

Modul TA.PR+SY

Zahnradgetriebe

Teil 2 Stirnräder mit Evolventenverzahnung

FH Zentralschweiz

Hochschule Luzern Technik & Architektur

Inhalt

• Stirnräder mit Evolventenverzahnung (Teil 2)

- Geometrie und Bestimmungsgrössen
- · Eingriffsstrecke und Profilüberdeckung
- Profilverschiebung
- Schrägstirnräder
- Kegelräder
- Innenverzahnungen und Umlaufrädergetriebe
- · Schraubräder und Schneckengetriebe
- Toleranzen und Verzahnungsqualität

© HSLU TA.PR+SY_H16

Geometrie und Begriffe an aussenverzahnten Stirnrädern

Hochschule Luzern Technik & Architektur

Verzahnungsmasse der Nullräder

- Zahnmasse Zahnkopfhöhe $h_a = h_{aP} = m$ Zahnfußhöhe $h_f = h_{fP} = m + c$
 - Zahnfußhöhe $h_f = h_{fP} = m + c$ Zahnhöhe $h = h_a + h_{fP} = 2m + c$ mit $c = 0.25 \cdot m$ (Bezugsprofil II
- Kopfkreis- \emptyset $d_{a1,2} = d_{1,2} + 2 \cdot h_a = m \cdot (z_{1,2} + 2)$
- Fusskreis- \varnothing $d_{\text{f1,2}} = d_{1,2} 2 \cdot h_{\text{f}} = m \cdot (z_{1,2} 2,5)$

Eingriffsstrecke und Profilüberdeckuna

Eingriffsstrecke muss stets grösser sein als die Eingriffsteilung.

Eingriffsstrecke g_{α}

$$g_{\alpha} = \frac{1}{2} \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} \right) - a_{d} \cdot \sin \alpha$$

$$\overline{AE} = \overline{T_1E} + \overline{T_2A} - \overline{T_1T_2}$$

Profilüberdeckung $arepsilon_{lpha}$

$$\varepsilon_{\alpha} = \frac{g_{\alpha}}{p_{e}} = \frac{0.5\left(\sqrt{d_{a1}^{2} - d_{b1}^{2}} + \sqrt{d_{a2}^{2} - d_{b2}^{2}}\right) - a_{d} \cdot \sin \alpha}{\pi \cdot m \cdot \cos \alpha} > 1.1, \text{ m\"oglichst 1.25}$$

© HSLU TA.PR+SY_H16

U

Hochschule Luzern Technik & Architektu

Grenzzähnezahl

Theoretische Grenzzähnezahl zg

> kein Unterschnitt

$$z_{\rm g} = \frac{2}{\sin^2 \alpha} \approx 17$$

Praktische Grenzzähnezahl z'g > noch ertragbarer Unterschnitt

ohne Gefährdung der Eingriffsverhältnisse

Zg' ≈ 14

Profilverschiebung

• Bei der Evolventenverzahnung können durch die **Profilverschiebung** "Zahnkorrekturen" erzeugt werden:

• zur Erhöhung der Tragfähigkeit

· zur Erhöhung des Überdeckungsgrades

zum Erreichen bestimmter
 Einbauverhältnisse (z.B. Achsabstand)

- Profilverschiebung $V = x \cdot m$
 - Doe file on a clair land on a fall to a
 - x: Profilverschiebungsfaktor
- Praktischer x-Grenzwert an der Unterschnittsgrenze

$$x_{\text{grenz}} = \frac{z_{\text{g}}' - z}{z_{\text{g}}} = \frac{14 - z}{17}$$

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektur

Paarung der Zahnräder

Null-Getriebe
 (Getriebe aller Art mit mittleren Belastungen)

• Paarung zweier Nullräder

- Grundkreise sind unverändert
- Teilkreise berühren sich im Wälzpunkt C (Teilkreise = Wälzkreise)
- Achsabstand a = Nullachsabstand a_d

Paarung der Zahnräder

• V-Null-Getriebe

(Getriebe mit grösseren Übersetzungen und höheren Belastungen)

- Paarung V-Plus und V-Minus Rad + $x_1 = -x_2$; $\Sigma x = x_1 + x_2 = 0$
- · Grundkreise sind unverändert
- Teilkreise berühren sich im Wälzpunkt C (Teilkreise = Wälzkreise)

