14 Lineare statistische Modelle

14.1 Definition

Es seien $X=(X_1,\ldots,X_n)^T$ ein (beobachtbarer) Zufallsvektor, $C=(c_{ij})_{i=1,\ldots,s\atop j=1,\ldots,s}$ eine bekannte $n\times s$ -Matrix mit $\mathrm{Rang}(C)=s$ (insbesondere $n\geq s$), $\vartheta=(\vartheta_1,\ldots,\vartheta_s)^T$ unbekannter Parametervektor, $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)^T$ ein (nicht beobachtbarer) Zufallsvektor mit

$$E(\varepsilon) = 0, \ \operatorname{Var}(\varepsilon) = E(\varepsilon \cdot \varepsilon^T) = \sigma^2 \cdot I_n$$

 σ^2 unbekannt.

Ein lineares Modell (LM) wird beschrieben durch die Gleichung

$$X = C\vartheta + \varepsilon \tag{1}$$

also

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1s} \\ \vdots & & \vdots \\ c_{n1} & \cdots & c_{ns} \end{pmatrix} \begin{pmatrix} \vartheta_1 \\ \vdots \\ \vartheta_s \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

C heißt "Designmatrix".

(1) heißt klassisch, falls $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$.

Bemerkungen:

- a) Im klassischen LM gilt: $X \sim \mathcal{N}_n(C\vartheta, \sigma^2 I_n)$. Die Beobachtungen X_1, \ldots, X_n sind also unabhängig, aber nicht identisch verteilt.
- b) $\operatorname{Rang}(C) = s \Leftrightarrow C^T C$ nicht singulär Denn^{39} :

$$C^T C$$
 singulär $\Leftrightarrow \exists u \in \mathbb{R}^s, u \neq 0 : C^T C u = 0$
 $\Leftrightarrow \exists u \in \mathbb{R}^s, u \neq 0 : u^T C^T C u = (C u)^T C u = 0$
 $\Leftrightarrow \exists u \in \mathbb{R}^s, u \neq 0 : C u = 0$
 $\Leftrightarrow \operatorname{Rang}(C) < s$

 $[\]overline{^{39}}$ In der Hinrichtung multipliziere $C^TCu=0$ mit u^T , in der Rückrichtung multipliziere Cu=0 mit C^T .

14.2 Beispiele

a) $X_i = \vartheta + \varepsilon_i, i = 1, \dots, n$

$$(s=1, \ C=\begin{pmatrix}1\\\vdots\\1\end{pmatrix})$$

(wiederholte Messung)

b) $X_i = a + bt_i + \varepsilon_i, i = 1, ..., n$

$$(s=2, a=\vartheta_1, b=\vartheta_2, C=\begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix})$$

(einfache lineare Regression)

c) $X_i = a + bt_i + ct_i^2 + \varepsilon_i, i = 1, ..., n$

$$(s = 3, \ \vartheta = (a, b, c)^T, \ C = \begin{pmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 \end{pmatrix})$$

(einfache quadratische Regression)

d) $X_i = \sum_{j=1}^s \vartheta_j \cdot f_j(t_i) + \varepsilon_i$, i = 1, ..., n $f_1, ..., f_s$ beliebige gegebene Funktionen! (allgemeine (lineare) Regression)

z.B. $f_j(t) = \sin(\omega_j \cdot t)$ (trigonometrische Regression)

e) $X_i = a + bu_i + cv_i + \ldots + gz_i + \varepsilon_i, i = 1, \ldots, n$

$$\vartheta = \begin{pmatrix} a \\ \vdots \\ g \end{pmatrix}, C = \begin{pmatrix} 1 & u_1 & v_1 & \cdots & z_1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & u_n & v_n & \cdots & z_n \end{pmatrix})$$

(multiple lineare Regression)

f) $X_{1,i} = \vartheta_1 + \varepsilon_{1,i}, i = 1, \dots, n_1$ $X_{2,i} = \vartheta_2 + \varepsilon_{2,i}, i = 1, \dots, n_2$

$$\begin{pmatrix} X_{1,1} \\ \vdots \\ X_{1,n_1} \\ X_{2,1} \\ \vdots \\ X_{2,n_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,1} \\ \vdots \\ \varepsilon_{1,n_1} \\ \varepsilon_{2,1} \\ \vdots \\ \varepsilon_{2,n_2} \end{pmatrix}$$

