Computational Graphs

A ubiquitous problem in Machine Learning

- You have some function f which depends on some parameters θ : $f(x \mid \theta)$
- You have some example input-output pairs $(x_0, y_0), (x_1, y_1), \ldots (x_n, y_n)$
- ullet For each input-output pair you can compute an error function L between the output of f and the actual y
 - $L(y, \overline{y}) = L(y_0, f(x_0 | \theta))$
- You want to find the value of θ for which the error L is minimum (on average)

$$\min_{(y_i, x_i) \in D} E[L(y_i, f(x_i | \theta))]$$

A ubiquitous problem in Machine Learning

One way to find the optimal heta is to use the Stochastic Gradient Descent SGD method

- You can compute $E\left[\frac{dL}{d\theta}\right]$
- E $[\frac{dL}{d\theta}]$ has the same dimensionality of θ and it is a vector which points to the direction that maximize L
- The reciprocal $E\left[\frac{dL}{d\theta}\right]$ points to the direction that minimize L
- We can take small steps in this direction

$$\theta_{t+1} = \theta_t + \alpha(-E[\frac{dL}{d\theta_t}])$$

<u>Demo Notebook</u>

How to efficiently compute $\frac{dL}{d\theta}$

There are several ways to compute $\frac{dL}{d\theta}$

- Manual
 - Not feasible for complex/deep networks
- Symbolic
 - Computationally hard or just plain impossible
- Automatic
 - The go-to solution for machine learning

Chain Rule

A simple Machine Learning model can look like this:

Which can be formalized in:

$$o = l_3(l_2(l_1(i)))$$

This operation is called **composition** can also be written as $l_3 \circ l_2 \circ l_1$

Chain Rule

You may be familiar with this notation:

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x))g'(x)$$

Unfolding the equation from previous slide $o = l_3(l_2(l_1(i)))$:

$$w_1 = l_1(i)$$

 $w_2 = l_2(w_1)$
 $o = l_3(w_2)$

The derivative of *o* w.r.t. *i* is then:

$$\frac{do}{di} = \frac{do}{dw_2} \frac{dw_2}{dw_1} \frac{dw_1}{di}$$

The derivative of the composition is the multiplication of the partial derivatives (of the unfolding)

Chain Rule: Example

Given this function:

$$o = sin(x^2)$$

Unfolded:

$$w_1 = x^2$$

$$o = sin(w_1)$$

The derivative $\frac{do}{dx}$ is then:

$$\frac{do}{dx} = \frac{do}{dw_1} \frac{dw_1}{dx}$$

$$\frac{do}{dw_1} = \frac{d(\sin(w_1))}{dw_1} = \cos(w_1) = \cos(x^2)$$

$$\frac{dw_1}{dx} = \frac{d(x^2)}{dx} = 2x$$

Finally:

$$\frac{do}{dx} = \frac{do}{dw_1} \frac{dw_1}{dx} = cos(x^2)2x$$

Chain Rule: Binary Operators

A binary operator is a rule for combining two elements (called operands) to produce another element

$$f: A \times B \rightarrow C$$

A binary operator is **closed** if its domain is $A \times A$ and its codomain is A

The closed operator in \mathbb{R} are:

- Addition (+)
- Subtraction (-)
- Multiplication (*)
- Division (/)

Chain Rule: Multiple Variables with Binary Operators

Lets an example of the application of the chain rule with multiple variables and binary operators

Lets compute
$$\frac{do}{dx}$$
:
$$w_1 = x + y$$

$$w_2 = sin(x)$$

 $o = w_1 w_2$

$$\frac{dw_1}{dx} = \frac{d(x+y)}{dx} = 1$$

$$\frac{dw_2}{dx} = \frac{d(\sin(x))}{dx} = \cos(x)$$

$$o = (x + y)sin(x)$$

$$\frac{do}{dx} = \frac{d(w_1 w_2)}{dx} = w_2 \frac{dw_1}{dx} + w_1 \frac{dw_2}{dx}$$

$$\frac{do}{dx} = w_2 + w_1 cos(x)$$

$$\frac{do}{dx} = sin(x) + (x + y) cos(x)$$
The binary operator caused a

split on the derivation flow!

