Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 14: Raggiungibilità e controllabilità a tempo discreto (parte 2)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

▶ Controllo a minima energia a t.d.

▶ Sistemi non raggiungibili: forma di Kalman

▶ Test PBH di raggiungibilità

Calcolo dell'ingresso di controllo (a minima energia)

Se Σ è raggiungibile in t passi, come costruire una sequenza di ingresso $u_t \in \mathbb{R}^{mt}$ per raggiungere un qualsiasi stato $x^* \in \mathbb{R}^n$ in t passi?

Caso
$$x_0 = 0$$
: 1. $x^* = x(t) = \mathcal{R}_t u_t$
2. $u_t = \mathcal{R}_t^\top \eta_t$, $\eta_t \in \mathbb{R}^{mt} \implies \eta_t = (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} x^*$
3. $u_t = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} x^*$
Caso $x_0 \neq 0$: $u_t = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} (x^* - F^t x_0)$

Calcolo dell'ingresso di controllo: osservazioni

1. Ingresso u_t generalmente non unico! Insieme dei possibili ingressi:

$$\mathcal{U}_t = \{ u'_t = u_t + \bar{u}, \ \bar{u} \in \ker(\mathcal{R}_t) \}.$$

2. Ingresso a minima "energia":

$$u_t^* = \arg\min_{u_t' \in \mathcal{U}_t} \|u_t'\|^2 = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} (x^* - F^t x_0).$$

3. L'energia minima per raggiungere x^* in t passi è:

$$||u_t^*||^2 = (x^*)^\top \mathcal{W}_t^{-1} x^*,$$

dove $\mathcal{W}_t \triangleq \mathcal{R}_t \mathcal{R}_t^{\top} = \sum_{k=0}^{t-1} F^{k-1} G G^{\top} (F^{\top})^{k-1}$ è detto Gramiano di raggiungibilità in t passi del sistema. Gli autovalori di \mathcal{W}_t quantificano l'energia minima richiesta per raggiungere diversi stati $x(t) = x^*$ del sistema.

Esempio

1.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$

ingressi u'(t) per raggiungere $x^* = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ da $x_0 = 0$ in 2 passi?

$$u'(0)=egin{bmatrix}1\\\alpha\end{bmatrix}$$
, $lpha\in\mathbb{R}$, $u'(1)=egin{bmatrix}1\\0\end{bmatrix}$. $u^*(0)=egin{bmatrix}1\\0\end{bmatrix}$, $u^*(1)=egin{bmatrix}1\\0\end{bmatrix}$ min. energia

Spazi raggiungibili: interpretazione geometrica

Definizione: Data una $F \in \mathbb{R}^{n \times n}$, uno spazio vettoriale W si dice F-invariante se

$$\forall v \in W \implies Fv \in W$$
.

Proprietà: Lo spazio raggiungibile X_R è F-invariante e contiene im(G).

Forma canonica di Kalman (o forma standard di raggiungibilità)

$$\Sigma$$
 non raggiungibile \implies rank $(\mathcal{R}) = k < n$

Obiettivo: costruire un cambio di base T in modo da "separare" la parte raggiungibile del sistema da quella non raggiungibile!

$$T = \begin{bmatrix} v_1 & \cdots & v_k & \tilde{v}_1 & \cdots & \tilde{v}_{n-k} \end{bmatrix}, \quad X_R = \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

$$\forall v \in X_R, \quad w = Fv \in X_R \implies \underbrace{\begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}}_{T^{-1}FT} \underbrace{\begin{bmatrix} v^{(1)} \\ 0 \end{bmatrix}}_{v} = \underbrace{\begin{bmatrix} w^{(1)} \\ 0 \end{bmatrix}}_{w}, \quad \forall v^{(1)} \implies F_{21} = 0$$

$$\operatorname{im}(G) \subseteq X_R \implies \underbrace{\begin{bmatrix} G_1 \\ G_2 \end{bmatrix}}_{T^{-1}G}, \quad G_2 = 0$$

Forma canonica di Kalman (o forma standard di raggiungibilità)

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \ F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \ G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

$$egin{bmatrix} x_R(t+1) \ x_{NR}(t+1) \end{bmatrix} = egin{bmatrix} F_{11} & F_{12} \ 0 & F_{22} \end{bmatrix} egin{bmatrix} x_R(t) \ x_{NR}(t) \end{bmatrix} + egin{bmatrix} G_1 \ 0 \end{bmatrix} u(t)$$

$$\mathit{x}_{R}(t+1) = \mathit{F}_{11}\mathit{x}_{R}(t) + \mathit{F}_{12}\mathit{x}_{NR}(t) + \mathit{G}_{1}\mathit{u}(t)$$
: sottosistema raggiungibile

$$x_{NR}(t+1) = F_{22}x_{NR}(t)$$
: sottosistema non raggiungibile

Forma canonica di Kalman (o forma standard di raggiungibilità)

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

$$\mathcal{R}_{\mathcal{K}} = \mathcal{T}^{-1}\mathcal{R} = egin{bmatrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\operatorname{rank}(\mathcal{R}_K) = \operatorname{rank}(\begin{bmatrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \end{bmatrix}) = k$$

Esempi

1.
$$F = \begin{bmatrix} 2 & 1 & \frac{1}{2} \\ 0 & 2 & 4 \\ \hline 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 0 \\ 1 \\ \hline 0 \end{bmatrix} \implies$$

sistema in forma di Kalman con

$$F_{11} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
, $G_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

2.
$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 1 \\ 1 \\ \hline 0 \end{bmatrix} \implies$ sistema **non** in forma di Kalman

Forma canonica di Kalman e matrice di trasferimento

$$F_{K} \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_{K} \triangleq T^{-1}G = \begin{bmatrix} G_{1} \\ 0 \end{bmatrix}, \quad H_{K} \triangleq HT = \begin{bmatrix} H_{1} & H_{2} \end{bmatrix}$$

$$W(z) = H(zI - F)^{-1}G + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} zI - F_{11} & -F_{12} \\ 0 & zI - F_{22} \end{bmatrix}^{-1} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} (zI - F_{11})^{-1} & \star \\ 0 & (zI - F_{22})^{-1} \end{bmatrix} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= H_{1}(zI - F_{11})^{-1}G_{1} + J$$

W(z) = matrice di trasferimento del sottosistema raggiungibile !!

Test di Popov, Belevitch e Hautus (PBH)

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è raggiungibile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno (rank $[zI - F \ G] = n$) per ogni $z \in \mathbb{C}$.

Se Σ non è raggiungibile, la matrice PBH di raggiungibilità ha rango non pieno (rank $[zI-F\ G]< n$) per tutti e soli gli $z\in\mathbb{C}$ che sono autovalori di F_{22} (= matrice di stato del sottosistema non raggiungibile di Σ).

N.B. Essendo gli autovalori di F_{22} un sottoinsieme degli autovalori di F, il rango della matrice PBH può essere valutato solo per gli z che sono autovalori di F!

Esempi

1.
$$F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\implies$$
 raggiungibile

2.
$$F = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

 \implies non raggiungibile