Практическая работа № 2. Анализ алгоритмов и программ.

Задание.

Найти локальный минимум (максимум) функции вида $f(x) = x^3 - x + e^{-x}$ на заданном интервале [a,b] с заданной точностью $\varepsilon > 0$ одним из способов:

- 1) Методом «деления отрезка» пополам;
- 2) Методом «золотого сечения»;
- 3) Методом «Фибоначчи».

Провестианализ разработанного алгоритма и программы и сравнить с аналогичным решением с помощью алгоритма «пассивного поиска».

Вход: вид функции, границы отрезка, требуемая точность

<u>Выход</u> (на экране и в файле): таблица пошаговых приближений, количество итераций (шагов поиска), значение точки минимума, значение функции в этой точке.

Справочный материал к заданию.

1. Время работы программы

Директива препроцессора: include <ctime>

Начальное время работы программы: srand(time(0))

Конечное время работы программы(в секундах): clock()/1000.0

2. «Пассивный поиск»

Графический вид для заданной в задаче функции:

Рис. 1 К методу пассивного поиска

Пример Программы, которая осуществляет поиск локального минимума функции на интервале [-5, +2] с шагом h=1для функции $f(x)=x^3-x+e^{-x}$

```
#include <iostream>
#include <Windows.h>
#include <math.h>
#include <stdio.h>
#include <ctime>

using namespace std;

int main()
{    SetConsoleCP(1251);
    SetConsoleOutputCP(1251);
```

```
srand(time(0)); // начальное время
           floatmin=0,x,y,k,h=1;// описание используемых в программе переменных
           intstep=0;
           for(x=-5.0;x<=-2.0;x=x+h)// основной цикл вычисления значений функции на
               { step++;
                                           // заданном промежутке
           y=x*x*x-x+exp(-x);
           printf(" %d. x = %fy =
                                                 %f\n",step,x,y); //
                                                                            вывод
                                                                                     на
                                                                                          экран
           if(y<min) //условиепоиска минимального значения функции
           { min=y;
           k=x;
           };
           printf("минимальное значение функции на [-5,-2] \n");
           printf("y = %f, точка минимума x = %f\n",min,k);
           printf("количество шагов = %d\n",step);
           cout<< "Время работы программы = " <<clock()/1000.0<<endl;
           cout<< endl<<endl;</pre>
Ответы:
       Если h=1, то
                                                    2) Если h=0.1, то
 1. x = -5.000000 y = 28.413158
                                                  28. x = -2.300003
                                                                      y = 0.107170
 2. x = -4.000000
                   y = -5.401850
                                                  29. x = -2.200003
                                                                     y = 0.577002
                   y = -3.914463
                                                 30. x = -2.100003 y = 1.005159
31. x = -2.000003 y = 1.389046
 3. x = -3.000000
 4. x = -2.000000 y = 1.389056
минимальное значение функции на [-5,-2]
у = -5.401850, точка минимума x = -4.000000
                                                минимальное значение функции на [-5,-2]
у = -6.505695, точка минимума х = -3.700001
количество шагов = 4
                                                 количество шагов = 31
Время работы программы = 0.013 сек.
                                                Время работы программы = 0.053 сек.
                                                    4) Если h=0.001, то
   3) Если h=0.01, то
 297. x = -2.039979
                     y = 1.241024
                                                  2998. x = -2.003217
                                                                       y = 1.377415
 298. x = -2.029979
                     y = 1.278737
                                                  2999. x = -2.002217
                                                                       y = 1.381038
                                                                      y = 1.384657
                     y = 1.315994
 299. x = -2.019979
                                                 3000. x = -2.001217
 300. x = -2.009979
                      y = 1.352792
                                                  3001. x = -2.000217
                                                                       y = 1.388271
минимальное значение функции на
                                                 минимальное значение функции на
 = -6.509638, точка минимума x = -3.679978
                                                y = -6.509648, точка минимума x = -3.679096
количество шагов = 300
                                                 количество шагов = 3001
```

```
5) Если h=0.0001, то

30004. x = -2.000398  y = 1.387619
30005. x = -2.000298  y = 1.387980
30006. x = -2.000198  y = 1.388341
30007. x = -2.000098  y = 1.388701
минимальное значение функции на [-5,-2]
y = -6.509648, точка минимума x = -3.679074
количество шагов = 30007
Время работы программы = 54.507 сек.
```

