#### Discrete Mathematics

generating functions

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

#### Summary of Lecture 14

#### LHRR of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_{\underline{i}} a_{n-i}$$

- Existence and uniqueness: given k initial terms
- characteristic equation:  $r^{k} \sum_{i=1}^{k} c_{i} r^{k-i} = 0$

The characteristic equation:  $r = \sum_{i=1}^{k} c_i r^n = 0$ We distinct roots  $r_1, r_2, ..., r_k$ :  $x_n = \sum_{j=1}^{k} \alpha_j r_j^n$ Roots  $\{m_1 \cdot r_1, ..., m_t \cdot r_t\}$ :  $x_n = \sum_{j=1}^{t} \left(\sum_{\ell=0}^{m_j-1} \alpha_{j,\ell} n^\ell\right) r_j^n$ RR of degree k with constant coefficients:

#### LNRR of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i} + \underline{F(n)}$$

- Existence and uniqueness: given k initial terms
- General solutions:  $z_n = x_n + y_n$  Lurge  $\leftarrow$
- Particular solutions: if  $F(n) = (f_l n^l + \dots + f_1 n + f_0) s^n$  and s is a root of multiplicity  $m, x_n = (p_l n^l + \dots + p_1 n + p_0) s^n n^m$

RAKE LHRR

# Generating Functions

#### **DEFINITION:** The **generating function** of a sequence $\{a_r\}_{r=0}^{\infty}$ is defined as $G(x) = \sum_{r=0}^{\infty} a_r x^r$ .

- Generating functions are formal power series.
- We do not discuss their convergence.

#### **EXAMPLE:** generating functions of sequences

- $a_r = 3$ ,  $G(x) = 3(1 + x + \dots + x^r + \dots)$   $a_r = 2^r$ ,  $G(x) = 1 + 2x + \dots + (2x)^r + \dots$
- $a_r = \binom{n}{r}, G(x) = \binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{n}x^n$

#### **DEFINITION:** Let $A(x) = \sum_{r=0}^{\infty} a_r x^r$ , $B(x) = \sum_{r=0}^{\infty} b_r x^r$

• A(x) = B(x) if  $a_r = b_r$  for all r = 0,1,2,...

### **Operations**

**DEFINITION:** Let 
$$A(x) = \sum_{r=0}^{\infty} a_r x^r$$
,  $B(x) = \sum_{r=0}^{\infty} b_r x^r$ 

• 
$$A(x) + B(x) = \sum_{r=0}^{\infty} (a_r + b_r) x^r$$
  $f(x) = \underbrace{\alpha_r + \alpha_1 x}_{0 \neq 1} + \underbrace{\alpha_2 x^2}_{0 \neq 2}$   
•  $A(x) - B(x) = \sum_{r=0}^{\infty} (a_r - b_r) x^r$   $f(x) = \underbrace{\alpha_r + \alpha_1 x}_{0 \neq 1} + \underbrace{\alpha_2 x^2}_{0 \neq 2}$ 

• 
$$A(x) - B(x) = \sum_{r=0}^{\infty} (a_r - b_r) x^r$$

• 
$$A(x) - B(x) = \sum_{r=0}^{\infty} (a_r - b_r) x^r$$
  
•  $A(x) \cdot B(x) = \sum_{r=0}^{\infty} (\sum_{j=0}^{r} a_j b_{r-j}) x^r$ 

$$O(x) \cdot b_r x^r + O(x) b_r x^r$$

$$O(x) \cdot b_r x^r$$

$$A(x) = a_0 + a_1 x + a_2 x^2$$

- $\lambda \cdot A(x) = \sum_{r=0}^{\infty} \lambda a_r x^r$  for any constant  $\lambda \in \mathbb{R}$
- We say that B(x) is an **inverse** of A(x) if A(x)B(x) = 1.
  - The inverse of A(x):  $A^{-1}(x)$
  - When A(x) has an inverse, define  $\frac{C(x)}{A(x)} = A^{-1}(x) \cdot C(x)$



### **Operations**

**THEOREM:**  $A(x) = \sum_{r=0}^{\infty} a_r x^r$  has an inverse iff  $a_0 \neq 0$ .

**EXAMPLE:** Let 
$$A(x) = \sum_{r=0}^{\infty} x^r$$
. Find  $A^{-1}(x)$ .

•  $a_0 = 1 \neq 0$ :  $A^{-1}(x)$  exists

- Denote  $A^{-1}(x) = \sum_{r=0}^{\infty} b_r x^r$ ;  $b_0, b_1, ...$  are undetermined coefficients
- $A(x)A^{-1}(x) = 1$ :

• 
$$(1 + x + x^2 + \cdots)(b_0 + b_1x + b_2x^2 + \cdots) = 1 + 0 \cdot x + 0 \cdot x^2 + \cdots$$
• Coefficient of  $x^0$ :  $b_0 = 1$ 
• Coefficient of  $x^1$ :  $b_1 + b_0 = 0$ 
• Coefficient of  $x^2$ :  $b_2 + b_1 + b_0 = 0$ 
• Coefficient of  $x^r$ :  $b_r + b_{r-1} + \cdots + b_0 = 0$ 
•  $b_1 = -1, b_2 = 0, \dots, b_r = 0$ 

