WOJSKOWA AKADEMIA TECHNICZNA

Wydział Cybernetyki

Algorytmy i struktury danych

Rok akademicki 2017/2018

Prowadzący: dr hab. inż. Kazimierz Worwa, prof. WAT e-mail: kazimierz.worwa@wat.edu.pl

ALGORYTMY I STRUKTURY DANYCH

RAZEM	Wykłady	Ćwiczenia	Laboratoria
60x	24	16+	20+

Warunki zaliczenia przedmiotu

- Rygory:
- zaliczenie ćwiczeń rachunkowych,
 - zaliczenie ćwiczeń laboratoryjnych,
 - egzamin.
- Warunkiem dopuszczenia do egzaminu jest zaliczenie ćwiczeń rachunkowych i laboratoryjnych
- ☐ Egzamin pisemny test wielokrotnego wyboru

lgorytmy i struktury danyel

LITERATURA

- Aho A.V., Hopcroft J.E., Ullman J.D.: Algorytmy i struktury danych. Wydawnictwo Helion, Gliwice, 2003.
- Aho A.V., Hopcroft J.E., Ullman J.D.: Projektowanie i analiza algorytmów. Wydawnictwo Helion, Gliwice, 2003.
- Banachowski L., Diks K., Rytter W., Algorytmy i struktury danych. WNT, Warszawa, 2011.
- 4. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Wprowadzenie do algorytmów. PWN, Warszawa, 2017.
- algorytmow. PWN, Warszawa, 2017.

 5. Drozdek A.: C++. Algorytmy i struktury danych. Wydawnictwo Helion, Gliwice, 2004.
- Kotowski P.: Algorytmy + struktury danych = abstrakcyjne typy danych. Wydawnictwo BTC, Warszawa, 2006.
- danych. Wydawnictwo BTC, Warszawa, 2006.
 7. Harris S, Ross J.: Algorytmy od podstaw. Wydawnictwo Helion, Gliwice, 2006.
- Wróblewski P.: Algorytmy, struktury danych i techniki programowania. Wydawnictwo Helion, Gliwice, 2015.
- 9. Wirth N.: Algorytmy + struktury danych = programy. WNT, Warszawa, 2004.

Algorytmy i struktury danye

Tematyka przedmiotu

- ☐ Złożoność obliczeniowa algorytmów
- ☐ Listy
- ☐ Kolejki (LIFO, FIFO, kolejki priorytetowe)
- Drzewa binarne
 - drzewa BST
 - drzewa AVL
 - drzewa czerwono-czarne
 - drzewa częściowo uporządkowane (kopce)
- ☐ Drzewa wielokierunkowe (B-drzewa)
- Algorytmy sortowania
 - wewnętrznego
 - ❖ zewnętrznego
- ☐ Tablice rozproszone (haszowanie)
- Problemy obliczeniowo trudne

Algorytmy i struktury danyc

Materiały do wykładów

- Materiały wykorzystywane na wykładach udostępniam na stronie https://cszis-elearning.wat.edu.pl:8443/WPB/
- logowanie:
 - nazwa użytkownika

AiSD

> Hasło

!Przedmiot3

- □ Pobranie (lub wyświetlenie) pliku następuje po kliknięciu na link do
- Jeżeli link jest nieaktywny, należy w opcjach przeglądarki dopuścić możliwość wyskakujących okienek.

Algorytmy i struktury dany

Algorytmy i struktury danych

Wykład 1-2

Pojęcia podstawowe. Złożoność obliczeniowa algorytmów.

Tematyka wykładu 1-2

- Pojęcia podstawowe
- Klasyfikacja algorytmów
- Własności algorytmów
- Metody oceny algorytmów
- Pojęcie złożoności obliczeniowej algorytmów
 Złożoność asymptotyczna: O-notacja, Ω-notacja, Θ-notacja
- Wyznaczanie złożoności czasowej algorytmów:
 - iteracyjnych
 - rekurencyjnych

Algorytmy i struktury dany

Potoczne rozumienie pojęcia "algorytm"

- Algorytmika jest dziedziną wiedzy zajmującą się badaniem algorytmów
- Potocznie algorytm jest rozumiany jako pewien przepis na wykonanie zestawu czynności, prowadzących do osiągnięcia oczekiwanego, z góry określonego celu
- W informatyce algorytm jest pewną ściśle określoną procedurą obliczeniową, która dla zestawu właściwych danych wejściowych generuje określone dane wyjściowe
- Dzisiejsze, uogólnione znaczenie słowa algorytm:

Opis postępowania, umożliwiający rozwiązanie określonego problemu w skończonej liczbie kroków (w skończonym czasie)

Algorytmy i struktury danyc

Pochodzenie słowa "algorytm"

- Słowo "algorism" zostało utworzone od nazwiska perskiego matematyka z IX wieku n.e., Muhameda ibu-Musy <u>al-Choresmi</u>, twórcy dziesiętnego systemu liczbowego
- Słowo "algorytm" pochodzi od łacińskiego słowa "algorism", rozumianego w średniowieczu jako sztuka rachowania na liczbach w systemie dziesiętnym

