On note $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels, et $\mathbb{R}_k[X]$ le sous-ensemble de $\mathbb{R}[X]$ constitué des polynômes nuls ou dont le degré est inférieur ou égal à k. Le coefficient binomial $\frac{n!}{k!(n-k)!}$ sera noté C_n^k , ou bien $\binom{n}{k}$, au choix. On suppose n entier supérieur ou égal à 1 dans toute la suite.

1. (a) Montrer l'existence de polynômes f_n et g_n dans $\mathbb{R}_{n-1}[X]$, tels que :

$$(1-X)^n f_n(X) + X^n g_n(X) = 1$$

ceci par développement de $((1-X)+X)^{2n-1}$, ou autrement.

NB: On ne demande pas de calculer leurs coefficients

- (b) Préciser les polynômes f_1 , f_2 et f_3 .
- 2. Déterminer en fonction de f_n et de g_n tous les couples (A, B) de polynômes de $\mathbb{R}[X]$ tels que

$$(1-X)^n A(X) + X^n B(X) = 1$$

Démontrer l'unicité de f_n et de g_n .

- 3. (a) Montrer que $f_n(1-X) = g_n(X)$.
 - (b) Calculer $f_n(0)$, $f_n(1)$ et $f_n\left(\frac{1}{2}\right)$.
- 4. (a) Dans tout ce qui suit, x désigne une variable réelle. Pour x tendant vers 0, démontrer la formule asymptotique suivante : $f_n(x) = (1-x)^{-n} + o(x^{n-1})$.
 - (b) En déduire les coefficients du polynôme f_n .
 - (c) L'équation $f_n(x) = 0$ peut-elle avoir une racine positive ou nulle?
- 5. (a) Établir, pour tout x réel, la relation

$$nf_n(x) - (1-x)f'_n(x) = nC_{2n-1}^n x^{n-1}$$

- (b) En déduire que l'équation $f_n(x) = 0$ ne peut pas avoir deux racines réelles strictement négatives.
- 6. Pour tout x réel, on pose : $h_n(x) = \int_0^x t^{n-1} (1-t)^{n-1} dt$.

Suivant la parité de n, donner le tableau des variations de la fonction h_n .

- 7. (a) Démontrer que, pour tout $x \neq 1$, on a : $f_n(x) = \frac{1 nC_{2n-1}^n h_n(x)}{(1-x)^n}$.
 - (b) Ce résultat est-il en accord avec la valeur de $f_n(1)$ trouvée plus haut?
- 8. Discuter selon n le nombre de racines de l'équation $f_n(x) = 0$ sur l'intervalle $]-\infty, 0[$.
- 9. Prouver que les racines de $f_n(z)=0,\,z\in\mathbb{C},$ sont de modules strictement inférieurs à 1.

1. (a) Comme $2n-1 \ge 1$, $1 = (1-X+X)^{2n-1} = \sum_{k=0}^{n-1} C_{2n-1}^k X^k (1-X)^{2n-1-k} + \sum_{k=0}^{2n-1} C_{2n-1}^k X^k (1-X)^{2n-1-k}$ soit $1 = (1 - X)^n \left(\sum_{k=0}^{n-1} C_{2n-1}^k X^k (1 - X)^{n-1-k} \right) + X^n \left(\sum_{k=0}^{2n-1} C_{2n-1}^k X^{k-n} (1 - X)^{2n-1-k} \right)$

$$f_n(X) = \sum_{k=0}^{n-1} C_{2n-1}^k X^k (1-X)^{n-1-k}$$

et

$$g_n(X) = \sum_{k=n}^{2n-1} C_{2n-1}^k X^{k-n} (1-X)^{2n-1-k} = \sum_{k=0}^{n-1} C_{2n-1}^{n+k} X^k (1-X)^{n-1-k}$$

 f_n et g_n sont des polynômes de $\mathbb{R}_{n-1}[X]$ tels que $(1-X)^n f_n(X) + X^n g_n(X) = 1$

