Homework 4

Problem 1. Consider an AC electric power network with synchronous generators indexed in set \mathcal{G} and transmission lines indexed in set \mathcal{E} . For each generator $g \in \mathcal{G}$, let δ_g , ω_g , $P_g^{\rm m}$, $P_g^{\rm e}$, and $P_g^{\rm r}$ denote the electrical angular position, angular speed, turbine mechanical power, electrical power output, and reference power input, respectively. Dynamics of generator g can be described by the swing equations augmented with a simplified turbine-governor model, as follows:

$$\dot{\delta}_g = \omega_g - \omega_s,\tag{1}$$

$$M_g \dot{\omega}_g = P_g^{\rm m} - P_g^{\rm e},\tag{2}$$

$$\tau_g \dot{P}_g^{\rm m} = P_g^{\rm r} - P_g^{\rm m} - \frac{1}{R_g \omega_{\rm s}} (\omega_g - \omega_{\rm s}), \tag{3}$$

where M_g , τ_g , and R_g denote its inertia constant, governor time constant, and droop constant, respectively; and $\omega_s = 2\pi 60$ [rad/s] is the synchronous frequency of the system. The electrical power output, P_g^e , is a function of bus-voltage magnitudes and phase angles as solved from the network power balance. The generator g reference power input is given by

$$P_g^{\mathbf{r}} = P_g^{\star} + \alpha_g(\xi - \sum_{j \in \mathcal{G}} P_j^{\star}), \tag{4}$$

where P_g^* is the setpoint from economic dispatch and α_g is the AGC participation factor with $\sum_{g \in \mathcal{G}} \alpha_g = 1$. Moreover, ξ is the AGC state whose evolution is dictated by

$$\dot{\xi} = -\xi - ACE + \sum_{g \in \mathcal{G}} P_g^e, \tag{5}$$

where ACE denotes the area control error that accounts for deviations in frequency from the synchronous value. For a single-area system with no tie-line flows, the area control error is formulated as ACE = $b(\omega - \omega_s)$ where b > 0 is the area bias factor and ω the prevailing frequency of the system. (Without loss of generality, we assume ω is computed with real-time measurements as the average electrical frequency of all generators.) Let $C_g(P_g)$ denote the cost function for generator g, and collect P_g , $g \in \mathcal{G}$, in $P_{\mathcal{G}}$. We will assume the economic dispatch problem takes the following form:

$$\min_{P_g, g \in \mathcal{G}} \sum_{g \in \mathcal{G}} C_g(P_g) \tag{6a}$$

s.t.
$$\sum_{g \in \mathcal{G}} P_g = P_{\text{load}} + P_{\text{loss}}(P_{\mathcal{G}}), \tag{6b}$$

where P_{load} is the look-ahead net load and $P_{\text{loss}}(P_{\mathcal{G}})$ is the system loss modeled as a function of $P_{\mathcal{G}}$.

Part (i). Let us denote values taken by variables at a new steady-state operating point by \overline{X} (corresponding values at the initial operating point are denoted by X). Suppose the system net load P_{load} changes by amount ΔP_{load} , so that the new net load is $\overline{P}_{\text{load}} = P_{\text{load}} + \Delta P_{\text{load}}$. In steady state after the load change, show that the dynamical system (1)–(5) converges to the following operating point:

$$\overline{\omega}_g = \omega_s, \ \forall \ g \in \mathcal{G},$$
 (7)

$$\overline{P}_g^{\rm m} = P_g^{\star} + \alpha_g(\Delta P_{\rm load} + \Delta P_{\rm loss}), \ \forall \, g \in \mathcal{G}, \tag{8}$$

$$\overline{\xi} = P_{\text{load}} + \Delta P_{\text{load}} + \Delta P_{\text{loss}},\tag{9}$$

where ΔP_{loss} is the change in system loss due to the change in operating point.

Part (ii). Show that the generator g steady-state electrical power output with the new net load is

$$\overline{P}_q^e = P_q^* + \alpha_g(\Delta P_{\text{load}} + \Delta P_{\text{loss}}), \ \forall \ g \in \mathcal{G}.$$
 (10)

Part (iii). Show that the Karush–Kuhn–Tucker (KKT) conditions for the economic dispatch problem (6) are given by:

$$C_g'(P_g^{\star}) - \frac{\lambda^{\star}}{\Lambda_g^{\star}} = 0, \forall g \in \mathcal{G}, \tag{11}$$

where Λ_g^{\star} is the loss penalty factor for generator g evaluated at $P_{\mathcal{G}}^{\star}$; defined as

$$\Lambda_g^{\star} := \left(1 - \frac{\partial P_{\text{loss}}(P_{\mathcal{G}}^{\star})}{\partial P_q}\right)^{-1}.$$
 (12)

Part (iv). In the lecture modules, we have seen that a good choice for the AGC participation factors, $\alpha_g, g \in \mathcal{G}$ from an economic point of view is given by

$$\alpha_g = \frac{(C_g''(P_g^*))^{-1}}{\sum_{j \in \mathcal{G}} (C_j''(P_j^*))^{-1}}, \ \forall \ g \in \mathcal{G}.$$
 (13)

We will now explore the impact of this choice choice of participation factors on system dynamic performance. Suppose the system initially operates in steady state with net load, P_{load} , and generator electrical power outputs corresponding to a KKT point, P_g^{\star} , $g \in \mathcal{G}$, of the economic dispatch problem (6). Note that a KKT point is a solution that satisfies the KKT conditions but may not be a global/local minimum of the optimization problem. (Every minimum/maximum is a KKT point but not vice versa.) Consider AGC action triggered by a change in net load to $\overline{P}_{\text{load}} = P_{\text{load}} + \Delta P_{\text{load}}$. Denote by \overline{P}_g^{\star} , $g \in \mathcal{G}$, a KKT point of the economic dispatch problem solved with the new net load, $\overline{P}_{\text{load}}$. Further, denote the loss penalty factors corresponding to P_g^{\star} and \overline{P}_g^{\star} , by Λ_g^{\star} and $\overline{\Lambda}_g^{\star}$, respectively. Consider the following assumptions to hold true

- [A1] The cost function $C_q(P_q)$ is twice differentiable.
- [A2] The generator-cost and system-loss functions are such that for the KKT points P_q^{\star} , \overline{P}_q^{\star} :

$$\overline{\Lambda}_g^{\star} C_g'(\overline{P}_g^{\star}) - \Lambda_g^{\star} C_g'(P_g^{\star}) = (\overline{P}_g^{\star} - P_g^{\star}) C_g''(P_g^{\star}). \tag{14}$$

Under assumptions [A1]–[A2], prove that if the AGC participation factors are picked per (13), then the steady-state generator electrical power outputs following the net-load change correspond to KKT point, \overline{P}_q^{\star} , i.e.,

$$\overline{P}_{g}^{e} = \overline{P}_{g}^{\star}, \ \forall \ g \in \mathcal{G}. \tag{15}$$

Comment on the implication/significance of the above result.

Part (v). Can you provide specific cases (types of cost functions, types of networks) under which assumptions [A1]–[A2] are automatically satisfied?

Problem 2. Notation. The matrix transpose will be denoted by $(\cdot)^T$, complex conjugate by $(\cdot)^*$, real and imaginary parts of a complex number by $Re\{\cdot\}$ and $Im\{\cdot\}$, respectively, magnitude of a complex scalar by $|\cdot|$, and $j := \sqrt{-1}$. A diagonal matrix formed with entries of the vector x is denoted by $\operatorname{diag}(x)$; $\operatorname{diag}(x/y)$ forms a diagonal matrix with the ℓ th entry given by x_{ℓ}/y_{ℓ} , where x_{ℓ} and y_{ℓ} are the ℓ th entries of vectors x and y, respectively; and diag(1/x) forms a diagonal matrix with the ℓ th entry given by x_{ℓ}^{-1} . For a vector $x = [x_1, \dots, x_N]^{\mathrm{T}}$, $\cos(x) := [\cos(x_1), \dots, \cos(x_N)]^{\mathrm{T}}$ and $\sin(x) := [\sin(x_1), \dots, \sin(x_N)]^{\mathrm{T}}$. We will routinely decompose the complex-valued vector $x \in \mathbf{C}^N$ (complex-valued matrix $X \in \mathbf{C}^{N \times N}$) into its real and imaginary parts as follows: $x = x_{\rm re} + \mathrm{j} x_{\rm im}$ $(X = X_{\rm re} + jX_{\rm im}, \text{ respectively})$. The spaces of $N \times 1$ real-valued and complex-valued vectors are denoted by \mathbf{R}^N and \mathbf{C}^N , respectively; \mathbf{T}^N denotes the N-dimensional torus. With 0_N and 1_N , we denote N-dimensional column vectors with all entries equal to 0 and 1, respectively. The $N \times N$ identity matrix is denoted by $I_{N\times N}$ and the $N\times N$ matrix with all 0 entries is denoted by $0_{N\times N}$. Power System Model. Consider a power system with N+1 buses collected in the set \mathcal{N} . We model loads as the parallel interconnection of constant impedance and a constant power component. Without loss of generality, the slack bus is fixed to be the N+1 bus, and its voltage is denoted by $V_0e^{j\theta_0}$. Let $V = [V_1, \dots, V_N]^{\mathrm{T}} \in \mathbf{C}^N$, where $V_{\ell} = |V|_{\ell} \angle \theta_{\ell} \in \mathbf{C}$ represents the voltage phasor at bus ℓ . In subsequent developments, we will find it useful to define the vectors $|V| = [|V_1|, \dots, |V_N|]^T \in \mathbf{R}_{>0}^N$ and $\theta = [\theta_1, \dots, \theta_N]^T \in \mathbf{T}^N$. Given our focus on rectangular coordinates, we will also routinely express $V = V_{\rm re} + jV_{\rm im}$, where $V_{\rm re}, V_{\rm im} \in \mathbf{R}^N$ denote the real and imaginary components of V. Let $I = [I_1, \dots, I_N]^T$, where $I_\ell \in \mathbf{C}$ denotes the current injected into bus ℓ . Kirchhoff's current law for the buses in the power system can be compactly represented in matrix-vector form as follows:

$$\begin{bmatrix} I \\ I_{N+1} \end{bmatrix} = \begin{bmatrix} Y & \overline{Y} \\ \overline{Y}^{T} & y \end{bmatrix} \begin{bmatrix} V \\ V_{\circ} e^{j\theta_{\circ}} \end{bmatrix}, \tag{16}$$

where $V_{\circ}e^{j\theta_{\circ}}$ is the slack-bus voltage, I_{N+1} denotes the current injected into the slack bus, and the entries of the admittance matrix have the following dimensions: $Y \in \mathbf{C}^{N \times N}$, $\overline{Y} \in \mathbf{C}^{N}$, and $y \in \mathbf{C} \setminus \{0\}$. We will decompose the matrix Y and its inverse Y^{-1} as follows:

$$Y = G + jB, \quad Y^{-1} = R + jX.$$
 (17)

Denote the vector of complex-power bus injections by $S = [S_1, ..., S_N]^T$, where $S_\ell = P_\ell + jQ_\ell$. By convention, P_ℓ and Q_ℓ are positive for generators and negative for loads.

Part (i). Using (16), show that the complex-power bus injections can be compactly written as

$$S = \operatorname{diag}(V) \left(Y^* V^* + \overline{Y}^* V_{\circ} e^{-j\theta_{\circ}} \right). \tag{18}$$

Part (ii). Express $V = V^{\text{nom}} + \Delta V$, where V^{nom} is some a priori determined nominal voltage vector, and entries of ΔV capture perturbations around V^{nom} . With the choice

$$V^{\text{nom}} = -Y^{-1}\overline{Y}V_{\circ}e^{j\theta_{\circ}}, \tag{19}$$

show that ΔV can be solved from the following linear equation (once second-order terms are neglected)

$$\operatorname{diag}\left((V^{\text{nom}})^*\right)Y\Delta V = S^*. \tag{20}$$

Part (iii). Define the following matrices

$$K = \operatorname{diag}(V^{\text{nom}})Y^*, \quad J = \begin{bmatrix} \operatorname{Re}(K) & \operatorname{Im}(K) \\ \operatorname{Im}(K) & -\operatorname{Re}(K) \end{bmatrix}.$$
 (21)

Show that the real and imaginary parts of ΔV , $\Delta V_{\rm re}$ and $\Delta V_{\rm im}$ are given by the solution of the following linear equations

$$\begin{bmatrix} \Delta V_{\rm re} \\ \Delta V_{\rm im} \end{bmatrix} = J^{-1} \begin{bmatrix} P \\ Q \end{bmatrix}. \tag{22}$$

Part (iv). Consider a complex scalar η such that $|\eta| \ll 1$. Show that

$$|1 + \eta| \approx 1 + \text{Re}(\eta),\tag{23}$$

$$\angle(1+\eta) \approx \operatorname{Im}(\eta).$$
 (24)

Part (v). Leveraging the approximations in (23)–(24) and the expressions in (21)–(22), show that

$$|V| \approx |V^{\text{nom}}| + [\operatorname{diag}(\cos(\theta^{\text{nom}})) \quad \operatorname{diag}(\sin(\theta^{\text{nom}}))]J^{-1} \begin{bmatrix} P \\ Q \end{bmatrix}.$$
 (25)

Part (vi). Leveraging the approximations in (23)–(24) and the expressions in (21)–(22), show that

$$\theta \approx \theta^{\text{nom}} + \text{diag}(|V^{\text{nom}}|)^{-1}[-\text{diag}(\sin(\theta^{\text{nom}})) \quad \text{diag}(\cos(\theta^{\text{nom}}))]J^{-1}\begin{bmatrix} P \\ Q \end{bmatrix}.$$
 (26)

Part (vii). Consider a two-bus power system composed of a single PQ load connected to bus 1 and bus 2 representing the slack bus. At buses 1 and 2, there are shunt admittances of 0.02j; and the impedance of the line connecting bus 1 and 2 is 0.01 + 0.05j. The real power drawn by the load at bus 1 is 2 p.u., and the reactive power drawn is 0.75 p.u. The voltage of the slack bus, $V_o \angle \theta_o = 1 \angle 30^\circ$. Compute the voltage magnitude and phase angle at bus 1 using the Newton-Raphson approach run out for 5 iterations. (Choose the bus-2 voltage as the initial guess for the voltage magnitude and phase angle.) Verify the accuracy of the approximations in (25)-(26) with the result you obtain from the Newton-Raphson method. Include your code in the solution.