

Transformer from Scratch

Group 2410

July 2024

Mandana Goudarzi 2122279

Maryam Feizi 2091504

Sandra Elsa Sanjai 2113951

Mihriban Yavas 2106188

Introduction

- -Main Problem
- -Protein Structure
- -Our Data
- Technical Approaches
- Results
- Conclusion

Introduction

- THE PROBLEM
- MAIN SOURCE OF APPROACH

- HOW WE CHANGE IT
- OTHER TRANSFORMERS

Find angles

Paper "Enhancing protein backbone angle prediction by using simpler models of deep neural networks"

- Using transformer instead
- They are more complicate

Protein structure Explanation

Figure 1. Amino acid

Figure 2.

Figure 3. Protein folding

Our Data: Pisces

- · Sequence identities for PDB sequences are determined by creating a hidden Markov model for every unique PDB sequence with the program HHblits (Soding et al.) and searching the resulting collection of HMMs with each individual HMM with the program HHsearch.
- · For each calculated list, the server provides an output list of accession IDs (e.g., 1ABCA) with sequence length, structure determination method, resolution, and R-factor (if available) and a file of the sequences in FASTA format.

Specification

Filtering

Tokenizer

Resolution: 0.0- 2.0 · R-factor: 0.25 · Sequence length: 40-200 · Sequence percentage identity: ≤ 30.0 · NMR entries: Included · Chains with chain breaks: Excluded · Chains with disorder: Excluded.

We filter sequences to have a maximum length of 129. This led to a total dataset of 1712 proteins.

For encoding the protein into vectors, we used the ProtBert tokenizer.
matrix of size = length of the sequence + 2 by 1024 (which is cropped afterwards).

- Introduction
- Technical Approaches
 - -Prot-bert
 - -Transformer Architecture
 - -Self Attention
 - -Custom Loss
 - -Masking
- Results
- Conclusion

Bert Model

Is a model specifically designed for protein sequence analysis
Is an "encoder only" model
Prot-Bert is a model for predicting proteins structures
Layers Within Architecture:

- Multi-Head Self-Attention
- Normalization
- Feed-Forward Neural Network
- Residual Connections
- Dropout

Figure 4. Prot-Bert architecture

Transformer Architecture

Self-Attention Mechanism

Since we are doing a translation problem, (sequence to angles) we do not need masking. But for training we padded the sequences and angles to have a consistent length, so we needed to find a way to not let these padded values effect the translation.

PROCESS:

- Calculate Q, K, and V matrices
- Compute attention scores
- Apply the attention mask
- Compute Attention output

$$ext{attention_output} = ext{softmax} \left(rac{Q \cdot K^T}{\sqrt{d_k}} + ext{mask}^T
ight) \cdot V$$

Eq 1. Attention with causal mask

Loss Function

TORUS DISTANCE AS LOSS FUNCTION

Figure 5. Thorus

$$loss = \sum_{i=1}^{N} min(\psi_{pred} - \psi_{true}, 360 - (\psi_{pred} - \psi_{true}))$$

Eq 2. Thorus distance function used as angle loss

Masking

- Masking is crucial to handle padded sequences properly.
- Ensures the model does not attend to learn irrelevant positions, improving training efficiency and performance.

Figure 6. Causal Self-Attention

Figure 7. Masking

- Introduction
- Technical Approaches
- Results
 - -Ramachandran
 - Predictions
- Conclusion

Ramachandran Plots: Pisces

Figure 8. Original Pisces angles

Figure 9. Predicted Pisces angles

Training with Pisces dataset

Figure 10. 800 data points with 200 epochs

- Angle-based loss: **50.4574**
- Mean absolute error for phi: 17.8034
- Mean absolute error for psi: 16.9545

Figure 11. 1000 data points with 200 epochs

- Angle-based loss: 79.9202
- Mean absolute error for phi: 36.1058
- Mean absolute error for psi: 25.2288

Figure 12. Full data points with 200 epochs

- Angle-based loss: **80.7814**
- Mean absolute error for phi: **39.5436**
- Mean absolute error for psi: 31.6467

Evolution of training

Φ ANGLE DISTRIBUTION BEFORE AND AFTER TRAINING FOR A SINGLE PROTEIN

Low training, epochs = 10

Another example of this bounded angles can be seen in the angle plots. In the early epochs, the predicted angles are tightly bound and do not cover the full range of actual angles. The model likely focuses on minimising the overall loss by predicting the more probable angles.

