Multi-Armed Bandits

Efficient Algorithms for Learning with Semi-Bandit Feedback

Abdul, Adwait, Anirudh

30th May 2021

Overview

- Motivation and Introduction
- FPL with GR Algorithm
- Regret analysis and Comparison with State of art for FPL with GR
- CombLinTS Algorithm
- Regret analysis and Comparison with State of art for CombLinTS
- CombLinUCB Algorithm
- Regret analysis and Comparison with State of art for CombLinUCB

Motivation and Introduction

3 / 44

Goals of this section

- Motivate using Online Least Cost Path problem.
- Understanding the Semi-Bandits setting.
- Understanding the Combinatorial problem.
- Understanding Linear Generalization.
- Formally introducing the problem.

Motivation The Online Least Cost Path problem

- We have a (directed or undirected) graph G with
 - L = number of edge,
 - $w_i = \cos t$ associate with the edge i.
 - S = start node and.
 - T = target node.
- The goal: Find the cheapest path from S to T w.r.to the cost associated with the path.

Motivation The Online Least Cost Path problem - An example

- In the above graph L = 5.
- A path is denoted as a 5 D vector.
 - Path SAT, $A_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$
 - Path SCT, $A_2 = \boxed{0 \ | \ 0 \ | \ 1 \ | \ 0 \ | \ 1}$
- Set of valid paths, $\mathcal{A} = \{A_1, A_2\} \subseteq \{0, 1\}^L$

Motivation

The Online Least Cost Path problem - Cost computation

- Let us say we have decided to go with the path SAT. 1 0 0 1 0
- To compute the cost, we may get one of the following:
 - Full information setting:

$$w = \boxed{0.3 \mid 0.2 \mid 0.7 \mid 0.5 \mid 0.4}$$

Semi-Bandits setting:

$$w = \boxed{0.3 \mid x \mid x \mid 0.5 \mid x}$$

Full-Bandits setting:

$$I = 0.8$$

• For the Full information and Semi-Bandits setting, the loss is $I = A \cdot w$

Motivation How is this different from the familiar MAB setting?

- In the MAB setting, we choose $i\epsilon[L]$.
 - *i* can take one of *L* values.
- However, here we choose $A \in \mathcal{A} \subseteq \{0,1\}^L$.
 - A can take one of potentially 2^L values.
- That is, we want to choose one or more arms in each round.
- In the Online Least Cost path problem,
 Edge ≡ Arm
 Path ≡ multiple Arms.
- This is an example of Combinatorial Optimization problem.

Motivation

- An immediate issue with this setting is that applying algorithms such as EXP-3 may not have a good regret bound, since both L and $|\mathcal{A}|$ can be very large in real life settings.
- Can we make it independent of L?
 - Here's a sneak peak...

9 / 44

Motivation Linear Generalization

- In this setting (and many other real life settings), we have access to features of edges, such as,
 - Length,
 - 2 Traffic, and
 - 8 Road Quality.

	Length	Traffic	Road Quality
e_1	10	3	7
e_2	4	6	3
<i>e</i> ₃	8	1	4
<i>e</i> ₄	6	2	5
<i>e</i> ₅	3	7	2

Motivation Linear Generalization

Hence, we know a (possibly imperfect) generalization matrix Φ.
 In this case,

$$\Phi = \begin{bmatrix} 10 & 3 & 7 \\ 4 & 6 & 3 \\ 8 & 1 & 4 \\ 6 & 2 & 5 \\ 3 & 7 & 2 \end{bmatrix}$$

• We assume that the cost of an edge is a linear combination of its feature values.

$$cost(e) = \theta_1 \ length(e) + \theta_2 \ traffic(e) + \theta_3 \ quality(e) = \vec{\theta} \cdot \phi_e$$

- Now, the task is to estimate the entries in $\vec{\theta}$.
- Notice the advantage: The values to be estimated equal the number of features, and not *L*.

