Wang Xiyu

Problem Statement

fully observable \land deterministic \land static \land discrete \implies only need to observe once To solve a prob using search:

- A goal or a set of goals
- a model of the enironment
- a search algorithm

goal formulation -> problem formulation -> search -> execute

- 1. goal formulation
- 2. problem formulation, eg. path finding
 - states: nodes representation invariant:: abstract states should correspond to concrete states
 - initial state: starting node
 - goal states/test: dest node Goal test: define the goal using a function *is_goal*
 - actions: move along an edge :: $|actions(state)| \le (branching_factor)$
 - transition model: $(curr_state, action) \implies next_state$
 - action cost function: see edges

3.

Search

Uninformed search

No information that could guide the seaech: mo clue how good a state is

```
create frontir,
```

frontier: queue: BFS

Depth limited search

limit the search to depth l backtrack when the limit is hit.

time complexity: exponential to search depth

space complexity: size of the frontier

Iterative deeptening search

seatch with depth from 0 to inf return soln when found. Both complete $\,$

Concept Proof

Solution

Easy