Name: ID:

## Object-Oriented Programming Lab #1

Jan 20<sup>th</sup>, 2023

## Introduction to C++

1. Given the following programs:

```
//// Program 1.1
                                        //// Program 1.2
                                                                                //// Program 1.3
int main()
                                        int main()
                                                                                int main()
    int number = 0;
                                            int number = 0;
                                                                                     int number = 0;
    float value = 0
                                            float value = 0
                                                                                     float value = 0;
    double bigNumber;
                                            double bigNumber;
                                                                                    double bigNumber;
    return 0;
                                            bigNumber = number + value;
                                                                                    bignumber = number + value;
                                            return 0;
                                                                                    return 0;
}
                                        }
                                                                                }
                                        //// Program 1.5
                                                                                //// Program 1.6
//// Program 1.4
#include <iostream>
                                        int main()
                                                                                int main()
#include <string>
                                            float firstVal = 0;
                                                                                    const double x = 2.0;
int main()
                                            float secondVal = 0;
                                                                                    const double y = 3.1415;
                                            float factor;
                                                                                    double product;
{
    const string ERROR_MESSAGE
                                            float result
                                                                                    x * y = product;
       = "bad string!;
                                                = (firstVal - secondVal
                                                                                    return 0;
    cout << "Hello!\n;</pre>
                                                  / factor;
                                                                                }
    return 0;
                                            return 0;
}
                                        }
```

For each program, you are expected to:

- find syntax errors and how to correct them
- describe what the program is supposed to do in run-time
- if the program is not working as expected, describe the problem and how to correct them
- add informative output to the program to make it more complete as it is possibly missing displaying results to the user
- describe how to evolve the program to improve it in terms of useful features and completeness

**Advice:** Use the C++ compiler to help catching syntax errors

2. Given the following program:

```
#include <iostream>
#include <string>
int main()
    std::cout << "Please enter P1 name: ";</pre>
    std::string p1_name;
    std::cin >> p1_name;
    std::cout << "Please enter P2 name: ";</pre>
    std::string p2_name;
    std::cin >> p2_name;
    std::cout << "Player 1: " << p1_name << std::endl;</pre>
    std::cout << "Player 2: " << p2_name << std::endl;</pre>
    return 0;
}
```

- What will the above program do if you type two names (for example, "Mike Leo") on a single line when it asks you for input? Predict the behavior before running the program, then try it.
- 2.2) Change the program so that it draws frame around the *Program Output (for 2.2)* name for both players like the example output shown on the right:

```
*********
* Player 1: Mike * Player 2: Leo *
********
```

Change the program so that it draws frame around the name for both players like shown below: 2.3)



3. Write programs to print patterns with varying sizes.
All programs must take the pattern size from user and must not print trailing spaces before the end of each line.

**3.1)** The program should print a triangle pattern like shown below:

| Output Size = 0 (0 line) | Output Size = 1 | Output Size = 2 |
|--------------------------|-----------------|-----------------|
|                          | *               | *               |
|                          |                 | **              |
| Output Size = 3          | Output Size = 4 | Output Size = 5 |
| *                        | *               | *               |
| **                       | **              | **              |
| ***                      | ***             | ***             |
|                          | ***             | ***             |
|                          |                 | ****            |
|                          |                 |                 |

**3.2)** The program should print an arrow pattern like shown below:

| Output Size = 0 (0 line) | Output Size = 1 | Output Size = 2 |
|--------------------------|-----------------|-----------------|
|                          | *               | *               |
|                          |                 | **              |
|                          |                 | *               |
| Output Size = 3          | Output Size = 4 | Output Size = 5 |
| *                        | *               | *               |
| **                       | **              | **              |
| ***                      | ***             | ***             |
| **                       | ****            | ****            |
| *                        | ***             | ****            |
|                          | **              | ****            |
|                          | *               | ***             |
|                          |                 | **              |
|                          |                 | *               |

**3.3)** The program should print an arrow pattern like shown below:

| Output Size = 0 (0 line) | Output Size = 1 | Output Size = 2 |
|--------------------------|-----------------|-----------------|
|                          | *               | *               |
|                          |                 | **              |
|                          |                 | *               |
| Output Size = 3          | Output Size = 4 | Output Size = 5 |
| *                        | *               | *               |
| **                       | **              | **              |
| ***                      | ***             | ***             |
| **                       | ***             | ***             |
| *                        | ***             | ****            |
|                          | **              | ***             |
|                          | *               | ***             |
|                          |                 | **              |
|                          |                 | *               |
|                          |                 |                 |

- 4. One way to estimate the value of  $\pi$  is by using the random number generator. The calculation is done by generating N random  $(x_i, y_i)$  pairs where each point  $p_i = (x_i, y_i)$  is in range [-1, 1] (inclusive), then calculate the probability of the point  $(x_i, y_i)$  lying inside the unit circle. With a large number N and a good random number generator, the probability value will be close to the number of  $\pi$  / 4.
  - The point  $p_i = (x_i, y_i)$  will be inside the unit circle if the distance  $d = \sqrt{(x_i^2 + y_i^2)}$  is in range [-1, 1]
  - When drawing N points and found  $N_i$  points inside the unit circle, the probability of the point  $p_i$  lying inside will be  $N_i$  / N
  - The estimate value of  $\pi$  will be 4 \* N<sub>i</sub> / N

Use the following code as the starting point to write a program for estimating the value of  $\pi$  by the above method.

```
//// lab1_3.cpp
//// random.hpp
#ifndef MY_RANDOM_HPP
                                                                       #include "random.hpp
#define MY RANDOM HPP
                                                                       #include <iomanip>
#include <random>
                                                                       #include <iostream>
                                                                       #include <vector>
class Rand_double {
                                                                       template<tvpename T >
   using seed_type = std::random_device::result_type;
                                                                           T_ pi_v{3.141592653589793238462643383279502884L};
    Rand_double(double low, double high): dist{low,high} {}
                                                                       inline constexpr double pi = pi v<double>:
    // draw an integer number
    double operator()() { return dist(re); }
                                                                       int main()
    // choose new random engine seed
                                                                           constexpr double rnd_min = -1.0, rnd_max = 1.0;
                                                                           Rand_double rnd{rnd_min, rnd_max};
    void seed(seed_type s) { re.seed(s); }
private:
    std::default_random_engine re;
                                                                           std::random_device rd;
    std::uniform_real_distribution<double> dist;
                                                                           rnd.seed(rd());
};
                                                                           std::cout << std::fixed << std::setprecision(3);</pre>
#endif /* MY RANDOM HPP */
                                                                           double x1 = rnd():
                                                                           double y1 = rnd();
                                                                           std::cout << "Point #1: (" << x1 << ", " << y1 << ")\n";
                                                                           double x2 = rnd();
                                                                           double y2 = rnd();
                                                                            std::cout << "Point #2: (" << x2 << ", " << y2 << ")";
                                                                           std::cout << std::endl;</pre>
                                                                           return 0;
                                                                       }
```

- 4.1) Estimate  $\pi$  using N = 100, record the approximation, the relative error, and the percent error relative to the exact  $\pi$
- 4.2) Estimate  $\pi$  using N = 10,000, record the approximation, the relative error, and the percent error relative to the exact  $\pi$
- 4.3) Estimate  $\pi$  using N=1,000,000, record the approximation, the relative error, and the percent error relative to the exact  $\pi$