(2-Stichproben-Modell)

g) $X_{i,j} = \vartheta_i + \varepsilon_{i,j}, i = 1, ..., k, j = 1, ..., n_i$ (Modell der einfachen Varianzanalyse, 1-faktorielle ANOVA) z.B. Effekt $X_{i,j}$ bei k unterschiedlichen Behandlungen

14.3 Schätzung von ϑ

Sei $R(C) := \{C\vartheta : \vartheta \in \mathbb{R}^s\}$ s-dimensionaler Unterraum des \mathbb{R}^n . 14.1(1) besagt $EX \in R(C)$.

Forderung: $||X - C\vartheta||^2 = \min_{\vartheta}!$ (kleinste-Quadrate-Methode; vgl. 4.6)

Lösung:

$$\hat{\vartheta} = \hat{\vartheta}(X) = (C^T C)^{-1} \cdot C^T X$$

Beweis:

Wegen $\mu(\vartheta) = C\vartheta$ folgt $M(\vartheta) = \left(\frac{\partial \mu_i}{\partial \vartheta_j}\right)_{i,i} = C$ in 4.6 und somit die Normalengleichung $C^T C \vartheta = C^T X$.

Da C^TC nach Bemerkung 14.1(b) invertierbar ist, ist

$$\hat{\vartheta} = \hat{\vartheta}(X) = (C^T C)^{-1} \cdot C^T X$$

die (einzige) Lösung.

Bemerkung:

 $\overline{\text{Es gilt}^{40}}$:

$$E_{\vartheta,\sigma^2}(\hat{\vartheta}) = (C^T C)^{-1} C^T \underbrace{E_{\vartheta,\sigma^2}(X)}_{=C\vartheta} = \vartheta$$

d.h. $\hat{\vartheta}$ ist erwartungstreu für ϑ .

$$\operatorname{Var}_{\vartheta,\sigma^{2}}(\hat{\vartheta}) = (C^{T}C)^{-1}C^{T} \underbrace{\operatorname{Var}_{\vartheta,\sigma^{2}}(X)}_{=\operatorname{Var}_{\vartheta,\sigma^{2}}(\varepsilon) = \sigma^{2} \cdot I_{n}} \cdot C(C^{T}C)^{-1} = \sigma^{2}(C^{T}C)^{-1}$$

Beispiele:

a) In 14.2(b) (einfache lineare Regression) ist (vgl. 4.7)

$$\hat{\vartheta}_1 = \bar{X} - \hat{\vartheta}_2 \bar{t}, \ \hat{\vartheta}_2 = \frac{\sum_{i=1}^n t_i X_i - n \cdot \bar{t} \cdot \bar{X}}{\sum_{i=1}^n (t_i - \bar{t})^2}$$

⁴⁰Beachte: $(A^T)^{-1} = (A^{-1})^T$

b) In 14.2(g) (ANOVA) ist

$$C = \begin{pmatrix} 1 & & & & \\ \vdots & & & & \\ 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & 1 & & \\ & & & \vdots & & \\ & & & 1 \end{pmatrix}, \ C^T C = \begin{pmatrix} n_1 & & & 0 \\ & n_2 & & & \\ & & \ddots & & \\ 0 & & & n_k \end{pmatrix}$$

und somit

$$\hat{\vartheta} = \begin{pmatrix} \hat{\vartheta}_1 \\ \vdots \\ \hat{\vartheta}_k \end{pmatrix} = \begin{pmatrix} \frac{1}{n_2} \sum_{j=1}^{n_1} X_{1,j} \\ \vdots \\ \frac{1}{n_k} \sum_{j=1}^{n_k} X_{k,j} \end{pmatrix} =: \begin{pmatrix} \bar{X}_{1+} \\ \vdots \\ \bar{X}_{k+} \end{pmatrix}$$

(+ bedeutet, dass hier summiert wird)

14.4 Satz (Gauß-Markov-Theorem)

Es sei $a \in \mathbb{R}^s$. Dann ist $T := a^T \hat{\vartheta}$ bester linearer erwartungstreuer Schätzer für $a^T \vartheta$. (BLUE)

Beweis:

Sei S = S(X) linearer Schätzer für $a^T \vartheta$.

$$\Rightarrow \exists b \in \mathbb{R}^n : S = b^T X$$

S erwartungstreu für $a^T \vartheta \Rightarrow$

$$E_{\vartheta,\sigma^2}S = b^T E_{\vartheta,\sigma^2}X = b^T C\vartheta \stackrel{!}{=} a^T \vartheta \ \forall \vartheta$$

$$\Rightarrow b^T C = a^T (*)$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(S))b^T \underbrace{\operatorname{Var}_{\vartheta,\sigma^2} X}_{\sigma^2 L_r} \cdot b = \sigma^2 b^T b$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(T) = a^T \operatorname{Var}_{\vartheta,\sigma^2}(\hat{\vartheta}) a = \sigma^2 a^T (C^T C)^{-1} a \stackrel{(*)}{=} \sigma^2 b^T C (C^T C)^{-1} C^T b$$

$$\Rightarrow \operatorname{Var}_{\vartheta,\sigma^{2}}(S) - \operatorname{Var}_{\vartheta,\sigma^{2}}(T) = \sigma^{2} b^{T} (I_{n} - \underbrace{C(C^{T}C)^{-1}}_{=:P} C^{T}) b$$

Wegen
$$P=P^T=P^2$$
 folgt $Q=Q^T=Q^2$ (vgl. Aufgabe 44) folgt
$$b^TQb=b^TQ^2b=b^TQ^TQb=\|Qb\|^2\geq 0$$

 \Rightarrow Behauptung

Beispiele:

- a) 1-faktorielle ANOVA (14.2(g), Beispiel 14.3(b)) $a^T = (0, \dots, 0, \underbrace{1}_{a_i}, 0, \dots, 0, \underbrace{-1}_{a_j}, 0, \dots, 0), \ a^T\vartheta = \vartheta_i \vartheta_j$ Differenz der Erwartungswerte der i-ten und j-ten Gruppe. $T = a^T \hat{\vartheta} = \bar{X}_{i+} \bar{X}_{j+} \text{ ist BLUE für } a^T\vartheta.$
- b) einfache lineare Regression $a = \begin{pmatrix} 1 \\ t^* \end{pmatrix}, \ a^T \vartheta = \vartheta_1 + \vartheta_2 t^*$ $T = a^T \hat{\vartheta} = \hat{\vartheta}_1 + \hat{\vartheta}_2 t^* \text{ ist BLUE.}$ Hier:

$$C = \begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix}$$

$$C^T C = \begin{pmatrix} n & n\bar{t} \\ n\bar{t} & \sum t_i^2 \end{pmatrix}, \quad (C^T C)^{-1} = \frac{1}{\sum (t_i - \bar{t})^2} \begin{pmatrix} \frac{1}{n} \sum t_i^2 & -\bar{t} \\ -\bar{t} & 1 \end{pmatrix}$$

$$\Rightarrow \operatorname{Var}_{\vartheta,\sigma^2}(\hat{\vartheta}_1) = \sigma^2 \frac{\frac{1}{n} \sum t_i^2}{\sum (t_i - \bar{t})^2}$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(\hat{\vartheta}_2) = \sigma^2 \frac{1}{\sum (t_i - \bar{t})^2} \quad (\text{vgl. 4.7})$$

$$\operatorname{Cov}_{\vartheta,\sigma^2}(\hat{\vartheta}_1, \hat{\vartheta}_2) = \frac{-\sigma^2 \bar{t}}{\sum (t_i - \bar{t})^2} \quad (= 0, \text{ falls } \bar{t} = 0)$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(T) = \sigma^2 a^T (C^T C)^{-1} a$$

$$= \frac{\sigma^2}{\sum (t_i - \bar{t})^2} (\frac{1}{n} \sum t_i^2 - 2t^* \bar{t} + (t^*)^2)$$

$$= \sigma^2 (\frac{1}{n} + \frac{(t^* - \bar{t})^2}{\sum (t_i - \bar{t})^2})$$

14.5 Schätzung von σ^2

$$\hat{\sigma}^2 = \hat{\sigma}^2(X) = \frac{1}{n} \| \underbrace{X - C\hat{\vartheta}}_{=:\hat{\varepsilon}} \|^2 = \frac{1}{n} \| \hat{\varepsilon} \|^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{n}$$
(\$\hat{\varepsilon}\$ Residuenvektor)

Bemerkung:

 $\overline{\hat{\sigma}^2}$ ist asymptotisch erwartungstreu, aber nicht erwartungstreu für σ^2 , da nach Aufgabe 44

$$\hat{S}^2 = \frac{n}{n-s} \hat{\sigma}^2 = \frac{1}{n-s} \left\| \hat{\varepsilon} \right\|^2$$

erwartungstreu für σ^2 ist.

Ab jetzt stets klassisches lineares Modell $(\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n))!$

14.6 Satz

Im (klassischen) linearen Modell gilt:

- a) $(\hat{\vartheta}, \hat{\sigma})$ ist ML-Schätzer für (ϑ, σ^2)
- b) $\hat{\vartheta} \sim \mathcal{N}_s(\vartheta, \sigma^2(C^TC)^{-1})$
- c) $\frac{n}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-s}^2$
- d) $\hat{\vartheta}$ und $\hat{\sigma}^2$ sind stochastisch unabhängig

Beweis:

a)
$$X \sim \mathcal{N}_n(C\vartheta, \sigma^2 I_n)$$

$$\Rightarrow f(x, \vartheta, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - (C\vartheta)_i)^2\}$$

$$= \frac{1}{(\sigma^2 2\pi)^{\frac{n}{2}}} \exp\{-\frac{\|x - C\vartheta\|^2}{2\sigma^2}\}$$

$$=: L_x(\vartheta, \sigma^2)$$

14.6Satz 113

Maximieren von L_x bezüglich ϑ bei festem σ^2 führt auf Minimierung von $||x - C\vartheta||^2$, Lösung ist $\hat{\vartheta}$.

$$\frac{\partial \log L_x(\hat{\vartheta}, \sigma^2)}{\partial \sigma^2} \stackrel{!}{=} 0$$

$$\hat{\sigma}^2 = \frac{1}{n} \left\| x - C\hat{\vartheta} \right\|^2$$

folgt aus Bemerkung 14.3 und Normalverteilungs-Annahme

$$\begin{split} \varepsilon^T \varepsilon &= (X - C\vartheta)^T (X - C\vartheta) \\ &= (X - C\hat{\vartheta} + C(\hat{\vartheta} - \vartheta))^T (X - C\hat{\vartheta} + C(\hat{\vartheta} - \vartheta)) \\ &= (\hat{\varepsilon} + C(\hat{\vartheta} - \vartheta))^T (\hat{\varepsilon} + C(\hat{\vartheta} - \vartheta)) \\ &\Rightarrow \underbrace{\varepsilon^T \varepsilon}_{\sim \chi_n^2} = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{\sigma^2} + \underbrace{(\hat{\vartheta} - \vartheta)^T \frac{C^T C}{\sigma^2} (\hat{\vartheta} - \vartheta)}_{\sim \chi_s^2 \ (1)} + 2 \underbrace{\hat{\varepsilon}^T C}_{(2)} \frac{(\hat{\vartheta} - \vartheta)}{\sigma^2} \end{split}$$

(1) nach Hilfssatz 13.6 und (b)

$$(2) = \varepsilon^{T} (I_n - P)^{T} C = \varepsilon^{T} (I_n - P) C = 0$$

Zu zeigen: $\frac{\hat{\varepsilon}^T\hat{\varepsilon}}{\sigma^2}\sim\chi^2_{n-s}$ Die charakteristische Funktion von χ^2_k ist

$$\varphi_{\chi_k^2}(t) = \int_{-\infty}^{\infty} e^{itx} f_k(x) dx = (1 - 2it)^{-\frac{k}{2}}$$

Unabhängigkeit von $\hat{\vartheta}$ und $\hat{\varepsilon}$ nach (d)

$$\Rightarrow (1 - 2it)^{-\frac{n}{2}} = \varphi_{\frac{\hat{\varepsilon}^T\hat{\varepsilon}}{\sigma^2}}(t) \cdot (1 - 2it)^{-\frac{s}{2}}$$

$$\Rightarrow \varphi_{\frac{\hat{\varepsilon}^T\hat{\varepsilon}}{2}}(t) = (1 - 2it)^{-\frac{n-s}{2}}$$

Eindeutigkeitssatz für charakteristische Funktionen

$$\Rightarrow \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{\sigma^2} = \frac{n}{\sigma^2} \hat{\sigma}^2 \sim \chi_{n-s}^2$$

d)
$$\hat{\vartheta} = (C^T C)^{-1} C^T X = (C^T C)^{-1} C^T (C\vartheta + \varepsilon) = \vartheta + (C^T C)^{-1} C^T \varepsilon$$

$$\hat{\varepsilon} = X - C \hat{\vartheta}$$

$$= (I_n - C(C^T C)^{-1} C^T) X$$

$$= (I_n - P)(C\vartheta + \varepsilon)$$

$$= \underbrace{(I_n - P)C}_{C - C = 0} \vartheta + (I_n - P)\varepsilon$$

$$= (I_n - P)\varepsilon$$

$$(= Q\varepsilon)$$

$$\Rightarrow \underbrace{\operatorname{Cov}(\hat{\vartheta}, \hat{\varepsilon})}_{s \times n \text{ Matrix}} = \operatorname{Cov}(\vartheta + (C^T C)^{-1} C^T \varepsilon, (I_n - P)\varepsilon)$$

$$= \operatorname{Cov}((C^T C)^{-1} C^T \varepsilon, (I_n - P)\varepsilon)$$

$$= \underbrace{(C^T C)^{-1} C^T}_{s \times n} \cdot \underbrace{\operatorname{Cov}(\varepsilon, \varepsilon)}_{= \operatorname{Var}(\varepsilon) = \sigma^2 I_n} \cdot \underbrace{(I_n - P)^T}_{n \times n}$$

$$= \sigma^2 (C^T C)^{-1} (\underbrace{(I_n - P) C}_{= 0})^T$$

$$\begin{split} \hat{\varepsilon} &= (I_n - P)\varepsilon \sim \mathcal{N}_n(0, (I_n - P)\sigma^2(I_n - P)^T) = \mathcal{N}_n(0, \sigma^2(I_n - P))\\ \hat{\varepsilon}, \hat{\vartheta} \text{ normalverteilt und unkorreliert} &\Rightarrow \hat{\vartheta}, \hat{\varepsilon} \text{ unabhängig} \\ &\Rightarrow \hat{\vartheta}, \hat{\sigma}^2 \text{ stochastisch unabhängig}. \end{split}$$

Bemerkung:

 $\overline{\hat{\varepsilon} \sim \mathcal{N}_n(0, (I_n - P)\sigma^2)}$, d.h. die $\hat{\varepsilon}_i$ haben nicht die gleiche Varianz.

14.7 Konfidenzbereiche für ϑ

a) elliptischer Konfidenzbereich für ϑ :

$$\hat{\vartheta} - \vartheta \sim \mathcal{N}(0, \sigma^2 (C^T C)^{-1})$$

$$\Rightarrow (\hat{\vartheta} - \vartheta)^T \frac{C^T C}{\sigma^2} (\hat{\vartheta} - \vartheta) \sim \chi_s^2; \ \frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-s}^2$$

Beide Größen sind stochastisch unabhängig.

