

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 1D

High Specific IgE & Asthma

Chromosome 12: D12S79-D12S366

About This Interval

Top of interval: D12S79 (126.1 cM)
Bottom of interval: D12S366 (133.8 cM)
Genetic size of bin: 8 cM
Physical size of bin: 9 cR3000

FIG. 2 A

 126.1 133.8	451.62 F 454.24 P0.10 455.39 P0.37 455.39 P1.15 455.70 P0.06 455.81 P1.35 455.86 P2.06 456.02 P2.38 456.34 P0.23 456.34 P0.04 * 456.86 P2.34 456.86 P>3.00 456.86 " 456.96 P1.66 * 456.96 P0.04 457.17 P1.31 457.17 P0.13 457.17 P0.30 457.17 P0.38 457.17 P0.31 457.17 P0.18 457.17 P1.35 457.17 " 457.27 P>3.00 * 457.27 P0.10 * 457.48 P0.20 460.94 P0.00 * 460.94 F	AFM067yc5 A009F32 sts-N33343 SGC38179 stSG54526 stSG1522 sts-T56610 sts-R33659 sts-D29101 SGC44506 NIB1804 stSG44263 stSG62560 sts-AA001615 sts-T94297 stSG54365 WI-21497 WI-20357 SGC31491 RK903_904 sts-AA007571 stSG46223 stSG58387 Cda1ce05 sts-W79390 sts-Z40829 A005Q47 AFM351tb9 D12S366	D12S79 KIAA0331 ESTs ESTs ESTs ESTs Homo sapiens mRNA for KIAA0875 protein, p.. EST EST ESTs ESTs, Weakly similar to calcium-binding pr.. Homo sapiens clone 24852 mRNA sequence ESTs ESTs, Weakly similar to TBX2 gene [H.sapi.. ESTs Homo sapiens mRNA for KIAA0875 protein, p.. Homo sapiens mRNA for KIAA0875 protein, p.. nitric oxide synthase 1 (neuronal) nitric oxide synthase 1 (neuronal) ESTs ESTs ESTs Homo sapiens clone 23714 mRNA sequence non-metastatic cells 2, protein (NM23B) exp.. ESTs ESTs Microsatellite anchor marker AFM351tb9
			↑ Next interval up
			↓ Next interval down

FIG. 2 B

Chromosome 12: D12S366-D12S340

The interval shown is on the GB4 map

See also: equivalent interval on G3 map

About This Interval

Top of interval: D12S366 (133.8 cM)

Bottom of interval: D12S340 (147.5 cM)

Genetic size of bin: 14 cM

Physical size of bin: 21 cR3000

133.8	◆ 460.94 F	AFM351tb9	D12S366	Microsatellite anchor marker AFM351tb9
	462.85 P1.00 *	stSG8109		ESTs
	462.85 "	sts-X75252	PBP	prostatic binding protein
	462.95 P1.04	sts-AA011374		Homo sapiens KIAA0431 mRNA, partial cds

FIG. 2 C

463.77 P0.19	WI-16745		Human clone 37, 5cM region surrounding hep...
◆ 463.77 P0.20	SGC33949	KIAA0262	KIAA0262 gene product
463.98 P0.02	A008B04		ESTs
463.98 "	stSG50309		ESTs
463.98 "	stSG49970		Homo sapiens mRNA for KIAA0875 protein, p..
463.98 P0.04	stSG27318		Human clone 23932 mRNA sequence
463.98 P0.08	R06295		EST
463.98 P1.33	sts-W56792		ESTs
464.08 P2.32	A007E48		ESTs
464.19 P1.28	A009U43		ESTs
464.29 P1.33	stSG3138		Homo sapiens mRNA for KIAA0949 protein, p..
464.39 P1.09	sts-F21636		Human DNA sequence from BAC 15E1 on chrom..
464.39 P1.13	stSG15685	KIAA0262	KIAA0262 gene product
464.39 "	RP_P0_1	RPLP0	Ribosomal protein large, P0
464.39 P1.09	stSG29626		ESTs
464.39 P1.14	stSG31407		Human DNA sequence from BAC 15E1 on chrom..
464.39 "	A001T32	PXN	paxillin
464.39 "	A001W18		H.sapiens mRNA for AMP-activated protein ..
464.39 "	WIAF-40		Human mRNA for KIAA0219 gene, partial cds
464.39 "	sts-T95105		ESTs
464.39 "	Cda0id01		ESTs
464.39 P1.13	stSG31431		ESTs, Moderately similar to (defline not a..
◆ 464.39 " *	WI-13177		Homo sapiens clone 23714 mRNA sequence
464.39 "	IB1092		Homo sapiens clone 23714 mRNA sequence
464.39 "	T79466		ESTs
464.39 P1.18	stSG48379		ESTs
464.45 P1.05	KIAA0219		Human mRNA for KIAA0219 gene, partial cds
464.45 "	stSG40392		ESTs
464.45 "	stSG31586		H.sapiens mRNA for AMP-activated protein ..
◆ 464.49 P0.21	A006F12	KIAA0152	KIAA0152 gene product
464.49 P0.25	sts-AA002185	PXN	paxillin
464.49 P0.10	stSG48442		ESTs
464.49 "	sts-T16456		ESTs
464.49 "	stSG62260		ESTs

FIG. 2 D

	464.49 "	NIB1331		ESTs
	464.49 "	WI-15518		ESTs, Weakly similar to fos39554 1 [H.sapi..
	464.49 "	WIAF-1058		ESTs, Moderately similar to unknown [H.sap..
	464.49 "	SGC34758		ESTs
	464.49 "	WI-19738		Homo sapiens mRNA for KIAA0787 protein, p..
	464.49 "	IB383		ESTs, Weakly similar to fos39554 1 [H.sapi..
	464.49 "	SGC32343		ESTs
	464.79 P0.96	SGC33521		ESTs
	464.79 P0.96 *	X58965	NME2	non-metastatic cells 2, protein (NM23B) exp..
	465.20 P0.20	sts-H10302		ESTs
◆	465.38 P0.85	A007E11	KIAA0262	KIAA0262 gene product
	465.41 P0.81	A007I44	RPLP0	ribosomal protein, large, P0
	465.41 "	stSG22726.		EST
	465.41 "	WI-17776		ESTs
	465.41 "	stSG31753		Human mRNA for KIAA0219 gene, partial cds
	465.41 "	stSG31753		Human mRNA for KIAA0219 gene, partial cds
	465.41 P0.77	stSG4775	SFRS9	splicing factor, arginine/serine-rich 9
	465.41 "	A002J47		ESTs, Weakly similar to heat shock protein..
	465.41 P0.80	stSG46660		EST
	465.51 P0.75	stSG41086	PXN	paxillin
	465.51 P0.83	stSG52121		ESTs
	465.91 P0.01	WI-16071		ESTs
	465.91 P0.00	WI-13962		H.sapiens mRNA for AMP-activated protein ..
	466.62 P0.00	sts-AA011220	SFRS9	splicing factor, arginine/serine-rich 9
	466.71 P0.00	stSG4712		ESTs, Weakly similar to homology with o251..
	466.91 P0.01	WI-15135		Homo sapiens mRNA for KIAA0787 protein, p..
	466.91 P0.01	D12S2088	TCF1	transcription factor 1, hepatic; LF-B1, hep..
	467.01 P0.01	stSG52567		ESTs
135.1	467.11 F	AFM123xh2	D12S86	Microsatellite marker AFM123xh2
135.1	467.11 P0.01	AFM299zd5	D12S349	Microsatellite marker AFM299zd5
	467.11 P0.01	AFM123xh2		Unknown
137.5	◆ 467.21 P0.02	AFM220zf4	D12S321	Microsatellite marker AFM220zf4
	467.21 P0.02	sts-W73277	SFRS9	splicing factor, arginine/serine-rich 9
	467.21 P0.02	stSG8721		EST

FIG. 2 E

467.21 "	stSG44224		ESTs
467.21 "	stSG49978		H.sapiens mRNA for AMP-activated protein ..
◆ 467.21 "	stSG31862		Homo sapiens HSPC004 mRNA, complete cds
467.21 "	stSG47820		ESTs
467.21 "	Bdac4h06	KIAA0262	KIAA0262 gene product
467.21 "	stSG15021		ESTs
467.21 "	A002B13	SFRS9	splicing factor, arginine/serine-rich 9
◆ 467.21 "	HS0549	KIAA0262	KIAA0262 gene product
467.21 P0.03	SGC35167		EST
467.21 P0.03	WI-19637		H.sapiens mRNA for AMP-activated protein ..
467.21 P0.02	WIAF-607		Unknown
467.31 P0.02	WI-16997	RPLP0	ribosomal protein, large, P0
468.93 P0.85	SGC31344		EST
469.13 P0.90	A007C39	ACADS	acyl-Coenzyme A dehydrogenase, C-2 to C-3 ..
469.13 P0.14	stSG35104		ESTs
469.13 "	A006Q41		Unknown
469.23 P0.18	sts-Y07684	P2RX4	purinergic receptor P2X, ligand-gated ion c..
469.33 P0.93	stSG8506		ESTs, Moderately similar to unknown [H.sap..]
469.33 "	R01708		EST
469.33 "	stSG54819	HCALB_BR	calbrain
469.33 "	A001Z45		ESTs, Highly similar to (defline not avail..)
469.33 "	stSG35318		ESTs, Weakly similar to fos39554 1 [H.sapi..]
469.33 "	stSG63173		EST
469.33 "	stSG31374	OASL	2'-5'oligoadenylate synthetase-like
469.42 P1.01	WI-16068		EST
469.44 P0.23	stSG1961		Homo sapiens mRNA for KIAA0787 protein, p..
469.44 "	stSG62627		EST
469.44 "	stSG36007		Homo sapiens full length insert cDNA clone..
469.44 "	stSG39281	P2RX7	purinergic receptor P2X, ligand-gated ion c..
469.44 "	stSG2554		Homo sapiens mRNA for KIAA0787 protein, p..
469.44 "	stSG62591		ESTs
◆ 469.54 P1.03	A006N38	KIAA0152	KIAA0152 gene product
469.62 P1.03	sts-N34573		ESTs
469.62 P1.03	sts-N58045		ESTs

