Politechnika Warszawska

Zakład Podstaw Konstrukcji

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

14 lipca 2023 Wersja 1.2

Grupowanie

Grupy dają możliwość wyk<mark>on</mark>ywania operacji na wie<mark>lu</mark> cecha<mark>ch.</mark>

Wymagania:

- * wybór kolejnych cech z drzewa,
- ukrycie cech pod nazwą grupy,
- * możliwość usuwania/blokowania cech w grupie,
- * możliwość dodawania/usuwania cech w grupie poprzez przeciągnięcie.

Grupowanie (2)

Zalety:

- * można szybko skopiować lub powielić szykiem grupę,
- * wszystkie cechy w obrębie grupy można wybrać jako jedną cechę,
- * edycja wszystkich wymiarów cech zebranych w grupie,
- * uproszczenie widoku drzewa operacji.

Round 1

Insert Here

Kopiowanie i wklejanie

Szybka duplikacja z zachowaniem referencji.

Przesuwanie i obracanie skopiowanych elementów

Korzystając z opcji Paste Special można:

- * przesuwanie skopiowanej cechy (ref. kierunku płaszczyzna, krawędź),
- * obracanie skopiowanej cechy (ref. kierunku -- oś, krawędź),
- * łąc<mark>ze</mark>nie pr<mark>ze</mark>suwan<mark>ia</mark> z obra<mark>ca</mark>niem (kolejność działan<mark>ia</mark>).

Przesuwanie skopiowanych elementów

Obracanie skopiowanych elementów

Kopie zależne i niezależne

Domyślnie cecha kopiowana i oryginalna są zależne.

Można:

- * usunąć zależność wymiaru (ang. Make Dimension Independent),
- 📩 usun<mark>ąć zależno</mark>ść szkic<mark>u</mark> (ang. <mark>Ma</mark>ke Section Independent).

Głębokość wyciągnięcia pozostanie zależna.

Odbicie lustrzane wybranych cech

Wykorzystanie polecenie **Mirror** do tworzenia odbić lustrzanych zależnych i niezależnych.

Odbicia lustrzane wszystkich cech Warszawska

Tworzenie części poprzez odbicia lustrzanego

Można tworzyć:

Politechnika

Warszawska

- * Mirror geometry only,
- * Mirror geometry with features,

Dla odbicia lustrzanego
Mirror geometry only
można określić (nie)zależna
części od oryginału.

Tworzenie szyków

Pattern umożliwia powielenie elementów. Cecha wskazana do powielania jest bazową, pozostałe są jej instancjami — zależnymi od cechy wyjściowej.

Politechnika Warszawska

Szyk w jednym kierunku

Wymaga:

- * referencji pierwszego kierunku,
- liczby elementów szyku,
- * rozstawu.

Dodatkowo można:

- * wybrać wymiar w elemencie bazowym do zmiany,
- * przyrost wymiaru.

Szyk kierunkowy w dwóch kierunkach

Wymaga:

- * referencji pierwszego i drugiego kierunku,
- liczby elementów szyku na każdym z kierunków,
- * rozstawu na kierunkach.

Dodatkowo można:

- wybrać wymiar w elemencie bazowym do zmiany,
- * przyrost wymiaru.

Politechniko Warszawsko

Szyk w jednym kierunku

Wymaga:

- * osi referencyjnej,
- * liczby elementów szyku,
- * rozstawu kątowego.

Warto:

- * sko<mark>rz</mark>ystać z **Set Ang<mark>u</mark>lar Ext<mark>en</mark>t**,
- * określić orientację obiektów w szyku.

Szyk osiowy podwójny

Wymaga:

- * osi referencyjnej,
- * liczby elementów na obu kierunkach,
- * rozstawu kątowego na pierwszym,
- * rozstawu promieniowego na drugim.

Szyk referencyjny cech

Tworzy szyk cechy na dowolnych innych cechach już powielonych szykiem.

Można powielać po:

- * Feature (1 szyk),
- * Group (2 szyk),
- Both (1 i 2 szyk).

Usuwanie szyku lub jego elementów

Można:

Warszawsko

usunąć szyk i element bazowy (**Delete**),

- 🏄 u<mark>su</mark>nąć szyk (**Delete Pattern**),
- * wyłącz<mark>y</mark>ć elem<mark>en</mark>ty z sz<mark>yk</mark>u.

Bibliografia

T. Kucharski. Mechanika ogólna: rozwiązywanie zagadnień z MATHCAD-em. Wydawnictwa Naukowo-Techniczne, 2015. isbn:

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskie!". 2011. isbn: 9788388906343.

E. Lisowski. Integracja modelowania 3D, kinematyki i wytrzymałości w programie Creo Parametric. Wydawnictwo PK, 2013. isbn:

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT. 2015. isbn: 9788393491360.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

E. Winter. Using Pro/Weld in Creo 2.0.

