Exercice 27 p 215

Justifier que les triangles ABC et EFG sont des triangles semblables.

On cherche des angles de même mesure dans les deux triangles.

Calculons les angles \widehat{ACB} et \widehat{EGF}

• Dans le triangle ABC, $\widehat{CAB} = 27^{\circ}$ et $\widehat{CBA} = 54^{\circ}$. Or dans un triangle, la somme des angles est égale à 180°.

Donc
$$\widehat{CAB} + \widehat{CBA} + \widehat{ACB} = 180^{\circ}$$
.

Soit
$$27^{\circ} + 54^{\circ} + \widehat{ACB} = 180^{\circ}$$
.

D'où
$$\widehat{ACB} = 180^{\circ} - 81^{\circ} = 99^{\circ}$$
.

• Dans le triangle EFG, $\widehat{EFG} = 27^{\circ}$ et $\widehat{GEF} = 99^{\circ}$. Or dans un triangle, la somme des angles est égale à 180°.

Donc
$$\widehat{EFG}$$
 + \widehat{GEF} + \widehat{EGF} = 180°.

Soit
$$27^{\circ} + 99^{\circ} + \widehat{EGF} = 180^{\circ}$$
.

D'où
$$\widehat{EGF} = 180^{\circ} - 126^{\circ} = 54^{\circ}$$
.

• On a donc $\widehat{EFG} = \widehat{CAB} = 27^{\circ}$, $\widehat{ACB} = \widehat{GEF} = 99^{\circ}$ et $\widehat{EGF} = \widehat{CBA} = 54^{\circ}$.

Les triangles ABC et EFG ont les angles deux à deux de même mesure, donc ce sont des triangles semblables.

Exercice 14 p 213

ABCD est un trapèze tel que (AB) et (CD) sont parallèles. On appelle O l'intersection de ses diagonales.

Justifier que les triangles OAB et OCD sont semblables.

Les droites (AC) et (BD) sécantes en O définissent des angles opposés par le sommet \widehat{DOC} et \widehat{AOB} qui ont la même mesure donc \widehat{DOC} = \widehat{AOB} .

Les droites (DC), (AB) et (AC) définissent des angles alternes-internes \widehat{BAC} et \widehat{ACD} . Or les droites (DC) et (AB) sont parallèles, donc les angles \widehat{BAC} et \widehat{ACD} ont la même mesure. Donc \widehat{ACD} = \widehat{BAC} .

Les droites (DC), (AB) et (BD) définissent des angles alternes-internes \widehat{ABD} et \widehat{BDC} . Or les droites (DC) et (AB) sont parallèles, donc les angles \widehat{ABD} et \widehat{BDC} ont la même mesure. Donc \widehat{ABD} = \widehat{BDC} .

Comme les triangles AOB et DOC ont les angles deux à deux de même mesure, alors on peut conclure que ce sont deux triangles semblables.