第九章微分方程求解

- 什么是常微分方程?
 - □ 天体运动的轨迹、机器人控制、化学反应过程的描述 和控制、以及电路瞬态过程分析
 - \square 要求解随时间变化的物理量, 即未知函数y(t)
 - □ 未知函数及其各阶导函数满足特定方程(物理规律)
 - □ 未知函数是单变量函数,这种方程被称为常微分方程 (ordinary differential equation, ODE)
- 本章内容
 - □ 常微分方程初值问题
 - □ 简单的数值解法与有关概念
 - □ Runge-Kutta方法;多步法

v

- 常微分方程: $g(t,y,y',\dots,y^{(k)})=0$ 函数y(t)简写为 y,\dots
- <u>k阶</u>常微分方程: 方程中含未知函数的最高阶导数为v^(k)
- 显式常微分方程: $y^{(k)} = f(t, y, y', \dots, y^{(k-1)})$
- 通过变量代换,得到一阶常微分方程组

$$u_{1}(t) = y(t),$$
 $u'_{1} = u_{2}$
 $u_{2}(t) = y'(t),$ $u'_{2} = u_{3}$
..., ...
 $u_{k}(t) = y^{(k-1)}(t)$ $u'_{k} = f(t, u_{1}, u_{2}, \dots, u_{k})$

- 只需考虑一阶常微分方程/方程组y' = f(t, y)
- 例(牛顿第二定律): F = ma, $u'_1 = u_2$ 假设在一 my''(t) = F(t, y, y'(t)) $u'_2 = \frac{1}{m}F(t, u_1, u_2)$ 空间中

×

- 例: 解常微分方程y' = y■ 解: 采用分离变量法, $\frac{\mathrm{d}y}{\mathrm{d}t} = y \Rightarrow \frac{\mathrm{d}y}{y} = \mathrm{d}t$ $\ln(y) = t + c$
- 两边积分, 得到原方程的解为 $y(t) = c \cdot e^t$, c为任意常数
- 仅根据常微分方程无法得到唯一的解
- 还需在一些自变量点上给出未知函数的值
- 对1阶ODE: 给出 $t = t_0$ 时的函数值 $y(t_0) = y_0$ 初值问题: $\begin{cases} y' = f(t, y), & t \ge t_0 \\ y(t_0) = y_0 \end{cases}$
- 一般,从 t_0 时刻的初始状态 y_0 开始,常微分方程决定了 y(t)在 $t > t_0$ 时的变化规律,即可确定常微分方程的唯一解

常微分方程基本概念

- 方程的分类 y' = f(t,y)
 - □ 线性常微分方程: f(t,y) = a(t)y + b(t), f是y的线性函数
 - □ 线性齐次常微分方程,线性齐次常系数微分方程 如y'= λy
- ODE初值问题的敏感性
 - □ 考虑<mark>初值</mark>发生扰动对解的影响
- $\begin{cases} y' = f(t, y), \\ y(t_0) = y_0 \end{cases}$
 - □ 问题的解是一个函数, 主要关心 $t \to \infty$ 时y(t)受影响情况 (由于历史原因)
 - □ 定义: ODE初值问题的<u>稳定性</u>
 - □ 若 $t \to \infty$ 时y(t)的偏差被控制在有界范围内,稳定(stable)
 - □ 若 $t \to \infty$ 时y(t)的偏差发散为无穷大, 不稳定 (unstable)
 - □ 若 $t \to \infty$ 时y(t)的偏差趋于零, 渐进稳定(asymptotically stable)

解实际问题应考虑其稳定性!

- 例8.2: "模型问题"的稳定性 $\begin{cases} y' = \lambda y, \\ y(t_0) = y_0 \end{cases}$ 准确解为: $y(t) = y_0 e^{\lambda(t-t_0)}$

 - 扰动后初值 $y_0 + \delta$,解为 $\hat{y}(t) = (y_0 + \delta)e^{\lambda(t-t_0)}$

 - $若\lambda \leq 0$. 原问题稳定; 若 $\lambda > 0$, 原问题不稳定

Practice

• 将y'' = 2y + V(t)写为一阶常微分方程组?其初值问题是什么?

