RESUMO DE ÁLGEBRA COMUTATIVA

Aula 1 - Conceitos iniciais

Observação 1.1. Neste curso, a menos que se diga o contrário,

- 1. todo anel é comutativo e com identidade;
- 2. todo homomorfismo de anéis leva identidade em identidade;
- 3. todo subanel contém a identidade do anel.

Exemplo 1.1. O menor anel é o **anel zero**, R=0, onde o elemento neutro da soma é igual a identidade.

Definição 1.1. Seja R um anel. Uma **R-álgebra** é um par (A, φ) , onde A é um anel e $\varphi : R \to A$ é homomorfismo. Se o homomorfismo φ é claro no contexto, o omitimos da definição e, assim, dizemos apenas que A é uma R-álgebra.

Exemplo 1.2. Se K é um corpo, então $K[x_1, \ldots, x_n]$ é uma K-álgebra, onde $\varphi: K \hookrightarrow K[x_1, \ldots, x_n], \lambda \mapsto \lambda$ é a inclusão.

Definição 1.2. Uma subálgebra $B \subseteq A$ é um subanel tal que $\varphi(R) \subseteq B$.

Definição 1.3. Um homomorfismo de álgebras $\theta:(A,\varphi)\to(B,\psi)$ é um homomorfismo de anéis tal que $\theta\circ\varphi=\psi$.

Exemplo 1.3. Se $\varphi: R \hookrightarrow A$ e $\psi: R \hookrightarrow B$ são inclusões, então o homomorfismo $\theta: A \to B$ é tal que $\theta(ra) = r\theta(a)$, para todo $r \in R$ e todo $a \in A$.

Observação 1.2. Seja K um corpo. Se $A \neq 0$ é uma K-álgebra, então o homomorfismo $\varphi: K \to A$ é injetivo. Nesse caso, podemos pensar que K é subanel de A.

Proposição 1.1. Sejam (A, φ) uma R-álgebra e $a_1, \ldots, a_n \in A$. Então existe único homomorfismo de álgebras $\alpha: R[x_1, \ldots, x_n] \to A$ tal que $\alpha(x_i) = a_i$, para todo $i = 1, \ldots, n$, ou seja, $\sum_{\text{finita}} r_{i_1, \ldots, i_n} x_1^{i_1} \ldots x_n^{i_n} \mapsto \sum_{\text{finita}} r_{i_1, \ldots, i_n} a_1^{i_1} \ldots a_n^{i_n}$. Além disso, im $\alpha \subseteq A$ é uma subálgebra e é a menor subálgebra de A que contém a_1, \ldots, a_n . Denotamos, nesse caso, im α por $R[a_1, \ldots, a_n]$.

Definição 1.4. Dizemos que uma R-álgebra A é **finitamente gerada**, se existem a_1, \ldots, a_n tal que $A = R[a_1, \ldots, a_n]$. Em particular, $A \cong R[x_1, \ldots, x_n]$, onde $I = \ker \alpha \leq R[x_1, \ldots, x_n]$ e α é o homomorfismo da proposição 1.1. Se A for uma K-álgebra finitamente gerada, então A é dita K-álgebra afim. Se A é uma K-álgebra afim e também um domínio, então dizemos que A é um K-domínio afim.

Exemplo 1.4. $\mathbb{C}[x]/(x^2)$ é \mathbb{C} -álgebra afim, mas não é \mathbb{C} -domínio afim.

Definição 1.5. Um grupo abeliano M é um \mathbf{R} -módulo se ele for um "R-espaço vetorial".

Observação 1.3. $I \subseteq R$ é ideal $\Leftrightarrow I$ é R-submódulo de R.

Definição 1.6. Uma base de um R-módulo M é um conjunto $\{m_i\}_{i\in I}\subseteq M$ que satisfaz:

- (i) qualquer que seja $m \in M$, existem $r_1, \ldots, r_k \in R$ e m_{i_1}, \ldots, m_{i_k} tais que $m = \sum_{j=1}^k r_j m_{i_j}$;
- (ii) se $\sum_{j=1}^{k} r_j m_{i_j} = 0$, então $r_j = 0$, para todo $j = 1, \dots, k$.

Definição 1.7. Se um R-módulo admite uma base, então dizemos que ele é um R-módulo livre.

Proposição 1.2. Seja $S \subseteq M$, onde M é um R-módulo. O conjunto de todas as R-combinações lineares de elementos de S, isto é, $\{r_1s_1 + \cdots + r_ns_n \mid r_i \in R, s_i \in S\}$ é um submódulo de M. Além disso, ele é o menor submódulo de M que contém S.

Definição 1.8. Seja $S \subseteq M$, onde M é um R-módulo. Definimos o **submódulo de M gerado por S** como sendo o conjunto de todas as R-combinações lineares de elementos de S, isto é, $\{r_1s_1 + \cdots + r_ns_n \mid r_i \in R, s_i \in S\}$. Tal conjunto é denotado por (S). Se $S = \{m_1, \ldots, m_n\}$, então denotamos (S) por (m_1, \ldots, m_n) .

Definição 1.9. Seja A uma K-álgebra. Dizemos que $a \in A$ é **algébrico sobre K** se existe $f \in K[x] \setminus \{0\}$ tal que f(a) = 0. Se todo $a \in A$ é algébrico sobre K, então dizemos que A é algébrico sobre K.

Lema 1.1. Seja A uma K-álgebra. Se A é um domínio integral e A é algébrico sobre K, então A é corpo.

Exercício 1.1.

- 1. Sejam
 - (a) J um conjunto de índices,
 - (b) $\bigoplus_{j\in J} R = \{(r_j)_{j\in J} \in \prod_{j\in J} R \mid r_j \neq 0 \text{ para somente finitos } j\in J\},$
 - (c) M um módulo livre com base $\{m_j\}_{j\in J}$.

Então $M \cong \bigoplus_{i \in J} R$.

Aula 2 - Ideais maximais em anel de polinômios

Definição 2.1. Seja A uma K-álgebra. Dizemos que $\{b_1, \ldots, b_k\} \subseteq A$ é algebricamente independente sobre K se não existe polinômio não trivial $p(x_1, \ldots, x_k) \in K[x_1, \ldots, x_k]$ tal que $p(b_1, \ldots, b_k) = 0$.

Lema 2.1. Seja A uma K-álgebra. Se A é corpo e está contido em um K-domínio afim, então A é algébrico sobre K.

Proposição 2.1. Sejam A e B K-álgebras, $\varphi:A\to B$ homomorfismo de álgebras e $M \leq B$ maximal. Se B é finitamente gerado, então $\varphi^{-1}(M) \leq A$ é maximal.

Corolário 2.1. Sejam A e B K-álgebras, com $A \subseteq B$ e B finitamente gerado. Se $M \subseteq B$ é maximal, então $M \cap A \subseteq A$ é maximal.

Exemplo 2.1. Sejam A = K[x] e B = K(x). Note que $A \subseteq B$. Além disso, $\{0\} \subseteq B$ é maximal, porque B é corpo, porém $\{0\} \cap A = \{0\} \subseteq A$ não é maximal, pois A não é corpo.

Lema 2.2. Sejam K corpo e $P=(\xi_1,\ldots,\xi_n)\in K^n$. Então $M_P=(x_1-\xi_1,\ldots,x_n-\xi_n)\subseteq K[x_1,\ldots,x_n]$ é ideal maximal.

Exemplo 2.2. $(x-a) \subseteq K[x]$ é ideal maximal, para todo $a \in K$.

Proposição 2.2. Se K é algebricamente fechado, então todo ideal maximal do anel de polinômios em n variáveis, $K[x_1, \ldots, x_n]$, é da forma $(x_1 - \xi_1, \ldots, x_n - \xi_n)$, para algum $P = (\xi_1, \ldots, \xi_n) \in K^n$.

Definição 2.2.

- a) Para $S \subseteq K[x_1, ..., x_n]$ definimos a **variedade afim associada a S**, como $\nu(S) = \{(\xi_1, ..., \xi_n) \in K^n \mid f(\xi_1, ..., \xi_n) = 0, \ \forall f \in S \}.$
- b) Dizemos que $X \subseteq K^n$ é uma **K-variedade afim** se existe $S \subseteq K[x_1, \ldots, x_n]$ tal que $X = \nu(S)$.

Exemplo 2.3. Sejam S^2 a esfera de raio 1 e $f(x,y,z)=x^2+y^2+z^2-1$. Então $\nu(\{f\})=S^2$.

Exercício 2.1.

1. Se $K \subseteq L$ são corpos e $a \in L$ é algébrico sobre K, prove que $[K(a):K] < \infty$.

Aula 3 - Teorema dos zeros de Hilbert

Teorema 3.1. Sejam $K = \overline{K}$, $S \subseteq K[x_1, \ldots, x_n]$, $\mathcal{M}_S = \{M \leq_{\max} K[x_1, \ldots, x_n] \mid S \subseteq M\}$. Então $\Phi : \nu(S) \to \mathcal{M}_S$, $P \mapsto M_P$ é bijeção.

Corolário 3.1 (Primeiro teorema dos zeros de Hilbert). Sejam $K = \overline{K}$ e $I \nsubseteq K[x_1, \ldots, x_n]$. Então $\nu(I) \neq \varnothing$.

Exemplo 3.1. Se $I = (x^2 + 1) \leq \mathbb{R}[x]$, então $\nu(I) = \emptyset$.

Definição 3.1. Seja R um anel. Definimos,

- a) $\operatorname{Spec}(R) = \{ P \leq R \mid P \text{ \'e primo} \};$
- b) $\operatorname{Spec}_{\max}(R) = \{ M \leq R \mid M \text{ \'e maximal} \};$
- c) $\operatorname{Spec}_{\operatorname{rab}}(R) = \{R \cap M \mid M \leq_{\max} R[x]\}.$

Definição 3.2. Seja $I \subseteq R$. Definimos o **ideal radical de I** como sendo $\sqrt{I} = \{a \in R \mid \exists n \in \mathbb{N} \ a^n \in I\}$.

Proposição 3.1. Se $I \subseteq R$, então

$$\sqrt{I} = \bigcap \{ P \mid P \in \operatorname{Spec}_{\operatorname{rab}}(R), I \subseteq P \}.$$

Observe que se não houver $P \in \operatorname{Spec}_{\operatorname{rab}}(R)$, com $I \subseteq P$, então $\sqrt{I} = \cap \emptyset = R$.

Corolário 3.2. Se $I \leq R$, então

$$\sqrt{I} = \bigcap \{ P \mid P \in \operatorname{Spec}(R), I \subseteq P \}.$$

Observe que se não houver $P \in \operatorname{Spec}(R)$, com $I \subseteq P$, então $\sqrt{I} = \cap \emptyset = R$.

Teorema 3.2. Se A é uma K-álgebra afim e $I \subseteq A$, então

$$\sqrt{I} = \bigcap \{ M \mid M \in \operatorname{Spec}_{\max}(A), I \subseteq M \}.$$

Observe que se não houver $M \in \operatorname{Spec}_{\max}(R)$, com $I \subseteq M$, então $\sqrt{I} = \cap \emptyset = R$.

Definição 3.3. Dizemos que R é um **anel de Jacobson** se para todo $I \not \supseteq R$ tivermos que $\sqrt{I} = \cap \{M \mid M \in \operatorname{Spec}_{\max}(A), I \subseteq M\}$.

Definição 3.4. Dado $X \subseteq K^n$, definimos

$$\mathcal{I}(X) = \{ f \in K[x_1, \dots, x_n] \mid f(\xi) = 0, \ \forall \xi \in X \}.$$

Teorema 3.3 (Segundo teorema dos zeros de Hilbert). Se $K = \overline{K}$ e $I \subseteq K[x_1, \dots, x_n]$, então $\mathcal{I}(\nu(I)) = \sqrt{I}$.

Lema 3.1. Se $X \subseteq K^n$ é uma variedade afim, então $\nu(\mathcal{I}(X)) = X$.

Corolário 3.3. Sejam $K = \overline{K}$ e $n \in \mathbb{N}$. Então existe uma bijeção entre $\{X \subseteq K^n \mid X \text{ \'e variedade afim}\}$ e $\{I \unlhd K[x_1, \ldots, x_n] \mid I = \sqrt{I}\}$, fazendo $X \mapsto \mathcal{I}(X)$ e $\nu(I) \leftrightarrow I$. Além disso,

- $I \subseteq J \Leftrightarrow \nu(J) \subseteq \nu(I)$;
- $X \subseteq Y \Leftrightarrow \mathcal{I}(Y) \subseteq \mathcal{I}(X)$;

Exercício 3.1.

- 1. Prove que $\operatorname{Spec}_{\max}(R) \subseteq \operatorname{Spec}_{\operatorname{rab}}(R) \subseteq \operatorname{Spec}(R)$.
- 2. Prove que todo ideal primo é radical.

Aula 4 - Anéis de coordenadas

Definição 4.1. Seja $X \subseteq K^n$ variedade afim. Definimos o anel de coordenadas de X (ou anel de funções regulares) como sendo $K[X] = K[x_1, \dots, x_n]/\mathcal{I}(X)$.

Observação 4.1.

- a) Todo $f \in K[X]$ define uma função $f: X \to K$, $(\xi_1, \ldots, \xi_n) \mapsto f(\xi_1, \ldots, \xi_n)$, dita **função regular**.
- b) Se $X = \nu(J)$, com $J \subseteq K[x_1, \dots, x_n]$, não implica que $K[X] = K[x_1, \dots, x_n] / J$. O que podemos dizer é que se $K = \overline{K}$, então $K[X] = K[x_1, \dots, x_n] / \sqrt{J}$, já que, pelo segundo teorema de zeros de Hilbert, $\mathcal{I}(\nu(J)) = \sqrt{J}$.

