A quick recap of the material covered in lectures

This week was devoted to understanding the physics and characteristics of metal-oxide-semiconductor field-effect transistor (MOSFET). The MOS structure was assumed to be ideal and considerations were limited to basic transistor configuration. When a MOSFET is biased into inversion, the induced surface layer forms a conducting channel between the source and drain contacts. The greater the applied gate voltage in excess of turn-on, the larger the conductance of the internal channel at a given drain voltage. A nonzero drain voltage in turn initiates the current flow between the source and drain. The current flow is proportional to V_D at low drain voltages, slopes over due to channel narrowing as V_D is increased, and eventually saturates once the internal channel vanishes or pinches off near the drain. A summary of formulas for the same is given below.

ENHANCEMENT AND DEPLETION MOSFET

In an enhancement mode MOSFET, the semiconductor substrate is not inverted directly under the oxide
with zero gate voltage. A positive gate voltage induces the electron inversion layer, which then "connects"
the n-type source and the n-type drain regions. Figure below shows an n-channel enhancement MOSFET.

• In depletion mode MOSFET, n-channel region exists under the oxide with 0 V applied to the gate, meaning an electron inversion layer already exists with zero gate voltage applied. Figure below shows an n-channel depletion MOSFET.

CURRENT-VOLTAGE RELATIONSHIPS

 Here we are considering n-channel MOSFETS for writing the equations. Similar relationships apply for p-channel. In the nonsaturation region, the current is given by -

$$I_D = \frac{W\mu_n C_{ox}}{2L} \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$
 (1)

The $\frac{V_{DS}^2}{2}$ term can be neglected for small values of V_{DS} .

$$I_D = K_n \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$
(2)

where $K_n = \frac{Wk'_n}{2L}$; $k'_n = \mu_n C_{ox}$

ullet The peak current occurs when $V_{DS}=V_{DS(sat)}.$ At this point saturation occurs,

$$V_{DS(sat)} = V_{GS} - V_T$$
 (3)

 $\bullet~$ For $V_{DS} > V_{DS(sat)}$, the ideal drain current is constant and is given by -

$$I_{D(sat)} = \frac{W\mu_n C_{ox}}{2L} (V_{GS} - V_T)^2$$
 (4)

 MOSFET transconductance is defined as the change in the drain current with respect to the corresponding change in gate voltage.

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$
 (5)

For MOSFET operating in the nonsaturation region,

$$g_m = \frac{W\mu_n C_{ox}}{L} V_{DS} \tag{6}$$

• For MOSFET operating in the saturation region,

$$g_m = \frac{\partial I_{D(sat)}}{\partial V_{GS}} = \frac{W \mu_n C_{ox}}{L} (V_{GS} - V_T)$$
(7)

Substrate Bias

- ullet The source-to-substrate pn junction must always be zero or reverse biased, so V_{SB} must always be greater than or equal to zero for an n-channel MOSFET.
- The change in threshold voltage due to substrate bias is -

$$\Delta V_T = \gamma \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right] \qquad \phi_{fp} = V_t \ln \left(\frac{N_A}{n_i} \right)$$
 (8)

ullet where γ is body coefficient defined as -

$$\gamma = \frac{\sqrt{2e\epsilon_s N_a}}{C_{ox}} \tag{9}$$

Solve the following questions. There are 15 questions, for a total 25 marks.

- 1. (1 mark) For an p-type Enhancement MOSFET, choose the correct statement.
 - A. A hole inversion layer is created for an applied bias of $|V_G| > |V_t|$
 - B. An electron inversion layer is created for an applied bias of $\left|V_{G}\right|>\left|V_{t}\right|$
 - C. A hole inversion layer exists for $V_G = 0$
 - D. An electron inversion layer is created for an applied bias of $|V_G| < |V_t|$
 - E. An electron inversion layer exists for $V_G = 0$
 - F. A hole inversion layer is created for an applied bias of $|V_G| < |V_t|$
- 2. (2 marks) Consider an n-channel MOSFET with the following parameters: $k_n'=0.18\ mA/V^2,\ W/L=8$, and $V_T=0.4\ V$. The drain current I_D for $V_{GS}=0.8\ V$ and $V_{DS}=1.2\ V$ is
 - A. 0.2304 mA
 - **B.** $0.1152 \ mA$
 - C. $0.2304 \ \mu A$
 - D. $0.1152 \ \mu A$
 - E. 86.4 mA
 - F. 0.0576 mA

Since $V_{DS} > V_{QS} - V_{T}$ the device 'y in saturation.

Saturation.

Ky (process fransional chance In the device of the parameter)

In: $U(O_{T})W(V_{QS} - V_{T})$ parameter)

- 3. (1 mark) For a long channel MOSFET biased "beyond pinch-off", the saturated drain current varies as -
 - A. $(V_{GS} V_T)^{0.5}$
 - B. $(V_{GS} V_T)^{1.0}$
 - C. $(V_{GS} V_T)^{1.5}$
 - **D.** $(V_{GS} V_T)^{2.0}$
 - E. $(V_{GS} V_T)^{2.5}$
- 4. (2 marks) Answer the following in relation to subthreshold swing of a MOSFET.
 - (a) (1 mark) The subthreshold swing is defined as:
 - A. The increase in gate voltage necessary to increase the drain current by a factor of 2.
 - B. The increase in gate voltage necessary to increase the drain current by a factor of 10.
 - C. The increase in drain voltage necessary to increase the drain current by a factor of 2.
 - D. The increase in drain voltage necessary to increase the drain current by a factor of 10.
 - E. The increase in source voltage necessary to increase the drain current by a factor of 2.
 - (b) (1 mark) What is the minimum subthreshold swing at T=300 K?
 - A. $30 \ mV/decade$
 - **B.** 60 mV/decade
 - C. 90 mV/decade
 - D. 120 mV/decade
 - E. $150 \ mV/decade$

5. (3 marks) The I_D vs V_{GS} characteristics determined experimentally for an n-channel MOSFET are given in figure 1. The width and length of this device is $15~\mu m$ and $2~\mu m$ respectively. Assuming the drain voltage $V_{DS}=0.1~V$, and oxide capacitance $C_{ox}=6.9\times 10^{-8}~Fcm^{-2}$,

Figure 1: $I_D \ vs \ V_{GS}$

(a) (2 marks) the mobility of carriers in the inversion region is $\underline{\hspace{1cm}}$ ($cm^2/V-s$) (rounded off to the nearest integer)

Ans: 773

Range: 770 - 777

(b) (1 mark) the threshold voltage for the MOSFET is $___V$ (Hint: Ignore V_{DS}^2 term for calculation)

- A. 0.6
- B. 0.7
- **C.** 0.625
- D. 0.72
- E. 0.9
- F. 1.0

Since Vog is small relative to Vus, VDS can be ignored.

6. (2 marks) The $\sqrt{I_D}$ vs V_{GS} plot for two MOSFETS A and B in saturation is given in figure 2. Identify the type of MOSFETS from the given choices.

Figure 2: $\sqrt{I_D} \ vs \ V_{GS}$

- A. $A \rightarrow Depletion \ n MOSFET$; $B \rightarrow Depletion \ p MOSFET$
- B. $A \rightarrow Enhancement \ n MOSFET$; $B \rightarrow Enhancement \ p MOSFET$
- **C.** $A \rightarrow Enhancement \ n-MOSFET$; $B \rightarrow Depletion \ n-MOSFET$
- D. $A \rightarrow Depletion \ n MOSFET$; $B \rightarrow Enhancement \ n MOSFET$
- E. $A \rightarrow Enhancement \ n MOSFET$; $B \rightarrow Depletion \ p MOSFET$
- F. $A \rightarrow Depletion \ p-MOSFET$; $B \rightarrow Depletion \ n-MOSFET$
- 7. (1 mark) Given below are two statements regarding I_D in PMOS and NMOS devices.

