

COMP3600/6466 Algorithms

Lecture 14

S2 2016

Dr. Hassan Hijazi Prof. Weifa Liang

Application 5: The Activity-Selection

Activity i has a start time s_i and a finish time f_i

Problem: select a maximum-size subset of mutually compatible activities.

Activities a_i and a_j are **compatible** if $s_i \geq f_j$ or $s_j \geq f_i$.

Example: The subset $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities The subset $\{a_1, a_4, a_8, a_{11}\}$ is a better solution.

The Activity-Selection Problem

i	1	2	3	4	5	6	7	8	9	10	11	
							6			2	12	Increasing
f_i							10			14	16	finish time

Problem: select a maximum-size subset of mutually compatible activities.

Optimal substructure?

Introduce activities a_0 with $s_0 = f_0 = 0$ and a_{n+1} with $s_{n+1} = f_{n+1} = f_n$. Let $S_{i,j}$ denote the set of activities that start after the end of activity a_i and finish before the beginning of activity a_i .

Example:
$$S_{0,4} = \{a_1\}, S_{0,n+1} = \{a_1, \dots, a_n\}, S_{1,11} = \{a_4, a_6, a_7, a_8, a_9\}.$$

The Activity-Selection Problem

i	1	2	3	4	5	6	7	8	9	10	11	
S_i	1	3	0	5	3	5	6	8	8	2	12	Increasing
f_i		5				9		11	12	14	16	finish time

Problem: select a maximum-size subset of mutually compatible activities.

Optimal substructure?

Let A_{ij} denote the maximum set of mutually compatible activities in S_{ij} .

Consider
$$a_k \in A_{ij}$$

It is easy to see that
$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$
.

$$\implies |A_{ij}| = |A_{ik}| + |A_{kj}| + 1.$$

The Activity-Selection Problem

 a_k is not know in advance!

Let c[i,j] denote the size of an optimal solution to S_{ij}

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

Optimal solution value = c[0, n+1]

A Greedy Algorithm

i	1	2	3	4	5	6	7	8	9	10	11	
Si	1	3	0	5	3	5	6	8	8	2	12	Increasing
f_i							10			14	16	finish time

No recursive or iterative computation, take a decision NOW. The decision that maximises your objective function.

I will pick a valid meeting that has the smallest finishing time.

Is this a locally optimal decision?

Yes, if I replace my meeting with any other valid meeting, I can only reduce my chances of scheduling more meetings.

A Greedy Algorithm

i	1	2	3	4	5	6	7	8	9	10	11	
										2	12	Increasing
ı									12		16	finish time

No recursive or iterative computation, take a decision NOW. The decision that maximises your objective function.

I will pick a valid meeting that has the smallest finishing time.

Will the greedy local decision always lead to a globally optimal solution?

Yes, but we need a formal proof!

Proving that Greedy is Optimal

What is a formal proof?

A proof based on mathematical reasonning

Theorem 1. The subset obtained by always picking the valid activity that finishes first is globally optimal

Proof. Let $S_k = \{a_i \in \{a_1, \ldots, a_n\} : s_i \geq f_k\}$. S_k is the set of activities that can be scheduled after a_k . Let $A_k = \{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\}$ be an optimal solution for S_k , that is A_k is a maximum-size subset of mutually compatible activities in S_k . Let $a_{i_1^*}$ be the activity that finishes first in S_k . If $a_{i_1^*}$ is not in A_k , then the set $A_k^* = \{a_{i_1^*}, a_{i_2}, \ldots, a_{i_k}\}$ is also an optimal solution for S_k . Observe that $A_k^* = \{a_{i_1^*}\} \cup A_{i_1^*} = \{a_{i_2}, \ldots, a_{i_k}\}$. Since the same argument can be applied with $A_{i_1^*}, \ldots A_{i_k^*}$, the proof is complete.

Greedy Algorithms: How to

Formulate your optimisation problem such as:

- 1. If you make a decision NOW, you are left with ONE subproblem to solve.
- 2. Define your greedy decision
- 3. Prove that the greedy decision leads to a globally optimal solution

Application 6: The Thief

A thief robbing a store finds n items. The ith item is worth v_i dollars and weighs w_i kilos, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W kilos in his knapsack, for some integer W. Which items should he take?

Case 1. Diamonds (Fractional Items)

Greedy Algorithms: How to

Formulate your optimisation problem such as:

1. If you make a decision NOW, you are left with ONE subproblem to solve.

Pick ONE element NOW

2. Define your greedy decision

Pick THE MOST valuable element

3. Prove that the greedy decision leads to a globally optimal solution

Case 1. Diamonds (Fractional Items)

Pick THE MOST valuable element

FAIR comparison!

Price per kilo

$$pu_1 = 60/10 = 6$$

 $pu_2 = 100/20 = 5$
 $pu_3 = 120/30 = 4$

Case 1. Diamonds (Fractional Items)

3. Prove that the greedy decision leads to a globally optimal solution

Theorem 1. The solution obtained by always picking the maximum amount of the most valuable item is globally optimal

Proof. Let $O = \{o_1, o_2, \dots, o_k\}$ be an optimal solution.

O is a selection of items (can be fractional) that maximises the thief's bounty.

Let o^* be the item with the highest value per kilo.

Let w^* denote the total weight of o^* .

If o^* is not in O, let O^* denote the solution obtained by removing $\min(w^*, W)$ worth of items from O and replacing them by o^* .

By construction, O^* cannot have a total value less than O.

This argument can be applied with the item having the second highest value per kilo, then third highest value, etc.

At every step, I discount the weight inserted in W during the previous step.

Case 2. Cars (Indivisible Items)

Application 7: Data Compression

Fun Facts

In 1952, David Huffman, a PhD candidate at MIT introduced the Huffman code

Allows for data compression with savings up to 90%

Huffman Coding is based on a greedy algorithm!

Basic Idea

Huffman observed that in a given file, some letters or symbols might appear more than others

IDEA: Encode the high frequency symbols with short binary strings

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

"abaabef" is encoded as 00000100000001100101 using the fixed-length encoding 01010010111011100 using the variable-length encoding

Prefix-Free Code

Huffman observed that in order to avoid ambiguous encoding, no codeword can be a prefix of another.

For example, if the codewords are $\{0, 01, 11, 001\}$, the decoding of a string like 001 is ambiguous. You can interpret it as 0-01, or 001.

Prefix-Free Code

Prefix codes are easily representable as binary trees.

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

(a)

Prefix-Free Code

Huffman's idea: Always combine the least frequent pair of elements together

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

(a)

(b)

Huffman Greedy Algorithm

Huffman's idea: Always combine the least frequent pair of elements together

Huffman Greedy Algorithm

Huffman's idea: Always combine the least frequent pair of elements together


```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = \text{Extract-Min}(Q)

6 z.right = y = \text{Extract-Min}(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return Extract-Min(Q) // return the root of the tree
```


Sometimes, we have to be greedy!