

知识总览

树的逻辑结构回顾

树的存储结构

双亲表示法 (顺序存储)

孩子表示法 (顺序+链式存储)

孩子兄弟表示法 (链式存储)

树的逻辑结构

树是n(n≥0)个结点的有限集合,n=0时,称为<mark>空树</mark>,这是一种特殊情况。在任意一棵非空树中应满足:

- 1)有且仅有一个特定的称为根的结点。
- 2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集合 $T_1, T_2,..., T_m$,其中每个集合本身又是一棵树,并且称为根结点的<mark>子树</mark>。

♠树是一种递归定义的数据结构

二叉树: 一个分支结点最多只能有两棵子树

树: 一个分支结点可以有多棵子树

回顾:二叉树的顺序存储

二叉树:一个分支结点最多只能有两棵子树

二叉树的顺序存储:

按照<mark>完全二叉树</mark>中的结点顺序,将 各结点存储到数组的对应位置。数 组下标反映结点之间的逻辑关系

若根结点从数组下标1开始存放,则:

- i 的左孩子 ——2i
- i 的右孩子 ——2i+1
- i 的父节点 ——[*i*/2]

t[0] t[1] t[2]

如何实现树的顺序存储?

树: 一个分支结点可以有多棵子树

只依靠数组下标,无法反映结点之间的逻 辑关系

行不通的,笨蛋

如何实现树的顺序存储?

思路:用数组顺序存储各个结点。每个结点中保存数据元素、指向双亲结点(父节点)的"指针"

	data	parent
0	Α	-1
1	В	0
2	С	0
3	D	0
4	E	1
5	F	1
6	G	2
7	Н	3
8	1	3
9	O J	3
10	K	4
11		
12		
13		
	•	: -///

根节点的双 亲指针 = -1

非根节点的双亲指针 = 父节点在数组中的下标

王道考研/CSKAOYAN.COM

拓展:双亲表示法存储"森林"

森林。森林是 $m(m\geq 0)$ 棵互不相交的树的集合

	data	parent	
0	Α	-1	
1	В	-1	
2	С	-1	
3	D	-1 <	
4	E	1	
5	F	1	
6	G	2	
7	Н	3	
8	Ι	3	
9	o ^C J	3	
10	K	4	
11			
12			
13			
	:		

每棵树的根 节点双亲指 针 = -1

王道考研/CSKAOYAN.COM

双亲表示法的优缺点

双亲表示法

优点:找双亲(父节点)很方便

缺点: 找孩子不方便, 只能从头到尾遍历整个数组

适用于"找父亲"多,"找孩子"少的应用场景。如:并查集

树的存储2: 孩子表示法

顺序存储+链式存储结合

拓展: 孩子表示法存储"森林"

森林。森林是 $m(m\geq 0)$ 棵互不相交的树的集合

注: 用孩子表示法存储森林, 需要记录多个根的位置

孩子表示法的优缺点

适用于"找孩子"多,"找父亲"少的应用场景。如:服务流程树

树的存储3: 孩子兄弟表示法

//树的存储——孩子兄弟表示法

typedef struct CSNode{

ElemType data;

}CSNode,*CSTree;

指向第-

struct CSNode *firstchild,*nextsibling;

树的<mark>孩子兄弟表示法</mark>,与二叉树类似,采用<mark>二叉链表</mark>实现。 每个结点内保存数据元素和两个指针,但两个指针的含义 与二叉树结点不同

> //数据域 //第一个孩子和右兄弟指针

拓展:孩子兄弟表示法存储"森林"

王道考研/CSKAOYAN.COM

知识回顾与重要考点

欢迎大家对本节视频进行评价~

学员评分: 4.1_2 串的存储结构

△ 公众号:王道在线

i b站: 王道计算机教育

→ 抖音:王道计算机考研