Lecture 16 Automata-based properties

Dr. Dave Parker

Department of Computer Science University of Oxford

Property specifications

- 1. Reachability properties, e.g. in PCTL
 - F a or $F^{\leq t}$ a (reachability)
 - a U b or a U≤t b (until constrained reachability)
 - G a (invariance) (dual of reachability)
 - probability computation: graph analysis + solution of linear equation system (or linear optimisation problem)
- 2. Long-run properties, e.g. in LTL
 - GF a (repeated reachability)
 - FG a (persistence)
 - probability computation: BSCCs + probabilistic reachability
- This lecture: more expressive class for type 1

Overview

- Nondeterministic finite automata (NFA)
- Regular expressions and regular languages
- Deterministic finite automata (DFA)
- Regular safety properties
- DFAs and DTMCs

Some notation

- Let Σ be a finite alphabet
- A (finite or infinite) word w over Σ is
 - a sequence of $\alpha_1 \alpha_2 \dots$ where $\alpha_i \in \Sigma$ for all i
- A prefix w' of word $w = \alpha_1 \alpha_2 ...$ is
 - − a finite word $β_1 β_2... β_n$ with $β_i = α_i$ for all $1 \le i \le n$
- Σ^* denotes the set of finite words over Σ
- Σ^{ω} denotes the set of infinite words over Σ

Finite automata

- A nondeterministic finite automaton (NFA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - Q is a finite set of states
 - $-\Sigma$ is an alphabet
 - $-\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of "accept" states

Language of an NFA

- Consider an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
- A run of A on a finite word $w = \alpha_1 \alpha_2 ... \alpha_n$ is:
 - a sequence of automata states $q_0q_1...q_n$ such that:
 - $-q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, \alpha_{i+1})$ for all $0 \le i < n$
- An accepting run is a run with $q_n \in F$
- Word w is accepted by A iff:
 - there exists an accepting run of A on w
- The language of A, denoted L(A) is:
 - the set of all words accepted by A
- Automata A and A' are equivalent if L(A)=L(A')

Example - NFA

Regular expressions

- Regular expressions E over a finite alphabet Σ
 - are given by the following grammar:

```
-E ::= \emptyset \epsilon \alpha E + E E.E E^*
```

– where $\alpha \in \Sigma$

• Language L(E) $\subseteq \Sigma^*$ of a regular expression:

```
\begin{array}{lll} - \ L(\varnothing) = \varnothing & (empty \ language) \\ - \ L(\varepsilon) = \{ \ \varepsilon \ \} & (empty \ word) \\ - \ L(\alpha) = \{ \ \alpha \ \} & (symbol) \\ - \ L(E_1 + E_2) = L(E_1) \cup L(E_2) & (union) \\ - \ L(E_1.E_2) = \{ \ w_1.w_2 \ | \ w_1 \in L(E_1) \ and \ w_2 \in L(E_2) \ \} & (concatenation) \\ - \ L(E^*) = \{ \ w^i \ | \ w \in L(E) \ and \ i \in \mathbb{N} \ \} & (finite \ repetition) \end{array}
```

Regular languages

- A set of finite words L is a regular language...
 - iff L = L(E) for some regular expression E
 - iff L = L(A) for some finite automaton A

Operations on NFA

- Can construct NFA from regular expression inductively
 - includes addition (and then removal) of ϵ -transitions

- Can construct the intersection of two NFA
 - build (synchronised) product automaton
 - cross product of $A_1 \otimes A_2$ accepts $L(A_1) \cap L(A_2)$

Deterministic finite automata

- A finite automaton is deterministic if:
 - $|Q_0| = 1$
 - $|\delta(q, \alpha)| \le 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors
- A deterministic finite automaton (DFA) is total if:
 - $-|\delta(q, \alpha)| = 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. unique successor states
- A total DFA
 - can always be constructed from a DFA
 - has a unique run for any word $w \in \Sigma^*$

