Теоретическая контрольная работа по Теории вероятностей

Над файлом работали:

Баранников Андрей Б01-001 Дорин Даниил Б01-001 Киселев Никита Б01-001 Лепарский Роман Б01-003 Овсянников Михаил Б01-001 Филиппенко Павел Б01-001

Содержание

1	Билет №1. Определение сигма-алгеоры подмножеств и измеримого про- странства.	3
2	Билет №2. Определение вероятности и вероятностного пространства.	3
3	Билет №3. Свойства вероятности. Теорема сложения.	3
4	Билет №4. Условная вероятность и теорема умножения.	4
5	Билет №5. Формула полной вероятности.	4
6	Билет №6. Формула Байеса.	4
7	Билет №7. Свойство непрерывности вероятностной меры.	5
8	Билет №8. Независимость событий.	5
9	Билет №9. Схема Бернулли.	5
10	Билет №10. Теорема Пуассона для Схемы Бернулли.	6
11	Билет №11. Полиномиальная схема.	6
12	Билет №12. Лемма Бореля-Кантелли.	6
13	Билет №13. Дискретные случайные величины. Представление простой случайной величины индикаторами.	6
14	Билет \mathbb{N} 14. Определения и свойства математического ожидания простых случайных величин.	7
15	Билет №15. Определение и свойства дисперсии простых случайных величин.	8
16	Билет № 16. Теорема о независимости алгебр, порождённых разбиениями.	8
17	Билет № 17. Независимость случайных величин и свойства математического ожидания и дисперсии, связанных с независимостью.	8
18	Билет \mathbb{N} 18. Целочисленные случайные величины и свойства производящих функций.	9
19	Билет № 19. Теорема о случайной сумме независимых целочисленных случайных величин.	9
20	Билет №20. Совместные распределения простых случайных величин и условие независимости.	9
21	Билет №21. Ковариация и коэффициент корреляции, их свойства.	10
22	Билет №22. Ковариационная матрица и её свойства.	11

23	Билет №23. Задача линейного оценивания. Уравнение регрессии.	11
24	Билет \mathbb{N} 24. Борелевская сигма-алгебра и общее определение случайной величины.	12
25	Билет №25. Борелевские функции.	13
26	Билет №26. Аппроксимационная теорема и определение математического ожидания как интеграла Лебега.	13
27	Билет 27. Неравенства Маркова и Чебышева.	14
28	Билет 28. Характеристические функции и их свойства.	14
29	Билет 29. Характеристические функции показательного и нормального распределения.	15
30	Билет 30. Определение и критерий сходимости почти наверное для последовательности случайных величин.	16
31	Билет 31. Законы больших чисел Чебышева и Бернулли.	16
32	Билет 32. Усиленный закон больших чисел.	16
33	Билет 33. Сходимость по распределению, центральная предельная теорема.	16
34	Билет №34. Закон больших чисел Хинчина.	17
35	Билет №35. Теорема Бернштейна о приближении непрерывной функции полиномами.	17
36	Билет №36. Условие марковости и однородности цепи в терминах переходных вероятностей.	17
37	Билет №37. Уравнение Колмогорова-Чепмена.	18
38	Билет №38. Теорема о предельных вероятностях марковской цепи.	18
39	Билет №39. Вероятность вырождения процесса Гальтона-Ватсона и ее выражение через производящую функцию.	19
40	Билет №40. Классификация процессов Гальтона-Ватсона и вероятность вырождения.	19

Билет №1. Определение сигма-алгебры подмножеств и измеримого пространства.

Определение: Пусть \mathscr{A} — класс подмножеств Ω , для которого выполняются следующие условия:

- 1. $\Omega \in \mathscr{A}$
- 2. Если $A \in \mathscr{A} \Rightarrow \overline{A} \in \mathscr{A}$
- 3. Если $A_1, A_2, \ldots \in \mathscr{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$

Тогда \mathscr{A} является сигма-алгеброй подмножеств Ω .

Замечание: Класс Я замкнут относительно счетного множества операций.

Определение: Ω – некоторое непустое множество и \mathscr{A} – некоторая сигма-алгебра его подмножеств, тогда пару (Ω, \mathscr{A}) называют *измеримое пространство*.

2 Билет №2. Определение вероятности и вероятностного пространства.

Определение: Пусть (Ω, \mathscr{A}) – измеримое пространство, тогда функция \mathbb{P} , определенная на сигма-алгебре $\mathscr{A} \mathbb{P} : \mathscr{A} \longrightarrow \mathbb{R}_+$, которая удовлетворяет условиям:

- 1. $\mathbb{P}(\Omega) = 1$ (нормированность)
- 2. Если $A_1,A_2,\ldots\in\mathscr{A}$ и $A_iA_j=\mathscr{O}$ при $i\neq j,$ то $\mathbb{P}(\bigcup_{i=1}^\infty A_i)=\sum_{i=1}^\infty \mathbb{P}(A_i)$ (аддитивность) называется вероятностью.

Определение: тройка $(\Omega, \mathscr{A}, \mathbb{P})$, Ω – непустое, \mathscr{A} – сигма-алгебра подмножеств Ω, \mathbb{P} : $\mathscr{A} \longrightarrow \mathbb{R}_+$ – вероятность, определенная на (Ω, \mathscr{A}) , называется вероятностное пространство.

3 Билет №3. Свойства вероятности. Теорема сложения.

Свойства вероятности:

- 1. Если $A,B\in\mathscr{A}$ и $A\subseteq B,$ то $\mathbb{P}(B\backslash A)=\mathbb{P}(B)-\mathbb{P}(A)$
- 2. $A \in \mathcal{A} \Rightarrow \mathbb{P}(\overline{A}) = 1 \mathbb{P}(A), \ 0 \leq \mathbb{P}(A) \leq 1$
- 3. $A,B\in\mathscr{A}$, to $\mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(AB)$

Теорема [сложения]: пусть A_1, \ldots, A_n – события $\in \mathscr{A}$, тогда

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{1 \le i_1 < i_2 \le n} \mathbb{P}(A_{i_1} A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} \mathbb{P}(A_{i_1} A_{i_2} A_{i_3}) - \dots + (-1)^{n-1} \cdot \mathbb{P}(A_1 \dots A_n)$$

Предложение [Полуаддитивность]: пусть A_1,\ldots,A_n – события $\in \mathscr{A}$, тогда

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} \mathbb{P}(A_i)$$

4 Билет №4. Условная вероятность и теорема умножения.

