Übung zu

Grundgebiete der Elektrotechnik III

WS 09/10 - Blatt 5

Aufgabe 28

 $I_1 \phi_1$ Abstand 2 a, die von den Strömen I_1 bzw. I_2 durchflossen werden (Bild 1). Ausgehend von der in der Vorlesung her-Gegeben sind zwei in z-Richtung unendlich ausgedehnte, parallele Leiter mit geleiteten Gesamtfeldstärke $\overrightarrow{H}_{\mathsf{ges}} \; (x, y)$

ist eine parametrische Darstellung der Feldlinien von $\vec{H}_{
m ges}$ für $I_1=I_2>0$

bzw. $I_1 = -I_2 > 0\,$ gesucht. Gehen Sie dabei folgendennaßen vor:

- a) Zeigen Sie, dass entlang einer Feldlinie von $\overrightarrow{H}_{\mathrm{ges}}\left(x,y\right)$ gilt: $H_x \cdot dy = H_y \cdot dx$.
- b) Berechnen Sie dann mithilfe einer unbestimmten Integration $\int H_x \cdot dy = \int H_y \cdot dx$ die parametrische Darstellung der Feldlinien.

HINWEIS:
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)|$$

c) Welche Dualitäten zum elektrostatischen Feld ergeben sich?

Eine dreieckige, gleichschenklige Leiterschleife der Höhe h und Breite b ist drehbar um die z-Achse gelagert (Bild 2). Sie wird vom Strom I durchflossen und befindet sich in einem homogenen Magnetfeld $\vec{B} = B_0 \cdot \dot{\hat{e}}_x$.

- a) Welches mechanische Drehmoment $\vec{L} = L_z \cdot \dot{\hat{e}}_z$ wirkt auf die Schleife?
- b) Für welche Winkel α_1 , α_2 ist das Drehmoment Null? In welcher Lage stellt sich ein stabiles Gleichgewicht ein?

Im Folgenden ist das Magnetfeld ortsabhänwird wiederum das Drehmoment L_{z} um die gig mit $\vec{B} = B_0 \cdot (1 + z/h) \cdot \dot{e}_x$. Gesucht z-Achse.

- derkoordinaten) der Kratt $dF = I \cdot d\mathring{s} \times \mathring{B} \text{ trägt zu } dL_z \text{ bei? Aus welchen Komponenten von } d\mathring{s}$ werden. Welche Komponente (in Zylinnitesimalen Leiterstücks ds berechnet c) Zunächst soll der Beitrag dL_z eines infi-
- d) Berechnen Sie die gesuchte Komponente von d \vec{F} und daraus d L_z .

und \vec{B} ergibt sich diese Komponente von d \vec{F}

e) Begründen Sie, warum das in der x-y-Ebene liegende Schleifensegment nicht zu L_z beiträgt. Bestimmen Sie L_z durch Integration über z.

Bild 3

senabstand a. Sie dienen als Hin- und Rückleiter für den Strom I_1 . In der Mitte der äußeren Zweidrahtleitung befindet sich eine weitere Zweidrahtleitung mit sehr dünnen Leitern im Abstand b und dem Strom I_2 (Bild 3).

- a) Bestimmen Sie die magnetische Feldstärke \vec{H}_1 , die die äußere Zweidrahtleitung zwischen den beiden inneren Leitern erzeugt.
- b) Berechnen Sie die längenbezogene äußere Gegeninduktivität L_{21}^{\prime} der Gesamtanordnung. Bestimmen Sie daraus L'_{12} .

Aufgabe 31

Eine Drahtschleife besteht aus zwei Maschen und bewegt sich mit der Geschwindigkeit \hat{v} in das Magnetfeld \hat{B} , das sich über die gesamte rechte Halbebene ($x \ge 0$) erstreckt (Bild 1). Zum Zeitpunkt t = 0 tritt die rechte Kante der Schleife in das Feld ein. Das vom Strom i verursachte Magnetfeld ist zu vernachlässigen.

- a) Wie groß ist der Strom *i* für a=30cm, b=10cm, $v=1\text{ms}^{-1}$, B=1T und $R_1=R_2=R_3=R_4=5\Omega$?
- b) Was ergibt sich damit für die Spannung u?
- c) Skizzieren Sie i(t) und u(t) im Zeitbereich $0 \le t \le 0.5s$.
- d) Welcher Strom i(t) ergibt sich, falls $B(t) = 1 \text{T} \cdot e^{-t/\tau} \text{ mit } \tau = 0,1\text{s}$?

Aufgabe 32

Gegeben ist ein unendlich langes Koaxialkabel, dessen Innenleiter mit Radius R_1 den Strom I führt. Der Außenleiter (R_2, R_3) dient als Rückleiter (Bild 2).

- a) Berechnen Sie die längenbezogene innere und äußere Induktivität. Verwenden Sie dabei zunächst die Definition der Induktivität über die Flussverkettung.
- b) Kontrollieren Sie Ihr Ergebnis mit der

Definition der Induktivität über die Energie des magnetischen Feldes.

Eine schlanke Zylinderspule der Länge I ist in zwei Lagen mit je N Windungen gewickelt (Bild 3).

