

Prediction of Molecule's Ability on HIV Replication Inhibition

BioE C242 – Machine Learning for Molecular Problems

30 Apr 2024

Adrien Bourgain

MEng in Bioengineering

Summary

- **2** The HIV Dataset
- The metric
- General Descriptors

- **7** The Molecular Fingerprints
- **8** Graph Neural Networks
- 9 Conclusion

Context

Definition

HIV (human immunodeficiency virus) = virus that attacks the body's immune system, making a person more vulnerable to other infections and diseases.

Background

If not treated: lead to AIDS = degenerescence of the immune system, with falling number of CD4 cells

Antiretroviral therapy (ART): treatment for HIV infection that uses a combination of antiretroviral drugs to suppress the virus

The DTP (Drug Therapeutics Program) AIDS
Antiviral Screen (National Cancer Institute)
= created the HIV dataset to discover new
treatments

Objective of the study

- → developing ML/DL algorithms to predict the anti-HIV benefits of drugs Reasons:
 - Screening for new candidates
 - Suggestion of structural modifications to improve drug efficacy and safety
 - Drug Repurposing

The HIV Dataset

Composition

41,127 compounds

- SMILES representation of the molecule
- Activity: confirmed inactive (CI), confirmed active (CA), confirmed moderately active (CM)
- HIV_active: binary classification
 (1: active, O: inactive)
 → ~3.5% of active molecules

Scaffold Split

→ split into **training**, **validation**, and **test** subsets following an **80/10/10 ratio**, using a **scaffold split**

→ train/val/test sets are **more structurally different**, making it **more challenging** for the model than a random split.

Benchmarks for HIV are done with scaffold split.

Metric for the benchmark

ROC AUC

Area under the ROC curve (ROC curve: performance of a binary classifier model at varying threshold) values

al 🗀

The General Descriptors

210 numerical features generated with RDKit

Type

- Constitutional (MolWt, HeavyAtomMolWt, etc.),
- Topological,
- · Geometrical,
- Electronic,
- · Hydrophobicity and solubility,
- Pharmacophore,
- · Molecular fingerprints,
- Functional group counts (e.g., fr_Al_COO, fr_ether, etc).

Missing values?

Difficult to fill by taking means or k-neighbors (at least I don't have the knowledge in Chemistry) → chose algorithms that handle missing values (Decision Tree, XGBoost)

Dimensionality reduction strategy

→ Removing highly correlated features (>0.95)

XGBoost

eXtreme Gradient Boosting: an efficient and scalable implementation of gradient boosting

- eXtreme: enhancements for efficiency, speed (parallelization)
- Gradient: Refers to the gradient descent algorithm used to minimize the error in predictions by iteratively improving the model.
- Boosting: ensemble technique that builds multiple models sequentially, with each new model correcting errors made by the previous ones to improve accuracy.

Hyperparameters exploration

Hyperparameter	Description	Space Explored
learning_rate	The step size shrinkage used to prevent overfitting.	{0.1, 1e-3}
n_estimators	The number of gradient boosted trees.	{25, 40, 50, 60, 100, 500, 1000}
max_depth	The maximum depth of the trees.	{3, 5, 7, 9}
min_child_weight	Minimum sum of instance weight (hessian) needed in a child.	{1, 3, 5}
gamma	Minimum loss reduction required to make a further partition on a leaf node of the tree.	{0.0, 0.1, 0.2}
subsample	Subsample ratio of the training instances.	{0.6, 0.7, 0.8, 0.9}
colsample_bytree	Subsample ratio of columns when constructing each tree.	{0.6, 0.7, 0.8, 0.9}
objective	The learning task and the corresponding learning objective.	'binary:logistic'
nthread	Number of parallel threads used to run XGBoost.	4
scale_pos_weight	Balancing of positive and negative weights.	{1, 5.07}

Results

The Molecular Fingerprints

5,287 one-hot encoded features

Extended-connectivity fingerprints

- → Introduced by Rogers et al. in 2010
- → Topological fingerprints designed to capture molecular activity features

Composed of:

- Morgan fingerprints: capture local molecular structures with variable granularity
- RDKit fingerprints: binary vector from paths of atoms up to a certain length
- MACCS keys: use a predefined set of 166 keys that represent common molecular substructures.

