UNIT III STORAGE

MANAGEMENT

- 1. What is Address Binding?
- a) going to an address in memory
- b) locating an address with the help of another address
- c) binding two addresses together to form a new address in a different memory space
- d) a mapping from one address space to another

Answer: d

Explanation: None.

- 2. Binding of instructions and data to memory addresses can be done at _____
- a) Compile time
- b) Load time
- c) Execution time
- d) All of the mentioned

Answer: d

Explanation: None.

- 3. If the process can be moved during its execution from one memory segment to another, then binding must be _____
- a) delayed until run time
- b) preponed to compile time
- c) preponed to load time
- d) none of the mentioned

Answer: a

Explanation: None.

4. What is Dynamic loading? a) loading multiple routines dynamically b) loading a routine only when it is called c) loading multiple routines randomly d) none of the mentioned Answer: b Explanation: None. 5. What is the advantage of dynamic loading? a) A used routine is used multiple times b) An unused routine is never loaded c) CPU utilization increases d) All of the mentioned Answer: b Explanation: None. 6. The idea of overlays is to _____ a) data that are needed at any given time b) enable a process to be larger than the amount of memory allocated to it c) keep in memory only those instructions d) all of the mentioned Answer: d Explanation: None. 7. The _____ must design and program the overlay structure. a) programmer b) system architect c) system designer d) none of the mentioned Answer: a Explanation: None.

O [T]	
	swaps processes in and
out of the memor	
a) Memory mana	ger
b) CPU	
c) CPU manager	
d) User	
Answer: a	
Explanation: Non	e.
9. If a higher prio	rity process arrives and
wants service, the	e memory manager can swap
out the lower price	ority process to execute the
higher priority pr	rocess. When the higher
priority process f	inishes, the lower priority
process is swappe	ed back in and continue
execution. This va	ariant of swapping is
sometimes called	?
a) priority swapp	ing
b) pull out, push i	n
c) roll out, roll in	
d) none of the me	ntioned
Answer: c	
Explanation: Non	e.
10. If binding is d	one at assembly or load
time, then the pro	ocess be moved to
different location	s after being swapped out
and in again.	
a) can	
b) must	
c) can never	
d) may	

Answer: c
Explanation: None.
11. In a system that does not support
swapping
a) the compiler normally binds symbolic
addresses (variables) to relocatable addresses
b) the compiler normally binds symbolic
addresses to physical addresses
c) the loader binds relocatable addresses to
physical addresses
d) binding of symbolic addresses to physical
addresses normally takes place during
execution
Answer: a
Explanation: None.
12. Which of the following is TRUE?
a) Overlays are used to increase the size of
physical memory
b) Overlays are used to increase the logical
address space
c) When overlays are used, the size of a
process is not limited to the size of the
physical memory
d) Overlays are used whenever the physical
address space is smaller than the logical
address space
Answer: c
Explanation: None.
1. The address generated by the CPU is
referred to as

- a) Physical address b) Logical address c) Neither physical nor logical d) None of the mentioned Answer: b Explanation: None. 2. The address loaded into the memory address register of the memory is referred to as a) Physical address b) Logical address c) Neither physical nor logical d) None of the mentioned Answer: a Explanation: None. 3. The run time mapping from virtual to physical addresses is done by a hardware device called the a) Virtual to physical mapper b) Memory management unit c) Memory mapping unit d) None of the mentioned Answer: b Explanation: None. 4. The base register is also known as the a) basic register b) regular register c) relocation register
- d) delocation register

Answer: c	
Explanation: None.	
5. The size of a process is limited to the size	
of	
a) physical memory	
b) external storage	
c) secondary storage	
d) none of the mentioned	
Answer: a	
Explanation: None.	
6. If execution time binding is being used,	
then a process be swapped to a	
different memory space.	
a) has to be	
b) can never	
c) must	
d) may	
Answer: d	
Explanation: None.	
7. Swapping requires a	
a) motherboard	
b) keyboard	
c) monitor	
d) backing store	
Answer: d	
Explanation: None.	
8. The backing store is generally a	

