zeppelin universität

zwischen Wirtschaft Kultur Politi

Data Analytics and Visualisation

II Data Manipulation — The Heart of Data Science

David Zimmermann

2017-04-22

Zeppelin University

Why do we care about data manipulation?

It's an absolute myth that you can send an algorithm over raw data and have insights pop up [...] Data scientists [...] spend 50-80% of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets.

```
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
```

Outline

- 1. Recap
- 2. Pipes
- 3. hadleyverse
- 4. Tibbles
- 5. Data Import & Export
- 6. tidy-data
- 7. Data Manipulation
- 8. Data Merging
- Appendix -
 - 9. Version Control
 - 10. Dates and Times

Recap

Data Types & Structures

What have we done yesterday?

- Math: +, -, *, /, ^, sqrt(), log(), exp(), and %%
- Boolean: ==, <, <=, >, >=, !, and %in%. Also & and | (as well as && and ||)
- Variables: x <- 123
- Data types: numeric, character, logical, integer, and complex
- Additional: NAs, Inf, -Inf, NaN, etc.
- If-Statements: if (test) {...} else if (test2) {...} else
 {...}, or ifelse()
- For-loops: for (var in vector) {...}

Data Types & Structures cont'd

- Data Structures:
 - Vector: c(), length(), and []. Also: seq() and rep()
- Functions:

```
foo <- function(arg1, arg2 = 123) {
   ... # do something
  return(var)
}
foo(arg1, arg2)</pre>
```

- Libraries: once install.packages("pkg_name") then each session or top of script library(pkg_name)
- Style: just.Dont_fuckUp.YouRStyle and use_common_sense (i.e., underscore) and consistency...
- Organization: common sense and consistency . . .

Debugging & Troubleshooting

What now?

- 0. Read the error message and RTFM!
- 1. Rubber-Ducky-Method (-> Rubber Duck Debugging)!
- 2. Recreate the error with a Minimum Working Example (MWE)!
- 3. Google is your friend!!!!11
- 4. Ask friends/collegues/supervisors

MWE:

- https://stackoverflow.com/help/mcve
- https://stackoverflow.com/a/5963610/3048453

The hadleyverse!

Hadley Wickham

Source: http://hadley.nz/

Chief Scientist RStudio & Adjunct Prof. of Statistics

Among many others books: author of "R for Data Science" $\,$

(http://r4ds.had.co.nz/)

Author of many packages...

Hadleyverse

- tibble: improved data structures
- readr: improved "read and write" data
- dplyr: improved data manipulation
- tidyr: improved data tidying
- ggplot2: improved graphics
- lubridate: improved dates
- stringr: improved string manipulation
- devtools: improved development
- roxygen2: improved package development
- ...

http:

//adolfoalvarez.cl/the-hitchhikers-guide-to-the-hadleyverse/

Piping

Piping 101

```
So far: nested code
```

```
mean(abs(rnorm(1000)))
```

```
## [1] 0.7854796
```

Read: Take the mean of absolutes of random values, 1000

Using pipes (%>%, read as "then") it becomes

```
library(dplyr) # pipes need to be loaded
# alternatively library(magrittr)
1000 %>% rnorm %>% abs %>% mean
```

```
## [1] 0.7854796
```

Read left to right: Take 1000 (then) random values, then take the absolute, then compute the mean

Piping cont'd

Take what is on the left side of the pipe-operator and paste it into the right side function (in the first argument or use '.' to specify location).

```
log(100) is equivalent to 100 %>% log
```

To specify location use '.':

```
"David" %>% paste("I am", .) %>%
rep(3) %>% print
```

```
## [1] "I am David" "I am David" "I am David"
```

Equivalent to

```
print(rep(paste("I am", "David"), 3))
```

Piping cont'd

With piping:

- f(x) becomes x %>% f or x %>% f()
- f(x, y) becomes x %>% f(y)
- h(g(f(x))) becomes x %>% f %>% g %>% h

Placeholders:

- f(y, x) becomes x %>% f(y, .)
- f(y, z = x) becomes x %% f(y, z = .)

Additional Infos:

https://github.com/smbache/magrittr/tree/dev

```
vignette("magrittr")
```

Exercises: Piping

Data.frames and data_frames and tibbles

data.frames vs. data_frames vs. tibbles

Goal: have one data type per column, but different column types

Solution: data.frame or the more advanced data_frame (belongs to tibble)

- base-r provides data.frames. Hadley Wickham created data_frames and tibbles (later two are almost identical).
- We are going to focus on data_frames (tibbles) as they are more user friendly and more performant.
- If you have the issue of very large data and performance drags you down, use data.table.

