

RF Parameters: Individual Trees

• mtries: number of columns to sample on each split (default: sqrt(n) for classification, n/3 for regression) col_sample_rate_change_per_level: factor by which to increase or decrease mtries per level of tree When to stop splitting? • max depth: maximum depth of each tree • min rows: minimum rows in a leaf (i.e. stop splitting when data size is this small) • min split improvement: minimum relative improvement in split criterion for a split to occur Histogramming • **nbins**: number of bins for numeric variables (default: 20) • **nbins** top level: can be used instead of nbins; nbins will then decrease by 2 each level • **nbins** cats: number of bins for categorical variables (default: 1024)

• histogram type: method for binning {"Uniform Adaptive", "Random", "QuantilesGlobal", "RoundRobin"}

Column sampling for split:

Random Forests in H2O

histogram_type = Random

RF Parameters: Individual Trees

- Column sampling for split:
- mtries: number of columns to sample on each split (default: sqrt(n) for classification, n/3 for regression)
- col_sample_rate_change_per_level: factor by which to increase or decrease mtries per level of tree
- When to stop splitting?
- max depth: maximum depth of each tree
- min rows: minimum rows in a leaf (i.e. stop splitting when data size is this small)
- min_split_improvement: minimum relative improvement in split criterion for a split to occur
- Histogramming
- **nbins**: number of bins for numeric variables (default: 20)
- **nbins** top level: can be used instead of nbins; nbins will then decrease by 2 each level
- nbins_cats: number of bins for categorical variables (default: 1024)
- histogram_type: method for binning {"Uniform Adaptive", "Random", "QuantilesGlobal", "RoundRobin"}

