Devoir à la maison n°22

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

In the development χ_J par rapport à sa première colonne, on obtient $\chi_J = X^n - 1$. Ainsi $Sp(J) = \mathbb{U}_n$ et comme χ_J est scindé sur \mathbb{C} à racines simples, J est diagonalisable sur \mathbb{C} .

2 Posons $\omega = e^{\frac{2i\pi}{n}}$ de sorte que $\mathbb{U}_n = \{\omega^k, \ k \in [0, n-1]\}$. On vérifie qu'en posant $X_k = (1, \omega^k, \omega^{2k}, \dots, \omega^{(n-1)k})$, $JX_k = \omega^k X_k$. Ainsi X_k est un vecteur propre associé à la valeur propre ω^k . Comme J est diagonalisable, (X_0, \dots, X_{n-1}) est une base de \mathbb{C}^n formée de vecteurs propres de J.

3 On a évidemment $U_0 = (1, 0, ..., 0)$. De plus,

$$\mathbb{P}(\mathbf{X}_{m+1} = k) = \begin{cases} \frac{1}{2} \mathbb{P}(\mathbf{X}_m = k-1) + \frac{1}{2} \mathbb{P}(\mathbf{X}_m = k+1) & \text{si } 0 \leq k \neq n-2 \\ \frac{1}{2} \mathbb{P}(\mathbf{X}_m = n-1) + \frac{1}{2} \mathbb{P}(\mathbf{X}_m = 1) & \text{si } k = 0 \\ \frac{1}{2} \mathbb{P}(\mathbf{X}_m = n-2) + \frac{1}{2} \mathbb{P}(\mathbf{X}_m = 0) & \text{si } k = n-1 \end{cases}$$

On en déduit que $U_{m+1} = AU_m$ en posant $A = \frac{1}{2}(J^T + J)$.

Les colonnes de J forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ (pour le produit scalaire usuel) puisqu'elles forment la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$. On en déduit que J est orthogonale. Notamment, $J^{-1} = J^{T}$. En posant $D = \operatorname{diag}(1, \omega, \dots, \omega^{n-1})$, il existe $P \in \operatorname{GL}_{n}(\mathbb{C})$ telle que $J = \operatorname{PDP}^{-1}$. On en déduit que $A = \frac{1}{2}P(D+D^{-1})P^{-1}$ où $\frac{1}{2}(D+D^{-1}) = \operatorname{diag}(1, \cos(2\pi/n), \dots, \cos(2(n-1)\pi/n))$. Par conséquent,

$$Sp(A) = \left\{ \cos \left(\frac{2k\pi}{n}, \ k \in \llbracket 0, n-1 \rrbracket \right) \right\}$$

Il est clair que la valeur propre de A de module maximal est 1. On vérifie aisément qu'un vecteur propre unitaire associé à cette valeur propre est $\frac{1}{\sqrt{n}}(1,\dots,1)$.

5 Comme la matrice A est symétrique réelle, il existe une base orthonormée $(Y_0, ..., Y_{n-1})$ de \mathbb{R}^n où Y_k est la valeur propre associée à la valeur propre $\lambda_k = \cos\left(\frac{2k\pi}{n}\right)$. Il existe $(\alpha_0, ..., \alpha_{n-1}) \in \mathbb{R}^n$ tel que $U_0 = \sum_{k=0}^{n-1} \alpha_k Y_k$. Alors

$$U_m = A^m U_0 = \sum_{k=0}^{n-1} \alpha_k \lambda_k^m Y_k \xrightarrow[n \to +\infty]{} \alpha_0 Y_0$$

car $\lambda_0 = 1$ et $|\lambda_k| < 1$ pour $k \in [[1, n-1]]$. Or $\alpha_0 Y_0$ est le projeté orthogonal de $U_0 = (1, 0, ..., 0)$ sur $\text{vect}(Y_0)$ où $Y_0 = \frac{1}{\sqrt{n}}(1, ..., 1)$ est unitaire de sorte que

$$\alpha_0 Y_0 = \langle U_0, Y_0 \rangle Y_0 = \frac{1}{n} (1, \dots, 1)$$

1

En résumé, (U_m) converge vers $\frac{1}{n}(1, \dots, 1)$.

