

FIFATRIAL

6AU6-A-3AU6-12AU6

6AU6-A 3AU6 12AU6 ET-T916A Page 1

PENTODE

DESCRIPTION AND RATING =

The 6AU6-A is a miniature sharp-cutoff pentode primarily designed for use as a high-gain radio-frequency or intermediate-frequency amplifier. Its low grid-plate capacitance and high transconductance make it especially suited for high-frequency wide-band applications.

Except for heater ratings, the 3AU6 and 12AU6 are identical to the 6AU6-A.

GENERAL

ELECTRICAL					
Cathode—Coated Unipotential		6AU6-A	12	2AU6	
Heater Voltage, AC or DC	3.15	6.3 ± 109	% 12.6	$5 \pm 10\%$	Volts
Heater Current		Ó.	. 3	0.15	Amperes
Heater Warm-up Time*	11	1	1		Seconds
Direct Interelectrode Capacitances			With	Without	ł
Pentode Connection			Shield†	Shield	
Grid-Number 1 to Plate, maxim	ium (g1 to	P)().003 5	0.0035	$\mu\mu f$
Input: g1 to $(H+K+g2+g3+l)$	S)		5.5	5.5	$\mu\mu f$
Output: P to $(H+K+g2+g3+$	IS)		5.0	5.0	$\mu\mu$ f
Triode Connection‡					• •
Grid-Number 1 to Plate: g1 to	(P+g2+g	3+IS)	2.6	2.6	$\mu\mu$ f
Input: g1 to (H+K)			3.2	3.2	$\mu\mu f$
Output: $(P+g2+g3+IS)$ to $(H-g2+g3+IS)$	+K)		8.5	1.2	$\mu\mu$ f

MECHANICAL

Mounting Position—Any Envelope—T-5½, Glass

Base-E7-1, Miniature Button 7-Pin

MAXIMUM RATINGS

DESIGN-MAXIMUM VALUES	Pentode	Triode	
DESIGN-MAXIMOM VALUES	Connection	Connecti	on‡
Plate Voltage	330	275	Volts
Screen-Supply Voltage	330		Volts
Screen Voltage—See Screen Rating Chart			
Positive DC Grid-Number 1 Voltage	0	0	Volts
Plate Dissipation	3.5	3.5	Watts
Screen Dissipation	0.75		Watts
Heater-Cathode Voltage			
Heater Positive with Respect to Cathode	!		
DC Component		100	Volts
Total DC and Peak	200	200	Volts
Heater Negative with Respect to Cathoo			. ••
Total DC and Peak		200	Volts
5			

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey tube of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the tube manufacturer to provide acceptable service-ability of the tube, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other tubes in the equipment, equipment control adjustment, load variation, signal variation, and environmental conditions.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

BASING DIAGRAM

EIA 7BK

TERMINAL CONNECTIONS

Pin 1—Grid Number 1
Pin 2—Internal Shield and
Grid Number 3
(Suppressor)

Pin 3—Heater

Pin 4—Heater

Pin 5—Plate

Pin 6—Grid Number 2
(Screen)

Pin 7—Cathode

PHYSICAL DIMENSIONS

EIA 5-2

CHARACTERISTICS AND TYPICAL OPERATION

CLASS A ₁ AMPLIFIER	Pentode Connection	Triode Connection‡			
Plate Voltage	250	250	250	Volts	
Suppressor, Connected to Cathode at Socket					
Screen Voltage	125	1 <i>5</i> 0		Volts	
Cathode-Bias Resistor	100	68	330	Ohms	
Amplification Factor			36		
Plate Resistance, approximate	1.5	1.0		Megohms	
Transconductance	4500	5200	4800	Micromhos	
Plate Current	7.6	10.6	12.2	Milliamperes	
Screen Current	3.0	4.3		Milliamperes	
Grid-Number 1 Voltage, approximate					
lb = 10 Microamperes4.2	-5.5	-6.5		Volts	

- * The time required for the voltage across the heater to reach 80 percent of its rated value after applying 4 times rated heater voltage to a circuit consisting of the tube heater in series with a resistance equal to 3 times the rated heater voltage divided by the rated heater current.
- † With external shield (EIA 316) connected to pin 7.
- ‡ With screen and suppressor connected to plate.

CLASS A RESISTANCE-COUPLED AMPLIFIER

Rp	Rs	R _{g1}	Ebb	= 9	0 Vo	lts	Ebb	= 18	0 Vo	lţs	Ebb:	= 300	۷o	lts	O-11-
Meg.	Meg.	Meg.	Rk	Rsg	Gain	Εo	Rk	Rsg	Gain	Εo	Rk	Rsg (Gain	Eo	
0.10			960	0.1	68	13	610	0.2		27	480	0.2		47	
0.10	0.24	0.1	1000	0.2	93	16_	630	0.2	130	35	480	0.2	160	60	Esig \S Rg1
0.24	0.24	0.1	2900	0.3	88	12	1700	0.4	120	25	820	0.6		44	
0.24	0.51	0.1	3600	0.4	110	14	1800	0.5	170	31	960	0.7	240	53	
0.51	0.51	0.1	5300	0.9	110	10	4000	0.9	160	23	2100	1.1	230	38	
0.51	1.0	0.1	4600	1.1	125	12	3800	1.1	200	25	1800	1.3	300	44	후 후 후 Epp 후 후
0.24	0.24	10	0	0.4	100	12	0	0.5	160	25	0	0.5	210	44	Note: Coupling capacitors (C) should be
0.24	0.51	10	0	0.5	120	14	0	0.6	180	31	0	0.7	270	52	adjusted to give desired frequency
0.51	0.51	10	0	0.9	120	11	0	1.1	200	22	0	1.2		38	response. Rk and Rsg should be
0.51	1.0	10	0	1.0	145	12	0	1.1	240	25	0	1.3	350	42	adequately by-passed.

Notes: 1. Eo is maximum RMS voltage output for five percent (5%) total harmonic distortion. 2. Gain measured at 2.0 yolts RMS output. 3. For zero-bias data, generator impedance is negligible.

6AU6-A ET-T916A Page 4

6AU6-A ET-T916A Page 6 4-60

AVERAGE TRANSFER CHARACTERISTICS

