Procesy stochastyczne Zestaw zadań nr 5

Zadanie 1. Niech X_1, X_2, \ldots będzie ciągiem niezależnych i całkowalnych zmiennych losowych o tym samym rozkładzie normalnym $(\mathcal{N}(\mu, \sigma))$ i niech τ będzie zmienną losową o rozkładzie Poissona z parametrem λ niezależną od tego ciągu. Znajdź wartość oczekiwaną zmiennej losowej

$$\xi \stackrel{d}{=} \sum_{n=1}^{\tau} X_n.$$

Zadanie 2. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, nieujemnymi z wartością oczekiwaną równą 1. Niech T będzie ograniczonym momentem stopu. Udowodnij, że

$$\mathbb{E}\prod_{i=1}^{T}X_{i}=1.$$

Zadanie 3. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i niech ϕ oznacza funkcję generującą momenty dla X_i . Niech ponadto T będzie ograniczonym momentem stopu. Oznaczmy przez $S_T = \sum_{i=1}^T X_i$. Udowodnij, że

$$\mathbb{E}\left(\frac{\exp\left(\theta S_{T}\right)}{\phi(\theta)^{T}}\right) = 1.$$

Zadanie 4. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o dystrybuancie F. Oznaczmy $\tau = \inf\{n: X_n > X_0\}$. Wyznacz rozkład τ oraz jego wartość oczekiwaną.

Zadanie 5. Niech X będzie symetrycznym błądzeniem losowym z czasem dyskretnym postaci $X_n = \sum_{i=1}^n Y_i$ i niech filtracja $\{\mathcal{F}_n\}$ będzie genereowana przez zmienne Y_i . Weźmy dowolne $K \in \mathbb{N}$ i określmy $T = \inf\{n \colon |X_n| = K\}$. Udowdnij:

- $-\ T\ jest\ momentem\ stopu,$
- proces $Z_n = (-1)^n \cos(\pi \cdot (X_n + K))$ jest martyngalem,
- proces Z spełnia założenia twierdzenia o opcjonalnym stopowaniu,
- $znajd\acute{z} \mathbb{E}(-1)^T$.

Zadanie 6. Niech M będzie nieujemnym martyngałem takim, że dla dowolnego n $M_n \in L^p$ dla pewnego p > 1 i niecch $\lambda > 0$. Udwodnij, że zachodzi

$$\mathbb{P}\left(\max_{k\leq n}M_k\geq \lambda\right)\leq \frac{1}{\lambda^p}\int_{\max_{k\leq n}M_k>\lambda}M_n^pd\mathbb{P}\leq \frac{1}{\lambda^p}\mathbb{E}M_n^p.$$

Zadanie 7. $Nierówność Doob'a w L^p$.

— Niech X,Y będą nieujemnymi zmiennymi losowymi i niech $Y \in L^p$ dla p>1. Ponadto niech dla dowolnego x>0 zachodzi

$$x\mathbb{P}(X \ge x) \le \int_{X \ge x} Y d\mathbb{P}.$$

 $\label{eq:downdnij} \textit{Udowodnij}, \ \dot{z}e \ X \in L^p \ \textit{oraz} \ ||X||_p \leq \frac{p}{p-1} ||Y||_p.$

— Korzystając z faktu wykazanego powyżej udowodnij, że dla dowolnego nieujemnego submartyngału M takiego, że dla dowolnego n $\mathbb{E}M_n < \infty$ zachodzi

$$\left(\mathbb{E}\left(\max_{k\leq n}M_k\right)^p\right)^{1/p}\leq \frac{p}{p-1}\left(\mathbb{E}M_n^p\right)^{1/p}$$

Zadanie 8. Niech ciągi $\{X_n\}$, $\{Y_n\}$ oraz zmienna losowa Y bądą określone na tej samej przestrzeni probabilistycznej. Niech ponadto zachodzi $|X_n - Y_n| \stackrel{P}{\to} 0$ oraz $Y_n \stackrel{d}{\to} Y$. Udowodnij, że $X_n \stackrel{d}{Y}$.

Zadanie 9. Rozważmy ciąg dystrybuant $\{F_n\}$ oraz pewną dystrybunatę F. Udowdonij, że ciąg $\{F_n\}$ zbiega słabo do F wtedy i tylko wtedy, gdy dla dowolnego $\epsilon > 0, h > 0$ oraz $t \in supp F$ istniej $N = N(t, h, \epsilon)$ takie, że dla dowlonego n > N zachodzi

$$F(t-h) - \epsilon \le F_n(t) \le F(t+h) + \epsilon.$$