Physikalisches Anfängerpraktikum

Universität Augsburg Wintersemester 2025/26

Versuch: O2 Brechungsindex und Dispersiom

Gruppe: G 04

Versuchsdatum: 29.10.2025

Abgabedatum: 09.11.2025

Gemeinsames Versuchsprotokoll

Ferdinand Frey Tom Glaser

Inhaltsverzeichnis

1	Einleitung	3
2	Theoretische Grundlagen 2.1 Lichtbrechung	
3	Versuchsbeschreibung3.1 Versuchsaufbau	
4	Auswertung	8
5	zusammenfassung	9
6	Anhang	10
7	Literaturverzeichnis	11

1 Einleitung

Überall auf dem Globus ist die Brechung von Licht ein wichtiger Bestandteil des alltäglichen Lebens. Der wahrscheinlich wichtigste Anwendungsfall ist die Brille, beim Anwendungsfall der Brille kommt es aber nicht nur zu einfacher Brechung von Licht sondern auch zu Dispersion. Brillen sind aber nicht die einzigen Anwendungspunkte bei denen die Eigenschaften von Linsen und Prismen genutzt werden. Ein paar weitere Anwendungen sind zum Beispiel: Mikroskope, Spiegelreflex Kameras oder Fernrohre. Bei all diesen Fällen kommt es auch zur Dispersion von Licht. Die Dispersion von Licht beschreibt die Abhängigkeit des Brechungsindex von der Wellenlänge. Bei extremen Fällen in der Anwendung kann es somit vorkommen dass das Licht welches wir als weiß warnehmen in seine einzelne Bestandteile aufgespalten wird und man somit ein stark verschwommenes Bild nur warnehmen kann oder gar bei messungen starke verfälschungen bekommt.

2 Theoretische Grundlagen

2.1 Lichtbrechung

Das für uns sichtbare Licht besteht aus vielen Wellenlängen an Elektromagnetischen Wellen. Damit diese verschiedenen Wellenlängen einzeln betrachtet werden können, kann man das sichtbare Licht mithilfe eines optischen Prismas brechen. Dieser Vorgang kann in Abbildung 1 beobachtet werden. Die verschiedenen Brechungswinkel hängen mit den unterschiedlich starken brechungen der unterschiedlichen Elektromagnetischen Wellen zusammen. Diese Brechung ist als Brechungsindex bekannt. Der Zusammenhang zwischen Brechungsindex und der Wellenlängen der Elektromagnetischen Welle wird an einem späteren Zeitpunkt noch genauer betrachtet.

Abbildung 1: Abbildung 1: Der Strahlengang eines gebrochenen Lichtstrahles innerhalb eines Prisma mit den wichtige Winkeln

Um den Brechungsindex für einzenlne Wellenlängen bestimmen zu können, betrachtet man zunächst den Ablenkungswinkel δ . Dieser wird minimal für $\alpha_1 = \alpha_2$ und $\beta_1 = \beta_2$ womit für beide Winkel

$$\beta_1 = \frac{\varepsilon}{2} \tag{1}$$

und

$$\alpha_1 = \frac{\delta_{\min} + \varepsilon}{2} \tag{2}$$

gilt. Wenn diese gleichungen nun mit dem snelliusschen Brechungsgesetz kombiiert werde

$$n_1 \cdot \sin(\alpha_1) = n_2 \cdot \sin(\beta_1) \tag{3}$$

mit $n_1 = n_{\text{Luft}} \stackrel{!}{=} 1$ und den Winkeln aus Gleichung (1) und (2) folgt für den Brechungsindex n des Prismas

$$n = n_2 = \frac{\sin\left(\frac{\delta_{\min} + \varepsilon}{2}\right)}{\sin\left(\frac{\varepsilon}{2}\right)}.$$
 (4)