Algorytmy i struktury danyel

Pojęciowy model algorytmu

Algorytm może być rozumiany jako pewne odwzorowanie f, które dla określonego zestawu danych wejściowych *We* generuje określony zestaw danych wyjściowych *Wy*:

 $f: We \rightarrow Wy$

Dane wyjściowe *Wy*

Algorytmy i struktury danyci

Sposoby zapisu algorytmów

- Opis algorytmu obejmuje precyzyjny opis jego kolejnych kroków
- Do przedstawienia algorytmu stosuje się:
 - opis werbalny,
 - zapis formalny, np.:
 - zapisy graficzne (schematy blokowe),
 - formalne specyfikacje programów (np.VDM)
 - zapisy w postaci pseudokodu, z wykorzystaniem tzw. metajęzyka
 - zapis algorytmu w dowolnym języku programowania

Algorytmy i struktury dany

Podstawowe techniki wykorzystywane w budowie algorytmów:

Iteracja
Rekurencja

Rekurencja oznacza wywołanie funkcji (procedury) przez tę samą funkcję (procedurę)

Niepożądana cecha definicji rekurencyjnych: aby wyznaczyć n-tą wartość trzeba najpierw wyznaczyć wszystkie "wcześniejsze" wartości
Ważne jest, aby kolejne wywołania funkcji (procedury) rekurencyjnej były realizowane dla kolejnych wartości parametrów formalnych w taki sposób, aby nie doszło do zjawiska "nieskończonej pętli rekurencyjnych wywołań funkcji"

Funkcja rekurencyjna – ciąg Fibonacciego

□ n-ty wyraz ciągu Fibonacciego jest wyliczany wg formuły, n≥0:

dla n<2
Fib(n)=

Fib(n-2) + Fib(n-1) dla n>=2

□ Rekurencyjna implementacja w języku C:

long int Fib (int n)
{
 if (n<2)
 return n;
 else
 return Fib(n-2) + Fib (n-1);
}

Dla dużych wartości n stos programu
 prawdopodobnie _nie wytrzyma*
 lakiej realizacji funkcji Fib


```
Jak porównywać programy (algorytmy)?

Idealny program to taki, który:

ma czytelny i zrozumiały kod,

jest napisany w ogólnie dostępnym języku programowania,

jest efektywny obliczeniowo (szybko liczy, nie wymaga dużej pamięci),

zawsze daje poprawne wyniki.
```

Jak porównywać programy – przykładowe kryteria prostota algorytmu, czytelność kodu, długość kodu, poprawność wyników, czas realizacji (obliczeń), zajętość pamięci.

 $wp \longrightarrow wk$

Mówimy, że algorytm A wykorzystujący strukturę danych S jest <u>calkowicie poprawny</u> ze względu na specyfikację < wp, wk > jeżeli dla wszystkich danych w strukturze S spełniających warunek początkowy wp, algorytm zatrzymuje się i daje wyniki spełniające warunek końcowy wk.

lgorytmy i struktury danych

Złożoność obliczeniowa algorytmów

- Złożoność obliczeniowa miara służąca do porównywania efektywności obliczeniowej algorytmów.
- Mamy dwa zasadnicze kryteria efektywności obliczeniowej: czas i pamięć, stąd mówimy o złożoności czasowej i pamięciowej.

Algorytmy i struktury danyel

Rodzaje złożoności obliczeniowej algorytmów

- Złożoność pamięciowa wyrażana w skali zajętości pamięci (PAO, pamięci zewnętrznej), niezbędnej dla realizacji algorytmu
- Złożoność czasowa wyrażająca liczbę kroków (np. liczbę wymaganych iteracji) wykonania algorytmu (rzadziej w skali czasu)
- Na ogół (obecnie) w ocenie złożoności obliczeniowej algorytmów złożoność czasowa jest istotniejsza od złożoności pamięciowej

Czynniki wpływające na czas wykonania programu

- □ Rozmiar danych wejściowych algorytmu
- Jakość kodu wynikowego generowanego przez kompilator (język kodu źródłowego)
- Architektura komputera, w tym szybkość procesora, na którym program jest wykonywany
- Efektywność wykorzystanego algorytmu (jego złożoność obliczeniowa, zazwyczaj głównie czasowa)

y i struktury danych 29

zorytniw i struktury danych

Złożoność czasowa algorytmu

Definicja

Miarą złożoności czasowej jest liczba operacji podstawowych (dominujących), wykonywanych przez algorytm w czasie jego realizacji, wyrażona jako funkcja rozmiaru danych.

