1/7

Γ

FIG. 1

FIG. 2

FIG. 3B

FIG. 3C

 Γ

FIG. 3A

FIG. 3D

FIG. 4B

FIG. 4C

FIG. 4A

FIG. 4D

4/7

FIG. 5B

FIG. 5C

 Γ

FIG. 5A

FIG. 5D

Thermal Conductivity Average vs. Number of MLI Layers

Effective Thermal Conductivity of Nomex Honeycomb Panels with Multilayer Insulation, Compared to Aerogel or Instill and to a Vacuum Test

FIG. 6

Effective Thermal Conductivity of Aluminum Honeycomb Panels with Multilayer Insulation, Compared to Aerogel or Instill

FIG. 7

FIG. 8 COMPARISON OF HEAT		RATES FOR VARI	TRANSFER RATES FOR VARIOUS HONEYCOMB CELL CONDITIONS	CELL CONDITION	008 - SNC		
Configuration	Wall Heat Transfer	808- Air Heat Transfer	Radiation Heat Transfer	Total	812—— Effective Thermal Conductivity	rmal	
	BTU/ft -hr	BTU/ft ² -hr	BTU/ft ² -hr	BTU/ft ² -hr	BTU-in/ft ² -hrF	mW/m-K	
1" Thick Honeycomb Not Evacuated	3.33	8.	20.44	31.8	0.662	95.5	
1" Thick Honeycomb Evacuated	3.33	арргох. О	20.44	23.77	0.495	71.3	•
Two 1/2" Thick Honeycomb Cores, Each Vacuum Seated in MLI With	0.39	approx. 0	1.58	1.98	0.04125	5.94	-
1 Layer MLI in Between (5 total) Emissivity=0.6, Shape Factor=0.35		(0.35)	(0.35/0.5)(0.6/0.9)(1/(5+1)20.44	(5+1)20.44			7/7
Two 1/2" Thick Honeycomb Cores, Each Vacuum Seated in MLI With	0.39	арргох. 0	3.4067	3.797	0.079	11.38	
1 Layer MLI in Between (5 total) Emissivity=0.9, Shape Factor=0.5			(1/(5+1)20.44	4			
Three 1/2" Thick Honeycomb Cores, Each Vacuum Seated in MLI With	0.208	approx. 0	0.303	0.511	0.000895	1.52	
1 Layer MLI in Between (8 total) Emissivity=0.3, Shape Factor=0.2		(0.2/0	(0.2/0.5)(0.3/0.9)(1/(8+1)20.44	+1)20.44			

Note: Cell wall width = 0.5, Wall Thickness = 0.05, Thermal Conductivity of Cell Material = 0.05 BTU/ft ²-hr. Shape factor is 0.5 for a single cell, 0.35 for two offset cells, and 0.2 for three offset cells. Emissivity is estimated to be 0.9 for the face sheet material and cell. Alternatively, when vacuum sealed in MLI, emissivity is estimated to be 0.6 for an improved face sheet material for two cores, and 0.3 for three cores.