Время работы программы = 0.585 сек.

```
6) Если h=0.00001, то

299591. x = -2.000031 y = 1.388942
299592. x = -2.000021 y = 1.388979
299593. x = -2.000011 y = 1.389015
299594. x = -2.00001 y = 1.389051
минимальное значение функции на [-5,-2]
y = -6.509648, точка минимума x = -3.679099
количество шагов = 299594
Время работы программы = 509.268 сек.

≈ 8.5 минут!!!
```

Время работы программы = 4.927 сек.

Очевидно, что с ростом количества вычислений пропорционально (с некоторым коэффициентом) растет и время работы программы. Легко подсчитать, что сложность алгоритма равна **O(n)**.

. Также видно, что точные значения и функции, и точки, в которой эта функция достигает минимума можно определить только с некоторой погрешностью.

Поэтому для вычисления экстремумов функций используют методы, которые определяют значение с некоторой, заранее заданной точностью. Например, чтобы приблизительное решение отличалось от «истинного» с погрешностью ε =0.001.Из примера «пассивного поиска» можно заметить, что искомый минимум лежит где-то в интервале |-3.679099 $\pm \varepsilon$ |.

3. Метод «деления отрезка пополам»

Поставим задачу: найти отрезок длины не более $\varepsilon < a - b$, содержащий точку $\mathcal X$ локального минимума. Другими словами, найти точку $\widetilde{\mathcal X}$, с точностью до $\mathcal E$ приближающую точку $\mathcal X$:

$$\left| \overline{X} - \widetilde{X} \right| < \varepsilon$$
.

Для удобства пояснения алгоритма метода обозначим исходный отрезок $\begin{bmatrix} a, b \end{bmatrix}$ = $\begin{bmatrix} a_0, b_0 \end{bmatrix}$ (рис. 2.), возьмем $0 < \delta \leq \frac{b-a}{10}$, построим точки

Рис.2. Графическая интерпретация метода

$$\alpha_0 = \frac{1}{2} \left(\, a_0 + b_0 \, \right) - \, \delta, \, \beta_0 = \alpha_0 + 2 \delta \, \text{ и вычислим } f_\alpha = f(\alpha_0), \, f_\beta = f(\beta_0).$$
 Если $f_\alpha \leq f_\beta$, то заключаем, что $\overset{-}{x} \in [\, a_0, \beta_0 \,]$. Если же $f_\alpha > f_\beta$, то $\overset{-}{x} \in [\, \alpha_0, b_0 \,]$.

В первом случае в качестве приближения x_1 точки $\mathcal X$ возьмем $x_1=\alpha_0$ и примем обозначение $a_1=a_0$, $b_1=\beta_0$. Во втором случае $-a_1=\alpha_0$, $x_1=\beta_0$, $b_1=b_0$. Таким образом, в $\begin{bmatrix} a_0,b_0 \end{bmatrix}$ найден отрезок $\begin{bmatrix} a_1,b_1 \end{bmatrix}$, где содержится $\overline{\mathcal X}$ и указано приближение $x_1\approx \overline{x}$. Если $b_1-a_1<\mathcal E$, то поставленная задача решена. В противном случае отрезок $\begin{bmatrix} a_1,b_1 \end{bmatrix}$ следует подвергнуть аналогичному дроблению (схема 2) и продолжить процесс дробления до тех пор, пока на некотором шаге $\mathbf n$ не выполнится неравенство $b_n-a_n<\mathcal E$. При этом на отрезке $\begin{bmatrix} a_n,b_n \end{bmatrix}$ будет получено приближение $x_n\approx \overline{x}$ точка, в которой функция f(x) достигает приближенное значение локального минимума: $f(\overline{x})\approx f(x_n)$.

Приведенный алгоритм является классическим. Заметим, что в нем на каждом шаге необходимо произвести два вычисления значения функции: f_{lpha} = $f(lpha_0)$, f_{eta} = $f(eta_0)$.

