

Strategic Manipulation of Bids in Auction-Based Transport Collaborations

Student: B. Sc. Darius Dresp

Supervisor: Prof. Dr. Jan Fabian Ehmke

University: University of Vienna

Agenda

- 1 Introduction to Transport Collaborations
- 2 Implementation of Auction-based Transport Collaborations
- Payment Calculation and Profit Sharing Methods in Auction-based Transport Collaborations
- 4 Strategic Manipulation of Bids in Auction-based Transport Collaborations
 - 4.1 Bidding Strategies for Egalitarian Profit Sharing
 - 4.2 Bidding Strategies for Modified Egalitarian Profit Sharing
 - 4.3 Bidding Strategies for Purchase/Sale Weight Profit Sharing
 - 4.4 Bidding Strategies for Shapley Value Profit Sharing
 - 4.5 Bidding Strategies for Critical Weight Profit Sharing
- 5 Comparison of the analysed Profit Sharing Methods
- 6 Outlook

1

Introduction to Transport Collaborations

Introduction to Transport Collaborations Initial Situation

Legend: Depot + Pickup - Delivery

Introduction to Transport Collaborations Initial Situation— Depot

Legend: Depot + Pickup - Delivery

Introduction to Transport Collaborations Initial Situation— Pickup-Delivery Requests

Introduction to Transport Collaborations Initial Situation - Revenue Calculation

Revenue

Request Revenue

(+) Fixed Revenue

(+) Variable Revenue * Direct Length

Total Revenue

(+) Sum[Request Revenues]

Legend: Depot + Pickup - Delivery

Introduction to Transport Collaborations Initial Situation - Cost Calculation

Costs

Total Costs

(-) Variable Cost * Routing Distance

Marginal Cost Request

- (-) Variable Cost * Marginal Routing Distance
- → Maximize Profit by optimizing the route

Legend: Depot + Pickup - Delivery

Implementation of Auction-based Transport Collaborations

universität wien

16

Auction-based mechanism

Coordinated by a mechanism manager

- 1) Each carrier should **select pickup-delivery requests** that she/he is willing to trade and state a price (**Input Bid**)
- 2) The mechanism manager has to **bundle the requests** to attractive packages
- 3) Each carrier has to **select a price** that she/he is willing to pay for the offered **bundles** (**Bid**)
- 4) The mechanism manager has to **determine** the **optimal bids** and allocate the requests (**Winning Bids**)
- 5) The mechanism manager has to **determine** the **payments** for each carrier
- (6) Mechanism terminates or restarts at 1))

See [1]

Implementation of Auction-based Transport Collaborations Bundle Generation – Mechanism Manager

Implementation of Auction-based Transport Collaborations Bundle Generation – Mechanism Manager

Implementation of Auction-based Transport Collaborations Bundle Generation – Mechanism Manager

Implementation of Auction-based Transport Collaborations Winner Determination – Mechanism Manager

Winner Determination

Objective: Constraint 1: Constraint 2: Maximize total valuation of bids Each carrier wins at most one bid Each request is part of exactly one winning bid

Implementation of Auction-based Transport Collaborations

Payment Calculation – Mechanism Manager

Winner Determination

Objective: Maximize total valuation of bids
Constraint 1: Each carrier wins at most one bid

Constraint 2: Each request is part of exactly one winning bid

Request Allocation

If (total valuation of winning bids > total valuation of input bids):

→ allocate requests according to the winning bids

Else:

→ Stop mechanism or go back to Request Selection

Payment Calculation

Final Question: Who has to pay/gets paid (subject of next chapter)

has to pay/gets paid (subject of next chapter)

$\begin{array}{c} {\sf Implementation\ of\ Auction-based\ Transport\ Collaborations} \\ {\sf Setup-Auction-based\ Mechanism} \end{array}$