Lema 4.1. Sejam $I \subseteq R$, $A = \{J \subseteq R \mid I \subseteq J\}$ e $B = \{Q \subseteq R/I\}$. Defina $\varphi : A \to B$, $J \mapsto \pi(J)$, onde $\pi : R \to R/I$, $r \mapsto r + I$. Defina também $\psi : B \to A$, $Q \mapsto \{r \in R \mid r + I \in Q\}$. Então $\varphi \circ \psi = \mathrm{id}_B$ e $\psi \circ \varphi = \mathrm{id}_A$, ou seja, existe uma bijeção entre A e B. Além disso,

-
$$J \in A \Rightarrow R/J \cong R/I/\pi(J);$$

- $J \in A$ é primo $\Leftrightarrow \pi(J)$ é primo;
- $J \in A$ é maximal $\Leftrightarrow \pi(J)$ é maximal;
- $J = (a_1, \dots, a_n)_R \in A \Rightarrow \pi(J) = (a_1 + I, \dots, a_n + I)_{R_{/I}}$

Exercício 4.1.

- 1. Se $f \neq g$ em K[X], então $f \neq g$ como funções.
- 2. Sejam $I, J \subseteq R$ tais que $I \subseteq J$. Mostre que $\varphi : R/I \to R/J$, $r + I \mapsto r + J$ é bem definida.

Aula 5 - Anéis de coordenadas (parte 2)

Definição 5.1. Sejam $X \subseteq K^n$ variedade afim e $Y \subseteq X$. Dizemos que Y é **subvariedade afim**, se Y for variedade afim.

Teorema 5.1. Seja $X \subseteq K^n$, onde $K = \overline{K}$. Então existe uma bijeção entre os conjuntos $\{Y \subseteq X \mid Y \text{ subvariedade afim}\}$ e $\{J \subseteq K[X] \mid J = \sqrt{J}\}$, fazendo $Y \mapsto \mathcal{I}(Y)/\mathcal{I}(X)$ e $\{x \in X \mid f(x) = 0, \forall f \in J\} \longleftrightarrow J$. Além disso,

- a) Se $J\subseteq K[X]$ é o ideal correspondente à subvariedade Y, então $K[Y]\cong {}^{K[X]}\!\!/_{J};$
- b) $\{x \in X\} \to \operatorname{Spec}_{\max}(K[X]), x \mapsto \mathcal{I}(\{x\})/\mathcal{I}(X)$ é bijeção.

Definição 5.2.

- a) $a \in R$ é **nilpotente**, se $a^k = 0$, para algum k > 0.
- b) O **nil-radical de R** é nil $(R) = \{a \in R \mid a \text{ é nilpotente}\}$. Note que nil $(R) = \sqrt{\{0\}}$. Pelo corolário 3.2, nil $(R) = \cap \{P \leq_{\text{primo}} R\}$.
- c) R é dito **reduzido**, se nil(R) = 0. Observação: todo domínio integral é reduzido.

Teorema 5.2.

- a) $X \subseteq K^n$ é variedade afim $\Rightarrow K[X]$ é K-álgebra afim reduzida.
- b) $K = \overline{K}$ e A é K-álgebra afim reduzida \Rightarrow existe $X \subseteq K^n$ variedade afim tal que A = K[X].

Exercício 5.1. 1.2, 1.3, 1.5, 1.6 e 1.7.

Aula 6 - Módulos noetherianos e artinianos

Definição 6.1. Seja M um R-módulo.

- 1. M é **módulo noetheriano** se toda cadeia ascendente de submódulos de M (CCA) estabiliza, isto é, se $M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots$, então existe n tal que $M_i = M_n$, para todo $i \geq n$.
- 2. R é anel noetheriano se R visto como R-módulo for um módulo noetheriano.
- 3. M é **módulo artiniano** se toda cadeia descendente de submódulos de M(CCD) estabiliza, isto é, se $M_1 \supseteq M_2 \supseteq M_3 \supseteq \ldots$, então existe n tal que $M_i = M_n$, para todo $i \ge n$.

4. R é anel artiniano se R visto como R-módulo for um módulo artiniano.

Exemplo 6.1.

- \mathbb{Z} é noetheriano, mas não é artiniano.
- Todo corpo e todo anel finito é noetheriano e artiniano.

Proposição 6.1. Sejam M um R-módulo e $N\subseteq M$. Então são equivalente:

- i) M é noetheriano.
- ii) N e M/N são noetheriano.

Em particular, se R é noetheriano, então R_I é noetheriano para todo $I \subseteq R$.

Definição 6.2. Sejam $I \subseteq R$ e M um R-módulo.

- a) $IM = \{ \sum_{i=1}^{n} a_i m_i \mid n \in \mathbb{N}, a_i \in I, m_i \in M \}.$
- b) Para todo $n \in \mathbb{N}_0$, denotamos $I^n = I \dots I$ (n vezes), onde $I^0 = R$.

Lema 6.1. Sejam $I, J \subseteq R$. Se I é finitamente gerado, então

$$I \subseteq \sqrt{J} \iff \exists k \in \mathbb{N}_0 \ I^k \subseteq J.$$

Exercício 6.1.

- 1. Mostre que K[x] é noetheriano (dica: usar o que K[x] é anel euclidiano), mas não é artiniano.
- 2. Sejam $I, J \leq R$. Mostre que $IJ \subseteq I \cap J$ e $\sqrt{IJ} = \sqrt{I \cap J}$.

Aula 7 - Artiniano implica noetheriano

Lema 7.1. Se existem $M_1, \ldots, M_n \in \operatorname{Spec}_{\max}(R)$ tais que $M_1 \cdots M_n = \{0\}$, então R é artiniano, se e somente se, R é noetheriano. Além disso, $\operatorname{Spec}(R) = \{M_1, \ldots, M_n\}$.

Exercício 7.1.

1. Sejam M um R-módulo e $I \subseteq R$ tal que $I \cdot M = 0$. Mostre que M é R_{I} -módulo, onde a ação é dada por $(r+I) \cdot m = rm$.

Aula 8 - Artiniano implica noetheriano (parte 2)

Teorema 8.1. São equivalente:

- a) R é artiniano;
- b) R é noetheriano e $\operatorname{Spec}(R) = \operatorname{Spec}_{\max}(R)$.

Exercício 8.1.

1. Sejam $(M_i)_{i\in I}$ todos os ideais maximais de R. Se $y\in M_i$, para todo $i\in I$, então $y-1\not\in M_i$, para todo $i\in I$. Além disso, mostre que y-1 é invertível (dica: use lema de Zorn).

Aula 9 - Teorema da base de Hilbert

Teorema 9.1. Seja M R-módulo. São equivalentes:

- a) M é noetheriano;
- b) qualquer que seja $S \subseteq M$ submódulo, existem $m_1, \ldots, m_k \in S$ tais que $(S) = (m_1, \ldots, m_k)$;
- c) todo submódulo de M é finitamente gerado.

Em particular, são equivalentes:

- a) R é anel noetheriano;
- b) todo conjunto de geradores de um ideal contém um subconjunto finito de geradores;
- c) todo ideal de R é finitamente gerado.

Teorema 9.2. Sejam R anel noetheriano e M um R-módulo. São equivalentes:

- a) M é noetheriano;
- b) M é finitamente gerado.

Em particular, se M é finitamente gerado e $N\subseteq M$ é submódulo, então N é finitamente gerado.

Exercício 9.1.

- 1. É verdade que todo módulo artiniano é noetheriano?
- 2. Se L é R-módulo noetheriano, então $L^n = L \times \cdots \times L$ é R-módulo noetheriano.

Aula 10 - Teorema da base de Hilbert (parte 2)

Teorema 10.1. Se R é noetheriano, então R[x] é noetheriano. Em particular, se R é noetheriano, então $R[x_1, \ldots, x_n]$ é noetheriano.

Corolário 10.1. Se A é uma R-álgebra finitamente gerada e R é noetheriano, então A é noetheriano.

Corolário 10.2 (Teorema da base de Hilbert). Seja K um corpo. Então $K[x_1, \ldots, x_n]$ é noetheriano. Em particular, todo ideal de $K[x_1, \ldots, x_n]$ é finitamente gerado.

Observação 10.1. Seja $X = \nu(I)$, onde $I \leq K[x_1, \ldots, x_n]$. Então existem $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$, tais que $I = (f_1, \ldots, f_n)$. Assim, X é o conjunto solução de um sistema finito de equações polinomiais.

Exercício 10.1.

- 1. Sejam
 - $I \subseteq R[x]$;
 - $J = \{a \in R \mid \exists f \in I \text{ tal que } a \text{ \'e coeficiente l\'ider de } f\} = (a_1, \dots, a_n)_R;$
 - $f_i \in I$ tal que a_i é o coeficiente líder de f_i , com $i=1,\ldots,n;$
 - $d_i = \text{grau } f_i \in d = \max\{d_i \mid i = 1, ..., n\};$
 - $\tilde{I} = \{ f \in I \mid \operatorname{grau} f \leq d \}.$

Mostre que \tilde{I} é R-módulo noetheriano (dica: produto cartesiano finito de noetheriano).

Aula 11 - Topologia de Zariski

Proposição 11.1.

- a) Se $I, J \subseteq K[x_1, \ldots, x_n]$, então $\nu(I) \cup \nu(J) = \nu(I \cap J)$, isto é, união finita de variedades afins é variedade afim.
- b) Se $\mathcal{M} \subseteq K[x_1, \dots, x_n]$, então $\cap_{S \in \mathcal{M}S} \nu(S) = \nu(\cup_{S \in \mathcal{M}})$, isto é, interseção arbitrário de variedades afins é variedade afim.

Definição 11.1. Definimos $\tau = \{X \subseteq K^n \mid \exists I \preceq K[x_1, \dots, x_n] \mid X = \nu(I)\}$ a topologia de Zariski para K^n , onde os elementos de τ são os fechados dessa topologia.

Proposição 11.2. Considere a topologia de Zariski.

a) $X \subseteq K^n$ é fechado $\Leftrightarrow X = \nu(S) \Leftrightarrow X = \nu(\mathcal{I}(X))$, onde $\mathcal{I}(X)$ é radical.

- b) Seja $A \subseteq K^n$ um subconjunto. Então $\overline{A} = \nu(\mathcal{I}(A))$, onde \overline{A} é o fecho de A.
- c) Se $F \subseteq K^n$ e $|F| < \infty$, então F é fechado. Em particular, K^n é T_1 , isto é, dados $\xi_1, \xi_2 \in K^n$, diferentes, existem abertos $A_1, A_2 \subseteq K^n$ tais que $\xi_1 \in A_1 \setminus A_2$ e $\xi_2 \in A_2 \setminus A_1$.
- d) Os fechados em K^1 são precisamente os subconjuntos finitos.
- e) A topologia de Zariski em K^1 é a mais fraca tal que os conjuntos $\{\xi\}$ são fechados, quer dizer, se τ é outra topologia, onde os conjuntos com um único ponto são fechados, então os fechados de τ têm que conter os fechados da topologia de Zariski.

Exercício 11.1.

1. Se $I, J \leq K[x_1, \ldots, x_n]$, mostre que $\nu(IJ) = \nu(I \cap J)$.

Aula 12 - Topologia de Zariski (parte 2)

Proposição 12.1. Considere a topologia de Zariski.

- a) A topologia de Zariski em \mathbb{R}^n ou \mathbb{C}^n é menos fina do que a Euclidiana, ou seja, todo aberto de Zariski é aberto Euclidiano (uma topologia τ é mais fina do que uma topologia τ' , se todo aberto de τ' é também aberto de τ).
- b) Se $Y \subseteq K^n$ é variedade afim, então Y também é espaço topológico com a topologia de Zariski, via topologia induzida de K^n ($F \subseteq Y$ é fechado $\Leftrightarrow F = \tilde{F} \cap Y$, com $\tilde{F} \subseteq K^n$ fechado).
- c) A topologia de Zariski é a topologia mais fraca na qual as funções polinomiais (de K^n para K) são contínuas.
- d) Se $A \subseteq K^n$ é aberto, então $A = K^n \setminus \nu(I)$, onde $I = (p_1, \dots, p_k)$, isto é, A é o conjunto solução de inequações polinomiais.
- e) Se $|K| = \infty$, então K^n não é Hausdorff.

Exemplo 12.1. Seja $X = \nu(I)$, onde $I = (x^2 + y^2 - 1) \le \mathbb{C}[x, y]$. Então o aberto $X^{\complement} = \{(x, y) \in \mathbb{C}^2 \mid x^2 + y^2 > 1 \text{ ou } x^2 + y^2 < 1\}.$

Exercício 12.1.

1. Seja τ uma topologia em K onde $\{0\}$ é fechado. Seja τ' uma topologia qualquer em K^n onde as funções polinomiais são contínuas. Mostre que as variedades afins são fechadas em τ' .

- 2. Mostre que a função $f: \mathbb{C} \to \mathbb{C}, x = a + bi \mapsto \overline{x} = a bi$ é contínua na topologia de Zariski.
- 3. Mostre que quaisquer dois abertos na topologia de Zariski se interceptam (se o corpo é infinito).

Aula 13 - Morfismos entre variedades afins

Definição 13.1. Sejam $X \subseteq K^m$ e $Y \subseteq K^n$ variedades afins. Uma função $f: X \to Y$ é um **morfismo de variedades** se existem $f_1, \ldots, f_n \in K[x_1, \ldots, x_m]$ tais que $f(P) = (f_1(P), \ldots, f_n(P))$, para todo $P \in X$. Denotamos Mor(X, Y) o conjunto de todos os morfismo de variedades de X para Y.

