Prep Course Mathematics

Equations and inequalities

Sonja Otten, Christian Seifert (Deutsch), Jens-Peter M. Zemke (English)

Content

1. Equations

- Equations and equivalence transformations
- Solving equations
- Linear equations
- Quadratic equations
- Polynomial equations
- Radical equations
- Solving equations with absolute values

2. Inequalities

- ► Inequalities: equivalence transformations
- Solving inequalities
- Solving inequalities with absolute values

Equations and equivalence transformations

Equivalence transformations modify equations without altering their solutions.

Important equivalence transformations:

- ightharpoonup swapping sides: a=b if and only if b=a
- ▶ addition/subtraction of $c \in \mathbb{R}$: a = b if and only if $a \pm c = b \pm c$
- multiplication with or division by a=b if and only if ac=bc $c \neq 0$: if and only if $\frac{a}{c}=\frac{b}{c}$

⚠ Taking powers or roots are **not** equivalence transformations.

Solving equations

By subtracting the terms on one side, every equation in one unknown x can equivalently be written in the form f(x)=0.

Example:

$$3x + 4 = 5$$
 if and only if $3x - 1 = 0$,

hence f(x) = 0 with f(x) := 3x - 1.

Solving equations

By subtracting the terms on one side, every equation in one unknown x can equivalently be written in the form f(x)=0.

Example:

$$3x + 4 = 5$$
 if and only if $3x - 1 = 0$,

hence f(x) = 0 with f(x) := 3x - 1.

Hence: solutions of equations are exactly zeros of f.

Linear equations

For $a, b \in \mathbb{R}$: linear equation

ax = b.

Solution:

- ightharpoonup a
 eq 0: exactly one: $x = \frac{b}{a}$
- ightharpoonup a=0, $b\neq 0$: no solution
- ightharpoonup a=0, b=0: infinitely many: $x\in\mathbb{R}$

Linear equations

For $a, b \in \mathbb{R}$: linear equation

$$ax = b$$
.

Solution:

- $ightharpoonup a \neq 0$: exactly one: $x = \frac{b}{a}$
- $ightharpoonup a=0,\ b\neq 0$: no solution
- ightharpoonup a=0, b=0: infinitely many: $x\in\mathbb{R}$

Example:

5x = 3.

Then

$$x = \frac{3}{5}.$$

Quadratic equations

For $a, b, c \in \mathbb{R}$, $a \neq 0$: quadratic equation

$$ax^2 + bx + c = 0.$$

Quadratic equations

For $a, b, c \in \mathbb{R}$, $a \neq 0$: quadratic equation

$$ax^2 + bx + c = 0.$$

Since $a \neq 0$:

$$x^2 + \underbrace{\frac{b}{a}}_{=:p} x + \underbrace{\frac{c}{a}}_{=:q} = 0.$$

Solution:
$$D := \left(\frac{p}{2}\right)^2 - q$$

- ▶ D>0: exactly two: $x_{\pm}=-\frac{p}{2}\pm\sqrt{\left(\frac{p}{2}\right)^2-q}$
- ▶ D=0: exactly one: $x=-\frac{p}{2}$
- ightharpoonup D < 0: no solution

Quadratic equations

For $a, b, c \in \mathbb{R}$, $a \neq 0$: quadratic equation

$$ax^2 + bx + c = 0.$$

Since $a \neq 0$:

$$x^2 + \underbrace{\frac{b}{a}}_{=:p} x + \underbrace{\frac{c}{a}}_{=:q} = 0.$$

Solution:
$$D := \left(\frac{p}{2}\right)^2 - q$$

▶
$$D>0$$
: exactly two: $x_{\pm}=-\frac{p}{2}\pm\sqrt{\left(\frac{p}{2}\right)^2-q}$

▶
$$D=0$$
: exactly one: $x=-\frac{p}{2}$

$$ightharpoonup D < 0$$
: no solution

Example:
$$2x^2 - 2x - 12 = 0$$
.

Then

$$x_{\pm} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 6} = \frac{1 \pm 5}{2}.$$

Solve:

$$-3x = 6$$
.

$$-2x^2 + 10x - 12 = 0.$$

Solve:

-3x = 6. Solution: x = -2.

 $-2x^2 + 10x - 12 = 0.$ Divide by -2: $x^2 - 5x + 6 = 0$.
Hence

$$x_{\pm} = \frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 6} = \frac{5}{2} \pm \sqrt{\frac{1}{4}} = \frac{5 \pm 1}{2}.$$

Solutions: x = 2 or x = 3.

Polynomial equations

How to solve equations of higher order, e.g. $x^5 - x - 1 = 0$?

Techniques, which may help sometimes:

Factoring out: Example: $x^3 + 2x^2 + x = 0$

Substitution: Example: $x^4 - 10x^2 + 9 = 0$

Remark: there are (complicated) formulas for polynomial equations up to order four. From order five onwards, no such formulas exist.

Polynomial equations

How to solve equations of higher order, e.g. $x^5 - x - 1 = 0$?

Techniques, which may help sometimes:

Factoring out: Example: $x^3 + 2x^2 + x = 0$ Then

$$0 = x^3 + 2x + x = x(x^2 + 2x + 1) = x(x+1)^2.$$

Solutions: x = 0, x = -1

Substitution: Example: $x^4 - 10x^2 + 9 = 0$

Then with $z := x^2$

$$0 = x^4 - 10x^2 + 9 = z^2 - 10z + 9.$$

Solutions: z = 1, z = 9, hence x = -1, x = 1, x = -3, x = 3.

Remark: there are (complicated) formulas for polynomial equations up to order four. From order five onwards, no such formulas exist.

Solve:

$$3(-x^3+5) = -9-6x^3.$$

$$2x^4 - 8 = 0.$$

Solve:

$$3(-x^3+5) = -9-6x^3.$$

Then

$$-3x^3 + 15 = -9 - 6x^3,$$

hence

$$x^3 = -8.$$

Solution: x = -2.

$$2x^4 - 8 = 0.$$

With
$$z := x^2$$
:

$$2z^2 - 8 = 0,$$

hence

$$z^2 = 4$$
,

and therefore

$$z_{\pm} = \pm 2.$$

Solutions: $x_{\pm} = \pm \sqrt{2}$.

Radical equations

In radical equations, the variable appears under one (or more) roots, and possibly outside of roots as well.

Method to solve radical equations:

- 1. Isolate a root under which the variable appears.
- 2. Take squares on both sides (this might enlarge the solution set).
- 3. Repeat the first two steps until all roots with variable have been eliminated.
- 4. Solve resulting equation.
- 5. Check all solution candidates to eliminate false solutions.

Radical equations

In radical equations, the variable appears under one (or more) roots, and possibly outside of roots as well.

Method to solve radical equations:

- 1. Isolate a root under which the variable appears.
- 2. Take squares on both sides (this might enlarge the solution set).
- 3. Repeat the first two steps until all roots with variable have been eliminated.
- 4. Solve resulting equation.
- 5. Check all solution candidates to eliminate false solutions.

Example: $\sqrt{x+7} = x+1$. Then by taking squares

$$x + 7 = (x + 1)^2 = x^2 + 2x + 1,$$

hence

$$x^{2} + x - 6 = 0$$
, $x_{\pm} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 6} = \frac{-1 \pm 5}{2}$.

Check:

$$x_+ = 2: \sqrt{x_+ + 7} = \sqrt{9} = 3 = x_+ + 1,$$

$$x_{-} = -3$$
: $\sqrt{x_{-} + 7} = \sqrt{4} = 2 \neq -2 = x_{-} + 1$.

Solve:
$$\sqrt{x+2} = \sqrt{x} + \sqrt{4x+1}$$
.

Solve:
$$\sqrt{x+2} = \sqrt{x} + \sqrt{4x+1}$$
.

By squaring:

$$x + 2 = (\sqrt{x} + \sqrt{4x + 1})^2 = x + 2\sqrt{x}\sqrt{4x + 1} + 4x + 1.$$

Hence

$$2\sqrt{x}\sqrt{4x+1} = -4x + 1.$$

Squaring again:

$$4x(4x+1) = (-4x+1)^2 = 16x^2 - 8x + 1,$$

thus

$$16x^2 + 4x = 16x^2 - 8x + 1,$$
 $12x = 1.$

Solutions: $x = \frac{1}{12}$.

