FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Please note that the following pages contain mark schemes for questions from past papers.

Where a question reference is marked with an asterisk (*), it is a partial version of the original.

The standard of the mark schemes is variable, depending on what we still have – many are scanned, some are handwritten and some are typed.

The questions are available on a separate document, originally sent with this one.

This document was circulated by e-mail in March 2009; the mark schemes for questions 2 and 7 have since been removed (18.3.09) since they are not on the specification.

1.	(a)	y ▲ 3 4 x ►	Closed shape 3, 4	B1	(1)
	(<i>b</i>)	$b^2 = a^2(1 - e^2)$ \Rightarrow $9 = 16(1 - e^2)$		M1	
		$e = \frac{\sqrt{7}}{4}$ oe	awrt 0.661	A1	(2)
	(c)	Foci are at $(\pm ae, 0)$	use of ae	M1	
		Foci are at $(\pm ae, 0)$ $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ awrt 2.6	65, 0 is required, ft their e	A1 ft	(2)
				(5 ma	arks)

[P5 June 2002 Qn 1]

3.	$10\left(\frac{e^{x} + e^{-x}}{2}\right) + 2\left(\frac{e^{x} - e^{-x}}{2}\right) = 11$	M1
	$6e^{2x} - 11x^x + 4 = 0$ quadratic in e^x	M1, A1
	$(2e^x - 1)(3e^x - 4) = 0$	M1
	$(2e^{x} - 1)(3e^{x} - 4) = 0$ $e^{x} = \frac{1}{2} \text{ and } \frac{4}{3}$ $x = \ln \frac{1}{2} \text{ and } \ln \frac{4}{3}$	A1
	$x = \ln \frac{1}{2}$ and $\ln \frac{4}{3}$	M1, A1
		(7 marks)

Alt 3.
$$R = \sqrt{96} \text{ and } \tan \alpha = \frac{1}{5}$$

$$cosh(x + \alpha) = \frac{11}{\sqrt{96}}$$

$$x + \alpha = \ln\left[\frac{11}{\sqrt{96}} \pm \sqrt{\left(\frac{121}{96}\right)} - 1\right]$$

$$= \ln\frac{4}{\sqrt{6}} \text{ and } \ln\frac{\sqrt{6}}{4}$$

$$= \ln\frac{4}{\sqrt{6}} - \frac{1}{2} \ln\frac{3}{2}, \ln\frac{\sqrt{6}}{4} - \frac{1}{2} \ln\frac{3}{2}$$

$$= \ln\left(\frac{4}{\sqrt{6}} - \frac{\sqrt{2}}{\sqrt{3}}\right), \ln\left(\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{\sqrt{3}}\right)$$
combine either into single ln.
$$x = \ln\frac{4}{\sqrt{6}} - \frac{\sqrt{2}}{\sqrt{3}}, \ln\left(\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{\sqrt{3}}\right)$$
Dependent on first two Ms
$$x = \ln\frac{1}{2} \text{ and } \ln\frac{4}{3}$$
[One answer by alt. method gains max. M1A1M1M0M1A1A0] (11 marks)

[P5 June 2002 Qn 3]

4. (a)	$\int x^n \cos x \mathrm{d}x = x^n \sin x - n \int x^{n-1} \sin x \mathrm{d}x$	M1, A1
	$= \dots -[nx^{n-1}\cos x + \int n(n-1)x^{n-2}\cos x dx]$	M1
	Using limits $I_n = \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$ (**)	M1, A1 (5)
(b)	$I_0 = \int_0^{\frac{\pi}{2}} \cos x dx = \left[\sin x\right]_0^{\frac{\pi}{2}} = 1$ at any stage	B1
	$I_6 = \left(\frac{\pi}{2}\right)^6 - 30I_4$	M1
	$= \left(\frac{\pi}{2}\right)^6 - 30\left(\left(\frac{\pi}{2}\right)^6 - 12I_2\right)$	
	$= \left(\frac{\pi}{2}\right)^6 - 30\left(\frac{\pi}{2}\right)^4 + 360\left(\frac{\pi}{2}\right)^2 - 720I_0$	M1
	Hence $I_6 = \left(\frac{\pi}{2}\right)^6 - 30\left(\frac{\pi}{2}\right)^4 + 360\left(\frac{\pi}{2}\right)^2 - 720$ cao	A1 (4)
		(9 marks)

[P5 June 2002 Qn 4]

5. (a)	$y = \arctan 3x \implies \tan y = 3x$	M1
	$\sec^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 3$	A1
	$\frac{dy}{dx} = \frac{3}{1 + \tan^2 y} = \frac{3}{1 + 9x^2}$ (**)	M1, A1 (4)
(b)	$\int 6x \arctan 3x dx = 3x^2 \arctan 3x - \int \frac{9x^2}{1 + 9x^2} dx$	M1, A1
	$= \dots -\int \frac{1+9x^2-1}{1+9x^2} \mathrm{d}x$	M1
	$= \dots - x + \frac{1}{3}\arctan 3x$	A1
	$\left[$	M1
	$=\frac{1}{9}(4\pi - 3\sqrt{3})$ (*) cso	A1 (6)
		(10 marks)

[P5 June 2002 Qn 6]

6.	(a)	$y = 2x^{1/2} , \frac{\mathrm{d}y}{\mathrm{d}x} = x^{-1/2}$	M1, A1	
		$\int_{\cdots}^{\infty} 2\pi y \left[1 + \left(\frac{\mathrm{d}}{\mathrm{d}x} \right)^2 \right] \mathrm{d}x = 4\pi \int_{-\infty}^{\infty} x^{1/2} \left[1 + \frac{1}{x} \right]^{1/2} \mathrm{d}x$	M1	
		$=4\pi\int_{0}^{1}\sqrt{1+x}\mathrm{d}x\qquad (\clubsuit)$	A1	(4)
	(<i>b</i>)	$S = 4\pi \int_{}^{} \sqrt{1+x} dx = \left[4\pi \frac{2}{3} (1+x)^{3/2} \right]_{(0)}^{(1)}$	M1, A1	
		$= \frac{8\pi}{3} \left(2^{3/2} - 1 \right)$ or any exact equivalent	A1	(3)
	(c)	$\int \left(1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)^{\frac{1}{2}} \mathrm{d}x = \int \left(1 + \frac{1}{x}\right)^{\frac{1}{2}} \mathrm{d}x$	M1	
		$\int \sqrt{\frac{x+1}{x}} \mathrm{d}x$	A1	
		Using symmetry, $s = 2 \int_0^1 \sqrt{\frac{x+1}{x}} dx$ (**)	A1	(3)
	(<i>d</i>)	$x = \sinh^2 \theta$, $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 \sinh \theta \cosh \theta$ oe	B1	
		$I = 2\int \sqrt{\frac{1+\sinh^2\theta}{\sinh^2\theta}}.2\sinh\theta\cosh\theta\ d\theta$	M1	
		$=4\int \cosh^2\theta \ d\theta$		
		$=2\int (1+\cosh 2\theta) d\theta$	M1	
		$=2\theta + \sinh 2\theta$	A1	
		Limits are 0 and arsinh1 (= $\ln(1 + \sqrt{2})$		
		$s = \left[2\theta + 2\sinh\theta\sqrt{1 + \sinh^2\theta}\right]_0^{\text{arsinh1}}$		
		= $2 \operatorname{arsinh} 1 + 2 \sqrt{(1+1^2)} = 2 \left[\sqrt{2} + \ln(1+\sqrt{2}) \right]$	M1 A1	(6)

6. (d) Alt	The last four marks can be gained:	
	$I = 4\int \left(\frac{e^{\theta} + e^{-\theta}}{2}\right)^{2} d\theta = \int (e^{2\theta} + 2 + e^{-2\theta}) d\theta$	M1
	$=\frac{\mathrm{e}^{2\theta}}{2}+2\theta-\frac{\mathrm{e}^{-2\theta}}{2}$	A1
	$s = 2 \operatorname{arsinh} 1 + \frac{1}{2} \left[\left(1 + \sqrt{2} \right)^2 - \frac{1}{\left(1 + \sqrt{2} \right)^2} \right]$	
	$= \dots + \frac{1}{2} \left[1 + 2 + 2\sqrt{2} - \frac{1}{3 + 2\sqrt{2}} \cdot \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \right]$	
	$= 2\ln(1+\sqrt{2}) + \frac{1}{2}(3+2\sqrt{2}-3+2\sqrt{2}) = 2[\sqrt{2}+\ln(1+\sqrt{2})] (\clubsuit)$	M1, A1
6. (d) Alt	The last two marks may be gained by substituting back to	
0. (u) Ait	the variable x	
	$s = [2\theta + \sinh 2\theta]_{}^{} = [2\theta + 2\sinh \theta \cosh \theta]_{}^{}$	
	$= \left[2 \operatorname{arsinh} \sqrt{x} + 2 \sqrt{x} \sqrt{1+x} \right]_0^1$	
	$= 2 \operatorname{arsinh} 1 + 2\sqrt{2} = 2 \ln(1 + \sqrt{2}) = 2\sqrt{2}$	
	$=2\left[\sqrt{2}+\ln(1+\sqrt{2}\right] \qquad (\clubsuit)$	M1, A1

[P5 June 2002 Qn 8]

8. (a)	$ \begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, \text{ :eigenvalue is 3} $	M1A1, A1 (3)
(b)	Either $\begin{vmatrix} -8 & 0 & 4 \\ 0 & -4 & 4 \\ 4 & 4 & -6 \end{vmatrix} = -8(24 - 16) + 4(16) = -64 + 64 = 0$	M1 A1 (2)
Alt(b)	or $\begin{vmatrix} 1 - \lambda & 0 & 4 \\ 0 & 5 - \lambda & 4 \\ 4 & 4 & 3 - \lambda \end{vmatrix} = 0$	
	$\Rightarrow (1-\lambda)(5-\lambda)(3-\lambda) - 16(1-\lambda) - 16(5-\lambda) = 0$	
	$\Rightarrow (3 - \lambda)(\lambda - 9)(\lambda + 3) = 0 \Rightarrow \lambda \text{ is an eigenvalue}$	M1 A1
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ eigenvector} \Rightarrow x + 4z = 9x, 5y + 4z = 9y, 4x + 4y + 3z + 9z$	M1
	At least two of these equations	
	Attempt to solve $z = 2x$, $z = y$, $2x + 2y = 3z$	A1
	$\therefore \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$	A1 (3)
	Make e.vectors unit to obtain $\mathbf{P} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$ columns in any order	M1, A1ft
	$\mathbf{D} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \text{ where } \lambda_3 = -3, \mathbf{P} \text{ and } \mathbf{D} \text{ consistent}$	M1, A1, B1 (5)
Alt	$\mathbf{P} = \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ 1 & 2 & -2 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 27 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & -27 \end{pmatrix}, \ \mathbf{P} \text{ and } \mathbf{D} \text{ consistent}$	M1A1ft, M1A1, B1
		DI

[P6 June 2002 Qn 5]

9. (a)
$$\overrightarrow{AB} = 5\mathbf{i} + 3\mathbf{j}$$
 $\overrightarrow{AC} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ or $\overrightarrow{BC} = -2\mathbf{i} - \mathbf{j} - \mathbf{k}$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 3 & 0 \\ 3 & 2 & -1 \end{vmatrix}$$

$$\therefore \mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(-3\mathbf{i} + 5\mathbf{j} + \mathbf{k})$$

$$(b) \quad \text{Volume} = \frac{1}{6} \overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) \qquad \overrightarrow{AD} = 2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$$

$$= \frac{1}{6}(2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) \cdot (-3\mathbf{i} + 5\mathbf{j} + \mathbf{k})$$

$$= \frac{11}{6}$$
(c) $\mathbf{r} \cdot (-3\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = (2\mathbf{i} + \mathbf{j}) \cdot (-3\mathbf{i} + 5\mathbf{j} + \mathbf{k})$

$$= -1$$

$$(d) \quad [\mathbf{i} \cdot (1 - 3\lambda) + \mathbf{j}(2 + 5\lambda) + \mathbf{k}(1 + \lambda)] \cdot (-3\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = -1$$

$$-3 + 9\lambda + 10 + 25\lambda + 3 + \lambda = -1$$

$$35\lambda + 10 = -1 \Rightarrow \lambda = -\frac{11}{35}$$
M1

$$\therefore \mathbf{E} \text{ is } \left(\frac{68}{35} \cdot \frac{15}{35} \cdot \frac{94}{35} \right)$$
(d)

(e) Distance $= -\frac{11}{35}[-3\mathbf{i} + 5\mathbf{j} + \mathbf{k}] = \frac{11\sqrt{35}}{35}$
(f)

$$\lambda = 2 \times \left(-\frac{11}{35} \right) = -\frac{22}{35}$$
B1

$$\mathbf{r}_{D} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} - \frac{22}{35}(-3\mathbf{i} + 5\mathbf{j} + \mathbf{k})$$
M1

A1

(3)

(4)

(5)

(6)

(6)

(7)

(8)

(8)

(9)

(9)

(9)

(18)

(18)

(18)

(18)

[P6 June 2002 Qn 7]

