# LECTURE 26 – BUFFERED OP AMPS LECTURE ORGANIZATION

### **Outline**

- Introduction
- Open Loop Buffered Op Amps
- Closed Loop Buffered Op Amps
- Use of the BJT in Buffered Op Amps
- Summary

# CMOS Analog Circuit Design, 3rd Edition Reference

Pages 354-370

#### INTRODUCTION

# **Buffered Op Amps**

What is a buffered op amp?

Buffered op amps are op amps with the ability to drive a low output resistance and/or a large output capacitance. This requires:

- An output resistance typically in the range of  $10\Omega \le R_o \le 1000\Omega$
- Ability to sink and source sufficient current  $(C_L \cdot SR)$



Types of buffered op amps:

- Open loop using output amplifiers
- Closed loop using negative shunt feedback to reduce the output resistance of the op amp

#### **OPEN LOOP BUFFERED OP AMPS**

# The Class A Source Follower as a Buffer

- Simple
- Small signal gain  $\approx \frac{g_m}{g_m + g_{mbs} + G_L} < 1$
- Low efficiency

• 
$$R_{out} = \frac{1}{g_m + g_{mbs}} \approx 500 \text{ to } 1000\Omega$$

- Level shift from input to output
- Maximum upper output voltage is limited
- Broadbanded as the pole and zero due to the source follower are close so compensation is typically not a problem



#### The Push-Pull Follower as a Buffer

• Voltage loss from 2 cascaded followers

$$A_{v} \approx \left(\frac{g_{m3}}{g_{m3} + g_{mbs3}}\right) \left(\frac{g_{m1}}{g_{m1} + g_{mbs1} + G_{L}}\right) < 1$$

• Higher efficiency

• 
$$R_{out} \approx \frac{0.5}{g_m + g_{mbs}} \approx 250 \text{ to } 500\Omega$$

• Current in M1 and M2 determined by:

$$V_{GS4} + V_{SG3} = V_{GS1} + V_{SG2}$$

$$\sqrt{\frac{2I_6}{K_n'(W_4/L_4)}} + \sqrt{\frac{2I_5}{K_p'(W_3/L_3)}}$$

$$= \sqrt{\frac{2I_1}{K_n'(W_1/L_1)}} + \sqrt{\frac{2I_2}{K_p'(W_2/L_2)}}$$



Use the W/L ratios to define  $I_1$  and  $I_2$  from  $I_5$  and  $I_6$ 

• Maximum positive and negative output voltages are limited

### **Two-Stage Op Amp with Follower**



Power dissipation now becomes  $(I_5 + I_7 + I_9)V_{DD}$ 

Gain becomes,

$$A_{\mathcal{V}} = \left(\frac{gm1}{gds2 + gds4}\right) \left(\frac{gm6}{gds6 + gds7}\right) \left(\frac{gm8}{gm8 + gmbs8 + gds8 + gds9}\right)$$

CMOS Analog Circuit Design © P.E. Allen - 2016

### Source-Follower, Push-Pull Output Op Amp



$$R_{out} \approx \frac{1}{g_{m21} + g_{m22}} \le 1000\Omega$$
,  $A_{v}(0) = 65$ dB ( $I_{Bias} = 50\mu$ A), and  $GB = 60$ MHz for  $C_{L} = 1$ pF

Note the bias currents through M18 and M19 vary with the signal.

CMOS Analog Circuit Design

### **Compensation of Op Amps with Output Amplifiers**

Compensation of a three-stage amplifier: This op amp introduces a third pole,  $p'_3$  (what about zeros?)

With no compensation,

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{-A_{vo}}{\left(\frac{s}{p'_1} - 1\right)\left(\frac{s}{p'_2} - 1\right)\left(\frac{s}{p'_3} - 1\right)}$$

Poles  $p_{1}'$  and  $p_{2}'$   $v_{in}$ Unbuffered  $v_{in}$ op amp  $v_{in}$   $v_{in}$ 

Illustration of compensation choices:



Miller compensation applied around both the second and the third stage.

Miller compensation applied around the second stage only. Fig. 7.1-5

### Crossover-Inverter, Buffer Stage Op Amp

Principle: If the buffer has high output resistance and voltage gain (common source), this is okay if when loaded by a small  $R_L$  the gain of this stage is approximately unity.



- This buffer trades gain for the ability to drive a low load resistance
- The load resistance should be fixed in order to avoid changes in the buffer gain
- The push-pull common source output will give good output voltage swing capability

### Crossover-Inverter, Buffer Stage Op Amp - Continued

How does the output buffer work?

The two inverters, M1-M3 and M2-M4 are designed to work over different regions of the buffer input voltage,  $v_{in}$ '.