S1: Drain current for a NMOS device $(I_{D,NMOS})>$ Drain current for a PMOS device $(I_{D,PMOS})$ for a survival particular V_{GS}

- S2: Mobility of a PMOS device (μ_P) < Mobility of an NMOS device (μ_N) at the interface
 - A. Statement S1 is true and S2 is false
 - B. Statement S1 is false and S2 is true
 - C. Statement S1 is true and S2 is true and S2 is the correct explanation of S1
 - D. Statement S1 is true and S2 is true and S2 is not the correct explanation of S1
 - E. Statement S1 and S2 are false

8. (2 marks) The V_{DS} vs V_{GS} plot for a NMOSFET is given in figure $\boxed{3}$ Map the regions in the graph from the corresponding options in the table.

Α	Accumulation
В	Pinch-off
С	Depletion
D	Off
Е	Breakdown
F	Saturation
G	Amplification
Н	Ohmic

Figure 3: V_{GS} vs V_{DS}

A.
$$1 \rightarrow H$$
; $2 \rightarrow F$; $3 \rightarrow B$

B.
$$1 \to F$$
; $2 \to B$ and C ; $3 \to A$ and H

C.
$$1 \rightarrow C$$
 and $D; 2 \rightarrow F; 3 \rightarrow H$

D.
$$1 \rightarrow D$$
; $2 \rightarrow H$; $3 \rightarrow F$

E.
$$1 \rightarrow A$$
; $2 \rightarrow G$; $3 \rightarrow E$

F.
$$1 \rightarrow B$$
 and C ; $2 \rightarrow A$ and F ; $3 \rightarrow H$

9. (1 mark) Given below are two statements regarding substrate bias in NMOSFET.

S1: Source-to-body bias V_{SB} must always be greater than or equal to zero for an NMOSFET.

S2: The source-to-substrate pn junction must always be either grounded or forward biased for appropriate transistor action.

A. Statement S1 is true and S2 is false

- B. Statement S1 is false and S2 is true
- C. Statement S1 is true and S2 is true and S2 is the correct explanation of S1
- D. Statement S1 is true and S2 is true and S2 is not the correct explanation of S1
- E. Statement S1 and S2 are false

Figure 4: I - V Characteristics Problem

- 10. (2 marks) The I-V characteristics of an NMOSFET are shown in figure 4
 - (a) (1 mark) The ON current $(I_{D,on})$ is approximately ____ (in mA)
 - A. 0.1
 - B. 0.01
 - C. 0.02
 - **D.** 0.3
 - E. 0.03
 - F. 0.25
 - (b) (1 mark) The OFF current $(I_{D,off})$ is approximately _____ pA $(1pA=10^{-12}~A)$
 - A. 2
 - **B.** 20
 - C. 80
 - D. 4
 - E. 200
 - F. 400

Top is Id when Vacio & Vos = Vos

On current is In when Vas = Vos = Vop

Need to check ID on log scale for accurate answer.

- 11. (2 marks) A silicon MOSFET has the following parameters: $N_a=10^{16}~cm^{-3}$, $t_{ox}=12~nm$, $\epsilon_{SiO_2}=3.9$, $\epsilon_{Si}=11.7$, and $\phi_f=0.3473~V$.
 - V = 129 65Wc = \2x1.6 x10 19 x11.7 x 8.85 x10 (a) (1 mark) The body effect coefficient (γ) is _____ $V^{\frac{1}{2}}$

to two decimal places)

(b)
$$(1 \; mark)$$
 The char

(b) (1 mark) The change in threshold voltage for
$$V_{T0}=0.64$$
 and $V_{SB}=2~V$ is ______V (rounded off to two decimal places)

Range:
$$0.10 - 0.20$$

$$AV_{T} = \sqrt{\left(\sqrt{2V_{F} + |V_{SN}|} - \sqrt{2V_{F}}\right)}$$

$$= 0.2 \times \left(\sqrt{2 \times 0.3473 + 2} - \sqrt{2 \times 0.3473}\right)$$

()· 16

Previous year GATE questions

12. (2 marks) (EC-GATE 2016) Consider long channel NMOS transistor with source and body connected together. Assume that the electron mobility is independent of V_{GS} and V_{DS} .

