Universidad Politecnica Salesiana

Mombre Jessica Ñauta.

Asignatura: Simulación.

Covid-19 infección en Ecuador. Modelos probabilisticos

Implementacion de un modelo probabilistico de infección por el virus Covid-19

Se realiza un análisis probabilistico simple del crecimiento de la infección en Python y el modelos para comprender mejor la evolución de la infección.

Se crea modelos de series temporales del número total de personas infectadas hasta la fecha (es decir, las personas realmente infectadas más las personas que han sido infectadas). Estos modelos tienen parámetros, que se estimarán por ajuste de probabilidad.

```
In [1]: # Importar las librerias para el analasis
   import pandas as pd
   import numpy as np
   from datetime import datetime,timedelta
   from sklearn.metrics import mean_squared_error
   from scipy.optimize import curve_fit
   from scipy.optimize import fsolve
   from sklearn import linear_model
   import matplotlib.pyplot as plt
   %matplotlib inline
```

```
In [2]: # Actualizar los datos (URL)
url = 'https://covid.ourworldindata.org/data/ecdc/new_cases.csv'
df = pd.read_csv(url)
df
```

Out[2]:		date	World	Afghanistan	Albania	Algeria	Andorra	Angola	Anguilla	Antigua and Barbuda	Argentina
	0	2019- 12-31	27	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
	1	2020- 01-01	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
	2	2020- 01-02	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
	3	2020- 01-03	17	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
	4	2020- 01-04	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
	5	2020- 01-05	15	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN

	date	World	Afghanistan	Albania	Algeria	Andorra	Angola	Anguilla	Antigua and Barbuda	Argentina
6	2020- 01-06	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
7	2020- 01-07	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
8	2020- 01-08	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
9	2020- 01-09	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
10	2020- 01-10	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
11	2020- 01-11	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
12	2020- 01-12	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
13	2020- 01-13	1	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
14	2020- 01-14	1	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
15	2020- 01-15	1	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
16	2020- 01-16	0	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
17	2020- 01-17	5	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
18	2020- 01-18	17	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
19	2020- 01-19	136	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
20	2020- 01-20	20	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
21	2020- 01-21	153	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
22	2020- 01-22	142	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
23	2020- 01-23	97	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
24	2020- 01-24	266	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
25	2020- 01-25	453	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
26	2020- 01-26	673	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
27	2020- 01-27	797	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN

	date	World	Afghanistan	Albania	Algeria	Andorra	Angola	Anguilla	Antigua and Barbuda	Argentina
28	2020- 01-28	1767	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
29	2020- 01-29	1480	0.0	NaN	0.0	NaN	NaN	NaN	NaN	NaN
•••										
305	2020- 10-31	542158	157.0	319.0	319.0	98.0	195.0	0.0	3.0	13955.0
306	2020- 11-01	457999	76.0	241.0	291.0	91.0	289.0	0.0	1.0	9745.0
307	2020- 11-02	487232	132.0	327.0	330.0	69.0	247.0	0.0	0.0	6609.0
308	2020- 11-03	470494	95.0	321.0	302.0	63.0	230.0	0.0	0.0	9598.0
309	2020- 11-04	504999	86.0	381.0	405.0	22.0	193.0	0.0	2.0	12145.0
310	2020- 11-05	569891	121.0	396.0	548.0	135.0	349.0	0.0	0.0	10652.0
311	2020- 11-06	612387	40.0	421.0	642.0	90.0	236.0	0.0	0.0	11100.0
312	2020- 11-07	606021	58.0	489.0	631.0	0.0	289.0	0.0	0.0	11786.0
313	2020- 11-08	593274	126.0	495.0	581.0	184.0	121.0	0.0	1.0	8037.0
314	2020- 11-09	528837	80.0	501.0	670.0	64.0	112.0	0.0	0.0	5331.0
315	2020- 11-10	502288	224.0	525.0	642.0	54.0	98.0	0.0	0.0	8317.0
316	2020- 11-11	566935	0.0	563.0	753.0	40.0	247.0	0.0	0.0	11976.0
317	2020- 11-12	623511	146.0	507.0	811.0	90.0	136.0	0.0	0.0	10880.0
318	2020- 11-13	647499	360.0	410.0	851.0	49.0	137.0	0.0	0.0	11162.0
319	2020- 11-14	635829	66.0	490.0	867.0	109.0	104.0	0.0	2.0	11859.0
320	2020- 11-15	594470	205.0	532.0	844.0	0.0	171.0	0.0	1.0	8468.0
321	2020- 11-16	514538	163.0	597.0	860.0	147.0	146.0	0.0	0.0	5645.0
322	2020- 11-17	544481	65.0	602.0	910.0	42.0	77.0	0.0	0.0	7895.0
323	2020- 11-18	582979	383.0	694.0	1002.0	37.0	164.0	0.0	0.0	10621.0

