Lab 2E: Terms and Conditions

2018/10/17 王嘉澤

Important Time

- 1. Lab 2E: 2018/10/19 06:00:00 a.m.
- 2. Homework 3: 2018/10/23 15:30:00
- 3. Group Latex Ch1 and Ch2: 2018/10/23 15:30:00
- 4. Quiz 2: 2018/10/31 Code
- 5. Midterm: 2018/11/07

Review

Blurring an Image

• Let X be an $m \times n$ pixel intensity matrix of an image. Then the following equation applies local blurring k times to X in each direction:

$$Z = VXH$$

where $V = (B_m)^k$ and $H = (B_n)^k$.

Blur: Matrix-vector Product Form

Express this in matrix-vector product form gives,

$$z = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & & \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & & \\ & \ddots & \ddots & \ddots & \\ & & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ & & & \frac{1}{4} & \frac{1}{2} \end{bmatrix} x = B_m x$$

Deblur: Restoring a Blurred Image

 The process of restoring a blurred image can be expressed using matrix inverses:

$$X = V^{-k}ZH^{-k}$$

 In computational practice, the above equation is computed by solving linear systems.

Hands On

- The condition number of a matrix has two factors, ||A|| and $||A^{-1}||$.
- Show that the term ||A|| makes no trouble.
- For n = 50, 100, 150, ..., 800, plot $||B_n||$ versus n.

- For the same n as step 1, plot $\kappa(B_n)$ versus n.
- Use a log-log scale for this graph and get essentially a straight line.
- This implies that $\log \kappa \approx a \log n + b$ or $\kappa \approx C n^p$.

- Let $V = B_{100}$.
- For k = 1, 2, 3, ..., 8, plot $\kappa(V^k)$ as a function of k.
- The graph is straight on a semi-log scale, which implies $\kappa \approx Cq^k$

- Let x be a random vector of a length 100.
- For k = 1, 2, 3, ..., 8, let z = vx and then solve vy = z for y.
- Record the relative error in the result.
- Then make a table showing both sides of the following inequality.

$$\frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(\mathbf{V}) \varepsilon_{\text{mach}}$$

k	upper_bound	error
-		
1	9.1785e-13	6.0833e-14
2	3.7941e-09	5.92e-11
3	1.5683e-05	1.2162e-07
4	0.064886	0.000535
5	82.585	1.388
6	138.48	1.5526
7	16.644	1.7561
8	151.99	8.8404

What We Learned?

What We Leanered?

 Compute condition numbers of blur matrix powers and compare them to the errors of repeated blur/deblur operations.

 Deblur has poor performance since its condition number is large i.e. inverse of blur matrix condition number is large.

Questions or comments?