NASA TECHNICAL MEMORANDUM

NASA TM X-1983

CASE FILE

A COMPUTER PROGRAM
FOR RAY TRACE THROUGH
SPACECRAFT WINDOWS

by Kenneth C. White Ames Research Center Moffett Field, Calif.

1. Report No. NASA TM X-1983	2. Government Acc	ession No. 3	. Recipient's Catalo	g No.
Title and Subtitle A COMPUTER PROGRAM FOR RAY T	RACE THROUGH SPACE	1	. Report Date April 1970	·
		6	, Performing Organiz	cation Code
7. Author(s) Kenneth C. White		8	. Performing Organiz A-3456	cation Report No.
9. Performing Organization Name and NASA Ames Research Center Moffett Field, Calif., 94035	Address		. Work Unit No. 125-17-02-13-00-21 . Contract or Grant I	Y0.
			3. Type of Report and	
12. Sponsoring Agency Name and Addre	\$ S		Technical Memorand	
National Aeronautics and Space Admini Washington, D. C., 20546	stration		Tecimical Memorand	um
	·	14	 Sponsoring Agency 	/ Code
15. Supplementary Notes	——————————————————————————————————————			
16. Abstract	<u> </u>			
A FORTRAN IV computer progra program computes the window-induced considered with no restriction on size, vector matrix form for mathematical of each window surface. The numerics				own may be itten in al models
17. Key Words Suggested by Author Ray tracing Spacecraft windows Computer program	(s)	18. Distribution State Unclassified - Unli		
19. Security Classif. (of this report) Unclassified	20. Security Class Unclassified	sif. (of this page)	21. No. of Pages	22. Price* \$3.00

SYMBOLS

Program Symbol	Equation Symbol	Definition
A	A	$(Z_1 - \Delta I_1 \gamma) \gamma$
ALPHAI	lpha i	azimuth angle of initial incident ray
ALPHAR	$\alpha_{\mathbf{r}}$	azimuth angle of final refracted ray
BETAI	βi	angle initial I makes with y-axis
CI(I), I=1,3	I_x , I_y , I_z	components of \hat{I} in x, y, z directions
CN(I), I=1,3	N_{x} , N_{y} , N_{z}	components of \hat{N} in x, y, z directions
CR(I), I=1,3	R_x , R_y , R_z	components of \hat{R} in x , y , z directions
CROSSR	$ \hat{\mathbf{I}} \times \hat{\mathbf{R}} $	magnitude of vector product $\hat{I} \times \hat{R}$
D(I), I=1,N		distances from RP1 to other RP's
DELALP	α _i - α _r	out-of-plane deviation
DELDEL	δi - δ _r	in-plane deviation
DELINC		angle between initial $\;\hat{I}\;$ and $\;\hat{R}\;$
DELTAA	ΔΙ2	$\Delta I_1 + A$
DELTAI	$^{\delta}$ i	elevation angle of \hat{I}
DELTAP(I), I=1,N		scale factor for interfaces between surfaces
DELTAR	δr	elevation angle of \hat{R}
DELZ	ΔΖ	window deformation at a given point (x, y)
DOTN	ηÂ	dot product of $\;\hat{I}\;\;and\;\;\hat{R}\;\;$
DOTP	ηÑ	dot product of \hat{I} and \hat{N}
DUM		M(XV) in ITER
DUMN 1		M(XVN) in NORMAL

Program Symbol	Equation Symbol	<u>Definition</u>
DUMN2		M(XV) in NORMAL
E(I), I=1,3	E_{x} , E_{y} , E_{z}	components of \overline{E} in x, y, z directions
FI		index used in NORMAL
GAMMAI	$\gamma_{\mathbf{i}}$	angle between initial \hat{I} and z-axis
I,J,K,L		indices
MA		number of rows or columns in matrix A in XPYXM
MAGN	1√F1	magnitude of gradient of F
MB,MC		number of rows or columns in matrix B in XPYXM
N		number of window surfaces
NA,NB,NC		indices computed and used for matrix multiplication in XPYXM
QRI	$\frac{n_{k+1}}{n_k}$	ratio of refractive indices
RAD	K	conversion factor degrees to radians
RI(I), I=1,N+1	$n_{\mathbf{i}}$	refractive indices of mediums
ROOT		$\left(\frac{n_1}{n_2}\right)^2 - 1.0 + (\hat{\mathbf{I}} \cdot \hat{\mathbf{N}})^2$
ROUT		$\sqrt{\text{ROOT}}$
SEC		conversion factor radians to arcsec
SIGMAI	$\sigma_{\mathbf{i}}$	angle between initial \hat{I} and x-axis
SM(I,J,K)	${\tt M_i}$	matrices for mathematical models of surface shapes
X	x	X coordinate
XN	$N_X \overline{\nabla} F $	component of $\overline{\mathbb{N}}$ in x direction
XV	\overline{X}	column vector \overline{X}
XVN	$\frac{\partial \overline{X}}{\partial X}$	column vector $\frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x}}$

iν

Program Symbol	Equation Symbol	Definition
Y	Y	Y coordinate
YN	$N_{Y} \overline{\nabla} F $	component of $\overline{\mathrm{N}}$ in y direction
YV	\overline{Y}	column vector \overline{Y}
YVN	$\frac{\partial \overline{Y}}{\partial y}$	column vector $\frac{\partial \overline{Y}}{\partial y}$
Z	z	Z coordinate

e e

r

A COMPUTER PROGRAM FOR RAY TRACE

THROUGH SPACECRAFT WINDOWS

Kenneth C. White

Ames Research Center

SUMMARY

A FORTRAN IV computer program has been written specifically for tracing rays through spacecraft windows. The program computes the window-induced angular deviation of the rays from their original path. Any type of window may be considered with no restriction on size, shape, material, or number of panes. The necessary equations are written in vector matrix form for mathematical convenience and ease in computation. The program requires mathematical models of each window surface. The numerical procedures used are described and a test case is presented.

