

DisenKGAT: Knowledge Graph Embedding with Disentangled Graph Attention Network

汇报人: 陈丽行、许越玥、周俊池

目录 | CONTENT

- 1 相关概念
- 2 研究背景
- 3 模型介绍
- 4 实验分析

相关概念

知识图谱

知识 图谱 补全

解耦 表征 学习

研究背景

研究背景

模型基础

知识图谱

- 知识图谱(KGs)被定义为一个有向图,它存储了真实世界实体和事实的结构化信息。
- 设G = (V, R, L)为KG的一个实例,其中V、R和分别表示实体(节点)集、关系集和边(事实)集。每条边 $e \in L$ 都呈现为一个三重 $triple(h, r, t) \in V \times R$ $\times V$,描述了从头部实体 h 到尾部实体 t之间的关系。

互信息

• 互信息是衡量两个随机变量相互依赖程度的度量。随机变量X和Z之间的互信息定义如下:

$$I(x,z) = \mathbb{E}_{(p(x,z))} \left[log \frac{p(x,z)}{p(x)p(z)} \right]$$

其中p(x, z)为x和z的联合概率分布, p(x)和p(z)为相应的边际分布。互信息能够捕获变量之间的非线性依赖关系, 因此可以作为真正依赖关系的标准度量。

模型定义

问题定义

给定一张残缺知识图谱,期望通过对其进行学习以实现残缺边的预测,如给定头实体 h 和边 r 进行真实尾实体的预测 (h,r,?) 。值得注意的是,现有任务往往是转变为一个排名任务,即期望通过打分函数 $\psi(h,r,t): \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathcal{R}$,对真实样本的预测情况优于负样本。

一些相关的工作将这个问题表述为(?, r, t),在给定一个尾实体和一个关系的情况下,推断缺失的头实体。事实上,这两个问题可以归结为同一个问题——学习一个合适的分数函数:

$$\psi(h,r,t)$$

基于解耦表征学习的图谱补全框架

最终的结果需要根据各通道的预测结果再根据当前场景与各通道 的相似程度判断给出最终的预测分数排名。

> 模块一 解耦转换

本研究提出的模型希望学习出的表征能够**实现解耦**,即每部分表征代表不同的含义。具体来说,对于实体 u,假设它的表征由 K 个独立因子共同决定,如 $e_u = [h_{u,1}, h_{u,2}, \cdots, h_{u,k}]$,其中 $h_{u,k} \in \mathbb{R}^{\frac{d_{embed}}{K}}$,表示实体 u 在第 k 部分的表征。为了实现上述目标,作者首先将初始的实体表征矩阵**映射到不同的隐空间**当中,从而更好地帮助挖掘节点特征中的不同语义。

$$h_{u,k}^0 = \sigma(W_k \cdot x_u)$$

其中,实体的初始化表征是通过各实体表征通过 K 个独立的映射矩阵 $W=\{W_1,W_2,\cdots,W_K\}$ 得到的, σ 是非线性激活函数, x_u 是节点的特征。

模块二 微观解耦的关系感知聚合

 在聚合邻居信息时仅使用与当前主题最为相关的部分,并非所有邻居实体。在 聚合过程中应当显式融入邻居边信息以更好地实现解耦。

$$m_{(v,k,r)} = \phi(h_{v,k}, h_r, \theta_r)$$

$$\theta_r = W_r = diag(w_r)$$

为了更好地捕捉实体 u 与实体 v 之间关于子表征 k 的相关性,提出一个关系感知注意力机制来衡量两实体该部分重要性程度。

$$\alpha_{(u,v,r)}^{k} = softmax((e_{u,r}^{k})^{T} \cdot e_{v,r}^{k})$$

$$= \frac{exp((e_{u,r}^{k})^{T} \cdot e_{v,r}^{k})}{\sum_{(v',r) \in \hat{N}(u)} exp((e_{(u,r)}^{k})^{T} \cdot e_{(v',r)}^{k})}$$

在得到上述注意力分数后,我们可以从邻居实体中聚合信息并且更新中心实体各子部分表征: $h_{u,k}^{l+1} = \sigma(\sum_{(v,r)\in\hat{N}(u)} \alpha_{(u,v,r)}^k \phi(h_{v,k}^l,h_r^l,\theta_r))$

