

FORMATO DE SYLLABUS	Código: AA-FR-003		
Macroproceso: Direccionamiento Estratégico	Versión: 01		
	Fecha de Aprobación:		

27/07/2023

Proceso: Autoevaluación v Acreditación

FACULTAD:		Tecnológica								
PROYECTO CUF	RRICULAR:		Tecnología en El	ectrónica Industrial		CÓDIGO PLAN DE ESTUDIOS:				
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO										
NOMBRE DEL ESPACIO ACADÉMICO: TECNOLOGÍAS, PLATAFORMAS Y PROTOCOLOS DE RED PARA IOT E IIOT										
Código del espacio académico:			7429	Número de créditos académicos:				2		
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2		
Tipo de espacio académico:			Asignatura	х	Cátedra					
NATURALEZA DEL ESPACIO ACADÉMICO:										
Obligatorio Básico		-	gatorio mentario		Electivo Intrínseco	х	Electivo Extrínseco			
CARÁCTER DEL ESPACIO ACADÉMICO:										
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:		
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:										
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:		
			II. SUGERENCIA	S DE SABERES Y CONOCIN	MIENTOS PREVIOS					

Se recomienda que el estudiante haya cursado asignaturas como fundamentos de redes de datos, sistemas embebidos, programación orientada a objetos y electrónica digital. Es conveniente tener familiaridad con protocolos de comunicación, microcontroladores (Arduino, ESP32) y entornos como Node-RED o LabVIEW.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

El despliegue de tecnologías IoT e IIoT en el marco de la Industria 4.0 requiere un dominio profundo de protocolos de red, arquitecturas distribuidas y plataformas de desarrollo. Estas tecnologías permiten la automatización, monitoreo remoto y toma de decisiones inteligente en entornos productivos, energéticos, de transporte y salud. Esta asignatura proporciona las herramientas técnicas y conceptuales necesarias para diseñar soluciones robustas y escalables que integren sensores, redes inalámbricas, plataformas cloud, y modelos de seguridad digital.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar soluciones IoT e IIoT seguras y eficientes utilizando protocolos, plataformas y tecnologías modernas de comunicación, alineadas con los requerimientos de la Industria 4.0.

Objetivos Específicos:

Comprender modelos arquitecturales y de referencia para IoT/IIoT.

Implementar soluciones usando protocolos y tecnologías de red modernas.

Evaluar arquitecturas de conectividad (LPWAN, edge, 5G) y plataformas de integración.

Desarrollar aplicaciones funcionales sobre hardware embebido y plataformas de adquisición.

Considerar criterios de interoperabilidad, eficiencia energética y ciberseguridad.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Formar competencias en diseño e implementación de redes IoT robustas.

Desarrollar habilidades para elegir, configurar y evaluar plataformas y protocolos.

Fortalecer el enfoque analítico y crítico para integrar dispositivos y servicios distribuidos.

Concientizar sobre los riesgos y buenas prácticas en ciberseguridad IoT.

Resultados de Aprendizaje:

Comprende la arquitectura, modelos y estándares del ecosistema IoT/IIoT.

Configura redes inalámbricas de corto y largo alcance para integración de sensores.

Aplica protocolos de red como MQTT, CoAP, DDS y OPC-UA en proyectos reales.

Evalúa tecnologías de comunicación y plataformas embebidas bajo criterios de rendimiento.

Diseña una solución funcional IoT o IIoT integrando hardware, software y red.

VI. CONTENIDOS TEMÁTICOS

1. Arquitecturas y modelos de referencia (Semanas 1-3)

Introducción a IoT, IIoT y la Industria 4.0.

Modelos de referencia (ITU-T, IIRA, RAMI 4.0, ETSI M2M, IoT Forum).

Componentes de un sistema IoT: sensores, actuadores, gateways, cloud, plataformas.

2. Tecnologías y estándares de conectividad (Semanas 4-6)

Redes inalámbricas para IoT: ZigBee, LoRa/LoRaWAN, Sigfox, BLE, NB-IoT, LTE-M.

Redes LPWAN y 5G para IIoT.

Evaluación comparativa: rango, consumo, velocidad, topología, escalabilidad.

3. Protocolos de red IoT/IIoT (Semanas 7-9)

Protocolos de aplicación: MQTT, CoAP, HTTP/REST, WebSockets.

OPC-UA y DDS para interoperabilidad industrial.

Protocolos de mensajería AMQP y servicios en tiempo real.

6LoWPAN, IPv6 y direccionamiento eficiente en redes IoT.

4. Plataformas, seguridad y despliegue (Semanas 10-12)

Plataformas de integración: ThingsBoard, Node-RED, AWS IoT, Azure IoT Hub.

Seguridad en IoT: cifrado, autenticación, certificados, actualizaciones OTA.

 $\label{thm:edge:computing:caracter} \mbox{Edge computing: caracter} \mbox{isticas, beneficios, aplicaciones.}$

Integración con SCADA, middleware y computadoras embebidas.

5. Proyecto final: sistema IoT o IIoT funcional (Semanas 13-16)

Implementación de un sistema de monitoreo/control en un entorno real o simulado.

Uso de sensores, nodos embebidos y plataforma de visualización.

Evaluación de rendimiento, seguridad y sostenibilidad.

Entrega de documentación técnica y sustentación.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante clases interactivas, trabajo colaborativo, desarrollo incremental de proyectos, estudio de casos industriales y prácticas en laboratorio. Se utilizarán entornos virtuales, plataformas IoT educativas y simuladores. Se promoverá el análisis comparativo y la validación de tecnologías emergentes.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se debe contar con dispositivos embebidos (ESP32, Raspberry Pi), sensores industriales, gateways LoRa, red WiFi/NB-IoT, entornos Node-RED, ThingsBoard, MQTT brokers, herramientas de simulación (MATLAB Simulink, LabVIEW)..

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se fomentarán visitas a empresas que utilicen soluciones de conectividad industrial (planta de manufactura, sistemas SCADA, ciudades inteligentes), así como participación en ferias tecnológicas, desafíos IoT, y colaboración con semilleros de investigación en redes, IoT o automatización.

XI. BIBLIOGRAFÍA

Höller, J. From Machine-to-Machine to the Internet of Things, Academic Press.

Stallings, W. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud, Addison-Wesley.

Cisco, IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things.

Buyya, R., Fog and Edge Computing, Wiley.

MQTT.org, OPCFoundation.org, DDS Foundation – documentación técnica oficial.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS Fecha revisión por Consejo Curricular: Fecha aprobación por Consejo Curricular: Número de acta: