

# On the Abstract Properties of Linear Dependence

Hassler Whitney

American Journal of Mathematics, Vol. 57, No. 3. (Jul., 1935), pp. 509-533.

Stable URL:

http://links.jstor.org/sici?sici=0002-9327%28193507%2957%3A3%3C509%3AOTAPOL%3E2.0.CO%3B2-Z

American Journal of Mathematics is currently published by The Johns Hopkins University Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/jhup.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

### ON THE ABSTRACT PROPERTIES OF LINEAR DEPENDENCE.1

By HASSLER WHITNEY.

- 1. Introduction. Let  $C_1, C_2, \dots, C_m$  be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:
  - (a) Any subset of an independent set is independent.
- (b) If  $N_p$  and  $N_{p+1}$  are independent sets of p and p+1 columns respectively, then  $N_p$  together with some column of  $N_{p+1}$  forms an independent set of p+1 columns.

There are other theorems not deducible from these; for in § 16 we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.

This paper has a close connection with a paper by the author on linear graphs; <sup>2</sup> we say a subgraph of a graph is independent if it contains no circuit. Although graphs are, abstractly, a very small subclass of the class of matroids, (see the appendix), many of the simpler theorems on graphs, especially on non-separable and dual graphs, apply also to matroids. For this reason, we carry over various terms in the theory of graphs to the present theory. Remarkably enough, for matroids representing matrices, dual matroids have a simple geometrical interpretation quite different from that in the case of graphs (see § 13).

The contents of the paper are as follows: In Part I, definitions of matroids in terms of the concepts rank, independence, bases, and circuits are considered, and their equivalence shown. Some common theorems are deduced (for instance Theorem 8). Non-separable and dual matroids are studied in

<sup>&</sup>lt;sup>1</sup> Presented to the American Mathematical Society, September, 1934.

<sup>&</sup>lt;sup>2</sup> "Non-separable and planar graphs," Transactions of the American Mathematical Society, vol. 34 (1932), pp. 339-362. We refer to this paper as G.

Part II; this section might replace much of the author's paper G. The subject of Part III is the relation between matroids and matrices. In the appendix, we completely solve the problem of characterizing matrices of integers modulo 2, of interest in topology.

### I. MATROIDS.

- 2. Definitions in terms of rank. Let a set M of elements  $e_1, e_2, \dots, e_n$  be given. Corresponding to each subset N of these elements let there be a number r(N), the rank of N. If the three following postulates are satisfied, we shall call this system a matroid.
  - (R<sub>1</sub>) The rank of the null subset is zero.
  - $(R_2)$  For any subset N and any element e not in N,

$$r(N+e) = r(N) + k,$$
  $(k = 0 \text{ or } 1).$ 

(R<sub>3</sub>) For any subset N and elements  $e_1$ ,  $e_2$  not in N, if  $r(N + e_1) = r(N + e_2) = r(N)$ , then  $r(N + e_1 + e_2) = r(N)$ .

Evidently any subset of a matroid is a matroid. In what follows, M is a fixed matroid. We make the following definitions:

$$\rho(N)$$
 = number of elements in N.

$$n(N) = \rho(N) - r(N) = nullity \text{ of } N.$$

N is independent, or, the elements of N are independent, if n(N) = 0; otherwise, N, and its set of elements, are dependent.

Lemma 1. For any N,  $r(N) \ge 0$  and  $n(N) \ge 0$ . If  $N \subseteq M$ , then  $r(N) \le r(M)$ ,  $n(N) \le n(M)$ .

LEMMA 2. Any subset of an independent set is independent.

e is dependent on N if r(N + e) = r(N); otherwise e is independent of N.

A base is a maximal independent submatroid of M, i. e. a matroid B in M such that n(B) = 0, while  $B \subseteq N$ ,  $B \neq N$  implies n(N) > 0. See also Theorem 7. A base complement A = M - B is the complement in M of a base B. A circuit is a minimal dependent matroid, i. e. a matroid P such that n(P) > 0, while  $N \subseteq P$ ,  $N \neq P$  implies n(N) = 0.

Theorem 1. N is independent if and only if it is contained in a base, or, if and only if it contains no circuit.

<sup>&</sup>lt;sup>3</sup> Compare G, Theorem 9.

THEOREM 2. A circuit is a minimal submatroid contained in no base, i. e. containing at least one element from each base complement. A base is a maximal submatroid containing no circuit. A base complement is a minimal submatroid containing at least one element from each circuit.

The above facts follow at once from the definitions. Note the reciprocal relationship between circuits and base complements. Note also that the definitions of independence and of being a circuit depend only on the given subset, while the property of being a base depends on the relationship of the subset to M.

3. Properties of rank. Our object here is to prove Theorem 3. The following definition will be useful:

(3.1) 
$$\Delta(M, N) = r(M + N) - r(M).$$

LEMMA 3.  $\Delta(M + e_2, e_1) \leq \Delta(M, e_1)$ .

Suppose first  $r(M + e_1) = r(M) + 1$ ; then  $r(M + e_1 + e_2) = r(M) + k$ , k = 1 or 2. If k = 2, then  $r(M + e_2) = r(M) + 1$ , on account of  $(R_2)$ , and the inequality holds; if k = 1,  $r(M + e_2) = r(M) + l$ , l = 0 or 1, and it holds again. If  $r(M + e_2) = r(M) + 1$ , the same reasoning applies. If finally  $r(M + e_1) = r(M + e_2) = r(M)$ , the inequality follows from  $(R_3)$ .

Lemma 4. 
$$\Delta(M+N,e) \leq \Delta(M,e)$$
.

If  $N = e_1 + \cdots + e_p$ , the last lemma gives

$$\Delta(M+N,e) \leq \Delta(M+e_1+\cdots+e_{p-1},e) \leq \cdots \leq \Delta(M,e).$$

THEOREM 3.  $\Delta(M + N_2, N_1) \leq \Delta(M, N_1)$ , or,

$$(3.2) r(M+N_1+N_2) \leq r(M+N_1) + r(M+N_2) - r(M).$$

This is true if  $N_1$  contains but a single element. For the general case, we apply the last lemma and induction, setting  $N_1 = N' + e$ :

$$\Delta(M + N_2, N_1) = \Delta(M + N_2 + e, N') + \Delta(M + N_2, e)$$

$$\leq \Delta(M + e, N') + \Delta(M, e) = \Delta(M, N_1).$$

(3.2) is evidently equivalent to:

(3.3) 
$$r(M_1 + M_2) \leq r(M_1) + r(M_2) - r(M_1 M_2).$$

4. Deduction of  $(I_1)$ ,  $(I_2)$  from  $(R_1)$ ,  $(R_2)$ ,  $(R_3)$ . The first postulate 4

on independent sets below obviously holds if  $(R_1)$  and  $(R_2)$  hold. To prove  $(I_2)$ , take N, N' as given there; then

$$r(N) = p,$$
  $r(N') = p + 1.$ 

We must show that for some i,  $\Delta(N, e'_i) = 1$ . (Then  $e'_i$  does not lie in N.) If this is not so, then on using Lemma 4 we find

$$1 = r(N') - r(N) \leq \Delta(N, N')$$

$$= \Delta(N, e'_1) + \Delta(N + e'_1, e'_2) + \cdots + \Delta(N + e'_1 + \cdots + e'_p, e'_{p+1})$$

$$\leq \Delta(N, e'_1) + \Delta(N, e'_2) + \cdots + \Delta(N, e'_{p+1}) = 0,$$

a contradiction.

5. Deduction of  $(C_1)$ ,  $(C_2)$  from  $(R_1)$ ,  $(R_2)$ ,  $(R_3)$ . We shall need here a theorem showing how the nullity (or rank) of a matroid may be determined when we know what circuits it contains.

Lemma 5. Each element of a circuit is dependent on the rest of the circuit.

If e is an element of the circuit P, then n(P)=1, n(P-e)=0; hence  $r(P)=\rho(P)-1=\rho(P-e)=r(P-e)$ .

Lemma 6. If e is dependent on  $P_1$  but on no proper subset of  $P_1$ , then  $P = P_1 + e$  is a circuit.

As 
$$\Delta(P_1, e) = 0$$
,  $r(P) = r(P_1) \le \rho(P_1) < \rho(P)$ ,  $n(P) > 0$ , and  $P$ 

contains a circuit P'. If P' does not contain e, take e' in P'; then

$$\Delta(P_1 - e', e') \leq \Delta(P' - e', e') = 0,$$

hence  $r(P_1 - e') = r(P_1)$ , and

$$\Delta(P_1 - e', e) = r(P_1 - e' + e) - r(P_1 - e')$$
  

$$\leq r(P_1 + e) - r(P_1) = \Delta(P_1, e) = 0,$$

and e is dependent on the proper subset  $P_1 - e'$  of  $P_1$ , a contradiction. Therefore P' contains e. As P' is a circuit, e is dependent on the rest of P'; hence P' = P.

Theorem 4. If e is not in N, there is a circuit in N + e which contains e if and only if e is dependent on N.

Suppose  $P_1 + e = P$  is a circuit,  $P_1 \subseteq N$ . Then

$$\Delta(N, e) \leq \Delta(P_1, e) = 0,$$

and e is dependent on N. Suppose, conversely,  $\Delta(N, e) = 0$ . Let  $P_1$  be a smallest subset of N on which e is dependent; then by the last lemma,  $P = P_1 + e$  is a circuit. (It may be that P = e.)

Theorem 5. If N is formed element by element, then n(N) is just the number of times that adding an element increases the number of circuits present.

Say  $N = e_1 + \cdots + e_p$ . Then if O is the null set,

$$r(N) = \Delta(O, e_1) + \Delta(e_1, e_2) + \cdots + \Delta(e_1 + \cdots + e_{p-1}, e_p).$$

Each  $\Delta(e_1 + \cdots + e_{i-1}, e_i) = 0$  or 1, and = 0 if and only if  $e_i$  is dependent on  $e_1 + \cdots + e_{i-1}$ , i.e. if and only if there is a circuit in  $e_1 + \cdots + e_i$  containing  $e_i$ . The number of terms is  $p = \rho(N)$ , and the theorem follows.

We turn now to the proof of  $(C_1)$  and  $(C_2)$ . The first is obvious. To prove the second, take  $P_1$ ,  $P_2$ ,  $e_1$ ,  $e_2$  as given. As

$$\Delta(P_1 - e_2, e_2) = \Delta(P_2 - e_1, e_1) = 0,$$

we have

$$\Delta(P_1 + P_2 - e_2, e_2) = \Delta(P_1 + P_2 - e_1 - e_2, e_1) = 0.$$

These equations give

$$r(P_1 + P_2 - e_1 - e_2) = r(P_1 + P_2 - e_2) = r(P_1 + P_2).$$

Using (R<sub>2</sub>) gives

$$r(P_1 + P_2 - e_1) = r(P_1 + P_2 - e_1 - e_2);$$

hence the required circuit  $P_3$  exists, by Theorem 4.

- **6.** Postulates for independent sets. Let M be a set of elements. Let any subset N of M be either "independent" or "dependent." Let the two following postulates be satisfied:
  - (I<sub>1</sub>) Any subset of an independent set is independent.
- (I<sub>2</sub>) If  $N = e_1 + \cdots + e_p$  and  $N' = e'_1 + \cdots + e'_{p+1}$  are independent, then for some i such that  $e'_i$  is not in N,  $N + e'_i$  is independent.

The resulting system is equivalent to a matroid, as we now show. Given any subset N of M, we let r(N) be the number of elements in a largest independent subset of N. Obviously Postulates  $(R_1)$  and  $(R_2)$  are satisfied; we must prove  $(R_3)$ . Say

$$r(N + e_1) = r(N + e_2) = r(N) = r$$
.

Then  $r(N+e_1+e_2)=r$  or r+1. If it equals r+1, there is an independent set  $N'=e'_1+\cdots+e'_{r+1}$  in  $N+e_1+e_2$ . Let  $N''=e_1''+\cdots+e_r''$  be an independent set in N. By  $(I_2)$  there is an i such that  $N''+e'_i$  is an independent set of r+1 elements. But  $N''+e'_i$  lies in  $N+e_1$  or in  $N+e_2$ , and hence  $r(N+e_1)$  or  $r(N+e_2) \ge r+1$ , a contradiction. Therefore  $r(N+e_1+e_2)=r$ , as required.

We have shown how to deduce either set of postulates (R) or (I) from the other. Moreover the definitions of the rank and the independence or dependence of any subset of M agree under the two systems, and hence they are equivalent.

- 7. Postulates for bases. Let M be a set of elements, and let each subset either be or not be a "base." We assume
  - (B<sub>1</sub>) No proper subset of a base is a base.
- $(B_2)$  If B and B' are bases and e is an element of B, then for some element e' in B', B-e+e' is a base.

We shall prove the equivalence of this system with the preceding one. We write here  $e_1e_2\cdots$  instead of  $e_1+e_2+\cdots$  for short.

Theorem 6. All bases contain the same number of elements.

For suppose

$$B = e_1 \cdot \cdot \cdot e_p e_{p+1} \cdot \cdot \cdot e_q e_{q+1} \cdot \cdot \cdot \cdot e_r,$$
  

$$B' = e_1 \cdot \cdot \cdot \cdot e_p e'_{p+1} \cdot \cdot \cdot \cdot e'_q$$

are bases, with exactly  $e_1, \dots, e_p$  in common, and r > q. We might have p = 0. q > p, on account of  $(B_1)$ . By  $(B_2)$ , we can replace  $e_{p+1}$  in B by an element e' of B', giving a base  $B_1$ .  $e' = e'_{i_1}$  is one of the elements  $e'_{p+1}, \dots, e'_q$ , for otherwise  $B_1$  would be a proper subset of B. Hence

$$B_1 = e_1 \cdot \cdot \cdot e_p e'_{i_1} e_{p+2} \cdot \cdot \cdot e_q e_{q+1} \cdot \cdot \cdot e_r.$$

If q > p + 1, we replace  $e_{p+2}$  in  $B_1$  by an element  $e'_{i_2}$  of B', giving a base  $B_2$ . Continuing in this manner, we obtain finally the base

$$B_{q-p} = e_1 \cdot \cdot \cdot e_p e'_{p+1} \cdot \cdot \cdot e'_q e_{q+1} \cdot \cdot \cdot e_r.$$

But this contains B' as a proper subset, contradicting  $(B_1)$ .

We shall say a subset of M is independent if it is contained in a base. (I<sub>1</sub>) obviously holds; we shall prove (I<sub>2</sub>). Let N, N' be independent sets in the bases B, B'. Say

$$B = e_1 \cdot \cdot \cdot e_p e_{p+1} \cdot \cdot \cdot e_q e_{q+1} \cdot \cdot \cdot e_r e_{r+1} \cdot \cdot \cdot e_s,$$

$$B' = e_1 \cdot \cdot \cdot e_p e'_{p+1} \cdot \cdot \cdot e'_q e'_{q+1} \cdot \cdot \cdot e'_r e_{r+1} \cdot \cdot \cdot e_s,$$

$$N = e_1 \cdot \cdot \cdot e_p e_{p+1} \cdot \cdot \cdot e_q, \qquad N' = e_1 \cdot \cdot \cdot e_p e'_{p+1} \cdot \cdot \cdot e'_q e'_{q+1}.$$

Then N and N' have just  $e_1, \dots, e_p$  in common, and B and B' have just these elements and  $e_{r+1}, \dots, e_s$  in common. By  $(B_2)$ , there is an element  $e'_{i_1}$  of B' such that

$$B_1 = B - e_{g+1} + e'_{i_1}$$

is a base. (This element cannot be any of  $e_1, \dots, e_p, e_{r+1}, \dots, e_s$ , by (B<sub>1</sub>).) If  $i_1$  is one of the numbers  $p+1, p+2, \dots, q+1$ , then  $N+e'_{i_1}$  is in a base  $B_1$ , as required. Suppose not; then there is a base

$$B_2 = B_1 - e_{q+2} + e'_{i_2}$$

with  $i_2 \neq i_1$ . If  $p+1 \leq i_2 \leq q+1$ ,  $N+e'_{i_2}$  is in a base  $B_2$ . If not, we find a base  $B_3$ , etc. We can drop out each of the r-q elements  $e_{q+1}, \cdots, e_r$  in turn; as there are only r-q-1 elements  $e'_i$  with i>q+1, we find at some point a base containing  $e_1, \cdots, e_q$ ,  $e'_j$  with  $p+1 \leq j \leq q+1$ . Then  $e'_j$  is in N', and  $N+e'_j$  is in a base and is thus independent, as required.