Consider the idealized voltage transfer characteristic of the crossover inverters:



Crossover voltage  $\equiv V_C = V_B - V_A \ge 0$ 

 $V_C$  is designed to be small and positive for worst case variations in processing.

### **Large Output Current Buffer**

In the case where the load consists of a large capacitor, the ability to sink and source a large current is much more important than reducing the output resistance. Consequently, the common-source, push-pull is ideal if the quiescent current can be controlled.

A possible implementation:



If  $W_4/L_4 = W_9/L_9$  and  $W_3/L_3 = W_8/L_8$ , then the quiescent currents in M1 and M2 can be determined by the following relationship:

$$I_1 = I_2 = I_b \left( \frac{W_1/L_1}{W_7/L_7} \right) = I_b \left( \frac{W_2/L_2}{W_{10}/L_{10}} \right)$$

When  $v_{in}$  is increased, M6 turns off M2 and turns on M1 to source current. Similarly, when  $v_{in}$  is decreased, M5 turns off M1 and turns on M2 to sink current.

#### **CLOSED LOOP BUFFERED OP AMPS**

## **Principle**

Use negative shunt feedback to reduce the output resistance of the buffer.



• Output resistance

$$R_{OUT} = \frac{R_O}{1 + A_V}$$

- Watch out for when small  $R_L$  causes  $A_v$  to decrease.
- The bandwidth will be limited by the feedback (i.e. at high frequencies, the gain of  $A_v$  decreases causing the output resistance to increase.

#### Two Stage Op Amp with a Gain Boosted, Source Follower Buffer



$$R_{out} \approx \frac{1}{g_{m8}K}$$

Power dissipation now becomes  $(I_5 + I_7 + I_{11})V_{DD}$ 

Gain becomes,

$$A_{v} = \left(\frac{g_{m1}}{g_{ds}2 + g_{ds}4}\right) \left(\frac{g_{m6}}{g_{ds}6 + g_{ds}7}\right) \left(\frac{g_{m8}K}{g_{m8}K + g_{mbs}8K + G_{L}}\right)$$

CMOS Analog Circuit Design

### Gain Boosted, Source-Follower, Push-Pull Output Op Amp



$$R_{out} \approx \frac{1}{K(g_{m21} + g_{m22})} \approx \frac{1000\Omega}{K} \approx 100\Omega$$

$$A_{v}(0)=65 \text{dB} (I_{Bias}=50 \mu \text{A})$$

Note the bias currents through M18 and M19 vary with the signal.

CMOS Analog Circuit Design

### Common Source, Push Pull Buffer with Shunt Feedback

To get low output resistance using MOSFETs, negative feedback must be used. Ideal implementation:



#### Comments:

- The output resistance will be equal to  $r_{ds1}||r_{ds2}|$  divided by the loop gain
- If the error amplifiers are not perfectly matched, the bias current in M1 and M2 is not defined

#### **Low Output Resistance Op Amp - Continued**

Offset correction circuitry:



The feedback circuitry of the two error amplifiers tries to insure that the voltages in the loop sum to zero. Without the M9-M12 feedback circuit, there is no way to adjust the output for any error in the loop. The circuit works as follows:

When  $V_{OS}$  is positive, M6 tries to turn off and so does M6A.  $I_{M9}$  reduces thus reducing  $I_{M12}$ . A reduction in  $I_{M12}$  reduces  $I_{M8A}$  thus decreasing  $V_{GS8A}$ .  $V_{GS8A}$  ideally decreases by an amount equal to  $V_{OS}$ . A similar result holds for negative offsets and offsets in EA2.

CMOS Analog Circuit Design © P.E. Allen - 2016

# **Low Output Resistance Op Amp - Continued**

### Error amplifiers:



Basically a two-stage op amp with the output push-pull transistors as the second-stage of the op amp.

CMOS Analog Circuit Design © P.E. Allen - 2016

### **Low Output Resistance Op Amp - Complete Schematic**



Short circuit protection(max. output ±60mA):

MP3-MN3-MN4-MP4-MP5 MN3A-MP3A-MP4A-MN5A

$$R_{out} \approx \frac{r_{ds6} || r_{ds6A}}{\text{Loop Gain}} \approx \frac{50 \text{k}\Omega}{5000} = 10\Omega$$



# Simpler Implementation of Negative Feedback to Achieve Low Output Resistance



Output Resistance:

$$R_{out} = \frac{R_o}{1 + LG}$$

where

$$R_o = \frac{1}{g_{ds6} + g_{ds7}}$$

and

$$|LG| = \frac{g_{m2}}{2g_{m4}} (g_{m6} + g_{m7}) R_o$$

Therefore, the output resistance is:

$$R_{out} = \frac{1}{(g_{ds6} + g_{ds7}) \left[ 1 + \left( \frac{g_{m2}}{2g_{m4}} \right) (g_{m6} + g_{m7}) R_O \right]}$$

#### **Example 26-1 - Low Output Resistance Using Shunt Negative Feedback Buffer**

Find the output resistance of above op amp using the model parameters of  $K_N' = 120 \mu \text{A/V}^2$ ,  $K_P' = 25 \mu \text{A/V}^2$ ,  $\lambda_N = 0.06 \text{V}^{-1}$  and  $\lambda_P = 0.08 \text{V}^{-1}$ .

