Black-Scholes call formula

The Black-Scholes call formula

$$C_0 = e^{-rT} \left[S_0 e^{rT} \Phi(d_1) - K \Phi(d_2) \right]$$
$$= S_0 \Phi(d_1) - K e^{-rT} \Phi(d_2)$$

- Two more questions:
 - Can it reprise the underlying?
 - What should be the limit of alpha, the hedge ratio?

Repricing the stock

$$\begin{split} E\Big[e^{-rt}S_{t}\Big] &= E\Big[S_{0}e^{-\frac{1}{2}\sigma^{2}t + \sigma\sqrt{t} \times z}\Big] \\ &= S_{0}\int_{-\infty}^{+\infty}e^{-\frac{1}{2}\sigma^{2}t + \sigma\sqrt{t} \times x}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx \\ &= S_{0}\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\sigma^{2}t + \sigma\sqrt{t} \times x - \frac{x^{2}}{2}}dx \\ &= S_{0}\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x - \sigma\sqrt{t})^{2}}dx \\ &= S_{0}\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^{2}}dy = S_{0}!!! \end{split}$$

Alternative Proof

• As $K \rightarrow 0$, there are

$$d_1 \to +\infty$$
 and $\Phi(d_1) \to 1$,

so that we have

$$C_0 = S_0 \Phi(d_1) - Ke^{-rT} \Phi(d_2) \to S_0!$$

The alpha

Under the binomial model,

$$\alpha = \frac{C(S_{\Delta t}^{u}, \Delta t) - C(S_{\Delta t}^{d}, \Delta t)}{S_{\Delta t}^{u} - S_{\Delta t}^{d}}$$

$$\rightarrow \frac{\partial C(S_{0}, 0)}{\partial S} \quad \text{as} \quad \Delta t \rightarrow 0$$

The alpha, cont'd

Proposition: for the Black-Scholes formula

$$C_0 = S_0 \Phi(d_1) - Ke^{-rT} \Phi(d_2),$$

there is

$$\frac{\partial C(S_0, 0)}{\partial S_0} = \Phi(d_1) \qquad \Box$$

• $z \sim N(0,1)$ means

$$\Pr{ob(z \le a)} = \Phi(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

where

$$n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

is the density function of z.

Proof:

Note that

$$\frac{\partial \Phi(d_i)}{\partial S_0} = \frac{\partial \Phi(d_i)}{\partial d} \frac{\partial d_i}{\partial S_0} = n(d_i) \frac{1}{S_0 \sigma \sqrt{T}}$$

It follows that

$$\frac{\partial C(S_0, 0)}{\partial S_0} = \Phi(d_1) + \frac{S_0 n(d_1) - e^{-rT} K n(d_2)}{S_0 \sigma \sqrt{T}}$$

$$= \Phi(d_1) + \frac{n(d_1) - e^{-rT} \frac{K}{S_0} n(d_2)}{\sigma \sqrt{T}}$$

The last term equals to zero since

$$n(d_{1}) = n(d_{2} + \sigma\sqrt{T})$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{(d_{2} + \sigma\sqrt{T})^{2}}{2}}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{d_{2}^{2} + 2d_{2}\sigma\sqrt{T} + \sigma^{2}T}{2}}$$

$$= n(d_{2}) \times e^{-(\ln\frac{S_{0}}{K} + (r - \frac{1}{2}\sigma^{2})T + \frac{1}{2}\sigma^{2}T)}$$

$$= e^{-(\ln\frac{S_{0}}{K} + rT)} n(d_{2}) = e^{-rT} \frac{K}{S_{0}} n(d_{2}) \quad \Box$$

Black-Scholes formula for put options

It can be proved by brute force that

$$P_0 = e^{-rT} E \left[\left(K - S_T \right)^+ \right]$$
$$= K e^{-rT} \Phi(-d_2) - S_0 \Phi(-d_1)$$

and

$$\frac{\partial P_0}{\partial S_0} = -\Phi(-d_1)$$

But we want to take an alternative approach.

