CSC 226

Algorithms and Data Structures: II
Rich Little
rlittle@uvic.ca
ECS 516

Network Flow

Example of an st-flow network

Network Flow (Definitions)

- A flow network is an edge-weighted, directed graph with positive edge weights, called capacities (capacities of non-existing edges are zero)
- An st-flow network is a flow network that has two identified vertices, namely the sources and the sinkt
- An st-flow in an st-flow network is a set of nonnegative values (edge flows) associated with each edge. Furthermore, we define
 - inflow: total flow of edges into a specific vertex
 - outflow: total flow of edges from a specific vertex
 - netflow: inflow minus outflow of a specific vertex

Flow Network (Definitions)

- An st-flow is feasible if it satisfies the conditions that
 - no edge's flow is greater than that edge's capacity and
 - the netflow of every vertex v (except s and t) in the stflow network is zero: inflow(v) = outflow(v)
- st-flow value |f| for st-flow network N with st-flow f: the sink's inflow (or the source's outflow)
- Maximum st-flow (or maxflow): a feasible st-flow with maximum st-flow value over all feasible flows

Example of a feasible *st*-flow in an *st*-flow network

Maximum Flow Problem: maxflow

- Input: An st-flow network
- Output: A maximum st-flow

Key idea: Augmenting paths in *st*-flow networks

 An augmenting path in an st-flow network with feasible st-flow is an undirected path from source s to sink t along which we can push more flow, obtaining an st-flow with higher st-flow value.

Example of an augmenting path that improves the flow: scbt

Arc bc is a backward arc on the path scbt.

bottleneck capacity = $min\{(13-8), 4, (20-15)\} = +4$

Improved flow: can increase by +4

Increase the flow by 4 in each forward arc and decrease the flow by 4 in each backward arc.

Ford-Fulkerson's maxflow method

- 1. Initialize with a 0 flow: st-flow value f = 0
- 2. Increase the flow along any augmenting path from *s* to *t*
- 3. Repeat step 2 as long as an augmenting path exists

Finding Augmenting Paths: the residual network G_f of a flow f

- Consider an st-flow f in st-flow network G and a directed edge (u,v) in G
- The amount of additional flow we can push from u to v along (u,v) in G is called the residual capacity $c_f(u,v)$ of edge (u,v) -- it depends on f.
- That is: for edge (u,v) with capacity c(u,v) and flow value f(u,v) from u to v we have the residual capacity $c_f(u,v) = c(u,v) f(u,v)$; this creates a directed edge (u,v) in the residual network G_f with capacity $c_f(u,v)$.
- Of course in G we could instead *reduce* the flow in (u,v) by as much as f(u,v); this creates a directed edge (v,u) in the residual network G_f with capacity

 $c_f(v,u) = f(u,v)$. (Note the order of the vertices.)

Residual Network

• Given an st-flow network G = (V,E) and a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where $E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$

Question:

Consider an edge (u,v) in G. How many edges does (u,v) create in the residual network G_f ?

- A. 1 edge: (u,v)
- B. 2 edges: (u,v) and (v,u)
- C. Can't tell it depends on the flow *f*, which can change

Question:

```
Consider an edge (u,v) in G, where capacity c(u,v) = 5
```

and

flow f(u,v) = 5.

How many edges does (u,v) create in the residual network G_f ?

A. 0

B. 1

C. 2

Question:

```
Consider an edge (u,v) in G, where capacity c(u,v) = 5 and
```

flow f(u,v) = 3.

How many edges does (u,v) create in the residual network G_f ?

- A. 0
- B. 1
- C. 2

Example of a residual network

Augmenting path from s to t in residual network G_f : scbt

Residual capacity of path scbt is $min\{5,4,5\} = 4$

In G, increase flow in each forward arc by 4, decrease flow in each backward arc by 4 to get new flow

Augment the flow along path scbt by 4

Claim: the new flow is a maxflow.

How would you prove this claim? (two ways)

st-cuts

- Recall: A cut in a (directed) graph is a partition of the vertices into two disjoint subsets.
- The cut edges of a graph with a cut are the edges that have one endpoint in each subset of the partition.
- An st-cut is a cut that places vertex s in one of its subsets and vertex t in the other.

st-cuts (continued)

- Capacity of an st-cut in an st-network: sum of the capacities of the cut's edges from the subset containing s to the subset containing t
- Flow across an st-cut in an st-network: difference between the sum of the flows of cut's edges from the subset containing s to the subset containing t and the sum of the flows of cut's edges from the subset containing t to the subset containing s

minimum *st*-cut problem (or *mincut* problem)

• Given an *st*-network, find an *st*-cut such that the capacity of no other cut is smaller.

