PROCEEDINGS

OF THE

NATIONAL ACADEMY OF SCIENCES

1969

Vol. XXXIX

SECTION-A

PART IV

Application on Jacobi Polynomials to some Nonlinear Oscillations

By

R. M. GARDE

Department of Mathematics, Government Engineering College, Jabalpur, M.P.

[Received on 25th March, 1968]

1. Introduction

Recently ultraspherical polynomials have been used to solve some nonlinear free oscillation problems [1, 2, 3]. The author [4, 5] has applied Gegenbauer polynomials to some nonlinear forced oscillation problems. The author [6] has also applied Jacobi polynomials to the study of nonlinear free oscillations.

In the present paper the general forced oscillation problem is solved with the help of Jacobi polynomials. The self sustained oscillations have also been considered.

2. Jacobi polynomials

Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$ are sets of polynomials orthogonal in the interval (-1,1) with respect to the weight factor $(1-x)^{\alpha}(1+x)^{\beta}$, each set corresponding to values of α and β such that $Re \alpha > -1$, $Re \beta > -1$. They may be obtained from [7, p. 271].

(2.1)
$$\sum_{n=0}^{\infty} P_n(\alpha,\beta) (x) t^n = 2^{\alpha+\beta} \rho^{-1} (1+t+\rho)^{-\beta} (1-t+\rho)^{-\alpha},$$

where

(2.2)
$$\rho = (1 - 2 x t + t^2)^{\frac{1}{2}}.$$

The ultraspherical (Gegenbauer), Legendre and Chebyshev polynomials are special cases of Jacobi polynomials.

In the interval (-A, A) Jacobi polynomials are defined as sets of polynomials orthogonal in this interval with respect to the weight factor $(1-x/A)^{\alpha}$ $(1+x/A)^{\beta}$. This gives rise to the polynomials $P_n^{(\alpha,\beta)}$ (x/A).

3. Linear Jacobi polynomial approximation

An arbitrary function restricted by very few conditions (absolute integrability suffices if Fejer's summation method is employed), can be expanded in a series of Jacobi polynomials [8, p. 451]. Thus for a function f(x) expandable in terms of these polynomials in the interval (-A, A), one obtains

(3.1)
$$f(x) = \sum_{n=0}^{\infty} a_n(\alpha, \beta) P_n(\alpha, \beta) (x/A),$$

where the coefficients $a_n^{(\alpha,\beta)}$ are given by

(3.2)
$$a_{n}(\alpha,\beta) = \frac{\int_{-1}^{1} f(Ax) P_{n}(\alpha,\beta) (x) (1-x)^{\alpha} (1+x)^{\beta} dx}{\int_{-1}^{1} [P_{n}(\alpha,\beta) (x)]^{2} (1-x)^{\alpha} (1+x)^{\beta} dx}$$

If the series (3·1) is truncated after the second term, one obtains a linear approximation

(3.3)
$$f_*(x) = a_0^{(\alpha,\beta)} P_0^{(\alpha,\beta)} (x/A) + a_1^{(\alpha,\beta)} P_1^{(\alpha,\beta)} (x/A),$$
 where star denotes an

where star denotes approximation.

4. The forced oscillation problem

Here we consider the forced oscillation problem characterised by the differential equation

(4.1)
$$x + x g(x) + f(x) = E_0 + E_1 \cos \omega \tau, \quad x = \frac{dx}{d\tau}$$

where either g(x) or f(x) or both may be nonlinear function of x.

It has been shown in [9] that if (i) f(x) and g(x) have first derivatives, (ii) m, n, p all positive numbers exist such that

(a)
$$g(x) > n > 0$$
 when $|x| > m$ otherwise $g(x) > -p$,

(b)
$$x f(x) > 0$$
 when $|x| > m$,

(c) Lt
$$|f(x)| = \infty$$
, so that if $F(x) = \int_0^x f(x) dx$, Lt $\frac{f(x)}{x \to \infty} = 0$,

then (4.1) has a solution of period $2\pi/\omega_{\bullet}$

Equation (4.1) can be written in the form

(4.2)
$$x + \frac{d}{d\tau} (G(x)) + f(x) \qquad E_0 + E_1 \cos \omega \tau, \text{ where } G(x) = \int_0^\infty g(x) dx.$$
 If γ and δ are the minimum and σ

If γ and δ are the minimum and maximum amplitudes of the motion and if G(x) and f(x) are absolutely integrable functions, they can be expanded in the interval (γ, δ) in terms of shifted Jacobi polynomials $P_n^{(\alpha, \beta)}(x')$, where [10, p. 58]

$$x' = \frac{2x - \gamma - \delta}{\delta - \gamma}.$$

Letting $2A = \delta - \gamma$ and $x_c = \frac{\gamma + \delta}{2}$, (4.3) becomes

$$(4.4) x' = \frac{x - x_c}{A}.$$

In case of symmetric oscillations, however,

$$\delta = -\gamma$$
 and $x' = x$

Expanding G(x) and f(x) in a series of Jacobi polynomials, truncating after the linear term and substituting the resulting expressions in (4.2), we get

(4.6)
$$k_* = a_1^{(\alpha,\beta)} \frac{2 + \alpha + \beta}{2A}.$$

(4.7)
$$\omega_*^2 = b_1^{(\alpha,\beta)} \frac{2 + \alpha + \beta}{2A} \quad \text{and} \quad$$

(4.8)
$$\omega_1^2 = b_0^{(\alpha,\beta)} + b_1^{(\alpha,\beta)} \left[\frac{\alpha - \beta}{2} - \frac{2 + \alpha + \beta}{2A} x_c \right],$$

 $a_0^{(\alpha,\beta)}$, $a_1^{(\alpha,\beta)}$, $b_0^{(\alpha,\beta)}$ and $b_1^{(\alpha,\beta)}$ being the first two coefficients in the expansions of G(x) and f(x) respectively.

The forced oscillation corresponding to the linearised equation (4.5) is given by

(4.9)
$$x_* = \frac{E_0 - \omega_1^2}{\omega_*^2} + \frac{E_1}{[k_*^2 \omega^2 + (\omega_*^2 - \omega^2)^2]^{\frac{1}{2}}} \cos(\omega_\tau + \phi),$$

where

$$\phi = \tan^{-1} \frac{k_{*}^{2} \omega}{\omega_{*}^{2} - \omega^{2}}$$

5. Self sustained oscillations

The present technique can also be applied to the study of free as well as forced self sustained oscillations typified by Vander Pol's equation. We shall first consider the free oscillations.

(a) Free oscillations

They are characterised by the Vander Pol's equation

(5·1)
$$\ddot{x} - \varepsilon (1 - x^2) \dot{x} + x = 0,$$

where ε is a parameter. They may also be represented by Rayleigh's equation

$$(5.2) \qquad \qquad \ddot{y} - \varepsilon \left(\dot{y} - \frac{\dot{y}^3}{3} \right) + y = 0,$$

which is obtained through the transformation $\dot{y} = x$.

Equation (5.1) is a special case of (4.2) with $G(x) = -s (x - \frac{x^3}{3})$, f(x) = x and $E_0 = E_1 = 0$.

Now Verma [11] has shown that

(5.3)
$$\int_{-1}^{1} x^{s} (1-x)^{\alpha} (1+x)^{\beta} P_{n}^{(\alpha,\beta)}(x) dx$$

$$= \frac{2^{n+\alpha+\beta+1} s! \Gamma(1+\alpha+n) \Gamma(1+\beta+s)}{n! (s-n)! \Gamma(n+s+\alpha+\beta+2)} 2F_{1} \begin{bmatrix} -s+n, 1+\alpha+n; \\ -\beta-s; \end{bmatrix}, s>n.$$
We also have the result [7, p. 261]

(5.4)
$$\int_{-1}^{1} x^{s} (1-x)^{\alpha} (1+x)^{\beta} P_{n}(\alpha,\beta) (x) dx = 0, s < n,$$

and Bhonsle [12, p. 160] has shown that

$$(5.5) \int_{-1}^{1} x^{n} (1-x)^{\alpha} (1+x)^{\beta} P_{n}(\alpha,\beta) (x) dx = \frac{2^{1+\alpha+\beta+n} \Gamma(1+\alpha+n) \Gamma(1+\beta+n)}{\Gamma(2+\alpha+\beta+n)}.$$

Approximating $\varepsilon(x-x^3/3)$ by means of linear Jacobi polynomials using equations (3.2), (3.3) and (5.3) to (5.5), one obtains

(5.6)
$$\{ (x - x^3/3) \}_* = k_* x + \frac{(\alpha - \beta)A}{2 + \alpha + \beta} [k_* - \omega_1^2]$$
, where

A is the amplitude of the symmetric oscillation

(5.7)
$$k_* = \varepsilon \left[1 - \frac{A^2 \{ (\alpha - \beta)^2 + \alpha + \beta + 4 \}}{(\alpha + \beta + 4)(\alpha + \beta + 5)} \right] \text{ and }$$

(5.8)
$$\omega_1^2 = \epsilon \left[1 - \frac{A^2 \{ (\alpha - \beta)^2 + 3(\alpha + \beta) + 8 \}}{3(\alpha + \beta + 3)(\alpha + \beta + 4)} \right].$$

Linearising (5.1) with the help of (5.6), we get

$$(5.9) \dot{x} - k_* \dot{x} + x = 0.$$

Now for a steady state periodic motion to exist $k_* = 0$, which yields the condition on maximum amplitude of the periodic motion corresponding to a limit cycle. We then have

$$1 - \frac{(A^2 \{ \alpha - \beta)^2 + \alpha + \beta + 4 \}}{(\alpha + \beta + 4) (\alpha + \beta + 5)} = 0.$$

If $\alpha = \beta = -\frac{1}{2}$. (5.10) yields A = 2, which is a well-known result.

(b) Forced oscillations

Vander Pol's equation with a forcing term: We note that the linearisation scheme when applied to the equation

(5.11)
$$\ddot{x} - \varepsilon (1 - x^2) \dot{x} + \omega_0^2 x = E \cos (\omega \tau + \phi),$$

where ε , ω_0^2 and E are positive constants, yields the steady state solution

(5.12)
$$x = \frac{E \cos(\omega \tau + \phi + \delta)}{\left[(\omega_0^2 - \omega^2)^2 + \omega^2 \varepsilon^2 \left\{ 1 - \frac{(\alpha - \beta)^2 + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^2 \right\}^2 \right]^2}$$

where

(5.13)
$$\delta = \tan^{-1} \frac{\varepsilon \left\{ 1 - \frac{(\alpha - \beta)^2 + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^2 \right\}}{\frac{\omega_0^2 - \omega^2}{(\alpha + \beta + 4)(\alpha + \beta + 5)}} = 0 \text{ as } k_* = 0.$$

The steady state amplitude is thus given by

(5·14)
$$A^{2} = E^{2} \left[(\omega_{0}^{2} - \omega^{2})^{2} + \omega^{2} \varepsilon^{2} \left\{ 1 - \frac{(\alpha - 2) + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^{2} \right\}^{2} \right]^{-1}$$

$$Putting \frac{\omega^{2} - \omega_{0}^{2}}{\omega \varepsilon} = x,$$

$$\frac{(\alpha - \beta)^{2} + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} A^{2} = y \text{ and}$$

$$\frac{E^{2}}{\omega^{2} \varepsilon^{2}} \frac{(\alpha - \beta)^{2} + \alpha + \beta + 4}{(\alpha + \beta + 4)(\alpha + \beta + 5)} = F, (5·14) \text{ becomes}$$

$$(5·15) \qquad x^{2} y + (1 - y)^{2} y = F$$

For $\alpha = \beta = -\frac{1}{2}$ this response relation is the same as obtained by other methods in [13, p. 82] and [14, p. 155]. The technique can also be used when the restoring force is non-linear. In this case only the value of ω_0^2 changes.

Discussion and conclusions

The results obtained by the present method agree with those obtained by other methods in case of self sustained oscillations as pointed above.

The linearisation of the nonlinear differential equation governing oscillations has been accomplished by linearising the nonlinear functions (damping and restoring) by means of linear Jacobi polynomials. The results of ultraspherical (Gegenbauer) polynomial approximation can be obtained from the corresponding results obtained in this paper by putting $\mathbf{a} = \beta = \lambda - \frac{1}{2}$. The differential equations discussed occur in several physical problem.

Acknowledgement

The author is highly thankful to Dr. B. R. Bhonsle, Professor of Applied Mathematics, Government Engineering College, Jabalpur for his guidance and valuable suggestions.

References

- 1. Denman, H. H. and Howard, J. E. Application of ultraspherical polynomials to nonlinear oscillations—I—Free oscillations of the pendulum. Quar. App. Math., 21(4), 325-330, 1964.
- 2. Denman, H. H. and Liu, Y. K. Application of ultraspherical polynomials to nonlinear oscillations—II—Free oscillations. Quar. App. Math., 22(4), 273-292, 1965.
- 3. Denman, H. H. Application of ultraspherical polynomials to asymmetric nonlinear oscillations. *Jour. Ind. Math. Soc.*, **14**(1), 9-20, 1964.
- 4. Garde, R. M. Application of Gegenbauer polynomials to nonlinear oscillations—Forced and free oscillations without damping. *Indian Jour. Math.*, 7(2), 111-117, 1965.
- 5. Garde, R. M. Application of Gagenbauer polynomials to nonlinear damped oscillations. Communicated for publication to the Journal of Science and Engineering Research.
- 6. Garde, R. M. Application of Jacobi polynomials to nonlinear oscillations—I—Free oscillations. *Proceedings of National Academy of Sciences*, *India*, A37(1), 1967.
- 7. Rainville, E. D. Special functions. McMillan Co., New York, Second Edition, 1960.
- 8. Lanczos, G. Applied Analysis. Sir Issac Pitman and Sons Ltd., London, 1957.
- 9. Levinson, N. and Smith, O. K. Existence of periodic solutions of second order differential equations with a forcing term. *Jour. Math. Phy.*, 22, 41, 1943.
- 10. Szego, G. Orthogonal polynomials. Amer. Math. Soc. Colloquium Publication, 23, New York, 1939.
- 11. Verma, R. C. On some integrals involving Jacobi polynomials.

 To appear in Proc. National Academy of Sciences, India.
- 12. Bhonsle, B. R. On some results involving Jacobi polynomials. Bull. Cal. Math. Soc., 50, 160, 1958.
- 13. McLachlan, N. W. Ordinary nonlinear differential equations in Engineering and Physical Sciences. Second edition, Oxford, 1958.
- 14. Stoker, J. J. Nonlinear vibrations. Inter Science Publishers, Inc., New York, 1961.

Photocatalytic synthesis of aminoacids

 B_1

N. R. DHAR & S. K. ARORA*

University of Allahabad, Allahabad, India

[Received on 7th March, 1968]

Abstract

Photosynthesis of aminoacids has been obtained by exposing a mixture of glucose and ammonia in the presence of an oxidising agent like $\mathrm{H_2O_2}$ or potassium persulphate. Molybdic acid is a better catalyst than vanadium pentoxide. The synthesis of aminoacids is highly facilitated by the absorption of light and the addition of phosphates. Along with photosynthesis of aminoacids, photolysis is also taking place.

Introduction

Pavlovskaya and coworkers¹ observed the formation of aminoacids by the action of ultraviolet on the solution of formaldehyde and ammonium salts in the presence of adsorbents. Deschreider² obtained aminoacids by exposing to ultraviolet rays a mixture containing succinic acid, maleic acid or propionic acid and ammonia, ammonium carbonate or ammonium cyanate. Miller²,⁴,⁵ observed the synthesis of aminoacids by passing electric discharge in an atmosphere of mixture of gase; such as hydrogen, methane and ammonia.

Recently Ranganayaki and Bahadur⁶ have investigated the possibility of nitrogen fixation without the help of bacteria and subsequent utilization of the fixed nitrogen in the formation of aminoacids in an aqueous mixture containing para formaldehyde as the source of carbon and colloidal molybdenum oxide as catalyst in a sterile set by exposing the solution to light of a 500 watt bulb.

Formation of complex organic compounds by the action of high energy source like ultraviolet rays, X-rays and electric discharge on the mixture of simple gases like methane, ammonia, hydrogen and water, has been demonstrated by many workers like Horowitz and Miller⁷. Miller and Urey⁸, Lowe et al⁹ and others¹⁰, 11.

In the present study the photosynthesis of aminoacids has been investigated by exposing mixtures of glucose and ammonia in presence of an oxidising agent like H_2O_2 or potassium persulphate. The influence of phosphates, molybdic acid and vanadium pentoxide has also been studied.

Experimental

Sterilized sets were used in these experiments. 10 ml. of M/4 glucose solution and 10 ml of M/3 NH₃ and 0·2 gm titania were taken in six small conical flasks. 10 ml of M/40 H₂O₂ were added to all the flasks. 0·01 gm of molybdic acid or vanadium pentoxide was added in one flask each and the mixture of two in two flasks. Two sets were phosphated with 0 l gm CaHPO₄.2H₂O (one with MoO₃+ V_2O_5) and one without it). Similar six flasks were prepared for dark set. All

^{*}Present Address: Punjab Agricultural University, Hissar, India.

the sets were exposed to 500 watt electric bulb, the dark sets were covered with thick black cloth. The contents of the flask were analysed for aminoacids after definite intervals of time. The qualitative detection was done by paper chromatography while the quantitative estimations were carried out with respect to standard solution colorimetrically 12 after desalting. A similar set was prepared with potassium persulphate instead of H_2O_2 and aminoacids analysed after a definite interval of time.

Sterilization of sets: Sterilization of the $\mathrm{NH_3-H_2O_2}$ - organic compound-titania or other catalysts-phosphate systems were carried out in the following way. Requisite amounts of glucose solution, photosensitiser and phosphate were taken in various flasks. The flasks were cotton plugged and sterilised in an autoclave under 15 lb pressure for 20 minutes. Requisite amounts of $\mathrm{NH_3}$, $\mathrm{H_2O_2}$ or persulphate solution were then introduced by means of a sterilized pipette under aseptic conditions.

The following abbreviations for the aminoacids studied have been used:

Glycine Gly	Glutamic a	cidGlut
Alanine Al	Serine	Se
ValineVal	Argenine	Ar
LeucineLeu	Methionine	e,Me
Aspartic acid Asp.	LysineLy,	ThreonineTh

TABLE 1 10 ml. M/4 glucose + 10 ml. M/3 NH₃ + 10 ml. M/40 $H_2O_2 + 0.2$ gm TiO_2

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIG	HT	DA	RK
1	Gly.,	0.0278		
2	Gly., Al.,	0.0734	Gly.,	0.0247
2 3	Gly., Al.,	0•0746	Al.,	0.0231
4	Gly., Al.,	0 ·04 63	•••	***
5	Gly.,	0.0342	4	400

TABLE 2

10 ml. M/4 glucose + 10 ml. M/3 NH₃ + 10 ml. M/40 H₂O₂ + 0·2 gm TiO₂ + 0·1 gm CaHPO₄·2H₂O

1 2 3	Gly., Al., Gly., Val., Asp., Al. Asp., Al., Th.,	0.0316 1., 0.0868 0.0923	Gly., Al., Gly., Al., Val.,	0·0276 0·0291
4 5	Gly., Val., Gly., Val., Asp., Gly., Val.,	0·0526 0·0368	Gly., Al., Gly., (faint)	0.0273 traces

TABLE 3 10 ml. M/4 glucose + 10 ml. M/3 NH $_3$ + 10 ml. M/40 H $_2$ O $_2$ + 0.2 gm TiO $_2$ + 0.01 gm Molybdic acid

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIGI	łT	DARI	ζ
1 2 3	Gly., Val., Al., Gly., Val., Al., Gly., Val., Ly. Th., Asp.,	, 0.0793	Gly., Al., Gly., Al.,	0•0263 0•0242
4 5	Gly., Val., Ly., Al., Gly., Ly.,	, 0·0489 0•0358	faint 	••
		TABLE 4		
10 n	al. M/4 glucose	+ 10 ml. M/3 NH ₃ - TiO ₂ + 0 ·01 gm	+ 10 ml. M/40] · V ₂ O ₅	$H_2O_2 + 0.2 \text{ gm}$
1 2 3 4 5	Gly., Val., Al., Gly., Val., Glu Gly., Val., Ly. Gly., Val., Al., Gly., Val.,	.t., 0.0747 , Asp., 0.0762	Gly., Al., Gly., Al., Gly., (faint)	0•0258 0•0237
		TABLE 5		
10 n		$+ 10 \text{ ml. } \text{M/3 NH}_3 + \text{ml. } \text{M/0} + \text{NH}_3 + \text{ml.}$		
1 2	Gly., Val., Al., Gly., Val., Se., Ly., Th.,		Gly., Val., Al.	, 0.0296
3	Gly., Val., Al. Se., Th., Asp.		Gly., Val., Al. Ly., (faint)	, 0.0319
4 5	Gly., Val., Al. Asp., Gly., Al.	, Asp., 0.0583	Gly., Val., Al Gly., Val.,	0.0304 0.0274
		TABLE 6	•	
10 n	nl. $M/4$ glucose -	$+ 10 \text{ ml. M/3 NH}_3$ $\text{TiO}_2 + 0.02 \text{ gm (M}$	$+ 10 \text{ ml. M/40} \text{oO}_3 + \text{V}_2\text{O}_5)$	$\mathrm{H_{2}O_{2}} + 0.2~\mathrm{gm}$
1 2 3	Gly., Val., Al. Gly., Val., Al. Al., Gly., Val.,	,Glut. 0.0782	Gly., Al., Gly., Val., Al	0.0278 0.0259
4	Th., Ly., Gly., Val., Ly.	., 0.0503 0.0362	Gly., Gly., (faint)	0.0224

TABLE 7

10 ml. M/4 glacose + 10 ml. M/3 NH₃ + 10 ml. M/40 Potassium persulphate + 0.2 gm TiO₂

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIG	H.I.	DA	ARK
1 2 3 4 5	Gly., Val. Gly	0·0237 0·0672 , Asp., 0·0681 0·0383	Al., Val., Gly.,	0·0238 0·0190
		TABLE 8		
1	10 ml. M/4 gluco persulphat	ose + 10 ml. M/3 NH e + 0.2 gm TiO_2 +	$ m H_3 + 10~ml.~M/4$ $ m 0.1~gm~CaHPO_4$	0 potassium . 2H ₂ O
1 2	Gly., Val., Gly., Val., Al	0.0273 0.0836	•••	•••
3 4 5	Asp., Ly., Gly., Val., Ly Gly., Val.,	0.0731 0.0386	Gly., Val., Al., Val.,	0•0248 0•0269
		TABLE 9		
:		ose + 10 ml. M/3 N phate + 0·2 gm TiO		
1 2 3 4 5	Gly., Gly., Val., Gly., Al., Va Gly., Al., Gly., Al.,	0.0256 0.0689 al., 0.0713 0.0462 0.0298	Gly., Val.,	0.0254 0.0223
		TABLE	10	
		cose + 10 ml. M/3 N ulphate + 0·2 gm Ti		
1 2 3 4 5	Gly., Val., Gly., Val., Gly., Val., Gly., Val., Gly., Al.,		Gly., Val., Gly.,	, 0.0242 ,

TABLE 11 10 ml. M/4 glucose + 10 ml. M/3 NH₃ + 10 ml. M/40 potassium persulphate + 0.2 gm TiO₂ + 0.02 gm (MoO₃ + V_2O_5)

Period of exposure in days	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre	Aminoacids detected chromato- graphically	Amount of amino- acids with respect to glycine in gm/litre
	LIGI	TF	DA	RK
1 2 3 4 5	Gly., Val., Gly., Val., Al., Al., Ly., Val., Al., Asp., Ly., Val., Al.,	Asp., 0.0768	Gly., Val., Al., Val.,	0·0259 0·0239
		TABLE 12	!	
10 ml. N	A/4 glucose + 10	0 ml. $M/3 NH_3 + 10$	$0 \text{ ml. } \mathbf{M}/40 \text{ potas}$	sium persulphate
+	0.2 gm TiO ₂ +	0.02 gm MoO ₃ + V	$_{2}O_{5} + 0.1 \text{ gm C}$	aHPO ₄ .2H ₂ O
1 2	Gly., Val., Gly., Val., Al., Ly., Ap,	0·0328 0 0783	Gly., Al.,	0·0272
3 4 5	Gly., Al., Val., Gly., Val., Al., Val.,		Gly., Val., Al., Al., Al.,	0-0283 0-0267

Discussion

A perusal of the experimental results (table 1-12) shows that when the systems consisting solution of ammonia and glucose and an oxidising agent like H_2O_2 or potassium persulphate are exposed to light in the presence of titania and other photocatalysts MoO_3 or V_2O_5 , an appreciable amounts of aminoacids are formed. The quantity as well as the number of aminoacids produced increases when the systems are phosphated with dicalcium phosphate. It is clear from the results that H_2O_2 gives better results than potassium persulphate. This may be due to the fact that potassium persulphate produces sulphuric acid after sometime which is harmful. It is interesting to note that the phosphated sets contain more aminoacids than the unphosphated ones. The reason is that the phosphates form stable complexes with proteins and aminoacids, thus making the protein or aminoacids molecules much more stable toward decomposition.

It is further observed that in systems containing molybdic acid give better results than containing V_2O_5 and the mixture of these two photocatalysts gives an appreciable increase, which is more pronounced when the systems are phosphated. This may be probably due to the difference in their photocatalytic activity.

The synthesis of aminoacids in sterile set is highly facilitated by the absorption of light. In all the cases the amounts of aminoacids formed are much higher than in the dark. In the exposed sets it seems that the energy liberated by the oxidation of the energy material and the partial conversion of NH₃ into nitrite

and then to nitrate as well as the energy absorbed in the form of light are utilized in the formation of aminoacids. But in the covered sets, only small amounts of aminoacids are synthesised because only the thermo-chemical energy due to the oxidation of the organic compound and the conversion of NH3 into nitrite and nitrate is available.

It is interesting to note that aminoacids photosynthesised constantly undergo decomposition and ammonification aided by light and the addition of CaHPO4. 2H₂O checks the decomposition of these aminoacids by forming stable phosphorylated compound with the result that the amount of aminoacids appear to be larger in solutions which are phosphated.

Pavlovskaya et al. observed the formation of aminoacids by the action of ultraviolet light on the solution of formaldehyde and ammonium salts in the presence of adsorb nts. Bahadur and Ranganayaki13 observed that the formation of aminoacids in water containing dissolved CO2 and colloidal MoO3.

In all these systems it is observed that there is an increase in the amount of aminoacids synthesised in the beginning which is followed by a decrease on the prolonged exposure. It seems that along with photosynthesis of the aminoacids, photolysis is also taking place. Vaidyanathan, Kalyankar and Giri¹⁴ observed the photolysis of aminoacids in presence of different sensitisers.

References

- Pavlovskaya, T. E. Pasynskii, A. G. and Grebenikova, A. I. Doklady Akad. Nauk, U. S. S. R. 135, 473-476, 1960.
- 2. Deschreider, A. R. Nature, 182, 528, 1958.
- Describeder, A. R. Nature, 102, 320, 1930.
 Miller, S. L. Science, 117, 528, 1953.
 Miller, S. L. J. Amer. Chem. Soc., 77, 2351, 1955.
 Miller, S. L. Biochem. Biophys. Acta., 23, 480, 1957.
- 6. Ranganayki, S. and Bahadur K. Nature, 182, 1668, 1958.
- 7. Horowitz, N. H. and Miller, S. L. Fortsch, Chem. Org. Nat., 20, 423, 1962
- Miller, S. L. and Urey, H. C. Science, 130, 245, 1959.
- Lowe, C. U., R'ez, M. W. and Markham, R. Nature, 199, 219, 1963. Oro, J. Proc. Lun. Planet Expl. College, 3(2, 9), 1963.

- Oparin A. I. Origin of life. Acad. Press, 1957. Harding and Mclean. J. Biol. Chem., 20, 217, 1915; 24, 503, 1916.
- Bahadur, K. and Ranganayaki, S. Izvest Acad. Nauk. S. S. S. R.
- Vaidyanathan, C. S., Kalyankar, G. D. and Giri, K. V. Proc. Nat. Acad. Sci. India, 24(3), 286, 1955.

Nitrogen Fixation with Nitrogen free Oxide Surfaces

By

N. R. DHAR & G. N. BHAT

Sheila Dhar Institute of Soil Science, Allahabad University, Allahabad

[Received on 29th April, 1968]

For nitrogen fixation it is not necessary to have soil or sand as medium. Dhar and Seshacharyulu¹ have obtained considerable nitrogen fixation on adding energy materials to chemically pure surfaces, like oxides of metals, at ordinary temperature.

For throwing light an this problem, experiments were undertaken using chemically pure surfaces like oxides of different metals instead of soil or sand mixed with energy materials. The different oxides which have been used are Ferric oxide, Zinc exide and titania. In order to study the influence of phosphates, Tata basic slag and Trichinopoly rock phosphate were used. The organic materials used are Glucose, Wheat straw and sawdust.

Experimental

Pure samples (B. D. H. products) of ferric oxide, Zinc oxide and titania were taken, washed thoroughly and dried at room temperature. 100 gms of each sample were taken in clean dishes and energy materials were added to the extent of 0.8% carbon with and without phosphate sources containing 0.5% P₂O₅.

The results obtained are recorded in the succeeding pages.

TABLE 1 100 gms of Zinc oxide + 0.8% C as Glucose

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in Nitrogen %	Efficiency (amount of N fixed in mgm/gm. of carbon oxidised)	Total available P ₂ O ₅
	The second secon		Light			
0	0.7843				• • •	•••
30	0.6049	0.1794	0.0072	0.0072	40.1	• • •
60	0.5381	0.2462	0.0101	0.0101	41.0	•••
90	0.5023	0.2820	0.0117	0.0117	41.4	
120	0.4792	0.3051	0.0124	0.0124	40.6	
			Dark			
0	0.7843				• • •	•••
30	0.6417	0.1426	0.0029	0.0029	20.3	
60	0.5805	0.2038	0.0044	0.0044	21.5	••
90	0.5489	0.2354	0.0052	0.0052	22.1	
120	0.5247	0.2596	0.0055	0.0055	21-1	

TABLE 2 $100~\rm{gms~of~Zinc~oxide} + 0.8\% ~\rm{M} ~\rm{C~as~Glucose} + 0.5\% ~\rm{P_2O_5} ~\rm{as~Tata~basic~slag}$

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in nitrogen %	Efficiency (amount of N fixed in mgm./gm of carbon oxidised)	$\begin{array}{c} \text{Total} \\ \text{available} \\ \text{P}_2\text{O}_{\delta} \\ \% \end{array}$
***************************************			Light			
0	0.7368	• • •	2.8			0.2316
30	0.5244	0.2124	0.0110	0.0110	51.7	0.2572
60	0.4566	0.2802	0.0148	0.0148	52.8	0.2711
90	0.4229	0.3139	0.0167	0.0167	5 3 ·2	0.2767
120	0.3977	0.3391	0.0179	0.0179	52.7	0.2795
			Dark			0 2700
0	0.7368		15 4110		•••	0.2316
30	0.5540	0.1828	0.0048	0.0048	26.2	0.2478
60	0.4912	0.2456	0.0068	0·0068	27.6	0.2601
90	0.4593	0.2775	0.0078	0.0078	28-1	0.2619
120	0.4307	0.3061	0.0085	0.0085	27.7	0.2671
120	0 100.	0 0001	JABLE 3	3 0000		0 20/1
		xide + 0.8% ro	C as Glucose ck phosphate Light	e + 0.5% P.	₂ O ₅ as Trichi	nopoly
0	0.7707	***	. :::	•••	•••	0.0266
30	0.5676	0.2031	0.0094	0.0094	46.2	0.0421
60	0.5005	0.2702	0.0127	0.0127	47· 0	0.0506
90	0.4676	0.3031	0.0144	0.0144	47.5	0.0562
120	0.4383	0•3324	0.015 6	0. 015 6	46 ·9	0.0603
_	0 =====		$Dark^{\cdot}$			
0	0.7707			•••	•••	0.0266
30	0.6019	0.1688	0.0040	0.0040		0·0 3 85
60	0.5416	0.2291	0.0057	0.0057	24.8	0.0456
90	0.5059	0.2648	0.0067	0.0067	25•3	0.0498
120	0.4780	0.2927	0∙∪073	0.0073	24.9	0.0531
			TABLE 4			
	100	gms. of Fer	ric oxide + (0.8% C as G	Glucose	
			Light			
0	0.7843			•••	***	•••
30	0.6140	0.1703	0.0064	0.0064	37.5	•••
60	0·54 5 8	0.2385	0.0092	0.0092	38.5	• • •
90	0.5098	0.2745	0.0107	0.0107	38.9	•••
120	0.4867	0.2976	0.0113	0.0113	37 ·9	
			Dark		- • •	
0	0.7843	• • •	•••	•••	• • •	
30	0.6496	0.1247	0.0026	0.0026	19.3	
60	0.5874	0,1969	0.0041	0.0041	20 8	•••
90	0.5553	0.2290	0.0049	0.0049	21.3	
120	0.5304	0.2539	0.0052	0.0052	20.4	

TABLE 5

100 gms of Ferric oxide + 0.8% C as Glucose + 0.5% P₂O₅ as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅
			Light			
0	0•7368		•••	• • •	. •	0.2316
30	0.5336	0 ·20 32	0.0101	0.0101	49.7	0.2524
60	0 4667	0.2701	0.0138	0.0138	51.0	0.2618
90	0.4328	0.3040	0.0157	0.0157	51.6	0.2669
120	0.4069	0.3299	0:0168 <i>Dark</i>	0.0168	50.9	0.2697
0	0.7368	•••	• • •	•••		0.2316
30	0.5627	0.1741	0.0044	0.0044	25.2	0.2431
30	0.5009	0.2359	0.0063	0.0063	26.7	0.2528
90	0.4687	0.2681	0.0073	0 0073	27· 2	0.2583
120	0.4403	0•2965	0.0079	0.0079	26.6	0.2614
			TABLE 6			
100 gms o	of Ferric oxid	le + 0.8% C:	as Glucose -	- 0.5% P.O.	as Trichine	moly rock
		,,,	phosphate	70 - 2 - 1	,	pory rock
			Light			
0	0.7707					0.0266
20	0.5765	0.1942	0.0086	0.0086	44.2	0.409
60	0.5098	0.2602	0.0118	0.0118	45.2	0.0477
90	0•4762	0.2945	0.0135	0.0135	45.8	0.0523
120	0•4481	0.3226	0.0145	0.0145	44.9	0.0559
0	0.776		Dark			
0	0.7707	•••	•••	• • •	• • •	0.0266
30	0.6106	0.1601	0.0036	0.0036	22.4	0.0374
60	0.5503	0.2204	0.0052	0.0052	23.5	U·0432
90	0.5154	0.2553	0.0062	0.0062	24.7	0.0465
120	0.4867	0.2840	0.0068	0.0068	23.9	0.0491
			TABLE 7			
	100 g	gms of Titania	•	as Glucose		
0	0.7843		Light			
30	0.6015	0.1828	0.0075	0.0075	41.1	•••
60	0.5342	0°1828 0°2501	0.0102	0.0075	41·1 41·9	•••
90	0.4988	0.2855	0.0103	0.0103	42.3	•••
120	0.4764	0.3079	0.0121	0.0121	41.5	•••
. = 0		0 0070	Dark	0 0140	** 0	***
0 -	0.7843	• • •	• • •	•••	•••	***
30	0.6393	0.1450	0.0031	0.0031	21.3	•••
60	0.5779	0.2064	0.0047	0.0047	22.7	•••
90	0.5465	0.2378	0.0055	0.0055	23.1	•••
120	0.5215	0.2628	0.0059	0.0059	2 2·4	

TABLE 8 100 gms of Titania + 0.3% C as Glucose + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in nitrogen	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅
			Light			
0	0.7368		•	•••		0.2316
30	0.5210	0.2158	0.0114	0.0114	52.8	0.2595
60	0.4529	0.2839	0.0152	0.0152	53· 5	0.2746
90	0.4188	0.3180	0.0172	0.0172	5 4·0	0.2808
120	0.3939	0.3429	0.0184	0.0184	53.6	0·284 3
			Dark			
0	0.7368			***	•••	0.2316
30	0.5512	0.1856	0.0050	0.0050	26.9	0.2487
60	0.4877	0.2491	0.0070	0.0070	28·1	0.2618
90	0.4563	0.2805	ŏ∙0081	0.0081	28 ·8	0.2677
120	0.4273	0.3095	0.0088	8800.0	28•4	0.2708
			PARTE A			
			TABLE 9			
100 gms of	Titania+ 0.8	3% C as Gluco	$cse + 0.5\% P_2$ $Light$	O ₅ as Trich	unopoly rock	c phosphat
0	0.7707	•••	•••	•••	•••	2.0266
3 0	0.5644	0.2063	0·009 8	0.0098	47.5	0.0432
60	0.4969	0 ·273 8	0.0132	0.0132	48 ·2	0.0523
90	0.4639	0· 3068	0.0150	0.0150	48.8	0.0584
120	0 4349	0.3358	0.0162	0.0162	48.2	0.0632
			Dark			
. 0	0.7707				•••	0.0266
30	0.5983	0.1714	00042	0.0042	2 4·5	0.0397
60	0 ·5 390	0.2317	0.0059	0.0059	25.4	0.0471
90	0.5030	0.2677	0.0070	0.0070	26.1	0.0522
120	0•4753	0.2954	0.0076	0.0076	25.7	0.0556
		7	TABLE 10			
	1 0 0 gn	ns of Zinc oxid		as Wheat st	traw ·	
			Light			
0	0· 7 837		0.0126	•••		•••
60	0.5950	0.1887	0.0206	0.0080	42.3	•••
120	0.5346	0.2491	0.0233	0.0107	42.9	
180	0.4964	6 ·2873	0.0247	0.0121	42•1	
			Dark			
_	0.7837		0.0126		. • •	•••
0		0.1557	0.0160	0.0034	21.8	
60	0 5950					•••
	0 5950 0·5346 0·4964	0·2269 0·2578	0·01 7 8 0·01 8 3	0·0052 0·0057	22·9 22·1	•••

TABLE 11 100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C oxidised %	Total Nitrogen %	Increase in Nitrogen	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P_2O_5
			Light			
0	0.7362		0.0118			0.2314
60	0.5144	0.2218	0.0237	0.0119	53.6	0.2523
120	0.5516	0.2846	0.0272	0.0154	54·1	0.2648
180	0.4204	0.3158	0.0287	0.0169	53.3	0.2724
•00	•		Dark			
_	0•7362		0.0118	••		0.2314
0	0•7362 0•5459	0.1903	0 0170	0.0052	27:3	0.2445
60	0.4831	0.2531	0.0189	0.0071	28.0	0.2551
120	0.4488	0 2874	0.0197	0.€079	27•4	0•2632
180	0 7100		m+D1D 10			
			TABLE 12			
100 gms	of Zinc oxide	e + 0.8% C a	as Wheat stra phosphate	w+0·5% P ₃	O ₅ as Trich	inopoly roc
			Light			
	0.7701		0.0124		•••	0.0266
0	0.7701 0.55 5 8	0.2143	0.0228	0.0104	48.5	0.0401
60	0.4930	0.2771	0.0260	0.0136	49.0	0.0478
120	0.4580	0.3121	0.0275	0.0151	48.3	0.0523
180	0.1000	•	Dark			
			0.0124	•••	•••	0.0266
0	0.7701	0.1812	0.0169	0.0045	24.8	0.036
60	0.5889	0.2428	0.0187	0.0063	2 5•9	0.042
120	0·5273 0·4910	0.2791	0.0195	C•0073	25.4	0 ·0 47
180	0.4910	0 2.01	TABLE 13			
	100 -	- of Ferric	oxide + 0.83	& C as Whe	at straw	
	100 8	Sims of Torrio		-		
			Light			
•	0.7837	•••	0.0126	0.007	2 40.1	••
()	0.6043	0.1794	0.0198	0.007		• • •
0 60		0.2391	0.0224	0.011	•	
60	0.5446	·		0.011		
		0.0774				
60 1 2 0	0.5446	0.0774	0•0237 Dark			
60 1 2 0 180	0·5446 0·5063	0.2774		•••		
60 1 2 0 180	0·5446 0·5063 0·7837	0.2774	Dark 0.0126	0.003	0 20.4	
60 1 2 0 180	0·5446 0·5063	0·2774	Dark 0.0126 0.0136	0.003	30 20·4 7 21·5	

TABLE 14 100 gms of Ferric oxide + 0.8% as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	$egin{array}{l} ext{Total} \ ext{available} \ ext{P}_2 ext{O}_5 \ ext{\%} \end{array}$
			Light			
0	0.7362		0.0118	• • •	•••	0.2314
60	0.5235	0.2127	0.0143	0.0109	51.2	0.2499
120	0.4604	0.2758	0.0261	0.0143	5 1·8	0.2594
180	0.4299	0.3063	0·0275 <i>Dark</i>	0.0157	51-2	0.2653
0	0.7362		0.0118			0.2314
60	0.5541	0.1821	0 ·0166	0.0048	26.3	0.2423
120	0.4917	0.2445	0 0185	0.0067	27.4	0.2498
180	0.4581	0.2781	0.0193	0.0075	26.9	0.2557
			TABLE 15		,	
100 gms c	of Ferric oxid	e + 0.8% C2 ro	as Wheat strack phosphate Light	aw + 0.5% e	${ m P_2O_5}$ as ${ m Tri}$	chinopoly
0	0.7701		0.0124			0.0266
60	0.5653	0.2048	0.0219	0.0095	46· 3	0.0381
120	0.5024	0.2677	0.0250	0.0126	4 7 ·0	0.0446
180	0.4672	0.3029	0.0264	0.0140	46• 3	0•0484
0	0.7701		Dark			0.0000
0	0.7701	0.1717	0·0124 0·0165	0.0041	2 3· 8	0·0266 0·0347
60	0·548 4 0·5366	0.1717 0.2335	0.0183	0.0041	24.8	0.0347
120 180	0.5018	0.2683	0.0189	0.0065	24.2	0 ()433
			TABLE 16			
	100	gms of Titan		as Wheat	straw	
		_	Light			
0	0.7837		0.0126			
60	0.5916	0.1921	0.0209	0.0083	4 3 ·2	•••
120	0.5309	0.2528	0.0237	0.0111	43.7	• •
180	0.4924	0.2913	0.0251	0.0125	42.9	••
			Dark			
0	0.7837		0.0126			
	0.6251	0.1586	0.0161	0.0035		
60	0 0201					
60 120 180	0·5526 0·5228	0.2311	0.0180	0.0054	23.0	

TABLE 17 100 gms of Titania + 0.8% C as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen	Increase in nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅
			Light			
0	0.7362		0.0118			0.2314
60	0.5111	0.2551	0.0241	0.0123	54·6	0·2538
120	0.4477	0.2885	0.(277	0.0159	55.1	0.2674
180	0.4172	0.3190	0.0292	0.0174	54.5	0.2756
*			Dark			
0	0.7362		0.0118	•••		0.2314
60	0.5427	0.1935	0.0172	0.0024	27.9	0.2459
120	0.4799	0.2563	0.0192	0.0074	28.8	0.2573
180	0.4444	0-2918	0.0201	0.0083	28.4	0•2661
			TABLE 18			
100 gm	s of Titania	+ 0.8% C as	Wheat strai	w -1 0.50/ P	O as Trich	inopoly
100 6111	5 01 111111111	ro	ck phosphate	;	205 45 111011	mopory
			Light			
0	0 ·7 701	• • •	0.0124	•••	• • •	0.0266
60	0.5520	0.2181	0.0233	0.0109	49.9	0.0412
120	0.4839	0.2812	0.0266	0.0142	50.5	0.0497
180	0.4537	0.3164	0.0282	0.0158	49· 9	0.0551
			Dark			
0	0.7701	• • •	0.0124			0.0266
60	0.5855	0.1846	0.0171	0.0047	2 5·4	0.0367
120	0.5240	0.2461	0.0189	.0.0065	26.4	0.0441
180	0.4863	0 ·2838	0.0198	0.0074	26.0	0.0489
			TABLE 19)		
	100	gms of Zinc	ovide ⊥ 0.80	/ Cas Sawd	nst.	
	100	gms or zinc v	Light	o a as bawa	· Cabo	
			_			
0	0.7860	0.1550	0.0084	0.0053	33·5	***
60	0.6281	0.1579	0·0137 0·0155	0.0033	34·2	•••
120	0.5787	0 2073 0 2521	0.0169	0.0085	33.3	•••
180	0.5339	0.2321		0 0005		
			Dark			
0	0.7860		0.0084	0.0000	17.2	• • •
60	0.6582	0.1278	0.0106	0·0022 0·0034	18.4	• • •
120	0.6016	0.1844	0·0118 0·0123	0.0034	17.7	
180	0.5662	0*2198	0.0123	0 0000		

TABLE 20 100 gms of Zinc oxide + 0.8% C as Sawdust + 0.5% P_2O_5 as Tata basic slag

Period of Exposure in days	Total C Un- oxidised %	Total C Oxidised %	Total Nitrogen %	Increase in Nitrogen %	Efficiency (amount of N fixed in a mgm/gm of carbon oxidised)	Total available P_2O_5
-			Light			
0 60 120	0·7383 0·5488 0·4887 0·4502	0·1895 0·2496 0·2881	0·0079 0·0164 0·0192 0·0208	0.0085 0.0113 0.0129	44·8 45·2 44·7	0 2321 0•2497 0•2592 0•2655
180	0 4302	0 2001	Dark	0 0120		0 2033
0 60 120 180	0·7383 0·5832 0·5274 0·4922	0·1551 0·2109 0·2461	0.0079 0.0115 0.0130 0.0137	0·0036 0·0051 0·0058	23·2 24·1 23·5	0·2321 0·2426 0·2492 0·2543
			TABLE 21			
100 gm	s of Zinc oxi	de + 0.8% C		+ 0.5% P ₂ C) ₅ as Trichin	opoly
			Light			
0 60 1 20 180	0·7724 0·5948 0·5343 0·4981	0·1778 0·2381 0·2743	0.0083 0.0154 0.0179 0.0192	0·0071 0·0096	39·9 40·3	0·0266 0·0387 0·0449
100	0 4301	0.743	Dark	0.0109	39.7	0.0494
0 60 120 180	0·7724 0·6 2 64 0·5735 0·5368	0·1460 0·1989 0·2356	0·0083 0·0113 0·0125 0·0132	0.0030 0.0042 0.0049	20·4 21·1 20·7	0·0266 0·0351 0·0404 0·0435
			TABLE 22			
	100 g	ms of Ferric	oxide + 0.80	% C as Sawd	lust	
	J		Light			
0 60 120 180	0·7860 0 6366 0·5872 0 5421	0·1494 0·1988 0·2439	0·0084 0·0131 0·0148 0·0160	0.0047 0.0064 0.0076	31·4 32·1 31·1	•••
0 60 120 180	0·7860 0·6666 0·6102 0·5756	0·1194 0·1758 0·2104	Dark 0·0\084 0·0104 0·0115 0·0119	0·0020 0·0031 0•0035	16·7 17·6 16·6	•••

TABLE 23 $100~\rm{gms}~of~Ferric~oxide~+~0.8\%~C~as~Sawdust~+~0.5\%~P_2O_5~as~Tata~basic~slag$

Period of Exposu e in days	Total G Un- oxidised	Total C Oxidised %	Total Nitrogen %	Increase in Nitrogen %	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	Total available P ₂ O ₅ %
,			Light			
0 60 120 180	0•7383 0•5569 0•4968 0•4587	0·1814 0·2415 0·2796	0·0079 0·0157 0·0184 0·0199	0.0078 0.0105 0.0120	42·9 43·4 42·9	0·2321 0·2478 0·2556 0·2608
0 60 120 180	0·7383 0·5918 0·5362 0·5011	0·1465 0·2021 0·2372	Dark 0.0079 0.0112 0.0126 0.0133	0·0033 0·0047 0·0054	22·5 23·2 22·7	0•2321 0·2408 0·2456 0•2495
			TABLE 24			
100 gm	of Ferric or	xide + 0.8% r	C as Sawdust ock phosphate	+ 0.5% P	₂ O ₅ as Trich	inopoly
			L i ght			0.0262
0 60 120 180	0·7724 0·6033 0·5426 0·5063	0·1691 0·2208 0·2661	0.0083 0.0147 0.0171 0.0183 Dark	0.064 0.0088 0.0100	37·8 38·2 37· 5	0.0365 0.0416 0.0449
0 60 120 180	0·7724 0·6349 0·5820 0·5460	0·1375 0·1904 0·2264	0·0083 0·0110 0·0122 0·0128	0·0027 0·0030 0·0045	19 6 20•4 19·8	0·0266 0·0341 0·0386 0·0414
			TABLE 25			
	10	0 gms of Titz	inia + 0.8% (Light	C as Sawdu	st	
0 60 120 180	0·7860 0·6249 0·5757 0·5319	0·1611 0·2103 0·2541	0.0084 0.0130 0.0158 0.0171	0.0056 0.0074 0.0087	34•7 35•1 34•2	•••
0 60 120 180	0•7860 0•6548 0•5992 0•5632	0·1312 0·1868 0·2228	Dark 0.0084 0.0108 0.0120 0.0125	0·0024 0·0036 0·0041	18·2 19·2 18·4	•••

 $\label{eq:table 26} 100~\rm gms~of~Titania~+~0.8\%~C~as~Sawdust~+~0.5\%~P_2O_5~as~Tata~basic~slag$

Period of Exposure in days	Total C Un- oxidised %	Total C oxidised %	Total Nitrogen %	Increase in nitrogen	Efficiency (amount of N fixed in mgm/gm of carbon oxidised)	$\begin{array}{c} {\rm Total} \\ {\rm available} \\ {\rm P_2O_5} \\ {\rm \%} \end{array}$
			Light			
0 60 120 180	0·7383 0·5452 0·4851 0•4465	0·1931 0·2532 0 ·2918	0.0079 0.0168 0.0197 0.0213	0.0089 0.0118 0.0134	46 0 46 6 45·9	0·2321 0·2502 0·2620 0·2683
			Dark			
0 60 120 180	0•7383 0•5799 0•5241 0•4890	0·1584 0·2142 0·2493	0.0097 0.0117 0.0132 0.0139	0·0038 0·0053 0·0060	23·9 24·7 24·0	0·2321 0·2439 0·2518 0·2586
			TABLE 27			
100 gm	ns of Titania	+ 0.8% C a	s Sawdust + phosphate	$0.5\% P_2O_5$	Trichinopoly	y rock
			Light			
0 60 1 2 0 180	0·7724 0·5912 0·5309 0·4943	0·1812 0·2415 0·2781	0·0083 0·0157 0·0183 0·0197	0·0074 0·0100 0·0114	40.8 41.4 40.9	0·0266 0·0398 0·0469 0·0520
			Dark			
0 60 120 180	0·7724 0·6232 0·5703 0·5340	0·1492 0·2021 0·2384	0·0083 0·0115 0·0128 0·0135	0·0032 0·0045 0·0052	21·4 22·2 21·8	0·0266 0·0359 0·0419 0·0461

Discussion

From a close examination of the foregoing data it is seen that there is a decrease in the carbon content of the system with concomitant fixation of nitrogen when Glucose, Wheat straw and Sawdust are mixed with Zinc oxide, iron oxide and titania and allowed to undergo slow oxidation in air at ordinary temperature. It is observed that the oxidation of carbon and fixation of nitrogen are much greater in the sets exposed to light than in the sets kept in the dark, showing thereby the marked influence of light on the fixation of atmospheric nitrogen.

