TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Design and Implementation of a Low Cost Embedded System for Localization of Drones Flying in Swarms

Author:

Thesis Committee:

Christos Spyridakis

Prof. Apostolos Dollas (Supervisor) Asst. Prof. Eftychios Koutroulis Asst. Prof. Panagiotis Partsinevelos

A thesis submitted in fulfillment of the requirements for the diploma of Electrical and Computer Engineer in the

School of Electrical and Computer Engineering Microprocessor and Hardware Laboratory

November 22, 2020

TECHNICAL UNIVERSITY OF CRETE

Abstract

School of Electrical and Computer Engineering

Electrical and Computer Engineer

Design and Implementation of a Low Cost Embedded System for Localization of Drones Flying in Swarms

by Christos Spyridakis

TODO: English ...

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Περίληψη

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών

Σχεδίαση και Υλοποίηση Ενσωματωμένου Συστήματος Χαμηλού Κόστους για Εύρεση Θέσης μη Επανδρωμένων Αεροσκαφών που Πετούν σε Σχηματισμό

από τον Χρήστο ΣΠΥΡΙΔΑΚΗ

ΤΟΟΟ: Ελληνικά ...

Acknowledgements

TODO: Add Acknowledgements

Contents

Al	bstract	iii
Al	bstract	v
A	cknowledgements	vii
Co	ontents	ix
Li	st of Figures	xi
Li	st of Tables	xiii
Li	st of Algorithms	xv
Ρŀ	hysical Constants	xvii
Li	st of Symbols	xix
Li	st of Abbreviations	xxi
1	Introduction1.1 Motivation1.2 Scientific Goals and Contributions1.3 Thesis Outline	. 1
2	Theoretical Background	3
3	Related Work 3.1 Thesis Approach	5
4	Design Features and Implementation	7
5	Applications and Usage Examples	9
6	Experiments and Results	11

7 Conclusions and Future Work

13

List of Figures

List of Tables

List of Algorithms

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m \, s^{-1}} \; (\mathrm{exact})$

xix

List of Symbols

a distance m

 ω angular frequency rad

xxi

List of Abbreviations

MCU Micro Controller Unit

MPU Micro Processor Unit

UAV Unmanned Aerial Vehicle

VTOL Vertically Hover, Take-off, and Land

ESC Electronic Speed Control

IMU Intertial Measurement Unit

GPS Global Positioning System

FPV First Person View

WSN Wireless Sensor Networks

UGV Unmanned Ground Vehicle

MAV Micro Aerial Vehicle

Dedicated to those people who have helped me be the person I am today...

Introduction

1.1 Motivation

1.2 Scientific Goals and Contributions

TODO

1.3 Thesis Outline

TODO

- Chapter 2 Theoretical Background:
- Chapter 3 Related Work:
- Chapter 4 Design Features and Implementation:
- Chapter 5 Applications and Usage Examples:
- Chapter 6 Experiments and Results:
- Chapter 7 Conclusions and Future Work:

Theoretical Background

"Let no one ignorant of geometry enter"

Plato

Related Work

3.1 Thesis Approach

This should be the last section

Design Features and Implementation

Applications and Usage Examples

Experiments and Results

Conclusions and Future Work