

## Стандартные распределения

В статистике, эконометрике и других сферах человеческих знаний очень часто используются стандартные распределения.

В частности, они используются для проверки гипотез и построения доверительных интервалов.

# Самыми распространенными являются:

- 1. Нормальное распределение z.
- 2. Распределение **Пирсона** или **хи-квадрат** ( $\chi_n^2$ ).
- 3. Распределение **Стьюдента**  $(t_n)$ .
- 4. Распределение **Фишера** ( $F_{n_1,n_2}$ ).

# 1. Стандартное нормальное распределение (Z)

Это распределение возникает как результат сложения многих независимых случайных воздействий.



Нормальный закон определяется двумя параметрами:

 $\mu$  - математическое ожидание;

 $\sigma$ - среднеквадратичное отклонение;



# Нормальный закон определяется двумя параметрами:

 $\mu$  - математическое ожидание;

 $\sigma$ - среднеквадратичное отклонение;



Обычно нормальное распределение используется в стандартном виде, где  $\mu$ =0,  $\sigma$ =1. Переход от нормально распределенной величины x к величине со стандартным нормальным распределением z:

$$z = \frac{x - \mu_{x}}{\sigma_{x}}$$

Нормальный закон определяется двумя параметрами:

 $\mu$  - математическое ожидание;

 $\sigma$ - среднеквадратичное отклонение;



Обычно нормальное распределение используется в стандартном виде, где  $\mu$ =0,  $\sigma$ =1. Переход от нормально распределенной величины x к величине со стандартным нормальным распределением z:

$$z = \frac{x - \mu_x}{\sigma_x}$$

*x* – нормально распределенная величина,

**z**— величина со стандартным нормальным распределением.

У нормального распределения есть три стандартных числа:



У нормального распределения есть три стандартных числа: Вероятность попадания x в интервал [ $\mu$ -1 $\sigma$ ;  $\mu$ +1 $\sigma$ ] равна  $\approx$  68%.



У нормального распределения есть три стандартных числа:

Вероятность попадания x в интервал [ $\mu$ -1 $\sigma$ ;  $\mu$ +1 $\sigma$ ] равна  $\approx$  68%. Вероятность попадания x в интервал [ $\mu$ -2 $\sigma$ ;  $\mu$ +2 $\sigma$ ] равна  $\approx$  95%.



У нормального распределения есть три стандартных числа:

Вероятность попадания *x* в интервал [ $\mu$ -1 $\sigma$ ;  $\mu$ +1 $\sigma$ ] равна  $\approx$  68%.

Вероятность попадания *x* в интервал [ $\mu$ -2 $\sigma$ ;  $\mu$ +2 $\sigma$ ] равна  $\approx$  95%.

Вероятность попадания x в интервал [ $\mu$ -3 $\sigma$ ;  $\mu$ +3 $\sigma$ ] равна  $\approx$  99,7%.



Таким образом, на отрезке  $[-3\sigma, 3\sigma]$  находятся почти все значения. Это и есть так называемое **правило** "**трех сигм**".

# 1. Интегральный закон распределения (z)

Функция f(x) показывает следующую важнейшую информацию: вероятность того, что величина x примет значение больше числа a и меньше числа b равна площади под кривой f(x) на отрезке [a;b]. Кроме того, площадь под всей кривой f(x) равна 1.

# 1. Интегральный закон распределения (z)

Функция f(x) показывает следующую важнейшую информацию: вероятность того, что величина x примет значение больше числа a и меньше числа b равна площади под кривой f(x) на отрезке [a;b]. Кроме того, площадь под всей кривой f(x) равна 1.



f(z) – плотность вероятности

## 1. Интегральный закон распределения (z)

Функция f(x) показывает следующую важнейшую информацию: вероятность того, что величина x примет значение больше числа a и меньше числа b равна площади под кривой f(x) на отрезке [a;b]. Кроме того, площадь под всей кривой f(x) равна 1.