Check:

$$\sqrt{\frac{1}{12} + 2} = \frac{5}{\sqrt{12}}, \qquad \sqrt{\frac{1}{12}} + \sqrt{4 \cdot \frac{1}{12} + 1} = \frac{1+4}{\sqrt{12}}.$$

Exponential equations

In exponential equations, the variable appears as exponent in one or more powers.

Methods to solve exponential equations:

• comparing exponents: Example: $7^{3-x} = 7^x$.

▶ take logarithms: Example: $2 \cdot 3^{x+1} = 18$.

Exponential equations

In exponential equations, the variable appears as exponent in one or more powers.

Methods to solve exponential equations:

ightharpoonup comparing exponents: Example: $7^{3-x} = 7^x$. Then

$$3-x=x$$

hence 2x = 3. Solution: $x = \frac{3}{2}$.

ightharpoonup take logarithms: Example: $2 \cdot 3^{x+1} = 18$.

Then

$$3^{x+1} = 9,$$

hence $(x+1) \ln 3 = \ln 3^{x+1} = \ln 9$. Solution: $x = \frac{\ln 9}{\ln 2} - 1 = 1$.

Solve: $2^x \cdot 3^x = 4^{x+2}$.

Solve: $2^x \cdot 3^x = 4^{x+2}$.

Taking logarithms:

$$x \ln 2 + x \ln 3 = \ln(2^x) + \ln(3^x) = \ln(2^x \cdot 3^x) = \ln(4^{x+2}) = (x+2) \ln 4,$$

hence

$$(\ln 2 + \ln 3 - \ln 4)x = 2\ln 4.$$

Solution:

$$x = \frac{2 \ln 4}{\ln 2 + \ln 3 - \ln 4} = \frac{\ln 16}{\ln \frac{2 \cdot 3}{4}} \approx 6.8380.$$

Solving equations with absolute values

If absolute values appear in an equation, they can be eliminated by case-by-case analysis.

Example: |x + 5| = 7.

- ► case 1: $x + 5 \ge 0$. Then x + 5 = 7. Solution: x = 2.
- ▶ case 2: x + 5 < 0. Then -(x + 5) = 7, hence -x 5 = 7. Solution: x = -12.

Thus:

- ▶ case 1: $x \ge -5$, x = 2.
- ightharpoonup case 2: x < -5, x = -12.

Solutions: x = 2 or x = -12.

Solve: 4|x+2| = -2x + 1.

Solve:
$$4|x+2| = -2x + 1$$
.

$$ightharpoonup$$
 case 1: $x+2\geqslant 0$. Then

Solution:
$$x = -\frac{7}{6}$$
.

• case 2:
$$x + 2 < 0$$
. Then

Solution:
$$x = -\frac{9}{3}$$
.

Thus:

• case 1:
$$x \ge -2$$
, $x = -\frac{7}{6}$.

▶ case 2:
$$x < -2$$
, $x = -\frac{9}{2}$.
Solutions: $x = -\frac{7}{6}$ or $x = -\frac{9}{2}$.

$$4(x+2) = -2x + 1,$$

$$6x = -7.$$

$$-4(x+2) = -2x + 1,$$

$$-2x = 9.$$

$$2x - b$$
.

Inequalities: equivalence transformations

Inequalities are written using the comparison relations <, \leq , > and \geq .

Important equivalence transformations (using the example <):

- **>** swapping sides flips the comparison relation: a < b if and only if b > a
- ▶ addition/subtraction of $c \in \mathbb{R}$: a < b if and only if $a \pm c < b \pm c$
- multiplication with or division by a < b if and only if ac < bc c > 0: if and only if $\frac{a}{c} < \frac{b}{c}$
- multiplication with or division by a < b if and only if ac > bc c < 0: if and only if $\frac{a}{c} > \frac{b}{c}$

The types of equations studied also appear as types of inequalities.

Solving inequalities

2 typical methods:

▶ Use equivalence transformations to isolate the variable.

Example: 2x + 3 > 7.

Then 2x > 4, hence x > 2.

Solving inequalities

2 typical methods:

Use equivalence transformations to isolate the variable.

Example: 2x + 3 > 7. Then 2x > 4, hence x > 2.

Solve the associated equation and then check values in between the solutions.

Example: $x^2 + 2x - 1 < 2$.

First, $x^2 + 2x - 3 = 0$, hence $x_{\pm} = -1 \pm \sqrt{1+3} = -1 \pm 2$.

x < -3: e.g. x = -4:

$$(-4)^2 + 2 \cdot (-4) - 3 = 5 > 0.$$

-3 < x < 1: e.g. x = 0:

$$0^2 + 2 \cdot 0 - 3 = -3 < 0.$$

x > 1: e.g. x = 2:

$$2^2 + 2 \cdot 2 - 3 = 5 > 0.$$

solutions: -3 < x < 1.

Solve $x^3 > 2x^2 - x$.

Solve $x^3 > 2x^2 - x$.

First, $x^3=2x^2-x$, hence $x(x^2-2x+1)=0$. Therefore, x=0 or $x^2-2x+1=0$, thus $x_\pm=1\pm\sqrt{1-1}=1$.

Solve $x^3 > 2x^2 - x$.

First, $x^3 = 2x^2 - x$, hence $x(x^2 - 2x + 1) = 0$. Therefore, x = 0 or $x^2 - 2x + 1 = 0$, thus $x_{\pm} = 1 \pm \sqrt{1 - 1} = 1$.

x < 0: e.g. x = -1:

$$(-1)^3 = -1,$$
 $2(-1)^2 - (-1) = 2 + 1 = 3.$

ightharpoonup 0 < x < 1: e.g. $x = \frac{1}{2}$:

$$\left(\frac{1}{2}\right)^3 = \frac{1}{8}, \qquad 2\left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0.$$

x > 1: e.g. x = 2:

$$2^3 = 8,$$
 $2 \cdot 2^2 - 2 = 8 - 2 = 6.$

Solve $x^3 > 2x^2 - x$.

First, $x^3 = 2x^2 - x$, hence $x(x^2 - 2x + 1) = 0$. Therefore, x = 0 or $x^2 - 2x + 1 = 0$, thus $x_{\pm} = 1 \pm \sqrt{1 - 1} = 1$.

▶ x < 0: e.g. x = -1:

$$(-1)^3 = -1,$$
 $2(-1)^2 - (-1) = 2 + 1 = 3.$

ightharpoonup 0 < x < 1: e.g. $x = \frac{1}{2}$:

$$\left(\frac{1}{2}\right)^3 = \frac{1}{8}, \qquad 2\left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0.$$

x > 1: e.g. x = 2:

$$2^3 = 8,$$
 $2 \cdot 2^2 - 2 = 8 - 2 = 6.$

Solutions: 0 < x < 1 or x > 1.

Solving inequalities with absolute values

Example:
$$|x+3| + |x+4| - 9 < 0$$
.

- case 1: $x + 3 \ge 0$. Then x + 3 + |x + 4| 9 < 0.
 - ▶ case a: $x+4 \ge 0$. Then x+3+x+4-9 < 0, hence 2x-2 < 0. Solutions: x < 1.
 - case b: x+4<0. Then x+3-(x+4)-9<0, hence -10<0. Solutions: $x\in\mathbb{R}$.
- ► case 2: x + 3 < 0. Then -(x + 3) + |x + 4| 9 < 0.
 - ▶ case a: $x+4 \ge 0$. Then -(x+3)+x+4-9<0, hence -8<0. Solutions: $x \in \mathbb{R}$.
 - case b: x + 4 < 0. Then -(x + 3) (x + 4) 9 < 0, hence -2x 16 < 0. Solutions: x > -8.

Therefore:

- ightharpoonup case 1a: $x \geqslant -3$, $x \geqslant -4$ and x < 1, hence $-3 \leqslant x < 1$.
- ▶ case 1b: $x \ge -3$, x < -4 and $x \in \mathbb{R}$, hence no solutions.
- ▶ case 2a: x < -3, $x \ge -4$ and $x \in \mathbb{R}$, hence $-4 \le x < -3$.
- ▶ case 2b: x < -3, x < -4 and x > -8, hence -8 < x < -4.

solutions: -8 < x < 1.

Solve |x+1| + 5 < |2x-4|.

Solve
$$|x+1| + 5 < |2x-4|$$
.

- ▶ case 1: $x + 1 \ge 0$. Then x + 1 + 5 < |2x 4|.
 - case a: $2x 4 \ge 0$. Then x + 1 + 5 < 2x 4, hence 6 < x 4. Solutions: x > 10.
 - ▶ case b: 2x 4 < 0. Then x + 1 + 5 < -(2x 4), hence 3x + 6 < 4. Solutions: $x < -\frac{2}{3}$.
- ▶ case 2: x + 1 < 0. Then -(x + 1) + 5 < |2x 4|.
 - case a: $2x-4\geqslant 0$. Then -(x+1)+5<2x-4, hence 4<3x-4. Solutions: $x>\frac{8}{3}$.
 - case b: 2x 4 < 0. Then -(x + 1) + 5 < -(2x 4), hence x + 4 < 4. Solutions: x < 0.

Solve
$$|x+1| + 5 < |2x-4|$$
.

- ► case 1: $x + 1 \ge 0$. Then x + 1 + 5 < |2x 4|.
 - ▶ case a: $2x 4 \ge 0$. Then x + 1 + 5 < 2x 4, hence 6 < x 4. Solutions: x > 10.
 - ▶ case b: 2x 4 < 0. Then x + 1 + 5 < -(2x 4), hence 3x + 6 < 4. Solutions: $x < -\frac{2}{3}$.
- case 2: x + 1 < 0. Then -(x + 1) + 5 < |2x 4|.
 - case a: $2x-4\geqslant 0$. Then -(x+1)+5<2x-4, hence 4<3x-4. Solutions: $x>\frac{8}{3}$.
 - case b: 2x 4 < 0. Then -(x + 1) + 5 < -(2x 4), hence x + 4 < 4. Solutions: x < 0.

Therefore:

- ▶ case 1a: $x \ge -1$, $x \ge 2$ and x > 10, hence x > 10.
- ▶ case 1b: $x \geqslant -1$, x < 2 and $x < -\frac{2}{3}$, hence $-1 \leqslant x < -\frac{2}{3}$.
- lacktriangle case 2a: x<-1, $x\geqslant 2$ and $x>\frac{8}{3}$, hence no solutions.
- ▶ case 2b: x < -1, x < 2 and x < 0, hence x < -1.

Solve
$$|x+1| + 5 < |2x-4|$$
.

- ► case 1: $x + 1 \ge 0$. Then x + 1 + 5 < |2x 4|.
 - ▶ case a: $2x 4 \ge 0$. Then x + 1 + 5 < 2x 4, hence 6 < x 4. Solutions: x > 10.
 - ▶ case b: 2x 4 < 0. Then x + 1 + 5 < -(2x 4), hence 3x + 6 < 4. Solutions: $x < -\frac{2}{3}$.
- ▶ case 2: x + 1 < 0. Then -(x + 1) + 5 < |2x 4|.
 - ▶ case a: $2x-4 \ge 0$. Then -(x+1)+5 < 2x-4, hence 4 < 3x-4. Solutions: $x > \frac{8}{3}$.
 - case b: 2x 4 < 0. Then -(x + 1) + 5 < -(2x 4), hence x + 4 < 4. Solutions: x < 0.

Therefore:

- ▶ case 1a: $x \ge -1$, $x \ge 2$ and x > 10, hence x > 10.
- ▶ case 1b: $x \geqslant -1$, x < 2 and $x < -\frac{2}{3}$, hence $-1 \leqslant x < -\frac{2}{3}$.
- ▶ case 2a: x < -1, $x \ge 2$ and $x > \frac{8}{3}$, hence no solutions.
- ightharpoonup case 2b: x < -1, x < 2 and x < 0, hence x < -1.

solutions: $x < -\frac{2}{3}$ or x > 10.