Linear Algebra Done Right Solutions

Axler. S. (2024) Linear Algebra Done Right. 4th edn. February 21, 2024

Contents

1. Vector Spaces	1
1.A. \mathbb{R}^n and \mathbb{C}^n	1
1.B. Definition of Vector Space	5
1.C. Subspaces	10

Chapter 1. Vector Spaces

1.A. \mathbb{R}^n and \mathbb{C}^n

Exercise 1.A.1. Show that $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in \mathbb{C}$.

Solution. If $\alpha = x + yi$ and $\beta = u + vi$, then

$$\alpha + \beta = (x + u) + (y + v)i = (u + x) + (v + y)i = \beta + \alpha,$$

where we have used the commutativity of addition in \mathbf{R} .

Exercise 1.A.2. Show that $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ for all $\alpha, \beta \in \mathbb{C}$.

Solution. If $\alpha = x + yi$, $\beta = u + vi$, and $\lambda = s + ti$, then

$$(\alpha + \beta) + \lambda = ((x+u) + (y+v))i + \lambda = ((x+u) + s) + ((y+v) + t)i$$
$$= (x + (u+s)) + (y + (v+t))i = \alpha + ((u+s) + (v+t)i) = \alpha + (\beta + \lambda),$$

where we have used the associativity of addition in \mathbf{R} .

Exercise 1.A.3. Show that $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Solution. If
$$\alpha = x + yi$$
, $\beta = u + vi$, and $\lambda = s + ti$, then
$$(\alpha\beta)\lambda = [(xu - yv) + (xv + yu)i]\lambda$$

$$= [(xu - yv)s - (xv + yu)t] + [(xu - yv)t + (xv + yu)s]i$$

$$= [(xu)s - (yv)s - (xv)t - (yu)t] + [(xu)t - (yv)t + (xv)s + (yu)s]i$$

$$= [x(us) - x(vt) - y(ut) - y(vs)] + [x(ut) + x(vs) + y(us) - y(vt)]i$$

$$= [x(us - vt) - y(ut + vs)] + [x(ut + vs) + y(us - vt)]i$$

$$= \alpha[(us - vt) + (ut + vs)i]$$

$$= \alpha(\beta\lambda),$$

where we have used several algebraic properties of \mathbf{R} .

Exercise 1.A.4. Show that $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbb{C}$.

Solution. If $\alpha = x + yi$, $\beta = u + vi$, and $\lambda = s + ti$, then $\lambda(\alpha + \beta) = [s(x + u) - t(y + v)] + [s(y + v) + t(x + u)i]$ = (sx + su - ty - tv) + (sy + sv + tx + tu)i= [(sx - ty) + (sy + tx)i] + [(su - tv) + (sv + tu)i] $= \lambda\alpha + \lambda\beta.$

where we have used distributivity in \mathbf{R} .

Exercise 1.A.5. Show that for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha + \beta = 0$.

Solution. Suppose that $\alpha = x + yi$. Let $\beta = -x - yi$ and observe that

$$\alpha + \beta = (x - x) + (y - y)i = 0 + 0i = 0.$$

To see that β is unique, suppose that β' also satisfies $\alpha + \beta' = 0$ and notice that

$$\beta = \beta = 0 = \beta + (\alpha + \beta') = (\alpha + \beta) + \beta' = 0 + \beta' = \beta',$$

where we have used the associativity of addition in C (Exercise 1.A.2) and the commutativity of addition in C (Exercise 1.A.1).

Exercise 1.A.6. Show that for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha\beta = 1$.

Solution. Suppose that $\alpha = x + yi$. Since $\alpha \neq 0$, it must be the case that x and y are not both zero, so that $x^2 + y^2 \neq 0$. Let $\beta = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$ and observe that

$$\alpha\beta = (x+yi)\left(\frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i\right) = \frac{x^2+y^2}{x^2+y^2} + \frac{xy-xy}{x^2+y^2}i = 1 + 0i = 1.$$

To see that β is unique, suppose β' also satisfies $\alpha\beta'=1$ and notice that

$$\beta = \beta 1 = \beta(\alpha \beta') = (\alpha \beta)\beta' = 1\beta' = \beta',$$

where we have used the associativity of multiplication in \mathbf{C} (Exercise 1.A.3) and the commutativity of multiplication in \mathbf{C} (1.4).

Exercise 1.A.7. Show that

$$\frac{-1+\sqrt{3}i}{2}$$

is a cube root of 1 (meaning that its cube equals 1).

Solution. Let $z = \frac{-1+\sqrt{3}i}{2}$, so that $2z = -1 + \sqrt{3}i$. Observe that

$$(2z)^2 = 4z^2 = (-1 + \sqrt{3}i)^2 = 1 - 2\sqrt{3}i - 3 = -2 - 2\sqrt{3}i$$

$$\Rightarrow (2z)^3 = (4z^2)(2z) = (-2 - 2\sqrt{3}i)(-1 + \sqrt{3}i) = 2 - 2\sqrt{3}i + 2\sqrt{3}i + 6 = 8,$$

i.e. $8z^3 = 8$. It follows that $z^3 = 1$.

Exercise 1.A.8. Find two distinct square roots of i.

Solution. Let $z_1 = \frac{1+i}{\sqrt{2}}$ and $z_2 = -z_1$ (z_1 and z_2 are distinct since $z_1 \neq 0$) and observe that

$$2z_1^2 = (1+i)^2 = 2i \implies z_1^2 = i,$$

i.e. z_1 is a square root of i. Furthermore, $z_2^2 = (-z_1)^2 = z_1^2 = i$, so that z_2 is a square root of i also.

Exercise 1.A.9. Find $x \in \mathbf{R}^4$ such that

$$(4, -3, 1, 7) + 2x = (5, 9, -6, 8).$$

Solution. The unique solution is $x = (\frac{1}{2}, 6, -\frac{7}{2}, \frac{1}{2})$.

