Tier 1 Analysis

Put into LATEX by Steven Schaefer stschaef@iu.edu

Abstract

I was passed on an extensive collection of handwritten notes – totaling nearly 600 pages – for the Tier 1 Analysis Exam at Indiana University. Here I am translating it into \LaTeX , adding my own solutions, and adding any material that I view necessary.

I currently do not know who the original author is.

Tier 1 Analysis	CONTENTS

Contents		

1	Problems	3
2	Exams Through August 2020	9

1 Problems

Theorem 1 (Finite Intersection Property ¹). *If* $\{K_{\alpha}\}$ *is a collection of compact subsets of a metric space* X *such that the intersection of every finite subcollection of* $\{K_{\alpha}\}$ *is nonempty, then* $\bigcap K_{\alpha}$ *is nonempty.*

Note that this may be any collection of compact sets. No countability is assumed.

Proof of Theorem 1. Suppose that $\bigcap K_{\alpha}$ is empty. Fix an arbitary set $K \in \{K_{\alpha}\}$. Because $\bigcap K_{\alpha}$ is empty, for all $x \in K$ we have that $x \in K_{\alpha}^{c}$ for some α . Thus, $\bigcup (K_{\alpha}^{c})$ is an oper cover of K.

Because K is compact there is a finite subcover, $K_{\alpha_1}^c, \ldots, K_{\alpha_n}^c$. That is, $K \subset \bigcup_{i=1}^n (K_{\alpha_i}^c)$, so

$$K \cap \left(\bigcap_{i=1}^{n} K_{\alpha}\right) = \emptyset$$

This contradicts the hypothesis that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty. So we conclude that $\bigcap K_{\alpha}$ is nonempty. \Box

Problem 2. A map $f: \mathbb{R}^m \to \mathbb{R}^n$ is *proper* if it is continuous and $f^{-1}(B)$ is compact for each compact subset $B \subset \mathbb{R}^n$; f is *closed* if it is continuous and f(A) is closed for each closed subset $A \subset \mathbb{R}^m$.

- (a) Prove that any proper map $f: \mathbb{R}^m \to \mathbb{R}^n$ is closed.
- **(b)** Prove that every one-to-one closed map $f: \mathbb{R}^m \to \mathbb{R}^n$ is proper.

Supposedly this question is from August 1997, but I could find no record of this when combing through previous exams. Note that Tier 1 August 2010, #2 touches on the same topic of proper maps.

Proof of Problem 2 (a). Let $A \subset \mathbb{R}^m$ be closed. To show that f(A) is closed, it is sufficient to show that $f(A)^c$ is open.

Let $q \in f(A)^c$ and consider $\overline{B}_{\epsilon}(q)$ the closed ball of radius ϵ about q. $\overline{B}_{\epsilon}(q)$ is closed and bounded in \mathbb{R}^n , so it is compact. Because f is proper, we have that $f^{-1}\left(\overline{B}_{\epsilon}(q)\right)$ is also compact. Define the following sequence of decreasing compact sets,

$$U_j = A \cap f^{-1} \left(\overline{B}_{\epsilon_j}(q) \right),$$

where $\epsilon_0 = \epsilon$ and $\epsilon_{j+1} < \epsilon_j$. Note that each U_j is indeed compact, because $f^{-1}\left(\overline{B}_{\epsilon_j}(q)\right)$ is compact for all j and A is closed.

$$\bigcap U_j = A \cap \bigcap f^{-1} \left(\overline{B}_{\epsilon_j}(q) \right)$$

$$= A \cap f^{-1} \left(q \right)$$

$$= \emptyset$$

The above intersection is empty by construction, as $q \in f(A)^c$.

By Theorem 1 – the finite intersection property for compact sets – because the intersection over all U_j 's is empty, there must be some finite subcollection of $\{U_j\}$ with empty intersection. Write this finite subcollection as U_1, \ldots, U_n . Let N be the smallest such n and note because the U_j 's are nested, $\bigcap_{j=1}^N U_j = U_N$.

$$\bigcap^{N} U_{j} = U_{N}$$

$$= A \cap f^{-1} \left(\overline{B}_{\epsilon_{N}}(q) \right)$$

$$= \emptyset$$

Thus $f(A) \cap B_r(q) = \emptyset$, where $r < \epsilon_N$. So $f(A)^c$ is open and we are done.

