" Coset Interleaver Idea Progress March 30th"

Kwame Ackah Bohulu

April 7, 2020

0.1 Introduction

Using the 5/7 RSC interleaver as a reference, we present the idea of coset interleaving for breaking up weight-2 and weight-3 return-to-zero (RTZ) input sequences which produce codewords with weights less than w_H . The notations and the assumptions that will be made throught out this paper are listed below.

0.1.1 Notations

- 1. N: Interleaver Length, Interleaver size, $N = n\tau$.
- 2. C^i : Coset i, $i = \{0, 1, ..., \tau 1\}$
- 3. $L = N/\tau$: Coset length, Coset size.
- 4. τ :- Cycle length of RSC encoder ($\tau=3$ for 5/7RSC encoder)
- 5. Separation:- Assume that there is a set $\mathcal{A} = \{a, b, c, ...\}$, b > a, c > b, etc. For any 2 elements in set, the separation is defined as the difference between the elements. For example, the separation between b and a is b a
- 6. Step:- Assume that there is a set $\mathcal{A} = \{a, b, c, ...\}$, b > a, c > b, etc. For any 2 elements in set, the step is defined as the difference between the index of two elements. For example, from a to b a step of 1 is required and from a to c a step of 2 is required.
- 7. D_1 :-Interleaving step
- 8. s:- post-interleaving separation
- 9. t:- pre-interleaving separation
- 10. layer distance (l): Assume we have a set $\mathcal{A} = (0, 1, ..., N-1)$. We proceed to form a $N/\tau \times \tau$ matrix **A** from it. We assign indices to each row and refer to each row of **A** as a layer and the the layer distance l as the difference between two rows indices of **A**

0.2 Weight-2 RTZ inputs

In this section, we present the idea for coset interleaving focusing solely on weight-2 RTZ inputs. According to [SunTakeshita] weight-2 RTZ inputs have two "1" bits which are separated by $n\tau - 1$, n = 1, 2, ... "0" bits. Consequently, the smaller the value of n, the lower the weight of the codeword which will be produced. Based on this, we decided to break down the interleaver into 3 groups depending on the value of $L \mod \tau$, which for the case of the 5/7 RSC is either 0, 1, or 2. For each interleaver group, we explore all possible permutation matrices and select the ones that meet a certain design criteria.

0.2.1 Interleavers with coset length L where L mod $\tau = 0$

From the discussion made in the previous section, we can deduce that the weight-2 RTZ which produces the lowest codeword weight will be of the form $x^t(1+x^3)$, t=0,1,2,... The best outcome would be to transform $x^t(1+x^3)$ into a non-RTZ input. However, as the value of N increases, this becomes possible for only a specified distance within the interleaver. The next

best thing we can do is to make sure that anytime we have a RTZ input of the form $x^t(1+x^3)$, it is transformed into another RTZ input which produces a codeword with a heavier weight than $x^t(1+x^3)$. For interleavers where $L \mod \tau = 0$, $N = n\tau^2 = 9n$, n = 1, 2, ... We focus on the case where n = 1 and look for unique $N \times N$ permutation matrices such that $x^t(1+x^3)$ is transformed to a non-RTZ input. A permutation matrix is unique if a shift of the elements in the matrix does not produce another another permutation matrix.

A	0	3	6	1	4	7	2	5	8
В	0	3	6	1	4	2	5	8	7
\mathbf{C}	0	3	6	1	2	4	5	7	8
D	0	3	6	1	2	5	8	4	7
\mathbf{E}	0	3	6	2	1	4	7	5	8
\mathbf{F}	0	3	6	2	1	5	4	8	7
G	0	3	6	2	5	1	4	7	8
H	0	3	6	2	5	8	1	4	7
Ι	0	3	1	4	7	6	2	5	8
J	0	3	1	4	2	6	5	7	8
K	0	3	1	2	4	6	7	5	8
\mathbf{L}	0	3	1	2	5	6	4	7	8
\mathbf{M}	0	3	2	1	4	6	5	8	7
N	0	3	2	1	5	6	8	4	7
О	0	3	2	5	1	6	4	8	7
P	0	3	2	5	8	6	1	4	7
Q	0	1	3	4	6	7	2	5	8
\mathbf{R}	0	1	3	4	6	2	5	8	7
\mathbf{S}	0	1	3	4	2	7	5	6	8
\mathbf{T}	0	1	3	2	6	4	7	5	8
U	0	1	3	2	6	5	4	8	7
\mathbf{V}	0	1	3	2	5	4	7	6	8
\mathbf{W}	0	1	4	7	2	3	5	6	8
X	0	2	3	5	6	8	1	4	7

Table 1: All unique permutation matrices for the case when $L \mod \tau = 0$

Table 1 shows all unique permutation matrices that meet the above criteria. Each row is a seperate permutation matrix and the column index corresponds to the rows in each matrix and the column values correspond to the column where a 1 appears.