• Achsabstand a = Nullachsabstand a_d

• $z_1 + z_2 = 2 \cdot z'_g$ (kein Unterschnitt am x_{minus} -Rad)

© HSLU TA.PR+SY_H16 14

Hochschule Luzern Technik & Architektur

Paarung der Zahnräder

V-Getriebe

- · bei vorgegebener Übersetzung und festgelegtem Achsabstand
- ullet wenn beide Räder eine hohe Tragfähigkeit haben müssen ($V_{
 m plus}$)
- wenn ein besonders gleichförmiger, ruhiger Lauf gefordert ist (V_{minus})
 - Paarung V- mit V- oder Nullrad
 - · Grundkreise sind unverändert
 - Teilkreise berühren sich nicht mehr, sind aber unverändert d = m * z
 - Achsabstand a ≠ a_d

Verzahnungsmasse der V-Räder

- Der Grundkreis- und Teilkreisdurchmesser bleiben unverändert.
- Kopfkreis ∅

$$d_{\rm a} = d + 2 \cdot h_{\rm a} + 2 \cdot V = d + 2 \cdot (m + V)$$
 ohne Kopfhöhenänderung

Fusskreis - Ø

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektur

Verzahnungsmasse der V-Räder

- Beim V-Radpaar rollen nicht mehr die Teilkreise sondern die Betriebswälzkreise aufeinander ab.
- Betriebseingriffswinkel:

$$\cos \alpha_w = \frac{a_d}{a} \cdot \cos \alpha$$

bei V_{plus} -Getrieben $\alpha_{\text{w}} > \alpha$ bei V_{minus} -Getrieben $\alpha_{\text{w}} < \alpha$.

Betriebswälzkreis - ∅

$$d_{\text{w1}} = \frac{d_1 \cdot \cos \alpha}{\cos \alpha_{\text{w}}} = \frac{2 \cdot a}{1 + u} = \frac{2 \cdot z_1}{z_1 + z_2} \cdot a$$

• Achsabstand $a = \frac{d_{\text{w1}} + d_{\text{w2}}}{2} = \frac{d_1 + d_2}{2} \cdot \frac{\cos \alpha}{\cos \alpha_{\text{w}}} = a_{\text{d}} \cdot \frac{\cos \alpha}{\cos \alpha_{\text{w}}}$

Eingriffslinie

) Betriebswälzkreis

Verzahnungsmasse der V-Räder

• Für einen störungsfreien Eingriff muss ein ausreichendes Kopfspiel vorhanden sein.

$$c = a - 0.5 \cdot (d_{a1} + d_{f2})$$
 oder $c = a - 0.5 \cdot (d_{a2} + d_{f1})$

Kopfhöhenänderung

$$k = k^* \cdot m = a - a_d - m \cdot (x_1 + x_2)$$

 $k^* = y - \Sigma x$ Kopfhöhenänderungsfaktor,

wenn y der Teilkreisabstandsfaktor aus
$$y \cdot m = a - a_d$$
 und daraus $y = [(z_1 + z_2)/2] \cdot [(\cos \alpha/\cos \alpha_w) - 1]$ ist.

Kopfkreis - ∅

© HSLU TA.PR+SY H16

 $d_{a1} = d_1 + 2 \cdot m + 2 \cdot V_1 + 2 \cdot k = d_1 + 2 \cdot (m + V_1 + k)$ $d_{a2} = d_2 + 2 \cdot m + 2 \cdot V_2 + 2 \cdot k = d_2 + 2 \cdot (m + V_2 + k)$ Profilüberdeckung $\varepsilon_{\alpha} = \frac{0.5\left(\sqrt{d_{\mathrm{a}1}^2 - d_{\mathrm{b}1}^2} + \sqrt{d_{\mathrm{a}2}^2 - d_{\mathrm{b}2}^2}\right) - a \cdot \sin \alpha_{\mathrm{w}}}{\pi \cdot m \cdot \cos \alpha}$

19

Hochschule Luzern

Evolventenfunktion

- Die *Evolventenfunktion* gestattet die genaue Berechnung der Abmasse am Zahnrad.
- Profilwinkel $\alpha_{\rm v}$

$$\cos \alpha_y = \frac{r_b}{r_y} = \frac{d_b}{d_y} = d \times \frac{\cos \alpha}{d_y}$$

