Supplementary Data

Erosion rates in Fennoscandia during the past million years

JD Jansen, MF Knudsen, JL Andersen, J Heyman, DL Egholm

Table S1. Summary of cosmogenic nuclide data measured in Fennoscandia (10 Be n = 953).

Table S2. Summary of outputs of Markov chain Monte Carlo inversion modelling of paired ¹⁰Be-²⁶Al samples (n = 113).

Supplementary data references

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Alexanderson & Fabel (2015)	ORM-1A	5	59.6805	13.9421	185	3	2.7	1	58190	2838	NIST_30600	0	0	0	10646	775	NaN	NaN	10893	2006	0
Alexanderson & Fabel (2015)	ORM-1B	5	59.6805	13.9421	185	2	2.7	0.9589	59067	3432	NIST_30600	0	0	0	11171	887	NaN	NaN	10893	2006	222
Alexanderson & Fabel (2015)	ORM-2A	5	59.6805	13.9419	184	1	2.7	0.9999	63711	3461	NIST_30600	0	0	0	11480	880	NaN	NaN	10893	2006	531
Alexanderson & Fabel (2015)	ORM-2B	5	59.6805	13.9419	184	3	2.7	0.9527	58728	4258	NIST_30600	0	0	0	11283	1021	NaN	NaN	10893	2006	334
Alexanderson & Fabel (2015)	ORM-3	5	59.6805	13.9421	185	2	2.7	1	78115	13984	NIST_30600	0	0	0	14187	2661	NaN	NaN	10893	2006	3238
Alexanderson & Fabel (2015)	VAS-2	5	59.67	13.9685	225	2	2.7	1	74274	3873	NIST_30600	0	0	0	12946	973	NaN	NaN	10896	2006	1994
Alexanderson & Fabel (2015)	VAS-3	5	59.6706	13.9681	225	4	2.7	0.9643	67503	3628	NIST_30600	0	0	0	12395	945	NaN	NaN	10896	2006	1443
Alexanderson & Fabel (2015)	VAS-4	5	59.6709	13.9689	224	2	2.7	0.9735	67111	2971	NIST_30600	0	0	0	12020	840	NaN	NaN	10896	2006	1068
Andersen et al. (2018a)	HD01	1	60.9954	8.7263	1094	3.2	2.7	0.99	185407	5521	07KNSTD	1173583	41439	KNSTD	16251	1003	15038	1532	10044	2013	6144
Andersen et al. (2018a)	HD02	1	60.9964	8.7246	1111	4.0	2.7	0.99	126073	4286	07KNSTD	809930	32453	KNSTD	10952	699	10275	1062	10044	2013	845
Andersen et al. (2018a)	HD04	1	61.0020	8.7134	1382	3.0	2.7	1	285721	7173	07KNSTD	1860314	50752	KNSTD	19534	1165	18618	1853	10046	2013	9425
Andersen et al. (2018a)	HD06	3	60.9839	8.6788	1636	4.1	2.7	1	538145	9599	07KNSTD	3505378	70214	KNSTD	30441	1738	29105	2859	10049	2013	20329
Andersen et al. (2018a)	HD08	3	60.9836	8.6969	1659	3.8	2.7	1	737382	12607	07KNSTD	4350417	82169	KNSTD	40979	2337	35506	3491	10046	2013	30870
Andersen et al. (2018a)	HD09	3	60.9845	8.6985	1658	3.9	2.7	1	770144	12328	07KNSTD	4680093	85728	KNSTD	42889	2433	38311	3767	10046	2013	32780
Andersen et al. (2018a)	HD10	1	61.0016	8.7555	886	2.3	2.7	1	89794	3415	07KNSTD	570258	25736	KNSTD	9226	609	8550	901	10037	2013	0
Andersen et al. (2018a)	HD12	1	61.0044	8.7499	938	1.0	2.7	1	103049	3838	07KNSTD	686723	27792	KNSTD	10014	657	9744	1009	10040	2013	0
Andersen et al. (2018a)	HD16	1	61.0100	8.7310	893	3.3	2.7	0.99	182224	5170	07KNSTD	1086794	33319	KNSTD	18996	1161	16558	1662	10043	2013	8890
Andersen et al. (2018a)	HD17	2	61.0033	8.6357	1297	1.8	2.7	1	189168	4952	07KNSTD	1182473	38437	KNSTD	13699	822	12515	1261	10062	2013	3574
Andersen et al. (2018a)	HD28	1	61.0026	8.7024	1480	0.8	2.7	0.99	321063	7161	07KNSTD	2041108	52679	KNSTD	20123	1178	18728	1856	10050	2013	10010
Andersen et al. (2018a)	JD04	2	61.5367	7.8215	1470	2	2.7	1	255384	6139	07KNSTD	1686823	56265	KNSTD	16056	950	15517	1570	10244	2014	5748
Andersen et al. (2018a)	JD05	2	61.5397	7.8302	1433	2	2.7	1	517606	12493	07KNSTD	2846109	94487	KNSTD	33666	2002	27118	2759	10241	2014	23361
Andersen et al. (2018a)	JD06	2	61.2704	5.9341	903	3.8	2.7	1	122515	4011	07KNSTD	855669	35595	KNSTD	12501	790	12757	1328	11126	2014	1311
Andersen et al. (2018a)	JD07	2	61.2707	5.9338	902	3	2.7	1	133646	3968	07KNSTD	842984	38291	KNSTD	13562	836	12495	1321	11126	2014	2372
Andersen et al. (2018a)	JD08	2	61.2827	5.9246	951	3.8	2.7	1	122327	4141	07KNSTD	780034	25938	KNSTD	11973	763	11150	1126	11137	2014	772
Andersen et al. (2018a)	JD09	2	61.2816	5.9190	942	5	2.7	1	128654	4394	07KNSTD	818510	29756	KNSTD	12820	819	11912	1216	11144	2014	1612
Andersen et al. (2018a)	JD10	2	61.2960	6.1975	996	2	2.7	1	165451	4660	07KNSTD	1102473	35135	KNSTD	15368	937	14971	1508	11019	2014	4285
Andersen et al. (2018a)	JD11	2	61.2999	6.2060	1093	4.5	2.7	1	135306	4174	07KNSTD	968156	40503	KNSTD	11809	734	12349	1287	11011	2014	734
Andersen et al. (2018a)	JD12	5	61.2997	6.2061	1095	5.5	2.7	1	131102	3741	07KNSTD	798074	37306	KNSTD	11516	703	10236	1087	11011	2014	441
Andersen et al. (2018a)	JD13	2	61.3011	6.2150	1089	6	2.7	1	172452	5248	07KNSTD	1156531	29594	KNSTD	15303	949	15005	1484	11011	2014	4228
Andersen et al. (2018a)	JD14	2	61.2926	6.2022	1142	3	2.7	1	140416	4412	07KNSTD	976245	30552	KNSTD	11616	726	11802	1184	11011	2014	541
Andersen et al. (2018a)	KJ07	3	62.0074	8.591	1881	2	2.7	1	656536	11348	07KNSTD	4140889	261184	KNSTD	30099	1713	27859	3215	10854	2015	19180
Andersen et al. (2018a)	Phy01	1	60.9782	8.6726	1341	1.5	2.7	0.98	144189	5336	07KNSTD	905648	38446	KNSTD	10245	671	9398	980	10052	2013	130
Andersen et al. (2018a)	Phy02	1	60.9756	8.6701	1186	2.3	2.7	0.98	104848	4375	07KNSTD	711101	35467	KNSTD	8515	581	8432	907	10050	2013	0
Andersen et al. (2018a)	SF01	5	60.9042	7.2764	1354	5.9	2.7	1	166057	7230	07KNSTD	1148081	57558	KNSTD	11857	823	11984	1292	10544	2012	1251
Andersen et al. (2018a)	SF06	5	60.9851	7.2817	1569	3.6	2.7	0.999	188739	7107	07KNSTD	0	0	0	11144	734	NaN	NaN	10545	2012	537
Andersen et al. (2018a)	SF07	2	60.9854	7.2829	1560	2.6	2.7	0.99	375570	11809	07KNSTD	0	0	0	22410	1404	NaN	NaN	10545	2012	11803
Andersen et al. (2018a)	SF08	2	60.9854	7.2834	1556	2.6	2.7	1	408921	13608	07KNSTD	0	0	0	24245	1543	NaN	NaN	10545	2012	13638
Andersen et al. (2018a)	SF09	3	60.8404	7.1919	1440	3.9	2.7	1	458082	16972	07KNSTD	0	0	0	30166	1985	NaN	NaN	10578	2012	19526
Andersen et al. (2018a)	SF13	2	60.8368	7.1893	1399	3.0	2.7	1	343454	12483	07KNSTD	0	0	0	23160	1512	NaN	NaN	10578	2012	12520
Andersen et al. (2018a)	SF15	1	60.9248	7.6945	1390	3.1	2.7	1	224902	11195	07KNSTD	0	0	0	15260	1123	NaN	NaN	10380	2012	4818
Andersen et al. (2018a)	SF17	1	60.9314	7.6945	1370	4.1	2.7	1	212139	6998	07KNSTD	0	0	0	14748	934	NaN	NaN	10382	2012	4304
Andersen et al. (2018a)	SF18	1	60.9315	7.6945	1369	4.4	2.7	1	291233	9699	07KNSTD	0	0	0	20341	1293	NaN	NaN	10382	2012	9897
Andersen et al. (2018a)	SF19	5	60.9311	7.6955	1371	4.2	2.7	0.993	150052	4383	07KNSTD	944328	34945	KNSTD	10493	644	9646	986	10382	2012	49
Andersen et al. (2018a)	SF21	2	61.0072	8.6772	1695	2.7	2.7	1	522310	15443	07KNSTD	3444289	101821	KNSTD	27878	1723	26975	2713	10055	2012	17761
Andersen et al. (2018a)	SF22	1	61.0080	8.6809	1703	4.5	2.7	1	530398	15012	07KNSTD	3441383	111678	KNSTD	28564	1749	27193	2760	10055	2012	18447
Andersen et al. (2018a)	SF23	1	61.0062	8.6817	1703	4.7	2.7	1	533154	16325	07KNSTD	3403437	305233	KNSTD	28762	1793	26934	3561	10055	2012	18645
Andersen et al. (2018a)	SF24	2	61.0004	8.6691	1729	4.3	2.7	1	679195	21189	07KNSTD	4447772	139160	KNSTD	35861	2250	34518	3503	10053	2012	25746
Andersen et al. (2018a)	SF25	5 5	61.0122	8.6589	1459	3.3	2.7	0.999	169905	5519	07KNSTD	0	0	0	10932	689	NaN	NaN	10059	2012	811 0
Andersen et al. (2018a)	SF26	-	61.0375	8.6067	1183	3.3	2.7	1	112161	8144	07KNSTD	0	-	0	9023	817	NaN	NaN	10073	2012	-
Andersen et al. (2018a)	SF27	2	60.9259	7.7125	1647	4.7	2.7	1	424449	10950	07KNSTD	2712352	152728	KNSTD	23867	1432	22349	2490	10373	2012	13432
Andersen et al. (2018a)	SF28	2	60.9265	7.7098	1645	4.5	2.7	1	363439	9748	07KNSTD	2379933	102528	KNSTD	20416	1233	19582	2058	10373	2012	9981
Andersen et al. (2018a)	SF29	-	60.9271	7.7085	1639	4.9	2.7	1	405197	10738	07KNSTD	2539247	100431	KNSTD	22959	1385	21074	2186	10373	2012	12524
Andersen et al. (2018a)	SF31	5	60.9258	7.7127 6.0637	1642	3.8	2.7	1	606692	16934 9468	07KNSTD	0	0	0	34079	2083	NaN	NaN NaN	10373	2012	23644
Andersen et al. (2018a)	SF32	-	61.0074		1191	2.8	2.7	1	336354		07KNSTD	0	0	-	26806	1638	NaN		11046	2012	15698
Andersen et al. (2018a)	SF33	2	61.0082	6.0604	1199	3.8	2.7	1	452130	13728	07KNSTD	3090841	161486	KNSTD	36177	2255	36359	4005 No.N	11046	2012	25069
Andersen et al. (2018a)	SF34 SF35	2	61.0087 61.0083	6.0607 6.0621	1201	4.6	2.7	1	452101	13097 8885	07KNSTD 07KNSTD	0	0	0	36357 15027	2241 1078	NaN NaN	NaN NaN	11046 11046	2012	25249
Andersen et al. (2018a)		_			1189	2.9	2.7	1	188637			-	0	-						2012	3919
Andersen et al. (2018a)	SF36	2	61.0349	5.1555	705	4.6	2.7	1	114698	4642	07KNSTD	0	0	0	14027	948	NaN	NaN	11376	2012	2589
Andersen et al. (2018a)	SF37	2	61.0343 61.0308	5.1584	683	5.2	2.7	1	108390	4500	07KNSTD 07KNSTD	0	0	0	13585	926	NaN	NaN	11376	2012	2147
Andersen et al. (2018a)	SF38 SF39	2 5		5.1631 5.1639	675 666	5.5 4.2	2.7 2.7	0.000	104080	4940	07KNSTD 07KNSTD	0	0	0	13170	948 883	NaN	NaN	11379	2012	1729 1350
Andersen et al. (2018a)	3F39	5	61.0304	5.1039	000	4.2	2.1	0.999	101253	4343	OLVIA91D	U	U	U	12791	663	NaN	NaN	11379	2012	1330

Table S1. Summary of cosmogenic nuclide data measured in Fennoscandia

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Andersen et al. (2018a)	SF40	5	61.0304	5.1628	672	5.4	2.7	0.999	90170	4160	07KNSTD	0	0	0	11438	813	NaN	NaN	11379	2012	0
Andersen et al. (2018a)	SF41	2	61.0311	5.1574	681	4.2	2.7	1	111377	4485	07KNSTD	0	0	0	13871	935	NaN	NaN	11379	2012	2430
Andersen et al. (2018a)	SF43	2	61.1547	6.4532	951	3	2.7	1	116750	4032	07KNSTD	845972	30344	KNSTD	11365	729	12033	1226	10872	2014	429
Andersen et al. (2018a)	SF44	2	61.1544	6.4534	952	3	2.7	1	119541	3641	07KNSTD	852110	31670	KNSTD	11627	721	12111	1240	10872	2014	691
Andersen et al. (2018a)	SF45	2	61.1615	6.4390	1008	3.2	2.7	1	129644	4153	07KNSTD	842538	26009	KNSTD	12041	756	11430	1145	10872	2014	1105
Andersen et al. (2018a)	SF46	2	61.1615	6.4417	1013	3.5	2.7	1	130075	3605	07KNSTD	878995	38087	KNSTD	12060	732	11906	1248	10872	2014	1124
Andersen et al. (2018a)	SF47 SF48	2	61.2360	6.0212	909	2.5	2.7	1	113072	3758	07KNSTD	825792	27252	KNSTD	11355	720	12117	1223	11067	2014	224
Andersen et al. (2018a)	SF48 SF49	2	61.2375	6.0233	906	3	2.7	1	248525	5974 4724	07KNSTD	1682855	41677 32764	KNSTD	25213	1495	25017	2480	11067	2014	14082
Andersen et al. (2018a) Andersen et al. (2018a)	SF50	2 2	61.2391 61.2426	6.0192 6.0105	946 956	2	2.7 2.7	1	168774 194305	4640	07KNSTD 07KNSTD	1122487 1240443	34340	KNSTD KNSTD	16368 19008	997 1124	15918 17747	1590 1767	11067 11077	2014 2014	5237
Andersen et al. (2018a)	SF51	2	61.2382	5.9966	964	3	2.7	1	210125	5180	07KNSTD	1313445	39716	KNSTD	20253	1204	18516	1858	11077	2014	7867 9110
Andersen et al. (2018a)	SF52	2	61.2357	5.9965	1001	2	2.7	1	195281	5033	07KNSTD	1425990	47542	KNSTD	18075	1083	19325	1960	11079	2014	6932
Andersen et al. (2018a)	SF53	2	61.1093	5.4439	678	1.5	2.7	1	104061	3620	07KNSTD	644551	27521	KNSTD	12704	816	11485	1200	11254	2014	1386
Andersen et al. (2018a)	SF54	2	61.1096	5.4414	679	1.5	2.7	1	97300	3480	07KNSTD	715198	22522	KNSTD	11865	769	12741	1280	11254	2014	547
Andersen et al. (2018a)	SF55	2	61.1094	5.4298	664	3.5	2.7	1	98007	3717	07KNSTD	672362	31231	KNSTD	12317	813	12340	1310	11259	2014	994
Andersen et al. (2018a)	SF56	2	61.1114	5.4307	672	3.5	2.7	1	94473	3517	07KNSTD	591074	27541	KNSTD	11787	773	10762	1142	11260	2014	463
Andersen et al. (2018a)	SF57	2	61.1130	5.4348	679	3.8	2.7	1	99578	4114	07KNSTD	597387	28615	KNSTD	12378	842	10836	1157	11260	2014	1054
Andersen et al. (2018b)	AS01	2	61.9446	8.3562	1210	2	2.65	1	149721	4302	07KNSTD	1052217	70784	KNSTD	11595	709	11911	1392	10517	2014	1014
Andersen et al. (2018b)	AS02	2	61.9446	8.3562	1210	3	2.65	1	141861	3296	07KNSTD	1003099	66038	KNSTD	11075	651	11445	1328	10517	2014	494
Andersen et al. (2018b)	AS03	2	61.9432	8.3642	1325	3	2.65	1	166814	4732	07KNSTD	1002625	67041	KNSTD	11852	723	10405	1213	10532	2014	1256
Andersen et al. (2018b)	AS04	2	61.9437	8.3646	1324	2	2.65	1	155856	3649	07KNSTD	1093608	70876	KNSTD	10990	646	11271	1301	10532	2014	394
Andersen et al. (2018b)	AS05	2	61.9434	8.3644	1323	3	2.65	1	138349	13803	07KNSTD	1007764	65529	KNSTD	9841	1118	10476	1210	10532	2014	0
Andersen et al. (2018b)	AS06	2	61.9437	8.3743	1386	2.5	2.65	1	167721	4356	07KNSTD	0	0	KNSTD	11294	676	NaN	NaN	10532	2014	698
Andersen et al. (2018b)	AS07	2	61.9438	8.3753	1394	3	2.65	1	166469	3746	07KNSTD	1107946	74160	KNSTD	11182	654	10877	1268	10532	2014	586
Andersen et al. (2018b)	AS08	2	61.9432	8.3750	1397	5	2.65	0.99	163231	3897	07KNSTD	1029710	85630	KNSTD	11229	663	10349	1311	10532	2014	633
Andersen et al. (2018b)	FD01	2	61.9042	8.6089	1068	2.5	2.7	1	112047	3088	07KNSTD	845909	56026	0	9819	595	10832	1259	10490	2014	0
Andersen et al. (2018b)	FD02	2	61.8998	8.5908	1116	1	2.7	1	128370	3620	07KNSTD	940063	63625	0	10671	650	11420	1337	10477	2014	130
Andersen et al. (2018b)	FD03	2	61.8893	8.5783	1223	3.5	2.7	1	136533	3968	07KNSTD	971611	67651	0	10600	650	11023	1303	10452	2014	84
Andersen et al. (2018b)	FD05	2	61.9375	8.4428	1826	3	2.7	1	251200	6457	07KNSTD	1846366	119636	0	12052	721	12962	1497	10535	2014	1453
Andersen et al. (2018b)	FD06	2	61.938	8.4458	1827	3	2.7	1	157487	4221	07KNSTD	1130685	76658	0	7541	454	7912	925	10535	2014	0
Andersen et al. (2018b)	FD07	2	61.9375	8.4558	1734	4	2.65	1	162559	3213 3962	07KNSTD	1156302	75331	KNSTD KNSTD	8422	484	8755	1011	10535	2014	0
Andersen et al. (2018b)	FD08 FD09	2	61.9416 61.9414	8.5276	1623	1	2.65		204333		07KNSTD	1376653	88605		11450	657	11278 11146	1299 1294	10587	2014	799
Andersen et al. (2018b) Andersen et al. (2018b)	FD10	2 2	61.9414	8.5371 8.5364	1597 1591	4	2.65 2.65	1	187246 211924	5123 5337	07KNSTD 07KNSTD	1355363 1411174	89371 91411	KNSTD KNSTD	10531 12278	637 731	11146	1380	10600 10587	2014 2014	0 1627
Andersen et al. (2018b)	FD10	2	61.9404	8.5482	1549	2.5	2.65	1	196728	3928	07KNSTD	1355690	92169	KNSTD	11635	670	11723	1375	10600	2014	971
Andersen et al. (2018b)	FD12	2	61.9379	8.5911	1362	2.5	2.65	1	219091	4310	07KNSTD	1495923	96535	KNSTD	14999	862	14982	1730	10597	2014	4338
Andersen et al. (2018b)	GU02	2	62.0462	8.806	1761	2	2.7	1	660456	12018	07KNSTD	4276629	279839	KNSTD	33183	1900	31560	3691	11055	2015	22063
Andersen et al. (2018b)	GU03	2	62.0448	8.803	1749	3	2.7	1	626674	11409	07KNSTD	3837197	245518	KNSTD	32033	1834	28778	3337	11043	2015	20925
Andersen et al. (2018b)	GU04	2	62.0248	8.7989	1576	3	2.7	1	510146	9633	07KNSTD	3559465	223467	0	29805	1712	30549	3525	10953	2015	18787
Andersen et al. (2018b)	GU05	2	62.0254	8.7992	1590	3	2.7	1	518196	10018	07KNSTD	3565240	221141	0	29945	1724	30261	3478	10953	2015	18927
Andersen et al. (2018b)	KJ01	2	61.9947	8.8128	1726	3	2.7	1	537758	10669	07KNSTD	3416335	220477	KNSTD	27956	1614	26049	3025	10852	2015	17039
Andersen et al. (2018b)	KJ02	2	62.0577	8.7443	1735	2	2.7	1	236513	6616	07KNSTD	1498440	104229	KNSTD	12056	733	11166	1320	11076	2015	915
Andersen et al. (2018b)	KJ03	2	62.0508	8.7865	1720	3	2.7	1	567964	11367	07KNSTD	3405886	218189	KNSTD	29665	1715	26081	3021	11043	2015	18557
Andersen et al. (2018b)	KJ04	2	62.0281	8.793	1608	3	2.7	1	523092	10587	07KNSTD	3314388	214775	KNSTD	29804	1726	27704	3224	10986	2015	18753
Andersen et al. (2018b)	KJ05	2	62.0281	8.793	1608	2	2.7	1	449293	8974	07KNSTD	0	0	0	25358	1464	NaN	NaN	10986	2014	14308
Andersen et al. (2018b)	KJ06	4	62.0284	8.8518	1705	2.5	2.7	1	588651	10118	07KNSTD	0	0	0	30990	1764	NaN	NaN	10989	2014	19937
Andersen et al. (2018b)	KJ08-1	3	62.0078	8.5903	1882	3	2.7	1	665679	11738	07KNSTD	4287320	269637	KNSTD	30756	1754	29081	3355	10854	2015	19837
Andersen et al. (2018b)	KJ08-2	3	62.0078	8.5903	1882	3	2.7	1	651236	11547	07KNSTD	0	0	0	30084	1717	NaN	NaN	10854	2014	19166
Andersen et al. (2018b)	KJ10	5	62.0164	8.8315	1493	2	2.7	1	168026	4418	07KNSTD	1122754	76244	KNSTD	10346	621	10102	1183	10932	2014	0
Andersen et al. (2018b)	KJ11	5	62.019	8.8249	1534	4	2.7	1	178310	4668	07KNSTD	1201894	81966	KNSTD	10807	648	10647	1249	10932	2014	0
Andersen et al. (2018b)	L01	2	62.0041	8.9367	1266	5	2.65	1	150837	3791	07KNSTD	1024225	66450	KNSTD	11437	681	11349	1310	10921	2014	452
Andersen et al. (2018b)	L02	2	62.0049	8.9346	1274	5	2.65	1	160321	3632	07KNSTD	1021634	70689	KNSTD	12078	707	11245	1327	10915	2014	1099
Andersen et al. (2018b)	L03	2	62.0055	8.9276	1308	3	2.65	1	165717	3666	07KNSTD	1053692	73516	KNSTD	11945	697	11098	1313	10915	2014	966
Andersen et al. (2018b)	L04	2	62.0105	8.9205	1420	3	2.65	1	172017	3718	07KNSTD	0	0	KNSTD	11321	658	NaN	NaN	10947	2014	310
Andersen et al. (2018b)	L05	2	62.0125	8.9183	1441	4	2.65	1	175898	3951	07KNSTD	1169965	75481	KNSTD	11477	671	11157	1286	10947	2014	466
Andersen et al. (2018b)	L06	2	62.0129	8.9184	1436	3.5	2.65	1	160831	3540	07KNSTD	984745	65728	KNSTD	10490	611	9382	1092	10947	2014	0
Andersen et al. (2018b)	RE01 RE02	5 2	62.0465 62.0481	8.8061 8.8073	1763 1739	3.5 1.5	2.7 2.7	1	193907 663341	5701 11490	07KNSTD 07KNSTD	1161551 4084372	46848 113710	KNSTD KNSTD	9793 33756	602 1924	8569 30509	886 3058	11055	2014 2014	0
Andersen et al. (2018b)	RE02 RE04	4	62.0481	8.8073 8.8498	1739	1.5	2.7	1	1442391	23844	07KNSTD 07KNSTD	4084372 8142055	241021	KNSTD	77740	1924 4461	64782	6640	11055 10989	2014	22637
Andersen et al. (2018b) Andersen et al. (2018b)	RK01	2	61.9903	8.6978	1833	3	2.7	1	900484	15871	07KNSTD 07KNSTD	6218431	383616	0	43311	2478	44092	5095	10819	2014	66687 32428
Andersen et al. (2018b)	RK02	2	61.9903	8.6972	1838	3	2.7	1	934298	15411	07KNSTD	6639011	429694	0	44784	2548	46963	5515	10819	2014	33901
Andersen et al. (2018b)	RK04	3	61.9925	8.6845	1863	3	2.7	1	648205	11685	07KNSTD	4582805	283881	0	30382	1737	31575	3630	10808	2014	19510
Anjar et al. (2014)	ÅL06	5	56.51424	14.67445	140	3	2.65	0.9999	82600	3300	NIST_30600	0	0	0	15984	1075	NaN	NaN	14930	2008	996
,, a. o. a (20 · · /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ū	23.01.124			٠	2.00	2.0000	32000	0000		•	·	ŭ	10004	1070	14014	14014	14000	2000	500

