Lemmata und Sätze

- 1. Handschlaglemma: $\sum_{i=1}^{n} x_i = 2y$
- 2. Proposition Binomial koeffizienten: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$
- 3. injektiv: $\forall a_1, a_2 \in A \text{ mit } f(a_1) = f(a_2) \text{ gilt, dass } a_1 = a_2 \Rightarrow \text{injektiv}$
- 4. surjektiv: $f[A]=B, b \in B, a \in A \Rightarrow f(a)=b$
- 5. bijektiv: Kombination aus surjektiv und injektiv
- 6. Satz von Cantor-Schröder-Bernstein: $f: A \to B$ $g: B \to A$ Falls: f und g injektiv: Bijektion zwischen A und B falls $g: B \mapsto A$ surjektiv: f injektiv
- 7. Satz von Cantor: $|A| < |\mathcal{P}(A)|$ Also: Potenzmenge der Menge A hat **immer** mehr Elemente als die Menge A selbst.
- 8. Permutationen: Es gibt n! Permutationen der Menge $\mathbf{x} = \{1,...,n\}$ mit $n \in \mathbb{N}$ Permutation ist eine Bijektion der Funktion $\pi(x \to x)$ Jede Permutation der Menge \mathbf{x} ist Komposition der Transposition (1,2)(2,3)...(n-1,n)
- 9. Stirling'sche Formel: $n! \approx \sqrt{2\pi n} * (\frac{n}{e})^n$ Wenn $n \in \mathbb{N}$, f,g sind Funktionen $\mathbb{N} \to \mathbb{R}$ $f \sim g$, wenn $\epsilon > 0$ existiert ein $n_0 \in \mathbb{N}$, sodass $\forall n \in \mathbb{N}$ mit $n > n_0$ gibt, dass $|f(n)/g(n) - 1| < \epsilon$
- 10. Definition: M^+ := $M \cup \{M\}$
- 11. Addition: $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ induktiv: n+0:=0 $n \cdot m^+ := n \cdot m + n$
- 12. Exponentation: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $n^0 := 1$ $n^{m^+} := n^m \cdot n$
- 13. Definition(Primzahlen): Eine Zahl $p \in \mathbb{N}$ ist prim p>1 und wenn sie nur durch 1 und sich selbst teilbar ist. Primteiler einer Zahl n ist prim.

1

- 14. Primzahlsatz: $\pi(x) \approx \frac{x}{\ln(x)}$
- 15. Fundamentalsatz der Arithmetik: $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$ Jedes $n \in \mathbb{N}$ kann so dargestellt werden. p...prim; n>0; α >1
- 16. Euklidischer Algorithmus: $a,b \in \mathbb{Z}$, $b \neq 0$ existiert $q,r \in \mathbb{Z}$ mit $a=q \cdot b+r$, $0 \geq r > |b|$ $a,b \in \mathbb{N}$ mit b>0 $ggT(a,b)=ggT(b,q \bmod b)$ Algorithmus: Eingabe $n,m \in \mathbb{N}$ mit $m \geq n$ Ausgabe ggT(m,n)

falls m|n, dann m ausgeben sonst Euklid: (n mod m,n) aus

- 17. Lemma von Bézout: wenn m,n $\in \mathbb{N}$, m und n **nicht beide** 0 $\exists a,b\in \mathbb{Z}$ mit ggT(n,m)=am+bn
- 18. Erweiterter euklidischer Algorithmus: Eingabe: $n, m \in \mathbb{N}$ mit $m \leq n$ Ausgabe: $a,b \in \mathbb{Z}$, sodass ggT(n,m)=am+bn falls m|n, dann gebe (1,0) aus, sonst sei (b'a') die Ausgabe von erw. Euklid $(n \mod m,m)$ Gebe (a'-b'[n/m],b')
- 19. Lemma von Euklid: Teilt eine Primzahl das Produkt zweier natürlicher Zahlen, so auch mindestens einen der Faktoren.
- 20. **MODULO:** Add.: $a +_{mod \ n} b := (a + b) mod \ n$ Sub.: $a -_{mod \ n} b := (a - b) mod \ n$ Mult.: $a \cdot_{mod \ n} b := (a \cdot b) mod \ n$
- 21. Homomorphieregel:

(a+b)mod n=(a mod n+b mod n) (a-b)mod n=(a mod n-b mod n) (a·b)mod n=(a mod n·b mod n) a mod n=r a=r (mod n) Beispiel: $333333 \cdot 444444 \cdot 56789 = 33 \cdot 44 \cdot 89$ = $33 \cdot 11 \cdot 4 \cdot 89 = (330 + 33) \cdot (320 + 36)$ = $63 \cdot 56 = 3528$ = $28 \pmod{100}$

22. Al-Kaschi: binäre Exponentation: Man kann bei jedem Rechenschritt modular vereinfachen (Homomorphieregel)

Damit vermeidet man eine **EXPLOSION** der Zwischenergebnisse \Rightarrow Man kann mittels der Methode verdoppeln und quadrieren, die Berechnung in handhabbare Schritte zerlegen.

- 23. Chinesischer Restsatz:
 - m·n Felder (m-Höhe, n-Breite)
 - Felder durch nummerieren (start in 0. Zeile und 0. Spalte)
 - Standort zu Schritt x: k. Zeile und l. Spalte

folgende Fälle: -k < m-1 und l < n-1. dann fahren wir mit dem Feld in der k+1. Zeile und l+1. Spalte fort.