a) fast disk

b) disk large enough to accommodate copies	
of all memory images for all users	
c) disk to provide direct access to the memory	
images	
d) all of the mentioned	
Answer: d	
Explanation: None.	
9. The consists of all processes	
whose memory images are in the backing	
store or in memory and are ready to run.	
a) wait queue	
b) ready queue	
c) cpu	
d) secondary storage	
Answer: b	
Explanation: None.	
10. The time in a swap out of a	
running process and swap in of a new process	
into the memory is very high.	
a) context – switch	
b) waiting	
c) execution	
d) all of the mentioned	
Answer: a	
Explanation: None.	
11. The major part of swap time is	
time.	
a) waiting	
b) transfer	
c) execution	

d) none of the mentioned
Answer: b
Explanation: None.
12. Swapping be done when a
process has pending I/O, or has to execute I/O
operations only into operating system buffers.
a) must
b) can
c) must never
d) maybe
Answer: c
Explanation: None.
13. Swap space is allocated
a) as a chunk of disk
b) separate from a file system
c) into a file system
d) all of the mentioned
Answer: a
Explanation: None.
1. CPU fetches the instruction from memory
according to the value of
a) program counter
b) status register
c) instruction register
d) program status word
Answer: a
Explanation: None.
2. A memory buffer used to accommodate a
speed differential is called
a) stack pointer

b) cache c) accumulator d) disk buffer Answer: b Explanation: None. 3. Which one of the following is the address generated by CPU? a) physical address b) absolute address c) logical address d) none of the mentioned Answer: c Explanation: None. 4. Run time mapping from virtual to physical address is done by a) Memory management unit b) CPU c) PCI d) None of the mentioned Answer: a Explanation: None. 5. Memory management technique in which system stores and retrieves data from secondary storage for use in main memory is called? a) fragmentation b) paging c) mapping d) none of the mentioned Answer: b

Explanation: None.
6. The address of a page table in memory is
pointed by
a) stack pointer
b) page table base register
c) page register
d) program counter
Answer: b
Explanation: None.
7. Program always deals with
a) logical address
b) absolute address
c) physical address
d) relative address
Answer: a
Explanation: None.
8. The page table contains
a) base address of each page in physical
memory
b) page offset
c) page size
d) none of the mentioned
Answer: a
Explanation: None.
9. What is compaction?
a) a technique for overcoming internal
fragmentation
b) a paging technique
c) a technique for overcoming external
fragmentation

d) a technique for overcoming fatal error Answer: c Explanation: None. 10. Operating System maintains the page
table for
a) each process
b) each thread
c) each instruction
d) each address
Answer: a
Explanation: None.
1. The main memory accommodates
a) operating system
b) cpu
c) user processes
d) all of the mentioned
Answer: a
Explanation: None.
2. What is the operating system?
a) in the low memory
b) in the high memory
c) either low or high memory (depending on
the location of interrupt vector)
d) none of the mentioned
Answer: c
Explanation: None.
3. In contiguous memory allocation

- a) each process is contained in a single contiguous section of memory
- b) all processes are contained in a single contiguous section of memory
- c) the memory space is contiguous
- d) none of the mentioned

Answer: a

Explanation: None.

4. The relocation register helps in

- a) providing more address space to processes
- b) a different address space to processes
- c) to protect the address spaces of processes
- d) none of the mentioned

Answer: c

Explanation: None.

5. With relocation and limit registers, each logical address must be _____ the limit

register.

- a) less than
- b) equal to
- c) greater than
- d) none of the mentioned

Answer: a

Explanation: None.

6. The operating system and the other processes are protected from being modified by an already running process because

a) they are in different memory spaces

b) they are in different logical addresses c) they have a protection algorithm d) every address generated by the CPU is being checked against the relocation and limit registers Answer: d Explanation: None. 7. Transient operating system code is code that a) is not easily accessible b) comes and goes as needed c) stays in the memory always d) never enters the memory space Answer: b Explanation: None. 8. Using transient code, _____ the size of the operating system during program execution. a) increases b) decreases c) changes d) maintains Answer: c Explanation: None.

9. When memory is divided into several fixed

sized partitions, each partition may contain

- a) exactly one process
- b) at least one process
- c) multiple processes at once

d) none of the mentioned Answer: a Explanation: None. 10. In fixed size partition, the degree of multiprogramming is bounded by
a) the number of partitions
b) the CPU utilization
c) the memory size
d) all of the mentioned
Answer: a
Explanation: None
11. The first fit, best fit and worst fit are
strategies to select a
a) process from a queue to put in memory
b) processor to run the next process
c) free hole from a set of available holes
d) all of the mentioned
Answer: c
Explanation: None.
1. In internal fragmentation, memory is
internal to a partition and
a) is being used
b) is not being used
c) is always used
d) none of the mentioned
Answer: b
Explanation: None.
2. A solution to the problem of external
fragmentation is

a) compaction b) larger memory space c) smaller memory space d) none of the mentioned Answer: a Explanation: None. 3. Another solution to the problem of external fragmentation problem is to _____ a) permit the logical address space of a process to be noncontiguous b) permit smaller processes to be allocated memory at last c) permit larger processes to be allocated memory at last d) all of the mentioned Answer: a Explanation: None. 4. If relocation is static and is done at assembly or load time, compaction a) cannot be done b) must be done c) must not be done d) can be done Answer: a Explanation: None. 5. The disadvantage of moving all process to one end of memory and all holes to the other direction, producing one large hole of

available memory is _____

a) the cost incurred b) the memory used c) the CPU used d) all of the mentioned Answer: a Explanation: None. 6. _____ is generally faster than _____ and ____ a) first fit, best fit, worst fit b) best fit, first fit, worst fit c) worst fit, best fit, first fit d) none of the mentioned Answer: a Explanation: None. 7. External fragmentation exists when? a) enough total memory exists to satisfy a request but it is not contiguous b) the total memory is insufficient to satisfy a request c) a request cannot be satisfied even when the total memory is free d) none of the mentioned Answer: a Explanation: None. 8. External fragmentation will not occur when? a) first fit is used b) best fit is used c) worst fit is used d) no matter which algorithm is used, it will

always occur
Answer: d
Explanation: None.
9. Sometimes the overhead of keeping track
of a hole might be
a) larger than the memory
b) larger than the hole itself
c) very small
d) all of the mentioned
Answer: b
Explanation: None.
10. When the memory allocated to a process
is slightly larger than the process, then
a) internal fragmentation occurs
b) external fragmentation occurs
c) both internal and external fragmentation
occurs
d) neither internal nor external fragmentation
occurs
Answer: a
Explanation: None.
1. Physical memory is broken into fixed-sized
blocks called
a) frames
b) pages
c) backing store
d) none of the mentioned
Answer: a
Explanation: None.

2. Logical memory is broken into blocks of	
the same size called	
a) frames	
b) pages	
c) backing store	
d) none of the mentioned	
Answer: b	
Explanation: None.	
3. Every address generated by the CPU is	
divided into two parts. They are	
a) frame bit & page number	
b) page number & page offset	
c) page offset & frame bit	
d) frame offset & page offset	
Answer: b	
Explanation: None.	
4. The is used as an index into	
the page table.	
a) frame bit	
b) page number	
c) page offset	
d) frame offset	
Answer: b	
Explanation: None.	
5. The table contains the base address	
of each page in physical memory.	
a) process	
b) memory	
c) page	

d) frame		
Answer: c		
Explanation: None		
6. The size of a page is typically		
a) varied		
b) power of 2		
c) power of 4		
d) none of the mentioned		
Answer: b		
Explanation: None.		
7. If the size of logical address space is 2 to		
the power of m, and a page size is 2 to the		
power of n addressing units, then the high		
order bits of a logical address		
designate the page number, and the low		
order bits designate the page offset.		
a) m, n		
b) n, m		
c) m – n, m		
d) m – n, n		
Answer: d		
Explanation: None.		
8. With paging there is no		
fragmentation.		
a) internal		
b) external		
c) either type of		
d) none of the mentioned		

Answer: b
Explanation: None.
9. The operating system maintains a
table that keeps track of how many frames
have been allocated, how many are there, and
how many are available.
a) page
b) mapping
c) frame
d) memory
Answer: c
Explanation: None.
10. Paging increases the time.
a) waiting
b) execution
c) context – switch
d) all of the mentioned
Answer: c
Explanation: None.
11. Smaller page tables are implemented as a
set of
a) queues
b) stacks
c) counters
d) registers
Answer: d
Explanation: None.
12. The page table registers should be built
with
a) very low speed logic

b) very high speed logic
c) a large memory space
d) none of the mentioned
Answer: b
Explanation: None.
13. For larger page tables, they are kept in
main memory and a points to the
page table.
a) page table base register
b) page table base pointer
c) page table register pointer
d) page table base
Answer: a
Explanation: None.
14. For every process there is a
a) page table
b) copy of page table
c) pointer to page table
d) all of the mentioned
Answer: a
Explanation: None.
15. Time taken in memory access through
PTBR is
a) extended by a factor of 3
b) extended by a factor of 2
c) slowed by a factor of 3
d) slowed by a factor of 2
Answer: d
Explanation: None.

1. Each entry in a translation lookaside buffer
(TLB) consists of
a) key
b) value
c) bit value
d) constant
Answer: a
Explanation: None.
2. If a page number is not found in the TLB,
then it is known as a
a) TLB miss
b) Buffer miss
c) TLB hit
d) All of the mentioned
Answer: a
Explanation: None.
3. An uniquely identifies processes
and is used to provide address space
protection for that process.
a) address space locator
b) address space identifier
c) address process identifier
d) none of the mentioned
Answer: b
Explanation: None.
4. The percentage of times a page number is
found in the TLB is known as
a) miss ratio
b) hit ratio
c) miss percent

d) none of the mentioned
Answer: b
Explanation: None.
5. Memory protection in a paged environment
is accomplished by
a) protection algorithm with each page
b) restricted access rights to users
c) restriction on page visibility
d) protection bit with each page
Answer: d
Explanation: None.
6. When the valid – invalid bit is set to valid,
it means that the associated page
a) is in the TLB
b) has data in it
c) is in the process's logical address space
d) is the system's physical address space
Answer: c
Explanation: None.
7. Illegal addresses are trapped using the
bit.
a) error
b) protection
c) valid – invalid
d) access
Answer: c
Explanation: None.
8. When there is a large logical address space,
the best way of paging would be

a) not to page

- b) a two level paging algorithm
- c) the page table itself
- d) all of the mentioned

Answer: b

Explanation: None.

- 9. In a paged memory, the page hit ratio is 0.35. The required to access a page in secondary memory is equal to 100 ns. The time required to access a page in primary memory is 10 ns. The average time required to access a page is?
- a) 3.0 ns
- b) 68.0 ns
- c) 68.5 ns
- d) 78.5 ns

Answer: c

essential

Explanation: None.

10. To obtain better memory utilization, dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. For implementing dynamic loading

a) special support from hardware is requiredb) special support from operating system is

c) special support from both hardware and operating system is essential

d) user programs can implement dynamic

loading without any special support from
hardware or operating system
Answer: d
Explanation: None.
11. In paged memory systems, if the page size
is increased, then the internal fragmentation
generally
a) becomes less
b) becomes more
c) remains constant
d) none of the mentioned
Answer: b
Explanation: None.
1. Because of virtual memory, the memory
can be shared among
a) processes
b) threads
c) instructions
d) none of the mentioned
Answer: a
Explanation: None.
2 is the concept in which a process is
copied into the main memory from the
secondary memory according to the
requirement.
a) Paging
b) Demand paging
c) Segmentation
d) Swapping
Answer: b

Explanation: None.
3. The pager concerns with the
a) individual page of a process
b) entire process
c) entire thread
d) first page of a process
Answer: a
Explanation: None.
4. Swap space exists in
a) primary memory
b) secondary memory
c) cpu
d) none of the mentioned
Answer: b
Explanation: None.
5. When a program tries to access a page that
is mapped in address space but not loaded in
physical memory, then
a) segmentation fault occurs
b) fatal error occurs
c) page fault occurs
d) no error occurs
Answer: c
Explanation: None.
6. Effective access time is directly
proportional to
a) page-fault rate

b) hit ratio

c) memory access time d) none of the mentioned Answer: a Explanation: None. 7. In FIFO page replacement algorithm, when a page must be replaced _____ a) oldest page is chosen b) newest page is chosen c) random page is chosen d) none of the mentioned Answer: a Explanation: None. 8. Which algorithm chooses the page that has not been used for the longest period of time whenever the page required to be replaced? a) first in first out algorithm b) additional reference bit algorithm c) least recently used algorithm d) counting based page replacement algorithm Answer: c Explanation: None. 9. A process is thrashing if ____ a) it is spending more time paging than executing b) it is spending less time paging than executing c) page fault occurs d) swapping can not take place Answer: a