The definitions of base and independent sets in the two systems (I) and (B) are easily seen to agree. Suppose ( $I_1$ ) and ( $I_2$ ) hold. ( $I_3$ ) obviously holds; using ( $I_3$ ), we prove that all bases contain the same number of elements; ( $I_3$ ) now follows at once from ( $I_3$ ). Hence the two systems are equivalent.

THEOREM 7. B is a base in M if and only if

$$r(B) = r(M), \qquad n(B) = 0.$$

Evidently B is a base under the given conditions. To prove the converse, we note first that there exists a base with r(M) elements, as r(M) is the maximum number of independent elements in M (see § 6). By Theorem 6, all bases have this many elements, and the equations follow.

Theorem 8. If B is a base and N is independent, then for some N' in B, N + N' is a base.

This follows from repeated application of Postulate  $(I_2)$  and the last theorem.

- 8. Postulates for circuits. Let M be a set of elements, and let each subset either be or not be a "circuit." We assume:
  - (C<sub>1</sub>) No proper subset of a circuit is a circuit.
- (C<sub>2</sub>) If  $P_1$  and  $P_2$  are circuits,  $e_1$  is in both  $P_1$  and  $P_2$ , and  $e_2$  is in  $P_1$  but not in  $P_2$ , then there is a circuit  $P_3$  in  $P_1 + P_2$  containing  $e_2$  but not  $e_1$ .
- (C<sub>2</sub>) may be phrased as follows: If the circuits  $P_1$  and  $P_2$  have the common element e, then  $P_1 + P_2 e$  is the union of a set of circuits.

We shall define the rank of any subset of M, and shall then show that the postulates for rank are satisfied. Let  $e_1, \dots, e_p$  be any ordered set of elements of M. Set  $\Gamma_i = 0$  if there is a circuit in  $e_1 + \dots + e_i$  containing  $e_i$ , and set  $\Gamma_i = 1$  otherwise (compare Theorem 5). Let the "rank" of  $(e_1, \dots, e_p)$  be

$$r(e_1, \dots, e_p) = \sum_{i=1}^p \Gamma_i.$$

LEMMA 7. 
$$r(e_1, \dots, e_{q-2}, e_{q-1}, e_q) = r(e_1, \dots, e_{q-2}, e_q, e_{q-1}).$$

To prove this, let N be the ordered set  $e_1, \dots, e_{q-2}$ , and set

$$r(N) = r$$
,  $r(N, e_{q-1}) = r_1$ ,  $r(N, e_q) = r_2$ ,  $r(N, e_{q-1}, e_q) = r_{12}$ ,  $r(N, e_q, e_{q-1}) = r_{21}$ .

Case 1. There is no circuit in  $N + e_{q-1}$  containing  $e_{q-1}$ , and none in  $N + e_q$  containing  $e_q$ . Then

$$r_1 = r_2 = r + 1$$
.

If there is a circuit in  $N + e_{q-1} + e_q$  containing  $e_{q-1}$  and  $e_q$ , then

$$r_{12} = r_1 = r_2 = r_{21}$$
;

otherwise,

$$r_{12} = r_1 + 1 = r_2 + 1 = r_{21}$$
.

Case 2. There is a circuit  $P_2$  in  $N + e_{q-1}$  containing  $e_{q-1}$ , and a circuit  $P_1$  in  $N + e_{q-1} + e_q$  containing  $e_{q-1}$  and  $e_q$ . Then, by (C<sub>2</sub>), there is a circuit  $P_3$  in  $N + e_q$  containing  $e_q$ . Hence

$$r_{12} = r_1 = r = r_2 = r_{21}$$

Case 3. There is a circuit  $P_2$  as above, but no circuit  $P_1$  as above. If there is a circuit  $P_3$  as above, the last set of equations hold. Otherwise,

$$r_{12} = r_1 + 1 = r + 1 = r_2 = r_{21}$$
.

Case 4. There is a circuit in  $N + e_q$  containing  $e_q$ . This case overlaps the two preceding ones; the proof above applies here also.

Lemma 8. The rank of any subset N is independent of the ordering of the elements of N.

We saw above that interchanging the last two elements of any subset does not alter the rank; hence, evidently, interchanging any two adjacent elements leaves the rank unchanged. Any ordering of M may be obtained from any other by a number of interchanges of adjacent elements; the rank remains unchanged at each step, proving the lemma.

Postulates  $(R_1)$  and  $(R_2)$  are obviously satisfied. To prove  $(R_3)$ , suppose  $r(N + e_1) = r(N + e_2) = r(N)$ . Then there is a circuit in  $N + e_1$  containing  $e_1$  and one in  $N + e_2$  containing  $e_2$ ; hence  $r(N + e_1 + e_2) = r(N)$ .

The definitions of rank and of circuits under the two systems (R), (C) agree, and hence the systems are equivalent.

9. Fundamental sets of circuits. The circuits  $P_1, \dots, P_q$  of a matroid M form a fundamental set of circuits if q = n(M) and the elements  $e_1, \dots, e_n$  of M can be ordered so that  $P_i$  contains  $e_{n-q+i}$  but no  $e_{n-q+j}$  (j > i). The set is strict if  $P_i$  contains  $e_{n-q+i}$  but no  $e_{n-q+j}$  (0 < j < i or j > i). These sets may be called sets with respect to  $e_{n-q+1}, \dots, e_n$ .

THEOREM 9. If  $B = e_1 + \cdots + e_{n-q}$  is a base in  $M = e_1 + \cdots + e_n$ , then there is a strict fundamental set of circuits with respect to  $e_{n-q+1}, \cdots, e_n$ ; these circuits are uniquely determined.

As r(B) = r(M),  $\Delta(B, e_i) = 0$   $(i = n - q + 1, \dots, n)$ . Hence, by Theorem 4, there is a circuit  $P_i$  containing  $e_i$  and elements (possibly) of B.  $P_{n-q+1}, \dots, P_n$  is the required set. Suppose, for a given i, there were also a circuit  $P'_i \neq P_i$ . Then Postulate  $(C_2)$  applied to  $P_i$  and  $P'_i$  would give us a circuit P in P, which is impossible.

This theorem corresponds to the theorem that if a square submatrix N of a matrix M is non-singular, then N can be turned into the unit matrix by a linear transformation on the rows of M.

Theorem 10. If  $P_1, \dots, P_q$  form a fundamental set of circuits with

respect to  $e_{n-q+1}, \dots, e_n$ , then there is a unique strict set  $P'_1, \dots, P'_q$  with respect to  $e_{n-q+1}, \dots, e_n$ .

Set  $B = M - (e_{n-q+1} + \cdots + e_n)$ . The existence of  $P_1, \cdots, P_q$  shows that  $r(M) = r(M - e_n) = \cdots = r(B)$ . Hence  $\rho(B) = n - q = r(M) = r(B)$ , and B is a base, by Theorem 7. Theorem 9 now applies.

Note that a matroid is not uniquely determined by a fundamental set of circuits (but see the appendix). This is shown by the following two matroids, in each of which the first two circuits form a strict fundamental set:

M, with circuits 1234, 1256, 3456; M', with circuits 1234, 1256, 13456, 23456.

## II. SEPARABILITY, DUAL MATROIDS.

10. Separable matroids. If  $M = M_1 + M_2$ , then  $r(M) \leq r(M_1) + r(M_2)$ , on account of (3.3). If it is possible to divide the elements of M into two groups,  $M_1$  and  $M_2$ , each containing at least one element, such that

$$(10.1) r(M) = r(M_1) + r(M_2),$$

or, which is equivalent (as  $M_1$  and  $M_2$  have no common elements),

$$(10.2) n(M) = n(M_1) + n(M_2),$$

we shall say M is separable; otherwise, M is non-separable.<sup>4</sup> Any single element forms a non-separable matroid. Any maximal non-separable part of M is a component of M.<sup>5</sup>

THEOREM 11. If

$$M = M_1 + M_2, r(M) = r(M_1) + r(M_2),$$
  
 $M'_1 \subset M_1, M'_2 \subset M_2, M' = M'_1 + M'_2,$ 

then

$$r(M') = r(M'_1) + r(M'_2).$$

Set 
$$M_1'' = M_1 - M_1'$$
,  $M_2'' = M_2 - M_2'$ . The relations (see Theorem 3)  

$$r(M) = \Delta(M_1 + M_2', M_2'') + \Delta(M', M_1'') + r(M')$$

$$\leq \Delta(M_2', M_2'') + \Delta(M_1', M_1'') + r(M')$$

$$= r(M_2) - r(M_2') + r(M_1) - r(M_1') + r(M')$$

<sup>4</sup> Compare G, Theorem 15.

<sup>&</sup>lt;sup>5</sup> See G, § 4.

together with the fact that  $r(M) = r(M_1) + r(M_2)$  show that  $r(M') \ge r(M'_1) + r(M'_2)$  and hence  $r(M') = r(M'_1) + r(M'_2)$ .

Theorem 12.6 If  $M = M_1 + M_2$ ,  $r(M) = r(M_1) + r(M_2)$ , M' is non-separable, and  $M' \subseteq M$ , then either  $M' \subseteq M_1$  or  $M' \subseteq M_2$ .

For suppose  $M' = M'_1 + M'_2$ ,  $M'_1 \subset M_1$ ,  $M'_2 \subset M_2$ , and  $M'_1$  and  $M'_2$  each contain an element. By the last theorem,  $r(M') = r(M'_1) + r(M'_2)$ , which cannot be.

THEOREM 13. If  $M_1$  and  $M_2$  are non-separable matroids with a common element e, then  $M = M_1 + M_2$  is non-separable.

For suppose  $M = M'_1 + M'_2$ ,  $r(M) = r(M'_1) + r(M'_2)$ . By the last theorem,  $M_1 \subset M'_1$  or  $M_1 \subset M'_2$ , and  $M_2 \subset M'_1$  or  $M_2 \subset M'_1$ ; this shows that either  $M'_1$  or  $M'_2$  is void.

THEOREM 14. No two distinct components of M have common elements.

This is a consequence of the last theorem. From this follows:

THEOREM 15.7 Any matroid may be expressed as a sum of components in a unique manner.

THEOREM 16.8 A non-separable matroid M of nullity 1 is a circuit, and conversely.

If  $M_1$  is a proper non-null subset of the non-separable matroid M, and  $M_2 = M - M_1$ , then  $r(M) < r(M_1) + r(M_2)$ . Hence

$$1 = n(M) > n(M_1) + n(M_2),$$

and  $n(M_1) = 0$ , proving that M is a circuit.

Conversely, if  $M = M_1 + M_2$  is a circuit, and  $M_1$  and  $M_2$  each contain elements, then

$$r(M_1) + r(M_2) = \rho(M_1) + \rho(M_2) - n(M_1) - n(M_2)$$
  
=  $\rho(M) > r(M)$ ,

showing that M is non-separable.

<sup>&</sup>lt;sup>6</sup> Compare G, Lemma, p. 344.

<sup>&</sup>lt;sup>7</sup> Compare G, Theorem 12.

<sup>&</sup>lt;sup>8</sup> Compare G, Theorem 10.

Lemma 9. Let  $M = M_1 + M_2$  be non-separable, and let  $M_1$  and  $M_2$  each contain elements but have no common elements. Then there is a circuit P in M containing elements of both  $M_1$  and  $M_2$ .

Suppose there were no such circuit. Say  $M_2 = e_1 + \cdots + e_s$ . Using Theorem 4, we see that

$$\Delta(M_1 + e_1 + \cdots + e_{i-1}, e_i) = \Delta(e_1 + \cdots + e_{i-1}, e_i) \quad (i = 1, \cdots, s),$$
 and hence  $r(M) = r(M_1) + r(M_2)$ , a contradiction.

THEOREM 17.9 Any non-separable matroid M of nullity n > 0 can be built up in the following manner: Take a circuit  $M_1$ ; add a set of elements which forms a circuit with one or more elements of  $M_1$ , forming a non-separable matroid  $M_2$  of nullity 2 (if n(M) > 1); repeat this process till we have  $M_n = M$ .

As n > 0, M contains a circuit  $M_1$ . If n > 1, we use the preceding lemma n - 1 times. The matroid at each step is non-separable, by Theorems 16 and 13.

THEOREM 18.10 Let  $M = M_1 + \cdots + M_p$ , and let  $M_1, \cdots, M_p$  be non-separable. Then the following statements are equivalent:

- (1)  $M_1, \dots, M_p$  are the components of M.
- (2) No two of the matroids  $M_1, \dots, M_p$  have common elements, and there is no circuit in M containing elements of more than one of them.

(3) 
$$r(M) = r(M_1) + \cdots + r(M_p)$$
.

We cannot replace rank by nullity in (3); see G, p. 347.

(2) follows from (1) on application of Theorems 13 and 16.

To prove (1) from (2), take any  $M_i$ . If it is not a component of M, there is a larger non-separable submatroid  $M'_i$  of M containing it. By Lemma 9, there is a circuit P in  $M'_i$  containing elements of  $M_i$  and elements not in  $M_i$ ; P must contain elements of some other  $M_j$ , a contradiction.

Next we prove (3) from (1). If p > 1, M is separable; say  $M = M'_1 + M'_2$ ,  $r(M) = r(M'_1) + r(M'_2)$ . By Theorem 12, each  $M_i$  is in either  $M'_1$  or  $M'_2$ ; hence  $M'_1$  and  $M'_2$  are each a sum of components of M. If one of these

<sup>&</sup>lt;sup>o</sup> See G, Theorem 19; also Whitney, "2-isomorphic graphs," American Journal of Mathematics, vol. 55 (1933), p. 247, footnote.

<sup>&</sup>lt;sup>10</sup> Compare G, Theorem 17.

contains more than one component, we separate it similarly, etc. (3) now follows easily.

Finally we prove (1) from (3). Let M' be a component of M, and suppose it has an element in  $M_i$ . As

$$r(M) = r(M_i) + \sum_{j \neq i} r(M_j),$$

M' is contained in  $M_i$ , by Theorem 12; as  $M_i$  is non-separable,  $M' = M_i$ .

THEOREM 19.11 The elements  $e_1$  and  $e_2$  are in the same component of M if and only if they are contained in a circuit P.

If  $e_1$  and  $e_2$  are both in P, they are part of a non-separable matroid, which lies in a single component of M. Suppose now  $e_1$  and  $e_2$  are in the same component  $M_0$  of M, and suppose there is no circuit containing them both. Let  $M_1$  be  $e_1$  plus all elements which are contained in a circuit containing  $e_1$ . By Lemma 9, there is a subset  $M^*$  of  $M_0 - M_1$  which forms with part of  $M_1$  a circuit  $P_3$ .  $P_3$  does not contain  $e_1$ . If  $e'_4$  is an element of  $P_3$  in  $M_1$ , there is a circuit  $P_1$  in  $M_1$  containing  $e_1$  and  $e'_4$ . Let  $e_3$  be an element of  $M^*$ . Then in  $M_1 + M^*$  there are circuits  $P_1$  and  $P_3$  which contain  $e_1$  and  $e'_3$  respectively, and have a common element.

Let M' be a smallest subset of  $M_0$  which contains circuits  $P'_1$  and  $P'_3$  such that one contains  $e_1$ , the other contains  $e_3$ , and they have common elements. Then  $P'_1$  and  $P'_3$  are distinct, and  $M' = P'_1 + P'_3$ . Let  $e_4$  be a common element. By Postulate  $(C_2)$ , there is a circuit  $P_1$  in  $M' - e_4$  containing  $e_1$ , and a circuit  $P_3$  in  $M' - e_4$  containing  $e_3$ . By the definition of M',  $P_1$  and  $P_3$  have no common elements. By Postulate  $(C_1)$ ,  $P_1$  is not contained in  $P'_1$ ; hence it contains an element  $e_5$  of  $M' - P'_1$ .  $P_3$  does not contain  $e_5$ . As  $P_3$  is not contained in  $P'_3$ , it contains an element  $e_6$  of  $P'_1$ . But now  $P'_1$  contains  $e_1$ ,  $P_3$  contains  $e_3$ ,  $P'_1 + P_3$  have a common element  $e_6$ , and  $P'_1 + P_3$  does not contain  $e_5$  and is thus a proper subset of M', a contradiction. This proves the theorem.