Exercise 1.A.10. Explain why there does not exist $\lambda \in \mathbb{C}$ such that

$$\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i).$$

Solution. If there was such a λ , then

$$\lambda(2-3i) = 12-5i \implies \lambda = \frac{12-5i}{2-3i} = 3+2i.$$

However,

$$(3+2i)(-6+7i) = -32+9i \neq -32-9i.$$

3

Exercise 1.A.11. Show that (x + y) + z = x + (y + z) for all $x, y, z \in \mathbf{F}^n$.

Solution. If
$$x = (x_1, ..., x_n), y = (y_1, ..., y_n)$$
, and $z = (z_1, ..., z_n)$, then
$$(x + y) + z = (x_1 + y_1, ..., x_n + y_n) + z = ((x_1 + y_1) + z_1, ..., (x_n + y_n) + z_n)$$
$$= (x_1 + (y_1 + z_1), ..., x_n + (y_n + z_n)) = x + (y_1 + z_1, ..., y_n + z_n) = x + (y + z),$$

where we have used the associativity of addition in \mathbf{F} (we proved this for \mathbf{C} in Exercise 1.A. 2).

Exercise 1.A.12. Show that (ab)x = a(bx) for all $x \in \mathbf{F}^n$ and all $a, b \in \mathbf{F}$.

Solution. If
$$x=(x_1,...,x_n)$$
, then
$$(ab)x=((ab)x_1,...,(ab)x_n)=(a(bx_1),...,a(bx_n))=a(bx_1,...,bx_n)=a(bx),$$

where we have used the associativity of multiplication in \mathbf{F} (we proved this for \mathbf{C} in Exercise 1.A.3).

Exercise 1.A.13. Show that 1x = x for all $x \in \mathbf{F}^n$.

Solution. If $x = (x_1, ..., x_n)$, then

$$1x = (1x_1, ..., 1x_n) = (x_1, ..., x_n) = x,$$

where we have used that $1x_j = x_j$ for any $x_j \in \mathbf{F}$.

Exercise 1.A.14. Show that $\lambda(x+y) = \lambda x + \lambda y$ for all $\lambda \in \mathbf{F}$ and all $x, y \in \mathbf{F}^n$.

Solution. If
$$x=(x_1,...,x_n)$$
 and $y=(y_1,...,y_n)$, then
$$\lambda(x+y)=\lambda(x_1+y_1,...,x_n+y_n)$$

$$=(\lambda(x_1+y_1),...,\lambda(x_n+y_n))$$

$$=(\lambda x_1+\lambda y_1,...,\lambda x_n+\lambda y_n)$$

$$=(\lambda x_1,...,\lambda x_n)+(\lambda y_1,...,\lambda y_n)$$

$$=\lambda(x_1,...,x_n)+\lambda(y_1,...,y_n)$$

$$=\lambda x+\lambda y,$$

where we have used distributivity in **F** (we proved this for **C** in Exercise 1.A.4).

Exercise 1.A.15. Show that (a + b)x = ax + bx for all $a, b \in \mathbf{F}$ and all $x \in \mathbf{F}^n$.

Solution. If $x = (x_1, ..., x_n)$, then

$$\begin{split} (a+b)x &= (a+b)(x_1,...,x_n) \\ &= ((a+b)x_1,...,(a+b)x_n) \\ &= (ax_1+bx_1,...,ax_n+bx_n) \\ &= (ax_1,...,ax_n) + (bx_1,...,bx_n) \\ &= a(x_1,...,x_n) + b(x_1,...,x_n) \\ &= ax+bx, \end{split}$$

where we have used distributivity in **F** (we proved this for **C** in Exercise 1.A.4).

1.B. Definition of Vector Space

Exercise 1.B.1. Show that -(-v) = v for every $v \in V$.

Solution. Since v + (-v) = 0 and the additive inverse of a vector is unique (1.27), it must be the case that -(-v) = v.

Exercise 1.B.2. Suppose $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Solution. It will suffice to show that if av = 0 and $a \neq 0$, so that a^{-1} exists, then v = 0. Indeed,

$$av=0 \quad \Rightarrow \quad a^{-1}(av)=0 \quad \Rightarrow \quad (a^{-1}a)v=0 \quad \Rightarrow \quad 1v=0 \quad \Rightarrow \quad v=0.$$

Exercise 1.B.3. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

Solution. For $v, w, x \in V$, notice that

$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v).$$

Exercise 1.B.4. The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in the definition of a vector space (1.20). Which one?

Solution. The empty set does not contain an additive identity.

Exercise 1.B.5. Show that in the definition of a vector space (1.20), the additive inverse condition can be replaced with the condition that

$$0v = 0$$
 for all $v \in V$.

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V.

The phrase a "condition can be replaced" in a definition means that the collection of objects satisfying the definition is unchanged if the original condition is replaced with the new condition.

Solution. If V satisfies all of the conditions in (1.20), then as shown in (1.30) we have 0v = 0 for all $v \in V$. Suppose that V satisfies all of the conditions in (1.20), except we have replaced the additive inverse condition with the condition that 0v = 0 for all $v \in V$. We want to show that for each $v \in V$, there exists an element $w \in V$ such that v + w = 0. Indeed, for $v \in V$, let w = (-1)v and observe that

$$v + w = 1v + (-1)v = (1 - 1)v = 0v = 0.$$

Exercise 1.B.6. Let ∞ and $-\infty$ denote two distinct objects, neither of which is in \mathbf{R} . Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty, -\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$

and

$$t + \infty = \infty + t = \infty + \infty = \infty,$$

$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty,$$

$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of addition and scalar multiplication, is $\mathbf{R} \cup \{\infty, -\infty\}$ a vector space over \mathbf{R} ? Explain.

