Python code and analysis

```
1 import numpy as np
 3 ## Comparing different algorithms to solve dy/dx = f(x,y)
 5 def euler_method(function, x0, y0, x, stepsize):
                function = dy/dx; x0,y0 are initial conditions; x is the point where y needs to be calculated.
                x_{array} = np.arange(x0, x + stepsize, stepsize)
 9
                y_array = np.zeros(len(x_array))
                y = array[0] = y0
                 for i in range(1,len(x_array)):
12
                          y_{array}[i] = y_{array}[i-1] + stepsize*function(x_{array}[i-1],y_{array}[i-1])
14
                return y_array[-1]
15
def partialx (function, x0, y0, stepsize):
18
                Returns partial first derivative of the function "function" at the point x0, y0 with respect to x by
19
                considering points, one and two steps on either side of x0.
20
21
                return (function(x0 - 2*stepsize, y0) - 8*function(x0 - stepsize, y0) + 8*function(x0 + stepsize, y0)
                - function (x0 + 2*stepsize, y0))/(12*stepsize)
22
      def partialy (function, x0, y0, stepsize):
23
24
                Returns partial first derivative of the function "function" at the point x0, y0 with respect to y by
25
                considering points, one and two steps on either side of y0.
26
                - function (x0, y0 + 2*stepsize))/(12*stepsize)
def taylor_method (function, x0, y0, x, stepsize):
30
31
                function = dy/dx; x0,y0 are initial conditions; x is the point where y needs to be calculated.
32
33
                x_{array} = np.arange(x0, x + stepsize, stepsize)
                y_{array} = np.zeros(len(x_{array}))
                y_array[0] = y0
35
36
                for i in range(1,len(x_array)):
                          y_{array}[i] = y_{array}[i-1] + stepsize*function(x_{array}[i-1],y_{array}[i-1]) + (stepsize**2.0)*(
37
                 partialx (function, x_array [i-1], y_array [i-1], 10**(-7)) + function (x_array [i-1], y_array [i-1]) * partialy (function (x_array [i-1], y_array [i-1]) * partialy (function (x_array [i-1], y_array [i-1]) * partialy (function (x_array [i-1], y_array [i-1], y_array [i-1]) * partialy (function (x_array [i-1], y_array [
                function, x_{array}[i-1], y_{array}[i-1], 10**(-7))
38
                return y_array[-1]
39
40
def adam_bashford_method(function, x0, y0, x, stepsize):
42
                function = dy/dx; x0,y0 are initial conditions; x is the point where y needs to be calculated.
43
44
                x_{array} = np.arange(x0, x + stepsize, stepsize)
45
                y_array = np.zeros(len(x_array))
46
                y_array[0] = y0
47
                y_array[1] = y0
                for i in range(2, len(x_array)):
49
                          y_{array}[i] = y_{array}[i-1] + stepsize*(1.5*function(x_{array}[i-1], y_{array}[i-1]) - 0.5*function(x_{array}[i-1], y_{array}[i-1])
50
                x_{array}[i-2], y_{array}[i-2])
51
                return y_array[-1]
53
64 def runge_kutta_method(function, x0, y0, x, stepsize):
                function = dy/dx; x0,y0 are initial conditions; x is the point where y needs to be calculated.
56
57
                x_{array} = np.arange(x0, x + stepsize, stepsize)
58
                y_{array} = np.zeros(len(x_{array}))
59
                y_array[0] = y0
60
                 for i in range(1,len(x_array)):
61
                          y\_step \ = \ stepsize*function\left(\,x\_array\,[\,i-1]\,,\ y\_array\,[\,i-1]\right)
62
                          y\_array[i] = y\_array[i-1] + stepsize*function(x\_array[i-1] + (stepsize/2.0), y\_array[i-1] +
                y_step/2.0)
64
65
               return y_array[-1]
```

Results for y(1) and y(3) are given below (Δy is the difference from the analytical value):

h	Euler y(1)	$\Delta y(1)$	Taylor y(1)	$\Delta y(1)$	Adam y(1)	$\Delta y(1)$	Runge y(1)	$\Delta y(1)$
					Bashford		Kutta	
0.5	0.75	0.1435	0.421875	0.1847	0.625	0.01847	0.587891	0.01864
0.2	0.652861	0.04633	0.55319	0.05334	0.607383	0.0008524	0.604186	0.002345
0.1	0.628157	0.02163	0.583102	0.02343	0.606581	5.053e-05	0.605987	0.0005433
0.05	0.616984	0.01045	0.59562	0.01091	0.606522	9.105e-06	0.6064	0.0001309
0.02	0.610629	0.004098	0.602359	0.004172	0.606527	3.604e-06	0.60651	2.05e-05
0.01	0.608566	0.002035	0.604477	0.002054	0.60653	1.082e-06	0.606526	5.09e-06
0.005	0.607545	0.001014	0.605512	0.001019	0.60653	2.932e-07	0.606529	1.268e-06
0.002	0.606936	0.0004049	0.606125	0.0004056	0.606531	4.909e-08	0.60653	2.025e-07
0.001	0.606733	0.0002023	0.606328	0.0002025	0.606531	1.245 e - 08	0.606531	5.058e-08

