

United States Air Force Academy

Intersecting Duals and Ideals of Numerical Semigroups

C1C Jeremy Thompson United States Air Force Academy Advisor: Dr. Kurt Herzinger

Summary

- We will further discuss the algebraic structure known as a numerical semigroup and more advanced definitions related to them.
- We will examine intersections of ideals and duals of numerical semigroups.

Overview

- Definitions
- Example
- Structure
- Example
- Sample Proof
- Hypotheses
- Open Questions

Definitions

Numerical Semigroup -

a subset S of $\mathbb N$ (the non-negative integers) closed under addition, containing zero, and having a largest integer not in S

$$S = < 6, 8, 13 >$$

S = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24...

Definitions

Relative Ideal of S –

a non-empty subset I of \mathbb{N} such that I has a smallest element and if $a \in I$ and $s \in S$, then $a + s \in S$.

$$S = < 6, 8, 13 >$$
 $I = (0, 1)$

S = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24... I = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24...

Definitions

Dual of I in S -

denoted S - I, all integers z such that $z + I \subseteq S$.

$$S = \langle 6, 8, 13 \rangle$$

 $I = (0, 1)$
 $S - I = (12, 13, 19, 22, 23)$

S = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24...

I = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24...

S - I = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24...

$$S = < 5, 7, 16 >$$

S = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

$$S = < 5, 7, 16 >$$

$$I = (0, 2)$$

$$S = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...$$

$$S = < 5, 7, 16 >$$

$$I = (0, 2)$$

S - $I = (5, 12, 14, 16)$

$$S = < 5, 7, 16 >$$

$$I = (0, 2)$$

S - $I = (5, 12, 14, 16)$

SO... lets get on to the cool stuff already!!!

Let S_1 and S_2 be numerical semigroups. S_{\cap} is the intersection of S_1 and S_2 .

 I_1 , I_2 , and I_{\cap} are the respective ideals of the semigroups, created by the same generating set.

 $\cap I$ is the intersection of I_1 and I_2 .

 $S_1 - I_1$, $S_2 - I_2$, $S_{\cap} - I_{\cap}$, and $S_{\cap} - \cap I$ are the duals between the specified semigroups and ideals.

 \cap (S – I) is the intersection of S₁ – I₁ and S₂ – I₂.

 $S_1 - (S_1 - I_1)$, $S_2 - (S_2 - I_2)$, $S_{\cap} - (S_{\cap} - I_{\cap})$, $S_{\cap} - (S_{\cap} - \cap I)$, and $S_{\cap} - (S - I)$ are the duals between the specified semigroups and ideals.

 $\cap (S - \cap (S - I))$ is the intersection of $S_1 - (S_1 - I_1)$ and $S_2 - (S_2 - I_2)$.

$$S_1$$
 $< 4, 5, 6 > =$ $< 5, 6, 7 > =$ $0.12345678910...$ $< 5, 6, 7 > =$ $0.12345678910...$

There are two types of proofs inside this structure:

- Ideal Proofs
 - The intersections are ideals of S_∩
- Containment Proofs
 - The ideals of S_{\cap} in respective levels have subset relationships

Ideal Proofs

Depend upon elements of the intersections being related to all elements in S_{\underline{\chi}}

Containment Proofs

- Most depend upon the following theorem:
- If there are relative ideals *I*, *J* such that $I \subseteq J$, then $S J \subseteq S I$.
- Difficult to prove intersections are contained in all other ideals

Containment Proof –

$$I_{\cap} \subseteq \cap I$$

Let $i \in I_{\cap}$. By the definition of an ideal we may say $i = k + s_{\cap}$, where k is a generator of the ideal and $s_{\cap} \in S_{\cap}$. Because S_{\cap} is the intersection of S_1 and S_2 , we may also say $i = k + s_1 = k + s_2$, where $s_1 \in S_1$ and $s_2 \in S_2$. Therefore $i \in I_1$, I_2 and $i \in \cap I$. Thus $I_{\cap} \subseteq \cap I$.

Hypotheses

- $\cap (S-I) \subseteq S_{\cap} \cap I$, $\cap (S-(S-I)) \subseteq S_{\cap} (S_{\cap} I_{\cap})$
- Structure generalizes easily to more semigroups, provided the number is finite

Open Questions

- What can be said about the properties of the intersections (Semigroups, Relative Ideas, and Duals) based upon the properties of their parent structures?
- What is $S_{\cap} \cap (S (S I))$?

Questions

Questions?

C09Jeremy.Thompson@USAFA.edu

United States Air Force Academy

