Flexural Design Example

Table of contents

Example Problem	
1. Determine if Section is Compact	
2. Determine the limiting ratios (AISC Table B4.1b)	
Check Flange	
Check Web	
3. Calculate the LB strength with AISC Spec F3	
4. Calculate LTB strength with AISC spec F2.2	
5. Design Strength	

Project: Calc Process Example Calculated by: CAM Date: 04/30/2024

Task: Flexural Design

Checked by: Date: //

Example Problem

Determine the LRFD flexural design strength for a W10x12 beam with an unbraced length of $2~\mathrm{ft.}$

1. Determine if Section is Compact

$$\lambda_{flange} = 9.43$$
 (AISC Table 1-1)

$$\lambda_{web} = 46.6$$
 (AISC Table 1-1)

2. Determine the limiting ratios (AISC Table B4.1b)

Check Flange

$$E=29000~\mathrm{ksi}$$

$$F_u = 50 \text{ ksi}$$

$$\lambda_{pf} = 0.38 \cdot \sqrt{\frac{E}{F_y}} = 0.38 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 9.15 \text{ (Case 10)}$$

$$\lambda_r = 1 \cdot \sqrt{\frac{E}{F_y}} = 1 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 24.08$$

$$\left(\lambda_{pf} < \lambda_{flange} < \lambda_r\right) = (9.15 < 9.43 < 24.08) = 1 \quad \because \text{Noncompact Flange}$$

Check Web

$$\lambda_{pw} = 3.76 \cdot \sqrt{\frac{E}{F_y}} = 3.76 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 90.55 \text{ (Case 10)}$$

$$\left(\lambda_{web} < \lambda_{pw}\right) = \left(46.6 < 90.55\right) = 1 ~~ \div \text{Compact Web}$$

Project: Calc Process Example

Calculated by: CAM Date: 04/30/2024 Task: Flexural Design Checked by: Date: / /

3. Calculate the LB strength with AISC Spec F3

$$\begin{split} S_x &= 10.9 \text{ inch}^3 \quad \text{(AISC Table 1-1)} \\ Z_x &= 12.6 \text{ inch}^3 \quad \text{(AISC Table 1-1)} \\ M_p &= F_y \cdot Z_x = 50 \text{ ksi} \cdot 12.6 \text{ inch}^3 = 52.5 \text{ ft kip} \\ M_{nLB} &= M_p - \left(M_p - 0.7 \cdot F_y \cdot S_x \right) \cdot \frac{\lambda_{flange} - \lambda_{pf}}{\lambda_r - \lambda_{pf}} \\ &= 52.5 \text{ ft kip} - \left(52.5 \text{ ft kip} - 0.7 \cdot 50 \text{ ksi} \cdot 10.9 \text{ inch}^3 \right) \cdot \frac{9.43 - 9.15}{24.08 - 9.15} \\ &= 52.11 \text{ ft kip} \end{split}$$

4. Calculate LTB strength with AISC spec F2.2

$$L_b = 2 \text{ ft}$$

$$r_y = 0.78$$
 inch

$$L_p = 1.76 \cdot r_y \cdot \sqrt{\frac{E}{F_y}} = 1.76 \cdot 0.78 \; \text{inch} \cdot \sqrt{\frac{29000 \; \text{ksi}}{50 \; \text{ksi}}} = 2.77 \; \text{ft}$$

$$\begin{pmatrix} L_p > L_b \end{pmatrix} = (2.77 \text{ ft} > 2 \text{ ft}) = 1 ~~ \because \text{Full Plastic Behavior}$$

$$M_{nLTB} = M_p = 52.5 \text{ ft kip}$$

5. Design Strength

$$M_n=\min{(M_{nLTB},M_{nLB})}=\min{(52.5~{\rm ft\,kip},52.11~{\rm ft\,kip})}=52.11~{\rm ft\,kip}$$

$$\phi_b=0.9$$

$$\phi M_n=\phi_b\cdot M_n=0.9\cdot 52.11~{\rm ft\,kip}=46.9~{\rm ft\,kip}$$