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-und (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Anjar et al. (2014)	ÅL08	5	56.51383	14.6736	132	4	2.65	0.9999	86400	3500	NIST 30600	0	0	0	16999	1150	NaN	NaN	14930	2008	2011
Anjar et al. (2014)	RÅ05	5	57.23425	14.21104	183	3.5	2.65	1	79800	3000	NIST_30600	0	0	0	14788	974	NaN	NaN	14187	2008	543
Anjar et al. (2014)	RÅ06	5	57.23479	14.21133	185	4	2.65	1	80200	3500	NIST 30600	0	0	0	14892	1035	NaN	NaN	14187	2008	647
Anjar et al. (2014)	RÅ07	5	57.2331	14.20916	177	4.5	2.65	1	79500	3300	NIST_30600	0	0	0	14943	1019	NaN	NaN	14187	2008	698
Anjar et al. (2014)	SJÖ04	2	56.83936	14.76649	191	2.5	2.65	1	95900	3500	NIST 30600	0	0	0	17531	1145	NaN	NaN	14616	2008	2857
Anjar et al. (2014)	SJÖ05	2	56.8287	14.79053	185	4	2.65	1	83900	3300	NIST_30600	0	0	0	15612	1044	NaN	NaN	14626	2008	928
Anjar et al. (2014)	SJÖ06	5	56.82817	14.79079	183	5	2.65	1	83700	3400	NIST 30600	0	0	0	15733	1065	NaN	NaN	14626	2008	1049
Anjar et al. (2014)	SVE0819	5	58.10324	14.93914	205	2	2.65	1	80900	2900	NIST_30600	0	0	0	14450	937	NaN	NaN	13135	2008	1257
Anjar et al. (2014)	SVE0821	5	58.10306	14.93902	203	2	2.65	0.9965	78300	3600	NIST 30600	0	0	0	14061	999	NaN	NaN	13135	2008	868
Anjar et al. (2014)	SVE0822	2	58.10261	14.93838	200	2.5	2.65	1	188600	5800	NIST_30600	0	0	0	34164	2135	NaN	NaN	13135	2008	20971
Anjar et al. (2014)	SVE0825	5	56.96211	15.7531	157	2	2.65	1	55700	2100	NIST 30600	0	0	0	10479	690	NaN	NaN	14660	2008	0
Anjar et al. (2014)	SVE0826	2	56.963	15.75196	155	3	2.65	0.9995	84400	5700	NIST_30600	0	0	0	16071	1393	NaN	NaN	14660	2008	1353
Anjar et al. (2014)	SVE0828	2	56.96473	15.75177	160	6	2.65	1	97100	7300	NIST_30600	0	0	0	18848	1751	NaN	NaN	14660	2008	4130
Anjar et al. (2014)	SVE0831	5	57.60665	18.3483	75	3.5	2.65	1	62100	3900	NIST_30600	0	0	0	12875	1068	NaN	NaN	14235	2008	0
Anjar et al. (2014)	SVE0833	5	57.61855	18.41134	80	4	2.65	1	78800	3500	NIST_30600	0	0	0	16330	1144	NaN	NaN	14214	2008	2058
Anjar et al. (2014)	SVE0834	5	57.34256	18.33168	65	5	2.65	1	65500	2600	NIST_30600	0	0	0	13908	933	NaN	NaN	14405	2008	0
Anjar et al. (2014)	SVE0835	5	57.34105	18.34284	75	5	2.65	1	63600	2500	NIST_30600	0	0	0	13359	893	NaN	NaN	14402	2008	0
Anjar et al. (2014)	SVE0836	2	56.28714	12.52677	188	3	2.65	1	17500	600	NIST_30600	0	0	0	3213	205	NaN	NaN	17175	2008	0
Anjar et al. (2014)	SVE0837	2	56.28742	12.52608	180	7	2.65	1	89700	4300	NIST_30600	0	0	0	17206	1245	NaN	NaN	17175	2008	0
Anjar et al. (2014)	SVE0839	2	55.63469	13.43648	118	5	2.65	0.9991	86300	3100	NIST_30600	0	0	0	17423	1132	NaN	NaN	16367	2008	998
Anjar et al. (2014)	SVE0840	2	55.63483	13.43654	120	5	2.65	1	71700	3400	NIST_30600	0	0	0	14422	1038	NaN	NaN	16367	2008	0
Anjar et al. (2014)	SVE0841	2	55.66227	14.27307	86	3	2.65	1	75100	3900	NIST_30600	0	0	0	15410	1157	NaN	NaN	15862	2008	0
Briner et al. (2014b)	41-11NOR-49	5	59.03355	7.22305	1067	2	2.65	1	133506	2986	07KNSTD	0	0	0	11819	691	NaN	NaN	10280	2011	1478
Briner et al. (2014b)	41-11NOR-50	5	59.02708	7.09852	938	1.5	2.65	1	117666	2210	07KNSTD	0	0	0	11576	661	NaN	NaN	10344	2011	1171
Briner et al. (2014b)	42-11NOR-22	1	59.03108	6.39965	288	4	2.65	0.997	64734	1420	07KNSTD	0	0	0	11775	686	NaN	NaN	12521	2011	0
Briner et al. (2014b)	42-11NOR-29	2	58.9342	6.03285	113	1	2.65	1	66024	1487	07KNSTD	0	0	0	13959	817	NaN	NaN	14358	2011	0
Briner et al. (2014b)	42-11NOR-30	5	58.93367	6.03072	108	2	2.65	1	66147	1460	07KNSTD	0	0	0	14175	827	NaN	NaN	14358	2011	0
Briner et al. (2014b)	42-11NOR-31	5	58.93337	6.03363	104	2	2.65	1	68225	1403	07KNSTD	0	0	0	14684	849	NaN	NaN	14358	2011	265
Briner et al. (2014b)	42-11NOR-39	2	58.91197	6.0741	69	1.5	2.65	0.999	54386	2782	07KNSTD	0	0	0	12106	901	NaN	NaN	14110	2011	0
Briner et al. (2014b)	42-11NOR-40	1	58.96137	6.18622	109	3	2.65	0.989	51295	1005	07KNSTD	0	0	0	11184	642	NaN	NaN	12700	2011	0
Briner et al. (2014b)	42-11NOR-42	1	59.0656	6.64945	405	2	2.65	0.989	128564	2974	07KNSTD	0	0	0	20767	1222	NaN	NaN	11038	2011	9668
Briner et al. (2014b)	42-11NOR-45	1	59.05917	6.66937	96	1	2.65	0.98	50733	1173	07KNSTD	0	0	0	11139	654	NaN	NaN	10999	2011	79
Briner et al. (2014b)	42-11NOR-47	5	59.05862	6.66858	89	3.5	2.65	0.98	46347	1240	07KNSTD	0	0	0	10460	630	NaN	NaN	10999	2011	0
Briner et al. (2014b)	44-11NOR-12	5	59.10072	6.39898	715	1.5	2.65	1	91682	1821	07KNSTD	0	0	0	10947	629	NaN	NaN	13232	2011	0
Briner et al. (2014b)	44-11NOR-14	5	59.10363	6.38537	593	2.5	2.65	1	83182	1649	07KNSTD	0	0	0	11175	642	NaN	NaN	13289	2011	0
Briner et al. (2014b)	44-11NOR-17	5	59.11	6.39838	684	2	2.65	1	91806	1731	07KNSTD	0	0	0	11315	647	NaN	NaN	13246	2011	0
Briner et al. (2014b)	44-11NOR-20	2	59.10792	6.38538	603	1.5	2.65	1	91913	3075	07KNSTD	0	0	0	12139	771	NaN	NaN	13289	2011	0
Briner et al. (2014b)	44-11NOR-23	5	59.12262	6.30512	466	4	2.65	0.998	89957	1962	07KNSTD	0	0	0	13786	803	NaN	NaN	13506	2011	219
Briner et al. (2014b)	44-11NOR-25	2	59.12188	6.30642	457	2	2.65	0.998	94902	1786	07KNSTD	0	0	0	14433	825	NaN	NaN	13506	2011	866
Briner et al. (2014b)	44-11NOR-62	5	59.30093	6.57585	776	3	2.65	0.998	85580	2503	07KNSTD	0	0	0	9809	602	NaN	NaN	10970	2011	0
Briner et al. (2014b)	45-11NOR-13	5	59.10363	6.38537	593	1	2.65	0.999	88581	2185	07KNSTD	0	0	0	11769	698	NaN	NaN	13289	2011	0
Briner et al. (2014b)	45-11NOR-15	5	59.10458	6.38485	591	3	2.65	1	86400	1715	07KNSTD	0	0	0	11677	671	NaN	NaN	13289	2011	0
Briner et al. (2014b)	45-11NOR-24	5	59.12203	6.30368	447	2.5	2.65	0.998	97099	1946	07KNSTD	0	0	0	14969	863	NaN	NaN	13506	2011	1402
Briner et al. (2014b)	45-11NOR-27	5	59.11925	6.31062	457	1	2.65	0.998	90031	3114	07KNSTD	0	0	0	13579	871	NaN	NaN	13490	2011	28
Briner et al. (2014b)	45-11NOR-63	5	59.30072	6.57695	775	1	2.65	0.999	104297	2069	07KNSTD	0	0	0	11765	676	NaN	NaN	10970	2011	734
Briner et al. (2014b)	45-11NOR-64	5	59.30043	6.57843	770	1	2.65	0.999	106233	2318	07KNSTD	0	0	0	12037	701	NaN	NaN	10916	2011	1060
Briner et al. (2014b)	46-11NOR-44	5	59.05898	6.66958	80	1	2.65	0.98	49140	1548	07KNSTD	0	0	0	10974	686	NaN	NaN	10999	2011	0
Briner et al. (2014b)	46-11NOR-46	1	59.0588	6.66843	89	1.5	2.65	0.98	48304	1341	07KNSTD	0	0	0	10728	651	NaN	NaN	10999	2011	0
Briner et al. (2014b)	46-11NOR-65	5	59.30023	6.579	779	2.5	2.65	0.999	101718	1963	07KNSTD	0	0	0	11574	663	NaN	NaN	10916	2011	597
Briner et al. (2014b)	46-11NOR-66	5	59.30018	6.57913	779	1	2.65	0.999	103262	3009	07KNSTD	0	0	0	11606	712	NaN	NaN	10916	2011	629
Briner et al. (2014b)	46-11NOR-69	5	59.30143	6.58803	787	1	2.65	0.999	100910	2990	07KNSTD	0	0	0	11262	694	NaN	NaN	10916	2011	285
Briner et al. (2014b)	46-11NOR-70	5	59.3019	6.58967	792	1	2.65	0.999	95950	2150	07KNSTD	0	0	0	10659	623	NaN	NaN	10916	2011	0
Briner et al. (2014b)	46-11NOR-71	2	59.3019	6.58967	791	2	2.65	0.999	94708	1976	07KNSTD	0	0	0	10617	614	NaN	NaN	10916	2011	0
Briner et al. (2014b)	46-11NOR-73	5	59.2938	6.57557	863 863	1	2.65	0.999	114592	2464 2282	07KNSTD	0	0	0	11969	695	NaN	NaN	10984	2011	924
Briner et al. (2014b)	46-11NOR-74	2 5	59.29392	6.57585		1	2.65	0.999	105561		07KNSTD	0	0	-	11023	641	NaN	NaN	10984	2011	0
Briner et al. (2014b)	46-11NOR-75		59.29322	6.57325	849	3	2.65	0.999	103594	2857 12000	07KNSTD	-	270000	0 KNSTD	11131	675	NaN 16863	NaN	10984	2011	86
Brook et al. (1996)	Skåla_SK101	1	61.8669	6.9377	1145	5 5	2.6	0.98	142000		NIST_Certified	1350000			12626	1269		3763	11134	1994	1448
Brook et al. (1996)	Skåla_SK103 Skåla SK105	1	61.8644	6.9507 6.9515	1420 1500	3.5	2.6 2.6	0.98 0.99	254000 427000	18000 31000	NIST_Certified NIST Certified	1800000 2590000	180000 280000	KNSTD KNSTD	18057 27927	1614 2541	17969 23799	2497 3461	11042	1994 1994	6971
Brook et al. (1996)	_	1 3	61.8664 61.8697	6.9515	1500 1740	3.5 5	2.6	0.99		112000	_		740000		27927 74799	2541 7497	23799 81728	3461 10083	11090		16793
Brook et al. (1996)	Skåla_SK110	5	66.42	27.12	209	2	2.65	1	1360000 143284	45557	NIST_Certified 07KNSTD	10400000	740000	KNSTD 0					11090	1994 2011	63665 16962
Cuzzone et al. (2014) Cuzzone et al. (2014)	Fin-08-11 Fin-25	5	63.23	27.12	209	2	2.65	1	129213	36820	07KNSTD 07KNSTD	0	0	0	27371 24821	8887 7243	NaN NaN	NaN NaN	10348 10515	2011	16962
Cuzzone et al. (2014)	Swe-35	5	62.496	14.646	400	2	2.65	1	106090	2954	07KNSTD 07KNSTD	0	0	0	16909	7243 1029	NaN NaN	nan NaN	10515	2011	6717
30220116 6t al. (2014)	3WE-33	3	JZ.43U	14.040	400	_	2.03	'	100030	2004	JANIOID	U	U	U	10909	1029	INAIN	ivaiv	10131	2011	0/1/

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)	Thick I		Shielding	10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-und (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Cuzzone et al. (2014)	Swe-36	5	62.41	14.6	375	2	2.65	1	96098	2912	07KNSTD	0	0	0	15691	973	NaN	NaN	10139	2011	5491
Cuzzone et al. (2014)	Swe-38	5	62.496	14.646	363	2	2.65	1	155967	2106	07KNSTD	0	0	0	25822	1441	NaN	NaN	10131	2011	15630
Cuzzone et al. (2014)	Swe-39	5	62.41	14.6	364	2	2.65	1	59060	3445	07KNSTD	0	0	0	9732	774	NaN	NaN	10139	2011	0
Cuzzone et al. (2014)	Swe-41	5	62.41	14.6	357	2	2.65	1	134953	5367	07KNSTD	0	0	0	22461	1511	NaN	NaN	10139	2011	12261
Cuzzone et al. (2016)	Fin-01	5	61.076	26.806	126	2	2.65	1	53244	3249	07KNSTD	0	0	0	11233	916	NaN	NaN	11595	2011	0
Cuzzone et al. (2016)	Fin-02	5	61.076	26.806	126	2	2.65	1	54384	4672	07KNSTD	0	0	0	11474	1166	NaN	NaN	11595	2011	0
Cuzzone et al. (2016)	Fin-05	5 5	61.07	26.8	124	2	2.65	1	53272	2747	07KNSTD	0	0	0	11263	842	NaN	NaN	11591	2011	0
Cuzzone et al. (2016)	Fin-08		61.06	26.8	138	2	2.65	1	56041	2580 3980	07KNSTD	0	0	0	11675	829	NaN	NaN	11616	2011	0
Cuzzone et al. (2016) Cuzzone et al. (2016)	Fin-09-11	5 5	66.42 61.812	27.12 27.247	209 128	2	2.65 2.65	1	54014 52971	2388	07KNSTD 07KNSTD	0	0	0	10274	940	NaN	NaN	10348	2011 2011	0
Cuzzone et al. (2016)	Fin-10 Fin-10-11	5	66.42	27.12	210	2	2.65	1	61183	9614	07KNSTD	0	0	0	11126 11630	783 1937	NaN NaN	NaN NaN	11148 10348	2011	1221
Cuzzone et al. (2016)	Fin-11	5	61.812	27.247	128	2	2.65	1	54935	3367	07KNSTD	0	0	0	11540	944	NaN	NaN	11148	2011	331
Cuzzone et al. (2016)	Fin-12-11	5	66.42	27.12	210	2	2.65	1	55558	4200	07KNSTD	0	0	0	10558	982	NaN	NaN	10348	2011	149
Cuzzone et al. (2016)	Fin-13-11	5	66.42	27.12	209	2	2.65	1	78574	2340	07KNSTD	0	0	0	14963	923	NaN	NaN	10348	2011	4554
Cuzzone et al. (2016)	Fin-14	5	61.8	27.23	129	2	2.65	1	58084	2567	07KNSTD	0	0	0	12191	851	NaN	NaN	11149	2011	981
Cuzzone et al. (2016)	Fin-14-11	5	66.42	27.12	209	2	2.65	1	52938	1540	07KNSTD	0	0	0	10069	617	NaN	NaN	10348	2011	0
Cuzzone et al. (2016)	Fin-15	5	61.8	27.23	129	2	2.65	1	55462	4315	07KNSTD	0	0	0	11639	1104	NaN	NaN	11149	2011	429
Cuzzone et al. (2016)	Fin-15-11	5	66.38	24.33	188	2	2.65	1	52774	1722	07KNSTD	0	0	0	10247	646	NaN	NaN	10150	2011	36
Cuzzone et al. (2016)	Fin-16-11	5	66.38	24.33	188	2	2.65	1	53258	3874	07KNSTD	0	0	0	10342	938	NaN	NaN	10150	2011	131
Cuzzone et al. (2016)	Fin-17	5	62.55	26	174	2	2.65	1	59867	3624	07KNSTD	0	0	0	11938	970	NaN	NaN	10796	2011	1081
Cuzzone et al. (2016)	Fin-17-11	5	66.38	24.33	188	2	2.65	1	58171	2275	07KNSTD	0	0	0	11298	754	NaN	NaN	10150	2011	1087
Cuzzone et al. (2016)	Fin-18-11	5	66.38	24.33	190	2	2.65	1	52845	4507	07KNSTD	0	0	0	10240	1035	NaN	NaN	10150	2011	29
Cuzzone et al. (2016)	Fin-19	5	62.55	26	174	2	2.65	1	43074	5604	07KNSTD	0	0	0	8582	1211	NaN	NaN	10796	2011	0
Cuzzone et al. (2016)	Fin-19-11	5	66.38	24.33	190	2	2.65	1	65708	4010	07KNSTD	0	0	0	12740	1040	NaN	NaN	10150	2011	2529
Cuzzone et al. (2016)	Fin-20	5	62.55	26	174	2	2.65	1	56582	2690	07KNSTD	0	0	0	11281	812	NaN	NaN	10796	2011	424
Cuzzone et al. (2016)	Fin-20-11	5	66.38	24.33	192	2	2.65	1	53950	2459	07KNSTD	0	0	0	10433	737	NaN	NaN	10150	2011	222
Cuzzone et al. (2016) Cuzzone et al. (2016)	Fin-21-11 Fin-22	5 5	66.38 62.55	24.33 26	192 174	2	2.65	1	47967 57778	2746 2089	07KNSTD 07KNSTD	0	0	0	9273 11521	730 749	NaN NaN	NaN NaN	10150 10796	2011 2011	0 664
Cuzzone et al. (2016)	Fin-23	5	62.55	26	178	2	2.65	1	56924	3140	07KNSTD	0	0	0	11302	873	NaN	NaN	10796	2011	445
Cuzzone et al. (2016)	Fin-25	5	63.23	24.634	210	2	2.65	1	68003	4754	07KNSTD	0	0	0	13024	1153	NaN	NaN	10796	2011	2448
Cuzzone et al. (2016)	Fin-28	5	63.23	24.635	194	2	2.65	1	58160	2264	07KNSTD	0	0	0	11320	754	NaN	NaN	10515	2011	744
Cuzzone et al. (2016)	Fin-29	5	63.23	24.635	194	2	2.65	1	56331	6407	07KNSTD	0	0	0	10963	1383	NaN	NaN	10515	2011	387
Cuzzone et al. (2016)	Fin-30	5	63.23	24.635	194	2	2.65	1	62016	3860	07KNSTD	0	0	0	12073	996	NaN	NaN	10515	2011	1497
Cuzzone et al. (2016)	Fin-31	5	63.23	24.635	194	2	2.65	1	58949	4409	07KNSTD	0	0	0	11474	1060	NaN	NaN	10515	2011	898
Cuzzone et al. (2016)	Fin-44	5	70.07	27.71	65	2	2.65	1	53244	3249	07KNSTD	0	0	0	11604	947	NaN	NaN	11723	2011	0
Cuzzone et al. (2016)	Fin-45	5	70.07	27.71	50	2	2.65	1	54384	4672	07KNSTD	0	0	0	12050	1225	NaN	NaN	11723	2011	266
Cuzzone et al. (2016)	Fin-46	5	70.16	27.7	52	2	2.65	1	51642	3508	07KNSTD	0	0	0	11411	992	NaN	NaN	12257	2011	0
Cuzzone et al. (2016)	Fin-47	5	70.16	27.7	52	2	2.65	1	57887	4083	07KNSTD	0	0	0	12795	1139	NaN	NaN	12257	2011	477
Cuzzone et al. (2016)	Fin-48	5	70.17	27.8	56	2	2.65	1	53272	2747	07KNSTD	0	0	0	11721	876	NaN	NaN	12381	2011	0
Cuzzone et al. (2016)	Fin-49	5	68.195	26.987	154	2	2.65	1	51028	2250	07KNSTD	0	0	0	10217	712	NaN	NaN	10463	2011	0
Cuzzone et al. (2016)	Fin-50	5	68.195	26.987	154	2	2.65	1	50241	3375	07KNSTD	0	0	0	10059	868	NaN	NaN	10463	2011	0
Cuzzone et al. (2016)	Fin-51	5	68.195	26.987	154	2	2.65	1	49919	1850	07KNSTD	0	0	0	9994	654	NaN	NaN	10463	2011	0
Cuzzone et al. (2016)	Fin-54	5 5	68.9	26.98	154	2	2.65	1	58466	3945	07KNSTD	0	0	0	11661	1009	NaN	NaN	10742	2011	858
Cuzzone et al. (2016)	Fin-56	5	68.9 58.9408	26.98	154	2	2.65	1	67670 67516	3833 3395	07KNSTD 07KNSTD	0	0	0	13503	1058	NaN	NaN	10742	2011	2700
Cuzzone et al. (2016) Cuzzone et al. (2016)	Swe-03 Swe-06	5	58.9408	14.89 14.89	240 232	2	2.65	1	68733	1931	07KNSTD 07KNSTD	0	0	0	12713 13048	939 794	NaN NaN	NaN NaN	11259 11259	2011 2011	1393 1728
Cuzzone et al. (2016)	Swe-07	5	58.71	14.6	232	2	2.65	1	62886	8804	07KNSTD	0	0	0	11943	1797	NaN	NaN	11404	2011	478
Cuzzone et al. (2016)	Swe-07 Swe-08	5	58.71	14.6	232	2	2.65	1	66056	2521	07KNSTD	0	0	0	12547	830	NaN	NaN	11404	2011	1082
Cuzzone et al. (2016)	Swe-10	5	59.8	14.4	220	2	2.65	1	63367	2659	07KNSTD	0	0	0	12145	831	NaN	NaN	10844	2011	1240
Cuzzone et al. (2016)	Swe-12	5	59.8	14.4	216	2	2.65	1	62438	2449	07KNSTD	0	0	0	12015	802	NaN	NaN	10844	2011	1110
Cuzzone et al. (2016)	Swe-13	5	59.75	14.4	203	2	2.65	1	63304	2502	07KNSTD	0	0	0	12347	827	NaN	NaN	10865	2011	1421
Cuzzone et al. (2016)	Swe-14	5	59.75	14.4	203	2	2.65	1	57902	2916	07KNSTD	0	0	0	11291	834	NaN	NaN	10865	2011	365
Cuzzone et al. (2016)	Swe-17	5	59.75	14.4	188	2	2.65	1	65127	2828	07KNSTD	0	0	0	12901	895	NaN	NaN	10865	2011	1975
Cuzzone et al. (2016)	Swe-18	5	60.695	14.2	270	2	2.65	1	57645	1659	07KNSTD	0	0	0	10476	641	NaN	NaN	10544	2011	0
Cuzzone et al. (2016)	Swe-19	5	60.695	14.2	276	2	2.65	1	65436	3185	07KNSTD	0	0	0	11825	860	NaN	NaN	10544	2011	1220
Cuzzone et al. (2016)	Swe-25	5	60.6	14.1	267	2	2.65	1	55931	2246	07KNSTD	0	0	0	10198	686	NaN	NaN	10583	2011	0
Cuzzone et al. (2016)	Swe-26	5	61.62	14.85	423	2	2.65	1	67357	2818	07KNSTD	0	0	0	10511	718	NaN	NaN	10292	2011	158
Cuzzone et al. (2016)	Swe-27	5	61.61	14.83	422	2	2.65	1	67392	3644	07KNSTD	0	0	0	10527	805	NaN	NaN	10293	2011	173
Cuzzone et al. (2016)	Swe-30	5	61.61	14.83	429	2	2.65	1	65580	2872	07KNSTD	0	0	0	10174	708	NaN	NaN	10293	2011	0
Cuzzone et al. (2016)	Swe-31	5	61.61	14.83	430	2	2.65	1	65197	2217	07KNSTD	0	0	0	10105	645	NaN	NaN	10293	2011	0
Cuzzone et al. (2016)	Swe-33	5	61.61	14.83	430	2	2.65	1	63395	2382	07KNSTD	0	0	0	9825	646	NaN	NaN	10293	2011	0
Cuzzone et al. (2016)	Swe-42	5	65.221	19.658	345	2	2.65	1	62683	2191	07KNSTD	0	0	0	10402	669	NaN	NaN	9907	2011	434
Cuzzone et al. (2016)	Swe-42	5	65.221	19.658	345	2	2.65	1	70561	20160	07KNSTD	0	U	0	11713	3415	NaN	NaN	9907	2011	1745

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-und (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Cuzzone et al. (2016)	Swe-43	5	65.221	19.658	243	2	2.65	1	54181	5764	07KNSTD	0	0	0	9954	1190	NaN	NaN	9907	2011	0
Cuzzone et al. (2016)	Swe-44	5	65.01	19.4	247	2	2.65	1	57736	2999	07KNSTD	0	0	0	10571	793	NaN	NaN	9919	2011	591
Cuzzone et al. (2016)	Swe-45	5	65.01	19.4	239	2	2.65	1	56875	2666	07KNSTD	0	0	0	10498	751	NaN	NaN	9919	2011	518
Cuzzone et al. (2016)	Swe-46	5	65.01	19.4	249	2	2.65	1	58480	5050	07KNSTD	0	0	0	10686	1090	NaN	NaN	9919	2011	706
Cuzzone et al. (2016)	Swe-48	5	65.221	19.658	245	2	2.65	1	99405	1978	07KNSTD	0	0	0	18263	1052	NaN	NaN	9907	2011	8295
Cuzzone et al. (2016)	Swe-51	5	65.76	18.5	461	2	2.65	1	65704	2587	07KNSTD	0	0	0	9732	650	NaN	NaN	9802	2011	0
Cuzzone et al. (2016)	Swe-53	5	65.79	18.51	475	2	2.65	1	74431	2627	07KNSTD	0	0	0	10881	702	NaN	NaN	9800	2011	1020
Cuzzone et al. (2016)	Swe-55	5	65.76	18.5	497	2	2.65	1	66548	4047	07KNSTD	0	0	0	9526	775	NaN	NaN	9802	2011	0
Cuzzone et al. (2016)	Swe-56	5	65.76	18.5	490	2	2.65	1	69074	4934	07KNSTD	0	0	0	9955	892	NaN	NaN	9802	2011	92
Cuzzone et al. (2016)	Swe-57	5	65.79	18.51	475	2	2.65	1	68896	4585	07KNSTD	0	0	0	10070	864	NaN	NaN	9800	2011	209
Cuzzone et al. (2016)	Swe-59	5	66.7	16.1	640	2	2.65	1	82532	2641	07KNSTD	0	0	0	10296	646	NaN	NaN	9748	2011	487
Cuzzone et al. (2016)	Swe-61	5	66.7	16.3	640	2	2.65	1	68519	3224	07KNSTD	0	0	0	8546	612	NaN	NaN	9715	2011	0
Cuzzone et al. (2016)	Swe-62	5	66.7	16.05	640	2	2.65	1	77739	6718	07KNSTD	0	0	0	9696	989	NaN	NaN	9759	2011	0
Cuzzone et al. (2016)	Swe-63	5	66.7	16.3	640	2	2.65	1	64878	6179	07KNSTD	0	0	0	8091	887	NaN	NaN	9715	2011	0
Cuzzone et al. (2016)	Swe-66	5	66.7	19.8	438	2	2.65	1	52654	3987	07KNSTD	0	0	0	7954	740	NaN	NaN	9773	2011	0
Cuzzone et al. (2016)	Swe-67	5	66.6	19.8	298	2	2.65	1	52492	2812	07KNSTD	0	0	0	9095	692	NaN	NaN	9776	2011	0
Cuzzone et al. (2016)	Swe-72	5	66.58	19.86	300	2	2.65	1	49618	15902	07KNSTD	0	0	0	8579	2794	NaN	NaN	9779	2011	0
Cuzzone et al. (2016)	Swe-73	5	66.69	19.865	291	2	2.65	1	55471	2851	07KNSTD	0	0	0	9678	722	NaN	NaN	9776	2011	0
Cuzzone et al. (2016)	Swe-75	5	66.5	19.8	283	2	2.65	1	53452	3795	07KNSTD	0	0	0	9404	840	NaN	NaN	9780	2011	0
Cuzzone et al. (2016)	Swe-76	5	66.69	19.865	291	2	2.65	1	55553	2572	07KNSTD	0	0	0	9693	690	NaN	NaN	9776	2011	0
Darmody et al. (2008)	Pyhä-Nattanen	4	68.12225	27.37012	508	4	2.75	1	389474	17544	NIST Certified	2094000	134000	KNSTD	58962	4198	44577	5210	10475	2006	48431
Darmody et al. (2008)	Riestovaara	4	68.04355	27.15005	390	4	2.75	1	245614	13158	NIST Certified	1414000	80000	KNSTD	41469	3181	33525	3761	10440	2006	30973
Fabel et al. (2002)	Ailladis	3	67.7431	19.1822	910	4	2.8	1	522779	20261	NIST_Certified	0	0	0	54926	3692	NaN	NaN	9825	1999	45052
Fabel et al. (2002)	Alddascorru	3	68.4275	19.463	1380	2	2.8	0.9997	651756	23298	NIST Certified	0	0	0	45009	2940	NaN	NaN	10061	1999	34899
Fabel et al. (2002)	Alddascorru	5	68.4275	19.463	1380	2	2.8	0.9997	187684	29873	NIST_Certified	0	0	0	12858	2167	NaN	NaN	10061	1999	2748
Fabel et al. (2002)	Baldavarri-810	5	67.714	18.6215	810	7	2.8	0.9994	146294	17422	NIST Certified	0	0	0	17067	2240	NaN	NaN	9776	1998	7243
Fabel et al. (2002)	Baldavarri-900	5	67.7072	18.6072	900	6	2.8	0.9998	121176	10918	NIST Certified	0	0	0	12929	1361	NaN	NaN	9773	1999	3107
Fabel et al. (2002)	Balddavarri	2	67.7106	18.6228	890	3	2.8	0.9994	549943	16769	NIST_30200	2273867	60108	KNSTD	51712	3239	33791	3380	9776	2000	41886
Fabel et al. (2002)	Favrratcohkka	2	67.7736	19.3217	850	4	2.8	0.996	105648	17791	NIST Certified	582582	98385	KNSTD	11621	2060	8966	1744	9842	1999	1730
Fabel et al. (2002)	Olmacohkka	3	68.39	19.4458	1355	2	2.8	1	879818	26789	NIST Certified	0	0	0	62270	3909	NaN	NaN	10029	1999	52192
Fabel et al. (2002)	Tjuolmma-920	3	67.1534	18.8616	920	7	2.8	0.9975	337809	17238	NIST Certified	1730570	84343	KNSTD	36089	2700	25927	2798	9729	1998	26312
Fabel et al. (2002)	Tjuolmma-930	2	67.1578	18.8833	930	5	2.8	0.9982	100785	15613	NIST_Certified	0	0	0	10419	1713	NaN	NaN	9731	1999	639
Fabel et al. (2002)	Tjuolmma-945	5	67.1528	18.8739	945	1	2.8	0.9998	80821	10882	NIST Certified	0	0	0	7950	1155	NaN	NaN	9731	1999	0
Fabel et al. (2002)	Tjuolmma-R-920	3	67.1534	18.8616	920	7	2.8	0.9975	362855	15155	NIST Certified	0	0	0	38791	2667	NaN	NaN	9729	1998	29014
Fabel et al. (2002)	Urtticohkka	4	67.7944	18.7803	1360	5	2.8	1	574835	24025	NIST Certified	0	0	0	41473	2855	NaN	NaN	9796	1999	31628
Fabel et al. (2006)	99-41	5	66.6022	17.2333	750	3	2.75	0.97	201219	12979	NIST Certified	0	0	0	24765	2093	NaN	NaN	9692	1999	15024
Fabel et al. (2006)	99-42	5	66.6022	17.2333	750	2	2.75	0.98	86316	8183	NIST_Certified	540004	68359	KNSTD	10390	1135	9097	1445	9692	1999	649
Fabel et al. (2006)	99-43	5	66.6022	17.2333	750	2	2.75	0.98	141184	9396	NIST Certified	0	0	0	17023	1463	NaN	NaN	9692	1999	7282
Fabel et al. (2006)	OF-00-05	5	66.9806	17.536	970	1	2.75	0.97	131116	6929	NIST_30200	700869	37173	KNSTD	11548	873	9739	1063	9651	2000	1847
Fabel et al. (2006)	OF-00-06	5	66.9806	17.536	970	1	2.75	0.98	122446	3600	NIST 30200	740105	43404	KNSTD	10673	656	10183	1140	9651	2000	972
Fabel et al. (2006)	OF-00-07	5	66.9806	17.536	970	2	2.75	0.97	182486	5464	NIST_30200	1143686	66873	KNSTD	16228	1003	16077	1804	9651	2000	6527
Fabel et al. (2006)	OF-00-08	5	66.9806	17.536	815	3	2.75	0.97	106970	4488	NIST 30200	637472	45543	KNSTD	10220	751	10320	1231	9651	2000	1274
Fabel et al. (2006)	OF-00-09	5	66.9806	17.536	815	5	2.75	0.96	115127	3536	NIST_30200	638484	54959	KNSTD	12140	754	10621	1367	9651	2000	2439
Fabel et al. (2006)	OF-00-10	5	66.9806	17.536	815	2	2.75	0.98	95292	6148	NIST 30200	632921	54158	KNSTD	9593	808	10057	1290	9651	2000	0
Fabel et al. (2006)	OF-00-11	5	66.8406	17.8596	687	2	2.75	0.98	96077	2671	NIST 30200	552369	42646	KNSTD	10860	659	9847	1209	9674	2000	1136
Fabel et al. (2006)	OF-00-11	5	66.8406	17.8596	687	4	2.75	0.96	77559	5276	NIST_30200	484902	35152	KNSTD	9095	791	9847 8968	1075	9674	2000	0
Fabel et al. (2006)	OF-00-12	5	66.8052	17.4968	920	1	2.75	0.98	115993	4188	NIST_30200	732571	55070	KNSTD	10566	686	10534	1281	9674	2000	842
Fabel et al. (2006)	OF-00-14	5	66.8052	17.4968	920	3	2.75	0.96	106841	4186	NIST 30200	649919	48518	KNSTD	9998	667	9597	1163	9674 9674	2000	274
Fabel et al. (2006)	OF-00-16	5	66.8052	17.4968	920	3	2.75	0.97	107886	3750	NIST_30200	661446	37762	KNSTD	10096	648	9768	1086	9674	2000	372
Fabel et al. (2006)	OF-00-17	5	66.5499	17.5039	760	4	2.75	0.96	107888	10468	NIST 30200	649120	41117	KNSTD	11988	1323	11264	1291	9674 9694	2000	2244
Fabel et al. (2006)	OF-00-17 OF-00-18	5	66.5499	17.5039	760	2	2.75	0.98	97130	9160	NIST_30200	642186	37338	KNSTD	10287	1120	10735	1200	9694 9694	2000	543
Fabel et al. (2006)	OF-00-18	5	66.5499	17.5039	760	3	2.75	0.98	122658	9613	NIST_30200	715230	44391	KNSTD	10287	1120	10735	1200	9694 9694	2000	3500
Fabel et al. (2006)	Ult-01	5	67.2495	18.8499	890	5	2.75	0.96	112871	4952	NIST_30200	649892	46306	KNSTD	11136	775	10116	1205	9736	2000	1350
Fabel et al. (2006)	Ult-02	5	67.2553	18.8417	887	5	2.75	0.96	317005	4952 6416	NIST_30200	1709698	101443	KNSTD	31517	775 1826	26902	1205 3047	9736	2000	21730
Fjellanger et al. (2006)	HA03-1	3	70.50127	28.88411	590	2	2.75	1	256000	16000	NIST Certified	0	0	0	31517	1826 2886	NaN	NaN	14733	2000	19915
Fjellanger et al. (2006)	HA03-1	3	70.50127	28.88189	590	3	2.65	1	174000	15000	NIST_Certified	0	0	0	23648	2417	NaN	NaN	14733	2003	19915 8862
	HA03-2	3	70.50099	28.87252	565	3	2.65	0.9998	121000	9000	NIST_Certified	0	0	0	16852	1553	NaN	NaN		2003	
Fjellanger et al. (2006) Fjellanger et al. (2006)	HA03-3 HA03-4	3	70.50079	28.87252	565 565	5	2.65	0.9998	121000	10000	NIST_Certified	0	0	0	18408	1553	NaN NaN	nan NaN	14722 14722	2003	2077 3633
		3										-	-	0							
Fjellanger et al. (2006)	HA03-5	-	70.4991 70.49823	28.8594 28.85655	599	2.5	2.65	0.9995	274000 180000	17000 13000	NIST_Certified	0	0	0	37024	3068 2200	NaN	NaN NaN	14722	2003	22249
Fjellanger et al. (2006)	HA03-6	3			601	3	2.65	1			NIST_Certified	-	-	-	24287		NaN		14722	2003	9512
Fjellanger et al. (2006)	HA03-7	3	70.49826	28.85532	603	3	2.65	1	287000	18000	NIST_Certified	0	0	0	38793	3237	NaN	NaN	14722	2003	24018
Fjellanger et al. (2006)	KF03-1	2	70.64122	29.0409	290	1.5	2.65	0.9995	81000	7000	NIST_Certified	0	0	0	14499	1481	NaN	NaN	15164	2003	0
Fjellanger et al. (2006)	KF03-2	5	70.64043	29.03696	295	2	2.65	0.9994	249000	16000	NIST_Certified	0	0	0	44874	3803	NaN	NaN	15164	2003	29657