Request Selection	Bundle Generation	Bidding	Winner Determination	Payment Calculation
Requests selected based on: - Marginal profit - Distance to one's own depot - Distance to another carrier's depot - Closeness between each other	All possible bundles of requests are offered Alternative: Genetic Algorithm which selects the most attractive bundles (not used for tests) Challenge: High synergy effects Many possible	Requires the carriers to calculate their marginal profit for each bundle Marginal Profit: (+) Revenues of requests in the bundle (-) Marginal cost of including the bundle in route Routing Calculation:	A candidate is a set of bids whereas each request has to be allocated to exactly one carrier Winning Candidate = Most valuable Candidate Optimization program: Set partitioning	Different Payment Approaches: - Egalitarian - Purchase/Sale Weights - Shapley Value - Critical Weight (explained later)
→ Input Bid See [2]	bundles See [3]	Double Insertion with 3-opt (initial) or 2-opt improvement Strategies: Truthful, Conspiring, Strategic See [11]	problem (solved optimally with Google OR-Tools)	

$\begin{array}{c} {\sf Implementation\ of\ Auction-based\ Transport\ Collaborations} \\ {\sf Setup-Auction-based\ Mechanism} \end{array}$

Request Selection	Bundle Generation	Bidding	Winner Determination	Payment Calculation
Requests selected based on: - Marginal profit - Distance to one's own depot - Distance to another carrier's depot - Closeness between each other	All possible bundles of requests are offered Alternative: Genetic Algorithm which selects the most attractive bundles (not used for tests) Challenge: High synergy effects Many possible	Requires the carriers to calculate their marginal profit for each bundle Marginal Profit: (+) Revenues of requests in the bundle (-) Marginal cost of including the bundle in route Routing Calculation:	A candidate is a set of bids whereas each request has to be allocated to exactly one carrier Winning Candidate = Most valuable Candidate Optimization program: Set partitioning	Different Payment Approaches: - Egalitarian - Purchase/Sale Weights - Shapley Value - Critical Weight (explained later)
→ Input Bid See [2]	bundles See [3]	Double Insertion with 3-opt (initial) or 2-opt improvement Strategies: Truthful, Conspiring, Strategic See [11]	problem (solved optimally with Google OR-Tools)	

miversität wien

$\begin{array}{c} {\sf Implementation\ of\ Auction-based\ Transport\ Collaborations} \\ {\sf Setup-Auction-based\ Mechanism} \end{array}$

Request Selection	Bundle Generation	Bidding	Winner Determination	Payment Calculation
Requests selected based on:	All possible bundles of requests are offered	Requires the carriers to calculate their marginal profit for each bundle	A candidate is a set of bids whereas each request has to be	Different Payment Approaches:
 Marginal profit Distance to one's own depot Distance to another carrier's depot Closeness between 	Alternative: Genetic Algorithm which selects the most attractive bundles (not used for tests)	Marginal Profit: (+) Revenues of requests in the bundle (-) Marginal cost of including the bundle in	allocated to exactly one carrier Winning Candidate = Most valuable Candidate	 Egalitarian Purchase/Sale Weights Shapley Value Critical Weight (explained later)
each other → Input Bid	Challenge: - High synergy effects - Many possible bundles	route Routing Calculation: Double Insertion with 3-opt (initial) or 2-opt improvement	Optimization program: Set partitioning problem (solved optimally with Google OR-Tools)	
See [2]	See [3]	Strategies: Truthful, Conspiring, Strategic See [11]	See [1]	

universität wien

Request Selection	Bundle Generation	Bidding	Winner Determination	Payment Calculation
Requests selected based on: - Marginal profit - Distance to one's own depot - Distance to another carrier's depot - Closeness between each other	All possible bundles of requests are offered Alternative: Genetic Algorithm which selects the most attractive bundles (not used for tests) Challenge: - High synergy effects	Requires the carriers to calculate their marginal profit for each bundle Marginal Profit: (+) Revenues of requests in the bundle (-) Marginal cost of including the bundle in route	A candidate is a set of bids whereas each request has to be allocated to exactly one carrier Winning Candidate = Most valuable Candidate Optimization program:	Different Payment Approaches: - Egalitarian - Purchase/Sale Weights - Shapley Value - Critical Weight (explained later)
→ Input Bid See [2]	- Many possible bundles See [3]	Routing Calculation: Double Insertion with 3-opt (initial) or 2-opt improvement Strategies: Truthful, Conspiring, Strategic See [11]	Set partitioning problem (solved optimally with Google OR-Tools)	

miversität wien

$\begin{array}{c} {\sf Implementation\ of\ Auction-based\ Transport\ Collaborations} \\ {\sf Setup-Auction-based\ Mechanism} \end{array}$