Explanation: None.
10. Working set model for page replacement
is based on the assumption of
a) modularity
b) locality
c) globalization
d) random access
Answer: b
Explanation: None.
1. Virtual memory allows
a) execution of a process that may not be
completely in memory
b) a program to be smaller than the physical
memory
c) a program to be larger than the secondary
storage
d) execution of a process without being in
physical memory
Answer: a
Explanation: None.
2. The instruction being executed, must be in
a) physical memory
b) logical memory
c) physical & logical memory
d) none of the mentioned
Answer: a
Explanation: None.
3. Error handler codes, to handle unusual
errors are

a) almost never executed
b) executed very often
c) executed periodically
d) none of the mentioned
Answer: a
Explanation: None.
4. The ability to execute a program that is
only partially in memory has benefits like
a) The amount of physical memory cannot
put a constraint on the program
b) Programs for an extremely large virtual
space can be created
c) Throughput increases
d) All of the mentioned
Answer: d
Explanation: None.
5. In virtual memory. the programmer
of overlays.
a) has to take care
b) does not have to take care
c) all of the mentioned
d) none of the mentioned
Answer: b
Explanation: None.
6. Virtual memory is normally implemented
by
a) demand paging
b) buses
c) virtualization

d) all of the mentioned
Answer: a
Explanation: None.
7. Segment replacement algorithms are more
complex than page replacement algorithms
because
a) Segments are better than pages
b) Pages are better than segments
c) Segments have variable sizes
d) Segments have fixed sizes
Answer: c
Explanation: None.
8. A swapper manipulates
whereas the pager is concerned with
individual of a process.
a) the entire process, parts
b) all the pages of a process, segments
c) the entire process, pages
d) none of the mentioned
Answer: c
Explanation: None.
9. Using a pager
a) increases the swap time
b) decreases the swap time
c) decreases the swap time & amount of
physical memory needed
d) increases the amount of physical memory
needed
Answer: c
Explanation: None.

- 10. The valid invalid bit, in this case, when valid indicates?
 a) the page is not legal
 b) the page is illegal
 c) the page is in memory
 d) the page is not in memory
- d) the page is not in memory

Answer: c

Explanation: None.

- 11. A page fault occurs when?
- a) a page gives inconsistent data
- b) a page cannot be accessed due to its absence from memory
- c) a page is invisible
- d) all of the mentioned

Answer: b

Explanation: None.

- 12. When a page fault occurs, the state of the interrupted process is _____
- a) disrupted
- b) invalid
- c) saved
- d) none of the mentioned

Answer: c

Explanation: None.

- 13. When a process begins execution with no pages in memory?
- a) process execution becomes impossible
- b) a page fault occurs for every page brought into memory
- c) process causes system crash

d) none of the mentioned

Answer: b

Explanation: None.

14. If the memory access time is denoted by 'ma' and 'p' is the probability of a page fault $(0 \le p \le 1)$. Then the effective access time for a demand paged memory is

d) none of the mentioned

Answer: c

Explanation: None.

15. When the page fault rate is low

d) turnaround time & effective access time increases

Answer: c

Explanation: None.

16. Locality of reference implies that the page reference being made by a process

a) p x ma + (1-p) x page fault time

b) ma + page fault time

c) (1-p) x ma + p x page fault time

a) the turnaround time increases

b) the effective access time increases

c) the effective access time decreases

a) will always be to the page used in the previous page reference

b) is likely to be one of the pages used in the

last few page references c) will always be one of the pages existing in memory d) will always lead to page faults Answer: b Explanation: None. 1. Which of the following page replacement algorithms suffers from Belady's Anomaly? a) Optimal replacement b) LRU c) FIFO d) Both optimal replacement and FIFO Answer: c Explanation: None. 2. A process refers to 5 pages, A, B, C, D, E in the order: A, B, C, D, A, B, E, A, B, C, D, E. If the page replacement algorithm is FIFO, the number of page transfers with an empty internal store of 3 frames is? a) 8 b) 10 c) 9 d) 7 Answer: c Explanation: None. 3. In question 2, if the number of page frames is increased to 4, then the number of page transfers a) decreases

b) increases

- c) remains the same
- d) none of the mentioned

Answer: b

Explanation: None.