FIG. 2 F

469.62 P1.04	WI-13224		EST
469.83 P1.12	SGC34424		ESTs
469.93 P1.14	stSG3875	PSMD9	proteasome (prosome, macropain) 26S subunit..
470.14 P1.17	stSG52516		ESTs, Weakly similar to (defline not avail..
470.24 P1.32	D0S1735E		ESTs
470.24 P1.12	WI-6178		ESTs
470.32 P1.25	sts-U29895		Unknown
470.32 P1.24	WI-19611	PSMD9	proteasome (prosome, macropain) 26S subunit..
470.43 P1.29	stSG52094		ESTs
470.63 P1.38	A004O17		ESTs
◆ 470.77 P1.32	** SGC33451		ESTs, Weakly similar to rhoHP1 [H.sapiens..
◆ 470.84 P1.35	** sts-X64838	RSN	restin (Reed-Steinberg cell-expressed inter..
470.84 P1.52	WI-13062		Homo sapiens mRNA, expressed in fibroblast..
471.27 P1.60	sts-R99269		EST
471.37 P1.70	stSG1991		ESTs
471.37 "	stSG15859		Homo sapiens full length insert cDNA YQ02..
471.58 P1.78	stSG29729		ESTs, Weakly similar to (defline not avail..
471.58 P1.37	WI-16979		ESTs
471.65 P1.39	WI-17693		EST
471.80 P1.29	WI-22060		ESTs
471.90 P>3.00	stSG8210		ESTs, Moderately similar to neuronal threa..
471.90 "	WI-17956		EST
471.90 "	WI-20969		Homo sapiens mRNA for KIAA0867 protein, c..
471.90 "	stSG47029		ESTs
471.90 "	stSG47647		EST
471.90 "	sts-W45376		Homo sapiens mRNA for KIAA0867 protein, c..
◆ 471.90 "	** WI-6021	RSN	restin (Reed-Steinberg cell-expressed inter..
471.90 "	NIB962		ESTs
471.90 "	A009E34		ESTs, Moderately similar to neuronal threa..
471.90 "	sts-T17477		ESTs
472.08 P1.49	sts-X89984		H.sapiens mRNA for BCL7A protein
472.12 P>3.00	SGC34693		EST
472.12 P>3.00	A009O01		ESTs, Weakly similar to neuronal thread pr..
472.29 P>3.00	stSG47084		ESTs

FIG. 2 G

472.40 P>3.00	stSG58209	EEF1D	eukaryotic translation elongation factor 1 d..
472.40 P>3.00	AA213821	EEF1D	eukaryotic translation elongation factor 1 d..
472.61 P>3.00	A002R44		Unknown
472.61 P>3.00	SGC35850	EEF1D	eukaryotic translation elongation factor 1 d..
472.72 P0.01	sts-H98108		ESTs
472.97 P>3.00	WI-6239		ESTs
473.04 P>3.00	sts-H75490		ESTs
◆ 473.58 P>3.00 **	WI-14983	RSN	restin (Reed-Steinberg cell-expressed inter..
474.01 P>3.00	stSG8610		ESTs
474.01 P>3.00	stSG47080		ESTs
474.38 P2.18	stSG8686		ESTs, Weakly similar to similar to pre-mRN..
474.38 P2.25	stSG26358		ESTs, Weakly similar to similar to pre-mRN..
474.38 "	stSG29931		ESTs
474.38 "	WI-17926		ESTs
474.38 "	WI-12790		ESTs, Weakly similar to MULTIDRUG RESI..
474.38 "	1834		EST
474.38 P2.26	sts-X98258	MPP-9	M phase phosphoprotein 9
474.38 P2.39	stSG40753		ESTs
474.64 P>3.00	A004D47		ESTs, Highly similar to There are three pu..
474.64 P>3.00	sts-N23129	MPP-9	M phase phosphoprotein 9
474.75 P2.41	sts-AA040696		ESTs
474.81 P2.37	sts-AA022496		ESTs
474.81 P2.28	stSG46930	MPP-9	M phase phosphoprotein 9
474.97 P>3.00	WI-20552	DRP	density-regulated protein
475.02 P>3.00	SGC30324		ESTs
475.07 P>3.00	D10923	HM74	putative chemokine receptor, GTP-binding pr..
475.07 P>3.00	stSG2418	DOC1	Deleted in oral cancer-1
475.07 "	stSG21321		ESTs
475.07 "	stSG53515	MPP-9	M phase phosphoprotein 9
475.07 P>3.00	SGC31687	DOC1	Deleted in oral cancer-1
475.07 P>3.00	WIAF-214	HM74	putative chemokine receptor, GTP-binding pr..
475.13 P0.79	sts-W93806		ESTs
475.13 P2.13	stSG48145		ESTs
475.18 P2.34	A003B12		Homo sapiens full length insert cDNA clone..

FIG. 2 H

475.18 P>3.00	WI-22211		Homo sapiens full length insert cDNA clone..	
475.18 P2.08	stSG48093		ESTs	
475.18 "	A004P27		ESTs, Weakly similar to MULTIDRUG RESI..	
475.35 P2.10	stSG9904		ESTs	
475.40 P0.45	sts-AA024696		ESTs	
475.51 P>3.00	stSG53793		ESTs	
476.10 P>3.00	Bda98d05		Homo sapiens full length insert cDNA clone..	
476.21 P>3.00	sts-H24468		ESTs	
476.21 P>3.00	sts-N94741		ESTs	
476.64 P0.28	stSG22488		ESTs	
476.85 P0.36	stSG44909		ESTs	
477.06 P0.10	stSG54797		ESTs	
477.27 P1.33	stSG48099		ESTs	
477.37 P0.09 *	sts-AA028894		Homo sapiens silencing mediator of retinoic..	
477.80 P1.44	stSG52727		EST	
477.80 "	U44799		Human U1-snRNP binding protein homolog mR..	
477.80 "	WI-15963		ESTs	
477.80 "	stSG53886		ESTs, Weakly similar to neuronal thread pr..	
478.74 P0.01	WIAF-364		ESTs	
479.01 P0.21	WI-21080		ESTs	
479.13 P0.19	A009B29		ESTs	
479.33 P0.22	A006F32	EIF2B1	eukaryotic translation initiation factor 2B..	
479.33 P0.19	WIAF-449	EIF2B1	eukaryotic translation initiation factor 2B..	
479.33 P0.19 *	WI-15890		H.sapiens mRNA for transmembrane protein r..	
479.55 P0.20 *	stSG349		H.sapiens mRNA for transmembrane protein r..	
479.55 "	*	A004O46	BDKRB2	bradykinin receptor B2
479.55 "	stSG42540		ESTs	
479.55 "	sts-N26791		ESTs	
479.55 "	stSG53943		ESTs	
479.55 "	stSG49468		EST	
145.7	479.74 P0.16	AFM294ze9	D12S342	Microsatellite marker AFM294ze9
	481.46 P0.00	sts-AA007694		EST
147.5	= ♀ 481.56 F	AFM294xg1	D12S340	Microsatellite anchor marker AFM294xg1

Next interval down

FIG. 2 I

Chromosome 12: D12S340-D12S97

The interval shown is on the GB4 map

See also: equivalent interval on G3 map

About This Interval

Top of interval: D12S340 (147.5 cM)

Bottom of interval: D12S97 (160.9 cM)

Genetic size of bin: 13 cM

Physical size of bin: 13 cR3000

147.5	Next interval up	AFM294xg1	D12S340	Microsatellite anchor marker AFM294xg1
481.56 F		SGC31838		ESTs
481.66 P0.00		stSG48255		ESTs
483.18 P0.70		stSG47315		ESTs
483.58 P0.69				

FIG. 2 J

483.87 P0.83	stSG47707		ESTs
484.70 P0.93	stSG4060		ESTs
484.70 "	stSG62390	GTF2H3	general transcription factor IIH, polypepti..
484.70 "	stSG42994		ESTs
484.73 P0.74	stSG46906		ESTs
484.80 P0.91	A004X33		ESTs
484.91 P1.11	stSG3211		ESTs, Weakly similar to B-cell growth fact.
484.91 " *	sts-Z41302	BDKRB2	bradykinin receptor B2
484.91 " *	sts-Z41302	BDKRB2	bradykinin receptor B2
484.91 "	sts-T58259		ESTs, Weakly similar to B-cell growth fact..
484.91 "	stSG52737		ESTs
484.91 "	Bda03b10	UBC	ubiquitin C
484.91 "	stSG1936	CD36L1	CD36 antigen (collagen type I receptor, thr..
484.91 "	sts-AA017225		ESTs
484.91 P1.15	WI-12212		ESTs
485.12 P1.18	A004F14		ESTs
485.12 P1.18	SGC31333		ESTs
485.23 P1.21 *	WI-12482	BDKRB2	bradykinin receptor B2
485.23 P1.07	sts-AA017698		ESTs
485.33 P1.22	WI-12422		ESTs
485.51 P1.18	stSG42398		EST
485.64 P1.04	sts-AA009669		ESTs
486.07 P2.50	stSG21539		EST
486.13 P1.44	WI-12439		EST
486.34 P1.26	sts-W31616	UBC	ubiquitin C
486.38 P>3.00	stSG54715		ESTs
486.76 P1.64 *	WI-6921		H.sapiens mRNA for transmembrane protein r..
487.08 P>3.00	WI-13120		Human mRNA for KIAA0318 gene, partial cds
487.23 P>3.00	stSG54353		ESTs
487.23 P>3.00	stSG22703		EST
487.28 P>3.00	stSG62698		ESTs
487.28 P>3.00 *	sts-D60472		Homo sapiens silencing mediator of retinoic..
487.28 P>3.00	stSG36097		ESTs
487.33 P1.36	sts-U37146		Homo sapiens silencing mediator of retinoic..

FIG. 2 K

	487.50 P>3.00	stSG9807	ESTs
	487.50 P>3.00	stSG15434	ESTs
	487.60 P>3.00	stSG53251	ESTs
	487.60 P>3.00	stSG30525	SRRP129 SC35-interacting protein 1
	487.60 P>3.00	stSG46424	ESTs
	487.70 P>3.00	A007A34	ESTs
154.4	487.75 P2.00	AFMa197zd9	D12S1609 Microsatellite marker AFMa197zd9
	487.75 P2.02	A006D44	ESTs
	487.80 P>3.00	SGC30248	ESTs, Weakly similar to peptide/histidine ..
	488.07 P1.68	stSG6320	Homo sapiens clone 24617 mRNA sequence
	488.07 P1.66	stSG6305	Homo sapiens clone 24790 mRNA sequence
	488.07 P0.02	sts-N20163	Homo sapiens full length insert cDNA clone..
	488.12 P>3.00	stSG60065	ESTs
	488.12 P>3.00	stSG47723	ESTs
	488.44 P1.59	stSG3292	Homo sapiens clone 24790 mRNA sequence
	488.44 P0.03	WIAF-856	EST, Weakly similar to reverse transcripta..
	488.65 P1.54	WI-12272	Homo sapiens clone 24790 mRNA sequence
	488.65 P1.82	stSG52343	ESTs
	488.82 P1.80	stSG16387	CPN2 carboxypeptidase N, polypeptide 2, 83kD
	488.97 P1.80	SGC31722	ESTs
	489.07 P0.06	stSG54325	ESTs
	489.07 P>3.00	stSG63473	ESTs
160.9	♦ 489.07 P>3.00	AFMa123xel	D12S367 Microsatellite marker AFMa123xel
	489.14 P0.17	sts-T81113	ESTs
	489.29 P0.05	sts-AA025438	EST
	489.50 P1.37	***	Cdalad08 ESTs
	489.50 P0.05	WI-15018	ESTs
	489.50 P1.50	WI-18492	ESTs
	489.57 P1.48	WI-16177	Homo sapiens androgen receptor associated p..
	489.67 P1.44	stSG53307	ESTs
	489.71 P1.43	stSG53541	Homo sapiens hiwi mRNA, partial cds
	489.71 P1.43	stSG9546	Homo sapiens clone 24617 mRNA sequence
	489.89 P1.56	A006O16	ESTs
	490.10 P1.42	H64839	EST

FIG. 2 L

160.9 | 490.20 P0.05 stSG43910 SFRS8 splicing factor, arginine/serine-rich 8 (sup..
 ♦ 494.19 F AFM210zd6 D12S97 Microsatellite anchor marker AFM210zd6
 Next interval down

