

HAC RF E-Field GSM 1900 Middle

Date: 2018-10-12

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C

Communication System: DCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ER3DV3 - SN4060;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 2/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.21 V/m; Power Drift = 0.10 dB

Applied MIF = 3.33 dB

RF audio interference level = 28.04 dBV/m

Emission category: M4

Grid 1 M4 28.84 dBV/m	Grid 3 M4 27.8 dBV/m
Grid 4 M4 27.08 dBV/m	Grid 6 M4 27.44 dBV/m
Grid 7 M4 24.49 dBV/m	Grid 9 M4 24.54 dBV/m

0 dB = 28.32 V/m = 29.04 dBV/m

Fig B.5 HAC RF E-Field GSM 1900 Middle

HAC RF E-Field GSM 1900 Low

Date: 2018-10-12

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ER3DV3 - SN4060;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 19.67 V/m; Power Drift = -0.06 dB

Applied MIF = 3.45 dB

RF audio interference level = 28.72 dBV/m

Emission category: M4

Grid 1 M4	Grid 2 M4	Grid 3 M4
29.81 dBV/m	29.84 dBV/m	28.27 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
28.04 dBV/m	28.72 dBV/m	27.91 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
24.68 dBV/m	25.43 dBV/m	25.25 dBV/m

0 dB = 31.06 V/m = 29.84 dBV/m

Fig B.6 HAC RF E-Field GSM 1900 Low

ANNEX C SYSTEM VALIDATION RESULT

E SCAN of Dipole 835 MHz

Date: 2018-10-11

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ER3DV3 - SN4060;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 106.54 V/m; Power Drift = -0.03 dB

Applied MIF = 0.00 dB

RF audio interference level = 40.55 dBV/m

Emission category: M3

Grid 1 M3	Grid 2M3	Grid 3M3
40.39 dBV/m	40.51 dBV/m	40.33 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.93 dBV/m	36.04 dBV/m	35.88 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.34 dBV/m	40.55 dBV/m	40.46 dBV/m

0 dB = 40.55 dBV/m

E SCAN of Dipole 1880 MHz

Date: 2018-10-12

Electronics: DAE4 Sn1555

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ER3DV3 - SN4060;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 93.86 V/m; Power Drift = 0.02 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.45 dBV/m

Emission category: M2

Grid 1M2	Grid 2 M2	Grid 3 M2
39.21 dBV/m	39.45 dBV/m	39.36 dBV/m
Grid 4M2	Grid 5M2	Grid 6M2
37.22 dBV/m	37.36 dBV/m	37.26 dBV/m
Grid 7M2	Grid 8M2	Grid 9 M2
38.78 dBV/m	39.05dBV/m	38.98 dBV/m

0 dB = 39.45 dBV/m

ANNEX D PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL-BJ (Auden)

Certificate No: EF3-4060_Jun18

CALIBRATION CERTIFICATE

Object

EF3DV3 - SN:4060

Calibration procedure(s)

QA CAL-02.v8, QA CAL-25.v6

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date:

June 12, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ER3DV6	SN: 2328	10-Oct-17 (No. ER3-2328_Oct17)	Oct-18
DAE4	SN: 789	2-Aug-17 (No. DAE4-789_Aug17)	Aug-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:

Michael Weber
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: June 12, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EF3-4060_Jun18

Page 1 of 39

No.118Z61763-SEM02 Page 42 of 67

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EF3-4060_Jun18 Page 2 of 39

Probe EF3DV3

SN:4060

Manufactured: Calibrated:

March 13, 2018 June 12, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EF3-4060_Jun18

Page 3 of 39

June 12, 2018 EF3DV3 - SN:4060

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	0.76	0.71	1.33	± 10.1 %
DCP (mV) ^B	95.7	94.8	94.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	178.2	±2.2 %
		Y	0.0	0.0	1.0		166.5	
		Z	0.0	0.0	1.0		136.4	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	37.27	249.6	37.86	6.092	0.115	4.959	0.368	0.148	1.000
Y	36.09	241.8	37.76	8.234	0.000	5.006	0.000	0.039	1.010
Z	34.42	234.1	38.89	6.204	0.000	4.988	0.000	0.063	1.006

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EF3-4060_Jun18

B Numerical linearization parameter: uncertainty not required.
E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EF3DV3 - SN:4060

June 12, 2018

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Certificate No: EF3-4060_Jun18 Page 6 of 39

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EF3-4060_Jun18

Page 7 of 39

Dynamic Range f(E-field) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EF3-4060_Jun18

Page 8 of 39

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EF3-4060_Jun18

Page 9 of 39

No.I18Z61763-SEM02 Page 50 of 67

EF3DV3 - SN:4060

June 12, 2018

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	143.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	335 mm
Probe Body Diameter	12 mm
Tip Length	25 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: EF3-4060_Jun18 Page 10 of 39

No.I18Z61763-SEM02 Page 51 of 67

June 12, 2018 EF3DV3 - SN:4060

Appendix (Additional assessments outside the scope of SCS 0108)

Calibration Parameters for 3-4 GHz

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^X$	0.79	0.75	1.35	± 10.1 %
DCP (mV) ^B	95.7	94.8	94.0	

Calibration Parameters for 5-6 GHz

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^X$	0.86	0.81	1.48	± 10.1 %
DCP (mV) ^B	95.7	94.8	94.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EF3-4060_Jun18 Page 11 of 39

 $^{^{\}rm B}$ Numerical linearization parameter: uncertainty not required. $^{\rm X}$ Calibration procedure for frequencies above 3 GHz is pending accreditation.