Red-Black Trees

From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black
- ◆ In comparison with its associated (2,4) tree, a red-black tree has
 - same logarithmic time performance
 - simpler implementation with a single node type

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
 - Root Property: the root is black
 - External Property: every leaf is black
 - Internal Property: the children of a red node are black
 - Depth Property: all the leaves have the same black depth

Height of a Red-Black Tree

Theorem: A red-black tree storing n entries has height $O(\log n)$

Proof:

- The height of a red-black tree is at most twice the height of its associated (2,4) tree, which is $O(\log n)$
- The search algorithm for a binary search tree is the same as that for a binary search tree
- lacktriangle By the above theorem, searching in a red-black tree takes $O(\log n)$ time

Insertion

- To perform operation put(k, o), we execute the insertion algorithm for binary search trees and color red the newly inserted node z unless it is the root
 - We preserve the root, external, and depth properties
 - If the parent v of z is black, we also preserve the internal property and we are done
 - Else (ν is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Example where the insertion of 4 causes a double red:

Remedying a Double Red

lacktriangle Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is black

- The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement

Case 2: w is red

- The double red corresponds to an overflow
- Recoloring: we perform the equivalent of a split

Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- It is equivalent to restoring the correct replacement of a 4-node

The internal property is restored and the other properties are preserved

Restructuring (cont.)

There are four restructuring configurations depending on whether the double red nodes are left or right children

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- It is equivalent to performing a split on a 5-node
- \bullet The double red violation may propagate to the grandparent u

Analysis of Insertion

Algorithm put(k, o)

- 1. We search for key *k* to locate the insertion node *z*
- 2. We add the new entry (k, o) at node z and color z red
- 3. while doubleRed(z)
 if isBlack(sibling(parent(z)))
 z ← restructure(z)
 return
 else { sibling(parent(z) is red }

 $z \leftarrow recolor(z)$

- Recall that a red-black tree has $O(\log n)$ height
- Step 1 takes O(log n) time because we visit O(log n) nodes
- Step 2 takes O(1) time
- Step 3 takes O(log n) time because we perform
 - $O(\log n)$ recolorings, each taking O(1) time, and
 - at most one restructuring taking O(1) time
- Thus, an insertion in a redblack tree takes $O(\log n)$ time

Deletion

- lacktriangle To perform operation remove(k), we first execute the deletion algorithm for binary search trees
- lacktriangle Let v be the internal node removed, w the external node removed, and r the sibling of w
 - If either v of r was red, we color r black and we are done
 - Else (v and r were both black) we color r **double black**, which is a violation of the internal property requiring a reorganization of the tree
- Example where the deletion of 8 causes a double black:

Red-Black Trees

Remedying a Double Black

The algorithm for remedying a double black node w with sibling y considers three cases

Case 1: y is black and has a red child

 We perform a restructuring, equivalent to a transfer , and we are done

Case 2: y is black and its children are both black

 We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation

Case 3: y is red

- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies
- Deletion in a red-black tree takes $O(\log n)$ time

Red-Black Tree Reorganization

Insertion	sertion remedy double red		
Red-black tree action	(2,4) tree action	result	
restructuring	change of 4-node representation	double red removed	
recoloring	split	double red removed or propagated up	

Deletion	remedy double black	
Red-black tree action	(2,4) tree action	result
restructuring	transfer	double black removed
recoloring	fusion	double black removed or propagated up
adjustment	change of 3-node representation	restructuring or recoloring follows