Minimize Maximum Mex

The MEX of an array of integers is defined to be the smallest **non-negative integer** not present in it. For example, MEX([2,3,1,2])=0 and MEX([2,0,3])=1.

You are given two arrays A and B, both of length N.

You can perform the following operation on the arrays:

• Choose an index i ($1 \le i \le N$), and swap A_i with B_i .

Find the minimum possible value of $\max(\text{MEX}(A), \text{MEX}(B))$ if you are allowed to perform as many operations as you like (possibly, none).

Input Format

- The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of three lines of input.
 - \circ The first line of each test case contains a single integer N the length of the arrays.
 - \circ The second line contains N space-separated integers A_1,A_2,\ldots,A_N .
 - \circ The third line contains N space-separated integers B_1, B_2, \ldots, B_N .

Output Format

For each test case, output on a new line the answer: the minimum possible value of $\max(\text{MEX}(A), \text{MEX}(B))$ after performing some swaps.

Constraints

- $1 \le T \le 10^5$
- $1 \le N \le 3 \cdot 10^5$
- $0 \le A_i, B_i < N$
- The sum of N over all test cases won't exceed $3\cdot 10^5$.

Sample 1:

