Álgebra I Práctica 6 resuelta

Por alumnos de Álgebra I

última compilacion: 06/07/2024

Choose your destiny:

- Teoría
- Ejercicios de la guía:
 - 1.
 3.
 5.
 7.
 9.
 11.
 13.
 15.

 2.
 4.
 6.
 8.
 10.
 12.
 14.
- Ejercicios de Parcial

Un poco de teoría

Raíces de un número complejo:

- Sean $z, w \in \mathbb{C} \{0\}$, $z = re^{\theta i}$ y $w = se^{\varphi i}$ con $r, s \in \mathbb{R}_{>0}$ y $\theta, \varphi \in \mathbb{R}$. Entonces $z = w \iff \begin{cases} r = s \\ \theta = \varphi + 2k\pi, \text{ para algún } k \in \mathbb{Z} \end{cases}$
- raíces n-esimas: $w^n = z \to \begin{cases} s^n = r \\ \varphi \cdot n = \theta + 2k\pi & \to \text{ para algún } k \in \mathbb{Z} \\ n \text{ raíces distintas} \to w_k = se^{\varphi_k i}, \text{ donde } s = \sqrt{r} \text{ y } \varphi_k = \frac{\theta}{n} + \frac{2k\pi}{n} = \frac{\theta + 2k\pi}{n} \end{cases}$
- $G_n = \{ w \in \mathbb{C}/w^n = 1 \} = \left\{ e^{\frac{2k\pi}{n}i} : 0 \le k \le n-1 \right\}$
- (G_n, \cdot) es un grupo abeliano, o conmutativo.
 - $\forall w, z \in G_n, wz = zw \ y \ zm \in G_n.$
 - $-1 \in G_n, \ w \cdot 1 = 1 \cdot w = w \qquad \forall w \in G_n.$
 - $w \in G_n \Rightarrow \exists w^{-1} \in G_n, \ w \cdot w^{-1} = w^{-1} \cdot w = 1$

$$* \overline{w} \in G_n, \ w \cdot \overline{w} = |w|^2 = 1 \Rightarrow \overline{w} = w^{-1}$$

- Propiedades: $w \in G_n$
 - $-m \in \mathbb{Z} \text{ y } n \mid m \Rightarrow w^m = 1.$
 - $-m \equiv m'(n) \Rightarrow w^m = w^{m'} \quad (w^m = w^{r_n(m)})$
 - $-n \mid m \iff G_n \subseteq G_m$
 - $-G_n \cap G_m = G_{(n:m)}$
 - Si (G,\cdot) es un grupo y #G=n decimos que G siempre es cíclico si $\exists w \in G/G=\{1,w,w^2,\ldots,w^{n-1}\}$
 - * Observación: G_n es un grupo cíclico, ej, $w_1 = e^{\frac{2\pi i}{n}} \to (w_1)^k = w_k \to \text{las potencias de } w_1 \text{ generan todo } G_n = \{1, w_1, w_1^2, \dots, w_1^{n-1}\}$
 - -w es raíz n—ésima primitiva de 1 si: $G_n = \{1, w, w^2, \dots, w^{n-1}\} = \{w^k : 0 \le k \le n-1\}$ Ejemplo: i, -i son primitivas de $G_4 = \{1, i, -1, -i\} = \{i^k : 0 \le k \le 3\}$, pero 1 y -1 no son raíces primitivas de G_4 .
- Definición: Sea w una raíz primitiva de orden n (el orden de $w \in G_n$, ord $(w) = \min \{k \in \mathbb{N}/w^k = 1\}$)
 - $-w^m = 1 \iff n \mid m$
 - Observación: Si $w \in G_n \Rightarrow \operatorname{ord}(w) \mid n$
- La suma de las raíces n-ésimas de 1 da: $\sum_{k=0}^{n-1} w_1^k = \frac{w_1^{n-1}}{w_1-1} = 0$ pues $w_1 \neq 1$
- El producto de las raíces n-ésimas de 1 da: $\prod_{k=0}^{n-1} w_1^k = w_1^{0+1+\dots+n-1} = w_1^{\frac{n(n-1)}{2}} = \begin{cases} 1 & \text{si } n \text{ es impar} \\ -1 & \text{si } n \text{ es par} \end{cases}$
- Sea $w \in G_n$ primitiva. Entonces
 - $-w^k$ es primitiva $\iff k \perp n$
 - $-w_k = e^{\frac{2k\pi}{n}i}$ es primitiva $\iff k \perp n$
 - En particular para n = p primo: w_k es primitiva para $1 \le k < p$ o sea si $w \in G_p$ y $w \ne 1$, entonces w es primitiva
- w es raíz primitiva de G_n y $k \mid n \Rightarrow w^k$ es primitiva de $G_{\frac{n}{k}}$

Ejercicios de la guía:

1. Hacer!

2. Hacer!

3. Hacer!

4. Hacer!

5. Hacer!

6.

