Интерференция электромагнитных волн миллиметрового диапазона

Обработка результатов

```
In [30]: import numpy as np
import scipy as ps
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

І. Интерференция в плоскопараллельной пластине

1. Убедимся в справедливости закона Малюса

Для этого будем поворачивать приемник вокруг оси z и измерять интенсивность волны.

```
In [10]: data = pd.read_excel('lab-461.xlsx', 'table1')
    data.head(len(data))
```

Out[10]:

	I, мкВ	alpha	(cos(alpha))**2
0	26	5	0.992404
1	24	10	0.969846
2	21	15	0.933013
3	18	20	0.883022
4	14	25	0.821394
5	10	30	0.750000

Закон Малюса: $I = I_0 cos^2 \alpha$.

```
In [11]: x = data.values[:, 2]
y = data.values[:, 0]

x = np.array(x, dtype=float)
y = np.array(y, dtype=float)
k, b = np.polyfit(x, y, deg=1)
```

```
In [20]: plt.figure(figsize=(12, 6))
plt.grid(linestyle='--')

plt.title('Зависимость $I$ ОТ $cos^2\alpha$', fontweight='bold', fo
ntsize=18)
plt.ylabel('$I$, MKB', fontsize=15)
plt.xlabel('$cos^2\alpha$', fontsize=15)

plt.scatter(x, y)

plt.plot(x, k * x + b)

plt.xlim((0.74, 1))
plt.ylim((5, 30))

plt.legend()
plt.show()
```



```
In [18]: k
```

Out[18]: 65.356040328983184

Видно, что закон Малюса выполняется, при этом $I_0 = 65.356$ мкВ.

2. Определим длину волны λ

Снимем зависимость интенсивности І от координаты х подвижного зеркала.

In [19]: data = pd.read_excel('lab-461.xlsx', 'table2')
 data.head(len(data))

Out[19]:

	I, мкВ	х, дел	
0	33	0	
1	31	50	
2	25	100	
3	4	150	
4	0	200	
5	4	250	
6	16	300	
7	28	350	
8	34	400	
9	32	450	

100 дел = 1 мм

```
In [28]: x = data.values[:, 1] y = data.values[:, 0]

x = np.array(x, dtype=float) y = np.array(y, dtype=float)

plt.figure(figsize=(12, 6)) plt.grid(linestyle='--')

plt.title('Зависимость $i$ ОТ $x$', fontweight='bold', fontsize=18) plt.ylabel('$i$, мкВ', fontsize=15) plt.xlabel('$x$, дел', fontsize=15)

plt.scatter(x, y) plt.plot(x, y)

plt.xlim((-10, 460)) plt.ylim((-1, 35))

plt.legend() plt.show()
```


Из графика находим расстояние Δx между двумя соседними максимумами.

 $\Delta x = 400$ дел = 4 мм

Рассчитаем λ исходя из экспериментальных данных

Разность хода:
$$\Delta = \frac{2d}{cos\theta}$$
, $cos\theta \to 1$ $\Delta = 2d$, $d = \Delta x$ $\lambda = 2\Delta x = 8$ мм

Рассчитаем теоретическое значение λ

$$\lambda = \frac{c}{\nu} = \frac{3 \cdot 10^8}{37 \cdot 10^9} = 8.1 \text{ mm}$$

II. Интерферометр Майкельсона

Перемещая подвижное зеркало, снимем зависимость координаты х зеркала от номера максимума.

```
In [33]: data = pd.read_excel('lab-461.xlsx', 'table3')
    data.head(len(data))
```

Out[33]:

	х, мм	n	
0	3.75	1	
1	7.69	2	
2	11.80	3	
3	15.78	4	
4	19.70	5	
5	23.80	6	

```
In [35]: x = data.values[:, 1]
y = data.values[:, 0]

x = np.array(x, dtype=float)
y = np.array(y, dtype=float)
k, b = np.polyfit(x, y, deg=1)
```