The rate of oxidation of carbon, fixation of nitrogen and efficiency, that is, the amount of nitrogen fixed in mgms per gram of carbon oxidised is in the order

Glucose > Wheat straw > Sawdust

As far as the surfaces are concerned, the activity is in the following order:

$$\rm TiO_2>ZnO>Fe_2O_3$$

This marked difference in the rate of carbon oxidation, nitrogen fixation and efficiency with the three surfaces can be due to the difference in their power of photo-sensitization. The photosensitizing action may be different in its nature from catalysts, as not only spontaneous reactions but also those involving an increase in the free energy of the system, can be realised by the introduction of suitable photosensitizers. The well known example of photo sensitization involving an increase in the free energy of the system is the carbon assimilation process sensitized by chlorophyll.

That nitrogen fixation is possible with chemically pure surfaces like Zinc oxide, ferric oxide and titania shows that soil is not absolutely necessary for nitrogen fixation. What really seems indispensable is a suitable surface, where water, oxygen, nitrogen and energy materials are property adsorbed and are in intimate contact in such a way that the oxidation of the energy materials is possible.

Moreover, it can be observed from the data, that when phosphates are added the rate of fall in the efficiency of nitrogen fixation is checked. It seems that phosphates play a vital role in the improvement and maintenance of the nitrogen status of soils. The proteins that are present in the soil humus or those formed due to the fixation of nitrogen are likely to be stabilised by the formation of more or less stable phospho-proteins with the combination of phosphates and proteins. It is also observed that phosphates enhance the oxidation of carbonaceous materials and a part of nitrogen may be fixed due to the release of this extra-energy.

The forgoing results, further, show that there is a considerable increase in the avilability of phosphate when phosphates are added to the system containing oxide surface and organic matter and allowed to undergo slow oxidation in air at ordinary temperature. It is also observed that the increase in the availability of phosphate varies with the surface, ferric oxide showing the least increase in comparison to Zinc oxide or titania. The process of phosphate fixation has received considerable attention and many theories have been advanced to explain it. The experimental results of Bass and Sieling², Bear and Toth³, Cole and Jackson⁴, Coleman⁵, Ford⁶, Haseman et al.⁷ and many others ^{8,9,10} indicate that specific compounds of iron and Aluminium, which are relatively insoluble, are formed when soluble phosphates are added to acid soils. These compounds have been identified recently by Cole and Jackson⁴ as Ferric dihydroxyl dihydrogen phosphate (Strengite, and aluminium dihydroxyl dihydrogen phosphate (Variscite) or amorphous combinations of the two (Barrandite).

Many investigators ¹¹, ¹², ¹³, ¹⁴, ¹⁵ have observed that these retained phosphates are rendered soluble by the help of organic matter. The action of organic matter has been explained on the basis of the formation of fixation resisting organic phosphates¹⁶, replacement of the phosphate caused by the humate part of organic matter¹⁷ and the delay which it may cause in the absorption of phosphates by iron and aluminium¹⁸.

References

- 1. Dhar, N. R. and Seshacharyulu, E. V. J. Ind. Chem. Soc., 16 (2), 1959.
- 2. Bass, G. B. and Sieling, D. H. Soil Sci., 69, 269-280, 1950.
- 3. Bear, F. E. and Toth, S. J. Indus. and Engin. Chem., 34, 49-52, 1942.
- 4. Cole, C. V. and Jackson, M. L. Soil Sci. Soc. Amer. Proc., 15, 84-89, 1951.
- 5. Coleman, R. Soil Sci. Soc. Amer. Proc., 9, 72-78, 1945.
- 6. Ford, M. C. J. Amer. Soc. Agron., 25, 134-144, 1933.
- 7. Haseman, J. F., Brown, E. H. and Whitt, G. D. Soil Sci., 70, 257-271, 1950.
- 8. Midgley, A. R. and Dunklea, D. E. Vt. Agr. Exp. Sta. Bul., 525, 1945.
- 9. Perkins, A. T. Soil Sci. Amer. Proc., 12, 185-187, 1948.
- 10. Swenson, R. M., Cole, C. V. and Sieling, D. H. Soil Sci., 67, 3-22, 1949.
- 11. Singh, D. and Najhawan, S. D. Ind. I. Agri. Sci., 13, 140, 1943.
- 12. Bauer, F. G. Soil. Sci., 12, 21-41, 1921.
- 13. Ramaswami, S. Mem. Deptt. Agri. Ind. Chem. Series, 7, 145-200, 1925.
- 14. McGeorge, W. T. Soil Sci., 38, 347-353, 1934.
- 15. Rahn, E. M. Proc. Amer. Soc. Hort. Sci., 37, 713-717, 1939.
- 16. Spencer, V. E. and Stawart, R. Soil Sci., 38, 65-79, 1934.
- 17. Scarseth, G. D. J. Amer. Soc. Agron., 27, 596-616, 1936.
- 18. Hester, J. W. and Sheldon, F. A. Va. Truck. Exp. Sta. Bul., 94, 1937.

Complex Differential Systems and Conditional Stability

 B_{λ}

A. A. KAYANDE

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada

and

D. B. MULAY

Govt. Arts and Science College, Aurangabad, India [Received on 5th March, 1968]

1. It is a well-known result that Lyapunov's Second method depends essentially on the fact that a function satisfying a scalar differential inequality can be majorised by the maximal solution of the corresponding equation. This principle was extended by Wazewski [4] to vector differential inequalities, under certain monotonic restrictions. This comparison principle was used by Lakshmikantham[2] to derive sufficient conditions for conditional stability and boundedness of a set with respect to an ordinary differential system in the real domain.

Vejvoda[3] discussed the stability of differential equations in the complex domain, the independent variable being real. Kayande and Lakshmikantham[1], using the comparison principle stated above, obtained sufficient conditions for the stability and boundedness of the origin, with respect to a class of complex differential systems in which independent variable is also complex. We introduce in this paper the concepts of conditional stability and boundedness of a compact set with respect to a class of complex differential systems, and obtain sufficient conditions in terms of vector Lyapunov-like functions. This extends the work of Lakshmikantham[2] to complex systems and includes the results in[1] as special cases. Example is constructed to illustrate the results.

2. Let D denote the region of the complex plane: $0 \leqslant a \leqslant |z| < \infty$, $\alpha \leqslant \arg z \leqslant \beta$, where a, α, β are real numbers. Let the interval $0 \leqslant a \leqslant t \leqslant \infty$ be denoted by I. Let C^n and R^n denote the complex and real n-space respectively. We shall say that a function $f \in (D, C^n)$ if it is defined on $D \times C^n$ into C^n and is regular-analytic on D and entire on C^n . Consider the complex differential system

$$(2\cdot1) y' = f(z,y) y(z_0) = y_0, z_0 \in D, \left(' \equiv \frac{d}{dz} \right)$$

where $f \in (D, C^n)$. By a solution of $(2\cdot 1)$ we mean a complex *n*-vector function $y = y(z), y(z_0) = y_0, (z_0 \in D)$, that is regular-analytic in z on D and satisfies $(2\cdot 1)$ for all $z \in D$. We assume the existence of solutions for $(2\cdot 1)$.

3. Let a real n-vector function w = w(t, r) be defined and continuous on $I \times R^n$. Let $r = (r_1, r_2, r_3, \ldots, r_n)$. The function w, defined above, is said to possess property (P) if for each $t \in I$ and for each i, $(i = 1, 2, \ldots, n)$, the i^{th} component of w denoted by $w_i(t, r)$, is non-decreasing in $r_1, r_2, \ldots, r_{i-1}, r_{i+1}, \ldots, r_n$. Let the function w possess the property (P). Then it is known[4] that the differential system

(3.1)
$$r = w(t, r), r(t_0) = r_0, t_0 \in I, \left(: \equiv \frac{d}{dt} \right)$$

has the maximal solution, in the sense of componentwise majorisation, existing to the right of t_0 .

Let a function $V = V(z, y) \in (D, C^n)$. Define

(3.2)
$$V^*(z,y) = \frac{\partial V}{\partial z} + \frac{\partial V}{\partial y} \cdot f(z,y)$$

where denotes scalar multiplication of vectors. For $y \in C^n$ let |y| denote a vector in R^n such that $|y| = (|y_1|, |y_2|, ..., |y_n|) |y_i|$ is the modulus of y_i , the i^{th} component of y. The following lemma is established in [1].

Lemma: Let there exist a function $V = V(z, y) \in (D, C^n)$ such that $V^*(z, y)$ of (3.2) satisfies the vector inequality

$$|V^*(z,y)| \leqslant w(|z|,|V(z,y)|)$$

where w has the monotonic property (P). Suppose r(t): is the maximal solution of the system $(3\cdot 1)$. If y(z) is any solution of $(2\cdot 1)$ with

$$|V(z_0, y(z_0))| \leq r_0, (|z_0| = t_0),$$

then

$$|V(z, y(z))| \leqslant r(t), (z \in D, |z| = t), t \geqslant t_0.$$

Note: Any two vectors belonging to \mathbb{R}^n are said to satisfy vector inequality if the same inequality holds for each of the corresponding components of the vectors.

4. In this section we formulate in a natural way conditions for conditional stability and boundedness of solutions of $(2\cdot 1)$ with respect to a compact set $A \subset C^n$. We assume that A contains the origin. Define

$$d(y, \overline{y}) = \sum_{i=1}^{n} |y_i - \overline{y_i}|, \text{ for } y, \overline{y} \in C^n.$$
 Let

$$d(y, A) = \inf_{\widetilde{y} \in A} d(y, \widetilde{y}).$$
 The sets $\{y : d(y, A) < a\}$ and

$$\{y:d(y,A)\leqslant \alpha\}$$
 will be denoted by $S(A,\alpha)$ and $\overline{S(A,\alpha)}$

respectively. Let M be a set such that $A \subset M \subset C^n$. A is said to be invariant for system (2·1), if $y(z_0) \in A \Longrightarrow y(z) \in A$, for all $z \in D$. We state the following conditions.

(i) For any arbitrary $\varepsilon > 0$, $z_0 \varepsilon D$, there exist a positive function $\delta = \delta(|z_0|, \varepsilon)$ that is continuous in $|z_0|$ for each ε such that

$$y(z) \subseteq S(A, \varepsilon) \quad (z \in D, |z| \geqslant |z_0|)$$

whenever

$$y(z_0) \in \overline{S(A, \delta)} \cap M.$$

- (ii) The δ in (i) is independent of $|z_0|$, $z_0 \in D$.
- (iii) For any arbitrary $\varepsilon > 0$, $\gamma \ge 0$ and $z_0 \varepsilon D$, there exist a positive number $T = T(|z_0|, \gamma, \varepsilon)$ such that

$$y(z) \subset S(A, \varepsilon) (z \varepsilon D, |z| \geqslant |z_0| + T)$$

whenever

$$y(z_0) \ \overline{\varepsilon \ S(A, \gamma)} \cap M.$$

- (iv) The T in (iii) is independent of $|z_0|$.
- (v) Conditions (i) and (iii) hold simultaneously.
- (vi) Conditions (ii) and (iv) hold simultaneously.
- (vii) For each $\gamma \geq 0$, $z_0 \in D$, there exists a positive function $\eta = \eta(|z_0|, \gamma)$ that is continuous in $|z_0|$ for each γ , such that

$$y(\varepsilon) \in S(A, \eta), (z \in D, |z| \geqslant |z_0|)$$

whenever

$$y(z_0) \in \overline{S(A, \gamma)} \cap M.$$

- (viii) The η in (vii) is independent of $|z_0|$.
- (ix) For each $\gamma > 0$ and $z_0 \in D$ there exist positive numbers B and

$$T = T(|z_0|, \gamma)$$
 such that

$$y(z) \subset S(A, B), (z \in D, |z| \ge |z_0| + T)$$

whenever

$$y(z_0) \in \overline{S(A, \gamma)} \cap M.$$

- (x) The T in (ix) is independent of $|z_0|$.
- (xi) The conditions (vii) and (ix) hold simultaneously.
- (xiii) The conditions (viii) and (x) hold simultaneously.

Note: These conditions are natural extensions of the corresponding conditions of conditional stability and boundedness for real ordinary systems with respect to a set A[2]. If $M = C^n$ the conditions reduce to the corresponding conditions of stability and boundedness for complex systems with respect to

a set A. However, if $M = C^n$ and $A = \{0\}$, these reduce to the corresponding conditions in [1]. We are not assuming that A is invariant nor uniqueness of solutions. But the invariancy or otherwise of A is implied by the conditions. For example, if the condition (i) holds and $M = C^n$ then A must be invariant.

5. Let $||V(z,y)|| = \sum_{i=1}^{n} |V_i(z,y)|$. The following assumptions will be used subsequently whenever necessary.

(5.1) For
$$t_0 \in I$$
, $r(t_0) = r_0 = (r_{10}, r_{20}, \ldots, r_{k0}, 0, 0, \ldots, 0)$, $r_0 \in \mathbb{R}^n$, $k \leq n$.

(5.2) There exist a scalar function p(z) that is regular-analytic in z on D such that a function $V \in (D, C^n)$ satisfying the conditions of the lemma equals $p(z) V_1(z, y)$, where $V_1 \in (D, C^n)$. For fixed

$$|z|$$
, min $|p(z)| = \phi(t)$, $|z| = t$, and $\phi(t) \to \infty$ as $t \to \infty$.

Also V_1 satisfies (5.5).

(5.3) There exists a continuous and non-decreasing function b = b(r), $r \ge 0$, b(r) > 0 for r > 0 and $b(d(y, A)) \le ||V(z, y)||$ for all $(z, y) \in D \times C^n$, and $b(r) \to \infty$ as $r \to \infty$.

$$(5.4) || V(z, y) || \rightarrow 0 \text{ as } d(y, A) \rightarrow 0 \text{ for each } z \in D.$$

(5.5)
$$||V(z, y)|| \to 0$$
 as $d(y, A) \to 0$ uniformly in $z \in D$.

(5.6)
$$V(z, y) \equiv 0$$
 whenever $y \in A$.

$$(5.7) M = \{ v : V_i(z, v) \equiv 0, i = k + 1, \ldots, n \}.$$

Corresponding to the conditions (i), (ii), (vii) and (viii) given in section 4, following conditions are stated for the system $(3\cdot1)$.

(ia) Given $\varepsilon > 0$ and $t_0 \varepsilon I$, there exists a positive function $d = d(t_0, \varepsilon)$ that is continuous in t_0 , for each ε , such that

$$\sum_{i=1}^{n} r_i(t) < \varepsilon (t \geqslant t_0),$$

whenever

$$\sum_{i=1}^{n} r_{i0} \leqslant d, \text{ where } r_{0} \text{ satisfies } (5\cdot1).$$

Conditions (iia), (viia) and (viiia) can be similarly formulated. For conditions (iiia), (iva), (iva) and (xa) it is assumed that (5.2) holds. We state the condition (iiia) only. Others can be similarly formulated.

(iiia) Given $\epsilon > 0$, $\alpha \ge 0$ and $t_0 \in I$, there exists a positive number $T = T(t_0, \epsilon, \alpha)$ such that

$$\sum_{i=1}^{n} r(t) < \varepsilon \phi(t), t \ge t_0 + T,$$

whenever

$$\sum_{i=1}^{n} r_{i0} \leq \alpha \phi(t_0)$$

where r_0 satisfies (5.1) and $\phi(t)$ is as defined in (5.2).

We state and prove the following theorem:

Theorem 1: Let the assumptions of the lemma hold together with (5.3), (5.4), (5.6) and (5.7), then

- (I) condition $(ia) \Longrightarrow$ condition (i),
- (II) condition $(viia) \Longrightarrow$ condition (vii).

If the condition (5.4) is strengthened to (5.5), then

- (1II) condition (iia) \Longrightarrow condition (ii),
- (IV) condition $(viiia) \Longrightarrow$ condition (viii).

Proof: Consider (I). For any given $\varepsilon > 0$, if $d(y, A) = \varepsilon$, (5.3) shows that (5.8) $b(\varepsilon) \le ||V(z, y)||$.

If (ia) holds, given $b(\varepsilon) > 0$ and $t_0 \in I$, there exists a positive function $d = d(t_0, \varepsilon)$ that is continuous in t_0 for each ε , such that

$$(5.10) \qquad \qquad \sum_{\substack{i=1 \\ i=1}}^{n} r_i(t) < b(s), t \geqslant t_0$$

whenever

$$\sum_{i=1}^{n} r_{i0} \leq d, \text{ where } r_{0} \text{ satisfies (5.1)}.$$

In view of (5.4) $\exists a \delta = \delta(|z_0|, d) = \delta(|z_0|, \epsilon)$ such that

(5.11)
$$\sup_{d(y_0, A) \leqslant \delta} \| V(z_0, y(z_0)) \| \leqslant d$$

where

$$y_0 = y(z_0).$$

Due to vector inequality it follows from the lemma that

(5·12)
$$||V(z, y(z))|| \leq \sum_{i=1}^{n} r_i(t), (|z| = t \geq t_0)$$

[473]

whenever :

(5.13)
$$|V_i(z_0, y_0)| \leq r_{i_0}, (i = 1, 2, ..., n).$$

But (5·13) together with (5·1) and (5·7) imply that

We claim that whenever $y_0 \in S(A, \delta) \cap M$, every solution y(z) of (2.1) satisfies $y(z) \subset S(A, \varepsilon)$ i.e. $d(y(z), A) < \varepsilon$ for all $z \in D$, $|z| \ge |z_0|$. Otherwise there exists a solution y(z) with $y_0 \in S(A, \delta) \cap M$ such that for some $z_1 \in D$, $|z_1| \ge |z_0|$, $d(y(z_1), A) = \epsilon$. But this fact together with (5.11), (5.13), (5.12) and (5.10) leads

$$b(\epsilon) \leq \| V(\mathbf{z}_1, y(\mathbf{z}_1)) \| \leq \sum_{i=1}^n r_i(t_i) < b(\epsilon).$$

Consider now proposition (II). Let $\gamma \geqslant 0$, $z_0 \in D$ be given

Due to (5.1) $\exists a \gamma_1 = \gamma_1(|z_0|, \gamma)$ satisfying

$$\sup_{d(y_0, A) \leqslant \gamma} \| V(z_0, y_0) \| \leqslant \gamma_1.$$

As condition (viia) holds, given $\gamma_1 \geqslant 0$ and $t_0 \in I$, there is a positive function $\eta = \eta(t_0, \gamma_1) = \eta(t_0, \gamma)$ that is continuous in t_0 for each γ , with property that

(5.15)
$$\sum_{i=1}^{n} r_i(t) < \eta \text{ for all } t \ge t_0$$
 whenever

whenever

$$(5.16) \qquad \qquad \sum_{i=1}^{n} r_{i0} \leqslant \gamma$$

where r_0 satisfies (5.1). Let $j_0 \in \overline{S(A, \gamma)} \cap M$. Then due to (5.14), (5.1) and (5.16) every solution y(z) of (2.1), with $y(z_0) = y_0$, satisfies (5.12) by a proper choice of r_0 . As $b(r) \to \infty$ as $r \to \infty$ $\exists a \ L = L(\eta)$ such that

$$(5^{\bullet}17) \qquad \qquad n \leq b(L).$$

Then every solution y(z) of $(2\cdot 1)$, with $y_0 \in \overline{S(A, \gamma)} \cap M$, satisfies d(y(z), A)< L for all $z \in D$, $|z| \ge |z_0|$. For otherwise Ξ a solution y(z) of (2.1), with $y_0 \in \overline{S(A, \gamma)} \cap M$, and $a z_1 \in D$, $|z_1| \ge |z_0|$, such that $d(y(z_1), A) = L$. But this

$$b(L) \leq ||V(z_1, y(z_1))|| \leq \sum_{i=1}^{n} r_i(t_1) < \eta \leq b(L),$$

due to (5.3), (5.12), (5.15) and (5.17).

Proofs for propositions III and IV follow easily from the one given above, for due to the uniformity conditions (iia), (viiia) and $(5^{\circ}5)$, the δ and L are independent of t_0 . We state the following theorem without proof as the arguments follow similar to those in [1], with the necessary modifications indicated in Theorem 1.

Theorem 2: Let the assumptions of the lemma hold together with (5.2), (5.3), (5.4), (5.6) and (5.7). Then

(V) condition (iiia) \Longrightarrow condition (iii)

(VI) condition $(ixa) \Longrightarrow$ condition (ix).

If the assumption (5.4) is strengthened to (5.5), then

(VII) condition (iva) = > condition (iv).

'VIII) condition $(xa) \Longrightarrow$ condition (x).

Combining the results of Theorems 1 and 2 we show that the other conditions listed in section 4 also have these properties.

2.50

6. In this section we give an example to illustrate the results

Example: Consider the system

$$y_1' = \alpha y_1 + \beta y_2$$

(6.1)

$$y_2' = \gamma y_1 + \delta y_2,$$

where α , β , γ , δ are regular-analytic functions of z on a certain domain D of the complex plane. Let $V_1 = p(z)$ ($y_1 - y_2$) and $V_2 = p(z)$ ($y_1 + y_2$, where p(z) is regular-analytic in z on D and satisfies the condition of (5·2), with $|p(z)| \ge 1$ on D. Now $||V|| = |p(z)| \{ |y_1 + y_2| \} \ge |y_1 + y_2| + |y_1 - y_2| \ge |y_1| + |y_2| \ge |y|$. Hence the function b of (5·3) can be the identity function i.e. b r) = r. Also (5·4) holds. We have from (3·2)

$$V_1^* = a_1 p(z) (y_1 + y_2) + [\beta_1 p(z) + p'(z)] [y_1 - y_2],$$

$$V_2^* = [(\alpha + \gamma) y_1 + (\beta + \delta) y_2] p(z) + p'(z) (y_1 + y_2)$$

where

$$\alpha_1 = \frac{\alpha + \beta - \gamma - \delta}{2}$$
 and $\beta_1 = \frac{\alpha - \beta - \gamma + \delta}{2}$.

Assume that α , β , γ , δ are so chosen that $|\alpha_1|p(z)| \leq \psi(|z|)$, $|\beta_1|p(z)+p'(z|) \leq \phi(|z|)$ and $|V_2^*| \leq \theta(|z|)|y_1+y_2|$. Then the system (3·1) reduces to

$$r_1 = \phi(t) r_1 + \psi(t) r_2$$

(6.2)

The unique solution of (6.2) through
$$r_0 = (r_{10}, r_{20})$$
 is given by

$$r_{1}(t) = r_{10} \exp \int_{t_{0}}^{t} \phi(s) ds + r_{20} \int_{t_{0}}^{t} \psi(s) \exp \left[\int_{t_{0}}^{t} \theta(u) du \right]$$
[475]

(6.3)
$$+ \int_{s}^{t} \phi(u) \ du \ ds, \quad r_{2}(t) = r_{20} \exp \int_{t_{0}}^{t} \theta(s) \ ds.$$

Let

$$\exp \int_{L}^{t} \theta(s) \ ds \to \infty \text{ as } t \to \infty.$$

Then taking k = 1, $r_0 = (r_{10}, 0)$ the system (6.3) reduces to

$$r_1(t) = r_{10} \exp \int_{t_0}^t \phi(s) \ ds,$$

$$r_2(t) \equiv 0.$$

Also from (5.7) the set M is the set of points $\{y: y_1 + y_2 = 0\}$, A being the set $\{0\}$. Obviously $A \subset M$. All the required assumptions of the

Illustration 1: Let $\int_{t_0}^{t} \phi(s) ds \leqslant M(t_0) < \infty$, then (6.2) has the property (ia).

Theorem 1 shows that the system (6.1) has the property (i), with A and M as defined above.

Illustration 2: Let
$$\min_{z \in D, \text{ arg } z} |p(z)| = P(t), t = |z|$$
.

Then

$$\frac{\exp \int_{t_0}^t \phi(s) \ ds}{P(t)} \to 0 \text{ as } t \to \infty$$

implies that (6.2) has the property (iiia), Then the application of Theorem 2 shows that (6.1) has the property (iii).

References

- Kayande, A. A. and Lakshmikantham, V. Complex differential Systems and Extension of Lyapunov's Method. J. Math. Anal. Appl., 13, 337-347, 1966.
- 2. Lakshmikantham, V. Vector Lyapunov Functions and conditional
- Stability. J. Math. Anal. Appl., 10, 368-377, 1965.
 Vejvoda, O. The stability of a system of differential equations in the complex domain. Czechoslov. Math., 7(82), 137-159, [English Summary]
- 4. Wazewski T. Systemes des equations et des inequalities differentielles ordinaries aux deuxiemes membres monotones et leurs applications. Ann. Soc. Pol. Math., 23, 112-166, 1950.

A relation between generalised Kontorovitch-Lebdev transform and Weyl (Fractional) integral

 $B_{\mathcal{I}}$

(MISS) ASHA PENDSE

Department of Mathematics, University of Rajasthan, Jaipur

[Received on 25th April, 1968]

Abstract

The aim of this paper is to establish a relation between Generalised Kontorovitch Lebdev Transform and Weyl (Fractional) Integral. Certain new Weyl (Fractional) Integrals are solved with the help of this relation.

1. Introduction

The Generalised Kontorovitch-Lebdev Transform defined by Jet Wimp in his paper, "A Class Of Integral Transform," [(1); p. 37; (4.9) and (4.10)], is defined as follows:

$$f(x) \equiv T \frac{k}{a:x} : g(t) = \left(\frac{\pi}{ax}\right)^{1/2} \int_{0}^{\infty} W_{k,it}(ax) g(t) dt$$
 (1.1)

and its inversion formula:

$$g(t) = \frac{a}{\pi^{8/2}} t \sinh(2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it)$$

$$\times \int_{0}^{\infty} (ax)^{-3/2} W_{k}, it (ax) f(x) dx \qquad (1.2)$$

The aim of the present paper is to establish a relation between the above transform and the Weyl (Fractional) Integral, defined as:

$$K_{y}^{\mu}: \{f(x)\} = [\Gamma(\mu)]^{-1} \int_{0}^{\infty} f(x) (x-y)^{\mu-1} dx$$
 (I-3)

Further, this relation between (I-1) and (1-3) is used to get the solution of certain Weyl (Fractional) Integrals, which are supposed to be new.

By virtue of the identity:

$$W_{o,\mu}(x) = \left(\frac{\pi}{x}\right)^{\frac{1}{2}} K_{\mu} \left(\frac{x}{2}\right) \tag{1.4}$$

(1.1) reduces to the Kontorovitch-Lebdev Transform:

$$f(x) \equiv T_{2:x}^{0} : \{g(t)\} = \int_{0}^{\infty} K_{it}(x) g(t) dt$$
 (1.5)

when we put k = 0 and a = 2.

Theorem

If
$$R(\mu) > 0$$
, $R(a) > 0$ and $g(t) \in L(0, \infty)$ then

$$T \frac{k-\mu}{a:y} : \{ g(t) \} = e^{1/2} ay. y^{1/2-k} K \frac{\mu}{y} : [e^{-\frac{1}{2}ax}. x^{k-\mu-\frac{1}{2}}. T \frac{k}{a:x} : \{ g(t) \}]$$
 (2.1)

Proof:

Since, by hypothesis:

$$T_{a:x}^{k}:\{g(t)\} = \left(\frac{\pi}{ax}\right)^{\frac{1}{2}} \int_{0}^{\infty} W_{k,it}(ax) g(t) dt$$
 (2.2)

Multiplying both the sides by $\{e^{-\frac{1}{2}ax}, x^{k-\mu-\frac{1}{2}}, (x-y)^{\mu-1}\}$ and integrating with respect to x within the limits y to ∞ , we have:

$$\int_{y}^{\infty} e^{-\frac{1}{2}\alpha x} \cdot x^{k-\mu-\frac{1}{2}} (x-y)^{\mu-1} T \frac{x}{a:x} : \{g(t)\} dx$$

$$= \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \int_{y}^{\infty} e^{-\frac{1}{2}\alpha x} \cdot x^{k-\mu-1} \cdot (x-y)^{\mu-1} \cdot \int_{0}^{\infty} W_{k,it} (ax) g(t) dt \cdot dx. \tag{2.3}$$

Changing the order of integration, we have

$$\int_{y}^{\infty} e^{-\frac{1}{2}ax} \cdot x^{k-\mu-\frac{1}{2}} \cdot (x-y)^{\mu-1} \cdot T_{ax}^{k} : \{g(t)\} dx$$

$$= \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \int_{0}^{\infty} g(t) dt \int_{y}^{\infty} e^{-\frac{1}{2}ax} \cdot x^{k-\mu-1} \cdot W_{k,it}(ax) (x-y)^{\mu-1} \cdot dx$$
(2.4)

Solving the inner integral on the right hand side with the help of the result

$$K = \begin{cases} k \\ y \end{cases} : \{ x^{k-\mu-1}, e^{-\frac{1}{2}ax}, W_{k,\lambda}(ax) \} = y^{k-1}, e^{-\frac{1}{2}ay}, W_{k-\mu,\lambda}(ay)$$
(2.5)

where

$$R(\mu) > 0$$
, $R(ay) > 0$,

we have:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{e^{-\frac{1}{2}ax} \cdot x^{k-\mu-\frac{1}{2}} \cdot T^{k}_{ax} : g(t)\} (x-y)^{\mu-1} \cdot dx$$

$$= e^{-\frac{1}{2}ay} \cdot y^{k-\frac{1}{2}} \cdot T^{k-\mu}_{ay} : \{g(t)\}. \tag{2.6}$$

which is the required result.

The proof of the theorem involves the change of order of integration. To justify the same, we observe that since by [(3); p. 264; (5)] and [(3); p. 183;(1)]:

$$W_{k,it}(ax) = e^{-ax/2} \cdot (ax)^{k} {}_{2}F_{0}\left(\frac{1}{2} - k + it, \frac{1}{2} - k - it; -\frac{1}{ax}\right)$$

$$= e^{-ax/2} \cdot (ax)^{k} \sum_{n=0}^{\infty} \frac{\Gamma(\frac{1}{2} - k + it + n) \Gamma(\frac{1}{2} - k - it + n)}{n=0} \left(-\frac{1}{ax}\right)^{n}.$$

If we use [(3); p. 47; (6)]; viz.:

$$\begin{array}{c|c} Lim & \Gamma(x+iy) = (2\pi)^{\frac{1}{2}} \cdot e^{\frac{1}{2}\pi} |y| \cdot |y|^{\frac{1}{2}-x}; x, y \text{ real} \end{array}$$

we have:

$$\begin{array}{ccc} Lt & & \\ t \rightarrow \infty & W_{k,it}(ax) = & Lt & & e^{-ax/2}. \ (ax)^k. \ e^{-\left[ax \mid t^2 \mid \right]^{-1}} \end{array}$$

Hence, $W_{k,it}(ax)$ is bounded for large values of t, and for finite a and x.

Therefore, the t - integral in the equation (2.3) is absolutely convergent if g't) ε $L(0,\infty)$ as W_{k} , it(ax) shall be bounded for large values of t; and the integrand in the x-integral, in the same equation (2.3), for large values of x is comparable $|e^{-ax}$. $x^{2(k-1)}|$ since:

$$W_{k,m}(x) \sim A e^{-\frac{1}{2}x}$$
. x^k ; for large values of x.

Hence, the x-integral will be convergent if R(a) > 0.

The resulting integral on the left of (2.3) will be convergent if $g(t) \in L(0,\infty)$ by the same argument written before.

3. Examples

(i) Let us start with

$$g(t) = t \sin h (2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it) \Gamma(k + \rho + it - \frac{1}{2}) \Gamma(k + \rho - it - \frac{1}{2}) \times W_{1-k-\rho}, it(ay),$$
(3.1)

then from the inversion formula, we have:

$$f(x) \equiv T \frac{k}{ax} : \{g(t)\} = \pi^{-8/2} \cdot a^{\frac{1}{2}} \cdot z^{1-k} \cdot \Gamma(\rho) \cdot e^{-\frac{a}{2}(x+z)} \cdot x^{k+\rho-\frac{1}{2}} \cdot (x+z)^{-\rho} \quad (3.2)$$

wher

$$|\arg z| < \pi$$
, $R(a) > 0$, $R(\rho) > 0$, $R(k+\rho-2) > -3/2$

Hence, (2.1) yields:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{e^{-\alpha x} \cdot x^{2k+\rho-1-\mu} \cdot (x+z)^{-\rho}\} (x-y)^{\mu-1} \cdot dx$$

$$= e^{-\alpha y} \cdot y^{2k+\rho-1-\mu} \cdot (y+z)^{-\rho} \cdot z^{-\mu}. \tag{3.3}$$

where: $|\arg z| < \pi$, R(a) > 0, $R(\rho) > 0$, $R(\mu) > 0$ and $R(k+\rho-2) > -3/2$.

(ii) Let us start with:

$$g(t) = t \sin h(2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it) \Gamma(\frac{1}{2} + \nu + it + \rho)$$

$$\times \Gamma(\frac{1}{2} + \nu - it + \rho) {}_{3}F_{2}\left(\begin{array}{c} \frac{1}{2} + \lambda + \nu, \frac{1}{2} + \nu + it + \rho, \frac{1}{2} + \nu - it + \rho \\ 2\nu + 1, 1 - k + \nu + \rho \end{array}; -\frac{2b}{a}\right)$$
(3.4)

then from the inversion formula, we have:

$$f(x) \equiv T_{ax}^{k} : \{g(t)\} = \pi^{5/2} \cdot (2b)^{-\nu - \frac{1}{2}} \cdot a^{\nu + \rho} \cdot \Gamma(1 - k + \nu + \rho) \cdot (ax)^{\rho}$$

$$\times \exp \left[-\frac{1}{2} (a + 2b)x \right] M_{\lambda, \nu}(2bx)$$

$$R(b) > 0, R(a) > 0, R(\rho - \frac{1}{2} + \nu) > -1.$$

$$\left[479 \right]$$

Hence, from (2.1) we have:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{e^{-(a+b)x}, x^{k+\rho-\mu-\frac{1}{2}}, M_{\lambda}, \nu(2bx)\} (x-y)^{\mu-1}, dx$$

$$= \frac{\Gamma(1-k-\mu+\nu+\rho)}{\Gamma(1-k+\nu+\rho)} y^{k+\rho-\frac{1}{2}}, \exp[-(a+b)y], M_{\lambda}, \nu(2by)$$
(3.6)

where

$$R(b) > 0$$
, $R(a) > 0$, $R(\rho - \frac{1}{2} + \nu) > -1$, $R(\mu) > 0$

(iii) Let us start with

$$g(t) = t \sin h(2\pi t) \Gamma(\frac{1}{2} - k + it) \Gamma(\frac{1}{2} - k - it)$$

$$\times G \frac{23}{33} \left(2 \left| \frac{\frac{1}{2} + it, \frac{1}{2} - it, \frac{1}{2} + k + \rho}{\nu + \rho, -\nu + \rho, k} \right. \right)$$
(3.7)

then from the inversion formula, we have:

$$f(x) \equiv T \frac{k}{ax} : \{g(t)\} = \pi^{5/2} \cdot 2^{\rho - \frac{1}{2}} \cdot a^{2\rho - \frac{1}{2}} \cdot \Gamma(\frac{1}{2} - k + \nu)$$

$$\times \Gamma(\frac{1}{2} - k - \nu) \cdot x^{\rho} \cdot e^{ax/2} \cdot W_{k,\nu}(2ax). \tag{3.8}$$

$$R(a) > 0, R(\mu) < R(\rho - \frac{1}{2}).$$

Hence, substituting to values of $T \frac{k}{ax}$: $\{g(t)\}$ and $T \frac{k-\mu}{ay}$: $\{g(t)\}$ in (2.1), we have:

$$[\Gamma(\mu)]^{-1} \int_{y}^{\infty} \{ x^{\rho+k-\mu-\frac{1}{2}} \cdot W_{k,\nu}(2ax) \} (x-y)^{\mu-1} \cdot dx$$

$$= \frac{\Gamma(\frac{1}{2}-k-\mu+\nu) \Gamma(\frac{1}{2}-k-\mu-\nu)}{\Gamma(\frac{1}{2}-k+\nu) \Gamma(\frac{1}{2}-k-\nu)} y^{\rho+k-\frac{1}{2}} \cdot W_{k-\mu,y}(2ay)$$
(3.9)

with the conditions:

$$R(a) > 0, \quad 0 < R(\mu) < R(\rho + \frac{1}{2}).$$

Acknowledgments

I am highly thankful to Dr. K. C. Sharma for his kind guidance during the preparation of this paper.

References

- Jet Wimp. A Class Of Integrals Transform. Proc. Edin. Math. Soc., 14, 33-34, 1964.
- Erdelyi, A. Tables Of Integral Transform, Vol. 11, Bateman Manuscript Project, 1954.
- 3. Erdelyi, A. Higher Transcendental Functions, Vol. 1, Bateman Manuscript Project, 1953.

An Inversion Formula for H-function Transform

 B_{2}

(MISS) ASHA PENDSE

Department of Mathematics, University of Rajasthan, Jaipur

[Received on 25th April, 1968]

Abstract

The aim of the present paper is to generalise the results given by Jet Wimp in his paper, "A Class Of Integral Transform," Proc. Edin. Math. Soc, (1), 14 (19, 4) and to derive an inversion formula for H-function.

1 Introduction

Recently Jet Wimp has generalised the Kontorovitch Lebdev transform pair, [(2); p. 173], and the generalised Mehler transform pair [(5)]. These transforms are used in solving certain boundary value problems. The object of this paper is to generalise futher the transform pair [(3); p. 36; (3.9) and (2.10)], given by Jet Wimp, whose kernel involves a function defined by Charles Fox [4); p. 408], written below, slightly in a different form, viz:

$$H \begin{array}{c} m, n \\ p, q \end{array} \left[\begin{array}{c} x \mid (a_1, e_1) \ (a_2, e_2), \dots, (a_p, e_p) \\ (b_1, f_1), \ (b_2, f_2), \dots, (b_q, f_q), \end{array} \right]$$

$$= \frac{1}{2\pi i} \int_{L}^{\frac{m}{j=1}} \frac{\Gamma(b_{j} - f_{j}s) \int_{j=1}^{n} \Gamma(1 - a_{j} + e_{j}s)}{\prod_{j=1}^{q} \Gamma(1 - b_{j} + f_{j}s) \int_{j=1}^{n} \Gamma(a_{j} - e_{j}s)} x^{s} ds$$
(1·1)

where p, q, m, n are all non negative integers: e's and f's are all positive and an empty product is interpreted as 1; L is a suitable contour of Barnes type such that the poles of $\Gamma(bj-fj\xi)j=1,\ldots,m$ lie on the right hand side of the contour and those of $\Gamma(1-aj+ej\xi)$; $j=1,\ldots,n$ lie on the left hand side. Also the parameters are so restricted that the integral on the right of (1-1) is convergent.

Symbolically, we will write (1.1) as:

$$H \stackrel{m, n}{p, q} \left[x \mid \begin{bmatrix} a_p, e_p \\ b_q, f_q \end{bmatrix} \right]$$
 (1.2)

where $[a_p, e_p]$ stands for an ordered set of parameters

$$(a_1, e_1), (a_2, e_2), \ldots, (a_p, e_p).$$
 (1.3)

Section 2, contains some preliminary results and definitions and Section 3, contains the main result and its derivation.

2. Some definitions and results

Throughout this paper, we shall denote by $M_s\{f(x)\}$ and $M_x^{-1}\{g(s)\}$ the Mellin transform of f(x) and the inverse Mellin Transform of g(s), respectively, i.e.

$$g(s) = M_s \{ f(x) \} = \int_0^\infty x^{s-1} f(x) dx$$
 (2.1)

and

$$f(x) = M_{x}^{-1} \{ g(s) \} = \frac{1}{2\pi i} \int_{c+i\infty}^{c+i\infty} x^{-s} g(s) ds.$$
 (2.2)

In what follows, λ , μ and ν are given by :

$$\lambda = \frac{b-a}{2}, \ \mu = \frac{b-1}{A} \tag{2.3}$$

and

$$\nu = 2 A + \sum_{j=1}^{m} (f_j) - \sum_{j=1}^{q} (r_j) + \sum_{j=1}^{n} (e_{j,j}) - \sum_{j=1}^{p} (\varepsilon_{j})$$
 (2.4)

where A is a positive integer.

By virtue of the results 1:1) and (2:2), we have

$$M(s) = M_{s} \left\{ H_{n+p+2, m+q}^{m, n+2} \left[x \mid (1-\lambda, A), (\frac{1}{2}-\lambda, A), [a_{n}-\mu e_{n}, e_{n}], [\alpha_{p}-\mu e_{p}, e_{p}] \right] \right\}$$

$$= \frac{\int_{j=1}^{m} \Gamma(b_{j} - \mu f_{j} + f_{j}s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + \mu e_{j} - e_{j}s) \Gamma(\lambda - As) \Gamma(\frac{1}{2} + \lambda - As)}{\int_{j=1}^{q} \Gamma(1 - \beta_{j} + \mu \sigma_{j} - \sigma_{j}s) \prod_{j=1}^{p} \Gamma(\alpha_{j} - \mu \varepsilon_{j} + \varepsilon_{j}s)}$$
(2.5)

where

- (1) m, n, p and q are all non negative integers,
- (2) $\nu > 0$; value of ν is given by (2.4),

(3) max.
$$R \left[\frac{a_k - 1}{e_k} ; \lambda \right] < R(\mu - \lambda) < \min R \left[\frac{b_h}{f_h} \right]$$

 $k = 1, 2, \ldots, n \text{ and } h = 1, 2, \ldots, m.$

Again, by virtue of the result (2.2), we have:

$$G(s) = M_{s} \{ \sqrt{\pi} 4^{-\lambda} (\bar{x})^{A\mu} (1+x)^{2\lambda} \bar{g}(x) \}$$

$$= \int_{0}^{\infty} (\bar{x})^{s-1} [\sqrt{\pi} 4^{-\lambda} (\bar{x})^{A\mu} (1+x)^{2\lambda} \bar{g}(x)] d\bar{x}$$
(2.6)

where the value of \bar{x} is given by the equation (3.7).

Using the same results (1.1) and (2.2), we also have

$$\frac{2^{2\lambda}}{\sqrt{\pi}} \delta^{\mu} M_{s} \left\{ \frac{1}{(1+x)^{2}\lambda} H_{n+p+2, m+q}^{m, n+2} \left[\left\{ \frac{ax}{(1+x)^{2}} \right\}^{A} \delta \right] \right.$$

$$\left. (1-\lambda, A), \left(\frac{1}{2} - \lambda, A \right), \left[a_{n} - \mu e_{n}, e_{n} \right], \left[\alpha_{p} - \mu \varepsilon_{p}, \varepsilon_{p} \right] \right] \right\}$$

$$\left[b_{m} - \mu f_{m}, f_{m} \right], \left[\beta_{q} - \mu \sigma_{q}, \sigma_{q} \right]$$

$$= H_{n+p+2, m+q}^{m, n+2} \left[\delta \right] \left[(a+s, A), b-s, A), \left[a_{n}, e_{n} \right], \left[\alpha_{p}, \varepsilon_{p} \right] \right]$$
with the conditions:
$$(2.7)$$

- (1) m, n, p and q are non negative integers,
- (2) $\nu > 0$; value of ν is given by (2.4),
- (2) $|\arg \delta| < \frac{1}{2}\pi \nu$,
- (4) $R(s) < R(\lambda)$,

(5) max.
$$R\left[\frac{a_k-1}{e_n}, -\lambda\right] < R(\mu-s) < \min. R\left[\frac{b_h}{f_h}\right]$$

 $k=1, 2, \ldots, n \text{ and } R=1, 2, \ldots, m.$

Lastly, here is a property of H-function, of which, we shall make use in the derivation of our result later on.

3. The main result

The aim of this paper is to obtain the following transform pair:

Ιf

$$g(x) = \int_{0}^{\infty} H \frac{m, n+2}{n+p+2, m+q} \left[t \mid \frac{(a+ix,A), (b-ix,A), [a_n,e_n], [a_p+e_p]}{[b_m, f_m], [\beta_q, a_q]} \right] f(t) dt \quad (3.1)$$
where
$$(m+n) \ge p+q-2.$$

where then

$$f(x) = \frac{D}{\pi} \int_{-\pi}^{+\infty} \frac{(2\lambda - 2it + s + \mu A - 2)}{\Gamma(2\lambda - it - 2)} e^{\pi t} g(t)$$

$$\times H_{n+p+3, m+q+1}^{q+1, p+1}$$

$$\begin{bmatrix} xe^{\pi i} & (it-\mu A, 1), [1-\alpha_p-\epsilon'_p, \epsilon_p], [1-a_n+\epsilon'_n, \epsilon_n], (\lambda-A, A), (\frac{1}{2}+\lambda-A, A) \\ (2\lambda-4-\mu A, 1), [1-\beta_q-\sigma'_q, \sigma_q], [1-b_m-f'_m, f_m] \end{bmatrix} dt \quad (3.2)$$

where

$$D = \sqrt{\pi}. \ 4^{1-\lambda-s-\mu}A. \ e^{\pi i(\mu}A^{\frac{1}{2}}), \text{ and}$$
 (3.3)

$$f'_{j} = f_{j}(\mu - 1), e'_{j} = e_{j}(\mu - 1), \sigma'_{j} = \sigma_{j}(\mu - 1), \varepsilon'_{j} = \varepsilon_{j}(\mu - 1)$$
(3.4)

Proof

In order to achieve our aim, let us start from the integral equation (3.1). Substituting x = -i u, multiplying it by x^{-u} and integrating with respect to u in the limits $c + i \infty$ to $c - i \infty$, we get:

$$\int_{c-i_{\infty}}^{c+i_{\infty}} x^{-u}. g(-iu) du$$

$$= \int_{c-i\infty}^{c+i\infty} x^{-u} \int_{0}^{\infty} H \frac{m,n+2}{n+p+2,m+q} \left[t \mid (a+u,A), (b-u,A)[a_n,e_n], [\alpha_p,e_p] \right] f(t) dt. du$$
Putting
$$[b_m, f_m], [\beta_q, \sigma_q]$$
(3.5)

$$\overline{g}(x) = \frac{1}{2\pi i} \int_{c-i\omega}^{c+i\omega} x^{-u} g(-iu) du$$
 (3.5)

Hence, by virtue of the result (2.7), we have:

$$\frac{1}{g(x)} = \frac{1}{2\pi i} \int_{\sigma - i_{\infty}}^{\sigma + i^{\infty}} x^{-u} \left[\int_{0}^{\infty} \frac{2^{2\lambda}}{\sqrt{\pi}} \cdot t^{\mu} M_{\mu} \left\{ \frac{1}{(1+x)} 2_{\lambda} \times H_{n+p+2, m+q}^{m, n+2} \left[\frac{A}{\tilde{x}} \right]_{0}^{(1-\lambda, A), (\frac{1}{2}-\lambda, A), [a_{n}-\mu e_{n}, e_{n}], [a_{p}-\mu e_{p}, e_{p}]} \right] \right\} \times f(t) dt dt du \qquad (3.7)$$

where

$$\overline{x} = \frac{4x}{(1+x)^2} \tag{3.8}$$

Changing the order of integration and on simplification, if we invoke (2.7) we get

$$\sqrt{\pi} \cdot 4 \cdot (\bar{x}) \cdot (1+x) \cdot \bar{g}(x)$$

$$= \int_{0}^{\infty} H^{m, n+2}_{n+p+2, m+q} \left[(\bar{x})^{A} \cdot t \mid (1-\lambda+\mu A, A), (\frac{1}{2}-\lambda+\mu A, A), [a_{n}, e_{n}], [a_{p}, e_{p}] \right] f(t) dt \quad (3.9)$$

Substituting the values of \bar{x} and $\bar{g}(x)$ from (3.8) and (3.6) retrectively replacing s by 1-s in the result (2.6), we have, after adjusting the parameters with the help of the result [(1); p. 310; (24)].

$$G(1-s) = \frac{\sqrt{\pi}}{4\pi i} \cdot 4^{1-s-\lambda+\mu A} \int_{c-i_{\infty}}^{c+i_{\infty}} e^{-\pi i (u+s-\mu A-1)} \times (2\lambda-2u-s+\mu A-1) \frac{\Gamma(2\lambda+s-\mu A-4) \Gamma(\mu A-s-u+1)}{\Gamma(2\lambda-u-2)} g(-iu) du$$
 (3·10)

And in the result (2.5), putting s = 1 - s, we have :

$$M(1-s) = \frac{\prod_{j=1}^{m} \Gamma(b_{j}-f'_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+e'_{j}+e_{j}s) \Gamma(\lambda-A+As) \Gamma(\frac{1}{2}+\lambda-A+As)}{\prod_{j=1}^{q} \Gamma(1-\beta_{j}+\sigma'_{j}+\sigma_{j}s) \prod_{j=1}^{p} \Gamma(\alpha_{j}-\epsilon'_{j}-\epsilon_{j}s)}$$
(3.11)

where e'j, f'j, $\sigma'j$ and e'j are given by (8.4),

Hence, from the results (3.10) and (3.11), we get:

$$f(x) = \frac{\sqrt{\pi}}{(2\pi i)^2} \cdot 4^{1-\lambda-s+\mu} \int_{c-i\infty}^{c+i\infty} x^{-s} ds \int_{c-i\infty}^{c+i\infty} e^{-\pi i(u+s-\mu_{A-1})} \cdot g(-iu)$$

$$\times \frac{\Gamma(2\lambda + s - \mu_A - 4) \Gamma(\mu_A - s - u + 1)}{\Gamma(2\lambda - u - 2)} (2\lambda - 2u + s - \mu_A - 2)$$

$$\times \frac{\int_{j=1}^{q} \Gamma(1-f_{j}+\sigma'_{j}+\sigma_{j}s) \prod_{j=1}^{p} \Gamma(\alpha_{j}-\varepsilon'_{j}-\varepsilon_{j}s)}{\prod_{j=1}^{m} \Gamma(b_{j}-f'_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+e'_{j}+e_{j}s) \Gamma(\lambda-A+As) \Gamma(\frac{1}{2}+\lambda-A+As)} du (3.12)$$

or

$$f(x) = \frac{\sqrt{\pi}}{2\pi i} 4^{1-\lambda-s+\mu} A \int_{c-i\infty}^{c+i\infty} \frac{(2\lambda - 2u - s + \mu A - 2)}{\Gamma(2\lambda - u - 2)} e^{-\pi i(u-\mu A - 1)}, g(-iu)$$

$$\times M \int_{xe}^{1} \left\{ \frac{q}{j=1} \frac{\Gamma(1-\beta_{j}+\sigma_{j}+\sigma_{j}s) \Gamma(2\lambda-4-\mu A+s) \prod_{j=1}^{p} \Gamma(\alpha_{j}-\epsilon'_{j}-\epsilon_{j}s) \Gamma(\mu A+1-u-s)}{\prod_{j=1}^{m} \Gamma(b_{j}-f'_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+\epsilon'_{j}+e_{j}s) \Gamma(\lambda-A+As) \Gamma(\frac{1}{2}-\lambda-A+As)} \right\} du$$

$$(3.13)$$

Therefore by virtue of the result (2.2), we get:

$$f(x) = \frac{D}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{(2\lambda - 2u - s + \mu A - 2)}{\Gamma(2\lambda - u - 2)} e^{-\pi i u} \cdot g(-iu)$$

$$\times H_{n+p+3, m+q+1}^{q+1, p+1} \left[xe^{\pi i} \middle| \frac{(u-\mu A, 1), [1-\alpha_{p}-\epsilon'_{p}, \epsilon_{p}], [1-a_{n}+e'_{n}, e_{n}]}{(2\lambda - 4, \mu A, 1), [1-\beta_{q}+\sigma'_{q}, \sigma_{q}]} \right] \times (\lambda - A, A), (\frac{1}{2} + \lambda - A, A) \left[du \right]$$

$$(3.14)$$

where D is given by (3.5).

Putting c = 0 in (3.14), we get the required result (3.2), viz.:

$$f(x) = \frac{D}{\pi} \int_{-\infty}^{+\infty} \frac{2\lambda - 2i \ t + s + \mu A - 2}{\Gamma(2\lambda - it - 2)} e^{\pi t} \ g(t)$$

$$\times H_{n+p+3, \ m+q+1}^{q+1, \ p+1} \left[xe^{\pi i} \middle| \frac{(it - \mu A, 1), \ [1 - \alpha_p - \varepsilon'_p, \ \varepsilon_p], \ [1 - a_n + \varepsilon'_n, \ \varepsilon_n]}{(2\lambda - 4 \ \mu A, 1), \ [1 - \beta_q + \sigma'_q, \ \sigma_q],} \times \left[\lambda - A, A \right], \left[\frac{1}{2} + \lambda - A, A \right] \right] dt \qquad (3.15)$$

where D is given by (3.5).

Acknowledgement

I am thankful to Dr. K. C. Sharma, University of Rajasthan, India, for making many helpful suggestions during the preparation of this paper.

References

- Erdelyi, A. Tables of Integral Transform. Vol. I, McGraw-Hill, New 1. York, 1954.
- Erdelyi, A. Tables of Integral Transform, Vol. 11, McGraw-Hill, New 2. York, 1954.
- Jet Wimp. A Class Of Integral Transform. Proc. Edin. Math. Soc. (1), 3. 14, 33-34, 1964.
- Rosenthal, P. L. On a Generalisation of Mehler's Inversion Formula and Some of its Applications. Dissertation (Oregon State University, 1961.)

Studies on the effect of various levels of nitrogen at different times of application on the seed yield, oil content and quantity of yellow sarson (B compestris)

By

N. S. SINHA

Physiological Chemist, Crop Physiology Section, Kanpur

[Received on 30th April, 1968]

Oil seeds occupy an important place as a good source of foreign currency. An area of 1.6 thousand hectares is under cultivation of rape and mustard crop in Uttar Pradesh. Studies on breeding of yellow sarson for higher seed yields have been conducted in the past. But, little published evidence is at hand, on the effects of the time of application of fertilizers it's relationship with plant characters, yield and the quality of oil.

Sinha et al. (1961) observed increased protein content and inverse relationship by tween protein and oil content in yellow sarson plants where nitrogenous feetilizers were used. They also reported in the case of rai, an uptake of nitrogen upto maturity and depressions in the oil percentage due to nitrogenous manuring. Mehrotra et al. (1967) notice d a progressive nitrogen and phosphorus uptake upto the maturity of the crop. Sen and Sarkar (1958) found significant increases in mustard yield with phosphate manuring. S n and Lahiri (1960) also reported increased dry matter and seed yield in sarson with phosphate. The present investigations were taken up with a view to study the influence of nitrogenous fertilizers, applied at different growth phases of yellow sarson, on general morphology of the crop seed and oil yield and quantity of oil.

Materials and Methods

The experiment was laid out in medium loam soil of PIRRCOM Farm, Kalianpur, Kanpur. The lay out was randomized block design with eleven treatments and four replications. Three levels of nitrogen (0, 30 and 60 lb/ac.) were applied at different stages.

Levels of ${\mathcal N}$		Time of Application
No – No nitrogen		To - No application of fertiliser
$N_1 - 30 lb N/ac.$	X	T_1 - Full dose at sowing.
$N_2 - 60 lb N/ac$.		T ₂ - Full dose at one month stage.
		$T_3 - \frac{1}{2}$ at sowing $+\frac{1}{2}$ at one month.
		$T_4 - \frac{1}{2}$ at sowing $+\frac{1}{2}$ at two months.
		$T_s - \frac{1}{2}$ at one month $+ \frac{1}{2}$ at two months.

Important plant characters, viz., height of the plant, number of branches per plant, number of pods per plant and seed yield were recorded after the harvest of the Crop. Seed samples of yellow sarson were also collected at the time of harvesting of the crop in polythene bags. These samples were cleaned and made free of

all extraneous matters and stored in airtight bottles for chemical analyses in the laboratory.

. Thr morphological and yield data are given in Table 1 and oil content and its quality are given in Table 2.

Seed yield and plant characters of yellow sarson as influenced by the time of nitrogen
application

Treatments	Height plant in cms.	No. of branches/ plant	No. of pods plant	Yield in kgms/ acre
A $N_1 T_1$ B $N_1 T_2$ C $N_1 T_3$ D $N_1 T_4$ E $N_1 T_5$ F $N_2 T_1$ G $N_2 T_2$ H $N_2 T_3$ I $N_2 T_4$ J $N_2 T_5$ K $N_0 T_0$ 'F' test S. E. M. \pm C. D. at 5% C. D. at 1%	148·00 141·22 141·30 147·95 138·50 153·90 143·05 154·07 143·22 135·75 129·65 Sign. at 1% S	5·50 5·17 4·47 4·72 4·95 7·22 6·15 7·32 6·80 5·45 2·87	106·85 94·00 81·85 90·20 83·15 147·17 107·10 145·82 121·22 92·45 58·67 Sign. at 1% 11·02 - 42·76	579·62 631·49 625·69 617·96 579·94 751·35 771·65 772·93 697·86 741·04 337·33 Sign at 1%

TABLE 2

Effect of various levels of nitrogen at different times of application on the content and quality of oil of yellow sarson.

	quanti	y of our of y	ettow 3a7301	ι.		
Treatments	Oil %	Proteins %	Allylis- othiocy- nate value	Iodine value	Acid value	Free fatty acid
A 20 lb N/s are (vi) at remine	16.9				0.00	
A 30 lb. N/acre full at sowing		5.34	0.27	107.2	2.09	1.05
B 30 lb. N/acre at one month		5.64	0.26	99.0	2.25	1.13
C 30 lb N/acre ½ at sowing	46.2	5•99	0.26	10 5· 0	1.60	0.808
+ ½ at one month						
D 30 lb. N/acre ½ at sowing	44.9	5.95	0.27	105.0	1.70	0.808
$+\frac{1}{6}$ at 2 months.		0.0	0 - .	-00		0 000
E 30 lb. N/acre ½ at one	43.9	5.95	0.28	106.4	1.77	0•8 9
$month + \frac{1}{2} at 2 months$	-00	0 00	0 20	100 1	- / /	0 03
F 60 lb. N/acre full at sowing	45.1	5.64	0.27	97.6	2.09	1.05
G 60 lb. N/acre at one month		5.67	0.28	99.0	1.77	0.89
H 60 lb. N/acre ½ at sowing		5.82	0.28	100.5	1.93	0.97
$+\frac{1}{2}$ at one month		3 32	0 40	1000	1 00	0 37
	11.6	5 ·8 7	0-27	104.2	1.77	0.89
I 60 lb. N/acre $\frac{1}{2}$ at sowing +	44.0	3.07	0.27	104-2	1-77	0.99
$\frac{1}{2}$ at two months						
J 60 lb. N/acre $\frac{1}{2}$ at one	44.3	5 95	0·2 8	1 0 2•0	1.60	0 81
month $+\frac{1}{2}$ at 2 months						
K Control	46.3	5 ·3 2	0.25	105.0	2.25	1.13

Results and Discussion

Morphological Characters and seed yield:

The nitrogen application was found to be very effective in promoting all growth and yield contributing factors.

Occular differences in the growth and development of the plants were marked due to nitrogenous fertilizers and all the plant characters under study were significantly altered by nitrogen application. The results obtained with regard to seed yield were in line with growth characters. The average responsiveness of nitrogen at N₈₀ was seen to be 269.61 Kg/ac which was further augmented to 409.63 Kg./ac in case of N₈₀. These responses ultimately showed an increase yield of about 80 and 121% respectively over control. No marked differences in yield due to nitrogenous manuring were observed.

Oil content and it's quality: The application of nitrogen at 30 lb. N/acre full at sowing, or one month after and half at sowing and the other half one month after did not depress the oil content, whereas, in other treatments at 30 or 60 lb. N/per acre the oil content was appreciably depressed. The decrease in oil content was comparatively higher in treatments where nitrogen was given two months after sowing. This may be due to the fact that the oil formation starts on fifth day after flowering (Sinha and Agarwal, 1963) and the application of nitrogen at late stages might be hampering with the formation of oil adversely. There was a positive correlation between nitrogenous manuring and protein content. Allylisothiocynate value has also increased slightly in comparison to unmanured seeds.

Summary and Conclusions

- 1. The yield of yellow sarson seed (B. Compestris) responded well to higher doses of manuring.
- 2. The oil content was depressed due to nitrogenous manuring at higher doses.

Acknowledgements

The author is highly grateful to Dr. Dharampal Singh, the then Head, Regional Research Centre (Oilseeds and Millets) I. C. A. R., Kanpur, for his keen interest during the course of the investigations reported here.

References

- 1. Mehrotra, O. N., Sinha, N. S., Srivastava, R. D. L. and Kumar Rajendra. Effect of fertilizers on uptake of nutrients, yield and oil content of Indian Mustard. B. Juncea (communicated Ind. Jour. Agric. Sci.)
- 2. Sen, P. K. and Saik, A. K. Studies on nutrition of oilseed crop II. Effect of phosphorus on growth, yield and oil content of Mustard (B. Juncea). *Indian Agriculturist*, 2, 113-119, 1958.
- 3. Sen, P. K. and Lahiri, A. Studies on the nutrition of oilseed Crop. IV. Effect of phosphorus and sulphur on the uptake of nitrogen and growth, yield and oil content of sesame. *Ind. Agriculturist*, 4, 23-26, 1960.
- 4. Sinha, N. S., Singh, N. and Agarwal, P. N. Effect of mode of application of nitrogen on the yield and quality of oil in yellow sarson. J. oil Techno. Assoc. India, 10, 45-47, 1961.
- Sinha, N. S., Singh, N. and Agarwal, P. N. Studies on the Nutrition of oilseed crops. I. Effect of various levels of Nitrogen at different times of application on the yield and quality of oil of Rai T₁₁ (B. Juncea) plants. Ind. Oilseeds Jour. 6, 24-214, 1:62.
- 6. Sinha, N. S. and Agarwal, P. N. Studies on the development of oil in Rai and yellow Sarson. *Ind. Oilseeds Jour.*, 7 (4), 268-271, 1963.

Studies on nutrition of Indian cereals—III. The uptake of phosphorus by wheat plants at different growth phases in relation to fertilizer application

By

O. N. MEHROTRA, N. S. SINHA & R. D. L. SRIVASTAVA

Crop Physiology Section, Govt. Research Farm, Kanpur

[Received on 30th April, 1968]

Introduction

Experimental evidence with regard to effects of nitrogenous and phosphatic fertilizers on the composition and uptake of phosphorus by wheat plants is somewhat contradictory. Larson et al. (1952) reported increased percentage of phosphorus in wheat plants with phosphatic fertilizers, while De Turk (1942), working on phosphate deficient soils of Illinois, observed decreased phosphorus content in wheat plants due to phosphorus application. Similarly, depressive effect of nitrogen on phosphorus concentration of wheat has been reported by Sharma (1962) in contrast to the findings of Rennie and Soper (1958) and Singh (1962), who noted beneficial effect of nitrogen on phosphorus absorption. Combined application of nitrogen and phosphorus has, however, been shown to be superior in promoting the absorption of these nutrients by the plants as compared with their single application (Arakeri et al., 1961 and Bolaria and Mann, 1964).

In an earlier paper the authors (1967) have reported the results of the uptake of nitrogen by wheat plant at various stages of growth as influenced by phosphorus. The present communication deals with the pattern of uptake of phosphorus by wheat at different growth phases in relation to fertilizer application.

Materials and Methods

The present study was undertaken in 1962-63 on wheat var. N. P. 710 grown at the Experimental Station, Dilkusha Farm, Lucknow. The layout adopted was randomized block design with 9 treatments and 4 replications. Three levels of nitrogen, i. e., 0, 28 and 56 Kg N/ha $(N_0, N_1 \text{ and } N_2)$, as sulphate of ammonia, were applied alone or in combination with three doses of phosphorus, i. e., 0, 22.4 and 44.8 Kg P_2O_5/ha $(P_0, P_1 \text{ and } P_2)$ given as single superphosphate. The soil was sandy loam with a moderate fertility and average 7.3 pH.

Wheat plant samples (above ground portion only) were collected from each plot and composite samples were made according to each treatment. The samplings were done at successive growth stages of the crop, viz., seedling, active tillering, jointing, flag leaf, earning, ripening and harvest. These samples were dried at a temperature of 105°C for 48 hours and ground in a laboratory mill. Phosphorus content of plant samples was determined according to the method described by Snell and Snell (1949) using Spekker's Absorptiometer. Uptake of phosphorus was calculated on dry matter production basis and recovery of added phosphorus evaluated by Donee's formula (1934).

Results

The phosphorus concentration, dry matter content and uptake of phosphorus by wheat at different phases of growth are shown in Tables 1, 2 and 3 respectively.

1. Phosphorus concentration in wheat plant as affected by levels of fertilizers.

The absorption of phosphorus by wheat plant, irrespective of treatments, started from the seedling stage of the crop, was maximum at active tiller development stage and gradually declined with ontogeny. Application of phosphates improved the phosphorus content in plants, whereas nitrogenous fertilizers alone slightly depressed it. A combined dressing of nitrogen and phosphorus was more beneficial with regard to concentration of phosphorus, which was maximum in plants treated with 56 Kg N + 44.8 Kg P_2O_5/ha .

TABLE 1

Total phosphorus (% dry weight basis) in wheat plants as affected by various levels of nitrogenous and phosphalic fertilizers

Treat- m nts Kg/ha	Seedling	Tillering	Growth Jointing	h Stages Flag leaf	Earing	Ripening	Harvest
$\overline{N_{o}P_{o}}$	0.2750	0.4500	0.4125	0.4000	0.3725	0.3400	0.3000
$N_{\mathbf{e}}P_{\mathbf{t}}$	0.3000	0.4500	0.4175	0.4062	0.3775	0.3425	0.3075
N_0P_2	0.3125	0.4575	0.4260	0.4185	0.3825	0.1425	0.3100
N_1P_0	0.2500	0.4475	0.4075	0.3900	0.3675	0.3370	0.3000
N_1P_1	0.3250	0.4875	0.4250	0.4250	0.3900	0.3500	0.3150
N_1P_2	0.3750	0.5000	0.4 ₹50	0.4375	0.3975	0.3575	0.3275
N_2P_0	0.2700	0.4375	0.4100	0.3825	0.3650	0.3370	0.2975
N_2P_1	0.3900	0.5425	0.4450	0.4435	0.4020	0.3620	0.3320
N_2P_2	0.4000	0.5500	0.4550	0.4475	0.4070	0•3695	0.3395

TABLE 2

Dry matter production of wheat plants (per plant in Gms.)

Treat- ment Kg/ha	Seedling	Tillering	Growth S Jointing	Stages Flag leaf	Earing	Ripening	Harvest
N_0P_0	0.082	2.49	2.98	3.20	8•42	10.00	10.50
N_0P_1	0.083	2.51	3.01	3.41	0.98	10•45	1 1·0 0
N_0P_2	0.085	2.52	3.24	3.62	9.14	11.00	11.35
$N_i P_0$	0.087	2.68	3.30	3•78	9.88	11.75	12.00
N_1P_1	0.090	2.76	3.90	4.05	10.23	12.51	13· 0 0
N_1P_2	0.091	2.93	3·98	4.19	10.58	13.00	13.70
N_2P_0	0.104	3.04	3.99	4.53	11.72	13.87	14.95
N_2P_1	0.106	3.06	4.48	4.87	11.75	1 4·2 5	15 ·27
N_2P_2	0.110	3.13	4.49	5:04	12.00	14.98	17.25

2. Uptake of phosphorus at different growth stages of wheat

The data portrayed in Table 3 reveal a steady uptake of phosphorus from seedling to harvest stages of the crop in all the treatments. Fertilizing the crop with nitrogen or phosphorus was associated with an increased phosphorus uptake which was more pronounced when combined dressings of both the fertilizers were done. Highest uptake (19 Kg phosphorus per hectare) was observed at maturity where $56~{\rm Kg}~{\rm N}~+~44.8~{\rm Kg}~{\rm P}_2{\rm O}_5$ per hectare was applied. Of the total phosphorus absorbed by the plant, about 70% was taken upto the earing stage.

TABLE 3

Uptake of phosphorus by wheat plants at different phases of growth and yield of grain (Kg/ha)

Treat- ment, Kg/ha	Seedling	Tillering		owth Sta Flag leaf	ages Earing	Ripening	Harvest	Yield of of Grain
NoPo	0.065	3.237	3.546	3.712	9.084	9.900	11.760	1894
$N_{\mathbf{o}}P_{1}$	0 072	3.263	3.642	4.024	9.788	10.345	12.430	1819
N_0P_2	0.076	3•326	3.953	4.380	10.054	10.890	13.052	1792
N_1P_0	0.063	3.457	3.894	4.272	10.473	11.515	13.320	2311
N_1P_1	0.085	3.892	4.797	4.981	11.560	12.635	15-210	2387
N_1P_2	0.098	4.248	5.015	5.321	11.167	13.520	16 ·3 03	2473
N_2P_0	180.0	3·8 30	4.748	5 ·0 82	12.306	13.593	16•445	2728
N_2P_1	0.120	4.804	5.779	5.912	13.630	14.962	17.713	2766
N_2P_2	0.128	4.977	5 · 9 2 7	6.552	14•160	16.029	20.355	3145

Discussion

Absorption of phosphorus by wheat plants in the present study was highest at the tillering stage, which is in agreement with the results reported by Boatwright and Haas (1961) and Bolaria and Mann (1964) in wheat. The decrease in phosphorus concentration after the tillering stage may be attributed to the progressive dilution of phosphorus by CHO, which is associated with the maturation of the crop (Dougall, 1963). Increased percentage of phosphorus due to superphosphate application has also been reported by Larson et al. and Arakeri et al. (loc. cit.). Higher phosphorus content of plants fertilized with combined N and P might have resulted from an increase in acidity caused by ammonium sulphate, which in turn reduced the rate of fixation of the phosphorus fertilizers (Rennie and Mitchell, 1954).

The phosphorus uptake continued from seedling stage to harvest regardless of combined fertilizer applications. This is in confirmity with the results obtained by Mattingly and Widdowson (1958) in wheat. Stimulated uptake of phosphorus caused by application of nitrogen alone was possibly due to more dry matter production. Considerable increase in the uptake of phosphorus in plants where nitrogen and phosphorus were applied together might be due to stimulated top and root growth and a decreased pH and consequently an increased uptake of fertilizer phosphorus (Grunes et al., 1958).

A perusal of data summarised in Tables 1, 2 and 3 show that the uptake of phosphorus by wheat plants appears to be mo e a function of the increases in dry matter production than the increases in phosphorus content of the plants, which is in accordance with the findings of Bennett et al. (1953).

Increases in doses of phosphorus when applied alone were associated with a corresponding decrease in the percent recovery of phosphorus applied through fertilizer, which was 3.45 and 2.94 at 32.4 Kg and 44.8 Kg. P2O5 per hectare respectively. Application of nitrogen alongwith phosphatic fertilizers enhanced the percent recovery of phosphorus. The best recovery of phosphorus (27%) was observed in treatment, where 56 Kg N + 44.8 Kg P₂O₅ per hectare were applied together.

References

- Arakeri, H. R., Patil, S. V. and Nimbalkar, R. V. Indian J. Agron., 5(4). 240-244, 1961.
- 2. Bennett, W. F., Stanford, G. and Dumenil, L. Soil Sci. Proc., 17(3). 252-258, 1953.
- 3. Boatwright, G. O. and Hass, H. J. Agron. J., 53, 33-35, 1961. 4. Bolaria, T. S. and Mann, H. S. Indian J. Agron., 1, 30-40, 1964.
- 5. De Turk, E. E. Illinois Agric Exp. Sta. Bull., 484, 1942.
- 6. Doneen, L. D. State College Washington. Agric. Exp. Sta. Bull., 296,
- 7. Dougall, H. W. E. Afr. Agric. J., 28, 182-189, 1963.
- Grunes, D. L., Haise, H. R. and Fine, L. O. Soil Sci. Soc. America Proc., **22**(1), 49 52, 1958.
- Larson, W. E., Nelson, L. B. and Hunter, A. S. Agron. J., 43, 357-361.
- 10. Mattingly, G. E. G. and Widdowson, F. V. Plant and Soil, 9(3), 286-304,
- 11. Mehrotra, O. N., Sinha, N. S. and Srivastava, R. D. L. Plant and Soil. 26(2), 361 368, 1967.
- Rennie, D. A. and Mitchell, J. Can. J. Agric. Sci., 34, 353-363, 1954.
 Rennie, D. A. and Soper, R. J. J. Soil Sci., 9(1), 155-167, 1958.
 Sharma, K. C. Ph.D. The sis of Agra University, 1962.

- 15. Singh, G. Indian J. Agron., 7(3), 215-230, 1963.
 16. Snell, F. D. and Snell, C. T. Colorimetric methods of analysis. III edition. (2) D. Van Nostrand Company, Inc. Tononto, London, 551-552 and 669-670, 1949.

On some results involving Generalized Hypergeometric and Gegenbauer (Ultraspherical) Polynomials

By

MANILAL SHAH

Department of Mathematics, P. M. B. G. Science College, Indore (M. P.)

[Received on 3rd July, 1968]

Abstract

The object of this paper is to obtain some results involving the generalized hypergeometric and Gegenbauer polynomials by defining the polynomial in the form

$$F_n(x) = x^{(m-1)n} \, _{p+m} F_q \left[\begin{array}{c} \Delta (m, -n), \, a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array}; \, \lambda x^c \right]$$

where \triangle (m, -n) represents the set of m-parameters:

$$\frac{-n}{m}$$
, $\frac{-n+1}{m}$, ..., $\frac{-n+m-1}{m}$

and m, n are positive integers. The polynomial is in a generalized form which yields many known polynomials by particular choice of parameters. A number of known and new results are also given.

1. Introduction

We have defined the generalized hypergeometric polynomial [(7), p. 79, eqn. (2·1)] by means of

(1.1)
$$F_{m}(x) = x^{(\delta-1)m} p + \delta F_{q} \left[\begin{array}{c} \Delta (\delta, -m), a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q} \end{array}; \mu x^{c} \right]$$

where m and δ are positive integers and the symbol \triangle (δ , -m) denotes the set of δ – parameters:

$$\frac{-m}{\delta}$$
, $\frac{-m+1}{\delta}$, ..., $\frac{-m+\delta-1}{\delta}$.

This polynomial has arisen in the course of an attempt to unify and to extend the study of most of the well-known sets of polynomials.

Address for Communication:

Manilal Shah, 6/6. Mahatma Gandhi Road, Indore-2 (M. P.) India.

In what follows for sake of brevity a_p stands for a_1, \ldots, a_p ; $(a_p)_r$ denotes $\frac{p}{j-1}$ $(a_j)_r$ and similarly for $(b_q)_r$.

In this paper we have established some results of integrals involving the product of generalized hypergeometric and Gegenbauer (Ultraspherical) polynomials. Some expansion formulae for generalized hypergeometric polynomials have been derived with the help of these integrals. Many known and new results have also obtained on specializing the parameters. Therefore the results obtained in this paper are of general character.

2. Integrals:

In this section we have evaluated some integrals involving generalized hypergeometric and Gegenbauer polynomials.

The integrals to be evaluated are

$$(2\cdot1) \qquad \int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) \left\{ x^{(\delta-1)m} _{p+\delta} F_{q} \left[\begin{array}{c} \triangle(\delta,-m), a_{p} \\ b_{q} \end{array}; \mu_{x^{c}} \right] \right\} dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+(\delta-1) m+1) \Gamma(\lambda+(\delta-1) m-\nu+\frac{3}{2})}{n! \Gamma(2\nu) \Gamma(\lambda+(\delta-1) m-\nu-n+\frac{3}{2}) \Gamma(\lambda+(\delta-1) m+\nu+n+\frac{3}{2})}$$

$$\times _{p+\delta+2c} F_{q+2c} \begin{bmatrix} \triangle(\delta,-m), a_p, \triangle(c,\lambda+(\delta-1)m+1), \triangle(c,\lambda+(\delta-1)m-\nu+\frac{3}{2}) \\ b_q, \triangle(c,\lambda+(\delta-1)m-\nu-n+\frac{3}{2}), \triangle(c,\lambda+(\delta,-1)m+\nu+n+\frac{3}{2}) \end{bmatrix} : \mu \end{bmatrix}$$

where δ , m and c are positive integers, $Re(\lambda + (\delta - 1) m) > -1$, and $Re(\nu) > -\frac{1}{2}$.

(2.2)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) \left\{ x^{(\delta-1)m} _{p+\delta} F_{q} \left[\begin{array}{c} \triangle(\delta,-m), a_{p} \\ b_{q} \end{array}; \mu x^{-c} \right] \right\} dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+(\delta-1) m+1) \Gamma(\lambda+(\delta-1) m-\nu+\frac{3}{2})}{n! \Gamma(2\nu) \Gamma(\lambda+(\delta-1) m-\nu-n+\frac{3}{2}) \Gamma(\lambda+(\delta-1) m+\nu+n+\frac{3}{2})}$$

$$\times \ _{p+\delta+2c}F_{q+2c} \left[\begin{array}{c} \triangle (\delta,-m), \ a_{p}, \ \triangle (c,-\lambda-(\delta-1) \ m+\nu+n-\frac{1}{2}), \ \triangle (c,-\lambda-(\delta-1) \ m-\nu-n-\frac{1}{2}) \\ b_{q}, \ \triangle (c,-\lambda-(\delta-1) \ m), \ \triangle (c,-\lambda-(\delta-1) \ m+\nu-\frac{1}{2}) \end{array} \right] \mu \right]$$

valid for $Re(\lambda + (\delta - 1) m) > -1$, $Re(\nu) > -\frac{1}{2}$, m, c and δ are positive integers.

Proofs:

(A) To prove (2·1), we write down the eries for the generalized hypergeometric polynomial in the integrand, change the order of integration and summation which we suppose to be permissible due to the absolute convergence of the integral and summation involved in the process, we obtain

$$\sum_{r=0}^{\infty} \frac{\int_{i=0}^{\delta-1} \left(\frac{-m+i}{\delta}\right)_r (a_p)_r \, \mu^r}{r! \, (b_q)_r} \int_{0}^{1} x^{\lambda + (\delta-1)m + cr} \, (1-x)^{\nu - \frac{1}{2}} \, C_n^{\nu} \, (2x-1) \, dx.$$

Now evaluating the integral with the help of the known result [(1), p. 280,(3)]:

(2.3)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) dx$$

$$= \frac{\Gamma(\lambda+1) \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda-\nu+\frac{3}{2})}{! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})},$$

valid for $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$ and using the following relations

$$(\alpha)_n = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$$
, and $(\alpha)_{nk} = k^{nk} \prod_{i=0}^{k-1} \left(\frac{\alpha+i}{k}\right)_n$.

we have

$$\frac{\Gamma(\frac{\nu+\frac{1}{2})}{\Gamma(2\nu+n)}\frac{\Gamma(\lambda+(\delta-1)}{\Gamma(\lambda+(\delta-1)}\frac{m+1)}{m-\nu+\frac{3}{2})}{n!\frac{\Gamma(2\nu)}{\Gamma(2\nu)}\frac{\Gamma(\lambda+(\delta-1)}{\Gamma(\lambda+(\delta-1)}\frac{m-\nu+\frac{3}{2})}{m-\nu-n+\frac{3}{2})\frac{\Gamma(\lambda+(\delta-1)}{\Gamma(\lambda+(\delta-1)}\frac{m+\nu+n+\frac{3}{2})}{m+\nu+n+\frac{3}{2})}}$$

$$\sum_{r=0}^{\infty} \frac{\prod_{i=0}^{\delta-1} \left(\frac{-m+i}{\delta}\right)_{r} (a_{p})_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m+1+i}{c}\right)_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m-\nu + \frac{3}{2}+i}{c}\right)_{r} \mu^{r}}{r! (b_{q})_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m-\nu - n + \frac{3}{2}+i}{c}\right)_{r} \prod_{i=0}^{c-1} \left(\frac{\lambda + (\delta-1) m+\nu + n + \frac{3}{2}+i}{c}\right)_{r}}$$

which yields the value of the integral (2.1).

(B) Integral (2.2) may be derived on applying the same procedure as above and after using (2.3) and following relations

$$(\alpha)_n = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} , \frac{\Gamma(1-\alpha-n)}{\Gamma(1-\alpha)} = \frac{(-1)^n}{(\alpha)_n} , (\alpha)_{nk} = k^{nk} \prod_{i=0}^{k-1} \left(\frac{\alpha+i}{k}\right)_n,$$

we get

$$\frac{\Gamma(\nu + \frac{1}{2}) \ \Gamma(2\nu + n) \ \Gamma(\lambda + (\delta - 1) \ \underline{m + 1}) \ \Gamma(\lambda + (\delta - 1) \ \underline{m - \nu + \frac{3}{2}})}{n \ ! \ \Gamma(2\nu) \ \Gamma(\lambda + (\delta - 1) \ \underline{m - \nu - n + \frac{3}{2}}) \ \Gamma(\lambda + (\delta - 1) \ \underline{m + \nu + n + \frac{3}{2}})}$$

$$\times \sum_{r=0}^{\infty} \frac{\prod_{i=0}^{\delta-1} \left(\frac{-m+i}{\delta}\right)_{r} (a_{p})_{r} \prod_{i=0}^{c-1} \left(\frac{-\lambda-(\delta-1)m+\nu+n-\frac{1}{2}+i}{c}\right)_{r}}{r! (b_{q})_{r} \prod_{i=0}^{c-1} \left(\frac{-\lambda-(\delta-1)m+i}{c}\right)_{r}}$$

$$= \frac{\prod_{i=0}^{c-1} \left(\frac{-\lambda-(\delta-1)m-\nu-n-\frac{1}{2}+i}{c}\right)_{r}}{\prod_{i=0}^{c-1} \left(\frac{-\lambda-(\delta-1)m+\nu-\frac{1}{2}+i}{c}\right)_{r}}$$

which is the right hand side of (2.2).

3. Expansions

This section is concerned with the expansion formulas for the generalized hypergeometric polynomials in series of Gegenbauer polynomials which have been derived with the application of the integrals evaluated in section 2.

Expansion formulas to be established are

$$(3\cdot1) \qquad x^{\lambda} \left\{ x^{(\delta-1)m} \ _{p+\delta}F_{q} \left[\begin{array}{c} \triangle(\delta,-m), \ a_{p} \\ b_{q} \end{array} ; \ \mu \ x^{c} \right] \right\}$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda+\nu+(\delta-1) \ m+\frac{1}{2})}{\sqrt{\pi} \Gamma(\lambda+2\nu+(\delta-1) \ m+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} \ (\nu+r) \ (-\lambda-(\delta-1) \ m)_{r}}{(\lambda+2\nu+(\delta-1) \ m+1)_{r}}$$

$$\times \ _{p+\delta+2} c^{r}F_{q+2}c \left[\begin{array}{c} \triangle(\delta,-m), \ a_{p}, \ \triangle(c, \ \lambda+\nu+(\delta-1) \ m+\frac{1}{2}), \ \triangle(c, \ \lambda+(\delta-1) \ m+r+1) \\ b_{q}, \ \triangle(c, \ \lambda+(\delta-1) \ m-r+1), \ \triangle(c, \ \lambda+2\nu+(\delta-1) \ m+r+1) \end{array} ; \ \mu \right]$$

$$C_{r}^{\nu} (2x-1)$$

valid for $R(\lambda + (\delta - 1) m) > -\frac{1}{2}$, $Re(\nu) > 0$, δ , m and c are positive integers.

(3.2)
$$x^{\lambda} \left\{ x^{(\delta-1)m} _{p+\delta} F_{q} \left[\begin{array}{c} \Delta(\delta, -m), a_{p} \\ b_{q} \end{array}; \mu_{x^{-c}} \right] \right\}$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda + \nu + (\delta-1) m + \frac{1}{2})}{\sqrt{\pi} \Gamma(\lambda + 2\nu + (\delta-1) m + 1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu + r) (-\lambda - (\delta-1) m)_{r}}{(\lambda + 2\nu + (\delta-1) m + 1)_{r}}$$

$$\times \ _{p+\delta+2c}F_{q+2c} \left[\ ^{\triangle(\delta,-m)}, \ a_{p}, \ _{\Delta(c,-\lambda-(\delta-1)\ m+r)}, \ _{\Delta(c,-\lambda-2\nu-(\delta-1)\ m-r)} \right] b_{q}, \ _{\Delta(c,-\lambda-\nu+\frac{1}{2}-(\delta-1)\ m)}, \ _{\Delta(c,-\lambda-(\delta-1)\ m)} \ ; \ _{\mu} \right] \\ C_{r}^{\nu} \ (2x-1)$$

where $R(\lambda + (\delta - 1) m) > -\frac{1}{2}$, Re(v) > 0, δ , m and c are positive integers.

