

Timing studies for JetMET

Congqiao Li for JME group

UPSG Future LLP and Timing: First Workshop
22 September, 2021

22 September, 2021

Introduction

- → Timing information will be available during Phase-II upgrade
 - MTD allows 4D tracking and vertexing (3D + timing info); HGCAL also provides timing measurements
- → Jet and MET algorithms need updates based on better handling of PF candidates
 - update the PF reconstruction strategy using the additional time dimension of tracks → update JME algorithms (should be optimal in performance)
 - modify the JME algorithm by using existing PF candidates with 4D vertices (preliminary results in this talk)

Timing for PU samples

See Debarati Roy's slides for details

- → Timing performance on candidates with PU200 / NoPU samples
 - ** samples: /RelvalQCD_Pt15To7000_Flat_14/CMSSW_11_1_0_pre6-PU25ns_110X_mcRun4_realistic_v3_2026D49PU200-v1/MINIAODSIM /RelvalQCD_Pt15To7000_Flat_14/CMSSW_11_1_0_pre6-110X_mcRun4_realistic_v3_2026D49noPU-v1/MINIAODSIM
 - timing variables
 - $t_{\rm cand}$

$$\sigma_{t,\text{cand}} = |t_{\text{cand}} - t_{\text{PV}}| / \sqrt{err_{t,\text{cand}}^2 + err_{t,\text{PV}}^2}$$

Timing for PU jet ID

- → Check the timing information for PU jet IDs
 - use PU200 sample in p.5
 - collect all candidates in CHS jets with pT<50 GeV</p>
 - categorize based on PU jet IDs (tight/medium/loose/fail all)
 - note: pass tight PU ID → likely to be real jets

- \rightarrow Candidate time and σ_t does not follow what we expect
 - although similar with Debarati's finding [<u>slides</u>], with a different PU categorization scheme

→ Retrain the BDT for PU jet ID in CHS jets

See Debarati Roy's slides (MTD DPG) for details

- → Results from Debarati also show that a retraining of the BDT (giving the PU jet ID score) does not show improvement
- → Reason may be the ineffectiveness and high fake rate of the current 4D vertex collection

BDT training (signal => Real jets, background => PU jets, NTrees=800, BoostType=Grad)

PUPPI for 4D vertices — setup

See Anna Benecke's <u>slides</u> for details

Global tag: 111X_mcRun4_realistic_T15_v1

Era: eras.Phase2C9

Geometrie: Configuration.Geometry.GeometryExtended2026D49_cff

/QCD_Pt_300to470_TuneCP5_14TeV_pythia8/Phase2HLTTDRSummer20ReRECOMiniAOD-NoPU_111X_mcRun4_realistic_T15_v1-v1/GEN-SIM-DIGI-RAW-MINIAOD /QCD_Pt_300to470_TuneCP5_14TeV_pythia8/Phase2HLTTDRSummer20ReRECOMiniAOD-PU140_111X_mcRun4_realistic_T15_v1-v1/GEN-SIM-DIGI-RAW-MINIAOD /QCD_Pt_300to470_TuneCP5_14TeV_pythia8/Phase2HLTTDRSummer20ReRECOMiniAOD-PU200_111X_mcRun4_realistic_T15_v1-v1/GEN-SIM-DIGI-RAW-MINIAOD

→ Match PF candidates with 4D/3D vertices

- 4D vertices from "offlineSlimmedPrimaryVertices4D"
- * test on the additional option (for 4D) to use timing info in the track-vertex association criteria

$$dist. = \frac{d_{z,\text{cand}} - d_{z,\text{vert}}}{\sqrt{err_{d_{z,\text{cand}}}^2 + err_{d_{z,\text{vert}}}^2}} + \frac{t_{\text{cand}} - t_{\text{vert}}}{Reso_{t_{\text{cand}}}}$$

→ Adopt a simple PUPPI tune

→ Samples

* "dz scheme": assign tracks to the closest vertex in *dist.*, plus requiring dz < 0.1 && dzsig < 5 tracks to the assigned vertex (for 4D collection, further require dt < 0.1)

Effect of PUPPI "dz scheme"

See Anna Benecke's <u>slides</u> for details

with 3D vertex collection

- → Variables are shown without PUPPI weights
- → dz and dzSig effectively filters the pileup candidates (which are wrongly assigned to LV)

with 4D vertex collection

PUPPI for 4D vertices

See Anna Benecke's <u>slides</u> for details

- → No significant change from
 - ❖ 3D → 4D vertex collection
 - with/without adding the time info in the association criteria

jet response: jet energy / matched gen-jet energy

Efficiency/purity of PUPPI jets

See Anna Benecke's <u>slides</u> for details

efficiency: fraction of gen-jets (pT>30) that have a matched reco PUPPI jet (pT>20) **purity:** fraction of reco PUPPI jets (pT>30) that have a matched gen-jet (pT>20)

