| -                                    |                                                                                                                                                                                                            |                                                                                                                                                   | 30                                                                           | DA HECA LOUGHLO 5 / LEB SOON                        |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| FORM                                 | PEO-139                                                                                                                                                                                                    | 0 (Modified) . U.S. DEPARTMEN                                                                                                                     | T OF COMMERCE PATENT AND TRADEMARK OFFICE                                    | ATTORNEY'S DOCKET NUMBER                            |  |  |  |
| (MEY II                              |                                                                                                                                                                                                            |                                                                                                                                                   | TO THE UNITED STATES                                                         | 19036/37156                                         |  |  |  |
|                                      |                                                                                                                                                                                                            | DESIGNATED/ELECT                                                                                                                                  | U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR                                   |                                                     |  |  |  |
| DESIGNATED ELECTED CITIES (50/15/53) |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
| INTE                                 |                                                                                                                                                                                                            | IONAL APPLICATION NO. PCT/JP99/03682                                                                                                              | INTERNATIONAL FILING DATE  07 July 1999                                      | PRIORITY DATE CLAIMED 27 August 1998                |  |  |  |
| TITLE                                |                                                                                                                                                                                                            | VENTION                                                                                                                                           |                                                                              |                                                     |  |  |  |
| NUC                                  | LEI                                                                                                                                                                                                        | C ACID SEQUENCE FOR I                                                                                                                             | POTENTIATING THE EXPRESSION                                                  | OF USEFUL GENE AND METHOD                           |  |  |  |
| THE                                  | REF                                                                                                                                                                                                        | OR ~                                                                                                                                              |                                                                              |                                                     |  |  |  |
| APPL                                 | ICAN:                                                                                                                                                                                                      | r(s) for do/eø/us                                                                                                                                 |                                                                              |                                                     |  |  |  |
| YAN                                  | 1AD                                                                                                                                                                                                        | A, Osamu; YOSHIDA, Hiro                                                                                                                           | shi; ZHANG, Jing                                                             |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
| Appli                                | icant l                                                                                                                                                                                                    | erewith submits to the United St.                                                                                                                 | ates Designated/Elected Office (DO/EO/US) t                                  | he following items and other information:           |  |  |  |
| 1.                                   | $\boxtimes$                                                                                                                                                                                                | This is a FIRST submission of                                                                                                                     | items concerning a filing under 35 U.S.C. 371                                |                                                     |  |  |  |
| 2.                                   |                                                                                                                                                                                                            | This is a SECOND or SUBSEC                                                                                                                        | QUENT submission of items concerning a filing                                | ng under 35 U.S.C. 371.                             |  |  |  |
| 3.                                   | $\boxtimes$                                                                                                                                                                                                | This is an express request to be                                                                                                                  | gin national examination procedures (35 U.S.C                                | 2.371(f)) at any time rather than delay             |  |  |  |
| ١.                                   |                                                                                                                                                                                                            | •                                                                                                                                                 | of the applicable time limit set in 35 U.S.C. 3                              |                                                     |  |  |  |
| 4.                                   | ×                                                                                                                                                                                                          |                                                                                                                                                   |                                                                              | 19th month from the earliest claimed priority date. |  |  |  |
| 5.                                   | ×                                                                                                                                                                                                          | .,                                                                                                                                                | olication as filed (35 U.S.C. 371 (c) (2))                                   |                                                     |  |  |  |
| 2                                    |                                                                                                                                                                                                            |                                                                                                                                                   | r (required only if not transmitted by the Inter                             | national Bureau).                                   |  |  |  |
| 1                                    |                                                                                                                                                                                                            |                                                                                                                                                   | y the International Bureau.                                                  |                                                     |  |  |  |
| į,                                   | c. ☐ is not required, as the application was filed in the United States Receiving Office (RO/US).      A translation of the International Application into English (35 U.S.C. 371(c)(2)).                  |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
| ₹ 6.<br>₹ 7.                         | ×                                                                                                                                                                                                          | A translation of the International Application into English (35 U.S.C. 371(c)(2)).                                                                |                                                                              |                                                     |  |  |  |
| 1 8.                                 |                                                                                                                                                                                                            | 1 ( )                                                                                                                                             |                                                                              |                                                     |  |  |  |
| ą o.                                 | LJ                                                                                                                                                                                                         | Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))                                             |                                                                              |                                                     |  |  |  |
| 1                                    | <ul> <li>a.          are transmitted herewith (required only if not transmitted by the International Bureau).     </li> <li>b.          have been transmitted by the International Bureau.     </li> </ul> |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            | b. have been transmitted by the International Bureau.  c. have not been made; however, the time limit for making such amendments has NOT expired. |                                                                              |                                                     |  |  |  |
| 1                                    | •                                                                                                                                                                                                          | d. have not been made; nowever, the time limit for making such amendments has NO1 expired.                                                        |                                                                              |                                                     |  |  |  |
| 9.                                   |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
| 10.                                  |                                                                                                                                                                                                            | An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).                                                                                 |                                                                              |                                                     |  |  |  |
| 11.                                  | $\boxtimes$                                                                                                                                                                                                | A copy of the International Preliminary Examination Report (PCT/IPEA/409).                                                                        |                                                                              |                                                     |  |  |  |
| 12.                                  |                                                                                                                                                                                                            | A translation of the annexes to the International Preliminary Examination Report under PCT Article 36                                             |                                                                              |                                                     |  |  |  |
|                                      | (35 U.S.C. 371 (c)(5)).                                                                                                                                                                                    |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
| It                                   | ems 1                                                                                                                                                                                                      | 3 to 20 below concern documen                                                                                                                     | it(s) or information included:                                               |                                                     |  |  |  |
| 13.                                  | $\boxtimes$                                                                                                                                                                                                | An Information Disclosure Stat                                                                                                                    | tement under 37 CFR 1.97 and 1.98.                                           |                                                     |  |  |  |
| 14.                                  |                                                                                                                                                                                                            | -                                                                                                                                                 | cording. A separate cover sheet in compliance                                | with 37 CFR 3.28 and 3.31 is included.              |  |  |  |
| 15.                                  | ×                                                                                                                                                                                                          | A FIRST preliminary amendme                                                                                                                       |                                                                              |                                                     |  |  |  |
| 16.                                  |                                                                                                                                                                                                            | A SECOND or SUBSEQUEN                                                                                                                             | T preliminary amendment.                                                     |                                                     |  |  |  |
| 17.                                  |                                                                                                                                                                                                            | A substitute specification.                                                                                                                       |                                                                              |                                                     |  |  |  |
| 18.                                  |                                                                                                                                                                                                            | A change of power of attorney a                                                                                                                   |                                                                              |                                                     |  |  |  |
| 19.                                  | ×                                                                                                                                                                                                          | Certificate of Mailing by Expres                                                                                                                  | ss Mail                                                                      |                                                     |  |  |  |
| 20.                                  | ×                                                                                                                                                                                                          | Other items or information:                                                                                                                       |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   | eadable format and paper copy<br>d to an amendment to the specification purs | uant to PCT Article 34                              |  |  |  |
| Í                                    |                                                                                                                                                                                                            | - I I I I I I I I I I I I I I I I I I I                                                                                                           | purs                                                                         | and to a contributory                               |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
| Í                                    |                                                                                                                                                                                                            |                                                                                                                                                   |                                                                              |                                                     |  |  |  |
|                                      |                                                                                                                                                                                                            | 1                                                                                                                                                 |                                                                              |                                                     |  |  |  |

| U.S. APPLICATION                                                    | S. APPLICATION NO. (IF KNOWN, SEE 37 CFR INTERNATIONAL APPLICATION NO. ATTORNEY'S DOCKET NUMBER        |                                                                                     |              |         |                           |                |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|---------|---------------------------|----------------|--|
| 09/763836 PCT/JP99/03682 19036/37156                                |                                                                                                        |                                                                                     |              | 6/37156 |                           |                |  |
| 21. The fe                                                          | ollowing fees are submitted:.                                                                          |                                                                                     |              |         | CALCULATION               | S PTO USE ONLY |  |
|                                                                     | AL FEE ( 37 CFR 1.492 (a) (1                                                                           | ) - (5)) :                                                                          |              |         |                           |                |  |
| internation                                                         | ernational preliminary examinat<br>al search fee (37 CFR 1.445(a)(<br>ational Search Report not prepar | 2) paid to USPTO                                                                    | \$1,0        | 00.00   |                           |                |  |
| ☑ Internation                                                       | al preliminary examination fee (                                                                       |                                                                                     | \$8          | 60.00   |                           |                |  |
| ☐ Internation                                                       | al preliminary examination fee (                                                                       | 37 CFR 1.482) not paid to USPT<br>(a)(2)) paid to USPTO                             | 0            | 10.00   |                           |                |  |
| ☐ Internation                                                       | al preliminary examination fee                                                                         | oaid to USPTO (37 CFR 1.482)                                                        |              | 90.00   |                           |                |  |
| ☐ Internation                                                       | · · · · · · · · · · · · · · · · · · ·                                                                  |                                                                                     |              |         |                           |                |  |
|                                                                     |                                                                                                        | RIATE BASIC FEE AM                                                                  | OUNT =       | =       | \$860.00                  |                |  |
| Surcharge of \$130<br>months from the e                             | .00 for furnishing the oath or de<br>arliest claimed priority date (37                                 | claration later than CFR 1.492 (e)).                                                | 20 🗆 :       | 30      | \$0.00                    |                |  |
| CLAIMS                                                              | NUMBER FILED                                                                                           | NUMBER EXTRA                                                                        | RAT          | E       |                           |                |  |
| Fotal claims                                                        | 43 - 20 =                                                                                              | 23                                                                                  | x \$18.      | .00     | \$414.00                  |                |  |
| ndependent claim                                                    | s 5 - 3=                                                                                               | 2                                                                                   | x \$80.      | 00      | \$160.00                  |                |  |
| Multiple Depende                                                    | ent Claims (check if applicable)                                                                       |                                                                                     |              |         | \$0.00                    |                |  |
|                                                                     |                                                                                                        | OF ABOVE CALCULA                                                                    |              | =       | \$1,434.00                |                |  |
| Reduction of 1/2 to<br>hust also be filed                           | or filing by small entity, if appl<br>(Note 37 CFR 1.9, 1.27, 1.28)                                    | icable. Verified Small Entity Sta<br>(check if applicable).                         | tement       |         | \$0.00                    |                |  |
|                                                                     |                                                                                                        | SUB                                                                                 | TOTAL        | , =     | \$1,434.00                |                |  |
| rocessing fee of a                                                  | \$130.00 for furnishing the Engli<br>arliest claimed priority date (37                                 | sh translation later than CFR 1.492 (f)).                                           | 20 🗆         | 30 +    | \$0.00                    |                |  |
|                                                                     |                                                                                                        | TOTAL NATIONA                                                                       | L FEE        | =       | \$1,434.00                |                |  |
| ee for recording accompanied by a                                   | the enclosed assignment (37 CF)<br>appropriate cover sheet (37 CF)                                     | R 1.21(h)). The assignment must R 3.28, 3.31) (check if applicable)                 | be<br>le).   |         | \$0.00                    |                |  |
|                                                                     |                                                                                                        | TOTAL FEES ENCI                                                                     | OSED         | =       | \$1,434.00                |                |  |
|                                                                     |                                                                                                        |                                                                                     |              |         | Amount to be:<br>refunded | \$             |  |
|                                                                     |                                                                                                        |                                                                                     |              |         | charged                   | S              |  |
| Please ch                                                           | n the amount of \$1,434.00 arge my Deposit Account No. ate copy of this sheet is enclosed              | to cover the above fees is en in the amount of i. o charge any fees which may be re | ıf           | medit a | to cover the above        | ve fees.       |  |
| to Deposi                                                           | t Account No. 13-2855                                                                                  | A duplicate copy of this sheet                                                      | is enclosed. |         |                           | ,              |  |
| 1.137(a) or (b)) n                                                  | ust be filed and granted to res                                                                        | tore the application to pending                                                     | tatus.       | i penn  | M 10 10 11 11 (57 CF1     | `              |  |
| SEND ALL COR                                                        | RESPONDENCE TO:                                                                                        |                                                                                     | -14          |         | -1.C.D                    | M.             |  |
|                                                                     | ole, Gerstein, Murray & Borur                                                                          |                                                                                     | SIGNA        | TURE    |                           | 5              |  |
| 6300 Sears Tower 233 South Wacker Drive Thomas A. Cawley, Jr., PhD. |                                                                                                        |                                                                                     |              |         |                           |                |  |
| 233 South Wacker Drive<br>Chicago, Illinois 60606                   |                                                                                                        |                                                                                     |              | NAME    |                           |                |  |
| United States of America 40.944                                     |                                                                                                        |                                                                                     |              |         |                           |                |  |
| REGISTRATION NUMBER                                                 |                                                                                                        |                                                                                     |              |         |                           |                |  |
|                                                                     |                                                                                                        |                                                                                     |              |         |                           |                |  |
| 2-27-2001                                                           |                                                                                                        |                                                                                     |              |         |                           |                |  |
|                                                                     |                                                                                                        |                                                                                     | DATE         |         |                           |                |  |
|                                                                     |                                                                                                        |                                                                                     |              |         |                           |                |  |

JC03 Rec'd PCT/PTO 2 7 FEB 2001

PATENT 19036/37156

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

| In the Application of:           |   | "EXPRESS MAIL"                               |
|----------------------------------|---|----------------------------------------------|
| YAMADA et al.                    | ) | mailing label No. El566464317us              |
|                                  | ) |                                              |
| International Application No.:   | ) | Date of Deposit: February 27, 2001           |
| PCT/JP99/03682                   | ) |                                              |
|                                  | ) | I hereby certify that this paper (or fee) is |
| Filed: Herewith                  | ) | being deposited with the United States       |
|                                  | ) | Postal Service "EXPRESS MAIL POST            |
| For: NUCLEIC ACID                | ) | OFFICE TO ADDRESSEE" service under           |
| SEQUENCES AND                    | ) | 37 CFR §1.10 on the date indicated above     |
| METHODS FOR                      | ) | and is addressed to: Commissioner for        |
| ENHANCING EXPRESSION             | ) | Patents, Box PCT, Washington, D.C. 20231     |
| OF A USEFUL GENE                 | ) | 11/1                                         |
| Group Art Unit: Not yet assigned | ) | Richard Zimmermann                           |
| Examiner: Not yet assigned       | ) |                                              |
|                                  | ) |                                              |

### PRELIMINARY AMENDMENT

Commissioner for Patents Box PCT Washington, D.C. 20231

Sir:

Prior to substantive examination of the application, please amend the application as follows.

### IN THE SPECIFICATION

At page 29, line 30, after "HCV1-341:5'-UTR $_{341}$ " please insert --(SEQ ID NO: 1 , the nucleotide positions 1-341).

At page 29, line 30, after "HCV1-342:5'-UTR342" please insert --(SEQ ID NO: 7).

Please delete the Sequence Listing as originally filed and enter the Substitute Sequence Listing enclosed herewith.

# IN THE CLAIMS

Please amend claims 3-10, 12, 19-23, 28, and 33-37,

- 3. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 [or 2], wherein the 5'-untranslated region comprises a sequence corresponding to a region selected from the group consisting of BoxA, BoxB, a trans factor-binding site, and a combination thereof.
- 4. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 3] <u>claim 1</u>, wherein the 5'-untranslated region further comprises an AUG or ATG sequence.
- 5. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 4] <u>claim 1</u>, wherein the 5'-untranslated region comprises a part of or an entire region of IRES (<u>internal ribosomal entry site</u>) of viral mRNA.
- 6. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 5] <u>claim 1</u> further comprises a portion of a coding region adjacent to the 5'-untranslated region, or a fragment or a variant thereof, of a viral gene in addition to said nucleic acid sequence.
- 7. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 6] <u>claim 1</u>, wherein said nucleic acid sequence for enhancing expression of a useful gene is incorporated downstream of an expression regulation promoter sequence and upstream of the useful gene in a gene expression vector.
- (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 7] <u>claim 1</u>, wherein said nucleic acid is a cDNA sequence.
- (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 8] <u>claim 1</u>, wherein said gene expression vector is a vector for expression in eukaryotic cells.

- 10. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to Jany one of claims 1 to 91 claim 1, wherein said virus is RNA virus.
- 12. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claims 10, wherein said virus is HCV (hepatitis C) virus.
- 19. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 3 to 18] claim 3, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence in at least one position corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site contained in the 5'-untranslated region.
- 20. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 19] claim 1, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence corresponding to a region other than the 5'-untranslated region.
- 21. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 15[, 16, 17 or 18], wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO: 1.
- 22. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 21] <u>claim 1</u>, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of its own translation promoting activity.
- 23. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 22] <u>claim 1</u>, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of accelerating IRES activity.

- 28. (Amended) A gene expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 25] claim 1.
- 33. (Amended) A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 26 [or 27].
- 34. (Amended) A probe for screening IRES-dependent translation initiators, comprising the polynucleotide according to claim 26 [or 27].
- 35. (Amended) A therapeutic composition for treating diseases resulting from reduction of cap-dependent mRNA translation in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to [any one of claims 1 to 25] claim 1 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 36. (Amended) A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 24 [or 25] such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 37. (Amended) A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 26 [or 27] as the target; and determining the severity of the hepatitis C based on the presence of the sequence.

Please add following new claims 38-43.

- 38. The nucleic acid sequence for enhancing expression of a useful gene according to claim 16, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO:

   1.
  - 39. The nucleic acid sequence for enhancing expression of a useful gene according to

claim 17, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO: 1.

- 40. The nucleic acid sequence for enhancing expression of a useful gene according to claim 18, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO:

   1.
- 41. A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 27.
- A probe for screening IRES-dependent translation initiators, comprising the polynucleotide according to claim 27.
- 43. A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 27 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.

#### REMARKS

A translation of the annexes related to an amendment to the specification pursuant to PCT Article 34 is enclosed herewith. A translation of the annexes related to an amendment to the claims pursuant to PCT Article 34 has <u>not</u> been submitted herewith. Therefore, prior to entry of the amendment to the claims (enclosed herein) the claims are pending as originally filed in the international stage.

By the foregoing amendment, the applicants have amended the specification to comply with the Patent Rules with respect to sequence listing. Further, enclosed herewith is a computer-readable format of the Substitute Sequence Listing and a "Statement Pursuant to 37 CFR §1.821." Finally, with respect to the claims, the applicants have amended the claims to remove multiple dependancies. No new matter is believed to have been added.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN, MURRAY & BORUN

Thomas A. Cawley, Jr., Ph.D.

Registration No. 40,944 6300 Sears Tower 233 South Wacker Drive

Chicago, IL 60606-6402 Telephone: (312) 474-6300

February 27, 2001

# Appendix A Claims After Entry of Foregoing Amendment

- 1. A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence corresponding to a 5'-untranslated region of a viral gene or a fragment or a variant thereof.
- The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises at least one pyrimidine-rich tract.
- 3. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a sequence corresponding to a region selected from the group consisting of BoxA, BoxB, a trans factor-binding site, and a combination thereof.
- 4. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region further comprises an AUG or ATG sequence.
- 5. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a part of or an entire region of IRES (internal ribosomal entry site) of viral mRNA.
- 6. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 further comprises a portion of a coding region adjacent to the 5'-untranslated region, or a fragment or a variant thereof, of a viral gene in addition to said nucleic acid sequence.
- 7. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said nucleic acid sequence for enhancing expression of a useful gene is incorporated downstream of an expression regulation promoter sequence and upstream of the useful gene in a gene expression vector.
  - 8. The nucleic acid sequence for enhancing expression of a useful gene according to

claim 1, wherein said nucleic acid is a cDNA sequence.

