

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS™ C7

600V CoolMOS™ C7 Power Transistor IPW60R060C7

Data Sheet

Rev. 2.0 Final

1 Description

CoolMOS™ C7 is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies.

600V CoolMOS™ C7 series combines the experience of the leading SJ MOSFET supplier with high class innovation.

The 600V C7 is the first technology ever with R_{DS(on)}*A below 10hm*mm².

Features

- Suitable for hard and soft switching (PFC and high performance LLC)
- Increased MOSFET dv/dt ruggedness to 120V/ns
- Increased efficiency due to best in class FOM R_{DS(on)}*E_{oss} and R_{DS(on)}*Q_g
- Best in class R_{DS(on)} /package
- Qualified for industrial grade applications according to JEDEC (J-STD20 and JESD22)

Benefits

- Increased economies of scale by use in PFC and PWM topologies in the application
- Higher dv/dt limit enables faster switching leading to higher efficiency
- Enabling higher system efficiency by lower switching losses
- Increased power density solutions due to smaller packages
- Suitable for applications such as server, telecom and solar
- Higher switching frequencies possible without loss in efficiency due to low Eoss and Qg

Applications

PFC stages and PWM stages (TTF, LLC) for high power/performance SMPS e.g. Computing, Server, Telecom, UPS and Solar.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key Performance Parameters

10.0.0		
Parameter	Value	Unit
V _{DS} @ T _{j,max}	650	V
R _{DS(on),max}	60	m $Ω$
$Q_{g.typ}$	68	nC
I _{D,pulse}	135	A
I _{D,continuous} @ T _j <150°C	54	A
E _{oss} @400V	8.1	μЈ
Body diode di/dt	420	A/µs

Type / Ordering Code	Package	Marking	Related Links
IPW60R060C7	PG-TO 247	60C7060	see Appendix A

IPW60R060C7

Table of Contents

Description
Maximum ratings
Thermal characteristics
Electrical characteristics
Electrical characteristics diagrams
Test Circuits
Package Outlines
Appendix A
Revision History
Disclaimer

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Damain Adam	0	Values					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	35 22	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	135	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	159	mJ	I _D =6.4A; V _{DD} =50V; see table 10	
Avalanche energy, repetitive	E AR	-	-	0.80	mJ	I _D =6.4A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	6.4	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	162	W	<i>T</i> _C =25°C	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating junction temperature	T _j	-55	-	150	°C	-	
Mounting torque	-	-	-	60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	I _S	-	-	35	Α	<i>T</i> _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	135	Α	<i>T</i> _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	20	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <=9.9A, $T_{\rm j}$ =25°C see table 8	
Maximum diode commutation speed	di _f /dt	-	-	420	A/μs	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <=9.9A, $T_{\rm j}$ =25°C see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, t=1min	

 $^{^{1)}}$ Limited by $T_{j\,\text{max}}.$ $^{2)}$ Pulse width t_p limited by $T_{j,\text{max}}$ $^{3)}$ Identical low side and high side switch

3 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Cumbal	Values			I Imit	Nata / Tank Canadition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.772	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	leaded
Thermal resistance, junction - ambient for SMD version	R _{thJA}	-	-	-	°C/W	n.a.
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s

4 Electrical characteristics at T_j =25°C, unless otherwise specified

Table 4 **Static characteristics**

Parameter	Courado a l	Values			1114	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	$V_{(GS)th}$	3	3.5	4	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=0.8{\rm mA}$
Zero gate voltage drain current	I _{DSS}	-	- 10	1 -	μΑ	V _{DS} =600, V _{GS} =0V, T _j =25°C V _{DS} =600, V _{GS} =0V, T _j =150°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.052 0.115	0.060	Ω	V _{GS} =10V, I _D =15.9A, T _j =25°C V _{GS} =10V, I _D =15.9A, T _j =150°C
Gate resistance	R _G	-	0.8	-	Ω	f=1MHz, open drain

Dynamic characteristics Table 5

Parameter	0		Values			
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	2850	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Output capacitance	Coss	-	54	-	pF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =250kHz
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	101	-	pF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	1050	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V
Turn-on delay time	$t_{\sf d(on)}$	-	15.5	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =15.9A, $R_{\rm G}$ =3.3 Ω ; see table 9
Rise time	t _r	-	11	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =15.9A, $R_{\rm G}$ =3.3 Ω ; see table 9
Turn-off delay time	$t_{ m d(off)}$	-	79	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =15.9A, $R_{\rm G}$ =3.3 Ω ; see table 9
Fall time	t _f	-	4	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =15.9A, $R_{\rm G}$ =3.3 Ω ; see table 9

Table 6 Gate charge characteristics

Parameter	Symphol		Values			Nata / Tant Candition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	14	-	nC	V _{DD} =400V, I _D =15.9A, V _{GS} =0 to 10V
Gate to drain charge	Q _{gd}	-	23	-	nC	V _{DD} =400V, I _D =15.9A, V _{GS} =0 to 10V
Gate charge total	Qg	-	68	-	nC	V _{DD} =400V, I _D =15.9A, V _{GS} =0 to 10V
Gate plateau voltage	V _{plateau}	-	5.0	-	V	$V_{\rm DD}$ =400V, $I_{\rm D}$ =15.9A, $V_{\rm GS}$ =0 to 10V

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

IPW60R060C7

Table 7 Reverse diode characteristics

Parameter	Cymbal	Values			Unit	Note / Took Condition
	Symbol	Min.	Тур.	Max.	Oilit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.9	-	V	V _{GS} =0V, I _F =15.9A, T _j =25°C
Reverse recovery time	t _{rr}	-	390	-	ns	V_R =400V, I_F =15.9A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Q _{rr}	-	6	-	μC	V_R =400V, I_F =15.9A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	32	-	Α	V_R =400V, I_F =15.9A, di_F/dt =100A/ μ s; see table 8

5 Electrical characteristics diagrams

6 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

7 Package Outlines

Figure 1 Outline PG-TO 247, dimensions in mm/inches

8 Appendix A

Table 11 Related Links

- IFX CoolMOS[™] C7 Webpage: <u>www.infineon.com</u>
- IFX CoolMOS[™] C7 application note: <u>www.infineon.com</u>
- IFX CoolMOS[™] C7 simulation model: www.infineon.com
- IFX Design tools: www.infineon.com

600V CoolMOS™ C7 Power Transistor

IPW60R060C7

Revision History

IPW60R060C7

Revision: 2015-11-30, Rev. 2.0

Previous Revision						
Revision	Date	Subjects (major changes since last revision)				
2.0	2015-11-30	Release of final version				

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2015 Infineon Technologies AG All Rights Reserved.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.