

Department of Engineering Cybernetics Faculty of Information Technology, Mathematics and Electrical Engineering Norwegian University of Science and Technology (NTNU)

Contact for questions during exam: Postdoc Mansoureh Jesmani

Tel: 47951195

English version

Exam in TTK4135

Optimization and Control

Optimalisering og regulering

Saturday May 28, 2016

Time: 09:00 - 13:00

English	1

Appendix 7

Combination of allowed help remedies:

Combination of allowed help remedies: **D** — No printed or hand-written notes. Certified calculator with empty memory.

Grading date: June 25

In the Appendix potentially useful information is included.

1 Linear programming (LP) (40 %)

- **a** (12 %) We are interested in maximizing the profit for a farmer who grows apples and bananas. The following information is provided:
 - A farmer wants to grow apples A (use x_1 for apples) and bananas B (use x_2 for bananas).
 - He has a field of size 100 000 m².
 - Growing 1 tonne of A requires an area of 4 000 m^2 ,
 - Growing 1 tonne of B requires an area of 3 000 m^2 .
 - A requires 60 kg fertilizer per tonne grown,
 - B requires 80 kg fertilizer per tonne grown.
 - The profit for A is 7000 per tonne (includes fertilizer cost).
 - The profit for B is 6000 per tonne (includes fertilizer cost).
 - The farmer can legally use up to 2000 kg of fertilizer.
 - Maximize profit.

Describe the problem on standard form (as in the Appendix (A.6)). Use m², kg and tonne as units for area, fertilizer and apples/bananas, respectively. Specify all matrices and vectors.

- **b** (4 %) The Simplex method is appropriate for solving the apples and bananas problem above. Does the Simplex method use gradients in its search for the solution? Does the Simplex algorithm require a feasible starting point?
- \mathbf{c} (3 %) Is the apples and bananas problem as described above a convex problem? Justify your answer.
- d (7%) A Simplex algorithm needs to solve many linear equations. Usually LU factorization is used for this purpose. Assume that we need to solve Cz = d and that an LU factorization of C is available.

Questions:

- What is meant by *LU* factorization and what is the structure of the factorized matrices?
- Explain how Cz = d is solved when C is factorized?
- e (8 %) Assume that we change the problem in a) by including changing profits.
 - The profit for A is $7000 200x_1$ per tonne.
 - The profit for B is $6000 140x_2$ per tonne.

All other information is kept unchanged.

Questions:

- Formulate the new problem.
- Which type of optimization problem is this?
- Is the new problem a convex problem?
- f (6 %) The solution in a) is $x_1^* = 14.3$ and $x_2^* = 14.3$ with a profit of 185714. The optimal Lagrange multiplier for the area constraint is $\lambda_1^* = 1.4$ and for the fertilizer constraint is $\lambda_2^* = 21.4$. What will the profit be if we increase the legal use of fertilizer from 2000 kg to 2001 kg? Justify your answer.

2 MPC and optimal control (40 %)

a (4 %) There exist two important classes of methods for optimizing dynamic systems.

- Quasi dynamic optimization: Optimize a dynamic system by repetitive optimization on a static model.
- Dynamic optimization: Optimize on a dynamic model. In this case the solution will be a function of time, i.e., all decision variables will be functions of time.

Discuss the advantages and drawbacks of using 'Quasi dynamic optimization' compared to 'Dynamic optimization'.

b (26 %) The formulation below has been used several times in the course.

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + d_{xt+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t + d_{ut} u_t$$
 (1a)

subject to

$$x_{t+1} = A_t x_t + B_t u_t,$$
 $t = 0, \dots, N-1$ (1b)

$$x_0, \ u_{-1} = \text{given} \tag{1c}$$

$$x^{\text{low}} \le x_t \le x^{\text{high}},$$
 $t = 1, \dots, N$ (1d)

$$u^{\text{low}} \le u_t \le u^{\text{high}},$$
 $t = 0, \dots, N - 1$ (1e)

$$-\Delta u^{\text{high}} \le \Delta u_t \le \Delta u^{\text{high}}, \qquad t = 0, \dots, N - 1$$
 (1f)

where

$$Q_t \succeq 0 \qquad \qquad t = 1, \dots, N \tag{1g}$$

$$R_t \succeq 0 \qquad \qquad t = 0, \dots, N - 1 \tag{1h}$$

$$\Delta u_t = u_t - u_{t-1} \tag{1i}$$

$$z^{\top} = (x_1^{\top}, \dots, x_N^{\top}, u_0^{\top}, \dots, u_{N-1}^{\top})$$

$$\tag{1j}$$

$$n = N \cdot (n_x + n_y) \tag{1k}$$

Questions:

- b1 Why is the problem called an open loop optimization problem?
- b2 Reformulate the dynamic model as an LTI (linear time invariant) model instead of an LTV (linear time varying) model.
- b3 Why is (1f) usually included in practical formulations?
- b4 Which type of optimization problem is this?
- b5 Assume that the dynamic model is nonlinear instead of linear. Which type of optimization problem would you then have, and suggest a suitable solution algorithm.
- b6 The optimization problem may be infeasible. Suggest a reformulation that guarantees feasibility.
- b7 Assume that the prediction horizon is 12 steps, that there are 5 states (in the state vector), and that there are 2 control inputs. How many optimization variables is there in the problem above (this is often called a full space formulation)? How many optimization variables are there in a reduced space formulation of the problem above? Discuss briefly the pros and cons of using the full space problem vs. the reduced space problem.
- c (10 %) Explain the MPC principle through an algorithm (use macro code with a resolution similar to the algorithms specified in the lecture notes). Further, explain MPC with a figure with time along the horizontal axis.

