

Bonnie Baumgartner, Henrique Lispector, Shang Han 05/03/2016

DAIKIN APPLIED OVERVIEW

- Largest HVAC manufacturing company in the world
- > Products: chillers, air handlers, rooftop systems, classroom unit ventilators, water source heat pumps, etc.

PROBLEM OVERVIEW

- Daikin would like to improve their booking (sales) forecasts for each month
- Current forecasts are heavily based on intuition and have room for improvement
- Daikin would like to develop a more data driven and systematic method to forecast their bookings

PROJECT OBJECTIVE

- Design a forecasting algorithm
- > Predict bookings for AAH, ATS & CHL business units for February, March & April.
- > Total of 9 outputs

Forecast	February	March	April
AAH	?	?	?
ATS	?	?	?
CHL	?	?	?

VALUE OF OPPORTUNITY

Opportunity to save Daikin up to \$20 million

Make better business decisions, minimize operating cost

> Recommendations on employee management

> Reducing lead times

PROBLEM APPROACH

> Where do we start?

DATA & MODEL SELECTION

PAR Data

- Customer purchase information
- Over 800,000 records

Probability Model

Booking Data

- Monthly company sales for 2011-2015
- 60 months of data

Time Series Model

PROBABILITY MODEL OVERVIEW

Parameters of StudyDesign Type

Sales Office

Product Family

Model Type

123

PROBABILITY MODEL 1 METHODOLOGY

> Step 1: Find the probabilities of a PAR becoming an order given the design type, product family, and sales rep.

> Step 2: Average these probabilities to obtain a final probability.

> Step 3: Multiply the final probability with the PAR's net price.

> Step 4: Sum appropriate expected values of PARs for forecast.

PROBABILITY MODEL 1 METHODOLOGY

Step 1: Find the conditional probabilities of a PAR becoming an order given the design type, product family, and sales rep.

$$P(O|D_i) = \frac{P(O,D_i)}{P(D_i)}$$

$$P(O|F_j) = \frac{P(O,F_j)}{P(F_j)}$$

$$P(O|R_k) = \frac{P(O,R_k)}{P(R_k)}$$

PROBABILITY MODEL 1 METHODOLOGY & RESULTS

> Step 2: Average these probabilities to obtain a final probability.

$$P(O|D_i, F_j, R_k) = \frac{1}{3} (P(O|D_i) + P(O|F_j) + P(O|R_k))$$

- > Step 3: Multiply the final probability with the PAR's net price.
- > Step 4: Sum appropriate expected values of PARs for forecast.

Error	AAH	ATS	CHL
Feb	13%	27%	10%
Mar	34%	20%	7%
Avg Error	23%	23%	9%

PROBABILITY MODEL 2 METHODOLOGY

- Uses the *Model Type* instead of the *Product Family* parameter.
- > Uses steps 1-4 of previous model.
 - Calculate probabilities
 - Average probabilities
 - Find and sum expected values for forecast
- > Step 5: Use 2013-14 PAR data to forecast sales for 2014-15

PROBABILITY MODEL 2 METHODOLOGY & RESULTS

> Step 6: Average 2014-15 forecasts to forecast 2016 sales

Erro	or	- 1		
	AAH	ATS	Chill	er
Feb		0.36%	6.65%	14.30%
Mar		-6.91%	17.87%	-10.34%
Apr	?	?	?	

Why a Time Series?

Common method that is used when historical data is present

Example (non-Daikin data):

DATA & MODEL SELECTION

PAR Data

- Customer purchase information
- Over 800,000 records

Probability Model

Booking Data

- Monthly company sales for 2011-2015
- 60 months of data

Time Series Model

TIME SERIES MODEL - OVERVIEW

- Step 1: Choose Time Frame
- > Step 2: Exploratory Data Analysis & Outlier Handling
- > Step 3: Smooth & Deseasonalize data
- > Step 4: Trend & Forecast
- Step 5: Go back to step 1 and repeat the process
- > Step 6: Forecast Validation & Decision Making

STEP 1: CHOOSE TIME FRAME

- Choose training data (time frame of bookings)
- > This is the data we are going to use to make the forecast

2011-2015 Bookings

60 data points

2013-2015 Bookings

• 36 data points

2014-2015 Bookings

24 data points

Step 2: Exploratory Data Analysis & Outlier Handling

 Verification of normality of data (bookings), and check for potential outliers with box plot, control chart, and input from sponsor

Step 3: Smoothing & Deseasonalize

> Compute Moving Average of 6 or 12 months and then center it

$$CMA_{t} = \frac{1}{2} \left(\frac{1}{12} \sum_{j=t-6}^{t+5} b_{j} + \frac{1}{12} \sum_{j=t-5}^{t+6} b_{j} \right)$$

 Compute seasonal component, average it by month, and deseasonalize booking data

$$S_t = \frac{b_t}{CMA_t} \qquad \qquad D_t = \frac{b_t}{S_t}$$

STEP 4: TREND & FORECAST

Compute trend of [Dt(y) vs. t(x)] with linear regression and use trend equation to calculate trend component

> Compute forecast and percent errors

$$F_t = \hat{y}_t s_t$$

STEP 5: REPEAT WHOLE PROCESS FOR OTHER TWO TIME FRAMES

- Choose training data (time frame of bookings)
- > This is the data we are going to use to make the forecast

2011-2015 Bookings

• 60 data points

2013-2015 Bookings

• 36 data points

2014-2015 Bookings

24 data points

Step 6: Forecast Validation & Decision Making

> Example:

	Average percent error			
ATS	11-15	13-15	14-15	
Feb	20.00%	13.00%	5.00%	
Mar	9.25%	9.60%	12.00%	
Apr	19.38%	2.74%	20.89%	

> Choose best time frame model by each month to forecast

TIME SERIES MODEL RESULTS

Example:

Time series plot of ATS bookings CY 11-15 & forecast

RESULTS

February	Daikin Error	UMN Error	Winning Model
Business Unit 1	-7.15%	-15.93%	Daikin
Business Unit 2	17.54%	-0.49%	UMN
Business Unit 3	-5.71%	-10.62%	Daikin

March	Daikin Error	UMN Error	Winning Model
Business Unit 1	-27.66%	-10.86%	UMN
Business Unit 2	-6.92%	-0.60%	UMN
Business Unit 3	-21.39%	-12.82%	UMN

Daikin's Average Abs. Error	14.39%
-----------------------------	--------

UMN Average Abs. Error	8.55%
Citil the age has Eller	0.0070

RECOMMENDATIONS

- > Time Series Model
 - Better outlier handling
 - Automate it

- > Probability Model
 - Consider machine learning concepts
 - Optimize weighting factors
 - Obtain consistent data

LESSON LEARNED

- Communication with sponsor
 - Weekly meetings, emails, progress reports
-) Back up data

> Understanding data assumptions

QUESTIONS?

