

Chương 6. Tầng ứng dụng

1. Tổng quan về tầng ứng dụng

Tầng ứng dụng trong TCP/IP

- Điều khiển và cung cấp các dịch vụ mạng.
- Trong mô hình TCP/IP không có 2 tầng trình diễn và tầng phiên.
- Các ứng dụng mạng cài đặt các chức năng của 2 tầng này

```
Application
 (HTTP, Mail, ...)
  Transport
  (UDP, TCP ...)
   Network
   (IP, ICMP...)
    Datalink
(Ethernet, ADSL...)
   Physical
     (bits...)
```


Ứng dụng mạng

- Hoạt động trên các hệ thống đầu cuối (end system)
- Cài đặt giao thức ứng dụng để cung cấp dịch vụ
- Gồm có 2 tiến trình giao tiếp với nhau qua môi trường mạng:
 - Client: cung cấp giao diện NSD, gửi thông điệp yêu cầu dịch vụ
 - Server: cung cấp dịch vụ, trả thông điệp đáp ứng
- Ví dụ: Web
 - Web browser (trình duyệt Web): Chrome, Firefox...
 - Web server: Apache, Tomcat...

Hình ảnh từ: "Computer Networking: A Top Down Approach", Jim Kurose

Giao tiếp giữa các tiến trình ứng dụng

- Socket: đối tượng dịch vụ do tầng giao vận cung cấp
 - Các tiến trình ứng dụng sử dụng dịch vụ của tầng giao vận để trao đổi thông điệp
- Địa chỉ socket: Địa chỉ IP, Số hiệu cổng
- Ví dụ: Socket mà phần mềm Web Server trên máy chủ của SoICT có định danh 202.191.56.65:80

Hình ảnh từ: "Computer Networking: A Top Down Approach", Jim Kurose

Giao tiếp giữa các tiến trình

- Tiến trình client: gửi yêu cầu
- Tiến trình server: trả lời
- Mô hình điển hình: 1 server nhiều client
- Client cần biết địa chỉ của server: địa chỉ IP, số hiệu cổng

Các mô hình ứng dụng

- Mô hình client/server
- Mô hình Ngang hàng (P2P: Peer-to-peer)
- Mô hình lai

Mô hình client/server

Client

- Gửi yêu cầu truy cập dịch vụ đến server
- Về nguyên tắc, không liên lạc trực tiếp với các máy khách khác

Server

- Thường xuyên online để chờ yêu cầu đến từ client
- Có thể có máy chủ dự phòng để nâng cao hiệu năng, phòng sự cố

Mô hình ngang hàng thuần túy

- Không có máy chủ trung tâm
- Các máy có vai trò ngang nhau
- Hai máy bất kỳ có thể liên lạc trực tiếp với nhau
- Không cần vào mạng thường xuyên
- VD: Gnutella

Mô hình lai

- Một máy chủ trung tâm để quản lý NSD, thông tin tìm kiếm...
- Các máy khách sẽ giao tiếp trực tiếp với nhau sau khi đăng nhập
- VD: Skype, Bit Torrent

P2P Comm.

Client-Server Comm.

2. Dịch vụ tên miền(DNS)

Giới thiệu chung

- Tên miền: định danh trên tầng ứng dụng cho các nút mạng
 - Trên Internet được quản lý tập trung
 - Quốc tế: ICANN
 - Việt Nam: VNNIC
- DNS(Domain Name System): hệ thống tên miền gồm các máy chủ quản lý thông tin tên miền và cung cấp dịch vụ DNS
- Vấn đề phân giải tên miền sang địa chỉ IP
 - Người sử dụng dùng tên miền để truy cập dịch vụ
 - Máy tính và các thiết bị mạng không sử dụng tên miền mà dùng địa chỉ IP khi trao đổi dữ liệu
- Làm thế nào để chuyển đổi tên miền sang địa chỉ IP?