	date	World	Afghanistan	Albania	Algeria	Andorra	Angola	Anguilla	Antigua and Barbuda	Argentina
324	2020- 11-19	625770	0.0	711.0	1038.0	67.0	203.0	0.0	5.0	10332.0
325	2020- 11-20	640970	282.0	786.0	1023.0	48.0	104.0	0.0	0.0	10110.0
326	2020- 11-21	679758	232.0	836.0	1103.0	76.0	212.0	0.0	0.0	9592.0
327	2020- 11-22	572043	154.0	737.0	1019.0	65.0	279.0	0.0	0.0	7143.0
328	2020- 11-23	518858	252.0	565.0	1088.0	49.0	80.0	1.0	0.0	4181.0
329	2020- 11-24	533527	246.0	795.0	1005.0	48.0	0.0	0.0	0.0	3998.0
330	2020- 11-25	561704	185.0	744.0	1133.0	47.0	141.0	0.0	1.0	7434.0
331	2020- 11-26	649666	200.0	644.0	1025.0	77.0	108.0	0.0	0.0	8593.0
332	2020- 11-27	549900	0.0	656.0	1085.0	106.0	79.0	0.0	1.0	9043.0
333	2020- 11-28	616139	214.0	645.0	NaN	76.0	NaN	0.0	0.0	7846.0
334	2020- 11-29	552296	228.0	545.0	2102.0	60.0	266.0	0.0	0.0	6098.0

335 rows × 216 columns

Imprimos los resultados y agregamos el numero del dia

```
In [3]: df = df.loc[:,['date','Ecuador']] #Selecciono Las columnas de analasis
    # Expresar Las fechas en numero de dias desde el 01 Enero
    FMT = '%Y-%m-%d'
    date = df['date']
    df['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("202 df"))
```

```
Out[3]:
                date Ecuador
            0
                  -1
                           0.0
             1
                   0
                           0.0
            2
                   1
                           0.0
            3
                   2
                           0.0
             4
                   3
                           0.0
            5
                   4
                           0.0
             6
                   5
                           0.0
             7
                   6
                           0.0
                   7
                           0.0
```

	date	Ecuador
9	8	0.0
10	9	0.0
11	10	0.0
12	11	0.0
13	12	0.0
14	13	0.0
15	14	0.0
16	15	0.0
17	16	0.0
18	17	0.0
19	18	0.0
20	19	0.0
21	20	0.0
22	21	0.0
23	22	0.0
24	23	0.0
25	24	0.0
26	25	0.0
27	26	0.0
28	27	0.0
29	28	0.0
•••		•••
305	304	845.0
306	305	1045.0
307	306	1002.0
308	307	368.0
309	308	548.0
310	309	1323.0
311	310	350.0
312	311	725.0
313	312	978.0
314	313	1421.0
315	314	362.0
316	315	442.0
317	316	919.0
318	317	883.0

	date	Ecuador
319	318	1161.0
320	319	953.0
321	320	668.0
322	321	381.0
323	322	428.0
324	323	1146.0
325	324	996.0
326	325	594.0
327	326	1036.0
328	327	767.0
329	328	301.0
330	329	492.0
331	330	794.0
332	331	908.0
333	332	1396.0
334	333	1375.0

335 rows × 2 columns

Ahora podemos analizar un modelo probabilisto para el examen.