11. Dual matroids. Suppose there is a 1-1 correspondence between the elements of the matroids M and M', such that if N is any submatroid of M and N' is the complement of the corresponding matroid of M', then

(11.1) 
$$r(N') = r(M') - n(N).$$

<sup>&</sup>lt;sup>11</sup> Compare D. König, Acta Litterarum ac Scientiarum Szeged, vol. 6, pp. 155-179, 4. (p. 159). The present theorem shows that a "glied" is the same as a component.

We say then that M' is a dual of M.<sup>12</sup>

THEOREM 20. If M' is a dual of M, then

$$r(M') = n(M), \qquad n(M') = r(M).$$

Set N = M; then n(N) = n(M). In this case N' is the null matroid, and r(N') = 0. (11.1) now gives r(M') = n(M). Also

$$n(M') = \rho(M') - r(M') = \rho(M) - n(M) = r(M).$$

THEOREM 21. If M' is a dual of M, then M is a dual of M'.

Take any N and corresponding N' as before. The equations

$$r(N') = r(M') - n(N), r(M') = n(M),$$
  
 $\rho(N) + \rho(N') = \rho(M)$ 

give

$$\begin{split} r(N) &= \rho(N) - n(N) = \rho(N) - \left[ r(M') - r(N') \right] \\ &= \rho(N) - n(M) + \left[ \rho(N') - n(N') \right] \\ &= \rho(M) - n(M) - n(N') = r(M) - n(N'), \end{split}$$

as required.

THEOREM 22. Every matroid has a dual.

This is in marked contrast to the case of graphs, for only a planar graph has a dual graph (see G, Theorem 29).

Let M' be a set of elements in 1 — correspondence with elements of M. If N' is any subset of M', let N be the complement of the corresponding subset of M, and set r(N') = n(M) - n(N). (R<sub>1</sub>), (R<sub>2</sub>), (R<sub>3</sub>) are easily seen to hold in M', as they hold in M; hence M' is a matroid. Obviously r(M') = n(M), and M' is a dual of M.

THEOREM 23. M and M' are duals if and only if there is a 1-1 correspondence between their elements such that bases in one correspond to base complements in the other.

Suppose first M and M' are duals. Let B be a base in either matroid, say in M, and let B' be the complement of the corresponding submatroid of the other matroid, M'. Then

<sup>&</sup>lt;sup>12</sup> Compare G. § 8. Theorems 20, 21, 24, 25 correspond to Theorems 20, 21, 23, 25 in G. Note that two duals of the same matroid are isomorphic, that is, there is a 1—1 correspondence between their elements such that corresponding subsets have the same rank. Such a statement cannot be made about graphs. Compare H. Whitney, "2-isomorphic graphs," American Journal of Mathematics, vol. 55 (1933), pp. 245-254.

$$r(B') = r(M') - n(B) = r(M'),$$
  
 $n(B') = r(M) - r(B) = 0,$ 

and B' is a base in M', by Theorem 7.

Suppose, conversely, that bases in one correspond to base complements in the other. Let N be a submatroid of M and let N' be the complement of the corresponding submatroid of M'. There is a base B' in M' with r(N') elements in N', by Theorem 8. The complement in M of the submatroid corresponding to B' in M' is a base B in M with  $\rho(N') - r(N') = n(N')$  elements in M - N, and hence with r(M) - n(N') elements in N. This shows that

$$r(N) = r(M) - n(N') + k, \qquad k \ge 0.$$

In a similar fashion we see that

$$r(N') = r(M') - n(N) + k', \quad k' \ge 0.$$

As B contains r(M) elements and B' contains r(M') elements,  $r(M) + r(M') = \rho(M)$ . Hence, adding the above equations,

$$k + k' = r(N) + r(N') + n(N) + n(N') - r(M) - r(M')$$
  
=  $\rho(N) + \rho(N') - \rho(M) = 0$ .

Hence k = 0, and the first equation above shows that M and M' are duals.

There are various other ways of stating conditions on certain submatroids of M and M' which will ensure these matroids being duals.<sup>13</sup>

THEOREM 24. Let  $M_1, \dots, M_p$  and  $M'_1, \dots, M'_p$  be the components of M and M' respectively, and let  $M'_i$  be a dual of  $M_i$   $(i = 1, \dots, p)$ . Then M' is a dual of M.

Let N be any submatroid of M, and let the parts of N in  $M_1, \dots, M_p$  be  $N_1, \dots, N_p$ . Let  $N'_i$  be the complement in  $M'_i$  of the submatroid corresponding to  $N_i$ ; then  $N' = N'_i + \dots + N'_p$  is the complement in M' of the submatroid corresponding to N. By Theorems 18 and 11 we have

$$r(N') = r(N'_1) + \cdots + r(N'_p), \quad n(N) = n(N_1) + \cdots + n(N_p).$$

Also

$$r(M') = r(M'_1) + \cdots + r(M'_p), \quad r(N'_i) = r(M'_i) - n(N_i);$$

adding the last set of equations gives r(N') = r(M') - n(N), as required.

<sup>&</sup>lt;sup>13</sup> See for instance a paper by the author "Planar graphs," Fundamenta Mathematicae, vol. 21 (1933), pp. 73-84, Theorem 2. Cut sets may of course be defined in terms of rank.

THEOREM 25. Let M and M' be duals, and let  $M_1, \dots, M_p$  be the components of M. Let  $M'_1, \dots, M'_p$  be the corresponding submatroids of M'. Then  $M'_1, \dots, M'_p$  are the components of M', and  $M'_i$  is a dual of  $M_i$   $(i = 1, \dots, p)$ .

The complement in M of the submatroid corresponding to  $M'_i$  in M' is  $\sum_{j\neq i} M_j$ . Hence, as M and M' are duals and the  $M_j$   $(j\neq i)$  are the components of  $\sum_{j\neq i} M_j$  (see Theorem 18),

$$r(M'_i) = r(M') - n\left(\sum_{j \neq i} M_j\right) = r(M') - \sum_{j \neq i} n(M_j).$$

Adding gives

$$\sum_{i} r(M'_{i}) = pr(M') - (p-1) \sum_{j} n(M_{j}) = pr(M') - (p-1)n(M)$$
$$= pr(M') - (p-1)r(M') = r(M').$$

Therefore, by Theorem 12, each component of M' is contained in some  $M'_i$ . In the same way we see that each component of M is contained in a matroid corresponding to a component of M'; hence the components of one matroid correspond exactly to the components of the other.

Let  $N_i$  be any submatroid of  $M_i$ , and let N' and  $N'_i$  be the complements in M' and  $M'_i$  of the submatroid corresponding to  $N_i$ . The equations

$$\begin{split} r(\mathit{M}') &= \sum_{\mathit{j}} r(\mathit{M}'_{\mathit{j}}), \qquad r(\mathit{N}') = r(\mathit{N}'_{\mathit{i}}) + \sum_{\mathit{j} \neq \mathit{i}} r(\mathit{M}'_{\mathit{j}}), \\ r(\mathit{N}') &= r(\mathit{M}') - n(\mathit{N}_{\mathit{i}}), \end{split}$$

give

$$r(N'_i) = r(M'_i) - n(N_i),$$

which shows that  $M'_i$  is a dual of  $M_i$ .

Theorem 26. A dual of a non-separable matroid is non-separable.

This is a consequence of the last theorem.

### III. MATRICES AND MATROIDS.

12. Matrices, matroids, and hyperplanes. Consider the matrix

$$M = \left| \begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array} \right|;$$

let its columns be  $C_1, \dots, C_n$ . Any subset N of these columns forms a matrix, and this matrix has a rank, r(N). If we consider the columns as abstract elements, we have a matroid M. The proof of this is simple if we consider the rank of a matrix as the number of linearly independent columns in it.  $(R_1)$  and  $(R_2)$  are then obvious. To prove  $(R_3)$ , suppose  $r(N + C_1) = r(N + C_2) = r(N)$ ; then  $C_1$  and  $C_2$  can each be expressed as a linear combination of the other columns of N, and hence  $r(N + C_1 + C_2) = r(N)$ . The terms independent and base carry over to matrices and agree with the ordinary definitions; a base in M is a minimal set of columns in terms of which all remaining columns of M may be expressed.