Proof:

Let

(3.3)
$$\begin{cases} f(x) = x^{\lambda} \left\{ x^{(\delta^{-1})m} \right\}_{p+\delta} F_q \left[\begin{array}{c} \Delta(\delta, -m), a_p \\ b_q \end{array}; \mu x^c \right] \right\} = \sum_{r=0}^{\infty} A_r C_r^{\nu} (2x \ 1) \\ C_r^{\nu} (2x-1) = \frac{(2\nu)_r}{r!} {}_{2}F_1 \left(\begin{array}{c} -r, r+2\nu \\ \nu + \frac{1}{2} \end{array}; 1-x \right), \end{cases}$$

$$(0 < x < 1).$$

Here C_r^{ν} (2x-1) is a Gegenbauer polynomial [(6), p. 279, (15)]. Equation (3.3) is valid since f(x) is continuous and of bounded variation in the open interval (0, 1). Now multiply both sides of (3.3) by $x^{\nu-\frac{1}{2}}$ $(1-x)^{\nu-\frac{1}{2}}$ C_n^{ν} (2x-1) and integrate with respect to x from 0 to 1. Change the order of integration and summation which is easily seen to be justified on the right, we have

$$(3\cdot4) \int_{0}^{1} x^{\lambda+\nu-\frac{1}{2}} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) \left\{ x^{(\delta-1)m} \quad p+\delta F_{q} \left[\begin{array}{c} \triangle(\delta,-m), \ a_{p}; \ \mu x^{c} \end{array} \right] \right\} dx$$

$$= \sum_{r=0}^{\infty} A_{r} \int_{0}^{1} x^{\nu-\frac{1}{2}} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) C_{r}^{\nu} (2x-1) dx$$

where $Re(\lambda + \nu + (\delta - 1) m) > -\frac{1}{2}$, $Re(\nu) > -\frac{1}{2}$.

Using the orthogonality property for the Gegenbauer polynomials [(6), p. 281, (28)]:

$$\int_0^1 x^{\nu-\frac{1}{2}} (1-x)^{\nu-\frac{1}{2}} \left[C_n^{\nu} (2x-1) \right]^2 dx = \frac{\sqrt{\pi} \Gamma(2\nu+n) \Gamma(\nu+\frac{1}{2})}{2^{2\nu} n! (\nu+n) \Gamma(2\nu) \Gamma(\nu)},$$

valid for $Re(v) > -\frac{1}{2}$,

on the right and the result (2.1) on the left of (3.4), we obtain.

$$(3.5) A_{n} = \frac{2^{2\nu} (\nu + n) \Gamma(\nu) \Gamma(\lambda + \nu + (\delta - 1) m + \frac{1}{2}) \Gamma(\lambda + (\delta - 1) m + 1)}{\sqrt{\pi} \Gamma(\lambda + (\delta - 1) m - n + 1) \Gamma(\lambda + 2\nu + (\delta - 1) m + n + 1)}$$

$$\times p + \delta + 2c F_{q+2c} \begin{bmatrix} \triangle(\delta, -m), a_{p}, \triangle(c, \lambda + \nu + (\delta - 1) m + \frac{1}{2}), \triangle(c, \lambda + (\delta - 1) m + 1) \\ b_{q}, \triangle(c, \lambda + (\delta - 1) m - n + 1), \triangle(c, \lambda + 2\nu + (\delta - 1) m + n + 1) \end{bmatrix}; \mu$$
where $Re(\nu) > 0$, $Re(\lambda + (\delta - 1) m) > -1$.

With the help of (3.3) and (3.5), we obtain the expansion formula (3.1).

The expansion formula (3.2) is similarly established on the same lines as above and using the result (2.2).

4. Applications:

In this section we have considered a number of particular cases of the integrals and expansion formulas established in sections 2 and 3.

- (A) Special cases of (2·1) and (3·1) with $\delta = \mu = c = 1$:
- (a) Taking $a_1 = m + a + \beta + 1$, $b_1 = 1 + a$, $b_2 = \frac{1}{2}$ and multiplying both sides by $\frac{(1+\alpha)_m}{m!}$, we obtain

(4·1)
$$\int_{0}^{1} x\lambda(1-x)^{\nu-\frac{1}{2}} C \frac{\nu}{n} (2x-1) f \frac{(\alpha,\beta)}{m} \left(\frac{a_{2},\ldots,a_{p}}{b_{3},\ldots,b_{q}};x\right) dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\lambda-\frac{\nu+\frac{3}{2}}{2})}{n! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+\frac{3}{2})}$$

$$\times f \frac{(\alpha,\beta)}{m} \left(\frac{a_{2},\ldots,a_{p},\lambda+1,\lambda-\nu+\frac{3}{2}}{b_{3},\ldots,b_{q},\lambda-\nu-n+\frac{3}{2},\lambda+\nu+n+\frac{3}{2}};1\right)$$

valid for $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4\cdot2) \qquad x^{\lambda} f_{m}^{(\alpha,\beta)} \begin{pmatrix} a_{2}, \dots, a_{p} \\ b_{3}, \dots, b_{q} \end{pmatrix}; x$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda+\nu+\frac{1}{2})}{\sqrt{\pi} \Gamma(\lambda+2\nu+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda)_{r}}{(\lambda+2\nu+1)_{r}}$$

$$\times f_{m}^{(\alpha,\beta)} \begin{pmatrix} a_{2}, \dots, a_{p}, \lambda+\nu+\frac{1}{2}, \lambda+1 \\ b_{3}, \dots, b_{q}, \lambda-r+1, \lambda+2\nu+r+1 \end{pmatrix}; 1 C_{r}^{\nu} (2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{3}$ and

$$f_{m}^{(\alpha,\beta)}\begin{pmatrix} a_{2},\ldots,a_{p} \\ b_{3},\ldots,b_{q} \end{pmatrix}; x = \frac{(1+\alpha)_{m}}{m!} p_{+1}F_{q}\begin{bmatrix} -m, m+\alpha+\beta+1, a_{2},\ldots,a_{p} \\ 1+\alpha,\frac{1}{2}, b_{3},\ldots,b_{q} \end{pmatrix}; x$$

is a generalized Sister Celine's polynomial [(7), eqn. (2.2), p. 80] which reduces to Sister Celine's polynomial [(3), eqn. (1), p. 806] on putting $\alpha = \beta = 0$.

In (4·1) and (4·2), substituting p=q=3, $a_2=\rho$, $a_3=\frac{1}{2}$ and $b_3=\sigma$, we have

$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) H_{m}^{(\alpha,\beta)} (\rho, \sigma, x) dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\lambda-\nu+\frac{3}{2}) (1+\alpha)_{m}}{n! m! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}$$

$$\times {}_{5}F_{4} \begin{bmatrix} -m, m+\alpha+\beta+1, \rho, \lambda+1, \lambda-\nu+\frac{3}{2} \\ 1+\alpha, \sigma, \lambda-\nu-n+\frac{3}{2}, \lambda+\nu+n+\frac{3}{2} \end{bmatrix}; 1$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4.4) x^{\lambda} H_{m}^{(\alpha,\beta)}(\rho,\sigma,x)$$

$$= \frac{2^{2\nu} \Gamma(\nu)}{\sqrt{\pi} m} \frac{\Gamma(\lambda+\nu+\frac{1}{2}) (1+\alpha)_{m}}{\Gamma(\lambda+2\nu+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda)_{r}}{(\lambda+2\nu+1)_{r}}$$

$$\times {}_{5}F_{4} \begin{bmatrix} -m, m+\alpha+\beta+1, \rho, \lambda+\nu+\frac{1}{2}, \lambda+1 \\ 1+\alpha, \sigma, \lambda-r+1, \lambda+2\nu+r+1 \end{bmatrix}; 1 \end{bmatrix} C_{r}^{\nu} (2x-1),$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and

$$H_{m}^{(\alpha,\beta)}(\rho,\sigma,x) = \frac{(1+\alpha)_{m}}{m!} {}_{3}F_{2}\begin{bmatrix} -m, m+\alpha+\beta+1, \rho \\ 1+\alpha, \sigma \end{bmatrix} \text{ is a generalized}$$

Rice's polynomial [(4), p. 158, (2.3)] which reduces to Rice's polynomial [(5), p. 108] when $\alpha = \beta = 0$.

Further setting $\rho = \sigma$, $\alpha = \beta = \mu - \frac{1}{2}$, in (4.3) and (4.4) and using the following relations [(1), p. 267]:

$$C_n^{\nu}(x) = (-1)^n C_n^{\nu}(-x), C_n^{\nu}(x) = \frac{(2\nu)_n}{(\nu + \frac{1}{n})_n} P_n^{(\nu - \frac{1}{2}, \nu - \frac{1}{2})}(x),$$

we obtain a known result [(1), p. 283, (16)]:

$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (1-2x) C_{m}^{\mu} (1-2x) dx$$

$$= \frac{\Gamma(2\mu+m) \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\nu-\lambda+n-\frac{1}{2})}{m! n! \Gamma(2\mu) \Gamma(2\nu) \Gamma(\nu-\lambda-\frac{1}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}$$

$$\times {}_{4}F_{3}\begin{bmatrix} -m, m+2\mu, \lambda+1, \lambda-\nu+\frac{3}{2} \\ \frac{1}{2}+\mu, \lambda-\nu-n+\frac{3}{2}, \lambda+\nu+\frac{3}{2}+n \end{cases}; 1$$

valid for $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

(4.5)
$$x^{\lambda} C_{m}^{\mu} (1-2x)$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(2\mu+m) \Gamma(\lambda+\nu+\frac{1}{2})}{m! \sqrt{\pi} \Gamma(2\mu) \Gamma(\lambda+2\nu+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda)_{r}}{(\lambda+2\nu+1)_{r}}$$

$$\times {}^{1}_{4}F_{3} \begin{bmatrix} -m, m+2\mu, \lambda+\nu+\frac{1}{2}, \lambda+1 \\ \mu+\frac{1}{2}, \lambda-r+1, \lambda+2\nu+r+1 \end{bmatrix} C_{r}^{\nu} (2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$.

(b) With p = 0, q = 1, $b_1 = 1 + a$, and multiplying both sides by $\frac{(1+\alpha)_m}{m!}$, we have

(4.6)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) L_{m}^{(a)}(x) dx$$

$$= \frac{\Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+1) \Gamma(\lambda-\nu+\frac{3}{2}) (1+a)_{m}}{n! m! \Gamma(2\nu) \Gamma(\lambda-\nu-n+\frac{3}{2}) \Gamma(\lambda+\nu+n+\frac{3}{2})}$$

$$\times {}_{3}F_{3} \begin{bmatrix} -m, \lambda+1, \lambda-\nu+\frac{3}{2} \\ 1+\alpha, \lambda-\nu-n+\frac{3}{2}, \lambda+\nu+n+\frac{3}{2} \end{bmatrix}; 1$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4.7) x^{\lambda} L_{m}^{(\alpha)}(x)$$

$$= \frac{2^{2\nu} \Gamma(\nu) \Gamma(\lambda + \nu + \frac{1}{2}) (1 + \alpha)_{m}}{\sqrt{\pi} m! \Gamma(\lambda + 2\nu + 1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu + r) (-\lambda)_{r}}{(\lambda + 2\nu + 1)_{r}}$$

$$\times {}_{3}F_{3} \begin{bmatrix} -m, \lambda + \nu + \frac{1}{2}, \lambda + 1 \\ 1 + \alpha, \lambda - r + 1, \lambda + 2\nu + r + 1 \end{bmatrix}; 1 \quad C_{r}^{\nu} (2x - 1)$$

where $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and $L_n^{(a)}(x)$ is a generalized Laguerre polynomial.

(B) Particular cases of (2.2) and (3.2) with $\delta = c = 2$:

(i) Substituting p=1, q=2, $a_1=\gamma-\beta$, $b_1=\gamma$, $b_2=1-\beta-m$, $\mu=1$ and multiplying both sides by $\frac{2^m(\beta)_m}{m!}$, we get

(4.8)
$$\int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) R_{m}(\beta, \gamma; x) dx$$

$$= \frac{2^{m}(\beta)_{m} \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+m+1) \Gamma(\lambda+m-\nu+\frac{3}{2})}{m! n! \Gamma(2\nu) \Gamma(\lambda+m-\nu-n+\frac{3}{2}) \Gamma(\lambda+m+\nu+n+\frac{3}{2})}$$

$$\times_{7}F_{6}\left[\begin{array}{c}\triangle(2,-m),\ \gamma-\beta,\ \triangle(2,-\lambda-m+\nu+n-\frac{1}{2}),\ \triangle(2,-\lambda-m-\nu-n-\frac{1}{2})\\ \gamma,\ 1-\beta-m,\ \triangle(2,-\lambda-m),\ \triangle(2,-\lambda-m+\nu-\frac{1}{2})\end{array};\ 1\right]$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

With n=0, $\nu=M-\frac{1}{2}$, and $\lambda=L-1$, (4.8) reduces to a known result [(7), p. 90]:

$$\int_{0}^{1} x^{L-1} (1-x)^{M-1} R_{m} (\beta, \gamma; x) dx$$

$$=\frac{\Gamma(M) \Gamma(L+m) 2^{m} (\beta)_{m}}{m ! \Gamma(L+M+m)} \quad {}_{5}F_{4}\left(\begin{array}{c} \frac{-m}{2}, \frac{-m+1}{2}, \gamma-\beta, \frac{1-L-M-m}{2}, \frac{2-L-M-m}{2} \\ \gamma, 1-\beta-m, \frac{1-L-m}{2}, \frac{2-L-m}{2} \end{array}\right)$$

valid for Re(L) > 0, Re(M) > 0.

$$(4.9) x^{\lambda} R_m(\beta, \gamma; x)$$

$$=\frac{2^{2\nu+m} (\beta)_m \Gamma(\nu) \Gamma(\lambda+\nu+m+\frac{1}{2})}{\sqrt{\pi} m! \Gamma(\lambda+2\nu+m+1)} \sum_{r=0}^{\infty} \frac{(-1)^r (\nu+r) (-\lambda-m)_r}{(\lambda+2\nu+m+1)_r}$$

$$\times {}_{7}F_{8}\left[\begin{array}{c}\triangle(2,-m), \ \gamma-\beta, \ \triangle(2,-\lambda-m+r), \ \triangle(2,-\lambda-2\nu-m-r)\\ \gamma, \ 1-\beta-m, \ \triangle(2,-\lambda-\nu-m+\frac{1}{2}), \ \triangle(2,-\lambda-m)\end{array}; 1\right]C_{r}^{\nu}(2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and $R_m(\beta, \gamma; x)$ is a Bedient's polynomial [(6), p. 297, (1)] which reduces to the Gegenbauer polynomial $C_m^{(\beta)}(x)$ when $\lim_{\gamma \to \infty} R_m(\beta, \gamma; x)$.

(4.10) Setting p = q = 0, $\mu = -1$ and multiply both sides by 2^m , we obtain $\int_0^1 x^{\lambda} (1-x)^{\nu-1} C_n^{\nu} (2x-1) H_m(x) dx$

$$=\frac{2^{m}\Gamma(\nu+\frac{1}{2})\Gamma(2\nu+n)\Gamma(\lambda+m+1)\Gamma(\lambda+m-\nu+\frac{3}{2})}{n!\Gamma(2\nu)\Gamma(\lambda+m-\nu-n+\frac{3}{2})\Gamma(\lambda+m+\nu+n+\frac{3}{2})}$$

$$\times {}_{6}F_{4}\left[\begin{array}{c} \triangle\left(2,-m\right),\ \triangle\left(2,-\lambda-m+\nu+n-\frac{1}{2}\right),\ \triangle\left(2,-\lambda-m-\nu-n-\frac{1}{2}\right)\\ \triangle\left(2,-\lambda-m\right),\ \triangle\left(2,-\lambda-m+\nu-\frac{1}{2}\right) \end{array}\right];-1$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

$$(4.11) x^{\lambda} H_{m}(x) = \frac{2^{2\nu+m} \Gamma(\nu) \Gamma(\lambda+\nu+m+\frac{1}{2})}{\sqrt{\pi} \Gamma(\lambda+2\nu+m+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda-m)_{r}}{(\lambda+2\nu+m+1)_{r}}$$

$$\times {}_{6}\dot{F}_{4}\left[\begin{array}{c}\Delta(2,-m),\ \triangle(2,-\lambda-m+r),\ \triangle(2,-\lambda-2\nu-m-r)\\ \triangle(2,-\lambda-\nu-m+\frac{1}{2}),\ \triangle(2,-\lambda-m)\end{array};-1\right]C_{r}^{\nu}(2x-1)$$

valid for $Re(\nu) > 0$, $Re(\lambda) > -\frac{1}{2}$ and $H_m(x)$ is the Hermite polynomial.

(iii) With p=0, q=1, $b_1=\frac{1}{2}-m$, $\mu=1$ and mutiplying both sides by $\frac{2^m(\frac{1}{2})_m}{m!}$, we have

$$(4.12) \qquad \int_{0}^{1} x^{\lambda} (1-x)^{\nu-\frac{1}{2}} C_{n}^{\nu} (2x-1) P_{m}(x) dx$$

$$= \frac{2^{m}(\frac{1}{2})_{m} \Gamma(\nu+\frac{1}{2}) \Gamma(2\nu+n) \Gamma(\lambda+m+1) \Gamma(\lambda+m-\nu+\frac{3}{2})}{m! n! \Gamma(2\nu) \Gamma(\lambda+m-\nu-n+\frac{3}{2}) \Gamma(\lambda+m+\nu+n+\frac{3}{2})}$$

$$\times {}_{6}F_{5} \left[\begin{array}{c} \Delta(2,-m), \ \Delta(2,-\lambda-m+\nu+n-\frac{1}{2}), \ \Delta(2,-\lambda-m-\nu-n-\frac{1}{2}) \\ \frac{1}{2}-m, \ \Delta(2,-\lambda-m), \ \Delta(2,-\lambda-m+\nu-\frac{1}{2}) \end{array} \right] ; 1 \right]$$

where $Re(\lambda) > -1$, $Re(\nu) > -\frac{1}{2}$.

(4.13)
$$x^{\lambda} P_{m}(x)$$

$$= \frac{2^{2\nu+m} \Gamma(\nu) \Gamma(\lambda+\nu+m+\frac{1}{2}) (\frac{1}{2})_{m}}{\sqrt{\pi} m! \Gamma(\lambda+2\nu+m+1)} \sum_{r=0}^{\infty} \frac{(-1)^{r} (\nu+r) (-\lambda-m)_{r}}{(\lambda+2\nu+m+1)_{r}}$$

$$\times {}_{6}F_{5}\left[\begin{array}{c} \triangle(2,-m),\ \triangle(2,-\lambda-m+r),\ \triangle(2,-\lambda-2\nu-m-r)\\ \frac{1}{2}-m,\ \triangle(2,-\lambda-\nu-m+\frac{1}{2}),\ \triangle(2,-\lambda-m) \end{array};\ 1\right]C_{r}^{\nu}(2x-1)$$

where Re(v) > 0, $Re(\lambda) > -\frac{1}{2}$ and $P_m(x)$ is the Legendre polynomial.

(c) Special case: With $\mu = 0$, $\delta = 1$ either in (3.1) or (3.2) and replacing x by $\left(\frac{1-X}{2}\right)$ and using the relation

$$\hat{C}_{n}^{\nu}(\hat{X}) = (-1)^{n} \hat{C}_{n}^{\nu}(-\hat{X}),$$

we obtain a known result [(2), p. 213, (6)]:

$$(1-X)^{\lambda} = 2^{2\nu+\lambda} \pi^{-\frac{1}{2}} \Gamma(\nu) \Gamma(\lambda+\nu+\frac{1}{2}) \sum_{r=0}^{\infty} \frac{(\nu+r) (-\lambda)_r}{\Gamma(\lambda+2\nu+r+1)} C_r^{\nu} (X),$$

$$-1 < X < 1, -\lambda < \frac{1}{2} (\nu + 1) \text{ if } \nu \geqslant 0, -\lambda < \frac{1}{2} + \nu \text{ if } -\frac{1}{2} < \nu \leqslant 0.$$

Acknowledgement

The author wishes to express his gratitude to Dr. V. M. Bhise of G. S. Tech. Institute, Indore for his help in the preparation of this paper.

References

- Erdèlyi, A. Tables of integral transforms, Vol. II, McGraw-Hill, 1. New York, 1954.
- Erdelyi, A. Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1954.
- Fasenmyer Sister M. Celine. Some generalized hypergeometric polynomial. Bull. Amer. Math. Soc., 53, 806-812, 1947.

 Khandekar, P. R. On a generalization of Rice's polynomial-1. Proc.
- Nat. Acad. Sci. India, A-34(2), 157-162, 1964.
- 5. Rice, S. O. Some properties of ${}_{3}F_{2}$ $\binom{-n, n+1, \xi}{1, p}$; v, Duke Math. J. 6, 108-119, 1960.
- Rainville, É. D. Special-functions. Macmillan Company, New York, 1960.
- Shah Manilal. Certain integrals involving the product of two generalized hypergeometric polynomials. Proc. Nat. Acad. Sci., India, A-37(1), 79-96, 1967.

On some results involving H-functions and associated Legendre Functions

By

MANILAL SHAH

Department of Mathematics, P. M. B. G. Science College, Indore (M. P.)

[Recevied on 3rd July, 1968]

Abstract

In this paper the integral involving H-and associated Legendre functions has evaluated. This integral has been employed to establish the expansion formula for the H-function in series of the associated Legendre functions.

1. Fox [(5), p. 408] has recently introduced the H-function in the form of Mellin-Barnes type integral as

$$(1.1) H_{p,q}^{m,n} \left[x \mid \substack{(a_1, a_1), (a_2, a_2), \dots, (a_p, a_p) \\ (b_1, \beta_1), (b_2, \beta_2), \dots, (b_q, \beta_q)} \right]$$

$$= \frac{1}{2\pi i} \int_{L}^{m} \frac{\prod_{j=1}^{m} \Gamma(b_j - \beta_j \xi)}{\prod_{j=m+1}^{m} \Gamma(1 - b_j + \beta_j \xi)} \prod_{j=m+1}^{m} \frac{\Gamma(a_j - a_j \xi)}{\Gamma(a_j - a_j \xi)}$$

where x is not equal to zero and an empty product is interpreted as unity; p, q, m, n are integers satisfying $1 \le m \le q, 0 \le n \le p$; $a_j(j = 1, \ldots, p), b_j(j = 1, \ldots, p)$ are complex numbers such that no pole of $\Gamma(b_h - \beta_h \xi)$, $(h = 1, \ldots, m)$ coincides with any pole of $\Gamma(1 - a_i + \alpha_i \xi)$, $(i = 1, \ldots, n)$ i.e.,

(1·2)
$$\alpha_{i}(b_{h}+r) \neq (a_{i}-\eta-1) \beta_{h}$$
$$(\gamma, \eta = 0, 1, \ldots, j, h = 1, \ldots, m; i = 1, \ldots, n).$$

Further the contour L runs from $\sigma - i \infty$ to $\sigma + i \infty$ such that the points:

(1.3)
$$\xi = \frac{(b_h + \gamma)}{\beta_h}, (h = 1, \ldots, m : \gamma = 0, 1, \ldots)$$

which are poles of $\Gamma(b_h - \beta_h \xi)$ lie to the right and the points:

Address for Communication :

Manilal Shah, 6/6, Mahatma Gandhi Road, Indore-2 (M. P.) India.

(1.4)
$$\xi = \frac{(a_i - \eta - 1)}{a_i}, (i = 1, \ldots, n, \eta = 0, 1, \ldots)$$

which are poles of $\Gamma(1-a_i+a_i\xi)$ lie to the left of L. Such a contour is possible on account of (1.2). These assumptions for the H-function will be adhered to throughout this paper.

Braaksma [(1), p. 278] has studied in detail the asymptotic expansions and analytic continuations for a class of Barnes-integrals.

The associated Legendre function has defined by MacRobert [(6), p. 123]:

(1.5)
$$P_n^m(x) = \frac{\Gamma(n+m+1) (-1)^{\frac{1}{2}m}}{\Gamma(n-m+1) m!} \left(\frac{1-x}{1+x}\right)^{\frac{1}{2}m} F[-n, n+1; m+1; \frac{1}{2} (1-x)]:$$

where m is a positive integer and n is unrestricted.

We shall abbreviate the H-function (1.1) as

(1.6)
$$H \stackrel{m, n}{p, q} \left[x \left| \left\{ (a_p, \alpha_p) \right\} \right. \right]$$

where $\{(a_p, \alpha_p)\}$ represents the set of parameters $(a_1, a_1), \ldots, (a_p, a_p)$ and similarly for $\{(b_q, \beta_q)\}$.

The symbol \triangle (m, n) stands for the parameters:

$$\frac{n}{m}$$
, $\frac{n+1}{m}$, ..., $\frac{n+m-1}{m}$.

7. In this section, we have derived the following integral.

The formula to be proved is

(2.1)
$$\int_{0}^{1} x^{\frac{1}{2}\mu+k} (1-x)^{\frac{1}{2}\mu} P_{l}^{\mu} (2x-1) H_{p,q}^{m,n} \left[zx^{\delta} \left| \{(a_{p}, \alpha_{p})\} \right| dx \right] \right] dx$$

$$=\frac{(-1)^{\frac{1}{2}\mu}}{\mu!}\frac{\Gamma(\mu+l+1)}{\Gamma(l-\mu+1)}\frac{H^{m,n+2\delta}_{m+1}}{b+2\delta,q+2\delta}\left[(z)\Big|\frac{(\triangle(\delta,-k),1),(\triangle(\delta,-k-\mu),1),\{(a_p,\alpha_p)\}}{\{(b_q,\beta_q)\},(\triangle(\delta,-k-\mu-l-1),1),(\triangle(\delta,-k-\mu+2),1)\}}\right]$$

where δ , μ are positive integers, and l is unrestricted, $k>-\mu-1$, and

$$\sum_{1}^{p} \alpha_{j} - \sum_{1}^{q} \beta_{j} \equiv \mathcal{I} \leqslant 0, \sum_{1}^{n} \alpha_{j} - \sum_{n+1}^{p} \alpha_{j} + \sum_{1}^{m} \beta_{j} - \sum_{m+1}^{q} \beta_{j} \equiv \lambda > 0, |\arg z| < \frac{1}{2} \pi \lambda$$

and
$$Re\left(1+\delta \frac{b_h}{\beta_h}\right) > 0$$
, $(h = 1, \ldots, m)$.

Proof:

To prove (2·1), we express the H-function in the integrand of (2·1) in the form of Mellin-Barnes type of integral (1·1) and change the order of integration which is easily seen to be justified under the condition stated in (2·1), we obtain

$$(2\cdot2) \frac{1}{2\pi i} \int_{\substack{j=1 \ j=m+1}}^{m} \frac{\Gamma(b_{j}-\beta_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+\alpha_{j}s) z^{s}}{\prod_{j=m+1}^{q} \Gamma(1-b_{j}+\beta_{j}s) \prod_{j=n+1}^{p} \Gamma(a_{j}-\alpha_{j}s)} \left\{ \int_{0}^{1} x^{\frac{1}{2}\mu+k+\delta s} (1-x)^{\frac{1}{2}\mu} P_{l}^{\mu} (2x-1) dx \right\} ds$$

Now evaluating x-integral with the help of the known result [(2), p. 104,(2.2)]:

$$\int_{0}^{1} x^{\frac{1}{2}m+p} (1-x)^{\frac{1}{2}m} P_{n}^{m} (2x-1) dx = \frac{(-1)^{\frac{1}{2}m} \Gamma(m+n+1) \Gamma(p+1) \Gamma(p+m+1)}{m! \Gamma(n-m+1) \Gamma(p+m+n+2) \Gamma(p+m-n+1)}$$

where m is a positive integer and p > -m-1, and using the Gauss' multiplication theorem for Gamma functions [(3), p. 4, (11)]:

$$\Gamma(mz) = (2\pi)^{\frac{1}{2}(1-m)} m^{mz-\frac{1}{2}} \prod_{l=1}^{m} \Gamma\left(z + \frac{l-1}{m}\right)$$

where m is a positive integer, (2.2) reduces to

(2·3)
$$\frac{(-1)^{\frac{1}{2}\mu} \Gamma(\mu+l+1)}{\mu! \Gamma(l-\mu+1) \delta^{\mu+1}} \delta^{\mu+1}$$

$$\times \frac{1}{2\pi i} \int_{L} \frac{\prod_{j=1}^{m} \Gamma(b_{j} - \beta_{j} s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + a_{j} s) \prod_{i=0}^{\delta - 1} \Gamma\left(\frac{k+1+i}{\delta} + s\right)}{\prod_{j=m+1}^{q} \Gamma(1 - b_{j} + \beta_{j} s) \prod_{j=n+1}^{p} \Gamma(a_{j} - \alpha_{j} s) \prod_{i=0}^{\delta - 1} \Gamma\left(\frac{k+\mu+l+2+i}{\delta} + s\right)} \times$$

$$\frac{\prod_{i=0}^{\delta-1} \Gamma\left(\frac{k+\mu+1+i}{\delta}+s\right) z^{s}}{\prod_{i=0}^{\delta-1} \left(\frac{k+\mu-l+1+i}{\delta}+s\right)} ds$$

which yields the value of the integral (2.1) in accordance with the definition of the H-function (1.1).

3. Expansion

The expansion formula to be established is

$$(3.1) x^{\frac{1}{2}\mu+k} (1-x)^{\frac{1}{2}\mu} H_{p,q}^{m,n} \left[zx^{\delta} \mid \left\{ (b_{q}, \beta_{q}) \right\} \right]$$

$$= \frac{(-1)^{\frac{1}{2}\mu}}{\mu ! \delta^{\mu+1}} \sum_{r=0}^{\infty} (2r+1) H^{m,n+2\delta}_{p+2\delta,q+2\delta}$$

$$\times \left[z \mid {(\triangle(\delta,-k), 1), (\triangle(\delta,-k-\mu), 1), \{(a_p,\alpha_p)\} \atop \{(b_q, \beta_q)\}, (\triangle(\delta,-\mu-k-r-1), 1), (\triangle(\delta,-k-\mu+r), 1)} \right] P_r^{\mu} (2x-1)$$

where μ , δ are positive integers, $k > -\mu - 1$ and

$$\sum_{1}^{p} \alpha_{j} - \sum_{1}^{q} \beta_{j} \equiv \mathcal{I} \leqslant 0, \sum_{1}^{n} \alpha_{j} - \sum_{n+1}^{p} \alpha_{j} + \sum_{1}^{m} \beta_{j} - \sum_{m+1}^{q} \beta_{j} \equiv \lambda > 0, |\arg z| < \frac{1}{2} \pi_{\lambda}$$
and $Re\left(1 + \delta \frac{b_{h}}{\beta_{h}}\right) > 0, (h = 1, \ldots, m).$

Proof: Let

(3.2)
$$f(x) = x^{\frac{1}{2}\mu + k} (1 - x)^{\frac{1}{2}\mu} H_{p, q}^{m, n} \left[zx^{\delta} \left[\left\{ (a_{p}, \sigma_{p}) \right\} \right] = \sum_{r=0}^{\infty} C_{r} P_{r}^{\mu} (2x - 1), \right]$$

$$(0 < x < 1).$$

Equation (3.2) is valid since f(x) is continuous and of bounded variation in the open interval (0, 1).

Now multiply both sides of (3.2) by P_l^{μ} (2x-1) and integrate with respect to x from 0 to 1. Change the order of integration and summation (which is permissible) on the right, we have

(3.3)
$$\int_{0}^{1} x^{\frac{1}{2}\mu+k} (1-x)^{\frac{1}{2}\mu} P_{l}^{\mu} (2x-1) H_{p,q}^{m,n} \left[zx^{\delta} \left| \left\{ (a_{p}, \alpha_{p}) \right\} \right. \right] dx$$

$$= \sum_{r=0}^{\infty} C_{r} \int_{0}^{1} P_{l}^{\mu} (2x-1) P_{r}^{\mu} (2x-1) dx.$$

Using the orthogonality property for the associated Legendre functions [(4), p. 279, (27)]:

$$\int_{0}^{1} \left[P_{n}^{m} (2x-1) \right]^{2} dx = \frac{1}{(2n+1)} \frac{(n+m)!}{(n-m)!}, m \leq n$$

on the right and the result (2.1) on the left of (3.3), we obtain

(3.4)
$$C_{l} = \frac{(-1)^{\frac{1}{2}\mu} (2l+1)}{\mu ! 8^{\mu+1}}$$

$$\times H_{p+2\delta, q+2\delta}^{m, n+2\delta} \left[z \mid {(\triangle(\delta, -k), 1), (\triangle(\delta, -k-\mu), 1), \{(a_p, a_p)\} \atop \{(b_q, \beta_q)\}, (\triangle(\delta, -k-\mu-l-1), 1), (\triangle(\delta, -k-\mu+l), 1)} \right].$$

With the help of (3.2) and (3.4), the expansion formula (3.1) is obtained.

The H-function is in a more generalized form which yields many know functions on specializing the parameters. By taking $\alpha_j = \beta_h = 1$ ($i = 1, \ldots, p$; $h = 1, \ldots, q$) in (1·1), the H-function reduces to Meijer's G-functions [(3), p. 207, (1)] which is itself a more generalized function of many known special functions used in pure and applied branches of Mathematics (3), p. 215–222].

Hence the formulae established in this paper are of general character.

Acknowledgement

I am very thankful to Dr. V. M. Bhise, for his help during the preparation of this paper.

References

- Braaksma, B. L. J. Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15, 239-341 1963.
 Bhonsle, B. R. and Verma, C. B. L. On some integrals involving
- Legendre function, associated Legendre function and Jacobi polynomials. Bull. Cal. Math. Soc., 48-2, 103-108, 1956.
- Erdèlyi, A. Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- 4. Erdèlyi, A. Tables of integral transforms, Vol. II, McGraw-Hill, New York, 1954.
- 5. Fox, C. G and H-functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98, 395-429, 1961.
 6. MacRobert, T. M. Spherical Harmonics. Methuen & Co. Ltd., London,
- 1947.

Changes in the Physico-chemical properties of a soil on the addition of weeds as a source of organic matter

By

O. P. VIMAL & G. C. SHUKLA

Division of Chemistry, Indian Agricultural Research Institute, New Delhi [Recevied on 29th February, 1968]

Abstract

Incubation studies were made to find the changes in the physico-chemical properties of a soil as a result of humification of weeds both under arable as well as under submerged conditions. It was reported earlier that the addition of weeds to this soil caused significant increase in the yield of wheat and paddy grain and straw.

In general, an initial decrease in pH and increase in conductivity was observed under both the conditions. Subsequently, pH increased and conductivity decreased. These changes were within the limits specified for the healthy growth of crop plants. The total exchangeable bases, the exchangeable calcium, magnesium, potassium and sodium increased. The increase was more under submerged conditions than under well-drained conditions. The humic acid content also improved. Under well drained conditions an increase in percentage water-stable aggregates, maximum water holding capacity and sticky point was noted.

Introduction

It was reported that the addition of weeds to a soil caused significant increase in the yield of paddy grain and straw¹⁹. Similarly, incorporation of weeds increased the yield of wheat crop under the arable conditions²². Incubation studies made separately, revealed that available NPK increased appreciably as a result of humification of weeds in the soil. Since, the growth is related to soil physical conditions also, the present investigations were undertaken to determine the changes in the physico-chemical properties of this soil e.g. pH, conductivity, the exchangeable bases, humic acid content, percentage water-stable aggregates etc. which take place on the addition of weeds under arable as well submerged conditions.

Experimental

(i) Meterials: Surface soil, 022.5 cms. was collected from the main block of the Agronomy Division Farm, I. A. R. I. Delhi. The soil was air dried and passed through 2 mm. sieve for incubation studies and chemical analysis. The physico-chemical properties of the soil are given in Table 1.

TABLE 1 Physico-chemical properties of the soil

	'
Conductivity (mhos/cm at 25°C)	0.70
pH (1:2·5)	8.05
Maximum water-holding capacity	33.81%
Sticky point	10.09%

Texture class		Sandy—Clay loam
Water-stable aggregates:		bandy—Gray Ioam
2 mm 2-1 mm		0.76%
		3.84%
1-0·5 mm		19·12 %
0·5-0·25 mm		11.66%
Total water-stable aggregates/0.25 mm		35•38%
Organic carbon		0.561%
Total Nitrogen		0.065%
C/N ratio		8·62
Exchangeable bases:		0.02
Calcium	11.14	(meq/100 gm soil)
Magnesium	2.21	, ,,
Potassium	0.90	
Sodium	0.32	,,
CEC	15.52	99
·	10 04	,,

Twentyone weeds commonly available in kharif and rabi seasons were collected at the flowering stage from the Agronomy Division Farm, I. A. R. I. The weeds were identified for their botanical names. These were analysed for organic and inorganic constituents. The results of analysis have been published. However, it is pertinent to record that these were found quite rich in minerals like N, P, K, Na, Ca, Mg, S, etc. The plant materials were screened after grinding through 2 mm sieve for incubation experiments.

- (ii) Incubation studies: 800 gms. of 2 mm sieved soil was mixed with a screened plant material and kept in a wide mouthed glass jar of 2 lbs. capacity each at 35°C. The different weeds were added @ 2% soil weight. The experiments were conducted in two series, one under well-drained and the other under submerged conditions. In the first series, moisture was maintained at 50% of maximum water-holding capacity. In the second series, submerged conditions were maintained with 2.5 cms. free film of water during the entire period. The mouths of the jar were tightened with perforated polythene sheets so as to check excessive moisture loss by evaporation but, at the same time ensure adequate aeration of the soil. Incubation period lasted from 1.6.66 to 28-9-66. Soil samples were drawn from both the series at periodical intervals of 10, 20, 40, 80 and 120 days to determine various physico-chemical properties.
- (iii) Soil analysis: pH was determined using Beckman glass electrode pH meter in 1:2.5 soil water suspension. Gonductivity was measured with the help of a solubridge in 1:2.5 filtered water extract and expressed in millimhos/cm at 25°C. Keen-Rackzowski boxes were used for the estimation of water-holding capacity as outlined in Piper¹⁵. Different fractions of water-stable aggregates were determined according to Yoder²³: sticky point by a procedure due to Coutts⁵. Exchangeable bases were estimated using Puri's method¹⁷ and total cation exchange capacity by neutral ammonium acetate leaching method of Schollenberger as mentioned in Piper¹⁵. Humic acid content was found by Chaminade's method³ with some modifications discussed by Vimal²². The periods effect represented in some of the tables are the average mean values.

Results and Discussions

(a) Changes in soil reaction (pH) during humification of weeds both under well-drained and submerged conditions:

It is evident from table 2 (a and b) that on the addition of weeds, there was a decrease in pH upto first ten days both under well-drained and submerged conditions. Subsequently, pH increased and did not suffer marked changes. In the initial stages, during the decomposition of organic matter, the formation of carbon dioxide and organic acids cause a decrease in soil pH. Subsequent increase in pH may be attributed to the consumption of organic acids by micro-organisms, decrease of CO₂, accumulation of NH₃ as affected by protein content of organic materials and release of exchangeable bases e.g. Ca, Mg, Na etc.

In the experiments made pH varied from 6.8 to .7.8 as found at different periods. This pH range is favourable for the healthy growth of crop plants. According to International Rice Research Institute⁸, stabilization of pH in soils from 6.5 to .7.5, 2-3 weeks following flooding has an important bearing on the nutrient uptake by rice plants. A pH of 6.5-7.5 increases the rate of organic matter mineralisation (Mitsuil⁶), enhances the destruction of organic acids (Acharya¹), decreases the concentration of CO₂, Fe⁺⁺ and Al⁺⁺⁺ (Ponnamperuma¹⁸), favours denitrification (De and Sarkar⁶; Delwiche⁷) and reduces phosphate fixation (Aoki²).

(b) Changes in specific conductivity during humification of weeds both under well-drained and submerged conditions:

Data in table 3 (a and b) showed that under all the treatments, conductivity at first increased and thereafter it decreased. The changes in conductivity as of pH are related to the liberation, accumulation and loss of the products of plant and microbial origin. Sharma and Bhattacharya¹⁸ found that the addition of organic matter at first resulted in increased conductivity and, decreased soil pH.

A comparison of the table (a) with (b) revealed that on submergence, there was a greater increase in specific conductivity as compared to well-drained conditions. This is compatible with more exchangeable cations, Ca, Mg, Na and K found under anaerobic conditions. It is interesting to observe that specific conductivity never exceeded 4 millimhos/cm which is the limit specified by the United States Salinity Laboratory²¹ for the healthy growth of plants.

(c) Exchangeable calcium, magnesium, sodium, potassium and total bases during humification of weeds both under well-drained and submerged conditions:

It is seen from the table 4 (a and b) that on the addition of weeds, the content of exchangeable bases increased. Calcium, magnesium sodium potassium and total exchangeable base varied from 9:19-12.73, 1.77-3.42, 0:18-0.93, 0:61-4.97 and 11.76-20.94 meq/100 gm. soil, and from 10.51-15.03, 1.90-3.97, 0.27-1.25, 0.76.5.92 and 13.44-24.62 meq/100 gm. under well-drained and submerged conditions respectively. This increase in exchangeable bases is related to the observed increase in humic acid content (table 5) and conductivity (table 3). Mc-George¹² found that lignin, ligno-hemicelluloses and ligno-cellulose fractions function largely as exchangeable compounds of soil organic matter. Xylan, a constituent of hemicelluloses is particularly important. An increase in base exchange capacity due to the decomposition of organic matter has been reported by Peevy and Norman¹⁴.

TABLE 2(a)

Changes in soil reaction (pH) during humification of weeds under well-drained conditions

Days		<u> </u>	- oj woods	unuer weit-	arained cond	itions
Treatment	0	10	20	40	80	120
C. Soil alone	8.05	7.05	0.00			120
1 Soil + T. monogyna	7.75	7·95 7·60	8.00	7.95	8.00	8.00
2 Soil + L. Camara	7.65	7·35	7.80	7.95	7 · 85	7.75
3 Soil + H, eichwaldii	7.70		7.65	7.75	7•7 0	7.65
4 Soil + C. sparsiflorus	7·35	7·4 5	7.60	7•85	7.75	7.70
	7.40	7 · 05	7.35	7.55	7.50	7.45
5 Soil + C. sativa	7.65	7·15	7.40	7· 50	7.50	7.45
6 Soil + X-strumarium	7.70	7.35	7.45	7 ·65	7.70	7.60
7 Soil + C. oxyacantha		7.30	7.35	7·45	7∙60	7.60
8 Soil + C. murale	7.75	7.45	7.55	7.65	7.75	7.70
9 Soil + F. parviflora	7.40	7.05	7.40	7·5 0	7.50	7.45
10 Soil + A. tenuifolius	7.35	7 ⋅10	7:35	7.45	7.50	7.40
11 Soil + A. arvensis	7.45	7.20	7•40	7.55	7.60	7.55
12 Soil + S. arvensis	7.65	7·4 0	7.50	7.60	7.65	7·65
13 Soil + C. album	7 ·75	7•45	7· 60	7.65	7.70	7·75
14 Soil + M. indica	7.65	7· 25	7.45	7.60	7.70	7·65
15 Soil + M. denticulata	7.45	7.15	7.45	7.50	7.55	7·50
16 Soil + C. didymus	7.55	7.10	7.35	7.45	7·45	7·45
17 Soil + P. lanceolata	7.65	7.55	7.70	7.80	7 1 3 7 ·75	
18 Soil + P. minor	7.30	7.05	7.25	7·35		7·65
19 Soil + C. dactylon	7.35	7.10	7·35	7·33 7·40	7·45	7.45
20 Soil + C. rotundus	7.40	7.10	7.30		7. 50	7.40
	7.65	7.35		7·35	7.45	7.45
			7.50	7.55	7.70	7 65
Periods effect	7.57		7-49	7 ·59	7.63	7·5 8
Changes in soil reaction	a (A U)	TABLE 2	2(b)		,	
Changes in soil reaction	(p11)	uuring numijic				
C. Soil alone	8.05	7 ·75	7.90	7.95	8 ·0 0	8.00
l Soil + T. monogyna	7.75	7 ·25	7.50	7•55	7:65	7 •8 5
2 ,, + L. camara	7.65	7.15	7.40	7.50	7· 65	7.70
3 ,, + H. eichwaldii	7.70	7.10	7•30	7.45	7.60	7·7 5
4 ,, + C. sparsiflorus	7.35	6· 90	7.15	7· 30	7•45	7.55
5 ,, + C. sativa	7.40	6.95	7·3 5	7•40	7.60	7.70
6 ,, + X. strumarium	7.65	6.90	7·3 0	7·4 0	7.65	7•70
7, + C. oxyacantha	7.70	7·05	7:35	7.60	7.70	7.80
8 ,, + C. murale	7.75	7.25	7.45	7·6 0	7.75	7.80
9 ,, + F. parviflora	7.40	6.85	7.10	7.30	7.55	7.65
10 ,, + A. tenuifolius	7·3 5	6.80	7.05	7.20	7.45	7.50
11 ,, + A. arvensis	7.45	6.85	7.00	7.30	7.40	7.45
10 Correspois	7.65	7.25	7.40	7.65	7.70	7.75
12 1 C ollerson	7.75	7.25	7.50	7.60	7·75	7.85
14 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.65	7.05	7·25	7.55	7.65	7.70
15 , + M. denticulata		7·10	7·35	7·55	7.60	7.65
10 10 did.	7• 5 5	6.85	7·10	7·25	7. 50	7·50
17 10 10 10 10 10 10 10 10 10 10 10 10 10	7·65	7·20	7·10 7·45	7 23 7•5 5	7·65	7·75
10 D min an				7·25	7·40	7.50
18 ,, + P. minor	7.30	6·70	6·90		7.35	
19 ,, + C. dactylon	7.35	6·85	7·00	7·15		7·45
20 ,, + C. rotundus	7.40	6·80	7·10	7·20	7·40	7·50
21 ,, + A. viridus	7.65	7.15	7· 35	7.60	7.70	7.75
Period effect	7.57	7•04	7.28	7.45	7.59	7.67

TABLE 3(a) Changes in specific conductivity during humification of weeds under well-drained conditions

C. Soil alone	Days Treatments	0	10	20	40	80	120
C. Soil alone 0.70 0.80 1.00 0.95 1.10 1 Soil + T. monogyna 1.65 2.15 2.90 3.10 2.60 3.10 2.60 3.10 2.60 3.10 2.60 2.31 2.90 3.10 2.60 3.10 2.60 3.10 2.60 2.31 2.90 2.55 2.85 2.90 4 4 , + C. sparsiflorus 1.20 1.50 1.85 2.65 2.75 5.5 3.40 3.05 6 , + X. strumarium 1.65 1.90 2.50 2.75 2.60 3.05 6 , + X. strumarium 1.65 1.90 2.50 2.75 2.60 3.00 2.75 3.00 2.75 3.00 2.75 3.00 2.75 3.00 3.05 6 ., + X. strumarium 1.65 1.90 2.50 2.75 2.60 3.00 3.05 6 ., + X. strumarium 1.65 1.90 2.50 2.45 2.80 3.05 3.00 3.05 8 , + C. murale 1.80 1.95 2.55 2.95 3.05 9 9 , + F. parviflora 1.35 2.05 2.40 2.80 2.65 12 ., + A. tenuifolius 1.20 1.35 1.90 7.05 2.00 11 , + A. arvensis 1.30 2.10 2.50 2.85 2.65 12 ., + S. arvensis 1.45 2.25 2.75 2.95 2.40 2.85 2.65 12 ., + S. arvensis 1.45 2.25 2.75 2.95 2.40 2.10 2.50 2.85 2.65 12 ., + S. arvensis 1.45 2.25 2.75 2.95 2.40 2.10 2.50 2.85 2.65 12 ., + M. denticulata 1.35 2.00 2.35 2.95 2.95 2.55 14 ., + M. indica 1.40 1.90 2.25 2.75 2.40 2.15 ., + M. denticulata 1.35 2.00 2.35 2.95 2.95 2.55 1.15 ., + P. lanceolata 1.45 2.25 2.75 2.95 2.40 2.18 ., + P. lanceolata 1.45 2.25 2.75 2.95 2.40 2.11 ., + P. lanceolata 1.45 2.25 2.75 2.95 2.40 2.11 ., + P. lanceolata 1.45 2.25 2.75 2.95 2.40 2.11 ., + P. lanceolata 1.45 2.25 2.75 2.95 2.40 2.11 ., + A. viridus 1.70 2.10 2.35 2.30 2.55 2.85 2.75 2.11 ., + P. lanceolata 1.45 2.25 2.75 2.90 2.20 1.90 1.0 2.00 2.05 1.0 2.00 2.00 2.05 1.0 2.00 2.00 2.05 1.0 2.00 2.00 2.05 1.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00	- 1 00 011 011 01			(M	illimhos/cn		12(
1 Soll + I. monogyna 1-65 2-15 2-90 3-10 2-66 2 3. + L. camara 1-50 2-10 3-00 2-75 2-60 3 3., + H. eichwaldii 1-35 2-00 2-55 2-85 2-90 4 4 , + C. sparsiflorus 1-20 1-50 1-85 2-65 2-75 2-60 2-75 5 3-6 3. + C. sativa 1-35 1-80 2-10 2-80 3-05 6 3-9 , + C. sativa 1-35 1-80 2-10 2-80 3-05 6 3-00 2-75 2-60 2-75 2-75 2-60 2-75 2-75 2-75 2-75 2-75 2-75 2-75 2-75			0.80	1.00	0.95	1.10	1,00
2 , + L. camara 1 :50	l Soil + T. monogyna		2.15	2.90	3.10		1·00 2·40
3 , + H. eichwaldin 1 35 2:90 2:55 2:85 2:90 4 4 , + C. sparsiflorus 1:20 1:50 1:85 2:65 2:75 5 , + C. sativa 1:35 1:80 2:10 2:80 3:05 6 6 , + X. strumarium 1:65 1:90 2:50 2:75 2:60 3:05 8 , + C. muralc 1:80 1:95 2:55 2:95 3:05 8 , + C. muralc 1:80 1:95 2:55 2:95 3:05 3:05 9 , + F. parviflora 1:35 2:05 2:40 2:40 2:80 2:65 11 , + A. tenuifolius 1:20 1:35 1:90 7:05 2:05 11 , + A. tenuifolius 1:20 1:35 1:90 7:05 2:05 11 , + A. arvensis 1:30 2:10 2:50 2:85 2:65 2:05 12 , + S. arvensis 1:45 2:25 2:75 2:95 2:40 2:35 2:75 2:40 2:35 3:05 3:05 3:05 3:05 3:05 3:05 3:05 3	2 ,, $+$ L. camara		2.10	3.00		2.60	2.30
4 , + C. sparsifiorus 1:20 1:50 1:85 2:65 2:75	3 ,, + H. eichwaldii	1 35	2.00	2.55	2.85	2.90	2.25
5 ,, + C. sativa 1:35 1:80 2:10 2:80 3:05 6 7 , + X. strumarium 1:65 1:90 2:50 2:75 2:60 7 7 , + C. oxyacantha 1:50 2:10 2:45 2:80 3:00 8 8 , + C. murale 1:80 1:95 2:55 2:95 3:05 10 9 , + F. parviflora 1:35 2:05 2:40 2:80 2:65 10	4 ,, + C. sparsiflorus	1.20	1.50	1.85			2.00
6					2.80		
8 , + C. oxyacantha 1:50 2:10 2:45 2:80 3:00 2 3:05 9 , + F. parviflora 1:35 2:05 2:40 2:80 3:05 2:40 2:80 2:65 10				2.50			1·85 1·95
8	,,,		2 ·10	2•45	2.80		2.45
9	,,			2.55			2.10
10 , + A. tenuifolius 1:20 1:35 1:90 2:05 2:00 1 11 , + A. arvensis 1:30 2:10 2:50 2:85 2:65 2 12 , + S. arvensis 1:45 2:25 2:75 2:95 2:40 2 13 , + C. album 1:85 2:20 3:25 2:75 2:95 2:40 2 14 , + M. indica 1:40 1:90 2:25 2:75 2:40 2 15 , + M. denticulata 1:35 2:00 2:35 2:95 2:55 2 16 , + C. didymus 1:30 2:05 2:30 2:55 2:25 2 17 , + P. lanceolata 1:45 2:25 2:75 2:95 2:40 2 18 , + P. minor 1:10 1:85 2:00 2:20 2:00 2:00 2 19 , + C. dactylon 1:25 1:60 2:20 2:20 2:00 2 10 , + C. rotundus 1:20 1:35 1:90 2:00 2:05 2:11 3, + A. viridus 1:70 2:10 2:35 2:80 3:10 2 11 , + A. viridus 1:70 2:10 2:35 2:80 3:10 2 11 , + A. viridus 1:40 1:88 2:35 2:61 2:49 2 Changes in specific conductivity during humification of weeds under submerged condition. C. Soil alone 0.70 0:85 1:05 1:25 1:15 1 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 2:85 2 T. T. monogyna 1:65 2:95 3:40 3:50 3:00 2:80 14 3:50 3:50 3:50 3:50 3:50 3:50 3:50 3:50	1			2.40			1.80
11		1.20	1.35	1.90			
12	,,	1.30	2 ·10	2.50			1·60 2·15
1.3		1.45		2.75			2· 1 5
144	, , ,	1.85	2.20	3.25			2.60
135	_ ,,	1.40	1.90	2.25			2.1
1. H. C. didymus 1:20 2:05 2:30 2:55 2:25 1 2:40 2:8	,,		2.00	2.35			2.05
8 ,, + P. lanceolata 1:45 2:25 2:75 2:95 2:40 2 8 ,, + P. minor 1:10 1:85 2:00 2:20 2:00 1 9 ,, + C. dactylon 1:25 1:60 2:20 2:20 1:90 1 10 ,, + C. rotundus 1:20 1:35 1:90 2:00 2:05 1 11 ,, + A. viridus 1:70 2:10 2:35 2:80 3:10 2 12	,,	1.30	2.05				1.85
1. H. minor 1.10 1.85 2.00 2.20 2.00 1.90 1.00 1.00 1.00 1.00 1.00 1.00 1	_ ,,	1.45	2.25				2.25
19 ,, + C. dactylon 1 25 1 60 2 20 2 20 1 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.10	1.85	2.00			1.75
1	,,	1.25	1.60				
Periods effect 1·40 1·88 2·35 2·80 3·10 2·49 2 TABLE 3(b) Changes in specific conductivity during humification of weeds under submerged condition. G. Soil alone 0·70 0·85 1·05 1·25 1·15 1 1 ,, + T. monogyna 1·65 2·95 3·40 3·50 2·85 2 2 ,, + L. camara 1·50 2·65 2·90 3·15 2·45 2 3 ,, + H. eichwaldii 1·35 2·25 3·50 3·00 2·80 1 4 ,, + C. sparsiflorus 1·20 1·95 3·10 2·65 2·60 2 5 ,, + C. sativa 1·35 2·45 3·25 3·00 2·80 2 6 ,, + X. strumarium 1·65 2·80 3·35 3·15 2·70 2 8 ,, + C. murale 1·80 2·90 3·60 3·20 2·70 2 9 ,, + F. parviflora 1·35 2·70 2·90 3·10 2·80 2 1 ,, + A. tenuifolius 1·20 2·05 2·35 2·15 2·05 1 2 ,, + S. arvensis 1·45 2·55 3·25 3·00 2·80 2 3 ,, + M. denticulata 1·35 2·40 3·50 2·70 2·90 2·20 1 3 ,, + C. didymus 1·30 2·25 3·00 2·80 2 3 ,, + C. album 1·85 3·00 3·50 2·85 2·25 1 5 ,, + C. album 1·85 3·00 3·50 2·85 2·25 1 5 ,, + M. denticulata 1·35 2·40 3·15 2·65 2·45 1 5 ,, + C. didymus 1·30 2·25 3·00 2·90 2·20 1 6 ,, + M. denticulata 1·35 2·40 3·15 2·65 2·45 1 7 ,, + P. lanceolata 1·45 2·75 3·50 2·95 2·30 2 9 ,, + P. minor 1·10 1·80 2·20 2·35 2·15 1 9 ,, + C. dactylon 1·25 1·90 2·45 2·25 2·35 1·95 1 9 ,, + C. rotundus 1·20 1·85 2·25 2·35 1·95 1 9 ,, + A. viridus 1·70 2·40 2·95 3·45 2·65 2·35 1·95 1 9 periods • C.		1.20	1.35				1.65
Periods effect 1·40 1·88 2·35 2·61 2·49 2 TABLE 3(b) Changes in specific conductivity during humification of weeds under submerged condition. C. Soil alone 0·70 0·85 1·05 1·25 1·15 1 1 ,, + T. monogyna 1·65 2·95 3·40 3·50 2·85 2 2 ,, + L. camara 1·50 2·65 2·90 3·15 2·45 2 3 ,, + H. eichwaldii 1·35 2·25 3·50 3·00 2·80 1 4 ,, + C. sparsiflorus 1·20 1·95 3·10 2·65 2·60 2 5 ,, + C. sativa 1·35 2·45 3·25 3·00 2·80 2 6 ,, + X. strumarium 1·65 2·80 3·35 3·15 2·70 2 7 ,, + C. oxyacantha 1·50 2·85 3·10 3·25 2·60 2 8 ,, + C. murale 1·80 2·90 3·60 3·20 2·70 2 9 ,, + F. parviflora 1·35 2·70 2·90 3·10 2·80 2 9 ,, + F. parviflora 1·35 2·70 2·90 3·10 2·80 2 1 ,, + A. arvensis 1·30 1·90 2·75 3·30 2·90 1 1 ,, + A. arvensis 1·45 2·55 3·25 3·00 2·80 2 4 ,, + M. indica 1·40 2·00 2·70 3·20 2·10 1 5 ,, + C. didymus 1·30 2·25 3·00 2·90 2·20 1 3 ,, + C. didymus 1·30 2·25 3·00 2·90 2·20 1 3 ,, + C. didymus 1·30 2·25 3·00 2·90 2·20 1 3 ,, + C. didymus 1·30 2·25 3·00 2·90 2·20 1 3 ,, + C. didymus 1·30 2·25 3·00 2·95 2·30 2 6 ,, + C. didymus 1·30 2·25 3·00 2·95 2·30 2 6 ,, + C. didctylon 1·25 1·90 2·45 2·25 2·35 1·95 1 7 ,, + C. rotundus 1·20 1·85 2·25 2·35 1·95 1 Periods ***	l ,, + A. viridus	1.70	2.10				1·60 2•70
Changes in specific conductivity during humification of weeds under submerged condition. G. Soil alone 0.70 0.85 1.05 1.25 1.15 1.15 1.15 1.15 1.15 1.15 1.1	Periods effect	1.40	1.88				2.03
Changes in specific conductivity during humification of weeds under submerged condition. C. Soil alone 0.70 0.85 1.05 1.25 1.15 1 1 ,, + T. monogyna 1.65 2.95 3.40 3.50 2.85 22 3 ,, + L. camara 1.50 2.65 2.90 3.15 2.45 22 3 ,, + H. eichwaldii 1.35 2.25 3.50 3.00 2.80 1 4 ,, + C. sparsiflorus 1.20 1.95 3.10 2.65 2.60 22 5 ,, + C. sativa 1.35 2.45 3.25 3.00 2.80 2 6 ,, + X. strumarium 1.65 2.80 3.35 3.15 2.70 2 8 ,, + C. murale 1.80 2.90 3.60 3.20 2.70 2 8 ,, + C. murale 1.80 2.90 3.60 3.20 2.70 2 9 ,, + F. parviflora 1.35 2.70 2.90 3.10 2.80 2 9 ,, + F. parviflora 1.35 2.70 2.90 3.10 2.80 2 1 ,, + A. arvensis 1.30 1.90 2.75 3.30 2.90 1 1 ,, + A. arvensis 1.45 2.55 3.25 3.00 2.80 2 3 ,, + C. album 1.85 3.00 3.50 2.85 2.25 1 4 ,, + M. indica 1.40 2.00 2.70 3.20 2.10 1 5 ,, + C. didymus 1.30 2.25 3.00 2.90 2.10 1 6 ,, + C. didymus 1.30 2.25 3.00 2.90 2.10 1 7 ,, + P. lanceolata 1.45 2.75 3.50 2.95 2.35 2.15 1 8 ,, + C. minor 1.10 1.80 2.20 2.35 2.15 1 9 ,, + C. dactylon 1.25 1.90 2.45 2.25 2.35 1.95 1 1 ,, + A. viridus 1.70 2.40 2.95 3.45 2.60 2			TABLE 3	4)	. *		
Ch. Soft alone O:70 O:85 1:05 1:25 1:15 1:15 1:17 1:17 1:17 1:17 1:17 1:18 1:	Changes in specific condi	ictivity (during humific	ation of wee	eds under sub	merged cond	itions
1	C. Boll alone	0.70	0.85	1.05	1.25		
2	$\frac{1}{2}$,, $+T$ monogyna		2.95				1.05
3		1.50	2.65				2.25
## G. sparsiflorus 1·20	, , , , , , , , , , , , , , , , , , , ,	1.35	2.25				2.20
3 , + C. sativa 1 35 2 45 3 · 25 3 · 00 2 · 80 2 · 80 3 · 35 3 · 15 2 · 70 2 · 70 2 · 70 2 · 70 2 · 70 2 · 80 3 · 35 3 · 15 2 · 70 2 · 70 2 · 80 3 · 80 3 · 25 2 · 60 2 · 80 2 · 70 2 · 90 3 · 60 3 · 20 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 2 · 90 3 · 10 2 · 80 2 · 70 3 · 10 2 · 80 2 · 70 3 · 90 2 · 70 3 · 90 2 · 80 2 · 90 3 · 10 2 · 80 2 · 90 1 · 90 2 · 75 3 · 30 2 · 90 1 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80 2 · 80		1.20	1.95				1.95
7 ,, + C. strumarium 1.65		1.35	2.45				2.25
7 ,, + C. oxyacantha 1.50		1.65	2.80				2.10
8 ,, + C. murale	, , , , , , , , , , , , , , , , , , ,	1.50	2.85				2.05
9 ,, +F. parviflora 1.35		1.80					2.20
1	_ ,, F	1.35	2.70				2.15
1	,,,						2.00
2 ,, +S. arvensis 1.45 2.55 3.25 3.00 2.80 2 3 ,, +G. album 1.85 3.00 3.50 2.85 2.25 1 4 ,, +M. indica 1.40 2.00 2.70 3.20 2.10 1 5 ,, +M. denticulata 1.35 2.40 3.15 2.65 2.45 1 6 ,, +C. didymus 1.30 2.25 3.00 2.90 2.20 1 7 ,, +P. lanceolata 1.45 2.75 3.50 2.95 2.30 2 8 ,, +P. minor 1.10 1.80 2.20 2.35 2.15 1 9 ,, +G. dactylon 1.25 1.90 2.45 2.25 2.10 1 1 ,, +G. rotundus 1.20 1.85 2.25 2.35 1.95 1 1 ,, +A. viridus 1.70 2.40 2.95 3.45 2.60	,,	1.30					1.95
3 · · · · · · · · · · · · · · · · · · ·	,,						1.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.85					2.10
1.35							1.95
7 ,, + G. didymus 1·30 2·25 3·00 2·90 2·20 1 8 ,, + P. lanceolata 1·45 2·75 3·50 2·95 2·30 2 9 ,, + G. dactylon 1·25 1·90 2·45 2·25 2·10 1 9 ,, + G. rotundus 1·20 1·85 2·25 2·35 1·95 1 9 ,, + A. viridus 1·70 2·40 2·95 3·45 2·60 2	,,	1.35					1.90
3 ,, + P. minor 1·10 1·80 2·20 2·35 2·15 1 3 ,, + C. dactylon 1·25 1·90 2·45 2·25 2·10 1 3 ,, + A. viridus 1·70 2·40 2·95 3·45 2·60 2		1.30					1.95
3 ,, + P. minor 1·10 1·80 2·20 2·35 2·15 1 9 ,, + C. dactylon 1·25 1·90 2·45 2·25 2·10 1 9 ,, + C. rotundus 1·20 1·85 2·25 2·35 1·95 1 9 ,, + A. viridus 1·70 2·40 2·95 3·45 2·60 2		1.45					1.65
9 ,, + G. dactylon 1.25 1.90 2.45 2.25 2.10 1 0 ,, + G. rotundus 1.20 1.85 2.25 2.35 1.95 1 1 ,, + A. viridus 1.70 2.40 2.95 3.45 2.60 2							2.05
7 , + C. rotundus 1·20 1·85 2·25 2·35 1·95 1 8 , + A. viridus 1·70 2·40 2·95 3·45 2·60 2	33						1.60
95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.							1.80
Parioda and 2.60 2	// · · · · · · · · · · · · · · · · · ·						1.85
1 chous effect 1.40 0.22	Periods effect	1.40					2•25 1·96

2.84

2.42

1.96

TABLE 4(0)

Effect of weeds on exchangeable Ca, Mg, Na, K and total bases at the end of 120 days

period under well drained conditions

-			period under	well-draine	d conditions	we the cha	of 120 days
	E	xchangeable bases	Ca	Mg	Na	K	Total exch-
_		Treatments	<u>(1)</u>	Ieq./100g	Soil)		angeable bases
(C. Sc	oil alone	9 ·19	1.77	0.18	0.61	
1			11.84	2.74	0.89	2.14	11.75
2	,,,		12•17	2.32	0.64	1.54	17.61
3		+ H. eichwaldii	11.64	2.21	0.43	1 96	16.67
4	,,	+ C. sparsiflorus	11.41	2.37	0.38		16.24
5	,,	+ C. sativa	1 1·6 2	2.52	0.33	1.53	15.59
6	,,	+ X. strumarium	11.96	2.71	0.42	1·81 2·73	16.28
7	,,	+ C. oxyacantha	12.07	2.29	0.51		17.82
8	,,	+ C. murale	12.14	2.81	0.61	1.82	16.63
9	,,	+ F. parviflora	11.64	2.28	0.48	4.12	19.68
10	,,	+ A. tenuifolius	11.38	1.81	_	1.54	19.94
11	,,	+ A. arvensis	11.46	2.02	0·59	1.12	14.90
12	"	+ S. arvensis	10.17	3.42	0.35	1.81	15 ·64
13	"	+ C. album	12.42	2.74	0.38	2.07	15·9 8
14		+ M. indica	11.53	2.48	0.79	4.97	20.49
15	,,	+ M. denticulata	11.58	2.69	0.51	1.92	16.44
16	"	+ C. didymus	11.60	2.32	0.48	1.41	16.16
17	"	+ P. lanceolata	12.73		0.41	2.07	16.40
	٠,	+ P. minor	10.69	2.39	0.93	1.81	17.86
18	,,	+ C. dactylon		1.96	0.47	1.32	14.44
19	,,	+ C. rotundus	11.36	2.28	0.43	1.56	15.63
20	,,		11.32	2.42	0.28	1.22	15.24
21	,,	+ A. viridus	11.90	2.86	0.38	2.54	17.58
	mar.	4 - 6 1	T &	BLE 4(b)			
	EJJe	ct of weeds on exchange	eable Ga, Mg, period under s	Na, K and	total bases a	t the end o	f 120 days
C	Soi	il alone	10.51	1.90		0.70	
l		l + T. monogyna	13.97		0.27	0.76	13.44
2		+ L. camara	14.37	3.02	1.25	2.91	21.13
3	,,	+ H. eichwaldii	13.92	2.93	0.86	1.96	20.12
4	,,			2.72	0.71	2.67	-20•02
5	"	+ C. sparsiflorus	13.53	. 2.96	2.83	2.39	19-71
6		+ C. sativa	13.79	3.18	0.78	2.71	20:46
9	"	+ X. strumarium	14.40	3.06	0.81	3.15	21.42
7	,,	+ C. oxyacantha	14.15	2.86	0-79	2.10	19-90
8	35	+ C. murale	14.53	3 ·22	0.84	5.36	23.95
9	,,	+ F. parviflora	13.96	3.13	0.73	2.78	20.60
0	,,	+ A. tenuifolius	13.58	2.19	0.76	1.98	18•51
1	,,	+ A. arvensis	13.84	2.27	0.62	2.18	18.93
2	,,	+ S. arvensis	13.12	3.97	0 ·68 ·	3 ·84	21.61
3	,,	+ C album	14.58	3.19	0.93	5.92	24.62
4	,,	+ M. indica	13.72	3.20	0.82	2.86	20.60
5	,,	+ M. denticulata	13.89	3.04	0.71	1.98	19.62
		+ C. didymus	13.85	2.61	0.73	2.69	19.88
	,,			0 =0			
7	"	+ P. lanceolata	15.03	2.73	1.10	2.14	21.00
7	,,	+ P. lanceolata + P. minor	15·03 13·09	2·73 2·28	1·10 0·75		21·00 17·79
7 8	,,					2·14 1·67 1·76	17.79
6 7 8 9	,, ,,	+ P. minor	13.09	2.28	0.75	1.67	

TABLE 5

Effect of weeds on humic acid content at the end of 120 days period both under welldrained and submerged conditions

Treatments	Well-drained Submers (Percent)		
C. Soil alone	0.044	0.047	
l Soil + T. monogyna	0.204	0.183	
	0.218	0.192	
2 ,, + L. camara 3 ,, + H. eichwaldii 4 ,, + C. sparsiflorus 5 ,, + C. sat iva 6 ,, + X. strumatium 7 ,, + C. oxyacantha 8 ,, + C. murale 9 ,, + F. Parviflora 10 ,, + A. tenuifolius	0.196	0.177	
4 ,, + C. sparsiflorus	0.182	0.168	
5 ,, + C. sat iva	0.166	0.154	
6 ,, + X. strumatium	0.198	0.171	
7 ,, + G. oxyacantha	0.224	0.202	
8 ,, + C. murale	0.206	0.184	
9 ,, + F. Parviflora	0.200	0.176	
	0.168	0.152	
11 ,, + A. arvensis	0.184	0.168	
12 ,, + S. arvensis	0.192	0.199	
13 ,, + C. album	0.183	0.171	
14 ,, + M. indica	0 ·174	0.159	
15 ,, + M. denticulata	0.164	0.155	
16 ,, + C. didymus	0.178	0.167	
17 ,, + P. lanceolata	0.246	0.214	
18 ,, + P. minor	0.168	0.123	
19 ,, + C dactylon	0.192	0.175	
20 ,, + C. rotundus	0.183	0.157	
21 ,, + A. viridus	0.179	0-172	

A comparison of table (a) and (b) would reveal that under sumberged conditions, the amount of exchangeable bases was higher compared to well-drained conditions. It may be related that conductivity also increased more under submerged than under well-drained conditions. It was found that as a result of displacement of K from the exchange complex, the concentration of K^+ in the soil may be almost doubled. Calcium increased from 10 ppm to 138 ppm while Mg from 3.5-5.0 ppm with 0.8% rice straw submerged for 48 days (Clark and Resnicky⁴).

(d) Humic acid content during humification of weeds both under well-drained and submerged conditions:

Consequent on the decomposition of weeds added to the soil, the humic acid content increased (table 5). The lignin content of the weeds which is comparatively resistant to the decomposition might have increase the humic acid content. The addition of *P. lanceolata* which has the highest lignin content (15.86%) re ulted in the maximum humic acid content also (0.246% under well-drained and 0.214% under submerged conditions). The data also showed that humic acid content was slightly higher under well-drained as compared to submerged conditions. This may be due to the fact that aeration stimulates organic matter breakdown. Acharyal demonstrated that the decomposition of rice straw was most rapid acrobically, slower under water-logged conditions and least pronounced under complete anaerobiasis.

TABLE 6

Effect of weeds on water-stable aggregates, maximum water-holding capacity and sticky point at the end of 120 days period under well-drained conditions

Physical properties		Water-stable aggregates %					Maximum	Sticky
ه د معنو	Treatments	2mm 2-1mm 1-0·5mm 0·5-0·2mm Total 0·25mm					water- holding capacity %	point %
	Soil alone Soil + T. monogyna ,, + L. camara ,, + H. eichwaldii	0.05 8.18 8.80 6.65	1·24 6·10 7·45 6·90	16·70 7·72 6·44 9·76	13.50 28.06 28.76	31·49 50·06 51·45	32·08 41·14 40·82	9·46 18·10 16·86
4 5 6	,, + C. sparsiflorus ,, + C. sativa	7·16 9·12 6·74	9·45 7·16 9·46	7·92 6·52 5·83	27·81 27·40 33·02 28·18	51·12 51·93 55·82	41·61 43·38 45·12	17·12 18·65 19·08
7 8 9	,, + C. oxyacantha ,, + C. murale	5·36 11·04 6·55	6·90 6·80 7·26	9·40 7·35 8·48	28·30 31·83 28·32	50·21 49·96 57·02 50·61	41·19 40·32 45·74	18·21 16·40 19·12
10 11 12	,, + A. tenuifolius ,, + A. arvensis ,, + S. arvensis	8•46 10·95 6·72	6·95 7·42 8·30	6·18 6·21 11·38	33·35 32·23 27·46	54·94 56·75 53·86	41·88 43·92 41·10 4 2· 34	15·75 17•36 15·90 16·88
13 14 15	,, + C. album ,, + M. indica ,, + M. denticulata	12·18 7·95 9·42	6·10 5·86 8·26	5·12 10·42 7·75	35·14 27·50 27·28	58·54 51·73 52·75	44·26 42·72 46·38	20·12 17·96 18·27
16 17 18	,, + C. didymus ,, + P. lanceolata ,, + P. minor	6·98 6·10 9·20	8·18 6·72 6·13	6·16 7·10 5·38	28·10 30·14 32·42	49·36 50·06 53·13	41.62 41.14 43.91	15.61 16.90 16.12
19 20 21	,, + C. dactylon ,, + C. rotundus ,, + A. viridus	5•31 7•46 11•35	7·46 8·12 5·24	10·34 6·24 7·40	26·76 28·98 33·51	49·87 50·80 57·50	41·78 40·16 47·64	16.64 16.88 17.16
Average treatment effect		7.81	6.97	7•99	. 29.00	51.77	42.28	17.05

⁽e) Water-stable aggregates, maximum water-holding capacity and sticky point during humification of weeds both under well-drained and submerged conditions.

As a result of the humification of weeds for a period of 120 days, an increase in soil-aggregates greater in size than 0.25 mm was found (table 6). This showed an improvement in soil structure. Comparison of different weeds indicated that C. album formed the highest percentage of soil aggregates greater than 0.25 mm (58.54%) followed by A. viridus, C. album and A. arvensis. This may be due to higher hemicellulose content of these weeds. The organic materials containing more than 11% hemicelluloses and 18% cellulose increased crumb formation. Martin and Anderson¹¹ and Martin^{9,10} have shown that during the decomposition of organic matter large quantities of polysaccharide gums are produced which greatly encourage the formation of water-stable aggregates. It is interesting to record that on analysis, these weeds were found rich in easily decomposable organic constituents like, cellulose and hemicellulose, and accordingly are highly effective in promoting aggregation. On account of the decomposition of weeds, maximum water-holding capacity and sticky point also increased. The humus colloids have the capacity to hold several times its weight of water.

Reserences

- Acharya, C. N. Biochem. Jour., 29, 1116-1120, 1935.
 Aoki, M. J. Sci. Soil Manure, Japan, 15, 182-202, 1941.
 Chaminade, R. Ann. Agron., 16, 117-132, 1946.

4. Clark, F. D. and Resnicky, J. W. Report 6th Int. Cong. Soil Sci. Part C. 545-548, 1956.

5. Coutts, J. R. H. J. Agri. Sci., 20, 407-413, 1930.

6. De, P. K. and Sarkar, S. N. Soil Sci., 42, 143-155, 1936.

- 7. Delwiche, C. C. "Denitrification" In W. D. Mc Eldoy and B. Glass eds. Inorganic nitrogen metabolism. The Johns Hopkin Press Baltimore.
- 8. International Rice Research Institute, Los Banos, Laguna, Phillipines Ann, Rept., 1962

9. Martin, J. P. Soil Sci., 59, 163-174, 1945.

Ibid. **61**, 157–166, 1946.

Martin, T. L. and Anderson, O. A. Proc. Soil Sci. Soc. Amer., 7, 215-217.

 McGeorge, W. T. J. Amer. Soc. Agron., 26, 575-579, 1934.
 Mitsui, S. Inorganic nutrition, fertilization and soil amelioration for lowland rice. Yokends Ltd. Japan, 1955.

14. Peevy, W. J. and Norman, A. G. Soil Sci., 65, 209-226, 1948.

- 15. Piper, C. S. Soil and Plant Analysis Univ. of Adelaide, Australia, 1950. 16. Poonamperuma, F. N. Ph.D. Thesis. Cornell Univ. Ithaca., 1955.

17. Puri, A. N. Ann. Prog. Rept. Sch. Std. Methody, 1956-1957, 1958.

- 18. Sharma, S. S. and Bhattacharya, A. K. Univ. Sagar (India) Sect. A8, 1-5, 1962.
- 19. Shukla, G. C. and Vimal, O. P. Proc. Nat. Acad. Sci. India, 38-A (1 & 2). 32-41), 1968.

Ind. Jour. Agric. Sci., 39(1), 162-166, 1969.

21. United States Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. U.S.D.A. Hand book No. 6. U. S. Govt. Printing Office, Washington, 1954.

22. Vimal, O. P. Ph.D. Thesis. Indian Agricultural Research Institute, New

Delhi, 1967.

23. Yoder, R. E. J. Amer. Soc. Agron., 28, 337-351, 1936.

Influence of Organic matter, Phosphates and Light intensity on Synthesis of amino acids during carbon nitrogen transformations

By

N. R. DHAR & G. N. BHAT

Sheila Dhar Institute of Soil Science, Allahabad University, Allahabad

[Received on 29th April, 1968]

Amino-acids that occur in a free state in soils are of potential importance both to microbial nutrition and plant life. Lochhead and his associates^{1,2} have called attention reportedly to a nutritional group of soil bacteria characterized by their dependence on pre-formed amino-acids, while the work of Ghosh and Burris³ with sterile plants has shown that intact amino-acids can be assimilated by certain higher plants.

For a considerable length of time it was held that amino-acids do not occur in free form in soil (Bremner⁴). The isolation of amino-acids from soil is rendered difficult by the presence of large amounts of extraneous material. However it has now been established that amino-acids exist in the free state in at least some quantities. Dodd, Fowden and Pearsall⁵ investigated the presence of free amino-acids in organic soil types using paper-partition chromatography.

The presence of free amino-acids in soil has also been reported by Payne, Rouatt and Katznelson⁶, who stated that large numbers of bacteria requiring amino-acids for growth occur in soil. This suggests the possibility that amino-acids exist at least in traces in an uncombined state in soil. The results of these workers suggest that even the mild heat treatment in the concentration of an aqueous soil leachate can prevent the detection of amino-acids which may be present in the free soil solution. Putnam and Schmidt⁷, using elution chromato-graphy of concentrated ethanolic extracts, demonstrated the occurrence of free amino-acids in a range of concentration from 2 to 287 µg. per kg.

In view of the above observations an endeavour has been made to identify, separate and estimate the free amino-acids produced during the slow oxidation of different organic materials mixed with sand, TiO₂, ZnO and Fe₂O₃ as surfaces aided by light absorption.

Experimental

100 gms of air dried sand and pure samples (B. D. H. products) of ferric oxide, Zinc oxide and titania were taken in clean white enamelled dishes. To these the energy materials were added to the extent of 0.8% carbon with and without phosphate sources in the form of Tata basic slag and Trichinopoly rock phosphate.

For experimental purposes representative samples were taken out at definite intervals after exposure for the estimation of total nitrogen, identification, separation and estimation of amino-acids.

The procedure for the preparation of the extract for amino-acids was the same as followed by Payne and others⁶. The identication and separation of

amino-acids was undertaken with the help of paper chromatography. The amino acids estimations were carried out according to the colorimetric method of Harding and McLean⁸.

The amino-acids which have been identified and separated chromatographically are represented in the following abbreviations:

Glycine = Gly.
Aspartic acid = Asp.
Proline = Pro.
Leucine = Leu.

Arginine = Ar.
Valine = Va.
Glutamic acid = Glu.
Lycine = Ly.

Alanine = Al. Asparagine = As. Histidine = His. Threonine = Threo.

TABLE 1 100 gms of Ganges sand + 0.8% C as Glucose

		100 gms of Gan	ges sand T	. 00% C	as Glucose	
Period of exposure in days	Total nitroger mgm.%	Amino-acids and identified which (chromato-	amount of mino-acids with respect to glycine mgm.% colorimetr- ically)	Total Nitrogen mgm.%	graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetr- ically)
		L i ght			Dark	
0	4.5	-	_	4.5		• •
30	9.8	Gly, Al, Va, Ly	, 0.2745	6.7	Gly, Al, Va,	0.1385
6 0	12.2	Al, Va, Ly, Glu	, 0.3665	7.9	Gly, Al, Va, Ly	0.1365
* * * * * * * * * * * * * * * * * * * *		Threo.				0.1370
90	13.4	Al, Va, Ly, Glu Threo, Pro.	, 0.4288	8.6	Al, Va, Ly, Glu, Threo.	0.2595
120	1 3·9	Al, Va, Ly, Glu	, 0·4 0 35	8.8	Al, Va, Ly, Glu,	0.0550
		Threo, Pro.	, 0 1000	0.0	in, va, Ly, Glu,	0.2552
* *						
			TABLE			
:*		100 gms of Jamus	na sand +	0.8% C a	s Glucose	
0	4.0			4.0	_	_
3 0	10.3	Gly, Al, Va, Gl		7:5	Gly, Al, Va	0.1575
60	13.1	Al, Va, Ly, Glu	, 0.4061	.7.9	Gly, Al, Va, Ly	0 ·2054
		Threo.			,, , , , , , , ,	- 4001
90	14.5	Al, Va, Ly, Glu	, 0.4785	8.6	Al, Va, Ly, Glu,	0.2665
		Threo, Pro.			Threo.	
120	15.1	Al, Va, Ly, Glu Threo, Pro.	0.468 1	8.9	Al, Va, Ly, Glu, Threo.	0.2581
			TABLE 3			
100 am	e of Gan	108.0 1 bees sen			· · · · · · · · · · · · · · · · · · ·	
0	3 01 Gan	ges sand + 0.0%	G as Gluc	ose + U·c	5% P2O5 as Tata	basic slag
30	12.0	Al Vo In Ch.	0.6105	4·1	~~ ~`	
	12 0	Al, Va, Ly, Glu Threo, Asp	, 0.6125	7.4	Gly, Al, Va, Ly, Glu	0.3136
60	15.1	Al, Va, Ly, Glu	, 0.8312		Al, Va, Glu, Ly,	0.4925
	: : :	Threo, Asp, Ar	, 00012		Threo	0.4235
90	16.5	Va, Ly, Glu, As	p. 0.9570		Al, Va, Glu, Ly,	0.4958
		Ar, Threo, Lue,	Pro.		Asp, Threo, Lev	0 4300
120	17.5	Va, Ly, Glu, As	p. 0.9535	10.4	Al, Va, Glu, Ly,	0.4924
		Ar, Threo, Leu	Pro.		Asp, Threo, Leu	U 7347
		TOTAL PROPERTY AND ADDRESS OF THE PARTY OF T			A CO, LCU	

TABLE 4

100 gms of Jamuna sand + 0.8% C as Glucose + 0.5% P₂O₅ as Tata basic slag

Period of exposure in days	Total nitrogen mgm.%	Amino-acids identified (chromatogra-	mount of nino-acid th respect of glycine mgm.% lorimetrically)	nitrogen mgm. %	identified (chromatographically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)
	Li	igh t			Dark	
0	3.7	_	_	3.7		
30	12.8	Al, Va, Ly, Glu, Threo, Asp.	0.6653	7· 6	Gly, Al, Va, L Glu.	y, 0· 3 345
60	16.2	Al, Va, Ly, Glu, Threo, Asp, Ar.	0.9235	9•5	Al, Va, Glu, L Threo.	y , 0.4659
90	17•9	Va, Ly, Glu, Asp, Threo, Ar, Leu, Pro		10•4	Al, Va, Glu, L Asp, Threo, Le	y, 0.5415
120	19.0	Va, Ly, Glu, Asp, Ar, Threo, Leu, Pro.	1·0 7 0 2	11.0	Al, Va, Glu, L Asp, Threo, Le	y , 0.5398
			TABLE 5			
10 0 gr	ms of Gar	nges sand + 0.8%	C as Gluc k phospha	ose + 0·	$5\% P_2O_5$ as Tr	ichinopoly
0	4•4	, -		4.4	_	_
3Ŏ	11.1	Al, Va, Glu, Ly, Asp. Three.	0.4995		Ly, Gly, Al, V Glu.	
60	14.0	Asp, Threo. Al, Va, Glu, Ly, Asp. Threo.	0.7112		Ly, Al, Va, Gl [.] Threo.	u, 0·3695
90	15 4	Asp, Threo. Al, Va, Glu, Ly, Asp, Threo, Leu.	0.8164		Ly, Al, Va, Gl Threo.	u, 0 [.] 4279
120	16•1	Al, Va, Glu, Ly, Asp, Threo, Leu.	0.7995	9.8	Ly, Al, Va, Gl Threo.	lu, 0·4125
			TABLE 6			
100 g	ms of Jan	nuna sand + 0.8%		cose + 0° ate	$5\%~\mathrm{P_2O_5}$ as Tr	richinopoly
0	3.9	_	_	3∙9		
30	11.8	Al, Va, Glu, Ly, Asp, Threo.	0.5549	(Ly, Gly, Al, Va Glu	
60	14.8	Al, Va, Glu, Ly, Asp, Threo.	0.7695	8 ·7	Ly, Al, Va, Gl Threo, Asp.	
90	16.3	Al, Va, Glu, Ly, Asp, Threo, Leu.	0.8968	9.5	Ly, Al, Va, Gl Threo, Asp.	
120	17.3	Al, Va, Glu, Ly, As, Threo, Leu	0.8823	10.0	Ly, Al, Va, G Threo. Asp.	lu, 6·4426

TABLE 7 $100~\mathrm{gms}$ of Ganges sand +~0.8% C as Wheat straw

Period of exposure in days	Total nitrogen mgm.%	Amino-acids identified (chromatog- raphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitroge mgm.º	Amino-acids am identified to the chromatog-	mount of aino-acids the respect of glycine mgm.% colorimeterically)			
		Light			Dark				
0	17.1	_	-	17-1	-	-			
60	28.2	Al, Va, Glu, Asp, l	Ly. 0·4645	19.7	Al, Glu, Va, Asp	0.3542			
120	2 5·5	Al, Va, Glu, Asj Ly, Threo, Leu.		20.9	Al, Glu, Va, Asp, Ly, Threo.	0.6275			
180	26.4	Al, Va, Glu, As Ly, Threo, Leu.	o, 1·1085	21.4	Al, Glu, Va, Asp, Ly, Threo.	0•7706			
	TABLE 8 100 gms of Jamuna sand + 0.8% C as Wheat straw								
	100	gms of Jamuna	sand + 0°0%	Cas V	viicat straw				
0	16.6	· _	- ,	16.6	_	-			
60 -	23.6	Al, Va, Glu, Asp, I	Ly 0.5196	19.5	Al, Glu, Va, Asp.				
120	26-1	Al, Va, Glu, Asj	o, 0.9658	2 1 ·1	Al, Glu, Va, Asp, Ly, Thr e o.	0•6728			
180	27.4	Ly, Threo, Leu. Al, Va, Glu, Asj Ly, Threo, Leu.	o, 1·2065	21.5	Al, Glu, Va, Asp, Ly, Threo.	0•3416			
			TABLE 9						
100	gms of C				$_{aw} + 0.5\%$ as P_2O	5 as			
		T	ata basic sla	g					
0	16.1	-		16.1	-				
60	25.0	Al, Va, Ly, Asy Glu, Asp, Threo		20.0	Al, Va, Ly, Glu Asp, Threo.	, 0.7015			
120	28.0	Ly, Va, As, Glu As, Ar, His, Th Leu.		21.5	Al, Va, Ly, Glu, Asp, Ar, His, Three				
180	29.4	Ly, Va, Asp, G. As, Ar, His, Th Leu.		22•2	Al, Va, Ly, Glu, Asp, Ar, His, Threo.	1.4215			

TABLE 10 100 gms of Jamuna sand + 0.8% C as Wheat straw + 0.5% P_2O_5 as Tata basic slag

Period of exposure in days	Total nitrogen mgm.%	Amino acids identified (chromato-	mount of nino-acids th respect o glycine mgm.% olorimetri cally)	Total nitrogen mgm.%	Amino acids identified (chromato- graphically	Amount of amino-acids with respect to glycine mgm.% (colorimet- rically)
		Light			Dark	
0	15.6		_	15.6	_	_
60	25.8	Al, Va, Ly, Asp, Glu, As, Threo, P	1·1352	20.2	Al, Va, Ly, Asp, Threo.	Glu, 0·7475
120	29·1	Ly, Va, Asp, Glu, As, Ar, His, Three Leu.	1.7169	21.9	Al, Va, Ly, (Asp, Ar, His, Threo.	Glu, 1·1393
180	30.5	Ly, Va, Asp, Glu As, Ar, His, Thr Leu.	, 2·1965 eo,	22.7	Al, Va, Ly, (Asp, Ar, His	
	100 gms o	of Ganges sand + C Triching	0.8% C as opoly rock	phospha	raw + 0·5% I te	P ₂ O ₅ as
0	16.8	-	_	16· 8	<u></u>	-
60	24.6	Al, Va, Ly, Glu, Asp, Threo.	0.9105	20•3	Al, Va, Ly, C Asp.	Glu, 0.6295
120	27.3	Al, Va, Ly, Glu, Asp, Threo, Pro	1•3925	21.7	Ai, Va, Ly, G Asp, Threo.	Hu, 0.9768
180	28.6	Leu. Al, Va, Ly, Glu Asp, Threo, Pro Leu.	1.8014	22•3	Al, Va, Ly, (Asp, Threo, I	Glu, 1·2488 Leu.
			TABLE 1	2		
	100 gms o	of Jamuna sand + Trichin	0·8% Ca opoly rock	s Wheat c phospha	straw + 0·5% ate	, P_2O_8 as
	16.9		_	16.3	<u></u>	- 0.0469
6 0	16·3 25·3	T C	0.9865	20.2	Al, Va, Ly, Asp.	
120	28.3		, 1•4996 Ar.	21.8	Asp. Threo	, H1S.
180	29		1, 1.9612	22.5	Al, \(\) a, Ly, Asp. Threo	Giu, 1-3030

TABLE 13 100 gms of Ganges sand + 0.8% C as Saw dust

Period of exposure in days	Total nitrogen mgm.%	Amino-acids identified (chromato- graphically)	amin with to g mg (color	unt of o-acids respect lycine (m.% rimetrially)	Total nitroger mgm.%	Amino acids identified (chromato- graphically)	respe gly- mg (color	amino- s with ect to cine gm.% imetri- ally)
0	12.6	Light _			12.6	Dark –		_
	16.8	Gly, Al, Va, Gl	. 0	.3025	14.3	Gly, Al, Va.		0.2445
60 120	18.3	Gly, Al, Va, Gl		6438		Glu, Al, Va,	Glv.	0.4418
120	10 3	Asp, Three.	α, σ	0.00		Threo.	,,	
180	19.0	Al, Va, Glu, A Threo, Leu.	sp, 0	7615		Gly, Al, Va, C Threo, Leu.	Glu,	0·5465
			TA	BLE 14				
		100 gms of Jamu	na sa	nd + 0	8% C a	s Saw dust		
0	12.1			_	12.1	_		
60	16.6	Gly, Al, Va, G	lu, ()∙348ช	14.0	Gly, Al, Va.		0.2665
120	18.2	Gly, Al, Va, G		0. 6 556	15.0	Glu, Al, Va,		0.4653
		Asp, Threo.				Threo.		
180	19•4	Al, Va, Glu, A Threo, Leu.	șp, 0	8345	15•5	Gly, Al, Va, Threo.	Glu,	0 ·57 35
			т	ABLE 15	ı			
100 gm	s of Gan	ges sand + 0.8	6 C a	s Sawdu	ıst + 0:	5% P_2O_5 as T	ata bas	sic slag
. 0	11.9	~			11.9			-
60	18.2	Al, Va, Glu, A Threo, Leu.	ιsp,	0.7285	14.6	Al, Va, Glu, Threo.	Asp,	0.4968
120	20•6		Asp,	1.1338	15.8	Al, Va, Glu, Threo, Leu.	Asp,	0.7745
180	21.8			1.4825	16.4			1.0236
	,		τ	ABLE 16	;			
100 gm	s of Jam	una sand $+ 0.89$	% C a	s Sawdu	ıst + 0:	$5\% P_2O_5$ as T	ata ba:	sic slag
0	11.4	and the second s			11.4			-
60	18.5		Asp,	0.7915	14.5	Al, Va, Glu	, Asp,	0.5225
120	21.1	, , ,	Asp,	1.2236	15.8	Threo. Al, Va, Glu		0.8089
180	22.5	Threo, Leu. Al, Va, Glu,	Asp,	1.5975	16.5	Threo, Leu, Al, Va, Glu		1.0565
**************************************		Threo, Leu, A	Ar, Ás			Threo, Ar,		

TABLE 17
100 gms of Ganges sand + 0.8% C as Sawdust + 0.5% P₂O₅ as Trichinopoly rock phosphate

Period of			rock phosphate	
Total exposure introgen in days				Amount of
of Total chromators in trogen in days Variable Var	Period			amino-acids
Exposure nitrogen in alternment (chromato-graphically) Colorimetrically	of	Total	with respect lotal	Clus with respect
Indays	evnosure		to alucine nitrogen Identil	10u +1
Colorimetrically Colorimetrically Colorimetrically Colorimetrically		mgm.%	(Chromato- mam o/ mam o/ (Chrom)	mam 0/
Cally Cally Cally	_	11161111		
Light Dark	days			
12.4				(ally)
120 19.7 Al, Va, Asp, Glu, 0.6165 14.6 Al, Va, Asp, Glu, 0.4384 Three. 120 19.7 Al, Va, Asp, Glu, 0.9654 15.7 Al, Va, Glu, Asp, 0.6908 Three, Leu, Ar. 180 20.6 Al, Va, Asp, Glu, 1.2566 16.2 Al, Va, Glu, Asp, 0.8915 Threo, Leu, Ar. TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate 0 11.9			Light Dark	
Threo. 120 19-7 Al, Va, Asp, Glu, 0-9654 15-7 Al, Va, Glu, Asp, 0-6908 Threo, Leu, Ar. 180 20-6 Al, Va, Asp, Glu, 1-2566 16-2 Al, Va, Glu, Asp, 0-8915 Threo, Leu. TABLE 18 100 gms of Jamuna sand + 0-8% C as Sawdust + 0-5% P ₂ O ₃ as Trichinopoly rock phosphate 0 11-9	0	12.4		
Threo, 120 19.7 Al, Va, Asp, Glu, 0.9654 15.7 Al, Va, Glu, Asp, 0.6908 Threo, Leu, Ar. 180 20.6 Al, Va, Asp, Glu, 1.2566 16.2 Al, Va, Glu, Asp, 0.8915 Threo, Leu, Ar. TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate 0 11.9 11.9 60 17.8 Al, Va, Glu, Asp, 0.6769 14.4 Al, Va, Glu, Asp. 0.4465 Threo. 120 20.1 Al, Va, Glu, Asp, 1.0452 15.5 Al, Va, Glu, Asp. 0.7136 Threo, Leu, Ar. 180 21.3 Al, Va, Glu, Asp, 1.03845 16.1 Al, Va, Glu, Asp, 0.9018 Threo, Leu, Ar. TABLE 19 100 gms of Zinc oxide + 0.8% C as Glucose 0 7-2 Gly, Al, Va, Ly, 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly, 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. 90 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, Threo, Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose - 0.5% P ₂ O ₅ as Tata basic slag 0 1.0 Al, Va, Gly, Threo, 0.5725 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0 1.0 Al, Va, Gly, Threo, 0.5725 Al, Va, Ly, Threo, 0.1548 Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 0.8436 6.8 Al, Va, Threo, 0.3354 Ly, Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 1.0156 7.8 Al, Va, Threo, 0.4056 Ly, Fro, Glu, Leu. 90 17.9 Al, Va, Threo, Ly, 1.0105 8.5 Al, Va, Threo, 0.4015	60	17.6	Al, Va, Asp, Glu, 0.6165 14.6 Al, Va, A	sp, Glu. 0.4384
Threo, Leu, Ar. Al, Va, Asp, Glu, 1-2566 16-2 Al, Va, Glu, Asp, 0-8915 Threo, Leu, Ar. TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₃ as Trichinopoly rock phosphate 0 11.9				
Threo, Leu, Ar. Al, Va, Asp, Glu, 1-2566 16-2 Al, Va, Glu, Asp, 0-8915 Threo, Leu, Ar. TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₃ as Trichinopoly rock phosphate 0 11.9	120	19.7	Al, Va, Asp, Glu, 0.9654 15.7 Al, Va, C	Hu, Asp, 0.6908
180 20.6 Al, Va, Asp, Glu, 1.2566 16.2 Al, Va, Glu, Asp, 0.8915 Threo, Leu, Ar. TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate 0 11.9	120			eu.
Threo, Leu, Ar. Threo, Leu. TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate 0 11.9	1.90	20•6		
TABLE 18 100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate 0 11.9	10 /	-0		
100 gms of Jamuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate 0 11.9				
11-9				
11-9	100 c	ras of Ian	nuna sand + 0.8% C as Sawdust + 0.5% P ₂ O ₅	as Trichinopoly
0 11-9	100 8	sins or Jac	rock phosphate	• /
17.8 Al, Va, Glu, Asp, 0.6769 14.4 Al, Va, Glu, Asp. 0.4465 Threo. 120 20.1 Al, Va, Glu, Asp, 1.0452 15.5 Al, Va, Glu, Asp, 0.7136 Threo, Leu, Ar. 180 21.3 Al, Va, Glu, Asp, 1.03845 16.1 Al, Va, Glu, Asp, 0.9018 Threo, Leu, Ar. TABLE 19 100 gms of Zinc oxide + 0.8% C as Glucose 0 7.2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly. 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612 Pro, Leu. 120 12.4 Al, Va, Ly, Threo, 0.3726 5.5 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0 11.0 Al, Va, Gly, Threo, 0.5725 4.8 Al, Va, Gly, 0.2125 Threo. 120 14.8 Al, Va, Threo, Ly, 0.8436 6.8 Al, Va, Threo, 0.3354 Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 1.0156 Cly, Fro, Glu, Leu. Glu, Leu, Asp. 120 17.9 Al, Va, Threo, Ly, 1.0105 8.5 Al, Va, Threo, 0.4015		110		_
Threo. 120 20·1 Al, Va, Glu, Asp, 1·0452 Threo, Leu, Ar. 180 21·3 Al, Va, Glu, Asp, 1·03845 Threo, Leu, Ar. Threo, Leu, Ar. Threo, Leu. TABLE 19 100 gms of Zinc oxide + 0·8% C as Glucose 0 7·2 Gly, Al, Va, Ly. 0·2088 0 10·1 Gly, Al, Va, Ly. 0·3135 Threo, Pro. 11·7 Al, Va, Ly, Threo, 0·3862 Pro, Leu. 120 12·4 Al, Va, Ly, Threo, 0·3726 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0·8% C as Glucose + 0·5% P ₂ O ₅ as Tata basic slag 0 11·0 Al, Va, Gly, Threo, 0·5725 Ly. 60 14·8 Al, Va, Threo, Ly, 0·8436 Pro, Glu, Leu. 90 16·7 Al, Va, Threo, Ly, 0·8436 Glu, Leu, Asp. 120 17·9 Al, Va, Threo, Ly, 1·0156 Glu, Leu, Asp. 17·9 Al, Va, Threo, Ly, 1·0105 Standard Three, Leu. Threo, Leu. Threo, Leu. 15·5 Al, Va, Glu, Asp, 0·9018 Threo, Leu. Threo, Leu. 16·7 Al, Va, Threo, Ly, 1·0156 Clu, Leu, Asp. 17·9 Al, Va, Threo, Ly, 1·0105 Standard Threo, 0·4015 Threo, Leu. 16·7 Al, Va, Threo, Ly, 1·0105 Standard Threo, 0·4015 Ly, Fro, Glu, Leu. 17·9 Al, Va, Threo, Ly, 1·0105 Standard Threo, 0·4015 Threo, 10·9018 Threo, Leu. 16·7 Al, Va, Threo, Ly, 1·0105 Standard Threo, 0·4015 Threo, 10·9018 Threo, 1				11. Ann 0.4465
120 20·1 Al, Va, Glu, Asp, 1·0452 15·5 Al, Va, Glu, Asp, 0·7136 Threo, Leu, Ar. 180 21·3 Al, Va, Glu, Asp, 1·03845 16·1 Al, Va, Glu, Asp, 0·9018 Threo, Leu, Ar. TABLE 19 100 gms of Zinc oxide + 0·8% C as Glucose 0 7·2 Gly, Al, Va, Ly, 0·2088 2·9 Gly, Al, Va, 0·0579 60 10·1 Gly, Al, Va, Ly, 0·3135 4·4 Al, Va, Gly, Ly, 0·1145 Threo, Pro. 90 11·7 Al, Va, Ly, Threo, 0·3862 5·2 Al, Va, Ly, 0·1612 Pro, Leu. 120 12·4 Al, Va, Ly, Threo, 0·3726 5·5 Al, Va, Ly, Threo, 0·1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0·8% C as Glucose + 0·5% P ₂ O ₅ as Tata basic slag 0 11·0 Al, Va, Gly, Threo, 0·5725 4·8 Al, Va, Gly, 0·2125 Threo. 100 gms of Zinc oxide + 0·8% C as Glucose + 0·5% P ₂ O ₅ as Tata basic slag 0 11·0 Al, Va, Gly, Threo, 0·5725 4·8 Al, Va, Gly, 0·2125 Threo. 100 gms of Zinc oxide + 0·8% C as Glucose + 0·5% P ₂ O ₅ as Tata basic slag 100 11·0 Al, Va, Threo, Ly, 0·8436 6·8 Al, Va, Threo, 0·3354 Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 7·8 Al, Va, Threo, 0·4056 Ly, Fro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu. 100 11·0 Al, Va, Threo, Ly, 1·0156 1. Ly, Pro, Glu, Leu.	60	17.8	121,	oru, Asp. 0.4405
Threo, Leu, Ar. Threo, Leu, Ar. Threo, Leu, Ar. Threo, Leu, Ar. Threo, Leu. TABLE 19 100 gms of Zinc oxide + 0.8% C as Glucose Threo, Pro. 11.7 Al, Va, Ly, Threo, 0.3726 10.0 gms of Zinc oxide + 0.8725 Threo, Pro. 100 gms of Zinc oxide + 0.876 C as Glucose Threo, Pro. 100 gms of Zinc oxide + 0.876 C as Glucose 100				Ol., A., 0,7196
Threo, Leu, Ar. Al, Va, Glu, Asp, 1.03845 16.1 Al, Va, Glu, Asp, 0.9018 Threo, Leu, Ar. TABLE 19 100 gms of Zinc oxide + 0.8% C as Glucose 7.2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly. 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. 90 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612 Pro, Leu. Threo, Pro. Threo, Pro. 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag Threo, Leu. Threo, Leu. Threo, Leu. Threo, Leu. Threo, Pro. Threo, Pro. 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 110 Al, Va, Gly, Threo, 0.5725 4.8 Al, Va, Gly, 0.2125 Threo. 100 11.6 Al, Va, Threo, Ly, 0.8436 6.8 Al, Va, Threo, 0.3354 Ly, Pro, Glu, Leu. 100 11.6 Al, Va, Threo, Ly, 1.0156 7.8 Al, Va, Threo, 0.4056 Ly, Fro, Glu, Leu. 100 11.7 Al, Va, Threo, Ly, 1.0105 8.5 Al, Va, Threo, 0.4015	120	50.1	- AAA3	
Threo, Leu, Ar. Threo, Leu, Ar. Threo, Leu, Ar. Threo, Leu. TABLE 19 100 gms of Zinc oxide + 0.8% C as Glucose 0 7.2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly, 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. Threo, Pro. 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612 Pro, Leu. Threo, Pro. Threo, Pro. 120 12.4 Al, Va, Ly, Threo, 0.3726 5.5 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 0 Threo. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 0 Threo. 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 0 Threo. 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₈ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% C as Glucose +				
Threo, Leu, Ar. TABLE 19 100 gms of Zinc oxide + 0.8% C as Glucose 0 7.2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly, 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612 Pro, Leu. 120 12.4 Al, Va, Ly, Threo, 0.3726 5.5 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 100 gms of Zinc oxide + 0.8% G as Glucose + 0.5% Al, Va, Thr	180	21.3		, I ,
100 gms of Zinc oxide + 0.8% C as Glucose 30 7-2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly, 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. 90 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612 Pro, Leu. 120 12.4 Al, Va, Ly, Threo, 0.3726 5.5 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0			Threo, Leu, Ar. Threo, I	.eu.
100 gms of Zinc oxide + 0.8% C as Glucose 30 7-2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10.1 Gly, Al, Va, Ly, 0.3135 4.4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. 90 11.7 Al, Va, Ly, Threo, 0.3862 5.2 Al, Va, Ly, 0.1612 Pro, Leu. 120 12.4 Al, Va, Ly, Threo, 0.3726 5.5 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0			ma DLE 10	
30 7-2 Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al, Va. 0.0579 60 10·1 Gly, Al, Va, Ly, 0.3135 4·4 Al, Va, Gly, Ly, 0.1145 Threo, Pro. Threo. 90 11·7 Al, Va, Ly, Threo, 0.3862 5·2 Al, Va, Ly, 0.1612 Pro, Leu. 120 12·4 Al, Va, Ly, Threo, 0.3726 5·5 Al, Va, Ly, Threo, 0.1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0 7 7 8 Al, Va, Gly, 0.2125 Threo. 120 14·8 Al, Va, Threo, Ly, 0.8436 6·8 Al, Va, Threo, 0.3354 Pro, Glu, Leu. 120 16·7 Al, Va, Threo, Ly, 1.0156 7·8 Al, Va, Threo, 0.4056 Glu, Leu, Asp. 120 17·9 Al, Va, Threo, Ly, 1.0105 8·5 Al, Va, Threo, 0.4015				•
30 7-2 Gly, Al, Va, Ly. 0-2088 2-9 Gly, Al, Va. 0-0079 60 10-1 Gly, Al, Va, Ly, 0-3135 4-4 Al, Va, Gly, Ly, 0-1145 Threo, Pro. Threo. 90 11-7 Al, Va, Ly, Threo, 0-3862 5-2 Al, Va, Ly, 0-1612 Pro, Leu. Threo, Pro. 120 12-4 Al, Va, Ly, Threo, 0-3726 5-5 Al, Va, Ly, Threo, 0-1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0-8% C as Glucose + 0-5% P ₂ O ₅ as Tata basic slag 0			100 gms of Zinc oxide + 0.8% C as Glucose	
30 7-2 Gly, Al, Va, Ly. 0-2088 2-9 Gly, Al, Va. 0-0079 60 10-1 Gly, Al, Va, Ly, 0-3135 4-4 Al, Va, Gly, Ly, 0-1145 Threo, Pro. Threo. 90 11-7 Al, Va, Ly, Threo, 0-3862 5-2 Al, Va, Ly, 0-1612 Pro, Leu. Threo, Pro. 120 12-4 Al, Va, Ly, Threo, 0-3726 5-5 Al, Va, Ly, Threo, 0-1548 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0-8% C as Glucose + 0-5% P ₂ O ₅ as Tata basic slag 0	0	_		*** 0.0:50
Threo, Pro. 11·7 Al, Va, Ly, Threo, 0·3862 Pro, Leu. 120 12·4 Al, Va, Ly, Threo, 0·3726 Pro, Leu. Threo, Pro. Threo,		7.2	Gly, Al, Va, Ly. 0.2088 2.9 Gly, Al	,
Threo, Pro. 11·7 Al, Va, Ly, Threo, 0·3862 Pro, Leu. 120 12·4 Al, Va, Ly, Threo, 0·3726 Pro, Leu. Threo, Pro. Threo,			Gly, Al, Va, Ly, 0.3135 4.4 Al, Va,	Gly, Ly, 0.1145
90 11·7 Al, Va, Ly, Threo, 0·3862 Pro, Leu. 120 12·4 Al, Va, Ly, Threo, 0·3726 Pro, Leu. Threo, Pro. 120 12·4 Al, Va, Ly, Threo, 0·3726 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0·8% C as Glucose + 0·5% P ₂ O ₅ as Tata basic slag 0	00		Three Pro. Inteo.	
Pro, Leu. 120 12.4 Al, Va, Ly, Threo, 0.3726 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0 100 Al, Va, Gly, Threo, 0.5725 100 11.0 Al, Va, Gly, Threo, 0.5725 100 120 130 14.8 Al, Va, Threo, Ly, 0.8436 Pro, Glu, Leu. 14.8 Al, Va, Threo, Ly, 1.0156 Pro, Glu, Leu. 15.5 Al, Va, Ly, Threo, 0.1548 Pro. 4.8 Al, Va, Gly, 0.2125 Threo. 15.6 Al, Va, Gly, Threo, 0.2125 Threo. 17.9 Al, Va, Threo, Ly, 1.0156 Pro, Glu, Leu. 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 18.5 Al, Va, Threo, 0.4056 Ly, Fro, Glu, Leu. 18.6 Al, Va, Threo, 0.4015 Ly, Fro, Glu, Leu. 18.6 Al, Va, Threo, 0.4015	90	11.7	Al. Va. Ly. Threo, 0.3862 5.2 Al, Va	, Ly, 0.1612
120 12.4 Al, Va, Ly, Threo, 0.3726 Pro, Leu. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0 100 Al, Va, Gly, Threo, 0.5725 Ly. 100 Al, Va, Threo, Ly, 0.8436 Pro, Glu, Leu. 100 16.7 Al, Va, Threo, Ly, 1.0156 Glu, Leu, Asp. 120 17.9 Al, Va, Threo, Ly, 1.0105 18.5 Al, Va, Ly, Threo, 0.1346 Pro, Glu, Leu. 18.6 Al, Va, Threo, 0.4056 Ly, Fro, Glu, Leu. 18.7 Al, Va, Threo, 0.4015	30	**,	Dro Len Inreo,	Pro.
Pro, Leu. Pro. TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0	100	19.4	Al Va Lv. Threo, 0.3726 5.5 Al, Va,	Ly,Threo, 0.1548
TABLE 20 100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0	120	12 4	Dno	
100 gms of Zinc oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag 0 30 11 0 Al, Va, Gly, Threo, 0.5725 Ly. 100 14.8 Al, Va, Threo, Ly, 0.8436 Pro, Glu, Leu. 100 16.7 Al, Va, Threo, Ly, 1.0156 Glu, Leu, Asp. 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 18.5 Al, Va, Threo, 0.4015	."	* F - W	· ·	
0 30 11 0 Al, Va, Gly, Threo, 0.5725 Ly. 60 14.8 Al, Va, Threo, Ly, 0.8436 Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 1.0156 Glu, Leu, Asp. 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 18.5 Al, Va, Threo, 0.4015			TABLE 40	Tota hasic slag
0 30 11 0 Al, Va, Gly, Threo, 0.5725 Ly. 60 14.8 Al, Va, Threo, Ly, 0.8436 Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 1.0156 Glu, Leu, Asp. 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 18.5 Al, Va, Threo, 0.4015	100	gms of Zi	inc oxide $+0.8\%$ C as Glucose $+0.5\%$ $_{2}^{\circ}$	s Tata basic stag
30 11 0 Al, Va, Gly, Threo, U 3725 Threo. Ly. 60 14 8 Al, Va, Threo, Ly, 0 8436 Ey, Pro, Glu. 90 16 7 Al, Va, Threo, Ly, 1 0156 Clu, Leu, Asp. Glu, Leu, Asp. 17 9 Al, Va, Threo, Ly, 1 0105 8 5 Al, Va, Threo, 0 4015		_		
Ly. 14.8 Al, Va, Threo, Ly, 0.8436 Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 1.0156 Glu, Leu, Asp. 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 17.9 Al, Va, Threo, Ly, 1.0105 18.5 Al, Va, Threo, 0.4015		11.0		7 77
60 14.8 Al, Va, Threo, Ly, 0.0436 Ly, Pro, Glu. Pro, Glu, Leu. 90 16.7 Al, Va, Threo, Ly, 1.0156 T.8 Al, Va, Threo, 0.4056 Glu, Leu, Asp. 17.9 Al, Va, Threo, Ly, 1.0105 8.5 Al, Va, Threo, 0.4015	30		Lv.	
Pro, Glu, Leu. 90 16·7 Al, Va, Threo, Ly, 1·0156 7·8 Al, Va, Threo, 0·4056 Glu, Leu, Asp. 120 17·9 Al, Va, Threo, Ly, 1·0105 8·5 Al, Va, Threo, 0·4015	60	14.8	$A = \{V_{\alpha} \cap A^{\alpha}\}_{\alpha \in A} = \{V_{\alpha} \cap A^{$	· , · ,
90 16.7 Al, Va, Threo, Ly, 1.0100 Ly, Fro, Glu, Leu. Glu, Leu, Asp. 17.9 Al, Va, Threo, Ly, 1.0105 8.5 Al, Va, Threo, 0.4015	υψ	110	D_{n-1} Clas T_{n-1}	o, Glu.
Glu, Leu, Asp. Glu, Leu, Asp. 120 17.9 Al, Va, Threo, Ly, 1.0105 1.0105 Ly, Fro, Glu, Leu. 0.4015	, ,	16.7		
120 17.9 Al. Va, Three, Ly, 19103	90	10.7	Clas Lais Asp	o, Glu, Leu.
$1/9$ Λ_1 , λ_2 , $1/9$ Λ_2 , $1/9$ Λ_3 , $1/9$		170		w ₃
Pio, Giu, Ecu, rap.	120	17.9	7 A1, Va, 111100; — 77	ro, Glu, Leu.
		• •	FIO, GIU, Licu, risp.	

TABLE 21 $_{100~gms}$ of Zinc oxide + 0.8% C as Glucose + 0.5% P_2O_5 as Trichinopoly rock phosphate

Period of exposure in days	Total nitrogen mgm.%		Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitrogen mgm.	Amino-acids identified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetrically)			
		Light			Dark				
0	_	-	-	_	_				
. 0		Al, Va, Threo, G		4.0	Al, Va, Glu, Tl				
60	12.7	Al, Va, Threo,		5.7	Al, Va, Thre				
90	14.4	Ly, Pro, Leu, CAI, Va, Threo,	Ly, 0.7920	6.7	Ly, Pro. Leu Al, Va, Thre Ly, Pro. Leu	o, 0.321 8			
. 120	15.6	Pro, Leu Glu, Al, Va, Threo, Pro.Leu,Glu, A	Ly, 0.7804	7· 3	Al, Va, Three Pro, Leu, Gl	o, Ly,0·3161			
0 30 60 90 120	6·4 9·2 10·7	Al, Gly, Va, Ly, Threo, Pro. Al, Va, Ly, Threo, Pro. Al, Va, Ly, Threo, Pro. Al, Va, Ly, Threo, Pro.	y. 0·1 7 95	2·6 4·1 4·9	Al, Gly, Va, Al, Gly, Va, I Threo. Al, Gly, Va, I Threo. Al, Va, Ly, Threo, Gly.				
100 gn	TABLE 23 100 gms of Ferric oxide + 0.8% C as Glucose + 0.5% P ₂ O ₅ as Tata basic slag								
0	_	-	_	_	***				
30	10.1	Ly, Al, Va, Gi Threo.	ly, 0·5145	4•4	Al, Va, Gly, Threo.	0.1849			
60	13.8	Ly,Al,Va,Thre		6.3	Al, Va, Threo	, Ly, 0 · 2965			
90	15.7		lu, 0·9106	7:3	Pro, Glu. Al, Va, Threo,	Ly, 0·3655			
120	16•8	Leu, Ly,Al, V Ly,Al,Va,Thro Pro. Glu, Leu	eo, 0•9045	7.9	Pro, Glu. Al, Va, Threo Pro, Glu.	, Ly, 0.3613			

TABLE 24 $100~\rm{gms~of~Ferric~oxide}~+~0.8\%~C~as~Glucose~+~0.5\%~P_2O_5~as~Trichinopoly~rock~phosphate$

Period of exposure in days	Total nitrogen mgm.º/o	Amino-acids identified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	mgm.%	identified (chromato-	Amount of amino-acids with respect to Glycine mgm.º/o (colorimetrically)	
The state of the s		Light	•		Dark		
0 ··· 30	- 8∙6	Al, Va, Gly,	0.3872	3.6	Al, Va, Gly, Threo.	0.1368	
60	11:8	Threo, Ly. Al, Va, Threo, Pro, Ly, Leu.	0.5932	5.2	Al, Va, Threo, Pro.		
90	13.5	Al. Va. Three	0.7155	6.2	Al, Va, Threo, Pro, Glu.	, Ly, 0·2852	
120	14.5	Pro, Ly, Leu, Al, Va, Threo Pro, Leu, Glu	Glu. , 0·7031	6.8	Al, Va, Threo Pro, Glu.	, Ly, 0. 27 91	
TABLE 25							
		100 gms of	Titania + 0.	3% C as (Glucose		
90 120	7·5 10·5 12·1 12·8	Al, Gly, Va, l Al, Gly, Va, l Threo, Pro. Al, Va, Ly, Tl Pro, Leu. Al, Va, Ly, T Pro, Leu.	hreo, 0.411	7 4° 5 5	7 Al, Gly, Va	0·1764 0·1702	
			TABLE 2	:6			
- · · 10	00 gms of	Titania + 0.8%	o C as Glucos	se + 0.5%	P_2O_5 as Tata	pasic stag	
0 30	11.4	Al, Va, Gly,	0.60	-	·0 Al, Va, Th	reo, 0.2653	
60	15.2	Three, Ly.	A11 .	,,,,	Al, Va, Th	Hu, Leu.	
90	17.2	Pro, Glu, Le Al, Va, Thre	eo, Ly, Tu	492	8·1 Al, Va, Tl Ly, Pro,	Glu, Leu.	
120	18-4	Pro, Glu, Lo	\mathbf{co} , Asp. $\mathbf{l} \cdot 0$	445 8	Al, Va, Tl Ly, Pro,	areo, U.SUGG	

TABLE 27 100 gms of Titania + 0.8% C as Glucose + 0.5% P_2O_5 as Trichinopoly rock phosphate

Light Dark 0	Period of exposure in days	Total nitrogen mgm.º/ ₀	Amino-acids identified (chromato- graphically)	Amount of amino acids with respect to glycine mgm.% (colorimet- rically)	Total nitrogen mgm.%	Amino-acids identified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimet- rically)
30 9-8		,	Light			Dark	
30 9-8	0			- ·			
13·2	30	9.8	Al, Va, Gly, Threo, Lv.	0.4802	4·2 .	Al, Va, Gly,	0-1785
90 15·0 Al, Va, Threo, Ly, C·8545 7·0 Al, Va, Threo, O·3576 Pro, Leu, Glu, Asp. 120 16·2 Al, Va, Threo, O·8424 7·6 Al, Va, Threo, O·3522 Ly, Pro, Leu, Glu. TABLE 28 100 gms of Zinc oxide + O·8% C as Wheat straw 0 12·6 - 12·6 Gly, Asp. 120 23·3 Ly, Glu, Al, O·4535 16·0 Ly, Glu, Va, Al, O·3196 Gly. Threo, Asp. Leu. 180 24·7 Ly, Glu, Va, Al, 1·0869 18·3 Ly, Glu, Va, Al, 0·6054 Threo, Asp. 1	60	13.2	Al, Va, Threo,	Ly,0.7128	5.9	Al, Va, Thre	o, 0·2832
120 16·2 Al, Va, Thres, 0·8424 7·6 Al, Va, Threo, 0·3522 Ly, Pro, Leu, Glu, Asp. TABLE 28 100 gms of Zinc oxide + 0·8% C as Wheat straw 0 12·6	90	15.0	Al, Va, Threo,	Ly, 0•8545	7· 0	Al, Va, Thre	0.0.3576
100 gms of Zinc oxide + 0.8% C as Wheat straw 0 12.6	120	16.2	Al, Va, Thres,	0.8424	7.6	Al, Va, Thre	o, 0·3522
0 12·6				TABLE 28			
60 20.6 Ly, Va, Glu, Al, 0.4535 16.0 Ly, Glu, Va, Al, 0.3196 Gly, Asp. 120 23.3 Ly, Glu, Va, Al, 0.8624 17.8 Ly, Glu, Va, Al, 0.5698 Threo, Asp, Leu. 180 24.7 Ly, Glu, Va, Al, 1.0869 18.3 Ly, Glu, Va, Al, 0.6054 Threo, Asp, Leu. 1ABLE 29 100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Tata basic slag 0 11.8 - 11.8 - 11.8 60 23.7 Ly, Asp, Glu, 1.0428 17.0 Ly, Asp, Glu, 0.6295 Va, Al Threo, Pro. 140 27.2 Ly, Asp, Glu, 1.6046 18.9 Ly, Asp, Glu, 0.9828 Va, Al, Threo, Pro. As, His. Pro. 180 28.7 Ly, Asp, Glu, Va, 2.0665 19.7 Ly, Asp, Glu, 1.2806		10	0 gms of Zinc o	xide + 0.8%	Cas Wh	eat straw	
60 20.6 Ly, Va, Glu, Al, 0.4535 16.0 Ly, Glu, Va, Al, 0.3196 Gly, Asp. 120 23.3 Ly, Glu, Va, Al, 0.8624 17.8 Ly, Glu, Va, Al, 0.5698 Threo, Asp, Leu. 180 24.7 Ly, Glu, Va, Al, 1.0869 18.3 Ly, Glu, Va, Al, 0.6054 Threo, Asp, Leu. 1ABLE 29 100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Tata basic slag 0 11.8	0	12.6	_	_	19.6		
120 23·3 Ly, Glu, Va, Al, 0·8624 17·8 Ly, Glu, Va, Al, 0·5698 Threo, Asp, Leu. 180 24·7 Ly, Glu, Va, Al, 1·0869 18·3 Ly, Glu, Va, Al, 0·6054 Threo, Asp, Leu. 1ABLE 29 100 gms of Zinc oxide + 0·8% C as Wheat straw + 0·5% P ₂ O ₅ as Tata basic slag 0 11·8 60 23·7 Ly, Asp, Glu, 1·0428 17·0 Ly, Asp, Glu, 0·6295 Va, Al Threo, Pro. Va, Al, Threo, Pro. As, His. Va, Asp, Glu, Va, 2·0665 19·7 Ly, Asp, Glu, 1·2806	60	20.6	Ly, Va, Glu, A	Al, 0.4535		Ly, Glu, Va,	Al, 0.3196
180 24.7 Ly, Glu, Va, Al, 1.0869 18.3 Ly, Glu, Va, Al, 0.6054 Three, Asp, Leu. 1ABLE 29 100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Tata basic slag 0 11.8 60 23.7 Ly, Asp, Glu, 1.0428 17.0 Ly, Asp, Glu, 0.6295 Va, Al Three, Pro. Va, Al, Three, Pro. Va, Al, Three, Pro. As, His. Va, Asp, Glu, Va, 2.0665 19.7 Ly, Asp, Glu, 1.2806	120	23.3	Ly, Glu, Va, A	d, 0.8624	17.8	Ly, Glu, Va.	Al, 0.5698
100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Tata basic slag 0 11.8 - 11.8 - 11.8 60 23.7 Ly, Asp, Glu, 1.0428 17.0 Ly, Asp, Glu, 0.6295 Va, Al Threo, Pro. Va, Al, Threo. Va, Al, Threo, Pro. As, His. Pro. Ly, Asp, Glu, Va, 2.0665 19.7 Ly, Asp, Glu, 1.2806	180	24· 7	Ly, Glu, Va, A	Al, 1.0869	18.3	Ly,Glu, Va,	Al, 0.6754
100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Tata basic slag 0 11.8 - 11.8 - 11.8 60 23.7 Ly, Asp, Glu, 1.0428 17.0 Ly, Asp, Glu, 0.6295 Va, Al Threo, Pro. Va, Al, Threo. Va, Al, Threo, Pro. As, His. Pro. Ly, Asp, Glu, Va, 2.0665 19.7 Ly, Asp, Glu, 1.2806				TARLE 20	,	· · · · · · · · · · · · · · · · · · ·	
11.8 — 11.8 — 11.8 — 12.0 — 12	100 gms	of Zinc or	xide + 0.8% C		aw + 0·5	% PoOr as Tat	a hasic slow
60 23·7 Ly, Asp, Glu, 1·0428 17·0 Ly, Asp, Glu, 0·6295 Va, Al Threo, Pro. Ly, Asp, Glu, 1·6046 18·9 Ly, Asp, Glu, 0·9828 Va, Al, Threo, Pro. As, His. Ly, Asp, Glu, Va, 2·0665 19·7 Ly, Asp, Glu, 1·2806	0	11.8	_			70 = 2 - 5 ab Lat	- Dasic Stag
Va, Al Threo, Pro. Ly, Asp, Glu, 0.6295 Va, Al, Threo. Ly, Asp, Glu, 0.6295 Va, Al, Threo. Ly, Asp, Glu, 0.9828 Va, Al, Threo, Ly, Asp, Glu, 0.9828 Va, Al, Threo, Pro. Ly, Asp, Glu, 1.2806			Lv. Asp Ch.	1.0400			_
11.0 27.2 Ly, Asp, Glu, 1.6046 18.9 Va, Al, Threo. Ly, Asp, Glu, 0.9828 Va, Al, Threo, Pro. Ly, Asp, Glu, 1.2806			Va. Al Three	1.0428	17.0	Ly, Asp, Gl	u, 0.6295
180 28.7 Ly, Asp, Glu, Va, 2.0665 19.7 Ly, Asp, Glu, 1.2806	14.0	27-2	Ly, Asp, Glu, Va, Al, Threo.	1.6046	18.9 -	Va, Al, Thr Ly, Asp, Gl	eo. u, 0•9828
Al Throp Dr. A. 7. 19.7 Ly, Asp, Glu, 1.2806	180	00.7			٠.	Pro.	,
	100	40 /	Ly, Asp, Glu, Al, Threo, Pro, A	Va, 2·0665 s,His.	19.7	Ly, Asp, Glu	1, 1.2806

TABLE 30
100 gms of Zinc oxide + 0.8% C as Wheat straw + 0.5% P₂O₅ as Trichinopoly rock phosphate

		A phosphate
Period of exposure in days	Total nitrogen mgm.%	Amount of amino-acids with respect to glycine mgm.% (colorimetrically) Amount of amino-acids with respect to glycine mgm.% (colorimetrically) Amount of amino-acids amino-acids with respect to glycine mgm.% (colorimetrically)
		Light Dark
0	12.4	- 12·4 -
60	22 8	Ly, Asp, Glu, 0.8895 16.9 Ly, Asp, Glu, 0.5409
120	26· 0	Ly, Asp, Glu, Va, 1.3790 18.7 Ly, Asp, Glu, Va, 0.8788
180	27.5	Al, Threo, Pro. Ly, Asp, Glu, Va, 1.8150 Al, Threo, Pro. Ly, Asp, Glu, Va, 1.1325 Al, Threo, Pro, Leu. Al, Threo, Pro. Al, Threo, Pro. Al, Threo, Pro. Al, Threo, Pro.
	1.0	TABLE 31
		0 gms of Ferric oxide + 0.8% C as Wheat straw
0	12.6	- 12.6
60	19· 8	Gly, Al, Va, Glu, 0.3973 15.6 Al, Gly, Ly, Va. 0.2809 Ly.
120	22.4	Al, Va, Glu, Ly, 0.7835 17.3 Gly, Al, Va, Ly, 0.5186 Threo, Asp. Threo, Glu.
180	23.7	Al, Va, Glu, Ly, 0.9958 17.8 Gly, Al, Va, Ly, 0.6408 Threo, Asp.
		TABLE 32
100 į	gms of Fe	rric oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Tata basic slag
0	11.8	11·8
60	22.7	Ly, Asp, Va, 0.9538 16.6 Ly, Asp, Glu, Va, 0.5815 Glu, Al, Threo. Al, Threo.
120	26.1	Ly, Asp, Glu, Va, 1.4876 18.5 Ly, Asp, Glu, Va, 0.9256 Al, Threo, Pro, As. Al, Threo, Pro.
180	27 ·5	Ly, Asp, Glu, Va, 1.9251 19.3 Ly, Asp, Glu, Va, 1.2348 Al, Threo, Pro, His, As.
		TABLE 33
1	00 gms of	Ferric oxide + 0.8% C as Wheat straw + 0.5% P ₂ O ₅ as Trichinopoly rock phosphate
0	12.4	- 12.4
60	21.9	Ly, Asp, Glu, 0.8103 16.5 Ly, Asp, Glu, Al, 0.5116 Va, Al, Three. Va.
120	25.0	Ly, Asp, Glu, Va, 1.2752 18.2 Ly, Asp, Glu, Al, 0.8796
180	26•4	Al, Threo, Pro. Ly, Asp, Glu, Va, 1.6596 Al, Threo, Pro, Leu. Va, Threo. Ly, Asp, Glu, Va, 1.0534 Al, Threo, Pro.

TABLE 34

100 gms of Titania + 0.8% C as Wheat straw

		TOO BILLS OF THE	The second secon	edistriamentalistic service a chesiste	AND THE PROPERTY OF THE PROPER	Amount of
			Amount of amino-acids			amino-acids
Period	·	Amino-acid	with respec		Amino-acids	with respect
of	Total	 identified 	to glycine		identified	to glycine
exposure	nitrogen	CILICALAN	mgm.%	mgm.%	(chromato- graphically)	mgm.%
in	$\mathbf{mgm}_{i_0}^{0}$	graphically)	(colorimetri	-	grapincany)	(colorimetri-
days	•		cally)			cally)
		Light			Dark	
0	12.6		_	12.6		~
60	20.9	Ly, Glu, Gly,	0.4807	16.1	Ly, Glu, Va, Gly.	Al, 0.3542
100	02.7	Al, Asp. Ly, Gly, Va,	1 1.8998	18.0	Ly, Glu, Va,	Al, 0.6125
120	23.7	Threo, Asp, L	eu.		Asp, Threo.	•
180	2 5·1	Ly, Glu, Va A	1, 1.1549	18.5	Asp, Threo. Ly, Glu, Va,	Al, 0.7406
100	201	Threo, Asp, L	éu.		Asp, Threo.	
				•		
			TABLE 35		/ D 🗘 😁 🎹	- 1
100 gm	s of Titar	nia + 0.8% C a	s Wheat stra	iw + 0.5%	$_{0}$ $P_{2}O_{5}$ as 1 at	a basic slag
0	11.8	· · · -	·	11.8	***	_
60	24.1	Ly, Asp, Glu,	1.1246	17.2	Ly, Asp, Glu	
		Va, Ar, As, T	hreo,	. ,	Al. Threo, P	10.
		Pro.	V~ 1.6693	19.2	Ly, Asp, Gh	Va 1.0367
120	27·7	Ly, Asp, Glu, As, Ar, Three	, , , , , , , , , , , , , , , , , , ,	10 2,	Al, Threo, P	
100	29•2	Pro, His. Ly, Asp, Glu,	Va. 2·1602	20.1	Ly, Asp, Gli	ı, Va, 1 3459
180	23 2	As, Ar, Three),		Al, Threo, I	ro,
		Pro, His.			His.	:
	•	,	TABLE 3	36		. ,
100	CTP: 4-	ania + 0.8% C			o/ PO as Tr	richinopoly
100 g	ms of 11ta	ania + 0.0% C	rock phosph	raw – T 0 5 nate	70 1205 as 11	ichinobory
0	12.4	_	-	12.4	_	
60	23.3	Al, Va, Ly, C	Glu. 0.9554	17.1	Al, Ly, Va,	Glu, 0.5815
		Threo, Asp.	•		Asp, Threo.	•
120	26.6	Al, Ly, Va, A	sp, 1.4631	18.9		Asp, 0.9456
		Glu,Threo,H			Glu, Threo,	
180	28.2	Al, Ly, Va, A		19.8	Al, Ly, Va,	
		Glu, Threo, J	ro.		Glu, Threo,	Pro.
	5.2 (1)	•	TABLE 37			24
		100 ama of 7:			Caradaset	
	. 0-1	100 gms of Zin	ič oxide + 0		Jawuust	
: 0	8•4 13·7	A1 C1- 37- mi	- 0.0077	8·4	A1 O1 37-	0·2125
60 1 2 0	15.5	Al, Gly, Va, Th	1rco. 0.28// 0.5578	10·6 11·8	Al, Gly, Va	
140	10.0	Al, Glu, Va, Threo, Leu.	0.0078	11.0	Al, Gly, Va Threo, Leu	,
180	16:9	Al, Glu, Va,	0.7269	12•3	Al, Gly, Va	0.4552
-		Threo, Leu.	- , 400		Threo, Leu	

TABLE 38

100 gms of Zinc oxide + 0.8% C as Sawdust + 0.5% P₂O₅ as Tata basic slag

Part Committee of the C		Della, E. H. S. Harris and A. H. Harris and C. H. S. Harris and C. H. Harris and C. Harris and C. H. Harris and C. Harris and C. H. Harris and C. Harris and C. H. Harris and C. H. Harris and C. H. Harris and C.				
Period of exposu: e in days	Total nitrogen mgm.%	Amino-acids id ntified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitrogen mgm.%	Amino-acids id ntified (chromato- graphically)	Amount of amino-acids with respect to glycine mgm.% (colorimetrically)
						carry)
	۲	Light			Dark	
0	7.9			7.9	Durk	
60	16.4	Al, Va, Glu,	0.7056	11.5	A1 3/2 O1	 0:4145
00	10 1	Asp. Three.	0 7030	113	Al, Va, Glu	, 0.4145
120	19.2	Asp, Threo. Al. Va, Asp,	1.1133	13.0	Asp. Al, Va, Glu,	0.6638
120		Glu, Threo, L		100	Asp, Threo.	
180	20.8	Al, Va, Asp,	1 4769	13.7	Al, Va, Glu,	0.8769
100		Glu, Threo, L		10 /	Asp, Threo.	00/03
		,,	•	* *	risp, rinco.	
			TABLE 39			
100 am	as of Zinc	oxide + 0.8%		t _L 0.5 !	PO as Trial	hinanalı
100 511	10 01 22110	022.000 0070	rock phospha	te Too	1 205 as Till	шюрогу
Λ	8.3		F F		•	
0 60	15.4	Clar Al Clar	0·5859	8·3 11·3	A1 O1- Wa	0.3503
00	13 4	Gly, Al, Glu, Va, Threo.	0 3639	.11.3	Al, Gly, Va, Glu.	0.3303
120	17.9	Al, Glu, Va,	0.9508	12.5		0.5753
120		Threo, Asp.	0 3200	12 3	Al, Gly, Glu, Va, Threo.	, 0.3733
180	19.2	Al, Glu, Va,	1.2485	13.2	Al, Glu, Va,	0.7395
100	15 2	Threo, Asp, Le		13 4	Threo, Asp.	0 7333
		1 m.co, 113p,110			тигео, тър.	
			TABLE 40			
	100	gms of Ferric	oxide $+0.8^{\circ}$	√ C as Sa	wdust	
0	8.4			8.4		
60		A1 37a C1 The	- 0.9258	10.4	Al, Va, Gly.	0.1768
120	14.8	Al, Va, Gly, Thr	0.4985	11.5	Al, Va, Gly,	0.3335
120		Al, Va, Gly, Threo.	0 4303	11.0	Threo.	0 3303
180		Al, Va, Gly,	0.6413	11.9	Al, Va, Gly,	0.4168
100	100	Threo, Leu.	0 0113	•••	Threo.	V 2202
		imico, nea.	k r			
	*		m Dr P 41	,		
			TABLE 41	0-50/	D.O T-40	hasia slam
100 gms	of Ferric	oxide + 0:8%	C as Sawdust		P ₂ O ₅ as Tata	Dasic stag
0	7.9		-	7.9	<u></u> .	_
60	15.7	Al,Va,Glu,Thr	eo.0·6286	11.0	Al, Va, Glu,	Asp. 0.3815
120		Al, Va, Asp, G		12.6	Al, Va, Glu,	Asp,0.61/8
		Leu, Threo.			Threo.	0.0050
180	19.9	Al, Va, Asp,Gl	u,1·3538	13.3	Al, Va, Glu,	0.8379
		Leu, Threo.			Asp, Threo.	