INTRODUCTION

On-board navigation systems that derive their basic inputs from optical measurements made through a spacecraft window have been considered for manned space flight. The optical measurements of interest are the angle between two celestial bodies, such as a star and a planet, and the angle between a star and a spacecraft. These angular navigation measurements are subject to window-induced errors that result from the angular deviation or bending of the lines of sight as they pass through the window. In this report the terms "ray" and "line of sight" are used interchangeably. It should be noted that ray tracing is done in the opposite direction of the normal ray tracing.

The purpose of this program is to compute the angular line-of-sight deviations induced by the spacecraft windows. This is accomplished by tracing the lines of sight through the window by geometric ray tracing techniques. Many ray trace programs are available but they are primarily oriented toward lens design and usually require rotationally symmetric optical systems. A FORTRAN IV computer program has therefore been written which emphasizes the computation of the angular deviations of the rays and is not limited to rotationally symmetric optical systems.

The input to the program consists of mathematical models of each window surface, the orientation parameters of the lines of sight to be traced through the window, and the various parameters of the window environment. The output consists of the orientation parameters of the line of sight after it has passed through the window and the angular differences between the original line of sight and the deviated line of sight.

The basic equations are presented and the program is described fully in this report. This description includes the program listing, program usage, flow charts, and a sample case.

An application of the program and a discussion of analytical methods which utilize the program are given in reference 1.

PROGRAM DESCRIPTION

The presence of a spacecraft window in the path of rays of light causes these rays to bend or to deviate from their original path. This program is designed to determine the magnitude and direction of the angular deviations of the light rays. In order to determine the deviations, the ray must be traced through the window and a comparison made between the entering and exiting rays. The fundamental law of ray tracing is Snell's law of refraction,

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

where

- n_1 the index of refraction of medium 1
- θ_1 the angle the incident ray makes with the normal to the interface between mediums 1 and 2
- n_2 the index of refraction of medium 2
- θ_2 the angle the refracted ray in medium 2 makes with the normal

Snell's law is used to trace a ray through several mediums by successive applications of the law at each interface between mediums such as air and glass. This is accomplished by letting the refracted ray become the incident ray for the next application of the law. In order to apply Snell's law, the normals to the interfaces between mediums at the points where the ray intersects the interface must be known. This means the shape of the interface must be known. An iteration scheme is also required to determine the points of intersection of the ray with the interfaces.

BASIC EQUATIONS

For mathematical convenience and ease in computation, Snell's law is expressed in vector form as follows:

$$\hat{\mathbf{R}} = \left(\frac{\mathbf{n}_1}{\mathbf{n}_2}\right) \hat{\mathbf{I}} + \left\{\sqrt{1 - \left(\frac{\mathbf{n}_1}{\mathbf{n}_2}\right)^2 \left[1 - (\hat{\mathbf{I}} \cdot \hat{\mathbf{N}})^2\right] - \left(\frac{\mathbf{n}_1}{\mathbf{n}_2}\right) (\hat{\mathbf{I}} \cdot \hat{\mathbf{N}})}\right\} \hat{\mathbf{N}}$$
 (1)

where \hat{l} and \hat{R} are the unit vectors in the direction of the incident and refracted rays. The unit vector \hat{N} is in the direction of the normal to the interface between mediums 1 and 2 at the point of intersection of the incident ray; n_1 and n_2 are as previously defined. Equation (1) is derived in reference 2.

Coordinate System

The coordinate system is illustrated in figure 1. The innermost surface of the spacecraft window is assumed to lie in the xy-plane. The positive

Figure 1.- Ray trace coordinate system.

z-axis is toward the outside of the spacecraft. The incident and refracted rays and their orientation angles are also illustrated in the figure. The vector \hat{I} is the unit vector in the direction of the incident ray. The azimuth angle, α_i , is defined as the angle in the xy-plane between the positive x-axis and the projection, I_p , of \ddot{I} onto the xyplane. The elevation angle, δ_i , is the angle between \hat{I} and \hat{I}_{p} . The incidence angle, $\dot{\theta}$, is the complement of δ_i . The unit vec- $_{ extbf{X}}$ tor $\hat{ extbf{R}}$ is in the direction of the refracted ray which emerges from the outer-most window surface. The azimuth angle, α_r , is the

angle in the xy-plane between the positive x-axis and the projection, R_p , of \hat{R} onto the xy-plane. The elevation angle, δ_r , is the angle between \hat{R} and \hat{R}_p . The azimuth angles α_i and α_r are measured from the positive x-axis toward the positive y-axis and vary from 0° to 360°. The elevation angles, δ_i and δ_r , are measured from the projected vectors \hat{I}_p and \hat{R}_p toward the positive z-axis and vary from 0° to 90°.

The unit vectors \hat{I} and \hat{R} are given by the following equations:

$$\hat{I} = \cos \delta_{i} \cos \alpha_{i} \hat{i} + \cos \delta_{i} \sin \alpha_{i} \hat{j} + \sin \delta_{i} \hat{k}$$
 (2)

$$\hat{R} = \cos \delta_r \cos \alpha_r \hat{i} + \cos \delta_r \sin \alpha_r \hat{j} + \sin \delta_r \hat{k}$$
 (3)

where \hat{i} , \hat{j} , and \hat{k} are unit vectors in the directions of the x, y, and z axes, respectively.

Two angular ray deviations $\Delta\alpha$ and $\Delta\delta$ are also defined in figure 1. The out-of-plane deviation is defined as $\Delta\alpha$ = $(\alpha_i - \alpha_r)$. The in-plane deviation is defined as $\Delta\delta$ = $(\delta_i - \delta_r)$. These angular deviations are the important results of the ray trace.

Window Surface Mathematical Models

The window surface shapes are described in terms of their deviations from reference planes set parallel to the xy-plane. The first reference plane is coincident with the xy-plane. There is a reference plane for each window surface. The window surface deviation from the reference plane ΔZ is given by a fourth degree mixed polynomial in x and y as follows:

$$\Delta Z = m_{11}x^{4}y^{4} + m_{12}x^{3}y^{4} + m_{13}x^{2}y^{4} + \dots + m_{45}y + m_{55}$$
 (4)

or in shorthand form:

$$\Delta Z = \overline{Y}^{T} M \overline{X}$$
 (5)

where

$$\overline{Y}^T = [y^{i_4} \quad y^3 \quad y^2 \quad y \quad 1]$$

$$\overline{X} = \begin{bmatrix} x^4 \\ x^3 \\ x^2 \\ x \\ 1 \end{bmatrix}$$

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\ m_{31} & m_{32} & m_{33} & m_{34} & m_{35} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{45} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} \end{bmatrix}$$

The elements of the matrix M are program inputs. The normal to the surface at a given point is obtained by evaluating the gradient of the surface at that point. If equation (5) is written in the form

$$F(x, y, z) = \Delta Z - \overline{Y}^{T} M \overline{X}$$
 (6)

then the unit vector normal to the surface F is given by

$$N = \frac{\overline{\nabla}F}{|\overline{\nabla}F|} = \frac{\frac{\partial F}{\partial x} \hat{i} + \frac{\partial F}{\partial y} \hat{j} + \frac{\partial F}{\partial z} \hat{k}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2}}$$
(7)

where

$$\frac{\partial F}{\partial x} = -\overline{Y}^T M \frac{\partial \overline{X}}{\partial x}$$

$$\frac{\partial F}{\partial y} = -\frac{\partial \overline{Y}^T}{\partial y} M \overline{X}$$

$$\frac{\partial F}{\partial z} = 1$$

$$\frac{\partial \overline{X}}{\partial x} = \begin{bmatrix} 4x^3 \\ 3x^2 \\ 2x \\ 1 \\ 0 \end{bmatrix}$$

$$\frac{\partial \overline{Y}^T}{\partial y} = \begin{bmatrix} 4y^3 & 3y^2 & 2y & 1 & 0 \end{bmatrix}$$
(8)

Equations (4) through (8) are derived in reference 2.

Equations (1) through (8) together with the iteration scheme described in appendix A comprise the necessary elements to compute a ray trace.

Description of a Ray Trace

A block diagram illustrating the logical sequencing of the ray trace program is given in figure 2. The orientation angles of the incident ray, the coordinates of the reference point, the mathematical models of the window surfaces, and the window and environmental parameters are input. The components of the unit vector $\hat{\mathbf{I}}$ in the direction of the incident ray are computed by means of equation (2). The components of the vector $\overline{\mathbf{E}}$ from the origin to the reference point are computed. Next the point of intersection of $\hat{\mathbf{I}}$ with the first reference plane is computed using equations in appendix A. Then the point of intersection of $\hat{\mathbf{I}}$ with the first window surface is calculated using the iteration scheme described in appendix A. The iteration is done in subroutine ITER. After the point of intersection is found, the unit vector $\hat{\mathbf{N}}$

Figure 2.- Computer program schematic.

normal to the window surface at the point is computed by means of equations (6), (7), and (8). This is accomplished in subroutine NORMAL. The refracted ray in the next medium is computed by equation (1). This is done in subroutine REFRC. The number of surfaces traversed by the ray are tested. If the ray has passed through the last surface, the refracted ray is compared with the original incident ray to determine the angular deviations. If the ray has not passed through all the surfaces, the refracted ray becomes the incident ray and the ray trace is continued until the ray has completely passed through the window.

ROUTINE DESCRIPTIONS

The main program is designated MS2500 and is the main processing unit for the ray trace. Equation (2) and equations (A1) through (A8) are utilized in the main program. Input-output is, of course, accomplished here.

Subroutine ITER (MS2501) is used to compute the points of intersection of the ray with the window surfaces. Equations (4) and (5) and (A9) through (A14)

are used in this subroutine. The calling statement is CALL ITER (X, Y, SM, CI, K, DELZ, DELTAP) where:

X x coordinate

Y y coordinate

SM $SM(I, J, K) = M_i$ matrices for math models

CI CI(I) I = 1, $3 = I_X$, I_Y , I_Z components of \hat{I}

K index

DELZ ΔZ

DELTAP scale factor

SM and CI are arrays. X, Y, SM, CI, K, and DELTAP are input from the main program. DELZ is computed in ITER and returned. New values of X and Y are computed also and returned.

