

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

Corso di Laurea Triennale in Matematica

Grafi senza due cicli disgiunti

Relatore: Laureando: Francesco Sartori

Prof. Marco Di Summa Matricola: 1201699

Correlatore:

Prof. Manuel Francesco Aprile

Indice

Αl	bstract	v
1	Introduzione	1
2	Teorema principale	11
3	Teorema dei due cammini	17
4	Dimostrazione del teorema principale	25
Bi	ibliography	33

Abstract

In questa tesi rielaboro una dimostrazione per il teorema per grafi senza due cicli disgiunti sui nodi. Il mio lavoro si basa sull'articolo: A simpler proof for the two disjoint odd cycles theorem di Ken-ichi Kawarabayashi e Kenta Ozeki, pubblicato in Journal of Combinatorial Theory, Series B.

Questa dimostrazione si basa sul teorema dei due cammini, che caratterizza grafi senza due cammini disgiunti con estremità fissate, e non usa alcun risultato sui matroidi.

Introduzione

Questa tesi è strutturata nel seguente modo: inizia con un'introduzione generale alla teoria dei grafi vedendo alcuni risultati importanti e introducendo l'argomento della tesi, nel secondo capitolo si enuncia il teorema per grafi senza due cicli dispari disgiunti assieme ad alcune definizioni e risultati preliminari che serviranno a dimostrarlo, il terzo capitolo tratta il risultato su cui si basa la dimostrazione, ovvero il teorema dei due cammini disgiunti, infine l'ultimo capitolo contiene la dimostrazione effettiva del teorema sui grafi senza due cicli dispari disgiunti.

In matematica suscita molto interesse una famiglia di strutture discrete: i grafi.

- ▶ **Definizione 1.1.** Un grafo è una coppia ordinata di insiemi G = (V, E) dove V è l'insieme dei nodi (o vertici) ed E l'insieme degli archi, tale che gli elementi di E siano coppie di elementi di V (indichiamo un arco con $e = (v, u) \in V \times V$).
- ▶ **Definizione 1.2.** Dato un grafo G = (V, E) diciamo che $H = (V_1, E_1)$ è un sottografo di G se H è un grafo, $V_1 \subseteq V$ e $E_1 \subseteq E$.
- ▶ **Definizione 1.3.** Dato un grafo G = (V, E) un precorso P è dato da una sequenza di nodi $v_1, v_2, ..., v_n \in V$ e una sequenza di arci che li collegano (v_1, v_2) , (v_2, v_3) , ..., $(v_{n-1}, v_n) \in E$. Diciamo che P è un ciclo se $v_1 = v_n$, ciclo pari se ha un numero pari di archi, ciclo dispari se ha un numero dispari di archi.
- ▶ **Definizione 1.4.** Sia u un nodo in G, il vicinato di u $N_G(u)$ è l'insieme dei nodi di G adiacenti a u (ovvero i nodi collegati a u da un arco), nello stesso modo il vicinato di un insieme $A \subset V(G)$, $N_G(A) = \cup_{u \in A} N_G(u) \setminus A$ (ovvero i nodi non appartenenti ad A che sono adiacenti ad un elemento di A).
- ▶ **Definizione 1.5.** Un minore H di un grafo G è un grafo ottenuto da G attraverso cancellazioni di nodi, archi e contrazioni di archi. Una contrazione di un arco e = (v, u) si ottiene cancellando e, v, u e aggiungendo un nuovo nodo y e archi $e_i = (y, v_i)$ tali che a $v_i \in N(\{v, u\})$

- ▶ **Definizione 1.6.** Sia G un grafo, e = (x, y) un suo arco. La contrazione di e è un'operazione che rimuove e, x, y e aggiunge un nuovo vertice w tale che $N_G(w) = N_G(x) \cup N_G(y)$.
- ▶ **Definizione 1.7.** Un grafo si dice bipartito se l'insieme dei nodi può essere partizionato in due sottoinsiemi A e B tali che ciascun arco del grafo ha una delle due estremità in A e l'altra in B.
- ▶ **Definizione 1.8.** Diciamo che è possibile immergere un grafo G in una superficie π se è possibile diseglarlo su tale superficie in modo che gli archi non si intersichino se non alle estremità. Tale rappresentazione la chiamiamo immersione.

Per il nostro lavoro ci interessa particolarmente il caso in cui π sia il piano proiettivo; per immaginarci una immersione nel piano proiettevo possiamo identificare quest'ultimo come "poligono fondamentale", ovvero un quadrato isomorfo a \mathbb{R}^2 in cui i quattro bordi si identificano a due a due con orientazioni opposte, ovvero un grafo si può immergere nel piano proiettivo se è costituito da un sottografo ricoprente (che copre tutti i vertici) planare, rappresentato dentro il quadrato, e gli archi rimanenti attraversano uno dei bordi. Chiameremo il bordo del quadrato "crosscap".

Nello studio di un grafo G è spesso interessante vedere se è possibile immergerlo in una superficie conosciuta. Per i grafi planari, ovvero i grafi che possono essere immersi nel piano euclideo, esiste una caratterizzazione facile che ci servirà in seguito.

▶ **Teorema 1.9.** (Kuratowski) Sia G un grafo, allora è possibile immergere G nel piano se e solo se non ha come minori K_5 e $K_{3,3}$, dove K_5 è il grafo completo (tutti i nodi sono adiacenti uno all'altro) con cinque nodi e $K_{3,3}$ il grafo bipartito completo con sei nodi (|A| = 3, |B| = 3 e ogni nodo di A è adiacente a ogni nodo di B).

