Rechnen mit komplexen Zahlen und Matrizen

Die folgenden Übungsaufgaben sind als Hilfe für diejenigen PS-Teilnehmer gedacht, die vor diesem Kurs wenig Kontakt mit Matrixrechnung oder mit komplexen Zahlen hatten. Als Vorbereitung für die Klausur sind diese Aufgaben nicht geeignet (jedenfalls nicht ausreichend).

Aufgabe 1

Man berechne die Zahl $z = \frac{1-13i}{2-i}$ und stelle z und \overline{z} in der Ebene dar.

Aufgabe 2

Man stelle fest, welche der Zahlen 1, -2, 1+i eine Wurzel der Gleichung $x^2-2x+2=0$ ist.

Aufgabe 3

Es sei $z = \sqrt{3} + i$. Man stelle in der Ebene dar: z, z^2, z^3 .

Aufgabe 4

Man berechne |z|, wenn $z = \frac{\sqrt{3} - i}{2 + 2\sqrt{3}i}$.

Aufgabe 5

Gegeben ist die komplexe Zahl $z = \sqrt{2} + i\sqrt{2}$.

- a) Man berechne z^2 und z^3 ;
- b) Man stelle die Zahlen z, z^2, z^3 in der Ebene dar.

Aufgabe 6

Finden Sie die komplexen Zahlen z = x + yi, wobei $x, y \in \mathbb{R}$, für die $z^2 = 5 - 12i$ gilt.

Aufgabe 7

Gegeben ist die Matrix $A=\left(\begin{array}{cc} x-3 & 1\\ 1 & x-3 \end{array}\right),\ x\in\mathbb{R}.$ a) Bestimmen Sie x so, dass $\det(A)=0.$

- b) Prüfen Sie die Gleichung $A^2 = (2x-6)A (x^2-6x+8) \cdot I_2$.
- c) Bestimmen Sie $x \in \mathbb{R}$ so, dass $A^2 = 2A$.

Aufgabe 8

Gegeben ist die Matrix $A = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$.

- a) Berechnen Sie det(A).
- b) Zeigen Sie, dass $A^3 = 7A$.
- c) Zeigen Sie, dass $A \cdot B = A$, wo $B = A^2 6I_2$.

Aufgabe 9

Gegeben ist die Matrix $A = \begin{pmatrix} 2 & -6 \\ 1 & -3 \end{pmatrix}$.

- a) Berechnen Sie die Determinante von A.
- b) Zeige Sie, dass $A^2 + A^3 = O_2$.

Aufgabe 10

Es sei
$$A = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$$
 und $G = \{X \in M_2(\mathbb{R}) \mid X^2 = X\}.$

- a) Zeigen Sie, dass $A \in G$.
- b) Berechnen Sie $\det(A^3 2A^2 + A)$.
- c) Beweisen Sie, dass $(2X I_2)^2 = I_2$ für alle $X \in G$.

Aufgabe 11

Es sei
$$A = \begin{pmatrix} 0 & 0 & a \\ 0 & a & 0 \\ a & 0 & 0 \end{pmatrix}$$
 in $M_3(\mathbb{R})$, wo $a \in \mathbb{R}$, und $G = \{X \in M_3(\mathbb{R}) \mid AX = XA\}$.

- a) Man berechne $\det(A)$.
- b) Man zeige, dass $A^2X = XA^2$ für alle $X \in M_3(\mathbb{R})$.
- c) Man zeige, dass $aI_3 + bA \in G$ für alle $a, b \in \mathbb{R}$.

Aufgabe 12

Gegeben sind die Matrizen
$$H(a)=\left(\begin{array}{ccc} 1 & \ln a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a \end{array}\right),$$
 wo $a>0.$

- a) Berechnen Sie $\det(H(a)), \forall a > 0$.
- b) Zeigen Sie, dass $H(a) \cdot H(b) = H(a \cdot b), \forall a, b > 0$.

Aufgabe 13

Gegeben ist die Menge
$$\left\{ \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) \mid a,b,c \in \mathbb{R} \right\}$$
.

- a) Zeigen Sie, dass $I_2 \in M$.
- b) Wenn $A, B \in M$, soll man zeigen, dass $A + B \in M$.
- c) Beweisen Sie, dass $\det(AB BA) \ge 0$ für alle $A, B \in M$.

Aufgabe 14

Gegeben ist die Matrix
$$A=\left(\begin{array}{ccc} a & a & a\\ a & 0 & 0\\ a & 0 & 0 \end{array}\right),$$
 wo $a\in\mathbb{R}.$

- a) Für a = 1 soll man A^2 berechnen.
- b) Berechnen Sie det (A^2) , $a \in \mathbb{R}$..
- c) Zeigen Sie, dass $A^2 \neq I_3$ für alle $a \in \mathbb{R}$.

Aufgabe 15

Gegeben sind die Matrizen
$$A=\left(\begin{array}{ccc} 3 & 2 & 0 \\ 0 & -1 & 3 \end{array}\right),\, B=\left(\begin{array}{ccc} 2 & 0 \\ 0 & 0 \\ 0 & 2 \end{array}\right).$$

- a) Man berechne $A \cdot B$ und $B \cdot A$.
- b) Wenn $C = A \cdot B$, soll man C^{50} be
rechnen.

Aufgabe 16

Gegeben sind die Matrizen $A=\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, B=\begin{pmatrix} 2 & 6 \\ 3 & 9 \end{pmatrix}$ und $C=\begin{pmatrix} a & 3a \\ a & 3a \end{pmatrix}$, wo $a\in\mathbb{R}$.

- a) Berechnen Sie 6A 3B.
- b) Berechnen Sie A^2 , A^3 .
- c) Zeigen Sie, dass $A^4 = -4I_2$. d) Berechnen Sie A^{2021} .
- e) Zeigen Sie, dass $C^2 = \lambda C$, wo die Zahl λ zu finden ist.

Aufgabe 17

Für jedes
$$n \in \mathbb{N}$$
 sei $A_n = \begin{pmatrix} n & n-1 \\ n-1 & n \end{pmatrix}$ und für jedes $x \in \mathbb{R}$ sei $B(x) = \begin{pmatrix} x+\frac{1}{2} & x-\frac{1}{2} \\ x-\frac{1}{2} & x+\frac{1}{2} \end{pmatrix}$.

Es gilt $B(x)B(y)=A_2$ genau dann, wenn:

(A)
$$xy = \frac{3}{4}$$
 (B) $xy = \frac{5}{4}$ (C) $xy = x + y$ (D) $xy = x + y + \frac{1}{4}$ (E) $x + y = 0$