

TALLER DE ALGORITMOS

EXPRESIONES RELACIONALES

Abel García Nájera Karen Miranda Campos Saúl Zapotecas Martínez

Universidad Autónoma Metropolitana Unidad Cuajimalpa

26 de octubre de 2023

Us

Permite expresar relaciones entre datos del mismo dominio.

Usc

Permite expresar relaciones entre datos del mismo dominio.

Composiciór

Están compuestas por operadores relacionales que actúan sobre operandos del mismo dominio, de la cual se obtiene un resultado lógico.

OPERANDOS EN EXPRESIONES RELACIONALES

Operandos

Números enteros:

Números reales:

• 3.1416, 0.00001,
$$\sqrt{2}$$
, ...

Caracteres alfabéticos:

Secuencias de caracteres alfabéticos:

· "Miranda", "García Nájera", "Emiliano", ...

Fechas:

· "3/12/21", "3 de diciembre de 2021", "20211203", ...

Identificadores que almacenan valores de alguno de los tipos de datos anteriores:

· pi, edad, SueldoMensual, nombre, Apellidos, fechaNacimiento, hoy, ...

Operadores Símbolo Uso = Igual que ≠ Diferente que < Menor que ≤ Menor o igual que > Mayor que ≥ Mayor o igual que

Operadores

Símbolo	Uso
=	Igual que
\neq	Diferente que
<	Menor que
\leq	Menor o igual que
>	Mayor que
<u>></u>	Mayor o igual que

Operador relaciona

Establece una relación entre un par de operandos del mismo dominio.

Da un resultado lógico: Falso (F) o Verdadero (V).

Evaluación								
Identi	ficador			Oper	ación			
а	b	a = b	$a \neq b$	a < b	$a \le b$	a > b	$a \ge b$	
2	3	F	V	V	V	F	F	

Evaluación								
Identi	ficador			Oper	ación			
а	b	a = b	$a \neq b$	a < b	$a \leq b$	a > b	$a \ge b$	
2	3	F	V	V	V	F	F	
4.4	4.4	V	F	F	V	F	V	

Evaluación								
Identi	ficador			Oper	ación			
а	Ь	a = b	$a \neq b$	a < b	$a \le b$	a > b	$a \ge b$	
2	3	F	V	V	V	F	F	
4.4	4.4	V	F	F	V	F	V	
"y"	"X"	F	V	F	F	V	V	

Evaluación								
Ident	ificador			Oper	ación			
а	b	a = b	a ≠ b	a < b	$a \leq b$	a > b	$a \ge b$	
2	3	F	V	V	V	F	F	
4.4	4.4	V	F	F	V	F	V	
"y"	"X"	F	V	F	F	V	V	
"3/12/21"	"30/11/21"	F	V	F	F	V	V	

¿Relación válida?

а

Identificador b

Válida o inválida

2 3.1416

¿Relación válida?

а	Ь	Válida o inválida
2	3.1416	válida

¿Relación válida?

а	b	Válida o inválida
2	3.1416	válida
"naranja"	"Pedro"	

¿Relación válida?

а	Ь	Válida o inválida
2	3.1416	válida
"naranja"	"Pedro"	inválida

¿Relación válida?

а	b	Válida o inválida
2	3.1416	válida
"naranja"	"Pedro"	inválida
"pi"	3.1416	

¿Relación válida?

a	Ь	Válida o inválida
2	3.1416	válida
"naranja"	"Pedro"	inválida
"pi"	3.1416	inválida

¿Relación válida?

а	b	Válida o inválida
2	3.1416	válida
"naranja"	"Pedro"	inválida
"pi"	3.1416	inválida
"3 de diciembre"	"3/12"	

¿Relación válida?

a	b	Válida o inválida
2	3.1416	válida
"naranja"	"Pedro"	inválida
"pi"	3.1416	inválida
"3 de diciembre"	"3/12"	válida

Ejemplos

¿Ya comenzó la clase?

$$comenz\'oClase \leftarrow hora \geq 8:00$$

Ejemplos

¿Ya comenzó la clase?

$$comenz\'oClase \leftarrow hora \geq 8:00$$

¿El grupo no está completo?

