Geodesic IVP

Our game here is to find the solution of

$$0 = \frac{d^2x^a}{ds^2} + \Gamma^a_{bc}(x)\frac{dx^b}{ds}\frac{dx^c}{ds}$$

subject to the initial conditions $x^a(s) = x^a$ and $dx^a(s)/ds = \dot{x}^a$ at s = 0.

Algorithm

By successive differentiation of the above equation we can compute

$$\frac{d^n x^a}{ds^n} = -\Gamma^a_{\underline{d}_n} \frac{dx^{\underline{d}_n}}{ds}$$

at s=0 for $n=2,3,4,\ldots$. The $\Gamma^a_{\underline{d}_n}$ are the generalised connections.

We can then construct the Taylor series solution for $x^a(s)$

$$x^{a}(s) = x^{a} + s\dot{x}^{a} - \sum_{k=2}^{\infty} \frac{s^{k}}{k!} \Gamma_{\underline{d}_{k}}^{a} \dot{x}^{\underline{d}_{k}}$$

```
\{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w\#\}::Indices(position=independent).
\nabla{#}::Derivative.
import cdblib
# change signs to account for - sign in front of the sum for x^a(s), see above preamble
def flip_sign (obj):
    return Ex(0) - obj
sterm21 = flip_sign (cdblib.get ('genGamma01', 'genGamma.json'))
sterm22 = flip_sign (cdblib.get ('genGamma02', 'genGamma.json'))
sterm23 = flip_sign (cdblib.get ('genGamma03', 'genGamma.json'))
sterm24 = flip_sign (cdblib.get ('genGamma04', 'genGamma.json'))
sterm31 = flip_sign (cdblib.get ('genGamma11', 'genGamma.json'))
sterm32 = flip_sign (cdblib.get ('genGamma12', 'genGamma.json'))
sterm33 = flip_sign (cdblib.get ('genGamma13', 'genGamma.json'))
sterm41 = flip_sign (cdblib.get ('genGamma21', 'genGamma.json'))
sterm42 = flip_sign (cdblib.get ('genGamma22', 'genGamma.json'))
sterm51 = flip_sign (cdblib.get ('genGamma31', 'genGamma.json'))
sterm2 := @(sterm21) + @(sterm22) + @(sterm23) + @(sterm24). # cdb (sterm2.000,sterm2)
sterm3 := @(sterm31) + @(sterm32) + @(sterm33).
                                                             # cdb (sterm3.000,sterm3)
sterm4 := @(sterm41) + @(sterm42).
                                                               # cdb (sterm4.000,sterm4)
sterm5 := @(sterm51).
                                                               # cdb (sterm5.000,sterm5)
factor_out (sterm2,$A^{a?}$)
                                                               # cdb (sterm2.001,sterm2)
factor_out (sterm3,$A^{a?}$)
                                                               # cdb (sterm3.001,sterm3)
factor_out (sterm4,$A^{a?}$)
                                                               # cdb (sterm4.001,sterm4)
factor_out (sterm5,$A^{a?}$)
                                                               # cdb (sterm5.001,sterm5)
sterm2 := 360 @(sterm2).
sterm3 := 360 @(sterm3).
sterm4 := 90 @(sterm4).
```

The geodesic ivp

$$x^{a}(s) = x^{a} + s\dot{x}^{a} + \frac{s^{2}}{2!}\dot{x}^{b}\dot{x}^{c}A^{a}_{bc} + \frac{s^{3}}{3!}\dot{x}^{b}\dot{x}^{c}\dot{x}^{d}A^{a}_{bcd} + \frac{s^{4}}{4!}\dot{x}^{b}\dot{x}^{c}\dot{x}^{d}\dot{x}^{e}A^{a}_{bcde} + \frac{s^{5}}{5!}\dot{x}^{b}\dot{x}^{c}\dot{x}^{d}\dot{x}^{e}\dot{x}^{f}A^{a}_{bcdef} + \cdots$$