- 一个ODE初值问题是渐进稳定的含义是什么?
- ✓ 含义是若初值有微小偏差,当t趋近于无穷大时,解出来的函数值的偏差趋于零

•

初值问题数值解法

- y' = f(t,y), **■** 大多数情况下(尤其是方程组), $y(t_0) = y_0$ 无解析解
- 数值解法: 得到一系列离散自变量点上的解函数近似值, 也称为 "离散变量法"
- "步进式"的计算过程 $t_0 < t_1 < \dots < t_n < t_{n+1} < \dots$

$$y_0$$
, y_1 , \cdots y_n , y_{n+1} , \cdots

- 相邻自变量点的间距: $h_n = t_{n+1} t_n$, 称为步长(可取很定的h) 的区别?
- 利用近似解满足的方程 $y_{n+1} = G(y_{n+1}, y_n, y_{n-1}, ..., y_{n-k})$
- 若k = 0, 为单步法 否则为多步法 得到递推计算公式
- 若函数G与y_{n+1}无关, 为显格式方法 计算较简单
- 若G与y_{n+1}有关, 为隐格式方法

y_n与 y(t_n) 的区别?

欧拉法

求解
$$y' = f(t,y)$$

$$y'(t_n) = f(t_n, y(t_n)) \approx \frac{y(t_{n+1}) - y(t_n)}{h_n}$$

■ 推导2: 数值积分

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(s, y(s)) ds$$
 h_n
"左矩形"求积公式

$$\begin{cases} y' = t - y + 1 \\ y(0) = 1 \end{cases}$$

步长h=0.1, 和0.05 步长小的更准

		4				
h=0.1			h=0.05			
t_n	y_n	$y(t_n)$	t_n	\mathcal{Y}_n	t_n	y_n
0.1	1.000000	1.004837	0.05	1.000000	0.3	1.035092
0.2	1.010000	1.018731	0.1	1.002500	0.35	1.048337
0.3	1.029000	1.040818	0.15	1.007375	0.4	1.063420
0.4	1.056100	1.070320	0.2	1.014506	0.45	1.080249
0.5	1.090490	1.106531	0.25	1.023781	0.5	1.098737

准确解
$$y(t) = t + e^{-t}$$
, $y(0.5) \approx 1.1065$

M

用欧拉方法求解[0,3]上的初值问题:

$$y' = (t - y) / 2$$
, $y(0) = 1$

exm3.m

精确解 $y(t)=3e^{-t/2}-2+t$

h	M	FGE
1.0000	3.0000	0.2944
0.5000	6.0000	0.1355
0.2500	12.0000	0.0651
0.1250	24.0000	0.0320
0.0625	48.0000	0.0158
0.0313	96.0000	0.0079
0.0156	192.0000	0.0039

数值解法的稳定性

- **ODE**初值问题数值解法的稳定性: 解函数近似值*y_n*存在误差, 在后续递推计算过程中, 它会如何传播?
- 定义8.2: 若在节点 t_n 上的函数近似值有扰动 δ_n , 由它引起的后续节点 t_m 上的误差 δ_m 满足 $|\delta_m| \leq |\delta_n|$, 则该方法稳定
- 仅考虑<u>截断误差</u> 以欧拉法为例, 针对模型问题 $y' = \lambda y$
- 计算公式为 $y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda)y_n$
- y_n 上的扰动 δ_n 引起 y_{n+1} 的误差: $\delta_{n+1} = (1 + h\lambda)\delta_n$

若λ为实数则
$$\lambda$$
<0, 且 $h \leq \frac{-2}{\lambda}$

■ 为了保证数值解法的稳定性步长h不能太大

数值解法的稳定性

- **例8.5**: 用欧拉法求解y' = -100y 步长h=0.025, 求y(0.15)
- 解: $y_{n+1} = y_n + h(-100y_n) = -1.5y_n$ 计算结果如下表:

	t_n	0	0.025	0.05	0.075	0.1	0.125	0.15
	y_n	1	-1.5	2.25	-3.375	5.0625	-7.59375	11.3906
y	$v(t_n)$	1	0.082085	0.006738	0.000553	4.54×10 ⁻⁵	3.73×10 ⁻⁶	3.06×10 ⁻⁷

- 准确解为 $y(t) = e^{-100t}$
- 从结果看, 欧拉法的误差越来越大, 上下波动
- 要保证欧拉法稳定, 应使 $h \le \frac{-2}{\lambda} = 0.02$ 这里设的h太大!