 $^{^{1}}$ See [1] p.38

Proof of Problem 2 (b). Let $B \subset \mathbb{R}^n$ be compact. Because \mathbb{R}^n is Hausdorff and B is compact, B is also closed. By the continuity of f, $f^{-1}(B)$ is also closed. To further show that $f^{-1}(B)$ is closed – and thus f is proper – we must now show that $f^{-1}(B)$ is bounded.

Let $K_j = \{x \in \mathbb{R}^m : ||x|| \ge j\}$. K_j is closed in \mathbb{R}^m for all j. Because f is a closed map, $f(K_j)$ is likewise closed for all j. Thus $f(K_j) \cap B$ is compact, and $\{f(K_j) \cap B\}_{n=1}^{\infty}$ is a decreasing sequence of compact sets. Additionally,

$$\bigcap (f(K_j) \cap B) = B \cap \bigcap f(K_j)$$
$$= B \cap f \left(\bigcap K_j\right)$$

We achieve the final equality above by using the fact that f is injective, so $\bigcap f(K_j) = f(\bigcap K_j)$. Further, $\bigcap K_j = \emptyset$, so $B \cap f(\bigcap K_j) = \emptyset$. Again by Theorem 1 there must be some finite collection of $\{f(K_j) \cap B\}_{n=1}^{\infty}$ with empty intersection, and because these sets are nested there must be some index N such that

$$f(K_N) \cap B = \emptyset$$

Using injectivity once again and looking at the preimages we then see,

$$K_N \cap f^{-1}(B) = \emptyset$$

So for all $x \in f^{-1}(B)$, ||x|| < N. That is, $f^{-1}(B)$ bounded and thus compact. So f is then proper. \Box

Problem 3. Let the function $f: \mathbb{R}^n \to \mathbb{R}^n$ satisfy the following two conditions:

- 1. f(K) is compact whenever $K \subset \mathbb{R}^n$ is compact.
- 2. If $\{K_n\}$ is a decreasing sequence of compact subset of \mathbb{R}^n , then

$$f\left(\bigcap_{n=1}^{\infty} K_n\right) = \bigcap_{n=1}^{\infty} f(K_n)$$

Prove that f is continuous.

Proof of Problem 3. Let $y \in \mathbb{R}^n$, $\epsilon > 0$, and $K_n = \overline{B}_{1/n}(y)$. $\{K_n\}$ is a sequence of decreasing compact sets. By Item 1, $f(K_n)$ is also compact for each n. So $\{f(K_n)\}$ is likewise a sequence of decreasing compact sets.

Define $A = \mathbb{R}^n \setminus B_{\epsilon}(f(y))$. A is closed and each $f(K_n)$ is compact, so $A \cap f(K_n)$ is also compact. By Item $2, \bigcap f(K_n) = f(\bigcap K_n)$. So,

$$\bigcap (A \cap f(K_n)) = A \cap \bigcap f(K_n)$$

$$= A \cap f \left(\bigcap K_n\right)$$

$$= A \cap f(y)$$

$$= \emptyset$$

Note that the final equality above holds, as $f(y) \notin A$ by construction of A. Thus by Theorem 1 there exists an index N such that $A \cap f(K_N) = \emptyset$. Thus, $f(K_N) \subset A^c = B_{\epsilon}(f(y))$. So for $x \in B_{\delta}(y)$ we have $f(x) \in B_{\epsilon}(f(y))$ for $\delta < \frac{1}{N}$. That is, f continuous at y, and because $y \in \mathbb{R}^n$ was arbitary f is continuous everywhere.

