Section 1.3

Common Classes of Graphs

Already met:

- complete graphs: K_n has n vertices, every pair connected by an edge
- P_n is a path with n vertices
- *C_n* is a cycle with *n* vertices

Union of graphs: Make each graph in the union a component.

Example: $C_5 \cup P_2 \cup K_3$

It's a single graph because I say so! It just has 3 components.

1/20

Bipartite graphs

Definition

A graph is a bipartite graph if there exists a partition of V(G) into sets X and Y such that for all $uv \in E(G)$, either $u \in X$ and $v \in Y$, or $u \in Y$ and $v \in X$.

X and Y are the *partite sets*, and X, Y is the *bipartition*.

- Notice all edges for between X and Y, none are contained inside those sets.
- You will prove on your homework that if every component of G is bipartite, then G is bipartite.

More about bipartite graphs

Being bipartite is an isomorphic invariant of *G*. This means being bipartite is not a property that depends on how you draw it!

These labels illustrate the bipartition. We can also redraw it.

The complete bipartite graph $K_{m,n}$ is a bipartite graph with |X| = m, |Y| = m, and $xy \in E(G)$ for all $x \in X$ and $y \in Y$.

How do you show a graph is NOT bipartite?

Definition

A graph is a *bipartite graph* if there exists a partition of V(G) into sets X and Y such that for all $uv \in E(G)$, either $u \in X$ and $v \in Y$, or $u \in Y$ and $v \in X$.

What does it mean for a graph NOT to be bipartite?

G is not bipartite if for every partition of V(G) into sets X and Y, there exists uve E(G) such that u &x or v & Y and u &Y or V & X.

In other words: No matter how you partition the vertices, there will always be an edge with both endpoints in the same set.

How to check: Just start trying from a single vertex, branching out.