Определение: Пусть A и B два события $\in \mathscr{A}$ и $\mathbb{P}(B) > 0$. Тогда под условной вероятностью события A при условии B будем понимать

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Теорема (умножения): пусть A_1,\ldots,A_n – события $\in \mathscr{A},\mathbb{P}(A_1\ldots A_n)>0$. Тогда

$$\mathbb{P}(A_1 \dots A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 A_2) \cdot \dots \cdot \mathbb{P}(A_n | A_1 \dots A_{n-1})$$

5 Билет №5. Формула полной вероятности.

Теорема (Формула полной вероятности): Пусть $H_1,\dots,H_n\in\mathscr{A}:H_iH_j=\varnothing$ при $i\neq j$ и $\mathbb{P}(H_i)>0,\ i=\overline{1,n}.$ $\sum_{i=1}^n\mathbb{P}(H_i)=1.$ Тогда $\forall A\in\mathscr{A}:$

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(H_i) \cdot \mathbb{P}(A|H_i)$$

Замечание: H_1, \ldots, H_n -полная группа событий (гипотезы).

 $\bigcup_{i=1}^n H_i = \Omega$. $\mathbb{P}(H_i)$ – априорные вероятности, $\mathbb{P}(A) > 0$.

6 Билет №6. Формула Байеса.

Теорема [Формула Байеса]: Пусть события H_1, H_2, \ldots, H_n такие что: $H_i H_j = \varnothing$ при $i \neq j; \ \forall i \to \mathbb{P}(H_i) > 0; \ \sum_{i=1}^n \mathbb{P}(H_i) = 1$, событие $A \in \mathscr{A}$ и P(A) > 0, тода для $k = 1, 2, \ldots, n$ имеют место равенства:

$$\mathbb{P}(H_k|A) = \frac{\mathbb{P}(H_k)\mathbb{P}(A|H_k)}{\sum_{i=1}^{n} \mathbb{P}(H_i)\mathbb{P}(A|H_i)}$$

Комментарий: Вероятности гипотез $\mathbb{P}(H_k)$ называют обычно *априорными вероятностями*, а условные вероятности $\mathbb{P}(H_k|A)$ — *апостериорными*. Таким образом, формула Байеса позволяет «переоценить» априорную вероятность гипотезы при наличии информации, что произошло событие A.

7 Билет №7. Свойство непрерывности вероятностной меры.

$$(\Omega, \mathscr{F}, \mathbb{P})$$
 $\{A_n\} \subset \mathscr{F} \quad n = 1, 2, \dots$

 A^* – произошло бесконечно много событий A_n

 A_* – произошли все события A_n , за исключением, быть может, конечного числа

$$A^* = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k := \overline{\lim}_{n \to \infty} A_n$$

$$A_* = \bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k := \underline{\lim}_{n \to \infty} A_n$$

Теорема [Свойство непрерывности вероятностной меры]: $(\Omega, \mathscr{F}, \mathbb{P})$ – вероятностное пространство $\Rightarrow \forall$ монотонной последовательности $\{A_n\}$ $\mathbb{P}(\lim A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$

8 Билет №8. Независимость событий.

Определение: $A, B \in \mathscr{F}$ независимы, если

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$$

Определение: Семейство событий $\{A_i\}_{i\in I}$ называется независимым (в совокупности), если \forall конечного подмножества индексов $I_0\subset I$

$$\mathbb{P}(\bigcap_{i\in I_0} A_i) = \prod_{i\in I_0} \mathbb{P}(A_i)$$

Замечание: заметим, что из попарной независимости событий не следует, вообще говоря, независимость в совокупности. Кроме того, при проверке независимости в совокупности не достаточно ограничиться проверкой лишь самых длинных цепочек в равенстве.

9 Билет №9. Схема Бернулли.

Допустим, что проводится серия из n независимых испытаний, в каждом из которых с вероятностью 0 , может наступить и с вероятностью <math>q = 1 - p может не наступить некоторое событие A. Пусть событие $B_n(k)$, заключается в том, что в проведенной серии испытаний событие A произошло k раз, $k = 0, 1, \ldots, n$, тогда вероятность этого события вычисляется по формуле:

$$\mathbb{P}(B_n(k)) = C_n^k p^k q^{n-k}$$

Замечание: События $B_n(k), k=0,1,\ldots,n,$ образуют разбиение. Это подтверждается равенством

$$\sum_{k=0}^{n} \mathbb{P}(B_n(k)) = \sum_{k=0}^{n} C_n^k p^k q^{n-k} = (p+q)^n = 1$$

Формула для $\mathbb{P}(B_n(k))$ выражает распределение вероятностей числа успехов в n независимых испытаниях. Это распределение называют биномиальным.

10 Билет №10. Теорема Пуассона для Схемы Бернулли.

При больших значениях n реализация формулы для схемы Бернулли сопряжена с трудоемкими вычислениями. Поэтому ее пытаются заменить приближенными формулами. Следующий результат относится к случаю, когда p мало, а n велико. В связи с малостью p этот результат иногда называют законом редких событий.

Теорема [Пуассона для схемы Бернулли]: Если $n \to \infty$ и $p \to 0$ так, что $np \to \lambda$, $0 < \lambda < \infty$, то при всех $k = 0, 1, 2, \dots$ выполняется соотношение:

$$\mathbb{P}(B_n(k)) = C_n^k p^k q^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$$

Замечание: Доказанная теорема относится к так называемым предельным теоремам в схеме Бернулли. Распределение вероятностей

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda}$$

к которому стремится в условиях теоремы биномиальное распределение, называют nyac-соновским распределением.

11 Билет №11. Полиномиальная схема.

Полиномиальная схема является обобщением схемы Бернулли. Здесь результатом каждого испытания может быть один из r взаимоисключающих исходов A_1, \ldots, A_r с вероятностями появления p_1, \ldots, p_r , соответственно, $p_1 + \cdots + p_r = 1$.

