Context-Aware Smoothing for Neural Machine Translation

<u>Kehai Chen¹</u>, Rui Wang², Masao Utiyama², Eiichiro Sumita² and Tiejun Zhao¹

¹Harbin Institute of Technology, China

²National Institute of Information and Communications Technology, Japan

Content

- Motivation
- Related Works
- Context-Aware Representation
- NMT with Context-Aware Smoothing
- Experimental Results
- Conclusion

Motivation-1:polysemy words

他们 矛盾 Src1 想 解决 通过 打 比赛 (pinyin) tamen lai jiejue xiang tongguo <mark>da</mark> bisai maodun **Trg1** They want to solve the dispute by playing the game 对方 Src2 他们 正在 因为 争执 (pinyin) tamen zhengzai yinwei zhengzhi er <mark>da</mark> duifang

Trg2 They are beating each other for a dispute

Two bilingual parallel sentence pairs

The lexicon semantic depends on its specific context

Motivation-1:polysemy words

Src1他们想通过打比赛来解决矛盾(pinyin) tamenxiangtongguodabisailaijiejuemaodunTrg1They want to solve the dispute by playing the gameSrc2他们正在因为争执而打对方(pinyin) tamenzhengzaiyinweizhengzhierdaduifangTrg2They are beating each other for a dispute

Two bilingual parallel sentence pairs

The lexicon semantic depends on its specific context

Motivation-1: Enhancing word representation for polysemy words

Learn specific-sentence word representation $oldsymbol{v_j}$

Motivation-2:OOV

Motivation-2:OOV

The source sentence includes a OOV

Single vector v_u represents all OOVs

Motivation-2:OOV

The source sentence includes a OOV

- Breaking the structure of sentence;
- Pool source representation;
-
- Affecting translation prediction of target word.

These gray parts indicate the parameters of NMT which are affected by the OOV

Related Works

- Translation Granularity for NMT
 - ---Smaller Translation Granularity: Word, Sub-word (BPE), Character for OOV.

```
Sennrich et al. (2016), Costa-jussa and Fonollosa (2016), and Li et al. (2016), ... ...
```

- Source representation for NMT
 - ---RNN or CNN-based Encoder: learning source representation over the sequence of fixed word vectors.

Bahdanau et al. (2015), Sutskever et al. (2014),

Related Works

- Translation Granularity for NMT
 - ---Smaller Translation Granularity: Word, Sub-word (BPE), Character for OOV.

```
Sennrich et al. (2016), Costa-jussa and Fonollosa (2016), and Li et al. (2016), ... ...
```

- Source representation for NMT
 - ---RNN or CNN-based Encoder: learning source representation over the sequence of fixed word vectors.

```
Bahdanau et al. (2015), Sutskever et al. (2014), ... ...
```

- This work focus on enhancing word embedding layer.
 - ---Learning a specific-sentence representation for polysemy or OOV word by its context words.
 - ---Offering context-aware representation enhances word embedding layer, thereby improving translations (though RNN Encoder can capture word context).

If there is an OOV "unk" (or polysemy word) in the sentence:

$$x_1$$
 x_2 x_3 x_4 unk x_6 x_7 x_8 x_9

When one understands natural language sentence intuitively, especially including OOV or polysemy word, one often inferences the meaning of these words depending on its context words.

 v_1 v_2 v_3 v_4 v_6 v_7 v_8 v_9

• We define a context L_i for source word x_i in a fixed size window 2n:

• We define a context L_i for source word x_i in a fixed size window 2n:

• Take x_5 as an example, its context L_5 follows (n=2):

12

Feedforward Context-of-Words Model (FCWM)

