2.20 Show that if G is a connected graph that is not regular, then G contains adjacent vertices u and v such that $deg(u) \neq deg(v)$.

Proof. Since G is not regular, there exist vertices x and y with $deg(x) \neq deg(y)$. Because G is connected, there is a path $P: x = v_0, v_1, \ldots, v_k = y$ between them.

Case 1: (x and y are adjacent) If k = 1, then x and y are adjacent and we are done.

Case 2: (x and y are not adjacent) If $k \ge 2$, consider the sequence of degrees $\deg(v_0), \deg(v_1), \ldots, \deg(v_k)$.

This sequence begins with $\deg(v_0) = \deg(x)$ and ends with $\deg(v_k) = \deg(y)$, which are different. Therefore, there must exist some index i with $0 \le i < k$ such that $\deg(v_i) \ne \deg(v_{i+1})$. Since v_i and v_{i+1} are adjacent in G, this gives the desired pair of adjacent vertices of unequal degree.

Thus, in all cases G contains adjacent vertices u, v with $\deg(u) \neq \deg(v)$.

2.22

Theorem 2.7: $r \geq \delta(G)$. Here, r = 3 and $\delta(G) = 3$, so the theorem holds. Order = 20

2.26

a Show that a graph G is regular if and only if its complement is regular.

Proof. (\Rightarrow) Suppose G is r-regular. Then every vertex has degree r. The degree of a vertex v in \overline{G} is given by $\deg(v) = n - 1 - \deg(v)$ in G, where n is the order of G. Since every vertex in G has degree r, every vertex in \overline{G} has degree n - 1 - r. Therefore, \overline{G} is (n - 1 - r)-regular.

(\Leftarrow) Suppose \overline{G} is s-regular. Then every vertex has degree s. The degree of a vertex v in G is given by $\deg(v) = n - 1 - \deg(v)$ in \overline{G} , where n is the order of G. Since every vertex in \overline{G} has degree s, every vertex in G has degree n - 1 - s. Therefore, G is (n - 1 - s)-regular.

Thus, a graph G is regular if and only if its complement is regular. \Box

b Show that if G and \overline{G} are r-regular for some nonnegative integer r, then G has odd order.

Proof. Let the order of G be n. Then the degree of each vertex in \overline{G} is n - 1 - r. Since \overline{G} is r-regular, we have n - 1 - r = r. Therefore, n - 1 = 2r, and n = 2r + 1. Since r is a nonnegative integer, 2r is even, and adding 1 gives an odd number. So, n is odd, and G has odd order.

2.32 Determine if the following sequences are graphic. If so, construct a graph.

b S_1 : 6,3,3,3,2,2,2,2,1,1

 S_2 : 2,2,2,2,2,1,1,1,1

 S_3 : 2,2,2,1,1,1,1,1,1

 S_4 : 1,1,1,1,1,1,1. Here, we have an even number of 1s, and can recognize this is graphic.

d S_1 : 7,5,4,4,4,3,2,1

 S_2 : 4,3,3,3,2,1,0

 S_3 : 2,2,2,1,1

 S_4 : 1,1,1,1. Here, we have an even number of 1s, and can recognize this is graphic.

2.33 Prove that for every integer x with $0 \le x \le 5$, the sequence x,1,2,3,5,5 is not graphical.

Proof. The sum of all degrees must be even. Here, the sum is x + 16. So x must be even. Therfore, $x \neq 1, 3, 5$. That leaves 0, 2, and 4. We can use Theorem 2.10 to show each case is not graphical.

x = 0: S_1 : 1,2,3,5,5 or 5,5,3,2,1. This is not graphical because there is a vertex of degree 5, but only 4 other vertices.

x = 2: S_1 : 2,1,2,3,5,5 or 5,5,3,2,2,1

 S_2 : 4,3,1,1,0. This is not graphical because there is a vertex of degree 4, but only 3 other vertices.

x = 4:

 S_1 : 4,1,2,3,5,5 or 5,5,4,3,2,1

 S_2 : 4,3,2,1,0. This is not graphical because there is a vertex of degree 4, but only 3 other vertices.

Therefore, for every integer x with $0 \le x \le 5$, the sequence x, 1, 2, 3, 5, 5 is not graphical.