Resistant and sensible cancerous networks:
differences and therapeutic strategies
Post-Doc ECN – CGO – INSERM
24 October 2016 – 23 October 2017
Nantes Laboratory of Numerical Sciences (LS2N)

Arnaud Poret¹, Catherine Pellat², Philippe Juin³ Carito Guziolowski¹

¹ LS2N team ComBi

² CRCINA team 10

 3 CRCINA team 8

BioSS, 14 Mars 2017

Context

The SyMeTRIC project

A regional project for developing systems medicine:

- integrating various information sources
- ② developing analysis and modeling tools
- **3** accessible from the web
- building bio-pathological models
- predicting the good treatment for the right patient

Project leaders:

- Jéremie Bourdon (LS2N)
- Richard Redon (Institut du Thorax)

Project coordinator:

• Alban Gaignard (CHU de Nantes)

A pluridisciplinary problematic I

Biological side

- problem: cancer (obvious)
- solution: chemotherapy (among others)
- problem: heavily toxic
- solution: targeted therapy
- problem: resistance (loss of efficacy)
- solution: therapeutic targets against resistance

A pluridisciplinary problematic II

Computational side

- problem: large amount of omics data
 - how to interpret them?
 - how to extract knowledge?
- solution: mechanistic modeling
 - model the mechanisms
 - knowledge: model's structure
 - data: model's state
 - simulations
 - \Rightarrow prediction of new knowledge

Resources I

Biological resources

- cancerous cells:
 - multiple myeloma: 37 cell lines
 - breast cancer: 36 tumor samples
 - sensible and resistant to several treatments:
- per cell line and per treatment:
 - GEP (gene expression profile)
 - phenotype: cell death

Online resources: signaling pathway repository

KEGG (Kanehisa et al Nucleic Acids Res 2017), chosen for:

- its reliability
- its exportation format (KGML)
- its API

Resources II

Computational resources

- network reconstruction:
 - MCWalk (Kittas et al FEBS J 2016)
 - connect genes according to a reference network
 ⇒ genes + KEGG + MCWalk = reconstructed network
- 2 consistency, repair and coloration:
 - iggy (Thiele et al BMC Bioinformatics 2015)
- operation predictions: signatures and therapeutic targets
 - logical programming (ASP): to develop
 - Boolean and multivalued:
 - kali (Poret et al C R Biol 2014)
 - assuming that attractor = phenotype
 - 2 versions of the network: desirable and undesirable ⇒ reduce undesired attractors' reachability
 - ⇒ therapeutic targets against the undesirable

Strategy (per cancer) I

Reconstructing the network regulating the GEP

- selecting the genes:
 - outputs of an gene expression regulation (GErel in KEGG)
 - belonging to the GEP
- Reconstructing the network regulating the expression of these genes:
 - GErel outputs + KEGG + MCWalk

Coloring the network explaining the GEP

- discretizing the GEP:
 - Boolean: median
 - multivalued: quartiles
- 2 coloring the network:
 - network + discretized GEP + iggy

Strategy (per cancer) II

Predicting therapeutic targets against resistance

- logical programming (ASP):
 - finding signatures in pathways:
 - resistant
 - sensible
 - \Rightarrow compare to identify resistance's mechanisms
 - ② finding resensitizing therapeutic interventions⇒ therapeutic targets against resistance
- Boolean/multivalued:
 - network to logical equations (AND, OR, NOT)
 ⇒ modeling the interactions
 - 2 selecting a sensible network
 - 3 selecting a resistant network
 - unning kali
 - **o** assessing the obtained therapeutic target combinations
- testing in vitro the predicted therapeutic targets

Results I

Interactions in KEGG

- fall into 4 classes:
 - ECrel: enzyme enzyme
 - GErel: transcription factor gene
 - PCrel: protein compound
 - PPrel: protein protein
- considered for modeling:
 - activation
 - inhibition
 - expression
 - repression
 - binding/association
 - dissociation
- added:
 - is member

Results II

Obtained:

Results III

Perspectives:

Acknowledgments

- Fabien Gautier, CRCINA team 8, CR ICO
 - data processing (breast cancer)
 - GEP discretization
- Benoît Tessoulin, CRCINA team 10, PhD Student CRCINA
 - data processing (multiple myeloma)
- Bertrand Miannay, LS2N team MeForBio, PhD Student LS2N
 - network reconstruction
 - network coloration
- Misbah Razzaq, LS2N team MeForBio, PhD Student LS2N
 - signaling pathway repositories
 - network reconstruction
- Marie Lefebvre, LS2N team ComBi, IE LS2N
 - signaling pathway repositories
 - network reconstruction

A little bit of KGML

```
<?xml version="1.0"?>
3 <!DOCTYPE pathway SYSTEM "http://www.kegg.jp/kegg/xml/KGML v0.7.2 .dtd">
5 v <pathway name="path:hsa04012" org="hsa" number="04012"
  title="ErbB signaling pathway"
   ....image="http://www.kegg.jp/kegg/pathway/hsa/hsa04012.png"
9 v · · · · <entry · id="67" · name="hsa:1950" · type="gene"
10 ······link="http://www.kegg.jp/dbget-bin/www bget?hsa:1950">
12 · · · · · · · type="rectangle" · x="69" · y="217" · width="46" · height="17"/>
14 ▼ ····<entry·id="75"·name="undefined"·type="group">
15 ·····<qraphics fqcolor="#000000" bqcolor="#FFFFFF"
16 ········type="rectangle"·x="200"·y="208"·width="46"·height="34"/>
18 ···· <component · id="60"/>
20 v ····<relation entry1="78" entry2="46" type="PPrel">
21 ·····<subtype name="activation" value="--&qt:"/>
22 ·····<subtype name="phosphorylation" value="+p"/>
```