Gradient Boosting

David Rosenberg

New York University

March 23, 2016

Review: AdaBoost and FSAM

Adaptive Basis Function Model

• AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- each G_m is a weak classifier
- The G_m 's are like basis functions, but they are learned from the data.
- Let's move beyond classification models...

Adaptive Basis Function Model

- Base hypothesis space \mathcal{F}
 - the "weak classifiers" in boosting context
- ullet An adaptive basis function expansion over ${\mathcal F}$ is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- $h_m \in \mathcal{F}$ chosen in a learning process ("adaptive")
- $v_m \in R$ are expansion coefficients.
- **Note:** We are taking linear combination of outputs of $h_m(x)$.
 - Functions in $h_m \in \mathcal{F}$ must produce values in **R** (or a vector space)

How to fit an adaptive basis function model?

- Loss function: $\ell(y, \hat{y})$
- Base hypothesis space: F of real-valued functions
- Want to find

$$f(x) = \sum_{m=1}^{M} v_m h_m(x)$$

that minimizes empirical risk

$$\frac{1}{n}\sum_{i=1}^n\ell\left(y_i,f(x_i)\right).$$

• We'll proceed in stages, adding a new h_m in every stage.

Forward Stagewise Additive Modeling (FSAM)

- Start with $f_0 \equiv 0$.
- After m-1 stages, we have

$$f_{m-1} = \sum_{i=1}^{m-1} v_i h_i,$$

where $h_1, \ldots, h_{m-1} \in \mathfrak{F}$.

- Want to find
 - step direction $h_m \in \mathcal{F}$ and
 - step size $v_i > 0$
- So that

$$f_m = f_{m-1} + v_i h_m$$

minimizes empirical risk.

Forward Stagewise Additive Modeling

- Initialize $f_0(x) = 0$.
- 2 For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbf{R}, h \in \mathcal{F}}{\arg\min} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- **2** Set $f_m = f_{m-1} + v_m h$.
- \odot Return: f_M .

Example 1: Exponential Loss & Classifiers (AdaBoost)

- Loss function: $\ell(y, f(x)) = \exp(-yf(x))$.
- Base hypothesis space: $\mathcal{F} = \{h(x) : \mathcal{X} \to \{-1, 1\}\}$ (weak classifiers)
- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost.
 - (See HTF Section 10.4 for proof.)

Example 2: Square Loss & Regression (L_2 -Boosting)

- Loss function: $\ell(y, f(x)) = (y f(x))^2$
- Base hypothesis space: $\mathcal{F} = \{h(x) : \mathcal{X} \to \mathbf{R}\}$ (real-valued functions)
- Key step is

$$\min_{\mathbf{v} \in \mathbf{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+ \nu h(x_i)}_{\text{new piece}} \right] \right)^2$$

$$= \min_{\mathbf{v} \in \mathbf{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \left(\underbrace{y_i - f_{m-1}(x_i)}_{\text{residual}} - \nu h(x_i) \right)^2$$

Example 2: Square Loss & Regression (L_2 -Boosting)

- ullet Simplifying assumption: ${\mathcal F}$ is closed under scalar multiplication:
 - If $h \in \mathcal{F}$ then $ch \in \mathcal{F}$ for all $c \in \mathbf{R}$.
- ullet Then step size is absorbed into ${\mathcal F}$ we can just compute

$$\min_{h \in \mathcal{F}} \sum_{i=1}^{n} \left(\underbrace{y_i - f_{m-1}(x_i)}_{\text{residual}} - h(x_i) \right)^2$$

• This is square-loss regression on $(x_1, r_1), \dots, (x_n, r_n)$, where

$$r_i = y_i - f_{m-1}(x_i).$$

- [Not linear regression unless \mathcal{F} comprises linear functions.]
- This is called L₂-Boosting.

FSAM: More Examples?

The challenge with FSAM is solving

$$\min_{\mathbf{v} \in \mathbf{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \ell \left(y_i, f_{m-1}(x_i) \underbrace{+ \mathbf{v} h(x_i)}_{\text{new piece}} \right).$$

- Possibilities so far:
 - solve it exactly (e.g. AdaBoost)
 - reduce it to regression (e.g. L_2 -Boosting).
- But finding minimizer is not always easy for arbitrary
 - loss function and
 - base hypothesis space

Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \dots w_d)$ over $w = (w_1, \dots, w_d) \in \mathbb{R}^d$.