FIG. 2 M

Chromosome 12: D12S97-qTEL

The interval shown is on the GB4 map

See also: equivalent interval on G3 map

About This Interval

Top of interval: D12S97 (160.9 cM)

Bottom of interval: chr12_qTEL (169.1 cM)

Genetic size of bin: 8 cM

Physical size of bin: 172 cR3000

160.9	◆ 494.19 F	AFM210zd6	D12S97	Microsatellite anchor marker AFM210zd6
	498.06 P0.02	stSG53600		ESTs, Weakly similar to peptide/histidine ..
	499.71 P1.73	stSG3357		ESTs
165.7	499.71 "	AFM295ye9	D12S343	Microsatellite marker AFM295ye9

FIG. 2 N

499.71 P1.72	stSG30906		ESTs
499.71 "	stSG43796	MMP17	matrix metalloproteinase 17 (membrane-insert..
499.71 P1.71	sts-X89576	MMP17	matrix metalloproteinase 17 (membrane-insert..
499.92 P>3.00	stSG43769		ESTs
500.50 P1.88	stSG26056		ESTs
500.50 P2.33	SGC30786	KIAA0331	KIAA0331 gene product
500.61 P>3.00	stSG1702		Homo sapiens CAGH32 mRNA, partial cds
500.61 "	sts-N59820		ESTs
500.61 "	stSG42115	KIAA0331	KIAA0331 gene product
500.61 "	IB2452	ULK1	unc-51 (C. elegans)-like kinase 1
500.61 "	stSG52521		ESTs
500.61 "	FB9F8		ESTs, Weakly similar to PUTATIVE ATP-D..
500.61 "	AA252357		ESTs
500.61 "	stSG4720		Homo sapiens pseudouridine synthase 1 (PUS..
500.61 "	sts-AA001424	KIAA0331	KIAA0331 gene product
500.61 P>3.00	stSG31443		ESTs
500.61 P>3.00	stSG49622	ULK1	unc-51 (C. elegans)-like kinase 1
500.61 P2.49	stSG50559		ESTs
501.04 P1.10	stSG54842		ESTs
501.04 P2.03	A008Y05		Unknown
501.89 P2.18	stSG39493		Homo sapiens CAGH32 mRNA, partial cds
501.99 P>3.00	A002A44		Homo sapiens CAGH32 mRNA, partial cds
501.99 P>3.00	sts-H94865		EST
501.99 P>3.00	R50113		ESTs
502.10 P1.75	stSG48386		ESTs
502.10 "	stSG50504		ESTs
502.63 P0.06	A006R19		ESTs
502.63 P1.06	WIAF-864		ESTs
502.94 P1.51	stSG54813		ESTs, Weakly similar to peroxisome membran..
503.04 P1.42	A004B47		ESTs, Highly similar to DNA polymerase ep..
503.25 P0.28	stSG27206		ESTs
503.25 "	stSG40199		Homo sapiens mRNA for KIAA0692 protein, p..
503.46 P0.23	stSG8935		ESTs
504.68 P0.69	stSG4731		Homo sapiens mRNA for KIAA0692 protein, p..

FIG. 2 O

	504.68 "	A005Q05	ESTs
	504.68 "	stSG8142	ESTs, Highly similar to DNA polymerase ep..
169.1	506.39 F	AFM310vd5	D12S357 Microsatellite marker AFM310vd5
	506.39 P0.02	A005X42	Homo sapiens mRNA for KIAA0692 protein, p..
	508.59 P0.78	Cda18g06	ESTs
◆	508.59 P0.78 **	Cda1jf08	Homo sapiens mRNA for GCP170, complete cd..
	508.59 P0.54	R39599	ESTs
	509.98 P0.10	stSG31494	ZNF140 zinc finger protein 140 (clone pHZ-39)
	509.98 P0.16	stSG40222	ESTs
	509.98 "	sts-R55615	ESTs, Weakly similar to zinc finger protei..
	509.98 "	sts-R02295	ESTs
	509.98 "	sts-R81342	ESTs
	511.20 F	TEL-12q82	Marker TEL-12q82
	512.81 P0.20	sts-H65839	ESTs, Weakly similar to transformation-rel..
	514.97 P0.36	stSG46141	ESTs, Weakly similar to zinc finger protei..
	514.97 P0.90	stSG52998	ESTs
	519.10 P1.77	A008W21	CYP51 cytochrome P450, 51 (lanosterol 14-alpha-de..
	519.54 P0.81	stSG52716	ESTs

TELOMERE

FIG. 2 P

Chromosome 12: D12S79-D12S366

About This Interval

Top of interval: D12S79 (126.1 cM)

Bottom of interval: D12S366 (133.8 cM)

Genetic size of bin: 8 cM

Physical size of bin: 63 cR₁₀₀₀₀

FIG. 3 A

		▲ Next interval up
126.1	◆ 4955 F	AFM067yc5 D12S79 Microsatellite anchor marker AFM067yc5 (SHGC-692)
129.2	4988 F	AFMa067wel D12S1718 Microsatellite marker AFMa067wel (SHGC-20..)
	◆ 5007 F *	SHGC-2657 Homo sapiens clone 23714 mRNA sequence
	◆ 5014 F *	SHGC-2653 Homo sapiens clone 23714 mRNA sequence
133.8	◆ 5018 F	AFM351tb9 D12S366 Microsatellite anchor marker AFM351tb9 (SHGC-2155)
		▼ Next interval down

FIG. 3 B

Chromosome 12: D12S366-D12S340

The interval shown is on the G3 map

See also: equivalent interval on GB4 map

About This Interval

Top of interval: D12S366 (133.8 cM)

Bottom of interval: D12S340 (147.5 cM)

Genetic size of bin: 14 cM

Physical size of bin: 261 cR₁₀₀₀₀

FIG. 3 C

			↑ Next interval up
133.8	◆ 5018 F	AFM351tb9	D12S366 Microsatellite anchor marker AFM351tb9 (SHGC-2155)
135.1	5047 F	AFMa225xe5	D12S1619 Microsatellite marker AFMa225xe5 (SHGC-20..)
	◆ 5085 F	SHGC-33949	KIAA0262 KIAA0262 gene product
	◆ 5089 F	SHGC-10488	KIAA0152 KIAA0152 gene product
	◆ 5093 F	SHGC-10346	Homo sapiens HSPC004 mRNA, complete cds
	◆ 5098 F	SHGC-13898	Homo sapiens HSPC004 mRNA, complete cds
137.5	◆ 5163 F	AFM220zf4	D12S321 Microsatellite marker AFM220zf4 (SHGC-212..)
	5199 F	SHGC-11702	ESTs
147.5	◆ 5279 F	AFM294xg1	D12S340 Microsatellite anchor marker AFM294xg1 (SHGC-2134)
		↓ Next interval down	

FIG. 3 D

Chromosome 12: D12S340-D12S97

Error Flags

- * Minor positional discrepancy
- ** Major positional discrepancy
- *** Chromosome assignment discrepancy

The interval shown is on the G3 map

See also: equivalent interval on GB4 map

About This Interval

Top of interval: D12S340 (147.5 cM)

Bottom of interval: D12S97 (160.9 cM)

Genetic size of bin: 13 cM

Physical size of bin: 151 cR₁₀₀₀₀

FIG. 3 E

Next interval up					
147.5	◆ 5279 F	AFM294xg1	D12S340	Microsatellite anchor marker AFM294xg1 (SHGC-2134)	
148.3	5288 F	AFM234tb10	D12S324	Microsatellite marker AFM234tb10 (SHGC-21..)	
154.4	5316 F	AFMb350zb5	D12S1679	Microsatellite marker AFMb350zb5 (SHGC-20..)	
149.5	5358 F	AFM198wh2	D12S307	Microsatellite marker AFM198wh2 (SHGC-211..)	
157.2	5393 F	AFMb301we5	D12S1659	Microsatellite marker AFMb301we5 (SHGC-20..)	
160.9	◆ 5415 F	AFMa123xe1	D12S367	Microsatellite marker AFMa123xe1 (SHGC-21..)	
160.9	◆ 5430 F	AFM210zd6	D12S97	Microsatellite anchor marker AFM210zd6 (SHGC-372)	

FIG. 3 F

Chromosome 12: D12S97-qTEL

The interval shown is on the G3 map

See also: equivalent interval on GB4 map

About This Interval

Top of interval: D12S97 (160.9 cM)

Bottom of interval: chr12_qTEL (169.1 cM)

Genetic size of bin: 8 cM

Physical size of bin: -4429 cR₁₀₀₀₀

FIG. 3 G

FIG. 4

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 5D

FIG. 5E

FIG. 5F

FIG. 5G

FIG. 5H

FIG. 5I

Gene 214

- 1. Lymphoblastoid cell line
- 2. Lung
- 3. Trachea

Gene 436

- 1. Brain
- 2. Heart
- 3. Skeletal Muscle
- 4. Colon
- 5. Thymus
- 6. Spleen
- 7. Kidney
- 8. Liver
- 9. Small Intestine
- 10. Placenta
- 11. Lung
- 12. Leukocytes

FIG. 6 A

Gene 454

Gene 515

FIG. 6 B

Gene 543

Gene 548

FIG. 6 C

Gene 550

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

Gene 561

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

FIG. 6 D

Gene 564

Gene 570

FIG. 6 E

Gene 576

Gene 577

FIG. 6 F

Gene 578

Gene 579

FIG. 6 G

Gene 580

Gene 581

FIG. 6 H

Gene 583

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

Gene 589

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

FIG. 6 I

Gene 590

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

Gene 592

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

FIG. 6 J

Gene 594

Gene 595

FIG. 6 K

Gene 596

Gene 604

FIG. 6 L

Gene 605

Gene 606

FIG. 6 M

Gene 608

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

Gene 611

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

FIG. 6 N

Gene 615

Gene 617

FIG. 6 O

Gene 618

Gene 619

FIG. 6 P

Gene 621

Gene 693

FIG. 6 Q

Gene 698

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

Gene 699

1. Brain
2. Heart
3. Skeletal Muscle
4. Colon
5. Thymus
6. Spleen
7. Kidney
8. Liver
9. Small Intestine
10. Placenta
11. Lung
12. Leukocytes

FIG. 6 R

Gene 702

Gene 722

FIG. 6 S

Gene 751

Gene 756

FIG. 6 T

Gene 757

Gene 848

FIG. 6 U

10	30	50
GCTTGCTGTGCCCTGTCAGGAAGAGTAGAGCTCTGGTCCAGCTCCGCGCAGGGAGGGAG		
70	90	110
GCTGTCACCATGCCGGCCTGCTGCAGCTGCAGTGATGTTCCAGTATGAGACGAACAAA MetProAlaCysCysSerCysSerAspValPheGlnTyrGluThrAsnLys		
130	150	170
GTCACTCGGATCCAGAGCATGAATTATGGCACCATTAAGTGGTTCTTCCACGTGATCATC ValThrArgIleGlnSerMetAsnTyrGlyThrIleLysTrpPhePheHisValIleIle		
190	210	230
TTTCCTACGTTGCTTGCTCTGGTGAGTGACAAGCTGTACCAGCGAAAGAGCCTGTC PheSerTyrValCysPheAlaLeuValSerAspLysLeuTyrGlnArgLysGluProVal		
250	270	290
ATCAGTTCTGTGCACACCAAGGTGAAGGGGATAGCAGAGGTGAAAGAGGGAGATCG <u>T</u> GGAG IleSerSerValHisThrLysValLysGlyIleAlaGluValLysGluGluIle <u>Val</u> Glu		
310	330	350
AATGGAGTGAAGAAGTTGGTGCACAGTGCTTGACACCGCAGACTACACCTCCCTTG AsnGlyValLysLysLeuValHisSerValPheAspThrAlaAspTyrThrPheProLeu		
370	390	410
CAGGGAACTCTTCTCGTGTGACAAACTTCTCAAAACAGAAGGCCAGAGCAGCGG GlnGlyAsnSerPhePheValMetThrAsnPheLeuLysThrGluGlyGlnGluGlnArg		
430	450	470
TTGTGTCCCAGTATCCCACCCGCAGGACGCTCTGTTCCCTCTGACCGAGGTTGTAAAAAG LeuCysProGluTyrProThrArgArgThrLeuCysSerSerAspArgGlyCysLysLys		
490	510	530
GGATGGATGGACCCGCAGAGCAAAGGAATTCAAGACCGGAAGGTGTAGTGC <u>A</u> TGAAGGG GlyTrpMetAspProGlnSerLysGlyIleGlnThr <u>Gly</u> ArgCysValVal <u>His</u> GluGly		
550	570	590

FIG. 7 A

AACCAGAAGACCTGTGAAGTCTCTGCCTGGT~~GCCC~~CATCGAGGCAGTGGAAAGAGGCC
AsnGlnLysThrCysGluValSerAlaTrpCysProIleGluAlaValGluGluAlaPro

610

630

650

CGGCCTGCTCTTGAACAGTGCCGAAAACTCACTGTGCTCATCAAGAACAAATATCGAC
ArgProAlaLeuLeuAsnSerAlaGluAsnPheThrValLeuIleLysAsnAsnIleAsp

670

690

710

TTCCCCGGCCACAACTACACCACGAGAAACATCCTGCCAGGTTAACATCACTTGTACC
PheProGlyHisAsnTyrThrArgAsnIleLeuProGlyLeuAsnIleThrCysThr

730

750

770

TTCCACAAGACTCAGAATCCACAGTGTCCCATTTCGACTAGGAGACATCTCCGAGAA
PheHisLysThrGlnAsnProGlnCysProIlePheArgLeuGlyAspIlePheArgGlu

790

810

830

ACAGGCGATAATTTTCAGATGTGGCAATTCAGGGCGGAATAATGGGCATTGAGATCTAC
ThrGlyAspAsnPheSerAspValAlaIleGlnGlyGlyIleMetGlyIleGluIleTyr

850

870

890

TGGGACTGCAACCTAGACCGGTTGGTCCATCACTGCCGTCCAAATACAGTTCCGT
TrpAspCysAsnLeuAspArgTrpPheHisHisCysArgProLysTyrSerPheArgArg

910

930

950

CTTGACGACAAGACCACCAACGTGTCTTGCTACAACTTCAGATACGCCAAG
LeuAspAspLysThrThrAsnValSerLeuTyrProGlyTyrAsnPheArgTyrAlaLys

970

990

1010

TACTACAAGGAAAACAATGTTGAGAAACGGACTCTGATAAAAGTCTCGGGATCCGTTT
TyrTyrLysGluAsnAsnValGluLysArgThrLeuIleLysValPheGlyIleArgPhe

1030

1050

1070

GACATCCTGGTTTGGCACCCGGAGGAAAATTGACATTATCCAGCTGGTTGTACATC
AspIleLeuValPheGlyThrGlyGlyLysPheAspIleIleGlnLeuValValTyrIle

1090

1110

1130

GGCTAACCCCTCTCCTACTTCGGTCTGGCCACTGTGTTCATCGACTTCCTCATCGACACT
GlySerThrLeuSerTyrPheGlyLeuAlaThrValPheIleAspPheLeuIleAspThr

FIG. 7 B

1150

1170

1190

TACTCCAGTAAC TGCTGCGCTCCCATATTATCCCTGGTGC
AAGTGCTGTCAGCCCTGT
TyrSerSerAsnCysCysArgSerHisIleTyrProTrpCysLysCysCysGlnProCys

1210

1230

1250

GTGGTCAACGAATACTACTACAGGAAGAAGTGC
GAGTCCATTGTGGAGCCAAAGCCGACA
ValValAsnGluTyrTyrArgLysLysCysGluSerIleValGluProLysProThr

1270

1290

1310

TTAAAGTATGTGCTTGTGGATGAATCCCACATTAGGATGGTGAACCAGCAGCTACTA
LeuLysTyrValSerPheValAspGluSerHisIleArgMetValAsnGlnGlnLeuLeu

1330

1350

1370

GGGAGAACGTTGCAAGATGTCAAGGGCCAAGAAGTCCCAAGACCTGCGATGGACTTCACA
GlyArgSerLeuGlnAspValLysGlyGlnGluValProArgProAlaMetAspPheThr

1390

1410

1430

GATTGTCAGGCTGCCCTGGCCCTCCATGACACACCCCCGATTCTGGACAACCAGAG
AspLeuSerArgLeuProLeuAlaLeuHisAspThrProProIleProGlyGlnProGlu

1450

1470

1490

GAGATACAGCTGCTTAGAAAGGAGGCGACTCCTAGATCCAGGGATAGCCCCGTCTGGTGC
GluIleGlnLeuLeuArgLysGluAlaThrProArgSerArgAspSerProValTrpCys

1510

1530

1550

CAGTGTGGAAGATGCCTCCCATCTCAACTCCCTGAGAGGCCACAGGTGCCTGGAGGAGCTG
GlnCysGlyArgCysLeuProSerGlnLeuProGluSerHisArgCysLeuGluLeu

1570

1590

1610

TGCTGCCGGAAAAGCCGGGGCCTGCATCACCACTCAGAGCTGTTAGGAAGCTGGTC
CysCysArgLysLysProGlyAlaCysIleThrSerGluLeuPheArgLysLeuVal

1630

1650

1670

CTGTCCAGACACGTCTGCAGTTCCCTCTGCTCTACCAGGAGCCCTTGCTGGCGCTGGAT
LeuSerArgHisValLeuGlnPheLeuLeuTyrGlnGluProLeuLeuAlaLeuAsp

1690

1710

1730

FIG. 7 C

GTGGATTCCACCAACAGCCGGCTGCCGC ACT GTGCC TACAGGTGCTACGCCACCTGGCGC
ValAspSerThrAsnSerArgLeuArgHisCysAlaTyrArgCysTyrAlaThrTrpArg

1750

1770

1790

TTCGGCTCCCAGGACATGGCTGACTTGCCATCCTGCCAGCTGCCGCTGGAGGATC
PheGlySerGlnAspMetAlaAspPheAlaIleLeuProSerCysCysArgTrpArgIle

1810

1830

1850

CGGAAAGAGTTCCAAAGAGTGAAGGGCAGTACAGTGGCTTCAAGAGTCCTTACTGAAGC
ArgLysGluPheProLysSerGluGlyGlnTyrSerGlyPheLysSerProTyrEnd

1870

1890

1910

CAGGCACC GTGGCTCACGTCTGTAATCCCAGCGCTTGGAGGCCGAGGCAGGATCA

1930

1950

1970

CCTGAGATCGGGAGTTGGAGACCCGCCTGGCTAACAAAGGCAGAACCTGTCTGTACTAAA

1990

2010

2030

AATA CAAAAAATCAGCCAGACATGGTGGCATGCACCTGCAATCCCAGCTACTCGGGAGGCT

2050

2070

2090

GAGGCACAAGAATCACTGAACCCGGGAGGCAGAGGTTGTAGTGAGCCCAGATTGTGCCA

2110

2130

2150

CTGCTCTCCAGCCTGGGAGGCACAGCAAACTGTCCCCAAAAAAAAAGAGTCCTTAC

2170

2190

2210

CAATAGCAGGGCTGCAGTAGCCATGTTAACATGACATTACAGCAACTTGAACTTCAC

2230

2250

2270

CTGCAAAGCTCTGTGGCCACATTTCAGCCAAAGGGAAATATGCTTCATCTTCTGTTGC

2290

2310

2330

TCTCTGTGTCTGAGAGCAAAGTGACCTGGTAAACAAACCAGAAATCCCTCTACATGGACT

2350

2370

2390

FIG. 7 D

CAGAGAAAAGAGATTGAGATGTAAGTCTCAACTCTGTCCCCAGGAAGTTGTGACCC
2410 2430 2450
GGCCTCTCACCTCTGTGCCTCTGTCTCCTTGTTGCCAACTACTATCTCAGAGATATTGT
2470 2490 2510
GAGGACAAATTGAGACAGTGCACATGAACGTCTTTAATGTGTAAAGATCTACATGAAT
2530 2550 2570
GCAAAACATTCATTATGAGGTAGACTAGGATAATGTCCAACAAAAACAAACCCTTT
2590 2610 2630
CATCCTGGCTGGAGAACATGGAGAACTAAAGGTGGCCACAAATTCTTGACACTCAAGTC
2650 2670 2690
CCCCAAGACCTAAGGGTTTATCTCCTCCCTTGAATATGGGTGGCTCTGATTGCTTAT
2710 2730 2750
CCAAAAGTGGAAAGTGACATTGTGTCAGTTCACTGATCTTAAGAGGCTGACAGCTT
2770 2790 2810
CTACTTGCTGTCCCTTGGAACTCTTGCTATCGGGAGGCCAGGCCATTAAAAGTCTG
2830 2850 2870
CCTATCCTGGCCAGGTGTGGCTCACACCTGTAATCCCAGCACTTGGGAGACCAAGG
2890 2910 2930
CGGGCGGATCACTAAAGTCAGGAGTCCAAGACCAGACTGCCAACATGGTGAACCGTA
2950 2970 2990
TCTCTAATAAAAATACAAAAATTAGCTGGCATGGTGGCAGCTGTAGTCAGCTAT
3010 3030 3050
CAAGAGGCTGAGACAGGAGAAACACTTGAACCTGGAGGTGGAGGTTGCATTGAGCTGAG

FIG. 7 E

3070 3090 3110
ATCGTGCCACTGCACTCCAGGCTGGGTGACAGAGCGAGACTCCATCTCAAAAAAAAAAA

3130 3150 3170
AAAAGAAAAAAATGTCTGCCTATCCTGAGACTGCCCTGCTGTGAGGAAGCCCAAGCA

3190 3210 3230
GTCACGTGGACAGTGCTGACCAGCCCCAGCTTCAAGCCATCCAAGCCCAGTCACCAAA

3250 3270 3290
CATGAGAGAGAAGAACCTTCAGGTGATTCTGGACTCCACTAACATATGACTGATAACCGC

3310 3330 3350
ATGATACATCCCAAGTGAGAACTGCCCTAAATCCAGAAAACCACATTGCTATCTTAAG

3370 3390 3410
TCCCTAACGTTGGGCTTATTGTTCCACAGAACAGGTAACGGAACAGAGGGCAAGCC

3430 3450 3470
TGATGAATGGCACACAGACTCAGCCCATACTTCCCTGGTTCTAATGTTCTCAGGGAGC

3490 3510 3530
CCGGACCAACCCTGGAGCCTCAGGAACCTAGGTTCCACTGGACAGTTCTAGAAGGGCT

3550 3570 3590
ATAGACCAAATCAGGTAACTCACCAAGACCAGCCTGGAATCTATCAAATCTAACTGCTGA

3610 3630 3650
GCTACCCAGTGCATTCCGATCCTCATCACATTCTTGAACGGGCCGGCGTGGTGGC

3670 3690 3710
TCACGCCCTGTAATCCCAGCCTTGGGAGGCTGAGGCGGGTGGATCACCTGAGGTCAAGGA

FIG. 7 F

3730

3750

3770

GTTCGAGACCAGCCTGGCCAACATGGTGAGACCCCTGTCTACTAAGAATACAAAAATT

3790

3810

3830

GGTGGGGTGGCGGTGGCGCCTGTAATCCCAGCTACTGGGAGGCTGAGGCAGGAGAAC

3850

3870

3890

TCTTGAACCTGGAAGGTGGAGGTTGCAATAAGCCGAGATAGTGCCACTGCAC

3910

3930

3950

AGATAACAGAGCAAGACTCTGTCTAAAAACAACAACAACAACAAATTCTAT

3970

3990

4010

GACTGAAAGTGA

4030

4050

4070

ACTAAAAAGCTGGCTTATGCCATTAACACTCTGTACTTTGCAGCCAAT

4090

4110

4130

CAGAACTGACGCAGTCTGGGTGCTAGCTGCTCAAAAGCAACCCACACCACACTTTACC

4150

4170

4190

CTTCAGGATTCTCTTCTGGTTGGTCACTAGAGTTGGCTATTATCTGTTCTAAC

4210

4230

4250

AATAGCTATTTATCGAATAGTTAGAGACCACTATTAAATATTGTGACTGATGAAGGAT

4270

4290

4310

CTGTGAATTTTATATGTTCTAAGAGTTACCATTGATACCTTTAAAAACCAGC

4330

4350

4370

AGCTTTCTACTATATTGAAAACAGCATGAATAAAACCATTGATACAGGGTTT

4390

4410

4430

FIG. 7 G

TATTTGGCTTAAACTCAGGAACCAAGTTAATTATGCCAGATTGAACTTGATTTACT

4450

4470

4490

ACCTTTCAAAGATATTTAAAAAGTGGATTACTACATATGATTCTTGGAGCTTACAT

4510

4530

4550

TTCTTACTTCACGAATTCTATGTCACTGTTACAAGTTCCATTCTGATGGCTCTGGGC

4570

4590

4610

CTTTGTACCTTGTGTTGGTGCCTTATTCTAGTATGTTCTATCACCTTAATGAGGCC

4630

4650

4670

GCAGATGGAGTCAGAATGTGAAATTACAAATAATCACTGGATCCATCTACTGTTCCAT

4690

4710

4730

CACCTCCCCACTGATGCTCTGGCGAGAGAGTGATGTGTCACTCAACTGTGTGTAATA

4750

4770

4790

TGTCAGACACGTCCTACAATAAACAGGCGTCATATTGTATTATTTAGTTACTGTAGA

4810

4830

4850

AAATAATGTACCGCCAAAGGTGATGAGAGTCACGTTGTAGGATCTGTTCTTATAC

4870

4890

4910

TTAAAGACAGACTTCTGCTACGGTAATTGCCAGTATTGATGGCTCCTTGTGTCAGA

4930

4950

4970

AGAGAAGGGATCTGCTTCTTGGCTGATTCACATAGCATTGTAATAGACATGCATT

4990

5010

5030

TCTCTTCTAAAGGGAGTAACCTTAAACCCTCCTGATTTAGCCTGGCAATGTAAG

5050

5070

TGTCCTTAATGTGACTGTTGATAATTAAAAAGGTATATAATT

FIG. 7 H

8
FIG.

RT/PCR of Gene561.nt1 and Gene561.nt2

10 30 50
TCGAAACAGCTGCCGGCTGGTCCC GGCGAGGCCGGCGCAGGGAGGGAGGAGCCGCCGG

70 90 110
GCTGTGGGGCGCCGCGAGCTGGGCCGGCTCGGTGTGCCCGCGCCGCCAGCCCCGCTCCA

130 150 170
GACGCGCCACCTGGCGCTCCAAGAACAGAGGCCGAAGTTGCCGGCCGTGAGTTGGAGC

190 210 230
TCGCGCCGGGCCGCTGCGCCGGAGCTCCGGGGCTTCCCTCGCTTCCC GGATTGTTG

250 270 290
CAAACTTGCTGCTCTCCGCGCGGCCCAACTCGGCGGACGCCGGCGGGAGAGCCG

310 330 350
AGCCGGGGCGCTGTGCGCAGCGCTCGGCCAGGCCGGGGCATGGCGGGGGCGA

370 390 410
GCAGGGGTGGAGAGCCGGGCCAGCAGCACGCCGTGCCGGAGCGGGCGCTGAGGGG

430 450 470
CGCGGAGCTCCCCCGAGGACACGTCCAACGCCAGCATGCAGGCCGGCCCCGCCTG
MetGlnArgProGlyProArgLeu

490 510 530
TGGCTGGT CCTGCAGGTGATGGCTCGTGCGCCGCCATCAGCTCCATGGACATGGAGCGC
TrpLeuValLeuGinValMetGlySerCysAlaAlaIleSerSerMetAspMetGluArg

550 570 590
CCGGGCGACGGCAAATGCCAGCCATCGAGATCCCGATGTGCAAGGACATCGGCTACAAC
ProGlyAspGlyLysCysGlnProIleGluIleProMetCysLysAspIleGlyTyrAsn

610 630 650

FIG. 9 A

ATGACTCGTATGCCAACCTGATGGGCCACGAGAACCGCGAGGCAGCCATCCAGTTG
MetThrArgMetProAsnLeuMetGlyHisGluAsnGlnArgGluAlaAlaIleGlnLeu

670

690

710

CACGAGTTCGCGCCGCTGGTGGAGTACGGCTGCCACGGCACCTCCGCTTCTCCTGTGC
HisGluPheAlaProLeuValGluTyrGlyCysHisGlyHisLeuArgPhePheLeuCys

730

750

770

TCGCTGTACGCGCCGATGTGCACCGAGCAGGTCTCTACCCCCATCCCCGCCTGCCGGGTC
SerLeuTyrAlaProMetCysThrGluGlnValSerThrProIleProAlaCysArgVal

790

810

830

ATGTGCGAGCAGGCCGGCTCAAGTGTCTCCCGATTATGGAGCAGTTCAACTCAAGTGG
MetCysGluGlnAlaArgLeuLysCysSerProIleMetGluGlnPheAsnPheLysTrp

850

870

890

CCCGACTCCCTGGACTGCCGGAAACTCCCCAACAAAGAACGACCCAACTACCTGTGCATG
ProAspSerLeuAspCysArgLysLeuProAsnLysAsnAspProAsnTyrLeuCysMet

910

930

950

GAGGCGCCAACAACGGCTCGGACGAGCCCACCCGGGGCTGGGCCTGTTCCGCCGCTG
GluAlaProAsnAsnGlySerAspGluProThrArgGlySerGlyLeuPheProProLeu

970

990

1010

TTCCGGCCGCAGCGGCCAACAGCGCGCAGGAGCACCCGCTGAAGGACGGGGCCCCGGG
PheArgProGlnArgProHisSerAlaGlnGluHisProLeuLysAspGlyGlyProGly

1030

1050

1070

CGCGGGCTGCGACAACCCGGCAAGTTCCACCACGTGGAGAAGAGCGCGTGTGCGCG
ArgGlyGlyCysAspAsnProGlyLysPheHisHisValGluLysSerAlaSerCysAla

1090

1110

1130

CCGCTCTGCACGCCGGCTGGACGTGTACTGGAGCCGCGAGGACAAGCGCTTCGCAGTG
ProLeuCysThrProGlyValAspValTyrTrpSerArgGluAspLysArgPheAlaVal

1150

1170

1190

FIG. 9 B

GTCTGGCTGGCCATCTGGCGGTGCTGTGCTTCTTCAGCGCCTCACCGTGCTCAC
ValTrpLeuAlaIleTrpAlaValLeuCysPhePheSerSerAlaPheThrValLeuThr

1210

1230

1250

TTCCCTCATCGACCCGGCCCGCTTCCGCTACCCCGAGCGCCCCATCATCTCCTCTCCATG
PheLeuIleAspProAlaArgPheArgTyrProGluArgProIleIlePheLeuSerMet

1270

1290

1310

TGCTACTGCGTCTACTCCGTGGGCTACCTCATCCGCCTCTCGCCGGCGCCGAGAGCATIC
CysTyrCysValTyrSerValGlyTyrLeuIleArgLeuPheAlaGlyAlaGluSerIle

1330

1350

1370

GCCTGCGACCGGGACAGCGGCCAGCTCTATGTCATCCAGGAGGGACTGGAGAGCACCGGC
AlaCysAspArgAspSerGlyGlnLeuTyrValIleGlnGluGlyLeuGluSerThrGly

1390

1410

1430

TGCACGCTGGTCTTCCTGGCCTACTACTTCGGCATGGCCAGCTCGCTGTGGTGGTG
CysThrLeuValPheLeuValLeuTyrTyrPheGlyMetAlaSerSerLeuTrpTrpVal

1450

1470

1490

GTCCTCACGCTCACCTGGTTCTGGCCGCCGGCAAGAAGTGGGCCACGAGGCCATCGAA
ValLeuThrLeuThrTrpPheLeuAlaAlaGlyLysLysTrpGlyHisGluAlaIleGlu

1510

1530

1550

GCCAACAGCAGCTACTCCACCTGGCAGCCTGGCCATCCGGCGGTGAAGACCATCCTG
AlaAsnSerSerTyrPheHisLeuAlaAlaTrpAlaIleProAlaValLysThrIleLeu

1570

1590

1610

ATCCTGGTCATGCGCAGGGTGGCGGGGGACGAGCTCACCGGGGTCTGCTACGTGGCAGC
IleLeuValMetArgArgValAlaGlyAspGluLeuThrGlyValCysTyrValGlySer

1630

1650

1670

ATGGACGTCAACGCGCTCACCGGCTTCGTGCTATTCCCCTGGCCTGCTACCTGGTCATC
MetAspValAsnAlaLeuThrGlyPheValLeuIleProLeuAlaCysTyrLeuValIle

1690

1710

1730

FIG. 9 C

GGCACGTCTTCATCCTCTCGGGCTTGTGGCCCTGTTCCACATCCGGAGGGTGTGAAG
 GlyThrSerPheIleLeuSerGlyPheValAlaLeuPheHisIleArgArgValMetLys

