FDR for thermodynamic distillation processes

Alexssandre de Oliveira Junior

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University

Collaborators

Kamil Korzekwa Jagiellonian University, Krakow

Michał Horodecki ICTQT, Gdansk

Tanmoy Biswas

ICTQT, Gdansk

FDR FOR THERMODYNAMIC DISTILLATION PROCESSESS

Outline

- I. Introduction
- II. Resource theory of thermodynamics
- III. Results
- IV. Applications
- V. Outlook

Introduction

Standard thermodynamics

- ullet Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables
- Thermodynamic limit

Thermodynamics in a nutshel

Standard thermodynamics

- ullet Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables: X = (P, V, T), Y = (P', V', T') statistical nature well-defined
- ullet Thermodynamic limit: $N o \infty$, $au_s o \infty$

Thermodynamics in a nutshel

Standard thermodynamics

- ullet Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables: X = (P, V, T), Y = (P', V', T') statistical nature \longrightarrow well-defined
- Thermodynamic limit: $N \nrightarrow \infty$, $\tau_s \nrightarrow \infty$

Thermodynamics in a nutshel

Standard thermodynamics

- Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables
- Thermodynamic limit

Non.equilibrium thermodynamics

- Fluctuations!
- Stochastic variables
- Fluctuation-theorems

in a nutshel

Standard thermodynamics

- Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables
- Thermodynamic limit

Non.equilibrium thermodynamics

- Fluctuations!
- Stochastic variables
- Fluctuation-theorems

Standard thermodynamics

- Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables
- Thermodynamic limit

Non.equilibrium thermodynamics

- Fluctuations!
- Stochastic variables
- Fluctuation-theorems

Standard thermodynamics

- Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables
- Thermodynamic limit

Non.equilibrium thermodynamics

- Fluctuations!
- Stochastic variables
- Fluctuation-theorems

Quantum thermodynamics

- Quantum features
- Information-theoretic nature
- Restrictions?

our work

Standard thermodynamics

- Laws of thermodynamics: $W \rightleftharpoons Q$
- State variables
- Thermodynamic limit

Non.equilibrium thermodynamics

- Fluctuations!
- Stochastic variables
- Fluctuation-theorems

Quantum thermodynamics

- Quantum features
- Information-theoretic nature
- Restrictions?

Indentifying the set of thermodynamically-free states

Indentifying the set of thermodynamically-free states

Indentifying the set of thermodynamically-free states

Trying the set of **thermodynamically-free states**
$$\gamma = \frac{e^{-\beta H}}{Z} \quad , \quad Z = \mathrm{Tr}(e^{-\beta H}) \quad , \quad (\rho,H) \quad (\gamma_E,H_E)$$

$$\mathcal{E}(\rho) = \mathrm{Tr}_E(U(\rho \otimes \gamma_E)U^\dagger)$$
 with $[U, H \otimes \mathbb{1}_E + \mathbb{1}_E \otimes H_E] = 0$ Energy-conserving interaction

Indentifying the set of thermodynamically-free states

trying the set of **thermodynamically-free states**
$$+ \qquad \Longrightarrow \qquad \gamma = \frac{e^{-\beta H}}{Z} \quad , \quad Z = \mathrm{Tr}(e^{-\beta H}) \quad , \qquad (\gamma_E, H_E)$$

$$\mathcal{E}(
ho) = \mathrm{Tr}_E(U(
ho\otimes\gamma_E)U^\dagger)$$
 with $[U,H\otimes\mathbb{1}_E+\mathbb{1}_E\otimes H_E] = 0$ Energy-conserving interaction

i.
$$\mathcal{E}(\gamma) = \gamma$$

Indentifying the set of thermodynamically-free states

$$(\rho,H) \longrightarrow \gamma = \frac{e^{-\beta H}}{Z} \quad , \quad Z = \mathrm{Tr}(e^{-\beta H}) \quad , \qquad (\gamma_E,H_E)$$

$$\mathcal{E}(\rho) = \mathrm{Tr}_E(U(\rho \otimes \gamma_E)U^\dagger)$$
 with $[U, H \otimes \mathbb{1}_E + \mathbb{1}_E \otimes H_E] = 0$ Energy-conserving interaction

$$\mathbf{i.} \quad \mathcal{E}(\gamma) = \gamma \qquad \qquad \mathbf{0} \quad + \overset{\circ \circ \circ \circ \circ}{\bullet \circ \circ \circ} \qquad , \qquad \mathcal{E}(\circ) = \circ \quad \longrightarrow \quad \mathbf{2}^{\mathrm{nd}} \text{ law}$$