Интегральная функция является интегралом от функции распределения

$$F(z) = \int_{-\infty}^{z} f(z) dz;$$



f(z) – плотность вероятности



F(z) – интегральный закон распределения

# 1. Интегральный закон распределения (z)



f(z) – плотность вероятности

# 1. Интегральный закон распределения (z)



f(z) – плотность вероятности



F(z) – интегральный закон распределения

# 1. Интегральный закон распределения (z)



# 1. Интегральный закон распределения (z)



**Квантиль** — это аргумент функции распределения, которой соответствует заданная вероятность p.

## 1. Интегральный закон распределения (z)



**Квантиль** — это аргумент функции распределения, которой соответствует заданная вероятность p.

То есть, если выразить вероятность в виде  $p = F(z) = \int_{-\infty}^{\infty} f(z) dz$ . То квантилем будет z, вычисленное из p.

# 1. Интегральный закон распределения (z)



**Квантиль** — это аргумент функции распределения, которой соответствует заданная вероятность p.

То есть, если выразить вероятность в виде  $p = F(z) = \int_{-\infty}^{\infty} f(z) dz$ ; То квантилем будет z, вычисленное из p.

# Квантили нормального распределения (z)



Границам интервала на левом графике соответствуют значения  $p_1, p_2$  на правом графике.

# Квантили нормального распределения (z)



Границам интервала на левом графике соответствуют значения  $p_1, p_2$  на правом графике.

# 1. Таблица нормального распределения (z)

Так как формула нормального распределения очень сложна, используются статистические таблицы:

| z   | 0,00    | 0,01    | 0,02    | 0,03    | 0,04    | 0,05    | 0,06    | 0,07    | 0,08    | 0,09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0,0 | 0,50000 | 0,50399 | 0,50798 | 0,51197 | 0,51595 | 0,51994 | 0,52392 | 0,52790 | 0,53188 | 0,53586 |
| 0,1 | 0,53983 | 0,54380 | 0,54776 | 0,55172 | 0,55567 | 0,55962 | 0,56356 | 0,56749 | 0,57142 | 0,57535 |
| 0,2 | 0,57926 | 0,58317 | 0,58706 | 0,59095 | 0,59483 | 0,59871 | 0,60257 | 0,60642 | 0,61026 | 0,61409 |
| 0,3 | 0,61791 | 0,62172 | 0,62552 | 0,62930 | 0,63307 | 0,63683 | 0,64058 | 0,64431 | 0,64803 | 0,65173 |
| 0,4 | 0,65542 | 0,65910 | 0,66276 | 0,66640 | 0,67003 | 0,67364 | 0,67724 | 0,68082 | 0,68439 | 0,68793 |

# 1. Таблица нормального распределения (z)

Так как формула нормального распределения очень сложна, используются статистические таблицы:

| z   | 0,00    | 0,01    | 0,02    | 0,03    | 0,04    | 0,05    | 0,06    | 0,07    | 0,08    | 0,09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0,0 | 0,50000 | 0,50399 | 0,50798 | 0,51197 | 0,51595 | 0,51994 | 0,52392 | 0,52790 | 0,53188 | 0,53586 |
| 0,1 | 0,53983 | 0,54380 | 0,54776 | 0,55172 | 0,55567 | 0,55962 | 0,56356 | 0,56749 | 0,57142 | 0,57535 |
| 0,2 | 0,57926 | 0,58317 | 0,58706 | 0,59095 | 0,59483 | 0,59871 | 0,60257 | 0,60642 | 0,61026 | 0,61409 |
| 0,3 | 0,61791 | 0,62172 | 0,62552 | 0,62930 | 0,63307 | 0,63683 | 0,64058 | 0,64431 | 0,64803 | 0,65173 |
| 0,4 | 0,65542 | 0,65910 | 0,66276 | 0,66640 | 0,67003 | 0,67364 | 0,67724 | 0,68082 | 0,68439 | 0,68793 |

Чтобы определить квантиль по заданной вероятности, необходимо найти ближайшее к ней число в таблице и сложить значения соответствующих строки и столбца.

