

School of Computer Science and Engineering Fall Semester-2024-25

Course Code: CBS3007

Course: Data Mining and Analytics

Alan Thomas

21BBS0115

Github link for the datasets and code-

https://github.com/ALANT535/DATA-MINING-RESOURCES/tree/main/DA5

Aim

Consider the TATA MOTORS shares data from National stock exchange for the past 7 years. Implement the AutoRegressive Integrated Moving Average (ARIMA) model on the data and identify the 50 days moving average(MA), 200 days MA, 365 days MA and 500 days MA. Summarize the autocorrelations detected from the model.

LIBRARIES USED: Pandas, Numpy, Scikit Learn

Dataset: https://github.com/ALANT535/DATA-MINING-RESOURCES/tree/main/DA5/Q1

SECTION 1

Sample Input

F8	*	×	$\checkmark f_x$	
	А	В	С	D
1	Date	Price		
2	14-11-2024	774.3		
3	13-11-2024	786.25		
4	12-11-2024	784.85		
5	11-11-2024	804.7		
6	08-11-2024	805.45		
7	07-11-2024	819.75		
8	06-11-2024	839.7		
9	05-11-2024	835.65		
10	04-11-2024	824.1		
11	01-11-2024	843.45		
12	31-10-2024	834.05		
13	30-10-2024	840.2		
14	29-10-2024	842.75		
15	28-10-2024	878.45		
16	25-10-2024	864.3		
17	24-10-2024	880		
18	23-10-2024	877.65		
19	22-10-2024	879.5		
20	21-10-2024	903.3		
21	18-10-2024	910.15		
22	17-10-2024	891.6		
23	16-10-2024	907.45		
24	45 40 2024	047.0		

Code

```
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
df = pd.read csv('TAMO stock.csv')
df['Date'] = pd.to datetime(df['Date'], format='%d-%m-%Y').dt.date
df['Price'] = pd.to_numeric(df['Price'], errors='coerce')
# taking 100 past entries
df last year = df.head(50)
df last year = df last year.iloc[::-1]
# PRITING THE FIRST 50 ENTRIES
plt.figure(figsize=(12, 6))
plt.plot(df last year["Date"], df last year['Price'], marker='o', linestyle='-',
color='b')
plt.title('Stock Price over the last month')
plt.xlabel('Date')
plt.ylabel('Price')
plt.grid(True)
plt.xticks(rotation=45)
# plt.yticks([])
plt.tight_layout()
plt.show()
# PRITING THE FIRST 50 ENTRIES
plt.figure(figsize=(12, 6))
plt.plot(df["Date"], df['Price'])
plt.title('Stock Price over the past 7 years')
plt.xlabel('Date')
plt.ylabel('Price')
```

```
plt.grid(True)
plt.xticks(rotation=45)
plt.yticks([])
plt.tight layout()
plt.show()
# Calculate the Moving average
df['MA 50'] = df['Price'].rolling(window=50).mean()
df['MA 200'] = df['Price'].rolling(window=200).mean()
df['MA 365'] = df['Price'].rolling(window=365).mean()
df['MA 500'] = df['Price'].rolling(window=500).mean()
# Plotting moving averages
plt.figure(figsize=(12, 8))
plt.plot(df['Price'], label='Original Data')
plt.plot(df['MA_50'], label='50-Day MA', linestyle='dashed')
plt.plot(df['MA 200'], label='200-Day MA', linestyle='dashed')
plt.plot(df['MA 365'], label='365-Day MA', linestyle='dashed')
plt.plot(df['MA 500'], label='500-Day MA', linestyle='dashed')
plt.legend()
plt.title('Moving Averages')
plt.show()
result = adfuller(df['Price'].dropna())
print(f"ADF Statistic: {result[0]}")
print(f"p-value: {result[1]}")
if result[1] > 0.05:
  print("Data is non-stationary. Differencing may be needed.")
else:
  print("Data is stationary.")
# FITTING THE ARIMA MODEL
model = ARIMA(df['Price'], order=(2, 1, 2))
arima result = model.fit()
print(arima_result.summary())
```

```
df_test = df.iloc[1:]
df['Fitted'] = arima result.fittedvalues
plt.figure(figsize=(12, 6))
plt.plot(df_test["Date"], df_test['Price'], label='Original Data')
plt.plot(df test["Date"], df test['Fitted'], label='ARIMA Fitted Values',
linestyle='dashed')
plt.legend()
plt.title('ARIMA Fitted Values')
plt.show()
df['Fitted'] = arima result.fittedvalues
plt.figure(figsize=(12, 6))
plt.plot(df_test["Date"].head(30), df_test['Price'].head(30), label='Original
Data')
plt.plot(df_test["Date"].head(30), df_test['Fitted'].head(30), label='ARIMA
Fitted Values', linestyle='dashed')
plt.legend()
plt.title('ARIMA Fitted Values over 30 entries (A closer look at the graph)')
plt.show()
fig, ax = plt.subplots(2, 1, figsize=(12, 8))
plot acf(df['Price'].dropna(), lags=40, ax=ax[0])
plot_pacf(df['Price'].dropna(), lags=40, ax=ax[1])
plt.show()
```