- i) Determinar la formar binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
- ii) Determinar la forma binomial de $(-1+\sqrt{3}i)^n$ para cada $n\in\mathbb{N}.$

7. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$(\sqrt{3} - i)^n = 2^{n-1}(-1 + \sqrt{3}i)$$

$$\frac{(\sqrt{3} - i)^n = 2^n e^{i\frac{11}{12}\pi n} = 2^{n+1} \cdot 2e^{i\frac{2}{3}\pi}}{\sum_{n=2}^{\infty} \left\{ 2^n = 2^n \atop \frac{11}{12}\pi n = \frac{2}{3}\pi + 2k\pi \to 11n = 8 + 8k \xrightarrow{8(k+1)} n \equiv 0 (8) \right\}}$$

ii) $(-\sqrt{3}+i)^n \cdot \left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)$ es un número real negativo.

Un número real negativo tendrá un $arg(z) = \pi$ $\underbrace{(-\sqrt{3}+i)^n}_{2^n e^{i\frac{5}{6}\pi n}} \cdot \underbrace{\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)}_{2^n e^{i\frac{5}{6}\pi n}} = 2^n e^{i(\frac{5}{6}n + \frac{1}{3})\pi} \to \theta = (\frac{5}{6}n + \frac{1}{3})\pi$

$$\xrightarrow{\theta = \pi + 2k\pi} \pi \frac{5}{6}n + \frac{\pi}{3} = \pi + 2k\pi \xrightarrow{\text{acomodo}} 5n \equiv 4 \text{ (12)} \xrightarrow{\text{multiplico}} n \equiv 8 \text{ (12)}$$

iii)
$$\arg((-1+i)^{2n}) = \frac{\pi}{2} \text{ y } \arg((1-\sqrt{3}i)^{n-1}) = \frac{2}{3}\pi$$

8. Hacer!

Hallar todos los $z \in \mathbb{C}$ tales que $3z^5 + 2|z|^5 + 32 = 0$ 9.

$$\overline{3z^5 + 2|z|^5 + 32 = 0} \to \underbrace{3z^5}_{\in \mathbb{C}} = \underbrace{-2|z|^5 - 32}_{\in \mathbb{R}} \iff \left\{ \begin{array}{l} \operatorname{Re}(3z^5) = -2|z|^5 - 32 \\ \operatorname{Im}(3z^5) = 0 \end{array} \right\} \quad \checkmark$$

De la ecuación de la parte imaginaria:

$$\begin{cases} \operatorname{Im}(3z^{5}) = 3 \cdot \frac{z^{5} - \overline{z}^{5}}{2} = 0 \iff z^{5} = \overline{z}^{5} \iff |z|^{5} e^{5\theta i} = |z|^{5} e^{-5\theta i} \iff \begin{cases} 5\theta = -5\theta + 2k\pi \\ \to \theta_{k} = \frac{1}{5}k\pi \end{cases} \operatorname{con} k \in [0, 4] \end{cases}$$

$$\begin{cases} \operatorname{Re}(3z^{5}) = 3 \cdot \frac{z^{5} + \overline{z}^{5}}{2} = 3 \cdot \frac{|z|^{5} e^{5\theta i} + |z|^{5} e^{-5\theta i}}{2} = 3|z|^{5} \cos(5\theta) = -2|z|^{5} - 32 \Leftrightarrow \\ \Leftrightarrow |z|^{5} (3\cos(5\theta) + 2) = -2^{5} \xrightarrow{\text{evaluando}} |z|^{5} (3\cos(k\pi) + 2) = -2^{5} \begin{cases} \xrightarrow{k} & 0 < |z|^{5} (3+2) \neq -2^{5} \end{cases} & \underset{\text{impar}}{\swarrow} |z|^{5} (-3+2) = -2^{5} \Leftrightarrow |z| = 2 \end{cases}$$

$$\rightarrow \left[z_k = 2e^{\theta_k i}\right] \text{con } \theta_k = \frac{1}{5}k\pi \text{ con } k \in [0, 4]$$

Hallar todos los $n \in \mathbb{N}$ para los cuales la ecuación $z^n + i\overline{z}^2 = 0$, tenga exactamente 6 soluciones 10.

y resolver en ese caso.

