(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-15817 (P2000-15817A)

(43)公開日 平成12年1月18日(2000.1.18)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

B 4 1 J 2/05

2/16

B41J 3/04

103B 2C057

103H

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号

特願平10-185786

(22)出願日

平成10年7月1日(1998.7.1)

(71)出願人 000001443

カシオ計算機株式会社

東京都渋谷区本町1丁目6番2号

(72)発明者 上西 勝三

東京都靑梅市今井3丁目10番6号 カシオ

計算機株式会社青梅事業所内

(72)発明者 中村 修

東京都宵梅市今井3丁目10番6号 カシオ

計算機株式会社青梅事業所内

(74)代理人 100074099

弁理士 大管 義之

最終頁に続く

(54) 【発明の名称】 インクジェットヘッド

(57)【要約】

【課題】発熱素子周辺部の導電性を向上させ加工途上における電極の損傷を低減させるインクジェットヘッドを 提供する。

【解決手段】インクジェットヘッド24(25)の初期工程で、シリコン基板10(11)上に拡散領域31及び酸化膜32が形成され、その上に駆動回路16の個別配線電極14が積層され、一端をその上に、他端を図外左方の共通電極12上に重ねられて発熱素子膜15−1がTa-Si-〇などにより厚さ3000~8000Åに成膜される。その発熱部15を除く部分に密着性の良いTi、AI又はSiを10%以下含んだ熱及び処理液に強いWの導電助成防膜33が厚さ2000~4000Åで成膜され、更にその上に約1μmの良導体のAu電極膜34が形成される。発熱素子膜15−1とAu電極膜34とが導電助成防膜33を介して良く密着し、個別配線電極14からの駆動電流が発熱素子膜15−1、導電助成防膜33、Au電極膜34を介して発熱部15に供給される。

【特許請求の範囲】

【請求項1】 基板上にアレー状に配列された複数の発 熱索子膜を備え、該発熱素子膜の発熱部上にインクを供 給して前記発熱部を加熱し、該発熱部と前記インクとの 界面に気泡を発生させることにより前記発熱部に対向し て設けられたオリフィスよりインク滴を吐出するインク ジェットヘッドであって、

一端を個別配線電極上に積層され他端を共通電極上に積 層された前記発熱素子膜と、

該発熱素子膜の発熱部を除く部分に積層されたチタン、 アルミニューム又はシリコンの少なくとも1つの材料を 10%以下含有するタングステンからなる導電性保護膜 と、

該導電性保護膜上に積層された金電極膜と、

を有することを特徴とするインクジェットヘッド。

前記発熱素子膜は、厚さ3000~80 【請求項2】 00 Åに形成されてなることを特徴とする請求項1記載 のインクジェットヘッド。

《請求項3》 前記導電性保護膜は、厚さ2000~4 000Åに形成されてなることを特徴とする請求項1記 20 載のインクジェットヘッド。

【請求項4】 前記 A u 電極膜は、厚さおよそ 1μ m に 形成されてなることを特徴とする請求項1記載のインク ジェットヘッド。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、発熱面に垂直な方 向にインク滴を吐出する発熱素子周辺部の導電性を向上 させるよう更には加工工程途上における電極の損傷を低 減させるよう形成したインクジェットヘッドに関する。 [0002]

【従来の技術】近年、サーマルインクジェット方式のプ リンタが広く用いられている。このサーマルインクジェ ット方式は、印字のために射出するインクの液滴形成過 程において、①発熱素子を熱してこの発熱素子上に核気 泡を発生させる。②この核気泡が合体して膜気泡が生ま れる。③この膜気泡が断熱膨脹して成長する。④その成 長した膜気泡が周囲のインクに熱を取られて収縮する。 ⑤ついには膜気泡が消滅し、次の発熱素子の加熱を待 つ、という一連の工程を瞬時に行うことによって成り立 っている。そして上記の①~③の工程には膜沸騰現象が 利用されている。

【0003】膜沸騰現象は、例えば鉄の焼き入れのよう に高温に加熱された物体を液体中に漬けた場合と、液体 と接する物体の表面温度を急激に上げた場合とに発現す るが、サーマルインクジェットプリンタに用いられる膜 沸騰現象は後者の「液体と接する物体の表面温度を急激 に上げる」方法によっている。また、このようなサーマ ルインクジェットヘッドにおいては、モノクロ印刷ばか 一印刷を行う構成のものもある。

【0004】尚、上記インク滴の吐出方向には、発熱素 子の発熱面に垂直な方向に吐出する構成のものと、発熱 素子の発熱面に平行な方向へ吐出する構成のものとがあ る。発熱素子の発熱面に平行な方向へインク滴を吐出す る構成のものは、インク滴の吐出エネルギーが比較的大 きく、1ドット当り概ね8~10μJである。

【0005】一方、発熱素子の発熱面に垂直な方向にイ ンク滴を吐出する構成のもののフルカラー用サーマルイ ンクジェットヘッドの製法として、シリコンLSIと薄 膜技術を利用して、複数の発熱素子と個々の駆動回路と インク吐出ノズル(オリフィス)を一括してモノリシッ クに形成する方法がある。

【0006】この方法によれば、例えば解像度が360 dpi (ドット/インチ) の印字ヘッドであれば128 個の発熱素子と駆動回路とオリフィス(一般には導波管 等の終端または壁面に形成されたエネルギー伝達用の孔 又は窓の意に用いられてきた用語)を形成することがで き、また、解像度が720dpiの場合であれば256 個の発熱素子と駆動回路とオリフィスを形成することが できる。

【0007】ところで、上記の発熱素子を駆動する電極 は、インクの中に浸漬された状態で使用されるので、こ のような液中においても安定した特質を有している必要 がある。これらのことからNi(ニッケル)又はW(タ ングステン)の電極が使用されていた。

[8,000]

30

【発明が解決しようとする課題】ところが、一般に、こ のようなインクジェットヘッドを用いる印字装置におい て印字速度を向上させるためには、インク滴の吐出ノズ ルを多数化する必要がある。インク吐出ノズルを多数化 するということは、これに対応する発熱素子も多数化す るということであり、印字性能、特に印字ドットの大き さは、発熱素子に印加される電力に影響されるから、発 熱素子の多数化においては、共通電極の抵抗を小さくし て、電源接続端子からの距離に拘わりなく印字ドットの 位置(各発熱素子の配設位置)による配線抵抗を含む抵 抗値を一定にする必要がある。

【0009】しかし、上述したNi電極やW電極では、 Al (アルミニューム) 又はAu (金) 等の配線材料に 比較して電気抵抗が大きい。このため大規模化しようと すると、共通配線部の抵抗が大きくなって、各発熱素子 位置の抵抗値を一定にすることができない。このため大 規模化が実現困難となって、Ni電極やW電極は大規模 化の障害となっていた。

【0010】また、抵抗を小さくするために電極のパタ ーン幅を広げると、結果としてヘッド全体が大きくなる という欠点が出てくる。また、発熱抵抗体 (発熱素子) 薄膜と共通配線部及び駆動回路系の電極との密着性が悪 りでなく、三原色のインクをそれぞれ吐出してフルカラ 50 く安定した発熱量が得られないという問題も有してい

3

た。更に、熱的な安定性にも問題があり、従ってN i 又はWによる共通配線部の形成には、発熱抵抗体薄膜を形成後、同一真空装置内で連続して成膜する以外に方法はなく、これが製造プロセスの上で制約事項となっていた。

【0011】本発明の課題は、上記従来の実情に鑑み、 発熱素子周辺部の導電性を向上させ加工途上における電 極の損傷を低減させるインクジェットヘッドを提供する ことである。

[0012]

【課題を解決するための手段】以下に、本発明のインクジェットへッドの構成を述べる。本発明のインクジェットへッドは、基板上にアレー状に配列された複数の発熱素子膜を備え、該発熱素子膜の発熱部上にインクを供給して上記発熱部を加熱し、該発熱部と上記インクとの界面に気泡を発生させることにより上記発熱部に対向して設けられたオリフィスよりインク滴を吐出するインクジェットへッドであって、一端を個別配線電極上に積層され他端を共通電極上に積層された上記発熱素子膜と、該発熱素子膜の発熱部を除く部分に積層されたTi、Al又はSiの少なくとも1つの材料を10%以下含有するWからなる導電性保護膜と、該導電性保護膜上に積層されたAu電極膜と、を有して構成される。