- 4. A memory page containing a heavily used variable that was initialized very early and is in constant use is removed, then the page replacement algorithm used is _____
- a) LRU
- b) LFU
- c) FIFO
- d) None of the mentioned

Answer: c

Explanation: None.

- 5. A virtual memory system uses First In First Out (FIFO) page replacement policy and allocates a fixed number of frames to a process. Consider the following statements.
- P: Increasing the number of page frames allocated to a process sometimes increases the page fault rate
- Q : Some programs do not exhibit locality of reference

Which of the following is TRUE?

- a) Both P and Q are true, and Q is the reason for P
- b) Both P and Q are true, but Q is not the reason for P
- c) P is false but Q is true

d) Both P and Q are false
Answer: c
Explanation: None.
6. Users that their processes are
running on a paged system.
a) are aware
b) are unaware
c) may unaware
d) none of the mentioned
Answer: b
Explanation: None.
7. If no frames are free, page
transfer(s) is/are required.
a) one
b) two
c) three
d) four
Answer: b
Explanation: None.
8. When a page is selected for replacement,
and its modify bit is set
a) the page is clean
b) the page has been modified since it was
read in from the disk
c) the page is dirty
d) the page has been modified since it was
read in from the disk & page is dirty
Answer: d
Explanation: None.
9. The aim of creating page replacement

algorithms is to
a) replace pages faster
b) increase the page fault rate
c) decrease the page fault rate
d) to allocate multiple pages to processes
Answer: c
Explanation: None.
10. A FIFO replacement algorithm associates
with each page the
a) time it was brought into memory
b) size of the page in memory
c) page after and before it
d) all of the mentioned
Answer: a
Explanation: None.
11. What is the Optimal page – replacement
algorithm?
a) Replace the page that has not been used for
a long time
b) Replace the page that has been used for a
long time
c) Replace the page that will not be used for a
long time
d) None of the mentioned
Answer: c
Explanation: None.
12. Optimal page – replacement algorithm is
difficult to implement, because
a) it requires a lot of information

- b) it requires future knowledge of the reference string
- c) it is too complex
- d) it is extremely expensive

Answer: b

Explanation: None.

- 13. LRU page replacement algorithm associates with each page the _____
- a) time it was brought into memory
- b) the time of that page's last use
- c) page after and before it
- d) all of the mentioned

Answer: b

Explanation: None.

14. For 3 page frames, the following is the reference string:

70120304230321201701

How many page faults does the LRU page replacement algorithm produce?

- a) 10
- b) 15
- c) 11
- d) 12

Answer: d

Explanation: None.

15. What are the two methods of the LRU page replacement policy that can be implemented in hardware?

a) Counters

b) RAM & Registers
c) Stack & Counters
d) Registers
Answer: c
Explanation: None.
1. When using counters to implement LRU, we replace the page with the ______
a) smallest time value
b) largest time value
c) greatest size
d) none of the mentioned
Answer: a
Explanation: Whenever a reference to a pais made, the contents of the clock register a copied into the time-of-use field in the page

Explanation: Whenever a reference to a page is made, the contents of the clock register are copied into the time-of-use field in the page-table entry for that page. In this way, we always have the time of the last reference to each page.

- 2. In the stack implementation of the LRU algorithm, a stack can be maintained in a manner _____
- a) whenever a page is used, it is removed from the stack and put on bottom
- b) the bottom of the stack is the LRU page
- c) the top of the stack contains the LRU page and all new pages are added to the top
- d) none of the mentioned

Answer: b

Explanation: None.