Observação 13.1. Sejam $X\subseteq K^m, Y\subseteq K^n$ e $Z\subseteq K^\ell$ variedades afins, e $f:X\to Y$ e $g:Y\to Z$ morfismos de variedades, então $g\circ f:X\to Z$ é morfismo de variedades também.

Definição 13.2. Dizemos que um morfismo de variedades $f: X \to Y$ é um **isomorfismo** se existe $g: Y \to X$ morfismo tal que $f \circ g = \mathrm{id}_Y$ e $g \circ f = \mathrm{id}_X$.

Observação 13.2.

- Na topologia de Zariski todo morfismo de variedades é contínua, logo todo isomorfismo é um homeomorfismo.
- Podemos definir a categoria K-(var afim), cujos objetos são são K-variedades afins e os morfismos são os morfismos de variedades.

Proposição 13.1. Sejam $X \subseteq K^m$ e $Y \subseteq K^n$ variedades afins. Considere os anéis de coordenada associados a X e a Y, $K[X] = {}^K[x_1, \ldots, x_m] /_{\mathcal{I}(X)}$ e $K[Y] = {}^K[y_1, \ldots, y_n] /_{\mathcal{I}(Y)}$, respectivamente. Se $f: X \to Y$ é morfismo, isto é, $f = (f_1, \ldots, f_n)$, com $f_i \in K[x_1, \ldots, x_m]$, então f induz um homomorfismo de álgebras $\varphi_f: K[Y] \to K[X], y_i + \mathcal{I}(Y) \mapsto f_i + \mathcal{I}(X)$.

Observação 13.3. A partir de φ_f podemos definir um funtor contravariante F: K-(var afim) $\to K$ -(alg afim), $X \mapsto K[X] \in X \xrightarrow{f} Y \mapsto K[Y] \xrightarrow{\varphi_f} K[X]$.

Proposição 13.2. Sejam $X \subseteq K^m$ e $Y \subseteq K^n$ variedades afins. Considere os anéis de coordenada associados a X e a Y, $K[X] = K[x_1, \ldots, x_m]/\mathcal{I}(X)$ e $K[Y] = K[y_1, \ldots, y_n]/\mathcal{I}(Y)$, respectivamente. Seja $\varphi : K[Y] \to K[X]$ um homomorfismo de álgebras, onde $y_i + \mathcal{I}(Y) \mapsto f_i + \mathcal{I}(X)$, para $f_1, \ldots, f_n \in K[x_1, \ldots, x_m]$. Então φ induz um morfismo de variedades afins $f_{\varphi} : X \to Y$, onde $f_{\varphi} = (f_1, \ldots, f_n)$.

Observação 13.4. A partir de f_{φ} podemos definir um funtor contravariante G: K-(alg afim) $\to K$ -(var afim), $K[X] \mapsto X$ e $K[Y] \xrightarrow{\varphi} K[X] \mapsto X \xrightarrow{f_{\varphi}} Y$.

Observação 13.5. Um morfismo entre variedades afim $f: X \to Y$ ser bijetor não implica que ele é um isomorfismo, pois sua inversa f^{-1} não necessariamente é um morfismo (pode não ser polinomial). Por exemplo, tome $X \subseteq K^2$, onde $X = \nu((xy-1)) \cup \{(0,1)\}$, e considere $f: X \to K^1$, $(\xi_1, \xi_2) \mapsto \xi_1$, a projeção no eixo x. Então f é bijetor, mas $f^{-1}(x) = \frac{1}{x}$ não é polinomial.

Exercício 13.1.

- 1. Considere a proposição 13.2. Se $\varphi(y_i + \mathcal{I}(Y)) = \tilde{f}_i + \mathcal{I}(X)$, para todo i, então o morfismo dado pelos polinômios \tilde{f}_i é igual ao morfismo dado pelos polinômios f_i , isto é, $(\tilde{f}_1, \ldots, \tilde{f}_n) = (f_1, \ldots, f_n)$.
- 2. Considere os funtores F e G definidos nesta aula. Mostre que $F \circ G(\varphi) = \varphi$ e $G \circ F(f) = f$, para todo, $\varphi : K[Y] \to K[X]$ e $f : X \to Y$. Disso, conclua que $Mor(X,Y) \cong Hom_{K\text{-}(alg afim)}(K[Y],K[X])$.

Aula 14 - O espectro de um anel

Definição 14.1. Dado $S \subseteq R$ subconjunto, escrevemos $\nu_{\text{spec}}(S) = \{P \in \text{Spec}(R) \mid S \subseteq P\}$. Para cada subconjunto $X \subseteq \text{Spec}(R)$, escrevemos $\mathcal{I}_R(X) = \cap_{P \in X} P$; se $X \neq \emptyset$, então $\mathcal{I}_R(\emptyset) = R$.

Observação 14.1. Note que $\emptyset = \nu_{\text{spec}}(\{1\})$ e $\operatorname{Spec}(R) = \nu_{\text{spec}}(\emptyset)$.

Proposição 14.1.

- a) Se $S, T \subseteq R$ são subconjuntos, então $\nu_{\text{spec}}(S) \cup \nu_{\text{spec}}(T) = \nu_{\text{spec}}((S)_R \cap (T)_R);$
- b) Se $\mathcal{M} \neq \emptyset$ é um conjunto de subconjuntos de R, então $\cap_{S \in \mathcal{M}} \nu_{\text{spec}}(S) = \nu_{\text{spec}}(\cup_{S \in \mathcal{M}} S);$
- c) Se $X \subseteq \operatorname{Spec}(R)$, então $\mathcal{I}_R(X)$ é radical;
- d) Se $I \leq R$, então $\mathcal{I}_R(\nu_{\text{spec}}(I)) = \sqrt{I}$;
- e) Existe uma bijeção entre os conjuntos abaixo.

$$\{X \subseteq \operatorname{Spec}(R) \mid \exists S \subseteq R \ X = \nu_{\operatorname{spec}}(S) \} \ \leftrightarrow \ \{I \trianglelefteq R \mid I = \sqrt{I} \}$$

$$X \mapsto \mathcal{I}_R(X)$$

$$\nu_{\operatorname{spec}}(I) \ \leftarrow \ I$$

Observação 14.2. Da observação 14.1 e da proposição 14.1, itens a) e b), podemos tomar $\nu_{\text{spec}}(S)$, para todo $S \subseteq R$, como sendo os conjuntos fechados em Spec(R), definindo assim a topologia de Zariski para Spec(R). Note que qualquer subconjunto de Spec(R) é um espaço topológico com a topologia induzida.

Exercício 14.1.

- 1. Mostre que interseção de ideais radicais é ideal radical.
- 2. Mostre que se $S \subseteq T \subseteq R$ são subconjuntos, então $\nu_{\text{spec}}(T) \subseteq \nu_{\text{spec}}(S)$.

Aula 15 - O espectro de um anel (parte 2)

Observação 15.1.

- 1. Pode-se provar que a bijeção entre ideais maximais de K[X], que formam um subconjunto de Spec(K[X]), e pontos de X é um homeomorfismo, quando consideramos a topologia de Zariski. Assim, os pontos de Spec(K[X]) são da forma:
 - $M \leq_{\max} K[X]$ que correspondem aos pontos de X;
 - $P \leq_{\text{primo}} K[X]$ que correspondem a uma generalização dos pontos de X, definidos como sendo a imagem dos ideais primos de K[X] que não são maximais.
- 2. R é um anel de Jacobson se, e somente se, para todo $Y\subseteq \operatorname{Spec}(R)$ fechado, $\operatorname{Spec}_{\max}(R)\cap Y$ é denso em Y.

Exercício 15.1.

1. Seja $A \subseteq \operatorname{Spec}(R)$. Mostre que $\mathcal{I}_R(A) = \mathcal{I}_R(\overline{A})$ (dica: usar bijeção entre ideais radicais e fechados).

Aula 16 - O espectro de um anel (parte 3)

Observação 16.1.

- 1. Vamos construir um funtor entre as categorias Ring e Top. Já vimos que dado $R \in \text{Ring obtemos Spec}(R) \in \text{Top, com a topologia de Zariski. Dado } \varphi : R \to S$ homomorfismo de anéis, vamos definir $\varphi^* : \text{Spec}(S) \to \text{Spec}(R)$, $P \mapsto \varphi^{-1}(P)$, que é chamado de **induzido de** φ . Pode-se provar que φ^* é contínua, mostrando assim, que a associação acima define um funtor entre as categorias Ring e Top.
- 2. Definimos $\operatorname{Mor}(\operatorname{Spec}(S),\operatorname{Spec}(R))$ como sendo o conjunto $\{\psi:\operatorname{Spec}(S)\to\operatorname{Spec}(R)\mid\exists\,\varphi:R\to S\ \psi=\varphi^*\}.$

3. Diferentemente do caso dos funtores entre a categoria dos anéis de coordenada e a categoria das variedades afins, não temos um caminho oposto bem definido de Top para Ring. isto é, não existe construção que produz morfismos de anéis a partir de morfismos de Spec(R), pois o fato de $\varphi_1 \neq \varphi_2$ não implica que $\varphi_1^* = \varphi_2^*$. Para consertar isso precisamos do conceito de "feiches". O estudo de tais objetos é a alma da geometria algébrica.

Exercício 16.1.

1. Mostre que imagem inversa de ideais primos é ideal primo por homomorfismo de álgebras.

Aula 17 - Espaços noetherianos e irredutíveis

Observação 17.1. A ideia é obter o correspondente topológico da propriedade "noetheriano".

Definição 17.1. Seja X um espaço topológico.

- a) Dizemos que X é um **espaço noetheriano** se os fechados de X satisfazem a condição de cadeia descendente (CCD), isto é, se $Y_1 \supseteq Y_2 \supseteq \ldots$ são fechados de X, então existe $n \in \mathbb{N}$ tal que $Y_i = Y_n$, para todo $i \ge n$.
- b) Dizemos que X é um **espaço irredutível** se $X \neq \emptyset$ e X não pode ser escrito como união de fechados próprios não vazios.

Observação 17.2.

- a) O espaço X é noetheriano se, e somente se, os abertos de X satisfazem a condição de cadeia ascendente (CCA).
- b) O espaço X é irredutível se, e somente se, para todo $A, B \subseteq X$ abertos e não vazios, temos que $A \cap B \neq \emptyset$.

Exemplo 17.1.

- 1. \mathbb{R} e \mathbb{C} não são noetherianos nem irredutíveis.
- 2. Se X é espaço topológico com $|X| \leq \infty$, então X é noetheriano.
- 3. Se $X = \{x\}$, então X é irredutível.
- 4. Todo corpo infinito com a topologia de Zariski é irredutível.
- 5. Seja X um espaço de Hausdorff. Então X é irredutível se, e somente se, $X = \{x\}$.

Teorema 17.1.

- i) Se $X \subseteq K^n$ é subespaço topológico com a topologia de Zariski, então X é noetheriano.
- ii) Se R é anel noetheriano e $X \subseteq \operatorname{Spec}(R)$ é subespaço topológico, então X é noetheriano.

Observação 17.3. Se $\operatorname{Spec}(R)$ é noetheriano, não necessariamente R é noetheriano. Por exemplo, seja S = K[x,y]. Então $R = (K + Sx)/Sx^2$ não é noetheriano, mas $\operatorname{Spec}(R) = \left\{ \frac{Sx}{Sx^2} \right\}$ é noetheriano.

Aula 18 - Espaços noetherianos e irredutíveis (parte 2)

Teorema 18.1.

- a) $X \subseteq K^n$ é irredutível se, e somente se, $\mathcal{I}(X)$ é primo.
- b) $X \subseteq \operatorname{Spec}(R)$ é irredutível se, e somente se, $\mathcal{I}_R(X)$ é primo.

Teorema 18.2. Seja X um espaço topológico noetheriano.

- a) Existem $Z_1, Z_2, \ldots, Z_n \subseteq X$ fechados e irredutíveis, com $Z_i \not\subseteq Z_j$, para todo $i \neq j$, tais que $X = Z_1 \cup Z_2 \cup \cdots \cup Z_n$.
- b) Se $Z \subseteq X$ é irredutível, então $Z \subseteq Z_i$, para algum Z_i do item a).
- c) Z_1, Z_2, \ldots, Z_n do item a) são os subconjuntos irredutíveis maximais de X. Em particular, se $X = \tilde{Z}_1 \cup \cdots \cup \tilde{Z}_k$ é uma decomposição tal como em a), então k = n e $Z_i = \tilde{Z}_i$ a menos de ordem.

Observação 18.1. Se a) vale, então b) e c) valem independentemente de X ser noetheriano.

Definição 18.1. Se $X = Z_1 \cup \cdots \cup Z_n$ como no teorema 18.2, então Z_1, \ldots, Z_n são ditos **componentes irredutíveis** de X.

Exemplo 18.1. Sejam $K = \overline{K}$ e $g \in K[x_1, \ldots, x_n]$. Como $K[x_1, \ldots, x_n]$ é um domínio de fatoração única, então $g = p_1^{a_1} \ldots p_r^{a_r}$ é a decomposição de g em fatores irredutíveis. Assim, $\nu(g) = \nu(p_1) \cup \cdots \cup \nu(p_r)$. Note que (p_i) é primo, logo $\nu(p_i)$ é irredutível, para todo $1 \leq i \leq r$. Portanto, $\nu(p_1), \ldots, \nu(p_r)$ são as componentes irredutíveis de X.

Aula 19 - Espaços noetherianos e irredutíveis (parte 3)

Definição 19.1. Dizemos que $P \in \operatorname{Spec}(R)$ é **minimal** se para todo $Q \in \operatorname{Spec}(R)$ tal que $Q \subseteq P$, temos que Q = P.

Exemplo 19.1. Se R é domínio integral, então (0) é o único primo minimal.