- The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said gene expression vector is a vector for expression in eukaryotic cells.
- 10. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said virus is RNA virus.
- 11. The nucleic acid sequence for enhancing expression of a useful gene according to claim 10, wherein said virus is picornavirus.
- 12. The nucleic acid sequence for enhancing expression of a useful gene according to claims 10, wherein said virus is HCV (hepatitis C) virus.
- 13. The nucleic acid sequence for enhancing expression of a useful gene according to claim 10, wherein said virus is HCV virus, and said nucleic acid sequence for enhancing expression of a useful gene further comprises a portion of the coding region for the core protein of the HCV virus or, a variant thereof.
- 14. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of the following nucleotide sequence:

```
gccagcccc tgatggggg gacactccac catagatcac tecectgtga ggaactactg 60 tetteacgca gaaagegtet agccatggeg ttagtatgag tgtegtgeag cetecaggac 120 eccectece gggagageca tagtggtetg eggaaceggt gagtacaceg gaattgccag 180 (SEO ID NO: 1, 1-180).
```

15. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of the following nucleotide sequence:

```
gacgaccogg tecttettt gateaaccc eteaatgeet ggagatttgg gegtgeecce 60 gegagactge tageeggata gtgttgggte gegaaaggee ttgtgggtaet geetgatagg 120 gtgettgega gtgeeccggg aggtetegta gacegtgeae e 161 (SEO ID NO: 1, 181-341).
```

16. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of the following nucleotide sequence:

```
gecagecce tgatggggg gacactecae catagateae teceetgtga ggaactactg 60
tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag ecteeaggae 120
ecceeteee gggagageca tagtggtetg eggaaceggt gagtacaeeg gaattgecag 180
gacgacegg teettetttg gateaaeceg etcaatgeet gagaatttgg gectgecee 240
gegagactge tageegagta gtgttgggte gegaaaggee ttgtggtaet gectgatagg 300
gtgettgega gtgeecegg aggtetegta gacegtgeae e 341
(SEO ID NO: 1, 1-341).
```

17. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of the following nucleotide sequence:

```
gacgaccggg teetttettg gateaacccg eteaatgeet ggagatttgg gegtgeecce
                                                                     60
gcgagactgc tagccgagta gtgttgggtc gcgaaaggcc ttgtggtact gcctgatagg
                                                                    120
                                                                    180
gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac catgagcaca aatcctaaac
ctcaaagaaa aaccaaacgt aacaccaacc gccgcccaca ggacgtcaag ttcccgggcg
                                                                    240
gtggtcagat cgttggtgga gtttacctgt tgccgcgcag gggccccagg ttgggtgtgc
                                                                    300
gegegactaq qaaqaettee gageggtege aacetegtgg aaggegacaa cetateecca
                                                                    360
aggetegeeg geeegaggge aggaeetggg eteageeegg gtateettgg eeeetetatg
                                                                    420
gcaacgaggg catggggtgg gcaggatggc tcctgtcgcc ccgcggctcc cggcctagtt
                                                                    480
ggggcccttc ggacccccgg cgtaggtcgc gtaatttggg taaggtcatc gat
                                                                    533
(SEO ID NO: 1, 181-713).
```

18. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of the following nucleotide sequence:

```
gccagccccc tgatgggggc gacactccac catagatcac tcccctgtga ggaactactg
tottcacqca gaaagcgtot agccatggcg ttagtatgag tgtcgtgcag cotccaggac
                                                                    120
ccccctccc qqqaqaqcca taqtqqtctq cggaaccggt gagtacaccg gaattgccag
                                                                    180
gacgaccggg teetttettg gatcaacccg etcaatgeet ggagatttgg gegtgeecee
                                                                    240
gcgagactgc tagccgagta gtgttgggtc gcgaaaggcc ttgtggtact gcctgatagg
                                                                    300
                                                                    360
gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac catgagcaca aatcctaaac
ctcaaagaaa aaccaaacgt aacaccaacc gccgcccaca ggacgtcaag ttcccgggcg
                                                                   420
qtqqtcaqat cqttqqtqqa qtttacctqt tgccgcgcag gggccccagg ttgggtgtgc
                                                                    480
gegegactag gaagaettee gageggtege aacetegtgg aaggegacaa cetateecca
                                                                    540
aggetegeeg geeegaggge aggacetggg eteageeegg gtateettgg eccetetatg
                                                                    600
gcaacgaggg catggggtgg gcaggatggc tcctgtcgcc ccgcggctcc cggcctagtt
                                                                    660
ggggcccttc ggacccccgg cgtaggtcgc gtaatttggg taaggtcatc gat
                                                                    713
(SEO ID NO: 1, 1-713).
```

- 19. The nucleic acid sequence for enhancing expression of a useful gene according to claim 3, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence in at least one position corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site contained in the 5'-untranslated region.
- 20. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence corresponding to a region other than the 5'-untranslated region.
- 21. The nucleic acid sequence for enhancing expression of a useful gene according to claim 15, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO:

   1.
- 22. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of its own translation promoting activity.
- 23. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of accelerating IRES activity.
- 24. A nucleic acid sequence for enhancing expression of a useful gene comprising the following nucleotide sequence:

| gccagccccc | tgatgggggc | gacactccac | catagatcac | teceetgtga | ggaactactg | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| tetteaegea | gaaagcgtct | agccatggcg | ttagtatgag | tgtcgtgcag | cctccaggcc | 120 |
| ccccctccc  | gggagagcca | tagtggtctg | cggaaccggt | gagtacaccg | gaattgccag | 180 |
| gacgaccggg | tectttcttg | gatcaatccc | gctcaatgcc | tggagatttg | ggegtgeece | 240 |
| cgcgagactg | ctagccgagt | agtgttgggt | cgcgaaaggc | cttgtggtac | tgcctgatag | 300 |
|            | antagagaga | gaggtetegt | agaccataca | CC         |            | 342 |

(SEQ ID NO: 7), which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.

25. A nucleic acid sequence for enhancing expression of a useful gene which comprises a polynucleotide having a similar IRES activity to an IRES activity of the following nucleotide sequence:

```
gocagocco tgatggggg gacactocac catagateac teceetgtga ggaactactg 60
tetteacgca gaaagcgtet agcatgggg ttagtatgag tgtegtgcag cetecagge 120
ecceetece gggaagacca tagtggtetg eggaacegg gagtacaceg gaattgccag 28
acgaceggg teetteettg gateaatece geteaatgee tggagattig ggetgece 24
eggagactg etageegagt agtgttgggt eggaaagge ettgtggtae tgeetgatag 300
ggtgettgeg agtgeecegg gaggtetegt agacegtgea ee 342
```

(SEQ ID NO: 7), and consisting of a fragment or a variant of the sequence, which enhances expression of a useful gene by means of promoting mRNA translation in an IRESdependent manner.

27. An isolated polynucleotide having a similar IRES activity to an IRES activity of the following nucleotide sequence:

gccagcccc tgatgggggc gacactccac catagatcac tecectgtga ggaactacts 60
tetteacgca gaaagcgtct agccatggcg ttagtatgat tgtegtgcag cetecaggec 120
cececetece gggagageca tagtggetet eggaaceggt gagtacaceg gaattgecag 180
gacgaceggg teettetetg gateaatece geteaatgee tggagatttg ggegtgcee 240
egegagactg etageegga agtgtetggt egegaaagge ettgtggtac tgeetgataa 300
ggtgettgeg agtgeeegg gaggtetegt agacegtgea ee 342

(SEO ID NO: 7), and consisting of a fragment or a variant of said sequence.

- 28. A gene expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1.
  - 29. A host cell transformed or transfected with the vector according to claim 28.
- A method of expressing a useful gene product using the vector according to claim
   A method of expressing a useful gene product using the vector according to claim
- 31. A method for producing a useful gene product comprising the steps of: growing the host cell according to claim 29 in a medium; and isolating the useful gene product from the cell and/or the growth medium.
- A method for enhancing expression of a useful gene product using the vector according to claim 28.
- 33. A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 26.
- 34. A probe for screening IRES-dependent translation initiators, comprising the polynucleotide according to claim 26.
- 35. A therapeutic composition for treating diseases resulting from reduction of capdependent mRNA translation in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 36. A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 24 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.

- 37. A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 26 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.
- 38. The nucleic acid sequence for enhancing expression of a useful gene according to claim 16, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO:

  1.
- 39. The nucleic acid sequence for enhancing expression of a useful gene according to claim 17, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO:

   1.
- 40. The nucleic acid sequence for enhancing expression of a useful gene according to claim 18, wherein said nucleic acid has one thymidine inserted into position 207 of SEQ ID NO:

   1.
- 41. A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 27.
- 42. A probe for screening IRES-dependent translation initiators, comprising the polynucleotide according to claim 27.
- 43. A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 27 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.

# 09/7638**36**

PATENT Attorney Docket No. 19036/37156

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

| In the Application of:                  |                          | ) | "EXPRESS MAIL"                               |
|-----------------------------------------|--------------------------|---|----------------------------------------------|
| YAMADA et al.                           |                          | ) | mailing label No. EL676089534US              |
|                                         | THE TENTE OF GET         | í |                                              |
| II S                                    | Appl. No. 09/763,836     | í | Date of Deposit: June 8, 2001                |
| 0.5. 2                                  | аррі. 110. 09/103,030    | í | 24.0 c. 2 spoom came 1, 211                  |
| Intern                                  | ational Application No.: | í | I hereby certify that this paper (or fee) is |
| mem                                     |                          | ( |                                              |
|                                         | PCT/JP99/03682           | ) | being deposited with the United States       |
|                                         |                          | ) | Postal Service "EXPRESS MAIL POST            |
| Filed: 27 February 2001                 |                          | ) | OFFICE TO ADDRESSEE" service under           |
|                                         | ·                        | ) | 37 CFR §1.10 on the date indicated above     |
| For:                                    | NUCLEIC ACID             | ) | and is addressed to: Commissioner for        |
|                                         | SEQUENCES AND            | ) | Patents, Box PCT, Washington, D.C.           |
|                                         | METHODS FOR              | ) | 20231                                        |
|                                         | ENHANCING EXPRESSION     | ) | // //                                        |
|                                         | OF A USEFUL GENE         | ) | // //                                        |
|                                         |                          | ) | Sulsand From                                 |
| Group Art Unit: Not yet assigned        |                          | ) | Richard Zimmermann                           |
|                                         | 7                        | ) |                                              |
| Examiner: Not yet assigned              |                          | í |                                              |
| 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | iner. 1.00 j et acoigned | Ś |                                              |
|                                         |                          |   |                                              |

## SECOND PRELIMINARY AMENDMENT

Commissioner for Patents Box PCT Washington, D.C. 20231

Sir:

Prior to substantive examination of the application, please amend the application as follows.

### IN THE SPECIFICATION

Please replace the paragraph beginning at page 11, line 17, with the following rewritten paragraph:

--The location where the nucleic acid sequence for enhancing expression of a useful gene is incorporated into a gene expression vector should be the one that permit direct or indirect enhancement of expression of a useful gene by means of incorporating the nucleic acid sequence for enhancing expression of a useful gene into an expression vector which has been constructed such that the useful gene can be expressed, however, it is preferable that the location is downstream of the expression regulatory promoter sequence and upstream of the useful gene. Additionally, the nucleic acid sequence for enhancing expression of a first useful gene should be incorporated into the expression vector such that transcription and translation are carried out in the normal (i.e., from 5' to 3') direction.--

#### IN THE CLAIMS

Please amend claims 1 and 14-18 as follows.

- 1. A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence corresponding to a 5'-untranslated region of a viral gene or a fragment or a variant thereof, and is incorporated downstream of the expression regulatory promoter sequence and upstream of the first useful gene in a gene expression vector.
- 14. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of nucleotides 1-180 of SEQ ID NO: 1.
- 15. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of nucleotides 181-341 of SEQ ID NO:

   1.
- 16. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of nucleotides 1-341 of SEQ ID NO:1.
- 17. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of nucleotides 181-713 of SEQ ID NO:1.

18. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of nucleotides 1-713 of SEQ ID NO:1.

Please cancel claim 19, without prejudice.

Please amend claims 21-28, 35, and 37-40 as follows.

- 21. A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence of nucleotides 181-341 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.
- 22. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of its own translation promoting activity.
- 23. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of accelerating IRES activity.
- 24. A nucleic acid sequence for enhancing expression of a useful gene comprising a nucleotide sequence of SEQ ID NO: 7, which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.
- 25. A nucleic acid sequence for enhancing expression of a useful gene which comprises a polynucleotide having a similar IRES activity to an IRES activity of a nucleotide sequence of SEQ ID NO: 7, and consisting of a fragment or a variant of the sequence, which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.
  - 26. An isolated polynucleotide consisting of a nucleotide sequence of SEQ ID NO:7.

- 27. An isolated polynucleotide having a similar IRES activity to an IRES activity of a nucleotide sequence of SEQ ID NO: 7 and consisting of a fragment or a variant of said sequence.
- 28. A gene expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21.
- 35. A therapeutic composition for treating diseases resulting from reduction of capdependent mRNA translation in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 37. A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 26 or claim 27 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.
- 38. The nucleic acid sequence for enhancing expression of a useful gene according to claim 21 further comprising a nucleic acid sequence of nucleotides 1-180 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.
- 39. The nucleic acid sequence for enhancing expression of a useful gene according to claim 21 further comprising a nucleic acid of nucleotides 342-713 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.
- 40. The nucleic acid sequence for enhancing expression of a useful gene according to claim 21 further comprising a nucleic acid sequence of nucleotides 1-180 and 342-713 of

SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.

### Please add following new claims 44-46.

- 44. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a sequence corresponding to at least one region selected from the group consisting of a pyrimidine-rich tract, BoxA, BoxB, a trans factor-binding site, and a combination thereof.
- 45. The nucleic acid sequence for enhancing expression of a useful gene according to claim 44, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence in at least one position corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site contained in the 5'-untranslated region.
- 46. A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 25 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.

June 8, 2001

### REMARKS

By the foregoing amendment, the applicants have introduced an amendment to the specification as it was amended during the international phase [see "Translation Of Amendment to the Specification of Intl. Appl. No. PCT/JP99/03682 as amended under PCT Article 34 (Translation of the Annex)" submitted to the USPTO on 27 February 2001].

The foregoing amendments to the claims correct obvious errors and more clearly define the applicants' invention. Support for new claims 44-46 is found throughout the specification and claims as originally filed. No new matter is believed to have been added.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN, MURRAY & BORUN

Thomas A. Cawley, Jr., Ph.D.

Registration No. 40,944

6300 Sears Tower

233 South Wacker Drive Chicago, IL 60606-6402

Telephone: (312) 474-6300

# APPENDIX A-SPECIFICATION VERSION WITH MARKINGS TO INDICATE CHANGES MADE

The paragraph beginning at page 11, line 17, was amended as follows.

--The location where the nucleic acid sequence for enhancing expression of a useful gene is incorporated into a gene expression vector [is not particularly limited as long as direct or indirect enhancement of expression of a useful gene is permitted] should be the one that permit direct or indirect enhancement of expression of a useful gene by means of incorporating the nucleic acid sequence for enhancing expression of a useful gene into an expression vector which has been constructed such that the useful gene can be expressed, however, it is preferable that the location is downstream of the expression regulatory promoter sequence and upstream of the useful gene. Additionally, the nucleic acid sequence for enhancing expression of a first useful gene should be incorporated into the expression vector such that transcription and translation are carried out in the normal (i.e., from 5' to 3') direction.—

#### APPENDIX A-CLAIMS

### VERSION WITH MARKINGS TO INDICATE CHANGES MADE

Please amend claims 1 and 14-18 as follows.

- 1. (Amended) A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence corresponding to a 5'-untranslated region of a viral gene or a fragment or a variant thereof, and is incorporated downstream of the expression regulatory promoter sequence and upstream of the first useful gene in a gene expression vector.
- 14. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of [the following nucleotide sequence: gecagecece tgatggggge gacactecae catagateae teccetgtga ggaactactg 60 tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag cetecaggae 120 eccecetece gggagageca tagtggtetg eggaaceggt gagtacaeeg gaattgecag 180 (SEQ ID NO: 1, 1-180)] nucleotides 1-180 of SEQ ID NO: 1.
- 15. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of [the following nucleotide sequence: gacgaccggg tcctttcttg gatcaacccg ctcaatgcct ggagatttgg gcgtgcccc 60 gcgagactgc tagccgagta gtgttgggte gcgaaaggcc ttgtggtact gcctgatagg 120 gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac c 161 (SEQ ID NO: 1, 181-341)] nucleotides 181-341 of SEQ ID NO: 1.
- 16. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of [the following nucleotide sequence:
- gecagecee tgatgggge gacactecae catagateae teecetgtga ggaactactg 60 tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag eeteeagaac 120 eeeeeeeeee gggaagagea tagtggtetg eggaaceggt gagtacaeeg gaattgecag 180 gacgaceggg teetttettg gateaaeeeg eteaatgeet gggagattgg gegtgeeeee 240 gegagactge tageegagat gtgttgggte gegaaaggee ttgtggtaet geetgaagag 300

gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac c (SEQ ID NO: 1, 1-341)] <u>nucleotides 1-341 of SEO ID NO:1</u>.

17. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of [the following nucleotide sequence:

gacgacctgg teetttettg gateaacceg cteaatgeet gagaatttgg gegtgeecee 60
gegagactge tageeggata gtgttgggte gegaaaggee ttgtggtaet geetgatagg 120
gtgettgega gtgeeceggg aggtetegta gacegtgeac catgageaca aatectaaac 180
cteaaagaaa aaccaaacgt aacaccaace geegeecaca ggacgteaag tteeeggeeg 240
gtggteagat egttggtgga gtttacetgt tgeegegeag gggeeceagg ttgggtgtge 300
gegegactag gaagacttee gageggtege aacetegtgg aaggegacaa cetateecea 360
aggetegeeg geeegaggge aggacctggg eteageeegg gtateettgg eceetetatt 420
geaacgaggg catggggtgg gaaggatgge teetgtegee eegegetee eggeetagt 480
ggggeeette ggacceegg gtaggtege gtaatttggg taaggteate ga 533
(SEQ ID NO: 1, 181-713)] nucleotides 181-713 of SEO ID NO: 1

18. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of [the following nucleotide sequence:

gecagecece tgatggggge gacactecae catagateae tecectgtga ggaactactg 60 tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag eetecaggae 120 eececeteee gggaagaee tagtggtetg eggaaceggt gagtacaeeg gaattgecag 180 gacgaceggg teettitettg gateaaeeeg cteaatgeet gagaatttgg gegtgeeeee 240 gegaagaetge tageeggata gtgttgggte gegaaaggee ttgtggtaet geetgatagg 300 gtgettgega gtgeeeegga aggetetga gacegtgeae eatgageaea aateetaaae 360 etcaaagaaa aaceaaaegt aacaceaaee geegeeeaa ggaceteagg ttgeggtge 420 gtggteagat egttggtgga gtttacetgt tgeegegaa gggeeeeagg ttgggtgge 480 gegegactag gaagaettee gageeggtege aaceteggg aaggegacaa eetateeeea 360 gegaacgagg geeeggagge aggaeetggg etcageeegg gateettgg eecetatatg 660 geaacgaggg eatgggtgg gaaggatgge teetgtgee eegegetee eggeetagt 660

ggggcccttc ggacccccgg cgtaggtcgc gtaatttggg taaggtcatc gat (SEQ ID NO: 1, 1-713)] nucleotides 1-713 of SEQ ID NO:1.

Claim 19 was canceled, without prejudice.

Claims 21-28, 35, and 37-40 were amended as follows.

- 21. (Amended) [The] ∆ nucleic acid sequence for enhancing expression of a useful gene [according to claim 15,]wherein said nucleic acid has] incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence of nucleotides 181-341 of SEO ID NO: 1 having one thymidine inserted into position 207 of SEO ID NO: 1, and a fragment or variant thereof.
- 22. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of its own translation promoting activity.
- 23. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of accelerating IRES activity.
- 24. (Amended) A nucleic acid sequence for enhancing expression of a useful gene comprising [the following] a nucleotide sequence[:
  gccagccccc tgatgggggc gacactccac catagatcac teccetgtga ggaactactg 60
  tetteacgca gaaagcgtet agccatggcg ttagtatgag tgtegtgcag cetecaggec 120
  cccccctccc gggagagcca tagtggtetg eggaaccggt gagtacaccg gaattgccag 180
  gacgaceggg teetttettg gateaatece geteaatgee tggagatttg ggegtgeece 240
  cgcgagactg etageegagt agtgttgggt egegaaagge ettgtggtae tgeetgatag 300
  ggtgettgeg agtgeecegg gaggtetegt agaeegtgea ce 342

promoting mRNA translation in an IRES-dependent manner.

(SEQ ID NO. 7)] of SEQ ID NO:7.

25. (Amended) A nucleic acid sequence for enhancing expression of a useful gene which comprises a polynucleotide having a similar IRES activity to an IRES activity of [the following] a nucleotide sequence[:
gccagccccc tgatgggggc gacactccac catagatcac tcccctgtga ggaactactg 60
tcttcacgca gaaagcgtct agccatggcg ttagtatgag tgtcgtgcag cctccaggcc 120
cccccctccc gggagagcca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180
gacgaccggg tctttcttg gatcaatccc gctcaatgcc tggagatttg ggcgtgcccc 240
cgcgagactg ctagccgagt agtgttgggt cgcgaaaggc cttgtggtac tgcctgatag 300
ggtgcttgcg agtgccccgg gaggtctcgt agaccgtgca cc 342
(SEQ ID NO: 7)] of SEQ ID NO: 7, and consisting of a fragment or a variant of the sequence, which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.

26. (Amended) An isolated polynucleotide consisting of [the following] a nucleotide sequence[:
gccageccce tgatggggg gacactecae catagateae teceetgtga ggaactactg 60
tetteacgea gaaagegetet agecatggeg ttagtatgag tgtegtgeag ecteeaggec 120
ecceetetee gggagageca tagtggtetg eggaaceggt gagtacaeeg gaattgecag 180
gacgaceggg teetttettg gateaateee geteaatgee tggagatttg ggegtgeeee 240
egegagaetg etageegagt agtgttgggg egegaaagge ettgtggtae tgeetgatag 300
ggtgettgeg agtgeeeeg gaggtetegt agacegtgea ee 342

27. (Amended) An isolated polynucleotide having a similar IRES activity to an IRES activity of [the following] a nucleotide sequence[: gccagccccc tgatgggggc gacactccac catagatcac tcccctgtga ggaactactg 60 tcttcacgca gaaagcgtct agccatggcg ttagtatgag tgtcgtgcag cctccaggcc 120 cccccctccc gggagagcca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180

gacgaccggg teetttettg gateaatece geteaatgee tggagatttg ggegtgeece 240

cgcgagactg ctagccgagt agtgttgggt cgcgaaaggc cttgtggtac tgcctgatag 300 ggtgcttgcg agtgccccgg gaggtctcgt agaccgtgca cc 342 (SEQ ID NO: 7)], of SEQ ID NO: 7 and consisting of a fragment or a variant of said sequence.

- 28. (Amended) A gene expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21.
- 35. (Amended) A therapeutic composition for treating diseases resulting from reduction of cap-dependent mRNA translation in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 37. (Amended) A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 26 or claim 27 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.
- 38. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim [16, wherein said nucleic acid has] 21 further comprising a nucleic acid sequence of nucleotides 1-180 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1 and a fragment or variant thereof.
- 39. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim [17, wherein said nucleic acid has] 21 further comprising a nucleic acid of nucleotides 342-713 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.

40. (Amended) The nucleic acid sequence for enhancing expression of a useful gene according to claim [18, wherein said nucleic acid has] 21 further comprising a nucleic acid sequence of nucleotides 1-180 and 342-713 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.

New claims 44-46 were added herein.

- 44. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a sequence corresponding to at least one region selected from the group consisting of a pyrimidine-rich tract, BoxA, BoxB, a trans factor-binding site, and a combination thereof.
- 45. The nucleic acid sequence for enhancing expression of a useful gene according to claim 44, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence in at least one position corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site contained in the 5'-untranslated region.
- 46. A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 25 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.