> 模块三 宏观解耦的独立性约束

- 在复杂多关系图中,期望**不同语义空间中的子表征相互尽可能独立**,即降低彼此直接依赖。
- 本文采用**互信息最小化对不用语义间相关性进行控制**。具体采用一种对比对数 比上界的MI估计器来实现解耦。核心思想为借助对比正负样本之间的差异从而 对互信息上界进行估计。

$$\mathcal{L}_{mi} = \sum_{i} \sum_{j} \mathbb{E}_{(h_{u,i},h_{u,j}) \sim p(h_{u,i},h_{u,j})} [\log q(z_{u,i}|z_{u,j})]$$

$$- \mathbb{E}_{(h_{u,i},h_{u',j}) \sim p(h_{u,i})p(h_{u,j})} [\log q(z_{u,i}|z_{u',j})]$$

$$\mathcal{L}_{(h_{u,i},h_{u,j})} = \mathbb{D}_{KL} [p(h_{u,i}|h_{u,j})||q_{\theta}(h_{u,i}|h_{u,j})]$$

> 模块四 自适应评分

• **语义嵌入水平预测**: 打分函数本文采用现有三类经典打分函数。计算每个候选三元组 (u, r, v) 在每个组件中的分数。

$$\psi^k_{(u,r,v)} = f(vec(f(\overline{h^L_{u,k}};\overline{h^L_r} \star \omega))W)h^L_{v,k}$$

• **关系感知融合:** 为了使本文模型能够适应于给定模型,在解码器部分之后加入了注意力评分模块 $\beta_{(u,r,v)}^k$ 。假设在关系感知语义子空间当中,最佳匹配当前语义环境的语义表征应当"更接近于"该语义空间中连接边的表征。

$$\begin{split} \beta_{(u,r)}^k &= softmax((h_{u,k}^L \circ \theta_r)^T \cdot h_r^L) \\ &= \frac{exp((h_{u,k}^L \circ \theta_r)^T \cdot h_r^L)}{\sum_{k'} exp(h_{u,k'} \circ \theta_r)^T \cdot h_r^L)} \end{split}$$

$$\psi_{(u,r,v)}^{final} = \sum_{k} \beta_{(u,r)}^{k} \psi_{(u,r,v)}^{k}$$

> 损失函数

• 在训练过程中,本文利用标准交叉熵损失与标签平滑,损失定义如下:

$$\mathcal{L} = -\frac{1}{B} \frac{1}{N} \sum_{(u,r) \in batch} \sum_{i} (t_i \cdot \log(\psi_{(u,r,v_i)}^{final}) + (1 - t_i) \cdot \log(1 - \psi_{(u,r,v_i)}^{final})) + \lambda \cdot \mathcal{L}_{mi}$$

式中B为批量大小,N为知识图谱的实体数, t_i 为给定查询(u,r)的标签, \mathcal{L}_{mi} 和 λ 为互信息正则化损失及其对应的超参数。

实验设置

01 数据集

常用公共数据集: FB15k-237 、 WN18RR

Data sets	$ \varepsilon $	$ \mathcal{R} $	Triplets					
			Train	Valid	Test			
FB15k-237	14,541	237	272,114	17,535	20,466			
WN18RR	40,943	11	86,835	3,034	3,134			

02 对比模型

- 基于距离的模型 (TransE, RotatE)
- 语义匹配模型 (Distmult, RESCAL)
- 基于神经网络的模型(ConvE 、InteractE 、SACN、ArcE 、ReinceptionE 、COMPGCN)

03 评价指标

平均倒数排名 (MRR)、平均排名 (MR)、一命中率 (Hits@1)、三命中率 (Hits@3)、十命中率 (Hits@10)

04 参数设置

组件嵌入大小: 200、优化器: Adam

主实验

M- 1-1		FB15k-237				WN18RR				
Model	MRR	MR	Hits@1	Hit@3	Hit@10	MRR	MR	Hits@1	Hit@3	Hit@10
TransE [5]	0.294	357	-	-	0.465	0.226	3384	-	-	0.501
Distmult [42]	0.241	254	0.155	0.263	0.419	0.43	5110	0.39	0.44	0.49
ConvE [8]	0.325	244	0.237	0.356	0.501	0.43	4187	0.40	0.44	0.52
RotatE [31]	0.338	177	0.241	0.375	0.533	0.476	3340	0.428	0.492	0.571
SACN [29]	0.35	-	0.261	0.39	0.54	0.47	-	0.43	0.48	0.54
InteractE [34]	0.354	172	0.263	-	0.535	0.463	5202	0.43	-	0.528
MuRE [2]	0.336	-	0.245	0.370	0.521	0.465	-	0.436	0.487	0.554
COMPGCN [35]	0.355	197	0.264	0.39	0.535	0.479	3533	0.443	0.494	0.546
AcrE [27]	0.358	-	0.266	0.393	0.545	0.459	-	0.422	0.473	0.532
ReInceptionE [41]	0.349	173	-	-	0.528	0.483	1894	-	Η.	0.582
DisenKGAT	0.368	179	0.275	0.407	0.553	0.486	1504	0.441	0.502	0.578