#### **Solution**

The current flowing in the output transistors, M6 and M7, is 1mA which gives  $R_o$  of

$$R_o = \frac{1}{(\lambda_N + \lambda_P)1\text{mA}} = \frac{1000}{0.14} = 7.143\text{k}\Omega$$

To calculate the loop gain, we find that

$$g_{m2} = \sqrt{2K_N' \cdot 10 \cdot 100 \mu A} = 490 \mu S$$
  
 $g_{m4} = \sqrt{2K_P' \cdot 1 \cdot 100 \mu A} = 70.7 \mu S$ 

and

$$g_{m6} = \sqrt{2K_P' \cdot 10 \cdot 1000 \mu A} = 707 \mu S$$

Therefore, the loop gain is

$$|LG| = \frac{490}{2 \cdot 70.7} (0.707 + 0.071)7.143 = 19.26$$

Solving for the output resistance,  $R_{out}$ , gives

$$R_{out} = \frac{7.143 \text{k}\Omega}{1 + 19.26} = 353\Omega$$
 (Assumes that  $R_L$  is large)

#### **USE OF THE BJT IN BUFFERED OP AMPS**

#### **Substrate BJTs**

Illustration of an NPN substrate BJT available in a p-well CMOS technology:



#### Comments:

- $g_m$  of the BJT is larger than the FET so that the output resistance w/o feedback is lower
- Collector current will be flowing in the substrate
- Current is required to drive the BJT
- Only an NPN or a PNP bipolar transistor is available

### **A Lateral Bipolar Transistor**

*n*-well CMOS technology:

- It is desirable to have the lateral collector current much larger than the vertical collector current.
- Triple well technology allows the current of the vertical collector to avoid flowing in the substrate.
- Lateral BJT generally has good matching.



CMOS Analog Circuit Design © P.E. Allen - 2016

### **A Field-Aided Lateral BJT**

Use minimum channel length to enhance beta:

 $\beta_F \approx 50$  to 100 depending on the process



# Two-Stage Op Amp with a Class-A BJT Output Buffer Stage

Purpose of the M8-M9 source follower:

- 1.) Reduce the output resistance (includes whatever is seen from the base to ground divided by  $1+\beta_F$ )
- 2.) Reduces the output load at the drains of M6 and M7



Small-signal output resistance : 
$$R_{out} \approx \frac{r_{\pi 10} + (1/g_{m9})}{1 + \beta_F} = \frac{1}{g_{m10}} + \frac{1}{g_{m9}(1 + \beta_F)}$$
  
= 51.6\Omega+6.7\Omega = 58.3\Omega where  $I_{10}$ =500\pmA,  $I_{8}$ =100\pmA,  $W_{9}/L_{9}$ =100 and  $\beta_F$  is 100

$$v_{OUT}(\text{max}) = V_{DD} - V_{SD8}(\text{sat}) - v_{BE10} = V_{DD} - \sqrt{\frac{2K_P'}{I_8(W_8/L_8)}} - V_t \ln \left(\frac{I_{c10}}{I_{s10}}\right)$$

Voltage gain:

$$\frac{v_{out}}{v_{in}} \approx \left(\frac{g_{m1}}{g_{ds2} + g_{ds4}}\right) \left(\frac{g_{m6}}{g_{ds6} + g_{ds7}}\right) \left(\frac{g_{m9}}{g_{m9} + g_{mbs9} + g_{ds8} + g_{\pi 10}}\right) \left(\frac{g_{m10}R_L}{1 + g_{m10}R_L}\right)$$

Compensation will be more complex because of the additional stages.