$$\Rightarrow \frac{\frac{1}{s}(\hat{\vartheta} - \vartheta)^T C^T C(\hat{\vartheta} - \vartheta)}{\frac{n}{n-s}\hat{\sigma}^2} \sim F_{s,n-s}$$

$$\Rightarrow C_E := \{ y \in \mathbb{R}^s : \frac{\frac{1}{s}(\hat{\vartheta} - y)^T C^T C(\hat{\vartheta} - y)}{\hat{s}^2} \leq F_{s,n-s,1-\alpha} \}$$
erfüllt $P_{\vartheta,\sigma^2}(C_E(X) \ni \vartheta) = 1 - \alpha \ \forall \vartheta, \sigma^2, \text{ d.h. } C_E \text{ ist ein (exakter)}$

$$(1 - \alpha)\text{-Konfidenzbereich für } \vartheta.$$

b) Konfidenzintervall für ϑ_j :

Sei
$$(C^T C)^{-1} =: (b_{ij})_{s \times s}. \ \hat{\vartheta}_j \sim \mathcal{N}(\vartheta_j, b_{jj}\sigma^2)$$

$$\stackrel{14.6(c),(d), 2.1}{\Rightarrow} \frac{\frac{\hat{\vartheta}_{j} - \vartheta_{j}}{\sigma\sqrt{b_{jj}}}}{\sqrt{\frac{n}{n-s}\frac{\hat{\sigma}^{2}}{\sigma^{2}}}} = \frac{\hat{\vartheta}_{j} - \vartheta_{j}}{\hat{s} \cdot \sqrt{b_{jj}}} \sim t_{n-s} (\sim \sqrt{F_{1,n-s}})$$

$$\Rightarrow P_{\vartheta,\sigma^2}(|\hat{\vartheta}_j - \vartheta_j| \le t_{n-s,1-\frac{\alpha}{2}} \cdot \hat{s}\sqrt{b_{jj}}) = 1 - \alpha$$

d.h. $\hat{\vartheta}_j \pm t_{n-s,1-\frac{\alpha}{2}} \cdot \hat{s}\sqrt{b_{jj}}$ ist zweiseitiges $(1-\alpha)$ -Konfidenzintervall für ϑ_j .

c) quaderförmiger Konfidenzbereich für ϑ ("Bonferroni-Methode"): Regel von den kleinen Ausnahmewahrscheinlichkeiten:

$$P(A_j) \ge 1 - \frac{a}{s}, \ j = 1, \dots, s \ \Rightarrow \ P(\bigcap_{j=1}^s A_j) \ge 1 - \alpha$$

Denn:

$$P(\bigcap_{j=1}^{s} A_j) = 1 - P((\bigcap_{j=1}^{s} A_j)^C) = 1 - P(\bigcup_{j=1}^{s} A_j^C) \ge 1 - \sum_{j=1}^{s} P(A_j^C) \ge 1 - \alpha$$

Somit gilt für

$$C_Q(x) := \times_{j=1}^s [\hat{\vartheta}_j(x) - r(x), \hat{\vartheta}_j(x) + r(x)]$$

mit
$$r(x) := t_{n-s,1-\frac{\alpha}{2s}} \cdot \hat{s}\sqrt{b_{jj}}$$
:

$$P_{\vartheta,\sigma^2}(C_Q(X)\ni\vartheta)\ge 1-\alpha\ \forall\vartheta,\sigma^2$$

d.h. C_Q ist quaderförmiger $(1-\alpha)$ -Konfidenzbereich für ϑ .

Bemerkung:

 $\overline{C_E}$ hat kleineres Volumen wie C_Q , aber C_Q ist leichter zu interpretieren

d) Konfidenzintervall für $a^T\vartheta$:

$$a^T \hat{\vartheta} \sim \mathcal{N}(a^T \vartheta, \sigma^2 \cdot a^T (C^T C)^{-1} a)$$

$$\Rightarrow \frac{a^T(\hat{\vartheta} - \vartheta)}{\hat{s}\sqrt{a^T(C^TC)^{-1}a}} = \frac{\frac{a^T(\hat{\vartheta} - \vartheta)}{\sigma\sqrt{a^T(C^TC)^{-1}a}}}{\sqrt{\frac{\hat{s}^2}{\sigma^2}}} \sim t_{n-s}$$

 \Rightarrow Mit $r := t_{n-s,1-\frac{\alpha}{2}} \cdot \hat{s} \sqrt{a^T (C^T C)^{-1} a}$ ist $[a^T \hat{\vartheta} - r, a^T \hat{\vartheta} + r] (1 - \alpha)$ -Konfidenzintervall für $a^T \vartheta$.