Indentifying the set of thermodynamically-free states

$$\gamma$$
 ing the set of **thermodynamically-free states** $\gamma = \frac{e^{-\beta H}}{Z}$, $Z = {
m Tr}(e^{-\beta H})$, $\gamma = \frac{e^{-\beta H}}{Z}$, $\gamma = \frac{e^{-\beta H}}{Z}$

$$\mathcal{E}(\rho) = \mathrm{Tr}_E(U(\rho \otimes \gamma_E)U^\dagger)$$
 with $[U, H \otimes \mathbb{1}_E + \mathbb{1}_E \otimes H_E] = 0$ Energy-conserving interaction

$$\mathbf{i.} \quad \mathcal{E}(\gamma) = \gamma \qquad \qquad \mathbf{0} \quad + \overset{\circ \circ \circ \circ \circ \circ}{\circ \circ \circ \circ} \qquad , \qquad \mathcal{E}(\circ) = \circ \quad \longrightarrow \quad \mathbf{2}^{\mathrm{nd}} \text{ law}$$

ii.
$$\mathcal{E} \circ \mathcal{U}_t = \mathcal{U}_t \circ \mathcal{E}$$

Indentifying the set of thermodynamically-free states

$$\gamma$$
 ing the set of **thermodynamically-free states** $\gamma = \frac{e^{-\beta H}}{Z}$, $Z = \mathrm{Tr}(e^{-\beta H})$, $\gamma = \frac{e^{-\beta H}}{Z}$, $\gamma = \frac{e^{-\beta H}}{Z}$

$$\mathcal{E}(
ho)=\mathrm{Tr}_E(U(
ho\otimes\gamma_E)U^\dagger)$$
 with $[U,H\otimes\mathbb{1}_E+\mathbb{1}_E\otimes H_E]=0$ Energy-conserving interaction

$$\mathbf{i.} \quad \mathcal{E}(\gamma) = \gamma \qquad \qquad \mathbf{0} \quad + \overset{\circ \circ \circ \circ \circ}{\bullet \circ \circ \circ} \qquad , \qquad \mathcal{E}(\circ) = \circ \quad \longrightarrow \quad \mathbf{2}^{\mathrm{nd}} \text{ law}$$

$$\mathbf{ii.} \ \mathcal{E} \circ \mathcal{U}_t = \mathcal{U}_t \circ \mathcal{E} \qquad \qquad S \qquad \qquad U \qquad \qquad = \qquad S \qquad \qquad \mathcal{U}_t \qquad \longrightarrow \qquad \mathbf{1}^{\mathrm{st}} \ \mathbf{1aw}$$

Indentifying the set of thermodynamically-free states

ying the set of **thermodynamically-free states**
$$+ \qquad \Longrightarrow \qquad \gamma = \frac{e^{-\beta H}}{Z} \quad , \quad Z = \mathrm{Tr}(e^{-\beta H}) \quad , \qquad (\gamma_E, H_E)$$

Thermodynamic transformations are modelled by thermal operations

$$\mathcal{E}(\rho) = \mathrm{Tr}_E(U(\rho \otimes \gamma_E)U^\dagger)$$
 with $[U, H \otimes \mathbb{1}_E + \mathbb{1}_E \otimes H_E] = 0$ Energy-conserving interaction

