LC2: Polymères

Acides aminés constituant la caséine

Extraction de la caséine du lait

Quelques exemples de polymères synthétiques

Nom	Représentation	Monomère
Polyéthylène	$ \begin{pmatrix} H & H \\ -C - C \\ H & H \end{pmatrix}_{n} $	H H
Polystyrène	H-C-H-n	CH ₂
Nylon (6-6)	[N N N N	H ₂ N O NH ₂

Synthèse du polystyrène : polyaddition

Synthèse du nylon : polycondensation

Différentes structures des polymères

Polymère linéaire

Polymère ramifié

$$\begin{array}{ccccc} CH_3 & CH_3 \\ I & I \\ CH_3 - C - CH_2 - C - CH_3 \\ I & I \\ CH_2 & CH_2 \\ I & I \\ CH_3 - C - CH_2 - C - CH_3 \\ I & CH_2 & CH_3 \\ I & CH_3 & CH_3 \\ \end{array}$$

Polymère réticulé

Interactions dans le nylon 6,6

In nylon 6,6, the carbonyl oxygens and amide hydrogens can hydrogen bond with each other. This allows the chains to line up in an orderly fashion to form fibers.

Propriétés mécaniques des polymères

Tests de traction.

1: plastique dur ; 2 : plastique souple ; 3 : élastomère. L'élongation n'est réversible que pour les élastomères. Le point en haut de courbe correspond à la rupture.

La galathite, un polymère thermodurcissable

 → Doit être travaillée manuellement (surtout pour des décoration)

Une production de plastique démesurée

