Лабораторная работа 2.4 Компьютерная сцинтилляционная γ -спектроскопия

Нехаев Александр, гр. 654

11 ноября 2018 г.

Содержание

1.	Введение	1
	1.1. Теоретическое введение	1
2.	Ход работы	3
3	Вывол	8

1. Введение

Цель работы: определить зависимость энергии и интенсивности гамма-линий от различных гамма источников и идентифицировать их.

В работе используются: сцинтиллятор, ФЭУ, предусилитель импульсов, высоковольтный блок питания для ФЭУ, АЦП, компьютер.

1.1. Теоретическое введение

Фотоэффект. Это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов. Наряду с фотоэффектом, при котором вся энергия гамма-кванта передается атомному электрону, взаимодействие гамма-излучения со средой может приводить к его рассеянию, т.е. отклонению от первоначального направления распространения на некоторый угол.

Эффект Комптона. Это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{\eta \omega}{1 + \frac{mc^2}{2n\omega}}.$$
 (1)

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом — образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 \cong 2mc^2 = 1.022$ МэВ.

Появивишийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1) оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- 2) один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэB;
- 3) оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_{0}$, где $2E_{0}=2mc^{2}=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Компотона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma} \gg mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле:

$$E_{\rm o6p} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где E – энергия фотопика.

Энергетическое разрешение спектрометра. Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1) со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2) с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3) с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},\tag{3}$$

где ΔE_i – ширина пика полного поглощения, измеренная на половине высоты, E_i – энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni V$, т.е.:

$$E_i = \alpha \overline{n_i}. \tag{4}$$

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$
 (5)

Из (4), (5) получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$
 (6)

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии 137 Cs (661.7 кэВ).

2. Ход работы

Используем спектр ²²Na как калибровочный график:

Рис. 1: Спектр ²²Na

Построим калибровочный график зависимости номера канала N от энергии γ -кванта E_i . Предварительно аппроксимируем пики по функции Гаусса:

$$y(x) = A \cdot e^{-\frac{(x-x_0)^2}{2*\sigma^2}} + B \cdot x + C \tag{7}$$

Таким образом, спектр с аппроксимированными пиками имеет следующий вид:

Рис. 2: Спектр ²²Na с аппроксимированными пиками

Координаты пиков по горизонтальной оси соответсвтуют параметру x_0 . Для данных пиков: $x_{01}=722.438,\,x_{02}=1746.$ Тогда калибровочный график имеет вид:

Рис. 3: Калибровочный график

Функция для перевода номера канала в энергию имеет вид:

$$E_i = -28239.5 + 746.416 \cdot N \tag{8}$$

Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E_i , их ширины на половине высоты ΔH_i и энергетическое разрешение R_i .

Рис. 4: Спектр 60 Со

Рис. 5: Спектр ¹³⁷Cs

Рис. 6: Спектр ²⁴¹Am

Рис. 7: Спектр $^{152}\mathrm{Eu}$

Сведем результаты в таблицу 1. В этой таблице: N_i – номер канала, соответствующего пику полного поглощения.

По результатам измерения энергии края комптоновского поглащения построим график, по одной оси которого отложены экспериментальные значения, а по другой расчетные значения этой энергии (рис. 8).

Для проверки зависимости (6), построим по полученным данным график $R_i^2 = f(1/E_i)$ (рис. 9).

Таблица 1: Параметры пиков спектров

Источник	N_i	ΔN_i	E_i	ΔE_i	R_i
Cobalt	1604	135	$1169.01 \mathrm{keV}$	72.3899 keV	0.061924
Cobalt	1816	143	1327.06keV	78.2396keV	0.0589571
Cesium	919	109	658.017 keV	$52.9515 \mathrm{keV}$	0.0804713
Americium	75	59	27.739keV	$15.8365 \mathrm{keV}$	0.570911
Americium	128	57	67.4993 keV	$14.4587 \mathrm{keV}$	0.214205
Europium	97	60	44.4872 keV	$16.5465 \mathrm{keV}$	0.371939
Europium	138	113	$75.\mathrm{keV}$	$56.1468 \mathrm{keV}$	0.748624
Europium	210	62	128.477 keV	$18.3269 \mathrm{keV}$	0.142648
Europium	366	72	$245.012 \mathrm{keV}$	25.2028keV	0.102864
Europium	498	85	$343.194 \mathrm{keV}$	35.4755 keV	0.103368

Рис. 8: Комптоновские края

Рис. 9: Зависимость разрешения от энергии

Форма импульсов на выходе ФЭУ определяется выражением:

$$U(t) = \operatorname{const} \cdot e^{-\frac{t}{RC}} \left(1 - e^{-\frac{t}{\tau_0}} \right), \tag{9}$$

где τ_0 – время высвечивания сцинтиллятора, а RC – постоянная времени (R и C – сопротивление и емкость в анодной цепи ФЭУ). Выражение (9) справедливо при $RC\gg\tau_0$. Обычно выбирают $RC=(5\div 10)\tau_0$. По зарисованным импульсам оценим величину τ_0 и постоянную времени RC.

Рис. 10: Форма импульса

Аппроксимируя положительную часть графика согласно формуле (9), получаем, что $RC \approx 6.244 \mu s$, а $\tau_0 \approx 3.61 \mu s$.

3. Вывод

В данной работе был разобран принцип работы устройства сцинтиллятора. Также был изучен ряд радиоактивных источников и проверены статистические отношения для разрешающей способности спектрометра.