Chuyển đổi địa chỉ và ví dụ

Máy tính dùng địa chỉ IP

NSD dùng tên miền

Tôi muốn vào địa chỉ www.soict.hust.edu.vn

NSD

Cần có chuyển đổi địa chỉ

Mời truy cập vào 202.191.56.65

Máy chủ tên miền

Máy chủ web 202.191.56.65

Không gian tên miền

- Kiến trúc : hình cây
 - Root: Nút gốc
 - Chia thành các zone
- Mỗi nút là một tập hợp các bản ghi mô tả tên miền tương ứng với nút đó. Ví dụ:
 - SOA
 - NS
 - A

Hình ảnh từ: Wikipedia

Hệ thống máy chủ DNS

- Máy chủ tên miền gốc (Root server)
 - Trả lời truy vấn cho các máy chủ cục bộ
 - Quản lý các zone và phân quyền quản lý cho máy chủ cấp dưới
 - Có 13 hệ thống máy chủ gốc trên mạng Internet (http://www.root-servers.org)

Hệ thống máy chủ DNS (tiếp)

- Máy chủ tên miền cấp 1 (Top Level Domain)
 - Quản lý tên miền cấp 1
- Máy chủ được ủy quyền (Authoritative DNS servers)
 - Quản lý tên miền cấp dưới
- Máy chủ của các tổ chức: của ISP
 - Không nằm trong phân cấp của DNS
- Máy chủ cục bộ: dành cho mạng nội bộ của cơ quan tổ chức
 - Không nằm trong phân cấp của DNS

Phân giải tên miền

- Tự phân giải
 - File HOST:
 - Windows: C:\WINDOWS\system32\drivers\etc\
 - Linux: /etc/hosts
 - Bộ đệm của ứng dụng
- Dịch vụ phân giải tên miền: client/server
 - Giao thức tầng ứng dụng: DNS
 - Sử dụng dịch vụ UDP/TCP với cổng dịch vụ là 53
 - Phân giải đệ quy (Recursive Query)
 - Phân giải tương tác (Interactive Query)

Thông điệp DNS

- DNS Query và DNS Reply: Chung khuôn dạng
- Identification: Định danh của truy vấn
 - Thông điệp trả lời phải có giá trị Identification trùng với thông điệp truy vấn
- Flags: Các cờ điều khiển
- #Question: Số lượng tên miền được truy vấn
- QUESTION: các tên miền được truy vấn

Identification	Flags	
#Question	#Answer RRs	
#Authority RRs	#Additional RRs	
QUESTION		
ANSWER		
AUTHORITY		
ADDITIONAL		

Thông điệp DNS

- #Answer RRs: Số lượng bản ghi trả lời
- ANSWER: Các bản ghi trả lời
- # Authority RRs: Số lượng bản ghi các máy chủ được ủy quyền khác
- AUTHORITY: Các bản ghi của máy chủ được ủy quyền khác
- #Additional RRs: Số lượng các bản ghi bổ sung
- ADDITIONAL: Các bản ghi bố sung

Identification	Flags
#Question	#Answer RRs
#Authority RRs	#Additional RRs
QUESTION	
ANSWER	
AUTHORITY	
ADDITIONAL	

Ví dụ: dig linux.com

```
; <> DiG 9.9.2-P1 <> linux.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21655
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2,
ADDITIONAL: 3
                           TTL: thời gian(s) lưu giữ
;; QUESTION SECTION:
                           trả lời trong cache
; linux.com. IN A
;; ANSWER SECTION;
linux.com / 1786 IN A 140.211.167.51
linux.com. 1786 IN A 140.211.167.50
;; AUTHORITY SECTION:
linux.com. 86386 IN NS ns1.linux-foundation.org.
linux.com. 86386 IN NS ns2.linux-foundation.org.
;; ADDITIONAL SECTION:
ns1.linux-foundation.org. 261 IN A 140.211.169.10
ns2.linux-foundation.org. 262 IN A 140.211.169.11
```


Ví dụ: dig linux.com

```
; <> DiG 9.9.2-P1 <> linux.com
;; global options: +cmd
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21655
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2,
ADDITIONAL: 3
                           Tên các máy chủ DNS server trả lời truy vấn.
;; QUESTION SECTION:
                           Nếu phần ANSWER rỗng, DNS Resolver gửi truy
; linux.com. IN A
                           vấn tới các máy chủ này
;; ANSWER SECTION:
linux.com. 1786 IN A 140.211.167.51
linux.com. 1786 IN A 140.211.167.50
;; (AUTHORITY SECTION:
linux.com. 86386 IN NS ns1.linux-foundation.org.
linux.com. 86386 IN NS ns2.linux-foundation.org.
;; ADDITIONAL SECTION:
ns1.linux-foundation.org. 261 IN A 140.211.169.10
ns2.linux-foundation.org. 262 IN A 140.211.169.11
```


Ví dụ: dig linux.com

```
; <> DiG 9.9.2-P1 <> linux.com
;; global options: +cmd
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21655
;; flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2,
ADDITIONAL: 3
                           Địa chỉ IP của các máy chủ trả lời truy vấn.
;; QUESTION SECTION:
                           Thông tin này được lưu vào cache
; linux.com. IN A
;; ANSWER SECTION:
linux.com. 1786 IN A 140.211.167.51
linux.com. 1786 IN A 1/40.211.167.50
;; AUTHORITY SECTION;
linux.com. 86386 IN NS ns1.linux-foundation.org.
linux.com. 86386 IN NS ns2.linux-foundation.org.
;; ADDITIONAL SECTION.
ns1.linux-foundation.org. 261 IN A 140.211.169.10
ns2.linux-foundation.org. 262 IN A 140.211.169.11
```


Phân giải tương tác

Cơ chế mặc định trên các máy chủ DNS

Phân giải đệ quy

Tùy chọn mở rộng

3. Dịch vụ Web

HTTP và Web

- Internet trước thập kỷ 1990s:
 - Hầu như chỉ sử dụng hạn chế trong cơ quan chính phủ, phòng nghiên cứu...
 - Các dịch vụ email, FPT không phù hợp cho chia sẻ thông tin đại chúng
 - Không có cơ chế hiệu quả để liên kết các tài nguyên thông tin nằm rải rác trên Internet
- Năm 1990, Tim Berners-Lee giới thiệu World Wide Web:
 - Trao đổi thông tin dưới dạng siêu văn bản (hypertext) sử dụng ngôn ngữ HTML (Hypertext Markup Language)
 - Các đối tượng không cần đóng gói "tất cả trong một" như trên các văn bản trước đó
 - Siêu văn bản chỉ chứa chứa liên kết (hypertext) tới các đối tượng khác (định vị bằng URL).

Uniform Resource Locator

 Định vị một tài nguyên bất kỳ trên mạng và cách thức để truy cập tài nguyên đó

```
protocol://hostname[:port]/directory-path/resource
```

- protocol: Giao thức (http, ftp, https, smtp, rtsp...)
- hostname: tên miền, địa chỉ IP
- port: cổng ứng dụng (có thể không cần)
- directory path: đường dẫn tới tài nguyên
- resource: định danh của tài nguyên

HTTP và Web

- WWW: World Wide Web
 - trao đổi dữ liệu siêu văn bản HTML (HyperText Markup Language) trên mạng
- HTTP: HyperText Transfer Protocol
 - Mô hình Client/Server
 - Client yêu cầu truy nhập tới các trang web (chứa các đối tượng web) và hiển thị chúng trên trình duyệt
 - Server: Nhận yêu cầu và trả lời cho client

Hoạt động của HTTP

- Thiết lập liên kết TCP
 - Server mở một TCP socket chờ yêu cầu kết nối tại cổng 80 (mặc định)
 - Client khởi tạo một liên kết TCP tới server
 - Server chấp nhận yêu cầu, tạo liên kết
- Trao đổi thông điệp HTTP (giao thức ứng dụng)
 - HTTP Request: Thông điệp yêu cầu
 - HTTP Response: Thông điệp trả lời
- Đóng liên kết TCP

