Nuclear Engineering 150 – Discussion Section Team Exercises #2

More relevant

Problem

A reactor is operating for a long time at some known power density P_0 . Then, it instantaneously changes power to some power density P_1 . One fission product of interest is 135 Xe, though it has a neglible yield from the initial fission reaction. 135 Xe precursors 135 Te and 135 I are produced with a combined yield of approximately 6%, before decaying via β^- decay to 135 I and 135 Xe respectively. Find the number density of 135 Xe as a function of time after the power change. (Your solution may be left as variables)

Nucleus	Half-life	Thermal $\sigma_{\rm a}$
$^{135}\mathrm{Te}$	19.0 s	~ 0
^{135}I	$6.6 \ \mathrm{hr}$	~ 0
$^{135}\mathrm{Xe}$	9.2 hr	$2.6 \times 10^6 \text{ barns}$

Less relevant

Problem

Recall from mechanics that centripetal force is $F_{\rm cent}=-\frac{mv^2}{r}$ and recall from E&M that the Coulombic force is $F_{\rm coul}=-\frac{Ze^2}{r^2}$. Solve for the Bohr radius of the orbit of an electron on hydrogen, assuming the angular momentum L=mvr is quantized multiples of \hbar (1 \hbar , 2 \hbar , 3 \hbar , etc). Compare this to the measured value of 5.2917721067(12) \times $10^{11} {\rm \AA}$, the most probable distance between an electron in the ground state and the nucleus of a hydrogen atom.