

ARTIFICIAL NEURAL NETWORK

Unit-2: Perceptron

Ms. Swetha R.

Department of Electronics and Communication Engineering PES University

CONTENT:Part-1

- 1. Perceptron
 - 1. Introduction-Linearly Separable
 - 2. Rosenblatt Algorithm with example
 - 3. Perceptron Convergence Theorem
- 2. Single Layer Perceptron

DrawBack: Xor Logic Gate

- 3. Multilayer Perceptron
 - 1. Backpropogation Algorithm
 - 2. Example: XOR Logic Gate

Artificial Neural Network: Introduction

Perceptron

Perceptron Convergence Theorem:

If there is a weight vector W* such that

$$\varphi(W * X(k)) = y(k)$$

then for any starting vector W, the perceptron learning rule will converge to weight vector W* that gives the correct response for all training patterns and it will do so in finite number of steps

Artificial Neural Network: Introduction

Perceptron Convergence Theorem

PES UNIVERSITY ONLINE

Assumptions:

- Inputs to the perceptron originate from 2 linearly separable classes.
- W(0)=0
- Learning rate is 1 and it remains constant

Artificial Neural Network: Perceptron

Perceptron Convergence Theorem

Proof:

- Let
 - C₁ and C₂ be 2 different classes,
 - $H_1 \subset C_1$ and $H_2 \subset C_2$
- Define $X(n) = [+1, x_1(n), x_2(n), \dots, x_m(n)]^T$ $W(n) = [b(n), w_1(n), w_2(n), \dots, w_m(n)]^T$
- Require a 'W' such that,

$$w \in R^{m+1}$$
,
 $v(x) = W^T X \ge 0 \forall X \in H_1$
 $v(x) = W^T X < 0 \forall X \in H_2$

Artificial Neural Network: Perceptron

Perceptron Convergence Theorem

For
$$k = 0$$

$$v(0) = W^{T}(0X(0) = 0$$

$$v(0) \in H_{1}, \text{ then } W(1) = W(0)$$

$$\varphi(v) = \begin{cases} 1 & v \ge 0 \\ 0 & v < 0 \end{cases}$$

otherwise
$$x(1) \in H_2$$
, then $W(2) = W(1) - X(1) = -X(1)$

To understand in easier way, i assume that the perceptron incorrectly classifies the vectors x(1),X(2)... Therefore,

$$W^{T}(k)X(k) < 0$$
 for $k = 1,2,...$ and
the input vector $X(k) \in H_1$

Artificial Neural Network: Perceptron

Perceptron Convergence Theorem

For
$$k=1$$

$$v(1) = W^T(1)X(1) < 0$$

$$\operatorname{since} X(1) \in H_1 \quad W(2) = W(1) + X(1) = X(1)$$

For
$$k=2$$

$$v(2)=W^T(2)X(2)<0$$

$$X(2)\in H_1 \text{ and }$$

$$W(3) = W(2) + X(2) = X(1) + X(2)$$

Perceptron

At the kth stage we obtain

$$W(k+1) = X(1) + X(2) + + X(k)$$

Since the Classes C1 and C2 are assumed to be linearly separable, there exists a solution W_{0} .

Then for a fixed solution W_0 , we may define a positive

$$\alpha = \min_{X(i) \in H_1} W_0^T X(i)$$

Perceptron

$$W(k+1) = X(1) + X(2) + \dots + X(k)$$

Multiply W₀ on both the side of the equation

$$W_0^T W(k+1) = W_0^T X(1) + W_0^T X(2) + \dots + W_0^T X(k)$$

Perceptron

Let
$$x$$
, $y \in R^m$, then $|x^T y| \le ||x||^2 ||y||^2$

The above inequality is referred as Cauchy-Schwarz inequality

Therefore,
$$|W_0^T W(k+1)| \le ||W_0||^2 ||W(k+1)||^2$$

 $||W(k+1)||^2 \ge \frac{k^2 \alpha^2}{||W_0||^2} \qquad \dots (a)$

Perceptron

Under the initial assumption

$$W(k+1) = W(k) + X(k)$$
 for $k = 1,2...$

By taking the squared Euclidean norm of both sides of above equation

$$||W(k+1)||^{2} \le ||W(k)||^{2} + ||X(k)||^{2}$$
$$||W(k+1)||^{2} - ||W(k)||^{2} \le ||X(k)||^{2}$$

Perceptron

$$||W(k+1)||^2 \le \sum_{X(i) \in C_1} ||X(k)||^2$$

Let

$$\beta = \max_{X(k) \in C_1} ||X(k)||^2$$

$$\Rightarrow ||W(k+1)||^2 \le k\beta \qquad \cdots (b)$$

Compare (a) and (b)

$$\frac{k^2 \alpha^2}{\|W_0\|^2} \le \|W(k+1)\|^2 \le k\beta$$

Perceptron

Artificial Neural Network-Percepton

Single Layer Perceptron

PES UNIVERSITY ONLINE

- Now lets consider 2 input XOR logic gate.
- Is it possible to design the gate using Single layer perceptron?

х	У	Z	
0	0	0	
1	0	1	
0	1	1	
1	1	0	C_2

Artificial Neural Network-Perceptron

Single Layer Perceptron

- Therefore, Single-layer Perceptron cannot be used in this case.
- This problem can be solved using Multilayer Perceptron

THANK YOU

Ms. Swetha R.

Department of Electronics and Communication Engineering

swethar@pes.edu

+91 80 2672 1983 Extn 753