

Outline

- 1. Accelerator design space exploration (5mins)
- 2. Taxonomy of DSE Tools (5mins)
- 3. An overview of our approach (10mins)
 - A systematic analysis tool: Timeloop
 - An optimization-driven mapper: CoSA
 - An ML-based search strategy: VAESA
- 4. Open challenges and opportunities (5mins)

Four key steps

Step #1: Define the design space and the objectives

Workload specs

TARGET WORKLOADS

Tensor Algebra

- Tensor Algebra is a category of computation that can be expressed by symbols and operations of tensors
 - Example workloads:
 - Matrix-Matrix Mult, Conv, BLAS, ...

TARGET WORKLOADS

Tensor Algebra

- Tensor Algebra is a category of computation that can be expressed by symbols and operations of tensors
 - Example workloads:
 - Matrix-Matrix Mult, Conv, BLAS, ...

Algebraic expression:

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

Implementation:

```
for i in [0, I):
  for j in [0, J):
  for k in [0, K):
    C[i][j] +=
     A[i][k] * B[k][j]
     Matrix-Matrix Mult
```

Properties

- 1. Known iteration space bounds
- 2. Regular memory access patterns
- 3. Repeated control flow

These properties give rise to many optimizations in accelerator DSE

TARGET WORKLOADS

Machine learning

 High performance computing

Image and video processing

Transformers

Physics simulation

Detecting Edges

Four key steps

Step #1: Define the design space and objectives

Workload specs

Mapping constraints

_	
	Metrics
	Latency
	Energy
	Area
	EDP

Objectives

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

Arch design space

Four key steps

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

Arch design space

Four key steps

Arch design space

of MAC units

Input buffer size

Accum. buffer size | 0~1MB

Weight buffer size | 0~1MB

Global buffer size 0~32MB

Four key steps

ParameterValue Range# of PEs1~64# of MAC units1~64Accum. buffer size0~1MBWeight buffer size0~1MBInput buffer size0~1MBGlobal buffer size0~32MB

Arch design space

Four key steps

Arch design space

of MAC units

Input buffer size

Accum. buffer size | 0~1MB

Weight buffer size | 0~1MB

Global buffer size 0~32MB

Four key steps

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

Arch design space

KEY CHALLENGES IN DSE

Large design space and costly evaluation

Hardware Design Space

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

Mapping Space

~105

Evaluation Time

Platform	Evaluation		
Tationn	Time		
Timeloop	0.01s		
FPGA	2 mins		
VCS	10 mins		
Power	6 hrs		
Analysis	O IIIS		

0.01s

Intractable

> 31T logical years

~1017

KEY CHALLENGES IN DSE

Large design space and costly evaluation

Hardware
Design Space

Parameter	Value Range
# of PEs	1~64
# of MAC units	1~64
Accum. buffer size	0~1MB
Weight buffer size	0~1MB
Input buffer size	0~1MB
Global buffer size	0~32MB

~1013

Mapping Space

~10⁵

Evaluation Time

- Latency
- Energy
- Area

-

0.01s

Intractable

>317M logical years

DESIGN SPACE EXPLORATION TOOLS

For more systematic and rapid DSE

A TAXONOMY OF ACCELERATOR EVALUATION TOOLS

Comparisons

Category	Tools	Fidelity	Modeling Speed
Polynomial Model	CoSA	Low	Very Fast
ML Model	PRIME	Medium	Fast†
Static Analysis	Timeloop, MAESTRO	Medium	Fast
Cycle-accurate Model	<u>ScaleSim</u>	High	Slow
RTL Simulation	FireSim, MagNet	Very High	Slow*

[†] Varies with ML model size

^{*} Varies with workload size

A TAXONOMY OF ACCELERATOR EVALUATION TOOLS

Supported features

Category	Dynamic behavior support	Data/training/ implementation free	Differentiable
Polynomial Model	No	Yes	Yes
ML Model	Yes	No	Yes
Static Analysis	No	Yes	No
Cycle-accurate Model	Yes	Yes	No
RTL Simulation	Yes	No	No