Abdul, Adwait, Anirudh Multi-Armed Bandits 30th May 2021

11 / 44

Let's formalize what all we have seen till now.

Introduction Formalism

A Combinatorial Optimization Problem

Can be represented as a triple (E, A, w) where,

- E = Set of L arms.
- $A = \text{Set of (some or all) subsets } A \text{ of } E \text{ with } |A| \leq K$.
- $w : E \to \mathbb{R}$ is the weight function.
- The total weight of $A \in \mathcal{A}$ is $\sum_{e \in A} w_e$.

Introduction Formalism

Semi-Bandit Problem

The losses associated to only the chosen arms are seen.

Linear Generalization

For $e \in [L]$, $w(e) = \Phi_e \theta$,

where Φ_e is the feature vector of the arm e, and θ indicates the weights of the features.

Introduction Formalism

The Combinatorial semi-bandits

It is an online learning problem where at each step the learning agent chooses a subset of arms A subject to combinatorial constraints, and then observes weights of the selected arms, $\{w(e): e \in A\}$, and gets their sum f(A, w) as a payoff.

Introduction **Formalism**

The Goal

- The learner chooses a subset of arms A^t at round t. The loss suffered at this round $R_t = f(A^*, w_t) - f(A^t, w)$ (In the Reward setup).
- We want the cumulative Regret to be *good*, And the algorithm to be efficient when applied in Large scale settings.

Efficient Algorithm for Learning with Semi-Bandit Feedback (Paper 1)

Learning with Semi-Bandit Feedback

- The paper considers the problem of online Combinatorial Optimization under semi-bandit feedback. (No linear Generalization)
- The paper assumes:
 - Finite Decision Set (potentially very large)
 - Efficient offline combinatorial optimization is possible
 - Elements of the decision set can be described with *d*-dimensional arrays with at most *m* non-zero entries.
 - For example a decision vector in which 3 arms out of possible 7 arms are played will look like [1 0 0 1 1 0 0]

General Protocol for online Combinatorial Optimization

Parameters: set of decision vectors $S = \{v(1), v(2), \dots, v(N)\} \subseteq \{0, 1\}^d$, number of rounds T:

For all t = 1, 2, ..., T, repeat

- 1. The learner chooses a probability distribution p_t over $\{1, 2, ..., N\}$.
- The learner draws an action I_t randomly according to p_t. Consequently, the learner plays decision vector $V_t = v(I_t)$.
- 3. The environment chooses loss vector ℓ_t .
- 4. The learner suffers loss $V_t^{\top} \ell_t$.
- 5. The learner observes some feedback based on ℓ_t and V_t .
- Generic framework to accommodate a number of interesting problem instances such as path planning, ranking and matching problems, finding minimum weight spanning trees and cut sets etc.

Normal Bandit Setting

- Total *N* arms and we chose only one arm.
- A distribution p_t over the arms where $p_{t,i} = \mathcal{P}[I_t = i | \mathcal{F}_{t-1}]$ where \mathcal{F}_{t-1} is the history of the learners observation and choice made upto step t-1.
- Most bandit algorithms rely on feeding some loss estimates to black box algorithm like Hedge etc. A common loss estimate used is $\hat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbb{I}[I_t = i]$ (An unbiased estimate)
- ullet Almost all existing algorithms use some form of the above loss estimate. But p_t is not readily available for all algorithms like FPL.
- Following loss estimate is proposed

Geometric Resampling

- In round t the learner draws $l_t \sim p_t$
- For n = 1, 2, ...
 - Let $n \leftarrow n + 1$
 - Draw $I'(n) \sim p_t$
 - If $I'(n) = I_t$, break
- Let $K_t = n$
- $\ell_{t,i} = \ell_{t,i} \mathbb{I}[I_t = i] K_t$ (Also unbiased)
- The number samples can be unbounded, so we cap the number of samples by M and use $\hat{K}_t = min(K_t, M)$
- Introduces some bias, but if *M* is chosen appropriately the performance does not hurt much.

