

Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning

Varun Gangal, Sarah Mallepalle, Rhea Jain 7 November 2017

Introduction

- Focus: Visually-grounded conversational artificial intelligence
- Goal:
 - Develop agents that can "see": understanding the contents of an image
 - Develop agents that can "communicate" what they see: hold a dialog using natural language involving questions and answers about an image.

Introduction

- This is the first-goal driven training for visual question answering and dialog agents.
- Presented as an "image guessing" game between two agents: a
 question bot (Q-Bot) and an answer bot (A-bot)
 - Communicate in natural language dialog.
 - Q-bot selects an unseen image from a lineup depending on the information it receives from A-bot
 - Method of deep reinforcement learning.

A Visual

Recent Works

 Recent works studying visually grounded dialog treat dialog as a "static" supervised learning problem, rather than an interactive agent learning problem.

Recent Works

- 1. Use a dataset of a human sequence of Q-A pairs about an image: (q_1, a_1) ... (q_T, a_T)
- 2. A machine (deep NN) is provided with an image I, human dialog up to round t-1, and a follow-up question $q_{\rm t}$. Use supervised learning to generate human response, $a_{\rm t}$.
- 3. The machine's answer a_{t}^{2} is thrown away, because at the next round t+1, the machine is provided with the ground-truth human dialog including the human response at.
 - > The machine is never allowed to steer the conversation, because its answer would not be exactly in the dataset, making it not viable for supervised learning.

Our Setup: Interactive Guessing Game

 Q-bot is shown a 1-sentence description/caption of an unseen image and communicates in natural language with A-bot, who sees the image.

 Objective: Q-bot needs to build a mental model of the unseen image purely from the natural language dialog, and retrieve image from a lineup.

Our Setup: Interactive Guessing Game

Process:

- At every round of dialog, Q-bot listens to A-bot's answer, updates its beliefs, and makes a prediction y^ about the visual representation of the unseen image.
 - This description can be in many forms, from image embeddings to textual descriptions to pixel-level image generations.
- Q-bot receives a reward from the environment based on how close
 Q-bot's prediction is to the true fc7 vector representation of I.

Experimental Results

Experiment 1: A "sanity check" of RL where perception is perfect in a synthetic world.

- Images containing a single object defined by shape, color, and style.
- Q-not must identify an image by learning about these three attributes.
- Communicate via ungrounded vocabulary: symbols with no pre-specified human interpretable meanings (X, Y, 1, 2, etc.)
- Result: Automatic emergence of grounded language and communication between visual dialog agents.

Experimental Results

Experiment 2: Large-scale real-image experiments on VisDial dataset.

- Imperfect perception on real images
- Discovering a human-interpretable language and communication strategy from scratch.
- Pretrain with SL with dialog data in VisDial before "fine-tuning" with RL.
- Result: RL bots significantly outperform SL bots
- Main Difference: SL Q-bot attempts to mimic how humans ask questions, while the RL trained Q-bot shifts strategies and asks questions the A-bot is better at answering, so dialog is more informative.

REINFORCEMENT LEARNING FOR DIALOG AGENTS

ACTION SPACE

- Q-BOT, A-BOT : All possible output sequences under a token vocabulary
 V Discrete
- Q-BOT: Visual representation of the unseen image Continous

STATE

• Q-BOT:
$$s_t^Q = [c, q_1, a_1, ..., q_{t-1}, a_{t-1}]$$

• A-BOT:
$$s_t^A = [I, c, q_1, a_1, ..., q_{t-1}, a_{t-1}, q_t]$$

POLICY

- Q-BOT : $\pi_Q(q_t|s_t^Q;\theta_Q)$
- A-BOT : $\pi_A(q_t|s_t^A;\theta_A)$

REWARD

$$\sum_{t=1}^{I} r_t(s_t^Q, (q_t, a_t, y_t)) = l(\hat{y_0}, y_{gt}) - l(\hat{y_T}, y_{gt})$$

Policy Networks for Q-Bot and A-Bot

Joint Training with Policy Gradients

Maximize the Reward Function over agent's policies

REINFORCE ALGORITHM

$$J(heta_A, heta_Q, heta_g) = \mathop{\mathbb{E}}_{\pi_Q,\pi_A} \left[r_t ig(s_t^Q, (q_t,a_t,y_t) ig)
ight]$$

Gradient
$$abla_{ heta_A} J = \mathop{\mathbb{E}}_{\pi_Q,\pi_A} \left[r_t \left(\cdot \right) \,
abla_{ heta_A} \log \pi_A \left(a_t | s_t^A \right) \right].$$

Scalar Reward at the end of every round

Informative - Increases Probabilities

Emergence of Grounded Dialog

Figure 3: Emergence of grounded dialog: (a) Each 'image' has three attributes, and there are six tasks for Q-BOT (ordered pairs of attributes). (b) Both agents interact for two rounds followed by attribute pair prediction by Q-BOT. (c) Example 2-round dialog where grounding emerges: *color*, *shape*, *style* have been encoded as X, Y, Z respectively. (d) Improvement in reward while policy learning.

