MA327 Turma Y - 1S 2009 - Prova 1

Mama.	DA.	07/04/2009
Nome:	na: _	07/04/2009

- 1. Escreva as definições dos seguintes conceitos.
 - (a) (05pts) Conjunto linearmente independente.
 - (b) (05pts) Subespaço gerado por um conjunto de vetores.
- 2. (05pts) Enuncie o teorema do núcleo e da imagem.
- 3. Considere o conjunto $S = \{v_1, v_2, v_3, v_4\} \subseteq \mathbb{R}^4$, onde $v_1 = (1, 2, 0, 1), v_2 = (1, 0, 4, 3), v_3 = (0, -1, 2, 1), v_4 = (-1, -3, 2, 0).$
 - (a) (10pts) Encontre uma base para o espaço gerado por S e calcule sua dimensão.
 - (b) (10pts) Complete a base encontrada acima a uma base para \mathbb{R}^4 .
 - (c) (10pts) Seja U o subespaço gerado por $\{v_1, v_2\}$ e W o subespaço gerado por $\{v_3, v_4\}$. Verifique que $\dim(U) = \dim(W) = 2$ e use isto em conjunto com o item (a) para calcular $\dim(U \cap W)$ sem calcular $U \cap W$.
- 4. Seja $V = \mathcal{P}_3(\mathbb{R})$ o espaço vetorial real dos polinômios de grau menor ou igual a 3.
 - (a) (10pts) Verifique que $\beta = \{t, t^2 1, t^3, 2t^2\}$ é uma base de V.
 - (b) (10pts) Seja $\alpha=\{1,t,t^2,t^3\}$. Calcule as matrizes mudança de base de β para α e vice-versa.
 - (c) (05pts) Encontre as coordenadas de $p(t) = t^3 + 3t^2 4t + 2$ na base β .
 - (d) (15pts) Encontre uma fórmula para $T(a+bt+ct^2+dt^3)$ onde T é a transformação linear $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^3$ determinada por $T(t) = (1,1,2), T(t^2-1) = (0,-1,-1), T(t^3) = (-1,0,-1),$ e $T(2t^2) = (-1,1,0).$
 - (e) (15pts) Encontre bases para o núcleo e para a imagem de T.
- 5. (10pts) Determine se a seguinte afirmação é verdadeira ou falsa. Se U e W são subespaços do espaço vetorial V, então sua união $U \cup W$ também é subespaço de V.

Existem 10 pontos extras. Respostas sem justificativas serão desconsideradas. Bom trabalho!