Chapter 5 Review Homework

Part A: Algebra Review

1. Factor the following expressions into the form y = (x + a)(x + b) for some real numbers a and b.

a.
$$y = x^2 + 4x + 2$$
 b. $y = x^2 - 5 + 4$ c. $y = x^2 + 2 - 3$

b.
$$y = x^2 - 5 + 4$$

c.
$$y = x^2 + 2 - 3$$

d.
$$f(x) = 2x^2 + 7x + 3$$
 e. $y = x^2 + 10x + 25$

e.
$$y = x^2 + 10x + 25$$

2. Rewrite the following expressions such that it contains only terms of the form ax^n .

a.
$$\sqrt[3]{x}$$

b.
$$\frac{3}{\sqrt{x}}$$

C.
$$\frac{4x^3-2x^2}{x}$$

d.
$$\frac{x^3-5}{\sqrt[3]{3x^2}}$$

Part B: Chapter 5 Review

1. Find the derivative of each function:

a.
$$y = cos(x^2 - 3x + 8)$$

b.
$$g(x) = (2x+3)(\sqrt{4x^2-3x+5})$$

c.
$$f(x) = tan(2x^3 + x - 2)$$

d.
$$y = \frac{\sin(3x-2)}{\sqrt{2x^3+6}}$$

e.
$$(x-3)(x^3-3x+8)$$

f.
$$\frac{(3x^4+8x^2-5x)}{(5x^2-7x+8)}$$

2. Given $h(x) = 2x^3 + 3x^2 - 12x$, find the maximum and minimum values of the function on the interval [-3,3].

3. Given $f(x) = x^3 - 3x^2 + 12$. What is the absolute *maximum* value of f on the closed interval [-2, 4]?

4. Integrate.

a.
$$\int_{-2}^{1} (z^2 - 7z + 3) dz$$

b.
$$\int (2\sqrt{x} + \sin(x) + \frac{1}{\sqrt[3]{x}}) dx$$

c.
$$\int_{4}^{-3} (\cos(x) - \frac{3}{x^5}) dx$$

d.
$$\int_{1}^{2} (\frac{1}{7z} + \frac{\sqrt[3]{z^2}}{4} - \frac{1}{2z^3}) dz$$

5. Simplify using the Fundamental Theorem of Calculus.

a.
$$\frac{d}{dx} \int_{2}^{x} 4tan(\sqrt[3]{x})$$

b.
$$\int \frac{d}{dx} 4tan(\sqrt[3]{x})$$

c.
$$\frac{d}{dx} \int_{2}^{7} 4tan(\sqrt[3]{x})$$

d.
$$\frac{d}{dx} \int_{2}^{x^2} (\sin(t^3)) dx$$

- 6. The position function of a particle is $x(t) = 30t 5t^2$.
 - a. Find the velocity function x(t).
 - b. Find the velocity when t=2
 - c. When is the particle stationary?
- 7. The position function of a particle is $x(t) = 4sin(2\pi t)$.
 - a. Find the velocity function x(t).
 - b. Find the velocity when t = 1.

- 8. A ball is thrown upward from the roof of a 32-foot building with velocity 112 ft/s. The height after t seconds is given by $h(t) = -16t^2 + 112t + 32$.
 - a. Find the maximum height that the ball reaches.
 - b. Find the velocity of the ball when it hits the ground.
- 9. Draw a graph and then determine the area bounded by $y = x^2 x = 0$, x = 1, and y = 4.

10. Draw a graph and then determine the area bounded by $y = x^2$, y = 0, and x = 2.

11. Sketch a graph that satisfies the following conditions:

•
$$f'(2) = 0$$

•
$$f''(x) \le 0$$
 for $2 < x < 4$

•
$$f'(-4) = 0$$

12. What do the following situations tell you about the graph of the function?

a.
$$f'(3) = 0$$

b.
$$f'(3) = 0$$
 and $f''(3) = -2$

c.
$$g''(x) > 0$$
 for all x

d.
$$g'(7) > 0$$

e.
$$f'(x) < 0$$
 for $x > 3$, $f'(x) > 0$ for $x < 3$, and $f'(3) = 0$

13. Evaluate the following limits.

a.
$$\lim_{x \to 2} (8-3x+12x^2)$$
 b. $\lim_{x \to 5} \frac{x^2-25x}{x^2+2x-15}$

b.
$$\lim_{x \to 5} \frac{x^2 - 25x}{x^2 + 2x - 15}$$

C.
$$\lim_{z \to 4} \frac{\sqrt{z}-2}{z-4}$$

14. Given $h(x) = x^3 - 6x^2$, find the intervals for which h(x) is increasing, decreasing, concave up, and concave down.

15. If f'(x) = 2x - 5 and f(-4) = 2, find the equation of f(x).