1750	1770	1790
ACGGGCGGCGAGAACACGGACAAGCTGGAGAAGCTCATGGTGCATCGGGCTCTCT		
ThrGlyGlyGluAsnThrAspLysLeuGluLysLeuMetValArgIleGlyLeuPheSer		
1810	1830	1850
GTGCTGTACACCGTGCCGGCACCTGTGTGATGCCCTGCTACTTTACGAACGCCCTAAC		
ValLeuTyrThrValProAlaThrCysValIleAlaCysTyrPheTyrGluArgLeuAsn		
1870	1890	1910
ATGGATTACTGGAAGATCCTGGCGGCGCAGCACAAAGTGCAAAATGAACAAACCAGACTAAA		
MetAspTyrTrpLysIleLeuAlaAlaGlnHisLysCysLysMetAsnAsnGlnThrLys		
1930	1950	1970
ACGCTGGACTGCCTGATGGCCGCCTCCATCCCCGCCGTGGAGATCTCATGGTGAAGATC		
ThrLeuAspCysLeuMetAlaAlaSerIleProAlaValGluIlePheMetValLysIle		
1990	2010	2030
TTTATGCTGCTGGTGGTGGGGATCACCAAGCGGGATGTGGATTGGACCTCCAAGACTCTG		
PheMetLeuLeuValValGlyIleThrSerGlyMetTrpIleTrpThrSerLysThrLeu		
2050	2070	2090
CAGTCCTGGCAGCAGGTGTGCAGCCGTAGGTTAAAGAAGAAGAGCCGGAGAAAACCGGCC		
GlnSerTrpGlnGlnValCysSerArgArgLeuLysLysSerArgArgLysProAla		
2110	2130	2150
AGCGTGATCACCAAGCGGTGGGATTACAAAAAGCCCAGCATCCCCAGAAAACCTACCCAC		
SerValIleThrSerGlyGlyIleTyrLysLysAlaGlnHisProGlnLysThrHisHis		
2170	2190	2210
GGGAAATATGAGATCCCTGCCAGTCGCCACCTGCGTGTGAACAGGGCTGGAGGGAGG		
GlyLysTyrGluIleProAlaGlnSerProThrCysValEnd		
2230	2250	2270

FIG. 9 D

GCACAGGGGCGCCCGGAGCTAAGATGTGGTCTTTCTTGGTTGTAAAACTTCT
2290 2310 2330
TCTTCTTTTTTTTATAAAAGCAAAAGAGAAATACATAAAAAGTGTACCCCTG
2350 2370 2390
AAATTCAAGGATGCTGTGATACACTGAAAGGAAAAATGTACTAAAGGGTTGTTGTT
2410 2430 2450
TTGGTTTCCAGCGAAGGGAAGCTCCTCCAGTGAAGTAGCCTCTGTGTAACAAATTGTT
2470 2490 2510
GGTAAAGTAGTTGATTCAGCCCTCAGAAGAAAACCTTTGTTAGAGCCCTCCSTAAATAT
2530 2550 2570
ACATCTGTGTATTCAGTTGGCTTGCTACCCATTACAAATAAGAGGACAGATAACTGC
2590 2610 2630
TTTGCAAATTCAAGAGCCTCCCTGGGTTAACAAATGAGCCATCCCCAGGGCCCACCCCC
2650 2670 2690
AGGAAGGCCACAGTGCTGGCGGCATCCCTGCAGAGGAAAGACAGGACCCGGGGCCGCC
2710 2730 2750
TCACACCCCCAGTGGATTGGAGTTGCTTAAATAGACTCCGGCCTCACCAATAGTCTCT
2770 2790 2810
CTGCAAGACAGAAACCTCCATCAAACCTCACATTGTGAACCTAAACGATGTGCAATACA
2830 2850 2870
TTTTTTCTTTCTTGAAAATAAAAGAGAAACAAGTATTTGCTATATATAAGACAG
2890 2910 2930

FIG. 9 E

ACAAAAGAAATCTCCTAACAAAAGAACTAAGAGGCCAGCCCTCAGAAACCCTCAGTGC
2950 2970 2990
TACATTTGTGGCTTTAATGGAAACCAAGCCAATGTTAGACGTTGGACTGATTG
3010 3030 3050
TGGAAAGGAGGGGGGAAGAGGGAGAAGGATCATTCAAAAGTTACCCAAAGGGCTTATTGA
3070 3090 3110
CTCTTCTATTGTTAACAAATGATTCCACAAACAGATCAGGAAGCACTAGGTTGGCAG
3130 3150 3170
AGACACTTGCTAGTGTATTCTCTTCACAGTGCAGGAAAGAGTGGTTCTGCGTGTGT
3190 3210 3230
ATATTGTAATATATGATATTTCATGCTCCACTATTTATTAAAAATAAAATATGTTC
3250
TTTAGTTGCTGCT

FIG. 9 F

Location of SNPs/Amino Acid Changes/Domain within the Transcript of Gene 454

FIG. 10

Chr. 12 Case(Asthma)/Control: Alleles

FIG. 11

Chr. 12 Case(Asthma)/Control: Alleles

US

UK

Δ	gene 454
\otimes	gene 436
\blacksquare	gene 515
\circ	gene 570
\oplus	gene 757
\times	gene 561
\diamond	gene 696
\blacksquare	gene 702
\triangledown	gene 214
\blacksquare	gene 722

FIG. 12

Chr. 12 Case(BHR (PC₂₀ <= 16 mg/ml) & Asthma)/Control: Alleles

FIG. 13

Chr. 12 Case(BHR (PC₂₀ <= 16 mg/ml) & Asthma)/Control: Alleles

FIG. 14

Chr. 12 Case(Total IgE & Asthma)/Control: Alleles

FIG. 15

Chr. 12 Case(Total IgE & Asthma)/Control: Alleles

US

UK

Δ gene 454	O gene 570	\blacktriangle gene 561	\blacksquare gene 702
\square gene 436	+	\times gene 581	\triangledown gene 214
\blacksquare gene 515	\diamond	\oplus gene 698	\oplus gene 722

FIG. 16

Chr. 12 Case(Specific IgE & Asthma)/Control: Alleles

FIG. 17

Chr. 12 Case(Specific IgE & Asthma)/Control: Alleles

FIG. 18

Chr. 12 Case(Asthma)/Control: Haplotype

FIG. 19

Chr. 12 Case(Asthma)/Control: Haplotype

FIG. 20

Chr. 12 Case(BHR (PC20 <= 16 mg/ml) & Asthma)/Control: Haplotype

FIG. 21

Chr. 12 Case(BHR (PC₂₀ <= 16 mg/ml) & Asthma)/Control: Haplotype

FIG. 22

FIG. 23

Chr. 12 Case(Total IgE & Asthma)/Control: Haplotype

FIG. 24

Chr. 12 Case(Specific IgE & Asthma)/Control: Haplotype

FIG. 25

Chr. 12 Case(Specific IgE & Asthma)/Control: Haplotype

FIG. 26

10 30 50
CTTGGAAATGACCCGCCACACCTGAAGCCTGCAGGTGCTGAGGCCACATTGATCAGACC

70 90 110
CAAGCTTGAGACCGCTGGGAAATTCCCACTTCCCTCCTGAGACCAGGAACTCAG

130 150 170
CAGAGAAACTTGTGGAAAATGAACGTGAAGGATGCCACCCAGGGAGAGTATCTCCTGAGA

190 210 230
TCCCCATCATGCAGGCCTTCCCACAAGGGCCGGCAGCATGACAAGGTGAAGGCAGAGTAT

250 270 290
GTGCATCTCAACCAYCCGCTCACCCCTCGTGACCAGAGAGCGCGATTGGCCGTGAAGGAG

310 330 350
AAACACCAGCTCCAAGCCAAGCTGGAGAACCTAGAACAGGTCTGAAGCATATGCGAGAG
MetArgGlu

370 390 410
GCGGCTGAACGGCGGCAGCAGCTGCAGTTGGAGCATGACCAGGCCCTGGCTGTTCTCAGT
AlaAlaGluArgArgGlnGlnLeuGlnLeuGluHisAspGlnAlaLeuAlaValLeuSer

430 450 470
GCCAAGCAGCAGGAAATTGACCTTCTGCAGAAGTCCAAGGTTGAGAGAGCTGGAAGAGAAA
AlaLysGlnGlnGluIleAspLeuLeuGlnLysSerLysValArgGluLeuGluGluLys

490 510 530
TGCCGGACTCAAAGTGAGCAGTTCAACCTGCTGTCCGGGACCTGGAGAAGTTCCGGCAG
CysArgThrGlnSerGluGlnPheAsnLeuLeuSerArgAspLeuGluLysPheArgGln

550 570 590
CACGCTGGCAAGATTGACCTGCTGGGTGGCAGCGCGGTGGCCCCCTGGACATCTCCACG
HisAlaGlyLysIleAspLeuLeuGlyGlySerAlaValAlaProLeuAspIleSerThr

FIG. 27 A

610 630 650
GCC CCCCCAGCAAGCCTTCCCACAGTTCATGAATGGCCTAGCCACCTCCCTCGGCAAAGGT
Ala Pro Ser Lys Pro Phe Pro Gln Phe Met Asn Gly Leu Ala Thr Ser Leu Gly Lys Gly

670 690 710
CAGGAGAGCGCTATTGGAGGCAGCTCTGCGATCGGTGAATATATCCGGCCCTCCGCAG
Gln Glu Ser Ala Ile Gly Gly Ser Ser Ala Ile Gly Glu Tyr Ile Arg Pro Leu Pro Gln

730 750 770
CCTGGTGACAGGCCGGAGCCTCTGTCCGCCAAGCCCACCTTCCTGTCGAGATCCGGTAGC
Pro Gly Asp Arg Pro Glu Pro Leu Ser Ala Lys Pro Thr Phe Leu Ser Arg Ser Gly Ser

790 810 830
GCAAGATGCAGATCTGAGTCAGACATGGAGAATGAACGGAATTCCAATACCTCCAAGCAG
Ala Arg Cys Arg Ser Glu Ser Asp Met Glu Asn Glu Arg Asn Ser Asn Thr Ser Lys Gln

850 870 890
AGATACTCGGGGAAGGTCCACCTCTGTGTTGCCGCTATAGTTACAACCCCTTCGATGGA
Arg Tyr Ser Gly Lys Val His Leu Cys Val Ala Arg Tyr Ser Tyr Asn Pro Phe Asp Gly

910 930 950
CCGAACGAGAACCCCGAAGCTGAGCTGCCCTCACGGCGGGAAAATACCTCTACGTCTAT
Pro Asn Glu Asn Pro Glu Ala Glu Leu Pro Leu Thr Ala Gly Lys Tyr Leu Tyr Val Tyr

970 990 1010
GGAGACATGGATGAGGATGGGTTCTATGAAGGAGAGCTCCTCGATGCCAGAGGGGTCTG
Gly Asp Met Asp Glu Asp Gly Phe Tyr Glu Gly Glu Leu Leu Asp Gly Gln Arg Gly Leu

1030 1050 1070
GTGCCCTCCAACCTCGTGGACTTGTGCAGGACAACGAGTCGCGGTTGGCAAGCACGCTG
Val Pro Ser Asn Phe Val Asp Phe Val Gln Asp Asr Glu Ser Arg Leu Ala Ser Thr Leu

1090 1110 1130
GGGAACGAGCAGGATCAGAACTTCATCAACCATTCCGGCATCGGCCTGGAGGGAGAGCAC
Gly Asn Glu Gln Asp Gln Asn Phe Ile Asn His Ser Gly Ile Gly Leu Glu Gly Glu His