For example, the first row in Table 1 corresponds to the permutation matrix below.

At the 0th row and the 0th column, 1st row and the 3rd column,3rd row and the 6th column,... and so on, a 1 is present.

For interleaver lengths N where n > 1, what we can to is to repeat the decided upon interleaving pattern for all the n blocks of the interleaver. Regardless of which interleaving pattern we choose from Table 1, we are certain that RTZ inputs only occur when any 2 elements have a step of exactly 9 between them.

0.2.2 Interleavers with coset length L where L mod $\tau = 1$ or L mod $\tau = 2$

Interleavers that meet this criteria, can be further grouped into 2 categories. The first category which is easiest to deal with is the case where N is divisible by 3 and 6. The second category is where N is divisible by 3 only.

For the case where N is divisible by 3 and 6, we choose the largest divisor(6) and set N = 6n, n = 1, 2, Setting N = 1 we then follow the procedure in the previous section, and find all permutation matrices which ensure that the weight-2 RTZ input $x^t(1+x^3)$ is transformed into a non-RTZ input. The permutation matrices which meet this criteria are shown in Table 2. For

A	0	3	1	4	2	5
В	0	3	1	2	4	5
\mathbf{C}	0	3	2	1	5	4
D	0	3	2	5	1	4
\mathbf{E}	0	1	3	4	2	5
\mathbf{F}	0	1	3	2	5	4
G	0	1	4	2	3	5
Н	0	2	3	5	1	4

Table 2: All unique permutation matrices for the case when $L \mod \tau = 1$ or $L \mod \tau = 2$ and N = 6n

interleaver lengths N where n > 1, what we can to is to repeat the decided upon interleaving pattern for all the n blocks of the interleaver. Again, regardless of which interleaving pattern we choose from Table 2, we are certain that RTZ inputs only occur when any 2 are exactly 6 steps away from each other.

For the case where N is divisible by 3 only, we have $N=3n,\ n=1,2,\ldots$. Again, we set n=1 and follow the procedure in the previous section, and find all permutation matrices which ensure that the weight-2 RTZ input $x^t(1+x^3)$ is transformed into a non-RTZ input. The permutation matrices which meet this criteria are shown in Table 3.

A	0	1	2
В	0	2	1

Table 3: All unique permutation matrices for the case when $L \mod \tau = 1$ or $L \mod \tau = 2$ and N = 3n

Again ,for interleaver lengths N where n>1, we repeat the decided upon interleaving pattern for all the n blocks of the interleaver. This time, that RTZ inputs only occur when any 2 are exactly 3 steps away from each other, which means $x^t(1+x^3)$ is always mapped unto itself and this is a situation we want to avoid as much as possible. In light of this, we present an alternate procedure for coset interleaving for when $L \mod \tau = 1$ or $L \mod \tau = 2$

0.2.3 Alternate Method for Interleavers with coset length L where $L \mod \tau = 1$ or $L \mod \tau = 2$

For interleavers which meet this criteria, we take the elements in each cosest and form a $3 \times \lceil \frac{L}{3} \rceil$ matrix as shown in Figure 0-1

Figure 0-1: Turbo Encoder

Figure 0-1 (a) represents the case where $L \mod \tau = 2$ and Figure 0-1 (b) represents the case where $L \mod \tau = 1$. The task is to generate a permutation matrix which guarantees that the should a weight-2 RTZ $x^t(1+x^3)$ occur it will not be mapped to the same RTZ sequence at all points during interleaving.

The $L \times N$ permutation matrices which meet the criteria are shown in Table 4 for different values of L and N.

L = 4, N = 12	0	3	6	10	
L = 5, N = 15	0	3	6	10	12

Table 4: All unique permutation matrices for different values of N and L when $L \mod \tau = 1$ or $L \mod \tau = 2$

The permutation matrices obtained using this method ensures that weight-2 RTZ $x^t(1+x^3)$ is never mapped to itself at any point in the interleaving process.

0.3 Weight-3 RTZ inputs

In most interleaver design cases, focusing on weight-2 RTZ inputs would be enough. For the 5/7 RSC interleaver however, this is not the case since the minimum weight codeword is caused by the weight -3 RTZ input of the form $x^t(1+x+x^2)$, t=1,2,... In general, any time a weight 3 input has $x \mod 3 = 1$ zeros and/or $x \mod 3 = 1$ between its first 2 "1" bits and and last 2 "1" bits it is a weight 3 RTZ input sequence. This definition is specific to the 5/7 RSC encoder.