<u>Oznaczenie</u>

Złożoność czasowa algorytmu A jako funkcja rozmiaru danych n:

$$T(A, n)$$
 lub $T(n)$

Algorytmy i struktury dany

Złożoność czasowa algorytmu

- Do oszacowania czasu realizacji algorytmu nie powinno się używać zwykłych jednostek czasu
- Zamiast tego powinny być stosowane jednostki logiczne, określające związek między rozmiarem danych wejściowych n a czasem t potrzebnym na ich przetworzenie
- □ Funkcje opisujące związek między T(n) a n mogą być bardzo złożone; w praktyce upraszczamy je, pozostawiając tzw. składowe dominujące, tj. składowe mające największy wpływ na wartości T(n)

Alsondow i struktury danuch

Przykład

 Niech zależność czasu realizacji algorytmu od rozmiaru danych wejściowych opisuje funkcja

$$f(n) = n^2 + 100n + \log n + 1000$$

dgorytmy i struktury danych

Szybkość wzrostu poszczególnych składników funkcji

Funkcja: $f(n) = n^2 + 100*n + \log_{10} n + 1000$

n	f(n)	n ²	100*n	log ₁₀ n	1000
1	1 101	0.1%	9%	0.0 %	91%
10	2 101	4.8%	48%	0.05%	48%
100	21 002	48%	48%	0.001%	4.8%
10 ³	1 101 003	91%	9%	0.0003%	0.09%
10 ⁴		99%	1%	0.0%	0.001%
105		99,9%	0.1%	0.0%	0.0000%

Dla dużych wartości n składnikiem dominującym jest \mathbf{n}^2 , tzn. funkcja rośnie jak \mathbf{n}^2 ; pozostałe składniki mogą być pominięte;

n – liczba wykonywanych operacji

Algorytmy i struktury danych

Asymptotyczna złożoność obliczeniowa

- Funkcja wyrażająca zależność miedzy n a T jest zwykle bardzo skomplikowana, a jej dokładne obliczenie ma znaczenie jedynie w odniesieniu do specyficznych problemów
- Przybliżoną miarą efektywności najczęściej stosowaną w praktyce jest tzw. asymptotyczna złożoność czasowa, tzn. złożoność czasowa wyznaczona dla odpowiednio dużych (ale skończonych) wartości n
- Asymptotyczna złożoność czasowa wyrażana jest w oparciu o specjalne notacje
- W praktyce najczęściej wykorzystuje się O-notację, Ω-notację oraz Θ-notację

Algorytmy i struktury danyc

O-notacja

Definicia:

Funkcja f(n) jest funkcją o złożoności O(g(n)), jeżeli istnieją takie liczby dodatnie c i n_o , że dla każdego $n \ge n_o$ zachodzi

$$f(n) \le c g(n)$$

- \square Zgodnie z powyższą definicją, związek między funkcjami f i g można wyrazić stwierdzając, że g(n) jest kresem górnym dla f(n)
- Uwaga: powyższa definicja nie daje żadnych wskazówek co do tego, jak wyznaczyć stałe c i n_0 (takich par stałych może być wiele)
- Interpretacja:

 $O(g(n)) = \{ f(n): istnieją dodatnie liczby c i <math>n_0$ takie, że dla każdego $n \ge n_0$ zachodzi $0 \le f(n) \le c g(n)$

 \square Piszemy: $f(n) \in O(g(n))$ lub częściej f(n) = O(g(n))

Przykład

☐ Niech zależność czasu realizacji algorytmu od rozmiaru danych wejściowych n opisuje funkcja

$$f(n) = n^2 + 100n + log n + 1000$$

- ☐ Wówczas, wykorzystując O-notację, można napisać, że
- $n^2 + 100n + log n + 1000 \in O(n^2)$ ■ Zatem, dla badanej funkcji T(n) = O(n²)
- □ Tak określona złożoność czasową algorytmu nazywa się asymptotyczną złożonością czasową
- ☐ W praktyce wykorzystuje się także pojęcia optymistycznej, pesymistycznej oraz średniej złożoności czasowej algorytmu

Własności O-notacji

Własność 1 (przechodniość)

Jeśli f(n) jest O(g(n)) i g(n) jest O(h(n)), to f(n) jest O(h(n)).

Jeśli f(n) jest O(h(n)) i g(n) jest O(h(n)), to f(n)+g(n) jest O(h(n)).

Własność 3:

Funkcja ank jest O(nk).

Własność 4:

Funkcja nk jest O(nk+j) dla dowolnego nieujemnego j.

Z powyższych własności wynika, że dowolny wielomian jest "wielkie O" dla n podniesionego do najwyższej w nim potęgi, czyli

 $f(n)=a_kn^k+a_{k-1}\,n^{k-1}+...+a_1^n+a_0=O(n^k)$ (jest też oczywiście $O(n^{k+j})$ dla dowolnego nieujemnego j).

Własności O-notacji (cd.)

Własność 5:

Jeśli f(n)=c g(n), to f(n) jest O(g(n))

Funkcja log_an jest O(log_bn) dla dowolnych a>1, b>1

log_an jest O(log₂n) dla dowolnego dodatniego a

Wniosek: Wszystkie funkcje logarytmiczne (niezależnie od podstawy logarytmu) są sobie równoważne w sensie O-notacji

Własności O-notacji (cd.)

Własność 8 (reguła sumy)

Jeśli $T_1(n)=O(f(n))$ i $T_2(n)=O(g(n))$ są złożonościami czasowymi dwóch fragmentów algorytmu, to łączna złożoność czasowa algorytmu (będącego sekwencją obydwu fragmentów) wynosi:

 $T_1(n) + T_2(n) = O(max\{ f(n), g(n)\})$

Własność 9 (reguła iloczynu)

Niech $T_1(n)=O(f(n))$ i $T_2(n)=O(g(n))$ są złożonościami czasowymi dwóch fragmentów algorytmu. Wówczas:

 $T_1(n) \cdot T_2(n) = O(f(n) \cdot g(n))$

Własności O-notacji

- Jedną z najważniejszych funkcji przy ocenianiu efektywności algorytmów jest funkcja logarytmiczna.
- Jeżeli można wykazać, że złożoność algorytmu jest rzędu logarytmicznego, algorytm można traktować jako bardzo dobry.
- ☐ Istnieje wiele funkcji lepszych w tym sensie niż logarytmiczna, jednak zaledwie kilka spośród nich, jak O(log log n) czy O(1) ma praktyczne znaczenie.

Algorytmy i struktury danych

Ω - notacja

- O-notacja dotyczy kresu górnego funkcji
- $\hfill \square$ Istnieje symetryczna definicja kresu dolnego w postaci $\Omega\text{-notacji}$

Definicja:

f(n) jest funkcją o złożoności $\Omega(g(n))$ jeżeli istnieją takie liczby dodatnie c i n_0 , że dla każdego $n \ge n_0$ zachodzi $f(n) \ge c \, g(n)$

Wniosek

Funkcja f(n) ma złożoność $\Omega(g(n))$ wtedy i tylko wtedy, gdy g(n) ma złożoność O(f(n))

Algorytmy i struktury danyel

Ω - notacja

Interpretacja:

 $\Omega(g(n)) = \{ f(n) \colon \text{ istnieja dodatnie liczby c i } n_0 \text{ takie, } \text{że dla} \\ \text{każdego } n \geq n_0 \text{ zachodzi } 0 \leq \text{ c g}(n) \leq f(n) \, \}$

 $\begin{tabular}{ll} \hline & Piszemy: $f(n) \in \Omega(g(n))$ lub częściej $f(n) = \Omega(g(n))$ } \\ \hline \end{tabular}$

lgorytmy i struktury danych

⊕ - notacja

Definicia

f(n) jest funkcją o złożoności $\Theta(g(n))$ jeżeli istnieją liczby dodatnie $c_1,\,c_2$ i n_0 takie, że dla każdego $n\geq n_0$ zachodzi

 $c_1 g(n) \le f(n) \le c_2 g(n)$

Wniosek

Funkcja f(n) ma złożoność $\Theta(g(n))$ wtedy i tylko wtedy, gdy f(n) ma złożoność O(g(n)) i f(n) ma złożoność $\Omega(g(n))$

algorytmy i struktury danych

⊕ - notacja

Interpretacja:

 $\begin{array}{l} \Theta(g(n)) = \{ \, f(n) \text{: istnieją dodatnie liczby } c_1, c_2 \, i \, n_0 \, \text{takie, 2e} \ \, \text{dla} \\ \text{każdego} \ \, n \geq n_0 \, \text{zachodzi} \ \, 0 \leq \ \, c_1 \, g(n) \leq f(n) \leq \ \, c_2 \, g(n) \, \} \end{array}$

 $\begin{tabular}{ll} \blacksquare & Piszemy: $f(n) \in \Theta(g(n))$ lub częściej $f(n) = \Theta(g(n))$ } \end{tabular}$

Algorytmy i struktury danye

Notacja asymptotyczna - podsumowanie $\begin{array}{c} \text{Niech } f,g:N\to \mathbb{R}^+.\\ \text{Mówimy, że funkcja}f \text{ jest co najwyżej rzędu }g,\text{ jeśli} \\ (\exists c>0,\exists n_o\in\mathbb{N})\ \forall n>n_o\quad f(n)\leq c\ g(n) \end{array} \qquad \qquad \mathbf{f}=\mathbf{O}\left(\mathbf{g}\right)$ $\begin{array}{c} \text{Mówimy, że funkcja}f \text{ jest co najmniej rzędu }g,\text{ jeśli} \\ (\exists c>0,\exists n_o\in\mathbb{N})\ \forall n>n_o\quad c\ g(n)\leq f(n) \end{array} \qquad \qquad \mathbf{f}=\mathbf{\Omega}\left(\mathbf{g}\right)$ $\begin{array}{c} \text{Mówimy, że funkcja}f \text{ jest rzędu }g,\text{ jeśli} \\ (\exists c>0,\exists n_o\in\mathbb{N})\ \forall n>n_o\quad c\ g(n)\leq f(n) \end{array} \qquad \qquad \qquad \mathbf{f}=\mathbf{\Theta}\left(\mathbf{g}\right)$

Porównywanie rzędów funkcji $\underline{Przykład\ 1}\ Niech\ f(n) = 100n,\ \ g(n) = 2n + 100,\ \ h(n) = 0.1\ n^2 + n$ $Mamy: \ \ f=O(n), \ \ f=\Omega\left(n\right), \ \ g=O(n) \ \ ale \ tak\dot{z}e \ \ g=O(n^2), \ \ g=\Theta(n)$ $h=O(n^2), \quad h\neq O(n), \qquad h=\Omega \ (n)$ Lemat (o porównywaniu rzędów funkcji) Przykład 2 $f(n) = 0.3 \text{ n}^3 + 10 \text{n} + 100$ Niech lim n→∞ [f(n)/g(n)] = c. Wówczas: $g(n) = n^3$ 1. Jeżeli c ≠ 0 to f i g są tego samego rzędu. $h(n) = \log n$ 2. Jeżeli c = 0, to f = O(g) oraz f ≠ Ω(g). $\lim_{n\to\infty} f(n)/g(n) = 0,3$ 3. Jeżeli c =+∞, to f ma rząd większy niż g, Zatem $f = g = \Theta(n^3)$ $g = O(f) i g \neq \Omega(f)$. $\lim_{n\to\infty} f(n)/h(n) = +\infty$ Zatem $h = O(f) = O(n^3)$, $h \neq \Omega(f)$.

Z	Złożoność a rozmiar i czas						
Ile czasu potrzeba na rozwiązanie zadania o ustalonym rozmiarze i złożoności?							
	wymiar T(A,n)	lg n	n	n lg n	n ²	n ³	2 ⁿ
	n=10 ²	6.6 µs	0.1 ms	0.7 ms	10 ms	1s	10 ⁶ 1at
	n= 10 ⁴	13.3 μs	10 ms	0.1 s	100 s	11dni	10 ¹⁰⁰ lat
Jaki jest maksymalny rozmiar problemu n, który można rozwiązać w ustalonym czasie, znając złożoność algorytmu?							
	czas T(A,n)	lg n	n	n lg n	n ²	n ³	2 ⁿ
	1 s	2 1000000	10^{6}	63*10 ³	10^{3}	10^{2}	19
	1 godz.		36*108	13* 107	60* 10 ³	15* 10 ²	31

Czy szybkość może przezwyciężyć złożoność?

- ☐ Mamy 5 algorytmów A₁, A₂, A₃, A₄, A₅ rozwiązujących ten sam problem. Niech s_i oznacza maksymalny rozmiar problemu, który można rozwiązać na komputerze 1 przy pomocy algorytmu Ai w ustalonym czasie t.
- ☐ Jaki jest maksymalny rozmiar problemu, który można rozwiązać w tym samym czasie t na komputerze 2, który jest 10 razy szybszy?

	lg n	n	n ²	n ³	2 ⁿ
Komputer 1	s_1	s_2	s_3	S ₄	S ₅
Komputer 2	s ₁ ¹⁰	10*s ₂	3,16*s ₃	2,15*s ₄	3,32 + s ₅

Dla komputera 1: $T(A, s_s) = 2^{s_s} \rightarrow t$

Zatem: $t = 10 \cdot 2^{s_5}$ $t = 2^x$

Dla komputera 2: $T(A, s_s) = 2^{s_s} \rightarrow t/10$

 $2^x = 10 \cdot 2^{s_5}$ czyli $x = 3,32 + s_5$

Szukamy takiego x, że $T(A, x) = 2^x \rightarrow t$

MS Excel

Wpływ dziesięciokrotnego przyspieszenia komputera na wzrost rozmiaru zadania

Jaki jest maksymalny rozmiar problemu, który można rozwiązać w tym samym czasie t na komputerze 2, który jest 10 razy szybszy?

Złożoność czasowa <i>T(n)</i>	Komputer 1	Komputer 2 (dziesięciokrotnie szybszy)	Względny przyrost rozmiaru problemu
100n	10	100	10,0
5n²	14	45	3,2
n³/2	12	27	2,3
2 ⁿ	10	13	1,3

Wyznaczanie złożoności czasowej - przykłady

Przykład 1

Pojedyncza pętla wyznaczająca sumę elementów wektora

for (i=sum=0; i<n; i++) sum=sum+ a[i];

- ☐ Liczba przypisań w całej pętli: 2+2n
- \square Złożoność czasowa: T(n)=O(n)

Wyznaczanie złożoności czasowej - przykłady

Pętla podwójna wyznaczająca sumę elementów tablicy

```
for (i=0; i<n; i++) {
   for (j=1, sum=a[0]; j<=i; j++)
        sum=sum+ a[j];
   printf("\n Suma podtablicy %d", sum)
```

