

BEST AVAILABLE COPY

(19)

Russian Agency for Patents and Trademarks

(II) Publication number: RU 2056201 Cl

(46) Date of publication: 19960320

(21) Application number: 93034496

(22) Date of filing: 19930701

(51) Int. Cl: B21D39/10 E21B29/10

(71) Applicant: Tatarskiy gosudarstvennyj nauchno-issledovatel'skiy i proektornyj institut neftegazoj promyshlennosti

(72) Inventor: Meling K.V., Mukhametshin A.A., Abdurakhmanov G.S., Arzamastsev F.G., Meling K.V., Mukhametshin A.A., Abdurakhmanov G.S., Arzamastsev F.G.

(73) Proprietor: Tatarskiy gosudarstvennyj nauchno-issledovatel'skiy i proektornyj institut neftegazoj promyshlennosti

(54) TUBE ROLLING OUT APPARATUS**(67) Abstract:**

FIELD: well exploitation. **SUBSTANCE:** apparatus has on lateral surface of its housing inclined flat portions, supporting with use of axes rolling out members, mounted on supporting plates. The flat portions are in the form of cylindrical counterbores, whose axis coincide with axis of the rolling out members. The counterbore has grooves, opened at its one side. The supporting plate are arranged in the grooves and rigidly connected with the axes of the rolling out members. Each above mentioned groove has at its end portion an additional groove. Each supporting plate is provided by a protrusion, placed in the additional groove. The housing with the supporting plates is embraced by a nut. **EFFECT:** enhanced reliability of the apparatus at operation due to such structure of it. 2 cl, 7 dwg

(21) Application number: 93034496

(22) Date of filing: 19930701

(51) Int. Cl.: B21D99/10 E21B29/10

(56) References cited:

Заявка РСТ 90/05833, кл. Е 21В 29/10, 1990.

(71) Applicant: Татарский государственный научно-исследовательский и проектный институт нефтяной промышленности

(72) Inventor: Мелинг К.В., Мухаметшин А.А., Абдрахманов Г.С., Арзамасцев Ф.Г., Мелинг К.В., Мухаметшин А.А., Абдрахманов Г.С., Арзамасцев Ф.Г..

(73) Proprietor: Татарский государственный научно-исследовательский и проектный институт нефтяной промышленности

(54) УСТРОЙСТВО ДЛЯ РАЗВАЛЫВКИ ТРУБ

(57) Abstract:

Изобретение предназначено для разваливки перекрываемых из профильных труб, установленных в скважинах. На боковой поверхности корпуса выполнены наклонные плоские участки, на которых с помощью осей на опорных пластинках установлены втыкающие элементы (В9). Плоские участки выполнены в виде трапецидических цеков (Ц). Оси Ц совпадают с осями В9. На Ц выполнены открытые с одного конца пазы (П). Опорные пластины расположены в П и жестко связаны с осями В9. На открытом конце каждого П выполнен дополнительный П. Каждая опорная пластина снабжена выступом, размещенным в дополнительном П. Корпус с опорными пластинами охватывает гибкую. Такая конструкция обеспечивает повышенную надежность устройства. 1 з. п. ф-лы, 7 ил.

BEST AVAILABLE COPY

Description [Описание изобретения]:

Изобретение относится к бурению и капитальному ремонту скважин и предназначено, в частности, для развалыривания устройств из профильных труб при их установке в скважине.

Наиболее близким к изобретению по технической сущности является устройство для развалыривания профильных труб при перекрытии ими зон осложнений в скважине, содержащее полый цилиндрический корпус, на наружной поверхности которого выполнены наклонные относительно продольной оси корпуса плоские участки, и установленные на последних с помощью осей на опорных пластинках вальцовывающие элементы.

Недостатком этого устройства является недостаточность его работы из-за недостаточной (низкой) прочности корпуса, минимальная толщина стенки которого в результате выполнения наклонных и его продольной оси плоских участков не удовлетворяет условиям прочности при кручении.

Цель изобретения повышение надежности устройства за счет увеличения прочности его корпуса.

Это достигается тем, что в описываемом устройстве для развалыривания труб, содержащей полый цилиндрический корпус, на наружной поверхности которого выполнены наклонные относительно продольной оси корпуса плоские участки, и установленные на последних с помощью осей на опорных пластинках вальцовывающие элементы, согласно изобретению наклонные плоские участки на наружной поверхности корпуса выполнены в виде цилиндрических цековок, оси которых совпадают с осями вальцовывающих элементов, а на цековках выполнены открытые с одного конца и эксцентрически смещенные к нему пазы, при этом опорные пластины расположены в пазах и жестко связаны с осями вальцовывающих элементов.

Другим отличием описанного устройства является то, что на открытом конце каждого паза выполнен дополнительный паз, а каждая опорная пластина снабжена выступом, расположенным в дополнительном пазу, при этом устройство снабжено гайкой, охватывающей корпус с опорными пластинами.

Указанные отличия обеспечивают возможность увеличения толщины стенки корпуса в наиболее опасном поперечном сечении его, благодаря чему повышается прочность корпуса и, следовательно, надежность работы устройства без изменения его nominalного наружного диаметра для данного типоразмера.

На фиг. 1 показано устройство, установленное в профильной развалыриваемой трубе, общий вид; на фиг. 2 сечение А-А на фиг. 1; на фиг. 3 фрагмент корпуса устройства с конструктивными элементами для установки вальцовывающих элементов; на фиг. 4 вид по стрелке Б на фиг. 3; на фиг. 5 сечение В-В на фиг. 1; на фиг. 6 сечение Г-Г на фиг. 1, на фиг. 7 сечение Д-Д на фиг. 3.

Устройство для развалыривания труб (фиг. 1) содержит цилиндрический полый корпус 1 с центральным каналом 2 и резьбами 3 и 4 для соединения соответственно с колонкой бурильных труб 5 и скважинным оборудованием 6. На наружной поверхности корпуса 1 под углом к его продольной оси выполнены плоские участки 7 в виде цилиндрических цековок 8, на которых выполнены открытые с одного конца пазы 9, эксцентрически смещенные относительно цековок в сторону открытого конца этих пазов, с утолщениями 10 в их противоположных открытых концах стеклах. В пазах 9 размещены опорные пластины 11 с косьмырьями 12 по их периферии (фиг. 1), входящими в утубления 10 пазов 9 (фиг. 3 и 4).

На поверхности опорных пластин 11 (фиг. 1), контактирующей с корпусом, изготовлены выступы 13, входящие в дополнительные пазы 14 (фиг. 3 и 4), выполненные на открытых участках пазов 9. На наружной поверхности корпуса выполнена резьба 15, на которую навинчена гайка 16, охватывающая опорные пластины 11 и обеспечивающая совместную с их косьмырьками 12, выступами 13, утолщениями 10 в корпусе и дополнительными пазами 14 фиксацию пластин 11 от проворота и выпадения из пазов 9.

На внешних от корпуса поверхностях опорных пластин 11 жестко и с эксцентрическим смещением к их верхней периферии (границе) закреплены оси 17 (фиг. 1 и 2), на которых с помощью фиксирующего кольца 18 установлены вальцовывающие элементы 19. При этом оси 17 вальцовывающих элементов закреплены на опорных пластинках 11 так, что их геометрические оси симметрии совпадают с геометрическими осями симметрии цилиндрических цековок 8 (см. осевую линию 0-0 на фиг. 3-4).

Эксцентрическое смещение пазов 9 относительно площадки цековок 8, а также величину максимально возможного углубления цековок в стенку корпуса определяют расчетным путем для конкретного типоразмера устройства с учетом обеспечения необходимого запаса прочности корпуса при работе устройства в условиях кручения. А максимально возможное смещение опорных пластин 11 относительно осей 17 вальцовывающих элементов 19 обусловлено расположением пазов 9 под них и тем, что геометрические оси симметрии закрепленных на них осей 17 вальцовывающих элементов 19 должны

BEST AVAILABLE COPY

соппадать с геометрическими осьми симметрии цековок.

Работа устройства показывается на примере развертывания профильных труб при изоляции или зоне нарушения герметичности обсадной колонны 20 (фиг. 1, 5, 6) скважины.

Профильные трубы 21 спускают внутрь обсадной колонны 20, в интервал изоляции и расширяют до прижатия их стенок к стенке обсадной колонны 20 (фиг. 5) создаваям внутреннего гидравлического давления.

Затем с помощью резьбы 3 устройство присоединяют к колонне труб 5 и спускают в скважину. По достижении устройством верхнего конца профильных труб 21 колонну бурильных труб начинают вращать при одновременном создании осевой нагрузки и промылок полости труб через центральный канал 2 корпуса 1 жидкостью. В результате этого недожатые давлением участки 22 (фиг. 5) профильных труб 21 выправляются до плотного и герметичного прижатия всей наружной поверхности профильных труб к внутренней поверхности обсадных труб 20 (фиг. 6).

По окончании развертывания колонну бурильных труб 5 с устройством поднимают из скважины.

BEST AVAILABLE COPY

Claims [Формула изобретения]:

1. УСТРОЙСТВО ДЛЯ РАЗВАЛЬЦОВКИ ТРУБ, содержащее цилиндрический корпус, на наружной поверхности которого выполнены наклонные относительно продольной оси корпуса плоские участки, и установленные на последних с помощью осей на опорных пластинках вальцовочные элементы, отличающиеся тем, что наклонные плоские участки на наружной поверхности корпуса выполнены в виде радицирических цековок, оси которых совпадают с осями вальцовочных элементов, а на цековках выполнены открытые с одного конца и эксцентрично смещенные к нему пазы, при этом опорные пластины расположены в пазах и жестко связаны с осями вальцовочных элементов.
2. Устройство по п.1, отличающееся тем, что на открытом конце каждого паза выполнен дополнительный паз, а каждая опорная пластина снабжена выступом, размещенным в дополнительном пазу, при этом устройство снабжено гайкой, охватывающей корпус с опорными пластинами.

BEST AVAILABLE COPY

Drawing(s) [Чертежи]:

Фиг. 1

RU 2056201 Cl

Фиг. 2

Фиг. 3

вид Б повернуто

Фиг. 4

Фиг.5

Фиг.6

Д-Д

Фиг. 7

RU 2056201 C1

(54) PIPE EXPANSION DEVICE

(57) Abstract:

The device is intended for expanding shaped-pipe blocking devices mounted in wells. Provided on one of the sides of its housing are inclined flats carrying supporting plates, secured to which are pins mounting expansion tools. The flats have cylindrical elements. The elements are aligned with pins carrying the expansion tools. The elements have slots open at one end. The supporting plates are mounted in the slots and rigidly connected with the pins carrying the expansion tools. Additional slots are provided at the open end of each main slot. Each supporting plate has a projection engaging with the additional slot. The housing with the supporting plates is enclosed by a nut. Such a combination of the design features enhances the reliability of the device. 2 cl., 7 dwgs

RU 2056201 C1

Description:

The present invention relates to the well drilling and overhaul operations; more specifically, the proposed device is intended for expanding shaped-pipe blocking devices after lowering them into wells.

Closest in technical substance to the present invention is a device serving to expand shaped pipes when isolating troublesome zones in the well, which device consists of a hollow cylindrical housing whose outside surface has flats inclined relative to the longitudinal axis of the housing; the flats carry supporting plates, secured to which are pins mounting expansion tools.

The drawback to this device is its unreliability because of an insufficient (low) strength of the housing whose minimum wall thickness does not meet the torsional strength requirement due to the provision of flats that are inclined relative to the longitudinal axis of the housing.

The object of the present invention is to enhance the reliability of such a device by increasing the strength of its housing.

This is achieved as follows: In the proposed pipe expander which incorporates a hollow cylindrical housing whose outside surface includes flats inclined relative to the longitudinal axis of the housing and carrying supporting plates, secured to which are pins mounting expansion tools, the inclined flats provided on the outside surface of the housing have cylindrical elements which are aligned with the expansion tools and which have slots open at one end and offset in the direction of their open ends and the supporting plates are located in the slots and rigidly connected to the pins mounting the expansion tools.

Other distinctive features of the proposed device are that an additional slot is provided at the open end of each slot and each supporting plate has a projection located in the additional slot and that the device is fitted with a nut enclosing the housing with the supporting plates.

The above distinctive features make it possible to increase the thickness of the walls of the housing at its weakest cross section, owing to which the housing strength and, consequently, the reliability of the device are increased without changing its rated outside diameter for a given size.

Fig. 1 is a general view of the device mounted in a shaped pipe to be expanded, Fig. 2 is the section A-A in Fig. 1, Fig. 3 shows a part of the expansion device housing with the elements serving for mounting expansion tools, Fig. 4 is a view in the direction of arrow B in Fig. 3, Fig. 5 is the section B-B in Fig. 1, Fig. 7 is the section Г-Г in Fig. 1, and Fig. 7 is the section Д-Д in Fig. 3.

RU 2056201 C1

The pipe expansion device (Fig. 1) has hollow cylindrical housing 1 with channel 2 and threads 3 and 4 for connecting the device to drill string 5 and downhole equipment 6. Provided on the outside surface of the housing 1 at an angle to its longitudinal axis are flats 7 with cylindrical elements 8 having slots 9 that are open at one end; these slots are offset relative to the cylindrical elements in the direction of their open ends and there are recesses 10 at the opposite ends of the slots. The slots accommodate supporting plates 11 with peripheral projections 12 (fig. 1) that engage the recesses 10 in the slots 9 (Figs. 3 and 4).

