第12章 大容量存储器结构

目录

- 1. 磁盘结构
- 2. 磁盘调度
- 3. 磁盘管理
- 4. RAID结构

1、磁盘结构

organic of the second seasons are a second s

磁盘组成 磁盘访问时间 地址映射 磁盘管理

大容量存储设备

磁盘结构

- ■盘片
 - 存储数据的介质
 - ●正反两面可以存储数据
- ■磁头
 - 读写数据,沿磁盘半径移动
 - ●有多少盘面就有多少磁头
- ■主轴
 - 马达驱动, 使盘片旋转
 - ●固定速度旋转

磁盘控制器和接口

■接口

- EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS, Firewire
- ■磁盘控制器
 - 控制磁盘的读写等操作
- 缓冲区
 - 利用磁盘缓冲区来暂存 数据

盘片结构

■ 磁道

- 磁头在盘片表面划出的圆形就 是一个磁道
- 每个盘面划分为数目相等的磁道
- 从盘面外缘"0"开始编号

■扇区

- 磁道被等分为若干个弧段,称 为扇区
- 扇区大小: 512字节

■ 柱面

- 每个盘面上具有相同编号的磁 道形成一个圆柱,称为柱面
- 一个盘面有几个磁道就有几个 柱面

磁盘示意图

地址映射关系

- 块号: LBA
- 磁盘地址(CHS): (C,H,S)
 - Cylinder (柱面/道C)
 - Head (磁头/面H)
 - Sector (扇区S)
- SPT:每个磁道最大扇区数
- HPC:最大磁头(盘面)数

$$C = LBA \div (HPC \times SPT)$$

$$H = (LBA \div SPT) \mod HPC$$

$$S = (LBA \mod SPT) + 1$$

■一个磁盘有4个磁片,每个磁片划分为1024 个磁道,每个磁道分为256个扇区。每个扇 区容量512B,这个磁盘容量为()

磁盘访问时间

定位时间/随机访问时间:

- 寻道时间: 移动磁臂到所需磁道时间
 - ▶ 平均寻道时间: 1/3 磁道移动(1-4ms)
- 旋转延迟: 等待扇区移动到磁头下时间
 - ▶由磁盘的旋转速度决定
 - ▶ 磁盘旋转速度: 60 250转/秒
 - PRPM(Revolutions Per Minute): 每分钟旋转次数,如: 7200RPM,即120转/秒
 - ▶ 平均旋转1/2圈时间: 1/(2*RPM/60)
 - ▶ 平均延迟时间: 1/(2*7200/60)=4.17毫秒

Spindle [rpm]	Average latency [ms]		
4200	7.14		
5400	5.56		
7200	4.17		
10000	3		
15000	2		

常用的RPM对应的平均延迟时间

* 传输时间

- 传输的数据量乘以传输率
- 传输率: 传输总字节数除以传输时间
- 例如: 6 Gb/sec→1秒可以传输6G位数据

传输1KB数据的传输时间:

1K*8/6G=7.5微秒

磁盘访问时间

基本参数/ESSENTIAL PARAMETER

型号: WD60EZRZ 容量: 6 TB

接口: SATA 6 Gb/s 规格: 3.5 英寸

转速: 5400 PPM 缓存: 64 MB

尺寸 (mm): 高*长*宽: 26.1*147*101.6

适用系统:台式机/一体机电脑

磁盘访问时间

■例子

 7200 RPM 转速, 5ms平均寻道时间, 1Gb/sec传输率 , 0.1ms 系统控制开销。那么读取4KB数据块的磁盘访问 时间为:

5ms + ½*1/(7200/60)sec + 4KB / 1Gb/sec + 0.1ms

=5.1ms + 4.17ms + 0.03ms + 0.1ms

=9.4ms

■一个磁盘的传输率为2Gb/s,那么传输1MB数据需要的传输时间是()

磁盘管理

- 低级格式化(物理格式化)
 - 将磁盘分成扇区,以便磁盘控制器读写
- 分区
 - 将磁盘分成分区
 - 主分区和扩展分区
- ■高级格式化
 - 逻辑格式化, 创建文件系统
- ■引导块
 - 自举程序保存在ROM中
 - 自举程序装载引导块程序

低级格式化

```
Disk 1 TRANSLATED
                                                    Cylinders...: 519
                                                    Heads.....: 128
                                                    Sectors....: 63
 Select Utility Option
                                                    Size....: 2.142GB
 Zero Fill Drive
 Low Level
 Set Drive
                             Please wait
 Return to
            Performing Low Level Format... (ESC to Cancel)
                                0 % (N)
eturn to pr
```


扇区格式

分区 (Windows)

引导区记录 (MBR)

标准 MBR 结构									
地址			世法		长度				
Hex	Oct	Dec	描述		(字节)				
0 0	0	0	代码区		440				
	U	U			(最大 446)				
01B8	670	440	选用软盘标志	4					
01BC	674	444	一般为空值; 0x0	2					
01BE 676	446	标准 MBR 分区表规划		64					
	070	440	(四个16 byte的主分区表入口)		04				
01FE	776	510	55h	MBR 有效标	2				
01FF	777	511	AAh	志					
MBR, 总大小: 446 + 64 + 2 =				512					