Grundkreisbogen

 $(\widehat{UT}) = r_b \cdot \xi_y = (\overline{YT}) = r_b \cdot \tan \alpha_y$ $\xi_{\rm v} = \tan \alpha_{\rm v}$

Winkelvergleich Winkeldifferenz

 $\xi_y - \alpha_y = tan \; \alpha_y - \widehat{\alpha}_y = tan \; \alpha_y - \; \pi \cdot \alpha_y^\circ / 180^\circ$

Definition

$$\operatorname{inv} \alpha_{y} = \tan \alpha_{y} - \widehat{\alpha}_{y}$$

Evolventenfunktion des Winkels av (sprich: Involut alpha-ypsilon)

Anwendung der Evolventenfunktion

Zahndickennennmass am beliebigen Ø d_V

$$s_{y} = d_{y} \cdot \left(\frac{\pi + 4 \cdot x \cdot \tan \alpha}{2 \cdot z} + \operatorname{inv} \alpha - \operatorname{inv} \alpha_{y}\right) = d_{y} \cdot \left(\frac{s}{d} + \operatorname{inv} \alpha - \operatorname{inv} \alpha_{y}\right)$$

 α_y Profilwinkel aus $\cos \alpha_y = d \cdot \cos \alpha/d_y$ s/d Zahndickenhalbwinkel ψ (s. zu Bild 21-1)

Zahnlückennennmass am beliebigen Ø d_y

$$e_{y} = d_{y} \cdot \left(\frac{\pi - 4 \cdot x \cdot \tan \alpha}{2 \cdot z} - \operatorname{inv} \alpha + \operatorname{inv} \alpha_{y}\right) = d_{y} \cdot \left(\frac{e}{d} - \operatorname{inv} \alpha + \operatorname{inv} \alpha_{y}\right)$$

 $e/d = \eta$ Zahnlückenhalbwinkel

Zahndicke s_a am Kopfkreis

$$s_{\rm a} = d_{\rm a} \cdot \left(\frac{s}{d} + {\rm inv} \ \alpha - {\rm inv} \ \alpha_{\rm a}\right) \ge s_{{\rm a}\,{\rm min}}$$

• Spitzengrenze $s_a = 0$

$$d_{\rm sp} = \frac{d \cdot \cos \alpha}{\cos \alpha_{\rm sp}}$$

© HSLU TA.PR+SY_H16

Hochschule Luzern

Anwendung der Evolventenfunktion

· Betriebseingriffswinkel

inv
$$\alpha_{\rm w} = 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} \cdot \tan \alpha + \text{inv } \alpha$$

 α_w aus Evolvententabelle TB 21-4;

a, d_{w1} und d_{w2} errechenbar

$$inv\alpha = \tan \alpha - \frac{\pi * \alpha}{180}$$

· Summe und Aufteilung der Profilverschiebungsfaktoren

$$\Sigma x = x_1 + x_2 = \frac{\operatorname{inv} \alpha_{\mathrm{w}} - \operatorname{inv} \alpha}{2 \cdot \tan \alpha} \cdot (z_1 + z_2)$$

$$x_1 \approx \frac{x_1 + x_2}{2} + \left(0.5 - \frac{x_1 + x_2}{2}\right) \cdot \frac{\lg u}{\lg \frac{z_1 \cdot z_2}{100}}$$

 $u = z_{\text{Großrad}}/z_{\text{Kleinrad}} \ge 1$

Achsabstand

$$a = a_d \frac{\cos \alpha}{\cos \alpha_w}$$

TB 21-5

TB 21-6

Geometrie der Schrägstirnräder mit Evolventenverzahnung

- Zähne schraubenförmig gewunden
- Schrägungswinkel β bestimmt den Flankenlinienverlauf
 β≈ 8° ... 20° für Schräg- und Doppelschrägverzahnungen
 β≈ 30° ... 45° für Pfeilverzahnungen
- Steigungswinkel γ rechts- bzw. linksgängig

Vorteile:

- Ruhiger Lauf
- · Grosse Drehzahlen
- Höhere Belastung
- Nachteile:
 - · Zusätzliche Kräfte auf Lager
 - Wirkungsgrad geringer