El modelo basado en probabilidad

Para realizar un estimacion del factor de crecimiento de los casos de Covid 19 en Ecuador calculamos la mediana, con esto obtenemo el valor medio de crecimiento de un conjunto de

datos, con esto podemos obtener un factor de crecimiento o taza de crecimiento de los nuevos casos.

```
In [5]: filtro = df["Ecuador"][61:] # Filtro los datos que se empezo a tener casos
#Obtenemos La mediana
media = filtro.mean()
mediana = filtro.median()
print("La mediana es: ", mediana)
print("La media es:", media)
```

La mediana es: 670.0 La media es: 709.6988847583643

De la ecuación de la recta y = mX + b nuestra pendiente «m» es el coeficiente y el término independiente «b»

```
In [6]: #Vamos a comprobar:
    # según la media y la mediana podemos obtener la taza de crecieminto y predicir su c
    # Cargamos Los datos de total de casos
    url = 'https://covid.ourworldindata.org/data/ecdc/total_cases.csv'
    df_t = pd.read_csv(url)
    FMT = '%Y-%m-%d'
    date = df_t['date']
    df_t['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2
    df_t = df_t.loc[:,['date','Ecuador']] #Selecciono las columnas de analasis
    y = list(df_t.iloc [:, 1]) # Total casos
    x = list(df_t.iloc [:, 0]) # Dias
    #Realizamos un ejemplo de prediccion
    prediccion_siguiente = int(y[-1] + mediana)
    print(prediccion_siguiente)
```

191579

Practica

1. Comparar el modelo de predicion matematico vs probabilidad.

- 2. Generar el SIR en base al modelo de probabilidad y obtener beta y gamma con una semana de prediccion.
- 3. Retroceder un semana y comparar el modelo matematico vs probabilidad vs reales. Solo cargan los datos para generar los modelos menos 7 dias.

Puntos extras: Investigas sobre la correlacion de variables y aplicar el calculo en base a los datos del Ecuador.

1. Comparar el modelo de predicion matematico vs probabilidad

Modelo Probabilistico

```
# Implementar
In [8]:
         fig = plt.figure(figsize=(15,5))
         ax = fig.add_subplot(111, axisbelow=True)
         ax.plot(x[:len(x)-9], y[:len(x)-9], 'b', alpha=1, lw = 2, label = 'Datos reales')
         ax.plot(x[len(x)-10:], y[len(x)-10:], 'r', alpha=1, lw = 2, label = 'Prediccion')
         ax.set xlabel('Dias')
         ax.set_ylabel('Numero de Contagiados')
         ax.set_title("Modelo Probabilístico")
         ax.legend()
         ax.grid()
         x_matematico = x[:]
         y_matematico = y[:]
         for i in range(x[-1], x[-1]+7):
             x.append(i)
             y.append(int(y[-1] + mediana))
         print('Los casos en los proximos días serán: ',y[-1]+7,)
```

Los casos en los proximos días serán: 202306

Modelo Polinomial

```
In [10]: #Implementar
    df = pd.read_csv('owid-covid-data.csv').fillna(0)
    ndf= df.loc[(df['location'] == 'Bolivia') & (df['total_cases'] != 0)]
    ndf1=ndf[['date','total_cases']]
    x=np.arange(1,len(ndf1)+1,1, dtype='float')
    y=np.array(ndf1.values[:,1], dtype='float')
    fun_pol = np.poly1d(np.polyfit(x, y, 5))
    # print(fun_pol)
# print()
    print('Los casos en los próximos 7 días serán: ', round(fun_pol(len(x)+7),5))
    y_pred=fun_pol(x)
```

```
#Propiedades
plt.title('Casos de infectados de COVID-19 en Bolivia')
plt.xlabel('Días')
plt.ylabel('Número Casos')
plt.grid(color='black', linestyle='dotted', linewidth=0.5)

plt.scatter(x,y,label="Casos de Datos Reales",color="red")
plt.plot(x, y_pred, c='black',lw=3)
plt.show()
```

Los casos en los próximos 7 días serán: 151420.4857

3.Retroceder un semana y comparar el modelo matematico vs probabilidad vs reales. Solo cargan los datos para generar los modelos menos 7 dias.