【0013】上記発熱素子膜は、例えば請求項2記載のように、厚さ3000~8000Åに形成されてなる。また、上記導電性保護膜は、例えば請求項3記載のように、厚さ2000~4000Åに形成されてなる。また、上記Au電極膜は、例えば請求項4記載のように、厚さおよそ1 μ mに形成されてなる。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面を参照しながら説明する。図 I (a) (b) (c) 、図 2 (a) (b) (c) 、図 3 (a) (b) (c) 及び図 4 (a) (b) (c) は、一実施の形態におけるインクジェットヘッドの基本的な製造方法を工程順に示す図である。図 1 (a) (b) (c) はそれぞれ概略の平面図と断面図を示しており、図 2 (a) 、図 3 (a) 及び図 4 (a) はそれぞれ図 1 (a) (b) (c) の平面図を一部拡大して詳細に示す図、図 2 (b) は図 2 (a) の A - A′ 断面矢視図、図 2 (c) は同じく図 2 (a) の B - B′ 断面矢視図を示し、図 3 (b) (c) は、図 3 (a) の図 2 (b) (c) と同一部分の断面図、図 4 (b) (c) は、図 4 (a) の図 2 (b) (c) と同一部分の断面図である。また、図 1 (a) (b) (c) のそれぞれ下に示している断面図は、図 2 (b) 、図 3 (b) 及び図 4 (b) に示す断面図は、図 2 (b) 、図 3 (b) 及び図 4 (b) に示す断面図と同一のものである。

【0015】尚、これらの図では、説明の便宜上、いずれもフルカラー用インクジェットヘッドの1個の発熱ヘッド(モノクロ用インクジェットヘッドの構成と同じ)のみを示しているが、実際にはこのような発熱ヘッドが複数個(3個又は4個)連なった形状のものが、1枚の

シリコン基板上に形成される。

【0016】最初に、基本的な製造方法について説明する。先ず、工程1として、4インチ以上のシリコン基板に11と以上のシリコン基板に12日形成処理により駆動回路とその端子を形成すると共に、厚さ12日本の酸化膜と個別配線電極を形成する。次に、工程12として、薄膜技術を用いて、12日本の発熱素子膜を形成し、詳しくは後述するW合金による導電性保護膜を形成し、更に12日本とによる電極膜を形成する。この工程で発熱抵抗体(発熱素子膜の発熱部)の位置が決められる。

【0017】図1(a) 及び図2(a).(b),(c) は、上記の

工程1及び工程2が終了した直後の状態を示している。

すなわち、シリコン基板10上には共通電極12、共通電極給電端子13(図1(a)参照)、個別配線電極14、発熱抵抗体(発熱素子)15、駆動回路16及び駆動回路端子17(図1(a)参照)が形成されている。【0018】続いて、工程3として、個々のインク吐出口に対応するインク溝を形成すべく感光性ポリイミドなどの有機材料からなる隔壁部材をコーティングにより高さ20μm程度に積層し、これをパターン化した後に、300℃~400℃の熱を30分~60分加えるキュア(乾燥硬化、焼成)を行い、高さ10μmの上記感光性ポリイミドによる隔壁をシリコン基板上に形成・固着させる。更に、工程4として、ウェットエッチングまたはサンドブラスト法などにより上記シリコン基板に溝状のインク給送路とインク供給孔を形成してシリコン基板の表面から裏面に連通するインク通路を形成する。

【0019】図1(b)及び図3(a),(b),(c)は、上述の工程3及び工程4が終了した直後の状態を示している。すなわち、溝状のインク給送路18及びインク供給孔20が形成され、インク給送路18の左側に位置する共通電極12部分と、右方の個別配線電極14が配設されている部分、及び各抵抗15と抵抗15の間に、隔壁19(19、19-1、19-2)が積層されている。隔壁19の上記各抵抗15間に積層される部分は、個別配線電極14上の部分19-1を櫛の胴とすれば、各抵抗15間に伸び出す部分19-2は櫛の歯に相当する形状をなしている。これにより、この櫛の歯を仕切り壁として、その歯と歯の間の付け根部分に抵抗15が位置する微細なインク溝が、抵抗15の数だけ形成される。

