b)
$$T_{25} = 325$$
 may found $T_{n} = T_{n-1} + h$ entire $T_{25} = T_{24} + 25$ $T_{26} = T_{25} + 26$ $T_{25} - 25 = T_{24}$ $T_{26} = 325 + 26$ $T_{26} = 325 + 26$ $T_{26} = 351 //$ $T_{24} = 300 //$

c)
$$17_{54} = 7_{53} + 54$$
 $T_{54} - 7_{53} = 4_{53} + 54 - 7_{63}$
 $T_{46} + 4_{7} - 7_{46} = 4_{7}$
 $= 54$

$$(v) T_{N-1} = T_{N-1} = T_{N-1} = T_{N-1}$$

22 a)
$$T_{24} = 1 + 2 + ... + 24$$

 $T_{24} = 24 + 23 + ... + 1$
 $2 \cdot T_{24} = 25 + 25 + ... + 25$
 $2 \cdot T_{24} = 24 \cdot 25$
 $2 \cdot T_{24} = 24 \cdot 25$
 $T_{24} = 12 \cdot 25 = 300$

$$T_{29} = 1+2+...+29$$
 $2t_{25} = 30+30+...+30$
 $2t_{25} = 29.30 = 870$

$$T_{59} = 14 \dots + 99$$
 $T_{79} = 99 + 98 + \dots + 1$
 $2.T_{79} = 100 + 100 + \dots + 100$
 99 vets

$$\frac{2.T_{59} = 99.100}{T_{99} = 39.50}$$

$$= 7 + 99 = 495 //$$

> 99.50 = 350 - 495

$$T_{1000} = 1 + 2 + ... + 1000$$

$$T_{1000} = \frac{1000 \cdot 1001}{2} = 500500$$

$$S = 4 + 5 + \dots + 15 + 16$$

 $S = 16 + 15 + \dots + 5 + 4$

c)
$$S = 2 + 4 + \dots + 38 + 40$$

 $2S = 20(40 + 2)$
 $S = 10.42$
 $S = 420//$

$$\frac{\partial}{\partial S} = 3 + 6 + 9 + \cdots + 87 + 90$$

 $S = 90 + 87 + \cdots + 6 + 3$
 $2S = 93 \cdot 30$

$$S = \frac{110 \cdot 10}{2} = \frac{1100}{2} = 550$$

$$T_{10} = 1 + 2 + 3 + \dots + 9 + 10$$

$$10.T_{10} = 10(1 + 2 + 3 + \dots + 9 + 10)$$

9)
$$S = 1+2 + 3 + ... + 59$$

 $S = 55 + ... + 3 + 2 + 1$
 $2S = 60.30$
 $S = 60.15$
 $S = 500 / 1$

Leubraido:

0 n-osimo inper e

2n-1

1'

7°

3-5