1150 1170 1190
ATCCTGGACCTCCACTCCCCAACCCACATAGATGCCGGCATCACCGACAACAGTGCCGGG

FIG. 27 B

IleLeuAspLeuHisSerProThrHisIleAspAlaGlyIleThrAspAsnSerAlaGly

1210

1230

1250

ACCCCTGGACGTGAACATCGACGACATCGGAGAAGACATCGTGCCTTACCCCTAGAAAAATC
ThrLeuAspValAsnIleAspAspIleGlyGluAspIleValProTyrProArgLysIle

1270

1290

1310

ACCCCTCATCAAACAACACTGCCAAAAGTGTATTGTGGCTGGGAGCCCCCGGCGGTGCCA
ThrLeuIleLysGlnLeuAlaLysSerValIleValGlyTrpGluProProAlaValPro

1330

1350

1370

CCAGGATGGGAAACGGTGAGCAGCTAACGTCTGGACAGGAGCACGGCATGAAC
ProGlyTrpGlyThrValSerSerTyrAsnValLeuValAspLysGluThrArgMetAsn

1390

1410

1430

CTCACGCTGGGAGCAGAACTAAAGCCCTCATCGAGAAGCTAACATGGCAGCCTGCACC
LeuThrLeuGlySerArgThrLysAlaLeuIleGluLysLeuAsnMetAlaAlaCysThr

1450

1470

1490

TACCGCATCTCCGTGCAGTGCAGTCACCAGCAGGGCAGCTGGATGAGCTGCAGTGCACG
TyrArgIleSerValGlnCysValThrSerArgGlySerSerAspGluLeuGlnCysThr

1510

1530

1550

CTGCTGGTGGCAAGGACGTGGTGGTGGCCCCCTCCACCTGCAGGACAACATCACG
LeuLeuValGlyLysAspValValValAlaProSerHisLeuArgValAspAsnIleThr

1570

1590

1610

CAGATCTCCGCCAGCTCTCCTGGCTACCCACCAACAGCAACTACAGCCACGTCTTC
GlnIleSerAlaGlnLeuSerTrpLeuProThrAsnSerAsnTyrSerHisValIlePhe

1630

1650

1670

CTCAACGAGGAGGAGTTGACATCGTCAAGGCCGCCAGGTACAAGTACCAAGTCTTCAAT
LeuAsnGluGluPheAspIleValLysAlaAlaArgTyrLysTyrGlnPhePheAsn

1690

1710

1730

CTCAGGCCAACATGGCCTATAAGGTGAAGGTTCTGGCAAACCCCACCAAGATGCCGTGG
LeuArgProAsnMetAlaTyrLysValLysValLeuAlaLysProHisGlnMetProTrp

FIG. 27 C

1750

1770

1790

CAGCTCCGCTGGAGCAAAGGGAGAAGAAGGGAGGCCTTGTGGAGTTCTCACGTTGCCT
GlnLeuProLeuGluGlnArgGluLysLysGluAlaPheValGluPheSerThrLeuPro

1810

1830

1850

GCAGGACCCCCAGCACCCCCACAAGATGTTACCGTCCAGGCTGGGTGACCCCCGCCACC
AlaGlyProProAlaProProGlnAspValThrValGlnAlaGlyValThrProAlaThr

1870

1890

1910

ATCCGGGTCTCCTGGAGACCACCTGTGCTGACGCCACCAGCTGTCCAATGGCGCAAAC
IleArgValSerTrpArgProProValLeuThrProThrGlyLeuSerAsnGlyAlaAsn

1930

1950

1970

GTTACCGGCTACGGCGTGTATGCCAAAGGGCAGAGGGTGGCTGAAGTCATCTTCCCCACG
ValThrGlyTyrGlyValTyrAlaLysGlyGlnArgValAlaGluValIlePheProThr

1990

2010

2030

GCAGACAGCACGGCCGTGGAGCTTGTGCGGCTGCGAGCCTGGAGGCCAACGGCGTGACC
AlaAspSerThrAlaValGluLeuValArgLeuArgSerLeuGluAlaLysGlyValThr

2050

2070

2090

GTGCGGACCCCTCTCCGCCAACGGCGAGTCCGTGGACTCTGCAGTTGCTGCCGTTCCCCC
ValArgThrLeuSerAlaGlnGlyGluSerValAspSerAlaValAlaAlaValProPro

2110

2130

2150

GAGCTCCTGGTGCCTCCTACCCCCCACCGAGACCTGCACCCCAATCAAAGCCATTAGCA
GluLeuLeuValProProThrProHisProArgProAlaProGlnSerLysProLeuAla

2170

2190

2210

AGTTCTGGAGTCCCCGAAACCAAAGACGAGCACCTGGGTCCCCACGCCAGGATGGATGAG
SerSerGlyValProGluThrLysAspGluHisLeuGlyProHisAlaArgMetAspGlu

2230

2250

2270

GCCTGGGAGCAGAGCCGTGCACCTGGCCCTGTGCATGGCACATGCTGGAGGCCGCCGTG
AlaTrpGluGlnSerArgAlaProGlyProValHisGlyHisMetLeuGluProProVal

2290

2310

2330

GGCCCCGGAAGGCGGTGCGCCCTCACCCAGCCGCATCCTGCCGCAGCCACAGGGCACCCCG

GlyProGlyArgArgSerProSerProSerArgIleLeuProGlnProGlnGlyThrPro

2350

2370

2390

GTGTCCACCACCGTCGCCAAGGCCATGGCCCGGGAGGCCGCAGAGGGTGGCGAGAGC
ValSerThrThrValAlaLysAlaMetAlaArgGluAlaAlaGlnArgValAlaGluSer

2410

2430

2450

AGCAGGTTAGAGAAAAGGAGCGTCTTCCTAGAGAGAACGAGCGGGGGCAGTACGCCGCC
SerArgLeuGluLysArgSerValPheLeuGluArgSerSerAlaGlyGlnTyrAlaAla

2470

2490

2510

TCAGACGAGGAGGACGCCTATGACTCTCCAGACTTCAAGAGGAGGGGCCCTCGGTGGAC
SerAspGluGluAspAlaTyrAspSerProAspPheLysArgArgGlyAlaSerValAsp

2530

2550

2570

GACTTCCTGAAAGGCTCTGAACCTGGCAAGCAGCCGACTGTTGCCATGGAGACGAGTAC
AspPheLeuLysGlySerGluLeuGlyLysGlnProHisCysCysHisGlyAspGluTyr

2590

2610

2630

CACACAGAGAGCAGCCGGGGTCTGACCTCTCAGACATCATGGAGGAGGACGAGGAGGAG
HisThrGluSerSerArgGlySerAspLeuSerAspIleMetGluGluAspGluGlu

2650

2670

2690

CTGTATTCTGAAATGCAGCTGGAAGATGGGGGAAGGAGGGGCGGCCAGCGGCACGTCCCAC
LeuTyrSerGluMetGlnLeuGluAspGlyGlyArgArgArgProSerGlyThrSerHis

2710

2730

2750

AATGCCCTCAAGATTAGGAAACCCAGCCTCTGCAGGACGGTGGATCACATGGGCCGG
AsnAlaLeuLysIleLeuGlyAsnProAlaSerAlaGlyArgValAspHisMetGlyArg

2770

2790

2810

AGGTTCCCCGTGGCAGCGCTGGCCTCAGAGGTCCGGCCGTGACAGTCCCACATCCATC
ArgPheProArgGlySerAlaGlyProGlnArgSerArgProValThrValProSerIle

2830

2850

2870

GACGATTACGGCGAGACCGCCTTCTCCAGACTTCTATGAAGAGTCAGAAACTGACCCCT
AspAspTyrGlyArgAspArgLeuSerProAspPheTyrGluGluSerGluThrAspPro

2890 2910 2930
GGTGCCGAAGAGCTCCGGCCGGATCTTGTGGCTCTTTGACTACGACCCGCTCACC
GlyAlaGluGluLeuProAlaArgIlePheValAlaLeuPheAspTyrAspProLeuThr

2950 2970 2990
ATGTCCCCAAACCCAGATGCTGCAGAGGAGGAGCTCCCTTAAAGAAGGCCAGATCATC
MetSerProAsnProAspAlaAlaGluGluLeuProPheLysGluGlyGlnIleIle

3010 3030 3050
AAGGTTTATGGTATAAAGACGCTGATGGATTCTACCGTGGGAAACCTGTGCCCGGCTT
LysValTyrGlyAspLysAspAlaAspGlyPheTyrArgGlyGluThrCysAlaArgLeu

3070 3090 3110
GGCCTTATTCTTGTAACATGGTCTCTGAGATACAAGCAGATGATGAGGAGATGGAT
GlyLeuIleProCysAsnMetValSerGluIleGlnAlaAspAspGluGluMetMetAsp

3130 3150 3170
CAGCTCTTAGACAGGGCTTCTCCCTCTGAATACACCTGTGGAGAAAATAGAGAGAAC
GlnLeuLeuArgGlnGlyPheLeuProLeuAsnThrProValGluLysIleGluArgSer

3190 3210 3230
AGGAGAAAGTGGCAGGCCATTGGTATCGACGCCGAGAATGGTGGCCCTGTATGACTAC
ArgArgSerGlyArgArgHisSerValSerThrArgArgMetValAlaLeuTyrAspTyr

3250 3270 3290
GACCCCAGAGAAAGCTGCCAACGTCGATGTCGAGGCCGAACTTACATTTGCACAGGA
AspProArgGluSerSerProAsnValAspValGluAlaGluLeuThrPheCysThrGly

3310 3330 3350
GATATTATTACAGTTTGGTGAATTGATGAAGATGGATTATTATGGGGAGCTGAAC
AspIleIleThrValPheGlyGluIleAspGluAspGlyPheTyrTyrGlyGluLeuAsn

3370 3390 3410
GGGCAGAAAGGCCATTGTGCCCTCAAACCTTGGAAAGAAGTGCCTGATGACGTAGAAC
GlyGlnLysGlyLeuValProSerAsnPheLeuGluValProAspAspValGluVal

3430 3450 3470
TATCTTCTGATGCTCCATCCCACTACTCTCAAGATACGCCAATGCGCTCAAAGGAAAAA

FIG. 27 F

TyrLeuSerAspAlaProSerHisTyrSerGlnAspThrProMetArgSerLysAlaLys

3490

3510

3530

AGGAAGAAGAGTGTTCATTCATACCTTAATCAGGCAATGTAGCCTCACGTAAGTGAGC
ArgLysLysSerValHisPheIleProEnd