6 Tout d'abord, \mathcal{B}_n n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ puisqu'il ne contient pas la matrice nulle.

Notons φ_i : $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \sum_{j=1}^n M_{i,j}$ et ψ_j : $M \in \mathcal{M}_n(\mathbb{R})$ et $\xi_{i,j}$: $M \in \mathcal{M}_n(\mathbb{R}) \mapsto M_{i,j}$. Ces applications sont clairement des formes linéaires. De plus,

$$\mathbf{M} \in \mathcal{B}_n \iff \begin{cases} \forall i \in \llbracket 1, n \rrbracket, \ \varphi_i(\mathbf{M}) = 1 \\ \forall j \in \llbracket 1, n \rrbracket, \ \psi_j(\mathbf{M}) = 1 \\ \forall (i, j) \in \llbracket 1, n \rrbracket^2, \ \xi_{i, j}(\mathbf{M}) \geq 0 \end{cases}$$

Soient $(M, N) \in \mathcal{B}_n^2$ et $\lambda \in [0, 1]$. Alors pour tout $(i, j) \in [1, n]^2$.

$$\begin{split} & \varphi_i(\lambda M + (1-\lambda)N) = \lambda \varphi_i(M) + (1-\lambda)\varphi_i(N) = \lambda + 1 - \lambda = 1 \\ & \psi_j(\lambda M + (1-\lambda)N) = \lambda \psi_j(M) + (1-\lambda)\psi_j(N) = \lambda + 1 - \lambda = 1 \\ & \xi_{i,j}(\lambda M + (1-\lambda)N) = \lambda \xi_{i,j}(M) + (1-\lambda)\xi_{i,j}(N) \geq 0 \end{split}$$

Ainsi $\lambda M + (1 - \lambda)N \in \mathcal{B}_n$. On en déduit que \mathcal{B}_n est convexe.

 \mathcal{B}_n est bornée puisqu'une matrice bistochastique est clairement à valeurs dans [0,1]. Enfin,

$$\mathcal{B}_n = \left(\bigcap_{i=1}^n \varphi_i^{-1}(\{1\})\right) \cap \left(\bigcap_{j=1}^n \psi_j^{-1}(\{1\})\right) \cap \left(\bigcap_{(i,j) \in [\![1,n]\!]^2} \xi_{i,j}^{-1}(\mathbb{R}_+)\right)$$

Or les applications φ_i , ψ_j et $\xi_{i,j}$ sont continues car linéaires sur $\mathcal{M}_n(\mathbb{R})$ qui est de dimension finie. Donc les images réciproques des fermés $\{1\}$ et \mathbb{R}_+ par ces applications sont des fermés. Enfin, \mathcal{B}_n est fermé comme intersection de fermés. Comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, \mathcal{B}_n est compact en tant que fermé borné.

7 On vérifie aisément que $\mathcal{P}_n \subset \mathcal{B}_n$. On laisse le lecteur vérifié que, pour $(\sigma, \tau) \in S_n^2$, $M_{\sigma}M_{\tau} = M_{\sigma \circ \tau}$. Notamment, $M_{\sigma}M_{\sigma^{-1}} = M_{\mathrm{Id}} = I_n$. Ainsi $\mathcal{P}_n \subset \mathrm{GL}_n(\mathbb{R})$. Enfin, \mathcal{P}_n est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$ en tant qu'image du morphisme de groupes $\sigma \in S_n \mapsto M_{\sigma}$.

Soit $\sigma \in S_n$. Comme S_n est un groupe d'ordre fini, σ est également d'ordre fini. Notons p cet ordre. Alors $(M_{\sigma})^p = M_{\sigma^p} = M_{\mathrm{Id}} = I_n$. Ainsi le polynôme $X^p - 1$ annule M_{σ} . Comme ce polynôme est simplement scindé sur \mathbb{C} , M_{σ} est diagonalisable sur \mathbb{C} .