Chain Rule: Binary Operators

Every binary operator cause a **split** in the derivation flow.

In \mathbb{R} every closed binary operator create a summation of two derivation flows:

$$\frac{d(f(x) + g(x))}{dx} = \frac{d(f(x))}{dx} + \frac{d(g(x))}{dx}$$

$$\frac{d(f(x) g(x))}{dx} = g(x) \frac{d(f(x))}{dx} + f(x) \frac{d(g(x))}{dx}$$

$$\frac{d(f(x)-g(x))}{dx} = \frac{d(f(x))}{dx} - \frac{d(g(x))}{dx} = \frac{d(f(x))}{dx} + -\frac{d(g(x))}{dx}$$

$$\frac{d(\frac{f(x)}{g(x)})}{dx} = \frac{g(x)\frac{d(f(x))}{dx} - f(x)\frac{d(g(x))}{dx}}{g(x)^2} = \frac{1}{g(x)}\frac{d(f(x))}{dx} + -\frac{f(x)}{g(x)^2}\frac{d(g(x))}{dx}$$

Chain Rule: Binary Operators

In which each flow is the derivative of one operand multiplied for some value

$$\frac{d(f(x) + g(x))}{dx} =$$

$$1\frac{d(f(x))}{dx} + 1\frac{d(g(x))}{dx}$$

$$\frac{d(f(x) \ g(x))}{dx} =$$

$$g(x)\frac{d(f(x))}{dx} + f(x)\frac{d(g(x))}{dx}$$

$$\frac{d(f(x)-g(x))}{dx}=\frac{d(f(x))}{dx}-\frac{d(g(x))}{dx}=1\frac{d(f(x))}{dx}+-1\frac{d(g(x))}{dx}$$

$$1\frac{d(f(x))}{dx} + -1\frac{d(g(x))}{dx}$$

$$\frac{d(\frac{f(x)}{g(x)})}{dx} = \frac{g(x)\frac{d(f(x))}{dx} - f(x)\frac{d(g(x))}{dx}}{g(x)^2} = \frac{1}{g(x)}\frac{d(f(x))}{dx} + -\frac{f(x)}{g(x)^2}\frac{d(g(x))}{dx}$$

Computational Graphs

Computational graphs are a way of expressing and evaluating a mathematical expression

Each operator is represent with a **node**

A node can have one or more inputs and one output.

Computational Graphs: Composition

A composition in a computational graph is a simple flow.

For example o = g(f(x)):

We can use a Computational Graph to compute the derivatives of an expression

The first method we will see its called reverse mode differentiation

Computational Graphs: Composition differentiation

The derivative $\frac{do}{dx}$ of o = g(f(x)) where:

$$\begin{aligned}
 w_1 &= f(x) \\
 o &= g(w_1)
 \end{aligned}$$

$$\frac{do}{dx} = \frac{do}{dw_1} \frac{dw_1}{dx}$$

Composition in the forward path

Multiplication in the backward path

Computational Graphs: Binary Operator differentiation (dx branch)

The derivative $\frac{do}{dx}$ of o = f(x)g(y) where:

$$w_1 = f(x)$$

$$w_2 = g(y)$$

$$o = w_1 w_2$$

$$\frac{do}{dx} = w_2 \frac{dw_1}{dx} + w_1 \frac{dw_2}{dx} =$$

$$= g(y)\frac{d(f(x))}{dx} + f(x)\frac{d(g(y))}{dx}$$

$$= g(y) \frac{d(f(x))}{dx}$$

This is zero!

Computational Graphs: Binary Operator differentiation (dy branch)

The derivative $\frac{do}{dy}$ of o = f(x)g(y) where:

$$w_1 = f(x)$$

$$w_2 = g(y)$$

$$o = w_1 w_2$$

$$\frac{do}{dy} = w_2 \frac{dw_1}{dy} + w_1 \frac{dw_2}{dy} =$$

$$= g(y) \frac{d(f(x))}{dy} + f(x) \frac{d(g(y))}{dy}$$

$$= f(x) \frac{d(g(y))}{dy}$$

This is zero!

