

Decision Trees - Decision Trees - 4

One should look for what is and not what he thinks should be. (Albert Einstein)

Module completion checklist

Objectives	Complete
Optimize the Decision Tree by tuning the hyperparameters	
Run the optimized model, predict, and evaluate the new model	

Decision Trees: process

SO far we have grown our tree and made several choices to get to step 4. We must now continue to improve the tree through optimization.

Ways to optimize a Decision Tree

- Building a Decision Tree is affected by several parameters, as seen in the tree we built
- All the values of our original tree are set to the tree defaults within sklearn
- We are now going to optimize the tree focusing on the four parameters we called out

```
o max_depth = None
```

- o min_samples_split = 2
- o min_samples_leaf = 1
- o max_features = None

Define an optimal number function

- Before we optimize individual parameters, let's build a function that will help us store
 the parameters we will be using in our optimized_tree
- The input is:
 - values: list of values for given parameter that we iterate through
 - test_results: predictions on test set for each parameter that we iterate over
- The output is:
 - best_value: the actual parameter value that performs the best and that we will
 use in our final optimized tree

```
# Define function that will determine the optimal number for each parameter.

def optimal_parameter(values, test_results):
   best_test_value = max(test_results)
   best_test_index = test_results.index(best_test_value)
   best_value = values[best_test_index]
   return(best_value)
```

Optimize: max depth

- max_depth indicates how deep the tree can be
- The deeper the tree, the more splits it has and captures more information about the data
- But remember, there is a fine line between a well-fit model and an overfit model
- In our original model, max_depth = None
- Now, we're going to fit a Decision Tree with depths ranging from 1 to 32 and plot the training and test accuracy

Optimize: max depth

```
# Max depth:
max_depths = range(1, 33)
train_results = []

test_results = []

for max_depth in max_depths:
    dt = DecisionTreeClassifier(max_depth=max_depth)
    dt.fit(X_train, y_train)

    train_pred = dt.predict(X_train)
    acc_train = accuracy_score(y_train, train_pred)
    train_results.append(acc_train)

y_pred = dt.predict(X_test);
acc_test = accuracy_score(y_test, y_pred)
    test_results.append(acc_test);
```

```
# Store optimal max_depth.
optimal_max_depth = optimal_parameter(max_depths, test_results);
```

Plot: max depth

- Let's plot the max depth train_resultsand test_results
- This will allow us to see when the model starts overfitting on train, as well as when the optimal test results are achieved
- What observations can you make?

```
# Plot max depth over 1 - 32.
line1, = plt.plot(max_depths, train_results, 'b',
label= "Train accuracy")
line2, = plt.plot(max_depths, test_results, 'r',
label= "Test accuracy")

plt.legend(handler_map={line1:
HandlerLine2D(numpoints = 2)})
plt.ylabel('Accuracy')
plt.xlabel('Tree depth')
plt.show()
```


Optimize: min samples split

- min_samples_split represents the minimum number of samples required to split an internal node
- This varies between at least one sample at each node and all samples at each node
- When we increase this parameter, the tree becomes more constrained as it has to consider more samples at each node
- We will vary the parameter from 10% to 100% of the samples

Optimize: min samples split

```
min_samples_splits = np.linspace(0.1, 1.0, 10, endpoint=True)
train_results = []

for min_samples_split in min_samples_splits:
    dt = DecisionTreeClassifier(min_samples_split=min_samples_split)
    dt.fit(X_train, y_train)
    train_pred = dt.predict(X_train)
    acc_train = accuracy_score(y_train, train_pred)
# Add accuracy score to previous train results
train_results.append(acc_train)
y_pred = dt.predict(X_test)
acc_test = accuracy_score(y_test, y_pred)
# Add accuracy score to previous test results
test_results.append(acc_test)
```

```
# Store optimal max_depth.
optimal_min_samples_split = optimal_parameter(min_samples_splits, test_results)
```

Plot: min samples split

- Let's plot the min samples split,
 train_results and test_results
- What observations can you make?

```
# Plot min_sample split.
line1, = plt.plot(min_samples_splits,
train_results, 'b', label = "Train accuracy")
line2, = plt.plot(min_samples_splits,
test_results, 'r', label = "Test accuracy")

plt.legend(handler_map={line1:
HandlerLine2D(numpoints=2)})
plt.ylabel('Accuracy')
plt.xlabel('min samples split')
plt.show()
```


Optimize: min samples leaf

- min_samples_leaf is the minimum number of samples required to be at a lead node
- This parameter is similar to min_samples_split except that this parameter describes
 the minimum number of samples at the leafs the base of the tree