高级格式化

卷	布局	类型	文件系统	状态	容量	可用空间	%可用	容错	Ŧ
□ (C:)	简单	基本	NTFS	状态良好 (启动, 页面文件, 故障转储, 主分区)	74.43 GB	7.22 GB	10 %	否	0
△BD3P_SCN (G:)	简单	基本	UDF	状态良好 (主分区)	4.26 GB	0 MB	0 %	否	0
Data (E:)	简单	基本	NTFS	状态良好 (主分区)	800.00 GB	249.75 GB	31 %	否	0
■NLP (F:)	简单	基本	NTFS	状态良好 (主分区)	563.01 GB	439.10 GB	78 %	否	0
SDBACKUP (J:)	简单	基本	FAT32	状态良好 (主分区)	14.91 GB	3.40 GB	23 %	否	0
software (D:)	简单	基本	NTFS	状态良好 (主分区)	500.00 GB	456.27 GB	91 %	否	0
■系统保留	简单	基本	NTFS	状态良好 (系统, 活动, 主分区)	100 MB	71 MB	71 %	否	0

坏块检查

2、磁盘调度

内容

- ■磁盘调度
 - 引入磁盘调度的目的是为了降低磁盘访问时间,提高文件系统的效率
- 先来先服务算法
- ■最短寻道时间优先算法
- 扫描算法
- RAID
 - 引入RAID技术的目的是为了增强数据的可靠性和访问的并 行性

磁盘调度

- 目标:减少磁盘访问时间
- 访问时间:
 - 寻道时间: 磁头移动到访问扇区所在磁道的时间
 - 旋转延迟时间: 将访问扇区转到磁头下的时间
 - 传输时间:将数据从磁盘送到内存的时间
- 寻道时间最小化
- 寻道时间 ≈ 寻道距离

请求系列

■ 假定有一个请求序列(0-199道).:

98, 183, 37, 122, 14, 124, 65, 67

磁头当前位置在53

目标: 磁头移动距离最小, 寻道时间最短

光泉光服务算法FCFS

- First Come First Served
- ■按照请求提交时间访问
 - 先提交先访问
 - 后提交后访问
- ■优点
 - 简单、公平
 - 易实现
- ■缺点
 - 寻道时间长
 - 效率低

总的磁头移动为640磁道

最短寻道时间优先算法SSTF

- Shortest Seek Time First
- ■每次移动到离现在位置最近的磁道
 - 最短寻道时间
 - 最短作业优先(SJF)
- ■优点
 - 寻道距离短
- ■缺点
 - 存在饥饿
 - 磁头频繁变换移动方向
 - 增加寻道时间

总的磁头移动为236磁道

和描算法SCAN

- 磁头从磁盘一端向另一 段移动,沿途响应服务 请求
 - 到达另一端时,磁头改变 移动方向,继续处理
 - 磁头在磁盘上来回扫描
 - 又称为电梯算法
- ■优点
 - 同一方向扫描,寻道时间短
 - 改变磁头方向少
- ■缺点
 - 有的请求等待时间长

总的磁头移动为208磁道

循环和档算法C-SCAN

- Circular Scan
- ■单向处理请求
 - 磁头从磁盘外道(0道)移到内道过程中处理请求
 - 内道移动到外道的过程 中不处理请求
- ■优点
 - 更均匀的等待时间
- 从磁道**199**移动到**0**的时间很短

总的磁头移动为383磁道

循环Look算法C-LOOK

- C-SCAN变形
- 磁头只移动到一个方向 上最远请求为止,而不 是继续到磁盘尽头

总的磁头移动为323磁道

磁盘调度算法的选择

- ■磁盘调度性能主要依赖于请求的数量和类型
 - 磁盘服务请求很大程度上受文件分配方法影响,例如 隐式链接的服务请求数就会比较多
 - SSTF较为普遍且很有吸引力
 - SCAN和C-SCAN适合磁盘大负荷系统
- SSTF或LOOK是比较合理的缺省算法

RAID结构

RAID

- Originally Redundant Arrays of Inexpensive Disks (廉价磁盘冗余阵列)
- Now Redundant Arrays of Independent Disks (独立磁盘冗余 阵列)
- RAID把很多价格较便宜的磁盘组合成一个大容量的磁盘组,利用 个别磁盘提供数据所产生加成效果提升整个磁盘系统效能和可 靠性。
- RAID卡(现代CPU集成RAID)
- RAID被分成了多个不同级别
 - RAID0-RAID7
 - RAID01, RAID10, RAID5E, RAID50

RAID性能

■可靠性

- 磁盘可靠性:要求存储在磁盘上的 数据不易丢失
- 引入冗余
- 例如:镜像,把数据在两个磁盘上 各存一次

■ 性能(数据分散,并行读写)

- 位级分散:数据每个字节的各个位分散在多个磁盘上
- 块级分散:数据以块为单位分散在 多个磁盘上

RAID級别

RAID 0

- 数据分散在多个磁盘上
- 条状分散技术
- 提高读写性能

RAID 1

- 磁盘镜像
- 提高可靠性

RAID 5

- 分散+校验
- 校验信息分散在各个磁盘避 免对单个校验磁盘的过度使用

RAID級别

RAID 0

- 数据分散在多个磁盘上
- 条状分散技术
- 提高读写性能

RAID 1

- 磁盘镜像
- 提高可靠性

RAID 5

- 分散+校验
- 校验信息分散在各个磁盘避 免对单个校验磁盘的过度使用

RAID (0 + 1) % (1 + 0)

■ RAID0: 性能

■ RAID1: 可靠性

■ 二者兼备

■ RAID01

- 先做分散,再做镜像
- 性能好
- 但是一个磁盘的故障会导致 一条磁盘带不能访问

■ RAID10

- 先做镜像,再做分散
- 可靠性好,一个磁盘的故障 不会影响其他磁盘