La ecuación de r:

r=0 aporta una solución trivial para cualquier $n\in\mathbb{N}$.

r=1 es un comodín que me deja usar cualquier n para jugar con la ecuación de θ .

n=2 es un valor que daría una solución para cada $r \in \mathbb{R}_{>0}$. No sirve porque necesito solo 6 soluciones.

$$\frac{r=1}{n \text{ libre}} (n+2)\theta = (\frac{3}{2}+2k)\pi \xrightarrow{n+2\neq 0} \theta = \frac{1}{n+2}(\frac{3}{2}+2k)\pi \xrightarrow{n=3\text{C\'omo justificar esto elegantemente?}} \frac{1}{5 \text{ porciones de } 2k\pi} \theta = \frac{3+4k}{10}\pi$$

$$\frac{1}{10}\pi = \frac{6}{5} \text{ polyation on a part } n=\frac{3}{5}$$

Las 6 soluciones para n = 3:

Las
$$\theta$$
 soluciones para $n = 3$:
$$z^{n} + i\overline{z}^{2} = 0 \iff \begin{cases} n = 3 \\ z = 0, \text{ cuando } r = 0 \\ 0 \\ z_{k} = e^{\theta_{k}i} \text{ con } \theta_{k} = \frac{3+4k}{10}\pi, k \in [0, 4] \end{cases}$$

11. Voy a estar usando las siguientes propiedades en
$$G_n$$
:
$$\begin{cases} w^n = 1 \Rightarrow w^k = w^{r_n(k)} \\ \overline{w}^k = w^{r_n(-k)} \end{cases}$$
Si $w \in G_n \Rightarrow \begin{cases} \sum_{k=0}^{n-1} w^k = 0 \\ m \mid n \Rightarrow G_m \subseteq G_n, \text{ lo uso para saber con cuales raíces hay que tener cuidado} \\ \text{Si } w \in G_p \text{ con } p \text{ primo } \Rightarrow w \text{ es primitiva} w^k \text{ es primitiva} \iff k \perp n \end{cases}$

i) Calcular $w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2)$ para cada $w \in G_7$.

Raíces de G_7 de interés: 7 es primo e impar $\Rightarrow w = 1$ se hace a parte.

 $Si \ w = 1$:

$$w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2) = 6$$

Si
$$w \neq 1$$
:
 $w + \underbrace{\overline{w}}_{w^6} + (w + w^2)^2 - w^{38}(1 - w^2) = w + w^6 + w^2 + 2w^3 + w^4 - \underbrace{(w^7)^5}_{=1} w^3(1 - w^2) = \underbrace{-1 + \underbrace{1 + w + w^2 + w^3 + w^4 + w^5 + w^6}_{=0}} = -1 \quad \checkmark$

ii) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.

Raíces de G_3 de interés: 3 es primo e impar $\Rightarrow w = 1$ se hace a parte.

 $Si \ w = 1$:

$$w^{73} + \overline{w} \cdot w^9 + 8 = 10$$

Si
$$w \neq 1$$
:
 $w^{73} + \overline{w} \cdot w^{9} + 8 = -1 + \underbrace{1 + w + w^{2}}_{=0} + 8 = 7$

iii) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$.

Raíces de G_{10} de interés: $2 \mid 10 \land 5 \mid 10$. 10 es par $\Rightarrow w = \pm 1$ y raíces de G_2 y de G_5 se hacen a parte.