Generalizing Geometric Sampling to Semi-Bandit Feedback

- In round t again the learner draws $l_t \sim p_t$
- For each arm draw M samples (because anyway we are capping by M). We can effectively draw only M samples and use them for all the arms being played. So, draw M additional indices $I_t'(1), I_t'(2) \dots I_t'(M) \sim p_t$
- Define $K_{t,j} = min\{1 \le s \le M : v_j(I'_t(s)) = v_j(I_t)\}$ for all arms.
- Use Loss estimate for each arm as $\hat{\ell}_{t,j} = K_{t,j} V_{t,j} \ell_{t,j}$
- Since $V_{t,j}$ is non-zero only for the arms being played the estimates are well defined.

Multi-Armed Bandits 30th May 2021 22 / 44

FPL with Geometric Sampling

```
Input: S = \{v(1), v(2), \dots, v(N)\} \subseteq \{0, 1\}^d, \eta \in \mathbb{R}^+, M \in \mathbb{Z}^+;
Initialization: \hat{L}(1) = \cdots = \hat{L}(d) = 0:
for t=1,\ldots,T do
     Draw Z(1), \ldots, Z(d) independently from distribution \text{Exp}(\eta);
    Choose action I = \underset{i \in \{1, 2, \dots, N\}}{\operatorname{arg min}} \left\{ v(i)^{\top} \left( \widehat{L} - Z \right) \right\};
    K(1) = \cdots = K(d) = M;
    k=0:
                                                /* Counter for reoccurred indices */
    for n=1,\ldots,M-1 do
                                                                /* Geometric Resamplig */
         Draw Z'(1), \ldots, Z'(d) independently from distribution \text{Exp}(\eta);
         I(n) = \underset{i \in I1, 2}{\operatorname{arg\,min}} \left\{ v(i)^{\top} \left( \widehat{L} - Z' \right) \right\};
         for j=1,\ldots,d do
              if v(I(n))(j) = 1 \& K(j) = M then
             end
    end
     for j=1,...,d do \widehat{L}(j) = \widehat{L}(j) + K(j)v(I)(j)\ell(j);
                                                                                    /* Update */
end
```

Computational Efficiency under Semi Bandit Feedback

- The expected number of times the algorithm draws an action up to time step T can be upper bounded by dT. This can be shown as
- For each co-ordinate that the original arm had 1, we take sampling until we get 1 in the same co-ordinate again. (Here we do not assume cutoff)
- Let $q_{t,k} = \mathbb{E}[V_{t,k}|\mathcal{F}_{t-1}]$
- At time step t for a given co-ordinate k with 1, the expected number of samples is $\frac{1}{q_{t,k}}$ while the probability of co-ordinate k being 1 is $q_{t,k}$
- So, expected number of samples is $\sum_{k=1}^{d} q_{t,k} \frac{1}{q_{t,k}} = d$. (For one round)
- For T rounds it will be dT.
- The expected running time is comforting.

4□ > 4□ > 4 = > 4 = > = 90

Regret Bound

- The total expected regret of FPL with Geometric Resampling satisfies $R_n \le \frac{m(\log d+1)}{n} + \eta m dT + \frac{dT}{eM}$ under semi-bandit information.
- For the full information setting if $C_T = \sum_{t=1}^T \mathbb{E}[V_t^T \ell_t]$ then the expected regret of FPL satisfies $R_n \leq \frac{m(\log d + 1)}{\eta} + \eta m C_t$ under full information.
- For $\eta = \sqrt{\frac{\log d + 1}{dT}}$ and $M \ge \frac{\sqrt{dT}}{eM(\sqrt{\log d + 1})}$, $R_n = \mathcal{O}(m\sqrt{dT\log d})$
- For $\eta = \sqrt{\frac{(\log d + 1)}{mT}} R_n = \mathcal{O}(m^{\frac{3}{2}} \sqrt{T(\log d + 1)}).$

