

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Blackbird Technologies, Inc.

Dates of Test:

August 23-24, 2012

13900 Lincoln Park Drive, Suite 400

Herndon, VA 20171

Dates of Test:

August 23-24, 2012

Test Report Number:

SAR.20120804

Revision A

FCC ID (Part 25): X6K-PAN-001 FCC ID (Parts 22 & 24): X6K-TEL-001 Model(s): Panther

Contains GlobalStar Module: Comtech Model STM3; FCC ID: UQR-CMDCSTM3
Contains GSM Module: Tellit Model GE865-QUAD; FCC ID: RI7GE865

Test Sample: Engineering Unit Same as Production

ESN: 0-3933

Equipment Type: Wireless Location Device

Classification: Portable Transmitter Next to Body

TX Frequency Range: 824 – 849 MHz, 1850 – 1910 MHz, 1611 – 1619 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 850 MHz – 31.52 dBm, 1900 MHz – 29.06 dBm, 1616 MHz – 19.20 dBm

Conducted

Signal Modulation: GMSK, 8-PSK, BPSK

Antenna Type: Internal
Application Type: Certification
FCC Rule Parts: Part 2, 22, 24, 25

KDB Test Methodology: KDB 447498, KDB941225 D03

Maximum SAR Value: 1.191 W/kg Separation Distance: 0 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, and OET Bulletin 65 Supp. C (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1.	Introduction	3
	SAR Definition [5]	3
2.	SAR Measurement Setup	4
	Robotic System	4
	System Hardware	4
	System Description	4
	E-Field Probe	
3.	Robot Specifications	7
4.	Probe and Dipole Calibration	8
5.		
	SAM Phantom	
	Head & Body Simulating Mixture Characterization	9
	Device Holder	9
6.	ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	.10
	Uncontrolled Environment	
	Controlled Environment	.10
7.	Measurement Uncertainty	.11
8.	System Validation	.12
	Tissue Verification	.12
	Test System Verification	.12
9.		
	Procedures Used To Establish Test Signal	.13
	Device Test Condition	.13
Fi	gure 9.1	.14
10	FCC 3G Measurement Procedures	.15
	10.1 SAR Measurement Conditions for GSM	.15
	SAR Data Summary – 835 MHz Body GPRS 1-Slot	.19
	SAR Data Summary – 1900 MHz Body GPRS 1-Slot	.20
	SAR Data Summary – 1616 MHz Body GlobalStar	.21
10). Test Equipment List	.22
11	. Conclusion	.23
12	References	.24
Αŗ	ppendix A – System Validation Plots and Data	.25
Αŗ	pendix B – SAR Test Data Plots	.36
Αŗ	ppendix C – SAR Test Setup Photos	.90
	ppendix D – Probe Calibration Data Sheets	
Αŗ	ppendix E – Dipole Calibration Data Sheets	107
	ppendix F – Phantom Calibration Data Sheets	

1. Introduction

This measurement report shows compliance of the Blackbird Technologies Model Panther FCC ID (Part 25): X6K-PAN-001 and FCC ID (Parts 22 & 24): X6K-TEL-001 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Blackbird Technologies Model Panther and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) .

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 4mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 4mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is \pm 0.05 mm and the precision of the APREL bottom detection device is \pm 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices ≥ 3 GHz and ≤ 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4[™] Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: Various See Probe Calibration Sheet
Serial Number: Various See Probe Calibration Sheet
Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. The Uni-Phantom is used to conduct body measurements and held to face measurements. The depth of the phantom allows for 15 cm of tissue material to be filled within the phantom. See photos in Appendix C.

Head & Body Simulating Mixture Characterization

Target

Target

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

l	Simulating Tissue					
Ingredients	835 MHz Body	1900 MHz Body	1640 MHz Body			
Mixing Percentage						
Water	52.50	69.91	76.40			
Sugar	45.00	0.00	0.00			
Salt	1.40	0.13	0.02			
HEC	1.00	0.00	0.00			

0.10

0.00

55.20

0.97

Table 5.1 Typical Composition of Ingredients for Tissue

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

0.00

29.96

53.30

1.52

Bactericide

Dielectric Constant

Conductivity (S/m)

DGBF

0.00

23.58

53.77

1.41

6. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertai nty (10- g) %	Vi
Measurement System								
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	∞
Axial Isotropy	3.7	rectangular	√3	0.7	0.7	1.5	1.5	∞
Hemispherical	10.9	rectangular	√3	0.7	0.7	4.4	4.4	∞
Isotropy								
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	∞
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	∞
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	∞
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0	∞
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7	00
Probe Positioner	0.4	rectangular	√3	1	1	0.2	0.2	∞
Mech. Restriction	0.1	1000anguiai	1.0	-	1	**-	0.2	
Probe Positioning	2.9	rectangular	√3	1	1	1.7	1.7	00
with respect to								
Phantom Shell								
Extrapolation and	3.7	rectangular	√3	1	1	2.1	2.1	∞
Integration								
Test Sample	4.0	normal	1	1	1	4.0	4.0	7
Positioning								
Device Holder	2.0	normal	1	1	1	2.0	2.0	2
Uncertainty								
Drift of Output	5.0	rectangular	√3	1	1	2.5	2.5	∞
Power								
Phantom and Setup								
Phantom	3.4	rectangular	√3	1	1	2.0	2.0	∞
Uncertainty(shape &								
thickness tolerance)								
Liquid	5.0	rectangular	√3	0.7	0.5	2.0	1.4	∞
Conductivity(target)								
Liquid	0.5	normal	1	0.7	0.5	0.4	0.3	5
Conductivity(meas.)								
Liquid	5.0	rectangular	√3	0.6	0.5	1.7	1.4	∞
Permittivity(target)								
Liquid	1.0	normal	1	0.6	0.5	0.6	0.5	5
Permittivity(meas.)								
Combined Uncertainty		RSS				9.7	9.3	>500
Combined Uncertainty		Normal(k=2)				19.2	18.9	>500
(coverage factor=2)		, ,				1		

8. System Validation

Tissue Verification

Table 8.1 Measured Tissue Parameters

Table 0.1 Measured Tissue Latameters							
		835 MHz Body		1900 MHz Body		1640 MHz Body	
Date(s)		Aug. 24, 2012		Aug. 23, 2012		Aug. 23, 2012	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		55.20	55.80	53.30	52.24	53.77	53.24
Conductivity: σ		0.97	0.94	1.52	1.53	1.41	1.45

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 8.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)	
24-Aug-2012	835 MHz	9.81	10.04	Body	+ 2.34	
23-Aug-2012	1900 MHz	40.9	41.16	Body	+ 0.64	
23-Aug-2012	1640 MHz	34.201	34.81	Body	+ 1.78	

See Appendix A for data plots.