3. There is a set of page replacement

algorithms that can never exhibit Belady's
Anomaly, called
a) queue algorithms
b) stack algorithms
c) string algorithms
d) none of the mentioned
Answer: b
Explanation: None.
4. Applying the LRU page replacement to the
following reference string.
12452124
The main memory can accommodate 3 pages
and it already has pages 1 and 2. Page 1 came
in before page 2.
How many page faults will occur?
a) 2
b) 3
c) 4
d) 5
Answer: c
Explanation: None.
5. Increasing the RAM of a computer
typically improves performance because
a) Virtual memory increases
b) Larger RAMs are faster
c) Fewer page faults occur

Answer: c

Explanation: None.

d) None of the mentioned

- 6. The essential content(s) in each entry of a page table is/are _____
- a) Virtual page number
- b) Page frame number
- c) Both virtual page number and page frame

number

d) Access right information

Answer: b

Explanation: None.

7. The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by

- a) the instruction set architecture
- b) page size
- c) physical memory size
- d) number of processes in memory

Answer: a

Explanation: None.

- 8. What is the reason for using the LFU page replacement algorithm?
- a) an actively used page should have a large reference count
- b) a less used page has more chances to be used again
- c) it is extremely efficient and optimal
- d) all of the mentioned

Answer: a

Explanation: None.

9. What is the reason for using the MFU page replacement algorithm? a) an actively used page should have a large reference count b) a less used page has more chances to be used again c) it is extremely efficient and optimal d) all of the mentioned Answer: b Explanation: None. 10. The implementation of the LFU and the MFU algorithm is very uncommon because a) they are too complicated b) they are optimal c) they are expensive d) all of the mentioned Answer: c Explanation: None. 1. In segmentation, each address is specified by ____ a) a segment number & offset b) an offset & value c) a value & segment number d) a key & value Answer: a Explanation: None. 2. In paging the user provides only _____ which is partitioned by the hardware into _____ and ____

- a) one address, page number, offset
- b) one offset, page number, address
- c) page number, offset, address
- d) none of the mentioned

Answer: a

Explanation: None.

3. Each entry in a segment table has a

- a) segment base
- b) segment peak
- c) segment value
- d) none of the mentioned

Answer: a

Explanation: None.

4. The segment base contains the

- a) starting logical address of the process
- b) starting physical address of the segment in memory
- c) segment length
- d) none of the mentioned

Answer: b

Explanation: None.

5. The segment limit contains the

a) starting logical address of the process

- b) starting physical address of the segment in memory
- c) segment length

d) none of the mentioned
Answer: c
Explanation: None.
6. The offset 'd' of the logical address must
be
a) greater than segment limit
b) between 0 and segment limit
c) between 0 and the segment number
d) greater than the segment number
Answer: b
Explanation: None.
7. If the offset is legal
a) it is used as a physical memory address
itself
b) it is subtracted from the segment base to
produce the physical memory address
c) it is added to the segment base to produce
the physical memory address
d) none of the mentioned
Answer: a
Explanation: None.
8. When the entries in the segment tables of
two different processes point to the same
physical location
a) the segments are invalid
b) the processes get blocked
c) segments are shared
d) all of the mentioned
Answer: c
Explanation: None.

9. The protection bit is 0/1 based on

- a) write only
- b) read only
- c) read write
- d) none of the mentioned

Answer: c

Explanation: None.

10. If there are 32 segments, each of size1Kb, then the logical address should have

- a) 13 bits
- b) 14 bits
- c) 15 bits
- d) 16 bits

Answer: a

Explanation: To specify a particular segment, 5 bits are required. To select a particular byte after selecting a page, 10 more bits are required. Hence 15 bits are required.

11. Consider a computer with 8 Mbytes of main memory and a 128K cache. The cache block size is 4 K. It uses a direct mapping scheme for cache management. How many different main memory blocks can map onto a given physical cache block?

- a) 2048
- b) 256
- c) 64
- d) 8

Answer: c Explanation: None. 12. A multilevel page table is preferred in comparison to a single level page table for translating virtual address to physical address because a) it reduces the memory access time to read or write a memory location b) it helps to reduce the size of page table needed to implement the virtual address space of a process c) it is required by the translation lookaside

- buffer
- d) it helps to reduce the number of page faults in page replacement algorithms