Modelo Probabilistico

```
# Implementar
In [9]:
         fig = plt.figure(figsize=(15,5))
         ax = fig.add subplot(111, axisbelow=True)
         ax.plot(x[:len(x)-9], y[:len(x)-9], 'b', alpha=1, lw = 2, label = 'Datos reales')
         ax.plot(x[len(x)-10:], y[len(x)-10:], 'r', alpha=1, lw = 2, label = 'Prediccion')
         ax.set_xlabel('Dias')
         ax.set_ylabel('Numero de Contagiados')
         ax.set_title("Modelo Probabilístico")
         ax.legend()
         ax.grid()
         x_{matematico} = x[:]
         y_matematico = y[:]
         for i in range(x[-1], x[-1]-7):
             x.append(i)
             y.append(int(y[-1] + mediana))
         print('Los casos en la semana pasada fueron: ',y[-1]-7,)
```

Los casos en la semana pasada fueron: 202292

Modelo Polinomial

```
#Implementar
In [11]:
          df = pd.read_csv('owid-covid-data.csv').fillna(0)
          ndf= df.loc[(df['location'] == 'Bolivia') & (df['total_cases'] != 0)]
          ndf1=ndf[['date','total_cases']]
          x=np.arange(1,len(ndf1)+1,1, dtype='float')
          y=np.array(ndf1.values[:,1], dtype='float')
          fun_pol = np.poly1d(np.polyfit(x, y, 5))
          # print(fun_pol)
          # print()
          print('Los casos en la semana pasada fueron: ', round(fun_pol(len(x)-7),5))
          y_pred=fun_pol(x)
          #Propiedades
          plt.title('Casos de infectados de COVID-19 en Bolivia')
          plt.xlabel('Días')
          plt.ylabel('Número Casos')
          plt.grid(color='black', linestyle='dotted', linewidth=0.5)
          plt.scatter(x,y,label="Casos de Datos Reales",color="red")
          plt.plot(x, y_pred, c='black',lw=3)
          plt.show()
```

Los casos en la semana pasada fueron: 143378.67185

Analisis

Mediante los métodos matematicos y probabilisticos podemos predecir el número de infectados por covid-19 en Ecuador mediante datos encontrados en internet, este método nos ayuda a

tener una aproximación para de esta manera poder observar cual es el comportamiento de la pandemia en el futuro.

Conclusiones

Como conclusión tenemos que los modelos matematicos y probabilistico nos ayuda a predecir el futuro en este caso sobre la pandemia del covid-19, este modelo es subjetivo por lo que no siempre acertara con veracidad lo que sucederá a futuro, pero si nos dará una idea de lo que sucederá y de esta manera las personas puedan tomar consciencia y prevenir el virus.

Criterio personal (politico, economico y social de la situacion)

En el ámbito político las autoridades de nuestro país deben regir medidas de seguridad, de salud y realizar planificaciones que ayuden al bienestar de la sociedad para de esa manera reducir el contagio y evitar mas muertes, en el ámbito económico esta pandemia a afectado a muchos negocios que algunos tuvieron que cerrar, existe una tasa alta de desempleo por lo que las personas ya no tienen dinero y puede ocasionar enfermedades como la desnutricióny otras, pero también existen personas que han emprendido un negocio vendiendo objetos mediante redes sociales, y en el ámbito social puedo decir que esta pandemia a afectado a todas las personas de nuestro país como al mundo entero, tanto en la salud, ingresos y empleo.

Referencias

- https://www.researchgate.net/publication/340092755_Infeccion_del_Covid-19_en_Colombia_Una_comparacion_de_modelos_logisticos_y_exponenciales_aplicados_a_la_infe
- https://www.aprendemachinelearning.com/regresion-lineal-en-espanol-con-python/