TABLE 42

100 gms of Ferric oxide + 0.8% C as Sawdust + 0.5% P₂O₅ as Trichinopoly rock phosphate

	and the same of th					
Period of exposure in days	Total nitroger n gm:%		Amount of amino-acids with respect to glycine mgm.% (colorimetri- cally)	Total nitrogen mgm.º;	Amino-acids and identified (chromato-graphically)	Amount of mino-acids with respect to glycine mgm.% olorimetrically)
		Light			Dark	-
0	8 ⋅3	~	·	8.3		
60	14.7	Al, Gly, Glu,	0.5146	11.0	Al, Gly, Va,	0.3815
		Va, Threo.			Glu,	- 5510
120	17.1	Al, Glu, Va,	0 ·8379	12.2	Al, Gly, Glu,	0 ·536૧
	•	Threo, Asp.		• 45	Va, Threo.	
180	18.3	Al, Glu, Va,	1.1041	12.8	Al, Glu, Va,	0.7035
		Threo, Asp, I	₄eu,		Asp, Threo.	
			TABLE 13			
		100 (50)			1	
		. 100 gms of Ti	tania + 0.8%	G as Saw	dust	
0	8.4	_	_	8.4	_	_
60	14.0	Al, Va, Three	,Glu.0·3125	10.8	Al,Va,Gly,Tl	rco. 0.2168
120	15.8	Al, Va, Three		12.0	Al, Va, Thre	0.3858
		Glu, Leu, Asp			Glu, Leu.	,
. 180	17.1	Al, Va, Three		12.5	Al, Va, Thre	o. 0·5105
		Glu, Leu, Asp			Glu, Leu.	0 0 100
		,, 1			•	
			TABLE 44			* ,
1 00 g	ms of Ti	tania $+ 0.8\%$	🗆 as Sawdust -	+ 0.5% P	₂ O ₅ as Tata bas	ic slag
0	7.9		_	7.9		_
60	16.8	Al, Va, Glu,	Asp, 0.6392	11.7	Al, Va, Glu,	0.4329
		Threo, Leu.	•		Asp, Threo.	
120	19.7	Al, Va, Glu,	Asp. 1.1625	13.2	Al, Va, Glu, As	n. 0.6864
		Threo, Leu, A	\r.		Threo, Leu.	p, 0 0001
180	21.3	Al, Va, Glu,		13.9	Al, Va, Glu,	0 9035
•	•	Threo, Leu, A	\r	100	Asp, I hreo, I	
					risp, Tilleo, I	cu.
			TABLE 45			
100	anna - CTT				ns. ath	
100 (gms of T	itania $+ 0.8\%$	C as Sawdust rock phospha	+ 0.5%]	P_2O_5 as Trichino	poly
0 2	8.3		Took broshira	_		
60	15.7	A1 C1 37	A 0.0005	8.3		
00	13 /	Al, Glu, Va,	Asp, 0.0285	11.5	Al, Va, Glu,	0.3568
120	1.0.0	Threo.	A 0.0000		Threo.	
120	18.3	Al, Glu, Va,	Asp, 0.9882	12.8	Al, Va, Glu,	0.6144
190	10.2	Threo, Leu.			Threo, Leu.	
180	19.7	Al, Glu, Va,	Asp, 1.3199 .	13.5	Al, Va, Three	o, 0·7838
		Threo, Leu, A	ir.		Glu, Leu, Asp	
			-			

Discussion

The experimental results recorded in the foregoing pages show that when organic materials, like Glucose, Wheat straw and Sawdust are mixed with sand or metallic oxides as surface, amino-acids are produced in small amounts. It is also observed that the number as well as the amount of amino-acids produced is greater in the sets exposed to light than in those kept in the dark.

It is observed that the rate of increase in total nitrogen is in the following order with different energy materials utilised:

Glucose > Wheat straw > Sawdust

From these observations it is clear that the increase in nitrogen is directly related to the oxidation of carbon, since the oxidation of carbon also takes place in the same order with the said energy materials⁹. With respect to metallic oxides as sarfaces, it is of the following order:

$$TiO_2 > ZnO > Fe_2O_3$$
.

The difference in activity with different metallic oxides as surfaces is due to their difference in the power of Photo-sensitization, showing thereby the marked influence of light absorption on nitrogen fixation and the subsequent utilisation of fixed nitrogen in the formation of amino-acids.

From our experimental results it is also observed that in the systems containing Gluco e as energy material, the amount of amino acids gradually increases in the beginning but shows a slight decrease at the final stage. On the other hand, in the systems with Wheat straw or Sawdust as energy materials, the amino-acids appear gradually and instead of decrease at the final stage, the amount of amino. acids is greatly increased. The observations show that in the systems with Glucose, the amino-acids are synthesised from the fixed nitrogen formed by the oxidation of the energy material aided by the absorption of light, since there is no original protein or amino acid in the material and the decrease of amino acids can be attributed to the fact that amino acids being readily oxidisable undergo ammonification and nitrification aided by light radiations and the net result being a tendency towards loss at the final stage. On the other hand, in the systems with Wheat straw or Sawdust, the amino-acids may be partly derived from the protein originally present in these energy material, because, the original protein of the materials can undergo hydrolysis in the course of time with the result that amino-acids derived from the proteins show their presence in large quantities at the final stage.

It is very interesting to note from our experimental results that some amino-acids which are formed in the beginning, completely disappear afterwards and new ones are formed. This is due to the fact that amino-acids, synthesised in the beginning, do not remain in the system for long, they constantly undergo decomposition and ammonification aided by the absorption of light while new ones are formed. Recently, Bahadur¹⁰ has observed that if under sterilized conditions a mixture of paraformaldehyde, potassium nitrate, ferric chloride and water is exposed to artificial light from a 500 watt electric bulb, a number of amino-acids are synthesised in the mixture. According to him most of the amino-acids formed in the beginning disappear after sometime and new ones are formed. According to Santamaria¹¹. Furshine red helps in this synthesis.

Moreover, the foregoing data show that in the systems where phosphates are add d, the amount as well as the number of amino-acids increases to a greater extent in contrast to those containing very little or no phosphate. This observa-tion further lends support to the fact that phosphates form stable complexes with proteins both in soil, plant tissue as well as in vitro12, thus making protein or amino-acids molecule much more stable towards oxidation and decomposition. This observation has important bearing on the soil processes. Soils containing greater amounts of phosphate are richer in nitrogen according to Thompson's Biswas and Das's, in order to study the excretion of free amino-acids in soil during the growth of a fodder legume Berseem (Trifolium alexandrium), found that soils from the plots growing Berseem were distinctly richer in their content of free amino-acids than those of the fallow soil, but what is more interesting they detected Arginine under Berseen with phosphate fertilisation.

Furthermore, a close survey of the experimental results reveals that the amino-acids produced by the slow oxidation of the said organic materials are Glycine, Alanine, Valine, Aspartic acid, Lysine, Glutamic acid, Threonine, Proline, Histidine, Arginine, Asparagine and Leucine. Amongst these, aspartic acid, glutamic acid and lysine, threonine, proline and leucine were found in abundance; Alanine, Valine and Glycine were mostly found in the system with little or no phosphate and the rest in the systems containing phosphate in greater quantity. Of all these amino-acids Asparagine was least detected.

References

en og verstade skalende i skalende skalende skalende skalende skalende skalende skalende skalende skalende ska Det skalende skalend

eric (1985) (III) Rim Perining (1985) Programme (1986) (III)

- Lochhead, A. G. and Thexton, R. H. Can. J. Research, C 25, 20-26, 1947. Wallach, R. H. and Lochhead, A. G. Can. J. Research, 28, i-6, 1950.
- 3. Gho h, B. P. and Burris, R. H. Soil Sci., 70, 187-203, 1950.
- 4. Bremner, J. M. Biochem. J., 47, 538-542, 1950.
 - 5. Dodd, C. C., Fowden, L. and Pearsall, W. H. J. Soil Sci., 4, 59-71, 1953.
 - 6. Payne, T. M. B., Rouatt, J. W and Katznelson, H. Soil Sci., 82, 521-524, 1956.
 - 7. Putnam, H. D. and Schmidt, E. L. Soil Sci., 87, 22-27, 1959.

 8. Harding and Mclean. J. Biol. chem., 20, 217, 1915; 24, 503, 1916.

 9. Bhat, G. N. D. Phil. Thesis, Allahabad Univ. Chap. III, 1963.
- 10. Bahadur, K. Natur, 173, 1141, 1954.
 - 11. Santamaria, L. Instt. di Patologia Generale, Milano, Italy, Private communication, June, 11, 1954.
- 12. Dhar, N. R., and Ghosh, G. P. Proc. Nat. Acad. Sci., India, 25-A(6), 1956
 - 13. Thompson, L. M. Fertility, 155-157, 1952
 - 14. Biswas, T. D. and Das, N. B. J. Indian Soc. Soil Sci., 5, 31, 1957.

Some Generating Functions for Jacobi Polynomials

By

G. K. GOYAL

Department of Mathematics, University of Rajasthan, Jaipur [Received on 25th April, 1968]

R. K. Saxena (3) has obtained a generating function for Jacobi polynomial $P_{n}^{\alpha,\beta}(x)$. Here two more generating functions are obtained and interesting particular cases given.

1. Introduction

The object of the present paper is to obtain two new generating functions for the Jacobi polynomials defined by (2, p. 268)

$$P_n^{\alpha,\beta}(x) = {\binom{\alpha+n}{n}}_2 F_1\left(-n, n+\alpha+\beta+1; \alpha+1; \frac{1-x}{2}\right)$$
 where $|1-x| < 2$.

The following symbols have been used throughout this paper.

$$(a)_{m} = \frac{\Gamma(a+m)/\Gamma(a)}{\Gamma(a+1)}$$

$$= \begin{pmatrix} a \\ b \end{pmatrix} = \frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)}$$

Also that the Appell's hypergeometric function of two variables defined by (1, p. 224)

$$(1\cdot2) F_4(\alpha, \beta; \gamma, \gamma'; x, y) = \sum_{\substack{n \\ n=0}}^{\infty} \frac{(a)_{m+n} (\beta)_{m+n}}{(\gamma)_m (\gamma')_n |\underline{m}|_n} x^m y^n$$

where $|x|^{\frac{1}{2}} + |y|^{\frac{1}{2}} < 1$

reduces to the form (1, p. 238)

(1·3)
$$F_{4}[\alpha, \gamma + \gamma' - \alpha - 1; \gamma, \gamma'; x(1 - y), y(1 - x)] = {}_{2}F_{1}(\alpha, \gamma + \gamma' - \alpha - 1; \gamma; x). {}_{2}F_{1}(\alpha, \gamma + \gamma' - \alpha - 1; \gamma'; y)$$

The following generating functions are developed in the next section.

(1.4)
$$\sum_{n=0}^{\infty} \frac{\Gamma(\alpha+2)}{\Gamma(2n+\alpha+\beta+1)} (a)_n (b)_n (1+\alpha+n)_{\beta} y^{-n} P_n^{\alpha,\beta} (x) \times F_4(a+n, b+n; a+\beta+2n+2, 1+\nu; y, w)$$

$$=F_4(a,b;1+\alpha,1+\nu;\frac{y(1-x)}{2},w)$$

where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, |1-x| < 2.$

(1.5)
$$\sum_{n=0}^{\infty} \frac{(2n+\alpha+\beta+1) \Gamma(\alpha+1)}{\Gamma(2\alpha+2\beta+2n+3)} \frac{(a)_n (b)_n (\alpha+n+1)_{\beta}}{c^{2n}} P_n^{a_s, \beta} (x) \times F_4(a+n, b+n; \alpha+\beta+2n+2, 1+\nu; y, w)$$

$$= F_4(a, b; 1+a, 1+\nu; \frac{y(1-x)}{2}, w)$$

where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, |1-x| < 2$

2. Development of generating functions

To obtain the generating function (1.4) we start with Watson's formula (5, p. 140)

(2.1)
$$\sum_{n=0}^{\infty} \frac{(2n+\xi) \Gamma(n+\xi)}{|\underline{n}|} {}_{2}F_{1}(n+\xi,-n;\mu+1;x^{2}) J_{2n+\xi} (z)$$

$$= \Gamma(\mu+1) (z/2)^{\xi-\mu} x^{-\mu} J_{\mu} (xz)$$

where $\xi > 0$, $\mu \ge \xi - 1$, 0 < x < 1.

On multiplying both sides of (2.1) by $z^{\lambda-1} J_{\nu}(\delta z) k_{\rho}(\gamma z)$ and integrating w.r.t. z in $(0, \infty)$ with the help of the integral (2, p. 373)

(2.2)
$$\int_{0}^{\infty} x^{\lambda-1} J_{\mu}(\alpha x) \tilde{J}_{\nu}(\beta x) K_{\rho}(\gamma x) dx$$

$$= \frac{2^{\lambda-2} \alpha^{\mu} \beta^{\nu} \gamma^{-\lambda-\mu-\nu} \Gamma_{\frac{1}{2}} (\lambda + \mu + \nu - \rho) \Gamma_{\frac{1}{2}}(\lambda + \mu + \nu + \rho)}{\Gamma(1+\mu) \Gamma(1+\nu)}$$

$$\times F_{4} \left(\frac{\lambda + \mu + \nu - \rho}{2} , \frac{\lambda + \mu + \nu + \rho}{2} ; 1 + \mu, 1 + \nu; -\frac{\alpha^{2}}{\gamma^{2}}, -\frac{\beta^{2}}{\gamma^{2}} \right)$$

where $R(\lambda + \mu + \nu) > |R(\rho)|$, $R(\gamma) > |I_m(\alpha)| + |I_m(\beta)|$

we have

(2.3)
$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\xi)}{\frac{n}{2} \Gamma(2n+\xi)} \left(\frac{\lambda+\xi+\nu-\rho}{2}\right)_{n} \left(\frac{\lambda+\xi+\nu+\rho}{2}\right)_{n} \gamma^{-2n} \times {}_{2}F_{1}(n+\xi,-n;1+\mu;x^{2}) \times F_{4}\left(\frac{\lambda+\nu+\xi-\rho}{2}+n,\frac{\lambda+\nu+\xi+\rho}{2}+n;1+\xi+2n,1+\nu;-\frac{1}{\gamma^{2}},-\frac{\delta^{2}}{\gamma^{2}}\right)$$
[534]

$$=F_4\left(\frac{\lambda+\xi+\nu-\rho}{2},\frac{\lambda+\xi+\nu+\rho}{2};1+\mu,1+\nu;-\frac{x^2}{\gamma^2},-\frac{\delta^2}{\gamma^2}\right)$$

where

 $R(\lambda + \xi + \nu) > |R(\rho)|, R(\gamma) > |I_m(\alpha)| + |I_m(\delta)|$

If we now replace $\frac{\lambda+\xi+\nu-\rho}{2}$ by $a, \frac{\lambda+\xi+\nu+\rho}{2}$ by b, x^2 by $x, -1/\gamma^2$ by y and $-\delta^2/\gamma^2$ by w, we see that

(2.4)
$$\sum_{n=0}^{\infty} \frac{\Gamma(n+\xi)}{\Gamma(2n+\xi)} (a)_n (b)_n y^{-n} {}_{2}F_{1}(n+\xi,-n;1+\mu;x)$$

$$\times F_{4}(a+n,b+n;1+\xi+2n,1+\nu;y,w)$$

$$= F_{4}(a,b;1+\mu,1+\nu;xy,w)$$

where

$$|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1$$
 and $|x| < 1$

(1.4) immediately follows from (2.4) on using (1.1).

Following a similar procedure and using an integral given by Sharma (4)

(2.5)
$$\int_{0}^{\infty} x^{k-1} J_{\rho}(ax) \int_{\sigma}(bx) K_{\mu}(cx) dx$$

$$= \frac{2^{k-2} a^{\rho} b^{\sigma} \Gamma_{\frac{1}{2}}(k+\sigma+\mu+\rho) \Gamma_{\frac{1}{2}}(k+\sigma-\mu+\rho)}{\Gamma(1+\rho) \Gamma(1+\sigma) c^{k+\rho+\sigma}}$$

$$\times F_{4} \left(\frac{k+\sigma-\mu+\rho}{2}, \frac{k+\sigma+\mu+\rho}{2}; 1+\rho, 1+\sigma; -\frac{a^{2}}{c^{2}}, \frac{b^{2}}{c^{2}} \right)$$

where

$$R(k+\sigma\pm\mu+\rho) > 0$$
, $a > 0$, $R(c-b) > 0$.

we get (1.5) on interpreting the result by (1.1).

3. Particular Cases

If we write 2y for y, $v+\alpha-a+1$ for b and x(1-y) for w in (1.4) and (1.5) and make use of (1.3), we get

(3.1)
$$\sum_{n=0}^{\infty} \frac{(n+\alpha+\beta+1) \Gamma(\alpha+2)}{\Gamma(2n+\alpha+\beta+1) \Gamma(\alpha+n+1)} (a)_n (\nu+\alpha-a+1)_n (2y)^{-n} P_n^{\alpha,\beta} (x)$$

$$\times F_4(a+n, \nu+\alpha-a+n+1; 2+\alpha+\beta+2n, 1+\nu; 2y, x(1-y))$$

$$= {}_2F_1(a, \nu+\alpha-a+1; 1+\nu; x) {}_2F_1(a, \nu+\alpha-a+1; 1+\alpha; y)$$
where $|1-x| < 2, |y| < 1$

and

(3.2)
$$\sum_{n=0}^{\infty} \frac{(2n+\alpha+\beta+1) \Gamma(\alpha+\beta+n+1) \Gamma(\alpha+1)}{\Gamma(2\alpha+2\beta+2n+3) \Gamma(\alpha+n+1)} (a)_n (\alpha-a+\nu+1)_n c^{-2n} P \xrightarrow{n \beta} (x)$$

$$\times F_4(a+n, \nu+\alpha-a+1+n; \alpha+\beta+2n+2, 1+\nu; 2y, x(1-y))$$

= ${}_2F_1(a, \nu+\alpha-a+1; 1+\nu; x) {}_2F_1(a, \nu+\alpha-a+1; 1+\alpha; y)$

where |1-x| < 2, |y| < 1respectively.

Lastly by virtue of the formula

(3.3)
$$P^{\alpha-\frac{1}{2}}, \quad \alpha^{-\frac{1}{2}}(x) = \frac{(\alpha+\frac{1}{2})_n}{(2\alpha)_n} \quad c_n^{\alpha}(x)$$

from (1.4) and (1.5) we obtain.

$$(3.4) \qquad \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + \frac{3}{2}) \ \Gamma(2\alpha)}{\Gamma(\alpha + \frac{1}{2}) \ \Gamma(2\alpha + 2n)} \ (a)_n \ (b)_n \ y^{-n} \ c \frac{\alpha}{n} \ (x)$$

$$\times F_4(a+n, b+n; 2\alpha + 2n+1, 1+\nu; y, w)$$

$$= F_4\left(a, b; \alpha + \frac{1}{2}, 1+\nu; \frac{y(1-x)}{2}, w\right)$$
where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, 1, |1-x| < 2$

$$(3.5) \qquad \sum_{n=0}^{\infty} \frac{(2n+2\alpha) \ \Gamma(2\alpha)}{\Gamma(4^{\frac{1}{2}} + 2n+1)} \ (a)_n \ (b)_n \ c^{-2n} \ c \frac{\alpha}{n} \ (x)$$

$$\times F_4(a+n, b+n; 2\alpha + 2n+1, 1+\nu : y, w)$$

$$= F_4\left(a, b; \alpha + \frac{1}{2}, 1+\nu; \frac{y(1-x)}{2}, w\right)$$
where $|y|^{\frac{1}{2}} + |w|^{\frac{1}{2}} < 1, |x| < 1$

respectively.

Acknowledgement

The author is highly thankful to Dr. K. C. Sharma, University of Rajasthan, Jaipur, for his help in the preparation of the paper.

References

Erdelyi et al. Higher Transcendental Functions, Vol. 1, 1954. Erdelyi et al. Tables of Integral Transforms, Vol. 2, 1954.

Saxena, R. K. A generating function for Jacobi polynomials. Canad., Math. Bull., 9(2), 1966.

Sharma, K. C. Theorems relating Hankel and Meijer's Bessel trans-

forms. The Proc. of the Glas. Math. Assn., 6(2), 1963.

5. Watson, G. N. Theory of Bessel functions, 1944.

Photosynthesis of Amino-acids from a mixture of nitrates and glucose or nitrates and Citric acid

By

N. R. DHAR & G. N. BHAT

Sheila Dhar Institute of Soil Science, Allahabad University, Allahabad

[Received on 29th April, 1968]

The influence of light on the formation of the green colour of Plants and its bleaching action in the dark were probably noted by Aristotle¹. Anderson² observed that the amount of nitrate found in the plants would depend upon the time of the day. According to him, a plant "Solanum dulcamera" showed considerably less nitrate in the morning than later in the daytime. Oparin³ Bernal¹ and Urey⁵ have stressed the idea that life is based on organic compounds which were formed when methane, ammonia, water and hydrogen were the components of the atmosphere. Miller⁶ succeeded in testing this hypothesis, producing amino-acids synthetically by circulating methane, ammonia, water and hydrogen in electric discharge.

Bahadur⁷ observed that when an aqueous mixture of paraformaldehyde and potassium nitrate in the presence of Ferric chloride as a catalyst is exposed to sunlight about a dozen of amino-acids are formed. It has been found that the hydrogen ion concentration of the mixture has a great influence on the nature of the amino-acids formed. Depending upon the pH value of the mixture and the period of exposure, different amino-acids are found to be present in the mixture and what is more interesting a number of amino-acids in the beginning disappear and new ones are formed.

In the present work an attempt has been made to identify, separate and estimate the amino-acids, synthesised from a mixture of nitrates and glucose, or nitrates and Citric acid with and without dicalcium phosphate in the presence of titania as a photo-sensitizer.

Experimental

10 cc M/2 solutions of each ammonium, potassium and sodium nitrates together with 10 cc M/2 solutions of glucose or Citric acid were taken in 100 ml. Pyrex conical flasks. 0.1 gm. titania was added to each of the flasks, as photosensitizer. In another set of similar conical flasks, in addition to the above substance, 0.5 gm. of dicalcium phosphate was also added. Another identical set of flasks containing the above substances with and without dicalcium phosphate was also taken.

One set of flasks was exposed to light under 100 watt. electric bulb and the other set was placed beside the exposed flasks, covered with a black cloth. A thermometer was hung over the sets in order to record the temperature.

After definite intervals of time, definite portions of solutions were filtered and the filtrate was analysed for identification of amino-acids employing simple paper chromatography (Circular as well as two dimensional). Quantitative estimations were carried out colorimetrically.

Note: In the results following abbreviations have been used for aminoacids.

Glycine = Gly
Alanine = Al
Valine = Va
Proline = Pro
Histidine = Ly
Arginine = Ar.
Aspartic acid = Asp
Asparagine = As
Glutamic = Glu
Leucine = Leu
Threonine = Threo

TABLE 1

10 cc M/2 Ammonium nitrate + 10 cc M/2 Glucose + 0.1 gm. Titania

Period of exposure in hours	chromato-	Amount of amino-acids with respect to glycine m.gm. colorimetrically	Amino-acids identified chromato- graphically	Amount of amino acids with respect to glycine m.gm. colorimetricall
	Light		Dark	
8. 16. 24. 32. 40. 48.	Ly, Al, Va, Gly Ly, Al, Va, Gly Ly, Al, Va, Gly, The Ly, Al, Va, Gly, The Ly, Al, Va, Threo, F Pro, Ly, Va, Al, The	reo 0·1598 Pro 0·1315	Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo, Al, Va, G Al, Va, Ly, Thre	Sly, Ly 0•1258

TABLE 2

$10~{ m cc}~{ m M/2}$ Potassium nitrate $+~10~{ m cc}~{ m M/2}$ Glucose $+~0.1~{ m gm}$. Titania

	$Loldsymbol{i}ght$		Dark	
8.	Al, Va, Gly	Traces	Al, Gly	Traces
16.	Al, Va, Gly, Ly	0·0 7 95 ·	Al, Gly, Va	0.0565
24.		0.1187	Al, Gly, Va	0.0863
32.	Al, Va, Gly, Ly, Threo	0.1455	Al, Gly, Va, Ly	0.1038
40.	Al, Va, Ly, Threo	0.1201	Al, Gly, Va, Ly	0.1152
48.	Al, Va, Ly, Threo	0.1016	Al, Va, Ly	0.0975

TABLE 3

10 cc M/2 Sodium nitrate + 10 cc M/2 Glucose + 0·1 gm. Titania

	Light		Dark	
8. 16. 24. 32. 40. 48.	Al, Va, Gly Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Ly, Threo Al,Va, Ly, Threo	Traces 0.0705 0.1073 0.1288 0.1092	Al, Gly Al, Gly Al, Gly, Va Al, Gly, Va, Ly Al, Gly, Va, Ly	Traces 0.0457 0.0731 0.0865 0.0966
	, · a, 2, 1 meo	0.0925	Al, Va, Ly	0.0805

 $10~{\rm cc}~{\rm M}/2~{\rm Ammonium}$ nitrate + 10 cc ${\rm M}/2~{\rm Glucose}$ + 0.5 gm. dicalcium phosphate + 0.1 gm. Titania

Period of exposure in hours	graphically t	Amount of amino-acids with respect o glycine m. gm. colorimetrically	Amino-acids identified chromato-graphically	Amount of amino-acids with respect to glycine m.gm. colorimetrically
	Light		Dark	
8.	Al, Va, Gly, Ly, Thre		Al, Va, Gly, Ly	0.0405
16.	Al, Va, Ly, Threo, Pr	o 0·1052	Al, Va, Gly, Ly	0.0797
24.	Al, Va, Ly, Threo, Pr Glu	o 0·1471	Al, Va, Ly, Thre	o, Pro 0·1093
32.	Al, Va, Ly, Threo, Pi Glu, Asp	co, 0·1795	Al, Va, Ly, Glu, 7 Pro	Threo, 0.1308
40.	Al, Va, Ly, Threo, Pa Glu, Asp	ro, 0·2096	Al, Va, Ly, Thre	o, Pro, 0·1495
48.	Va, Ly, Threo, Pro, C	Glu, 0·1835	Al, Va, Ly, Three Glu	o, Pro, 0 1319

TABLE 5

10~cc~M/2~Potassium~nitrate~+~10~cc~M/2~Glucose~+~0.5~gm. Dicalcium phosphate+~0.1~gm. Titania

	Light		Dark	
8.	Al, Va, Gly, Ly	0.0515	Al, Va, Gly	Traces 0.0718
16.	Al, Va, Gly, Ly, Threo	0·0 9 98 0•1397	Al, Gly, Va, Ly Al, Va, Gly, Ly, Thr	
24	Al, Va, Ly, Threo, Pro Al, Va, Ly, Threo, Pro,		Al, Va, Gly, Ly, Pro	0. 0.1194
3 2.	Glu		Threo	
40.	Al, Va, Ly, Threo, Pro,	0.1956	Gly, Al, Va, Ly, Thre	eo, 0·1359
	Gly	0.1757	Pro Al, Va, Ly, Threo, P	ro 0.1205
48.	Va, Ly. Threo, Pro, Glu	0.1737	Mi, va, Ly, 111100,12	

TABLE 6

10 cc M/2 Sodium nitrate + 10 cc M/2 Glucose + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

	$oldsymbol{Light}$		Dark	
8. 16. 24. 32.	Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Ly, Threo, Pro,	Taaces 0.0775 0.1127 0.1406	Al. Gly, Va	aces 0695 0955 1143
40.	Glu Va, Ly, Threo, Pro, Glu		Pro Gly, Al, Va, Ly, Threo, 0 Pro Al, Va, Ly, Threo, Pro, 0	1295
48.	Va, Ly, Threo, Pro, Glu	0.1403	711, 14, 22,	

TABLE 7 10 cc M/2 Ammonium nitrate + 10 cc M/2 Citric acid + 1 gm. Titania

	Amino-acids	Amount of	Amino-acids	Amount of
Period of	identified	amino-acids	identified	amino-acids
exposure	chromato-	with respect	chromato-	with respect
in hours	graphically to	glycine m. gn	a. graphically	to glycine m. gn
		colorimetrically	y J	colorimetrically
	Tialt	and the second s	The T	
	Light	0.04=0	Dark	
.8.	Gly, Al, Va,	0.0453	Al, Gly	Traces
16.	Gly, Al, Va, Ly	0.0885	Gly, Al, Va	0.0504
24.	Al, Va, Gly, Ly, Three		Gly, Al, Va, Ly	0.0000
3 2.	Al, Va, Gly, Ly, Threo, Pr		Gly, Al, Va, Ly,	Three 0.0999
40.	Al, Va, Ly, Threo, Pro	0.1275	Gly, Al, Va, Ly,	Three 0 1110
48.	Al, Va, Ly, Threo, Pro	0.1076	Al, Va, Gly, Th	reo 0.0928
		TABLE 8		
10 c	c $M/2$ Potassium nitrate	+ 10 cc M/2	Citric acid + 0.1	am Titonia
	Light	1		giii. Titaiiia
0	· . ·	CC	Dark	
8.	Al, Va, Gly	Traces	Al, Gly	Traces
16.	Al, Va, Gly	0.0711	Al, Gly, Va	0.0449
24.	Al, Va, Gly, Ly,	0.1094	Al, Gly, Va	0.0732
32.	Al, Va, Gly, Ly, Threo	0.1348	Al, Gly, Va, Ly	0.0903
40.	Al, Va, Ly, Threo	0.1102	Al, Gly, Va, Ly	0.1014
48.	Al, Va, Ly, Threo	0.0927	Al, Va, Ly	0.0835
		TABLE 9		
10 c	c M/2 Sodium nitrate +		itric acid + 0:1 m	m Titomia
	Light			m. Hama
8.	Al, Gly	Traces	Dark	_
16.	Al, Gly, Va	0.0625	Al, Gly	Traces
24.	Al Cly Va I	0.0023	Al, Gly	Traces
32.	Al, Gly, Va, Ly, Al, Gly, Va, Ly, Threo	0.0979	Al, Gly, Va	0.0683
40.	Al Cly Vo To There	0.1188	Al, Gly, Va, Ly,	0.0811
48.	Al, Gly, Va, Ly, Threo		Al, Gly, Va, Ly	0.0901
40.	Al, Va, Ly, Threo	0.0843	AI, Va, Ly,	0.0749
		TABLE 10		
10 cc N	1/2 Ammonium nitrate	+ 10 cc M/2 C	litric acid + 0.5 g	m. Dicalcium
		ate $+ 0.1$ gm.	Titania	
•	Light		Dark	
8.	Al, Gly, Ly	0.0495	Al, Va, Gly	Traces
16.	Al, Va, Gly, Ly, Threo	0.0977	Al' Va, Gly	0.0655
24.	Al, Va, Gly, Ly,	0.1378	Al, Va, Gly, Ly,	
0.0	Threo, Pro		, , ,,	
3 2.	Al, Va, Ly, Threo, Glu	, 0 • 1689	Al, Va, Gly, Ly,	Threo, 0.1139
40	Pro		Pro	,
40.	Al, Va, Ly, Threo, Glu	, 0.1914	Gly, Al, Va, Ly,	Threo, 0.1312
40	Pro	0.484	Pro	
48.	Al, Va, Ly, Threo, Glu,	, 0·1 7 16	Al, Va, Ly, Thre	o, Pro 0·1151
	Pro	e e e e e e e e e e e e e e e e e e e		

TABLE II

10 cc M/2 Potassium nitrate + 10 cc M/2 Citric acid + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

Period of exposure in hours	chromato-	Amount of amino-acids with respect to glycine m. gm. colorimetrically	Amino-acids identified chromato- graphically	Amount of amino-acids with respect to glycine m. gm. colorimetrically
	Light		Dark	
8.	Al, Va, Gly	Traces	Al, Gly	Traces
16.	Al, Va, Gly, Ly		Al, Gly, Va	0.0605
24.	Al, Va, Gly, Ly, 7h		Al, Gly, Va, Ly	
32.	Al, Va, Gly, Ly, Th Pro	reo, 0·1508	Al, Gly, Va, Ly,	
	Al, Va, Ly, Threo, I		Gly, Al, Va, Ly,	Threo 0.1214
48.	Al, Va, Ly, Threo,	Pro 0·1535	Al, Va, Ly, Thr	eo 0•1071

TABLE 12

10 cc M/2 Sodium nitrate + 10 cc M/2 Citric acid + 0.5 gm. Dicalcium phosphate + 0.1 gm. Titania

	Light		Dark	
8. 16. 24. 32.	Al, Va, Gly Al, Va, Gly, Ly Al, Va, Gly, Ly, Threo Al, Va, Gly, Ly, Threo,	Traces 0.0706 0.1041 0.1305	Al, Gly, Va Al, Gly, Va, Ly Gly, Al, Va, Ly, Threo	Traces 0-0615 0-0868 0-1049
40. 48.	Pro Al, Va, Ly, Threo, Pro Al, Va, Ly, Threo, Pro	0·1514 0·1339	Gly, Al, Va, Ly, Threo Al, Va, Ly, Threo	0·1197 0·1065

Discussion

From the experimental results (vide Tables 1-12) it can be observed that when nitrate solutions mixed with glucose or citric acid as a source of carbon in the presence of titania as photocatalyst are exposed to light, amino acids are synthesised in smaller amounts. It is also observed that the number and amount of amino-acids synthesised is greater in the sets exposed to light than those kept in the dark showing thereby the influence of light on amino-acid synthesis.

Moreover our experimental results show that the number and also the amount of amino-acids synthesised is slightly greater in the sets containing glucose that those containing citric acid as a source of carbon. It seems that glucose acts as a better energy material than citric acid in the system resulting in the formation of amino-acids.

It is further observed that in the system containing nitrate solutions, titania and glucose or citric as carbonaceous material, the amount of amino-acids gradually increases but after 32 hours of exposure, the amount of amio-acid tends to decrease steadily. The amino-acids synthesised undergo ammonification and decomposition constantly aided by the absorption of light radiations, thus resulting in the loss of amino-acids on prolonging the period of exposure. In the sets kept

in the dark, the amount of amino acids lends to decrease after 40 hours showing thereby that the ammonification and decomposition of amino acid is slower than in similar sets exposed to light. These observations seem to be in agreement with the experimental results of Dhar and Mukerji8 who reported the disappearance of amine-acid photosynthesised, on prolonging the period of exposure.

Our experimental results further indicate that some of the amino-acid formed in the beginning disappear at a later stage while new ones are formed. The amino-acid synthesised in the beginning might have undergone oxidation aided by the absorption of light and new molecules were formed on prolonging the period of exposure as has been observed by Ranganayaki and Bahadur in their experiments with Paraformaldehyde and nitrate solutions.

Furthermore, it is observed that the number and the amount of amino-acids synthesised varies with different nitrate solutions in the following order:

$$NH_4NO_3 > KNO_3 > NaNO_3$$

It is interesting to note that solutions containing dicalcium phosphate produce greater yield of amino-acid than the solutions containing no phosphate. Moreover the loss of amino-acids is also checked in the solutions containing phosphate as the amino-acid content tends to decrease after 40 hours of exposure in contrast to the sets containing no phosphate where the loss of amino-acid synthesised starts after 32 hours of exposure. These observations are important from the view point that phosphates form stable complexes with proteins in soil, plant tissue and in Vitroio, in presence of phosphate which make the protein or amino-acid molecule more stable towards oxidation and decomposition. Moreover, it appears that the amino-acids synthesised do not remain in the solution for long. They constantly undergo decomposition and ammonification aided by light absorption while new ones are formed, addition of phosphates checks the decomposition of these amino-acids by forming stable phosphorylated compounds with them, with the result that the total amount of amino-acid; detected colorimetrically appears to be greater in solution containing dicalcium phosphate.

References

- 1. Compare Dhar, N. R. The chemical action of light. Blackie and Sons, Ltd. London and Glasgow, 1931.
- Anderson, V. L. Ann. Bot., 38, 699-706, 1924.
- Oparin, A. J. The origin life. Macmillan, New York, 1938.
 Bernal, J. D. Proc. Phys. Soc. Lond., 62A, 537, 1949.
- Urcy, H. C. Proc. U. S. Nat. Acad. Sci., 38, 351, 1952. 5.
- Miller, S. L. Science, 117, 528, 1953.
- 7.
- Bahadur, K. Nature, 173, 1141, 1954.
 Dhar, N. R. and Mukerji, S. K. Nature, 134, 499, 1934.
 Ranganayaki, S. and Bahadur, K. Proc. Nat. Acad. Sci., India, 23A, 21,
- Dhar, N. R. and Ghosh, G. P. Proc. Nat. Acad. Sci., India, 25A(6), 1956.

On a class of periodic orbits in the restricted problem of three bodies in a three dimensional coordinate system

 B_{1}

RAM KISHORE CHOUDHRY

Department of Mathematics, Bhagalpur University, Bhagalpur

[Received on 26th March, 1968]

Abstract

In this paper a periodic solution of the restricted problem of three bodies is shown to exist. Here we have taken the solution of the plane problem of two fixed centres for the generating solution.

1. Equation of motion and their transformations

We shall consider here the circular restricted problem of three bedies in a three-dimensional coordinate system. Let us take two finite masses m_1 and m_2 placed at the points M_1 and M_2 respectively. We shall take them to be point-masses. Let the centre of inertia of the two masses m_1 and m_2 be taken for the origin. The two masses m_1 and m_2 will be assumed to rotate uniformly about the origin with the angular velocity n. Let the orbital plane of these point-masses be taken for the xy-plane and the line joining M_1 and M_2 for the x-axis. Let the distance M_1 M_2 be equal to 2c. Then the force function U of the point-masses at M(x, y, z), whose motion is under consideration, is

$$U = f\left(\frac{m_1}{r_1} + \frac{m_2}{r_2}\right)$$

where

$$r_1^2 = M_1 M^2 = \left(x - \frac{2m_2c}{m_1 + m_2}\right)^2 + y^2 + z^2$$

$$r_2^2 = M_2 M^2 = \left(x + \frac{2m_1c}{m_1 + m_2}\right)^2 + y^2 + z^2$$

and the kinetic energy is given by $2T = (x - ny)^2 + (y + nx)^2 + z^2$ For the generalized coordinates, we take $x = Q_1$, $y = Q_2$, $z = Q_3$ and so for the impulses, we have

$$P_1 = \dot{Q}_1 - nQ_2, P_2 = \dot{Q}_2 + nQ_1, P_3 = \dot{Q}_3$$

and for the Hamiltonian function,

$$H = \frac{1}{2} (P_1^2 + P_2^2 + P_3^2) + n (P_1 Q_2 - P_2 Q_1) - U(Q_1, Q_2, Q_3)$$

Introducing the contact transformation

$$\xi_1 = Q_1 + \frac{m_1 - m_2}{m_1 + m_2} c, \, \xi_2 = Q_2, \, \xi_3 = Q_3$$
 $\eta_1 = P_1 , \, \eta_2 = P_2, \, \eta_3 = P_3$

we find that the Hamiltonian function reduces to

$$H = \frac{1}{2} \left(\eta_1^2 + \eta_2^2 + \eta_3^2 \right) + n \left(\eta_1 \, \xi_2 - \eta_2 \, \xi_1 \right) + n \, \frac{m_1 - m_2}{m_1 + m_2} c \eta_2 - U(\xi_1, \, \xi_2, \, \xi_3)$$
 (1)

Taking into consideration our further study, we shall prefer to use the following elliptic canonic variables $(q_1, q_2, q_3; p_1, p_2, p_3)$ defined by formulae

$$\xi_1 = c \cos q_1 \operatorname{ch} q_2, \ \eta_1 = \frac{1}{cI} \left[-p_1 \sin q_1 \operatorname{ch} q_2 + p_2 \cos q_1 \operatorname{sh} q_2 \right]$$

 $\xi_2 = -c \sin q_1 \sin q_2 \cos q_3, \ \eta_2 = \frac{1}{cI} \left[-p \cos q_1 \sin q_2 \cos q_3 - p_2 \sin q_1 \cot q_2 \cos q_3 + \frac{1}{cI} \right]$

$$+p_3\frac{I\sin q_3}{\sin q_1\sin q_2}$$
]

 $\xi_3 = -c \sin q_1 \sin q_2 \sin q_3, \ \eta_3 = \frac{1}{cI} \left[-p \cos q_1 \sin q_2 \sin q_3 - p_2 \sin q_1 \cot q_2 \sin q_3 - p_3 \sin q_3 \right]$

$$-p_3 \frac{I \cos q_3}{\sin q_1 \sin q_2} \bigg]$$

where $I = \cosh^2 q_2 - \cos^2 q_1$.

It is easily seen that the Hamilton function (1) now reduces to

$$H = \frac{1}{2c^{2} I} \left(p_{1}^{2} + p_{2}^{2} + p_{3}^{2} \frac{I}{\sin^{2}q_{1} \sinh^{2}q_{2}} \right) - \frac{f}{cI} \left[(m_{1} + m_{2}) \operatorname{ch} q_{2} + (m_{1} - m_{2}) \operatorname{cos} q_{1} \right] +$$

$$+ \frac{n}{I} \left[p_{1} \operatorname{sh} q_{2} \cos q_{3} \left(\operatorname{ch} q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cos q_{1} \right) +$$

$$+ p_{2} \sin q_{1} \cos q_{3} \left(\cos q_{1} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \operatorname{ch} q_{2} \right) -$$

$$- p_{3} I \sin q_{3} \left(\cos q_{1} \operatorname{ch} q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right) \left| \sin q_{1} \operatorname{sh} q_{2} \right|$$

Then the differential equations of motion in the canonical form can be written as

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} \quad (i = 1, 2, 3)$$
 (2)

2. Regularisation of the equations of motion

A look at the expression for H shows that at the instant of collision with any of the two finite masses, the right hand sides of (2) reduce to infinity. Thus in the neighbourhoods of the two finite masses the solution seems to be singular.

In order to have a regular solution, we shall try to regularize our differential equations. For this we shall introduce an independent variable τ instead of t by means of the relation $dt = I d\tau$

Since the Hamiltonian function H does not involve t explicitly, so the system of equations (2) will admit the energy integral

$$H = h \tag{3}$$

With the introduction of τ our equations (2) will be transformed into

$$dq_i/d\tau = I \ \partial H/\partial p_i, \ dp_i/d\tau = -I \ \partial H/\partial q_i$$
(4)

We find that $\frac{\partial}{\partial p_i}(HI) = 1\frac{\partial H}{\partial p_i} + H\frac{\partial I}{\partial p_i}$, whence by using the integral

we have
$$I \frac{\partial H}{\partial p_i} = \frac{\partial \{(H-h)I\}}{\partial p_i}$$
 and similarly, $I \frac{\partial H}{\partial q_i} = \frac{\partial \{(H-h)I\}}{\partial q_i}$

Consequently, (4) may be written as

$$\frac{dq_i}{d\tau} = \frac{\partial\Omega}{\partial p_i} , \frac{dp_i}{d\tau} = -\frac{\partial\Omega}{\partial q_i}$$
 (5)

where $\Omega = (H - h) I$.

Here the integral of energy may be written as $\Omega = 0$.

Now as in the equations (5), r_1 or r_2 no longer appears in the dominators and so equations (5) may be taken to be regularised.

