Notes: Introduction to Bayesian Networks

Zheng Rui

November 4, 2014

Lecture 1: Probability

Lecture 2: Concepts of BN

- To specify a joint probability $P(X_1, X_2, ..., X_n)$, it needs at least $2^n 1$ numbers. Exponential model size.
- Chain rule:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1})$$

from this perspective, the number of parameters required for the knowledge of $P(X_1, X_2, ..., X_n)$ is also

$$1 + \dots + 2^{n-1} = 2^n - 1$$

why?

$$P(\overline{X_i}|X_1,...,X_{i-1}) = 1 - P(X_i|X_1,...,X_{i-1})$$

when X_i , ..., X_{i-1} are fixed, and there are 2^{i-1} possible combination of them.

• Define $pa(X_i)$ as the X_i relevant subset $pa(X_i) \subseteq \{X_1, ..., X_{i-1}\}$ such that

$$P(X_i|X_1,...,X_{i-1}) = P(X_i|pa(X_i))$$

then

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | pa(X_i))$$

in this way the number of parameters might be substantially reduced.

- Bayesian network: DAG, each node represents a random variable, and is associated with the conditional probability of the node given its parents, arcs represent direct probabilistic dependence. A BN represents a factorization of a joint distribution. CPT means conditional probability table, multiplying them together gives a joint distribution.
- Causal Markov Assumption: a variable is independent of all its non-effects (non-descendants) given its direct causes (i.e. parents).
- Causal independence and Context specific independence.

Lecture 3: D Separation

• Cases:

1. Direction connection: if *X* and *Y* are connected by an edge, then *X* and *Y* are dependent.

2. Serial connection: *Z* observation makes *X* and *Y* become **independent** from **dependent**.

3. Diverging connection: Z observation makes all its children X, Y, \dots, W become **independent** from **dependent**.

4. Converging connection: observation of Z or any of its descendants R makes X, Y, \dots, W become **dependent** from **independent**.

- Rules: Hard evidence **blocks** info-path for serial and diverging connection; Soft evidence **opens** info-path for converging connection.
- A path between *X* and *Y* is blocked by a nodes set *Z* if: *Either* one node in *Z* is in the path and the connection of that node is serial or diverging case. *Or* the path contains a converging node *s.j.t* this node and all its descendants are not in set *Z*.

So when asking if a path P is blocked by a nodes set Z?

First check if there are serial or diverging node in $P \cap Z$, if not then check if there are converging node in $P \setminus (P \cap Z)$ and none of the converging node's descendants is in Z.

Bascially for a DAG, the other nodes with respect to node X fall into 4 groups:

• D-separation: Two nodes X and Y are d-separated by a set Z if all paths between X and Y are blocked by Z, $X \perp Y | Z$.

Examples:

Bayesian Networks	Z separate X and Y?	Bayesian Networks	Z separate X and Y?
X	\checkmark	X Y	×
XY	\checkmark	X Y	×
X	√	X Y	\checkmark

Things to note in the examples: X, Y may be dependent or independent, but X|Z, Y|Z can be independent so long as they share descendants that are $\notin Z \cup an(Z)$, that's how Z separates X and Y.

• ancestral set *an*(*X*) of nodes set *X*, *X* is ancestral if

$$X = an(X)$$

- $P_N(X) = P_{N'}(X)$ where $N' = N \setminus Y$, Y is a leaf node of N.
- $P_N(X) = P_{N'}(X)$ where N' = X, X is ancestral.
- Suppose X, Y, Z are disjoint sets, $X \cup Y \cup Z$ is all the nodes, then Z separates X and Y leads to $X \perp Y | Z$, key is there is no converging node in Z which has parents from both X and Y, otherwise the length-2 path with 1 parent from X and the other from Y is not separated by Z.
- Global Markov property: variables X and Y, $X \perp Y \mid Z$ if $X \notin Z$, $Y \notin Z$, and Z separates them.

$$S_{\mathcal{G}}(X,Y,Z) \Rightarrow X \perp_{P} Y|Z$$

- Markov blanket: (parents + children + parents of children) of node *X*.
- Local Markov property: given parents, variable *X* is independent of all its non-descendants.

$$X \perp_P nd_{\mathcal{G}}(X)|pa_{\mathcal{G}}(X)$$

• \mathcal{G} to P(V) is called I-map: $\mathcal{S}_{\mathcal{G}}(X,Y,Z) \Rightarrow X \perp_P Y|Z$, D-map: $X \perp_P Y|Z \Rightarrow \mathcal{S}_{\mathcal{G}}(X,Y,Z)$, Perfect map: $\mathcal{S}_{\mathcal{G}}(X,Y,Z) \Leftrightarrow X \perp_P Y|Z$.

Lecture 4: Inference in BN & VE Algorithm

- Diagnostic inference: effects -> causes; Predictive/Causal inference: causes -> effects; Intercausal inference (explaining away): between causes of a common effect; Mixed inference: combing two or more of the above.
- A naive inference algorithm is like:

$$P(Q,E) = \sum_{X \notin Q \cup E} P(X)$$

$$P(E) = \sum_{Q} P(Q,E)$$

$$P(Q|E=e) = \frac{P(Q,E=e)}{P(E=e)}$$

exponential complexity in this naive way, not making use of factorization

• A factorization of a joint distribution is a list of functions whose product is the joint distribution, functions on the list are called factors.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | pa(X_i))$$

 $P(X_i|pa(X_i))$ are factors.

• Elimination a variable Z_1 from $P(Z_1, Z_2, ..., Z_m)$: suppose $\mathcal{F} = \{f_1, f_2, ..., f_n\}$ is its factorization, and Z_1 appears in and only in factors $f_1, f_2, ..., f_k$, then

$$P(Z_2,...,Z_m) = \left[\prod_{i=k+1}^n f_i\right] \left[\sum_{i=1}^n \prod_{i=1}^k f_i\right] = \left[\prod_{i=k+1}^n f_i\right]h$$

and its new factorization after Elimination of Z_1 is $\{f_{k+1},...,f_n,h\}$

- Variable Elimination Algorithm: $VE(\mathcal{F}, Q, E, e, \rho)$, with \mathcal{F} factors, Q query variables, E observered variables and e are their observered values, $\rho \notin Q \cup E$ is the ordering of variables to be eliminated,
 - **1** While ρ is not empty
 - ightharpoonup remove the first variable in ρ
 - call procedure of eliminating a single variable
 - 2 set $h = \prod_{f \in \mathcal{F}} f$, this is the factorization of joint probability P(Q, E)
 - 3 set E = e, instantiate E to observered values e
 - **4** re-normalization $P(Q|E=e) = \frac{h(Q)}{\sum_{Q} h(Q)}$

a modification is put 3 in front of 0, this more efficient version was proposed by Zhang and Poole (1994).

• Structural graph, moral graph and cost of elimination variables:

