DM 2, corrigé

PROBLÈME FONCTIONS HYPERBOLIQUES RÉCIPROQUES

Partie I. Cosinus et sinus hyperboliques

1)

- a) Les fonctions chet sh sont bien définies et dérivables sur \mathbb{R} en tant que sommes de fonctions dérivables. On vérifie sans difficultés (voir cours) que chest paire, que sh est impaire, que sh' = chet que ch' = sh.
- b) Puisqu'une exponentielles est strictement positive, on en déduit que ch est strictement positive sur \mathbb{R} . Ceci entraine que sh est strictement croissante sur \mathbb{R} . Puisque sh(0) = 0, on en déduit que sh est strictement négative sur \mathbb{R}_{+}^{*} et strictement positive sur \mathbb{R}_{+}^{*} . Ceci entraine que ch est strictement décroissante sur \mathbb{R}_{+}^{*} et strictement croissante sur \mathbb{R}_{+}^{*} .
- c) On a $\lim_{x\to -\infty} e^x = 0$ et $\lim_{x\to +\infty} e^x = +\infty$. Ceci entraine (pour le détail du calcul, voir le cours) que $\lim_{x\to -\infty} \operatorname{ch}(x) = +\infty$, $\lim_{x\to +\infty} \operatorname{ch}(x) = +\infty$, $\lim_{x\to -\infty} \operatorname{sh}(x) = -\infty$ et $\lim_{x\to +\infty} \operatorname{sh}(x) = +\infty$. On a de plus pour $x\in \mathbb{R}$:

$$ch(x) - sh(x) = \frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2}$$
$$= e^{-x}.$$

Ceci entraine que $\lim_{x \to +\infty} \operatorname{ch}(x) - \operatorname{sh}(x) = 0.$

Ceci signifie graphiquement que les graphes de chet shse rapprochent l'un de l'autre au voisinage $de +\infty$.

- d) Pour $x \in \mathbb{R}$, on a $e^{-x} \ge -e^{-x}$ donc on a directement $\operatorname{ch}(x) \ge \operatorname{sh}(x)$.
- e) On en déduit les graphes suivants (la fonction ch est la fonction paire et sh est la fonction impaire) :

2)

a) La fonction sh est continue sur \mathbb{R} , strictement croissante et $\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$ et $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$. D'après le théorème de la bijection, sh est bijective de \mathbb{R} dans \mathbb{R} . De même, ch est continue

sur \mathbb{R}_+ , strictement croissante, $\operatorname{ch}(0) = 1$ et $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$. D'après le théorème de la bijection, on a donc que ch est bijective de \mathbb{R}_+ dans $[1, +\infty[$.

b) argsh et argch sont continues car ce sont des réciproques de fonctions continues. On a sh' = ch et ch est strictement positive sur \mathbb{R} donc ne s'annule pas. On en déduit que argsh est dérivable sur \mathbb{R} (c'est la réciproque d'une fonction dérivable dont la dérivée ne s'annule pas). Par contre, on a ch' = sh et sh s'annule uniquement en 0. On en déduit que argch est dérivable sur $]1, +\infty[$ (puisque le seul point où la dérivée de ch s'annule est en 0 et que ch(0) = 1).

3)

- a) Pour $x \in \mathbb{R}_+$, on pose $f(x) = \operatorname{sh}(x) x$. Cette fonction est dérivable sur \mathbb{R}_+ et pour tout $x \in \mathbb{R}_+$, on a $f'(x) = \operatorname{ch}(x) 1 \ge 0$ (en effet la fonction ch est minimale en 0 où elle vaut 1). On en déduit que f est croissante sur \mathbb{R}_+ . Puisque f(0) = 0, on en déduit que f est positive sur \mathbb{R}_+ et donc que pour tout $x \in \mathbb{R}^+$, $\operatorname{sh}(x) \ge x$.
- b) On en déduit les graphes suivants :

c) On a de même:

4)

a) Soit $y \in \mathbb{R}$. On a alors:

$$\operatorname{ch}^{2}(y) - \operatorname{sh}^{2}(y) = \left(\frac{e^{y} + e^{-y}}{2}\right)^{2} - \left(\frac{e^{y} - e^{-y}}{2}\right)^{2}$$

$$= \frac{e^{2y} + 2 + e^{-2y}}{4} - \frac{e^{2y} - 2 + e^{-2y}}{4}$$

$$= 1.$$

b) Soit $x \in [1, +\infty[$. En utilisant la relation précédente en $y = \operatorname{argch}(x)$, on a alors :

$$\operatorname{ch}^{2}(\operatorname{argch}(x)) - \operatorname{sh}^{2}(\operatorname{argch}(x)) = 1.$$

Or, on a pour tout $x \in [1, +\infty[$, $\operatorname{ch}(\operatorname{argch}(x)) = x$ (par définition de la fonction réciproque). Ceci entraine que :

$$\operatorname{sh}^{2}(\operatorname{argch}(x)) = x^{2} - 1.$$

Or, puisque $\operatorname{argch}(x) \geq 0$ (puisque argch est à valeurs dans \mathbb{R}_+), on en déduit que $\operatorname{sh}(\operatorname{argch}(x)) \geq 0$. Ceci entraine que $\operatorname{sh}(\operatorname{argch}(x)) = \sqrt{x^2 - 1}$.

De même si on fixe $x \in \mathbb{R}$, en utilisant la relation de la question précédente en $y = \operatorname{argsh}(x)$, on trouve :

$$ch^{2}(\operatorname{argsh}(x)) - \operatorname{sh}^{2}(\operatorname{argsh}(x)) = 1.$$

Puisque $\operatorname{sh}(\operatorname{argsh}(x)) = x$ et que $\operatorname{ch}(\operatorname{argsh}(x)) \geq 0$ (car ch est toujours positif), on en déduit que :

$$\operatorname{ch}(\operatorname{argsh}(x)) = \sqrt{1 + x^2}.$$

c) Les fonctions shet argsh sont dérivables sur \mathbb{R} . On peut donc dériver shoargsh. On en déduit en dérivant la relation donnée par l'énoncé que pour tout $x \in \mathbb{R}$:

$$\operatorname{argsh}'(x) \times \operatorname{sh}'(\operatorname{argsh}(x)) = 1.$$

Puisque sh' = ch, et en utilisant la question précédente, on trouve donc $\operatorname{argsh}'(x) = \frac{1}{\sqrt{1+x^2}}$

d) De même, ch est dérivable sur \mathbb{R}_+ et argch est dérivable sur $]1,+\infty[$. Ceci entraine que ch \circ argch est dérivable sur $]1,+\infty[$. On en déduit alors en dérivant la relation de l'énoncé que pour tout $x \in]1,+\infty[$:

$$\operatorname{argch}'(x) \times \operatorname{ch}'(\operatorname{argch}(x)) = 1.$$

Puisque ch' = sh, on en déduit alors que $\operatorname{argch}'(x) = \frac{1}{\sqrt{x^2 - 1}}$.

5)

- a) On fixe $y \in \mathbb{R}$ et on considère l'équation $\operatorname{sh}(x) = y$ d'inconnue $x \in \mathbb{R}$.
 - i) On pose $X = e^x$. On a alors:

$$sh(x) = y \Leftrightarrow \frac{e^x - e^{-x}}{2} = y$$
$$\Leftrightarrow X - \frac{1}{X} = 2y$$
$$\Leftrightarrow X^2 - 2Xy - 1 = 0.$$

ii) Le discriminant vaut $\Delta=4(y^2+1).$ On en déduit que les deux solutions de l'équation sont :

$$X_1 = y + \sqrt{y^2 + 1}$$
 et $X_2 = y - \sqrt{y^2 + 1}$.

Or, on a $\sqrt{y^2+1} > \sqrt{y^2}$ (par stricte croissance de $x \mapsto \sqrt{x}$). Ceci entraine que $X_1 > y + |y|$, ce qui entraine $X_1 > 0$. La solution X_1 est donc toujours strictement positive.