Given,

$$g_m = 0.5~\mu A/V$$
 for $V_{DS} = 50~mV~and~V_{GS} = 2~V$ and

$$g_d = 8 \ \mu A/V$$
 for $V_{DS} = 0 \ V$ and $V_{GS} = 2 \ V$

Where

$$g_m = rac{\partial I_D}{\partial V_{GS}}$$
 and $g_d = rac{\partial I_D}{\partial V_{DS}}$.

The threshold voltage (in V) of the transistor is

Ans: $V_T = 1.2$

Range:
$$V_T = 1.0 - 1.5$$

$$q_{m} = \frac{\partial T_{N}}{\partial V_{N}} = \frac{M \cos W}{2} V_{OS}$$

$$\Rightarrow 0.5 \times 10^{-6} = \frac{M \cos W}{2} \times 50 \times 10^{3}$$

$$q_{d} = \frac{\partial I_{D}}{\partial V_{PS}} = \frac{M \cos W}{2} \times (V_{us} - V_{r}) - V_{OS}$$

$$At V_{OS} = \frac{0.5 \times 10^{-6}}{50 \times 10^{3}} (2 - V_{r})$$

$$V_{T} = 2 - 0.9 = 1.2V$$

- 13. (1 mark) (EC-GATE 2017) An n-channel enhancement mode MOSFET is biased at $V_{GS} > V_{TH}$ and $V_{DS} > (V_{GS} V_{TH})$, where V_{GS} is the gate-to-source voltage, V_{DS} is the drain-to-source voltage and V_{TH} is the threshold voltage. Considering channel length modulation effect to be significant, the MOSFET behaves as a -
 - A. voltage source with zero output impedance
 - B. voltage source with non-zero output impedance
 - C. current source with finite output impedance
 - D. current source with infinite output impedance

Current source in saturation!

Due to CLM To increases

slowly with Voc.:

O/p impedence in finite

14. (2 marks) (EC-GATE 2019) Consider a long-channel MOSFET with a channel length $1~\mu m$ and width $10~\mu m$. The device parameters are: acceptor concentration $N_A=5\times 10^{16}~cm^{-3}$, electron mobility $\mu_n=800~cm^2(V-s)^{-1}$, oxide capacitance per unit area $C_{ox}=3.45\times 10^{-7}~Fcm^{-2}$, threshold voltage $V_T=0.7~V$. The drain saturation current I_{Dsat} for a gate voltage of 5~V is _____mA (rounded off to two decimal places). $(\epsilon_0=8.854\times 10^{-14}~Fcm^{-1},~\epsilon_{Si}=11.9)$

Ans: 25.52

Range: 25.49 - 25.55

$$T_{0} = \frac{1}{2}M C_{0x} \frac{V}{L} (V_{4x} - V_{7})^{2}$$

$$= \frac{1}{2}800 \times 3.45 \times 10^{-7} \times 10x(4.3)^{2}$$

$$= 25.5 \text{ m A}$$

15. (1 mark) (EC-GATE 2008) The drain current of a MOSFET in saturation region is given by $I_D=K(V_{GS}-V_T)^2$, where K is a constant. The magnitude of the transconductance g_m is -

A.
$$K(V_{GS}-V_T)^2/V_{DS}$$

B.
$$I_D/(V_{GS}-V_{DS})$$

C.
$$2K(V_{GS}-V_T)$$

D.
$$K(V_{GS}-V_T)^2/V_{GS}$$

$$T_{D} = K \left(V_{u_{s}} - V_{r} \right)^{2}$$