Forward contract – constant interest rate

- Forward contract: a deal entered at time 0 to buy/sell an asset at a future time for certain price.
- What should be the fair value for the forward contract?
- We try arbitrage pricing.
- To ensure delivery, the seller must acquire the asset at time 0.

Arbitrage Pricing

- Denote
 - the current price of the asset by S_0 ,
 - − The strike price by *K*
 - the delivery time by T,
- To be able to deliver one unit of the asset, the seller then does the following transactions:
 - Borrow cash for the amount of S_0 .
 - Long 1 unit of the asset.
- This is set of of zero-net transactions at time 0.

Arbitrage Pricing, cont'd

 At the delivery time, T, the seller will deliver the asset to the buyer for the price of K, and thus ends up with the following profit/loss value,

$$P\&L = K - S_0 e^{rT}.$$

 If the absence of arbitrage, the fair value of the forward contract must be

$$V_0 = -e^{-rT} P \& L = S_0 - e^{-rT} K.$$

Forward Price

 Forward price is the special strike price K at which the value of the forward contract is zero:

$$F_0 = S_0 e^{rT}$$

Call-Put Parity

 Call and put parity means that: for the same strike and maturity,

Long Call – Short Put = Forward Contract

Proof: The future value at T equal:

$$(S_T - K)^+ - (K - S_T)^+ = S_T - K$$

The PV must be equal as well:

$$e^{-rT}E[(S_T - K)^+] - e^{-rT}E[(K - S_T)^+] = e^{-rT}E[S_T] - e^{-rT}K$$

Black's formula for put option

Put-call parity:

$$\begin{split} P_0 &= C_0 - \left[S_0 - Ke^{-rT} \right] \\ &= S_0 \Phi(d_1) - Ke^{-rT} \Phi(d_2) - \left[S_0 - Ke^{-rT} \right] \\ &= S_0 \left[\Phi(d_1) - 1 \right] - Ke^{-rT} \left[\Phi(d_2) - 1 \right] \\ &= Ke^{-rT} \Phi(-d_2) - S_0 \Phi(-d_1) \end{split}$$

Hedge ratio

$$\alpha = -\Phi(-d_1)$$

Black-Scholes Formulae

Call option price:

$$C(S, K, \sigma, r, T) = S\Phi(d_1) - Ke^{-rT}\Phi(d_2)$$

Put option price:

$$P(S, K, \sigma, r, T) = Ke^{-rT}\Phi(-d_2) - S\Phi(-d_1)$$

where

$$d_1 = \frac{\ln \frac{S}{K} + rT}{\sigma \sqrt{T}} + \frac{1}{2}\sigma \sqrt{T} \quad \text{and} \quad d_2 = d_1 - \sigma \sqrt{T}$$

Limitations of the BS formula

- Constant interest rate
- Unacceptable for fixed-income markets
- We look for fixes.

Hiding the interest rate

- To price
 - Interest-rate derivatives,
 - Commodity derivatives, and
 - European options,
- Black (1976) revised the Black-Scholes formula by replacing

$$e^{-rT} \Rightarrow d(0,T)$$

the discount factor

$$S_0 e^{rT} \Longrightarrow F_0 = \frac{S_0}{d(0,T)}$$

the forward price

From Black-Scholes formula to Black formula

 Black formula (worth at least multi-billion dollars):

$$C_0 = d(0,T) [F_0 \Phi(d_1) - K \Phi(d_2)]$$

= $S_0 \Phi(d_1) - d(0,T) K \Phi(d_2)$

where

$$d_{1} = \frac{\ln \frac{F_{0}}{K} + \frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}, \quad d_{2} = d_{1} - \sigma\sqrt{T}.$$