Строки соответствуют значениям z с точностью до десятой доли, а столбцы соответствуют их уточнениям до сотых долей.

## 1. Таблица нормального распределения (z)

Так как формула нормального распределения очень сложна, используются статистические таблицы:

| Z   | 0,00    | 0,01    | 0,02    | 0,03    | 0,04    | 0,05    | 0,06    | 0,07    | 0,08    | 0,09    |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0,0 | 0,50000 | 0,50399 | 0,50798 | 0,51197 | 0,51595 | 0,51994 | 0,52392 | 0,52790 | 0,53188 | 0,53586 |
| 0,1 | 0,53983 | 0,54380 | 0,54776 | 0,55172 | 0,55567 | 0,55962 | 0,56356 | 0,56749 | 0,57142 | 0,57535 |
| 0,2 | 0,57926 | 0,58317 | 0,58706 | 0,59095 | 0,59483 | 0,59871 | 0,60257 | 0,60642 | 0,61026 | 0,61409 |
| 0,3 | 0,61791 | 0,62172 | 0,62552 | 0,62930 | 0,63307 | 0,63683 | 0,64058 | 0,64431 | 0,64803 | 0,65173 |
| 0,4 | 0,65542 | 0,65910 | 0,66276 | 0,66640 | 0,67003 | 0,67364 | 0,67724 | 0,68082 | 0,68439 | 0,68793 |

Чтобы определить квантиль по заданной вероятности, необходимо найти ближайшее к ней число в таблице и сложить значения соответствующих строки и столбца.

Строки соответствуют значениям z с точностью до десятой доли, а столбцы соответствуют их уточнениям до сотых долей.

Например, известно, что z = 0.31, выделяем сотые доли, т.е. z = 0.3+0.01, значит F(z) находится на пересечении четвертой строки и второго столбца, и F(z) = 0.62172.

# 1. Таблица нормального распределения (z)

В некоторых случаях таблицы бывают представлены в более компактном виде: остаются только дробные части всех или некоторых приведенных чисел.

То есть иногда в таблице отсутствуют некоторые нули и запятые.

| z   | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0,0 | 50000 | 50399 | 50798 | 51197 | 51595 | 51994 | 52392 | 52790 | 53188 | 53586 |
| 0,1 | 53983 | 54380 | 54776 | 55172 | 55567 | 55962 | 56356 | 56749 | 57142 | 57535 |
| 0.2 | 57926 | 58317 | 58706 | 59095 | 59483 | 59871 | 60257 | 60642 | 61026 | 61409 |
| 0,3 | 61791 | 62172 | 62552 | 62930 | 63307 | 63683 | 64058 | 64431 | 64803 | 65173 |
| 0,4 | 65542 | 65910 | 66276 | 66640 | 67003 | 67364 | 67724 | 68082 | 68439 | 68793 |

# **2.** Распределение Пирсона или хи-квадрат ( $\chi^2$ ).

$$\chi_n^2 = z_1^2 + z_2^2 + ... + z_n^2;$$

Это распределение возникает как результат сложения квадратов нескольких величин, подчиняющихся нормальному закону с  $\mu$ =0,  $\sigma$ =1.

Число слагаемых *п* называется числом степеней свободы.

Смысл  $f(\chi^2)$  такой же, как и в нормальном законе: вероятность того, что величина  $\chi^2$  попадает в заданный интервал, равна площади под кривой  $f(\chi^2)$ . Так, площадь под кривой на отрезке от 0 до  $n+\sqrt{2}n$  составляет более 90% всей площади под всей кривой  $f(\chi^2)$ . Отсюда следует **правило** "**трех сигм**" для закона  $\chi^2$ : с вероятностью  $p \ge 0,9$  случайная величина  $\chi^2$  не превосходит величины  $n+\sqrt{2}n$ .



# 2. Таблица распределения хи-квадрат (χ²).

| n p | 0,010   | 0,025   | 0,050  | 0,100  | 0,900 | 0,950 | 0,975 | 0,990 | 0,995 |
|-----|---------|---------|--------|--------|-------|-------|-------|-------|-------|
| 1   | 0,00016 | 0,00098 | 0,0039 | 0,0158 | 2,71  | 3,84  | 5,02  | 6,63  | 7,88  |
| 2   | 0,0201  | 0,0506  | 0,1026 | 0,2107 | 4,61  | 5,99  | 7,38  | 9,21  | 10,60 |
| 3   | 0,115   | 0,216   | 0,352  | 0,584  | 6,25  | 7,81  | 9,35  | 11,34 | 12,84 |
| 4   | 0,297   | 0,484   | 0,711  | 1,064  | 7,78  | 9,49  | 11,14 | 13,28 | 14,86 |
| 5   | 0,554   | 0,831   | 1,15   | 1,61   | 9,24  | 11,07 | 12,83 | 15,09 | 16,75 |

Чтобы определить квантиль по заданной вероятности и числу степеней свободы, необходимо найти пересечение соответствующей строки и столбца.

Столбцам таблицы соответствуют вероятности, а строкам - число степеней свободы. В ячейках таблицы содержатся значения  $\chi^2$  (квантили).

# 2. Таблица распределения хи-квадрат (χ²).

| n p | 0,010   | 0,025   | 0,050  | 0,100  | 0,900 | 0,950 | 0,975 | 0,990 | 0,995 |
|-----|---------|---------|--------|--------|-------|-------|-------|-------|-------|
| 1   | 0,00016 | 0,00098 | 0,0039 | 0,0158 | 2,71  | 3,84  | 5,02  | 6,63  | 7,88  |
| 2   | 0,0201  | 0,0506  | 0,1026 | 0,2107 | 4,61  | 5,99  | 7,38  | 9,21  | 10,60 |
| 3   | 0,115   | 0,216   | 0,352  | 0,584  | 6,25  | 7,81  | 9,35  | 11,34 | 12,84 |
| 4   | 0,297   | 0,484   | 0,711  | 1,064  | 7,78  | 9,49  | 11,14 | 13,28 | 14,86 |
| 5   | 0,554   | 0,831   | 1,15   | 1,61   | 9,24  | 11,07 | 12,83 | 15,09 | 16,75 |

Чтобы определить квантиль по заданной вероятности и числу степеней свободы, необходимо найти пересечение соответствующей строки и столбца.

Столбцам таблицы соответствуют вероятности, а строкам - число степеней свободы. В ячейках таблицы содержатся значения  $\chi^2$  (квантили).

Например, для числа степеней свободы n=3 и p=0.975, найдем  $\chi^2=9.35$ .

# **3.** Распределение Стьюдента $(t_n)$ .

$$t_n = \frac{z}{\sqrt{\frac{\chi_n^2}{n}}};$$

Это отношение стандартной нормальной величины к корню из хи-квадрат, деленной на число степеней свободы.

«Стьюдент» - это псевдоним английского статистика Уилльяма Госсета (William Gosset). Пивная история Guinness. +доп инф.

# 3. Таблица распределения Стьюдента (t<sub>n</sub>).

|                    |                                          | Односторонняя критическая область (р) |        |             |             |          |        |        |  |  |  |  |  |
|--------------------|------------------------------------------|---------------------------------------|--------|-------------|-------------|----------|--------|--------|--|--|--|--|--|
| p                  | 0,1                                      | 0,05                                  | 0,025  | 0,01        | 0,005       | 0,0025   | 0,001  | 0,0005 |  |  |  |  |  |
| $\mid n \mid \mid$ |                                          |                                       | Двусто | ронняя крит | ическая обл | асть (р) |        |        |  |  |  |  |  |
|                    | 0,2 0,1 0,05 0,02 0,01 0,005 0,002 0,001 |                                       |        |             |             |          |        |        |  |  |  |  |  |
| 1                  | 3,08                                     | 6,31                                  | 12,71  | 31,82       | 63,66       | 127,32   | 318,30 | 636,61 |  |  |  |  |  |
| 2                  | 1,89                                     | 2,92                                  | 4,30   | 6,96        | 9,92        | 14,09    | 22,33  | 31,60  |  |  |  |  |  |
| 3                  | 1,64                                     | 2,35                                  | 3,18   | 4,54        | 5,84        | 7,45     | 10,21  | 12,92  |  |  |  |  |  |
| 4                  | 1,53                                     | 2,13                                  | 2,78   | 3,75        | 4,60        | 5,60     | 7,17   | 8,61   |  |  |  |  |  |
| 5                  | 1,48                                     | 2,02                                  | 2,57   | 3,36        | 4,03        | 4,77     | 5,89   | 6,87   |  |  |  |  |  |

Чтобы определить квантиль по заданной вероятности и числу степеней свободы, необходимо найти пересечение соответствующей строки и столбца.

Столбцам таблицы соответствуют вероятности, а строкам - число степеней свободы. В ячейках таблицы содержатся значения t (квантили).

## 3. Таблица распределения Стьюдента (t<sub>n</sub>).

|                    |      | Односторонняя критическая область (р) |       |       |       |        |        |        |  |  |  |  |  |
|--------------------|------|---------------------------------------|-------|-------|-------|--------|--------|--------|--|--|--|--|--|
| p                  | 0,1  | 0,05                                  | 0,025 | 0,01  | 0,005 | 0,0025 | 0,001  | 0,0005 |  |  |  |  |  |
| $\mid n \mid \mid$ |      | Двусторонняя критическая область (р)  |       |       |       |        |        |        |  |  |  |  |  |
|                    | 0,2  | 0,1                                   | 0,05  | 0,02  | 0,01  | 0,005  | 0,002  | 0,001  |  |  |  |  |  |
| 1                  | 3,08 | 6,31                                  | 12,71 | 31,82 | 63,66 | 127,32 | 318,30 | 636,61 |  |  |  |  |  |
| 2                  | 1,89 | 2,92                                  | 4,30  | 6,96  | 9,92  | 14,09  | 22,33  | 31,60  |  |  |  |  |  |
| 3                  | 1,64 | 2,35                                  | 3,18  | 4,54  | 5,84  | 7,45   | 10,21  | 12,92  |  |  |  |  |  |
| 4                  | 1,53 | 2,13                                  | 2,78  | 3,75  | 4,60  | 5,60   | 7,17   | 8,61   |  |  |  |  |  |
| 5                  | 1,48 | 2,02                                  | 2,57  | 3,36  | 4,03  | 4,77   | 5,89   | 6,87   |  |  |  |  |  |

Чтобы определить квантиль по заданной вероятности и числу степеней свободы, необходимо найти пересечение соответствующей строки и столбца.

Столбцам таблицы соответствуют вероятности, а строкам - число степеней свободы. В ячейках таблицы содержатся значения t (квантили).

Например, мы ищем квантиль для односторонней критической области:

Для числа степеней свободы n=4 и p=0,025, найдем t=2,78.

# 4. Распределение Фишера ( $F_{n_1,n_2}$ ).

$$F_{n_1,n_2} = \frac{\chi_{n_1}^2/n_1}{\chi_{n_2}^2/n_2};$$

Это отношение двух хи-квадратов, деленных на число степеней свободы. Распределение имеет 2 степени свободы: для числителя и для знаменателя.

 $n_1$ ,  $n_2$  - число степеней свободы.

# **4.** Распределение Фишера ( $F_{n_1,n_2}$ ).

$$F_{n_1,n_2} = \frac{\chi_{n_1}^2/n_1}{\chi_{n_2}^2/n_2};$$

Это отношение двух хи-квадратов, деленных на число степеней свободы. Распределение имеет 2 степени свободы: для числителя и для знаменателя.

 $n_1$ ,  $n_2$  - число степеней свободы.

Обычно используется при сравнении двух дисперсий, так как дисперсия равна сумме квадратов отклонений от среднего значения, деленная на число точек.

# 4. Таблица распределения Фишера ( $F_{n_1,n_2}$ ).

| $n_2$ $n_1$ | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-------------|-------|------|------|------|------|------|------|------|------|------|
| 1           | 161   | 200  | 216  | 225  | 230  | 234  | 237  | 239  | 241  | 242  |
| 2           | 18,5  | 19,0 | 19,2 | 19,2 | 19,3 | 19,3 | 19,4 | 19,4 | 19,4 | 19,4 |
| 3           | 10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,89 | 8,85 | 8,81 | 8,79 |
| 4           | 7,71  | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,09 | 6,04 | 6,00 | 5,96 |
| 5           | 6,61  | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,88 | 4,82 | 4,77 | 4,74 |

Для распределения Фишера создано несколько отдельных таблиц, каждая из которых соответствует своему значению вероятности p. На данном слайде изображена таблица для p=0,95.

# 4. Таблица распределения Фишера ( $F_{n_1,n_2}$ ).

| $n_2$ $n_1$ | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-------------|-------|------|------|------|------|------|------|------|------|------|
| 1           | 161   | 200  | 216  | 225  | 230  | 234  | 237  | 239  | 241  | 242  |
| 2           | 18,5  | 19,0 | 19,2 | 19,2 | 19,3 | 19,3 | 19,4 | 19,4 | 19,4 | 19,4 |
| 3           | 10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,89 | 8,85 | 8,81 | 8,79 |
| 4           | 7,71  | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,09 | 6,04 | 6,00 | 5,96 |
| 5           | 6,61  | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,88 | 4,82 | 4,77 | 4,74 |

Для распределения Фишера создано несколько отдельных таблиц, каждая из которых соответствует своему значению вероятности p. На данном слайде изображена таблица для p=0,95.

Строкам таблицы соответствуют значения  $n_2$ , столбцам соответствуют значения  $n_1$ .

# 4. Таблица распределения Фишера ( $F_{n_1,n_2}$ ).

| n <sub>2</sub> n | 1 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|------------------|-------|------|------|------|------|------|------|------|------|------|
| 1                | 161   | 200  | 216  | 225  | 230  | 234  | 237  | 239  | 241  | 242  |
| 2                | 18,5  | 19,0 | 19,2 | 19,2 | 19,3 | 19,3 | 19,4 | 19,4 | 19,4 | 19,4 |
| 3                | 10,13 | 9,55 | 9.28 | 9,12 | 9,01 | 8,94 | 8,89 | 8,85 | 8,81 | 8,79 |
| 4                | 7,71  | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,09 | 6,04 | 6,00 | 5,96 |
| 5                | 6,61  | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,88 | 4,82 | 4,77 | 4,74 |

Для распределения Фишера создано несколько отдельных таблиц, каждая из которых соответствует своему значению вероятности p. На данном слайде изображена таблица для p=0,95.

Строкам таблицы соответствуют значения  $n_2$ , столбцам соответствуют значения  $n_1$ .

Чтобы найти квантиль по заданной **вероятности** p и  $n_1$ ,  $n_2$ , возьмем таблицу для соответствующей вероятности p и найдем значение на пересечении строки  $n_2$  со столбцом  $n_1$ .

Например, для p=0.95,  $n_1=3$ ,  $n_2=4$ , квантилем будет **6.59**.