$$360A_{bc}^{a} = -240x^{d}g^{ae}R_{bdce} - 30x^{d}x^{e} \left(2g^{af}\nabla_{b}R_{cdef} + 4g^{af}\nabla_{d}R_{becf} + g^{af}\nabla_{f}R_{bdce}\right) - x^{d}x^{e}x^{f} \left(64g^{ag}g^{hi}R_{bdch}R_{egfi} - 32g^{ag}g^{hi}R_{bdeh}R_{cgfi} - 16g^{ag}g^{hi}R_{bdeh}R_{cifg} + 18g^{ag}\nabla_{bd}R_{cefg} + 18g^{ag}\nabla_{db}R_{cefg} + 36g^{ag}\nabla_{de}R_{bfcg} - 16g^{ag}g^{hi}R_{bdeh}R_{cfgi} + 9g^{ag}\nabla_{gd}R_{becf} + 9g^{ag}\nabla_{dg}R_{becf}\right)$$

$$-2x^{d}x^{e}x^{f}x^{g} \left(16g^{ah}g^{ij}R_{bdci}\nabla_{e}R_{fhgj} + 6g^{ah}g^{ij}R_{dhei}\nabla_{b}R_{cfgj} + 16g^{ah}g^{ij}R_{dhei}\nabla_{f}R_{bgcj} + 5g^{ah}g^{ij}R_{dhei}\nabla_{j}R_{bfcg} - 8g^{ah}g^{ij}R_{bhdi}\nabla_{e}R_{cfgj} - 4g^{ah}g^{ij}R_{bdei}\nabla_{c}R_{fhgj} - 8g^{ah}g^{ij}R_{bdei}\nabla_{f}R_{chgj} - 4g^{ah}g^{ij}R_{bdei}\nabla_{f}R_{cjgh} + 2g^{ah}\nabla_{bde}R_{cfgh} + 2g^{ah}\nabla_{dbe}R_{cfgh} + 2g^{ah}\nabla_{deb}R_{cfgh} - 4g^{ah}g^{ij}R_{bdei}\nabla_{h}R_{cfgj} - 4g^{ah}g^{ij}R_{bdei}\nabla_{h}R_{cfgj} - 4g^{ah}g^{ij}R_{bdei}\nabla_{f}R_{cghj} + g^{ah}\nabla_{hde}R_{bfcg} + g^{ah}\nabla_{dhe}R_{bfcg} + g^{ah}\nabla_{deh}R_{bfcg}$$

$$+ 2g^{ah}\nabla_{deb}R_{cfgh} + 4g^{ah}\nabla_{def}R_{bgch} - 4g^{ah}g^{ij}R_{bdhi}\nabla_{e}R_{cfgj} - 4g^{ah}g^{ij}R_{bdei}\nabla_{h}R_{cfgj} - 4g^{ah}g^{ij}R_{bdei}\nabla_{f}R_{cghj} + g^{ah}\nabla_{hde}R_{bfcg} + g^{ah}\nabla_{dhe}R_{bfcg}$$

