46/90 use divided difference fable $\frac{2}{2} f(\tau) = \begin{bmatrix} x^2 + y^2 \\ x^2 - y^2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \quad \forall o = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ So = {]f(ro) f(ro) $f(v+s) \approx f(v) + \int_{s} (v) s$ $J_{f}(\mathbf{v}_{o}) = \begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix}$ S = -4 / $V_1 = V_0 + S_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 1.25 \\ 1.25 \end{bmatrix}$

$$\frac{3}{5} f(x) = \underbrace{x}_{0} \times \underbrace{x}_{0} = 0, \quad x_{1} = 1, \quad x_{2} = 2, \quad x_{3} = 3$$

$$P_{3}(x) = \int_{3}^{1} (x_{0}) l_{0}(x) + f(x_{1}) l_{1}(x) + f(x_{2}) l_{2}(x) + f(x_{3}) l_{3}(x)$$

$$l_{0}(x) = \underbrace{1}_{0} \underbrace{x}_{0} - x_{1} = \underbrace{x}_{0} - x_{1} = \underbrace{x}_{0} - x_{2} = \underbrace{x}_{0} - 1 = \underbrace{x}_{0} - 2 = \underbrace{x}_{0} - 3$$

$$= -\frac{1}{6} (x_{0} - 1) (x_{0}^{2} - 5x + 6) = -\frac{1}{6} (x_{0}^{3} - 6x^{2} + 6x - 6)$$

$$l_{1}(x) = \underbrace{1}_{0} \underbrace{x}_{0} - x_{1} = \underbrace{x}_{0} - x_{2} = \underbrace{x}_{0} - x_{2} = \underbrace{x}_{0} - 1 = \underbrace{x}_{0}$$

$$\int_{3}^{3} (x) = \frac{3}{11} \frac{x - x_{1}}{x_{3} - x_{1}} = \frac{x - x_{0}}{x_{3} - x_{0}} \frac{x - x_{1}}{x_{3} - x_{1}} = \frac{x - x_{0}}{3 - 1} \frac{x - x_{2}}{3 - 2} = \frac{x - x_{0}}{6} (x^{3} - 3x^{2} + 2x)$$

$$= \frac{1}{6} (x^{3} - 3x^{2} + 2x)$$

$$\therefore + e^{1} (\frac{1}{2} (x^{3} - 6x^{2} + 12x - 6)) + \cdots$$

$$\therefore - e^{2} (\frac{1}{2} (x^{3} - 5x^{2} + 6x))$$

$$\therefore - e^{2} (\frac{1}{2} (x^{3} - 4x^{2} + 3x))$$

$$\therefore - \frac{1}{6} (x^{3} - 4x^{2} + 3x)$$

$$\therefore - \frac{1}{6} (x^{3} - 4x^{2} + 3x)$$

$$\therefore - \frac{1}{6} (x^{3} - 4x^{2} + 3x)$$

 $\frac{3}{12} P_{3}(x) \approx \left(-\frac{1}{6} + 1.359 - 3.695\right) \times_{3}^{2} + \frac{1}{12}$ $+ \left(1 - 5.1.359 + 4.3695\right) \times_{3}^{2} + \frac{1}{12}$ $+ \left(-2 + 6.1.359 - 3.3.695\right) \times_{3}^{2} + \frac{1}{12}$ $P_{3}(x) \approx -2.5027 \times_{3}^{2} + 8.985 \times_{3}^{2} - 4.931 \times + 1$

Correct approach prough

3b
$$\times$$
: $f[.]$ $f[...]$ $f[..$

$$P_{3}(x) = \alpha_{0} + \alpha_{1}(x-x_{0}) + \alpha_{2}(x-x_{0})(x-x_{1}) + \cdots$$

$$P_{3}(x) = e + (e \cdot 1) \times + \frac{e^{2}-2e+1}{2} \times (x-1) + \cdots$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot 1) \times (x-1)(x-2)$$

$$P_{3}(x) = e + (e \cdot$$

P₃(x) $\approx 0.8455 \, x^3 - 1.06 \, x^2 + 1.9331 \, x + 2.2183$ My P_n FOR LAGRANGE FORM & NEWTON AREN'T EQUAL 30 AT LEAST ONE IS ENCORRECT. (Neither P₃(x) IS CORRECT...)

P₃(1.5) = 6.0865 $e^{15} \approx 4.472$ P₃(4) = 47.603 $e^{4} \approx 54.598$ P₃(1.5) IS THE MORE ACCURATE V

APPROXIMATION IN TERMS OF ABSOLUTE ERROR, BUT P₃(4) IS MORE ACCURATE IN TERMS OF RELATIVE ERROR.

82 HERMITE INTERPOLATION

1 0
$$\frac{3}{4}$$
 hs $-\frac{1}{2}$ $\frac{1}{2}(1-1.3)$

3 31.3 1.3+1

$$H(x) = a(x-1)^{2}(x-3) + b(x-1)^{2} + (x-1)^{2}$$

HERMITE INTERPOLATING POLYNOMIAL IS N MORE ACCURATE

 $f(x) = H(x) + e(x) (x-x_0)^2 ... (x-x_n)^2$ 86 $\frac{1}{(x-x_0)^2(x-x_1)^2} + \frac{(x-x_0)^2(x-x_1)^2}{(2n+2)!} f^{(2n+2)}(x)$ $\frac{(x-x_0)^2(x-x_1)^2}{(2n+2)!} f^{(2n+2)}(x) = f(x) - H(x)$ $\frac{(x-1)^{2}(x-3)^{2}}{4!} = f(x) - H(x)$ fuis is eason weld to analyze it SAY a=1, b=3 1 < 8(x) < 3 $N=1 \Rightarrow 2n+2=3$ $f(x) = x \ln x$

 $F(x) = \frac{(x-1)^2(x-3)^2}{4!}$ $F(x) = \frac{(x-1)^2(x-3)^2}{4!}$

0


```
iter \\ Met \\ h
```

n =

17

xkPlus =

1.0000e+00

2.0000e+00

3.0000e+00

ans =

20×4 table

Ν

cJ

0.0000e+00	Inf	Inf Inf		
1.0000e+00	3.0000e-01	2.7528e-01	2.7030e-01	
2.0000e+00	2.5000e-01	2.5000e-01	2.4618e-01	
3.0000e+00	5.0000e-01	1.2500e-01	3.4919e-02	
4.0000e+00	2.5000e-01	1.2500e-01	6.3685e-02	/
5.0000e+00	5.0000e-01	1.2500e-01	3.4146e-02	\checkmark
6.0000e+00	2.5000e-01	1.2500e-01	4.8894e-02	
7.0000e+00	5.0000e-01	1.2500e-01	3.3888e-02	
8.0000e+00	2.5000e-01	1.2500e-01	0.0000e+00	
9.0000e+00	5.0000e-01	1.2500e-01	0.0000e+00	
1.0000e+01	2.5000e-01	0.0000e+00	0.0000e+00	
1.1000e+01	5.0000e-01	0.0000e+00	0.0000e+00	
1.2000e+01	2.5000e-01	0.0000e,+00	0.0000e+00	
	(\			

cSOR

cGS

1.3000e+01	5.0000e-01	0.0000e+00	0.0000e+00
1.4000e+01	2.5000e-01	0.0000e+00	0.0000e+00
1.5000e+01	5.0000e-01	0.0000e+00	0.0000e+00
1.6000e+01	2.5000e-01	0.0000e+00	0.0000e+00
1.7000e+01	0.0000e+00	0.0000e+00	0.0000e+00
0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00

