Teoretická informatika, FIT, VUT Brno

1. domácí úloha

David Mihola

xmihol00

29. října 2023

1 Náležitost jazyků do \mathcal{L}_3

Následující sekce obsahují analýzu průniku a sjednocení jazyků L_1 a L_2 a důkaz jejich náležitosti, respektive nenáležitosti, do \mathcal{L}_3 .

1.1 Počty symbolů v jazyce L_1

Počty symbolů v libovolném řetězci jsou vždy stejné, jako počty symbolů v jeho reverzi. Je tedy zřejmé, že počty jednotlivých symbolů v řetězcích náležících do L_1 budou sudé, protože $\forall u \in L_1 \exists w \in \{a, b, c\}^* \ \forall x \in \{a, b, c\} : u = ww^R \Rightarrow \#_x(u) = 2 \cdot \#_x(w)$.

1.2 Počty symbolů v jazyce L_2

Z definice jazyka L_2 naopak plyne, že $\forall w \in L_2 \exists i, j, k \in \mathbb{N} : \#_a(w) = 2i + 1 \land \#_b(w) = 2j + 1 \land \#_c(w) = k$. Tzn., počty symbolů a a b v řetězcích náležících do tohoto jazyka jsou liché a počty symbolů c jsou větší nebo rovny nule.

1.3 Průnik jazyků L_1 a L_2

Z předchozí analýzy počtů symbolů v jazycích L_1 a L_2 je zřejmé, že průnik těchto jazyků je prázdná množina. Tento jazyk je zřejmě regulární, lze pro něj sestrojit např. následující regulární gramatiku $G_1 = (\{S\}, \{a, b, c\}, \emptyset, S)$.

1.4 Sjednocení jazyků L_1 a L_2

U sjednocení jazyků L_1 a L_2 budu dokazovat, že není regulární. Není tedy nutné přesně znát všechny řetězce, které do něj patří. Při důkazu je pouze nutné s jistotou říci, jestli daný řetězec patří do sjednocení L_1 a L_2 , nebo nepatří.

1.4.1 Důkaz neregularity sjednocení jazyků L_1 a L_2

Před samotným důkazem je dobré zmínit, že nestačí dokázat neregularitu jazyků L_1 a L_2 samostatně¹. Je nutné dokázat nenáležitost celého sjednocení L_1 a L_2 do \mathcal{L}_3 , protože i sjednocením dvou neregulárních jazyků lze získat regulární jazyk.

Pro důkaz neregularity použiji obměněnou implikaci s *pumping lemma* pro \mathcal{L}_3 a na základě ní provedu přímý důkaz². Obměněná implikace pro jazyk $L_1 \cup L_2$ vypadá následovně:

$$(\forall k \in \mathbb{N}^+ : \exists w \in \Sigma^* : w \in L_1 \cup L_2 \land |w| \ge k \land \forall x, y, z \in \Sigma^* : xyz = w \land y \ne \varepsilon \land |xy| \le k \Rightarrow \exists i \in \mathbb{N} : xy^iz \notin L_1 \cup L_2) \Rightarrow L_1 \cup L_2 \notin \mathcal{L}_3.$$

Samotný důkaz je poté veden v následující posloupnosti kroků:

 $^{^{1}}$ I když zde bych neuspěl, protože L_{2} je zjevně regulární jazyk.

²Obměnou dojde k znegování obou stran implikace. Důkaz má tedy podobný průběh jako důkaz sporem vycházející z původní implikace.

- 1. I když nelze dokazovat neregularitu jazyků samostatně, lze při důkazu vhodným výběrem slova w jazyk L_2 úplně ignorovat. Takové slovo zřejmě nebude obsahovat symboly a nebo b. Proto pro důkaz zvolím $w = a^k cca^k$. Pro vybrané w platí: $(w \in L_1 \Rightarrow w \in L_1 \cup L_2) \land (|w| = 2k + 2 \ge k)$.
- 2. Všechna možná rozdělení slova w na x, y, z popíši pomocí parametrů m, n, pro které platí: $m, n \in \mathbb{N} \land m \ge 0 \land n > 0 \land m + n \le k$. Z vybraného slova je zřejmé, že podřetězce x a y budou obsahovat pouze symboly a. Všechna možná rozdělení lze tedy popsat následovně:
 - $x = a^m$,
 - $y = a^n$,
 - $z = a^{k-m-n}cca^k$.
- 3. Nyní zvolím i=0. Pak slovo $xy^0z=a^{k-n}cca^k$ zajisté nepatří do L_2 , protože neobsahuje žádný symbol b. Nepatří ale ani do L_1 , protože nyní byl z jeho první poloviny odebrán alespoň jeden symbol a a není možné získané slovo rozdělit tak, aby první symbol c byl na konci nějakého slova a, druhý symbol c na začátku a^R a aby $|a|=|a^R|$. Tudíž $xy^0z\notin L_1\cup L_2$.
- 4. V předchozím bodě jsem dokázal, že platí levá strana obměněné implikace. Aby byl výrok daný implikací pravdivý, musí platit i její pravá strana.
- 5. Z předchozích bodů plyne, že $L_1 \cup L_2 \notin \mathcal{L}_3$. \square

