Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>14</u>

Виконав студент: ІП-15 Кондрацька Соня Леонідівна

Перевірив:

Лабораторна робота № 1 Дослідження лінійних алгоритмів

Мета — дослідити лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, набути практичних навичок їх використання під час складання лінійних програмних специфікацій.

Варіант 14

Задача

Дано гіпотенуза і катет прямокутного трикутника. Знайти другий катет і радіус вписаного кола.

1) Постановка задачі

Дано катет A і гіпотенузу C прямокутного трикутника. Знайти другий катет B і радіус R вписаного кола використовуючи теорему Піфагора та формулу радіуса вписаного кола для прямокутного трикутника.

2) Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Перший катет	Натуральне число	A	Вхідні дані
Гіпотенуза	Натуральне число	С	Вхідні дані
Другий катет	Натуральне число	В	Вихідні дані, результат
Радіус	Натуральне число	R	Вихідні дані, результат

В знаходимо за формулою $sqrt(C^2 - A^2)$. R знайдемо за допомогою формули (A*B)/(A+B+C).

3) Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію знаходження другого катета прямокутного трикутника.
- Крок 3. Деталізуємо дію знаходження радіуса вписаного кола прямокутного трикутника.

Псевдокод

Крок 1	Крок 2	Крок 3
початок	початок	початок
Введення А, С	Введення А, С	Введення А, С
знаходження другого катета В	$B:=sqrt(C^2 - A^2)$	$B:=sqrt(C^2 - A^2)$
знаходження радіуса вписанов кола R	го знаходження радіуса вписаного кола R	R:=(A*B)/(A+B+C)
Виведення В, R	Виведення В, R	Виведення В, R
кінень	кінень	кінець

4) Блок-схема

Крок 1 Крок 2 Крок 3 Початок Початок Початок Введення А, С Введення А, С Введення А, С знаходження катета В B:=SQRT(C^2 - A^2) $B{=}SQRT({\tt C^2-A^2})$ знаходження знаходження R:=(A*B)/(A+B+C)радіуса R радіуса R Виведення В, R Виведення В, R Виведення В, R Кінець Кінець Кінець

5) Випробування

Блок	Дія
	Початок
1	Введення А,С
2	A=3, C=5
3	B=SQRT(5^2-3^2)=4
4	R=(3*4)/(3+4+5)=1
5	Виведення B,R
	Кінець

6) Висновки

Ми дослідили лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, а також набули практичних навичок їх використання під час складання лінійних програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм для знаходження другого катета прямокутного трикутника при відомому першому катеті та відомій гіпотенузі, розділивши задачу на 3 кроки: визначення основних дій, деталізування знаходження другого катета прямокутного трикутника та деталізування знаходження радіуса вписаного кола прямокутного трикутника.