#### APPENDIX B

#### ALL CLAIMS AFTER ENTRY OF THE AMENDMENT HEREIN

- 1. A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence corresponding to a 5'-untranslated region of a viral gene or a fragment or a variant thereof, and is incorporated downstream of the expression regulatory promoter sequence and upstream of the first useful gene in a gene expression vector.
- The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises at least one pyrimidine-rich tract.
- 3. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a sequence corresponding to a region selected from the group consisting of BoxA, BoxB, a trans factor-binding site, and a combination thereof.
- 4. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region further comprises an AUG or ATG sequence.
- 5. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a part of or an entire region of IRES (internal ribosomal entry site) of viral mRNA.
- 6. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 further comprises a portion of a coding region adjacent to the 5'-untranslated region, or a fragment or a variant thereof, of a viral gene in addition to said nucleic acid sequence.
  - 7. Canceled

- 8. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said nucleic acid is a cDNA sequence.
- The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said gene expression vector is a vector for expression in eukaryotic cells.
- 10. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said virus is RNA virus.
- 11. The nucleic acid sequence for enhancing expression of a useful gene according to claim 10, wherein said virus is picornavirus.
- 12. The nucleic acid sequence for enhancing expression of a useful gene according to claims 10. wherein said virus is HCV (hepatitis C) virus.
- 13. The nucleic acid sequence for enhancing expression of a useful gene according to claim 10, wherein said virus is HCV virus, and said nucleic acid sequence for enhancing expression of a useful gene further comprises a portion of the coding region for the core protein of the HCV virus or, a variant thereof.
- 14. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of nucleotides 1-180 of SEQ ID NO: 1.
- 15. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of nucleotides 181-341 of SEQ ID NO:
- 16. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of nucleotides 1-341 of SEQ ID NO:1.

- 17. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of nucleotides 181-713 of SEQ ID NO:

   1.
- 18. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of nucleotides 1-713 of SEO ID NO:1.

#### Canceled

- 20. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence corresponding to a region other than the 5'-untranslated region.
- 21. A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence of nucleotides 181-341 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.
- 22. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of its own translation promoting activity.
- 23. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of accelerating IRES activity.
- 24. A nucleic acid sequence for enhancing expression of a useful gene comprising a nucleotide sequence of SEQ ID NO: 7, which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.

- 25. A nucleic acid sequence for enhancing expression of a useful gene which comprises a polynucleotide having a similar IRES activity to an IRES activity of a nucleotide sequence of SEQ ID NO: 7, and consisting of a fragment or a variant of the sequence, which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.
  - 26. An isolated polynucleotide consisting of a nucleotide sequence of SEQ ID NO:7.
- 27. An isolated polynucleotide having a similar IRES activity to an IRES activity of a nucleotide sequence of SEQ ID NO: 7 and consisting of a fragment or a variant of said sequence.
- 28. A gene expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21.
  - 29. A host cell transformed or transfected with the vector according to claim 28.
- A method of expressing a useful gene product using the vector according to claim
   A method of expressing a useful gene product using the vector according to claim
- 31. A method for producing a useful gene product comprising the steps of: growing the host cell according to claim 29 in a medium; and isolating the useful gene product from the cell and/or the growth medium.
- 32. A method for enhancing expression of a useful gene product using the vector according to claim 28.
- 33. A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 26.
  - 34. A probe for screening IRES-dependent translation initiators, comprising the

polynucleotide according to claim 26.

- 35. A therapeutic composition for treating diseases resulting from reduction of capdependent mRNA translation in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or claim 21 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 36. A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 24 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
- 37. A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 26 or claim 27 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.
- 38. The nucleic acid sequence for enhancing expression of a useful gene according to claim 21 further comprising a nucleic acid sequence of nucleotides 1-180 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof
- 39. The nucleic acid sequence for enhancing expression of a useful gene according to claim 21 further comprising a nucleic acid of nucleotides 342-713 of SEQ ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.
- 40. The nucleic acid sequence for enhancing expression of a useful gene according to claim 21 further comprising a nucleic acid sequence of nucleotides 1-180 and 342-713 of SEO

ID NO: 1 having one thymidine inserted into position 207 of SEQ ID NO: 1, and a fragment or variant thereof.

- 41. A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 27.
- A probe for screening IRES-dependent translation initiators, comprising the polynucleotide according to claim 27.
- 43. A method for determining the severity of hepatitis C, comprising the steps of: detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 27 as the target; and determining the severity of the hepatitis C based on the presence of the sequence.
- 44. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises a sequence corresponding to at least one region selected from the group consisting of a pyrimidine-rich tract, BoxA, BoxB, a transfactor-binding site, and a combination thereof.
- 45. The nucleic acid sequence for enhancing expression of a useful gene according to claim 44, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence in at least one position corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site contained in the 5'-untranslated region.
- 46. A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 25 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.

5

10

15

20

25

English Translation of Intl. Appl. No.
PCT/JP99/03682 as originally filed

JC03 Rec'd PCT/PTO 2 7 FEB 2001

# NUCLEIC ACID SEQUENCES AND METHODS FOR ENHANCING EXPRESSION OF USEFUL GENE

### FIELD OF THE INVENTION

The present invention relates to nucleic acid sequences for enhancing expression of a useful gene in an expression vector, vectors comprising a nucleic acid sequence for enhancing expression of a useful gene, and host cells transformed or transfected with one of the vectors described above as well as methods for preparing a useful gene product using such vectors. Methods are further provided for enhancing expression of a useful gene with one of the vectors described above. More specifically, the present invention relates to nucleic acid sequences for enhancing expression of a useful gene that can increase *in vivo* and *in vitro* production of a gene product, allowing advantageous application to various experiments as well as gene therapies in combination with such a promoter that is specific to an internal organ or a tumor but has not been likely to come into practical use due to its low activity. In addition, the nucleic acid sequences for enhancing expression of a useful gene may be used for screening of an agent that interacts with IRESs, and of a translation initiator, and for the treatment and diagnosis of, and prophylaxis against, various diseases.

### BACK GROUND OF THE INVENTION

The mechanisms involving in initiation of mRNA translation are known to be either cap-dependent or cap-independent. The 5'-terminal structure of prokaryotic mRNAs is pppN while eukaryotic mRNAs have a cap structure ((7-MeG)-5'-ppp-5'-(G/A)-3'-p-) (G or A, with possibly methylated ribose) at their 5'-end. This cap structure plays a role in the transportation of mRNA from nuclei to cytoplasm, protecting mRNAs from RNase. In the cytoplasm of eukaryotic cells, binding of the cap-binding protein complex (also referred to as eukaryotic initiation factor 4F (eIF-4F)) to the cap structure promotes the entry of a 40S ribosomal subunit into the mRNA 5'-end, and then the ribosome within the mRNA 5'-end moves along the mRNA toward the

15

20

25

30

5

3'-end, scanning the 5'-untranslated region of about 100 bases in length, then peptide synthesis is performed in many cases, using the first AUG sequence that the ribosome encounters as the initiation codon.

However, an eukaryotic mRNA has been found which uses a different mechanism from the cap-dependent translation mechanism described above. eukaryotic mRNAs were known to have a cap structure at their 5'-end, it has been reported that the 5'-end of poliovirus mRNA is uncapped; instead, its structure is merely pU (Nomoto, A. et al., Proc. Natl. Acad. Sci. USA, 74, 5345, 1977). The entire primary structure of poliovirus RNAs has then been elucidated with a detailed genetic map thereof (Kitamura, N. et al., Nature, 291, 547, 1981). Consequently, it was indicated that the initiation AUG codon is located at position 743 base of mRNA and is preceded by some AUG triplets. Such a mRNA structure has been revealed to be commonly found in other members belonging to the same family (family Picornaviridae) as the poliovirus. Furthermore, the cap-independent mechanism for translation initiation (internal initiation mode) has been demonstrated for picornaviruses through the experiments with poliovirus RNA (Pelletier, J. et al., Nature, 334, 320, 1988) and encephalomyocarditis virus (EMCV) RNA (Jang, S. K. et al., J. Viol., 62, 2636, 1988). revealing the recognition of base sequences in the 5'-untranslated region (5'-UTR) of mRNA by ribosomes and the internal entry of the ribosomes which occurs at an internal site(s) within the 5'-untranslated region. The region required for the entry of ribosomes has been called the internal ribosomal entry site (IRES).

Picornavirus RNA possesses a 5'-untranslated region of about 600-1200 bases in length, of which a region of about 450 bases has IRES activity. The picornavirus IRES presents a common structure, i.e., a pyrimidine-rich tract ((C/U)x) and a following short sequence of about 7 bases in length containing AUG. A random base sequence (Ny) of 10-20 bases in length is located between the pyrimidine-rich tract and the short sequence (Jang, S. K. et al., in Translationally Regulated Genes in Higher Eukaryotes, Thach, R. E. ed., 292-309, Karger, 1990). The pyrimidine-rich tract means a region that contains at least 4, 5 or more continuous pyrimidine bases. The (C/U)x-Ny-AUG unit is expected to be one of essential structures for IRESs, in fact, deletions of base sequences containing AUG diminish IRES activities which are completely lost with further deletion of the

10

15

20

25

30

entire region of (C/U)x (Kuge, S. et al., J. Virol., 61, 1478, 1987; Iizuka, N. et al., J. Virol., 65, 4867, 1991). In general, the region of (C/U)x sequence is called "BoxA" while the region containing AUG of about 7 bases in length is called "BoxB". Since these boxes present complementarity to a sequence at the 3'-end of the 18S ribosome RNA (rRNA), IRES is regarded as having a similar function to the Shine-Dalgarno sequence (SD sequence) of prokaryotic mRNAs (Pilipenko, E. V. et al., Cell, 68, 119, 1992).

Picornavirus IRES is classified into two types: type I IRESs are found in enteroviruses and rhinoviruses, whereas type II IRESs are found in cardioviruses and aphthoviruses. Hepatovirus IRESs are considered to be an analog of the type II IRES.

With respect to the type I IRES, the ribosome scans a region downstream of (C/U)x-Ny-AUG unit and initiates peptide synthesis at the first AUG which serves as the initiation codon. Insertion of an AUG sequence at a position upstream of the initiation AUG codon actually results in significantly inhibited replication in the virus (Kuge, S. et al., J. Virol., 63, 1069, 1989; Kuge, S. et al., J. Mol. Biol., 207, 175, 1989). For the type II IRES elements, on the other hand, AUG within the (C/U)x-Ny-AUG unit is used as the initiation codon.

In 1989, hepatitis C virus (hereinafter, referred to as HCV) that is a plus single-stranded RNA virus has been reported as a causative virus of non-A, non-B viral posttransfusion hepatitis (Choo, Q. et al., Science, 244, 359, 1989). Chronic infection of this virus leads to liver cirrhosis and hepatocellular carcinoma at a high incidence, which has been clinically problematic (Saito, I. et al., Proc. Natl. Acad. Sci. USA, 87, 6547, 1990). To date, the entire base sequences of at least 40 HCV genome subtypes have been identified. The genome RNA of about 9600 bases in length comprises a 5'-untranslated region of about 341 bases in length, a coding region that codes for a polypeptide of 3008-3037 amino acid residues and a 3'-untranslated region of 200-300 bases in length, where the 3'-untranslated region terminates in a structure called 3'X of 98 bases in length following the poly U/C tract. The polypeptide of this virus is analogous to that found in flaviviruses and pestiviruses (Kato, N. et al., Proc. Natl. Acad. Sci. USA, 87, 9524, 1990; Takamizawa, A. et al., J. Virol., 65, 1105, 1991) and carries the viral proteins in the following order from the N-terminus designated as: C/core, E1, E2, p7,

10

15

20

25

30

NS2, NS3, NS4A, NS4B, and NS5A. The E2 region corresponds to a non-structural protein NS1 in flavivirus and an envelope protein E2 in pestivirus. HCV had been considered as E2/NS1 but is recently considered as E2, because similar characteristics have been shown to pestiviruses, and is expected to be an envelope protein. It has been reported that, based on the sequence identity, there are 6 to 11 genotypes of the virus.

According to the virological classification, HCV belongs to the family Flaviviridae, together with GB virus/hepatitis G virus that have been identified later. It has been discovered that an internal ribosome entry site (IRES) exists in the 5'-untranslated region of the base sequence of HCV, which is found, for example, in picornavirus mRNAs, unlike usual cap-dependent translation of the eukaryotic mRNAs into the proteins (Tsukiyama-Kohara, K. et al., J. Virol., 66, 1476, 1992). This IRES exhibits its activity with a shorter base sequence than the picornavirus IRES does, and thus the HCV IRES is expected to have a secondary structure which is completely distinct from that of picornavirus (Tsukivama-Kohara, K. et al., J. Virol., 66, 1476, 1992; Brown, E. A. et al., Nucl. Acid Res., 20, 5041, 1992). On the other hand, base sequences corresponding to BoxA and BoxB have been observed within the region of HCV IRES, which are complementary to the 3'-end of 18S rRNA (Nomoto, A. et al., in Viral Hepatitis and Liver Disease, Nishioka, K., Suzuki, H., Mishiri, S., Oda, T. eds., 118, Springer-Verlag, 1994). See, Fig. 1 for the putative structure of the region of HCV IRES. In the figure, the thick line indicates the pyrimidine-rich tract which corresponds to BoxA and the sequence of about 7 bases in length containing AUG which corresponds to BoxB, whilst the double line indicates the pyrimidine-rich tract located upstream of BoxA, additionally, binding-sites of the trans factors (described later) are encircled.

Pestivirus (family Fraviviridae) IRESs, the IRES activity of which has recently been identified, have no base sequence corresponding to BoxA and BoxB, although their secondary structures are similar to those of HCV IRESs (Brown, E. A. et al., Nucl. Acid Res., 20, 5041, 1992). Plant virus IRESs discovered one after another in recent years exhibit the activity with a yet shorter base sequence and no part is conserved corresponding to BoxA and BoxB. These results suggest that the two boxes are not necessarily essential for IRES activity. Thus, a simply standarized mechanism such as

10

15

20

the cap-dependent translation initiation may not be enough to explain a variety of modes of expressing IRES functions.

Translation initiation in HCV is different from that during the cap-dependent protein synthesis found in the majority of eukaryotic mRNAs in respect that it depends on IRES located in the 5'-site. A single, long polypeptide synthesized in an IRES-dependent manner is processed into proteins by a host signal peptidase and two kinds of viral proteases. These proteins are subjected to further individual processing by the signal peptidase, glycosylation and phosphorylation by a viral protein, thus they acquire various characteristics required for viral replication and for accomplished infection

The long HCV 5'-UTR of about 341 bases in length is similar to those of pestiviruses or picornaviruses, different from those in flaviviruses because it contains multiple (2 to 5) AUG sequences that are not served as the initiation codon and may form a complicated secondary structure (Han, J. H. et al., Proc. Natl. Acad. Sci. USA, 88, 1711, 1991; Brown, E. A. et al., Nucleic Acid. Res., 20, 5041, 1992).

Many investigators have made reports on the region of HCV IRES with various different conclusions. Such inconsistencies are speculated to result from RNA structures and translation systems used for the experiments. Using *in vitro* transfection in the rabbit reticulocyte lysate or DNA transfection into cultured cells which are infected with a vaccinia virus that co-expresses T7 RNA polymerase, a stretch extending from about 40 bases of 5'-UTR to about 30 bases of the coding region may be considered as the region corresponding to IRES (Reynolds, J. E. et al., EMBO J., 14, 6010, 1995). In addition, RNA transfection into cultured cells has proven that the 5' boundary of HCV IRES resides between base 28 and base 45 (Kamoshita, N. et al., Virology, 233, 10, 1997). Furthermore, an analysis on cell-free systems provided such a result that the 3' boundary thereof resides between base 370 and base 516 rather than residing within several ten bases in the coding region. This result is consistent with the report that two thirds of a portion of the core protein (the protein coded by the sequences in the coding region immediately downstream of the 5'-untranslated region) on the side of the

25

10

15

20

25

30

N-terminus accelerate IRES activities (Lu, H. -H. et al., Proc. Natl. Acad. Sci. USA, 93, 1412, 1996), however, the possibility of this region being important for the structure of RNA cannot be completely denied.

Many molecules involved in the cap-dependent translation initiation are mobilized for the expression of the IRES functions, besides, it has been considered that other molecules derived from the host cells (trans factors) are also required (Scheper, G. C. et al., J. Biol. Chem., 267, 7269, 1992). This fact is readily presumed because the expression of IRES functions is species-, tissue- and cell-specific.

According to comparative experimental reports on viral IRES activities by using wheat germ lysates, rabbit reticulocyte lysates (RRL), and HeLa cell lysates, which are known as a cell-free protein synthetic system for capped mRNA, picornavirus IRES exhibits no activity in wheat germ lysates. On the other hand, in RRL, EMCV IRES reportedly exhibits a high activity while poliovirus IRES has a weak activity, and the poliovirus IRES activity in RRL is recovered by addition of HeLa cell lysate (Brown, B. A. et al., Virology, 97, 396, 1979; Domer, A. J. et al., J. Virol., 50, 507, 1984). Moreover, it has been suggested that these viral IRESs all exhibit a high activity in HeLa cell lysates, whilst only IRES of hepatitis A virus (HAV) has a low activity even in HeLa cell lysates (Glass, M. J. et al., Virology, 193, 1047, 1993). These results provide clear evidence that the expression of IRES functions requires a cluster of molecules derived from the host cell other than the initiators that may be used by the capped mRNA. In addition, it is also clear that the quality and quantity of the molecules required for the expression of the functions may vary depending on the type of the IRES.

Further, analysis using UV cross-linking method (a method in which nucleic acids and proteins bound thereto are cross-linked with UV light to determine a binding protein(s)) has indicated that many molecules derived from the host cell may bind to any IRES. Moreover, it has been revealed that, besides conformation of RNAs, the trans factors that act in an IRES-specific manner may play important roles in initiation of translation. More specifically, two types of IRES binding proteins are known as host molecules that accelerate activity of the picornavirus IRES: La (52 kDa) and PTB (polypyrimidine tract binding protein, 57 kDa) (Meerovitch, K. et al., J. Viol., 67, 3798, 1993; Hellen, C. V. T. et al., Proc. Natl. Acad. Sci. USA, 90, 7642, 1993; Borman, A. et

15

20

25

30

al., J. Gen. Virol. 74, 1775, 1993). La is known as an antigenic protein in autoimmune diseases, and is a transcription termination factor for RNA polymerase III. Further, PTB is a cofactor of RNA splicing. These proteins are localized in the nuclei of cells and actually involved in intranuclear reactions. However, it has been reported that infection with, for example, poliovirus results in transportation of La from nuclei to cytoplasm (Meerovitch, K. et al., J. Viol., 67, 3798, 1993), and the transportation is reportedly associated with the initiation of translation that is a reaction in cytoplasm.

The requirement of PTB and La for various IRESs has been studied, and to date. it has been suggested that the requirement of PTB for picornavirus IRES is high whereas that for HCV IRES is significantly low (Kaminski, A. et al., RNA, 1, 924, 1995), and also that HCV requires lower amount of La than poliovirus does. On the contrary, other report has suggested that PTB binds to the HCV IRES at three sites and such binding is essential for IRES functions (Ali, N. et al., J. Viol., 69, 6367, 1995), and that the La recognizes the RNA structure containing the initiation AUG, thus activation is resulted (Ali, N. et al., Proc. Natl. Acad. Sci. USA, 94, 2249, 1997). These kinds of experiments are carried out by using cell-free protein synthetic systems in which PTB is eliminated as much as possible, wherein specific antibodies or PTB-binding RNA fragments are used for the purpose of eliminating the PTB. Therefore, in cases where PTB is forming a complex with other molecules (Toyoda, H. et al., Arch. Virol., 138, 1, 1994), the whole complex may be entirely eliminated. Moreover, elimination of ribosomes should also be considered because many PTBs are known to be bound thereto. Further investigations should thus be conducted on the requirement of trans factors for IRES, however, it is expected that the trans factors required for IRES may vary depending on each IRES, and that mechanisms leading to the expression of the functions may vary from IRES to IRES. Novel IRES-associated factors may possibly be present in HCV, and in fact, a protein in HeLa cell p25, has been reported which recognizes a secondary structure in 5'-untranslated region, the binding affinity of which is correlated with the efficiency of translation (Fukushi, S. et al., J. Virol., 71, 1662, 1997).

Genetic engineering has been used to produce various proteins and peptides to date. For example, various substances including insulin, interferons, erythropoietin,

15

20

25

30

mannan-binding protein, conglutinin, neurosin, and the like have been produced in microbial cells including *Escherichia coli* and animal cells such as CHO cells.

When useful gene products from animals are genetically engineered, usage of microbial cell hosts such as Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae may often cause problems such as failure of gene expression or loss of activity due to an improper tertiary structure of a gene product (protein) or incorrect post-translational modification. Animal cells have often been used as a solution to such problems. Animal cells have the above-mentioned advantages over microbial cells, however, the step of culture of the animal cells is rather complicated, and may result in lowered expression amount of the genes.

To develop a vector for the gene expression in such cells is an important infrastructural issue in many molecular biological studies. Such a vector is required to permit effective mass expression and inducible, transient gene expression, depending on purposes. Conventional ideas on construction of the expression vectors for use in these expression systems that meet the above-mentioned requirements were based on inherent functions of promoters and/or enhancers. Namely, in order to improve efficiency of producing target gene products, the procedure has been extensively practiced in which a strong promoter or enhancer is selected from natural genes and is ligated to a DNA sequence that encodes target proteins or peptides, thereby improving the efficiency of mRNA transcription. For the efficient expression at a higher amount, known strong promoters may include SV40 (Simian Virus 40), SR-α, cytomegalovirus promoters, actin promoters, viral LTRs (Long Terminal Repeat) including HTLV-1 LTR, HIV-LTR, and Rous sarcoma virus LTR, and herpes simplex virus tyrosine kinase promoter. Expression vectors with these promoters incorporated therein have been used mainly in mammalian cells. Alternatively, an enhancer sequence has been incorporated into a vector to improve efficiency of gene transcription, which in turn improves efficiency of production of target gene products.

For the transient gene expression, substances that can induce expression have been used, for example, dexamethasone, a substance that can induce expression, has been added when expression is desired in expression systems in which a mouse mammalian tumor virus (MMTV) promoter is used.

10

15

20

25

30

On expression from cDNAs (first cistron and second cistron) encoding two different proteins, it has been reported that the two different proteins may be expressed with a single promoter by means of interpositiong a base sequence corresponding to the internal translation initiation signal, between the first and second cistrons (Urabe, M. et al., Gene, 200, 157, 1997), which has been applied in practice. However, the expression vectors obtained using such conventional techniques are not necessarily enough to achieve satisfactory production efficiency.

