Database Management Systems (DBMS)

Lec 16: Relational database design (Contd.)

Ramesh K. Jallu

IIIT Raichur

Date: 30/03/21

Recap

- General definitions of 2NF and 3NF
- Properties of normalization
 - Nonadditive join property
 - The dependency preservation
- Boyce-Codd normal form
 - Whenever a nontrivial functional dependency $X \to A$ holds in R, then X is a superkey in R

Today's plan

- Multivalued dependency
- The fourth normal form (4NF)
- The join dependency
- The fifth normal form (5NF)

1NF: Illustration with an example (recap)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

DEPARTMENT

Dname	Dnumber	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation 1	Dlocaton 2	Diocation 3
Research	5	333445555	Bellaire	Sugarland	Houston
Administration	4	987654321	Stafford	NULL	NULL
Headquarters	1	888665555	Houston	NULL	NULL

Multivalued dependency (MVD)

• Some relations have constraints that cannot be specified as functional dependencies and hence are not in violation of BCNF

EMP

<u>Ename</u>	<u>Pname</u>	<u>Dname</u>
Smith	Х	John
Smith	Υ	Anna
Smith	Х	Anna
Smith	Υ	John

Multivalued dependency (Contd.)

- The fourth normal form is based on MVD
- Multivalued dependencies are a consequence of 1NF
- If more than one multivalued attribute is present, the second way of normalizing the relation introduces a multivalued dependency
- MVD occurs when two attributes in a table are independent of each other but, both depend on a third attribute

Multivalued dependency (Contd.)

- Whenever two independent 1:N relationships between A, B, and A, C are mixed in the same relation, MVD occurs
- This MVD is denoted as $A \rightarrow B$ and $A \rightarrow C$ (or $A \rightarrow B/C$)
- $A \rightarrow \rightarrow B$ is read as A multidetermines B
- In order to occur an MVD, a relation should have at least three attributes
- An MVD $A \rightarrow \rightarrow B$ in a relation R is said to be *trivial* if (i) B is a subset of A, or (ii) $A \cup B = R$; Otherwise, we call it *non-trivial* MVD

Multivalued dependency (Contd.)

- If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in the tuples
- The values 'X' and 'Y' of Pname are repeated with each value of Dname
- Relations containing nontrivial MVDs tend to be *all-key relations*
- The EMP schema is in BCNF because no functional dependencies hold in EMP
- Therefore, MVDs problematic and we need a NF stronger than BCNF

EMP

<u>Ename</u>	<u>Pname</u>	<u>Dname</u>
Smith	Χ	John
Smith	Υ	Anna
Smith	Х	Anna
Smith	Y	John

The fourth normalform (4NF)

- A relation schema R is in 4NF if,
 - i. it satisfies BCNF, and
 - ii. it doesnot have any non-trivial MVDs
- A relation that is not in 4NF due to a nontrivial MVD must be decomposed to convert it into a set of relations in 4NF
 - The decomposition removes the redundancy caused by the MVD
- During the decomposition each non-trivial MVD is represented by a separate relation where it becomes a trivial MVD

The fourth normal form (4NF): Formal definition

- A relation schema R is in 4NF with respect to a set of dependencies F (that includes functional dependencies and multivalued dependencies) if, for every nontrivial MVD $X \rightarrow Y$ in F^+ , X is a superkey for R
- An all-key relation is always in BCNF since it has no FDs
- The EMP relation is an all-key relation, which has no FDs but has the MVD Ename $\rightarrow \rightarrow$ Pname | Dname, is not in 4NF

Example

EMP

<u>Ename</u>	<u>Pname</u>	<u>Dname</u>
Smith	X	John
Smith	Υ	Anna
Smith	Х	Anna
Smith	Υ	John

EMP_PROJECTS

<u>Ename</u>	<u>Pname</u>
Smith	X
Smith	Y

EMP_DEPENDENTS

<u>Ename</u>	<u>Dname</u>
Smith	John
Smith	Anna

Join dependencies

- So far, we have discussed the FDs which are problematic and tried to eliminate them by a process of repeated binary decomposition
 - This normalization process achieves 1NF, 2NF, 3NF, and BCNF
 - And the decomposition obeys the NJB property
- We also have seen the problematic MVDs and eliminating them by repeated binary decomposition

Join dependencies (Contd.)

- So far, we have seen problematic FDs and MVDs, and tried to eliminate by a process of repeated binary decomposition
- In some cases, there may be no NJ decomposition of *R* into *two* relation schemas, but there may be a NJ decomposition into more than two relation schemas
- Also, there may be no FDs in R that violates any normal form up to BCNF, and there may be no nontrivial MVD present in R either that violates 4NF

Join dependency (JD)

- Let R be a relation and r is a relation state. A join dependency specifies a constraint on the relations state r that every legal state r of R should have a nonadditive join decomposition into R_1, R_2, \ldots, R_n
 - * $(\pi_{R1}(r), \pi_{R2}(r), ..., \pi_{Rn}(r)) = r$
- Observe that MVD is a special case of JD where n = 2
 - JD(R_1 , R_2) implies an MVD ($R_1 \cap R_2$) $\longrightarrow (R_1 R_2)$ (or, by symmetry, $(R_1 \cap R_2) \longrightarrow (R_2 R_1)$
- A join dependency $JD(R_1, R_2, ..., R_n)$ is a *trivial* JD if one of the relation schemas R_i in $JD(R_1, R_2, ..., R_n)$ is equal to R

The fifth normal form (5NF)

- The 5NF is based on another dependency called *multiway decomposition*
- A relation schema R is in 5NF, w.r.t a set F of FD, MVD, and JDs, if for every nontrivial join dependency $JD(R_1, R_2, ..., R_n)$ in F^+ , every R_i is a superkey of R
- The 5NF is also known as *project-join normal form* (PJNF)

Example

SUPPLY

<u>Sname</u>	Part_name	Proj_name
Smith	Bolt	ProjX
Smith	Nut	ProjY
Adamsky	Bolt	ProjY
Walton	Nut	ProjZ
Adamsky	Nail	ProjX
Adamsky	Bolt	ProjX
Smith	Bolt	ProjY

Whenever a supplier *s* supplies part *p*, and a project *j* uses part *p*, and the supplier *s* supplies at least one part to project *j*, then supplier *s* will also be supplying part *p* to project *j*

R_1

<u>Sname</u>	Part_name
Smith	Bolt
Smith	Nut
Adamsky	Bolt
Walton	Nut
Adamsky	Nail

R_2

<u>Sname</u>	Proj_name
Smith	ProjX
Smith	ProjY
Adamsky	ProjY
Walton	ProjZ
Adamsky	ProjX

R_3

Part_name	Proj_name
Bolt	ProjX
Nut	ProjY
Bolt	ProjY
Nut	ProjZ
Nail	ProjX

Thank you!