Observação 19.1. Seja P um minimal em $\operatorname{Spec}(R)$, com R noetheriano. Então $\nu_{\operatorname{spec}}(P)$ é irredutível, fechado e maximal. Logo, $\operatorname{Spec}(R) = \bigcup \{\nu_{\operatorname{spec}}(P) \mid P \in \operatorname{Spec}(R) \text{ é minimal}\}$ é decomposição em irredutíveis fechados.

Corolário 19.1. Suponha que R é um anel noetheriano.

- a) Existem somente finitos ideais primos minimais em $R: P_1, \ldots, P_n$.
- b) Todo ideal primo de R contém um primo minimal.
- c) $\operatorname{nil}(R) = \bigcap_{i=1}^n P_i$.
- d) Se $I \subseteq R$, então $\nu_{\text{spec}}(I) \subseteq \text{Spec}(R)$ tem finitos elementos minimais, Q_1, \dots, Q_r e além disso, $\sqrt{I} = \bigcap_{i=1}^r Q_i$

Observação 19.2.

- 1. A parte d) do corolário 19.1 implica que fixado um ideal I de R, temos que $|\{P \in \operatorname{Spec}(R) \mid P \text{ minimal, com } I \subseteq P\}| < \infty$.
- 2. Na aula 8, teorema 8.1, provamos que se R é artiniano, então R é noetheriano e $\mathrm{Spec}(R)=\mathrm{Spec}_{\mathrm{max}}(R)$. Agora, usando o corolário 19.1, podemos mostrar a recíproca.

Exercício 19.1.

1. Prove que todo ideal primo de R contém um primo minimal, sem assumir que R é noetheriano.

Aula 20 - Exemplos de espectros de um anel

Exemplo 20.1.

1. Seja K um corpo. Então $\operatorname{Spec}(K \times K) = \{K \times \{0\}, \{0\} \times K\}$. Os fechados são da forma $\nu_{\operatorname{spec}}(I)$, com $I \subseteq K \times K$, ou seja, os fechados são todos os subconjuntos de $\operatorname{Spec}(K \times K)$, logo a topologia de Zariski é igual à topologia discreta.

- 2. Sejam K um corpo e K[[x]] o anel das séries formais. Então $\operatorname{Spec}(K[[x]]) = \{(0), (x)\}$. Seja $I \leq K[[x]]$. Se $I \neq (0)$, então $\nu_{\operatorname{spec}}(I) = (x)$; se I = (0), então $\nu_{\operatorname{spec}}(I) = \operatorname{Spec}(K[[x]]) \neq (0)$, daí, $\overline{\{(0)\}} \neq \{(0)\}$. Assim, $\{(x)\}$ é o único fechado próprio não vazio de $\operatorname{Spec}(K[[x]])$ e, além disso, $\{(0)\}$ é um conjunto denso, já que $\overline{\{(0)\}} = \operatorname{Spec}(K[[x]])$.
- 3. Considere $\mathbb{C}[x]$ o anel dos polinônios. Sabemos que se $0 \neq I \leq \mathbb{C}[x]$ é primo, então I é maximal, pois $\mathbb{C}[x]$ é um domínio de ideal principal. Como $\mathbb{C}[x]$ é comutativo com identidade, então todo ideal maximal é primo. Daí, $\operatorname{Spec}(\mathbb{C}[x]) = \{(0), M_{\xi} = (x \xi) \mid \xi \in \mathbb{C}\}$. Seja $0 \neq I \leq \mathbb{C}[x]$. Então existem $p_1, \ldots, p_r \in \mathbb{C}[x]$ irredutíveis tais que $I = (p_1 \ldots p_r)$. Assim, $\nu_{\operatorname{spec}}(I) = \nu_{\operatorname{spec}}(p_1) \cup \cdots \cup \nu_{\operatorname{spec}}(p_r) = (p_1) \cup \cdots \cup (p_r)$, já que (p_i) é maximal, pois p_i é irredutível. Daí, os fechados de $\operatorname{Spec}(\mathbb{C}[x])$ são $\{\emptyset, \operatorname{Spec}(\mathbb{C}[x]), \operatorname{conjuntos finitos}\}$. Note que $\{(0)\}$ é denso, pois $\nu_{\operatorname{spec}}((0)) = \operatorname{Spec}(\mathbb{C}[x])$ (lembre que $\mathcal{I}_R(A) = \mathcal{I}_R(\overline{A})$ e que $\nu_{\operatorname{spec}}(\mathcal{I}_R(\overline{A})) = \overline{A}$, para todo $A \subseteq \operatorname{Spec}(R)$; como $\mathcal{I}_R(\{(0)\}) = (0)$, então $\nu_{\operatorname{spec}}((0)) = \overline{\{(0)\}}$). Observe também que se $K = \overline{K}$, então $X \approx \operatorname{Spec}_{\max}(K[X]) \subseteq \operatorname{Spec}(K[X])$. Logo, $\mathbb{C} \approx \operatorname{Spec}_{\max}(\mathbb{C}[x]) \subseteq \operatorname{Spec}(\mathbb{C}[x])$. Identificando ponto com seu fecho, temos que $\operatorname{Spec}(\mathbb{C}[x]) \sim \{(x \xi), \overline{(0)}\}$.

Exercício 20.1.

- 1. Sejam K um corpo e K[[x]] o anel das séries formais. Mostre que:
 - (a) K[[x]] é um domínio;
 - (b) $a_0 + a_1 x + a_2 x^2 + \dots \in K[[x]]$, com $a_0 \neq 0$, é invertível;
 - (c) se $M \leq_{\max} K[[x]]$, então M = (x);
 - (d) $\operatorname{Spec}(K[[x]]) = \{(0), (x)\}.$
- 2. Sejam R_1 e R_2 anéis. Mostre que os ideais de $R_1 \times R_2$ são da forma $I_1 \times I_2$, onde I_1 é ideal de R_1 e I_2 é ideal de R_2 .

Aula 21 - Dimensão de Krull e grau de transcendência

Observação 21.1. A ideia é:

- Definir o conceito "correto" de dimensão de uma variedade afim.
- Relacionar essa dimensão com o grau de transcendência de um anel.

Definição 21.1. Seja \mathcal{M} um conjunto de conjuntos. Uma **cadeia em** \mathcal{M} é um subconjunto $\mathcal{C} \subseteq \mathcal{M}$ tal que se $A, B \in \mathcal{C}$, então $A \subseteq B$ ou $B \subseteq A$. O **comprimento de** \mathcal{C} é definido como $\ell(\mathcal{C}) = |\mathcal{C}| - 1 \in \mathbb{N}_0 \cup \{-1, \infty\}$, onde $\ell(\emptyset) = -1$. Uma cadeia de comprimento n é da forma $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n$. Definimos $\ell(\mathcal{M}) = \sup\{\ell(\mathcal{C}) \mid \mathcal{C} \subseteq \mathcal{M} \text{ é cadeia}\} \in \mathbb{N}_0 \cup \{-1, \infty\}$

Exemplo 21.1. Seja V um espaço vetorial com dimensão no máximo enumerável. Então $\dim(V) = \ell(\{U \subseteq V \mid U \text{ é subespaço}\}).$

Definição 21.2.

- a) Seja X espaço topológico. Definimos a **dimensão de Krull de X**, denotada por $\dim_{\mathrm{Krull}}(X)$, ou apenas por $\dim(X)$, como sendo $\ell(\{F \subseteq X \mid F \text{ \'e fechado e irredut\'evel}\})$.
- b) Seja R um anel. Definimos a **dimensão de Krull de R**, cuja notação é dada por $\dim_{\mathrm{Krull}}(R)$ ou simplesmente por $\dim(R)$, como sendo $\dim_{\mathrm{Krull}}(\mathrm{Spec}(R))$. Observe que $\nu_{\mathrm{spec}}(J)$ é irredutível se, e somente se, J é primo, isto é, existe uma correspondência entre cadeias de fechados e irredutíveis em $\mathrm{Spec}(R)$ e cadeias de ideais primos de R. Assim, $\dim_{\mathrm{Krull}}(R) = \ell(\mathrm{Spec}(R))$.
- c) Se $X \subseteq K^n$ é uma variedade afim, então a **dimensão de Krull de X**, denotada por $\dim_{\mathrm{Krull}}(X)$ ou por $\dim(X)$, é definida como $\dim_{\mathrm{Krull}}(K[X])$. Note que $\nu(I) \subseteq X$ é fechado e irredutível se, e somente se, I é primo. Assim, calcular cadeias de fechados e irredutíveis em X é equivalente a calcular cadeias de ideais primos em K[X].

Aula 22 - Dimensão de Krull e grau de transcendência (parte 2)

Exemplo 22.1.

- 1. Seja $X = \{x_1, \dots, x_n\}$ com a topologia discreta. Então $\dim_{\mathrm{Krull}}(X) = 0$.
- 2. Se $X=K^1$ com a topologia de Zariski, onde $|K|=\infty$, então $\dim_{\mathrm{Krull}}(X)=1$.
- 3. Sejam $P, L \subseteq \mathbb{R}^3$, um plano e uma reta, respectivamente, com $L \not\subseteq P$. Seja $X = P \cup L$ com a topologia de Zariski. Então $\dim_{\mathrm{Krull}}(X) \geq 2$.
- 4. Seja K um corpo. Por definição, $\dim_{Krull}(K) = \dim_{Krull}(Spec(K))$. Assim, como $Spec(K) = \{(0)\}$, então $\dim_{Krull}(K) = 0$. Note que $\dim_{Krull}(X) \neq \dim_{Krull}(K^1)$.
- 5. Note que $\operatorname{Spec}(\mathbb{Z}) = \operatorname{Spec}_{\max}(\mathbb{Z}) \cup \{(0)\}$ e $\operatorname{Spec}_{\max}(\mathbb{Z}) = \{(p) \mid p \text{ \'e primo}\}$. Então $\dim_{\operatorname{Krull}}(\mathbb{Z}) = 1$. Note que o mesmo acontece para todo domínio integral.
- 6. Pelo item anterior, $\dim_{Krull}(K[x]) = 1$.
- 7. $\dim_{Krull}(K[x_1, x_2, ...]) = \infty$.

8. Se X é um espaço topológico noetheriano, então $X = Z_1 \cup \cdots \cup Z_n$, com Z_i componentes irredutíveis e maximais de X. Daí, temos que $\dim_{\mathrm{Krull}}(X) = \max\{\dim_{\mathrm{Krull}}(Z_1),\ldots,\dim_{\mathrm{Krull}}(Z_n),-1\}$.

Definição 22.1. Seja $X = Z_1 \cup \cdots \cup Z_n$ um espaço topológico noetheriano, com Z_i componentes irredutíveis e maximais de X, tais que $\dim_{\mathrm{Krull}}(Z_i) = \dim_{\mathrm{Krull}}(Z_j)$, para todo i, j. Então dizemos que X é **equidimensional**. Dizemos também que um anel R é **equidimensional**, se $\mathrm{Spec}(R)$ é equidimensional.

Aula 23 - Dimensão de Krull e grau de transcendência (parte 3)

Observação 23.1. O objetivo é encontrar uma forma mais computável de calcular a dimensão de Krull.

Definição 23.1. Seja A uma K-álgebra. O **grau de transcendência** de A é definido como sendo

 $\operatorname{trdeg}(A) = \sup\{|T| \mid T \subseteq A \text{ \'e finito e algebricamente independente}\}$

Note que $\operatorname{trdeg}(A) \in \mathbb{N}_0 \cup \{-1, \infty\}$, onde $\operatorname{trdeg}(\{0\}) := -1$.

Exemplo 23.1.

- a) $\operatorname{trdeg}(K[x]) = 1$, pois o conjunto maximal algebricamente independente em K[x] é o gerado por x que tem cardinalidade 1.
- b) $\operatorname{trdeg}(\mathbb{R}[i]) = 0$, porque todo elemento de \mathbb{R} é algébrico sobre \mathbb{R} e i também é algébrico sobre \mathbb{R} , logo não existe conjunto algebricamente independente, ou seja, $\operatorname{trdeg}(\mathbb{R}[i]) = |\varnothing| = 0$.
- c) $\operatorname{trdeg}(K[x_1, x_2, \dots]) = \infty$, porque sempre é possível crescer um conjunto algebricamente independente.

Definição 23.2. Sejam X e Y K-variedades afim. Dizemos que $f: X \to Y$ é um **morfismo dominante** se f é um morfismo de variedades e se f(X) é denso em Y.

Observação 23.2. Seja A = K[X]. Achar um conjunto algebricamente independente de tamanho n em A é equivalente a achar um homomorfismo injetivo de $K[x_1, \ldots, x_n]$ para A. Pelo exercício 23.1, temos que $\operatorname{trdeg}(A)$ é o maior número n tal que existe $f: X \to K^n$ morfismo dominante. Com isso vemos que existe um relação entre os conceitos de dimensão de Krull e grau de transcendência.

Lema 23.1. Seja A uma K-álgebra. Se $S \subseteq A$ é um subconjunto que gera A como K-álgebra (isto é, se $a \in A$, então existe $s_1, \ldots, s_n \in S$ e $p \in K[x_1, \ldots, x_n]$ tal que $a = p(s_1, \ldots, s_n)$). Então $\dim_{\mathrm{Krull}}(A) \leq \sup\{|T| \mid T \subseteq S \text{ é finito e algebricamente independente}\}$.

Teorema 23.1. Se A é uma K-álgebra, então $\dim_{Krull}(A) \leq \operatorname{trdeg}(A)$.

Corolário 23.1. A dimensão de Krull do anel de polinômios em n variáveis é igual a n, isto é, $\dim_{\mathrm{Krull}}(K[x_1,\ldots,x_n])=n$. Além disso, $\dim_{\mathrm{Krull}}(K^n)=\begin{cases} n, & \text{se } |K|=\infty\\ 0, & \text{se } |K|<\infty \end{cases}$.

