DSC 190 Machine Learning: Representations

Lecture 12 | Part 1

Neural Networks

Recall: Linear Predictor

- ► **Input**: features $\vec{x} = (x_1, ..., x_d)^T$
- Parameters: $\vec{w} = (w_0, w_1, ..., w_d)^T$
- **Output**: $W_0 + W_1 X_1 + ... + W_d X_d$

Linear Predictors

- **Pro**: simple, usually easy to optimize \vec{w}
 - With square loss, solution given by normal equations
- **Con**: Decision boundary is linear

Example

Recall: Basis Functions

- ► **Input**: features \vec{x} , basis functions $\phi_1, ..., \phi_d : \mathbb{R}^d \to \mathbb{R}$
- Parameters: $\vec{W} = (W_0, W_1, ..., W_d)^T$
- Output: $w_0 + w_1 \varphi_1(\vec{x}) + ... + w_d \varphi_d(\vec{x})$

Basis Functions

Note: the basis functions and the weights \vec{w} are not chosen at the same time

- Two step process
- First, basis functions are chosen and fixed
 - ▶ By hand, by *k*-means clustering, etc.
- ightharpoonup Then the weights \vec{w} are learned

Exercise

Why do this in two steps as opposed to one?

Answer

- By fixing basis functions then finding best \vec{w} , optimization is easy again
- Using square loss, normal equations still work

Idea

- Try to learn basis functions at same time as weights, \vec{w}
- Attempt #1: linear basis functions?

$$\varphi_i(\vec{x}) = W_{1i}x_1 + ... + W_{di}x_d$$

The Model

$$\varphi_i(\vec{x}) = W_{1i}X_1 + ... + W_{di}X_d$$

Neural Network

- ► **Input**: features \vec{x} ,
- Parameters: $\vec{w} = (w_0, w_1, ..., w_d)^T,$ $(d + 1) \times d' \text{ matrix } W$
- Output: $w_0 + w_1 \varphi_1(\vec{x}) + ... + w_d \varphi_d(\vec{x})$
- ► This is a **neural network**

Problem

If φ_i is linear, so is the decision boundary!

Activation Function

- To make φ_i nonlinear, we often apply a **activation** function.
- Very commonly: rectified linear unit (ReLU)

$$g(z) = \max\{0, z\}$$

$$\varphi_i(\vec{x}) = g(W_{0i} + W_{1i}x_1 + W_{2i}x_2 + \dots + W_{di}x_dA)$$

= max{0, W_{0i} + W_{1i}x₁ + W_{2i}x₂ + \dots + W_{di}x_dA}

Neural Networks as Functions

A neural network is simply a special kind of **function**.

 $\vdash f(\vec{x}; \vec{w}, W)$

Example

$$W = \begin{pmatrix} 2 & -1 \\ 3 & -2 \\ -2 & 1 \end{pmatrix} \qquad \vec{w} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The Xor Problem

A Solution

$$W = \begin{pmatrix} 0 & -1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \vec{W} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$

Prediction Surface

Learning with NNs

- We can learn weights by gathering data, picking a loss function and minimizing loss.
- ► The square loss works:

$$R(\vec{w}, W) = \frac{1}{n} \sum_{i=1}^{n} (f(\vec{x}^{(i)}; \vec{w}, W) - y_i)^2$$

Problem

- Now that the basis function weights are learnable, too, there is no simple solution for the best weights.
- We must instead use gradient descent.

DSC 190 Machine Learning: Representations

Lecture 12 | Part 2

Gradient Descent

Gradient Descent

- ▶ We have a function $f : \mathbb{R} \to \mathbb{R}$
- We can't solve for the x that minimizes (or maximizes) f(x)
- Instead, we use the derivative to "walk" towards the optimizer

Meaning of the Derivative

- ► We have the derivative; can we use it?
- $ightharpoonup \frac{df}{dx}(x)$ is a function; it gives the **slope** at x.

