Prediction of High Poverty-Stricken Schools

Derek Nguyen, Yessica Gaona, Ian Roquebert, James Helgren

Introduction

- We are interested in answering if the number of students that qualify for Free/Reduced school lunches is a better indicator than Title I designation for predicting high poverty in schools.
- We gathered data from the Common Core of Data (CDD) which is the Department of Education's primary database on public elementary and secondary education in the US.
- Focus on South region of the U.S:

Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Luisiana, Maryland, Mississipi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.

Questions

- We are interested in answering if the number of students that qualify for Free/Reduced school lunches is a better indicator than Title I designation for predicting high poverty in schools.
- What states have the highest percentage of strict poverty schools?
- What features are the best indication of poverty?
- How is the distribution of poverty with respect to state?

Brief Overview of the Data

- Table generator made gathering data more efficient than working with raw data files, however not as many features were available.
- Title 1 designation was not available for school years before 1998.
 - "Indicators of charter, magnet, Title I, and schoolwide Title I schools were added to CCD in 1998-99, and they are presented without further editing or imputation in the Longitudinal Database"
- We gathered data year by year then concatenated years for each section:

Ground Truth Labeling	Feature Selection	Modeling	Model Selection	Testing
1998-2003	2003-2006	2006-2015	2015-2018	2018-2020

Data Cleaning

- 19 columns before data cleaning and normalization
- Removed rows with missing values; nonnumeric and not applicable data represented by:
- † indicates that the data are not applicable.
- – indicates that the data are missing.
- ‡ indicates that the data do not meet NCES data quality standards.

<class 'pandas.core.frame.DataFrame'> Int64Index: 88158 entries, 0 to 31928 Data columns (total 19 columns):

#	Column	Non-Nu	11 Count	Dtype
0	School	88158	non-null	object
1	State	88158	non-null	object
2	State Abbr	88158	non-null	object
3	School ID (NCES)	88158	non-null	object
4	Agency ID (NCES)	88158	non-null	object
5	School-wide Title I	88158	non-null	int64
6	Total Students	88158	non-null	float64
7	Free and Reduced Lunch Students	88158	non-null	float64
8	Male	88158	non-null	float64
9	Female	88158	non-null	float64
10	American Indian/Alaska Native	88158	non-null	float64
11	Asian or Asian/Pacific Islander	88158	non-null	float64
12	Black or African American	88158	non-null	float64
13	Hispanic	88158	non-null	float64
14	White	88158	non-null	float64
15	FTE Teachers	88158	non-null	float64
16	Pupil/Teacher Ratio	88158	non-null	float64
17	Year	88158	non-null	int64
18	Poverty Level	88158	non-null	int64
dtype	es: float64(11), int64(3), object	(5)		

Normalization

- Normalized Features
 - Free and Reduced Lunch Students
 - Male
 - Female
 - American Indian/Alaska Native
 - Asian or Asian/Pacific Islander
 - Black or African American
 - Hispanic
 - White
- To normalize these features, we divided by 'Total Students' column, then we deleted it.
- Eliminated 'FTE Teachers' because we will use 'Pupil/Teacher Ratio' instead.

```
School
                                   State State Abbr School ID (NCES)
               6TH GRADE CENTER
                                    Texas
                                                         482172005738
     7TH AND 8TH GRADE ACADEMY
                                Oklahoma
                                                         402097000599
  B CHANDLER ELEMENTARY SCHOOL
                                                        210271000573
                                 Kentucky
                                                        481944001801
                  A B DUNCAN EL
                                    Texas
                  A B MCBAY EL
                                                         483042003424
                                    Texas
                 School-wide Title I Total Students
Agency ID (NCES)
        4821720
                                                792.0
        4020970
                                               818.0
         2102710
                                                285.0
        4819440
                                               433.0
         4830420
                                                656.0
Free and Reduced Lunch Students
                                            0.510101
                                 0.491443
                        0.696646 0.518293 0.481707
Black or African American
                           Hispanic
                           0.146465 0.597222
                                                        49.0
                                                       46.5
                                                       15.4
                                                       25.6
                           0.676674 0.279446
                                                        39.6
                 0.382622 0.169207 0.442073
Pupil/Teacher Ratio
                           Poverty Level High Poverty
                                                        Strict Poverty
                16.2 1998
               17.6 1998
                     1998
                16.6 1998
No Poverty
```

[5 rows x 22 columns]

Poverty Level Threshold

- Poverty Level (CCD) is determined by percentage of students that qualify for Free/Reduced Lunch.
 - High (>75%)
 - Mid-high (50.1% 75%)
 - Mid-low (25.1% 50%)
 - o Low (<25%)
- For our model we will take a similar approach:
 - Strict (>=66%)
 - High (>=33%)
 - No poverty (<33%)

School Distribution Per State

AR 4827 MS 4023 DE 531 NC 6212 FL 7045 OK 7026 GA 5813 SC 3098 KY 4542 TX 27177 LA 5302 VA 3156	State	# Schools	State	# Schools
DE 531 NC 6212 FL 7045 OK 7026 GA 5813 SC 3098 KY 4542 TX 27177 LA 5302 VA 3156	AL	4282	MD	2559
FL 7045 OK 7026 GA 5813 SC 3098 KY 4542 TX 27177 LA 5302 VA 3156	AR	4827	MS	4023
GA 5813 SC 3098 KY 4542 TX 27177 LA 5302 VA 3156	DE	531	NC	6212
KY 4542 TX 27177 LA 5302 VA 3156	FL	7045	OK	7026
LA 5302 VA 3156	GA	5813	SC	3098
V/ (KY	4542	TX	27177
WV 2565	LA	5302	VA	3156
			WV	2565

