CC1 Analyse 4, durée: 2h

Les calculettes et téléphones portables ne sont pas autorisés. Toute réponse doit être soigneusement justifiée.

Exercice 1. Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur $[0, +\infty[$ par $f_n(x) = \frac{n\ln(1+x)}{n+x}$.

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $[0,+\infty[$ vers une fonction f qu'on déterminera .
- 2. Calculer $|f_n(n) f(n)|$. En déduire que la convergence de la suite $(f_n)_{n \in \mathbb{N}^*}$ n'est pas uniforme sur $[0, +\infty[$.
- 3. Soit a > 0. Montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0, a].
- 4. Déterminer

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, dx \; .$$

Exercice 2. Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur $[0,+\infty[$ par $f_n(x)=\frac{e^{-x/n}}{1+x}$.

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $[0,+\infty[$ vers une fonction f qu'on déterminera .
- 2. Montrer que pour tout $x \in \mathbb{R}_+$ on a $1 e^{-x} \le x$. En déduire que

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, +\infty[, \quad 0 \le f(x) - f_n(x) \le \frac{1}{n} \cdot \frac{x}{1+x}$$

3. Montrer que la convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est uniforme sur $[0,+\infty[$.

Exercice 3. Pour tout $n \in \mathbb{N}^*$ et $x \in [0, +\infty[$, on pose $f_n(x) = \frac{1}{\sqrt{n}} \frac{x}{x+n}$.

- 1. Montrer que la série de fonctions $\sum_{n\geq 1} f_n(x)$ converge simplement sur $[0,+\infty[$. On désigne par S(x) sa somme
- 2. Montrer que la convergence de la série $\sum_{n\geq 1} f_n(x)$ n'est pas normale sur $[0,+\infty[$.
- 3. Soit a>0. Montrer que la série $\sum_{n\geq 1}f_n(x)$ converge normalement sur [0,a].
- 4. Montrer que S est continue sur $[0, +\infty[$.
- 5. Montrer que S est dérivable sur $[0, +\infty[$.
- 6. Soit maintenant la série de fonctions $\sum_{n\geq 1} (-1)^n f_n$. Montrer qu'elle converge simplement sur $[0, +\infty[$ et que sa fonction somme T est continue sur $[0, +\infty[$.

Exercice 4. Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur $[0,\pi]$ par

$$f_n(x) = \begin{cases} n \sin(nx) & \text{si } x \in [0, \frac{\pi}{n}] \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $[0,\pi]$, et trouver sa limite simple f.
- 2. Déterminer $\sup_{x\in[0,\pi]}f_n.$ La suite $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur $[0,\pi]$?
- 3. Calculer $\int_0^\pi f_n(t)dt$ et $\int_0^\pi f(t)dt$ (Indic : utiliser la relation de Chasles sur $[0,\pi]=[0,\pi/n]\cup[\pi/n,\pi]$). Retrouver la conclusion de la question précédente. Soit $a\in]0,\pi[$.
 - 4. La suite (f_n) converge-t-elle uniformément sur $[a,\pi]$?
 - 5. La série de fonctions $\sum_{n\geq 1} f_n$ converge-t-elle uniformément sur $[a,\pi]\,?$