E3-5 Analog Elektronik (AEL)

Komponenter, Kredsløb og Analyse

Jan Hvolgaard Mikkelsen, Ole Kiel Jensen, og Sofus Birkedal Nielsen Institut for Elektroniske Systemer

{jhm, okj, sbn}@es.aau.dk

Kursusoversigt

Kursusgang	Emne	Forelæser
AEL1	AEL opstart	JHM
AEL2	Dioden	OKJ
AEL3	Diodeanvendelser	OKJ
AEL4	BJT - I	OKJ
AEL5	BJT - II	OKJ
AEL6	BJT grundkoblinger - I	JHM
AEL7	BJT grundkoblinger - II	JHM
AEL8	FET	JHM
AEL9	FET grundkoblinger	JHM
AEL10	Lavfrekvens respons	SBN

Agenda

- Hvor er vi nået til
 - Status
 - Lidt opsamling fra tidligere kursusgange
- BJT'en som forstærker
 Universalkoblingen
 Common-Emitter (CE) forstærkeren
 Common-Emitter med uafkoblet Re (CEre) forstærkeren
 Common-Base (CB) forstærkeren
 Common-Collector (CC) forstærkeren
- Formålet med AEL6 og AEL7 er at få fastlagt en procedure for hvorledes et transistortrin analyseres samt at få klarlagt forskellighederne ved de forskellige koblinger
- Lidt til opgaverne

Status

Dioden

- PN-dioden, fysik, matematisk model (diodeligningen) og SPICE model
- Andre diodetyper (Zenerdiode, lysdiode, Schottky)
- Enretter, spændingsdobler, beskyttelseskredsløb, referencespænding
- Bipolar Junction Transistor (NPN-BJT)
 - Fysisk opbygning, virkemåde, egenskaber i forskellige arbejdsområder
 - Grafisk analyse, DC-forspænding, DC/AC-arbejdslinier
 - \circ SPICE model, hybrid- π
- Næste skridt er at se på den egentlig brug af transistoren som forstærker

• Vores udgangspunkt er følgende transistoropkobling som I allerede har set tidligere

- DC analysen -> arbejdspunktet for transistoren
- AC analysen -> kredsløbets signalbehandlings karakteristikker

• DC/AC-analyse = Gynger og karuseller ... ???

- Vi kan vel blive enige om at der er tale om gynger i begge tilfælde?
- OG at de næppe vil være ens at gynge på?
- OG at har vi en lang og ranglet E3 nørd, så vil han nok fungerer bedst sammen med den ene af gyngerne?

- I DC analysen afbrydes alle kapaciteterne
- Ved at benytte Thevenin kan kredsløbet reduceres yderligere

$$V_{BB} = ??$$

$$R_{BB} = ??$$

- I AC analysen kortsluttes "alle" kapaciteterne
- Samtidig sker der noget "mærkeligt" idet nogle seriekoblede modstande pludselig kommer til at sidde i parallel

- Husk at "alle" kapaciteterne kortsluttes
- Dermed bliver $V_{CC} = \text{GND i AC}$ analysen

- Der findes naturligvis flere forstærkerkoblinger en den i har set hidtil
- Der findes faktisk et væld af forskellige koblinger, og de udemærker sig på forskellig vis at udvise specielle egenskaber
- Med både DC og AC analysen i vores værktøjskasse er vi godt rustet til at forstå hvordan disse andre koblinger fungerer

- BJT transistoren kan optræde i 3 forskellige grundkonfigurationer
- ALLE øvrige opkoblinger er varianter af disse 3 grundkoblinger
- Af disse varianter er specielt én særlig interessant hvorfor denne medtages som en 4 kobling
- Som et generelt kredsløb til implementering af disse 4 koblinger har vi "Universalkoblingen"

Universalkoblingen

Frekvens	DC	Lav	Middel	Høj
$\mathbf{C}_{ydre}\left[\mu F\right]$	Afbrydelse	f_L	Kortslutning	Kortslutning
$\mathbf{C}_{indre} \left[pF \right]$	Afbrydelse	Afbrydelse	Afbrydelse	f_H