Solution. This is not a vector space over \mathbf{R} , since addition is not associative:

$$(1+\infty) + (-\infty) = \infty + (-\infty) = 0 \neq 1 = 1 + 0 = 1 + (\infty + (-\infty)).$$

Exercise 1.B.7. Suppose S is a nonempty set. Let V^S denote the set of functions from S to V. Define a natural addition and scalar multiplication on V^S , and show that V^S is a vector space with these definitions.

Solution. We define addition and scalar multiplication on V^S as in (1.24), i.e. for $f, g \in V^S$ the sum $f + g \in V^S$ is the function

$$f+g: S \to V$$

 $x \mapsto f(x) + g(x);$

the addition f(x) + g(x) is vector addition in V. Similarly, for $\lambda \in \mathbf{F}$ and $f \in V^S$, the product $\lambda f \in V^S$ is the function

$$\begin{array}{cccc} \lambda f \,:\, S \,\to\, V \\ & x \,\mapsto\, \lambda f(x); \end{array}$$

the product $\lambda f(x)$ is scalar multiplication in V. We now show that V^S with these definitions satisfies each condition in definition (1.20).

Commutativity. Let $f, g \in V^S$ and $x \in S$ be given. Observe that

$$(f+q)(x) = f(x) + q(x) = q(x) + f(x) = (q+f)(x),$$

where we have used the commutativity of addition in V for the second equality. It follows that f + g = g + f.

Associativity. Let $f, g, h \in V^S$ and $x \in S$ be given. Observe that

$$((f+g)+h)(x) = (f+g)(x) + h(x) = (f(x)+g(x)) + h(x)$$
$$= f(x) + (g(x)+h(x)) = f(x) + (g+h)(x) = (f+(g+h))(x),$$

where we have used the associativity of addition in V for the third equality. It follows that (f+g)+h=f+(g+h). Similarly, let $f\in V^S$ and $a,b\in \mathbf{F}$ be given. Observe that, for any $x\in S$,

$$((ab)f)(x) = (ab)f(x) = a(bf(x)) = a((bf)(x)) = (a(bf))(x),$$

where we have used the associativity of scalar multiplication in V for the second equality. It follows that (ab)f = a(bf).

Additive identity. We claim that the additive identity in V^S is the function $0: S \to V$ given by 0(x) = 0 for any $x \in S$; the 0 on the right-hand side is the additive identity in V. Indeed, for any $f \in V^S$ and $x \in S$ we have

$$(f+0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).$$

It follows that f + 0 = f.

Additive inverse. For $f \in V^S$, define $g: S \to V$ by g(x) = -f(x) for $x \in S$, where -f(x) is the additive inverse in V of f(x). We claim that g is the additive inverse of f. To see this, let $x \in S$ be given and observe that

$$(f+g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x);$$

it follows that f + g = 0.

Multiplicative identity. Let $f \in V^S$ and $x \in S$ be given. Observe that

$$(1f)(x) = 1f(x) = f(x),$$

where we have used that 1v = v for any $v \in V$. It follows that 1f = f.

Distributive properties. Let $a \in \mathbf{F}$ and $f, g \in V^S$ be given. Observe that, for any $x \in S$,

$$(a(f+g))(x)=a(f+g)(x)=a((f(x)+g(x))$$

$$=af(x)+ag(x)=(af)(x)+(ag)(x)=(af+ag)(x),$$

where we have used the first distributive property in V for the third equality. It follows that a(f+g)=af+ag. Similarly, let $a,b\in \mathbf{F}$ and $f\in V^S$ be given. For any $x\in S$, observe that

$$((a+b)f)(x) = (a+b)f(x) = af(x) + bf(x) = (af)(x) + (bf)(x) = (af+bf)(x),$$

where we have used the second distributive property in V for the second equality. It follows that (a+b)f = af + bf.

We may conclude that V^S is a vector space over \mathbf{F} .

Exercise 1.B.8. Suppose V is a real vector space.

- The complexification of V, denoted by $V_{\mathbf{C}}$, equals $V \times V$. An element of $V_{\mathbf{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.
- Addition on $V_{\mathbf{C}}$ is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for all $u_1, v_1, u_2, v_2 \in V$.

• Complex scalar multiplication on $V_{\mathbf{C}}$ is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for all $a, b \in \mathbf{R}$ and all $u, v \in V$.

Prove that with the definitions of addition and scalar multiplication as above, $V_{\mathbf{C}}$ is a complex vector space.

Think of V as a subset of $V_{\mathbf{C}}$ by identifying $u \in V$ with u + i0. The construction of $V_{\mathbf{C}}$ from V can then be thought of as generalizing the construction of \mathbf{C}^n from \mathbf{R}^n .

Solution. We need to verify each condition in definition (1.20). The algebraic manipulations required to show that commutativity, associativity, and the first distributive property hold for $V_{\mathbf{C}}$ are essentially the same algebraic manipulations we performed in Exercise 1.A.1, Exercise 1.A.2, Exercise 1.A.3, and Exercise 1.A.4, except instead of using the algebraic properties of \mathbf{R} , we use the algebraic properties of V (i.e. the properties listed in (1.20)); we will avoid repeating ourselves and instead verify the remaining conditions.

Additive identity. We claim that the additive identity in $V_{\mathbf{C}}$ is 0+i0, where 0 is the additive identity in V. Indeed, for any $u+iv \in V_{\mathbf{C}}$ we have

$$(u+iv) + (0+i0) = (u+0) + i(v+0) = u+iv.$$

Additive inverse. We claim that the additive inverse of an element $u + iv \in V_{\mathbf{C}}$ is the element (-u) + i(-v), where -u is the additive inverse of u in V. Indeed,

$$(u+iv)+((-u)+i(-v))=(u+(-u))+i(v+(-v))=0+i0.$$

Multiplicative identity. For any $u + iv \in V_{\mathbf{C}}$, we have

$$(1+0i)(u+iv) = (1u-0v) + i(1v+0u) = u+iv.$$

Distributive properties. For the second distributive property, let a + bi, $c + di \in \mathbb{C}$ and $u + iv \in V_{\mathbb{C}}$ be given. Observe that

$$\begin{split} ((a+bi)+(c+di))(u+iv) &= ((a+c)+(b+d)i)(u+iv) \\ &= ((a+c)u-(b+d)v) + i((a+c)v+(b+d)u) \\ &= (au+cu-bv-dv) + i(av+cv+bu+du) \\ &= ((au-bv)+i(av+bu)) + ((cu-dv)+i(cv+du)) \\ &= (a+bi)(u+iv) + (c+di)(u+iv), \end{split}$$

where we have used the second distributive property for V for the third equality.

