

(19)日本国特許庁 (JP)

(12) 公表特許公報 (A)

(11)特許出願公表番号

特表平11-510311

(43)公表日 平成11年(1999)9月7日

(51)Int.Cl.<sup>6</sup>  
H 0 1 M 4/92  
4/88  
8/06  
8/10

識別記号

F I  
H 0 1 M 4/92  
4/88  
8/06  
8/10

H  
A

審査請求 未請求 予備審査請求 有 (全 54 頁)

(21)出願番号 特願平9-521493  
(86) (22)出願日 平成8年(1996)12月9日  
(85)翻訳文提出日 平成10年(1998)6月8日  
(86)国際出願番号 PCT/US96/19731  
(87)国際公開番号 WO97/21256  
(87)国際公開日 平成9年(1997)6月12日  
(31)優先権主張番号 08/569, 452  
(32)優先日 1995年12月8日  
(33)優先権主張国 米国(US)

(71)出願人 カリフォルニア インスティチュート オブ テクノロジー  
アメリカ合衆国 91125 カリフォルニア州 パサデナ イーストカリフォルニアブルバード 1201  
(72)発明者 スランプディ, スッパラオ  
アメリカ合衆国 911741 カリフォルニア州 グレンドラ イーストレオドニアベニュー 1210  
(74)代理人 弁理士 長谷 照一 (外2名)

最終頁に続く

(54)【発明の名称】 直接型メタノール供給式燃料電池およびそのシステム

(57)【要約】

非酸性燃料のメタノール燃料電池(10)の改良で、そこに使用される材料についての新規な処方である。アノード(14)は、均一に混合された白金及びルテニウムを含んでいる。これらの金属を他の材料で置換してもよい。カソード(16)は、白金粒子でできており、固体ポリマーの電解質膜(18)の一方の面に接合されている。燃料用電極のパッキング材料は、その特性を改良するように処理される。スパッタリングによって形成される極めて多孔質な電極についても開示してある。

図1



BEST AVAILABLE COPY

**【特許請求の範囲】****1. バッキングと、**

白金とルテニウムが均一に混合されかつランダムに間隔を空けられていて白金とルテニウムの別個の部位を有する白金ルテニウム二金属性粉末を含む触媒材料と

を備えてなる電気化学反応を行うタイプの燃料電池要素。

**2. 請求項1に記載の燃料電池要素において、**

前記触媒材料が、走査電子顕微鏡で全て灰色に見える程度に十分に均質であることを特徴とするもの。

**3. 白金、ルテニウム、及び白金とルテニウムの間の分離を維持する別の材料の溶液を形成する工程と、**

前記溶液を混合する工程と、

前記溶液を加熱する工程を少なくとも含む前記溶液を処理する工程と、

前記処理工程の後に、前記別の材料を除去するやり方でその溶液をさらに操作する工程と

を含んでなる燃料電池要素用の材料の形成方法。

**4. 請求項3に記載の方法において、**

前記別の材料が塩化物を含み、

前記追加の操作工程がその材料を洗浄する工程を含むことを特徴とする方法。

**5. 請求項4に記載の方法において、**

前記溶液を形成する工程が、塩酸溶液中で白金塩及びルテニウム塩のスラリーを形成する工程を含み、前記スラリーはクロロ白金酸ヘキサ水和物塩及びルテニウム塩 $K_2RuCl_6 \cdot H_2O$ を含んでおり、

さらに前記溶液を形成する工程が、均質な混合物を得るためにそのスラリーを攪拌する工程を含む

ことを特徴とする方法。

**6. 請求項3に記載の方法において、**

前記溶液を形成する工程が、さらに所定のpHを維持しつつ炭酸ナトリウムを添加する工程を含む

ことを特徴とする方法。

7. 請求項3に記載の方法であって、

さらに、少なくともある量のルテニウムをルテニウムに似た特性を持つ材料と置換する工程を含む

ことを特徴とする方法。

8. 請求項7に記載の方法において、

ルテニウムに似た特性を持つ前記材料が、イリジウム、チタン、オスミウム、クロム、及び／又はマンガンのうちの一つである

ことを特徴とする方法。

9. 請求項3に記載の方法であって、

さらに、少なくともある量の白金を白金に似た特性を持つ材料と置換する工程を含む

ことを特徴とする方法。

10. 請求項9に記載の方法において、

白金に似た特性を持つ前記材料が、パラジウム、タンクステン、ロジウム、鉄、コバルト、及び／又はニッケルのうちの少なくとも一つである  
ことを特徴とする方法。

11. パッキングと、

白金及びルテニウムに似た特性を持つ材料を含む触媒材料と  
を備えてなる電気化学反応を行うタイプの燃料電池要素。

12. 請求項11に記載の燃料電池要素において、

ルテニウムに似た特性を持つ前記材料が、イリジウム、チタン、オスミウム、クロム、及び／又はマンガンのうちの一つである  
ことを特徴とするもの。

13. パッキングと、

白金に似た特性を持つ材料を含む触媒性材料と

を備えてなる電気化学反応を行うタイプの燃料電池要素。

14. 請求項13に記載の燃料電池要素において、

白金に似た特性を持つ前記材料が、パラジウム、タングステン、ロジウム、鉄、コバルト、及び／又はニッケルのうちの少なくとも

一つである

ことを特徴とするもの。

15. 内部に埋め込まれたテフロン粒子を有するパッキング材料と、

前記パッキング材料に被覆した触媒材料と

を備えてなる燃料電池用電極。

16. 請求項15に記載の燃焼電池用電極において、

前記テフロン粒子が、前記パッキング材料に撥水性を付与しつつ、触媒性材料がそこを通ってしみ出ることを阻止する効果のある量で添加されていることを特徴とするもの。

17. 請求項16に記載の燃料電池用電極において、

前記テフロン粒子が、パッキング材料に対し所定の重量パーセントで含まれることを特徴とするもの。

18. パッキング材料を得る工程と、

防水剤が前記パッキング材料にしみ込む量を制限しつつそのパッキング材料を防水剤で処理する工程とを含んでなり、

前記制限が材料に湿潤性は付与するが多孔性にはしないことに効果のある程度の量で前記材料を処理することを特徴とする  
燃料電池用電極の形成方法。

19. 請求項18に記載の方法において、

前記パッキング材料がカーボンペーパーであり、また前記防水剤溶液がテフロンである

ことを特徴とする方法。

20. 請求項19に記載の方法において、

前記処理工程が、

テフロン溶液を形成する工程と、

カーボンペーパーの表面と最小限にしか接触させないでそのテフロン溶液に

前記カーボンペーパーを浸漬する工程とを含む

ことを特徴とする方法。

21. 請求項20に記載の方法において、

前記浸漬する工程が、テフロン被覆したピンセットで前記カーボンペーパーを  
保持する工程を含む

ことを特徴とする方法。

22. 請求項19に記載の方法であって、

さらに、前記処理したカーボンペーパーのバッキングを乾燥する工程を含む  
ことを特徴とする方法。

23. 請求項18に記載の方法であって、

前記乾燥工程が、前記バッキング材料を支持体を跨いで配置する工程を含む  
ことを特徴とする方法。

24. 請求項23に記載の方法において、

前記支持体が、途中にキンクを設けたテフロン被覆のワイヤーである  
ことを特徴とする方法。

25. 請求項22に記載の方法であって、

さらに、前記乾燥したペーパーを評量する工程と、  
乾燥したペーパーの元の重さに比較してそのペーパーの重さが増加した量から  
十分な量のテフロンが添加されているかどうかを決定する工程を含む  
ことを特徴とする方法。

26. 触媒材料入手する工程と、

前記触媒材料をイオノマー及び撥水性材料と混合して混合触媒材料を形成する  
工程と、

前記混合材料を電極のバッキング材料に付ける工程と  
を含んでなる燃料電池を形成する方法。

27. 請求項26に記載の方法において、

前記混合する工程が、まず触媒材料を撥水性材料と混合する工程と、次いでイオノマーを添加する工程とを含むことを特徴とする方法。

28. 請求項27に記載の方法において、

前記撥水性材料がテフロンであり、そして前記イオノマーが液状ナフィオンである

ことを特徴とする方法。

29. バッキングに第1触媒材料と第2材料の混合物をスパッタすることによって、前記第1材料と前記第2材料の合わさったスパッタ形成材料を形成する工程と、

前記第1材料を除去しない洗浄剤を用いて前記第2材料を洗浄除去することによって、その間に孔が形成された第1材料を残す工程とを含んでなる燃料電池用の多孔性電極を形成する方法。

30. 請求項29に記載の方法において、

前記第2材料がアルミニウム材料であり、前記洗浄工程がKOHを用いて前記アルミニウム材料を除去するものであることを特徴とする方法。

31. 請求項30に記載の方法において、

前記第1材料が白金含有材料であることを特徴とする方法。

32. 表面に燃料電池用触媒材料を有するアノード電極と、プロトン伝導性の固体電解質部材と、適当な燃料電池用触媒を有するカソード電極を備えてなり、それらの全部がその順で互いにプレス接合されて、前記電解質部材が前記アノードとカソード電極の間に存在する膜電極アセンブリ。

33. 請求項32に記載の膜電極アセンブリにおいて、

前記アノード、電解質及びカソードが全て湿潤性の材料である  
ことを特徴とするもの。

34. 表面に適当な燃料電池用触媒を有するアノード電極と、プロトン伝導性の  
固体電解質部材と、表面に適当な燃料電池用触媒を有するカソード電極とを備え  
たスタックを形成する工程と、

これらの材料を結合して結合膜状電極アセンブリを形成するのに効果的であ  
る程度に前記スタックを加熱しプレスする工程と  
を含んでなる膜電極アセンブリの形成方法。

35. 請求項34に記載の方法において、

前記加熱しプレスする工程が、

まずプレス機械の部材間で前記スタックをプレスする第1プレス工程と、  
次いで、前記第1プレス工程後からある時間後に、そのプレス工程によりス  
タックにかかった圧力を維持しながらそのスタックを加熱する工程と、  
次いで、加圧下での前記加熱工程からある時間後に、圧力を維持しながらそ  
のスタックを冷却する工程を含んでなる  
ことを特徴とするも方法。

36. 請求項35に記載の方法において、

前記第1のプレス工程が1000～1500psiの間でその材料を加圧する  
工程を含み、また

前記加熱工程が140～150℃に温度を上昇させる工程を含む  
ことを特徴とする方法。

37. 少なくともアノード及びカソード電極と、

燃料供給管と、  
燃料を前記燃料供給管から前記アノード及びカソード電極の少なくとも一方に  
供給するように作動するフローフィールドエレメントとを備えてなり、  
前記フローフィールドエレメントは、前記一方の電極に対して押しつけられて  
おり、そして複数のアイランド領域を有しており、各アイランド領域には上面と

側面を有する加圧表面があり、その加圧表面は前記一方の電極に対して押しつけられており、前記フローフィールド領域は前記側面を取り囲んでおり、そして前記フローフィールド領域は前記燃料供給管と連通しており、

前記燃料供給管は、ある方向に延びるフローフィールドに開口する少なくとも一つの開口部を有し、前記方向にフローフィールドに燃料を供給し、前記方向は側面の一つに燃料を直接供給するものであることを特徴とする燃料電池。

38. 請求項37に記載の燃料電池において、

前記アイランド領域は、長方形で、その長軸が前記方向に平行であり、そして前記燃料は、前記方向に垂直に延びる前記側面の一つに供給されることを特徴とするもの。

39. 請求項38に記載の燃料電池において、

前記燃料供給管は、複数のノズルを備えており、全部が前記方向に延びていて、そして全部が前記側面の一つに対して燃料を供給することを特徴とするもの。

40. 電極に対してフローフィールドエレメントを押しつける工程と、

前記フローフィールドを前記燃料供給管に連通する工程とを含んでなり、

前記フローフィールドエレメントは、複数のアイランド領域を備えており、そのそれぞれには上面と側面を有する加圧表面があり、その加圧表面上面は前記一つの電極に押しつけられ、前記フローフィールド領域が前記側面を取り囲んでおり、

前記フローフィールドと前記燃料供給管との連通により、前記フローフィールドエレメントの一つの前記側面に燃料を供給することを特徴とする加圧されることを必要とするタイプの電極に燃料を供給する方法。

## 【発明の詳細な説明】

### 直接型メタノール供給式燃料電池およびそのシステム

この出願は、1993年10月12日に出願された米国特許出願第08/135,007号の継続出願の、1995年6月7日に出願された米国特許出願第08/478,001号の一部継続出願である。

#### 発明の分野

この発明は、酸性電解質またはリフォーマを用いないで作動するシステムのための、改良された直接供給式メタノール燃料電池に関する。

#### 背景及び概要

ガソリン動力型の内燃機関で作動する輸送車両は、多くの環境問題の源となつてきている。内燃機関から出る産物は、例えばスモッグや他の排気ガスが関連した問題を生じさせる。種々の汚染制御対策によって、ある種の望ましくない排気ガス成分が最小限にされている。しかしながら、燃焼のプロセスは、本質的に何らかの排気ガスを生成する。

しかしながら、たとえ排気ガスを全面的に環境に優しくできたとしても、ガソリンをベースとする内燃機関は非再生性の化石燃料に依然として頼っている。

多くのグループがこのエネルギー問題の適切な解決法を探ってきた。

一つの可能性のある解決法として、燃料電池が挙げられている。燃料電池は、再生可能な燃料材料からのエネルギーを用いて化学的に反応する。例えば、メタノールは、完全に再生可能な供給源である。また、燃料電池は、燃焼反応の代わりに、酸化／還元反応を利用する。この燃料電池の反応から得られる最終生成物は、典型的には、殆どが二酸化炭素と水である。

いくつかの従来のメタノール燃料電池は、メタノールを燃料電池で用いられるH<sub>2</sub>ガスに変換するために「リフォーマ」を使用した。メタノール燃料電池は、強酸の電解質を使用した。この発明の発明者らは、最初に、酸性電解質を用いることなくメタノールから直接燃料電池を作動させる技術、いわゆる直接供給式燃料電池を提案した。この改良の主題事項は、我々の米国特許第\_\_\_\_\_号に記載されており、適切な理解のために必要な程度に、当該特許の開示事項をこ

の明細書に参照として援用する。これは我々発明者らの業績であるので、もちろん、この特許がこの発明に対する先行技術を構成する旨をここで承認するものではない。

この発明の主題は、そのような直接供給型燃料電池の更なる改良を説明するものである。この概念についての発明者らの更なる研究業績に基づいて、燃料電池の構造自体に対する種々の改良をここに記載する。これらの改良事項には、電極の作用を改善する電極の改良された調製が含まれている。

電極の作用には、メタノール生成の効率を高める改良触媒が含まれている。燃料電池は、高価な白金触媒を用いる。ここで提供する電極調製法は、白金触媒を用いる必要性を減少させたりなくしたりできる技術を定義するものである。

カソード電極を形成する技術もここに開示されている。これらの技術は、非圧縮空気で使用するカソードの作用を最適にする。これによって、還元メカニズムに周囲温度や大気圧を許容できるようになり、燃料電池の効率をさらに改善できる。

また、電極形成の技術も説明し、それには膜の条件を整える技術も含まれている。特に好ましい膜電極アセンブリの形成も定義されている。

この発明は、また、液体燃料を触媒に供給するのを容易にするフローフィールドの設計も定義している。

この燃料電池システムは、結局、最終製品において使用される必要がある。この最終製品は、内燃機関であってもよいし、またはラジオのようなずっと簡単な電子機器であってもよい。電気で作動するいがなる製品も、これらの燃料電池から発生した電力に基づいて作動させることができる。この発明の発明者らは、この作動を改良するとともに、他の方法では起こる可能性のあるこれらの諸問題点を改善するある技術を見つけ出した。

この発明の技術は、また、全体システムの一部としてこの燃料電池を作動させる技術について説明することによって、「システム作動」をも可能にした。

これらのシステム技術には、メタノール濃度や他の重要なパラメータを測定するためのセンサが含まれる。この発明者らは、種々のパラメータを検出するため

の種々のセンサが必要であろうことを理解している。この発明者らは、市販のセンサを見つけることができなかった。この発明には、この燃料電池で用いる技術をセンサの形成のために変形する方法が記載されている。このセンサは、この燃料電池の技術を用いて高い信頼性を保って作動する。

もう一つの技術は、単極性電池の形成を定義している。

#### 図面の簡単な説明

この発明のこれらの及び他の面について、添付図面を参照して以下に詳細に説明する。

図1及び2は、この発明による基本的な燃料電池を示す。

図3は、テフロンをエンコードしたカーボンペーパーシートを乾燥するために用いる乾燥用ディッシュを示す。

図4は、この発明の基本的な白金スパッタ装置を示す。

図5は、この発明の第1実施態様に係る基本的なフローフィールド装置を示す。

図6は、図5のライン6-6に沿って切断した好ましいフローフィールドの断面図を示す。

図7は、この発明のバイプレート構造の第1実施態様を示す。

図8は、バイプレート構造の第2実施態様を示す。

図9は、直接型メタノールフィールド燃料電池のシステム作動を示す。

図10は、メタノールセンサで用いるために上述した燃料電池の概念をいかに改変したらよいかを示す。

図11は、この発明におけるメタノール濃度と電流との関係を示す。

図12は、この発明によるメタノール用の級に段階をつけたモレキュラーシップの燃料電池を示す。

図13は、この発明の燃料電池の単極でのやり方についての第1の拡大された図を示す。

図14は、この単極でのやり方のパッケージ化を示す。

図15は、単極でのやり方の第2実施態様を示す拡大図である。

図16は、この単極でのやり方を作動システムにいかに組み立てるかを示す。

図17は、単極でのやり方のアセンブリの別の拡大レイアウトを示す。

#### 好ましい実施態様の説明

我々の上記で言及した特許に記載された液体供給システムは、アノード上に白金-ルテニウム触媒を、またカソード上に白金触媒を用いている。ペルフルオロスルホン膜、好ましくは DuPont のナフィオン (Nafion) 117が、ポリマー電解質膜として用いられる。

重要なことは、このシステムがいかなる酸性電解質もリフォーマも使用する必要なく、作動したことである。種々の材料の持つ種々の特性を変えて、この改良がなされた。

アノード電極をイオノマー添加剤を用いて親水性を高めることによって、アノード表面へのメタノール水溶液の接近性を改善できた。

アノードの親水性を高める別の方法は、超酸（「C8酸」）を含む電解質を用いることであった。

例えば、トリメトキシメタン「TMM」のような別のメタノール誘導体燃料は、それらの分子サイズが大きいため、また他の特性のために、燃料の移動性 (cross-over) が小さくなる。

図1は、ハウジング12、アノード14、カソード16および固体ポリマープロトン伝導性カチオン交換電解質膜18を有する液体供給有機燃料電池10を示す。以下に一層詳細に説明するように、アノード14、カソード16および固体ポリマー電解質膜18は、好ましくは单一の多層複合構造体であり、ここでは膜電極アセンブリと称する。ポンプ20が、有機燃料と水の溶液をハウジング12

のアノード室22内にポンプ輸送するために設けられている。その有機燃料と水の混合物は、出口ポート23から取り出して、図2を参照して以下に説明する、メタノールタンク19を有する再循環システムを通じて再循環される。アノード室で生成した二酸化炭素は、タンク19内のポート24を通じて放出される。酸素または空気の圧縮器26が、ハウジング12内のカソード室28の中に酸素または空気を供給するために設けられている。以下に説明する図2は、再循環シス

テムを含む個々の燃料電池のスタックを組み込んだ燃料電池システムを示す。図1の燃料電池の以下の詳細な説明は、アノード14、カソード16および膜18の構造と機能を中心として行う。

使用に先だって、アノード室22は有機燃料と水の混合物で満たし、そしてカソード室28は空気と酸素で満たす。作動中は、有機燃料はアノード14を通過して循環され、一方、酸素または空気はカソード室28内にポンプ輸送されカソード16を通過して循環される。電気負荷（図示せず）がアノード14とカソード16の間に接続されると、有機燃料の電気酸化がアノード14で起こり、かつ酸素の電気還元がカソード16で起こる。アノードとカソードでこのような異なる反応が起こることにより、これら2電極間に電圧差が生じる。アノード14での電気酸化で生成した電子が外部負荷（図示せず）を通して伝導されて、最後にカソード16で捕捉される。アノード14で生成した水素イオンつまりプロトンは、膜電解質18を直接横切ってカソード16に輸送される。したがって、電流の流れは、電池を通過するイオンの流れと外部負荷を通過する電子によって維持される。

上記のように、アノード14、カソード16および膜18は、一

つの複合層構造体を形成している。好ましい実施態様では、膜18はペルフルオロ化プロトン交換膜材料のナフィオン（商標）で形成される。ナフィオン（商標）は、テトラフルオロエチレンとペルフルオロビニルエーテルスルホン酸のコポリマーである。他の膜材料も使用できる。例えば、改変ペルフルオロ化スルホン酸ポリマー、ポリ炭化水素スルホン酸および2種以上のプロトン交換膜の複合体の膜が使用できる。

アノード14は、白金ルテニウム合金の粒子から、微細金属粉末つまり「非担持構造」としてか、または大表面積の炭素上に分散させつまり「担持構造」で、形成される。大表面積の炭素は、米国のCabot Inc.社が提供するVulcan XC-72Aのような材料でもよい。電気触媒の粒子との電気的接続を行うために、炭素繊維シートのバッキング（図示せず）を使用する。市販のT orally（商標）ペーパーが電極バッキングシートとして使用される。T orally

y (商標) ペーパーのバッキング上の担持構造の合金電気触媒が米国マサチューセッツ州フラミンガム所在のE-Tek, Inc. 社から入手できる。あるいは、非担持構造の電気触媒と担持構造の電気触媒の何れも、テフロン (商標) 結合剤で結合しToray (商標) ペーパーバッキング上に散布する化学的方法でアノードを製造することができる。電気触媒電極を効率的に時間をかけずに製造する方法を、以下に詳細に説明する。

第二の金属がスズ、イリジウム、オスミウムまたはレニウムである白金ベースの合金を、白金ルテニウムの代わりに使用できる。一般に、合金の選択は、燃料電池に使用される燃料に依存して行われる。メタノールを電気酸化するには、白金ルテニウムが好ましい。白金ルテニウムの場合、電気触媒層中に添加する合金粒子の量は、

0.5～4.0 mg/cm<sup>2</sup>の範囲が好ましい。添加レベルは、低いより高い方がより効率的な電気酸化が実現される。

カソード16は、ガス拡散電極であり、白金粒子が膜18の一方の面に結合している。カソード16は、膜18のアノード14とは反対側の面に結合された非担持構造または担持構造の白金で形成することが好ましい。米国のJohnson Matthey Inc. 社から入手できる非担持構造の白金黒 (燃料電池グレード) または米国のE-Tek Inc. 社から入手できる担持構造の白金材料がカソード用に適している。アノードの場合のように、カソード用の金属粒子を炭素のバッキング材料上に載せることが好ましい。電気触媒粒子を炭素バッキング上に負荷する量は、好ましくは、0.5～4.0 mg/cm<sup>2</sup>の範囲である。電気触媒合金と炭素纖維のバッキングは、10～50重量%のテフロン (商標) を含有し、三相界面を生成しあつ酸素の電気還元によって生成した水を効率的に除去するのに必要な疎水性を与えている。

作動中は、濃度範囲が0.5～3.0モル/リットルの燃料及び水の混合物 (酸性の電解質もアルカリ性の電解質も含有していない) を、アノード室22内のアノード14を通過させて循環させる。好ましくは、10～500mL/分の範囲の流速が使用される。燃料と水の混合物がアノード14を通過して循環すると

き、例示的なメタノール電池の場合、下記の電気化学反応が起こり、電子を放出する。



上記反応で生成した二酸化炭素は、燃料と水の溶液とともに出口23を通して取り出され、気液分離器でその溶液から分離される

(図2を参照して以下に説明する)。燃料と水の溶液は、次いでポンプ20により電池内へ再循環される。

上記式(1)で示す電気化学反応と同時に、電子を捕捉する、酸素の電気還元を行う他の電気化学反応がカソード16で起こり、下記式で表される。



式(1)と(2)で表される個々の電極反応によって、例示的なメタノール燃料電池について、下記式で表される全体反応が行われる。



十分に高い濃度の燃料で、 $500 \text{ mA/cm}^2$ より高い電流密度を維持することができる。しかしながら、これらの濃度では、膜18を横切ってカソード16へ向かう燃料の移動速度(crossover rate)が、その燃料電池の効率と電気的性能が有意に低下する程度にまで増大する。 $0.5 \text{ モル/l}$ より低い濃度では、電池の作動は $100 \text{ mA/cm}^2$ 未満の電流密度に限定される。低い電流密度の場合には、低い流速が適用可能であることが見出された。高電流密度で作動させる場合は、電気化学反応によって生成する二酸化炭素を除くためはもとより、有機燃料のアノードへの輸送質量速度を増大するために、高い流速が必要である。また、低流速では、燃料が膜を通過してアノードからカソードへ移動するのが減少する。

好ましくは、酸素または空気は、 $10 \sim 30 \text{ psig}$ の範囲の圧力下でカソード16を通過して循環させる。外界圧力より高い圧力にすると、電気化学反応の場所への酸素の質量輸送が、特に高い電

流密度の場合、改善される。カソードにおいて電気化学反応で生成する水は、ボ

ート30を通して酸素の流れによってカソード室28から運び出される。

水に溶解している液体燃料は、アノードで電気酸化されるのに加えて、固体ポリマー電解質膜18を透過して、カソードの電気触媒の表面上で酸素と結合する。このプロセスは、メタノールを例に挙げて、式(3)で表される。この現象は、「燃料移動(fuel crossover)」と呼ばれる。燃料の移動によって、酸素電極の作動電位が低下して、その結果、有用な電気エネルギーを生成することなく燃料が消費される。一般に、燃料の移動は、効率を低下させるとともに性能を低下させかつ燃料電池内で熱を発生させる寄生反応である。

したがって、燃料の移動速度を最小にすることが望ましい。この移動速度は、固体電解質膜を通過する燃料の透過率に比例し、濃度が増大し温度が上昇するにつれて増大する。含水量が低い固体電解質膜を選ぶことによって、膜の液体燃料に対する透過率を低下させることができる。燃料に対する透過率を低下させると、移動速度が低下する。また、分子の大きさが大きい燃料は、分子の大きさが小さい燃料よりも、拡散係数が小さい。したがって、透過率は、分子の大きさが大きい燃料を選択することによって下げることができる。水溶性の燃料が望ましいとはいえ、溶解度が中位の燃料は低い透過率を呈する。高沸点の燃料は蒸発しないので、膜を通してのそれら燃料の輸送は液相で行われる。蒸気の透過率は液体より高いので、高沸点の燃料は一般に移動速度が低い。液体燃料の濃度は、移動速度を小さくするためにも下げることができる。疎水性部位と親水性部位が最適に分布しているアノード構造体は、液体燃料によって適度に濡れることで電気化学反応を維持することができ、かつ過剰量

の燃料が膜電解質に接近するのを防止する。したがって、アノードの構造を適当に選択すれば、高性能と望ましい低移動速度を得ることができる。

固体電解質膜は、60℃より高い温度では水が透過可能なので、かなりの量の水が透過と蒸発によって膜を横切って輸送される。固体電解質膜を通して輸送される水は、水回収システム内で凝縮されて、水タンク（この水回収システムとタンクについては、図2を参照して以下に詳細に説明する）に送られ、その水はアノード室22の中へ再循環させることができる。

アノード14で生成したプロトンおよびカソード16で生成した水は、プロトン伝導性固体電解質膜18によって二つの電極間を輸送される。膜18の高いプロトン伝導性を維持することは、有機／空気燃料電池を有効に作動させるのに重要である。電解質膜の含水量は、液体燃料と水の混合物と直接接触させることによって維持される。プロトン伝導性固体ポリマー電解質膜の厚みは、好ましくは、0.05～0.5mmの範囲とする。0.05mmより薄い膜を用いると、機械的強度が劣った膜電極アセンブリとなる可能性があり、一方0.5mmより厚い膜を用いると、液体燃料と水の溶液によってそのポリマーが膨潤して極端でかつ損傷を与える寸法変化をもたらすとともに、過剰の抵抗値を呈する可能性がある。電解質膜のイオン伝導率は、燃料電池が許容可能な内部抵抗を持つためには、 $10\text{ h m}^{-1}\text{ cm}^{-1}$ より大きくなければならない。

上記のように、電解質膜は液体燃料に対する透過率が低くなければならない。ナフィオン（商標）膜がプロトン伝導性固体ポリマー電解質膜として有効であることが見出されたが、ナフィオン（商標）と特性が類似している、A c i p l e x（商標）（日本のAsah

i Glass Co. 社製造）のようなペルフルオロ化スルホン酸ポリマー製の膜、および米国のDow Chemical Co. 社が製造しているポリマー膜、例えばXUS13204.10も利用できる。ポリエチレン及びポリプロピレンスルホン酸の膜、ポリスチレンスルホン酸の膜、および他のポリ炭化水素ベースのスルホン酸類の膜（例えば米国のRAI Corporation社が製造した膜）も、燃料電池の作動する温度と期間に応じて、使用することができる。酸当量が異なっているか、または化学組織が異なっている（例えば、酸性基またはポリマーの骨格が修飾されている）か、または水含量が異なっているか、または架橋の種類と程度が異なっている（例えば、 $\text{Al}^{3+}$ ,  $\text{Mg}^{2+}$ などのような多価カチオンで架橋されている）かの2種以上のプロトン伝導性カチオン交換ポリマーからなる複合体の膜を用いて、低い燃料透過性を達成することができる。このような複合体の膜を製造して、高いイオン伝導率、液体燃料に対する低い透過性率および優れた電気化学的安定性を達成することができる。

以上の説明から理解されるように、電解質としてプロトン伝導性の固体高分子膜を用いることにより、遊離の可溶性酸または塩基の電解質を用いる必要なく、液体供給式直接酸化型有機燃料電池が得られる。唯一の電解質は、プロトン伝導性の固体高分子膜である。液体燃料と水の混合物の中には、遊離の形態の酸は存在しない。自由な酸が存在しないので、現用技術の酸ベースの有機物／空気燃料電池において起こりがちな電池部品の酸誘発による腐食が回避される。このことは、燃料電池および連係サブシステムのための材料選択に相当な柔軟性をもたらす。さらに、液体電解質として水酸化カリウムを含む燃料電池と違って、可溶性の炭酸塩が形成されない。

で、電池性能が低下しない。また、固体電解質膜の使用により、寄生短絡電流が回避される。

更なる改良。

直接型メタノール／液体供給式燃料電池の反応は、次のとおりである。



この明細書には、この発明によって用いられる好ましい構造と材料を製造し形成する際の種々の改良が記述されている。

発明者らによって行われた種々の実験により、一つの特定の好ましい触媒材料は、白金ルテニウム（「Pt-Ru」）であることが確かめられた。これらの二つの金属を組み合わせる種々の製法が可能である。発明者らは、別個の白金粒子と別個のルテニウム粒子を有する二金属性の粉末の方が、白金ルテニウム合金よりも良い結果をもたらすことを見いだした。この発明によって用いられる好ましいPt-Ru材料は、大きな表面積を有しているため、この材料と燃料との間の接触を容易にする。白金もルテニウムも触媒反応で用いられるが、この発明者らは、白金ルテニウムの混成物が材料全体にわたって均一に混合されてランダムに間隔が空けられていることが重要であること、すなわちその材料が均質でなくて

はならないことを見つけだした。

この発明の第1番目の面は、異なる金属を組み合わせて、異なる

材料の特異個別の箇所を有する白金ルテニウム二金属性粉末を形成することである。粒子同士の間には何らかの結合が存在するが、この発明の技術は、結合の程度を最小限にすることを保証する。

好みしい材料を形成するプロセスをこの明細書に記載する。まず最初に、白金塩とルテニウム塩を塩酸に入れたスラリーを形成する。

塩酸にクロロ白金酸結晶を溶解することにより、クロロ白金酸ヘキサ水和物塩 $H_2PtCl_6 \cdot 6H_2O$ を生成させる。

ペンタクロロアクオルテニウム(I II)のカリウム塩から、ルテニウム塩の $K_2RuCl_5 \cdot H_2O$ を生成させる。

12.672グラムのクロロ白金酸結晶を、13.921グラムのペンタクロロアクオルテニウムのカリウム塩の結晶及び1モルの塩酸の600mlと混合する。酸と塩の混合物を15~30分間攪拌して、均質な混合物を得る。

次いで、この酸性スラリーに、毎分1ml当たり140グラムの炭酸ナトリウム( $Na_2CO_3$ )を20~30℃の間の温度で添加することにより、中和して沈殿させる。この間に、二酸化炭素がこの溶液から激しく放出されるであろう。炭酸ナトリウムは、このガスの放出が終わるまで添加し続ける。この時点で、その溶液は、茶黒色に変わる。発明者らは、これに約15分間かかるを見いたした。

この操作を行う間中、適当なpHに維持することが大切で、pHは、炭酸ナトリウムをゆっくりと加えることによって9.25付近で維持すべきである。

次いで、この「灰色の粉末状塊(grey powdery mass)」を処理して、そのスラリーから水をエバポレートする。このエバポレートには1時間ないし2時間がかり、ついに、材料が乾燥して塊となつた

黒いにかわ状の固形物が形成される。次に、この黒いにかわ状固形物を真空中で乾燥させるか、または窒素気流下、80℃~100℃で乾燥させる。塊状の灰色

の固体が得られる。この固体には、それでもまだなお塩化ナトリウムとともに溶液中に存在している材料が含まれている。

この灰色の粉末の化学的内容物には、水酸化ルテニウム =  $\text{Ru(OH)}_3$ 、水酸化白金 =  $\text{Pt(OH)}_4$ 、及び「ベトベとのもの (gunk)」すなわち塩化物、それに加えて過剰な  $\text{Na}_2\text{CO}_3$  がある。

発明者らは、これらの余分な材料が白金とルテニウムの間の分離を維持すると推定している。これらの白金及びルテニウム材料のみで維持されていると、それらは焼結して結合してしまい、粒子の大きさが大きくなってしまう。粒子間の炭酸塩の緩衝剤が合着を防いでいる。

この塊状の固体材料は、次に、水素とアルゴンの雰囲気下で還元されて、塩から金属に変わる。この材料をグラスポートに移し変える。このポートを管状炉のガラス管の中心に配設する。7%の水素と93%のアルゴンからなる混合ガス中で、またはその代わりに水素／窒素の混合ガス中で、その材料を225°C付近で還元させる。このガスは、毎分50～200mlの流速でポートの上を流されるべきである。

このガス流は、その加熱雰囲気で14時間維持し続ける。そして、水素を依然としてその粉末に流し続けたまま、その触媒粉末を40°Cあたりにまで冷却させる。これにより、白金、ルテニウム、の粒子、それに加えて他の塩化物や炭酸塩からなる混合物が形成される。

得られた材料は、次に洗浄しなくてはならない。この材料は、数回の洗浄、例えば60°Cで6回の洗浄を行う。それぞれの洗浄によ

って、ガラスポート内のサンプルを、60°Cの脱イオン水を1リットル入れたビーカーに移す。

白金ルテニウムは、水に不溶である。したがって、洗浄しても白金ルテニウム材料に影響はなく、他の材料のみが除去される。それぞれの洗浄では、水溶液を15分間攪拌する工程が行われるため、可溶性の塩化物及び炭酸塩が溶解する。金属粒子の大きさはサブミクロンなので、それらは底に沈むことなく、代わりにコロイド状の混合物を形成する。

この溶液を40℃にまで冷却させる。この溶液を後程3000 rpmで1時間、遠心分離する。遠心分離プロセスにより、澄んだ上澄み液が残る。この上澄みの液体を移し出して、黒い沈降物を1リットルの60℃の脱イオン水を入れたフラスコに移し変える。このさらなる洗浄により、いかなる溶解した塩化物も除去される。

この洗浄工程は、全部で6回繰り返す。水を攪拌してかつ遠心分離することが、塩化物を全体的に除去するために重要であることがわかった。これらの塩化物は、触媒作用にとって有害である。しかしながら、発明者らは、これらの塩化物が材料の合着を最小限に抑えるのに必要な結合剤ではあるが、後で除去されねばならないことを見出した。

最終的な遠心分離操作を行った後、その粉末をビーカーに移して60℃の真空オーブン中で3時間乾燥する。これに代えて、この材料を凍結乾燥してもよい。これによって、自由に流動できるサブミクロンサイズの活性な白金ルテニウム触媒が得られる。乾燥した材料がサブミクロンサイズであること、そのためそれらが容易に空気で運ばれることに注目することが重要である。安全を確保するためには、サブミクロンマスクを装着しなくてはならない。

この活性な触媒粉末は、サブミクロンサイズの白金粒子及びルテニウム粒子の均質な混合物を含むことがわかった。また、RuO<sub>2</sub>、酸化ルテニウム、及びルテニウム合金の痕跡量の残渣も存在する。

この粉末は、この明細書に記載するように、アノード上で触媒として用いられる。

この転化法による最初の生成物である白金塩及びルテニウム塩は、二酸化チタン(TiO<sub>2</sub>)、イリジウム(Ir)及び/又はオスミウム(Os)で改変してもよい。これらの材料は、比較的少ないコストで燃料電池の性能を改善すべく使用することができる。

先行技術の粒子と比較すると、この処理を行った粒子は際だった利点を示す。先行技術の粒子は、5ミクロンの大きさの粒子である。これらの粒子には、二酸化ルテニウムが含まれていた。この発明の粒子を分析すると、ミクロンサイズの

粒子に至るまで均質な混合物であることを示す。走査型電子顕微鏡で見ると、明るい点も曇った点もなく、全ての材料は全体的に灰色に見える。このことは、混合プロセスによって全体的に均質な材料が形成されたことを示している。

このプロセスにより調製された材料は、アノード触媒材料と言われる。このアノード触媒をナフィオン溶液などと結合させてさらにプロセスを進めると、「インク (ink)」になる。この明細書に記載するように、これには白金属とルテニウム金属の組み合わさったものが含まれている。発明者らは、白金のルテニウムに対する好ましい比率は、60/40と40/60の間であることを見つけている。最良の性能は、60%の白金と40%のルテニウムのときに得られると考えられる。性能は、触媒が100%の白金になると僅かに低下する。性能は、触媒が100%のルテニウムになると、急激

に低下する。

他の添加物をこの塩に添加することにより、特性を改善でき、またこの触媒材料を別のより安価な材料と置換することができる。発明者らは、この燃料電池を低価格の材料で形成すべきであると考えた。残念ながら、白金は非常に高価な材料である。今日の著述の限りでは、白金ルテニウムが触媒として最良の材料である。発明者らは、この触媒の白金の全てまたは一部分に対する置換物を使用することを研究してきた。この置換は、白金ルテニウム触媒が機能する要領に基づいている。

アノードで起こる反応は、 $\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}^+ + \text{e}^-$  である。発明者らは、白金ルテニウムがその触媒表面で材料を解離させる手助けをすることによりこの反応を触媒すると考えている。この材料は、電子を引き出して、それらを解離させる。この反応は、以下のように説明することができる。

メタノールは、炭素化合物である。炭素原子は、他の4つの原子と結合される。そのボンドのうちの3つは、水素原子に対してである。もう一つのボンドは、水酸基、すなわち $\text{OH}$ に対してである。白金は、メタノールをその水素とのボンドから解離して、 $\text{M} = \text{C} - \text{OH}$  ( $\text{M}$ は、 $\text{Pt}$  または他の金属サイトの触媒) + 3  $\text{H}^+$  を形成する。ルテニウムは、水の分子 ( $\text{H}_2\text{O}$ ) から水素を解離して、 $\text{M} -$

$\text{OH}$ を形成する。これらの表面にあるものは、次いで、 $\text{CO}_2 + 6 \text{H}^+ + 6 \text{e}^-$ として新たに組み合わされる。 $\text{H}^+$ （プロトン）は、アノードで生成し、そのアノードからカソードへと横切って、そこで還元される。これは、二機能性触媒と言われる。

