

The Global Convergence Time of SGD in Non-Convex Landscapes Sharp Estimates via Large Deviations

W. Azizian, F. Iutzeler, J. Malick, P. Mertikopoulos

TLDR: We characterize the average time for SGD to reach the global minimum of a non-convex function throug a large deviations approach.

Problem of interest

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} f(x)$$

Stochastic Gradient Descent (SGD):

$$x_{t+1} = x_t - \eta \left[
abla f(x_t) + Z(x_t; \omega_t)
ight]$$
 step-size zero-mean noise

- f is β -smooth: $\|\nabla f(x) \nabla f(x')\| \leq \beta \|x x'\|$ for all x, x'
- f is coercive: $\lim_{\|x\|\to\infty} f(x) = +\infty$

Regularity assumption:

$$\mathrm{crit}(f)\coloneqq\{x\in\mathbb{R}^d\mid
abla f(x)=0\}=igcup_{i=0}^{N-1}K_i,\quad \text{where }K_i \text{ (smoothly) connected components}$$

Global convergence time of SGD

Hitting time: with margin $\delta > 0$,

$$\tau = \min\{t \in \mathbb{N} \mid \operatorname{dist}(x_t, \operatorname{argmin} f) \leq \delta\}$$

Core Question: What is $\mathbb{E}_x[\tau]$ for SGD started at x?

Noise assumptions:

- $\mathbb{E}[Z(x;\omega)] = 0$, $\operatorname{cov}(Z(x;\omega)) \succ 0$, $Z(x;\omega) = O(\|x\|)$
- $Z(x;\omega)$ is σ sub-Gaussian:

$$\log \mathbb{E}\big[e^{\langle v, Z(x;\omega)\rangle}\big] \leq \tfrac{\sigma^2}{2} \|v\|^2$$

Sufficient SNR:

$$\liminf_{\|x\| o \infty} \frac{\|\nabla f(x)\|^2}{\sigma^2} \geq \text{some constant}$$

Example (Finite-sum): $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) + \frac{\lambda}{2} \|x\|^2$ with f_i Lipschitz and smooth; $Z(x;\omega) = \nabla f_\omega(x) - \nabla f(x)$

Large deviations for SGD

Consider $\gamma:[0,T]\to\mathbb{R}^d$ continuous path, $\mathbb{P}(\mathsf{SGD}\approx\gamma)=?$

Key lemma: SGD admits a large deviation principle as $\eta \to 0$: for any path $\gamma:[0,T] \to \mathbb{R}^d$,

From (Azizian et al., 2024) using tools from (Freidlin & Wentzell, 1998; Dupuis, 1988)

Cumulant generating function / Hamiltonian: $\mathcal{H}(x,v) = \log \mathbb{E} \left[e^{\langle v, Z(x;\omega)
angle}
ight]$

 $\mathcal{L}(x,v) = \mathcal{H}^*(x,-v-\nabla f(x)))$ Lagrangian:

Example (Gaussian noise): $Z(x;\omega) \sim N(0,\sigma^2I_d)$, $\mathcal{H}(x,v) = \frac{\sigma^2}{2}\|v\|^2$ and $\mathcal{L}(x,v) = \frac{\|v+\nabla f(x)\|^2}{2\sigma^2}$

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \|\dot{\gamma}_t + \nabla f(\gamma_t)\|^2 dt$$

Key findings:

• Global convergence time of SGD: starting at x, time au to reach $\operatorname{argmin} f$ satisfies

$$\mathbb{E}_x[\tau] \approx \exp\biggl(\frac{E(x)}{\eta}\biggr)$$

where E(x) energy of SGD starting at x

- Key quantity E(x): geometric measure of problem's hardness, it captures
- The difficulty of the loss landscape: hardest set of obstacles to overcome to reach $\mathop{\mathrm{argmin}} f$
- The statistics of the noise: scales with inverse square of the noise level
- Transfer of geometrical properties: shallow local minima \Rightarrow small E(x)