We may interpret M geometrically in two different ways; the second is the more interesting for our purposes:

- (a) Let  $E_m$  be Euclidean space of m dimensions. Corresponding to each column  $C_i$  of M there is a point  $X_i$  in  $E_m$  with coördinates  $a_{1i}, \dots, a_{mi}$ . The subset  $C_{i_1}, \dots, C_{i_p}$  of M is linearly independent if and only if the points  $O = (0, \dots, 0), X_{i_1}, \dots, X_{i_p}$  are linearly independent in  $E_m$ , i. e. if and only if these p+1 points determine a hyperplane in  $E_m$  of dimension p. A base in M corresponds to a minimal set of points  $X_{i_1}, \dots, X_{i_p}$  in  $E_m$  such that each  $X_i$  of M lies in the hyperplane determined by  $O, X_{i_1}, \dots, X_{i_p}$ . Then p is the rank of M.
- (b) Let  $E_n$  be Euclidean space of n dimensions. Let  $E_1, \dots, E_m$  be the rows of M. If  $Y_1, \dots, Y_m$  are the corresponding points of  $E_n: Y_i = (a_{i1}, \dots, a_{in})$ , then the points  $O, Y_1, \dots, Y_m$  determine a hyperplane H = H(M), which we shall call the hyperplane associated with M. The dimension d(H) of H is r(M). Let  $N = C_{i_1} + \dots + C_{i_p}$  be a subset of M, and let E' be the p-dimensional coördinate subspace of  $E_n$  containing the  $x_{i_1}$  and ... and the  $x_{i_p}$  axes. The j-th row of N corresponds to the point  $Y'_j$  in E' with coördinates  $(a_{ji_1}, \dots, a_{ji_p})$ ; this is just the projection of  $Y_j$  onto E'. If H' is the hyperplane in E' determined by the points  $O, Y'_1, \dots, Y'_m$ , then H' is exactly the projection of H onto E', and

$$(12.1) d(H') = r(N).$$

Let  $N = (C_{i_1}, \dots, C_{i_p})$  be any subset of M, and let E', H' correspond to N. Then N is independent if and only if

$$d(H') = p,$$

and is a base if and only if

$$d(H') = d(H) = p.$$

THEOREM 27. There is a unique matroid M associated with any hyperplane H through the origin in  $E_n$ .

Let M contain the elements  $e_1, \dots, e_n$ , one corresponding to each coördinate of  $E_n$ . Given any subset  $e_{i_1}, \dots, e_{i_p}$ , we let its rank be the dimension of the projection of H onto the corresponding coördinate hyperplane E' of  $E_n$ . It was seen above that if M is any matrix determining H, then M is the matroid associated with M.

13. Orthogonal hyperplanes and dual matroids. We prove the following theorem:

THEOREM 28. Let H be a hyperplane through the origin in  $E_n$ , of dimension r, and let H' be the orthogonal hyperplane through the origin, of dimension n-r. Let M and M' be the associated matroids. Then M and M' are duals.

We shall show that bases in one matroid correspond to base complements in the other; Theorem 23 then applies. Let

$$\mathbf{M} = \begin{bmatrix} a_{11} \cdot \cdot \cdot a_{1n} \\ \cdot \cdot \cdot \cdot \\ a_{r1} \cdot \cdot \cdot a_{rn} \end{bmatrix}, \quad \mathbf{M'} = \begin{bmatrix} b_{11} \cdot \cdot \cdot b_{1n} \\ \cdot \cdot \cdot \cdot \\ b_{n-r,1} \cdot \cdot \cdot b_{n-r,n} \end{bmatrix}$$

be matrices determining H and H' respectively. Say the first r columns of M form a base in M, i. e. the corresponding determinant A is  $\neq 0$ . As H and H' are orthogonal, we have for each i and j

$$a_{i_1}b_{j_1} + a_{i_2}b_{j_2} + \cdots + a_{i_n}b_{j_n} = 0.$$

Keeping j fixed, we have a set of r linear equations in the  $b_{jk}$ . Transpose the last n-r terms in each equation to the other side, and solve for  $b_{jk}$ . We find

This is true for each  $j = 1, \dots, n-r$ , and the  $c_{kl}$  are independent of j. Thus the k-th column of M' is expressed in terms of the last n-r columns. As this is true for  $k = 1, \dots, r$ , the last n-r columns form a base in M', as required.

14. The circuit matrix of a given matrix. Consider the matrix M of § 12. Suppose the columns  $C_{i_1}, \dots, C_{i_p}$  form a circuit, i.e. the corresponding

elements of the corresponding matroid form a circuit. Then these columns are linearly dependent, and there are numbers  $b_1, \dots, b_n$  such that

(14.1) 
$$a_{i1}b_1 + \cdots + a_{in}b_n = 0 \qquad (i = 1, \cdots, m), \\ b_j = 0 \quad (j \neq i_1, \cdots, i_p), \quad b_j \neq 0 \quad (j = i_1, \cdots, i_p).$$

The  $b_j$  are all  $\neq 0$   $(j = i_1, \dots, i_p)$ , for otherwise a proper subset of the columns would be dependent, contrary to the definition of a circuit. (They are uniquely determined except for a constant factor; see Lemma 11.) Suppose the circuits of M are  $P_1, \dots, P_s$ . Then there are corresponding sets of numbers  $b_{i_1}, \dots, b_{i_n}$   $(i = 1, \dots, s)$ , forming a matrix

$$M' = \begin{pmatrix} b_{11} \cdot \cdot \cdot b_{1n} \\ \cdot \cdot \cdot \cdot \\ b_{s1} \cdot \cdot \cdot b_{sn} \end{pmatrix},$$

the circuit matrix of the matrix M.

THEOREM 29. Let  $P_1, \dots, P_q$  be a fundamental set of circuits in  $\mathbf{M}$  (see § 9). Then the corresponding rows of the circuit matrix  $\mathbf{M}'$  form a base for the rows of  $\mathbf{M}'$ . Hence  $r(\mathbf{M}') = q = n(\mathbf{M})$ .

Suppose the columns of M are ordered so that  $P_i$  contains  $C_{n-q+i}$  but no column  $C_{n-q+j}$  (j > i). Then if the corresponding row of M' is  $R'_i = (b_{i1}, \dots, b_{in})$ , we have  $b_{i,n-q+i} \neq 0$  and  $b_{i,n-q+j} = 0$  (j > i). Hence the rows  $R'_1, \dots, R'_q$  of M' are linearly independent, and  $r(M') \geq q$ . Hence r(M') = r(M) = q, and each row of M' may be expressed in terms of  $R'_1, \dots, R'_q$ .

Theorem 30. If M' is the circuit matrix of M and H', H are the corresponding hyperplanes, then H' is the hyperplane of maximum dimension orthogonal to H.

This is a consequence of (14.1) and the last theorem.

THEOREM 31. The matroids corresponding to a matrix and its circuit matrix are duals.

This follows from the last theorem and Theorem 28.

15. On the structure of a circuit matrix. Let M be any matroid, and M', its dual. If there exists a matrix M corresponding to M, it is perhaps most easily constructed by considering it as the circuit matrix of a matrix M'

corresponding to M'. Let H and H' be the hyperplanes corresponding to M and M'. We shall say the set of numbers  $(a_1, \dots, a_n)$  is in  $Z_{i_1 \dots i_n}$  if

$$a_j \neq 0 \quad (j = i_1, \dots, i_p), \qquad a_j = 0 \quad (j \neq i_1, \dots, i_p).$$

If  $(a_1, \dots, a_n)$  is in H and in  $Z_{i_1 \dots i_p}$ , then the columns  $C_{i_1}, \dots, C_{i_p}$  of M' are dependent, evidently.

LEMMA 10. Let  $(b_1, \dots, b_n)$  be a point of H. If it is in  $Z_{i_1 \dots i_p}$ , then the matroid  $N' = e_{i_1} + \dots + e_{i_p}$  is the union of a set of circuits in M'.

Here  $e_i$  in M' corresponds to  $C_i$  in M. We need merely show that for each  $i_s$  there is a circuit P in N' containing  $e_{i_s}$ . Let  $k_1 = i_s, k_2, \dots, k_q$  be a minimal set of numbers from  $(i_1, \dots, i_p)$  containing  $i_s$  such that there is a point  $(c_1, \dots, c_n)$  of H in  $Z_{k_1, \dots, k_q}$ ; then  $e_{k_1} + \dots + e_{k_q}$  is the required circuit. For if it were not a circuit, there would be a proper subset  $(l_1, \dots, l_r)$  of  $(k_1, \dots, k_q)$  and a point  $(d_1, \dots, d_n)$  of H in  $Z_{l_1, \dots, l_r}$ . No  $l_i = k_1$ , on account of the minimal property of  $(k_1, \dots, k_q)$ . Say  $l_1 = k_t$ , and set

$$a_i = d_{k_i} c_i - c_{k_i} d_i \qquad (i = 1, \cdots, n).$$

Then  $(a_1, \dots, a_n)$  is in H and in  $Z_{m_1, \dots, m_u}$  with  $(m_1, \dots, m_u)$  a proper subset of  $(k_1, \dots, k_q)$  containing  $k_1$ , again a contradiction.

