Chap. 1 Introduction to the theory of computation ***

Agenda of Chapter 1

- Main ideas from math
 - set theory, functions, and relations
 - trees and graph
 - basic proof techniques
 - deduction, induction, and by contradiction
- Central concept of languages, grammars, and automata
- Simple applications in computer science

Sets (1/2)

- □ \$et
 - a collection of elements
 - no structure other than membership
- Notations
 - Set of three elements 1, 2, 3 : $A = \langle 1, 2, 3 \rangle$
 - Set of all alphabets : B= ፕላኔ, ሩ, ----, ሬ ገ

 - 2 is a member of A: 2eA.
- Operations
 - Union: $S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2 \setminus x \in S_1 \lor x \in S_2 \setminus x \in S_1 \lor x \in S_2 \setminus x \in S_2$
 - Intersection: $S_1 \cap S_2 = \{k \in S_1, k \in S_2\}$
 - Difference: $S_1 S_2 =$
 - Complementation : $\overline{S} = S^c = S' = |x| \times 4S$
 - Cartesian product : $S_1 X S_2 = (x_1, x_2) | x_1 \in S_1, x_2 \in S_2$

Sets (2/2)

- Special sets
 - Universal Set U : set of all possible elements
 - Empty set (Null set) \emptyset : set with no elements $\emptyset \in \emptyset$
- ☐ Relations between sets
 - Subset, Proper subset
 - Disjô<u>in</u>t
- Power set 2^S
- Related rules
 - Operations with empty sets
 - Associative (ANB)NC = ANCBNC)
 - Distributive ANCOUC) =(ANB)U (ANC)
 - DeMorgan's Law (ልሜ) ዴ ሲ ሲያ

- 8,08,=0
 - メターではいる。 S= さい2) 2⁵= 「A | ACS 」 プープタパリパン、

$$|z|=n$$
, $|2^{s}|=2^{n}$.

Functions and Relations (1/2)

- Function
 - an element of a set → a unique element of another set

 - Total function & partial function
- Relations : Arbitrary subclass of SxS
 - Set of pairs : $\{(x_1,y_1), (x_2,y_2), ...\}$
 - A generalization of function
 - Equivalence relation X≡y
 - a generalization of identity
 - reflexivity
 - symmetry
 - transitivity

Graphs and Trees (1/2)

- □ A graph
 - Consists of two finite sets; vertices & edges
 - Vertices $V = \{v_1, v_2, ..., v_n\}$
 - Edges $E = \{e_1, e_2, ..., e_n\}, e_i = (v_i, v_k)$
- Definitions for graph
 - walk: sequence of edge (e_3,e_2,e_3,e_4,e_1)
 - path: walk with no repeated edge (e₃, e₄ €,)
 - simple path: path with no repeated vertex
 - cycle: walk from a vertex to itself e
 - base : starting/ending point of cycle v.
 - loop : edge from a vertex to itself e_{λ}

Graphs and Trees (2/2)

- □ A Tree
 - A particular type of graph
 - Directed graph with no cycles
- Definitions
 - root: a vertex with only outgoing edge
 only one path from root to every other vertex
 - leavesVertices without outgoing edges
 - Parent, child, siblings
 - level ** vertexnumber of edges from root
 - height ा राज्य largest level of all vertices ३

Proof Techniques (1/3)

Principle of Mathematical Induction 1. For some $n_0 \ge 1$, P_{n_0} is true. $\rightarrow \mathbb{N}$ 2. For any $k \ge n_0$, truth of $P_k \rightarrow$ truth of P_{k+1} . If 1 & 2 are satisfied, then all P_1 , P_2 , ... are true. Principle of Strong Mathematical Induction 1. For some $n_0 \ge 1$, P_1 , P_2 , ..., P_{n_0} are true. 2. For any $k \ge n_0$, truth of P_1 , P_2 , ..., $P_k \rightarrow$ truth of P_{k+1} If 1 & 2 are satisfied, then all P_1 , P_2 , ... are true. \square Proof by Induction for P_k is true for all k=1,2, [basis] Show that P₁ is true. [inductive assumption] Assume that $(P_1, P_2, ...,)(P_k)$ is true. [inductive step] Show that $(P_1, P_2, ...,)$ P_k is true \rightarrow P_{k+1} is true