 $G_5 \subseteq G_{10}$

•
$$Si \ w \in G_{10} \ y \ w \neq \pm 1$$
:
 $1 + w^2 + w^{-2} + w^4 + w^{-4} = 1 + w^2 + w^8 + w^4 + w^6 =$

$$= \sum_{k=0}^{4} (w^2)^k = \frac{(w^2)^5 - 1}{w^2 - 1} = \underbrace{\frac{1}{w^{10} - 1}}_{w^2 - 1} = 0$$

iv) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$

$$\overline{Si \ w = 1:}$$

$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w}^{-3} = 4$$

$$Si \ w \neq 1:$$

$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w}^{-3} = w^4 + w^2 + w + w^3 = -1 + \underbrace{1 + w + w^2 + w^3 + w^4}_{=0} = -1$$

12.

i) Sea $w \in G_{36}$, $w^4 \neq 1$. Calcular $\sum_{k=7}^{60} w^{4k}$

Sé que si
$$w \in G_{36} \Rightarrow \begin{cases} w^{36} = 1 \\ \sum_{k=0}^{35} w^k = 0 \end{cases}$$

Como $w^4 \neq 1$ sé que $w \neq \pm 1$. Si no tendría que considerar casos particulares para la suma.

Si
$$\sum_{k=7}^{60} w^{4k} = \underbrace{\sum_{k=7}^{60} w^{4k} + \sum_{k=0}^{6} w^{4k}}_{\sum_{k=0}^{60} w^{4k}} - \sum_{k=0}^{6} w^{4k} = \sum_{k=0}^{60} w^{4k} - \sum_{k=0}^{6} w^{4k} = \underbrace{\frac{(w^4)^{61} - 1}{w^4 - 1}}_{w^4 - 1} - \underbrace{\frac{(w^4)^7 - 1}{w^4 - 1}}_{w^4 - 1} = \underbrace{\frac{(w^4)^{61} - (w^4)^7}{w^4 - 1}}_{\sum_{k=0}^{60} w^{4k}}$$

$$\frac{61 = 9 \cdot 6 + 7}{w^3 6 = 1} \xrightarrow{\underbrace{((w^{36})^6 \cdot (w^4)^7 - (w^4)^7}_{w^4 - 1}} \rightarrow \boxed{\sum_{k=7}^{60} w^{4k} = 0}$$

ii) Sea $w \in G_{11}$, $w \neq 1$. Calcular Re $\left(\sum_{k=0}^{60} w^k\right)$.

Sé que si
$$w \in G_{11} \Rightarrow \begin{cases} w^{11} = 1 \\ \sum_{k=0}^{10} w^k = 0 \\ 11 \text{ es impar } \Rightarrow -1 \notin G_{11} \end{cases}$$

Como $w \neq 1$ no calculo caso particular para la suma. Me piden la parte real $\xrightarrow{\text{uso}} \text{Re}(z) = \frac{z+\overline{z}}{2}$.

Probé hacer la suma de Gauss como en el anterior, pero no llegué a nada, abro sumatoria y uso que $61 = 5 \cdot 11 + 6$, porque hay 61 sumandos.

$$\sum_{k=0}^{60} w^k = w^0 + \dots + w^{60} = 5 \cdot \underbrace{\left(w^0 + w^1 + \dots + w^9 + w^{10}\right)}_{\text{agrupé usando: } w \in G^{11} \Rightarrow w^k = w^{r_{11}(k)}} + w^{55} + w^{56} + w^{57} + w^{58} + w^{59} + w^{60} = w^0 + w^1 + w^2 + w^3 + w^4 + w^5$$

También voy a usar que si $w \in G_{11} \Rightarrow \overline{w}^k = w^{r_{11}(-k)}$

$$\operatorname{Re} \sum_{k=0}^{60} w^k = \frac{\sum_{k=0}^{60} w^k + \sum_{k=0}^{60} \overline{w}^k}{2} \stackrel{\star^{-1}}{=} \frac{w^0 + w^1 + w^2 + w^3 + w^4 + w^5 + \overline{w}^0 + \overline{w}^1 + \overline{w}^2 + \overline{w}^3 + \overline{w}^4 + \overline{w}^5}{2} =$$

$$= \frac{w^0}{2} + \underbrace{\frac{w^1 + w^2 + w^3 + w^4 + w^5 + w^0 + w^{10} + w^9 + w^8 + w^7 + w^6}_{k=0}}_{}^{10} = \underbrace{\frac{1}{w^0}}_{2} + \underbrace{\frac{1}{w^0}}_{2}^{10} + \underbrace{\frac{1}{w^0}}_{2}^{10} = \frac{1}{2}$$

13. Sea $w = e^{\frac{2\pi}{3}i}$ raíz cúbica de la unidad y sea $(z_n)_{n \in \mathbb{N}}$ la sucesión de números complejos definida por:

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}$, $\forall n \in \mathbb{N}$.