Projections 13 provided on those surfaces of the supporting plates 11 (Fig. 1) that are in contact with the housing engage additional slots 14 (Figs. 3 and 4) made at the open ends of the slots 9. Screwed onto thread 15 on the outside surface of the housing is a nut 16 which encloses supporting plates 11; acting together with the projections 12, projections 13, housing recesses 10 and additional slots 14, the nut 16 prevents the plates 11 from turning and falling out of the slots 9.

Rigidly fastened to those surfaces of the supporting plates 11 that are positioned externally relative to the housing are pins 17 (Figs. 1 and 2) which are offset towards to the tops of the supporting plates 11; the pins mount expansion tools 19 fixed with locking rings 18. The pins 17 carrying the expansion tools are fastened to the supporting plates 11 so that their geometric axes of symmetry coincide with those of the cylindrical elements 8 (see center line O-O in Figs. 3 and 4).

The offset of the slots 9 relative to the elements 8 and the maximum length of entry of the elements 8 into the housing wall are calculated for a given size of the device so as to ensure the requisite torsional strength of the housing. The maximum possible misalignment of the supporting plates 11 and the pins 17 carrying the expansion tools 19 is determined by the location of the slots 9 and by the coincidence of the geometric axes of the pins 17 carrying the expansion tools 19 and those of the cylindrical elements.

The operation of the proposed device will be illustrated below by the example of the expansion of shaped pipes in the course of isolating the non-tight zone of casing string 20 (Figs. 1, 5 and 6) in the well.

Shaped pipes 21 are lowered inside the casing string 20 to the interval to be isolated, and then a hydraulic pressure is developed to increase the pipe diameter by pressing the pipes against the wall of the casing string 20 (Fig. 5).

Following this, the proposed device is connected to the drill string 5 with the use of the thread 3 and lowered into the well. When the device reaches the top end of the shaped pipes 21 the drill string is imparted rotation and at the same time an axial load is developed and the inner surfaces of the pipes are washed with fluid supplied through the central channel 2 in the housing 1. As a result, portions 22 (Fig. 5) of the shaped pipes, which were not sufficiently pressed against the inner surfaces of the casing string, are

RU 2056201 C1

straightened until the entire outer surfaces of the shaped pipes 21 are fully and tightly pressed against the inner surfaces of the casing string 20 (Fig. 6).

After the expansion process is over the drill string 5 is lifted out of the wall together with the device.

RU 2056201 C1

Claims:

1. A PIPE EXPANSION DEVICE having a hollow cylindrical housing whose outside surface includes flats inclined relative to the longitudinal axis of the housing and carrying supporting plates, secured to which are pins mounting expansion tools, the inclined flats provided on the outside surface of the housing have cylindrical elements which are aligned with the expansion tools and which have slots open at one end and offset in the direction of their open ends and the supporting plates are located in the slots and rigidly connected to the pins mounting the expansion tools.
2. The device according to i. 1, wherein an additional slot is provided at the open end of each main slot and each supporting plate has a projection located in the additional slot and which is fitted with a nut enclosing the housing with the supporting plates.

RU 2056201 C1

Drawings:

Fig. 1

RU 2056201 C1

Fig. 2

RU 2056201 C1

Fig. 3

RU 2056201 C1

View E shown as turned around

Fig. 4

RU 2056201 C1

Fig. 5

Fig. 6

RU 2056201 C1

Fig. 7

TRANSPERFECT TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

RU2016345 C1
RU2039214 C1
RU2056201 C1
RU2064357 C1
RU2068940 C1
ATI ANTA RU2068943 C1
BOSTON RU2079633 C1
BRUSSELS RU2083798 C1
CHICAGO RU2091655 C1
DALLAS RU2095179 C1
DETROIT RU2105128 C1
FRANKFURT RU2108445 C1
HOUSTON RU21444128 C1
LONDON RU1041671 A
LOS ANGELES SU1051222 A
MIAMI SU1086118 A
MINNEAPOLIS SU1158400 A
NEW YORK SU1212575 A
PARIS SU1250637 A1
PHILADELPHIA SU1295799 A1
SAN DIEGO SU1411434 A1
SAN FRANCISCO SU1430498 A1
SEATTLE SU1432190 A1
WASHINGTON, DC SU 1601330 A1
SU 001627663 A
SU 1659621 A1
SU 1663179 A2
SU 1663180 A1
SU 1677225 A1
SU 1677248 A1
SU 1686123 A1
SU 001710694 A
SU 001745873 A1
SU 001810482 A1
SU 001818459 A1
350833
SU 607950
SU 612004
620582
641070
853089
832049
WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart
Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serina

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX