Introduction to MACHINE LEARNING

N. Rich Nguyen, PhD CS 4774 Fall 2019

Machine Learning Meme

what society thinks I

what my friends think I do

what my parents think I do

$$\begin{split} &L_{r} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{m} \alpha_{i} y_{i}(\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{m} \alpha_{i} \\ &\alpha_{i} \geq 0, \forall i \\ &\mathbf{w} = \sum_{m} \alpha_{i} y_{i} \mathbf{x}_{i} - \sum_{m} \alpha_{i} y_{i} = 0 \\ &\nabla \hat{\mathbf{g}}(\theta_{t}) = \frac{1}{m} \sum_{i=1}^{m} \nabla \ell(\mathbf{x}_{i}, \mathbf{y}_{i}; \theta_{t}) + \nabla \mathbf{r}(\theta_{t}), \\ &\theta_{t+1} = \theta_{t} - \eta_{t} \nabla \ell(\mathbf{x}_{i}; \theta_{t}), y_{i}(\mathbf{r}; \theta_{t}) - \eta_{t} \cdot \nabla \mathbf{r}(\theta_{t}) \\ &\mathbb{E}_{i(t)} [\ell(\mathbf{x}_{i}(\mathbf{r}), y_{i}(\mathbf{r}); \theta_{t})] = \frac{1}{m} \sum_{i} \ell(\mathbf{x}_{i}, y_{i}; \theta_{t}). \end{split}$$

what other programmers think I do

what I think I do

>>> from sklearn import svm

what I really do

Machine Learning Definition

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed."

-- Arthur Samuel, Gaming and AI Pioneer, 1959

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

-- Tom Mitchell, Computer Scientist, 1997

ML Difference

Traditional Programming

Machine Learning (ML)

ML Timeline

ARTIFICIAL INTELLIGENCE

Early artificial intelligence stirs excitement.

MACHINE LEARNING

Machine learning begins to flourish.

DEEP LEARNING

Deep learning breakthroughs drive Al boom.

1950's 1960's 19

1970's

1980's

1990's

2000's

2010's

ML Taxonomy

ML Landscape

Why do you study ML?

[your reason here]

Gain abilities to solve large-scale problems

Obtain a data scientist position at a company

It's one of the best careers for the 21st century

Curious to know how it works

CS 4774 ML by the Numbers

1 instructor

Nhat Rich Nguyen /:win/, PhD

202 Rice Hall

OH: Tue, Wed, Thu 2-3p

nn4pj@virginia.edu

cs.virginia.edu/~nn4pj

7 TAs

Arjun, Akanksha: Masters' students Layne, Clara, Johnny, Yuxin, Jeffrey: 4th year students

140 students

a good-size course introduce yourself to your neighbors

1 pre-assessment

To help me determine the flow and pace of the course

Take it at bit.ly/cs4774pre

29 meetings

Tue & Thu 12:30p-1:45p

Nau Hall 101

3 Phases

Phase I: Week 1-3

1 textbook

Aurelien Geron - <u>Hands-On Machine Learning with</u> Scikit-Learn, Keras, and TensorFlow, O'Reilly 2019

Download the code repo

https://github.com/ageron/handson-ml2

1 Google Faculty Award

Textbook Support (you don't have to spend \$\$\$)
Additional TAs to help with TensorFlow 2.0

1 portal

Collab: https://collab.its.virginia.edu/

1 course page

cs.virginia.edu/~nn4pj/teaching

2 Industry Speakers

To share their experience with students Sep 12 and Oct 01

1000 points

F: 0-600;

D-: 600-629; **D**: 630-669; **D**+: 670-699;

C-: 700-729; C: 730-769; C+: 770-799;

B-: 800-829; **B**: 830-869; **B+**: 870-899;

A-: 900-929; A: 930-969; A+: 970-1000

1 Team Project ML4VA

3 member team
200 pts / member
Project Expo (Dec 3rd)
Award Winning Videos

2 Exams

150 pts each

Midterm: Oct 3rd

Final: Dec 11th

3 Codeathons

20, 30, and 50 pts
To apply ML to real-world problems
48-72 hours to solve
Lightning Talks for bonus pts

4 Programming Assignments

100 pt each
14 days to implement
Code on Google Colaboratory
Submit on UVACollab as a Jupyter Notebook

2+ Extra Credits

by participating in class discussion (5-10 pts each) and/or outside hackathons (20 pts)

Up to a maximum of 50 pt

By the instructor's discretion

1 Piazza forum

Get answers by TAs or other students

Don't post any code on assignments (that's considered cheating!)

30% penalty

for **late** assignments
(10% penalty per late day)
if it's overdue more than 3 days, you will receive
zero point.

10 students

who <u>earn</u> the **highest** points by the end of the course will be **rewarded**.

and all of your hard work will be recognized!

Unused Slides

CS 4774 Checklist

- ☐ Familiar with Python's main scientific library
- □ Play with Scikit-learn algorithms efficiently
- ☐ Handle, clean, and prepare large-scale data
- ☐ Review linear algebra and probabilities reasonably well
- ☐ Understand common learning algorithms: regressions, k-nearest neighbors
- Engineer features, select models, and tune parameters
- ☐ Learn Support Vector Machine and its applications
- Make predictions with decision trees
- ☐ Learn bagging, pasting, boosting, stacking of voting classifiers
- ☐ Familiar with artificial neurons, perceptrons, and neural networks
- Explore layers of deep neural nets and tune their parameters

Activity 1:

Assume we are given the task to build a system that can distinguish junk emails.

- What is in a junk email that lets us know that it is junk?
- How can a junk email detected? What if it is not?
- What would you like the computer to do if it detects a junk email delete it automatically, move it 1 YOU SHALL NOT PASS just highlight it on the screen?

MY SPAM FILTER

Activity 2: Self-driving Car

You are given the task of building an automated taxi.

- Define the constraints. What are the inputs and the output?
- How can you communicate with the passenger?
- How to communicate with the other automated cars?

Phase I: CONNECT

PYTHON: Quick Review on Python (Week 1)

SCIKIT-LEARN: ML toolbox step-by-step (Week 2)

DATA: Handle, learn, prep data (Week 2)

MATH: Review some of essential concepts (Week 3)

Phase II: MODEL

REGRESSORS: Train regression models (Week 3,4)

CLASSIFIERS: Tune classification models (Week 5)

KERNEL: Train the kernel-based algorithms (Week 5,6)

TREES: Build decision trees (Week 9)

Phase III: BUILD

ENSEMBLE: Bagging, Boosting, Stacking (Week 9)

NEURAL NETS: Artificial Neural Network (Week 10)

DEEP NETS: Train DNN, CNN, RNN (Week 11,12,13)

REINFORCEMENT: Optimize Rewards (Week 14)