Computer Vision

Naeemullah Khan

naeemullah.khan@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

KAUST Academy King Abdullah University of Science and Technology

January 07, 2024

Image Classification

- Previously, we discussed Image Classification
- ► A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

→ cat

Computer Vision Tasks

3 / 47

Things and Stuff

- Things: Object categories that can be separated into object instances (e.g. cats, cars, person)
- Stuff: Object categories that cannot be separated into instances (e.g. sky, grass, water, trees)

Computer Vision Tasks

Object Detection: Detects individual object instances, but only gives box(Only things!)

Semantic Segmentation:
Gives per-pixel labels, but
merges instances (Both things
and stuff)

5 / 47

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.

At test time, classify each pixel of a new image.

Full image

Full image

- Impossible to classify without context
- How do we include context?

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window (cont.)

reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

10 / 47

KAUST Academy Computer Vision January 07, 2024

Semantic Segmentation Idea: Convolution

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Semantic Segmentation Idea: Convolution (cont.)

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

Semantic Segmentation Idea: Fully Convolutional

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

Semantic Segmentation Idea: Fully Convolutional (cont.)

Semantic Segmentation Idea: Fully Convolutional (cont.)

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

KAUST Academy

Semantic Segmentation Idea: Fully Convolutional (cont.)

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network Upsampling: Unpooling

In-Network Upsampling: Max Unpooling

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Learnable Upsampling: Transposed Convolution (cont.)

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output

We can interpret strided convolution as "learnable downsampling".

3 x 3 transposed convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

Learnable Upsampling: Transposed Convolution (cont.)

3 x 3 transposed convolution, stride 2 pad 1

Transposed Convolution: 1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res: High-res: D₁ x H/2 x W/2 D₁ x H/2 x W/2

Upsampling: Unpooling or strided transposed convolution

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Label each pixel in the image with a category label

Label each pixel in the image with a category label

Does not differentiate instances, only care about pixels

Detect all objects in the image, and identify the pixels that belong to each object (Only things!)

Instance Segmentation

- Detect all objects in the image, and identify the pixels that belong to each object (Only things!)
- Approach: Perform object detection, then predict a segmentation mask for each object!

Object Detection: Faster R-CNN

Instance Segmentation: Mask R-CNN

Instance Segmentation: Mask R-CNN

each of C classes: C x 28 x 28

Mask R-CNN: Example Training Targets

Mask R-CNN: Very Good Results!

Beyond Instance Segmentation: Panoptic Segmentation

- Label all pixels in the image (both things and stuff)
- ► For "thing" categories also separate into instances

Beyond Instance Segmentation: Panoptic Segmentation

37 / 47

KAUST Academy Somputer Vision January 07, 2024

Beyond Instance Segmentation: Human Keypoints

- Represent the pose of a human by locating a set of keypoint se.g. 17 keypoints:
- ► Nose
- Left / Right eye
- Left / Right earLeft / Right shoulder
- Left / Right elbow
- Left / Right wrist

Mask R-CNN: Keypoint Estimation

Mask R-CNN: Keypoint Estimation

Joint of "March D. CNINE" ICCU 2017

Ground-truth has one "pixel" turned c per keypoint. Train with softmax loss

Joint Instance Segmentation and Pose Estimation

Captioning: Predict a caption per region!

Captioning: Predict a caption per region!

43 / 47

Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

3D Shape Prediction

3D Shape Prediction

45 / 47

Mask R-CNN: 2D Image -> 2D shapes

Mesh R-CNN: 2D Image -> **3D** shapes

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Object Tracking

- ► Goal: Track objects over a sequence of photos or a video
- Exceedingly challenging in multi-object tracking scenarios
- Need to take care of not mixing up or losing objects midway
- ▶ One Solution: Perform object detection and assign IDs to each object and store its feature vector. Then track the objects based on its ID and feature vector

Object Tracking

Figure 2: Comparison of 3 approaches for object tracking

<u>Danelljan et al.</u>

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□

References

These slides have been adapted from

- ► Fei-Fei Li, Yunzhu Li & Ruohan Gao, Stanford CS231n: <u>Deep Learning for Computer Vision</u>
- Assaf Shocher, Shai Bagon, Meirav Galun & Tali Dekel, WAIC DL4CV <u>Deep Learning for Computer Vision:</u> <u>Fundamentals and Applications</u>
- Justin Johnson, UMich EECS 498.008/598.008: <u>Deep Learning</u> for <u>Computer Vision</u>