Подобно событию $B_n(k)$, которое рассматривалось в схеме Бернулли, в полиномиальной схеме вводится событие $B_n(k_1,\ldots,k_r)$, состоящее в том, что в серии из n экспериментов произошло k_1 исходов с номером $1,\ldots,k_r$ исходов с номером $r,k_1+\cdots+k_r=n$. Вероятность такого события расчитывается по формуле:

$$\mathbb{P}(B_n(k_1, \dots, k_r)) = \frac{n!}{k_1! \dots k_r!} p_1^{k_1} \dots p_r^{k_r}$$

12 Билет №12. Лемма Бореля-Кантелли.

Лемма [Бореля-Кантелли]: Пусть A_1, A_2, \ldots последовательность событий. Тогда имеют место следующие утверждения:

1. Если
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$$
, то $\mathbb{P}(\overline{\lim} A_n) = 0$

2. Если
$$\sum\limits_{n=1}^{\infty}\mathbb{P}(A_n)=\infty$$
 и $\{A_n\}$ независимы, то $\mathbb{P}(\varlimsup A_n)=1$

13 Билет №13. Дискретные случайные величины. Представление простой случайной величины индикаторами.

$$(\Omega, \mathscr{F}, \mathbb{P})$$
 $\xi: \Omega \to \mathbb{R}$

Определение: ξ называется дискретной случайной величиной, если $\xi(\Omega)$ – конечное либо счётное подмножество $\mathbb R$ и $\{\omega: \xi(\omega)=x\}\in \mathscr F\ \forall x\in \mathbb R$. $\xi(\Omega)$ конечно $\Rightarrow \xi$ называется простой случайной величиной.

Простейшей случайной величиной является индикатор события $A \in \mathscr{F}$, который определяется равенством

$$\mathbb{1}_{A}(\omega) = \begin{cases} 1, & \text{если} & \omega \in A, \\ 0, & \text{если} & \omega \notin A. \end{cases}$$

Основные свойства индикаторов:

$$\begin{split} \mathbb{1}_{\Omega}(\omega) &\equiv 1, \quad \mathbb{1}_{\varnothing}(\omega) \equiv 0, \quad \mathbb{1}_{\overline{A}}(\omega) = 1 - \mathbb{1}_{A}(\omega) \\ \mathbb{1}_{\cap A_i} &= \prod \mathbb{1}_{A_i}, \quad \mathbb{1}_{\cup A_i} = 1 - \mathbb{1}_{\overline{\cup A_i}} = 1 - \mathbb{1}_{\cap \overline{A_i}} = 1 - \prod (1 - \mathbb{1}_{A_i}) \end{split}$$

Пусть ξ - случайная величина, принимающая значения $x_1,...,x_n$ соответственно на $D_1,...,D_n$, т.е. $\mathscr{D}_{\xi} = \{D_1,...,D_n\}$. Тогда

$$\xi = \sum_{i=1}^{n} x_i \mathbb{1}_{D_i}$$

14 Билет №14. Определения и свойства математического ожидания простых случайных величин.

Определение: Пусть ξ – простая случайная величина, $\xi(\Omega) = \{x_1, \dots, x_n\}$, $\mathbb{P}_{\xi}(x_i)$, $i = 1, \dots, n$ – распределение вероятностей. Тогда под математическим ожиданием (средним) будем понимать

$$\mathbb{E}\xi := \sum_{i=1}^{n} x_i \mathbb{P}(D_i) = \sum_{i=1}^{n} x_i \mathbb{P}(\xi = x_i)$$

Замечание: Если случайная величина ξ , допускает представление

$$\xi = \sum_{i=1}^{N} y_i \mathbb{1}_{H_i},$$

где $\{H_1,...,H_N\}$ - разбиение, а $y_1,...,y_N$ не обязательно все различные то

$$\mathbb{E}\xi = \sum_{j=1}^{N} y_j \mathbb{P}(H_j)$$

Свойства математического ожидания простых случайных величин.

- 1. $\mathbb{E}\mathbb{1}_A = \mathbb{P}(A)$
- 2. (Линейность) Если ξ, η простые случайные величины, $c \in \mathbb{R}$, то

$$\mathbb{E}(\xi) = \mathbb{E}\xi$$
 $\mathbb{E}(\xi + \eta) = \mathbb{E}\xi + \mathbb{E}\eta$

- 3. (Монотонность) Если $\xi \geqslant 0$, то $\mathbb{E}\xi \geqslant 0$ и $\mathbb{E}\xi = 0 \Leftrightarrow \mathbb{P}(\xi = 0) = 1$ ($\xi = 0$ почти наверное)
- 4. $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$
- 5. (Неравенство Шварца) $(\mathbb{E}\xi\eta)^2 \leqslant (\mathbb{E}\xi^2)(\mathbb{E}\eta^2)$

15 Билет №15. Определение и свойства дисперсии простых случайных величин.

Определение Дисперсией случайной величины ξ называется число

$$\mathbb{D}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2$$

Величина $\sigma_{\xi} = \sqrt{\mathbb{D}\xi}$ называется стандартным (или среднеквадратическим) отклонением.

Свойства дисперсии.

- 1. $\mathbb{D}\xi = \mathbb{E}\xi^2 (\mathbb{E}\xi)^2$;
- 2. Для любого вещественного числа с и случайной величины ξ имеют место равенства

$$\mathbb{D}(c\xi) = c^2 \mathbb{D}\xi, \quad \mathbb{D}(\xi + c) = \mathbb{D}\xi;$$

3. Равенство $\mathbb{D}\xi = 0$ возможно лишь в случае $\mathbb{P}(\xi = \mathbb{E}\xi) = 1$, т.е. случайная величина ξ почти наверное равна постоянной.

16 Билет № 16. Теорема о независимости алгебр, порождённых разбиениями.

Определение: $(\Omega, \mathscr{F}, \mathbb{P})$ – вероятностное пространство, $\mathscr{A}_1, \ldots, \mathscr{A}_n$ – алгебра событий, т.е. $\mathscr{A}_k \subset \mathscr{F}, k = 1, \ldots, n$. Будем говорить, что $\mathscr{A}_1, \ldots, \mathscr{A}_n$ независимы, если $\forall A_1 \in \mathscr{A}_1, \ldots, A_n \in \mathscr{A}_n : \mathbb{P}(A_1 \ldots A_n) = \mathbb{P}(A_1) \cdot \ldots \cdot \mathbb{P}(A_n)$.