On a de même $-\sqrt{y^2+1} < -|y|$. On en déduit que $X_2 < y - |y|$, et donc que $X_2 < 0$.

iii) Puisque l'on a $X=e^x$, on doit garder la solution où X>0. Ceci entraine que l'équation $\operatorname{sh}(x)=y$ admet une unique solution qui est $x=\ln(X_1)=\ln(y+\sqrt{1+y^2})$. Ceci nous donne alors la réciproque de sh puisque $\operatorname{sh}(x)=y\Leftrightarrow x=\operatorname{argsh}(y)$. On peut alors dériver l'expression trouvée (c'est une composée de fonctions dérivables sur \mathbb{R}). On retrouve alors pour tout $y\in\mathbb{R}$:

$$\operatorname{argsh}'(y) = \left(1 + \frac{2y}{2\sqrt{1+y^2}}\right) \times \frac{1}{y+\sqrt{1+y^2}}$$
$$= \left(\frac{y+\sqrt{1+y^2}}{\sqrt{1+y^2}}\right) \times \frac{1}{y+\sqrt{1+y^2}}$$
$$= \frac{1}{\sqrt{1+y^2}}.$$

b) On fixe $y \in [1, +\infty[$ et on considère l'équation $\mathrm{ch}(x) = y$ d'inconnue $x \in \mathbb{R}^+$. Posons alors $X = e^x$. On a alors :

$$ch(x) = y \Leftrightarrow \frac{e^x + e^{-x}}{2} = y$$

$$\Leftrightarrow X + \frac{1}{X} = 2y$$

$$\Leftrightarrow X^2 - 2yX + 1 = 0.$$

On peut alors résoudre cette équation, son discriminant étant $4(y^2 - 1) \ge 0$ car $y \in [1, +\infty[$. Les deux solutions de cette équation sont donc :

$$X_1 = y + \sqrt{y^2 - 1}$$
 et $X_2 = y - \sqrt{y^2 - 1}$.

Démontrons alors que $X_1 \ge 1$. On a :

$$X_1 - 1 = y - 1 + \sqrt{(y - 1)(y + 1)}$$

= $\sqrt{y - 1} \left(\sqrt{y - 1} + \sqrt{y + 1} \right)$
 $\geq 0.$

De même, on peut montrer que $X_2 \le 1$. En effet :

$$\begin{array}{rcl} X_2-1 & = & y-1-\sqrt{(y-1)(y+1)} \\ & = & \sqrt{y-1}\left(\sqrt{y-1}-\sqrt{y+1}\right) \\ & = & \sqrt{y-1}\left(\sqrt{y-1}-\sqrt{y+1}\right) \times \frac{\sqrt{y-1}+\sqrt{y+1}}{\sqrt{y-1}+\sqrt{y+1}} \\ & = & \sqrt{y-1}\times\frac{y-1-(y+2)}{\sqrt{y-1}+\sqrt{y+1}} \\ & = & \frac{-2\sqrt{y-1}}{\sqrt{y-1}+\sqrt{y+1}} \\ & \leq & 0. \end{array}$$

Or, en résolvant l'équation, on a posé $X=e^x$. Puisque l'on cherche une solution $x\in\mathbb{R}_+$, on doit donc garder la solution X telle que $X\geq 1$, c'est à dire X_1 . On en déduit que l'unique solution appartenant à \mathbb{R}_+ de $\operatorname{ch}(x)=y$ est $x=\ln(y+\sqrt{y^2-1})$. Ceci nous donne, puisque $\operatorname{ch}(x)=y\Leftrightarrow x=\operatorname{argch}(y)$ (si $x\in\mathbb{R}_+$ et $y\in[1,+\infty[$, on en déduit que $\operatorname{argch}(y)=\ln(y+\sqrt{y^2-1})$. En dérivant (sur $]1,+\infty[$ pour que la fonction soit dérivable, il faut enlever 1 car $u\mapsto \sqrt{u}$ n'est pas dérivable en 0 (et en $y=1,\,y^2-1=0$). On a donc pour $y\in]1,+\infty[$:

$$\operatorname{argch}'(y) = \left(1 + \frac{2y}{2\sqrt{y^2 - 1}}\right) \times \frac{1}{y + \sqrt{y^2 - 1}}$$
$$= \frac{y + \sqrt{y^2 - 1}}{\sqrt{y^2 - 1}} \times \frac{1}{y + \sqrt{y^2 - 1}}$$
$$= \frac{1}{\sqrt{y^2 - 1}}.$$

Partie II. Tangente hyperbolique

6) Puisque ch ne s'annule pas sur \mathbb{R} , th est bien définie sur \mathbb{R} et est dérivable sur \mathbb{R} comme quotient de fonctions dérivables. On a pour tout $x \in \mathbb{R}$:

$$th'(x) = \frac{ch(x) \times ch(x) - sh(x) \times sh(x)}{ch^{2}(x)}$$
$$= \frac{1}{ch^{2}(x)}.$$

Ceci entraine que the st strictement croissante sur \mathbb{R} . On a de plus pour tout $x \in \mathbb{R}$:

th(x) =
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

= $\frac{1 - e^{-2x}}{1 + e^{-2x}}$.

Ceci entraine que $\lim_{x\to +\infty} \operatorname{th}(x) = 1$. On remarque également que th est impaire, ce qui entraine que $\lim_{x\to -\infty} \operatorname{th}(x) = -1$. On en déduit alors le graphe de th :

7) La fonction the st continue, strictement croissante sur \mathbb{R} , $\lim_{x \to -\infty} \operatorname{th}(x) = -1$ et $\lim_{x \to +\infty} \operatorname{th}(x) = 1$. On en déduit d'après le théorème de la bijection que the st bijective de \mathbb{R} dans]-1,1[.

8) argth est la réciproque d'une fonction continue et est donc continue. C'est également la réciproque d'une fonction dérivable dont la dérivée ne s'annule pas sur \mathbb{R} et elle est donc dérivable sur]-1,1[.

9) On avait pour
$$x \in \mathbb{R}$$
, $\operatorname{th}'(x) = \frac{\operatorname{ch}^2(x) - \operatorname{sh}^2(x)}{\operatorname{ch}^2(x)} = 1 - \operatorname{th}^2(x)$.

10) Pour $x \in \mathbb{R}_+$, posons $f(x) = \operatorname{th}(x) - x$. On a alors f dérivable et $\forall x \in \mathbb{R}_+$, $f'(x) = -\operatorname{th}^2(x) \le 0$. Ceci entraine que f est décroissante sur \mathbb{R}_+ . Puisque f(0) = 0, on en déduit que f est négative sur \mathbb{R}_+ , ce qui nous donne l'égalité voulue. On en déduit alors le tracé suivant de argth :

11) Pour tout $x \in]-1,1[$, on a th $(\operatorname{argth}(x)) = x$ (par définition de la fonction réciproque). On a montré que th et argth étaient dérivables et on a donc :

5

$$\operatorname{argth}'(x) \times \operatorname{th}'(\operatorname{argth}(x)) = 1.$$

Or, on a th' = $1 - \text{th}^2$. On en déduit que th'(argth(x)) = $1 - x^2$. On en déduit que :

$$\forall x \in]-1,1[, \text{ argth}'(x) = \frac{1}{1-x^2}.$$

12) Pour $x \in]-1,1[$, on a en mettant au même dénominateur :

$$\frac{a}{1+x} + \frac{b}{1-x} = \frac{a+b+(b-a)x}{1-x^2}.$$

Pour déterminer a et b, on doit donc résoudre le système $\left\{ \begin{array}{l} a+b=1\\ b-a=0 \end{array} \right.$ On trouve comme solution a=b=1/2. On en déduit que pour tout $x\in]-1,1[$, on a :

$$\operatorname{argth}'(x) = \frac{1}{2} \times \left(\frac{1}{1+x} + \frac{1}{1-x}\right).$$

Puisque $\operatorname{argth}(0) = 0$, on a pour tout $x \in]-1,1[$, $\operatorname{argth}(x) = \int_0^x \operatorname{argth}'(t)dt$. On en déduit alors que pour $x \in]-1,1[$:

$$\operatorname{argth}(x) = \int_0^x \frac{1}{2} \left(\frac{1}{1+t} + \frac{1}{1-t} \right) dt$$
$$= \left[\frac{1}{2} \left(\ln(1+t) - \ln(1-t) \right) \right]_0^x$$
$$= \frac{1}{2} \left(\ln(1+x) - \ln(1-x) \right) - 0$$
$$= \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

PROBLÈME

Une bijection explicite entre $\mathbb N$ et $\mathbb Q$

- 1) Puisque la fonction $f: \mathbb{Z} \to \mathbb{N}$ est bijective, on a alors $f^{-1}: \mathbb{N} \to \mathbb{Z}$ qui est également bijective. On a donc bien \mathbb{Z} dénombrable. Pour montrer qu'un ensemble est dénombrable, il suffit donc de contruire une fonction bijective entre cet ensemble et \mathbb{N} , le « sens » n'est pas important car avec la fonction réciproque on peut aller dans l'autre sens.
- 2) Posons pour $n \in \mathbb{N}^*$, $\mathcal{P}(n) : \ll \varphi(n) \in \mathbb{Q}_+^*$ ». On va procéder par récurrence **forte**.
 - La propriété est vraie au rang 1. En effet, on a $\varphi(1) = 1 \in \mathbb{Q}_+^*$.
 - Soit $n \in \mathbb{N}^*$. Supposons la propriété vraie jusqu'au rang n. Considérons alors $\varphi(n+1)$. On a deux cas possibles :

Si n+1 est pair, il existe $k \in \mathbb{N}^*$ tel que n+1=2k. On a alors $\varphi(n+1)=\varphi(k)+1$. Puisque $\varphi(k) \in Q_+^*$ d'après l'hypothèse de récurrence, on en déduit que $\varphi(n+1) \in \mathbb{Q}_+^*$.

Si n+1 est impair, alors on a $\varphi(n+1) = \frac{1}{\varphi(n)}$ par définition de φ et puisque $\varphi(n) \in \mathbb{Q}_+^*$, on en déduit que $\varphi(n+1) \in \mathbb{Q}_+^*$.

Dans tous les cas, on a montré que $\varphi(n+1) \in \mathbb{Q}_+^*$ donc la propriété est vraie au rang n+1.

- La propriété étant initialisée et héréditaire, elle est vraie à tout rang. On en déduit que φ est bien à valeurs dans \mathbb{Q}_{+}^{*} .
- 3) Premiers résultats.

a) Soit $k \in \mathbb{N}^*$. On a $\varphi(2k) = 1 + \varphi(k)$. Puisque $\varphi(k) \in \mathbb{Q}_+^*$ d'après la question précédente, on en déduit que $\varphi(2k) > 1$. De plus, on a si k = 1, $\varphi(2k-1) = \varphi(1) = 1 \le 1$ et si k > 1, $\varphi(2k-1) = \frac{1}{\varphi(2k-2)}$. Puisque 2k-2 est pair et strictement positif (car k > 1), d'après ce que l'on vient de montrer, on a $\varphi(2k-2) > 1$. On en déduit que $\varphi(2k-1) < 1$.

On a donc montré un résultat un tout petit plus fort que l'énoncé, c'est à dire que pour tous les n impairs strictement plus grands que 1, $\varphi(n) < 1$ et que $\varphi(1) = 1$.

b) Soit $n \in \mathbb{N}$. On remarque que 2^{n+1} étant pair, on a $\varphi(2^{n+1}) = \varphi(2^n) + 1$. Ceci entraine que la suite $(\varphi(2^n))_{n \to \mathbb{N}}$ est une suite arithmétique de raison 1 et de premier terme $\varphi(2^0) = \varphi(1) = 1$. On en déduit que pour tout $n \in \mathbb{N}$, $\varphi(2^n) = n + 1$. On peut aussi montrer ceci par récurrence.

4)

a) Après calculs, on obtient : $\varphi(1) = 1$. $\varphi(2) = \varphi(1) + 1 = 2$. $\varphi(3) = \frac{1}{\varphi(2)} = \frac{1}{2}$. $\varphi(4) = 3$. $\varphi(5) = \frac{1}{3}$. $\varphi(6) = \varphi(3) + 1 = \frac{3}{2}$. $\varphi(7) = \frac{2}{3}$. $\varphi(8) = 4$.

b) $k \in \mathbb{N}$ tel que $k \geq 4$. On suppose que $\varphi(1), \varphi(2), \ldots, \varphi(2k)$ sont distincts deux à deux. Remarquons tout d'abord que 2k+1 étant impair, on a $\varphi(2k+1) \leq 1$ d'après la question 1.b. Ceci entraine, $\varphi(n)$ étant strictement plus grand que 1 pour tout n pair que $\varphi(2k+1)$ est automatiquement distint de $\varphi(2), \varphi(4), \ldots, \varphi(2k), \varphi(2k+2)$. Il reste à montrer qu'il est distinct de tous les impairs précédents. Remarquons que d'après la remarque du 1.b, il est déjà différent de $\varphi(1)=1$.

Supposons donc par l'absurde qu'il existe $j \in [1, k-1]$ tel que $\varphi(2j+1) = \varphi(2k+1)$. On en déduit alors par définition de φ que $\frac{1}{\varphi(2j)} = \frac{1}{\varphi(2k)}$, ce qui revient à $\varphi(2j) = \varphi(2k)$. Ceci est absurde car on a supposé que tous les $\varphi(n)$ pour $n \in [1, 2k]$ étaient distincts deux à deux!

Il reste à montrer que $\varphi(2k+2)$ est distincts de tous les termes précédents. Par le même argument que ci-dessus, cette valeur est différente de tous les $\varphi(n)$ précédents avec n impair. Supposons par l'absurde qu'il existe $j \in \llbracket 1,k \rrbracket$ tel que $\varphi(2j)=\varphi(2k+2)$. On a alors $\varphi(j)+1=\varphi(k+1)+1$, soit $\varphi(j)=\varphi(k+1)$. Puisque $j\leq 2k$ et que $k+1\leq 2k$ (car $k\geq 1$), on en déduit que ceci est absurde d'après ce qui a été supposé (les $\varphi(n)$ sont tous distincts deux à deux pour $n\in \llbracket 1,2k \rrbracket$).

On en déduit que les $\varphi(1), \ldots, \varphi(2k+1), \varphi(2k+2)$ sont tous distincts deux à deux.

c) On a montré dans le a) l'initialisation et dans le b) l'étape d'hérédité. On a donc démontré par récurrence que les $\varphi(n)$ pour $n \in \mathbb{N}^*$ sont distincts deux à deux. Ceci démontre l'injectivité de la fonction φ .

5)

a) On a montré à la question 2.a que $\frac{1}{2}$, $\frac{1}{3}$ et $\frac{2}{3}$ admettent tous les trois un antécédent par φ (respectivement 3, 5 et 7). Ceci entraine que P_3 est vraie.

b) Si a=1, on cherche à construire un antécédent de $\frac{1}{q+1}$. Pour cela, puisque $\varphi(2^q)=q+1$, on remarque que $\varphi(2^q+1)=\frac{1}{q+1}$ ce qui nous permet de trouver un antécédent.

c) Si $a = \frac{q+1}{2}$, on a alors $2 = \frac{q+1}{a}$ ce qui entraine que a divise q+1. C'est absurde car on a supposé a et q+1 premiers entre eux sauf si a=1. Ceci n'est pas possible car on aurait alors q+1=2 donc q=1 alors que $q\geq 3$.

d) On suppose que $a > \frac{q+1}{2}$.

i) Supposons par l'absurde que a et q+1-a ne soient pas premiers entre eux. Il existe alors $b \in \mathbb{N}^*$, $b \neq 1$ tel que b divise a et b divise a et b divise a et a

De plus, puisque $a > \frac{q+1}{2}$, on a 2a > q+1, soit a > q+1-a. On a également bien q+1-a>0 puisque $a \in [1,q]$.

ii) Puisque d'après la question précédente, a et q+1-a sont premiers entre eux, et que $a \in [\![1,q]\!]$, on peut utiliser l'hypothèse de récurrence pour affirmer qu'il existe $k \in \mathbb{N}^*$ tel que $\varphi(k) = \frac{q+1-a}{a}$.

iii) D'après la question précédente, on a $\varphi(k) = \frac{q+1}{a} - 1$, donc $\varphi(k) + 1 = \frac{q+1}{a}$. Ceci entraine que :

$$\varphi(2k) = \frac{q+1}{a}.$$

Ceci entraine finalement que $\varphi(2k+1) = \frac{1}{\varphi(2k)} = \frac{a}{q+1}$. On a donc m=2k+1 qui convient.

e)

i) On a $\frac{q+1}{a} > 2$. On en déduit que le plus grand entier inférieur ou égal à $\frac{q+1}{a}$ est supérieur ou égal à 2 ce qui implique que $n \in \mathbb{N}^*$.

Puisque a > 1, alors puisque a et q + 1 sont premiers entre eux, on a a qui ne divise pas q + 1 et donc $\frac{q+1}{a}$ ne peut pas être entier. On en déduit que :

$$n < \frac{q+1}{a} < n+1 \Leftrightarrow an < q+1 < an+a \Leftrightarrow 0 < q-na+1 < a.$$

ii) De même qu'au c)i), on a a et q+1-na premiers entre eux (on effectue exactement la même preuve). En raisonnant comme au c)ii), on a $\frac{q+1-na}{a}$ qui est dans]0,1[avec le numérateur premier avec a et $a\in \llbracket 1,q \rrbracket$, ce qui entraine d'après l'hypothèse de récurrence, qu'il existe $k\in \mathbb{N}^*$ tel que $\varphi(k)=\frac{q+1-na}{a}$.

On procède alors comme dans le c)iii). On a alors $\varphi(k)=\frac{q+1}{a}-n$, soit $\varphi(k)+n=\frac{q+1}{a}$. On en déduit alors par propriété de φ (on peut montrer ceci par récurrence, de la même manière qu'au 3.b) que :

$$\varphi(2^n k) = \frac{q+1}{a}.$$

On en déduit alors que $\varphi(2^nk+1) = \frac{1}{\varphi(2^nk)} = \frac{a}{q+1}$. On a donc construit un antécédent de $\frac{a}{q+1}$ par φ .

f) Par récurrence, on vient de démontrer que tous les rationnels dans]0,1[admettaient un antécédent par φ (on a fait l'initialisation en a) et l'hérédité dans les questions b), c) et d) par disjonction de cas : on a montré la propriété au rang q+1). Ceci entraine que la propriété est vraie pour tout q, ce qui entraine bien que tous les rationnels de]0,1[ont un antécédent par φ .

6) On a montré à la question 4 que φ est injective. Il reste à prouver la surjectivité. Fixons donc $x \in \mathbb{Q}_+^*$. Si x est dans]0,1[, il a un antécédent par φ d'après ce que l'on vient de démontrer. Si x est entier strictement positif, d'après la question 3.b), il a un antécédent par φ (puisque $\varphi(2^{x-1}) = x$). Si à présent x n'est pas entier et x > 1, alors, on peut écrire x sous la forme x = n + y avec n entier

et $y \in]0,1[$ et y rationnel. y admet un antécédent par φ d'après ce que l'on vient de démontrer donc il existe $k \in \mathbb{N}^*$ tel que :

$$x = n + y = n + \varphi(k).$$

On en déduit alors (toujours de la même manière qu'au 3.b) que $x = \varphi(2^n k)$. On a donc construit un antécédent de x par φ . En conclusion, φ est surjective (de \mathbb{N}^* dans \mathbb{Q}_+^*)!

7) φ étant injective (question 2) et surjective (question 3), elle est bijective de \mathbb{N}^* dans \mathbb{Q}_+^* . On peut alors construire l'application :

$$\psi : \begin{cases} \mathbb{Z} & \to \mathbb{Q} \\ n & \mapsto \varphi(n) \text{ si } n > 0 \\ 0 & \mapsto 0 \\ n & \mapsto -\varphi(-n) \text{ si } n < 0 \end{cases}.$$

Cette fonction est alors bijective de $\mathbb Z$ dans $\mathbb Q$ (elle envoit les entiers positifs sur les rationnels positifs, les entiers négatifs sur les rationnels négatifs et 0 sur 0). On a donc bien ψ bijective de $\mathbb Z$ dans $\mathbb Q$.

8) On a f^{-1} bijective de $\mathbb N$ dans $\mathbb Z$. Ceci entraine par composition de fonctions bijectives que $\varphi \circ f^{-1}$ est bijective de $\mathbb N$ dans $\mathbb Q$. Puisque l'on a construit une bijection entre $\mathbb N$ et $\mathbb Q$, alors $\mathbb Q$ est dénombrable!