SOBRE TRANSIENCIA Y RECURRENCIA DE CAMINATAS ALEATORIAS AUTOINTERACTUANTES

Tesis de Maestría en Matemática Aplicada

Daniel Camarena

Asesor: Dr. Gonzalo Panizo (IMCA)

Co-Asesor: Dr. Alejandro F. Ramírez (PUCCH)

5 de febrero del 2021

Contenido

- Introducción
- Caminatas aleatorias autointeractuantes
 - El modelo de caminatas aleatorias autointeractuante
 - Transiencia
 - Recurrencia
- Caminata aleatoria excitada balanceada
 - Definición y resultado central
 - Prueba en el caso de superposición
- 4 Conclusiones y recomendaciones

Introducción Caminatas aleatorias autointeractuantes Caminata aleatoria excitada balanceada Conclusiones y recomendaciones

Introducción

Motivación: Caminatas aleatorias simples en \mathbb{R}^d

Motivación: Caminatas aleatorias simples en \mathbb{R}^d

Kakutani:

Un hombre borracho eventualmente retorna a casa, pero una ave borracha eventualmente se pierde.

Motivación: Una caminata aleatoria en R

Caminatas aleatorias autointeractuantes

- Medidas de salto: para $s \geq 1$ y $d \geq 1$ sean μ_1, \ldots, μ_s medidas de prob. en \mathbb{R}^d
- Pasos: $(\xi_n^i)_{n\geq 1}$ succesiones de vectores aleatorios independientes en \mathbb{R}^d con

$$\xi_n^i \sim \mu_i, \ \forall n \geq 1, \ i = 1, \dots s$$

• Regla adaptada: $\ell = (\ell(k))_{k \geq 0}$ como un proceso estocástico sobre $\{1, \ldots, s\}$ adaptado a la filtración de la caminata $(\mathcal{F}_n)_{n \geq 0}$.

- Medidas de salto: para $s \geq 1$ y $d \geq 1$ sean μ_1, \ldots, μ_s medidas de prob. en \mathbb{R}^d
- Pasos: $(\xi_n^i)_{n\geq 1}$ succesiones de vectores aleatorios independientes en \mathbb{R}^d con

$$\xi_n^i \sim \mu_i, \ \forall n \geq 1, \ i = 1, \dots s$$

• Regla adaptada: $\ell = (\ell(k))_{k \geq 0}$ como un proceso estocástico sobre $\{1, \ldots, s\}$ adaptado a la filtración de la caminata $(\mathcal{F}_n)_{n \geq 0}$.

Una caminata aleatoria autointeractuante es una caminata $X=(X_n)_{n\geq 0}$ generada por las medidas de probabilidad μ_1,\ldots,μ_s y la regla adaptada ℓ :

$$\begin{cases} X_0 = 0 \\ X_n = X_{n-1} + \xi_n^{\ell(n-1)}, & n \ge 1. \end{cases}$$

$$X_n = X_{n-1} + \sum_{i=1}^{s} 1_{\{\ell(n-1)=i\}} \xi_n^i$$

$$X_n = X_{n-1} + \sum_{i=1}^{s} 1_{\{\ell(n-1)=i\}} \xi_n^i$$

Lema 1 (Propiedad de martingala)

Si las medidas μ_1, \ldots, μ_s tienen media cero entonces $(X_n)_{n\geq 0}$ es una martingala.

$$X_n = X_{n-1} + \sum_{i=1}^{s} 1_{\{\ell(n-1)=i\}} \xi_n^i$$

Lema 1 (Propiedad de martingala)

Si las medidas μ_1, \ldots, μ_s tienen media cero entonces $(X_n)_{n\geq 0}$ es una martingala.