Abdul, Adwait, Anirudh

Comparison with State of Art

- Full information setting \to Optimal Regret $\to \mathcal{O}(m\sqrt{T\log d})$ FPL-with-GR achives $\mathcal{O}(m^{\frac{3}{2}}\sqrt{T(\log d + 1)})$ off by a factor of \sqrt{m}
- Semi-bandit setting \rightarrow Optimal Regret $\mathcal{O}(\sqrt{mdT})$. FPL-with-GR achives $\mathcal{O}(m\sqrt{dT}\log d)$ off by a factor of $\sqrt{m\log d}$

Conclusion and Future work

- The paper has introduced the first general efficient algorithm for online combinatorial optimization under semi-bandit feedback.
- It remains as an open problem whether the gaps we have shown can be closed for FPL-style algorithms.
- The most important open problem is the development efficient online linear optimization with full bandit feedback.

Efficient Learning in Large Scale Combinatorial Semi-Bandits (Paper 2)

28 / 44

Large Scale Combinatorial Semi-Bandits

- This paper looks at efficient algorithms for stochastic combinatorial semi-bandits with **linear generalization**
- We look at algorithms that have regret bound INDEPENDENT OF L (hence large scale)

Setup Used for Combinatorial optimization

Combinatorial setup

- $E = \{1, ..., L\} \equiv \text{arms (the ground set)}$
- $A \subseteq \{A \subseteq E : |A| \le K\} \equiv$ allowed combinations of arms
- $P \equiv$ probability distribution over weights $w \in \mathbb{R}^L$ on E. $(\bar{w} = \mathbb{E}[w])$
- After the arms A are pulled, we observe the individual return of each arm $\{w(e): e \in A\}$
- $f(A, w) \equiv \text{loss on pulling } A \in \mathcal{A}$

We assume linear generalization(possibly imperfect) and that the agent knows the generalization matrix $\Phi \in \mathbb{R}^{L \times d}$. If $\bar{\mathbf{w}} \in span[\Phi]$ we call it as coherent learning case otherwise agnostic. WLOG rank $[\Phi] = d$.

Abdul, Adwait, Anirudh Multi-Armed Bandits 30th May 2021 30 / 44

Performance Metrics

- $R_t = f(A^*, w_t) f(A^t, w)$ where $A^* = ORACLE(E, A, \bar{w})$
- For fixed $\bar{\mathbf{w}}$, $R(T) = \sum_{t=1}^{T} \mathbb{E}[R_t|\bar{\mathbf{w}}] \equiv \mathbf{EXPECTED}$ CUMULATIVE REGRET where expectation is over random weights and possible randomization in the algorithm.
- for randomly generated $\bar{\mathbf{w}}$, $R_{bayes}(T) = \sum_{t=1}^{T} \mathbb{E}[R_t] \equiv \mathbf{BAYES}$ **CUMULATIVE REGRET** where expectation is over random weights, possible randomization in the algorithm and also over $\bar{\mathbf{w}}$.
- $\theta^* = \operatorname{argmin}_{\theta} ||\bar{\mathbf{w}} \Phi \theta||$. Since $\operatorname{rank}[\Phi] = d$, θ^* is uniquely defined. Also in coherent learning case $\bar{\mathbf{w}} = \Phi \theta^*$.