Thermodynamic monotone $\phi: \mathcal{S}_d \to \mathbb{R}_+ \cup \{0\}$

i.
$$\phi(\mathcal{E}(\rho)) \leq \phi(\rho)$$

ii.
$$\phi(\gamma) = 0$$

Indentifying the set of thermodynamically-free states

Thermodynamic transformations are modelled by thermal operations

$$\mathcal{E}(
ho) = \mathrm{Tr}_E(U(
ho\otimes\gamma_E)U^\dagger)$$
 with $[U,H\otimes\mathbb{1}_E+\mathbb{1}_E\otimes H_E] = 0$ Energy-conserving interaction

Thermodynamic monotone $\phi: \mathcal{S}_d \to \mathbb{R}_+ \cup \{0\}$

i.
$$\phi(\mathcal{E}(\rho)) \leq \phi(\rho)$$

ii.
$$\phi(\gamma) = 0$$

$$D(\rho || \gamma) = \text{Tr}(\rho(\log \rho - \log \gamma))$$

Information + thermo

Expression	Interpretation
$D(\rho \gamma) = \text{Tr}(\rho(\log \rho - \log \gamma))$	$\beta \left[\underbrace{\left(\operatorname{tr}(\rho H) - \frac{S(\rho)}{\beta} \right)} - \underbrace{\left(-\frac{\log Z}{\beta} \right)} \right]$
	Free energy Free energy of γ

Expression

$$D(\rho || \gamma) = \text{Tr}(\rho(\log \rho - \log \gamma))$$

$$\beta \left[\underbrace{\operatorname{tr}(\rho H) - \frac{S(\rho)}{\beta}} - \underbrace{\left(-\frac{\log Z}{\beta} \right)} \right]$$

Free energy

Free energy of γ

$$V(\rho \| \gamma) = \text{Tr}\left(\rho \left(\log \rho - \log \gamma - D(\rho \| \gamma)\right)^2\right)$$

Fluctuations of a given random variable

Expression

Interpretation

$$D(\rho||\gamma) = \text{Tr}(\rho(\log \rho - \log \gamma))$$

$$\beta \left[\underbrace{\operatorname{tr}(\rho H) - \frac{S(\rho)}{\beta}} - \underbrace{\left(-\frac{\log Z}{\beta} \right)} \right]$$

Free energy

Free energy of γ

$$V(\rho \| \gamma) = \text{Tr}\left(\rho \left(\log \rho - \log \gamma - D(\rho \| \gamma)\right)^2\right)$$

$$V(\psi || \gamma) = \langle E^2 \rangle - \langle E \rangle^2$$

Expression	Interpretation
$D(\rho \gamma) = \text{Tr}(\rho(\log \rho - \log \gamma))$	$\beta \left[\underbrace{\left(\operatorname{tr}(\rho H) - \frac{S(\rho)}{\beta} \right)}_{\text{Free energy of } \mathcal{Y}} - \underbrace{\left(-\frac{\log Z}{\beta} \right)}_{\text{Free energy of } \mathcal{Y}} \right]$
$V(\rho \ \gamma) = \text{Tr}\left(\rho \left(\log \rho - \log \gamma - D(\rho \ \gamma)\right)^2\right)$	Free energy Free energy of γ $V(\gamma'\ \gamma) = \underbrace{\frac{\partial \langle E \rangle_{\gamma'}}{\partial T'}}_{\text{Specific heat}} \underbrace{\left(1 - \frac{T'}{T}\right)^2}_{\text{Carnot}}$ Specific heat Carnot capacity factor

Expression

Interpretation

$$D(\rho || \gamma) = \text{Tr}(\rho(\log \rho - \log \gamma))$$

$$\beta \left[\underbrace{\operatorname{tr}(\rho H) - \frac{S(\rho)}{\beta}} - \underbrace{\left(-\frac{\log Z}{\beta} \right)} \right]$$

Free energy

Free energy of γ

$$V(\rho \| \gamma) = \text{Tr}\left(\rho \left(\log \rho - \log \gamma - D(\rho \| \gamma)\right)^2\right)$$

$$V(\gamma'\|\gamma) = \underbrace{\frac{\partial \langle E \rangle_{\gamma'}}{\partial T'}}_{\text{Specific heat}} \underbrace{\left(1 - \frac{T'}{T}\right)^2}_{\text{Carnot}}$$
 Specific heat Carnot capacity factor

$$W(\rho\|\gamma) := \operatorname{Tr}\left(\rho\left(\frac{\log\rho - \log\gamma - D(\rho\|\gamma)}{\sqrt{V(\rho\|\gamma)}}\right)^3\right)$$

$$W(\gamma' || \gamma) = -\sqrt{\frac{k_B}{c_T^{3'}}} \left(T' \frac{\partial c_T'}{\partial T'} + 2c_T' \right)$$

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

Recently developed resource theories

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

! General answer not known beyond the simplest qubit case

Phys. Rev. X 5, 021001 (2015)

Nat.Commun. 6, 7689 (2015)

I For energy-incoherent states the set of necessary and sufficient conditions was found

Nat.Commun. 4, 2059 (2013)

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

! General answer not known beyond the simplest qubit case

Phys. Rev. X 5, 021001 (2015)

Nat.Commun. 6, 7689 (2015)

I For energy-incoherent states the set of necessary and sufficient conditions was found

Nat.Commun. 4, 2059 (2013)

$$[\rho, H] = [\sigma, H] = 0 \implies$$
 states represented by: $\mathbf{p} = \operatorname{eig}(\rho), \mathbf{q} = \operatorname{eig}(\sigma)$

Returning to the question...

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

I General answer not known beyond the simplest qubit case

Phys. Rev. X 5, 021001 (2015)

Nat.Commun. 6, 7689 (2015)

I For energy-incoherent states the set of necessary and sufficient conditions was found

Nat.Commun. 4, 2059 (2013)

$$[\rho, H] = [\sigma, H] = 0 \implies$$
 states represented by: $\mathbf{p} = \operatorname{eig}(\rho), \mathbf{q} = \operatorname{eig}(\sigma)$

Returning to the question...

$$\mathcal{E}(\rho) = \sigma : \mathbf{p} \succ^{\beta} \mathbf{q}$$

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

final state 🗼

Resource theory of thermodynamics

General **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \sigma$

 ϵ - approximate **interconversion** problem: for initial state ρ , target state σ , thermal bath $\beta \implies \mathcal{E}(\rho) = \tilde{\sigma}$

$$\sigma \approx_{\epsilon} \tilde{\sigma} \text{ means } 1 - F(\sigma, \tilde{\sigma}) \leq \epsilon \text{ with fidelity } F(\sigma, \tilde{\sigma}) = \left(\text{Tr} \sqrt{\sqrt{\sigma} \tilde{\sigma} \sqrt{\sigma}} \right)$$

$$\mathbf{p}\succ^eta_\epsilon\mathbf{q}$$

! Approximate interconversion problem with **finite** system: $\mathcal{E}(\rho^{\otimes N}) = \tilde{\sigma}^{\otimes M}$

Quantum, vol. 2, p.108, 2018

! Approximate interconversion problem with **finite** system: $\mathcal{E}(\rho^{\otimes N}) = \tilde{\sigma}^{\otimes M}$

Quantum, vol. 2, p.108, 2018

! Second order rate for energy-incoherent states

! Thermodynamic irreversibility (rigorously)

! Optimal values of distillable work and work of formation

Resource theory of thermodynamics

! Approximate interconversion problem with **finite** system: $\mathcal{E}(\rho^{\otimes N}) = \tilde{\sigma}^{\otimes M}$

Quantum, vol. 2, p.108, 2018

- ! Second order rate for energy-incoherent states
- ! Thermodynamic irreversibility (rigorously)
- ! Optimal values of distillable work and work of formation

Not answered

- ? For general states (not only energy-incoherent)
- ? Going beyond the second-order asymptotic state interconversion, i.e., rates for any N
- ? Have only one battery system instead of N

Results

Thermodynamic distillation process

An ϵ -approximate **thermodynamic** distillation process from an initial to a target state

$$(\rho, H) \xrightarrow{\mathcal{E}} (\tilde{\rho}, \tilde{H})$$

where
$$\tilde{
ho}=\bigotimes_{m=1}^{\tilde{N}}|\tilde{E}_{k_n}^{(n)}\rangle\langle\tilde{E}_{k_n}^{(n)}|$$

