The Global Positioning System A Brief Overview

John Murray

Systems Engineer, Precision Navigation & Timing – Harris Corporation

B.S. Engineering Physics, Fordham University (2016)

M.S. Aerospace Engineering & Mechanics, The University of Alabama (expected 2020)

Fast Facts

- Owned & operated by the United States government (DoD/USAF)
 - Provides free* positioning (< 1 m accuracy) & timing services to global users
- Three system segments
 - Space (satellite constellation)
 - Control (ground-based monitor/command station network)
 - User (receivers in vehicles, smartphones, clocks)
- Created in early 1970s by USAF (Navstar)
 - Selective Availability (intentional degradation of civilian signals) disabled in 1990s by President Clinton

Space Segment

- Constellation of (currently) 31 satellites
 - 24 needed for operation 6 orbital planes, 4 satellites each
 - MEO ~20,000 km altitude
 - Generally 6+ satellites in view at any time for all global users (4 necessary)
 - Tend to outlive design life
- GPS III (first launch Dec 2018)
 - Higher power, more signals, all-digital

Control Segment

• Tracks satellites, uploads corrections and messages

GPS Signals

- L-Band (1 2 GHz)
- Information transmitted by phase modulation (PM)

GPS Signals – Layered Structure

GPS Signals – Determining Distance

Determining Position (x_0, y_0, z_0)

$$P_{1} = \sqrt{(x_{1} - x_{0})^{2} + (y_{1} - y_{0})^{2} + (z_{1} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{2} = \sqrt{(x_{2} - x_{0})^{2} + (y_{2} - y_{0})^{2} + (z_{2} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{3} = \sqrt{(x_{3} - x_{0})^{2} + (y_{3} - y_{0})^{2} + (z_{3} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{4} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$
Pseudorange (distance) to satellites (calculated from correlation time delay)
$$P_{4} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{5} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{6} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{6} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{6} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{7} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{8} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{8} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{8} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9} = \sqrt{(x_{4} - x_{0})^{2} + (y_{4} - y_{0})^{2} + (z_{4} - z_{0})^{2}} + c(t_{GPS} - t_{0})$$

$$P_{9}$$

 P_1

GPS Navigation Messages

Navigation messages include:

- Time of signal generation
- Satellite position & velocity ("ephemeris data")
- Approximate position & velocity of all other GPS satellites ("almanac data")
- Satellite health/status
- Ionospheric corrections
- Time transfer information (Satellite-GPS Time delay, GPS Time-UTC delay)

GPS Clocks

- Cs/Rb atomic clocks onboard satellites & at monitor stations
 - Nanosecond-scale precision
 - Highly stable over time, still constantly corrected (monitor station uploads)
 - So precise, relativity must be taken into account on orbit (orbital speed & differences in gravitational pull from that on Earth's surface)

Atomic clock basic operation:

Some GPS Design Challenges

Problem

- Satellite clocks not all synchronized to each other
- Satellite perturbations (geodesic, solar radiation)
- Urban/geographically challenging environments
- Atmospheric delay/attenuation

Resolution

- Create "ensemble time" –
 weighted average of clocks
- Model & predict ahead of time, upload corrections to satellites
- Local augmentation; multisystem receivers
- Use multiple signal frequencies; model, predict, & correct

Demystifications

- GPS does not know where you are
 - Google knows where you are (thanks to GPS)
- GPS is not the only GNSS (Global Navigation Satellite System)
 - GLONASS (Russia), Galileo (EU), BeiDou (China)
- GPS is not just for positioning
 - Precise timing used for financial transactions, telecom, power grids
 - Signals used to measure land erosion, tectonic activity, sea level height

Further Reading

- http://www.gps.gov
- https://tf.nist.gov/general/pdf/1498.pdf

References & Credits

- United States Air Force
- Rakipi, et al, "Performance Analysis of a Positioning Algorithm Using Raw Measurements Taken from a GPS Receiver," 2013.
- Paulsava, Wikimedia