1. By Chaoren Liu

Question 1

Ι

To prove the universality, we assume $(x_1, x_2) \neq (x'_1, x'_2)$ and the number of functions h_{a_1,a_2} that hashes (x_1, x_2) and (x'_1, x'_2) to the same value is at most m.

Without losing the generality, we assume $x_1 \neq x_1'$, and $h_{a_1,a_2}(x_1,x_2) = h_{a_1,a_2}(x_1',x_2')$, then

$$a_1x_1 + a_2x_2 \equiv a_1x_1' + a_2x_2' \pmod{m}$$
 $a_1(x_1 - x_1') \equiv a_2(x_2' - x_2) \pmod{m}$ $a_1 = \frac{a_2(x_2' - x_2)}{x_1 - x_1'} \pmod{m}$ because m is prime

For each value of a_2 , we have one a_1 and we have m possible a_2 . Therefore, this family of hashing functions is universal.

To choose a function, we need to choose $a_1, a_2 \in [m]$ uniformly-independently at random. So we need $2\lceil log_2m \rceil$ random bits.

\mathbf{II}

If m is a fixed power of 2, then we have

$$a_1(x_1 - x_1') \equiv a_2(x_2' - x_2)$$
 (mod m)

$$a_1 = \frac{a_2(x_2' - x_2)}{x_1 - x_1'}$$
 (mod $\frac{m}{(m, x_1 - x_1')}$)

where $(m, x_1 - x'_1)$ is the greatest common divisor.

Next we assume $x_1 - x'_1 = 2$, then $a_1 = \frac{a_2(x'_2 - x_2)}{x_1 - x'_1} \pmod{\frac{m}{2}}$. Because the range of a_1 is [m], there is 2 possible a_1 for each fixed a_2 . And a_2 can be any value in [m]. The total number of h_{a_1,a_2} that $h_{a_1,a_2}(x_1,x_2) = h_{a_1,a_2}(x'_1,x'_2)$ is more than m. Thereby this family of hash functions is not universal. To choose a function, we need choose a_1 and a_2 uniformly-independently at random from [m]. So we need $2log_2m$ random bits.

Ш

Because H is the set of all functions f: $[m] \rightarrow [m-1]$, the number of functions in H (|H|) is $(m-1)^m$. For any pair of $x, y \in [m]$, the number of function f that satisfies f(x)=f(y) is equal to $(m-1)^{m-2}(m-1)$ because f(x)=f(y)=c and c can be any value in [m-1]. Because $(m-1)^{m-2}(m-1)=(m-1)^{m-1}=\frac{|H|}{m-1}$, this set of function is universal. To choose a function independently-uniformly at random we need $\lceil m \log_2(m-1) \rceil$ random bits.

2. By Rupert Freeman

(a) Need to choose u to minimize the function

$$(|x_1-u|+|x_n-u|)+(|x_2-u|+|x_{n-1}-u|)+\ldots+(|x_{\frac{n-1}{2}}-u|+|x_{\frac{n+3}{2}}-u|)+(|x_{\frac{n+1}{2}}-u|)$$

Assume that $x_1 \leq x_2 \leq ... \leq x_n$. Note that to minimise $(|x_j - u| + |x_k - u|)$ all we need to do is choose $x_j \leq u \leq x_k$. So to minimise all but the last bracketed term in the function we can choose any $x_{\frac{n-1}{2}} \leq u \leq x_{\frac{n+3}{2}}$. This leaves only the last term to minimise which we do by choosing $u = x_{\frac{n+1}{2}}$, the median.

Rupert Freeman

CPS590.06 Fall 2013 - Homework 3

2

(b) Need to choose u to minimize the function

$$\sum_{i} (x_{i} - u)^{2} = \sum_{i} (x_{i}^{2} - 2x_{i}u + u^{2})$$

$$= \sum_{i} x_{i}^{2} + \sum_{i} u^{2} - \sum_{i} 2x_{i}u$$

Since $\sum_i x_i^2$ is fixed, we need to minimize $f = \sum_i u^2 - \sum_i 2x_i u$. Letting $\sum_i x_i = s$, we get $f = nu^2 - 2us$. Differentiating,

$$\frac{df}{du} = 2nu - 2s$$

and setting to zero to find the critical point,

$$2nu - 2s = 0$$

$$u = \frac{2s}{2n}$$

$$= \frac{s}{n}$$

$$= \frac{\sum_{i} x_{i}}{n}$$

And by the second derivative test, the critical point is a minimum since $\frac{d^2f}{du^2} = 2n > 0$.

3. By Chaoren Liu

Question 3

When applying an operation of increment, the number of operations are the number of flippings. We pay two dollars when flipping one bit from 0 to 1, with one dollar paying for the flipping and another one dollar putting on the bit. This extra dollar will be charged when flipping it from 1 to 0. In this case, all bits which are 1 have an extra dollar on it. In this way, reset operation will not be charged. From the algorithm, we can notice that each

 2

increment operation only flip one bit from 0 to 1. Therefore any sequence of n operations take less than 2n flippings, in turn O(n) running time.

By Rupert Freeman

3. Can use the amortized analysis accounting method. Charge 2 units of time for each time a bit is flipped to 1, and 0 units of time each time a bit is flipped to 0. Since the counter starts from zero, this gives an upper bound on the actual time cost. In each increment of the counter only 1 bit is flipped to 1 and in each reset no bits are flipped to 1. Thus the amortized cost of n operations is no greater than 2n, hence the actual cost is O(n).