In figura i grafi K_5 e $K_{3,3}$.

Per dimostrare questo teorema ci serviremo del seguente risultato che riporto senza dimostrazione:

▶ Lemma 1.10. Sia G un grafo 3-connesso con almeno 5 vertici. Allora G contiene un arco e tale che G/e è 3-connesso (indichiamo con G/e il grafo ottenuto da G contraendo e)

Proof. Teorema 1.9 Dimostriamo il teorema per induzione su n = |V(G)|. Se n = 4 o 5, il teorema è facilmente verificato quindi procediamo con il passo induttivo, assiumiamo $n \ge 6$.

Possiamo assumere che G sia 2-connesso. Se G fosse 1-connesso e x fosse un vertice che lo disconnette in k componenti connesse, siano $H_1, H_2, ..., H_k$ i sotto insiemi di G indotti dalle componenti connesse C_i e $\{x\}$, $H_i = G(C_i \cup \{x\})$ sono planari allora anche G è planare, basta prendere per H_i una rappresentazione in cui x appartenga al ciclo che delimita la faccia esterna ed è immediato vedere che esiste una rappresentazione di G in cui gli archi di H_i non intersecano gli archi di H_j per ogni $i, j, i \neq j$ possiamo quindi ridurci a studiare gli H_i che equivale ad assumere G 2-connesso.

Con un ragionamento analogo possiamo ridurci al caso che G sia 3-connesso, supponiamo G 2-connesso, $\{x,y\}$ un insieme che lo disconnetta, si prendano come sopra $H_i = G(C_i \cup \{x,y\})$ dove C_i sono le componenti connesse di $G - \{x,y\}$, gli H_i hanno in comune a due a due x,y (eventualmente anche (x,y) noi assumiamo che esista), per ogni H_i esiste una rappresentazione tale che (x,y) appartenga al ciclo che delimita la faccia esterna si può vedere che esiste una rappresentazione di G in cui gli archi di H_i diversi da (x,y) non si intersecano, iterativamente, identificando (x,y), è possibile rappresentare ogni $H_i - (x,y)$ all'interno di una faccia dell'unione degli H_j 0 < j < i il cui bordo contenga (x,y), questa è una rappresentazione di G che è planare se e solo se lo sono gli H_i di conseguenza possiamo ridurci a studiare questi ultimi il che equivale a richiedere che G sia 3-connesso.

Sia e=(x,y) un arco tale che G/e sia 3-connesso e denotiamo con z il vertice ottenuto identificando x e y. Se G/e contiene una suddivisione di K_5 o $K_{3,3}$ è facile trovare tale suddivisione anche in G, dall'ipotesi induttiva possiamo quindi assumere che G/e abbia una rappresentazione planare Γ . Abbiamo ora che $\Gamma - \overline{z}$ è 2-connesso e consideriamo il ciclo Θ che delimita la faccia di $\Gamma - \overline{z}$ che contiene z. Sia S il ciclo corrispondente in G e siano $x_1, x_2, ..., x_k$ i vertici di S uniti a x nell'ordine del ciclo e sia P_i il segmento di S che collega x_i e x_{i+1} e

che non contiene alcun x_j , j=i, i+1 (consideriamo $x_{k+1}=x_1$). Se tutti i vicini di y (a parte x) sono contenuti in uno dei cammini P_i , è facile modificare Γ in una rappresentazione planare di G (rappresentiamo x con \overline{z} e y con un punto vicino a x. Il caso in cui \overline{z} è adiacente alla faccia illimitata di Γ va considerato separatamente). D'altra parte, se questo non è il caso, allora neanche y è unito a tre o più vertici di $\{x_1, x_2, ..., x_k\}$ nel qual caso $G(V(S) \cup \{x, y\})$ contiene una suddivisione di K_5 o alternativamente y è unito ad un vertice u in $P_i - \{x_i, x_{i+1}\}$ per qualche i e a un vertice v non in P_i nel qual caso S insieme ai cammini uyv, x_ixx_{i+1} e xy formano una suddivisione di $K_{3,3}$

Avendo un'immersione di un grafo in una superficie S si può definire un invariante topologico: la caratteristica di Eulero; questa è definita come $\chi = v - e + f$, dove v è il numero di nodi del grafo, e il numero di archi e f il numero di facce (una faccia è una sezione di piano delimitata da archi) del grafo.

▶ **Teorema 1.11.** (Formula di Eulero) Sia *G* un grafo planare connesso, allora vale la seguente:

$$v - e + f = 2$$

Proof. Per induzione su e.

(1) Passo base: sia e=0, essendo G connesso, G deve essere un nodo isolato. Di conseguenza $v=1,\,f=1.$

$$v - e + f = 1 - 0 + 1 = 2$$

(2) Passo induttivo: supponiamo per G con e(G) = k

$$v(G) - e(G) + f(G) = 2$$

Sia H un grafo tale che G sia un suo sottografo e e(H) = k + 1. Ci sono tre casi possibili:

Caso (a): t è un cappio t = (v, v) (un arco con estremità combacianti), $v \in V$. Siccome H deve rimanere un grafo planare, il cappio non interseca altri archi, di conseguenza forma una nuova faccia, f(H) = f(G) + 1, segue:

$$v(H) - e(H) + f(H) = v(G) - (e(G) + 1) + (f(G) + 1) = v(G) - e(G) + f(G) = 2$$

Caso (b): t collega due vertici distinti v_1 , v_2 in G. Essendo G connesso esiste un cammino tra v_1 e v_2 . L'aggiunta di t crea un nuovo ciclo e di conseguenza una nuova faccia (in caso ci fossero più percorsi tra v_1 e v_2 ne esiste necessariamente

uno che confina la nuova faccia). Di conseguenza v(H) = v(G), f(H) = f(G) + 1, e(H) = e(G) + 1. Come nel caso (a) la formula è esatta.