Figure 8.1 Dipole Validation Test Setup

Note: KDB 450824 was applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

9. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The testing was conducted on all edges. All further test reductions are shown on pages 17-18 for GSM/WCDMA bands. All testing was conducted per KDB 447498. See the photo in Appendix C for a pictorial of the setups and labeling of the sides tested.

This device is capable of operating in 850/1900 GPRS frequency bands. In GPRS mode, the device is in Class 4 for 850 MHz and Class 1 for 1900 MHz. The testing was conducted in the GPRS mode. The GPRS mode has 1-slot, 2-slot, 3-slot and 4-slot configurations. The power measured is peak power. The average power in all GPRS Slots is relatively equal. Therefore, the testing was conducted in 1-Slot. Therefore, the device was only tested in the highest power configuration which was 1-slot GPRS.

Figure 9.1 SAR Location Diagram of Testing

10. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

10.1 SAR Measurement Conditions for GSM

Configure the 8960 box to support GMSK and 8PSK call respectively, and set one timeslot and two timeslot transmission for GMSK GSM/GPRS and 8PSK EDGE. Measure and record power outputs for both modulations.

Band	Channel	Frequency (MHz)	Conducted Power (dBm) Main
	0	1611.25	18.8
ClobalStar	1	1613.75	19.0
GlobalStar	2	1616.25	19.1
	3	1618.75	19.2

Conducted Average Power Measurements

GPRS-GMSK/1 slot						
Band	Channel	Peak Power	Frame Average			
Collular	128	31.44	22.41			
Cellular	190	31.52	22.49			
	251	31.48	22.45			
	512	29.01	19.98			
PCS	661	29.06	20.03			
	810	28.92	19.89			

GPRS-GMSK/2 slot					
Band	Channel	Peak Power	Frame Average		
	128	28.36	22.34		
Cellular	190	28.41	22.39		
	251	28.32	22.30		
	512	25.94	19.92		
PCS	661	25.97	19.95		
	810	25.88	19.86		

GPRS-GMSK/3 slot						
Band	Channel	Peak Power	Frame Average			
	128	26.52	22.26			
Cellular	190	26.64	22.38			
	251	26.50	22.24			
	512	24.16	19.90			
PCS	661	24.19	19.93			
	810	24.03	19.77			

GPRS-GMSK/4 slot						
Band	Channel	Peak Power	Frame Average			
	128	25.39	22.38			
Cellular	190	25.48	22.47			
	251	25.36	22.35			
	512	22.98	19.97			
PCS	661	23.02	20.01			
	810	22.91	19.90			

Figure 10.1.1 Test Reduction Table – 3G

Band/	Technology	Side	Required	Tested/
Frequency (MHz)	reciliology	Side	Channel	Reduced
i requericy (Wiriz)			128	Tested
		Α	190	Tested
			251	Tested
			128	Tested
		В	190	Tested
			251	Tested
			128	Reduced ¹
		С	190	Tested
Band 5		C	251	
824-849 MHz				Reduced ¹
024-049 IVITIZ		_	128	Reduced ¹
		D	190	Tested
			251	Reduced ¹
		_	128	Tested
		Е	190	Tested
			251	Tested
		F A	128	Reduced ¹
			190	Tested
	GSM		251	Reduced ¹
			512	Reduced ¹
			661	Tested
			810	Reduced ¹
		В	512	Reduced ¹
			661	Tested
			810	Reduced ¹
			512	Reduced ¹
		С	661	Tested
Band 2			810	Reduced
1850-1910 MHz			512	Reduced ¹
		D	661	Tested
			810	Reduced ¹
			512	Reduced ¹
		E	661	Tested
			810	Reduced ¹
			512	Reduced ¹
		F	661	Tested
			810	Reduced ¹

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 section 1) e) i) page 2.

Figure 10.1.2 Test Reduction Table - GlobalStar

Band/ Frequency (MHz)	Technology	Side	Required Channel	Tested/ Reduced							
		Α	0	Tested							
		Α	3	Tested							
		В	0	Reduced ¹							
	BPSK	В	3	Tested							
		С	0	Reduced ¹							
GlobalStar		BPSK	BPSK	BPSK	BPSK	BPSK	BPSK	BPSK	C	3	Tested
1611.25-1618.75 MHz									D	0	Reduced ¹
		D	3	Tested							
		Е	0	Reduced ¹							
		_	3	Tested							
		F	0	Reduced ¹							
			г	3	Tested						

Reduced¹ – When the highest conducted power channel is 3 dB below the limit, the remaining channel is not required per KDB 447498 section 1) e) i) page 2.

SAR Data Summary – 835 MHz Body GPRS 1-Slot

MEASUREMENT RESULTS								
Plot	Gap to	Gap to Position Frequency Modulation		Antenna	End Power	SAR (W/kg)		
1 100	Notebook	1 OSITION	MHz	Ch.	Modulation	Antonna	(dBm)	OAR (W/Rg)
1			824.2	128	GMSK	Main	31.44	1.163
2		Side A	836.6	190	GMSK	Main	31.52	1.134
3			848.8	251	GMSK	Main	31.48	1.068
4			824.2	128	GMSK	Main	31.44	1.191
5		Side B	836.6	190	GMSK	Main	31.52	1.191
6	0 mm		848.8	251	GMSK	Main	31.48	1.045
7	O IIIIII	Side C	836.6	190	GMSK	Main	31.52	0.719
8		Side D	836.6	190	GMSK	Main	31.52	0.305
9			824.2	128	GMSK	Main	31.44	1.053
10		Side E	836.6	190	GMSK	Main	31.52	1.092
11			848.8	251	GMSK	Main	31.48	0.967
12		Side F	836.6	190	GMSK	Main	31.52	0.186

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sin	
4.	Test Configuration	☐With Belt Clip	Without Belt Cl	ip N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: SAR Tested on the mid channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e) page 2. The testing was conducted on all sides of the device. All testing was conducted per KDB 447498, 941225 D03 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

SAR Data Summary – 1900 MHz Body GPRS 1-Slot

MEASUREMENT RESULTS								
Plot	Gap to	Position	Frequency Modulation Antenn		Antenna	End Power	SAR (W/kg)	
1 100	Notebook	1 03111011	MHz	Ch.	Modulation	7111011110	(dBm)	OAR (W/Rg)
13		Side A	1880	661	GMSK	Main	29.06	0.633
14		Side B	1880	661	GMSK	Main	29.06	0.411
15	0 mm	Side C	1880	661	GMSK	Main	29.06	0.382
16	O IIIIII	Side D	1880	661	GMSK	Main	29.06	0.318
17		Side E	1880	661	GMSK	Main	29.06	0.394
18		Side F	1880	661	GMSK	Main	29.06	0.198

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	\boxtimes Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sin	nulator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Cli	ip N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: SAR Tested on the mid channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e) page 2. The testing was conducted on all sides of the device. All testing was conducted per KDB 447498, 941225 D03 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

SAR Data Summary – 1616 MHz Body GlobalStar

MEASUREMENT RESULTS								
Plot	Gap to	Positio	Freque	ency	Modulation Anto	Antenna	End Power	SAR (W/kg)
	Notebook	n	MHz	Ch.		, antonna	(dBm)	OAR (Wing)
19		Side A	1611.25	0	BPSK	Main	18.8	0.935
20		Side A	1618.75	3	BPSK	Main	19.2	1.049
21		Side B	1618.75	3	BPSK	Main	19.2	0.133
22	0 mm	Side C	1618.75	3	BPSK	Main	19.2	0.393
23		Side D	1618.75	3	BPSK	Main	19.2	0.219
24		Side E	1618.75	3	BPSK	Main	19.2	0.366
25		Side F	1618.75	3	BPSK	Main	19.2	0.143

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured	⊠Conducted	□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	\boxtimes Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sim	ulator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	o ⊠N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: SAR Tested on the highest power channel. When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e) page 2. The testing was conducted on all sides of the device. All testing was conducted per KDB 447498, 941225 D03 and OET Bulletin 65. See the photo in Appendix C and diagram on page 14 for a pictorial of the setup and labeling of the test locations.

10. Test Equipment List

Table 10.1 Equipment Specifications

Type	Calibration Due Date	Calibration Done Date	Serial Number
ThermoCRS Robot	N/A	N/A	RAF0338198
ThermoCRS Controller	N/A	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	09/07/2012	09/07/2011	RFE-217
Aprel UniPhantom	N/A	N/A	RFE-273
Aprel Validation Dipole ALS-D-835-S-2 Body	11/16/2012	11/16/2010	180-00561
Aprel Validation Dipole ALS-D-1900-S-2 Body	11/16/2012	11/16/2010	210-00713
Aprel Validation Dipole ALS-D-1640-S-2 Body	02/23/2013	02/23/2010	207-001-01
Agilent N1911A Power Meter	03/30/2012	03/30/2011	GB45100254
Agilent N1922A Power Sensor	03/30/2012	03/30/2011	MY45240464
Advantest R3261A Spectrum Analyzer	03/30/2012	03/30/2011	31720068
Agilent (HP) 8350B Signal Generator	03/31/2012	03/31/2011	2749A10226
Agilent (HP) 83525A RF Plug-In	03/31/2012	03/31/2011	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/30/2012	03/30/2011	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/31/2012	03/31/2011	2904A00595
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1640 MHz)	N/A	N/A	N/A

11. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

12. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

Test Result for UIM Dielectric Parameter Fri 24/Aug/2012 05:55:08 Freq Frequency (GHz) FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM *************
 Freq
 FCC_eB
 FCC_sB
 Test_e
 Test_s

 0.8050
 55.32
 0.97
 55.91
 0.90

 0.8150
 55.28
 0.97
 55.90
 0.90

 0.8150
 55.28
 0.97
 55.90
 0.90

 0.8242
 55.24
 0.97
 55.83
 0.93*

 0.8250
 55.24
 0.97
 55.83
 0.93

 0.8350
 55.20
 0.97
 55.80
 0.94

 0.8366
 55.20
 0.97
 55.79
 0.94*

 0.8450
 55.20
 0.97
 55.79
 0.94*

 0.8450 55.17 0.98 55.72 0.97 0.8488 55.16 0.98 55.71 0.97*

 0.8550
 55.14
 0.99
 55.70
 0.98

 0.8650
 55.11
 1.01
 55.61
 1.00

Test Result for UIM Dielectric Parameter

Thu 23/Aug/2012 04:03:13

Freq Frequency (GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	****	
Freq	FCC eB	FCC sB	Test e	Test s	
1.8400	53.30	$1.5\overline{2}$	52.34	1.50	
1.8500	53.30	1.52	52.32	1.50	
1.8502	53.30	1.52	52.32	1.50*	
1.8600	53.30	1.52	52.30	1.51	
1.8700	53.30	1.52	52.29	1.52	
1.8800	53.30	1.52	52.27	1.52	
1.8900	53.30	1.52	52.25	1.52	
1.9000	53.30	1.52	52.24	1.53	
1.9098	53.30	1.52	52.23	1.54*	
1.9100	53.30	1.52	52.23	1.54	
1.9200	53.30	1.52	52.21	1.56	

^{*} value interpolated

^{*} value interpolated

FCC ID: X6K-PAN-001 & X6K-TEL-001

******	*****	*****	******	*****
Test Result	for UIM Die	electric Para	ameter	
Thu 23/Aug/	′2012 10:46:2	29		
Freq Frequ	iency(GHz)			
FCC_eH	FCC Bulleti	in 65 Supplem	nent C (June	e 2001) Limits for Head Epsilon
FCC_sH	FCC Bulleti	in 65 Supplem	ment C (June	2001) Limits for Head Sigma
FCC_eB	FCC Limits	for Body Eps	silon	
FCC_sB	FCC Limits	for Body Sig	gma	
Test_e	Epsilon of	UIM		
_	Sigma of Ul			
*******	******	******	******	*****
-	_	FCC_sB	_	_
		1.40		
1.6113			53.61	
		1.41		
		1.41		
		1.41		
		1.42		1.45
1.6500	53.69	1.43	53.58	1.46
1.6600	53.67		53.56	
1.6700	53.64	1.44	53.52	1.48

