

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-358310

(43)Date of publication of application: 11.12.1992

(51)Int.CI.

G11B 5/39

(21)Application number: 03-337905

(71)Applicant: INTERNATL BUSINESS MACH

CORP (IBM)

(22)Date of filing:

28.11.1991

(72)Inventor: DIENY BERNARD

GURNEY BRUCE A LAMBERT STEVEN E

MAURI DANIELE PARKIN STUART S P SPERIOSU VIRGIL S

WILHOIT DENNIS R

(30)Priority

Priority number : 90 625343

Priority date: 11.12.1990

Priority country: US

(54) MAGNETO-RESISTANCE SENSOR

(57)Abstract:

PURPOSE: To provide a MR sensor which has linear

sensitivity in a low magnetic field.

CONSTITUTION: The MR sensor has a 1st thin film layer 12 and a 2nd thin film layer 16 of a magnetic body which is partitioned with a thin film layer 14 of a nonmagnetic metal body. The 1st thin film layer is magnetically soft. When there is no magnetic field applied, the magnetism direction of the 1st thin film layer 12 is set orthogonal to the magnetism direction of the 2nd thin film layer 16 and the magnetism direction of the 2nd thin film layer 16 is fixed. A current is supplied to the MR sensor and variation in the voltage of the MR sensor based upon variation in the electric resistance of the MR sensor caused by the rotation of the magnetism of the 1st thin film layer 12 as a function of a magnetic field detected by the MR sensor is detected.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-358310

(43)公開日 平成4年(1992)12月11日

(51) Int.Cl.5

識別配号

庁内整理番号

FΙ

技術表示箇所

G11B 5/39

7326-5D

審査請求 有 請求項の数17(全 8 頁)

(21)出願番号

特願平3-337905

(22)出願日

平成3年(1991)11月28日

(31)優先権主張番号 625343

(32)優先日

1990年12月11日

(33)優先権主張国

米国(US)

(71)出願人 390009531

インターナショナル・ビジネス・マシーン

ズ・コーポレイション

INTERNATIONAL BUSIN

ESS MASCHINES CORPO

RATION

アメリカ合衆国10504、ニユーヨーク州

アーモンク (番地なし)

(72)発明者 ベルナルド・ディニー

アメリカ合衆国カリフオルニア州、サン・

ホセ、エントラダ、セドロス 5435番地

(74)代理人 弁理士 頓宮 孝一 (外4名)

最終頁に続く

(54) 【発明の名称】 スピン・パルプ効果利用の磁気抵抗センサ

(57)【要約】

【目的】低磁界において直線的な感度を有するMRセンサを提供する。

【構成】MRセンサは非磁性金属体の薄膜層14によって仕切られた磁性体の第1薄膜層12と第2薄膜層16を有する。強磁性体の第1薄膜層は磁気的に軟質である。印加磁界がゼロの場合、磁性体の第1薄膜層12の磁化方向は、磁性体の第2薄膜層16の磁化方向に対して直交するように設定され、磁性体の第2薄膜層16の磁化方向は固定されている。MRセンサに電流が流され、MRセンサが検知した磁界の関数である磁性体の第1薄膜層12の磁化の回転によって生ずるMRセンサの電気抵抗の変化に基づくMRセンサの電圧変化が検知される。

1

【特許請求の範囲】

【請求項1】非磁性金属体の薄膜層によって仕切られた 強磁性体の第1及び第2薄膜層を有し、印加磁界がゼロ である場合に上記強磁性体の第1薄膜層の磁化方向が、 上記強磁性体の第2薄膜層の磁化方向に対し直交する方 向である、磁気抵抗センサであって、上記磁気抵抗セン サに電流を生じさせる手段と、上記磁気抵抗センサによって検知される磁界の関数として、上記強磁性体の各々 の層の磁化の回転の差によって生じる上記磁気抵抗セン サの電気抵抗変化を検知する手段とを有する磁気抵抗セ ンサ。

【請求項2】非磁性金属体の薄膜層によって仕切られた強磁性体の第1及び第2薄膜層を有し、印加磁界がゼロである場合に上記強磁性体の第1薄膜層の磁化方向が、上記強磁性体の第2薄膜層の磁化方向に対し直交する方向である、磁気抵抗センサであって、上記強磁性体の第2薄膜層の磁化方向を固定する手段と、上記磁気抵抗センサに電流を生じさせる手段と、上記磁気抵抗センサによって検知される磁界の関数として、上記強磁性体の第1薄膜層の磁化の回転によって生じる上記磁気抵抗センサの電気抵抗変化を検知する手段、とを有する磁気抵抗センサの電気抵抗変化を検知する手段、とを有する磁気抵抗センサンサ。

【請求項3】上記強磁性体の第2薄膜層の磁化方向を固定する上記手段が、上記強磁性体の第1薄膜層よりも高い飽和保磁力を有する上記強磁性体の第2薄膜層を提供することを含む、請求項2記載の磁気抵抗センサ。

【請求項4】上記強磁性体の第2薄膜層の磁化方向を固定する上記手段が、上記強磁性体の第2薄膜層に直接に接触する反強磁性体の薄膜層を有する、請求項2記載の磁気抵抗センサ。

【請求項5】上記強磁性体の第2薄膜層の磁化方向を固定する上記手段が、上記強磁性体の第2薄膜層に直接に接触する硬質強磁性体の薄膜層を有する、請求項2記載の磁気抵抗センサ。

【請求項6】上記強磁性体の第1薄膜層の厚さが、約50~150 の範囲内であることを特徴とする、請求項1記載の磁気抵抗センサ。

【請求項7】上記強磁性体の第1薄膜層の厚さが、約5 0~150 の範囲内であることを特徴とする、請求項 2記載の磁気抵抗センサ。

【請求項8】上記非磁性体の薄膜層の厚さが、約16~40 の範囲内であることを特徴とする、請求項1記載の磁気抵抗センサ。

【請求項9】上記非磁性体の薄膜層の厚さが、約16~40 の範囲内であることを特徴とする、請求項2記載の磁気抵抗センサ。

【請求項10】異方性磁気抵抗が、個々の上記強磁性体 R 効果の詳細な説明は、1975年出版のIEEE Trans. の薄膜層の磁化の回転によって生じる上記磁気抵抗セン Mag.、MAG-11、p.1039のD.A. Thompson et al.による サの上記電気抵抗変化に加えられるように、上記電流の 「メモリ、記憶装置及び関連する応用分野における薄膜 方向に対する個々の上記強磁性体の薄膜層の磁化方向が 50 磁気抵抗」 "Thin Film Magnetoresistors in Memory、S

定められている、請求項1記載の磁気抵抗センサ。

【請求項11】異方性磁気抵抗が、上記強磁性体の第1 薄膜層の磁化の回転によって生じる上記磁気抵抗センサ の上記電気抵抗変化に加えられるように、上記電流の方 向に対する個々の上記強磁性体の薄膜層の磁化方向が定 められている、請求項2記載の磁気抵抗センサ。

2

【請求項12】上記強磁性体の第1薄膜層を単一のドメイン状態に保持するのに十分な縦方向のパイアスを生じさせる手段をさらに有する、請求項1記載の磁気抵抗センサ。

【請求項13】縦方向のパイアスを生じさせる上記手段が、上記強磁性体の第1薄膜層の端部領域だけに、直接に接触する反強磁性体の薄膜層を有する、請求項12記載の磁気抵抗センサ。

【請求項14】縦方向のパイアスを生じさせる上記手段が、上記強磁性体の第1薄膜層の端部領域だけに、直接に接触する硬質強磁性体の薄膜層を有する、請求項12記載の磁気抵抗センサ。

【請求項15】上記強磁性体の第1薄膜層を単一のドメイン状態に保持するのに十分な縦方向のパイアスを生じさせる手段をさらに有する、請求項2記載の磁気抵抗センサ。

【請求項16】縦方向のパイアスを生じさせる上記手段が、上記強磁性体の第1薄膜層の端部領域だけに、直接に接触する反強磁性体の薄膜層を有する、請求項15記載の磁気抵抗センサ。

【請求項17】縦方向のパイアスを生じさせる上記手段が、上記強磁性体の第1薄膜層の端部領域だけに、直接に接触する硬質強磁性体の薄膜層を有する、請求項15 30 記載の磁気抵抗センサ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、磁気媒体から情報信号を読出すための磁気トランスデューサに関し、特に改良型磁気抵抗読出しトランスデューサに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来の技術は、非常に線密度の高い磁気面からデータを読出すことができる磁気抵抗(MR)センサ、つまり、磁気抵む 抗ヘッドを磁気トランスデューサと称して開示している。MRセンサは、磁性体で構成する読出し素子によって磁束に感応し、感応した磁束の量と方向の関数である説出し素子の電気抵抗変化によって磁界の信号を検知する。これらの従来のMRセンサは、電気抵抗成分が磁化方向と電流の方向との角度のcos²で変化する、異方性磁気抵抗(AMR)効果を基礎として作動する。AMR効果の詳細な説明は、1975年出版のIEEE Trans.Mag.、MAG-11、p.1039のD.A. Thompson et al.による「メモリ、記憶装置及び関連する応用分野における薄膜

3

torage、and Related Applications" に記述されてい る。これらのMRセンサは、AMR効果が非常に小さい 電気抵抗変化率であっても、AMR効果を基礎にして作 動した。

【0003】最近、高いMR効果を得る技術についての レポートが幾つか公表されている。これらのレポートの 1つの、1989年発刊のPhys. Rev. B. V39、p. 4828 のG. Binasch et al. による「反強磁性の層交換による 薄膜化磁気構造の高性能磁気抵抗」 "Enhanced Magneto ferromagnetic Interlayer Exchange"、 及びドイツ連 邦国特許第DE3820475号は、磁化の反並行アラ イメントによる高性能のMR効果を産み出す薄膜化磁気 構造について述べている。しかしながら、電気抵抗の変 化を得るのに必要な飽和磁界は非常に高く、AMR効果 は非常に非直線的なので実用的なMRセンサの製作には 不向きである。

【0004】従来の技術においては、MRセンサとして 有用であり、十分に低い磁界で高いMR効果を産み、且 つ、十分に直線的に感応するMRデバイスは無かった。 【0005】本発明の目的は、低い印加磁界で直線的に 感応し、AMR全体にわたって優れたMR効果を有す る、MRセンサの製作方法を提供することにある。 [0006]

【課題を解決するための手段】本発明のMRセンサは、 非磁性金属体の薄膜層によって仕切られた強磁性体の第 1及び第2薄膜層を有する。印加磁界がゼロの場合、強 磁性体の第1薄膜層の磁化方向は、強磁性体の第2薄膜 層の磁化方向に対して直交するように設定され、強磁性 体の第2薄膜層の磁化方向は固定されている。MRセン サに電流が流され、強磁性体の第1薄膜層の磁化の回転 によって生じるMRセンサの電気抵抗変化が、検知され る磁界の関数として検出される。

[0007]

【実施例】従来技術の磁気抵抗センサは、電気抵抗成分 が磁化方向と電流方向との角度のcos² で変化する異 方性磁気抵抗(AMR)に基づいて作動した。

【0008】最近、非結合の強磁性の2層間の電気抵抗 が、2層の磁化方向間の角度の余弦として変化し、電流 の方向とは無関係である他のメカニズムが確認された。 このメカニズムは、選択された材料の組合せにより、A MRより大きい磁気抵抗を産み出す。これを"スピン・ パルプ" (SV: Spin Valve) 磁気抵抗と称する。

【0009】このSV構造の特定的な実施例は、シリコ ン基板上に構築され、Si/150の厚さのNiFe/ 25 の厚さのCu/150 の厚さのNiFe/10 0の厚さのFeMn/20 の厚さの銀で構成する。こ の構造によるヒステリシス・ループは、図1のグラフ (a) に図示されており、2つのループは、バイアスさ するものである。図1のグラフ(b)は、強磁性の2層 が逆並列の場合、電気抵抗が約2%増加することを示 す。

【0010】図2は、拡大X軸上の磁化容易軸に沿った 同一構造体におけるBHループとMRの感度を示す。こ の構造体はシリコン・サプストレート上に構築され、S i/60 の厚さのNiFe/25 の厚さのCu/3 0 の厚さのNiFe/70の厚さのFeMn/20 の厚さの銀で構成する。第2NiFe層は170エルス resistance in Layered Magnetic Structures withAnti 10 テッドに交換パイアスされ、図2に例示する磁界の範囲 内では切り変わらない。磁化困難軸(図示なし)に沿っ て印加された磁界においては、スピン・バルブの感度が 相当に弱いため、ほとんど磁界センサとしては役に立た ない。磁化容易軸に沿って印加された磁界においては、 MRの感度の基本形は磁界センサとして使用できること を示している。しかしながら、この場合、その飽和保磁 力、高い直角度、及び原形からのずれのために、この構 造体の感度は高い非直線形を示す。さらに、磁壁運動に よる強磁性の第1層内での変化は、周知の如く安定性の 問題を生じさせ、又、ドメイン回転に比べて非常に遅い 動きを行なうために、データ速度において厳しい制約が ある。これらの理由から、提案されている従来技術のス ピン・バルブの構造体は磁界センサとしての使用には不 適である。

> 【0011】本発明では感度の直線形、飽和保磁力の低 下、感度の中心化、及びドメイン回転による印加された 磁界への感度の変化の改善について述べる。その結果と して、スピン・パルプ構造に基づく磁界センサは、従来 のMRセンサが必要とした磁界の感度に対して、従来の MRセンサよりも非常に大きな磁気抵抗の変化を示すM Rセンサを製作することができる。

【0012】本発明のこの新しい構造が図3に例示され ている。本発明のMRセンサは、ガラス、セラミック、 又は半導体のような適切なサブストレート10の上に、 例えば、軟質強磁性体の第1薄膜層12、非磁性金属体 の薄膜層14、及び強磁性体の第2薄膜層16を付着さ せた構造である。強磁性体の薄膜層12及び16は、磁 界が印加されていない場合は、個々の磁化方向が約90 度の角度差になるようにする。さらに、強磁性体の第2 薄膜層16の磁化方向は、矢印20が示す方向に固定さ れる。磁界が印加されていない場合の軟質強磁性体の第 1薄膜層12の磁化方向は矢印22で示されている。印 加された磁界(例えば、図3の磁界方向h)に感応して 第1薄膜層12に生じる磁化回転は、図3の点線に示す 方向に変化する。

【0013】図3に例示する本発明の実施例において、 強磁性体の第2薄膜層16は軟質強磁性体の第1薄膜層 12の飽和保磁力よりも高いので第2薄膜層16の磁化 はその方向に固定させられる。図4に例示する特定的な れていないN 1 F e 層とパイアスされたN 1 F e 層に関 50 実施例は、強磁性体の第2薄膜層1 6 の磁化方向を固定 5

させる2つの代替方法を与えている。

【0014】図4に例示する本発明の実施例において、 高電気抵抗の反強磁性体の薄膜層18が、強磁性体の第 2 薄膜層 1 6 に直接、接触して付着させられているので 従来技術で周知のように交換結合によってバイアス磁界 が生じる。代替構造として、薄膜層18を十分に高い直 角度で、高飽和保磁力、且つ高電気抵抗を有する強磁性 の層にすることができる。 図4の構造は逆構造にもする ことができる。この場合は、薄膜層18を最初に付着し てから薄膜層16、14、及び12の各層を付着させ 10

【0015】本発明の他の磁気抵抗センサの実施例が図 5に例示されている。本発明のこの実施例では軟質強磁 性体の第1薄膜層12の付着を行なう前に、例えば、T a、Ru、又はCr Vのような適切な下部膜24をサブ ストレート10の上に付着させる。下部膜24を付着さ せる目的は、後に付着させる層の組織、結晶粒度、及び 形態を最適化させるためである。層の形態は、大きなM R効果を得るのに非常に重要である。それは層の形態に よって非磁性金属体の薄膜層14の非常に薄いスペーサ 20 層を利用することができるからである。さらに分流によ る影響を最小にするために、下部層は高電気抵抗でなけ ればならない。下部層は又、前述したように逆構造とし ても使用できる。サプストレート10が十分な高電気抵 抗で、十分に平面であり、且つ適切な結晶構造の場合 は、下部膜24は不要である。

【0016】図5には薄膜層12を、図5の矢印が示す 方向に単一のドメイン状態に保持させるための、縦方向 にパイアスを生じさせる手段が提供されている。図5の じさせる手段は、高飽和保磁力、高直角度、且つ、高電 気抵抗を有する硬質強磁性体の薄膜層26を含む。硬質 強磁性体の薄膜層26は、軟質強磁性体の薄膜層12の 端部の領域に接触している。薄膜層26の磁化方向は、 図5の矢印が示すように方向づけられている。

【0017】代替構造として反強磁性体の薄膜層を薄膜 層12の端部の領域に接触させて付着させることがで き、図5の矢印のように方向づけし、必要な縦方向のバ イアスを生じさせる。これらの反強磁性体の薄膜層は、 強磁性体の第2薄膜層16の磁化方向を固定させるため 40 に用いられる反強磁性体の薄膜層18よりも十分に異な るプロッキング温度を有さねばならない。

【0018】次に、例えば、Taのような高抵抗の材料 のキャッピング層28が、MRセンサ上部全体に付着さ せられる。電気伝導部30及び32が備えられ、MRセ ンサ構造体と電流源34、及び検知手段36間に回路が 形成される。

【0019】図6は、本発明による磁気抵抗センサの特 定的な実施例における磁気抵抗の感度を示す。この構造

のNiFe/20 の厚さのCu/50 の厚さのNi Fe/70 の厚さのFeMn)/50 の厚さのTa で構成する。磁気抵抗の感度は、約0~15エルステッ ドの全範囲にわたり非常に直線的であり、飽和保磁力を 無視でき、且つその変化はドメイン回転によることに注 目する。しかしながら、磁気抵抗の感度は、非磁性金属 体の薄膜層14によって生じる2つの強磁性体の薄膜層 12及び16の弱い強磁性結合のために磁界ゼロに中心 化されない。磁気抵抗の感度の磁界ゼロへの中心化は、 幾つかの方法によって図6の破線に示すように達成する ことができる。実際のパターン化された構造では、強磁 性体の2層間の静磁気相互作用が、非磁性金属体の薄膜 層による結合の影響を打ち消すので、これによって感度 の中心化が行なえる。感度を中心化させる他の方法は、 検知電流の大きさと方向を適切に選択することによって 行なえる。又、感度の中心化の他の方法は、薄膜層12 の磁化容易軸を薄膜層16の磁化方向に対し角度90° よりも、少し広く設定することである。さらに又、感度 の中心化の他の方法は、薄膜層12と16の磁化方向間 の角度を少し変えることである。この場合の磁気抵抗の 感度は、非常に直線的で、磁界ゼロの位置に中心化さ れ、磁気記録機器の測定範囲内の信号に感応することに 注目する。これらの特徴が磁気記録機器に対して優れた 磁界センサを産み出すことがわかる。

6

【0020】薄膜化された磁気構造体は、例えばスパッ タリングのような任意の適切な手法によって作製するこ とができる。図3の構造体は、図示するように軟質強磁 性体の第1薄膜層12の磁化容易軸を図3の紙面を横断 する方向に方向づけするために、任意の方向に磁界が方 特定的な実施例が例示するように縦方向にパイアスを生 30 向づけられた第1薄膜層12を付着することによって作 ることができる。

> 【0021】強磁性体の薄膜層12及び16は、例え ば、Co、Fe、Ni、及びこれらの合金であるNiF e、NiCo及びFeCoのような任意の適切な磁性体 で作ることができる。磁気抵抗の大きさは、選択された 3種類の磁性体、Co、NiFe、及びNiが図7に示 されているように強磁性の第1薄膜層の厚さによって変 化する。これらの3種類の磁性体の曲線は約50~15 0 間の幅の広い範囲にわたり最大で、3種類とも非常 に類似する特徴の形状である。そのため、強磁性の第1 **薄膜層12の厚さには好ましい範囲である。**

【0022】非磁性金属体の薄膜層14のスペーサは、 高導電性の金属が好ましい。MRの感度において、A u、Agのような貴金属及びCuは、感度が高く、Pt 及びPdは感度が小さい。一方、Cr及びTaは、非常 に小さい感度を示す。磁気抵抗の大きさは又、3種類の 選択された金属Ag、Au及びCuが図8に示すよう に、非磁性金属体の薄膜層14のスペーサの厚さで変化 する。薄い膜ほど高い磁気抵抗を示すことが図8でわか 体は、Si/50 の厚さのTa/3層の(70の厚さ 50 る。しかしながら、センサの作動は非結合の2つの強磁

性の膜を有することを基礎としている。従って、非磁性 金属体の薄膜層14のスペーサが余りに薄い場合は、高 い磁気抵抗のために強磁性体の薄膜層12及び16のい ずれか一方から、他の一方の層に交換結合することはで きない。このため、スペーサの最小の厚さは、室温又は その前後の温度でスパッタされた薄膜において約16 である。スペーサの層の厚さが約80~100 の範囲 内である場合は、結果として生じる磁気抵抗は実質的に AMRによって作り出される磁気抵抗と同じである。こ れらの理由から、薄膜層14のスペーサの厚さは、約1 10 6~40 の範囲内であることが好ましい。

【0023】図4に例示する構造のセンサを作るには、 前述したように各層を付着させてから反強磁性体の薄膜 層18を付着させる。反強磁性体の薄膜層18の厚さ は、プロッキング温度が装置の稼働温度(一般に、常温 ~50℃)よりも十分高くなるように選択しなければな らない。Feso及びMnso'においては、薄膜層18の 厚さは、90 以上が適している。しかしながら、薄膜 層18の厚さが余りに厚く(150 以上)なると、構 造体の1部分を通して電流が分流するためにMRの感度 20 が減少する。薄膜層18によって作られる交換磁界の滴 切な方向は、薄膜層18の付着作業時に所望する方向に 磁界を印加させることにより得ることができる(軟質強 磁性体の第1薄膜層12の磁化容易軸に対して直交する 方向)。或いは、プロッキング温度を越える温度で急速 に構造体を加熱して層を付着後、軟質強磁性体の第1薄 膜層12の磁化容易軸に対して直交する方向に磁界を印 加しながら、急速に室温に冷却することによって得るこ とができる。いずれの場合でも、センサによって検知さ れる磁界は、軟質強磁性体の第1 薄膜層 1 2 の磁化困難 30 軸に沿う。反強磁性体の薄膜層18を最初に付着させ、 次に薄膜層16、14及び12を付着させる逆構造体 も、同様な方法で製作することができる。

【0024】図9は、2つの強磁性体の薄膜層12及び 16の磁化方向M1とM2間の角度の余弦として変化 し、電流「の方向とは無関係であるSV磁気抵抗のプロ ットである。又図9には磁化方向と電流1の方向間の角 度のcos²として変化する電気抵抗成分であるAMR のプロットが示されている。印加磁界がゼロの場合、磁 化方向M2はそのままの方向に固定され、磁化方向M1 はM2の方向に直交するように方向づけられる。磁界が 印加されると2つの直交するベクトル成分Ha及びHb が生じる。Haは検知される励起磁界であり、Hbは静 パイアス磁界である。図9のグラフは値が25エルステ ッドのHbをベースとしたHaの値が例示されている。 図9のAMRのグラフは、図9の上部の図に示す電流I の方向に対する2つの強磁性の層の磁化方向に基づいて いる。実際のMRデバイスでは効果を最大にするため に、2つの効果を合算する。効果の1つはSVで、もう 1つはAMRである。これは、 $M_1 \ge M_2$ の角度の二等分 50 示されるものよりも劣ることを示す。

R 線に対し角度90°の方向に電流 I を方向づける。合算 した感度はSV値よりも大きく、傾斜がより急になる。

【0025】強磁性の層の磁化方向に対する検知電流の 方向を選ぶ際には注意が必要である。 図10のグラフは 磁気抵抗の大きさを減少させるSVとAMR効果の不適 切な組合せを例示する。この場合の磁化方向は図10の 上部の図に例示されているように方向づけられる。この 場合、合算させられた感度は、SVの値よりも低く、傾 斜も緩くなる。図11は、合算したMRの感度の最大、 最小の両方を得るために、特定の様式のSVとAMR効 果の合算を証明した実測に基づくデータである。