【0020】この後、工程5として、ポリイミドからなる厚さ $10\sim30\mu$ mのフィルムの両面または片面に、熱可塑性ポリイミドを極薄に例えば厚さ $2\sim5\mu$ mにコーテングしたオリフィス板を、上記積層構造の最上層に張り付けて、隔壁19-2によって形成されたインク溝に蓋をし、これにより、個別の微細通路(インク溝坑)を形成する。そして、 $200\sim300$ で加熱しながら加圧してオリフィス板を固着させる。続いて、Ni、Cu又はAlなどの厚さ $0.5\sim1\mu$ m程度の金属膜を形

5

成する。

【0021】更に、工程6として、オリフィス板の上の金属膜をパターン化して、ポリイミドを選択的にエッチングするマスクを形成し、続いて、オリフィス板をECRなどのドライエッチングなどにより上記の金属膜マスクに従って $40\mu m\phi \sim 20\mu m\phi$ の孔空けをして多数のノズル孔(オリフィスともいう)を一括形成する。尚、孔空けはエキシマレーザなどを用いて行ってもよい。

【0022】図1(c)及び図4(a).(b).(c)は、上述した工程5と工程6が終了した直後の状態を示している。すなわち、オリフィス板21が駆動回路16と給電端子13及び17の部分を除く全領域を覆っており、上記のインク溝も上を覆われて隔壁兼離隔部材19の厚さ10 μ mに対応する高さの坑状のインク溝22を形成している。そして、オリフィス板21には、抵抗15に対応する部分にノズル孔(オリフィス)23がドライエッチングまた工夫シマレーザによって形成されており、これにより、1列のノズル孔23を備えた発熱ヘッド24が完成する。

【0023】ここまでが、ウエハの状態で処理される。 そして、最後に、工程7として、ダイシングソーなどを 用いてカッテングして、単位毎に個別に分割し、実装基 板にダイスボンデングし、端子接続して完成する。

【0024】尚、上記の例では、駆動回路16が露出した状態で示されているが、実際には保護膜が形成されている。また、保護膜を後からわざわざ形成するのではなく、オリフィス板21を図1(c) (図4(a),(b),(c) も同じ)の右方に延長して積層するようにして、オリフィス板21に駆動回路の保護膜を兼用させるようにしてもよい。

【0025】上記の1列のノズル孔23を備えた発熱へッド24はモノクロ用インクジェットへッドの構成であるが、通常フルカラー印字においては、前述したように、減法混色の三原色であるイエロー(Y)、マゼンタ(M)、シアン(C)の3色に、文字や画像の黒部分に専用されるブラック(Bk)を加えて合計4色のインクを必要とする。したがって、最低でも4列のノズル列が必要である。そして、上述した製造方法によれば4列の発熱へッドをモノリシックに構成することは可能であり、各列の位置関係も今日の半導体の製造技術により正確に配置することが可能である。

【0026】図5(b) は、上述の図1(c)及び図4(a),(b),(c)に示した発熱ヘッド24を4列並べてフルカラーのインクジェットヘッドを構成した状態を示す図である。尚、図5(a)は、発熱ヘッド24が4列並んだ構成を分かり易く示すため、図1(a)に示したと同様に工程1~工程2まで終了した状態のものを示している。また、この図5(b)に示す例では、オリフィス板に駆動回路の保護膜を兼用させる形状のものを示している。

【0027】図5(a)(b)に示すように、インクジェットへッド25は、大きな基板11上に、4個の発熱へッド24(24a、24b、24c、24d)が並んで配置されて形成される。このインクジェットへッド25は、例えばインク給送路18aから発熱へッド24aのインク溝22(図1(c)及び図4(b)参照)にMインクが供給され、インク給送路18bから発熱へッド24bのインク溝22にCインクが供給され、インク給送路18cから発熱へッド24cのインク溝22にYインクが供給され、そして、インク給送路18dから発熱へッド24dのインク溝22にBkインクが供給される。

【0028】このインクジェットヘッド25は、印字に際しては抵抗15(図2(a).(b)参照)が印字情報に応じて選択的に通電され、瞬時に発熱して膜沸騰現象を発生させ、その抵抗15に対応するノズル孔23からインク滴が吐出される。このようなインクジェット方式ではインク滴はノズル孔23の径に対応する大きさの略球形で吐出され、紙面地に略るの倍の径の大きさとなって印字される。