Enfin, \mathcal{P}_n n'est évidemment pas convexe. En effet, si on prend deux matrices de permutation M et N distinctes, $\frac{1}{2}(M+N)$ possèdera des coefficients égaux à 1/2 (prendre I_n et J par exemple).

Soit $A \in \mathcal{P}_n$. Supposons qu'il existe $\lambda \in]0,1[$ et $(M,N) \in \mathcal{B}_n^2$ tel que $A = \lambda M + (1-\lambda)N$. Soit $i \in [[1,n]]^2$. On sait alors qu'il existe un unique $j \in [[1,n]]^2$ tel que $A_{i,j} = 1$. De plus,

$$\lambda(\mathbf{A}_{i,j}-\mathbf{M}_{i,j})+(1-\lambda)(\mathbf{A}_{i,j}-\mathbf{N}_{i,j})=0$$

Les deux termes de cette somme sont positis puisque $A_{i,j} = 1$ et M et N sont à coefficients dans [0,1]. Ces deux termes sont donc nuls. Comme λ et $1 - \lambda$ ne sont pas nuls, $M_{i,j} = N_{i,j} = A_{i,j} = 1$. Comme la somme des coefficients de la ligne i de M et N vaut 1, les autres coefficients de cette ligne sont nuls dans M et N. Ainsi les lignes i de A, M et N sont égales. Ceci étant vrai pour tout $i \in [1, n]$, A = M = N.

Les matrices de \mathcal{P}_n sont donc bien extrémales dans \mathcal{B}_n .

9

Notons m le plus petit des coefficients A_{i_k,j_k} et $A_{i_k,j_{k+1}}$ pour $k \in [\![1,r]\!]$. Remarquons que A-mB et A+mB sont alors à coefficients positifs. De plus, les sommes des coefficients de chaque ligne et de chaque colonne de B sont nulles donc les sommes des coefficients de chaque ligne et de chaque colonne de A-mB et A+mB valent 1. Ainsi A-mB et A+mB sont bistochastiques. Comme $A=\frac{1}{2}(A-mB)+\frac{1}{2}(A+mB)$, A n'est pas extrémale dans \mathcal{B}_n .

Soit M une matrice extraite de A à p ligne et q colonnes avec p+q=n+1. Comme le caractère bistochastique d'une matrice est invariant par permutation des lignes ou des colonnes, on peut supposer que M est constituée des p premières lignes et des q premières colonnes de A. Supposons que M=0. Alors

$$\forall i \in [[1, p]], \sum_{j=q+1}^{n} A_{i,j} = 1$$

donc, en sommant,

$$\sum_{i=1}^{p} \sum_{i=a+1}^{n} \mathbf{A}_{i,j} = p$$

Or en intervertissant les sommes

$$\sum_{i=1}^{p} \sum_{j=q+1}^{n} \mathbf{A}_{i,j} = \sum_{j=q+1}^{n} \sum_{i=1}^{p} \mathbf{A}_{i,j} \le \sum_{j=q+1}^{n} \sum_{i=1}^{n} \mathbf{A}_{i,j} = n - q$$

Ainsi $p \le n - q$, ce qui contredit p + q = n + 1.

D'après le résultat admis, M admet un chemin strictement positif.

12 Si $\lambda_0 = 1$, alors $A_{\sigma(j),j} = 1$ pour tout $j \in [[1,n]]$. Par bistochasticité de A, on a alors $A_{i,j} = \delta_{i,\sigma(j)}$ pour tout $(i,j) \in [[1,n]]^2$ ou encore $A = M_{\sigma}$. Mais A n'est pas une matrice de permutation donc $\lambda_0 \neq 1$ et A_0 est bien définie.

- Si $i \neq \sigma(j)$, alors $(A_0)_{i,j} = \frac{1}{1 \lambda_0} A_{i,j} \geq 0$.
- Si $i = \sigma(j)$, alors

$$(A_0)_{i,j} = \frac{1}{1 - \lambda_0} (A_{\sigma(j),j} - \lambda_0) \ge 0$$

Ainsi A_0 est à coefficients positifs.

