Teoria del potenziale scalare: campi vettoriali e forme differenziali

Lucrezia Bioni

Def: Lavoro del campo lungo una curva

Dato un campo vettoriale \mathcal{F} di classe \mathcal{C}^0 su Ω aperto di \mathbb{R}^n e data una curva regolare a tratti $\varphi : [a, b] \to \Omega$, si chiama lavoro del campo lungo la curva data il numero:

$$\int_{\gamma} \langle \mathcal{F}, \tau \rangle \ ds := \int_{a}^{b} \sum_{j=1}^{n} \mathcal{F}_{j}(\varphi(t)) \cdot \varphi_{j}'(t) \ dt$$

Def: Integrale di una forma differenziale lungo una curva

Data ω forma differenziale su Ω di classe \mathcal{C}^0 , $\omega = \sum_{j=1}^n a_j dx_j$ e data una curva regolare a tratti φ : $[a,b] \to \Omega$, si chiama integrale di ω lungo φ la quantità

$$\int_{\gamma} \omega = \int_{\gamma} \sum_{j=1}^{n} a_{j} dx_{j} := \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\varphi(t)) \varphi'_{j}(t) dt = \int_{\gamma} \langle \mathcal{F}_{\omega}, \tau \rangle ds$$

Thm: Teorema di caratterizzazione

Data ω forma differenziale su Ω (aperto di \mathcal{R}^n) di classe \mathcal{C}^n .

- I seguenti fatti sono equivalenti:
- ω è esatta in Ω • $\int_{\gamma} \omega = 0 \forall$ curva γ regolare (a tratti) e chiusa in Ω
- $\forall p, q$ in Ω , comunque si prenda una curva regolare (a tratti) in Ω da p a q e orientata (da p a q) si ha che $\int_{\text{curva da p a q}} \omega$ dipende solo da p e q, ma non dipende dalla curva γ

Def: Forma differenziale chiusa

Sia $\omega = a_1 dx_1 + ... + a_n dx_n$ una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n , ω è detta chiusa

$$\frac{\partial a_i}{\partial x_i} = \frac{\partial a_j}{\partial x_i} \ \forall i, j$$

Def: Campo vettoriale non rotazionale

Sia $F = (F_1, ..., F_n)$ un campo vettoriale di classe \mathcal{C}^1 su Ω , aperto di \mathbb{R}^n , F è detto non rotazionale (o irrotazionale) quando si verifica:

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i} \ \forall i,j$$

Proposizione

Sia ω una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n . Se ω è esatta in $\Omega \implies \omega$ è chiusa in Ω .

Thm: Lemma di Poincaré

Sia ω una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n . Se Ω è stellato e ω è chiusa in $\Omega \implies \omega$ è esatto in Ω .

Valido anche nel caso in cui Ω sia semplicemente connesso.

Def: Omotopia

Siano $\phi_0, \phi_1 : [0,1] \to \Omega \subseteq \mathbb{R}^n$.

Supponiamo che ϕ_0 e ϕ_1 siano curve con $\phi_0(0) = \phi_1(0)$ e $\phi_0(1) = \phi_1(1)$.

Le due curve ϕ_0 e ϕ_1 sono dette omotope quando esiste una mappa (mappa di omotopia) $\psi: [o,1] \times [0,1] \to \Omega$ continua globalmente e tale che:

- $\bullet \, \psi(0,t) = \phi_0(t) \forall t$
- $\bullet \, \psi(s,0) = \phi_1(t) \forall t$
- $\bullet \psi(s,0)$ non dipende da s e $\psi(s,0)$ non dipende da s.

Thm: Teorema di invarianza omotopica

Sia ω una forma differenziale su Ω , aperto di \mathbb{R}^n , di classe \mathcal{C}^1 . Supponiamo che ω sia chiusa in Ω . Siano ϕ_0 e ϕ_1 curve regolari a tratti da p a q in Ω .

Se ϕ_0 e ϕ_1 sono omotope $\implies \int_{\phi_0} \omega = \int_{\phi_1} \omega$