Probar que para todo $n \in \mathbb{N}$ vale que $z_n = \begin{cases} e^{\frac{2\pi}{6}i} & \text{si } n \text{ impar} \\ e^{-\frac{2\pi}{6}i} & \text{si } n \text{ par} \end{cases}$. Concluir que $z_n \in G_6$ para todo $n \in \mathbb{N}$.

Hay que probar por inducción. Quiero probar:

$$p(n): z_n = \begin{cases} e^{\frac{2\pi}{6}i} & \text{si } n \text{ impar} \\ e^{-\frac{2\pi}{6}i} & \text{si } n \text{ par} \end{cases} \forall n \in \mathbb{N}$$

Caso base:
$$\begin{cases} p(1): z_1 = \frac{1 + e^{\frac{2\pi}{3}i}}{1 + z_1^2} = \frac{1 - \frac{1}{2} + i\frac{\sqrt{3}}{2}}{1 + e^{\frac{2\pi}{3}i}} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{\frac{\pi}{3}i} \end{cases} \checkmark$$

$$p(2): z_2 = \frac{1 + z_1^2}{1 + z_1^2} = \frac{1 + e^{\frac{2\pi}{3}i}}{1 + e^{\frac{2\pi}{3}i}} = 1 + e^{-\frac{2\pi}{3}i} = e^{-\frac{\pi}{3}i} \checkmark$$

Paso inductivo:

$$\begin{cases}
p(2k): z_{2k} = e^{-\frac{\pi}{3}i} \text{ Verdadero} \Rightarrow p(2k+2) \text{ ¿Verdadero?} \\
p(2k+1): z_{2k+1} = e^{\frac{\pi}{3}i} \text{ Verdadero} \Rightarrow p(2k+3) \text{ ¿Verdadero?} \\
\begin{cases}
z_{2k+1} = e^{\frac{\pi}{3}i} & -\frac{\pi}{3}i = e^$$

$$\begin{cases} p(2k+1) : z_{2k+1} = e^{\frac{\pi}{3}i} \text{ Verdadero } \Rightarrow p(2k+3) \text{ ¿Verdadero?} \\ p(2k+1) : z_{2k+1} = e^{\frac{\pi}{3}i} \text{ Verdadero } \Rightarrow p(2k+3) \text{ ¿Verdadero?} \\ z_{2k+2} = \overline{1 + z_{2k+1}^2} \iff z_{2k+2} = \overline{1 + e^{\frac{2\pi}{3}i}} = e^{\frac{\pi}{3}i} = e^{-\frac{\pi}{3}i} \checkmark \\ z_{2k+3} = \overline{1 + z_{2k+2}^2} \iff z_{2k+3} = \overline{1 + e^{-\frac{2\pi}{3}i}} = e^{\frac{\pi}{3}i} = e^{\frac{\pi}{3}i} \checkmark \end{cases}$$

Dado que p(1), p(2), p(2k), p(2k+1), p(2k+2), p(2k+3) resultaron ser verdaderas, entonces por el principio de inducción se concluye que p(n) también lo es $\forall n \in$

Dado que la sucesión z_n tiene solo 2 imágenes, para cualquier $n \in \mathbb{N}$ y teniendo en cuenta que $e^{-i\frac{2\pi}{6}} = e^{i\frac{2\pi}{6} \cdot 5} \in G_6 \ \forall n \in \mathbb{N}$

14. Se define en $\mathbb{C} - \{0\}$ la relación \mathcal{R} dada por $z \mathcal{R} w \iff z \overline{w} \in \mathbb{R}_{>0}$.