© HSLU TA.PR+SY_H16

25

Hochschule Luzern

Schnitte durch die Schrägverzahnung

© HSLU TA.PR+SY H16 26

Verzahnungsmasse

Grundkreisschrägungswinkel β_b

$$\begin{split} &\tan\beta_b = \tan\beta \cdot \cos\alpha_t \\ &\sin\beta_b = \sin\beta \cdot \cos\alpha_n \\ &\cos\beta_b = \frac{p_{bn}}{p_{bt}} = \cos\beta \cdot \frac{\cos\alpha_n}{\cos\alpha_t} = \frac{\sin\alpha_n}{\sin\alpha_t} \end{split}$$

Grundkreisteilung = Stirneingriffsteilung Grundzylinder-Normalteilung = Normaleingriffsteilung

$$p_{\text{bt}} \stackrel{\triangle}{=} p_{\text{et}} = p_{\text{t}} \cdot \cos \alpha_{\text{t}}$$

 $p_{\text{bn}} \stackrel{\triangle}{=} p_{\text{en}} = p_{\text{n}} \cdot \cos \alpha_{\text{n}}$

Teilkreis
$$\varnothing$$
 $d = z \cdot m_{\rm t} = z \cdot \frac{m_{\rm n}}{\cos \beta}$

Grundkreis
$$\varnothing$$
 $d_{\mathrm{b}} = d \cdot \cos \alpha_{\mathrm{t}} = z \cdot \frac{m_{\mathrm{n}} \cdot \cos \alpha_{\mathrm{t}}}{\cos \beta}$

Null-Achsabstand

$$a_{\rm d} = \frac{d_1 + d_2}{2} = m_{\rm t} \cdot \frac{(z_1 + z_2)}{2} = \frac{m_{\rm n}}{\cos \beta} \cdot \frac{(z_1 + z_2)}{2}$$

Kopf + Fusskreis ∅

$$d_{\rm a} = d + 2 \cdot h_{\rm a} = d + 2 \cdot m_{\rm n} = m_{\rm n} \cdot \left(2 + \frac{z}{\cos \beta}\right)$$
 $d_{\rm f} = d - 2 \cdot h_{\rm f} = d - 2.5 \cdot m_{\rm n}$

Hochschule Luzern Technik & Architektu

Eingriffsverhältnisse

Durch die Zahnschräge werden die Eingriffsverhältnisse wie z.B. die Überdeckung entscheidend beeinflusst und verbessert, was zu einem merklich ruhigeren und leiseren Lauf beiträgt.

• Sprung

$$U = b \cdot \tan \beta$$

Sprungüberdeckung

$$\varepsilon_{\beta} = \frac{U}{p_{t}} = \frac{b \cdot \tan \beta}{p_{t}} = \frac{b \cdot \sin \beta}{\pi \cdot m_{n}}$$

Profilüberdeckung

Gesamtüberdeckung

Profilverschiebung

Bei Schrägverzahnung ist nur selten Profilverschiebung zur Vermeidung von Unterschnitt erforderlich. Auch kann meist ohne Profilverschiebung ein bestimmter Achsabstand lediglich durch geschickte Wahl des Schrägungswinkels erreicht werden. Für eine Profilverschiebung gelten im Prinzip die gleichen Regeln wie bei Geradverzahnung.

- Praktische Grenzzähnezahl $z'_{\rm gt} \approx z'_{\rm gn} \cdot \cos^3 \beta = 14 \cdot \cos^3 \beta$
- Profilverschiebung $V = x \cdot m_n$
- Mindestverschiebungsfaktor

29

Hochschule Luzern Technik & Architektu

Geometrie der Kegelräder

Wälzgetriebe mit sich in einem Punkt M schneidenden Achsen (Normalkegelräder) oder sich kreuzenden Achsen (Hypoidgetriebe).