^{*} value interpolated

SAR Test Report

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 06:10:41 AM End Time : 24-Aug-2012 06:25:52 AM Scanning Time : 911 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 835

Type : Dipole

Model : ALS-D-835-S-2

Frequency : 835.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 161 mm
Width : 3.6 mm
Depth : 89.8 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 1.216 W/kg Power Drift-Finish: 1.178 W/kg Power Drift (%) : -3.128

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.80 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 9:21:48 AM

Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 15 mm Channel : Mid

1 gram SAR value : 1.004 W/kg 10 gram SAR value : 0.633 W/kg Area Scan Peak SAR : 1.218 W/kg Zoom Scan Peak SAR : 1.561 W/kg

SAR-Z Axis

at Hotspot x:0.25 y:-0.20

SAR Test Report

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 04:10:07 PM End Time : 23-Aug-2012 04:24:31 PM Scanning Time : 864 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 1900
Type : Dipole
Model : ALS-D-1900-S-2
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 68 mm
Width : 3.6 mm
Depth : 39.5 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 5.498 W/kg Power Drift-Finish: 5.349 W/kg Power Drift (%) : -2.719

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 21.00 °C Ambient Temp. : 24.00 °C

Humidity : 42.00 RH%

Epsilon : 52.24 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor : 1

: Complete Scan Type Scan Type : Complete
Tissue Temp. : 21.00 °C
Ambient Temp. : 24.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 12:22:20 PM
Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 10 mm Channel : Mid

1 gram SAR value : 4.116 W/kg 10 gram SAR value : 2.131 W/kg Area Scan Peak SAR: 5.356 W/kg Zoom Scan Peak SAR: 8.357 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 10:56:30 AM End Time : 23-Aug-2012 11:09:59 AM Scanning Time : 809 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 1640
Type : Dipole
Model : ALS-D-1640-S-2
Frequency : 1640.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 80.4 mm
Width : 3.6 mm
Depth : 45.7 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 4.433 W/kg Power Drift-Finish: 4.485 W/kg Power Drift (%) : 1.176

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1640
Frequency : 1640.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 53.52 F/m

Sigma : 1.45 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor : 1

Crest Factor : 1

Scan Type : Complete

Tissue Temp. : 20.00 °C

Ambient Temp. : 23.00 °C

Set-up Date : 23-Aug-2012

Set-up Time : 7:04:12 AM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 10 mm Channel : Mid

1 gram SAR value : 3.481 W/kg 10 gram SAR value : 1.799 W/kg Area Scan Peak SAR: 4.069 W/kg Zoom Scan Peak SAR: 7.026 W/kg

SAR-Z Axis

Appendix B – SAR Test Data Plots

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 07:15:07 AM End Time : 24-Aug-2012 07:42:39 AM Scanning Time : 1652 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 824.20 MHz Max. Transmit Pwr : 1.39 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side A Power Drift-Start : 0.693 W/kg Power Drift-Finish: 0.702 W/kg

Power Drift (%) : 1.235

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 824
Frequency : 824.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.83 F/m

Sigma : 0.93 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Low

1 gram SAR value : 1.163 W/kg 10 gram SAR value : 0.743 W/kg Area Scan Peak SAR : 1.276 W/kg Zoom Scan Peak SAR : 1.691 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 06:46:08 AM End Time : 24-Aug-2012 07:13:53 AM Scanning Time : 1665 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 836.60 MHz Max. Transmit Pwr : 1.42 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side A Power Drift-Start : 0.694 W/kg Power Drift-Finish: 0.694 W/kg

Power Drift (%) : 0.200

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 836
Frequency : 836.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.79 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 1.134 W/kg 10 gram SAR value : 0.726 W/kg Area Scan Peak SAR : 1.267 W/kg Zoom Scan Peak SAR : 1.681 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 07:43:37 AM End Time : 24-Aug-2012 08:11:08 AM Scanning Time : 1651 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 848.80 MHz Max. Transmit Pwr : 1.41 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side A Power Drift-Start : 0.632 W/kg Power Drift-Finish: 0.633 W/kg

Power Drift (%) : 0.180

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 848
Frequency : 848.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.71 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : High

1 gram SAR value : 1.068 W/kg 10 gram SAR value : 0.694 W/kg Area Scan Peak SAR : 1.099 W/kg Zoom Scan Peak SAR : 1.551 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 08:44:43 AM End Time : 24-Aug-2012 09:12:42 AM Scanning Time : 1679 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 824.20 MHz Max. Transmit Pwr : 1.39 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side B Power Drift-Start : 0.843 W/kg Power Drift-Finish: 0.844 W/kg

Power Drift (%) : 0.202

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 824
Frequency : 824.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.83 F/m

Sigma : 0.93 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Low

1 gram SAR value : 1.191 W/kg 10 gram SAR value : 0.772 W/kg Area Scan Peak SAR : 1.289 W/kg Zoom Scan Peak SAR : 1.701 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 08:15:46 AM End Time : 24-Aug-2012 08:43:16 AM Scanning Time : 1650 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 836.60 MHz Max. Transmit Pwr : 1.42 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side B Power Drift-Start : 0.850 W/kg Power Drift-Finish: 0.828 W/kg Power Drift (%) : -2.607

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 836
Frequency : 836.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.79 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 1.191 W/kg 10 gram SAR value : 0.766 W/kg Area Scan Peak SAR : 1.308 W/kg Zoom Scan Peak SAR : 1.671 W/kg

FCC ID: X6K-PAN-001 & X6K-TEL-001

SAR-Z Axis

at Hotspot x:15.11 y:7.05

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 09:14:13 AM End Time : 24-Aug-2012 09:41:46 AM Scanning Time : 1653 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 848.80 MHz Max. Transmit Pwr : 1.41 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side B Power Drift-Start : 0.758 W/kg Power Drift-Finish: 0.768 W/kg