- i) Probar que \mathcal{R} es una relación de equivalencia.
- ii) Dibujar en le plano complejo la clase de equivalencia de z=1+i.

i) Dado un $z = re^{i\theta}$, tengo que $z \in \mathbb{R}_{>0} \iff \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) = 0 \iff r > 0 \wedge \theta = 2k\pi \operatorname{con} k \in \mathbb{Z}$

- Reflexividad: $z = re^{i\theta}$, $z \mathcal{R} z = r^2 e^{2\theta i}$ por lo tanto $z \mathcal{R} z \iff 2\theta = 2k\pi \iff \theta = k\pi$ Simetría: $\begin{cases} z \mathcal{R} w = rse^{(\theta \varphi)i} \iff \theta = 2k_1\pi + \varphi \quad \checkmark \\ w \mathcal{R} z = rse^{(\varphi \theta)i} \iff \theta = -2k_2\pi + \varphi = 2k_3\pi + \varphi \quad \checkmark \end{cases}$ Transitividad: $\begin{cases} z \mathcal{R} w = rse^{(\theta \varphi)i} \iff \theta = 2k_1\pi + \varphi \\ w \mathcal{R} v = rte^{(\varphi \alpha)i} \iff \varphi = 2k_2\pi + \alpha \\ \Rightarrow z \mathcal{R} v \iff \theta = 2k_1\pi + \varphi = 2\pi(k_1 + k_2) + \alpha = 2k_3\pi + \alpha \quad \checkmark \end{cases}$

La relación \mathcal{R} es de equivalencia.

Tengo que el $\arg(1+i)=\frac{\pi}{4}$. La clase \overline{z} estará formada por los $w\in\mathbb{C}$ tal que: $w \mathcal{R} z \iff \arg(w)=\frac{1}{4}\pi$

15. Se define la siguiente relación \mathcal{R} en G_{20} :

$$z \mathcal{R} w \iff z w^9 \in G_2$$
.

- i) Probar que \mathcal{R} es una relación de equivalencia.
- ii) Calcular la cantidad de elementos que hay en cada clase de equivalencia.
- i) Reflexividad:

$$z = e^{i\frac{1}{10}\pi k_z} \Rightarrow z \mathcal{R} z \iff e^{i\frac{1}{10}\pi k_z} \cdot e^{i\frac{9}{10}\pi k_z} = e^{ik_z\pi} = \begin{cases} 1 & k_z \text{ par} \\ -1 & k_z \text{ impar} \end{cases} \checkmark$$

Simetría:

$$z = e^{i\frac{1}{10}\pi k_z}$$
 y $w = e^{i\frac{1}{10}\pi k_w} \in G_{20}$.

$$\mathcal{R} \text{ es simétrica si: } z \mathcal{R} w \iff w \mathcal{R} z
z w^9 = e^{i\frac{\pi}{10}(k_z + 9k_w)} \in G_2 \Leftrightarrow \frac{1}{10}(k_z + 9k_w) = k \Leftrightarrow k_z + 9k_w = 10k \Leftrightarrow k_z \equiv -9k_w (10) \Leftrightarrow k_z \equiv k_w (10)
\rightarrow z \mathcal{R} w \iff k_z \equiv k_w (10)
w z^9 = e^{i\frac{\pi}{10}(k_w + 9k_z)} = e^{i\frac{\pi}{10}(k_w + 9(10k + k_w))} = e^{i\frac{\pi}{10}(90k + 10k_w)} = e^{i(9k + k_w)\pi} = e^{ik'\pi}$$

$$z \mathcal{R} w \iff w \mathcal{R} z \forall k, k_w \in \mathbb{Z} \text{ con } k_z \equiv k_w (10) \quad \checkmark$$

Transitivitidad.
$$\begin{cases}
z = e^{i\frac{1}{10}\pi k_z} \\
w = e^{i\frac{1}{10}\pi k_w} \\
y = e^{i\frac{1}{10}\pi k_y}
\end{cases} \in G_{20} \to \mathcal{R} \text{ es transitiva si: } z\mathcal{R}w \text{ y } w\mathcal{R}y \Rightarrow z\mathcal{R}y$$

$$\begin{cases}
z\mathcal{R}w \iff k_z \equiv k_w (10) ^{\star 1} \\
w\mathcal{R}y \iff k_w \equiv k_y (10) ^{\star 2}
\end{cases} \\
\to zy^9 = e^{i\frac{\pi}{10}(k_z + 9k_y)} \stackrel{\star^1}{=} e^{i\frac{\pi}{10}(10k + k_w + 9k_y)} \stackrel{\star^1}{=} e^{i\frac{\pi}{10}(10k + 10k' + k_y + 9k_y)} = e^{i(k + k' + k_y)\pi} = e^{ik''\pi}$$

$$\begin{cases}
z\mathcal{R}w \\ w\mathcal{R}z
\end{cases} \Rightarrow z\mathcal{R}y$$

ii) $\#e^{i\frac{2\pi}{20}k} = 2$ para algún $k \in \mathbb{Z}/r_{20}(k) < 20$. Dada la condición $k_z \equiv k_w$ (10), solo hay 2 números que tienen misma cifra de unidad entre 0 y 20. En el gráfico se ve que si $z \mathcal{R} w \Rightarrow w = -z$

