

Podstawy akustyki

mgr Mikołaj Kirpluk

Warszawa, listopad 2012

(ed.popr.2014-08 - poprawiono definicję poziomu - patrz str.13) (I edycja: wrzesień 2004)

nazwa firmy: NTL-M.Kirpluk

adres korespondencyjny: ul.Belwederska 3 m.6

00-761 Warszawa

tel.kom.: +48 502 216620

e-mail: <u>mkirpluk@ntlmk.com</u>

strona internetowa: <u>www.ntlmk.com</u>

Spis treści:

SPIS	TREŚCI:	2
1.	FALA DŹWIĘKOWA	3
1.1.	Cechy fizyczne	3
1.2.	Zjawiska fizyczne	
	1.2.1. Superpozycja fal	5
	1.2.2. Odbicie, ugięcie i przenikanie	
	1.2.3. Refrakcja, interferencja i fala stojąca	
1.3.	Klasyfikacja pól i sygnałów akustycznych	8
2.	ZMYSŁ SŁUCHU	9
2.1.	Budowa ucha	9
2.2.	Słyszenie i postrzeganie dźwięku	9
3.	PARAMETRY AKUSTYCZNE - DEFINICJE	10
3.1.	Wartość skuteczna (RMS) i szczytowa (PEAK)	10
3.2.	Poziom dźwięku i decybel	11
3.3.	Ekspozycja względna	
3.4.	Korekcja częstotliwościowa (LIN lub Z, A, C)	
3.5.	Poziomy: ciśnienia akustycznego, dźwięku, mocy akustycznej	
	3.5.1. Poziom ciśnienia akustycznego	
	3.5.2. Poziom dźwięku A	
	3.5.3. Poziom mocy akustycznej	
0.0	3.5.4. Poziom A energii akustycznej	
3.6.	Poziom równoważny, ekspozycyjny, długotrwały średni	
	3.6.2. Poziom ekspozycji na hałas odniesiony do czasu 8-godzinnego dnia pracy (dzienny po	oziom ekspozycj
	na hałas)	
	3.6.3. Poziom ekspozycyjny (L _{AE} lub SEL) - definicja	
	3.6.4. Obliczanie poziomu równoważnego	
	3.6.5. Obliczanie poziomu długotrwałego średniego	∠5 25
3.7.	Sumowanie logarytmiczne poziomów akustycznych	
4.	POMIAR POZIOMU DŹWIĘKU	
	•	
4.1. 4.2.	Schemat ideowy miernikaStałe czasowe SLOW, FAST, IMPULS	
4.2. 4.3.	Stare czasowe SLOW, FAST, IMPOLS	
4.3. 4.4.	Pomiary hałasu - używane pojęcia	
4.5.	Protokół pomiarowy	
5.	OCHRONA PRZED HAŁASEM	
5.1.	Przepisy prawa	
	5.1.1. Ochrona środowiska	
	5.1.3. Stanowiska pracy	
5.2.	Pomiary hałasu w środowisku zewnętrznym - informacyjnie	
J.Z.	5.2.1. Wybór punktów pomiarowych	
	5.2.2. Sposób prowadzenia pomiarów	
	5.2.3. Uwzględnienie tła akustycznego	
5.3.	Pomiary hałasu w pomieszczeniach - informacyjnie	
5.4.	Pomiary hałasu na stanowiskach pracy - informacyjnie	
6.	ZAŁĄCZNIKI	36
6.1.	Dopuszczalne poziomy hałasu w środowisku	36
6.2.	Dopuszczalne wartości poziomu dźwięku w pomieszczeniach	
6.3.	Dopuszczalne wartości hałasu w środowisku pracy	
6.4.	Uproszczone tablice wykładnicze i logarytmiczne	
6.5.	Adresy internetowe stron poświęconych akustyce (wybrane)	41

Fala dźwiękowa

1.1. Cechy fizyczne

Fala dźwiękowa to forma transmisji energii przez ośrodek sprężysty.

W powietrzu falę dźwiękową stanowi fala podłużna (tzn. zaburzenia stanu występują wzdłuż kierunku propagacji) zmian ciśnienia atmosferycznego. Definicje:

- **Drgania akustyczne** drgania mechaniczne, polegające na ruchu cząstek środowiska sprężystego względem położenia równowagi.
- Dźwięk wrażenie słuchowe wywołane drganiami akustycznymi lub drgania akustyczne zdolne wytworzyć wrażenie słuchowe.
- Hałas dźwięk niepożądany w danym miejscu i czasie, przez daną osobę.

• Ciśnienie akustyczne

- chwilowe zmiany ciśnienia względem średniego cisnienia atmosferycznego:

Ciekawostka (definicje będą dalej...):

- minimalny poziom dźwięku to $-\infty$ [dB] - czyli brak emisji, ale maksymalny poziom (fala sinusoidalna, w powietrzu, dla warunków normalnych t=0°C, p_{atm} =101325 Pa) - to tylko **194,1 dB**...

Fala jest opisana następującymi wielkościami (na przykładzie fali sinusoidalnej):

 prędkość rozchodzenia się fali (prędkość dźwięku) c - prędkość rozchodzenia się zaburzenia ośrodka (sygnału):

- w powietrzu (ok. 20°C) 340 m/s (ok. 1220 km/h = 1 Mach)

- w wodzie (ok.10°C)
 - w betonie
 - w stali
 1450 m/s
 3800 m/s
 ok. 6000 m/s

- faza drgania φ wielkość wyznaczająca odchylenie w danym punkcie i w danym czasie od średniego położenia, albo: różnica w czasie lub w przestrzeni pomiędzy takim samym odchyleniem od średniego położenia,
- okres drgań T jest to najmniejszy przedział czasu, po którym powtarza się ten sam stan obserwowanego zjawiska (drgania lub zaburzenia),
- długość fali λ odległość pomiędzy dwoma kolejnymi punktami wzdłuż kierunku propagacji zaburzenia, w których drgania mają tą samą fazę.
 Długość fali można wyznaczyć z zależności:

$$\lambda = c \cdot T$$

• częstotliwość f - liczba okresów drgań w jednostce czasu - dla 1s wyrażana w Hz,

$$f = \frac{1}{T} \qquad \lambda \cdot f = c$$

częstotliwość f	długość λ (w powietrzu)
Hz	m
20	17
50	6,8
100	3,4
340	1,0
500	0,68
1000	0,34
8000	0,04
16000	0,02

Uwaga: długość fali dla najwyższej czułości ucha ludzkiego jest rzędu 0,5 m...

• amplituda A - maksymalne odchylenie od położenia równowagi.

1.2. Zjawiska fizyczne

1.2.1. Superpozycja fal

Dowolną falę akustyczną można przedstawić w postaci **superpozycji** składowych sinusoidalnych (-> analiza Fouriera lub FFT).

Takie przedstawienia nosi nazwę widma fali akustycznej.

Przypadki szczególne - definicje:

- Ton prosty fala dźwiękowa o przebiegu sinusoidalnym ze stałą częstotliwością, w analizie FFT reprezentowany przez pojedynczy "prążek",
- Częstotliwości harmoniczne częstotliwości stanowiące wielokrotność częstotliwości podstawowej:
 - dla struny i pręta drgania: zwiększenie o czynnik będący kolejnymi liczbami naturalnymi,
 - dla sygnału o przebiegu prostokątnym: zwiększenie o czynnik będący kolejnymi liczbami nieparzystymi (rozkład FFT fali prostokątnej na składowe sinusoidalne),
- Oktawa pasmo częstotliwości pomiędzy częstotliwościami, których stosunek równa się 2. Oktawy są charakteryzowane przez tzw. częstotliwości środkowe 31,5 Hz, 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz, 16 kHz.

Granice pasm oktawy są określone jako $\pm \sqrt{2}$ względem częstotliwości środkowej,

Tercja - pasmo częstotliwości pomiędzy częstotliwościami, których stosunek równa się ³√2 .
 Trzy kolejne tercje stanowią oktawę.

Częstotliwości środkowe tercji w Hz (zakres słyszalny - AUDIO):

- 25, **31,5**, 40, 50, **63**, 80, 100, **125**, 160, 200, **250**, 315, 400, **500**, 630, 800, **1000**, 1250, 1600, **2000**, 2500, 3150, **4000**, 5000, 6300, **8000**, 10 000, 12 500, **16 000**, 20 000.
- Szum biały szum szerokopasmowy o takiej charakterystyce widmowej, że poziom ciśnienia
 akustycznego dla każdej częstotliwości jest taki sam, konsekwencją tego jest wzrost poziomu dźwięku
 dla coraz wyższych oktaw.
- Szum różowy szum szerokopasmowy o takiej charakterystyce widmowej, że poziom dźwięku dla każdego pasma oktawowego (lub tercjowego) jest taki sam.

1.2.2. Odbicie, ugięcie i przenikanie

 Refleksja - to odbicie fali na granicy dwóch ośrodków sprężystych, w których fala przenosi się z różną prędkością.

Przy odbiciu fali akustycznej od przegrody jest zachowane prawo mówiące o tym, że kąt padania fali jest równy kątowi odbicia - przy założeniu, że wymiary przeszkody są znacznie większe od długości fali.

Parametrem charakteryzującym własności odbijające jest współczynnik odbicia β:

$$\beta = \frac{I_{odb.}}{I_{pad.}}$$

Przeciwieństwem zdolności do odbijania fali jest **dźwiękochłonność**, charakteryzowana współczynnikiem **chłonności** α : $\alpha = 1 - \beta$

• Transmisja - to przenikanie fali przez przegrodę.