- a) Wie groß ist die magnetische Flussdichte \dot{B} für $\rho < R_i$ und für $R_i < \rho < R_\alpha$?
- b) Berechnen Sie die verketteten Flüsse Ψ_i und Ψ_a der inneren und der äußeren Lage.

Bild 3

c) Berechnen Sie mit dem Ergebnis aus b) die Induktivität der Spule.

$$\vec{A}_{u} = \vec{C}_{\infty} + \frac{\mu \vec{I}}{2\pi} \cdot \vec{e}_{z} \cdot ln\left(\frac{\vec{s}_{o}}{\vec{s}_{A}}\right)$$

$$\overline{I} = red(\overline{A_{m,k}}') = -\frac{\partial A_2}{\partial S_A} \cdot e_{\overline{p}}$$

$$= \frac{M\overline{I}}{207} \cdot \frac{1}{S_A} \cdot \frac{1}{8} \cdot e_{\overline{p}}$$

Vgl. Potential le arren un end Wah Congent Ll qu'in de 2-talise; $(e(V_A) - \frac{q_L}{2\pi E} ln(\frac{e_A}{E})$

Mach trag AZ1.)

Brelek Likum In landen sater

Kraft ænfgrund der Stree felcle seiten au stollt

her: N:= Na = N Annahme: B=0 for S>Ro

b.) dt = dt. Ez

Gesamter Fless in de trueren Lage:

In= 110 2NI .TR;

Gesamter Flass in der außeren Lage: 12 - 1, + 12m

$$\tilde{\Phi}_{z} = \tilde{\Phi}_{A} + \mathcal{N}_{0} \cdot \frac{N \cdot \tilde{I}}{L} \cdot \tilde{\pi} \left(R_{0}^{2} - R_{i}^{2} \right)$$

$$= \mathcal{N}_{0} \cdot \frac{N \cdot \tilde{I}}{L} \cdot \tilde{\pi} \left(R_{0}^{2} + R_{i}^{2} \right)$$

In # ist vollständig mit der inneven Lage (Wicklung) verkettet: Y:= N: In

In ist vollständig utt äußerer Lage Verkettet:

Ya = Na · Fa

$$\frac{C.)}{4g_{3}} = \frac{4}{1} + \frac{4}{1} = \frac{10.11}{1} \pi \left(3R_{1}^{2} + R_{0}^{2}\right)$$

$$L_{ge_{3}} = \frac{4g_{es}}{I}$$

Aus Symmetrite gründen
$$H = H_{\phi}(S) \cdot \overline{e}_{\phi}$$

$$\begin{cases}
\overrightarrow{A} d\overrightarrow{s} = H_{\phi}(S) \cdot 2\overrightarrow{A}S = \iint \overrightarrow{J} d\overrightarrow{J}
\end{cases}$$

$$\begin{cases}
d\overrightarrow{s} = S \cdot d\overrightarrow{J} \cdot \overrightarrow{e}_{\phi} & d\overrightarrow{J} = S \cdot d\overrightarrow{J} \cdot dS \cdot \overrightarrow{e}_{z}
\end{cases}$$

$$\begin{cases}
-I \cdot \frac{MS^{2}}{MR^{2}} & fir 0 \leq S \in R_{1}
\end{cases}$$

$$\begin{cases}
-\overline{I} + \overline{I} \cdot \frac{MS^{2} - MR^{2}}{MR^{2}} & fir R_{2} \leq S \in R_{3}
\end{cases}$$

$$\begin{cases}
-\overline{I} + \overline{I} \cdot \frac{MS^{2} - MR^{2}}{MR^{2}} & fir R_{3} \leq S \leq R_{3}
\end{cases}$$

$$\begin{cases}
0 & fir R_{3} \leq S
\end{cases}$$

$$\overrightarrow{H} = \frac{\overrightarrow{leh}}{7MS} \cdot \overrightarrow{e} \phi \quad \text{and} \quad \overrightarrow{R} = \frac{1}{7MR^2} \cdot \overrightarrow{e} \phi \quad \text{fir} \quad S < R_1$$

$$\overrightarrow{T} = \frac{1}{10} \cdot \overrightarrow{H} = \begin{cases} -\frac{1}{10} \cdot \overrightarrow{I} \cdot \overrightarrow{R} = \frac{1}{10} \cdot \overrightarrow{R} \\ -\frac{1}{10} \cdot \overrightarrow{I} \cdot \overrightarrow{R} = \frac{1}{10} \cdot \overrightarrow{R} = \frac{$$

a.) Berechne Includésviteit eines Abschusts clev Longe l.

Au pere Induktivitat: La = $\frac{v_a}{I}$

Der Flass \bar{f}_{q} nur fin Zurschen raum!

Denn $\bar{\mathbb{D}}(S > R_3) = 0$ $R_1 < S < R_2$ ist nut dem gesam fen strom verkeltet $\Rightarrow Y_q = \bar{f}_q$

Zur Berechnung der inneren Judek Hvitet des Zunen leiters:

- Autteilleung von I de Teits Rione dI ODER

- Aufterlung von J de Veilflüsse de

Hier betrachtet: Teil fleisse de

Tower leite:
$$g_n$$
 $\psi_{i,1} = \int d\Psi = \frac{M \cdot I}{8M} \cdot L \quad \left(\text{Seite 5-35} \right)$
 $L_{i,1} = \frac{\psi_{i,1}}{I} \quad L_{i,1} = \frac{L_{i,1}}{I} = \frac{M_0}{8M} \neq f(R_1)$

Jamese Budaktivitent des Außen lesters

Stromkreis ums den betrackteten Fluss

in fosser:

$$\overline{I}_{V} = \overline{I} \cdot \frac{\pi R_3^2 - \overline{M} S^2}{\overline{M} R_3^2 - \overline{M} R_2^2}$$

 $d\Psi = d\vec{I} \cdot \frac{\vec{I}v}{\vec{I}}$ $d\vec{\Phi} = \vec{\Pi} \cdot d\vec{A} = \text{Rejection}$ $R_2 < S < R_3$

$$Liz = \frac{\gamma_{i2}}{I}$$
 $Liz' = \frac{Liz}{Bl}$

Zusammen gefast:

$$\frac{b_1}{W_m} = \iiint \frac{3^2}{2\mu_0} dV \qquad dV = 2\pi g \cdot l \cdot dg$$

$$= \frac{1.40 \cdot 1^{2}}{407} \cdot \left[\int_{S=0}^{R_{1}} \frac{g^{3}}{R_{1}^{4}} \cdot dg + \int_{S=R_{1}}^{R_{2}} \frac{dg}{g} + \int_{S=R_{2}}^{R_{3}} \frac{|R_{3}^{4} - 2R_{3}^{2} \cdot g^{2}|}{|R_{3}^{2} - R_{2}^{2}|^{2}} \right] + \frac{1}{2} \left[\frac{|R_{3}^{4} - 2R_{3}^{2} \cdot g^{2}|}{|R_{3}^{2} - R_{2}^{2}|^{2}} + \frac{1}{2} \frac{|R_{3}^{4} - 2R_{3}^{2} \cdot g^{2}|}{|R_{3}^{2} - R_{2}^{2}|^{2}} \right]$$

$$L' = \mu_0 \cdot \frac{1}{2\pi} \left[\frac{1}{4} + \ln \left(\frac{R_2}{R_n} \right) + \frac{R_2^4}{\left(R_3^2 - R_2^2 \right)^2} \cdot \ln \left(\frac{R_3}{R_2} \right) \right]$$

$$+\frac{1}{4} \cdot \frac{R_2^2 - 3R_3^2}{R_3^2 - R_2^2}$$

$$Audg.30)$$

$$OI_{n}$$

$$I_{2}$$

$$I_{3}$$

$$I_{4}$$

$$I_{1}$$

$$I_{4}$$

$$I_{1}$$

$$I_{4}$$

$$I_{1}$$

$$I_{4}$$

$$I_{1}$$

$$I_{4}$$

$$I_{1}$$

$$I_{4}$$

$$I_{7}$$

4

Mn: War + Ware

ellywein: Leter in den z Adau:
$$\vec{H} = \frac{1}{2Mg} \cdot \vec{e}_{g}$$
 $\vec{H}_{1}(\vec{X}) = \frac{1}{2M(x+\frac{a}{2})} \cdot \vec{e}_{g} + \frac{1}{2M(\frac{a}{2}-x)} \cdot \vec{e}_{g}$
 $\vec{h}_{1}(\vec{X}) = \frac{1}{2M(x+\frac{a}{2})} \cdot \vec{e}_{g} + \frac{1}{2M(\frac{a}{2}-x)} \cdot \vec{e}_{g}$

b) gesuch:

erzeugt von

durch setzt

 $d\vec{A} = dx \cdot l \cdot \vec{e}_{g}$

funchme

$$\vec{\Phi}_{2q} = \iint_{N_{0}} M_{0} \cdot \vec{h}_{1} \cdot d\vec{A}$$

$$= l \cdot M_{0} \cdot \vec{h}_{1} \cdot d\vec{A}$$

$$= l \cdot M_{0} \cdot \vec{h}_{1} \cdot d\vec{A}$$

$$= l \cdot M_{0} \cdot \vec{h}_{1} \cdot \left[ln(x+\frac{a}{2}) - ln(\frac{a}{2}-x) \right] \times -\frac{b}{a}$$

innere Ableitung

$$\vec{\Phi}_{2q} = 2 \cdot \frac{ln(1-x)}{2M} \cdot ln(\frac{a+b}{a-b})$$

hier gill: $\vec{\Phi}_{2q} = ln(\frac{a+b}{a-b})$

the Letterset lette 2 verkettet:

$$Y_{2q} = \vec{\Phi}_{2q}$$

- unr 1 Windling - dinne Letter!

MM

Es giltjumer: Lis = Lzi

We ist aber de direkte Beredeung von Liz' viel Shuerer

O O I (

 $(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) \cdot x_1 \cdot x_2 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_4 \cdot x_4 \cdot x_4 \cdot x_4 \cdot x_5 \cdot x_5$