Ejercicios extras:

1. Para
$$w \in G_6$$
, calcular $S = w^{71} + w^{-14} + 5\overline{w}^4 + w^{39} - 4w^{-22} + w^{2023}$

$$Si \ w = 1$$
:

$$S = 5$$

$$Si \ w = -1$$
:

$$S = -1 + 1 + 5 - 1 - 4 - 1 = -1$$

$$Si \ w \neq \pm 1$$
:

$$S = w^{71} + w^{-14} + 5\overline{w}^4 + w^{39} - 4w^{-22} + w^{2023} = w^5 + w^4 + 5w^2 + w^3 - 4w^2 + w^1 = w^1 + w^2 + w^3 + w^4 + w^5 = -1 + \underbrace{1 + w^1 + w^2 + w^3 + w^4 + w^5}_{=0} = -1$$

2. Sea
$$w \in G_{14}$$
. Hallar todos los posibles valores de $w^7 + \sum_{j=7}^{140} w^{2j}$

Voy a usar que:
$$\begin{cases} w \in G_n \Rightarrow \sum_{k=0}^{n-1} w^k = 0 \\ \operatorname{Si} m \mid n \Rightarrow G_m \subseteq G_n \end{cases}$$

 $\operatorname{Si} w = 1$:

$$\underbrace{w^7}_{=1} + \sum_{j=7}^{140} \underbrace{w^{2j}}_{=1} = 1 + (\underbrace{1 + 1 + \dots + 1}_{=134}) = 1 + 134 = 135 \quad \checkmark$$

 $\underline{\text{Si } w = -1:}$

$$\underbrace{w^7}_{=-1} + \sum_{j=7}^{140} \underbrace{(w^j)^2}_{=1} = -1 + \underbrace{(1+1+\dots+1)}_{=134} = -1 + 134 = 133 \quad \checkmark$$

Si $w \neq \pm 1$:

$$w \in G_{14} \Rightarrow w = e^{i\frac{2k\pi}{14}} \text{ con } k \in \mathbb{Z}_{[0,13]} \Rightarrow w^2 = \left(e^{i\frac{2k\pi}{14}}\right)^2 = e^{i\frac{2\pi}{7} \cdot k} \in G_7 \Rightarrow \sum_{j=0}^{6} (w^2)^j = 0$$

$$w^{7} + \sum_{j=7}^{140} w^{2j} = w^{7} + \sum_{j=0}^{140} (w^{2})^{j} - \sum_{j=0}^{6} (w^{2})^{j} = w^{7} + \frac{(w^{2})^{141} - 1}{w^{2} - 1} - 0 = w^{7} + \underbrace{\frac{w^{2}((w^{14})^{20} - 1)}{w^{2} - 1}}_{=1} = w^{7} + 1$$

Si
$$\begin{cases} w \in G_7 \Rightarrow w^7 = 1 \\ w \in G_{14} - G_7 \Rightarrow w^7 = -1 \end{cases}$$

$$\begin{cases} w \in G_7 & \rightarrow & 1+1=2 \checkmark \\ w \in G_{14} - G_7 & \rightarrow & -1+1=0 \checkmark \end{cases}$$

$$G_7 \subseteq G_{14}$$

$$e^{i\frac{2\pi}{14}4} \qquad e^{i\frac{2\pi}{14}3}$$

$$e^{i\frac{2\pi}{14}5}$$

$$e^{i\frac{2\pi}{14}5}$$

$$e^{i\frac{2\pi}{14}}$$

- 3. Sea $z = \frac{\sqrt{3}}{2} \frac{1}{2}i$. Hallar todos los $n \in \mathbb{N}$ que cumplen simultáneamente las siguientes condiciones:
 - $8|3n+|z^3|$
 - $\arg(z^{7n+6}) = \arg(i)$

