Séance 1

Maxence Rizo

03/11/2020

Expériences aléatoires

l'unité de base des probabilités est l'expérience : un évènement dont l'issue est incertaine à priori. Le statisticien tente de déduire des informations sur une population par le biais d'expérience. Exemples:

- ► Tirer à pile ou face
 - ► Lancer un dé
 - ► Temps d'attente du métro
 - Attraper le coronavirus en télétravail

L'ensemble des probabilités I

Un ensemble de probabilité Ω est un ensemble qui contient toute les possibilité de réalisation d'une expérience.

- ▶ Pour un lancer de pièce $\Omega = T, H$
- Pour l'attente du métro $\Omega=(s=0:s=\infty)$ sauf pour la ligne 13, ou il peut durer plus longtemps

Cet ensemble peut être fini ou infini , dénombrable ou non etc ...

Les évènements I

Un évènement est un élément tiré de l'ensemble Ω : il peut être simple ou composite (obtenu par l'union ou l'intersection de différents évènements du même ensemble)

- Obtenir Pile
- Attendre entre 2 et 4 minutes
- Attraper 2 fois le coronavirus en télétravail.

Propriétés

Pour deux évènements A et B

- ▶ Inclusion: $A \subset B \iff x \in A \rightarrow x \in B$
- ▶ Egalité : $A \subset B$ et $B \subset A$
- ▶ Union: l'ensemble des éléments appartenents à A ou B: $A \cup B = x : x \in Aorx$
- ▶ Intersection: Évènements appartenants à A et B : $A \cap B = x : x \in A$ and $x \in B$
- Complémentation: éléments qui ne sont pas dans A A: A^C = x : x ∉ A

Note: l'union et l'intersection sont associatifs, commutatifs, distributifs et suivent la loi de Morgan.

les tribus ou $\sigma - algèbres$

une σ -algèbre est un ensemble A de Ω tel que :

- A n'est pas vide
- A est stable par complémentaire
- ► A est stable par union dénombrable.

Note : si L'ensemble est fini ou dénombrable le concept de sous ensemble est équivalent

Les probabilités

Les probabilité cherchent à assigner une valeur $P \in [0,1] \forall X \in \Omega$. Pour définir cette carte, on utilise les axiomes de kolmogorov :

- ▶ $0 \le P(A) \le 1$.
- \triangleright $P(\Omega) = 1$
- ► $P(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{+\infty} P(A_i)$

Le troisième axiome indique qu'il est possible d'additionner des probabilités : c'est la sigma additivité.

Quelques propriétés supplémentaires

À partir des axiomes, se démontrent un certain nombre de propriétés utiles pour le calcul des probabilités, par exemple :

- $ightharpoonup P(\emptyset) = 0$
- Si A, Bsont deux événements incompatibles (ou disjoints), alors $P(A \cup B) = P(A) + P(B)$.
- ▶ $(B \setminus A) = P(B) P(A \cap B)(B \setminus A) = P(B) P(A \cap B);$ Cette relation signifie que la probabilité que B se réalise, mais pas A, est égale à la différence $P(B) - P(A \cap B)$. En particulier, si $A \subset B$, alors $P(A) \leq P(B)$
- Dans le cas particulier où $B=\Omega$, cela donne que, pour tout événement A, $P(\Omega \setminus A) = 1 P(A)$ Ceci signifie que la probabilité pour qu'un événement ne se produise pas est égale à 1 moins la probabilité pour qu'il se réalise.

Cont.

Pour tous événements A, B: $P(A \cup B) = P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$. $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(B \cap C) - P(C \cap A) - P(A \cap B) + P(A \cap B \cap C)$.

Probabilités conditionnelles

On note P(A|B) (P de A sachant B) = $P(A \cap B)/P(A)$ Remarque : si ils sont distinct, cette probabilité vaut 0

Indépendance

deux évènements sont dits indépendants si :

$$P(A \cap B) = P(A) * P(B)$$

Cela signifie que connaître un évènement ne nous donne aucune information supplémentaire sur l'autre évènement.

Loi des probabilités totales

la loi des probabilités totales nous permet de calculer la probabilité d'un évènement en le décomposant en une somme d'évènements exhaustive.

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A|B_i)\mathbb{P}(B_i) = \sum_{i \in I} \mathbb{P}(A \cap B_i).$$

il permet également de combiner ensemble des probabilités différentes

Règle de Bayes

la règle de Bayes permet de calculer l'équivalence entre A sachant B et B sachant A : $P(A|B) = [P(B|A)\frac{P(A)}{P(B)}]$