Caso (c): t collega un nodo $v_1 \in V$ con un nuovo nodo v_2 . Allora avremo v(H) = v(G) + 1. Essendo v_2 un nuovo vertice, t giace in una faccia che confina in v_1 , senza creare alcuna nuova faccia, f(H) = f(G). Di conseguenza,

v(H) - e(H) + f(H) = (v(G) + 1) - (e(G) + 1) + f(G) = v(G) - e(G) + f(G) = 2In tutti e tre i casi vale la formula per H. Per il principio di induzione, la formula vale per tutti i grafi planari connessi.

Un'altra famiglia di grafi che suscita molto interesse è la famiglia dei grafi bipartiti in quanto questi sono ottimi modelli per problemi di accoppiamento.

▶ **Definizione 1.12.** Si dice che un grafo ammette una colorazione con x colori se è possibile colorare tutti i nodi del grafo con x colori, tale che due nodi adiacenti (collegati da un arco) abbiano colori diversi.

Con questa definizione è facile vedere che un grafo bipartito ammette una colorazione con due colori, basta colorare l'insieme A in un colore e l'insieme B di un altro.

Possiamo ora dare una facile caratterizzazione per grafi bipartiti:

▶ **Teorema 1.13.** Un grafo è bipartito se e solo se non contiene cicli dispari.

Proof. Dimostriamo prima che se un grafo G è bipartito, non può contenere un ciclo dispari.

Abbiamo che un ciclo dispari non ammette una colorazione con solo due colori, di conseguenza un grafo bipartito, ammettendo quest'ultima, non può avere un ciclo dispari come sottografo.

Dimostriamo ora che se un grafo non contiene un ciclo dispari, allora è bipartito. Partiamo da un vertice v del grafo e sia V_1 l'insieme dei nodi raggiungibili da v con un cammino di lunghezza dispari, V_2 l'insieme dei nodi raggiungibili con un cammino di lunghezza pari. Notiamo che ogni arco congiunge un vertice di V_1 a uno di V_2 , in alternativa se congiungesse due nodi di V_1 (rispettivamente V_2) si avrebbe che le due estremità dell'arco sarebbero raggiungibili sia con un percorso di lunghezza pari sia con uno di lunghezza dispari, e concatenando questi ultimi si avrebbe un ciclo dispari. Di conseguenza se il grafo non contiene cicli dispari l'intersezione tra V_1 e V_2 è vuota e il grafo è bipartito (con partizione V_2 0 de V_3 1).

Chapter 1 Introduzione

Abbiamo visto che è facile definire i grafi privi di alcun ciclo dispari, tuttavia una caratterizzazione per un grafo privo di due cicli dispari disgiunti sui nodi non è altrettanto facile. Un esempio di un grafo di questo tipo è chiamato *EscherWall* che si immerge, approssimativamente, nel piano proiettivo.

Chiamiamo parete elementare (di altezza h) un grafo formato da h livelli di h "mattoni", dove ogni mattone è un ciclo di lunghezza 6 come in figura.

In figura la parete elementare di altezza 4.

Chiamiamo *Escher Wall* (di altezza h) un grafo ottenuto dalla parete elementare di altezza h dove, prendendo i nodi sul percorso superiore $(v_1, ..., v_{2h+1})$ e i nodi sul percorso inferiore $(u_1, ..., u_{2h+1})$ della parete elementare, vengono aggiunti h vertici $w_1, ..., w_h$ e 2h archi $e_1, ..., e_h, f_1, ..., f_h$ dove $e_i = (u_{2i}, w_i)$ e $f_i = (v_{2(h-i)+1}, w_i)$.

In figura l' EscherWall di altezza 4 nel piano.

In figura l' Escher Wall di altezza 4 nel piano proiettivo.

▶ **Lemma 1.14.** Un *EscherWall* non contiene due cicli dispari disgiunti.

Proof. Per come è definita la parete elementare è facile vedere che essa non contiene cicli dispari, infatti è facile vedere che essa ammette una colorazione con solo due colori, possiamo prendere una tale colorazione per il primo livello di mattoni che la ammette essendo formato da cicli di lunghezza 6 con un solo arco in comune e iterativamente adattare la colorazione dei livelli successivi fino ad esaurire la parete. Questo ci dimostra che la parete elementare è bipartita e

Chapter 1 Introduzione

per il teorema 1.13 non contiene cicli dispari.

Ogni ciclo dispari quindi deve contenere un vertice che non appartiene alle parete elementare. Supponiamo esistano due cicli dispari c_1, c_2 disgiunti, questi contengono quindi due nodi w_i, w_j non appartenenti alla parete elementare, di conseguenza c_1, c_2 contengono risppettivamente $u_{2i}, v_{2(h-i)+1}, P_1$ e $u_{2j}, v_{2(h-j)+1}, P_2$ dove $P_1 = c_1 - \{w_i\}, P_2 = c_2 - \{w_j\}$ sono due cammini interni alla parete elementare i quali devono essere disgiunti ma abbiamo $u_{2i}, u_{2j}, v_{2(h-i)+1}v_{2(h-j)+1}$ in questo ordine lungo il perimetro della parete elementare il che, come vedremo nel capitolo 3, nega l'esistenza di tali P_1, P_2 disgiunti.