Universalkoblingen

- For middelfrekvenser kan vi tillade os at simplificerer kredsløbene væsentligt ved at kortslutte ydre og afbryde indre kapaciteter
- For lave/høje frekvenser eller hvis en specifik frekvensgang er vigtig (RIAA) skal alle kapaciteter naturligvis tages med (GLEM f_H)
- Med dette som udgangspunkt analyseres de forskellige opkoblinger

- For <u>ALLE</u> analyser af transistorforstærkerer gælder, at en simplificering af kredsløbet foretages som det første
- Herefter gennemføres en DC/AC analyse (gerne grafisk) og først derefter foretages en egentlig signalanalyse

$$R_{BB} = R_1 || R_2 = 80.5k\Omega$$

$$I_{C,max} = \frac{V_{CC}}{R_C + R_E} = 1.5mA$$

$$V_{BB} = V_{CC} \frac{R_2}{R_1 + R_2} = 4V$$

 I_C er styrende !!! (Overslag)

- Datablad benyttes for at finde $\beta_{DC} = h_{FE} \ (\beta_{AC} = h_{fe})$
- For det aktuelle I_C område findes β til cirka 250

• Baseret på den aflæste β bestemmes I_C som funktion af forspændingsnetværket

$$I_C = \frac{V_{BB} - V_{BE}}{R_E + R_B/\beta} = 1mA$$

$$V_{CE} = V_{CC} - I_C \cdot (R_E + R_C) = 5V$$

• Det er vigtigt at verificere at transistoren ikke bliver for varm

???

- DC arbejdspunktet er således fundet til $[I_C, V_{CE}] = [1mA, 5V]$
- Næste skridt er at se på den statiske og den dynamiske arbejdslinie

- Statisk arbejdslinie
 - \circ Tomgang: $V_{CE} = V_{CC}$
 - \circ Kortslutning: $I_C = \frac{V_{CC}}{R_C + R_E} = 1.5 mA$
- Dynamisk arbejdslinie
 - $\circ R_E$ kortsluttes og $R_C || R_L$

 Målet med den grafiske analyse er at få fastlagt (a) og (b) således forstærkerens maksimale udsving kan bestemmes

$$(a) = V_{CE} - V_{CE,sat} = 5V - 0.3V = 4.7V$$

$$(b) = ?? i_C = I_C + i_c$$

$$V_{CE}^* = V_{CE} + (b) <=> i_C = 0$$

$$i_C = 0 \iff i_c = -1mA$$

$$(b) = -i_c \cdot (R_C||R_L) = 1mA \cdot 4k\Omega = 4.13V$$

- Det er således det positive udsving der begrænser udgangen i dette tilfælde
- Havde vi set bort fra R_L ville vi ha fået et andet resultat (jf. (b) = 6.94V)

- Nu ligger det fast at vi maksimalt kan håndtere et spændingssving på
 4.13V på udgangen
- Først findes hybrid- π parametrene fra databladet .. naturligvis for den aktuelle I_C .
- Er disse ikke tilgængelige kan de som oftest findes som h-parametre og omregnes

$$g_m = \frac{I_C}{V_t}$$

$$r_{\pi} = \frac{h_{FE}}{g_m}$$

$$r_o = \frac{V_A}{I_C}$$

- Strategi for analyse af signaldiagram
 - \circ Reducering af kredsløb $(R'_L = r_o || R_C || R_L, R_i = R_{BB} || r_\pi, r_x = 0)$
 - \circ Find udtryk for $V_o = f(V_\pi)$, $V_i = f(V_\pi)$ $(V_\pi = f(V_o))$, $i_b = f(v_\pi)$
 - \circ Opstil udtryk for $A_{vs}=rac{v_o}{v_s}=rac{v_o}{v_i}rac{v_i}{v_s}=A_v\cdotrac{R_i}{R_i+R_s}$
 - \circ Husk at $A_v = -g_m \cdot R_L'$
 - \circ Hvorfor er A_v og A_{vs} forskellige? (Kaskade-koblede trin)

Nøgleparametre for CE

Parameter	CE	Bemærkning
R_{ib}	r_{π}	Moderat (+/-)
R_i	$R_B R_{ib}$	Moderat (+/-)
R_{oc}	$r_o \Rightarrow \infty$	Stor (-)
R_o	$R_C r_o\Rightarrow R_C$	Stor (-)
A_v	$-g_m R_L'$	Stor (+)
A_i	$-g_m \frac{r_o}{r_o + R_L'} \Rightarrow -g_m$	Stor (+)

• Spændingsgain (og strømgain) er direkte afhængig af g_m og dermed behæftet med ganske store afvigelser grundet tolerancer og komponentafhængigheder (temperatur fx.)