Parametrem charakterystycznym jest współczynnik transmisji T:

$$T = \frac{I_{prz.}}{I_{pad.}}$$

Przeciwieństwem zdolności transmisyjnych jest **dźwiękoizolacyjność**, charakteryzowana współczynnikiem **izolacyjności R**:

$$R = 1 - T$$

• Dyfrakcja - to ugięcie fali na krawędzi przeszkody na trasie propagacji fali.

Fale o niższych częstotliwościach (większych długościach) uginają się łatwiej niż fale o wyższych częstotliwościach (krótsze).

Skutek fizyczny tego zjawiska jest taki, że fale o długościach porównywalnych z wymiarami przeszkody oraz o długościach większych - omijają tą przeszkodę, praktycznie bez żadnego tłumienia.

Zdolność do ugięcia fali decyduje o skuteczności ekranowania przez przeszkody terenowe.

1.2.3. Refrakcja, interferencja i fala stojąca

- Refrakcja to ugięcie fal na granicy dwóch ośrodków sprężystych, w których fala przenosi się z różną prędkością.
- Interferencja wzajemne oddziaływanie dwóch fal, polegające na miejscowym wzmocnieniu lub osłabieniu pola związanego z falą.
 - W szczególnych przypadkach przy pomocy tego zjawiska można tłumić hałas -> tonalny.
- Fala stojąca to fala wygenerowana (wzbudzona) pomiędzy dwiema płaszczyznami równoległymi do siebie. Wskutek zjawisk fizycznych polegających na wielokrotnym odbiciu fali oraz na interferencji tych fal w przestrzeni generuje się pole o maksimach (strzałki) i minimach (węzły) ciśnienia akustycznego, które są odległe od siebie o ¼ długości wygenerowanej fali. Uwaga: fale stojące mogą istotnie zafałszować wyniki pomiarów hałasu w przypadku niekorzystnie wybranego punktu obserwacji!

UWAGA:

aktywne tłumienie hałasu wykorzystuje zjawisko interferencji - interferencja destruktywna
 (w przeciwfazie) "wygłusza" falę akustyczną, ale jest to możliwe tylko przy określonych
 warunkach brzegowych: w pomieszczeniach zamkniętych, w niewielkich obszarach
 (porównywalnych z długością fali), w kanałach,

natomiast...

• w środowisku otwartym - np. do tłumienia hałasu przemysłowego, komunikacyjnego czy lotniczego, jest to nadal science fiction (przynajmniej do czasu opanowania technologii pól siłowych znanych z filmów Star Trek albo Star Wars...), a "osobnicy" propagujący takie idee tylko wystawiają sobie świadectwo z jakim zapałem uczyli się fizyki w szkole średniej, gdzie na lekcji jest pokazywane zjawisko powstawania prążków interferencyjnych dla fal o tej samej długości (i częstotliwości), ale o różnych źródłach emisji - w jednym miejscu jest oczywiście osłabienie fali, ale... tuż obok jest proporcjonalne wzmocnienie! :-)

1.3. Klasyfikacja pól i sygnałów akustycznych

Pole akustyczne:

- bliskie obszar pola bezpośrednio przylegający do źródła dźwięku, gdzie występują zjawiska nieliniowe (około 1 długości fali - dla 250 Hz jest to 2,5 m !!!).
- dalekie obszar pola, w którym spadek poziomu dźwięku wynosi 6 dB na każde podwojenie odległości od źródła hałasu (dla fali sferycznej - od źródła punktowego)
- swobodne pole w którym nie występują fale odbite,
- dyfuzyjne pole w którym występuje duża liczba fal odbitych z różnych kierunków, co powoduje stały poziom dźwięku w całym obszarze

UWAGA:

Występuje jeszcze **pole ciśnieniowe** - spotykamy się z tym zjawiskiem kiedy nakładamy kalibrator (wzorcowe źródło dźwięku) na mikrofon miernika - czy to w celu kalibracji miernika (wzorcowanie jednopunktowe, wewnętrzna procedura laboratoryjna), czy też tylko dla sprawdzenia toru pomiarowego (poprawności wskazań zestawu pomiarowego).

Różnica pomiędzy **polem ciśnieniowym** (jakie występuje w kalibratorze) a **polem swobodnym** (w jakim będzie potem używany mikrofon) **wymaga (dla sygnału 1000 Hz) odjęcia** od wartości podanej na metryce kalibratora **0,15 dB** (wcześniej: 0,2 dB) i dla wyniku tego działania (ew. zaokrąglonego do 0,1 dB) wykonać kalibrację sprzętu.

2. Zmysł słuchu

2.1. Budowa ucha

- funkcje fizyczne:

o małżowina uszna - *tuba* o przewód słuchowy - *falowód*

błona bębenkowa - filtr mechaniczny i hermetyzacja układu

ucho środkowe - wzmacniacz mechaniczny

błona podstawna - analizator widmowy z konwerterem mechaniczno-elektrycznym

kanały półkoliste - układ orientacji 3D (równowaga)

trąbka Eustachiusza - wyrównywanie ciśnień

2.2. Słyszenie i postrzeganie dźwięku

Budowa ucha zapewnia zmianę sygnału mechanicznego (fali akustycznej) na sygnał elektryczny (nerwowy) wraz z analizą amplitudową i częstotliwościową.

Postrzeganie dźwięku pozwala rozróżniać:

- głośność dźwięku subiektywna ocena polegająca na porównaniu badanego dźwięku z tonem o częstotliwości 1000 Hz, wyrażana jako logarytm ze stosunku natężenia badanego dźwięku do natężenia odniesienia (10⁻¹² W/m²) i wyrażana w jednostkach nazywanych fonami (dla częstotliwości 1 kHz wartości liczbowe poziomu głośności w fonach i poziomu natężenia dźwięku w decybelach są takie same),
- wysokość dźwięku określona przez częstotliwość fali akustycznej,
- barwę dźwięku określona przez stosunek amplitud tonu podstawowego i tonów harmonicznych.

3. Parametry akustyczne - definicje

3.1. Wartość skuteczna (RMS) i szczytowa (PEAK)

Wartość skuteczna (RMS)

- średnia kwadratowa amplitudy ciśnienia z czasu obserwacji, tzn.
 pierwiastek ze średniego kwadratu amplitudy ciśnienia z czasu obserwacji,
- wartość skuteczna jest proporcjonalna do pierwiastka kwadratowego z ilości energii przenoszonej przez falę.

$$A_{RMS} = \sqrt{\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p^2 dt}$$

Wartość szczytowa (PEAK)

- maksymalna wartość amplitudy sygnału w czasie obserwacji (na rys. Apeak)

3.2. Poziom dźwięku i decybel

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzie mieści się w przedziale $2*10^{-5} \div 10^{2}$ Pa (czyli od 20 µPa do 1 hPa):

co obejmuje 8 rzędów wielkości (dla czynnika 10), to praktycznym sposobem wyrażania tych wielkości jest skala logarytmiczna - logarytm ze względu na swoje matematyczne własności pozwala wygodnie przedstawiać względne zmiany wartości:

Uwaga:

Prawo Webera-Fechnera

- zasada mówiąca o relacji pomiędzy fizyczną miarą bodźca a reakcją układu biologicznego. Dotyczy ono reakcji na bodźce takich zmysłów jak wzrok, słuch czy poczucie ciepła. Jest to zasada fenomenologiczna będąca wynikiem wielu obserwacji praktycznych i znajdująca wiele zastosowań technicznych.

Wartość reakcji układu biologicznego jest proporcjonalna do logarytmu bodźca

$$w = k \cdot \ln \left(\frac{B}{B_0} \right)$$

gdzie:

- w reakcja układu biologicznego (wrażenie zmysłowe)
- B natężenie danego bodźca
- B₀ wartość początkowa natężenia danego bodźca
- In logarytm naturalny

Zmiania podstawy logarytmu (z In na Ig):

$$w = k \cdot \ln\left(\frac{B}{B_0}\right) = k \cdot \frac{\lg\left(\frac{B}{B_0}\right)}{\lg(e)} = \frac{k}{\lg(e)} \cdot \lg\left(\frac{B}{B_0}\right)$$

Podstawą definicji "decybela" jest wygoda matematyczna i pomiarowa poprzez przyjęcie pewnych założeń umownych - tj. zastosowanie logarytmu dziesiętnego, a nie realizacja prawa Webera-Fechnera - bo ani temperatury, ani oświetlenia nie mierzymy w jednostkach logarytmicznych, tylko przy pomocy jednostek "wygodnych" do fizycznego pomiaru!

Definicja podstawowa poziomu:

Poziomem (bezwzględnym) danej wielkości fizycznej nazywamy logarytm dziesiętny ze stosunku danej wielkości (<u>wyrażonej w sposób proporcjonalny do mocy</u>) do ustalonej wartości odniesienia tej samej wielkości (identycznie wyrażonej).

Tak zdefiniowany poziom wyraża się w belach w postaci: [liczba] Bel [B].

Ciekawostka: Połówka z logarytmu naturalnego ze stosunku dwóch wielkości to Neper [Np].

Uwaga:

Bel nie jest jednostką fizyczną - jest to "pseudojednostka" - poziom jest wielkością bezwymiarowa!

Konsekwencją definicji poziomu jest to, że z metrologicznego punktu widzenia zdanie (w cudzysłowie) jest **nieprawdziwe** (!):

"[...] Ze względów praktycznych używa się jednostki pochodnej, jaka jest: **decybel**: 1 dB = 0,1 B lub inaczej: 10 dB = 1 B [...]"

- gdyż tak "zdefiniowana" podjednostka jest po prostu "nierówna" w zakresie 1B...!!!
- inaczej: nie zachodzi zależność: 1dB+1dB+1dB+1dB+1dB+1dB+1dB+1dB+1dB+1dB = 1B

Dla fali akustycznej:

- wielkością proporcjonalna do mocy jest kwadrat ciśnienia akustycznego.

