Last time: Connected geometry with algebra (for vectors) 12.3: Dot Product Goal: Connect algebra of vectors to their geometry via a new operation on vectors Definition: Let 0=<0,02,037, V=(V, V2, V3) The dot product of i and is

J. I = U, V, + U2V2 + U3V3

(vector · Vector } scalar) Q: Does J. (T. J) make sense? No! It doesn't make sense. V. J makes a scalar so this problem tries to take a vector dot a scalar. ((J.V) w) makes sense via scalar multiplications Ex: 3=<1,3,57, 7=<-3,5,77

J.7=(1)(-3)+(3)(5)+(5)(7) = -3+15+35 = 47 Theorem (Properties of dot product): (Polet \vec{J} , \vec{J} , \vec{J} $\in \mathbb{R}^n$ and $c \in \mathbb{R}$ 1) $\vec{J} \cdot \vec{J} = v_1 v_1 + v_2 v_2 + v_3 v_3 = v_1^2 + v_2^2 + v_3^2 = |\vec{V}|$ (POD) J.V= U,V,+U2V2+U3V3=V,U,+V2U2+V3U3=V.J 3) J. (V+W)= <U1,U2,U3>. <V1+W1, V2+W2, V3+W3> = U1 (V1+W1)+U2 (V2+W2)+U3 (V3+W3) = (U,V,+U2V2+U3V3)+(U,W,+U2W2+U3W3) = J.J+J.W

On the left side, we apply properties of the dot product.

|10-712=(0-7).(0-7) (Part 1 POD) で(から)・な・(かつ)= (Part 2 POD) (Distribution, of) (Algebra) dot) = 0.0 + 0.0 - 0.0 - 0.0 = 0.0 + 0.0 - 20.0 = 1012 + 1012 - 20.0 (communitivity of dot) (Part 1 again) Hence |3|2+ |7|2-2|3|17| cos(6) = 1012+1012-20.0 Finally, 3.7 = 13/17/cos (0) Corollary: Supposing J. V are both nonzero 0 = arccos (J.V) Observation: The zero-vector has an undefined angle with all other vectors So having an angle means no non-zero vectors Corollary: If I and I are perpendicular (i.e. orthogonal), then I.V = 0

Conversely, I.V = 0 implies I and V are orthogonal

	Orthogonal Projection Suppose 0, VER"
	c7 V
	To project \vec{U} orthogonally anto \vec{V} : $(\vec{V} \cdot (\vec{U} - c\vec{V}) = 0$ if $c(\vec{V} \cdot \vec{U}) - c^2(\vec{V} \cdot \vec{V}) = 0$
	if c(v.v) - c2(v.v) = 0
	$c(\vec{7}\cdot\vec{3}-c \vec{7} ^2)=0$ either c=0 or $\vec{3}\cdot\vec{7}-c \vec{7} ^2=0$
1	So assuming 3/3/ =0 and c=0
	Definition: The arthogonal projection of 0 anto
	Definition: The arthogonal projection of 3 anto 7 is: Projection of 3 The scalar projection of 3
	= 137. (151 V) onto V is 3.7 = Compo (1) (151 V) Compo (1)= 131
	= Compa(1) (A) (D) onto vis 2.7
	Direction Angles Let $\vec{v} \in \mathbb{R}^3$ $\vec{v} = \langle v_1, v_2, v_3 \rangle$
	Let $\vec{v} \in \mathbb{R}^3$ $\vec{v} = \langle v_1, v_2, v_3 \rangle$ The direction angles of \vec{v} are the angles
	The direction angles of v are the angles v makes with i, j, and k. i.e. $\alpha = \arccos\left(\frac{1}{ \nabla I }\right) = \arccos\left(\frac{1}{ \nabla I }\right)$
	$B = \arccos\left(\frac{\sqrt{2}}{ V }\right)$
	y = arccos (\frac{\frac{\frac{\frac{3}{3}}{1}}{1}}{1})
	The direction angles determine the
	By "world-be location" of
	about the origin

Exercise: Show that any two of the direction angles of V determine the third...