Our people.
Your success.

R-HTA in LMIC's: The Potential of R Shiny User Interfaces to Support Health Economic Decision Making

Robert Smith^{1,2,3,4} & Rose Hart ¹

23/02/2021

- 1) BresMed Health Solutions, Sheffield
- 2) School of Health and Related Research, University of Sheffield, UK.
- 3) Dark Peak Analytics Ltd, Sheffield, UK
- 4) UK Health Security Agency, DHSC.

Before we start ...

Disclaimer:

The views in this presentation are those of the author and *Dark Peak Analytics*, not of the *University of Sheffield*, *BresMed* or the *UK Health Security Agency*.

Grant information:

Robert Smith and Paul Schneider are joint funded by the Wellcome Trust Doctoral Training Centre in Public Health Economics and Decision Science [108903] and the University of Sheffield.

Current Process

Future Process

Future Process

ShinyApp function

Paper: https://wellcomeopenresearch.org/articles/5-69

Code: https://github.com/RobertASmith/healthecon-shiny

Sick Sicker Model in Shiny

Results Table

Option	QALYs	Costs	Inc.QALYs	Inc.Costs	ICER
Treatment	18.59	100441.67	0.62	1406.24	2324.54
No Treatment	17.97	99035.43	NA	NA	NA

Cost-effectiveness Plane

https://robertasmith.shinyapps.io/sick_sicker

PSA.runs 1000

UI code

```
ui <- fluidPage (
                   # creates empty page
  # title of app
  titlePanel ("Sick Sicker Model in Shiny"),
  # layout is a sidebar-layout
  sidebarLayout(
 # open sidebar panel
     < SIDEBAR PANEL CODE >
# open main panel
     < MAIN PANEL CODE >
       ) # close sidebarlayout
) # close UI fluidpage
```

Sick Sicker Model in Shiny

Results Table

QALYS

Sidebar Panel Code

```
sidebarPanel( # open sidebar panel
   numericInput(inputId = "SI c Trt",
                label = "Treatment Cost",
                value = 200,
                min = 0,
                max = 400),
   numericInput(inputId = "SI n sim",
                label = "PSA runs",
                value = 1000,
                min = 0,
                max = 400),
    sliderInput(inputId = "SI n age init",
               label = "Initial Age",
               value = 25,
               min = 10,
               max = 80),
    # action button runs model when pressed
   actionButton(inputId = "run model",
                label = "Run model")
   # close sidebarPanel
```


Main Panel Code

```
mainPanel(

# heading (results table)
    h3("Results Table"),

# tableOutput id = icer_table, from server
    tableOutput(outputId = "SO_icer_table"),

# heading (Cost effectiveness plane)
    h3("Cost-effectiveness Plane"),

# plotOutput id = SO_CE_plane, from server
    plotOutput(outputId = "SO_CE_plane")

    ) # close mainpanel
```

Results Table

Option	QALYs	Costs	Inc.QALYs	Inc.Costs	ICER
Treatment	18.61	101016.42	0.62	1412.82	2335.56
No Treatment	17.99	99603.60	NA	NA	NA

Cost-effectiveness Plane

Server Code

```
server <- function(input, output) {</pre>
 observeEvent(input$run model, # WHEN ACTION BUTTON PRESSED
             ignoreNULL = F, {
# Run model function with Shiny inputs
 df model res = f wrapper(c Trt = input$SI c Trt,
                       n age init = input$SI n age init,
                               n sim = input$SI n sim)
#-- CREATE COST EFFECTIVENESS TABLE ---#
# renderTable continuously updates table
 output$SO icer table <- renderTable({ < ICER TABLE FUNCTION > }) # table plot end.
#-- CREATE COST EFFECTIVENESS PLANE ---#
# render plot repeatedly updates.
}) # Observe event end
} # Server end
```


More Sophisticated App

A lean shiny app for a simple markov model - beta 1.0

Open-source materials

Simple materials:

App: https://robertasmith.shinyapps.io/sick_sicker/

Paper: https://wellcomeopenresearch.org/articles/5-69

Code: https://github.com/RobertASmith/paper_makeHEshiny

Tutorial: https://r-hta.org/tutorial/markov_models_shiny/

More advanced materials:

App: https://darkpeakanalytics.shinyapps.io/sadm-mk2/

Code: https://github.com/bitowaqr/sadm-mk2

Package: https://github.com/RobertASmith/darkpeak

R-HTA in LMIC's

