Perencanaan Distribusi Uang Rupiah Bank Indonesia

Kreiton Sitorus (13416006)

Pendahuluan

Pengelolaan uang rupiah sebagai rantai suplai

Pada dasarnya, pengelolaan uang rupiah adalah sebuah rantai suplai. Terdapat enam (6) aktivitas:

- Perencanaan
- Pencetakan
- Pengeluaran
- Pengedaran
- Pencabutan/Penarikan
- Pemusnahan

Pengedaran uang rupiah oleh Command Center DPU

Departemen Pengedaran Uang (DPU) bertanggung jawab untuk mendistribusikan uang rupiah yang diproduksi oleh PERURI. Tugas DPU adalah:

Memastikan persediaan uang rupiah tiap khazanah cukup untuk memenuhi kebutuhan uang rupiah masyarakat di wilayah operasional.

Asal	Tujuan	Moda	Muatan	Kontainer
Jakarta	Medan	Kapal	Rp50k : 1000 peti Rp20k : 2000 peti Rp10k : 500 peti	1
Samarinda	Palu	Truk	Rp50k : 200 peti Rp20k : 50 peti Rp10k : 0 peti	1
Jakarta	Surabaya	Kereta	Rp50k : 2000 peti Rp20k : 1000 peti Rp10k : 1000 peti	2

Pengendalian Inventori Konvensional

Perencanaan distribusi Bank Indonesia masih banyak menyerupai pengendalian inventori konvensional yang **didasari permintaan pelanggan** – yang pada kasus ini adalah **khazanah-khazanah** Bank Indonesia.

Pengendalian Inventori Konvensional

Pendekatan ini mendikotomikan **manajemen inventori** dengan **manajemen transportasi** – dua komponen krusial dalam manajemen logistik dan menghambat optimasi sistem (Kleywegt, 2002)

Vendor-managed Inventory

- Vendor-managed inventory adalah sebuah konsep di mana pengisian ulang inventori di sejumlah lokasi dikendalikan oleh pengambil keputusan pusat – sebuah vendor.
- Salah satu permasalahan inti dari konsep ini adalah *inventory routing problem* yang didefinisikan sebagai:

Distribusi berulang komoditas (pengiriman dengan jumlah tertentu) dari fasilitas penyedia ke fasilitas penerima melalui armada yang ada untuk memastikan ketersediaan komoditas dengan biaya minimal sepanjang periode perencanaan yang ditetapkan (Campbell et al., 1998).

Rumusan Masalah

Penelitian ini menjawab:

Bagaimana perencanaan distribusi uang rupiah Bank Indonesia dioptimasi melalui penyelesaian inventory routing problem?

Dikembangkan sebuah skema yang mengutilisasi data-data jaringan untuk mencari rencana distribusi terbaik yang meminimasi biaya total dan memastikan persediaan selalu cukup agar khazanah dapat memenuhi kebutuhan masyarakat.

Metodologi

Dikembangkan **jaringan terekspansi waktu** sebagai representasi permasalahan. Kemudian, representasi tersebut diformulasikan sebagai **pemrograman integer campuran** yang diselesaikan dengan aproksimasi *optimality gap*. Penggunaan model dan algoritma dalam kerangka *rolling horizon* diujikan dalam sebuah **studi simulasi**.

Pengembangan

Pemahaman Masalah

Permasalahan didefinisikan di atas jaringan yang terdiri dari kumpulan khazanah, trayek yang menghubungkan, serta moda transportasi untuk tiap trayek.

Khazanah

Nama	Lokasi	Kapasitas
Jakarta	(0.5334, 3.207)	14192
Bandung	(-0.692, -1.373)	711
Surabaya	(-0.885, -3.635)	2729
Yogyakarta	(-1.123,3.348)	1207
Cirebon	(-0.464, 1.296)	960

Trayek

Asal	Tujuan	Moda	
Jakarta	Yogyakarta	Truk	
Jakarta	Yogyakarta	Kereta	
Jakarta	Cirebon	Truk	
Cirebon	Jakarta	Truk	
Bandung	Surabaya	Kereta	
Bandung	Cirebon	Truk	

Moda

Nama	Kapasitas (peti/kontainer)	Biaya Variabel (Rp/peti)	Biaya Tetap (Rp/km/kontainer)
Truk	500	48.000	45.000
Kereta	1200	60.000	32.000

Tingkat Persediaan

Khazanah	Pecahan	Persediaan (peti)	Nilai Ekuivalen (Rp(
Jakarta	Rp50k	378,79	378 miliar
Bandung	Rp20k	394,07	157,6 miliar
Surabaya	Rp20k	51,61	20,6 miliar

(Estimasi) Permintaan

Khazanah	Pecahan	Periode	Kebutuhan (peti)	Nilai Ekuivalen (rupiah)
Jakarta	Rp50k	1	37,74	37,74 miliar
Jakarta	Rp50k	2	-89,19	-89,19 miliar
Jakarta	Rp20k	1	387,75	155,1 miliar
Jakarta	Rp20k	2	148,29	59,32 miliar
Bandung	Rp50k	1	-60,70	-60,70 miliar
Bandung	Rp20k	1	-35,92	-14,37 miliar

Formulasi Model

$$egin{aligned} & \min \operatorname{obj}(\mathbf{x},\mathbf{y}) = \sum_{a \in A} \left[var_a \cdot \sum_{p \in P} x_a^p + fix_a \cdot dist_a \cdot y_a
ight] \ & ext{s.t.} \quad \sum_{a \in \operatorname{IN}(n)} x_a^p - \sum_{a \in \operatorname{OUT}(n)} x_a^p & = d_n^p & orall n \in N_{plan}, p \in P \ & \sum_{a \in \operatorname{OUT}(n)} x_a^p & = stock_n^p & orall n \in N_{init}, p \in P \ & \sum_{a \in \operatorname{IN}(n)} x_a^p & = sink_n^p & orall n \in N_{sink}, p \in P \ & \sum_{p \in P} x_a^p & \leq Q_a \cdot y_a & orall a \in A \end{aligned}$$

$$egin{array}{lll} sink_n^p & \in & \mathbb{R}_{\geq 0} & orall n \in N_{sink}, p \in P \ x_a^p & \in & \mathbb{R}_{\geq 0} & orall a \in A, p \in P \ y_a & \in & igl[0,1igr] & orall a \in A_{inv} \ y_a & \in & \mathbb{N}_0 & orall a \in A_{trans} \ \end{array}$$