$$\begin{cases} |z| = 1 \\ \theta_z = \frac{11}{6}\pi \end{cases} \rightarrow z = |z|e^{\theta_z i} = e^{i\frac{11}{6}\pi} \Rightarrow z^3 = e^{i\frac{11}{2}\pi} = -1 \Leftrightarrow |z^3| = 1 \\ \frac{\text{primera}}{\text{condición}} \otimes |3n + |z^3| = 3n + 1 \Leftrightarrow 3n + 1 = 8k \Leftrightarrow 3n + 1 \equiv 0 \ (8) \Leftrightarrow 3n \equiv 7 \ (8) \Leftrightarrow 9n \equiv 21 \ (8) \Leftrightarrow n \equiv 5 \ (8) \end{cases}$$

$$\xrightarrow{\text{segunda} \atop \text{condición}} \arg(z^{7n+6}) = \arg(i) \Leftrightarrow \left(e^{i\frac{11}{6}\pi}\right)^{7n+6} = e^{i\frac{\pi}{2}} \Leftrightarrow e^{i\frac{77}{6}\pi + 11\pi} = e^{i\frac{\pi}{2}} \Leftrightarrow \frac{77}{6}n\pi + 11\pi = \frac{\pi}{2} + 2k\pi \\ \xrightarrow{\text{despejo}} \xrightarrow{77} n + 11 = \frac{1}{2} + 2k \Leftrightarrow 77n = -63 + 12k \Leftrightarrow 77n \equiv -63 \ (12) \Leftrightarrow 5n \equiv -3 \ (12) \Leftrightarrow n \equiv 9 \ (12) \end{cases}$$

$$\xrightarrow{\text{junto info}} \begin{cases} n \equiv 9 \ (12) \\ n \equiv 5 \ (8) \end{cases} \xrightarrow{\text{quiero divisores}} \begin{cases} n \equiv 1 \ (4) \\ n \equiv 1 \ (4) \end{cases} \checkmark \Rightarrow \begin{cases} n \equiv 0 \ (3) \\ n \equiv 1 \ (4) \end{cases} \Leftrightarrow \begin{cases} n \equiv 0 \ (3) \\ n \equiv 1 \ (4) \end{cases} \Leftrightarrow \begin{cases} n \equiv 1 \ (4) \end{cases} \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} n \equiv 1 \ (4) \end{cases} \Leftrightarrow \begin{cases} n \equiv 1 \ (4) \end{cases} \Leftrightarrow \begin{cases} n \equiv 1 \ (4) \end{cases} \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} n \equiv 1 \ (4) \end{cases} \Leftrightarrow \begin{cases} n \equiv 1 \ (4) \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} n$$

- 4. Sea $w = e^{\frac{\pi}{18}i}$. Hallar todos los $n \in \mathbb{N}$ que cumplen simultáneamente:
- 🔾 jalgún error?¿cómo aportar?

$$\sum_{k=0}^{5n+1} w^{3k} = 0 \qquad \sum_{k=0}^{4n+6} w^{4k} = 0.$$

Expresar la solución como una única ecuación de congruencia.

Como
$$w = e^{\frac{\pi}{18}i} \neq \pm 1$$
 $\begin{cases} w^3 \neq \pm 1 \\ w^4 \neq \pm 1 \end{cases}$, puedo usar Gauss para las sumas.
$$\begin{cases} \sum_{k=0}^{5n+1} w^{3k} = \sum_{k=0}^{5n+1} (w^3)^k = \frac{(w^3)^{5n+2}-1}{w^3-1} = 0 \Leftrightarrow (w^3)^{5n+2} = 1 \Leftrightarrow \frac{15n+6}{18}\pi = 2k\pi \Leftrightarrow 5n+2 = 12k \\ \Leftrightarrow 5n \equiv 10 \ (12) \end{cases}$$
 $\Leftrightarrow 5n \equiv 10 \ (12) \end{cases}$
$$\begin{cases} \sum_{k=0}^{4n+6} w^{4k} = \sum_{k=0}^{4n+6} (w^4)^k = \frac{(w^4)^{4n+7}-1}{w^4-1} = 0 \Leftrightarrow (w^4)^{4n+7} = 1 \Leftrightarrow \frac{16n+28}{18}\pi = 2k\pi \Leftrightarrow 4n+7 = 9k \\ \Leftrightarrow 4n \equiv 2 \ (9) \end{cases}$$