Ejemplos

¿Ya comenzó la clase?

$$comenz\'oClase \leftarrow hora \geq 8:00$$

¿El grupo no está completo?

¿Se está entendiendo la clase?

$$\textit{esPanComido} \leftarrow \textit{preguntas} = \textbf{Falso}$$

Oraciones

Expresiones

b y c tienen la misma longitud

a y c no tienen la misma longitud

Pedro es mayor que Ana

Oraciones	Expresiones
b y c tienen la misma longitud	b = c
a y c no tienen la misma longitud	
Pedro es mayor que Ana	

Expresiones	
b = c	
$a \neq c$	
	b = c

Expresiones	
lAna	

Precedencia de los operadores relacionale

- 1. ()
- 2. $<, \leq, >, \geq$
- 3. =,≠

Precedencia de los operadores relacionales

- 1. ()
- 2. $<, \le, >, \ge$
- $3. = \ne$

Propiedad asociativa

Cuando en una expresión relacional existen operadores con la misma precedencia, éstos se evalúan en el orden en que aparecen de izquierda a derecha.

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$

$$[8 \ge 5]$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$

$$f \leftarrow 4 < 5 = (F \neq V)$$

$$[8 \ge 5]$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$
 [8 \ge 5]

$$f \leftarrow 4 < 5 = (F \neq V)$$
 [F \neq V]

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$

$$f \leftarrow 4 < 5 = (F \neq V)$$

$$f \leftarrow 4 < 5 = V$$

$$[8 \ge 5]$$

$$[F \neq V]$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$

$$[8 \ge 5]$$

$$f \leftarrow 4 < 5 = (F \neq V)$$

$$[\mathtt{F}
eq \mathtt{V}]$$

$$f \leftarrow 4 < 5 = V$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$\begin{split} f &\leftarrow 4 < 5 = (F \neq 8 \geq 5) & [8 \geq 5] \\ f &\leftarrow 4 < 5 = (F \neq V) & [F \neq V] \\ f &\leftarrow 4 < 5 = V & [4 < 5] \\ f &\leftarrow V = V & \end{split}$$

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$f \leftarrow 4 < 5 = (F \neq 8 \ge 5)$$
 [8 \ge 5]

$$f \leftarrow 4 < 5 = (F \neq V)$$
 [F \neq V]

$$f \leftarrow 4 < 5 = V$$
 [4 < 5]

$$f \leftarrow V = V$$
 [V = V]

9

Ejemplo

Evaluar la siguiente expresión relacional para encontrar el valor asignado a f.

$$\begin{aligned} f &\leftarrow 4 < 5 = (F \neq 8 \geq 5) & [8 \geq 5] \\ f &\leftarrow 4 < 5 = (F \neq V) & [F \neq V] \\ f &\leftarrow 4 < 5 = V & [4 < 5] \\ f &\leftarrow V = V & [V = V] \end{aligned}$$

9

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta.

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta.

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta.

$$\textit{viaje} \leftarrow \textit{tarjeta} = \mathbf{V}$$

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta.

Respuesta:

$$viaje \leftarrow tarjeta = V$$

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta que tenga al menos \$6 de saldo.

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta.

Respuesta:

$$viaje \leftarrow tarjeta = V$$

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta que tenga al menos \$6 de saldo.

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta.

Respuesta:

$$viaje \leftarrow tarjeta = V$$

Ejemplo

Para poder viajar en metrobús, debemos tener una tarjeta que tenga al menos \$6 de saldo.

$$viaje$$
 ← $saldo$ ≥ 6

Precedencia de los operadores aritméticos y relacionales

- 1. ()
- 2. *,/,MOD
- 3. +, -
- 4. $<, \leq, >, \geq$
- 5. =,≠

Precedencia de los operadores aritméticos y relacionales

- 1. ()
- 2. *,/,MOD
- 3. +, -
- 4. $<, \leq, >, \geq$
- 5. =, \neq

Propiedad asociativa

Cuando en una expresión relacional existen operadores con la misma precedencia, éstos se evalúan en el orden en que aparecen de izquierda a derecha.