Теорема: Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ – вероятностное пространство и $\mathscr{A}_1, \ldots, \mathscr{A}_n$, которые порождены разбиениями $\mathscr{D}_1, \ldots, \mathscr{D}_n$, т.е. $\mathscr{A}_1 = \mathscr{A}(\mathscr{D}_1), \ldots, \mathscr{A}_n = \mathscr{A}(\mathscr{D}_n)$. Тогда $\mathscr{A}_1, \ldots, \mathscr{A}_n$ независимы $\Leftrightarrow \forall D_1 \in \mathscr{D}_1, \ldots, D_n \in \mathscr{D}_n : \mathbb{P}(D_1 \ldots D_n) = \mathbb{P}(D_1) \cdot \ldots \mathbb{P}(D_n)$

17 Билет № 17. Независимость случайных величин и свойства математического ожидания и дисперсии, связанных с независимостью.

Определение: ξ_1, \dots, ξ_n , определённые на $(\Omega, \mathscr{F}, \mathbb{P})$, называются независимыми, если независимы алгебры $\mathscr{A}_{\xi_1}, \dots, \mathscr{A}_{\xi_n}$.

Замечание: ξ_1, \dots, ξ_n – простые независимые величины. $\varphi_1 : \mathbb{R} \to \mathbb{R}, \dots, \varphi_n : \mathbb{R} \to \mathbb{R}$. $\eta_1 = \varphi_1(\xi_1), \dots, \eta_n = \varphi_n(\xi_n) \Rightarrow \eta_1, \dots, \eta_n$ независимы.

Теорема: Пусть $\xi = \sum_{i=1}^n x_i \mathbb{1}_{D_i}, \eta = \sum_{j=1}^n y_j \mathbb{1}_{H_j}$ - независимые случайные величины. Тогда

$$\mathbb{E}\xi\eta = \mathbb{E}\xi \cdot \mathbb{E}\eta, \quad \mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta.$$

Замечание: $\xi_1, ..., \xi_n$ - простые независимые случайные величины \Rightarrow

$$\mathbb{E}(\xi_1 \dots \xi_n) = (\mathbb{E}\xi_1) \dots (\mathbb{E}_n \xi_n)$$
$$\mathbb{D}(\xi_1 + \dots + \xi_n) = \mathbb{D}\xi_1 + \dots + \mathbb{D}_n \xi_n$$

18 Билет № 18. Целочисленные случайные величины и свойства производящих функций.

Определение Пусть случайная величина ξ принимает счётное число значений: $\mathbb{P}(\xi = x_k) = p_k, k = 1, 2, \dots$ Будем говорить, что для ξ определено математическое ожидание, если сходится числовой ряд $\sum_{k=1}^{\infty} |x_k| p_k$. В этом случае определяется

$$\mathbb{E}\xi = \sum_{k=1}^{\infty} x_k p_k.$$

Дискретную случайную величину ξ , принимающую только целые неотрицательные значения, называют *целочисленной* случайной величиной. Её распределение вероятностей $\mathbb{P}(\xi=k)=p_k, k=0,1,2,...,$ удобно представлять *производящей функцией*

$$g_{\xi}(x) := \mathbb{E}x^{\xi} = \sum_{k=0}^{\infty} p_k x^k.$$

Свойства производящих функций:

- 1. $g_{\xi}(x)$ непрерывна на [-1;1] и $g_{\xi}(1)=1$
- 2. $g_{\xi}(x)$ бесконечно дифференцируема на (-1;1) и

$$\frac{1}{k!}g_{\xi}^{(k)}(0) = p_k$$

3. ξ_1, \ldots, ξ_n — независимые целочисленные случайные величины и $S_n = \xi_1 + \ldots + \xi_n$, тогда производящая функция

$$g_{S_n} = \prod_{k=1}^n g_{\xi_k}(x)$$

19 Билет № 19. Теорема о случайной сумме независимых целочисленных случайных величин.

Теорема: Пусть $\nu, \xi_1, \xi_2 \dots$ - независимые целочисленные случайные величины, при этом ξ_1, \dots, ξ_n одинаково распределены и $g_{\xi}(x)$ - их производящая функция. Тогда $S_{\nu} = \xi_1 + \dots + \xi_{\nu}$ имеет производную функцию:

$$g_{S_{\nu}}(x) = g_{\nu}(g_{\xi}(x))$$

20 Билет №20. Совместные распределения простых случайных величин и условие независимости.

Определение: Случайная величина ξ называется простой, если она принимает лишь конечное число значений.

Пусть случайные величины ξ и η разбивают пространство событий Ω на атомы D_i и H_j , $i=1,\ldots,n; j=1,\ldots,m$ соответственно. Разбиения $\mathscr{D}_{\xi}=\{D_1,\ldots,D_n\},\,\mathscr{D}_{\eta}=\{H_1,\ldots,H_m\}.$ Совместное распределение $\mathbb{P}_{\xi,\eta}(x_i,y_j)=\mathbb{P}(\xi=x_i,\eta=y_j)=\mathbb{P}(D_iH_j)=p_{ij}.$

ξ^{η}	y_1	y_2		y_m
x_1	p_{11}	p_{12}		p_{1m}
x_2	p_{21}	p_{22}		p_{2m}
	:	:	٠.	•
x_n	p_{n1}	p_{n2}		p_{nm}

В этом случае мы можем составить таблицу совместного распределения:

Совместное разбиение $\mathcal{D}_{\xi,\eta}=\{\mathrm{D}_i\mathrm{H}_j\},\ i=1,\ldots,n; j=1,\ldots,m.$ Очевидно, что по построению данной таблицы $\sum\limits_{i,j}p_{ij}=1.$

Также из этой таблицы в каждой строке и каждом столбце соответственно можно видеть:

$$\mathbb{P}_{\xi}(x_i) = \sum_{j=1}^{m} p_{ij}, \qquad \mathbb{P}_{\eta}(y_j) = \sum_{i=1}^{n} p_{ij}.$$

Предположим, что у нас есть некая функция $\varphi(\xi,\eta),\,\varphi\colon\mathbb{R}^2\to\mathbb{R}.$ Тогда:

$$\varphi(\xi, \eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} \varphi(x_i, y_j) \mathbb{1}_{D_i H_j}.$$

Определение: Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ - вероятностное пространство, а $\mathscr{A}_1, \dots, \mathscr{A}_n$ - алгебры событий. Будем говорить, что эти алгебры независимы, если $\forall A_1 \in \mathscr{A}_1, \dots, A_n \in \mathscr{A}_n \longmapsto$ $\mathbb{P}(A_1...A_n) = \mathbb{P}(A_1) \cdot ... \cdot \mathbb{P}(A_n).$

Определение: Случайные величины ξ_1, \dots, ξ_n , определенные на вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$, называются независимыми, если независимы алгебры $\mathscr{A}_{\xi_1}, \dots, \mathscr{A}_{\xi_n}$.