20 【0029】このようにして得られるフルカラーのインクジェットヘッドは、解像度が360dpiの場合であれば128ノズル×4列=640ノズルを備えることが可能であり、概略8.5 mm×19.0 mmの大きさのものまで作成可能である。また解像度が720dpiの場合であれば256ノズル×4列=1280ノズルをほぼ8.5 mm×19.0 mmの大きさの中に形成することが可能である。

【0030】ところで、上述したインクジェットヘッド 24又は25の製造方法における工程1及び工程2においては、発熱素子15の周辺部の構成に特別の工夫が凝らされている。すなわち、発熱素子周辺部の導電性を向上させると共に配線部を保護して加工の工程途上における損傷を低減させ、且つ高価な材料の使用量を極力低く抑えて、安価で動作効率のよいインクジェットヘッドを実現している。以下、これについて説明する。

【0031】図6は、本例のインクジェットヘッドの工程1及び2において形成される発熱素子及びその周辺部の形状を拡大して示す図である。同図に示すように、シリコン基板10(又は11)上には、拡散領域31が部分的に形成され、酸化膜32が全面に形成されている。その上に図外右方の駆動回路16(図2(a),(b),(c)参照)などを集積したLSIから伸び出すA1リード端子(個別配線電極14)が積層されている。

【0032】そして、その左方に、一端を上記の個別配線電極14上に積層され、他端を図外左方の共通電極12(図2(a), (b), (c) 参照)上に積層された発熱素子膜 15-1が積層される。この発熱素子膜 15-1は、例えば 15-10 などからなり厚さ15-10 の 15-10 の 15-10

50 【0033】その上に、発熱部15を除く部分に、W

7

(タングステン)に T_i (チタン)、 A_i (アルミニューム)又は S_i (シリコン)を10%以下含んだ合金からなる厚さ2000~4000Åの導電性保護膜33が、スパッタ技術等を用いて積層される。そして、この導電性保護膜33上に、厚さおよそ 1μ mのAu(金)電極膜34が、蒸着又は鍍金によって形成される。

【0034】上記の導電性保護膜33は、Ti、A1又はSiのような密着性の良い材料を10%以下程度含ませることにより、他の材料との密着性を向上させることができる。したがって、一方では下面が発熱素子膜15-1と良く密着し、他方では上面がAu電極膜34と良く密着する。すなわち本来は密着性の良くない発熱素子膜15-1とAu電極膜34とが導電性保護膜33を介して良く密着する。

【0035】これにより、同図の個別配線電極14、発熱素子膜15-1、導電性保護膜33、及びAu電極膜34が重なったC領域では、個別配線電極14から発熱素子膜15-1及び導電性保護膜33を介して電気抵抗の小さいAu電極膜34に駆動電流が流れる。そして、発熱素子膜15-1、導電性保護膜33、及びAu電極20膜34が重なったD領域でAu電極膜34から導電性保護膜33を介して発熱素子膜15-1に駆動電流が印加される。

【0036】 E領域より左方においても、発熱素子膜 15-1 と図外の共通電極 12 との関係は、上記と同様であり、これによって、E領域の発熱部 15 が発熱する。上記の A u 電極膜 34 は良導体であるので、上述したようにおよそ 1μ m程度の厚さで電極として充分機能する。また、このように、良導体の A u 電極膜 34 を介して発熱部 15 に駆動電流を流すことにより、A u 電極膜 30 34 による低抵抗化を計ることができ、これによって、インクジェットヘッドの大規模化を実現することが可能となる。

【0037】また、上記のC領域では、導電性保護膜33は、個別配線電極14からの印加電流をAu電極膜34に中継するだけではなく、導電性保護膜33の上部層(Au電極膜34、隔壁19、オリフィス板21)の加工時に、下部層の発熱素子膜15-1や個別配線電極14を損傷から防御する防壁の役目を兼用している。これによって、製品の歩留まりが向上する。

【0038】図7は、上記の構成に思い至るまでの間に調査した各種の電極部材の配線抵抗を示す図表である。同図は、いずれも厚さ 0.5μ m、長さ10mm、幅 0.5μ mと1.0mmの場合について、その配線抵抗を計算したものである。同図に明らかなように、Ni電極では1mm幅でも 1Ω 以上の抵抗値をもつが、Au電極では20022以下である。一方、発熱抵抗は10003000程度のものが使用されるので、配線抵抗としては 1Ω 以下のものが対象になる。

