metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena-Poly[[(5,5'-dimethyl-2,2'-bipyridine- $\kappa^2 N.N'$)cadmium]-di- μ -bromido]

Sadif A. Shirvan* and Sara Haydari Dezfuli

Department of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran Correspondence e-mail: sadif_shirvan1@yahoo.com

Received 21 May 2012; accepted 25 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.009 \text{ Å}$; R factor = 0.041; wR factor = 0.091; data-to-parameter ratio = 17.3.

In the crystal of the title polymeric compound, [CdBr₂- $(C_{12}H_{12}N_2)|_n$, the Cd^{II} cation is located on a twofold rotation axis. The CdII cation is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 5,5'dimethyl-2,2'-bipyridine ligand and four bridging Br anions. The bridging function of the Br anions leads to a polymeric chain running along the c axis.

Related literature

For related structures, see: Ahmadi et al. (2008, 2010); Albada et al. (2004); Amani et al. (2007, 2009); Han et al. (2006); Kalateh et al. (2010); Karaca et al. (2009); Khalighi et al. (2008); Maheshwari et al. (2007); Tadayon Pour et al. (2008); Zhang (2007).

$$Br$$
 Cd
 Br
 Cd
 Br
 Cd

Experimental

Crystal data

Z = 4T = 298 KMo $K\alpha$ radiation $0.12 \times 0.11 \times 0.09 \text{ mm}$ $\mu = 7.39 \text{ mm}^-$

Data collection

Bruker APEXII CCD area-detector 5378 measured reflections 1346 independent reflections diffractometer Absorption correction: multi-scan 1015 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2001) $R_{\rm int} = 0.110$ $T_{\min} = 0.435, T_{\max} = 0.548$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 78 parameters $wR(F^2) = 0.091$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\text{max}} = 0.85 \text{ e Å}^{-}$ $\Delta \rho_{\min} = -0.70 \text{ e Å}^{-3}$ 1346 reflections

Table 1 Selected bond lengths (Å).

Cd1-N1	2.352 (4)	Cd1-Br1 ⁱ	2.9351 (10)
Cd1-Br1	2.6676 (8)		

Symmetry code: (i) $x, -y, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5547).

References

doi:10.1107/S1600536812023860

Ahmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m562. Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64. m1233.

Albada, G. A., Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733-3742.

Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262. Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28,

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,

Han, J., Fang, J., Dong, Y. & Chang, H. (2006). Acta Cryst. E62, m183-m184. Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.

Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m335-m336.

Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.

Maheshwari, V., Carlone, M., Fronczek, F. R. & Marzilli, L. G. (2007). Acta

Cryst. B63, 603-611.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.

Zhang, B.-S. (2007). Acta Cryst. E63, m1562.

supplementary materials

Acta Cryst. (2012). E68, m846 [doi:10.1107/S1600536812023860]

catena-Poly[[(5,5'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)cadmium]-di- μ -bromido]

Sadif A. Shirvan and Sara Haydari Dezfuli

Comment

5,5'-Dimethyl-2,2'-bipyridine (5,5'-dmbipy), is a good bidentate ligand, and numerous complexes with 5,5'-dmbipy have been prepared, such as that of zinc (Khalighi *et al.*, 2008), indium (Kalateh *et al.*, 2010), iron (Amani *et al.*, 2007), platin (Amani *et al.*, 2009; Maheshwari *et al.*, 2007), copper (Albada *et al.*, 2004), gold (Karaca *et al.*, 2009), cadmium (Ahmadi *et al.*, 2008,2010) and mercury (Tadayon Pour *et al.*, 2008). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one half-molecule; a twofold rotation axis passes through the Cd atom. The Cd^{II} atom is six-coordinated in a distorted octahedral configuration by two N atoms from 5,5'-dimethyl-2,2'-bipyridine and four bridging Br atoms. The bridging function of the bromide atoms leads to a one-dimensional chain structure. The Cd—Br and Cd—N bond lengths and angles (Table 1) are within normal range $[Cd(phen)(\mu-Br)_2]_n$, (Zhang, 2007) and $[Cd(bipy)(\mu-Br)_2]_n$, (Han *et al.*, 2006) [where phen is 1,10-phenanthroline and bipy is 2,2'-bipyridine].

Experimental

For the preparation of the title compound, a solution of 5,5'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr₂.4H₂O (0.46 g, 1.33 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.45 g, 74.1%).