Similar to the approach taken for designing interleavers weight-2 RTZ sequences, we group the interleavers into 3 groups, depending on the value of $L \mod \tau$ and find all possible permutation matrices which prevent $x^t(1 + x + x^2)$ from being mapped to itself.

0.3.1 Interleavers with coset length L where L mod $\tau = 0$

Table 5 list all permutation matrices when which transforms $x^t(1+x+x^2)$ into a non RTZ input. However, there are other weight 3 RTZ inputs which exist within this span, depending on the permutation matrix that is chosen. For example, **A** has $1+x^4+x^8$, $1+x^5+x^7$, $x+x^3+x^8$, $x+x^8$

A	0	3	6	1	4	7	2	5	8
В	0	3	6	1	4	2	7	5	8
$lue{\mathbf{C}}$	0	3	6	1	4	2	8	7	8
D	0	3	6	1	4	2	5	8	7
\mathbf{E}	0	3	6	2	5	1	4	7	8
F	0	3	6	2	5	1	4	8	7
G	0	3	6	2	5	1	8	4	7
H	0	3	1	6	4	7	2	5	8
Ι	0	3	1	4	7	2	5	6	8
J	0	3	2	6	5	8	1	4	7
K	0	3	2	5	8	1	4	6	7
$oxed{\mathbf{L}}$	0	1	3	4	7	2	5	6	8

Table 5: All unique permutation matrices for the case when $L \mod \tau = 0$

$$x^5 + x^6$$
, $x^2 + x^4 + x^6$, $x^2 + x^3 + x^7$, whiles **B** has $1 + x^4 + x^8$, $x + x^3 + x^8$, $x + x^3 + x^5$, $x + x^6 + x^8$, $x^2 + x^3 + x^7$, $x^2 + x^6 + x^7$

Regardless of which permutation matrix is picked, we are certain that the weight 3 RTZ $1 + x + x^2$ will not be mapped to itself within the chosen span.

0.3.2 Interleavers with coset length L where L mod $\tau = 1$ or L mod $\tau = 2$

Similar to weight 2 RTZ, we further divide the above case into 2 categories. The first category is when N is divisible by 3 and 6. The second category is where N is divisible by 3 only. Table 6 show all permutation matrices which prevent $1 + x + x^2$ from being interleaved to itself when $L \mod \tau = 1$ or $L \mod \tau = 2$ and N is divisible by 3 and 6.

\mathbf{A}	0	3	1	4	2	5
В	0	3	2	5	1	4

Table 6: All unique permutation matrices for the case when $L \mod \tau = 1$

The remaining weight 3 RTZ which need to be dealt with is $1 + x^2 + x^4$.

For the second category (N divisible by 3 only), there are no permutation matrices which meet this criteria.

0.3.3 Alternate Method for Interleavers with coset length L where $L \mod \tau = 1$ or $L \mod \tau = 2$

For the case where $L \mod \tau = 1$, there is a point where $1 + x + x^2$ is mapped to itself, depending on N.

For the case where $L \mod \tau = 2$, $1 + x + x^2$ is never mapped unto itself, but the lowest weight 3 RTZ that needs to be dealt with is $x + x^3 + x^5$

0.4 Maximizing Separation for weight-2 RTZ inputs

0.4.1 case $L \mod 3 = 0$

From Table 1 we select the permutation matrix **A**. For interleaver length N > 9, we repeat this pattern. With this permutation matrix, we are sure that the weight-2 RTZ $1+x^9$ will be mapped to itself. We wish to prevent this by transforming $1+x^9$ into a weight -2 RTZ input which has a large separation the "1" bits. Let t and s represent the separation before and after interleaving. It is worth noting that t, s are multiples of $\tau = 3$

The mamimum separation depends on the value of N. Therefore to achieve the largest separation after interleaving s must meet the following condition.

$$s = \max \left\{ a \le \lfloor \frac{N}{2} \rfloor \right.$$

- **0.4.2** case $L \mod 3 = 1$
- **0.4.3** case $L \mod 3 = 2$
- 0.5 Maximizing separation for weight-3 RTZ inputs
- **0.5.1** case $L \mod 3 = 0$
- **0.5.2** case $L \mod 3 = 1$
- **0.5.3** case $L \mod 3 = 2$
- 0.6 Maximizing Separation for weight-2 and weight-3 RTZ inputs
- 0.6.1 Choice of Permutation polynomial

```
case L \mod 3 = 0
```

case $L \mod 3 = 1$

case $L \mod 3 = 2$

- 0.6.2 Range of Maximum Separation
- 0.7 Interleaver implementation
- 0.8 Simulation Results