1.C. Subspaces

Exercise 1.C.1. For each of the following subsets of \mathbf{F}^3 , determine whether it is a subspace of \mathbf{F}^3 .

(a)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$$

(b)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 4\}$$

(c)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 x_2 x_3 = 0\}$$

$$(\mathrm{d})\ \left\{(x_1,x_2,x_3)\in \mathbf{F}^3: x_1=5x_3\right\}$$

Solution. Let U denote the set in each part of this question.

(a) This is a subspace of \mathbf{F}^3 . Certainly the zero vector belongs to U. Suppose that $x=(x_1,x_2,x_3),y=(y_1,y_2,y_3)\in U$ and $\alpha\in\mathbf{F}$ and observe that

$$(x_1+y_1)+2(x_2+y_2)+3(x_3+y_3)=(x_1+2x_2+3x_3)+(y_1+2y_2+3y_3)=0+0=0,$$

$$\alpha x_1+2(\alpha x_2)+3(\alpha x_3)=\alpha(x_1+2x_2+3x_3)=\alpha 0=0.$$

Thus x + y and αx also belong to U. It follows from (1.34) that U is a subspace of V.

- (b) This is not a subspace of \mathbf{F}^3 because it does not contain the zero vector.
- (c) This is not a subspace of \mathbf{F}^3 because it is not closed under addition: (1,1,0) and (0,0,1) belong to U, but (1,1,0)+(0,0,1)=(1,1,1) does not belong to U.
- (d) This is a subspace of \mathbf{F}^3 . Note that $U = \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 5x_3 = 0\}$. Certainly the zero vector belongs to U. Suppose that $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in U$ and $\alpha \in \mathbf{F}$ and observe that

$$(x_1+y_1)-5(x_3+y_3)=(x_1-5x_3)+(y_1-5y_3)=0+0=0,$$

$$\alpha x_1-5(\alpha x_3)=\alpha(x_1-5x_3)=\alpha 0=0.$$

Thus x + y and αx also belong to U. It follows from (1.34) that U is a subspace of V.

Exercise 1.C.2. Verify all assertions about subspaces in Example 1.35.

Solution.

(a) The assertion is that if $b \in \mathbf{F}$, then

$$U = \left\{ (x_1, x_2, x_3, x_4) \in \mathbf{F}^4 : x_3 = 5x_4 + b \right\} = \left\{ (x_1, x_2, x_3, x_4) \in \mathbf{F}^4 : x_3 - 5x_4 = b \right\}$$

is a subspace of \mathbf{F}^4 if and only if b=0. Indeed, if $b\neq 0$ then U is not a subspace of \mathbf{F}^4 because the zero vector does not belong to U, and if b=0 then we may argue as in Exercise 1.C.1 (d) to see that U is a subspace of \mathbf{F}^4 .

(b) The assertion is that the set of continuous real-valued functions on the interval [0,1] is a subspace of $\mathbf{R}^{[0,1]}$, i.e.

$$U = \{f : [0,1] \to \mathbf{R}, f \text{ continuous}\}\$$

is a subspace of $\mathbf{R}^{[0,1]}$. Certainly the zero function $x \mapsto 0$ on [0,1] is continuous and hence belongs to U, and it is well-known from elementary real analysis that sums and constant multiples of continuous functions are again continuous. It follows from (1.34) that U is a subspace of $\mathbf{R}^{[0,1]}$.

(c) The assertion is that the set of differentiable real-valued functions on \mathbf{R} is a subspace of $\mathbf{R}^{\mathbf{R}}$, i.e.

$$U = \{f: \mathbf{R} \to \mathbf{R}, f \text{ differentiable}\}$$

is a subspace of $\mathbf{R}^{\mathbf{R}}$. Certainly the zero function $x \mapsto 0$ on \mathbf{R} is differentiable and hence belongs to U, and it is well-known from elementary real analysis that sums and constant multiples of differentiable functions are again differentiable. It follows from (1.34) that U is a subspace of $\mathbf{R}^{\mathbf{R}}$.

(d) The assertion is that the set U of differentiable real-valued functions f on the interval (0,3) such that f'(2) = b is a subspace of $\mathbf{R}^{(0,3)}$ if and only if b = 0. If $b \neq 0$, then the zero function $x \mapsto 0$ on (0,3), which has derivative $0 \neq b$ at x = 2, does not belong to U and thus U is not a subspace of $\mathbf{R}^{(0,3)}$.

Suppose that b = 0 and note that the zero function now belongs to U. If $f, g \in U$ and $\alpha \in \mathbb{R}$, then

$$(f+g)'(2) = f'(2) + g'(2) = 0 + 0 = 0$$
 and $(\alpha f)'(2) = \alpha f'(2) = \alpha 0 = 0$.

Thus f + g and αf belong to U. It follows from (1.34) that U is a subspace of $\mathbf{R}^{(0,3)}$.