 [23]

	HIV_active	1	2	3	•••	5285	5286	5287
0	0	0	0	0		0	0	0
1	0	0	0	0		0	0	0
2	0	0	0	0		0	0	1
3	0	0	0	0		0	0	0
4	0	0	0	0		0	0	0

Results

Random Forest classifier

Random Forest

- → ensemble machine learning technique
- → multiple decision trees during training and outputs the **majority vote** (for classification) or **mean prediction** (for regression)
- → averages multiple deep decision trees, each trained on both subsets of training data and features

Advantage over XGBoost

- → can be more robust against overfitting
- → easier to tune (fewer hyperparameters)

Random Forest classifier

Hyperparameters exploration

Hyperparameter	Description	Space Explored
n_estimators	The number of trees in the forest.	500, 1000
min_samples_leaf	The minimum number of samples required to be at a leaf node.	2, 5
min_samples_split	The minimum number of samples required to split an internal node.	2, 5, 10
min_impurity_decrease	A node will be split if this split induces a decrease of the impurity greater than or equal to this value.	0
min_weight_fraction_leaf	The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node.	0
class_weight	Weights associated with classes in the form {class_label: weight} .	{0: 1, 1: 26.71}
warm_start	When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble.	True, False

Random Forest classifier

Results

MLP

63,157 parameters

- **Dropout** (p=0/0.1)
- nn.BCEWithLogitsLoss() or Focal Loss

$$FL(p) = -(y(1-p)^{\gamma} \log p + (1-y)p^{\gamma} \log(1-p))$$

Test AUC:

73.23%

[24]

MLP - PCA

99% explained variance

→ **4**,**147** components

Hyperparameter	Description	Space Explored
dropout	The dropout rate for regularization during training.	{0, 0.1, 0.5}
12 (weight decay)	The L2 regularization factor.	{0, 1e-3, 1e-5}
gamma	Regularization term on the aggregation step (not standard in GCN, might be a custom addition).	{0, 0.5, 1, 2}
imbalance factor	Factor to adjust for class imbalance in the dataset.	{0, 0,5, 1, 10}

Test AUC:

78.23%

Graph Neural Networks

9 atoms (nodes) features

- Atomic number,
- Chirality,
- Degree,
- Formal electric charge,
- Number of hydrogen atoms connected,
- Number of radical electrons,
- Hybridization state,
- Part of ring,
- Aromaticity.

3 bonds (edges) features

- Bond multiplicity,
- Stereoisomers info,
- Conjugation.

Imbalance dataset

~3.5% active molecules

→ nn.BCEWithLogitsLoss() or Focal Loss

$$FL(p) = -(y(1-p)^{\gamma} \log p + (1-y)p^{\gamma} \log(1-p))$$

Configuration

- Adam Optimizer
- ReLU activation
- Residual Connections: "True" or "False"
- Normalization: "batch" or "layer"
- Dropout: p=0/0.1/0.15

GCN 1: GNN with Convolutional Message Passing

GCNConv

$$\mathbf{X'} = \mathbf{\hat{D}}^{-1/2}\mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2}\mathbf{X}\mathbf{\Theta}$$
: nodes matrix

$$\hat{\mathbf{A}} = \mathbf{A} + \mathbf{I}$$
: adjacency matrix (// with weights here)

GCN 1: GNN with Convolutional Message Passing

Hyperparameters exploration

Hyperparameter	Description	Space Explored
pooling	The graph pooling strategy to generate a graph-level representation from node representations.	"sum", "mean", "max"
norm	The type of normalization layer used within the GCN.	"batch", "layer"
hidden_dim	The dimensionality of the hidden layers in the GCN.	{10, 25, 100}
num_layers	The number of GCNConv layers in the model.	{2, 3, 4, 5, 10}
dropout	The dropout rate for regularization during training.	{0, 0.15, 0.5}
12 (weight decay)	The L2 regularization factor.	{0, 1e-3, 1e-5}
res (residual)	Whether to use residual connections between layers.	True, False
gamma	Regularization term on the aggregation step (not standard in GCN, might be a custom addition).	{0, 0.5, 1, 2}
<pre>imbalance_factor</pre>	Factor to adjust for class imbalance in the dataset.	{0, 0.5, 1, 10}

GCN 1: GNN with Convolutional Message Passing

GCN 2: GCN + Super Node

Atom Encoder

Super node

- → connected with all nodes in the graph by a directed edge
- → learn graph-level features

