Тема 3.6. Потоки в сетях

План: Потоки в сетях. Теорема Форда – Фалкерсона; алгоритм Форда – Фалкерсона.

Задачи с решением

Пример: Построить максимальный поток для графа:

Маршрут: 1-2-6-10-14 Максимальная пропускная способность (МПС) = $\mathbf{5}$

Маршрут: 1-2-7-11-14 МПС = $\mathbf{2}$

Маршрут: 1-5-9-13-14 МПС = $\mathbf{10}$

Маршрут: 1-4-5-9-13-14 МПС = $\mathbf{4}$

Маршрут: 1-3-7-11-14 МПС = $\mathbf{6}$

Маршрут: 1-4-8-12-14 МПС = $\mathbf{10}$

Маршрут: 1-3-2-7-11-14 МПС = $\mathbf{1}$

Маршрут: 1-4-3-2-6-7-11-10-14 МПС = $\mathbf{4}$

При выполнении последнего маршрута, цепей, которые бы шли от истока к стоку не остаётся, ответом будет считаться сумма всех полученных МПС, а так же перечень маршрутов.

В процессе выполнения алгоритма, не нужно строить граф для каждого маршрута, достаточно использовать исходный граф и проводить все необходимые правки при помощи карандаша и ластика.

Ответ: потоки:

$$1-2-6-10-14$$

$$1-2-7-11-14$$

$$1-5-9-13-14$$

$$1-4-5-9-13-14$$

$$1-3-7-11-14$$

$$1-4-8-12-14$$

$$1-3-2-7-11-14$$

$$1-4-3-2-6-7-11-10-14$$

$$\sum \mathbf{M}\Pi\mathbf{C} = \mathbf{42}$$

Задачи для самостоятельного решения

1. Полагая, что цифры у ребер есть их пропускные способности, а v и w – вход и выход из сети соответственно, найти: а) вариант полного потока; б) наибольший поток..

2. Определить величину максимального потока, который можно пропустить через заданную сеть.

2.1.

	a	b	c	d	e	f	g	h
a		3		3				
b						5	7	
c						5	6	
d		4			6			
e			3			7		
f							9	
g								
h	4			8	9			

2.2.

	a	b	c	d	e	f	g	h
a							5	
b							8	
С	3			2		5		
d	4							
e		6	5			7		
f	2	3					6	
g								
h			7	5	4			

2.3.									
	a	b	c	d	e	f	g	h	
a		3			3				
b			5				7		
c							9		
d			7			3			
e		4		7					
f			5				6		
g									
h	4			9	8				
2.4.									
	a	b	c	d	e	f	g	h	
a		3		3					

	a	b	С	d	e	f	g	h
a		3		3				
b						5	7	
c d						5	6	
d		4			8			
e			3			7		
e f							9	
g h								
h	4			8	9			
2 -								

2.5. c d a b5 e f g h 6 a b 1 5 c 8 9 d 4 2 2 6 e f 2 2

7 4

6