Notes on Neural Networks

Marcio Woitek

May 24, 2020

Figure: Basic Structure of a Neural Network

Fundamental Ideas

- A neural network is formed by nodes or units.
- ☐ The units are organized in *layers*.
- ☐ There are at least two layers, the *input layer* and the *output layer*.
- ☐ However, very often, between these layers there are *hidden layers*.
- In Fig. 1, the red nodes form the input layer, the blue nodes form the hidden layer, and the green nodes form the output layer.
- For simplicity, in the next slides, we discuss the particular case of the neural network in this figure.

Underlying Mathematical Concepts

- First, consider the input layer.
- \blacksquare We assume there are n_1 input units. In the case of Fig. 1, we have $n_1=3$.
- □ We denote the input values by $x_1, x_2, ..., x_{n_1}$.
- There can also be an extra unit, the so-called *bias unit*. Its value is represented by x_0 .
- \blacksquare It is convenient to organize all these values in a single (n_1+1) -dimensional column vector:

$$\mathbf{a}^{(1)} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_1} \end{bmatrix} . \tag{1}$$

Underlying Mathematical Concepts

- We can use a similar idea to represent the values related to the other layers.
- \blacksquare To be more precise, we assume the neural network has L layers.
- Then the values associated with the *j*-th layer will be organized in a column vector $\mathbf{a}^{(j)}$ $(j=1,\ldots,L)$.
- The vector $\mathbf{a}^{(j)}$ is (n_j+1) -dimensional, where n_j denotes the number of units in the j-th layer.
- This vector has an extra dimension because the value associated with the bias unit of this layer is also included in $\mathbf{a}^{(j)}$.

Example of Fig. 1

- As an example, we discuss the neural network in Fig. 1.
- \Box Clearly, this network has L=3 layers.
- Then the unit values are organized in 3 vectors, $\mathbf{x} = \mathbf{a}^{(1)}$, $\mathbf{a}^{(2)}$ and $\mathbf{y} = \mathbf{a}^{(3)}$.
- From Fig. 1, we can see that the numbers of units are given by $n_1 = 3$, $n_2 = 4$ and $n_3 = 2$.
- Therefore, taking into account the values of the bias units, we can state the following: $\mathbf{a}^{(1)} \in \mathbb{R}^4$, $\mathbf{a}^{(2)} \in \mathbb{R}^5$ and $\mathbf{a}^{(3)} \in \mathbb{R}^3$.

- Next, we explain how the input values are propagated in the network.
- Essentially, we start from the input vector $\mathbf{x} = \mathbf{a}^{(1)}$, and map $\mathbf{a}^{(j)}$ to $\mathbf{a}^{(j+1)}$ until we obtain the output vector $\mathbf{y} = \mathbf{a}^{(L)}$.
- In our example, the idea is the following: first, the input vector $\mathbf{x} = \mathbf{a}^{(1)}$ is mapped to $\mathbf{a}^{(2)}$, and then this vector is mapped to $\mathbf{a}^{(3)}$, producing the output \mathbf{y} .
- \blacksquare To be specific about how these mappings work, we introduce 2 vectors, $\mathbf{z}^{(2)}$ and $\mathbf{z}^{(3)}.$
- In general, we introduce L-1 vectors $\mathbf{z}^{(j)}$, where $j=2,\ldots,L$.
- We also define a set with L-1 functions $g^{(j)}$, where $j=2,\ldots,L$. The function $g^{(j)}$ is called the *activation function* of the j-th layer. Notice that there isn't an activation function associated with the input layer.
- To discuss our example, we consider the particular case in which all activation functions are the same. We denote this function by h.

Activation Function

- ☐ For the activation functions, there are many choices.
- To discuss our example, we consider the particular case in which h is the sigmoid or logistic function:

$$h(x) = \frac{1}{1 + \exp(-x)}.$$
 (2)

Figure: Graph of the sigmoid function.

Forward Propagation Equations

- We continue by explaining how the vector $\mathbf{z}^{(j)}$ is computed from the unit values in $\mathbf{a}^{(j-1)}$.
- We imagine all units in the (j-1)-th layer (including the bias unit) are connected to every unit in the j-th layer (excluding the bias unit).
- Then between these layers there are $(n_{j-1} + 1) n_j$ connections.
- Each of these connections has a different *weight*. We will organize all these weights in a matrix denoted by $\Theta^{(j-1)}$.
- The element $\Theta_{ik}^{(j-1)}$ in the i-th row and k-th column of this matrix is interpreted as follows: it is the weight of the connection between the k-th unit in the (j-1)-th layer and the i-th unit in the j-th layer.
- Then the dimension of the matrix $\Theta^{(j-1)}$ is $n_j \times (n_{j-1} + 1)$.

Forward Propagation Equations

- \blacksquare Finally, we can write down the equations that determine the vector $\mathbf{z}^{(j)}$.
- □ The *i*-th component of this vector is given by the *weighted sum* of the components of $\mathbf{a}^{(j-1)}$:

$$z_{i}^{(j)} = \Theta_{i0}^{(j-1)} a_{0}^{(j-1)} + \Theta_{i1}^{(j-1)} a_{1}^{(j-1)} + \dots + \Theta_{i,n_{j-1}}^{(j-1)} a_{n_{j-1}}^{(j-1)}$$

$$= \sum_{k=0}^{n_{j-1}} \Theta_{ik}^{(j-1)} a_{k}^{(j-1)}.$$
(3)

☐ The last expression can be written in matrix form as follows:

$$\mathbf{z}^{(j)} = \Theta^{(j-1)} \mathbf{a}^{(j-1)}.$$
 (4)

Forward Propagation Equations

Now, to obtain the vector $\mathbf{a}^{(j)}$, we only need to apply the activation function $\mathbf{g}^{(j)}$ to every component of $\mathbf{z}^{(j)}$:

$$\mathbf{a}^{(j)} = g^{(j)} \left(\mathbf{z}^{(j)} \right) = \begin{bmatrix} g^{(j)} \left(\mathbf{z}_1^{(j)} \right) \\ g^{(j)} \left(\mathbf{z}_2^{(j)} \right) \\ \vdots \\ g^{(j)} \left(\mathbf{z}_{n_j}^{(j)} \right) \end{bmatrix}. \tag{5}$$