Power Drift (%) : 1.238

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 848
Frequency : 848.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.71 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : High

1 gram SAR value : 1.045 W/kg 10 gram SAR value : 0.681 W/kg Area Scan Peak SAR : 1.157 W/kg Zoom Scan Peak SAR : 1.491 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 09:56:15 AM End Time : 24-Aug-2012 10:19:41 AM Scanning Time : 1406 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 836.60 MHz Max. Transmit Pwr : 1.42 W Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side C Power Drift-Start : 0.706 W/kg Power Drift-Finish: 0.689 W/kg Power Drift (%) : -2.322

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 836
Frequency : 836.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.79 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side C Separation : 0 mm Channel : Mid

1 gram SAR value : 0.719 W/kg 10 gram SAR value : 0.467 W/kg Area Scan Peak SAR : 0.720 W/kg Zoom Scan Peak SAR : 1.080 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 11:55:23 AM End Time : 24-Aug-2012 12:18:25 PM Scanning Time : 1382 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 836.60 MHz Max. Transmit Pwr : 1.42 W Drift Time : 0 min(s)
Length : 30 mm
Width : 60 mm
Depth : 96 mm
Antenna Type : Internal
Orientation : Side D Power Drift-Start : 0.287 W/kg Power Drift-Finish: 0.291 W/kg

Power Drift (%) : 1.462

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 836
Frequency : 836.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.79 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.305 W/kg 10 gram SAR value : 0.183 W/kg Area Scan Peak SAR : 0.300 W/kg Zoom Scan Peak SAR : 0.550 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 10:45:51 AM End Time : 24-Aug-2012 11:09:25 AM Scanning Time : 1414 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 824.20 MHz Max. Transmit Pwr : 1.39 W Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side E Power Drift-Start : 0.980 W/kg Power Drift-Finish: 0.989 W/kg

Power Drift (%) : 0.850

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 824
Frequency : 824.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.83 F/m

Sigma : 0.93 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side E
Separation : 0 mm
Channel : Low

1 gram SAR value : 1.053 W/kg
10 gram SAR value : 0.666 W/kg
Area Scan Peak SAR : 1.039 W/kg
Zoom Scan Peak SAR : 1.581 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 10:21:03 AM End Time : 24-Aug-2012 10:44:29 AM Scanning Time : 1406 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 836.60 MHz Max. Transmit Pwr : 1.42 W Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side E Power Drift-Start : 1.004 W/kg Power Drift-Finish: 1.005 W/kg

Power Drift (%) : 0.081

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 836
Frequency : 836.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.79 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side E Separation : 0 mm Channel : Mid

1 gram SAR value : 1.092 W/kg
10 gram SAR value : 0.683 W/kg
Area Scan Peak SAR : 1.054 W/kg
Zoom Scan Peak SAR : 1.671 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 11:20:11 AM End Time : 24-Aug-2012 11:43:43 AM Scanning Time : 1412 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 848.80 MHz Max. Transmit Pwr : 1.41 W Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side E Power Drift-Start : 0.910 W/kg Power Drift-Finish: 0.911 W/kg

Power Drift (%) : 0.064

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 848
Frequency : 848.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.71 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side E
Separation : 0 mm
Channel : High

1 gram SAR value : 0.967 W/kg 10 gram SAR value : 0.613 W/kg Area Scan Peak SAR : 0.951 W/kg Zoom Scan Peak SAR : 1.451 W/kg

By Operator : Jay

Measurement Date : 24-Aug-2012

Starting Time : 24-Aug-2012 12:19:58 PM End Time : 24-Aug-2012 12:53:07 PM Scanning Time : 1989 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 836.60 MHz Max. Transmit Pwr : 1.42 W Drift Time : 0 min(s)
Length : 30 mm
Width : 60 mm
Depth : 96 mm
Antenna Type : Internal
Orientation : Side F Power Drift-Start : 0.130 W/kg Power Drift-Finish: 0.128 W/kg

Power Drift (%) : -1.699

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 836
Frequency : 836.00 MHz
Last Calib. Date : 24-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.79 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Aug-2012
Set-up Time : 6:43:06 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side F
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.186 W/kg
10 gram SAR value : 0.121 W/kg
Area Scan Peak SAR : 0.191 W/kg
Zoom Scan Peak SAR : 0.310 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 04:35:43 PM End Time : 23-Aug-2012 05:01:13 PM Scanning Time : 1530 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 1880.00 MHz Max. Transmit Pwr : 0.82 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side A

Power Drift-Start : 0.215 W/kg Power Drift-Finish: 0.208 W/kg

Power Drift (%) : -3.256

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1880
Frequency : 1880.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.27 F/m

Sigma : 1.52 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 4:35:51 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.633 W/kg 10 gram SAR value : 0.383 W/kg Area Scan Peak SAR : 0.662 W/kg Zoom Scan Peak SAR : 1.080 W/kg

FCC ID: X6K-PAN-001 & X6K-TEL-001

SAR-Z Axis

at Hotspot x:22.20 y:22.06

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 05:12:19 PM End Time : 23-Aug-2012 05:48:31 PM Scanning Time : 2172 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 1880.00 MHz Max. Transmit Pwr : 0.82 W

Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side B Power Drift-Start : 0.155 W/kg Power Drift-Finish: 0.161 W/kg

Power Drift (%) : 4.274

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1880
Frequency : 1880.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.27 F/m

Sigma : 1.52 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 4:35:51 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.411 W/kg 10 gram SAR value : 0.265 W/kg Area Scan Peak SAR : 0.408 W/kg Zoom Scan Peak SAR : 0.650 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 05:52:58 PM End Time : 23-Aug-2012 06:14:36 PM Scanning Time : 1298 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 1880.00 MHz Max. Transmit Pwr : 0.82 W

Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side C Power Drift-Start : 0.234 W/kg Power Drift-Finish: 0.240 W/kg

Power Drift (%) : 2.198

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1880
Frequency : 1880.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.27 F/m

Sigma : 1.52 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 4:35:51 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side C Separation : 0 mm Channel : Mid

