

Donner la dérivée de f(x) = k

Donner la dérivée de f(x) = x

Donner la dérivée de f(x) = ax + b

Donner la dérivée de $f(x) = x^2$

$$f'(x) = nx^{n-1}$$

Donner la dérivée de $f(x) = \sqrt{x}$

1 Spé. - Dérivation R.10
$$f'(x) = \frac{1}{2\sqrt{x}}$$

Donner la dérivée de $f(x) = \frac{1}{x}$

$$f(x) = \frac{1}{x}$$

$$f'(x) = \frac{-1}{x^2}$$

R.11

$$f(x) = \frac{1}{x^n}$$

$$f'(x) = \frac{-n}{x^{n+1}}$$

$$=\frac{1}{x^{n+1}}$$

R.12

Soient u et v des fonctions et a et $b \in \mathbb{R}$ Donner la dérivée de (au + bv) Soit u une fonction et $k \in \mathbb{R}$

Donner la dérivée de (ku)

Soit u une fonction Donner la dérivée de $\left(\frac{1}{u}\right)$

Soient u et v des fonctions Donner la dérivée de $\left(\frac{u}{v}\right)$

tions
$$(u)$$

Donner la dérivée de (u^n)

Donner la dérivée de (\sqrt{u})

f est ... sur I

f est ... sur I

Si f est croissante sur I alors

f'(x) est ... sur I

Si f est décroissante sur I alors

f'(x) est ... sur I

$$f$$
 est ... sur $[0; +\infty[$ x $-\infty$ 0 $+\infty$ signe de $f'(x)$ $+$ 0 $-$

$$f \operatorname{est} ... \operatorname{sur}] - \infty; 0]$$

$$x \qquad -\infty \qquad 0$$

Q.30

x	$-\infty$		0		2		$+\infty$
variations					$4e^3$		
de		\		X		V	
f			0				

f' est ... sur [0; 2]

x	$-\infty$	0		2		$+\infty$
variations				$4e^3$		
de		X	X		V	
f		0				

f' est ... sur $[2; +\infty[$

x	$-\infty$	()	2		$+\infty$
variations				$4e^3$		
de		>	7		V	
f		()			

$$f'(0) = ...?$$

\boldsymbol{x}	$-\infty$		0	2		$+\infty$
variations				$4\mathrm{e}^3$		
de		>	,	X	V	
f			0			

★★★ Q.35

$$f'(2) = ...?$$

\boldsymbol{x}	$-\infty$	()	2		$+\infty$
variations				$4e^3$		
de		>	7		V	
f		()			

1 Spé. - Dérivation
$$\bigstar \bigstar \bigstar \circlearrowleft$$
 Q.36
$$f \text{ est ... sur } [-2;0]$$

★★☆☆ Q.37

 $f \operatorname{est} ... \operatorname{sur} [0; +\infty]$

2___

X

 $-\infty$

+∞

Q.38

f est ... sur $]-\infty;-2]$

f est croisante sur ... $-\infty$

 $]-\infty;-2]\cup[0;+\infty[$

1 Spé. - Dérivation

f possède ... extremum(s) locaux en ...

$$x - \infty - 2 0 + \infty$$
 $f'(x) + 0 - 0 + \cdots$

pour x = -2 et x = 0

R.40

f possède ... extremums locaux pour ...

х	-∞	-2	-	1	0		5	+∞
f'(x)	+	0	-	_	0	+	0	-
f	1	1	\	1	-1	1	2	1

f possède 3 extremums locaux

pour x = -2, x = 0 et x = 5

$$f'\left(\frac{1}{3}\right) = \dots?$$

\boldsymbol{x}	$-\infty$	$\frac{1}{3}$	$+\infty$
$\begin{array}{c} \text{variations} \\ \text{de} \\ f \end{array}$		$\frac{\mathrm{e}^4}{3}$	¥

1 Spé. - Dérivation

 $f'(x) \le 0 \text{ sur } \dots$

1 Spé. - Dérivation

 $f'(x) \ge 0 \text{ sur } \dots$

\boldsymbol{x}	$-\infty$	$\frac{1}{3}$	$+\infty$
$egin{array}{c} ext{variations} \ ext{de} \ ext{\it f} \end{array}$		$\frac{e^4}{3}$	×

 $f'(x) \geq 0 \text{ sur } \mathbb{R}$

R.45

R.47

 $f'(x) \ge 0 \text{ sur }]-\infty;-1] \cup [2;+\infty[$

 $f'(x) \leq \operatorname{sur}] - \infty; 1]$

L'équation de la tangente à C_f en a est ...

