Sequence to Sequence Models

Jon Dehdari

January 25, 2016

Good Morning!

• We've seen that words can be represented as vectors. Can sentences be represented as vectors?

- We've seen that words can be represented as vectors. Can sentences be represented as vectors?
- Sure, why not?

- We've seen that words can be represented as vectors. Can sentences be represented as vectors?
- Sure, why not? How? From the hidden state at the end of a sentence: $\mathbf{h}_i = \phi_{\text{enc}}(\mathbf{h}_{i-1}, \mathbf{s}_i)$ ($\phi_{\text{enc}} = \text{LSTM or GRU}$)

- We've seen that words can be represented as vectors. Can sentences be represented as vectors?
- Sure, why not? How? From the hidden state at the end of a sentence: $\mathbf{h}_i = \phi_{\text{enc}}(\mathbf{h}_{i-1}, \mathbf{s}_i)$ ($\phi_{\text{enc}} = \text{LSTM or GRU}$)

- We've seen that words can be represented as vectors. Can sentences be represented as vectors?
- Sure, why not? How? From the hidden state at the end of a sentence: $\mathbf{h}_i = \phi_{\text{enc}}(\mathbf{h}_{i-1}, \mathbf{s}_i)$ ($\phi_{\text{enc}} = \text{LSTM or GRU}$)

 Are they any good? For Elman networks (SRNs), not so much. For LSTMs or GRUs, yes, they're pretty good

Sentence Vector Examples

Sentence vectors were projected to two dimensions using PCA

large surface of believes of a 198

Generating Sentences from Vectors

- We can also try to go the other direction, generating sentences from vectors
- How? Use an RNN to **decode**, rather than **encode** a sentence: $\mathbf{z}_i = \phi_{\text{dec}}(\mathbf{z}_{i-1}, \mathbf{u}_{i-1}, \mathbf{h}_T)$

e = (Economic, growth, has, slowed, down, in, recent, years, .)

h_T ensures global sentence coherency (& adequacy in MT);
u_{i-1} ensures local fluency

Using Neural Encoders & Decoders to Translate

- We can combine the neural encoder and decoder of previous slides to form an encoder-decoder model
- This can be used for machine translation, and other tasks that map sequences to sequences

Using Neural Encoders & Decoders to Translate

- We can combine the neural encoder and decoder of previous slides to form an encoder-decoder model
- This can be used for machine translation, and other tasks that map sequences to sequences

- Monolingual word projections (vectors/embeddings) are trained to maximize likelihood of next word
- Source-side word projections (s_i) in an encoder-decoder setting are trained to maximize target-side likelihood

Bidirectional RNNs

- The basic encoder-decoder architecture doesn't handle long sentences very well
- Everything must fit into a fixed-size vector,
- and RNNs remember recent items better

Bidirectional RNNs

- The basic encoder-decoder architecture doesn't handle long sentences very well
- Everything must fit into a fixed-size vector,
- and RNNs remember recent items better
- We can combine left-to-right and right-to-left RNNs to overcome these issues

What if ...

- Even bidirectional encoder-decoders have a hard time with long sentences
- We need a way to keep track of what's already been translated and what to translate next

What if ...

- Even bidirectional encoder-decoders have a hard time with long sentences
- We need a way to keep track of what's already been translated and what to translate next

What if ...

- Even bidirectional encoder-decoders have a hard time with long sentences
- We need a way to keep track of what's already been translated and what to translate next

For neural nets, the solution is often more neural nets . . .

Achtung, Baby!

• Attention-based decoding adds another network (a) that takes as input the encoder's hidden state (h) and the decoder's hidden state (z), and outputs a probability for each source word at each time step (when and where to pay attention): $e_{i,j} = a(z_{i-1}, h_j) = v_a^{\top} \tanh(W_a s_{i-1} + U_a h_j)$

Achtung, Baby!

• Attention-based decoding adds another network (a) that takes as input the encoder's hidden state (h) and the decoder's hidden state (z), and outputs a probability for each source word at each time step (when and where to pay attention): $e_{i,j} = a(z_{i-1}, h_j) = v_a^{\top} \tanh(W_a s_{i-1} + U_a h_j)$

 The attention weights can also function as soft word alignments. They're trained on target-side MLE

9 / 12

Image Caption Generation

You can use attention-based decoding to give textual descriptions of images

10 / 12 -----

Image Caption Generation Examples

Figure 4. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

A woman is throwing a frisbee in a park.

A $\underline{\text{dog}}$ is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

11 / 12

Image Caption Generation, Step by Step

(b) A stop sign is on a road with a mountain in the background.