Request Selection	Bundle Generation	Bidding	Winner Determination	Payment Calculation
Requests selected based on: - Marginal profit - Distance to one's own depot - Distance to another carrier's depot - Closeness between each other → Input Bid	All possible bundles of requests are offered Alternative: Genetic Algorithm which selects the most attractive bundles (not used for tests) Challenge: - High synergy effects - Many possible bundles	Requires the carriers to calculate their marginal profit for each bundle Marginal Profit: (+) Revenues of requests in the bundle (-) Marginal cost of including the bundle in route Routing Calculation: Double Insertion with	A candidate is a set of bids whereas each request has to be allocated to exactly one carrier Winning Candidate = Most valuable Candidate Optimization program: Set partitioning problem	Different Payment Approaches: - Egalitarian - Purchase/Sale Weights - Shapley Value - Critical Weight (explained later)
` See [2]	See [3]	3-opt (initial) or 2-opt improvement Strategies: Truthful, Conspiring, Strategic See [11]	(solved optimally with Google OR-Tools)	

$\begin{array}{c} {\sf Implementation\ of\ Auction-based\ Transport\ Collaborations} \\ {\sf Setup-Auction-based\ Mechanism} \end{array}$

Request Selection	Bundle Generation	Bidding	Winner Determination	Payment Calculation
Requests selected based on: - Marginal profit - Distance to one's own depot - Distance to another carrier's depot - Closeness between each other	All possible bundles of requests are offered Alternative: Genetic Algorithm which selects the most attractive bundles (not used for tests) Challenge: - High synergy effects - Many possible	Requires the carriers to calculate their marginal profit for each bundle Marginal Profit: (+) Revenues of requests in the bundle (-) Marginal cost of including the bundle in route Routing Calculation:	A candidate is a set of bids whereas each request has to be allocated to exactly one carrier Winning Candidate = Most valuable Candidate Optimization program: Set partitioning	Different Payment Approaches: - Egalitarian - Purchase/Sale Weights - Shapley Value - Critical Weight (explained later)
→ Input Bid See [2]	bundles See [3]	Double Insertion with 3-opt (initial) or 2-opt improvement Strategies: Truthful, Conspiring, Strategic See [11]	problem (solved optimally with Google OR-Tools)	

4.2

Bidding Strategies for Modified Egalitarian Profit Sharing

Implementation of Auction-based Transport Collaborations Desirable Properties

Other properties

Fairness
Symmetry
Scalability
Exclusion of Dummies
Allows for incomplete information
Etc.

See [6]

e.g., see [9], [11]

Problem: Not all properties can be achieved simultaneously

Payment Calculation and Profit Sharing Methods in Auction-based Transport Collaborations

universität wien

- **Collect** the money from all carriers who won a bid (on a bundle of requests)
- Pay every carrier her/his valuation of her/his offered requests (Input Bid)
- Share the remaining collaboration gain between the carriers

Challenge: How to distribute?

Guaranteed Properties: Individual Rationality; Budget Balance

Challenge: Incentive Compatibility or rather the mitigation of strategic manipulation

Different Bidders for Evaluation

Truthful Bidders

Always bid truthfully their valuations

- → Used to **evaluate** the **truthful outcome** of the mechanism
- → Help to **evaluate** the strategic potential of a **single strategic/conspiring carrier**

Conspiring Bidders

Receive information about all bid prices

+

Use the information to manipulate their bid prices

- → Used to **evaluate** the **upside of strategic manipulation**
- → Help to get **insight** about the construction of **successful strategies**

Strategic Bidders

Manipulate their bid prices

- → Used to evaluate the potential of realistic strategic behavior
- → Help to **estimate** the **likelihood** that **carriers** will act strategically

Strategic Manipulation of Bids in Auction-based Transport Collaborations Tests Configuration

