Apèndix: vectors i valors propis d'una matriu

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Matemàtiques Troc comú en Biologia i Biotecnologia

jordi.villa@uvic.cat

darrera actualització 8 d'octubre de 2025

curs 2025-2026

1/11

Índex

Conceptes bàsics

Càlcul d'autovalors i autovectors

Conceptes bàsics

El producte d'una matriu $A_{n\times n}$ per un vector $v\in\mathbb{R}^n$ dona com a resultat un altre vector Av de la mateixa dimensió.

Vectors privilegiats

Hi ha vectors v tals que:

$$Av = \lambda v$$

on λ és un escalar real o complex. Aquests vectors v mantenen la mateixa direcció que l'original, encara que poden canviar de longitud.

 $\Rightarrow v$ és un **autovector** i λ és el seu **autovalor**.

Definició formal

Definició

Siguin A una matriu $n \times n$ i $v \neq 0$ un vector. Si existeix un nombre λ tal que:

$$Av = \lambda v$$

aleshores:

- v és un autovector o vector propi de A.
- λ és el seu autovalor o valor propi associat.

Nota: El càlcul d'autovalors i autovectors no és senzill en general, excepte per a matrius de dimensions 2 o 3.

Càlcul dels autovalors

Definició

Els autovalors λ d'una matriu A són les solucions de:

$$\det(A - \lambda I) = 0$$

on I és la matriu identitat i det denota el determinant.

Observació: Una matriu real pot tenir autovalors complexos.

El determinant d'una matriu quadrada és un nombre real que permet estudiar el nombre de solucions d'un sistema lineal.

Determinants de matrius petites

Per a una matriu 2×2 :

$$A = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \Rightarrow \det(A) = a_{11}a_{22} - a_{12}a_{21}$$

Per a una matriu 3×3 :

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

Aquesta fórmula es pot recordar gràcies a la Regla de Sarrus.

Exemples

$$A = \begin{pmatrix} 5 & 1 \\ 3 & 2 \end{pmatrix}$$

$$det(A) = 5 \cdot 2 - 1 \cdot 3 = 10 - 3 = 7$$

$$A = \begin{pmatrix} 5 & 1 & 0 \\ 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

$$det(A) = 5(2)(2) + 1(1)(1) + 3(0)(0) - 0(2)(1) - 3(1)(2) - 5(1)(0)$$
$$\Rightarrow det(A) = 20 - 1 + 0 - 0 - 6 - 0 = 13$$

Exemple - Autovalors d'una matriu 2×2

$$A = \begin{pmatrix} 5 & 1 \\ 6 & 0 \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} 5 - \lambda & 1 \\ 6 & -\lambda \end{pmatrix} \Rightarrow \det(A - \lambda I) = (5 - \lambda)(-\lambda) - 6 = \lambda^2 - 5\lambda + 6$$

$$\Rightarrow \lambda_1=3,\ \lambda_2=2$$

$$A = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A - \lambda I) = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda = \pm 2i$$

Conclusió: Els autovalors poden ser complexos, fins i tot si A és real \blacksquare

Càlcul dels autovectors

Si λ és un autovalor de A, aleshores el seu autovector v compleix:

$$(A - \lambda I)v = 0$$

És un sistema lineal homogeni en les components de v. Per tant, conegut λ , podem trobar v resolent aquest sistema.

- Hi ha infinites solucions per a cada autovalor: qualsevol múltiple escalar d'un autovector també ho és.
- Per a matrius grans, és pràctic fer servir programes com MATLAB,
 Python (NumPy) o Octave.

Exemple - Autovectors

$$A = \begin{pmatrix} 5 & 1 \\ 6 & 0 \end{pmatrix}$$

Els autovalors són $\lambda_1 = 3$ i $\lambda_2 = 2$.

Per a $\lambda_1 = 3$:

$$(A-3I)v=0\Rightarrow\begin{pmatrix}2&1\\6&3\end{pmatrix}\begin{pmatrix}v_1\\v_2\end{pmatrix}=0\Rightarrow v_2=-2v_1\Rightarrow v=\begin{pmatrix}1\\-2\end{pmatrix}$$

Per a $\lambda_2 = 2$:

$$(A-2I)w=0\Rightarrow \begin{pmatrix} 3 & 1 \\ 6 & -2 \end{pmatrix}\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}=0 \Rightarrow w_2=-3w_1\Rightarrow w=\begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

Bibliografia

El material d'aquestes presentacions està basat en anteriors presentacions i apunts d'altres professors [Corbera(2019)] de la UVic-UCC i d'altres universitats [de Souza(2025)], i pàgines web diverses (normalment enllaçades des del text).

Montserrat Corbera.

Unitat 2. Càlcul integral.

Universitat de Vic - Universitat Central de Catalunya, Facultat de Ciències i Tecnologia, Vic, Barcelona, 2019. Drets reservats. No es pot copiar sense permís de l'autora.

Diego Araújo de Souza.

Matemáticas aplicadas a la biología.

Apuntes de classe; grado en Biología, asignatura de matemáticas, 2025.

Departamento de Ecuaciones diferenciales y Análsis Numérico; Universidad de Sevilla.

