Reg. No.						
				1 1		

B.Tech. DEGREE EXAMINATION, DECEMBER 2023

Fourth & Seventh Semester

18AIO352T – MACHINE LEARNING

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

TIL T	4
IN O	TO •
1 7 1 9	

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

e: 3 h	ours			Max.	Mar	ks: 1	.00
	$PART - A (20 \times 1)$ Answer ALL (Marks	BL	СО	PC
1. I	mpact of high variance on the traini	na se	1011S at?	1	2	1	
	A) Under fitting	_	Over fitting	1	2	1	1
	C) Both under fitting and over fitting	· (D)	Depends upon the dataset				
2. V	What type of regularization is used to	o red	uce over fitting?	1	2	1	1
(A) L1		L2				1
(C) L1 and L2	` ′	Logistic regression				
3. I	earning curve depicts the relationsh	in he	tween	1	1	1	1
(.	A) Model complexity and training	(B)	Training set size and model		1	•	1
	error	(-)	performance				
(C) Model performance and test set size	(D)	Regularization and test error				
4. V	When training error and validation examing curve?	error	are high, what can be inter from	1	1	1	1
	A) Model is over fitting	(D)	Model is an In Cut				
	C) Model is good fit	(D)	Model is under fitting Model is neither over fitting nor under fitting				
5 V	Thich of the following is a disc	drone	tage of W.C.11	1			
n	Thich of the following is a disacterist.	uvam	age of K-1010 cross validation	1	2	2	5
(1	A) The variance of the resulting estimate is reduced as K increases	(B)	Usually does not take longer time to compute				
(((D)	Training algorithm has to return from scratch K times				
6. L	ogistic regression lies between			1	2	2	1
	a) 0 and 1	(B)	1 and 10				-
((c) 0 and 10	(D)	10 and 100				

7.	parameters which are mapped to one (A) Dependent (C) Independent	e predi (B)	-	1	o ¹	2	3
8.	How many types of logistic regressi	on is a	ivailable?	1	3	2	2
	(A) 1	(B)					
	(C) 3	(D)					
9.	The size of dataset which is not best	suited	l for SVM.	1	2	3	5
	(A) Large size	` /	Small size				
	(C) Medium size	(D)	Size does not matter				
10.	SVM is very less effective when			1	3	3	2
	(A) Data is linearly separable	` '	Data is clean and ready to use				
	(C) Data is noisy and contain overlapping points	s (D)	Data is non linear				
11.	Which of the following K value validation accuracy?	in KI	NN would minimize the LOOC	1	4	3	3
	(A) 3	(B)	5				
	(C) 2	(D)	1				
12.	Which tool is used to reduce the din	nensio	n of the datas?	1	1	3	3
	(A) Product component analysis	(B)	Principal component analysis				
	(C) Principal common analysis	(D)	Pre complex analysis				
13.	How is initial centroid of K-means	cluster	ing algorithm is selected?	1	2	4	1
	(A) Randomly	(B)	Data distribution				
	(C) Data labels	(D)	Data segregation				
14.	Which of the following clustering re			1	3	4	2
	(A) Partitional	` /	Hierarchical				
	(C) Naïve Bayes	(D)	Heterogonous				
15.	Which of the following algorithm is			1	3	4	5
	(A) K-means clustering		K-medians clustering				
	(C) K-medoids clustering	(D)	K-modes clustering				
16.	What is minimum number of variables required to perform clustering?						2
	(A) 0	(B)					
	(C) 2	(D)	3				
17.	In random forest, the target attribute			1	1	5	2
	(A) Decision node	` '	Leaf node				
	(C) Path	(D)	Edge				
18.	A computational model inspired by brain is?	y struc	cture and function of the human	1	2	5	1
	(A) KNN	(B)	ANN				
	(C) K-means	(D)	SVM				

	19.	A basic computation of an ANN is		I	3	5	1
		(A) Axon (B) Neuron					
		(C) Dendron (D) Nodes					
	20.	(7) (1)	orks is	1	2	5	5
		(A) Cosine (B) Sigmoid	:_				
		(C) Exponential (D) Logarithm	10				
				1 5	mr	60	no.
		$PART - B (5 \times 4 = 20 \text{ Marks})$		Marks	BL	CO	PO
		Answer ANY FIVE Questions					
	21.	Describe about supervised learning with an example.		4	2	1	1
	22.	Write a note on parametric model and give example for	or it.	4	3	1	1
	23.	What are various python libraries available in machin	e learning?	4	4	2	2
	24.	What do you mean by ridge regression and mention it	ts use?	4	1	3	5
	25.	Write a note on divisive clustering.		4	3	4	2
	26.	Describe about decision tree with an example.		4	2	5	5
	27.	Explain briefly about the types of artificial neural net	work available.	4	4	5	2
		$PART - C (5 \times 12 = 60 Marks)$		Marks	BL	со	РО
		Answer ALL Questions					
2	8. a.	. Explain in detail about linear regression with an exan	aple.	12	5	1	1
		(OR)					
	b.	Describe in detail about the various types of mac example.	hine learning with an	12	4	1	1
2	9. a.	Explain the steps involved in K-fold cross validation by training data, testing data and validation data?	ns. What do you mean	12	3	2	1
		k:					
		(OR)		12	2	2	2
	b.	. Explain in detail about performance metrics and its e	xpressions.				
3	0. a.	. Explain in detail about KNN classification with an ex	kample.	12	3	3	3
		(OR)					
	b.	. What is the technique used for feature extraction, des	scribe it in detail.	12	2	3	4
3	1. a.	. Describe in detail about hierarchical clustering.		12	4	4	1

- b. Describe about different aspects of clustering validation and explain the 12 3 4 5 types of evaluation of output of clustering methods.
- 32. a. Describe in detail about random forest algorithm with a neat diagram and 12 4 5 1 list outs its features.

(OR)

b. Elaborate about artificial neural network with a neat diagram.

* * * * *