Beispiel:

einfache lineare Regression (vgl. Beispiel 14.4(b))

$$a = \begin{pmatrix} 1 \\ t^* \end{pmatrix}, \ r = t_{n-2,1-\frac{\alpha}{2}} \cdot \hat{s} \sqrt{\frac{1}{n} + \frac{(t^* - \bar{t})^2}{\sum_i (t_i - \bar{t})^2}}$$

 $[\hat{\vartheta}_1 + \hat{\vartheta}_2 \cdot t^* - r, \hat{\vartheta}_1 + \hat{\vartheta}_2 \cdot t^* + r] \text{ ist } (1 - \alpha) \text{-Konfidenzintervall für } a^T \vartheta = \vartheta_1 + \vartheta_2 \cdot t^*.$

14.8 Tests von linearen Hypothesen im linearen Modell

$$X = C\vartheta + \varepsilon, \ \varepsilon \sim \mathcal{N}_n(0, \sigma^2 \cdot I_n)$$

Zu testen sei "lineare Hypothese"

$$H_0: H\vartheta = h \text{ gegen } H_1: H\vartheta \neq h$$

Dabei: H $r \times s$ -Matrix, Rang(H) = r (insbesondere $r \leq s$), $h \in \mathbb{R}^r$ gegeben

$$H_0 = \Theta_0 := \{(\vartheta, \sigma^2) \in \underbrace{\mathbb{R}^s \times \mathbb{R}_{>0}}_{=\Theta} : H\vartheta = h\}, H_1 = \Theta \setminus \Theta_0$$

14.9 Beispiele

a) $X_j = \vartheta_1 + \vartheta_2 \cdot t_j + \varepsilon_j, j = 1, \dots, n$ (einfache lineare Regression)

$$H_0: \vartheta_2 = 0$$
 gegen $H_1: \vartheta_2 \neq 0$

"Lineare Hypothese": H = (0,1), h = 0 (s = 2, r = 1)

$$H_0: H \cdot \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} = 0$$

Möglicher Test: Verallgemeinerter Likelihood-Quotienten-Test Testgröße Λ_n bzw. log Λ_n .

$$\Lambda_n := \frac{\sup_{(\vartheta, \sigma^2) \in \Theta_0} f(x, \vartheta, \sigma^2)}{\sup_{\Theta} f(x, \vartheta, \sigma^2)}$$

<u>Unter H_0 :</u> $X_j = \vartheta_1 + \varepsilon_j$, $X_j \sim \mathcal{N}(\vartheta_1, \sigma^2)$, ML-Schätzer für ϑ_1 : \bar{X}_n <u>Ohne Restriktion:</u> ML-Schätzer = KQ-Schätzer⁴¹ = $\hat{\vartheta}$ (Satz 14.6(a))

Als Schätzer für σ^2 wird aber üblicherweise in beiden Fällen der Schätzer $\hat{\sigma}^2$ aus Obermodell verwendet!

Dann⁴²:

$$\log \Lambda_n = -\frac{1}{2\hat{\sigma}^2} \left[\sum_{i=1}^n (X_i - \bar{X}_n)^2 - \sum_{i=1}^n (X_i - (\hat{\vartheta}_1 + \hat{\vartheta}_2 t_i))^2 \right]$$

$$=: SS_0 = SS_1 (=n\hat{\sigma}^2)$$

Als Testgröße wird

$$T := \frac{SS_0 - SS_1}{\frac{SS_1}{n-2}}$$

verwendet. Es gilt:

 $^{^{41}}$ Kleinste-Quadrate-Schätzer

 $^{^{42}}$ SS: sum of squares

14.9 Beispiele 117

(i)
$$\frac{SS_1}{\sigma^2} \sim \chi_{n-2}^2$$
 (nach 14.6(c))