Output layer:

$$V_{L_j} = \sigma(W_1 L_j + b_1)$$

Concatenation:

$$L_j = [v_{j-n}: ...: v_{j-1}: v_{j+1}: ...: v_{j+n}]$$

Ø neareman

Input layer:

$$L_j = v_{j-n}, \dots, v_{j-1}, v_{j+1}, \dots, v_{j+n}$$

Context words L_i of x_i :

$$L_j = x_{j-n}, \dots, x_{j-1}, x_{j+1}, \dots, x_{j+n}$$

$$V_{L_i} = \varphi_1 \left(L_j; \; \theta_1 \right)$$

Feedforward Context-of-Words Model (FCWM)

Convolutional Context-of-Words Model (CCWM)

Output layer:

$$V_{L_j} = \sigma(W_1 L_j + b_1)$$

Concatenation:

$$L_j = [v_{j-n}: ...: v_{j-1}: v_{j+1}: ...: v_{j+n}]$$

Input layer:

$$L_j = v_{j-n}, \dots, v_{j-1}, v_{j+1}, \dots, v_{j+n}$$

Context words L_j of x_j :

$$L_j = x_{j-n}, \dots, x_{j-1}, x_{j+1}, \dots, x_{j+n}$$

Non-linear output layer:

$$\mathcal{V}_{\mathcal{L}_j} = \sigma(W_3(ave(\sum_{l=1}^{\frac{2n-k+1}{2}} \mathcal{P}_l)) + b_3)$$

Pooling layer:

$${\boldsymbol{\mathcal{P}}}=\max[{\boldsymbol{\mathcal{P}}}_1,\dots,{\boldsymbol{\mathcal{P}}}_{\frac{2n-k+1}{2}}]$$

$$\boldsymbol{\mathcal{P}_l} = \max[\boldsymbol{\mathcal{L}_{2l-1}}, \boldsymbol{\mathcal{L}_{2l}}]$$

Convolution layer:

$$\mathcal{L} = [\mathcal{L}_1, \dots, \mathcal{L}_{2n-k+1}]$$

$$\mathcal{L}_i = \psi(W_2\mathcal{M} + b_2)$$

Input layer:

$$\mathcal{M} = [v_{j-n}, ..., v_{j-1}, v_{j+1}, ..., v_{j+n}]$$

Context words L_i of x_i :

$$L_j = x_{j-n}, \dots, x_{j-1}, x_{j+1}, \dots, x_{j+n}$$

$$V_{L_i} = \varphi_1 \left(L_j; \ \theta_1 \right)$$

$$\mathcal{V}_{\mathcal{L}_{j}} = \varphi_{2} \left(L_{j}; \; \theta_{2} \right)$$

NMT for OOV Smoothing

• CARNMT-Enc

Standard NMT:

$$\boldsymbol{h_j} = f_{enc}(\boldsymbol{v_j}, \boldsymbol{h_{j-1}})$$

This work:

$$\boldsymbol{h}_{j} = \begin{cases} f_{enc}(\boldsymbol{v}_{j}, \boldsymbol{h}_{j-1}), & x_{j} \in V_{s} \\ f_{enc}(\boldsymbol{\varphi}_{e}(L_{x_{j}}), \boldsymbol{h}_{j-1}), x_{j} \notin V_{s} \end{cases}$$

Standard NMT:

$$p(y_i|y_{i< i},x) = g(v_{y_{i-1}},s_i,c_i)$$

This work.

$$p(y_i|y_{\leq i},x) = \begin{cases} g(\boldsymbol{v}_{y_{i-1}}, \boldsymbol{s}_i, \boldsymbol{c}_i), & y_{i-1} \in V_i \\ g(\boldsymbol{\varphi}_d(L_{y_{i-1}}), \boldsymbol{s}_i, \boldsymbol{c}_i), & y_{i-1} \notin V_i \end{cases}$$

NMT for OOV Smoothing

• CARNMT-Dec

Standard NMT

$$\boldsymbol{h_j} = f_{enc}(\boldsymbol{v_j}, \boldsymbol{h_{j-1}})$$

This work.

$$\mathbf{h}_{j} = \begin{cases} f_{enc}(\mathbf{v}_{j}, \mathbf{h}_{j-1}), & x_{j} \in V_{s} \\ f_{enc}(\boldsymbol{\varphi}_{e}(L_{x_{j}}), \mathbf{h}_{j-1}), x_{j} \notin V_{s} \end{cases}$$

