

Esquemas algorítmicos de tratamiento secuencial

Secuencias.

El tipo de problemas más frecuente con el que podemos enfrentarnos implica la manipulación de una secuencia de valores de algún tipo

Tipos de secuencia

- Secuencia numerada.
 - El número de elementos es conocido a priori.
 - Para recorrerlos sólo hace falta contar.

Secuencia de 10 elementos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

- Secuencia marcada
 - El número de elementos es desconocido a priori.
 - El final de la secuencia se determina por una marca o valor especial que sigue al último elemento o está asociado a él.

Secuencia hasta encontrar el 0: 1, 5, 60, 23, ..., 36, 1, 54, 99, **0**

Esquema básico de recorrido

```
inicializar
while (!fin) {
    avanzar
}
```

```
int n = 0
while (n < m) {
    n = n + 1
}
...</pre>
```

Esquema de recorrido con tratamiento

Tratamiento de los elementos que cumplen una propiedad

 Tratamiento de todos los elementos que cumplen una propiedad

```
inicializar
while (!fin) {
    if (p(x)) {
        tratar(x)
    }
    avanzar
}
...

    n = 1
while (n < m) {
        tratar(x)
        }
        System.out.print(n);
    }
        n = n + 1
}
...
</pre>
```

Tratamiento del último elemento de una secuencia

Esquema de búsqueda

 Tratamiento del primer elemento que cumple una condición

```
public static boolean isPrime(p)
                           int d;
                           d = 2;
inicializar
                           while ((d < p) && (p % d != 0)){
while (!fin && !encon
                            \rightarrow d = d + 1;
   avanzar
                           if (d < p) {
if (encontrado) {
                              return false;
   tratar
                            } else {
  else
                               return true;
   acciones c<del>uando no</del>
```

Combinación de esquemas

- Esquema de recorrido y de búsqueda
- Combinación secuencial

```
while (!fin && !encontrado) {
   avanzar en N
}
for (int i=1; i <= n; i++) {
   tratar
}
...</pre>
```

Combinación anidada

```
for (int i=0; i < final; i++) {
    for (int j=0; j < final; j++) {
        if (condición) {
            tratar
          }
    }
}</pre>
```


Conclusión