2 Bezkontextová gramatika G_3 a zásobníkový automat Z_3

Následující sekce obsahují postup tvorby bezkontextové gramatiky G_3 a zásobníkového automatu přijímajícího vyprázdněním zásobníku Z_3 pro jazyk $L_3 = \{puvw \mid p, v \in \{a, b\}^* \land u, w \in \{c, d\}^* \land (p = v^R \lor u = w^R)\}.$

2.1 Bezkontextová gramatika G_3

 $G_3 = (N, T, P, S)$, kde:

- $T = \{a, b\} \cup \{c, d\} = \{a, b, c, d\},\$
- pro množinu pravidel P bude platit následující:
 - obsahuje pravidla, podle kterých se rozhodne, jestli se generuje řetězec $v^R uvw$ ($\{S \rightarrow OU\}$) nebo $pw^R vw$ ($\{S \rightarrow QR\}$)³,
 - následně obsahuje pravidla, která umožňují vygenerovat větné formy $v^R U v U$ ($\{O \rightarrow aOa, O \rightarrow bOb, O \rightarrow U\}$) a $Qw^R Qw$ ($\{R \rightarrow cRc, R \rightarrow dRd, R \rightarrow Q\}$),

³Pokud platí oba výroky, pak lze vybrat libovolné z těchto dvou pravidel.

– nakonec jsou v P obsažena pravidla pro generování libovolného řetězce⁴ z $\{a,b\}^*$ $(\{Q \to aQ, Q \to bQ, Q \to \varepsilon\})$ a z $\{c,d\}^*$ $(\{U \to cU, U \to dU, U \to \varepsilon\})$,

celkově tedy
$$P = \{S \to OU, S \to QR, O \to aOa, O \to bOb, O \to U, R \to cRc, R \to dRd, R \to Q, Q \to aQ, Q \to bQ, Q \to \varepsilon, U \to cU, U \to dU, U \to \varepsilon\},$$

• na základě výchozího nonterminálního symbolu a nonterminálních symbolů použitých v pravidlech musí platit, že $N = \{O, Q, R, S, U\}$.

2.2 Zásobníkový automat Z_3

Zásobníkový automat Z_3 přijímající jazyk L_3 vyprázdněním zásobníku jsem konstruoval za použití přednášeného algoritmu konstrukce zásobníkového algoritmu přijímajícího vyprázdněním zásobníku převodem z libovolné bezkontextové gramatik. V tomto případě šlo o bezkontextovou gramatiku G_3 . $Z_3 = (Q, \Sigma, \Gamma, \delta, q, S, \emptyset)$, kde:

- $Q = \{q\},$
- $\Sigma = T = \{a, b, c, d\},\$
- $\Gamma = T \cup N = \{a, b, c, d, O, Q, R, S, U\},\$
- $\delta = \{((q, \varepsilon, S), (q, OU)), ((q, \varepsilon, S), (q, QR)), ((q, \varepsilon, O), (q, aOa)), ((q, \varepsilon, O), (q, bOb)), ((q, \varepsilon, O), (q, U)) ((q, \varepsilon, R), (q, cRc)), ((q, \varepsilon, R), (q, dRd)), ((q, \varepsilon, R), (q, Q)) ((q, \varepsilon, Q), (q, aQ)), ((q, \varepsilon, Q), (q, bQ)), ((q, \varepsilon, Q), (q, \varepsilon)) ((q, \varepsilon, U), (q, cU), (q, \varepsilon, U), (q, dU)), ((q, \varepsilon, U), (q, \varepsilon)) ((q, a, a), (q, \varepsilon)), ((q, b, b), (q, \varepsilon)), ((q, c, c), (q, \varepsilon)), ((q, d, d), (q, \varepsilon))\}.$

3 Platnost výroků – uzávěrové vlastnosti

Následující sekce dokazují platnost, nebo neplatnost zadaných výroků.

3.1
$$\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3 \Rightarrow \overline{L_1} \in \mathcal{L}_{Fin}$$

Tento výrok neplatí. Neplatnost dokáži sporem. Pro důkaz uvažujme $L_C = \overline{L_1} \in \mathcal{L}_{Fin}$. Důkaz je obsažen v následující posloupnosti kroků:

- Předpokládejme, že $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3 \Rightarrow \overline{L_1} \in \mathcal{L}_{Fin}$.
- Každý konečný jazyk je regulární, tzn., $L_C \in \mathcal{L}_3$.
- Uzávěrové vlastnosti \mathcal{L}_3 říkají $\forall L \in \mathcal{L}_3 \Rightarrow \overline{L} \in \mathcal{L}_3$, tudíž $L_C \in \mathcal{L}_3 \Rightarrow \overline{L_C} \in \mathcal{L}_3$.