Standard NMT:

$$\boldsymbol{p}(y_i|y_{i< i},x) = g(\boldsymbol{v}_{y_{i-1}},\boldsymbol{s}_i,\boldsymbol{c}_i)$$

This work:

$$\mathbf{p}(y_i|y_{< i},x) = \begin{cases} g(\mathbf{v}_{y_{i-1}}, \mathbf{s}_i, \mathbf{c}_i), & y_{i-1} \in V_t \\ g(\mathbf{\varphi}_d(L_{y_{i-1}}), \mathbf{s}_i, \mathbf{c}_i), & y_{i-1} \notin V_t \end{cases}$$

NMT for OOV Smoothing

• CARNMT-Both

Standard NMT:

$$\boldsymbol{h_j} = f_{enc}(\boldsymbol{v_j}, \boldsymbol{h_{j-1}})$$

This work:

$$\boldsymbol{h}_{j} = \begin{cases} f_{enc}(\boldsymbol{v}_{j}, \boldsymbol{h}_{j-1}), & x_{j} \in V_{s} \\ f_{enc}(\boldsymbol{\varphi}_{e}(L_{x_{j}}), \boldsymbol{h}_{j-1}), x_{j} \notin V_{s} \end{cases}$$

Standard NMT:

$$\boldsymbol{p}(y_i|y_{i< i},x) = g(\boldsymbol{v}_{y_{i-1}},\boldsymbol{s}_i,\boldsymbol{c}_i)$$

This work:

$$\mathbf{p}(y_i|y_{< i},x) = \begin{cases} g(\mathbf{v}_{y_{i-1}}, \mathbf{s}_i, \mathbf{c}_i), & y_{i-1} \in V_t \\ g(\mathbf{\varphi}_d(L_{y_{i-1}}), \mathbf{s}_i, \mathbf{c}_i), & y_{i-1} \notin V_t \end{cases}$$

NMT for Smoothing all words

Experimental Settings

- Training data includes 1.42M Chinese-to-English parallel sentence pairs from *LDC* corpus.
- The NIST 2002 (MT02) and NIST 2003-2008 (MT03-08) datasets are as validation set and test sets, respectively. The Case-insensitive 4-gram NIST BLEU score (Papineni et al., 2002) is as evaluation metric.
- Vocab is 30k; Sentence length is 80; Mini-batch size 80; Word embedding dim is 620;
 Hidden layer dim is 1000; Dropout on the all layers; Optimizer is Adadelta.
- The baseline includes: Standard Attentional NMT (Bahdanau et al., 2014); Subword-based NMT (Sennrich et al., 2016); Character-based NMT (Costa-jussa and Fonollosa, 2016); Replacing unk with similarity semantic in vocabulary words (Li et al., 2016).

• Results for Chinese-to-English Translation Task

System	Dev (MT02)	MT03	MT04	MT05	MT06_	MT08	AVG
Moses	33.15	31.02	33.78	30.33	29.62	23.53	29.66
Bahdanau et al. (2015)	36.42	34.22	37.11	33.02	32.69	25.38	32.48
Sennrich et al. (2016)	36.89	35.39	38.24	33.73	32.74	26.22	33.26
Costa-jussà and Fonollosa (2016)	35.98	34.93	37.56	33.24	32.32	26.02	32.81
Li et al. (2016)	36.96	35.78	38.42	34.02	33.14	26.36	33.54
CARNMT-Encoder (FCWM)	36.78	35.56**	38.14*	33.69	33.13	26.16*	33.34
CARNMT-Decoder (FCWM)	36.67	34.65	37.60	33.26	33.01	26.15*	32.93
CARNMT-Both (FCWM)	37.36	35.43**	38.34**	33.43	33.47	26.86**	33.50
ALLSmooth (FCWM)	37.71	35.73**	38.53**	33.91*	33.53*	27.18**	33.78
CARNMT-Encoder (CCWM)	37.12	35.64**	38.14*	33.49	33.26*	26.57**	33.42
CARNMT-Decoder (CCWM)	36.33	34.56	37.43	33.24	32.96	25.86	32.81
CARNMT-Both (CCWM)	37.56	35.83**	38.52**	33.73	33.37**	27.06**	33.70
ALLSmooth (CCWM)	37.69	36.23**	38.89**	34.69**	33.83**	27.94†	34.32

