Name:	Structural formula:	Reactions:	Notes:
Soap	0	Saponification:	Soaps should
		Triglyceride + NaOH \rightarrow sodium stearate + glycerol	contain at least 13
	R — C — O-Na+	Example:	C atoms.
	Sodium stearate	H_2 COOC(CH ₂) ₁₆ CH ₃ O CH_2 OH	Saponification is the
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	alkaline hydrolysis
		H cooc(cH) CH	(NaOH or KOH) of
		$ \begin{array}{c} H_2 \text{COOC}(\text{CH}_2)_{16} \text{CH}_3 \\ \hline $	a plant oil or animal
		Triducanida (6-4) Sadium kadaanida Soap Glassad	fat (i.e., a long-
		Triglyceride (fat) Sodium hydroxide (sodium stearate) Glycerol	chain ester).
			The long carbon
			chain is
			hydrophobic
			(allowing it to break
			up non-polar
			materials e.g., oil
			and grease) and the
			carboxylate end is
			hydrophilic
			(allowing it to

		dissolve in water).
		Soaps aren't as
		effective in water
		containing Mg^{2+} and
		Ca^{2+} ions (hard
		water) because the
		formation of
		insoluble salts stops
		the soap from
		forming the stearate
		ions required for
		their cleansing
		action.
Detergen	0	Detergents are often
t	$ \begin{array}{c c} R \longrightarrow & \prod \\ S \longrightarrow O^{-}Na^{+} \\ 0 \end{array} $	used in hard water
		because they don't
		form insoluble
		magnesium stearate
		or calcium stearate.

			The cleaning action of detergents is very similar to that of soaps.
Biodiesel	Methyl or ethyl esters O	Transesterification: Triglyceride + alcohol \rightleftharpoons ester + glycerol $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Biodiesels should contain 8-21 C atoms. OH ions are used as a catalyst.
		Triglyceride (fat) Alcohol Methyl R-oate Glycerol	

Cleansing action of soaps:

- 1. The non-polar region of the soap molecule is attracted to the non-polar oil/grease. The polar end of the soap molecule is attracted to the water molecules. This attraction pulls pieces of the oil or grease away from the main chunk.
- 2. Agitation will help the soap molecules break up the oil and grease down into smaller pieces. The soap molecules completely surround the tiny oil droplet and the attraction between the carboxylate region of the soap molecule and the water molecules allows the mixture to dissolve in water.

Synthesis of ethanol:

Fermentation: Yeast converts simple sugars/monosaccharides (corn, sugar cane and sorghum are common sources) into alcohol and CO₂.

Step 1: Grain is dried and crushed to release starch, a polymer made up of repeating units of monosaccharides, glucose or fructose.

Step 2: Water and the enzymes, amylase and amylase