Observação 23.3. A inequação $\dim_{\mathrm{Krull}}(A) \leq \mathrm{trdeg}(A)$ obtida no teorema 23.1 muitas vezes está longe de ser ótima. Por exemplo, seja $A = K(x_1, \ldots, x_n)$ o corpo de frações do anel de polinômios em n variáveis. Por ser corpo $\dim_{\mathrm{Krull}}(A) = 0$, mas $\mathrm{trdeg}(A) = n$, pois $S = \{x_1, \ldots, x_n\}$ é o conjunto maximal algebricamente independente em A.

Exercício 23.1.

- 1. Seja $f: X \to K^n$ um morfismo de variedades. Mostre que f é um morfismos dominante se, e somente se, $\varphi_f: K[x_1, \ldots, x_n] \to K[X]$ é injetivo, onde φ_f é o homomorfismo de álgebra induzido por f.
- 2. Dê um exemplo de uma cadeia que não é possível refinar, cujo comprimento não é a dimensão de Krull do espaço todo (dica: ver item 3 do exemplo 22.1).

Aula 24 - Dimensão de Krull e grau de transcendência (parte 4)

Teorema 24.1. Se A é uma K-álgebra afim, então $\dim_{Krull}(A) = \operatorname{trdeg}(A)$. Em particular, se $S \subseteq A$ é um conjunto de geradores, então $\operatorname{trdeg}(A) = \{|T| \mid T \subseteq S \text{ é finito e algebricamente independente}\}$.

Aula 25 - Aplicação da igualdade entre dimensão de Krull e grau de transcendência

Teorema 25.1. Seja $A \neq \{0\}$ um K-álgebra afim. Então são equivalentes:

- a) $\dim_{Krull}(A) = 0;$
- b) A é algébrico sobre K;
- c) $\dim_K(A) < \infty$ (como K-espaço vetorial);

- d) A é artiniano;
- e) $|\operatorname{Spec}_{\max}(A)| < \infty$.

Proposição 25.1. Se $X \subseteq K^n$, com $X \neq 0$ é um espaço topológico com a topologia de Zariski, então $\dim_{\mathrm{Krull}}(X) = 0$ se, e somente se, $|X| < \infty$.

Definição 25.1. Dizemos que $X \subseteq K^n$ é uma **hipersuperfície**, se X é equidimensional e $\dim_{\mathrm{Krull}}(X) = n - 1$.

Lema 25.1. Se R é um domínio de fatoração e $P \in \operatorname{Spec}(R) \setminus \{(0)\}$ é minimal, então P = (a), com $a \in R$ primo.

Teorema 25.2. Sejam $I \subseteq K[x_1, \ldots, x_n]$ e $A = K[x_1, \ldots, x_n] / I$. Então são equivalentes:

- a) A é equidimensional com $\dim_{Krull}(A) = n 1$;
- b) $I \neq K[x_1, ..., x_n]$ e se $P \subseteq I$ é primo minimal, então P é minimal em $\{Q \in \operatorname{Spec}(K[x_1, ..., x_n]) \setminus \{(0)\}\};$
- c) $\sqrt{I} = (g)$, onde $g \in K[x_1, \dots, x_n]$ é não constante.

Exercício 25.1.

1. Seja R um anel. Se $P \in \operatorname{Spec}(R)$ é minimal, então $\dim_{\operatorname{Krull}}(R) = \dim_{\operatorname{Krull}}(R/P)$.

Aula 26 - Aplicação da igualdade entre dimensão de Krull e grau de transcendência (parte 2)

Teorema 26.1. Se $X \subseteq K^n$ e $Y \subseteq K^m$ são variedades afim não vazias e $K = \overline{K}$, então para a variedade produto $X \times Y \subseteq K^{n+m}$ temos que $\dim_{\mathrm{Krull}}(X \times Y) = \dim_{\mathrm{Krull}}(X) + \dim_{\mathrm{Krull}}(Y)$.

Aula 27 - Localização

Observação 27.1. A ideia é generalizar a construção de corpo de frações partindo de um anel ao invés de um domínio integral. Ao longo dessa seção considere R um anel, M um R-módulo e $U \subseteq R \setminus \{0\}$ um conjunto multiplicativo (isto é, se $a, b \in U$, então $ab \in U$) tal que $1 \in U$. Defina a relação \sim em $U \times M$ da seguinte maneira:

$$(u_1, m_1) \sim (u_2, m_2) \Leftrightarrow \exists u \in U \ uu_2m_1 = uu_1m_2.$$

Definição 27.1. A localização de M em relação a U, denotado por $U^{-1}M$, é definida como sendo o conjunto das classes de equivalência de $U \times M$ via a relação \sim , isto é,

$$U^{-1}M := (U \times M) /_{\sim} = \left\{ [u, m]_{\sim} =: \frac{m}{u} \mid m \in M, u \in U \right\}.$$

Observação 27.2.

- Existe um mapa canônico $\varepsilon: M \to U^{-1}M, m \mapsto \frac{m}{1}$.
- $U^{-1}M$ é R-módulo
 - (adição) $\frac{u_2m_1+u_1m_2}{u_1u_2} := \frac{m_1}{u_1} + \frac{m_2}{u_2}$, para todo $m_i \in M$ e $u_i \in U$;
 - (ação) $\frac{rm}{u} \coloneqq r\frac{m}{u},$ para todo $m \in M, \, u \in U$ e $r \in R.$

Definição 27.2. Observe que se $P \in \operatorname{Spec}(R)$, então $U = R \setminus P$ é multiplicativo. Assim, a localização de M em relação a $U, U^{-1}M$, é denotado por M_P .

Exemplo 27.1.

- 1. Sejam R domínio integral e $(0) \in \operatorname{Spec}(R)$, então $R_{(0)} = \operatorname{Quot}(R)$, onde $\operatorname{Quot}(R)$ é o corpo quociente de R. Note que nessa construção invertemos todos os elementos de R não nulos.
- 2. Sejam R um anel e $U = \{a \in R \mid a \text{ não \'e divisor de zero}\}$. Observe que U é um conjunto multiplicativo, logo podemos considerar a localização de R com relação a esse conjunto, $U^{-1}R$ que é dito **anel total de frações de R**. O conjunto U é o maior conjunto com elementos invertíveis que se pode construir a partir de R de forma que satisfaz a condição de R poder ser visto como um subanel de $U^{-1}R$. Formalmente, temos que U satisfaz a seguinte propriedade universal: se $S \subseteq R$ é tal que $R \to S^{-1}R$ é injetivo, então $S \subseteq U$, ou seja, $U^{-1}R$ é maximal. Daí se o conjunto multiplicativo tiver algum elemento divisor de zero, então a localização pode diminuir o anel ao invés de aumentá-lo.
- 3. Seja (2) $\in \mathbb{Z}$. Então $\mathbb{Z}_{(2)} = \{ \frac{a}{2k+1} \mid a \in \mathbb{Z}, k \in K \}.$
- 4. (U com divisor de zero). Seja $R = \mathbb{Z}/_{(6)}$ e tome $(\overline{2}) \in \operatorname{Spec}(R)$ (existe uma bijeção entre os ideais primos do quociente e os ideais primos do anel). Note que $\overline{3} \in U = R \setminus \{(\overline{2})\}$ é divisor de zero e isso implica que $\frac{\overline{2}}{\overline{1}} = \frac{\overline{0}}{\overline{1}}$ em $R_{(\overline{2})}$, pois $\overline{3} \in U$ é tal que $\overline{3} \cdot \overline{1} \cdot \overline{2} = \overline{3} \cdot \overline{1} \cdot \overline{0}$. Assim, $\varepsilon : R \to R_{(\overline{2})}$ não é injetivo, já que $\overline{2} \mapsto \frac{\overline{2}}{\overline{1}} = \frac{\overline{0}}{\overline{1}}$. Por outro lado, ε é sobrejetivo, pois $\overline{2} = \frac{\overline{4}}{2} = 0$, $\overline{3} = \overline{5} = \overline{1}$, ou seja, $R_{(\overline{2})} = \{\overline{0},\overline{1}\}$. Além disso, $\ker(\varepsilon) = (\overline{2})$. Daí, $R/_{(\overline{2})} \cong R_{(\overline{2})}$, ou seja, $R/_{(\overline{2})} \cong \mathbb{Z}_2$.

- 5. Sejam K um corpo algebricamente fechado e $X \subseteq K^n$ uma variedade afim. Dado $\xi \in X$ temos que $M_{\xi} \in \operatorname{Spec}_{\max}(K[X])$. Lembre que $f \in M_{\xi}$ se, e somente se, $f(\xi) = 0$. Assim, $K[X]_{\xi} \coloneqq K[X]_{M_{\xi}} = \{\frac{f(x)}{g(x)} \mid g(\xi) \neq 0\}$. Como uma função polinomial é contínua, então se ela não se anula em um ponto, ela também não se anula na vizinhança desse ponto, logo as funções na localização $K[X]_{M_{\xi}}$ estão bem definidas em toda uma vizinhança de ξ . Esse tipo de função generaliza as funções regulares.
- 6. Sejam R um anel e $a \in R \setminus \{0\}$. Então $U = \{1, a, a^2, \dots\}$ é multiplicativo. A localização de M em relação a U é denotada por M_a . Tomar cuidado para não confundir as notações. Por exemplo, dado $2 \in \mathbb{Z}$, temos que $\mathbb{Z}_2 := U^{-1}\mathbb{Z} = \{\frac{a}{2^k}\}$ que é diferente do corpo $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$.
- 7. Se tentarmos definir $U^{-1}M$ com $0 \in U$, então teremos que $U^{-1}M=0$, pois [u,m]=[u,0], já que existe $0 \in U$ tal que $0 \cdot (u \cdot m)=0 \cdot (u \cdot 0)$.
- 8. Seja (G, +) é um grupo abeliano finito. Em particular, G é um \mathbb{Z} -módulo. Tome $U = \mathbb{Z} \setminus \{0\}$. Note que $U^{-1}G = 0$, pois $\frac{g}{u} = \frac{o(g)}{o(g)} \frac{g}{u} = \frac{o(g)g}{o(g)u} = 0$, onde o(g) é a ordem de g.

Exercício 27.1.

- 1. Cheque a relação definida na observação 27.1 é uma relação de equivalência.
- 2. Cheque as operações definidas na observação 27.2 são bem definidas.
- 3. Mostre que $\mathbb{Z}_{(2)}=\{\frac{a}{2k+1}\mid a\in\mathbb{Z}, k\in K\}$ não é um anel de Jacobson.
- 4. Se $x \notin U$ é divisor de zero e existe $u \in U$ tal que ux = 0, então x = 0 na localização.

Aula 28 - Localização (parte 2)

Proposição 28.1. Sejam R um anel, $U\subseteq R$ um conjunto multiplicativo e M um R-módulo.

- a) $U^{-1}R$ é anel, com $\frac{r_1}{u_1} + \frac{r_2}{u_2} = \frac{u_2r_1 + u_1r_2}{u_1u_2}$ e $\frac{r_1}{u_1} \cdot \frac{r_2}{u_2} = \frac{r_1r_2}{u_1u_2}$.
- b) O mapa $\varepsilon:R\to U^{-1}R$ é um homomorfismo de anéis. Em particular, $U^{-1}R$ é uma R-álgebra.
- c) $U^{-1}M \in U^{-1}R$ -módulo, com $\frac{r}{u} \cdot \frac{m}{v} = \frac{rm}{uv}$.
- d) $\varepsilon(u) = \frac{u}{1}$ é invertível para todo $u \in U$.

e) (Propriedade universal de $U^{-1}R$). Se $\varphi: R \to S$ é homomorfismo de anéis tal que $\varphi(u)$ é invertível para todo $u \in U$, então existe único $\tilde{\varphi}: U^{-1}R \to S$ homomorfismo de R-álgebras tal que o seguinte diagrama comuta

$$R \xrightarrow{\varepsilon} U^{-1}R$$

$$\forall \varphi \qquad \qquad \downarrow \exists ! \tilde{\varphi}$$

$$S$$

- f) Se R é um domínio e $U \subseteq R \setminus \{0\}$ é um conjunto multiplicativo, então $U^{-1}R \to \operatorname{Quot}(R), \frac{r}{u} \mapsto \frac{r}{u}$ é injetivo, ou seja, podemos considerar $U^{-1}R \subseteq \operatorname{Quot}(R)$ como subálgebra.
- g) Se $U \subseteq V \subseteq R$ são conjuntos multiplicativos, então $\varepsilon(V)^{-1}(U^{-1}M) \cong_{R-\text{mod}} V^{-1}M$. Além disso, se M=R, então o isomorfismo acima é de anéis.
- h) Se $N \subseteq M$ é submódulo, então $U^{-1}N \cong_{U^{-1}R-\mathrm{mod}} (\varepsilon_M(N))_{U^{-1}R}$, fazendo $\frac{n}{u} \mapsto \frac{1}{u}\varepsilon_M(n)$, onde $(\varepsilon_M(N))_{U^{-1}R} \coloneqq (U^{-1}R) \cdot (\varepsilon_M(N))$ é um $U^{-1}R$ -submódulo de $U^{-1}M$ gerado por $\varepsilon_M(N)$. Logo, podemos identificar $U^{-1}N$ como sendo $\{\frac{n}{u} \mid n \in N, u \in U\} \subseteq U^{-1}M$ um $U^{-1}R$ -submódulo de $U^{-1}M$. Em particular, se $I \subseteq R$, então $U^{-1}I = \{\frac{i}{u} \mid i \in I, u \in U\} \subseteq U^{-1}R$ é um ideal de $U^{-1}R$.
- i) Se $N\subseteq U^{-1}M$ é $U^{-1}R$ -submódulo, então $\varepsilon_M^{-1}(N)\subseteq M$ é R-submódulo. Além disso, $U^{-1}\varepsilon_M^{-1}(N)=N$. Em particular, se $J\unlhd U^{-1}R$, então $U^{-1}\varepsilon^{-1}(J)=J$.