Publication, a	Sample ID	Land class, b			Elev (masi)		Density (g/cm3)	Shleiding	(at/g)	(at/g)	TUBE-AIVIS-SIG	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	(yr) e	(yr) c,d	26Al-age-ext-unc (yr) e	(yr) f	Sample-yr	10Be-inherit (yr) g
Fjellanger et al. (2006)	KF03-3	2	70.63886	29.03085	312	2	2.65	0.9999	93000	8000	NIST_Certified	0	0	0	16355	1666	NaN	NaN	15164	2003	1138
Fjellanger et al. (2006)	KF03-4	5	70.63546	29.00836	360	3	2.65	1	101000	8000	NIST_Certified	0	0	0	17084	1643	NaN	NaN	15160	2003	1871
Goehring et al. (2008)	BL05-1	5	61.8959	9.1432	1142	4	2.6	1	114000	27000	NIST_Certified	0	0	0	9906	2412	NaN	NaN	10591	2005	0
Goehring et al. (2008)	BL05-2	5	61.89784	9.13809	1086	6.5	2.6	1	125000	11000	NIST_Certified	0	0	0	11618	1202	NaN	NaN	10591	2005	972
Goehring et al. (2008)	BL05-3	5	61.90444	9.17181	1176	1	2.6	1	148000	10000	NIST_Certified	0	0	0	12210	1058	NaN	NaN	10627	2005	1528
Goehring et al. (2008)	BL05-4	5	61.90355	9.20972	1302	2.5	2.6	1	349000	21000	NIST_Certified	0	0	0	26357	2141	NaN	NaN	10614	2005	15688
Goehring et al. (2008)	BL05-5	5	61.90289	9.1658	1182	1	2.6	1	174000	14000	NIST_Certified	0	0	0	14291	1388	NaN	NaN	10597	2005	3639
Goehring et al. (2008)	BL05-6	5	61.89768	9.28446	1617	1	2.6	1	377000	27000	NIST_Certified	0	0	0	21846	1967	NaN	NaN	10602	2005	11189
Goehring et al. (2008)	BL05-7	5	61.90295	9.25299	1481	1	2.6	1	377000	23000	NIST_Certified	0	0	0	24333	1991	NaN	NaN	10623	2005	13655
Goehring et al. (2008)	BL94-1	2	61.8999	9.2827	1610	1	2.6	1	460000	30000	NIST_Certified	0	0	0	26835	2284	NaN	NaN	10602	1994	16189
Goehring et al. (2008)	BL94-3	3	61.8999	9.2918	1600	1	2.6	1	204000	18000	NIST_Certified	0	0	0	11950	1239	NaN	NaN	10606	1994	1300
Goehring et al. (2008)	BL94-5A	2	61.9071	9.1727	1180	1	2.6	1	186000	16000	NIST_Certified	0	0	0	15305	1559	NaN	NaN	10627	1994	4634
Goehring et al. (2008)	BL94-5B	2	61.9071	9.1727	1180	1	2.6	1	171000	15000	NIST_Certified	0	0	0	14067	1453	NaN	NaN	10627	1994	3396
Goehring et al. (2008)	BL94-6A	2	61.9094	9.1764	1180	1	2.6	1	148000	35000	NIST_Certified	0	0	0	12169	2960	NaN	NaN	10627	1994	1498
Goehring et al. (2008)	BL94-6B	3	61.9024	9.1558	1120	1	2.6	1	140000	13000	NIST_Certified	0	0	0	12103	1303	NaN	NaN	10597	1994	1462
Goehring et al. (2008)	BL94-7	3	61.9039	9.1813	1180	1	2.6	1	122000	11000	NIST_Certified	0	0	0	10026	1055	NaN	NaN	10602	1994	0
Goehring et al. (2008)	BL94-8A	3	61.9024	9.1558	1100	1	2.6	1	321000	27000	NIST_Certified	0	0	0	28337	2849	NaN	NaN	10597	1994	17696
Goehring et al. (2008)	BL94-9A	3	61.8964	9.1398	1077	1	2.6	1	137000	12000	NIST_Certified	0	0	0	12282	1266	NaN	NaN	10591	1994	1647
Goehring et al. (2008)	BL94-9B	3	61.8965	9.1398	1077	1	2.6	1	127000	23000	NIST_Certified	0	0	0	11383	2157	NaN	NaN	10591	1994	748
Goehring et al. (2008)	BL97-1	3	61.8958	9.2952	1610	1	2.6	1	828000	72000	NIST_Certified	0	0	0	48567	5027	NaN	NaN	10582	1997	37938
Goehring et al. (2008)	BL97-10	3	61.9018	9.217	1350	1	2.6	1	166000	14000	NIST_Certified	0	0	0	11868	1191	NaN	NaN	10614	1997	1207
Goehring et al. (2008)	BL97-13	3	61.9053	9.2177	1355	1	2.6	1	267000	23000	NIST_Certified	0	0	0	19045	1943	NaN	NaN	10614	1997	8384
Goehring et al. (2008)	BL97-2	3	61.898	9.2835	1590	1	2.6	1	152000	13000	NIST_Certified	0	0	0	8967	908	NaN	NaN	10602	1997	0
Goehring et al. (2008)	BL97-3	3	61.898	9.2853	1590	1	2.6	1	270000	26000	NIST_Certified	0	0	0	15956	1767	NaN	NaN	10602	1997	5307
Goehring et al. (2008)	BL97-4	3	61.8977	9.286	1590	1	2.6	1	247000	17000	NIST_Certified	0	0	0	14592	1279	NaN	NaN	10602	1997	3943
Goehring et al. (2008)	BL97-5	3	61.9083	9.2153	1455	1	2.6	1	445000	32000	NIST_Certified	0	0	0	29359	2656	NaN	NaN	10638	1997	18674
Goehring et al. (2008)	BL97-6	2	61.9145	9.2188	1445	1	2.6	1	175000	15000	NIST_Certified	0	0	0	11587	1176	NaN	NaN	10638	1997	902
Goehring et al. (2008)	BL97-7	2	61.9055	9.2307	1440	1	2.6	1	213000	17000	NIST_Certified	0	0	0	14169	1369	NaN	NaN	10618	1997	3504
Goehring et al. (2008)	BL97-8	3	61.9122	9.2302	1435	1	2.6	1	216000	17000	NIST_Certified	0	0	0	14427	1380	NaN	NaN	10643	1997	3737
Goehring et al. (2008)	BL97-9	2	61.9052	9.2292	1430	1	2.6	1	235000	18000	NIST_Certified	0	0	0	15765	1481	NaN	NaN	10618	1997	5100
Goehring et al. (2008)	EL05-1	5	62.1378	12.01	880	4	2.6	1	100000	7000	NIST_Certified	0	0	0	10896	965	NaN	NaN	10228	2005	613
Goehring et al. (2008)	EL05-11	5	62.1436	12.0612	1349	2.5	2.6	1	220000	14000	NIST_Certified	0	0	0	15970	1336	NaN	NaN	10216	2005	5699
Goehring et al. (2008)	EL05-12	5	62.1429	12.0516	1284	2.5	2.6	1	193000	12000	NIST_Certified	0	0	0	14771	1219	NaN	NaN	10222	2005	4494
Goehring et al. (2008)	EL05-13	5	62.1434	12.0443	1242	1	2.6	1	123000	9000	NIST_Certified	0	0	0	9616	875	NaN	NaN	10222	2005	0
Goehring et al. (2008)	EL05-14	5	62.1434	12.0438	1222	1	2.6	1	149000	11000	NIST_Certified	0	0	0	11850	1086	NaN	NaN	10222	2005	1573
Goehring et al. (2008)	EL05-15	5	62.1426	12.0121	1009	5	2.6	1	123000	8000	NIST_Certified	0	0	0	12087	1023	NaN	NaN	10235	2005	1797
Goehring et al. (2008)	EL05-16	5	62.1476	12.0136	1038	5	2.6	1	119000	8000	NIST_Certified	0	0	0	11406	985	NaN	NaN	10235	2005	1116
Goehring et al. (2008)	EL05-17	5	62.1501	12.0182	1077	1	2.6	1	225000	14000	NIST_Certified	0	0	0	20250	1674	NaN	NaN	10235	2005	9960
Goehring et al. (2008)	EL05-18	5	62.1491	12.0198	1101	2.5	2.6	1	128000	9000	NIST_Certified	0	0	0	11400	1012	NaN	NaN	10235	2005	1110
Goehring et al. (2008)	EL05-19	5	62.1374	12.0107	879	5	2.6	1	133000	9000	NIST_Certified	0	0	0	14634	1270	NaN	NaN	10228	2005	4351
Goehring et al. (2008)	EL05-2	5	62.142	12.0182	970	2.5	2.6	1	125000	9000	NIST_Certified	0	0	0	12452	1123	NaN	NaN	10229	2005	2168
Goehring et al. (2008)	EL05-3	5	62.144	12.0208	1019	2.5	2.6	1	146000	13000	NIST_Certified	0	0	0	13951	1456	NaN	NaN	10229	2005	3667
Goehring et al. (2008)	EL05-4	5	62.146	12.0464	1185	2.5	2.6	1	132000	14000	NIST_Certified	0	0	0	10955	1306	NaN	NaN	10222	2005	678
Goehring et al. (2008)	EL05-5	5	62.1519	12.0497	1278	1	2.6	1	199000	12000	NIST_Certified	0	0	0	15122	1227	NaN	NaN	10229	2005	4838
Goehring et al. (2008)	EL05-6	5	62.1489	12.0653	1461	1	2.6	1	186000	13000	NIST_Certified	0	0	0	12174	1077	NaN	NaN	10216	2005	1903
Goehring et al. (2008)	EL05-7	5	62.1494	12.0643	1460	1	2.6	1	218000	16000	NIST_Certified	0	0	0	14287	1305	NaN	NaN	10216	2005	4016
Goehring et al. (2008)	EL05-8	5	62.1484	12.0653	1460	4	2.6	1	147000	11000	NIST_Certified	0	0	0	9858	911	NaN	NaN	10216	2005	0
Goehring et al. (2008)	EL05-9	5	62.1455	12.0653	1407	1	2.6	1	231000	15000	NIST_Certified	0	0	0	15805	1338	NaN	NaN	10216	2005	5534
Goehring et al. (2008)	SK05-1	5	61.8618	6.95	1384	2.5	2.6	0.99	185000	13000	NIST_Certified	0	0	0	13121	1165	NaN	NaN	11042	2005	2024
Goehring et al. (2008)	SK05-10	5	61.8701	6.9259	947	2.5	2.6	0.98	15000	4000	NIST_Certified	0	0	0	1542	420	NaN	NaN	11134	2005	0
Goehring et al. (2008)	SK05-11	5	61.8736	6.9252	885	4	2.6	0.99	13000	3000	NIST_Certified	0	0	0	1413	335	NaN	NaN	11171	2005	0
Goehring et al. (2008)	SK05-12	5	61.877	6.9237	761	2.5	2.6	0.98	87000	9000	NIST_Certified	0	0	0	10543	1233	NaN	NaN	11171	2005	0
Goehring et al. (2008)	SK05-2	5	61.8618	6.95	1384	2.5	2.6	0.99	186000	11000	NIST_Certified	0	0	0	13193	1058	NaN	NaN	11042	2005	2096
Goehring et al. (2008)	SK05-3	5	61.8619	6.9357	1223	2.5	2.6	0.99	130000	11000	NIST_Certified	0	0	0	10508	1056	NaN	NaN	11090	2005	0
Goehring et al. (2008)	SK05-4	5	61.8619	6.9357	1220	2.5	2.6	0.99	133000	12000	NIST_Certified	0	0	0	10778	1135	NaN	NaN	11090	2005	0
Goehring et al. (2008)	SK05-5	5	61.8677	6.9389	1244	1	2.6	0.98	160000	11000	NIST_Certified	0	0	0	12692	1111	NaN	NaN	11134	2005	1503
Goehring et al. (2008)	SK05-6	5	61.8677	6.9389	1244	1	2.6	0.98	79000	9000	NIST_Certified	0	0	0	6257	789	NaN	NaN	11134	2005	0
Goehring et al. (2008)	SK05-7	5	61.867	6.933	1118	5	2.6	0.99	127000	11000	NIST_Certified	0	0	0	11431	1169	NaN	NaN	11134	2005	242
Goehring et al. (2008)	SK05-8	5	61.8687	6.9294	1028	2.5	2.6	0.98	105000	9000	NIST_Certified	0	0	0	10093	1024	NaN	NaN	11134	2005	0
Goehring et al. (2008)	SK05-9	5	61.8687	6.9294	1028	1	2.6	0.98	162000	11000	NIST_Certified	0	0	0	15406	1340	NaN	NaN	11134	2005	4217
Goehring et al. (2008)	SK111	1	61.8693	6.9342	1000	1	2.6	0.98	99000	16000	NIST_Certified	0	0	0	9628	1644	NaN	NaN	11134	1994	0
Goehring et al. (2008)	SK94-10	3	61.8693	6.9628	1780	1	2.6	1	359000	31000	NIST_Certified	0	0	0	18288 14351	1869	NaN NaN	NaN NaN	11090	1994	7154
Goehring et al. (2008)	SK94-11	3	61.8697	6.9733	1780	1	2.6	'	282000	41000	NIST_Certified	U	U	U	14351	2233	ivaiv	ivaiv	11064	1994	3243

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-und (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Goehring et al. (2008)	SK94-12a	1	61.8648	6.9338	1200	3.5	2.6	0.99	147000	13000	NIST_Certified	0	0	0	12213	1268	NaN	NaN	11134	1994	1035
Goehring et al. (2008)	SK94-2a	1	61.8678	6.9329	1120	1	2.6	0.99	142000	13000	NIST_Certified	0	0	0	12361	1317	NaN	NaN	11134	1994	1183
Goehring et al. (2008)	SK94-3	1	61.867	6.9302	1160	1	2.6	0.99	143000	13000	NIST_Certified	0	0	0	12038	1275	NaN	NaN	11134	1994	860
Goehring et al. (2008)	SK94-4	1	61.8652	6.9501	1420	7.5	2.6	0.98	318000	25000	NIST_Certified	0	0	0	23089	2212	NaN	NaN	11090	1994	11955
Goehring et al. (2008)	SK94-5	1	61.8666	6.9505	1440	1	2.6	0.98	229000	20000	NIST_Certified	0	0	0	15505	1597	NaN	NaN	11090	1994	4371
Goehring et al. (2008)	SK94-7	1	61.8684	6.9527	1500	2.5	2.6	0.99	490000	34000	NIST_Certified	0	0	0	31822	2816	NaN	NaN	11090	1994	20688
Goehring et al. (2008)	SK94-8a	3	61.87	6.9626	1600	3.5	2.6	1	543000	39000	NIST_Certified	0	0	0	32537	2943	NaN	NaN	11090	1994	21403
Goehring et al. (2008)	SK94-9	3	61.8722	6.9787	1840	2.5	2.6	1	621000	44000	NIST_Certified	0	0	0	30692	2751	NaN	NaN	11064	1994	19584
Goehring et al. (2012)	YDC08-10	5	59.81367	5.81901	88	3.75	2.6	0.9988	55400	1500	07KNSTD	0	0	0	12268	741	NaN	NaN	12687	2008	0
Goehring et al. (2012)	YDC08-2	5	59.7808	5.79079	77	3.56	2.6	0.9954	51200	1300	07KNSTD	0	0	0	11491	685	NaN	NaN	13552	2008	0
Goehring et al. (2012)	YDC08-3	5	59.78113	5.79049	79	1.74	2.6	0.9866	53500	1300	07KNSTD	0	0	0	11914	705	NaN	NaN	13552	2008	0
Goehring et al. (2012)	YDC08-4	5	59.78096	5.79017	74	1.4	2.6	0.9803	52400	1200	07KNSTD	0	0	0	11774	690	NaN	NaN	13552	2008	0
Goehring et al. (2012)	YDC08-5	5	59.78158	5.79029	76	1.39	2.6	0.9841	56000	1300	07KNSTD	0	0	0	12510	735	NaN	NaN	13552	2008	0
Goehring et al. (2012)	YDC08-7	5	59.81646	5.81879	99	2.78	2.6	0.9445	57000	1300	07KNSTD	0	0	0	13081	767	NaN	NaN	12687	2008	336
Goehring et al. (2012)	YDC08-8	5	59.81384	5.81889	91	2.62	2.6	0.9939	55100	1600	07KNSTD	0	0	0	12111	743	NaN	NaN	12687	2008	0
Goehring et al. (2012)	YDC08-9	5	59.81395	5.81898	87	2.88	2.6	0.9695	55800	1600	07KNSTD	0	0	0	12650	774	NaN	NaN	12687	2008	0
Goodfellow et al. (2014)	Duoptečohkka_Duo-1	3	68.403	19.366	1330	3	2.65	1	510000	20000	NIST_27900	3520000	190000	Z92-0222	35358	2375	35885	3983	10037	2006	25265
Goodfellow et al. (2014)	Tarfalatjårro_Tar-1	3	67.914	18.653	1626	4	2.65	0.9998	1550000	50000	NIST_27900	9590000	590000	Z92-0222	86716	5558	79594	9353	9805	2006	76855
Harbor et al. (2006)	Arvestuottar-70	2	66.61639	18.08444	870	4	2.8	1	0	0	0	1509082	92232	KNSTD	NaN	NaN	22964	2619	9699	1999	NaN
Harbor et al. (2006)	Arvestuottar-72	3	66.62	18.05028	850	3	2.8	0.9954	0	0	0	4551611	211032	KNSTD	NaN	NaN	71904	7859	9697	1999	NaN
Harbor et al. (2006)	Juovvakielas-64	2	67.1408	18.7667	845	5	2.8	0.9999	134939	13161	NIST_Certified	0	0	0	15022	1680	NaN	NaN	9721	1999	5252
Harbor et al. (2006)	Juovvakielas-66	5	67.1408	18.7667	845	3	2.8	0.9955	166806	13217	NIST_Certified	0	0	0	18350	1765	NaN	NaN	9721	1999	8580
Harbor et al. (2006)	Ultevis-19	5	67.155	18.8475	890	0.5	2.8	0.9998	89195	13777	NIST_Certified	0	0	0	9169	1503	NaN	NaN	9728	1998	0
Hättestrand et al. (2004)	Teletöisentunturi-98-01	2	67.31035	21.6892	575	1	2.8	1	320136	14853	NIST_Certified	0	0	0	44331	3184	NaN	NaN	9935	1998	34348
Heine et al. (2009)	Mark-05-01	5	52.32	14.04	131	6	2.65	1	102000	4896	S555	0	0	0	20728	1502	NaN	NaN	21659	2005	0
Heine et al. (2009)	PO-05-01	5	52.88	13.92	80	5	2.65	1	83000	3901	S555	0	0	0	17580	1261	NaN	NaN	18503	2005	0
Heine et al. (2009)	PO-05-02	5	52.98	13.87	73	3	2.65	1	92000	4876	S555	0	0	0	19316	1466	NaN	NaN	18382	2005	879
Heine et al. (2009)	PO-05-03	5	52.98	13.86	75	5	2.65	1	79000	2923	S555	0	0	0	16811	1102	NaN	NaN	18382	2005	0
Heine et al. (2009)	Riesen-05-01	5	52.07	14.51	126	5	2.65	1	115000	4140	S555	0	0	0	23344	1520	NaN	NaN	21880	2005	1409
Heine et al. (2009)	Teufel-05-01	5	52.1	14.53	134	5	2.65	1	117000	6201	S555	0	0	0	23557	1789	NaN	NaN	21851	2005	1651
Houmark-Nielsen et al. (2012)	BOR-0701	2	55.2846	14.7593	65	4.9	2.65	1	80400	2700	NIST_30600	0	0	0	17159	1093	NaN	NaN	15923	2007	1179
Houmark-Nielsen et al. (2012)	BOR-0702	2	55.1055	14.892	125	5	2.65	1	99400	3400	NIST_30600	0	0	0	19968	1279	NaN	NaN	15969	2007	3942
Houmark-Nielsen et al. (2012)	BOR-0703	5	55.1055	14.892	125	6.25	2.65	1	86700	3500	NIST_30600	0	0	0	17582	1188	NaN	NaN	15969	2007	1556
Houmark-Nielsen et al. (2012)	BOR-0704	2	55.0628	14.9123	75	1.5	2.65	1	83700	4000	NIST_30600	0	0	0	17210	1244	NaN	NaN	15979	2007	1174
Houmark-Nielsen et al. (2012)	BOR-0706	2	55.0632	14.911	90	2	2.65	1	86700	4900	NIST_30600	0	0	0	17621	1381	NaN	NaN	15979	2007	1585
Houmark-Nielsen et al. (2012)	BOR-0801	5	55.1077	14.889	150	2	2.65	1	94400	3700	NIST_30600	0	0	0	18032	1206	NaN	NaN	15969	2008	2005
Houmark-Nielsen et al. (2012)	BOR-0802	5	55.104	14.8776	90	2.5	2.65	1	109200	4300	NIST_30600	0	0	0	22307	1495	NaN	NaN	15971	2008	6278
Houmark-Nielsen et al. (2012)	BOR-0803	5	55.2041	14.8508	120	1.5	2.65	1	99600	4600	NIST_30600	0	0	0	19541	1392	NaN	NaN	15942	2008	3541
Houmark-Nielsen et al. (2012)	BOR-0804	5	55.2062	14.8615	90	3	2.65	1	87900	3100	NIST_30600	0	0	0	18003	1163	NaN	NaN	15942	2008	2003
Houmark-Nielsen et al. (2012)	BOR-0805	2	55.2245	14.8964	40	1.5	2.65	1	66600	2800	NIST_30600	0	0	0	14196	973	NaN	NaN	15931	2008	0
Houmark-Nielsen et al. (2012)	BOR-0806	2	55.2876	14.7557	50	2.5	2.65	1	79200	3200	NIST_30600	0	0	0	16845	1138	NaN	NaN	15926	2008	861
Houmark-Nielsen et al. (2012)	FYN-0801	5	54.8972	10.7333	4	2	2.65	1	77600	3600	NIST_30600	0	0	0	17273	1232	NaN	NaN	17000	2008	215
Houmark-Nielsen et al. (2012)	JYL-0801	5	55.271	9.7524	3	3	2.65	1	83900	4100	NIST_30600	0	0	0	18824	1374	NaN	NaN	18690	2008	76
Houmark-Nielsen et al. (2012)	JYL-0803	5	54.9117	9.7618	50	2	2.65	1	15900	1900	NIST_30600	0	0	0	3355	440	NaN	NaN	18650	2008	0
Houmark-Nielsen et al. (2012)	JYL-0804	5	56.746	10.0245	40	2.5	2.65	1	81700	3400	NIST_30600	0	0	0	17432	1191	NaN	NaN	19666	2008	0
Houmark-Nielsen et al. (2012)	JYL-0806	5	56.574	9.9054	45	3	2.65	1	61400	3300	NIST_30600	0	0	0	13077	998	NaN	NaN	19928	2008	0
Houmark-Nielsen et al. (2012)	JYL-0807	5	55.8299	9.6433	60	2	2.65	1	74500	3100	NIST_30600	0	0	0	15543	1061	NaN	NaN	21484	2008	0
Houmark-Nielsen et al. (2012)	JYL-0808	5	55.9785	10.5589	30	2	2.65	1	80800	3100	NIST_30600	0	0	0	17415	1156	NaN	NaN	18394	2008	0
Houmark-Nielsen et al. (2012)	JYL-0809	5	55.7512	10.0672	15	3	2.65	1	74000	3800	NIST_30600	0	0	0	16349	1221	NaN	NaN	18752	2008	0
Houmark-Nielsen et al. (2012)	JYL-0810	5	57.2022	10.2922	70	2	2.65	1	61500	5300	NIST_30600	0	0	0	12619	1286	NaN	NaN	19155	2008	0
Houmark-Nielsen et al. (2012)	JYL-0811	5	57.1947	10.3115	80	2	2.65	1	82400	3700	NIST_30600	0	0	0	16747	1178	NaN	NaN	19149	2008	0
Houmark-Nielsen et al. (2012)	JYL-0812	5	57.1068	9.4373	45	1	2.65	1	71600	3100	NIST_30600	0	0	0	14973	1038	NaN	NaN	19645	2008	0
Houmark-Nielsen et al. (2012)	SJÆ-0701	5	54.6672	11.6157	3	2	2.65	1	69700	3200	NIST_30600	0	0	0	15539	1103	NaN	NaN	16939	2007	0
Houmark-Nielsen et al. (2012)	SJÆ-0702	5	54.7391	11.9235	3	1.5	2.65	1	72600	5500	NIST_30600	0	0	0	16120	1504	NaN	NaN	16866	2007	0
Houmark-Nielsen et al. (2012)	SJÆ-0703	5	54.9783	12.5367	125	3	2.65	1	109600	4400	NIST_30600	0	0	0	21663	1462	NaN	NaN	16672	2007	4934
Houmark-Nielsen et al. (2012)	SJÆ-0704	5	55.0627	11.7097	3	2	2.65	0.9938	39000	3100	NIST_30600	0	0	0	8723	839	NaN	NaN	16898	2007	0
Houmark-Nielsen et al. (2012)	SJÆ-0705	5	55.4068	11.6268	45	2	2.65	1	62900	3000	NIST_30600	0	0	0	13360	964	NaN	NaN	16939	2007	0
Houmark-Nielsen et al. (2012)	SJÆ-0706	5	55.964	12.35	20	2.5	2.65	1	88900	3900	NIST_30600	0	0	0	19478	1359	NaN	NaN	16981	2007	2440
Houmark-Nielsen et al. (2012)	SJÆ-0707	5	55.4981	11.6044	35	3	2.65	1	69600	2900	NIST_30600	0	0	0	15066	1029	NaN	NaN	16960	2007	0
Houmark-Nielsen et al. (2012)	SJÆ-0708	5	55.5544	11.409	50	3	2.65	1	72500	3200	NIST_30600	0	0	0	15441	1079	NaN	NaN	16998	2007	0
Houmark-Nielsen et al. (2012)	SJÆ-0709	5	55.6182	11.3859	35	3.5	2.65	1	90400	3800	NIST_30600	0	0	0	19660	1349	NaN	NaN	17000	2007	2603
Houmark-Nielsen et al. (2012)	SJÆ-0710	5	55.6067	11.4725	45	4	2.65	1	81800	4300	NIST_30600	0	0	0	17663	1334	NaN	NaN	17000	2007	606
Houmark-Nielsen et al. (2012)	SJÆ-0711	5	55.6931	11.8703	15	4	2.65	1	59200	2600	NIST_30600	0	0	0	13188	919	NaN	NaN	16953	2007	0