1 gram SAR value : 0.382 W/kg 10 gram SAR value : 0.245 W/kg Area Scan Peak SAR : 0.435 W/kg Zoom Scan Peak SAR : 0.620 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 06:54:26 PM End Time : 23-Aug-2012 07:35:12 PM Scanning Time : 2446 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 1880.00 MHz Max. Transmit Pwr : 0.82 W

Drift Time : 0 min(s)
Length : 30 mm
Width : 60 mm
Depth : 96 mm
Antenna Type : Internal
Orientation : Side D Power Drift-Start : 0.196 W/kg Power Drift-Finish: 0.196 W/kg

Power Drift (%) : 0.112

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1880
Frequency : 1880.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.27 F/m

Sigma : 1.52 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 4:35:51 PM

Area Scan : $5 \times 9 \times 1$: Measurement x=15mm, y=15mm, z=4mm Zoom Scan : $5 \times 5 \times 8$: Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.318 W/kg 10 gram SAR value : 0.197 W/kg Area Scan Peak SAR : 0.351 W/kg Zoom Scan Peak SAR : 0.610 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 06:20:58 PM End Time : 23-Aug-2012 06:48:01 PM Scanning Time : 1923 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 1880.00 MHz Max. Transmit Pwr : 0.82 W

Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side E Power Drift-Start : 0.277 W/kg Power Drift-Finish: 0.284 W/kg

Power Drift (%) : 2.480

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1880
Frequency : 1880.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.27 F/m

Sigma : 1.52 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 4:35:51 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side E
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.394 W/kg 10 gram SAR value : 0.246 W/kg Area Scan Peak SAR : 0.421 W/kg Zoom Scan Peak SAR : 0.600 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 07:41:23 PM End Time : 23-Aug-2012 08:02:34 PM Scanning Time : 1271 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GPRS 1-Slot

Model : Panther

Frequency : 1880.00 MHz Max. Transmit Pwr : 0.82 W

Drift Time : 0 min(s)
Length : 30 mm
Width : 60 mm
Depth : 96 mm
Antenna Type : Internal
Orientation : Side F Power Drift-Start : 0.187 W/kg Power Drift-Finish: 0.187 W/kg

Power Drift (%) : -0.427

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1880
Frequency : 1880.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.27 F/m

Sigma : 1.52 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1900.00 MHz

Duty Cycle Factor: 8.3 Conversion Factor: 4.8

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Measurement Data

Crest Factor : 8.3

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 4:35:51 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side F Separation : 0 mm Channel : Mid

1 gram SAR value : 0.198 W/kg 10 gram SAR value : 0.151 W/kg Area Scan Peak SAR : 0.219 W/kg Zoom Scan Peak SAR : 0.300 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 02:38:48 PM End Time : 23-Aug-2012 02:58:46 PM Scanning Time : 1198 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1611.25 MHz Max. Transmit Pwr : 0.076 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side A Power Drift-Start : 0.349 W/kg Power Drift-Finish: 0.333 W/kg Power Drift (%) : -4.546

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1611
Frequency : 1611.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.61 F/m

Sigma : 1.42 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Low

1 gram SAR value : 0.935 W/kg 10 gram SAR value : 0.568 W/kg Area Scan Peak SAR : 1.012 W/kg Zoom Scan Peak SAR : 1.251 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 11:29:05 AM End Time : 23-Aug-2012 11:49:26 AM Scanning Time : 1221 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1618.75 MHz Max. Transmit Pwr : 0.083 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side A Power Drift-Start : 0.382 W/kg Power Drift-Finish: 0.371 W/kg Power Drift (%) : -2.873

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1618
Frequency : 1618.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.58 F/m

Sigma : 1.43 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : High

1 gram SAR value : 1.049 W/kg 10 gram SAR value : 0.654 W/kg Area Scan Peak SAR : 1.252 W/kg Zoom Scan Peak SAR : 1.481 W/kg

FCC ID: X6K-PAN-001 & X6K-TEL-001

SAR-Z Axis

at Hotspot x:15.18 y:8.06

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 11:53:06 AM End Time : 23-Aug-2012 12:23:12 PM Scanning Time : 1806 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1618.75 MHz Max. Transmit Pwr : 0.083 W Drift Time : 0 min(s)
Length : 60 mm
Width : 96 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Side B Power Drift-Start : 0.076 W/kg Power Drift-Finish: 0.076 W/kg

Power Drift (%) : 0.108

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1618
Frequency : 1618.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.58 F/m

Sigma : 1.43 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : High

1 gram SAR value : 0.133 W/kg 10 gram SAR value : 0.110 W/kg Area Scan Peak SAR : 0.137 W/kg Zoom Scan Peak SAR : 0.180 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 12:35:40 PM End Time : 23-Aug-2012 12:55:32 PM Scanning Time : 1192 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1618.75 MHz Max. Transmit Pwr : 0.083 W Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side C Power Drift-Start : 0.163 W/kg Power Drift-Finish: 0.168 W/kg

Power Drift (%) : 3.060

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1618
Frequency : 1618.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.58 F/m

Sigma : 1.43 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side C Separation : 0 mm Channel : High

1 gram SAR value : 0.393 W/kg 10 gram SAR value : 0.266 W/kg Area Scan Peak SAR : 0.400 W/kg Zoom Scan Peak SAR : 0.590 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 01:32:38 PM End Time : 23-Aug-2012 02:02:39 PM Scanning Time : 1801 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1618.75 MHz Max. Transmit Pwr : 0.083 W Drift Time : 0 min(s)
Length : 30 mm
Width : 60 mm
Depth : 96 mm
Antenna Type : Internal
Orientation : Side D Power Drift-Start : 0.193 W/kg Power Drift-Finish: 0.189 W/kg

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Power Drift (%) : -2.128

Tissue Data
Type : BODY
Serial No. : 1618
Frequency : 1618.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.58 F/m

Sigma : 1.43 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : High

1 gram SAR value : 0.219 W/kg 10 gram SAR value : 0.165 W/kg Area Scan Peak SAR : 0.228 W/kg Zoom Scan Peak SAR : 0.320 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 01:00:53 PM End Time : 23-Aug-2012 01:20:44 PM Scanning Time : 1191 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1618.75 MHz Max. Transmit Pwr : 0.083 W Drift Time : 0 min(s)
Length : 30 mm
Width : 96 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side E Power Drift-Start : 0.287 W/kg Power Drift-Finish: 0.294 W/kg