LEMMA 11. If  $P = e_{i_1} + \cdots + e_{i_p}$  is a circuit of M' and  $(b_1, \cdots, b_n)$  and  $(b'_1, \cdots, b'_n)$  are in H and in  $Z_{i_1 \ldots i_p}$ , then these two sets are proportional.

For otherwise,  $(c_1, \dots, c_n)$  with  $c_i = b'_{i_1}b_i - b_{i_1}b'_i$  would be a point of H in some  $Z_{k_1 \dots k_q}$  with  $(k_1, \dots, k_q)$  a proper subset of  $(i_1, \dots, i_p)$ , and P would not be a circuit.

It is instructive to show directly that Postulate  $(C_2)$  holds for matrices:  $P_1$  and  $P_2$  are represented by rows  $(b_1, \dots, b_n)$  and  $(b'_1, \dots, b'_n)$  of M, lying in  $Z_{12i_1 \dots i_p}$  and  $Z_{1k_1 \dots k_q}$  respectively, where  $k_1, \dots, k_q \neq 2$ . Set  $c_i = b'_1 b_i - b_1 b'_i$ ; then  $(c_1, \dots, c_n)$  is in H and in  $Z_{2i_1 \dots i_r}$ , with  $(l_1, \dots, l_r)$  a subset of  $(i_1, \dots, i_p, k_1, \dots, k_q)$ ; the existence of  $P_3$  now follows from Lemma 10.

THEOREM 32. Let M be the circuit matrix of M'. Let  $P_1, \dots, P_q$  form a strict fundamental set of circuits in M' with respect to  $e_{n-q+1}, \dots, e_n$ , and let the first q rows in M correspond to  $P_1, \dots, P_q$ . Let  $(i_1, \dots, i_s)$  be any set of numbers from  $(1, \dots, q)$ , let  $(j_1, \dots, j_s)$  be any set from  $(1, \dots, n-q)$ , and let  $(i'_1, \dots, i'_{q-s})$  be the set complementary to  $(i_1, \dots, i_s)$  in  $(1, \dots, q)$ .

Then the determinant D in  $\mathbf{M}$  with rows  $i_1, \dots, i_s$  and columns  $j_1, \dots, j_s$  equals zero if and only if the determinant D' with rows  $1, \dots, q$  and columns  $j_1, \dots, j_s, n - q + i'_1, \dots, n - q + i'_{q-s}$  equals zero, or, if and only if there exists a circuit P in  $\mathbf{M}'$  containing none of the columns  $e_{j_1}, \dots, e_{j_s}$ ,  $e_{n-q+i'_1}, \dots, e_{n-q+i'_{q-s}}$ .

In the matrix of the last  $q = r(\mathbf{M})$  columns of  $\mathbf{M}$ , the terms along the main diagonal and only those are  $\neq 0$ . If we expand D' by Laplace's expansion in terms of the columns  $n - q + i'_1, \dots, n - q + i'_{q-s}$ , we see at once that D' = 0 if and only if D = 0.

Suppose D = 0. Then there is a set of numbers  $(\alpha_1, \dots, \alpha_q)$ , not all zero, with  $\alpha_i = 0$   $(i \neq i_1, \dots, i_s)$ , such that

$$b_k = \alpha_1 b_{1k} + \cdots + \alpha_q b_{qk} = 0 \qquad (k = j_1, \cdots, j_s),$$

 $(b_{i1}, \dots, b_{in})$  being the *i*-th row of M,  $b_k = 0$  also for  $k = n - q + i'_1, \dots, n - q + i'_{q-s}$ , as each term is zero for such k. The point  $(b_1, \dots, b_n)$  is in H. Any circuit given by Lemma 10 is the required circuit P.

Suppose the circuit P exists. Then it is represented by a row  $(b_1, \dots, b_n)$  in M. As the first q rows of M are of rank q = r(M),  $(b_1, \dots, b_n)$  can be expressed in terms of them; say  $b_k = \sum \alpha_i b_{ik}$ . As  $b_k = 0$   $(k = n - q + i'_1, \dots, n - q + i'_{q-s})$ , certainly  $\alpha_k = 0$   $(k = i'_1, \dots, i'_{q-s})$ . D = 0 now follows from the fact that  $b_k = 0$   $(k = j_1, \dots, j_s)$ .

16. A matroid with no corresponding matrix.<sup>14</sup> The matroid M' has seven elements, which we name  $1, \dots, 7$ . The bases consist of all sets of three elements except

$$(16.1) 124, 135, 167, 236, 257, 347, 456.$$

Defining rank in terms of bases, we have: Each set of k elements is of rank k if  $k \leq 2$  and of rank 3 if  $k \geq 4$ ; a set of three elements is of rank 2 if the set is in (16.1) and is of rank 3 otherwise. It is easy to see that the postulates for rank are satisfied. (R<sub>3</sub>) in the case that N contains two elements is satisfied vacuously. For suppose  $r(N+e_1)=r(N+e_2)=r(N)=2$ . Then  $N+e_1$  and  $N+e_2$  are both in (16.1); but any two of these sets have but a single element in common.

<sup>&</sup>lt;sup>14</sup> After the author had noted that M' satisfies (C\*) and corresponds to no linear graph, and had discovered a matroid with nine elements corresponding to no matrix, Saunders MacLane found that M' corresponds to no matrix, and is a well known example of a finite projective geometry (see O. Veblen and J. W. Young, *Projective* Geometry, pp. 3-5).

If there exists a matrix M', corresponding to M', then let M be its circuit matrix. 123 is a base in M', and hence

form a fundamental set of circuits in M'. Let  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  be the corresponding rows of M. By multiplying in succession row 1, column 2, rows 2, 3, 4, and columns 4, 5, 6, 7 by suitable constants  $\neq 0$ , we bring M into the following form:

(16.3) 
$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & a & 0 & 1 & 0 & 0 \\ 0 & 1 & b & 0 & 0 & 1 & 0 \\ 1 & c & d & 0 & 0 & 0 & 1 \\ \vdots & \vdots \end{pmatrix};$$

a, b, c and d are  $\neq 0$ . We now apply Theorem 32 with

$$(i_1, \dots, i_s; j_1, \dots, j_s) = (1, 4; 1, 2), (2, 4; 1, 3), (3, 4; 2, 3),$$

i. e. using the circuits 347, 257, 167. This gives

$$\begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} = \begin{vmatrix} 1 & a \\ 1 & d \end{vmatrix} = \begin{vmatrix} 1 & b \\ c & d \end{vmatrix} = 0,$$

and hence c = 1, a = d = b. Using the circuit 456, with sets (1, 2, 3; 1, 2, 3) gives 2a = 0, a = 0, a contradiction.

In regard to this example, see the end of the paper.

#### APPENDIX.

### MATRICES OF INTEGERS MOD 2.

We wish to characterize those matroids M corresponding to matrices M of integers mod 2,<sup>15</sup> i. e. matrices whose elements are all 0 or 1, where rank etc. is defined mod 2. We shall consider linear combinations, *chains*:

(A. 1) 
$$\alpha_1 e_1 + \cdots + \alpha_n e_n$$
 ( $\alpha$ 's integers mod 2)

in the elements of M. The  $\alpha$ 's may be taken as 0 or 1; (A.1) may then be interpreted as the submatroid N whose elements have the coefficient 1. Conversely, any  $N \subseteq M$  may be written as a chain. Submatroids are added

<sup>&</sup>lt;sup>15</sup> See O. Veblen, "Analysis situs," 2nd ed., American Mathematical Society Colloquium Publications, Ch. I and Appendix 2.

(mod 2) by adding the corresponding chains (mod 2). For instance,  $(e_1 + e_2) + (e_2 + e_3) \equiv e_1 + e_3 \pmod{2}$ .