Tibbles

See also:

```
vignette("tibble")
```

Tibbles cont'd

Dimension, structure, and summary statistics of a tibble

```
dim(df); glimpse(df)

## [1] 3 3

## Observations: 3

## Variables: 3

## $ id <int> 1, 2, 3

## $ value <dbl> -0.99579872, -1.03995504, -0.01798024

## $ group <chr> "A", "B", "C"
```

Tibbles cont'd

```
summary(df)
```

```
id value
##
                                   group
   Min. :1.0 Min. :-1.03995
##
                                Length: 3
                                Class : character
##
   1st Qu.:1.5 1st Qu.:-1.01788
##
   Median: 2.0 Median: -0.99580 Mode: character
   Mean :2.0 Mean :-0.68458
##
##
   3rd Qu.:2.5
               3rd Qu.:-0.50689
##
   Max. :3.0 Max. :-0.01798
```

Tibbles cont'd

Names and overviews

```
names(df)
## [1] "id" "value" "group"
# head() shows the first n rows (default = 6)
# show the last n rows with: tail(df)
head(df, 2)
## # A tibble: 2 × 3
  id value group
##
## <int> <dbl> <chr>
## 1 1 -0.9957987 A
## 2 2 -1.0399550 B
```

Accessing a Tibble

Access using [row#, col#] or [col#]

```
## # A tibble: 1 × 3
# first row, all columns
                             ## id value group
df[1,]
                             ## <int> <dbl> <chr>
                              ## 1 1 -0.9957987 A
                              ## # A tibble: 3 × 1
                              ## id
# first variable (column)
                             ## <int>
# same as df[1]
                             ## 1 1
df[, 1]
                             ## 2 2
                              ## 3
                             ## # A tibble: 1 × 1
# first row, first column
                             ## id
df[1, 1]
                             ## <int>
                             ## 1 1
```

Accessing a Tibble cont'd

Avoid numbers use variable names if possible using [var] or \$var

```
# returns a tibble
# same as df["group"]
df[, "group"]
## # A tibble: 3 × 1
## group
## <chr>
## 1 A
## 2 B
## 3 C
df$group # returns a vector
```

[1] "A" "B" "C"

Accessing a Tibble cont'd

```
selected_variables <- c("id", "value")
# same as df[, selected_variables]
df[selected_variables]</pre>
```

```
## # A tibble: 3 × 2
## id value
## <int> <dbl>
## 1      1 -0.99579872
## 2      2 -1.03995504
## 3      3 -0.01798024
```

Accessing a Tibble cont'd

If you want to see all data in a spreadsheet-format use

View(df)

Exercises: Tibbles

Data Import & Export

Data Import & Export

Realistic case: share data via Dropbox/GitHub/other service.

Best format: plain text, i.e., .csv (readable by every program (try text-editor...))

R: possible: read.csv/write.csv but better using Hadley's library readr and its read_csv/write_csv

```
library(readr)

# read data

df <- read_csv("myfile.csv")

# also read_csv("https://...") possible

# write file
write_csv(df, "myfile.csv")</pre>
```

More information: https://github.com/hadley/readr

Use RStudio projects, or setwd(), and path navigation folder/file.csv (relativ path from current working directory) to find the file (try also file.exists("file.csv")).

Other formats

Everything that is not saved in plain-text or comes from a non open-source tool

- MS Excel:
 - readxl: https://github.com/hadley/readxl
- Stata, SAS, SPSS:
 - haven: https://github.com/tidyverse/haven

Exercises: Data 10

tidy-data

Tidy Data

Two different data concepts: Wide vs. Long data formats

A Wide Table		
stock	2010	2011
GOOGL	297.28	323.27
AAPL	42.18	52.96
A.T. (77.11)		
A Long Table		
ticker	year	price
GOOGL	2010	297.28
GOOGL	2011	323.27
AAPL	2010	42.18
AAPL	2011	52.96

■ Wide data: ???

Long data: Each variable in a column, each observation in a row

Tidy Data

- Advantages wide data: more dense (saves space and data)
- Advantages long data: easier for computation, manipulation, etc.

Source: Data Wrangling Cheatsheet

Conversion Wide to Long

```
library(tidyr)
wide_df <- tibble(stock = c("GOOGL", "AAPL"),</pre>
                  "2010" = c(297.28, 42.18),
                  "2011" = c(323.27, 52.96))
long_df <- gather(wide_df, key = year, value = price, -stock)</pre>
# -stock indicates the variables for which we do the reshape
# can be multiple variables
long df
## # A tibble: 4 × 3
## stock year price
## <chr> <chr> <dbl>
## 1 GOOGL 2010 297.28
## 2 AAPL 2010 42.18
## 3 GOOGL 2011 323.27
## 4 AAPL 2011 52.96
```

Computing Returns

More on the syntax in the next chapter

Long format:

```
library(dplyr)
long_df %>%
 group_by(stock) %>%
 mutate(ret = price / lag(price) - 1)
## Source: local data frame [4 x 4]
## Groups: stock [2]
##
##
    stock year price ret
## <chr> <dbl> <dbl>
## 1 GOOGL 2010 297.28
                           NA
## 2 AAPL 2010 42.18 NA
## 3 GOOGL 2011 323.27 0.0874260
## 4 AAPI, 2011 52.96 0.2555714
```

Conversion Long to Wide

```
wide_df2 <- spread(long_df, key = year, value = price)
wide_df2</pre>
```

Separating Columns

Separate one column into multiple columns I.e., create a month, year, and date column

```
year <- 2000
month <- 1:12
day <- 1
df <- tibble(date_mess = paste(month, day, year, sep = "_"))</pre>
```

A tibble: 6 × 1

```
## date_mess

## <chr>
## 1 1_1_2000

df %>% head ## 2 2_1_2000

## 3 3_1_2000

## 4 4_1_2000

## 5 5_1_2000

## 6 6_1_2000
```

Separating Columns cont'd

```
df \%>% head
```

```
## # A tibble: 6 × 3

## month day year

## 1 1 1 2000

## 2 2 1 2000

## 3 3 1 2000

## 4 4 1 2000

## 5 5 1 2000

## 6 6 1 2000
```

Uniting Columns

Combining the three date-related columns into a proper date column

A tibble: 6 × 1

```
## date_tidy
## <chr>
## 1 2000-1-1

df %>% head ## 2 2000-2-1

## 3 2000-3-1

## 4 2000-4-1

## 5 2000-5-1

## 6 2000-6-1
```

Additional Links

More Information on reshaping the data, how to use spread and gather

- http://www.cookbook-r.com/Manipulating_data/
 Converting_data_between_wide_and_long_format/
- http://r4ds.had.co.nz/tidy.html
- https://www.rstudio.com/wp-content/uploads/2015/02/ data-wrangling-cheatsheet.pdf

Exercises: Tidy Data

Data Manipulation

Data Manipulation using dplyr

dplyr: library to make data manipulation easier and more logically.

