Dynamic Knowledge Distillation for Pre-trained Language Models

2022 01 30

주세준

- Dynamic Teacher Adoption
- Dynamic Data Selection
- Dynamic Supervision Adjustment

Figure 1: The three aspects of dynamic knowledge distillation explored in this paper. Best viewed in color.

Dynamic Teacher Adoption

- Larger teacher model is not necessarily better
 - The predicted logits of the teacher model become **less soft** as the teacher model becomes larger and more confident about its prediction
 - The **capacity gap** between the teacher and student model increases as the teacher becomes larger.

Method	RTE	IMDB	CoLA	Avg.
BERT _{BASE}	67.8	89.1	54.2	70.4
BERT _{LARGE}	72.6	90.4	60.1	74.4
No KD	63.7	86.3	39.0	63.0
KD w/ BERT _{BASE}	64.9	86.9	39.4	63.7
KD w/ BERT _{LARGE}	64.5	86.5	38.2	63.1
KD w/ Ensemble	64.9	86.7	39.9	63.8
Uncertainty-Hard	66.9*	86.3	42.7*	65.3 64.8
Uncertainty-Soft	66.4*	87.1 *	41.0	

Table 1: We find that bigger teacher with better performance raises a worse student model. Results are average of 3 seeds on the validation set. * denotes statistically significant improvement over the best performing baseline with p < 0.05.

Dynamic Teacher Adoption

Teacher selection

- Hard selection
 - Instances in one batch are sorted according to uncertainty (entropy)
 - Evenly divided into two batches (confident, less confident)
 - Less confident queried by small teacher
 - Confident queried by large teacher
- Soft selection

$$\begin{aligned} u_x &= \text{Entropy}\left(\sigma\left(S\left(x\right)\right)\right) \\ w_1 &= \frac{u_x}{U}, \quad w_2 = 1 - \frac{u_x}{U} \\ \mathcal{L}_{KD} &= w_1 \mathcal{L}_{KL}^{T_1} + w_2 \mathcal{L}_{KL}^{T_2} \end{aligned}$$

Method	RTE	IMDB	CoLA	Avg.
BERT _{base}	67.8	89.1	54.2	70.4
BERT _{large}	72.6	90.4	60.1	74.4
No KD	63.7	86.3	39.0	63.0
KD w/ BERT _{BASE}	64.9	86.9	39.4	63.7
KD w/ BERT _{LARGE}	64.5	86.5	38.2	63.1
KD w/ Ensemble	64.9	86.7	39.9	63.8
Uncertainty-Hard	66.9*	86.3	42.7*	65.3 64.8
Uncertainty-Soft	66.4*	87.1 *	41.0	

Table 1: We find that bigger teacher with better performance raises a worse student model. Results are average of 3 seeds on the validation set. * denotes statistically significant improvement over the best performing baseline with p < 0.05.

Dynamic Data Selection

3 types of uncertainty score

- choose the top $N \times r$ instances to query the **teacher model** (r = selection ratio controlling the number to query)
- Entropy

$$u_x = -\sum_{y} P(y \mid x) \log P(y \mid x).$$

Margin

$$u_x = P(y_1^* \mid x) - P(y_2^* \mid x).$$

Least-Confidence(LC)

$$u_x = 1 - P\left(\hat{y} \mid x\right)$$

Dataset	# Train	# Aug Train	# Dev	# Test	# Class
SST-5	8.8k	176k	1.1k	2.2k	5
IMDB	20k	400k	5k	25k	2
MNLI	393k	786,0k	20k	20k	3
MRPC	3.7k	74k	0.4k	1.7k	2
RTE	2.5k	50k	0.3k	3k	2
CoLA	8.5k	170k	1k	1k	2

Table 3: Statistics of datasets. # Aug Train denotes the number of the augmented training dataset following Jiao et al. (2020).