Natomiast prawdziwe jest zdanie: Ze względów praktycznych zdefiniowano:

Poziom dźwięku wyrażony w decybelach to 10 logarytmów dziesiętnych ze stosunku kwadratu ciśnienia akustycznego do kwadratu ciśnienia odniesienia równego 2*10⁻⁵ Pa:

$$L_p = 10 \cdot \lg \frac{p^2}{p_0^2}, dB$$

gdzie: p₀ - ciśnienie odniesienia 2*10⁻⁵ Pa (próg słyszenia dla 1000 Hz)

Uwaga: decybel, tak samo jak bel nie jest jednostką fizyczną!

UWAGA:

Czesto w literaturze spotyka sie zapis:

$$L_p = 20 \cdot \lg \frac{p}{p_0}, \ dB$$

Zapis taki, choć z formalnie prawidłowy z matematycznego punktu widzenia, **traci sens fizyczny** – bowiem nie ciśnienie akustyczne (w pierwszej potędze może być nawet ujemne!!!) tylko właśnie energia, która jest proporcjonalna do kwadratu ciśnienia akustycznego (i wielkości z nią związane, np. moc), z jednej strony jest wielkością addytywną, a z drugiej strony to przekaz energii powoduje skutki oddziaływań fizycznych na narząd słuchu czy cały organizm

Stąd próba obliczeń, np. sumy hałasu z kilku źródeł (sumowanie poziomów) lub niepewności wyników (przez różniczkowanie) prowadzi do błędów interpretacyjnych!

3.3. Ekspozycja względna

Wielkość:

$$E = \frac{p^2}{p_0^2} = 10^{\frac{L}{10}}$$

gdzie:

p₀ - ciśnienie odniesienia 2*10⁻⁵ Pa (próg słyszenia dla 1000 Hz)

p - cisnienie akustyczne badanego dźwięku

L - poziom badanego dźwięku w dB.

będziemy nazywać ekspozycją względną, czyli

• poziom dźwięku jest to 10-krotność logarytmu dziesiętnego z ekspozycji względnej:

$$L_p = 10 \cdot \lg E, \ dB$$

Ekspozycja względna jest wielkością fizyczną (energetyczną) proporcjonalną do mocy, wyrażoną w jednostkach bezwymiarowych jako wielokrotność kwadratu ciśnienia odniesienia p₀ - jest addytywna i multiplikatywna arytmetycznie.

UWAGA:

Poziom dźwięku **nie jest** wielkością fizyczną - jest umowną reprezentacją wielkości fizycznej przy wykorzystaniu funkcji logarytmicznej ze wszelkimi tego konsekwencjami:

- nie jest addytywny nie dodaje się algebraicznie sumowanie poziomów polega na sumowaniu energii ("suma logarytmiczna" poziomów),
- różnica poziomów jest krotnością jest to różnica logarytmów! i chociaż jest stosowana jako wskaźnik skuteczności akustycznej (np. dźwiękoizolacyjności, wyciszenia), to liczenie "wariancji" na różnicach poziomów nie ma sensu fizycznego,
- poziom dźwięku nie reprezentuje wartości "zerowej" odpowiadającej braku emisji energii (wartość poziomu dąży do $-\infty$).

3.4. Korekcja częstotliwościowa (LIN lub Z, A, C)

Pomiar w pełnym paśmie akustycznym (LIN, Z) to pomiar ciśnienia akustycznego bez żadnej korekcji, natomiast pomiar z użyciem korekcji częstotliwościowej A lub C polega na dodaniu odpowiednich poprawek do zmierzonych wartości w zależności od częstotliwości sygnału (realizuje się to poprzez filtry - nazywane często filtrem A lub odpowiednio C albo LIN lub Z).

Współczynniki korekcji A i C przedstawiono w poniższej tabeli oraz na rysunku:

Interpretacja fizyczna krzywych korekcji:

- korekcja częstotliwościowa A odpowiada charakterystyce krzywej progu słyszenia człowieka, tj.
 odzwierciedla małą wrażliwość na niskie częstotliwości zaprojektowana do pomiaru niskich poziomów
 dźwięku.
- korekcja częstotliwościowa C odpowiada charakterystyce słyszenia człowieka dla wyższych poziomów dźwięku (>80 dB).

3.5. Poziomy: ciśnienia akustycznego, dźwięku, mocy akustycznej

3.5.1. Poziom ciśnienia akustycznego

Poziom ciśnienia akustycznego wyrażony w **decybelach [dB]**, to dziesięć logarytmów dziesiętnych ze stosunku kwadratu ciśnienia akustycznego (wielkość proporcjonalna do mocy) do kwadratu ciśnienia odniesienia, wynoszącego 2*10⁻⁵ Pa (próg słyszenia dla 1000 Hz).

$$L_p = 10 \cdot \lg \frac{p^2}{p_0^2}, \ dB$$

gdzie: p₀ - ciśnienie odniesienia 2*10⁻⁵ Pa (próg słyszenia dla 1000 Hz)

Uwaga:

Poziom ciśnienia akustycznego powinien być określany dla zakresu częstotliwości - może to być zakres LIN (20Hz-20kHz) albo oktawy lub tercje !!!

3.5.2. Poziom dźwięku A

Poziom dźwięku A jest to poziom ciśnienia akustycznego dźwięku, skorygowanego według charakterystyki częstotliwościowej zgodnej z krzywą korekcyjną A.

$$L_p = 10 \cdot \lg \frac{p_A^2}{p_0^2}, dB$$

qdzie: p₀ - ciśnienie odniesienia 2*10⁻⁵ Pa (próg słyszenia dla 1000 Hz)

Analogicznie - poziom dźwięku C - dla krzywej korekcyjnej C.

Uwaga:

Poziom dźwięku ma sens fizyczny tylko wtedy, gdy jest jednocześnie określony punkt obserwacji (lokalizacja w terenie lub odległość od źródła) !!!

3.5.3. Poziom mocy akustycznej

ang.: A-weighted Equivalent Sound Power Level

Definicja formalna

Równoważny poziom mocy akustycznej badanego źródła, jest to wartość dziesięciu logarytmów dziesiętnych ze stosunku <u>mocy akustycznej</u> dźwięku, skorygowanego według charakterystyki częstotliwościowej A, do ciśnienia mocy akustycznej odniesienia, w określonym przedziale czasu odniesienia T.

Poziom mocy akustycznej jest to wielkość określona wzorem:

$$L_W = 10 \cdot \lg \frac{W}{W_0}, \ dB$$

gdzie: W₀ - moc odniesienia 10⁻¹² W (odpowiada progowi słyszenia dla 1000 Hz)

Uwaga:

Poziom mocy jest jednoliczbowym i jednoznacznym parametrem charakteryzującym zdolność źródła do emisji dźwięku !!!

Zależność pomiędzy poziomem mocy akustycznej źródła a poziomem dźwięku w przestrzeni otaczającej źródło jest opisana wzorem¹:

$$L_p = L_W - 10 \cdot \lg \frac{S}{S_0}, \ dB$$

gdzie:

L_W - poziom mocy akustycznej źródła hałasu

powierzchnia fali dźwiekowej otaczająca źródło

S₀ - powierzchnia odniesienia 1 m² L_p - poziom dźwięku na powierzchni S

UWAGA:

Rozwinięcie analityczne ze wzorów podstawowych ma postać zależną od gęstości powietrza i od prędkości dźwięku w powietrzu (czyli pośrednio od temperatury i wilgotności powietrza):

$$L_p = L_W - 10 \cdot \log_{10} \left(\frac{S}{S_0} \right) + 10 \cdot \log_{10} (\rho \cdot c) - 26,0$$

Dla powietrza w temperaturze 20°C impedancja charakterystyczna ośrodka wynosi ρc=407 kg m² s⁻¹, z której dziesięciokrotny logarytm wynosi ok. 26,1 (dzięki odpowiedniemu doborowi wartości odniesienia dla poziomu dźwięku i dla poziomu mocy akustycznej)

¹ wzór przybliżony - prawdziwy dla powietrza w warunkach normalnych!

3.5.4. Poziom A energii akustycznej

ang.: A-weighted Sound Energy Level

Definicja formalna

Poziom energii akustycznej badanego źródła, jest to wartość dziesięciu logarytmów dziesiętnych ze stosunku <u>energii akustycznej</u> dźwięku (badanego **zdarzenia akustycznego)**, skorygowanego według charakterystyki częstotliwościowej A, do energii akustycznej odniesienia.

$$L_{JA} = 10 \cdot \lg \left[\frac{J_A}{J_0} \right], dB$$

gdzie:

J_A - energia akustyczna źródła (skorygowana względem charakterystyki częstotliwościowej A)

 J_0 - energia akustyczna odniesienia $J_0 = 10^{-12} J$ (=1pJ)

Definicja pojęciowa

Energia akustyczna zdarzenia akustycznego to całka po czasie z mocy akustycznej.

Uwaga:

Poziom energii jest **jednoliczbowym** i jednoznacznym parametrem charakteryzującym zdolność źródła do emisji dźwięku będącego zdarzeniem akustycznym!!!

