NOMBRES COMPLEXES - BAC S NOUVELLE CALÉDONIE 2016

$$z_0 = 1 \text{ et } z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right) z_n$$

1)

1.a) Soit le nombre complexe $c = 1 + i \frac{\sqrt{3}}{3}$. Il s'écrit $c = r e^{i\theta}$ sous forme exponentielle, r étant son module et θ son argument.

On a
$$r = |c| = \sqrt{1 + \left(\frac{\sqrt{3}}{3}\right)^2} = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}}$$

 $\cos \theta = \frac{1}{r} = \frac{\sqrt{3}}{2}$
 $\sin \theta = \frac{\sqrt{3}}{3} \frac{1}{r} = \frac{1}{2}$

dont on déduit que $\theta = \frac{\pi}{6}$ modulo (2π) .

Alors
$$c = 1 + i \frac{\sqrt{3}}{3} = \frac{2}{\sqrt{3}} e^{i \frac{\pi}{6}}$$
.

1.b) $z_0 = 1$ et $z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)z_n \implies z_1 = c = 1 + i\frac{\sqrt{3}}{3}$ et, sous forme exponentielle, $z_1 = \frac{2}{\sqrt{3}}e^{i\frac{\pi}{6}}$.

$$z_2 = \left(1 + i\frac{\sqrt{3}}{3}\right)z_1 = z_1^2 = \left(\frac{2}{\sqrt{3}}e^{i\frac{\pi}{6}}\right)^2 = \frac{4}{3}e^{i\frac{\pi}{3}}.$$

2)

2.a) On peut écrire
$$z_1 = \left(\frac{2}{\sqrt{3}}\right)^1 e^{i1\frac{\pi}{6}}$$
 et $z_2 = \left(\frac{2}{\sqrt{3}}\right)^2 e^{i2\frac{\pi}{6}}$.

Si la proposition $z_n = \left(\frac{2}{\sqrt{3}}\right)^n e^{in\frac{\pi}{6}}$ est vraie, elle est aussi vraie pour $z_{n+1} = z_1 z_n = \left(\frac{2}{\sqrt{3}}\right)^{n+1} e^{i(n+1)\frac{\pi}{6}}$ et par récurrence la proposition est vraie pour tout entier naturel n.

- 2.b) Les points O, A_0 et A_n sont respectivement les points d'affixe 0, z_0 et z_n . Pour qu'ils soient alignés, il faut que leurs arguments soient égaux à $k\pi$ près, avec $k \in \mathbb{Z}$. Les arguments de 0 et z_0 sont nuls. Il faut donc que $\arg(z_n) = n\frac{\pi}{6} = 0 + k\pi$, ce qui donne n = 6k.
- 3)
 3.a) $d_n = |z_{n+1} z_n|$ est le module du complexe $z_{n+1} z_n$ dont l'image A_d dans le repère orthonormé $(O; \vec{u}, \vec{v})$ est telle que $\overrightarrow{OA_d} = \overrightarrow{OA_{n+1}} \overrightarrow{OA_n} = \overrightarrow{A_n A_{n+1}}$.

 Ceci revient à dire que d_n est égale à la norme du vecteur $\overrightarrow{A_n A_{n+1}}$: $d_n = \|\overrightarrow{A_n A_{n+1}}\|$.