Optimize: min samples leaf

```
# Min_samples_leaf:
min_samples_leafs = np.linspace(0.1, 0.5, 5, endpoint = True)
train_results = []

for min_samples_leaf in min_samples_leafs:
    dt = DecisionTreeClassifier(min_samples_leaf=min_samples_leaf)
    dt.fit(X_train, y_train)
    train_pred = dt.predict(X_train)
    acc_train = accuracy_score(y_train, train_pred)
    # Add accuracy score to previous train results
    train_results.append(acc_train)
    y_pred = dt.predict(X_test)
    acc_test = accuracy_score(y_test, y_pred)
    # Add accuracy score to previous test results
    test_results.append(acc_test)
```

```
optimal_min_samples_leafs = optimal_parameter(min_samples_leafs, test_results)
```

Plot: min samples leaf

- Let's plot the min samples leaf
 train_results and test_results
- What observations can you make?

```
# Plot min_sample split.
line1, = plt.plot(min_samples_leafs,
train_results, 'b', label= "Train accuracy")
line2, = plt.plot(min_samples_leafs,
test_results, 'r', label= "Test accuracy")

plt.legend(handler_map={line1:
HandlerLine2D(numpoints=2)})
plt.ylabel('Accuracy')
plt.xlabel('min samples leafs')
plt.show()
```


Optimize: max features

- max_features represents the number of features to consider when looking for the best split
- This parameter is set to None as its default value, meaning the tree will always look through all features
- This could sometimes cause overfitting and / or is computationally expensive when working with many variables

Optimize: max features

```
# Max_features:
max_features = list(range(1, X.shape[1]))
train_results = []
test_results = []

for max_feature in max_features:
    dt = DecisionTreeClassifier(max_features=max_feature)
    dt.fit(X_train, y_train)
    train_pred = dt.predict(X_train)
    acc_train = accuracy_score(y_train, train_pred)
    # Add accuracy score to previous train results
    train_results.append(acc_train)
    y_pred = dt.predict(X_test)
    acc_test = accuracy_score(y_test, y_pred)

# Add accuracy score to previous test results
test_results.append(acc_test)
```

```
optimal_max_features = optimal_parameter(max_features, test_results)
```

Plot: max features

- Let's plot the max features, train_results and test_results
- What observations can you make?

```
# Plot min_sample split.
line1, = plt.plot(max_features, train_results, 'b', label=
"Train accuracy")
line2, = plt.plot(max_features, test_results, 'r', label=
"Test accuracy")

plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})
plt.ylabel('Accuracy')
plt.xlabel('max features')
plt.show()
```

- This is a case of overfitting we can see max train accuracy for all values of max_features
- The search for the best split does not stop until at least one valid partition of the nodes is found, even if more than max_features features is inspected

Module completion checklist

Objectives	Complete
Optimize the Decision Tree by tuning the hyperparameters	
Run the optimized model, predict, and evaluate the new model	

Optimized model

- We have now walked through four parameters that will help us optimize our Decision Tree
- Remember that when we optimized each parameter, we saved the optimal parameter using our optimal_parameter function

```
print("The optimal max depth is:",
optimal_max_depth)
```

```
The optimal max depth is: 1
```

```
print("The optimal min samples split is:",
  optimal_min_samples_split)
```

```
The optimal min samples split is: 0.2
```

```
print("The optimal min samples leaf is:",
optimal_min_samples_leafs)
```

```
The optimal min samples leaf is: 0.1
```

```
print("The optimal max features is:",
optimal_max_features)
```

```
The optimal max features is: 9
```

Build optimized model

Now, we will run the optimized model on our X_train

```
clf_optimized_fit = clf_optimized.fit(X_train, y_train)
```

Predict with optimized model

- Finally, let's predict on X_test and calculate our accuracy score
- How is our optimized model doing?
- What other metrics can you also look at?

```
# Predict on X_test.
y_predict_optimized = clf_optimized_fit.predict(X_test)

# Get the accuracy score.
acc_score_tree_optimized = accuracy_score(y_test, y_predict_optimized)
print(acc_score_tree_optimized)
```

0.9530332681017613

Train accuracy

Train Accuracy: 0.9505171931786414

Predict and save results

- Now we know some of the parameters that help us optimize our Decision Tree
- What is another way you could optimize the tree, instead of searching each parameter separately?

Predict and save results

- This other method is
 GridSearchCV. Although it's
 helpful, it can be
 computationally expensive
- Going through each of the four parameters helps you understand your tree a little better
- Let's see our optimized tree accuracy score in our model_final dataset

```
{'metrics': 'accuracy', 'values': 0.953, 'model':
'tree_all_variables_optimized'}
```

Knowledge check

Exercise

You are now ready to try Tasks 8-12 in the Exercise for this topic

Module completion checklist

Objectives	Complete
Optimize the Decision Tree by tuning the hyperparameters	
Run the optimized model, predict, and evaluate the new model	

Decision Trees: Topic summary

In this part of the course, we have covered:

- Decision Trees use cases and the theory behind them
- Data transformation necessary for Decision Trees
- Implementation of Decision Trees on a dataset
- Model performance evaluation and tuning

Congratulations on completing this module!

