

子午线

学习笔记

作者: leekarry

组织:果壳

时间: October 28, 2019

版本: 0.1

目 录

1	深度	前馈网络
	1.1	实例:学习 XOR 1
	1.2	基于梯度的学习
	1.3	隐藏单元
	1.4	架构设计 1
	1.5	反向传播和其他的微分算法 1
2	深度	学习中的正则化 2
	2.1	参数范数惩罚 2
	2.2	作为约束的范数惩罚 2
	2.3	正则化和欠约束问题 2
	2.4	数据集增强
	2.5	噪声鲁棒性
	2.6	半监督学习
	2.7	多任务学习
	2.8	提前终止
	2.9	参数绑定和参数共享 2
	2.10	稀疏表示
	2.11	Bagging 和其他集成方法
	2.12	Dropout
	2.13	切面距离、正切传播和流形正切分类器2
3	深度	模型中的优化 3
	3.1	学习和纯优化有什么不同
	3.2	神经网络优化中的挑战 3
	3.3	基本算法
	3.4	参数初始化策略
	3.5	自适应学习率算法
	3.6	二阶近似方法 3
	3.7	优化策略和元算法
4	卷积	网络
	4.1	卷积运算 4
	4.2	动机
	12	Wh Ale

月 录 —2/12—

	4.4	卷积与池化作为一种无限强的先验	. 4
	4.5	基本卷积函数的变体	. 4
	4.6	结构化输出	. 4
	4.7	数据类型	. 4
	4.8	高效的卷积算法	. 4
	4.9	随机或无监督的特征	. 4
	4.10	卷积网络的神经科学基础	. 4
	4.11	卷积网络与深度学习的历史	. 4
_	<u> </u> → ~	17もよけ、ケケマとそいりなけって可な	_
5	. • . •]建模:循环和递归网络	5
	5.1	展开计算图	
	5.2	循环神经网络	
	5.3	双向 RNN	
	5.4	基于编码-解码的序列到序列架构	
	5.5	深度循环网络	
	5.6	递归神经网络	
	5.7	长期依赖的挑战	
	5.8	回声状态网络	
	5.9	渗漏单元和其他多时间尺度的策略	
		长短期记忆和其他门控 RNN	
		优化长期依赖	
	5.12	外显记忆	. 5
6	空 段	方法论	6
	6.1	性能度量	
	6.2	默认的基准模型	
	6.3	决定是否收集更多数据	
	6.4	选择超参数	
	6.5	调试策略	
	6.6	示例:多位数字识别	
7	应用		7
	7.1	大规模深度学习	
	7.2	计算机视觉	
	7.3	语音识别	
	7.4	自然语言处理	. 7
	7.5	其他应用	7

∞∞∞∞

目 录 -3/12-

8	线性	因子模型 8					
	8.1	概率 PCA 和因子分析					
	8.2	独立成分分析 8					
	8.3	慢特征分析					
	8.4	稀疏编码 8					
	8.5	PCA 的流形解释					
9	自编码器						
	9.1	欠完备自编码器 9					
	9.2	正则自编码器 9					
	9.3	表示能力、层的大小和深度 9					
	9.4	随机编码器和解码器 9					
	9.5	去噪自编码器详解					
	9.6	使用自编码器学习流形 9					
	9.7	收缩自编码器 9					
	9.8	预测稀疏分解 9					
	9.9	自编译器的应用 9					
10	表示	学习 10					
		。 贪心逐层无监督预训练					
		迁移学习和领域自适应					
		半监督解释因果关系 10					
	10.4	分布式表示					
	10.5	得益于深度的指数增益 10					
	10.6	提供发现潜在原因的线索					
11	涇 亩	学习中的结构化概率模型 11					
11		非结构化建模的挑战 11					
		使用图描述模型结构 11					
		从图模型中采样					
		结构化建模的优势					
		学习依赖关系					
		推断和近似推断					
		结构化概率模型的深度学习方法					
10							
12		生成模型 12					
		玻尔兹曼机					
		受限玻尔兹曼机					
		深度信念网络					
	12.4	深度玻尔兹曼机 12					

∞∞∞∞

且 录 —4/12—

12.5 实值数据上的玻尔兹曼机	12
12.6 卷积玻尔兹曼机	12
12.7 用于结构化或序列输出的玻尔兹曼机	12
12.8 其他玻尔兹曼机	12
12.9 通过随机操作的反向传播	12
12.10有向生成网络	12
12.11从自编码器采样	12
12.12生成随机网络	12
12.13其他生成方案	12
12.14评估生成模型	12
12.15结论	12

