Sprawozdanie EX5

Jan Bronicki 249011

1 Zadanie 1

Schemat:

1.1 Przed progowaniem

Obraz bez szumu:

Obraz z szumem Gaussa:

Obraz po filtracji:

1.2 Histogramy obrazów

Histogram obrazu bez zakłóceń:

Histogram obrazu z szumem Gaussa:

Histogram obrazu po filtracji:

1.3 Obrazy po progowaniu

Obraz bez zakłóceń, po progowaniu:

Obraz z szumem Gaussa po progowaniu:

Obraz po filtracji i progowaniu:

2 Zadanie 2

Schemat:

Obraz po zastosowaniu detektora Canny:

Obraz po zastosowaniu progowania normy gradientu Sobela:

3 Zadanie 3

Schemat zadania 3:

Obraz po zastosowaniu wyszukania krawędzi, które są pochylone o kąt między 20 a 40 stopni.

4 Wnioski

1. Zadanie 1

- Można stwierdzić, że prób można ostawić w przedziale 65-95. Tutaj ustawiłem na 85.
- Zakłócenia takie jak szum Gaussa itrudnia oddzielenie obrazu od tła.
- Filtr dolnoprzepustowy eliminuje problem szumu, tak że obraz zostaje oddzielony od tła tylko lekko gorzej niż w przypadku obrazu bez zakłóceń.

2. Zadanie 2

- Detektor Canny był prostszy w użyciu bo należało jedynie znać odpowiednie progi, które można odczytać z histogramu obrazu. Podczasu stosowania progowania normy gradientu Sobela prócz wartosci progu należało ustawić maskę macierzy konwulsji.
- Oba uzyskane wyniki są bardzo podobne do siebie. Ale obraz na którym działał detektor Canny jest bardziej dokładny oraz nie ma zbędnych linii jak w przypadku progowania normy gradientu Sobela

3. Zadanie 3

W celu detekcji krawędzi pod podpowiednim kątem użyto bloków atan2, R2D.
Dodatkowo zamiast uzycia bloku Thershold użyto bloki określające zakresy kątów.
Otrzymany model dał dobre wyniki.