Problem Set 2 Abstract Algebra II

Bennett Rennier barennier@gmail.com

January 15, 2018

Section 7.5

Ex 2 Let R be an integral domain and let D be a nonempty subset of R that is closed under multiplication. Prove that the ring of fractions $D^{-1}R$ is isomorphic to a subring of the quotient field of R (hence is also an integral domain).

Proof. Let F be the field of fractions of R, and let $\varphi: D^{-1}R \to F$, where $\varphi(\frac{r}{d}) = \frac{r}{d}$. To prove that this is well-defined, suppose that $\frac{r}{d} = \frac{s}{f}$ in $D^{-1}R$. Then we know that rf = sd in R, which means that $\frac{r}{d} = \frac{s}{f}$ in F as well. This proves that φ is well-defined. We see that $\varphi(\frac{r}{d} + \frac{s}{f}) = \frac{r}{d} + \frac{s}{f} = \varphi(\frac{r}{d}) + \varphi(\frac{s}{f})$ and that $\varphi(\frac{r}{d} \cdot \frac{s}{f}) = \varphi(\frac{rs}{df}) = \frac{r}{d} \cdot \frac{s}{f} = \varphi(\frac{r}{d}) \varphi(\frac{s}{f})$, which prove that φ is a ring homomorphism.

Let $\varphi(\frac{r}{d}) = \varphi(\frac{s}{f})$. This means that $\frac{r}{d} = \frac{s}{f}$ in F, which means that rf = sd in R, and finally that $\frac{r}{d} = \frac{s}{f}$ in $D^{-1}R$. This proves that that φ is an injective homomorphism, meaning that $D^{-1}R$ is isomorphic to a subring of F. Since F is an integral domain, so must $D^{-1}R$. \square

Ex 3 Let F be a field. Prove that F contains a unique smallest subfield F_0 and that F_0 is isomorphic to either \mathbb{Q} or $\mathbb{Z}/p\mathbb{Z}$ for some prime p.

Proof. Every field must contain at least 0 and 1. Since a field is closed under addition, this smallest subfield must contain the additive subgroup generated by 1. This means the smallest field contains either \mathbb{Z} or $\mathbb{Z}/p\mathbb{Z}$ for some prime p (it must be prime as $\mathbb{Z}/n\mathbb{Z}$ has zero divisors). If it contains \mathbb{Z} , then it must contain all the inverses of \mathbb{Z} , and thus must be \mathbb{Q} . If it contains $\mathbb{Z}/p\mathbb{Z}$, then we were done, as $\mathbb{Z}/p\mathbb{Z}$ is already a field. This proves the statement.

Ex 5 If F is a field, prove that the field of fractions of F[[x]] (the ring of formal power series in the indeterminate x with coefficients in F) is the ring F((x)) of Laurent series. Show the field of fractions of the power series ring $\mathbb{Z}[[x]]$ is properly contained in the field of Laurent series $\mathbb{Q}((x))$.

Proof. [Incomplete. I was very sick over the weekend.]

Ex 6 Prove that the real numbers, \mathbb{R} , contain a subring A with $1 \in A$ and A maximal under inclusion with respect to the property that $\frac{1}{2} \notin A$. [Use Zorn's Lemma]

Proof. Let S be the set of all subrings of \mathbb{R} which contain 1 but do not contain $\frac{1}{2}$. Since \mathbb{Z} is a ring which contains 1 but does not contain $\frac{1}{2}$, we see that S is nonempty. Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ be a chain in S, and let $A = \bigcup_{i \in \mathbb{N}} A_i$. We have proved previously that A is a subring of R. Note that $1 \in A$, as $1 \in A_1$. If $\frac{1}{2} \in A$, then that means that $\frac{1}{2} \in A_i$ for some i. This is a contradiction, so $\frac{1}{2} \notin A$. This proves that $A \in S$, and we see that A is an upper bound for this given chain. By Zorn's Lemma, S contains a maximal element, which completes the proof.

Section 7.6

Ex 1 An element $e \in R$ is called an idempotent if $e^2 = e$. Assume e is an idempotent in R and er = re for all $r \in R$. Prove that Re and R(1 - e) are two-sided ideals of R and that $R \simeq Re \times R(1 - e)$. Show that e and 1 - e are identities for the subrings Re and R(1 - e) respectively.

Proof. We see that Re + Re = (R + R)e = Re, that $R \cdot Re = RRe = Re$, and that $Re \cdot R = ReR = RRe = Re$, which proves that Re is a two-sided ideal. Similarly, R(1 - e) + R(1 - e) = (R + R)(1 - e) = R(1 - e), $R \cdot R(1 - e) = RR(1 - e) = R(1 - e)$, and $R(1 - e) \cdot R = R(1 - e)R = R(R - eR) = R(R - Re) = RR(1 - e)R(1 - e)$, which proves that R(1 - e) is a two-sided ideal.

Suppose $x \in Re \cap R(1-e)$. This means that $r_1e = r_2(1-e)$ for some $r_1, r_2 \in R$. This would mean that $r_1e = r_2 - r_2e$. Multiplying on the right by e, gets us that $r_1e^2 = r_2e - r_2e^2$, which means that $r_1e = r_2e - r_2e = 0$, and thus that x = 0. This shows that $Re \cap R(1-e)$ is trivial. If we let $r \in R$, then we see that re + r(1-e) = re + r - re = r, and thus that Re + R(1-e) = R. This proves using the recognition theorems for internal direct products that $\varphi : Re \times R(1-e) \to R$ where $\varphi(a,b) = a+b$ is a group isomorphism over the additive part of the rings.

Now let $(r_1e, r_2(1-e))$ and $(r_3e, r_4(1-e))$ be elements of $Re \times R(1-e)$. We see that $\varphi((r_1e, r_2(1-e))(r_3e, r_4(1-e))) = \varphi((r_1r_3e, r_2r_4(1-e))) = r_1r_3e + r_2r_4(1-e) = r_1r_3e^2 + r_2r_4(1-e)^2 = r_1er_3e + r_1r_4(e-e^2) + r_3r_2(e-e^2) + r_2(1-e)r_4(1-e) = (r_1e+r_2(1-e))(r_3e+r_4(1-e)) = \varphi((r_1e, r_2(1-e)))\varphi((r_3e, r_4(1-e)))$, which shows that φ respects the multiplicative structure of the rings as well, and thus that φ is a ring isomorphism.

We see that for all $re \in Re$ that $ree = re^2 = re$ and that $ere = ree = re^2 = re$, which proves that e is the identity in Re. We also see that for all $r(1-e) \in R(1-e)$ that $r(1-e)(1-e) = r(1-e)^2 = r(1-2e+e^2) = r(1-2e+e) = r(1-e)$ and similarly for the other side. This proves that 1-e is the identity for R(1-e).

Ex 2 Let R be a finite Boolean Ring with identity $1 \neq 0$. Prove that $R \simeq \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$.

Proof. This will be a proof by induction. If |R| = 2, then $R \simeq \mathbb{Z}/2\mathbb{Z}$ trivially (as it's the only ring with two elements). Now let |R| = n + 1 and assume that every boolean ring with cardinality between 2 and n is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some k. Now, since

|R| > 2 then there exists an element e not equal to 0 or 1 where $e^2 = e$, by definition of being a Boolean Ring. By the previous exercise, this means that $R \simeq Re \times R(1-e)$. We see that Re and R(1-e) are not zero ideals, as that would mean that e=0 or e=1 respectively. Thus, the cardinality of Re and R(1-e) is less than n+1. By the induction hypothesis, this means that $Re \simeq (\mathbb{Z}/2\mathbb{Z})^k$ and $R(1-e) \simeq (\mathbb{Z}/2\mathbb{Z})^m$ for some m and k. Thus, $R \simeq Re \times R(1-e) = (\mathbb{Z}/2\mathbb{Z})^k \times (\mathbb{Z}/2\mathbb{Z})^m = (\mathbb{Z}/2\mathbb{Z})^{k+m}$. This proves the statement. \square

