

## Escuela Superior de Cómputo Machine Learning



## Profesora: Consuelo Varinia García Mendoza **Práctica 3. Naïve Bayes**

- 1. Para esta práctica se utilizará los dataset *iris.csv* y *emails.csv* 
  - En el dataset iris.csv
    - Las primeras 4 columnas son las características de las instancias
    - La última columna es la clase
  - En el dataset emails.csv
    - La primera columna indica el id del correo
    - o La última columna indica si el correo es spam o no
    - El resto de las columnas (3,000) son las palabras más comunes en todos los correos

## 2. Para cada dataset

- Mezcla los datos (random\_state=0) y crea un conjunto de entrenamiento del 70% y 30% de prueba
- Con el 70% de entrenamiento genera conjuntos de validación con el método de validación cruzada para k=5. Genera la información de la Tabla 1 utilizando las bibliotecas:
  - o sklearn.model selection.KFold
  - o sklearn.naive bayes.GaussianNB
  - o sklearn.naive bayes.MultinomialNB
  - o sklearn.metrics.accuracy score
- Selecciona las configuraciones que logran los mejores accuracy promedio para las pruebas finales. Genera la matriz de confusión y el reporte de clasificación utilizando las bibliotecas:
  - o sklearn.metrics.classification report
  - o sklearn.metrics.confusion matrix
  - o sklearn.metrics.ConfusionMatrixDisplay
- 3. La salida del programa serán las tablas 1 y 2, las matrices de confusión y los reportes de clasificación (matrices y reportes sólo de las pruebas finales)

Tabla 1. Resultados de la validación cruzada

| Dataset    | No. Pliegues | Distribución              | Pliegue  | Accuracy |
|------------|--------------|---------------------------|----------|----------|
| iris.csv   | 5            | Normal 1 2 3 4 5 Promedio | 1        |          |
|            |              |                           | 2        |          |
|            |              |                           | 3        |          |
|            |              |                           | 4        |          |
|            |              |                           | 5        |          |
|            |              |                           | Promedio |          |
|            |              | Multinomial               | 1        |          |
|            |              |                           | 2        |          |
|            |              |                           | 3        |          |
|            |              |                           | 4        |          |
|            |              |                           | 5        |          |
|            |              |                           | Promedio |          |
| emails.csv | 5            | Normal                    | 1        |          |
|            |              |                           | 2        |          |
|            |              |                           | 3        |          |
|            |              |                           | 4        |          |
|            |              |                           | 5        |          |
|            |              |                           | Promedio |          |
|            |              | Multinomial               | 1        |          |
|            |              |                           | 2        |          |
|            |              |                           | 3        |          |
|            |              |                           | 4        |          |
|            |              |                           | 5        |          |
|            |              |                           | Promedio |          |

Tabla 2. Resultados de las pruebas finales

| Dataset    | Distribución | Accuracy |
|------------|--------------|----------|
| iris.cvs   |              |          |
| emails.csv |              |          |