Isomorphismen von Lie-Algebren

Seien $\mathfrak g$ und $\mathfrak h$ reelle Lie-Algebra. Ein Lie-Algebra-Isomorphismus zwischen $\mathfrak g$ und $\mathfrak h$ ist eine Vektorraum-Isomorphismus (d.h. eine bijektive lineare Abbildung) $\phi: \mathfrak g \to \mathfrak h$ mit $\phi([a,b]) = [\phi(a),\phi(b)]$ für alle $a,b \in \mathfrak g$. Wenn $\mathfrak g$ und $\mathfrak h$ isomorph sind, so gilt

- 1. Die Dimensionen stimmen überein: $\dim_{\mathbb{R}}(\mathfrak{g}) = \dim_{\mathbb{R}}(\mathfrak{h})$
- 2. Die Dimensionen der Zentren stimmen überein: $\dim_{\mathbb{R}}(Z(\mathfrak{g})) = \dim_{\mathbb{R}}(Z(\mathfrak{h}))$. Dabei ist $Z(\mathfrak{g}) := \{a \in \mathfrak{g} \mid \forall b \in \mathfrak{g} : [a,b] = 0\}$ das sogenannte Zentrum von \mathfrak{g} .
- 3. Falls \mathfrak{g} eine Unteralgebra der Dimension r besitzt (d.h. einen Unterraum $\mathfrak{p} < \mathfrak{g}$ mit $[a,b] \in \mathfrak{p}$ für alle $a,b \in \mathfrak{p}$), so auch \mathfrak{h} und andersrum.

Falls eine dieser Bedingungen nicht erfüllt ist, so sind $\mathfrak g$ und $\mathfrak h$ also nicht isomorph.

Die Dimension des Zentrums von $\mathfrak g$ lässt sich wie folgt berechnen:

Wähle eine Basis $e_1, ..., e_n$ von \mathfrak{g} . Berechne die Strukturkonstanten a_{ij}^k . Sei

$$A_{i} := \begin{pmatrix} a_{i1}^{1} & a_{i2}^{1} & \cdots & a_{in}^{1} \\ a_{i1}^{2} & a_{i2}^{2} & \cdots & a_{in}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1}^{n} & a_{i2}^{n} & \cdots & a_{in}^{n} \end{pmatrix}.$$

Sei $A \in \mathbb{R}^{(n \cdot n) \times n}$ die Matrix, die durch Untereinanderschreiben von $A_1, ..., A_n$ entsteht. Dann gilt

$$\begin{split} Z(\mathfrak{g}) &= \left\{ a \in \mathfrak{g} \, \middle| \, \forall b \in \mathfrak{g} \colon [a,b] = 0 \right\} \\ &= \left\{ a \in \mathfrak{g} \, \middle| \, [a,e_1] = 0, \dots, [a,e_n] = 0 \right\} \\ &= \left\{ \sum \lambda_i e_i \, \middle| \, v = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \ker(A_i) \cap \dots \cap \ker(A_n) \right\} \\ &= \left\{ \sum \lambda_i e_i \, \middle| \, v = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \ker(A) \right\}. \end{split}$$

Also $\dim_{\mathbb{R}}(Z(\mathfrak{g})) = \dim_{\mathbb{R}}(\ker(A)) = n - \operatorname{rk}(A)$.