ME 599/699 Robot Modeling & Control

Robot Mechanisms

Spring 2020 Hasan Poonawala

Robot Mechanisms

Mechanisms such as simple levers and crank-and-piston are widely used to transfer power/energy/force.

Simple lever

Crank and Piston

Robot Mechanisms

Mechanisms such as simple levers and crank-and-piston are widely used to transfer power/energy/force.

These mechanisms consist of (ideally) rigid bodies connected by joints that constrain relative motion.

Robot Mechanisms

Mechanisms such as simple levers and crank-and-piston are widely used to transfer power/energy/force.

These mechanisms consist of (ideally) rigid bodies connected by joints that constrain relative motion.

Examples of Joints

Figure 2.3: Typical robot joints. source: Modern Robotics

Any joint can be abstractly replaced by multiple revolute (R) and/or prismatic (P) joints. Example: C = R + P

Joint Constraints

		Constraints c	Constraints c
		between two	between two
Joint type	$\operatorname{dof} f$	planar	spatial
		rigid bodies	rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

Figure 2.3: Typical robot joints.

source: Modern Robotics

How many joints can you identify here? :

Simple lever

Crank and Piston

How many joints can you identify here? :

Simple lever

Crank and Piston

Lever: one revolute joint at the fulcrum.

Crank and Piston: Three revolute joints, one prismatic joint

(formed by piston and cylinder)

What are the degrees of freedom of these mechanisms? :

Simple lever

Crank and Piston

What are the degrees of freedom of these mechanisms? :

Lever: 1.

Why: the planar lever has 3DoF (two linear, one rotation). The revolute joint constrains 2DoF.

Crank and Piston: 1.

Why: Three moving links (green objects) = 9 DoF. The four joints restrict $4 \times 2 = 8$ DoF.

Kinematic Chains

We can combine links and joints in multiple ways:

Figure 2.5: (a) k-link planar serial chain. (b) Five-bar planar linkage. (c) Stephenson six-bar linkage. (d) Watt six-bar linkage.

Kinematic Chains

Types of kinematic chains:

- Open / Closed
- ► Serial / Parallel

Idea: think of links forming a circuit including the non-moving fixed frame. Is it open/closed? Are links in series or parallel?

Kinematic Chains

Types of kinematic chains:

- ► Open / Closed
- ► Serial / Parallel

Idea: think of links forming a circuit including the non-moving fixed frame. Is it open/closed? Are links in series or parallel? Can you classify the mechanisms below?

Robot Configurations: Joint Variables

The configuration q of such robots will depend on the joints between rigid parts that make up the robot

Robot Configurations: Joint Variables

The configuration q of such robots will depend on the joints between rigid parts that make up the robot

The robot is usually powered at its joints, using servo **motors** or linear actuators.

The robot is usually powered at its joints, using servo **motors** or linear actuators.

By attaching an **encoder** to the motor, we can measure the relative angles or translation between the two links at a joint.

The robot is usually powered at its joints, using servo **motors** or linear actuators.

By attaching an **encoder** to the motor, we can measure the relative angles or translation between the two links at a joint.

In other words, we can change and measure the configuration q of a robot with revolute or prismatic joints in practice.

The robot is usually powered at its joints, using servo **motors** or linear actuators.

By attaching an **encoder** to the motor, we can measure the relative angles or translation between the two links at a joint.

In other words, we can change and measure the configuration q of a robot with revolute or prismatic joints in practice.

This fact is responsible for the development of robot modeling and control as it occurred, which happened before computer vision was as powerful as it is today.