Par linéarité de φ_i et ψ_j , pour tout $(i, j) \in [1, n]^2$,

$$\begin{split} \phi_i(A_0) &= \frac{1}{1 - \lambda_0} (\phi_i(A) - \lambda_0 \phi_i(M_\sigma)) = \frac{1}{1 - \lambda_0} (1 - \lambda_0) = 1 \\ \psi_j(A_0) &= \frac{1}{1 - \lambda_0} (\psi_j(A) - \lambda_0 \psi_j(M_\sigma)) = \frac{1}{1 - \lambda_0} (1 - \lambda_0) = 1 \end{split}$$

On en déduit que A₀ est bien bistochastique.

On note j_0 un indice tel que $\lambda_0 = A_{\sigma(j_0),j_0}$. Soit $(i,j) \in [\![1,n]\!]^2$ tel que $A_{i,j} = 0$. Nécessairement, $i \neq \sigma(j)$ donc $(A_0)_{i,j} = \frac{1}{1-\lambda_0}A_{i,j} = 0$. Enfin, $A_{\sigma(j_0),j_0} > 0$ et $(A_0)_{\sigma(j_0),j_0} = \frac{1}{1-\lambda_0}(A_{\sigma(j_0),j_0} - \lambda_0) = 0$. Ainsi A_0 possède un coefficient nul de plus que A.

13 On raisonne par récurrence sur le nombre de coefficients non nuls d'une matrice bistochastique. L'hypothèse de récurrence est donc la suivante :

HR(k): si $A \in \mathcal{B}_n$ possède au plus k coefficients non nuls, alors A s'écrit comme une combinaison convexe de matrices de permutation à coefficients strictement positifs.

Soit $A \in \mathcal{B}_n$ comportant au plus n coefficients non nuls. Comme chaque ligne de A comporte au moins un coefficient non nul (puisque la somme des coefficients de chaque ligne vaut 1), A possède en fait exactement un coefficient non nul par ligne. Ce coefficient vaut alors 1 et il est alors clair que A est une matrice de permutation. Ainsi HR(n) est vraie. Supposons que HR(k) soit vraie pour un certain $k \ge n$. Soit alors $A \in \mathcal{B}_n$ possédant au plus k+1 coefficients non nuls.

Supposons que HR(k) soit vraie pour un certain $k \ge n$. Soit alors $A \in \mathcal{B}_n$ possedant au plus k+1 coefficients non nuls. Si A est une matrice de permutation, il n'y a rien à prouver. Sinon, on peut définir A_0 comme précédemment. A_0 possède alors au moins un coefficient non nul de moins que A. D'après HR(k), il existe des réels $\alpha_1, \ldots, \alpha_s$ strictement positifs et

de somme 1 ainsi que des matrices de permutations M_1, \dots, M_s tels que $A_0 = \sum_{i=1}^s \alpha_i M_i$. De plus,

$$A = (1 - \lambda_0)A_0 + \lambda_0 M_{\sigma}$$

En posant $M_0 = M_{\sigma}$ et $\lambda_k = (1 - \lambda_0)\alpha_k > 0$ (car $\lambda_0 < 1$).

$$A = \sum_{i=0}^{s} \lambda_i M_i$$

De plus,

$$\sum_{i=0}^{s} \lambda_i = \lambda_0 + (1 - \lambda_0) \sum_{i=1}^{s} \alpha_i = 1$$

Ainsi HR(k + 1) est vraie.

En conclusion, HR(k) est vraie pour tout $k \in \mathbb{N}$ (en fait $n \le k \le n^2$).

14 \mathcal{P}_n est fini (puisque isomorphe à S_n). Ainsi φ possède un minimum (et a fortiori une borne inférieure sur \mathcal{P}_n). Posons $m_1 = \min_{M \in \mathcal{P}} \varphi(M)$.