Strict Poverty Per State

State	# Schools	State	# Schools
AL .	1904	MD	1112
AR	1436	MS	2411
DE	31	NC	2186
=L	4214	OK	3185
GA	2858	SC	1767
〈 Y	2331	TX	11088
_A	3676	VA	791
		WV	1198

Poverty Level vs Schools

Poverty Level	Number Of Schools
No Poverty	7551
High Poverty	40419
Strict Poverty	40188

Average Poverty vs Time

Feature Selection

- Years: 2004-2006
- Before Feature Selection begins, we can already eliminate the following columns:
 - 1. School
 - 2. State
 - 3. State Abbr
 - 4. School ID
 - 5. Agency ID
- From our Poverty Level Threshold, we have added 4 new columns:
 - 1. No Poverty Level (0, 1)
 - 2. High Poverty Level (0, 1)
 - 3. Strict Poverty Level (0, 1)
 - 4. Poverty Level (0, 1, 2)

Feature Selection

- First, we will determine which features are most relevant for determining Poverty Level:
 - 1. For this we used a 'chi2' test on all features. The higher the score, the best the feature is at predicting poverty level.
 - Nominal 2-class target variable
 - Multiple dependent variables
 - 2. We also looked at our Correlation Matrix.
- Then, we establish the optimal number of features.

To do this we used Forward Selection using a tree-based model ('ExtraTreesClassifier') to determine the ideal number of features to predict Poverty Level.

3 is the optimal number of features

Correlation Matrix

Based on the Correlation Matrix, the most significant features for both Title I and Poverty Levels are:

- Black or African American
- White
- Hispanic

- 1.00

- 0.75

- 0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

Chi Square Scores (with Y = 'strict')

Specs	Chi square score
School-wide Title I	520.878645
Male	0.194143
Female	0.036934
American Indian/Alaska Native	57.565779
Asian or Asian/Pacific Islander	22.946501
Black or African American	3236.796141
Hispanic	988.992489
White	3146.773986
Pupil/Teacher Ratio	86.134895

Feature Selection Results

- Based on our results for ExtraTreesClassifier, Correlation Matrix, and Chi Square Scores, we determine that the 3 features we will use for modeling are:
 - Black or African American
 - White
 - Hispanic

Modeling

• Years: 2007-2015

LOGISTIC REGRESSION

- Compatible with classification problems
- Simple
- We need to make binary prediction

KNN CLASSIFIER

- Compatible with classifi cation problems
- No assumptions about data

SVM CLASIFIER

- Compatible with classi fication problems
- Linear SVC can be used for large sets of data

- Compatible with classi fication problems
- Works efficiently on large datasets
- Better accuracy than
 other classification
 models but more
 complex

Modeling Results

We made models for each of 'Title I', 'High Poverty Level', and 'Strict Poverty Level'. We evaluated each model by checking for accuracy and used 5-fold Cross Validation. These are the accuracy results on the Modeling dataset using the average 5-fold CV score.

LOGISTIC REGRESSION

- Title I: 92.13%
- High Poverty: 95.19%
- Strict Poverty: 72.68%

KNN CLASSIFIER (K=[1,2,...,10])

- Best Results: K=10
- Title I : 92.26%
- High Poverty: 95.37%
- Strict Poverty: 77.63%

SVM CLASIFIER (kernel=linear)

- Title I: 92.13%
- High Poverty: 95.19%
- Strict Poverty: 72.66%

RANDOM FOREST (n=100)

- Title I: 99.87%
- High Poverty: 99.67%
- Strict Poverty: 99.24%

Model Selection

- Years 2015-2018
- For Model Selection we used the models that we built on the Modeling section and ran them with the Model Selection dataset.
- To evaluate our results, made a function evaluate(). This function automated the evaluation process of our model.
- The metrics used to evaluate are:
 - Mean Squared Error
 - Accuracy, Precision, Recall, F1 Score
 - Confusion Matrix
 - ROC-AUC Curve

```
def evaluate(clf, X, y, cv=5):
   y_pred = clf.predict(X)
    print('MSE: ', mean_squared_error(y, y_pred))
    cm = confusion matrix(y, y pred)
    fig, ax = plot_confusion_matrix(cm)
    print(classification_report(y, y_pred, target_names=['Strict Poverty', 'Not Strict Poverty']))
    fpr, tpr, thresholds = roc curve(y, y pred)
    roc_auc = auc(fpr, tpr)
    print('Thresholds: ', thresholds)
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```

Model Selection Results (Strict Poverty)

LOGISTIC REGRESSION

KNN CLASSIFIER

SVM CLASIFIER

Model Selection Results (High Poverty)

LOGISTIC REGRESSION

KNN CLASSIFIER

SVM CLASIFIER

Model Selection Results (School-wide Title I)

LOGISTIC REGRESSION

KNN CLASSIFIER

SVM CLASIFIER

Testing Results

- Years 2018-2020
- We have selected Random Forest to be the best classifier for our data.
- The Mean Squared Error for Random Forest is:

Strict Poverty Prediction Errors	High Poverty Prediction Errors	School-wide Title I Prediction Errors
27.21%	4.40%	5.56%

- Look for ways to reduce overfitting and improve regularization
- Revisit threshold for poverty level.