Furthermore, gene therapies that have been developed dramatically in recent years have permitted curative therapy of diseases that are difficult to be achieved with conventional techniques and thus, a wide variety of possible applications have been expected. However, problems to be solved have still remained in order to construct a vector that serves to express target genes at a significantly high efficiency at a specific site in a body of organisms. Specifically, a promoter may achieve less efficient gene expression due to its low activity even if it is organ- or tumor-specific, therefore, transduction of genes by using a vector with such a promoter incorporated therein may not always provide a satisfactory therapeutic effect.

As apparent from the above, it is desired in this technical field to develop an expression vector of which expression efficiency is higher. Accordingly, an object of the present invention is to provide a novel expression vector without being bound by any particular theory of vector construction, in order to improve production efficiency of target gene products.

#### SUMMARY OF THE INVENTION

In order to achieve the above-mentioned object, the present inventors have conducted intensive research and found that expression of a target useful gene is enhanced by means of incorporating a nucleic acid sequence included in a 5'-untranslated region of a viral gene or a fragment or a variant thereof into a gene expression vector. The present invention was thus accomplished.

As used herein, "sequences for enhancing expression of a useful gene" means any sequences comprising a nucleic acid sequence of 5'-untranslated regions or a

10

15

20

25

30

5'-untranslated region and a region containing a portion of a coding region adjacent to the 5'-untranslated region, or a fragment or a variant thereof, of any viral genes.

Further, "enhance expression of a useful gene" is used herein to describe consequential enhancement of expression of a useful gene regardless of conditions such as active agents for expression enhancement, process of translation, expression environment, and methods of expression.

In addition, "a portion of a coding region adjacent to the 5'-untranslated region", which may be included in the nucleic acid sequence for enhancing expression of a useful gene according to the present invention, refers to a fragment of bases five times smaller than the 5'-untranslated region, preferably, a fragment having the same number of bases as the 5'-untranslated region or about 100 bases smaller or larger number of bases than the 5'-untranslated region.

Preferably, the 5'-untranslated region in the nucleic acid sequence for enhancing expression of a useful gene comprises at least one pyrimidine-rich tract and, more preferably, it further comprises a sequence corresponding to a region selected from the group consisting of BoxA, BoxB, a trans factor-binding site, and a combination thereof, or an AUG or ATG sequence. The regions and sequences may be preferably incorporated in the nucleic acid sequence for enhancing expression of a useful gene, without any mutation or fragmentation. Such an AUG or ATG sequence as well as an AUG or ATG sequence contained in BoxB may be incorporated, as an initiation codon, into the extreme downstream site of the nucleic acid sequence for enhancing expression of a useful gene or the extreme upstream site of the coding region for example.

Moreover, the 5'-untranslated region in the nucleic acid sequence for enhancing expression of a useful gene preferably comprises a part of or an entire region of viral mRNA IRES. The region of IRES may or may not have IRES activity but it is preferable that the region, from which the IRES has been derived, has IRES activity.

When the 5'-untranslated region in the nucleic acid sequence for enhancing expression of useful genes comprises any sequence corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site, those having a substitution, deletion, insertion and/or addition mutation(s) of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence(s) (regions

15

20

2.5

30

other than highly conserved ones) to the sequence in at least one position among the above, are also preferable as the nucleic acid sequence for enhancing expression of a useful gene according to the present invention. When the nucleic acid sequence for enhancing expression of a useful gene comprises a sequence corresponding to a variable region of the 5'-untranslated region, it is preferable that the corresponding sequence contains a mutation sequence i.e., substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus. It is preferable that the mutation(s) can accelerate directly or indirectly IRES activity.

The nucleic acid sequence for enhancing expression of a useful gene containing the above-mentioned 5'-untranslated region or a variant of a fragment thereof is preferably obtained through mutation including substitution, insertion and/or deletion in a region other than the highly conserved region of the 5'-untranslated region of a viral gene. In particular, when the nucleic acid sequence for enhancing expression of a useful gene includes IRES, the pyrimidine-rich tract, in particular, a variant where BoxA and/or BoxB are/is conserved may advantageously be used. A mutation may be introduced into the sequence by using, for example, a mutagenesis technique using PCR.

The location where the nucleic acid sequence for enhancing expression of a useful gene is incorporated into a gene expression vector is not particularly limited as long as direct or indirect enhancement of expression of a useful gene is permitted by means of incorporating the nucleic acid sequence for enhancing expression of a useful gene into an expression vector which has been constructed such that the useful gene can be expressed, however, it is preferable that the location is downstream of the expression regulatory promoter sequence and upstream of the useful gene. Additionally, the nucleic acid sequence for enhancing expression of a useful gene should be incorporated into the expression vector such that transcription and translation are carried out in the normal (i.e., from 5' to 3') direction.

The nucleic acid sequence for enhancing expression of a useful gene incorporated into the gene expression vector may preferably be a cDNA sequence. Further, the gene expression vector may preferably be a vector for expression in eukaryotic cells.

The virus mentioned above may preferably be an RNA virus such as a picornavirus or HCV virus.

15

20

2.5

30

For the case of the 5'-untranslated region of HCV mRNA, BoxA is found at the nucleotide positions 191-199 of SEQ ID NO: 1, the pyrimidine-rich tracts located upstream of the BoxA are at the nucleotide positions 40-46 and 120-130 of SEQ ID NO: 1, and BoxB is at the nucleotide positions 213-219 of SEQ ID NO: 1 (See Fig. 1, in which the trans factor-binding sites are encircled), whereas the variable regions are at the nucleotide positions 1-36 and 175-270 of SEQ ID NO: 1, and the highly conserved regions are at the nucleotide positions 121-174 and 271-339 of SEQ ID NO: 1.

Examplary fragment of a nucleic acid sequence of the HCV-derived 5'-untranslated region or the region on the 5'-end side (i.e., 5'-untranslated region and a portion of the coding region adjacent to the untranslated region) to be comprised in the nucleic acid sequence for enhancing expression of a useful gene for incorporation into the gene expression vector, may currently be the nucleic acid sequences including the nucleotide positions 1-180, 181-341, 1-341, 181-713 or 1-713 of SEQ ID NO: 1, which are demonstrated to be preferable. Among these fragments, it has been revealed that a particularly striking activity for enhancement of expression of a useful gene was observed on the fragments including the nucleotide positions 181-341 of SEQ ID NO: 1 (see, Examples 5 and 6).

In addition, it has been revealed that the nucleic acid sequence for enhancing expression of a useful gene that is incorporated into the gene expression vector may particularly preferably comprise the nucleic acid sequence including the nucleotide positions 1-342 of SEQ ID NO: 7 or a nucleic acid sequence having a substitution of the nucleotide position 119 of this sequence with adenine.

When the virus used is HCV, it is preferable that the HCV-derived 5'-untranslated region or a variant of the nucleic acid sequence in the region on the 5'-end side to be comprised in the nucleic acid sequence for enhancing expression of a useful gene may be, among others having preferable mutation(s) described above, a nucleic acid sequence comprising a part of or an entire sequence of SEQ ID NO: 1 and that has one or a few nucleotides inserted at the nucleotide position 207 or in the vicinity thereof, and, more preferably, is a nucleic acid sequence that has one thymidine inserted into that position.

When an HCV-derived nucleic acid sequence is used, the coding region adjacent to the 5'-untranslated region is a core protein, and about 300 bases on the 5' side, of the

10

15

20

25

30

region encoding the core protein may be included in the nucleic acid sequence for enhancing expression of a useful gene. Therefore, such a nucleic acid sequence for enhancing expression of a useful gene is also suitable for the present invention that further comprises a portion of the coding region of the core protein of the HCV. Additionally, a variant of the nucleic acid sequence may preferably be the sequence obtained through substitution, insertion and/or deletion mutation(s) in a variable region (regions other than highly conserved ones).

The present invention further contemplates an isolated polynucleotide consisting of nucleotide sequences set out in SEQ ID NO: 7, and a polynucleotide having a similar IRES activity to this nucleic acid sequence and consisting of a fragment or a variant of the sequence (i.e., an HCV-derived nucleic acid sequence of the nucleotide positions 1-341 of SEQ ID NO: 1, wherein at least one base is inserted between the positions 206 and 207, a variant or a fragment thereof). These polynucleotides have a quite higher IRES activity as compared with the HCV-derived IRES sequences known in the art. Therefore, it becomes possible to use this polynucleotide for the production of polypeptides by the conventional expression with a host cell, and to incorporate the polynucleotide into a vector for gene therapy to achieve more efficient initiation of translation. Since the polynucleotide itself has a higher IRES activity than those known in the art, it may be used for curative treatment of diseases resulting from reduction of IRES activity due to, for example, a mutation on the IRES active site in vivo.

Hereinafter, a sequence specifically indicated as "5'-UTR341" means the one including SEQ ID NO: 1 and a fragment thereof, while a sequence specifically indicated as "5'-UTR342" means the one derived from an HCV variant (SEQ ID NO: 7) obtained according to the present invention.

Further, it is preferable that the nucleic acid sequence for enhancing expression of a useful gene is the one (e.g., 5'-UTR341) that enhances expression of a useful gene by means of its own translation promoting activity and the one (e.g., 5'-UTR342) that enhances expression of a useful gene by means of accelerating IRES activity.

The present invention also contemplates a vector for gene expression comprising the above-mentioned nucleic acid sequence for enhancing expression of a useful gene, a

10

15

20

2.5

30

host cell transformed or transfected with the vector in question, a method for expressing and producing a useful gene product by using the vector, and a method for enhancing expression of a useful gene by using the vector.

According to another aspect of the present invention, there is provided a probe for screening substances that interact with IRES, comprising an isolated polynucleotide consisting of nucleotide sequences of SEQ ID NO: 7 or a polynucleotide having a similar IRES activity to this nucleic acid sequence and consisting of a fragment or a variant of the sequence (i.e., a sequence wherein at least one base is inserted between the positions 206 and 207 of the nucleotide sequence of HCV 5'-UTR341 (the nucleotide positions 1-341 of SEQ ID NO: 1), a variant or a fragment thereof). The probe is preferably labeled to identify a target substance using its interactivity with IRES. The "substances that interact with IRES" as used herein means those that can change directly or indirectly (by, for example, forming a complex with other factors) IRES activity as well as the substances that bind to IRES. Examplary substances may include IRES-binding proteins, pyrimidine region-binding proteins, trans factors, and translation initiators.

Thus, the interacting substances are expected to be modulators that cause inhibition, enhancement or the like of IRES. The probe may be immobilized on a solid support or used in a liquid phase.

The present invention further provides a probe for screening an IRES-dependent translation initiator, comprising an isolated polynucleotide consisting of nucleotide sequences of SEQ ID NO: 7 or a polynucleotide having a similar IRES activity to this nucleic acid sequence and consisting of a fragment or a variant of the sequence (i.e., a sequence wherein at least one base is inserted between the positions 206 and 207 of the nucleotide sequence of HCV 5'-UTR341 (the nucleotide positions 1-341 of SEQ ID NO: 1), a variant or a fragment thereof). The probe is also preferably labeled to identify a target through identifying association with the IRES-dependent translation initiator and effects on the initiation of translation.

To date, it has been revealed that an IRES-dependent mRNA translation initiation mechanism is used in eukaryotic cells by c-myc (Nanbru C. et al., J.Biol. Chem., 272 (51), 32061-32066, 1998; Stoneley, M. et al., Oncogene, 16 (3), 423-428, 1998), BiP (immunoglobulin heavy chain binding protein) (Le S.Y. et al., Nucleic Acids Res., 25 (2),

10

15

20

25

30

362-369, 1997; Yang Q. et al., Nucleic Acids Res., 25 (14), 2800-2807, 1997), FGF-2 (Le S.Y. et al., Nucleic Acids Res., 25 (2), 362-369, 1997), PDGF2 (Bernstein J. et al., J.Biol.Chem., 271 (14), 9356-9362, 1997), eIF-4G (Gan W. et al., J.Biol.Chem., 273 (9), 5006-5012, 1998), and potassium channels.

As apparent from Examples described below, the novel 5'-UTR342 sequence was isolated from the serum of a patient suffering from hepatitis C where viruses replicate extensively, therefore, determination of the severity of hepatitis C is allowed by means of distinguishing a difference in sequence from 5'-UTR341. In particular, the present invention contemplates a method for determining the severity of hepatitis C, comprising: detecting the presence of the polynucleotide sequence contained in a biological sample derived from a test subject, by using, as a target, an isolated polynucleotide consisting of nucleotide sequences of SEQ ID NO: 7 or a polynucleotide having a similar IRES activity to this nucleic acid sequence and consisting of a fragment or a variant of the sequence (i.e., a sequence wherein at least one base is inserted between the positions 206 and 207 of the nucleotide sequence of HCV 5'-UTR341 (the nucleotide positions 1-341 of SEQ ID NO: 1), a variant or a fragment thereof) to determine the severity of the hepatitis C based on the presence of the sequence.

Finally, the present invention provides a therapeutic composition for treating diseases resulting from reduction of cap-dependent mRNA translation or diseases resulting from reduction of IRES activity, in a body of organisms, comprising a nucleic acid sequence for enhancing expression of a useful gene such that translation of mRNA can be promoted by means of introducing the nucleic acid sequence for enhancing expression of a useful gene into the body the organisms. Curative or prophylactic therapy of the diseases can be accomplished by introducing these sequences to compensate a compromised mRNA translation mechanism.

More specifically, the present inventors have found that, when the nucleic acid sequence for enhancing expression of a useful gene is incorporated between the promoter sequence and the cDNA sequence encoding luciferase protein within the vector, luciferase exhibits a higher enzymatic activity compared with a case where conventional vectors are expressed without such a nucleic acid sequence. The increase in an amount of enzymatic protein is expected to be responsible for the accelerated activity, therefore,

10

15

20

25

30

it has been shown that the incorporated sequences achieve an effect of enhancing expression of a useful gene.

Additionally, such effects can be observed for other promoters and luciferase originated from different sources, therefore, it has been revealed that this phenomenon may be relatively common rather than occurring with a particular combination of a specified promoter sequence, a nucleic acid sequence for enhancing expression of a useful gene, and a specified useful gene sequence. Moreover, upon identification of the region having the above-mentioned effect with varied nucleic acid sequence for enhancing expression of a useful gene in chain length, consequently, it was found that a stretch of the nucleotide positions 181-341 (SEQ ID NO: 1) on the 5' side of HCV (e.g., HCV JTB strain and the like) genes exhibits a strong effect. In addition, it was also found that the sequence of SEQ ID NO: 7 obtained from a clinical isolate which is a variant strain of HCV1b, or a sequence having a substitution of the nucleotide position 119 of the sequence with adenine may particularly be suitable for the function of enhancing the gene expression. In particular, when the nucleic acid sequence for enhancing expression of a useful gene according to the present invention is used for IRES activity-dependent translation, 5'-UTR342 can be advantageously used, on the other hand, when the nucleic acid sequence for enhancing expression of a useful gene according to the present invention is used for IRES activity-independent translation (e.g., cap-dependent translation and the like), 5'-UTR341 and 5'-UTR342 can be advantageously used. These effects can be applied for the purpose of increasing in vitro the production of proteins or peptides (e.g., cytokine and the like) in a simple cell culture system as well as to vectors for gene therapies effective also in vivo, in combination with such a promoter that is specific to an internal organ or a tumor but has been found difficulties to come into practical use due to its low activity.

Examples of useful genes of the present invention may include nucleic acids encoding peptides which can be expressed in a host, nucleic acids encoding a decoy which comprises a gene encoding a binding protein of a cell-derived transcriptional regulation factor or a sequence of a binding site of a transcriptional regulation factor or an analogous sequence, and suicide genes. The gene is preferably a genomic DNA, cDNA, or partially or entirely chemically synthesized DNA, and more preferably cDNA.

10

15

20

25

30

The peptides may include oligopeptides, polypeptides, and proteins, whereas the peptides of the present invention encompass those subjected to modification by sugar, lipid, phosphoric acid, or metal after transcription and translation of the genes. Examplary peptides may include, but are not limited to, useful peptides, for example, insulin, several kinds of interferons, erythropoietin, mannan-binding protein, conglutinin, neurosin, and the like.

The above-described nucleic acids encoding a decoy represent those encoding a binding protein of a cell-derived transcriptional regulation factor or those comprising a sequence of a binding protein of a cell-derived transcriptional regulation factor or a sequence of a binding site of a transcriptional regulator or an analogous sequence thereof. Introduction of these nucleic acids into cells as a decoy may possibly inhibit binding of the transcriptional regulation factor to the binding site, then inhibit effects of the transcriptional regulation factor, and eventually suppress gene clusters to be activated.

The suicide genes may be genes including, for example, an apoptosis-inducing gene (programmed cell death-inducing gene) and a necrosis-inducing gene, the expression of which consequently results in cell death.

Moreover, the useful gene may be expressed as a fusion protein. Fusion proteins may be those expressed from the useful gene in which an N-terminus peptide chain derived from another protein is added to their N-terminus, or in which a suitable peptide chain is added to their C-terminus.

The nucleic acids which can be used for obtaining the nucleic acid sequence for enhancing expression of a useful gene according to the present invention may be derived from any sources having an untranslated region at the 5'-end of their gene (preferably mRNA). In particular, those comprising a part of or an entire region of IRES in the 5'-untranslated region of their mRNA are preferable.

Described in detail below are viruses having a sequence that can be applied as the nucleic acid sequence for use in enhancing expression of a useful gene in the present invention.

Viruses contain either RNA or DNA as genetic material, in the virus particle, and are generally classified into DNA viruses and RNA viruses.

15

20

25

The DNA viruses are generally classified into the following groups:

- double-stranded DNA viruses which proliferate within the nuclei, for example, Papovaviridae, Adenoviridae, and Herpesviridae;
- (2) double-stranded DNA viruses which proliferate within the cytoplasm, for 5 example, Poxviridae;
  - (3) single-stranded DNA viruses which proliferate within the nuclei, for example, Parvoviridae;
    - (4) Iridoviruses, for example, Iridoviridae; and
    - (5) Hepadnaviruses, for example, Hepadnaviridae.
  - On the other hand, the RNA viruses are generally classified into the following groups:
  - (1) plus single-stranded RNA viruses, for example, *Picornaviridae*, *Togaviridae*, *Flaviviridae*, *Caliciviridae*, and *Coronaviridae*;
  - (2) non-segmented, minus single-stranded RNA viruses, for example, Paramyxoviridae, Rhabdoviridae, and Filoviridae;
    - (3) segmented, minus single-stranded RNA viruses, for example, Orthomyxoviridae, Bunyaviridae, and Arenaviridae;
      - (4) double-stranded RNA viruses, for example, Reoviridae;
      - (5) ambisense RNA viruses, for example, Arenaviridae and Bunyaviridae; and
      - (6) retroviruses, for example, Retroviridae.

The family, generic, and species name of the representative DNA and RNA viruses having a 5'-untranslated region in the gene are presented below, and the nucleic acid sequence for enhancing expression of a useful gene according to the present invention may be selected from the sequences derived from these viruses, alternatively, may be selected from the sequences derived from a variant thereof or from a novel species, in addition, may be selected from those derived from other DNA or RNA viruses except for the above viruses.

Typical genera of the family *Papovaviridae* may include Papillomavirus,
Polyoma virus, and the like, wherein typical species may include Shope papilloma virus,
30 polyoma virus, vacuolating virus, and the like.

10

15

20

25

30

Typical genera of the family Adenoviridae may include Mastadenovirus, Aviadenovirus, and the like, wherein typical species may include human adenovirus, CELO virus, and the like.

Typical genera of the family *Herpesviridae* may include Alphaherpesvirus, Betaherpesvirus, Gammaherpesvirus, and the like, wherein typical species may include herpes simplex virus type I, herpes simplex virus type II, varicella-zoster virus, B virus, cytomegalovirus, EB virus, HHV-6, HHV-7, and the like.

Typical genera of the family *Poxviridae* may include Orthopoxvirus, Avipoxvirus, Capripoxvirus, Leporipoxvirus, Parapoxvirus, Suipoxvirus, Entomopoxvirus, Yatapoxvirus, Molluscipoxvirus, and the like, wherein typical species may include vaccinia virus, fowlpox virus, sheeppox virus, myxomavirus, orf virus, swinepox virus, insectpox viruses, Yata virus, molluscum contagiosum virus, and the like.

Typical genera of the family *Parvoviridae* may include Parvovirus, Dependovirus, and Densovirus, and the like, wherein typical species may include parvovirus B19, adeno-associated satellite virus, densonucleosis virus, and the like.

Typical genera of the family *Iridoviridae* may include Iridovirus, and the like, wherein typical species may include iridescent virus, and the like.

Typical genera of the family *Hepadnaviridae* may include Hepadnavirus, and the like, wherein typical species may include hepatitis B virus, and the like.

Typical genera of the family *Picornaviridae* may include Enterovirus, Heparnavirus, Rhinovirus, and the like, wherein typical species may include poliovirus type I, poliovirus type III (polyovirus type I), coxsackie A and B viruses (except for serotypes 1-5), hepatitis A virus, echovirus, human rhinovirus type 1A, enterovirus, and the like.

Typical genera of the family *Togaviridae* may include Alphavirus, Rubivirus, Pestivirus, and the like, wherein typical species may include sindbis virus, rubella virus, Eastern equine encephalomyelitis virus, bovine mucosal disease virus, and the like.

Typical genera of the family *Flaviviridae* may include Flavivirus, Hepacavirus, and the like, wherein typical species may include Japanese B encephalitis virus, yellow fever virus, hepatitis C virus, and the like.

10

15

20

25

30

Typical genera of the family *Caliciviridae* may include Calicivirus, Hepevirus, and the like, wherein typical species may include Norwalk virus, hepatitis E virus, and the like.

Typical genera of the family *Coronaviridae* may include Coronavirus, and the like, wherein typical species may include human coronavirus, avian infectious bronchitis virus, mouse hepatitis virus, and the like.

Typical genera of the family Paramyxoviridae may include Pneumovirus, Paramyxovirus, Morbillivirus, and the like, wherein typical species may include respiratory syncytial virus, newcastle disease virus, measles virus, mumps virus, para influenza virus, and the like.