Zależność pomiędzy **poziomem energii akustycznej** źródła a **poziomem dźwięku w przestrzeni** otaczającej źródło jest opisana wzorem:

$$L_E = L_J - 10 \cdot \lg \frac{S}{S_0}, \ dB$$

gdzie:

L_J - poziom energii akustycznej źródła hałasu

S - powierzchnia fali dźwiękowej otaczająca źródło

S₀ - powierzchnia odniesienia 1 m²

L_E - poziom ekspozycyjny dźwięku (SEL) na powierzchni S

Przypadki szczególne:

1. Źródło punktowe

- powierzchnia (fala) sferyczna

$$L_p = L_W - 10 \cdot \log_{10}(R^2) - 10 \cdot \log_{10}(4\pi)$$

$$L_p = L_W - 20 \cdot \log_{10}(R) - 11,0$$

- 6 dB spadku na każde podwojenie odległości!

... a nad powierzchnia odbijającą:

$$L_p = L_W - 20 \cdot \log_{10}(R) - 8$$

Ogólnie:

$$L_p = L_W - 11 + K_0 - 20 \cdot \lg R - \Delta...$$

 $S = 4 \pi R^2$

2. Źródło liniowe o długości H >> R

- powierzchnia (fala) cylindryczna

$$L_p = L_W - 10 \cdot \log_{10}(H) - 10 \cdot \log_{10}(R) - 10 \cdot \log_{10}(2\pi)$$

$$L_p = L_{W1m} - 10 \cdot \log_{10}(R) - 8.0$$

- 3 dB spadku na każde podwojenie odległości!

...a nad powierzchnią odbijającą:

$$L_p = L_{W1m} - 10 \cdot \log_{10}(R) - 5$$

Ogólnie:

$$L_p = (L_W - 10 \cdot \lg H) - 8 + K_0 - 10 \cdot \lg R - \Delta...$$

- płaszczyzna prostokątna (fala płaska)
 (np. w kanale powietrznym, otwór bramy, ściana)
- brak spadku poziomu z reguły pole bliskie!

 $S = 2 \pi R H$

Przy takim samym poziomie dźwięku - poziom mocy źródła zależy od powierzchni!

3.6. Poziom równoważny, ekspozycyjny, długotrwały średni zawsze podawany dla określonego czasu obserwacji T

3.6.1. Poziom równoważny (L_{eq} lub LEQ) - definicja

Równoważny poziom dźwięku A analizowanego dźwięku, jest to wartość dziesięciu logarytmów dziesiętnych ze stosunku <u>średniego kwadratu ciśnienia akustycznego</u> dźwięku, skorygowanego według charakterystyki częstotliwościowej A, do kwadratu ciśnienia odniesienia p₀, w określonym przedziale czasu odniesienia T:

$$L_{Aeq,T} = 10 \cdot \lg \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{p_A^2}{p_0^2} dt \right], dB$$

gdzie:

T - czas obserwacji T = t₂ - t₁

p_A - mierzone ciśnienie akustyczne (skorygowane względem charakterystyki częstotliwościowej A)

 p_0 - wartość ciśnienia odniesienia $p_0 = 20 \mu Pa = 2 \cdot 10^{-5} Pa$

INACZEJ (dla znanego przebiegu wartości poziomu LA w czasie):

$$L_{Aeq,T} = 10 \cdot \lg \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} 10^{0.1*L_A(t)} dt \right], dB$$

gdzie:

T - czas obserwacji T = t_2 - t_1 - chwilowy poziom dźwięku A

Praktycznie się stosuje wzór następujący:

- dla N sytuacji akustycznych w czasie obserwacji T , każda o poziomie L_{Ai} trwająca przez czas t_i :

$$L_{Aeq,T} = 10 \cdot \lg \left[\frac{1}{T} \sum_{i=1}^{N} t_i \cdot 10^{0.1*L_{Ai}(t)} \right], dB$$

Czasy \boldsymbol{t}_i i czas \boldsymbol{T} muszą być wyrażone w tych samych jednostkach czasu!

3.6.2. Poziom ekspozycji na hałas odniesiony do czasu 8-godzinnego dnia pracy (dzienny poziom ekspozycji na hałas)

ang.: A-weighted noise exposure level normalized to an 8 h working day (daily noise exposure level)

Definicja formalna

hałas w miejscu pracy: poziom, w decybelach, określony równaniem:

$$L_{EX,8h} = L_{Aeq,T_e} + 10 \cdot \lg \left[\frac{T_e}{T_0} \right], dB$$

gdzie:

 $L_{Aeq,Te}$ - równoważny poziom ciśnienia akustycznego skorygowany charakterystyką częstotliwościową A (in. *równoważny poziom dźwięku A*) w przedziale czasowym T_e - czas odniesienia, T_0 =8h (=480min=28800s)

 $T_{\rm e}$ - efektywny czas trwania danej sytuacji akustycznej wyrażony identycznie jak $T_{\rm 0}$

Definicja pojęciowa

Dawka hałasu jako wartość uśredniona energetycznie odniesiona do normatywnych 8-godzin.

Uwaga:

Poziom ekspozycji na hałas MOŻE być większy od zmierzonego równoważnego poziomu dźwięku A, gdy $T_e > T_0$

Poziom ekspozycji na hałas odniesiony do nominalnego tygodnia czasu pracy:

- określać obliczeniowo - uśrednienie energetyczne wartości dziennych - na podstawie wzoru:

$$\overline{L}_{EX,8h} = 10 \cdot \lg \left(\frac{1}{5} \sum_{x=1}^{5} 10^{0.1 \times L_{EX,8h,x}} \right)$$

3.6.3. Poziom ekspozycyjny (LAE lub SEL) - definicja

(SEL: Sound Exposure Level - ale też czytany jako: Single Event Level)

Definicja analogiczna jak dla poziomu równoważnego, z zastrzeżeniem, że przeliczenie następuje zamiast dla czasu obserwacji T - na umowny czas odniesienia 1s (dobrze charakteryzuje pojedyncze zdarzenia akustyczne).

$$L_{AE,T} = 10 \cdot \lg \left[\frac{1}{t_0} \int_{t_1}^{t_2} \frac{p_A^2}{p_0^2} dt \right], dB$$

gdzie: t₀ - czas odniesienia równy 1s

p_A, p₀ - jak wyżej

Definicja pojęciowa

Dawka hałasu jako wartość uśredniona energetycznie odniesiona do 1 sekundy.

Poziom SEL nadaje się do charakteryzowania pojedynczych zdarzeń akustycznych - niezależnie od faktycznego czasu ich trwania!

UWAGA:

zasada pomiaru poziomu SEL polega na tym, żeby wybrać taki moment początku i końca pomiaru, żeby
poziom maksymalny podczas pomiaru zdarzenia był co najmniej o 10 dB wyższy od poziomów
chwilowych na początku i końcu pomiaru.

Taka zasada pomiaru powoduje, że jest to pomiar EMISJI, bez wpływu tła akustycznego!

3.6.4. Obliczanie poziomu równoważnego

3.6.4.1. <u>dla znanych poziomów równoważnych:</u>

- w poszczególnych odcinkach czasu (wtedy T = Σ ti),
- w poszczególnych sytuacjach akustycznych występujących w tym samym czasie obserwacji.

$$L_{eq} = 10 \cdot \lg \left(\frac{1}{T} \sum_{i} t_i 10^{0.1*L_i} \right)$$

gdzie:

T - czas obserwacji: kolejne 8 godz. dla dnia lub 1 godz. dla nocy

ti - czas emisji poszczególnych poziomów hałasu,

Li - poziomy hałasu w odcinkach czasowych ti

UWAGA:

- wzór stosuje się zarówno do poziomu dźwięku jak i poziomu mocy akustycznej!

3.6.4.2. <u>dla znanych poziomów ekspozycyjnych:</u>

- w poszczególnych sytuacjach akustycznych występujących w tym samym czasie obserwacji.

$$L_{eq} = 10 \cdot \lg \left(\frac{1}{T} \sum_{i} 10^{0.1 * L_{AEi}} \right)$$

gdzie:

- czas obserwacji: kolejnych 8 godzin dla dnia (28800s) lub 1 godz. dla nocy (3600s)
 lub 16 godzin dla dnia (57600s) lub 8 godzin dla nocy (28800s)

L_{AE i} - poziomy SEL hałasu i-tego zdarzenia w czasie obserwacji

STAD

 możemy określić czas pomiaru na podstawie wyniku LEQ i SEL (np. przy pomiarze miernikiem Brüel & Kjær 2230):

$$T = \frac{10^{\frac{SEL}{10}}}{10^{\frac{LEQ}{10}}}$$

- możemy określić **LEQ** dla znanej liczby zdarzeń **n** o znanym poziomie **SEL** :

$$L_{eq} = L_{AE} - 10 \cdot \lg T + 10 \cdot \lg n$$

lub ogólniej:

$$L_{eq} = 10 \cdot \lg \left(\frac{n_i}{T} \sum_{i} 10^{0.1*L_{AEi}} \right)$$

gdzie:

T - czas obserwacji

L_{AE i} - średnie poziomy ekspozycyjne SEL hałasu i-tej klasy zdarzeń w czasie obserwacji

n_i - liczba zdarzeń i-tej klasy w czasie obserwacji

3.6.5. Obliczanie poziomu długotrwałego średniego

Poziom ten oblicza się dla znanych wartości L_{Aeq,T} dla ustalonego czasu odniesienia (np. dzień, noc), określonych w cyklicznych odcinkach czasowych (tzw. "próbki" - w cyklach co 24h, tydzień, miesiąc) dla czasu uśredniania będącego wielokrotnością przyjętych cykli (dla tygodnia, miesiąca, pół roku, roku):

$$L_{Aeq,LT} = 10 \cdot \lg \left(\frac{1}{N} \sum_{i} 10^{0.1*L_{Aeq,T}} \right)$$

gdzie:

N - liczba próbek dla tego samego czasu odniesienia w okresie uśredniania

L_{Aeq,T i} - równoważny poziom dźwięku A dla i-tej próbki

UWAGA:

Powyższy wzór jest wzorem na średnią logarytmiczną poziomów - odpowiada to średniej arytmetycznej energii !!!