Refinement

H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{ea}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acta Cryst. (2012). E68, m846 Sup-1

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry codes: (a) 1 - x,y,1/2 - z].

catena-Poly[[(5,5'-dimethyl-2,2'-bipyridine- $\kappa^2 N$,N')cadmium]-di- μ -bromido]

Crystal data

$[CdBr_2(C_{12}H_{12}N_2)]$	F(000) = 864
$M_r = 456.45$	$D_{\rm x} = 2.209 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 19.637 (5) Å	Cell parameters from 5378 reflections
b = 9.6563 (15) Å	$\theta = 2.2 - 26.0^{\circ}$
c = 7.485 (2) Å	$\mu = 7.39 \text{ mm}^{-1}$
$\beta = 104.76 (2)^{\circ}$	T = 298 K
$V = 1372.4 (6) \text{ Å}^3$	Prism, colorless
Z=4	$0.12 \times 0.11 \times 0.09 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector	5378 measured reflections
diffractometer	1346 independent reflections
Radiation source: fine-focus sealed tube	1015 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.110$
ω scans	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -22 \longrightarrow 24$
(SADABS; Bruker, 2001)	$k = -10 \rightarrow 11$
$T_{\min} = 0.435, T_{\max} = 0.548$	$l = -9 \longrightarrow 9$

Refinement

кејіпетепі	
Refinement on F^2	1346 reflections
Least-squares matrix: full	78 parameters
$R[F^2 > 2\sigma(F^2)] = 0.041$	0 restraints
$wR(F^2) = 0.091$	Primary atom site location: structure-invariant
S = 1.03	direct methods

Acta Cryst. (2012). E68, m846 sup-2

supplementary materials

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0403P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.004$ $\Delta\rho_{\text{max}} = 0.85 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.70 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3751 (3)	0.2708 (6)	-0.0036 (8)	0.0498 (15)
H1	0.3565	0.1843	-0.0435	0.060*
C2	0.3367 (3)	0.3894 (7)	-0.0747(9)	0.0549 (16)
C3	0.2663 (4)	0.3740 (9)	-0.2097(11)	0.085 (3)
H3A	0.2355	0.3221	-0.1537	0.102*
Н3В	0.2718	0.3261	-0.3175	0.102*
Н3С	0.2465	0.4639	-0.2444	0.102*
C4	0.3660(3)	0.5147 (7)	-0.0143(9)	0.0600 (18)
H4	0.3423	0.5960	-0.0591	0.072*
C5	0.4299 (3)	0.5211 (6)	0.1118 (8)	0.0506 (15)
H5	0.4494	0.6067	0.1527	0.061*
C6	0.4659(3)	0.4006 (5)	0.1792 (8)	0.0421 (13)
N1	0.4378 (2)	0.2774 (5)	0.1198 (6)	0.0412 (11)
Cd1	0.5000	0.07821 (6)	0.2500	0.0476 (2)
Br1	0.41572 (3)	-0.09792 (6)	0.02140 (9)	0.0507 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.041 (3)	0.047 (3)	0.054 (4)	-0.004 (3)	-0.001 (3)	0.008(3)
C2	0.041(3)	0.066 (4)	0.055 (4)	0.003(3)	0.008(3)	0.020(3)
C3	0.048 (4)	0.109(6)	0.086(6)	0.006 (4)	-0.005(4)	0.034 (5)
C4	0.055 (4)	0.061 (4)	0.069(4)	0.026(3)	0.026(3)	0.029(4)
C5	0.062(4)	0.040(3)	0.056 (4)	0.012(3)	0.027(3)	0.007(3)
C6	0.044(3)	0.036(3)	0.049(3)	0.003(2)	0.017(3)	0.007(2)
N1	0.033(2)	0.038(2)	0.049(3)	0.0021 (18)	0.003(2)	0.006(2)
Cd1	0.0456 (4)	0.0318(3)	0.0530(4)	0.000	-0.0102(3)	0.000
Br1	0.0474 (4)	0.0423 (3)	0.0550(4)	-0.0094(2)	-0.0006(3)	-0.0064(2)