© HSLU TA.PR+SY_H16

30

- Geradverzahnte Kegelräder für kleine Drehzahlen, $v_t \approx 6$ m/s ($v_t \approx 20$ m/s geschliffen)
- Schrägverzahnte Kegelräder mit höherem Überdeckungsgrad, geräuscharmer Lauf $v_t \approx 40$ m/s (gefräst), $v_t \approx 60$ bis 100 m/s (geschliffen)
- Bogenverzahnte Kegelräder für besonders hohe Anforderungen an Laufruhe und Zahnfusstragfähigkeit
 v_t ≈ 30 m/s (gefräst), v_t ≈ 60 m/s (geschliffen)
- Kegelräder erfordern höchste Sorgfalt bei der Fertigung, dem Einbau (Zustellung der Räder) und der Lagerung, da hiervon Laufruhe und Lebensdauer weitgehend abhängen.

© HSLU TA.PR+SY_H16

Übersetzung, Zähnezahlverhältnis, Teilkegelwinkel, Radabmessungen

· Achsenwinkel und Teilkegelwinkel

$$\Sigma = \delta_1 + \delta_2$$

Übersetzung

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1} = \frac{r_2}{r_1} = \frac{z_2}{z_1} = \frac{\sin \delta_2}{\sin \delta_1}$$

Zähnezahlverhältnis

$$u = \frac{z_{Rad}}{z_{Ritzel}} \ge 1$$

Teilkegelwinkel

$$\tan \delta_1 = \frac{\sin \Sigma}{u + \cos \Sigma}$$

• Für $\Sigma = \delta_1 + \delta_2 = 90^\circ$ gilt:

$$\tan \delta_1 = \frac{1}{u}$$

bzw. $\tan \delta_2 = u$

© HSLU TA.PR+SY_H16

Radabmessungen

$$d_e = z * m_e = d_m * b * \sin \delta$$

$$d_m = z * m_m$$

$$R_e = \frac{d_m}{2 * \sin \delta} \ge 3 * b$$

32

Hochschule Luzern

Innverzahnungen

- · Werden meist auch als Hohlräder bezeichnet
- Herstellung durch Wälzstossen oder Wälzfräsen
- · Schleifen nur bedingt möglich
- Wälzbewegung ergibt auch hier eine Evolvente
 - Abbild der entsprechenden Aussenverzahnung
 - · Gleicher Grundkreis
 - Gleicher Modul
 - Zahndicke des Aussenrades wird zur Zahnlücke des Hohlrades
- Geometrie ist mit den bekannten Regeln beschreibbar
- Bei Hohlrädern werden die Innendurchmesser d < 0 und die Zähnezahlen z < 0, negativ definiert. ($d_1 = -250 \text{ mm}, z_1 = -50$)

Übersetzung bei Umlaufradgetrieben

• Stand- und Umlaufübersetzungen

$$i_{12} = \frac{z_2}{z_1}$$
 Standübersetzung Antrieb Zentralrad 1 (Steg steht still)

$$i_{1\mathrm{S}} = 1 - i_{12}$$
 Antrieb Zentralrad 1 (Standgetrieberad 2 steht still)

- 1: Zentralrad 1
- 2: Standgetrieberad 2
- s: Steg (Planetenträger)
- p: Planetenrad

$$i_{2s}=1-rac{1}{i_{12}}$$
 Antrieb Standgetrieberad 2 (Zentralrad 1 steht still)

Regel: Sofern parallele Wellen eines Getriebes sich im gleichen Drehsinn bewegen, haben die Drehzahlen das gleiche Vorzeichen.

i > 0, gleichsinnige Drehrichtung, i < 0, entgegengesetzte Drehrichtung

© HSLU TA.PR+SY_H16 34

Hochschule Luzern Technik & Architektur

Geometrie Innenverzahnter Stirnräder

- Die Krümmungsrichtung wird durch das Vorzeichen der Zähnezahl unterschieden
- Alle von der Zähnezahl abhängigen Grössen haben negative Vorzeichen
- Bei Schrägrädern ändert zudem das Vorzeichen des Schrägungswinkels
- Eine Profilverschiebung vom Zahnfuss zum Zahnkopf hin wird nach wie vor positiv bezeichnet
- Die von der Aussenverzahnung her bekannten Gleichungen gelten unter strikter Beachtung der Vorzeichen auch für Hohlräder

© HSLU TA.PR+SY H16 35

Geometrie bei Zylinderschneckengetrieben

Schneckengetriebe sind Zahnradgetriebe mit rechtwinklig gekreuzten Achsen. (Achsenwinkel $\Sigma = 90^{\circ}$)