この明細書に記載したような、メタノールと水を解離させる類似の機能を持つ如何なる材料でも、白金の代わりに使用することがで

きる。発明者らは、そのような数種の材料を研究した。彼らは、C-Hボンドを解離することのできる、パラジウム、タンクステン、ロジウム、鉄、コバルト、及びニッケルなど、白金の代替物を見出した。モリブデン ( $\text{MoO}_3$ )、ニオビウム ( $\text{Nb}_2\text{O}_5$ )、ジルコニウム ( $\text{ZrO}_2$ )、及びロジウム ( $\text{Rh}$ ) も、 $\text{H}-\text{OH}$ を解離して $\text{M}-\text{OH}$ にする性能があるようである。したがって、これらを組み合わせたものは、良好な触媒である。 $\text{H}-\text{O}-\text{H}$ ボンドを解離する好ましい触媒には、 $\text{Ru}$ 、 $\text{Ti}$ 、 $\text{Os}$ 、 $\text{Ir}$ 、 $\text{Cr}$ 、及び／又は $\text{Mn}$ が挙げられる。

ルテニウムは、その全部または一部をルテニウムに似た材料で置換してもよい。発明者らは、イリジウムがルテニウムに似た多くの特性を有していることを見出した。したがって、この面での第1の実施態様では、白金、ルテニウム及びイリジウムを相対比で50-25-25で組み合わせたものを使用している。これは、塩 $\text{H}_2\text{IrCl}_6 \cdot \text{H}_2\text{O}$ を上記に記載した最初の材料に、50-25-25 ( $\text{Pt}-\text{Ru}-\text{Ir}$ ) の組合せとするのに適した量で添加する。

また、この触媒は、より少ないルテニウムを使用して、実にうまく働くことが分かった。

何らかの利点を有することが分かった別の材料としては、チタン化合物を含む材料が挙げられる。如何なるチタンアルコキシドやチタンブトキシド、例えばチタンイソプロポキシドまたは $\text{TiCl}_4$ をも元の混合物に添加することができる。これによって、白金-ルテニウム- $\text{TiO}_2$ の最終的な結合体が形成でき、それも50-25-25 ( $\text{Pt}-\text{Ru}-\text{TiO}_2$ ) の組合せに形成されている。

白金-ルテニウム-オスミウムも使用することができる。オスミウムは、塩 $\text{H}_2\text{OsCl}_6 \cdot 6 \text{H}_2\text{O}$ として混合物に添加され、これに

よっても有利な特性がもたらされることが判明した。

どのように形成される場合でも、白金インクを形成するために使用されるこれらの材料は、アノードに付けられなければならない。この材料を付けるには、種々の技術を用いることができる。そこで、アノードの形成について以下に説明する。

#### カーボンペーパーの形成。

燃料の移動（クロスオーバー）は、この燃料電池において効率低下の原因である。この燃料電池における燃料移動は、メタノールがアノードで反応する代わりに、アノードを通り抜ける際に起こる。メタノールは、アノードを通り抜けて、膜電極アセンブリ、膜、そしてカソードを透過する。メタノールは、カソードと反応する可能性があり、そうなると燃料の効率を低下させる。

この発明の電極は、好ましくは、カーボンペーパーのベースを用いて形成する。開始材料は、ニューヨーク州ニューヨーク市サードアベニュー500所在のT o r a y社から入手できるT G P H-090カーボンペーパーである。しかしながら、このペーパーは、まず初めに前処理を行って、その特性を改善する。この前処理には、約60%の固体のD u P o n t社の「テフロン30」懸濁液を使用する。

また、このペーパーは、バインダーと混合したこま切れのカーボンファイバーであってもよい。このファイバーは、ローラがけした後、バインダーを燃焼除去することによって、約75%の多孔度の最終材料を形成する。また、カーボンクロスペーパーを用いることも可能である。これは、この明細書に記載した技術により処理される。また、カーボンペーパークロスも用いることができる。これは、ここに記載した技術によって処理し、ガス拡散性／電流コレクタの

パッキングを形成する。

好ましい処理をされたカーボンペーパーは、テフロン粒子が内部に埋め込まれたペーパーを含む。テフロン粒子間のスペースは、メタノールがそこを通り抜けることができないほど十分に小さいことが好ましい。例えば、T MMのような他のメタノール誘導体を用いる場合でさえも、より良好な特性が利用される。この

アノードアセンブリは、カーボンペーパーのベース上に形成する。このカーボンペーパーはテフロン化され、それはテフロンを加えて特性を改善することを意味する。発明者らは、ペーパーに添加するテフロンの量と最終的な特性との間に重要な兼ね合いがあることを見出した。

この明細書に記載するように、使用するテフロンの量を適當なバランスに維持することが重要である。

このペーパーは、テフロン化して撥水性を付与するとともに、白金インクの混合物がそのペーパーを通ってしみ出ないようにする。

このペーパーは、湿潤性である必要があるが、多孔質でない必要がある。この微妙なバランスは、ペーパーを浸漬し加熱することによりもたらされる。発明者らは、ペーパーの湿潤性の程度とそのペーパーへの含浸量との間に兼ね合いが存在することを見出したので、そのことをここに説明する。

まず初めに、テフロン30のエマルジョンを希釀しなければならない。各17.1グラムごとの水に1グラムずつのテフロン30を添加する。1グラムのテフロン30の60重量%は、100ml当たり60グラムのテフロンに相当する。この材料を、例えばガラス皿のような適當な容器に注入する。カーボンペーパーは、その材料の中にしみ込むまで維持される。

浸漬操作は、一枚のカーボンペーパーを評量して、次いで約10

秒間、または明らかに濡れるまで、その溶液中にカーボンペーパーを浸す工程に対応する。カーボンペーパーを、出来る限りそのペーパーと接触しないようにしながら、ピンセットを用いて溶液から取り出す。しかしながら、テフロンの性質上、ピンセット自体がそのテフロンを引きつけ、液体の分布が不均一になる。この可能性を最小限にするために、テフロンコートされたピンセットが使用される。カーボンペーパーは、角を下に向けて保持されて、過剰の溶液を流出させる。

テフロンエマルジョンの表面張力特性により、その材料がもしガラス表面に横たえられたりすると、多くのテフロンが表面張力によって引き剥がされるであろう。そうしないで、ペーパー乾燥アセンブリを図3に示されたように形成する。

複数のテフロン被覆を施したワイヤー202がディッシュ200のような皿の

上に張られている。この張設したワイヤーは、2セットの直交して延びる支持体202及び204を形成する。テフロン溶液で処理されたばかりのカーボンペーパーをこれらの支持体を跨いで保持する。

理想的には、これらのワイヤーは、直径が0.43インチのテフロン被覆したワイヤーである。これらの寸法は微妙ではないが、ペーパーと接触する面積が小さければ、ワイヤー上の懸濁液の分布をより均一にすることができる。ワイヤーにはキンク206が形成されており、カーボンペーパーがワイヤーにその長さ方向の全長に沿って接触しないようにし、それによって接触面積をさらに小さくしている。

図3に示されたペーパー乾燥アセンブリは、次いで70℃のオーブンの中へ1時間入れられる。処理を行ったカーボンペーパーは、乾燥後にディッシュから取り外し、ガラス容器の中へ入れる。続い

て、これらを360℃のオーブン炉内で1時間焼結する。適切に処理されたペーパーは、この処理工程を経て5%重量が増加している。さらに一般的に言うと、重量の増加が3~20%の間であれば、許容できる。このペーパーは、十分な吸収がなされたかどうか、及び／又はさらにペーパーの処理を行う必要があるかどうかを決めるために評量する。

この基板+触媒層が最終的な電極を形成する。

層を含む触媒を付ける好ましい技術を二つここに説明する。すなわち、直接塗布法とスパッタ蒸着法である。両方法とも、上記に形成の仕方を説明した特殊なカーボンペーパー材料を用いてもよいし、また何ら特別な処理を施さないで用いるカーボンペーパーを含む他のカーボンペーパーを用いてもよい。この発明の直接塗布法は、上記に説明した白金ルテニウム材料と各種材料を混合したり、あるいは他の何らかの配合剤、より一般的には触媒材料と各種材料を混合したりする。この触媒材料は、特性を改善する追加の材料とともに処理される。

白金ルテニウム粉末は、イオノマーと混合し、そして撥水剤と混合する。好ましい材料には、ペルフルオロスルホン酸（ナフィオン）とテフロンのミクロ粒子の溶液が挙げられる。ナフィオン溶液100mlにつき、5グラムの白金ルテ

ニウム粉末を添加する。

適当に希釈した60重量%のテフロン固体のDuPont社のT-30混合物を添加する。続いて、これらのテフロンのミクロ粒子を混合する。好ましくは、4グラムの脱イオン水に1グラムのテフロン30の濃縮液を入れた12重量パーセントの固体を含む希釈テフロン30懸濁液を調合する。上記の12重量%のテフロン溶液350mgに、300mgの脱イオン水を添加する。この溶液に14

4mgの白金ルテニウムを混合する。得られた混合物を、次いで「音波処理」として従来技術で公知の超音波混合技術を用いて混合する。超音波混合は、好ましくは、約1/4インチの深さまで水を満たした超音波浴内で行う。この混合物は、約4分間「超音波処理」される。

上述したように、テフロンをまず白金ルテニウムと混合して、約15重量%のテフロンを調製しなくてはならない点が重要である。この混合物を作った後でしか、ナフィオンを添加することができない。発明者らは、もしナフィオンが最初に添加されると、それが白金とルテニウムの粒子を取り囲んでしまう可能性があることを見出した。したがって、この操作の順序は微妙で、重要である。この時点で、5重量%のナフィオン0.72グラムを広口瓶に入れ、もう一度音波処理を4分間行う。より一般的に言うと、被覆する電極の1平方センチメートル当たり、およそ1mgのナフィオンを添加する必要がある。上述のナフィオンの量もまた、例えば溶液を僅か652mlだけ添加することによって変更することができる。

この処理を行うと、スラリー状の黒色の材料が生成する。次に、このスラリー状の黒色材料を、カーボンペーパーに塗布する。塗布法は、多くの方法のうちのいずれの一つで行ってもよい。最も簡単な形態は、異なる方向にストロークを変えながら、カーボンペーパーバッキング上にその材料を塗ることである。これを塗布するためには、ラクダの毛の小さなブラシが用いられる。材料の上述した好ましい量は、5重量%のテフロン化カーボンペーパーの2インチ×2インチ片の片面に対する十分な量の触媒を形成するための量である。したがって、塗布は、

全ての触媒を使ってしまってまで続ける。

材料が被覆と被覆の間で半乾燥状態となるように、被覆と被覆の

間で2分～5分の乾燥時間を設けるべきであり、また各被覆は異なる方向に塗布されるべきである。アノードは、その後、約30分間乾燥する必要がある。その30分の経過後、そのアノードを直ちに「プレス加工」しなくてはならない。このプレス加工の操作については、この明細書に説明されている。

得られた構造体は、ガス及び液体を拡散させるのに用いられる多孔性炭素基板であり、それは1平方センチあたり4回の触媒材料で被覆されている。

この材料を付着させる代替技術は、バッキング上にその材料をスパッタすることである。

我々は、ここに、アノードを形成する方法について説明してきた。次に、好ましいプロトン伝導性の膜（ナフィオン）を形成する工程が関与する技術について、そして次いで、カソードを形成する技術について説明する。

プロトン伝導性膜 — ここに記載した好ましい材料は、ナフィオン117である。しかしながら、他の材料もプロトン伝導性膜を形成するために用いることができる。例えば、他のペルフルオロスルホン酸材料を利用することが可能である。カルボン酸基を持つ異なる諸材料もこの目的で用いられる可能性があると仮定できる。

好ましい実施態様は、DuPont社から入手できるナフィオン117を用いて始まる。この材料を、まず、適当な大きさに切断する。適当な大きさにすることが重要であり、それはその大きさによって最終材料の条件が決って来るためである。まず初めに、ナフィオンを過酸化水素溶液中で煮沸する。5%の過酸化水素溶液を手に入れて、この膜をこの溶液中で80～90°Cで1時間ボイルする。これによって、酸化可能な有機不純物が除去される。

この過酸化物による煮沸工程を行った後、その膜を脱イオン水中で100°C近くで30分間煮沸する。その前に膜に吸収されていた過酸化水素が、他の水溶性有機材料とともに取り除かれる。

このように処理が施された膜を、次に硫酸溶液中で煮沸する。1モルの硫酸溶液を、市販の18モルの濃縮されたACSグレードの硫酸を希釀することによって調製する。ACSグレードの酸は、50ppmより少ない量の金属不純物しか含んでいないものである。この膜を1モルの硫酸中で約100℃で煮沸することによって、その膜をより完全にプロトン伝導性に変換できる。

処理された材料を、次に脱イオン水中で90～100℃で30分間煮沸する。その水を捨て、この煮沸工程をさらに3回繰り返して膜の純度を上げる。

これらの洗浄工程を行った後では、その膜には硫酸が存在せず、完全に「プロトン性の」形態になる。その膜は、さらなる処理を行う用意ができるまで、密封された容器内で脱イオン水に入れて保存する。

カソード構成。 カソードは、まずカソード用触媒インクを調製することによって構成する。カソード用触媒インクは、好ましくは、純粋な白金であるが、他のインクも用いることができるし、またこの明細書に記載したように他の諸材料をインクに混合してもよい。250mgの白金触媒を、37-1/2mgのテフロンを含む0.5グラムの水と混合する。この混合物を5分間音波処理し、5%のナフィオン溶液と合わせる。得られた混合物を再度5分間音波処理して、均一な分散剤を得る。これによって、2×2インチのカーボンペーパー片を被覆するのに十分な材料を形成する。未処理のToryカーボンペーパーを、テフロン含有なしで用いることができ

る。しかしながら、好ましくは、この材料は、上述したようにテフロン化する。次いで、5%のテフロンを含浸したペーパーを形成する工程が続く。続いて、そのペーパーを300℃で1時間加熱して、テフロン粒子を焼結する。その後で、触媒インクをそのペーパーに上述したとおりに塗布することにより、4mg/cm<sup>2</sup>/gのPTでその材料を被覆する。このペーパーのテフロン含有量は、3～20%の間で変わってもよいが、5%が好ましい。

#### スパッタリング

カソードを形成する代替技術では、スパッタ形成した白金電極が形成される。このスパッタ形成した白金電極は、平面状の空気電極として用いる場合に際だつ

た利点を備えていることが判明した。スパッタリング形成の白金電極を製造する工程は、この明細書に記載されている。

カソード電極は、 $O_2 + H^+ + e^- \rightarrow$ 水という反応を行う。この $O_2$ は、白金電極の周辺のガス（気体）から受け取られ、これに対して電子とプロトンは、膜を介して受け取られる。カソード電極を形成するためのこの代替技術は、燃料電池用のグレードの白金を用いて始まる。これは、Johnson-Matthey社などの多くのソースから購入することができる。表面積1平方メートルあたり20～30グラムのこの白金を、0.1～1ミクロンの粒子の大きさでその電極に塗布する。

白金のソースは、固体ロッド状の材料である。この実施態様によれば、その材料を、上述したように形成した基板にスパッタする。白金粉末を、まずアルミニウム粉末と混合する。この混合は、例えば機械的な手段を用いて行ってもよいし、あるいはアノードインクを製造する際に行なった上述したような塩組合せの技術を用いて行つ

てもよい。白金アルミニウム混合物は、半導体技術で既知のスパッタ法を用いてカーボンペーパー上にスパッタする。

白金は、図4に図示されたシステムを用いて以下のようにスパッタする。標準的な4インチのターゲット250には、カーボンペーパー電極252が保持されている。このターゲットは、モータ254によって10秒間で1回転するようになっている。ここで用いる好ましい技術によれば、第1のPt供給源からPtをスパッタし、Al供給源262からアルミニウムをスパッタする。200ボルト付近で、白金は0.23ampsで、またアルミニウムは0.15ampsでスパッタされる。二つの供給源は、向い合った異なる方向からターゲットへ向かって45°の角度で衝突する。

発明者らは、このスパッタリングにとって理想的な圧力は、20トルであるが、1～50トルの間の任意の圧力も利用できることを見出した。アルゴンの圧力は、約30ミリトルである。しかしながら、異なるサイズの粒子を形成するためには異なるアルゴンの気圧を用いることができる。スパッタリングは、約8分間行

う。

好ましくは、スパッタリングを終えたあと、そのスパッタ形成したバッキングをエッチング溶液に浸漬することによってエッチングを行い、続いて洗浄溶液に浸漬する。

スパッタ形成した電極は、バッキング上のA I粒子とP t粒子の混合物である。電極を水酸化カリウム(KOH)で洗浄することによって、アルミニウム粒子を除去する。これによって、非常に多孔質の白金が付着したカーボンペーパーバッキングが形成される。アルミニウムが形成されたそれぞれの領域は除去され、その位置に穴の開いた空間が残る。発明者らは、P t-A I材料の被覆が厚いと、その触媒の幾分下方の領域からA Iが洗い流されるのが阻害される

ことを見出した。この発明は、薄い被覆(コーティング)を使用し、好ましくは、それは0.1ミクロンまたはそれより薄い被膜であって、材料密度が0.2mg每cm<sup>2</sup>と0.5mg每cm<sup>2</sup>の間である。

このプロセスによるこの現時点でのアノード、膜、及びカソードができた。これらの材料が、膜電極アセンブリ(「MEA」)に組み立てられる。

#### MEAの形成

電極及び膜を、CP級の5Mili厚、12インチ×12インチのチタンホイル上にまず配置、すなわちスタックし(積み重ね)た。発明者らは、膜から出て来る如何なる酸成分もホイルに浸透しないように、チタンホイルを用いている。

まず、アノード電極をそのホイル上に置く。プロトン伝導性膜は、所望の膜の特性を維持すべく、濡らして保存されていたものである。このプロトン伝導性膜は、まずぬぐって乾燥し、サイズの大きい粒子を除去する。それから、その膜を直接アノード上に置く。カソードをその膜の上に置く。もう一つのチタンホイルをそのカソードを覆って配設する。

二枚のチタンホイルの端部と一緒にクリップで止めて、材料の層を所定の位置に保持する。アセンブリを間に挟んでプレスするためのチタンホイルと膜は、それぞれ約0.25インチの厚みの二枚のステンレス鋼プレートを含んでいる。

クリップで止めたチタンホイルアセンブリ内の膜と電極を、二枚のステンレス

鋼プレートの間に注意深く配設する。この二枚のプレートは、例えばアーバープレスのようなプレス装置のジョーの間に保持されている。そのプレス装置は、低温に、例えば室温に維持さ

れているべきである。

続いて、そのプレス装置を作動させて、1000から1500psiの間の圧力、最適な圧力は1250psi、を発生させる。その圧力は、10分間維持する。この10分間が経過した後で、加熱が開始される。加熱は、ゆっくりと約146度まで上昇させるが、140～150℃の温度範囲内のいずれの温度でも効果的であることが分かっている。ゆっくりと温度を上昇させるには、時間を25～30分かけるべきであって、加熱の最後の5分間は、温度を安定化させるための時間である。その温度は、約1分間146℃に留めておく。その時点で、加熱は中止するが、圧力は維持しておく。

続いて、圧力を1250psiに維持したまま、そのプレス装置を循環水を用いて急速に冷却する。約15分が経過して、温度が45℃に達したら、その圧力を開放する。その後、結合された膜と電極を取り外して、脱イオン水中に保存する。

フローフィールド。 燃料電池は、反応が起こったり触媒作用が起きたりするように、燃料が適切に膜に供給されている場合にのみ、適切に作動する。この発明の膜電極アセンブリは、図5に示されているようなフローフィールドアセンブリを使用する。それぞれの膜電極アセンブリ（「MEA」）302は、バイプレートと端部プレートとを有する一対のフロー変更用プレート304及び312の間に挟まれている。燃料の流れは、それぞれのバイプレート／端部プレートとMEAとの間の各空間303に確立する。バイプレート／端部プレートとMEAが集まって「スタック」を形成する。バイプレートは、対向して面している両表面に液体のフローのための構成を備えている。このスタックの端部のフロープレートは、バイプレートではなく、端部プレート312である。端部プレートは、

片側面にのみチャンバーを有している。バイプレート304には、複数のセパレ

ータ306と複数のチャンバー形成領域308が設けられている。セパレータ306は、膜電極アセンブリ302に対して押しつける機能を有している。セパレータ306の端面は、実質的に平面状の表面であり、それはMEA302の表面と接触する。

バイプレートは、膜電極アセンブリ302, 310の全てを互いに直列に結合するように導電性材料で形成されている。

上述したような膜電極アセンブリ302は、アノード、膜、及びカソードを備えている。それぞれの膜電極アセンブリのアノード側312は、空間314で水性メタノールの供給源と接触している。それぞれの膜電極アセンブリのカソード側は、前記で説明した反応を行うためのガス状物質を提供する酸化剤空気の供給源316と接触している。この空気は、単なる空気であってもよいし、酸素であってもよい。

これらの生材料のフローは、電極に燃料を適切に供給し続けるために必要である。また、安定したフローを維持することもまた、望ましい。

この発明のスタック設計の一例は、図6に示されたシステムを利用している。燃料は、燃料供給チャンバー602から供給され、それは、通常、加圧された燃料が入った高容量の部屋である。狭いノズルのような部分604は、それに沿って大きく圧力を低下させる。この細い管での圧力の低下は、供給路に沿った如何なる圧力低下よりもずっと大きい。これによって、電池内及び電池間でのフローを平準化する。

加圧要素として作用する表面の総量と保持要素として作用する表面の総量との間で、注意深く兼ね合いのバランスをとらなくてはならない。

いろいろな理由により、両面から膜電極アセンブリ202に対して一様な圧力をかけることが望ましい。しかしながら、加圧表面306が膜に対して押しているところでは、膜電極アセンブリ302はメタノールと直接接觸することはできない。そのかわり、そこは表面315によって押されている。したがって、MEA302の表面のその部分は反応しない。この発明による種々の設計のものが、

さまざまな機能を持っていて、フローを改善したり、信頼性の面でのいくつかの特性を改善する。

それぞれのノズル606の幅は狭い。各ノズル606の出口605は、加圧表面306に対する領域608を加圧する一つのアイランドに面している。ノズル606から供給される燃料は、アイランド608の界面610に直接供給される。図6に示したアイランドは長方形である。界面610は、この長方形のアイランドの狭い方の側辺である。このアイランドの広い方の側面は、フローに対して平行である。全ての入力流は、アイランドの表面の一つに直接向かう。

発明者らは、この好ましい狭いレイアウトにより、アイランド608の領域に乱流が形成されることを見出した。乱流は、チャンバー内の燃料を攪拌し、このシステムを通るフローをより安定化させる。この乱流は、各アイランド間のフローを容易にもする。出力フローは、最終的に出力ノズル612によって受け入れられて、出力管614に導かれる。出力ノズルは、アイランドの表面620に隣接して類似した形で配設され、これによってさらに乱流が形成される。

この実施態様によるアイランドは、境界の側610が50ミルで

あって、広い方の側が150ミルである。スタックの両端での圧力低下は、このスタックについて約0.06psiである。

この他の配置形状のバイプレートを用いることもできる。

バイプレート自体は、軽量で薄く、できる限りスタックの間隔を大きくできることが重要である。

グラファイトは機械加工するには難しく、比較的厚みがある。グラファイトの利点としては、液体や気体を通過しないことが挙げられる。

この発明によれば、数多くの別の溶液が用いられる。この発明の第1の変更は、図7に示したようなシステムを利用する。

境界層702は、高密で、導電性の液体や気体を通さない層である。これによって、材料を覆うバイプレートアセンブリを横切ることのできる燃料、気体又は液体の量を減少させる。しかしながら、稠密で多孔性の材料がクロス領域700として用いられている。多孔性であると、ある程度の量の材料をこの境界層を通

ってMEAにしみ込ませてしまう。

稠密で多孔性の材料は、例えばグラファイトよりもずっと機械加工のしやすい導電性のカーボンであってもよい。浸透は、境界材料によってせき止められるが、これによって液体や気体がバイプレート全体を横切るのを防止できる。

加圧部分が多孔性になっていると、加圧部分で加圧されている膜電極アセンブリのある程度の部分に液体や気体を到達させてしまう。したがって、メタノールがこれらの領域に浸透する可能性があり、別な状態で変換効率が減少してしまう。

中心のバインダー層704は、低密度（「LD」）の炭素である。LD炭素は、比較的取り扱いやすく、価格も安い。しかしながら、

LD炭素は全ての部分がグラファイトで覆われているため、その望ましくない特性は殆ど隠される。

バイプレートの形成で利用される第2番目の実施態様が図8に示されている。この第2番目の実施態様のバイプレートは、層状になったチタンーカーボン製の超薄型バイプレートである。我々は、任意の所望電圧に対して出来る限り薄くしたスタックを望むため、バイプレートは薄くなくてはならない。それぞれの膜電極アセンブリとバイプレートは、活性化されると電圧が発生するが、それを固有電圧（*inherent voltage*）と言う。固有電圧、及びこの装置の厚みは、この発明の装置の厚み1インチあたりで取り得る最大の電圧を決める。厚みに対する電圧に関する重要な要素は、バイプレートの厚みである。

図8にはこの発明の第2の実施態様のバイプレートが示されている。この材料は、その材料の最良の特性を組み合わせてバイプレートを形成するという層化の思想を用いている。チタンカーバイドの境界層800は、チタン結合層802に接合している。チタン結合層802は、好ましくは、厚さが3ミルである。これらの二つの層は、一緒になって、バイプレートを横切ってプロトンが移動するのを阻止するとともに、適当な電気的結合性も確保している。このチタン材料は、分離材料804で被覆されていて、バイプレートを所定位置に保持する。したがって、ある程度の多孔性は、図7の実施態様におけるのと同様に可能である。

当然のことであるが、チタンは、同じような導電性と化学的安定性を持つ如何なる金属でも置換することができる。

この発明の発明者らは、普通に用いられているグラファイト材料が、競合する要求事項間での兼ね合いが生じるに違いないと認識し

ている。

作動効率を良くするには、燃料が、一枚のバイプレートの一方の側、例えばアノード側からその同じバイプレートのもう一方の側、すなわちカソードに面する中間層側に横切ってしみ込まないようにすることが必要である。バイプレートがかりに多孔性であったとすると、燃料材料は横切ってしみ込む可能性がある。しかしながら、バイプレートを通過できる液体はないため、加圧表面を持つバイプレートによって、例えば306によって加圧されている電極膜アセンブリの領域に達する液体がないことを意味している。したがって、これらの膜電極アセンブリにおいて加圧表面によって加圧されているこれらの部分では、効率的に電気的活性が発生しない。これによって、この電池全体の効率が悪くなる。

この発明のこれらの実施態様では、新しい種類の兼ね合い事項（一長一短の事項）が持ち上がる。膜電極アセンブリは、バイプレートの多孔性部分によって加圧される。この多孔性部分を用いたことで少なくとも幾分かの燃料が電極の加圧された部分に供給されるようになる。これによって、MEAの電気的作動性が改善できる。また、この発明のこの特徴によれば、電極膜アセンブリの他の部分に液体が通過するのを阻止する他の結合片も提供できる。

システム。 この発明の基本的なシステムを図9に示す。このシステムは、発明者らが認識した、燃料電池の出力をリサイクルするやり方に基づいている。燃料電池は、メタノールやメタノール誘導体、水を消費して、メタノールまたはメタノール誘導体、水、及びガスなどの出力生成物が発生する。メタノールは、消費される燃料を意味する。如何なる燃料電池システムでも、消費される量のメタノール燃料を運搬しなくてはならない。しかし、その反応は、等

量の水も必要とする。発明者らは、この反応で用いられる水をカソードから回収

しリサイクルさせることができることに気づいた。これによって、大量の水を運搬する必要性を回避できる。

乗り物から生成できる仕事量は、車両総重量（ペイロード）、すなわち乗り物とその搭載物の重量によって制限される。どの乗り物も、それが運搬しなくてはならない重量によってパワーに限界がある。重量が大きいと乗り物のパワーは制限され、そのため乗り物の効率が小さくなる。例えば、乗用車は、通常、20～30ガロン以上のガソリンを載せてはいない。これは、乗り物がタンクに再給油するまでに走れる距離と、燃料タンクを大きくすることで増える重量との間が最適な兼ね合いとなるようにいろいろなことから決められている。

乗り物のエンジニアは、快く許容できるペイロードがどれくらいかを決定する。発明者らは、このペイロードが水ではなく燃料で取られることを確保する技術について説明する。

この発明のシステムの特徴の一つは、水の殆どをリサイクルして、運搬する必要のある水の実質的な供給源を持たないように、水のバランスを維持することである。

全体システムが図9に示されている。メタノールタンク900は、純粋なメタノール（または、他のメタノールタイプの誘導体の燃料）を保存している。第1液体ポンプ902は、メタノールをバルブ904を経て循環タンク906にポンプ輸送する。水タンク908は、必要なところに水を供給する。この水は、ポンプ910によってバルブ912を通って再循環タンク906にポンプ輸送される。中央制御装置914は、この全体システムの総合的な作動をコントロールする。制御装置914はバルブ904と912の相対的な位置を

コントロールする。

メタノール濃度センサ916は、メタノール内かメタノールの非常に近くかいずれかの場所に取り付けることが好ましい。メタノールセンサ916は、循環タンク内のメタノール濃度を検出し、制御装置914がこの情報に基づいて更にこのシステムの作動をコントロールする。

循環タンクに入っている水性メタノールは、この制御システムによって1～2

Mに維持されている。したがって、ライン918内のメタノールも適当な濃度になっているべきである。ポンプ920はメタノールを、燃料フィルター922を通して膜電極スタック924にポンプ輸送する。ここで用いたスタックは、前述したものと同じスタックであればよい。スタック924から出る電気的な出力926は、モータに送られて搭載荷重を動かすとともに、制御装置914や例えば圧縮装置930のような他の電気的なシステムも作動させる。

またこのスタックは、圧縮装置930を通る取り込み空気932を用いて作動する。空気フィルター934は、スタックに入る前に空気を清浄化する。

このスタックの燃料出口は、二つの成分、すなわち水とメタノールを含んでいる。二つの成分をそれぞれ凝縮装置940及び942を用いて処理して水の温度を十分に低くすることによって、メタノールと水の両方を凝縮できる。ファン944は、この冷却を容易に行うために用いることができる。リサイクルされるメタノールと水は、両方とも循環タンクに戻される。メタノールスタックの出口からリサイクルされたメタノール946と、取り込み空気952からリサイクルされた空気と水は、循環タンク906に回収する。

液体技術者は、ガスをポンプ輸送することはエネルギー供給源の点から見ると非常に不経済であるが、これに対して液体をポンプ輸送することはそれほど費用がかさまないことを知っている。この発明のある面では、カソードに空気を加圧することが要求されるであろう。例えば、空気を20psiに加圧することが必要である可能性もある。しかしながら、ライン944上の出てきた空気（カソードで反応した後）は、高度に圧縮されている場合が殆どである。この出力空気944は、19psiに圧縮されているであろう。こうして出力空気944は、圧力駆動型タービン946に入る。このエキスパンダ装置は、圧力によって作動し、空気圧縮装置930を駆動するために用いられる。圧縮されたパワーをこのように再利用しないと、空気圧縮装置は、燃料電池によって生成した電力の20～30%を利用するかもしれない。

エキスパンダ装置の出力948は、空気と水の組合せを含んでいる。この水と空気は、分離し、950で排出空気が吐き出され、また回収された水は、循環タ

ンク902に戻される。過剰の水を抜く通水孔954も必要とされるであろう。この通水孔は、制御装置914によってコントロールされ、再還流されている水が多すぎる場合に、時々必要とされる。

センサ及び制御装置に代わる手段として、供給される燃料の量を測定してもよい。しかしながら、最近の燃料電池は、約90°Cで作動するように企画されている。電気化学的な燃料電池の反応が、結局、適当な温度にまでその燃料電池を加熱させる。

この発明は、メタノールセンサを用いて作動する。特に好ましいメタノールセンサは、上述したMEA技術を利用している。上述したように、燃料電池は、アノードとカソードで構成される。アノー

ドは、メタノールを受け取る。カソードは、空気または酸素を受け取る。

このセンサは、図10に示された変形した燃料電池を用いる。Pt-Ruアノード1002は、ナフィオン電解質1004に接合しており、その電解質はPtカソードに接合している。このカソードはアノードよりも大きい方が好ましく、例えばカソードの面積はアノードの3倍である。

カソード1006（及びアノード）は、メタノール溶液に浸漬される。したがって、カソード1006は、液体の中にあるために空気と反応することはできず、そのため基本的な燃料電池反応で起こるようにH<sub>2</sub>はH<sub>2</sub>Oになる反応は起こり得ない。電圧をこの燃料電池にかけると、起こる反応は変化し、例えば反転する。電流が発生する場合、アノードは直接メタノールと反応してCO<sub>2</sub>を生成し、またカソードはプロトンを水素に変化させる。カソードが小さくてアノードが大きいと、プロトンを還元し、このメタノール電極の感受性をさらに高める。

したがって、この反応は、次の各式を含む。



定電圧が定電圧回路1010によってかけられる。電流計1012が電流を測定する。図11は、電流と溶液中のメタノール濃度の関係を示している。制御装置1014は、プロセスコントローラまたはマイクロプロセッサであればよく、

図11のプロットされた関係を用いて測定された電流に対応する最も近いメタノール濃度をルックアップする。

図11のプロットは、温度依存性が大きいようなので、熱電対を温度補正に用いるとよい。

### 本

この発明のもう一つの重要な特徴は、自動車の環境でこのシステムを実際に使用することに関する。実用的に使用するには、ガスピンプのメタノール装置でメタノールを供給する必要があるであろう。メタノールをガスピンプから取り出す場合、炭化水素の不純物を含んでいるかもしれない。このような不純物があると、純度の高いメタノールを必要とするこの発明で記載されたシステムでは非常に危険である。したがって、この発明では燃料フィルターが用いられる。この燃料フィルターは、図12に図示されている。3段階のフィルターは、合成の25M (Mobil) タイプか中性タイプのゼオライト結晶を含んでいる。通常ゼオライトは、モレキュラーシーブとして作用する。このゼオライト結晶は、メタノールを濾過してそこから何らかの炭化水素不純物を除去するために用いられる。これらのゼオライトは、3~10オングストロームの範囲で層1から3へ徐々に異なる大きさの孔を持つ3つ以上の層からなる一セットの層構造を含んでいるとよい。



層1は、通常は大きな直径の孔を持つゼオライトX、オファライト、Aであって、大きな分子を除去できる。層2で用いられているのは、モルデナイト、天然のゼオライトであって、n-パラフィン類、n-ブタン類、及びn-アルカン類を取り除ける。ゼオライト3Aや4Aは例えばプロパンやエタンのような小さな分子を層3で除去するために用いることができる。これは徐々に変化するモレキュラーシーブを形成すると好ましい。

### 単極性のアプローチ。

燃料電池についての以前のアプローチでは、多くの燃料電池を直列に用いていた。燃料電池を直列に接続すると、出力電圧を加算でき、スタックの出力を高く

てより利用可能な電圧に増加させるように全体の電圧を高くすることが可能である。この発明の発明者らは、さらに、スタッツクにしていないアプローチを用いて、すなわちこのち発明者が単極性と名称を付けたアプローチを用いてある種の効果が得られることに気づいた。この単極性のアプローチは、他のすべての構成要素とは完全に分離した状態にそれぞれの膜電極アセンブリを維持している。この完全に分離したアプローチによれば、アセンブリのそれぞれの要素は、ずっと大きくできるとともに、より良好な効率を持てるようになる。それぞれの単極性の要素は、スタッツクに組み立ててもよい。この特徴による重要なことは、それぞれの膜電極アセンブリが別個に接続されていること、またその別個に接続された要素がスタッツクに組み立てられているのではなく、直列に接続されていることである。

単極性の発明の第1実施態様が図13に示されている。この態様は、電気的な接続を形成するために接触力を必要としない燃料電池を形成するために用いることができる。膜1300は、ナフィオン膜であると好ましい。ナフィオン膜は、金属クロス片1302、例えばスクリーンの末端を設けた中心領域を有している。金属クロスまたはスクリーン1302は、上述したタイプの適当な触媒で被覆されている。電流が運ぶタブ1304によって、生成した電圧は外部につながる。

プラスチック製または金属製のフローフィールド挿入部品1306は、適当な燃料材料を触媒被膜を施したクロスのそれぞれの側面

に導く。フローフィールド部材1308は、他方の側面に設けてよい。

したがって、表面に触媒を設けた材料をナフィオンパッキングに取り付け、それに向かって加圧することによって、電気的には同じであるが機械的には異なる方法で燃料電池を形成できる。

図14は、この装置の断面図を示している。タブ1304は、電極領域1400に電流を流す。メタノールは、メタノールチャンバー1402に、すなわち膜の一方の側の密閉された領域に送られる。この密閉は、リング状密閉領域1406によって維持される。空気は、反対側で同様に密閉された空気チャンバー14

08を通って膜の第2の側面に導かれる。これらの構成要素のそれぞれは、他のユニットとは無関係に、独立型のユニットとして作動する。これらの構成要素から発生する電流を直列に接続することによって、より高い電圧を提供できる。

この発明の第2の代替実施態様が図15に示されている。この態様は、チタンシート1502に沿った膜1500を用いている。チタンクロス1504は、チタンシートにスポット溶接されている。チタンクロス1504は、カソードとして機能し、白金で被覆されてもよい。チタンクロス1506は、アノードとして機能し、適当な白金ルテニウムで被覆されてもよい。

ガスケットと結合用リング1508は、膜とアノードとの間にチャンバー1510を形成する。同様に、もう一つのガスケットと結合用リング1510が膜とカソードとの間にチャンバーを形成する。

チタンシートは、チャンバーを維持するためにその表面に球状のシール1512を備えている。このチタンシートから発生する電圧は、電流の取り出し領域1514に結合している。

また、ビードシールを用いれば金属製ファスナーを利用できるようになるため、この態様ではリベットまたはファスナーを取り付ける場所も設けられている。この統合されたシステムは、特にチタンホイルを用いれば、きわめて薄くすることが可能である。

この実施態様は、図16で示された装置で用いることができる。図13または15に示されたこれらの二重電池モジュールのそれぞれには、カソードとアノードが設けられている。図16に示された構成要素は、二つのアノードが隣接するように組み立てられており、互いに向いあう電池1602及び1604が作り上げられている。フローフィールド1606は、アノード1602と1604との間に形成される。このフローフィールドは、それらの間を流れる空気を含んでいくつてはならない。同様に、二つの隣接するカソードは互いに向いあっていて、フローフィールド1608がそれらの間に形成され、そこで適当な空気の流れが生じている。

図17は、これらの電池が用いられる方法についての拡大図である。フローフ

イールド1700は、第1番目の電池1704のカソード側1702に面した空気のフローフィールドである。そのアノード側1706は、第2のメタノールのフローフィールド1708に面している。メタノールはメタノール流入口1710から流入し、流出口1712より流出する。また、このメタノールのフローフィールドは、第2のバイポーラ電池1716のアノード側1714に面している。この第2のバイポーラ電池1716のカソード側1720は、空気が流れる別のフローフィールドの部分1722に面している。

ほんの少数の実施態様のみを上記に詳細に説明したが、当業者はこの教示範囲から逸脱することなく、好ましい実施態様に種々の改

変を行えることを確かに理解することができるであろう。

そのような改変の全ては、次の請求の範囲に包含されると解釈される。

【図1】

図1



【圖 2】



【図3】

図 3



【図4】

図4



【図5】

図5



【図6】

図6



【図7】



【図8】



【図9】



【図10】



【図11】

図11



【図12】

図12



## 【国際調査報告】

| INTERNATIONAL SEARCH REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | International application No.<br>PCT/US96/19731   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|
| <b>A. CLASSIFICATION OF SUBJECT MATTER</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                   |
| IPC(6) :H01M 4/92, 8/10<br>US CL :429/30, 42; 502/101<br>According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                   |
| <b>B. FIELDS SEARCHED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                   |
| Minimum documentation searched (classification system followed by classification symbols)<br>U.S. : 429/30, 39, 42; 427/115; 502/101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                   |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                   |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)<br>ORBIT Derwent World Patent Index<br>Search Terms: pt, platinum, ru, ruthenium, 103-e04b/mc (Derwent Manual Code for fuel cell electrodes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                   |
| <b>C. DOCUMENTS CONSIDERED TO BE RELEVANT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                   |
| Category <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Citation of document, with indication, where appropriate, of the relevant passages        | Relevant to claim No.                             |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 5,225,391 A (STONEHART et al) 06 July 1993, col. 2, lines 7-25.                        | 11-14                                             |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 5,294,580 A (DUFNER) 15 March 1994, col. 2, lines 15-48.                               | 11-14                                             |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 5,013,618 A (LUCZAK) 07 May 1991, col. 2, lines 13-39.                                 | 11-14                                             |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 4,350,608 A (GESTAUT) 21 September 1982, col. 6, lines 11-21, col. 9, lines 8-11.      | 15-17                                             |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 5,294,232 A (SAKAI et al) 15 March 1994, col. 4, lines 12-29.                          | 32-34                                             |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 4,766,043 A (SHIROGAMI et al) 23 August 1988, fig. 2, col. 3, line 67-col. 4, line 16. | 37-40                                             |
| <input checked="" type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Further documents are listed in the continuation of Box C.                                | <input type="checkbox"/> See patent family annex. |
| <p>* Special categories of cited documents:</p> <p>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</p> <p>"A" document defining the general state of the art which is not considered to be of particular relevance</p> <p>"E" earlier document published on or after the international filing date</p> <p>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>"O" document referring to an oral disclosure, e.g. exhibitions or other means</p> <p>"P" document published prior to the international filing date but later than the priority date claimed</p> <p>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>"A" document member of the same patent family</p> |                                                                                           |                                                   |
| Date of the actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date of mailing of the international search report                                        |                                                   |
| 10 MARCH 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 APR 1997                                                                               |                                                   |
| Name and mailing address of the ISA/JPO<br>Commissioner of Patents and Trademarks<br>Box PCT<br>Washington, D.C. - 20231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Authorized officer<br>S/ STEPHEN J. KALAFUT<br>Telephone No. (703) 308-0433               |                                                   |
| Faximile No. (703) 305-3230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |                                                   |

## INTERNATIONAL SEARCH REPORT

|                                                 |
|-------------------------------------------------|
| International application No.<br>PCT/US96/19731 |
|-------------------------------------------------|

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category <sup>a</sup> | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|-----------------------|------------------------------------------------------------------------------------|-----------------------|
| A                     | US 4,395,322 A (HARRIS) 26 July 1983, col. 1, lines 34-46.                         | 29-31                 |
| A                     | US 5,415,888 A (BANERJEE et al) 16 May 1995, col. 4, lines 36-58.                  | 18-28                 |
| A, P                  | US 5,561,000 A (DIRVEN et al) 01 October 1996, col. 2, lines 45-60.                | 18-28                 |
| X                     | JP 2-51,865 A (MATSUSHITA) 21 February 1990, abstract, lines 1-8.                  | 1-2                   |

---

フロントページの続き

(81)指定国 EP(AT, BE, CH, DE,  
 DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(KE, LS, MW, SD, SZ, UG), UA(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN

(72)発明者 フランク, ハーベイ エイ.  
 アメリカ合衆国 91316 カリフォルニア  
 州 エンシーノ ニューキャッスルアベニ  
 ュー 5328 ナンバー33

(72)発明者 ナラーヤナン, セハリプラム アール.  
 アメリカ合衆国 91001 カリフォルニア  
 州 アルタディーナ イーストワペロスト  
 リート 212

(72)発明者 チュン, ウィリアム  
 アメリカ合衆国 90031 カリフォルニア  
 州 ロサンゼルス オロストリート  
 2206

(72)発明者 ジェフリーズナカムラ, バーバラ  
 アメリカ合衆国 91108 カリフォルニア  
 州 サンマリノ ミラソルドライブ 1420

(72)発明者 キンドラー, アンドルー  
 アメリカ合衆国 91108 カリフォルニア  
 州 サンマリノ ブリマスロード 616

(72)発明者 ハルバート, ジェラルド  
 アメリカ合衆国 91106 カリフォルニア  
 州 パサデナ イーストカリフォルニアブ  
 ルバート 1000 ナンバー304

特表平11-510311

【公報種別】特許法第17条第1項及び特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第1区分

【発行日】平成12年7月11日(2000.7.11)

【公表番号】特表平11-510311

【公表日】平成11年9月7日(1999.9.7)

【年通号数】

【出願番号】特願平9-521493

【国際特許分類第7版】

H01M 4/92

4/88

8/06

8/10

【F I】

H01M 4/92

4/88 H

8/06 A

8/10

特許補正書

平成12年 1月12日

特許庁販賣課

1. 事件の表示

平成9年 特許第 521493号

2. 補正をする者

住所

名称 カリブオルニフ インスティチュート オブ ケノロジー

3. 代理人

住所 平460-0003

愛知県名古屋市中区錦1丁目6番17号

オフィス名 兵谷国際特許事務所

電話 (052) 218-6190

FAX (052) 218-6192

氏名 (6472) 代理士 長谷川一

(2名)

4. 補正により増加する請求項の数

5. 補正対象書類名

「明細書」

6. 補正対象項目名

「発明の詳細な説明」

7. 補正の内容

(1)明細書の第9頁第8行において

「カソード: O<sub>2</sub>+4H<sup>+</sup>+4e<sup>-</sup>→H<sub>2</sub>O

(2)とあるのを

「カソード: O<sub>2</sub>+4H<sup>+</sup>+4e<sup>-</sup>→2H<sub>2</sub>O

(2)と補正する。

(2)明細書の第3頁第7行において

「カソード 1. SO<sub>3</sub>+8H<sup>+</sup>+6e<sup>-</sup>→4H<sub>2</sub>O」とあるのを

「カソード 1. SO<sub>3</sub>+8H<sup>+</sup>+6e<sup>-</sup>→3H<sub>2</sub>O」と補正する。

(3)明細書の第14頁第7行において

「H<sub>2</sub>P(C) + 6H<sub>2</sub>O」とあるのを

「H<sub>2</sub>P(C) + 6H<sub>2</sub>O」と補正する。

(4)明細書の第14頁第9行において

「K<sub>2</sub>RuC1 + H<sub>2</sub>O」とあるのを

「K<sub>2</sub>RuC1 + H<sub>2</sub>O」と補正する。

(5)明細書の第17頁第7行において

「(TiO<sub>2</sub>)」とあるのを

「(TiO<sub>2</sub>)」と補正する。

(6)明細書の第18頁第10~11行において

「CH<sub>3</sub>OH+H<sub>2</sub>O—CO<sub>2</sub> (1)+ (—)」とあるのを

「CH<sub>3</sub>OH+H<sub>2</sub>O—CO<sub>2</sub>+OH<sup>+</sup>+6e<sup>-</sup>」と補正する。

(7)明細書の第27頁第14行において

「O<sub>2</sub> + 11H<sup>+</sup> + 6e<sup>-</sup>水」とあるのを

「O<sub>2</sub> + 4H<sup>+</sup> + 4e<sup>-</sup>水」と補正する。

(8)明細書の第39頁第18行において

「(+): H<sub>2</sub>O + CH<sub>3</sub> + CO<sub>2</sub> + 6H<sup>+</sup> + 6e<sup>-</sup>」とあるのを

「(+): H<sub>2</sub>O + CH<sub>3</sub>OH → CO<sub>2</sub> + 6H<sup>+</sup> + 6e<sup>-</sup>」と補正する。

(9)明細書の第40頁第2行において

「本」であるのを削除。

(10)明細書の第40頁第18行において

「(+)」とあるのを

特表平11-510311

「11」と修正する。

8. 沿行色紙の日誌  
なし

**\* NOTICES \***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. \*\*\*\* shows the word which can not be translated.
3. In the drawings, any words are not translated.

---

**CLAIMS**

---

[Claim(s)]

1. Backing Fuel cell element of the type which performs electrochemical reaction which comes to have a catalyst ingredient containing the platinum ruthenium 2 metallicity powder which a ruthenium is mixed with platinum by homogeneity, and is vacated in spacing at random, and has the part where platinum and a ruthenium are separate.
2. In fuel cell element according to claim 1 What is characterized by the fully homogeneous thing at extent said catalyst ingredient is altogether visible to gray with a scanning electron microscope.
3. Process which forms solution of another ingredient which maintains separation between platinum, ruthenium, and platinum and ruthenium, The process which mixes said solution, The process which processes said solution which includes at least the process which heats said solution, The formation approach of the ingredient for fuel cell elements which comes to contain the process which operates the solution further in the method of removing said another ingredient after said down stream processing.
4. In approach according to claim 3 Said another ingredient contains a chloride. Approach characterized by including the process at which the actuation process of said addition washes the ingredient.
5. In approach according to claim 4 Said slurry contains platinic chloride hexa hydrate salt and ruthenium salt K<sub>2</sub>RuCl<sub>5</sub> and H<sub>2</sub>O including the process in which the process which forms said solution forms the slurry of platinum salts and a ruthenium salt in the solution of hydrochloric acid. Approach characterized by including the process at which the process which forms said solution further agitates the slurry in order to obtain homogeneous mixture.
6. In approach according to claim 3 Approach characterized by including the process at which the process which forms said solution adds a sodium carbonate, maintaining further predetermined pH.

7. It is an approach according to claim 3. Approach characterized by including the process permuted by the ingredient with the property which resembled the ruthenium in the ruthenium of a certain amount further at least.
8. In approach according to claim 7 Approach that said ingredient with the property similar to a ruthenium is characterized by being one of iridium, titanium, an osmium, chromium, and/or manganese.
9. It is an approach according to claim 3. Approach characterized by including the process permuted by the ingredient with the property which resembled platinum in the platinum of a certain amount further at least.
10. In an approach according to claim 9 Approach that said ingredient with the property similar to platinum is characterized by being at least one of palladium, a tungsten, a rhodium, iron, cobalt, and/or nickel.
11. Backing Fuel cell element of the type which performs electrochemical reaction which comes to have a catalyst ingredient containing an ingredient with the property similar to platinum and a ruthenium.
12. In a fuel cell element according to claim 11 That to which said ingredient with the property similar to a ruthenium is characterized by being one of iridium, titanium, an osmium, chromium, and/or manganese.
13. Backing Fuel cell element of the type which performs electrochemical reaction which comes to have a catalyst nature ingredient containing an ingredient with the property similar to platinum.
14. In a fuel cell element according to claim 13 That to which said ingredient with the property similar to platinum is characterized by being at least one of palladium, a tungsten, a rhodium, iron, cobalt, and/or nickel.
15. Backing ingredient which has the Teflon particle embedded inside Electrode for fuel cells which comes to have the catalyst ingredient covered into said backing ingredient.
16. In the electrode for combustion cells according to claim 15 What is characterized by being added in the amount with the effectiveness which prevents that a catalyst nature ingredient oozes through there, said Teflon particle giving water repellence to said backing ingredient.
17. In the electrode for fuel cells according to claim 16 That to which said Teflon particle is characterized by being contained by predetermined percentage by weight to a backing ingredient.
18. Process which obtains a backing ingredient It comes to contain the process which processes the backing ingredient with a waterproofing agent, restricting the amount to which a waterproofing agent sinks into said backing ingredient. It is the formation approach of the electrode for fuel cells characterized by processing said ingredient in a certain

amount of amount of effectiveness not making it porosity although said limit gives a wettability to an ingredient.

19. In an approach according to claim 18 Approach characterized by for said backing ingredient being carbon paper, and said waterproofing agent solution being Teflon.

20. In an approach according to claim 19 Said down stream processing Process which forms a Teflon solution Approach characterized by including the process immersed in the Teflon solution in said carbon paper without making only the front face of carbon paper, and the minimum contact.

21. In an approach according to claim 20 Approach characterized by said immersed process including the process which holds said carbon paper with the pincettes which carried out Teflon covering.

22. It is an approach according to claim 19. Approach characterized by including the process which dries the backing of said processed carbon paper further.

23. It is an approach according to claim 18. Approach characterized by said desiccation process including the process which arranges said backing ingredient ranging over a base material.

24. In an approach according to claim 23 Approach characterized by said base material being the wire of Teflon covering which prepared the kink on the way.

25. It is an approach according to claim 22. Process which \*\*\* said dry paper further Approach characterized by including the process which determines whether the Teflon of an amount to sufficient amount which the weight of the paper increased as compared with the original weight of the dry paper is added.

26. Process which receives a catalyst ingredient Process which mixes said catalyst ingredient with an ionomer and a water-repellent ingredient, and forms a mixed-catalyst ingredient How to form the fuel cell which comes to contain the process which attaches said charge of an admixture to the backing ingredient of an electrode.

27. In an approach according to claim 26 Approach characterized by said process to mix including the process which mixes a catalyst ingredient with a water-repellent ingredient first, and the process which subsequently adds an ionomer.

28. an approach according to claim 27 -- setting -- said water-repellent ingredient -- Teflon -- it is -- and -- Approach characterized by said ionomer being liquefied Nafion.

29. By Carrying Out Spatter of the Mixture of 1st Catalyst Ingredient and 2nd Ingredient to Backing Process which forms the spatter formation

ingredient with which said 1st ingredient and said 2nd ingredient were put together By carrying out washing removal, said 2nd ingredient using the cleaning agent from which said 1st ingredient is not removed How to form the porous electrode for fuel cells which comes to contain the process which leaves the 1st ingredient with which the hole was formed between them.

30. In an approach according to claim 29 Said 2nd ingredient is an aluminum ingredient. Approach characterized by said washing process being what removes said aluminum ingredient using KOH.
31. In an approach according to claim 30 Approach characterized by said 1st ingredient being a platinum content ingredient.
32. Anode electrode which has a catalyst ingredient for fuel cells on a front face Solid electrolyte member of proton conductivity It comes to have the cathode electrode which has a suitable catalyst for fuel cells. Membrane electrode assembly with which press junction of those all is mutually carried out in the order, and said electrolyte member exists between said anodes and cathode electrodes.
33. In a membrane electrode assembly according to claim 32 What is characterized by all of said anode, an electrolyte, and a cathode being the ingredients of a wettability.
34. the process which forms the stack equipped with the anode electrode which has a suitable catalyst for fuel cells for a front face, the solid-electrolyte member of proton conductivity, and the cathode electrode which have a suitable catalyst for fuel cells for a front face, The formation approach of the membrane electrode assembly which comes to contain the process which resembles combining these ingredients and forming a joint film-like electrode assembly, and heats and presses said stack in effective extent.
35. In Approach According to Claim 34 It Heats and Said Process to Press 1st Press Process Which Presses Said Stack between Members of Press Machine First Subsequently Process which heats the stack while maintaining the pressure applied according to the press process after a certain time amount after said 1st press process at the stack Subsequently \*\*\*\*\* characterized by coming to contain the process which cools the stack while maintaining a pressure after a certain time amount from said heating process under pressurization.
36. an approach according to claim 35 -- setting -- the process to which said 1st press process pressurizes the ingredient between 1000-1500psi(s) -- containing -- moreover -- Approach characterized by said heating process including the process which raises temperature in 140-150 degrees C.

37. They are Anode and Cathode Electrode at Least. Fuel Feeding Pipe, It comes to have the flow field element which operates so that fuel may be supplied from said fuel feeding pipe to either [ at least ] said anode or a cathode electrode. Said flow field element is forced to one [ said ] electrode. And have two or more island fields and a top face and the pressurization front face which has a side face are located in each island field. The pressurization front face is forced to one [ said ] electrode, and said flow field field encloses said side face. And said flow field field is open for free passage with said fuel feeding pipe. Said fuel feeding pipe It is the fuel cell which has at least one opening which carries out opening to the flow field which extends in a certain direction, supplies a fuel in said direction in the flow field, and is characterized by said direction being what supplies a fuel to one of the side faces directly.

38. a fuel cell according to claim 37 -- setting -- said island field -- a rectangle -- it is -- the major axis -- said direction -- parallel -- and -- What [ is characterized by supplying said fuel to one of said the side faces which extend at right angles to said direction ]

39. In a fuel cell according to claim 38 It has two or more nozzles, all are prolonged in said direction, and said fuel feeding pipe is characterized by all supplying a fuel to one of said the side faces.

40. Process Which Forces Flow Field Element to Electrode, It comes to contain the process which opens said flow field for free passage to said fuel feeding pipe. Said flow field element It has two or more island fields, and there are a top face and a pressurization front face which has a side face in the each. It is pushed against said one electrode and, as for the pressurization surface top face, said flow field field encloses said side face. By free passage with said flow field and said fuel feeding pipe How to supply a fuel to the electrode of the type which needs the thing which are characterized by supplying a fuel to said one side face of said flow field element, and which is pressurized.

---

[Translation done.]

\* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2. \*\*\*\* shows the word which can not be translated.
  3. In the drawings, any words are not translated.
- 

## DETAILED DESCRIPTION

---

### [Detailed Description of the Invention]

a direct mold methanol supply type fuel cell and its system the United States patent application 08th for which it applied on June 7, 1995 of the United States patent application 08th which applied for this application on October 12, 1993 / continuation application of No. 135,007 / No. 478,001 -- it is continuation application a part.

**Field of invention** This invention relates to the direct supply type methanol fuel cell by which it was improved for the system which operates without using an acid electrolyte or a reformer.

**A background and outline** The transportation car which operates with the internal combustion engine of a gasoline power mold is becoming the source of many environmental problems. The product which comes out of an internal combustion engine produces the problem to which smog and other exhaust gas related. By the various cures against pollution control, the exhaust gas component which a certain kind does not have is made into the minimum. However, the process of combustion essentially generates a certain exhaust gas.

However, even if it can make exhaust gas environment-friendly extensively, the internal combustion engine which uses a gasoline as the base still depends on the fossil fuel of non-reproducibility.

Many groups have explored the suitable solution of these energy problems. The fuel cell is mentioned as solution with one possibility. A fuel cell reacts chemically using the energy from a refreshable fuel ingredient. For example, a methanol is a completely refreshable source of supply. Moreover, a fuel cell uses oxidation/reduction reaction instead of a combustion reaction. Typically, most of the end product obtained from the reaction of this fuel cell are a carbon dioxide and water.

Some conventional methanol fuel cells used the "reformer", in order to change a methanol into H<sub>2</sub> gas used with a fuel cell. The methanol fuel cell used the electrolyte of strong acid. The artificers of this invention proposed first the technique of operating a direct fuel cell from a methanol, and the so-called direct supply type fuel cell, without using an acid electrolyte. The theme matter of this amelioration is our \*\*\*\*\*. Number

It is alike, and is indicated and the indication matter of the patent

concerned is used for extent required for a suitable understanding as reference at this specification. Since this is the achievements of the artificers, us, of course, it does not recognize the purport from which this patent constitutes the advanced technology to this invention here. The theme of this invention explains the further amelioration of such a direct supply mold fuel cell. Based on the further research achievements of the artificers about this concept, the various amelioration to the structure of a fuel cell itself is indicated here. Preparation by which the electrode which improves an operation of an electrode was improved is included in these amelioration matters.

The amelioration catalyst which raises the effectiveness of methanol generation is included in the operation of an electrode. An expensive platinum catalyst is used for a fuel cell. The electrode method of preparation offered here defines the technique which is decreased, can be lacking and can carry out the need of using a platinum catalyst.

The technique which forms a cathode electrode is also indicated here. These techniques make the optimal an operation of the cathode used with incompressible air. By this, ambient temperature and atmospheric pressure can be permitted now in a reduction mechanism, and the effectiveness of a fuel cell can be improved further.

Moreover, the technique of electrode formation is also explained and the technique of preparing membranous conditions is also included in it.

Formation of a desirable membrane electrode assembly is also defined especially.

This invention also defines the design of the flow field which makes it easy to supply liquid fuel to a catalyst again.

This fuel cell system needs to be used in a final product after all.

This final product may be an internal combustion engine, or may be much easy electronic equipment like radio. Any products which operate electrically can be operated based on the power generated from these fuel cells. The artificers of this invention found out a certain technique of improving many of these troubles that may happen, by other approaches while improving this actuation.

The technique of this invention enabled "system actuation" by explaining the technique of operating this fuel cell as some whole systems again.

The sensor for measuring methanol concentration and other important parameters is contained in these system technologies. This artificer understands the thing for which the various sensors for detecting various parameters will be required. This artificer was not able to find a commercial sensor. The approach of transforming into this invention the technique used with this fuel cell for formation of a sensor is

indicated. Using the technique of this fuel cell, this sensor maintains high dependability and operates.

Another technique defines formation of a unipolar cell.

Easy explanation of a drawing These and other fields of this invention are explained below with reference to an accompanying drawing at a detail.

Drawing 1 and 2 show the fundamental fuel cell by this invention.

Drawing 3 shows the dish for desiccation used in order to dry the carbon paper sheet which encoded Teflon.

Drawing 4 shows the fundamental platinum sputtering system of this invention.

Drawing 5 shows the fundamental flow field equipment which takes like the 1st operative condition as for this invention.

Drawing 6 shows the sectional view of the desirable flow field cut along Rhine 6-6 of drawing 5 .

Drawing 7 shows the 1st embodiment of the BAIPU rate structure of this invention.

Drawing 8 shows the 2nd embodiment of BAIPU rate structure.

Drawing 9 shows system actuation of a direct mold methanol field fuel cell.

Drawing 10 shows how the concept of the fuel cell mentioned above in order to use by the methanol sensor should be changed.

Drawing 11 shows the relation of the methanol concentration and the current in this invention.

Drawing 12 shows the fuel cell of the molecular sieve which gave the phase to the class for methanols by this invention.

Drawing 13 shows drawing where the 1st about the way in the single electrode of the fuel cell of this invention was expanded.

Drawing 14 shows package-ization of the way in this single electrode.

Drawing 15 is the enlarged drawing showing the 2nd embodiment of the way in a single electrode.

Drawing 16 shows how the way in this single electrode is assembled to an actuation system.

Drawing 17 shows another expansion layout of the assembly of the way in a single electrode.

Explanation of a desirable embodiment A platinum-ruthenium catalyst is used for the liquid distribution system indicated by the patent which made reference by our above on an anode, and the platinum catalyst is used for it on the cathode. the perfluoro-sulfone film -- desirable -- DuPont Nafion (Nafion) 117 is used as a polymer electrolyte membrane. An important thing is that this system needed to use neither any acid

electrolytes nor a reformer, and operated. The various properties which various ingredients have were changed and this amelioration was made.

By raising a hydrophilic property for an anode electrode using an ionomer additive, the accessibility of the methanol water solution on the front face of an anode is improvable.

The option which raises the hydrophilic property of an anode was using the electrolyte containing superacid ("C8 acid").

For example, since those molecule sizes of another methanol derivative fuel like trimethoxy methane "TMM" are large, migratory [ of a fuel ] (crossover) becomes small for other properties.

Drawing 1 shows the liquid supply organic fuel cell 10 which has housing 12, an anode 14, a cathode 16, and the solid-state polymer proton conductivity cation exchange electrolyte membrane 18. An anode 14, a cathode 16, and the solid-state polymer electrolyte membrane 18 are desirable single multilayer composite-construction objects, and are called a membrane electrode assembly here so that it may explain further below at a detail. The pump 20 is formed in order to carry out pumping of the solution of an organic fuel and water into the anode room 22 of housing 12. The mixture of the organic fuel and water is taken out from an exit port 23, and recycling is carried out through the recycling system which is explained below with reference to drawing 2 and which has the methanol tank 19. The carbon dioxide generated at the anode room is emitted through the port 24 in a tank 19. The compressor 26 of oxygen or air is formed in order to supply oxygen or air into the cathode room 28 in housing 12. Drawing 2 explained below shows the fuel cell system incorporating the stack of each fuel cell containing a recycling system. The following detailed explanation of the fuel cell of drawing 1 mainly performs the structure and the function of an anode 14, a cathode 16, and the film 18 as a core.

In advance of use, the anode room 22 is filled with the mixture of an organic fuel and water, and fills the cathode room 28 with air and oxygen. An organic fuel passes and circulates through an anode 14 during actuation, on the other hand, pumping of oxygen or the air is carried out into the cathode room 28, and it passes and circulates through a cathode 16. If electric load (not shown) is connected with an anode 14 between cathodes 16, electric oxidation of an organic fuel will take place with an anode 14, and electric reduction of oxygen will take place with a cathode 16. When such a different reaction occurs with an anode and a cathode, an electrical-potential-difference difference arises in these 2 inter-electrode. The electron generated by electric oxidation with an anode 14 conducts through an external load (not shown), and,

finally is caught with a cathode 16. The film electrolyte 18 is crossed directly, the hydrogen ion, i.e., the proton, generated with the anode 14, and it is conveyed to a cathode 16. Therefore, the flow of a current is maintained with the electron which passes the flow and the external load of the ion which passes a cell.

As mentioned above, an anode 14, a cathode 16, and the film 18 form one compound layer structure object. In the desirable embodiment, the film 18 is formed by Nafion (trademark) of a perfluoro-\*\* proton exchange film ingredient. Nafion (trademark) is the copolymer of tetrafluoroethylene and a perfluoro-vinyl ether sulfonic acid. Other film ingredients can be used. For example, the film of the complex of an alteration perfluoro-\*\* sulfonic-acid polymer, the Pori hydrocarbon sulfonic acid, and two or more sorts of proton exchange film can be used. From the particle of a platinum ruthenium alloy, it is made to distribute on the carbon of the large surface area as detailed metal powder, i.e., "structure where it does not support", that is, an anode 14 is "support structure" and is formed. The carbon of large surface area is U.S. Cabot. Vulcan which an Inc. company offers An ingredient like XC-72A is sufficient. In order to perform electrical installation with the particle of the electrocatalysis, the backing (not shown) of a carbon fiber sheet is used. A commercial Toray (trademark) paper is used as an electrode backing sheet. The alloy electrocatalysis of the support structure on the backing of a Toray (trademark) paper can obtain from E-Tek of the U.S. Massachusetts hula MINGAMU whereabouts, and an Inc. company. Or an anode can be manufactured by the chemical approach which joins together with a Teflon (trademark) binder and sprinkles both the electrocatalysis of the structure where it does not support, and the electrocatalysis of support structure, on Toray (trademark) paper backing. How to manufacture an electrocatalysis electrode, without spending many hours efficiently is explained below at a detail.

The second metal can use the alloy of the platinum base which is tin, iridium, an osmium, or a rhenium instead of a platinum ruthenium.

Generally, selection of an alloy is performed depending on the fuel used for a fuel cell. A platinum ruthenium is desirable in order to carry out electric oxidation of the methanol. In the case of a platinum ruthenium, the amount of the alloy particle added in an electrocatalysis layer has the desirable range of 0.5 - 4.0 mg/cm<sup>2</sup>. Electric oxidation with the more efficient higher one is realized rather than addition level is low. A cathode 16 is a gas diffusion electrode and a platinum particle is joint \*\*\*\*\* to one field of the film 18. As for the anode 14 of the film 18, it is [ a cathode 16 ] desirable to form with the platinum of

the structure combined with the field of the opposite side where it does not support, or support structure. U.S. Johnson Matthey The platinum black (fuel cell grade) of the structure where it does not support which can come to hand from an Inc. company, or U.S. E-Tek The platinum ingredient of the support structure which can come to hand from an Inc. company fits cathodes. It is desirable like [ in the case of an anode ] to carry the metal particles for cathodes on a carbonaceous backing ingredient. The amount which carries out the load of the electrocatalysis particle on carbon backing is the range of 0.5 - 4.0 mg/cm<sup>2</sup> preferably. The backing of an electrocatalysis alloy and a carbon fiber has given hydrophobicity required to remove efficiently the water which contained 10 - 50% of the weight of Teflon (trademark), and generated the three-phase zone, and was generated by electric reduction of oxygen.

During actuation, a density range passes the anode 14 in the anode room 22, and circulates the mixture (neither an acid electrolyte nor an alkaline electrolyte is contained) of the fuel which is 0.5-3.0 mols/l., and water. Preferably, the rate of flow of the range for 10 - 500mL/is used. When the mixture of a fuel and water passes and circulates through an anode 14, in the case of an instantiation methanol cell, the following electrochemical reaction occurs and an electron is emitted.



The carbon dioxide generated at the above-mentioned reaction is taken out through an outlet 23 with the solution of a fuel and water, and is separated from the solution by the vapor-liquid-separation machine (with reference to drawing 2 , it explains below). Subsequently recycling of the solution of a fuel and water is carried out into a cell with a pump 20.

The electrochemical reaction shown by the above-mentioned formula (1) and other electrochemical reaction which performs electric reduction of oxygen which catches an electron to coincidence occur with a cathode 16, and is expressed by the following type.



According to each electrode reaction expressed in (2) as a formula (1), the whole reaction expressed with the following formula is performed about an instantiation-methanol fuel cell.



Current density higher than 500 mA/cm<sup>2</sup> is maintainable with the fuel of concentration high enough. However, by such concentration, the passing speed (crossover rate) of the fuel which crosses the film 18 and faces to a cathode 16 increases even to extent to which the effectiveness and

the electrical order of the fuel cell fall intentionally. By concentration lower than 0.5 mols / L, actuation of a cell is limited to less than two 100 mA/cm current density. It was found out that the low rate of flow can be applied in the case of low current density. Since it increases but also the transportation mass velocity to the anode of an organic fuel not only in order to remove the carbon dioxide generated according to electrochemical reaction when making it operate with high current density, the high rate of flow is required. Moreover, in the low rate of flow, that a fuel passes the film and moves to a cathode from an anode decreases.

Preferably, oxygen or air passes and circulates a cathode 16 under the pressure of the range of 10 - 30psig. If it is made a pressure higher than an external world pressure, in the case of high current density, the mass transport of the oxygen to the location of electrochemical reaction will be improved especially. The water generated by electrochemical reaction in a cathode is carried out of the cathode room 28 by the flow of oxygen through a port 30.

In addition to electric oxidation being carried out with an anode, the liquid fuel which is dissolving in water penetrates the solid-state polymer electrolyte membrane 18, and combines it with oxygen on the front face of the electrocatalysis of a cathode. This process mentions a methanol as an example and is expressed with a formula (3). This phenomenon is called "fuel migration (fuel crossover)." A fuel is consumed without the action potential of an oxygen electrode falling, consequently generating useful electrical energy by migration of a fuel. Generally, migration of a fuel is a parasitism reaction which reduces the engine performance and generates heat within a fuel cell while reducing effectiveness.

Therefore, it is desirable to make passing speed of a fuel into min. This passing speed is proportional to the permeability of the fuel which passes a solid-electrolyte membrane, concentration increases, and it increases as temperature rises. The permeability to membranous liquid fuel can be reduced by choosing a solid-electrolyte membrane with low moisture content. If the permeability to a fuel is reduced, passing speed will fall. Moreover, the fuel with a large molecular size has a diffusion coefficient smaller than a fuel with a small molecular size. Therefore, permeability can be lowered by choosing a fuel with a large molecular size. Although a water-soluble fuel is desirable, the fuel of a medium presents permeability with low solubility. Since the fuel of a high-boiling point does not evaporate, transportation of these fuels that let the film pass is performed by the liquid phase. Since steamy

permeability is higher than a liquid, generally the fuel of a high-boiling point has low passing speed. The concentration of liquid fuel can be lowered also in order to make passing speed small. The hydrophobic section and the anode structure over which the hydrophilic part is distributed the optimal prevent that can maintain electrochemical reaction by getting wet moderately with liquid fuel, and the fuel of an excessive amount approaches a film electrolyte. Therefore, if the structure of an anode is chosen suitably, high performance and desirable low passing speed can be obtained.

Since water can be penetrated at temperature higher than 60 degrees C, most quantity of water crosses the film by transparency and evaporation, and a solid-electrolyte membrane is conveyed. The water conveyed through a solid-electrolyte membrane is condensed within a water recovery system, and is sent to a water tank (this water recovery system and tank are explained below with reference to drawing 2 at a detail), and recycling of that water can be carried out into the anode room 22.

Inter-electrode [ two ] is conveyed to the water generated with the proton generated with the anode 14, and the cathode 16 by the proton conductivity solid-electrolyte membrane 18. It is important for operating organic / air fuel cell effectively to maintain the high proton conductivity of the film 18. The moisture content of an electrolyte membrane is maintained by making it contact liquid fuel, the mixture of water, and directly. Let preferably thickness of a proton conductivity solid-state polymer electrolyte membrane be the range of 0.05-0.5mm. Superfluous resistance may be presented while the polymer will bring about the dimensional change which swells and is going too far and does damage with the solution of liquid fuel and water, if it may become the membrane electrode assembly which was inferior in the mechanical strength when the film thinner than 0.05mm was used and the film thicker than 0.5mm is used on the other hand. The ionic conductivity of an electrolyte membrane must be larger than  $1\text{ohm}^{-1}\text{cm}^{-1}$ , in order to have the internal resistance which can permit a fuel cell. As mentioned above, the permeability of an electrolyte membrane to liquid fuel must be low.

Film made from a perfluoro-\*\* sulfonic-acid polymer like Aciplex (trademark) (Japan's Asahi Glass Co. company manufacture) with which Nafion (trademark) and a property are similar although it was found out that the Nafion (trademark) film is effective as a proton conductivity solid-state polymer electrolyte membrane, and U.S. Dow Chemical The polymer film 13204.10 which Co. company is manufacturing, for example, XUS, can be used. The film of polyethylene and a polypropylene sulfonic

acid, the film of polystyrene sulfonate, and the film (for example, film which U.S. RAI Corporation manufactured) of the sulfonic acids of other Pori hydrocarbon bases can also be used according to the temperature and the period when a fuel cell operates. acid equivalents differ or chemistry organizations differ -- \*\*\*\* (for example, the frame of an acidic group or a polymer is embellished) -- or low fuel permeability can be attained using the film of the complex which consists of two or more sorts of those proton conductivity cation exchange polymers from which water content differs or the class and extent of bridge formation differ (for example, the bridge is constructed by multivalent cations, such as aluminum<sup>3+</sup> and Mg<sup>2+</sup>).

The film of such complex can be manufactured and high ionic conductivity and the low penetrable \*\*\*\*\* electrochemical stability over liquid fuel can be attained.

It is not necessary to use the fusibility acid of isolation, or the electrolyte of a base, and a liquid supply type direct oxidation type organic fuel cell is obtained by using the solid-state poly membrane of proton conductivity as an electrolyte so that I may be understood from the above explanation. The only electrolyte is the solid-state poly membrane of proton conductivity. The acid of the gestalt of isolation does not exist in the mixture of liquid fuel and water. since a free acid does not exist -- present -- business -- the corrosion by acid induction of the cell components which tend to happen in the organic substance / air fuel cell of the technical acid base is avoided. This brings considerable flexibility to the ingredient selection for a fuel cell and a coordinated subsystem. Furthermore, since the carbonate of fusibility is not formed unlike the fuel cell which contains a potassium hydroxide as a liquid electrolyte, the cell engine performance does not fall. Moreover, a parasitism short-circuit current is avoided by use of a solid-electrolyte membrane.

Further amelioration. The reaction of a direct mold methanol / liquid supply type fuel cell is as follows.



The various amelioration at the time of manufacturing and forming the desirable structure and the desirable ingredient which are used by this invention is described by this specification.

It was confirmed by the various experiments conducted by artificers that the desirable catalyst ingredient of one specification is a platinum ruthenium ("Pt-Ru"). The various processes which combine these two metals are possible. Artificers found out that the direction of the powder of 2 metallicity which has a ruthenium particle separate from a separate platinum particle brought about a result better than a platinum ruthenium alloy. Since the desirable Pt-Ru ingredient used by this invention has big surface area, it makes contact between this ingredient and fuel easy. Although platinum and a ruthenium were used by catalytic reaction, this artificer found out that it was important that the mixture of a platinum ruthenium is mixed by homogeneity over the whole ingredient, and spacing is vacated at random, i.e., that ingredient must be homogeneous.

The 1st field of this invention is forming the platinum ruthenium 2 metallicity powder which has a part according to unique individual of a different ingredient combining a different metal. Although a certain association exists among particles, it guarantees that the technique of this invention makes extent of association the minimum.

The process which forms a desirable ingredient is indicated on these specifications. First, the slurry which put platinum salts and a ruthenium salt into the hydrochloric acid is formed.

Platinic chloride hexa hydrate salt H<sub>2</sub>PtCl<sub>6</sub>.6H<sub>2</sub>O is made to generate by dissolving a platinic chloride crystal in a hydrochloric acid.

K<sub>2</sub>RuCl<sub>5</sub> and H<sub>2</sub>O of a ruthenium salt are made to generate from the potassium salt of a PENTAKUROROAKUO ruthenium (III).

A 12.672g platinic chloride crystal is mixed with 600ml of the crystal of the potassium salt of a 13.921g PENTAKUROROAKUO ruthenium, and an one-mol hydrochloric acid. The mixture of an acid and a salt is agitated for 15 - 30 minutes, and homogeneous mixture is obtained.

Subsequently, by adding a 140g [ per ml/m ] sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) at the temperature between 20-30 degrees C, it neutralizes to this acid slurry and it is settled. In the meantime, the carbon dioxide will be violently emitted from this solution. Adding a sodium carbonate is continued until emission of this gas finishes. That solution changes to tea black at this time. Artificers found out this thing for about 15 minutes to this.

While performing this actuation, maintaining to suitable pH is important and pH should be maintained in the 9.25 neighborhoods by adding a sodium carbonate slowly.

Subsequently, this "a gray powdered lump (grey powdery mass)" is processed, and water is evaporated from that slurry. It takes 2 hours

and the solid of the shape of 1 hour thru/or black glue which the ingredient dried and became a lump at last is formed in this evaporation. Next, this black glue-like solid is dried in a vacuum, or it is made to dry at 80 degrees C - 100 degrees C under a nitrogen air current. The solid-state of massive gray is obtained. The ingredient which still exists in a solution with the sodium chloride in addition is contained in this solid-state.

In addition to hydroxylation ruthenium =Ru (OH)3, platinum hydroxide =Pt (OH)4 and "a sticky thing (gunk)", i.e., a chloride, and it, there is superfluous Na<sub>2</sub>CO<sub>3</sub> in the chemical contents of the powder of this gray. Artificers presume that these excessive ingredients maintain separation between platinum and a ruthenium. If maintained only with these platinum and a ruthenium ingredient, they will sinter and join together and the magnitude of a particle will become large. The buffer of the carbonate between particles has prevented fusion.

Next, it is returned under the ambient atmosphere of hydrogen and an argon, and this massive solid material changes to a metal from a salt. This ingredient is moved and changed into a glass boat. This boat is arranged in the core of the glass tube of a tube furnace. The ingredient is made to return instead of [ its ] in the mixed gas which consists of 7% of hydrogen, and 93% of argon near 225 degree C in the mixed gas of hydrogen/nitrogen. This gas should have the boat top passed by the per minute 50-200ml rate of flow.

Maintaining this gas stream is continued in that heating ambient atmosphere for 14 hours. And per 40 degrees C is made to cool the catalyst powder, still continuing passing hydrogen to the powder. Thereby, platinum, the particle of ruthenium \*\*, and the mixture that consists of other chlorides and carbonates in addition to it are formed. The obtained ingredient must be washed next. This ingredient performs six washing by several washing, for example, 60 degrees C. By each washing, the sample in a glass boat is moved to the beaker into which 1l. of 60-degree C deionized water was put.

The platinum ruthenium is insoluble in water. Therefore, even if it washes, it is uninfluential into a platinum ruthenium ingredient, and only other ingredients are removed. In each washing, since the process which agitates a water solution for 15 minutes is performed, the chloride and carbonate of fusibility dissolve.

Since the magnitude of metal particles is submicron, they form the mixture of colloid instead, without sinking to a bottom.

Even 40 degrees C is made to cool this solution. Centrifugal separation of this solution is later carried out by 3000rpm for 1 hour. The clear

supernatant remains according to a centrifugal separation process. It is being begun to move the liquid which besides becomes clear, and black sediment is moved and changed into the flask into which 1l. deionized water [ 60-degree C ] was put. Any chlorides which dissolved are removed by this further washing.

This washing process is repeated 6 times in all. It turned out that it is important to agitate and carry out centrifugal separation of the water in order to remove a chloride on the whole. These chlorides are harmful for a catalysis. However, although artificers were the binders which need these chlorides to stop the fusion of an ingredient to the minimum, they found out that it had to be removed later.

After performing final centrifugal separation actuation, the powder is moved to a beaker and it dries in 60-degree C vacuum oven for 3 hours. It may replace with this and this ingredient may be freeze-dried.

A platinum ruthenium catalyst [ activity / size / which can flow freely / submicron ] is acquired by this. It is important to note that the dry ingredient is submicron size, therefore that they are easily carried with air. In order to secure insurance, it must equip with a submicron mask.

It turned out that this activity catalyst powder contains the homogeneous mixture of the platinum particle of submicron size, and a ruthenium particle. Moreover, the residue of RuO<sub>2</sub>, ruthenium oxide, and the amount of traces of a ruthenium alloy also exists.

This powder is used as a catalyst on an anode so that it may indicate on these specifications.

The platinum salts and the ruthenium salt which are the first product by this converting method may be changed with a titanium dioxide (TiO<sub>2</sub>), iridium (Ir), and/or an osmium (Os). These ingredients can be used that the engine performance of a fuel cell should be improved at comparatively little cost.

The particle which performed this processing as compared with the particle of the advanced technology shows the advantage which it was at the time.

The particle of the advanced technology is a particle with a magnitude of 5 microns. The diacid-ized ruthenium was contained in these particles. When the particle of this invention is analyzed, it is shown that it is homogeneous mixture until it results in the particle of micron size. When it sees with a scanning electron microscope, there is neither a bright point nor a cloudy point, and all ingredients look overall to gray. This shows that the ingredient homogeneous on the whole was formed of the mixed process.

The ingredient prepared according to this process is called anode catalyst ingredient. If this anode catalyst is combined with the Nafion solution etc. and a process is advanced further, it will become "ink (ink)." That with which the platinum metal and the ruthenium metal combined is contained in this so that it may indicate on these specifications. Artificers have found that the desirable ratio to the ruthenium of platinum is between 60/40 and 40/60. It is thought that the best engine performance is obtained at the time of 60% of platinum and 40% of ruthenium. The engine performance will fall slightly, if a catalyst becomes 100% of platinum. The engine performance will fall rapidly, if a catalyst becomes 100% of ruthenium.

By adding other additives in this salt, a property can be improved and this catalyst ingredient can be permuted by another cheaper ingredient. Artificers thought that this fuel cell should have been formed with the ingredient of a low price. Though regrettable, platinum is a very expensive ingredient. As long as it is today's writing, a platinum ruthenium is the best ingredient as a catalyst. Artificers have studied using the permutation object to all or some of platinum of this catalyst. This permutation is due to the point on which a platinum ruthenium catalyst functions.

The reaction which occurs with an anode is  $\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 +$ . It is  $\text{H}^{++}\text{e}^-$ . Artificers think that the catalyst of this reaction is carried out, when a platinum ruthenium carries out the help which makes an ingredient dissociate on that catalyst front face. This ingredient pulls out an electron and makes them dissociate. This reaction can be explained as follows.

A methanol is a carbon compound. A carbon atom is combined with other four atoms. three of the bond come out to a hydrogen atom. another bond comes out to a hydroxyl group, i.e., OH. Platinum dissociates a methanol from bond with the hydrogen, and forms  $\text{M}=\text{C}-\text{OH}$  ( $\text{M}$  is catalyst of Pt or other metal sites)  $+ 3\text{H}^+$ . A ruthenium dissociates hydrogen from the molecule (HOH) of water, and forms  $\text{M}-\text{OH}$ . Subsequently the thing in these front faces is newly together put as  $\text{CO}_2 + 6\text{H}^{++} + 6\text{e}^-$ . An anode generates  $\text{H}^+$  (proton), it is crossed from the anode to a cathode, and is returned there. This is called 2 functionality catalyst.

A methanol which was indicated on these specifications, and any ingredients with the similar function to make water dissociate can be used instead of platinum. Artificers studied several sorts of such ingredients. They found out the alternative of platinum for the palladium and the tungsten which can dissociate C-H bond, a rhodium, iron, cobalt, nickel, etc. It seems that the engine performance whose

molybdenum (Mo03), niobium (Nb 205), zirconium (Zr02), and rhodium (Rh) dissociate H-OH, and make it M-OH occurs. Therefore, it is the good catalyst which combined these. Ru, Ti, Os, Ir, Cr, and/or Mn are mentioned to the desirable catalyst which dissociates H-O-H bond. A ruthenium may permute the all or part with the ingredient similar to a ruthenium. Artificers found out having many properties that iridium resembled the ruthenium. Therefore, in the 1st embodiment in this field, what combined platinum, a ruthenium, and iridium by phase contrast 50-25-25 is used. This adds salt H2IrCl6 and H2O in the amount which was suitable for the first ingredient indicated above considering as the combination of 50-25-25 (Pt-Ru-Ir).

Moreover, it turned out that fewer rutheniums are used for this catalyst and it works very well.

The ingredient containing a titanium compound is mentioned as another ingredient with which it turned out that it has a certain advantage. Any titanium alkoxides and titanium butoxide, for example, titanium isopropoxide, or TiCl4 can be added into the original mixture. By this, it is a platinum-ruthenium. - The final combination of TiO2 can be formed and it is also formed in the combination of 50-25-25 (Pt-Ru-TiO2). A platinum-ruthenium-osmium can also be used. The osmium was added by mixture as salt H2OsCl6.6H2O, and it became clear that an advantageous property was brought about by this.

Even when formed how, these ingredients used in order to form platinum ink must be attached to an anode. Various techniques can be used in order to attach this ingredient. Then, formation of an anode is explained below.

Formation of carbon paper. Migration (crossover) of a fuel caused degradation in this fuel cell. Instead of reacting with an anode, a methanol happens, in case the fuel migration in this fuel cell passes through an anode. A methanol passes through an anode and penetrates a membrane electrode assembly, the film, and a cathode. A methanol may react with a cathode, and the effectiveness of a fuel will be reduced if it becomes so.

The electrode of this invention is preferably formed using the base of carbon paper. An initiation ingredient is TGPH-090 carbon paper which can come to hand from Toray of the New York State City of New York third avenue 500 whereabouts. However, this paper pretreats first and improves that property. The "Teflon 30" suspension of DuPont of about 60% of solid-state is used for this pretreatment.

Moreover, this paper may be the carbon fiber of the top piece mixed with the binder. After carrying out the roller cliff of this fiber, it forms

the last ingredient of about 75% of porosity by carrying out combustion removal of the binder. Moreover, it is also possible to use a carbon cross paper. This is processed by the technique indicated on these specifications. Moreover, a carbon paper cross can also be used. This is processed with the technique indicated here and forms the backing of gaseous diffusion nature / current collector.

The carbon paper carried out in desirable processing contains the paper with which the Teflon particle was embedded inside. As for the tooth space between Teflon particles, it is desirable that it is fully so small that a methanol cannot pass through that. For example, a better property is used even when using other methanol derivatives like TMM. This anode assembly is formed on the base of carbon paper. It means this carbon paper being Teflon-ized, and it adding Teflon, and improving a property. Artificers found out that there was balance important between the amount of the Teflon added on a paper and a final property.

It is important to maintain the amount of the Teflon to be used to suitable balance so that it may indicate on these specifications.

While Teflon-izing this paper and giving water repellence, it is made for the mixture of platinum ink not to ooze through that paper.

Although this paper needs to be a wettability, it does not need to be porosity. This delicate balance is brought about by being immersed and heating a paper. Since artificers found out that balance existed between extent and the amounts of sinking in to a paper of the wettability of a paper, they explain that here.

First, the emulsion of Teflon 30 must be diluted. Every 1g Teflon 30 is added in the water in every 17.1g. 60% of the weight of 1g Teflon 30 is equivalent to 60g [ per 100ml ] Teflon.

This ingredient is poured into a suitable container like for example, a glass pan. Carbon paper is maintained until it sinks in into the ingredient.

Immersion actuation \*\*\*\* the carbon paper of one sheet, and subsequently to the process which dips carbon paper, for about 10 seconds, it corresponds in the solution until it gets wet clearly. Carbon paper is picked out from a solution using a pincette, making it not contact the paper as much as possible. However, the pincette itself draws the Teflon on the property of Teflon, and distribution of a liquid becomes an ununiformity. In order to make this possibility into the minimum, the pincette by which the Teflon coat was carried out is used. Carbon paper turns an angle downward, is held and makes a superfluous solution flow out.

Much Teflon will be torn off by surface tension if the ingredient lays

on a glass front face with the surface tension property of a Teflon emulsion. It meets and drops off, and a paper desiccation assembly is formed as shown in drawing 3.

The wire 202 which gave two or more Teflon covering is stretched on a perforated plate like a dish 200. It intersects perpendicularly and this stretched wire forms the prolonged two-set base materials 202 and 204. The carbon paper just processed with the Teflon solution is held ranging over these base materials.

Ideally, these wires are wires whose diameters are 0.43 inches and which carried out Teflon covering. Although these dimensions are not delicate, if the area in contact with a paper is small, distribution of the suspension on a wire can be made more into homogeneity. The kink 206 is formed in the wire, it is made for carbon paper not to contact a wire along with the overall length of the die-length direction, and it makes the touch area still smaller by it.

Subsequently it is put into the paper desiccation assembly shown in drawing 3 into 70-degree C oven for 1 hour. The carbon paper which processed is removed from a dish after desiccation, and is put in into glassware. Then, these are sintered in a 360-degree C oven furnace for 1 hour. Weight is increasing the paper processed appropriately by 5% through this down stream processing. It is permissible if weight increase's being for 3 - 20%, speaking still more generally. a \*\*\*\*\* [ that absorption with this sufficient paper was made ] -- and/or, it \*\*\*\* in order to decide whether it is necessary to process a paper further.

This substrate + catalyst bed forms a final electrode.

Two desirable techniques which attach the catalyst containing a layer are explained here. That is, they are the direct applying method and spatter vacuum deposition. Other carbon paper containing the carbon paper used without using the special carbon paper ingredient which both explained the method of formation of law to the above and performing special processing in any way may be used. The direct applying method of this invention mixes the platinum ruthenium ingredient and the various ingredients which were explained above, or mixes a catalyst ingredient and various ingredients on other compounding agents of a certain and a general twist target. This catalyst ingredient is processed with the ingredient of the addition which improves a property.

It mixes with an ionomer and platinum ruthenium powder is mixed with water repellent. A perfluoro-sulfonic acid (Nafion) and the solution of the micro particle of Teflon are mentioned to a desirable ingredient. 5g [ per 100ml of Nafion solutions ] platinum ruthenium powder is added.

T-30 mixture of DuPont of 60% of the weight of the Teflon solid-state diluted suitably is added. Then, the micro particle of such Teflons is mixed. Dilution Teflon 30 suspension which contains in 4g deionized water preferably the solid-state of 12 percentage by weight into which the concentration liquid of 1g Teflon 30 was put is prepared. 300mg deionized water is added in the 350mg of 12% of the weight of the above-mentioned Teflon solutions. A 144mg platinum ruthenium is mixed in this solution. Subsequently the obtained mixture is mixed using a well-known ultrasonic blending technique with the conventional technique as "sonication." Ultrasonic mixing is preferably performed within the ultrasonic bath which filled water with Fukashi (about 1 / 4 inches). This mixture "is ultrasonicated" for about 4 minutes.

As mentioned above, the point that Teflon must be first mixed with a platinum ruthenium and about 15% of the weight of Teflon must be prepared is important. Nafion can be added only after making this mixture. Artificers found out that it might enclose the particle of platinum and a ruthenium, if Nafion was added first. Therefore, the sequence of this actuation is delicate and important. At this time, 0.72g of 5% of the weight of Nafion is put into a jar, and sonication is performed for 4 minutes once again. 1 square centimeter of electrodes covered as more generally saying hits, and it is necessary to add 1mg Nafion about. The amounts of above-mentioned Nafion are also few, or when only 652ml adds, they can change a solution.

If this processing is performed, a black slurry-like ingredient will generate. Next, the black ingredient of the shape of this slurry is applied to carbon paper. The applying method may be performed by one [ which ] of many approaches. The easiest gestalt is applying the ingredient on carbon paper backing, changing a stroke in the different direction. In order to apply this, a brush with the small hair of a camel is used. The desirable amount which the ingredient mentioned above is an amount for forming the catalyst of sufficient amount to one side of the 2 inch x 2 inch piece of 5% of the weight of Teflon-ized carbon paper. Therefore, spreading is continued until it will use all catalysts. The drying time for 2 minutes - 5 minutes should be established between covering, and each covering should be applied in the different direction so that an ingredient may be in half-dryness between covering. It is necessary to dry an anode for about 30 minutes after that. "Press working of sheet metal" of the anode must be immediately carried out after progress of the 30 minutes. Actuation of this press working of sheet metal is explained to this specification.

It is the porous carbon substrate used for the obtained structure

diffusing gas and a liquid, and it is covered with 4 times per 1 square centimeter of catalyst ingredients.

The alternative technology to which this ingredient is made to adhere is carrying out the spatter of that ingredient on backing.

We have explained how to form an anode here. Next, the technique which subsequently forms a cathode about the technique in which the process which forms the desirable film (Nafion) of proton conductivity involves is explained.

Proton conductivity film - The desirable ingredient indicated here is Nafion 117. However, in order that other ingredients may form the proton conductivity film, it can use. For example, it is possible to use other perfluoro-sulfonic-acid ingredients. It can be assumed that many different ingredients with a carboxylic-acid radical may also be used for this purpose.

A desirable embodiment starts using Nafion 117 which can come to hand from DuPont. This ingredient is first cut in suitable magnitude. It is important to make it suitable magnitude and it is because the conditions of the last ingredient are decided by the magnitude. First, Nafion is boiled in a hydrogen-peroxide solution. 5% of hydrogen-peroxide solution is got, and this film is boiled at 80-90 degrees C in this solution for 1 hour.

Oxidizable organic impurities are removed by this.

After performing the boiling process by this peroxide, that film is boiled for 30 minutes at about 100 degrees C in deionized water. The hydrogen peroxide absorbed by the film before that is removed with other water-soluble organic materials.

Thus, the film with which processing was performed is boiled in a sulfuric-acid solution next. An one-mol sulfuric-acid solution is prepared by diluting the sulfuric acid of the condensed 18-mol commercial ACS grade. The acid of ACS grade contains only the metal impurity of an amount smaller than 50 ppm. By boiling this film at about 100 degrees C in an one-mol sulfuric acid, that film can be more completely changed into proton conductivity.

The processed ingredient is boiled for 30 minutes at 90-100 degrees C in deionized water next.

That water is thrown away, this boiling process is repeated further 3 times, and membranous purity is raised.

After performing these washing processes, a sulfuric acid does not exist in the film, but it becomes a "protonic" gestalt completely. It is put in and saved by that in the sealed container at deionized water until the film is ready to perform further processing.

Cathode configuration. A cathode is constituted by preparing the catalyst ink for cathodes first. Preferably, although the catalyst ink for cathodes is pure platinum, as other ink can be used and being indicated on these specifications, it may mix many of other ingredients in ink. A 250mg platinum catalyst is mixed with the 0.5g water containing 37-1 / 2mg Teflon. Sonication of this mixture is carried out for 5 minutes, and it is aligned with 5% of Nafion solution. Sonication of the obtained mixture is again carried out for 5 minutes, and a uniform dispersant is obtained. Enough ingredients to cover the 2x2 inches piece of carbon paper with this are formed. Unsettled Toray carbon paper can be used without Teflon content. However, preferably, this ingredient is Teflon-ized, as mentioned above.

Subsequently, the process which forms the paper which sank in 5% of Teflon continues. Then, the paper is heated at 300 degrees C for 1 hour, and a Teflon particle is sintered. The ingredient is covered with PT of 4 mg/cm<sup>2</sup>/g by applying after that, as catalyst ink was mentioned above on the paper. Although the Teflon content of this paper may change among 3 - 20%, it is desirable. [ 5% of ]

Sputtering In the alternative technology which forms a cathode, the platinum electrode which carried out spatter formation is formed. When this platinum electrode that carried out spatter formation was used as a plane air electrode, it became clear that it had the advantage which it was at the time. The process which manufactures the platinum electrode of sputtering formation is indicated by this specification. A cathode electrode is O<sub>2</sub><sup>+</sup>. H<sup>+</sup> A reaction called e--> water is performed. These O<sub>2</sub> is received from the surrounding gas (gas) of a platinum electrode, and an electron and a proton are received through the film to this. This alternative technology for forming a cathode electrode starts using the platinum of the grade for fuel cells. This can be purchased from many sources, such as Johnson-Matthey. This 20-30g [ per surface area of 1 square meter ] platinum is applied to that electrode in the magnitude of a 0.1-1-micron particle.

The source of platinum is a solid-state rod-like ingredient. According to this embodiment, the spatter of that ingredient is carried out to the substrate formed as mentioned above. Platinum powder is first mixed with an aluminium powder. This mixing may be performed using the technique of salt combination which was performed when you could carry out, for example using a mechanical means or anode ink was manufactured and which was mentioned above. The spatter of the platinum aluminum mixture is carried out on carbon paper using a spatter known by semiconductor technology.

The spatter of the platinum is carried out as follows using the system illustrated by drawing 4 . The carbon paper electrode 252 is held at the 4 inches standard target 250. This target rotates one time in 10 seconds by the motor 254. According to the desirable technique used here, the spatter of the Pt is carried out from 1st Pt source of supply, and the spatter of the aluminum is carried out from the aluminum source of supply 262. Near 200 volt, platinum is 0.23amps(es) and the spatter of the aluminum is carried out by 0.15amps(es). Two sources of supply collide at the include angle of 45 degrees toward a target from a different direction which faced each other.

Although the pressure with artificers ideal for this sputtering was 20torr, it found out that the pressure of the arbitration between 1-50torr could also be used. The pressure of an argon is an about 30mm torr. However, the atmospheric pressure of an argon which is different in order to form the particle of different size can be used. Sputtering is performed for about 8 minutes.

Preferably, after finishing sputtering, by immersing the backing which carried out spatter formation in an etching solution, it etches, and it is continuously immersed in a washing solution.

The electrode which carried out spatter formation is the mixture of aluminum particle on backing, and Pt particle. An aluminum particle is removed by washing an electrode with a potassium hydroxide (KOH). Of this, the carbon paper backing to which porous platinum adhered very much is formed. Each field in which aluminum was formed is removed and the space which the hole opened in the location remains. When artificers' covering of a Pt-aluminum ingredient was thick, that aluminum is flushed [ of the catalyst ] from a downward field found out being prevented a little. This invention uses thin covering (coating), it is a coat with it it is desirable and thinner than 0.1 microns or it, and an ingredient consistency is between cm<sup>2</sup> the whole 0.5mg with cm<sup>2</sup> the whole 0.2mg.

An anode, the film, and a cathode were made in this this time kicked in this process. These ingredients are assembled by the membrane electrode assembly ("MEA").

formation of MEA an electrode and the film -- a 5Mil thickness [ of CP class ], and titanium 12 inch x12 inch foil top -- first -- arrangement, i.e., a stack, -- carrying out (pile) -- \*\*. Artificers use the titanium foil so that any acid components which come out from the film may not permeate the foil.

First, an anode electrode is placed on the foil. That the property of the desired film should be maintained, it soaks and the proton

conductivity film is saved. This proton conductivity film is wiped first, and is dried, and a particle with large size is removed. And the film is placed on a direct anode. A cathode is placed on the film. The cathode is covered and another titanium foil is arranged.

The edge of the titanium foil of two sheets is stopped with a clip together, and the layer of an ingredient is held to a position. The titanium foil and film for pressing on both sides of an assembly in between contain two stainless steel plates with a thickness of about 0.25 inches, respectively.

The film and electrode in the titanium foil assembly stopped with a clip are carefully arranged between two stainless steel plates. These two plates are held between the jaws of press equipment like an arbor press. The press equipment should be maintained by low temperature at the room temperature.

Then, the press equipment is operated and the pressure between 1500psi(s) and the optimal pressure generate 1250psi(s) from 1000. The pressure is maintained for 10 minutes. Heating is started after for these 10 minutes passes. Although heating is slowly raised to about 146 degrees, it turns out at any temperature in a 140-150-degree C temperature requirement that it is effective. In order to raise temperature slowly, many hours should be spent for 25 to 30 minutes, and it is the time amount for stabilizing temperature for [ of the last of heating ] 5 minutes. The temperature is stopped at 146 degrees C for about 1 minute. The pressure is maintained although heating is stopped at the time.