- (b) $f_1(X) = 1$, $f_2(X) = 2X + 1$, $f_3(X) = 6X^2 + 3X + 1$
- 2. Si $(1-X)^n A(X) + X^n B(X) = 1$ alors $(1-X)^n (A(X) f_n(X)) = X^n (g_n(X) B(X))$ 0 est racine d'ordre au moins n de $(1-X)^n (A(X)-f_n(X))$ donc de $(A(X)-f_n(X))$ il existe donc un polynôme Q tel que $A(X) = f_n(X) + X^n Q$ et $X^n (g_n(X) - (1 - X)^n Q - B(X)) = 0$ Comme X^n n'est pas le polynôme nul alors $B(X) = g_n(X) + (1 - X)^n Q$ réciproquement si $A(X) = f_n(X) + X^nQ$ et $B(X) = g_n(X) - (1 - X)^nQ$ alors $(1 - X)^nA(X) + X^nB(X) = 1$

 $\text{Donc} \left\{ \begin{array}{c} (1-X)^n \, A(X) + X^n B(X) = 1 \\ A,B \in \mathbb{R}[X] \end{array} \right. \iff \exists Q \in \mathbb{R}[X] \, , \, \left\{ \begin{array}{c} A(X) = f_n(X) + X^n Q \\ B(X) = g_n(X) - (1-X)^n \, Q \end{array} \right.$ si A est de degré inférieur ou égal à n-1, nécessairement Q=0 donc il y a unicité de f_n et g_n

- 3. (a) Si $(1-X)^n f_n(X) + X^n g_n(X) = 1$ alors $(X)^n f_n(1-X) + (1-X)^n g_n(1-X) = 1$ $f_n(1-X)$ et $g_n(1-X)$ sont des polynômes de $\mathbb{R}_{n-1}[X]$ qui vérifient $(1-X)^n g_n(1-X) + X^n f_n(1-X) = 1$ d'après l'unicité de f_n et g_n $f_n(1-X)=g_n(X)$ et $g_n(1-X)=f_n(X)$
 - (b) $\forall x \in \mathbb{R}$, $(1-x)^n f_n(x) + x^n g_n(x) = 1$ donc pour x = 0 on obtient $f_n(0) = 1$ $\forall x \in \mathbb{R}, \ f_n(x) = \sum_{k=0}^{n-1} C_{2n-1}^k x^k (1-x)^{n-1-k} \text{ donc pour } x = 1 \text{ on obtient } f_n(1) = C_{2n-1}^{n-1} = C_{2n-1}^n$ $\forall x \in \mathbb{R}, \ f_n(1-x) = g_n(x) \text{ et } (1-x)^n f_n(x) + x^n g_n(x) = 1 \text{ donc pour } x = \frac{1}{2} \text{ on obtient } f_n\left(\frac{1}{2}\right) = g_n\left(\frac{1}{2}\right) = 2^{n-1}$
- 4. (a) Si $x \neq 1$ dons si $x \in]-1,1[$, $f_n(x) = \frac{1}{(1-x)^n} + x^{n-1} \frac{xg_n(x)}{(1-x)^n}$ comme $\lim_{x\to 0} \frac{xg_n(x)}{(1-x)^n} = 0$, $f_n(x) = (1-x)^{-n} + o(x^{n-1})$
 - (b) f_n est un polynôme de degré inférieur ou égal à n-1, donc $f_n(x)$ est la partie régulière du développement limité d'ordre (n-1) de $(1-x)^{-n}$

or
$$(1-x)^{-n} = 1 + \sum_{k=1}^{n-1} \frac{(-n)...(-n-k+1)}{k!} (-1)^k x^k + o(x^{n-1}) = 1 + \sum_{k=1}^{n-1} C_{n+k-1}^k x^k + o(x^{n-1})$$

donc $f_n(X) = \sum_{k=0}^{n-1} C_{n+k-1}^k X^k = \sum_{k=0}^{n-1} C_{n+k-1}^{n-1} X^k$