Subroutine NORMAL (MS2502) is used to compute the normals to the window surfaces at the points of intersection. Equations (6), (7), and (8) are used in this subroutine. The calling statement is CALL NORMAL (X, Y, SM, CN, K, DELTAP) where:

X x coordinate

Y y coordinate

SM $SM(I, J, K) = M_i$ matrices for the math models

CN $CN(I) = \hat{N}_X, \hat{N}_Y, \hat{N}_Z$ components of \hat{N}

K index

DELTAP scale factor

SM and CN are arrays. The components CN(I) of \hat{N} are computed in the subroutine and returned to main program. Others are input from the main program.

Subroutine REFRC (MS2303) uses equation (1) to compute the refracted ray in each medium through which the ray passes. The calling statement is CALL REFRC (CI, CN, QRI, CR) where

CI $CI(I) = I_X$, I_Y , I_Z components of \hat{I}

CN $CN(I) = N_X, N_Y, N_Z$ components of \hat{N}

QRI
$$\frac{n_{k+1}}{n_k}$$
 ratio of refractive indices
CR CR(I) = R_X, R_y, R_z components of \hat{R}

CI, CN, and CR are arrays. The components CR(I) of the refracted ray \hat{R} are computed in this routine and the other parameters come from the main program.

Subroutine XPYXM (MS2504) is a matrix multiplying subroutine used in subroutines ITER and NORMAL. The calling sequence is (A, B, C, NRA, NCA, NRB, NCB, J) where A and B are the matrices to be multiplied and NRA, NCA, NRB, and NCB are, respectively, the number of rows in A, columns in A, rows in B, and columns in B; C is the result of the matrix multiplication. The index J determines the multiplication to be performed. For

$$J = 1$$
 $C = AB$
 $J = 2$ $C = AB^{T}$
 $J = 3$ $C = A^{T}B$

Listings and flow charts for the main program and subroutines appear in appendixes B and C.

PROGRAM USAGE

The program is written in the FORTRAN IV computer language. It operates at Ames Research Center on an IBM 7094 computer under the IBJOB Processor of the IBSYS operating system, version 13. The program requires 2752_8 or 1514_{10} storage locations exclusive of the FORTRAN system subroutines required.

DECK MAKEUP

\$JOB	CARD		
\$IBJOB	CARD		
MS2300	DECK	Main program	
MS2301	DECK	ITER	
MS2302	DECK	NORMAL	
MS2303	DECK Promise	REFRO TO THE REPORT OF ANALOG MADE AND A	(1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
MS2304	DECK	EXPYXM TO A LABOR OF CONTROL OF SUCCESSION OF THE	som to to ball managers.
\$DATA	CARD		44 (4.1
INPUT	CARDS		
		therains of electrical to with the Gallegian of a control of greating	"我们"。 "我们",我们们

PROGRAM INPUTS

Inputs to the ray trace program can be divided into three categories: constants, math model matrices, and individual ray data. The constants describe the window configuration and its environment. The math model matrices describe the window surface shapes. The individual ray data describe the rays to be traced through the window. The data are all input in card form. The input cards are described below.

Constants

<u>Columns</u>	Symbol Symbol	Definition
$\frac{\text{Card 1}}{1-10}$	Format I10 N	Number of window surfaces
Card 2 1-10 11-20 21-30 31-40 41-50	Format 8E10.0 D(1) D(2) D(3) D(4) D(5)	Distances from reference planes to other reference planes
Card 3 1-10 11-20 21-30 31-40 41-50 51-60	Format 8E10.0 DELTAP(1) DELTAP(2) DELTAP(3) DELTAP(4) DELTAP(5) DELTAP(6)	Scale factors at interfaces between air and glass
Card 4 1-10 11-20 21-30 31-40 41-50 51-60 61-70	Format 8E10.0 RI(1) RI(2) RI(3) RI(4) RI(5) RI(6) RI(7)	Refractive indices of each medium through which ray is traced managed to the second description of the second description

See figure 3.

and the state going and

Figure 3. - Definition of reference planes, refractive indices, and input distances.

Math Model Matrices

```
Columns of math model matrix 1
Cards 5-9
                     J = 1, 5
Format 5E15.8
                     M_1,j
     Columns 1-15
                     M_2,j
             16 - 30
                     M_3, j
             31 - 45
             46-60
             61 - 75
               Columns of math model matrix 2
Cards 10-14
     if N = 2
                   Same format
               Columns of math model matrix 3
Cards 15-19
     if N = 3
                    Same format
               Columns of math model matrix 4
Cards 20-24
     if N = 4
                    Same format
               Columns of math model matrix 5
Cards 25-29
     if N = 5
                    Same format
               Columns of math model matrix 6
Cards 30-34
     if N = 6
                    Same format
```

Individual Ray Data

Cards 35-∞	Format 8E10.0	
1-10	ALPHA I)	Ray orientation angles α_i , δ_i
11-20	DELTA I∫	
21-30	E(1))	x, y, z coordinates of
31-40	E(2) }	reference position from which
41-50	E(3)	ray originates

There will be one card for each separate ray to be traced for a given set of constants and surface matrices. When one ray is traced through the window, the program looks for another to trace and the program is terminated when there are no more rays to trace. As presently written, the program considers only one set of constants and surface matrices. If it is desired to consider another set of constants or surface matrices or both, the program must be rerun. The input cards as described above are for a three-pane window. If the window has more or less than three panes, there would be a corresponding increase or decrease in the number of cards.

PROGRAM OUTPUTS

All the program inputs are printed out in the same sequence that they are input. In addition, for each input ray the following quantities are output:

Symbol	
ALPHAR	α_{r} orientation angles of final refracted ray on
DELTAR	$\delta_{\mathbf{r}}$ outside of window
DELALP	$\alpha_{i} - \alpha_{r} = \Delta \alpha$
DELDEL	$\delta_i - \delta_r = \Delta \delta$
DELINC	Angle between incident ray and final refracted ray
x)	xf, yf, zf coordinates of point where refracted ray
y }	leaves outermost window surface

A sample data printout is included with this writeup.

The program requires 0.2 to 0.3 second of computation time to complete a single trace through a three-pane window.

TAPES

Logical tape 5 is used for input and logical tape 6 for output.

SAMPLE CASE DESCRIPTION

The printout for a sample ray trace follows this section. In the sample case the window consisted of one pane of glass 0.3 inch thick with a pressure of 5 psi imposed on it from within the spacecraft. The window is circular with a 7-inch diameter. Two rays, both with α_i = 0° and δ_i = 60°, were traced through the window. One ray intersected the inner window surface at point X = 0, Y = 0 and the other at point X = 6, Y = 0.

SAMPLE CASE OUTPUT

### 1.20000000E-38				. 1		'' G '		
100000000E-38 -0.0000000E-38 -0.00000000E-38 -0.00000000E-38 -0.65431000E-06 -00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -	LTAP 0.5000000E 00 -0.0		0.00000000E-38 -C.00	, iii		1 10	88	Anna Andreas Communication Com
0.000000000E-38 -0.0000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.0000000	1	TO SAMMENATION	1		77777	1	95-3000000-30	
0.00000000E-38 -0.0000000E-38 -0.0000000E-38 -0.00000000E-38 -0.000000000E-38 -0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.000000000E-38 -0.00000000E-38 -0.00000000E-3	-0.00000000-38 -0.00000000-	-0.00000000E-38		000E-06				
0.000000005E-38 -0.100000006E-38 -0.100000000E-38 -0.100000000E-38 -0.100000000E-38 0.000000005E-38 -0.1000000006E-38 -0.000000000E-38 -0.00000000E-38 -0.00000000E-38 0.055431000E-06 -0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 0.000000000E-38 -0.000000000E-38 -0.00000000E-38 -0.000000000E-38 -0.000000000E-38 -0.00000000E-38 -0.000000000E-38 -0.000000000E-38 -0.000000000E-38		-0.00000000E-38	1	1000E-38		,	1 · ·	
0.00000000E-38 -0.00000000E-38 -0.0000000E-38 -0.00000000E-38 -0.0000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-3		0.13086200E-05		500E-03		: .5) ()	
0.000000000E-38 -0.00000000E-38 -0.000000000E-38 -0.00000000E-38 -0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.000000000E-38 -0.00000000E-38 -0.000000000E-38 -0.0000000000E-38 -0.000000000E-			- 1					
181X 2 0.00000000E-38 -0.0000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-02 0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.00000000E-38 0.000000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 1PMI DATA PHAR* C.000000000E-38 DELTAI* 0.6000000E 02 X= 0.00000000E-38 DELDEL* 0.8901025E 01 DELING* 0.89087864E 0.61143256E 01 Y* -0.00000000E-38 Z* 0.00000000E-38 Y* 0.00000000E-38 Z* 0.00000000E-38 1PMI DATA 1P		-0.00000000E-38		1000E-38	. 4			
0.000000000E-38 -0.0000000E-38 -0.0000000E-38 -0.0000000E-38 0.65431000E-06 0.000000000E-38 -0.00000000E-38 -0.00000000E-38 -0.16754500E-03 0.00000000E-38 -0.00000000E-38 -0.13068200E-05 -0.00000000E-38 -0.16754500E-03 0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-02 0.00000000E-06 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-02 0.00000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-02 0.00000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-38 0.0000000E-38 0.0000000E-38 0.00000000E-38 -0.00000000E-38 -0.00000000E-38 0.00000000E-38 0.000000000E-38 0.00000000000000000000000000000000000		-0.16754500E-03	1	300E-02				
0.00000000E-38 -0.0000000E-38 -0.0000000E-38 -0.0000000E-38 -0.00000000E-38 -0.000000000E-38 -0.000000000E-38 -0.000000000E-38 -0.000000000E-38 -0.00000000E-38 -0.000000000E-38 -0.0000000000E-38 -0.000000000E-38 -0.000000000E-38 -0.000000	ATRIX 2							
0.00000000E-38 -0.0000000E-38 -0.0000000E-38 -0.0000000E-38 -0.16754500E-03 0.00000000E-38 -0.00000000E-38 -0.16000000E-38 -0.16754500E-03 0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 0.663431300E-06 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 0.663431300E-06 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 -0.00000000E-38 1PMT DATA 1PMT DATA 0.00000000E-38 DELTAR= 0.59997527E 02 DELALP= 0.00000000E-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E 0.61143256E 01 Y=-0.00000000E-38 Z= 0.30644726E 00 1PMT DATA	0000E-38	-0.0000000E-38		000E-06				
0.00000000E-38 -0.00000000E-38 0.13086200E-05 -0.00000000E-38 -0.16754500E-03 0.00000000E-38 -0.00000000E-38 -0.00000000E-38 -0.000000000E-38 -0.00000000E-38 0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-02 PWI DATA LPHAI= 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.60000000E-38 DELBEL= 0.89011025E 01 DELINC= 0.89087864E RHAR= 0.00000000E-38 DELTAI= 0.59397227E 02 DELALP= 0.0000000E-38 DELBEL= 0.89911025E 01 DELINC= 0.89087864E 0.61143256E 01 Y= -0.00000000E-38 Z= 0.30644726E 00 LPHAI= 0.00000000E-38 DELTAI= 0.60000000E 02 X= 0.00000000E-38 Y= 0.00000000E-38 Z= 0.00000000E-38 TRUT DATA	•	-0.0000000E-38	1 .	1000E-38	. ! -			
0.00000000E-38 -0.00000000E-38 -0.16754500E-03 -0.00000000E-38 0.66386300E-02 PUT DATA IPHAI= 0.00000000E-38 DELTAI= 0.60000000E-03 -0.00000000E-38 0.66386300E-38 Z= 0.00000000E-38 PHAR* 0.00000000E-38 DELTAR= 0.59997527E 02 DELALP= 0.00000000E-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E 0.61143256E 01 Y= -0.0000000E-38 Z= 0.30644726E 00 PUT DATA IPHAR* 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.0000000E-38 Y= 0.0000000E-38 Z= 0.0000000E-38 IPHAR* 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.0000000E-38 Y= 0.0000000E-38 Z= 0.0000000E-38 IPHAI= 0.00000000E-38 DELTAI= 0.6000000E-38 Z= 0.0000000E-38	1	0.13086200E-05		500E-03	17.4			
PUT DATA LEMAI= 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.60000000E 01 Y= 0.00000000E-38 Z= 0.00000000E-38 LEMAI= 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.60000000E-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E PHAR* 0.0000000CDE-38 DELTAR= 0.59997527E 02 DELALP= 0.00000000E-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E PUT DATA LHHAI= 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.00000000E-38 Y= 0.00000000E-38 Z= 0.00000000E-38 LHHAI= 0.00000000E-38 DELTAI= 0.6000000E-38 Y= 0.00000000E-38 Z= 0.0000000E-38	1 1	-0.000000000-38	3 1	1000E-38	, je - 4,			
PUT DATA LPHAI= 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.6000000E 01 Y= 0.00000000E-38 Z= 0.00000000E-38 TRUI DATA 0.61143256F 01 Y= -0.40000000E-38 Z= 0.30644726F 00 0.61143256F 01 Y= -0.40000000E-38 Z= 0.40000000E-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E DATA LHHAI= 0.00000000E-38 DELTAI= 0.6000000E 02 X= 0.00000000E-38 Y= 0.00000000E-38 Z= 0.00000000E-38 TRUI DATA		-0.16754500E-03		300E-02	71	i fili Vakt		
IPAN = 0.00000000E - 38 DELTAI = 0.6000000E 02 X = 0.60000000E 01 Y = 0.00000000E - 38 Z = 0.00000000E - 38	NPUT DATA	475 38 38 3 20 38		, F.	î p.a			
TRWI DAIA PHAR* G.000G00C0E-38 DELTAR= 0.59997527E 02 DELALP= 0.0000000E-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E 0.61143256E 01 Y= -0.0000C000E-38 Z= 0.30644726E 00 PUT DATA LRHAI= 0.00000000E-38 DELTAI= 0.60000000E 02 X= 0.00000000E-38 Y= 0.00000000E-38 Z= 0.00000000E-38 TRUI DAIA	0.00000000E-38	0.60000000E 02	01	0.00000000E-3	2 =	0.000000)0E-38	
PHAR* G.GOOGGGCOE-38 DELTAR= 0.59997527E 02 DELALP= G.ODGOOGGE-38 DELDEL= 0.89011025E 01 DELINC= 0.89087864E 0.61143256E 01 Y= -0.00000000E-38 Z= 0.30644726E 00 PUT DATA IRUT DATA IRUT DATA IRUT DATA	UTPUT DATA			A CONTRACTOR OF THE PARTY OF TH				
0.61143256F 01 Y= -0.00000000E-38 Z= 0.30644726E 00 PUT DATA IRUI DAIA	0.00000000E-38		0.000000000-38		1025E 0		0.89087864E	
.000000005-38 DELTAI= 0.6000000E 02 x= 0.00000000E-38 Y= 0.00000000E-38 Z=	0.61143256E 01 Y=	7=	- 1					
.00000000E-38 DELTAI= 0.6000000E 02 X= 0.0000000E-38 Y= 0.0000000E-38 Z=			A C	A CONTRACTOR OF THE CONTRACTOR	2.74			
.000000005-38 DELTAI= 0.60000000E 02 X= 0.00000000E-38 Y= 0.00000000E-38 Z=	NPUT DATA				1.3			
UTRUT DATA	.00000000E-38	= 0.6000000E 02		0.0000000E-3	= Z	.0000000	10E-38	
	UTRUT DATA	The state of the s				-		

X= 0.12869728E 00 Y= -0.00000000E-38 Z= C.33317927E 00

CONCLUDING REMARKS

A FORTRAN IV computer program has been written for tracing rays computationally through spacecraft windows.

