<u>Aulas 07 e 08: Análise de Sinais no</u> <u>Domínio da Frequência</u>

1. Introdução

Além do domínio do tempo, a análise no domínio da frequência é de suma importância para que projetos, implementações e a operações entre sinais e sistemas sejam bem sucedidas.

A importância desta análise, entretanto, é ainda maior quando os sinais e sistemas são amostrados, pois é através dela que características como o alaising, por exemplo, podem ser melhor observadas.

Uma das formas de realizar a análise no domínio da frequência é através da transformada de Fourier.

2. Amostragem no domínio da frequência

A amostragem de um sinal analógico pode ser entendida como a multiplicação do mesmo por um trem de impulsos com espaçamento de T_s . Matematicamente, este processo é representado por

Trem de Impulsos $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$

No domínio da frequência, entretanto, este processo ocorre através da convolução da transformada de Fourier do sinal analógico com a transformada de Fourier do trem de impulsos, de modo a resultar em diversas cópias do espectro do sinal analógico espaçados de Ω_s .

A figura exemplifica este processo no domínio do tempo e da frequência.

3. Atividades

- *I.* **SIMULINK:** O arquivo **Aula07**_**ex01**.**mdl** fornece o diagrama de um circuito utilizado para amostrar e analisar o processo de amostragem.
- 1.1. Rode o arquivo, analise os gráficos do osciloscópio e do espectro e responda:
 - a) Qual é a frequência do sinal original?
 - b) Qual é a frequência de amostragem utilizada?
 - c) Identifique estas duas frequências no espectro do sinal amostrado e verifique o efeito da amostragem neste espectro.
 - d) Compare o espectro do sinal amostrado com o espectro do sinal quantizado e verifique que eles são muito semelhantes. Qual é o motivo desta semelhança?
 - e) Compare o espectro do sinal original com o espectro do sinal recuperado e verifique que mesmo apresentando sinais diferentes no domínio do tempo, eles são muito semelhantes no domínio da frequência. Qual é o motivo desta semelhança?
- 1.2. Mantenha a frequência de amostragem (f_s) igual a 8KHz e simule a amostragem de sinais com as seguintes frequências e verifique, observando o espectro e o osciloscópio, a frequência do sinal recuperado.

$f_{original}$	$f_{recuperado}$	$f_{original}$	$f_{recuperado}$
f = 1KHz		f = 5KHz	
f = 2KHz		f = 6KHz	

Verifique que para um dado sinal limitado em frequência, x(t), a recuperação só é possível se, e somente se, a frequência de amostragem escolhida obedecer ao critério definido por Nyquist. Caso contrário, uma frequência diferente da original $(frequência\ de\ alias)$ é recuperada. Qual é a máxima $frequência\ de\ alias$ que pode ser obtida através da amostragem por esta frequência?

Obs:

Para modificar a <u>frequência de amostragem</u>, o tempo de amostragem ($T_s = 1/f_s$) deve ser atualizado em dois campos:

- 3) Campo *Period* do *gerador de impulsos*, pertencente ao bloco *amostrador*;
- 4) Campo Sample time do multiplicador, pertencente ao bloco sample&hold.

A <u>frequência do sinal analógico</u> pode ser modificada diretamente no bloco *gerador de sinais*, campo *Frequency*.

II. MATLAB: Agora, para verificar os efeitos da amostragem, crie uma função em Matlab, do tipo $Aula08_{e}x01.m$ que gere o gráfico da função $x(t) = cos(2\pi ft)$ bem como o gráfico de seu espectro.

Obs:

Para desenvolver este algoritmo, devem-se seguir os passos abaixo:

- Defina uma frequência f_0 para o sinal senoidal e uma frequência de amostragem f_s
- Defina um valor de T_{max} que seja função da quantidade de períodos do sinal discreto, fazendo $T_{max} = \frac{N_{periodos}}{f_0} \frac{1}{f_s}$.
- Crie um vetor de tempo t que vá de 0 até T_{max} , espaçado de $T_s = 1/f_s$
- Obtenha o vetor com as amostras de x(t)
- Plote x em função de t (utilize stem)
- Obtenha o espectro do sinal através do comando X = fft(x). Help fft.
- Obtenha N a quantidade de amostras do vetor x.
- Crie um vetor k = 0: N 1
- Crie um vetor $\omega = k \cdot \frac{2\pi}{N}$.
- Crie um vetor $f = \omega \cdot \frac{f_s}{2\pi}$.
- Utilizando o comando subplot(3,1,p), plote em p=1 o gráfico de |X[k]|, em p=2 o gráfico de $|X(\omega)|$ e em p=3 o gráfico de |X(f)|. (utilize stem)
- Sobre o gráfico de X(f), plote em vermelho $\left|X\left(1:\left(\frac{N}{2}\right)+1\right)\right|$ por $f\left(1:\left(\frac{N}{2}\right)+1\right)$. Este é o espectro do sinal recuperado.
 - a. Mantenha a frequência do sinal senoidal (f_s) igual a 8000Hz, $N_{periodo}=3$ e simule a amostragem para diferentes frequências de sinal senoidal. Para cada caso, plote os sinais cossenoidais para as duas frequências apresentadas pelo espectro e verifique que devido ao aliasing, estas duas frequências resultam no mesmo sinal amostrado.

$f_{original}$	f_1	f_2	$f_{original}$	f_1	f_2
f = 100Hz			f = 1KHz		
f = 500Hz			f = 2KHz		

Verifique que o comando fft do matlab apresenta apenas um período do espectro do sinal amostrado, e que este período vai de $0 \le f < f_s$.

Note também que o espectro do sinal original (e recuperado) corresponde somente à primeira metade do vetor apresentado pela FFT e que é apresentado sempre para a faixa de frequência de $0 \le f < f_s/2$.

b. Mantenha a frequência do sinal senoidal (f) igual a 500Hz, a frequência de amostragem (f_s) igual a 8KHz e simule a amostragem para diferentes valores de $N_{periodo}$.

Para cada caso, verifique que o espectro é apresentado sempre para $0 \le \omega(\frac{rad}{amostra}) < 2\pi$ e $0 \le f(Hz) < f_s$, independente da quantidade de períodos analisados. Entretanto, verifique que a distâncias entre duas amostras consecutivas do espectro diminuem conforme aumenta o valor de N. Complete a tabela e verifique que $\Delta\omega = 2\pi/N$ e, consequentemente, $\Delta f = f_s/N$:

Atenção: N é o quantidade de amostras utilizada para a transformada de Fourier, ou seja, o comprimento do vetor x[n]. Cuidado para não confundir com $N_{periodo}$, que é a quantidade de períodos do sinal continuo utilizada para a transformada.

$N_{periodo}$	Δω	Δf	$N_{per\'iodo}$	Δω	Δf
$N_{periodo} = 2$			$N_{periodo} = 8$		
$N_{periodo} = 4$			$N_{periodo} = 16$		

Exercícios de fixação

I. O comando x = IFFT(X) do MatLab é utilizado para recuperar o sinal amostrado no tempo a partir de sua transformada de Fourier. Este comando utiliza como entrada a transformada definida para $0 \le \omega \le 2\pi . \frac{N-1}{N}$ e fornece o sinal x[n] definido para $0 \le n \le (N-1)$.

Assim, crie um programa ($Aula08_fix01.m$) que, a partir dos vetores apresentados abaixo, plote o espectro em função de ω e obtenha o sinal x[n].

- a) $X[k] = [0\ 0\ 8\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$
- b) $X[k] = [0\ 0\ 0\ 0\ 0\ -10j\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$
- II. Conforme foi visto nos exercícios feitos durante a aula, o espectro do sinal contínuo, quando apresentado em Hz, apresenta valores somente para $0 \le f \le f_s/2$, o que representa $0 \le \omega \le \pi$. Isso significa que antes de realizar a IFFT, é necessário que a parte do espectro referente a $\pi < \omega \le 2\pi.\frac{N-1}{N}$ seja recuperada, conforme mostra o exemplo:

Assim, desenvolva uma função do tipo $x = IFFT_singleside(X)$ que receba as amostras do espectro definido para $0 \le f < f_s/2$ e apresente as amostras do sinal x[n] no tempo.

Dicas: Verifique que a segunda metade do espectro é simétrica e conjugada a primeira metade e que a amostra X(end) = X(2), e não à X(1). Use os comando fliplr(conj(X(2:end))) para recuperar a segunda metade do espectro e só então utilize o ifft(X).