- (c) Les coefficients de f_n sont tous positifs, le coefficient constant est 1, donc $\forall x \in \mathbb{R}^+$, $f_n(x) \geq 1$ L'équation $f_n(x) = 0$ n'a pas de racine positive ou nulle
- 5. (a) En dérivant la relation $(1-X)^n f_n(X) + X^n g_n(X) = 1$, on obtient : $(1-X)^{n-1} (nf_n(X) - (1-X)f'_n(X)) = X^{n-1} (ng_n(X) + Xg'_n(X))$ $nf_n(X) - (1-X)f'_n(X)$ est un polynôme de degré inférieur ou égal à (n-1) qui admet 0 comme racine d'ordre au moins (n-1) donc il existe un réel k tel que $nf_n(X) - (1-X)f_n'(X) = kX^{n-1}$, $f_n(1) = C_{2n-1}^n$ donc $k = nC_{2n-1}^n$, donc $\forall x \in \mathbb{R}$, $nf_n(x) - (1-x)f'_n(x) = nC_{2n-1}^n x^{n-1}$

(b) Supposons que l'équation $f_n(x) = 0$ ait au moins deux racines réelles strictement négatives, notons a et b deux racines consécutives de f_n , (a < b < 0)

 $f_n'(a) = \frac{-nC_{2n-1}^na^{n-1}}{1-a} \text{ donc } f_n'(a) \text{ est non nulle et du signe de } (-1)^n \text{ de même pour } f_n'(b)$

 f_n garde un signe constant sur]a,b[, $f_n(a)=f_n(b)=0$, $f_n'(a)$ et $f_n'(b)$ sont de même signe, on a une impossibilité

6. h_n est de classe C^1 sur \mathbb{R} et $\forall x \in \mathbb{R}$, $h_n'(x) = x^{n-1} \left(1-x\right)^{n-1}$

 h_n est un polynôme dont le terme de plus haut degré est $\frac{(-1)^{n-1}x^{2n-1}}{2n-1}$ donc

si n est pair , $\lim_{n \to \infty} h_n = -\infty$, $\lim_{n \to \infty} h_n = +\infty$, si n est impair , $\lim_{n \to \infty} h_n = +\infty$, $\lim_{n \to \infty} h_n = -\infty$ donc

x		$-\infty$	0	$+\infty$
h'_{2n+1}	(x)		+	
h_{2n}	+1	$-\infty$	0	 $+\infty$

Posons $I(p,q) = \int_0^1 t^p (1-t)^q dt$ avec p et q entiers naturels

$$I(p,q) = \left[\frac{t^{p+1}}{p+1} (1-t)^q\right]_0^1 + \frac{q}{p+1} I(p+1,q-1) = \frac{q}{p+1} I(p+1,q-1) \text{ si } q \ge 1$$

donc
$$I(p,q) = \frac{q!p!}{(p+q)!}I(p+q,0) = \frac{q!p!}{(p+q+1)!}$$
 $h_n(1) = I(n-1,n-1) = \frac{(n-1)!(n-1)!}{(2n-1)!} = \frac{1}{nC_{2n-1}^n}$

7. (a) Sur] $-\infty$, 1[, f_n est la solution vérifiant $f_n(0) = 1$ de l'équation différentielle :

(E)
$$(1-x)y' - ny = -nC_{2n-1}^n x^{n-1}$$

L'équation sans second membre a pour solution toutes les fonctions : $x \to \frac{\lambda}{(x-1)^n}$ avec $\lambda \in \mathbb{R}$

Employons la méthode de variation de la constante

$$x \to \frac{\lambda(x)}{(1-x)^n}$$
 est solution de (E) sur $]-\infty,1[$ si et seulement si $\lambda'(x)=-nC_{2n-1}^nx^{n-1}(1-x)^{n-1}$

donc si et seulement si $\lambda(x) = -nC_{2n-1}^n h_n(x) + cte$ sur] $-1, +\infty$ [

donc il existe
$$k \in \mathbb{R}$$
 tel que pour tout $x \in]-1, +\infty[$, $f_n(x) = \frac{k - nC_{2n-1}^n h_n(x)}{(1-x)^n}$