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)	Thick (cm)	Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Houmark-Nielsen et al. (2012)	SJÆ-0712	5	56.0281	12.3609	40	2	2.65	1	88500	6100	NIST_30600	0	0	0	18892	1660	NaN	NaN	17051	2007	1784
Houmark-Nielsen et al. (2012)	SJÆ-0713	5	55.0963	11.9434	45	2	2.65	1	95900	3800	NIST_30600	0	0	0	20430	1372	NaN	NaN	16840	2007	3533
Jansen et al. (2014)	H1 H2	2	66.867 66.8669	19.8217	266.2 257.4	1	2.7	0.9998	48448	3280 3440	S2007N	0	0	0	8592 9290	745	NaN	NaN	9773	2009	0
Jansen et al. (2014) Jansen et al. (2014)	S-02-24	2	67.00459	19.819 18.28857	257.4 870	5	2.7 2.7	0.9998	51910 84409	2530	S2007N NIST 30200	0	0	0	9290 8193	795 506	NaN NaN	NaN NaN	9773 9689	2009 2002	0
Jansen et al. (2014)	S-02-24 S-02-25	2	66.90389	17.83987	525	2	2.7	0.9924	62127	3465	NIST Certified	0	0	0	9507	738	NaN	NaN	9669	2002	0
Johnsen et al. (2009)	S1	5	57.3947	14.9039	208	3	2.7	1	76100	4300	NIST 30600	0	0	0	13696	1072	NaN	NaN	14020	2002	0
Johnsen et al. (2009)	S3	5	57.3866	14.8983	211	3	2.7	0.9809	89800	4700	NIST_30600	0	0	0	16433	1238	NaN	NaN	14020	2006	2347
Johnsen et al. (2009)	S4	5	57.3808	14.8787	217	4	2.7	0.9731	80000	4100	NIST 30600	0	0	0	14781	1102	NaN	NaN	14029	2006	696
Johnsen et al. (2009)	S7	5	57.6695	15.8057	145	3	2.7	1	76200	4000	NIST_30600	0	0	0	14619	1103	NaN	NaN	14044	2006	519
Johnsen et al. (2009)	S8	5	57.67	15.8064	136	3	2.7	0.9761	79900	4200	NIST 30600	0	0	0	15850	1197	NaN	NaN	14044	2006	1750
Johnsen et al. (2009)	S9	5	57.6688	15.8031	140	4	2.7	1	75100	5800	NIST_30600	0	0	0	14603	1379	NaN	NaN	14044	2006	503
Johnsen et al. (2010)	TJ-1	5	63.431	13.095	1415	4	2.65	0.999	163000	7400	NIST_30600	0	0	0	9866	696	NaN	NaN	10307	2005	0
Johnsen et al. (2010)	TJ-14	5	63.225	12.309	1125	3	2.65	0.999	144100	5000	NIST_30600	0	0	0	11007	706	NaN	NaN	10635	2005	317
Johnsen et al. (2010)	TJ-15	5	63.225	12.314	1149	3	2.65	1	148000	5000	NIST_30600	0	0	0	11068	705	NaN	NaN	10635	2005	378
Johnsen et al. (2010)	TJ-2	5	63.431	13.094	1414	3	2.65	1	161500	10500	NIST_30600	0	0	0	9693	820	NaN	NaN	10307	2005	0
Johnsen et al. (2010)	TJ-20	5	63.225	12.307	1130	3	2.65	0.998	142600	4300	NIST_30600	0	0	0	10857	671	NaN	NaN	10635	2005	167
Johnsen et al. (2010)	TJ-3	5	63.431	13.094	1420	4	2.65	1	159600	7700	NIST_30600	0	0	0	9611	696	NaN	NaN	10307	2005	0
Larsen et al. (2012)	SVE0801	2	57.0237	12.4636	65	3	2.65	0.9987	78200	4700	NIST_30600	0	0	0	16339	1323	NaN	NaN	15738 (h)	2008	543
Larsen et al. (2012)	SVE0802	2	57.0474	12.4236	85	3.5	2.65	1	80800	3400	NIST_30600	0	0	0	16572	1136	NaN	NaN	15854	2008	660
Larsen et al. (2012)	SVE0803	2	57.0474	12.4236	85	2	2.65	1	93600	4300	NIST_30600	0	0	0	18977	1349	NaN	NaN	15854	2008	3065
Larsen et al. (2012)	SVE0804	2	57.1311	12.3825	40	1.5	2.65	1	68900	3000	NIST_30600	0	0	0	14579	1013	NaN	NaN	13472 (i)	2008	1049
Larsen et al. (2012)	SVE0805	2	57.1282	12.3793	76	2	2.65	1	87400	3100	NIST_30600	0	0	0	17879	1157	NaN	NaN	15472	2008	2349
Larsen et al. (2012)	SVE0806 SVE0807	5 2	57.3419	12.3237	70	2	2.65 2.65	0.9995 0.9986	77900 65100	3400 3400	NIST_30600	0	0	0	16026 14217	1115	NaN	NaN	14855	2008 2008	1113
Larsen et al. (2012) Larsen et al. (2012)	SVE0807 SVE0808	5	57.354 57.3727	12.3023 12.2922	30 60	4 5	2.65	0.9986	70400	3000	NIST_30600 NIST 30600	0	0	0		1070	NaN NaN	NaN	11353 (j)	2008	2806 94
Larsen et al. (2012)	SVE0809	2	57.3734	12.2922	56	3	2.65	0.9999	66300	2600	NIST_30600	0	0	0	14986 13944	1032 931	NaN	NaN NaN	14834	2008	582
Larsen et al. (2012)	SVE0809 SVE0810	5	57.4396	12.292	64	3	2.65	1	76500	4000	NIST_30600	0	0	0	15952	1201	NaN	NaN	13304 (k) 14866	2008	1028
Larsen et al. (2012)	SVE0811	2	57.4516	12.1924	30	5	2.65	0.9999	67100	3700	NIST 30600	0	0	0	14749	1140	NaN	NaN	11358 (I)	2008	3333
Larsen et al. (2012)	SVE0812	2	57.4516	12.1924	30	3	2.65	0.9999	62400	3200	NIST_30600	0	0	0	13492	1006	NaN	NaN	11358 (I)	2008	2076
Larsen et al. (2012)	SVE0814	5	58.768	12.0296	125	3	2.65	1	74200	3600	NIST 30600	0	0	0	14480	1053	NaN	NaN	13046	2008	1376
Larsen et al. (2012)	SVE0815	5	58.7686	12.0235	130	5	2.65	1	536900	15200	NIST_30600	0	0	0	108428	6773	NaN	NaN	13068	2008	95302
Larsen et al. (2012)	SVE0816	5	58.1996	13.3225	145	3	2.65	1	66100	2900	NIST_30600	0	0	0	12642	880	NaN	NaN	12988	2008	0
Larsen et al. (2012)	SVE0817	5	58.1898	13.3105	130	6	2.65	1	74400	4900	NIST_30600	0	0	0	14815	1264	NaN	NaN	12999	2008	1758
Larsen et al. (2012)	SVE0818	5	58.1964	13.3259	140	7	2.65	1	35000	2700	NIST_30600	0	0	0	6939	654	NaN	NaN	12988	2008	0
Li et al. (2005)	Alisvággi-1055	1	68.185	18.77	1055	7	2.75	0.9845	673518	11559	NIST_Certified	0	0	0	64971	3729	NaN	NaN	9917	2002	55002
Li et al. (2005)	Alisvággi-820	1	68.18	18.78	820	5	2.75	0.9906	116113	6468	NIST_Certified	0	0	0	13261	1030	NaN	NaN	9917	2002	3292
Li et al. (2005)	Dievssavággi-1040	1	67.5908	18.4431	1040	5	2.75	0.9982	274083	8187	NIST_30200	1652627	78591	KNSTD	22877	1416	21833	2340	9747	1999	13081
Li et al. (2005)	Dievssavággi-590	1	67.6361	18.3281	590	3	2.75	0.9915	68417	4481	NIST_30200	489627	43185	KNSTD	8399	713	9483	1233	9746	1999	0
Li et al. (2005)	Dievssavággi-750	1	67.6967	18.1803	750	1	2.75	0.9991	105777	3967	NIST_30200	731223	41404	KNSTD	10956	720	11960	1328	9752	1999	1155
Li et al. (2005)	Rávtsvággi-710	1	68.1322	19.0767	710	2	2.75	0.9813	143239	7513	NIST_30200	613750	63591	KNSTD	15782	1190	10657	1504	9908	1999	5825
Li et al. (2005)	Rávtsvággi-750	1	68.1236	19.1008	750	2	2.75	0.9992	133376	6149	NIST_30200	861815	76437	KNSTD	13918	989	14207	1857	9906	1999	3963
Li et al. (2005)	Rávtsvággi-805	1	68.1214	19.1158	805	4	2.75	0.9987	424982	12936	NIST_30200	1231243	164909	KNSTD	43280	2704	19718	3267	9906	1999	33325
Li et al. (2005)	Rávtsvággi-975	1	68.12005	19.13649 18.74166	975 1130	6 2	2.75	0.9993	373368 107916	22890	NIST_Certified	0	0	0	37463 9289	3084	NaN	NaN	9907	2002	27504
Li et al. (2005) Li et al. (2005)	Siellavággi-1130 Vávlávágge-1270	1	68.20756 66.5944	15.7881	1270	1	2.75	0.9786 0.9854	107916	6000 11696	NIST_Certified NIST Certified	0	0	0	7943	720 986	NaN NaN	NaN NaN	9930 9796	2002 1999	0
Li et al. (2005)	Vávlávágge-1270 Vávlávágge-1305	1	66.5939	15.7936	1305	3	2.75	0.9985	104629	9683	NIST_Certified	0	0	0	7817	832	NaN	NaN	9796	1999	0
Li et al. (2005)	Vávlávágge-1303 Vávlávágge-820	1	66.59	15.7692	820	2	2.75	0.9889	56274	7432	NIST_Certified	0	0	0	6293	899	NaN	NaN	9800	1999	0
Li et al. (2005)	Vávlávágge-980	1	66.595	15.7786	980	3	2.75	0.9617	82012	7145	NIST Certified	0	0	0	8272	849	NaN	NaN	9800	1999	0
Linge et al. (2006a)	BR99-1	2	62.140396	11.99102	850	1	2.65	0.9997	96668	8699	NIST_Certified	0	0	0	10561	1110	NaN	NaN	10241	1999	271
Linge et al. (2006a)	BR99-10	3	62.148304	12.027783	1173	1	2.65	0.9997	274005	19359	NIST Certified	0	0	0	22771	2034	NaN	NaN	10229	1999	12493
Linge et al. (2006a)	BR99-12	3	62.148347	12.064624	1460	1	2.65	1	1102842	69035	NIST Certified	0	0	0	73360	6167	NaN	NaN	10216	1999	63095
Linge et al. (2006a)	BR99-13	3	62.148827	12.065634	1460	1	2.65	1	853803	55146	NIST_Certified	0	0	0	56557	4822	NaN	NaN	10216	1999	46292
Linge et al. (2006a)	BR99-14	3	62.148639	12.065248	1460	1	2.65	1	902897	59910	NIST_Certified	0	0	0	59859	5190	NaN	NaN	10216	1999	49594
Linge et al. (2006a)	BR99-16	3	62.141003	12.064395	1400	1	2.65	1	1202665	76937	NIST_Certified	0	0	0	84187	7187	NaN	NaN	10209	1999	73929
Linge et al. (2006a)	BR99-17	3	62.141	12.064395	1400	1	2.65	0.9997	895688	57823	NIST_Certified	0	0	0	62378	5324	NaN	NaN	10209	1999	52120
Linge et al. (2006a)	BR99-19	3	62.148579	12.050201	1275	1	2.65	0.9994	637570	43303	NIST_Certified	0	0	0	49019	4299	NaN	NaN	10222	1999	38748
Linge et al. (2006a)	BR99-2	2	62.140396	11.99102	850	1	2.65	0.9997	103250	9435	NIST_Certified	0	0	0	11282	1200	NaN	NaN	10241	1999	992
Linge et al. (2006a)	BR99-20	2	62.097955		1120	1	2.65	1	383083	32173	NIST_Certified	0	0	0	33371	3356	NaN	NaN	10183	1999	23139
Linge et al. (2006a)	BR99-21	2	62.097955		1120	1	2.65	1	424702	29363	NIST_Certified	0	0	0	37030	3274	NaN	NaN	10183	1999	26798
Linge et al. (2006a)	BR99-3	2	62.140396	11.99102	948	1	2.65	0.9999	116613	35309	NIST_Certified	0	0	0	11698	3608	NaN	NaN	10241	1999	1408
Linge et al. (2006a)	BR99-4	2	62.140396	11.99102	948	1	2.65	0.9999	127319	11026	NIST_Certified	0	0	0	12776	1307	NaN	NaN	10241	1999	2486
Linge et al. (2006a)	BR99-7	3	62.14722	12.015025	1045	1	2.65	0.9992	241730	20900	NIST_Certified	0	0	0	22388	2293	NaN	NaN	10235	1999	12104

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	(at/g)	TUBE-AIVIS-SIG	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	(yr) e	26Al-age (yr) c,d	(yr) e	(yr) f	Sample-yr	10Be-inherit (yr) g
Linge et al. (2006a)	BR99-8	3	62.14722	12.015025	1045	1	2.65	0.9995	243386	17963	NIST_Certified	0	0	0	22536	2070	NaN	NaN	10235	1999	12252
Linge et al. (2006a)	BR99-9	3	62.148357	12.030273	1173	1	2.65	0.9997	374203	28042	NIST_Certified	0	0	0	31162	2897	NaN	NaN	10229	1999	20884
Linge et al. (2006a)	GA99-1	2	59.854191	8.649249	1883	1	2.65	1	292336	22625	NIST_Certified	0	0	0	13937	1318	NaN	NaN	10250	1999	3638
Linge et al. (2006a)	GA99-10	3	59.836996	8.685112	1515	1	2.65	0.9914	172116	12349	NIST_Certified	0	0	0	10982	987	NaN	NaN	10265	1999	668
Linge et al. (2006a)	GA99-13	2	59.838162	8.703835	1298	1	2.65	0.9938	260537	22251	NIST_Certified	0	0	0	19790	2007	NaN	NaN	10268	1999	9473
Linge et al. (2006a)	GA99-14	2	59.836602	8.708755	1220	1	2.65	0.9966	154096	18123	NIST_Certified	0	0	0	12423	1612	NaN	NaN	10268	1999	2106
Linge et al. (2006a)	GA99-15	2	59.83638	8.710095	1220	1	2.65	0.9956	148737	13601	NIST_Certified	0	0	0	12001	1277	NaN	NaN	10268	1999	1684
Linge et al. (2006a)	GA99-16	2	59.836159	8.711434	1200	1	2.65	1	171193	12144	NIST_Certified	0	0	0	13990	1250	NaN	NaN	10275	1999	3666
Linge et al. (2006a)	GA99-2	2	59.854191	8.649249	1878	1	2.65	0.9998	461402	31583	NIST_Certified	0	0	0	22130	1937	NaN	NaN	10250	1999	11831
Linge et al. (2006a)	GA99-3	3	59.854191	8.649249	1878	1	2.65	0.9998	638284	41817	NIST_Certified	0	0	0	30679	2621	NaN	NaN	10250	1999	20380
Linge et al. (2006a)	GA99-4	2	59.854191	8.649249	1883	1	2.65	0.9993	235577	16816	NIST_Certified	0	0	0	11231	1007	NaN	NaN	10250	1999	932
Linge et al. (2006a)	GA99-5	3	59.848158	8.660021	1715	1	2.65	0.9982	1537419	92512	NIST_Certified	0	0	0	84897	7000	NaN	NaN	10257	1999	74591
Linge et al. (2006a)	GA99-6	3	59.848158	8.660021	1715	1	2.65	0.9983	1745206	102780	NIST Certified	0	0	0	96643	7897	NaN	NaN	10257	1999	86337
Linge et al. (2006a)	GA99-7	3	59.84169	8.677038	1620	1	2.65	0.9999	902631	53695	NIST_Certified	0	0	0	53138	4319	NaN	NaN	10265	1999	42824
Linge et al. (2006a)	GA99-8	3	59.841463		1620	1	2.65	0.9999	917830		NIST Certified	0	0	0	54044	4400	NaN	NaN	10265	1999	43730
Linge et al. (2006a)	GA99-9	3	59.836988		1520	1	2.65	0.9914	393077		NIST Certified	0	0	0	25069	2221	NaN	NaN	10265	1999	14755
Linge et al. (2006a)	SO99-4	2	61.881612		1660	1	2.65	0.9982	2883781		NIST Certified	0	0	0	168156	22401	NaN	NaN	10198	1999	157909
Linge et al. (2006a)	SO99-5	2		11.512792		1	2.65	0.9982	3246255	188980	NIST Certified	0	0	0	190328	15826	NaN	NaN	10198	1999	180081
Linge et al. (2006a)	SO99-6	3		11.516776		1	2.65	1	547016	43223	NIST Certified	0	0	0	28584	2752	NaN	NaN	10198	1999	18337
Linge et al. (2006a)	SO99-7	3		11.516776		1	2.65	1	834552	58334	NIST Certified	0	0	0	43774	3903	NaN	NaN	10198	1999	33527
Linge et al. (2006a)	SO99-8	2	61.880267		1680	1	2.65	1	1832583		_	0	0	0	103359	9466	NaN	NaN	10198	1999	93112
Linge et al. (2006a)	SO99-9	2	61.880267	11.512682		1	2.65	1	2560531	163962	NIST_Certified	0	0	0	145944	12661	NaN	NaN	10198	1999	135697
Linge et al. (2006a)	SV99-1	2	59.519763		1370	1	2.65	1	179245	15288	NIST_Certified	0	0	0	12761	1291	NaN	NaN	10404	1999	2308
Linge et al. (2006a)	SV99-1	2	59.519703		1370	1	2.65	1	213020		NIST Certified	0	0	0	15175	1462	NaN	NaN	10404	1999	4722
- · · · · · · · · · · · · · · · · · · ·	SV99-2 SV99-3	2	59.52105	8.577601	1275	1		0.9998	478402	30962	NIST_Certified	0	0	0	37027	3145	NaN	NaN			
Linge et al. (2006a)	SV99-3 SV99-4	2	59.52105	8.534056	1020	1	2.65 2.65	0.9998	135714	11875	NIST_Certified	0	0	0	12960	1335	NaN	NaN	10396 10373	1999 1999	26582
Linge et al. (2006a) Linge et al. (2006a)	SV99-5	1	59.513446	8.550149	900	1	2.65	0.9886	107275	9075	NIST Certified	0	0	0	11441	1150	NaN	NaN	10373	1999	2538
• , ,		3				4					_	0	•	0							1004
Linge et al. (2006b)	00-418		68.5217	43.6169	115		2.65	1	250000	16000	NIST_Certified		0		55857	4736	NaN	NaN	16902	2000	38905
Linge et al. (2006b)	00-419	3	68.5217	43.6169	100	0.5	2.65	1	271000	19000	NIST_Certified	0	0	0	59873	5371	NaN	NaN	16902	2000	42921
Linge et al. (2006b)	00-420	3	68.5217	43.6169	50	1.5	2.65	0.9996	86000	7000	NIST_Certified	0	0	0	20042	1965	NaN	NaN	16902	2000	3090
Linge et al. (2006b)	02-521	5	68.5511	44.7364	60	1	2.65	1	172000	14000	NIST_Certified	0	0	0	39685	3910	NaN	NaN	16910	2002	22723
Linge et al. (2006b)	02-522	5	68.5511	44.7364	60	2	2.65	1	195000	14000	NIST_Certified	0	0	0	45423	4122	NaN	NaN	16910	2002	28461
Linge et al. (2007)	ÅM02-01	2	66.76063	13.32898	637	3	2.65	1	64000	6000	NIST_Certified	0	0	0	8381	908	NaN	NaN	14323	2002	0
Linge et al. (2007)	ÅM02-02	2	66.76063	13.32898	637	2.5	2.65	1	76000	10000	NIST_Certified	0	0	0	9916	1413	NaN	NaN	14323	2002	0
Linge et al. (2007)	ÅM02-04	2	66.75979	13.33579	565	2	2.65	0.9998	100000	10000	NIST_Certified	0	0	0	13897	1584	NaN	NaN	14323	2002	0
Linge et al. (2007)	ÅM02-07	2	66.75757	13.3037	182	2	2.65	0.9984	70000	6000	NIST_Certified	0	0	0	14115	1433	NaN	NaN	14425	2002	0
Linge et al. (2007)	ÅM02-08	2	66.75755	13.30395	182	3.5	2.65	0.9984	81000	6000	NIST_Certified	0	0	0	16543	1521	NaN	NaN	14425	2002	2066
Linge et al. (2007)	ÅM02-10	2	66.76094	13.29011	488	5	2.65	1	98000	8000	NIST_Certified	0	0	0	14991	1471	NaN	NaN	14425	2002	514
Linge et al. (2007)	ÅM02-11	2	66.75957	13.29405	415	2	2.65	1	94000	8000	NIST_Certified	0	0	0	15038	1520	NaN	NaN	14425	2002	561
Linge et al. (2007)	ÅM02-12	2	66.7638	13.30564	135	2	2.65	0.9998	85000	7000	NIST_Certified	0	0	0	17988	1777	NaN	NaN	14374	2002	3562
Linge et al. (2007)	ÅM02-13	2	66.76392	13.30506	135	3.5	2.65	0.9998	75000	7000	NIST_Certified	0	0	0	16058	1737	NaN	NaN	14374	2002	1632
Linge et al. (2007)	ÅM02-14	2	66.76115	13.29932	251	2	2.65	0.9984	81000	7000	NIST_Certified	0	0	0	15233	1557	NaN	NaN	14425	2002	756
Linge et al. (2007)	ÅM02-15	2	66.7619	13.29925	234	2	2.65	0.9984	79000	7000	NIST_Certified	0	0	0	15113	1572	NaN	NaN	14425	2002	636
Linge et al. (2007)	HE02-01	2	66.70516	13.81886	1452	2	2.65	0.9971	615000	36000	NIST_Certified	0	0	0	40303	3236	NaN	NaN	13058	2002	27193
Linge et al. (2007)	HE02-02	3	66.70149	13.81895	1446	2	2.65	0.9999	599000	35000	NIST_Certified	0	0	0	39325	3154	NaN	NaN	13058	2002	26215
Linge et al. (2007)	HE02-04	2	66.70228	13.82183	1399	3	2.65	0.9978	435000	26000	NIST_Certified	0	0	0	29897	2422	NaN	NaN	13058	2002	16787
Linge et al. (2007)	HE02-06	2	66.70161	13.82769	1372	3	2.65	0.9985	734000	43000	NIST_Certified	0	0	0	51810	4174	NaN	NaN	12617	2002	39141
Linge et al. (2007)	HE02-07	2	66.70155	13.82823	1365	2	2.65	0.9997	789000	46000	NIST_Certified	0	0	0	55539	4467	NaN	NaN	12617	2002	42870
Linge et al. (2007)	ØL02-01	2	66.78752	15.25176	1640	2	2.65	0.9674	359000	24000	NIST_Certified	0	0	0	20787	1793	NaN	NaN	10013	2002	10722
Linge et al. (2007)	ØL02-04	2	66.78507	15.26683	1350	2	2.65	0.9932	239000	16000	NIST_Certified	0	0	0	16980	1464	NaN	NaN	9997	2002	6931
Linge et al. (2007)	ØL02-05	1	66.76756	15.30549	1111	2	2.65	0.9838	127000	9000	NIST_Certified	0	0	0	11094	990	NaN	NaN	9977	2002	1065
Linge et al. (2007)	ØL02-06	1	66.76756	15.30549	1111	2	2.65	0.9838	124000	9000	NIST_Certified	0	0	0	10831	981	NaN	NaN	9977	2002	802
Linge et al. (2007)	ØL02-07	2	66.76106	15.31731	1215	3	2.65	0.9984	124000	9000	NIST Certified	0	0	0	9861	893	NaN	NaN	9963	2002	0
Linge et al. (2007)	ØL02-08	2	66.76067	15.31624	1229	2	2.65	0.9981	129000	8000	NIST Certified	0	0	0	10060	828	NaN	NaN	9963	2002	45
Linge et al. (2007)	ØL02-09	2	66.75697	15.30075	1442	2	2.65	0.9992	164000	13000	NIST Certified	0	0	0	10735	1031	NaN	NaN	9972	2002	711
Linge et al. (2007)	ØL02-10	2	66.75717	15.30093	1440	2	2.65	0.9996	171000	12000	NIST Certified	0	0	0	11208	994	NaN	NaN	9972	2002	1184
Linge et al. (2007)	ØL02-11	2	66.76033	15.30851	1310	2	2.65	0.9961	158000	10000	NIST Certified	0	0	0	11552	962	NaN	NaN	9972	2002	1528
Mangerud et al. (2013)	BO08-10	5	59.60512	5.23555	34	1.99	2.7	0.999	62400	1500	07KNSTD	0	0	0	14451	854	NaN	NaN	19044	2008	0
Mangerud et al. (2013)	BO08-11	5	59.60468	5.2355	35	1.87	2.7	0.992	63700	1700	07KNSTD	0	0	0	14824	893	NaN	NaN	19044	2008	0
Mangerud et al. (2013)	BO08-2	5	59.84808	5.09806	81	1.46	2.7	0.992	70400	2100	07KNSTD	0	0	0	15521	958	NaN	NaN	19470	2008	0
Mangerud et al. (2013)	BO08-3	5	59.85315	5.0903	97	1.69	2.7	0.992	70000	1800	07KNSTD	0	0	0	15199	910	NaN	NaN	19475	2008	0
Mangerud et al. (2013)	BO08-4	5	59.90059	5.08434	74	1.4	2.7	0.997	73900	1900	07KNSTD	0	0	0	16327	977	NaN	NaN	19010	2008	0
Mangerud et al. (2013)	BO08-5	5	59.90017	5.08461	75	1.62	2.7	0.999	72900	1900	07KNSTD	0	0	0	16085	965	NaN	NaN	19010	2008	0
mangorda et al. (2010)	5000-0	J	55.50017	0.00401	15	1.02	۷.1	0.333	, 2300	1000	OTHINGID	J	U	3	10000	a00	INGIN	INGIN	19010	2000	Ü