Why Do We Need Supervised Pre-Training?

- Large action space $(|V_q| * |V_a|)$
- Need a good starting point
- No point learning a new language from-scratch (when we have English)
- Loss function: Max-likelihood P(y|x)

How does RL-training improve things?

- Problem 1: The Common Response Problem
- Problem 2: Forgetting/Repetition
- Hypotheses validated by qualitative examples (next)
- Loss function:

$$||x_t(\cdot)|| + ||y^{gt} - \hat{y}_{t-1}||_2^2 - ||y^{gt} - \hat{y}_t||_2^2$$

Common Response Problem

- Diverse informative responses; few perfunctory responses
- Q: What's the man wearing?
- Perfunctory: "I can't tell", "A shirt", "Clothes"
- Informative: "A red spotted T-shirt", "a black robe", "a wizard's cloak"
- A known problem even for chatbots (general purpose dialog)

Image + Caption

Human-Human dialog [4]

What are their genders?	1 man 1 woman
Are they both adults?	Yes
Do they wear goggles?	Looks like sunglasses
Do they have hats on?	Man does
Are there any other people?	No
What color is man's hat?	Black
Is it snowing now?	No
What is woman wearing?	Blue jacket and black pants
Are they smiling?	Yes
Do you see trees?	Yes

SL-pretrained Q-BOT-A-BOT dialog

2
I can't tell
I can't tell, they are far away
I can't tell
Yes

RL-full-QAf Q-BOT-A-BOT dialog

Are people male or female or both?	I think 1 is m
What are they wearing?	They are all wearing
Is it snowing?	It does not appear to
Can you see any trees?	Yes, there are lot
Can you see any buildings in background?	
Can you see any trees?	Yes, there are lot
Can you see any buildings in background?	No, I o
Can you see any trees?	Yes, there are lot
Can you see any buildings in background?	No, I o
Does it look like they are in park?	

I think 1 is male, can't see other 1 ...
They are all wearing snow pants and jackets It does not appear to be snowing at moment Yes, there are lot of trees in background No, I can not Yes, there are lot of trees in background No, I do not see any buildings Yes, there are lot of trees in background No, I do not see any buildings It does not appear to be

A couple of people in the snow on skis.

Is giraffe adult?	I cannot tell, I only see face	
Is grass at higher altitude	than its feet? No	
Is rock big?	Yes	
How is weather?	Sunny	
What color is rock?	Tan color	
Is grass green or dry?	Green but looks little dry	
Does giraffe look healthy	y? Yes	
Does giraffe look happy	It looks tired	
Is giraffe laying down?	Yes	
Is giraffe's mouth closed	? Yes	

Is there only 1 giraffe?	Yes	Is there only 1 giraffe?	Yes
Are there any other animals?	No	Are there any other animals?	No
Are there any people?	No	Are there any people?	No
Are there any other animals?	No	Does this look like zoo?	Can't tell
Is it day or night?	Day	Is there fence?	No
Is it sunny?	Yes	Is it day or night?	Day
What time of day it is?	I can't tell	Is it sunny?	Yes
Are there any other animals?	No	What time of day is it?	Morning
Are there any trees?	No	Are there any trees?	No
Are there any other animals?	No	Can you see sky?	No

A giraffe is resting its head in the grass near a rock.

Transitioning from SL to RL

- For each dialog, SL for first k rounds, RL for remaining 10-K rounds
- Decrease K by 1 each epoch
- After 9 epochs, fully RL-based training

Ablations

- SL-pretrain Only supervised pre-training
- Frozen-Q: Q-bot frozen, A-bot and f RL trained
- Frozen-f: f Frozen, Q-bot and A-bot RL trained
- RL-full-QAF: Everything RL trained
- Frozen-Q-multi: Q-bot frozen, A-bot trained with multi-task reward (likelihood+success)

The Guessing Game

- Slightly unconventional test setup
- Give a test source image and caption as the starting point
- Regressed feature vector predicted should be closer to the feature vector of source image than other test images.
- Metric: What's the percentile of source image?

All agents forget, RL somewhat less

Model	MRR	R@5	R@10	Mean Rank
SL-pretrain	0.436	53.41	60.09	21.83
Frozen-Q	0.428	53.12	60.19	21.52
Frozen-f	0.432	53.28	60.11	21.54
RL-full-QAf	0.428	53.08	60.22	21.54
Frozen-Q-multi	0.437	53.67	60.48	21.13

Experiments on VizDial - how likely are the relevant responses

Human Study

- Show humans the dialog, ask them to guess the right image from a pool.
- Mean Rank; After RL training: 2.73
- Mean Rank; Before RL training: 3.70
- RL-trained agent's dialog are more indicative of image as per humans