```
In [40]: plt.figure(figsize=(12, 6))
plt.grid(linestyle='--')

plt.title('Зависимость $x$ ОТ $n$', fontweight='bold', fontsize=18)
plt.ylabel('$x$, MM', fontsize=15)
plt.xlabel('$n$', fontsize=15)

plt.scatter(x, y)

plt.plot(x, k * x + b)

plt.xlim((0.5, 6.5))
plt.ylim((3, 25))

plt.legend()
plt.show()
```


In [41]: k

Out[41]: 4.0074285714285702

1. По графику определим длину волны λ

$$2\pi n = \frac{2\pi\Delta}{\lambda}$$
$$\lambda = \frac{\Delta}{n} = k \cdot 2 = 8 \text{ mm}$$

2. Найдем зависимость $I = f(\Delta)$

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$$
$$\phi = k\Delta, k = \frac{2\pi}{\lambda}$$

Снимем зависимость интенсивности сигнала I от координаты x подвижного зеркала в пределах 1ой длины волны.

Out[47]:

	I, мкВ	х, мм	
0	45.0	0.0	
1	38.0	0.5	
2	23.0	1.0	
3	9.0	1.5	
4	5.0	2.0	
5	9.5	2.5	
6	24.0	3.0	
7	35.0	3.5	
8	42.0	4.0	

Убирая поочередно зеркала 3_1 и 3_2, измерим интенсивности каждого из интерферирующих лучей.

$$I_1 = 5$$
 мкВ, $I_2 = 20$ мкВ

Найдем теоретическую зависимость $I=f(\Delta)$

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(2\pi \frac{\Delta}{\lambda})$$
$$I = 25 + 20 \cos(2\pi \frac{\Delta}{\lambda})$$

In [48]: data_exp = pd.read_excel('lab-461.xlsx', 'table5')
 data_exp.head(len(data))

Out[48]:

	delta, мм	I, мкВ
0	0	44.9
1	1	39.0
2	2	24.7
3	3	10.6
4	4	5.0
5	5	11.2
6	6	25.7
7	7	39.7
8	8	44.9

Построим на одном графике экспериментальную (table4) и теоретическую (table5) зависимости $I = f(\Delta)$.

```
In [55]: x th = data th.values[:, 1]
         y th = data th.values[:, 0]
         x_exp = data_exp.values[:, 0]
         y_exp = data_exp.values[:, 1]
         x th = np.array(x th, dtype=float)
         y th = np.array(y th, dtype=float)
         x_exp = np.array(x_exp, dtype=float)
         y_exp = np.array(y_exp, dtype=float)
         plt.figure(figsize=(12, 6))
         plt.grid(linestyle='--')
         plt.title('Зависимость $I$ от $\Delta$', fontweight='bold', fontsiz
         e = 18)
         plt.ylabel('$I$, MKB', fontsize=15)
         plt.xlabel('$\Delta$, MM', fontsize=15)
         plt.scatter(x th * 2, y th, label = 'theoretical')
         plt.scatter(x exp, y exp, label = 'experimental')
         plt.plot(x_th * 2, y_th)
         plt.plot(x_exp, y_exp)
         plt.xlim((0, 8))
         plt.ylim((0, 45))
         plt.legend()
         plt.show()
```


Из графика видно, что теоретическая и экспериментальная зависимости почти совпадают.

3. Рассчитаем показатель преломления тефлона

Если на пути одного из лучей поставить пластинку толщиной d_0 с диэлектрической проницаемостью ε , то разность хода изменится на величину $2d_0(n-1)$, $n=\sqrt{\varepsilon}$.

Пусть в точке приема до внесения пластины наблюдается интерференционный максимум. Для того, чтобы получить тот же максимум при наличии пластинки, нужно зеркало свободного плеча интерферометра (плеча, в котором нет пластинки) отодвинуть на расстояние $\Delta x_0 = d_0(n-1)$.

Определим Δx_0 :

$$\Delta x_0 = 1$$
 mm $n = 1 + \frac{\Delta x_0}{d_0}$, $d_0 = 3.2$ mm $n = 1 + \frac{1}{3.2} = 1.31$

Табличное значение: n = 1.4