h	Euler y(3)	$\Delta y(3)$	Taylor y(3)	$\Delta y(3)$	Adam y(3)	$\Delta y(3)$	Runge y(3)	$\Delta y(3)$
					Bashford		Kutta	
0.5	0.0	0.01111	0.094551	0.08344	0.02124	0.01013	0.02999	0.01888
0.2	0.00459	0.006519	0.026157	0.01505	0.012549	0.00144	0.012587	0.001478
0.1	0.007791	0.003318	0.016062	0.004953	0.01148	0.0003708	0.011409	0.0002999
0.05	0.009444	0.001665	0.01313	0.002021	0.011202	9.28e-05	0.011177	6.824e-05
0.02	0.010443	0.0006664	0.011828	0.0007191	0.011124	1.479e-05	0.011119	1.035e-05
0.01	0.010776	0.0003333	0.011455	0.0003461	0.011113	3.689e-06	0.011112	2.543e-06
0.005	0.010942	0.0001666	0.011279	0.0001698	0.01111	9.212e-07	0.01111	6.302e-07
0.002	0.011042	6.665 e - 05	0.011176	6.716e-05	0.011109	1.473e-07	0.011109	1.003e-07
0.001	0.011076	3.333e-05	0.011142	3.345e-05	0.011109	3.681e-08	0.011109	2.504e-08

Fortran90 code and analysis

```
function f(x,y) result(z)
    2
                                        double precision x, y, z
                                        z = -x*y
    3
    4 end function f
               function euler_method(x0,y0,x,stepsize) result(e)
                                        double precision f, x0, y0, x, stepsize, x1, y1, e
                                      integer n, i

n = (x - x0)/stepsize
    8
   9
                                      do 10 i = 0, n
                                                              y1 = y0 + stepsize*f(x0, y0)
11
                                                                x1 = x0 + stepsize
12
                                                              x0 = x1
13
                                                             y0 = y1
14
15
                                      10 continue
                                        e = y1
16
17 end function euler_method
_{19} function partialx (x0, y0, stepsize) result (ddx)
                                        double precision f, x0, y0, stepsize, ddx
20
                                        \mathrm{ddx} = \left( f\left( x0 - 2.0 * \mathrm{stepsize} \right., y0 \right) - 8.0 * f\left( x0 - \mathrm{stepsize} \right., y0 \right) + 8.0 * f\left( x0 + \right. \\ \mathrm{stepsize} \left., y0 \right) - f\left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) \right) + 2.0 * \left. \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right. \\ \mathrm{stepsize} \left., y0 \right) - \left( x0 + 2.0 * \right) - \left( x0 +
21
                                         /(12.0 * stepsize)
22 end function partialx
23
_{24} function partialy (x0, y0, stepsize) result (ddy)
                                        double precision f, x0, y0, stepsize, ddy
                                        \mathrm{ddy} = (f(x0, y0 - 2.0*stepsize) - 8.0*f(x0, y0 - stepsize) + 8.0*f(x0, y0 + stepsize) - f(x0, y0 + 2.0*stepsize)) / (12.0*stepsize) + (12.0*stepsize) +
26
                                        stepsize)
27 end function partialy
28
function taylor_method(x0,y0,x, stepsize) result(t)
                                       30
                                       integer n, i
31
```

```
h = 10E-7
32
       n = (x - x0)/stepsize
33
       34
           y1 = y0 + stepsize * f(x0,y0) + (stepsize * * 2.0) * (partialx(x0,y0,h) + f(x0,y0) * partialy(x0,y0,h))
35
           x1 = x0 + stepsize
36
           x0 = x1
37
           y0 = y1
38
39
       20 continue
       t = y1
40
41 end function taylor_method
43 function adam_bashford_method(x0,y0,x,stepsize) result(a)
       44
45
       integer n, i
       n = (x - x0)/stepsize
46
       \mathrm{x} \mathbf{1} \, = \, \mathrm{x} \mathbf{0} \, + \, \mathrm{stepsize}
47
       y1 = y0 + stepsize*f(x0, y0)
48
       \frac{1}{1} do \frac{1}{1} 30 i = 1 ,n
49
           y2 = y1 + stepsize*(1.5*f(x1,y1) - 0.5*f(x0,y0))
50
           x2 = x1 + stepsize
51
           x0 = x1
52
53
           x1 = x2
           y0 = y1
54
55
           y1 = y2
       30 continue
56
       a = y2
57
end function adam_bashford_method
59
double precision f, x0, y0, x, x1, y1, stepsize, k, r
61
       integer n, i
62
       n = (x - x0)/stepsize
63
       do \ 40 \ i = 1, n
64
           k = stepsize * f(x0, y0)
65
66
           y1 = y0 + stepsize*f(x0 + stepsize*0.5, y0 + k*0.5)
           x1 = x0 + stepsize
67
68
           x0 = x1
           y0 = y1
69
       40 continue
70
71
       r = v1
72 end function runge_kutta
73
74 program solve_diff_eqn
76 implicit none
double precision x0, y0, x, stepsize
78 double precision euler_method, taylor_method, adam_bashford_method, runge_kutta
79
80 \ x0 = 0
y_0 = 1
82 x = 1
ss stepsize = 0.001
84
print *, euler_method(x0, y0, x, stepsize)
86 \times 0 = 0
v0 = 1
print*,taylor_method(x0, y0, x, stepsize)
90
91 \ x0 = 0
92 y0 = 1
print *, adam_bashford_method(x0, y0, x, stepsize)
95
96 \times 0 = 0
97 y0 = 1
print *, runge_kutta(x0, y0, x, stepsize)
100
101 end program solve_diff_eqn
```