Acta Cryst. (2012). E68, m846 Sup-3

Geometric parameters (Å,	0)
--------------------------	---	---

C1-N1	comen to pur university (11, ')			
C1—HI 0.9300 C6—NI 1.339 (7) C2—C4 1.366 (10) C6—C6' 1.481 (11) C2—C3 1.497 (9) CdI—N1 2.352 (4) C3—H3A 0.9600 CdI—N1' 2.352 (4) C3—H3B 0.9600 CdI—Br1 2.6676 (8) C3—H3C 0.9600 CdI—Br1' 2.9676 (8) C3—H3C 0.9900 CdI—Br1' 2.9351 (10) C4—C5 1.366 (9) CdI—Br1'' 2.9351 (10) C4—H4 0.9300 CdI—Br1'' 2.9352 (10) NI—C1—C2 122.3 (6) C5—C6—C6' 123.0 (4) NI—C1—H1 118.8 C6—NI—C1 120.0 (5) C2—C1—H1 118.8 C6—NI—Cd1 117.6 (3) C4—C2—C1 117.3 (5) C1—NI—Cd1 122.4 (4) C4—C2—C3 123.3 (6) NI—Cd1—Br1' 70.3 (2) C1—C2—C3—H3B 109.5 NI—Cd1—Br1 163.48 (11) C2—C3—H3B 109.5 NI—Cd1—Br1' 163.48 (11) M3A—C3—H3B 109.5 NI—Cd1—	C1—N1	1.339 (6)	C5—C6	1.388 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.400 (8)	C5—H5	
C2—C3	C1—H1	0.9300	C6—N1	1.339 (7)
C3—H3A 0.9600 Cd1—N¹ 2.352 (4) C3—H3B 0.9600 Cd1—Br1 2.6676 (8) C3—H3C 0.9600 Cd1—Br1¹ 2.6676 (8) C4—C5 1.366 (9) Cd1—Br1¹¹ 2.9351 (10) C4—H4 0.9300 Cd1—Br1¹² 2.9352 (10) N1—C1—C2 122.3 (6) C5—C6—C6¹ 123.0 (4) N1—C1—H1 118.8 C6—N1—C1 120.0 (5) C2—C1—H1 118.8 C6—N1—Cd1 117.6 (3) C4—C2—C1 117.3 (5) C1—N1—Cd1 112.4 (4) C4—C2—C3 123.3 (6) N1—Cd1—Br1¹ 70.3 (2) C1—C2—C3 119.4 (6) N1—Cd1—Br1 94.81 (10) C2—C3—H3A 109.5 N1—Cd1—Br1¹ 163.48 (11) H3A—C3—H3B 109.5 N1—Cd1—Br1¹ 163.48 (11) H3A—C3—H3B 109.5 N1—Cd1—Br1¹ 94.81 (10) C2—C3—H3C 109.5 N1—Cd1—Br1¹ 84.78 (12) H3B—C3—H3C 109.5 N1—Cd1—Br1¹ 89.13 (12) C5—C4—C4 120.2	C2—C4	1.366 (10)	$C6$ — $C6^i$	1.481 (11)
C3—H3B 0.9600 Cd1—Br1 2.6676 (8) C3—H3C 0.9600 Cd1—Br1¹ 2.6676 (8) C4—C5 1.366 (9) Cd1—Br1¹ 2.9351 (10) C4—C5 1.366 (9) Cd1—Br1¹¹ 2.9351 (10) N1—C1—H1 118.8 C6—N1—C1 120.0 (5) C2—C1—H1 118.8 C6—N1—Cd1 117.6 (3) C4—C2—C1 117.3 (5) C1—N1—Cd1 112.2 4 (4) C4—C2—C3 123.3 (6) N1—Cd1—N1¹ 70.3 (2) C1—C2—C3 119.4 (6) N1—Cd1—Br1 94.81 (10) C2—C3—H3A 109.5 N1—Cd1—Br1 163.48 (11) C2—C3—H3A 109.5 N1—Cd1—Br1¹ 163.48 (11) H3A—C3—H3B 109.5 N1—Cd1—Br1¹ 94.81 (10) C2—C3—H3C 109.5 Br1—Cd1—Br1¹ 94.81 (10) C2—C3—H3C 109.5 Br1—Cd1—Br1¹ 94.81 (10) C2—C3—H3C 109.5 N1—Cd1—Br1¹ 87.76 (3) C3—C4—C2 120.2 (6) Br1—Cd1—Br1¹ 89.13 (12) C5—C4—C2	C2—C3	1.497 (9)	Cd1—N1	2.352 (4)
C3—H3C 0.9600 Cdl—Br1 ⁱⁱ 2.6676 (8) C4—C5 1.366 (9) Cdl—Br1 ⁱⁱ 2.9351 (10) C4—H4 0.9300 Cdl—Br1 ⁱⁱⁱ 2.9352 (10) NI—C1—C2 122.3 (6) C5—C6—C6 ⁱ 123.0 (4) NI—C1—H1 118.8 C6—N1—Cdl 117.6 (3) C2—C1—H1 118.8 C6—N1—Cdl 117.6 (3) C4—C2—C1 117.3 (5) C1—N1—Cdl 122.4 (4) C4—C2—C3 123.3 (6) N1—Cdl—N1 ⁱⁱ 70.3 (2) C1—C2—C3 119.4 (6) N1—Cdl—Br1 ⁱⁱ 70.3 (2) C1—C2—C3—H3A 109.5 N1—Cdl—Br1 ⁱⁱ 163.48 (11) C2—C3—H3B 109.5 N1—Cdl—Br1 ⁱⁱ 163.48 (11) C2—C3—H3B 109.5 N1—Cdl—Br1 ⁱⁱ 163.48 (11) C2—C3—H3C 109.5 N1—Cdl—Br1 ⁱⁱ 94.81 (10) C2—C3—H3C 109.5 N1—Cdl—Br1 ⁱⁱ 84.78 (12) H3B—C3—H3C 109.5 N1—Cdl—Br1 ⁱⁱⁱ 84.78 (12) H3B—C3—H3C 109.5 N1—Cdl—Br1 ⁱⁱⁱ 89.13 (12) <td>С3—Н3А</td> <td>0.9600</td> <td>Cd1—N1ⁱ</td> <td>2.352 (4)</td>	С3—Н3А	0.9600	Cd1—N1 ⁱ	2.352 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3В	0.9600	Cd1—Br1	2.6676 (8)
C4—H4 0.9300 Cdl—Brl ^{IIII} 2.9352 (10) NI—C1—C2 122.3 (6) C5—C6—C6 ¹ 123.0 (4) NI—C1—H1 118.8 C6—NI—C1 120.0 (5) C2—C1—H1 118.8 C6—NI—Cdl 117.6 (3) C4—C2—C1 117.3 (5) C1—NI—Cdl 122.4 (4) C4—C2—C3 123.3 (6) NI—Cdl—Brl ¹ 70.3 (2) C1—C2—C3 119.4 (6) NI—Cdl—Brl ¹ 94.81 (10) C2—C3—H3A 109.5 NI—Cdl—Brl ¹ 163.48 (11) C2—C3—H3B 109.5 NI—Cdl—Brl ¹ 163.48 (11) C2—C3—H3B 109.5 NI—Cdl—Brl ¹ 94.81 (10) C2—C3—H3C 109.5 Brl—Cdl—Brl ¹ 94.81 (10) C2—C3—H3C 109.5 NI—Cdl—Brl ¹ 84.78 (12) H3A—C3—H3C 109.5 NI—Cdl—Brl ¹ 84.78 (12) H3B—C3—H3C 109.5 NI—Cdl—Brl ¹ 84.78 (12) C5—C4—C2 120.2 (6) Brl—Cdl—Brl ¹ 87.96 (3) C5—C4—C4 119.9 Brl ¹ —Cdl—Brl ¹ 87.96 (3)	С3—Н3С	0.9600	Cd1—Br1 ⁱ	2.6676 (8)
N1—C1—C2	C4—C5	1.366 (9)	Cd1—Br1 ⁱⁱ	2.9351 (10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C4—H4	0.9300	Cd1—Br1 ⁱⁱⁱ	2.9352 (10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N1—C1—C2	122.3 (6)	C5—C6—C6 ⁱ	123.0 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—H1	118.8	C6—N1—C1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—H1	118.8	C6—N1—Cd1	117.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C2—C1	117.3 (5)	C1—N1—Cd1	* *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C2—C3	123.3 (6)	N1—Cd1—N1 ⁱ	70.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	119.4 (6)	N1—Cd1—Br1	94.81 (10)
H3A—C3—H3B	C2—C3—H3A	109.5	N1 ⁱ —Cd1—Br1	163.48 (11)
H3A—C3—H3B	C2—C3—H3B	109.5	$N1$ — $Cd1$ — $Br1^i$	163.48 (11)
H3A—C3—H3C 109.5 N1—Cd1—Br1	H3A—C3—H3B	109.5	$N1^{i}$ — $Cd1$ — $Br1^{i}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—H3C	109.5	Br1—Cd1—Br1 ⁱ	100.78 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3A—C3—H3C	109.5	N1—Cd1—Br1 ⁱⁱ	84.78 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3B—C3—H3C	109.5	N1 ⁱ —Cd1—Br1 ⁱⁱ	89.13 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C2	120.2 (6)	Br1—Cd1—Br1 ⁱⁱ	96.79 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	119.9	Br1 ⁱ —Cd1—Br1 ⁱⁱ	87.96 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C4—H4	119.9	N1—Cd1—Br1 ⁱⁱⁱ	89.13 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	120.4 (6)	N1 ⁱ —Cd1—Br1 ⁱⁱⁱ	84.78 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—H5	119.8	Br1—Cd1—Br1 ⁱⁱⁱ	87.96 (2)