Main functions:

- 1. filter and select data
- 2. compute new variables
- 3. summarise data by a grouping variable
- 4. merge datasets

More information: https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

```
# install.packages("dplyr")
library(dplyr)
```

Dataset:

Figure 1: NYC Flights 2013

Data Overview

```
library(nycflights13)
?flights
```

On-time data for all flights that departed NYC (i.e. JFK, LGA or EWR) in 2013.

```
flights %>% dim
## [1] 336776
                  19
flights %>% names
## [1] "year"
                         "month"
                                          "day"
## [4] "dep_time"
                         "sched_dep_time" "dep_delay"
##
   [7] "arr time"
                         "sched arr time" "arr delay"
## [10] "carrier"
                         "flight"
                                          "tailnum"
## [13] "origin"
                         "dest"
                                          "air time"
## [16] "distance"
                         "hour"
                                          "minute"
## [19] "time hour"
```

```
# flights %>% head # same as
flights %>% top n(5)
## Selecting by time_hour
## # A tibble: 5 × 19
##
    year month day dep_time sched_dep_time dep_delay
##
    <int> <int> <int>
                                          <dbl>
                     <int>
                                  <int>
## 1 2013 12 31
                        13
                                   2359
                                             14
## 2 2013 12 31
                      18
                                  2359
                                             19
## 3 2013 12 31 2328
                                2330
                                            -2
## 4 2013 12 31 2355
                               2359
## 5 2013 12
                31 2356
                              2359
                                            -3
## # ... with 13 more variables: arr time <int>,
## #
     sched_arr_time <int>, arr_delay <dbl>,
## #
     carrier <chr>, flight <int>, tailnum <chr>,
## # origin <chr>, dest <chr>, air time <dbl>,
```

flights %>% glimpse

```
## Observations: 336,776
## Variables: 19
## $ year
              <int> 2013, 2013, 2013, 2013, 201...
## $ month
                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ dav
                <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
                  <int> 517, 533, 542, 544, 554, 55...
## $ dep time
## $ sched dep time <int> 515, 529, 540, 545, 600, 55...
## $ dep delay
                 <dbl> 2, 4, 2, -1, -6, -4, -5, -3...
## $ arr time
                <int> 830, 850, 923, 1004, 812, 7...
## $ sched arr time <int> 819, 830, 850, 1022, 837, 7...
## $ arr delay
                   <dbl> 11, 20, 33, -18, -25, 12, 1...
## $ carrier
                   <chr> "UA", "UA", "AA", "B6", "DL...
## $ flight
                   <int> 1545, 1714, 1141, 725, 461....
## $ tailnum
                   <chr> "N14228", "N24211", "N619AA...
## $ origin
                   <chr> "EWR", "LGA", "JFK", "JFK",...
## $ dest
                   <chr> "IAH", "IAH", "MIA", "BQN",...
## $ air time
                   <dbl> 227, 227, 160, 183, 116, 15...
## $ distance
                   <dbl> 1400, 1416, 1089, 1576, 762...
                   <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, ...
## $ hour
## $ minute
                   <dbl> 15, 29, 40, 45, 0, 58, 0, 0...
## $ time hour
                  <dttm> 2013-01-01 05:00:00, 2013-...
```

flights %>% summary

```
##
  year month
                          day
##
   Min. :2013 Min. : 1.000 Min. : 1.00
##
   1st Qu.:2013
               1st Qu.: 4.000 1st Qu.: 8.00
##
   Median:2013
               Median: 7.000 Median: 16.00
##
   Mean :2013
               Mean : 6.549 Mean : 15.71
   3rd Qu.:2013
               3rd Qu.:10.000 3rd Qu.:23.00
##
##
   Max. :2013
                Max.
                     :12.000
                              Max. :31.00
##
##
               sched_dep_time dep_delay
  dep_time
   Min. : 1
               Min. : 106
                            Min. : -43.00
   1st Qu.: 907
               1st Qu.: 906
                            1st Qu.: -5.00
##
   Median:1401
               Median:1359
                            Median : -2.00
##
   Mean :1349
               Mean
                     :1344
                            Mean : 12.64
##
   3rd Qu.:1744
               3rd Qu.:1729
                            3rd Qu.: 11.00
##
   Max. :2400
                Max. :2359
                            Max. :1301.00
##
   NA's :8255
                            NA's :8255
## arr_time
               sched arr_time arr_delay
##
   Min. : 1
               Min. : 1
                            Min. : -86.000
##
   1st Qu.:1104
               1st Qu.:1124 1st Qu.: -17.000
##
   Median:1535
               Median:1556
                            Median: -5.000
##
   Mean :1502
               Mean
                     :1536
                            Mean : 6.895
##
   3rd Qu.:1940
               3rd Qu.:1945
                            3rd Qu.: 14.000
## Max. :2400
               Max. :2359
                            Max. :1272.000
```

flights %>% slice(20:25)