Ex 5 Let n_1, n_2, \ldots, n_k be integers which are relatively prime in pairs: $gcd(n_i, n_j) = 1$ for all $i \neq j$.

a) Show that the Chinese Remainder Theorem implies that for any $a_1, \ldots, a_n \in \mathbb{Z}$ there is a solution $x \in \mathbb{Z}$ to the simultaneous congruences

$$x \in a_1 \mod n_1$$
, $x = a_2 \mod n_2$, ..., $x = a_k \mod n_k$

and that the solution x is unique mod $n = n_1 n_2 \dots n_k$.

b) Let $n'_i = n/n_i$ be the quotient of n by n_i , which is relatively prime to n_i by assumption. Let t_i be the inverse of n'_i mod n_i . Prove that the solution x in (a) is given by

$$x = a_1 t_1 n'_1 + a_2 t_2 n'_2 + \dots + a_k t_k n'_k \mod n$$

Note that the elements t_i can be quickly found by the Euclidean Algorithm as described in Section 2 of the Preliminaries chapter (writing $an_i + bn'_i = \gcd(n_i, n'_i) = 1$ give $t_i = b$) and that these then quickly give the solutions to the system of congruensces above for any choice of a_1, a_2, \ldots, a_k .

c) Solve the simultaneous system of congruences

$$x = 1 \mod 8$$
, $x = 2 \mod 25$, $x = 3 \mod 81$

and the simultaneous system

$$y = 5 \mod 8$$
, $y = 12 \mod 25$, $y = 47 \mod 81$

- *Proof.* a) Since the n_i are pairwise coprime, this means that the (n_i) are pairwise comaximal. Using the Chinese Remainder Theorem, we get a surjective map $\varphi : \mathbb{Z} \to \prod \mathbb{Z}/(n_i)$ which has $(\prod n_i)$ for its kernel. Let $(a_i) \in \prod \mathbb{Z}/(n_i)$. Since φ is surjective, then there exists an element $x \in \mathbb{Z}$, where $\varphi(x) = (a_i)$. Using the First Isomorphism Theorem, we see that this x is unique up to mod $\prod n_i$.
- b) We see that $\varphi(x) = (\sum a_i t_i n_i')$. We see that the jth coordinate of $\varphi(x)$ is $\sum a_i t_i n_i'$ mod n_j . By the definition of n_i' , we see that n_j divides n_i' for all $i \neq j$. Thus, the jth coordinate of $\varphi(x) = a_j t_j n_j' = a_j \mod n_j$, as t_j was defined as the inverse of $n_j' \mod n_j$. This proves that $\varphi(x) = (a_i)$, which proves the statement.

c) We see that $n_1 = 8$, $n_2 = 25$, and $n_3 = 81$ are definitely pairwise coprime. Let $n'_1 = 25 \cdot 81$, $n'_2 = 8 \cdot 81$, and $n'_3 = 8 \cdot 25$. Since $n'_1 = 1 \mod 8$, $n'_2 = 23 = -2 \mod 25$, and $n'_3 = 38 \mod 81$, this means that $t_1 = 1$, $t_2 = 12$, and $t_3 = 32$ as $38 \cdot 32 - 15 \cdot 81 = 1$. This means that $x = 1 \cdot 1 \cdot 25 \cdot 81 + 2 \cdot 12 \cdot 8 \cdot 81 + 3 \cdot 32 \cdot 8 \cdot 25 = 4377 \mod 8 \cdot 25 \cdot 81$.

Using the same constants, we see that $y = 5 \cdot 1 \cdot 25 \cdot 81 + 12 \cdot 12 \cdot 8 \cdot 81 + 47 \cdot 32 \cdot 8 \cdot 25 = 15437 \mod 8 \cdot 25 \cdot 81$.

Ex 7 Let m and n be positive integers with n dividing m. Prove that the natural surjective ring projection $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is also surjective on the units: $(\mathbb{Z}/m\mathbb{Z})^{\times} \to (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. [Incomplete]

Additional Problems

 $\mathbf{Ex}\ \mathbf{A}\$ A commutative ring R with 1 is said to Noetherian if it has the property that every ascending chain of ideals

$$I_1 \subset I_2 \subset I_3 \subset \dots$$

eventually stabilizes. That is, if there is a N > 0 such that $I_k = I_N$ for all $k \ge N$. Prove that every PID is Noetherian.

Proof. Let R be a PID, and let $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ be an ascending chain of ideals. Then $I = \bigcup_{i \in \mathbb{N}} I_i$ is also an ideal. Since R is a PID, this means that $I = (\alpha)$ for some $\alpha \in R$. Since $\alpha \in I = \bigcup_{i \in \mathbb{N}} I_i$ then there is an N such that $\alpha \in I_N$. Let $k \geq N$. Then, this means that $\alpha \in I_k$, which proves that $I \subseteq I_k$. Since $I_k \subseteq I$ by the definition of I, this proves that $I_k = I = I_N$ for all $k \geq N$.

Ex B Prove that a commutative ring R with 1 is Noetherian if and only if every nonempty set of ideals in R has a maximal element (where as usual the partial ordering is given by inclusion).

Proof. Suppose R is a commutative ring with 1 where every nonempty set of ideals has a maximal element. Let $I_1 \subseteq I_2 \subseteq ...$ be a chain of ideals. This means that there must be a maximal element among $\{I_i\}_{i\in\mathbb{N}}$, say I_N . Since I_N is maximal, for all $k\geq N$, we see that $I_k\subseteq I_N$ and since $\{I_i\}_{i\in\mathbb{N}}$ is a chain, we also get that $I_N\subseteq I_k$. This proves that $I_N=I_k$ for all $k\geq N$, and thus that R is Notherian.

Now suppose that R is a commutative Notherian Ring with 1, and let $S = \{I_{\alpha}\}_{{\alpha} \in A}$ be a nonempty set of ideals. Let $\{I_i\}_{i \in \mathbb{N}}$ be a chain under inclusion in S. Since R is Notherian, there is an N such that $I_N = I_k$ for all $k \geq N$. Thus, I_N is an upper bound of this chain. By Zorn's Lemma, this proves that there is a maximal element in S, and thus that every nonempty set of ideals in R has a maximal element.

 \mathbf{Ex} C Prove that a commutative Ring R with 1 is Noetherian if and only if every ideal is finitely generated.

Proof. Let R be a commutative Ring with 1 where every ideal is finitely generated, and let $I_1 \subseteq I_2 \subseteq \ldots$ be a chain of ideals in R. Let $I = \bigcup_{i \in \mathbb{N}} I_i$. We've already proven before that I is an ideal of R. Since every ideal in R is finitely generated, this means that $I = (\alpha_1, \alpha_2, \ldots, \alpha_k)$ for some $k \in \mathbb{N}$. This means that there are ideals I_{n_i} such that $\alpha_i \in I_{n_i}$ for $1 \le i \le k$. Since all these ideals fall on a chain, the union of all of them is one of the elements themselves. Let I_N be this element. Since $\alpha_1, \ldots, \alpha_k \in I_N$, this means that $I \subseteq I_N$ and thus that $I = I_N$. The same is true for all I_k where $k \ge N$. This proves that $I_k = I = I_N$ for all $k \ge N$, and thus that R is Noetherian.

Let R be a commutative Noetherian ring with 1 and let $I \leq R$ be an ideal with no finite generating set. Let $a_1 \in I$. Since I has no finite generating set, this means that $I \setminus (a_i)$ is nonempty. Let $a_2 \in I \setminus (a_i)$. Similarly, let $a_3 \in I \setminus (a_1, a_2)$, and so on. We see that

$$(a_1) \subseteq (a_1, a_2) \subseteq (a_1, a_2, a_3) \subseteq \dots$$

is a an ascending chain of ideals. Since R is Noetherian, this means that for some N, $(a_1, a_2, \ldots, a_N) = (a_1, a_2, \ldots, a_k)$ for all $k \geq N$. However, we specifically picked a_k for all $k \geq N$ to not be in (a_1, a_2, \ldots, a_N) . This is a contradiction. Thus, I must be finitely generated.