UNIVERSIDADE FEDERAL DA BAHIA - UFBA

ESCOLA POLITÉCNICA / DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO ENGG56 – PROJETO DE CIRCUITOS INTEGRADOS DIGITAIS – TRABALHO PRÁTICO

Processadores podem ser classificados de acordo com o número de operandos utilizados em suas instruções, assim como a forma de acesso aos mesmos (em memória ou em registradores). Assim, tem-se máquinas de 0, 1, 2, 3 endereços e arquiteturas LOAD/STORE.

Máquinas de 0-endereços são as mais simples de se implementar. Por esta razão, este padrão foi adotado na especificação de JVM (*Java Virtual Machine*), de forma a flexibilizar a implementação da mesma em diferentes plataformas computacionais, envolvendo processadores de diferentes arquiteturas (Intel, ARM, por exemplo) e sistemas operacionais (Windows, Linux, Android, entre outros).

O conjunto de instruções JVM (os chamados *bytecodes*) é bastante extenso e trata, basicamente, de operações lógicas e aritméticas executadas sobre uma pilha e *arrays* de memória.

Como forma de introduzi-los neste universo, vocês deverão implementar uma máquina de 0-endereços com um conjunto de instruções bem simples (Tabela 1), assim como fazer sua validação em termos de temporização e funcionalidade.

Produtos:

Organizem-se em grupos de no máximo 4 alunos. Cada grupo deverá entregar os seguintes artefatos:

- 1. A pasta de projeto *C:\ENGG56\Quartus\Processador* compactada, contendo:
 - a implementação do sistema completo (processador/memórias) no ambiente Altera Quartus Prime, com prototipação na placa DE2-115;
 - um programa teste simples (em memória) que comprove o funcionamento das instruções do processador, com exibição de dados na placa DE2-115;
 - análise temporal estática realizada no Timing Analyzer, com o correspondente arquivo .SDC.
- 2. A pasta de projeto *C:\ENGG56\ModelSim\Processador* compactada, contendo o *testbench* desenvolvido.
- 3. Um relatório em .pdf, contendo:
 - a descrição da implementação desenvolvida (obrigatório a arquitetura do processador especificado e a FSM referente à sua unidade de controle);
 - os cenários de teste realizados;
 - a descrição dos resultados da análise temporal estática;
 - a participação individual e aprendizado adquirido por cada membro.

Entrega: 06/12

Via link do Google Drive compartilhado com o e-mail oliveira.wagner@ufba.br.

Software:

Dois softwares devem ser baixados: Intel Quartus Prime Lite Edition (versão 18.1) e ModelSim, considerando a família de dispositivos FPGA Cyclone IV.

 $\frac{https://www.intel.com/content/www/us/en/software-kit/665990/intel-quartus-prime-lite-edition-design-software-kit/665990/intel-quartus-prime-lite-edition-design-software-version-18-1-for-windows.html?}\\$

https://www.intel.com/content/www/us/en/software-kit/665988/intel-quartus-prime-lite-edition-design-software-version-18-1-for-linux.html?

Em qualquer dos casos, recomenda-se a opção "Individual Files". Além disso, selecionem apenas o Quartus, o ModelSim e o suporte ao dispositivo Cyclone IV (arquivo .qdz).

Caso você deixe os arquivos baixados na mesma pasta, basta fazer a instalação do Quartus que o ModelSim e o dispositivo Cyclone IV serão instalados conjuntamente. Caso contrário, após a instalação do Quartus e do ModelSim, deve-se fazer a instalação do arquivo referente ao dispositivo Cyclone IV (arquivo .qdz). Para tal, use o menu do Quartus: "Tools -> Install Devices...".

Para fazer o mapeamento para entradas/saídas disponíveis na placa DE2-115, veja o manual da placa a seguir ou use o arquivo de pinagem *DE2_115.qsf* disponibilizado no Moodle.

https://www.terasic.com.tw/cgi-

bin/page/archive_download.pl?Language=English&No=502&FID=cd9c7c1feaa2467c58c9aa4cc02131af

IMPORTANTE: Não implemente testbenches lineares.

Pede-se que os testbenches não se limitem a exibir apenas waveforms. Faça uso de mensagens descritivas, exibidas no console.

Definições referentes às memórias utilizadas ficarão sob a responsabilidade de cada grupo. Soluções muito parecidas serão consideradas cópias, com nota zerada para os grupos envolvidos.

Tabela 1. Conjunto de instruções para o processador proposto.

Tipo	Instrução	Operando	Descrição
Transferência de Dados	PUSH	М	TOS ← [M]
	PUSH_I	Imm	TOS ← Immediate
	PUSH_T		TOS ← Temp ₁
	POP	М	[M] ← TOS
Aritmética	ADD		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 + Temp_2$
	SUB		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 - Temp_2$
	MUL		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 * Temp_2$
	DIV		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 / Temp_2$
Lógica	AND		Temp ₁ ← TOS; Temp ₂ ← TOS; TOS ← Temp ₁ AND Temp ₂
	NAND		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 NAND Temp_2$
	OR		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 OR Temp_2$
	XOR		$Temp_1 \leftarrow TOS; Temp_2 \leftarrow TOS; TOS \leftarrow Temp_1 XOR Temp_2$
	СМР		Temp ₁ ← TOS; Temp ₂ ← TOS; TOS ← 1 (se Temp ₁ > Temp ₂) Temp ₁ ← TOS; Temp ₂ ← TOS; TOS ← 0 (se Temp ₁ = Temp ₂) Temp ₁ ← TOS; Temp ₂ ← TOS; TOS ← -1 (se Temp ₁ < Temp ₂)
	NOT		$Temp_1 \leftarrow TOS; TOS \leftarrow NOT Temp_1$
Transferência de Controle	GOTO	М	desvio incondicional para o endereço [M]
	IF_EQ	М	Temp₁ ← TOS; desvio para o endereço [M] se Temp₁ = 0
	IF_GT	М	Temp₁ ← TOS; desvio para o endereço [M] se Temp₁ > 0
	IF_LT	М	Temp₁ ← TOS; desvio para o endereço [M] se Temp₁ < 0
	IF_GE	М	Temp₁ ← TOS; desvio para o endereço [M] se Temp₁ ≥ 0
	IF_LE	М	Temp₁ ← TOS; desvio para o endereço [M] se Temp₁ ≤ 0
	CALL	М	chamada de subrotina no endereço [M]
	RET		retorno de subrotina

Observações:

- 1. TOS (Top of Stack): representa o topo da pilha de dados;
- 2. M: representa um endereço de memória;
- 3. [M]: representa o conteúdo de um endereço de memória M;
- 4. Imm: representa um valor imediato (constante);
- 5. Tempx: representa um registrador interno;
- 6. Atribuição sobre TOS: representa inserção no topo da pilha de dados, com consequente atualização de TOS; e
- 7. Atribuição proveniente de TOS: representa remoção do dado presente no topo da pilha de dados, com consequente atualização de TOS.