Convolutional Neural Network Hung-yi Lee

Can the network be simplified by considering the properties of images?

Why CNN for Image?

[Zeiler, M. D., ECCV 2014]

Represented as pixels

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Can the network be simplified by considering the properties of images?

Created with EverCam. http://www.camdemy.com

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

• The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

cat dog

Can repeat many times

Property 1

Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Can repeat many times

Flatten

cat dog

Can repeat many times

CNN – Convolution

Those are the network parameters to be learned.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6	X	6	image
U	Λ	U	iiiiagc

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1
Matrix

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
Matrix

Each filter detects a small pattern (3 x 3).

Property 1

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -1

6 x 6 image

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0

3 -3

We set stride=1 below

6 x 6 image

CNN — Convolution

Filter 1

stride=1

6 x 6 image

Property 2

CNN — Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Colorful image

Convolution v.s. Fully Connected

Fullyconnected

0	0	0	0	1
1	0	0	1	0
0	1	1	0	0
0	0	0	1	0
1	0	0	1	0
0	1	0	1	0
	1 0 0	1 0 0 1 0 0 1 0	1 0 0 0 1 1 0 0 0 1 0 0	1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1

cat dog

Can repeat many times

CNN – Max Pooling

		- 1	- 1		- 1	
	-1	1	-1	Filter 1	-1	
	-1	-1	1		-1	
	-1		-3	-1	-	1
	1		0	-3	-	1
3	-3		0	1 -1	-	1
	_2		_2			

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

CNN – Max Pooling

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

cat dog

First Convolution Layer

 Typical-looking filters on the trained first layer

11 x 11 (AlexNet)

http://cs231n.github.io/understanding-cnn/

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter: $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a_{ij}^k$

 $x^* = arg \max_{x} a^k$ (gradient ascent)

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter: $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a_{i,j}^k$

 $x^* = arg \max_{x} a^k$ (gradient ascent)

For each filter

Find an image maximizing the output of neuron:

$$x^* = arg \max_{x} a^j$$

Each figure corresponds to a neuron

$$x^* = arg \max_{x} y^i$$
 Can we see digits?

Deep Neural Networks are Easily Fooled https://www.youtube.com/watch?v=M2IebCN9Ht4

Over all pixel values

$$x^* = arg \max_{x} y^i$$

$$x^* = arg \max_{x} \left(y^i - \sum_{i,j} |x_{ij}| \right)$$

Deep Dream

• Given a photo, machine adds what it sees

Deep Dream

• Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Style

Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

• Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

A Neural Algorithm of Artistic Style

https://arxiv.org/abs/150

8.06576

谢谢大家本学期的坚持和支持!

12月24日下午1:30 Final Review