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-und (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Mangerud et al. (2013)	BO08-6	5	59.89959	5.08451	76	1.45	2.7	1	62400	2800	07KNSTD	0	0	0	13713	964	NaN	NaN	19010	2008	0
Mangerud et al. (2013)	BO08-7	5	59.60613	5.23919	38	2.82	2.7	0.998	64900	1400	07KNSTD	0	0	0	15084	877	NaN	NaN	18839	2008	0
Mangerud et al. (2013)	BO08-8	5	59.6063	5.23939	37	3.3	2.7	0.986	64500	1300	07KNSTD	0	0	0	15247	879	NaN	NaN	18839	2008	0
Mangerud et al. (2013)	BO08-9	5	59.60501	5.23637	32	1.84	2.7	0.984	64600	1600	07KNSTD	0	0	0	15201	904	NaN	NaN	18839	2008	0
Mangerud et al. (2013)	NFJ08-1	5	60.0493	6.08075	963	1.52	2.7	0.997	141000	3600	07KNSTD	0	0	0	13537	809	NaN	NaN	11148	2008	2331
Mangerud et al. (2013)	NFJ08-10	5	60.04996	6.08609	902	1.37	2.7	0.985	109000	2800	07KNSTD	0	0	0	11141	666	NaN	NaN	11148	2008	0
Mangerud et al. (2013)	NFJ08-2	5	60.04917	6.08059	966	1.21	2.7	0.997	153000	3900	07KNSTD	0	0	0	14617	873	NaN	NaN	11148	2008	3411
Mangerud et al. (2013)	NFJ08-3	5	60.04943	6.08258	960	1.78	2.7	0.977	142500	3200	07KNSTD	0	0	0	14026	820	NaN	NaN	11148	2008	2820
Mangerud et al. (2013)	NFJ08-4	5	60.04932	6.08136	960	1.6	2.7	1	156000	3300	07KNSTD	0	0	0	14986	869	NaN	NaN	11148	2008	3780
Mangerud et al. (2013)	NFJ08-5	5	60.05013	6.0812	960	2.33	2.7	1	142300	3800	07KNSTD	0	0	0	13749	829	NaN	NaN	11148	2008	2543
Mangerud et al. (2013)	NFJ08-6	5	60.05234	6.07416	864	1.62	2.7	0.996	146000	3700	07KNSTD	0	0	0	15302	913	NaN	NaN	11169	2008	4075
Mangerud et al. (2013)	NFJ08-7	5	60.05262	6.08104	904	2.08	2.7	0.988	119000	3000	07KNSTD	0	0	0	12181	726	NaN	NaN	11151	2008	972
Mangerud et al. (2013)	NFJ08-8	5	60.0488	6.08759	912	1.33	2.7	0.999	124000	3200	07KNSTD	0	0	0	12391	742	NaN	NaN	11148	2008	1185
Mangerud et al. (2013)	NFJ08-9	5	60.04871	6.08791	913	1.43	2.7	0.987	113000	2900	07KNSTD	0	0	0	11424	683	NaN	NaN	11148	2008	218
Mangerud et al. (2013)	OSA08-1	5	60.55712	7.12253	1160	3.18	2.65	0.999	136000	2600	07KNSTD	0	0	0	11159	639	NaN	NaN	10543	2008	558
Mangerud et al. (2013)	OSA08-10	5	60.57383	7.10764	1099	3	2.65	0.977	120000	3600	07KNSTD	0	0	0	10574	653	NaN	NaN	10561	2008	0
Mangerud et al. (2013)	OSA08-11	5	60.56431	7.10509	1128	1.57	2.65	0.977	131000	2500	07KNSTD	0	0	0	11137	637	NaN	NaN	10556	2008	523
Mangerud et al. (2013)	OSA08-12	5	60.56749	7.10938	1187	2.69	2.65	1	140000	2600	07KNSTD	0	0	0	11175	638	NaN	NaN	10556	2008	561
Mangerud et al. (2013)	OSA08-13	5	60.56694	7.10972	1180	2.08	2.65	0.986	130000	2600	07KNSTD	0	0	0	10530	606	NaN	NaN	10556	2008	0
Mangerud et al. (2013)	OSA08-14	5	60.56912	7.10231	1067	3.35	2.65	0.962	121000	2900	07KNSTD	0	0	0	11157	659	NaN	NaN	10561	2008	538
Mangerud et al. (2013)	OSA08-15	5	60.57215	7.10779	1118	1.77	2.65	0.977	131000	2800	07KNSTD	0	0	0	11249	653	NaN	NaN	10561	2008	630
Mangerud et al. (2013)	OSA08-2	5	60.55683	7.12243	1160	1.89	2.65	1	138000	2900	07KNSTD	0	0	0	11193	648	NaN	NaN	10543	2008	592
Mangerud et al. (2013)	OSA08-3	5	60.55682	7.12232	1160	1.52	2.65	0.989	137000	2900	07KNSTD	0	0	0	11200	649	NaN	NaN	10543	2008	599
Mangerud et al. (2013)	OSA08-4	5	60.55687	7.12261	1160	3.28	2.65	0.997	141000	3000	07KNSTD	0	0	0	11602	673	NaN	NaN	10543	2008	1001
Mangerud et al. (2013)	OSA08-5	5	60.5567	7.12136	1160	0.98	2.65	0.993	142000	3000	07KNSTD	0	0	0	11512	667	NaN	NaN	10545	2008	903
Mangerud et al. (2013)	OSA08-7	5	60.5741	7.10565	1084	2.17	2.65	0.987	127000	2700	07KNSTD	0	0	0	11146	646	NaN	NaN	10561	2008	527
Mangerud et al. (2013)	OSA08-8	5	60.57402	7.10603	1088	1.8	2.65	0.998	127000	2700	07KNSTD	0	0	0	10953	635	NaN	NaN	10561	2008	334
Mangerud et al. (2013)	OSA08-9	5	60.57391	7.10603	1096	1.85	2.65	0.983	125000	2700	07KNSTD	0	0	0	10933	632	NaN	NaN	10561	2008	255
-	14NOR-64	2	60.5477	4.867	35	3	2.65	1	72300	1390	07KNSTD	0	0	0	16771	962	NaN	NaN	16839	2014	0
Mangerud et al. (2017) Matthews et al. (2008)	E1	5	61.845	7.184	530	4.6	2.03	0.945	78110	5900	NIST 30600	462000	35000	Z92-0222	10831	1007	10233	1248	10483	2014	294
	E2	5	61.845	7.184	540	2.3	2.5	0.945	78300	3400	_	468000	34000	Z92-0222 Z92-0222						2004	481
Matthews et al. (2008)	E3	5	61.845	7.189	540	2.3 4	2.59	0.9	82000	4800	NIST_30600 NIST 30600	557000	41000	Z92-0222 Z92-0222	11018	764 892	10520	1262	10483 10417	2004	718
Matthews et al. (2008)	COSMO-10				470			0.942			_				11189		12152	1467			
Nesje et al. (2007)	COSMO-10 COSMO-11	4	69.219	15.966		2	2.65	1 0.9976	144000	11000	NIST_Certified	0	0	0	21722 56690	2040	NaN	NaN	18157	2005	3510
Nesje et al. (2007)		1	69.271	16.015	200	4	2.65		281000	18000	NIST_Certified			0		4810	NaN	NaN	18294	2005	38341
Nesje et al. (2007)	COSMO-12	1	69.218	15.909	50	3	2.65	0.9993	210000	14000	NIST_Certified	0	0	-	49033	4252	NaN	NaN	18197	2005	30781
Nesje et al. (2007)	COSMO-14	1	68.896	16.52	515	2.5	2.65	0.9967	111000	8000	NIST_Certified	0	0	0	16183	1461	NaN	NaN	15408	2005	720
Nesje et al. (2007)	COSMO-15	3	68.9	16.526	660	6	2.65	0.9992	189000	13000	NIST_Certified	0	0	0	24799	2179	NaN	NaN	15408	2005	9336
Nesje et al. (2007)	COSMO-16	3	68.903	16.532	775	1.5	2.65	1	229000	16000	NIST_Certified	0	0	0	26113	2318	NaN	NaN	15408	2005	10650
Nesje et al. (2007)	COSMO-17	3	68.745	16.899	880	2.5	2.65	1	366000	21000	NIST_Certified	0	0	0	38512	3058	NaN	NaN	13492	2005	24965
Nesje et al. (2007)	COSMO-18	3	68.61	17.133	990	5	2.65	1	792000	43000	NIST_Certified	0	0	0	78130	6089	NaN	NaN	11998	2005	66077
Nesje et al. (2007)	COSMO-19	3	68.61	17.157	1280	2	2.65	1	785000	43000	NIST_Certified	0	0	0	58900	4589	NaN	NaN	11935	2005	46910
Nesje et al. (2007)	COSMO-4	3	69.233	15.902	340	4	2.65	1	316000	19000	NIST_Certified	0	0	0	55320	4525	NaN	NaN	18255	2005	37010
Nesje et al. (2007)	COSMO-5	3	69.233	15.902	345	2	2.65	1	198000	16000	NIST_Certified	0	0	0	33757	3305	NaN	NaN	18255	2005	15447
Nesje et al. (2007)	COSMO-6	5	69.233	15.902	350	6	2.65	1	232000	18000	NIST_Certified	0	0	0	40728	3884	NaN	NaN	18255	2005	22418
Nesje et al. (2007)	COSMO-7	3	69.243	15.867	405	2	2.65	0.9998	366000	26000	NIST_Certified	0	0	0	59274	5361	NaN	NaN	18298	2005	40921
Nesje et al. (2007)	COSMO-8	5	69.261	16.038	105	4	2.65	0.9994	176000	13000	NIST_Certified	0	0	0	38948	3594	NaN	NaN	18253	2005	20640
Nesje et al. (2007)	COSMO-9	2	69.261	16.038	105	2	2.65	0.9994	181000	22000	NIST_Certified	0	0	0	39417	5291	NaN	NaN	18253	2005	21109
Nesje et al. (2007)	COSMO-9	2	69.261	16.038	105	2	2.65	0.9994	222000	20000	NIST_Certified	0	0	0	48454	5146	NaN	NaN	18253	2005	30146
Paasche et al. (2006)	98-21	3	68.54506	14.8955	375	2	2.65	1	273000	30000	NIST_Certified	0	0	0	45449	5624	NaN	NaN	14447	1998	30954
Paasche et al. (2006)	98-5	3	68.98479	15.10467	515	2	2.65	1	651000	67000	NIST_Certified	0	0	0	95938	11412	NaN	NaN	18010	1998	77880
Paus et al. (2015)	RØD-0301	2	62.32652	10.38097	1150	5	2.65	0.9986	144100	5300	NIST_30600	0	0	0	11003	719	NaN	NaN	10932	2003	18
Paus et al. (2015)	RØD-0304	1	62.31978	10.35399	1060	4	2.65	0.997	129300	5800	NIST_30600	0	0	0	10580	743	NaN	NaN	10942	2003	0
Paus et al. (2015)	RØD-0307	2	62.31505	10.38416	1435	12	2.65	1	328000	11900	NIST_30600	0	0	0	20995	1369	NaN	NaN	10919	2003	10023
Paus et al. (2015)	RØD-0308	2	62.31505	10.38416	1438	7	2.65	1	347600	12100	NIST_30600	0	0	0	21326	1374	NaN	NaN	10919	2003	10354
Rinterknecht et al. (2004)	FIN-1	5	60.7308	24.9597	140	3	2.8	1	62200	4500	NIST_Certified	0	0	0	13613	1231	NaN	NaN	12680	2002	881
Rinterknecht et al. (2004)	FIN-2	5	60.7308	24.9597	140	1.7	2.8	1	57300	4600	NIST_Certified	0	0	0	12398	1202	NaN	NaN	12680	2002	0
Rinterknecht et al. (2004)	FIN-3	5	60.7308	24.9597	140	2	2.8	1	52600	3900	NIST_Certified	0	0	0	11407	1048	NaN	NaN	12680	2002	0
Rinterknecht et al. (2004)	FIN-4	5	60.7308	24.9619	140	2	2.8	1	58000	4300	NIST_Certified	0	0	0	12582	1156	NaN	NaN	12680	2002	0
Rinterknecht et al. (2004)	FIN-5	5	60.7308	24.9619	140	3.4	2.8	1	63100	4400	NIST Certified	0	0	0	13858	1225	NaN	NaN	12680	2002	1126
Rinterknecht et al. (2004)	FIN-6	5	60.7308	24.9619	140	2.6	2.8	1	56800	4100	NIST Certified	0	0	0	12385	1118	NaN	NaN	12680	2002	0
Rinterknecht et al. (2004)	FIN-7	5	60.7308	24.9619	140	2.5	2.8	1	64900	4600	NIST Certified	0	0	0	14145	1263	NaN	NaN	12680	2002	1413
Rinterknecht et al. (2004)	FIN-8	5	60.7308	24.9619	140	2	2.8	1	65400	4500	NIST Certified	0	0	0	14193	1244	NaN	NaN	12680	2002	1461
Rinterknecht et al. (2004)	FIN-9	5	60.7308	24.9619	140	2	2.8	1	63300	4500	NIST_Certified	0	0	0	13736	1244	NaN	NaN	12680	2002	1004
(2004)		•	30000			-		•	30000	.000		ŭ	•	ŭ	10700	1220	11011	14014	12000		

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-und	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Rinterknecht et al. (2005)	LES-10	5	53.5764	19.9417	270	2	2.8	- 1	67800	5700	NIST Certified	0	0	0	13229	1325	NaN	NaN	18299	2003	0
Rinterknecht et al. (2005)	LES-10 LES-11	5	53.5764	19.8375	218	2	2.8	1	79400	7700	NIST_Certified	0	0	0	13229	1825	NaN NaN	nan NaN	18299	2003	0
Rinterknecht et al. (2005)	LES-12	5	53.5625	19.9528	275	2	2.8	1	84600	7000	NIST Certified	0	0	0	16441	1629	NaN	NaN	18329	2003	0
Rinterknecht et al. (2005)	LES-13	5	53.5528	19.925	302	2	2.8	1	191500	13300	NIST Certified	0	0	0	36443	3231	NaN	NaN	18342	2003	18048
Rinterknecht et al. (2005)	LES-3	5	53.4806	20.2222	212	3	2.8	1	34500	3500	NIST Certified	0	0	0	7179	826	NaN	NaN	18797	2003	0
Rinterknecht et al. (2005)	LES-4	5	53.4944	20.2389	172	2	2.8	1	74000	5400	NIST Certified	0	0	0	15922	1449	NaN	NaN	18737	2003	0
Rinterknecht et al. (2005)	LES-5	5	53.5792	20.0944	180	2	2.8	1	192400	11600	NIST Certified	0	0	0	41311	3373	NaN	NaN	18374	2003	22884
Rinterknecht et al. (2005)	LES-6	5	53.6006	20.0611	151	2	2.8	1	80800	5800	NIST_Certified	0	0	0	17757	1600	NaN	NaN	18265	2003	0
Rinterknecht et al. (2005)	LES-7	5	53.625	20.0417	132	2	2.8	1	26400	3300	NIST_Certified	0	0	0	5897	804	NaN	NaN	18159	2003	0
Rinterknecht et al. (2005)	LES-8	5	53.5111	19.9	255	2	2.8	1	101400	11000	NIST_Certified	0	0	0	20116	2448	NaN	NaN	18473	2003	1590
Rinterknecht et al. (2005)	POL-1	5	53.7739	21.6286	117	2	2.8	1	79000	7100	NIST_Certified	0	0	0	17973	1891	NaN	NaN	18070	2003	0
Rinterknecht et al. (2005)	POL-1B	5	53.7739	21.6286	117	2	2.8	1	71700	8500	NIST_Certified	0	0	0	16305	2131	NaN	NaN	18070	2003	0
Rinterknecht et al. (2005)	POL-2	5	54.2147	21.8589	128	2	2.8	1	77100	6400	NIST_Certified	0	0	0	17317	1720	NaN	NaN	16834	2003	430
Rinterknecht et al. (2005)	POL-3	5	54.195	21.9464	130	2	2.8	1	119700	10400	NIST_Certified	0	0	0	26896	2767	NaN	NaN	16890	2003	9953
Rinterknecht et al. (2005)	POL-4	5	54.2358	22.7897	240	2	2.8	1	83900	7100	NIST_Certified	0	0	0	16842	1696	NaN	NaN	17162	2003	0
Rinterknecht et al. (2005)	POL-4B	5	54.2358	22.7897	240	2	2.8	1	96400	11400	NIST_Certified	0	0	0	19363	2528	NaN	NaN	17162	2003	2148
Rinterknecht et al. (2005)	POL-5	5	54.2039	22.7531	243	2	2.8	1	83200	7200	NIST_Certified	0	0	0	16653	1704	NaN	NaN	17276	2003	0
Rinterknecht et al. (2005)	POL-5B	5	54.2039	22.7531	243	2	2.8	1	102500	12200	NIST_Certified	0	0	0	20535	2696	NaN	NaN	17276	2003	3206
Rinterknecht et al. (2005)	POL-6	5	54.1647	22.9683	211	2	2.8	1	410600	30700	NIST_Certified	0	0	0	86335	8126	NaN	NaN	17439	2003	68843
Rinterknecht et al. (2005)	POL-7	5	54.1642	22.97	195	2	2.8	1	101000	8300	NIST_Certified	0	0	0	21232	2096	NaN	NaN	17439	2003	3740
Rinterknecht et al. (2005)	POL-7B	5 5	54.1642	22.97	195	2	2.8	1	98600	10000	NIST_Certified	0	0	0	20725	2392	NaN	NaN	17439	2003	3233
Rinterknecht et al. (2005)	POM-1	5	53.7236	19.7514	99	1	2.8	1	92100 68800	6300	NIST_Certified	0	0	0	21175	1852	NaN	NaN	17765	2003	3357 0
Rinterknecht et al. (2005) Rinterknecht et al. (2005)	POM-10 POM-11	5	54.15 53.9006	21.9958 22.0167	173 177	1	2.8 2.8	1	77300	5500 5300	NIST_Certified NIST Certified	0	0	0	14628	1415 1434	NaN	NaN	16980	2003 2003	0
Rinterknecht et al. (2005)	POM-12	5	52.8856	14.7914	70	1	2.8	1	30900	3000	NIST_Certified	0	0	0	16391 7305	1434 812	NaN NaN	NaN NaN	17839 18338	2003	0
Rinterknecht et al. (2005)	POM-13	5	52.8856	14.7914	80	1	2.8	1	87300	6200	NIST_Certified	0	0	0	20491	1835	NaN	NaN	18338	2003	2100
Rinterknecht et al. (2005)	POM-14	5	53.3661	14.6508	99	3	2.8	1	76200	5800	NIST_Certified	0	0	0	17795	1666	NaN	NaN	16999	2003	743
Rinterknecht et al. (2005)	POM-15	5	53.3517	14.6436	88	2	2.8	1	35900	4200	NIST Certified	0	0	0	8388	1082	NaN	NaN	17000	2003	0
Rinterknecht et al. (2005)	POM-16	5	53.1669	14.7358	96	1.5	2.8	1	66000	4700	NIST_Certified	0	0	0	15266	1368	NaN	NaN	17725	2003	0
Rinterknecht et al. (2005)	POM-17	5	53.0175	14.9544	60	1.5	2.8	1	51000	4000	NIST Certified	0	0	0	12247	1168	NaN	NaN	18120	2003	0
Rinterknecht et al. (2005)	POM-18	5	53.6133	15.4369	102	1	2.8	1	74200	7800	NIST_Certified	0	0	0	16970	2012	NaN	NaN	17122	2003	0
Rinterknecht et al. (2005)	POM-19	5	53.7592	14.8533	22	2	2.8	1	61400	4900	NIST_Certified	0	0	0	15391	1487	NaN	NaN	16795	2003	0
Rinterknecht et al. (2005)	POM-2	5	53.8444	19.8236	107	2	2.8	1	68100	4800	NIST_Certified	0	0	0	15633	1392	NaN	NaN	17491	2003	0
Rinterknecht et al. (2005)	POM-21	5	53.7117	16.2553	133	2	2.8	1	68600	5100	NIST_Certified	0	0	0	15324	1412	NaN	NaN	17422	2003	0
Rinterknecht et al. (2005)	POM-22	5	53.8906	15.8381	110	1.5	2.8	1	71900	6500	NIST_Certified	0	0	0	16362	1728	NaN	NaN	17078	2003	0
Rinterknecht et al. (2005)	POM-3	5	54.0861	20.9097	117	2	2.8	1	79200	5800	NIST_Certified	0	0	0	17995	1642	NaN	NaN	16942	2003	1000
Rinterknecht et al. (2005)	POM-4	5	53.9569	20.8597	167	1.5	2.8	1	59500	4200	NIST_Certified	0	0	0	12781	1138	NaN	NaN	17290	2003	0
Rinterknecht et al. (2005)	POM-5	5	53.9006	21.2028	175	2	2.8	1	73400	6100	NIST_Certified	0	0	0	15723	1563	NaN	NaN	17408	2003	0
Rinterknecht et al. (2005)	POM-8	5	54.0681	21.6097	138	3	2.8	1	74300	6500	NIST_Certified	0	0	0	16663	1718	NaN	NaN	16948	2003	0
Rinterknecht et al. (2006)	BALTI-10	5	55.635	23.174	120	1	2.8	1	73700	5000	NIST_Certified	0	0	0	16484	1433	NaN	NaN	16000	2004	430
Rinterknecht et al. (2006)	BALTI-11	5	55.635	23.174	120	2	2.8	1	49900	4400	NIST_Certified	0	0	0	11242	1164	NaN	NaN	16000	2004	0
Rinterknecht et al. (2006)	BALTI-12	5	57.095	25.901	227	1	2.8	1	167900	10100	NIST_Certified	0	0	0	33707	2743	NaN	NaN	15078	2004	18575
Rinterknecht et al. (2006)	BALTI-13	5	56.58	27.403	168	2	2.8	1	81300	6000	NIST_Certified	0	0	0	17461	1602	NaN	NaN	16000	2004	1407
Rinterknecht et al. (2006)	BALTI-15	5	56.424	26.076	88	3	2.8	1	67000	4900	NIST_Certified	0	0	0	15766	1437	NaN	NaN	15711	2004	1
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	BALTI-16 BALTI-17	5 5	56.152 56.123	26.461 26.001	105 115	2 1.5	2.8 2.8	1	75100 62700	5200 4300	NIST_Certified NIST Certified	0	0	0	17236 14164	1518 1239	NaN NaN	NaN NaN	16000 16000	2004 2004	1182 0
, ,	BALTI-17 BALTI-18	5	56.123		97	1.5	2.8	1	67500	5200	_	0	0	0							0
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	BALTI-18 BALTI-2	5	55.698	25.466 25.799	113	3.5	2.8	1	67200	5000	NIST_Certified NIST Certified	0	0	0	15537 15500	1466 1429	NaN NaN	NaN NaN	15703 16379	2004 2004	0
Rinterknecht et al. (2006)	BALTI-3	5	55.31	25.431	142	2	2.8	1	74100	5500	NIST_Certified	0	0	0	16394	1509	NaN	NaN	16777	2004	0
Rinterknecht et al. (2006)	BALTI-4	5	55.434	25.509	167	2	2.8	1	78400	6400	NIST_Certified	0	0	0	16902	1659	NaN	NaN	16679	2004	169
Rinterknecht et al. (2006)	BALTI-5	5	55.494	25.657	154	2	2.8	1	61900	4700	NIST Certified	0	0	0	13511	1261	NaN	NaN	16731	2004	0
Rinterknecht et al. (2006)	BALTI-6	5	55.507	25.07	87	2	2.8	1	68500	4900	NIST Certified	0	0	0	16036	1441	NaN	NaN	16086	2004	0
Rinterknecht et al. (2006)	BALTI-7	5	55.383	22.175	67	2	2.8	1	59300	4500	NIST_Certified	0	0	0	14135	1319	NaN	NaN	15900	2004	0
Rinterknecht et al. (2006)	BALTI-8	5	55.666	23.156	132	2	2.8	1	57000	4800	NIST_Certified	0	0	0	12686	1272	NaN	NaN	16000	2004	0
Rinterknecht et al. (2006)	BALTI-9	5	55.718	23.212	123	3	2.8	1	51900	3900	NIST_Certified	0	0	0	11755	1090	NaN	NaN	16000	2004	0
Rinterknecht et al. (2006)	BEL-11	5	54.922	27.195	200	2.5	2.8	1	118500	22600	NIST_Certified	0	0	0	24932	4971	NaN	NaN	19000	2004	5878
Rinterknecht et al. (2006)	BEL-13	5	55.658	27.683	151	2.8	2.8	1	71800	7000	NIST_Certified	0	0	0	15848	1772	NaN	NaN	16697	2004	0
Rinterknecht et al. (2006)	BEL-14	5	55.639	27.375	150	1.7	2.8	1	61900	4700	NIST_Certified	0	0	0	13540	1264	NaN	NaN	16662	2004	0
Rinterknecht et al. (2006)	BEL-15	5	55.699	26.994	144	0.5	2.8	1	69900	6200	NIST_Certified	0	0	0	15227	1586	NaN	NaN	16427	2004	0
Rinterknecht et al. (2006)	BEL-15A	5	55.699	26.994	144	0.5	2.8	1	73900	6200	NIST_Certified	0	0	0	16102	1611	NaN	NaN	16427	2004	0
Rinterknecht et al. (2006)	BEL-16	5	55.544	27.076	152	2	2.8	1	66300	4600	NIST_Certified	0	0	0	14516	1279	NaN	NaN	16787	2004	0
Rinterknecht et al. (2006)	BEL-19	5	54.906	26.906	207	4	2.8	1	85700	6100	NIST_Certified	0	0	0	18103	1622	NaN	NaN	18988	2004	0
Rinterknecht et al. (2006)	BEL-3	5	54.881	25.951	196	3.5	2.8	1	87200	5800	NIST_Certified	0	0	0	18538	1593	NaN	NaN	18899	2004	0