2.2 Dispersion

Dispersion beschreibt in dem betrachteten Fall den Zusammenhang zwischen der Wellenlänge der betrachteten Elektromagnetischen Wellen und des Brechungsindex. Diese Abhängigkeit lässt sich am Thomson-Atommodel erkären. Dieses Atommodel beschreibt ein Atom als homogen positiv geladene Kugel in der die elektronen frei beweglich sind. In diesem Modell können Elektronen durch Elektromagnetische Wellen zu Schwingungen angeregt werden. Diese Schwingung lässt sich durch die folgenden Differential Gleichung beschrieben werden.

$$m_0 r * \ddot{r} + m\gamma * \dot{r} + m_0 * \omega_0^2 * r = -e * E$$

wobei ω_0 die Eigenfrequenz der Elektronen beschreibt, $m_0 * \gamma * \dot{r}$ ist die Darstellung des Dämpungsterm, e die Elementarladung und E die Elektrische Feldstärke des anregenden Photons.

Bei der Dispersion können drei Fälle auftreten. Der erste Fall ist für $\omega << \omega_0$, bei diesem Fall kann man die Dämpfung vernachlässigen, und es kommt zu normaler Dispersion. Bei $\omega \approx \omega_0$ kommt es zu anomaler Dispersion. Der letzte Fall ist bei $\omega_0 << \omega$, dieses Ereigniss ist als Resonanzkatastrophe bekannt und tritt zum Beispiel auf, wenn eine Armee im Gleichschritt über eine große Brücke marschiert. Bei diesem Experiment sind aber nur die normale und anomale Dispersion wichtig. Bei normaler Dispersion nimmt der Brechungsindex mit steigender Frequenz/sinkender Wellenlänge zu, während bei der anomalen Dispersion genau das Gegenteil geschieht dort nimmt der Brechungsindex bei steigender Wellenlänge zu.

3 Versuchsbeschreibung

3.1 Versuchsaufbau

Der Versuchsaufbau besteht aus einer Lampe die hinter einer verstellbaren Spaltblende montiert wird. Vor die Spaltblende wird eine Halterung für Farbfilter und eine Sammellinse montiert. Als letztes Bauteil auf der Optischen Bank wird ein Podest benötigt auf welches während der Versuchsdurchführung Prismen gestellt werden können. Vor das Podest wird nun ein Schirm mit einer montierten Skala aufgebaut. Das Podest hat eine Entfernung von 38,5 cm zum Schirm.

Abbildung 2: Ein Bild vom Versuchsaufbau, von vorne nach hinten. Lampe, Spaltblende, Farbfilterhalterung, Sammellinse, Podest und Schirm.

3.2 Versuchsdurchführung

Nun zur Versuchsdurchführung, zuerst wird die Lampe eingeschaltet und mithilfe der Spaltblende und der Sammellinse auf dem Schirm fokussiert, nun wird der fokussierte Punkt als X_0 vermerkt und die entfernung des Podest zum Schirm gemessen. Sobald diese Sachen erledigt sind kann mit der Durchführung richtig angefangen werden. Für den ersten Teil der Messung werden die zwei Vollprismen verwendet. Dazu wird das erste Prisma auf das Podest in den Lichtstrahl gestellt und solange vorsichtig gedreht bis das entstehende Farbspektrum nicht mehr weiter in Richtung des Punktes X_0 wandert. Nun werden nacheinander die Farbfilter in die Farbfilter Halterung gesteckt um die genaue Messung der verschiedenen Farben zu vereinfachen, denn jetzt wird die entfernung der jeweiligen Farblinie zu dem Punkt X_0 ermittelt. Sobald dies für alle Farbfilter durchgeführt wurde, werden die beiden Prismen getauscht und der ganze Vorgang wird wiederholt. Der

zweite Teil des Experiment läuft analog zum ersten Teil des Experiments ab, doch jetzt werden nicht die Volprismen verwendet sondern die Hohlprismen die mit Flüssigkeit gefüllt sind.

4 Auswertung

5 zusammenfassung

6 Anhang

7 Literaturverzeichnis