Typical genera of the family *Rhabdoviridae* may include Vesiculovirus Lyssavirus, and the like, wherein typical species may include vesicular stomatitis virus, rabies virus, and the like.

Typical genera of the family *Filoviridae* may include Filovirus, and the like, wherein typical species may include Marburg virus, Ebola virus, and the like.

Typical genera of the family Orthomyxoviridae may include Influenzavirus, and the like, wherein typical species may include influenza viruses type A, B and C, swine influenza, and the like.

Typical genera of the family *Bunyaviridae* may include Bunyavirus, and the like, wherein typical species may include Bunyawera virus, Hantaan virus, Crimean-Congo hemorrhagic virus, and the like.

Typical genera of the family Arenaviridae may include Arenavirus, and the like, wherein typical species may include lymphocytic chorimengitis virus, Lassa virus, and the like

Typical genera of the family *Reoviridae* may include Orbivirus, Reovirus, Rotavirus, and the like, wherein typical species may include bluetongue virus, human reovirus, rotavirus, and the like.

Typical subfamilies of the family *Reoviridae* may include Oncovirinae, Spumavirinae, Lentivivirinae, and the like, wherein typical species may include human T cell leukemia virus, human immunodeficiency virus, and the like.

10

15

20

25

30

The nucleic acid sequence for enhancing expression of a useful gene, which may be used in the present invention, may be a 5'-untranslated region present in the nucleic acid sequence of all viruses including the aforementioned DNA and RNA viruses or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof, or a variant of these sequences. The 5'-untranslated region means the regions located at the 5'-end and which are not translated into amino acid sequence, moreover, as the nucleic acid sequence for enhancing expression of a useful gene, the region may or may not have IRES activity, although it preferably has such activity. The 5'-untranslated region may includes 5'-UTR (5'-untranslated region or 5-untranslating region) and 5'-NCR (5'-noncoding region), 5'-NTR (5'-nontranslated region), and the like.

A method for obtaining the nucleic acid sequence for enhancing expression of a useful gene from the above-mentioned viruses is described below. Double-stranded DNA viruses that proliferate within the nuclei contain a double-stranded DNA (dsDNA) as the genome, thus, mRNA can be synthesized from dsDNA by the DNA-dependent RNA polymerase II to prepare a sequence comprising a sequence of the 5'-untranslated region of the nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof. Besides, double-stranded DNA viruses that proliferate within the cytoplasm contain a dsDNA as the genome, therefore, mRNA can be synthesized by the DNA-dependent RNA polymerase that is inherent to the virus to use the sequence comprising a sequence of the 5'-untranslated region of the nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof. Single-stranded DNA viruses that proliferate within the nuclei have a single-stranded DNA (ssDNA) as the genome, therefore, it is possible to synthesize dsDNA by the DNA polymerase followed by mRNA synthesis by the DNA-dependent RNA polymerase II to use a sequence comprising a sequence of the 5'-untranslated region of the resulted nucleic acid or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof. Hepadnaviruses contain a partially double-stranded circular DNA as the

10

15

20

25

30

genome, therefore, a gap is repaired and then DNA is supercoiled, thereafter, the supercoiled DNA is used to synthesize mRNA by the DNA-dependent RNA polymerase II. Thus, a sequence comprising the 5'-untranslated region of the resulted nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof can be used.

A method for obtaining the nucleic acid sequence for enhancing expression of a useful gene from RNA viruses is described below. Plus strand RNA viruses contain an mRNA as the genome, therefore, a sequence comprising the 5'-untranslated region of the nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof can be used. For non-segmented and segmented, minus strand RNA viruses, it can be converted to complementary plus strand RNA by the ssRNA-dependent RNA polymerase (replicase) to use a sequence comprising the 5'-untranslated region of the nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof. Double-stranded RNA viruses contain a segmented dsRNA as the genome, therefore, mRNA can be synthesized by the dsRNA-dependent RNA polymerase to use a sequence comprising the 5'-untranslated region of the sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region both plus and minus strand as the genomes, therefore, mRNA can be synthesized by the ssRNA-dependent RNA polymerase to use a sequence comprising the 5'-untranslated region of the nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a For retroviruses, a DNA-RNA hybrid can be formed by fragment thereof. RNA-dependent DNA polymerase (reverse transcriptase) using a tRNA primer, thereafter, the RNA hybridized to DNA can be is separated by means of the ribonuclease H (RNase) H activity of the reverse transcriptase to synthesize a linear dsDNA.. After adequate treatment of the linear dsDNA, mRNA can be synthesized by the DNA-dependent RNA polymerase II to use a sequence comprising the 5'-untranslated

10

15

20

2.5

30

region of the nucleic acid sequence or a sequence that comprises a stretch of the nucleic acid sequence expanding from the untranslated region to the adjacent coding region, or a fragment thereof.

When a cDNA sequence is used as the nucleic acid sequence for enhancing expression of a useful gene according to the present invention, it is preferable that such cDNA is prepared from mRNA obtained in the manner described above, using the reverse transcriptase. Besides, other suitable DNAs may include genomic DNA sequences prepared from a virus genome by using, for example, PCR and the like, and DNAs partially or entirely chemically synthesized by using, for example, a DNA synthesizer based on the information obtained by nucleotide sequencing.

The expression vector according to the present invention may be constructed to allow expression of a useful gene both *in vitro* and *in vivo*, and is not particularly limited, which may be any one in which the nucleic acid sequence for enhancing expression of a useful gene according to the present invention is ligated to a location preferably downstream of the promoter sequence and upstream of the useful gene. Vectors used for construction of the expression vector may be commercially available ones. Such vectors may include, for example, pUC19 and pTV118N (Takara Shuzo Co., Ltd.), pUEX2 (Amersham), pGEX-4T and pKK233-2 (Pharmacia), pMAM-neo (Clontech), pGL2 (Promega), pDNA3.1+ (Invitrogen), and the like. The expression vector of the present invention may be constructed by any one of standard techniques such as those using restriction enzymes or ligase.

The "expression vector" used herein is not limited to the vectors used in Examples, instead, the vector may be a replicon, such as plasmid,  $\lambda$ -phage or cosmid, in which the nucleic acid sequence having activity to enhance expression of the useful gene are incorporated so that the replication and expression of the useful gene may be effected. For example, examplary expression vectors that can clone longer DNA fragments than those cloned using cosmid, may include P1 phage, F factors, Yeast Artificial

Chromosome (YAC), and the like. The  $\lambda$ -phage may include a substitution vector and an insertion vector, either of which may be selected adequately depending on the length of the useful gene.

10

15

20

25

30

Examples of known vectors that can be expressed in animal cells may include SV40 vectors, bovine papillomavirus vectors, herpesvirus vectors, adenovirus vectors, poxyirus vectors, retrovirus vectors, and the like.

When a bacteria, especially *Escherichia coli*, is used for the host cell into which the expression vector is transformed or transfected, the expression vector typically comprises at least a promoter region (including promoter, operator and Shine-Dalgamo sequences), an initiation codon, a useful gene sequence, a termination codon, and a terminator region. When the host used is yeast or animal cells, the expression vector preferably comprises at least a promoter, an initiation codon, a signal peptide, a useful gene sequence and a termination codon. Furthermore, an enhancer sequence, 5'- and 3'-untranslated regions of the useful gene, a splicing junction, polyadenylation site and a selectable marker may be inserted into the expression vector.

The promoter incorporated into the gene expression vector of the present invention may be either a strong or weak promoter well known in the art, which may include SV40 (Simian Virus 40), SR- $\alpha$ , cytomegalovirus (CMV) promoter, actin promoter, viral LTR (Long Terminal Repeat) including HTLV-1 LTR and HIV-LTR, Rous sarcoma virus LTR, herpes simplex virus tyrosine kinase promoter, and the like.

When expression is expected in various kinds of eukaryotic cells including normal cells such as fibroblasts, neurons, blood cells and parenchymal cells as well as carcinoma cells, typical promoters may be cytomegalovirus promoter, thymidine kinase (TK) promoter,  $\beta$ -actin promoter, SV40 early gene promoter, and the like. Enhancers are usually combined with promoter sequences and can thus be used as they are.

In general, promoters, which can serve high expression of the useful gene in the cells derived from mammalian animals, may advantageously be selected as the promoter of the present invention as long as they are compatible with the host. In addition, when the cell and tissue where genes are introduced and expressed is specifically determined, a promoter specific to the cell may be selected. Further, the promoters may be combined in a homologous or heterologous manner, thereby a yet higher expression and stabilized expression of the proteins may be expected.

Meanwhile, examples of promoters for prokaryotic cells may include PBAD, PL, trc, T7, SP6, T3, lac, and the like.

10

15

20

25

30

In general, promoters, which can serve high expression of the useful gene in the cells derived from prokaryotic cells, may advantageously be selected as the promoter of the present invention as long as they are compatible with the host. In addition, when the cell and tissue where genes are introduced and expressed is specifically determined, a promoter specific to the cell may be selected. Further, the promoters may be combined in a homologous or heterologous manner, thereby a yet higher expression and stabilized expression of the proteins may be expected.

Examplary promoters for yeast may include GAL1, AOX1, CUP1, PGK, and the like.

Selectable markers to be incorporated into the gene expression vector for selection of cells expressing the target vector may be dihydrofolate reductase (DHFR) genes (methotrexate-resistant genes), neo genes (G418-resistant genes), or the like. For example, when a DHFR gene is used as a selective marker for a CHO cell lacking DHFR genes, selection may be conducted using a thymidine-free culture medium. Alternatively, cell lines with higher expression can be obtained through culture with increased concentration of methotrexate to select resistant cells, resulting in intracellular expression of the useful gene.

Examples of the expression vectors constructed are schematically illustrated in Figs. 2-4, 7, 8, 11 and 12 (see, Examples 2-6 and 8-12).

The present invention also contemplates host cells transformed or transfected with the gene expression vectors constructed in the manner described above, such as animal cells, plant cells, insect cells and microbial cells (e.g., Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, or the like), which can express the useful gene incorporated into the expression vector. Selected as a suitable host cell may be one that can result in maximal activity of the nucleic acid sequence for enhancing expression of a useful gene incorporated between the promoter sequence and the useful gene.

The animal cells used for the host cell according to the present invention may include, for example, those derived from human cells but are not specifically limited as long as the animal cell permits the nucleic acid sequence having activity of enhancing expression of the useful gene used in the present invention to enhance expression of the useful gene therein. Examplary cells may include, for example, CHO cells, COS cells,

10

15

20

25

30

BHK cells, Vero cells, myeloma cells, HEK293 cells, HeLa cells, Jurkat cells, mouse L cells, mouse C127 cells, mouse FM3A cells, mouse fibroblasts, osteoblasts, chondrocytes, and the like. Besides, examples of microbial cells may include bacteria such as Escherichia coli and Bacillus subtilis as well as yeasts such as yeast Saccharomyces cerevisiae and Saccharomyces uvarum. Moreover, plant cells may include cells from a cotton plant and Arabidopsis.

As described above, the nucleic acid sequence for enhancing expression of a useful gene preferably has IRES activity, however, viral IRESs may be structurally versatile and may vary in respect to the requirement of the host cells involved in their functions in expression. In addition, some IRES-related molecule clusters may alter their localization upon viral infection, therefore, it is preferable to choose the host adequately, depending on the nucleic acid sequence when the nucleic acid comprising IRES is employed in the present invention.

Moreover, when no suitable host cell can be obtained that permits desirable enhancement of expression, the host cell used may be modified by means of, for example, transformation, and the like. As the procedure for the modification of the host cell, introduction of a trans factor (e.g., La, p25, PTB, and the like) into the host cell, alternatively, transformation of the host cell to allow expression within the host cell, may be carried out. Many molecules involved in the cap-dependent translation initiation are mobilized for the expression of IRES functions, as well as other trans factors. The term "trans factor" used herein means a cluster of molecules derived from the host cell that can impart or accelerate, directly or indirectly, the activity of enhancing expression of the useful gene of the present invention. As set forth above, the conformation of RNAs as well as the trans factors that act on IRES play important roles in the initiation of translation, however, the trans factors required may be different depending on each IRES, and a mechanism leading to functional expression are expected to depend on the respective IRES.

Methods for introduction of the expression vector into the host cell may include, for example, transfection by means of lipopolyamine-mediated method, DEAE-dextran method, Hanahan method, lipofectin-mediated method, potassium phosphate-mediated method, as well as the methods of microinjection, electroporation, and the like.

10

15

20

25

30

A promoter having affinity with prokaryotic RNA polymerase to be used in eukaryotic cells, and an IRES-dependent translation mechanism may be both applied to practice the present invention through performing a certain treatment. For example, as described in Examples of the present invention, the useful gene may be expressed in the eukaryotic cytoplasm using a host cell into which polymerase genes that are compatible with the promoter have been previously introduced. Methods for the introduction may include any conventional method, for example, a method in which a liposome preparation employing viral envelopes is used, electroporation method, potassium phosphate-mediated method and a method in which a viral vector is employed. In particular, it is useful in the clinical application to use liposome preparations such as HVJ liposome, VSV liposome, cationic liposome, and the like, or viral vectors such as adenovirus vectors, retrovirus vectors, and the like. The liposome preparation or the viral vector may be introduced in an organ- or site-specific manner into eukaryotic cells so that prokaryotic RNA polymerase is expressed, thereafter, the useful gene may be expressed with the expression vector in which the promoter having affinity with the prokaryotic RNA polymerase is used, to allow the organ- or site-specific expression of the useful gene. This approach may provide advantages such as the reduction of possible side effects and the improvement of organ-specificity, even when the liposome preparation or the virus vector is introduced into an undesirable site, because the useful gene can not be expressed in the cells where the promoter-specific polymerase has not been expressed. A sequence of 5'-UTR342 derived from variant HCV provides, in such a case, a higher efficiency of useful gene expression than a sequence of 5'-UTR341 derived from wild-type HCV, as demonstrated in Examples 9-12 (described below).

As described above, the nucleic acid sequence for enhancing expression of a useful gene of the present invention can eventually enhance expression of the useful genes regardless of particular promoters, hosts, causes of effects, difference in translation processes, expression environments, and methods of expression.

Furthermore, the present specification discloses organisms (e.g., animals, plants, and insects) that comprise host cells transformed or transfected with the expression vector comprising the nucleic acid sequence for enhancing gene expression, which efficiently express the useful gene products.

10

15

20

25

30

Moreover, the present invention also contemplates a method for producing a useful gene product by growing the host cell in a medium and isolating a useful gene product; or by producing the target gene product in a body of organisms having such a host cell, as well as a method for expressing the useful gene, and a method for enhancing expression of a gene by using the expression vector.

As a modified embodiment of the present invention, a method for searching for and discovering a nucleic acid sequence having a novel 5'-untranslated region and/or IRES may be encompassed, accordingly, the sequence, or a fragment thereof, or a sequence having a span from a 5'-untranslated region to a coding region, or a fragment thereof, or a variant thereof, which are obtained through this method may also be used as the nucleic acid sequence for enhancing expression of a useful gene.

An examplary method for searching for and discovering the nucleic acid sequence having a novel 5'-untranslated region and/or IRES is described below. A subunit of eIF-4F (a complex of eIF-4E, eIF-4A and eIF-4γ), that is, eIF-4γ (p220) is known to be cleaved within poliovirus-infected cells. Therefore, eIF-4F levels are lowered in the infected cells. Such a condition may be created by means of heat shock. Thus, dephosphorylation of cap-binding protein eIF-4E occurs, accompanied by deterioration of the affinity to the cap structure (Lamphear, B. J. et al., J. Biol. Chem., 266, 2789, Under such states, translation of mRNAs of which requirement for eIF-4F is 1991). high may be inhibited, therefore, only mRNAs of which requirement therefor is low or mRNAs having IRES can be translated. According to the findings described above, it is possible to discover a nucleic acid sequence having IRES (analogous) activity by using heat shock, and the like. In fact, mRNAs which can exert their function even within poliovirus-infected cells were searched for, and the IRES comprised in their sequence has been identified (Macejak, D. G. et al., Nature, 353, 90, 1991). As another examples, a sequence bank of genes may be searched for a nucleic acid sequence having a long 5'-untranslated region in which a plurality of AUG codons are found. has been revealed that a lot of mRNAs involved in development and differentiation of Drosophila melanogaster contain many of such sequences, whilst IRESs have been identified on two mRNAs transcripted from Antennapedia gene (Antp) (Oh, S. K. et al., Genes Dev., 6, 1643, 1992). It has been speculated that, in the animal cells during their

10

15

20

25

development and differentiation stages, as in the cells subjected to heat shock, phosphorylation of eIF-4E is insufficient and the cap-dependent translation mechanism can not function (Bonneau, A. M. et al., J. Biol. Chem., 262, 11134, 1987).

Furthermore, as described above, it has been reported that regions having IRES activities are found in the 5'-untranslated regions of eukaryotic mRNA, such as c-myc, immunoglobulin heavy chain binding protein (BiP), FGF-2, PDGF2, eIF-4G, potassium channels, and the like, and also, it has been shown that translation is actually initiated by the cap-dependent mechanism in eukaryotic cells.

In addition, mRNA having two cistrons may be used to identify IRES elements. This method is based on the fact that translation of the second cistron having the IRES is conducted even under the conditions where translation of the first cistron is inhibited. In recent years, it has been shown that circular RNAs comprising the IRES of encephalomyocarditis virus (EMCV) direct ribosome binding, even under such conditions where an elongation reaction upon translation is inhibited by sparsomycin (Chen, C. et al., Science, 268, 415, 1995).

## BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 is a schematic drawing of the secondary structure of an HCV gene in the 5'-untranslated region;
- Fig. 2 shows diagrammatic representations of expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to one embodiment of the present invention;
- Fig. 3 shows diagrammatic representations of expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to another embodiment of the present invention;
- Fig. 4 shows diagrammatic representations of expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to yet another embodiment of the present invention;
- Fig. 5 shows compared nucleic acid sequences of two different HCV  $^{30}$  5'-untranslated regions (HCV1-341:5'-UTR $_{341}$  and HCV-342:5'-UTR $_{342}$ );

10

15

20

25

30

- Fig. 6 is a schematic representation depicting mutation sites on the secondary structure in the 5'-untranslated region of a nucleic acid sequence derived from an HCV mutant:
- Fig. 7 shows diagrammatic representations of expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to yet another embodiment of the present invention;
  - Fig. 8 shows schematic representations of expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to the embodiment in Fig. 7;
  - Fig. 9 is a graph illustrating the effects of enhancement of expression in an *in vitro* system using the vectors shown in Figs. 7 and 8;
  - Fig. 10 is a graph illustrating effects on the enhancement of expression in Hep cells transfected with the vectors shown in Figs. 7 and 8;
  - Fig. 11 shows schematic representations of bicistronic expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to another embodiment of the present invention;
  - Fig. 12 shows schematic representations of bicistronic expression vectors comprising a nucleic acid sequence for enhancing expression of a useful gene according to the embodiment shown in Fig. 11; and
  - Fig. 13 is a graph illustrating effects on the enhancement of expression in COS cells transfected with the vectors shown in Figs. 11 and 12.

## BEST EMBODIMENT FOR CARRYING OUT THE INVENTION

While the present invention is further described with reference to specific embodiments thereof, however, these illustrative embodiments should not be construed as a limitation of the scope of the present invention, and various improvements and modifications on these embodiments which may occur to those skilled in the art are thus contemplated within the scope of the present invention.

In the following embodiment, the procedure of transfecting an expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene

10

15

20

25

according to the present invention into the host cells, and identification of transfectants (assay for luciferase activity) are briefly described first.

## [Transfection]

Transfection of expression vectors into host cells in Examples 2-6 described below was performed by a calcium phosphate precipitation method using Profection Mammalian Transfection Systems kit (Promega). Different cell lines were used for these Examples, however in any case, the cells were seeded on one day before transfection, into individual wells (35 mm in diameter) of a 6-well plate such that the cell concentration reached about 50% of the well when used on the next day. More specifically, the cells were seeded into a culture medium of 3 mL at 5 x 10<sup>5</sup> cells and were incubated overnight at 37°C, and 5% CO<sub>2</sub>. On the day of transfection, the nutrient medium supermatant of the culture cells was aspirated and fresh medium was added to the cell culture before the addition of precipitates of calcium phosphate and expression vector DNAs. The medium that was commonly used in all experiments was Dulbecco's Modified Eagle Medium (DMEM) (GIBCO) supplemented with 10% fetal calf serum.

The precipitates of calcium phosphate and expression vector DNAs were generated as follows. Two polystyrene tubes (A and B) were provided, and then the liquid contained in the kit, CaCl<sub>2</sub> and the expression vector DNAs were mixed in the tube A, while the same volume of 2 x HEPES (50 mM HEPES, (pH 7.1), 280 mM NaCl, 1.5 mM Na<sub>2</sub>HPO<sub>4</sub>) contained in the kit as the mixture in the tube A was placed into the tube B. The solution in the tube A was slowly, and completely added dropwise to the tube B while stirring, which was allowed to stand for 30 minutes at room temperature, to yield slightly clouded solution. After thus resulted liquid was thoroughly mixed with a vortex mixer, the mixture in the tube was then completely added dropwise to the cell culture liquid in a single well such that 5 μg of DNAs were loaded into the well. Subsequently, the nutrient medium was aspirated after incubation at 37°C for 6 hours and the surface of the cells was washed twice with PBS (-) (phosphate buffered saline (pH

15

20

25

30

7.4): 137 mM NaCl, 8.10 mM Na<sub>2</sub>HPO<sub>4</sub> (anhydride), 2.68 mM KCl, 1.47 mM KH<sub>2</sub>PO<sub>4</sub>). The fresh medium was then added thereto, followed by further culture at 37°C for 48 hours.

5 [Assay Method for Luciferase Activity]

Luciferase activity was assayed with the Luciferase Assay System (Promega) in Examples 2, 3, 4, 10, and 12 where the pGL2 vector was used, or with the Dual Luciferase Assay System (tradename; Promega) in Examples 5, 6, 9, 10, and 12 where other vectors were used. At 48 hours after the transfection was performed in the manner described above, lysis buffer contained in the kit was added to each well at 500 µl/well and the luciferase in the cells were extracted according to the manufacturer's instructions in order to obtain a luciferase enzyme solution from the cells in each of the wells.