<u>Output</u>

Data for the first 50 entries

Data for all 7 years

Moving Averages

Stability

		P ARIMA(2, 1 Sun, 17 Nov 16:5	rice No. , 2) Log 2024 AIC 4:05 BIC 0 HQIC	Observations Likelihood		1733 -5975.619 11961.238 11988.523 11971.330	
Covaria	- 1733 Covariance Type: opg						
======	coef			P> z	[0.025	0.975]	
ar.L1	0.1206	0.102	1.181	0.238	-0.080	0.321	
ar.L2	0.8443		8.409				
ma.L1	-0.1390	0.112	-1.242	0.214	-0.358	0.080	
ma.L2	-0.7989	0.109	-7.296	0.000	-1.013	-0.584	
sigma2	75.4123	1.207	62.484	0.000	73.047	77.778	
Ljung-E	ox (L1) (Q):		0.00	Jarque-Bera	(ЈВ):	6410	.40
	Prob(Q): Heteroskedasticity (H): Prob(H) (two-sided):		1.00	Prob(JB):		0	.00
			0.37			-0	.70
Prob(H)			0.00	Kurtosis:		12	.32
Warning [1] Cov	s: ariance matrix	calculated	using the o	uter product	of gradien	ts (complex-s	=== tep)

Report

ARIMA Caclulated values(small entries)

ARIMA Caclulated values(all entries)

Result

Result

- The model explains some variation in the Price data, particularly with the AR(2) and MA(2) terms.
- However, the residuals exhibit non-normality and some heteroskedasticity (variance inconsistency), which suggests the model might not fully capture all patterns or may require adjustments (e.g., using a different model or transforming the data).
- Despite this, the model shows reasonable significance for the AR(2) and MA(2) components and appears to handle autocorrelation well, given the Ljung-Box test result.

SECTION 2

Aim: Implement the Logistic regression for predicting the Possibility of enrolling into a university. The dataset can determine the probability of a student getting accepted to a particular university or a degree course in a college by studying the relationship between the estimator variables

Libraries: Numpy, Pandas, sklearn, seaborn

Dataset: https://github.com/ALANT535/DATA-MINING-RESOURCES/tree/main/DA5/Q2

Sample Input

4	А	В	С	D	Е	F	G	Н	1 4
1	CGPA	GRE	GMAT	TOEFL		Mini_Proje			
2	8.4	286	667	91	1	9	4	0	
3	7.89	306	678	94	0	5	0	0	
4	8.52	308	704	107	0	7	3	0	
5	9.22	298	702	106	2	6	4	1	
6	7.81	311	581	99	2	12	0	1	
7	7.81	323	603	101	3	8	4	1	
8	9.26	340	675	112	3	5	3	1	
9	8.61	318	675	94	1	4	2	0	
10	7.62	320	675	105	1	2	3	0	
11	8.43	313	780	97	2	6	6	1	
12	7.63	276	678	97	2	4	3	0	
13	7.63	314	706	110	0	3	3	1	
14	8.19	316	697	108	1	4	2	1	
15	6.47	340	682	108	0	3	1	0	
16	6.62	311	634	113	2	9	4	1	
17	7.55	321	687	100	1	7	1	1	
18	7.19	314	611	106	0	5	3	0	
19	8.25	291	638	96	1	8	2	1	
20	7.27	337	625	103	1	6	3	0	
21	6.87	330	654	98	1	4	3	1	
22	9.17	330	765	100	0	9	4	1	
23	7.82	296	556	105	1	7	2	0	
24	8.05	340	684	91	1	3	2	1	
25	6.86	286	569	120	1	5	1	0	

Code

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
df = pd.read csv('university enrollment data.csv')
X = df.drop('Enrolled', axis=1)
y = df['Enrolled']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42, stratify=y)
logreg = LogisticRegression()
# Fit the model
logreg.fit(X_train, y_train)
y pred = logreg.predict(X test)
print(y_pred)
print("\n\n")
print(y_test)
print("Accuracy Score:", accuracy_score(y_test, y_pred))
```

```
conf matrix = confusion matrix(y test, y pred)
print("Confusion Matrix:\n", conf matrix)
print("Classification Report:\n", classification_report(y_test, y_pred))
# Define a new student's data
new_entry = {
  'CGPA': 8.5,
  'GRE': 320,
  'GMAT': 650,
  'TOEFL': 105,
  'Research Articles': 2,
  'Mini Project Exp': 3,
  'Internship_Completed': 1
}
# Convert to DataFrame
new_entry_df = pd.DataFrame([new_entry])
new_entry_df.columns = ['CGPA', 'GRE', 'GMAT', 'TOEFL', 'Research_Papers',
   'Mini_Project_Months', 'Internship_Months']
# Prediction
enrollment_prediction = logreg.predict(new_entry_df)
print("Enrollment Prediction:", "Enrolled" if enrollment prediction[0] == 1 else
"Not Enrolled")
```

Predict probabilities as well
enrollment_probabilities = logreg.predict_proba(new_entry_df)
print("Enrollment Probabilities (Not Enrolled, Enrolled):",
enrollment_probabilities[0])

Output

First 5 rows

```
# Fit the model
   logreg.fit(X_train, y_train)
    y_pred = logreg.predict(X_test)
    print(y_pred)
    print("\n\n")
print(y_test)
    print("21BBS0115")
→ [111101010111111011011]
    99
        1
   45
    33
    30
        0
    92
        0
    16
        0
    65
         0
         0
    69
        0
    15
        1
    44
        0
    39
    23
         0
    86
    6
    50
    24
    Name: Enrolled, dtype: int64
    218850115
```

Logistics regression predicted and test datasets

Metric scores

Classification Clas	n Report: precision	recall	f1-score	support
0	0.80	0.50	0.62	8
1	0.73	0.92	0.81	12
accuracy			0.75	20
macro avg	0.77	0.71	0.72	20
weighted avg	0.76	0.75	0.74	20
21BBS0115				

Classification Report

```
Enrollment Prediction: Enrolled Enrolled Probabilities (Not Enrolled, Enrolled): [0.23799867 0.76200133]

21BBS0115
```

Prediction for new data point

Result

We have created the logistics regression and tested the model on a new entry as well. We have used sklearn libraries.

XXXXXXXXXXXXX