- Moses VS NMT -----> Strong baselines
- CARNMT-Enc/Dec VS Bahdanau et al. (2015) -----> Our method can effectively smooth the negative effect (Motivation 1
- CARNMT-Both VS CARNMT-Enc/Dec -----> Source-side smoothing is orthogonal with target-side smoothing (Motivation :
- ALLSmooth VS CARNMT-Both -----> In-vocabulary smoothing is beneficial for NMT (Motivation 2)

• Results for Chinese-to-English Translation Task

9	System	Dev (MT02)	MT03	MT04	MT05	MT06	MT08	AVG
	Moses	33.15	31.02	33.78	30.33	29.62	23.53	29.66
	Bahdanau et al. (2015)	36.42	34.22	37.11	33.02	32.69	25.38	32.48
	Sennrich et al. (2016)	36.89	35.39	38.24	33.73	32.74	26.22	33.26
	Costa-jussà and Fonollosa (2016)	35.98	34.93	37.56	33.24	32.32	26.02	32.81
	Li et al. (2016)	36.96	35.78	38.42	34.02	33.14	26.36	33.54
Т	CARNMT-Encoder (FCWM)	36.78	35.56**	38.14*	33.69	33.13	26.16*	33.34
IJ	CARNMT-Decoder (FCWM)	36.67	34.65	37.60	33.26	33.01	26.15*	32.93
	CARNMT-Both (FCWM)	37.36	35.43**	38.34**	33.43	33.47	26.86**	33.50
	ALLSmooth (FCWM)	37.71	35.73**	38.53**	33.91*	33.53*	27.18**	33.78
	CARNMT-Encoder (CCWM)	37.12	35.64**	38.14*	33.49	33.26*	26.57**	33.42
	CARNMT-Decoder (CCWM)	36.33	34.56	37.43	33.24	32.96	25.86	32.81
	CARNMT-Both (CCWM)	37.56	35.83**	38.52**	33.73	33.37**	27.06**	33.70
3	ALLSmooth (CCWM)	37.69	36.23**	38.89**	34.69**	33.83**	27.94†	34.32

- CARNMT-Enc/Dec VS Bahdanau et al. (2015)
 Our smooth method can relieve the negative effect of OOV effectively, as in Motivation 2
- CARNMT-Both VS CARNMT-Enc/Dec -----> Source-side smoothing is orthogonal with target-side smoothing (Motivation 1
- ALLSmooth VS CARNMT-Both -----> In-vocabulary smoothing is beneficial for NMT (Motivation 2)

• Results for Chinese-to-English Translation Task

Ī	System	Dev (MT02)	MT03	MT04	MT05	MT06	MT08	AVG
Ī	Moses	33.15	31.02	33.78	30.33	29.62	23.53	29.66
Ī	Bahdanau et al. (2015)	36.42	34.22	37.11	33.02	32.69	25.38	32.48
	Sennrich et al. (2016)	36.89	35.39	38.24	33.73	32.74	26.22	33.26
	Costa-jussà and Fonollosa (2016)	35.98	34.93	37.56	33.24	32.32	26.02	32.81
Ļ	Li et al. (2016)	<u> 36.96</u>	35 <u>.</u> 78	38.42	_34.02	33.14	26.36	33.54
<u>.</u> 1	CARNMT-Encoder (FCWM)	36.78	35.56**	38.14*	33.69	33.13	26.16*	33.34
i	CARNMT-Decoder (FCWM)	36.67	34.65	37.60	33.26	33.01	26.15*	32.93
듸	CARNMT-Both (FCWM)	37.36	35.43**	38.34**	33.43	33.47	26.86**	33.50
38	ALLSmooth (FCWM)	37.71	35.73**	38.53**	33.91*	33.53*	27.18**	33.78
	CARNMT-Encoder (CCWM)	37.12	35.64**	38.14*	33.49	33.26*	26.57**	33.42
	CARNMT-Decoder (CCWM)	36.33	34.56	37.43	33.24	32.96	25.86	32.81
	CARNMT-Both (CCWM)	37.56	35.83**	38.52**	33.73	33.37**	27.06**	33.70
12	ALLSmooth (CCWM)	37.69	36.23**	38.89**	34.69**	33.83**	27.94†	34.32

• CARNMT-Both VS CARNMT-Enc/Dec Source-side smoothing is orthogonal with target-side smoothing

• Results for Chinese-to-English Translation Task

System	Dev (MT02)	MT03	MT04	MT05	MT06	MT08	AVG
Moses	33.15	31.02	33.78	30.33	29.62	23.53	29.66
Bahdanau et al. (2015)	36.42	34.22	37.11	33.02	32.69	25.38	32.48
Sennrich et al. (2016)	36.89	35.39	38.24	33.73	32.74	26.22	33.26
Costa-jussà and Fonollosa (2016)	35.98	34.93	37.56	33.24	32.32	26.02	32.81
Li et al. (2016)	36.96	35.78	38.42	34.02	33.14	26.36	33.54
CARNMT-Encoder (FCWM)	36.78	35.56**	38.14*	33.69	33.13	26.16*	33.34
CARNMT-Decoder (FCWM)	36.67	34.65	37.60	33.26	33.01	26.15*	32.93
CARNMT-Both (FCWM)	37.36	35.43**	38.34**	33.43	33.47	26.86**	33.50
ALLSmooth (FCWM)	37.71	35.73**	38.53**	33.91*	33.53*	27.18**	33.78
CARNMT-Encoder (CCWM)	37.12	35.64**	38.14*	33.49	33.26*	26.57**	33.42
CARNMT-Decoder (CCWM)	36.33	34.56	37.43	33.24	32.96	25.86	32.81
CARNMT-Both (CCWM)	37.56	35.83**	38.52**	33.73	33.37**	27.06**	33.70
ALLSmooth (CCWM)	37.69	36.23**	38.89**	34.69**	33.83**	27.94†	34.32

ALLSmooth VS CARNMT-Both
 In-vocabulary smoothing is also beneficial for NMT (Motivation 1)

• Results for Chinese-to-English Translation Task

System	Dev (MT02)	MT03	MT04	MT05	MT06	MT08	AVG
Moses	33.15	31.02	33.78	30.33	29.62	23.53	29.66
Bahdanau et al. (2015)	36.42	34.22	37.11	33.02	32.69	25.38	32.48
Sennrich et al. (2016)	36.89	35.39	38.24	33.73	32.74	26.22	33.26
Costa-jussà and Fonollosa (2016)	35.98	34.93	37.56	33.24	32.32	26.02	32.81
Li et al. (2016)	36.96	35.78	38.42	34.02	33.14	26.36	33.54
CARNMT-Encoder (FCWM)	36.78	35.56**	38.14*	33.69	33.13	26.16*	33.34
CARNMT-Decoder (FCWM)	36.67	34.65	37.60	33.26	33.01	26.15*	32.93
CARNMT-Both (FCWM)	37.36	35.43**	38.34**	33.43	33.47	26.86**	33.50
ALLSmooth (FCWM)	37.71	35.73**	38.53**	33.91*	33.53*	27.18**	33.78
CARNMT-Encoder (CCWM)	37.12	35.64**	38.14*	33.49	33.26*	26.57**	33.42
CARNMT-Decoder (CCWM)	36.33	34.56	37.43	33.24	32.96	25.86	32.81
CARNMT-Both (CCWM)	37.56	35.83**	38.52**	33.73	33.37**	27.06**	33.70
ALLSmooth (CCWM)	_37.69	36.23**	<u>38.89**</u>	<u>34.69**</u>	33.83**	27.94 †	34.32

FCWM VS CCWM

The CCWM learns the context semantic representation directly for smoothing word vector, while the FCWM predicts semantic representation of word depending on its context.