☐ Liczba przypisań w całej pętli:

$$1+3n+2\sum_{i=0}^{n-1}i=1+3n+2(1+2+...+n-1)=1+3n+n(n-1)=O(n^2)$$

 \square Złożoność czasowa: $T(n)=O(n^2)$

Wyznaczanie złożoności czasowej - przykłady

Przykład 3

Zerowanie elementów tablicy leżących na i pod główną przekątną

int tab[n][n];

void zerowanie(); Złożoność czasowa (z uwagi na wszystkie instrukcje):

int i,j; i=0: while (i<n)

 $= 1 + \sum_{i=0}^{n-1} (3 + \sum_{j=0}^{i} 3) = 1 + \sum_{i=0}^{n-1} (3 + 3(i+1)) =$ $= 1 + 3n + 3 \frac{n(n+1)}{2} = O(n^{2})$

// 1

Złożoność czasowa algorytmów rekurencyjnych

- ☐ Kiedy algorytm zawiera rekurencyjne wywołanie samego siebie, złożoność czasową jego działania można często opisać zależnością rekurencyjną (rekurencją), wyrażającą tę złożoność dla problemu rozmiaru n za pomocą złożoności czasowej podproblemów mniejszych rozmiarów.
- Możemy więc użyć narzędzi matematycznych, aby rozwiązać rekurencję i w ten sposób otrzymać oszacowanie złożoności czasowej algorytmu.

Rekurencja dla algorytmu typu "dziel i zwycieżaj"

- Rekurencja odpowiadającą czasowi działania algorytmu typu "dziel i zwyciężaj" opiera się na podziale jednego poziomu rekurencji na trzy etapy
- \square Niech $\mathbf{T}(\mathbf{n})$ będzie czasem działania algorytmu dla problemu rozmiaru \mathbf{n}
- $\begin{tabular}{ll} \square & Jeśli rozmiar problemu jest odpowiednio mały, powiedzmy $n \le c$ dla pewnej stałej c, to jego rozwiązanie zajmuje stały czas, co zapisujemy jako <math>\Theta(1)$
- $\hfill \square$ Załóżmy że dzielimy problem rozmiaru ${\bf n}$ na ${\bf a}$ podproblemów, każdy rozmiaru ${\bf n}/{\bf b}$
- Jeśli D(n) jest czasem dzielenia problemu na podproblemy, a C(n) czasem scalania rozwiązań poszczególnych podproblemów w pełne rozwiązanie problemu wyjściowego, to otrzymujemy rekurencję

$$T(n) = \begin{cases} \Theta(1) & \text{dla} \, n \leq c \\ aT(n/b) + D(n) + C(n) & \text{dla} \, n > c \end{cases}$$

Algorytmy i struktury dany

Rekurencja dla algorytmu typu "dziel i zwycieżaj"

Przykład: algorytm sortowania przez scalanie

- □ znajdujemy środek przedziału, zajmuje to czas stały D(n)=Θ(1)
- ☐ rozwiązujemy rekurencyjnie dwa podproblemy, każdy rozmiaru n/2, co daje czas działania 2 T(n/2)
- $\hfill \square$ łączymy dwa uporządkowane podciągi w jeden ciąg (uporządkowany) w czasie $\Theta(n),$ a więc $C(n)=\Theta(n).$
- Ostatecznie

$$T(n) = \begin{cases} \Theta(1) & \text{dla} \, n = 1 \\ 2T(n/2) + \Theta(1) + \Theta(n) & \text{dla} \, n > 1 \end{cases}$$

 \square Można pokazać, że rozwiązaniem tej rekurencji jest $\mathbf{T}(\mathbf{n}) = \Theta(\mathbf{n} \log \mathbf{n})$

Alsondow i struktury danuch

Wyznaczanie złożoności czasowej algorytmów rekurencyjnych

Metody rozwiązywania rekurencji:

- Metoda podstawiania: zgadujemy oszacowanie, a następnie wykorzystujemy indukcję matematyczną.
- Metoda iteracyjna: przekształcamy rekurencję na sumę (korzystamy z technik ograniczania sum).
- 3. Metoda drzewa rekursji: uzupełniająca metodę podstawiania
- Metoda rekurencji uniwersalnej: stosujemy oszacowanie na rekurencje mające postać

 $T(n) = a \; T(n/b) + f(n),$ gdzie a ≥ 1 , b> 1, a f(n) jest daną funkcją.

dgorytmy i struktury danych

Wyznaczanie złożoności czasowej algorytmów rekurencyjnych

Metoda podstawiania:

- Polega na odgadnięciu postaci rozwiązania, a następnie wykazaniu przez indukcję, że jest ono poprawne.
- ☐ Trzeba także znaleźć wartości odpowiednich stałych.
- Metoda jest bardzo skuteczna, ale może być stosowana tylko w przypadkach, kiedy można przewidzieć postać rozwiązania.