 ϵ away from $\tilde{\rho}$ in the infidelity distance

$$\delta(\rho_1, \rho_2) := 1 - \left(\text{Tr} \sqrt{\sqrt{\rho_1 \rho_2} \sqrt{\rho_1}} \right)^2$$

Dissipated free energy rescaled by its fluctuations

$$\frac{W^{\text{diss}}}{\sigma} := \frac{D(\rho \| \gamma) - D(\tilde{\rho} \| \tilde{\gamma})}{\sqrt{V(\rho \| \gamma)}}$$

$$H = \sum_{n=1}^{N} H^{(n)}$$
 , $\rho = \bigotimes_{n=1}^{N} \rho^{(n)}$

$$H = \sum_{n=1}^{N} H^{(n)}$$
 , $\rho = \bigotimes_{n=1}^{N} \rho^{(n)}$

$$H = \sum_{n=1}^{N} H^{(n)} , \quad \rho = \bigotimes_{n=1}^{N} \rho^{(n)}$$

$$\tilde{H} = \sum_{n=1}^{\tilde{N}} \tilde{H}^{(n)} , \quad \tilde{\rho} = \bigotimes_{n=1}^{\tilde{N}} |\tilde{E}_{k_n}^{(n)}\rangle \langle \tilde{E}_{k_n}^{(n)}|$$

$$N o \infty$$
 $\epsilon \simeq 1 - \Phi\left(\frac{W^{\mathrm{diss}}}{\sigma}\right)$

Theorem 1. Fluctuation-dissipation relation for incoherent states

$$H = \sum_{n=1}^{N} H^{(n)}$$
 , $\rho = \bigotimes_{n=1}^{N} \rho^{(n)}$

$$H = \sum_{n=1}^{N} H^{(n)} , \quad \rho = \bigotimes_{n=1}^{N} \rho^{(n)}$$

$$\tilde{H} = \sum_{n=1}^{\tilde{N}} \tilde{H}^{(n)} , \quad \tilde{\rho} = \bigotimes_{n=1}^{\tilde{N}} |\tilde{E}_{k_n}^{(n)}| \langle \tilde{E}_{k_n}^{(n)} |$$

Cumulative normal distribution

$$H = \sum_{n=1}^{N} H^{(n)} , \quad \rho = \bigotimes_{n=1}^{N} \rho^{(n)}$$

$$\tilde{H} = \sum_{n=1}^{\tilde{N}} \tilde{H}^{(n)} , \quad \tilde{\rho} = \bigotimes_{n=1}^{\tilde{N}} |\tilde{E}_{k_n}^{(n)}\rangle \langle \tilde{E}_{k_n}^{(n)}|$$

$$\epsilon \le 1 - \Phi\left(\frac{W^{\text{diss}}}{\sigma}\right) + \frac{CW(\rho \| \gamma)}{\sigma^3}$$

$$H = \sum_{n=1}^{N} H^{(n)} , \quad \rho = \bigotimes_{n=1}^{N} \rho^{(n)}$$

$$\tilde{H} = \sum_{n=1}^{\tilde{N}} \tilde{H}^{(n)} , \quad \tilde{\rho} = \bigotimes_{n=1}^{\tilde{N}} |\tilde{E}_{k_n}^{(n)}\rangle \langle \tilde{E}_{k_n}^{(n)}|$$

- Beyond the i.i.d case:
- Guarantees a transformation error for a finite N
- Fluctuation-dissipation relation!