Program equations are written in vector-matrix form for ease in computation. The program requires 0.2 to 0.3 second to trace a ray through a three-pane window. The program determines the angular deviations of the ray as it passes through the window.

Rays may be traced through any window whose surface shapes can be described mathematically in polynomial form.

The ray trace program has been used extensively to trace rays through Gemini spacecraft optical windows as discussed in reference 1. The program is currently being used to trace rays through Apollo windows and also through generalized windows of various sizes and shapes.

 $\frac{(a_1,b_2,b_3)}{(a_1,b_2,b_3)} = \frac{(a_1,b_2,b_3)}{(a_1,b_2,b_3)} \frac{(a_1,b_2,b_3)}{(a_1,b_2,$

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Dec. 5, 1969

APPENDIX A

COMPUTATION OF THE POINT OF INTERSECTION OF A RAY WITH

THE REFERENCE PLANE AND THE WINDOW SURFACE

This appendix describes the determination of the intersection of the assumed interior ray $\hat{\mathbf{I}}$ with the first reference plane RP1 and also the determination of the intersection of $\hat{\mathbf{I}}$ with the first window surface. This

Figure 4.- Geometry of the scheme for iterating from the reference plane to the window surface.

 \bar{I} with the first window surface. This is an iterative procedure, and is illustrated in figure 4. Here the window coordinate system is given as $(\hat{i}\hat{j}\hat{k})$; the vector from the origin locating either the eye of the observer, or some reference point on the instrument is given as \bar{E} , some initial ray vector as \bar{I}_1 , which terminates in the x-y plane, and a vector in the x-y plane closing with \bar{I}_1 as \bar{d} . Let

$$\overline{E} = E_{X}\hat{i} + E_{V}\hat{j} + E_{Z}\hat{k}$$
 (A1)

$$\hat{I}_1 = \sigma \hat{i} + \beta \hat{j} + \gamma \hat{k} \tag{A2}$$

$$\overline{I}_1 = I_1 \hat{I} \tag{A3}$$

where \textbf{I}_1 is unknown. Now $\overline{\textbf{d}}$ is of the form

$$\overline{d} = x_1 \hat{i} + y_1 \hat{j} + 0 \hat{k}$$
 (A4)

and from figure 4

$$\overline{\mathbf{d}} = \overline{\mathbf{E}} + \mathbf{I}_{1} \hat{\mathbf{I}} \tag{A5}$$

where

Then from the third equation

$$I_1 = -\frac{E_z}{\gamma} \tag{A7}$$

and from the first two

$$x_{1} = E_{X} - \frac{\sigma}{\gamma} E_{Z}$$

$$y_{1} = E_{Y} - \frac{\beta}{\gamma} E_{Z}$$
(A8)

Now, if we set

$$\Delta I_1 = 0 \tag{A9}$$

compute

$$z_1 = \Delta p \overline{Y}_1^T [M] \overline{X}_1 \tag{A10}$$

and project the increment of z_1 above the \overline{I}_1 vector onto the \hat{I} direction

$$A = (z_1 - \Delta I_1 \hat{I} \cdot \hat{k}) \hat{k} \cdot \hat{I} = (z_1 - \Delta I_1 \gamma) \gamma$$
 (A11)

Now form

$$\Delta I_2 = \Delta I_1 + A \tag{A12}$$

and compute

$$x_2 = x_1 + A\hat{I} \cdot \hat{i} = x_1 + A\sigma$$
 (A13)

$$y_2 = y_1 + A\hat{i} \cdot \hat{j} = y_1 + A\beta$$
 (A14)

These values of x_2 and y_2 are then used in the equation for z (eq. (A10)), and the computation is continued until $|A| < \epsilon$. At present $\epsilon = 1.0 \times 10^{-6}$ in the program. At this time the last values computed for x, and y, and z are the coordinates of the point of intersection of our ray with the refracting surface, to the accuracy we have specified for ϵ . The basic scheme of this iteration is that by successively projecting the value of $(z - A\hat{I} \cdot \hat{k})$ onto the vector \hat{I} , we approach the point of intersection with the window surface. This system appears to be stable for all continuous smooth surface functions.

APPENDIX B

PROGRAM LISTING

MS2500 - EFN SOURCE STATEMENT - IFN(S) -

C K.C.WHITE GENERAL RAY TRACE THRU SPACECRAFT WINDOW DIMENSION E(3),CI(3),SM(5,5,6),DELTAP(6),CN(3),RI(7),CR(3),D(5) INDIT DATA FOLLOWS	
1-	1
311 FURMAT((110) READ(5.312)(D(1).I=1.5)	3
READ(5,312)(DELTAP(I), I=1,6)	10
READ(5,312)(RI(I),I=1,7)	17
	24
315 FORMAT(SE15.8) C NOW DRINT INDUIT DATA	
WRITE (6,316)N, (D(1),1=1,5), (DELTAP(1),1=1,6), (RI(1),1=1,7)	37
316 FORMAT(1HG,9HCONSTANTS//1H ,3HN= ,12/1H ,3HD= ,5E16.8/1H ,8HDELTAP	
1= 46E16*8/1H 44H8I= 47E16*8//)	the equipment manufricularity from the property of the property of the same of
	Ç.
318 WRITE(6,317)K,((SM(1,3,4,K),1=1,5),1=1,5) 317 EODWAT(1H ,7HWATDIY ,11//(1H ,5F16,8)//)	66
1	70
i	77
1 X=vE16.8y4H Y=vE16.8y4H Z=vE16.8//)	
	84
307 FORMAT(IH ,11HGUTPUT DATA//)	
1=1 7=0.0	
RAD=1.74532925E-02	
SEC=2.062648064E05	and the second
IF(DELTAI.NE.9Q.Q)GO TO 15	
17 (21(1) = 0.0	
CI (3) = 1.0	
ALPHAI=ALPHAI*RAD	
DELIAI=DELIAI*BAD	makes distributed by the control of
15 ALPHAI=ALPHAI*RAD	
CI(1)=COS(DELTAI)*COS(ALPHAI)	92 93
CI(2)=COS(DELTAI)*SIN(ALPHAI)	66 : 62