Results for y(1) and y(3) are given below (Δy is the difference from the analytical value):

h	Euler y(1)	$\Delta y(1)$	Taylor y(1)	$\Delta y(1)$	Adam y(1)	$\Delta y(1)$	Runge y(1)	$\Delta y(1)$
					Bashford		Kutta	
0.5	0.375	0.231531	0.210937	0.395593	0.28125	0.325281	0.587890	0.01864
0.2	0.652861	0.04633	0.55319	0.05334	0.607383	0.0008524	0.724096	0.117565
0.1	0.628157	0.02163	0.583102	0.02343	0.606581	5.053e-05	0.666451	5.99e-02
0.05	0.616984	0.01045	0.59562	0.01091	0.606522	9.105e-06	0.636701	3.02e-02
0.02	0.598416	8.114e-03	0.590311	1.621 e-02	0.594394	1.213e-02	0.60651	2.05e-05
0.01	0.602480	4.05e-03	0.598432	8.098e-03	0.600463	6.066e-03	0.606526	5.09e-06
0.005	0.604507	2.023e-03	0.602484	4.046e-03	0.603497	3.032e-03	0.606529	1.268e-06
0.002	0.606936	0.0004049	0.606125	0.0004056	0.606531	4.909e-08	0.607743	1.21e-03
0.001	0.606733	0.0002023	0.606328	0.0002025	0.606531	1.245e-08	0.607137	6.06e-04

h	Euler y(3)	$\Delta y(3)$	Taylor y(3)	$\Delta y(3)$	Adam y(3)	$\Delta y(3)$	Runge y(3)	$\Delta y(3)$
					Bashford		Kutta	
0.5	0.0	0.01111	0.141826	0.130717	1.525e-03	9.583e-03	0.02999	0.01888
0.2	0.00459	0.006519	0.026157	0.01505	0.012549	0.00144	2.161e-02	1.050e-02
0.1	0.007791	0.003318	0.016062	0.004953	0.01148	0.0003708	1.525e-02	4.148e-03
0.05	0.009444	0.001665	0.01313	0.002021	0.011202	9.28e-05	1.296e-02	1.854e-03
0.02	9.816e-03	1.292e-03	1.115e-02	4.728e-05	1.047e-02	6.344e-04	0.011119	1.035e-05
0.01	1.045e-02	6.565 e - 04	1.112e-02	1.159e-05	1.078e-02	3.251e-04	0.011112	2.545e-06
0.005	1.077e-02	3.307e-04	1.111e-02	2.875e-06	1.094e-02	1.646e-04	0.01111	6.326e-07
0.002	0.011042	6.665 e - 05	0.011176	6.716e-05	0.011109	1.473e-07	0.011175	6.692e-05
0.001	0.011076	3.333e-05	0.011142	3.345 e-05	0.011109	3.681e-08	0.011142	3.339e-05