Key Idea Behind Gradient Descent

- ► If the slope of *f* at *x* is **positive** then moving to the **left** decreases the value of *f*.
- ▶ i.e., we should **decrease** *x*

Key Idea Behind Gradient Descent

- If the slope of f at x is **negative** then moving to the **right** decreases the value of f.
- i.e., we should **increase** *x*

Key Idea Behind Gradient Descent

- Pick a starting place, x_0 . Where do we go next?
- Slope at x_0 negative? Then increase x_0 .
- ► Slope at x_0 positive? Then decrease x_0 .
- ► This will work:

$$x_1 = x_0 - \frac{df}{dx}(x_0)$$

Gradient Descent

- \triangleright Pick α to be a positive number. It is the **learning rate**.
- Pick a starting prediction, x_0 .
- ► On step *i*, perform update $x_i = x_{i-1} \alpha \cdot \frac{df}{dx}(x_{i-1})$
- Repeat until convergence (when x doesn't change much).

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative:

$$R_{sq}(x) = \frac{1}{n} \sum_{i=1}^{n} (x - y_i)^2$$
 $\frac{dR_{sq}}{dx}(x) = \frac{2}{n} \sum_{i=1}^{n} (x - y_i)$

Exercise

Let
$$y_1 = -4$$
, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$.
Pick $x_0 = 4$ and $\alpha = 1/4$. What is x_1 ?

Example

Gradient Descent in > 1 dimensions

▶ The derivative of *f* becomes the gradient:

$$\frac{df}{dx} \to \nabla f(\vec{x})$$

- Meaning of differentiable: locally, f looks linear.
- **Key**: $\nabla f(\vec{w})$ is a function; it returns a vector pointing in direction of steepest ascent.

Gradient Descent in > 1 dimensions

- \triangleright Pick α to be a positive number.
 - It is the **learning rate**.
- Pick a starting guess, $\vec{w}^{(0)}$.
- On step *i*, update $\vec{w}^{(i)} = \vec{w}^{(i-1)} \alpha \cdot \nabla f(\vec{w}^{(i-1)})$
- Repeat until convergence
 - ▶ when w doesn't change much
 - equivalently, when $\|\bar{\nabla}f(\vec{w}^{(i)})\|$ is small

DSC 190 Machine Learning: Representations

Lecture 12 | Part 3

Convexity in 1-d

Question

When is gradient descent guaranteed to work?

Not here...

Convex Functions

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$ does not go below the plot of f .

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$ does not go below the plot of f .

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$ does not go below the plot of f .

Other Terms

- ▶ If a function is not convex, it is **non-convex**.
- Strictly convex: the line lies strictly above curve.
- Concave: the line lines on or below curve.

Convexity: Formal Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb).$$

Example

Is f(x) = |x| convex?

Another View: Second Derivatives

- ► If $\frac{d^2f}{dx^2}(x) \ge 0$ for all x, then f is convex.
- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" straight line at x_0 :
 - $h_1(z) = f'(x_0) \cdot z + b$
- "Best" parabola at x_0 :
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

- \triangleright Convex if for **every** x_0 , parabola is upward-facing.
 - ► That is, $f''(x_0) \ge 0$.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if R(x) is convex and differentiable¹² then gradient descent converges to a **global optimum** of *R* provided that the step size is small enough³.

¹and its derivative is not too wild

²actually, a modified GD works on non-differentiable functions

³step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

DSC 190 Machine Learning: Representations

Lecture 12 | Part 4

Convexity in Many Dimensions

• $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

$$(\vec{a}, f(\vec{a}))$$
 and $(\vec{b}, f(\vec{b}))$ does not go below the plot of f .

Convexity: Formal Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a}) + tf(\vec{b}) \ge f((1-t)\vec{a} + t\vec{b}).$$

The Second Derivative Test

- For 1-d functions, convex if second derivative ≥ 0 .
- ► For 2-d functions, convex if ???

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \end{pmatrix}$$

In General

▶ If $f: \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_1 x_d} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_2 x_d} (\vec{x}) \\ \cdots & \cdots & \cdots \\ \frac{\partial f^2}{\partial x_d x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) \end{pmatrix}$$

The Second Derivative Test

- A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is **positive semi-definite**.
- That is, all eigenvalues are ≥ 0

Next Time

Backpropagation and gradient descent for training neural networks.