N1—C6—C6 ⁱ 117.3 (3) Cd1—Br1—Cd1 ⁱⁱⁱ 92.04 (3) N1—C1—C2—C4 0.5 (10) C1—N1—Cd1—N1 ⁱ -177.4 (6) N1—C1—C2—C3 -178.9 (6) C6—N1—Cd1—Br1 -172.9 (4) C1—C2—C4—C5 -0.6 (10) C1—N1—Cd1—Br1 10.0 (5) C3—C2—C4—C5 178.8 (6) C6—N1—Cd1—Br1 ⁱ 26.4 (8) C2—C4—C5—C6 0.2 (10) C1—N1—Cd1—Br1 ⁱ -150.8 (4) C4—C5—C6—N1 0.2 (10) C6—N1—Cd1—Br1 ⁱⁱ 90.7 (4) C4—C5—C6—C6 ⁱ -177.8 (7) C1—N1—Cd1—Br1 ⁱⁱ -86.4 (4) C5—C6—N1—C1 -0.3 (9) C6—N1—Cd1—Br1 ⁱⁱⁱ -85.0 (4) C6 ⁱ —C6—N1—C1 177.8 (6) C1—N1—Cd1—Br1 ⁱⁱⁱ 97.8 (4) C5—C6—N1—Cd1 -177.5 (4) N1—Cd1—Br1—Cd1 ⁱⁱⁱ 88.96 (12) C6 ⁱ —C6—N1—Cd1 0.5 (9) N1 ⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ 63.9 (4) C2—C1—N1—C6 -0.1 (9) Br1 ⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ -96.53 (2)	C6—C5—H5	119.8	$Br1^{i}$ — $Cd1$ — $Br1^{iii}$	96.79 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—C5	119.7 (5)	Br1 ⁱⁱ —Cd1—Br1 ⁱⁱⁱ	172.56 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—C6 ⁱ	117.3 (3)	Cd1—Br1—Cd1 ⁱⁱⁱ	92.04 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C2—C4	0.5 (10)	C1—N1—Cd1—N1 ⁱ	-177.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C2—C3	-178.9(6)	C6—N1—Cd1—Br1	-172.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C4—C5	-0.6(10)	C1—N1—Cd1—Br1	10.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C4—C5	178.8 (6)	C6—N1—Cd1—Br1 ⁱ	26.4 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C4—C5—C6	0.2 (10)	C1—N1—Cd1—Br1 ⁱ	-150.8 (4)
C5—C6—N1—C1	C4—C5—C6—N1	0.2 (10)	C6—N1—Cd1—Br1 ⁱⁱ	90.7 (4)
C6i—C6—N1—C1 177.8 (6) C1—N1—Cd1—Br1iii 97.8 (4) C5—C6—N1—Cd1 -177.5 (4) N1—Cd1—Br1—Cd1iii 88.96 (12) C6i—C6—N1—Cd1 0.5 (9) N1i—Cd1—Br1—Cd1iii 63.9 (4) C2—C1—N1—C6 -0.1 (9) Br1i—Cd1—Br1—Cd1iii -96.53 (2)	C4—C5—C6—C6 ⁱ	-177.8(7)	C1—N1—Cd1—Br1 ⁱⁱ	-86.4 (4)
C5—C6—N1—Cd1		-0.3(9)	C6—N1—Cd1—Br1 ⁱⁱⁱ	-85.0 (4)
C6 ⁱ —C6—N1—Cd1 0.5 (9) N1 ⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ 63.9 (4) C2—C1—N1—C6 -0.1 (9) Br1 ⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ -96.53 (2)	C6 ⁱ —C6—N1—C1	177.8 (6)	C1—N1—Cd1—Br1 ⁱⁱⁱ	97.8 (4)
C2—C1—N1—C6 —0.1 (9) Br1 ⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ —96.53 (2)		* *		* *
				* *
C2—C1—N1—Cd1 177.0 (5) Br1 ⁱⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ 174.26 (2)		* *		` '
				* *
C6—N1—Cd1—N1 ⁱ -0.2 (3) Br1 ⁱⁱⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ 0.0	C6—N1—Cd1—N1 ⁱ	-0.2 (3)	Br1 ⁱⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ	0.0

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) x, -y, z+1/2; (iii) -x+1, -y, -z.

Acta Cryst. (2012). E**68**, m846