Publication, a	Sample ID	Land	Lat (deg)	Long (deg)	Elev (masl)		Density	Shieldina	10Be-conc		10Be-AMS-std	26Al-conc		26Al-AMS-std	10Be-age	10Be-age-ext-unc	26Al-age	26Al-age-ext-unc		Sample-yr	10Be-inherit
		class, b	(: : 3,	- 5 (5)	. (,	(cm)	(g/cm3)		(at/g)	(at/g)		(at/g)	(at/g)		(yr) c,d	(yr) e	(yr) c,d	(yr) e	(yr) f		(yr) g
Rinterknecht et al. (2006)	EST-1	5	59.431	24.561	12	1.5	2.8	1	37000	3600	NIST_Certified	0	0	0	9220	1027	NaN	NaN	13381	2004	0
Rinterknecht et al. (2006)	EST-10	5	59.607	25.913	16	3	2.8	1	42100	3400	NIST_Certified	0	0	0	10589	1030	NaN	NaN	13483	2004	0
Rinterknecht et al. (2006)	EST-11	5	59.52	25.998	58	2.5	2.8	1	53600	3800	NIST_Certified	0	0	0	12823	1145	NaN	NaN	13556	2004	0
Rinterknecht et al. (2006)	EST-12	5	59.357	26.078	82	2.5	2.8	1	62200	5300	NIST_Certified	0	0	0	14512	1468	NaN	NaN	13692	2004	766
Rinterknecht et al. (2006)	EST-13	5 5	58.508	26.778	81	3	2.8	1	63900	4900	NIST_Certified	0	0	0	15046	1415	NaN	NaN	14363	2004	629 0
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	EST-16 EST-18	5	58.059 57.761	26.379 27.016	158 156	1.5 1.5	2.8 2.8	1	67900 60200	4800 5100	NIST_Certified NIST Certified	0	0	0	14568	1299	NaN	NaN	14647	2004 2004	0
Rinterknecht et al. (2006)	EST-19	5	57.754	27.016	195	2	2.8	1	87500	6000	NIST_Certified	0	0	0	12959	1305	NaN	NaN	14958	2004	3181
Rinterknecht et al. (2006)	EST-2	5	59.429	24.563	24	3.2	2.8	1	40200	3600	NIST_Certified	0	0	0	18197 10030	1593 1050	NaN NaN	NaN NaN	14962 13381	2004	0
Rinterknecht et al. (2006)	EST-21	5	57.697	27.033	290	0.8	2.8	i	65800	4600	NIST_Certified	0	0	0	12297	1088	NaN	NaN	14999	2004	0
Rinterknecht et al. (2006)	EST-23	5	57.703	27.278	243	3.5	2.8	1	62000	4800	NIST Certified	0	0	0	12428	1175	NaN	NaN	15000	2004	0
Rinterknecht et al. (2006)	EST-3	5	59.429	24.563	19	2.5	2.8	1	21800	2500	NIST Certified	0	0	0	5431	689	NaN	NaN	13381	2004	0
Rinterknecht et al. (2006)	EST-4	5	59.147	23.757	21	1.8	2.8	1	41100	3800	NIST Certified	0	0	0	10168	1090	NaN	NaN	13447	2004	0
Rinterknecht et al. (2006)	EST-5	5	59.15	23.754	22	3.5	2.8	1	52100	4600	NIST Certified	0	0	0	13073	1356	NaN	NaN	13447	2004	0
Rinterknecht et al. (2006)	EST-7	5	59.448	25.423	56	1.5	2.8	1	48200	3900	NIST_Certified	0	0	0	11452	1116	NaN	NaN	13517	2004	0
Rinterknecht et al. (2006)	EST-8	5	59.462	25.676	59	2.1	2.8	1	53600	4000	NIST_Certified	0	0	0	12764	1178	NaN	NaN	13556	2004	0
Rinterknecht et al. (2006)	EST-9	5	59.599	25.767	15	2.5	2.8	1	16100	1800	NIST_Certified	0	0	0	4030	500	NaN	NaN	13466	2004	0
Rinterknecht et al. (2006)	GRUDA-1	5	55.073	26.017	201	2	2.8	1	82300	5900	NIST_Certified	0	0	0	17171	1546	NaN	NaN	18702	2004	0
Rinterknecht et al. (2006)	LAT-1	5	57.352	22.725	50	0.5	2.8	1	66800	6100	NIST_Certified	0	0	0	15922	1694	NaN	NaN	14813	2004	1055
Rinterknecht et al. (2006)	LAT-12	5	57.019	22.688	81	1	2.8	1	119400	10200	NIST_Certified	0	0	0	27755	2821	NaN	NaN	15000	2004	12701
Rinterknecht et al. (2006)	LAT-13	5	56.578	21.952	57	1.5	2.8	1	65100	4700	NIST_Certified	0	0	0	15560	1406	NaN	NaN	15000	2004	506
Rinterknecht et al. (2006)	LAT-2	5	57.313	24.758	58	2	2.8	1	65400	5900	NIST_Certified	0	0	0	15694	1655	NaN	NaN	15000	2004	640
Rinterknecht et al. (2006)	LAT-2B	5	57.313	24.758	58	2	2.8	1	94500	10800	NIST_Certified	0	0	0	22717	2886	NaN	NaN	15000	2004	7663
Rinterknecht et al. (2006)	LAT-3	5	57.621	25.224	58	2	2.8	1	74900	6700	NIST_Certified	0	0	0	17974	1885	NaN	NaN	14940	2004	2980
Rinterknecht et al. (2006)	LAT-3B	5	57.621	25.224	58	2	2.8	1	57500	5100	NIST_Certified	0	0	0	13784	1435	NaN	NaN	14940	2004	0
Rinterknecht et al. (2006)	LAT-4	5	57.748	25.163	56	2	2.8	1	62100	5400	NIST_Certified	0	0	0	14916	1531	NaN	NaN	14810	2004	52
Rinterknecht et al. (2006)	LAT-5	5 5	57.151	25.585	200	2	2.8	1	98900	8400	NIST_Certified	0	0	0	20503	2072	NaN	NaN	15013	2004	5436 0
Rinterknecht et al. (2006)	LAT-7	-	56.655	26.287	120	2	2.8	1	66500	5900	NIST_Certified	0	0	-	14987	1561	NaN	NaN	15554	2004	-
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	LAT-8 LAT-9	5 5	56.801 57.848	24.84 24.868	56 57	1.5 1.6	2.8 2.8	1	56500 43900	4000 3600	NIST_Certified NIST Certified	0	0	0	13546	1208	NaN	NaN	15000	2004 2004	0
, ,	LAT-9 LIT-1	5	54.289	25.096	150	2	2.8	1	88000	7400	NIST_Certified	0	0	0	10479	1030	NaN	NaN	14693	2004	767
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	LIT-2	5	55.544	25.096	187	2	2.8	1	83100	7300	NIST_Certified	0	0	0	19379 17554	1944 1816	NaN NaN	NaN NaN	18558 16747	2004	753
Rinterknecht et al. (2006)	LIT-3	5	55.544	25.846	187	2	2.8	1	75500	6800	NIST Certified	0	0	0	15942	1679	NaN	NaN	16747	2004	0
Rinterknecht et al. (2006)	LIT-3B	5	55.544	25.846	187	2	2.8	i	97000	12400	NIST_Certified	0	0	0	20505	2858	NaN	NaN	16747	2004	3704
Rinterknecht et al. (2006)	LIT-6	5	54.288	25.322	162	1.5	2.8	1	151100	9300	NIST Certified	0	0	0	32843	2707	NaN	NaN	18803	2004	13986
Rinterknecht et al. (2006)	LIT-7	5	54.263	25.258	193	1.5	2.8	1	98700	7000	NIST Certified	0	0	0	20729	1855	NaN	NaN	18752	2004	1923
Rinterknecht et al. (2006)	LIT-8	5	54.273	24.021	190	3.8	2.8	1	70200	5600	NIST Certified	0	0	0	15046	1453	NaN	NaN	17452	2004	0
Rinterknecht et al. (2006)	LIT-9	5	54.52	24.315	176	2.6	2.8	1	70900	5400	NIST Certified	0	0	0	15248	1427	NaN	NaN	17149	2004	0
Rinterknecht et al. (2006)	MLIT-1	5	55.59	24.309	57	2	2.8	1	71400	5100	NIST Certified	0	0	0	17244	1549	NaN	NaN	15943	2004	1247
Rinterknecht et al. (2006)	MLIT-11	5	57.361	25.842	183	1	2.8	1	70800	5100	NIST_Certified	0	0	0	14776	1333	NaN	NaN	15000	2004	0
Rinterknecht et al. (2006)	MLIT-13	5	57.498	26.941	162	1.5	2.8	1	80000	5100	NIST_Certified	0	0	0	17151	1437	NaN	NaN	15000	2004	2097
Rinterknecht et al. (2006)	MLIT-14	5	57.412	26.964	194	1.5	2.8	1	58300	5100	NIST_Certified	0	0	0	12083	1245	NaN	NaN	15000	2004	0
Rinterknecht et al. (2006)	MLIT-15	5	57.483	27.195	179	1.5	2.8	1	69700	5500	NIST_Certified	0	0	0	14677	1407	NaN	NaN	15000	2004	0
Rinterknecht et al. (2006)	MLIT-16	5	57.058	27.364	124	2	2.8	1	59700	6800	NIST_Certified	0	0	0	13386	1692	NaN	NaN	15194	2004	0
Rinterknecht et al. (2006)	MLIT-17	5	57.034	27.166	106	3	2.8	1	66800	5100	NIST_Certified	0	0	0	15403	1444	NaN	NaN	15322	2004	27
Rinterknecht et al. (2006)	MLIT-19	5	57.023	27.016	96	2	2.8	1	62100	5400	NIST_Certified	0	0	0	14343	1472	NaN	NaN	15362	2004	0
Rinterknecht et al. (2006)	MLIT-2	5	55.67	24.19	50	1.5	2.8	1	51200	4100	NIST_Certified	0	0	0	12386	1199	NaN	NaN	15894	2004	0
Rinterknecht et al. (2006)	MLIT-20	5	56.832	27.553	116	1.5	2.8	1	21800	3500	NIST_Certified	0	0	0	4902	831	NaN	NaN	15519	2004	0
Rinterknecht et al. (2006)	MLIT-21	5	56.906	26.288	173	2	2.8	1	66400	5400	NIST_Certified	0	0	0	14148	1384	NaN	NaN	15317	2004	0
Rinterknecht et al. (2006)	MLIT-22	5	56.972	26.242	216	2	2.8	1	74200	6400	NIST_Certified	0	0	0	15133	1544	NaN	NaN	15242	2004	0
Rinterknecht et al. (2006)	MLIT-23	5	56.648	26.259	120	2	2.8	1	68800	6100	NIST_Certified	0	0	0	15508	1614	NaN	NaN	15549	2004	0
Rinterknecht et al. (2006)	MLIT-3	5	56.125	21.607	55	1.5	2.8	1	72000	5000	NIST_Certified	0	0	0	17275	1524	NaN	NaN	15487	2004	1734
Rinterknecht et al. (2006)	MLIT-4 MLIT-5	5	56.125	21.607	55 68	1.5	2.8	1	62600	5500	NIST_Certified	0	0	0	15011	1552	NaN	NaN	15487	2004	0
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	MLII-5 MLIT-6	5 5	56.125 56.125	21.643 21.643	68 68	2	2.8 2.8	1	64900 74500	4900 5400	NIST_Certified NIST Certified	0	0	0	15415	1435	NaN	NaN	15601	2004 2004	2050
Rinterknecht et al. (2006) Rinterknecht et al. (2006)	MLII-6 MLIT-7	5	56.125 56.125	21.643	68 68	1	2.8	1	74500 44700	5400 4400	NIST_Certified	0	0	0	17705	1605	NaN	NaN	15601	2004	2050 0
Rinterknecht et al. (2006)	MLIT-8	5	56.125	21.643	68	1.5	2.8	1	66300	5000	NIST_Certified	0	0	0	10514 15681	1182 1458	NaN NaN	NaN NaN	15601 15601	2004	26
Rinterknecht et al. (2006)	MLIT-9	5	56.125	21.643	68	1.0	2.8	1	119200	7300	NIST_Certified	0	0	0	28160	2312	NaN NaN	nan NaN	15601	2004	12505
Rinterknecht et al. (2006)	NLIT-1	5	56.198	23.84	50	2	2.8	1	63000	5500	NIST_Certified	0	0	0	15286	1573	NaN	NaN	15000	2004	232
Rinterknecht et al. (2006)	NLIT-2	5	56.097	21.276	38	1.5	2.8	1	54500	4400	NIST_Certified	0	0	0	13303	1295	NaN	NaN	15000	2004	0
Rinterknecht et al. (2006)	NLIT-3	5	56.076	21.217	25	2	2.8	1	64700	4700	NIST Certified	0	0	0	16099	1461	NaN	NaN	14997	2004	1048
Rinterknecht et al. (2006)	NLIT-4	5	56.564	27.978	120	2	2.8	1	68700	5100	NIST_Certified	0	0	0	15506	1427	NaN	NaN	15897	2004	0
Rinterknecht et al. (2012a)	BER-97-01	5	53.3491	13.6505	82	2	2.7	0.9999	75270	5050	NIST 27900	0	0	0	16994	1468	NaN	NaN	17744	1997	0
,—,		-			-								-	-							-

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Rinterknecht et al. (2012a)	BER-97-02	5	53.325	13.6642	80	2	2.7	0.9884	70830	3620	NIST_27900	0	0	0	16206	1207	NaN	NaN	17886	1997	0
Rinterknecht et al. (2012a)	BER-97-03	5	53.2814	13.6364	91	2	2.7	0.9999	60130	2160	NIST_27900	0	0	0	13440	872	NaN	NaN	18050	1997	0
Rinterknecht et al. (2012a)	BER-97-04	5	53.2629	13.6493	80	2	2.7	1	72280	4280	NIST_27900	0	0	0	16353	1314	NaN	NaN	18064	1997	0
Rinterknecht et al. (2012a)	BER-97-05	5	53.264	13.648	60	2	2.7	1	74940	3970	NIST_27900	0	0	0	17318	1313	NaN	NaN	18064	1997	0
Rinterknecht et al. (2014a)	MVP-1	5	53.3272	13.4503	113	1.3	2.7	1	73320	5060	NIST_27900	0	0	0	15933	1400	NaN	NaN	18081	2012	0
Rinterknecht et al. (2014a)	MVP-10	5	53.6242	11.5953	45	1.7	2.7	1	28530	4950	NIST_27900	0	0	0	6651	1210	NaN	NaN	18803	2012	0
Rinterknecht et al. (2014a)	MVP-12	5	53.6678	10.9508	51	3.5	2.7	1	75540	6690	NIST_27900	0	0	0	17807	1853	NaN	NaN	18974	2012	0
Rinterknecht et al. (2014a)	MVP-13	5	53.6678	10.9508	50	3.5	2.7	1	63220	5680	NIST_27900	0	0	0	14908	1567	NaN	NaN	18974	2012	0
Rinterknecht et al. (2014a)	MVP-15	5	53.8658	11.8275	115	1.8	2.7	1	49900	8730	NIST_27900	0	0	0	10825	1987	NaN	NaN	18257	2012	0
Rinterknecht et al. (2014a)	MVP-16	5	53.9272	11.7106	82	1.1	2.7	1	81710	3610	NIST_27900	0	0	0	18266	1277	NaN	NaN	18198	2012	6
Rinterknecht et al. (2014a)	MVP-17	5	53.5722	13.1439	59	1.5	2.7	1	56090	6910	NIST_27900	0	0	0	12891	1738	NaN	NaN	17702	2012	0
Rinterknecht et al. (2014a)	MVP-18	5	53.4494	12.9647	90	3.7	2.7	1	80010	8230	NIST_27900	0	0	0	18157	2117	NaN	NaN	18182	2012	0
Rinterknecht et al. (2014a)	MVP-19	5	53.4503	12.9647	99	1	2.7	1	69790	4210	NIST_27900	0	0	0	15334	1244	NaN	NaN	18182	2012	0
Rinterknecht et al. (2014a)	MVP-2	5	53.3244	13.2572	94	2.3	2.7	1	110500	25240	NIST_27900	0	0	0	24742	5842	NaN	NaN	18194	2012	6486
Rinterknecht et al. (2014a)	MVP-20	5	53.4503	12.9647	100	2.3	2.7	1	88420	4100	NIST_27900	0	0	0	19638	1402	NaN	NaN	18182	2012	1394
Rinterknecht et al. (2014a)	MVP-21	5	54.1136	11.8136	35	1.2	2.7	1	60460	3030	NIST_27900	0	0	0	14192	1047	NaN	NaN	17233	2012	0
Rinterknecht et al. (2014a)	MVP-22	5	54.1058	11.7811	107	2.2	2.7	1	65600	6030	NIST_27900	0	0	0	14397	1539	NaN	NaN	17367	2012	0
Rinterknecht et al. (2014a)	MVP-23	5	53.665	11.9778	45	2.2	2.7	1	65050	8380	NIST_27900	0	0	0	15259	2138	NaN	NaN	18503	2012	0
Rinterknecht et al. (2014a)	MVP-3	5	53.3042	13.2523	76	8.0	2.7	1	82330	5390	NIST_27900	0	0	0	18523	1577	NaN	NaN	18229	2012	232
Rinterknecht et al. (2014a)	MVP-4	5	54.0242	13.72	27	1.7	2.7	1	39360	2870	NIST_27900	0	0	0	9356	850	NaN	NaN	16674	2012	0
Rinterknecht et al. (2014a)	MVP-5	5	53.7483	13.5828	39	3.5	2.7	1	80370	4060	NIST_27900	0	0	0	19204	1424	NaN	NaN	16876	2012	2266
Rinterknecht et al. (2014a)	MVP-6	5	53.7708	13.6136	10	2.4	2.7	1	70560	3900	NIST_27900	0	0	0	17228	1334	NaN	NaN	16854	2012	312
Rinterknecht et al. (2014a)	MVP-7	5	53.7708	13.6144	10	1.5	2.7	1	53420	3120	NIST_27900	0	0	0	12933	1030	NaN	NaN	16854	2012	0
Rinterknecht et al. (2014a)	MVP-8	5	53.7719	13.6169	10	2.7	2.7	1	60190	3410	NIST_27900	0	0	0	14723	1154	NaN	NaN	16854	2012	0
Rinterknecht et al. (2014a)	MVP-9	5	53.7036	13.5708	30	2.3	2.7	1	78230	5670	NIST_27900	0	0	0	18688	1695	NaN	NaN	16899	2012	1727
Shakesby et al. (2008)	A1	5	61.425	7.77	1600	4.3	2.77	0.987	149300	6600	NIST_30600	919000	57000	Z92-0222	7982	557	7861	894	10301	2006	0
Shakesby et al. (2008)	A2	5	61.425	7.77	1600	4.6	2.63	0.987	174800	7700	NIST_30600	1071000	76000	Z92-0222	9354	652	9172	1091	10301	2006	0
Shakesby et al. (2008)	A3	5	61.423	7.771	1600	4.8	2.58	0.988	174700	8200	NIST_30600	1174000	93000	Z92-0222	9348	669	10057	1248	10301	2006	0
Shakesby et al. (2008)	T1	5	61.75	7.75	1600	4.4	2.75	0.99	28400	2600	NIST_30600	0	0	0	1510	160	NaN	NaN	10029	2006	0
Shakesby et al. (2008)	T2	5	61.75	7.75	1610	4	2.6	0.94	0	0	0	166600	34400	Z92-0222	NaN	NaN	1470	334	10029	2006	NaN
Shakesby et al. (2008)	T3	5	61.75	7.75	1615	4.1	3.45	0.987	21400	6500	NIST_30600	231500	47700	Z92-0222	1135	350	1961	445	10029	2006	0
Stroeven et al. (2002a)	Kiuhtislompolo-99-06		67.7069	23.2794	350	4	2.7	1	227315	14893	NIST_Certified	0	0	0	39902	3416	NaN	NaN	10135	1999	29718
Stroeven et al. (2002a)	Lamuvaara-99-04	4	67.6814	23.1953	300	4	2.7	1	367096	21434	NIST_Certified		172099		68197	5507	56842	7224	10121	1999	58027
Stroeven et al. (2002a)	Naakakarhakka-99-0		67.6772	23.0725	360	4	2.7	1	470742	24710	NIST_Certified		175728		82713	6347	73858	8561	10108	1999	72556
Stroeven et al. (2002b)	Bieskecohka	2	68.266425	19.592944		3	2.7	0.9997	107104	12501	NIST_Certified	0	0	0	14882	1920	NaN	NaN	9980	1999	4853
Stroeven et al. (2002b)	Karkevagge	5	68.38767	18.33448	840	2	2.7	0.9898	88625	9843	NIST_Certified	0	0	0	9678	1197	NaN	NaN	10075	1998	0
Stroeven et al. (2002b)	Riksgransen	2	68.4388	18.1009	510	1	2.7	0.9985	105323	8313	NIST_Certified	0	0	0	15275	1465	NaN	NaN	10240	1998	4987
Stroeven et al. (2006)	Darfalcohkka	3 4	67.9275	18.6342	1790 350	2	2.75	0.9991	1541054	52912	NIST_Certified	0	0	0	77790	5062	NaN	NaN	9808	1999	67933
Stroeven et al. (2006) Stroeven et al. (2006)	Kiuhtisvaara Tjeuralako	3	67.7069 67.9169	23.2794 18.6691	1560	3	2.75 2.75	1 0.9869	115881 792004	8872 33362	NIST_30200 NIST Certified	2048521 0	73821 0	KNSTD 0	17812 48475	1674 3352	50539 NaN	5252 NaN	10135 9810	1999 1998	7628
, ,	Masi-119	5	69.41943	23.60467	300	2	2.75	0.96252	792004	4003	NIST_30200		42516	KNSTD						2002	38617 2188
Stroeven et al. (2011) Stroeven et al. (2011)	Masi-120	5	69.41943	23.60467	300	5	2.7	0.96252	79869	2566	NIST 30200	361823 0	42516	0	13124 12143	968 786	9361 NaN	1419	10884 10884	2002	1207
Stroeven et al. (2011)	Masi-121	5	69.41943	23.60467	300	5	2.7	0.96252	79851	4281	NIST Certified	0	0	0				NaN		2002	4228
Stroeven et al. (2011)	Masi-122	5	69.3663	23.6145	285	7	2.7	0.9629	88596	4769	NIST 30200	0	0	0	15164	1156 1177	NaN NaN	NaN NaN	10884 10825	2002	4528
Stroeven et al. (2011)	Masi-123	5 5	69.3663	23.6145	285	5	2.7	0.81336	66779	4147	NIST_Certified	0	0	0	15405			nan NaN		2002	4318
Stroeven et al. (2011)	Masi-124	5	69.3663	23.6145	285	7	2.7	0.86045	377846	8915	NIST_Certified	0	0	0	15195 74469	1253 4456	NaN NaN	nan NaN	10825 10825	2002	63592
Stroeven et al. (2011)	Masi-125	5	69.3663	23.6145	285	8	2.7	0.86045	64983	3200	NIST_30200	373675	46734	KNSTD	12715	930	11514	1817	10825	2002	1838
Stroeven et al. (2011)	Masi-120	2	69.32034	23.49755	540	2	2.7	0.963	90865	3570	NIST_30200	0	0	0	11852	792	NaN	NaN	10023	2002	1033
Stroeven et al. (2011)	Masi-131	5	69.32034	23.49755	540	2	2.7	0.9629	95905	4515	NIST_30200	0	0	0					10767	2002	1694
Stroeven et al. (2011)	S-03-04	5	58.53402	13.75966	95	2	2.65	1	57339	3679	KNSTD	0	0	0	12513 11345	897 953	NaN NaN	NaN NaN	11510	2002	0
Stroeven et al. (2015)	S-03-04 S-03-05	5	58.53402	13.75966	95	2	2.65	1	50448	3961	KNSTD	0	0	0	9978	953 952	NaN	NaN	11510	2003	0
Stroeven et al. (2015)	S-03-06	5	58.5332	13.76458	100	2	2.65	1	53962	5086	KNSTD	0	0	0	10619	1155	NaN	NaN	11510	2003	0
Stroeven et al. (2015)	S-03-10	5	58.50514	13.59663	110	5	2.65	1	56553	2407	KNSTD	0	0	0	11283	776	NaN	NaN	11694	2003	0
Stroeven et al. (2015)	S-03-10	5	58.51637	13.61215	105	10	2.65	1	43495	3124	NIST_30000	317327	20214	KNSTD	9347	776 841	10673	1225	11094 11093 (m)	2003	0
Stroeven et al. (2016)	98-04	2	67.9208	18.205167	1480	1	2.65	1	222219	12762	NIST Certified	0	0	0	13942	1101	NaN	NaN	9795	1998	4099
Stroeven et al. (2016)	98-06	2	67.2412	17.677	1290	0.5	2.65	0.9963	179327	19004	NIST 30200	0	0	0	11673	1391	NaN	NaN	9684	1998	1941
Stroeven et al. (2016)	98-07	1	67.647957			1	2.65	0.9749	38023	17562	NIST Certified	0	0	0	3520	1638	NaN	NaN	9755	1998	0
Stroeven et al. (2016)	98-08	i	67.64837	18.412917	1070	0.5	2.65	0.9992	339259	75265	NIST 30200	0	0	0	26553	6102	NaN	NaN	9755	1998	16750
Stroeven et al. (2016)	98-08	1	67.64837	18.412917	1070	0.5	2.65	0.9992	313950	15203	NIST Certified	0	0	0	27698	2019	NaN	NaN	9755	1998	17895
Stroeven et al. (2016)	98-12	5	67.92973	18.88982	890	2	2.65	0.9987	107447	14490	NIST_Certified	0	0	0	11161	1625	NaN	NaN	9833	1998	1280
Stroeven et al. (2016)	98-16	5	68.40075	18.31198	700	2	2.65	0.9799	68271	7610	NIST_Certified	0	0	0	8527	1058	NaN	NaN	10086	1998	0
Stroeven et al. (2016)	98-18	5	67.18845	18.89735	920	5	2.65	1	108583	13685	NIST_Certified	0	0	Ö	11279	1550	NaN	NaN	9735	1998	1496
Stroeven et al. (2016)	98-19	5	67.155	18.8475	890	0.5	2.8	0.9998	223510	25836	NIST 30200	0	0	0	20446	2620	NaN	NaN	9728	1998	10670
(-010)		-										-	-	-	_00	2020			0.20		

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)		10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26AI-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Stroeven et al. (2016)	98-20	3	67.1534	18.8616	920	7	2.8	0.9975	364213	18067	NIST_30200	0	0	0	34514	2547	NaN	NaN	9729	1998	24737
Stroeven et al. (2016)	98-21	2	67.2314	17.678	1290	0.5	2.65	0.9963	276831	15799	NIST_30200	0	0	0	18049	1422	NaN	NaN	9683	1998	8318
Stroeven et al. (2016)	98-21	2	67.2314	17.678	1290	0.5	2.65	0.9963	259285	17295	NIST_Certified	0	0	0	19055	1641	NaN	NaN	9683	1998	9324
Stroeven et al. (2016)	99-03	4	67.7244	23.3561	394	2	2.65	1	113022	243598	NIST_Certified	0	0	0	18587	40259	NaN	NaN	10147	1999	8391
Stroeven et al. (2016)	99-08	3	68.5492	20.3558	740	5	2.65	1	230102	9118	NIST_30200	0	0	0	24818	1668	NaN	NaN	10176	1999	14593
Stroeven et al. (2016)	99-09	2	69.0203	20.4058	955	2	2.65	1	89887	8945	NIST_Certified	0	0	0	8760	993	NaN	NaN	10522	1999	0
Stroeven et al. (2016)	99-14	5	67.6806	19.109	940	4	2.65	0.993	730453	18283	KNSTD	0	0	0	65364	3942	NaN	NaN	9810	1999	55505
Stroeven et al. (2016)	99-16	5	68.4281	19.3647	1565	6	2.65	0.935	0	0	0	11064622	350626	KNSTD	NaN	NaN	105740	11132	10057	1999	NaN
Stroeven et al. (2016)	99-21A	5	67.9275	18.6342	1790	4	2.65	0.9991	1387438	74280	NIST_Certified	9454134	478960	KNSTD	71027	5487	68792	7647	9808	1999	61170
Stroeven et al. (2016)	99-23	5	68.0569	18.8367	1090	1	2.65	0.9977	0	0	0	647988	40773	KNSTD	NaN	NaN	7861	898	9868	1999	NaN
Stroeven et al. (2016)	99-24	5	68.0544	18.83	1090	1	2.65	0.9977	0	0	0	1308708	87801	KNSTD	NaN	NaN	15940	1865	9868	1999	NaN
Stroeven et al. (2016)	99-30	5	68.6536	17.6869	220	2	2.65	0.9962	69256	9462	NIST_Certified	0	0	0	13425	1978	NaN	NaN	11048	1999	2328
Stroeven et al. (2016)	99-32	5	68.6639	16.9275	310	3	2.65	0.9973	174413	13206	NIST_Certified	0	0	0	31222	2923	NaN	NaN	13210	1999	17963
Stroeven et al. (2016)	99-45	5	66.6164	18.0844	870	2	2.65	1	0	0	0	3113913	133921	KNSTD	NaN	NaN	47088	5015	9699	1999	NaN
Stroeven et al. (2016)	99-47	5	66.62	18.0503	874	4	2.65	1	0	0	0	2870895	149270	KNSTD	NaN	NaN	43900	4848	9697	1999	NaN
Stroeven et al. (2016)	BW-01	5	63.16638	12.49911	985	2	2.65	0.9982	125250	4578	KNSTD	0	0	0	10600	691	NaN	NaN	10496	2002	52
Stroeven et al. (2016)	BW-02	5	63.16638	12.49911	970	2	2.65	0.9982	132727	9425	NIST 30200	840020	85293	KNSTD	11645	1040	11639	1626	10496	2002	1097
Stroeven et al. (2016)	BW-04	5	63.24001	12.83485	900	3	2.65	0.9998	98134	4728	KNSTD	0	0	0	8990	651	NaN	NaN	10366	2002	0
Stroeven et al. (2016)	BW-05	5	63.15251	12.89508	615	8	2.65	0.9998	122121	4733	NIST 30200	0	0	0	15400	1025	NaN	NaN	10315	2002	5033
Stroeven et al. (2016)	BW-08	5	63.2285	12.34316	1460	1	2.65	1	298083	16452	KNSTD	0	0	0	16853	1304	NaN	NaN	10609	2002	6192
Stroeven et al. (2016)	CH-02-00	5	67.67228	23.12806	320	7	2.65	1	268273	10172	NIST 30200	1838169	81158	KNSTD	44125	2936	48141	5153	10111	2000	33964
Stroeven et al. (2016)	CH-05-00	5	67.68056	23.16308	316	4	2.65	0.9998	258494	12106	NIST_30200	707570	61321	KNSTD	41647	3001	17899	2319	10116	2000	31481
Stroeven et al. (2016)	Hunnebostrand MJ-1		58.4328	11.305	60	8	2.65	1	74430	6877	NIST 30200	430448	46916	KNSTD	16422	1763	14968	2178	11015 (n)	2000	5357
Stroeven et al. (2016)	Hunnebostrand_MJ-1		58.4328	11.305	60	5	2.65	1	100358	4558	NIST_30200	504108	61174	KNSTD	21645	1532	17134	2660	11015 (n)	2000	10580
Stroeven et al. (2016)	K-04-03	5	66.8595	40.1738	254	3	2.65	1	1895609	61305	NIST 30000	0	0	0	351326	24105	NaN	NaN	14585	2004	336687
Stroeven et al. (2016)	K-04-04	5	66.8595	40.1738	254	3	2.65	1	1553521	50680	NIST_30000	0	0	0	283192	19138	NaN	NaN	14585	2004	268553
Stroeven et al. (2016)	K-04-05	5	66.8595	40.1738	254	3	2.65	1	2436879	72373	NIST_30000	0	0	0	464108	32095	NaN	NaN	14585	2004	449469
Stroeven et al. (2016)	K-04-12	5	66.3648	37.6444	192	2	2.65	1	88582	2591	NIST_30600	0	0	0	15700	965	NaN	NaN	14126	2004	1520
Stroeven et al. (2016)	K-04-12 K-04-13	5	66.3648	37.6444	192	2	2.65	1	90108	4178	NIST 30600	0	0	0						2004	1792
, ,		5 5						1			NIST_30600	0	0	0	15972	1139	NaN	NaN	14126		
Stroeven et al. (2016)	K-04-14	5	66.3648	37.6444 33.6549	192 450	2	2.65	0.9961	85124	2496 7056	NIST 30000	0	0	0	15085	928	NaN	NaN	14126	2004 2004	905 4520
Stroeven et al. (2016)	K-04-22	5	67.6658			1			119325		_	0	0	0	16558	1329	NaN	NaN	11984		4520 0
Stroeven et al. (2016)	K-04-23	-	67.6673	33.6581	456	-	2.65	0.9961	86467	4958	NIST_30000	-	-	-	11916	940	NaN	NaN	11984	2004	-
Stroeven et al. (2016)	K-04-24	5	67.6673	33.6581	456	5	2.65	0.9961	101663	5446	NIST_30000	0	0	0	14482	1103	NaN	NaN	11984	2004	2444
Stroeven et al. (2016)	K-04-25	5	67.5028	31.2315	197	3	2.65	0.9996	93854	4753	NIST_30000	0	0	0	16991	1261	NaN	NaN	11299	2004	5638
Stroeven et al. (2016)	K-04-26	5	67.5028	31.2315	197	3	2.65	0.9996	130097	9656	NIST_30000	0	0	0	23592	2175	NaN	NaN	11299	2004	12239
Stroeven et al. (2016)	K-04-27	5	67.5028	31.2315	197	3	2.65	0.9996	395369	14091	NIST_30000	0	0	0	72575	4769	NaN	NaN	11299	2004	61222
Stroeven et al. (2016)	K-04-37	5	68.0079	34.419	240	1	2.65	1	89969	4359	NIST_30000	0	0	0	15269	1110	NaN	NaN	12360	2004	2855
Stroeven et al. (2016)	K-04-38	5	68.0079	34.419	235	1	2.65	0.9998	80637	2936	NIST_30600	0	0	0	13482	879	NaN	NaN	12360	2004	1068
Stroeven et al. (2016)	K-04-39	5	68.0079	34.419	240	4	2.65	1	121848	4137	NIST_30600	0	0	0	20801	1330	NaN	NaN	12360	2004	8387
Stroeven et al. (2016)	Lof-A1	3	69.2769	16.0039	350	2	2.65	0.999	113447	5287	NIST_Certified	0	0	0	19195	1373	NaN	NaN	18320	2000	825
Stroeven et al. (2016)	Lof-A3	5	69.2553	16.0764	40	2	2.65	0.9986	98390	6097	KNSTD	0	0	0	19851	1637	NaN	NaN	18212	2000	1589
Stroeven et al. (2016)	Lof-A4	5	69.2625	16.0667	40	2	2.65	0.9986	106157	5657	NIST_Certified	0	0	0	24722	1883	NaN	NaN	18238	2000	6434
Stroeven et al. (2016)	MJ-18	2	58.4328	11.305	65	3	2.65	1	83251	5156	NIST_30200	0	0	0	17556	1446	NaN	NaN	11015 (n)	2000	6491
Stroeven et al. (2016)	MJ-20	2	58.4378	11.2511	30	3	2.65	1	70232	4226	NIST_30200	0	0	0	15376	1246	NaN	NaN	6555 (o)	2000	8771
Stroeven et al. (2016)	Muddus_CH-01-00	2	67.03486	20.05736	667	5	2.65	1	202390	10344	NIST_30200	1262421	120007	KNSTD	23477	1752	23175	3146	9791	2000	13636
Stroeven et al. (2016)	Parkajoki_CH-03-00		67.67228	23.12806	320	5	2.65	1	127840	5588	NIST_30200	1228742	103331	KNSTD	20570	1433	31412	4041	10111	2000	10409
Stroeven et al. (2016)	Parkajoki_CH-04-00	4	67.55831	23.05458	425	5	2.65	1	532581	16028	NIST_30200	2814239	244443	KNSTD	78518	4936	66101	8778	10081	2000	68387
Stroeven et al. (2016)	Parkajoki_CH-06-00	4	67.69867	23.01967	418	5	2.65	1	333924	12721	NIST_30200	1770135	195728	KNSTD	49162	3281	41321	6141	10105	2000	39007
Stroeven et al. (2016)	S-02-03	3	68.14707	18.98747	1535	1	2.65	1	531255	15822	NIST_30200	0	0	0	28381	1757	NaN	NaN	9909	2002	18420
Stroeven et al. (2016)	S-02-04	5	68.14707	18.98747	1535	1	2.65	1	360439	9228	NIST_30200	2228699	87652	KNSTD	19212	1150	18805	1947	9909	2002	9251
Stroeven et al. (2016)	S-02-06	5	68.20166	19.04479	920	8	2.65	0.985	103008	7154	NIST_Certified	0	0	0	11077	976	NaN	NaN	9933	2002	1092
Stroeven et al. (2016)	S-02-08	1	68.17399	18.97751	630	5	2.65	0.995	121131	8333	NIST_Certified	0	0	0	16335	1432	NaN	NaN	9919	2002	6364
Stroeven et al. (2016)	S-02-09	5	68.05218	18.83181	1075	5	2.65	0.9957	112834	5742	NIST_Certified	0	0	0	10256	761	NaN	NaN	9868	2002	336
Stroeven et al. (2016)	S-02-10	5	68.05446	18.82903	1085	2	2.65	0.9969	150242	6627	NIST_30200	0	0	0	11715	817	NaN	NaN	9868	2002	1795
Stroeven et al. (2016)	S-02-12	5	68.05333	18.82992	1090	1	2.65	0.9968	297396	7800	NIST_30200	0	0	0	22970	1383	NaN	NaN	9868	2002	13050
Stroeven et al. (2016)	S-02-15	5	68.05709	18.8363	1120	1	2.65	0.9988	188213	6603	NIST_Certified	0	0	0	15910	1026	NaN	NaN	9868	2002	5990
Stroeven et al. (2016)	S-02-19	1	68.185	18.77	1055	7	2.75	0.9845	671577	12819	NIST_30200	0	0	0	57380	3322	NaN	NaN	9917	2002	47411
Stroeven et al. (2016)	S-02-23	5	67.83954	20.89955	350	2	2.65	1	83986	4202	NIST_30200	447074	36222	KNSTD	12754	940	10700	1341	9960	2002	2742
Stroeven et al. (2016)	S-02-26B	5	67.1812	18.9081	980	3	2.65	0.9856	395257	10251	NIST 30200	2135919	120433	KNSTD	34718	2091	29719	3325	9734	2002	24932
Stroeven et al. (2016)	S-02-29	5	67.50709	19.97966	543	1	2.65	1	71580	3080	KNSTD	0	0	0	8768	605	NaN	NaN	9851	2002	0
Stroeven et al. (2016)	S-02-31	5	67.5068	19.97883	540	3	2.65	1	223917	11286	NIST_30200	0	0	0	28746	2134	NaN	NaN	9851	2002	18843
Stroeven et al. (2016)	S-02-39	5	69.21979	23.59879	295	5	2.65	1	85900	2900	NIST_30200	0	0	0	14013	893	NaN	NaN	10663	2002	3298
Stroeven et al. (2016)	S-02-40	5	69.21979		295	4	2.65	1	76444	6642	NIST_30200	0	0	0	12365	1268	NaN	NaN	10663	2002	1650
5.05075 5.Ca (2010)	0 0L 10	•	20.2.070	20.00070	200	•	2.00	•		00 .L		•	·	ŭ	12000	1200	ITUIT	14014	10000		

