BLG 527E Machine Learning

FALL 2021-2022

Assoc. Prof. Yusuf Yaslan & Assist. Prof. Ayse Tosun

Linear Algebra for Machine Learning

Matrix

 Definition 2.1 (Matrix). With m, n ∈ N a real-valued (m, n) matrix A is an m.n-tuple of elements a_{ij}, i = 1,...,m, j = 1,...,n, which is ordered according to a rectangular scheme consisting of m rows and n columns:

Matrix Addition

Matrix Multiplication

- A $\in \mathbb{R}^{mxn}$, B $\in \mathbb{R}^{nxk}$
- $C = AB \in \mathbb{R}^{mxk}$ such that
- $c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}$ i = 1, ..., m, j = 1, ..., k
- Not cummutative: AB ≠BA
- Associativity: A(BC) = (AB)C
- Distributivity: (A+B)C = AC + BCA(C+D) = AC + AD
- $I_mA = AI_n = A$

Identity matrix (I) is a matrix in \mathbb{R}^{nxn} (square matrix) such that $x_{ij} = 1$ for i = j, and $x_{ij} = 0$ for $i \neq j$

Multiplication by scalar also holds the associativity, distributivity properties.

Inverse

- Inverse of A is A^{-1}
- Not every matrix has an inverse. If inverse exists A is called invertible/nonsingular, otherwise singular.

$$\bullet \ A = \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}$$

$$\bullet \ A^{-1} = \frac{1}{a_{11}a_{22}-a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \ iff \ determinant \ is \ not \ zero$$

Transpose

- Transpose of A is A^T
- Write the rows of A as the columns in its transpose.
- Properties:
 - $AA^{-1} = I = A^{-1}A$
 - $(AB)^{-1} = B^{-1} A^{-1}$
 - $(A^T)^T = A$
 - $(A + B)^T = A^T + B^T$
 - $(AB)^T = B^T A^T$
- **Symmetric** matrix is a matrix A **if A = A**^T Only *nxn* matrices (square) can be symmetric.

Vectors

Norm of a vector is a function

$$\|.\|:V\to\mathbb{R}$$

which assigns each vector x its length ||x||

The following properties:

- Absolutely homogeneous: $\|\lambda x\| = \|\lambda\| \|x\|$
- Triangle inequality: $||x + y|| \le ||x|| + ||y||$
- Positive definite: $||x|| \ge 0$ and ||x|| = 0 then x = 0

Orthogonal Matrix

A square matrix is orthogonal iff its columns are orthonormal so that

$$AA^{T} = I = A^{T}A$$
 which implies that $A^{-1} = A^{T}$

• Transformations with orthogonal matrices are special:

$$||Ax||^2 = ||x||^2$$

Orthogonal matrices

• A =
$$\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$$
 (length of row is 1)

Solve this by calculating AA^T = I

• A =
$$\begin{bmatrix} cos\theta & sin\theta \\ sin\theta & cos\theta \end{bmatrix}$$
 (also symmetric)

Matrix differentiation

Let y be m-element vector (or mXn matrix) and x be an n-element vector.

$$\bullet \, \frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} \text{ (if x is a scalar, derivative of y wrt x is mX1 vector)}$$

- Let where y is m×1, x is n×1, A is m×n
 - if **y=Ax**, then $\frac{\partial y}{\partial x}$ = A (Solve it to see.)

Matrix/Vector differentiation

- Let the scalar α and y is m×1, x is n×1, A is m×n
 - if $\alpha = y^T A x$, then $\frac{\partial \alpha}{\partial x} = y^T A$ and $\frac{\partial \alpha}{\partial y} = x^T A^T$
- Let the scalar α and where x is n×1, A is n×n

•
$$\alpha = x^T A x$$
, $\frac{\partial \alpha}{\partial x} = x^T (A + A^T)$

- For the special case where A is a symmetric matrix
 - $\alpha = x^T A x$, $\frac{\partial \alpha}{\partial x} = 2x^T A$