The luciferase activity was measured for the enzyme solution thus obtained. In particular, using Luciferase Assay System (Promega; in Examples 2, 3, 4, 10, and 12) or Dual Luciferase Assay System (Promega; in Examples 5, 6, 9, 10, and 12), 20 µl of enzyme solution, 100 µl of Luciferase Assay Reagent was added, thereafter, each of the samples was determined for 1 minute at room temperature with the Luminesence Reader BRL-301 (Aloka) according to the manufacturer's instructions.

Protein contents in the remaining enzyme solution after the measurement of luciferase activities were determined using the Coomassie Plus Protein Assay Reagent (PIERCE) with attached bovine serum albumin standard solution in order to represent the luciferase activities in the values per weight of protein in the enzyme solution.

In Examples 2 to 6, respective experiments were carried out in double or triple experiments, starting form the transfection experiments. Specifically, a kind of DNA was independently transfected into host cells at two or three wells respectively, and luciferase activities of the respective enzyme solutions from the wells were measured. It should be noted that the data listed in the Tables 1-5 below are not the results obtained by measuring 2 to 3 times the activities of the enzyme solution from the identical transfectant.

10

15

20

30

### Example 1: Preparation of Fragments of Nucleic Acid Sequence of HCV

As the nucleic acid sequence for enhancing expression of a useful gene, cDNA sequences comprising the regions of IRES derived from the 5'-untranslated region of HCV were prepared. After extracting mRNA from the serum of HCV patients according to the standard technique, and cDNA was synthesized through a reaction by reverse transcriptase (GIBCO BRL). Using this cDNA as a template, PCR was performed using the primers of the following sequences (having a HindIII recognition site added at the 5'-end; SEQ ID NOs: 2-6) in order to amplify particular fragments having IRES activity which include the HCV 5'-untranslated region (SEQ ID NO: 1; the nucleotide positions 1-341) and a portion of the core protein coding region (SEQ ID NO: 1; the nucleotide positions 342-713):

5'HindHCV001: 5'-ccc aag ctt gcc agc ccc ctg atg ggg gcg a-3' (SEQ ID NO: 2)

5'HindHCV180: 5'-ccc aag ctt ctg gca att ccg gtg tac tca c-3' (SEQ ID NO: 3)

5'HindHCV181: 5'-ccc aag ctt gac gac egg gte ctt tet tg-3' (SEQ ID NO: 4)

3'HindHCV341: 5'-ccc aag ctt ggt gca cgg tet acg aga cct-3' (SEQ ID NO: 5)

3'HindHCV713: 5'-ccc aag ctt atc gat gac ctt acc ca-3' (SEO ID NO: 6)

PCR was performed with 20 cycles of: 30 seconds at 94°C; 30 seconds at 55°C and 30 seconds at 72°C. Thus, fragments including the HCV 5'-untranslated region, that is, the DNA fragments having a sequence as following nucleotide positions of SEQ ID NO: 1: 1-180, 181-341, 1-341, 181-713, and 1-713 of SEQ ID NO: 1 were obtained. These fragments are hereinafter referred to as HCV1-180, HCV181-341, HCV1-341, HCV181-713 and HCV1-713.

# 25 <u>Example 2: Transient Transfection</u>

Two vectors, i.e., pGL2B vector (i.e., pGL2Basic (Promega) containing SV40 polyA signal and cDNA sequences encoding firefly luciferase, without a promoter, an enhancer, and nucleic acid sequences for enhancing expression) and pGL2C vector (i.e., pGL2Control (Promega) containing firefly luciferase, SV40 polyA signal and an SV40 early promoter/enhancer, without nucleic acid sequences for enhancing expression; see, Fig. 2(a)) were respectively obtained, and pGL2B UTR5'-3' (pGL2B inserted with

10

15

HCV1-341 obtained in Example 1 into the Hind III site in the 5'-3' direction; see Fig. 2(b)) was prepared as follows.

Among the cDNA fragments of HCV described above that are PCR products having a HindIII recognition site attached, HCV1-341 was selected and digested overnight at 37°C using HindIII, and pGL2B vector was also digested with HindIII followed by treatment with alkaline phosphatase (Boehringer Mannheim) that was performed at 37°C for 30 minutes in order to prevent from self-ligation within the molecules. The cDNA fragments were subjected to a ligation reaction to the vectors after digestion with HindIII, using the DNA Ligation Kit Ver.1 (Takara Shuzo Co., Ltd.) according to the manufacturer's protocol.

Thus obtained vector-DNA was introduced into competent cells to obtain transformed cells, thereafter, recombinant cells containing the HCV fragments were selected from the colonies, and plasmid DNAs were purified according to the standard technique.

For transfection, 5  $\mu$ g of any one of the three kinds of vector-DNAs described above and 18.5  $\mu$ l of CaCl<sub>2</sub> solution contained in the kit for transfection were placed into a tube, to which water was added to a final volume of 150  $\mu$ l, thus, the tube A described above was prepared, while 150  $\mu$ l of 2 x HEPES was placed into the tube B. COS1 cells were used as the host cell, and transfection was performed according to the above-mentioned procedure, thereafter, luciferase activities were measured.

Since the pGL2B vector provides no luciferase activity, the enzyme solution obtained from the cells that were transfected with this vector was employed as a blank. The luciferase activities were represented as relative light units per milligram of protein (U/mg).

20

10

15

20

The results thus obtained are shown in the Table 1 below.

TABLE 1

| Vector         | No. 1  | No. 2  |
|----------------|--------|--------|
|                | (U/mg) | (U/mg) |
| pGL2C          | 1623   | 1616   |
| pGL2B UTR5'-3' | 60     | 52     |

These results indicate that the luciferase activity is very low in the host cells transfected with the pGL2B UTR5'-3' vector obtained by inserting HCV1-341 into the pGL2B vector comprising no promoter. It was therefore demonstrated that the 5'-untranslated region of the HCV gene (SEQ ID NO: 1; the nucleotide positions 1-341) itself exhibited no or little promoter activity, if any. In other words, there is no possibility that the 5'-untranslated region of HCV may be apparently and incorrectly estimated to have effects of promoting gene expression, due to the higher activity of the 5'-untranslated region of HCV as a promoter, than the promoter included in the vector that was used in Examples of the present invention. HCV is an RNA virus and is thus not converted into DNA during their replication cycle, therefore, it is quite reasonable that the no promoter activity is found in the 5'-untranslated region of its gene.

#### Example 3: Transient Transfection

In order to construct the useful gene expression vector according to the present invention, pGL2C UTR5'-3', pGL2C having HCV1-341 inserted into the Hind III site in the 5'-3' direction, (see, Fig. 2(c)) was prepared using HindIII in the similar manner to those described above in connection with the preparation of pGL2B UTR5'-3'.

COS1 cells ware transfected with 5 µg of either one of the vector-DNAs, pGL2C or pGL2C UTR5'-3' in the same manner as in Example 2, and luciferase activities were measured.

The results thus obtained are shown in the Table 2 below.

TABLE 2

| Vector         | No. 1  | No. 2  |
|----------------|--------|--------|
| !              | (U/mg) | (U/mg) |
| pGL2C          | 1123   | 1360   |
| PGL2C UTR5'-3' | 4758   | 4637   |

The data clearly indicate that the luciferase activity is increased when HCV1-341 is inserted between the luciferase gene and the promoter sequence in the expression vector in the 5'-3' orientation. Thus, it was suggested that the 5'-untranslated region of the HCV gene has an effect of enhancing gene expression.

#### Example 4: Transient Transfection

Similar experiments to that described in Example 3 was also carried out except that pGL2C UTR3'-5', pGL2C having HCV1-341 inserted into the Hind III site in the 3'-5' direction opposite to the direction in Example 3, (see, Fig. 2(d)) was used instead of the pGL2C UTR5'-3' in Example 3.

The results are shown in the Table 3 below.

15

20

10

TABLE 3

| Vector         | No. 1  | No. 2  |  |
|----------------|--------|--------|--|
|                | (U/mg) | (U/mg) |  |
| pGL2C          | 177    | 197    |  |
| pGL2C UTR3'-5' | 156    | 96     |  |

As apparent from these results, no effect of enhancing activity is observed when HCV1-341 was inserted in the 3'-5' orientation, in contrast to the results in Example 3, rather, the activity was in fact reduced. Taking into account this result together with those obtained in Example 3, it is demonstrated that the 5'-untranslated region of HCV

10

15

20

25

30

has the effect of enhancing expression of a useful gene product which is base sequence-specific and is dependent on the 5'-3' orientation. In addition, it is also apparent that this sequence is different in nature from any conventional enhancer sequences.

In this example, the level of activity observed in the cells into which pGL2C was transfected is as low as one tenth or less, compared to the levels obtained in Examples 2 and 3, it is believed that such a low level resulted from the transfection efficiency in this example that was 10-fold lower than those in Examples 2 and 3. Therefore, such a relative low level of activity should be considered to be trivial because a difference in effects between pGL2C and pGL2C UTR3'-5' vectors were examined.

## Example 5: Transient Transfection

In order to determine whether the effect of enhancing expression of a useful gene according to the present invention is specific to a promoter, a useful gene, a host cell or any combination thereof, a different promoter and pRLTK vector ((Promega), containing HSV TK promoter, SV40 polyA signal and Renilla Luciferase, see, Fig. 3(a)) containing luciferase derived from a different source from those used in Examples 2-4 were used in this example, in addition, human hepatocarcinoma Hep G2 cells were used as the host cells.

The cDNA fragment comprising the 5'-untranslated region of HCV prepared in Example 1, HCV1-180, HCV1-341, HCV181-341 and HCV181-713 were inserted into the HindIII site of pRLTK in the same manner as described in Example 2 to generate pRLTK 1-180 (Fig. 3(b)), pRLTK 1-341 (Fig. 3(d)), pRLTK 181-341 (Fig. 3(c)), and pRLTK 181-713 (Fig. 3(e)), respectively. The pRLTK 1-341 has a nucleic acid sequence for enhancing expression inserted, which is same as the pGL2C UTR5'-3' in Example 3, while the pRLTK 1-180 has a sequence inserted which corresponds to the preceding half of the pRLTK 1-340, and the pRLTK 181-341 has a sequence inserted which corresponds to the latter half thereof. The pRLTK 181-713 contains a sequence that is 192 base pairs longer than the pRLTK 1-341, and these 192 base pairs correspond to the coding region of the core protein.

15

20

For transfection into the host cells, 5  $\mu$ g of DNA per well was used as in Examples 2, 3, and 4, and the other conditions employed were also the same as in these examples.

However, Renilla-derived luciferase was used instead of luciferase derived from firefly in the above examples, accordingly, the Dual Luciferase Assay System was used as the assay kit as set forth above.

The activities observed in the host cells into which the vectors were transfected are shown the Table 4 below.

TABLE 4

| TABLE 4       |        |        |        |  |  |
|---------------|--------|--------|--------|--|--|
| Vector        | No. 1  | No. 2  | No. 3  |  |  |
|               | (U/mg) | (U/mg) | (U/mg) |  |  |
| PRLTK         | 21     | 65     | 42     |  |  |
| pRLTK 1-341   | 314    | 125    | 291    |  |  |
| pRLTK 1-180   | 227    | 175    | 164    |  |  |
| PRLTK 181-341 | 1,035  | 1,036  | 1,111  |  |  |
| PRLTK 181-713 | 482    | 381    | 491    |  |  |

As a result, the effect of accelerating the activities were remarkably exhibited with any one of sequences HCV1-180, HCV1-341, HCV181-341 and HCV181-713, therefore, it was demonstrated that the effect of accelerating the activities observed in Examples 2, 3, and 4 was not specific to the case where the SV40 promoter is used in combination with firefly luciferase and the vector was transfected into the COS1 cells. In addition, pRLTK 181-341 provided a strongest effect, suggesting that the effect by the nucleic acid sequence of the HCV1-341 may be resulted from the nucleotide positions 181-341 among the sequences.

Consequently, this example suggested that the 5'-untranslated region also (the sequence of the nucleotide positions 1-341 of SEQ ID NO: 1) has the effect of enhancing gene expression, regardless of difference in promoter as well as in type and source of the

10

15

20

25

30

useful gene, or difference in host cell, and that among those sequences, the sequence that may be responsible for the effect according to the present invention may be present in the nucleotide positions 181-341, because the nucleotide positions 181-341 can provide the strongest effect. Further, it was also revealed that similar effects of enhancing expression could be obtained by using a portion of the coding region of the core protein (the nucleotide positions 342-713 of SEQ ID NO: 1) in addition to the 5'-untranslated region.

## Example 6: Stable Cell Lines

Unlike Examples 2-5 where the effects of transient transfection in host cells were determined, the effect of the nucleic acid sequence for enhancing expression of a useful gene according to the present invention in stable cell lines that direct expression vectors to incorporate stably after transfection such that expression levels remain constant was determined in this example. The stable cell lines can be produced by transfecting the host cells with an expression vector including the neo gene that confers resistance to the antibiotic G418 (neomycin) and then harvesting the cells that can proliferate in a culture medium containing G418.

First, pcDNA3.1+ (Invitrogen) vector was obtained and the T7 promoter sequence was removed therefrom, to which HindIII/XbaI sites the Renilla luciferase as in Example 5 were incorporated, thus plasmid pcDNARL (Fig. 4(a)) was prepared. The promoter and enhancer of this expression vector are those derived from CMV, while the polyA signal is derived from bovine growth hormone.

The cDNA fragment HCV1-180, HCV1-341, HCV181-341, HCV181-713 or HCV1-713 was incorporated into the pcDNARL vector to prepare each plasmid pcDNARL 1-180, pcDNARL 1-341, pcDNARL 181-341, pcDNARL 181-713 or pcDNARL 1-713.

Transfection of these expression plasmids into host cells were performed in the same manner as in Example 2. In this case, a solution for the tube A was prepared of a final volume of 300  $\mu$ l from 10  $\mu$ g of vector-DNA and 37  $\mu$ l of CaCl<sub>2</sub>, and water contained in the kit, while the tube B was loaded with 300  $\mu$ l of 2 x HEPES. Further,

10

15

20

the HepG2 cells as the host cells were prepared to the cell density of about 50% (5 x  $10^6$  cells/20 mL medium) in a T75 flask (a tissue culture flask having an area of 75 cm<sup>2</sup> to which cells are adhered), the surface of which had previously been coated with collagen.

G418 was supplied to the culture medium at a concentration of 800 µg/ml, about 48 hours after the transfection in order to obtain stable cell lines, on the contrary to Examples 2-5 where the transfected cells were incubated for about 48 hours before measuring the luciferase activity. Almost all cells died during incubation at 37°C for about 1 week but the cells containing the above-mentioned plasmid DNA(s) (having the resistance gene, neo) survived and formed colonies. After the colonies have grown to a sufficient size, they transferred into a fresh flask and were incubated at 37°C and 5% CO<sub>2</sub> to effect proliferation, while portions of these cells were stored in liquid nitrogen.

As apparent, the colonies were harvested as a mixture of all colonies containing the survived cells rather than isolating the colonies prior to the proliferation, therefore, it can be speculated that the stable cell lines derived from different cDNA fragments were obtained under the same conditions.

An enzyme solution was prepared by extracting in the manner described above, from the cells of the stable cell lines, that are contained in the area corresponding to a single plate (35 mm in diameter) of the 6-well plate and the luciferase activity was then measured. The results are shown in the Table 5 below for pcDNARL, pcDNARL 1-341 (see Fig. 4(c)) and the pcDNARL 181-341 (see Fig. 4(b)).

TABLE 5

| Vector          | No. 1   | No. 2   |
|-----------------|---------|---------|
|                 | (U/mg)  | (U/mg)  |
| PcDNARL         | 69,593  | 66,062  |
| pcDNARL 1-341   | 89,987  | 86,442  |
| pcDNARL 181-341 | 198,413 | 201,365 |

10

15

20

30

As a result, it was indicated that the activity was also accelerated at the largest extent with the cDNA sequence of the HCV181-341 in the stable cell lines, as in Example 5. Moreover, although the promoter used in this experiment was different from those used in Examples 2-5, the effect of enhancing gene expression was also provided, accordingly, it was clearly suggested that the effect by the present invention are not provided in a specific promoter-dependent manner.

Therefore, the effect of enhancing the useful gene expression in the transient system was also observed in the permanent expression cells, thus, the doubt was withdrawn as to whether the expression activities were deemed to vary because the number of cells expressing luciferase was different among the groups subjected to comparison.

## Example 7: Preparation and Sequencing of Nucleic Acid Sequence derived from HCV1b Mutant

Another cDNA sequence was prepared that comprises an IRES derived from the 5'-untranslated region of HCV1b. In the manner as described in Example 1, cDNA was synthesized from the serum of an HCV1b-positive patient that is different from the patient in Example 1. The patient in this example has suffered from hyperviremia (10 viral copies/ml plasma), with eminently extensive viral replication, accordingly, HCV may possibly be translated at a high efficiency in this patient. Using this cDNA as a template, PCR was performed using the primers of the following sequences (a sense primer having a HindIII site (underlined) at the 5'-end (SEQ ID NO: 8); and an antisense primer (SEQ ID NO: 9)) in order to amplify a fragment including the 5'-untranslated region of the HCV mutant.

25 <u>cccaagettg</u>ccageccetgatgggggc (SEQ ID NO: 8) ggtgcacggtctacgagacc (SEQ ID NO: 9)

The resulted PCR products were digested with Hind III and ApaL I, which were purified by agarose gel electrophoresis.

Thus obtained fragment was sequenced according to the standard technique, thereby yielding the sequence comprising 342 nucleotides of SEQ ID NO: 7. When

10

15

20

25

thus resulted sequence was compared with the above-mentioned fragment HCV1-341 (the nucleotide positions 1-341 of SEQ ID NO: 1) of the 5'-untranslated region derived from HCV1b (GenBank Accession Number: D00832) well known in the art, as shown in Fig. 5 as 5'-UTR<sub>342</sub> and 5'-UTR<sub>341</sub>, in the 5'-untranslated region derived from a mutant, (1) adenine at the position 119 was substituted with cytosine; and (2) thymidine was inserted into the position 207. These mutations were also found in other cDNA clones derived from the same specimen. As shown in Fig. 6, the mutations thus identified within the IRES element were located in the area other than the highly conserved region, within or in the vicinity of the pyrimidine-rich tract, in the vicinity of the trans factor binding site, or in the vicinity of BoxA and BoxB.

## Example 8: Construction of Vectors Comprising

## HCV1b-derived Sequence for Enhancing Expression

In order to determine an effect of the fragment obtained in Example 7 on enhancement of expression, and an influence of the mutations in this fragment on the expression enhancement effect, a vector containing a T7 promoter, a sequence for enhancing expression (a fragment derived from the HCV 5'-untranslated region), a Renilla luciferase (Rluc) gene, and a T7 terminator was constructed from the pGEMEX-1 vector (Promega).

Rluc used was obtained as follows: The primers having the following sequences (a sense primer (SEQ ID NO: 10) having the Apa LI restriction site (underlined) at 5'-end and an antisense primer (SEQ ID NO: 11) having the Asc I restriction site (underlined) at 5'-end) were used to amplify pRL-TK (Promega), thereafter, the resulted PCR product was digested with ApaL I and Asc I and was then purified by agarose gel electrophoresis.

accgtgcaccatgacttcgaaagtttatga (SEQ ID NO: 10)

ttggcgcgccttattgttcatttttgagaa (SEQ ID NO: 11)

The vector pT7-RL-UTR<sub>341</sub> comprising HCV-341 has the structure shown in Figs. 7 and 8(b), while the vector pT7-RL-UTR<sub>342</sub> comprising HCV-342 has the structure shown in Fig. 8(c).

10

15

20

2.5

30

Each of the vectors was prepared by previously removing entire T7 gene 10 sequence from the pGEMEX-1 vector and inserting the Hind III/Asc I restriction enzyme site between the T7 promoter and the T7 terminator thereof, which was ligated with either HCV-342 or HCV-341 (sequence for enhancing expression) along with Rluc in the similar manner described in Example 2. As the control vector pT7-RL containing no sequence for enhancing expression, the Rluc reporter gene was linked to the position immediately downstream of the T7 promoter and immediately upstream of the T7 terminator, as shown in Figs. 7 and 8(a).

Furthermore, in order to determine an effect of substitution from adenine to cytosine at the position 119 of HCV-342, a vector pT7-RL-UTR<sub>341C</sub> (Fig. 8(d)) was prepared that has a sequence of HCV-341, of which position 119 was subjected to such a substitution, whilst, in order to determine an effect of insertion of thymidine into the position 207, a vector pT7-RL-UTR<sub>342A</sub> (Fig. 8(e)) was prepared that has a sequence of HCV-342, of which cytosine at position 119 was substituted by adenine. Vectors having these respective mutations were prepared in the same manner as described above, from those obtained by mutagenesis using PCR.

The PCR products introduced into the vectors were sequenced before use to verify that they have the desired sequence.

## Example 9: Run-Off RNA Synthesis and in vitro Translation

The plasmid vector obtained in Example 8 was subjected to run-off RNA synthesis and *in vitro* translation as described below to express luciferase, thereby identifying an effect of the sequence for enhancing expression.

Each of the circular plasmid vectors was linearized by digesting with Asc I, and then each DNA was used as a template for run-off RNA synthesis by T7 RNA polymerase (Boehringer Mannheim). The conditions for transcription reaction were those provided by the manufacturer's protocol. After completing the transcription reaction, 10 U of RQ DNase I (Promega) was added to the reaction mixture to digest the template DNA, followed by extraction of RNA with phenol/chloroform mixture and

precipitation with ethanol and 7.5 M sodium acetate. The concentration of the synthesized RNA was measured using a spectrophotometer.

10

15

20

25

Each of these RNAs was then translated *in vitro* in a nuclease-treated rabbit reticulocyte lysate (RRL; Promega). The translation reaction was proceeded at 30°C for 90 minutes, using a reaction mixture containing 1 μg of RNA, 17.5 μl of the above-mentioned lysate, 10 U of RNase inhibitor (RNasin; Promega) and 20 μM of amino acid mixture (Promega) in a total volume of 25 μl, in the presence of 120 mM potassium chloride. Through addition of potassium chloride to keep a physiological salt concentration, the translation of HCV RNA can be perfected in an IRES-dependent manner. The reaction was then terminated by adding RNase A, and the luciferase activity was measured with 2.5 μl of the reaction mixture.