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)		Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-und (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Stroeven et al. (2016)	S-02-41	5	69.21979	23.59879	295	5	2.65	1	84298	3456	NIST 30200	0	0	0	13751	933	NaN	NaN	10663	2002	3036
Stroeven et al. (2016)	S-02-47	5	70.1692	23.89733	400	1	2.65	0.9989	100122	2883	NIST_30200	0	0	0	14212	870	NaN	NaN	12704	2002	1456
Stroeven et al. (2016)	S-02-48	5	70.1692	23.89733	400	1	2.65	0.9989	110370	2863	NIST 30200	0	0	0	15673	940	NaN	NaN	12704	2002	2917
Stroeven et al. (2016)	S-02-49	5	70.1692	23.89733	400	1	2.65	0.9989	92533	4688	NIST Certified	0	0	0	14804	1098	NaN	NaN	12704	2002	2048
Stroeven et al. (2016)	S-02-50	5	70.1692	23.89733	400	1	2.65	0.9989	77947	4099	NIST Certified	0	0	0	12463	940	NaN	NaN	12704	2002	0
Stroeven et al. (2016)	S-02-51	5	68.27776	22.04514	380	5	2.65	0.9996	83884	7099	NIST_30200	0	0	0	12652	1273	NaN	NaN	10204	2002	2396
Stroeven et al. (2016)	S-02-52	5	68.27776	22.04514	380	5	2.65	0.9996	91644	4795	NIST 30200	0	0	0	13826	1041	NaN	NaN	10204	2002	3570
Stroeven et al. (2016)	S-02-53	5	68.27776	22.04514	380	5	2.65	0.9996	307725	9016	NIST_Certified	0	0	0	52829	3279	NaN	NaN	10204	2002	42573
Stroeven et al. (2016)	S-02-53	2	68.26	22.04081	530	3	2.65	0.999	119809	7152	KNSTD	0	0	0	15081	1216	NaN	NaN	10204	2002	4830
Stroeven et al. (2016)	S-02-55	5	68.26	22.04081	510	2	2.65	0.999	149596	6493	NIST_Certified	0	0	0						2002	11730
Stroeven et al. (2016)	S-02-57	2	68.15511	21.8768	630	1	2.65	0.9976	85459	4392	NIST_Certified	0	0	0	21981 11131	1528 830	NaN NaN	NaN NaN	10199 10138	2002	941
Stroeven et al. (2016)	S-02-59	2	68.15511	21.8768	635	2	2.65	0.9998	82921	4042	NIST_Certified	0	0	0	10815	787	NaN	NaN	10138	2002	
Stroeven et al. (2016)	S-02-59	5	68.0871	18.9212	1750	3	2.65	1	304987	14008	KNSTD	0	0	0	13633	968			9882	2002	625 3699
, ,		-			1588	4	2.65					0	0	0			NaN	NaN			
Stroeven et al. (2016)	S-02-61 S-02-62	2 5	68.35558 68.35558	18.22792 18.22792	1570	4	2.65	1 0.999	771403 160156	8655 8438	NIST_30200 NIST Certified	0	0	0	40585	2253	NaN	NaN	10062	2002 2002	30471 0
Stroeven et al. (2016)		5				1		0.999			_	0	0	0	9567	722	NaN	NaN	10062		
Stroeven et al. (2016)	S-03-100 S-03-101	1	68.4281 68.17399	19.3647 18.97751	1528 630		2.65	0.995	1959851	47246 5092	KNSTD KNSTD	0	0	0	105116	6362 1031	NaN	NaN	10057	2003 2003	95006
Stroeven et al. (2016)		5			125	3 5	2.65	0.995	136247			0	0	0	15677		NaN	NaN	9919		5705
Stroeven et al. (2016)	S-03-12		61.67586	29.50308			2.65	1	64812	2861	KNSTD		-		12681	885	NaN	NaN	11685	2003	943
Stroeven et al. (2016)	S-03-14	5	61.67586	29.50308	125	2	2.65	1	74659	4937	KNSTD	0	0	0	14263	1220	NaN	NaN	11685	2003	2525
Stroeven et al. (2016)	S-03-20	2	62.01912	28.79722	145	3	2.65	1	85457	2969	07KNSTD	0	0	0	17806	1145	NaN	NaN	11323	2003	6430
Stroeven et al. (2016)	S-03-21	2	62.01912	28.79722	135	3	2.65	1	68639	2744	07KNSTD	0	0	0	14442	971	NaN	NaN	11323	2003	3066
Stroeven et al. (2016)	S-03-22	5	62.5492	27.01666	145	10	1.7	1	76136	3080	07KNSTD	0	0	0	16250	1098	NaN	NaN	10943	2003	5254
Stroeven et al. (2016)	S-03-23	2	62.5492	27.01666	170	1	2.65	1	68762	3471	07KNSTD	0	0	0	13674	1012	NaN	NaN	10943	2003	2678
Stroeven et al. (2016)	S-03-24	5	62.5492	27.01666	170	7	2.65	1	52474	2511	07KNSTD	0	0	0	10946	790	NaN	NaN	10943	2003	0
Stroeven et al. (2016)	S-03-25	5	63.10729	26.09817	185	2	2.65	1	60754	4390	07KNSTD	0	0	0	11954	1080	NaN	NaN	10727	2003	1174
Stroeven et al. (2016)	S-03-26	5	63.10729	26.09817	185	2	2.65	1	55373	2115	07KNSTD	0	0	0	10893	721	NaN	NaN	10727	2003	113
Stroeven et al. (2016)	S-03-27	5	63.10729	26.09817	185	2	2.65	1	62219	3004	07KNSTD	0	0	0	12244	888	NaN	NaN	10727	2003	1464
Stroeven et al. (2016)	S-03-28	5	63.10729	26.09817	185	2	2.65	1	79057	6039	NIST_30000	0	0	0	14497	1359	NaN	NaN	10727	2003	3717
Stroeven et al. (2016)	S-03-29	5	63.62002	25.60849	210	2	2.65	1	58797	2074	07KNSTD	0	0	0	11248	726	NaN	NaN	10502	2003	693
Stroeven et al. (2016)	S-03-30	5	63.62002	25.60849	210	3	2.65	1	89200	4451	07KNSTD	0	0	0	17228	1269	NaN	NaN	10502	2003	6673
Stroeven et al. (2016)	S-03-31	5	63.62002	25.60849	205	5	2.65	1	63991	3399	07KNSTD	0	0	0	12611	956	NaN	NaN	10502	2003	2056
Stroeven et al. (2016)	S-03-32	5	61.93964	25.22354	180	4	2.65	1	67437	2161	07KNSTD	0	0	0	13610	855	NaN	NaN	10800	2003	2757
Stroeven et al. (2016)	S-03-33	5	61.93964	25.22354	180	1	2.65	1	53694	2593	07KNSTD	0	0	0	10568	766	NaN	NaN	10800	2003	0
Stroeven et al. (2016)	S-03-34	5	61.93964	25.22354	180	5	2.65	1	63466	3002	07KNSTD	0	0	0	12910	928	NaN	NaN	10800	2003	2057
Stroeven et al. (2016)	S-03-35	2	63.54324	19.56921	30	4	2.65	1	35681	3010	KNSTD	0	0	0	7581	760	NaN	NaN	2750 (p)	2003	4778
Stroeven et al. (2016)	S-03-36	5	63.54324	19.56921	30	2	2.65	1	26871	3166	KNSTD	0	0	0	5615	728	NaN	NaN	10313	2003	0
Stroeven et al. (2016)	S-03-37	5	63.54324	19.56921	30	3	2.65	1	26902	5928	KNSTD	0	0	0	5667	1287	NaN	NaN	10313	2003	0
Stroeven et al. (2016)	S-03-38	5	63.54324	19.56921	30	2	2.65	1	20815	2780	KNSTD	0	0	0	4348	627	NaN	NaN	10313	2003	0
Stroeven et al. (2016)	S-03-47	5	65.23303	20.21719	357	4	1.7	0.765	80927	10781	NIST_30000	0	0	0	16183	2334	NaN	NaN	9936	2003	6194
Stroeven et al. (2016)	S-03-48	5	65.23303	20.21719	357	10	2.65	1	72632	4449	KNSTD	0	0	0	11489	939	NaN	NaN	9936	2003	1500
Stroeven et al. (2016)	S-03-53	5	65.25158	20.22484	395	4	2.65	0.967	63913	4478	NIST_30000	0	0	0	9880	875	NaN	NaN	9934	2003	0
Stroeven et al. (2016)	S-03-54	2	66.03438	17.86981	570	3	2.65	1	113899	5159	KNSTD	0	0	0	13884	980	NaN	NaN	9753	2003	4078
Stroeven et al. (2016)	S-03-55	5	66.03438	17.86981	520	3	2.65	0.9997	83549	3771	KNSTD	0	0	0	10665	751	NaN	NaN	9753	2003	859
Stroeven et al. (2016)	S-03-57	5	66.026	17.89053	460	2	2.65	1	69627	6237	KNSTD	0	0	0	9324	977	NaN	NaN	9755	2003	0
Stroeven et al. (2016)	S-03-59	5	66.08476	17.91595	435	10	2.65	1	63793	5179	KNSTD	0	0	0	9329	911	NaN	NaN	9749	2003	0
Stroeven et al. (2016)	S-03-60	5	66.08476	17.91595	435	8	2.65	1	60458	4396	KNSTD	0	0	0	8700	789	NaN	NaN	9749	2003	0
Stroeven et al. (2016)	S-03-79	4	67.35066	18.3808	1422	3	2.65	0.9995	61981	4593	KNSTD	0	0	0	3593	329	NaN	NaN	9710	2003	0
Stroeven et al. (2016)	S-03-80	3	67.35066	18.3808	1422	3	2.65	0.9995	780904	31088	KNSTD	0	0	0	45753	3097	NaN	NaN	9710	2003	35990
Stroeven et al. (2016)	S-03-81	3	67.35066	18.3808	1422	6	2.65	0.9995	919549	39468	KNSTD	0	0	0	55339	3861	NaN	NaN	9710	2003	45576
Stroeven et al. (2016)	S-03-82	3	67.35066	18.3808	1422	3	2.65	0.9995	1227802	39153	KNSTD	0	0	0	72415	4611	NaN	NaN	9710	2003	62652
Stroeven et al. (2016)	S-03-91	2	67.20284	21.98091	487	3	2.65	1	317331	17935	KNSTD	0	0	0	42045	3315	NaN	NaN	9947	2003	32045
Stroeven et al. (2016)	S-03-93	5	67.19808	21.99863	359	3	2.65	1	328985	9757	KNSTD	0	0	0	49401	3072	NaN	NaN	9947	2003	39401
Stroeven et al. (2016)	S-03-94	5	67.19688	22.00109	365	3	2.65	1	318942	9815	KNSTD	0	0	0	47591	2985	NaN	NaN	9947	2003	37591
Stroeven et al. (2016)	S-03-99	5	68.4281	19.3647	1565	5	2.65	0.9659	2336591	49256	KNSTD	0	0	0	130518	7792	NaN	NaN	10057	2003	120408
Stroeven et al. (2016)	Tangevik_MJ-19	2	58.4378	11.2511	30	4	2.65	0.995	53246	7502	NIST_30200	293660	22216	KNSTD	11799	1785	10244	1248	6555 (o)	2000	5194
Stroeven et al. (2016)	Tangevik_MJ-21	2	58.4378	11.2511	30	5	2.65	0.993	56385	3864	NIST_30200	328306	38049	KNSTD	12623	1103	11575	1743	6555 (o)	2000	6018
Stroeven et al. (2016)	Trollhättan MJ-13	2	58.28459	12.34311	55	1	2.65	1	118305	2839	NIST_30200	611545	41914	KNSTD	24879	1475	20284	2396	10947 (q)	2000	13882
Stroeven et al. (2016)	Trollhättan MJ-14	2	58.2783	12.34311	55	2	2.65	1	155612	14532	NIST_30200 NIST_30200	606092	60036	KNSTD	33057	3592	20265	2806	10947 (q) 10947 (q)	2000	22060
, ,	Trollhättan MJ-15	2	58.2783	12.2972	55 55	1	2.65	1	182668		_	1064908		KNSTD	38544	2277	35586	3825			
Stroeven et al. (2016)	41-11NOR-1	5	59.30415	12.2972 4.87375	55 50	1	2.65	1	101825	4205 2270	NIST_30200 07KNSTD	1064908	49691 0	NNSID 0					10947 (q)	2000 2011	27547 2952
Svendsen et al. (2015)												-	-	-	23013	1348	NaN	NaN	20000		
Svendsen et al. (2015)	41-11NOR-3	5	59.30963	4.9016	23	2	2.65	1	105033	3218	07KNSTD	0	0	0	24659	1536	NaN	NaN	20000	2011	4598 0
Svendsen et al. (2015)	41-11NOR-34	5	58.91663	5.61563	60	1.2	2.65	1	70941	1401	07KNSTD	0	0	0	15894	914	NaN	NaN	17520	2011	-
Svendsen et al. (2015)	41-11NOR-35	5	58.91522	5.6106	65	2.5	2.65	1	71735	1875	07KNSTD	0	0	0	16156	970	NaN	NaN	17651	2011	0

Publication, a	Sample ID	Land class, b	Lat (deg)	Long (deg)	Elev (masl)	Thick (cm)	Density (g/cm3)	Shielding	10Be-conc (at/g)	10Be-unc (at/g)	10Be-AMS-std	26Al-conc (at/g)	26Al-unc (at/g)	26Al-AMS-std	10Be-age (yr) c,d	10Be-age-ext-unc (yr) e	26Al-age (yr) c,d	26Al-age-ext-unc (yr) e	Deglac-age (yr) f	Sample-yr	10Be-inherit (yr) g
Svendsen et al. (2015)	41-11NOR-36	2	58.9155	5.61047	64	1	2.65	1	74241	1399	07KNSTD	0	0	0	16537	946	NaN	NaN	17651	2011	0
Svendsen et al. (2015)	41-11NOR-5	5	59.31372	4.89365	34	3	2.65	1	109029	2618	07KNSTD	0	0	0	25500	1512	NaN	NaN	20000	2011	5439
Svendsen et al. (2015)	41-11NOR-6	2	59.31337	4.89997	52	2	2.65	1	181978	3780	07KNSTD	0	0	0	41565	2422	NaN	NaN	20000	2011	21504
Svendsen et al. (2015)	41-11NOR-7	5	59.31273	4.90002	29	1.5	2.65	1	88590	2911	07KNSTD	0	0	0	20557	1302	NaN	NaN	20000	2011	496
Svendsen et al. (2015)	41-11NOR-9	5	59.31082	4.89978	28	2	2.65	1	88339	2598	07KNSTD	0	0	0	20605	1270	NaN	NaN	20000	2011	544
Svendsen et al. (2015)	44-11NOR-4	5	59.31203	4.89672	38	0.5	2.65	1	90477	1792	07KNSTD	0	0	0	20621	1188	NaN	NaN	20000	2011	560
Svendsen et al. (2015)	44-11NOR-55	2	59.1843	5.195	77	1	2.65	1	442731	8227	07KNSTD	0	0	0	99129	5783	NaN	NaN	20000	2011	79068
Svendsen et al. (2015)	44-11NOR-60	5	59.4609	5.47652	87	1.5	2.65	0.999	75138	1836	07KNSTD	0	0	0	16383	972	NaN	NaN	16991	2011	0
Svendsen et al. (2015)	44-11NOR-61	5	59.46162	5.47582	87	6	2.65	0.999	70658	2073	07KNSTD	0	0	0	15974	983	NaN	NaN	16991	2011	0
Svendsen et al. (2015)	45-11NOR-53	5	59.18488	5.19518	81	3	2.65	1	101877	3083	07KNSTD	0	0	0	22650	1406	NaN	NaN	20000	2011	2589
Svendsen et al. (2015)	45-11NOR-54	5	59.18437	5.1949	81	3	2.65	1	93088	2536	07KNSTD	0	0	0	20686	1254	NaN	NaN	20000	2011	625
Svendsen et al. (2015)	45-11NOR-56	5	59.18388	5.19935	91	2.5	2.65	1	93242	1913	07KNSTD	0	0	0	20417	1181	NaN	NaN	20000	2011	356
Svendsen et al. (2015)	45-11NOR-59	2	59.46085	5.47705	89	4	2.65	0.999	75416	2278	07KNSTD	0	0	0	16746	1037	NaN	NaN	16991	2011	0
Svendsen et al. (2015)	46-11NOR-2	5	59.30037	4.87037	42	3.5	2.65	1	91329	3692	07KNSTD	0	0	0	21238	1437	NaN	NaN	20000	2011	1177
Tschudi et al. (2000)	Sal-1	5	61	25.39	160	4	2.7	1	75000	3375	S555	0	0	0	14162	997	NaN	NaN	12592	1997	1523
Tschudi et al. (2000)	Sal-3	5	61	25.39	160	3	2.7	1	70700	3182	S555	0	0	0	13238	932	NaN	NaN	12592	1997	599
Tschudi et al. (2000)	Sal-4b	5	61.02	25.4	160	2	2.7	1	69500	3406	S555	0	0	0	12904	942	NaN	NaN	12493	1997	364
Tschudi et al. (2000)	Sal-5	5	61.02	25.4	160	2	2.7	1	72600	3993	S555	0	0	0	13482	1041	NaN	NaN	12493	1997	942

- a. Some samples are excluded from this compilation due to either a lack of information in the original publication, or suspected error; i.e., where the 26Al/10Be ratio exceeds the surface production ratio by > 2 or.
- b. Landform classes: 1 glacial trough, 2 areal scour, 3 blockfield, 4 tor, 5 ice-transported boulder or cobble.
- c. Apparent exposure age assumes zero surface-erosion and continuous exposure. Exposure ages calculated using the CRONUS calculator (Balco et al., 2008) v. 2.3 and the St (Stone, 2000) time-constant production rate scaling with modified reference production rates of 4.09 ± 0.22 atoms g-1 yr-1 (10Be) and 27.97 ± 2.65 atoms g-1 yr-1 (26Al), based on the expage-201702 production rate calibration dataset and methods (http://expage.github.io/production). All computations assume 10Be half-life = 1.387 Myr (Chmeleff et al., 2010; Korschinek et al., 2010) and 26Al half-life = 0.705 Myr (Nishiizumi, 2004).
- d. Ages from 'ice-transported boulder or cobble' are uncorrected for sea-level shielding.
- e. External uncertainties (unc) are reported at 1 o confidence level.
- f. Deglaciation age from Stroeven et al., 2016 (years before 1950), to which we ascribe an uncertainty of ± 500 yr (except where indicated below).
- g. 10Be inheritance is calculated as 10Be apparent exposure age minus deglaciation age (in yrs before sampling-year).
- h. Deglac age (15838) is corrected for duration of submergence (100 y, Larsen et al., 2012) below $SL = 15738 \pm 500$ y.
- i. Deglac age (15472) is corrected for duration of submergence (2000 ± 200 y, Larsen et al., 2012) below SL = 13472 ± 539 y.
- j. Deglac age (14853) is corrected for duration of submergence (3500 ± 400 y, Larsen et al., 2012) below SL = 11353 ± 640 y.
- k. Deglac age (14834) is corrected for duration of submergence (1530 ± 160 y, Larsen et al., 2012) below SL = 13304 ± 525 y.
- I. Deglac age (14858) is corrected for duration of submergence (3500 ± 400 y, Larsen et al., 2012) below SL = 11358 ± 640 y.
- m. Deglac age (11619) is corrected for emergence above SL at 11093 (580 v after Baltic Lake drainage at 11673 v. Stroeven et al., 2015)
- n. Deglac age (14785) is corrected for emergence above SL at 9550 ± 500 C14 y (Björck & Digerfeldt, 1991) = 11015 ± 723 cal BP
- o. Deglac age (14879) is corrected for emergence above SL at 5700 ± 500 C14 y (Miller & Robertsson, 1987) = 6555 ± 544 cal BP p. Deglac age (10313) is corrected for emergence above SL at 2750 ± 250 y (assuming uplift 10-12 mm/yr, Milne et al., 2001).
- q. Deglac age (13585) is corrected for emergence above SL at 9500 ± 500 C14 y (Björck & Digerfeldt, 1991) = 10947 ± 724 cal BP

Table S2. Summary of outputs of Markov chain Monte Carlo inversion modelling of paired 10Be-26Al samples.

			Mea	an erosion	rate			Normal	ised expos	ure time			Benthi	c δ180 thre	eshold	
Publication	Sample ID	5 %	25 %	50 %	75 %	95 %	5 %	25 %	50 %	75 %	95 %	5 %	25 %	50 %	75 %	95 %
Publication	Sample ID	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile
Andersen et al. (2018a)	HD01	1.67	4.15	10.40	13.40	21.10	0.025	0.057	0.343	0.664	0.955	3.28	3.48	3.96	4.39	4.80
Andersen et al. (2018a)	HD02	4.11	13.50	25.10	35.10	63.20	0.016	0.069	0.368	0.676	0.950	3.25	3.53	3.99	4.41	4.78
Andersen et al. (2018a)	HD04	2.33	6.86	10.60	16.30	28.40	0.052	0.235	0.488	0.727	0.955	3.46	3.84	4.13	4.46	4.80
Andersen et al. (2018a)	HD06	3.95	7.11	9.08	13.00	18.20	0.220	0.443	0.626	0.863	0.959	3.81	4.07	4.35	4.61	4.82
Andersen et al. (2018a)	HD08	1.21	1.74	2.12	2.73	4.40	0.095	0.132	0.155	0.199	0.343	3.58	3.63	3.68	3.77	3.96
Andersen et al. (2018a)	HD09	1.69	2.38	3.41	4.93	6.39	0.135	0.183	0.261	0.748	0.968	3.65	3.74	3.88	4.48	4.86
Andersen et al. (2018a)	HD10	3.54	25.20	59.60	171.40	>250	0.016	0.052	0.203	0.537	0.920	3.25	3.46	3.78	4.20	4.71
Andersen et al. (2018a)	HD12	10.80	37.80	80.40	212.00	>250	0.018	0.057	0.220	0.554	0.894	3.26	3.49	3.81	4.22	4.66
Andersen et al. (2018a)	HD16	0.91	1.71	2.91	8.10	12.30	0.020	0.030	0.050	0.248	0.944	3.27	3.33	3.44	3.86	4.76
Andersen et al. (2018a)	HD17	1.64	4.68	10.90	16.00	21.10	0.013	0.040	0.231	0.638	0.953	3.24	3.38	3.83	4.37	4.79
Andersen et al. (2018a)	HD28	1.44	3.60	8.49	11.20	19.90	0.032	0.105	0.370	0.686	0.953	3.34	3.59	3.99	4.42	4.79
Andersen et al. (2018a)	JD04	3.02	8.83	13.20	19.00	34.00	0.045	0.239	0.545	0.831	0.956	3.42	3.85	4.21	4.56	4.81
Andersen et al. (2018a)	JD05	0.49	0.68	0.89	1.16	1.64	0.030	0.040	0.043	0.052	0.081	3.33	3.37	3.41	3.46	3.55
Andersen et al. (2018a)	JD06	5.22	14.00	22.50	28.50	43.80	0.038	0.231	0.578	0.854	0.963	3.37	3.83	4.26	4.59	4.84
Andersen et al. (2018a)	JD07	2.06	7.03	16.00	21.10	28.70	0.014	0.050	0.291	0.661	0.957	3.25	3.45	3.92	4.39	4.82
Andersen et al. (2018a)	JD08	3.73	13.40	27.40	44.80	164.90	0.014	0.057	0.253	0.612	0.937	3.24	3.48	3.87	4.33	4.74
Andersen et al. (2018a)	JD09	2.71	8.54	18.30	25.00	36.10	0.014	0.055	0.312	0.687	0.956	3.24	3.48	3.94	4.42	4.80
Andersen et al. (2018a)	JD10	3.70	10.80	15.30	19.60	35.80	0.045	0.261	0.575	0.857	0.963	3.41	3.88	4.25	4.60	4.84
Andersen et al. (2018a)	JD11	6.93	16.00	24.00	31.00	46.70	0.032	0.220	0.561	0.839	0.960	3.34	3.81	4.23	4.57	4.83
Andersen et al. (2018a)	JD13	3.11	9.61	15.30	22.40	37.20	0.042	0.241	0.555	0.839	0.962	3.40	3.85	4.22	4.57	4.83
Andersen et al. (2018a)	JD14	7.40	17.50	26.80	37.20	63.90	0.029	0.168	0.503	0.818	0.956	3.31	3.71	4.15	4.53	4.81
Andersen et al. (2018a)	KJ07	1.28	3.64	6.78	9.15	17.00	0.051	0.185	0.446	0.680	0.944	3.46	3.75	4.08	4.41	4.76
Andersen et al. (2018a)	Phy01	4.98	31.60	68.30	190.40	>250	0.016	0.055	0.212	0.550	0.897	3.25	3.47	3.79	4.21	4.66
Andersen et al. (2018a)	Phy02	6.69	34.30	61.70	155.40	>250	0.018	0.069	0.277	0.617	0.948	3.26	3.53	3.90	4.33	4.77
Andersen et al. (2018a)	SF21	3.88	7.35	10.30	15.40	20.50	0.196	0.435	0.627	0.867	0.963	3.76	4.06	4.35	4.63	4.84
Andersen et al. (2018a)	SF22	3.02	6.42	8.50	13.30	19.40	0.155	0.368	0.587	0.851	0.962	3.68	3.99	4.28	4.59	4.83
Andersen et al. (2018a)	SF23	1.08	3.80	6.98	10.30	18.10	0.049	0.198	0.518	0.851	0.967	3.43	3.76	4.17	4.59	4.86
Andersen et al. (2018a)	SF24	3.50	5.90	7.65	11.10	15.60	0.233	0.480	0.680	0.876	0.963	3.83	4.12	4.41	4.64	4.85
Andersen et al. (2018a)	SF27	1.31	4.26	8.26	11.60	22.30	0.041	0.172	0.444	0.769	0.955	3.39	3.72	4.07	4.49	4.80
Andersen et al. (2018a)	SF28	1.97	6.62	10.00	14.80	26.00	0.049	0.239	0.523	0.820	0.961	3.43	3.84	4.17	4.54	4.83
Andersen et al. (2018a)	SF29	1.32	3.79	8.00	10.20	18.90	0.040	0.145	0.485	0.840	0.957	3.38	3.66	4.12	4.58	4.82
Andersen et al. (2018a)	SF33	3.70	6.52	9.53	13.60	16.00	0.239	0.498	0.749	0.918	0.968	3.84	4.14	4.48	4.69	4.86
Andersen et al. (2018a)	SF43	8.70	19.20	28.50	40.40	67.50	0.032	0.199	0.527	0.823	0.957	3.34	3.77	4.18	4.55	4.82
Andersen et al. (2018a)	SF44	7.88	18.30	27.10	37.40	51.70	0.035	0.241	0.578	0.854	0.962	3.36	3.85	4.26	4.59	4.84
Andersen et al. (2018a)	SF45	3.02	10.90	22.20	30.70	47.90	0.024	0.084	0.385	0.697	0.953	3.28	3.57	4.01	4.43	4.79
Andersen et al. (2018a)	SF46 SF47	4.50	12.30 23.10	22.30	28.60	43.50	0.026	0.148	0.489 0.517	0.813	0.959 0.956	3.30	3.67	4.13	4.53	4.82
Andersen et al. (2018a)	SF47 SF48	11.00		33.70	49.20	139.00	0.035	0.209		0.817		3.36	3.79	4.17	4.53	4.80
Andersen et al. (2018a) Andersen et al. (2018a)	SF48 SF49	6.92 3.44	10.80 11.00	15.10 14.80	20.50 21.40	23.80 35.00	0.299 0.049	0.539 0.284	0.799 0.571	0.919 0.852	0.967 0.963	3.92 3.43	4.20 3.91	4.51 4.25	4.69 4.59	4.86 4.84
` '	SF50	1.63	4.17	9.57	12.30	20.70	0.049	0.264	0.322	0.635	0.963	3.43	3.60	4.25 3.95	4.39 4.37	4.64 4.77
Andersen et al. (2018a) Andersen et al. (2018a)	SF51	1.63	4.17 4.77	9.57	12.30	17.60	0.034	0.108	0.525	0.635	0.948	3.34	3.66	3.95 4.18	4.57 4.50	4.77
Andersen et al. (2018a)	SF51 SF52	11.20	4.77 17.30	23.90	29.40	33.00	0.032	0.141	0.525	0.762	0.963	3.98	4.37	4.16 4.59	4.50 4.75	4.87
Andersen et al. (2018a)	SF53	1.79	7.23	17.70	32.10	57.20	0.010	0.043	0.846	0.586	0.938	3.96	3.39	3.77	4.73	4.74
Andersen et al. (2018a)	SF54	9.74	21.80	30.50	41.70	58.30	0.010	0.041	0.199	0.847	0.960	3.38	3.90	4.27	4.59	4.74
Alluciscii et al. (2010a)	JI J 4	3.14	۵۱.00	30.30	41.70	30.30	0.040	0.273	0.363	0.047	0.500	5.50	5.30	4.21	4.38	4.03