3.6.6. Poziom dzienno-wieczorno-nocny L_{DWN} (*LDEN*)

Określa się poziomy długookresowe dla całego roku w podziale na pory:

poziom równoważny dla dnia - od 06:00 do 18:00,

- poziom równoważny dla wieczoru - od 18:00 do 22:00,

poziom równoważny dla nocy - od 22:00 do 06:00,

Następnie:

poziom równoważny dla 12 godzin dnia pozostawia się bez zmian,
 do poziomu równoważnego dla 4 godzin wieczoru dodaje się 5 dB,
 do poziomu równoważnego dla 8 godzin nocy dodaje się 10 dB,

i dla tak określonych danych określa się poziom równoważny na 24 godziny:

$$L_{DWN} = 10 \cdot \log \left[\frac{1}{24} \cdot \left(12 \cdot 10^{\frac{L_D}{10}} + 4 \cdot 10^{\frac{L_W + 5}{10}} + 8 \cdot 10^{\frac{L_N + 10}{10}} \right) \right]$$

W wartościach energetycznych (ekspozycja względna):

$$E_{DWN} = \frac{50\% \cdot E_D + 52,7\% \cdot E_W + 333,3\% \cdot E_N}{100\%}$$

3.7. Sumowanie logarytmiczne poziomów akustycznych

Poniższy wzór jest konsekwencją faktu, że wielkością addytywną z fizycznego punktu widzenia jest energia, a zatem wielkość proporcjonalna do p^2 :

$$L_{eq} = 10 \cdot \lg \left(\sum_{i} 10^{0.1*L_i} \right)$$

gdzie: Li - sumowane poziomy hałasu

UWAGA: sumowane poziomy muszą być tego samego rodzaju - np. poziomy równoważne muszą być określone dla tego samego czasu obserwacji !!!

STAD:

- dla wielokrotności takich samych poziomów (np. kilku identycznych źródeł):

$$L_{eq} = L_i + 10 \cdot \lg(x)$$

Tabelka określająca zwiększenie / zmniejszenie poziomu dźwięku w zależności od krotności x:

X	1	1,26*	1,5	1,58	2	2,5	3	3,5	4	4,5	5	6	7	8	9	10	razy
10logx	0	1	1,8	2	3	4	4,8	5,5	6	6,5	7	7,8	8,5	9	9,5	10	±dB

Z powyższych wzorów wynika również procentowe określenie np. skuteczności wyciszeń, które dotyczy stopnia zmniejszenia emitowanej energii, a nie procentowej zmiany wartości liczbowej poziomu dźwięku! I tak:

Wyciszenie o wartość w %:	Tzn. wyciszenie do % wartości początkowej	Wyciszenie o wartość wyrażoną w dB						
10%	90%	-0,5 dB						
20,6%	79,4%	-1 dB						
33% (o ¹ / ₃)	66%	-1,8 dB						
50% (o połowę)	50%	-3 dB						
90%	10%	-10 dB						
99%	1%	-20 dB						
99,9%	0,1%	-30 dB						
99,99%	0,01%	-40 dB						
a dalej zastanóv	a dalej zastanówmy się czy wiemy o czym mówimy							

^{*} z tych zależności wynika też wniosek czym jest "jeden decybel" (1 dB):

⁻ otóż jest to po prostu "zwiększenie energii o ok.26%"

⁻ nie jest to natomiast żadna "jednostka" fizyczna !!!

4. Pomiar poziomu dźwięku

4.1. Schemat ideowy miernika

Każdy miernik poziomu dźwięku (sonometr) składa się z następujących elementów:

- mikrofon przetwornik akustyczno-mechaniczny,
- przedwzmacniacz dopasowujący charakterystykę elektryczną mikrofonu do układu miernika,
- zestaw filtrów korekcyjnych (LIN, A, C),
- układ stałych czasowych (SLOW, FAST, IMPULS),
- detektor RMS i/lub PEAK,
- układ logarytmiczny,
- wskaźnik lub wyświetlacz

Budowę miernika przedstawiono na poniższych przykładach:

A. miernik analogowy - wskaźnik wskazówkowy (np. Sonopan I-01, Brüel&Kjær 2209)

B. miernik analogowo-cyfrowy - wyświetlacz cyfrowy (np. Brüel&Kjær 2231):

C. miernik cyfrowy - wyświetlacz graficzny (np. SVAN 945):

4.2. Stałe czasowe SLOW, FAST, IMPULS

Opisują szybkość reakcji miernika na zmianę poziomu dźwięku (wzrost lub spadek). Stała czasowa SLOW = 1s, FAST = 125 ms, Impuls = narastanie 35 ms / spadek 1,5 s

Przedstawienie graficzne stałych SLOW i FAST dla sygnału o prostokątnym przebiegu w czasie (np. włączenie, praca, wyłączenie źródła hałasu):

Wpływ stałych czasowych na wynik pomiaru przedstawia kolejny rysunek.

Stała czasowa SLOW uwypukla udział dźwięków o amplitudzie wolnozmiennej w czasie, pozwalając np. wyeliminować krótkotrwałe zakłócenia akustyczne niebędące przedmiotem badania.

Natomiast zastosowanie stałej czasowej SLOW do pomiaru sygnału o amplitudzie szybkozmiennej w czasie (<< 1s) spowoduje uzyskanie wyniku pomiaru mniejszego niż uzyskiwany dla stałej czasowej FAST.

Stała czasowa IMPULS odpowiada reakcji ucha na dźwięki impulsowe i uderzeniowe, obecnie wartości poziomów dla tej stałej czasowej nie są normowane.

Stałe czasowe SLOW i FAST Interpretacja graficzna dla przykładowego przebiegu w czasie.

4.3. Mierzone parametry

Miernik poziomu dźwięku pozwala odczytać szereg parametrów sygnału akustycznego rejestrowanych i wyświetlanych podczas pomiaru.

Nazwy mierzonych wielkości przedstawiono na przykładzie:

- miernika cyfrowego Brüel&Kjær typ 2231,
- miernika cyfrowego SVAN 945A.

Dla ustawionych parametrów toru pomiarowego - zakres pomiarowy (FSD - *Full Scale Deflection* lub RANGE), korekcja częstotliwości (A, C, LIN), stała czasowa (SLOW, FAST) oraz typ detektora (RMS, PEAK) - możemy odczytać następujące wyniki (dot. mierników cyfrowych):

- **SPL** *Sound Pressure Level* chwilowa wartość poziomu dźwięku, jako maksymalna wartość RMS z ostatniej sekundy, aktualizowana co 1s,
- LEQ Equivalent Level równoważny poziom dźwięku z czasu pomiaru,
- **SEL** *Sound Exposure Level* ekspozycyjny poziom dźwięku równoważny poziom dźwięku z czasu pomiaru przeliczony na 1s,
- MINL lub MIN minimalny poziom dźwięku RMS z czasu pomiaru,
- MAXL lub MAX maksymalny poziom dźwięku RMS z czasu pomiaru,
 RMS wartości uśrednione energetycznie z uwzględnieniem stałej czasowej FAST lub SLOW
- MAXP lub PEAK- maksymalny poziom dźwięku PEAK (wartość szczytowa) z czasu pomiaru,
- INST Instant Level chwilowa wartość poziomu dźwięku RMS próbkowana co 1s (BK2231), UWAGA miernik SVAN 945 może zapisać przebieg czasowy pomiaru w buforze w próbkach RMS co 10ms, 20ms, 50ms, 100ms, 200ms, 500ms, 1s dotyczy to RMS, MIN, MAX, PEAK.
- ELT Elapsed Time lub TIME czas pomiaru.
- Ln poziomy statystyczne ozn. wartość poziomu dźwięku, która jest przekraczana w n% czasu obserwacji (pomiaru)

Poza wyżej wymienionymi wielkościami, mierniki mogą podawać inne parametry, co zależy od producenta i typu miernika.

4.4. Pomiary hałasu - używane pojęcia

Podczas pomiarów hałasu określa się równoważny poziom dźwięku A dla następujących sytuacji:

- imisja hałasu (L_{im}) mierzony w punkcie pomiarowym <u>badany hałas razem z tłem akustycznym</u>
 (mikrofon miernika rejestruje wszystkie dźwięki dochodzące do membrany mikrofonu),
- tło akustyczne (pomiarowe tło akustyczne) wszystkie dźwięki w punkcie pomiarowym, które nie są badanym hałasem i występują stale podczas pomiarów imisji hałasu (nie są też zakłóceniami akustycznymi),
- zakłócenia akustyczne dźwięki występujące przypadkowo podczas pomiarów przy prawidłowym określaniu imisji hałasu lub tła akustycznego należy eliminować zakłócenia akustyczne w czasie pomiarów funkcją miernika "PAUZA" z usunięciem z zapisu ostatnich sekund pomiaru (w których wystąpiło zakłócenie) lub po pomiarach prowadzonych z rejestracją przebiegu hałasu poprzez elektroniczne usunięcie z zapisu zakłóceń akustycznych (na ogół istotnie wyróżniających się na wykresie),
- emisja hałasu (L_{em})- poziom hałasu emitowanego przez dane źródło hałasu do punktu pomiarowego, jaki byłby zmierzony, gdyby nie występowało tło akustyczne.
 Poziom emisji określa się na podstawie wzoru:

$$L_{em} = 10 \cdot \lg \left(10^{0.1 \cdot L_{lim}} - 10^{0.1 \cdot L_{tlo_akustyczne}} \right)$$

UWAGA 1:

W przypadku różnicy pomiędzy poziomem *imisji hałasu* a poziomem *tła akustycznego* powyżej 10 dB można pominąć wpływ tła akustycznego.

