2020 年普通高等学校招生全国统一考试 理科综合能力测试 化学

可能用到的相对原子质量: H 1 C 12 N 14 O 16 Mg 24 S 32 Fe 56 Cu 64

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.宋代《千里江山图》描绘了山清水秀的美丽景色,历经千年色彩依然,其中绿色来自孔雀石颜料(主要成分为Cu(OH)₂·CuCO₃),青色来自蓝铜矿颜料(主要成分为Cu(OH)₂·2CuCO₃)。下列说法错误的是

- A. 保存《千里江山图》需控制温度和湿度
- B. 孔雀石、蓝铜矿颜料不易被空气氧化
- C. 孔雀石、蓝铜矿颜料耐酸耐碱
- D. Cu(OH)2·CuCO3 中铜的质量分数高于 Cu(OH)2·2CuCO3
- 2.金丝桃苷是从中药材中提取的一种具有抗病毒作用的黄酮类化合物,结构式如下:

下列关于金丝桃苷的叙述, 错误的是

A. 可与氢气发生加成反应

B. 分子含 21 个碳原子

C. 能与乙酸发生酯化反应

- D. 不能与金属钠反应
- $3.N_A$ 是阿伏加德罗常数的值。下列说法正确的是
- A. 22.4 L(标准状况)氮气中含有 7NA 个中子
- B 1 mol 重水比 1 mol 水多 N_A 个质子
- C. 12g 石墨烯和 12g 金刚石均含有 N_A 个碳原子
- D. 1 L 1 mol·L⁻¹ NaCl 溶液含有 28N_A 个电子

4.喷泉实验装置如图所示。应用下列各组气体—溶液,能出现喷泉现象的是

	气体	溶液
A.	H ₂ S	稀盐酸
В.	HCl	稀氨水
C.	NO	稀 H ₂ SO ₄
D.	CO ₂	饱和 NaHCO3溶液

A. A B. B C. C D. D

5.对于下列实验,能正确描述其反应的离子方程式是

- A. 用 Na₂SO₃溶液吸收少量 Cl₂: 3SO₃²⁻+Cl₂+H₂O =2HSO₃⁻+2Cl⁻+SO₄²⁻
- B. 向 CaCl₂ 溶液中通入 CO₂: Ca²⁺+H₂O+CO₂=CaCO₃ ↓+2H⁺
- C. 向 H₂O₂溶液中滴加少量 FeCl₃: 2Fe³⁺+H₂O₂=O₂↑+2H⁺+2Fe²⁺
- D. 同浓度同体积 NH₄HSO₄溶液与 NaOH 溶液混合: NH₄⁺ +OH⁻=NH₃·H₂O
- 6.一种高性能的碱性硼化钒(VB₂)—空气电池如下图所示,其中在 VB₂电极发生反应:

 $VB_2 + 16OH^2 - 11e^2 = VO_4^3 + 2B(OH)_4^2 + 4H_2O$ 该电池工作时,下列说法错误的是

- A. 负载通过 0.04 mol 电子时,有 0.224 L(标准状况)O₂ 参与反应
- B. 正极区溶液的 pH 降低、负极区溶液的 pH 升高
- C. 电池总反应为4VB₂+11O₂+20OH⁻+6H₂O=8B(OH)₄+4VO₄³⁻
- D. 电流由复合碳电极经负载、 VB_2 电极、KOH溶液回到复合碳电极

7.W、X、Y、Z 为原子序数依次增大的短周期元素,四种元素的核外电子总数满足 X+Y=W+Z; 化合物 XW₃与WZ 相遇会产生白烟。下列叙述正确的是

A. 非金属性: W> X>Y> Z

B. 原子半径: Z>Y>X>W

C. 元素 X 的含氧酸均为强酸

D. Y 的氧化物水化物为强碱

二、非选择题

(一) 必考顯

8.氯可形成多种含氧酸盐,广泛应用于杀菌、消毒及化工领域。实验室中利用下图装置(部分装置省略)制备 KClO₃和 NaClO,探究其氧化还原性质。

回答下列问题:

(1)盛放 MnO₂ 粉末的仪器名称是_____, a 中的试剂为____。

(2)b 中采用的加热方式是_____, c 中化学反应的离子方程式是_____, ,采用冰水浴冷却的目的

是_____

(3)d 的作用是_____, 可选用试剂_____(填标号)。

- A. Na₂S B. NaCl C. Ca(OH)₂ D. H₂SO₄
- (4)反应结束后,取出 b 中试管,经冷却结晶,_____, 干燥,得到 KClO₃ 晶体。
- (5)取少量 KClO₃ 和 NaClO 溶液分别置于 1 号和 2 号试管中,滴加中性 KI 溶液。1 号试管溶液颜色不变。2 号试管溶液变为棕色,加入 CCl₄振荡,静置后 CCl₄层显___色。可知该条件下 KClO₃ 的氧化能力____NaClO(填"大于"或"小于")。
- 9.某油脂厂废弃的油脂加氢镍催化剂主要含金属 Ni、Al、Fe 及其氧化物,还有少量其他不溶性物质。采用如下工艺流程回收其中的镍制备硫酸镍晶体(NiSO₄·7H₂O):

溶液中金属离子开始沉淀和完全沉淀的 pH 如下表所示:

金属离子	Ni ²⁺	Al ³⁺	Fe ³⁺	Fe ²⁺
开始沉淀时(c=0.01 mol·L ⁻¹)的 pH	7.2	3.7	2.2	7.5
沉淀完全时(c=1.0×10 ⁻⁵ mol·L ⁻¹)的 pH	8.7	4.7	3.2	9.0

回答下列问题:

- (1)"碱浸"中 NaOH 的两个作用分别是 。为回收金属,用稀硫酸将"滤液①"调为中性,生成沉
- 淀。写出该反应的离子方程式。
- (2)"滤液②"中含有的金属离子是。
- (3)"转化"中可替代 H_2O_2 的物质是_____。若工艺流程改为先"调 pH"后"转化",即

"滤液③"中可能含有的杂质离子为____。

(4)利用上述表格数据,计算 $Ni(OH)_2$ 的 K_{sp} =_____(列出计算式)。如果"转化"后的溶液中 Ni^{2+} 浓度为

1.0 mol·L⁻¹,则"调 pH"应控制的 pH 范围是。
(5)硫酸镍在强碱溶液中用 NaClO 氧化,可沉淀出能用作镍镉电池正极材料的 NiOOH。写出该反应的离子方程
式。
(6)将分离出硫酸镍晶体后的母液收集、循环使用,其意义是。
$10.$ 二氧化碳催化加氢合成乙烯是综合利用 CO_2 的热点研究领域。回答下列问题:
(1) CO ₂ 催化加氢生成乙烯和水的反应中,产物的物质的量之比 $n(C_2H_4): n(H_2O)=$ 。当反应达到平衡
时,若增大压强,则 $n(C_2H_4)$ (填"变大""变小"或"不变")。
(2)理论计算表明,原料初始组成 $n(CO_2): n(H_2)=1:3$,在体系压强为 $0.1 MPa$,反应达到平衡时,四种组分的物
质的量分数 x 随温度 T 的变化如图所示。
0.7 0.6 0.5 0.4 0.3 0.4 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.4 0.3 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
图中,表示 C_2H_4 、 CO_2 变化的曲线分别是、。 CO_2 催化加氢合成 C_2H_4 反应的 ΔH 0(填"大
于"或"小于")。
(3)根据图中点 A(440K,0.39),计算该温度时反应的平衡常数 $K_p =$
分压=总压×物质的量分数)。
(4) 二氧化碳催化加氢合成乙烯反应往往伴随副反应,生成 C_3H_6 、 C_3H_8 、 C_4H_8 等低碳烃。一定温度和压强条件
下,为了提高反应速率和乙烯选择性,应当。
(二)选考题
[化学——选修 3: 物质结构与性质]
11.氨硼烷(NH ₃ BH ₃)含氢量高、热稳定性好,是一种具有潜力的固体储氢材料。回答下列问题:
(1)H、B、N中,原子半径最大的是。根据对角线规则,B的一些化学性质与元素的相似。
(2)NH ₃ BH ₃ 分子中,N—B 化学键称为键,其电子对由提供。氨硼烷在催化剂作用下水解释放氢气:
$3NH_3BH_3+6H_2O=3NH_3+B_3O_6^{3-}+9H_2$, $B_3O_6^{3-}$ 的结构如图所示:

o l	3-
o Bo	
Ŭ Ŭ B⊳ ∠B,	
0 0 0	

在该反应中,B 原子的杂化轨道类型由变为	o
(3)N H_3 B H_3 分子中,与 N 原子相连的 H 呈正电性($H^{\delta+}$),	与 B 原子相连的 H 呈负电性(H ^{à-}),电负性大小顺序是
。与 NH3BH3 原子总数相等的等电子体是_	(写分子式),其熔点比 NH ₃ BH ₃ (填
"喜"或"低") 原因是在 NH。RH。 分子之间 左右	壮称"双 复键"

(4)研究发现,氦硼烷在低温高压条件下为正交晶系结构,晶胞参数分别为 a pm、b pm、c pm, $\alpha=\beta=\gamma=90^\circ$ 。氨硼烷的 $2\times2\times2$ 超晶胞结构如图所示。

[化学——选修 5: 有机化学基础]

12.苯基环丁烯酮(PCBO)是一种十分活泼的反应物,可利用它的开环反应合成一系列多官能团化合物。近期我国科学家报道用 PCBO 与醛或酮发生[4+2]环加成反应,合成了具有生物活性的多官能团化合物(E),部分合成路线如下:

已知如下信息:

回答下列问题:

- (1)A 的化学名称是____。
- (2)B 的结构简式为____。
- (4)写出化合物 E 中含氧官能团的名称_____; E 中手性碳(注: 连有四个不同的原子或基团的碳)的个数为

(5)M 为 C的一种同分异构体。已知: 1 mol M 与饱和碳酸氢钠溶液充分反应能放出 2 mol 二氧化碳; M 与酸性高锰酸钾溶液反应生成对苯二甲酸。M 的结构简式为_____。

R'对产率的影响见下表:

R'	—СН3	—C ₂ H ₅	—CH ₂ CH ₂ C ₆ H ₅
----	------	--------------------------------	--

产率/%	91	80	63

请找出规律,并解释原因_____