• Den tilsyneladende ganske lille forskel med R_e gør en stor forskel i praksis

- De grafiske DC- og AC-analyser følger helt samme spor som for den almindelige CE forstærker (α_{DC} ens, α_{AC} ændret).
- Signaldiagrammet og dermed også analysen er er dog noget mere kompliceret ..

- Som rigtige ingeniører løser vi alverdens problemer med velovervejede antagelser .. så som $r_o >> R_C || R_L$
- Desuden antager vi også at $\beta >> 1 \Rightarrow i_e \approx i_c$

• Lad os, ene og alene for sjov skyld, prøve om vi kan bestemme modstanden vi ser ind i, når vi kigger ind i basis-teminalen .. med andre ord, find R_{ib}

$$R_{ib} = ???$$

- Baseret på disse antagelser er det bare at følge proceduren
- 1) Reducer kredsløbet

$$\circ R'_e = R_E || R_e$$
 and $R'_L = R_C || R_L$

• 2) Find udtryk for spændinger/strømme som funktion af v_{π}

$$v_o = f(v_{\pi}) \Rightarrow v_o = -g_m \cdot v_{\pi} \cdot R'_L$$

$$v_i = f(v_{\pi}) \Rightarrow v_i = v_{\pi} + g_m \cdot v_{\pi} \cdot R'_e$$

$$i_b = f(v_{\pi}) \Rightarrow i_b = \frac{v_{\pi}}{r}$$

• 3) Bestem A_v

$$A_v = \frac{-g_m \cdot v_\pi \cdot R_L'}{v_\pi + g_m \cdot v_\pi \cdot R_e'} = \frac{-g_m \cdot R_L'}{1 + g_m \cdot R_e'} \approx -\frac{R_L'}{R_e'} \Big|_{1/g_m < R_e'}$$

• Bemærk at A_v nu er bestemt af et forhold mellem modstande fremfor en absolut størrelse (g_m) som det var tilfældet for CE forstærkertrinnet

• Nøgleparametre for CE-Re

Parameter	CE	CE-Re	Bemærkning
R_{ib}	r_{π}	$\overbrace{r_{\pi}(1+g_mR'_e)}$	Stor (+)
R_i	$R_B R_{ib}$	$R_B R_{ib}$	Stor (+)
R_{oc}	$r_o \Rightarrow \infty$	$r_o + R'_e \Rightarrow \infty$	Stor (-)
R_o	$R_C r_o\Rightarrow R_C$	$R_C r_o \Rightarrow R_C$	Stor (-)
A_v	$-g_m R_L'$	$\left(\begin{array}{c} -rac{R_L'}{R_e'} \end{array} ight)$	Stor (+)
A_i	$-g_m \frac{r_o}{r_o + R_L'} \Rightarrow -g_m$	$-g_m$	Stor (+)

- Spændingsgain (og strømgain) er her væsentligt mere robust overfor tollerancer mm.
- Input modstanden er blevet øget men output modstanden er stadig stor

Opgaver

- Opgaverne går i deres enkelthed ud på at løbe proceduren igennem for forskellige transistoropkoblinger
- Et par af underspørgsmålene er gentagelser fra tidligere kursusgange, men prøv om I kan løse disse uden at se på besvarelserne fra sidst
- Middelfrekvens-antagelser anvendes såfremt andet ikke er angivet
- Frekvensen for opgaverne er ikke opgivet men benyt 1kHz
- Småsignalparametre via LTspice
 - En .OP udføres også i forbindelse med en .AC men LTspice forventer at det er forskellige ting vi er interesseret i alt efter om vi kører den ene eller den anden. Derfor "gemmes" forskellige oplysninger også
 - For at finde hybrid-π parametre for en transistor skal i køre en .OP
 og derefter vælge View -> Spice Error Log