Corolário 28.1. Se M é R-módulo noetheriano, então $U^{-1}M$ é $U^{-1}R$ -módulo noetheriano. Em particular, se R é noetheriano, então $U^{-1}R$ é noetheriano.

Teorema 28.1. Existe bijeção que preserva inclusões.

Em particular, se $P \in \text{Spec}(R)$, então

$$\operatorname{Spec}(R_P) \longleftrightarrow \{Q \in \operatorname{Spec}(R) \mid Q \subseteq P\}$$

Corolário 28.2. $\dim_{\mathrm{Krull}}(U^{-1}R) \leq \dim_{\mathrm{Krull}}(R)$.

Exercício 28.1.

- 1. Se $P \in \operatorname{Spec}(R)$ não é maximal, então $\dim_{\operatorname{Krull}}(R_P) \leq \dim_{\operatorname{Krull}}(R)$.
- 2. Se existe cadeia maximal de R tal que o ideal maximal dessa cadeia, P_n , não intercepta U ($P_n \subseteq R \setminus U$), então $\dim_{Krull}(R) = \dim_{Krull}(U^{-1}R)$.

Aula 29 - Anéis locais

Definição 29.1. Um anel R é dito **anel local** se ele possui apenas um ideal maximal, isto é, $\operatorname{Spec}_{\max}(R) = \{M\}$.

Corolário 29.1. Se $P \in \operatorname{Spec}(R)$, então a localização de R com relação a P, R_P , é anel local com $\operatorname{Spec}_{\max}(R_P) = \{P_P\}$, onde $P_P = (R \setminus P)^{-1}P$.

Exemplo 29.1.

- 1. Se R é domínio, então $R_{(0)} = \text{Quot}(R)$ é local.
- 2. $\mathbb{Z}_{(2)}$ é local.
- 3. $K[X]_{\xi}$ é local.
- 4. Todo corpo é anel local.
- 5. $K[x]/(x^2)$ é local, com Spec_{max} $(K[x]/(x^2)) = \{(x) + (x^2)\}$
- 6. K[[x]] é local, pois ele só tem um ideal maximal, isto é, $Spec_{max}(K[[x]]) = \{(x)\}.$
- 7. $R = \{0\}$ é local.

Definição 29.2.

- a) Seja $P \in \operatorname{Spec}(R)$. A **altura** de P é $\operatorname{ht}(P) = \dim_{\operatorname{Krull}}(R_P) \in \mathbb{N}_0 \cup \{\infty\}$. Note que $\dim_{\operatorname{Krull}}(R_P) = \dim_{\operatorname{Krull}}(\operatorname{Spec}(R_P))$. Como $\operatorname{Spec}(R_P) \approx \{Q \in \operatorname{Spec}(R) \mid Q \subseteq P\}$, temos que se $\operatorname{ht}(P) = n < \infty$, então n é o comprimento da cadeia maximal em R que termina em P.
- b) Se $I \not\subseteq R$, então a altura de I é $\operatorname{ht}(I) = \min\{\operatorname{ht}(P) \mid P \in \nu_{\operatorname{spec}}(I)\}$ (lembre que $\nu_{\operatorname{spec}}(I) = \{Q \in \operatorname{Spec}(R) \mid I \subseteq Q\}$). Além disso, definimos $\operatorname{ht}(R) = \dim_{\operatorname{Krull}}(R) + 1$.

Observação 29.1.

- a) Se $P \in \operatorname{Spec}(R)$, então $\dim_{\operatorname{Krull}} \left({R} \middle/ {P} \right)$ é o comprimento da cadeia maximal em $\operatorname{Spec}(R)$ que começam em P, já que $\dim_{\operatorname{Krull}} \left({R} \middle/ {P} \right) = \dim_{\operatorname{Krull}} \left(\operatorname{Spec} \left({R} \middle/ {P} \right) \right)$ e $\{Q \subseteq R \middle/ {P}\}$ está em bijeção com $\{Q \subseteq R \mid P \subseteq Q\}$. Logo $\dim_{\operatorname{Krull}} \left(R \middle/ {P} \right)$.
- b) Se $X \subseteq K^n$, com $K = \overline{K}$, então sabemos que elementos de $\operatorname{Spec}(K[X])$ correspondem a fechados irredutíveis de X. Assim, dado $P \in \operatorname{Spec}(K[X])$, temos seu correspondente fechado e irredutível, $Y := \nu(P)$. Daí, $\operatorname{ht}(P)$ é o comprimento da cadeia maximal de fechados e irredutíveis que começam em Y. Por outro lado,

 $\dim_{\mathrm{Krull}} \left(\begin{array}{c} R_{/P} \end{array} \right)$ é o comprimento de cadeia maximal de fechados e irredutíveis que terminam em Y. Portanto, a soma de $\mathrm{ht}(P)$ com $\dim_{\mathrm{Krull}} \left(\begin{array}{c} R_{/P} \end{array} \right)$ é igual ao comprimento da cadeia maximal de fechados e irredutíveis de X passando por $Y = \nu(P)$.

Exercício 29.1.

1. Se $I \not\subseteq R$. Mostre que $\operatorname{ht}(I) = \sup\{\text{comprimento de cadeias de primos } P_0 \subseteq \cdots \subseteq P_n \subseteq I\}$.

Aula 30 - Anéis locais (parte 2)

Exemplo 30.1.

- 1. Se $P \in \operatorname{Spec}(R)$ é minimal, então $\operatorname{ht}(P) = 0$. Além disso, $\operatorname{ht}((0)) = 0$.
- 2. Se $\xi = (\xi_1, \dots, \xi_n) \in K^n$, então $M_{\xi} = \mathcal{I}(\{\xi\}) = (x_1 \xi_1, \dots, x_n \xi_n)$ tem altura n, já que $\operatorname{ht}(M_{\xi}) \leq \dim_{\mathrm{Krull}}(K[x_1, \dots, x_n]) = n$ e $(0) \subsetneq (x_1 \xi_1) \subsetneq (x_1 \xi_1, x_2 \xi_2) \subsetneq \dots \subsetneq M_{\xi}$ tem comprimento n.
- 3. Seja $X = Z_1 \cup Z_2$ variedade afim sobre $K = \overline{K}$, onde Z_1 e Z_2 são componentes irredutíveis com $\dim_{\mathrm{Krull}}(Z_1) \leq \dim_{\mathrm{Krull}}(Z_2)$. Tome $\xi \in Z_1 \setminus Z_2$ e $P = \mathcal{I}_{K[X]}(\{\xi\})$ (conjunto dos polinômios que se anulam em ξ note que P é a imagem pela projeção canônica de M_{ξ} em K[X]). Então $\mathrm{ht}(P) \leq \dim_{\mathrm{Krull}}(Z_1)$, já que qualquer cadeia de fechados e irredutíveis que começa em $\{\xi\}$ está contida em Z_1 . Além disso, $\dim_{\mathrm{Krull}}\binom{K[X]}{P} = 0$ e assim, $\mathrm{ht}(P) + \dim_{\mathrm{Krull}}\binom{K[X]}{P} \leq \dim_{\mathrm{Krull}}(Z_1) < \dim_{\mathrm{Krull}}(X) = \dim_{\mathrm{Krull}}(K[X])$.

Definição 30.1. Seja M um R-módulo.

- a) Se $m \in M$, definimos o **anulador de m** como sendo $\mathrm{Ann}(m) = \{a \in R \mid am = 0\} \leq R$.
- b) $Ann(M) = \{a \in R \mid aM = 0\} = \bigcap_{m \in M} Ann(m) \le R.$
- c) A dimensão de Krull de M é $\dim_{Krull}(M) = \dim_{Krull}(R/_{Ann(M)})$.
- d) O suporte de M é supp $(M) = \{P \in \operatorname{Spec}(R) \mid M_P \neq \{0\}\} \subseteq \operatorname{Spec}(R)$

Observação 30.1.

- i) $P \in \text{supp}(M) \Leftrightarrow \text{ existe } m \in M \text{ tal que } \text{Ann}(m) \subseteq P.$
- ii) A dimensão de Krull não generaliza a dimensão usual de espaços vetoriais.

iii) Se $I \leq R$, então sabemos que R/I é um R-módulo. Nesse caso, temos que $Ann \left(R/I\right) = I$ e supp $\left(R/I\right) = \nu_{\rm spec}(I)$.

Exercício 30.1.

1. Demonstre o item i) da observação 30.1.

Aula 31 - Teorema do ideal principal

Definição 31.1. O radical de Jacobson de um anel $R \neq 0$ é definido como sendo $J = \bigcap_{M \in \operatorname{Spec}_{\max}(R)} M$. Se R = 0, então J = R.

Lema 31.1 (Nakayama). Sejam R um anel e J o radical de Jacobson de R. Se M é R-módulo finitamente gerado e JM = M, então M = 0.

Observação 31.1. $P \in \operatorname{Spec}(R)$ é minimal sobre $I \subseteq R$, se P é minimal em $\nu_{\operatorname{spec}}(I)$.

Teorema 31.1 (Teorema do ideal principal, 1.ª versão). Se R é noetheriano e $P \in \operatorname{Spec}(R)$ é minimal sobre um ideal principal $(a) \subseteq R$, então $\operatorname{ht}(P) \subseteq 1$. Em particular, a altura de qualquer ideal principal é menor do que ou igual a 1.

Exercício 31.1.

1. Sejam R um anel e $r \in R$. Mostre que se, para todo $M \in \operatorname{Spec}_{\max}(R)$, $r \notin M$, então r é invertível.

Aula 32 - Teorema do ideal principal (parte 2)

Teorema 32.1 (Teorema do ideal principal, versão geral). Se R é noetheriano e $P \in \operatorname{Spec}(R)$ é minimal sobre (a_1, \ldots, a_n) , então $\operatorname{ht}(P) \leq n$.

Observação 32.1. Veremos mais a frente, usando o teorema 32.1, entre outros, que $\dim_{\mathrm{Krull}} \left(K[x_1, \ldots, x_m] / (f_1, \ldots, f_n) \right) = \dim_{\mathrm{Krull}} (\nu(f_1, \ldots, f_n)) \geq m - n$. Se $\dim_{\mathrm{Krull}} (\nu(f_1, \ldots, f_n)) = m - n$, então X é chamada de **interseção completa** (interseção das hipersuperfícies correspondentes a cada f_i ; cada interseção diminui em 1 a dimensão).

Corolário 32.1. Se R é noetheriano e $P = (a_1, \ldots, a_n) \in \operatorname{Spec}(R)$, então $\operatorname{ht}(P) \leq n$. Em particular, se R é noetheriano e $\operatorname{Spec}_{\max}(R) = \{(a_1, \ldots, a_n)\}$, então $\operatorname{dim}_{\operatorname{Krull}}(R) < n$.

Aula 33 - Recíproca do teorema do ideal principal

Lema 33.1. Sejam $I, P_1, \ldots, P_n \leq R$, com $n \geq 1$ e $P_i \in \operatorname{Spec}(R)$. Se $I \subseteq \bigcup_{i=1}^n P_i$, então existe $i = 1, \ldots, n$ tal que $I \subseteq P_i$.

Observação 33.1. Esse lema recebe o nome de "evitando primos", pois ele é equivalente a seguinte afirmação: se $I \nsubseteq P_1, \ldots, P_n$, então existe $x \in I$ tal que $x \notin P_i$, para todo i, ou seja, x evita todos os primos.

Teorema 33.1. Se R é noetheriano e $P \in \operatorname{Spec}(R)$ é tal que $\operatorname{ht}(P) = n < \infty$, então existem $a_1, \ldots, a_n \in R$ tal que P é minimal sobre (a_1, \ldots, a_n) .

Corolário 33.1. Se R é noetheriano, $\operatorname{Spec}_{\max}(R) = \{M\}$ e $\dim_{\operatorname{Krull}}(R) < \infty$, então $\dim_{\operatorname{Krull}}(R)$ é o menor n tal que existem $a_1, \ldots, a_n \in M$ e $M = \sqrt{(a_1, \ldots, a_n)}$.

Definição 33.1. A sequência a_1, \ldots, a_n do corolário 33.1 é chamada de **sistema de parâmetros** de R.

Aula 34 - Extensões integrais

Observação 34.1. A ideia é generalizar o conceito de extensão algébrica e provar o teorema de normalização de Noether (descrever álgebras afim com relação a extensões integrais sobre certas subálgebra). No que segue vamos considerar que R e S são anéis e que existe um homomorfismo de anéis $\varphi: R \to S$ injetivo, logo podemos pensar que R é uma subálgebra de S. Nesse caso, dizemos que S é uma extensão de S.

Definição 34.1. Assuma que $R \subseteq S$ e $s \in S$.

- a) Um polinômio mônico $g = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n \in R[x]$ tal que g(s) = 0 é chamado de **equação integral para s em R**.
- b) s é chamado **integral sobre** \mathbf{R} se existe uma equação integral para s em R.
- c) S é **integral sobre** $\mathbf R$ se todo $s \in S$ é integral sobre R. Nesse caso, dizemos que S é uma **extensão integral de** $\mathbf R$.

Observação 34.2. Note que se $s \in S$ é integral, então ele é algébrico, mas a recíproca não é verdadeira. Isso acontece porque para ser integral exigimos que o polinômio seja mônico.

Exemplo 34.1.

1. $\sqrt{2} \in \mathbb{R}$ é integral sobre \mathbb{Z} , já que satisfaz $x^2 - 2$. O anel $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ é uma extensão integral de \mathbb{Z} .