- FB15k-237数据集包含 237 种类型边,在 F15k-237 数据集上效果突出
- 有效解决复杂多语义知识图谱表示补全的问题

主实验

		RotatE		W	GCN	COM	DisenKGAT			
	F	MRR	H@10	MRR	H@10	MRR	H@10	-	MRR	H@10
	1-1	0.498	0.593	0.422	0.547	0.457	0.604		0.501	0.625
II J D J	1-N	0.092	0.174	0.093	0.187	0.112	0.190		0.128	0.248
Head Pred	N-1	0.471	0.674	0.454	0.647	0.471	0.656		0.486	0.659
	N-N	0.261	0.476	0.261	0.459	0.275	0.474		0.291	0.496
	1-1	0.484	0.578	0.406	0.531	0.453	0.589		0.499	0.641
Tail Pred	1-N	0.749	0.674	0.771	0.875	0.779	0.885		0.789	0.889
Tall Pred	N-1	0.074	0.138	0.068	0.139	0.076	0.151		0.086	0.180
	N-N	0.364	0.608	0.385	0.607	0.395	0.616		0.402	0.629

・选取数据集: FB15k-237

・四类关系: 一对一 (1-1) 、一对多 (1-N) 、多对一 (N-1) 、多对多 (N-N)

· 对于简单类型边、复杂类型边,模型效果均显著提升,大大优于其他模型

消融实验

model	MRR	MR	Hits@1	Hits@3	Hits@10	
w/o micro	0.355	197	0.265	0.392	0.534	1
w/o macro	0.356	303	0.263	0.392	0.542	.1
w/o HSIC	0.352	259	0.263	0.387	0.527	
DisenKGAT	0.368	179	0.275	0.407	0.553	

- ・w/o micro 无微观解耦; w/o macro 无宏观解耦; w/o HSIC 更换其他独立性正则项
- · 无宏微观解耦,效果下降显著
- 更换其他独立性正则项,效果下降更为明显

消融实验

- · 对于FB15k-237 数据集,子语义 K 值呈现先升后降的趋势,最佳选择约为4
- · 对于WN18RR 数据集,子语义 K 值增大效果持续下降,最佳选择约为 2

鲁棒性实验

$\textbf{Scoring Function}(=X) {\longrightarrow}$	TransE			DistMult			ConvE		
Methods↓	MRR	MR	H@10	MRR	MR	H@10	MRR	MR	H@10
X	0.294	357	0.465	0.241	354	0.419	0.325	244	0.501
X+D-GCN	0.299	351	0.469	0.321	225	0.497	0.344	200	0.524
X+W-GCN	0.264	1520	0.444	0.324	229	0.504	0.244	201	0.525
X+COMPGCN(sub)	0.335	194	0.514	0.336	231	0.513	0.352	199	0.530
X+COMPGCN(Mult)	0.337	233	0.515	0.338	200	0.518	0.353	216	0.532
X+COMPGCN(Corr)	0.336	214	0.518	0.335	227	0.514	0.355	197	0.535
X+DisenKGAT(sub)	0.334	183	0.51	0.346	196	0.531	0.358	181	0.543
X+DisenKGAT(Mult)	0.342	170	0.524	0.353	184	0.536	0.364	171	0.550
X+DisenKGAT(Corr)	0.338	203	0.520	0.341	200	0.528	0.359	189	0.541
X+DisenKGAT(Cross)	0.343	187	0.526	0.354	204	0.540	0.368	179	0.553

- ・定义四种算子: 减法 (Sub)、乘法 (Mult)、循环相关 (Corr)、交叉相互 (Cross)
- · 具有很强的鲁棒性, 可适配多种打分函数与融合方式, 均有显著提升

DisenKGAT的可解释性

- · 各个语义有较强的主题信息,不同主题具有显著差异性
- ・由于不同语义信息彼此共享,两个相关联实体在部分语义主题一致

总结与展望

01 总结

02 展望

- 知识图谱解耦表征学习框架 (DisenKGAT)
- 微观解耦与宏观解耦相结合

- 探索更通用的解耦框架
- 在更多不同的场景探索互信息

谢谢聆听

Thank You