Property	Value
Number of carriers	3
Initial number of requests per carrier	9
Competition Level	Medium (see [2], "02")
Number of traded requests per carrier (per mechanism round)	3
Number of instances per test	100
Max capacity of carrier	1,3x distance of initial routing solution
Min number of maintained requests per carrier	4
Number of retries of request selection (if no improvement)	2
Default bidding strategy	Truthful
Profitability	All Equal

Bidding Strategies for Egalitarian Profit Sharing

Egalitarian Profit Sharing

Profit Sharing Rule:

Share the collaboration gain equally between the carriers

See [4]

Strategic Manipulation of Bids in Auction-based Transport Collaborations

Legend:

Feasible Solutions

Legend: Valuation of BIDs

Price of BIDs (others)

Price of INPUT BIDs (others)

Strategic Manipulation of Bids in Auction-based Transport Collaborations

Price of my INPUT BID

Price of my BID

Gain

Valuation

Legend:

56

Conspiring Bidder Strategies

Strategic Bidder Strategies

INPUT_MAX

Increase price of Input Bid

WIN_LOWDecrease price of Winning Bid

INPUT_MANIPULATION

Overbid/Underbid on the Input Bid

Bidding Strategies for Egalitarian Profit Sharing Test Results for Conspiring Bidder

Bidding Strategies for Egalitarian Profit Sharing Test Results for Strategic Bidder

4.2

Bidding Strategies for Modified Egalitarian Profit Sharing

Modified Egalitarian Profit Sharing

Profit Sharing Rule:

Share the collaboration gain equally between the carriers

Modification:

If a carrier wins her own Input Bid then she is excluded from the profit sharing

Bidding Strategies for Modified Egalitarian Profit Sharing

73

Perspective of Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing

Perspective of Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing

Perspective of Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing

Perspective of Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing

Bidding Strategies for Modified Egalitarian Profit Sharing

Bidding Strategies for Modified Egalitarian Profit Sharing Perspective of Conspiring Bidder

Valuation of BIDs (others)

Valuation of INPUT BIDs (others)

Strategic Manipulation of Bids in Auction-based Transport Collaborations

Valuation of my INPUT BID

Valuation of my BID

Legend:

Bidding Strategies for Modified Egalitarian Profit Sharing

Perspective of Conspiring Bidder

Conspiring Bidder Strategies

Strategic Bidder Strategies

INPUT_MAX

Increase valuation of Input Bid

INPUT_ENTER

Try to decrease your input valuation until you won't win you own input bid anymore

BID_KICKOUT

Try to increase your valuation of a bid in another candidate to force the mechanism to determine a winning candidate in which another/other carrier(s) will be excluded from the collaboration gain

LOW_WIN

Decrease valuation of Winning Bid

INPUT_MANIPULATION

Overbid/Underbid on the Input Bid

Bidding Strategies for Modified Egalitarian Profit Sharing Simulation Results for Conspiring Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing Simulation Results for Strategic Bidder

Bidding Strategies for Modified Egalitarian Profit Sharing **Egalitarian vs. Modified Egalitarian Profit Sharing**

4.3

Bidding Strategies for Purchase/Sale Weight Profit Sharing

Bidding Strategies for Purchase/Sale Weight Profit Sharing Purchase/Sale Weights Profit Sharing

Profit Sharing Rule:

Sale Weight
(Your Input Bid price) / (All Input Bid prices)

Purchase Weight
(Your Winning Bid price) / (All Winning Bid prices)

Purchase/Sale Weight
0.5 * (Sales Weight + Purchase Weight)

See [5]

Bidding Strategies for Purchase/Sale Weight Profit Sharing Perspective of Conspiring Bidder

universität wien

universität wien

Perspective of Conspiring Bidder

Perspective of Conspiring Bidder

Perspective of Conspiring Bidder

Perspective of Conspiring Bidder

Perspective of Conspiring Bidder

Conspiring Bidder Strategies

Strategic Bidder Strategies

HIGH_ABS Increase prices of all bids by the same absolute margin

HIGH_ABS Increase prices of all bids by the same absolute margin

universität wien

4.4

Bidding Strategies for Shapley Value Profit Sharing

Shapley Value Profit Sharing

Profit Sharing Rule:

Calculating the Shapley Value

Shapley Value
$$_{i} = \sum_{S,i \in S} \frac{(|S|-1)! * (|N|-|S|)!}{|N|!} * [g(S)-g(S \setminus i)]$$

Where:

N = Grand Coalition of CarriersS = Subset of Grand Coalition

q(S) = Collaboration Gain of Coalition S

See [11]

Strategies

Conspiring Bidder Strategies

Strategic Bidder Strategies

INPUT_MAX Increase price of Input Bid

INPUT_MANIPULATION

Overbid/Underbid on the Input Bid

BID_MANIPULATION_REL

Bidding Strategies for Shapley Value Profit Sharing Test Results for Conspiring Bidder

Bidding Strategies for Shapley Value Profit Sharing Test Results for Strategic Bidder

4.5

Bidding Strategies for Critical Weight Profit Sharing

Strategy Analysis for Critical Weight Profit Sharing Critical Weight Profit Sharing

Valuation

106

Profit Sharing Rule:

Use the **Critical Delta** for the calculation of the profit share

Note

Paying the Critical Delta to bidders would be equivalent to paying the Vickrey-Clarke-Groves Payment which creates an incentive compatible mechanisms (not budged balanced)

Critical Delta

Feasible Solutions

Legend: Price of my BID Price of my INPUT BID Price of BIDs (others)

Price of INPUT BIDs (others)

See [9]

Bidding Strategies for Critical Weight Profit Sharing

Perspective of Conspiring Bidder

Critical Weight

For Carrier 1:

CD1 / (CD1 + CD2 + CD3) ~ 33%

For Carrier 2:

CD2 / (CD1 + CD2 + CD3) ~ 43%

For Carrier 3:

CD3 / (CD1 + CD2 + CD3) ~ 24%

Interpretation

Marginal contribution of the carrier (however, less accurate than the Shapley Value because not considering all sub-coalitions)

Bidding Strategies for Critical Weight Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing Perspective of Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing

Perspective of Conspiring Bidder

Strategy - DESTROY_WEIGHT

Increase valuation of a Bid of a candidate with an Input Bid of another Bidder as much as possible

For Bidder 1:

CD1 / (CD1 + CD2 + CD3) ~ **57**%

→ (+) Increase of Collaboration Share

For Bidder 2:

CD2 / (CD1 + CD2 + CD3) ~ 0%

→ (-) Decrease of Collaboration Share

For Bidder 3:

CD3 / (CD1 + CD2 + CD3) ~ 43%

→ (+) Increase of Collaboration Share

Conspiring Bidder Strategies

Strategic Bidder Strategies

INPUT_MAX

Increase price of Input Bid

DESTROY_WEIGHT

Increase prices of bids in the feasible solutions with an Input Bid of other carrier(s) as much as possible

INPUT_MANIPULATION

Overbid/Underbid on the Input Bid

BID_MANIPULATION_REL

Overbid or Underbid on all bids with relative margin

Bidding Strategies for Critical Weight Profit Sharing Test Results for Conspiring Bidder

Bidding Strategies for Critical Weight Profit Sharing Test Results for Strategic Bidder

Bidding Strategies for Critical Weight Profit Sharing Simulation Results for Strategic Bidder

Comparison of the analysed Profit Sharing Methods

Comparison

Egalitarian

- omputational efficient
- easy to understand
- could be considered unfair
- encourages overbidding the Input Bid

(Sidenote: Modified Egalitarian superior)

Purchase/Sale Weights

- omputational efficient
- incentivizes contribution
- manipulable through overbidding

Shapley Value

- well-known economic formula
- desirable economic properties*
- could be considered fair
- o quite robust against strategic manipulation
- computational inefficient
- × requires evaluation of all sub-coalitions

* e.g., efficieny, symmetry, linearity, null player exclusion, anonymity etc.