GCN 2: GCN + Super Node

Hyperparameters exploration

Hyperparameter	Description	Space Explored
norm	The type of normalization layer used within the GCN.	"batch", "layer"
hidden_dim	The dimensionality of the hidden layers in the GCN.	{10, 25, 100}
num_layers	The number of GCNConv layers in the model.	{2, 3, 4, 5, 10}
dropout	The dropout rate for regularization during training.	{0, 0.15, 0.5}
12 (weight decay)	The L2 regularization factor.	{0, 1e-3, 1e-5}
res (residual)	Whether to use residual connections between layers.	True, False
gamma	Regularization term on the aggregation step (not standard in GCN, might be a custom addition).	{0, 0.5, 1, 2}
imbalance_factor	Factor to adjust for class imbalance in the dataset.	{0, 0.5, 1, 10}

GCN 2: GCN + Super Node

GCN 3: GCN + Super Node

+ Graph Pooling

Graph Pooling

→ returns the maximum activation across the node and its neighbours

→ enlarge the receptive field without adding

extra weights

GraphPool

Atom Encoder

GCN 3: GCN + Super Node + Graph Pooling

Hyperparameters exploration

Hyperparameter	Description	Space Explored
norm	The type of normalization layer used within the GCN.	"batch", "layer"
hidden_dim	The dimensionality of the hidden layers in the GCN.	{10, 25, 100}
num_layers	The number of GCNConv layers in the model.	{2, 3, 4, 5, 10}
dropout	The dropout rate for regularization during training.	{0, 0.15, 0.5}
12 (weight decay)	The L2 regularization factor.	{0, 1e-3, 1e-5}
res (residual)	Whether to use residual connections between layers.	True, False
gamma	Regularization term on the aggregation step (not standard in GCN, might be a custom addition).	{0, 0.5, 1, 2}
imbalance_factor	Factor to adjust for class imbalance in the dataset.	{0, 0.5, 1, 10}

GCN 3: GCN + Super Node + Graph Pooling

Conclusion

Features Type	Model	AUC Training	AUC Validation	AUC Test
General Descriptors	XGBoost	97.94%	80.15%	76.34%
Molecular Fingerprints	XGBoost	98.85%	82.66%	75.66%
Molecular Fingerprints	Random Forest	99.24%	80.63%	82.38%
Molecular Fingerprints	MLPPCA	98.85%	82.55%	78.23%
Graph	GCN	85.22%	76.58%	74.81%
Graph	GCN + Super Node	84.47%	81.63%	80.16%
Graph	GCN + Super Node + Pooling	84.91%	79.66%%	74.58%

Random Forest classifier on the fingerprints: best results on the test set but overfitting on the training set

GCN + Super Node: best trade-off between overfitting and underfitting

Future Work

→ GNNs implemented by X. Zhang et al., X. Wang et al. and Y. Wang et al. seem to **improve the**Test AUC to >84%

[1] "About HIV/AIDS," 2024.

https://www.cdc.gov/hiv/basics/whatishiv.html#:~:text=HIV%20(human%20immunodeficiency%20virus)%20is,care%2 C%20HIV%20can%20be%20controlled (accessed Apr. 25, 2024).

[2] "What Are HIV and AIDS?," HIV.gov, 2022.

https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/what-are-hiv-and-aids (accessed Apr. 25, 2024).

[3] "HIV Treatment: The Basics | NIH." 2021. Nih.gov. 2021.

https://hivinfo.nih.gov/understanding-hiv/fact-sheets/hiv-treatment-basics.

[5] Y. Mu, S. Kodidela, Y. Wang, and S. Kumar. 2018. "The Dawn of Precision Medicine in HIV: State of the Art of Pharmacotherapy." *Expert Opinion on Pharmacotherapy* 19 (14): 1581–95.

https://doi.org/10.1080/14656566.2018.1515916.

[6] "The Future—and the End?—of AIDS." 2019. Columbia University Irving Medical Center. November 27, 2019. https://www.cuimc.columbia.edu/news/future-and-end-aids. (accessed Apr. 25, 2024).