NOTE] Induction & recursive definition of functions

Proof Techniques (2/3)

Ex) Sum of all positive integers not larger than (n) is n(n+1)/2

[basis]
$$N=1$$
 and $1=\frac{(A+1)^{N}}{2}$. (Ance)

[inductive assumption] N= K 25 142+...+ K. 5 KKH) 12 [inductive step]

This tre for all
$$n \in \mathbb{Z}$$

Ex) Any integer greater than 1 can be written as the product of one or more primes. Story

```
[basis]
```

[inductive assumption]

[inductive step]

Proof Techniques (3/3)

- Proof by contradiction
 - To prove P is true,
 - 1. Assume P is false
 - 2. See where the assumption lead us.
 - 3. Arriving at a wrong conclusion, deny the assumption.

EX] $\sqrt{2}$ is irrational

Languages (1/3)

- Language, an informal definition
 - A system for the expression of ideas, facts, or concepts
 - a set of symbols + rule for manipulation
- Basic elements
 - Alphabet: a finite, nonempty set Σ of symbols (a,b,c,...)
 - String: finite sequence of symbols (u,v,w)...)
 - Operations on strings,
 - □ Concatenation= THE PH UV = abcome.
 - ☐ Reverse===baba
 - ☐ Length = 1 | w = 4 | w = 4

Languages (2/3)

More definitions

- empty string λ : a string with no symbols
- substring, prefix, suffix
- $-\Sigma^*$: set of strings obtained by concatenating very or more symbols in Σ_{π}
- $-\Sigma^+$: Σ^* $\{\lambda\}$
- - Sentence: a string(element) in a language L

EX1.9]

- $-\Sigma = \{a,b\}, \Sigma^* = \uparrow a, b, aa, ab, ba, bb, aaa, \dots \uparrow$
- $-\frac{\sqrt{a}}{a}$: a finite language on Σ

大人のb, aabbb... と Hyeyoung Park, KNU-CSE

 $-L = \{a^n b^n \mid n \ge 0\}$: an infinite language on Σ

Languages (3/3)

- Operations on Language

 - Reverse [R=[wR | well]
 - Concatenation Like [www.] (wield, wield)
 - $-L^n:L$ concatenated with itself n times

- Star-closure L* = LULVL UL

EX1.10]

$$-L = \{ a^n b^n \mid n \ge 0 \}$$

$$L^{2} = \left[L = \left[\alpha b^{n} \alpha^{n} \right]^{m} \right] n \geq 0, m \geq 0$$

$$-L^{R}=\lceil h^{\prime} O^{\prime\prime} (n \ge 0) \rceil$$

In- [2.7 The ab., addb., nonbbb ..

好成者 那晚

Grammars (1/6) = Longuage & 307 the tree.

- Grammar
 - a language-definition mechanisms
- A typical rule of English grammar

```
\nearrow < Sentence \rightarrow < noun_phrase > < predicate >
 <noun_phrase> -> <article><noun>
```


- Definition of **Grammar** G
 - G defined as a quadruple G=(V,T,S,P)
 - · V: variable, a finite set of objects
 - <u>terminal symbols</u>, a finite set of objects
 - S = V: start variable, a special symbol (S) = V is start variable, a special symbol (S) = V
 - P: a finite set of production 中的 卡爾 是 如果 (是是 他的 形)
 - assumption) V and T are non-empty and disjoint

一线 个 對意 既 是 即 個 本

Three Basic Concepts

Grammars (2/6)

- Production rule
 - Specify how the grammar transforms one string into another
 - Define a language associated with the grammar

- Derivation of string
 - $-w \implies_z w$ derives z (z is derived from w)
 - $\langle S \rangle \Rightarrow \langle NP \rangle \langle P \rangle \Rightarrow \langle \alpha \rangle \langle N \rangle \langle P \rangle \Rightarrow \langle \alpha \rangle \langle N \rangle \langle V \rangle \Rightarrow \alpha \text{ bird. simps.}$
- Language defined (generated) by the gramman
 - set of all terminal string generated by production rule

