Secara umum, langkah-langkah dalam algoritma ID3 adalah:

ID3(Examples, Target_Attribute, Attributes)

Examples are the training attributes. Target_Attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- 1. Create a root node for the tree.
- 2. If all Examples are positive, Return the single-node tree Root, with label = +
- 3. If all Examples are negative, Return the single-node tree Root, with label = -
- 4. If Attributes is empty, Return the single node tree Root, with label = most common value of Target Attribute in Examples
- 5. Else Begin
 - a. Calculate the information gain for each attribute, according to the average entropy formula

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- b. Select the Attribute, A, from Attributes that best classifies
 Examples (attribute with the highest information gain/lowest average entropy) and make this attribute tested at the root. Root ← A
- c. For each possible value, v_i, of A,
 - Add a new tree branch below Root, corresponding to the test $A = v_i$
 - Let $\mathsf{Examples}_{vi}$ be the subset of $\mathsf{Examples}$ that have value v_i for A
 - If Examples_{vi} is empty

Then below this new branch add aleaf node with label = most common value of Target_Attibutes in Examples

Else below this new branch add the subtree

ID3(Examples_{vi}, Target_Attribute, (Attributes - {A}))

- 6. End
- 7. Return Root

Contoh:

Bentuklah pengetahuan dalam bentuk decision tree dengan menggunakan algoritma ID3 terhadap kasus berikut ini:

Identifikasi makanan yang baik untuk dimakan

No	Conclusion	Skin	Colour	Size	Flash
1.	Safe	Hairy	Brown	Large	Hard
2.	Safe	Hairy	Green	Large	Hard
3.	Dangerous	Smooth	Red	Large	Soft
4.	Safe	Hairy	Green	Large	Soft
5.	Safe	Hairy	Red	Small	Hard
6.	Safe	Smooth	Red	Small	Hard
7.	Safe	Smooth	Brown	Small	Hard
8.	Dangerous	Hairy	Green	Small	Soft
9.	Dangerous	Smooth	Green	Small	Hard
10.	Safe	Hairy	Red	Large	Hard
11.	Safe	Smooth	Brown	Large	Soft
12.	Dangerous	Smooth	Green	Small	Soft
13.	Safe	Hairy	Red	Small	Soft
14.	Dangerous	Smooth	Red	Large	Hard
15.	Safe	Smooth	Red	Small	Hard
16.	Dangerous	Hairy	Green	Small	Hard

Target Attribute: Safe(+) dan Dangerous(-)

Atribut2:

- Skin, dengan dua nilai yang mungkin: hairy dan smooth
- Colour, dengan tiga nilai yang mungkin: brown, green, red
- Size, dengan dua nilai yang mungkin: large dan small
- Flash, dengan dua nilai yang mungkin: soft dan hard

Langkah 1: Menentukan node dengan atribut mana yang akan dijadikan sebagai akar. Atribut dengan Gain tertinggi yang akan dipilih

$$S = [10+,6-]$$
 Entropy(S) = Entropy([10+, 6-]) = -(10/16) log₂(10/16) - (6/16) log₂(6/16) = 0.9544
Gain (S, skin)=? Values(Skin) = hairy and smooth Hairy = 8
Smooth = 8
Shairy = [6+, 2-]
S_{smooth} = [4+, 4-]

$$Gain(S, Skin) = Entropy(S) - \sum_{v \in \{hairy, smooth\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= \text{Entropy}(S) - (8/16) \text{ entropy}(S_{\text{hairy}}) - (8/16) \text{ entropy}(S_{\text{smooth}})$$

$$= 0.9544 - \frac{8}{16} (entropy[6+,2-]) - \frac{8}{16} (entropy[4+,4-])$$

$$= 0.9544 - \frac{8}{16} \left\{ -\frac{6}{8} \, ^2 \log \frac{6}{8} - \frac{2}{8} \, ^2 \log \frac{2}{8} \right\} - \frac{8}{16} \left\{ -\frac{4}{8} \, ^2 \log \frac{4}{8} - \frac{4}{8} \, ^2 \log \frac{4}{8} \right\}$$