Method	#FLOPs	SST-5	IMDB	MRPC	MNLI-m/mm
BERT _{BASE} (Teacher)	-	52.0	89.1	86.8	84.0 / 84.4
Vanilla KD	45.1B	47.4	86.8	80.2	81.7 / 82.0
Random	22.6B	46.8	86.4	79.7	81.4 / 81.6
Uncertainty-Entropy	28.2B	46.7	86.8	79.4	81.5 / 82.0
Uncertainty-Margin	28.2B	46.6	86.8	79.4	81.4 / 81.9
Uncertainty-LC	28.2B	46.5	86.8	79.4	81.4 / 81.9
Δ	-	- 0.6	0.0	- 0.5	- 0.2 / 0.0

Table 2: Dynamic data selection results with r set to 0.5. Results are averaged of 3 seeds on the validation set. Δ denotes the minimal performance degradation of different selection strategies compares to vanilla KD.

But no performance enhancement→ Tiny dataset need augmentation

Dynamic Data Selection

Augment data

- Can sufficiently cover the possible data space uncertainty-based selection strategy
- can maintain the superior performance while saving the computational cost

Method	#FLOPs	SST-5	IMDB	MRPC	MNLI-m/ mm	Avg. (†)	$\Delta (\downarrow)$
BERT _{BASE} (Teacher)	-	53.7	88.8	87.5	83.9 / 83.4	79.5	-
TinyBERT [†]	24.9B	-	-	86.4	82.5 / 81.8	-	-
TinyBERT	24.9B	51.4	87.6	86.2	82.6 / 82.0	78.0	0.0
Random	2.49B	51.1	87.0	83.3	80.8 / 80.5	76.5	1.5
Uncertainty-Entropy	4.65B	51.5	87.7	86.5	81.8 / 81.0	77.7	0.3
Uncertainty-Margin	4.65B	51.6	87.7	86.5	81.6 / 81.1	77.7	0.3
Uncertainty-LC	4.65B	51.2	87.7	86.5	81.4 / 80.8	77.5	0.5

Table 4: Test results when the selection ratio r = 0.1 for dynamic data selection on various tasks. #FLOPs denotes the average computational cost of KD for each instance. † denotes results from Jiao et al. (2020).

Figure 3: We plot the mean accuracy on the validation set of 3 seeds (\pm one standard deviation) under different selection ratios of various strategies. Orange dashed line denotes the performance of vanilla KD.

Dynamic Supervision Adjustment

$$\mathcal{L}_{KD} = \lambda_{KL} * \mathcal{L}_{KL} + \lambda_{PT} * \mathcal{L}_{PT}$$

$$\mathcal{L}_{PT} = \sum_{i=1}^{M} \left\| \frac{\mathbf{h}_{i}^{s}}{\|\mathbf{h}_{i}^{s}\|_{2}} - \frac{\mathbf{h}_{I_{pt}(j)}^{t}}{\left\|\mathbf{h}_{I_{pt}(j)}^{t}\right\|_{2}} \right\|_{2}^{2}$$

$$\lambda_{KL} = \lambda_{KL}^* (1 - \frac{u_x}{U}), \quad \lambda_{PT} = \lambda_{PT}^* \frac{u_x}{U}$$

*L*_{vt} *PaTient loss*

measures the alignment between normalized internal representations

M

num of student layer

$I_{pt}(i)$

corresponding alignment of teacher layer for the student i-th layer h_i^{S} , h_i^{t}

i-th layer representation of student and teacher

 λ_{kl}^* , U

Predefined weights by parameter search for each objective Normalization factor

Method	SST-5	MRPC	RTE	Avg.
BERT _{BASE} (Teacher)	52.0	86.8	67.8	68.9
Vanilla KD	47.4	80.2	64.9	64.2
BERT-PKD	46.6	80.8	65.1	64.2
Uncertainty	48.1	81.5*	66.4*	65.3

Table 5: Results of dynamic adjusting the supervision weights, showing the uncertainty-based adjustment is effective. * denote results are statistically significant with p < 0.05.

Figure 6: Evolution of the dynamically adjusted weight of KL-divergence loss weight.

corresponding weight

of the prediction probability alignment objective is increasing as the **student becomes more confident** about its predictions, thus paying more attention to **matching the output distribution** with the teacher model

Dynamic Data Selection

Figure 5: The t-SNE visualization of instance representations. Uncertainty-based strategies select the instances close to the class boundary, which is useful for the learning of the student model. Best viewed in color.

감사합니다