模糊方法实验

学生姓名: 李盛; 学号: 229221

Course: 图象分析与理解 – Professor: 季续 Due date: 5月8日, 2022年

1. 模糊边界提取

Solution.

- 1. Definitions of membership functions
 - (a) The change of $\mu_{zero}(d)$ with respect to d is shown in Figure 1a.
 - (b) The change of $\mu_{black}(z_5)$ and $\mu_{white}(z_5)$ as a function of z_5 is shown in Figure 1b.

(a) Membership function of the fuzzy set zero

(b) Membership functions of the fuzzy sets black and white

Figure 1: Membership functions

- (c) The change of $\mu_1(z_5; d2, d6)$ with respect to z_5 is shown in Figure 2a.
- (d) The change of $\mu(z_5)$ with respect to z_5 is shown in Figure 2b.

(a) Rule 1 membership function

(b) Overall membership function

Figure 2: Membership functions

2. Rule-based Inference

- (a) Results of fuzzy spatial filtering are shown in Figure 3.
- (b) When σ of the input membership function is changed to 10, the corresponding boundaries are less obvious. The bandwidth of the truncated Gaussian is wider, which recognizes neighbours with larger intensity differences as a uniform area.

(a) Boundary extraction ($\sigma = 7$)

(b) Boundary extraction ($\sigma = 10$)

Figure 3: Results of fuzzy spatial filtering

2. 阈值分割

Solution.

1. Otsu's Binarization

- (a) The change of $\sigma^2(t)$ with respect to t is shown in Figure 4a.
- (b) As is shown in Figure 4b, the result after Otsu thresholding is barely satisfactory where the top-left square is not well determined.

- (a) between-class variance $\sigma^2(t)$ with respect to t
- (b) thresholded by Otsu algorithm

Figure 4: Illustration of Otsu's Binarization

2. Fuzzy thresholding method

- (a) The change of sum of all pixels' entropy S(t) with respect to threshold t is shown in Figure 5a.
- (b) As is shown in Figure 5b, the result after fuzzy thresholding is satisfactory where all the four squares are well segmented from the background.

(b) thresholded by fuzzy method

Figure 5: Illustration of fuzzy thresholding