

Signatures of mutational processes in human cancer

Noel László Plaszkó

Data Science Laboratory Supervisor: Orsolya Pipek

Introduction: chromosomes, genes

Chromosomes

- thread-like structures in cells
 - 46 chromosomes (arranged in 2 sets of 23)
 - one set from your mother, one from your father
- determine physical characteristics
 - contain genes

Introduction: chromosomes, genes

Chromosomes

- thread-like structures in cells
 - 46 chromosomes (arranged in 2 sets of 23)
 - one set from your mother, one from your father
- determine physical characteristics
 - contain genes

Gene Tics Cell Chromosome DNA

Genes

- the basic physical unit of inheritance
- control how your cells work by making proteins
- must have the correct instructions for making its protein
- allows the protein to perform the correct function for the cell

Sorry, something went wrong...

- Genes in cells can mutate
- Due to mutation:
 - → Abnormal protein is created
 - Or protein's formation is prevented

Abnormal protein provides different information

This can cause cells to multiply uncontrollably and become cancerous

Cancer is caused by somatic mutations of the DNA in the tumor cells.

DNA sequencing and mutations

DNA sequence:

 the order of the four bases in DNA (adenine, guanine, cytosine, and thymine)

DNA mutation:

Substitution Insertion Deletion

Original sequence TGGCAG TGGCAG TGGGAG

Mutated sequence TGGTAG TGGTATCAG TGGG

Where my story begins...

Somatic mutations for different cancer types

File name	Type of cancer	
KIRC.maf	kidney renal clear cell carcinoma	
LUAD.maf	lung adenocarcinoma	
LUSC.maf	lung squamous cell carcinoma	
OV.maf	ovarian cancer	
PRAD.maf	prostate adenocarcinoma	

Somatic mutations for different cancer types

File name	Type of cancer	
KIRC.maf	kidney renal clear cell carcinoma	
LUAD.maf	lung adenocarcinoma	
LUSC.maf	lung squamous cell carcinoma	
OV.maf	ovarian cancer	
PRAD.maf	prostate adenocarcinoma	

Files have many columns, but only a few will be necessary

Different mutational processes ("signatures") exist

Generate different combinations of mutation types

Somatic mutations for different cancer types

File name	Type of cancer	Number of Samples	Number of mutations
KIRC.maf	kidney renal clear cell carcinoma	235	26245
LUAD.maf	lung adenocarcinoma	561	232492
LUSC.maf	lung squamous cell carcinoma	497	173223
OV.maf	ovarian cancer	142	6174
PRAD.maf	prostate adenocarcinoma	499	36805

Files have many columns, but only a few will be necessary

Different mutational processes ("signatures") exist

Generate different combinations of mutation types

What is in the .maf files?

- Hugo Symbol
- Entrez Gene Id
- Center
- Ncbi Build
- Chrom
- Start Position
- End Position
- Strand
- Variant Classification
- Variant Type
- Reference Allele
- Tumor_Seq_Allele1
- Tumor_Seq_Allele2
- Dbsnp Rs
- Dbsnp_Val_Status
- Tumor_Sample_Barcode
- · Matched Norm Sample Barcode
- Match Norm Seq Allele1
- Match Norm Seq Allele2
- Tumor Validation Allele1
- Tumor Validation Allele2
- Match Norm Validation Allele1
- Match_Norm_Validation_Allele2
- Verification Status
- Validation Status
- Mutation Status
- Sequencing_Phase
- Sequence_Source
- Validation_Method
- Score
- Bam File
- Sequencer
- Tumor_Sample_UUID
- Matched_Norm_Sample_UUID
- File Name
- Archive Name
- Line Number

Tumor_Sample_UUID

Chrom

What is in the .maf files?

What else do we need?

Info from substitution is not enough

Take the neighbours into account

What else do we need?

Info from substitution is not enough

For this purpose hg19 human reference genome is used

...TGTGTGTCCACACTTCCTCATGAGAACAG CAGGTTGCTTTAGGGCCCACCCTGACAGCCTCGTTC TAATACTATGAGGCCAAATACACTCACGTTCT...

What else do we need?

Mutational catalogs

Non-negative matrix factorization

Goal: Find two non-negative matrices (W, H) whose product approximates the non-negative matrix X

Objective:

$$0.5*||X-WH||_{loss}^{2} \ +alpha_W*l1_{ratio}*n_features*||vec(W)||_{1} \ +alpha_H*l1_{ratio}*n_samples*||vec(H)||_{1} \ +0.5*alpha_W*(1-l1_{ratio})*n_features*||W||_{Fro}^{2} \ +0.5*alpha_H*(1-l1_{ratio})*n_samples*||H||_{Fro}^{2}$$

Non-negative matrix factorization

Goal: Find two non-negative matrices (W, H) whose product approximates the non-negative matrix X

Objective:

$$0.5*||X-WH||_{loss}^{2} \ + alpha_W*l1_{ratio}*n_features*||vec(W)||_{1} \ + alpha_H*l1_{ratio}*n_samples*||vec(H)||_{1} \ + 0.5*alpha_W*(1-l1_{ratio})*n_features*||W||_{Fro}^{2} \ + 0.5*alpha_H*(1-l1_{ratio})*n_samples*||H||_{Fro}^{2}$$

Hyperparameter tuning:

$$alpha W = alpha H = alpha$$

11 ratio

number of Components

normalization of X

Mutation Max Norm Sample Max Norm Mutation Sum Norm Sample Sum Norm

Non-negative matrix factorization

Choosing the best parameters:

Reconstruction error is calculated

(Frobenius norm of the matrix difference between the training data X and the reconstructed data WH from the fitted model)

6 number of components are kept → totally 30 signature's 22

Clustering signatures

Clustering signatures

 Hierarchical clustering and Kmeans give similar result

Clustering signatures

Conclusion, further questions

- Mutational signatures are identified
- How are they related to biological processes?
- How are they presented on different samples?