Jednak wtedy należy uwzględnić błąd związany z takim uproszczeniem (zawyżenie wyniku emisji hałasu), który wynosi 0,5 dB dla różnicy 10 dB, a 0,1 dB dla różnicy 15 dB.

UWAGA 2:

Obecnie obowiązujące metodyki pomiaru hałasu przemysłowego w środowisku nie uwzględniają takiej opcji - narzucają określanie tła akustycznego w każdej sytuacji.

4.5. Protokół pomiarowy

Protokół pomiarowy musi zawierać:

- jednostka prowadząca pomiary / kontrolę (nazwa, adres)
 - imię i nazwisko wykonującego pomiar
- obiekt badań (nazwa, adres lub opis lokalizacji)
 - imię i nazwisko (właściciela, dyrektora, innej osoby upoważnionej do reprezentacji)
- **sprzęt pomiarowy** typy i numery miernika poziomu dźwięku, mikrofonu, kalibratora akustycznego, wraz z informacją o świadectwie wzorcowania numer i data
- nastawy miernika stała czasowa, korekcja częstotliwościowa, ew. czas pomiaru
- rejestrowane wyniki pomiaru (np. LEQ, MAXL, MINL, czas pomiaru)
 - co najmniej 3 oznaczenia dla danej sytuacji pomiarowej z uwagi na statystykę dla określania niepewności wyników.
- inne uwagi dot. sposobu wykonania pomiarów powołane normy, wytyczne, procedury, ew. opis np.:

"Pomiary wykonywano eliminując zakłócenia zewnętrzne, nie będące obiektem badań - tzw metodą "filtrowania" poprzez użycie funkcji PAUZA z usunięciem z obliczeń poziomu LEQ zapisu ostatnich 4 s pomiaru."

- data i godzina (lub zakres godzin) wykonania pomiarów
- sytuacja akustyczna informacja o źródłach hałasu i źródłach tła akustycznego
- warunki meteorologiczne podczas pomiarów (temperatura i ew. wilgotność powietrza, prędkość i kierunek wiatru, stan nieba - informacja o braku opadów)
- lokalizację punktów pomiarowych i źródeł hałasu wskazany szkic terenu lub oznaczenie na mapie również współrzędne GPS.
- podpisy pod protokołem
- w przypadku pomiarów kontrolnych kopia protokołu, po jej podpisaniu, musi być przekazana jednostce kontrolowanej!
 - nie dotyczy to sprawozdania z pomiarów zawierającego obliczenia i wnioski.

UWAGA 1:

Obowiązujące metodyki pomiarowe lub normy wyszczególniają m.in. informacje jakie musi zawierać protokół lub sprawozdanie z pomiarów wykonanych wg tych przepisów.

5. Ochrona przed hałasem

5.1. Przepisy prawa

5.1.1. Ochrona środowiska

- ustawa z dnia 27 kwietnia 2001 r. Prawo ochrony środowiska (tekst jednolity Dz.U. Nr 25 (2008), poz. 150 z późn. zmianami) - nazywana dalej "POŚ",
- ustawa z dnia 27 lipca 2001 r. o wprowadzeniu ustawy Prawo ochrony środowiska, ustawy o odpadach oraz o zmianie niektórych ustaw (Dz.U. Nr 100, poz. 1085, zm. Dz.U. Nr 7 / 2003, poz.78) nazywana dalej "ustawą wprowadzającą",
- rozporządzenie Ministra Środowiska z dnia 14 czerwca 2007 r. w sprawie dopuszczalnych poziomów hałasu w środowisku (Dz.U. Nr 120, poz.826) - odpowiada delegacji Art. 113 POŚ. (patrz tabele w p.6.1), wraz ze zmianą podana poniżej:
- rozporządzenie Ministra Środowiska z dnia 1 października 2012 r. zmieniające rozporządzenie w sprawie dopuszczalnych poziomów hałasu w środowisku (Dz. U. z 08.10.2012r., poz.1109) (zmieniono poziomy dopuszczalne od hałasu komunikacyjnego w tabelach 1 i 3)

5.1.2. Pomieszczenia w budynkach

- PN-87/B-02151/02 "Akustyka budowlana. Ochrona przed hałasem pomieszczeń w budynkach. Dopuszczalne wartości poziomu dźwięku w pomieszczeniach." (patrz tabele w p.6.2)
- rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. Nr 75, poz. 690) - §326 przy spełnieniu warunków §147,
- rozporządzenie Ministra Infrastruktury zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie z dnia 12 marca 2009 r. (Dz.U. Nr 56, poz.461) oraz z dnia 10 grudnia 2010 r. (Dz.U. Nr 239, poz.1597).

5.1.3. Stanowiska pracy

- PN-EN ISO 9612:2011 "Akustyka. Wyznaczanie zawodowej ekspozycji na hałas. Metoda techniczna"
- PN-N-01307 (grudzień 1994) "Hałas. Dopuszczalne wartości hałasu w środowisku pracy. Wymagania dotyczące wykonywania pomiarów"
- rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 29 listopada 2002 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy (dz. u . nr 217, poz. 1833 z 18.12.2002 r.) dopuszczalne poziomy hałasu jak w PN-N-01307 (grudzień 1994) (patrz tabele w p.6.3)
- rozporządzenie Ministra Gospodarki i Pracy z dnia 5 sierpnia 2005 r. w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażeniem na hałas lub drgania mechaniczne (Dz. U. Nr 157, poz. 1318) wartości progów działania (podejmowanie działań zmniejszających ryzyko zawodowe).

5.2. Pomiary hałasu w środowisku zewnętrznym - informacyjnie

5.2.1. Wybór punktów pomiarowych

Punkty pomiarowe do kontroli stanu środowiska umieszcza się na terenie chronionym akustycznie poza terenem własności zakładu:

- 1. delegacja Art.113 POŚ zróżnicowanie norm i czasów odniesienia w zależności od **rodzaju terenu**, źródła hałasu i pory doby:
 - rozporządzenie Ministra Środowiska z dnia 14 czerwca 2007 r. w sprawie dopuszczalnych poziomów hałasu w środowisku (Dz.U. Nr 120, poz.826) normuje dopuszczalne poziomy, hałasu na terenach zamieszkania lub przebywania ludzi (!),
- 2. zapis Art. 115a POŚ 1. W przypadku stwierdzenia przez organ ochrony środowiska, na podstawie pomiarów własnych, pomiarów dokonanych przez wojewódzkiego inspektora ochrony środowiska lub pomiarów podmiotu obowiązanego do ich prowadzenia, że poza zakładem, w wyniku jego działalności, przekroczone są dopuszczalne poziomy hałasu, organ ten wydaje decyzję o dopuszczalnym poziomie hałasu; za przekroczenie dopuszczalnego poziomu hałasu uważa się przekroczenie wskaźnika hałasu L_{AegD} lub L_{AegD}.
- 3. Art. 315 POŚ karę za przekroczenie za przekroczenie poziomu hałasu **w punkcie pomiarowym**, w którym ma ono **wartość najwyższą** dla pory dnia lub dla pory nocy.

5.2.2. Sposób prowadzenia pomiarów

- musi uwzględniać reprezentatywną sytuację akustyczną,
- należy podczas pomiarów odrzucać wyniki zakłócone przez przypadkowe zdarzenia akustyczne (lub pauzować pomiar na czas zakłóceń - tu jest przydatna w mierniku funkcja odrzucania ostatnich sekund pomiaru!)

5.2.3. Uwzględnienie tła akustycznego

W przypadku występującego wysokiego tła akustycznego (od hałasu pochodzącego od innych źródeł niż badane) - określa się **poziom dźwięku hałasu emitowanego** przez badane źródło, obliczając emisję jako różnicę logarytmiczną zmierzonego poziomu imisji w punkcie pomiarowym (badane źródło wraz z tłem akustycznym) i zmierzonego osobno tła akustycznego (podczas gdy badane źródło nie pracowało) - tzw. **poziom skorygowany względem tła akustycznego**, zgodnie ze wzorem:

$$L_{emisja} = 10 \cdot \log \left(10^{\frac{L_{imisja}}{10}} - 10^{\frac{L_{tlo\ akustyczne}}{10}} \right)$$

5.3. Pomiary hałasu w pomieszczeniach - informacyjnie

- PN-87/B-02156 - "Akustyka budowlana. Metody pomiaru poziomu dźwięku A w budynkach"

Określane wielkości:

• średni poziom dźwięku : średnia arytmetyczna (!) – jest to archaizm!

równoważny poziom dźwięku: wzór standardowy
dla wyników analizy statystycznej: suma logarytmiczna

czas oceny: w dzień - 8h - kolejnych najniekorzystniejszych

w nocy - 1/2h - najniekorzystniejsza

warunki pomiaru: czas przy bezpośrednich odczytach z miernika >10 min.

i ilość odczytów >100 (przy hałasie ustalonym 3-5 min)

wymagania ogólne: drzwi i okna zamknięte (ew.zapewnić wymianę powietrza)

max. 2 osoby podczas pomiaru

punkty pomiarowe: 1.2m ±0.1m od podłogi, >1m od ścian, >1.5m od okien

>0.5m od obsługującego, **membrana skierowana ku sufitowi** - dla pom.technicznych >1m od źródła, mikrofon w kierunku

źródła hałasu

liczba punktów: min.3 dla kubatury>60m3 (pom.dla ludzi)

wyniki obliczeń: LA = Lzm. + K1 + K2

poprawki na tło akustyczne: - wskazane jest wykonanie działania "odejmowania logarytmicznego"!