(e) The assertion is that the set U of all sequences of complex numbers with limit 0 is a subspace of \mathbb{C}^{∞} . Certainly the zero sequence (0,0,0,...) has limit 0 and hence belongs to U. Suppose that $x=(x_n)_{n=1}^{\infty}$ and $y=(y_n)_{n=1}^{\infty}$ belong to U and $\alpha \in \mathbb{C}$. Using basic results about limits, observe that

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n=0+0=0$$
 and
$$\lim_{n\to\infty}(\alpha x_n)=\alpha\lim_{n\to\infty}x_n=\alpha 0=0.$$

Thus x + y and αx belong to U. It follows from (1.34) that U is a subspace of $\mathbf{C}^{(0,3)}$.

Exercise 1.C.3. Show that the set of differentiable real-valued functions f on the interval (-4,4) such that f'(-1)=3f(2) is a subspace of $\mathbf{R}^{(-4,4)}$.

Solution. Let U be the set in question; it is straightforward to verify that the zero function belongs to U. Suppose that $f, g \in U$ and $\alpha \in \mathbf{R}$. Observe that

$$(f+g)'(-1) = f'(-1) + g'(-1) = 3f(2) + 3g(2) = 3(f(2) + g(2)) = 3(f+g)(2)$$
 and
$$(\alpha f)'(-1) = \alpha f'(-1) = \alpha(3f(2)) = 3(\alpha f(2)) = 3(\alpha f(2))$$

Thus f + g and αf belong to U. It follows from (1.34) that U is a subspace of $\mathbf{R}^{(-4,4)}$.

Exercise 1.C.4. Suppose $b \in \mathbf{R}$. Show that the set of continuous real-valued functions f on the interval [0,1] such that $\int_0^1 f = b$ is a subspace of $\mathbf{R}^{[0,1]}$ if and only if b = 0.

Solution. Let U be the set in question. If $b \neq 0$ then the zero function $x \mapsto 0$ on [0,1], which has integral $0 \neq b$ over [0,1], does not belong to U and thus U is not a subspace of $\mathbf{R}^{[0,1]}$. Suppose that b = 0 and note that the zero function now belongs to U. If $f, g \in U$ and $\alpha \in \mathbf{R}$, then using basic properties of integration we have

$$\int_0^1 (f+g) = \int_0^1 f + \int_0^1 g = 0 + 0 = 0 \quad \text{ and } \quad \int_0^1 (\alpha f) = \alpha \int_0^1 f = \alpha 0 = 0.$$

Thus f + g and αf belong to U. It follows from (1.34) that U is a subspace of $\mathbf{R}^{[0,1]}$.

Exercise 1.C.5. Is \mathbb{R}^2 a subspace of the complex vector space \mathbb{C}^2 ?

Solution. The question is whether the subset

$$\mathbf{R}^2 = \{(x,y): x,y \in \mathbf{R}\} \subseteq \{(z,w): z,w \in \mathbf{C}\} = \mathbf{C}^2$$

is a subspace, where we are taking complex scalars in \mathbb{C}^2 . This is not a subspace because it is not closed under scalar multiplication: $(1,0) \in \mathbb{R}^2$ but $i(1,0) = (i,0) \notin \mathbb{R}^2$.

Exercise 1.C.6.

- (a) Is $\{(a, b, c) \in \mathbf{R}^3 : a^3 = b^3\}$ a subspace of \mathbf{R}^3 ?
- (b) Is $\{(a, b, c) \in \mathbb{C}^3 : a^3 = b^3\}$ a subspace of \mathbb{C}^3 ?

Solution.

(a) Let U be the set in question. For $a, b \in \mathbf{R}$ we have $a^3 = b^3$ if and only if a = b and thus the set U can be expressed as

$$U = \{(a, a, c) \in \mathbf{R}^3 : a, c \in \mathbf{R}\}.$$

Certainly $(0,0,0) \in U$. If $(a,a,c), (x,x,y) \in U$ and $\lambda \in \mathbf{R}$, then observe that

$$(a, a, c) + (x, x, y) = (a + x, a + x, c + y) \in U$$
 and $\lambda(a, a, c) = (\lambda a, \lambda a, \lambda c) \in U$.

It follows from (1.34) that U is a subspace of \mathbb{R}^3 .

(b) Let U be the set in question. Observe that

$$\left(\frac{-1+\sqrt{3}i}{2}\right)^3 = \left(\frac{-1-\sqrt{3}i}{2}\right)^3 = 1.$$

It follows that $u:=\left(\frac{-1+\sqrt{3}i}{2},1,0\right)$ and $v:=\left(\frac{-1-\sqrt{3}i}{2},1,0\right)$ belong to U. However, $u+v=(-1,2,0)\notin U.$

Thus U is not a subspace of \mathbb{C}^3 because it is not closed under addition.

Exercise 1.C.7. Prove or give a counterexample: If U is a nonempty subset of \mathbb{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), then U is a subspace of \mathbb{R}^2 .

Solution. For a counterexample, consider $U = \{(a,b) : a,b \in \mathbf{Q}\} \subseteq \mathbf{R}^2$, which satisfies the required conditions since the sum of two rational numbers is a rational number and the additive inverse of a rational number is a rational number. However, U is not a subspace of \mathbf{R}^2 because it is not closed under scalar multiplication: $(1,0) \in U$ but $\sqrt{2}(1,0) = (\sqrt{2},0) \notin U$.

Exercise 1.C.8. Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Solution. Let U be the union of the x- and y-axes, i.e.

$$U = \{(x,0) : x \in \mathbf{R}\} \cup \{(0,y) : y \in \mathbf{R}\}.$$

13

It is straightforward to verify that U is closed under scalar multiplication. However, U is not a subspace of \mathbb{R}^2 because it is not closed under addition: (1,0) and (0,1) belong to U, but (1,0)+(0,1)=(1,1) does not.

Exercise 1.C.9. A function $f: \mathbf{R} \to \mathbf{R}$ is called *periodic* if there exists a positive number p such that f(x) = f(x+p) for all $x \in \mathbf{R}$. Is the set of periodic functions from \mathbf{R} to \mathbf{R} a subspace of $\mathbf{R}^{\mathbf{R}}$? Explain.