Theorem 4 (Tier 1 August 2015, #10). ² Suppose K is compact, and

²See [1] p.150 and p.516

1 PROBLEMS Tier 1 Analysis

- 1. $\{f_n\}$ is a sequence of continuous functions on K,
- 2. $\{f_n\}$ converges pointwise to a continuous function f on K,
- 3. $f_n(x) \geq f_{n+1}(x)$ for all $x \in K, n \in \mathbb{N}$.

Then $f_n \to f$ uniformly on K.

Proof of Theorem 4. Define $g_n = f_n - f$. Note we get entirely analogous conditions on g_n as were given for f. That is, Items 1 to 3 give us,

- 1. $\{g_n\}$ is a sequence of continuous functions on K,
- 2. $\{g_n\}$ converges pointwise to 0 on K,
- 3. $q_n(x) > q_{n+1}(x)$ for all $x \in K, n \in \mathbb{N}$.

To prove the desired statement, it is sufficient to show that $g_n \stackrel{\text{unif.}}{\to} 0$. Let $\epsilon > 0$ be given and let $E_n = g_n^{-1}([\epsilon,\infty))$. Because g_n is continuous, E_n is closed for all n. Further, E_n a closed subset of K and K is compact, so E_n compact. Note that E_n is a decreasing sequence of compact sets because of Item 3. Because $g_n \stackrel{\text{p.w.}}{\to} 0$ on K, we have $\bigcap E_n = \emptyset$. So by Theorem 1, there is some index N such that $E_N = g_N^{-1}([\epsilon,\infty)) = \emptyset$. So for $x \in K$, we have $0 \le g_N(x) < \epsilon$. Further, by Item 3 we have $g_n(x) \in [0,\epsilon)$ for

 $n \ge N, x \in K$. So $g_n \stackrel{\text{unif.}}{\to} 0$, and thus $f_n \stackrel{\text{unif.}}{\to} f$.

Problem 5. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map such that F(0) = 0. Assume that

$$\sum_{j,k=1}^{n} \left| \frac{\partial F_j}{\partial x_k}(0) \right|^2 = c < 1.$$

Prove that there is a ball $B \subset \mathbb{R}^n$ with center 0 such that $F(B) \subset B$.

Proof of Problem 5. Because F is differentiable on \mathbb{R}^n , it is in particular differentiable at 0. So there exists a linear transformation DF(0) ³ – i.e. the Jacobian matrix evaluated at 0 – such that,

$$0 = \lim_{h \to 0} \frac{|F(h) - F(0) - DF(0)(h)|}{|h|}$$
$$= \lim_{h \to 0} \frac{|F(h) - DF(0)(h)|}{|h|}$$

Define E(h) = F(h) - DF(0)(h) where $\lim_{h\to 0} \frac{|E(h)|}{|h|}$ ⁴. We may think of this as the error term when considering the derivative as an approximation of F in a neighborhood of 0. Thus,

$$F(h) = DF(0)(h) + E(h)$$

By the triangle inequality of $|\cdot|_{\mathbb{R}^n}$,

$$|F(h)| \le |DF(0)(h)| + |E(h)|$$

 $\le \sup\{|DF(0)(x)| : |x| = 1\}|h| + |E(h)|$

³This notation may be a little verbose, but I am choosing it here to be clear that the derivative of F is a map that assigns to each point p in the domain of F a linear transformation DF(p). Another way to write this is $DF|_p$, however this notation didn't play nice with the absolute value bars in the above TeX.

 $^{^4}$ Another notational note: In this particular case, the norm of both the numerator and denominator is $|\cdot|_{\mathbb{R}^n}$. However in generality, the numerator and denominator do not have the same norm on them. The denominator belongs to the domain of F and the numerator belongs to the codomain. Even further, it may be more clear to indicate these norms with $||\cdot||_{\mathbb{R}^n}$, but I am not in the habit of writing this.