1 Spé. - Dérivation

1 Spé. - Dérivation R.
$$y = f'(a)(x-a) + f(a)$$

 $f(x) = 3x^2 - x + 10$

L'équation de la tangente à C_f en 0 est ...

L'équation de la tangente à
$$\mathcal{C}_f$$
 en 0 est ...

1 Spé. - Dérivation
$$f(x) = ax^2 + bx + c$$

$$f'(x) = ...?$$

1 Spé. - Dérivation R.64
$$f'(x) = 2ax + b$$

1 Spé. - Dérivation Q.65
$$f(x) = ax^3 + bx^2 + cx + d$$

$$f'(x) = ...?$$

1 Spé. - Dérivation R.6
$$f'(x) = 3ax^2 + 2bx + c$$

1 Spé. - Dérivation Q.66
$$f(x) = x(x+1)$$

$$f'(x) = ...?$$

1 Spé. - Dérivation Q.67
$$f(x) = 4\sqrt{x}$$

1 Spé. - Dérivation R.67
$$f'(x) = \frac{2}{\sqrt{x}}$$

$$f'(x) = \frac{-u'}{u^2} = -\frac{1}{2\sqrt{x}} \times \frac{1}{(\sqrt{x})^2} = \frac{-1}{2x\sqrt{x}}$$

$$\frac{1}{2}$$

1 Spé. - Dérivation Q.69
$$f(x) = 2x + \frac{3}{x}$$

1 Spé. - Dérivation R.69
$$f'(x) = 2 - \frac{3}{x^2}$$

$$f(x) = \frac{x-1}{x+1}$$

$$f'(x) = \frac{(x+1) - (x-1)}{(x+1)^2} = \frac{2}{(x+1)^2}$$

 $f(x) = \frac{x}{1 - x}$

$$f'(x) = \frac{1(1-x) - x(-1)}{(1-x)^2} = \frac{1}{(1-x)^2}$$

$$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
$$f'(x) = \dots?$$

 $f'(x) = 1 + x + \frac{x^2}{2}$

$$f(x) = \frac{4x + 5}{3}$$

$$f(x) = \frac{x^3 + 5x - 1}{3}$$
$$f'(x) = ...?$$

1 Spé. - Dérivation R.74
$$f'(x) = x^2 + \frac{5}{3}$$

1 Spé. - Dérivation Q.7!
$$f(x) = x + \frac{1}{x}$$

1 Spé. - Dérivation R.75
$$f'(x) = 1 - \frac{1}{x^2}$$

1 Spé. - Dérivation Q.76
$$f(x) = \frac{1}{x^2}$$

 $f'(x) = \frac{-2x}{x^4} = \frac{-2}{x^3}$

R.76

1 Spé. - Dérivation

1 Spé. - Dérivation Q.77
$$f(x) = 2 + \frac{5}{7x}$$

$$f'(x) = \frac{-5}{7x^2}$$

R.77

1 Spé. - Dérivation

1 Spé. - Dérivation Q.78
$$f(x) = (1-x)^2$$

1 Spé. - Dérivation

Taux d'accroissement de f entre a et a + h

1 Spé. - Dérivation

 $f'(x) = \lim_{h \to 0} \dots$

Q.80

$$f'(x) = \lim_{x \to x} f(x)$$

1 Spé. - Dérivation

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

R.80

1 Spé. - Dérivation Q.81
$$f(x) = 2x$$

 $f'(x) = \lim_{h \to 0} \dots$

R.81

$$f'(x) = \lim_{h \to 0} \frac{2(x+h) - 2x}{h} = 2$$

1 Spé. - Dérivation