(a)
$$(a)$$
 (b) (a) (b) (b) (c) (c)

1-)
$$a = 0$$

2-) For $9 \in 1$ to 0
 $3-)$ February $a \in a+1$ Schlora called $a \in a+1$ Schlora

$$\sum_{i=1}^{j-1} \sum_{i=1}^{j-1} i=1$$

$$\sum_{i=1}^{j-1} V = v_{2}$$

$$\sum_{i=1}^{j-1} V = v_{3}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$$

$$= \frac{1}{5} \frac{1}{5} \frac{1}{5} = \frac{1}{5} \frac{1}{5}$$

F) 0 6-0

2-) For ? = 1 to n-1

3-) For 5 = 1+1 +0 0

For & - 1 +0 5 (-)

a = a+1

 $\widetilde{\mathcal{I}}^{-}$) return a;

 $\sum_{i=1}^{n} \frac{3}{3^{i}} = \sum_{i=1}^{n-1} \left(\frac{1}{2} \times n + i\right) - \frac{1}{2} P(i+1)$ $i = 1 \quad 3^{i} = 1 \quad i = 1$

$$=\frac{1}{12}r(r-1)(4r+4)$$

 $\left(\sim \right) \left(\sim^{3} \right)$

2023 Vize

500 0 0 1 to 0-4

7-4 200 color

7-1 for i 1 i to 1+4 = 5 200 color

7-1 for i 1 i to 1+4 = 5 200 color

8-1 i to 5 = 1 i to 5 = 1 i to 6 color

8-1 i to 7 i