Using the substitution $A = \sup\{|DF(0)(x)| : |x| = 1\}$, we then rewrite this as,

$$\frac{|F(h)|}{|h|} \le A + \frac{|E(h)|}{|h|} \tag{1}$$

Let $x \in \mathbb{R}^n$, |x| = 1 and consider the coordinates of DF(0)(x).

$$(DF(0)(x))_i = \sum_{k=1}^n \frac{\partial F_i}{\partial x_k}(0)x_k$$

So by the triangle inequality,

$$|(DF(0)(x))_{i}| \leq \sum_{k=1}^{n} \left| \frac{\partial F_{i}}{\partial x_{k}}(0) x_{k} \right|$$

$$\stackrel{\text{C.S.}^{5}}{\leq} \left(\sum \left| \frac{\partial F_{i}}{\partial x_{k}}(0) \right|^{2} \right) \left(\sum |x_{k}|^{2} \right)$$

$$= \left(\sum \left| \frac{\partial F_{i}}{\partial x_{k}}(0) \right|^{2} \right) |x|$$

$$= \left(\sum \left| \frac{\partial F_{i}}{\partial x_{k}}(0) \right|^{2} \right)$$

We then use this to find the norm of DF(0)(x),

$$|DF(0)(x)| = \sum_{i} \sum_{k} \left| \frac{\partial F_i}{\partial x_k}(0) \right|^2$$

$$= c$$

$$< 1$$

Thus, $A = \sup\{|DF(0)(x)| : |x| = 1\} \le \sqrt{c} < 1$. Because $\frac{|E(h)|}{|h|} \to 0$ as $h \to 0$, there exists $\delta > 0$ such that for $|h| < \delta$ we have $\frac{|E(h)|}{|h|} < 1 - \sqrt{c}$. Taking B to be the ball of radius δ about 0, we modify Eq. (1) appropriately as,

$$\frac{|F(h)|}{|h|} < \sqrt{c} + 1 - \sqrt{c}$$

$$= 1$$

So |F(h)| < |h| for $|h| < \delta$. That is to say, $F(B) \subset B$.

Problem 6. Suppose that $E \subset \mathbb{R}^n$ is open and that $f: E \to \mathbb{R}^n$ is C^2 . Suppose also that $f''(x_0)$ is positive definite for some $x_0 \in E$. Prove that there is r > 0 such that f''(x) is positive definite for $x \in N_r(x_0)$.

Proof of Problem 6. Proceed by contradiction. Suppose not, then for all r > 0 there exists $x \in B_r(x_0)$ such that f''(x) is not positive definite – that is, for each x there exists $y \neq 0$ such that $\langle y, y \rangle_{f''(x)} \leq 0$.

⁵Cauchy-Schwartz Inequality

⁶I'm abusing notation a little here. $\langle y,y\rangle_{f''(x)}$ is meant to indicate that the Hessian can act as a bilinear form. We equivalently write this expression as $\langle y,y\rangle_{f''(x)}=\langle f''(x)y,y\rangle_{\mathbb{R}^n}$.

Create sequences following the above pattern: for each $r_n=\frac{1}{n}$ we have some $x_n\in B_{r_n}(x_0)$ such that there is some $y_n\neq 0$ where $\langle\,y_n,y_n\rangle_{f''(x_n)}\leq 0$. For convenience we may normalize y_n to be unit length. This in turn makes y_n a bounded sequence, as all entries in the sequence have length 1, so there is a convergent subsequence $y_{n_k}\to y$ where |y|=1.

We wish now to show that $\langle y_{n_k}, y_{n_k} \rangle_{f''(x_{n_k})} \to \langle y, y \rangle_{f''(x_0)}$,

$$\begin{split} |\,\langle\, y,y\rangle_{f''(x_0)} - \langle\, y_{n_k},y_{n_k}\rangle_{f''(x_{n_k})}| &\leq |\,\langle\, y,y\rangle_{f''(x_0)} - \langle\, y,y_{n_k}\rangle_{f''(x_0)}| \\ &+ |\,\langle\, y,y_{n_k}\rangle_{f''(x_0)} - \langle\, y,y_{n_k}\rangle_{f''(x_{n_k})}| \\ &+ |\,\langle\, y,y_{n_k}\rangle_{f''(x_{n_k})} - \langle\, y_{n_k},y_{n_k}\rangle_{f''(x_{n_k})}| \\ &= I_1 + I_2 + I_3, \ \text{respectively} \end{split}$$

