

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 21 de julio de 2022

- Dos díodos de juntura PN sólo se diferencian por haber sido fabricados con distinto material semiconductor, manteniendo iguales entre sí su geometría y niveles de dopaje de cada lado de la juntura. Como consecuencia, se obtienen dos corrientes de saturación inversa distintas para cada uno de ellos: I_{S1} = 0.2 pA y I_{S2} = 50 fA. Se disponen en un arreglo serie polarizados en inversa a través de una fuente de tensión (V_F = 5 V) y un resistor (2kΩ). Calcular la caída de tensión en el diodo D₁ a temperatura ambiente.
- 2) Para el circuito de la figura, con $I_{SS}=200\,\mu\text{A};\ V_{DD}=3\,\text{V};\ R_D=5\,\text{k}\Omega$ y donde el transistor tiene parámetros $V_T=0.8\,\text{V},\ k=\frac{1}{2}\mu C_{ox}'\frac{W}{L}=800\,\mu\text{A}\,\text{V}^{-2}$ y $\lambda\to0$. Hallar el máximo valor de V_{GG} para que el transistor se encuentre en saturación.

- 3) ¿Cuál de las siguientes opciones es incorrecta respecto de las corrientes de un transistor TBJ PNP polarizado en MAD?
 - A) La corriente de huecos en la QNR de la base es por difusión.
 - B) La corriente de huecos en la QNR del emisor es por arrastre.
 - C) La corriente de huecos en la SCR de la juntura Base-Colector es por difusión.
 - (D) La corriente de electrones en la QNR de la base es por arrastre.
 - E) La corriente de electrones en la SCR de la juntura Base-Emisor es por difusión.
- 4) Se debe diseñar un amplificador emisor común sin realimentación con un transistor NPN con parámetros β = 500 y V_A → ∞. La tensión de alimentación es V_{CC} = 5 V, y el transistor está polarizado con una resistencia de base R_B entre la fuente de alimentación y la base del transistor, y una resistencia de colector, R_C conectada a la fuente de alimentación. A la entrada del amplificador, se conecta una señal senoidal (v_s) de tension pico 15 mV y resistencia serie R_s = 250 Ω a través de un capacitor de desacople de valor adecuado. Calcular R_B y R_C para que la tensión de salida sea v_{out} = 500 mV y la ganancia propia del amplificador sea A_{vo} = −100. Considerar una temperatura tal que kT/q = 26 mV. La respuesta se considera correcta si las 2 resistencias están bien calculadas.
- 5) Un transistor MOS de potencia opera con una corriente de drain y una tensión V_{DS} que varían de forma periódica disipando una potencia media de 12 W. De la hoja de datos, se obtienen los siguientes parámetros del transistor: V_{GS}(max) = 30 V; V_{DS}(max) = 500 V; I_D(max) = 20 A; θ_{CA} = 40 °C W⁻¹; T_{J(max)} = 150 °C y que P_{max}(QT_{omb} = 25 °C) = 3 W. Sabiendo que el transistor se encuentra en un gabinete que alcanza los 70 °C indicar el valor máximo de la resistencia térmica del disipador que debe adosarse al encapsulado del transistor.