Let
$$G = (V, T, S, P)$$

- Language $L(G) = \langle w | S = \langle w \rangle$

Grammars (3/6)

- A <u>derivation of the sentence w</u> & <u>sentential form</u>
 - When $w \in L(G)$, $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \dots \dots \qquad w_n \Rightarrow w_n \in L(G)$
- Equivalence of two grammars
 - $-G_1$ and G_2 are equivalent
 - G_1 and G_2 generate the same language
 - $-L(G_1)=L(G_2)$

$$-L(G_{1}) = L(G_{2})$$

$$= X1.11]$$

$$-G = (\{S\}, \{a,b\}, S, P), P: S \rightarrow aSb, S \rightarrow \lambda$$

$$-L(G) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= ASb, S \rightarrow \lambda$$

$$=$$

EX1.12] Find a grammar generating $L = \{a^n b^{n+1} \mid n \ge 0\}$

$$\begin{cases}
S \rightarrow \alpha.5b \\
S \rightarrow b.
\end{cases} = S \rightarrow \alpha.5b \mid b.$$
Production.
$$G = (35), (3, b), (5, p)$$

Grammars (4/6)

```
To show that a language L is generated by G
                                                (a) every w \in L can be derived from S using G \cap
                                                (b) every string derived using G is in L
EX1.11 revisited G = (\{S\}, \{a,b\}, S,P), P : S
                                              -L(G) = \{a^n b^n \mid n \ge \theta\}
                                                (a) \forall w \in L, S \stackrel{*}{\Rightarrow} w
                                        [bock] 1=0., w= a'b', S= aS = ab., ) \( \frac{5}{24} \) \( \frac{3}{24} \) \( \frac{1}{24} \) \( \frac{1}{24
                                    [assumption] 7=k steel v=0klk. 3= 0kSb= 0klk. 3= 18
                                   Unductive 1=k+1 stall was held character and stall state of the state 
                                                 (b) \forall w, if S \stackrel{*}{\Rightarrow} w then w \in I
                                                                                                                                                   Lerminal string the three is
                                      /et n: # of derivation step.
                              [basis] 7=[ start. S= 2= ab CL., n=2 start S= ab CL. ab.
                             [assumption] 1=k sell., BE. It's derivation! SEI ANSINI ON BE SEE IT
```

Hyeyoung Park, KNU-CSE

Grammars (5/6) ♣♣ 6→ ◆ L

EX1.13]
$$\Sigma = \{a,b\}$$
, Grammar G: $S \rightarrow SS$, $S \rightarrow \lambda$ $S \rightarrow aSb$, $S \rightarrow bSa$

$$-L(G) = \{a,b\}, b^{m}_{0}, b^{m}_{0},$$

Grammars (6/6)

EX1.14]
$$G = (\{A, S\}, \{a, b\}, S, P_I), P_I : S \rightarrow aAb \mid \lambda, A \rightarrow aAb \mid \lambda - L(G) =$$

Automata (1/2)

- Input file
 - automata can read but not change
 - one symbol for one cell, one cell at a time
- Storage
 - unlimited number of cells
 - automata can read and change-
- Control unit
 - finite number of internal state
 - change a state to another state at a time

Three Basic Concepts

Automata (2/2)

Automata as a graph

- Deterministic vs. Nondeterministic
 - deterministic automata : each move is uniquely defined
 - □ Nondeterministic automata : several possible moves

- □ Accepter: output is ves(no
- Transducer : strings of symbols of output

Example of Language and Accepter

☐ Identifiers in a programming language

```
< id > \rightarrow < letter > < rest >
< rest > \rightarrow < letter > < rest > | < digit > < rest > | \lambda
< letter > \rightarrow a|b| \dots |z|
< digit > \rightarrow 0|1|\dots|9
```

- Variables :
- Terminals :

Accepter of the language

Digit

Letter or digit

Letter or digit

Example of Digital Logic

- A binary adder can be represented by Transducer
 - $x = a_0 a_1 ... a_n, y = b_0 b_1 ... b_n$
 - Calculate $x+y=d_0d_1...d_n$

