1. Sea $\phi_n(t) = e^{i\omega_n t}$ en el intervalo [-L, L]. Calcule:

$$\langle \phi_n | \phi_m \rangle$$

2. Suponga que e_1, e_2, \ldots , son ortogonales y que:

$$f = \sum a_n e_n$$

calcule a_n en función de productos internos y normas.

3. Calcule las siguientes:

(a)
$$\int_0^L \sin \frac{n \pi t}{L} \sin \frac{m \pi t}{L} dt$$

(b)
$$\int_0^L \sin \frac{9 \pi t}{L} \cos \frac{7 \pi t}{L} dt$$

(c)
$$\int_0^L \sin \frac{4\pi t}{L} \cos \frac{7\pi t}{L} dt$$

4. Encuentre la serie de Fourier de las siguientes funciones:

(a)
$$f(t) = \begin{cases} 0 & -\pi < t < 0 \\ 2 & 0 < t < \pi \end{cases}$$
 tal que $f(t + 2\pi) = f(t)$

(b)
$$f(t) = \begin{cases} -1 & -2 < t < 0 \\ 1 & 0 < t < 2 \end{cases}$$
 tal que $f(t+4) = f(t)$

(c)
$$f(t) = t^2 \text{ si } f(t+2) = f(t)$$

5. Escriba en forma ángulo fase los primeros cuatro términos no nulos de la serie de Fourier de la función:

$$f(t) = \begin{cases} 0 & -\pi < t < 0 \\ t^2 & 0 < t < \pi \end{cases}$$