High training, epochs = 100

As the training progresses, the model becomes better at generalizing

Secondary vs Tertiary

The model at first is better at predicting secondary structures than tertiary.

Tertiary structure required more data. We can theorise that this is due to multiple points available for secondary structure even in a single protein, but the critical folding points are lesser in comparison.

Figure 13.

Ramachandran Plots: AlphaFold

Figure 14. Original AlphaFold angles

Figure 15. Predicted Alphafold angles

Training with AlphaFold dataset

Figure 16. Full data points with 100 epochs

- Angle-based loss: 66.1113
- Mean absolute error for phi: 31.4715
- Mean absolute error for psi: **18.0226**

Figure 17. Full data points with 200 epochs

- Angle-based loss: **86.7574**
- Mean absolute error for phi: **41.6457**
- Mean absolute error for psi: **37.9755**

First Pisces then AlphaFold

Figure 18. Model trained with Pisces and then with AlphaFold

- Angle-based loss: 61.0769
- Mean absolute error for phi: 26.9673
- Mean absolute error for psi: 21.2135

First AlphaFold then Pisces

Figure 19. Model trained with AlphaFold and then trained with Pisces

- Angle-based loss: 94.3603
- Mean absolute error for phi: 44.0252
- Mean absolute error for psi: 41.4135

Distribution of Psi

Figure 20.a Distribution of Psi for Pisces

Figure 20.b Distribution of Psi for AlphaFold

Visualisation in PyMol

Figure 21.a

Original

Expand on it here. Why is it important? Why does it matter?

PROTEIN 1UG7- TRAIN

Figure 21.b

50 proteins

You already know that it's important. But what about your listeners?

Figure 21.c

500 proteins

notice the improvement in the helix

Figure 21.d

1711 proteins

Better Tertiary structure when increasing data not epoch

Visualisation in PyMol

PROTEIN 2FM4 - TRAIN

Figure 22.a

Figure 22.b

original

You already know that it's important. But what about your listeners?

Figure 22.c

1711 proteins

Convince the audience, both with facts and with GIFs.

Visualisation in PyMol

PROTEIN 2MYJ - TEST

Figure 23.a

Original

a symmetric protein

Figure 23.b

Predicted

notice the improvement in the helix

Figure 23.c

Original different angle

You already know that it's important. But what about your listeners?

Figure 23.d

Predicted Another angle

notice the improvement in the helix

PROTEIN 2MYJ - TEST USING PISCES

Figure 24.a

Figure 24.b

AlphaFold model

Original Model

Figure 24.c

Our Result

PROTEIN P78946 - TEST

AlphaFold model

Our Result

PROTEIN Q57787 - TEST

Figure 26.a

AlphaFold model

Figure 26.b

Our Result

PROTEIN V9HVX0 - TEST

Figure 27.a

AlphaFold model

Figure 27.c

Our Result

PROTEIN 1UG7 - TEST

Figure 28.a

Our Result with Alphafold- Pisces

Figure 28.b

Our Result with Pisces-Alphafold

PROTEIN P78946 - TEST

Figure 29.a

Our Result with Alphafold- Pisces

Figure 29.b

Our Result with Pisces-Alphafold

- Introduction
- Technical Approaches
- Results
- Conclusion

Conclusion

- Good at secondary structure prediction
- Need more data for tertiary structure maybe even another loss
- A good embedding space is one of the keys

WHAT CAN BE IMPROVED:

- Datasets with only similar lengths (i.e. all close to 129)
- Multiple transformer layers
- More prior information (weights)

Want to make a presentation like this one?

Start with a fully customizable template, create a beautiful deck in minutes, then easily share it with anyone.

Create a presentation (It's free)