МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)

Физический факультет

Квалификационная работа на соискание степени магистра

Кафедра физики элементарных частиц
Олейников Владислав Петрович

Тема реферата:

История философских и научных воззрений на структуру вещества

Научный руководитель:

к.ф.-м.н. Поросев Вячеслав Викторович

Содержание

1.	Введение	2
2.	Заключение	3

1. Введение

Цель данной работы — изучение свойств детектора для создания рентгеновского денситометра с использованием сцинтилляционного детектора на основе микропиксельного лавинного фотодиода (МПЛ Φ). Данная работа актуальна еще и потому, что в настоящий момент нет рентгеновских денситометров отечественного производства.

2. Заключение

«Золотым стандартом» среди денситометров является двухэнергетическая рентгеновская абсорбциометрия, которая имеет достаточную точность, низкую лучевую нагрузку и относительно невысокую стоимость. Однако в настоящий момент нет рентгеновских денситометров отечественного производства. Цель данной работы заключалась в изучении свойств детектора для создания рентгеновского денситометра с использованием сцинтилляционного детектора на основе микропиксельных лавинных фотодиодов.

Во-первых, было рассмотрено несколько аналитических моделей, описывающих прохождение излучения через вещество. Наиболее удачной оказалось модель, требующая облучения на двух энергиях. Поскольку в реальных измерениях имеется три компоненты (мышечные ткани, жировые и костные), то вначале вычисляется процент жира. В предположении, что процент жира постоянен, можно добиться ошибки менее 1%. Варьируя процент жира и толщину мягких тканей в аналитической модели, было выяснено, что оптимальные энергии облучения составляют около 40 и 100 кэВ.

Далее были изучены четыре различных сцинтиллятора, обладающих большим световыходом и малым временем высвечивания (порядка 40 нс): LYSO:Ce, LFS-3, LGSO:Ce, YAP:Ce. Кристаллы облучались изотопом Am241 (59.5 кэВ), свет собирался ФЭУ. Вычисляя отношение заряда от сигнала на фотопике к заряду одноэлектронного импульса, находилось число фотоэлектронов. Измерена квантовая эффективность ФЭУ (17%). Светосбор кристаллов рассчитан в GEANT4. Зная светосбор, эффективность ФЭУ и число фотоэлектронов, найден световыход кристаллов. Лучшим оказался LYSO:Ce (31500 фот./МэВ).

Рассмотрены факторы, влияющие на энергетическое разрешение. Основной вклад дают собственные флуктуации кристалла, связанные со световыходом (26%), и неидеальность детектора, связанная с частичной регистрацией света (20%).

Используя детектор на основе LYSO:Ce(teflon) и МПЛФ, измерена толщина тестовых объектов при облучении рентгеновской трубкой. Объект состоял из полиметилметакрилата толщиной 20 см (аналог мягких тканей) и алюминия толщиной 21 мм (аналог кости). Толщина объектов восстановлена с точность 7% и 24% соответственно.

Есть несколько причин такого отличия. Во-первых, набрано недостаточно статистики. Это связано с особенностью работы электроники, которая не позволяет передавать данные на большой частоте. Поэтому для уменьшения статистической ошибки придется значительно увеличивать время измерения. Во-вторых, имеется систематическая ошибка из-за различия реального и моделированного спектров рентгеновской трубки.

На данный момент установлена электроника, позволяющая реализовать счетный режим детектора при большой частоте передачи данных, однако из-за особенностей электроники истинный счет не совпадает с регистрируемым. В дальнейшем планируется произвести калибровку и восстановить кривую просчетов. Использование новой электроники позволит собрать необходимую статистику за короткое время и приступить к анализу систематической ошибки.

Чтобы устранить систематическое расхождение, необходимо измерить спектр рентгеновской трубки. Меняя толщину фильтра, можно пропускать различные энергии фотонов, поэтому возможно восстановить исходный спектр с заданным энергетическим разрешением, имея детектор с плохим энергетическим разрешением.

Список литературы

[1] http://ru.wikipedia.org/wiki/Остеопороз