[7] A. Talukdar and S. Pal, "Computational Approaches Toward Development of Topoisomerase I Inhibitor: A Clinically Validated Target," *Elsevier eBooks*, pp. 441–462, Jan. 2021, doi: https://doi.org/10.1016/b978-0-12-822312-3.00018-7.

https://paperswithcode.com/dataset/gm9-charge-densities-and-energies-calculated (accessed Apr. 25, 2024). [9] K. Riesen and H. Bunke, "IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning," Lecture notes in computer science, pp. 287–297, Jan. 2008, doi: https://doi.org/10.1007/978-3-540-89689-0_33. [10] yeonseokcho, "BBBP Classification by Mol Descriptor," Kaggle.com, Aug. 22, 2023. https://www.kaggle.com/code/yeonseokcho/bbbp-classification-by-mol-descriptor/notebook (accessed Apr. 25, 2024). [11] "rdkit.Chem.Descriptors module — The RDKit 2024.03.1 documentation," Rdkit.org, 2024. https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html (accessed Apr. 25, 2024). [12] "Datasets," Moleculenet.org, 2024. https://moleculenet.org/datasets-1 (accessed Apr. 25, 2024). [13] "AIDS Antiviral Screen Data - NCI DTP Data - NCI Wiki," Nih.gov, 2021. https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data (accessed Apr. 25, 2024). [14] "Getting Started with the RDKit in Python — The RDKit 2024.03.1 documentation," Rdkit.org, 2024. https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors (accessed Apr. 25, 2024).

[8] "Papers with Code - HIV (Human Immunodeficiency Virus) Dataset," Paperswithcode.com, 2022.

- [15] "Dataset Splits," TDC, 2024. https://tdcommons.ai/functions/data_split/ (accessed Apr. 25, 2024).
- [16] "Introduction to Scaffold Splitting Oloren AI," *Oloren.ai,* 2022. https://www.oloren.ai/blog/scaff-split (accessed Apr. 25, 2024).
- [17] "Sustainable Futures / P2 Framework Manual 2012 EPA-748-B12-001 Appendix F. SMILES Notation Tutorial." Available: https://www.epa.gov/sites/default/files/2015-05/documents/appendf.pdf
- [18] "Dataset Cheatsheet pytorch_geometric documentation," Readthedocs.io, 2016.
- https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/data_cheatsheet.html (accessed Apr. 25, 2024).
- [19] J. Li, D. Cai, and X. He, "Learning Graph-Level Representation for Drug Discovery," arXiv.org, 2017.
- https://arxiv.org/abs/1709.03741v2 (accessed Apr. 25, 2024).
- [20] Sefik Serengil, "A Gentle Introduction to ROC Curve and AUC in Machine Learning Sefik Ilkin Serengil," *Sefik Ilkin Serengil*, Dec. 10, 2020. https://sefiks.com/2020/12/10/a-gentle-introduction-to-roc-curve-and-auc/ (accessed Apr. 28, 2024).
- [21] "How to explain the ROC AUC score and ROC curve?," Evidentlyai.com, 2024.
- https://www.evidentlyai.com/classification-metrics/explain-roc-curve (accessed Apr. 28, 2024).
- [22] "Graphical scheme of XGBoost model," ResearchGate, 2023.
- https://www.researchgate.net/figure/Graphical-scheme-of-XGBoost-model_fig1_370000558 (accessed Apr. 30, 2024).

[23] D. Rogers and M. Hahn, "Extended-Connectivity Fingerprints," *Journal of chemical information and modeling*, vol. 50, no. 5, pp. 742–754, Apr. 2010, doi: https://doi.org/10.1021/ci100050t.

[24] J. Li, D. Cai, and X. He, "Learning Graph-Level Representation for Drug Discovery." Available:

https://arxiv.org/pdf/1709.03741v2

[25] W. Koehrsen, "Random Forest Simple Explanation - Will Koehrsen - Medium," Medium, Dec. 27, 2017.

https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d (accessed Apr. 30, 2024).

[26] T. N. Kipf and M. Welling, "Semi-Supervised Classification with Graph Convolutional Networks," arXiv.org, 2016.

https://arxiv.org/abs/1609.02907 (accessed Apr. 30, 2024).

[27] Sergios Karagiannakos, "Best Graph Neural Network architectures: GCN, GAT, MPNN and more | Al Summer," Al Summer, Sep. 23, 2021. https://theaisummer.com/gnn-architectures/ (accessed Apr. 30, 2024).

[28] "torch_geometric.nn.conv.GCNConv — pytorch_geometric documentation," Readthedocs.io, 2024.

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GCNConv.html (accessed Apr. 30, 2024).

[29] J. Li, D. Cai, and X. He, "Learning Graph-Level Representation for Drug Discovery," *arXiv.org*, 2017. https://arxiv.org/abs/1709.03741 (accessed Apr. 30, 2024).

Any questions?

Appendix

The General Descriptors

The Molecular Fingerprints