- 2. $\frac{1}{\sqrt{2}}$ é algébrico sobre \mathbb{Z} , já que é raiz do polinômio $2x^2-1$, mas não é integral, porque se fosse, teríamos que $\frac{1}{\sqrt{2^n}} + a_1 \frac{1}{\sqrt{2^{n-1}}} + \cdots + a_n \frac{1}{\sqrt{2}} + a_n = 0$, com $a_i \in \mathbb{Z}$, o que implicaria que $\sqrt{2} \in \mathbb{Q}$.
- 3. $s=\frac{1+\sqrt{5}}{2}\in\mathbb{R}$ é integral sobre \mathbb{Z} , já que $s^2-s-1=0$. Logo, s é integral sobre $\mathbb{Z}[\sqrt{5}]$. Note que
 - s não satisfaz equação integral de grau 1 sobre $\mathbb{Z}[\sqrt{5}]$ (se satisfizesse, teríamos como absurdo que $\sqrt{5} \in \mathbb{Q}$).
 - Contudo, s satisfaz o polinômio $2x-(1+\sqrt{5})\in\mathbb{Z}[\sqrt{5}][x]$ de grau 1.

Lema 34.1. Sejam $R \subseteq S$ e $s \in S$. São equivalentes.

- a) s é integral sobre R.
- b) $R[s] \subseteq S$ é finitamente gerado como R-módulo.
- c) Existe R[s]-módulo M com $\mathrm{Ann}(M)=\{0\}$ tal que M é finitamente gerado como R-módulo.

Teorema 34.1. Suponha $S = R[a_1, \ldots, a_n]$ é finitamente gerado como R-álgebra. São equivalentes.

- a) Todos a_i são integrais sobre R.
- b) S é integral sobre R.
- c) S é finitamente gerado como R-módulo.

Corolário 34.1. Seja $R\subseteq S$. Então $S'=\{s\in S\mid s\text{ \'e integral sobre }R\}\subseteq S$ é R-subálgebra de S.

Corolário 34.2 (Torres de extensões integrais). Suponha $R \subseteq S \subseteq T$ extensões de anéis. Se T é integral sobre S e S é integral sobre S, então S e integral sobre S.

Aula 35 - Extensões integrais e normalização

Definição 35.1. Seja $R \subseteq S$ um subanel de S.

- a) Dizemos que $S' = \{s \in S \mid s \text{ \'e integral sobre } R\}$ 'e **fecho integral** de R em S. Se R = S', então dizemos que R 'e **integralmente fechado** em S.
- b) Um domínio integral R é dito **domínio normal** se R é integralmente fechado em $\operatorname{Quot}(R)$. Em geral, um anel R é normal se R é integralmente fechado em seu anel de frações total (isto é, $U^{-1}R$, com $U = \{a \in R \mid a \text{ não é divisor de zero}\}$).

- c) Se R é domínio integral, definimos a **normalização** de R como sendo $\widetilde{R} = \{a \in \operatorname{Quot}(R) \mid a \text{ é integral sobre } R\} \subseteq \operatorname{Quot}(R)$.
- d) Uma variedade afim irredutível $X\subseteq K^n$ é chamada de **variedade normal**, se K[X] é normal.

Observação 35.1. \widetilde{R} é normal em $\operatorname{Quot}(R)$: do contrário, se existisse $\widetilde{R}' \subseteq \operatorname{Quot}(R)$, com $\widetilde{R} \subsetneq \widetilde{R}'$, integral sobre \widetilde{R} , então ele também seria integral sobre R, pois $R \subseteq \widetilde{R}$ é extensão integral, o que é absurdo, já que \widetilde{R} contém todos os elementos de $\operatorname{Quot}(R)$ integrais sobre R.

Proposição 35.1. Todo DFU é normal.

Exemplo 35.1.

- 1. \mathbb{Z} e $K[x_1,\ldots,x_n]$ são normais.
- 2. $R=\mathbb{Z}[\sqrt{5}]$ não é normal, já que $\frac{1+\sqrt{5}}{2}\not\in R$ e é integral sobre R. Além disso, $\widetilde{R}=\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$.
- 3. $R = \mathbb{Z}[\sqrt{-5}]$ é normal, mas não é DFU (a recíproca do teorema 35.1 não é verdadeira).
- 4. Seja $K=\overline{K}$ e considere $X=\nu\left(\left(y^2-x^2(x+1)\right)\right)$ note que (0,0) é um ponto singular, isto é, não possui reta tangente bem definida. Seja $A=K[X]=K[\overline{x},\overline{y}]$. Veja que $\overline{y}^2-\overline{x}^2(\overline{x}+1)=0$, $\log (\frac{\overline{y}}{\overline{x}})^2-(\overline{x}+1)=0$ em $\operatorname{Quot}(A)$. Daí, $\frac{\overline{y}}{\overline{x}}\in\operatorname{Quot}(A)$ é integral sobre A. Além disso, $\overline{x}\in K[\frac{\overline{y}}{\overline{x}}]$. Logo, $\overline{y}=\frac{\overline{y}}{\overline{x}}\cdot\overline{x}\in K[\frac{\overline{y}}{\overline{x}}]$. Daí, $A\subseteq K[\frac{\overline{y}}{\overline{x}}]\subseteq \widetilde{A}\subseteq\operatorname{Quot}(A)$. Isso implica que $\widetilde{A}\subseteq K[\frac{\overline{y}}{\overline{x}}]=K[\frac{\overline{y}}{\overline{x}}]$ (veja que $\frac{\overline{y}}{\overline{x}}$ é algebricamente independente sobre K, $\log o \psi:K[\frac{\overline{y}}{\overline{x}}]\to K[z], f(\frac{\overline{y}}{\overline{x}})\mapsto f(z)$ é bijeção, ou seja, $K[\frac{\overline{y}}{\overline{x}}]$ é DFU, portanto, normal). Assim, $\widetilde{A}=K[\frac{\overline{y}}{\overline{x}}]$. Agora, considere o mergulho $A\hookrightarrow \widetilde{A}$, onde $\overline{x}\mapsto \overline{x}=(\frac{\overline{y}}{\overline{x}})^2-1=z^2-1=:f_1(z)$ e $\overline{y}\mapsto \overline{y}=\overline{x}\cdot\frac{\overline{y}}{\overline{x}}=(z^2-1)z=:f_2(z)$. Esse morfismo de álgebras induz um morfismo de variedades $\varphi:K^1\to X$, $\xi\mapsto (f_1(\xi),f_2(\xi))$. Pode-se ver que se $P\in X\setminus\{(0,0)\}$, então $|\varphi^{-1}(P)|=1$ e se P=(0,0), então $|\varphi^{-1}(P)|=2$. Perceba que a variedade do A, que é X, é singular, enquanto a variedade de \widetilde{A} , que é o K^1 (em topologia essa variedade é dita recobrimento de X), não é singular. Esse exemplo mostrou que o processo de normalização resultou em uma desingularização da variedade X. Isso não é por acaso. De fato, existe uma relação entre normalização e desingularização.

Exercício 35.1.

- 1. Prove que se θ satisfaz $f(x) = a_0 + a_1x + \cdots + x^n \in \mathbb{Z}[x]$, então $\mathbb{Z}[\theta] = \{c_0 + c_1\theta + \cdots + c_{n-1}\theta^{n-1} \mid c_i \in \mathbb{Z}\}.$
- 2. Prove que $2, 3, 1 \pm \sqrt{-5}$ são irredutíveis e não associados.

Aula 36 - Extensões integrais e normalização (parte 2)

Proposição 36.1. Seja R um domínio integral. São equivalentes:

- a) R é normal.
- b) $U^{-1}R$ é normal, para todo U conjunto multiplicativo $(0 \notin U)$.
- c) R_M é normal, para todo $M \in \operatorname{Spec}_{\max}(R)$.

Corolário 36.1. $X \in K^n$ irredutível é normal $\Leftrightarrow K[X]_x$ é normal para todo $x \in X$.

Definição 36.1. Seja R domínio integral. Um elemento $s \in \operatorname{Quot}(R)$ é quase-integral (sobre R), se existe $c \in R \setminus \{0\}$ tal que $cs^n \in R$, para todo $n \geq 0$.

Lema 36.1.

- i) Se s é integral, então s é quase-integral.
- ii) Se R é noetheriano e se s é quase-integral, então s é integral.

Aula 37 - Lying over, going up e going down

Observação 37.1. Assuma $\varphi:R\to S$ um homomorfismo de anéis. Lembre que φ induz $f:\operatorname{Spec}(S)\to\operatorname{Spec}(R),\ P\mapsto \varphi^{-1}(P).$ Além disso, se $R\subseteq S$, então $\varphi^{-1}(P)=P\cap R.$

Definição 37.1. Dado $P \in \operatorname{Spec}(R)$, definimos a **fibra de f sobre P** como sendo $f^{-1}(\{P\}) \subseteq \operatorname{Spec}(S)$, onde f é a função da observação 37.1.

Observação 37.2. Vamos ver que as fibras admitem uma interpretação algébrica (note que, pela definição, fibra é um conceito topológico). Para isso, antes vamos definir alguns objetos. Tome $I = (\varphi(P))_S$ e considere o conjunto multiplicativo $U = \{\varphi(a) + I \mid a \in R \setminus P\} \subseteq \frac{S}{I}$. Defina $S_{[P]} = U^{-1}(\frac{S}{I})$. Assim, temos dois morfismo naturais: $\pi: S \to \frac{S}{I}$ e $\varepsilon: \frac{S}{I} \to S_{[P]}$.

Proposição 37.1. A função $\varphi: \operatorname{Spec}(S_{[P]}) \to f^{-1}(\{P\}), N \mapsto \pi^{-1}(\varepsilon^{-1}(N))$ é uma bijeção que preserva inclusões.

Observação 37.3. Pode-se provar que a função φ é de fato um homeomorfismo de espaços topológicos. Assim, $S_{[P]}$ é a "versão" algébrica da fibra $f^{-1}(\{P\})$. A dimensão da fibra é definida como sendo $\dim_{\mathrm{Krull}}(S_{[P]})$ e o anel $S_{[P]}$ é dito anel fibrado de φ sobre \mathbf{P} .

Teorema 37.1 (Lying over, going up). Sejam $R \subseteq S$ com S sendo uma extensão integral de R, $P \in \operatorname{Spec}(R)$ e $I \subseteq S$ tal que $R \cap I \subseteq P$. Então $\mathcal{M} = \{Q \in \operatorname{Spec}(S) \mid R \cap Q = P \text{ e } I \subseteq Q\} \subseteq f^{-1}(\{P\})$ satisfaz:

- a) $\mathcal{M} \neq \emptyset$;
- b) $\exists Q, Q' \in \mathcal{M} \text{ tal que } Q \subsetneq Q';$
- c) Se S é finitamente gerado como R-álgebra, então $|\mathcal{M}| < \infty$.

Observação 37.4.

a) Lying over (estar sobre) e going up (subindo) vêm do seguinte desenho

b) $I = \{0\}$ sempre satisfaz as condições do enunciado.

Aula 38 - Lying over, going up e going down (parte 2)

Corolário 38.1. Se $R \subseteq S$ com S sendo uma extensão integral de R, então temos que $\dim_{\mathrm{Krull}}(R) = \dim_{\mathrm{Krull}}(S)$.

Observação 38.1. Se $R \subseteq S$ com S sendo uma extensão integral de R e $Q \in \operatorname{Spec}(S)$, então vimos que $\operatorname{ht}(Q) \leq \operatorname{ht}(R \cap Q)$. Quando temos a igualdade? Para responder a essa pergunta precisamos de uma definição.

Definição 38.1. Assuma $\varphi: R \to S$ um homomorfismo de anéis. Dizemos que a condição **going down** é satisfeita pelo homomorfismo, se para todo $P \in \operatorname{Spec}(R)$ e para todo $Q' \in \operatorname{Spec}(S)$ tais que $\varphi(P) \subseteq Q'$, existe $Q \in \operatorname{Spec}(S)$, com $Q \subseteq Q'$ tal que

 $Q = \varphi(P)$.

Corolário 38.2. Assuma $R \subseteq S$ com S sendo uma extensão integral de R satisfazendo going down para a inclusão $R \hookrightarrow S$. Então, para todo $Q \in \operatorname{Spec}(S)$ e $P = R \cap Q$ temos que $\operatorname{ht}(Q) = \operatorname{ht}(P)$.

Aula 39 - Extensão de corpos

Observação 39.1. Segue um pequeno resumo sobre extensão de corpos. Sejam E e K corpos.

- Se $K \subseteq E$, dizemos que E é **extensão de K** e escrevemos $E \mid K$.
- Se E é uma extensão de K, podemos ver E como K-espaço vetorial. Denotamos $\dim_K E$ por [E:K]. Dizemos que E é **finito sobre** K, se $[E:K] < \infty$.
- Se $\alpha \in E$ é algébrico sobre K, denotamos por $Irr(\alpha, E, x) \in K[x]$ o polinômio mônico irredutível que gera o ideal dado pelo núcleo do homomorfismo $\varphi : K[x] \to E, f(x) \mapsto f(\alpha)$. Note que $im(\varphi) = K[\alpha] \subseteq E$.
- Se $\alpha \in E$ é algébrico sobre K, então $K[\alpha] = K(\alpha)$, onde $K(\alpha)$ é o menor subcorpo de E que contém K e α .
- $K(\alpha_1, \ldots, \alpha_n)$ é algébrico sobre $K \Leftrightarrow \text{cada } \alpha_i$ é algébrico sobre sobre K.
- Sejam $E \mid K$ uma extensão algébrica e $\sigma : K \hookrightarrow L = \overline{L}$ um mergulho (lembre que o fecho algébrico de L, \overline{L} , é o menor corpo que contém as raízes de todos os polinômios em L[x]). Pergunta: de quantas formas podemos estender σ a um mergulho $E \to L$? Fato: sempre é possível encontrar pelo menos uma extensão de σ .
- Seja $f \in K[x]$ tal que grau $(f) \ge 1$. Um corpo $E \mid K$ é **spliting sobre f**, se $f = c(x \alpha_1) \dots (x \alpha_n)$, com $c \in K$, $\alpha_i \in E$ e $E = K(\alpha_1, \dots, \alpha_n)$ (E é o menor corpo que contém todas as raízes de f).

