Machine Learning

Lecture 8: Training Deep Neural Networks (Regularization and Optimization)

Instructor: Dr. Farhad Pourkamali Anaraki

Overview

- In this lecture, we review a few techniques to improve the performance of (deep) neural networks
 - Vanishing/exploding gradients
 - Gradients grow smaller and smaller, or larger and larger as we flow backward through the network during training
 - Regularization
 - We might not have enough training data for training a large network or data instances are too noisy
 - Batch normalization and dropout
 - ℓ_1 and ℓ_2 regularization
 - Optimizers
 - Various optimization methods can speed up training large neural networks

Vanishing/exploding gradients problem

- When gradients get smaller and smaller, the Gradient Descent update leaves many connection weights unchanged
 - Known as the vanishing gradients problem
- When gradients grow bigger and bigger, some layers get large weight updates and the algorithm diverges
 - Known as the exploding gradients problem
- One of the main reasons deep neural networks were abandoned in 2000s
- It appears there are two main factors
 - Weight initialization
 - Normal distribution with mean 0 and variance 1
 - Sigmoid activation function

Activation function saturation

- When inputs become large (negative or positive), the function saturates at 0 or 1
- Derivative extremely close to 0
- No gradient to propagate back through the network

Glorot and He Initialization

- Goal: the variance of the outputs of each layer to be equal to the variance of its inputs
 - Number of inputs: fan_in
 - Number of neurons: fan_out
- Let us define: $fan_avg = (fan_in + fan_out)/2$

Equation 11-1. Glorot initialization (when using the logistic activation function)

Normal distribution with mean 0 and variance
$$\sigma^2 = \frac{1}{fan_{avg}}$$

Or a uniform distribution between
$$-r$$
 and $+r$, with $r = \sqrt{\frac{3}{fan_{avg}}}$

Table 11-1. Initialization parameters for each type of activation function

Initialization	Activation functions	σ^2 (Normal)
Glorot	None, tanh, logistic, softmax	1 / fan _{avg}
He	ReLU and variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

Keras initializers

You can choose one of the implemented initializers

```
for name in dir(keras.initializers):
   if not name.startswith("_"):
      print(name, end =", ")
```

```
glorot_normal, glorot_uniform, he_normal, he_uniform, identity, lecun_normal
```

- By default, Keras uses Glorot initialization with a uniform distribution
- We can change this to He initialization
 - Method 1

```
keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal")
```

• Method 2

Nonsaturating activation functions

- We know that ReLU activation function does not saturate for positive values and it is fast to compute
- However, ReLU is not perfect!
 - Dying ReLU problem: some neurons effectively "die," meaning they stop producing anything other than 0
- Solution: Leaky ReLU

LeakyReLU(
$$z$$
) = max(αz , z), α = 0.01

Nonsaturating activation functions

• A new activation function was proposed named exponential linear unit (ELU)

Equation 11-2. ELU activation function

$$ELU_{\alpha}(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

• If $\alpha = 1$, the function is smooth everywhere including z = 0

Keras activation functions

We can choose one of the following activation functions

```
for name in dir(keras.activations):
   if not name.startswith("_"):
     print(name, end =", ")
```

deserialize, elu, exponential, get, hard_sigmoid, linear, relu, selu, serialize, sigmoid, softmax, softplus, softsign, swish, tanh

We can also create an additional layer

```
[m for m in dir(keras.layers) if "relu" in m.lower()]
['LeakyReLU', 'PReLU', 'ReLU', 'ThresholdedReLU']
```

Example

```
(X train full, y train full), (X test, y test) = keras.datasets.fashion mnist.load data()
X_train_full = X_train_full / 255.0
X \text{ test} = X \text{ test} / 255.0
X_valid, X_train = X_train_full[:5000], X_train_full[5000:]
y valid, y train = y train full[:5000], y train full[5000:]
tf.random.set_seed(42)
np.random.seed(42)
model = keras.models.Sequential([
    keras.layers.Flatten(input shape=[28, 28]),
    keras.layers.Dense(300, kernel_initializer="he_normal"),
    keras.layers.LeakyReLU(),
    keras.layers.Dense(100, kernel initializer="he normal"),
    keras.layers.LeakyReLU(),
    keras.layers.Dense(10, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy",
              optimizer=keras.optimizers.SGD(lr=1e-3),
              metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=10,
```

validation data=(X valid, y valid))