争义全口,

- - - $b_1 = -1, b_2 = 0, \dots, b_r = 0$
    - $A^{-1}(x) = 1 x$

13 3 M segione How

### **Operations**

#### **DEFINITION:** $A(x) = \sum_{r=0}^{\infty} a_r x^r$

• 
$$A'(x) = \sum_{r=1}^{\infty} r a_r x^{r-1}$$
• 
$$A^{(0)}(x) = A(x)$$

• 
$$A^{(0)}(x) = A(x)$$

$$A^{(k)}(x) = (A^{(k-1)}(x))' \text{ for all integers } k \ge 1$$

$$\int A(x) dx = \sum_{r=0}^{\infty} \sqrt{\frac{1}{r+1}} a_r x^{r+1} + C, \text{ where } C \text{ is a constant}$$

**THEOREM:** Let  $A(x) = \sum_{r=0}^{\infty} a_r x^r$  and  $B(x) = \sum_{r=0}^{\infty} b_r x^r$ .

• 
$$(\alpha A(x) + \beta B(x))' = \alpha A'(x) + \beta B'(x)$$

$$\bullet \quad (A(x)B(x))' = A'(x)B(x) + A(x)B'(x)$$

• 
$$\left(A^k(x)\right)' = \underline{k}A^{k-1}(x) A'(x)$$

$$(1+\alpha x)^u$$

扩展工艺机

#### **DEFINITION:** Let $u \in \mathbb{R}$ and $r \in \mathbb{N}$ . The **extended binomial**

coefficient 
$$\binom{u}{r} = \begin{cases} u(u-1)\cdots(u-r+1)/r! & r>0\\ 1 & r=0 \end{cases}$$

**THEOREM**: Let x be a real number with |x| < 1 and let u be a real number. Then  $(1+x)^u = \sum_{r=0}^{\infty} {u \choose r} x^r$ .

real number. Then 
$$(1+x)^u = \sum_{r=0}^{\infty} {u \choose r} x^r$$
.

EXAMPLE: ME  $(1 - \alpha x)^{-1} = \sum_{r=0}^{\infty} \alpha^r x^r$   $(1 - \alpha x)^{-n} = \sum_{r=0}^{\infty} {r+n-1 \choose r} \alpha^r x^r$ 

$$\sum_{n=1}^{\infty} (r)(r)(r)(r) = \frac{r!}{r!} (-x)^{n}$$

$$= \frac{r!}{r!} (-x)^{n}$$

$$= \frac{r!}{r!} (-n)(-n-1) \cdots (-n-n+1)$$

$$= \frac{r!}{r!} (-n-n+1) \cdots (-n-n+1)$$

$$= \frac{r!}{r!} (-n-n+1) \cdots (-n-n+1)$$

$$= \frac{r!}{r!} (-n-n+1) \cdots (-n-n+1)$$

## Counting Combinations with GFs

**QUESTION:** Let n > 0,  $R_1$ , ...,  $R_n \subseteq \mathbb{N}$ . For every  $r \ge 0$ , let  $a_r$  be the number of r-combinations of [n] with repetition where every  $i \in [n]$  appears  $R_i$  times. The 4D, where  $R_i$  times  $R_i$  times. The 4D, where  $R_i$  times  $R_i$  tim

- - This is also the number of ways of distributing r unlabeled objects into n labeled boxes such that  $R_i$  objects are sent to box i

**THEOREM**:  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^n \sum_{r_i \in R_i} x^{r_i}$ .

• 
$$\prod_{i=1}^{n} \sum_{r_i \in R_i} x^{r_i} = \sum_{r_1 \in R_1} x^{r_1} \cdot \sum_{r_2 \in R_2} x^{r_2} \cdots \sum_{r_n \in R_n} x^{r_n}$$

$$= \sum_{r=0}^{\infty} (\sum_{r_1 \in R_1, \dots, r_n \in R_n, r_1 + \dots + r_n = r} 1) x^r$$

$$= \sum_{r=0}^{\infty} a_r x^r$$

## Counting Combinations with GFs

**EXAMPLE:** Let  $a_r$  be the number of ways of distributing r identical books to 5 persons such that person 1, 2, 3, and 4 receive  $\geq 3, \geq 2, \geq 4, \geq 6$  books, respectively. Calculate  $a_{20}$ .

receive 
$$\geq 3, \geq 2, \geq 4, \geq 6$$
 books, respectively. Calculate  $a_{20}$ .

•  $a_r = |\{(r_1, \dots, r_5): r_1 \geq 3, r_2 \geq 2, r_3 \geq 4, r_4 \geq 6, r_5 \geq 0, r_1 + \dots + r_5 = r\}|$ 

•  $R_1 = \{3, 4, \dots\}; R_2 = \{2, 3, \dots\}; R_3 = \{4, 5, \dots\};$ 

•  $R_4 = \{6, 7, \dots\}; R_5 = \{0, 1, 2 \dots\}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \prod_{i=1}^5 \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r=0}^{\infty} a_r x^r = \sum_{r_i \in R_i} x^{r_i}$ 

•  $\sum_{r$ 

# Counting Permutations with GFs

**QUESTION:** Let  $n > 0, R_1, ..., R_n \subseteq \mathbb{N}$ . For every  $r \geq 0$ , let  $a_r$  be the number of r-permutations of [n] with repetition where every  $i \in [n]$  appears  $R_i$  times.

