	7.728	-7.458	.5491691E-04	.2848616E-02	105
SD OF PAR	.12736625E-02 .12736627E-02	.11022064E-02 .11022078E-02 .13049417E-02	.13049409E-02	1649*	.28486161	1,213105
PARAMETER	.99823133 24153616E-01	51095004E-02 .85177033E-02 71568377E-02	97322083E-02	OF SOUARES	RESIDUAL STANDARD DEVIATION BASED ON DEGREES OF FREEDOM	APPROXIMATE CONDITION NUMBER
FIXED	ZZ	C C C	Z		L STANE	MATE C.
TNDEX	4 2	en op en	. •0	RESIDUAL SUM	RESTOUA BASED G	APPROXI

	LCP READING	PREDICTED LCR PFADING	PESIDUAL	STANDARD	ESTIMATED STANDARD	STANDARD DEVIATION	DIFFERENCE
SHORT	99767	.04206	00197	-1.00000	-1.03234 .00337	.00354	.00204
90 0HM	.000114	.00853	.000333	.0000	.03396 .03065	00306	00332
100 DHM	.33122	.32805 00405	.00017	00557	.33623 00538	.00306	00316
OPEN	. 999995	1.30029	00034	.00628	.99965	00344	.00033
1000 PF	84936	85066	.00130	82755	62613 56384	.00363	00142
1 MICRO H	. 23130 . 96835	.23500	00369	.22774	.22399 .97245	.00359	.000375
200 PF	.40692	.40882	00190	.43364 90108	.43177	.00359	.00188

OIFFERENCE	26 .05119	3433372	71417	51 -539.75235 79 -2970.34043	24 .00564 24 .07747	98 10304 98 225534	-11466
STANDARD	.08826	.30834 .30834	.69511	5778.92551 5778.92379	.09924 .09924	.23198	.31685
ESTIMATED STANDARD	05119 .09415	50.39772	100.64417	519,75235	00554	.13374 62.82565	.11466
STANDARD	000000000000000000000000000000000000000	50.06400 .00294	99.93000	0.00000	0.00000	.03070 63.05100	00000 0
RESIDUAL	05046 08320	.33023 .06048	.02057	219.08952 848.21622	00568 07639	.10234 22436	11246
PRENICTED LCP READING	.09286 1.05550	49.54777	98.81480 89507	-241.04952 -8121.21522	.06137	.18513	04523
LCR READING	.C3240 1.13870	49.87800	99.52100	-21.96000 -7273.00000	.05569	.28747	.06723
	SHORT	90 OHM	100 DHM	OPEN	1000 PF	1 MICRO H	200 PF

NBS-114A (REV. 2-8C)	r							
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA	1. PUBLICATION OR REPORT NO.	2. Performing Organ. Report No.						
SHEET (See instructions)	NBSIR 84-3016		August 1984					
4. TITLE AND SUBTITLE A Generalized Metho Impedance Meters	od for the Calibration	of Four-Terminal-Pair	Type Digital					
5. AUTHOR(S)								
R. M. Judish and R.	. N. Jones							
6. PERFORMING ORGANIZA	TION (If joint or other than NBS	, see instructions)	7. Contract/Grant No. Sandia document					
NATIONAL BUREAU OF	STANDARDS		No. 52-7865					
DEPARTMENT OF COMM	ERCE		8. Type of Report & Period Cov	ered				
WASHINGTON, D.C. 2023	4		4-19-83 to 9-30-83					
		DDRESS (Street, City, State, ZIP,						
Sandia National Lab		•						
Albuquerque, New Mo	exico							
10. SUPPLEMENTARY NOTE	S							
		S Software Summary, is attached.						
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)								
Since the introduct	ion of automated fou	r-terminal-pair type di	gital impedance					
motors there has h	een a continuing inte	rest in the development	of calibration tech-	-				
I niques which would	satisfactorily verify	the accuracy capabilit	lies of these instru-					
dogree of confidence	e in instrument perfo	and all have helped to rmance, but until now,	a generalized approac	ch				
with a good mathema	tical and statistical	background has been la	acking. Into paper					
describes a calibra	ition procedure having	such a background and	illustrates its use.					
describes a calibration procedure having such a background and illustrates its use. The calibration is accomplished through the use of impedance standards which relate instrument readings to the values of the standards through a known functional rela-								
I tionship The cali	bration procedure des	cribed estimates the pa	arameters associated					
with the functional	relationship and red	uires the use of a comp	outer. Calibration is	S				
accomplished at the	e reterence plane of t the standards to the	he impedance standards instrument is assumed	to be an integral par	rt				
of the impedance me								
		-viaglino and benegation	senarate key words by semicola	ns)				
12. KEY WORDS (Six to twelv	re entries; alphabetical order; c	apitalize only proper names; and s mpedance; least-squares	s: measurement;	,				
reflection coeffic	cient; uncertainty	inpedance, reast squares	,, incasar ement,					
13. AVAILABILITY			14. NO. OF PRINTED PA	GES				
XX Unlimited			60					
	tion. Do Not Release to NTIS	nment Printing Office, Washington	D.C.					
20402.	naent of Documents, U.S. Gover	minorit i rinting Office, mashington	15. Price					
Order From National	Technical Information Service (NTIS), Springfield, VA. 22161	\$10.00					