See [9]

Strategic Manipulation of Bids in Auction-based Transport Collaborations

Critical Weights

- could be considered fair
- orobust against simple strategic manipulation
- no need to evaluate all sub-coalitions
- ⊗ less easy to understand
- potentially vulnerable to complex strategies

Comparison of the analysed Profit Sharing Methods Comparison

Egalitarian

- computational efficient
- easy to understand
- (X) could be considered unfair
- encourages overbidding the Input Bid

(Sidenote: Modified Egalitarian superior

Purchase/Sale Weights

- computational efficient
- incentivizes contribution
- manipulable through overbidding

Shapley Value

- well-known economic formula
- desirable economic properties*
- ould be considered fair
- o quite robust against strategic manipulation
- computational inefficient
- x requires evaluation of all sub-coalitions!

* e.g., efficieny, symmetry, linearity, null player exclusion, anonymity etc.

See [9]

3 7 7 7 9 7 9

- could be considered fair
- orobust against simple strategic manipulation
- on need to evaluate all sub-coalitions
- ⊗ less easy to understand
- potentially vulnerable to complex strategies

Comparison of the analysed Profit Sharing Methods

Comparison

Egalitarian

- computational efficient
- easy to understand
- ould be considered unfail
- encourages overbidding the Input Bid

(Sidenote: Modified Egalitarian superior)

ruiciiase/sale weight

- computational efficient
- incentivizes contribution
- manipulable through overbidding

Shapley Value

- well-known economic formula
- ould be considered fair
- o quite robust against strategic manipulation
- (X) computational inefficient
- × requires evaluation of all sub-coalitions!

* e.g., efficieny, symmetry, linearity, null player exclusion, anonymity etc. See [9]

Critical Weights

- could be considered fair
- robust against simple strategic manipulation
- no need to evaluate all sub-coalitions
- 🗴 less easy to understand
- potentially vulnerable to complex strategies

Outlook

Overview of Research Topics

Potentially part of my Master Thesis

- Comparison of the Shapley Value and Critical Weight Profit Sharing for more than 3 carriers
- Research/Development of complex strategies for manipulating the Shapley Value or Critical Weight Profit Sharing

Further Research

- Evaluation of strategic behaviour during the request selection phase
- Evaluation/development of additional profit sharing methods
- Evaluation of various methods that approximate the Shapley Value
- Evaluation of equilibria and expected outcomes of a setting with multiple strategic carriers
- Strategic evaluation of payment methods that don't guarantee Individual Rationality
- Experimental analysis of strategic behaviour

References

References

- [1] Berger, S. and Bierwirth, C., 2010. Solutions to the request reassignment problem in collaborative carrier networks. Transportation Research Part E: Logistics and Transportation Review, 46(5), pp.627-638.
- [2] Gansterer, M. and Hartl, R.F., 2016. Request evaluation strategies for carriers in auction-based collaborations. OR spectrum, 38(1), pp.3-23.
- [3] Gansterer, M. and Hartl, R.F., 2018. Centralized bundle generation in auction-based collaborative transportation. Or Spectrum, 40(3), pp.613-635.
- [4] Gansterer, M. and Hartl, R.F., 2018. Collaborative vehicle routing: a survey. European Journal of Operational Research, 268(1), pp.1-12.
- [5] Gansterer, M., Hartl, R.F. and Sörensen, K., 2020. Pushing frontiers in auction-based transport collaborations. Omega, 94, p.102042.
- [6] Gansterer, M., Hartl, R.F. and Vetschera, R., 2019. The cost of incentive compatibility in auction-based mechanisms for carrier collaboration. Networks, 73(4), pp.490-514.
- [7] Jacob, J. and Buer, T., 2018. Impact of non-truthful bidding on transport coalition profits. In Operations research proceedings 2016 (pp. 203-208). Springer, Cham.
- [8] Krajewska, M.A. and Kopfer, H., 2006. Collaborating freight forwarding enterprises. OR spectrum, 28(3), pp.301-317.
- [9] Nisan, N., Roughgarden, T., Tardos, E. and Vazirani, V.V., 2007. Algorithmic Game Theory. Cambridge University Press
- [10] Renaud, J., Boctor, F.F. and Quenniche, J., 2000. A heuristic for the pickup and delivery traveling salesman problem. Computers & Operations Research, 27(9), pp.905-916.
- [11] Shapley, L.S., 2016. 17. A value for n-person games (pp. 307-318). Princeton University Press.