The results thus obtained are shown in Fig. 9. In this figure, the ordinate axis represents a percentage activity calculated for the vectors relative to that of pT7-RL-UTR $_{341}$  (b). These results represent the mean and standard deviation of twice-repeated triplet experiments. An asterisk (\*) means a significant difference (p < 0.01) from the result obtained by using pT7-RL-UTR $_{341}$  (b).

As apparent from Fig. 9, the vector pT7-RL-UTR<sub>342</sub> (c), into which the HCV-342 had been introduced as the sequence for enhancing expression, provided an activity that was nearly four times higher than the activity of the vector pT7-RL-UTR<sub>341</sub> (b) to which HCV-341 was incorporated. In addition, because pT7-RL-UTR<sub>341</sub> (d) provided an almost identical activity to the activity of the pT7-RL-UTR<sub>341</sub>, it was suggested that the substitution at the position 119 of the HCV-342 may not be a mutation that can provide any effect on enhancement of expression. On the other hand, pT7-RL-UTR<sub>342</sub>, (e) provided a strong activity that was similar to the activity of the pT7-RL-UTR<sub>342</sub>, therefore, it was speculated that the insertion of thymidine into the position 207 of the HCV-derived sequence of SEQ ID NO: 1 may be responsible for the IRES-dependent, strong ability of enhancing expression caused by the HCV-342.

10

15

20

2.5

## Example 10: Transient Transfection

The effect of the enhancement of expression that is similar to the effect obtained in the *in vitro* system in Example 9 was also determined in the cells transfected with the vectors prepared in Example 8.

Hep G2 cell line was obtained from American Type Culture Collection (ATCC Accession No. HB-8065), incubated in Dulbecco's Modified Eagle Medium (DMEM) (GIBCO) supplemented with 10% fetal calf serum under a humid conditions in 5% CO<sub>2</sub>. A cell line Hep T stably expressing T7 RNA polymerase was established by transfecting

A cell line Hep T stably expressing T7 RNA polymerase was established by transfecting pAM8-1 (kindly provided by Dr. Nakanishi, Osaka University) into the Hep G2 cells.

Twenty-four hours before the transfection, the Hep T cells were seeded into a tissue culture dish of 35 mm in diameter, and then incubated under the same condition as of the Hep G2 cells. Seven µg each of plasmid DNA was used for transfection that was performed using the calcium phosphate precipitation method with Profection Mammalian Transfection System kit (Promega). For the purpose of standardizing transfection efficiencies, the pGL3-Control vector (Promega) that express firefly luciferase was used along with each of the above-mentioned vectors in a molar ratio of 10:1 for co-transfection of both vectors. The co-transfection of each of the vectors was performed using triplicate wells respectively. Such triple-experiments were repeated twice.

After 48 hours of incubation of thus transfected cells, luciferase activity in the cell lysate was measured using the Dual Luciferase Assay System. In addition, the co-transfected firefly luciferase was measured using the Luciferase Assay System to determine efficiency of transfection, with which the above-mentioned values indicating the activity were corrected. The results are shown in Fig. 10. In this figure, as in Fig. 9, the ordinate axis represents a percentage activity calculated for the vectors relative to that of pT7-RL-UTR<sub>341</sub> (b). The results represent the mean and standard deviation of twice-repeated triple-experiments. An asterisk (\*) means a significant difference (p <

30 0.01) from the result obtained in the pT7-RL-UTR<sub>341</sub> (b).

10

15

20

25

Similar effects to those obtained in Example 9 were indicated in Fig. 10. Namely, the vector pT7-RL-UTR<sub>342</sub> (c), into which the HCV-342 had been introduced as the sequence for enhancing expression, provided an activity that was nearly 6-7 times higher than the activity of the vector pT7-RL-UTR<sub>341</sub> (b) to which HCV-341 was incorporated. In addition, the pT7-RL-UTR<sub>342A</sub> (e) provided an activity that was similar to the activity of pT7-RL-UTR<sub>342</sub>.

A significantly low Rluc activity was provided when the vector pT7-RL was transfected, presumably due to failure of efficient cap-independent initiation of translation. Accordingly, it was demonstrated that the HCV-342 sequence as well as the sequence having a substitution at the position 119 of the HCV-342 could enhance expression either in an *in vitro* translation system or within the transfectants.

## Example 11: Construction of Bicistronic Vectors

## Comprising HCV1b Variant-Derived Sequence for Enhancing Expression

For the experiments to further exemplify the effects which were obtained in the above-mentioned monocistronic system, a vector having two cistrons was prepared that contains a similar sequence for enhancing expression to the vector prepared in Example 8. A vector which contains an SV40 promoter, a firefly luciferase (Fluc) gene, a sequence for enhancing expression, a Renilla luciferase (Rluc) gene and SV40 polyA was constructed from the pGL3 Control vector (Promega) to which the Fluc gene had been incorporated (see Figs. 11 and 12).

Each of the sequences for enhancing expression (which are not contained in the control pGL3R; see, Figs. 11 and 12(a)) that was amplified by PCR in the same manner as described in Example 8 and Rluc were introduced into the pGL3 Control vector at the Xba I site. The vector after the introduction was sequenced to verify that the individual sequences were incorporated in the correct direction.

## Example 12: Transient Transfection

The bicistronic vector obtained in Example 11 was transfected into COS1 cells

30 (obtained from ATCC, Accession No. CRL-1650) in the same manner as in Example 2.

10

15

20

25

30

Each of the values of the luciferase activity expressed in the transfectant was measured first using the Dual Luciferase Assay System, and then the activity of firefly luciferase expressed by the upstream cistrons were measured using the Luciferase Assay System to determine the efficiency of transfection, with which the above-mentioned values indicating the activity were corrected. The results are shown in Fig. 13. In this figure, similarly to Fig. 9, the ordinate axis represents a percentage activity calculated for the vectors relative to that of pGL3R-UTR<sub>341</sub> (b), and the results represent the mean and standard deviation of three times-repeated triple-experiments. An asterisk (\*) means a significant difference (p < 0.01) from the result obtained in the pGL3R-UTR<sub>341</sub> (b).

As shown in Fig. 13, the control vector pGL3R (a) provided almost no expression that was derived from the downstream second cistron (Rluc), while the activity was expressed only after the introduction of the sequence for enhancing expression. Further, the vector pGL3R-UTR342 (c), into which the HCV-342 had been introduced as the sequence for enhancing expression, provided an activity that was nearly 2 times higher than the activity of the vector pGL3R-UTR341 (b) to which HCV-341 was incorporated, or pGL3R-UTR341C (d) in which the position 119 of the HCV-341 was substituted. In addition, pGL3R-UTR342A (e) provided a strong activity that was similar to the activity of the pGL3R-UTR342A, therefore, it was again suggested that insertion of thymidine into the position 207 may promote the ability of enhancing expression whereas a mutation at the position 119 provides less effect on the enhancement of expression.

These results showed that a particularly excellent effect of enhancing expression based on the IRES activity caused by the sequence derived from the HCV mutant (5'-UTR342) is not cell-specific because such an effect can be obtained in cells other than hepatic cells, although some minor differences in the extent of the effects were found. In addition, it has been demonstrated that insertion of thymidine into the position 207 of the 5'-untranslated region of the wild-type HCV increases the effect of enhancing the expression, also in a cell-nonspecific manner.

The above-mentioned examples suggest that a single mutation introduced into the HCV-derived sequence for enhancing expression can significantly increase the effect of

10

15

20

25

30

enhancing the expression. The mutation site which can lead to such an effect, that is, the position 207 of the 5'-untranslated region of the HCV gene is included in the region that is estimated as the binding site of the pyrimidine tract binding protein (Ali, N., and Siddiqul, A; J. Virol., 69, 6367-6375, 1995). Since the pyrimidine tract binding protein is considered as a translation factor (Hellen, C. U. et al., Proc. Natl. Acad. Sci. USA, 90, 7642-7646, 1993; Witherell, G. W. et al., Biochemistry, 32, 8268-8275, 1993; Hellen, C. U. et al., J. Virol., 68, 941-950, 1994; and Witherell, G. W., and Wimmer, E. J. Virol., 68, 3183-3192, 1994), it is supposed that the insertion of a single nucleotide into such a region may promote interaction between cellular factors required for the initiation of translation and the IRES. Enzymatic footprinting analyses demonstrated that polypeptide chain initiation factor eIF-3 may protect the nucleotide positions 204, 214, 215, 216 and 212 in domain III of the wild-type HCV IRES, suggesting that the eIF-3 binding sites on HCV IRES may be incorporated in the terminus of such domain III (Sizova, D. V. et al., J. Virol., 72, 4775-4782, 1998). Because the position 207 locates at the center of the putative eIF-3 binding site, insertion of thymidine into this site is expected to be responsible for a change in affinity with eIF-3, thereby resulting in promotion of the effect of enhancing expression, however, details of this mechanism have not yet clarified. Comparing with the known 5'-UTR341, the novel 5'-UTR342 is speculated to exhibit a higher ability of enhancing IRES activities, probably due to: (1) existence of a mutation in the vicinity of the pyrimidine-rich tract; (2) existence of a mutation in the vicinity of the trans factor-binding site; or existence of a mutation in the vicinity of BoxA and BoxB, accordingly, a stronger ribosome binding may result in such enhancement.

Furthermore, since the novel HCV clinical isolate having a mutation at the 5'-untranslated region (SEQ ID NO: 7) has been isolated from serum of a patient suffering from hyperviremia, it is expected that viral replication of 5'-UTR342 may be extensive. Accordingly, characteristics of the infected HCV can be identified by specifically detecting 5'-UTR342 having thymidine inserted at position 207.

As apparent from the above Examples 2-6, the nucleic acid sequence for enhancing expression of a useful gene of the present invention could enhance luciferase expression even in different expression conditions using different methods of expression

10

15

20

25

30

during the experiments performed for enhancement of luciferase expression in eukaryotic cells such as COS1 or HepG2 by using any one of SV40, HSV TK and CMV promoters which have affinity with eukaryotic RNA polymerase. It is known that translation in eukaryotic cells is cap-dependent and is IRES-independent. Therefore, the experimental systems described in Examples 2-6 can be comprehended as the ones based on the process of IRES activity-independent translation. Consequently, it is believed that the cause of effects of the nucleic acid sequence for enhancing expression of a useful gene of the present invention would be functions as an IRES activity-independent translation enhancement factor. In this regard, the present invention has verified for the first time that the 5'-UTR341 of HCV enhances expression of useful genes in experimental systems based on the process of IRES activity-independent translation.

On the other hand, as apparent from Example 9, in translation in vitro using rabbit reticulocyte lysate that is an experimental system based on the process of IRES activity-dependent translation, the 5'-UTR342 could enhance expression of useful genes by accelerating IRES activity at an larger extent as compared with the 5'-UTR341. Moreover, as apparent from Examples 10-12, luciferase expression was successfully enhanced, even in the cytoplasms of Hep T cells transformed by introducing T7 RNA polymerase into HepG2 cells, when the experiments were performed for enhancement of luciferase expression using the T7 promoter that has affinity with prokaryotic RNA polymerase. In addition, luciferase expression was also enhanced when the experiments were performed for enhancement of luciferase expression in T antigenexpressing COS cells, using SV40 promoter in a bicistronic system. Enhancement of the luciferase expression in the experimental systems based on the process of IRES activity-dependent translation as shown in Examples 9-12 may be presumed that it result from either acceleration of IRES activity of the 5'UTR-341 or from improvement of stability of mRNAs, with the 5'-UTR342 functioning as a cause of the effects. present inventors have demonstrated that the 5'-UTR342 of HCV has not concerned improvement of mRNA stability by the primer extension assay (see J. Virology, 72, 8789-8796, 1998). In any case, expression of the useful gene can be enhanced using the 5'-UTR342 of HCV in an experimental system based on the process of IRES activity-dependent translation, as compared with the case using the 5'-UTR341. To

10

15

20

25

date, the 5'-UTR341 has been reported as having IRES activity in the experimental system based on the process of IRES activity-dependent translation in the HCV 5'-untranslated region (see, *Virology*, 226, 47-56, 1996; *J. Virology*, 72, 8789-8796, 1998). However, the present invention has first proven out that the novel, HCV-derived 5'-UTR342 sequence of the present invention accelerates IRES activity at a larger extent compared with the IRES activities of the 5'-UTR341 reported heretofore, thus resulting in enhancement of expression of useful genes.

It has been already reported that a useful gene (chloramphenicol acetyl transferase) can be expressed by ligating the HCV 5'-untranslated region at a region downstream of the T7 promoter in a monocistronic or bicistronic system as in Examples 9-12 and incorporating the useful gene into that downstream region (Virology, 226, 47-56, 1996; J. Virology, 72, 8789-8796, 1998). However, all of these experiments were performed using the host cells in which the mammalian cells had previously been transformed with the HCV 5'-UTR341 such that T7 RNA polymerase is expressed as shown in Examples 10-12, according to the experimental system based on the process of IRES-dependent translation. In other words, although the HCV 5'-UTR341 has been verified as having IRES activities, no function as a translation enhancement factor has been indicated, that would be demonstrated by using experimental systems based on the process of IRES activation-independent translation. Accordingly, Examples 2-6 of the present invention have demonstrated for the first time the function of the translation enhancement factor. In addition, the present invention has also proven out for the first time that the novel, HCV-derived 5'-UTR342 can accelerate IRES activity in experimental systems based on the process of IRES activity-dependent translation, thus resulting in enhance expression of useful genes at a larger extent, as compared with the known 5'-UTR341.

## INDUSTRIAL APPLICABILITY

The present invention provides the effect of enhancing gene expression in vivo and in vitro to increases the production of gene products, regardless of type of expression vectors, sequences to be comprised therein such as promoters, signals, and enhancers, type and source of a useful gene or type of host cells.

The sequence to be introduced may be subjected to a certain mutation(s) to further enhance the ability of enhancing gene expression.

These effects can be applied for the purpose of increasing the production of peptides in a cell culture system, as well as to vectors for effective gene therapies in combination with such a promoter that is specific to an internal organ or a tumor but has not been likely to come into practical use due to its low activity.

Additionally, it is possible to screen for substances (modulators, and the like) which can interact with IRESs, or for IRES-dependent translation initiators, using probes containing a sequence(s) having a higher IRES activity than ubiquitous IRES.

Moreover, translation of mRNA may be promoted by introducing the nucleic acid sequence for enhancing expression of a useful gene into a body of organisms, thereby treating diseases resulting from reduction of cap-dependent mRNA translation in the body of the organisms.

Alternatively, in order to treat diseases resulting from reduction of IRES activity in a body of organisms, the nucleic acid sequence for enhancing expression of a useful gene may be introduced into the body of organisms to promote translation of mRNA.

Furthermore, determination of severity of hepatitis C is permitted through detecting the presence of an HCV-derived specific polynucleotide sequence contained in a biological sample derived from a test subject.

5

10

15

10

15

25

## WHAT IS CLAIMED IS:

- A nucleic acid sequence for enhancing expression of a useful gene incorporated into a gene expression vector for enhancing expression of a useful gene comprising a nucleic acid sequence corresponding to a 5'-untranslated region of a viral gene or a fragment or a variant thereof.
- The nucleic acid sequence for enhancing expression of a useful gene according to claim 1, wherein the 5'-untranslated region comprises at least one pyrimidine-rich tract.
- 3. The nucleic acid sequence for enhancing expression of a useful gene according to claim 1 or 2, wherein the 5'-untranslated region comprises a sequence corresponding to a region selected from the group consisting of BoxA, BoxB, a trans factor-binding site, and a combination thereof.
- 4. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 3, wherein the 5'-untranslated region further comprises an AUG or ATG sequence.
- 5. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 4, wherein the 5'-untranslated region comprises a part of or an entire region of IRES of viral mRNA.
  - 6. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 5 further comprises a portion of a coding region adjacent to the 5'-untranslated region, or a fragment or a variant thereof, of a viral gene in addition to said nucleic acid sequence.
- The nucleic acid sequence for enhancing expression of a useful gene
   according to any one of claims 1 to 6, wherein said nucleic acid sequence for enhancing

15

30

expression of a useful gene is incorporated downstream of an expression regulation promoter sequence and upstream of the useful gene in a gene expression vector.

- The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 7, wherein said nucleic acid is a cDNA sequence.
  - 9. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 8, wherein said gene expression vector is a vector for expression in eukaryotic cells.
  - 10. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 9, wherein said virus is RNA virus.
  - 11. The nucleic acid sequence for enhancing expression of a useful gene according to claim 10, wherein said virus is picornavirus.
    - The nucleic acid sequence for enhancing expression of a useful gene according to claims 10, wherein said virus is HCV virus.
- 20 13. The nucleic acid sequence for enhancing expression of a useful gene according to claim 10, wherein said virus is HCV virus, and said nucleic acid sequence for enhancing expression of a useful gene further comprises a portion of the coding region for the core protein of the HCV virus or, a variant thereof.
- 25 14. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of the following nucleotide sequence:

gccagccccc tgatggggc gacactccac catagatcac tcccctgtga ggaactactg 60

tetteaegea gaaagegtet ageeatggeg ttagtatgag tgtegtgeag cetecaggae 120

cccccctccc gggagagcca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180

(SEQ ID NO: 1, 1-180).

15. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of the following nucleotide sequence:

gacgaccggg teetttettg gateaacccg cteaatgcet ggagatttgg gegtgecece 60
gegagactge tageegagta gtgttgggte gegaaaggee ttgtggtaet geetgatagg 120
gtgettgega gtgeeceggg aggtetegta gacegtgeae e 161
(SEQ ID NO: 1, 181-341).

16. The nucleic acid sequence for enhancing expression of a useful gene according to claim 12, wherein said nucleic acid sequence consists of the following nucleotide sequence:

gecageccee tgatggggg gacactecae catagateae teceetgta ggaactactg 60

tetteacgca gaaagegtet agcatggeg ttagtatgag tgtegtgcag cetecaggac 120

ceccectece gggagageca tagtggtetg eggaaceggt gagtacaceg gaattgccag 180

gacgaceggg teettetetg gateaaceeg etcaatgeet ggagatttgg gegtgeceee 240

gegagaactge tageeggata gtgttgggte gegaaaggee ttgtggtact geetgatagg 300

gtgettgega gtgeeceggg aggtetegta gacegtgeae e 341

(SEO ID NO: 1, 1-341).

20

25

30

10

15

17. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of the following nucleotide sequence:

gacgaccggg tcctttcttg gatcaacccg ctcaatgcct ggagatttgg gcqtqccccc 60 gegagaetge tageegagta gtgttgggte gegaaaggee ttgtggtaet geetgatagg 120 gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac catgagcaca aatcctaaac 180 ctcaaagaaa aaccaaacgt aacaccaacc gccgcccaca ggacgtcaag ttcccgggcg 240 gtggtcagat cgttggtgga gtttacctgt tgccgcgcag gggccccagg ttgggtqtqc 300 gegegactag gaagaettee gageggtege aacetegtgg aaggegacaa eetateecea 360 aggetegeeg geeegaggge aggaeetggg eteageeegg gtateettgg eccetetatg 420 gcaacgaggg catggggtgg gcaggatggc tectgtegec eegeggetee eggeetagtt 480 ggggcccttc ggaccccgg cgtaggtcgc gtaatttggg taaggtcatc gat 533 (SEO ID NO: 1, 181-713).

18. The nucleic acid sequence for enhancing expression of a useful gene according to claim 13, wherein said nucleic acid sequence consists of the following nucleotide sequence:

gccagccccc tgatggggc gacactccac catagatcac teceetgtga ggaactactq 60 tottcacgca gaaagcgtot agccatggcg ttagtatgag tgtcgtgcag cotccaggac 120 ccccctccc gggagagcca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180 gacgaccggg tcctttcttg gatcaacccg ctcaatgcct ggagatttgg gcgtqccccc 240 gegagactge tageegagta gtgttgggte gegaaaqqee ttgtggtact geetgatagg 300 gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac catgagcaca aatcctaaac 360 ctcaaagaaa aaccaaacgt aacaccaacc geegeecaca ggaegtcaag tteeegggeg 420 gtggtcagat cgttggtgga gtttacctgt tgccgcgcag gggccccagg ttgggtgtgc 480 gegegactag gaagacttee gageggtege aacetegtgg aaggegacaa cetateecea 540 aggetegeeg geeegaggge aggaeetggg eteageeegg gtateettgg eeeetetatg 600 gcaacgaggg catggggtgg gcaggatggc teetgtegec eegeggetee eggectagtt 660 ggggcccttc ggacccccgg cgtaggtcgc gtaatttggg taaggtcatc gat 713 (SEO ID NO: 1, 1-713).

20

25

10

15

- 19. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 3 to 18, wherein said nucleic acid comprises a sequence having substitution, deletion, insertion and/or addition of a single or a few nucleotides of a sequence derived from a wild-type virus within the sequence or a proximate sequence in at least one position corresponding to a pyrimidine-rich tract, BoxA, BoxB and/or trans factor-binding site contained in the 5'-untranslated region.
- 20. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 19, wherein said nucleic acid comprises a sequence 30 having substitution, deletion, insertion and/or addition of a single or a few nucleotides of

10

15

20

25

a sequence derived from a wild-type virus within the sequence corresponding to a region other than the 5'-untranslated region.