Power Drift (%) : 2.438

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1618
Frequency : 1618.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.58 F/m

Sigma : 1.43 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side E
Separation : 0 mm
Channel : High

1 gram SAR value : 0.366 W/kg 10 gram SAR value : 0.239 W/kg Area Scan Peak SAR : 0.409 W/kg Zoom Scan Peak SAR : 0.540 W/kg

By Operator : Jay

Measurement Date : 23-Aug-2012

Starting Time : 23-Aug-2012 02:13:57 PM End Time : 23-Aug-2012 02:33:52 PM Scanning Time : 1195 secs

Product Data

Device Name : Blackbird Technologies

Serial No. : 0-3933

Mode : GlobalStar

Model : Panther

Frequency : 1618.75 MHz Max. Transmit Pwr : 0.083 W Drift Time : 0 min(s)
Length : 30 mm
Width : 60 mm
Depth : 96 mm
Antenna Type : Internal
Orientation : Side F Power Drift-Start : 0.104 W/kg Power Drift-Finish: 0.105 W/kg

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Power Drift (%) : 0.965

Tissue Data
Type : BODY
Serial No. : 1618
Frequency : 1618.00 MHz
Last Calib. Date : 23-Aug-2012 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 43.00 RH%

Epsilon : 53.58 F/m

Sigma : 1.43 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 1640.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Aug-2012
Set-up Time : 7:45:00 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side F Separation : 0 mm Channel : High

1 gram SAR value : 0.143 W/kg 10 gram SAR value : 0.119 W/kg Area Scan Peak SAR : 0.153 W/kg Zoom Scan Peak SAR : 0.200 W/kg

Appendix C – SAR Test Setup Photos

System Body Configuration

Body Tissue Depth

Test Position Side A 0 mm Gap

Test Position Side B 0 mm Gap

Test Position Side C 0 mm Gap

Test Position Side D 0 mm Gap

Test Position Side E 0 mm Gap

Test Position Side F 0 mm Gap

Front of Device

Back of Device

Battery

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: PC1333-1350

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe Record of Calibration

Head and Body

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole

Project No: RFEL-PC-5620

Calibrated: 7th September 2011 Released on: 7th September 2011

Approved By: Stuart Nicol

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

303 Terry Fox Drive, Suite 102 Kanata, Ontario CANADA K2K 3J1 Division of APREL TEL: (613) 435-8300 FAX: (613) 435-8306 Division of APREL Inc.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Calibration Method

Probes are calibrated using the following methods.

<1000MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

>1000MHz

Waveguide* method to determine sensitivity in air and tissue

*Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

References

- IEEE Standard 1528 (2003) including Amendment 1
 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- o EN 62209-1 (2006)
 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- o IEC 62209-2 Ed. 1.0 (2010-03)
 - Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz 6 GHz)
- o TP-D01-032-E020-V2 E-Field probe calibration procedure
- o D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes,
 Excluding Antennas, from 9kHz to 40GHz

NCL Calibration Laboratories

Division of APREL Inc.

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 1.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 1.5 \,^{\circ}\text{C}$

Relative Humidity: < 60%

Primary Measurement Standards

Instrument	Serial Number	Cal date
Power meter Anritsu MA2408A	90025437	Nov.4, 2010
Power Sensor Anritsu MA2481D	103555	Nov 4, 2010
Attenuator HP 8495A (70dB)	1944A10711	Sept. 14, 2010
Network Analyzer Anritsu MT8801C	MB11855	Feb. 8, 2011

Secondary Measurement Standards

Signal Generator Agilent E4438C -506 MY55182336 June 7, 2011

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

NCL Calibration Laboratories

Division of APREL Inc.

Probe Summary

Probe Type: E-Field Probe E020

Serial Number: 217

Frequency: 750MHz

Sensor Offset: 1.56

Sensor Length: 2.5

Tip Enclosure: Composite*

Tip Diameter: < 2.9 mm

Tip Length: 55 mm

Total Length: 289 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Calibration for Tissue (Head H, Body B)

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Calibration Uncertainty	Tolerance Uncertainty for 5%*	Conversion Factor
450 H	Head	<mark>45.31</mark>	<mark>0.91</mark>	<mark>4.1</mark>	<mark>3.6</mark>	<mark>5.8</mark>
450 B	Body	<mark>56.77</mark>	<mark>0.99</mark>	<mark>4.1</mark>	<mark>3.6</mark>	<mark>6.0</mark>
650 B	Body	57.42	<mark>0.91</mark>	<mark>3.96</mark>	<mark>3.5</mark>	<mark>6.2</mark>
750 H	Head	<mark>42.16</mark>	<mark>0.87</mark>	<mark>3.94</mark>	<mark>3.5</mark>	<mark>6.2</mark>
750 B	Body	<mark>55.54</mark>	<mark>0.94</mark>	<mark>3.94</mark>	<mark>3.4</mark>	<mark>6.3</mark>
835 H	Head	<mark>42.5</mark>	<mark>0.93</mark>	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6.4</mark>
835 B	Body	<mark>56.37</mark>	<mark>0.954</mark>	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6.4</mark>
900 H	Head	<mark>41.89</mark>	<mark>1.0</mark>	<mark>3.5</mark>	3.4	<mark>6.1</mark>
900 B	Body	<mark>53.68</mark>	<mark>1.05</mark>	<mark>3.5</mark>	3.4	<mark>6.1</mark>
1450 H	Head	X	X	X	X	X
1450 B	Body	X	X	X	Х	Х
1500 H	Head	X	X	X	Х	Х
1500 B	Body	X	X	X	Х	Х
1640 H	Head	<mark>39.0</mark>	<mark>1.25</mark>	<mark>3.5</mark>	2.7	<mark>5.2</mark>
1640 B	<mark>Body</mark>	<mark>52.03</mark>	<mark>1.39</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.0</mark>
1735 H	Head	X	X	X	Х	X
1735 B	Body	<mark>51.68</mark>	<mark>1.5</mark>	3.5	<mark>2.7</mark>	<mark>5.2</mark>
1800 H	Head	<mark>38.38</mark>	<mark>1.39</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>4.9</mark>
1800 B	Body	<mark>51.54</mark>	<mark>1.56</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.1</mark>
1900 H	Head	38.4	<mark>1.43</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>4.9</mark>
1900 B	Body	<mark>52.08</mark>	<mark>1.59</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>4.8</mark>
2000 H	Head	X	X	X	X	X
2000 B	Body	X	X	X	Х	X
2100 H	Head	X	X	X	Х	X
2100 B	Body	X	Х	X	Х	Х
2300 H	Head	X	Х	X	Х	Х
2300 B	Body	X	Х	X	Х	Х
2450 H	Head	<mark>38.2</mark>	<mark>1.82</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.91</mark>
2450B	<mark>Body</mark>	<mark>51.74</mark>	<mark>1.96</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.94</mark>
2600 H	Head	X	X	X	Х	X
2600 B	Body	<mark>51.18</mark>	<mark>2.16</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>4.0</mark>
3000 H	Head	Х	X	X	X	X
3000 B	Body	Х	X	X	X	Х
3600 H	Head	Х	X	X	Х	Х
3600 B	Body	Х	X	X	Х	X
5200 H	Head	Х	X	X	Х	X
5200 B	Body	Х	X	X	X	Х
5600 H	Head	Х	X	X	Х	Х
5600 B	Body	Х	X	X	Х	X
5800 H	Head	Х	X	X	Х	X
5800 B	Body	X	X	X	Х	Х