FDR for i.i.d pure states

Theorem 2. Fluctuation-dissipation relation for i.i.d pure states

FDR for i.i.d pure states

Theorem 2. Fluctuation-dissipation relation for i.i.d pure states

$$N o \infty$$

$$\epsilon \simeq 1 - \Phi\left(\frac{W^{\text{diss}}}{\sigma}\right)$$

$$ilde{
ho} = \bigotimes_{n=1}^{ ilde{N}} | ilde{E}_{k_n}^{(n)}\rangle \langle ilde{E}_{k_n}^{(n)} \rangle \langle ilde{E}_{k_n}^{(n)} \rangle$$

- Beyond incoherent states
- Fluctuation-dissipation relation
- Free energy fluctuations are just energy fluctuations

Why fluctuation-dissipation relations?

$$H(\lambda) = H_0 - \lambda H_0$$

Why fluctuation-dissipation relations?

$$H(\lambda) = H_0 - \lambda H_0$$

$$W^{\rm diss} \simeq \beta \lambda [\langle H^2 \rangle_0 - \langle H \rangle_0^2]$$

Why fluctuation-dissipation relations?

$$W^{\rm diss} \simeq \beta \lambda [\langle H^2 \rangle_0 - \langle H \rangle_0^2]$$

Theorem 1 and 2. Fluctuation-dissipation relation for thermodynamic distillation process:

$$D(\rho \| \gamma) - D(\tilde{\rho} \| \tilde{\gamma}) \simeq \sqrt{V(\rho \| \gamma)} \Phi(\epsilon)^{-1}$$

Applications

Application of the interconversion problem

Application of the interconversion problem

Application of the interconversion problem

$$\left(\bigcirc \otimes \bigcirc \right) \quad \stackrel{\mathcal{E}}{\Longrightarrow} \quad \left(\bigcirc \otimes \bigcirc \right)$$

Ex.
$$\mathcal{E}(\rho_S \otimes |0\rangle\langle 0|_B) = |W\rangle\langle W|_B$$

$$H_W = 0|0\rangle\langle 0| + W|1\rangle\langle 1|_B$$

$$H_W = 0|0\rangle\langle 0| + W|1\rangle\langle 1|_B$$

$$W^{\text{diss}} \le \sigma \Phi^{-1} \left(\epsilon - \frac{C W(\rho \| \gamma)}{\sigma^3} \right)$$

$$H_W = 0|0\rangle\langle 0| + W|1\rangle\langle 1|_B$$

$$\epsilon \le 1 - \Phi\left(\frac{W_{\text{diss}}}{\sigma}\right) + \frac{C}{\sqrt{N\sigma^3}} \left| \sum_{n=1}^N W^*(\rho^{(n)} || \gamma^{(n)}) \right|$$

... states with higher σ needs to dissipate more work

$$\epsilon \le 1 - \Phi\left(\frac{W_{\text{diss}}}{\sigma}\right) + \frac{C}{\sqrt{N\sigma^3}} \left| \sum_{n=1}^N W^*(\rho^{(n)} || \gamma^{(n)}) \right|$$

... states with higher σ needs to dissipate more work

...states with small σ allow one to dissipate small amounts of work

$$\epsilon \le 1 - \Phi\left(\frac{W_{\text{diss}}}{\sigma}\right) + \frac{C}{\sqrt{N\sigma^3}} \left| \sum_{n=1}^N W^*(\rho^{(n)} || \gamma^{(n)}) \right|$$

- Dissipated work in form of fluctuations
- It holds for all N
- Battery is a single system

Optimal thermodynamically-free encoding of information

Optimal thermodynamically-free encoding of information

The optimal number of messages that can be encoded into ρ in a thermodynamically-free way

$$R(\sigma, N, \epsilon) := \frac{\log[M(\sigma^{\otimes N}, \epsilon)]}{N}$$

Optimal thermodynamically-free encoding of information

The optimal number of messages that can be encoded into ρ in a thermodynamically-free way

$$R(\rho, N, \epsilon) = D(\rho || \gamma) + \frac{1}{\sqrt{N}} \sqrt{V(\rho || \gamma)} \Phi^{-1}(\epsilon)$$

Outlook

- I. State interconversion problem: **incoherent** and **coherent** initial states
- 2. Work extraction and thermal ecoding of information
- 3. Second-order asymptotic analysis for state transformation from **general mixed** states.

arXiv.????????

FDR FOR THERMODYNAMIC DISTILLATION PROCESSESS QUANTUM CHAOS AND QUANTUM INFORMATION