On sait également que \mathcal{B}_n est compact et que φ est continue (en tant que forme linéaire sur un espace vectoriel de dimension finie). Ainsi φ possède également un minimum (et donc une borne inférieure sur \mathcal{B}_n). Posons $m_2 = \min_{\mathbf{M} \in \mathcal{B}_n} \varphi(\mathbf{M})$.

Puisque $\mathcal{P}_n \subset \mathcal{B}_n$, $m_2 \leq m_1$. Soit $A \in \mathcal{B}_n$ telle que $\varphi(A) = m_2$. D'après la question précédente, il existe des réels $\lambda_0, \dots, \lambda_s$ strictement positifs et de somme 1 ainsi que des matrices de permutation M_0, \dots, M_s tels que $A = \sum_{i=0}^s \lambda_i M_i$. Alors

$$m_2 = \varphi(A) = \sum_{i=0}^{s} \lambda_i \varphi(M_i) \ge \sum_{i=0}^{s} \lambda_s m_1 = m_1$$

Par conséquent $m_2 = m_1$ et le minimum de φ sur \mathcal{B}_n est atteint sur \mathcal{P}_n .

15 Soit (A, P, Q) $\in \mathcal{M}_n(\mathbb{R}) \times O_n(\mathbb{R})^2$. Alors

$$\|PAQ\|^2 = tr((PAQ)^T PAQ) = tr(Q^T A P^T PAQ) = tr(Q^T A^T A Q) = tr(A^T A Q Q^T) = tr(A^T A) = \|A\|^2$$

D'après le théorème spectral, il existe $(Q_A, Q_B) \in O_n(\mathbb{R})^2$ et deux matrices diagonales réelles D_A et D_B telles que $A = Q_A D_A Q_A^T$ et $B = Q_B D_B Q_B^T$. D'après la question précédente,

$$\|A - B\|^2 = \|Q_A^T(A - B)Q_B\|^2 = \|D_AQ_A^TQ_B - Q_A^TD_B\|^2 = \|D_AP - PD_B\|^2$$

en posant $P = Q_A^T Q_B$. Comme $O_n(\mathbb{R})$ est un groupe, $P \in O_n(\mathbb{R})$.

17 Les colonnes et les lignes de P sont unitaires pour le produit scalaire usuel de \mathbb{R}^n ce qui prouve que R est bistochastique.

Remarquons que $D_A = \operatorname{diag}(\lambda_1(A), \dots, \lambda_n(A))$ et $D_B = \operatorname{diag}(\lambda_1(B), \dots, \lambda_n(B))$. De plus, pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})^2$, $\|M\|^2 = \sum_{1 \leq i,j \leq n} M_{i,j}^2$. Donc

$$\|\mathbf{A} - \mathbf{B}\|^2 = \sum_{1 \le i, j \le n} (\mathbf{D}_{\mathbf{A}} \mathbf{P} - \mathbf{P} \mathbf{D}_{\mathbf{B}})_{i, j}^2 = \sum_{1 \le i, j \le n} (\lambda_i(\mathbf{A}) \mathbf{P}_{i, j} - \lambda_j(\mathbf{B}) \mathbf{P}_{i, j})^2 = \sum_{1 \le i, j \le n} \mathbf{R}_{i, j} (\lambda_i(\mathbf{A}) - \lambda_j(\mathbf{B}))^2$$

18 L'application $\varphi : M \in \mathcal{M}_n(\mathbb{R}) \mapsto \sum_{1 \leq i,j \leq n} M_{i,j} (\lambda_i(A) - \lambda_j(B))^2$ est une forme linéaire. D'après la question 14, comme B est bistochastique,

$$\|\mathbf{A} - \mathbf{B}\|^2 = \varphi(\mathbf{R}) \ge \min_{\mathcal{B}_n} \varphi = \min_{\mathcal{P}_n} \varphi = \min_{\sigma \in S_n} \varphi(\mathbf{M}_{\sigma})$$

Mais par ailleurs, pour $\sigma \in S_n$,

$$\varphi(\mathbf{M}_{\sigma}) = \sum_{1 \leq i,j \leq n} (\mathbf{M}_{\sigma})_{i,j} (\lambda_i(\mathbf{A}) - \lambda_j(\mathbf{B}))^2 = \sum_{1 \leq i,j \leq n} \delta_{i,\sigma(j)} (\lambda_i(\mathbf{A}) - \lambda_j(\mathbf{B}))^2 = \sum_{j=1}^n (\lambda_{\sigma(j)}(\mathbf{A}) - \lambda_j(\mathbf{B}))^2$$

On en déduit le résultat demandé.