#### **Example 26-2 - Designing the Class-A, Buffered Op Amp**

Use an *n*-well, 0.25µm CMOS technology to design an op amp using a class-A, BJT output stage to give the following specifications. Assume the channel length is to be 0.5µm. The FETs have the model parameters of  $K_N' = 120\mu\text{A/V}^2$ ,  $K_P' = 25\mu\text{A/V}^2$ ,  $V_{TN} = |V_{TP}| = 0.5\text{V}$ ,  $\lambda_N = 0.06\text{V}^{-1}$  and  $\lambda_P = 0.08\text{V}^{-1}$  along with the BJT parameters of  $I_s = 10^{-14}\text{A}$  and  $\beta_F = 50$ .

$$V_{DD} = 2.5 \text{V}$$
  $V_{SS} = 0 \text{V}$   $GB = 10 \text{MHz}$   $A_{vd}(0) \ge 2500 \text{V/V}$  Slew rate  $\ge 10 \text{V/\mu s}$   $R_L = 500 \Omega$   $R_{out} \le 50 \Omega$   $C_L = 100 \text{pF}$   $ICMR = +1 \text{V}$  to  $2 \text{V}$ 

#### **Solution**

A quick comparison shows that the specifications of this problem are similar to the folded cascode op amp that was designed in Ex. 24-4. Borrowing that design for this example results in the following op amp.

Therefore, the goal of this example will be the design of M12 through Q15 to satisfy the slew rate and output resistance requirements.



CMOS Analog Circuit Design

#### Example 26-2 – Continued

BJT follower (Q15):

 $SR = 10V/\mu s$  and 100pF capacitor give  $I_{15} = 1mA$ .

 $\therefore$  Assuming the gate of M14 is connected to the gate of M5, the W/L ratio of M14 becomes

$$W_{14}/L_{14} = (1000 \mu A/125 \mu A)160 = 1280$$
  $\Rightarrow$   $W_{14} = 640 \mu m$ 

$$I_{15} = 1 \text{mA} \implies 1/g_{m15} = 0.0258 \text{V}/1 \text{mA} = 25.8 \Omega$$

MOS follower:

To source 1mA, the BJT requires  $20\mu A$  ( $\beta = 50$ ) from the MOS follower (M12-M13).

Therefore, select a bias current of  $100\mu A$  for M13. If the gates of M3 and M13 are connected together, then

$$W_{13}/L_{13} = (100 \mu \text{A}/100 \mu \text{A})15 = 15$$
  $\Rightarrow$   $W_{13} = 7.5 \mu \text{m}$ 

To get  $R_{out} = 50\Omega$ , if  $1/g_{m15}$  is 25.8 $\Omega$ , then design  $g_{m12}$  as

$$\frac{1}{g_{m15}} = \frac{1}{g_{m12}(1+\beta_F)} = 24.2\Omega \quad \Rightarrow \quad g_{m12} = \frac{1}{(24.2\Omega)(1+\beta_F)} = \frac{1}{24.2 \cdot 51} = 810\mu S$$

 $\therefore$   $g_{m12}$  and  $I_{12} \Rightarrow W/L = 27.3 \approx 30 \Rightarrow W_{12} = 15 \mu m$ 

### **Example 26-2 - Continued**

To calculate the voltage gain of the MOS follower we need to find  $g_{mbs9}$  ( $\gamma_N = 0.4\sqrt{V}$ ).

$$\therefore g_{mbs12} = \frac{g_{m12}\gamma_N}{2\sqrt{2\phi_F + V_{BS12}}} = \frac{810 \cdot 0.4}{2\sqrt{0.5 + 0.55}} = 158\mu S$$

where we have assumed that the value of  $V_{SB12}$  is approximately 1.25V - 0.7V = 0.55V.

$$A_{MOS} = \frac{810\mu S}{810\mu S + 158\mu S + 6\mu S + 8\mu S} = 0.825$$

The voltage gain of the BJT follower is

$$A_{BJT} = \frac{500}{25.8 + 500} = 0.951 \text{ V/V}$$

Thus, the gain of the op amp is

$$A_{vd}(0) = (4,680)(0.825)(0.951) = 3,672 \text{ V/V}$$

The power dissipation of this amplifier is,

$$P_{diss.} = 2.5 \text{V} (125 \mu \text{A} + 125 \mu \text{A} + 100 \mu \text{A} + 1000 \mu \text{A}) = 3.375 \text{mW}$$

The signal swing across the  $500\Omega$  load resistor will be restricted to  $\pm 0.5V$  due to the  $1000\mu A$  output current limit.

#### **SUMMARY**

- A buffered op amp requires an output resistance between  $10\Omega \le R_o \le 1000\Omega$
- Output resistance using MOSFETs only can be reduced by,
  - Source follower output  $(1/g_m)$
  - Negative shunt feedback (frequency is a problem in this approach)
- Use of substrate (or lateral) BJT's can reduce the output resistance because  $g_m$  is larger than the  $g_m$  of a MOSFET
- Adding a buffer stage to lower the output resistance will most likely complicate the compensation of the op amp