- $a_r = \sum_{r_1 \in R_1, r_2 \in R_2, \dots, r_n \in R_n, r_1 + r_2 + \dots + r_n = r} \frac{r!}{r_1! r_2! \dots r_n!}$ 
  - This is the number of ways of distributing r labeled objects into n
- type 2 labeled boxes such that  $R_i$  objects are sent to box i for all  $i \in [n]$

**THEOREM:** 
$$\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \prod_{i=1}^n \sum_{r_i \in R_i} \frac{x^{r_i}}{r_i!}.$$

$$\begin{array}{c}
\Gamma_{i=1}^{n} \sum_{r_{i} \in R_{i}} \frac{x^{r_{i}}}{r_{i}!} = \sum_{r_{1} \in R_{1}} \frac{x^{r_{1}}}{r_{1}!} \cdot \sum_{r_{2} \in R_{2}} \frac{x^{r_{2}}}{r_{2}!} \cdots \sum_{r_{n} \in R_{n}} \frac{x^{r_{n}}}{r_{n}!} \\
= \sum_{r=0}^{\infty} \left( \sum_{r_{1} \in R_{1}, r_{2} \in R_{2}, \dots, r_{n} \in R_{n}, \frac{r_{1} + r_{2} + \dots + r_{n} = r}{r_{1}! r_{2}! \cdots r_{n}!} \right) \frac{x^{r}}{r!} \\
= \sum_{r=0}^{\infty} \frac{a_{r}}{r!} x^{r}
\end{array}$$

# Counting Permutations with GFs

**EXAMPLE**: Find  $a_r = \{s \in \{1,2,3,4\}^r : s \text{ has an even number of } 1s\}$ 

•  $a_r$  = the number of r-permutations of {1,2,3,4} with repetition where 1 appears an even number of times  $N^{\dagger}$ 

• 
$$R_1 = \{0, 2, 4, \dots\}, R_2 = R_3 = R_4 = \{0, 1, 2, \dots\}$$
•  $\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right) \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots\right)^3$ 
•  $\sum_{r=0}^{\infty} \frac{a_r}{r!} x^r = \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right) \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots\right)^3$ 
•  $\sum_{r=0}^{\infty} \frac{e^{x} + e^{-2x}}{2} \cdot e^{3x}$ 
•  $e^{\frac{e^{x} + e^{-2x}}{2}}$ 

LNRR

## Partial Fraction Decomposition

**EXAMPLE:** Solve the LNRR  $a_n = 8a_{n-1} + 10^{n-1}$  with the initial condition  $a_0 = 1$  using generating function.

condition 
$$a_0 = 1$$
 using generating function.

•  $A(x) = \sum_{n=0}^{\infty} a_n x^n$  | MSC Type |  $A(x) = \frac{1-9x}{(1-8x)(1-10x)}$ 

•  $A(x) = \sum_{n=0}^{\infty} a_n x^n$  | MSC Type |  $A(x) = \frac{1-9x}{(1-8x)(1-10x)}$ 

•  $A(x) = \frac{1-9x}{(1-8x)(1-10x)}$ 

**LEMMA**: Let Q(x), P(x) be two polynomials s.t.  $\deg(Q) > \deg(P)$ . If  $Q(x) = (1 - r_1 x)^{m_1} \cdots (1 - r_t x)^{m_t}$  for distinct non-zero numbers  $r_1, \dots, r_t$  and integers  $m_1, \dots, m_t \geq 1$ , then there exist unique coefficients  $\{\alpha_{j,u}: j \in [t], u \in [m_j]\}$  such that

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{t} \sum_{u=1}^{m_j} \frac{\alpha_{j,u}}{(1-r_jx)^u} \cdot$$

$$\text{Mere:}$$

$$t = 2 \quad r_1 = \theta \cdot r_2 = 0 \cdot$$

### Solving LNRR with GFs

**EXAMPLE**: Solve the LNRR  $a_n = 8a_{n-1} + 10^{n-1}$  with the initial condition  $a_0 = 1$  using generating function.

• 
$$A(x) = \frac{1-9x}{(1-8x)(1-10x)}$$

• 
$$A(x) = \frac{\alpha_{1,1}}{1-8x} + \frac{\alpha_{2,1}}{1-10x}$$

• 
$$\alpha_{1,1} = \alpha_{2,1} = \frac{1}{2}$$

• 
$$A(x) = \frac{1}{2} \left( \frac{1}{1 + 8x} + \frac{1}{1 - 10x} \right)$$
 Define  $X^n$   

$$= \sum_{n=0}^{\infty} \frac{1}{2} (8^n + 10^n) x^n$$

• 
$$a_n = \frac{1}{2}(8^n + 10^n) \quad (n \ge 0)$$