Solution. Consider the periodic functions $\sin(x)$ and $\sin(\sqrt{2}x)$ and let $f(x) = \sin(x) + \sin(\sqrt{2}x)$. We will show that f is not periodic.

Suppose there was a positive real number p such that f(x) = f(x+p) for all $x \in \mathbf{R}$, i.e.

$$\sin(x) + \sin(\sqrt{2}x) = \sin(x+p) + \sin(\sqrt{2}x + \sqrt{2}p) \text{ for all } x \in \mathbf{R}.$$
 (1)

By differentiating this equation twice, we see that

$$\sin(x) + 2\sin(\sqrt{2}x) = \sin(x+p) + 2\sin(\sqrt{2}x + \sqrt{2}p) \text{ for all } x \in \mathbf{R}.$$
 (2)

Subtracting equation (1) from equation (2) gives us

$$\sin(\sqrt{2}x) = \sin(\sqrt{2}x + \sqrt{2}p) \text{ for all } x \in \mathbf{R},$$
 (3)

which together with equation (1) implies that

$$\sin(x) = \sin(x+p) \text{ for all } x \in \mathbf{R}.$$
 (4)

By taking x=0 in equation (4) we see that $0=\sin(p)$, which is the case if and only if $p=n\pi$ for some positive integer n (p was assumed to be positive). Substituting this value of p and x=0 into equation (3) gives $0=\sin\left(n\sqrt{2}\pi\right)$, which is the case if and only if $n\sqrt{2}\pi=m\pi$ for some integer m, which must be positive since n is positive. It follows that $\sqrt{2}=\frac{m}{n}$, contradicting the irrationality of $\sqrt{2}$.

Thus f is not periodic and we may conclude that the set of periodic functions from \mathbf{R} to \mathbf{R} is not a subspace of $\mathbf{R}^{\mathbf{R}}$ because it is not closed under addition.

Exercise 1.C.10. Suppose V_1 and V_2 are subspaces of V. Prove that the intersection $V_1 \cap V_2$ is a subspace of V.

Solution. Because V_1 and V_2 are subspaces of V, we have $0 \in V_1$ and $0 \in V_2$ and thus $0 \in V_1 \cap V_2$. Suppose $u, v \in V_1 \cap V_2$ and $\lambda \in \mathbf{F}$. Since $u, v \in V_1$ and V_1 is a subspace of V, we have $u + v \in V_1$ and $\lambda u \in V_1$. Similarly, $u + v \in V_2$ and $\lambda u \in V_2$. Thus $u + v \in V_1 \cap V_2$ and $\lambda u \in V_1 \cap V_2$. We may use (1.34) to conclude that $V_1 \cap V_2$ is a subspace of V.

Exercise 1.C.11. Prove that the intersection of every collection of subspaces of V is a subspace of V.

Solution. Let \mathcal{U} be an arbitrary collection of subspaces of V. We will show that $\bigcap \mathcal{U}$ is a subspace of V. The zero vector belongs to $\bigcap \mathcal{U}$ because each $U \in \mathcal{U}$ is a subspace of V and hence contains the zero vector. If $u, v \in \bigcap \mathcal{U}, \lambda \in \mathbf{F}$, and $U \in \mathcal{U}$, then $u, v \in U$ and thus $u + v \in U$ and $\lambda u \in U$ since U is a subspace of V. Because $U \in \mathcal{U}$ was arbitrary, it follows that $u + v \in \bigcap \mathcal{U}$ and $\lambda u \in \bigcap \mathcal{U}$. We may use (1.34) to conclude that $\bigcap \mathcal{U}$ is a subspace of V.

Exercise 1.C.12. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Solution. Suppose that U and W are subspaces of V. We want to show that $U \cup W$ is a subspace of V if and only if $U \subseteq W$ or $W \subseteq U$. If one of U or W is contained in the other then either $U \cup W = U$ or $U \cup W = W$; in either case, $U \cup W$ is then a subspace of V by assumption.

For the converse, it will suffice to show that if $U \cup W$ is a subspace of V and $U \nsubseteq W$, then $W \subseteq U$. Since $U \nsubseteq W$, there is some $u \in U$ such that $u \notin W$. Let $w \in W$ be given and note that, because $U \cup W$ is a subspace of V and $u, w \in U \cup W$, we must have $u + w \in U \cup W$. It cannot be the case that $u + w \in W$, since then $u + w - w = u \in W$, so it must be the case that $u + w \in U$. It follows that $u + w - u = w \in U$ and hence that $W \subseteq U$, as desired.

Exercise 1.C.13. Prove that the union of three subspaces of V is a subspace of V if and only if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 1.C.12, possibly because this exercise is not true if we replace \mathbf{F} with a field containing only two elements.

Solution. Let U_1, U_2 , and U_3 be subspaces of V. We want to show that $U = U_1 \cup U_2 \cup U_3$ is a subspace of V if and only if some U_j contains the other two. If some U_j contains the other two, then $U = U_j$ is a subspace of V by assumption.

