- **Ex 1** En revenant à la définition, montrer que $\lim_{x \to 1+} \frac{1}{x^2 3x + 2} = -\infty$
- **Ex 2** Soient f et g deux fonctions définies sur un intervalle I, et telles que $\lim_a f = \ell$ et $\lim_a g = \ell'$ $(a \in \bar{I})$ On pose, pour tout $x \in I$: $h(x) = \max(f(x), g(x))$. Montrer que $\lim_a h = \max(\ell, \ell')$.
- **Ex 3** Montrer que la fonction $f: x \to \sqrt{x}$ n'est pas lipschitzienne sur [0,1].
- **Ex 4** Soit f une fonction continue sur [a,b], et $F: x \mapsto \int_a^b f(t) \sin(xt) dt$. Montrer que sin est 1-lipschitzienne, et en déduire que F est lipschitzienne.
- **Ex 5** Soit $f:[0,1] \to \mathbb{R}$ une fonction continue telle que $f\left(0\right) = f\left(1\right)$.
 - a) Montrer qu'il existe $\alpha \in [0, 1]$ tel que $f(\alpha + \frac{1}{2}) = f(\alpha)$.
 - b) Si $n \in \mathbb{N}^*$, montrer qu'il existe $\alpha_n \in [0,1]$ tel que $f\left(\alpha_n + \frac{1}{n}\right) = f\left(\alpha_n\right)$. Indication : considérer $\sum_{k=0}^{n-1} \left(f\left(\frac{k}{n} + \frac{1}{n}\right) f\left(\frac{k}{n}\right)\right)$
- Ex 6 Un marcheur parcourt 12 km en une heure.

Montrer qu'il existe un intervalle d'une demi-heure au cours duquel il parcourt exactement 6 km.

- **Ex 7** Soit f continue sur [a,b], et p,q deux réels positifs. $((p,q) \neq (0,0))$. Montrer qu'il existe $c \in [a,b] \ / \ pf(a) + qf(b) = (p+q)f(c)$.
- **Ex 8** Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue positive sur } [0,+\infty]$, telle que $\lim_{x\to+\infty}\frac{f(x)}{x}=\ell<1$. Montrer qu'il existe $x_0\geqslant 0$ tel que $f(x_0)=x_0$.
- **Ex 9** Soit f une fonction continue sur \mathbb{R} à valeurs dans \mathbb{Z} . Que peut-on dire?
- Ex 10 Soit f une fonction T-périodique définie sur \mathbb{R} telle que $\lim_{t\to\infty}f=\ell\in\mathbb{R}$. Montrer que f est constante.
- **Ex 11** Soit f une fonction T-périodique continue sur \mathbb{R} . Montrer que f est bornée sur \mathbb{R} .
- **Ex 12** Soit f une fonction continue sur [a,b]. Pour $x \in [a,b]$ on pose $m(x) = \sup_{t \in [a,x]} f(t)$.
 - a) Montrer que m est croissante sur [a, b] .
 - b) Montrer que pour $x\leqslant y$ dans $\left[a,b\right]$, on a $m\left(y\right)-m\left(x\right)\leqslant \sup_{t\in\left[x,y\right]}\left(f\left(t\right)-f\left(x\right)\right)$.
 - c) En déduire la continuité de m sur [a, b].
 - d) On suppose que f est lipschitzienne. Que peut-on dire de m?
- **Ex 13** Déterminer les fonctions f continues en 0 telles que $\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y)$ [Analyse: poser a = f(1) et calculer f(n) pour tout n dans \mathbb{N} puis \mathbb{Z} puis \mathbb{Q} . Montrer que f est continue sur \mathbb{R}]
- **Ex 14** Trouver toutes les fonctions continues en 0 et en 1 vérifiant $\forall x \in \mathbb{R}, \ f\left(x^2\right) = f\left(x\right)$. Analyse: pour un x donné, il peut être intéressant de considérer la suite de terme général $f\left(x^{1/2^n}\right)$.
- **Ex 15** On se propose de décrire toutes les fonctions continues en 0 vérifiant $\forall x \in \mathbb{R}, \ f(2x) = f(x) \cos x$.
 - a) Soit f une telle fonction et $x \in \mathbb{R}^*$. Si $n \in \mathbb{N}$, exprimer f(x) à l'aide de $f\left(\frac{x}{2^n}\right)$. En déduire que si $x \notin \{2^p k\pi, \ k \in \mathbb{Z}, \ p \in \mathbb{N}\}$, alors $\forall n \in \mathbb{N}, \ f(x) = f\left(\frac{x}{2^n}\right) \frac{\sin x}{2^n \sin\left(\frac{x}{2^n}\right)}$. Et sinon?
 - b) En déduire l'expression de f(x) en fonction de x et f(0). Conclure.
- Ex 16 Bijections et continuité
 - a) Montrer que la réciproque d'une bijection strictement monotone est strictement monotone de même sens.
 - b) Montrer que si $f: I \to J$ est continue et bijective, alors f est strictement monotone sur I.
 - c) Montrer que si f est strictement monotone sur I et si f(I) est un intervalle, alors f est continue sur I.
 - d) En déduire que la réciproque d'une bijection continue de l'intervalle I sur J est continue sur J.

PCSI 1 Thiers 2019/2020

Ex 17 On suppose f continue sur [a,b]. On veut établir que f est bornée sur [a,b] .

Par l'absurde, si ce n'est pas le cas, on définit les suites (a_n) et (b_n) de [a,b] par récurrence :

$$a_0=a,\;b_0=b$$
 et si $a_n\leqslant b_n$ sont construits, on pose $m_n=\frac{a_n+b_n}{2}$ et

$$\left\{\begin{array}{l} a_{n+1}=a_n \text{ et } b_{n+1}=m_n \text{ si } f \text{ et non bornée sur } [a_n,m_n] \\ a_{n+1}=m_n \text{ et } b_{n+1}=b_n \text{ sinon} \end{array}\right.$$

A l'aide de ces suites, obtenir une contradiction et conclure.