Challenges and techniques:

- Requires tools to analyze the long-run distribution of SGD in non-convex problems
- We leverage large deviation theory and the theory of random dynamical systems, → Estimate the probability of rare events, such as SGD switching from one local minima to another
- We adapt & refine Freidlin & Wentzell (1998); Kifer (1988), building on Azizian et al. (2024)

References

Freidlin, M. I., & Wentzell, A. D., 1998. Random perturbations of dynamical systems. Springer

Kifer, Y., 1988. Random perturbations of dynamical systems. Birkhäuser

Azizian, W., Iutzeler, F., Malick, J., and Mertikopoulos, P., 2024. What is the Long-Run Distribution of Stochastic Gradient Descent? A Large Deviations Analysis. ICML 2024

Transition between critical points

Given K_i , K_j critical points, when and how fast does SGD transition from K_i to K_j without hitting $\mathop{\mathrm{argmin}} f$?

Transition cost from K_i to K_i :

$$B_{i,j} = \inf \big\{ \mathcal{S}_T[\gamma] \mid \gamma(0) \in K_i, \gamma(T) \in K_j, T \in \mathbb{N}, \gamma(n) \not \in \operatorname{argmin} f \text{ for } n = 0, ..., T-1 \big\}$$

Proposition: Transition probability from K_i to K_j without hitting $\operatorname{argmin} f$: for $\eta > 0$ small enough,

$$\mathbb{P}\big(\text{SGD transitions from} K_i \text{ to } K_j\big) = \exp\left(-\frac{B_{i,j} + \mathcal{O}(\varepsilon)}{\eta}\right) \text{ with average transition time} = \exp\left(\frac{\mathcal{O}(\varepsilon)}{\eta}\right)$$

Technical assumption: $B_{i,j} < +\infty$ for all i,j

Transition graph: complete graph on $\{0,...,N-1\}$ with weights $B_{i,j}$ on $i \to j$

Energy of $K_0 = \operatorname{argmin} f$:

$$E_0 = \min \left\{ \sum_{j
ightarrow k \in T} B_{j,k} \mid T \; ext{spanning tree pointing to } 0
ight\}$$

Energy of pruning K_i :

$$E(i
eq 0) = \min iggl\{ \sum_{j
ightarrow k \in T} B_{j,k} \mid T ext{ spanning tree pointing to } 0 ext{ with an edge from } i ext{ to } 0 ext{ removed} iggr\}$$

Energy of K_0 relative to K_i :

Energy of K_0 relative to x:

$$E(i) = E_0 - E(i \not\rightarrow 0)$$

 $E(x) = \max_{i=1,\dots,N-1} \left[E(i) - B(x,i) \right]_{+}$

where B(x,i) cost of the transition from x to K_i

Theorem

For any $\varepsilon > 0$, if $\eta, \delta > 0$ are small enough, then, for SGD started at x,

$$\exp\!\left(\frac{E(x)-\varepsilon}{\eta}\right) \leq \mathbb{E}_x[\tau] \leq \exp\!\left(\frac{E(x)+\varepsilon}{\eta}\right)$$

where the LHS holds under a technical condition involving the "strength of attrcation" of the $\operatorname{argmin} f$

Interpretation:

 $E(x) = 0 \ \forall x \iff E(i) = 0 \ \forall i \iff$ no spurious local minima

Example: Three Humps, Gaussian noise

 $Z(x;\omega) \sim N(0,\sigma^2 I_d)$ (truncated)

Transition cost of neighboring critical points $i \rightarrow j$:

$$B_{i,j} = \frac{2 \left[f(x_j) - f(x_i) \right]_+}{\sigma^2}$$

Energy of $x_0 = \operatorname{argmin} f$ relative to x near x_2 :

$$E(x) = \frac{2(f(x_1) - f(x_4))}{\sigma^2}$$