Properties of feasible *st*-flows in *st*-flow networks

- 1. For any *st*-flow, the flow across each *st*-cut is equal to the value of the flow
- 2. The outflow from *s* is equal to the inflow to *t*
- 3. No *st*-flow's value can exceed the capacity of any *st*-cut
- 4. Let f be an st-flow and let (S,T) be an st-cut whose capacity equals |f|. Then f is a maximum flow and (S,T) is a minimum cut.

Maxflow-Mincut Theorem

- Let f be an st-flow. The following three conditions are equivalent:
 - A. there exists an st-cut whose capacity equals |f|
 - B. f is a maximum flow
 - C. there is no augmenting path with respect to f

Proving the flow is maximum

Compute the new residual network G_f and check it has no st-paths.

Find an *S,T* cut of capacity equal to the flow, 23. Such a cut provides a *certificate*, or *witness*, of optimality.

How do we find the S,T cut? Set $S = \{ v \text{ such that there is an augmenting path from } S \text{ to } v \}$ and T = V - S (all the other vertices).

Ford-Fulkerson indeed computes a maximum flow

 by the Maxflow-mincut Theorem – can compute an S,T cut of capacity equal to the flow by taking

 $S = \{v \text{ such that there is an augmenting path from } s \text{ to } v\}$

and

T = V - S

Claim: the new flow is a maxflow.

Network G with new flow of value = 23

11/16

0/9

12/13

11/14

11/14

What is the cut *S*, *T* of minimum capacity?

$$S = \{ ?? \}$$
 $T = \{ ?? \}$

Check:

Are arcs leaving the *S* part full? Are the arcs returning from the *T* part to *S* part empty?

Properties of the residual network G_f

- $|E_f| \leq 2|E|$
- The residual network G_f with capacities c_f of st-flow network G is an st-flow network

Definition of Augmenting Path

Given an st-flow f in st-flow network G = (V, E) an augmenting path p is a directed path from s to t in the residual network G_f .

Pseudocode for Algorithm Ford-Fulkerson(G, s, t)

Initialize f as zero-flow

Compute residual network G_f

while there exists a path p from s to t in G_f do

Augment f using p

Update Gf

return f

Ford-Fulkerson algorithm for solving MaxFlow

Initialization. Start with 0 flow.

Definition: Augmenting path -- an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

1st augmenting path

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

Termination. All paths from *s* to *t* are blocked by either a

- Full forward edge.
- Empty backward edge.

no more augmenting paths

Running time of Ford-Fulkerson

- Building the residual network
- Finding an augmenting path in the residual network
- How many augmenting paths can be found in the worst case, if the capacities are positive integers?
 - value of maximum flow many (no more since the augmenting path has at least residual capacity 1)

EdmondsKarp(G, s, t)

Initialize f as zero-flow and residual network G_f with G while there exists a path p from s to t in G_f do

Let p be a shortest path from s to t in Gf

Augment f using p

Update G_f

return f

Running Time Analysis of Algorithm by Edmonds & Karp

- Overall running time when using BFS (breadth first search) for determining augmenting path: $O(nm^2)$ (m = |E|, n = |V|)
 - An edge on an augmenting path in G_f is called a bottleneck if its capacity is equal to the path's residual capacity
 - Fact: an edge in G_f can be a bottleneck at most O(n) times
 - The while loop therefore will not run more than O(nm) times
 - The while loop's running time is O(m)

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team		wins	losses	to play	ATL	PHI	NYM	MON
0	A	Atlanta	83	71	8	-	1	6	1
1	Phillips	Philly	80	79	3	1	_	0	2
2		New York	78	78	6	6	0	_	0
3		Montreal	77	82	3	1	2	0	_

Montreal is mathematically eliminated.

- Montreal finishes with ≤ 80 wins.
- Atlanta already has 83 wins.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team		wins	losses	to play	ATL	PHI	NYM	MON
0	A	Atlanta	83	71	8	-	1	6	1
1	Phillips	Philly	80	79	3	1	_	0	2
2		New York	78	78	6	6	0	_	0
3		Montreal	77	82	3	1	2	0	_

Philadelphia is mathematically eliminated.

- \blacksquare Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team		wins	losses	to play	NYY	BAL	BOS	TOR	DET
0	Vanfrees	New York	75	59	28	_	3	8	7	3
1	STATE OF THE STATE	Baltimore	71	63	28	3	_	2	7	4
2		Boston	69	66	27	8	2	_	0	0
3	SONTO SONTO	Toronto	63	72	27	7	7	0	_	0
4	PO TROY	Detroit	49	86	27	3	4	0	0	_

AL East (August 30, 1996)

Detroit is mathematically eliminated.

- Detroit finishes with ≤ 76 wins.
- Wins for $R = \{ NYY, BAL, BOS, TOR \} = 278$.
- Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27.
- Average team in R wins 305/4 = 76.25 games.

Baseball elimination problem: maxflow formulation

Intuition. Remaining games flow from *s* to *t*.

Fact. Team 4 not eliminated iff all edges pointing from s are full in maxflow.