Gibbs Sampling for 2D Joint Distributions

Apurva Nakade

2025-03-05

Table of contents

Gibbs Sampling	
Joint Exponential Distribution	4
Bivariate Normal Distribution	4
Markov Chain	-

Gibbs Sampling

Gibbs Sampling is a MCMC algorithm that is used to sample from a joint distribution using conditional distributions. For now, we'll focus on sampling in 2D, but the algorithm generalizes to higher dimensions.

The Gibbs sampling algorithm for sampling from a joint distribution $f_{X,Y}(X,Y)$ is as follows:

- 1. Start with some initial values X_0 and Y_0 .
- 2. For i = 1, 2, ..., N
 - $\begin{aligned} &1. \text{ Sample } X_i \sim f_{X|Y}(X|Y_{i-1}). \\ &2. \text{ Sample } Y_i \sim f_{Y|X}(Y|X_i). \end{aligned}$
- 3. Return the $(X_0,Y_0),\,(X_1,Y_1),\,...,\,(X_N,Y_N).$

The algorithm generates a sample path of length N of the Markov Chain as described in Section. If needed, we can discard the initial samples to ensure that the Markov Chain has converged to the stationary distribution.

Joint Exponential Distribution

Let X and Y be two random variables with the truncated exponential distribution:

$$f_{X,Y}(x,y) = ce^{-\lambda xy} \text{ for } 0 \le x \le D_1, 0 \le y \le D_2,$$

where c is the normalization constant. We want to sample from the joint distribution $f_{X,Y}$. One can show that the conditionals are,

$$\begin{split} f_{X|Y}(x|y_0) &= c_{y_0} e^{-\lambda x y_0} \text{ for } 0 \leq x \leq D_1 \\ f_{Y|X}(y|x_0) &= c_{x_0} e^{-\lambda y x_0} \text{ for } 0 \leq y \leq D_2, \end{split}$$

where c_{y_0} and c_{x_0} are the normalization constants. We can easily sample from the two conditionals $f_{X|Y}$ and $f_{Y|X}$ using the inverse method function (even for truncated distributions). The Gibbs algorithm becomes

- 1. Start with some initial values X_0 and Y_0 .
- 2. For i = 1, 2, ..., N
 - $\begin{array}{l} \text{1. Sample } X_i \sim c_{Y_{i-1}} e^{-\lambda X_i Y_{i-1}} \text{ using the inverse method.} \\ \text{2. Sample } Y_i \sim c_{X_i} e^{-\lambda Y_i X_i} \text{ using the inverse method.} \end{array}$
- 3. Return the $(X_0,Y_0),\,(X_1,Y_1),\,...,\,(X_N,Y_N).$

Bivariate Normal Distribution

Suppose (X,Y) has a bivariate normal distribution with mean (0,0) and covariance matrix $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$. We want to sample from the joint distribution $f_{X,Y}$. One can show that

$$\begin{split} (X|Y=y_0) &\sim \mathcal{N}(\rho y_0, 1-\rho^2) \\ (Y|X=x_0) &\sim \mathcal{N}(\rho x_0, 1-\rho^2). \end{split}$$

We can sample from the two conditionals $f_{X|Y}$ and $f_{Y|X}$ using the Box-Muller method. The Gibbs algorithm becomes

- 1. Start with some initial values X_0 and Y_0 . 2. For $i=1,2,\ldots,N$
- - $\begin{aligned} &1. \text{ Sample } X_i \sim \mathcal{N}(\rho Y_{i-1}, 1-\rho^2). \\ &2. \text{ Sample } Y_i \sim \mathcal{N}(\rho X_i, 1-\rho^2). \end{aligned}$
- 3. Return the $(X_0,Y_0),\,(X_1,Y_1),\,...,\,(X_N,Y_N).$

Markov Chain

The Gibbs sampling algorithm generates a Markov Chain whose state space is the product space of the state spaces of the individual variables $\Omega = \Omega_X \times \Omega_Y$. In the above examples, the state space is $[0,D_1]\times [0,D_2]$ for the exponential distribution and \mathbb{R}^2 for the bivariate normal distribution. The transition matrix of the Markov Chain in discrete case is given by

$$P\left(\begin{bmatrix}x\\y\end{bmatrix},\begin{bmatrix}x'\\y'\end{bmatrix}\right) = \mathbb{P}(X_{i+1} = x'|Y_i = y)\mathbb{P}(Y_{i+1} = y'|X_i = x').$$

In the continuous case, the transition kernel is given by

$$K\left(\begin{bmatrix}x\\y\end{bmatrix},\begin{bmatrix}x'\\y'\end{bmatrix}\right) = f_{X|Y}(x|y)f_{Y|X}(y|x').$$

Theorem 0.1. The Gibbs sampling algorithm generates a Markov Chain with the transition matrix P as described above. The joint distribution $f_{X,Y}$ is a stationary distribution of the Markov Chain. Hence, if the Markov Chain converges to the stationary distribution, the samples generated by the Gibbs algorithm will be distributed according to $f_{X,Y}$.

We'll provide a proof of the above theorem in the next section.