3 The Rosenbrock function (20 %)

 $\mathbf{a} \ (8 \%)$ We now focus on the Rosenbrock function

$$f(x_1, x_2) = (a - x_1)^2 + b(x_2 - x_1^2)^2$$

 $a, b \ge 0$ (2)

which has its global minimum at (a, a^2) .

Compute the gradient $\nabla f(x_1, x_2)$ and the Hessian matrix $\nabla^2 f(x_1, x_2)$.

- **b** (6 %) Select a = 1 and b = 2. Show that the first and second order conditions are satisfied at the solution.
- c (6 %) Formulate an optimization problem where the Rosenbrock function is minimized subject to positivity constraints (x_1 and x_2 should be positive). Is the feasible set a convex set? Is the optimization problem a convex problem?

Appendix

Part 1 Optimization Problems and Optimality Conditions

A general formulation for constrained optimization problems is

$$\min_{x \in \mathbb{D}^n} f(x) \tag{A.1a}$$

s.t.
$$c_i(x) = 0, \qquad i \in \mathcal{E}$$
 (A.1b)

$$c_i(x) \ge 0, \qquad i \in \mathcal{I}$$
 (A.1c)

where f and the functions c_i are all smooth, differentiable, real-valued functions on a subset of \mathbb{R}^n , and \mathcal{E} and \mathcal{I} are two finite sets of indices.

The Lagrangean function for the general problem (A.1) is

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$
(A.2)

The KKT-conditions for (A.1) are given by:

$$\nabla_x \mathcal{L}(x^*, \lambda^*) = 0 \tag{A.3a}$$

$$c_i(x^*) = 0, i \in \mathcal{E}$$
 (A.3b)
 $c_i(x^*) \ge 0, i \in \mathcal{I}$ (A.3c)

$$c_i(x^*) \ge 0, \qquad i \in \mathcal{I}$$
 (A.3c)

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{I}$$
 (A.3d)

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{I}$$

$$\lambda_i^* c_i(x^*) = 0, \qquad i \in \mathcal{E} \cup \mathcal{I}$$
(A.3d)
(A.3e)

2nd order (sufficient) conditions for (A.1) are given by:

$$w \in \mathcal{C}(x^*, \lambda^*) \Leftrightarrow \begin{cases} \nabla c_i(x^*)^\top w = 0 & \text{for all } i \in \mathcal{E} \\ \nabla c_i(x^*)^\top w = 0 & \text{for all } i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* > 0 \\ \nabla c_i(x^*)^\top w \ge 0 & \text{for all } i \in \mathcal{A}(x^*) \cap \mathcal{I} \text{ with } \lambda_i^* = 0 \end{cases}$$
(A.4)

Theorem 1: (Second-Order Sufficient Conditions) Suppose that for some feasible point $x^* \in \mathbb{R}^n$ there is a Lagrange multiplier vector λ^* such that the KKT conditions (A.3) are satisfied. Suppose also that

$$w^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0, \quad \text{for all } w \in \mathcal{C}(x^*, \lambda^*), \ w \neq 0.$$
 (A.5)

Then x^* is a strict local solution for (A.1).

Appendix Page 7 of 10 LP problem in standard form:

$$\min_{x} \quad f(x) = c^{\top} x \tag{A.6a}$$

s.t.
$$Ax = b$$
 (A.6b)

$$x \ge 0 \tag{A.6c}$$

where $A \in \mathbb{R}^{m \times n}$ and rank A = m.

QP problem in standard form:

$$\min_{x} \quad f(x) = \frac{1}{2}x^{\top}Gx + x^{\top}c \qquad (A.7a)$$
s.t. $a_i^{\top}x = b_i, \quad i \in \mathcal{E}$ (A.7b)

s.t.
$$a_i^{\mathsf{T}} x = b_i, \qquad i \in \mathcal{E}$$
 (A.7b)

$$a_i^{\mathsf{T}} x \ge b_i, \qquad i \in \mathcal{I}$$
 (A.7c)

where G is a symmetric $n \times n$ matrix, \mathcal{E} and \mathcal{I} are finite sets of indices and c, x and $\{a_i\}, i \in \mathcal{E} \cup \mathcal{I}, \text{ are vectors in } \mathbb{R}^n.$ Alternatively, the equalities can be written Ax = b, $A \in \mathbb{R}^{m \times n}$.