Теорема: (Условие независимости)

Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ - вероятностное пространство и $\mathscr{A}_1, \dots, \mathscr{A}_n$ порождены разбиениями $\mathscr{D}_1,\ldots,\mathscr{D}_n$ соответственно. Тогда:

$$[\mathscr{A}_1,\ldots,\mathscr{A}_n$$
 — независимы $] \Longleftrightarrow [\forall D_1 \in \mathscr{D}_1,\ldots,D_n \in \mathscr{D}_n \longmapsto \mathbb{P}(D_1\ldots D_n) = \mathbb{P}(D_1)\cdot\ldots\cdot\mathbb{P}(D_n)].$

Билет №21. Ковариация и коэффициент корреляции, 21их свойства.

Определение: Пусть ξ и η — две случайные величины, определенные на одном вероятностном пространстве. Под ковариацией этих случайных величин понимается число:

$$cov(\xi, \eta) = \mathbb{E}(\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta).$$

Определение: Под коэффициентом корреляции понимается число:

$$\rho(\xi, \eta) = \frac{\operatorname{cov}(\xi, \eta)}{\sqrt{\mathbb{D}\xi} \cdot \sqrt{\mathbb{D}\eta}}.$$

Свойства ковариации и коэффициента корреляции:

1.
$$cov(\xi, \eta) = \mathbb{E}\xi\eta - \mathbb{E}\xi\mathbb{E}\eta;$$

- 2. Если ξ и η независимы, то $cov(\xi, \eta) = 0$;
- 3. $|\rho(\xi,\eta)| \le 1$ и $|\rho(\xi,\eta)| = 1$ в том и только том случае, если $\mathbb{P}(\eta = a\xi + b) = 1$ для некоторых $a,b \in \mathbb{R}$.

Определение: Случайные величины ξ и η называются некоррелированными, если $\mathrm{cov}(\xi,\eta)=0.$

22 Билет №22. Ковариационная матрица и её свойства.

Определение: Пусть ξ_1, \ldots, ξ_n — случайные величины, определенные на одном вероятностном пространстве. Ковариационной матрицей называют $\mathbb{V}=(b_{ij})$, где $b_{ij}=\text{cov}(\xi_i,\xi_j)$. При i=j получаем $b_{ii}=\mathbb{D}\xi_i$. То есть сама матрица выглядит вот так:

$$\mathbb{V} = \begin{pmatrix} \mathbb{D}\xi_1 & \operatorname{cov}(\xi_1, \xi_2) & \dots & \operatorname{cov}(\xi_1, \xi_n) \\ \operatorname{cov}(\xi_2, \xi_1) & \mathbb{D}\xi_2 & \dots & \operatorname{cov}(\xi_2, \xi_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(\xi_n, \xi_1) & \operatorname{cov}(\xi_n, \xi_2) & \dots & \mathbb{D}\xi_n \end{pmatrix}.$$

Свойства:

1. \mathbb{V} - симметрическая матрица (т.к. $cov(\xi_i, \xi_j) = cov(\xi_j, \xi_i)$);

2.
$$\mathbb{V}$$
 положительно определена, т.е. $\forall \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \neq \mathbf{0} \longmapsto \mathbf{x}^T \mathbb{V} \mathbf{x} \geqslant 0.$

Замечание: Симметричность и неотрицательная определенность являются характеристическими свойствами ковариационной матрицы.

23 Билет №23. Задача линейного оценивания. Уравнение регрессии.

Пусть ξ и η — две случайные величины, из которых лишь ξ является наблюдаемой. Если ξ и η коррелированы, то естественно предположить, что знание значения ξ позволит получить некоторые выводы о значениях ненаблюдаемой случайной величины η .

Определение: Всякую функцию $\varphi(x)$: $\mathbb{R} \to \mathbb{R}$ в контексте этой задачи называют оценкой для η .

Определение: Оценка φ^* называется оптимальной в смысле среднеквадратического отклонения в классе оценок Φ , если:

$$\mathbb{E}(\eta - \varphi^*(\xi))^2 = \inf_{\varphi \in \Phi} \mathbb{E}(\eta - \varphi(\xi))^2.$$

Оказывается, что для отыскания оптимальной оценки в классе линейных функций $\varphi(x) = ax + b$ достаточно знания ковариации $\text{cov}(\xi, \eta)$.

Оптимальной оценкой в классе линейных функций является:

$$\eta^* = \varphi^*(\xi) = \mathbb{E}\eta + \frac{\operatorname{cov}(\xi, \eta)}{\mathbb{D}\xi}(\xi - \mathbb{E}\xi).$$

Это равенство называют также **уравнением регрессии** η на ξ .

Замечание: Среднеквадратическая ошибка линейного оценивания вычисляется по формуле:

$$\mathbb{E}(\eta-\eta^*)^2 = \mathbb{E}\left((\eta-\mathbb{E}\eta) - \frac{\operatorname{cov}(\xi,\eta)}{\mathbb{D}\xi}(\xi-\mathbb{E}\xi)\right)^2 = \mathbb{D}\eta - 2\frac{(\operatorname{cov}(\xi,\eta))^2}{\mathbb{D}\xi} + \frac{(\operatorname{cov}(\xi,\eta))^2}{\mathbb{D}\xi} = \mathbb{D}\eta(1-(\rho(\xi,\eta))^2).$$

Отсюда видно, что оценка тем точнее, чем ближе коэффициент корреляции $\rho(\xi,\eta)$ по модулю к единице.

24 Билет №24. Борелевская сигма-алгебра и общее определение случайной величины.

Определение: Класс \mathscr{A} подмножеств Ω называется алгеброй подмножеств Ω , если он замкнут относительно конечного числа теоретико-множественных операций.

Определение: Класс \mathscr{A} подмножеств Ω называется σ -алгеброй, если он является алгеброй и замкнут относительно счетных объединений.