10.	$4\left(\frac{e^{x} + e^{-x}}{2}\right) + \frac{e^{x} - e^{-x}}{2} = 8$	M1
	$5e^{2x} - 16e^x + 3 = 0$	M1 A1
	$(5e^x - 1)(e^x - 3) = 0$	A1
	$5e^{2x} - 16e^{x} + 3 = 0$ $(5e^{x} - 1)(e^{x} - 3) = 0$ $e^{x} = \frac{1}{5}, 3$	
	$x = \ln(\frac{1}{5}), \ln 3$ accept – ln 5	M1 A1 (6)
		(6 marks)

[P5 June 2003 Qn 1]

11	(a)	$y = \operatorname{artanh} x$		
		tanh y = x		
		$\operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	M1 A1	
		$\frac{dy}{dx} = \frac{1}{1 - \tanh^2 y} = \frac{1}{1 - x^2} $ (*)	A1	(3)
		cso		
	(b)	$\int 1.\operatorname{artanh} x dx = x \operatorname{artanh} x - \int \frac{x}{1 - x^2} dx$	M1 A1	
		$= x \operatorname{artanh} x + \frac{1}{2} \ln(1 - x^2) (+ c)$	M1 A1	(4)
			(7 n	narks)
Alt.		$\frac{x}{1-x^2} = \frac{1}{2} \left[\frac{1}{1-x} - \frac{1}{1+x} \right]$		
		$\int \frac{x}{1-x^2} dx = -\frac{1}{2} \ln(1-x) - \frac{1}{2} \ln(1+x)$		
		This is acceptable (with the rest correct) for final M1 A1		

[P5 June 2003 Qn 2]

12. $\int \frac{10}{\sqrt{4x^2 + 9}} dx = \frac{1}{2} \int \frac{10}{\sqrt{x^2 + \frac{9}{4}}} dx$	M1
$= \frac{10}{2} \operatorname{arsinh} \left(\frac{2x}{3} \right) \left(= 5 \ln \left[\frac{2x}{3} + \sqrt{\frac{4x^2}{9} + 1} \right] \right)$	M1 A1
$\left[\right]_{0}^{5} = 5 \operatorname{arsinh} \frac{10}{3} \left(= 5 \ln \left(\frac{10}{3} + \sqrt{\frac{109}{9}} \right) \approx 9.594 \right)$	M1 A1 ft
ft on 5	
Area = $9.594 \times 100 = 960 \text{ (m}^2\text{)}$	M1 A1 (7 marks)
Using a substitution	
(i) $2x = 3 \sinh \theta$; $2 dx = 3 \cosh \theta d\theta$	
$\int \frac{10}{\sqrt{4x^2 + 9}} dx = \int \frac{10}{3\cosh\theta} \times \frac{3}{2} \cosh\theta d\theta \qquad \text{complete sub}$	s. M1
$= 5 \int d\theta = 5 \operatorname{arsinh} \frac{2x}{3}$	M1 A1
then as before,	
or changing limits to 0 and arsinh $\frac{10}{3}$ (or $\ln\left(\frac{10}{3} + \sqrt{\frac{109}{9}}\right)$) can ga	in
this A1	
(ii) $2x = 3 \tan \theta$, $2 dx = 3 \sec^2 \theta d\theta$	
$\int \frac{10}{\sqrt{4x^2 + 9}} dx = \int \frac{10}{\sqrt{9 \tan^2 \theta + 9}} \times \frac{3}{2} \sec^2 \theta d\theta$	M1
$= 5 \int \sec \theta d\theta = 5 \ln (\sec \theta + \tan \theta)$	M1
Limits are 0 and $\frac{10}{3}$	A1
$\left[\right]_0^{\arctan \frac{10}{3}} = 5 \ln \left(\sqrt{\frac{100}{9} + 1} + \frac{10}{3} \right) \text{ etc}$	M1 A1ft

[P5 June 2003 Qn 3]

13.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh \frac{x}{a}$	B1	
		$\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int \sqrt{1 + \sinh^2\left(\frac{x}{a}\right)} dx = \int \cosh\frac{x}{a} dx = \sinh\frac{x}{a}$	M1, A1	
		Length = $2\left[a \sinh \frac{x}{a}\right]_0^{ka} = 2a \sinh k$ (*)	M1 A1	(5)
	(<i>b</i>)	$2a \sinh k = 8a$		
		$\sinh k = 4$	B1	
		$x = ka = a \operatorname{arsinh} 4 = a \ln (4 + \sqrt{17})$	B1	
		$y = a \cosh \frac{ka}{a} = a\sqrt{1 + \sinh^2 k} = a\sqrt{17}$	M1 A1	(4)
			(9 m	arks)

[P5 June 2003 Qn 5]

14 . (a)	$\sec y = e^x$	B1	
	$\sec y \tan y \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x (=\sec y)$	M1 A1	
	$\frac{dy}{dx} = \frac{e^x}{\sec y \tan y} = \frac{1}{\sqrt{\sec^2 y - 1}} = \frac{1}{\sqrt{e^{2x} - 1}} $ (*)	M1 A1	(5)
	Shape, curve \rightarrow (0, 0) Asymptote, $(y =)\frac{\pi}{2}$	B1	
(b)	$Asymptote, (y =) \frac{\pi}{2}$	B1	(2)
(c)	$(x = \ln 2) \qquad y = \operatorname{arcsec} 2 = \frac{\pi}{3}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{4-1}} = \frac{1}{\sqrt{3}}$	B1	
	tangent is $y - \frac{\pi}{3} = \frac{1}{\sqrt{3}}(x - \ln 2)$	M1	
	$x = 0$, $y = \frac{\pi}{3} - \frac{1}{\sqrt{3}} \ln 2$ exact answer only	A1	(4)
		(11 n	narks)
Alt to (a)	$\cos y = e^{-x}$	B1	
	$-\sin y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{-x}}{\sqrt{1-\cos^2 y}}$	M1 A1	
	$= \frac{e^{-x}}{\sqrt{1 - e^{-2x}}} = \frac{1}{\sqrt{e^{2x} - 1}} $ (*) cso	M1 A1	(5)

[P5 June 2003 Qn 6]

15.	(a)	$I_n = \left[x^n e^x \right]_0^1 - n \int_0^1 x^{n-1} e^x dx = e - n I_{n-1} $ (*)	M1 A1 (2)
	(b)	$J_n = \left[-x^n e^{-x} \right]_0^1 + n \int_0^1 x^{n-1} e^{-x} dx$	M1 A1
		$=-\mathrm{e}^{-1}+nJ_{n-1}$	A1 (3)
	(c)	$J_2 = -e^{-1} + 2J_1$ $J_1 = -e^{-1} + J_0$ $J_2 \text{ and } J_1$	M1
		$= -e^{-1} + \int_{0}^{1} e^{-x} dx$	
		$= -e^{-1} + (1 - e^{-1}) (= 1 - 2e^{-1})$	A1
		$J_2 = -e^{-1} + 2(1 - 2e^{-1}) = 2 - \frac{5}{e}$ (*)	A1 (3)
	(<i>d</i>)	$\int_0^1 x^n \cosh x dx = \int_0^1 x^n \left(\frac{e^x + e^{-x}}{2} \right) dx = \frac{1}{2} (I_n + J_n) \qquad (*)$	B1 (1)
	(e)	$I_2 = e - 2I_1 = e - 2(e - I_0) = 2I_0 - e$	
		$=2\int_0^1 e^x dx - e = 2[e-1] - e (=e-2)$	M1 A1
		$\frac{1}{2}(I_2 + J_2) = \frac{1}{2}(e - 2 + 2 - \frac{5}{e}) = \frac{1}{2}(e - \frac{5}{e})$	M1 A1 (4)
			(13 marks)

[P5 June 2003 Qn 7]

16. (a)
$$\frac{dx}{dt} = a \sec t \tan t, \quad \frac{dy}{dt} = b \sec^2 t$$

$$\frac{dy}{dx} = \frac{b \sec^2 t}{a \sec t \tan t} \left(= \frac{b}{a \sin t} \right)$$

$$gradient of normal is -\frac{a \sin t}{b}$$

$$y - b \tan t = -\frac{a \sin t}{b} (x - a \sec t)$$

$$ax \sin t + by = (a^2 + b^2) \tan t \quad (*) \qquad \text{cso} \quad \text{Al} \qquad (6)$$

$$(b) \quad y = 0 \Rightarrow \quad x = \frac{(a^2 + b^2) \tan t}{a \sin t} \left(= \frac{a^2 + b^2}{a \cos t} \right)$$

$$b^2 = a^2 (e^2 - 1) \Rightarrow b^2 = \frac{5a^2}{4}$$

$$OS = ae \text{ and } OA = 3AS$$

$$a^2 + \frac{5a^2}{4} = 3a^2 \times \frac{3}{2} \times \cos t$$

$$\cos t = \frac{1}{2}$$

$$t = \frac{\pi}{3} \cdot \frac{5\pi}{3}$$
By symmetry or $(as OA = \left| \frac{a^2 + b^2}{a \cos t} \right|) - \frac{a^2 + b^2}{a \cos t} = 3ae$

$$t = \frac{2\pi}{3} \cdot \frac{4\pi}{3}$$
M1 Al

Al

Al

Al

Alt. to
$$(a) \quad \frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$(a) \quad \frac{dy}{dx} = \frac{2b^2x}{a^2b \tan t} = \frac{b^2 a \sec t}{a^2b \tan t} \dots$$
then as before

[P5 June 2003 Qn 8]

17.	$\overrightarrow{AB} \times \overrightarrow{AC} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) = (\mathbf{b} \times \mathbf{c}) - (\mathbf{a} \times \mathbf{c}) - (\mathbf{b} \times \mathbf{a}) + (\mathbf{a} \times \mathbf{a})$	M1 A1
	Using $\mathbf{a} \times \mathbf{c} = -\mathbf{c} \times \mathbf{a}$ or $\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b}$ or $\mathbf{a} \times \mathbf{a} = 0$	B1
	$ \overrightarrow{AB} \times \overrightarrow{AC} = AB$. $AC \sin \theta = 2 \times \text{area of triangle, or equivalent}$	M1
	Final result: $\frac{1}{2} \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} $ (*)	Al cso [5]

[P6 June 2003 Qn 1]

(a) Deriving characteristic equation $(4 - \lambda)(-9 - \lambda) + 30 = 0$	M1 A1	
$\Rightarrow \lambda^2 + 5\lambda - 6 = 0 \Rightarrow (\lambda + 6)(\lambda - 1) = 0 \Rightarrow \lambda = -6, \lambda = 1$	M1A1 (4)
(b) Stating, implying or showing $\lambda = 1$ associated with point invariant line.	B1	
$\Rightarrow \begin{pmatrix} 4 & -5 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$		
Equation is $4x - 5y = x \implies 3x - 5y = 0$ any equivalent form	M1 A1 (1	3)
	$\Rightarrow \lambda^2 + 5\lambda - 6 = 0 \Rightarrow (\lambda + 6)(\lambda - 1) = 0 \Rightarrow \lambda = -6, \lambda = 1$ (b) Stating, implying or showing $\lambda = 1$ associated with point invariant line. $\Rightarrow \begin{pmatrix} 4 & -5 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$	$\Rightarrow \lambda^2 + 5\lambda - 6 = 0 \Rightarrow (\lambda + 6)(\lambda - 1) = 0 \Rightarrow \lambda = -6, \lambda = 1$ (b) Stating, implying or showing $\lambda = 1$ associated with point invariant line. $\Rightarrow \begin{pmatrix} 4 & -5 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ B1

[P6 June 2003 Qn 3]

HULLIDOI		
19. (a) Det $A = 3(u-3) - (u-5) - (3-5) = 2u-2$ [= 2(u-1)] (*)	MI AI	(2)
(b) Cofactors $ \begin{pmatrix} u-3 & 5-u & -2 \\ -(u+3) & 3u+5 & -4 \\ 2 & -4 & 2 \end{pmatrix} $ (-1 A mark for each term wrong)	M1 A3	
$\mathbf{A}^{-1} = \frac{1}{2(u-1)} \begin{pmatrix} u-3 & -(u+3) & 2\\ 5-u & 3u+5 & -4\\ -2 & -4 & 2 \end{pmatrix}$	MI A1 ft	(6)
(c) $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 3 \\ 1 \\ 6 \end{pmatrix}$, Using $u = 6$: $\frac{1}{10} \begin{pmatrix} 3 & -9 & 2 \\ -1 & 23 & -4 \\ -2 & -4 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 6 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 12 \\ -4 \\ 2 \end{pmatrix}$	M 1	
$a = \frac{6}{5}$, $b = -\frac{2}{5}$ $c = \frac{1}{5}$ (One correct A1, other 2 correct A1)	A1, A1	(3)
[Algebraic approach: Finding one value M1 A1, other two A1]		
	[1	1]

[P6 June 2003 Qn 6]