Iterative method:

$$x_{k+1} = x_k + \alpha_k p_k \tag{A.8a}$$

$$x_0$$
 given (A.8b)

$$x_k, p_k \in \mathbb{R}^n, \ \alpha_k \in \mathbb{R}$$
 (A.8c)

 p_k is the search direction and α_k is the line search parameter.

Appendix Page 8 of 10

Part 2 Optimal Control

A typical open-loop optimal control problem on the time horizon 0 to N is

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + d_{xt+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t + d_{ut} u_t$$
 (A.9a)

subject to

$$x_{t+1} = A_t x_t + B_t u_t,$$
 $t = 0, \dots, N-1$ (A.9b)

$$x_0 = \text{given}$$
 (A.9c)

$$x^{\text{low}} \le x_t \le x^{\text{high}},$$
 $t = 1, \dots, N$ (A.9d)

$$u^{\text{low}} \le u_t \le u^{\text{high}},$$
 $t = 0, \dots, N - 1$ (A.9e)

$$-\Delta u^{\text{high}} \le \Delta u_t \le \Delta u^{\text{high}}, \qquad t = 0, \dots, N - 1 \tag{A.9f}$$

$$Q_t \succeq 0 (A.9g)$$

$$R_t \succeq 0 \qquad \qquad t = 0, \dots, N - 1 \tag{A.9h}$$

where

$$u_t \in \mathbb{R}^{n_u}$$
 (A.9i)

$$x_t \in \mathbb{R}^{n_x} \tag{A.9j}$$

$$\Delta u_t = u_t - u_{t-1} \tag{A.9k}$$

$$z^{\top} = (x_1^{\top}, \dots, x_N^{\top}, u_0^{\top}, \dots, u_{N-1}^{\top})$$
(A.91)

The subscript t denotes discrete time sampling instants.

The optimization problem for linear quadratic control of discrete dynamic systems is given by

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t$$
 (A.10a)

subject to

$$x_{t+1} = A_t x_t + B_t u_t \tag{A.10b}$$

$$x_0 = \text{given}$$
 (A.10c)

where

$$u_t \in \mathbb{R}^{n_u} \tag{A.10d}$$

$$x_t \in \mathbb{R}^{n_x} \tag{A.10e}$$

$$z^{\top} = (x_1^{\top}, \dots, x_N^{\top}, u_0^{\top}, \dots, u_{N-1}^{\top})$$
 (A.10f)

Appendix Page 9 of 10

Theorem 2: The solution of (A.10) with $Q_t \succeq 0$ and $R_t \succ 0$ is given by

$$u_t = -K_t x_t \tag{A.11a}$$

where the feedback gain matrix is derived by

$$K_t = R_t^{-1} B_t^{\mathsf{T}} P_{t+1} (I + B_t R_t^{-1} B_t^{\mathsf{T}} P_{t+1})^{-1} A_t, \qquad t = 0, \dots, N-1$$
 (A.11b)

$$P_t = Q_t + A_t^{\top} P_{t+1} (I + B_t R_t^{-1} B_t^{\top} P_{t+1})^{-1} A_t, \qquad t = 0, \dots, N - 1$$
 (A.11c)

$$P_N = Q_N \tag{A.11d}$$

Part 3 Sequential quadratic programming (SQP)

Algorithm 18.3 (Line Search SQP Algorithm).

Choose parameters $\eta \in (0, 0.5)$, $\tau \in (0, 1)$, and an initial pair (x_0, λ_0) ; Evaluate $f_0, \nabla f_0, c_0, A_0$;

If a quasi-Newton approximation is used, choose an initial $n \times n$ symmetric positive definite Hessian approximation B_0 , otherwise compute $\nabla_{xx}^2 \mathcal{L}_0$; **repeat** until a convergence test is satisfied

Compute p_k by solving (18.11); let $\hat{\lambda}$ be the corresponding multiplier;

Set $p_{\lambda} \leftarrow \hat{\lambda} - \lambda_k$;

Choose μ_k to satisfy (18.36) with $\sigma = 1$;

Set $\alpha_k \leftarrow 1$;

while $\phi_1(x_k + \alpha_k p_k; \mu_k) > \phi_1(x_k; \mu_k) + \eta \alpha_k D_1(\phi(x_k; \mu_k) p_k)$

Reset $\alpha_k \leftarrow \tau_\alpha \alpha_k$ for some $\tau_\alpha \in (0, \tau]$;

end (while)

Set $x_{k+1} \leftarrow x_k + \alpha_k p_k$ and $\lambda_{k+1} \leftarrow \lambda_k + \alpha_k p_\lambda$;

Evaluate f_{k+1} , ∇f_{k+1} , c_{k+1} , A_{k+1} , (and possibly $\nabla^2_{rr} \mathcal{L}_{k+1}$);

If a quasi-Newton approximation is used, set

 $s_k \leftarrow \alpha_k p_k$ and $y_k \leftarrow \nabla_x \mathcal{L}(x_{k+1}, \lambda_{k+1}) - \nabla_x \mathcal{L}(x_k, \lambda_{k+1})$,

and obtain B_{k+1} by updating B_k using a quasi-Newton formula;

end (repeat)

Appendix Page 10 of 10