

VARIABLES ALEATORIAS CONTINUAS

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 08) 02.FEBRERO.2022

Esperanza

<u>Promedio</u>: Sea una variable aleatoria continua X con densidad f_X . La **esperanza** (expectativa, valor esperado) de X se define como

$$\mathbb{E}(X) = \int_{\mathbb{R}} t f_X(t) dt$$

en caso de que la integral exista.

<u>Mediana</u>: Una **mediana** de X es cualquier valor $t \in RR$ que satisface $F_X(t) = \frac{1}{2}$. Dicho de otra manera, son las preimágenes $F_X^{-1}(1/2)$.

Obs! F_X no siempre es invertible!! Denotamos $Q_X : [0,1] \to \overline{\mathbb{R}}$ a la *función de cuantiles*, la inversa generalizada de F_X :

$$Q_X(\alpha) = \inf\{x \in \mathbb{R} : \alpha \le F_X(x)\}, \text{ para } 0 < \alpha < 1.$$

<u>Moda</u>: Una **moda** de la distribución de X es cualquier máximo local de f_X .

Esperanza condicional

Recordemos que dadas X, Y v.a. continuas

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$$

Entonces

$$\mathbb{P}(a \leq X \leq b \mid Y = y) = \int_a^b f_{X|Y}(x \mid y) dx.$$

Como estamos condicionando a un evento con probabilidad cero, en realidad la ecuación anterior debe entenderse como un límite

$$\mathbb{P}(a \leq X \leq b \mid Y = y) = \lim_{\epsilon \to 0^+} \mathbb{P}(a \leq X \leq b \mid |Y - y| < \epsilon).$$

Definición

Para las v.a. X y Y continuas, se define la esperanza condicional de X dado que Y como

$$\mathbb{E}(X \mid Y) = \int_{\mathbb{R}} t f_{X|Y}(t) dt.$$

Esperanza condicional

Proposición (Ley de la probabilidad total para esperanzas) Sean X, Y v.a. continuas, entonces

$$\mathbb{E}(X\mid Y)=\int_{\mathbb{D}}\mathbb{E}(X\mid Y=y)f_{Y}(y)\,dy.$$

Varianza

Definición

Sea X una v.a. continua. Definimos su varianza como:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}X)^2] = \int_{\mathbb{R}} (t - \mu_X)^2 f_X(t) dt,$$

en caso de que este valor esperado exista.

Propiedades:

- $Var(X) \geq 0$.
- $Var(aX) = a^2Var(X)$.
- Si X_1, X_2 son independientes, entonces

$$Var(aX_2 + bX_2) = a^2Var(X_1) + b^2Var(X_2).$$

Covarianza

Definición

Dada dos v.a. X_1 , X_2 continuas (definidas sobre el mismo espacio). Definimos su **covarianza** como:

$$Cov(X_1,X_2) = \mathbb{E}\big[(X_1 - \mathbb{E}X_1)(X_2 - \mathbb{E}X_2)\big] = \int_{\mathbb{R}} \int_{\mathbb{R}} (s - \mu_X)(t - \mu_Y) f_X(s) f_Y(t) ds dt,$$

en caso de que este valor esperado exista.

Propiedades:

- $Cov(X_1, X_2) = Cov(X_2, X_1)$.
- Cov(aX, bY) = abCov(X, Y).
- Cov(aX, X) = aVar(X).
- Si X_1, X_2 son independientes, entonces $Cov(X_1, X_2) = 0$.

Definición

Sea X una v.a. continua. Definimos su **entropía de Shannon** como:

$$H(X) = -\int_{\mathbb{R}} f_X(t) \log f_X(t) dt.$$

En ocasiones esta es llamada entropía diferencial.

<u>Comentario</u>: No estoy seguro si existe un análogo a la entropía de Gini en el caso continuo.

Definición

Sean X, Y dos variables aleatorias, la entropía condicional de X dado Y es

$$H_{\mathsf{Y}}(\mathsf{X}) = \mathbb{E} H(\mathsf{X} \mid \mathsf{Y}) = -\int_{\mathbb{D}} \int_{\mathbb{D}} f_{\mathsf{X} \mid \mathsf{Y}}(\mathsf{s} \mid \mathsf{t}) \log f_{\mathsf{X} \mid \mathsf{Y}}(\mathsf{s} \mid \mathsf{t}) f_{\mathsf{Y}}(\mathsf{t}) \, d\mathsf{s} \, d\mathsf{t}.$$

Obs. No es simétrica: $H_Y(X) \neq H_X(Y)$.

Definición

Sean X, Y dos variables aleatorias, la **información mutua** de X y Y está dada por $I(X,Y) = H(X) - H_{V}(X).$

Proposición

$$I(X,Y)=I(Y,X).$$

Definición

La **entropía conjunta** de X y Y es

$$H(X,Y) = -\int_{\mathbb{R}} \int_{\mathbb{R}} f_{X,Y}(s,t) \log f_{X,Y}(s,t) ds dt.$$

Vale el mismo diagrama que en el caso discreto.

Definición

Sean P una distribución continua de probabilidad, con densidad $f_P(x)$. La **entropía** de P es $H(P) = -\int_{\mathbb{R}} f_P(x) \log f_P(x) \, dx.$

Definición

Sean P, Q dos distribuciones discretas de probabilidad, la **entropía cruzada** (cross-entropy) de P y Q es

$$H(P,Q) = -\int_{\mathbb{R}} f_P(x) \log f_Q(x) dx.$$

Además, la divergencia de Kullback-Leibler de P y Q se define como

$$D_{KL}(P \parallel Q) = -\int_{\mathbb{R}} f_{P}(x) \log \frac{f_{Q}(x)}{f_{P}(x)} dx$$

$$= -\int_{\mathbb{R}} f_{P}(x) \log f_{Q}(x) dx + \sum_{x} f_{P}(x) \log f_{P}(x) dx = H(P, Q) - H(P).$$