sine basis 04

Design matrix

Statistics: p-values adjusted for search volume

			_								
set-level				peak-level					mm mm mm		
р с	$p_{FWE-corrF}$	$p_{\text{FWE-corr}} q_{\text{ENE-corr}} k_{\text{E}} p_{\text{uncorr}}$		$p_{\text{FWE-corrFDR-corr}}$		$(Z_{\equiv}) p_{\text{uncorr}}$					
	0.400 0.	052 119 557 20		1.000 0.949 0.968 1.000 0.970	0.223 0.104 0.106 0.943 0.106	3.69 4.09 4.04 2.47 4.04	3.66 4.05 4.01 2.46 4.00	0.000 0.000 0.000 0.007 0.000	-16 -52 -50 -56 -34	-68 -56 -50 -50	48 14 2 18 -40
	1.000 0. 1.000 0. 1.000 0.	552 24 253 48 628 16 489 29	0.123 0.036 0.202 0.093	0.976 0.996 0.998 0.999	0.142 0.161 0.171 0.206	3.91 3.86 3.83 3.75	3.87 3.83 3.80 3.72	0.000 0.000 0.000 0.000	-62 -28 -12 -40	-44 -58 -24	40 56 38 26
		136 73	0.012	1.000 1.000	0.223 0.265	3.70 3.56	3.67 3.54	0.000	38 48	-10 -12	-44 -42
	1.000 0. 1.000 0.	557 22 531 26 670 11	0.139 0.110 0.288	1.000 1.000 1.000	0.223 0.223 0.223	3.70 3.68 3.67	3.67 3.65 3.65	0.000 0.000 0.000	-34 -26 44	26 -44 48	0 44 22
	1.000 0.	628 16 670 12 290 43	0.202 0.267 0.046	1.000 1.000 1.000	0.223 0.234 0.234 0.652	3.67 3.64 3.64 2.95	3.65 3.62 3.61 2.94	0.000 0.000 0.000	54 56 58 60	24 -60 4	6 -4 20 30
		619 17 253 48	0.189 0.036	1.000 1.000 1.000	0.234 0.249 0.381	3.63 3.60 3.36	3.61 3.58 3.34	0.000 0.000 0.000	-58 -52 -40	-20 -72 -66	34 14 14
	1.000 0.	576 19	0.167	1.000	0.265	3.57	3.54	0.000	20	-74	46