		· · ·		
20.	(a) Normal to plane is $(-i + 5j + 3k)$		B1	
	Equation of plane: $\mathbf{r} \cdot (-\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \cdot (-\mathbf{i} + 5\mathbf{j} + 3\mathbf{k})$		M1	
	$\Rightarrow -x + 5y + 3z = -1 + 10 - 3 = 6 \text{ or equivalent}$	(*)	M1 A1	(4)
	[If vector equation of plane is by-passed, then B1 M2 A1]			
	(b) $\frac{1}{\sqrt{35}}$		B1	
	$ 6 - (i + 2j + 2k) \cdot (-i + 5j + 3k) $		M1 A1	
	or $ \overrightarrow{PQ} \cdot (-\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) = 3\mathbf{k} \cdot (-\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) $			
	Distance = $\frac{9}{\sqrt{35}}$ or a.w.r.t 1.52		A1	(4)
	(c) Direction of one line in plane = $(-\mathbf{i} + 5\mathbf{j} + 3\mathbf{k})$		M1	
	Direction of another line in plane = $(3\mathbf{i} - 2\mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$		M1	
	$\Rightarrow \mathbf{r} = (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) + \mathbf{s}(-\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) + \mathbf{t}(2\mathbf{i} - 2\mathbf{j} - 4\mathbf{k})$		M1 A1	(4)
	or $(3i-2k) + s(-i+5j+3k) + t(2i-2j-4k)$			[12]

[P6 June 2003 Qn 7]

21. (a)
$$\begin{vmatrix} \cosh^2 x - \sinh^2 x = \frac{1}{4} (e^x + e^{-x})^2 - \frac{1}{4} (e^x - e^{-x})^2 \\ = \frac{1}{4} (e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}) \\ = 1 * \end{aligned}$$
 (3)
$$(b) \begin{vmatrix} \frac{1}{\sinh x} - 2 \frac{\cosh x}{\sinh x} = 2 & \therefore 1 - (e^x + e^{-x}) = e^x - e^{-x} \\ \therefore 2e^x = 1 & \text{M1} \\ \text{Make } x \text{ the subject of the formula, } x = \ln(\frac{1}{2}) = -\ln 2$$
 M1, A1 (4)

[P5 June 2004 Qn 1]

22.	(a) a =	=2, b=1, c=16	B1, B1, B1 (3)
	(b)	$\int_{-0.5}^{1.5} \frac{1}{(2x+1)^2 + 16} \mathrm{d}x$	M1
		$= \left[\frac{1}{8}\arctan\left(\frac{2x+1}{4}\right)\right]_{-0.5}^{1.5}$	
		$=\frac{\pi}{32}$	M1 A1
			B1 (4)

[P5 June 2004 Qn 2]

23.	(a)	As $4 = 9(1 - e^2)$, $\therefore e^2 = \frac{5}{9}$ Uses ae to obtain that the foci are at $(\pm \sqrt{5}, 0)$	M1, A1 M1 A1	(4)
	(<i>b</i>)	PS + PS' = e(PM + PM') M1 for single statement e.g, PS = ePM		
		$= e \times \frac{2a}{e}$ M1 needs complete method $= 2a = 6$	M1	
			M1	
			A1	(3)
				27

[P5 June 2004 Qn 3]

			1	
24.	(a)	Using product rule $\frac{dy}{dx} = (n-1)\sinh^{n-2}x\cosh^2x + \sinh^nx$ Using $\cosh^2 x = 1 + \sinh^2 x$ in derived expression to obtain $\frac{dy}{dx} = (n-1)\sinh^{n-2}x(1+\sinh^2x) + \sinh^n x$ and $\frac{dy}{dx} = (n-1)\sinh^{n-2}x + n\sinh^n x$	M1 M1 A1 (3)	
	(b)	$\int_{0}^{ar \sinh n} x \cosh x \int_{0}^{ar \sinh n} = \int_{0}^{ar \sinh n} (n-1) \sinh^{n-2} x dx + \int_{0}^{ar \sinh n} n \sinh^{n} x dx$ So $\cosh(ar \sinh 1) = (n-1)I_{n-2} + nI_{n}$ If $\sinh \alpha = 1$ then $\cosh \alpha = \sqrt{1 + \sinh^{2} \alpha} = \sqrt{2}$ $\therefore nI_{n} = \sqrt{2} - (n-1)I_{n-2} *$	M1 A1 (2)	
		OR $\int_{0}^{ar \sinh 1} \sinh^{n-1} x \sinh x dx = \left[\sinh^{n-1} x \cosh x \right]_{0}^{ar \sinh 1} - (n-1) \int_{0}^{ar \sinh 1} \cosh^{2} x \sinh^{n-2} x dx$ and use $\cosh^{2} x = 1 + \sinh^{2} x$ $collect \ I_{n} + (n-1)I_{n} \ to \ obtain \ nI_{n} = \sqrt{2} - (n-1)I_{n-2} \ *$	M1 A1	(2)
	(c)	$I_0 = \operatorname{ar sinh 1}$ $2I_2 = \sqrt{2} - I_0$ $4I_4 = \sqrt{2} - 3I_2 \text{ and use with previous results to obtain}$ $= \frac{1}{8} (3\operatorname{ar sinh 1} - \sqrt{2}) = 0.154 \text{ (either answer acceptable)}$	B1 M1 M1 A1 (4)	

[P5 June 2004 Qn 5]

25.	(a)	$\frac{dx}{d\theta} = -3a\cos^2\theta\sin\theta \qquad \frac{dy}{d\theta} = 3a\sin^2\theta\cos\theta$	B1
		$s = \int \sqrt{(9a^2(c^4s^2 + s^4c^2))}d\theta$	M1
		$s = \int \sqrt{(9a^2(c^4s^2 + s^4c^2))}d\theta$ $= 3a\int \sqrt{c^2s^2}d\theta$	M1
		$=3a\int\cos\theta\sin\theta d\theta$	A1
		Total length = $4 \times \frac{3a}{2} [\sin^2 \theta]_0^{\frac{\pi}{2}}$ = $6a$	M1 M1 A1 (7)
	(b)	J	M1 A1
		$= 6\pi a^2 \int \sin^4 \theta \cos \theta d\theta$ $= \frac{6\pi a^2}{5} \left[\sin^5 \theta \right]_0^{\frac{\pi}{2}} \times 2$	M1
		$=\frac{12\pi a^2}{5}$	M1 A1 (5)

[P5 June 2004 Qn 7]

26. (a)
$$\overrightarrow{AB} = \begin{pmatrix} -4 \\ 3 \\ -4 \end{pmatrix}$$
 $\overrightarrow{AC} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$ M1

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 3 & -4 \\ 2 & -2 & 3 \end{vmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$$
 A1: One value correct, A1: All correct M1 A1 A1 (4)

(b)
$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 3 - 4 + 8$$
 $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 7$ M1 A1ft (2)

(c)
$$\overrightarrow{AD} \cdot \overrightarrow{AB} \times \overrightarrow{AC}$$
 (Attempt suitable triple scalar product) M1

$$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \text{ or } \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} \qquad \text{(if using } AD\text{)}$$

Volume =
$$\frac{1}{6} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \frac{1}{6} (2 + 12 - 2) = 2$$
 M1 A1(cso)(4)

10

[P6 June 2004 Qn 3]

27.
$$\mathbf{MM}^{\mathsf{T}} = \begin{pmatrix} 1 & 4 & -1 \\ 3 & 0 & p \\ a & b & c \end{pmatrix} \begin{pmatrix} 1 & 3 & a \\ 4 & 0 & b \\ -1 & p & c \end{pmatrix} = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix}$$

(a)
$$(1 \ 4 \ -1) \begin{pmatrix} 3 \\ 0 \\ p \end{pmatrix} = 0 \Rightarrow p = 3$$
 M1 A1 (2)

(b)
$$\left(1 \quad 4 \quad -1\right) \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} = k \implies k = 18$$
 (ft on their p , if used) M1 A1ft (2)

(c) 2 equations:
$$a + 4b - c = 0$$
 $3a + 3c = 0$ M1

 $a \text{ and } b \text{ in terms of } c \text{ (or equiv.): } a = -c$ $b = \frac{1}{2}c \text{ (ft on their } p)$ M1 A1ft

Using
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 18 \quad (a^2 + b^2 + c^2 = 18)$$
: $a = 2\sqrt{2}, b = -\sqrt{2}, c = -2\sqrt{2}$ M1 A2(1,0) (6)

(d)
$$|\det \mathbf{M}| = |(3\sqrt{2}) - 4(-12\sqrt{2}) - 1(-3\sqrt{2})| = 54\sqrt{2}$$
 M1 A1(cso) (2)

Alternatives:

(c) Require
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 parallel to $\begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$, $= \begin{pmatrix} 12 \\ -6 \\ -12 \end{pmatrix}$ M1, M1 A1

(Then as in main scheme, scaling to give a, b and c.) M1 A2(1,0) (6)

(d) det
$$(\mathbf{M}\mathbf{M}^{T}) = 18^{3}$$
, det $\mathbf{M} = \det \mathbf{M}^{T}$, $|\det \mathbf{M}| = 18\sqrt{18} (=54\sqrt{2})$ M1 A1 (2)

[P6 June 2004 Qn 5]

12

28. (a)
$$\det \mathbf{A} = 0$$
 $(3-\lambda)^2 - 1 = 0$ M1
$$\lambda^2 - 6\lambda + 8 = 0 \qquad (\lambda - 2)(\lambda - 4) = 0 \qquad \lambda = 2, \ \lambda = 4 \qquad \qquad \text{A1}$$

$$\lambda = 2: \qquad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0, \quad x + y = 0, \quad \text{Eigenvector} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \text{(or equiv.)} \quad \text{M1 A1}$$

$$\lambda = 4: \qquad \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0, \quad -x + y = 0, \quad \text{Eigenvector} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{(or equiv.)} \quad \text{A1} \qquad (5)$$
(b)
$$\mathbf{P} = k \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad \text{M: eigenvectors as columns, } k = \frac{1}{\sqrt{2}} \qquad \text{M1, A1}$$

$$\left\{ \mathbf{P}^{-1} = \mathbf{P}^{\mathbf{T}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \right\}$$

$$\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \qquad \text{M1, M1 A1 (5)}$$
(c) 1. Rotation of $\frac{\pi}{4}$ clockwise (about $(0, 0)$).
2. Stretch, \times 4 parallel to x -axis, \times 2 parallel to y -axis.
3. Rotation of $\frac{\pi}{4}$ anticlockwise (about $(0, 0)$).
1. and 3. both rotation, or both reflection. M1

Correct angles, opposite sense or correct lines (reflection). A1

Stretch. B1
All correct, including order. A1

[P6 June 2004 On 6]

29.	(a) $\int \frac{1+x}{\sqrt{(1-4x^2)}} dx = \int \frac{1}{\sqrt{(1-4x^2)}} dx + \int \frac{x}{\sqrt{(1-4x^2)}} dx$	M1	
	$\frac{1}{2}\arcsin 2x + 2 \times \frac{-1}{8}\sqrt{1-4x^2}$	M1 A1,M1	
	$= \frac{1}{2}\arcsin 2x - \frac{1}{4}\sqrt{(1-4x^2)} \ (+C)$	A1	(
	Alternative Let $x = \frac{1}{2} \sin \theta$, $\int \frac{1 + 0.5 \sin \theta}{\cos \theta} \times \frac{1}{2} \cos \theta d\theta$ M1		
	$= \frac{1}{2} \theta - \frac{1}{4} \cos \theta \ (+C), = \frac{1}{2} \arcsin 2x - \frac{1}{4} \sqrt{(1 - 4x^2)} \ (+C) \qquad \text{MIAI, MIAI}$		
	(b) $\int_0^{0.3} \frac{1+x}{\sqrt{(1-4x^2)}} dx = 0.5 \arcsin 0.6 - 0.25 \sqrt{0.64} + 0.25 = 0.372$	M1 A1	

[FP2/P5 June 2005 Qn 1]

30. (a)
$$\cosh 2x = \frac{e^{2x} + e^{-2x}}{2} = \frac{e^{2\ln k} + e^{-2\ln k}}{2}$$
 (or use $e^x = k$) M1
$$= \frac{k^2 + k^{-2}}{2} = \frac{k^4 + 1}{2k^2}$$
 (*) M1 A1 (3)
(b) $f^4(x) = p - 2\operatorname{sech}^2 2x$ M1 A1
$$For x = \ln 2, \qquad \cosh 2x = \frac{2^4 + 1}{2 \times 2^2} = \frac{17}{8}$$
 B1
$$p - \frac{2}{\cosh^2 2x} = 0, \qquad p = 2 \times \frac{64}{289} = \frac{128}{289}$$
 A1 (4)

[FP2/P5 June 2005 Qn 2]

31.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3a\cos^2 t \sin t \frac{\mathrm{d}y}{\mathrm{d}t} = 3a\sin^2 t \cos t$	M1 A1
	Area = $2\pi \int a \sin^3 t \sqrt{9a^2 (\cos^4 t \sin^2 t + \sin^4 t \cos^2 t)} dt$	M1 A1
	$= 6\pi a^2 \int \sin^3 t \sin t \cos t dt = 6\pi a^2 \left[\frac{\sin^5 t}{5} \right]_0^{\pi/2} = \frac{6\pi a^2}{5}$	M1 A1 A1 (7)
*****		(7)

[FP2/P5 June 2005 Qn 3]

32.	(a)	$I_n = \frac{1}{2}x^n e^{2x} - \frac{n}{2} \int x^{n-1} e^{2x} dx$, $I_n = \frac{1}{2}(x^n e^{2x} - nI_{n-1})$	(*)	MI AI AI	(3)
	(b)	$\int_0^1 x^2 e^{2x} dx = I_2 = \left[\frac{1}{2} x^2 e^{2x} \right]_0^1 - I_1 = \frac{1}{2} e^2 - I_1$	one conect Stort	M1 .	
		$I_1 = \left[\frac{1}{2}xe^{2x}\right]_0^1 - \frac{I_0}{2} = \frac{1}{2}e^2 - \frac{1}{2}I_0$	linking all three	MI AI	
		$I_0 = \int_0^1 e^{2x} dx = \left[\frac{e^{2x}}{2}\right]_0^1 = \frac{e^2}{2} - \frac{1}{2}$			
		$I_2 = \frac{e^2}{2} - \left(\frac{e^2}{2} - \left(\frac{e^2}{4} - \frac{1}{4}\right)\right) = \frac{1}{4}(e^2 - 1)$	use of limits	Mi Al	(5)
					(8

[FP2/P5 June 2005 Qn 4]

пишьсь			1	
33.	$\int x \operatorname{arcosh} x dx = \frac{x^2}{2} \operatorname{arcosh} x - \int \frac{x^2}{2\sqrt{x^2 - 1}} dx$		M1 A1	
	$\left[\frac{x^2}{2}\operatorname{arcosh}x\right]_1^2 = 2\operatorname{arcosh}2$			
	Let $x = \cosh \theta \int \frac{\cosh^2 \theta}{2 \sinh \theta} \sinh \theta d\theta$		M1 A1	
	$= \int \frac{\cosh^2 \theta}{2} d\theta = \int \frac{1 + \cosh 2\theta}{4} d\theta = \frac{\theta}{4} + \frac{\sinh 2\theta}{8}$		MI _J MI AI	
	$= \left[\frac{\theta}{4} + \frac{\sinh 2\theta}{8}\right]_0^{\operatorname{arcosh2}} = \frac{1}{4}\operatorname{arcosh2} + \frac{2 \times \sqrt{3} \times 2}{8}$	limils	Ml Al	
	Area = $\frac{7}{4}$ arcosh 2 - $\frac{\sqrt{3}}{2}$ = $\frac{7}{4}$ ln(2 + $\sqrt{3}$) - $\frac{\sqrt{3}}{2}$	(*)	A1	(10) (10)

[FP2/P5 June 2005 Qn 6]

				1	
34.	(a)	$\ln\left(\frac{1 - \sqrt{(1 - x^2)}}{x}\right) = \ln\left(\frac{1 - \sqrt{(1 - x^2)}}{x} \times \frac{1 + \sqrt{(1 - x^2)}}{1 + \sqrt{(1 - x^2)}}\right)$ $= \ln\left(\frac{1 - (1 - x^2)}{x(1 + \sqrt{(1 - x^2)})}\right) = -\ln\left(\frac{1 + \sqrt{(1 - x^2)}}{x}\right)$		M1	
		$= \ln \left(\frac{1 - (1 - x^2)}{x(1 + \sqrt{(1 - x^2)})} \right) = -\ln \left(\frac{1 + \sqrt{(1 - x^2)}}{x} \right)$	(*)	M1 A1	(3)
	(b)	Let $y = \operatorname{arsech} x$ $\operatorname{sech} y = \frac{2}{e^y + e^{-y}}$		В1	
	ŀ	$xe^y + xe^{-y} = 2$ $xe^{2y} - 2e^y + x = 0$		M1	
		$e^y = \frac{2 \pm \sqrt{4 - 4x^2}}{2x} = \frac{1 \pm \sqrt{1 - x^2}}{x}$		M1 A1	
		$y = \ln\left(\frac{1 \pm \sqrt{1 - x^2}}{x}\right) = (\pm) \ln\left(\frac{1 + \sqrt{1 - x^2}}{x}\right)$	(*)	A1	(5)
	(c)	$3(1-\operatorname{sech}^2 x)-4\operatorname{sech} x+1=0$		МІ	
		$(3\operatorname{sech} x - 2)(\operatorname{sech} x + 2) = 0$ $\operatorname{sech} x = \frac{2}{3}$		MI A1	
		$x = \pm \ln\left(\frac{3}{2}\left(1 + \sqrt{\frac{5}{9}}\right)\right) = \pm \ln\left(\frac{3 + \sqrt{5}}{2}\right)$		M1 A1	(5)
					(13)

[FP2/P5 June 2005 Qn 8]

35.	(a) (i) b × a is perpendicular to a (and b)	B1
	$\mathbf{a. b} \times \mathbf{a} = \mathbf{a} \mathbf{b} \times \mathbf{a} \cos 90^{\circ} = 0 \text{ or equivalent}$	B1 (2)
	(ii) $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \implies \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = 0$	M1
	As $\mathbf{a} \neq 0$ and $\mathbf{b} \neq \mathbf{c}$,	
	a is parallel to $(\mathbf{b} - \mathbf{c})$, so $\mathbf{b} - \mathbf{c} = \lambda \mathbf{a}$	A1 (2)
	(b) (i) If A non-singular, then $A^{-1}AB = A^{-1}AC \Rightarrow B = C$ (*)AG	M1A1 (2)
	(ii) $ \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 21 \\ 1 & 7 \end{pmatrix} $	BI
	Set $\begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 21 \\ 1 & 7 \end{pmatrix}$ and finding two equations	M1
	Any non-zero values of a , b , c and d such that $a+2c=1$ and $b+2d=7$.	A1 (3)
		[9]

[FP3/P6 June 2005 Qn 2]

110111001		
36.	(a) Normal to plane is $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & 3 \\ 1 & -2 & 1 \end{vmatrix} = 6\mathbf{i} + \mathbf{j} - 4\mathbf{k}$ (or any multiple)	M1A1 (2)
	(b) Equation of plane is $6x + y - 4z = d$	M1
	Substituting appropriate point in equation to give $6x + y - 4z = 16$ [e.g. $(1, 6, -1)$, $(3, -2, 0)$, $(3, 6, 2)$ etc.]	A1 (2)
	(c) $p = -2$	B1 (1)
	(d) Direction of line is perpendicular to both normals	
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 6 & 1 & -4 \end{vmatrix} = -9\mathbf{i} + 10\mathbf{j} - 11\mathbf{k}$ [Planes are: $6x + y - 4z = 16$, $x + 2y + z = 2$]	M1
	Finding a point on line	M1A1
	a and b identified	М1
	Any correct equation of correct form e.g. $\begin{bmatrix} r - \begin{pmatrix} -3 \\ 6 \\ -7 \end{bmatrix} \end{bmatrix} \times \begin{pmatrix} 9 \\ -10 \\ 11 \end{pmatrix} = 0.$	A1 (5) [10]
	Alternative: Using equations of planes to find general point on line	
	Using equations of planes to form any two of $10x + 9y = 24$, $11x - 9z = 30$, $11y + 10z = -4$ M1 Putting in parametric form M1	
	e.g. $\left(\lambda, \frac{24-10\lambda}{9}, \frac{-30+11\lambda}{9}\right)$ A1 a and b identified M1	
	Writing in required form; a correct equation A1	

[FP3/P6 June 2005 Qn 3]

37.	(a) Det = -12 -2(2k - 8) + 16 = 20 - 4k (*) AG	M1A1 (2)
	(b) Cofactors $\begin{pmatrix} -4 & 8-2k & 4 \\ 8-2k & 3k-16 & 2 \\ 4 & 2 & -4 \end{pmatrix}$ [A1 each error]	M1A3
With	$A^{-1} = \frac{1}{20 - 4k} \begin{pmatrix} -4 & 8 - 2k & 4 \\ 8 - 2k & 3k - 16 & 2 \\ 4 & 2 & -4 \end{pmatrix}$	M1A1√ (6)
	(c) Setting $ \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} $	M1
	$\lambda = -1$ $(3 2 4)(x) \qquad (x)$	A1 (2)
	(d) Forming equations in x , y and z : $ \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 8 \begin{pmatrix} x \\ y \\ z \end{pmatrix} $	M1
	-5x + 2y + 4z = 0, $2x + 2z = 8y$, $4x + 2y - 5z = 0$	A1
	Establishing ratio x : y : z : $[x = 2y, x = z]$	Λ'
	$\binom{2}{}$	M1
	Eigenvector (k) $\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$	
	(2)	A1 (4)
		[14]

[FP3/P6 June 2005 Qn 7]

38.	$x^2 - 2x + 17 = (x - 1)^2 + 16$	B1
	$I = \int_{1}^{4} \frac{1}{\sqrt{(x-1)^2 + 16}} dx = \left[\operatorname{arsinh} \frac{(x-1)}{4} \right] \text{ or equiv.} = \operatorname{arsinh} \frac{3}{4}$ $\left[\text{M1 does not require limits; A1 f.t. on completing square, providing arsinh} \right]$	M1 A1√
	Into ln form $\left[\ln\left[\frac{3}{4} + \sqrt{\frac{9}{16} + 1}\right]\right]$; = ln2	M1A1
	[If straight to ln form : B1, $\ln\left[(x-1) + \sqrt{(x-1)^2 + 16}\right]$ M1	[5]
	Using limits correctly M1A1√, ln2 A1]	

[FP2/P5 January 2006 Qn 1]

39.	(a) Using $b^2 = a^2 (e^2 - 1)$; $[4 = 16 (e^2 - 1)]$ $e = \frac{\sqrt{5}}{2}$ or equiv. (1.12)	M1A1 (2)
	(b) Distance between foci = 2 a e $\left[2 \times 4 \times \frac{\sqrt{5}}{2}\right]$; = $4\sqrt{5}$ [A1 $\sqrt{2}$ dependent on both Ms]	M1A1√ (2)
	(c) Ellipse, centred on origin Hyperbola, both branches Totally correct, touching, with correct intercepts	B1 B1 (3) [7]

[FP2/P5 January 2006 Qn 2]

40.	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 + \cos t, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = \sin t, \qquad \text{(both)}$	B1
	$s = \int \sqrt{(1+\cos t)^2 + (\sin t)^2} dt$; = $\int \sqrt{2+2\cos t} dt$	M1A1
	Use of "half-angle formula" $\left[\int \sqrt{4\cos^2 t} \ \mathrm{d}t\right]$; $s = \left[4\sin\frac{t}{2}\right]_{(0)}^{\left(\frac{\pi}{2}\right)}$	M1A1√
	Using limits correctly and surd form; = $2\sqrt{2}$ (allow $\frac{4}{\sqrt{2}}$)	M1A1 [7]

[FP2/P5 January 2006 Qn 3]

Correct intermediate step as far as $4\left(\frac{e^{3x} + 3e^{x} + 3e^{-x} + e^{-3x}}{8}\right) - \left[3\left(\frac{e^{x} + e^{-x}}{2}\right)\right]$ $= \frac{e^{3x} + e^{-3x}}{2} = \cosh 3x$ A1 (3) (b) Using part (a) to reduce to $\cosh^{2}x = [2]$ Correct method to form $\ln x$ or find e^{x} or e^{2x} $x = \ln(\sqrt{2} + 1), \ln(\sqrt{2} - 1) \text{or equivalent}$ or $\frac{1}{2} \ln(3 + 2\sqrt{2}), \frac{1}{2} \ln(3 - 2\sqrt{2}), (\text{after finding } e^{2x} = \dots)$	41.	Using $\cosh x = \frac{e^x + e^{-x}}{2}$ and attempt to progress	M1
(b) Using part (a) to reduce to $\cosh^2 x = [2]$ Correct method to form $\ln x$ or find e^{-X} or e^{-2x} $x = \ln(\sqrt{2} + 1)$, $\ln(\sqrt{2} - 1)$ or equivalent M1 A1 A1 $\sqrt{2}$		Correct intermediate step as far as $4\left(\frac{e^{3x} + 3e^x + 3e^{-x} + e^{-3x}}{8}\right) - \left[3\left(\frac{e^x + e^{-x}}{2}\right)\right]$	A1
(b) Using part (a) to reduce to $\cosh^2 x = [2]$ Correct method to form $\ln x$ or find $e^{\frac{x}{2}}$ or $e^{\frac{2x}{2}}$ $x = \ln(\sqrt{2} + 1), \ln(\sqrt{2} - 1) \text{or equivalent}$ A1 A1 $\sqrt{2}$		$= \frac{e^{3x} + e^{-3x}}{2} = \cosh 3x$	A1 (3)
or $\frac{1}{2} \ln (3 + 2\sqrt{2})$, $\frac{1}{2} \ln (3 - 2\sqrt{2})$, (after finding $e^{\frac{2x}{3}} = \dots$)		$x = \ln \left(\sqrt{2} + 1\right), \ln \left(\sqrt{2} - 1\right)$ or equivalent	A1 A1√
		or $\frac{1}{2} \ln \left(3 + 2\sqrt{2}\right)$, $\frac{1}{2} \ln \left(3 - 2\sqrt{2}\right)$, (after finding $e^{2x} = \dots$)	(4)
[7]			[7]

[FP2/P5 January 2006 Qn 4]

42.	(a) $I_n = -\frac{2}{3} \left[x^n (4 - x)^{\frac{3}{2}} \right]_0^4 + \frac{2}{3} n \int_0^4 x^{n-1} (4 - x)^{\frac{3}{2}} dx$	M1A1
	$= \frac{2}{3} n \int_{0}^{4} x^{n-1} (4-x)^{\frac{3}{2}} dx$	A1√
	$= \frac{2}{3} n \int_{0}^{4} 4x^{n-1} (4-x)^{\frac{1}{2}} dx - \frac{2}{3} n \int_{0}^{4} x^{n} (4-x)^{\frac{1}{2}} dx$	M1A1
	$\Rightarrow I_n = \frac{8}{3} n I_{n-1} - \frac{2}{3} n I_n$	
	$[(2n+3)I_n = 8nI_{n-1}]$ $\Rightarrow I_n = \frac{8n}{2n+3}I_{n-1}$ AG	A1* (6)
	(b) Relating I_2 to I_0 using result from (a)	M1
	$I_2 = \frac{16}{7} \cdot \frac{8}{5} I_0 = \frac{2048}{105} \left(19\frac{53}{105}\right)$	A1A1 (3)
		[9]

[FP2/P5 January 2006 Qn 7]

[FP2/P5 January 2006 Qn 8]

44.	$\begin{vmatrix} (a) & \begin{vmatrix} k - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix} = 0$	MI
	Characteristic equation: $\lambda^2 - \lambda - 6 = 0$	
	Solving: $(\lambda - 3)(\lambda + 2) = 0 \Rightarrow \lambda =$	A1 M1
	$\lambda = -2, \ \lambda = 3 $ (both)	A1 (4)
	(b) Method for finding an eigenvector $ \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix} \implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ and} $	M1
		A1√
	Equations are: $y = \frac{1}{2}x$ and $y = -2x$.	A1 (3)
	Alt: $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} y \\ my \end{pmatrix} \Rightarrow 2m^2 + 3m - 2 = 0$ M1A1 $\begin{bmatrix} m = \frac{1}{2}, -2 \end{bmatrix}$ Correct equations A1	Total 9 marks

[*FP3/P6 January 2006 Qn 3]

45.	$\mathbf{A} = \begin{pmatrix} k & 1 & -2 \\ 0 & -1 & k \\ 9 & 1 & 0 \end{pmatrix}$	
	(9 1 0)	M1A1
	(a) Det. $A = -k^2 + 9k - 18$ Setting to zero and solving for $k = [(k-6)(k-3) = 0]$ $\Rightarrow k = 3, k = 6$	M1 A1 (4)
	(b) Cofactors $\begin{pmatrix} -k & 9k & 9 \\ -2 & 18 & 9-k \\ k-2 & -k^2 & -k \end{pmatrix}$	В3
	[B1 for each row (or column)] $\mathbf{A}^{-1} = \frac{1}{\det} \begin{pmatrix} -k & -2 & k-2 \\ 9k & 18 & -k^2 \\ 9 & 9-k & -k \end{pmatrix}$	M1A1√ (5)
	[A1 f.t. is on determinant or cofactors]	Total 9 marks

[FP3/P6 January 2006 Qn 4]

+	· · · · · · · · · · · · · · · · · · ·	1	
46.	(a) $R\vec{Q} = \begin{pmatrix} 1 \\ -1 \\ -1 - c \end{pmatrix}$, $RP = \begin{pmatrix} -4 \\ 3 \\ -2 - c \end{pmatrix}$ (both) $R\vec{P} \times R\vec{Q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 3 & -2 - c \\ 1 & -1 & -1 - c \end{vmatrix}$	B1	
	= $(-5-4c) i - (6+5c) j + k$	M1A1√ (3	3)
	(b) $c = -2$ d = -6 - 5c = 4 AG	A1√ A1*(cso)	
	(c) $\mathbf{r} \cdot \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = p$	(2	2)
		M1	
	Substituting point in plane to give p , \mathbf{r} . $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = 7$.	M1A1	3)
	(d) Equation of normal to plane through S: $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 10 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$	B 1	
	Meets plane where $\begin{pmatrix} 1+3t \\ 5+4t \\ 10+t \end{pmatrix}$. $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = 7 \implies t = -1$	M1A1√	

[FP3/P6 January 2006 Qn 7]

47.
$$5\left(\frac{e^{x} + e^{-x}}{2}\right) - 2\left(\frac{e^{x} - e^{-x}}{2}\right) = 11$$
 B1
$$3e^{2x} - 22e^{x} + 7 = 0$$
 M: Simplify to form quadratic in e^{x} M1 A1
$$(3e^{x} - 1)(e^{x} - 7) = 0$$
 $e^{x} = \frac{1}{3}, e^{x} = 7$ M: Solve 3 term quadratic. M1 A1
$$x = \ln\frac{1}{3} (\text{or} - \ln 3) \quad x = \ln 7$$
 A1 (6)
$$6 \text{ Marks}$$

[FP2 June 2006 Qn 1]

48. (a) Using
$$b^2 = a^2(1 - e^2)$$
 or equiv. to find e or ae : $(a = 2 \text{ and } b = 1)$

$$e = \frac{\sqrt{3}}{2}$$
Using $y^2 = 4(ae)x$

$$y^2 = 4\sqrt{3}x$$
 (M requires values for a and e)
$$y^2 = 4\sqrt{3}x$$

$$x = -\sqrt{3}$$
B1ft (1)
5 Marks

[FP2 June 2006 Qn 2]

49.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 \sec h^2 4x - 1$	B1	
		$\frac{dy}{dx} = 4\operatorname{sec} h^{2} 4x - 1$ Put $\frac{dy}{dx} = 0$ $\left(\cosh^{2} 4x = 4 \cosh 4x = 2\right)$	M1	
		$4x = \ln(2 \pm \sqrt{3}) \text{ or } 8x = \ln(7 \pm 4\sqrt{3}) \text{ or } e^{4x} = 2 \pm \sqrt{3} \text{ or } e^{4x} = 7 \pm 4\sqrt{3} (\pm \text{ or } +)$	A1	
		$x = \frac{1}{4}\ln(2+\sqrt{3})$ or $x = \frac{1}{8}\ln(7+4\sqrt{3})$ (or equiv.)	A1	(4)
	(b)	$y = -\frac{1}{4}\ln(2+\sqrt{3}) + \tanh(\dots)$ (Substitute for x)	M1	
		$y = -\frac{1}{4}\ln(2+\sqrt{3}) + \tanh(\dots)$ (Substitute for x) $\operatorname{sec} h4x = \frac{1}{2} = \sqrt{1-\tanh^2 4x}, \tanh 4x = \frac{\sqrt{3}}{2}$	M1	
		$y = \frac{\sqrt{3}}{2} - \frac{1}{4} \ln(2 + \sqrt{3}) = \frac{1}{4} \left\{ 2\sqrt{3} - \ln(2 + \sqrt{3}) \right\} $ (*)	A1	(3)
			7 Mark	KS
		 (a) 'Second solution', if seen, must be rejected to score the final mark. (b) 2nd M requires an expression in terms of √3 without hyperbolics, 		
		exponentials and logarithms.		

[FP2 June 2006 Qn 5]

50. (a)
$$\frac{dx}{dt} = 1 - \frac{1}{t} \quad \frac{dy}{dt} = 2t^{-\frac{1}{2}}$$

$$\sqrt{\left(1 - \frac{1}{t}\right)^2 + \left(2t^{-\frac{1}{2}}\right)^2}, \qquad = \sqrt{1 + \frac{2}{t} + \frac{1}{t^2}} = 1 + \frac{1}{t} \text{ or } \frac{t+1}{t}$$

$$\text{Length} = \int_1^4 \left(1 + \frac{1}{t}\right) dt = \left[t + \ln t\right]_1^4 = \left(4 + \ln 4\right) - 1 = 3 + \ln 4 \quad (*)$$
(b) Surface area =
$$2\pi \int_1^4 4\sqrt{t} \sqrt{\left(1 - \frac{1}{t}\right)^2 + \left(2t^{-\frac{1}{2}}\right)^2} dt \qquad \left(=8\pi \int_1^4 \left(t^{\frac{1}{2}} + t^{-\frac{1}{2}}\right) dt\right)$$

$$= (8\pi) \left[\frac{2t^{\frac{3}{2}}}{3} + 2t^{\frac{1}{2}}\right]_1^4 = (8\pi) \left\{\left(\frac{16}{3} + 4\right) - \left(\frac{2}{3} + 2\right)\right\} = \frac{160\pi}{3} \quad \left(53\frac{1}{3}\pi\right)$$
(11 marks)

[FP2 June 2006 Qn 6]

51.
$$\int x^{2} \operatorname{arsinh} x dx = \frac{x^{3}}{3} \operatorname{arsinh} x - \int \frac{x^{3}}{3\sqrt{x^{2} + 1}} dx$$

$$\left[\frac{x^{3}}{3} \operatorname{arsinh} x \right]_{0}^{3} = 9 \operatorname{arsinh} 3 \quad \text{(or } 9 \ln(3 + \sqrt{10}))$$

$$\operatorname{Let } u = x^{2} + 1 \quad \frac{du}{dx} = 2x \qquad \left[u^{2} = x^{2} + 1 \quad 2u \frac{du}{dx} = 2x \right] \qquad \operatorname{M1}$$

$$\frac{1}{3} \int \frac{x^{3}}{u^{\frac{1}{2}} \cdot 2x} du = \frac{1}{6} \int \frac{u - 1}{u^{\frac{1}{2}}} du = \frac{1}{6} \int \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}} \right) du \qquad \left[\frac{1}{3} \int (u^{2} - 1) du \right] \qquad \operatorname{M1}$$

$$= \frac{1}{6} \left[\frac{2u^{\frac{3}{2}}}{3} - 2u^{\frac{1}{2}} \right] \qquad \left[= \frac{1}{3} \left[\frac{u^{3}}{3} - u \right] \right] \qquad \operatorname{M1}$$

$$\operatorname{When } x = 0, u = 1 \text{ and when } x = 3, u = 10 \quad \left[\dots u = \sqrt{10} \right]$$

$$\frac{1}{6} \left[\frac{2u^{\frac{3}{2}}}{3} - 2u^{\frac{1}{2}} \right]_{0}^{10} = \frac{1}{6} \left\{ \left(\frac{20\sqrt{10}}{3} - 2\sqrt{10} \right) - \left(\frac{2}{3} - 2 \right) \right\} \qquad \operatorname{M1}$$

$$\operatorname{Area} = 9 \operatorname{arsinh} 3 - \frac{1}{6} \left(\frac{14\sqrt{10}}{3} + \frac{4}{3} \right) = 9 \ln(3 + \sqrt{10}) - \frac{1}{9} \left(7\sqrt{10} + 2 \right) \qquad (*)$$

$$\operatorname{Alcso} (10)$$

Dependent M marks:

M: Choose an appropriate substitution & find $\frac{du}{dx}$ or 'Set up' integration by parts.

M: Get <u>all</u> in terms of 'u' <u>or</u> Use integration by parts.

M: Sound integration.

M: Substitute both limits (for the correct variable) and subtract.

51.	Alternative solution:	
	Let $x = \sinh \theta$ $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \cosh \theta$	M1
	$\int x^2 \operatorname{ar} \sinh x \mathrm{d}x = \int \theta \sinh^2 \theta \cosh \theta \mathrm{d}\theta$	M1
	$= \left[\frac{\theta \sinh^3 \theta}{3}\right] - \int \frac{1}{3} \sinh \theta (\cosh^2 \theta - 1) d\theta$	M1 A1 A1
	$\left[\frac{\theta \sinh^3 \theta}{3}\right]_0^{\text{arsinh3}} = 9 \text{arsinh3}$	B1
	$\int \frac{1}{3} \sinh \theta (\cosh^2 \theta - 1) d\theta = \frac{1}{3} \left[\frac{\cosh^3 \theta}{3} - \cosh \theta \right]$	M1
	$\left[\frac{1}{3} \left[\frac{\cosh^3 \theta}{3} - \cosh \theta \right]_0^{\arcsin 3} = \frac{1}{3} \left\{ \left(\frac{10\sqrt{10}}{3} - \sqrt{10} \right) - \left(\frac{1}{3} - 1 \right) \right\}$	M1 A1
	Area = 9arsinh3 - $\frac{1}{3} \left(\frac{7\sqrt{10}}{3} + \frac{2}{3} \right) = 9 \ln(3 + \sqrt{10}) - \frac{1}{9} \left(7\sqrt{10} + 2 \right)$ (*)	A1cso (10)
		10 Marks