【0039】本実施の形態において発熱部周辺の構成で 50

は、Ti、Si又はAlを含むW膜で導電性保護膜33を形成するので、熱的にも液中でも、使用して安定な配線電極を構成することができる。また、密着性が向上したことにより、発熱抵抗体(発熱素子膜15-1及び発熱部15)の形成と同時に真空内での成膜の必要がなく、プロセスの制約が著しく低減する。また、Au電極を使用することができるので、電極配線部の低抵抗化が実現する。

[0040]

【発明の効果】以上詳細に説明したように、本発明によれば、密着性の密な膜部材を互いに密着性の疎な発熱材膜と良導体中継電極膜との間に介在させるので、駆動電極から良導体中継電極膜へ駆動電流が良く流れて発熱部の配列位置による抵抗差がなくなり、したがって、発熱部の多数化つまりオリフィスの多数化を実現でき、これにより、インクジェットヘッドの印字速度を向上させることが可能となる。

よの 0.04 よう また、熱及び処理液に強い素材を主原料として密着性の密な膜部材を形成するので、下部層の膜部材を上部層の加工工程中に発生しがちな損傷から防御することができ、したがって、製品歩留まりが向上してコスト低減に貢献することができる。

【図面の簡単な説明】

【図1】(a), (b), (c) は一実施の形態におけるインクジェットヘッドの製造方法を工程順に示す概略の平面図と断面図である。

【図2】(a) は図1(a) の平面図を一部拡大して詳細に示す図、(b) は(a) のA-A′ 断面矢視図、(c) は(a) のB-B′ 断面矢視図である。

30 【図3】(a) は図1(b) の平面図を一部拡大して詳細に 示す図、(b),(c) は(a) の図2(b),(c) と同一部分の断 面図である。

【図4】(a) は図1(c) の平面図を一部拡大して詳細に示す図、(b),(c) は(a) の図2(b),(c) と同一部分の断面図である。

【図5】図1(c) の発熱ヘッドを4列並べてフルカラーのサーマルインクジェットヘッドを構成した状態を示す図であり、(a) は工程1と工程2が終了した状態を示す図、(b) は完成図である。

40 【図6】本例のインクジェットヘッドの工程 I 及び2 において形成される発熱素子及びその周辺部の形状を拡大して示す図である。

【図7】各種の電極部材の配線抵抗を示す図表である。 【符号の説明】

- 10、11 シリコン基板
- 12 共通電極
- 13 共通電極給電端子
- 14 個別配線電極
- 15 抵抗(発熱素子)
- 0 16 駆動回路

(6) 特開2000-15817 17 駆動回路端子 22 インク溝 18 インク給送路 23 ノズル孔 (オリフィス) 18-1 溝 オリフィスの径の円 18-2 溝壁 24 (24a、24b、24c、24d) 発熱ヘッド 18′孔 25 フルカラーのインクジェットヘッド 19 隔壁 31 拡散領域 19-1 櫛の胴相当部分 32 酸化膜 19-2 櫛の歯相当部分 33 導電性保護膜 20 インク供給孔 3 4 Au(金)電極膜 21 オリフィス板 10

[\(\text{Z}\)]

【図5】

【図3】

[図4]

【図6】

【図7】

		👯 0.5mm	(20 1.0 mm
材料	比据钪(μΩ-ca)	板坑(500×0.5 μm2)	抵抗(1000 ×0.5 μm2)
NI	8.14	2. 456	1. 23
Αu	2.06	0.824	0.41
ΑI	2 - 5	1	0.50
w	4.89	1.956	0.98
TI.	4 2	16.8	8.40

フロントページの続き

(72) 発明者 金光 聡

東京都青梅市今井3丁目10番6号 カシオ 計算機株式会社青梅事業所内 F ターム(参考) 20057 AF01 AF37 AF93 AG12 AG32

AG39 AG46 AG83 AG88 AP02

AP12 AP13 AP14 AP22 AP23

AP27 AP32 AP33 AP52 AP54

AP55 AP57 AQ02 AQ03 BA03

BA13