Geometria Algebrica 1920

Simone Ramello

18 marzo 2020

IRRIDUCIBILITÀ E DIMENSIONE

1.1 RICHIAMI DA ISTITUZIONI

Fissiamo un campo k algebricamente chiuso. Con il termine "varietà" indicheremo una **varietà quasi proiettiva**, ovvero un sottospazio localmente chiuso¹ di \mathbb{P}^n . Estendiamo un po' la nomenclatura: diremo che una varietà è **affine** se è isomorfa ad un chiuso $X \subseteq \mathbb{A}^n$. Esempi canonici sono tutti i chiusi affini e, in maniera meno ovvia, ogni aperto principale di una varietà affine. Diremo **aperto affine** per indicare un aperto di una varietà che, visto a sua volta come varietà, è affine.

1.1.1 Osservazione Gli aperti affini costituiscono una base per la topologia di Zariski di una varietà *X*. Infatti, posso decomporre *X* lungo le **carte affini**

$$U_i := \{(x_0 : \dots : x_n) \in \mathbb{P}^n : x_i \neq 0\}$$

che ricoprono \mathbb{P}^n nel modo seguente,

$$X = \bigcup_{i=0}^{n} X \cap U_i$$

e indicate con $X_i := X \cap U_i$, questi ultimi sono localmente chiusi in U_i . Ciascuno di essi può dunque essere scritto come unione di aperti principali (che sappiamo costituire una base per la topologia di ciascuna varietà), che sono a loro volta aperti affini.

Esercizio Mostrare che

- 1. un chiuso di una varietà affine è una varietà affine,
- 2. il prodotto di varietà affini è una varietà affine,
- 3. l'intersezione di aperti affini è un aperto affine.
- 1.1.1 Funzioni regolari e morfismi
- **1.1.2 Definizione** Se X è una varietà e $f: X \to k$, diremo che f è **regolare** se è localmente quoziente di due polinomi omogenei del medesimo grado a denominatore non-nullo; se $X \subseteq U_i$ per qualche i, in particolare, sarà regolare se è localmente quoziente di polinomi a denominatore non-nullo.

¹ Vale a dire, un sottospazio aperto nella propria chiusura.

- **1.1.3 Definizione** Indichiamo con $\mathfrak{O}(X)$ la k-algebra delle funzioni regolari su X. Nel caso in cui X sia affine, scriveremo anche k[X].
- **1.1.4 Osservazione** Se X è affine, si ha $\mathcal{O}(X) \cong \frac{k[x_1, \dots x_n]}{I(X)}$, dove I(X) è l'ideale dei polinomi che si annullano su X. Se X è proiettiva e connessa, $\mathcal{O}(X) \cong k$.

1.1.2 Irriducibilità

1.1.5 Definizione Uno spazio topologico X si dice **irriducibile** se *non* esistono due chiusi $C_1, C_2 \subsetneq X$ non-vuoti tali che $X = C_1 \cup C_2$.

Esercizio Se *X* è uno spazio topologico non vuoto sono equivalenti

- 1. X irriducibile,
- 2. ogni coppia di aperti non vuoti ha intersezione non vuota,
- 3. ogni aperto non vuoto è denso in X.

Inoltre, se $Y \subseteq X$ è denso, allora X irriducibile $\iff Y$ irriducibile.

1.1.3 Conseguenze del Nullstellensatz

Ricordiamo che il Nullstellensatz fornisce una biezione fra i chiusi di una varietà affine X e gli ideali radicali di $k[x_1,...x_n]$ che contengono I(X). Questa biezione si compone con la proiezione al quoziente fornendo una biezione fra i chiusi di X e gli ideali radicali di k[X]. L'ultima biezione si può anche scrivere direttamente: se $Y \subseteq X$, indichiamo con $I_X(Y) = \{f \in k[X] : f|_Y \equiv 0\}$.

Finire richiami!

1.2 DIMENSIONE TOPOLOGICA

Sia *X* uno spazio topologico; tenendo a mente il modello degli spazi noetheriani, indichiamo con

 $\dim(X) := \sup\{n \in \mathbb{N} : \text{ esiste una catena di chiusi non vuoti irriducibili}$ $Z_0 \subsetneq Z_1 \subsetneq Z_2 \subsetneq \cdots \subsetneq Z_n \subseteq X\}$

la dimensione (topologica) di X.

1.2.1 Esempio Se #X = 1, dim(X) = 0. Similmente, siccome in \mathbb{A}^1 gli unici chiusi irriducibili sono \mathbb{A}^1 e i punti, le catene massimali hanno tutte la forma

$$\{\star\}\subseteq\mathbb{A}^1$$
,

da cui dim(\mathbb{A}^1) = 1. In generale, mostrare che \mathbb{A}^n e \mathbb{P}^n hanno dimensione n è molto più complicato, e ci vorrà un po' di lavoro.

- **1.2.2 Osservazione** Contrariamente all'intuizione, non tutti gli spazi noetheriani hanno dimensione finita. Se ad esempio si considera [0,1] con i chiusi della forma $Z_n := [-\frac{1}{n},1]$, questo spazio risulta noetheriano (soddisfa la condizione catenaria *discendente*) ma ha dimensione infinita (non soddisfa quella *ascendente*).
- **1.2.3 Proposizione** Sia *X* uno spazio topologico, allora:
 - 1. $Y \subseteq X$ implica che dim $(Y) \le \dim(X)$,
 - 2. se X è noetheriano e $X = X_1 \cup \cdots \cup X_r$ è la sua decomposizione in irriducibili, allora

$$\dim(X) = \max_{i \le r} \dim(X_i),$$

- 3. se X è irriducibile e ha dimensione finita, allora $Y \subsetneq X$ implica $\dim(Y) < \dim(X)$,
- 4. se X è noetheriano di dimensione finita e $Y \subseteq X$ è chiuso e ha la stessa dimensione dello spazio ambiente, allora Y contiene una componente irriducibile di dimensione dim(X),
- 5. se $\{U_{\alpha}\}_{{\alpha}\in A}$ è un ricoprimento aperto di X,

$$\dim(X) = \sup_{\alpha \in A} \dim(U_{\alpha}).$$

Dimostrazione. Mostriamo (1), gli altri sono esercizi. Siano

$$Z_0 \subsetneq Z_1 \subsetneq Z_2 \subsetneq \cdots \subsetneq Z_n \subseteq Y$$

chiusi irriducibili non vuoti, allora²

$$\overline{Z_0} \subsetneq \overline{Z_1} \subsetneq \cdots \subsetneq \overline{Z_n} \subseteq X$$

sono chiusi irriducibili non vuoti di X. Passando al limite, dim $(X) \ge \dim(Y)$.

- **1.2.4 Definizione** Diciamo che X è **equidimensionale**, o che ha dimensione pura, se ogni componente irriducibile ha la stessa dimensione.
- **1.2.5 Osservazione** Se *X* ha dimensione *n*, come testimoniato da

$$Z_0 \subseteq Z_1 \subseteq \cdots \subseteq Z_n \subseteq X$$

allora dim (Z_i) = i per ogni i = 0,...n. Ne consegue che X è irriducibile se e solo se X = Z_n (altrimenti potrei allungare la catena). Si noti che se X

[18 marzo 2020 at 16:12 – classicthesis v4.6]

² Ovviamente la chiusura è in X.

- è almeno T_1 (come nel caso di Zariski), $\#Z_0 = 1$ (perché altrimenti potrei allungare la catena).
- **1.2.6 Esempio** In generale non è vero³ che la dimensione di un aperto denso corrisponda a quella dello spazio ambiente; se ad esempio si considera [0,1] con la topologia $\{\emptyset, X, \{1\}\}$, allora risulta avere dimensione 1 ma dim $\{1\} = 0$, nonostante quest'ultimo sia denso.

Quando parleremo di **dimensione di una varietà** intenderemo sempre la sua dimensione topologica con la topologia di Zariski.

³ Lo sarà per varietà.