51.	A few alternatives for: $\int \frac{x^3}{\sqrt{x^2 + 1}} dx$.	
(i)	Let $u = x^2$ $\frac{\mathrm{d}u}{\mathrm{d}x} = 2x$	
	$\int \frac{u^{\frac{3}{2}}}{\sqrt{1+u}} \cdot \frac{1}{2u^{\frac{1}{2}}} du = \frac{1}{2} \int \frac{u}{\sqrt{1+u}} du$	
	No marks yet needs another substitution, or parts, or perhaps	
	$\frac{u}{\sqrt{1+u}} = \sqrt{1+u} - \frac{1}{\sqrt{1+u}}$	M1
	$\frac{1}{2}\int\sqrt{1+u}du - \frac{1}{2}\int\frac{1}{\sqrt{1+u}}du$	M1
	$\frac{1}{3}(1+u)^{\frac{3}{2}} - (1+u)^{\frac{1}{2}}$	M1
	Limits (0 to 9)	M1
(ii)	Let $x = \sinh \theta$ $\frac{dx}{d\theta} = \cosh \theta$	M1
	$\int \frac{\sinh^3 \theta}{\cosh \theta} \cdot \cosh \theta d\theta = \int \sinh \theta \left(\cosh^2 \theta - 1\right) d\theta$	M1
	Then, as in the alternative solution,	
	$\int \frac{1}{3} \sinh \theta (\cosh^2 \theta - 1) d\theta = \frac{1}{3} \left[\frac{\cosh^3 \theta}{3} - \cosh \theta \right]$	M1
	Limits (0 to arsinh3)	M1

51. (iii)	Let $u = \tan \theta$ $\frac{\mathrm{d}u}{\mathrm{d}\theta} = \sec^2 \theta$	M1
	$\int \frac{\tan^3 \theta}{\sec \theta} \cdot \sec^2 \theta d\theta = \int \tan \theta \sec \theta \left(\sec^2 \theta - 1 \right) d\theta$	M1
	$= \int \sec^2 \theta (\sec \theta \tan \theta) d\theta - \int (\sec \theta \tan \theta) d\theta = \frac{\sec^3 \theta}{3} - \sec \theta$	M1
	Limits $\left(\sec\theta = 1 \text{ to } \sec\theta = \sqrt{10}\right)$	M1
(iv)	(By parts must be the 'right way round', not integrating x^2)	
	$u = x^2, \frac{du}{dx} = 2x$ $\frac{dv}{dx} = \frac{x}{\sqrt{1+x^2}}, v = \sqrt{1+x^2}$	M1
	$x^2 \sqrt{1 + x^2} - \int 2x \sqrt{1 + x^2} \mathrm{d}x$	M1
	$x^2\sqrt{1+x^2}-\frac{2}{3}(x^2+1)^{\frac{3}{2}}$	M1
	Limits	M1
(v)	(By parts)	
	$u = x^3$, $\frac{du}{dx} = 3x^2$ $\frac{dv}{dx} = \frac{1}{\sqrt{1+x^2}}$, $v = \operatorname{arsinh} x$ No progress	M0
(vi)	$\frac{x^3}{\sqrt{1+x^2}} = \frac{x(x^2+1)-x}{\sqrt{1+x^2}} = \frac{x(x^2+1)}{\sqrt{1+x^2}} - \frac{x}{\sqrt{1+x^2}}$	M1
	$\int x\sqrt{1+x^2} \mathrm{d}x - \int \frac{x}{\sqrt{1+x^2}} \mathrm{d}x$	M1
	$=\frac{1}{3}(1+x^2)^{\frac{3}{2}}-(1+x^2)^{\frac{1}{2}}$	M1
	Limits	M1

[FP2 June 2006 Qn7]

52.	(a)	$\int x^n \cosh x \mathrm{d}x = x^n \sinh x - \int nx^{n-1} \sinh x \mathrm{d}x$	M1 A1
		$= x^n \sinh x - nx^{n-1} \cosh x + n(n-1) \int x^{n-2} \cosh x dx$	M1
		$I_n = x^n \sinh x - nx^{n-1} \cosh x + n(n-1)I_{n-2} $ (*)	A1 (4)
	(b)	$I_4 = x^4 \sinh x - 4x^3 \cosh x + 12I_2$	M1
		$I_4 = x^4 \sinh x - 4x^3 \cosh x + 12(x^2 \sinh x - 2x \cosh x + 2I_0)$	M1
		(This M may also be scored by finding I_2 by integration.)	
		$I_0 = \int \cosh x \mathrm{d}x = \sinh x + k$	B1
		$I_4 = (x^4 + 12x^2 + 24)\sinh x, + (-4x^3 - 24x)\cosh x + (+C)$	A1, A1(5)
	(c)	$\left[\left(x^4 + 12x^2 + 24 \right) \sinh x + \left(-4x^3 - 24x \right) \cosh x \right]_0^1$	
		$= 37 \sinh 1 - 28 \cosh 1$ M: $x = 1$ substituted throughout (at some stage)	M1
		$=37\left(\frac{e-e^{-1}}{2}\right)-28\left(\frac{e+e^{-1}}{2}\right)$	M1
		M: Use of exp. Definitions (can be in terms of x)	
		$=\frac{1}{2}(9e-65e^{-1})$	A1 (3)
		(b) Integration constant missing throughout loses the B mark	12 Marks

[FP2 June 2006 Qn 8]

[FP2 June 2006 Qn 9]

54.	$\mathbf{A}^{1} = \begin{pmatrix} 1 & 1 & \frac{1}{2}(1+3) \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{A}$	B1
	(Hence true for $n = 1$)	
	$\mathbf{A}^{k+1} = \mathbf{A}^k \cdot \mathbf{A} = \begin{pmatrix} 1 & k & \frac{1}{2}(k^2 + 3k) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	M1
	$= \begin{pmatrix} 1 & k+1 & 2+k+\frac{1}{2}(k^2+3k) \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{pmatrix}$	
	$2+k+\frac{1}{2}(k^2+3k)=\frac{1}{2}(k^2+5k+4)=\frac{1}{2}(k^2+2k+1+3k+3)$	M1 Dep
	$= \frac{1}{2} \left((k+1)^2 + 3(k+1) \right)$	A1
	(Hence, if result is true for $n = k$, then it is true for $n = k + 1$).	
	By Mathematical Induction, above implies true for all positive integers.	A1 cso (5)
		[5 marks]

[FP3 June 2006 Qn 1]

55. (a)
$$(4-\lambda)(1-\lambda)+2=0$$
 M1 M1 M1 $\lambda^2-5\lambda+6=(\lambda-3)(\lambda-2)=0$ M1 A1 (3) (b) $M^{-1}=\frac{1}{6}\begin{pmatrix}1&2\\-1&4\end{pmatrix}$ B1 B1 (2) (c) $\begin{vmatrix}\frac{1}{6}-\frac{1}{2}&\frac{1}{3}\\-\frac{1}{6}&\frac{2}{3}-\frac{1}{2}\end{vmatrix}=-\frac{1}{3}\times\frac{1}{6}+\frac{1}{3}\times\frac{1}{6}=0$ M1 for either value $(\text{hence }\frac{1}{2}\text{ is an eigenvalue of }\mathbf{M}^{-1})$

$\begin{vmatrix} \frac{1}{6} - \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{2}{3} - \frac{1}{3} \end{vmatrix} = -\frac{1}{6} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{6} = 0$	A1
(hence $\frac{1}{3}$ is an eigenvalue of \mathbf{M}^{-1})	(3)
(d) Using eigenvalues	
	M1 A1
$ (1 1) \cdot (y) = 3(y) $ $4x - 2y = 3x \implies y = \frac{1}{2}x $	M1 A1 (4) [12]
Alternative to (c), using characteristic polynomial of \mathbf{M}^{-1}	-+
$\left(\frac{1}{6} - \lambda\right)\left(\frac{2}{3} - \lambda\right) + \frac{1}{3} \times \frac{1}{6} = 0$	M1
Leading to $6\lambda^2 - 5\lambda + 1 = (3\lambda - 1)(2\lambda - 1) = 0 \implies \lambda = \frac{1}{2}, \frac{1}{3}$	A1, A1 (3)
Alternative to (d) $ \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} x' \\ mx' \end{pmatrix} $	
4x - 2mx = x', x + mx = mx' both	M1
$\frac{1+m}{4-2m} = m$	A1
Leading to $2m^2 - 3m + 1 = (2m - 1)(m - 1) = 0 \implies m = \frac{1}{2}, 1$	M1
$y = \frac{1}{2}x, y = x$ both	A1 (4)

[FP3 June 2006 Qn 5]

56.	(a) $ (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -3 \\ 4 & -5 & -1 \end{vmatrix} $	M1
	$= -15\mathbf{i} - 10\mathbf{j} - 10\mathbf{k}$	A1+A1+A1 (4)
	Allow M1 A1 for negative of above	
	(b) $\mathbf{r}.(3\mathbf{i}+2\mathbf{j}+2\mathbf{k}) = (3\mathbf{i}+2\mathbf{j}+2\mathbf{k}).(\mathbf{i}+3\mathbf{j}-\mathbf{k})$ or equivalent	M1
	$\mathbf{r} \cdot (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 7$ or multiple	A1 (2)
	(c) Let $x = \lambda$, $z = 3 - \lambda$,	
	then $2y = 7 - 3\lambda - 2(3 - \lambda)$ \Rightarrow $y = \frac{1}{2} - \frac{1}{2}\lambda$	
	x, y and z in terms of a single parameter	M1
	The direction of l is any multiple of $(2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$	M1
	$(\mathbf{r} - (\frac{1}{2}\mathbf{j} + 3\mathbf{k})) \times (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 0$ or equivalent	M1 A1 (4)
	Possible equivalents are $(\mathbf{r} - (\mathbf{i} + 2\mathbf{k})) \times (-2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 0$	
	and $(\mathbf{r} - (3\mathbf{i} - \mathbf{j})) \times (-\mathbf{i} + \frac{1}{2}\mathbf{j} + \mathbf{k}) = 0$	
	The general form is	
	$\{\mathbf{r} - [\mathbf{i} + 2\mathbf{k} + c_1(2\mathbf{i} - \mathbf{j} - 2\mathbf{k})]\} \times c_2(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 0$	
	(d) $ \left(\lambda \mathbf{i} + \left(\frac{1}{2} - \frac{1}{2}\lambda\right)\mathbf{j} + \left(3 - \lambda\right)\mathbf{k}\right) \cdot \left(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}\right) = 0 $	M1
	$2\lambda - \frac{1}{2} + \frac{1}{2}\lambda - 6 + 2\lambda = 0$	
	Leading to $\lambda = \frac{13}{9}$	M1 A1
	$P:\left(\frac{13}{9},-\frac{2}{9},\frac{14}{9}\right)$	A1 (4)
		[14]
	Alternative to (d)	

$$OP^{2} = \lambda^{2} + \left(\frac{1}{2} - \frac{1}{2}\lambda\right)^{2} + \left(3 - \lambda\right)^{2} \quad \left(=\frac{1}{4}\left(9\lambda^{2} - 26\lambda + 37\right)\right)$$

$$\frac{d}{d\lambda}\left(OP^{2}\right) = 0 \quad \Rightarrow \quad \lambda = \frac{13}{9}$$

$$P:\left(\frac{13}{9}, -\frac{2}{9}, \frac{14}{9}\right)$$
A1 (4)

[FP3 June 2006 Qn 7]

57.
$$\int \frac{1}{\sqrt{\left((x+2)^2 - 9\right)}} dx = \operatorname{arcosh} \frac{x+2}{3}$$
If their completing the square, requires arcosh for their completing the square, requires arcosh
$$\left[\operatorname{arcosh} \frac{x+2}{3}\right]_{1}^{3} = \operatorname{arcosh} \frac{5}{3} \left(-\operatorname{arcosh} 1\right)$$

$$= \ln\left(\frac{5}{3} + \sqrt{\frac{25}{9} - 1}\right) = \ln\left(\frac{5}{3} + \frac{4}{3}\right) = \ln 3$$
MI A1 (5)
$$[5]$$
Alternative
$$x^2 + 4x - 5 = (x+2)^2 - 9$$
Let $x+2 = 3\sec\theta$,
$$\frac{dx}{d\theta} = 3\sec\theta\tan\theta$$

$$\int \frac{1}{\sqrt{\left((x+2)^2 - 9\right)}} dx = \int \frac{3\sec\theta\tan\theta}{\sqrt{9\sec^2\theta - 9}} d\theta$$

$$= \int \sec\theta d\theta$$

$$\left[\ln\left(\sec\theta + \tan\theta\right)\right]_{\arccos^2}^{\arccos^2\theta} = \ln\left(\frac{5}{3} + \frac{4}{3}\right) = \ln 3$$
MI A1 (5)

[FP2 June 2007 Qn 1]

[FP2 June 2007 Qn 2]

$$\frac{dy}{dx} = \frac{1}{4} \left(4x - \frac{1}{x} \right) \qquad B1$$

$$\int \left(1 + \left(\frac{dy}{dx} \right)^2 \right)^{\frac{1}{2}} dx = \int \left(1 + \left(x - \frac{1}{4x} \right)^2 \right)^{\frac{1}{2}} dx \qquad M1$$

$$= \int \left(1 + x^2 + \frac{1}{16x^2} - \frac{1}{2} \right)^{\frac{1}{2}} dx = \int \left(\left(x + \frac{1}{4x} \right)^2 \right)^{\frac{1}{2}} dx = \int \left(x + \frac{1}{4x} \right) dx \qquad M1 A1$$

$$= \frac{x^2}{2} + \frac{\ln x}{4} \qquad A1$$

$$\left[\frac{x^2}{2} + \frac{\ln x}{4} \right]_{0.5}^2 = 2 + \frac{\ln 2}{4} - \frac{1}{8} - \frac{\ln 0.5}{4} = \frac{15}{8} + \frac{1}{2} \ln 2 \qquad M1 A1$$

$$\left(a = \frac{15}{8}, \ b = \frac{1}{2} \right) \qquad (7 \text{ marks})$$

[FP2 June 2007 Qn 3]

60. (a)
$$\cosh A \cosh B - \sinh A \sinh B = \left(\frac{e^A + e^{-A}}{2}\right) \left(\frac{e^B + e^{-B}}{2}\right) - \left(\frac{e^A - e^{-A}}{2}\right) \left(\frac{e^B - e^{-B}}{2}\right)$$

$$= \frac{1}{4} \left(e^{A+B} + e^{-A+B} + e^{A-B} + e^{A-B} - e^{A+B} + e^{A-B} + e^{A-B} - e^{-A-B}\right)$$

$$= \frac{1}{4} \left(2e^{-A+B} + 2e^{A-B}\right) = \frac{e^{A-B} + e^{-(A-B)}}{2} = \cosh(A - B)$$

$$= \cosh x \cosh 1 - \sinh x \sinh 1 = \sinh x$$

$$\cosh x \cosh 1 - \sinh x \sinh 1 = \sinh x$$

$$\cosh x \cosh 1 = \sinh x (1 + \sinh 1) \Rightarrow \tanh x = \frac{\cosh 1}{1 + \sinh 1}$$

$$\tanh x = \frac{e + e^{-1}}{2} = \frac{e + e^{-1}}{2 + e - e^{-1}} = \frac{e^2 + 1}{e^2 + 2e - 1}$$

$$Alternative for (b)$$

$$\frac{e^{x-1} + e^{-(x-1)}}{2} = \frac{e^x - e^{-x}}{2}$$
M1
A1

(4)

Leading to
$$e^{2x} = \frac{e^2 + e}{e - 1}$$

$$tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^2 + e - (e - 1)}{e^2 + e + (e - 1)} = \frac{e^2 + 1}{e^2 + 2e - 1}$$
 \$\psi\$ cso M1 A1 (4)

[FP2 June 2007 Qn 4]

61. (a)
$$I_n = -\frac{3}{4} \left[x^n (8 - x)^{\frac{4}{3}} \right]_0^8 + \frac{3}{4} \int nx^{n-1} (8 - x)^{\frac{4}{3}} dx$$
 M1 A1
$$= \frac{3}{4} \int nx^{n-1} (8 - x)^{\frac{4}{3}} dx$$
 ft numeric constants only A1ft
$$\int nx^{n-1} (8 - x) (8 - x)^{\frac{1}{3}} dx = \int nx^{n-1} 8 (8 - x)^{\frac{1}{3}} dx - \int nx^{n-1} x (8 - x)^{\frac{1}{3}} dx$$
 M1 A1
$$I_n = 6nI_{n-1} - \frac{3}{4} nI_n \implies I_n = \frac{24n}{3n+4} I_{n-1} *$$
 cso A1 (6)
(b)
$$I_0 = \int_0^8 (8 - x)^{\frac{1}{3}} dx = \left[-\frac{3}{4} (8 - x)^{\frac{4}{3}} \right]_0^8 = \frac{3}{4} \times 8^{\frac{4}{3}} = 12$$
 M1 A1
$$I = \int_0^8 x (x+5)(8-x)^{\frac{1}{3}} dx = I_2 + 5I_1$$
 M1
$$I_1 = \frac{24}{7} I_0, \quad I_2 = \frac{48}{10} I_1 = \frac{48}{10} \times \frac{24}{7} I_0 \left(= \frac{576}{35} I_0 \right)$$
 M1 A1
(The previous line can be implied by $I = I_2 + 5I_1 = \frac{168}{5} I_0$)
$$I = \left(\frac{576}{35} + 5 \times \frac{24}{7} \right) \times 12 = \frac{2016}{5} \left(= 403.2 \right)$$
 A1 (6)
(12 marks)

[FP2 June 2007 Qn 6]

62. (a)
$$\frac{d}{dx} \left(\operatorname{arsinh} x^{\frac{1}{2}} \right) = \frac{1}{\sqrt{(1+x)}} \times \frac{1}{2} x^{-\frac{1}{2}} \left(= \frac{1}{2\sqrt{x}\sqrt{(1+x)}} \right)$$
At $x = 4$, $\frac{dy}{dx} = \frac{1}{4\sqrt{5}}$ accept equivalents

(b)
$$x = \sinh^{2}\theta, \qquad \frac{dx}{d\theta} = 2\sinh\theta\cosh\theta$$

$$\int \operatorname{arsinh} \sqrt{x} \, dx = \int \theta \times 2\sinh\theta\cosh\theta \, d\theta$$

$$= \int \theta \sinh 2\theta \, d\theta = \frac{\theta \cosh 2\theta}{2} - \int \frac{\cosh 2\theta}{2} \, d\theta$$

$$= \dots - \frac{\sinh 2\theta}{4}$$
M1

$$\left[\frac{\theta \cosh 2\theta}{2} - \frac{\sinh 2\theta}{4} \right]^{\operatorname{arsinh}^{2}} = \dots \qquad \text{attempt at substitution}$$

$$= \left[\frac{\theta \left(1 + 2\sinh^{2}\theta \right)}{2} - \frac{2\sinh\theta\cosh\theta}{4} \right] = \frac{1}{2} \operatorname{arsinh} 2 \times (1+8) - \frac{4\sqrt{5}}{4}$$
M1

A1

$$= \frac{9}{2} \ln(2 + \sqrt{5}) - \sqrt{5}$$
A1

(10)

Alternative for (a)
$$x = \sinh^{2} y, \quad 2 \sinh y \cosh y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{2 \sinh y \cosh y} = \frac{1}{2 \sinh y \sqrt{\sinh^{2} y + 1}} \left(= \frac{1}{2 \sqrt{x} \sqrt{1 + x}} \right)$$
At $x = 4$, $\frac{dy}{dx} = \frac{1}{4\sqrt{5}}$ accept equivalents
An alternative for (b) is given on the next page

[FP2 June 2007 Qn 7]

63. (a)
$$\begin{pmatrix} 3 & 4 & p \\ -1 & q & -4 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \lambda \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
Third row
$$1-3=-\lambda \implies \lambda=2$$
M1 A1 (2)

(b)
$$\begin{pmatrix} 3 & 4 & p \\ -1 & q & -4 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4-p \\ q+4 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
First row
$$4-p=0 \implies p=4 \\ q+4=2 \implies q=-2$$
Method for either Both correct M1 A1 ft (4)

(c)
$$\begin{pmatrix} 3 & 4 & 4 \\ -1 & -2 & -4 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} 10 \\ -4 \\ 3 \end{pmatrix}$$

$$3l+4m+4n=10 \\ -l-2m-4n=-4 \\ l+m+3n=3$$
Obtaining 3 linear equations M1
$$2l+2m=6 \\ 3l+2m=8 \\ Reducing to a pair of equations and solving for one variable Solving for all three variables. M1 A1 (4) [10]$$
Alternative to (c)
$$A^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 8 & 8 \\ -1 & -5 & -8 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 10 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 & 8 & 8 \\ -1 & -5 & -8 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 10 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 \\ 0 \end{pmatrix}$$
M1 A1 (4)

[FP3 June 2007 Qn 3]

64.	(a) $\overrightarrow{AB} = -\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}, \overrightarrow{AC} = 4\mathbf{j} + 2\mathbf{k}$ any two	B1
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 3 \\ 0 & 4 & 2 \end{vmatrix} = -6\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$	M1 A1 A1
	Give A1 for any two components correct or the negative of the correct answer.	(4)
	(b) Cartesian equation has form $3x - y + 2z = p$	
	$(2,-1,0) \Rightarrow 6+1=p$ or use of another point	M1
	3x - y + 2z = 7 * or any multiple	A1 (2)
	(c) Parametric form of line is $\mathbf{r} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ or equivalent form	M1 A1
	Substituting into equation of plane $3(5+2\lambda)-(5-\lambda)+2(3-2\lambda)=7$	M1
	Leading to $\lambda = -3$	A1
	T:(-1,8,9)	A1 (5)
	(d) $\overrightarrow{AT} = -3\mathbf{i} + 9\mathbf{j} + 9\mathbf{k}$, $\overrightarrow{BT} = -2\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}$ both These are parallel and hence A , B and T are collinear \bigstar (by the axiom of parallels) Alternative to (d)	M1 M1 A1 (3) [14]
	The equation of AB : $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + \mu(-\mathbf{i} + 3\mathbf{j} + 3\mathbf{k})$ or equivalent	
	i: $-1 = 2 - \mu \implies \mu = 3$	M1
	$\mu = 3 \implies \overrightarrow{OT} = -\mathbf{i} + 8\mathbf{j} + 9\mathbf{k}$	M1
	Hence A , B and T are collinear \star cso	A1 (3)
	Note: Column vectors or bold-faced vectors may be used at any stage.	

[FP3 June 2007 Qn 7]

65.	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(\tanh x)) = \frac{\mathrm{sech}^2 x}{\tanh x}$		M1 A1	
	$= \frac{1}{\sinh x \cosh x} = \frac{2}{\sinh 2x} = 2 \operatorname{cosech} 2x$	(*)	M1 A1	(4)
				4
	Notes			
	1M1 Any valid differentiation attempt including $\ln(e^x - e^{-x}) - \ln(e^x + e^{-x})$			
	1A1 c.a.o. (o.e e.g. $\frac{\cosh x}{\sinh x} - \frac{\sinh x}{\cosh x}$)			
	2M1 Proceeding to a hyperbolic expression in 2x c.s.o.			

[FP2 June 2008 Qn 1]

66.	$8\left(\frac{e^{x} + e^{-x}}{2}\right) - 4\left(\frac{e^{x} - e^{-x}}{2}\right) = 13$	B1
	$4e^x + 4e^{-x} - 2e^x + 2e^{-x} = 13$	
	$2e^{2x} - 13e^x + 6 = 0$ (or equiv.)	M1 A1
	$(2e^x - 1)(e^x - 6) = 0$	
	$e^x = \frac{1}{2}, \qquad e^x = 6$	M1 A1ft
	$x = \ln \frac{1}{2}$ (or $-\ln 2$), $x = \ln 6$	A1 (6)
1		. 6
		-
	Notes	
	B1 Correctly substituting exponentials for all hyperbolics	
	1M1 To a three term quadratic in e^x 1A1 c.a.o. (o.e.)	
	2M1 Solving their equation to $e^x =$	
	2A1ft f.t. their equation. 3A1 c.a.o.	:
		:
		·

[FP2 June 2008 Qn 2]

$\int \frac{3}{\sqrt{x^2 - 9}} dx + \int \frac{x}{\sqrt{x^2 - 9}} dx$	B1
$= \left[3\operatorname{arcosh} \frac{x}{3} + \sqrt{x^2 - 9} \right]$	M1 A1 A1
$= \left[3\ln\left(\frac{x+\sqrt{x^2-9}}{(3)}\right) + \sqrt{x^2-9}\right]_5^6$	
$= \left(3\ln(\frac{6+\sqrt{27}}{3}) + \sqrt{27}\right) - \left(3\ln(\frac{5+4}{3}) + 4\right)$	M1 A1
$= 3\ln\frac{6+\sqrt{27}}{9} + \sqrt{27} - 4 = 3\ln\frac{2+\sqrt{3}}{3} + 3\sqrt{3} - 4 \tag{*}$	A1 (
Notes	7
B1 Correctly changing to an integrable form. 1M1 Complete attempt to integrate at least one bit. 1A1 One term correct 2A1 All correct 2DM1 Substituting limits in all.Must have got first M1 3A1 Correctly (no follow through) 4A1 c.s.o.	
	$= \left[3 \operatorname{arcosh} \frac{x}{3} + \sqrt{x^2 - 9}\right]$ $= \left[3 \ln \left(\frac{x + \sqrt{x^2 - 9}}{3}\right) + \sqrt{x^2 - 9}\right]_5^6$ $= \left(3 \ln \left(\frac{6 + \sqrt{27}}{3}\right) + \sqrt{27}\right) - \left(3 \ln \left(\frac{5 + 4}{3}\right) + 4\right)$ $= 3 \ln \frac{6 + \sqrt{27}}{9} + \sqrt{27} - 4 = 3 \ln \frac{2 + \sqrt{3}}{3} + 3\sqrt{3} - 4$ (*) Notes B1 Correctly changing to an integrable form. 1M1 Complete attempt to integrate at least one bit. 1A1 One term correct 2A1 All correct 2DM1 Substituting limits in all.Must have got first M1 3A1 Correctly (no follow through)

[FP2 June 2008 Qn 3]