- -k=m-1 und l<n-1. Fahre mit dem Feld in der 0. Zeile und l+1. Spalte fort
- -k<m-1 und l=n-1. Fahre mit dem Feld in der k+1. Zeile und 0. Spalte fort.
- k=m-q und l=-1. Stopp
- 24. Satz: Es seien $n_1, ... n_r \in \mathbb{N}$ teilerfremd und $a_1, ..., a_r \in \mathbb{Z}$ dann gibt es genau eine natürliche Zahl $x \in \{0, ..., n_1 \cdot (...) \cdot n_r 1\}$ Mit $x \equiv a_i \pmod{n_i}$ für alle $i \in 1, ..., r$
- 25. Definition Nullteiler: Man nennt $a \in \mathbb{Z}_n \setminus \{0\}$ einen Nullteiler, wenn es ein $b \in \mathbb{Z}_n \setminus \{0\}$ gibt mit $a \cdot b = 0$
- 26. Definition Einheiten: Man nennt $a \in \mathbb{Z}_n$ eine Einheit, wenn es eine Zahl b mit ab=1 gibt.
- 27. Lemma Jährling Syndrom: Sei $n \in \mathbb{Z} \setminus \{0\}$ dann sind äquivalent
 - 1. m ist Einheit in \mathbb{Z}_n
 - 2. m ist kein Nullteiler in \mathbb{Z}_n
 - 3. m und n sind teilerfremd.
- 28. Proposition: Hat $n \in \mathbb{N}$ die Primfaktorzerlegung: $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$, dann gilt $\phi(\mathbf{n}) = (p_1 1)p_1^{\alpha_1 1} \cdot \dots \cdot (p_k 1)p_k^{\alpha_k 1}$ $= n(1 \frac{1}{p_1}) \cdot \dots \cdot (1 \frac{1}{p_k})$
- 29. Definition Gruppen: Eine Gruppe G heißt zyklisch falls sie von einem Element erzeugt wird, d.h. es gibt ein Gruppenmitglied $g \in G$ (den Erzeuger), sodass sich g schreiben lässt als $G = \{e, g, g^{-1}, g \circ g, (g \circ g)^{-1}, ...\}$ = $\{g^m | m \in \mathbb{Z}\}$
- 30. Proposition: Die Anzahl der Erzeuger von $(\mathbb{Z}_n, +, -, 0)$ ist $\phi(n)$.
- 31. Satz von Gauß: Sei p prim, dann ist in $(\mathbb{Z}_p^*,\cdot,^{-1},1)$ zyklisch.
- 32. Proposition: Die Anzahl der Erzeuger von \mathbb{Z}_n^* ist $\phi(\phi(\mathbf{n}))$.
- 33. Satz von Lagrange: Sei (G, \circ^{-1}, e) eine Gruppe. Eine Untergruppe von G ist eine Teilmenge u von G, die das neutrale Element e enthält und die unter $^{-1}$ und \circ abgeschlossen ist. Das soll heißen, dass mit jedem Element $g \in U$, $g^{-1} \in U$, und das für alle $g_1, g_2 \in U$

- auch $g_1 \circ g_2 \in U$. Jede Untergruppe U ist ausgestattet mit den auf U eingeschränkten Operationen \circ ,⁻¹ und dem selben neutralen Element e, selbst wieder eine Gruppe. Um anzuzeigen, dass U ein Untergruppe von G ist, schreibt an U \leq G
- 34. Definition Nebenklassen: Ist U eine Untergruppe der Gruppe G und g ein Element von G, dann nennt man goU:= $\{g \circ u | u \in U\}$ eine (links-) Nebenklasse von U und G.
- 35. Es sei U eine Untergruppe von G und $g_1, g_2 \in G$ Falls $g_1 \in g_2 \circ U$, dann gilt $g_1 \circ U = g_2 \circ U$.
- 36. Lemma Jährling-Pascal-Lukas: Je zwei Nebenklassen ao U und bo U sind entweder gleich oder disjunkt.
- 37. Definition Index: Es sei G eine Gruppe und U eine Untergruppe von G. Der Index von U in G ist die Anzahl der Nebenklassen von U und G und wird [G:U] geschrieben.
- 38. Satz von Lagrange: Ist U eine Untergruppe von einer endlichen Gruppe G, dann gilt [G:U]=|G|/|U|.
- 39. Lemma von Euler-Fermat: Ist p eine Primzahl, dann gilt für jede Zahl $a \in \mathbb{Z}$, die nicht durch p teilbar ist: $a^{p-1} \equiv 1 \pmod{p}$
- 40. Lemma Bob: Es seien q_1, q_2 teilerfremd. Dann gilt $a \equiv b \pmod{q_1}$ und $a \equiv b \pmod{q_2}$, genau dann, wenn $a \equiv b \pmod{q_1, q_2}$
- 41. Definition Ansgar: Ein (schlichter, ungerichteter) Graph G ist ein Paar(V,E) bestehend aus einer Knotenmenge V und einer Kantenmenge $E \subseteq \binom{V}{2}$. Die Knotenmenge von G wird auch mit V(G), und die Kantenmenge E(G) bezeichnet.
- 42. Definition Isomorphie: 2 Graphen G und H sind isomorph, wenn es eine Bijektion $f:V(G) \rightarrow V(H)$ gibt, sodass $(u,v) \in E(G)$, genau dann, wenn (f(u),f(v)); intuitiv bedeutet das, dass man H aus G durch Umbenennen der Knoten von G erhält.
- 43. Definition Subgraph: Ein Graph H ist ein Subgraph von G, falls gilt $V(H)\subseteq V(G)$ und $E(H)\subseteq E(G)$. Ein induzierter Subgraph von G ist ein Graph H mit $V(H)\subseteq V(G)$, und $E(H)=E(G)\cap \binom{V(H)}{2}$.