▶ **Definizione 1.15.** Si dice che una famiglia F di grafi o ipergrafi possiede la proprietà di Erdos-Pósa se esiste una funzione $f: N \to N$ tale che per ogni (iper)grafo G e ogni intero k è vera una delle seguenti: G contiene k sottografi disgiunti sui nodi ciascuno isomorfo a un grafo in F; o G contiene un insieme di vertici G di dimensione al massimo G0 tale che G1 non ha sottografi isomorfi a un grafo in G1.

Un esempio di una famigia che possiede tale proprietà è la famiglia dei cicli:

▶ **Teorema 1.16.** (Erdős–Pósa) Esiste una funzione f(k), tale che per ogni intero positivo k, ogni grafo G contiene almeno k cicli disgiunti sui nodi o contiene un insieme C di al massimo f(k) vertici tale che G-C non abbia cicli.

Lo studio di grafi senza due cicli dispari disgiunti attira l'attenzione di molti ricercatori in teoria dei grafi e ottimizzazione combinatoria, poiché appaiono frequentemente in diversi contesti, ad esempio un *EscherWall* presenta particolari proprietà tra cui:

- (1) Un *EscherWall W* di altezza h non ha due cicli dispari disgiunti sui nodi. Tuttavia, ha bisogno almeno \sqrt{n} vertici per coprire tutti i cicli dispari. Inoltre W non possiede una copertura di cicli dispari (si dice copertura di cicli dispari un insieme di nodi $C \subseteq V(G)$ tale che G-C non abbia cicli dispari) con meno di h vertici.
- ▶ **Lemma 1.17.** La famiglia dei cicli dispari non possiede la proprietà di Erdos-Pósa.

Proof. Per dimostrare questo lemma ci basta un controesempio, prendiamo un EscherWall di altezza h. Un insieme X di h -1 vertici, non riesce a intercettare tutti i percorsi che passano per il livello superiore di un blocchi di mattoni di W,

allora esiste un percorso P_i con entrambe le estremità connesse a questo livello in W-X. Inoltre le due estremità di P_i sono connesse da un percorso Q in W-X e dunque P_i+Q è un ciclo dispari in W-X. Questo dimostra che la cardinalità di una copertura di cicli dispari dipende da h e di conseguenza non esiste una funzione f che soddisfi la proprietà di Erdos-Pósa.

- (2) Considerando il problema di imballaggio di cicli disgiunti in un grafo G, ovvero il problema di massimizare Σx_c dove x_c è una variabile binaria a valori in $\{0,1\}$ per ogni ciclo dispari c in G, dove abbiamo $x_c + x_{c'} \leq 1$ se c e c' hanno almeno un vertice in comune. Prendendo come G un EscherWall di n nodi abbiamo che il problema ha soluzione ottimale $max(\Sigma x_c) = 1$. Però se al posto di una variabile binaria prendiamo una variabile frazionaria (semi-integrale a valori in $\{0,0.5,1\}$) otteniamo $max(\Sigma x_c) \sim O(\sqrt{n})$, un imballaggio semi-integrale di cicli dispari. Quindi questo mostra un ampio divario di integralità $(O(\sqrt{n}))$ per il problema dell'imballaggio di cicli dispari.
- (3) Può essere facilmente modificato per fornire un esempio che mostri un ampio divario di integralità (O(\sqrt{n})) per il noto problema dei cammini disgiunti massimi (anche per grafi planari).
- (4) se tutte le facce sono 4-cicli, allora questo grafo appare molte volte nella teoria topologica dei grafi (ad esempio per le colorazioni).

Una caratterizzazione per grafi senza cicli dispari disgiunti sui nodi è ben nota, tuttavia la sua dimostrazione non lo è altrettanto. La prima dimostrazione dovuta a Lovàsz [7] è fortemente basata su risultati di decomposizione per matroidi di Seymour[6]. Di fatti la sua dimostrazione non è stata pubblicata, tuttavia Gerards, Lovàsz, Schrijver, Seymour and Truemper cercarono di scrivere una dimostrazione intorno agli anni '90.

Tale caratterizzazione per grafi senza due cicli dispari disgiunti deriva anche da un risultato più generale di Slilaty [4].

Di seguito riporterò la dimostrazione di Kawarabayashi e Ozeki [5], la quale è sia più facile che più corta, inoltre dipende solamente dal teorema dei due cammini, il quale caratterizza grafi senza due cammini disgiunti sui nodi con estremi specificati.

Per enunciare il teorema serve dare alcune definizioni preliminari.

- ▶ **Definizione 2.1.** Un grafo G si dice k-connesso (risp. k-arcoconnesso) se per ogni insieme A di k nodi (risp. k archi) il grafo G A è connesso.
- ▶ **Definizione 2.2.** In un grafo G una separazione è una coppia (K_1, K_2) di sottografi di G tali che $G = K_1 \cup K_2$, $E(K_1) \cap E(K_2) = \emptyset$, $E(K_i) \cup V(K_i K_{3-i}) \neq \emptyset$ per i = 1,2. Se, inoltre, $|K_1 \cap K_2| = k$, allora (K_1, K_2) è una k-separazione in G.
- **▶ Definizione 2.3.** Un grafo G si dice internamente 4-connesso se G è 3-connesso e per ogni 3-separazione (K_1, K_2) in G si ha $|K_1| \le 4$ o $|K_2| \le 4$.

Date queste definizioni possiamo enunciare la caratterizzazione per grafi senza due cicli dispari disgiunti sui nodi.

