Rics = looxing int ROCI+RICSS 10. C/+ JOKx 1x 10-6) 140.055 实验目的

- 1、掌握二阶系统性能指标的测试技术;
 - 2、研究二阶系统的阻尼比ζ 和无阻尼自振荡频率 ω 对系统动态性能的 影响:
 - 3、分析系统在不同输入信号作用下的稳态误差;
 - 4、观察系统稳定和不稳定的运行状态,研究开环放大系数及时间常数对系 统稳定性的影响。

实验仪器及设备

- 1、STAR ACT 教学模拟机
- 2、数字示波器

实验内容及步骤

1、断开电源,按图1的模拟电路组成二阶系统(自行选择放大器)。

7= 197.8

使 K3=10 (A1 放大器的放大系数), 并保持输入矩形波幅值不变, 依下表所列 (α =R/100k)的变化值逐次改变,记录表内 σ %, t_w t_s 数据 (见下表)

注意: α = 0 情况下的意思是内反馈不接入电路

参数		ωn	ξ	ωd	σ _	t,·	t _s	
α = 0	计算值	ちっか			×	×	X	
	实验值							
α = 0.13	计算值						- 60	
	实验值				48.5	120.0	31 2	
$\alpha = 0.33$	计算值				,			
	实验值				15.26	11000	(75.0 M	n s
$\alpha = 0.44$	计算值							
	实验值				6%	135.8	1641	
$\alpha = 0.63$	计算值							
	实验值				\	_	152	

3. 断开电源依次按图所示的模拟电路组成 0 型, I 型, II 型系统,按实验内容进行实验观察(R 使用 D5 区阻容元件, $R \ge 100K$)

多人とV

图 4 - II 型系统

8 2

200

4. 分别改变 0, I 型系统的放大系数(即改变电位器的电阻值),观察 0, I 型系统在阶跃信号和斜波信号输入时的稳态误差有何变化,并记录(阶跃信号可以使用矩形波信号代替)。

	•
斜坡信号	

四、 实验报告要求: _______

- 1. 认真整理实验数据,记录实验曲线和实验现象;
- 2. 分析二阶系统的ζ和ωη对系统动态性能的影响;
- 3. 分析系统的结构和参数对稳态误差的影响;
- 4. 提出实验中出现的问题,体会和建议。