(ii)
$$\frac{SS_0}{\sigma^2} \sim \chi^2_{n-1}$$
 unter H_0 (nach 2.2)

(iii) $SS_0 - SS_1$ und SS_1 stochastisch unabhängig (ohne Beweis)

$$\frac{SS_0}{\underline{\sigma^2}} = \frac{SS_0 - SS_1}{\sigma^2} + \underbrace{\frac{SS_1}{\underline{\sigma^2}}}_{\sim \chi_{n-2}^2}$$

$$\Rightarrow \frac{SS_0-SS_1}{\sigma^2} \sim \chi^2_{n-1-(n-2)} = \chi^2_1$$
unter H_0 (vgl. Beweis von 14.6(c))

Damit $T \sim F_{1,n-2}$ unter H_0 .

b)
$$X_{i,j} = \vartheta_j + \varepsilon_{i,j} \ (i = 1, \dots, k, j = 1, \dots, n_i)$$
 (einfache Varianzanalyse⁴³)

$$H_0: \vartheta_1 = \ldots = \vartheta_k$$

("kein Effekt des zu untersuchenden Faktors")

$$\underbrace{\begin{pmatrix} 1 & 0 & -1 \\ & \ddots & \vdots \\ 0 & 1 & -1 \end{pmatrix}}_{=:H \in \mathbb{R}^{k-1 \times k}} \cdot \begin{pmatrix} \vartheta_1 \\ \vdots \\ \vartheta_k \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}}_{=:h \in \mathbb{R}^{k-1}}$$

$$Rang(H) = k - 1(= r)$$

Testgröße: (vgl. Aufgabe 45)

$$\frac{\overline{Sei} \ \overline{X}_{i+} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{i,j}, \ \overline{X}_{++} = \frac{1}{n} \sum_{i,j} X_{i,j}, \ n = \sum_{i=1}^k n_i,
SQZ = \sum_{i=1}^k n_i (\overline{X}_{i+} - \overline{X}_{++})^2, SQI = \sum_{i,j} (X_{i,j} - \overline{X}_{i+})^2$$

$$\sum_{i,j} (X_{i,j} - \bar{X}_{++})^2 = \text{SQI} + \text{SQZ}$$

$$T := \frac{\frac{\text{SQZ}}{k-1}}{\frac{\text{SQI}}{n-k}} \sim F_{k-1,n-k} \text{ unter } H_0$$

 $[\]overline{^{43}}k \hat{=} s$

14.10 Die Testgröße bei allgemeinen linearen Hypothesen

$$\hat{\vartheta} \sim \mathcal{N}_{j}(\vartheta, \sigma^{2}(C^{T}C)^{-1})$$

$$\Rightarrow H\hat{\vartheta} \sim \mathcal{N}_{r}(H\vartheta, \sigma^{2}\underbrace{H(C^{T}C)^{-1}H^{T}})$$

$$=:B$$

$$\frac{\frac{1}{r} \cdot \frac{1}{\sigma^{2}}(H\hat{\vartheta} - H\vartheta)^{T}B^{-1}(H\hat{\vartheta} - H\vartheta)}{\frac{\hat{s}^{2}}{\sigma^{2}}} \sim \frac{\frac{\chi_{r}^{2}}{\chi_{n-s}^{2}}}{\frac{\chi_{n-s}^{2}}{\eta_{n-s}^{2}}} \sim F_{r,n-s}$$

(Zähler und Nenner sind stochastisch unabhängig.) Sei

$$T := \frac{\frac{1}{r}(H\hat{\vartheta} - h)^T (H(C^T C)^{-1} H^T)^{-1} (H\hat{\vartheta} - h)}{\hat{s}^2} \sim F_{r,n-s} \text{ unter } H_0$$

Der sogenannte **F-Test** im linearen Modell besitzt die Gestalt: H_0 ablehnen, falls $T \geq F_{r,n-s,1-\alpha}$. Kein Widerspruch zu H_0 , falls $T < F_{r,n-s,1-\alpha}$.

Bemerkung:

Für die Beispiele aus 14.9 stimmt die obige Testgröße mit den Testgrößen aus 14.9(a) bzw. (b) überein.