Practice

- 什么是ode初值问题的数值计算的显格式方法和隐格式方法?
- ✓ 若计算公式 $y_{n+1} = G(y_{n+1}, y_n, y_{n-1}, ..., y_{n-k})$ 中,G函数显含 y_{n+1} 则为隐格式,若不含有 y_{n+1} 则为显格式
- $y' = \lambda y$, 欧拉法的计算公式是什么?
- $\checkmark \quad y_{n+1} = y_n + h_n \lambda y_n$

数值解法的局部截断误差

- 定义 8.3: 求解初值问题的数值解法 y_{n+1} = $G(y_{n+1}, y_n, ..., y_{n-k})$,在假设 $y_{n-i} = y(t_{n-i})$, $(0 \le i \le k)$ 的前提下, $l_{n+1} = y(t_{n+1}) y_{n+1}$ 称为该方法的局部截断误差
- 局部截断误差反映了一步计算产生的误差,一般 仅能研究局部截断误差
- 例: 欧拉法的局部截断误差

$$l_{n+1} = y(t_{n+1}) - y(t_n) - hf(t_n, y(t_n))$$

- □ 对模型问题 $y' = \lambda y$ $l_{n+1} = y(t_n)[e^{h\lambda} 1 h\lambda] = \mathbf{O}(h^2)$
- □ 对一般的y' = f(t,y), 有同样的结论 $l_{n+1} = O(h^2)$

数值解法的局部截断误差

- 定义8.4:若某种解法的<u>局部</u>截断误差 $l_{n+1} = O(h^{p+1})$,则称该方法具有p阶准确度
- 实际关心整体误差 $e_n = y_n y(t_n)$. 在适当条件下,若局部截断误差为 $O(h^{p+1})$,则整体误差 $e_n = O(h^p)$ 欧拉法有**1**阶准确度

我们讨论的所有方法都至少有1阶准确度

数值解法的收敛性: 随着 $h\rightarrow 0$,误差 $\rightarrow 0$

向后欧拉法与休恩(梯形)法

- 从数值积分的角度推导 $\overline{\mathbb{F}}_{x} \mathbf{F}_{y(t_0) = y_0}^{y' = f(t, y)}$ 右矩形 梯形
- 向后欧拉法: $y_{n+1} = y_n + h_n f(t_{n+1}, y_{n+1})$ 休恩法: $y_{n+1} = y_n + \frac{1}{2} h_n [f(t_n, y_n) + f(t_{n+1}, y_{n+1})]$
- 两者均为单步、<u>隐格式方法</u>, 每步计算要求解(非线性)方 程
- 例:用向后欧拉法求解

t_n	0	0.025	0.05	0.075	0.1	0.125	0.15
y_n	1	0.285714	0.0816327	0.023323	0.006663	0.001904	0.000544
$\overline{y(t_n)}$	1	0.082085	0.006738	0.000553	4.54×10 ⁻⁵	3.73×10 ⁻⁶	3.06×10 ⁻⁷

.7

向后欧拉法与休恩法

- 例:用向后欧拉法求解
- 随n增大, 误差趋于0
- 比<u>欧拉法</u>效果好得多
- 向后欧拉法的稳定性
 - □ 模型问题 $y' = \lambda y (\text{Re}(\lambda) \le 0)$ $y_{n+1} = y_n + h\lambda y_{n+1} \implies y_{n+1} = \frac{1}{1 - h\lambda} y_n$

设 y_n 存在扰动 δ_n , 引起 y_{n+1} 的误差为

$$\delta_{n+1} = \frac{1}{1-h\lambda} \delta_n$$
 稳定的条件是: $\left| \frac{1}{1-h\lambda} \right| \le 1$

即 $|h\lambda-1|$ ≥1 对任意的h都满足

无条件稳定(unconditionally stable)!

绝对稳定(A-stable)

向后欧拉法与休恩法

- 对一般的方程y' = f(t,y), 类似地分析知, 只要初值问题本身是稳定的, 向后欧拉法也是无条件稳定的
- 向后欧拉法的准确度
 - 考虑一般的方程y' = f(t,y) $l_{n+1} = y(t_{n+1}) y_{n+1} = y(t_{n+1}) y(t_n) hf(t_{n+1}, y_{n+1})$ $= hf(t_{n+1}, y(t_{n+1})) + O(h^2) hf(t_{n+1}, y_{n+1})$ $= hf_y'(t_{n+1}, \xi)[y(t_{n+1}) y_{n+1}] + O(h^2)$ $= hf_y'(t_{n+1}, \xi) \cdot l_{n+1} + O(h^2)$ $\downarrow l_{n+1} = \frac{1}{1 hf_y'(t_{n+1}, \xi)} O(h^2) = O(h^2)$ 具有1阶准确度!

