Using Stochiometry in Simple Chemistry Experiments

Kedar Mhaswade

November 2020

Practical Problem: It was decided to inflate a common latex balloon to 5 cm radius by the hydrogen gas produced during a single-displacement reaction: $2 \operatorname{HCl}(aq) + \operatorname{Zn}(s) \longrightarrow \operatorname{ZnCl}_2(s) + \operatorname{H}_2(g)$ that uses an N/10 i.e. 0.1M HCl solution (available in many drugstores, typically in 200ml bottles). How much reactants are needed?

Solution: We need to inflate the balloon to about 5 cm radius. Assuming the balloon to be a sphere gives us the volume of balloon, V_b , as: $V_b = \frac{4}{3} \cdot \pi r^3$ cm³ = 523.599 cm³.

Assuming the density of hydrogen at STP as 0.0000899 g cm⁻³, the mass of hydrogen is 523.599×0.0000899 g = 0.0471 g. Since 1 mol of H₂(g) has a mass of 2×1.008 g = 2.016 g, we need $\frac{0.0471}{2.016}$ mol = 0.0233 mol H₂(g).

Balancing the reaction, $2 \operatorname{HCl}(aq) + \operatorname{Zn}(s) \xrightarrow{} \operatorname{ZnCl}_2(s) + \operatorname{H}_2(g)$, we see that to produce 1 mol $\operatorname{H}_2(g)$ we need 2 mol $\operatorname{HCl}(aq)$ and 1 mol $\operatorname{Zn}(s)$.

This means that to produce 0.0233 mol $H_2(g)$ we need 2×0.0233 mol = 0.0466 mol HCl(aq). We have a 0.1M HCl (aqueous) solution which means that $\frac{\text{mol of solute}}{\text{litres of solution}} = 0.1$. Clearly, we need $\frac{0.0466}{0.1} = 0.466$ L or **466** ml HCl.

The amount of zinc needed = $0.0233 \times \text{molar mass}$ of zinc = $0.0233 \times 65.38 \text{ g} = 1.523 \text{ g}$.

¹See https://ptable.com/#Properties/Weight

Author wishes to thank Apoorv Mhaswade and Rujuta Mhaswade for verifying the correctness of the calculations

See Chemistry Stack Exchange for a discussion