WHAT IS CLAIMED IS:

5VB) 1. A method comprising contacting at least an alkane having from 2 to 4 carbon atoms to a catalyst comprising at least nickel oxide and dehydrogenating said alkane with a selectivity of greater than 70% and a conversion of greater than 10%. 3 2. The method of claim 1 wherein said selectivity is greater than 75%. 1 3. The method of claim 2 wherein said selectivity is greater than 80%. 1 Sub A_3 > 5. The method of claim 1 wherein said conversion is greater that 15%.

6. A process for the continuation of the c 6. A process for the oxidative dehydrogenation of an alkane having from 2 to 4 carbon atoms comprising contacting said alkane in the presence of oxygen to a compound comprising nickel oxide and obtaining a selectivity in said dehydrogenation of greater than 70% and a conversion of greater than 10%. 7. The method of claim 6 wherein said selectivity is greater than 75%. The method of claim 7 wherein said selectivity is greater than 80%. 9. The method of claim 8 wherein said/selectivity is greater than 85%. 10. The method of claim owherein said conversion is greater that 15%. SUB 11. A process for the oxidative dehydrogenation of an alkane having from 2 to 4 carbon 2 atoms comprising 3 contacting a gas mixture comprising said alkane and oxygen to a nickel oxide containing catalyst; and 5 obtaining a selectivity greater than 70% and a conversion greater 10%. 12. The method of claim 11 wherein said selectivity is greater than 75%.

1	13. The method of claim 12 wherein said selectivity is greater than 80%.
1	14. The method of claim 13 wherein said selectivity is greater than 85%.
1500	$3 \frac{1}{15}$. The method of claim 11 wherein aid conversion is greater that 15%.
1	16. A method for the oxidative dehydrogenation of an alkane having from 2 to 4 carbon
2	atoms comprising contacting said alkane in the presence of oxygen to a material having the
3	empirical formula
4	$Ni_xNb_yTa_zO_i$
5	wherein x is in the range of about 0.05-0.96, y is in the range of from about 0-0.8, z is in
<u></u> 6	the range of from 0-0.8 and i is a number that satisfies valence requirements; and the sum of y
<u> 7</u>	and z is at least 0.1.
56 7 1 1 1 1	17. The method of claim 16, wherein x is in the range of from about 0.4 to 0.96.
<u> </u>	18. The method of claim 16 wherein x is greater than 0.5.
1	19. The method of claim 16 wherein y and z are each greater than zero and wherein the
1 2 1 1	sum of y and z is smaller than 0.6.
1	20. A method for the oxidative dehydrogenation of an alkane having from 2 to 4 carbon
2	atoms comprising contacting said alkane in the presence of oxygen to a material having the
3	empirical formula
4	$Ni_xA_jB_kC_lO_i$
5	wherein Ni is nickel and x is in the range of about 0.05-0.96;
6	A is a metal selected from the group consisting of Co, Nb, Ta and combinations thereof
7	and j is in the range of from about 0-0.8;
8	B is a dopant selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba,
9	Mn, La, Ce, Pr, Nd, Sm and combinations thereof and k is in the range of from 0-0.5;
10	C is a dopant selected from the group consisting of Sn, Al, Fe, Si, B, Sb, Tl, In, Ge, Cr,
11	Pb and combinations thereof and l is in the range of from 0-0.5

1

2

equal to 0.25.

i is a number that satisfies the valence requirements of the other elements present; and 12 the sum of j, k and l is at least 0.1. 13 21. The method of claim 20, wherein x is in the range of from about 0.5 to 0.85. 1 22. The method of claim 20 wherein x is greater than 0.1. 1 23. The method of claim 20 wherein j, k and l are each greater than zero and wherein the 1 2 sum of j, k and l is smaller than 0.8. 24. A method of making a C2-C4 olefin comprising the step of contacting a gas mixture 1 with a catalyst having an empirical formula: 2 70517517 7 8 9 NiaCohNbcTadSncKcAlcFehOi; wherein b, c and d are numbers greater than or equal to zero, but less than one, and at least one of b, c and d is nonzero; e and f are numbers greater than or equal to zero, but less than or equal to 0.35; g and h are numbers greater than or equal to zero, but less than or equal to 0.10; a is a number greater than zero, but less than one, and satisfies: $a \le 1 - b - c - d - e - f - g - h$; 10 i is a number that satisfies valence requirements; and the gas mixture comprises a C2-C4 alkane and oxygen. 11 25. The method of claim 24, wherein: 1 c is greater than or equal to 0.10, but less than or equal to 0.85; and 2 b, d, e, f, g, and h equal zero. 3 26. The method of claim 25, wherein c is greater than or equal to 0.12, but less than or 1 2 equal to 0.42.

27. The method of claim 26, wherein c is greater than or equal to 0.14, but less than or

1	28. The method of claim 25, wherein c is greater than or equal to 0.20, but less than or
2	equal to 0.50.
1	29. The method of claim 28, wherein c is greater than or equal to 0.31, but less than or
2	equal to 0.41.
1	30. The method of claim 24, wherein:
2	d is greater than or equal to 0.10, but less than or equal to 0.60; and
3	b, c, e, f, g, and h equal zero.
1	31. The method of claim 30, wherein d is greater than or equal to 0.19, but less than or
2	equal to 0.50.
1	32. The method of claim 30, wherein d is greater than or equal to 0.14, but less than or
	equal to 0.25.
≞ <u>=</u> 1	33. The method of claim 24, wherein:
<u>2</u>	b is greater than or equal to 0, but less than or equal to 0.20;
3	c is greater than or equal to 0, but less than or equal to 0.80; and
2 4	d, e , f , g and h equal zero.
= <u>-</u> ≟1	34. The method of claim 33, wherein b is greater than or equal to 0.001, but less than or
2	equal to 0.20; and c is greater than or equal to 0.02, but less than or equal to 0.56.
1	35. The method of claim 33, wherein b is greater than or equal to 0, but less than or equa
2	to 0.30; and c is greater than or equal to 0, but less than or equal to 0.45.
1	36. The method of claim 35, wherein a is greater than or equal to 0.55, but less than or
2	equal to 0.85.
1	37. The method of claim 33, wherein:
2	b is greater than or equal to 0, but less than or equal to 0.33; and
3	c is greater than or equal to 0, but less than or equal to 0.52.

