IN THE CLAIMS:

1	1.	(Currently Amended) A method of decoupling a drive signal from a pickoff	
2	signal to atter	nuate the effect of electrical cross-coupling between the drive signal and the pickoff	
3	signal, the method comprising:		
4		providing a drive signal at a first frequency that is represented by a plurality of	
5	data values;		
6		altering at least one of the plurality of data values of the drive signal; and	
7		producing a pickoff signal at a second frequency different from the first frequency	
8	of the drive signal;		
9		whereby the pickoff signal is distinguished from any cross-coupled drive signal.	
1	2.	(Currently Amended) The method as defined in claim 1, further comprising:	
2		providing a second secondary drive signal that is derived from the drive signal;	
3		applying a first polarity randomization to the drive signal; and	
4		applying a second polarity randomization to the secondary drive signal.	
1	3.	(Currently Amended) The method as defined in claim 1, 2, wherein:	
2		the first polarity randomization is substantially identical to the second polarity	
3	randomization; and		
4		the first polarity randomization is applied at substantially the same time as the	
5	second polarity randomization.		

2	the drive signal is a half-frequency sinusoidal signal and the plurality of data			
3	values are analog data values or digital data values; and			
1	the altering at least one of the plurality of data values includes inverting the at			
5	least one of the plurality of data values.			
l	5. (Original) The method as defined in claim 1, wherein the first frequency is about			
2	$\frac{1}{2}\omega$ and the second frequency is about ω .			
1	6. (Original) The method as defined in claim 1, wherein the altering at least one of			
2	the plurality of data values includes randomly or pseudo-randomly inverting at least one of the			
3	plurality of data values.			
1	7. (Original) The method as defined in claim 1, wherein the altering at least one of			
2	the plurality of data values includes randomly or pseudo-randomly switching from a positive			
3	state to a negative state or from a negative state to a positive state at least one of the plurality of			
4	data values.			
1	8. (Original) The method as defined in claim 1, wherein the altering at least one of			
2	the plurality of data values occurs at approximately a zero crossing of the drive signal.			
1	9. (Original) The method as defined in claim 1, wherein the altering at least one of			
2	the plurality of data values occurs for at least approximately a half-cycle of the drive signal.			

3

(Original) The method as defined in claim 1, wherein:

4.

1

34261.8400\GESSA\IRV\389881 .

1	10.	(Original) The method as defined in claim 1, wherein the altering at least one of	
2	the plurality	of data values occurs for at least approximately an integer number of half cycles of	
3	the drive sigr	nal.	
1	11.	(Original) A method of distinguishing an analog drive signal from a pickoff	
2	signal for att	enuating the effect of electrical cross-coupling between the analog drive signal and	
3	the pickoff signal, the method comprising:		
4		receiving a periodic digital signal at a first frequency in the form of a stream of	
5	digital data values;		
6		randomly inverting at least one of the digital data values;	
7		converting the stream of digital data values to a stream of analog data values to	
8	form an analog drive signal;		
9		driving a sensor, physically coupled to a resonant member configured to oscillate	
10	at a second frequency, using the analog drive signal; and		
11		sensing changes in the movement of the resonant member detected by the sensor	
12	for producing	g a pickoff signal.	
1	12	(Original). The method or defined in claim 11, wherein the randomly inverting at	
1	12.	(Original) The method as defined in claim 11, wherein the randomly inverting at	
2	least one of t	the digital data values occurs at approximately a zero crossing of the periodic digital	
3	signal.		
1	. 13.	(Original) The method as defined in claim 11, wherein the randomly inverting at	
2		the digital data values occurs for at least approximately a half-cycle of the periodic	
3	digital signal		

4

34261.8400\GESSA\IRV\389881

1	14. (Original) The method as defined in claim 11, wherein the randomly inverting	
2	least one of the digital data values occurs for at least approximately an integer number of ha	
3	cycles of the periodic digital signal.	
1	15. (Original) The method as defined in claim 11, wherein the randomly inverting	
2	least one of the digital data values includes randomly or pseudo-randomly switching at least or	
3	of the digital data values from a positive number to a negative number or from a negative	
4	number to a positive number.	
1	16. (Original) A method of distinguishing a drive signal from a pickoff signal for	
2	attenuating the effect of electrical cross-coupling between the drive signal and the pickoff signal	
3	the method comprising:	
4	receiving an input signal at a first frequency in the form of a plurality of da	
5	values;	
6	randomly changing the polarity of at least one of the plurality of data values of the	
7	input signal to form a sensor drive signal;	
8	driving a sensor, physically coupled to a resonant member, using the sensor driving	
9	signal; and	
10	detecting movements of the resonant member by the sensor for producing	
11	pickoff signal.	

(Original) The method as defined in claim 16, further comprising receiving a

34261.8400\GESSA\IRV\389881 , 5

2 secondary input signal in the form of a plurality of data values.

1

17.

- 1 18. (Original) The method as defined in claim 16, further comprising configuring the resonant member to oscillate at a second frequency.
- 1 19. (Original) The method as defined in claim 16, wherein the resonant member is 2 selected from a group consisting of a micro-electromechanical system and a gyroscope.
- 1 20. (Original) The method as defined in claim 16, wherein the randomly changing 2 the polarity of at least one of the plurality of data values includes randomly changing the polarity 3 of all the data values within a defined half-cycle of the input signal.