Lista 6 -Series

Davi Wentrick Feijó - 200016806

2024-06-11

Tente analisar separadamente as seguintes séries temporais mensais encontradas no arquivo "ALGO-NQUIN_PARK_Ontario_Canada.csv":

```
1. "Mean Max Temp (°C)",
```

- 2. "Mean Min Temp (°C)",
- 3. "Mean Temp (°C)",
- 4. "Extr Max Temp (°C)",
- 5. "Extr Min Temp (°C)",
- 6. "Total Rain (mm)",
- 7. "Total Snow (cm)",
- 8. "Total Precip (mm)".

Vamos antes fazer uma breve analise exploratoria para enteder a base de dados:

Contagem de valores nulos

15

##

```
# Contagem de valores nulos
null_counts <- sapply(data[columns_of_interest], function(x) sum(is.na(x)))
print(null_counts)

## Mean Max Temp (°C) Mean Min Temp (°C) Mean Temp (°C) Extr Max Temp (°C)
## 10 10 10 14
## Extr Min Temp (°C) Total Rain (mm) Total Snow (cm) Total Precip (mm)</pre>
```

15

15

15

Tabela de estatisticas descritivas

Table 1: Estatísticas Descritivas

Variável	Contagem	Média	Desvio Padrão	Mínimo	1º Quartil	Mediana	3º Quartil	Máximo
Mean Max Temp (°C)	518	9.76	11.39	-12.8	-1.30	10.20	20.90	28.6
Mean Min Temp (°C)	518	-2.29	10.76	-28.3	-12.17	-0.85	7.77	15.2
Mean Temp (°C)	518	3.74	11.04	-19.4	-6.65	5.05	14.40	21.3
Extr Max Temp (°C)	514	19.05	10.80	-5.6	8.45	21.10	28.90	38.3
Extr Min Temp (°C)	513	-13.85	15.15	-45.0	-28.90	-10.00	-0.60	7.8
Total Rain (mm)	513	48.47	41.21	0.0	12.70	42.40	75.70	231.4
Total Snow (cm)	513	19.92	25.98	0.0	0.00	5.10	35.60	134.6
Total Precip (mm)	513	68.33	33.76	5.6	42.20	64.80	87.90	231.4

Plots das series temporais

Foi utilizado uma funcao para rodar os plots tendo em vista que estaremos mudando apenas uma variavel e os plots seriam os mesmos

```
# Função para decomposição sazonal e plotagem
plot_series_with_decomposition <- function(series, title, window=12) {</pre>
  series_ts <- ts(series, frequency=12) # Converter série para objeto de série temporal
  series_rolling <- rollmean(series, k=window, fill=NA, align="center") # Calcular média móvel
  decomposition <- stl(series_ts, s.window="periodic") # Decompor série temporal
  par(mfrow=c(4, 1), mar=c(4, 4, 2, 1)) # Configurar layout do plot
  # Plotar série original e média móvel
  plot(series_ts, main=paste(title, "- Série Temporal"), col="black")
  lines(series_rolling, col="red")
  legend("topright", legend=c("Original", "Média Móvel"), col=c("black", "red"), lty=1)
  # Plotar tendência
  plot(decomposition$time.series[, "trend"], main=paste(title, "- Tendência"), col="blue")
  # Plotar sazonalidade
  plot(decomposition$time.series[, "seasonal"], main=paste(title, "- Sazonalidade"), col="green")
  # Plotar resíduos
  plot(decomposition$time.series[, "remainder"], main=paste(title, "- Resíduos"), col="purple")
 par(mfrow=c(1, 1)) # Resetar layout do plot
}
# Aplicar a função para cada coluna de interesse
for (column in columns_of_interest) {
  if (all(is.na(data[[column]]))) {
   next # Pular colunas que estão completamente vazias
 plot_series_with_decomposition(na.omit(data[[column]]), column)
```