- The nucleic acid sequence for enhancing expression of a useful gene according to claim 15, 16, 17 or 18, wherein said nucleic acid has one thymidine inserted into position 207 of SEO ID NO: 1.
  - 22. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 21, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of its own translation promoting activity.
  - 23. The nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 22, wherein said nucleic acid sequence for enhancing expression of a useful gene enhances expression of a useful gene by means of accelerating IRES activity.
  - 24. A nucleic acid sequence for enhancing expression of a useful gene comprising the following nucleotide sequence:
- gccagccccc tgatggggc gacactccac catagateac tecectgtag ggaactactg 60 tettecacgca gaaageget agccatggcg ttagtatgag tgtegtgcag cetecaggcc 120 ccccctccc gggagagcca tagtggtctg eggaaceggg gagtacaceg gaattgccag 240 eggagaceggg teagecaggat agtgttgggt eggaaaggc ettgtggtac tgeetgatag 300 ggtgettgeg agtgeecegg gaggtetegt agacegtgca ce 342 (SEQ ID NO: 7), which enhances expression of a useful gene by means of promoting mRNA translation in an IRES-dependent manner.
- 25. A nucleic acid sequence for enhancing expression of a useful gene which 30 comprises a polynucleotide having a similar IRES activity to an IRES activity of the following nucleotide sequence:

| gccagccccc   | tgatgggggc    | gacactccac    | catagatcac   | teceetgtga   | ggaactactg     | 60    |
|--------------|---------------|---------------|--------------|--------------|----------------|-------|
| tetteaegea   | gaaagcgtct    | agccatggcg    | ttagtatgag   | tgtcgtgcag   | cctccaggcc     | 120   |
| ccccctccc    | gggagagcca    | tagtggtctg    | cggaaccggt   | gagtacaccg   | gaattgccag     | 180   |
| gacgaccggg   | tcctttcttg    | gatcaatccc    | gctcaatgcc   | tggagatttg   | ggcgtgcccc     | 240   |
| cgcgagactg   | ctagccgagt    | agtgttgggt    | cgcgaaaggc   | cttgtggtac   | tgcctgatag     | 300   |
| ggtgcttgcg   | agtgccccgg    | gaggtctcgt    | agaccgtgca   | cc           |                | 342   |
| (SEQ ID NO   | D: 7), and co | nsisting of a | fragment or  | a variant of | the sequence,  | which |
| enhances exp | pression of a | useful gene b | y means of p | romoting mR  | NA translation | in an |
| IRES-depend  | ent manner.   |               |              |              |                |       |
|              |               |               |              |              |                |       |

5

26. An isolated polynucleotide consisting of the following nucleotide sequence:

gccagccccc tgatgggggc gacactccac catagatcac tcccctgtga ggaactactg 60

15

tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag cetecaaggee 120
ceccetteee gggagagea tagtggtetg eggaacegg gagtacaceg gaattgecag 180
gaegaceggg teetttettg gateaateee geteaatgee tggagatttg ggegtgeeee 240
cgegagactg etageegag agtgttggg egegaaagge ettgtggtae tgeetgatag 300
ggtgettgeg agtgeeeegg gaggtetegt agaeegtgea ee 342
(SEQ ID NO. 7).

20

An isolated polynucleotide having a similar IRES activity to an IRES activity of the following nucleotide sequence:

25

gccagcccc tgatggggg gacactccac catagatcac tecetgtga ggaactactg 60
tetteacgca gaaagegtet agccatggeg ttagtatgag tgtegtgcag cetecaggee 120
ceceeteec gggagagea tagtggtetg eggaacegg gagtacaceg gaattgccag 180
gacgaceggg teettettg gateaateee geteaatgee tggagatttg ggegtgeeee 240
cgcgagaactg etageeggat agtgttgggt eggaaagge ettgtggtae tgeetgatag 300
ggtgettgeg agtgeeegg gaggtetegt agacegtgea ee 342
(SEQ ID NO: 7), and consisting of a fragment or a variant of said sequence.

30

28. A gene expression vector comprising the nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 25.

15

20

25

30

- A host cell transformed or transfected with the vector according to claim
   28.
- 5 30. A method of expressing a useful gene product using the vector according to claim 28.
  - 31. A method for producing a useful gene product comprising the steps of: growing the host cell according to claim 29 in a medium; and isolating the useful gene product from the cell and/or the growth medium.
  - 32. A method for enhancing expression of a useful gene product using the vector according to claim 28.
  - A probe for screening substances that interact with IRES, comprising the polynucleotide according to claim 26 or 27.
  - A probe for screening IRES-dependent translation initiators, comprising the polynucleotide according to claim 26 or 27.
  - 35. A therapeutic composition for treating diseases resulting from reduction of cap-dependent mRNA translation in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to any one of claims 1 to 25 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.
  - 36. A therapeutic composition for treating diseases resulting from reduction of IRES activity in a body of organisms, comprising the nucleic acid sequence for enhancing expression of a useful gene according to claim 24 or 25 such that translation of mRNA can be promoted by means of introducing said nucleic acid sequence for enhancing expression of a useful gene into the body of the organisms.

A method for determining the severity of hepatitis C, comprising the steps of:

detecting the presence of a target polynucleotide sequence contained in a biological sample derived from a test subject, by using the polynucleotide according to claim 26 or 27 as the target; and

determining the severity of the hepatitis C based on the presence of the sequence.

5

10

## ABSTRACT

Nucleic acid sequences for enhancing expression of a useful gene, which can increase the production of the gene product by enhancing gene expression, comprising a 5'-untranslated region of a viral gene or a fragment or a variant thereof, vectors comprising the nucleic acid sequence, host cells transformed or transfected with the vector, and methods for enhancing expression of a useful gene with the vector are provided. In addition, the sequences of the present invention can be utilized for screening an agent that interacts with IRES elements, and of an IRES-dependent translation initiator, as well as for treating diseases resulting from reduction of cap-dependent mRNA translation or reduction of IRES activity, and for determining severity of hepatitis C.



.. ...





Fig. 2



Fig. 3



Fig. 4

# <sup>5</sup>/13

| 5′   | -UTR <sub>341</sub> | GCCAGCCCCC | TGATGGGGGC | GACACTCCAC | CATAGATCAC | TCCCCTGTGA | 50  |
|------|---------------------|------------|------------|------------|------------|------------|-----|
| 5'   | -UTR342             | GCCAGCCCCC | TGATGGGGGC | GACACTCCAC | CATAGATCAC | TCCCCTGTGA | 50  |
|      |                     |            |            |            |            |            |     |
| 5'   | -UTR <sub>341</sub> | GGAACTACTG | TCTTCACGCA | GAAAGCGTCT | AGCCATGGCG | TTAGTATGAG | 100 |
| 5'   | -UTR <sub>342</sub> | GGAACTACTG | TCTTCACGCA | GAAAGCGTCT | AGCCATGGCG | TTAGTATGAG | 100 |
|      |                     |            |            |            |            |            |     |
| 5'   | -UTR341             | TGTCGTGCAG | CCTCCAGGAC | CCCCCCTCCC | GGGAGAGCCA | TAGTGGTCTG | 150 |
| 5'   | -UTR <sub>342</sub> | TGTCGTGCAG | CCTCCAGGGC | CCCCCCTCCC | GGGAGAGCCA | TAGTGGTCTG | 150 |
|      |                     |            |            |            |            |            |     |
| 5'   | -UTR341             | CGGAACCGGT | GAGTACACCG | GAATTGCCAG | GACGACCGGG | TCCTTTCTTG | 200 |
| 5'   | -UTR342             | CGGAACCGGT | GAGTACACCG | GAATTGCCAG | GACGACCGGG | TCCTTTCTTG | 200 |
|      |                     |            |            |            |            |            |     |
| 5'   | -UTR341             | GATCAA-CCC | GCTCAATGCC | TGGAGATTTG | GGCGTGCCCC | CGCGAGACTG | 249 |
| 5'   | -UTR <sub>342</sub> | GATCAATCCC | GCTCAATGCC | TGGAGATTTG | GGCGTGCCCC | CGCGAGACTG | 250 |
|      |                     |            |            |            |            |            |     |
| 5'   | -UTR341             | CTAGCCGAGT | AGTGTTGGGT | CGCGAAAGGC | CTTGTGGTAC | TGCCTGATAG | 299 |
| 5'   | -UTR342             | CTAGCCGAGT | AGTGTTGGGT | CGCGAAAGGC | CTTGTGGTAC | TGCCTGATAG | 300 |
|      |                     |            |            |            |            |            |     |
| 5'   | -UTR341             | GGTGCTTGCG | AGTGCCCCGG | GAGGTCTCGT | AGACCGTGCA | CC         | 341 |
| 5' · | -UTR <sub>342</sub> | GGTGCTTGCG | AGTGCCCCGG | GAGGTCTCGT | AGACCGTGCA | CC         | 342 |
|      |                     |            |            |            |            |            |     |



i g. 6



Fig. 7





Fig. 8



Fig. 9



Fig. 10



Fig. 1 1





Fig. 12



Fig. 13

Atty. Docket No: 19036/37156

### DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name; I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled "NUCLEIC ACID SEQUENCES AND METHODS FOR ENHANCING EXPRESSION OF A USEFUL GENE," the specification of which was filed on February 27, 2001 as Application Serial No. 09/763,836, and was amended by preliminary amendment on February 27, 2001, and which claims priority to International Patent Application No. PCT/JP99/03682, filed on July 8, 1999, which was amended under Article 34 during the international phase, and which claims priority to Japanese Patent Application No. HEI 10-241367, filed August 27, 2998. I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, asamended by any amendment(s) referred to above. I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in 37 C.F.R. 81.56.

I hereby claim foreign priority benefits under 35 U.S.C. §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

| HEI 10-241367                     | Japan —                       | August 27, 1998        | ×   |    |
|-----------------------------------|-------------------------------|------------------------|-----|----|
| (Application Serial Number)       | (Country)                     | (Day/Month/Year Filed) | Yes | No |
| r.                                |                               |                        |     |    |
| Intl. Application No. PCT/JP99/03 | 682 International Application | July 8, 1999 🗸         | ⊠   |    |
| (Application Serial Number)       | (Country)                     | (Day/Month/Year Filed) | Yes | No |
|                                   |                               |                        |     |    |

I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below:

(Day/Month/Year Filed)

(Day/Month/Year Filed)

(Application Serial Number)

(Application Serial Number)

I hereby claim the benefit under 35 U.S.C. §120 of any United States application(s) or PCT international application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior application(s) in the manner provided by the first paragraph of 35 U.S.C. §112, I acknowledge the duty

to disclose to the Office all information known to me to be material to patentability as defined in 37 C.F.R. §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:

PCT/JP99/03682 July 8, 1999
(Application Serial Number) (Day/Month/Year Filed) (Status-Patented, Pending or Abandoned)
(Application Serial Number) (Day/Month/Year Filed) (Status-Patented, Pending or Abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements rejeopardize the validity of the application or any patent issued thereon.

## APPLICABLE RULES AND STATUTES

## 37 CFR 1.56. DUTY OF DISCLOSURE - INFORMATION MATERIAL TO PATENTABILITY (Applicable Portion)

- (a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by §§ 1.97(b)-(d) and 1.98. However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:
  - prior art cited in search reports of a foreign patent office in a counterpart application, and (1)
  - the closest information over which individuals associated with the filing or prosecution of a patent (2) application believe any pending claim patentability defines, to make sure that any material information contained therein is disclosed to the Office.

-Information relating to the following factual situations enumerated in 35 USC 102 and 103 may be considered material under 37 CFR 1.56(a).

## 35 U.S.C. 102. CONDITIONS FOR PATENTABILITY: NOVELTY AND LOSS OF RIGHT TO PATENT

- A person shall be entitled to a passes.

  (a) the invention was known or used by others in this country, or passes this or a foreign country, before the invention thereof by the applicant for patent, or this or a foreign country, before the invention described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in the invention was patented or described in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in a printedpublication in the invention was patented or described in the invention was patented o (a) the invention was known or used by others in this country, or patented or described in a printed publication
- (b) the invention was patented or described in a printedpublication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of the application for patent in the United States, or
  - (c) he has abandoned the invention. or
- (d) the invention was first patented or caused to be patented, or was the subject of an inventor's certificate, by the applicant or his legal representatives or assigns in a foreign country prior to the date of the application for patent in this country non an application for patent or inventor's certificate filed more than twelve months before the filing of the application in the United States, or
- (e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraph (1), (2), and (4) of section 371(c) of this title before the invention thereof by the applicant for patent, or
  - (f) he did not himself invent the subject matter sought to be patented, or
- (g) before the applicant's invention thereof the invention was made in this country by another who had not abandoned, suppressed, or concealed it. In determining priority of invention there shall be considered not only the respective dates of conception and reduction to practice of the invention, but also the reasonable diligence of one who was first to conceive and last to reduce to practice, from a time prior to conception by the other.

## 35 U.S.C. 103. CONDITIONS FOR PATENTABILITY; NON-OBVIOUS SUBJECT MATTER (Applicable Portion)

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person.

## 35 U.S.C. 112. SPECIFICATION (Applicable Portion)

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

. POWER OF ATTORNEY: I hereby appoint as my attorneys, with full powers of substitution and revocation, to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

John B. Lungmus (18.566)
Allen H. Gerstein (72.2.18)
Nate F. Scarpelli (72.2.10)
Edward M. O'Toole (22.477)
Michael F. Borun (25.5447)
Garl E. Moore, Jr. (26.487)
Richard H. Anderson (26.526)

Patrick D. Ertel (26,877) Richard B. Hoffman(26,910) James P. Zeller (28,491) William E. McCracken (30,195) Richard A. Schnurr (30,890) Anthony Nimmo (30,920) Christine A. Dudzik (31,245) Kevin D. Hogg (31,839) Jeffrey S. Sharp (31.879).
Martin J. Hirsch (32.2.327).
James J. Napoli, Ph.D. (32.361).
Richard M. La Barge (32.254).
Li-Hsien Rin-Laures (33.247).
Douglass C. Hochstetler (33.710).
Robert M. Gerstein (34.824).

Anthony G. Sitko (36,278)
James A. Flight (37,622)
Roger A. Heppermann (37,641)
David A. Gass (38,153)
Gregory C. Mayer (38,238)
Michael R. Weiner (38,359),
William K. Merkel, Ph. D. (40,725)
Thomas A. Cawley, Jr., Ph. D.

| Richard H. Anderson (26,526) Kevin D. Hogg (31,834) | Thomas A. Carroy, III, I and                                         |
|-----------------------------------------------------|----------------------------------------------------------------------|
| Send correspondence to: Thomas A. Cawley, Jr.       | . Ph.D.                                                              |
| •                                                   |                                                                      |
|                                                     |                                                                      |
| FIRM NAME PHONE NO.                                 | STREET CITY & STATE ZIP CODE                                         |
|                                                     | 00 Sears Tower                                                       |
| Murray & Borun 312-474-6300 233 S                   | outh Wacker Drive Chicago, Illinois 60606-6402                       |
|                                                     |                                                                      |
| Full Name of First or Sole Inventor                 | Citizenship                                                          |
| /- O Osamu Yamada                                   | Japan / Post Office Address - Street                                 |
| Residence Address - Street                          | Post Office Address - Street 2-11-30, Midorigaoka, Suma-ku, Kobe-shi |
| 2-11-30, Midorigaoka, Suma-ku, Kobe-shi.            | City (Zip)                                                           |
| City (Zip)                                          | Hyogo 654-0113                                                       |
| - Hyogo 654-0113                                    | State or Country                                                     |
| State or Country Japan                              | Japan                                                                |
| Date                                                | Signature                                                            |
| May 28, 2001                                        | × Contain                                                            |
| 1- May 20, 2001                                     |                                                                      |
| Second Joint Inventor, if any                       | Citizenship                                                          |
| Hiroshi Yoshida                                     | Japan                                                                |
| Residence Address - Street                          | Post Office Address - Street                                         |
| 3-20-15, Tukuno-cho, Sakai-shi,                     | 3-20-15, Tukuno-cho, Sakai-shi                                       |
| City (Zip)                                          | City (Zip)                                                           |
| Osaka 593-8322 FPX                                  | Osaka 593-8322                                                       |
| State or Country                                    | State or Country                                                     |
| Japan /                                             | Japan                                                                |
| Date                                                | Signature Wirosha (Joshida                                           |
|                                                     |                                                                      |
| Third Joint Inventor, if any                        | Citizenship                                                          |
| Jing Zhang                                          | China                                                                |
| Residence Address - Street                          | Post Office Address - Street                                         |
| 1-1-1-408, Denbo, Konohana-ku, Osaka-shi            | 1-1-1-408, Denbo, Konohana-ku, Osaka-shi                             |
| City (Zip)                                          | City (Zip)                                                           |
| Osaka 554-0002                                      | Osaka 554-0002<br>State or Country                                   |
| State or Country                                    | Japan                                                                |
| Japan /                                             | Signature                                                            |
| Date                                                | Ting Zhang                                                           |
| May 28, 2001                                        |                                                                      |
| •                                                   | '                                                                    |
|                                                     | J                                                                    |
|                                                     |                                                                      |

## SEQUENCE LISTING

<110> YAMADA, Osamu YOSHIDA, Hiroshi ZHANG, Jing

<120> Nucleic Acid Sequence which Enhances Gene Expression and Method of

1

```
Enhancing Gene Expression
<130> 19036/37156
<160> 11
<210> 1
<211> 713
<212> DNA
<213> Hepatitis Type C Virus (HCV)
<220s
<221> 5'UTR
<222> (1)..(341)
<220>
<221> CDS
<222> (342) .. (713)
<400> 1
gccageceec tgatggggge gacactccae catagateae teceetgtga ggaactaetg
                                                                      6.0
tetteacgea gaaagegtet agecatggeg ttagtatgag tgtegtgeag eetecaggae
cececetece gggagageca tagtggtetg eggaaceggt gagtacaceg gaattgecag
                                                                      180
gacgaccggg tcctttcttg gatcaacccg ctcaatgcct ggagatttgg gcgtgccccc
                                                                      240
gegagactge tageegagta gtgttgggte gegaaaggee ttgtggtaet geetgatagg
                                                                      300
gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac c atg agc aca aat cct
                                                                      356
                                               Met Ser Thr Asn Pro
aaa cct caa aga aaa acc aaa cgt aac acc aac cgc cgc cca cag gac
                                                                      404
Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp
                                      15
gtc aag ttc ccg ggc ggt ggt cag atc gtt ggt gga gtt tac ctg ttg
                                                                      452
Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val Tyr Leu Leu
             25
                                  30
                                                                      500
ccg cgc agg ggc ccc agg ttg ggt gtg cgc gcg act agg aag act tcc
Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser
                             45
gag egg teg caa eet egt gga agg ega caa eet ate eec aag get ege
                                                                      548
Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg
                          60
     55
cgg ccc gag ggc agg acc tgg gct cag ccc ggg tat cct tgg ccc ctc
                                                                      596
Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu
                                          80
                      75
tat ggc aac gag ggc atg ggg tgg gca gga tgg ctc ctg tcg ccc cgc
                                                                      644
Tyr Gly Asn Glu Gly Met Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg
                                      95
 gge tee egg eet agt tgg gge eet teg gae eec egg egt agg teg egt
Gly Ser Arg Pro Ser Trp Gly Pro Ser Asp Pro Arg Arg Arg Ser Arg
                                 110
             105
                                                                      713
aat ttg ggt aag gtc atc gat
Asn Leu Gly Lys Val Ile Asp
```

<210> 2 <211> 31 <212> DNA

```
<213 > Hepatitis Type C Virus (HCV)
<220>
<223> Nucleotide Sequence of PCR Primer for Amplifying Fragments of HCV
CDNA
<400> 2
                                                                      31
eccaagettg ccageceett gatgggggeg a
<210> 3
<211> 31
<212> DNA
<213> Hepatitis Type C Virus (HCV)
<220>
<223> Nucleotide Sequence of PCR Primer for Amplifying Fragments of HCV
CDNA
<400> 3
                                                                      31
cccaagette tggcaattee ggtgtactea e
<210> 4
<211> 29
<212> DNA
<213> Hepatitis Type C Virus (HCV)
<223> Nucleotide Sequence of PCR Primer for Amplifying Fragments of HCV
CDNA
<400> 4
                                                                       29
cccaaqcttq acqaccgggt cctttcttg
<210> 5
<211> 30
<212> DNA
<213 > Hepatitis Type C Virus (HCV)
<223> Nucleotide Sequence of PCR Primer for Amplifying Fragments of HCV
CDNA
<400> 5
                                                                       30
cccaagettg gtgcacggtc tacgagacct
<210> 6
<211> 26
<212> DNA
<213> Hepatitis Type C Virus (HCV)
<223> Nucleotide Sequence of PCR Primer for Amplifying Fragments of HCV
CDNA
<400> 6
cccaagetta tegatgacet taccca
                                                                       26
<210> 7
<211> 342
<212> DNA
<213> Mutated Hepatitis Type C1b Virus (HCV)
```

-

```
<221> 5'UTR
<222> (1)..(342)
gccagccccc tgatggggc gacactccac catagatcac tcccctgtga ggaactactg
tottcacgca gaaagegtot agccatggeg ttagtatgag tgtcgtgcag cotccagged
                                                                      120
eccectece gggagages tagtggtetg eggaaceggt gagtacaceg gaattgecag
                                                                      180
                                                                      240
gacgaceggg teetteettg gateaatece geteaatgee tggagatttg ggegtgeece
cgcgagactg ctagccgagt agtgttgggt cgcgaaaggc cttgtggtac tgcctgatag
                                                                      300
                                                                      342
ggtgettgeg agtgeecegg gaggtetegt agacegtgea ee
<210> 8
<211> 29
<212> DNA
<213> Hepatitis Type Clb Virus (HCV)
<220>
<223> Nucleotide Sequence of PCR Sense Primer for Amplifying Mutated
Fragments of HCV1b cDNA
<400> 8
                                                                       29
cccaagettg ccageceet gatggggge
<210> 9
<211> 20
<212> DNA
<213> Hepatitis Type Clb Virus (HCV)
<223> Nucleotide Sequence of PCR Anti-sense Primer for Amplifying Mutated
Fragments of HCV1b cDNA
<400> 9
                                                                       20
ggtgcacggt ctacgagacc
<210> 10
<211> 30
<212> DNA
<213> Renilla luciferase
<223> Nucleotide Sequence of PCR Sense Primer for Amplifying Renilla
luciferase gene
<400> 10
                                                                       30
accetecacc ateacttcea aaetttatea
<210> 11
<211> 30
<212> DNA
<213> Renilla luciferase
<223> Nucleotide Sequence of PCR Anti-sense Primer for Amplifying Renilla
luciferase gene
<400> 11
ttggcgcgcc ttattgttca tttttgagaa
                                                                       3.0
```