Hedge ratio

$$\alpha = \Phi(d_1), \quad \beta = -K\Phi(d_2)$$

Zero-coupon Bond Prices as Discount Factors

- We now rewrite d(0,T) as P(0,T), the price of zero-coupon bond with \$1 notional.
- The Black's formula:

$$C_0 = P(0,T) [F_0 \Phi(d_1) - K \Phi(d_2)]$$

= $S_0 \Phi(d_1) - P(0,T) K \Phi(d_2)$

with

$$d_{1,2} = \frac{\ln \frac{F_0}{K} \pm \frac{1}{2} \sigma^2 T}{\sigma \sqrt{T}}, \quad F_0 = \frac{S_0}{P(0,T)}.$$

Regarding Hedging

Hedge ratio:

$$\alpha = \Phi(d_1), \quad \beta = -K\Phi(d_2)$$

- To hedge the option, the option seller
 - -Long $\alpha = \Phi(d_1)$ unit of share.
 - -Long $\beta = -K\Phi(d_2)$ unit of zero-coupon bond (with \$1 notional).

Black's formula for put option

Multi-million formula:

$$P_0 = P(0,T)[K\Phi(-d_2) - F_0\Phi(-d_1)]$$

= $P(0,T)K\Phi(-d_2) - S_0\Phi(-d_1)$

Hedge ratio

$$\alpha = -\Phi(-d_1), \quad \beta = K\Phi(-d_2)$$

Forward Contracts

- For using the call-put parity I need to price forward contracts under stochastic interest rates?
- We try arbitrage pricing again.
- To ensure delivery, the seller must acquire certain units of the asset using capital obtained through shorting a zero-coupon bond.

Arbitrage Pricing

- Denote
 - the current price of the asset by S_0 ,
 - The strike price by K
 - the delivery time by *T*
- To be able to deliver one unit of the asset, the seller then does the following transactions:
 - Short $S_0/P(0,T)$ units of -maturity zero-coupon bond for \$1 notional, and
 - Long 1 unit of the asset.
- This is set of of zero-net transactions at time 0.

Arbitrage Pricing, cont'd

 At the delivery time, T, the seller will deliver the asset to the buyer for the price of K, and thus ends up with the following profit/loss value,

$$P\&L(T) = K - \frac{S_0}{P(0,T)}.$$

The value of the forward contract is thus

$$V_0$$
 = negative PV of the P&L
= $-P(0,T) \times P\&L(T) = S_0 - P(0,T)K$

Forward Price

 The special strike price that makes the value of the forward contract equal to zero is

$$F_0 = \frac{S_0}{P(0,T)}.$$

which is called the forward price.

Put-Call Parity

 Long a call and short a put with the same strike equals to a forward contract:

$$C_0 - P_0 = S_0 \left[\Phi(d_1) + \Phi(-d_1) \right]$$
$$-P(0,T)K \left[\Phi(d_2) + \Phi(-d_2) \right]$$
$$= S_0 - P(0,T)K$$

Here we have used the equality

$$\Phi(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$= 1 - \int_{a}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1 - \int_{-\infty}^{-a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1 - \Phi(-a)$$

The Black's formula

The Black's formulae for call and put options are

$$C_0 = P(0,T) [F_0 \Phi(d_1) - K \Phi(d_2)]$$

$$= S_0 \Phi(d_1) - P(0,T) K \Phi(d_2)$$

$$P_0 = P(0,T) [K \Phi(-d_2) - F_0 \Phi(-d_1)]$$

$$= P(0,T) K \Phi(-d_2) - S_0 \Phi(-d_1)$$

• for

$$d_1 = \frac{\ln \frac{F_0}{K} + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T}.$$

Alpha for Hedging

For alpha, we have

$$\frac{\partial C(S_0, 0)}{\partial S_0} = \frac{\partial C(F_0, 0)}{\partial F_0} \frac{\partial F_0}{\partial S_0} = \Phi(d_1)$$
$$\frac{\partial P(S_0, 0)}{\partial S_0} = \frac{\partial P(F_0, 0)}{\partial F_0} \frac{\partial F_0}{\partial S_0} = -\Phi(-d_1)$$

 Examples: Black's formula for call options (http://www.math.ust.hk/~malwu/math4511/Matlab codes/Black_call.zip)