Then, the press equipment is quickly cooled using circulating water, maintaining a pressure to 1250psi(s). The pressure will be opened, if about 15 minutes pass and temperature amounts to 45 degrees C. Then, the film and electrode which were combined are removed and it saves in deionized water.

Flow field. A fuel cell operates appropriately, only when the fuel is appropriately supplied to the film so that a reaction may occur or a catalysis may break out. A flow field assembly as shown in drawing 5 is used for the membrane electrode assembly of this invention. Each membrane electrode assembly ("MEA") 302 is inserted among the plates 304 and 312 for flow modification of the pair which has a BAIPU rate and an edge plate. The flow of a fuel is established to each space 303 between each BAIPU rate / edge plate, and MEA. A BAIPU rate / edge plate, and MEA(s) gather, and a "stack" is formed. The BAIPU rate equips with the configuration for the flow of a liquid both the front faces that face face to face. The flow plate of the edge of this stack is not a BAIPU

rate but the edge plate 312. The edge plate has the chamber only in the single-sided side. Two or more separators 306 and two or more chamber formation fields 308 are established in the BAIPU rate 304. The separator 306 has the function forced to the membrane electrode assembly 302. The end face of a separator 306 is a plane front face substantially, and it contacts the front face of MEA302.

The BAIPU rate is formed with the conductive ingredient so that all the membrane electrode assemblies 302, 310 may be mutually combined with a serial.

The membrane electrode assembly 302 which was mentioned above is equipped with an anode, the film, and a cathode. Anode side 312 of each membrane electrode assembly touches the source of supply of an aquosity methanol in space 314. The cathode side of each membrane electrode assembly touches the source of supply 316 of oxidizer air which offers the gaseous substance for performing the reaction explained above. This air may be mere air and may be oxygen.

The flow of these charges of green wood is required in order to continue supplying a fuel to an electrode appropriately. Moreover, it is also desirable to maintain the stable flow.

An example of a stack design of this invention uses the system shown in drawing 6 .

A fuel is supplied from the fuel-supply chamber 602, and it is the room of high capacity into which the pressurized fuel usually went. A part 604 like a narrow nozzle reduces a pressure greatly along with it. The fall of the pressure in this thin tubing is much larger than what kind of pressure drop along a supply way. The flow between the cells within a cell is equalized by this.

The careful balance of balance must be taken between the total amount of the front face which acts as a pressurization element, and the total amount of the front face which acts as a maintenance element.

It is desirable to put a uniform pressure on the membrane electrode assembly 202 for various reasons from both sides. However, when the pressurization front face 306 is pushing to the film, the membrane electrode assembly 302 cannot contact a methanol and directly. Instead, it is pushed there by the front face 315. Therefore, the part of the front face of MEA302 does not react. It has various functions, and a flow is improved or the thing of the various designs by this invention improves some properties in the field of dependability.

The width of face of each nozzle 606 is narrow. The outlet 605 of each nozzle 606 faces one island which pressurizes the field 608 corresponding to the pressurization front face 306. The fuel supplied

from a nozzle 606 is directly supplied to the interface 610 of an island 608. The island shown in drawing 6 is a rectangle. An interface 610 is the side side with the narrower island of this rectangle. The side face with this larger island is parallel to a flow. All input styles go to one of the front faces of an island directly.

Artificers found out that a turbulent flow was formed in the field of an island 608 according to this desirable narrow layout. A turbulent flow agitates the fuel in a chamber and stabilizes more the flow which passes along this system. This turbulent flow is also easy in the flow between each island. Finally an output flow is accepted by the output nozzle 612, and is led to an output tube 614. An output nozzle is arranged in the form which adjoined on the surface of [ 620 ] the island, and was similar, and a turbulent flow is further formed of this.

Side 610 of a boundary is 50 mils and the larger one side of the island by this embodiment is 150 mils. The pressure drops in the both ends of a stack are about 0.06 psi(s) about this stack.

The BAIPU rate of other arrangement configurations can also be used. The BAIPU rate itself is lightweight, it is thin, and it is important for it that spacing of a stack can be enlarged as much as possible. Graphite is difficult for machining and comparatively thick. Passing neither a liquid nor a gas is mentioned as an advantage of graphite. According to this invention, many another solutions are used.

Modification of the 1st of this invention uses a system as shown in drawing 7 .

a boundary layer 702 -- high -- it is dense and is the layer which does not let a conductive liquid or a conductive gas pass. By this, the amount of the fuel which can cross a wrap BAIPURETO assembly for an ingredient, a gas, or a liquid is decreased. However, the dense porous ingredient is used as a cross field 700. A certain amount of quantity of an ingredient will be infiltrated into MEA through this boundary layer as it is porosity.

A dense porous ingredient may be conductive carbon which machining tends [ much more / than graphite ] to carry out. Although osmosis is dammed up by the boundary ingredient, it can prevent that a liquid and a gas cross the whole BAIPU rate by this.

If the pressurization part has porosity, a liquid and a gas will be made to reach a certain amount of part of the membrane electrode assembly currently pressurized in the pressurization part. Therefore, a methanol may permeate these fields and conversion efficiency will decrease in the another condition.

The main binder layer 704 is carbon of a low consistency ("LD"). It is

comparatively easy to deal with LD carbon, and its price is also cheap. However, since, as for LD carbon, all parts are covered by graphite, the fact, most of the property which is not desirable, is hidden.

The 2nd embodiment used by formation of a BAIPU rate is shown in drawing 8 .

The BAIPU rate of this 2nd embodiment is super-thin BAIPURETO made from titanium-carbon which became layer-like. Since we desire a stack made as thin as possible to the request electrical potential difference of arbitration, a BAIPU rate must be thin. Each membrane electrode assembly and BAIPU rate say it as a proper electrical potential difference (inherent voltage), although an electrical potential difference will occur if it activates. A proper electrical potential difference and the thickness of this equipment determine the greatest electrical potential difference which can be taken per thickness of 1 inch of the equipment of this invention. The important element about the electrical potential difference to thickness is the thickness of a BAIPU rate.

The BAIPU rate of the 2nd embodiment of this invention is shown in drawing 8 . The thought of lamination of forming a BAIPU rate combining the best property of that ingredient is used for this ingredient. The boundary layer 800 of a titanium carbide is joined to the titanium binder course 802. The titanium binder course 802 is desirable and thickness is 3 mils. These two layers became together, and while preventing that cross a BAIPU rate and a proton moves, suitable electrical coupling nature is also secured. This titanium ingredient is covered with the separation ingredient 804, and holds a BAIPU rate in a predetermined location. Therefore, a certain amount of porosity is possible similarly in the embodiment of drawing 7 .

Although it is natural, titanium can permute any metals with the same conductivity and chemical stability.

The graphite ingredient used ordinarily recognizes the artificers of this invention that the balance between the requirements which compete will surely arise. .

In order to improve actuation effectiveness, it is required for a fuel to cross to the interlayer side who faces same another [ the ] BAIPURETO side, i.e., a cathode, and to make it not sink in from an one, for example, anode, the BAIPU rate of one sheet side. Supposing a BAIPU rate is porosity, a fuel ingredient may be crossed and it may sink into a loan. However, it means that it does not have the liquid which arrives at the field of the electrode layer assembly currently pressurized by 306 with a BAIPU rate with a pressurization front face since there is no liquid which can pass a BAIPU rate. Therefore, in these parts currently

pressurized by the pressurization front face in these membrane electrode assemblies, electrical activity does not occur efficiently. The effectiveness of this whole cell worsens by this.

In these embodiments of this invention, the balance matter (matter of merits and demerits) of a new class occurs. A membrane electrode assembly is pressurized by the porous part of a BAIPU rate. That fuel comes to be supplied a little to the part by which the electrode was pressurized at least by having used this porous part. The electrical performance nature of MEA is improvable with this. Moreover, according to this description of this invention, other joint pieces which prevent that a liquid passes into other parts of an electrode layer assembly can be offered.

System. The fundamental system of this invention is shown in drawing 9 . This system is based on the way of recycling the output of a fuel cell which artificers have recognized.

A fuel cell consumes a methanol, a methanol derivative, and water, and output products, such as a methanol or a methanol derivative, water, and gas, generate it. A methanol means the fuel consumed. The methanol fuel of an amount consumed must be carried by any fuel cell systems. However, the reaction also needs equivalent water. Artificers have noticed that the water used at this reaction can be made to collect and recycle from a cathode. The need of carrying a lot of water is avoidable with this. A workload generable from a vehicle is restricted by the gross vehicle weight (payload), i.e., the weight of a vehicle and its loading object. A limitation is in power with the weight in which it must carry every vehicle. If weight is large, the power of a vehicle will be restricted, therefore the effectiveness of a vehicle will become small. For example, the passenger car has not usually carried the gasoline 20-30 gallons or more. This is decided from things various so that between the distance which can run by the time a vehicle re-refuels a tank, and the weight which increases by enlarging a fuel tank may serve as optimal balance. The engineer of a vehicle determines how much a pleasantly permissible payload is. Artificers explain the technique of securing this payload being taken not with water but with a fuel.

One of the system features of this invention is maintaining the balance of water, as it does not have the substantial source of supply of water with the need of recycling and carrying most water.

The whole system is shown in drawing 9 . The methanol tank 900 saves the pure methanol (or fuel of a derivative methanol type [ other ]). The 1st liquid pump 902 carries out pumping of the methanol to the circulation tank 906 through a bulb 904. A water tank 908 supplies water to a

required place. Pumping of this water is carried out to the recycling tank 906 through a bulb 912 with a pump 910. A central control unit 914 controls synthetic actuation of this whole system. A control device 914 controls the relative location of bulbs 904 and 912.

The thing of the inside of a methanol or a methanol for which the methanol concentration sensor 916 will be attached very much in the location of a paddle gap soon is desirable. The methanol sensor 916 detects the methanol concentration in a circulation tank, and a control unit 914 controls actuation of this system further based on this information.

The aquosity methanol included in a circulation tank is maintained by 1-2M with this control system. Therefore, the methanol in Rhine 918 should also have suitable concentration. A pump 920 carries out pumping of the methanol to the membrane electrode stack 924 through a fuel filter 922. The stack used here should just be the same stack as what was mentioned above. The electric output 926 which comes out of a stack 924 operates other electric systems like a control unit 914 or a compression equipment 930 while it is sent to a motor and moves a loading load. Moreover, this stack operates using the incorporation air 932 which passes along a compression equipment 930. The air filter 934 defecates air, before going into a stack.

The fuel outlet of this stack contains two components, i.e., water, and a methanol. Both a methanol and water can be condensed by processing two components using condensing plant 940 and 942, respectively, and making temperature of water low enough. A fan 944 can use in order to perform this cooling easily. As for the methanol and water which are recycled, both are returned to a circulation tank. The methanol 946 recycled from the outlet of a methanol stack, and the air and water which were recycled from the incorporation air 952 are collected on the circulation tank 906.

In the liquid engineer, although it is very uneconomical to carry out pumping of the gas if it sees from the point of an energy source of supply, carrying out pumping of the liquid to this knows that costs will not increase so much. In respect of there being this invention, the cathode will be required to pressurize air. For example, it may be required to pressurize air at 20psi(s). However, it is that the air (after reacting with a cathode) which came out on Rhine 944 is compressed into altitude in most cases. Probably, this output air 944 is compressed into 19psi. In this way, the output air 944 goes into the pressure drive mold turbine 946. This expander equipment operates with a pressure, and since air compression equipment 930 is driven, it is used.

If the compressed power is not reused in this way, 20 - 30% of the power generated with the fuel cell may be used for air compression equipment. The output 948 of expander equipment includes the combination of air and water. This water and air are separated and the water with which discharge air was breathed out and collected by 950 is returned to the circulation tank 902. Probably, the water flow hole 954 which drains superfluous water is also needed.

This water flow hole is controlled by the control unit 914, and when there is too much water which is re-flowing back, it is sometimes needed. The amount of the fuel supplied may be measured as a means replaced with a sensor and a control unit. However, the latest fuel cell is planned so that it may operate at about 90 degrees C. The reaction of an electrochemical fuel cell makes even suitable temperature heat the fuel cell after all.

This invention operates using a methanol sensor. Especially the desirable methanol sensor uses the MEA technique mentioned above. As mentioned above, a fuel cell consists of an anode and a cathode. An anode receives a methanol. A cathode receives air or oxygen. The fuel cell which was shown in drawing 10 and which deformed is used for this sensor. It has joined to the Nafion electrolyte 1004 and the Pt-Ru anode 1002 has joined the electrolyte to Pt cathode. The larger one of this cathode than an anode is desirable, for example, the area of a cathode is 3 times the anode.

It is immersed in a methanol solution by the cathode 1006 (and anode). Therefore, the reaction from which H<sub>2</sub> is set to H<sub>2</sub>O so that it cannot react with air since a cathode 1006 is in a liquid, therefore it may happen at a fundamental fuel cell reaction cannot occur. If an electrical potential difference is applied to this fuel cell, the occurring reaction will change, for example, will be reversed. When a current occurs, an anode reacts with a direct methanol, and CO<sub>2</sub> is generated, and a cathode changes a proton to hydrogen. If a cathode is small and an anode is large, a proton will be returned and the susceptibility of this methanol electrode will be raised further.

Therefore, this reaction contains each following formula.

(+) H<sub>2</sub>O + CH<sub>3</sub>->CO<sub>2</sub>+ 6H<sup>++</sup> 6e<sup>-</sup> (-) 2H<sup>++</sup> 2e<sup>-</sup>->H<sub>2</sub> A constant voltage is applied by the voltage stabilizer 1010. An ammeter 1012 measures a current. Drawing 11 shows the relation of the methanol concentration in a current and a solution. A control unit 1014 carries out the lookup of the nearest methanol concentration corresponding to the current measured using the relation by which drawing 11 was plotted that what is necessary is just a process controller or a microprocessor.

Since it seems that temperature dependence is large, the plot of drawing 11 is good to use a thermocouple for temperature compensation.

\*\*\*\*\* -- another important description of invention is related with actually using this system in the environment of an automobile. It will be necessary to supply the methanol with the methanol equipment of a gas cylinder, in order to use it practical. The impurity of a hydrocarbon may be included when picking out a methanol from a gas cylinder. If there is such an impurity, it is very dangerous with the system indicated by this invention that needs a methanol with high purity. Therefore, a fuel filter is used in this invention. This fuel filter is illustrated by drawing 12 . The filter of a three-stage includes the zeolite crystal 25M (Mobil) composite type or neutral type. Usually, a zeolite acts as a molecular sieve. This zeolite crystal is used in order to filter a methanol and to remove a certain hydrocarbon impurity from there. These zeolites are good to include the one-set layer structure which consists of three or more layers with the hole of magnitude which is different gradually to layers 1-3 in 3-10A.

1 2 3 CH<sub>3</sub>OH, H<sub>2</sub>O, O<sub>2</sub>, and H two-layer 1 are the zeolite X with the hole of a usually big diameter, an offer light, and A, and they can remove a big molecule. Mordenite and a natural zeolite are used in the layer 2, and it removes n-paraffin, n-butane, and n-alkane. Zeolite 3A and 4A can be used in order to remove a small molecule like a propane or ethane in a layer 3. This is desirable when the molecular sieve which changes gradually is formed.

Unipolar approach.

Many fuel cells were used for the serial in the approach of before about a fuel cell. If a fuel cell is connected to a serial, it is possible to make the whole electrical potential difference high so that output voltage can be added and the output of a stack may be made to increase to a high and more nearly available electrical potential difference. The artificers of this invention have noticed the effectiveness of a seed of having used the approach with which this \*\*\*\*\* attached the unipolar and the name further, using the approach which has not been made into the stack acquired. The approach of this unipolar is maintaining each membrane electrode assembly in the condition of having dissociated completely [ all other components ]. According to this approach separated completely, each element of an assembly can have better effectiveness while being made greatly all the time. The element of each unipolar may be assembled to a stack. The important thing to depend on this description is that each membrane electrode assembly's being connected separately and its element connected separately are not

assembled by the stack, and is connected to a serial.

The 1st embodiment of unipolar invention is shown in drawing 13. This mode can be used in order to form the fuel cell which does not need contact force in order to form electric connection. The film 1300 is desirable in it being the Nafion film. The Nafion film has the piece 1302 of a metal cross, for example, the central field in which the end of a screen was prepared. The metal cross or the screen 1302 is covered with the suitable catalyst of the type mentioned above. With the tab 1304 which carries a current, the generated electrical potential difference is connected outside.

The flow field insertion components 1306 of the product made from plastics or metal are led to each side face of the cross which gave the catalyst coat for the suitable fuel ingredient. The flow field member 1308 may be formed in the side face of another side.

Therefore, by attaching in Nafion backing the ingredient which prepared the catalyst in the front face, and pressurizing toward it, although it is electrically the same, a fuel cell can be formed by mechanically different approach.

Drawing 14 shows the sectional view of this equipment. A tab 1304 passes a current to the electrode field 1400. A methanol is sent to the methanol chamber 1402, i.e., the field to which one membranous side was sealed. This sealing is maintained by the ring-like sealing field 1406. Air is led to the 2nd membranous side face through the air chamber 1408 sealed similarly in the opposite side. Each of these components operates as a unit of a standalone version regardless of other units. A higher electrical potential difference can be offered by connecting to a serial the current generated from these components.

The 2nd alternative embodiment of this invention is shown in drawing 15. The film 1500 which met the titanium sheet 1502 is used for this mode. Spot welding of the titanium cross 1504 is carried out to the titanium sheet. The titanium cross 1504 functions as a cathode and may be covered with platinum. The titanium cross 1506 functions as an anode and may be covered with the suitable platinum ruthenium.

A gasket and the ring 1508 for association form a chamber 1510 between the film and an anode. Similarly, another gasket and ring 1510 for association form a chamber between the film and a cathode.

The titanium sheet equips the front face with the spherical seal 1512, in order to maintain a chamber. The electrical potential difference generated from this titanium sheet is combined with the ejection field 1514 of a current.

Moreover, since a metal fastener can be used if a bead sealing is used,

in this mode, the location in which a rivet or a fastener is attached is also prepared.

Especially this system integrated can be made very thin if the titanium foil is used.

This embodiment can be used with the equipment shown by drawing 16. The cathode and the anode are prepared in each of these duplex battery modules shown in drawing 13 or 15. The component shown in drawing 16 is assembled so that two anodes may adjoin, and the cells 1602 and 1604 which face mutually are completed. The flow field 1606 is formed among anodes 1602 and 1604. This flow field must include the air which flows between them. Similarly, it faces mutually, the flow field 1608 was formed among them, and the flow of suitable air has produced two adjoining cathodes there.

Drawing 17 is an enlarged drawing about the approach by which these cells are used. The flow field 1700 is the flow field of air facing cathode side 1702 of the 1st cell 1704. Anode side 1706 faces the flow field 1708 of the 2nd methanol. A methanol flows from the methanol input 1710 and flows out from a tap hole 1712. Moreover, the flow field of this methanol faces anode side 1714 of the 2nd bipolar cell 1716.

Cathode side 1720 of this 2nd bipolar cell 1716 faces the part 1722 of another flow field where air flows.

Although only the embodiment of a mere fraction was explained to the detail above, to be sure, this contractor can understand that various alterations can be carried out to a desirable embodiment, without deviating from this instruction range.

It is interpreted as such all alterations being included by the following claim.

---

[Translation done.]

\* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. \*\*\*\* shows the word which can not be translated.
3. In the drawings, any words are not translated.

---

DRAWINGS

[Drawing 1]

図 1



[Drawing 2]

図 2



[Drawing 3]

図 3



[Drawing 4]

図 4



[Drawing 5]

図 5



[Drawing 6]

図 6



[Drawing 7]

図 7

直接型メタノール燃料電池用バイオレートの要件



[Drawing 8]

図 8



[Drawing 9]

図 9



[Drawing 10]

圖 10



[Drawing 11]

圖 11



[Drawing 12]

図 12



---

[Translation done.]

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**