高数基础班(14)

14 微分方程概念,一阶方程,可降阶方程,高阶线性方程,

P106-P115

主讲 武忠祥 教授

第七章 常微分方程

本章内容要点

- 一. 考试内容概要
 - (一) 常微分方程的基本概念
 - (二) 一阶微分方程
 - (三) 可降阶的高阶方程(数三不要求)
 - (四) 高阶线性微分方程
 - (五) 差分方程(仅数三要求)

二. 常考题型与典型例题

题型一 微分方程求解

题型二 综合题

题型三 应用题

(一) 常微分方程的基本概念 2

- 1. 微分方程 / = ++k
- 2. 微分方程的阶
- 3. 微分方程的解 🗸
- 4. 微分方程的通解
- 5. 微分方程的特解
- 6. 初始条件
- 7. 积分曲线

一阶微分方程

$$y' = f(x)g(y)$$

$$\frac{dy}{dx} = f(x)g(y) \Rightarrow \int \frac{dy}{g(y)} = f(x)dy$$

【例1】(2006年1,2) 微分方程
$$y' = \frac{y(1-x)}{x}$$
 的通解是

$$(y = Cxe^{-x})$$

$$||y|| = ||x|| - |x| + ||x|| = ||x|| - ||x|| + ||x|| = ||x|| + ||x|| = ||x|| + ||x||$$

2) 齐次方程
$$\frac{dy}{dx} = \varphi(\frac{y}{x})$$

2) 齐次方程
$$\frac{dy}{dx} = \varphi(\frac{y}{x})$$
 $(x) + y = xu$, $(x) + x = xu$, $(x) + xu$,

【例2】(1993年1, 2) 求微分方程 $x^2y' + xy = y^2$ 满足初始条件 $(tt) \frac{dy}{dx} = Q(u)$ 引令点:

y(1)=1 的特解. [解】原方程为齐次方程 $y'=(\frac{y}{x})^2-\frac{y}{x}$, 令 $u=\frac{y}{x}$,则 $\frac{1}{2}\int \frac{u-(u-2)}{u(u-2)}du$

$$\frac{du}{u^{2}-2u} = \frac{1}{x}dx \qquad \frac{1}{2}[\ln|u-2|-\ln|u|] = \ln|x| + C_{1}, \quad \frac{u-2}{u} = Cx^{2}$$

$$\frac{y-2x}{v} = Cx^{2}$$

由 y(1)=1,得 C=-1,即得所求的特解为

$$\frac{y-2x}{y} = -x^2$$
, $\mathbb{P} y = \frac{2x}{1+x^2}$

3) 线性方程
$$y' + P(x)y = Q(x)$$
 /

$$y = e^{\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$$

【例3】(2008年2,4) 微分方程
$$(y+x^2e^{-x})dx - xdy = 0$$

$$\frac{dx}{dx} - \frac{x}{x} = x e^{-x}$$

$$y = e^{-\int -\frac{1}{x} dx} \left[\int_{x e^{-x}} e^{\int -\frac{1}{x} dx} dx + d \right] = x \left[-e^{-x} + d \right] = x \left[d - e^{-x} \right]_{i=1}^{i}$$

 $y = x(C - e^{-x})$

4) 伯努利方程 (仅数学一要求)

$$y' + P(x)y = Q(x)y^{\alpha} \quad (\alpha \neq 1)$$

$$(y^{1-\alpha} = u) \longrightarrow \mathcal{U}$$

5) 全微分方程(仅数学一要求)

$$dF(x,y) = P(x,y)dx + Q(x,y)dy = 0.$$

a) 判定:
$$\left(\frac{\partial P}{\partial v}\right) = \left(\frac{\partial}{\partial v}\right)$$

- b) 解法:
 - 1)偏积分

2) 凑微分

3) 线积分

(三) 可降阶方程(数三不要求)

$$1) \quad y'' = f(x)$$

2)
$$y'' = f(x, y')$$

$$y' = P y'' = \frac{dP}{dx}$$

【例4】(2000年1) 微分方程 xy'' + 3y' = 0 的通解为

$$\frac{df}{dt} = -\frac{3}{x} dx$$

$$\frac{dy}{dx} = \frac{dz}{x^3} \qquad \frac{dz}{dx} + dz$$

$$\frac{dy}{dx} = \frac{dz}{x^3} + dz$$

$$\frac{dy}{dx} = \frac{dz}{x^3} + dz$$

$$\frac{dz}{dx} = \frac{dz}{x^3} + dz$$

$$y'' = f(y, y')$$

$$(y'=P,y''=P\frac{dP}{dy})$$

【例5】(2002年1,2) 微分方程 $yy'' + y'^2 = 0$ 满足初始条件

$$y|_{x=0} = 1$$
 $y'|_{x=0} = \frac{1}{2}$ 的特解是 $y = \sqrt{y} = \sqrt{x+1}$

(四) 高阶线性微分方程

1) 线性微分方程的解的结构

予次方程
$$y'' + p(x)y' + q(x)y = 0$$
 (1)
非齐次方程 $y'' + p(x)y' + q(x)y = f(x)$ (2)

定理1 如果 $y_1(x)$ 和 $y_2(x)$ 是齐次方程(1)的两个线性无关的的特解,那么

$$y = C_1 y_1(x) + C_2 y_2(x)$$

就是方程(1)的通解.