Abdul, Adwait, Anirudh Multi-Armed Bandits 30th May 2021

ALGORITHMS

KALMAN FILTERING for updating parameters

Algorithm 1

Input: $\bar{\theta}_t$, Σ_t , σ , and feature-observation pairs $\{(\phi_e, \mathbf{w}_t(e)) : e \in A^t\}$

Initialize $\bar{\theta}_{t+1} \leftarrow \bar{\theta}_t$ and $\Sigma_{t+1} \leftarrow \Sigma_t$

for $k=1,\ldots,|A^t|$ do

Update $\bar{\theta}_{t+1}$ and Σ_{t+1} as follows, where a_k^t is the kth element in A^t

$$\bar{\theta}_{t+1} \leftarrow \left[I - \frac{\Sigma_{t+1}\phi_{a_k^t}\phi_{a_k^t}^T}{\phi_{a_k^t}^T\Sigma_{t+1}\phi_{a_k^t} + \sigma^2}\right]\bar{\theta}_{t+1} + \left[\frac{\Sigma_{t+1}\phi_{a_k^t}}{\phi_{a_k^t}^T\Sigma_{t+1}\phi_{a_k^t} + \sigma^2}\right]\mathbf{w}_t\left(a_k^t\right) \quad \text{ and } \quad \Sigma_{t+1} \leftarrow \Sigma_{t+1} - \frac{\Sigma_{t+1}\phi_{a_k^t}\phi_{a_k^t}^T\Sigma_{t+1}}{\phi_{a_k^t}^T\Sigma_{t+1}\phi_{a_k^t} + \sigma^2},$$

end for

Output: $\bar{\theta}_{t+1}$ and Σ_{t+1}

Combinatorial Linear Thompson Sampling

CombLinTS

Input: Combinatorial structure (E, A), generalization matrix $\Phi \in \mathbb{R}^{L \times d}$, algorithm parameters $\lambda, \sigma > 0$, oracle ORACLE

Initialize $\Sigma_1 \leftarrow \lambda^2 I \in \mathbb{R}^{d \times d}$ and $\bar{\theta}_1 = 0 \in \mathbb{R}^d$ for all $t = 1, 2, \ldots, n$ do Sample $\theta_t \sim N\left(\bar{\theta}_t, \Sigma_t\right)$ Compute $A^t \leftarrow \mathtt{ORACLE}(E, \mathcal{A}, \Phi\theta_t)$ Choose set A^t , and observe $\mathbf{w}_t(e)$, $\forall e \in A^t$ Compute $\bar{\theta}_{t+1}$ and Σ_{t+1} based on Algorithm 1 end for

34 / 44

CombLinTS: Key Points

- $\lambda \rightarrow$ inverse regularization parameter.
- smaller λ makes the covariance matrix \sum_t closer to 0.
- smaller λ ⇒ narrower prior⇒ insufficient exploration ⇒ degraded performance of CombLinTS.
- σ controls the decrease rate of covariance matrix Σ_t .
- Large σ will lead to slow learning and a smaller σ will make the algorithm quickly converge to some sub-optimal coefficient vector.

CombLinTS: Regret bound

Regret Bound

- If $\bar{\mathbf{w}} = \Phi \theta^*$, the prior on θ^* is $\mathcal{N}(0, \lambda^2 I)$, the noises $(\mathbf{w}_t(e) \bar{\mathbf{w}}(e))$ are i.i.d sampled from $\mathcal{N}(0, \sigma^2)$ then CombLinTS guarantees: $R_{Baves}(T) = \tilde{O}(K\lambda\sqrt{dTmin\{\ln(L), d\}})$
- The conditions ensure it is a coherent gaussian case.
- The \tilde{O} notation hides the logarithmic factors.
- The regret bound is a minimum of two bounds. The first bound is L-dependent as $O(\sqrt{\ln(L)})$. The second bound is L-independent but is $\tilde{O}(d)$ instead of $\tilde{O}(\sqrt{d})$.