NCL Calibration Laboratories

Division of APREL Inc.

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe.

The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 0.58mm the worst case evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

NOTES:

*The maximum deviation from the centre frequency when comparing the lower to upper range is listed.

The probe was received in good condition.

Probe was calibrated on new DAC-PAQ.

Division of APREL Inc.

Receiving Pattern Air

Division of APREL Inc.

Isotropy Error

Isotropicity Tissue:

0.12 dB

Dynamic Range

Division of APREL Inc.

Video Bandwidth

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2011.

Appendix E – Dipole Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1179
Project Number: RFEL-DC-835B-5549

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-835-S-2
Frequency: 835 MHz Body
Serial No: 180-00561

Customer: RFEL Body Calibration

Calibrated: 16th November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accomplehied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 180-00561 was a new calibration.

Ambient Temperature of the Laboratory: 22
Temperature of the Tissue: 22

22 °C +/- 0.5°C

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 161.0 mm **Height:** 89.8 mm

Electrical Specification

 SWR:
 1.143U

 Return Loss:
 -24.058 dB

 Impedance:
 55.519 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
835 MHz	9.81	6.3	14.87

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00561. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 180-00561 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2%

TOTAL 8.32% (16.64% K=2)

Dipole Calibration Results

Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
161.0 mm	89.8 mm	162.1 mm	89.8 mm

Tissue Validation

Body Tissue 835MHz	Measured
Dielectric constant, ε _r	57.19
Conductivity, σ [S/m]	0.97

Electrical Calibration

Test	Result
S11 RL	-24.058dB
SWR	1.143U
Impedance	55.519 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

SWR

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
835 MHz	9.81	6.3	14.87

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

ALS-D-835-S-2 SN: 180-00561				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
11/16/2010	-24.058		55.519	
11/17/2011	-25.391	5.5	54.652	-1.6

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1121 Project Number: RFEB-5500

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-1640-S-2
Frequency: 1640 MHz Body
Serial No: 207-001-01

Customer: RFEL

Calibrated: 23rd February 2010 Released on: 23rd February 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 207-001-01 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 80.4 mm **Height:** 45.7 mm

Electrical Specification

SWR: 1.087 U Return Loss: -27.568 dB Impedance: 49.426Ω

System Validation Results @ 1W

Measured Values

Frequency	1 Gram	10 Gram	Peak
1640 MHz	34.201	18.144	61.76

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 207-001-01. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 215.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 207-001-01 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2%

TOTAL 8.32% (16.64% K=2)

Dipole Calibration Results

Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
80.4 mm	45.7 mm	80.4 mm	45.6 mm

Tissue Validation

Body Tissue 1640 MHz	Measured
Dielectric constant, ε _r	53.5
Conductivity, σ [S/m]	1.41

Electrical Calibration

Test	Result
S11 R/L	-27.568dB
SWR	1.087U
Impedance	$49.426~\Omega$

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

SWR

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Results @ 1W

Measured Results

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
1640 MHz	34.201	18.14	61.76

NOTE: Target values based on interpolated vales presented in FCC Supplement C.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

Extended Calibration

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

ALS-D-1640-S-2 SN: 207-001-01				
Date of Return Loss $\Delta\%$ Impedance $\Delta\%$ (Ω)				
2/23/2010	-27.568		49.426	
1/12/2011	-26.384	-4.3	48.291	-2.3
1/12/2012	-26.945	-2.3	49.023	-0.8

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1180 Project Number: RFEL-DC-1900B-5550

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-1900-S-2
Frequency: 1900 MHz Body
Serial No: 210-00713

Customer: RFEL Body Calibration

Calibrated: 16 November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 210-00713 was new and taken from stock prior to calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 67.1 mm **Height:** 38.9 mm

Electrical Specification

SWR:1.122UReturn Loss:-24.913dBImpedance: 53.469Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
1900 MHz	40.9	20.9	71.7

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00713. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 226.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 210-00713 was new taken from stock.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2%

TOTAL 8.32% (16.64% K=2)

Dipole Calibration Results

Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
68.0 mm	39.5 mm	67.1mm	38.9 mm

Tissue Validation

Body Tissue 1900 MHz	Measured
Dielectric constant, ε _r	53.87
Conductivity, σ [S/m]	1.55

Electrical Calibration

Test	Result
S11 R/L	-24.913dB
SWR	1.122U
Impedance	53.469 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

SWR

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
1900 MHz	40.9	20.9	71.7

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2010.

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

ALS-D-1900-S-2 SN: 210-00713				
Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	Δ%
11/16/2010	-24.913		53.469	
11/17/2011	-23.943	-3.9	54.375	1.7

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161