Схема 2.Метод "деления отрезка пополам"

Пример.

Определим с точностью $\varepsilon=10^{-3}$ точку \bar{x} локального минимума функции $f(x)=x^3-x+e^{-x}$. Поиск будем производить на отрезке локализации $\begin{bmatrix} -4, -3 \end{bmatrix}$. Установим $a_0=a=-4,\ b_0=b=-3$.

Первая итерация:

1) вычислим
$$\delta = \frac{b_0 - a_0}{10} = 0.1\,, \qquad \alpha_0 = \frac{a_0 + b_0}{2} - \delta = -3.6\,,$$

$$\beta_0 = \alpha_0 + 2\delta = -3.4\,, \quad f_{\alpha} = f\left(\alpha_0\right) = -6.457766, \quad f_{\beta} = f\left(\beta_0\right) = -5.939899\,;$$

2) сравним f_{α} и f_{β} . Так как $f_{\alpha} \leq f_{\beta}$, то установим в качестве нового отрезка локализации отрезок $\left[a_{1}=a_{0}=-4,\ b_{1}=\beta_{0}=-3.4\ \right]$;

3) и так как условия $\Delta_1=b_I-a_I<\mathcal{E}$ (и $b_I-a_I<2\mathcal{E}$) не выполняются , то произведем очередную итерацию.

Итерационный процесс будем продолжать до тех пор, пока для установленного вновь отрезка локализации данные условия не будут выполнены. Результаты итераций сведем в таблицу 1.

Таблица 1

таолица т	1	1	1	1	1		1
№ шага k	a_k	b_k	α_k	β_k	f_{α}	f_{β}	Δ_k
0	-4.000000	-3.000000	-3.600000	-3.400000	-6.457766	-5.939899	1.000000
1	-4.000000	-3.400000	-3.760000	-3.640000	-6.448950	-6.496707	0.600000
2	-3.760000	-3.400000	-3.616000	-3.544000	-6.476333	-6.363350	0.360000
3	-3.760000	-3.544000	-3.673600	-3.630400	-6.509402	-6.489656	0.216000
4	-3.760000	-3.630400	-3.708160	-3.682240	-6.502006	-6.509551	0.129600
5	-3.708160	-3.630400	-3.677056	-3.661504	-6.509618	-6.507023	0.077760
6	-3.708160	-3.661504	-3.689497	-3.680166	-6.508658	-6.509634	0.046656
7	-3.689497	-3.661504	-3.678300	-3.672701	-6.509645	-6.509312	0.027994
8	-3.689497	-3.672701	-3.682779	-3.679420	-6.509517	-6.509646	0.016796
9	-3.682779	-3.672701	-3.678748	-3.676732	-6.509648	-6.509607	0.010078
10	-3.682779	-3.676732	-3.680360	-3.679151	-6.509630	-6.509648	0.006047
11	-3.680360	-3.676732	-3.678909	-3.678183	-6.509648	-6.509644	0.003628
12	-3.680360	-3.678183	-3.679489	-3.679054	-6.509645	-6.509648	0.002177
13	-3.679489	-3.678183	-3.678967	-3.678706	-6.509648	-6.509648	0.001306
14	-3.679489	-3.678706	-3.679176	-3.679019	-6.509648	-6.509648	0.000784

Из таблицы видно, что искомый результат на 14-ом шаге вычислений. При этом:

$$\overline{x} \approx \frac{b_{14} - a_{14}}{2} = -3.679098, \quad f(\overline{x}) \approx -6.509648.$$

4. Метод «золотого сечения»

Отличие метода золотого сечения от метода деления отрезка пополам заключается в специальном разбиении отрезка локализации относительно его центра точками.

Термин «золотое сечение» ввел Леонардо да Винчи. Принципы, заложенные в основу этого сечения, широко использовались при композиционном построении многих произведений искусства античности и эпохи Возрождения: особенно в живописи и архитектуре.