1	38. The method of claim 37, wherein:
1	b is less than or equal to 0.10; and
2	
3	c is greater than or equal to 0.20, but less than or equal to 0.50.
1	39. The method of claim 37, wherein:
2	b is less than or equal to 0.03; and
3 ·	c is less than or equal to 0.50.
1	40. The method of claim 39, wherein c is greater than or equal to 0.15, but less than or
2	equal to 0.26.
₁₅ 1	41. The method of claim 37, wherein:
2	b is greater than or equal to 0.001, but less than or equal to 0.19; and
₩ 14 3	c is greater than or equal to 0.13, but less than or equal to 0.33.
n	
! ⊒ 1	42. The method of claim 41, wherein c is less than or equal to 0.23.
=	43. The method of claim 24, wherein:
	c is greater than or equal to 0, but less than or equal to 0.50;
<u>↓</u> 2	
1¥ 3	d is greater than or equal to 0, but less than or equal to 0.50; and
	b, e, f, g and h equal zero.
1	44. The method of claim 43, wherein:
2	c is greater than or equal to 0.03, but less than or equal to 0.40; and
3	d is greater than or equal to 0.02, but less than or equal to 0.29.
1	45. The method of claim 43, wherein:
2	a is greater than or equal to 0.46, but less than or equal to 0.96;
3	c is greater than or equal to 0.04, but less than or equal to 0.44; and
4	d is greater than or equal to 0.04, but less than or equal to 0.44.
1	46. The method of claim 45, wherein:
2	a is greater than or equal to 0.54, but less than or equal to 0.72;

3	c is greater than or equal to 0.04, but less than or equal to 0.38; and
4	d is greater than or equal to 0.04, but less than or equal to 0.40.
1	47. The method of claim 46, wherein:
2	a is less than or equal to 0.65;
3	c is less than or equal to 0.20; and
4	d is greater than or equal to 0.15.
1	48. The method of claim 24, wherein:
2	c, d and e are each greater than or equal to 0, but less than or equal to 0.35; and
3	b, f, g and h equal zero.
	49. The method of claim 24, wherein:
<u>.</u> 12	c, d and f are each greater than or equal to 0, but less than or equal to 0.35; and
	b, e, g and h equal zero.
<u></u>	50. The method of claim 46, wherein:
2	a is greater than or equal to 0.58, but less than or equal to 0.64;
<u>-</u> 3	c is greater than or equal to 0.06, but less than or equal to 0.38;
<u>4</u>	d is greater than or equal to 0.04, but less than or equal to 0.30; and
<u>U</u> _5 ≟	f is less than or equal to 0.26.
1	51. The method of claim 47, wherein:
2	a is greater than or equal to 0.55, but less than or equal to 0.65;
3	c is greater than or equal to 0.30, but less than or equal to 0.40; and
4	b, d, e, and f equal zero.
1	52. The method of claim 51, wherein:
2	a is greater than or equal to 0.58, but less than or equal to 0.61;
3	c is greater than or equal to 0.35, but less than or equal to 0.36;
4	g is greater than or equal to 0, but less than or equal to 0.05; and
5	h is greater than or equal to 0, but less than or equal to 0.07.

1	53. The method of claim 24, wherein the gas mixture further comprises a material
2	selected from the group consisting of ethylene, butylenes or raffinate II.
1	54. The method of claim 24, wherein said contacting is carried out at a temperature of
2	about 400°C or less.
1	55. The method of claim 24, wherein the contacting step is carried out at a temperature of
2	about 325°C or less.
1	56. The method of claim 24, wherein the contacting step is carried out at a temperature of
2	about 300°C or less.
	57. The method of claim 24, wherein said catalyst is not supported on a carrier.
	58. The method of claim 24, wherein said catalyst is supported on a carrier selected from
<u>ā</u> 2	the group consisting of silica, alumina, titania, zirconia, magnesia, zeolites, clays and
	combinations thereof.
121	59. The method of claim 24 wherein said contacting is carried out for a time in the range
	of from about 100 milliseconds to about 10 seconds.
	60. The method of claim 24, wherein said gas mixture comprises oxygen in the range of
2	from about 0.01-20% by volume and ethane in the range of from about 10-99.99% by volume.
1	61. The method of claim 60, wherein said gas mixture further comprises diluents in the
2	range of from about 0.01-60% by volume.
1	62. The method of claim 60, wherein said reaction pressure is in the range of from 0.5 to
2	20 bar.
1	63. The method of claim 24, wherein said catalyst is diluted with a binder or inert filler.
1	64. The method of claim 24 wherein said catalyst is calcined at a temperature of 400°C or
2	less.

2

less.

- 65. The method of claim 24 wherein said catalyst is calcined at a temperature of 350°C or less.

 66. The method of claim 24 wherein said catalyst is calcined at a temperature of 300°C or
- 67. A method for the oxidative dehydrogenation of ethane to ethylene, optionally with ethylene as a co-feed with said ethane, comprising contacting ethane to a catalyst comprising nickel oxide (NiO) with either niobium oxide (Nb₂O₅) or tantalum oxide (Ta₂O₅).