DATE	Assignment 4:
EXPT.NO.	Implement a 4-to-1 multiplexer using tho input NAND logic gates.
	Name-Imon Raj
	Rall- 002010501098
	Dept-CSE
	4 to 1 Multiplexer:
	This consists four data input lines
	To, I, I2, I3, and two select lines so, S, and One output
	Y that will give one of the four Input lines. There will
	be an Enable (E) to actually enable the excircuitry.
	Enable(E)
	$T_3 \longrightarrow 4:1$ (output)
	IZ - MULTIPLEXER -> Y
•	$\mathcal{I}_{1} \longrightarrow$
	1.
	S, So (select lines)
	T. 11 Talle .
	Truth Table:
Omax)®	So SI There the output line selects one of the
	in puts on the basi-
	of select lines value]
	1 0 12
	$I \mid I \mid I_3$
	Teacher's Signature

DATE	PAGE NO.
EXPT.NO.	
	So, the expression for Y will be:-
	$Y = \overline{S_0S_1} I_0 + \overline{S_0S_1} I_1 + S_0 \overline{S_1} I_2 + S_0 S_1 I_3$
	Now we will implement the circuit using two input
	NAND Gates.

(Omax)®

Teacher's Signature

4 to 1 MULTIPLEXER

1 to 4 demultiplexer using two input DATE PAGE NO. NAND logic gates. EXPT.NO. 1-to-9 demultiplexer: It consists of a single Input I two select lines So, S, and four outputs Yo, Y,, Y, 1/2 The input data goes to any of the four outputs for a particular combination of select lines. Input 1:4 DEMUX 50 Truth Table 50 Yz Y, Y2 O 1 1 0 1 1 1 [Here the input comes to any of fown outputs] 50, Yo = 50 5, I Now, we will implement the

(Omax)^(R)

 $T_1 = \overline{S_0} S_1 I$

 $Y_2 = S_0 \bar{S}, \bar{I}$

P2 = S0 S, I

circuit using two-input NAND gates.

1 TO 4 DEMULTIPLEXER