Translation Qualities for Sentences with Different Numbers of OOV

- The number of OOV = 0
 - ALLSmooth is better than the baseline Bahdanau et al. (2015).
 - Both of CARNMT-Enc/Dec are similar to baseline Bahdanau et al. (2015).
- With the increasing in the number of OOVs
 - The gap between our methods and other methods (except PBSMT) become larger, especially when more than five.
- When the number of OOV is more than seven
 - PBSMT is better than all NMT models

The number of sentences

Translation Qualities for Sentences with Different Numbers of OOV

- The number of OOV = 0
 - ALLSmooth is better than the baseline Bahdanau et al. (2015).
 - Both of CARNMT-Enc/Dec are similar to baseline Bahdanau et al. (2015).
- With the increasing in the number of OOVs
 - The gap between our methods and other methods (except PBSMT) become larger, especially when more than five.
- When the number of OOV is more than seven
 - PBSMT is better than all NMT models

The number of sentences

Translation Qualities for Sentences with Different Numbers of OOV

- The number of OOV = 0
 - ALLSmooth is better than the baseline Bahdanau et al. (2015).
 - Both of CARNMT-Enc/Dec are similar to baseline Bahdanau et al. (2015).
- With the increasing in the number of OOVs
 - The gap between our methods and other methods (except PBSMT) become larger, especially when more than five.
- When the number of OOV is more than seven
 - PBSMT is better than all NMT models

The number of sentences

Translation Qualities for Sentences with Different Numbers of OOV

- The number of OOV = 0
 - ALLSmooth is better than the baseline Bahdanau et al. (2015).
 - Both of CARNMT-Enc/Dec are similar to baseline Bahdanau et al. (2015).
- With the increasing in the number of OOVs
 - The gap between our methods and other methods (except PBSMT) become larger, especially when more than five.
- When the number of OOV is more than seven
 - PBSMT is better than all NMT models

The number of sentences

Translation Qualities for Sentences with Different Numbers of OOV

SRC: 用好 这个 战略 机遇期 (OOV),力争 有所 作为,必须 把 发展 科学技术 放在 更加 重要 , 更加 突出的 位置 (pinyin) yonghao zhege zhanlue jiyuqi , lizheng yousuo zuowei ,bixu ba fazhan kexue jishu fangzai gengjia zhongyao ,gengjia tuchu de wiezhi

Bahdanauet al.(2015): to make good use of this strategy, we should strive for the development of science and technology, and must put the development of science and technology into an even more important and prominent position

This work: in making good use of this strategic plan and striving to accomplish something, it is necessary to place the development of science and technology in a more important and more prominent position

Ref: to well use this strategic period of opportunity and strive to accomplish some achievments, the development of science and technology should be placed in a more prior and prominent position

- The negative effect of OOV exists in NMT
 - The OOV "jiyuqi" itself is not translated.
 - The phrase "lizheng yousuo zuowei" (the red part in English) is not translated.
- Smoothing the negative effect of OOV
 - Obtaining the translation "striving to accomplish something" of "lizheng yousuo zuowei".

Conclusion

- Experimental results showed that the negative effect of OOV decreased the translation performance of NMT, and the existing RNN encoder can not adequately address the problem.
- The learned CAR was integrated into the Encoder to smooth word representation, and thus enhanced the Decoder of NMT.
- Experimental results showed that the proposed method can greatly alleviate the negative effect of OOV and enhance word representation of in-vocabulary words, thus improving the translations.

Q&A Thanks