向后欧拉法与休恩法

- 休恩法的稳定性
 - □ 模型问题y'=λy

$$y_{n+1} = y_n + \frac{h\lambda}{2} (y_n + y_{n+1}) \implies y_{n+1} = \frac{2 + h\lambda}{2 - h\lambda} y_n$$

稳定的条件是: $\left| \frac{2+h\lambda}{2-h\lambda} \right| \le 1$ Re $(h\lambda) \le 0$ 无条件稳定!

- 梯形法的准确度 $l_{n+1} = O(h^3)$ 具有2阶准确度 (被积函数用线性插值)
- 小结
 - □ 无条件稳定或稳定区域大的方法, 在步长h较大时它仍 能保证计算的稳定性
 - □ <u>准确度阶数越高</u>,计算误差随步长减小而减小的速度越 快

$y(t_1) \approx y(t_0) + \frac{h}{2} (f(t_0, y(t_0)) + f(t_1, y(t_1)))$

用欧拉方法近似式子右边中的

$$y(t_1) = y_0 + hf(t_0, y_0)$$

得到休恩方法

$$y_1 = y(t_0) + \frac{h}{2} (f(t_0, y_0) + f(t_1, y_0 + hf(t_0, y_0)))$$

一般步骤

$$p_{k+1} = y_k + hf(t_k, y_k)$$
 $t_{k+1} = t_k + h$ 微分预报子

$$y_{k+1} = y_k + \frac{h}{2} (f(t_k, y_k) + f(t_{k+1}, p_{k+1}))$$
 积分校正子

得到逼近y=y(t)的一系列点

休恩方法求解

$$y' = (t - y) / 2$$
, $y(0) = 1$

h	M	FGE
[1.0,	3.0,	0.063031]
[0.5,	6.0,	0.012730]
[0.25,	12.0,	0.002878]
[0.125,	24.0,	0.000685]
[0.0625	, 48.0,	0.000167]
[0.03125	5, 96.0,	0.000041]
[0.01562	5, 192.0,	0.000010]

4. 泰勒级数法

[泰勒定理]: 设 $y(t) \in C^{N+1}[t_0,b]$, 且y(t)在

 $t = t_k \in [t_0, b]$ 处有N次泰勒级数展开:

$$y(t_k + h) = y(t_k) + hT_N(t_k, y(t_k)) + O(h^{N+1})$$

其中

$$T_N(t_k, y(t_k)) = \sum_{j=1}^N \frac{y^{(j)}(t_k)}{j!} h^{j-1}$$

 $y^{(j)}(t) = f^{(j-1)}(t,y(t))$ 是函数 f 关于 t 的 j-1次全导数

$$y^{(N)}(t) = P^{(N-1)}f(t, y(t))$$

$$P = \left(\frac{\partial}{\partial t} + f\frac{\partial}{\partial y}\right)$$

м

■ 区间[t_0,t_M]上初值问题的近似解可由各子区间 [t_k,t_{k+1}]应用而得到

$$y_{k+1} = y_k + d_1 h + \frac{d_2 h^2}{2!} + \dots + \frac{d_N h^N}{N!}$$

在各步
$$k = 0, \dots, M-1$$
, 有 $d_j = y^{(j)}(t_k)$ $j = 1, \dots, N$

■ [N次泰勒方法的精度]

设y(t)是初值问题的解,如果 $y(t) \in C^{N+1}[t_0,b]$,而 $\{(t_k,y_k)\}_{k=0}^{M}$ 为N次泰勒方法产生的近似序列则

$$|e_k| = |y(t_k) - y_k| = O(h^N)$$

 $|\varepsilon_{k+1}| = |y(t_{k+1}) - y_k - hT_N(t_k, y_k)| = O(h^{N+1})$

最终全局误差

$$E(y(b),h) = |y(b) - y_M| = O(h^N)$$

泰勒方法求解初值问题

$$y' = (t - y) / 2$$
, $y(0) = 1$

取四次泰勒方法,有

$$y' = (t - y)/2$$

$$y^{(2)} = \frac{d}{dt} \left(\frac{t - y}{2}\right) = \frac{2 - t + y}{4}$$

$$y^{(3)} = \frac{d}{dt} \left(\frac{2 - t + y}{4}\right) = \frac{-2 + t - y}{8}$$

$$y^{(4)} = \frac{d}{dt} \left(\frac{-2 + t - y}{8}\right) = \frac{2 - t + y}{16}$$