- ▶ **Teorema 2.4.** Sia *G* un grafo internamente 4-connesso. Allora *G* non ha due cicli dispari disgiunti sui nodi se e solo se soddisfa una delle seguenti:
 - 1. $G \{x\}$ è bipartito per qualche nodo $x \in V(G)$,
 - 2. $G \{e_1, e_2, e_3\}$ è bipartito per qualche arco $e_1, e_2, e_3 \in E(G)$ tale che e_1, e_2, e_3 formino un triangolo,

- 3. $|G| \le 5$, e
- 4. *G* può essere immerso nel piano proiettivo cosicché ogni faccia abbia perimetro pari.

Per sempicità espositiva definiamo alcune notazioni.

▶ **Definizione 2.5.** Sia G un grafo. Due archi si dicono indipendenti in G se non hanno estremi in comune.

Per un grafo planare (immerso nel piano \mathbb{R}^2) denotiamo il ciclo che perimetra la faccia esterna con ∂G . Inoltre per due nodi u, v in ∂G il cammino che li congiunge in senso orario si denota con u ∂Gv .

Definiamo ora un facile lemma che servirà come base per il nostro ragionamento.

▶ **Lemma 2.6.** Sia G un grafo 3-connesso, allora esiste un sottografo ricoprente di G (detto *Spanning*) che sia 2-connesso e bipartito.

Per dimostrare questo lemma ci serviremo di un altro risultato più profondo:

▶ **Definizione 2.7.** Siano G = (V, E) un grafo e $s, t \in V$ denotiamo con p(s, t) (risp. p'(s, t)) il massimo numero di cammini disgiunti sui nodi (risp. sugli archi) con estremità s, t; denotiamo con c(s, t) (risp. c'(s, t)) la minima cardinalità di un insieme di nodi (risp. di archi) A tale che s, t siano sconnessi in G - A.

Il grafo in figura è 2-connesso $\{u,v\}$ è infatti un suo separatore. Inoltre, vale c(u,x)=3.

Con questa notazione possiamo enunciare il teorema di Menger nelle sue due formulazioni, noi dimostreremo solo la formulazione per la connettività sui vertici:

- ▶ **Teorema 2.8.** (di Menger connettività sui vertici). Dato un grafo G = (V, E) ed una qualsiasi coppia di nodi $s, t \in V$, vale p(s, t) = c(s, t).
- ▶ **Teorema 2.9.** (di Menger connettività sugli archi). Dato un grafo G = (V, E) ed una qualsiasi coppia di nodi $s, t \in V$, vale p'(s, t) = c'(s, t).

Illustrazione del teorema di Menger: il grafo in figura ha 4 cammini tra u e v disgiunti sugli archi (tratteggiati), ed ogni taglio minimo che separa tali nodi ha capacitá 4.

Proof. Dimostriamo prima $p(s,t) \le c(s,t)$. Per disconnettere s e t dobbiamo quanto meno togliere un punto da ogni cammino tra questi, quindi almeno p(s,t) punti.

Ora dimostreremo la tesi per induzione sul numero di vertici e su c(s,t), ovvero, dato un grafo G e due vertici con c(s,t)=m, supporremo che la tesi valga per ogni grafo con meno vertici di G e qualunque coppia di vertici, oppure per ogni coppia di vertici con c(s,t) < m in un qualsiasi grafo G.

Ci basta dimostrare che $p(s, t) \ge c(s, t)$.

Passo base: In un grafo con un solo vertice, la tesi è ovvia. Inoltre, se c(s,t) = 0 non esistono cammini tra s e t, quindi p(s,t) = 0; se poi c(s,t) = 1, bisogna rimuovere almeno un vertice per sconnettere s e t, quindi esiste almeno un cammino tra di essi, quindi $p(s,t) \geq 1$.

Chapter 2 Teorema principale

Passo induttivo: Sia dunque $c(s,t)=m\geq 2$ con x, t vertici di G. Vogliamo dimostrare che $p(s,t)\geq m$. Come detto sopra, supporremo che la tesi sia vera per tutti i grafi G con meno vertici o per tutte le coppie di vertici s, t con c(s,t)<0 min un qualsiasi grafo. Sia S un insieme di m vertici che separa s da t; allora ogni cammino da s a t deve contenere un elemento di S. Siano $P_1, ..., P_k$ tutti i cammini da s a t; per ognuno di loro consideriamo i vertici tra tra s e S (ovvero il primo incontro di P_i con S) e consideriamo il sottografo generato in G da tutti questi vertici, aggiungiamo poi un nuovo vertice t e colleghiamolo a tutti i vertici di S. Chiamiamo G_s il nuovo grafo. Similmente, consideriamo per ogni cammino i vertici tra l'ultima intersezione con S e t, aggiungiamo il vertice s e colleghiamolo a tutti i vertici di S. Chiamiamo G_t il grafo così ottenuto. Ovviamente $dG_s(t') = dG_t(s) = m$ e S separa s da t in G_s e t da s in G_t ed \acute{e} il minimo separatore possibile, ovvero c(s,t') = c(s',t) = m. Ora abbiamo due casi.

- 1. Caso I: Esiste S di modo che sia G_s che G_t hanno meno vertici di G. Allora possiamo applicare l'ipotesi induttiva e dunque otteniamo che ci sono m cammini disgiunti tra s e t e altrettanti tra s e t. É ovvio che ciascuno di questi cammini passa per un punto diverso di S e dunque, eliminando i vertici s e t da ogni cammino in G_t e G_s rispettivamente e incollando opportunamente i cammini si ottengono m cammini disgiunti tra s e t in G e dunque $p(s,t) \geq m$.
- 2. Caso II: Per ogni possibile separatore S, G_s o G_t (o entrambi) ha lo stesso numero di vertici di G. Allora G_s e G sono grafi isomorfi, oppure G_t e G sono isomorfi. E questo significa che t è adiacente a tutti i vertici di S oppure lo è s.