第1章 深度前馈网络

- 1.1 实例:学习 XOR
- 1.2 基于梯度的学习
- 1.3 隐藏单元
- 1.4 架构设计
- 1.5 反向传播和其他的微分算法

第2章 深度学习中的正则化

- 2.1 参数范数惩罚
- 2.2 作为约束的范数惩罚
- 2.3 正则化和欠约束问题
- 2.4 数据集增强
- 2.5 噪声鲁棒性
- 2.6 半监督学习
- 2.7 多任务学习
- 2.8 提前终止
- 2.9 参数绑定和参数共享
- 2.10 稀疏表示
- 2.11 Bagging 和其他集成方法
- 2.12 Dropout
- 2.13 切面距离、正切传播和流形正切分类器

第3章 深度模型中的优化

- 3.1 学习和纯优化有什么不同
- 3.2 神经网络优化中的挑战
- 3.3 基本算法
- 3.4 参数初始化策略
- 3.5 自适应学习率算法
- 3.6 二阶近似方法
- 3.7 优化策略和元算法

第4章 卷积网络

- 4.1 卷积运算
- 4.2 动机
- 4.3 池化
- 4.4 卷积与池化作为一种无限强的先验
- 4.5 基本卷积函数的变体
- 4.6 结构化输出
- 4.7 数据类型
- 4.8 高效的卷积算法
- 4.9 随机或无监督的特征
- 4.10 卷积网络的神经科学基础
- 4.11 卷积网络与深度学习的历史

第5章 序列建模:循环和递归网络

- 5.1 展开计算图
- 5.2 循环神经网络
- 5.3 双向 RNN
- 5.4 基于编码-解码的序列到序列架构
- 5.5 深度循环网络
- 5.6 递归神经网络
- 5.7 长期依赖的挑战
- 5.8 回声状态网络
- 5.9 渗漏单元和其他多时间尺度的策略
- 5.10 长短期记忆和其他门控 RNN
- 5.11 优化长期依赖
- 5.12 外显记忆

第6章 实践方法论

- 6.1 性能度量
- 6.2 默认的基准模型
- 6.3 决定是否收集更多数据
- 6.4 选择超参数
- 6.5 调试策略
- 6.6 示例:多位数字识别

第7章 应用

- 7.1 大规模深度学习
- 7.2 计算机视觉
- 7.3 语音识别
- 7.4 自然语言处理
- 7.5 其他应用

第8章 线性因子模型

- 8.1 概率 PCA 和因子分析
- 8.2 独立成分分析
- 8.3 慢特征分析
- 8.4 稀疏编码
- 8.5 PCA 的流形解释

第9章 自编码器

- 9.1 欠完备自编码器
- 9.2 正则自编码器
- 9.3 表示能力、层的大小和深度
- 9.4 随机编码器和解码器
- 9.5 去噪自编码器详解
- 9.6 使用自编码器学习流形
- 9.7 收缩自编码器
- 9.8 预测稀疏分解
- 9.9 自编译器的应用

第10章 表示学习

- 10.1 贪心逐层无监督预训练
- 10.2 迁移学习和领域自适应
- 10.3 半监督解释因果关系
- 10.4 分布式表示
- 10.5 得益于深度的指数增益
- 10.6 提供发现潜在原因的线索

第 11 章 深度学习中的结构化概率模型

- 11.1 非结构化建模的挑战
- 11.2 使用图描述模型结构
- 11.3 从图模型中采样
- 11.4 结构化建模的优势
- 11.5 学习依赖关系
- 11.6 推断和近似推断
- 11.7 结构化概率模型的深度学习方法

第12章 深度生成模型

- 12.1 玻尔兹曼机
- 12.2 受限玻尔兹曼机
- 12.3 深度信念网络
- 12.4 深度玻尔兹曼机
- 12.5 实值数据上的玻尔兹曼机
- 12.6 卷积玻尔兹曼机
- 12.7 用于结构化或序列输出的玻尔兹曼机
- 12.8 其他玻尔兹曼机
- 12.9 通过随机操作的反向传播
- 12.10 有向生成网络
- 12.11 从自编码器采样
- 12.12 生成随机网络
- 12.13 其他生成方案
- 12.14 评估生成模型
- 12.15 结论