$$I_{1} = |\langle y, y \rangle_{f''(x_{0})} - \langle y, y_{n_{k}} \rangle_{f''(x_{0})}|$$

$$= |\langle y, y - y_{n_{k}} \rangle_{f''(x_{0})}|$$

$$= |\langle f''(x_{0})y, y - y_{n_{k}} \rangle_{\mathbb{R}^{n}}|$$
c.s.
$$\leq |f''(x_{0})y||y - y_{n_{k}}|$$

$$\leq ||f''(x_{0})|||y||y - y_{n_{k}}|$$

$$= ||f''(x_{0})|||y - y_{n_{k}}|$$

where $||f''(x_0)|| = \sup\{|f''(x_0)(a)| : |a| = 1\}$ is the matrix norm. Further, $||f''(x_0)||$ is fixed and $y_{n_k} \to y$ as $k \to \infty$, so $I_1 \to 0$.

$$I_{2} = |\langle y, y_{n_{k}} \rangle_{f''(x_{0})} - \langle y, y_{n_{k}} \rangle_{f''(x_{n_{k}})}|$$

$$= |\langle f''(x_{0})y, y_{n_{k}} \rangle_{\mathbb{R}^{n}} - \langle f''(x_{n_{k}})y, y_{n_{k}} \rangle_{\mathbb{R}^{n}}|$$

$$= |\langle (f''(x_{0}) - f''(x_{n_{k}})y, y_{n_{k}} \rangle_{\mathbb{R}^{n}}|$$

$$\leq ||f''(x_{0}) - f''(x_{n_{k}}|| |y| |y_{n_{k}}|$$

$$= ||f''(x_{0}) - f''(x_{n_{k}}||$$

 $I_2 \to 0$, as $x_{n_k} \to x_0$ as $k \to \infty$ and f is C^2 – in particular, f'' continuous – so $||f''(x_0) - f''(x_{n_k}||$ may be made arbitarily small.

$$\begin{split} I_{3} &= |\langle y, y_{n_{k}} \rangle_{f''(x_{n_{k}})} - \langle y_{n_{k}}, y_{n_{k}} \rangle_{f''(x_{n_{k}})}| \\ &\leq ||f''(x_{n_{k}})|| |y - y_{n_{k}}| \\ &< M|y - y_{n_{k}}| \end{split}$$

We achieve these results on I_3 via a similar argument to above, and noting that $||f''(x_{n_k})||$ bounded (above by M). Because $y_{n_k} \to y$, I_3 may be made arbitarily small. Combining this with the above,

$$|\langle y, y \rangle_{f''(x_0)} - \langle y_{n_k}, y_{n_k} \rangle_{f''(x_{n_k})}| \le I_1 + I_2 + I_3$$

$$= \epsilon$$

For arbitarily small ϵ , so $\langle y_{n_k}, y_{n_k} \rangle_{f''(x_{n_k})} \to \langle y, y \rangle_{f''(x_0)}$. However, for sake of contradiction we assumed that $\langle y_{n_k}, y_{n_k} \rangle_{f''(x_{n_k})} \le 0$ and it is given that $\langle y, y \rangle_{f''(x_0)} > 0$, as $y \ne 0$. Thus, the desired statement is true by contradiction.

Problem 7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 . A point $x \in \mathbb{R}^n$ is a *critical point* of f if all the partial derivatives of f vanish at x. A critical point is *nondegenerate* if the $n \times n$ matrix $\left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right]$ is non-singular.

Let x be a nondegenerate critical point of f. Prove that there is an open neighborhood of x which contains no other critical points (i.e. the nondegenerate critical points are isolated).

Proof of Problem 7. TODO

2 Exams Through August 2020

TODO: Uncomment when finished

Tier 1 Analysis REFERENCES

References

[1] Rudin, Walter. Principles of Mathematical Analysis. 3d ed, McGraw-Hill, 1976.