Dictionaries & Hashtables

Start by downloading the provided coding canvas for dictionaries and hashtables.

Question 1 - Dictionaries

Implement the incomplete methods put(k,v), $get(k) \rightarrow v$, and $remove(k) \rightarrow v$ in class DictionaryAsDoubleList

Question 2 - Hashing and collisions

2.1. Consider that collisions are handled by chaining.

Draw the 11-entry hash table that results from using function h(i)=(3i+5)%11 to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5.

Answer:

index	0	1	2	3	4	5	6	7	8	9	10
	13	94				44			12	16	20
		39				88			23	5	
			•			11					-

2.2. Consider that collisions are handled by **linear probing**.

Draw the 11-entry hash table that results from using function h(i)=(3i+5)%11 to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5.

Answer:

index	0	1	2	3	4	5	6	7	8	9	10
	13	94	39	16	5	44	88	11	12	23	20

2.3. Consider that collisions are handled by quadratic probing.

Draw the 11-entry hash table that results from using function h(i)=(3i+5)%11 to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5.

Answer:

index	0	1	2	3	4	5	6	7	8	9	10
	13	94	39	11		44	88	16	12	23	20

The last value 5 has a collision with 23 at index 9, so by quadratic probing, we wish to find an integer j such that $9 + j^2 \equiv 4 \pmod{11}$. However, there does not exist positive integer j such that $j^2 \equiv 6 \pmod{11}$. This can be proved by listing j from 1 to 11 (one circle) and none of them satisfies $j^2 \equiv 6 \pmod{11}$. Hence 5 can not be put into the hash table by quadratic probing, we therefore need to resize the table.

Question 3 - Hashtable

Implement the incomplete methods put(k,v), $get(k) \rightarrow v$, and $remove(k) \rightarrow v$ in class ChainHashtable

Question 4 - Solving problems with map structures

Write a program count_words.py that reads every word in file <code>count_words.txt</code>, and displays the word that occurs the most frequently. Your program should work equally well with a <code>DictionaryAsDoubleList</code> and a <code>ChainHashtable</code>