Khuôn dạng HTTP Request

Mã ASCII (dễ dàng đọc được dưới dạng văn bản)

```
Các dòng tiêu đề

Các dòng tiêu đề

GET /~tungbt/index.htm HTTP/1.1\r\n

Host: soict.hust.edu.vn\r\n
User-Agent: Mozilla/5.0

Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
tiêu đề
```


Các phương thức yêu cầu

HTTP/1.0

- GET
- POST
- HEAD
 - yêu cầu máy chủ loại một số đối tượng ra khỏi thông điệp trả lời

HTTP/1.1

- GET, POST, HEAD
- PUT
 - tải file lên máy chủ, đường dẫn chỉ ra trong URL, file để trong body
- DELETE
 - Xóa file chỉ ra bởi đường dẫn

Lưu ý: Có 2 cách để gửi tham số đến server: POST hoặc GET

http://www.google.com/search?q=computer+network&flags=68&num=10

Khuôn dạng HTTP Response

Dòng trạng thái trả lời

```
HTTP/1.1 200 OK\r\n
Date: Thu, 31 Jul 2014 00:00:14 GMT\r\n
Server: Apache/2.2.15 (CentOS)\r\n
Last-Modified: Wed, 30 Jul 2014 23:59:50 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Connection: close\r\n
Content-Type: text/html; charset=UTF-8\r\n
\r\n
data data data data data ...
```

Dữ liệu đáp ứng yêu cầu

Mã trạng thái trả lời

Trong dòng đầu tiên của thông điệp trả lời, ví dụ

200 OK

 request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message (Location:)

400 Bad Request

request message not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

Hiển thị (rendering) nội dung trang web

- Mô hình xử lý cơ bản tại trình duyệt:
 - Nhận thông điệp HTTP Response
 - Hiển thị:
 - Xử lý mã HTML, CSS, Javascripts
 - Gửi thông điệp HTTP Request yêu cầu các đối tượng khác(nếu có)
 - Bắt và xử lý sự kiện
- Các sự kiện có thể xảy ra:
 - Sự kiện của người dùng: OnClick, OnMouseOver...
 - Sự kiện khi hiển thị: OnLoad, OnBeforeUnload...
 - Theo thời gian: setTimeout(), clearTimeout()...

Các chế độ của HTTP

HTTP không duy trì

- Chỉ một đối tượng web được gửi qua liên kết TCP
- Sử dụng mặc định trong HTTP/1.0
- HTTP 1.0: RFC 1945

HTTP có duy trì

- Nhiều đối tượng có thể được gửi qua một liên kết TCP.
- Sử dụng mặc định trong HTTP/1.1
- HTTP 1.1: RFC 2068

Hoạt động của HTTP/1.0

Hoạt động của HTTP/1.1

HTTP/1.1 với pipeline

HTTP là giao thức stateless

- Một phiên hoạt động của HTTP:
 - Trình duyệt kết nối với Web server
 - Trình duyệt gửi thông điệp yêu cầu HTTP Request
 - Web server đáp ứng với một thông điệp HTTP Response
 - ...lặp lại...
 - Trình duyệt ngắt kết nối
- Các thông điệp HTTP Request được xử lý độc lập
- Web server không ghi nhớ trạng thái của phiên HTTP
 - Nếu dịch vụ Web cần xác thực người dùng thì người dùng sẽ phải đăng nhập lại cho mỗi thông điệp HTTP Request gửi đi

HTTP Cookie HTTP Request HTTP Response Cookie Web server Cookie

HTTP Request

Cookie

- Cookie: dữ liệu do ứng dụng Web tạo ra, chứa thông tin trạng thái của phiên làm việc
 - Server có thể lưu lại cookie(một phần hoặc toàn bộ)
- Sau khi xử lý yêu cầu, Web server trả lại thông điệp HTTP Response với coookie đính kèm
 - Set-Cookie: key = value; options;
- Trình duyệt lưu cookie
- Trình duyệt gửi HTTP Request tiếp theo với cookie được đính kèm