Supponiamo ora di togliere ogni arco di G la cui eliminazione non alteri c(s,t). In tale situazione, vogliamo dimostrare che il cammino minimo tra $s \in t$ ha lunghezza 2.

Supponiamo che questo sia falso e consideriamo il cammino minimo s, u, v, \ldots, t ; se è minimo, dobbiamo supporre che u non sia connesso a t da un arco e v non lo sia ad s. Inoltre, avendo eliminato precedentemente tutti gli archi superflui, eliminando l'arco (u,v) otterremo un grafo G in cui $c_{G(s,t)}=m$ 1 e dunque ci sarà un insieme di m 1 punti, chiamiamolo T, che separa s e t.

Osserviamo che T non può contenere u e v, altrimenti sarebbe un separatore anche in G, ma ha troppo pochi vertici. Del resto, se togliamo i vertici di T e l'arco (u,v), disconnettiamo G, quindi gli insiemi $T\{u\}$ e $T \cup \{v\}$ sono separatori

per s e t e hanno entrambi m elementi. Poiché siamo nel caso II, $T\{u\}$ è adiacente a s oppure a t, ma u e t non possono essere adiacenti, dunque s è collegato ad ogni vertice di $T\{u\}$; similmente, t è collegato ad ogni vertice di $T\{v\}$. Ora, $m \ge 2$, quindi m $1 \ge 1$, quindi c'è almeno un elemento q T, che dunque è un vertice adiacente sia a s che a t. Ne segue che il cammino s, q, t è il più breve possibile ed ha lunghezza 2.

Ora consideriamo il grafo H ottenuto da G levando q; H ha meno vertici, quindi l'ipotesi induttiva si applica. Allora per H vale $c_H(s,t) = p_H(s,t)$; inoltre, poiché sicuramente q sta in ogni insieme che separi s e t in G, in H si ha $p_H(s,t) = c_H(s,t) = m$ 1 = $c_G(s,t)$ 1 Dunque ci sono m 1 cammini disgiunti da s a t in H e se ad essi aggiungiamo s, q, t (che non è tra questi ed è disgiunto da tutti loro) otteniamo m cammini in G, dunque $p_G(s,t) \geq m$, come volevamo dimostrare.

Proof. (Lemma 2.6) Prendiamo due qualsiasi nodi di G, per il teorema 2.8 esistono tre percorsi che li connettono, si avrà che almeno due di questi avranno la stessa parità, di conseguenza formano un ciclo pari in G, il quale è un sottografo bipartito e 2-connesso di G (per il lemma 2).

Ora sia H un sottografo di G bipartito e 2-connesso tale che |H| sia il più grande possibile e supponiamo che esista un nodo $u \in V(G)$ - V(H).

Essendo G 3-connesso, possiamo trovere tre cammini P_1 , P_2 , P_3 tra u e H tale che $V(P_i) \cap V(P_j) = \{u\}$ per $1 \le i < j \le 3$. È immediato verificare che almeno uno tra $H \cup P_1 \cup P_2$, $H \cup P_1 \cup P_3$, $H \cup P_2 \cup P_3$ sia ancora bipartito, partendo da una colorazione di H si diano una colorazione per $H \cup P_1$, $H \cup P_2$, $H \cup P_3$ che combacino in H, si avrà allora che almeno due colorazioni combaciano anche in u, di conseguenza i due rispettivi percorsi rispettano $H \cup P_i \cup P_j$ bipartito, il che contraddice la massimalità di |H|.

▶ **Definizione 3.1.** Sia G un grafo, $Z = \{s_1, ..., s_k, t_1, ..., t_k\}$ un insieme ordinato di vertici di G. Definiamo un Z — collegamento in G un insieme di k cammini disgiunti $P_1, ..., P_k$ tali che P_i connetta s_i e t_i . Inoltre diciamo che G è k — collegati se per ogni sottoinsieme Z di 2k vertici di G esiste un Z — collegamento in G.

Si può vedere che un grafo per essere k – collegato deve essere almeno (2k-1) – connesso, questa condizione tuttavia non è sufficiente se non per il caso banale k=1, dove, presa arbitrariamente, una coppia di vertici esiste un cammino che congiunge i due vertici se il grafo è (1) connesso. È stato dimostrato che per ogni k esiste un numero minimo f(k) tale per cui ogni grafo f(k) – connesso è k – collegato. Questa condizione tuttavia non è caratterizzante, in effetti una caratterizzazione per grafi k – collegato con k generico non è nota. Noi ora vederemo un risultato più specifico, dati s_1, s_2, t_1, t_2 ora daremo una caratterizzazione per grafi che ammettono un $\{s_1, s_2, t_1, t_2\}$ – collegamento.

- ▶ **Definizione 3.2.** Dato un grafo G, finito o infinito (numerabile), diciamo che $G_0 \subseteq G$ è una rete se contiene un 4-ciclo $S_0 = \{s_1, s_2, t_1, t_2\}$ tale che valgano le seguenti condizioni:
 - 1. G_0 è planare e S_0 delimita una faccia
 - 2. l'aggiunta di un arco a G_0 che non sia (s_1, t_1) o (s_2, t_2) fa cadere la proprietà di planarità di G_0
 - 3. si ha alternativamente che G_0 ha 4 vertici e 5 archi o che G_0 è 3-connesso e non contiene 3-cicli separatori.