Определение. Золотым сечен**ием**отрезка [a,b] называется такое разбиение отрезка на две неравные части точками \mathcal{C} и \mathcal{B} , что отношение длины всего отрезка $\Delta = b - a$ к длине его

большей части Δ^+ равно отношению длины большей части к длине Δ^- меньшей части:

$$\dfrac{\Delta}{\Delta^+} = \dfrac{\Delta^+}{\Delta^-}$$
 . При этом (рис.2.5) точки $\,{\cal C}\,$ и $\,{\cal \beta}\,$ располагаются симметрично относительно центра

отрезка $\left[a,b\right]$ и могут быть определены с помощью следующих соотношений:

$$\alpha = a + \frac{2\Delta}{3 + \sqrt{5}}, \quad \beta = a + \frac{2\Delta}{1 + \sqrt{5}}.$$

Замечательно также, что точки $\,lpha\,$ и $\,eta\,$ осуществляют золотое сечение не только всего отрезка $\,[a,b]\,$, но и соответственно подотрезков $\,[a,eta]\,$ и $\,[lpha,b]\,$.

Рис.3. Выбор точек разбиения отрезка в методе

Итерационный процесс локализации минимума функции на заданном числовом отрезке в данном методе ведется аналогично локализации минимума функции в методе деления отрезка пополам. В отличие от него точки α_k и β_k на очередном шаге итерации находятся по формулам:

$$\alpha_k = a_k + \frac{2\Delta_k}{3 + \sqrt{5}}, \quad \beta_k = a_k + \frac{2\Delta_k}{1 + \sqrt{5}}.$$

Свойства золотого сечения позволяют также несколько упростить процедуру поиска точки локализации x_{k+1} на очередном шаге вычислений. Действительно, какой бы из отрезков $[a_k,\beta_k]$ или $[\alpha_k,b_k]$ не был бы выбран за очередной отрезок локализации, точка x_{k+1} ($x_{k+1}=\alpha_k$, если $x_{k+1}\in [a_k,\beta_k]$ и $x_{k+1}=\beta_k$, если $x_{k+1}\in [\alpha_k,b_k]$) совпадет с одной из точек α_{k+1} или β_{k+1} (рис 4). Поэтому на очередном шаге достаточно вычислить значение функции лишь в одной недостающей точке.

Рис. 4. Графическая интерпретация метода золотого сечения

5. Метод Фибоначчи

Данный метод обеспечивает максимальное гарантированное сокращение отрезка локализации при заданном числе N вычислений функции и основан на использовании чисел Фибоначчи F_n таких, что: $F_{n+1}=F_{n-1}+F_n$ для всех $n\geq 2$ при начальных значениях $F_0=1, F_1=1.$ Метод Фибоначчи состоит из N-1 шагов.

Вначале определяется такое число Фибоначчи F_n , для которого справедливо условие $\frac{\Delta_0}{F_{n+1}} \leq \varepsilon$, где $\Delta_0 = \beta_0 - \alpha_0$.

Очередной (k+1)-й шаг выполняется аналогично (k+1)-й итерации метода деления отрезка пополам, но точки α_k и β_k находятся по формулам

$$\alpha_k = a_k + \frac{F_{n-k-1}}{F_{n-k+1}} \Delta_k, \qquad \beta_k = a_k + \frac{F_{n-k}}{F_{n-k+1}} \Delta_k,$$

где $\Delta_k = b_k - a_k$ – длина отрезка локализации $\left[a_k, b_k\right]$ (рис.2.7).

Аналогично методу деления отрезка пополам определяется новый отрезок локализации:

если
$$f(\alpha_k) \leq f(\beta_k)$$
, то $\overline{x} \in [a_k, \beta_k]$; если $f(\alpha_k) > f(\beta_k)$, то $\overline{x} \in [\alpha_k, b_k]$.

В первом случае за очередное приближение к точке минимума $\, \mathcal{X} \,$ принимают $\, x_{k+1} = \alpha_k \,$, во втором случае $\, - \, x_{k+1} = \beta_k \,$.

Рис. 5. Графическая интерпретация метода Фибоначчи

Примерная схема алгоритма:

Все 4 метода реализовать для поиска экстремальных точек в интервалах переменной x—[-5,-3], [0,3] —точки минимума и [-3,0] — точка максимума.