آمار و احتمال مهندسی

نیم سال اول ۹۵-۹۴ دکتر مطهری

تمرین ششم متغیرهای تصادفی زمان تحویل: ۹۴/۱۰/۵

مسايل

مساله اول

بر تکهای چوب یک متری، دو نقطه به صورت یکنواخت و تصادفی انتخاب می کنیم و چوب را از آن نقاط میشکنیم تا سه قطعه چوب به دست آمد.

- احتمال این را بیابید که بتوان با سه قطعه چوب یک مثلث ساخت.
- این سه تکه چوب، به عنوان پایه برای یک میز گرد قرار است استفاده شوند. برای این کار هر کدام را به صورت یکنواخت و مستقل بر یک نقطه از محیط میز قرار میدهیم. احتمال این که میز بتواند با این پایهها بایستد چقدر است؟

مساله دوم

A=(i.i.d.) سه متغیر تصادفی i.i.d. با نامهای X_1,X_7,X_7 و توزیع یکنواخت استاندارد(بین صفر و یک) را انتخاب می کنیم. $B=\max(X_1,X_7,X_7)$ و $\min(X_1,X_7,X_7)$

- توریع مشترک متغیرهای تصادفی A و B را بیابید.
- توزیع شرطی B را تحت شرط دانستن A به دست آورید.

مساله سوم

یک جمع ۱۱۰ نفره داریم، متغیر تصادفی X تعداد روزهایی از سال است که در آن حداقل یکی از این افراد به دنیا آمده باشند. میانگین و واریانس X را بیابید.

مساله چهارم

فرض کنید X_1, X_2, \dots طول پرش ورزشکاران مختلف باشد که همه آنها i.i.d میباشند. میگوییم فرد i رکورد زده است، اگر مقدار i.i.d از تمامی مقادیر i.i.d بزرگتر باشد. میانگین و واریانس تعداد رکوردهای اعضای شماره i.i.d را بیابید.

مساله پنجم

یک دانشمند، به انجام دو اندازه گیری مستقل می پردازد که نتیجه هر کدام یک متغیر تصادفی نرمال استاندارد می باشد. هم بستگی ماکزیمم دو متغیر و مینیمم آنها را بیابید. (دقت کنید که ماکزیمم و مینیمم، دو متغیر تصادفی جداگانه با توزیع متفاوتی از مقادیر آزمایش هستند و هم بستگی آنها لزوما با هم بستگی دو متغیر تصادفی حاصل از اندازه گیری برابر نیست.)

شبیه سازی

برآوردگر سازگار

شما میدانید(!) که اگر n داده $y_1, y_2, ..., y_n$ را از یک توزیع دلخواه که دارای امید ریاضی و واریانس متناهی باشد جمع اوری کرده باشیم میانگین این اعداد با بزرگ شدن n به مقدار امید ریاضی میل میکند. در این شرایط به میانگین این اعداد یک تخمین گر سازگار یا بر آوردگر سازگار میگوییم، فرض کنید توزیع $N(0 \circ, 70)$ به شما داده شده است، با نمونه گیری از این توزیع به صورت تجربی (بدون اثبات ریاضی)به سوالات زیر پاسخ دهید.

- ۱۰ از این توزیع i بار (برای ۱۰۰۰ $i \leq i \leq 1$ ۰ یعنی شما باشد ۱۰۰۰ بار نمونه گیری کنید و هر بار i تا نمونه بگیرید.) نمونه بگیرید. سپس برای هر بار نمونه گیری میانگین نمونه ها را بدست بیاورید. نمودار این میانگین ها را برحسب تعداد نمونه ها رسم کنید.
 - ۲. این بار بجای میانگین مقدار $\overline{y} + \frac{\gamma \circ \circ}{\log(n)}$ را بدست بیاورید و نمودار مربوط را رسم کنید.
 - ۳. کدام یک از این دو با توجه به نمودار تخمین گر سازگار هستند ؟ چرا ؟

دانشجو!

 $y_1,y_7,y_7,y_7,y_8,...,y_n$ بیاید باهم یک نگاه به صورت ساده قضیه حد مرکزی بیندازیم. حد مرکزی میگوید اگر مستقل با امید μ و واریانس σ باشد داریم n

$$\sqrt{n} \frac{(\overline{Y} - \mu)}{\sigma} \to Z$$

که در آن Z نرمال استاندارد است. اگر دقت کنید درمیابید که σ موجود در صورت این قضیه از واریانس خود متغیر استفاده میشود ولی به خطا ملت به جای این مقدار، مقدار واریانس تجربی یعنی

$$S^{\mathsf{Y}} = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^{\mathsf{Y}}}{n - \mathsf{Y}}$$

را قرار میداند ویا چون خود واریانس را نمیدانستند از این مقدار استفاده میکردند. شخصی به اسم دانش اموز ثابت کرد که میتوان این مقدار یا $N(3\circ, \pi\circ)$ است. هر برآورده گر سازگار واریانس را به جای مقدار اصلی این عدد قرار داد. فرض کنید توزیع شما همان توزیع $N(3\circ, \pi\circ)$ است.

۱. مانند قسمت قبل نشان دهید که واریانس تجربی تخمین گری سازگار است.

۲. برنامه ای بنویسید که قضیه حد مرکزی را پیاده سازی کند. یعنی از

$$\sqrt{n} \frac{(\overline{Y} - \mu)}{s}$$

برای یک n بزرگ مقدار گیری کنید و هیستوگرام این مقدار ها را رسم کرده و شکل نمودار را با شکل توزیع نرمال استاندارد مقایسه کنید.