On peut sans perte de généralité supposer que les a_i et les b_i sont déjà rangés par ordre croissant. Soit $(X, Y) \in V^2$ tel que $X \sim P_1$ et $Y \sim P_2$. D'après la formule de transfert appliquée au couple (X, Y),

$$\mathbb{E}((X - Y)^2) = \sum_{1 \le i, j \le n} (a_i - b_j)^2 \mathbb{P}((X, Y) = (a_i, b_j))$$

Pour tout $(i, j) \in [1, n]^2$,

$$\sum_{j=1}^{n} \mathbb{P}((X, Y) = (a_i, b_j)) = \mathbb{P}(X = a_i) = \frac{1}{n}$$
$$\sum_{i=1}^{n} \mathbb{P}((X, Y) = (a_i, b_j)) = \mathbb{P}(Y = b_j) = \frac{1}{n}$$

On en déduit que la matrice $R = (n\mathbb{P}((X,Y) = (a_i,b_j)))_{1 \le i,j \le n}$ est bistochastique. Comme à la question précédente, on montre que

$$\mathbb{E}((\mathbf{X} - \mathbf{Y})^2) \ge \frac{1}{n} \min_{\sigma \in \mathbf{S}_n} \sum_{i=1}^n (a_{\sigma(j)} - b_j)^2$$

Notons m ce minimum. L'inégalité précédente montre que $d^2(P_1, P_2)$ est bien définie et que $d^2(P_1, P_2) \ge \frac{m}{n}$.

Motrons que m est atteint en σ = Id. Pour cela, posons $f(\sigma) = \sum_{j=1}^{n} (a_{\sigma(j)} - b_j)^2$. Remarquons que la seule permutation

croissante de [1, n] est Id. Soit $\sigma \in S_n$ telle que $\sigma \neq Id$. Il existe alors $(i, j) \in [1, n]^2$ tel que i < j et $\sigma(i) > \sigma(j)$. Notons alors τ la transposition $(\sigma(i), \sigma(j))$. Alors

$$f(\tau \circ \sigma) - f(\sigma) = (a_{\sigma(i)} - b_i)^2 + (a_{\sigma(j)} - b_i)^2 - (a_{\sigma(j)} - b_j)^2 + (a_{\sigma(i)} - b_i)^2 = 2(a_{\sigma(j)} - a_{\sigma(i)})(b_j - b_i) < 0$$

On en déduit que m est bien atteint en $\sigma = \operatorname{Id}$ et ainsi $m = \sum_{j=1}^{n} (a_j - b_j)^2$. On suppose alors qu'il existe un couple de variables aléatoires (X, Y) sur $(\Omega, \mathcal{A}, \mathbb{P})$ tel que

$$\forall (i, j) \in [[1, n]]^2, \ \mathbb{P}((X, Y) = (a_i, b_j)) = \frac{\delta_{i, j}}{n}$$

REMARQUE. Malheureusement, rien ne garantit l'existence d'un tel couple. Il y a probablement un problème dans l'énoncé.

On vérifie alors que les lois marginales de X et Y suivent bien les lois P_1 et P_2 respectivement. De plus, $\mathbb{E}((X-Y)^2) = \frac{m}{n}$ par formule de transfert. On a donc bien

$$d^{2}(P_{1}, P_{2}) = \frac{m}{n} = \frac{1}{n} \sum_{j=1}^{n} (a_{j} - b_{j})^{2}$$

Avec la question précédente, on a également,

$$nd^{2}(P_{1}, P_{2}) \leq \sum_{j=1}^{n} (a_{j} - b_{j})^{2}$$