Generating solution

With (Charlier, 1907) we shall decompose the characteristic function Ω into two parts given as $\Omega = \Omega_0 + n \Omega_1$

where

$$\Omega_{0} = \frac{1}{2c} \left[p_{1}^{2} + p_{2}^{2} + p_{3}^{2} \frac{I}{\sin^{2}q_{1} \sin^{2}q_{2}} \right] -$$

$$-\frac{f}{c} \left[(m_{1} + m_{2}) \operatorname{ch} q_{2} + (m_{1} - m_{2}) \cos q_{1} \right] - h(\operatorname{ch}^{2} q_{2} - \cos^{2}q_{1})$$

$$\Omega_{1} = p_{1} \left[\operatorname{ch} q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cos q_{1} \right] \operatorname{sh} q_{2} \cos q_{3} +$$

$$+ p_{2} \left[\cos q_{1} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \operatorname{ch} q_{2} \right] \sin q_{1} \cos q_{3} -$$

$$- p_{3} \left[\cos q_{1} \operatorname{ch} q_{2} - \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right] \frac{I \sin q_{3}}{\sin q_{1} \sin q_{2}},$$
(5) a graph and in graph of the Hamiltonian

We shall take the solution of the equations (5) corresponding to the Hamiltonian function Ω_0 for the generating solution. This generating solution is seen to be of the form [Demin, 1960]:

$$\cos q_{10} = -\frac{a + cn \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}{1 + a cn \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}$$

$$p_{10} = -\frac{c^2 \sigma_0 \sqrt{1-a^2} dn \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}{1 + a cn \left[\sigma_0 \left(\tau - \tau_0\right), k\right]}$$
(6)

$$ch \ q_{20} = -f \ \frac{m_1 + m_2}{2h \ c}$$

$$p_{20}=0=q_{30}=p_{30},$$

[The suffix (0) denotes that the value has been obtained under the assumption that n = 0]

Here
$$a = \frac{m_1 + m_2}{4(m_1 - m_2) \operatorname{ch} q_{20}} \left[\sqrt{1 + 2 \frac{m_1 - m_2}{m_1 + m_2} \operatorname{ch} q_{20} + \operatorname{ch}^2 q_{20}} - \sqrt{1 - 2 \frac{m_1 - m_2}{m_1 + m_2} \operatorname{ch} q_{20} + \operatorname{ch}^2 q_{20}} \right]^2$$

$$k^2 = \frac{1}{2} \left[1 - \frac{(m_1 + m_2) \operatorname{sh}^2 q_{20}}{\sqrt{(m_1 + m_2)^2 \operatorname{sh}^4 q_{20} + 16 m_1 m_2 \operatorname{ch}^2 q_{20}}} \right]$$

$$\sigma_0^2 = \frac{f}{c^3 \operatorname{ch} q_{20}} \sqrt{(m_1 + m_2)^2 \operatorname{sh}^4 q_{20} + 16 m_1 m_2 \operatorname{ch}^2 q_{20}}$$

In the solutions (6) h and τ_0 are arbitrary constants of integration. It is clear that the generating solution (6) define a family of elliptic orbits with the focil at the attracting masses. This solution is periodic relative to τ with the period T where

$$T = \frac{4}{\sigma_0} \int_{0}^{\pi/2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}} = \frac{4}{\sigma_0} K(k)$$

4. First Approximation of the general solution

We shall now aim to find the solution in series expanded in ascending powers of n, i.e.

$$q_{1} = q_{10} + \sum_{i=1}^{\infty} n^{i} q_{1i}, q_{2} = q_{20} + \sum_{i=1}^{\infty} r^{i} q_{2i}, q_{3} = q_{30} + \sum_{i=1}^{\infty} n^{i} q_{3i}$$

$$p_{1} = p_{10} + \sum_{i=1}^{\infty} n^{i} p_{1i}, p_{2} = p_{20} + \sum_{i=1}^{\infty} n^{i} p_{2i}, p_{3} = p_{30} + \sum_{i=1}^{\infty} n_{i} p_{3i}$$

$$(7)$$

In this section we shall try to find q_{11} , q_{21} , q_{31} , p_{11} , p_{21} , and p_{31} . For this evaluation we shall substitute the series (7) for q_1 , q_2 , . . . in the differential equations (7) and we shall equate the coefficients of n on the two sides. Thus we shall have the following system of differential equations for q_{11} , q_{21} ,

$$\frac{dq_{i_1}}{d\tau} = p_{i_1} \left(\frac{\hat{r}^2 \Omega_0}{\hat{r} p_{i_1}^2} \right)_0 + \left(\frac{\hat{r} \Omega_1}{\hat{r} p_{i_1}} \right)_0$$
 (8)

$$\frac{dp_{i_1}}{\hat{r}t} = -q_{i_1} \left(\frac{\hat{r}^2 \Omega_0}{\hat{r}q_i^2} \right)_0 - \left(\frac{\hat{r}\Omega_1}{\hat{r}q_i} \right)_0$$
 (9)

The index zero in the equations (8) and (9) denotes that in the partial derivatives of Ω_0 and Ω_1 with respect to q_i and p_i we should replace q_i and p_i by and p_{i0} after the differentiation. Equations (8) and (9) may be seen to be reduced to the following form:

$$\frac{d^2q_{11}}{d\tau^2} + \left[\frac{f}{c^3} \left(m_1 - m_2 \right) \cos q_{10} + \frac{f}{c_3} \left(m_1 + m_2 \right) \frac{\cos 2 q_{10}}{\cosh q_{20}} \right] q_{11} = 0$$
 (10)

$$\frac{d^2 q_{21}}{d\tau^2} + \frac{f(m_1 + m_2)}{c^3 \operatorname{ch} q_{20}} \operatorname{sh}^2 q_{20} q_{21} = -(\operatorname{ch} 2 q_{20} - \cos 2 q_{10}) \frac{p_{10}}{c^2}$$
 (11)

$$\frac{dq_{31}}{d\tau} = \frac{p_{31}}{c^2} \frac{I}{\sin^2 q_{10} \sinh^2 q_{20}} \tag{12}$$

$$\frac{dp_{31}}{d\tau} = 0 \tag{13}$$

With [Demin, 1960] the solution of the differential equations (10) - (13) may be written as

$$q_{11} = q_{10}' \left(\beta_3 \int \frac{d\tau}{q_{10}'^2} + \beta_4 \right) \tag{14}$$

$$p_{11} = c^2 q_{10}'' \left(\beta_3 \int_{q_{10}'^2} d\dot{r} + \beta_4 \right) + \frac{c^2 \beta_3}{q_{10}'}$$
 (15)

$$q_{21} = \beta_1 \cos \sigma(\tau - \tau_0) + \beta_2 \sin \sigma(\tau - \tau_0) + F(\tau)$$

$$p_{21} = -\beta_1 \sigma c^2 \sin \sigma(\tau - \tau_0) + \beta_2 \sigma c^2 \cos \sigma(\tau - \tau_0) + F_1(\tau)$$
(16)

$$p_{21} = -\beta_1 \sigma c^2 \sin \sigma (\tau - \tau_0) + \beta_2 \sigma c^2 \cos \sigma (\tau - \tau_0) + F_1(\tau)$$
(17)

$$q_{31} = \frac{\beta_5}{c^2} \left[\tau(\operatorname{cosech}^2 q_{20} + 2) - \frac{2 - a^2}{\sigma_0(1 - a^2)} \{ E(u) + \sin^{-1} (\operatorname{cn} u \operatorname{dn} u) \} - \right]$$

$$-\frac{2a}{\sigma_{\mathbf{g}}(1-a^2)}\frac{dn\ u}{sn\ u} + \beta_6 \tag{18}$$

$$p_{31} = \beta_5 \tag{19}$$

where

$$\int \frac{d\tau}{q_{10}^{\prime 2}} = \frac{\pi^2 \tau}{4 \sigma_0^2 (1 - a^2) K} \left[\frac{1}{k^{\prime 2}} \left(1 + 2 \sum_{\nu=1}^{\infty} \operatorname{sech}^2 2\nu \rho \right) + \frac{2a^2}{k^2} \sum_{\nu=1}^{\infty} \operatorname{cosech}^2 (2 \nu - 1) \rho + P. T. \right]$$

$$K^{\prime 2} = 1 - K^2, \, \rho = \frac{\pi K^{\prime}}{2K}, \, K^{\prime} = K(k^{\prime})$$

 $P. T = periodic terms in \tau$

$$\frac{1}{q'_{10}} = -\frac{1 + a \operatorname{cn} \left[\sigma_{0} \left(\tau - \tau_{0}\right), k\right]}{\sigma_{0} \sqrt{1 - a^{2}} \operatorname{dn} \left[\sigma_{0} \left(\tau - \tau_{0}\right), k\right]}$$

 $F(\tau) = a$ periodic function in τ

 $F_1(\tau) = a$ periodic function in τ .

The solutions (14) - (19) are the first approximations of the general solution. In the same way the second and the higher approximations may be calculated.

5. Existence of periodic solution

In this section we shall examine if there exists a periodic solution with the period of the generating solution, i.e., T. It is clear that if q_{11} , q_{21} , q_{31} , p_{21} and p_{31} are the solutions and if they are periodic with the period T, then the condition of periodicity may be written as

or periodicity may be written as
$$\psi_1 = q_{11} \ (\tau_0 + T) - q_{11} \ (\tau_0) = 2s_1\pi$$

$$\psi_2 = q_{21} \ (\tau_0 + T) - q_{21} \ (\tau_0) = 0$$

$$\psi_3 = q_{31} \ (\tau_0 + T) - q_{31} \ (\tau_0) = 2 \ s_2\pi$$

$$\psi_4 = p_{11} \ (\tau_0 + T) - p_{11} \ (\tau_0) = 0$$

$$\psi_5 = p_{21} \ (\tau_0 + T) - p_{21} \ (\tau_0) = 0$$

$$\psi_6 = p_{31} \ (\tau_0 + T) - p_{31} \ (\tau_0) = 0$$
where s_1 and s_2 are arbitrary integers. By virtue of the solutions (14) – (19), we have

we have

$$\psi_{1} = \beta_{3} \frac{\pi^{2}}{\sigma_{0}^{2} (1 + a) \sqrt{1 - a^{2} K}} \left[\frac{1}{k'^{2}} \left(1 + 2 \sum_{\nu=1}^{\infty} \operatorname{sec} h^{2} 2\nu \rho \right) + \frac{2a^{2}}{k^{2}} \sum_{\nu=1}^{\infty} \operatorname{cosech}^{2} (2\nu - 1) \rho \right] = 2 s_{1}\pi$$

$$\psi_{2} = \beta_{1} (\cos \sigma T - 1) + \beta_{2} \sin \sigma T = 0$$

$$\psi_{3} = \frac{\beta_{5}}{c^{2}} \left\{ (\operatorname{cosech}^{2} q_{20} + 2) - (1 - k^{2}) \frac{2 - a^{2}}{1 - a^{2}} \right\} T = 2 s_{2}\pi$$

$$\psi_{4} = 0$$

$$\psi_{5} = -\beta_{1} \sigma c^{2} \sin \sigma T + \beta_{2} \sigma c^{2} (\cos \sigma T - 1) = 0$$

$$\psi_{6} = 0$$
(20)

Now if the constants β_1 , β_2 , β_3 and β_5 can be found such as to satisfy the equations (2), then the periodic solution will exist. We have an integral of energy and so one relation can be taken to be dependent, say, $\psi_4 = 0$. As we are now left with four constants β_1 , β_2 , β_3 and β_5 and we have five equations, so if it is shown that a fundamental determinant of the fourth order is not zero, then the existence of the periodic solution will be proved. We find now that

$$\frac{\hat{c}(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{5})}{\hat{c}(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{5})} = 4 \sigma \sin^{2} \frac{\sigma \tau}{2} \left\{ \operatorname{cosech}^{2} q_{20} + (1 - k^{2}) \frac{2 - a^{2}}{1 - a^{2}} \right\} T \times \frac{\pi^{2}}{\sigma_{0}^{2} (1 + a) \sqrt{1 - a^{2}} K} \left[\frac{1}{k^{\prime 2}} \left(1 + 2 \sum_{\nu=1}^{\infty} \operatorname{sech}^{2} 2^{\nu} \rho \right) + \frac{2a^{2}}{k^{2}} \sum_{\nu=1}^{\infty} \operatorname{cosech}^{2} (2^{\nu} - 1) \rho \right]$$

is definitely distinct from zero, if $2k\sigma \neq p\sigma_0 \pi$ where p is an arbitrary integer. We can proceed for the existence of periodic solution in the further approximations similarly, but in that case the question of convergence of the series representing the solution will arise.

Reference s

Charlier, C. L. Die Mechanik des Himmels, 2, Leipzig.

Demin, V. G. A new class of periodic solution in the restricted problem of three bodies. Bulletin ITA, No. 10(93) (Russian).

Demin, V. G. Ganeralised problem of two fixed centres. Soviet Astronomical Journal No. 6, 1960.

Poincare, H. Nouvelles Methodes de la Mecanique Celeste.

Hancock, H. Elliptic Integrals, Dover Publications, New York, 1958.

The Effect of Mode of Micronutrient Application on Wheat: Yield, Uptake of Nitrogen and Phosphorus, and the relationship between Copper, Nitrogen, Zinc and Phosphorus

By

G. C. SHUKLA & A. R. BHANDARI

Division of Chemistry, Indian Agricultural Research Institute, New Delhi

[Received on 29th February, 1968]

Abstract

Foliar spray of copper or zinc improved the yield of grains and straw at Pant Nagar. Copper, zinc and all micro-nutrients in combination when applied to soil or foliage only gave beneficial effect at Patiala.

All the applied trace elements were effective in improving wheat straw nitrogen at Pant Nagar. Foliar fertilization of Zn, B, Cu and Mn, and soil dressing with Mn, Mo and Cu had a beneficial effect on grain nitrogen. At Patiala, soil application of Mo alone, increased grain nitrogen. The phosphorus content of the straw and of grains, improved under slightly acidic soils of Pant Nagar only.

The possibility of a relationship between the amounts of zinc, phosphorus, copper and nitrogen, present in straw and grain from both the places was also studied.

Micronutrients play a significant role in the plant metabolism and growth, hence their application not only affects the yield but the quality of the crop produce also. There are conflicting reports with regards to the effect of trace element application on plant uitrogen and phosphorus. Application of Cu, Mn, Zn, B and Mo increased nitrogen content of plants (Ozolina²¹, Kokin¹⁸, Sadaphal and Das²⁴, Aliev¹, Kholi¹⁶, and Gautam et al¹¹). The same authors have shown that fertilization with the same trace elements decreased N content as well. Similar to the effect observed on the uptake of nitrogen, the addition of trace elements may offset the plant phosphorus in either way (Kastori and Saric¹⁵, Gopalkrishnan¹² Fedorenko⁶, and Karim and Deraj¹⁴).

Investigations have been made to find out the relationship between the uptake of Cu, N, Zn and P. Positive interaction between plant N and Cu has been reported in citrus seedlings (Vsevolozhskaya²⁷), barley plants (Ozolina²¹) and in cholum and ragi (Gopalkrishnan¹²). For Zn and P, positive correlation was found in rye and cauliflower (Luders²⁰), citrus (Frank¹⁰), and grapes (Fedorenko⁶). Inverse relationship between Zn and P has been also reported (Thompson²⁶) Paribok et al²² and Terman et al²⁸).

The present study aims at finding out the effect of Cu, Zn, Mo, Mn and B, applied to the soil as well as to the foliage of two high yielding varieties of wheat on yield, uptake of nitrogen and phosphorus and on possible relation of Cu, N, Zn, and P contents.

Experimental

The soil and plant samples for the present investigations were collected at harvesting stage from Model Agronomic Trial Centres at Patiala and Pant Nagar. The soils of both these places were sandy loam in texture. Their chemical analysis is reported in table 1A. Wheat varieties PV-18 and C-306 were grown at Patiala and Pant Nagar respectively. The experiments were laid in a randomized block design, giving similar treatments at both the places (table 1B). Each treatment was replicated four times. Net plot size at Pant Nagar was 32 square metres and at Patiala it was 25 square metres. The application of the fertilizer doses was made as given in tables 1C and 1D. Two foliar applications of trace elements were made after 40 and 55 days of sowing. Soil fertilization of NPK and trace elements was done before sowing (broadcasting).

TABLE 1A
Soil Chemical Analysis

Analysed	Pant Nagar	Patiala
Organic Carbon%	0·89	0·39
Total Nitrogen%	0·16	0·075
CaCO ₃ %	1·64	1·43
pH	6·2	7·5

TABLE 1B
Treatments at Patiala and Pant Nagar

S. No.	Treatment	Symbol	Mode of application
1. 2.	Control NPK	C NPK	-
3. 4.	$ \frac{NPK + Cu}{NPK + Zn} $	$ \frac{NPK + Cu(S)}{NPK + Zn(S)} $	Soil application Soil application
5. 6. 7.	$egin{array}{ll} ext{NPK} + ext{B} \ ext{NPK} + ext{Mn} \end{array}$	$ \begin{array}{c} \text{NPK} + B \text{ (S)} \\ \text{NPK} + Mn \text{ (S)} \end{array} $	Soil application Soil application
8.	NPK + Mo NPK + All trace	NPK + Mo(S)	Soil application Soil application
9. 10.	elements Spartin	$\frac{NPK + All (S)}{Sp (S)}$	Soil application
11. 12.	$egin{array}{l} ext{NPK} + ext{Cu} \ ext{NPK} + ext{Zn} \ ext{NPK} + ext{B} \end{array}$	$ \frac{NPK + Cu (F)}{NPK + Zn (F)} $	Foliar spray Foliar spray
13. 14.	$ \begin{array}{c} NPK + Mn \\ NPK + Mo \end{array} $	$ \frac{NPK + B(F)}{NPK + Mn(F)} $	Foliar spray Foliar spray
15.	NPK + All trace	NPK + Mo (F)	Foliar spray
		NPK + All (F)	Foliar spray

TABLE 1C

Basal doses and forms of NPK fertilizers applied in kgs per hectare

Name of the centre		Rate of application				
Na	me of the centre	N	P	K		
-	Patiala Pant Nagar	120 (C. A. N) 35 (Urea)	60 (Superphos.) 35 (Superphos.)	60 (KCl) 35 (KCl)		

TABLE 1D

Dosage and form of trace element applied in kgs per hectare

Microelement	Soil application	Foliar application	Name of the compound used
Manganese Zinc Copper Boron Molybdenum Mixture of all trace elements	12·33 5·70 6·36 1·15 0·46 370·00	6·16 2·85 3·18 0·55 0·23	Mn SO ₄ ·4H ₂ O ZnSO ₄ ·7H ₂ O CuSO ₄ ·5H ₂ O Na ₂ B ₄ O ₇ ·10H ₂ O Na ₂ MoO ₄ *Spartin-B

^{*}Spartin is supposed to contain all the essential trace elements along with NPK.

The soil samples representative of a particular plot were collected at the harvesting stage. Only surface samples from 0.22 cms were taken with the help of a soil sample and packed in alkathene bags. After drying in the air, the soil samples were powdered in a porcelain pestle and mortar. Before use, the porcelain pestle and mortar was treated with hydrochloric acid, washed with double distilled water and cleaned with a piece of cloth. The powdered sample was passed through a muslin cloth sieve and stared in an alkathene bag.

The representative samples of the plant material, collected at the harvesting stage, were dried in an oven at 100°C. The plant samples were further powdered, screened and stored in a manner already detailed for the preparation of soil samples. The results of chemical analysis of composite soil and plant samples were expressed on oven dry basis at 100°C.

Soil pH was determined in soil water suspension of 1:2.5 ratio with the help of Beckman glass electrode pH meter. Organic carbon and calcium carbonate were estimated as mentioned in Piper²³. The results of organic carbon were expressed as Walkley and Black values. Kjeldahl's method was followed for the determination of total nitrogen in soils (A. O. A. C.³).

Total nitrogen of the plant samples were determined by the Kjeldahl-Gunning's method as given in A. O. A. C.³. Total phosphorus, zinc and copper were estimated in the triacid (60% HClO₄, conc. H₂SO₄ and conc. HNO₃ in 2:1:5 by volume) extract. Phosphorus was determined by the chlorimetric method of Fiske and Subbarow⁷ as modified by King¹⁷. Zinc and copper were estimated using dithizone (A. O. A. C.³) and carbamate (Chang and Bray⁵) reagents.

TABLE 2

Effect of trace element application on the yield of wheat

S. No.	Treatment symbol	Yield in Kgs per plot Patiala Pant Name			
D. 140.		Grain	Straw	Pant Grain	Nagar
	***************************************	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	DUAW		Straw
1.	C	7-0 0	11.97	10.25	
2.	NPK	12·0 2	23.97	10.80	17.70
ેર 3.	NPK + Cu(S)	13.07	24.92	10.15	20.70
4.	NPK + Zn(S)	12.97	24.27	11.50	15·35 18·10
5.	NPK + B(S)	12.10	25.15	10.65	17.20
6.	NPK + Mn (S)	12.02	24.22	8.35	15.95
7.	NPK + Mo(S)	11.72	23.02	11-10	18.20
8.	NPK + All(S)	14.12	26.37	10.65	18.45
9.	Sp. (S)	11.95	24.05	11.55	19.30
10.	NPK + Cu(F)	12.85	22.77	12.45	22.35
11.	NPK + Zn(F)	13.00	22.75	12.20	23.45
12.	NPK + B(F)	12:47	23.52	8.85	12.55
13.	NPK + Mn(F)	11.85	24.40	10.35	20.60
14.	NPK + Mo(F)	12.72	26.02	10.95	19. 9 5
15.	NPK + All(F)	13.25	22.75	8.80	18.30

TABLE 3

Effect of trace element application on nitrogen and phosphorus in wheat plants (Patiala)

				Tunto (2 attata)	
S. No.	Treatment symbol	Nitrogen %		Phosphorus %	
		Straw	Grain	Straw	Grain
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	C NPK NPK + Cu (S) NPK + Zn (S) NPK + B (S) NPK + Mn (S) NPK + Mo (S) NPK + All (S) Sp. (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F) NPK + Mo (F) NPK + Mo (F) NPK + All (F)	0·43 0·64 0·62 0·44 0·56 0·62 0·48 0·57 0·60 0·58 0·48 0·66 0·60 0·60	2·06 2·06 2·04 1·88 1·81 1·95 2·40 3·08 1·87 2·12 2·14 2·06 1·98 2·08 1·92	0·199 0·212 0·144 0·153 0·153 0·212 0·127 0·153 0·212 0·229 0·127 0·187 0·238 0·187 0·188	0·569 0·595 0·399 0·518 0·459 0·561 0·246 0·603 0·476 0·535 0·500 0·425 0·425 0·442

TABLE 4

Effect of trace element application on nitrogen and Phosphorus in wheat plant (Pant Nagar)

S. No.	Treatment symbol	Nitrogen %		Phosphorus %	
		Straw	Grain	Straw	Grain
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	C NPK NPK + Cu (S) NPK + Zn (S) NPK + B (S) NPK + Mn (S) NPK + All (S) Sp. (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F) NPK + Mo (F) NPK + All (F)	0·35 0·38 0·36 0·40 0·40 0·50 0·40 0·35 0·40 0·38 0·43 0·32 0·36 0·43	1·84 1·96 1·96 2·06 2·18 2·10 1·98 1·92 2·07 2·27 2·12 2·00 1·97 1·96	0·119 0·120 0·102 0·119 0·119 0·178 0·195 0·161 0·238 0·178 0·144 0·153 0·229 0·204 0·212	0·408 0·391 0·348 0·433 0·459 0·408 0·450 0·459 0·425 0·408 0·323 0·391 0·238

TABLE 5

Copper and Zinc content in wheat plants (Patiala)

	Gopper and		_		
		Copper in ppm		Zinc in ppm	
S. No.	Treatment symbol	Straw	Grain	Straw	Grain
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	C NPK NPK + Cu (S) NPK + Zn (S) NPK + B (S) NPK + Mn (S) NPK + Mo (S) NPK + All (S) Sp. (S) NPK + Cu (F) NPK + Zn (F) NPK + B (F) NPK + Mn (F) NPK + Mo (F) NPK + Mo (F) NPK + All (F)	13·33 13·00 9·17 10·42 6·46 7·08 11·25 8·75 11·89 14·72 5·83 9·17 8·89 10·00 17·22	2·00 2·50 4·25 2·00 6·75 11·25 4·50 7·37 13·25 5·25 2·75 2·00 1·50 2·25 4·00	31·20 27·50 27·60 28·00 19·80 27·20 14·12 29·72 25·52 37·20 32·00 23·00 12·20 7·60 44·00	48·6 43·5 37·2 42·0 39·6 51·9 36·6 64·2 48·6 49·5 60 9 53·1 37·5 40·5 58·5

			3,	2.3
S. No. Treatment symbol	Copper in ppm		Zinc in ppm	
	Straw	Grain	Straw	Grain
1. C 2. NPK 3. NPK + Cu (S) 4. NPK + Zn (S) 5. NPK + B (S) 6. NPK + Mn (S) 7. NPK + Mo (S) 8. NPK + All (S) 9. Sp. (S) 10. NPK + Cu (F) 11. NPK + Zn (F) 12. NPK + B (F) 13. NPK + Mn (F) 14. NPK + Mn (F) 15. NPK + All (F)	8·61 7·50 13·47 14·44 12·50 5·67 7·14 5·88 5·46 6·30 10·08 5·88 5·67 7·14 8·40	6·00 4·00 8·25 5·75 12·50 4·00 3·50 4·25 10·25 4·75 5·50 3·75 8·00 9·00 5·50	30·40 52·00 23·40 26·00 15·40 51·60 76·00 74·00 70·00 21·60 14·00 60·00 92·80 32·40	49.5 48.9 51.3 68.4 78.0 58.2 54.0 52.8 48.6 36.0 80.7 43.2 53.4 54.6 61.5

Results and Discussion

(i) Effect of trace element application on the yield of wheat:

Data in table 2 show that at Patiala Cu and Zn were beneficial in increasing grain yield when applied directly to the soil or as foliar spray. Response to the application of all micronutrients in combination was superior to the effect of Cu or Zn alone, especially when applied to the soil. At Pant Nagar Cu and Zn were beneficial as foliar sprays. The addition of all micronutrients in combination was found harmful under soil dressing or foliar spray. Soil application of spartin was ineffective both at Patiala and Pant Nagar.

The data reveal the importance of soil reaction in determining the response. to micronutrients in relation to the method of application. Soil application of microelements slightly augmented the grain yield under slightly alkaline soil conditions, while the responsiveness of the above elements as foliar spray was evident under the acidic soil conditions of Pant Nagar.

Soil application of Mn and B and foliar spray of Mn and Zn were found beneficial for wheat grain yield (Koraddi and Sethin). Gautam et alii reported that soil application of Zn and other microelements (Cu, Mn, B, Mo, Fe and Mg) was superior as compared to foliar spray.

(ii) Effect on the uptake of nitrogen:

A study of table 3 shows that the uptake of nitrogen in straw was depressed appreciably on soil dressing with Zn, Mo and on foliar spray of Zn in Patiala soils. The effect of other treatments was less marked. On the other hand, the application of trace elements to Pant Nagar soils improved straw nitrogen in many cases (Table 4). The effect of Mn applied to the soil was most marked. On foliar spray Zn and Mo were found to exert some beneficial effect.

The uptake of nitrogen by grains was not markedly affected in general, in experiments conducted at Patiala. However, application of Mo to this soil resulted in an increase in grain nitrogen. The soil dressing of Zn, B and spartin slightly lowered the nitrogen content of grains. Under the acidic soil conditions of Pant Nagar, foliar spray of Zn markedly improved N content of the grains. Soil dressing with B, Mn and Mo and foliar fertilization with B, Cu and Mn caused slight improvement in grain nitrogen content.

Koraddi and Seth¹⁹ reported that application of micro-nutrients (Mn, Zn, B and Cu) except Zn applied to the soil increased the N content of wheat grains. In the same year Govindarajan and Gopalarao¹³ reported that Mn fertilization did not improved N content of wheat plants. Andrushchenke² revealed that the effectiveness of trace elements in increasing NO₃ accumulation in spring wheat decreased in the order of Zn, B, Mo, Cu and Mn.

(iii) Effect on the uptake of phosphorus:

Foliar spray of Cu or Mn alone improved Puptake in straw at Patiala. Soil application of any single or, all the micro-nutrients in combination did not result in any such beneficial effect. At Pant Nagar, soil dressing of Cu considerably depressed P uptake in straw whereas Zn or B did not appear to effect P uptake in either way. All other treatments improved P content of straw.

Soil dressing with Cu and foliar spray of B or Mo had depressive effect on P uptake in grains at Pant Nagar. The remaining treatments enhanced P uptake by grains. At Patiala all treatments, except soil application of all micronutrients in combination depressed P content in grains. In slightly acidic soils of Pant Nagar, in general, the phosphorus content of the straw as well as of grains had improved under all treatments. In contrast at Patiala at most of the treatments had depressive effect on the uptake of P in plants. The increased P uptake under slightly acidic soil conditions may be related to the existence of physicochemical conditions conducive for the release of fixed P. In slightly alkaline soils, the deficiency of mobile P becomes a limiting factor in the uptake of phosphorus.

Mo and Cu application to acidic soils improved P uptake in plants (Zhiznevskaya²⁸). Zn and B have also favourable effect on P absorption by plants (Baroccio⁴). Kastori and Saric¹⁵ showed that P uptake varied greatly at low concentrations of trace elements applied whereas higher concentrations they (Cu, Zn, B and Mn) favourably affected P uptake in plants. Gopalkrishnan¹² and Forster⁸ observed that Cu application decreased P content of plants.

(iv) Uptake of copper in relation to nitrogen and that of Zinc in relation to phosphorus:

Data in tables 3 to 6 revealed that there was little variation in N content with change in Cu concentration in straw at Patiala (r=+0.33) and Pant Nagar (r=0.42). Similarly, relationship between Cu and N content of the grains was found non-significant. An examination of the data of some of the individual treatments would however reveal the existence of such a relationship e.g., soil application of Mo increased nitrogen along with Cu content of grains at Patiala.

A study of tables 3 to 6 indicated no significant relationship between Zn and P uptake in straw of both the varieties of wheat grown at Patiala (r = +0.13) and Pant Nagar (r = +0.448). In the grains at Patiala correlation coefficient (r = +0.506) was significant at 5% level. Similar data for grains at Pant Nagar was not found statistically significant (r = +0.220).

Zinc and P applied at moderate rates had a positive interaction between them in the plant tissue (Luders²⁰ and Fedorenko⁶). Tortini and Morini⁹ observed that an application of moderate quantity of Zn (20 ppm) not only eliminated the

depressive effect of heavy P fertilization (300 to 1000 ppm) but also improved the uptake of Zn with P content in tomato and spinach.

Acknowledgements

The authors wish to express their thanks to Dr. N. P. Datta, Head of the Division of Soil Science and Agricultural Chemistry, I. A. R. I., New Delhi for providing necessary laboratory facilities.

References

1. Aliev, D. A. Primen Mikroelem Sel. Khoz Medits. Baku: 1959.

2. Andrushchenko, G. A. Nauch. Zap. Ivov. S. Kh. Inst., 7, 92-121, 1958. 3. Association of Official Agricultural Chemists. Official and tentative methods

of analysis. 8th Ed. A. O. A. C. Washington, D. C. 1955.

4. Baroccio, A. Ann. Stag. Chim. Agr. Roma Ser. III Publ. No. 206, 1-7, 1962.

- Chang, K. L. and Bray, R. H. Anal. Chem. 25, 655-659, 1953.
 Fedorenko, I. V. Mikroelem. est-estr. Radioaktirn. Pochv. go., 3, 199-201,
- 7. Fiske, C. H. and Subbarow, Y. J. Biol. Chem., 66, 375-400, 1925.

8. Forster, W. A. Ann. Appl. Biol., 41, 637-651, 1954.

9. Fortini, S. and Morini, V. Agrochimica., 4, 209-215, 1960. 10. Frank, T. Bingham. Soil Sci. Soc. Amer. Proc., 27, 389-391, 1963.

11. Gautam, O. P., Ahuja, L. R. and Mukhopadhyay, D. J. Ind. Soc. Soil Sci., 12, 411-421, 1964.

12. Gopalkrishnan, S. Madras Agric. J., 47, 95-108, 1960.

- 13. Govindarajin, S. V. and Gopalarao, H. G. J. Ind. Soc. Soil Sci., 12, 355-362, 1964.
- 14. Karim, A. Q. M. B. and Deraj, O. Soil Sci., 92, 408-412, 1961.
- 15. Kastori, R. and Saric, M. Phosphorsaure, 25, 281-288, 1965.
- Kholi, A. F. El. Versl. landb. Onderz. Wageningen. 67, 78, 1961.

King, E. J. Biochem. J., 26, 292-297, 1932. 17.

- Kokin, A. Ya. Primen. Microelem. Sel. Khoz. Medits. Baku., 331-334, 1959.
- Koraddi, V. R. and Seth, J. J. Ind. Soc. Soil Sci., 12, 387-392, 1964.
 Luders, R. Z. Pfl. Ernahr. Dung., 68, 56-65, 1955.

- Ozolina, G. Microelem. Prod. Rast., 103-111, 1965.
 Paribok, T. A., Kuznetsova, G. N. and Alekseeva-Popova, N. V. Agrokhimiya, 9, 98-104, 1964.
- Piper, C. S. Soil and Plant Analysis, University of Adelaide (Australia), 1950.
- Sadaphal, M. N. and Das, N. B. J. Ind. Soc. Soil Sci., 9, 257-267, 1961. Terman, G. L., Allen, S. E. and Bradford, B. N. Soil Sci. Soc. Amer. Proc., 30, 119-124, 1966.

Thompson, J. W. Soil Sci., 94, 323-330, 1962.

Vsevolozhskaya, G. K. Primen, Mikroelem, Sel. Khoz. Medits. Baku., 471–479, 1959.

Zhiznevskaya, G. Mikroelem. Urozh., 3, 77-104, 1961.

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Baneriee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur,
- 8. Prof. S. Ghosh, Jabalpur
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Izatnagar
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Muzaffarpur
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretary)

Editors

Dr. H. C. Khare, Allahabad (Physical Sciences)

	Page
The Fatty Acid Composition of Sterospermum suaveolens Root Fat.	
S. P. Tandon, V. K. Saxena and K. P. Tiwari	1
Infinite integrals involving Fox's H-function and Confluent Hypergeometric functions S. L. Kalla	3
On the Steady flow of Reiner Philippoff fluid between Parallel plates	
and Coaxial cylinders in linear movement	
P. D. Verma and S. C. Rajvanshi	7
Calcium carbonate - Phosphoric acid neutralisation at 5° and 30°C.	
N. R. Dhar and G. N. Pant	17
Some Expansion Formulae for H-function—III P. Anandani	23
Some Formulae involving Hermite, Laguerre and Gegenbauer Polynomials B. L. Sharma and H. L. Manocha	35
Series solution of Dual integral equations with Bessel Function	
Kernels	3 9
On a generalised Stieltjes transform. P. G. Golas	42
Some Theorems on Fractional Integration, II S. L. Kalla	49
Chemical Examination of the Plant Pterospermum acerifolium Study of the Seed Oil S. P. Tandon, V. K. Saxena and K. P. Tiwari	57
Neutralization of phosphoric acid with barium and strontium carbonates N. R. Dhar and G. N. Pant	60
On Flexural Vibrations of a Viscoelastic Rod In a Magnetic Field. D. K. Sinha and R. R. Giri	65
The Response of Paddy to Application of Phosphates Under Varying Levels of Nitrogen. O. N. Mehrotra, N. S. Sinha and R. D. L. Srivastava	69
Kinetics and Mechanism of the Silver (I) catalysed Oxidation of Thallium (I) by Peroxydisulphate.	
R. K. Shinghal, U. S. Mehrotra and S. P. Mushran	73
A method of inclusion of zero-point energy in the Potential parameters of inert Gas-solids N. P. Gupta and B. Dayal	79
Some theorems concerning generalised Hankel and Laplace transforms	85
Talc as a medium of growth for Nitrate-forming Bacteria	
S. P. Tandon and M. M. Mishra	89
Proanthocyanidins of Symplocos racemosa Bark Part I. N. Kakkar, K. Misra and R. D. Tiwari	. 92
An Spectroscopic investigation of complex formation in Cobalt (II)	-
Chloride-aliphatic amine system. Padmaja Rewa Shukla (Miss) and Gopal Narain	97
Effect of Nitrogen and Phosphorus of the Composition of Oat.	101
Secondary flow of an Elastico-viscous fluid between two coaxial cones having the same vertex and rotating about a common axis. P. L. Bhatnagar, R. K. Bhatnagar and H. Solomon	107

Published by Prof. S. P. Tandon, for the National Academy of Sciences, India, Allahabad and Printed by E. K. Raja, at the Capital Printing Works, Allahabad.

Secretary Editorial Board—Prof. S. P. Tandon.

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur
- 8. Prof. S. Ghosh, Jabalpur
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Izatnagar
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Muzaffarpur
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretary)

Editors

Dr. H. C. Khare, Allahabad (Physical Sciences)

	Page
On the sum of a Special ${}_4F_3$	121
Algebraic formulations of a topological space R. N. Lal	124
Some integrals involving generalized Legendre associated functions	
and H-function	127
Liquid solid countercurrent distribution of fatty acids of Brassica	
oil with Urea. Part I Brassica compestris variety YS Pb. 24.	
S. K. Arora	137
Self reciprocal functions M. A. Pathan	140
S. K. Arora Self reciprocal functions . M. A. Pathan Variety of Problems of Neutral functional differential equations	
On For H-Transform in two variables	145
On Fox H-Transform in two variables Rattan Singh	149
Bessel Transform	161
Integrals involving Bessel coefficients of two arguments . S. L. Gupta	167
Nitrogen Transformations in Soil-Effect of nitrogenous fertilizer,	
organic matter and phosphate S. P. Jaiswal	169
Non Radial Hydromagnetic Oscillations of an incompressible	
cylinder K. M. Srivastava and R. S. Kushwaha	174
Kinetics of oxidation of D-glucose and D-xylose with vanadium (V)	
in acid medium . P. N. Pathak, M. P. Singh and B. B. L. Saxena	185
Integrals Involving Products of G-Function S. C. Gupta A finite integral Involving H-function G. K. Goyal	193
Recovery of Fortilizer Nitrogen by Oats as affected by Nitrogen	201
Fertilization Levels and Soil Moisture Supply . M. C. Saxena and H. Marschner	004
Effect of Some Rare-elements on Nitrification by Nitrobacter agilis	204
(In liquid culture medium) S. P. Tandon and M. M. Mishro	209
(In liquid culture medium) S. P. Tandon and M. M. Mishra Operational representations and Hypergeometric Functions of three	203
variables R. C. S. Chandel	217
variables	417
B. R. Guha and B. P. Gyani	223
The thermal and photo chemical oxidation of alcohols by Potassium	
Dichromate Part III. The photo chemical oxidation of ethylene	
glycol V. Srinivasan	22 9
glycol V. Srinivasan Isolation and Investigations on the Alkaloid from the Root of Delphin-	
um denudatum Wall S. P. Tandon and K. P. Tiwari	233
Chemical Examination of the Root of Butea monosperma	
. S. P. Tandon, K. P. Tiwari and V. K. Saxena	237
The confluent Hypergeometric functions of three variables	
Rayleigh's Wave in a Thermoelastic Medium with Sinusoidal Wavy	240
Rayleigh's Wave in a Thermoelastic Medium with Sinusoidal Wavy	
Boundary Subhas Chandra Ghosh	24 9
Effect of sulphur and its compounds on the availability of manga-	07.0
nese in soil . A. N. Pathak, Hari Shanker and R. K. Awasthi	25 9
A New Alkaloid from the Seeds of Erythrina lithosperma	
A Generalised integral transform of two completes and A. P. Gupta	26 3
A Generalised integral transform of two complex variables.	065
A theorem on Varma Transform	265
P. N. Kathie	268

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur
- 8. Prof. S. Ghosh, Allahabad
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Allahabad
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Allahabad
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretars)

Editors

Dr. H. G. Khare, Allahabad (Physical Sciences)

	Page
Oxidation of Lactic Acid by Hexavalent Chromium . K. S. Srivastava	273
Inversion of a Convolution 111111111111111111111111111111111111	279
Kernel . C. Singh Kernel . C. Singh Effect of Nitrogenous Fertilisers on the yield of Paddy and on Soil in	4.0
	281
different regions of west bengal	201
The studies on the distribution of action of aminoacids formed from the photochemical oxidation of atom of aminoacids formed from the photochemical oxidation of	
	289
Separation and Determination of Constituents in some Ternary and	200
Quaternary Mixtures by the King Over Technique Animesh K. Ghose and Arun K. Dey Studies on the Ilkovic Equation with a Dropping Mercury Electrode Sudarshap Lal P.S. Jain and S. N. Srivastava	297
	231
Studies on the likevic Equation with a lal, P. S. Jain and S. N. Srivastava at 45° Sudarshan Lal, P. S. Jain and S. N. Srivastava	304
	309
On Generalized Double Hypergeometric Function . M. A. Pathan	313
On the solution of dual integral equations	313
On Generalized Double Hypergeometric 2. R. K. Saxena On the solution of dual integral equations . R. K. Saxena The use of Bessel function and Jacobi polynomial in the cooling of a	320
heated cylinder	340
The use of Bessel function and Jacobs Polymon S. D. Bajpai heated cylinder On certain integral equations involving Hypergeometric and incom-	202
plete Gamma functions	323
On Distribution and Frequency Functions of Several Variables.	200
On Distribution and Frequency Functions of Several Variables Jamuna Prasad Ambasht A Class of Integral Equations Adsorption of lodide by Soils S. K. De and Suresh K. Srivastava On some integrals involving generalized Legendre's associated func- P. Anandani	329
A Class of Integral Equations	334
Adsorption of lodide by Soils . S. K. De and Suresh K. Srivastava	337
On some integrals involving generalized Legendre's associated func-	0.41
tions and H-functions . P. Anandani	341
On some integrals involving general and a segment of the property of the prope	0.40
A class of integral equations involving confidence in K. C. Rusia. H. Function and Heat Production in a Cylinder O. P. Sharma	349
H. Function and Heat Production in a Cylinder O P. Snarma	355
I'-L-::::/a taahainna ghnilen in iwo ilivuivou buubugitos iva	0.01
	361
On Meijer-Laplace Transform of Two Variables . N. C. Jain	366
On Meijer-Laplace Transform of Two Variables . N. C. Jain On the spiral structure as an explosive phenomenon . S. K. Gurtu	373
a land of the setting as an explosive unchumenum in a land in the court	311
a lateral amplians involving #acodi polynomials IX. C. IXulia	381
Animal thormal banding of Diezoelectric Diates . D. N. Sillia	389
Chemical Examination of the Fat from the Root of Moringa	000
Chemical Examination of the Fat from the Root of Moringa concanensis A. P. Gupta, K. P. Tiwari and S. P. Tandon	393
C Time Devental Problems of Fiert Conduction	331
Algebraic Classification of the Curvature Tensor in General Theory of Relativity D. N. Sharma and S. I. Husain	405
of Relativity D. N. Sharma and S. I. Husain	405
Now modified method for the determination of true density of some	
. K. D. Jain, Alay Kumar Jain and I. G. Sharina	414
Certain mixed boundary value problems of potential theory A. P. Dwivedi	
A. P. Dwivedi	417
Utilization of an alkali soil by the addition of Nag-phana H. (Cactus)	
and Argemone-Mexicana	
. S. K. De, Suresh K. Srivastava and R. S. Srivastava	421
Florence magnetic field in an isotropic space-time	
V. Iyengar and K. Mohan	432
Radial Oscillations of a Particular Magnetic stellar Model	
R. S. Gupta and U. S. Upadhyaya	437
The state of Cadminm with Isogningline	-
A. L. J. Rao and B. K. Pur	442

- 1. Dr. A. C. Chatterji, Lucknow (Chairman)
- 2. Dr. R. K. Saksena, Allahabad.
- 3. Prof. K. Banerjee, Calcutta
- 4. Prof. N. R. Dhar, Allahabad
- 5. Prof. P. L. Srivastava, Allahabad
- 6. Prof. R. N. Tandon, Allahabad
- 7. Prof. P. L. Bhatnagar, Jaipur
- 8. Prof. S. Ghosh, Allahabad
- 9. Prof. R. S. Mishra, Varanasi
- 10. Prof. S. N. Ghosh, Allahabad
- 11. Prof. M. D. L. Srivastava, Allahabad
- 12. Dr. H. D. Srivastava, Allahabad
- 13. Prof. Raj Nath, Varanasi
- 14. Prof. U. S. Srivastava, Allahabad
- 15. Dr. Arun K. Dey, Allahabad
- 16. Prof. Krishnaji, Allahabad
- 17. Prof. P. N. Mehra, Chandigarh
- 18. Prof. S. P. Tandon, Allahabad (Secretari)

Editors

Dr. H. C. Khare, Allahabad (Physical Sciences)

	Page
Application on Jacobi Polynomials to some Nonlinear Oscillations R. M. Garde	445
Photocatalytic synthesis of aminoacids . N. R. Dhar and S. K. Arora	451
Nitrogen Fixation with Nitrogen free Oxide Surfaces	457
Complex Differential Systems and Conditional Stability A. A. Kayande and D. B. Mulay	469
A relation between generalised Kontorovitch-Lebdev transform and Weyl (Fractional) integral (Miss) Asha Pendse	477
An Inversion Formula for H-function Transform . (Miss) Asha Pendse	481
Studies on the effect of various levels of nitrogen at different times of application on the seed yield, oil content and quantity of yellow sarson (B. compestris)	486
Studies on nutrition of Indian cereals—III. The uptake of phosphorus by wheat plants at different growth phases in relation to fertilizer application O. N. Mehrotra, N. S. Sinha and R. D. L. Srivastava	489
On some results involving Generalized Hypergeometric and Gegen- bauer (Ultraspherical) Polynomials	
On some results involving H-functions and associated Legendre Functions	503
Changes in the Physico-chemical properties of a soil on the addition of weeds as a source of organic matter. O. P. Vimal and G. C. Shukla	, 50 8 °.
Influence of Organic matter, Phosphates and Light intensity or Synthesis of amino-acids during carbon nitrogen transformations N. R. Dhar and G. N. Bha	<u> </u>
Some Generating Functions for Jacobi Polynomials . G. K. Goya	533
Photosynthesis of Amino-acids from a mixture of nitrates and glu- cose or nitrates and Citric acids . N. R. Dhar and G. N. Bha	537
On a class of periodic orbits in the restricted problem of three bodies in a three dimensional coordinate system Ram Kishore Choudhry	
The Effect of Mode of Micronutrient Application on Wheat: Yield Uptake of Nitrogen and Phosphorus, and the relationship between	,
Copper, Nitrogen, Zinc and Phosphorus G. C. Shukla and A. R. Bhandar	i 549