Dos tipos de comportamiento:

• Se dice que la caminata X es transiente si

$$\lim_{n\to\infty} ||X_n|| = +\infty \quad c.s.$$

• Se dice que la caminata X es recurrente si existe R > 0 tal que

$$\liminf_{n} \|X_n\| \leq R \quad c.s.$$

• **soporte** de una medida de prob. μ :

$$\operatorname{supp}(\mu) = \bigcap \{ F \subset \mathbb{R}^d : F \operatorname{cerrado} \wedge \mu(F) = 1 \}$$

• μ es *d*-dimensional:

$$\dim (\operatorname{span} {\sup(\mu)}) = d \iff \det \operatorname{Var}(\mu) \neq 0.$$

• μ es no-degenerada:

$$\dim (\operatorname{span} \{\operatorname{supp}(\mu)\}) \geq 1.$$

• **soporte** de una medida de prob. μ :

$$\operatorname{supp}(\mu) = \bigcap \{ F \subset \mathbb{R}^d : F \operatorname{cerrado} \wedge \mu(F) = 1 \}$$

• μ es *d*-dimensional:

$$\dim (\operatorname{span} \{\operatorname{supp}(\mu)\}) = d \iff \det \operatorname{Var}(\mu) \neq 0.$$

• μ es no-degenerada:

$$\dim (\operatorname{span} \{\operatorname{supp}(\mu)\}) \geq 1.$$

Lema 2 (No confinamiento)

Si todas las medidas μ_1, \ldots, μ_s son **no-degeneradas** entonces

$$\limsup_n \|X_n\| = +\infty \quad c.s.$$

para toda regla adaptada ℓ .

Cuestiones principales

- Dadas μ_1, \ldots, μ_s medidas en probabilidad en \mathbb{R}^d con media cero. ¿Cuáles son las condiciones sobre las medidas de modo que para toda regla adaptada ℓ la caminata generada sea transiente?
- ② Dadas μ_1, \ldots, μ_s medidas en probabilidad en \mathbb{R}^d con media cero. ¿Cuáles son las condiciones sobre las medidas de modo que para toda regla adaptada ℓ la caminata generada sea recurrente?
- Olasificar según transiencia o recurrencia una familia de caminatas que generalizan las caminatas aleatorias excitadas balanceadas definidas por [Benjamini et al., 2011].

Transiencia

Lema 3 (Criterio de transiencia)

Sea X una caminata aleatoria generada por las medidas μ_1, \ldots, μ_s con media cero y no degeneradas, y una regla adaptada ℓ . Si existe una función $\varphi \colon \mathbb{R}^d \to \mathbb{R}_+$ tal que

$$\mathbb{E}[\varphi(X_{n+1}) - \varphi(X_n)|\mathcal{F}_n] \leq 0$$

 $y \varphi(x) \to 0$ cuando $x \to \infty$. Entonces la caminata X es transiente.

La condición traza

Se dice que una matriz semidefinida positiva $\it V$ satisface la condición traza si

$$\operatorname{tr}(V) > 2\lambda_{\mathsf{máx}}(V).$$

La condición traza

Se dice que una matriz semidefinida positiva V satisface la condición traza si

$$\operatorname{tr}(V) > 2\lambda_{\mathsf{máx}}(V).$$

Teorema 1 (Teorema 1.3, [Peres et al., 2013])

Sean μ_1, \ldots, μ_s medidas en \mathbb{R}^d con media cero, $d \geq 3$, con $2 + \beta$ momento, para algún $\beta > 0$. Suponga que, bajo alguna transformación lineal, las medidas de salto satisfacen la condición traza, esto es,

$$\operatorname{tr}(A\operatorname{Var}(\mu_i)A^t) > 2\lambda_{\mathsf{máx}}(A\operatorname{Var}(\mu_i)A^t)$$

para todo $1 \le i \le s$. Entonces toda caminata aleatoria X generada por esas medidas y una regla adaptada arbitraria ℓ es transiente.

Sean μ_1, \ldots, μ_s medidas en \mathbb{R}^d con media cero, $d \geq 3$, con $2 + \beta$ momento, para algún $\beta > 0$. Suponga que las medidas de salto satisfacen la condición traza, es decir,

$$\operatorname{tr}(\operatorname{Var}(\mu_i)) > 2\lambda_{\mathsf{máx}}(\operatorname{Var}(\mu_i)), \quad 1 = i, \dots, s.$$

Sean μ_1, \ldots, μ_s medidas en \mathbb{R}^d con media cero, $d \geq 3$, con $2 + \beta$ momento, para algún $\beta > 0$. Suponga que las medidas de salto satisfacen la condición traza, es decir,

$$\operatorname{tr}(\operatorname{Var}(\mu_i)) > 2\lambda_{\mathsf{máx}}(\operatorname{Var}(\mu_i)), \quad 1 = i, \dots, s.$$

Considere la función

$$\varphi(x) = \frac{1}{\ln(1+\|x\|^2)} \wedge 1, \ x \in \mathbb{R}^d.$$

Sean μ_1, \ldots, μ_s medidas en \mathbb{R}^d con media cero, $d \geq 3$, con $2 + \beta$ momento, para algún $\beta > 0$. Suponga que las medidas de salto satisfacen la condición traza, es decir,

$$\operatorname{tr}(\operatorname{Var}(\mu_i)) > 2\lambda_{\mathsf{máx}}(\operatorname{Var}(\mu_i)), \quad 1 = i, \dots, s.$$

Considere la función

$$\varphi(x) = \frac{1}{\ln(1+\|x\|^2)} \wedge 1, \ x \in \mathbb{R}^d.$$

Entonces existe una constante R > 0 suficientemente grande tal que

$$\mathbb{E}[\varphi(x+Z)-\varphi(x)]\leq 0$$

para $||x|| \ge R$ y cualquier vector aleatorio $Z \sim \mu_i$, $i = 1, \dots, s$.

Sea $Z\sim\mu$ con μ una medida en \mathbb{R}^d con $2+\beta$ momento, por la fórmula de Taylor con resto de Lagrange, existe $0<\eta<1$ tal que

$$\varphi(x+\tilde{Z})=\varphi(x)+\varphi'(x)\cdot \tilde{Z}+\frac{1}{2}\varphi''(x)\cdot \tilde{Z}^2+\frac{1}{3!}\varphi'''(x+\eta \tilde{Z})\cdot \tilde{Z}^3.$$

para \tilde{Z} no muy grande.

Sea $Z\sim\mu$ con μ una medida en \mathbb{R}^d con $2+\beta$ momento, por la fórmula de Taylor con resto de Lagrange, existe $0<\eta<1$ tal que

$$\varphi(x+\tilde{Z})=\varphi(x)+\varphi'(x)\cdot\tilde{Z}+\frac{1}{2}\varphi''(x)\cdot\tilde{Z}^2+\frac{1}{3!}\varphi'''(x+\eta\tilde{Z})\cdot\tilde{Z}^3.$$

para \tilde{Z} no muy grande.

Considere $\tilde{Z}=Z1_{\{Z\leq \frac{\|x\|}{2}\}}$ y $\|x\|\geq 2\sqrt{2}$, de modo que $\|x+\tilde{Z}\|\geq \sqrt{2}$. Ahora, se acotará en promedio cada sumando del segundo miembro de la siguiente igualdad

$$\varphi(x+Z)-\varphi(x)=[\varphi(x+Z)-\varphi(x+\tilde{Z})]+\varphi'(x)\cdot \tilde{Z}+\frac{1}{2}\varphi''(x)\cdot \tilde{Z}^2+\frac{1}{6}\varphi'''(x+\eta \tilde{Z})\cdot \tilde{Z}^3.$$

Transiencia en dimensión $d \ge 3$

Teorema 2 (Transiencia en dimensión $d \ge 3$)

Sea $d \geq 3$ y μ_1, \ldots, μ_{d-1} medidas d-dimensionales en \mathbb{R}^d con media cero y $2+\beta$ momento, para algún $\beta > 0$. Entonces la caminata aleatoria X generada por estas medidas y cualquier regla adaptada ℓ es transiente.

Transiencia en dimensión $d \ge 3$

Teorema 2 (Transiencia en dimensión $d \ge 3$)

Sea $d \geq 3$ y μ_1, \ldots, μ_{d-1} medidas d-dimensionales en \mathbb{R}^d con media cero y $2 + \beta$ momento, para algún $\beta > 0$. Entonces la caminata aleatoria X generada por estas medidas y cualquier regla adaptada ℓ es transiente.

Proposición 1 (Teorema 1, [Eldan et al., 2018])

Sean k,d,s enteros positivos tales d>k y $s\leq \left[\frac{d-1}{k-1}\right]$. Sean M_1,\ldots,M_s matrices de orden d simétricas definida-positiva de rango máximo. Entonces existe una matriz cuadrada A tal que

$$\frac{\lambda_{\mathsf{máx}}(AM_iA^t)}{\mathrm{tr}(AM_iA^t)} < \frac{1}{k} \tag{1}$$

para todo $1 \le i \le s$.

Recurrencia

Lema 4 (Criterio de recurrencia)

Sea X una caminata aleatoria generada por las medidas μ_1, \ldots, μ_s con media cero y no-degeneradas, y una regla adaptada ℓ . Sea la función $\varphi \colon \mathbb{R}^d \to \mathbb{R}_+$ tal que $\varphi(x) \to +\infty$ cuando $x \to \infty$. Suponga que existe un conjunto compacto K tal que:

$$\mathbb{E}[\varphi(X_{(n+1)\wedge\tau_K})-\varphi(X_{n\wedge\tau_K})|\mathcal{F}_{n\wedge\tau_K}]\leq 0, \quad \forall n\geq 0.$$

Entonces la caminata X es recurrente.

Recurrencia

Lema 4 (Criterio de recurrencia)

Sea X una caminata aleatoria generada por las medidas μ_1, \ldots, μ_s con media cero y no-degeneradas, y una regla adaptada ℓ . Sea la función $\varphi \colon \mathbb{R}^d \to \mathbb{R}_+$ tal que $\varphi(x) \to +\infty$ cuando $x \to \infty$. Suponga que existe un conjunto compacto K tal que:

$$\mathbb{E}[\varphi(X_{(n+1)\wedge\tau_K})-\varphi(X_{n\wedge\tau_K})|\mathcal{F}_{n\wedge\tau_K}]\leq 0, \quad \forall n\geq 0.$$

Entonces la caminata X es recurrente.

Proposición 2 (Recurrencia en dimensión d = 1)

Sean μ_1, \ldots, μ_s medidas en $\mathbb R$ no degeneradas con media cero y $2+\beta$ momento, para algún $\beta>0$. Entonces toda caminata aleatoria X generada por esas medidas y una regla adaptada arbitraria ℓ es recurrente.

Fijada la dimensión $d \ge 2$ y dos enteros $d_1, d_2 \in \{1, \ldots, d\}$ tales que $d_1 + d_2 \ge d$. Defina el proceso $(S_n : n \ge 0)$, denominado **caminata aleatoria excitada balanceada** en \mathbb{Z}^d como una mezcla de dos caminatas aleatorias simples, con $S_0 = 0$:

Fijada la dimensión $d \ge 2$ y dos enteros $d_1, d_2 \in \{1, \ldots, d\}$ tales que $d_1 + d_2 \ge d$. Defina el proceso $(S_n : n \ge 0)$, denominado **caminata aleatoria excitada balanceada** en \mathbb{Z}^d como una mezcla de dos caminatas aleatorias simples, con $S_0 = 0$:

• para todo $1 \le i \le d_1$,

$$\mathbb{P}[S_{n+1} - S_n = \pm e_i | \mathcal{F}_n, S_n \neq S_j \text{ para todo } 1 \leq j < n] = \frac{1}{2d_1},$$

Fijada la dimensión $d \ge 2$ y dos enteros $d_1, d_2 \in \{1, \ldots, d\}$ tales que $d_1 + d_2 \ge d$. Defina el proceso $(S_n : n \ge 0)$, denominado **caminata aleatoria excitada balanceada** en \mathbb{Z}^d como una mezcla de dos caminatas aleatorias simples, con $S_0 = 0$:

• para todo $1 \le i \le d_1$,

$$\mathbb{P}[S_{n+1} - S_n = \pm e_i | \mathcal{F}_n, S_n \neq S_j \text{ para todo } 1 \leq j < n] = \frac{1}{2d_1},$$

• y para todo $1+d-d_2 \leq i \leq d$,

$$\mathbb{P}[S_{n+1} - S_n = \pm e_i | \mathcal{F}_n, S_n = S_j ext{ para algún } 1 \leq j < n] = \frac{1}{2d_2};$$

donde \mathcal{F}_n es el σ -álgebra generado por S_0, \ldots, S_n .

Caminata aleatoria excitada balanceada: Otra vista

• $(\xi_n : n \ge 1)$ v.a.'s i.i.d. que toman cada uno de los vectores

$$\pm e_1, \ldots, \pm e_{d_1}$$
 con probabilidad $1/(2d_1)$.

• $(\zeta_n : n \ge 1)$ v.a.'s i.i.d., independientes de las ξ_n 's, iguales a

$$\pm e_{1+d-d_2}, \dots, \pm e_d$$
 con probabilidad $1/(2d_2)$.

Defina ahora recursivamente, $S_0 = 0$, y

$$S_{n+1}=S_n+\Delta_{n+1},$$

donde el paso es

$$\Delta_{n+1} = \begin{cases} \xi_{r(n)} \,, & \text{si } r(n) = r(n-1) + 1 \\ \zeta_{n+1-r(n)} \,, & \text{si } r(n) = r(n-1) \end{cases}$$

y $r(n)=\#\{S_0,\ldots,S_n\}$ es el cardinal del rango de la caminata aleatoria al tiempo n.

Caminata aleatoria excitada balanceada: Resultado central

La caminata aleatoria $M_d(d_1, d_2)$ es

- transiente si visita cada sitio solo una cantidad finita de veces c.s.
- recurrente si visita cada sitio infinitas veces c.s.

Caminata aleatoria excitada balanceada: Resultado central

La caminata aleatoria $M_d(d_1, d_2)$ es

- transiente si visita cada sitio solo una cantidad finita de veces c.s.
- recurrente si visita cada sitio infinitas veces c.s.

Hay dos casos.

- Caso de no-superposición: $d_1 + d_2 = d$ [Benjamini et al., 2011]
- Caso de superposición: $d_1 + d_2 > d$

Caminata aleatoria excitada balanceada: Resultado central

La caminata aleatoria $M_d(d_1, d_2)$ es

- transiente si visita cada sitio solo una cantidad finita de veces c.s.
- recurrente si visita cada sitio infinitas veces c.s.

Hay dos casos.

- Caso de *no-superposición*: $d_1 + d_2 = d$ [Benjamini et al., 2011]
- Caso de superposición: $d_1 + d_2 > d$

Teorema 3 (Teorema 1, [Camarena et al., 2020])

Para cada $d \ge 4$ y $1 \le d_1, d_2 \le d$ con $d_1 + d_2 > d$ y $(d, d_1, d_2) \ne (4, 3, 2)$, la caminata aleatoria $M_d(d_1, d_2)$ es transiente.

Teorema 4 (Benjamini, Kozma y Schapira, 2011)

La caminata aleatoria $M_4(2,2)$ es transiente. Además, hay transiencia en dimensión $d \geq 5$.

Teorema 4 (Benjamini, Kozma y Schapira, 2011)

La caminata aleatoria $M_4(2,2)$ es transiente. Además, hay transiencia en dimensión d > 5.

Teorema 5 (Peres, Schapira y Sousi, 2016)

La caminata aleatoria $M_3(1,2)$ es transiente.

El Teorema 3 puede probarse definiendo

$$r=d_1+d_2-d>0$$

$$d = (d_1 - r) + r + (d_2 - r).$$

El Teorema 3 puede probarse definiendo

$$r=d_1+d_2-d>0$$

de modo que

$$d = (d_1 - r) + r + (d_2 - r).$$

• Caso $d_1 - r \ge 3$ o $r \ge 3$ o $d_2 - r \ge 3$: caminatas en dimensión $d \ge 7$, y además las caminatas $M_4(4,1)$ y $M_4(1,4)$.

El Teorema 3 puede probarse definiendo

$$r=d_1+d_2-d>0$$

$$d = (d_1 - r) + r + (d_2 - r).$$

- Caso $d_1 r \ge 3$ o $r \ge 3$ o $d_2 r \ge 3$: caminatas en dimensión $d \ge 7$, y además las caminatas $M_4(4,1)$ y $M_4(1,4)$.
- Si vale la condición traza [Peres et al., 2013]: caminatas en dimensión $d \ge 5$, y además las caminatas $M_4(3,3)$, $M_4(3,4)$, $M_4(4,3)$ y $M_4(4,4)$.

El Teorema 3 puede probarse definiendo

$$r=d_1+d_2-d>0$$

$$d = (d_1 - r) + r + (d_2 - r).$$

- Caso $d_1 r \ge 3$ o $r \ge 3$ o $d_2 r \ge 3$: caminatas en dimensión $d \ge 7$, y además las caminatas $M_4(4,1)$ y $M_4(1,4)$.
- Si vale la condición traza [Peres et al., 2013]: caminatas en dimensión $d \ge 5$, y además las caminatas $M_4(3,3)$, $M_4(3,4)$, $M_4(4,3)$ y $M_4(4,4)$.
- Usando el método de [Benjamini et al., 2011]: caminatas $M_4(2,4)$ y $M_4(4,2)$.

El Teorema 3 puede probarse definiendo

$$r=d_1+d_2-d>0$$

$$d = (d_1 - r) + r + (d_2 - r).$$

- Caso $d_1 r \ge 3$ o $r \ge 3$ o $d_2 r \ge 3$: caminatas en dimensión $d \ge 7$, y además las caminatas $M_4(4,1)$ y $M_4(1,4)$.
- Si vale la condición traza [Peres et al., 2013]: caminatas en dimensión $d \ge 5$, y además las caminatas $M_4(3,3)$, $M_4(3,4)$, $M_4(4,3)$ y $M_4(4,4)$.
- Usando el método de [Benjamini et al., 2011]: caminatas $M_4(2,4)$ y $M_4(4,2)$.
- Usando el método de [Peres et al., 2016]: caminata $M_4(2,3)$

ldea de prueba de la transiencia de la caminata $M_4(2,3)$

Se escribe la posición en el tiempo n de la caminata $M_4(2,3)$ como

$$S_n=(X_n,Y_n,Z_n,W_n).$$

Defina la sucesión de tiempos de parada $(\tau_k : k \ge 0)$ por $\tau_0 = 0$ y para $k \ge 1$,

$$\tau_k := \inf\{n > \tau_{k-1} : (Z_n, W_n) \neq (Z_{n-1}, W_{n-1})\}.$$

Luego:

• $\tau_k < \infty$ c.s. para todo $k \ge 0$.

ldea de prueba de la transiencia de la caminata $M_4(2,3)$

Se escribe la posición en el tiempo n de la caminata $M_4(2,3)$ como

$$S_n=(X_n,Y_n,Z_n,W_n).$$

Defina la sucesión de tiempos de parada $(\tau_k : k \ge 0)$ por $\tau_0 = 0$ y para $k \ge 1$,

$$\tau_k := \inf\{n > \tau_{k-1} : (Z_n, W_n) \neq (Z_{n-1}, W_{n-1})\}.$$

Luego:

- $\tau_k < \infty$ c.s. para todo $k \ge 0$.
- ullet $(U_k:k\geq 0)$, con $U_k=(Z_{ au_k},W_{ au_k})$, es una caminata aleatoria simple en \mathbb{Z}^2 .

Idea de prueba de la transiencia de la caminata $M_4(2,3)$

Se escribe la posición en el tiempo n de la caminata $M_4(2,3)$ como

$$S_n = (X_n, Y_n, Z_n, W_n).$$

Defina la sucesión de tiempos de parada $(\tau_k : k \ge 0)$ por $\tau_0 = 0$ y para $k \ge 1$,

$$\tau_k := \inf\{n > \tau_{k-1} : (Z_n, W_n) \neq (Z_{n-1}, W_{n-1})\}.$$

Luego:

- $\tau_k < \infty$ c.s. para todo $k \ge 0$.
- ullet ($U_k: k \geq 0$), con $U_k = (Z_{ au_k}, W_{ au_k})$, es una caminata aleatoria simple en \mathbb{Z}^2 .
- $\{M_m : m \geq 0\}$, con $M_m := X_{\tau_m}$, es \mathcal{G}_m -martingala con respecto a \mathbb{P}_U , donde $\mathcal{G}_m := \mathcal{F}_{\tau_m}$ y \mathbb{P}_U la ley de S condicionalmente en todo el proceso de U.

La transiencia caminata $M_4(2,3)$, viene de la transiencia bajo \mathbb{P} de $\{(M_n,U_n): n \geq 0\}$.

Idea de prueba de la transiencia de la caminata $M_4(2,3)$

ldea de prueba de la transiencia de la caminata $M_4(2,3)$

Se llama por $r_U(n)$ al cardinal del rango de la caminata aleatoria U en el tiempo n. Para cada $n \ge 0$ y $k \ge 0$, sea

$$t_k := n - n/2^k \tag{2}$$

)

$$\mathcal{K} := \left\{ k \in \{1, \dots, (\log n)^{3/4}\} : r_U(t_{k+1}) - r_U(t_k) \ge \rho(t_{k+1} - t_k) / \log n \right\}. \tag{3}$$

Se debe mostrar que

$$\mathbb{P}(M_n = U_n = 0) = \mathbb{E}[\mathbb{P}_U(M_n = 0)1\{|\mathcal{K}| \ge \rho(\log n)^{3/4}, U_n = 0\}] + \mathbb{E}[\mathbb{P}_U(M_n = 0)1\{|\mathcal{K}| < \rho(\log n)^{3/4}, U_n = 0\}],$$
(4)

es sumable en n, para $\rho = \rho_0$ elegido apropiadamente, y concluir por Borel-Cantelli.

Detalle de la prueba de transiencia de $M_4(2,3)$ I

Sea M sea una (G_n) -martingala con variación cuadrática V,

$$V_n = \sum_{m=1}^n \mathbb{E}_{U}[(M_m - M_{m-1})^2 | \mathcal{G}_{m-1}], \ n \geq 0.$$

Sean $\rho>0$ y $C_1,C_2>0$. Suponga que $(G_k:k\geq 0)$ es una sucesión de v.a.'s geométricas i.i.d. con media C_1 tal que

$$|M_{k+1}-M_k|\leq C_2G_k, \quad \forall k\geq 0. \tag{5}$$

Para todo $n \geq 1$ y $1 \leq k \leq \log_2(n)$ sean $t_k := n - \frac{n}{2^k}$ y

$$A_k := \left\{ V_{t_{k+1}} - V_{t_k} \ge \rho \frac{t_{k+1} - t_k}{(\log n)^{2a}} \right\}.$$

Detalle de la prueba de transiencia de $M_4(2,3)$ II

Suponga que para unos $N \ge 1$ y $1 \le k_1 < \cdots < k_N < \log_2(n)/2$ se cumple

$$\mathbb{P}\left(\cap_{i=1}^{N} A_{k_i}\right) = 1. \tag{6}$$

Proposición 3 (Proposición 2.1, [Peres et al., 2016])

Entonces, existen c>0 y $n_0\geq 1$ tal que para todos 0< a<1 y $n\geq n_0$ se tiene que

$$\mathbb{P}(M_n = 0) \leq \exp\left(-cN/(\log n)^a\right).$$

Así, para $n \ge n_0$ se consigue obtener que

$$\mathbb{E}[\mathbb{P}_{U}(M_{n}=0)1\{|\mathcal{K}| \geq \rho_{0}(\log n)^{3/4}, U_{n}=0\}] \leq C_{5} \frac{1}{n} e^{-C_{6}\rho_{0} \frac{(\log n)^{3/4}}{(\log n)^{1/2}}}.$$
 (7)

Detalle de la prueba de transiencia de $M_4(2,3)$ I

Proposición 4 (Proposición 3.4 de [Peres et al., 2016])

Para $k \geq 1$, considere t_k definido como en (2). Entonces, para $\mathcal K$ definido como en (3), se tiene que existen constantes positivas α , C_3 , C_4 y ρ_* , tales que para todo $\rho < \rho_*$, y todo $n \geq 1$

$$\mathbb{P}(|\mathcal{K}| \leq \rho(\log n)^{3/4}|U_n=0) \leq C_3 e^{-C_4(\log n)^{\alpha}}.$$

Eligiendo $ho=
ho_0\leq 1$ suficientemente pequeño, por la Proposición 4, se obtiene

$$\mathbb{E}[\mathbb{P}_{U}(M_{n}=0)1\{|\mathcal{K}|<\rho_{0}(\log n)^{3/4},U_{n}=0\}]\leq C_{3}C_{5}\frac{1}{n}\exp\left(-C_{4}(\log n)^{\alpha}\right). \tag{8}$$

Introducción
Caminatas aleatorias autointeractuantes
Caminata aleatoria excitada balanceada
Conclusiones y recomendaciones

Conclusiones y recomendaciones

Referencias I

Benjamini, I., Kozma, G., and Schapira, B. (2011). A balanced excited random walk.

Comptes Rendus Mathematique, 349(7):459–462.

Camarena, D., Panizo, G., and Ramírez, A. r. F. (2020). An overview of the balanced excited random walk. arXiv e-prints, page arXiv:2002.05750.

Eldan, R., Nazarov, F., and Peres, Y. (2018).

How many matrices can be spectrally balanced simultaneously?

Israel Journal of Mathematics, 224(1):385–406.

Fayolle, G., Malyshev, V. A., and Menshikov, M. V. (1995).

Topics in the Constructive Theory of Countable Markov Chains.

Cambridge University Press.

Referencias II

Peres, Y., Popov, S., and Sousi, P. (2013).

On recurrence and transience of self-interacting random walks.

Bulletin of the Brazilian Mathematical Society, New Series, 44(4):841–867.

Peres, Y., Schapira, B., and Sousi, P. (2016).

Martingale defocusing and transience of a self-interacting random walk.

Ann. Inst. H. Poincaré Probab. Statist., 52(3):1009-1022.

Raimond, O. and Schapira, B. (2009).

Random walks with occasionally modified transition probabilities.

Introducción
Caminatas aleatorias autointeractuantes
Caminata aleatoria excitada balanceada
Conclusiones y recomendaciones

¡Muchas Gracias!