УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 72

Студент

Тимошкин Роман Вячеславович

P3131

Преподаватель

Поляков Владимир Иванович

№ Варианта	Условия, при которых f=1	Условия, при которых f=d			
72	$2 < x_1x_2 - x_3x_4x_5 < 5$	$ x_1x_2 - x_3x_4x_5 = 2$			

Таблица истинности

Nº	x_1	x_2	x_3	x_4	x_5	x_1x_2	$x_3x_4x_5$	x_1x_2	$x_3x_4x_5$	f
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	1	0
2	0	0	0	1	0	0	2	0	2	d
3	0	0	0	1	1	0	3	0	3	1
4	0	0	1	0	0	0	4	0	4	1
5	0	0	1	0	1	0	5	0	5	0
6	0	0	1	1	0	0	6	0	6	0
7	0	0	1	1	1	0	7	0	7	0
8	0	1	0	0	0	1	0	1	0	0
9	0	1	0	0	1	1	1	1	1	0
10	0	1	0	1	0	1	2	1	2	0
11	0	1	0	1	1	1	3	1	3	d
12	0	1	1	0	0	1	4	1	4	1
13	0	1	1	0	1	1	5	1	5	1
14	0	1	1	1	0	1	6	1	6	0
15	0	1	1	1	1	1	7	1	7	0
16	1	0	0	0	0	2	0	2	0	d
17	1	0	0	0	1	2	1	2	1	0
18	1	0	0	1	0	2	2	2	2	0
19	1	0	0	1	1	2	3	2	3	0
20	1	0	1	0	0	2	4	2	4	d
21	1	0	1	0	1	2	5	2	5	1
22	1	0	1	1	0	2	6	2	6	1
23	1	0	1	1	1	2	7	2	7	0
24	1	1	0	0	0	3	0	3	0	1
25	1	1	0	0	1	3	1	3	1	d
26	1	1	0	1	0	3	2	3	2	0
27	1	1	0	1	1	3	3	3	3	0
28	1	1	1	0	0	3	4	3	4	0
29	1	1	1	0	1	3	5	3	5	d
30	1	1	1	1	0	3	6	3	6	1
31	1	1	1	1	1	3	7	3	7	1

Аналитический вид

КДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \,$

ККНФ:

```
f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5)
(x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)
(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)
(x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})
(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})
(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)
```

Минимизация булевой функции методом Квайна–Мак-Класки

Кубы различной размерности и простые импликанты

	7207 e\		7.7	/ #\	77 (f)
	$K^0(f)$		K^{1}	(f)	Z(f)
m_4	00100	√	m_2 - m_3	0001X	0001X
m_2	00010	✓	m_4 - m_{12}	0X100	0X100
m_{16}	10000	✓	m_{16} - m_{20}	10X00	10X00
m_3	00011	√	m_{16} - m_{24}	1X000	1X000
m_{12}	01100	✓	m_4 - m_{20}	X0100	X0100
m_{24}	11000	✓	m_{12} - m_{13}	0110X	0110X
m_{20}	10100	✓	m_3 - m_{11}	0X011	0X011
m_{13}	01101	√	m_{20} - m_{21}	1010X	1010X
m_{21}	10101	✓	m_{20} - m_{22}	101X0	101X0
m_{22}	10110	✓	m_{24} - m_{25}	1100X	1100X
m_{11}	01011	✓	m_{25} - m_{29}	11X01	11X01
m_{25}	11001	✓	m_{21} - m_{29}	1X101	1X101
m_{30}	11110	√	m_{22} - m_{30}	1X110	1X110
m_{29}	11101	✓	m_{13} - m_{29}	X1101	X1101
m_{31}	11111	√	m_{30} - m_{31}	1111X	1111X
			m_{29} - m_{31}	111X1	111X1

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы								
		0	0	0	0	1	1	1	1	1
		0	0	1	1	0	0	1	1	1
Про	Простые импликанты		1	1	1	1	1	0	1	1
		1	0	0	0	0	1	0	1	1
		1	0	0	1	1	0	0	0	1
		3	4	12	13	21	22	24	30	31
A	0001X	X								
В	0X100		X	X						
	10X00									
С	1X000							X		
D	X0100		X							
Е	0110X			X	X					
F	0X011	X								
G	1010X					X				
Н	101X0						X			
I	1100X							X		
	11X01									
J	1X101					X				
K	1X110						X		X	
L	X1101				X					
M	1111X								X	X
N	111X1									X