A tibble: 6 × 19 ## year month day dep_time sched_dep_time dep_delay ## <int> <int> <int> <int> <int> <dbl> ## 1 2013 1 601 600 ## 2 2013 1 602 610 1 -8 ## 3 2013 1 1 602 605 -3 ## 4 2013 1 1 606 610 -4 ## 5 2013 1 606 610 -4 ## 6 2013 1 607 607 ## # ... with 13 more variables: arr_time <int>, ## # sched_arr_time <int>, arr_delay <dbl>, ## # carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air time <dbl>, ## # distance <dbl>, hour <dbl>, minute <dbl>, time hour <dttm> ##

Filter

Filter Rows

Using boolean operators ==, !=, <=, %in%, etc.

Q: Which flights on christmans had more than 60 mins delay?

##	#	A tibb	le: 17	× 19			
##		year	month	day	dep_time	sched_dep_time	dep_delay
##		<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
##	1	2013	12	24	640	551	49
##	2	2013	12	24	812	701	71
##	3	2013	12	24	1022	800	142
##	4	2013	12	24	1026	900	86
##	5	2013	12	24	1034	947	47
##	6	2013	12	24	1035	835	120
##	7	2013	12	24	1206	1100	66
##	8	2013	12	24	1349	1215	94
##	9	2013	12	24	1413	1310	63
##	10	2013	12	24	1630	1455	95
##	11	2013	12	24	1739	1600	99

Filter Rows cont'd

Nested checks using & and | also possible!

Q: Which flights on christmans or on new years', had more than 60 mins delay and (thus) arrived after 8?

##	#	A tibb.	Le: 13	× 19				
##		year	${\tt month}$	day	dep_time	${\tt sched_dep_time}$	dep_delay	
##		<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	
##	1	2013	12	24	1750	1535	135	
##	2	2013	12	24	1801	1350	251	
##	3	2013	12	24	1932	1715	137	
##	4	2013	12	24	2016	1530	286	
##	5	2013	12	24	2059	1729	210	
##	6	2013	12	31	1649	1535	74	
##	7	2013	12	31	1819	1505	194	
##	8	2013	12	31	1853	1805	48	
##	9	2013	12	31	1901	1730	91	

Arrange Rows

Sort the dataset

Q: Which flights departed earliest?

flights %>% arrange(dep_delay)

##	#	A tibb	Le: 336	6,776 ×	19		
##		year	month	day	dep_time	sched_dep_time	dep_delay
##		<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
##	1	2013	12	7	2040	2123	-43
##	2	2013	2	3	2022	2055	-33
##	3	2013	11	10	1408	1440	-32
##	4	2013	1	11	1900	1930	-30
##	5	2013	1	29	1703	1730	-27
##	6	2013	8	9	729	755	-26
##	7	2013	10	23	1907	1932	-25
##	8	2013	3	30	2030	2055	-25
##	9	2013	3	2	1431	1455	-24
##	10	2013	5	5	934	958	-24
##	#	wit	-h 336	766 mo	re rous	and 13 more var	riahles

Arrange Rows cont'd

Q: Which flights departed latest?

```
flights %>% arrange(desc(dep_delay))
```

```
## # A tibble: 336,776 × 19
##
       year month day dep_time sched_dep_time dep_delay
##
      <int> <int> <int>
                            <int>
                                           <int>
                                                     <dbl>
## 1
       2013
                1
                      9
                              641
                                             900
                                                      1301
## 2
       2013
                6
                     15
                            1432
                                            1935
                                                      1137
## 3
       2013
                     10
                            1121
                                            1635
                                                      1126
## 4
       2013
                     20
                            1139
                                            1845
                                                      1014
## 5
       2013
                     22
                            845
                                            1600
                                                      1005
                4
                            1100
## 6
       2013
                     10
                                            1900
                                                       960
       2013
                3
                     17
                             2321
                                            810
                                                       911
## 7
## 8
       2013
                6
                     27
                             959
                                            1900
                                                       899
## 9
       2013
                7
                     22
                             2257
                                             759
                                                       898
               12
                      5
                              756
## 10
       2013
                                            1700
                                                       896
## # ... with 336,766 more rows, and 13 more variables:
## #
       arr_time <int>, sched_arr_time <int>,
```

Select

Select Variables

flights %>% select(dep_delay, arr_delay, airline = carrier)

```
## # A tibble: 336,776 × 3
##
     dep_delay arr_delay airline
##
        <dbl> <dbl> <chr>
## 1
                    11
                           UA
## 2
            4
                    20
                           UA
## 3
                    33
                           AA
## 4
           -1
             -18
                           B6
## 5
           -6 -25
                           DL
## 6
           -4 12
                           UA
## 7
           -5
                    19
                           В6
## 8
           -3
                   -14
                           EV
## 9
           -3
                    -8
                           B6
## 10
           -2
                     8
                           AA
## # ... with 336,766 more rows
```