Замечание: Класс \mathscr{A} подмножеств Ω является σ -алгеброй в том и только том случае, если выполнены следующие условия:

- 1) $\Omega \in \mathscr{A}$;
- 2) Если $A \in \mathcal{A}$, то $\bar{A} \in \mathcal{A}$;
- 3) Если $A_n \subset \mathscr{A}$, то $\bigcup_{n=1}^{\infty} A_n \in \mathscr{A}$.

Определение: Пусть \mathscr{K} — некоторый класс подмножеств Ω . Тогда под $\sigma(\mathscr{K})$ будем понимать σ -алгебру подмножеств Ω , которая удовлетворяет следующим условиям:

- 1) $\mathcal{K} \subset \sigma(\mathcal{K})$;
- 2) Если \mathscr{F} σ -алгебра подмножеств Ω и $\mathscr{K} \subset \mathscr{F}$, то $\sigma(\mathscr{K}) \subset \mathscr{F}$.

Определение: В силу условия 2) σ -алгебру $\sigma(\mathcal{K})$ называют минимальной σ -алгеброй, порожденной \mathcal{K} .

Замечание: $\sigma(\mathcal{K})$ существует и единственна.

Определение: Пусть $\Omega = \mathbb{R}$ (или \mathbb{R}^n), а \mathscr{K} - класс всех открытых множеств. Тогда $\sigma(\mathscr{K}) = \mathscr{B}(\mathbb{R})$ (или $\mathscr{B}(\mathbb{R}^n)$) называется борелевской σ -алгеброй подмножеств \mathbb{R} (или \mathbb{R}^n).

Определение: Множества $B \in \mathscr{B}$ называются борелевскими множествами.

 \mathscr{B} содержит все открытые множества, все замкнутые множества и все их счетные пересечения и объединения.

Замечание: Если \mathscr{T} - класс полуинтервалов вида $(-\infty; x]$ (или $(-\infty; x)$, $[x; +\infty)$, $(x; +\infty)$), где $x \in \mathbb{R}$, то $\sigma(\mathscr{T}) = \mathscr{B}$.

Определение: Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ - вероятностное пространство. Отображение $\xi \colon \Omega \to \mathbb{R}$ называется случайной величиной, если:

$$\forall B \in \mathscr{B} \longmapsto \xi^{-1}(B) = \{w : \xi(w) \in B\} \in \mathscr{F}.$$

Предложение: Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ - вероятностное пространство и $\xi \colon \Omega \to \mathbb{R}$. Тогда:

$$[\xi$$
 — независимая случайная величина] $\iff [\forall x \in \mathbb{R} \longmapsto \{w: \xi(w) \leqslant x\} \in \mathscr{F}]$.

Определение: Пусть ξ - случайная величина, определенная на $(\Omega, \mathscr{F}, \mathbb{P})$. Тогда $\sigma(\xi) = \{\xi^{-1}(B) : B \in \mathscr{B}\}$ называется под- σ -алгеброй \mathscr{F} (или же σ -алгебра, порожденная ξ).

Определение: Случайные величины ξ_1, \dots, ξ_n , определенные на $(\Omega, \mathscr{F}, \mathbb{P})$ называются независимыми, если порожденные ими алгебры $\sigma(\xi_1), \dots, \sigma(\xi_n)$ независимы.

25 Билет №25. Борелевские функции.

Определение: Функция $\varphi \colon \mathbb{R} \to \mathbb{R}$ называется борелевской, если:

$$\forall B \in \mathscr{B} \longmapsto \varphi^{-1}(B) \in \mathscr{B}.$$

Другими словами, для любого борелевского множества B прообраз $\varphi^{-1}(B)$ также является борелевским множеством.

Предложение: Пусть ξ - случайная величина, определенная на $(\Omega, \mathscr{F}, \mathbb{P})$, а $\varphi \colon \mathbb{R} \to \mathbb{R}$ - борелевская функция. Тогда $\eta = \varphi(\xi) = \varphi \circ \xi$ - случайная величина.

26 Билет №26. Аппроксимационная теорема и определение математического ожидания как интеграла Лебега.

Теорема: (Аппроксимационная)

Пусть $\xi \geqslant 0$ - случайная величина, определенная на $(\Omega, \mathscr{F}, \mathbb{P})$. Тогда существует последовательность $\{\xi_n\}_{n=1}^{\infty}$ простых неотрицательных случайных величин такая, что $\xi_n \nearrow \xi$ (монотонно возрастая, стремится к ξ) и $\sigma(\xi_n) \subset \sigma(\xi)$.

Определение: Пусть ξ - неотрицательная случайная величина и $\xi_n \nearrow \xi$, где $\{\xi_n\}_{n=1}^{\infty}$ — последовательность простых неотрицательных случайных величин. Тогда математическое ожидание ξ определяется как:

$$\mathbb{E}\xi = \lim_{n \to \infty} \mathbb{E}\xi_n,$$

если этот предел конечен.

Замечание: Для произвольной случайной величины ξ рассматриваются две неотрицательные случайные величины:

$$\xi^+ = \max\{\xi, 0\}, \qquad \qquad \xi^- = \max\{-\xi, 0\}.$$

В случае, когда $\mathbb{E}\xi^+$ и $\mathbb{E}\xi^-$ конечны, будем говорить, что ξ имеет конечное математическое ожидание:

$$\mathbb{E}\xi = \mathbb{E}\xi^+ - \mathbb{E}\xi^-.$$

Введенное таким образом математическое ожидание сохраняет основные свойства, которые были установлены для простых случайных величин.

В действительности, определение математического ожидания является интегралом Лебега от функции $\xi \colon \Omega \to \mathbb{R}$ по мере \mathbb{P} , то есть:

$$\mathbb{E}\xi = \int_{\Omega} \xi(w)\mathbb{P}(dw) = \int_{\Omega} \xi(w)d\mathbb{P}(w),$$

то есть интегрирование идет по всем событиям $w \in \Omega$.

С каждой случайной величиной ξ ассоциируется новое вероятностное пространство $(\mathbb{R}, \mathcal{B}, \mathbb{P}_{\xi})$, и мы можем перенести все вычисления на него. То есть мы совершаем переход: $(\Omega, \mathscr{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}, \mathbb{P}_{\xi})$.