Algorytmy i struktury danyel

Metoda podstawiania

Oznaczenia: [a]- największa liczba calkowita x taka, że x<=a [a]- najmniejsza liczba calkowita x taka, że x>=a

Przykład:

 \square Postać rekurencji: $\mathbf{T}(\mathbf{n}) = 2\mathbf{T}(\lfloor \mathbf{n}/2 \rfloor) + \mathbf{n}$

Metoda podstawiania

Oznacze

Oznaczenia: [a]- największa liczba calkowita x taka, że x<=a [a]- naimniejsza liczba calkowita x taka, że x>=a

Przykład:

- $\hfill \square$ Postać rekurencji: $T(n)=2T(\lfloor n/2 \rfloor)+n$
- □ Zachodzi: T(1)=1; T(2)=4; T(3)=5, T(4)=12...

Algorytmy i struktury danyel

66

Algorytmy i struktury danych

```
Oznaczenia:
[a] - największa liczba calkowita x taka, że x <=a
Przykład:

□ Postać rekurencji: T(n) = 2T([n/2]) + n
□ Zachodzi: T(1)=1; T(2)=4; T(3)=5, T(4)=12...
□ Przewidywane rozwiązanie: T(n) = O(n lg n), tzn. ∃c > 0 T(n) ≤ c n lg n
```


Metoda iteracyjna

Metoda iteracyjna

Polega na rozwijaniu (iterowaniu) rekurencji i wyrażanie jej jako sumy składników zależnych tylko od warunków brzegowych.

Następnie mogą być użyte techniki sumowania do oszacowania rozwiązania.

tmy i struktury danych 72

Wyznaczanie złożoności czasowej algorytmów rekurencyjnych

Rozwinięcie rekurencji

- Jest uproszczoną wersją metody iteracyjnej
- ☐ Polega na:
 - rozpisaniu równania rekurencyjnego dla kolejnych wartości n,
 - dodaniu otrzymanych równań stronami,
 - zredukowaniu jednakowych wyrazów i przekształceniu otrzymanej zależności tak, aby uzyskać jawną zależność funkcji T(n) od n
- Metoda jest skuteczna jedynie w odniesieniu do niektórych postaci rekurencji

Algorytmy i struktury danuch

73

$\begin{array}{c|c} \text{Metoda iteracyjna - rozwinięcie rekurencji} \\ \hline Przykład 1 & (cd.) \\ \hline T(n) = \begin{cases} 1 & \text{dlan = 0} \\ T(n-1)+1 & \text{dlan } \geq 1 \\ \hline \end{array} \\ \hline T(n) = T(n-2)+1 & \dots \\ \hline T(1) = T(0)+1 & \dots \\ \hline T(0) = 1 & \\ \hline T(n)+T(n-1)+...+T(1)+T(0)=n+1+T(n-1)+...+T(1)+T(0) \\ \hline Zatem: & T(n)=n+1=O(n) \\ \hline \end{array}$

Metoda drzewa rekursji

Drzewo rekursji pozwala w dogodny sposób zilustrować rozwijanie rekurencji, jak również ułatwia stosowanie aparatu algebraicznego, służącego do rozwiązywania tej rekurencji

Metoda szczególnie użyteczna gdy rekurencja opisuje algorytm typu "dziel i zwyciężaj"

Każdy węzeł drzewa reprezentuje czas wykonania podproblemu

Sumując czasy na kolejnych poziomach drzewa otrzymujemy czas łączny

Drzewo rekursji może stanowić pomoc przy odgadywaniu rozwiązania (w metodzie podstawienia)

Metoda rekurencji uniwersalnej

☐ Metoda rekurencji uniwersalnej podaje "uniwersalny przepis" rozwiązywania równania rekurencyjnego postaci

T(n) = a T(n/b) + f(n)

gdzie a≥1 i b>1 są stałymi, a f(n) jest funkcją asymptotycznie dodatnią.

 $\hfill \square$ Za wartość n/b przyjmujemy najbliższą liczbę całkowitą (mniejszą lub większą od wartości dokładnej) tj. n/b = \hfill lub n/b = \hfill n/b \hfill

Metoda rekurencji uniwersalnej

- ☐ Rekurencja opisuje czas działania algorytmu, który dzieli problem rozmiaru n na a problemów, każdy rozmiaru n/b, gdzie a i b są dodatnimi stałymi.
- ☐ Każdy z a problemów składowych jest rozwiązywany rekurencyjnie w czasie T(n/b).
- ☐ Koszt dzielenia problemu oraz łączenia rezultatów częściowych jest opisany funkcją f(n)

Dowód twierdzenia o rekurencji uniwersalnej: patrz: T.H. Cormen, Ch.E.Leiserson, R.L.Rivest , C Stein: *Wprowadzenie do algorytmów*

Metoda rekurencji uniwersalnej

Niech a≥1 i b>1 będą stałymi, niech f(n) będzie pewną funkcją i niech T(n) będzie zdefiniowane rekurencyjnie, dla nieujemnych liczb całkowitych:

T(n) = a T(n/b) + f(n),

gdzie n/b oznacza najbliższą liczbę naturalną (mniejszą lub większą od wartości dokładnej) tj. $n/b = \lfloor n/b \rfloor$ lub $n/b = \lceil n/b \rceil$