			Меа	an erosion	rate			Normal	ised expos	ure time		,	Benthi	ic δ180 thre	eshold	
Publication	Sample ID	5 %	25 %	50 %	75 %	95 %	5 %	25 %	50 %	75 %	95 %	5 %	25 %	50 %	75 %	95 %
1 donoadon	Gampic ib	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile	quantile
Andersen et al. (2018a)	SF55	5.12	13.90	25.60	34.50	50.70	0.029	0.156	0.492	0.806	0.956	3.31	3.69	4.14	4.52	4.82
Andersen et al. (2018a)	SF56	4.01	21.00	45.20	112.70	>250	0.017	0.057	0.230	0.566	0.900	3.25	3.49	3.82	4.23	4.67
Andersen et al. (2018a)	SF57	2.59	12.60	30.30	54.40	>250	0.011	0.049	0.230	0.591	0.929	3.23	3.44	3.82	4.28	4.73
Andersen et al. (2018b)	AS01	6.68	15.30	23.40	30.50	48.30	0.029	0.184	0.530	0.823	0.960	3.31	3.74	4.18	4.55	4.83
Andersen et al. (2018b)	AS02	8.36	18.90	28.70	42.10	105.30	0.029	0.151	0.456	0.737	0.953	3.31	3.67	4.09	4.47	4.79
Andersen et al. (2018b)	AS03	2.87	9.94	20.00	25.80	37.90	0.014	0.057	0.375	0.756	0.960	3.24	3.49	4.00	4.48	4.83
Andersen et al. (2018b)	AS04	7.26	21.30	33.20	54.30	236.90	0.025	0.125	0.409	0.695	0.950	3.29	3.62	4.03	4.43	4.78
Andersen et al. (2018b)	AS05	11.10	34.10	72.10	201.50	>250	0.017	0.060	0.236	0.571	0.919	3.25	3.50	3.84	4.25	4.69
Andersen et al. (2018b)	AS07	5.78	15.40	25.00	35.10	71.80	0.020	0.100	0.405	0.692	0.952	3.26	3.59	4.03	4.43	4.79
Andersen et al. (2018b)	AS08	3.25	12.20	22.40	29.70	47.50	0.017	0.078	0.408	0.736	0.956	3.25	3.55	4.03	4.47	4.81
Andersen et al. (2018b)	FD01	14.30	42.60	91.70	240.90	>250	0.018	0.057	0.225	0.559	0.915	3.26	3.49	3.82	4.23	4.69
Andersen et al. (2018b)	FD02	9.90	29.60	51.80	127.20	>250	0.022	0.084	0.302	0.611	0.923	3.27	3.56	3.93	4.33	4.71
Andersen et al. (2018b)	FD03	11.70	28.00	47.70	112.40	> 250	0.022	0.091	0.340	0.626	0.929	3.27	3.58	3.96	4.35	4.72
Andersen et al. (2018b)	FD05	4.75	12.30	19.20	27.40	45.60	0.032	0.220	0.569	0.855	0.963	3.34	3.81	4.24	4.60	4.84
Andersen et al. (2018b)	FD06	7.53	37.20	63.10	125.00	>250	0.022	0.100	0.374	0.688	0.955	3.27	3.59	4.00	4.42	4.80
Andersen et al. (2018b)	FD07	8.76	36.10	60.50	141.60	>250	0.022	0.095	0.346	0.648	0.948	3.27	3.58	3.97	4.38	4.77
Andersen et al. (2018b)	FD08	4.20	13.00	21.80	28.10	45.10	0.025	0.135	0.492	0.801	0.960	3.29	3.65	4.14	4.52	4.82
Andersen et al. (2018b)	FD09	13.60	35.70	70.30	189.60	>250	0.019	0.064	0.260	0.590	0.919	3.26	3.52	3.88	4.28	4.69
Andersen et al. (2018b)	FD10	3.61	9.76	17.60	22.30	42.40	0.026	0.132	0.462	0.769	0.959	3.30	3.63	4.10	4.49	4.82
Andersen et al. (2018b)	FD11	5.76	13.90	22.00	27.80	44.70	0.026	0.175	0.554	0.843	0.963	3.30	3.73	4.22	4.58	4.84
Andersen et al. (2018b)	FD12	3.26	10.50	14.80	21.00	36.70	0.041	0.260	0.571	0.843	0.963	3.39	3.88	4.25	4.58	4.84
Andersen et al. (2018b)	GU02	2.50	5.25	7.27	10.40	16.50	0.137	0.305	0.585	0.854	0.962	3.65	3.93	4.27	4.59	4.84
Andersen et al. (2018b)	GU03	1.12	3.54	6.61	8.78	15.50	0.051	0.192	0.494	0.824	0.960	3.46	3.76	4.14	4.55	4.83
Andersen et al. (2018b)	GU04	3.69	7.78	11.20	16.30	19.30	0.195	0.492	0.716	0.897	0.965	3.76	4.14	4.45	4.67	4.85
Andersen et al. (2018b)	GU05	3.04	7.20	10.60	15.50	18.90	0.156	0.462	0.779	0.919	0.968	3.69	4.10	4.50	4.69	4.86
Andersen et al. (2018b)	KJ01	1.41	4.31	7.36	9.62	18.90	0.052	0.218	0.538	0.822	0.968	3.47	3.80	4.20	4.54	4.86
Andersen et al. (2018b)	KJ02	3.48	11.90	21.10	29.00	58.50	0.018	0.073	0.372	0.733	0.956	3.26	3.54	4.00	4.47	4.81
Andersen et al. (2018b)	KJ03	0.83	1.95	5.94	7.60	13.30	0.039	0.088	0.310	0.627	0.942	3.37	3.57	3.94	4.35	4.75
Andersen et al. (2018b)	KJ04	1.48	4.39	7.15	10.00	17.90	0.060	0.232	0.513	0.812	0.963	3.50	3.83	4.16	4.53	4.85
Andersen et al. (2018b)	KJ08-1	1.99	5.00	7.49	12.00	17.70	0.100	0.268	0.539	0.824	0.959	3.59	3.89	4.20	4.55	4.82
Andersen et al. (2018b)	L01	4.33	14.00	25.20	35.40	59.10	0.024	0.132	0.442	0.735	0.953	3.28	3.63	4.07	4.47	4.79
Andersen et al. (2018b)	L02	3.71	10.20	19.40	24.50	34.90	0.020	0.081	0.393	0.687	0.956	3.27	3.55	4.02	4.42	4.81
Andersen et al. (2018b)	L03	3.42	11.10	20.70	27.00	41.00	0.017	0.070	0.368	0.681	0.956	3.25	3.54	3.99	4.42	4.80
Andersen et al. (2018b)	L05	4.87	16.20	26.30	37.90	91.00	0.023	0.132	0.457	0.756	0.955	3.28	3.63	4.09	4.48	4.80
Andersen et al. (2018b)	L06	3.33	31.70	77.50	213.90	>250	0.013	0.050	0.191	0.510	0.867	3.24	3.44	3.76	4.16	4.63
Andersen et al. (2018b)	RE02	1.53	2.94	5.22	6.52	9.23	0.084	0.167	0.305	0.573	0.876	3.56	3.71	3.93	4.25	4.64
Andersen et al. (2018b)	RE04	0.95	1.28	1.57	2.07	3.17	0.153	0.185	0.224	0.281	0.611	3.68	3.75	3.82	3.91	4.33
Andersen et al. (2018b)	RK01	3.67	6.40	8.94	11.60	13.10	0.283	0.586	0.832	0.933	0.969	3.91	4.27	4.56	4.73	4.87
Andersen et al. (2018b)	RK02	4.07	6.95	9.51	11.50	12.70	0.330	0.600	0.832	0.933	0.969	3.95	4.30	4.56	4.74	4.87
Andersen et al. (2018b)	RK04	3.79	7.31	10.70	15.40	18.60	0.206	0.488	0.731	0.903	0.967	3.78	4.13	4.46	4.67	4.86
Brook et al. (1996)	Skåla_SK101	3.93	15.00	25.40	43.90	>250	0.024	0.113	0.414	0.733	0.956	3.28	3.61	4.04	4.47	4.81
Brook et al. (1996)	Skåla_SK103	1.89	5.82	11.80	17.40	30.90	0.030	0.154	0.486	0.805	0.957	3.32	3.68	4.13	4.52	4.82
Brook et al. (1996)	Skåla_SK105	0.91	2.34	6.76	10.00	19.60	0.032	0.084	0.322	0.676	0.953	3.34	3.57	3.95	4.41	4.79
Brook et al. (1996)	Skåla_SK110	2.50	3.80	5.09	6.37	7.37	0.377	0.616	0.834	0.933	0.969	4.00	4.33	4.56	4.74	4.87
Darmody et al. (2008)	Pyhä-Nattanen	0.55	1.13	1.71	2.96	5.22	0.059	0.114	0.160	0.269	0.618	3.50	3.61	3.70	3.89	4.34

			Mea	an erosion	rate		Normalised exposure time						Benthic δ180 threshold					
Publication	Sample ID	5 % quantile	25 % quantile	50 % quantile	75 % quantile	95 % quantile	5 % quantile	25 % quantile	50 % quantile	75 % quantile	95 % quantile	5 % quantile	25 % quantile	50 % quantile	75 % quantile	95 % quantile		
Darmody et al. (2008)	Riestovaara	0.82	2.17	4.32	6.53	10.90	0.052	0.137	0.269	0.628	0.956	3.47	3.65	3.89	4.35	4.81		
Fabel et al. (2002)	Balddavarri	0.23	0.32	0.50	0.68	0.79	0.030	0.032	0.038	0.042	0.050	3.32	3.34	3.37	3.40	3.44		
Fabel et al. (2002)	Favrratcohkka	6.44	26.90	55.70	162.90	> 250	0.017	0.057	0.237	0.584	0.924	3.25	3.49	3.84	4.27	4.71		
Fabel et al. (2002)	Tjuolmma-920	0.40	0.61	0.85	1.15	2.22	0.029	0.035	0.042	0.052	0.122	3.31	3.36	3.40	3.47	3.62		
Goodfellow et al. (2014)	Duoptečohkka_Duo-1	3.40	6.76	9.73	13.80	16.30	0.220	0.489	0.716	0.899	0.965	3.81	4.13	4.45	4.67	4.85		
Goodfellow et al. (2014)	Tarfalatjårro_Tar-1	1.54	2.71	3.47	4.61	6.30	0.260	0.468	0.630	0.855	0.963	3.88	4.11	4.36	4.60	4.84		
Li et al. (2005)	Dievssavággi-1040	1.02	2.86	7.30	8.66	12.40	0.038	0.114	0.486	0.814	0.968	3.37	3.61	4.13	4.53	4.86		
Li et al. (2005)	Dievssavággi-590	13.90	43.30	93.90	243.10	> 250	0.017	0.057	0.216	0.537	0.888	3.26	3.48	3.80	4.20	4.66		
Li et al. (2005)	Dievssavággi-750	4.09	11.50	20.90	26.90	47.60	0.030	0.178	0.517	0.819	0.960	3.33	3.73	4.16	4.54	4.83		
Li et al. (2005)	Rávtsvággi-710	0.43	0.72	1.18	1.60	4.47	0.006	0.007	0.007	0.011	0.041	3.20	3.20	3.21	3.23	3.39		
Li et al. (2005)	Rávtsvággi-750	2.01	5.87	13.60	17.70	36.70	0.025	0.096	0.428	0.728	0.957	3.29	3.59	4.05	4.46	4.82		
Li et al. (2005)	Rávtsvággi-805	0.19	0.31	0.45	0.55	0.63	0.007	0.007	0.010	0.014	0.024	3.20	3.21	3.23	3.25	3.28		
Stroeven et al. (2002a)	Lamuvaara-99-04	1.20	2.51	4.03	5.52	8.86	0.148	0.277	0.522	0.795	0.956	3.67	3.90	4.17	4.51	4.81		
Stroeven et al. (2002a)	Naakakarhakka-99-01	1.81	3.34	4.48	6.30	7.64	0.266	0.494	0.692	0.894	0.965	3.89	4.14	4.43	4.66	4.85		
Stroeven et al. (2016)	Hunnebostrand_MJ-16	1.56	4.57	12.40	18.40	28.20	0.020	0.057	0.291	0.680	0.956	3.27	3.49	3.92	4.41	4.81		
Stroeven et al. (2016)	Hunnebostrand_MJ-17	0.72	1.59	2.98	10.10	14.30	0.012	0.030	0.057	0.391	0.919	3.24	3.32	3.49	4.02	4.69		
Stroeven et al. (2016)	Muddus_CH-01-00	1.14	3.68	8.13	11.90	22.40	0.040	0.153	0.459	0.805	0.960	3.38	3.68	4.10	4.52	4.83		
Stroeven et al. (2016)	Parkajoki_CH-04-00	0.73	1.25	2.27	3.40	4.58	0.129	0.188	0.346	0.635	0.959	3.63	3.75	3.97	4.37	4.82		
Stroeven et al. (2016)	Parkajoki_CH-06-00	0.53	1.32	2.39	4.69	7.89	0.051	0.129	0.220	0.545	0.938	3.45	3.63	3.81	4.21	4.74		
Stroeven et al. (2016)	Tangevik_MJ-19	1.81	5.75	16.80	23.10	47.20	0.018	0.061	0.382	0.749	0.960	3.26	3.50	4.01	4.48	4.83		
Stroeven et al. (2016)	Tangevik_MJ-21	1.69	4.95	14.10	18.30	37.90	0.025	0.071	0.383	0.719	0.956	3.28	3.54	4.01	4.45	4.81		
Stroeven et al. (2016)	Trollhättan_MJ-13	0.44	0.78	1.26	1.90	4.07	0.013	0.023	0.030	0.042	0.135	3.24	3.28	3.32	3.39	3.64		
Stroeven et al. (2016)	Trollhättan_MJ-14	0.25	0.41	0.62	0.84	2.19	0.007	0.010	0.017	0.025	0.057	3.21	3.23	3.25	3.29	3.49		
Stroeven et al. (2016)	Trollhättan_MJ-15	1.34	3.08	6.08	6.62	8.64	0.088	0.196	0.492	0.786	0.963	3.58	3.76	4.14	4.50	4.85		

Supplementary data references

- Alexanderson H, Fabel D, 2015. Holocene chronology of the Brattforsheden delta and inland dune field, SW Sweden. Geochronometria 42, 1-16.
- Andersen JL, Egholm DL, Knudsen MF, Linge H, Jansen JD, Goodfellow BW, Pedersen VK, Tikhomirov D, Olsen J, Fredin O, 2018a. Pleistocene evolution of a Scandinavian plateau landscape. Journal of Geophysical Research—Earth Surface 123, 3370-3387.
- Andersen JL, Egholm DL, Knudsen MF, Linge H, Jansen JD, Pedersen VK, Nielsen SB, Tikhomirov D, Olsen J, Fabel D, Xu S, 2018b. Widespread erosion on high plateaus during recent glaciations in Scandinavia. Nature Communications 9, 830.
- Anjar J, Larsen NK, Håkansson L, Möller P, Linge H, Fabel D, Xu S, 2014. A 10Be-based reconstruction of the last deglaciation in southern Sweden. Boreas 43, 132-148.
- Balco G, Stone JO, Lifton N, Dunai TJ, 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements. Quaternary Geochronology 3, 174-195.
- Björck, S, Digerfeldt, G, 1991. Allerød-Younger Dryas sea level changes in southwestern Sweden and their relation to the Baltic Ice Lake development. Boreas 20, 115-133.
- Briner JP, Svendsen JI, Mangerud J, Lohne ØS, Young NE, 2014b. A 10Be chronology of south-western Scandinavian ice sheet history during the lateglacial period. Journal of Quaternary Science 29, 370-380.
- Brook EJ, Nesje A, Lehman SJ, Raisbeck GM, Yiou F, 1996. Cosmogenic nuclide exposure ages along a vertical transect in western Norway: implications for the height of the Fennoscandian ice sheet. Geology 24, 207-210.
- Chmeleff J, v Blanckenburg F, Kossert K, Jakob D, 2010. Determination of the ¹⁰Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, 192-199.
- Cuzzone J, Clark PU, Carlson AE, Ullman D, He F, Rinterknecht VR, Lunkka JP, Wohlfarth B, Marcott SA, Caffee M, 2014. A high-resolution 10Be chronology for the final deglaciation of the Scandinavian ice sheet and implications for Holocene sea-level rise. In: Cuzzone JK, An interdisciplinary approach towards understanding late Pleistocene ice sheet change. PhD thesis, Oregon State University.
- Cuzzone JK, Clark PU, Carlson AE, Ullman DJ, Rinterknecht VR, Milne GA, Lunkka J-P, Wohlfarth B, Marcott SA, Caffee M, 2016. Final deglaciation of the Scandinavian ice sheet and implications for the Holocene global sea-level budget. Earth and Planetary Science Letters 448, 34-41.
- Darmody RG, Thorn CE, Seppälä M, Campbell SW, Li YK, Harbor J, 2008. Age and weathering status of granite tors in Arctic Finland (~68° N). Geomorphology 94, 10-23.
- Fabel D, Stroeven AP, Harbor J, Kleman J, Elmore D, Fink D, 2002. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and Planetary Science Letters 201, 397-406.
- Fabel D, Fink D, Fredin O, Harbor J, Land M, Stroeven AP, 2006. Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet. Quaternary Research 65, 136-146.
- Fjellanger J, Sørbel L, Linge H, Brook EJ, Raisbeck GM, Yiou F, 2006. Glacial survival of blockfields on the Varanger Peninsula, northern Norway. Geomorphology 82, 255-272.
- Goehring BM, Brook EJ, Linge H, Raisbeck GM, Yiou F, 2008. Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian ice sheet. Quaternary Science Reviews 27, 320-336.
- Goehring BM, Lohne ØS, Mangerud J, Svendsen JI, Gyllencreutz R, Schaefer J, Finkel R, 2012. Late glacial and Holocene 10Be production rates for western Norway. Journal of Quaternary Science 27, 89-96.

- Goodfellow BW, Stroeven AP, Fabel D, Fredin O, Derron M-H, Bintanja R, Caffee MW, 2014. Arctic-alpine blockfields in the northern Swedish Scandes: late Quaternary not Neogene. Earth Surface Dynamics 2, 383-401.
- Harbor J, Stroeven AP, Fabel D, Clarhäll A, Kleman J, Li YK, Elmore D, Fink D, 2006. Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late glacial Fennoscandian ice sheet. Geomorphology 75, 90-99.
- Hättestrand C, Götz S, Näslund J-O, Fabel, D, Stroeven AP, 2004. Drumlin formation time: evidence from northern and central Sweden. Geografiska Annaler 86A, 155-167.
- Heine K, Reuther AU, Thieke HU, Schulz R, Schlaak N, Kubik PW, 2009. Timing of Weichselian ice marginal positions in Brandenburg (northeastern Germany) using cosmogenic in situ 10Be. Zeitschrift für Geomorphologie 53, 433-454.
- Houmark-Nielsen M, Linge H, Fabel D, Schnabel C, Xu S, Wilcken KM, Binnie S, 2012. Cosmogenic surface exposure dating the last deglaciation in Denmark: discrepancies with independent age constraints suggest delayed periglacial landform stabilisation. Quaternary Geochronology 13, 1-17.
- Jansen JD, Codilean AT, Stroeven AP, Fabel D, Hättestrand C, Kleman J, Harbor JM, Heyman J, Kubik PW, Xu S, 2014. Inner gorges cut by subglacial meltwater during Fennoscandian ice sheet decay. Nature Communications 5, 3815.
- Johnsen TF, Alexanderson H, Fabel D, Freeman SPHT, 2009. New 10Be cosmogenic ages from the Vimmerby moraine confirm the timing of Scandinavian ice sheet deglaciation in southern Sweden. Geografiska Annaler 91A, 113-120.
- Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, Lierse v Gostomskie C, Kossert K, Maiti M, Poutivtseva M, Remmert A, 2010. A new value for the half-life of ¹⁰Be by heavy ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, 187-191.
- Larsen NK, Linge H, Håkansson L, Fabel D, 2012. Investigating the last deglaciation of the Scandinavian Ice Sheet in southwest Sweden with 10Be exposure dating. Journal of Quaternary Science 27, 211-220.
- Li YK, Harbor J, Stroeven AP, Fabel D, Kleman J, Fink D, Caffee M, Elmore D, 2005. Ice sheet erosion patterns in valley systems in northern Sweden investigated using cosmogenic nuclides. Earth Surface Processes and Landforms 30, 1039-1049.
- Linge H, Brook EJ, Nesje A, Raisbeck GM, Yiou F, Clark H, 2006a. In situ 10Be exposure ages from southeastern Norway: implications for the geometry of the Weichselian Scandinavian ice sheet. Quaternary Science Reviews 25, 1097-1109.
- Linge H, Larsen E, Kjær KH, Demidov IN, Brook EJ, Raisbeck GM, Yiou F, 2006b. Cosmogenic 10Be exposure age dating across early to late Weichselian ice-marginal zones in northwestern Russia. Boreas 35, 576-586.
- Linge H, Olsen L, Brook EJ, Darter JR, Mickelson DM, Raisbeck GM, Yiou F, 2007. Cosmogenic nuclide surface exposure ages from Nordland, northern Norway: implications for deglaciation in a coast to inland transect. Norwegian Journal of Geology 87, 269-280.
- Mangerud J, Goehring BM, Lohne ØS, Svendsen JI, Gyllencreutz R, 2013. Collapse of marine-based outlet glaciers from the Scandinavian ice sheet. Quaternary Science Reviews 67, 8-16.
- Mangerud J, Briner JP, Goslar T, Svendsen JI, 2017. The Bølling-age Blomvåg beds, western Norway: implications for the Older Dryas glacial re-advance and the age of the deglaciation. Boreas 46, 162-184.
- Matthews JA, Shakesby RA, Schnabel C, Freeman S, 2008. Cosmogenic 10Be and 26Al ages of Holocene moraines in southern Norway I: testing the method and confirmation of the date of the Erdalen event (c. 10 ka) at its type-site. The Holocene 18, 1155-1164.
- Miller U, Robertsson A-M, 1988. Late Weichselian and Holocene environmental changes in Bohuslän, southwestern Sweden. Geographia Polonica 55, 103–111.

- Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johannson JM, Vermeer M, Koivula H, 2001. Space-geodetic constraints on glacial isostatic adjustments in Fennoscandia. Science 291, 2381-2385.
- Nesje A, Dahl SO, Linge H, Ballantyne CK, McCarroll D, Brook EJ, Raisbeck GM, Yiou F, 2007. The surface geometry of the last glacial maximum ice sheet in the Andøya-Skånland region, northern Norway, constrained by surface exposure dating and clay mineralogy. Boreas 36, 227-239.
- Nishiizumi K, 2004. Preparation of ²⁶Al AMS standards. Nuclear Instruments and Methods in Physics Research B 223-224, 388-392.
- Paasche Ø, Strømsøe JR, Dahl SO, Linge H, 2006. Weathering characteristics of arctic islands in northern Norway. Geomorphology 82, 430-452.
- Paus A, Boessenkool S, Brochmann C, Epp LS, Fabel D, Haflidason H, Linge H, 2015. Lake Store Finnsjøen a key for understanding lateglacial/early Holocene vegetation and ice sheet dynamics in the central Scandes Mountains. Quaternary Science Reviews 121, 36-51.
- Rinterknecht VR, Clark PU, Raisbeck GM, Yiou F, Brook EJ, Tschudi S, Lunkka JP, 2004. Cosmogenic 10Be dating of the Salpausselkä I moraine in southwestern Finland. Quaternary Science Reviews 23, 2283-2289.
- Rinterknecht VR, Marks L, Piotrowski JA, Raisbeck GM, Yiou F, Brook EJ, Clark PU, 2005. Cosmogenic 10Be ages on the Pomeranian moraine, Poland. Boreas 34, 186-191.
- Rinterknecht VR, Clark PU, Raisbeck GM, Yiou F, Bitinas A, Brook EJ, Marks L, Zelčs V, Lunkka J-P, Pavlovskaya IE, Piotrowski JA, Raukas A, 2006. The last deglaciation of the southeastern sector of the Scandinavian ice sheet. Science 311, 1449-1452.
- Rinterknecht V, Braucher R, Böse M, Bourlès D, Mercier J-L, 2012a. Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating. Quaternary Science Reviews 44, 89-95.
- Rinterknecht V, Börner A, Bourlès D, Braucher R, 2014a. Cosmogenic 10Be dating of ice sheet marginal belts in Mecklenburg-Vorpommern, Western Pomerania (northeast Germany). Quaternary Geochronology 19, 42-51.
- Shakesby RA, Matthews JA, Schnabel C, 2008. Cosmogenic 10Be and 26Al ages of Holocene moraines in southern Norway II: evidence for individualistic responses of high-altitude glaciers to millennial-scale climatic fluctuations. The Holocene 18, 1165-1177.
- Stone J, 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 23753-23760.
- Stroeven AP, Fabel D, Hättestrand C, Harbor J, 2002a. A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 44, 145-154.
- Stroeven AP, Fabel D, Harbor J, Hättestrand C, Kleman J, 2002b. Quantifying the erosional impact of the Fennoscandian ice sheet in the Torneträsk-Narvik corridor, northern Sweden, based on cosmogenic radionuclide data. Geografiska Annaler 84A, 275-287.
- Stroeven AP, Harbor J, Fabel D, Kleman J, Hättestrand C, Elmore D, Fink D, Fredin O, 2006. Slow, patchy landscape evolution in northern Sweden despite repeated ice-sheet glaciation. In: Willett SD, Hovius N, Brandon MT, Fisher D (Eds), Tectonics, climate, and landscape evolution. Geological Society of America, pp. 387-396.
- Stroeven AP, Fabel D, Harbor JM, Fink D, Dahlgren T, 2011. Importance of sampling across an assemblage of glacial landforms for interpreting cosmogenic ages of deglaciation. Quaternary Research 76, 148-156.
- Stroeven AP, Heyman J, Fabel D, Björck S, Caffee MW, Fredin O, Harbor JM, 2015. A new Scandinavian reference 10Be production rate. Quaternary Geochronology 29, 104-115.
- Stroeven AP, Hättestrand C, Kleman J, Heyman J, Fabel D, Fredin O, Goodfellow BW, Harbor JM, Jansen JD, Olsen L, Caffee MW, Fink D, Lundqvist J, Rosqvist GC, Strömberg B, Jansson KN, 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147, 91-121.

- Svendsen JI, Briner JP, Mangerud J, Young NE, 2015. Early break-up of the Norwegian channel ice stream during the last glacial maximum. Quaternary Science Reviews 107, 231-242.
- Tschudi S, Ivy-Ochs S, Schlüchter C, Kubik P, Rainio H, 2000. 10Be dating of Younger Dryas Salpausselkä I formation in Finland. Boreas 29, 287-293.