Deselect Variables & Renaming

flights %>% select(-year, -month, -day)

```
## # A tibble: 336,776 × 16
     dep_time sched_dep_time dep_delay arr_time
##
##
        <int>
                      <int>
                               <dbl>
                                       <int>
## 1
          517
                        515
                                         830
## 2
          533
                        529
                                   4
                                         850
## 3
          542
                       540
                                         923
## 4
          544
                                        1004
                       545
                                  -1
## 5
          554
                       600
                                         812
                                  -6
## 6
          554
                        558
                                         740
                                  -4
## 7
          555
                       600
                                  -5
                                         913
## 8
          557
                        600
                                  -3
                                         709
                        600
                                  -3
## 9
          557
                                         838
## 10
          558
                        600
                                  -2
                                         753
## # ... with 336,766 more rows, and 12 more variables:
## #
      sched_arr_time <int>, arr_delay <dbl>,
      carrier <chr>, flight <int>, tailnum <chr>,
## #
```

Select Variables cont'd

```
Q: Select all variables related to delay.
```

```
Also: starts_with(), ends_with(), one_of(), matches(), ...
```

```
flights %>% select(contains("delay"))
```

111th 336 766 more rouge

```
## # A tibble: 336,776 × 2
##
    dep_delay arr_delay
##
        <dbl>
                <dbl>
## 1
                   11
## 2
                   20
## 3
                 33
## 4
          -1 -18
          -6 -25
## 5
          -4 12
## 6
          -5
                 19
## 7
## 8
          -3
                  -14
## 9
          -3
                   -8
           -2
## 10
```

#

Select Distinct Variables

Q: What carriers operated at JFK?

```
flights %>% filter(origin == "JFK") %>% select(carrier) %>%
  distinct
```

```
## # A tibble: 10 × 1
##
      carrier
        <chr>>
##
## 1
           AA
## 2
           B6
## 3
           UA
## 4
           DL
## 5
           US
## 6
           VX
## 7
           MQ
## 8
           9E
## 9
           HA
## 10
           ΕV
```

Create New Variables

Q: What where the fastest flights?

```
## # A tibble: 336,776 × 6
##
     year month day carrier avg_speed gain
##
    <int> <int> <int> <chr> <dbl> <dbl>
## 1
     2013
            1
                28
                      US
                          123.5712 -51
## 2 2013 6 29
                          136.2515 -91
                      B6
## 3 2013 8 28
                      9E
                          148.7666 -33
## 4
     2013 1
                30
                      9E
                          153.8095 -39
## 5
    2013
           11 27
                      US
                          154.4640 -33
     2013 5
                21
                          154.4640 -26
## 6
                      US
     2013
           12
              9
                          157.0820 -19
## 7
                      US
## 8
     2013
            6
                10
                      US
                          157.7066 -96
```

Saving the output

```
# if you want to save the new variable
flights_new <- flights %>%
  mutate(avg_speed = 1.609 * distance / air_time * 60) %>%
  select(year, month, day, carrier, avg_speed) %>%
  arrange(avg_speed)
```

flights_new

```
## # A tibble: 336,776 × 5
##
     year month day carrier avg_speed
##
    <int> <int> <int> <chr>
                            <dbl>
## 1 2013 1 28
                      US 123.5712
## 2 2013 6 29
                      B6
                         136.2515
## 3 2013 8 28
                         148.7666
                      9F.
## 4 2013 1 30 9E
                         153.8095
## 5 2013
           11 27
                      US
                         154,4640
    2013 5
## 6
                21
                      US
                         154,4640
           12
               9
## 7
     2013
                      US
                         157.0820
```

Summarise Variables

Summarising the table is easiest done using summarise

Q: What was the average (standard deviation) of departure delays?

```
## # A tibble: 1 × 2
## avg_delay sd_delay
## <dbl> <dbl>
## 1 12.63907 40.21006
```

Summarise Grouped Variables

Q: What was the average departure/arrival delay by carrier (+ no. of flights)?

```
flights %>%
  group_by(carrier) %>%
  summarise(n_flights = n(),
      avg_arr_delay = mean(arr_delay, na.rm = T),
      avg_dep_delay = mean(dep_delay, na.rm = T)) %>%
  arrange(avg_arr_delay)
```

```
## # A tibble: 16 × 4
    carrier n_flights avg_arr_delay avg_dep_delay
##
##
      <chr>
              <int>
                         <dbl>
                                    <dbl>
## 1
        AS
               714 -9.9308886 5.804775
## 2
        HA
               342
                     -6.9152047
                                  4.900585
## 3
        AA 32729 0.3642909 8.586016
        DL 48110 1.6443409 9.264505
## 4
      VX 5162 1.7644644 12.869421
## 5
## 6
        US
              20536
                      2.1295951
                                  3.782418
```

Mutate Grouped Variables

Q: Select the flights where the flight operator had the highest standard deviation in delays.

```
flights %>%
 group_by(carrier) %>%
 mutate(sd_arr_delay = sd(arr_delay)) %>%
 select(carrier, dep_time, arr_time, arr_delay, sd_arr_delay) %>%
 arrange(sd_arr_delay)
## Source: local data frame [336,776 x 5]
## Groups: carrier [16]
##
##
     carrier dep_time arr_time arr_delay sd_arr_delay
##
       <chr>
               <int>
                       <int>
                               <dbl>
                                           <dbl>
## 1
         HA
                857
                       1516
                                 -14
                                        75.12942
## 2
         HA
                909
                       1525
                                -5
                                        75.12942
         HA
                914 1504 -26
                                        75.12942
## 3
                       1516 -14
                                        75.12942
## 4
         HΑ
                900
## 5
         HΑ
                858
                       1519 -11
                                        75.12942
```

Sample Data

In some cases, you might want to look at only a fraction of the data

```
set.seed(123) # for reproducibility
flights %>% sample_frac(0.1, replace = T)
```

```
## # A tibble: 33,678 × 19
##
                    day dep_time sched_dep_time dep_delay
       year month
##
      <int> <int> <int>
                            <int>
                                           <int>
                                                     <dbl>
## 1
       2013
               12
                     15
                            2124
                                            2128
                                                        -4
## 2
       2013
                7
                     17
                             652
                                             700
                                                        -8
## 3
       2013
                3
                      2
                             1637
                                            1645
                                                        -8
       2013
                8
                     19
                             1059
                                             755
                                                       184
## 4
## 5
       2013
                      9
                             1252
                                            1246
                                                         6
## 6
       2013
                1
                     18
                             1259
                                            1300
                                                        -1
       2013
                4
                     14
                             1502
                                            1508
## 7
                                                        -6
## 8
       2013
                8
                     22
                             1531
                                            1416
                                                        75
## 9
       2013
                4
                     22
                             1957
                                            1810
                                                       107
                     10
## 10
       2013
                             2003
                                            2015
                                                       -19
```

Sample Data cont'd

... or you want to sample a precise number of observations

```
flights %>% sample_n(100, replace = T)
```

```
## # A tibble: 100 × 19
##
      year month day dep_time sched_dep_time dep_delay
##
     <int> <int> <int>
                          <int>
                                         <int>
                                                   <dbl>
## 1
      2013
              10
                    30
                           1417
                                          1425
                                                      -8
## 2
      2013
                    29
                           1153
                                          1200
                                                      -7
## 3
      2013
               1
                    12
                           1258
                                          1300
                                                      -2
## 4
      2013
               5
                 8
                             NA
                                          2130
                                                      NA
                                                      23
## 5
      2013
              10
                    11
                           1723
                                          1700
      2013
               5
                           1124
## 6
                     4
                                          1125
                                                      -1
      2013
               4
                    25
                           1718
                                          1529
                                                     109
## 7
## 8
      2013
                     5
                           1046
                                          1050
                                                      -4
## 9
      2013
              12
                    10
                           1717
                                          1655
                                                      22
              12
                     5
## 10
      2013
                            927
                                           930
                                                      -3
## # ... with 90 more rows, and 13 more variables:
## #
      arr_time <int>, sched_arr_time <int>,
```

Recap: Data Wrangling using dplyr

- Piping (%>%) and dplyr make your life easier
- filter for filtering rows
- arrange for arranging rows
- select for selecting variables
- distinct for selecting distinct rows
- mutate for creating new variables (columns)
- summarise for summarising the data
- group_by for grouping operations

Further Reading and Useful Links

- Dplyr Vignettes: https://cran.rstudio.com/web/packages/ dplyr/vignettes/introduction.html
- Data Wrangling Cheatsheet: https://www.rstudio.com/wp-content/uploads/2015/02/ data-wrangling-cheatsheet.pdf

Exercises: Data Manipulation using dplyr

Data Merging

What is a Join

Table 1: Superheroes

superhero	alignment	publisher
Batman	good	DC
Joker	bad	DC
Xavier	good	Marvel
Magneto	bad	Marvel

Table 2: Publishers		
publisher	address	
DC	Burbank (CA)	
Marvel	NYC (NY)	

Merge on "publisher"

Table 3: Superheroes expanded

superhero	alignment	publisher	address
Batman	good	DC	Burbank (CA)
Joker	bad	DC	Burbank (CA)
Xavier	good	Marvel	NYC (NY)
Magneto	bad	Marvel	NYC (NY)

Expanding the Data

Table 1: Superheroes			
superhero	alignment	publisher	
Batman	good	DC	
$_{ m Joker}$	bad	DC	
Xavier	good	Marvel	
Magneto	bad	Marvel	
Hellboy	good	Dark Horse	

Table 2: Publishers			
address			
Burbank (CA)			
NYC(NY)			
Berkeley (CA)			

Combine how?

Table 3: Superheroes expanded

superhero	alignment	publisher	address
Batman	good	DC	Burbank (CA)
$_{ m Joker}$	bad	DC	Burbank (CA)
Xavier	good	Marvel	NYC (NY)
Magneto	bad	Marvel	NYC (NY)
???	???	???	???

Left Join

Table 1: Superheroes			
superhero	alignment	publisher	
Batman	good	DC	
Joker	bad	DC	
Xavier	good	Marvel	
Magneto	bad	Marvel	
Hellboy	good	Dark Horse	

address
Burbank (CA)
NYC (NY)
Berkeley (CA)

Left Join

 Table 3: Superheroes expanded

superhero	alignment	publisher	address
Batman	good	DC	Burbank (CA)
Joker	bad	DC	Burbank (CA)
Xavier	good	Marvel	NYC (NY)
Magneto	bad	Marvel	NYC (NY)
Hellboy	good	Dark Horse	NA

Right Join

Table 1: Superheroes			
superhero	alignment	publisher	
Batman	good	DC	
Joker	bad	DC	
Xavier	good	Marvel	
Magneto	bad	Marvel	
Hellboy	good	Dark Horse	

Table 2: Publishers			
publisher	address		
DC	Burbank (CA)		
Marvel	NYC (NY)		
Image Comics	Berkeley (CA)		