Suppose that U is a subspace of V. If any U_j is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $U = U_2 \cup U_3$ and we may apply Exercise 1.C.12 to see that either $U_2 \subseteq U_3$ or $U_3 \subseteq U_2$; in either case, one U_j contains the other two. Suppose therefore that no U_j is contained in the union of the other two. Seeking a contradiction, suppose further that no U_j contains the other two, so that

$$U_1 \not\subseteq (U_2 \cup U_3) \quad \text{ and } \quad (U_2 \cup U_3) \not\subseteq U_1.$$

It follows that there exists some $u \in U_1$ such that $u \notin U_2 \cup U_3$ and some $v \in U_2 \cup U_3$ such that $v \notin U_1$. Let $W = \{v + \lambda u : \lambda \in \mathbf{F}\} \subseteq U$ and observe that no element of W belongs to U_1 , for if $v + \lambda u \in U_1$ then $v + \lambda u - \lambda u = v \in U_1$ —but $v \notin U_1$. Thus

$$W\cap U_1=\emptyset \quad \text{ and } \quad W\subseteq (U_1\cup U_2\cup U_3) \ \Rightarrow \ W\subseteq (U_2\cup U_3).$$

Because W contains infinitely many elements, there must be some $i \in \{2,3\}$ such that U_i contains infinitely many elements of W. There then exist $\lambda, \mu \in \mathbf{F}$ such that $\lambda \neq \mu$ and such that $v + \lambda u$ and $v + \mu u$ both belong to U_i , which implies that $(\lambda - \mu)u \in U_i$ since U_i is a subspace of V. This gives $u \in U_i$ since $\lambda - \mu \neq 0$, contradicting that $u \notin U_2 \cup U_3$. We may conclude that some U_i contains the other two.

Exercise 1.C.14. Suppose

$$U=\left\{(x,-x,2x)\in \mathbf{F}^3: x\in \mathbf{F}\right\} \quad \text{ and } \quad W=\left\{(x,x,2x)\in \mathbf{F}^3: x\in \mathbf{F}\right\}.$$

Describe U+W using symbols, and also give a description of U+W that uses no symbols.

Solution. We claim that U + W is the subspace

$$E = \{(x, y, 2x) \in \mathbf{F}^3 : x, y \in \mathbf{F}\}.$$

To see this, let $(x, -x, 2x) \in U$ and $(y, y, 2y) \in W$ be given and notice that

$$(x,-x,2x)+(y,y,2y)=(x+y,-x+y,2(x+y))\in E.$$

Thus $U+W\subseteq E$. For the reverse inclusion, let $(x,y,2x)\in E$ be given and observe that

$$(x,y,2x)=\left(\frac{x-y}{2},\frac{y-x}{2},x-y\right)+\left(\frac{x+y}{2},\frac{x+y}{2},x+y\right)\in U+W.$$

Thus U + W = E, as claimed. In words, U + W is the subspace of \mathbf{F}^3 consisting of those vectors whose third coordinate is twice their first coordinate.

Exercise 1.C.15. Suppose U is a subspace of V. What is U + U?

Solution. For $u + v \in U + U$ we have $u + v \in U$ since U is a subspace of V, and for $u \in U$ we have $u = u + 0 \in U + U$. Thus U + U = U.

Exercise 1.C.16. Is the operation of addition on the subspaces of V commutative? In other words, if U and W are subspaces of V, is U + W = W + U?

Solution. The operation is commutative, since addition of vectors in V is commutative. If $u + w \in U + W$, then $u + w = w + u \in W + U$, so that $U + W \subseteq W + U$. Similarly, $W + U \subseteq U + W$.

Exercise 1.C.17. Is the operation of addition on the subspaces of V associative? In other words, if V_1, V_2, V_3 are subspaces of V, is

$$(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3)$$
?

Solution. The operation is associative, since addition of vectors in V is associative. If $(u_1 + u_2) + u_3 \in (U_1 + U_2) + U_3$, then

$$(u_1+u_2)+u_3=u_1+(u_2+u_3)\in U_1+(U_2+U_3),$$

so that $(U_1 + U_2) + U_3 \subseteq U_1 + (U_2 + U_3)$. Similarly, $U_1 + (U_2 + U_3) \subseteq (U_1 + U_2) + U_3$.

Exercise 1.C.18. Does the operation of addition on the subspaces of V have an additive identity? Which subspaces have additive inverses?

Solution. The subspace $\{0\}$ is the additive identity for the operation. If U is a subspace of V then u + 0 = u for any $u \in U$; it follows that $U + \{0\} = U$.

Since $\{0\} + \{0\} = \{0\}$, the subspace $\{0\}$ is its own additive inverse. We claim that no other subspace of V has an additive inverse, i.e. if U is a subspace of V with $U \neq \{0\}$, then there does not exist a subspace W satisfying $U + W = \{0\}$. Indeed, simply observe that $U \subseteq U + W$ for any subspace W, so that $U + W \neq \{0\}$.

Exercise 1.C.19. Prove or give a counterexample: If V_1, V_2, U are subspaces of V such that

$$V_1 + U = V_2 + U,$$

then $V_1 = V_2$.

Solution. This is false. For a counterexample, consider the real vector space \mathbf{R} and observe that

$$\{0\} + \mathbf{R} = \mathbf{R} + \mathbf{R} = \mathbf{R},$$

but $\{0\} \neq \mathbf{R}$.

Exercise 1.C.20. Suppose

$$U=\big\{(x,x,y,y)\in \mathbf{F}^4: x,y\in \mathbf{F}\big\}.$$

Find a subspace W of \mathbf{F}^4 such that $\mathbf{F}^4 = U \oplus W$.

Solution. Let

$$W = \{(0, a, 0, b) \in \mathbf{F}^4 : a, b \in \mathbf{F}\};$$

it is straightforward to verify that W is a subspace of \mathbf{F}^4 . If $v \in U \cap W$, then

$$v \in W \implies v = (0, a, 0, b) \text{ for some } a, b \in \mathbf{F},$$

$$v \in U \implies a = b = 0 \implies v = 0.$$

Thus $U \cap W = \{0\}$ and it follows from (1.46) that the sum U + W is direct.

Let $(v_1,v_2,v_3,v_4) \in \mathbf{F}^4$ be given and observe that

$$(v_1, v_2, v_3, v_4) = (v_1, v_1, v_3, v_3) + (0, v_2 - v_1, 0, v_4 - v_3) \in U \oplus W.$$

Thus $\mathbf{F}^4 = U \oplus W$.

Exercise 1.C.21. Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5 : x, y \in \mathbf{F}\}.$$

Find a subspace W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$.