In figura la rete con quattro nodi.

Per grafi finiti possiamo assumere senza perdita di generalità che la faccia delimitata da S_0 sia la faccia esterna ovvero $S_0 = \partial G_0$. Tale grafo lo indichiamo come $S_0 - rete$.

▶ **Teorema 3.3.** Siano s_1 , s_2 , t_1 , t_2 vertici di G. Se G non contiene un $\{s_1, s_2, t_1, t_2\}$ – collegamento e l'aggiunta di un qualsiasi arco risunti in un grafo contenente un $\{s_1, s_2, t_1, t_2\}$ – collegamento, allora G è una $\{s_1, s_2, t_1, t_2\}$ – rete. Viceversa ogni $\{s_1, s_2, t_1, t_2\}$ – rete è massimale per la proprietà di contenere un $\{s_1, s_2, t_1, t_2\}$ – collegamento.

Proof. Proviamo la prima parte del teorema per induzione sul numero di vertici di *G*.

Passo base: se *G* ha quattro vertici il teorema è banalmente vero.

Passo induttivo: poichè aggiungendo un qualsiasi arco a G creo un $\{s_1, s_2, t_1, t_2\}$ —
collegamento abbiamo che $S_0 = \{s_1, s_2, t_1, t_2\}$ è un ciclo contenuto in G, per vederlo basta assumere che un arco (ad esempio (s_1, s_2)) di S_0 non sia presente in G e G non contenga un $\{s_1, s_2, t_1, t_2\}$ — collegamento allora neanche $G \cup (s_1, s_2)$ non conterrà un $\{s_1, s_2, t_1, t_2\}$ — collegamento di conseguenza $(s_1, s_2) \in G$. Inoltre abbiamo che G è 2-connesso, preso x un vertice che sconnetta G, g, g in g in appartenenti a due partizioni diverse di g in g in appartenente a g non forma un g in appartenente a g in appartenente a g non forma un g in appartenente a g in appartenente

intersechi S_0 . La massimalità di G rispetto alla proprietà di non contenere un $\{s_1, s_2, t_1, t_2\}$ – collegamento implica che $\{(x, y)\}$ appartiene a G e che G - V(H) e ancora massimale per la stessa proprietà. Per l'ipotesi induttiva, G - V(H) è una $\{s_1, s_2, t_1, t_2\}$ – rete denotiamo il suo supporto con G_0 . Allora G_0 contiene un 3-ciclo S così che ogni cammino da V(H) in $V(S_0)$ intersechi S. Ora è facile vedere che l'aggiunta di un qualsiasi arco tra un elemento di H e uno di S non crea un $\{s_1, s_2, t_1, t_2\}$ – collegamento, il che contraddice la massimalità di G. Quindi possiamo assumere che G sia 3-connesso.

Consideriamo ora il caso in cui G contenga un insieme di tre vertici A tale che G-A contenga una componente H che non interseca S_0 . Allora la massimalità di G implica che G(A) è completo , che H è completo e che tutti i vertici di H sono collegati a tutti i vertici di A. È facile vedere che G-V(H) è massimale per la proprietà di non contenere un $\{s_1, s_2, t_1, t_2\}$ – collegamento. Quindi per ipotesi induttiva G-V(H) è una $\{s_1, s_2, t_1, t_2\}$ – rete chiamiamo il suo sostegno G_0 . Sia S l'unico 3-ciclo di G_0 tale che ogni cammino da V(H) a $V(S_0)$ intersechi S. La massimalità di G impica che ogni vertice di H sia collegato a ogni vertice di S. Ponendo S0 segue che S2 è una S3, S4, S4, S5, S5, S6 rete.

Quindi possiamo assumere che ogni insieme di tre vertici che separa G (se esiste) è della forma $\{s_1,t_1,z\}$ o $\{s_2,t_2,z\}$ dove $z\notin V(S_0)$. Consideriamo ora che G contenga un insieme separatore A di quattro vertici tale che una componente H di G-A non intersechi S_0 , e che H abbia almeno due vertici. Per il teorema di Menger, G contiene quattro cammini disgiunti da $V(S_0)$ ad A: P_1, P_2, P_3, P_4 . Supponiamo senza perdità di generalità che questi cammini formino un $\{s_1, s_2, t_1, t_2, s_1', s_2', t_1', t_2'\}$ – collegamento. Dobbiamo provare che G contenga il ciclo $S_0' = s_1', s_2', t_1', t_2', s_1'$.

Sia H' un sottografo di G indotto da $A \cup V(H)$. Poiché H ha almeno due vertici, H' non contiene un vertice z che separa $\{s_1', s_2'\}$ da $\{t_1', t_2'\}$, se questo fosse il caso allora si avrebbe che $\{s_1', s_2', z\}$ o $\{t_1', t_2', z\}$ separerebbero G in contraddizione a quello che abbiamo detto prima. Quindi dal teorema di Menger H' contiene due cammini P_5 , P_6 che formano un $\{s_1', s_2', t_1', t_2'\}$ – collegamento o un $\{s_1', s_2', t_2', t_1'\}$ – collegamento.

