Aprenentatge Automàtic 1

GCED

Lluís A. Belanche belanche@cs.upc.edu

Soft Computing Research Group
Dept. de Ciències de la Computació (Computer Science)
Universitat Politècnica de Catalunya

2019-2020

LECTURE 9: Artificial Neural Networks (II)

Introduction

- RBFs have their roots at exact function interpolation (formulation as a neural network came later)
- The output of a hidden neuron is determined by the **distance** between the input and the neuron's center (seen as a **prototype**)
- This latter fact has two important consequences:
 - 1. It allows to give a precise interpretation to the network output
 - 2. It allows to design de-coupled training algorithms

Introduction

Exact function interpolation:

$$h(\boldsymbol{x}_n) = t_n$$
 $\boldsymbol{x}_n \in \mathbb{R}^d, t_n \in \mathbb{R}, \ n = 1, ..., N$

 \blacksquare The function h is expressed as a combination of **basis functions**:

$$\phi_n(x) := \phi(\|x - x_n\|)$$

Introduction

■ The combination is linear w.r.t. the basis functions:

$$h(x) = \sum_{n=1}^{N} w_n \phi_n(x) = \sum_{n=1}^{N} w_n \phi(||x - x_n||)$$

which we will force to be exact for all the data points: $h(x_n) = t_n$

- The function $\|\cdot\|$ is any norm in \mathbb{R}^d (most often an **Euclidean norm**)
- Because of the norm, the ϕ_n are functions that exhibit **radial** contours of constant value **centered** at the data points x_n

Introduction

In matrix notation:

$$\begin{pmatrix} \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{N}(x_{1}) \\ \phi_{1}(x_{2}) & \phi_{2}(x_{2}) & \cdots & \phi_{N}(x_{2}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_{1}(x_{N}) & \phi_{2}(x_{N}) & \cdots & \phi_{N}(x_{N}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{N} \end{pmatrix} = \begin{pmatrix} t_{1} \\ t_{2} \\ \vdots \\ t_{N} \end{pmatrix}$$

$$\Phi w = t$$

Note that the matrix Φ is $N \times N$ and symmetric.

Introduction

- Assuming that Φ is non-singular, w can be found as $w = \Phi^{-1}t$ (e.g., using LU decomposition: $\Phi = LU$ where L is lower triangular, U upper triangular)
- It can be shown that indeed Φ is non-singular for various choices of the basis functions (Micchelli's theorem), including:

1.
$$\phi(z) = \exp(-z^2/\sigma^2)$$

2.
$$\phi(z) = (z^2 + \sigma^2)^{\alpha}, \ \alpha \in (-\infty, 0) \cup (0, 1)$$

3.
$$\phi(z) = z^3$$

4.
$$\phi(z) = z^2 \ln z$$

Introduction

■ If the interpolation problem has codomain in \mathbb{R}^m (i.e., $t_n \in \mathbb{R}^m$), the generalization is straightforward:

$$h_k(\mathbf{x}) = \sum_{n=1}^{N} w_{kn} \phi_n(\mathbf{x}) = \sum_{n=1}^{N} w_{kn} \phi(\|\mathbf{x} - \mathbf{x}_n\|), \ 1 \le k \le m$$

that we will force to be exact for all the data points: $h_k(x_n) = t_{nk}$

■ This problem leads to $\Phi W = T$, solved again by simple matrix inversion as $W = \Phi^{-1}T$

Note the dimensions: Φ is $N \times N$, but W, T are $N \times m$

Regularization

- Very often, in ML, the exact function interpolation setting is not attractive at all!
 - 1. High number (N) of interpolation points \rightarrow complex and unstable solutions
 - 2. The outputs t_n depend stochastically on the inputs $oldsymbol{x}_n o$ overfit solutions
 - 3. The interpolation matrix Φ can be singular or ill-conditioned
 - 4. The inversion of Φ grows as $O(N^3)$ (for symmetric PD matrices, Cholesky decomposition takes some $N^3/3$ steps)
- We are in need of a tighter control of complexity of the solution

Regularization

■ From previous lectures, we know that **regularization** penalizes the size of the weight matrix:

$$E_{emp}(W) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{m} (t_{nk} - h_k(\mathbf{x}_n))^2 + \frac{\lambda}{2} \sum_{k=1}^{m} ||\mathbf{w}_k||^2$$

which results in $W = (\Phi + \lambda I_N)^{-1}T$; the value of $\lambda > 0$ is proportional to the amount of noise in the data

■ Another way of obtaining much simpler solutions is to use a **subset** of the data points to center the basis functions; more generally, they can be centered at a carefully selected set of points in \mathbb{R}^d

RBF networks

With these modifications, we obtain the so-called RBF network:

$$h_k(x) = \sum_{i=0}^{H} w_{ki} \phi_i(x) = \sum_{i=0}^{H} w_{ki} \phi(||x - c_i||), \ 1 \le k \le m$$

which is a two-layer neural network:

- 1. The first (hidden) layer of $H \ll N$ neurons compute the basis functions $\phi_i(x)$, centered at the vectors c_i
- 2. A constant basis function $\phi_0(x) = 1$ compensates for the difference between the mean values of the output and the targets

RBF networks

A very popular choice for the ϕ_i is a simple Gaussian:

$$\phi_i(x) = \exp\left(-\frac{\|x - c_i\|^2}{\sigma_i^2}\right)$$

- The new matrix $\Phi_{N\times(H+1)}$, is sometimes known as the **design** matrix; now the weight matrix is $W = (\Phi^T \Phi)^{-1} \Phi^T T$
- If the original $\Phi_{N\times N}$ matrix was non-singular, then the matrix $\Phi_{N\times (H+1)}^{\mathsf{T}}\Phi_{N\times (H+1)}$ is also non-singular (very important result!)

If we also regularize the solution, then $W = (\Phi^T \Phi + \lambda I_{H+1})^{-1} \Phi^T T$

In summary

RBF network training is typically performed in a decoupled way:

- 1. The first stage finds $H, \{c_i\}, \{\sigma_i^2\}$ using a **clustering** algorithm
- 2. The second stage finds W by any of the usual (linear) methods:
 - Solution using the pseudo-inverse (via the SVD), for regression
 - Solution using IRLS (logistic regression), for binary classification

Comparison to the MLP

Two-class classification:

(left) separation by Gaussian neurons (RBFNN) (right) separation by hyperplanes (MLP)

Example (I)

a: Deterministic function

b: Uniform distribution of data points

c: The data sample with noise d: The U(-1,1) noise component

Example (II)

e: Exact fit to data points in (c) f: (e)-(a), i.e., exactly fitting the data in (d)

g: Approximating RBF

h: (g)-(a)