ı
IFN(S)
ŧ
TEMENT
STA
SOURCE
FFN
ŀ
\$2500

	96
SIGMAI=(ACOS (CI(1))) RFIAT=(ACOS (CI(2)))	66 86
GAMMAI=(0.15707963268E01-DELTAI) X= E(1)-E(3)*CI(1)/CI(3) V-E(2)-E(3)*CI(2)/CI(3)	
SUBROUTINE ITER COMPUTES INTERSECTION OF RAY WITH WINDOW SURFACE CALL ITER (X,Y,SM,CI,K,DELZ,DELTAP) 7=7+DF17	101
SUBROUTINE NORMAL COMPUTES NORMAL TO WINDOW SURFACE CALL NORMAL(x,Y,SM,CN,K,DELTAP) ORI=RI(K+1)/RI(K)	103
SUBROUTINE REFRC COMPUTES THE REFRACTED RAY IN THE NEXT MEDIUM CALL REFRC (CI+CN+QRI+CR)	107
E(1) = X E(2) = X F(3) = 7 - D(K)	
00 50 1=1,3 CI(I)=CR(I) 7=0(K)	
AFIER IRAGE CUMPLETE ANGULAR RAY DEVIALIUMS ARE CUMPULED 500 CROSSR=SQRT((COS(BETAI)*CR(3)-COS(GAMMAI)*CR(2))**2+(COS(GAMMAI)*C 2)	123 124 125 126 127 128
DELINC=ARSIN(CROSSR)*SEC DELTAR=ARCOS(SGRT(CR(1)**2+CR(2)**2))	132
ALPHAR=(ATAN2(CR(2),CR(1))) IF(ALPHAI)530,530,505 IF(ALPHAR)520,530,530	
ALPHAR-ALPHAR+0.6283185072E01 DELDEL= (DELTAI-DELTAR)*SEC DELOE ALPHAI-ALPHAR	
9 9	
OUTPUT DATA FOLLOWS WRITE(6,513)ALPHAR, DELTAR, DELALP, DEL DEL, DEL INC	139
MS2500 - EFN SOURCE STATEMENT - IFN(S) -	
513 FORMAT(1H0,7HALPHAR=,E16,8,8H DELTAR=,E16,8,8H DELALP=,E16,8,8H DE 1LDEL=,E16,8,8H DELINC=,E16,8//) MRITE(6,501)x,Y,Z 501 FORMAT(1H0,2HX=,E16,8,4H Y=,E16,8,4H Z=,E16,8////) GO TG 330 END	140

MS2501 - EFN SOURCE STATEMENT - IFN(S) -

XV(5)=1.0 VV(5)=1.0 XV(5)=0.0 YVN(5)=0.0 YVN(5)=0.0 YVN(5)=0.0 YVN(5)=0.0 YVN(5)=0.0 YVN(5)=0.0 YVN(5)=0.0 YVN(1)=YV(1+1)*X FI=1 XVN(1)=YV(1+1)*X FI=1 XVN(1)=YV(1+1)*X FI=1 XVN(1)=YV(1+1)*X YV(1)=YV(1+1)*X YV(1)=YV(1+1)*X YV(1)=YV(1+1)*X YVN(1)=YV(1+1)*X YVN(1)=YV(1+1)*X CALL XPYXM(SM(1,1,K),XV,DUMN1,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,5,5,5,1,1) CALL XPYXM(SM(1,1,K),XV,DUMN2,N,5,1,5,1,3) CALL XPYXM(SM(1,1,K),XV,DUMN2,N,5,1,5,1,3)
--

MS2503 - EFN SOURCE STATEMENT - IFN(S) -

C SUBROUTINE REFRC (CI,CN, GRI,CR) C SUBROUTINE REFRC COMPUTES THE REFRACTED RAY IN THE NEXT MEDIUM OD 100 100 11 1 1 1 1 1 1 1	
DO 23 L=1,MC 20 TO [20,1,22],J 20 NB=L+(K-1)*MC NA=1+(L-1)*MR NA=1+(L-1)*MB NA=1+(L-1)*NRA GO TO 23 22 NB=L+(K-1)*MC NA=L+(K-1)*MC	
23.CINC)=CINC)+A(NA)*BINB) SAFETHER SAF	

APPENDIX C

FLOW CHARTS

SUBROUTINE REFRC

SUBROUTINE XPYXM

To main program

REFERENCES

- 1. White, Kenneth C.; and Gadeberg, Burnett S.: Methods for the Prediction of Spacecraft Window-Induced Line-of-Sight Deviations. NASA TN D-5238, 1969.
- 2. Gadeberg, Burnett S.; and White, Kenneth C.: The Theory of the Correction of Celestial Observations made for Space Navigation or Testing. NASA TN D-5239, 1969.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546