

Interspeech 2023 마비말 장애 관련 논문

최예린

서강대학교 인공지능학과

Email: lakahaga@u.sogang.ac.kr 2023.7.3

Interspeech 2023 – Dysarthric Speech Assessment

- Automatic assessments of dysarthric speech: the usability of acoustic-phonetic features
- Classification of multi-class vowels and fricatives from patients having Amyotrophic Lateral S clerosis with varied levels of dysarthria severity
- <u>Parameter-efficient Dysarthric Speech Recognition Using Adapter Fusion and Householder Transformation</u>
- Few-shot dysarthric speech recognition with text-to-speech data augmentation
- <u>Latent Phrase Matching for Dysarthric Speech</u>
- Speech Intelligibility Assessment of Dysarthric Speech by using Goodness of Pronunciation with Uncertainty Quantification
- 6편의 논문 (Oral Session)
 - 4개의 논문이 공개되어있음 (밑에서부터 4개)

IHS

Parameter-efficient Dysarthric Speech Recognition Using Adapter Fusion and Householder Transformation

- Interspeech 2023
- KULeuven
- Paper

Overview

- Dysarthric ASR 에서의 challenge: data scarcity, vast diversity
- Adapter is better than Full-finetuning
- Speaker 마다, 심각도 마다 그 음성 특징이 다양하게 나타남
- Parameter efficiency와 speaker adaptation을 모두 해보자
- ⇒ Adaptor Fusion for target speaker adaptation
- 정상인 음성으로 ASR 모델 학습 -> 각 speaker마다 하나의 adaptor를 훈련 -> target speaker (새로운 speaker)에 대해서 fusion layer로 knowledge transfer를 하여 성능 최적화

Model structure

Figure 1: (a) Transformer encoder layer with adapters and fusion layer, (b) details of the fusion layer.

Base ASR Model

- Transformer encoder decoder マ조
- Decoder는 CTC decoder에 대해서 도 실험
- Adaptor와 fusion layer는 last encoder layer에만 추가
- Fusion layer
 - K,V 각 adaptor의 stacked output
 - Q: encoder의 output
- Speaker adaptation도 하지만, 각 speaker의 특징에서도 학습할 수 있 도록 fusion layer를 추가

훈련 방법

- 1. 정상인 음성에 대해 음성인식 모델 훈련
 - 300 시간의 Dutch Speech
- 2. 하나의 adaptor를 14명의 speaker에 대해서 훈련
 - Dysarthric Dutrch Speech (명령어 데이터)
- 3. 각 Source speaker에 대해 하나의 adaptor를 훈련
 - 이때 각 adaptor는 2번 adaptor의 weight에서 시작
- 4. Target speaker에 대해 fusion layer를 훈련

Result

Table 1: Number of target-specific trainable parameters and CER in % when using at most 60 % of data.

Name	#para	CER
Pretrain	-	49.98
FT-Enc	17.7M	1.62
FT-EncDec	27.2M	1.39
Pretrain-Adpt	_	13.27
Source-Adpt-avg	_	14.08
Target-Adpt	131.5k	4.40
Fusion-256dAtt+W	197.6k	2.85
Fusion-64dAtt+W	98.6k	2.61
Fusion-64dAtt	33.0k	8.38
Fusion-W	65.5k	3.03
Fusion- $\mathbf{W}_{\mathbf{U}\mathbf{V}}$	-	6.62
Fusion- $\mathbf{W}_{\mathbf{\Sigma}}$	-	13.34
Fusion-P ₆₄	32.8k	3.28
Fusion- W_{64}	33.0k	3.19
Fusion-64dAtt+W ₆₄	66.1k	2.79

● Target speaker에 대한 데이터는 60%만 학습

- Pretrain-Adapt
 - 전체 speaker 함께 adaptor 훈련
- Target-Adapt
 - Pretrain-adapt를 target speaker에 대해 finetune
- Fusion $+ \alpha$
 - Fusion layer를 추가할 때 parameter를 줄여보고자 진행한 실험
 - K,Q layer의 dimension을 64로 설정할 때(줄일 때) 가장 성능이 좋았음

Result

Figure 2: CER results of different models when training on different amounts of target speaker data.

● Fusion layer에서 attention dimension을 줄였을 때가 성능이 full fine-tuning과 가장 비슷한 성능을 내었음

Few-shot dysarthric speech recognition with text-to-speech data augmentation

- **Interspeech 2023**
- **Idiap Research Institute**
- **Paper**

Overview

- 마비말 장애 음성의 ASR 성능 향상을 위한 데이터 증강 기법
- FastSpeech2를 이용하여 마비말 장애 음성 합성
 - 이때, variance adaptor에 dysarthric embedding을 추가
 - Speaker embedding을 VC system의 output을 활용

● 실험

- TTS로 증강된 데이터를 사용해서 ASR 성능이 오르는지
- 제안한 TTS 모델이 unseen speaker에 대해서도 데이터 증강이 가능한지?