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]
 $f \leftarrow (2.5 * 3 - 1) = 4/2 \text{ MOD } 2$

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]
 $f \leftarrow (2.5 * 3 - 1) = 4/2 \text{ MOD } 2$

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]
 $f \leftarrow (2.5 * 3 - 1) = 4/2 \text{ MOD } 2$ [2.5 * 3]
 $f \leftarrow (7.5 - 1) = 4/2 \text{ MOD } 2$

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]
 $f \leftarrow (2.5 * 3 - 1) = 4/2 \text{ MOD } 2$ [2.5 * 3]
 $f \leftarrow (7.5 - 1) = 4/2 \text{ MOD } 2$ [7.5 - 1]

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]

$$f \leftarrow (2.5 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [2.5 * 3]

$$f \leftarrow (7.5 - 1) = 4/2 \text{ MOD } 2$$
 [7.5 - 1]

$$f \leftarrow 6.5 = 4/2 \text{ MOD } 2$$

Ejemplo

$$f \leftarrow (5/2 * 3 - 1) = 4/2 \text{ MOD } 2$$
 [5/2]
 $f \leftarrow (2.5 * 3 - 1) = 4/2 \text{ MOD } 2$ [2.5 * 3]
 $f \leftarrow (7.5 - 1) = 4/2 \text{ MOD } 2$ [7.5 - 1]
 $f \leftarrow 6.5 = 4/2 \text{ MOD } 2$ [4/2]

Ejemplo

$$\begin{split} f &\leftarrow (5/2*3-1) = 4/2 \text{ MOD 2} \\ f &\leftarrow (2.5*3-1) = 4/2 \text{ MOD 2} \\ f &\leftarrow (7.5-1) = 4/2 \text{ MOD 2} \\ f &\leftarrow 6.5 = 4/2 \text{ MOD 2} \\ f &\leftarrow 6.5 = 2 \text{ MOD 2} \end{split}$$
 [5/2] [7.5 - 1]

Ejemplo

$$\begin{split} f &\leftarrow (5/2*3-1) = 4/2 \text{ MOD 2} & [5/2] \\ f &\leftarrow (2.5*3-1) = 4/2 \text{ MOD 2} & [2.5*3] \\ f &\leftarrow (7.5-1) = 4/2 \text{ MOD 2} & [7.5-1] \\ f &\leftarrow 6.5 = 4/2 \text{ MOD 2} & [4/2] \\ f &\leftarrow 6.5 = 2 \text{ MOD 2} & [2 \text{ MOD 2}] \end{split}$$

Ejemplo

$$\begin{split} f &\leftarrow (5/2*3-1) = 4/2 \text{ MOD 2} & [5/2] \\ f &\leftarrow (2.5*3-1) = 4/2 \text{ MOD 2} & [2.5*3] \\ f &\leftarrow (7.5-1) = 4/2 \text{ MOD 2} & [7.5-1] \\ f &\leftarrow 6.5 = 4/2 \text{ MOD 2} & [4/2] \\ f &\leftarrow 6.5 = 2 \text{ MOD 2} & [2 \text{ MOD 2}] \\ f &\leftarrow 6.5 = 0 \end{split}$$

Ejemplo

$$\begin{split} f &\leftarrow (5/2*3-1) = 4/2 \text{ MOD 2} & [5/2] \\ f &\leftarrow (2.5*3-1) = 4/2 \text{ MOD 2} & [2.5*3] \\ f &\leftarrow (7.5-1) = 4/2 \text{ MOD 2} & [7.5-1] \\ f &\leftarrow 6.5 = 4/2 \text{ MOD 2} & [4/2] \\ f &\leftarrow 6.5 = 2 \text{ MOD 2} & [2 \text{ MOD 2}] \\ f &\leftarrow 6.5 = 0 & [6.5=0] \end{split}$$

Ejemplo

$$\begin{split} f &\leftarrow (5/2*3-1) = 4/2 \text{ MOD 2} & [5/2] \\ f &\leftarrow (2.5*3-1) = 4/2 \text{ MOD 2} & [2.5*3] \\ f &\leftarrow (7.5-1) = 4/2 \text{ MOD 2} & [7.5-1] \\ f &\leftarrow 6.5 = 4/2 \text{ MOD 2} & [4/2] \\ f &\leftarrow 6.5 = 2 \text{ MOD 2} & [2 \text{ MOD 2}] \\ f &\leftarrow 6.5 = 0 & [6.5=0] \\ f &\leftarrow \mathbf{F} \end{split}$$