Example

```
loss: 1.2819 - accuracy: 0.6229 - val_loss: 0.8886 - val_accuracy: 0.7160
loss: 0.7955 - accuracy: 0.7362 - val loss: 0.7130 - val accuracy: 0.7656
loss: 0.6816 - accuracy: 0.7721 - val loss: 0.6427 - val accuracy: 0.7898
loss: 0.6217 - accuracy: 0.7944 - val loss: 0.5900 - val accuracy: 0.8066
loss: 0.5832 - accuracy: 0.8075 - val_loss: 0.5582 - val_accuracy: 0.8200
loss: 0.5553 - accuracy: 0.8157 - val_loss: 0.5350 - val_accuracy: 0.8236
loss: 0.5338 - accuracy: 0.8224 - val_loss: 0.5157 - val_accuracy: 0.8304
loss: 0.5172 - accuracy: 0.8273 - val_loss: 0.5079 - val_accuracy: 0.8286
loss: 0.5040 - accuracy: 0.8288 - val_loss: 0.4895 - val_accuracy: 0.8390
loss: 0.4924 - accuracy: 0.8321 - val loss: 0.4816 - val accuracy: 0.8394
```

Batch normalization

- So far, we discussed initialization techniques and various activation functions
- Batch normalization
 - normalizes the output of a previous activation layer by subtracting the batch mean and dividing by the batch standard deviation
 - adds two trainable parameters to each layer, so the normalized output is multiplied by a "standard deviation" parameter (gamma) and add a "mean" parameter (beta)

Equation 11-3. Batch Normalization algorithm

1.
$$\mu_B = \frac{1}{m_B} \sum_{i=1}^{m_B} \mathbf{x}^{(i)}$$

2.
$$\sigma_B^2 = \frac{1}{m_B} \sum_{i=1}^{m_B} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_B)^2$$

3.
$$\widehat{\mathbf{x}}^{(i)} = \frac{\mathbf{x}^{(i)} - \boldsymbol{\mu}_B}{\sqrt{\boldsymbol{\sigma}_B^2 + \varepsilon}}$$

$$\mathbf{z}^{(i)} = \mathbf{\gamma} \otimes \widehat{\mathbf{x}}^{(i)} + \mathbf{\beta}$$

input data when using BN!

Example

2 hidden layers

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
                                                 We don't need to standardize the
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, activation="relu"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(100, activation="relu"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(10, activation="softmax")
```

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
flatten_1 (Flatten)	(None,	784)	0
batch_normalization (BatchNo	(None,	784)	3136 =4x784
dense_7 (Dense)	(None,	300)	235500
batch_normalization_1 (Batch	(None,	300)	1200
dense_8 (Dense)	(None,	100)	30100
batch_normalization_2 (Batch	(None,	100)	400
dense_9 (Dense)	(None,	10)	1010

Total params: 271,346

Trainable params: 268,978

Non-trainable params: 2,368 = (3,136+1,200+400)/2

Example

```
model.compile(loss="sparse categorical crossentropy",
              optimizer=keras.optimizers.SGD(lr=1e-3),
              metrics=["accuracy"])
history = model.fit(X train, y train, epochs=10,
                     validation data=(X valid, y valid))
      loss: 0.8293 - accuracy: 0.7221 - val_loss: 0.5539 - val_accuracy: 0.8160
      loss: 0.5703 - accuracy: 0.8036 - val_loss: 0.4792 - val_accuracy: 0.8380
      loss: 0.5161 - accuracy: 0.8213 - val_loss: 0.4424 - val_accuracy: 0.8490
      loss: 0.4789 - accuracy: 0.8314 - val loss: 0.4212 - val accuracy: 0.8570
      loss: 0.4548 - accuracy: 0.8407 - val loss: 0.4051 - val accuracy: 0.8616
      loss: 0.4387 - accuracy: 0.8445 - val loss: 0.3931 - val accuracy: 0.8632
      loss: 0.4255 - accuracy: 0.8502 - val loss: 0.3829 - val accuracy: 0.8638
      loss: 0.4124 - accuracy: 0.8538 - val loss: 0.3759 - val accuracy: 0.8664
      loss: 0.4027 - accuracy: 0.8583 - val loss: 0.3691 - val accuracy: 0.8676
      loss: 0.3925 - accuracy: 0.8613 - val loss: 0.3630 - val accuracy: 0.8664
```

Batch normalization before activation function

Sometimes applying BN before the activation function works better (there's a debate on this topic)

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, use_bias=False),
    keras.layers.BatchNormalization(),
    keras.layers.Activation("relu"),
    keras.layers.Dense(100, use_bias=False),
    keras.layers.BatchNormalization(),
    keras.layers.Activation("relu"),
    keras.layers.Dense(10, activation="softmax")
])
```

Reusing pretrained layers

- In general, it is not a good idea to train large neural networks from scratch
 - We can use an existing neural network and reuse some of the layers
 - Often called "transfer learning"

- Let's look at the Fashion MNIST data set and divide it into two sets
 - X_train_A: all images except for sandals and shirts (classes 5 and 6)
 - X_train_B: a much smaller training set of just the first 200 images of sandals or shirts
- Objective: we will train a model on set A (classification task with 8 classes), and try to reuse it to tackle set B (binary classification)