[0026]

【発明の効果】本発明は、AMR原理を利用した従来の センサよりも相当大きな磁気抵抗を作り出し、感度が直 線的で、磁界がゼロの近辺に中心化された、高感度のセ ンサを提供することができる。適切な設計を選択するこ とにより、前述したSV磁気抵抗の感度と従来のMRセ ンサの基礎であったAMRの感度を合算した感度を有す るセンサを作製することが可能である。

【図面の簡単な説明】

【図1】相互に関連する2つの図を示し、図(a)は、 室温におけるヒステリシス・ループのグラフで、図 (b) は、提案されている従来の磁性薄膜層構造の特定 的な実施例の室温における磁気抵抗のグラフである。

【図2】X軸を縮尺した以外は図1と同様の磁性薄膜層 構造の磁化容易軸に沿ったB-Hループと磁気抵抗の感 度を例示するグラフである。

【図3】本発明の磁気抵抗センサの特定的な実施例の立 体展開図である。

【図4】本発明の磁気抵抗センサの代替実施例の立体展 開図である。

【図5】本発明の磁気抵抗センサのさらに他の実施例の 断面図である。

【図6】本発明の磁気抵抗センサの磁気抵抗の感度を例 示するグラフである。

【図7】本発明の磁気抵抗センサの特定的な実施例にお ける、室温での磁気抵抗の大きさとフリーな強磁性薄膜 層の厚さとの関係を示すグラフである。

【図8】本発明の特定的な実施例における、室温での磁 気抵抗の大きさと薄膜層のスペーサの厚さとの関係を示 すグラフである。

【図9】スピン・パルブ磁気抵抗と異方性磁気抵抗、及 び両方の合算の実施例を示すグラフであり、ゼロの磁界 近辺での上記合算された大きさ及び変化率が、スピン・ パルブ磁気抵抗と異方性磁気抵抗の個々の成分よりも大 きいことを示す。

【図10】スピン・パルプ磁気抵抗と異方性磁気抵抗、 及び両方の合算の他の実施例を示すグラフで、ゼロの磁 界近辺での上記合算された大きさ及び変化率が、図9に

Q

【図11】スピン・パルブ磁気抵抗を強化、又は劣化させる、いずれかを行なわせる異方性磁気抵抗のアレンジメントにおける印加された磁界の関数として磁気抵抗の実測結果を示すグラフである。

【符号の説明】

10・・・基板

【図1】

10 1 2・・・軟質強磁性体の薄膜層

14・・・非磁性金属体の薄膜層

16・・・強磁性体の薄膜層

18・・・反強磁性体の薄膜層

34・・・電流源

36・・・検知手段

【図2】

【図3】

【図4】

I Hg

[図9]

電流の方向が M、M、の間の 2 等分域に 整度な場合の SV+AMR (NTPuCn)*(PuffeMin)

2
1
SV+AMR
AMR
-1
-2
-80 -40 0 40 80
Ha (Ce)

フロントページの続き

- (72)発明者 ブルース・アルビン・ガーニイ アメリカ合衆国カリフオルニア州、サン タ・クララ、ナンバー 1308、フローラ・ ヴイスタ・アベニユー 3770番地
- (72)発明者 ステイープン・ユーゲン・ランバート アメリカ合衆国カリフオルニア州、サン・ ホセ、ヒドウン・クリーク・ドライブ 6506番地
- (72)発明者 ダニエル・モーリ アメリカ合衆国カリフオルニア州、サン・ ホセ、エパリイ・ドライブ 4490番地
- (72)発明者 スチユアート・ステフアン・パプワース・パーキン アメリカ合衆国カリフオルニア州、サン・ホセ、ロイヤル・オーク・コート 6264番 地
- (72)発明者 ヴアージル・サイモン・スペリオス アメリカ合衆国カリフオルニア州、サン・ ホセ、セント・ジユリアン・ドライブ 351番地
- (72)発明者 デニス・リチヤード・ウイルホート アメリカ合衆国カリフオルニア州、モーガ ン・ヒル、スプリング・ヒル・ドライブ 575番地