## A general approach for get a level $\alpha$ test

- Estimate  $\theta$  by its point estimator  $\hat{\theta}$
- Compute s.e.( $\theta$ ) assuming  $\theta = \theta_0$ . Estimate it if it's
- Compute a **test statistic** T that measures measures how consistent the data are with  $H_0$ . Often, T has the form:

- Find the **null distribution** the distribution of T assuming  $H_0$  is true.
- Find the form of the rejection region  $\mathcal{R}$  the set of values of T for which  $H_0$  is rejected.
- Acceptance region A = Complement of R.
- ullet Determine  $\mathcal R$  by ensuring that the level of significance of the test is  $\alpha$ , i.e.,  $P(\text{reject } H_0|H_0 \text{ is true}) = \alpha$ .

Suppose 
$$T = \frac{\hat{\theta} - \theta_o}{\hat{s}_e(\hat{\theta})}$$

In this case, it is often easy to guess  $\mathcal{R}$ .

Case 1:  $H_0: \theta = \theta_0$  against  $H_1: \theta \neq \theta_0$ 

Case 2:  $H_0: \theta = \theta_0$  against  $H_1: \theta > \theta_0$ 

Case 3:  $H_0: \theta = \theta_0$  against  $H_1: \theta < \theta_0$ 

Strong evidence against the [i.e., in town of the lift T is the snall, because in this case is see to a rejuse the if T < fine aprilmate reguling. Compute the critical point in a way that ensures that the level

of the test equals the prescribed  $\alpha$ .

The corresponding level  $\alpha$  tests:





 $\mathcal{R} = \{T > c_{\alpha}\}$ , i.e., reject  $H_0$  when  $T > c_{\alpha}$ , otherwise accept it.

Case 3:  $H_0: \theta = \theta_0$  against  $H_1: \theta < \theta_0$  [Real: River When  $\mathcal{TL}_{\eta}$ ]

4- 121- 4  $\mathcal{R} = \{T < \forall \emptyset \}$ , i.e., reject  $H_0$  when  $T < \forall \emptyset$  otherwise accept

1 then CAIICA 12/12 Chips: If dist is the is thurs = x.

in in this course · sent & took: (PE Ryere Ho) Ho is trued & & Test starts for with distribution of test started Ho and HI - well and alternative supportuents Trype I emost Recop Type I and type II errors

6

## Hypothesis testing (continued) Tobs = observed volue of T

critical point. But how strong is the evidence against the null? This is formally measured by p-value. Let's play a game to We can perform a level  $\alpha$  test by comparing  $T_{\rm obs}$  with the motivate its definition.

up. My chances are not very good but I will take them anyway. blue. I will bet 3 people a candy bar that a blue ball will come My bag has 10 small balls. I claim that 8 are red and 2 are

| winner      | PRC<br>PRC              |  |
|-------------|-------------------------|--|
| color drawn | black<br>black<br>black |  |
| PKC vs?     | Ali<br>Anton<br>Giri    |  |
| trial#      | 1 2 3                   |  |

I data don't seem to be unsistent when claims of the siller Q. Does is it seem reasonable that I would win. 3 times in 3 trials if the bag contained 2 blue balls?

olaim is not true.

charce of the very swalk.12

Hypotheses:

H: 17 0-20

T and  $T_{\rm obs}$ 

T= XI+Xx+X3 = # black balls drawn.

TN Bin ( 11=3, p=0.20).

Null distribution T:

**Q.** What is the actual chance of getting  $T_{\rm obs}$  if  $H_0$  is true? What does it indicate about  $H_0$ ?

800.0 = (1.0)(7.0)(7.0) = PE T= Tous 3 / 40 is true ] = PE BIM(n=3, p=0.10) = 3 /

who the is not true. I find the -> Date that we got is yave

- Is indicate that to is not true, and we should right to. • Small p-value implies Tots 10 12 'rane' if the is true
  - Smaller the p-value, stronger the evidence against  $H_0$ .
- Level  $\alpha$  test: Reject  $H_0$  if p-value  $\leq \alpha$ .
- $\bullet$  Another interpretation of p-value: The smallest level of significance at which  $H_0$  is rejected.
- Advantage of p-value over critical point: VSiM p-value ismore ingrimative than simplify waing the critical ple.
- **Q.** Is p-value =  $P(H_0 \text{ is true})$ ?

D. NO.

- $H_0$  is either true or not true, but we don't know the truth. Certainly,  $H_0$  is not a random quantity.
- p-value tells us how likely our  $T_{\rm obs}$  is (or something more extreme) if  $H_0$  is true.

- Formulate  $H_0$  and  $H_1$
- ullet Find a test statistic T and get its null distribution
- ullet Compute  $T_{
  m obs}$
- Use the null distribution to compute either the critical point or the p-value for the test.
  - State your conclusion. ( in lay man terms w/sa). don't just say no is accepted in regreted.

## Some specific tests

## One-sample tests for $\mu$ where $X \sim N(\mu, \sigma^2)$

Case 1: z-test (known  $\sigma^2$ ):  $H_0: \mu = \mu_0$ 

Test statistic: 1 - 2 (h)

NOTE: MANY HO 13 FM. .

X-M

Here:

~ N(011) when to is

Michie (1/0) N

Critical point for the level  $\alpha$  test:

One-sided alternative:  $\frac{2}{4}$  w  $-\frac{2}{4}$ 

Two-sided alternative: