绪论

工业机器人典型作业系统组成:机器人本体、控制柜、示教 盒、系统软件、夹具/抓手、外传感器(如视觉、力觉)、外 围设备

■ 机器人闭环控制系统

■ 机器人学知识体系:基础理论、基本方法I、基本方法II

空间描述与变换

$$\begin{split} & \boldsymbol{R}_x(\varphi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\varphi} & -s_{\varphi} \\ 0 & s_{\varphi} & c_{\varphi} \end{bmatrix} \, \boldsymbol{R}_y(\varphi) = \begin{bmatrix} c_{\varphi} & 0 & s_{\varphi} \\ 0 & 1 & 0 \\ -s_{\varphi} & 0 & c_{\varphi} \end{bmatrix} \\ & \boldsymbol{R}_z(\varphi) = \begin{bmatrix} c_{\varphi} & -s_{\varphi} & 0 \\ s_{\varphi} & c_{\varphi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \, \text{动轴欧拉角从左往右乘} \end{split}$$

齐次变换:
$$\begin{bmatrix} {}^{A}\boldsymbol{p}_{a} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}\boldsymbol{R}_{B} & {}^{A}\boldsymbol{p}_{ab} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}\boldsymbol{p}_{b} \\ 1 \end{bmatrix}$$

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}, T^{-1} = \begin{bmatrix} R^T & -R^Tp \\ 0 & 1 \end{bmatrix}$$

a-b-a型欧拉角的奇异条件: $\beta=0,\pi$, a-b-c型欧拉角的奇异 条件: $\beta = \pm \frac{\pi}{2}$

$$^{a}\omega_{2}={}^{a}R_{2}\cdot{}^{2}\omega_{2},\ ^{a}\omega_{3}={}^{a}R_{3}\cdot{}^{3}\omega_{3}$$

小角度近似: $\sin(\varphi)\approx\varphi$, 三轴的欧拉角速度近似为姿态角速

机器人正/逆运动学建模及求解

关节位置: $q = [q_1 \ q_2 \ ... \ q_n]^T$, 旋转关节: 旋转角度 θ_i ; 移动 关节: 平移位移 d_i

关节速度: $\dot{q} = \begin{bmatrix} \dot{q}_1 & \dot{q}_2 & \dots & \dot{q}_n \end{bmatrix}^T$

末端位姿: $X_e = \begin{bmatrix} x_e & y_e & z_e & \alpha_e & \beta_e & \gamma_e \end{bmatrix}^T$

末端速度: $\dot{x}_e = \begin{bmatrix} v_e^T & \omega_e^T \end{bmatrix}^T = \begin{bmatrix} v_{ex} & v_{ey} & v_{ez} & \omega_{ex} & \omega_{ey} & \omega_{ez} \end{bmatrix}^T$

位置级正运动学:根据关节位置计算机械臂末端位姿 X_c =

位置级逆运动学:根据机械臂末端位姿计算关节位置q= $ikine(X_e)$

一般 6R 机械臂的逆运动学解的个数: 最多有 16 组解

6R 机械臂具有解析解(封闭解)的两个充分条件: 三个相邻 关节轴交于一点、三个相邻关节轴相互平行

D-H 坐标系的建立:

基座坐标系 $\{x_0y_0z_0\}$: 以基座上感兴趣的位置为 o_0 、关节 1轴为 z_0

中间杆件坐标系 $\{x_iy_iz_i\}$:

▶ z_i: 关节i+1轴线

 \triangleright o_i : 若 z_i 和 z_{i-1} 异面,以 D_i 为原点; 若相交,则交点为原点; 若平行,以C_{i+1}为原点。

 $\triangleright x_i$: 若 z_i 和 $z_{i,1}$ 异面或平行,为公垂线 I_i

▶ y_{ii} 根据右手定则建立

末端坐标系 $x_n y_n z_n$: 以末端感兴趣的位置为 o_n , $z_{n-1} \to z_n$, 当 z_{n-1} 轴沿臂展方向时, x_n 轴垂直于臂展方向,当 z_{n-1} 轴垂 直于臂展方向时, x_n 轴沿臂展方向

D-H 参数表示:

 a_i : 从 z_{i-1} 轴和 x_i 轴的交点到第i坐标系原点沿 x_i 轴的偏置距

 α_i : $\Re x_i$ 轴由 z_{i-1} 轴转向 z_i 轴的偏角;

 d_i : 从第(i-1)坐标系的原点到 z_{i-1} 轴和 x_i 轴的交点沿 z_{i-1} 轴 的距离:

 θ_i : 绕 z_{i-1} 轴由 x_{i-1} 转向 x_i 轴的关节角

相邻连杆坐标间的位姿关系:

$$i{ extstyle -1}m{T}_i = egin{bmatrix} c heta_i & -s heta_i clpha_i & s heta_i slpha_i & a_i c heta_i \ s heta_i & c heta_i clpha_i & -c heta_i slpha_i & a_i s heta_i \ 0 & slpha_i & clpha_i & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

微分运动学、奇异分析与性能评价

微分运动学方程: $\dot{x_e} = \left[egin{array}{c} v_e \\ \omega_e \end{array}
ight] = \left[egin{array}{c} J_v(q) \\ J_{\omega}(q) \end{array}
ight] \dot{q} = J(q)\dot{q}, \ J(q) \in$ $\mathfrak{R}^{6 \times n}$ 为n自由度机械臂的速度雅可比矩阵,建立了从关节速 度到末端线速度和角速度的映射关系。

平面
$$2R$$
 机械臂 $\begin{bmatrix} \dot{p}_{ex} \\ \dot{p}_{ey} \\ \dot{\Psi}_{e} \end{bmatrix} = \begin{bmatrix} -l_1s_1 - l_2s_{12} & -l_2s_{12} \\ l_1c_1 + l_2c_{12} & l_2c_{12} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$

空间 3R 肘机械臂的雅可比矩阵:

$${}^{0}\boldsymbol{J}(\boldsymbol{q}) = \begin{bmatrix} -s_{1}(a_{2}c_{2} + a_{3}c_{23}) & -c_{1}(a_{2}s_{2} + a_{3}s_{23}) & -a_{3}c_{1}s_{23} \\ c_{1}(a_{2}c_{2} + a_{3}c_{23}) & -s_{1}(a_{2}s_{2} + a_{3}s_{23}) & -a_{3}s_{1}s_{23} \\ 0 & -(a_{2}c_{2} + a_{3}c_{23}) & -a_{3}c_{23} \\ 0 & -s_{1} & -s_{1} \\ 0 & c_{1} & c_{1} \\ 1 & 0 & 0 \end{bmatrix}$$

$${}^{0}\boldsymbol{J}(\boldsymbol{q}) = \begin{bmatrix} {}^{0}\boldsymbol{R}_{n} & 0 \\ 0 & {}^{0}\boldsymbol{R}_{n} \end{bmatrix}^{n}\boldsymbol{J}(\boldsymbol{q})$$

$${}^{n}\boldsymbol{J}(\boldsymbol{q}) = \begin{bmatrix} {}^{n}\boldsymbol{R}_{0} & 0 \\ 0 & {}^{n}\boldsymbol{R}_{0} \end{bmatrix}^{0}\boldsymbol{J}(\boldsymbol{q})$$

构造法: $% \mathbf{H}$ 雅可比矩阵第 \mathbf{i} 列 $\mathbf{J}_{i}=\left\{egin{bmatrix} egin{bmatrix} eta_{i}^{\epsilon_{i} imes
ho_{i} o n}, \mathbf{i} & \mathbf{E}_{\delta}^{\delta} \mathbf{t} \\ eta_{i}, \mathbf{i} & \mathbf{E}_{\delta}^{\delta} \mathbf{t} \end{bmatrix}, \mathbf{i} & \mathbf{E}_{\delta}^{\delta} \mathbf{t} \\ \mathbf{E}_{i}, \mathbf{i} & \mathbf{E}_{\delta}^{\delta} \mathbf{t} \end{bmatrix}$

节i的运动轴矢量 0 $oldsymbol{\xi}_i$ 和关节i到末端的牵连运动矢量 0 $oldsymbol{
ho}_{i o n}$

奇异: 雅可比矩阵行列式为 0;

3R 肘机械臂奇异: $s_3 = 0$ 或 $a_2c_2 + a_3c_{23} = 0$,分别对应肘部 奇异(边界奇异,末端损失 x_3 沿臂伸展方向的平动自由度)、 肩部奇异(内部奇异,末端损失z3垂直于臂型面 SEW 方向的 平动自由度)

3R 球腕机械臂奇异: $s_2 = 0$,损失了绕矢量 $\pm (z_1 \times z_2)$ 或 $\pm(z_1 imes z_0)$ 方向的转动自由度(垂直于腕部三轴所处的面)

机器人轨迹规划方法

三次多项式插值:

$$q_i(\tau) = a_{i0} + a_{i1}\tau + a_{i2}\tau^2 + a_{i3}\tau^3$$

 $\begin{cases} q_i(v)-q_{i0},q_i(0)=q_{i0} \ q_i(t_f)=q_{if},\dot{q}_i(t_f)=\dot{q}_{if} \end{cases}$,起点、终点速度为 0,四个未知数四个 方程, 五次多项式同理

笛卡尔轨迹生成的途径:途径1:先求逆运动学,再在关节 空间进行规划:途径2:先在笛卡尔空间规划,再求逆运动

笛卡尔轨迹规划:路径参数化、参数时序化、时间归一化 (可选)