Computational Graphs: Addition and Multiplication nodes

Computational Graphs: Example

Let compute the Computational Graph of o = (x + y)sin(x)

There are two ways of computing $\frac{do}{dx}$ and $\frac{do}{dy}$ using a computational graph:

- Forward Mode Differentiation
- Reverse Mode Differentiation

Computational Graphs: Generalization

Computational Graphs: Reverse Mode Differentiation

Lets start with the Reverse Mode Differentiation

Because each path is a composition of operations

Because each split represent a binary operator with two derivation flows to be summed

To compute the **derivative** of the **output** w.r.t. to one **input** you have to find **all possible paths** from the **output** to the **input** and **multiply the partial values over each path** and **sum all the results**

Computational Graphs: Example $\frac{do}{dx}$ in reverse mode

$$\frac{do}{dx} = (x + y)cos(x) + sin(x)$$

Computational Graphs: Example $\frac{do}{dy}$ in reverse mode

$$\frac{do}{dy} = \sin(x)$$

Computational Graphs: Generalization Reverse Mode

In Reverse Mode Differentiation you can compute the partial derivatives of one output with respect to every input in one pass

Computational Graphs: Forward Mode Differentiation

Compute forward **multiplying the values** over the **edges** and **summing** when **joining paths**

Computational Graphs: Example $\frac{do}{dx}$ in forward mode

Computational Graphs: Example $\frac{do}{dy}$ in forward mode

Computational Graphs: Generalization Forward Mode

In Forward Mode Differentiation you can compute the partial derivatives of every output with respect to one input in one pass

Computational Graphs: Trade-offs

Given a function

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Reverse Mode Differentiation:

- Each edge has one derivative value
- Derivative values in the CG are shared between partials
- You can compute the derivative of one output w.r.t. every input in one pass
- Ideal when $n \gg m$

Forward Mode Differentiation:

- Each edge has a different derivative value for each partial
- Derivative values in the CG are **not shared** between partials
- You can compute the derivative of every output w.r.t. one input in one pass
- Ideal when $n \ll m$

Machine learning error functions are: $f: \mathbb{R}^n \to \mathbb{R}$ (where n can be several billions)

Computational Graphs: Numerical Differentiation Frameworks

There are several **Numerical** Differentiation Frameworks

All these **Machine Learning frameworks** use reverse mode **computational graphs** under the hood.

They provide **nice** abstract **APIs** to **easily build complex** architectures.

Computational Graphs: PyTorch Example

Lets compute the derivative of o = (x + y)sin(x) using PyTorch for $x = \pi$ and $y = \pi$

```
import torch
import math
x = torch.tensor([math.pi], requires_grad=True)
y = torch.tensor([math.pi], requires_grad=True)
o = (x+y)*torch.sin(x)
o.backward()
print(x.grad)
print(y.grad)
tensor([-6.2832])
tensor([-8.7423e-08])
```

$$\frac{do}{dx} = (x + y)cos(x) + sin(x)$$

$$\frac{do}{dx}(\pi, \pi) = (\pi + \pi)cos(\pi) + sin(\pi)$$

$$\frac{do}{dx}(\pi, \pi) = -2\pi$$

$$\frac{do}{dy} = \sin(x)$$

$$\frac{do}{dy}(\pi, \pi) = \sin(\pi) = 0$$

Exercises

Draw the computational graph and compute the derivative w.r.t. every input variable of the following functions using the reverse mode and the forward mode:

•
$$f(x) \mathbb{R} \to \mathbb{R} : ln(sin(x) \cdot cos(x))$$

•
$$f(x, y, z, q) \mathbb{R}^4 \to \mathbb{R}^2 : \begin{pmatrix} (x+y) \cdot z \\ (x+y) \cdot q \end{pmatrix}$$

• $f(x, y) \mathbb{R}^2 \to \mathbb{R} : (x + y)sin(x)$ where $x = \pi$ and $y = \pi$ (numerical)