Тогда математическое ожидание можно считать как:

$$\mathbb{E}\xi = \int_{\mathbb{R}} x d\mathbb{P}_{\xi}(x).$$

Кроме того, если $\varphi \colon \mathbb{R} \to \mathbb{R}$ - борелевская функция, то:

$$\mathbb{E}\varphi(\xi) = \int_{\mathbb{R}} \varphi(x) d\mathbb{P}_{\xi}(x).$$

27 Билет 27. Неравенства Маркова и Чебышева.

Теорема: Пусть случайная величина ξ имеет конечную дисперсию. Тогда для любого $\varepsilon > 0$ выполняются следующие неравенства:

Неравенство Маркова

$$\mathbb{P}(|\xi| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}|\xi|}{\varepsilon}$$

Неравенство Чебышева

$$\mathbb{P}(|\xi - \mathbb{E}\xi| \geqslant \varepsilon) \leqslant \frac{\mathbb{D}\xi}{\varepsilon^2}$$

28 Билет 28. Характеристические функции и их свойства.

Определение: Характеристической функцией случайной величины ξ называется:

$$h_{\xi}(t) = \mathbb{E}e^{it\xi}$$

Свойства характеристических функций:

1.
$$|h_{\xi}(t)| \leq 1$$
 и $h_{\xi}(0) = 1$

- 2. $h_{\xi}(-t) = \overline{h_{\xi}(t)}$
- 3. $h_{a\xi+b}(t) = e^{itb}h_{\xi}(at)$
- 4. $h_{\xi}(t)$ непрерывна на \mathbb{R} (равномерно непрерывна)
- 5. Если ξ_1, \dots, ξ_n независимые случайные величины и $S_n = \xi_1 + \dots + \xi_n$, то $h_{S_n}(t) = \prod_{k=1}^n h_{\xi_k}(t)$
- 6. Если $\mathbb{E}|\xi|^n<\infty$, то $h_\xi(t)$ имеет производные до n-го порядка включительно и

$$\mathbb{E}\xi^n = \frac{1}{i^n} h_{\xi}^{(n)}(0)$$

7. Если $\exists h_{\xi}^{(2k)}(0)$, тогда $\exists \mathbb{E} \xi^{2k} < \infty$

29 Билет 29. Характеристические функции показательного и нормального распределения.

Характеристические функции для часто встречающихся распределений:

- Вырожденное распределение $\mathbb{P}(\xi = a) = 1$. $h_{\xi}(t) = \mathbb{E}e^{it\xi} = e^{iat}$
- Равномерное на отрезке распределение с плотностью

$$f_{\xi}(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$$

В случае $t \neq 0$ имеем

$$h_{\xi}(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

При t = 0 имеем $h_{\xi}(0) = 1$.

• Экспоненциальное распределение зависит от параметра $\lambda > 0$ и определяется плотностью

$$f_{\xi}(x) = \lambda e^{-\lambda x} \mathbb{1}_{[0;+\infty)}(x)$$
$$h_{\xi}(t) = \frac{\lambda}{\lambda - it}$$

• Нормальное распределение, определяемое плотностью

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-a)^2/2\sigma^2}$$

$$h_{\varepsilon}(t) = e^{iat}e^{-\sigma^2 t^2/2}$$

• Целочисленная случайная величина с производящей функцией $g_{\xi}(x)$ имеет характеристическую функцию $h_{\xi}(t)=g_{\xi}(e^{it})$

30 Билет 30. Определение и критерий сходимости почти наверное для последовательности случайных величин.

Определение: Пусть ξ, ξ_1, \ldots – случайные величины, определённые на $(\Omega, \mathscr{F}, \mathbb{P})$. Будем говорить, что $\xi_n \xrightarrow{\text{п.н.}} \xi$, если

$$\mathbb{P}(\{\lim_{n\to\infty}\xi_n(\Omega)=\xi(\Omega)\})=1$$

Критерий: Пусть $\xi, \xi_1, \xi_2, \ldots$ – случайные величины, определенные на $(\Omega, \mathscr{F}, \mathbb{P})$ и для $\varepsilon > 0$ $A_n^{\varepsilon} = \{\omega : |\xi_n(\omega) - \xi(\omega)| \ge \varepsilon\}$, тогда

$$\xi_n \xrightarrow{\text{\tiny II.H.}} \xi \Leftrightarrow \mathbb{P}(\overline{\lim} A_n^{\varepsilon}) = 0 \ \forall \varepsilon > 0$$

31 Билет 31. Законы больших чисел Чебышева и Бернулли.

Теорема [Закон больших чисел Чебышева]: Пусть ξ_1, ξ_2, \ldots — последовательность независимых случайных величин, для которых $\mathbb{D}\xi_n \leqslant C, n=1,2,...$, при некотором C>0. Тогда для любого $\varepsilon>0$ выполняется следующее предельное соотношение

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - \frac{\mathbb{E}S_n}{n} \right| \geqslant \varepsilon \right) = 0$$

где $S_n = \xi_1 + \dots + \xi_n$

Теорема: [Закон больших чисел Бернулли] Пусть S_n – число успехов в серии из n независимых испытаний с вероятностью $p, 0 , в отдельном испытании. Тогда для любого <math>\varepsilon > 0$ выполняется соотношение

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - p \right| \geqslant \varepsilon \right) = 0$$

32 Билет 32. Усиленный закон больших чисел.

Теорема: Пусть ξ_1, ξ_2, \ldots – последовательность независимых, одинаково распределенных случайных величин с $\mathbb{E}\xi_k = a, \mathbb{D}\xi_k = \sigma^2$. Тогда

$$\frac{S_n}{n} \xrightarrow{\text{п.н.}} a$$
 при $n \to \infty$

где $S_n = \xi_1 + \cdots + \xi_n$

33 Билет 33. Сходимость по распределению, центральная предельная теорема.

Определение: Пусть F, F_1, F_2, \ldots — функции распределения. Будем говорить, что $F_n \Rightarrow F$ (слабо сходится), если

$$\lim_{n \to \infty} F_n(x) = F(x)$$

в каждой точке непрерывности функции F.

Определение: Будем говорить, что $\xi_n \xrightarrow{d} \xi$ (сходится по распределению), если $F_{\xi_n} \Rightarrow F_{\xi}$.

