Mathematical Tools in Machine Learning

(11.11.19)

Solutions to Exercise Session 3

Instructor: Fadoua Balabdaoui Assistant: Loris Michel

Problem (Proof of Sauer's lemma)

Derived in exercise class. Essentially following closely the proof in the book should be sufficient. Open to suggestions and clarifications.

Problem 6.1: Monotonicity of VC-dimension

Let $\mathcal{H}' \subseteq \mathcal{H}$ be two hypothesis classes for binary classification. Since $\mathcal{H}' \subseteq \mathcal{H}$, then for every $C = \{c_1, \ldots, c_m\} \subseteq \mathcal{X}$ we have $\mathcal{H}'_C \subseteq \mathcal{H}_C$. In particular, if C is shattered by \mathcal{H}' , then C is shattered by \mathcal{H} as well. Thus $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$.

Problem 6.4: Sharp bounds

Let $\mathcal{X} = \mathbb{R}^d$. We will demonstrate all the 4 combinations using the hypothesis classes defined over $\mathcal{X} \times \{0,1\}$. Remember that the empty set is always considered to be shattered.

- (<,=): Let $d\geq 2$ and consider the class $\mathcal{H}=\{I_{[\parallel x\parallel_2\leq r]}:r\geq 0\}$ of the concentric balls. The VC-dimension of this class is 1. To see this, we first observe that if $x\neq (0,\ldots,0)$, then $\{x\}$ is shattered. Second, if $\|x_1\|_2=\|x_2\|_2$, then the labeling $y_1=0$ and $y_2=1$ is not obtained by any hypothesis in \mathcal{H} . Let $A=\{e_1,e_2\}$, where $e_1.e_2$ are the first two elements of the standard basis of \mathbb{R}^d . Then, $\mathcal{H}_A=\{(0,0),(1,1)\},\{B\subseteq A:\mathcal{H}\}$ shatters $B=\{\emptyset,\{e_1\},\{e_2\}\}$, and $\sum_{i=0}^d \binom{|A|}{i}=3$.
- (=,<): Let \mathcal{H} be the class of axis-aligned rectangles in \mathbb{R}^2 . We have seen that the VC-dimension of \mathcal{H} is A4. Let $\{x_1, x_2, x_3\}$, where $x_1 = (0,0), x_2 = (1,0), x_3 = (2,0)$. All the labelings expect (1,0,1) are obtained. Thus, $|\mathcal{H}_A| = 7$, $|\{B \subseteq A : \mathcal{H} \text{ shatters } B\}| = 7$, and $\sum_{i=0}^{d} \binom{|A|}{i} = 8$.
- (=,=): Let $d \geq 3$, and consider the class $\mathcal{H} = \{\operatorname{sgn}\langle \eta w, x \rangle : w \in \mathbb{R}^d\}$ of homogenous halfspaces. Then $\operatorname{VCdim}(\mathcal{H}) \geq 3$. This fact follows by observing that the set $\{e_1, e_2, e_3\}$ is shattered. Let $A = \{x_1, x_2, x_3\}$, where $x_1 = e_1$, $x_2 = e_2$ and $x_3 = (1, 1, 0, \dots, 0)$. Note that all the labelings expect (1, 1, -1) and (-1, -1, 1) are obtained. It follows that $|\mathcal{H}_A| = 6$, $|\{B \subseteq A : \mathcal{H} \text{ shatters } B\}| = 7$, and $\sum_{i=0}^d \binom{|A|}{i} = 8$.
- (=,=): Let d=1, and consider the class $\mathcal{H}=\{I_{[x\geq t]}:t\in\mathbb{R}\}$ of thresholds on the line. We have seen that every singleton is shattered by \mathcal{H} , and that every set of size of at least 2 is not shattered by \mathcal{H} . Choose any finite set $A\subseteq\mathbb{R}$. Then each of the three terms in "Sauer's inequality" equals |A|+1.

Problem 6.8: infinite VC-dimension

We will begin by proving the lemma provided in the question:

$$\sin(2^{m}\pi x) = \sin(2^{m}\pi(0.x_{1}x_{2},...))$$

$$= \sin(2\pi(x_{1}x_{2},...,x_{m-1}.x_{m}x_{m+1}...))$$

$$= \sin(2\pi(x_{1}x_{2},...,x_{m-1}.x_{m}x_{m+1}...) - 2\pi(x_{1}x_{2}...x_{m-1}.0))$$

$$= \sin(2\pi(0.x_{m}x_{m+1}...)).$$

Now, if $x_m = 0$, then $2\pi(0.x_mx_{m+1}...) \in (0,\pi)$ (we use the fact that $\exists k \geq m$ s.t. $x_k = 1$), so the expression above is positive, and $\lceil \sin(2^m\pi x) \rceil = 1$. On the other hand, if $x_m = 1$, then $2\pi(0.x_mx_{m+1}) \in [\pi, 2\pi)$, so the expression above is non-positive, and $\lceil \sin(2^m\pi x) \rceil = 0$. In conclusion we have that $\lceil \sin(2^m\pi x) \rceil = 1 - x_m$.

To prove $VC(\mathcal{H}) = \infty$, we need to pick n points which are shattered by \mathcal{H} , for any n. To do so, we construct n points $x_1, \ldots, x_n \in [0, 1]$, such that the set of the m - th bits in the binary expansion, as m ranges from 1 to 2^n , ranges over all possible labelings of x_1, \ldots, x_n :

For example, to give the labeling 1 for all instances, we just pick $h(x) = \lceil \sin(2^1 x) \rceil$, which returns the first bit (column) in the binary expansion. If we wish to give labeling 1 for x_1, \ldots, x_{n-1} , and the labeling 0 for x_n , we pick $h(x) = \lceil \sin(2^2 x) \rceil$, which returns the second bit in the binary expansion, and so on. We conclude that x_1, \ldots, x_n can be given any labeling by some $h \in \mathcal{H}$, so it is shattered. This can be done for all n, so $VCdim(H) = \infty$.

Problem 6.9 (optional): Signed intervals

We prove that $VCdim(\mathcal{H}) = 3$. Choose $C = \{1, 2, 3\}$, the following table shows that C is shattered by \mathcal{H} .

1	2	3	a	b	s
-	-	-	0.5	3.5	-1
-	-	+	2.5	3.5	1
-	+	-	1.5	2.5	1
-	+	+	1.5	3.5	1
+	-	-	0.5	1.5	1
+	-	+	1.5	2.5	-1
+	+	-	0.5	2.5	1
+	+	+	0.5	3.5	1

We conclude that $VCdim(\mathcal{H}) \geq 3$. Let $C = \{x_1, x_2, x_3, x_4\}$ and assume w.l.o.g that $x_1 < x_2 < x_3 < x_4$. Then the labeling $y_1 = y_3 = -1, y_2 = y_4 = 1$ is not obtained by any hypothesis in \mathcal{H} . Thus, $VCdim(\mathcal{H}) \leq 3$.