3550

3570

3590

AACTGAAGATAACCGATAAAAGATAACCAACTAACCTAACCGGGCCAGTGTGGTAGA

3610

3630

3650

CTTAAGGCTTCATTGTGGGGTTAAAAAAAAAAAAGATAAAAGAAATATGTCTAAAAA

3670

3690

3710

ACTATTGGACCTAAATAATTAGAATATTACTTGGTCTCAGTTGTAAGCAACTGAATTAA

3730

3750

3770

TAGTGAAGCAAATCATCTTAATAATCATTCTACTATTCATTAAGAATATTTGAAA

3790

3810

3830

GGCCAACATTGGAACATATTCCTAACAAAGCTAACGTTACATAGAGAGAGCTG

3850

3870

3890

CATATTGCATTGTTAGCCACTCTTGGAAAAGCACAACCTAACAAACATGTTACTATAG

3910

3930

3950

GAAGCTTACTTAGAAACTAACCCAAGGTCAAGCAGATGAGTAGTGAACACAGGTGAT

3970

3990

4010

CGAGTGTGGCTCTGAACACTCCAAACACTGGCTCGAGTGGCCAGAACGTGTTCTTA

4030

4050

4070

AGTAACCTGCCTCTACCTTACGAGAGAGCTATGCTCCTCTCAAAGCACAATCATCCTG

4090

4110

4130

TGACAGAAGTTGCTGCAACACGCGTTGTTGGTATACCAATGCAACTAAGTTGAT

FIG. 27 G

4150 4170 4190
GAAGCACGCAGCTCAAATGATCACATTAGATGGAATAGATGGTATCTCAGGTGTACTTT

4210 4230 4250
GGGATGCTTACTAGGTGTTCCATTAGAATTAGACCTTGATTTAAATCCAAGCAAGC

4270 4290 4310
TTGAAGCCCCCTGGCTTACAGCATTGCCTGCTGAATACTAACACTCACATGGCAAGAG

4330 4350 4370
TTGCTCTGGAGAGGTAGGCCAGAGGAATGCTGCTGCAGCGTATTAGAGTAAAAGTCTACCCC

4390 4410 4430
AGCTGTAAAGGGAAGCGAGGTGAAGTCGTCTGCAGCGTATTAGAGTAAAAGTCTACCCC

4450 4470 4490
TCTGAAGCACTATTAAGCGCTAACGTATATTAAATACTACCATGTGCTATCTACTGAG

4510 4530 4550
GAAGATTCAATTGGAAATAATGCAAGCATCCACTAAGGCCTTAAGCTT

4570 4590 4610
TCTTGATTATAATTAGGTTCAATTAGTTAGTTTTTTTTCAACCAGTGTGCCAT

4630 4650 4670
CTCCAATATTCTATAGTATACCAACCACCCAGGAATGCACTTAACAAATATCAGGATT

4690 4710 4730
TTATATAACCAAATAGTTCAAATACAACAAATTCCCTTATGAACCTCGCTTTAA

4750 4770 4790
GACTACTGATGGTACTCGGCCAACCTTACTATCAACCTAACAGATCATGTCTCCCC

FIG. 27 H

4810 4830 4850
TGCCCTTAGTCTTCATTTATGAAGTGAATTATTACCTGCCTTAGCTTGCCAAAGCAACG

4870 4890 4910
GCCACCCCCGCACTCCCTCGAGACAGAGAAACGGAACCCACACATTTATGTCTGGGCCTC

4930 4950 4970
TCTCTGGCGTGCTGTGGGAGAGGACCTTGCTTCTCATGGCATACTTCAACAACGTGAAAG

4990 5010 5030
AACAAATGAACCCCCCTGACCTTCCTGGTGGAAACGGGACAGTACGATGTTACCAAG

5050 5070 5090
TGAATTCTGTTGGCGCTCACACACTCAATAAACTGTAACACTGTACCTACTAGGTT

5110 5130 5150
CTCCTGAGGGTTCAGGTACAGCAAGGAGAGCTCCATCCCCACAGTCCATCTCCATTGG

5170 5190 5210
GGTCACCTACGTCATCTATGGTTCTGGTAGTCCTGGAGAGGCAGGGAAATGTCCTCGA

5230 5250 5270
AAAAGAAAAAGGGCTGCTTCAAAGGCAAGAAACTGCTGAAAAAGCTGGTGCAGTGA

5290 5310 5330
AATGATTCATGTGCTCCGGACAACTGCCAAATCTATGTAATTTCTTAATTCCAAACT

5350 5370 5390
AGGGCTTCATGACTCAAGTACTCCTAAAAAAACCAATCTCTCCCTGACACCAGTA

5410 5430 5450
GAGAAATGCACTTGCACCAACCAACTTAAACCAACCACGAGAACAAAGAGGGAGCG

5470 5490 5510

GTTGCTCTGTCACCGCTGGCAGTCTGCTCTATTGTCCAAGCTCTGATTTGGGAGGTG

5530 5550 5570
GGAGGGGACGTCTTATTAACAAACGGGGGCAGCATAGCTATCACCTGTAGCTCCCTCCCTA

5590 5610 5630
CCTGTAATTCCAGTCTTGTGCATTTGCATCTGCCCTAAAGGAATGATTTCAACCTT

5650 5670 5690
TCTCCCTCTCAAAATGCTTGCCTCATAATGCATAACTTCACTTGACTCTGGTCTTGA

5710 5730 5750
AATTCTAGTTAACCGCCTTGATGTTCTGCCTTATAAAATGCACAATGATTGTACTGT

5770 5790 5810
CTAATAAAACAGTGTATACTTGTATGTGTCGTGCATTCACTGGTCTTCATCCTGACAC

5830 5850 5870
AGTGGTCGAGATCAAGTTGTACAGGCTGTGCATTTAAGATACTAGTTCACTGGTCTTCAGTCTTCA

5890 5910 5930
AAGCCAGCCAGGCTACACACAGAAAATGTTACTCAATCATTCAAAAAAGAGAAAAGGAG

5950 5970 5990
AGAAAGTAACCTTGTGTTGGTAAAGCACCACTACTCCAACCTCCAGAAAGCCGATTATCT

6010 6030 6050
TCATTGCTTTAATGTTCTATTCTGTGGCATATGGTTCTGTTACTTCGTTGTCAAAA

6070 6090 6110
TGCCATACCCAAATACACAGCAATGAATGGCACACAAGTAATCCACACATAATGCATAAGCC

6130 6150 6170
ACACCAAAACCAGACTCAATTAAATCTGCTCCAAATGAGTCCATACCCATCTTCATCAT

6190

6210

6230

TGGCATTGAACAAAAGACTTACCTACAAAGTTGCTGGCAGATGTATTGATGGTTACTC

6250

6270

6290

TTTGTAATTCTTGTCCACTTGTAAATTGTTTTACTCTTATAACATACTTTCAGACTG

6310

6330

6350

CCTTCTTTGTAATTATGGACGGTTATAAATGAATGACAAAGCTTCCCCATTGTGT

6370

6390

6410

CTTCAAAACGCTATTATAAATTGTAATATAATAGTATGTGGTAGATTATTAAAGG

6430

6450

6470

AAATCCATGTGTGGTTAACGCTCTGTGTGGGTGTGCATGTGCACAGTTAGTGTAAAATA

6490

TTTCTAGAAATAAAATTGTTATTTAT

FIG. 27 K

10	30	50
GGTCCCCACGCCAGGATGGATGAGGCCTGGGAGCAGAACGCCTGTGCACCTGGCCCTGTGC MetAspGluAlaTrpGluGlnLysProValHisLeuAlaLeuCys		
70	90	110
ATGGGCACATGCTGGAGCCGCCGTGGGCCCGCATCCTGCC <u>ACAGCCACAGGGCACCCC</u> MetGlyThrCysTrpSerArgProTrpAlaProHisPro <u>AlaThrGlyHisPro</u>		
130	150	170
GGTGTCCACCACCGTCGCCAAGGCCATGGCCCGGGAGGCCGCGCAGAGGGTGGCGAGAGC GlyValHisHisArgArgGlnGlyHisGlyProGlyGlyArgAlaGluGlyGlyGluSer		
190	210	230
AGCAGGTTAGAGAAAAGGAGCGTCTCCTAGAGAGAAAGCAGCGCGGGCAGTACGCCGCC SerArgLeuGluLysArgSerValPheLeuGluArgSerSerAlaGlyGlnTyrAlaAla		
250	270	290
TCAGACGAGGAGGACGCCATGACTCTCCAGACTCAAGAGGAGGGCGCCTCGGTGGAC SerAspGluGluAspAlaTyrAspSerProAspPheLysArgArgGlyAlaSerValAsp		
310	330	350
GACTTCCTGAAAGGCTCTGAACCTGGCAAGCAGGAAACTGAGGCCACAGAATTGAGAA AspPheLeuLysGlySerGluLeuGlyLysGlnGlyAsnEnd		
370	390	410
TTTTGTCCATGATTACGCAGATGGTCTCCTAACAGAGCTGGAATTAGATTGAACCGAGG		
430	450	470
CCTGAAGAACGACTGTTCCACGCCCTTCCCCATGTGCCACGTTCTCCTCACCTATCCAG		
490	510	530
GAGTGAATCATCACCTCCCTGCAATCTGCTCAGGTTACAAACCCGGAGGAAAGGCTGGA		
550	570	590
GCACTTGTCTCTGGGTGAAGGACCCATAACCCCCACTGGTTTGAGATCGGCATTCAAGC		

FIG. 28 A

610 630 650
GCTGTCTTATGGCAGCCMCAGCCCCAGGTGGCCCCAGAGGCCCTGACATGTGCCACCTG

670 690 710
GGGCTGAGTGTGACTGAGGCCCTGAATTCTACTTCTATAAAATTAGTTCCAGATTAGTT

730 750 770
TACATTCTAATTAGTTACATGTAAACAGCCACACGTGGCTGGTGGCCACCAGTGCTGA

790 810 830
CGCCCAGCTCTGGATGACCACACCTGCTACAAGAGATGACTTTCTAGAGAAGAGTAGAA

850 870 890
ACACAGCGGCAGAACACACAGCTCTGCACCTCCGAGGGCCTCCACTCCTCTGATGAGAC

910 930 950
TGCAGAGGAAGTCTGTTGCCAAGCATGCTATTACACGTTTCCTGCTGTTTGT

970 990 1010
TTAACAGAGCAAACAGGTCTGTTCTATTAAAATTAAAAAGCGTTAATATTARCAGC

1030 1050 1070
ATTGTTTATGTTGTATTCTAACATAATAATAACATATTAAATTGTTAATATATA

1090 1110 1130
TTGTTAATAATATAATAATATAACATAAAATAAGTGATACTTATTCCATTACAGTG

1150 1170 1190
AGATATTCTTAAAAGTAACGTTAAATATTGATTCAATTCAAAGAATACATTCAATTAA

1210 1230 1250
TCATACAGATGGCGTCTGGCTAGGTGACGCATCATGACAGTGGTAGGGAGTGACTGAAGT

1270 1290 1310

FIG. 28 B

TGAGCTGGTGCACAGACTGCCAGTTTACAACCCGGGAAGTGTTCCTGACCATCCGCTT

1330

1350

1370

CCCCATGCTGCCGCCCGTCACATGAGCCCTAACCCCTGGCGCTATCCCATCTGCTCC

1390

1410

1430

AAGACACCGATGTTCTAGTGGGTGGAAGCCTCCACTTTAGTTGACTACGGTATCTCTAG

1450

1470

1490

CATTCACACATAGTAGGTGCTCAATGAATGTTGTCGAATGAATGAAAGAAGGGA

1510

1530

1550

GGCTGAGAGTAGCTGGGACATTGCTCTGAAAAAATCACCTCCATTCTCCAAATTACA

1570

1590

1610

AAAGCATTTCATTAAGTCCACAATGAAAAAATGCTCACTGTACCAATAATAATCTTT

1630

1650

AGTTATCTATTTAAAAGTAAAAAAACCTCGTGCGAAGTC

FIG. 28 C