Right Join

Table 3: Superheroes expanded

superhero	alignment	publisher	address
Batman	good	DC	Burbank (CA)
Joker	bad	DC	Burbank (CA)
Xavier	good	Marvel	NYC (NY)
Magneto	bad	Marvel	NYC (NY)
NA	NA	Image Comics	Berkeley (CA)

Inner Join

Table 1: Superheroes			
superhero	alignment	publisher	
Batman	good	DC	
$_{ m Joker}$	bad	DC	
Xavier	good	Marvel	
Magneto	bad	Marvel	
Hellboy	good	Dark Horse	

Table 2: Publishers		
publisher	address	
DC	Burbank (CA)	
Marvel	NYC (NY)	
Image Comics	Berkeley (CA)	

Inner Join

Table 3: Superheroes expanded

superhero	alignment	publisher	address
Batman	good	DC	Burbank (CA)
$_{ m Joker}$	bad	DC	Burbank (CA)
Xavier	good	Marvel	NYC (NY)
Magneto	bad	Marvel	NYC (NY)

Outer Join

Table 1: Superheroes			
superhero	alignment	publisher	
Batman	good	DC	
Joker	bad	DC	
Xavier	good	Marvel	
Magneto	bad	Marvel	
Hellboy	good	Dark Horse	

Table 2: Publishers		
address		
Burbank (CA)		
NYC (NY)		
Berkeley (CA)		

Outer Join

Table 3: Superheroes expanded

superhero	alignment	publisher	address
Hellboy	good	Dark Horse	NA
NA	NA	Image Comics	Berkeley (CA)

Join Overview

Preparing a Join

Taking a subset of our original data and find the geolocations for each airport

```
df_flight <- flights %>%
    select(year, month, day, dep_time, origin, dest)
df_flight
```

```
## # A tibble: 336.776 × 6
##
      year month day dep_time origin dest
##
      <int> <int> <int> <chr> <chr>
## 1
      2013
               1
                     1
                            517
                                   EWR.
                                         TAH
## 2
      2013
               1
                     1
                            533
                                   LGA
                                         IAH
            1
## 3
      2013
                     1
                            542
                                   JFK
                                         MIA
## 4
      2013
               1
                     1
                                   JFK
                            544
                                         BQN
                     1
## 5
      2013
               1
                            554
                                   LGA
                                         ATL
## 6
      2013
               1
                     1
                            554
                                   EWR
                                         ORD
## 7
      2013
               1
                     1
                            555
                                   EWR
                                         FLL
## 8
      2013
               1
                     1
                            557
                                   LGA
                                         TAD
## 9
      2013
               1
                     1
                            557
                                   JFK
                                         MCO
      2013
## 10
                            558
                                   LGA
                                         OR.D
## # ... with 336.766 more rows
```

Second dataset: airports

```
df_airports <- airports %>% select(faa, lat, lon)
df_airports
```

```
## # A tibble: 1,458 × 3
##
       faa
             lat.
                         lon
##
     <chr> <dbl> <dbl>
## 1
       04G 41.13047 -80.61958
## 2
    06A 32.46057 -85.68003
## 3
    06C 41.98934 -88.10124
## 4
       06N 41.43191 -74.39156
## 5
     09J 31.07447 -81.42778
## 6
       0A9 36.37122 -82.17342
## 7
    0G6 41.46731 -84.50678
## 8
       0G7 42.88356 -76.78123
## 9 OP2 39.79482 -76.64719
## 10
       0S9 48.05381 -122.81064
## # ... with 1,448 more rows
```

Combine the two datasets on the variables origin and faa

```
df airports 1 <- df airports %>%
  select(faa, lat_origin = lat, lon_origin = lon)
df_flight <- left_join(df_flight, df_airports_1,</pre>
                     by = c("origin" = "faa"))
df_flight
## # A tibble: 336.776 × 8
##
      year month day dep_time origin dest lat_origin
##
     <int> <int> <int> <int> <chr> <chr>
                                                <dbl>
## 1
      2013
              1
                 1
                           517
                                  EWR
                                        TAH
                                            40.69250
## 2
      2013 1 1
                           533
                                  LGA
                                        TAH
                                            40.77725
## 3
      2013 1
                1
                           542
                                  JFK
                                       MIA
                                            40.63975
      2013
## 4
                           544
                                  JFK
                                        BQN
                                            40.63975
            1
                    1
## 5
      2013
                           554
                                  LGA
                                        ATL.
                                             40.77725
## 6
      2013
               1
                           554
                                  EWR
                                        URD.
                                             40.69250
## 7
      2013
               1
                    1
                           555
                                 EWR
                                        FLL
                                            40.69250
      2013
                 1
## 8
                           557
                                  LGA
                                        TAD
                                             40.77725
                    1
                                             40.63975
## 9
      2013
                           557
                                  JFK
                                       MCO
## 10 2013
               1
                    1
                           558
                                  T.GA
                                        URD.
                                             40.77725
    ... with 336,766 more rows, and 1 more variables:
## #
      lon_origin <dbl>
```

