Математическое обоснование (Задание (Expert Level))

Постановка задачи

Пусть $X \in \mathbb{R}^{n \times m}$ — матрица данных. Требуется найти ортонормированные направления $\mathbf{w}_1, \dots, \mathbf{w}_k$, и доказать, что они максимизируют дисперсию проекций.

Матрица ковариаций

$$\Sigma = \frac{1}{n-1} X^{\top} X$$
 (симметричная, положительно определённая).

Максимизация дисперсии

Дисперсия проекции на вектор w:

$$Var(\mathbf{w}) = \mathbf{w}^{\top} \Sigma \mathbf{w}.$$

Задача оптимизации с ограничением:

$$\max_{\mathbf{w}} \mathbf{w}^{\top} \Sigma \mathbf{w}$$
 при $\|\mathbf{w}\| = 1$.

Решение через множители Лагранжа

Введём функцию Лагранжа:

$$\mathcal{L}(\mathbf{w}, \lambda) = \mathbf{w}^{\mathsf{T}} \Sigma \mathbf{w} - \lambda (\mathbf{w}^{\mathsf{T}} \mathbf{w} - 1).$$

Где:

 λ — множитель Лагранжа,

 $\mathbf{w}^{\mathsf{T}}\mathbf{w} - 1 = 0$ — условие нормировки.

Для поиска экстремума вычислим градиент фунции Лагранжа по ${\bf w}$ и приравняем его к нулю:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 2\Sigma \mathbf{w} - 2\lambda \mathbf{w} = 0 \quad \Rightarrow \quad \Sigma \mathbf{w} = \lambda \mathbf{w}.$$

Таким образом, \mathbf{w} — собственный вектор Σ , а λ — собственное значение.

Связь дисперсии и собственных значений

Из $\Sigma \mathbf{w} = \lambda \mathbf{w}$ следует:

$$Var(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \Sigma \mathbf{w} = \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} = \lambda.$$

т.к. $\mathbf{w}^{\top}\mathbf{w} = 1$

Следовательно, максимальная дисперсия соответствует наибольшему λ .

Доказательство отсутствия других решений

По теореме о спектральном разложении:

- Собственные векторы \mathbf{w}_i симметричной матрицы Σ ортонормированы и образуют базис.
- Соответствующие λ_i упорядочены: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$.

Любой вектор ${\bf v}$ можно разложить по этому базису:

$$\mathbf{v} = \sum_{i=1}^{m} c_i \mathbf{w}_i$$
, где $\sum_{i=1}^{m} c_i^2 = 1$.

Дисперсия проекции: $\mathbf{v}^{\top} S \mathbf{v} = \sum_{i=1}^{m} \lambda_i c_i^2$.

Максимум достигается при $c_1 = 1$, $c_2 = c_3 = ... = 0$, то есть $\mathbf{v} = \mathbf{w}_1$.

Обобщение на несколько компонент

: 1. Вторая компонента: Ищется в подпространстве, ортогональном \mathbf{w}_1 : $\max_{\mathbf{u} \perp \mathbf{w}_1} \mathbf{u}^\top \Sigma \mathbf{u}, \quad \|\mathbf{u}\| = 1.$

Решение — \mathbf{w}_2 (собственный вектор с λ_2).

2. Ортогональность компонент:

Следует из ортогональности собственных векторов симметричной матрицы.

Итог

- Главные компоненты PCA собственные векторы матрицы Σ , упорядоченные по убыванию собственных значений
- Метод множителей Лагранжа доказывает, что экстремумы достигаются на собственных векторах, а собственные значения задают "силу" направлений.