Árvores Estrutura de Dados — QXD0010

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 $1^{\underline{o}} \; semestre/2020$

Introdução

Representando uma hierarquia

- Vetores e filas são estruturas lineares.
- A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Representando uma hierarquia

- Vetores e filas são estruturas lineares.
- A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia do sistema de arquivos de um PC Linux

Representando uma hierarquia

- Vetores e filas são estruturas lineares.
- A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia do sistema de arquivos de um PC Linux

• As árvores são estruturas de dados mais adequadas para representar hierarquias.

Uma árvore enraizada T, ou simplesmente árvore, é um conjunto finito de elementos denominados nós, tais que:

Uma árvore enraizada T, ou simplesmente árvore, é um conjunto finito de elementos denominados nós, tais que:

(a) $T = \emptyset$, e a árvore é dita vazia; ou

Uma árvore enraizada T, ou simplesmente árvore, é um conjunto finito de elementos denominados nós, tais que:

- (a) $T = \emptyset$, e a árvore é dita vazia; ou
- (b) $T \neq \emptyset$ e ele possui um nó especial r, chamado raiz de T; os restantes constituem um único conjunto vazio ou são divididos em $m \geq 1$ conjuntos disjuntos não vazios, as subárvores de r, cada qual por sua vez um árvore.

Uma árvore enraizada T, ou simplesmente árvore, é um conjunto finito de elementos denominados nós, tais que:

- (a) $T = \emptyset$, e a árvore é dita vazia; ou
- (b) $T \neq \emptyset$ e ele possui um nó especial r, chamado raiz de T; os restantes constituem um único conjunto vazio ou são divididos em $m \geq 1$ conjuntos disjuntos não vazios, as subárvores de r, cada qual por sua vez um árvore.

UNIVERSIDADE FEDERAL DO CEARÁ COMPOS QUISMOS

Exemplo de árvore binária:

Uma árvore binária é:

- Ou o conjunto vazio
- Ou um nó conectado a no máximo duas árvores binárias.

UNIVERSIDADE FEDERAL DO CEARÁ CAMPAS QUASADA

UNIVERSIDADE FEDERAL DO CEARÁ CAMPAS CILIDADAS

UNIVERSIDADE FEDERAL DO CEARÁ CAMPOS QUIDADA

UNIVERSIDADE FEDERAL DO CEARÁ COMPAS QUESCAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPAS QUESCAS

UNIVERSIDADE FEDERAL DO CEARÁ CAMPOS QUANDA

tem apenas filho esquerdo

UNIVERSIDADE FEDERAL DO CEARÁ COMPAS QUESCAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPAS QUESCAS

UNIVERSIDADE FEDERAL DO CEARÁ CAMPOS CIJUSTAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPOS CUIDADAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPOS CUIDADAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPAS QUESCAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPOS CUIDADAS

UNIVERSIDADE FEDERAL DO CEARÁ COMPOS CUIDADAS

UNIVERSIDADE FEDERAL DO CEARÁ CANTAS QUESCAS

Árvores Binárias — Nível e Altura

Árvores Binárias — Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Árvores Binárias — Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Altura h de um nó v: Número de nós no maior caminho de v até uma folha descendente.

Comparando com atenção

Ordem dos filhos é relevante!

Tipos específicos de árvores binárias

• Árvore estritamente binária: todo nó possui 0 ou 2 filhos.

Tipos específicos de árvores binárias

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

Tipos específicos de árvores binárias

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.
- Árvore binária cheia: todos os seus nós internos têm dois filhos e todas as folhas estão no último nível da árvore.

Relação entre altura e número de nós

Se a altura é h, então a árvore:

Relação entre altura e número de nós

Se a altura é h, então a árvore:

• tem no mínimo *h* nós

Se a altura é h, então a árvore:

- tem no mínimo *h* nós
- tem no máximo $2^h 1$ nós

Se a altura é h, então a árvore:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

Se a altura é h, então a árvore:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

Se a árvore tem $n \ge 1$ nós, então:

• a altura é no mínimo $\lceil \lg(n+1) \rceil$

Se a altura é h, então a árvore:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

- ullet a altura é no mínimo $\lceil \lg(n+1)
 ceil$
 - o quando a árvore é completa

Se a altura é h, então a árvore:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

- a altura é no mínimo [lg(n + 1)]
 o quando a árvore é completa
- a altura é no máximo n

Se a altura é h, então a árvore:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

- a altura é no mínimo $\lceil \lg(n+1) \rceil$
 - o quando a árvore é completa
- a altura é no máximo n
 - quando cada nó interno tem apenas um filho (a árvore é um caminho)

Implementação

Implementação

Implementação

E se quisermos saber o pai de um nó? É possível nesta estrutura?

Implementação com ponteiro para pai

• Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).

- Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).
- Cada nó da árvore será uma estrutura (struct) contendo três campos:

- Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).
- Cada nó da árvore será uma estrutura (struct) contendo três campos:
 - o um valor inteiro (chave a ser guardada)

- Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).
- Cada nó da árvore será uma estrutura (struct) contendo três campos:
 - o um valor inteiro (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó

- Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).
- Cada nó da árvore será uma estrutura (struct) contendo três campos:
 - o um valor inteiro (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó
 - o um ponteiro para o filho direito do nó

- Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).
- Cada nó da árvore será uma estrutura (struct) contendo três campos:
 - o um valor inteiro (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó
 - o um ponteiro para o filho direito do nó

```
struct Node { // sem ponteiro para no pai
int key;
Node *left; // subarvore esquerda
Node *right; // subarvore direita
};
```


- Os nós da árvore implementadas nesta aula não terão ponteiro para o pai (fica como exercício para casa).
- Cada nó da árvore será uma estrutura (struct) contendo três campos:
 - o um valor inteiro (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó
 - o um ponteiro para o filho direito do nó

```
struct Node { // sem ponteiro para no pai
int key;
Node *left; // subarvore esquerda
Node *right; // subarvore direita
};
```

Para acessar qualquer nó da árvore, basta termos o endereço do nó raiz.
 Portanto, a única informação necessária é um ponteiro para a raiz da árvore.


```
1 #ifndef ARVOREBIN H
2 #define ARVOREBIN H
4 struct Node; // Cada no eh do tipo Node
6 Node* bt_emptyTree(); // retorna nulo, indicando arvore vazia
8 // cria no com chave 'kev'
  Node* bt_create(int key, Node* 1, Node* r);
10
11 // arvore enraizada em no esta vazia?
  bool bt empty(Node* node);
13
14 void bt_print(Node* node); // imprime as chaves da arvore
15
  bool bt_contains(Node* node, int key); // essa chave pertence?
17
  Node* bt destroy(Node* node); // libera todos os nos alocados
19
20 #endif
```


Declaração do struct Node:

```
1 #include <iostream>
2 #include "BinaryTree.h"
3 using std::cout;
4 using std::endl;
5
6 struct Node { // sem ponteiro para no pai
7    int key;
8    Node *left; // subarvore esquerda
9    Node *right; // subarvore direita
10 };
```


Cria uma árvore vazia:

```
1 Node* bt_emptyTree() {
2     return nullptr;
3 }
```


Cria uma árvore vazia:

```
1 Node* bt_emptyTree() {
2     return nullptr;
3 }

Cria um nó com certa chave e dois filhos:

1 Node* bt_create(int key, Node* 1, Node* r) {
2     Node* novo = new Node{};
3     novo->key = key;
4     novo->left = 1;
5     novo->right = r;
6     return novo;
7 }
```


Cria uma árvore vazia:

```
1 Node* bt_emptyTree() {
2     return nullptr;
3 }

    Cria um nó com certa chave e dois filhos:
1 Node* bt_create(int key, Node* 1, Node* r) {
2     Node* novo = new Node{};
3     novo->key = key;
4     novo->left = 1;
5     novo->right = r;
6     return novo;
7 }
```

Árvores são estruturas definidas recursivamente

- basta observar a função bt_create
- faremos muitos algoritmos recursivos

Saber se a árvore é vazia:

Saber se a árvore é vazia:

```
1 bool bt_empty(Node* node) {
2    return (node == nullptr);
3 }
```


Saber se a árvore é vazia:

```
1 bool bt_empty(Node* node) {
2    return (node == nullptr);
3 }
```

Percorrendo e imprimindo a árvore:

Saber se a árvore é vazia:

```
1 bool bt_empty(Node* node) {
2     return (node == nullptr);
3 }
```

Percorrendo e imprimindo a árvore:

```
void bt_print(Node* node) {
   if ( ! bt_empty(node) ) {
     cout << node->key << endl;
     bt_print(node->left);
     bt_print(node->right);
}
```


Buscando uma chave na árvore:

Buscando uma chave na árvore:

Buscando uma chave na árvore:

Observações:

Buscando uma chave na árvore:

Observações:

• se o resultado da condição (node->key == key) for true, as outras duas expressões não chegam a ser avaliadas.

Buscando uma chave na árvore:

Observações:

- se o resultado da condição (node->key == key) for true, as outras duas expressões não chegam a ser avaliadas.
 - o por sua vez, se a chave for encontrada na subárvore esquerda, a busca não prossegue na subárvore da direita.

Liberando memória alocada para a árvore:

```
1
2 Node* bt_destroy(Node* node) {
3     if (node != nullptr) {
4         node->left = bt_destroy(node->left);
5         node->right = bt_destroy(node->right);
6         cout << "Deleting " << node->key << endl;
7         delete node;
8     }
9     return nullptr;
10 }</pre>
```



```
1 #include <iostream>
2 #include "BinaryTree.h"
3
4 // Cria arvore com 5 nos, imprime chaves e finaliza
5 // liberando a memoria que foi alocada para a arvore
6 int main() {
      Node* a1 = bt create(34, nullptr, nullptr);
      Node* a2 = bt_create(21, nullptr, nullptr);
8
9
      Node* a3 = bt_create(76, a1, a2);
Node* a4 = bt create(55, nullptr, nullptr);
      Node* raiz = bt_create(1, a3, a4);
11
12
13
      bt_print(raiz);
14
      raiz = bt destroy(raiz);
15
16
                                       76
                                                         55
      return 0;
17
18 }
                                       a3
                                                         a4
                                   34
                                            a2
                                   a1
```


• Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```


 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```


 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Adicione o campo height ao struct Node. O campo height deve ser do tipo int. Implemente a função bt_height(Node* node) de modo que ela preencha o campo height de cada nó com a altura do nó.

- Um caminho que vai da raiz de uma árvore até um nó qualquer pode ser representado por uma sequência de 0s e 1s, do seguinte modo:
 - toda vez que o caminho "desce para a esquerda" temos um 0; toda vez que "desce para a direita" temos um 1.
 - o Diremos que essa sequência de 0s e 1s é o código do nó.

 Suponha agora que todo nó de nossa árvore tem um campo adicional code, do tipo std::string, capaz de armazenar uma cadeia de caracteres de tamanho variável. Escreva uma função que preencha o campo code de cada nó com o código do nó.

FIM