A TAXONOMY OF MAPPERS

Heuristic-Driven

Timeloop
Triton Marvel

- Easy to implement

Feedbackbased

AutoTVM Ansor
Halide Gamma
MindMapping

- More adaptive

- Costly
- Sample invalid space
- Hard to generalize

Constrained Optimization

Polly+Pluto TC
Tiramisu CoSA
IOOpt

- More sample efficient
- Limited use case

A TAXONOMY OF ACCELERATOR SEARCH STRATEGIES

Black-box **Gradient-based** Heuristic-Driven Optimization Optimization Bayesian Opt: GD: EDD DiffTune Interstellar Apollo Search-algorithm RL: Original **Evolutionary Algo:** ConfuciuX APN focused Space PRIME NAAS AutoSA CoexplorationNAS Design-space Latent VAESA focused Space - Perf model not needed - Lower evaluation cost Easy to implement Data hungry - Limited DSE - High evaluation cost

OVIDIA

DESIGN SPACE EXPLORATION TOOLS

Our approach

Intractable

DESIGN SPACE EXPLORATION TOOLS

Our approach

Intractable

A STATIC ANALYSIS TOOL

Timeloop/Accelergy

- Timeloop provides a flexible abstraction to define a wide range of applications, architectures and constraints
- Timeloop/Accelergy rapidly and accurately reports latency, energy, area using static analysis

^{*} **Timeloop: A systematic approach to DNN accelerator evaluation**. Parashar A, Raina P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan R, Khailany B, Keckler SW, Emer J. ISPASS'19

A STATIC ANALYSIS TOOL

Sparseloop

- Sparse tensor algebra
 - Sparsity specification
 - Uniform, Fixed structure, Banded, Real data
 - Compression formats

- Hardware optimizations
 - Compression, Gating, Skipping

^{*} Sparseloop: An analytical, energy-focused design space exploration methodology for sparse tensor accelerators. Wu YN, Tsai PA,

DESIGN SPACE EXPLORATION TOOLS

Our approach

Intractable

AN OPTIMIZATION-DRIVEN MAPPER

 CoSA formulates the mapping decisions into a constrained optimization problem and solves it in one shot

AN OPTIMIZATION-DRIVEN MAPPER

Key idea: tiling factor allocation

- An optimization variable can be used to represent all three mapping decisions
- CoSA optimizes the variable using the constraints and objectives formulated in mixed integer programming
- CoSA finds mappings that are 1.5x faster and 1.2x more energy-efficient while improving the time-to-solution by 90x

DESIGN SPACE EXPLORATION TOOLS

Our approach

Intractable

A ML-BASED SEARCH STRATEGY VAESA

 VAESA learns a low dimensional, continuous, reconstructible latent space to facilitate accelerator DSE using Variational Autoencoder (VAE)

A ML-BASED SEARCH STRATEGY

VAESA Inference

- The search algorithms are applied to the latent space and evaluated on the original search
- The latent space reduces the search complexity and provides a smoother performance surface
- Both BO and GD achieve better sample efficiency on the latent space

DESIGN SPACE EXPLORATION TOOLS

Our approach

Significantly reduced DSE costs

0.01s

OPEN CHALLENGES AND OPPORTUNITIES

What shall we work on next?

#1 Flexibility of workloads

- irregular
- input-dependent
- multi-tenant

 Leverage the statistical info and profiling traces

#2 Dynamic system components

- SW/OS schedulers
- Caching/paging

 Augment ML with analytical model to provide feedback

OPEN CHALLENGES AND OPPORTUNITIES

What shall we work on next?

#3 Limited HW design space and execution models

- Lack of customization vs programmability tradeoffs
- SoC with cpu, vector, tensor units

Design extensible hardware design abstraction

#4 Transferability under new constraints

Repeated DSE runs

Collect datasets of hardware design