$$+ g^{ah}\nabla_{deh}R_{bfcg}$$

$$360A_{bcd}^{a} = -180x^{e}g^{af}\nabla_{b}R_{cedf} - 3x^{e}x^{f}\left(64g^{ag}g^{hi}R_{bech}R_{dgfi} + 16g^{ag}g^{hi}R_{bech}R_{difg} - 16g^{ag}g^{hi}R_{befh}R_{cgdi} + 12g^{ag}\nabla_{bc}R_{defg} + 18g^{ag}\nabla_{be}R_{cfdg} + 18g^{ag}\nabla_{be}R_{cfdg} + 18g^{ag}\nabla_{be}R_{cfdg} + 18g^{ag}\nabla_{be}R_{cfdg} + 18g^{ag}\nabla_{be}R_{cedf} + 3g^{ag}\nabla_{be}R_{cedf} + 3g^{ag}\nabla_{bg}R_{cedf}\right) \\ - 2x^{e}x^{f}x^{g}\left(32g^{ah}g^{ij}R_{beci}\nabla_{d}R_{fhgj} + 48g^{ah}g^{ij}R_{beci}\nabla_{f}R_{dhgj} + 12g^{ah}g^{ij}R_{beci}\nabla_{f}R_{djgh} + 18g^{ah}g^{ij}R_{bhei}\nabla_{c}R_{dfgj} + 2g^{ah}g^{ij}R_{bieh}\nabla_{c}R_{dfgj} + 12g^{ah}g^{ij}R_{behi}\nabla_{f}R_{cgdj} + 15g^{ah}g^{ij}R_{bhei}\nabla_{f}R_{cfdg} + 5g^{ah}g^{ij}R_{bieh}\nabla_{f}R_{cfdg} + 12g^{ah}g^{ij}R_{befi}\nabla_{c}R_{djgh} - 12g^{ah}g^{ij}R_{befi}\nabla_{g}R_{chdj} + 4g^{ah}\nabla_{bce}R_{dfgh} + 4g^{ah}\nabla_{bce}R_{dfgh} + 4g^{ah}\nabla_{bce}R_{dfgh} + 4g^{ah}\nabla_{bce}R_{dfgh} + 4g^{ah}\nabla_{bce}R_{dfgh} + 6g^{ah}\nabla_{efh}R_{cgdh} + 6g^{ah}\nabla_{efh}R_{cgdh} + 16g^{ah}g^{ij}R_{behi}\nabla_{c}R_{dfgj} + 36g^{ah}g^{ij}R_{behi}\nabla_{f}R_{cgdj} + 16g^{ah}g^{ij}R_{beci}\nabla_{h}R_{dfgj} - 4g^{ah}g^{ij}R_{befi}\nabla_{h}R_{cfdg} + g^{ah}\nabla_{bc}R_{cfdg} + g^{ah}\nabla_{bc}R_{cfdg} + g^{ah}\nabla_{bc}R_{cfdg} + g^{ah}\nabla_{bc}R_{cfdg} + g^{ah}\nabla_{efh}R_{cfdg} + g^{ah}\nabla_{efh}R_{cfdg} + g^{ah}\nabla_{efh}R_{cfdg} - 20g^{ah}g^{ij}R_{beci}\nabla_{j}R_{dfgh} + 10g^{ah}g^{ij}R_{behi}\nabla_{j}R_{cfdg}\right)$$

$$90A_{bcde}^{a} = -6x^{f} \left(8g^{ag}g^{hi}R_{bfch}R_{dgei} + 6g^{ag}\nabla_{bc}R_{dfeg}\right) - x^{f}x^{g} \left(64g^{ah}g^{ij}R_{bfci}\nabla_{d}R_{ehgj} + 18g^{ah}g^{ij}R_{bfci}\nabla_{d}R_{ejgh} + 24g^{ah}g^{ij}R_{bfci}\nabla_{g}R_{dhej} \right.$$

$$+ 4g^{ah}g^{ij}R_{bhci}\nabla_{d}R_{efgj} + 44g^{ah}g^{ij}R_{bhfi}\nabla_{c}R_{dgej} + 18g^{ah}g^{ij}R_{bifh}\nabla_{c}R_{dgej} + 24g^{ah}g^{ij}R_{bhci}\nabla_{f}R_{dgej} + 10g^{ah}g^{ij}R_{bhci}\nabla_{j}R_{dfeg}$$

$$- 16g^{ah}g^{ij}R_{bfgi}\nabla_{c}R_{dhej} + 6g^{ah}\nabla_{bcd}R_{efgh} + 8g^{ah}\nabla_{bcf}R_{dgeh} + 8g^{ah}\nabla_{bfc}R_{dgeh} + 8g^{ah}\nabla_{fbc}R_{dgeh} + 26g^{ah}g^{ij}R_{bfi}\nabla_{c}R_{dgej}$$