Determinisation: NFA → DFA

- Determinisation of an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
 - i.e. removal of choice in each automata state
- Equivalent DFA is $A_{det} = (2^{Q}, \Sigma, \delta_{det}, q_0, F_{det})$ where:

$$-\delta_{det}(Q', \alpha) = \bigcup_{\alpha \in Q'} \delta(q, \alpha)$$

$$- \mathsf{F}_{\mathsf{det}} = \{ \mathsf{Q'} \subseteq \mathsf{Q} \mid \mathsf{Q'} \cap \mathsf{F} \neq \emptyset \}$$

Note exponential blow-up in size...

regexp:

$$(\alpha+\beta)*\beta(\alpha+\beta)$$

Other properties of NFA/DFA

- NFA/DFA have the same expressive power
 - but NFA can be more efficient (up to exponentially smaller)
- NFA/DFA are closed under complementation
 - build total DFA, swap accept/non-accept states
- For any regular language L, there is a unique minimal DFA that accepts L (up to isomorphism)
 - efficient algorithm to minimise DFA into equivalent DFA
 - partition refinement algorithm (like for bisimulation)
- Language emptiness of an NFA reduces to reachability
 - L(A) $\neq \emptyset$ iff can reach a state in F from an initial state in Q₀

Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/...
 - e.g. DTMC D = (S, s_{init} , P, Lab)
 - where labelling Lab uses atomic propositions from set AP
 - let $\omega \in Path(s)$ be some infinite path
- Temporal logic properties
 - for some temporal logic (path) formula ψ , does $\omega \models \psi$?
- Traces and languages
 - trace(ω) $\in (2^{AP})^{\omega}$ denotes the projection of state labels of ω
 - i.e. $trace(s_0s_1s_2s_3...) = Lab(s_0)Lab(s_1)Lab(s_2)Lab(s_3)...$
 - − for some language L ⊆ $(2^{AP})^{\omega}$, is trace(ω) ∈ L?

Atomic propositions

- AP = { fail, try }
- $-2^{AP} = {\emptyset, \{fail\}, \{try\}, \{fail,try\}}$

Paths and traces

- $e.g. \omega = s_0 s_1 s_1 s_2 s_0 s_1 s_2 s_0 s_1 s_3 s_3 s_3 ...$
- $-\operatorname{trace}(\omega)=\varnothing \operatorname{try} \operatorname{fail} \varnothing \operatorname{try} \operatorname{fail} \varnothing \operatorname{try} \varnothing \varnothing \varnothing \ldots$

Languages

- e.g. "no failures"
- $-L = \{ \alpha_1 \alpha_2 ... \in (2^{AP})^{\omega} \mid \alpha_i \text{ is } \emptyset \text{ or } \{try\} \text{ for all } i \}$

Regular safety properties

- A safety property P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language),
 w has a prefix w', all extensions of which, also violate P
- A regular safety property is
 - safety property for which the set of "bad prefixes" (finite violations) forms a regular language
- Formally...
 - $-P\subseteq (2^{AP})^{\omega}$ is a safety property if:
 - · \forall w ∈ ((2^{AP}) ω \P) . \exists finite prefix w' of w such that:
 - $P \cap \{ w'' \in (2^{AP})^{\omega} \mid w' \text{ is a prefix of } w'' \} = \emptyset$
 - P is a regular safety property if:
 - { $w' \in (2^{AP})^* \mid \forall w'' \in (2^{AP})^{\omega}$. $w'.w'' \notin P$ } is regular

Regular safety properties

- A safety property P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language),
 w has a prefix w', all extensions of which, also violate P
- A regular safety property is
 - safety property for which the set of "bad prefixes" (finite violations) forms a regular language
- Examples:
 - "at least one traffic light is always on"
 - "two traffic lights are never on simultaneously"
 - "a red light is always preceded immediately by an amber light"

- Regular safety property:
 - "at most 2 failures occur"
 - language over:

```
2^{AP} = { \varnothing, \{fail\}, \{try\}, \{fail,try\} }
```