Теорема [Центральная предельная теорема]: Пусть ξ_1, ξ_2, \ldots – последовательность независимых, одинаково распределенных случайных величин с $\mathbb{E}\xi_k = a$, $\mathbb{D}\xi_k = \sigma^2$. $S_n = \xi_1 + \cdots + \xi_n$. Тогда $\forall x \in \mathbb{R}$ имеет место следующее предельное соотношение

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - na}{\sigma\sqrt{n}} \leqslant x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du = \Phi(x)$$

34 Билет №34. Закон больших чисел Хинчина.

Теорема [Закон больших чисел Хинчина]: Пусть ξ_1, ξ_2, \ldots – независимые одинаково распределенные случайные величины с конечным $\mathbb{E}\xi_k = a$. Тогда для $S_n = \xi_1 + \ldots + \xi_n$ имеет место предельное соотношение

$$\frac{S_n}{n} \xrightarrow{\mathbb{P}} a$$

35 Билет №35. Теорема Бернштейна о приближении непрерывной функции полиномами.

Теорема [Бернштейна]: Пусть f(x) – непрерывная функция на [0; 1]. Тогда

$$\max_{x \in [0;1]} |B_n(x;f) - f(x)| \xrightarrow[n \to \infty]{} 0,$$

где

$$B_n(x;f) = \sum_{k=0}^{n} C_n^k f(\frac{k}{n}) x^k (1-x)^{n-k}$$

36 Билет №36. Условие марковости и однородности цепи в терминах переходных вероятностей.

$$t = 1, 2, \dots, T$$

$$E = e_1, \dots, e_r$$

Цепи Маркова — системы, у которых вероятности перехода из одного состояния в другое в данный момент времени не зависят от того, как вела себя система в предыдущие моменты времени.

$$\omega = (\omega_0, \omega_1, \dots, \omega_T),$$

где $\omega_t = i$, если система в момент времени t находилась в состоянии e_i .

$$\mathbb{P}(\omega) = \mathbb{P}(\omega_0 = i_0, \omega_1 = i_1, \dots, \omega_T = i_T) = \\ = \mathbb{P}(\omega_0 = i_0) \mathbb{P}(\omega_1 = i_1 | \omega_0 = i_0) \cdot \dots \cdot \mathbb{P}(\omega_T = i_T | \omega_0 = i_0, \dots, \omega_{T-1} = i_{T-1})$$

Условие марковости (независимость от прошлого): для любых двух моментов времени s < t

$$\mathbb{P}(\omega_t = j | \omega_0 = i_0, \dots, \omega_{s-1} = i_{s-1}, \omega_s = i) = \mathbb{P}(\omega_t = j | \omega_s = i)$$

Однородность:

$$\mathbb{P}(\omega_{s+t} = j | \omega_s = i) = \mathbb{P}(\omega_t = j | \omega_0 = i) = p_{ij}(t)$$

Свойства вероятностей $p_{ij}(t)$:

1. $p_{ij}(t) \ge 0$;

2.
$$\sum_{j=1}^{r} p_{ij}(t) = 1;$$

3.
$$p_{ij}(0) = \delta_{ij}$$
.

$$\Pi(t) = (p_{ij}(t))$$

 $p_{ij}(1) = p_{ij}$ – переходные вероятности. $\Pi(1) = \Pi$ – матрица переходных вероятностей.

37 Билет №37. Уравнение Колмогорова-Чепмена.

$$\forall s, t \geqslant 0$$
 $p_{ij}(s+t) = \sum_{k=1}^{r} p_{ik}(s) \cdot p_{kj}(t)$

Это также можно записать в матричном виде

$$\Pi(s+t) = \Pi(s)\Pi(t)$$

Поскольку $\Pi(1) = \Pi$, то $\Pi(t) = \Pi^t$.

Удобно записать вектор-строку $\vec{p}(0) = (p_1(0), \dots, p_r(0))$, где $p_i(0)$ – вероятность того, что в начальный момент времени система находилась в состоянии i; и вектор-строку $\vec{p}(t) = (p_1(t), \dots, p_r(t))$, где $p_i(t)$ – вероятность того, что в момент времени t система находилась в состоянии i. Тогда

$$p_j(t) = \sum_{i=1}^{r} p_i(0) \cdot p_{ij}(t)$$

Или, в матричном виде:

$$\vec{p}(t) = \vec{p}(0)\Pi(t) = \vec{p}(0)\Pi^t$$

38 Билет №38. Теорема о предельных вероятностях марковской цепи.

Теорема [О предельных вероятностях]: Пусть при некотором $t_0 > 0$ все элементы матрицы $\Pi^{t_0} = (p_{ij}(t_0))$ являются строго положительными. Тогда $\forall j = 1, \ldots, r$ существует предел

$$\lim_{t \to \infty} p_{ij}(t) = p_j,$$

который не зависит от i и p_1, \ldots, p_r – единственные решения СЛУ

$$p_j = \sum_{k=1}^r p_k \cdot p_{kj}, \qquad \sum_{j=1}^r p_j = 1$$

39 Билет №39. Вероятность вырождения процесса Гальтона-Ватсона и ее выражение через производящую функцию.

А – процесс выродился

$$A_n = \{\xi_n = 0\} \qquad A_n \nearrow A$$

 $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A) = q$ – вероятность вырождения процесса

Теорема: Пусть $\xi_0 = 1, \xi_1, \xi_2, \ldots$ – процесс Гальтона-Ватсона с производящей функцией f(x), Тогда вероятность q вырождения процесса

$$q = \lim_{n \to \infty} f^n(0)$$

и является наименьшим неотрицательным корнем уравнения f(x) = x.

$$(f^n(x)=f\circ\ldots\circ f(x)=g_{\xi_n}(x)$$
 – n -ая итерация функции $f)$

40 Билет №40. Классификация процессов Гальтона-Ватсона и вероятность вырождения.

 $\mathbb{E}(\xi_1) = m$ – среднее число потомков от одной частицы в следующем поколении Процесс называется:

- докритическим, если m < 1;
- критическим, если m = 1;
- надкритическим, если $m > 1(m = +\infty)$.

Теорема: Пусть $\xi_0=1,\xi_1,\xi_2,\ldots$ – процесс Гальтона-Ватсона. Тогда, если процесс докритический или критический, то вероятность вырождения q=1. Если процесс над-критический, то $0\leqslant q<1$.