Ejemplo

$$f \leftarrow a + b - 1 < x * y$$

Ejemplo

$$f \leftarrow a + b - 1 < x * y$$

$$[x \leftarrow 3, y \leftarrow 2]$$

Ejemplo

$$f \leftarrow a + b - 1 < x * y$$
$$f \leftarrow a + b - 1 < 3 * 2$$

$$[x \leftarrow 3, y \leftarrow 2]$$

Ejemplo

$$f \leftarrow a + b - 1 < x * y$$
 [$x \leftarrow 3, y \leftarrow 2$]
 $f \leftarrow a + b - 1 < 3 * 2$ [$3 * 2$]
 $f \leftarrow a + b - 1 < 6$

Ejemplo

Ejemplo

Ejemplo

Ejemplo

$$f \leftarrow a + b - 1 < x * y \qquad [x \leftarrow 3, y \leftarrow 2]$$

$$f \leftarrow a + b - 1 < 3 * 2 \qquad [3 * 2]$$

$$f \leftarrow a + b - 1 < 6 \qquad [a \leftarrow 6, b \leftarrow 1]$$

$$f \leftarrow 6 + 1 - 1 < 6 \qquad [6 + 1]$$

$$f \leftarrow 7 - 1 < 6 \qquad [7 - 1]$$

Ejemplo

Ejemplo

$$\begin{aligned} f &\leftarrow a + b - 1 < x * y & [x &\leftarrow 3, y &\leftarrow 2] \\ f &\leftarrow a + b - 1 < 3 * 2 & [3 * 2] \\ f &\leftarrow a + b - 1 < 6 & [a &\leftarrow 6, b &\leftarrow 1] \\ f &\leftarrow 6 + 1 - 1 < 6 & [6 + 1] \\ f &\leftarrow 7 - 1 < 6 & [7 - 1] \\ f &\leftarrow 6 < 6 & [6 < 6] \end{aligned}$$

Ejemplo

$$f \leftarrow a + b - 1 < x * y \qquad [x \leftarrow 3, y \leftarrow 2]$$

$$f \leftarrow a + b - 1 < 3 * 2 \qquad [3 * 2]$$

$$f \leftarrow a + b - 1 < 6 \qquad [a \leftarrow 6, b \leftarrow 1]$$

$$f \leftarrow 6 + 1 - 1 < 6 \qquad [6 + 1]$$

$$f \leftarrow 7 - 1 < 6 \qquad [7 - 1]$$

$$f \leftarrow 6 < 6 \qquad [6 < 6]$$

$$f \leftarrow \mathbf{F}$$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$\pi * radio^2$$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$\pi * radio^2$$
 lado²

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$\pi*radio^2$$
 > lado²

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$f \leftarrow \pi * radio^2 > lado^2$$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$f \leftarrow \pi * radio^2 > lado^2$$

 $f \leftarrow \pi * 3^2 > 4^2$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$f \leftarrow \pi * radio^{2} > lado^{2}$$

$$f \leftarrow \pi * 3^{2} > 4^{2}$$

$$f \leftarrow \pi * 9 > 4^{2}$$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$f \leftarrow \pi * radio^{2} > lado^{2}$$

$$f \leftarrow \pi * 3^{2} > 4^{2}$$

$$f \leftarrow \pi * 9 > 4^{2}$$

$$f \leftarrow \pi * 9 > 16$$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$f \leftarrow \pi * radio^{2} > lado^{2}$$

 $f \leftarrow \pi * 3^{2} > 4^{2}$
 $f \leftarrow \pi * 9 > 4^{2}$
 $f \leftarrow \pi * 9 > 16$
 $f \leftarrow 28.2744 > 16$

Ejemplo

¿El área de un círculo de radio 3 es mayor que el área de un cuadrado de lado 4?

$$\begin{split} f &\leftarrow \pi * radio^2 > lado^2 \\ f &\leftarrow \pi * 3^2 > 4^2 \\ f &\leftarrow \pi * 9 > 4^2 \\ f &\leftarrow \pi * 9 > 16 \\ f &\leftarrow 28.2744 > 16 \\ f &\leftarrow V \end{split}$$