Add the locations of the destination airports

```
df airports 2 <- df airports %>%
  select(faa, lat dest = lat, lon dest = lon)
df flight <- left_join(df_flight, df_airports_2,</pre>
                     by = c("dest" = "faa"))
df flight
## # A tibble: 336,776 × 10
##
      year month day dep_time origin dest lat_origin
##
     <int> <int> <int> <int> <chr> <chr>
                                                <dbl>
## 1
      2013
              1
                 1
                           517
                                  EWR
                                       TAH
                                            40.69250
## 2
      2013 1 1
                           533
                                LGA
                                       TAH
                                            40.77725
## 3
      2013 1
                 1
                           542
                                 JFK
                                       MIA
                                            40.63975
      2013
## 4
                           544
                                 JFK
                                       BQN
                                            40.63975
            1
                    1
## 5
      2013
                           554
                                 LGA
                                       ATL.
                                             40.77725
## 6
      2013
              1
                    1
                           554
                                 EWR
                                       URD.
                                             40.69250
## 7
      2013
              1
                 1
                           555
                                 EWR
                                       FLL
                                            40.69250
      2013
                 1
## 8
                           557
                                 LGA
                                       TAD
                                             40.77725
                    1
## 9
      2013
                           557
                                 JFK
                                       MCO
                                             40.63975
## 10 2013
                           558
                                  T.GA
                                       URD.
                                             40.77725
    ... with 336,766 more rows, and 3 more variables:
## #
      lon_origin <dbl>, lat_dest <dbl>, lon_dest <dbl>
```

Checking Merges

df_flight %>% summary

```
year month
##
                          day
##
   Min. :2013 Min. : 1.000 Min. : 1.00
##
   1st Qu.:2013
               1st Qu.: 4.000 1st Qu.: 8.00
##
   Median:2013
                Median: 7.000 Median: 16.00
##
   Mean :2013
                Mean : 6.549 Mean : 15.71
   3rd Qu.:2013
                3rd Qu.:10.000 3rd Qu.:23.00
##
##
   Max. :2013
                Max.
                      :12.000
                              Max. :31.00
##
##
                                    dest
   dep_time
               origin
   Min. : 1
                Length: 336776 Length: 336776
   1st Qu.: 907
                Class : character Class : character
##
   Median:1401
                Mode :character Mode :character
##
   Mean :1349
##
   3rd Qu.:1744
##
   Max. :2400
##
   NA's :8255
##
   lat_origin lon_origin lat_dest
##
   Min. :40.64
               Min. :-74.17
                               Min.
                                     :21.32
##
   1st Qu.:40.64 1st Qu.:-74.17
                               1st Qu.:32.90
##
   Median :40.69
               Median :-73.87
                               Median :36.10
##
   Mean :40.70
               Mean :-73.95
                               Mean :36.02
##
   3rd Qu.:40.78
               3rd Qu.:-73.78
                                3rd Qu.:41.41
##
   Max. :40.78
                 Max. :-73.78
                               Max. :61.17
```

Find the missing values

```
df_flight %>% filter(is.na(lat_dest)) %>%
 select(dest) %>% distinct
## # A tibble: 4 × 1
##
     dest
## <chr>
## 1
      BQN
## 2
      SJU
## 3 STT
## 4
      PSE
```

Further Information

Combining (merging, joining) datasets

- https://www.rstudio.com/wp-content/uploads/2015/02/ data-wrangling-cheatsheet.pdf
- http://stat545.com/bit001_dplyr-cheatsheet.html
- https://rpubs.com/NateByers/merging

Exercises: Joins

Additional Information aka. Appendix

Beyond tibbles and dplyr

Very large datasets and speed is an issue?

Don't use tibble and dplyr but use data.table (currently fastest data-manipulation software, https://github.com/Rdatatable/data.table/wiki/Benchmarks-%3A-Grouping. See 100GB in memory benchmark test)

More information: https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro-vignette.html

https:

//github.com/Rdatatable/data.table/wiki/Getting-started

Keeping an Eye on Versions

```
Pro Tip: Use version control (i.e., git)
Why:
http://ellisp.github.io/blog/2016/09/16/version-control
How:
https://try.github.io/levels/1/challenges/1
https://rogerdudler.github.io/git-guide/
http://kbroman.org/github_tutorial/
https://swcarpentry.github.io/git-novice/
```

Times and Dates

Formatting

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 150 SET A GUBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

Source: https://xkcd.com/1179/

Dates in R

[1] 31

```
base-r
date1 <- as.Date("2000-01-01")
date2 <- as.Date("2000-02-01")
date2 - date1
## Time difference of 31 days
(date2 - date1) * 3
## Time difference of 93 days
as.numeric(date2 - date1)
```

Dates in R cont'd

hadleyverse: lubridate

```
library(lubridate)
date3 <- ymd("20000101")
date3
## [1] "2000-01-01"
date4 <- ymd hms("2000-01-01 12:00:00")
date5 <- ymd_hms("2000-01-01 12:00:00", tz = "Europe/Berlin")
date4 - date5
## Time difference of 1 hours
```

Times

```
date5 <- now()
date5
## [1] "2017-04-19 10:50:23 CEST"
month(date5)
## [1] 4
minute(date5)
## [1] 50
second(date5) <- 00
date5
## [1] "2017-04-19 10:50:00 CEST"
```

Timezones

Avoid them where possible, but if you have to

```
tz(date4) # \rightarrow ?tz
## [1] "UTC"
tz(date4) <- "America/Los_Angeles"</pre>
date4
## [1] "2000-01-01 12:00:00 PST"
Why? https://www.youtube.com/watch?v=-5wpm-gesOY
```

Further Information

```
vignette("lubridate")
```

- Vignette: https://cran.r-project.org/web/packages/ lubridate/vignettes/lubridate.html
- Cheatsheet: http://blog.yhat.com/static/pdf/R_date_cheat_sheet.pdf