构造4阶导数表

df = (t,y) [(t-y)/2 (2-t+y)/4 (-2+t-y)/8 (2-t+y)/16];

exm5

h	M	FGE	
[1.0,[0.5,[0.25,	6.0, 12.0,	0.0007955] 0.0000402] 0.0000022] 0.0000001]	

■5.龙格-库塔(Runge-Kutta)方法

泰勒方法的优点是最终全局误差阶为 O(h^N)

缺点:需要先确定N,并计算高阶导数。

4阶龙格-库塔方法(RK4)模拟4阶泰勒方法精度:

$$y_{k+1} = y_k + w_1 k_1 + w_2 k_2 + w_3 k_3 + w_4 k_4$$

其中

$$k_1 = hf(t_k, y_k)$$

$$k_2 = hf(t_k + a_1h, y_k + b_1k_1)$$

$$k_3 = hf(t_k + a_2h, y_k + b_2k_1 + b_3k_2)$$

$$k_4 = hf(t_k + a_3h, y_k + b_4k_1 + b_5k_2 + b_6k_3)$$

×

■ 比较**4**阶泰勒级数方法得到的系数,并令 $a_1 = 1/2, b_2 = 0$

有
$$a_1 = 1/2, a_2 = 1/2, a_3 = 1,$$
 $b_1 = 1/2, b_2 = 0, b_3 = 1/2, b_4 = 0, b_5 = 0, b_6 = 1$ $w_1 = 1/6, w_2 = 1/3, w_3 = 1/3, w_4 = 1/6$ 得到从初始点 (t_0, y_0) 开始,由 $y_{k+1} = y_k + \frac{h(f_1 + 2f_2 + 2f_3 + f_4)}{6}$ 生成序列,其中 $f_1 = f(t_k, y_k)$
$$f_2 = f(t_k + \frac{h}{2}, y_k + \frac{h}{2}f_1)$$

$$f_3 = f(t_k + \frac{h}{2}, y_k + \frac{h}{2}f_2)$$

$$f_4 = f(t_k + h, y_k + hf_3)$$

М

■ [龙格-库塔方法的精度]

■ 设y(t) 是是初值问题的解,如果 $y(t) \in C^{5}[t_{0},b]$ 且 $\{(t_{k},y_{k})\}_{k=0}^{M}$ 为**4**阶龙格-库塔方法产生的近似序列,则

$$|e_k| = |y(t_k) - y_k| = O(h^4)$$

 $|\varepsilon_{k+1}| = |y(t_{k+1}) - y_k - hT_N(t_k, y_k)| = O(h^5)$

■最终全局误差

$$E(y(b),h) = |y(b) - y_M| = O(h^4)$$

■N=2的龙格-库塔(RK2)方法

对y(t+h)用2阶泰勒级数展开:

$$y(t+h) = y(t) + hy'(t) + \frac{1}{2}h^2y''(t) + C_Th^3 + \cdots$$

其中

$$y''(t) = f_t(t,y) + f_y(t,y)y' = f_t(t,y) + f_y(t,y)f(t,y)$$

■由函数的线性组合逼近

$$y(t+h) = y(t) + Ahf_0 + Bhf_1$$

■其中

$$f_0 = f(t, y)$$

$$f_1 = f(t + Ph, y + Qhf_0)$$

对 f_1 ,用双独立变量的泰勒多项式逼近 $f_1 = f(t,y) + Phf_t(t,y) + Qhf_v f(t,y) + C_P h^2$

利用
$$(P_2(t,y) = f(a,b) + f_t(a,b)(t-a) + f_y(y-b) + \cdots)$$

■ 得到RK2

$$y(t+h) = y(t) + (A+B)hf(t,y) + BPh^{2}f_{t}(t,y) + BQh^{2}f_{v}(t,y)f(t,y) + BC_{p}h^{3}$$

.