- Initialize $w^{(0)} = 0$
- while not converged:
 - Choose a coordinate $j \in \{1, \ldots, d\}$
 - $\bullet \ \ w_j^{\mathsf{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \dots, w_{j-1}^{(t)}, \mathbf{w_j}, w_{j+1}^{(t)}, \dots, w_d^{(t)})$
 - $w^{(t+1)} \leftarrow w^{(t)}$
 - $w_i^{(t+1)} \leftarrow w_i^{\text{new}}$
 - $t \leftarrow t+1$

FSAM as Coordinate Descent

- Suppose $\mathcal{F} = \{\hbar_1, \dots, \hbar_N\}$.
- Then $f_m = w_1 h_1 + \cdots w_N h_N$.
- Represent f_m by parameter vector $w^{(m)} = (w_1, ..., w_N)$.
- Start with $w^{(0)} = 0$.
- After m-1 stages, we have $w^{(m-1)} = (w_1, \ldots, w_N)$.
- Suppose mth step chooses
 - $h_m = h_j \in \mathcal{F}$ and $v_m \in \mathbf{R}$.
- Then $w^{(m)} = (w_1, ..., w_{j-1}, w_j + v_m, w_{j+1}, ..., w_N)$

Gradient Boosting / "Anyboost"

Gradient Boosting / "Anyboost"

FSAM Looks Like Iterative Optimization

The FSAM step

$$(v_m, h_m) = \underset{v \in \mathbb{R}, h \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- Hard part: finding the **best step direction** *h*.
- What if we looked for the locally best step direction?
 - like in gradient descent
- Approach:
 - Choose h_m to be something like a gradient in function space.
 - ullet Roughly speaking, it will be the functional gradient projected onto ${\mathcal F}$.

Functional Gradient Descent: Main Idea

We want to minimize

$$\sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

- Take functional gradient w.r.t. f.
- Find function $h \in \mathcal{F}$ closest to gradient.
- Take a step in this "projected gradient" direction h.

"Functional" Gradient Descent

We want to minimize

$$\sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

- Only depends on f at the n training points.
- Define

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^T$$

and write the objective function as

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_{i}, \mathbf{f}_{i}).$$

Functional Gradient Descent: Unconstrained Step Direction

• Consider gradient descent on

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_{i}, \mathbf{f}_{i}).$$

• The negative gradient step direction at f is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}),$$

which we can easily calculate.

Functional Gradient Descent: Projection Step

Unconstrained step direction is

$$-\mathbf{g} = -\nabla_{\mathbf{f}}J(\mathbf{f}).$$

- Suppose \mathcal{F} is our weak hypothesis space.
- Find $h \in \mathcal{F}$ that is closest to $-\mathbf{g}$ at the training points, in the ℓ^2 sense:

$$\min_{h\in\mathcal{F}}\sum_{i=1}^n\left(-\mathbf{g}_i-h(x_i)\right)^2.$$

- This is a least squares regression problem.
- F should have real-valued functions.
- So the h that best approximates $-\mathbf{g}$ is our step direction.

Functional Gradient Descent: Step Size

- Finally, we choose a stepsize.
- Option 1 (Line search):

$$v_m = \underset{v>0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + vh_m(x_i)\}.$$

- Option 2: (Shrinkage parameter)
 - We consider v = 1 to be the full gradient step.
 - Choose a fixed $v \in (0,1)$ called a **shrinkage parameter**.
 - \bullet A value of $\nu=0.1$ is typical optimize as a hyperparameter .

The Gradient Boosting Machine

- ② For m = 1 to M:
 - Compute:

$$\mathbf{g}_{m} = \left(\left. \frac{\partial}{\partial f(x_{i})} \left(\sum_{i=1}^{n} \ell \{ y_{i}, f(x_{i}) \} \right) \right|_{f(x_{i}) = f_{m-1}(x_{i})} \right)_{i=1}^{n}$$

2 Fit regression model to $-\mathbf{g}_m$:

$$h_m = \arg\min_{h \in \mathcal{F}} \sum_{i=1}^n \left(\left(-\mathbf{g}_m \right)_i - h(x_i) \right)^2.$$

3 Choose fixed step size $v_m = v \in (0, 1]$, or take

$$v_m = \underset{v>0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + vh_m(x_i)\}.$$

Take the step:

$$f_m(x) = f_{m-1}(x) + v_m h_m(x)$$

The Gradient Boosting Machine: Recap

- Take any [sub]differentiable loss function.
- Choose a weak hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!

Gradient Tree Boosting

Gradient Tree Boosting

Common form of gradient boosting machine takes

$$\mathcal{F} = \{\text{regression trees of size } J\},$$

where J is the number of terminal nodes.

- J = 2 gives decision stumps
- HTF recommends $4 \leqslant J \leqslant 8$.
- Software packages:
 - Gradient tree boosting is implemented by the gbm package for R
 - as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
- For trees, there are other tweaks on the algorithm one can do
 - See HTF 10.9-10.12 and