- Sejam $E \mid K$ extensão algébrica e $E \subseteq \overline{K}$. A extensão $E \mid K$ é **normal**, se alguma das afirmações é satisfeita (todas são equivalentes):
 - $\{\tau : E \hookrightarrow \overline{K} \mid \tau|_K = \mathrm{id}_K\} \subseteq \mathrm{Aut}_K(E).$
 - -E é spliting sobre alguma família $\{f_i\}_{i\in I}\subseteq K[x]$.
 - Se $p(x) \in K[x]$ é irredutível e tem uma raiz em E, então todas as raízes de p(x) estão em E.
- Sejam $E \mid K$ uma extensão algébrica e $S = \{\tau : E \hookrightarrow \overline{K} \mid \tau|_K = \mathrm{id}_K\}$. Denotamos |S| por $[E : K]_S$.
- Se uma extensão algébrica $E \mid K$ é finita, então $[E:K]_S \leq [E:K]$.
- Uma extensão algébrica $E \mid K$ finita é uma **extensão separável**, se $[E:K]_S = [E:K]$.
- Dizemos que $\alpha \in E$, um elemento algébrico sobre K, é **separável** se $K(\alpha) \mid K$ é uma extensão separável, ou seja, $Irr(\alpha, K, x)$ não tem raiz com multiplicidade maior do que 1.
- $f \in K[x]$ é um **polinômio separável** se f não tem raiz com multiplicidade maior do que 1.
- $E \mid K$ é uma extensão separável \Leftrightarrow todo $\alpha \in E$ é separável sobre K.

Aula 40 - Extensões de corpos e ideais primos

Lema 40.1. Seja $N \subseteq \overline{K}$ corpo, com char $(N) = p \ge 0$ e $N \mid K$ finita e normal. Seja $G = \operatorname{Aut}_K(N) = \{\tau \in \operatorname{Aut}(N) \mid \tau \mid_K = \operatorname{id}_K\}$. Então, para todo $\alpha \in N^G = \{\beta \in N \mid G(\beta) = \{\beta\}\}$, existe $n \in \mathbb{N}_0$ tal que $\alpha^{p^n} \in K$. Além disso, se $N \mid K$ é separável, então n = 0 e $\alpha \in K$.

Lema 40.2. Sejam $N \mid K$ extensão finita e normal, $R \subseteq K$ um anel integralmente fechado sobre K e $S \subseteq N$ fecho integral de R em N. Então, para todo $Q, \widetilde{Q} \in \operatorname{Spec}(S)$, com $R \cap Q = R \cap \widetilde{Q}$, existe $\sigma \in G = \operatorname{Aut}_K(N)$ tal que $\widetilde{Q} = \sigma(Q)$.

Aula 41 - Going down

Teorema 41.1 (Going down). Sejam S um anel e $R \subseteq S$ um subanel tais que:

- i) S é domínio integral;
- ii) R é normal;

- iii) S é integral sobre R;
- iv) S é finitamente gerado como R-álgebra.

Então a condição de going down é satisfeita pela inclusão $R \hookrightarrow S$. Em particular, o corolário 38.2 vale.

Proposição 41.1 (Propriedade geométrica de normalização). Seja R um domínio integral com \widetilde{R} sua normalização. Considere o morfismo $f: \operatorname{Spec}(\widetilde{R}) \to \operatorname{Spec}(R)$, $Q \mapsto R \cap Q$, induzido pela inclusão $R \hookrightarrow \widetilde{R}$. Então:

- a) $\dim_{\mathrm{Krull}}(\widetilde{R}) = \dim_{\mathrm{Krull}}(R);$
- b) f é sobrejetiva;
- c) Se $P \in \text{Spec}(R)$ é tal que R_P é normal, então a fibra $f^{-1}(\{P\})$ consiste de um único ponto.

Aula 42 - Teorema de normalização de Noether

Observação 42.1. Já sabemos que se A é uma K-álgebra afim com $\dim_{Krull}(A) = n$, então existem $a_1, \ldots, a_n \in A$ elementos algebricamente independentes tais que A é algébrico sobre $K[a_1, \ldots, a_n]$. O teorema de normalização de Noether refina tal resultado.

Teorema 42.1 (Teorema de normalização de Noether). Seja $A \neq \{0\}$ uma K-álgebra afim. Então existem $c_1, \ldots, c_n \in A$ $(n \in \mathbb{N}_0)$ elementos algebricamente independentes tais que A é integral sobre a subálgebra $K[c_1, \ldots, c_n] \subseteq A$. Em particular, A é $K[c_1, \ldots, c_n]$ -módulo finitamente gerado e $K[c_1, \ldots, c_n]$ é isomorfo ao anel de polinômios $K[x_1, \ldots, x_n]$. Além disso, se $c_1, \ldots, c_n \in A$ são algebricamente independentes e A é integral sobre $K[c_1, \ldots, c_n]$, então $\dim_{\mathrm{Krull}}(A) = n$.

Observação 42.2 (Interpretação geométrica do teorema de normalização de Noether). Seja X uma K-variedade afim com $\dim_{Krull}(X) = n$. Defina A como sendo o anel de coordenadas K[X]. Pelo teorema de normalização de Noether, existe $C = K[c_1, \ldots, c_n] \subseteq A$. O teorema 37.1, diz essa inclusão de álgebras induz um morfismo de variedades $X = \nu(A) \xrightarrow{f} K^n = \nu(C)$ sobrejetivo que possui fibras finitas, ou seja, o teorema de normalização de Noether implica que X é uma cobertura finita de K^n .

Exemplo 42.1. Seja $X = \nu(x_1x_2 - 1)$. Note que $P = (x_1, x_2)$ satisfaz $x_1x_2 - 1 = 0$ se, e somente se, $x_2 = \frac{1}{x_1}$ se, e somente se, P pertence ao gráfico da função $f(x) = \frac{1}{x}$. Assim, X é uma hipérbole. Defina $\overline{x_i} = x_i + (x_1x_2 - 1) \in K[X] = K[\overline{x_1}, \overline{x_2}]$. Note que K[X] não é integral sobre $K[\overline{x_i}]$. Defina $c = \overline{x_1} - \overline{x_2}$. Então $0 = \overline{x_1x_2} - 1 = \overline{x_1}(\overline{x_1} - c) - 1 = \overline{x_1}^2 - \overline{x_1}c - 1$. O mesmo pode-se fazer para $\overline{x_2}$. Daí, K[X] é integral

sobre C=K[c]. A injeção canônica $C\hookrightarrow K[X]$ induz o morfismo entre variedades $f:X\to K^1,\ (\xi_1,\xi_2)\mapsto \xi_1-\xi_2$ que é sobrejetivo. Assim, para todo $\eta\in K^1,$ existe $(\xi_1,\xi_2)\in X$ tal que $\xi_1-\xi_2=\eta$. Em $X,\ \xi_1,\xi_2$ são diferentes de zero. Logo, $\xi_1-\frac{1}{\xi_1}=\eta\Rightarrow \xi_1^2-1=\eta\xi\Rightarrow \xi_1^2-\eta\xi_1-1=0.$ Se $\eta=\sqrt{-4},$ então $|f^{-1}(\{\eta\})|=1;$ caso contrário, $|f^{-1}(\{\eta\})|=2.$

Exercício 42.1.

1. Na observação 42.2, por que a quantidade de c_i 's é igual a dimensão de Krull de X?

Aula 43 - Aplicações do teorema de normalização de Noether

Teorema 43.1. Seja A uma K-álgebra afim e seja $P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n$ uma cadeia maximal em $\operatorname{Spec}(A)$. Então $\dim_{\operatorname{Krull}}(A/P_0) = n$. Em particular, se A é equidimensional (que é o caso se A é domínio afim), então toda cadeia maximal em $\operatorname{Spec}(A)$ tem comprimento igual a $\dim_{\operatorname{Krull}}(A)$.

Observação 43.1. Um anel R é **centenário**, se para todo $P \subseteq Q \in \operatorname{Spec}(R)$, tivermos que toda cadeia maximal começando em P e terminando em Q tem o mesmo comprimento. Pelo teorema 43.1, temos que toda álgebra afim é centenária.

Corolário 43.1 (Teorema do núcleo e imagem para álgebra afim). Seja A K-domínio afim (ou, mais geralmente, álgebra afim equidimensional). Então, para todo $I \leq A$, temos que $\dim_{\mathrm{Krull}}(A) = \dim_{\mathrm{Krull}}(A/I) + \mathrm{ht}(I)$.

Corolário 43.2. Seja A K-álgebra afim e $\{P_1, \ldots, P_\ell\}$ é o conjunto dos ideais minimais de A. Então para todo $M \in \operatorname{Spec}_{\max}(A)$, temos $\operatorname{ht}(M) = \max\{\dim_{\operatorname{Krull}}(A/P_i) \mid P_i \subseteq M\}$. Em particular, se A é domínio afim, então $\operatorname{ht}(M) = \dim_{\operatorname{Krull}}(A)$.

Aula 44 - Teorema do ideal principal para K-álgebras

Teorema 44.1. Seja A um K-domínio afim (ou K-álgebra afim equidimensional) e seja $I = (a_1, \ldots, a_n) \le A$. Se $P \in \operatorname{Spec}(A)$ é minimal sobre I, então $\dim_{\operatorname{Krull}} \left({A} \middle/ {P} \right) \ge \dim_{\operatorname{Krull}}(A) - n$. Em particular, se $I \ne A$, então $\dim_{\operatorname{Krull}} \left({A} \middle/ {I} \right) \ge \dim_{\operatorname{Krull}}(A) - n$ e se temos a igualdade, então $A \middle/ {I}$ é equidimensional.

Observação 44.1.

- 1. Considerando o teorema 44.1, como $A = K[x_1, \ldots, x_n]/J$, então, cada a_i de I dá uma equação polinomial, ou seja, os pontos de A/I são os polinômios de A que satisfazem n equações polinomiais. Logo, dizer que $\dim_{Krull}(A/I) \ge \dim_{Krull}(A) n$, significa que impor n equações faz a solução do sistema de equações descer no máximo n.
- 2. Se $I = (f_1, \ldots, f_n) \leq K[x_1, \ldots, x_m]$ e $K = \overline{K}$, então, pelo teorema 44.1, $\dim_{\mathrm{Krull}} \left(K[x_1, \ldots, x_m] \middle/ I \right) \geq \dim_{\mathrm{Krull}} \left(K[x_1, \ldots, x_m] \middle) n$. Seja $X = \nu(I)$. Lembre-se que $\dim_{\mathrm{Krull}}(X) = \dim_{\mathrm{Krull}} \left(K[x_1, \ldots, x_m] \middle/ I \right)$ e também lembre-se que $\dim_{\mathrm{Krull}}(K[x_1, \ldots, x_m]) = m$. Daí, $X = \emptyset$, se n = m, ou $\dim_{\mathrm{Krull}}(X) \geq m n$, caso contrário. Se $\dim_{\mathrm{Krull}}(X) = m n$, então dizemos que X é interseção completa (veja observação 32.1). Logo, novamente pelo teorema 44.1, X é interseção completa se, e somente se, X é equidimensional.
- 3. Se $A \notin K$ -álgebra afim (ou seja, $A \cong K[x_1, \dots, x_m]/(f_1, \dots, f_n)$) e $\dim_{Krull}(A) = m n$, dizemos que $A \notin \mathbf{interse}$ completa.

Lema 44.1 (Fecho integral em uma extensão finita de corpos). Seja R um domínio noetheriano e N uma extensão finita de Quot(R). Suponha ainda que (a) ou (b) abaixo são satisfeitas:

- (a) R é normal e N é separável sobre Quot(R).
- (b) $R \cong K[x_1, \dots, x_n]$.

Então o fecho integral S de R em N é finitamente gerado como R-módulo (e, portanto, como R-álgebra).

Observação 44.2. R domínio noetheriano $\not\Rightarrow \widetilde{R}$ é finitamente gerado como R-módulo.

Teorema 44.2. Se A é K-domínio afim, então sua normalização \widetilde{A} também é domínio afim.

Corolário 44.1 (Normalização de variedade afim). Seja X um variedade afim irredutível sobre $K=\overline{K}$. Então existe uma variedade afim normal \widetilde{X} e uma sobrejeção $f:\widetilde{X}\to X$ tal que:

- (i) $\dim_{\mathrm{Krull}}(\overline{X}) = \dim_{\mathrm{Krull}}(X)$;
- (ii) todas as fibras de f são finitas;
- (iii) se $x \in X$ é tal que $K[X]_x$ é normal, então $|f^{-1}(\{0\})| = 1$.

Observação 44.3.

- 1. Veja o exemplo 35.1, item 4, que é um caso particular do corolário 44.1.
- 2. O par (\widetilde{X}, f) do corolário 44.1 é único a menos de isomorfismo satisfazendo as condições (i), (ii) e (iii) do próprio corolário. Assim, (\widetilde{X}, f) é chamado de **normalização de X**. Quando X é uma curva algébrica, então \widetilde{X} é a sua desingularização.

Exercício 44.1.

1. Demonstre o lema 44.1.