HTTPS

- Hạn chế của HTTP:
 - Không có cơ chế để người dùng kiểm tra tính tin cậy của Web server → lỗ hổng để kẻ tấn công giả mạo dịch vụ hoặc chèn mã độc vào trang web HTML
 - Không có cơ chế mã hóa giữ mật -> lỗ hổng để kẻ tấn công nghe
 lén đánh cắp thông tin nhạy cảm
- Secure HTTP: sử dụng liên kết SSL/TLS thay cho TCP để truyền các thông điệp HTTP
 - Xác thực:
 - Người dùng truy cập vào đúng Website mong muốn
 - Dữ liệu trong quá trình truyền không bị thay đổi
 - Bảo mật: dữ liệu được giữ bí mật trong quá trình truyền

HTTP trên trình duyệt Web

HTTPS trên trình duyệt Web

4. Dịch vụ email

Dịch vụ email

- MUA (Mail User Agent)
 - Lấy thư từ máy chủ
 - · Gửi thư đến máy chủ
 - VD: Outlook, Thunderbird...
- MTA (Mail Transfer Agent): :
 - Chứa hộp thư đến của NSD (mail box)
 - Hàng đợi để gửi thư đi
 - VD: Sendmail, MS Exchange...

- Giao thức:
 - Chuyển thư: SMTP-Simple Mail Transfer Protocol
 - Nhận thư
 - POP Post Office Protocol
 - IMAP Internet Mail Access Protocol

Giao thức SMTP

- Tài liệu mô tả: RFC 2821
- TCP, port 25: Chuyển thư từ client đến server và giữa các server với nhau
- Tương tác yêu cầu/trả lời
 - Yêu cầu: Lệnh với mã ASCII
 - Trả lời: mã trạng thái và dữ liệu

Các giao thức nhận thư

- POP: Post Office Protocol [RFC 1939]
 - Đăng nhập và lấy hết thư về
- IMAP: Internet Mail Access Protocol [RFC 1730]
 - Phức tạp hơn POP
 - Cho phép lưu trữ và xử lý thư trên máy chủ

Web Mail

- Sử dụng Web browser như một MUA
- MUA và MTA giao tiếp thông qua HTTP
- Mails được lưu trữ trên máy chủ
- E.g.
 - Gmail,
 - Hotmail,
 - Yahoo! Mail, etc.
- Ngày nay, rất nhiều các MTA cho phép truy cập thông qua giao diện web
 - http://mail.hust.edu.vn
 - http://mail.soict.hust.edu.vn

Khuôn dạng thông điệp thư điện tử

Tiêu chuẩn MIME

- Biểu diễn nội dung email có chứa dữ liệu đa phương tiện
- MIME: multimedia mail extension, RFC 2045, 2056

• Thêm một dòng trong phần đầu chỉ rõ khuôn dạng dữ

liệu gửi đi From: alice@crepes.fr MIME version To: bob@hamburger.edu Subject: Picture of yummy crepe. method used MIME-Version: 1.0 to encode data Content-Transfer-Encoding: base64 Content-Type: image/jpeg multimedia data type, subtype, base64 encoded data parameter declaration ...base64 encoded data encoded data

5. Dịch vụ truyền tệp (FTP)

FTP: File Transfer Protocol

- Mô hình Client-server
- Trao đổi file giữa các máy
- Sử dụng TCP, cổng dịch vụ
 20, 21

- Điều khiển Out-of-band :
 - Lệnh của FTP : cổng 21
 - Dữ liệu: cổng 20
- Người dùng phải đăng nhập trước khi truyền file
- Một số server cho phép người dùng với tên là anonymous

Lệnh và mã trả lời

Một số ví dụ

- USER username
- PASS password
- LIST : trả về danh sách file
- RETR filename L\u00e1y file
- STOR filename Đặt file lên máy chủ

Ví dụ về mã trả lời

- 331 Username OK, password required
- 125 data connection already open; transfer starting
- 425 Can't open data connection
- 452 Error writing file

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