PUPPI studies with Delphes

Work in progress by Anna Albrecht

9

PUPPI studies with Delphes (II)

Work in progress by Anna Albrecht

PU (track->particle->IsPU == 1)

- → Using Delphes to distinguish the real tracks vs. fake (pileup)
 - ❖ PU tracks show wider t_{track} t_{PV} distribution as expected
- → Further variable studies on Delphes instruct future PUPPI tuning

Summary

- → Additional timing info contradicts the trend of real/PU jets differences
 - need more study, although future pileup mitigation will go on top of PUPPI
- → Preliminary attempt to use PUPPI based on 4D track-vertex association
 - adopt the "dz scheme" for the track-vertex association for ease of analysis
 - do not see improvement in 4D association, for using and without using the time as the matching criteria
 - use Delphes analysis as a guide in understanding timing info and for further tuning of PUPPI

→ Further studies:

- tune the PUPPI and better handle the time in track-vertex association
- consider the timing info in the recent ML-related pileup mitigation effort

Backup

Timing for PU jet ID BDT retraining

See Debarati Roy's slides (MTD DPG) for details

→ Retrain the BDT for PU jet ID in CHS jets

PU jet ID.

Jet time info included as additional variable

	0 1:	
frac01, frac02, frac03 etc=	β /beta	fraction of transverse momentum of charged particles as-
		sociated to the primary vertex, defined as $\frac{\sum_{i \in V} p_{Ti}}{\sum_{i} p_{Ti}}$ where i
		iterates over all the PF particles in the jet
	$n_{vertices}$	number of vertices in the event
	$\langle \Delta R^2 \rangle$	$p_{\rm T}^2$ average weighted by square distance of jet constituents
	/dR2Mean	from the jet axis : $\frac{\sum_{i} \Delta R^{2} p_{Ti}^{2}}{\sum_{i} p_{Ti}^{2}}$
	$f_{\text{ringX}}, X = $	fraction of p_T of the constituents $(\sum p_{Ti}/p_T^{jet})$ in the region
	f_{ringX} , $X = 1$, 2, 3, and	$R_i < \Delta R < R_{i+1}$ around the jet axis, where $R_i = 0, 0.1, 0.2$,
	¾	and 0.3 for X=1, 2, 3, and 4
	$p_{\mathrm{T}}^{\mathrm{lead}}/p_{\mathrm{T}}^{\mathrm{jet}}$	transverse momentum fraction carried by the leading PF
	/jetR	candidate
	pl. ch. / p _T jet	transverse momentum fraction carried by the leading
	/jetRchg	charged PF candidate
	$ \vec{m} $ / pull	pull magnitude, defined as $ (\sum_i p_T^i r_i \vec{r}_i) / p_T^{\text{jet}}$ where \vec{r}_i is
	1 1 7 P	the direction of the particle i from the direction of the jet
NParticles/	$N_{ m total}$	number of PF candidates
NCharged/	$N_{ m charged}$	number of charged PF candidates
majW/	σ_1	major axis of the jet ellipsoid in the η - ϕ space
minW/	σ_2	minor axis of the jet ellipsoid in the η - ϕ space
	p_{T}^{D}	jet fragmentation distribution, defined as $\sqrt{\sum_i p_{T_i}^2} / \sum_i p_{T_i}$

Timing for PU jet ID: different PU categorization

See Debarati Roy's slides (MTD DPG) for details

Categories as real(Real), pileup(PU) & unmatched jets with PU200 sample with stricter phase space :

- Defined real jet as : $p_T > 30$ GeV (reco level), $p_T > 20$ GeV (gen level), $|\eta| < 5.0$, $\Delta R < 0.1$, |partonflavour| != 0.
- Defined pileup jet as : $p_T > 30$ GeV (reco level), $p_T > 20$ GeV (gen level), $|\eta| < 5.0$, $\Delta R > 0.4$, |partonflavour| == 0.
- Defined unmatched jet as : $p_T > 30$ GeV (reco level), $p_T > 20$ GeV (gen level), $|\eta| < 5.0$.
- 4 $|\eta|$ slices further considered : < 2.5, 2.5 < $|\eta|$ < 2.75, 2.75 < $|\eta|$ < 3.0, 3.0 < $|\eta|$ < 5.0 that further fed to BDT.
- 2 p_T slices considered : 30 to 50 GeV, 30 to 100 GeV. [New Results]

→ Small difference seen in the timing variable; clear distinction show in the jet response

In more central region variable more effective

Jet response shows clear distinction

PUPPI for 4D vertices: jet response

See Anna Benecke's <u>slides</u> for details

Jet response 0PU

PUPPI for 4D vertices: jet response (II)

See Anna Benecke's <u>slides</u> for details

Jet response 200PU