Solution. Let

$$W = \big\{ (0,0,a,b,c) \in {\bf F}^5 : a,b,c \in {\bf F} \big\};$$

it is straightforward to verify that W is a subspace of \mathbf{F}^5 . If $v \in U \cap W$, then

$$v \in U \implies v = (x, y, x + y, x - y, 2x)$$
 for some $x, y \in \mathbf{F}$,
$$v \in W \implies x = y = 0 \implies v = 0.$$

Thus $U \cap W = \{0\}$ and it follows from (1.46) that the sum U + W is direct.

Let $v=(v_1,v_2,v_3,v_4,v_5)\in \mathbf{F}^5$ be given and observe that

$$\begin{split} (v_1,v_2,v_3,v_4,v_5) &= (v_1,v_2,v_1+v_2,v_1-v_2,2v_1) \\ &\quad + (0,0,v_3-(v_1+v_2),v_4-(v_1-v_2),v_5-2v_1) \in U \oplus W. \end{split}$$

Thus $\mathbf{F}^5 = U \oplus W$.

Exercise 1.C.22. Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5 : x, y \in \mathbf{F}\}.$$

Find three subspaces W_1, W_2, W_3 of \mathbf{F}^5 , none of which equals $\{0\}$, such that $\mathbf{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

Solution. Let

$$\begin{split} W_1 &= \big\{ (0,0,a,0,0) \in \mathbf{F}^5 : a \in \mathbf{F} \big\}, \quad W_2 &= \big\{ (0,0,0,b,0) \in \mathbf{F}^5 : b \in \mathbf{F} \big\}, \\ W_3 &= \big\{ (0,0,0,0,c) \in \mathbf{F}^5 : c \in \mathbf{F} \big\}; \end{split}$$

it is straightforward to verify that W_1, W_2 , and W_3 are subspaces of ${\bf F}^5$. Suppose that

$$u = (x, y, x + y, x - y, 2x) \in U, \qquad w_1 = (0, 0, a, 0, 0) \in W_1,$$

$$w_2 = (0, 0, 0, b, 0) \in W_2, \quad \text{and} \quad w_3 = (0, 0, 0, 0, c) \in W_3$$

are such that $u + w_1 + w_2 + w_3 = 0$. That is,

$$(x, y, x + y + a, x - y + b, 2x + c) = (0, 0, 0, 0, 0),$$

from which it follows that x=y=a=b=c=0. Thus the only way to express the zero vector as a sum $u+w_1+w_2+w_3\in U+W_1+W_2+W_3$ is to take $u=w_1=w_2=w_3=0$ and so it follows from (1.45) that the sum $U+W_1+W_2+W_3$ is direct.

Let $(v_1, v_2, v_3, v_4, v_5) \in \mathbf{F}^5$ be given and observe that

$$\begin{split} (v_1,v_2,v_3,v_4,v_5) &= (v_1,v_2,v_1+v_2,v_1-v_2,2v_1) + (0,0,v_3-(v_1+v_2),0,0) \\ &+ (0,0,0,v_4-(v_1-v_2),0) + (0,0,0,0,v_5-2v_1) \in U \oplus W_1 \oplus W_2 \oplus W_3. \end{split}$$

Thus $\mathbf{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

Exercise 1.C.23. Prove or give a counterexample: If V_1, V_2, U are subspaces of V such that

$$V = V_1 \oplus U$$
 and $V = V_2 \oplus U$,

then $V_1 = V_2$.

Hint: When trying to discover whether a conjecture in linear algebra is true or false, it is often useful to start by experimenting in \mathbf{F}^2 .

Solution. This is false. For a counterexample, consider $V = \mathbb{R}^2$,

$$U = \{(x,0) \in \mathbf{R}^2 : x \in \mathbf{R}\}, \quad V_1 = \{(0,y) \in \mathbf{R}^2 : y \in \mathbf{R}\}, \quad V_2 = \{(y,y) \in \mathbf{R}^2 : y \in \mathbf{R}\}.$$

It is straightforward to verify that $U \cap V_1 = U \cap V_2 = \{0\}$, so that $U + V_1$ and $U + V_2$ are both direct sums (1.46), and that $U \oplus V_1 = U \oplus V_2 = \mathbf{R}^2$. However, $V_1 \neq V_2$ since $(1,1) \in V_2$ but $(1,1) \notin V_1$.

Exercise 1.C.24. A function $f: \mathbf{R} \to \mathbf{R}$ is called *even* if

$$f(-x) = f(x)$$

for all $x \in \mathbf{R}$. A function $f: \mathbf{R} \to \mathbf{R}$ is called *odd* if

$$f(-x) = -f(x)$$

for all $x \in \mathbf{R}$. Let $V_{\rm e}$ denote the set of real-valued even functions on \mathbf{R} and let $V_{\rm o}$ denote the set of real-valued odd functions on \mathbf{R} . Show that $\mathbf{R}^{\mathbf{R}} = V_{\rm e} \oplus V_{\rm o}$.

Solution. Suppose that $f \in V_e \cap V_o$, so that f(x) = -f(x) for all $x \in \mathbf{R}$. This implies that f(x) = 0 for all $x \in \mathbf{R}$, i.e. f = 0. Thus $V_e \cap V_o = \{0\}$ and it follows from (1.46) that the sum $V_e + V_o$ is direct. For $f : \mathbf{R} \to \mathbf{R}$, define $f_e : \mathbf{R} \to \mathbf{R}$ and $f_o : \mathbf{R} \to \mathbf{R}$ by

$$f_{\rm e}(x) = \frac{f(x) + f(-x)}{2}$$
 and $f_{\rm o}(x) = \frac{f(x) - f(-x)}{2}$.

It is straightforward to verify that $f_{\rm e}$ is an even function, $f_{\rm o}$ is an odd function, and $f=f_{\rm e}+f_{\rm o}$. We may conclude that ${\bf R^R}=V_{\rm e}\oplus V_{\rm o}$.