Zylinderschneck Globoid-Schneckenrad

Globoid-Schnecke Zylinderschneckenrad

Globoid-Schnecke Globoid-Schneckenrad

© HSLU TA.PR+SY_H16

36

Hochschule Luzern Technik & Architektur

Geometrie bei Zylinderschneckengetrieben

• Übersetzung (Zähnezahlverhältnis)

$$i = u = \frac{n_1}{n_2} = \frac{z_2}{z_1}$$

Steigungswinkel

$$\tan \gamma_m = \frac{p_{z1}}{d_{m1} \cdot \pi}$$

Mittenkreisdurchmesser

$$d_{m1} = \frac{z_1 \cdot m_n}{\sin \gamma_m}$$

$$m_n = m * \cos \gamma_m$$

Mindestübersetzung $i_{min} \approx 5$ Höchstübersetzung $i_{max} \approx 50...60$

Richtwert für Entwurf: $d_{m1} \approx 0.4 \bullet m$; dm1 kann nach konstruktiven Gesichtspunkten frei gewählt werden.

Richtwerte für die Zähnezahl der Schnecke

TB 23-3 Richtwerte für die Zähnezahl der Schnecke

Übersetzung i	<5	510	> 10 15	>15 30	>30
Zähnezahl der Schnecke z ₁	6	4	3	2	1

Wirkungsgrad bei Schneckengetrieben

Bei treibender Schnecke:
$$\eta_z = \frac{\tan \gamma_m}{\tan (\gamma_m + \varrho')}$$

Bei treibendem Schneckenrad:
$${\eta'}_z = rac{ an(\gamma_m - arrho')}{ an\gamma_m}$$

tan $\rho' = \mu'$, Keilreibungswinkel

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektur

Verzahnungsqualität, Toleranzklassen und Flankenrauheit

abnehmende Genauigkeit

<i>v</i> [m/s]	Bearbeitung der Zahnflanken	Qualität DIN 3962	Toleranzfeld DIN 3967	Flankenr R_a	auheit $[\mu {f m}]$
0,8	Gegossen, roh	12	2 x 30	2	-
0,8	Geschruppt	11 oder 10	29 oder 28	6,3	40
2	Schlichtgefräst	9	27	1,6	14
4	Schlichtgefräst	8	26	0,8	6,3
8	Feingeschlichtet	7	25	0,4	3
12	Geschabt oder geschliffen	6	24	0,3	2
20	Feingeschliffen	5	23	0,1	1
40	Feinstbearbeitet	4 oder 3	22	0,05	0,5
60	Feinstbearbeitet	3	22 oder 21	0,025	0,3

© HSLU TA.PR+SY_H16 Quelle: B. Schlecht 39

Flankenspiel

- Normalflankenspiel
 - · Kürzester Abstand der Rückflanken

$$j_n = j_t \cdot \cos \alpha_n \cdot \cos \beta$$
$$j_n \approx 0.05 + (0.025...0.1) \cdot m_n$$

- Drehflankenspiel
 - · Bogenmass auf dem Wälzkreis

$$j_t = \frac{j_n}{\left(\cos\alpha_n \cdot \cos\beta\right)}$$

- Radialspiel
 - Achsabstanddifferenz

$$j_r = \frac{j_t}{\left(2 \cdot \tan \alpha_{wt}\right)}$$

© HSLU TA.PR+SY_H16

Hochschule Luzern

Rad1

Flankenspieländerung durch die Achsabstandtoleranz

 Aus den Zahndickenabmassen und den Achsabstandsabmassen ergibt sich das Drehflankenspiel.

• Empfehlungen für Zahndickenabmass A_{sn} , Zahndickentoleranz T_{sn} und Achsabstandstoleranz is.

Anwendungsbereich	A _{sne} -Reihe	T _{sn} -Reihe	Achsabstand/Achsabmaße
Allgemeiner Maschinenbau	b	26	is7
dsgl. reversierend, Scheren, Fahrwerke	c	25	js6
Werkzeugmaschinen	f	24/25	is6
Landmaschinen	e	27/28	is8
Kraftfahrzeuge	d	26	is7
Kunststoffmaschinen, Lok-Antriebe	c, cd	26 25	js7

 $j_{tmin} = -\sum A_{ste} + \Delta j_{ai}$ © HSLU TA.PR+SY_H16