So far, we have two data sets for each model

```
print(X_train_A.shape, X_train_B.shape)
(43986, 28, 28) (200, 28, 28)
```

Building model and training

Let us save the first model

```
model_A.save("my_model_A.h5")
```

Transfer learning

```
model_A = keras.models.load_model("my_model_A.h5")
model_B_on_A = keras.models.Sequential(model_A.layers[:-1])
model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid"))
```

• Let's train the entire model for a few more epochs

Evaluation

Faster optimizers

- Methods that we discussed so far to speed up training
 - Initialization strategies for connection weights
 - Activation functions
 - Batch normalization
 - Reusing parts of a pretrained neural network
- Another important technique is to use a faster optimizer than the regular Gradient Descent optimizer
 - Momentum optimization
 - Nesterov Accelerated Gradient
 - AdaGrad, RMSProp, Adam

Momentum optimization

• Recall the Gradient Descent method updates the weights θ by directly subtracting the gradient of the cost function $J(\theta)$ multiplied by the learning rate η

$$\theta \leftarrow \theta - \eta \nabla J(\theta)$$

- Therefore, gradient descent takes regular steps without taking into account what the earlier gradients were
- Momentum optimization with the hyperparameter β
 - Called momentum and must be between 0 and 1 (typical value 0.9)

Equation 11-4. Momentum algorithm

1.
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$$

2.
$$\theta \leftarrow \theta + m$$

Keras

Nesterov Accelerated Gradient

• One small variant to momentum optimization is to measure the gradient of the cost function not at the local position θ but slightly ahead in the direction of the momentum, i.e., $\theta + \beta \mathbf{m}$

Equation 11-5. Nesterov Accelerated Gradient algorithm

1.
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\mathbf{\theta}} J(\mathbf{\theta} + \beta \mathbf{m})$$

2. $\theta \leftarrow \theta + \mathbf{m}$

Keras

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True)

AdaGrad

• Accumulates the square of the gradients for finding an adaptive learning rate, i.e., the algorithm decays the learning rate with regard to parameter θ_i

Equation 11-6. AdaGrad algorithm

1.
$$\mathbf{s} \leftarrow \mathbf{s} + \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \oslash \sqrt{s + \varepsilon}$$

 Sometimes the learning rate gets scaled down so much that the algorithm ends up stopping entirely before reaching the global optimum

RMSProp

Like AdaGrad but accumulates the gradients from the most recent iterations

Equation 11-7. RMSProp algorithm

1.
$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\mathbf{\theta}} J(\mathbf{\theta}) \otimes \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$$

2.
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \oslash \sqrt{s + \varepsilon}$$

- The decay rate β is typically set to 0.9 (again a new hyperparameter)
- Keras implementation

```
optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)
```

• The *rho* argument corresponds to β in the above equation

Adam

• "Adam" stands for adaptive moment estimation (t represents the iteration number)

Equation 11-8. Adam algorithm

1.
$$\mathbf{m} \leftarrow \beta_1 \mathbf{m} - (1 - \beta_1) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta_2) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \otimes \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

3.
$$\widehat{\mathbf{m}} \leftarrow \frac{\mathbf{m}}{1 - \beta_1^t}$$

4.
$$\widehat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \beta_2^t}$$

5.
$$\theta \leftarrow \theta + \eta \widehat{\mathbf{m}} \oslash \sqrt{\widehat{\mathbf{s}} + \varepsilon}$$

- 2 hyperparameters ($\beta_1 = 0.9$ and $\beta_2 = 0.999$)
- Keras implementation

```
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999)
```

Requires less time tuning of the learning rate hyperparameter

Regularization

- Just like we explained for simple linear models, you can constrain a neural network's connection weights using ℓ_1 or ℓ_2 norms
- Keras implementation

• We often want to apply the same regularizer to all layers in a network

Dropout

- At every training step, every neuron (including the input neurons but excluding the output neurons) has a probability p of being temporarily "dropped out"
 - The hyperparameter *p* is called the dropout rate and it is typically set between 10% to 50%

- We need to multiply each input connection weight by the *keep probability* (1-p) after training
- If you observe the model is overfitting, you can increase the dropout rate

 Let's apply dropout regularization before every Dense layer, using a dropout rate of 0.2

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(10, activation="softmax")
])
```

• For more information, please read chapter 11 of the textbook

Keras documentation

https://keras.io/api/

Models API

- The Model class
- The Sequential class
- Model training APIs
- Model saving & serialization APIs

Layers API

- The base Layer class
- Layer activations
- Layer weight initializers
- Layer weight regularizers
- Layer weight constraints
- Core layers
- Convolution layers

Optimizers

- SGD
- RMSprop
- Adam
- Adadelta
- Adagrad
- Adamax

Losses

- Probabilistic losses
- Regression losses
- Hinge losses for "maximum-margin" classification