$$+ 6g^{ah}g^{ij}R_{bfci}\nabla_{h}R_{dgej} + 46g^{ah}g^{ij}R_{bfci}\nabla_{d}R_{eghj} + g^{ah}\nabla_{hbc}R_{dfeg} + g^{ah}\nabla_{bhc}R_{dfeg} + g^{ah}\nabla_{bch}R_{dfeg} - 40g^{ah}g^{ij}R_{bfci}\nabla_{j}R_{dgeh} \right)$$

$$3A_{bcdef}^{a} = -x^{g} \left(3g^{ah}g^{ij}R_{bgci}\nabla_{d}R_{ehfj} + 3g^{ah}g^{ij}R_{bhci}\nabla_{d}R_{egfj} + g^{ah}\nabla_{bcd}R_{egfh} \right)$$

```
# cdb (sterm2.short.001,sterm2short)
sterm2short := @(sterm21) + @(sterm22).
sterm3short := @(sterm31).
                                                    # cdb (sterm3.short.001,sterm3short)
                                                    # cdb (sterm2.short.scaled.002,sterm2shortscaled)
sterm2shortscaled := 12 @(sterm2short).
                                                    # cdb (sterm3.short.scaled.002,sterm3shortscaled)
sterm3shortscaled := 2 @(sterm3short).
substitute (sterm2shortscaled,$A^{a}->1$)
                                                    # cdb (sterm2.short.scaled.003,sterm2shortscaled)
substitute (sterm3shortscaled,$A^{a}->1$)
                                                    # cdb (sterm3.short.scaled.003,sterm3shortscaled)
cdblib.create ('geodesic-ivp.export')
# 4th order ivp terms scaled
cdblib.put ('ivp42',sterm2shortscaled,'geodesic-ivp.export')
cdblib.put ('ivp43',sterm3shortscaled,'geodesic-ivp.export')
# 6th order ivp terms scaled
cdblib.put ('ivp62',sterm2,'geodesic-ivp.export')
cdblib.put ('ivp63',sterm3,'geodesic-ivp.export')
cdblib.put ('ivp64',sterm4,'geodesic-ivp.export')
cdblib.put ('ivp65',sterm5,'geodesic-ivp.export')
checkpoint.append (sterm2shortscaled)
checkpoint.append (sterm3shortscaled)
checkpoint.append (sterm2)
checkpoint.append (sterm3)
checkpoint.append (sterm4)
checkpoint.append (sterm5)
```

$$\begin{aligned} \text{sterm2.short.001} &:= -\frac{2}{3} A^b A^c x^d g^{ae} R_{bdce} - \frac{1}{12} A^b A^c x^d x^e \left(2 g^{af} \nabla_b R_{cdef} + 4 g^{af} \nabla_d R_{becf} + g^{af} \nabla_f R_{bdce} \right) \\ \text{sterm3.short.001} &:= -\frac{1}{2} A^b A^c A^d x^e g^{af} \nabla_b R_{cedf} \\ \text{sterm2.short.scaled.002} &:= -8 A^b A^c x^d g^{ae} R_{bdce} - A^b A^c x^d x^e \left(2 g^{af} \nabla_b R_{cdef} + 4 g^{af} \nabla_d R_{becf} + g^{af} \nabla_f R_{bdce} \right) \\ \text{sterm3.short.scaled.002} &:= -A^b A^c A^d x^e g^{af} \nabla_b R_{cedf} \end{aligned}$$

 $\texttt{sterm2.short.scaled.003} := -8x^d g^{ae} R_{bdce} - x^d x^e \left(2g^{af} \nabla_b R_{cdef} + 4g^{af} \nabla_d R_{becf} + g^{af} \nabla_f R_{bdce} \right)$ $\texttt{sterm3.short.scaled.003} := -x^e g^{af} \nabla_b R_{cedf}$