***********				_
68.	(a) $\frac{dy}{dx} = \frac{3x^2}{\sqrt{1+x^6}}$, At $x = \sqrt{2}$ $\frac{dy}{dx} = \frac{6}{3} = 2$		M1 A1, A1	
	$y - \operatorname{arsinh}(2\sqrt{2}) = 2(x - \sqrt{2})$		мі	
	$y = 2x - 2\sqrt{2} + \ln(3 + 2\sqrt{2})$	(*)	Al	(5)
	(b) $\frac{3a^2}{\sqrt{1+a^6}} = 2$ $9a^4 = 4(1+a^6)$		M1 A1	
	$4a^6 - 9a^4 + 4 = 0 (a^2 - 2)(4a^4 - a^2 - 2) = 0$		A1	
	$a^2 = \frac{1 \pm \sqrt{1 + 32}}{8} \qquad a = \sqrt{\frac{1 + \sqrt{33}}{8}} \approx 0.92$		M1 A1	(5)
	Notes		·	10
	(a)1M1 Attempt to differentiate need $(1+x^6)^{-\frac{1}{2}}$ at least 1A1 correct 2A1 c.a.o.		:	
	 2M1 Substituting into straight line equation (linear). Must use x = √2 3A1 c.s.o. (b)1M1 Their derivative = their gradient (condone x throughout) 2M1= A mark cao, any form 1A1 quartic cao 3M1 Solving their quartic to 'a' = 2A1 c.a.o. (a.w.r.t. 0.92 to 2dp) 		:	

[FP2 June 2008 Qn 4]

пшпоч	I	
69.	(a) $I_n = \int_0^{\pi} e^x \sin^n x dx = \left[e^x \sin^n x \right] - \int e^x n \sin^{n-1} x \cos x dx$	M1 A1
	$\left[e^{x} \sin^{n} x - n e^{x} \sin^{n-1} x \cos x \right] + n \int e^{x} (-\sin^{n} x + (n-1) \cos x \sin^{n-2} x \cos x) dx$	M1 A1
	$\left[e^x \sin^n x - ne^x \sin^{n-1} x \cos x\right]_0^{\pi} = 0$: B1
	$I_n = -n \int e^x \sin^n x dx + n(n-1) \int \sin^{n-2} x (1 - \sin^2 x) dx$	M1
	$I_n = -nI_n + n(n-1)I_{n-2} - n(n-1)I_n \qquad I_n = \frac{n(n-1)}{n^2 + 1}I_{n-2} $ (*)	M1 A1 (8)
	(b) $I_4 = \frac{4 \times 3}{17} I_2$, $= \frac{12}{17} \times \frac{2}{5} I_0$	M1, A1
	$I_0 = \int_0^{\pi} e^x dx = \left[e^x \right]_0^{\pi} = \dots$, $I_4 = \frac{24}{85} \left(e^{\pi} - 1 \right)$	M1, A1 (4)
		12
	 (a)1M1 Complete attempt to use parts once in the right direction need sinⁿ⁻¹ x 1A1 cao 2M1 Attempt to use parts again with sensible choice of parts, not reversing. Need to be differed 2A1 cao 1B1 both = 0 at some point. (doesn't need to be correct, must must =0) 3DM1 I_n = expressions in ∫e^x sin^k x dx Depends on 2nd M 	entiating a product.
	4DM1Expresssion in I_n and I_{n-2} to $I_n = .$ Depends on 3^{rd} M 3A1 c.s.o. (b)1M1 I_4 in terms of I_2 1A1 I_4 correctly in terms of I_0 [o.e.]	
	2M1 \int e^z dx 2A1 c.a.o for I4.	

[FP2 June 2008 Qn 5]

70.	(a) $\int \cosh x \arctan(\sinh x) dx = \sinh x \arctan(\sinh x) - \int \sinh x \frac{\cosh x}{1 + \sinh^2 x}$	$\frac{c}{2x} dx$	M1 A1 A1	
	$= \sinh x \arctan(\sinh x) - \frac{1}{2} \ln(1 + \sinh^2 x) \ (+C)$		M1 A1	(5)
	Or:		:	
	$= \sinh x \arctan(\sinh x) - \ln(\cosh x) \ (+C)$	M1 A1		
	Alternative: Let $t = \sinh x$, $\frac{dt}{dx} = \cosh x$, $\int \arctan t dt = t \arctan t - \int \frac{t}{1+t^2} dt$	MI Al Al	;	
	$= \dots -\frac{1}{2} \ln (1+t^2)$	M1		
	$= \sinh x \arctan(\sinh x) - \frac{1}{2} \ln(1 + \sinh^2 x) \ (+C) \ (\text{or equiv.})$	A1		
	(b) $\frac{1}{10} \left[\sinh x \arctan(\sinh x) - \ln(\cosh x) \right]_0^2 = \dots$, 0.34	(*)	M1, A1	(2)
				7
	(a) Alternative: Let $\tan t = \sinh x$, $\sec^2 t \frac{dt}{dx} = \cosh x$, $\int t \sec^2 t dt = t \tan t - \int \tan t dt$ $= \dots - \ln(\sec t)$	MI AI AI		
	$= \sinh x \arctan(\sinh x) - \ln \sqrt{1 + \sinh^2 x} (+C) \text{(or equiv.)}$	Al	-	
	Notes (a) 1M1 Complete attempt to use parts 1A1 One term correct. 2A1 All correct. 2M1 All integration completed. Need a ln term. 3A1 c.a.o. (in x) o.e, any correct form, simplified or not (b) 1M1 Use of limits 0 and 2 and 1/10. 1A1 c.s.o.			

[FP2 June 2008 Qn 6]

71.	(a) $\frac{2x}{16} - \frac{2y}{9} \frac{dy}{dx} = 0$	MI AI
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{9x}{16y} = \frac{36\sec t}{48\tan t} = \frac{3}{4\sin t}$	M1 A1
	$y - 3\tan t = \frac{-4\sin t}{3}(x - 4\sec t)$	M1
	$4x\sin t + 3y = 25\tan t \tag{*}$	A1 (6)
	(b) Using $b^2 = a^2(e^2 - 1)$: $ae = \sqrt{a^2 + b^2} = 5$ or $e = \frac{5}{4}$	M1 A1
	$P: \ 4\sec t = 5 \qquad \cos t = \frac{4}{5}$	М1
	Coordinates of P: $(4 \sec t, 3 \tan t) = \left(5, \frac{9}{4}\right)$	MI A1 (5)
	(c) R : $x = \frac{25 \tan t}{4 \sin t} = \frac{125}{16}$	M1
	Area of <i>PRS</i> : $\frac{1}{2}(SR \times SP) = \frac{1}{2} \times \left(\frac{125}{16} - 5\right) \times \frac{9}{4} = \frac{405}{128} \left(= 3\frac{21}{128}\right)$	M1 A1 (3)
		14
	Notes (a)1M1 Differentitating 1A1 c.a.o.	:
	$\frac{dy}{dx} \text{ in terms of } t.$	
	2A1 c.a.o. 3M1 Substituting gradient of normal into straight line equation. 3A1 c.s.o.	:
	(b)1M1 Use of $b^2 = a^2(e^2 - 1)$	
	 1A1 c.a.o. for ae or for e 2M1 Using x coordinate of focus= x coordinate of P, to get single term f(t)= constant. (Allow recovery in (c)) 	
	3M1 Substituting into P coordinates to a number for x and for y. 2A1 c.a.o.	
	(c)1M1 Attempt to find x coordinate of R. 2M1 Substituting into correct template i.e. ½ x their R _x - their H _x x their P _y 1A1 c.a.o. 3 s.f. or better.	

[FP2 June 2008 Qn 7]

	1	L
72. (a)	$\begin{pmatrix} 1 & p & 2 \\ 0 & 3 & q \\ 2 & p & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1+2p+2 \\ 6+q \\ 2+2p+1 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda \\ \lambda \end{pmatrix} \text{ is M1 A1 (2 eqns implied)}$ $\begin{pmatrix} 3+2p \\ 6+q \\ 3+2p \end{pmatrix} \Rightarrow 6+q = 2(3+2p) \text{ is M1 A1 (2 eqns, use of parameter implied)}$	
	$1 + 2p + 2 = \lambda$ $6 + q = 2\lambda$ M: Two equations, one in p, one in q $\therefore 6 + q = 6 + 4p \implies q = 4p$ (*)	M1 A1 A1 (3)
(b)	$\begin{vmatrix} -4 & p & 2 \\ 0 & -2 & 4p \\ 2 & p & -4 \end{vmatrix} = 0 \text{ or } \begin{vmatrix} 1-\lambda & p & 2 \\ 0 & 3-\lambda & 4p \\ 2 & p & 1-\lambda \end{vmatrix} = 0 \text{ (or with } q \text{ instead of } 4p)$ $[-4(8-4p^2)-p(0-8p)+2(0+4)=0] \qquad p^2=1 \text{ or } pq=4$ $p<0 p=-1 q=-4 \qquad \text{M: Use } q=4p \text{ to find value of } p \text{ and of } q$ $A1: \text{ Positive values must be rejected}$	M1 A1 dM1 A1 (4)
(c)	$-4x - y + 2z = 0, -2y - 4z = 0, 2x - y - 4z = 0 \text{ Any 2 eqns, with value of } p$ $2x = -y = 2z \text{ (or 2 separate equations)}$ E. vector is $k \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ (Any non-zero value of k)	M1 M1 A1 (3)
	(a) Assuming a value for λ , e.g. $\lambda = 1$, gives M1 A0 A0. (a) Assuming result and working 'backwards': $ \begin{pmatrix} 1 & p & 2 \\ 0 & 3 & 4p \\ 2 & p & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 & 3 & 4p \end{pmatrix} = \begin{pmatrix} 3 + 2p \\ 6 + 4p \\ 3 + 2p \end{pmatrix} = \begin{pmatrix} 3 + 2p \\ 2 \\ 1 \end{pmatrix}, gives M1 A0 A0 $ (b) Alternative: $ \begin{pmatrix} 1 & p & 2 \\ 0 & 3 & 4p \\ 2 & p & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 5\begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} -4 & p & 2 \\ 0 & -2 & 4p \\ 2 & p & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ (or } q \text{ instead of } 4p)$ $ x + py + 2z = 5x, 3y + 4pz = 5y, 2x + py + z = 5z $ $ py + 2z = 4x \text{ (i), } 2pz = y \text{ (ii), } 2x + py = 4z \text{ (iii)} $ From (i) and (iii) $py = 2z$ From (ii) $p^2 = 1$ (or equiv. in terms of p and/or q)	(10) M1
	$p < 0, p = -1, q = -4$ A1: Positive values must be rejected (b) Using the eigenvector $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ scores no marks in this part.	dMI Al

[FP3 June 2008 Qn 2]

13,000	DC.		
73.	(a)	$\overrightarrow{PQ} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}, \overrightarrow{PR} = 2\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$	B1
		$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{vmatrix} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$	M1 A1 (3)
	(b)	$\mathbf{r} \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k}) = (\mathbf{i} - \mathbf{k}) \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k})$ [may use \overrightarrow{OQ} or \overrightarrow{OR}]	M1
		$\mathbf{r} \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k}) = 4$ o.e. ft from (a) 3x + y - z = 4 (i), $x - 2y - 5z = 6$ (ii)	A1ft (2)
	(c)	(i) $\times 2 + \text{(ii)}$ $7x - 7z = 14$, $x = z + 2$ (M: Eliminate one variable) In (ii) $z + 2 - 2y - 5z = 6$, $y + 2 = -2z$ (M: Substitute back)	M1 M1
		$\therefore x = z + 2$ and $y + 2 = -2z$ o.e. $(y = 2 - 2x)$ (Two correct '3-term' equations)	A1
		$\frac{x-2}{(1)} = \frac{y+2}{-2} = \frac{z}{(1)}$ o.e. (M: Form cartesian equations)	M1 A1 (5)
	(d)	Writing down direction vector of \overrightarrow{PS} from part (c).	M1
		$\overrightarrow{QR} = \mathbf{i} - 2\mathbf{j} + \mathbf{k} = \overrightarrow{PS} : PS // QR$ (or cross-product = 0)	A1 (2)
	(e)	$\overrightarrow{PT} = 4\mathbf{i} + 2\mathbf{j}$ (or $\overrightarrow{QT} = 3\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ or $\overrightarrow{RT} = 2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$)	
		Volume = $\frac{1}{3} \overrightarrow{PQ} \times \overrightarrow{PR}.\overrightarrow{PT} = \frac{1}{3} (3\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (4\mathbf{i} + 2\mathbf{j}) $ ft from (a)	NG 418
		(Instead of $\overrightarrow{PQ} \times \overrightarrow{PR}$, it could be $\overrightarrow{PQ} \times \overrightarrow{QR}$ or $\overrightarrow{PR} \times \overrightarrow{QR}$)	M1 A1ft
		$=\frac{1}{3}(12+2)$	
		$=4\frac{2}{3}$ o.e.	A1 (3) (15)
		(a) If both vectors are 'reversed', B0 M1 A1 is possible	
		(c) Alternative:	
		Direction of line: $\begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ M2 A1	
		Through $P(1,0,-1): \frac{x-1}{1} = \frac{y}{-2} = \frac{z+1}{1}$ M1 A1	
		(e) Alternative:	
		$\frac{1}{3}\begin{vmatrix} 4 & 2 & 0 \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{vmatrix}$ gives M1 A1 directly. Here ft from 1 st line of part (a).	
		Special case: $\frac{1}{6}$ or $\frac{1}{2}$ instead of $\frac{1}{3}$, but method otherwise correct: M1 A0 A0	

[FP3 June 2008 Qn 7]