- Regular safety property:
 - "at most 2 failures occur"
 - language over:

$$2^{AP} = { \emptyset, \{fail\}, \{try\}, \{fail,try\} }$$

Bad prefixes (regexp):

$$(\neg fail)*.fail.(\neg fail)*.fail.(\neg fail)*.fail$$

Bad prefixes (DFA):

fail denotes: ({fail} + {fail,try}) ¬fail denotes: (∅ + {try})

fail denotes: {fail}, {fail,try} ¬fail denotes: Ø, {try}

Regular safety properties + DTMCs

- Consider a DTMC D (with atomic propositions from AP) and a regular safety property $P \subseteq (2^{AP})^{\omega}$
- Let Prob^D(s, P) denote the probability of P being satisfied
 - − i.e. $Prob^{D}(s, P) = Pr^{D}_{s} \{ \omega \in Path(s) \mid trace(\omega) \in P \}$
 - where Pr^D_s is the probability measure over Path(s) for D
 - this set is always measurable (see later)
- Example (safety) specifications
 - "the probability that at most 2 failures occur is ≥ 0.999 "
 - "what is the probability that at most 2 failures occur?"
- How to compute Prob^D(s, P)?

Product DTMC

- We construct the product of
 - a DTMC D = (S, s_{init} , P, L)
 - and a (total) DFA $A = (Q, \Sigma, \delta, q_0, F)$
 - intuitively: records state of A for path fragments of D
- The product DTMC D ⊗ A is:
 - the DTMC ($S \times Q$, (s_{init}, q_{init}), P', L') where:
 - $\ q_{init} = \delta(q_0, L(s_{init}))$
 - $\mathbf{P'}((s_1, q_1), (s_2, q_2)) = \begin{cases} \mathbf{P}(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$
 - L'(s,q) = { accept } if q \in F and L'(s,q) = \emptyset otherwise

Product DTMC

- One interpretation of D ⊗ A:
 - unfolding of D where q for each state (s,q) records state of automata A for path fragment so far
- In fact, since A is deterministic...
 - for any $\omega \in Path(s)$ of the DTMC D:
 - there is a unique run in A for trace(ω)
 - and a corresponding (unique) path through D ⊗ A
 - for any path $\omega' \in Path^{D\otimes A}(s,q_{init})$ where $q_{init} = \delta(q_0,L(s))$
 - · there is a corresponding path in D and a run in A
- DFA has no effect on probabilities
 - i.e. probabilities preserved in product DTMC

Regular safety properties + DTMCs

- Regular safety property $P \subseteq (2^{AP})^{\omega}$
 - "bad prefixes" (finite violations) represented by DFA A
- Probability of P being satisfied in state s of D

```
\begin{split} - & \text{ Prob}^{\text{D}}(s, \, P) = \text{Pr}^{\text{D}}_{s} \{ \, \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \, \} \\ &= 1 - \text{Pr}^{\text{D}}_{s} \{ \, \omega \in \text{Path}(s) \mid \text{trace}(\omega) \notin P \, \} \\ &= 1 - \text{Pr}^{\text{D}}_{s} \{ \, \omega \in \text{Path}(s) \mid \text{pref}(\text{trace}(\omega)) \cap \text{L}(A) \neq \emptyset \, \} \end{split}
```

where pref(w) = set of all finite prefixes of infinite word w

$$Prob^{D}(s, P) = 1 - Prob^{D \otimes A}((s,q_s), F accept)$$

- where $q_s = \delta(q_0, L(s))$

Prob^D(s₀, "at most 2 failures occur")

Summing up...

- Nondeterministic finite automata (NFA)
 - can represent any regular language, regular expression
 - closed under complementation, intersection, ...
 - (non-)emptiness reduces to reachability
- Deterministic finite automata (DFA)
 - can be constructed from NFA through determinisation
 - equally expressive as NFA, but may be larger
- Regular safety properties
 - language representing set of possible traces
 - bad (violating) prefixes form a regular language
- Probability of a regular safety property on a DTMC
 - construct product DTMC
 - reduces to probabilistic reachability