Any sum (mod 2) of circuits in M we shall call a *cycle* in M. N is the  $true\ sum\ of\ N_1, \cdots, N_s$  if these latter have no common elements and  $N=N_1+\cdots+N_s$ . We consider matroids which satisfy the following postulate:

(C\*) Each cycle is a true sum of circuits.

Postulate (C<sub>2</sub>) is a consequence of (C\*). For the cycle  $P_1 + P_2$  is a submatroid containing  $e_2$  but not  $e_1$ ; The existence of  $P_3$  now follows from (C\*).

A simple example of a matroid not satisfying  $(C^*)$  is given by the matroid M' at the end of § 9.

THEOREM 33. A circuit is a minimal non-null cycle, and conversely.

This is proved with the aid of Postulates  $(C_1)$  and  $(C^*)$ .

THEOREM 34. Let  $P_1, \dots, P_q$  be a strict fundamental set of circuits in M with respect to  $e_{n-q+1}, \dots, e_n$ . Then there are exactly  $2^q$  cycles in M, formed by taking all sums (mod 2) of  $P_1, \dots, P_q$ .

First, each sum  $P_{i_1} + \cdots + P_{i_s}$  (mod 2) is a cycle, containing  $e_{n-q+i_1}, \cdots, e_{n-q+i_s}$  and elements (perhaps) from  $B = e_1, \cdots, e_{n-q}$ ; obviously distinct sums give distinct cycles. Now let Q be any cycle in M; say Q contains  $e_{n-q+k_1}, \cdots, e_{n-q+k_r}$  and elements (perhaps) from B. Set  $Q' = P_{k_1} + \cdots + P_{k_r}$ ; then Q + Q' is a cycle containing elements from B alone. But B is a base (see the proof of Theorem 10), and hence contains no circuits. Consequently Q + Q' is the null cycle, and Q = Q'.

THEOREM 35. As soon as the circuits of a strict fundamental set are known, all the circuits may be determined.

This is a consequence of the last two theorems. It is to be contrasted with the final remark of § 9.

Remark. The word "strict" may be omitted in the last two theorems.

THEOREM 36. Let  $e_1, \dots, e_n$  be a set of elements, and let  $P_1, \dots, P_q$  be any subsets such that  $P_i$  contains  $e_{n-q+i}$  and possibly elements from  $e_1, \dots, e_{n-q}$  alone. Then there is a unique matroid M satisfying  $(C^*)$ , with  $P_1, \dots, P_q$  as a strict fundamental set of circuits.

We form the  $2^q$  cycles of Theorem 34. Those cycles which contain no other non-null cycle as a proper subset we call circuits; in particular,  $P_1, \dots, P_q$  are circuits. To prove (C\*), let Q be a non-null cycle. If it is not a circuit, it contains a circuit P as a proper subset. Q and P are sums (mod 2) from  $P_1, \dots, P_q$ , hence the same is true of Q - P, and Q - P is one of the  $2^q$  cycles. If it is not a circuit, we again extract a circuit, etc.

This theorem furnishes a simple method of constructing all matroids satisfying (C\*).

We turn now to the study of matrices of integers (mod 2)

$$\mathbf{M} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix}$$
 (each  $a_{ij} = 0$  or 1).

Any linear combination (mod 2) of the columns

(A. 2) 
$$\alpha_1 C_1 + \cdots + \alpha_n C_n$$
 ( $\alpha$ 's integers mod 2)

is a set of numbers  $(\Sigma \alpha_i a_{1i}, \dots, \Sigma \alpha_i a_{mi})$ , which we call a *chain* (mod 2) in M. As before, we may take each coefficient as 0 or 1, and we may consider any chain merely as a submatrix of M. The chain is a *cycle* if each of the corresponding numbers is  $\equiv 0 \pmod{2}$ . The columns  $C_{i_1}, \dots, C_{i_p}$  are *independent* (mod 2) if there exists no set of integers  $\alpha_1, \dots, \alpha_n$  not all  $\equiv 0 \pmod{2}$ , with  $\alpha_i = 0$  ( $i \neq i_1, \dots, i_p$ ), such that  $\Sigma \alpha_i C_i$  is a cycle, i. e. if no non-null subset of  $C_{i_1}, \dots, C_{i_p}$  is a cycle. Using this definition, the terms base, circuit, rank, nullity etc. (mod 2) can be defined as in Part I.

Let M be a set of elements  $e_1, \dots, e_n$  corresponding to  $C_1, \dots, C_n$  in M, and let  $e_{i_1} + \dots + e_{i_p}$  be a circuit in M if and only if  $C_{i_1}, \dots, C_{i_p}$  is a circuit in M. We shall show that M is a matroid satisfying (C\*) and the definitions of cycle in M and M agree.

We show first that each circuit is a cycle in M. If  $C_{i,i}, \dots, C_{i_p}$  is a circuit, then these columns are dependent; hence  $\Sigma \alpha_i C_i$  is a cycle, with  $\alpha_i = 0$  ( $i \neq i_1, \dots, i_p$ ). Moreover  $\alpha_i = 1$  ( $i = i_1, \dots, i_p$ ), for otherwise a proper subset of  $C_{i_1}, \dots, C_{i_p}$  would be dependent. Hence  $C_{i_1} + \dots + C_{i_p}$  is a cycle. Next, any sum (mod 2) of circuits is a cycle, evidently. Next we prove (C\*). Suppose  $Q = C_{i_1} + \dots + C_{i_p}$  is a cycle. Let  $(k_1, \dots, k_q)$  be a minimal subset of  $(i_1, \dots, i_p)$  such that  $P = C_{k_1} + \dots + C_{k_q}$  is a cycle; then P is a circuit. Q - P is a cycle; from it we extract a circuit, just as above, etc. It follows from (C\*) that the definitions of cycle in M and M agree. Theorems 33, 34 and 35 now apply to M also.

We are now ready to prove the final theorem:

THEOREM 37. Let M be any matroid satisfying (C\*). Suppose  $\rho(M) = n$ , and  $e_1 + \cdots + e_{n-q}$  is a base. Then if  $\mathbf{M}_1$  is any matrix of integers (mod 2) with n - q columns which are independent (mod 2), columns  $C_{n-q+1}, \cdots, C_n$  can be adjoined in a unique manner to  $\mathbf{M}_1$ , forming a matrix  $\mathbf{M}$  of which the corresponding matroid is M.

Let  $P_1, \dots, P_q$  be a strict fundamental set of circuits in M with respect to  $e_{n-q+1}, \dots, e_n$  (Theorem 9). Say  $P_1 = e_{i_1} + \dots + e_{i_p} + e_{n-q+1}$ . Set  $C_{n-q+1} \equiv C_{i_1} + \dots + C_{i_p}$  (mod 2); this determines  $C_{n-q+1}$  as a column of 0's and 1's so that  $P'_1 = C_{i_1} + \dots + C_{i_p} + C_{n-q+1}$  is a circuit. ( $P'_1$  is a cycle; (C\*) shows that it is a single circuit, as  $C_1 + \dots + C_{n-q}$  contains no circuit.)  $C_{n-q+1}$  evidently must be chosen in this manner. We choose the remaining columns of M similarly. Let M' be the matroid corresponding to M. Then  $P'_1, \dots, P'_q$  is a strict set of circuits in M'. These same sets form a strict set in M; hence, by Theorem 35, the circuits in M' correspond to those in M. Consequently M' = M, completing the proof.

We end by noting that the matroid M' of § 16 satisfies Postulate (C\*) but corresponds to no linear graph. For letting 123 be a base and (16.2) a fundamental set of circuits and determining the matroid as in Theorem 36, we come out with exactly M'. A corresponding matrix of integers mod 2 is constructed from (16.3) with a = b = c = d = 1; we interchange rows and columns in the left-hand portion, leave out the last row and column of the right-hand portion, and interchange these two parts. (The relation 2a = 0 is of course true mod 2.)

On the other hand, it is easily seen that if the element 7 is left out, there is a corresponding graph, which must be of the following sort: It has four vertices a, b, c, d, and the arcs corresponding to the elements  $1, \dots, 6$  are

There is no way of adding the required seventh arc.

The problem of characterizing linear graphs from this point of view is the same as that of characterizing matroids which correspond to matrices (mod 2) with exactly two ones in each column.

HARVARD UNIVERSITY.