Regioselectivity Prediction through Molecular Orbitals



## Q. Two resonance forms can be written for each of the following structures:

(i)  $(CH_3)_2BN(CH_3)_2$ 

(ii) (CH<sub>3</sub>)<sub>2</sub>BOCH<sub>3</sub>

(iii) (CH<sub>3</sub>)<sub>2</sub>BF

- (A) Write the resonance structures
- (B) Which forms in each pair of resonance forms is more important?





#### A few key points regarding resonance structures

- ✓ Only electrons move. Atoms never move
- $\checkmark$  Only π-electrons (electrons in π-bonds) and lone-pair electrons can move; never move σ-electrons
- ✓ Resonance forms with filled octets are more stable.
- ✓ Negative charge should reside on more electronegative atom, positive charge on electropositive atom

### Effect of Conjugation on the $\pi$ -MOs



- ✓ We have discussed the bonding in ethylene and butadiene
- $\checkmark$  As we keep on increasing the number of double bonds in conjugation, what kind of changes do we observe on the π-MOs (especially HOMO and LUMO)?



**Ethylene** 

**Butadiene** 

Hexatriene

HOMO-LUMO gap: 2β

1.236β

0.89β

# **Delocalization and Conjugation**

> An increase in the number of double bonds in conjugation leads to decrease in HOMO-LUMO gap





✓ Irradiation of light results in the excitation of an electron from HOMO to LUMO



✓ The color is originated only when the number of double bonds in conjugation is 8 or more



#### Approximate wavelengths for different colours

| Absorbed frequency, nm 200–400 | Colour absorbed ultraviolet | Colour transmitted<br>— | $R(CH=CH)_nR$ , $_n =$ |
|--------------------------------|-----------------------------|-------------------------|------------------------|
| → 400                          | violet                      | yellow-green            | 8 🕻                    |
| 425                            | indigo-blue                 | yellow                  | 9                      |
| 450                            | blue                        | orange                  | 10                     |
| 490                            | blue-green <sub>2</sub>     | red                     | 11 4                   |
| 510                            | green                       | purple                  |                        |
| 530                            | yellow-green                | violet                  |                        |
| 550                            | yellow                      | indigo-blue             |                        |
| 590                            | orange                      | blue                    |                        |
| 640                            | red                         | blue-green              |                        |



## **Absorption**