定理2 如果 (y^*) 是非齐次方程(2)的一个特解, $y_1(x)$ 和 $y_2(x)$

是齐次方程(1)的两个线性无关的特解,则

$$y = C_1 y_1(x) + C_2 y_2(x) + y^*(x)$$

是非齐次微分方程(2)的通解.

定理3 如果 $y_1^*(x)$, $y_2^*(x)$ 是非齐次方程(2)的两个特解,则

$$y(x) = y_2^*(x) - y_1^*(x)$$

是齐次微分方程(1)的解.

定理4 如果 $y_1^*(x)$, $y_2^*(x)$ 分别是方程

$$y'' + p(x)y' + q(x)y = f_1(x)$$

$$y'' + p(x)y' + q(x)y = f_2(x)$$

的特解、则

$$y_1^*(x) + y_2^*(x)$$

是方程 $y'' + p(x)y' + q(x)y = f_1(x) + f_2(x)$ 的一个特解.

2) 常系数齐次线性微分方程

$$y'' + py' + qy = 0$$

特征方程
$$r^2 + pr + q = 0$$
 人

设 r_1, r_2 是特征方程两个根

1)不等实根:
$$r_1 \neq r_2$$
.

2) 相等实根:

$$r_1 = r_2 = r$$
 $y = e^{rx}(C_1 + C_2x)$

3) 共轭复根:
$$r_1, = \alpha \pm i\beta$$

$$r_{1,2} = \alpha \pm i\beta$$
 $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

有道考神

【例6】(2013年3) 微分方程
$$y'' - y' + \frac{1}{4}y = 0$$
 的通解为

$$(y = e^{\frac{1}{2}x}(C_1 + C_2x))$$

[M]
$$V^2 - V + \frac{1}{4} = 0$$
 $(V - \frac{1}{4})^2 = 0$ $(V - \frac{1}{4})^2 = 0$

【例7】(1996年3) 微分方程 y'' + 2y' + 5y = 0 的通解为

$$y = \underline{\hspace{1cm}}$$
.

$$(y = e^{-x}(C_1\cos 2x + C_2\sin 2x))$$

$$\int_{a}^{-2 \pm \sqrt{4-20}} \frac{-2 \pm \sqrt{4-20}}{2}$$

$$= -1 \pm 2 \pm 2$$

$$f = e^{-x} \left(d_1 w 2x + d_2 w 2x \right)$$

【例8】(2010年2)3阶常系数线性齐次微分方程

$$y''' - 2y'' + y' - 2y = 0$$
 的通解为 $y =$ ______

$$(y = C_1 e^{2x} + C_2 \cos x + C_3 \sin x)$$

【解】

$$\int_{-2}^{3} - 2 r^{2} + r^{-2} = 0$$

$$(r^{-2}) (r^{2} + r) = 0$$

3) 常系数非齐次线性微分方程

$$y'' + py' + qy = f(x)$$

$$1. f(x) = e^{\lambda x} P_m(x) \qquad \Leftrightarrow \qquad y^* = (x^k) Q_m(x) e^{\lambda x}$$

$$2. f(x) = e^{\alpha x} \left[P_l^{(1)}(x) \cos \beta x + P_n^{(2)}(x) \sin \beta x \right]$$

【例9】(1995年3) 微分方程 y'' + y = -2x 的通解为 y =_____

$$(y = -2x + C_1 \cos x + C_2 \sin x)$$

[M]
$$||x|| = 0$$
, $||x|| = \pm \hat{x}$. $||x|| = \frac{1}{2} + 1 = 0$, $||x|| = \pm \hat{x}$. $||x|| = \frac{1}{2} + 1 = 0$, $||x|| = \frac{1}{2} + 1$

axtb =
$$-ix$$
 $\Rightarrow a_{-2}, b_{-0}$

【例10】(2007年1,2)二阶常系数非齐次线性微分方程

$$y'' - 4y' + 3y = 2e^{2x}$$
 的通解为 $y = ____.$

$$(y = C_1 e^{3x} + C_2 e^x - 2e^{2x})$$

有道考袖

4) 欧拉方程 (仅数一要求)

$$x^{n} y^{(n)} + a_{1} x^{n-1} y^{(n-1)} + \dots + a_{n-1} xy' + a_{n} y = f(x)$$

$$x^{k} y^{(k)} = D(D-1) \cdots (D-k+1) y$$

【例11】(2004年1) 欧拉方程
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0(x > 0)$$

 $(y = \frac{C_1}{x} + \frac{C_2}{x^2})$

的通解为 y =_____

$$\begin{array}{c|c} (\mathbf{H}) & (\mathbf{J}(0-1))^{2} + 4 \mathbf{J}^{2} + 2 \mathbf{J}^{2} = 0 \\ (\mathbf{J}^{2} - \mathbf{J})^{2} + 4 \mathbf{J}^{2} + 2 \mathbf{J}^{2} = 0 \\ \end{array}$$

高数基础班 (14)

主讲 武忠祥 教授

