Welcome To The Counters Club!

So far o

The Product Rule (a very intuitive idea with just a name)

Idea.

Decompose a big choice into many little choices.

Product rule: Suppose each object with the desired property

Can be uniquely specified by a sequence of K

Choices C₁, C₂,..., C_K and the number of ways to make

C_i is n_i for any 12i2K. Then the total # of objects

is n_i x n₂x... x n_K.

tree drayram 100t n. C.

"vertical" decomposition af big choice into smaller ehoices

Given the Product rule, how do you Solve a Counting problem?

Step1: Find a sequence of choices C,,.., Cx uniquely specifying an object

Step 2: Court # ways to make each C: given previous choices

C: R: C: Nz ... CK: NK

Step3: Combine using product rule

total = n, xn2x--xnx

Se set bistry of length 1c f:	S>	$\eta_1 \times \eta_2 \times \cdots \times \eta_m$
So far o	ξ1,,	1, xx2xxn~
The Product (a very intuitive idea with i		
(a very intuitive idea with j	ust a name)	

Today: More Examples

- New Roles (Sum Rule, Subtraction Rule, Division Rule)
- Binomial Theorem
- I Combinatorial Identifics
- = Permutation & Combination with Repeatition

EX3: Ranking of STOT, UW, UBC, McGilly

Step 1: C: choose the 1st rock from goot, UBC, McGill C2: Given the 1st rout, choose 2nd rounk from JTIFT, Wwy... 4 Cz: Given 1st & 2 ml rouk, choose 3 rouk In Cy: Given the previous choices, choose 4th rend from N 5tep 2: is there repetition or not? No $n_1 = 4$, $n_2 = 3$, $n_3 = 2$, $n_4 = 1$ 5tep 3: By product rule, the total # rankings = $N_{1} \times N_{2} \times N_{3} \times N_{4} = 4$

This type of questions shows up so often that they have their own name.

Defn: An ordering of N distinct objects is called a permutation.

Theorem: The number of Permutation of n distinct objects is NI.

In our previous example:

n=4

Sum & Subtraction Rule disjoint sets

A and B are finite & ANB = &,

Sum rule: If A and B are finite & ANB=\$, then |AUB|=|A|+|B|.

How is this applicable to Counting?

EX6: # of 2 digit numbers with no Zeros S.t.

both digits are even or both are odd.

S={(a,b): a,be{1,...,9} and (both a and b are even or both a and b are even or both a and b are odd)?

S=AUB where A=1(a,b): a b are odd?

S = AUB where $A = \{(a,b): a,b \text{ are all}\}$ $B = \{(a,b): a,b \text{ are even & non-zero}\}$ observe that $ANB = \emptyset$

Observe that 151=1A)-+1B

Is repetition allowed? Yes

A:
$$|A| = 5^2$$

Sum Rule: If AMB=\$ then |AUB|= |A1+1B|.

"horizontal" decomposition of thores in the tree diag.

Subtraction Rule:
If A and B are finite, IAUB) = Al+ 1B - ANB
$A \left(\begin{array}{c} A \\ \end{array} \right)^{B}$
How is this applicable to courting?
EX2: Bit strings of Length 5 ending in 00 or beginning
with 1.
$S = \{b_1b_2 - b_3 : b_i \in \{c_i\}\}$ $S = AVB$
A = of b, b = b = oo: b : \(\in 1 \) Cosserve that \(A \) B = \(\frac{1}{2} \) b = \(
B = 31 B = b 3 b 4 b 5: b i e d 0, 1 kg

151=1A1+1B1-1A1B1 by product rule $|A| = 2^3$ By similar argument $|B| = 2^4$

chaose by: n,= ? Choese bz: nz=2 choose by: n3=2

By similar argument [ANB] = 2

|S| = 1A/+1B/- 1A1B/

Subtraction Rule:

$$|S| = |A \cup B| + |C| - |A \cup B| \cap C|$$

= $|A| + |B| + |C| - |A \cap B| - |(A \cap C) \cup (B \cap C)|$
= $|A| + |B| + |C| - |A \cap B| - (|A \cap C| + |B \cap C| - |A \cap B \cap C|)$

Division Rule: EX5° unordered sets of 5 distict ands from a deck of 52 The difficulty with unordered sets is that it's generally hard to find the process that uniquely generates an unordered Set. That's because inherently When you have a process there is an order by which you make the choices.

Let's Consider a related (and easier) Problem. EX5% order hund of 5 distinct and from deck of 52. EX5: # ordered 5 distinct courds from deek of 52. C, : cheose the first and from the Leck Cz: given the first choise, choose the 2nd card. C5: given previous choices, choose he lost and $N_1 = 52$, $N_2 = 51$, $N_3 = 50$, $N_4 = 49$, $N_5 = 48$ The total # ordered 5 distinct and = 52x-.. x 48 = 52! DeIn: An onlared sequence of r distinct objects from n objects is called an 1-permutation. The 4 of r-permutation of n object is $\frac{n!}{(n-r)!} = P(n,r)$

(In Ex5, n=5?, r=5>

How to answer EX5? Trick: #-f ordered 5- and sequence -#of unordered 5-ands X (#of ways to order a given set of 5 ands

ordered

52! $\frac{\text{Unon-lend}}{1,2,3,4,5} = \frac{1}{3}, \frac{2}{3}, \frac{4}{5}$ $\frac{1}{3}, \frac{2}{3}, \frac{4}{5}$ 7 1,5,4,2,3 Reason: Can uniquely specify an ordered 5-card hand as: C,: choose an unordered 5-card hand = 9 Cz: given the 5 card hand, choose an ordening of them Jo, we can apply the product rule.

Therefore, # cunorland 5-and hands

#ardered 5-and hands = 52!

5!

47!x5!

Defn: An involved set of r objects from a collection of n objects is called an r-Combination.

The total # r-combination of r object is $\binom{n}{r} = C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$ Read as n choose r.

<In Ex5, N=52, r≥5>

Division Rule:

If $f: A \rightarrow B$ is an m-to-one Correspondence, i.e., $Yb \in B \mid f(b) \mid = m$, then $|B| = \frac{|A|}{m}$.

 $\langle In \ Ex 5, A = \} (a_1, a_2, ..., a_5) : a_i \in \{1, ..., 52\}, a_i \neq a_j \ \forall i \neq j \}$

B= } 1a,..., asy: ac \(\),.., 52\\\ implicitly unordered, and distinct.

 $f((a_1, a_2, ..., a_5)) = \{a_1, ..., a_5\}$

Remember:
Always ask yourself if there is repetition,
if order matters

Ex:
$$(x+y)^2 = x^2 + 2xy + y^2$$

 $(x+y)^3 = (x+y)(x+y)(x+y)(x+y) = x^3 + 3xy^2 + y^3$
 $(x+y)^{10} = (x+y) \cdot \cdot \cdot \cdot (x+y)$

These are Seemingly algebraic questions which can be answered with Counting technique.

Observe that
$$(x+y)^3 = (x+y)(x+y)(x+y)$$

 $= (x+y)((x+y)(x+y)) = x((x+y)(x+y)) + y(x+y)(x+y)$
 $= xxx + xyx + xxy + xyy + yxx + yxy + yyxx + yyyy.$

What's the pattern? Let's give each group a name (x_1, y_1) (x_1, y_2) (x_1, y_2) (x_2, y_3) (x_1, y_2) (x_2, y_3) (x_1, y_2) (x_2, y_3) (x_1, y_2) (x_2, y_3)

Observation: $xxy = xyx = yxxe = x^2y$ Observe that # terms with 3x's = 1# terms with 2x's = C(3,2)# terms with 1x = C(3,1)

terms with a re's = 1

(X+y) (X+y) (X+y) enfler grouping the term

C(3,3)x + C(3,2)xy + C(3,1)xy+C(3,1)y

Notation: $\binom{n}{r} = C(n,r)$ rend as n choose r."

Theorem: If n>1 then

$$(x+y)^{n} = {n \choose n} x^{n} + {n \choose n-1} x^{n-1} + {n \choose n-2} x^{n-2} + {n \choose 1} x^{n-1} + {n \choose n} y^{n}$$

$$\frac{n}{n} + \frac{n}{n} + \frac{$$

$$=\sum_{r=0}^{N}\binom{n}{r}x^{r}y^{n-r}$$

Proof of the theorem.

Let n>1 and oran be arbitrary.

Observe that the Coeficient of xryn-r in (xy)(xy)...(xy)

is the number of strings in xy with n letters before

grouping with exactly v x's.

= # r-subsets of $\{1, ..., n\}$ = $\binom{n}{r}$

EX: If
$$n > 1$$
, $c < r < n$ then $\binom{n}{r} = \binom{n}{n-r}$

Combinatorial Identifies (Formulas proven)

EX: If
$$n>1$$
, $a< r < n$ then $a= (n-r)$.

Proof 1 (algebraic and boring):
$$a= (n-r) \cdot n = (n-r) \cdot n = (n-r)$$

$$a= (n-r) \cdot n = (n-r) \cdot n = (n-r)$$

Proof 2 (Combinatoric proofs, i.e., Proof based on bijection):
Let
$$A = 25 \subseteq 11,...,n_1$$
: $|5| = r_1$ $|A| = {n \choose r}$

$$B = \frac{1}{2} S \subseteq \frac{1}{2}, ..., \frac{1}{2} : |S| = n - r$$
 (B) = $\binom{n}{n-r}$

Define
$$f:A\rightarrow D$$
 as $f(s)=f,...,n_{f}-S$. Observe that f is a bijection Hence, $|A|=|B|$. Therefore $\binom{n}{r}=\binom{n}{n-r}$.