

#### SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

### Digital Assignment - I, Fall Semester 2021-22

Course Code : CSE4001 Programme: B.Tech

Course Name : Parallel and Distributed Computing Max. Marks : 10

Slot : B1/B2 Class: VL2021220104086 / 4087

### **Answer all the Questions**

## Question - 01 (4 Marks)

Consider a database with information about the courses offered in a department. Compute the following query to get a desired result

Class ID>="900003" OR Class Category="Computer Science" OR (credits >="2" AND Instructor ID="220387")

| Class ID | Class Name                        | Class Category    | Credits | Instructor ID | Classroom |
|----------|-----------------------------------|-------------------|---------|---------------|-----------|
| 900001   | Advanced Calculus                 | Math              | 5       | 220087        | 2201      |
| 900002   | Advanced Music Theory             | Music             | 3       | 220039        | 7012      |
| 900003   | American History                  | History           | 5       | 220148        | 3305      |
| 900004   | Computers in Business             | Computer Science  | 2       | 220387        | 5115      |
| 900005   | Computers in Society              | Computer Science  | 2       | 220387        | 5117      |
| 900006   | Introduction to Biology           | Biology           | 5       | 220498        | 3112      |
| 900007   | Introduction to Database Design   | Computer Science  | 5       | 220516        | 5105      |
| 900008   | Introduction to Physics           | Physics           | 4       | 220087        | 2205      |
| 900009   | Introduction to Political Science | Political Science | 5       | 220337        | 3308      |

Draw any two possible ways of task dependency graph and compute the average degree of concurrency. Comment on the same.

# Question - 2 (6 Marks)

Consider a simplified version of bucket-sort. You are given an array A of n random integers in the range [1...r] as input. The output data consist of r buckets, such that at the end of the algorithm, Bucket i contains indices of all the elements in A that are equal to i.

- i. Describe a decomposition based on partitioning the input data (i.e., the array *A*) and an appropriate mapping onto *p* processes. Describe briefly how the resulting parallel algorithm would work.
- ii. Describe a decomposition based on partitioning the output data (i.e., the set of r buckets) and an appropriate mapping onto p processes. Describe briefly how the resulting parallel algorithm would work.
- iii. Which of the two decompositions (i or ii) leads to a better parallel algorithm? Should the relative values of *n* and *r* have a bearing on the selection of one of the two decomposition schemes?

Note: Stick on deadline - Solve the questions by hand