☐ Wtedy funkcja T(n) może być ograniczona asymptotycznie w następujący sposób:

1. Jeśli $f(n) = O(n^{\log_b a - \epsilon})$ dla pewnej stałej $\epsilon > 0$, to $T(n) = \Theta(n^{\log_b a})$

2. Jeśli $f(n) = \Theta(n^{\log_b a})$ to $T(n) = \Theta(n^{\log_b a} \log n)$

3. Jeśli $f(n) = \Omega(n^{\log_b a + \epsilon})$ dla pewnej stałej $\epsilon > 0$ i jeśli $a f(n/b) \le c f(n)$

dla pewnej stałej c<1 i wszystkich dostatecznie dużych n, to

 $T(n) = \Theta(f(n))$

tzw. warunek regularności

Metoda rekurencji uniwersalnej

- $\hfill \square$ $\hat{\mathbb{W}}$ każdym z trzech przypadków porównujemy funkcję f(n) z funkcją n^{log_ba}
- ☐ Rozwiązanie rekurencji zależy od większej z tych dwóch funkcji
- $\hfill \Box$ Jeśli funkcja $n^{log_b\,a}$ jest wielomianowo większa od f(n) (Przypadek 1), to rozwiązaniem rekurencji jest $T(n) = \Theta(n^{\log_b a})$
- ☐ Jeśli funkcja f(n) jest wielomianowo większa od n^{log₀} a (Przypadek 3), to rozwiązaniem jest

$$T(n) = \Theta(f(n))$$

☐ Jeśli funkcje są tego samego rzędu (Przypadek 2), to rozwiązaniem jest

$$T(n) = \Theta(n^{log_b\,a}\,logn) \ , \ \operatorname{czyli} \quad \ T(n) = \Theta(\ f(n)\ log\ n)$$

Metoda rekurencji uniwersalnej

Przykład 1

Określić oszacowanie asymptotyczne dla rekurencji:

T(n) = 9 T(n/3) + n

- $\label{eq:mamy:a=9,b=3,f(n)=n,azatem} \quad Mamy: \ a=9, b=3, f(n)=n, \ a \ zatem \quad n^{log_b\,a}=n^{log_3\,9}=n^2$
- Ponieważ $f(n) = O(n^{\log_8 9 \epsilon})$, gdzie ε=1, możemy zastosować przypadek 1 twierdzenia o rekurencji uniwersalnej i wnioskować że rozwiązaniem jest $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^2)$

Metoda rekurencji uniwersalnej

Przykład 2

Określić oszacowanie asymptotyczne dla rekurencji:

$$T(n) = \ T(2n/3) + 1$$

- ☐ Mamy: a=1, b=3/2, f(n)=1, a zatem $n^{log_b a} = n^{log_{3/2} 1} = n^0 = 1$
- □ Stosujemy przypadek 2, gdyż $f(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_{\frac{b}{2}} 1}) = \Theta(n^0) = \Theta(1)$ a zatem rozwiązaniem rekurencji jest

$$T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n^{\log_{b'} 2} \log n) = \Theta(\log n)$$

Metoda rekurencji uniwersalnej

Przykład 3

Określić oszacowanie asymptotyczne dla rekurencji:

$$T(n) = 3T(n/4) + n \log n$$

- $\begin{tabular}{ll} \square & Mamy: a=3, b=4, f(n)=n log n, a zatem & $n^{log_b\,a}=n^{log_4\,3}=n^{0.793} \\ \end{tabular}$
- Ponieważ $f(n) = \Omega(n^{\log_{\epsilon} 3 + \epsilon})$, gdzie $\epsilon \sim 0.2$, więc stosuje się tutaj przypadek 3, jeśli możemy pokazać, że dla f(n) zachodzi warunek regularności $a f(n/b) \le c f(n)$
- ☐ Dla dostatecznie dużych n możemy napisać:
 - a $f(n/b) = 3 (n/4) \log (n/4) \le (3/4) n \log n = c f(n)$, przy czym c=3/4 < 1
- ☐ Warunek regularności jest zatem jest spełniony i możemy napisać, że rozwiązaniem rekurencji jest $T(n) = \Theta[f(n)] = \Theta(n \log n)$

Metoda rekurencji uniwersalnej

Przykład 4

Określić oszacowanie asymptotyczne dla rekurencji:

 $T(n) = 2T(n/2) + n \log n$

- Mamy: a=2, b=2, $f(n)=n \log n$, a zatem $n^{\log_b a}=n$ Wydaje się, że powinien to być przypadek 3, gdyż $f(n)=n \log n$ jest asymptotycznie większe niż $n^{\log_n a} = n$ (ale nie wielomianowo!)
- Stosunek $f(n)/n^{\log_b a} = n \log n/n$ jest asymptotycznie mniejszy niż n^{ϵ} dla każdej dodatniej stałej ε.
- W konsekwencji rekurencja ta "wpada" w lukę między przypadkiem 2 i 3.
- Nie można zatem zastosować twierdzenia o rekurencji uniwersalnej