 $f_n(0) = 1 \text{ donc } k = 1 \text{ donc pour tout } x \in]-\infty, 1[, (1-x)^n f_n(x) = 1 - nC_{2n-1}^n h_n(x)]$

deux fonctions polynômes égales sur] $-\infty,1[$ sont égales sur $\mathbb R$

donc
$$\forall x \in \mathbb{R}$$
, $(1-x)^n f_n(x) = 1 - nC_{2n-1}^n h_n(x)$ donc $\forall x \neq 1$, $f_n(x) = \frac{1 - nC_{2n-1}^n h_n(x)}{(1-x)^n}$

(b) f_n est continue en 1 donc $f_n(1) = \lim_{x \to 1} \left(\frac{1 - nC_{2n-1}^n h_n(x)}{(1-x)^n} \right) = \lim_{x \to 1} \left(-nC_{2n-1}^n \frac{h_n(x) - h_n(1)}{(1-x)^n} \right)$

 $h_n'(x)=x^{n-1}(1-x)^{n-1}$ donc $h_n^{(k)}(1)=0$ si $1\leq k\leq n-1$ et en utilisant la formule de Leibniz

$$h_n^{(n)}(x) = \sum_{k=0}^{n-1} C_{n-1}^k \frac{(n-1)!(n-1)!}{(n-1-k)!(k)!} x^{n-1-k} (-1)^{n-1-k} (1-x)^k \text{ donc } h_n^{(n)}(1) = (n-1)! (-1)^{n-1-k} (1-x)^k$$

$$(h_n(x) - h_n(1)) \underset{x \to 1}{\backsim} \frac{(x-1)^n}{n!} h_n^{(n)}(1) = -\frac{(1-x)^n}{n}$$
 on retrouve donc que $f_n(1) = C_{2n-1}^n$

8. $x \in]-\infty, 0[$ est solution de $f_n(x)=0$ si et seulement si $h_n(x)=\frac{1}{nC_{2n-1}^n}>0$

En utilisant les variations de h_n vues au 6) on en déduit que :

Si n est impair $f_n(x) = 0$ n'a pas de solution sur $]-\infty,0[$ donc pas de solution sur \mathbb{R}

Si n est pair $f_n(x) = 0$ a une solution et une seule sur $]-\infty,0[$ donc une solution et une seule sur \mathbb{R}

$$9. \ f_n(z) = \sum_{k=0}^{n-1} C_{n+k-1}^{n-1} z^k \ \text{d'après 4}) \ . \ \text{Si} \ |z| \geq 1 \ , \ f_n(z) = C_{2n-1}^{n-1} z^{n-1} \left(1 + \frac{1}{C_{2n-1}^{n-1}} \sum_{k=0}^{n-2} C_{n+k-1}^{n-1} \frac{1}{z^{k-n+1}}\right) \\ \text{soit } B = \frac{1}{C_{2n-1}^{n-1}} \sum_{k=0}^{n-2} C_{n+k-1}^{n-1} \frac{1}{z^{k-n+1}} \ , \ |B| \leq \frac{1}{C_{2n-1}^{n-1}} \sum_{k=0}^{n-2} C_{n+k-1}^{n-1} = \frac{1}{C_{2n-1}^{n-1}} \sum_{k=0}^{n-2} (C_{n+k}^n - C_{n+k-1}^n) = \frac{C_{2n-2}^n}{C_{2n-1}^{n-1}} \\ \frac{C_{2n-2}^n}{C_{2n-1}^{n-1}} = \frac{n-1}{(2n-1)} < 1 \ \text{donc } 1 + B \ \text{ne s'annule pas et si} \ |z| \geq 1 \ , \ f_n(z) \neq 0$$

donc toutes les racines complexes de $f_n(z)=0$ sont de modules strictement inférieurs à 1