比较系数,有

$$A + B = 1$$
, $BP = \frac{1}{2}$, $BQ = \frac{1}{2}$

选取
$$A=\frac{1}{2}$$
, $B=\frac{1}{2}$, $P=1$, $Q=1$

[休恩方法]

$$y(t+h) = y(t) + \frac{h}{2}(f(t,y) + f(t+h,y + hf(t,y)))$$

选取
$$A=0$$
, $B=1$, $P=\frac{1}{2}$, $Q=\frac{1}{2}$

[改进的欧拉-柯西方法]

$$y(t+h) = y(t) + hf(t + \frac{h}{2}, y + \frac{h}{2}f(t,y))$$

Runge-Kutta方法

下面给出两种常见的 3 阶 R-K 公: 一种是

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(k_1 + 4k_2 + k_3) \\ k_1 = f(t_n, y_n) \\ k_2 = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right) \\ k_3 = f(t_n + h, y_n - hk_1 + 2hk_2) \end{cases}$$
(8.36)

它被称为 3 阶 Kutta 公式;另一种是 Ralston 公式[18]:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{9} (2k_1 + 3k_2 + 4k_3) \\ k_1 = f(t_n, y_n) \\ k_2 = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right) \\ k_3 = f\left(t_n + \frac{3h}{4}, y_n + \frac{3h}{4}k_2\right) \end{cases}$$
(8.37)

■ 龙格-库塔-费尔伯格(RKF45)方法 (不作推导)

自动改变步长,每步取6个值:

$$\begin{split} k_1 &= hf(t_k, y_k) \\ k_2 &= hf(t_k + \frac{h}{4}, y_k + \frac{k_1}{4}) \\ k_3 &= hf(t_k + \frac{3h}{8}, y_k + \frac{3}{32}k_1 + \frac{9}{32}k_2) \\ k_4 &= hf(t_k + \frac{12h}{13}, y_k + \frac{1923}{2197}k_1 - \frac{7200}{2197}k_2 + \frac{7296}{2197}k_3) \\ k_5 &= hf(t_k + h, y_k + \frac{439}{216}k_1 - 8k_2 + \frac{3680}{513}k_3 - \frac{845}{4104}k_4) \\ k_6 &= hf(t_k + \frac{h}{2}, y_k - \frac{8}{27}k_1 + 2k_2 - \frac{3544}{2565}k_3 + \frac{1859}{4104}k_4 - \frac{11}{40}k_5) \end{split}$$

M

■ 用4阶龙格-库塔方法求近似解

$$y_{k+1} = y_k + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4101}k_4 - \frac{1}{5}k_5$$

用5阶龙格-库塔方法得更好的解

$$z_{k+1} = y_k + \frac{16}{135}k_1 + \frac{6656}{1825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6$$
 最佳比长sh

标量

$$s = \left(\frac{\text{tol} \times \text{h}}{2|z_{k+1} - y_{k+1}|}\right)^{1/4} \approx 0.84 \left(\frac{\text{tol} \times \text{h}}{|z_{k+1} - y_{k+1}|}\right)^{1/4}$$

Tol为指定的误差控制容差

■ 例.区间[0,1.4]上的初

值问题

$$y' = 1 + y^2$$
 $y(0)=0$

RKF45: tol= 2×10^{-5} ,

自动改变步长,10步

FGE= 6.2741*10-04

t_k	${\cal Y}_k$
0	0
0.1272727	0.1279644
0.3818181	0.4015230
0.6363636	0.7389110
0.8909090	1.2369304
1.0181818	1.6215642
1.1454545	2.2076309
1.2090909	2.6431869
1.2727272	3.2551861
1.3045454	3.6669442
1.3363636	4.1875201
1.3522727	4.5034758
1.3681818	4.8682042
1.3840909	5.2941765
1.4000000	5.7985111

RK4

■ FGE= 0.0059089,

固定步长,14步

t_k	${\cal Y}_k$
0	0
0.1000000	0.1003345
0.2000000	0.2027098
0.3000000	0.3093360
0.4000000	0.4227929
0.5000000	0.5463023
0.6000000	0.6841367
0.7000000	0.8422885
0.8000000	1.0296390
0.9000000	1.2601587
1.0000000	1.5574064
1.1000000	1.9647465
1.2000000	2.5720717
1.3000000	3.6015634
1.4000000	5.7919748

讨论:

■ 如何利用Runge-Kutta方法求解高阶常微分方程

作业

P328 9.2.3 #1

P334 9.3.2 #3

P339 9.4.1 #2

P349 9.5.5 #4