Ядро покрытия: $T = \{\}.$

Получим следующую упрощенную импликантную таблицу:

			0-кубы								
			0	0	0	1	1	1	1	1	
Простые импликанты		0	0	1	1	0	0	1	1	1	
		0	1	1	1	1	1	0	1	1	
		1	0	0	0	0	1	0	1	1	
			0	0	1	1	0	0	0	1	
			4	12	13	21	22	24	30	31	
A	0001X	X									
В	0X100		X	X							
С	1X000							X			
D	X0100		X								
Е	0110X			X	X						
F	0X011	Х									
G	1010X					X					
Н	101X0						X				
I	1100X							X			
J	1X101					X					
K	1X110						X		X		
L	X1101				X						
M	1111X								X	X	
N	111X1									X	

Все импликанты имеют одинаковую цену, поэтому легко выбрать минимальное покрытие из таблицы.

Рассмотрим одно из них:

$$C_{\min} = \begin{cases} 0001X \\ 0X100 \\ 1X000 \\ 0110X \\ 1010X \\ 101X0 \\ 1111X \end{cases}$$
$$S^{a} = 28$$
$$S^{b} = 35$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_5} \vee x_1 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_5} \vee x_1 \, \overline{x$

Определение МКНФ

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_1} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \quad S_Q = 35 \quad \tau = 2$$

Декомпозиция невозможна

$$f = x_1 \overline{x_2} x_3 (\overline{x_4} \vee \overline{x_5}) \vee \overline{x_1} x_3 \overline{x_4} (x_2 \vee \overline{x_5}) \vee \overline{x_1} \overline{x_2} \overline{x_3} x_4 \vee x_1 \overline{x_3} \overline{x_4} \overline{x_5} \vee x_1 x_2 x_3 x_4$$

$$S_Q = 29 \quad \tau = 3$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_3 \lor x_4) (\overline{x_1} \lor x_2 \lor x_3) (x_1 \lor \overline{x_3} \lor \overline{x_4}) (\overline{x_2} \lor x_3 \lor \overline{x_4}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_4} \lor \overline{x_5}) S_Q = 31 \quad \tau = 2$$

Декомпозиция невозможна

$$f = (x_1 \vee \overline{x_3} \vee \overline{x_4} (x_2 \vee \overline{x_5})) (\overline{x_1} \vee x_2 \vee x_3 (\overline{x_4} \vee \overline{x_5}))$$

$$(x_1 \vee x_3 \vee x_4) (\overline{x_2} \vee x_3 \vee \overline{x_4}) (\overline{x_1} \vee \overline{x_3} \vee x_4 \vee x_5)$$

$$S_Q = 29 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \overline{x_2} x_3 (\overline{x_4} \vee \overline{x_5}) \vee \overline{x_1} x_3 \overline{x_4} (x_2 \vee \overline{x_5}) \vee \overline{x_1} \overline{x_2} \overline{x_3} x_4 \vee x_1 \overline{x_3} \overline{x_4} \overline{x_5} \vee x_1 x_2 x_3 x_4 (S_Q = 29, \tau = 3)$$

Схема по упрощенной МКНФ:

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f=\overline{x_1\,\overline{x_2}\,x_3\,\overline{x_4}\,x_5}\,\overline{x_1\,x_3\,\overline{x_4}\,\overline{x_2}\,x_5}\,\overline{x_1\,\overline{x_2}\,x_3\,x_4}\,\overline{x_1\,\overline{x_3}\,\overline{x_4}\,x_5}\,\overline{x_1\,x_2\,x_3\,x_4} \quad (S_Q=37,\tau=6)$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1} \, x_3 \, \overline{x_4 \, \overline{x_2} \, x_5} \, \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \, \overline{x_1} \, \overline{x_2} \, \overline{x_4} \, \overline{x_5} \qquad (S_Q = 38, \tau = 7)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_1} \overline{\overline{x_2}} \overline{x_3} \overline{\overline{x_4} \overline{x_5}} \overline{\overline{x_3}} \overline{\overline{\overline{x_4}} \overline{x_5}} \overline{\overline{x_3}} \overline{\overline{\overline{x_1}} \overline{x_4}} \overline{\overline{x_2} \overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_5}} \qquad (S_Q = 42, \tau = 9)$$