36 / 44

Combinatorial Linear UCB

CombLinUCB

Input: Combinatorial structure (E, \mathcal{A}) , generalization matrix $\Phi \in \mathbb{R}^{L \times d}$, algorithm parameters $\lambda, \sigma, c > 0$, oracle ORACLE

Initialize $\Sigma_1 \leftarrow \lambda^2 I \in \mathbb{R}^{d \times d}$ and $\bar{\theta}_1 = 0 \in \mathbb{R}^d$ for all $t = 1, 2, \dots, n$ do

Define the UCB weight vector $\hat{\mathbf{w}}_t$ as

$$\hat{\mathbf{w}}_t(e) = \langle \phi_e, \bar{\theta}_t \rangle + c \sqrt{\phi_e^T \Sigma_t \phi_e} \quad \forall e \in E$$

Compute $A^t \leftarrow \text{ORACLE}(E, \mathcal{A}, \hat{\mathbf{w}}_t)$ Choose set A^t , and observe $\mathbf{w}_t(e)$, $\forall e \in A^t$ Compute $\bar{\theta}_{t+1}$ and Σ_{t+1} based on Algorithm 1 end for

CombLinUCB: Key Points

- $\lambda \rightarrow$ inverse regularization parameter.
- σ controls the decrease rate of covariance matrix Σ_t ...
- The constant *c* controls the degree of optimism.
- Small $c \Rightarrow$ algorithm might converge to some sub-optimal coefficient vector due to insufficient exploration.
- Large $c \Rightarrow$ excessive exploration and slow learning.

CombLinUCB: Regret Bound

Assuming P is a subset of $[0,1]^L$, the stochastic item weights are statistically independent under P. Then for the coherent learning case i.e. $\bar{\mathbf{w}} = \Phi \theta$ we have: For any λ , σ and $\delta \in (0,1)$ and any c satisfying

$$c \ge \frac{1}{\sigma} \sqrt{d \ln(1 + \frac{Tk\lambda^2}{d\sigma^2}) + 2 \ln(\frac{1}{\delta})} + \frac{||\theta^*||_2}{\lambda}$$
 we have:

$$R(T) \le 2cK\lambda\sqrt{\frac{dT\ln(1+\frac{Tk\lambda^2}{d\sigma^2})}{\ln(1+\frac{\lambda^2}{\sigma^2})}} + TK\delta$$

Specifically if we chose $\lambda = \sigma = 1$, $\delta = \frac{1}{nK}$ and c is the lower bound on its above condition then:

Regret Bound

$$R(T) = \tilde{O}(Kd\sqrt{T})$$

Comparison with state of art

Standard Result

Standard results have been set for the no generalisation case.

No generalization
$$\Rightarrow$$
 lower bound of $\Omega(\sqrt{LKT})$

$$\Rightarrow \Phi = I \Rightarrow L = d \Rightarrow \text{No generalization lower bound} = \Omega(\sqrt{KdT})$$

CombLinTS

$$\tilde{O}(\sqrt{Kmin\{\ln(L),d\}})$$
 larger than the $\Omega(\sqrt{KdT})$

CombLinUCB

$$\tilde{O}(\sqrt{Kd})$$
 larger than the $\Omega(\sqrt{KdT})$

Note

The $\Omega(\sqrt{d})$ and $\Omega(\sqrt{K})$ factors are due to linear generalization. Full tightness analysis has been left to future work.

Conclusion and Future Work

- This paper has introduced two learning algorithms CombLinTS and CombLinUCB for stochastic combinatorial semi bandits with linear genrelariation.
- The main contribution has been that the paper has successfully introduced L independent bounds which is highly useful for real life problems e.g Online advertisements(millions of users and products).
- This paper has left it open to derive bounds for the agnostic learning case.
- Another open problem is how to extend the results to combinatorial semi bandits with non-linear generalization.

TAKEAWAYS

What have we seen so far

What have we seen so far

• Geometric Resampling:

- Don't need p_t explicitly;
- Computationally efficient;
- Fits into any semi bandit algorithm

What have we seen so far

- Geometric Resampling:
 - Don't need p_t explicitly;
 - Computationally efficient;
 - Fits into any semi bandit algorithm
- Linear Generalization:
 - Makes regret bound L independent

THANK YOU