直线:

$$\begin{cases} x_t(\lambda) = x_0 + \lambda \left(x_f - x_0\right) \\ y_t(\lambda) = y_0 + \lambda \left(y_f - y_0\right) \text{,} \quad \lambda \in \left[0, 1\right] \\ z_t(\lambda) = z_0 + \lambda \left(z_f - z_0\right) \end{cases}$$

$$\begin{split} \lambda(\tau) &= a_0 + a_1\tau + a_2\tau^2 + a_3\tau^3 \\ \begin{cases} \lambda(0) = 0, \lambda(\tau_f) = 1 \\ \dot{\lambda}(0) = 0, \dot{\lambda}(\tau_f) = 0 \end{cases} \end{split}$$

$$\lambda(\tau) = 3 {\left(\frac{\tau}{\tau_f}\right)}^2 - 2 {\left(\frac{\tau}{\tau_f}\right)}^3$$

$$ar{ au}=rac{ au}{ au_f}, \ \lambda(ar{ au})=3ar{ au}^2-2ar{ au}^3$$

 $\dot{\varphi}(0)=0, \dot{\varphi}(\tau_f)=0$

$$\begin{cases} x_t(\varphi) = c_x + R\cos(\varphi) \\ y_t(\varphi) = c_y + R\sin(\varphi) \end{cases}, \quad \varphi \in \left[\varphi_0, \varphi_f\right]$$

$$\begin{split} \varphi(\tau) &= a_0 + a_1 \tau + a_2 \tau^2 + a_3 \tau^3 \\ \int \varphi(0) &= \varphi_0, \varphi(\tau_f) = \varphi_f \end{split}$$

$$\begin{split} &\lambda = \frac{\varphi - \varphi_0}{\varphi_f - \varphi_0}, \ \lambda \in [0,1] \\ &\bar{\tau} = \frac{\tau}{\tau_f}, \ \lambda(\bar{\tau}) = 3\bar{\tau}^2 - 2\bar{\tau}^3 \end{split}$$

机器人静力学与动力学

机器人静力学: 机器人在关节力/力矩及末端力/力矩同时作 用下处于平衡状态(状态变量不发生变化,如机器人静止) 时,关节力/力矩与末端力/力矩之间的映射关系,称为机器 人的静力学。

力雅可比矩阵: 速度雅可比矩阵的转置

正向静力学方程: $au = J^T F_e$, au为机器人关节驱动力矩, F_e 为机器人末端作用力

◆ 运动学与静力学的对偶关系

- 正运动学:关节空间到任务空间的速度映射
- 正静力学: 任务空间到关节空间的静力映射

运动学与静力学之间存在对偶关系,称为运动-静力对偶性或二元性

机器人动力学方程:

末端与环境接触时,末端操作力为 F_{e} , 环境反作用力 $-F_{e}$, $D(q)\ddot{q} + h(q,\dot{q}) + G(q) = \tau - J^T F_e;$

末端不与环境接触时, $F_e=0$, $D(q)\ddot{q}+h(q,\dot{q})+G(q)=$

D(q)为系统等效惯性矩阵,为正定对称阵,与臂型有关。 $D(q)\ddot{q}$ 为惯性力;

 $h(q,\dot{q})$ 为速度耦合项,即非线性力,包括科氏力和向心力;

G(q)为系统所受重力矩, 仅与臂型相关

拉格朗日动力学方程: $au_i = rac{d}{dt} \left(rac{\partial L}{\partial \dot{x}_i}
ight) - rac{\partial L}{\partial x_i}$

正向动力学:根据受力情况,计算关节运动状态,即

 $(\boldsymbol{\tau}, \boldsymbol{F}_e) \Rightarrow (\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$

逆向动力学:根据关节运动状态情况,计算受力情况,即 $(q, \dot{q}, \ddot{q}, F_e) \Rightarrow \tau$

典型应用框图

机器人控制方法

基于被控对象状态类型的机器人控制方法分类:运动控制、 柔顺控制、视觉控制

◆ 线性解耦控制原理

▶ 控制方程及控制框图

◆控制框图

➢ 采用反馈+前馈补偿的复合控制,控制框图如下图所示。

计算力矩控制属于动力学控制,也是多关节位置控制。

完整的计算力矩补偿: $au_f = D(q_d)\ddot{q}_d + h(q_d,\dot{q}_d) + G(q_d)$

惯性力补偿: $\tau_f = D(q_d)\ddot{q}_d$

近似惯性力补偿: $\tau_f = D_{11}\ddot{q}_{d1} + D_{22}\ddot{q}_{d2} + ... + D_{nn}\ddot{q}_{dn}$

重力补偿: $\tau_f = G(q_d)$

非线性力补偿: $au_f = m{h}(m{q}_d, \dot{m{q}}_d)$

其他补偿:摩擦力、扰动力补偿等

柔顺控制 (Compliance Control): 机器人能够顺应接触环 境的能力被称为柔顺性(compliance),与之对应的控制方式 即为柔顺控制, 又叫顺应控制或依从控制。

基于位置的阻抗(导纳控制)

▶ 控制框图