● 결과

- synthetic speech만으로 훈련하는 것은 한계가 있지만, 실제 음성과 합치면 실제 음성만 사용하는 것보다는 낫다
- Unseen speaker에 대한 데이터 증강은 성능이 안 좋았음

Model Structure

(a) FastSpeech 2

Modified FastSpeech2

- Dysarthric embedding을 추가
 - speaker의 심각도에 대한 embedding
- 이때 심각도를 예측하지 않고, 주어진 값으로 사용
 - speaker에 dependent하기 때문에
 - 우리와 같은 severity 체계 사용 (0, 1, 2)
- For unseen speaker
 - VC의 embedding을 speaker embedding으로 사용
 - X-vector나, id embedding을 쓰는 것 보다 좋았음
 - AdaIN-VC

AdaIN-VC

- **One-shot Voice Conversion by Separating Speaker and Content Representations** with Instance Normalization
 - Interspeech 2019 / Hung-yi Lee, NTU / Paper, Github
- Instance Normalization을 사용
 - ⇒ Speaker 와 content 정보 분리 가능
 - Channel 단위로 normalization 적용

$$\mu_c = rac{1}{W} \sum_{w=1}^W M_c[w], \qquad \qquad M_c'[w] = rac{M_c[w] - \mu_c}{\sigma_c} \ \sigma_c = \sqrt{rac{1}{W} \sum_{w=1}^W (M_c[w] - \mu_c)^2 + \epsilon},$$

AdaIN

$$M_c'[w] = \gamma_c rac{M_c[w] - \mu_c}{\sigma_c} + eta_c.$$
 • γc , $eta c$
• γc , $eta c$
• γc , $eta c$
• Speaker encoder의 Output의 선형 변환

- 즉, speaker 정보

증강 방법

- 대상 데이터셋: UA-Speech (단어 읽기 음성 set)
- 심각도 1,2:15명, 심각도 0:13 명
- 대상 텍스트 : block 1, 3
 - Block 2는 ASR 성능 평가에 활용 (block: 단어 set)
- UA-Speech의 훈련셋을 이용하여 TTS 모델 훈련하여 데이터 증강
 - 같은 데이터셋으로 AdaIN-VC 모델도 훈련
 - Vocoder (Hifi-GAN)도 훈련 (큰 성능 차이 없었음)
- Few-shot Speaker 실험을 위해 심각도 1,2에 대해 14명 훈련, 1명에 대해 평가
 - 구축한 TTS system이 unseen speaker의 5개 단어를 학습한 후, 합성음을 생성
 - 그 후, speaker dependent ASR을 훈련하여 ASR 성능 관찰
 - ⇒ Unseen speaker에 대해서도 증강이 가능한지 실험

Result

Table 2: Word error rates (WER) for each group of dysarthric speakers. For clarity, we also indicate whether the target speaker was seen during TTS training or not, where applicable.

Systems	Seen	Sev.	Modsev.	Mod.	Mild	Total
Baselines						
CTL	-	96.2	74.5	55.1	23.2	56.9
Top-line	-	70.3	42.7	38.2	24.0	41.3
+ CTL	-	65.8	34.3	25.3	15.4	32.8
Data augme	ntation					
TTS-aug	/	70.8	38.7	33.6	18.5	37.6
TTS-aug4	1	68.5	36.9	32.4	19.2	36.7
Few-shot						
F5-ctl	X	99.6	99.1	98.1	92.0	96.5
+ CTL	X	94.9	75.9	55.8	22.3	56.7
F100-ctl	X	98.8	99.0	92.5	83.3	91.7
+ CTL	X	93.8	75.6	51.7	21.8	55.4
F5-dys	X	99.4	99.6	98.5	95.4	97.8
+ CTL	X	94.4	76.1	53.9	22.5	56.8
F100-dys	X	99.3	99.2	95.6	91.3	95.6
+ CTL	X	94.5	72.7	52.4	20.6	54.6
F5-mix	X	99.3	99.1	98.3	92.1	96.5
+ CTL	X	94.7	75.8	55.6	21.4	56.3
F100-mix	X	98.6	97.1	92.7	82.6	91.3
+ CTL	X	93.7	72.7	50.7	20.9	54.2
TTS-only	1	98.2	93.9	87.8	85.1	90.5
TTS-only4	✓	98.0	92.6	86.5	79.7	87.9

- 각 심각도별 Speaker-dependent ASR 성능 (WER)
- CTL: control, 즉, 정상인 음성
- Top-line: UA Speech 훈련 set 모두 학습 시킨 ASR 모델
- TTS-aug: UA Speech 훈련 set + 증강
 - Aug4: 합성음 수량을 4배로
- Few-shot
 - unseen speaker에 대해 합성한 후, ASR 학습
- ASR model
 - Acoustic: Kaldi-GMM with MFCC
 - Unigram decoder
- UA Speech+정상인 음성을 학습한 게 제일 좋음
- UA Speech + TTS : 증강 전보다 성능 향상
 - 증강 데이터 늘리면 더 향상
- Few-shot으로 생성한 데이터 : 성능 하락
- 증강 데이터만 학습 : 성능 더 안 좋음

합성된 데이터 분석

- 각 acoustic unit의 분포 간 KL divergence와 주관적 말 명료도의 상관도를 관찰
 - GMM 기반 ASR system에서 clustering 된 triphone 단위의 예측된 가우시안 분포
 - (a): 기존 speaker 정보 그대로 증강
 - (b): 하나의 utterance에 대해서 심각도 임베딩만 바꿔가면서 증강
 - A 에서는 기존 speaker 의 심각도를 따랐다면, 여기서는 한 speaker에 대해서 0,1,2 모두 증강해봄
 - (c): few shot 증강

- (a): original 데이터의 unit 간 KL divergence와 말 명료도의 상관 계수 (r=0.90)와 증강된 데이터의 상관계수가 유사함(r=0.85)
 - 이는 a,b,c 모두에서 나타남
- 특히, b에서 심각도를 바꿔가면서 증강했을때, 각 utterance의 평균 duration이 심각도 별로 다름
 - 0: 1.2 초 / 1: 1.9 / 2: 2.6
 - 심각도 embedding이 length regulator에도 영향을 미치는 것을 확인

감사합니다.