Δ	K1
>10 dB	0 dB
6 -10 dB	-1 dB
4 - 5 dB	-2 dB
3 dB	-3 dB
<3 dB	nie można określać L

poprawki na chłonność akustyczną pomieszczeń niezagospodarowych:

pon	nieszczenie	K2
pokoje	V <25m ³	-5 dB
	25÷40m ³	-4 dB
	40÷60m ³	-3 dB
	V >60 m ³	-2 dB
kuchnia,przed	dpokój,łazienka,WC	-2 dB

JAKO WYNIK POMIARU - NAJWYŻSZY WYNIK ze wszystkich PUNKTÓW.

klasa dokładności:

1 - dla mierników klasy 0 i 1, i nie stosowano odczytu wzrokowego

2 - dla mierników kl.2 lub stosowano odczyt wzrokowy dla hałasów nieustalonych

ocena: dla klasy 1: normalnie,

dla klasy 2: <3 dB - wyniki nie mogą być przedmiotem oceny

5.4. Pomiary hałasu na stanowiskach pracy - informacyjnie

Wielkości charakteryzujące hałas:

1. Poziom ekspozycji na hałas - korekcja częstotliwościowa A, SLOW (RMS)

2. **Ekspozycja na hałas** - korekcja częstotliwościowa A, SLOW (RMS)

3. Maksymalny poziom dźwięku A - korekcja częstotliwościowa A, SLOW (RMS)

4. Szczytowy poziom dźwięku C - korekcja częstotliwościowa C, (Peak).

Wzory:

• ekspozycja na hałas : $E_{A,Te} = \int_{0}^{Te} p_{A}^{2}(t)dt$

• poziom ekspozycji na hałas odniesiony do 8-godzinnego dnia pracy :

$$L_{EX,8h} = L_{Aeq,Te} + 10*\lg\frac{Te}{To_{-8h}}$$

poziom ekspozycji na hałas odniesiony do tygodnia pracy :

$$L_{EX,w} = 10*\lg\frac{1}{5}\sum_{i=1}^{n}10^{0.1*L_{EX,8h}}$$

Ekspozycja na hałas dla 8-godzinnego dnia pracy :

$$E_{A.8h} = 1.15 * 10^{-5} * 10^{0.1*L_{EX,8h}}$$
 (Pa²s)

Ekspozycja na hałas tygodniowa :

$$E_{A,w} = \sum_{i=1}^{n} (E_{A,Te})_{i}$$
 (Pa²s)

Pomiary:

- aparatura: dozymetry hałasu lub całkujące mierniki poziomu dźwięku A klasy 2 lub lepszej o zakresie impulsowym co najmniej 53 dB,
- położenie mikrofonu : w miejscu gdzie zwykle znajduje się głowa pracownika
 - pomiary należy przeprowadzić podczas jego nieobecności,
 - jeżeli musi być to od 0.1m do 0,4m od jego ucha bardziej narażonego na hałas,
 - dla położenia nieokreślonego:
 - a) dla osoby stojącej **h=1,55 m** $\pm 0,075$ m
 - b) dla osoby siedzącej **h=0,80 m** $\pm 0,05$ m
 - minimum 1m od powierzchni odbijających (1.2m nad podłogą, 1.5m od okien),
 - zaleca się skierowanie mikrofonu w kierunku, w którym jest zwrócona twarz pracownika
- metody pomiaru: bezpośrednia (pomiar ciągły), metoda pośrednia (pomiar + obliczenia),
- metoda pośrednia w przypadku gdy występuje określona liczba wyraźnie rozróżnialnych poziomów dźwięku A,
- pomiar hałasu metodami próbkowania i metodą rozkładu statystycznego.
- ten rozdział będzie w przyszłości uzupełniony o informacje z normy 9612:2011...

6. Załączniki

6.1. Dopuszczalne poziomy hałasu w środowisku

Tabela 1 / Tabela 3

Dopuszczalne poziomy hałasu w środowisku powodowanego przez poszczególne grupy źródeł hałasu, z wyłączeniem hałasu powodowanego przez starty, lądowania i przeloty statków powietrznych oraz linie elektroenergetyczne, wyrażone wskaźnikami $L_{\text{Aeq D}}$ i $L_{\text{Aeq N}}$, które to wskaźniki mają zastosowanie do ustalania i kontroli warunków korzystania ze środowiska, w odniesieniu do jednej doby

40 0	Istalariia i koritioli warurkow korzystariia		•		•	
		Doj	ouszczalny poz	ziom hałasu w		
		Drogi lub lini	e kolejowe ¹⁾	Pozostałe obiekty i działalność będąca źródłem hałasu		
Lp.	Rodzaj terenu	L _{Aeq D} przedział czasu odniesienia równy 16 godzinom	L _{Aeq N} przedział czasu odniesienia równy 8 godzinom	odniesienia równy 8 najmniej korzystnym godzinom dnia kolejno po sobie	L _{Aeq N} przedział czasu odniesienia równy 1 najmniej korzystnej godzinie nocy	
	a) Strefa ochronna "A " uzdrowiska			następującym		
1	a) Strefa ochronna "A " uzdrowiskab) Tereny szpitali poza miastem	50	45	45	40	
2	 a) Tereny zabudowy mieszkaniowej jednorodzinnej b) Tereny zabudowy związanej ze stałym lub czasowym pobytem dzieci i młodzieży²⁾ c) Tereny domów opieki społecznej d) Tereny szpitali w miastach 	61 64 (było 55)	56 59 (było 50)	50	40	
3	a) Tereny zabudowy mieszkaniowej wielorodzinnej i zamieszkania zbiorowego b) Tereny zabudowy zagrodowej c) Tereny rekreacyjno- wypoczynkowe ²⁾ d) Tereny mieszkaniowo-usługowe	65 68 (było 60)	56 59 (było 50)	55	45	
4	Tereny w strefie śródmiejskiej miast powyżej 100 tys. mieszkańców ³⁾	68 70 (było 65)	60 65 (było 55)	55	45	

Objaśnienia:

UWAGA: Poziomy długookresowe (roczne) L_{DWN} i L_N zostały określone identycznie! UWAGA 2: Poziomy długookresowe (roczne) L_{DWN} i L_N dla hałasów komunikacyjnych są obecnie JESZCZE wyższe niż poziomy "jednodniowe" (?????)

¹⁾ Wartości określone dla dróg i linii kolejowych stosuje się także dla torowisk tramwajowych poza pasem drogowym i kolei linowych.

²⁾ W przypadku niewykorzystywania tych terenów, zgodnie z ich funkcją, w porze nocy, nie obowiązuje na nich dopuszczalny poziom hałasu w porze nocy.

³⁾ Strefa śródmiejska miast powyżej 100 tys. mieszkańców to teren zwartej zabudowy mieszkaniowej z koncentracją obiektów administracyjnych, handlowych i usługowych. W przypadku miast, w których występują dzielnice o liczbie mieszkańców pow. 100 tys., można wyznaczyć w tych dzielnicach strefę śródmiejską, jeżeli charakteryzuje się ona zwartą zabudową mieszkaniową z koncentracją obiektów administracyjnych, handlowych i usługowych.

Tabela 2 / Tabela 4*

Dopuszczalne poziomy hałasu w środowisku powodowanego przez starty, lądowania i przeloty statków powietrznych oraz linie elektroenergetyczne wyrażone wskaźnikami L_{Aeq D} i L_{Aeq N}, które to wskaźniki mają zastosowanie do ustalania i kontroli warunków korzystania ze środowiska, w odniesieniu do iednei doby

Zasi	280	wanie do ustalania i kontroli warunkow k	orzystania ze	Siodowiska, w	odniesieniu d	b jednej doby			
			Dopuszczalny poziom hałasu w dB						
				ania i przeloty wietrznych	Linie elektroenergetyczne				
Lp.		Rodzaj terenu	L _{Aeq D} przedział	L _{Aeq N}	L _{Aeq D}	L _{Aeq N}			
			czasu odniesienia równy 16 godzinom	przedział czasu odniesienia równy 8 godzinom	przedział czasu odniesienia równy 16 godzinom	przedział czasu odniesienia równy 8 godzinom			
	a)	Strefa ochronna "A " uzdrowiska							
1	b)	Tereny szpitali, domów opieki społecznej	55	45	45	40			
	c)	Tereny zabudowy związanej ze stałym lub czasowym pobytem dzieci i młodzieży ¹⁾							
	a)	Tereny zabudowy mieszkaniowej jedno- i wielorodzinnej oraz zabudowy zagrodowej i zamieszkania zbiorowego							
2	b)	Tereny rekreacyjno-wypoczynkowe ¹⁾	60	50	50	45			
	c)	Tereny mieszkaniowo-usługowe							
	d)	Tereny w strefie śródmiejskiej miast powyżej 100 tys. mieszkańców ²⁾							

Objaśnienia:

*UWAGA: Poziomy długookresowe (roczne) L_{DWN} i L_N zostały określone identycznie!

¹⁾ W przypadku niewykorzystywania tych terenów, zgodnie z ich funkcją, w porze nocy, nie obowiązuje na nich dopuszczalny poziom hałasu w porze nocy.

²⁾ Strefa śródmiejska miast powyżej 100 tys. mieszkańców to teren zwartej zabudowy mieszkaniowej z koncentracją obiektów administracyjnych, handlowych i usługowych. W przypadku miast, w których występują dzielnice o liczbie mieszkańców pow. 100 tys., można wyznaczyć w tych dzielnicach strefę śródmiejską, jeżeli charakteryzuje się ona zwartą zabudową mieszkaniową z koncentracją obiektów administracyjnych, handlowych i usługowych.

6.2. Dopuszczalne wartości poziomu dźwięku w pomieszczeniach

PN-87/B-02151/02 - "Akustyka budowlana. Ochrona przed hałasem pomieszczeń w budynkach. Dopuszczalne wartości poziomu dźwięku w pomieszczeniach."

Dopuszczalne poziomy dźwięku A w pomieszczeniach przeznaczonych do przebywania ludzi:

	uszczalne poziomy dźwięku A w pomieszczeniach prz						
lp	przeznaczenie pomieszczenia	dop.	równ.	dop.od wyp.techn.			
		od w	szyst.	średni	/równ.	maks.	d>5dB
		dzien.	noc	dzień	noc	dzień	noc
1	pomieszczenia mieszkalne w budynkach mieszkalnych, internatach, domach rencistów, dziecka, hotelach kategorii S i I, hotelach robotniczych	40	30	35	25	40	30
2	kuchnie i pom.sanitarne w mieszkaniach	45	40	40	40	45	45
3	pokoje w hotelach kat.II i niższych	45	35	40	30	45	35
4	pokoje w domach wczasowych	40-45	30-35				
5	pokoje chorych w szpitalach i sanatoriach za wyjątkiem pokoi w oddziałach intensywnej opieki medycznej	35	30	30	25	35	30
6	pomieszczenia łóżkowe w oddziałach intensywnej opieki medycznej	30	30	25	25	30	30
7	sale operacyjne, pokoje przygotowania chorych do operacji +	35	-	30	-	35	-
8	gabinety badań lekarskich w przychodniach i szpitalach, pom. psychoterapii	35	-	30	-	35	-
9	pokoje lekarskie, pielęgniarskie oraz inne pomieszczenia szpitalne (za wyjątkiem działów technicznych i gospodarczych)	40	30	35	25	40	35
10	laboratoria medyczne, pokoje recepturowe w aptekach	40	-	35	-	40	-
11	pokoje dla dzieci w żłobkach, klasy w przedszkolach	35	-	30	-	35	-
12	klasy i pracownie szkolne, sale wykładowe audytoria +	40	-	35	-	40	ı
13	sale konferencyjne	40	-	35	-	40	-
14	pomieszczenia do pracy umysłowej wymagającej silnej koncentracji uwagi	35	ı	30	-	35	ı
15	pomieszczenia administracyjne bez wewnętrznych źródeł hałasu	40	-	35	-	40	-
16	pomieszczenia administracyjne z wewnętrznymi źródłami hałasu, pomieszczenia administracyjne w obiektach tymczasowych	45	-	40	-	45	-
17	sale zajęć w domach kultury	35-45	ı	30- 40	-	40- 50	-
18	sale kawiarniane i restauracyjne	50	-	45	-	brak	norm
19	sale sklepowe	50	-	45	-	brak	norm

Dopuszczalne poziomy dźwięku A **urządzeń zainstalowanych w pomieszczeniach technicznych** w budynkach mieszkalnych i zamieszkania zbiorowego:

-		maksymalny poziom dźwięku A w odl. 1m
1	węzeł cieplny, hydrofornia, praca pompy, działanie zaworów	65
2	transformatornia, praca transformatora przy minimalnych występujących wartościach obciążenia	62
3	maszynownia dźwigu: praca zespołu napędowego	65
4	przestrzeń nad dachem budynku, praca wentylatora dachowego	65

6.3. Dopuszczalne wartości hałasu w środowisku pracy

PN-N-01307 (grudzień 1994) - "Hałas. Dopuszczalne wartości hałasu w środowisku pracy. Wymagania dotyczące wykonywania pomiarów"

Dopuszczalne wartości hałasu w środowisku pracy ze względu na :

		wielkość	wartość						
A	ochronę słuchu - rozporządzenie Ministra Pracy i Polityki Społecznej najwyższych dopuszczalnych stężeń i natężeń w środowisku pracy (dz. u . nr 217, poz. 1833 z 18.12.	czynników szkod							
	odniesione do 8-godzinnego dnia pracy :								
	- poziom ekspozycji na hałas	L _{EX,8h}	85 dB						
	- ekspozycja na hałas	E _{A,Te}	3,64 *10 ³ Pa ² s						
	maksymalny poziom dźwięku A	L _{A,max}	115 dB						
	szczytowy poziom dźwięku C	L _{C,peak}	135 dB						
В	możliwość realizacji przez pracownika podstawowych funkcji								
	równoważny poziom dźwięku A w czasie pobytu pracownika na stanowisku pracy								
	-w kabinach bezpośredniego sterowania bez łączności telefonicznej	L _{Aeq,Te}	75 dB						
	-w kabinach bezpośredniego sterowania z łącznością telefoniczną	L _{Aeq,Te}	65 dB						
	-w pomieszczeniach administracyjnych	L _{Aeq,Te}	55 dB						
	maksymalny poziom dźwięku A	L _{A,max}	115 dB						
	szczytowy poziom dźwięku C	$L_{C,peak}$	135 dB						

Wartości progów działania dla wielkości charakteryzujących hałas i drgania mechaniczne w środowisku pracy

W przypadku hałasu:

- 1. dla poziomu ekspozycji na hałas odniesionego do 8-godzinnego dobowego wymiaru czasu pracy lub poziomu ekspozycji na hałas odniesionego do tygodnia pracy wartość progu działania wynosi 80 dB,
- 2. dla szczytowego poziomu dźwięku C jako wartość progu działania przyjmuje się wartość NDN wynoszącą 135 dB.

6.4. Uproszczone tablice wykładnicze i logarytmiczne

TABLICE LOGARYTMICZNE do AKUSTYKI

antylogarytmy o podstawie 10, czyli 10^x:

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	1,00	1,02	1,05	1,07	1,10	1,12	1,15	1,17	1,20	1,23
0,1	1,26	1,29	1,32	1,35	1,38	1,41	1,45	1,48	1,51	1,55
0,2	1,58	1,62	1,66	1,70	1,74	1,78	1,82	1,86	1,91	1,95
0,3	2,00	2,04	2,09	2,14	2,19	2,24	2,29	2,34	2,40	2,45
0,4	2,51	2,57	2,63	2,69	2,75	2,82	2,88	2,95	3,02	3,09
0,5	3,16	3,24	3,31	3,39	3,47	3,55	3,63	3,72	3,80	3,89
0,6	3,98	4,07	4,17	4,27	4,37	4,47	4,57	4,68	4,79	4,90
0,7	5,01	5,13	5,25	5,37	5,50	5,62	5,75	5,89	6,03	6,17
0,8	6,31	6,46	6,61	6,76	6,92	7,08	7,24	7,41	7,59	7,76
0,9	7,94	8,13	8,32	8,51	8,71	8,91	9,12	9,33	9,55	9,77

Przykład:

$$10^{6,35} = 10^6 \cdot 10^{0,35} = 2,24 \cdot 10^6 = 2\ 240\ 000$$

logarytmy o podstawie 10:

ing a patient in the										
	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,0	0	0,00	0,01	0,01	0,02	0,02	0,03	0,03	0,03	0,04
1,1	0,04	0,05	0,05	0,05	0,06	0,06	0,06	0,07	0,07	0,08
1,2	0,08	0,08	0,09	0,09	0,09	0,10	0,10	0,10	0,11	0,11
1,3	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,14
1,4	0,15	0,15	0,15	0,16	0,16	0,16	0,16	0,17	0,17	0,17
1,5	0,18	0,18	0,18	0,18	0,19	0,19	0,19	0,20	0,20	0,20
1,6	0,20	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,23	0,23
1,7	0,23	0,23	0,24	0,24	0,24	0,24	0,25	0,25	0,25	0,25
1,8	0,26	0,26	0,26	0,26	0,26	0,27	0,27	0,27	0,27	0,28
1,9	0,28	0,28	0,28	0,29	0,29	0,29	0,29	0,29	0,30	0,30

	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
2,0	0,30	0,32	0,34	0,36	0,38	0,40	0,41	0,43	0,45	0,46
3,0	0,48	0,49	0,51	0,52	0,53	0,54	0,56	0,57	0,58	0,59
4,0	0,60	0,61	0,62	0,63	0,64	0,65	0,66	0,67	0,68	0,69
5,0	0,70	0,71	0,72	0,72	0,73	0,74	0,75	0,76	0,76	0,77
6,0	0,78	0,79	0,79	0,80	0,81	0,81	0,82	0,83	0,83	0,84
7,0	0,85	0,85	0,86	0,86	0,87	0,88	0,88	0,89	0,89	0,90
8,0	0,90	0,91	0,91	0,92	0,92	0,93	0,93	0,94	0,94	0,95
9,0	0,95	0,96	0,96	0,97	0,97	0,98	0,98	0,99	0,99	1,00
10,0	1,00	1,00	1,01	1,01	1,02	1,02	1,03	1,03	1,03	1,04

Przykład:

$$\lg(124000) = \lg(1,24 \cdot 10^5) = \lg(1,24) + \lg(10^5) = 0,09 + 5 = 5,09$$

6.5. Adresy internetowe stron poświęconych akustyce (wybrane)

Warto zajrzeć na strony:

NTL-M.Kirpluk <u>www.ntlmk.com</u>
 Liga Walki z Hałasem <u>www.lwzh.org.pl</u>

Polskie Towarzystwo Akustyczne
 <u>www.acoustics.org.pl</u>

• Profon Acoustics <u>www.profon.xq.pl</u>

Sprzęt pomiarowy:

SVANTEK Sp. z o.o. <u>www.svantek.com</u>
 Brüel & Kjær <u>www.bruel.com.pl</u>
 SONOPAN www.sonopan.com.pl