$$= 0.9544 - (8/16) \, (0.311278 + 0.5) - (8/16) \, (0.5 + 0.5)$$

$$= 0.9544 - 0.40564 - 0.5$$

$$= 0.04876$$

Gain(S, Color) = ? Values(Color) = brown (3), green (6), dan red (7)

$$S_{brown} = [3+, 0-]$$

 $S_{green} = [2+, 4-]$
 $S_{red} = [5+, 2-]$

$$Gain(S,Color) = Entropy(S) - \sum_{v \in \{brown,green,red\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= \operatorname{Entropy}(S) - (3/16)\operatorname{entropy}(S_{brown}) - (6/16)\operatorname{entropy}(S_{green}) - (7/16)\operatorname{entropy}(S_{red}) \\ = 0.9544 - \frac{3}{16}(\operatorname{entropy}[3+,0-]) - \frac{6}{16}(\operatorname{entropy}[2+,4-]) - \frac{7}{16}(\operatorname{entropy}[5+,2-]) \\ = 0.9544 - \frac{3}{16}\left\{-\frac{3}{3} {}^2 \log \frac{3}{3} - \frac{0}{3} {}^2 \log \frac{0}{3}\right\} - \frac{6}{16}\left\{-\frac{2}{6} {}^2 \log \frac{2}{6} - \frac{4}{6} {}^2 \log \frac{4}{6}\right\} - \frac{7}{16}\left\{-\frac{5}{7} {}^2 \log \frac{5}{7} - \frac{2}{7} {}^2 \log \frac{2}{7}\right\}$$

$$= 0.9544 - 0 - 0.34436 - 0.37762$$
$$= 0.23242$$

$$S_{large} = [5+, 2-]$$

 $S_{small} = [5+, 4-]$

$$Gain(S, Size) = Entropy(S) - \sum_{v \in \{l \text{ arg } e, small\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (7/16) \text{ entropy}(S_{\text{large}}) - (9/16) \text{ entropy}(S_{\text{small}})$$

$$= 0.9544 - \frac{7}{16} (entropy[5+,2-]) - \frac{9}{16} (entropy[5+,4-])$$

$$= 0.9544 - 0.37762 - 0.55748 = 0.0193$$

$$= 0.9544 - 0.37762 - 0.55748 = 0.0193$$

$$S_{hard} = [7+, 3-]$$

 $S_{small} = [3+, 3-]$

$$Gain(S, Flash) = Entropy(S) - \sum_{v \in \{hard, soft\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (10/16) entropy(S_{hard}) - (6/16) entropy(S_{soft})$$

$$= 0.9544 - \frac{10}{16} (entropy[7+,3-]) - \frac{6}{16} (entropy[3+,3-])$$

$$= 0.9544 - 0.55081 - 0.375$$

$$= 0.02859$$

Gain tertinggi (A) = Color Root = A = Color

Langkah 2: Memilih atribut untuk membentuk cabang

Untuk cabang Colour = Red

$$S_{red} = [5+, 2-]$$

Entropy(S_{red}) = 0.86312

 $Gain(S_{red}, Skin)=?$

$$(S_{red})_{hairy} = [3+, 0-]$$

 $(S_{red})_{smooth} = [2+, 2-]$

$$Gain(S_{red}, Skin) = Entropy(S_{red}) - \sum_{v \in \{hairv, smooth\}} \frac{\mid S_v \mid}{\mid S \mid} Entropy(S_v) = 0.29169$$

$$Gain(S_{red}, Size) = ?$$

$$(S_{red})_{large} = [1+, 2-]$$

 $(S_{red})_{small} = [4+, 0-]$

$$Gain(S_{red}, Size) = 0.46956$$

$$Gain(S_{red}, Flash) = ?$$

$$(S_{red})_{hard} = [4+, 1-]$$

 $(S_{red})_{soft} = [1+, 1-]$

$$Gain(S_{red}, Flash) = 0.06229$$

Atribut yang dipilih adalah Size

Bentuk Tree:

Dst....