⁴Tzn., i řetězce splňující podmínku $p = v^R$, nebo $u = w^R$.

- $\overline{L_C} = \overline{\overline{L_1}} = L_1 \in \mathcal{L}_3$, to je ale spor s předpokladem.
- Výrok neplatí. □

3.2
$$\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3 \Rightarrow \forall L_2 \in \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$$

Výrok neplatí. Zřejmě pro $L_2 = \emptyset$ bude pro každé L_1 platit, že $L_1 \cap \emptyset = \emptyset \in \mathcal{L}_3$.

3.3
$$\exists L_1 \in \mathcal{L}_3 \Rightarrow \forall L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$$

Výrok platí. Zřejmě pro $L_1 = \Sigma^*$ bude pro každé L_2 platit, že $\Sigma^* \cap L_2 = L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$.

4 Relace pravé kongruence ~

Relaci pravé kongruence ~ sestrojím v následujících krocích:

1. Sestrojím úplný DKA přijímající jazyk $L=\{w\in\{a,b\}^*\mid \#_a(w)\geq 2 \lor \#_b(w)=0\}$. Takový DKA zadán tabulkou je např.:

		a	b
\leftrightarrow	0	1A	B+
\leftarrow	1A	2A+	AB+
	B+	AB+	B+
\leftarrow	2A+	2A+	2A+
	AB+	2A+	AB+

- 2. Minimalizuji tento automat následovně:
 - (a) 0 nerozlišitelnost:

			a	b
I	\leftrightarrow	0	I	II
		1A	I	II
		2A+	I	I
II		B+	II	II
		AB+	I	II

(b) 1 nerozlišitelnost:

			a	b
I	\leftrightarrow	0	I	II
		1A	III	IV
III	←	2A+	III	III
II		B+	IV	II
IV		AB+	III	IV

(c) 2 = 3 nerozlišitelnost:

			a	b
I	\leftrightarrow	0	V	II
V	←	1A	III	IV
III	←	2A+	III	III
II		B+	IV	II
IV		AB+	III	IV

3. Z bodu 2) je zřejmé, že DKA definovaný v bodě 1) je již minimální. Z vlastností minimálních úplných DKA, prefixové ekvivalence a Myhill-Nerodovy věty plyne, že řetězce dočtené v různých stavech tohoto DKA jsou v různých třídách Σ^*/\sim_L . Těchto tříd je 5, tedy index \sim_L je 5, a platí, že:

$$u \sim_{L} v \Leftrightarrow (\#_{a}(u) = \#_{a}(v) = \#_{b}(u) = \#_{b}(v) = 0) \vee$$

$$(\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) = \#_{b}(v) = 0) \vee$$

$$(\#_{a}(u) \geq 2 \wedge \#_{a}(v) \geq 2) \vee$$

$$(\#_{a}(u) = \#_{a}(v) = 0 \wedge \#_{b}(u) \geq 1 \wedge \#_{b}(v) \geq 1) \vee$$

$$(\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) \geq 1 \wedge \#_{b}(v) \geq 1)$$

4. Zřejmě přidáním jednoho stavu do dříve definovaného DKA bez změněny přijímaného jazyka budou řetězce dočtené v různých stavech tohoto DKA v různých třídách Σ^*/\sim a tím pádem index \sim bude o 1 větší než index \sim_L . DKA popsaný tabulkou obsahující stav navíc může vypadat následovně⁵:

⁵Od původního DKA se liší přejmenováním stavu 2A+ na 2A, přidáním stavu 3A+ a patřičnou úpravou přechodové funkce.

Tím pádem pro ~ platí, že:

$$u \sim v \Leftrightarrow (\#_a(u) = \#_a(v) = \#_b(u) = \#_b(v) = 0) \lor$$

$$(\#_a(u) = \#_a(v) = 1 \land \#_b(u) = \#_b(v) = 0) \lor$$

$$(\#_a(u) = 2 \land \#_a(v) = 2) \lor$$

$$(\#_a(u) = \#_a(v) = 0 \land \#_b(u) \ge 1 \land \#_b(v) \ge 1) \lor$$

$$(\#_a(u) = \#_a(v) = 1 \land \#_b(u) \ge 1 \land \#_b(v) \ge 1) \lor$$

$$(\#_a(u) \ge 3 \land \#_a(v) \ge 3)$$

- 5. Relace ~ je jistě reflexivní, symetrická, tranzitivní i pravá kongruence, protože byla konstruována na základě úplného DKA.
- 6. $L = [\varepsilon] \cup [a] \cup [aa] \cup [aaa]$, kde výraz [x] značí ekvivalenčí třídu určenou řetězcem x, $x \in L$.