Sapendo che $\bigcup_{i=1}^6 P_i$ non forma un $\{s_1, s_2, t_1, t_2\}$ – collegamento, P_5, P_6 devono formare un $\{s_1', s_2', t_1', t_2'\}$ – collegamento. Ora non è difficile vedere che l'arco $e = (s_2', t_1')$ è presente in G. In caso opposto lo aggiungiamo a G e otteniamo un $\{s_1, s_2, t_1, t_2\}$ – collegamento formato dai due cammini P_7, P_8 dove P_7 contiene e. Però in questo caso possiamo ottenere un $\{s_1, s_2, t_1, t_2\}$ – collegamento

Chapter 3 Teorema dei due cammini

in G sostituendo e con P_6 e, se necessario, un segmento di P_8 con P_5 . Questa contraddizione mostra che (s'_2, t'_1) e, per simmetria (s'_1, t'_2) sono presenti in G. Considerando gli insiemi $\{s'_2, t'_1\}$ e $\{s'_1, t'_2\}$ al posto di $\{s_{1}, s'_{1}\}$ e $\{t'_1, t'_2\}$, rispettivamente, concludiamo che anche (s'_1, s'_2) e (t'_1, t'_2) appartengono a G. Poiché H' non contiene un $\{s_1', s_2', t_1', t_2'\}$ – collegamento nessun arco tra (s_1', t_1') e (s_2', t_2') sono presenti in G. Di conseguenza $G(A) = S'_0$. Denotiamo con G' il grafo ottenuto contraendo H in un vertice z_0 (adiacente esattamente ai vertici di S'_0). È facile vedere che G' non contiene un $\{s_1, s_2, t_1, t_2\}$ – collegamento quindi, per ipotesi induttiva, G' è contenuto in una $\{s_1, s_2, t_1, t_2\}$ – rete G'' con supporto G'_0 . Per ogni vertice $u \in V(S_0') \cup \{z_0\}$, G' contiene quattro cammini da u a $V(S_0)$ che si intersecano unicamente in u, quindi $A \cup \{z_0\} \subseteq V(G'_0)$. Avendo che due vertici consecutivi di S'_0 non separano G, ognuno dei quattro 3-cicli di G'_0 che contengono z_0 delimita una faccia di G'_0 e ogni grafo completo di G'' unito a questi 3-cicli è vuoto. Inoltre, per le proprietà di connettività di G, ogni grafo completo unito a un qualsiasi 3-ciclo di G_0' è vuoto. Quindi segue che G-V(H)ha una rappresentazione planare tale che S_0 e S'_0 delimitino due facce. Dalla massimalità di G ogni altra faccia è delimitata da un 3-ciclo.

Ora $H' = G(V(H) \cup A)$ non ha un $\{s_1', s_2', t_1', t_2'\}$ – collegamento e di conseguenza contiene una $\{s_1', s_2', t_1', t_2'\}$ – rete H''. Dalle proprietà di connettività di G segue che H'' non ha 3-cicli separatori quindi H'' è planare. Ora segue che G è planare e che G0 delimita una faccia. Abbiamo provato che G0 e una G1, G2, G3, G4, G5 e una componente G6 ha un insieme separatore G6 formato da quattro vertici, tale che una componente G6 disgiunta da G6.

Possiamo quindi assumere che ogni volta che A è in insieme di, al massimo, quattro vertici che separa G in modo che una componente H di G-A non interseca S_0 , allora |A|=4 e H consiste in un vertice di grado 4 in G, e G-A non contiene un'altra componente H' disgiunta da S_0 . Consideriamo ogni arco e di G che non congiunga due vertici di $V(S_0)$ e sia G' il grafo ottenuto da G contraendo e. Allora G' non contiene un $\{s_1, s_2, t_1, t_2\}$ – collegamento, quindi, per ipotesi induttiva, G' è contenuto in una $\{s_1, s_2, t_1, t_2\}$ – rete G''. Se un insieme K^S ha più di un vertice per qualche ciclo G che delimita una faccia del supporto di G'', allora i tre vertici di G'' separano G''0. Ma allora G''1 ha un insieme di tre o quattro vertici che sapare più di un vertice da G''2. Tuttavia, questa è una contraddizione dell'assunzione fatta a inizio paragrafo. Quindi ogni G''2 ha al massimo un vertice da cui segue che G'''2 è planare.

Abbiamo visto che la contrazione di un arco e non in S_0 risulta in un grafo planare.

Dobbiamo dimostrare che questo implica che G stesso sia planare. Supponiamo che G non sia planare. Dal teorema di Kuratowski G contiene un sottografo H che è una suddivisione di K_5 o $K_{3,3}$. Ora $V(S_0) \subseteq V(H)$. Supponiamo $s_1 \notin H$, allora la contrazione di ogni arco incidente con s_1 non in S_0 risulta in un grafo non planare (un tale arco esistre poiché G è 3-connesso). Inoltre, se x è un vertice di grado 2 in H, allora S_0 contiene i due archi di H incidenti con x perché la contrazione di tali archi risulta in un grafo non planare. Questo implica che G è ottenuto da K_5 o $K_{3,3}$ aggiungendo uno o due vertici di grado due e aggiungendo archi fino ad avere G 3-connesso. È facile vedere che questo grafo è 2-collegato. questa contraddizione prova che G è planare. Per provare che S_0 delimita una faccia è sufficiente provare che $G-V(S_0)$ è connesso. Ma se non fosse questo il caso, scegliamo due vertici z_1, z_2 in componenti distinte, per i=1,2 consideriamo quattro cammini da z_i a $V(S_0)$ che si intersecano solamente in z_i . Questo ci da un $\{s_1', s_2', t_1', t_2'\}$ – collegamento, assurdo.

Quindi G è planare e S_0 è un ciclo che delimita una faccia. Dalla massimalità di G, G è una $\{s_1', s_2', t_1', t_2'\}$ – rete, questo finisce la dimostrazione della prima parte del teorema.

Per dimostrare la seconda parte consideriamo una $\{s_1', s_2', t_1', t_2'\}$ – rete~G con supporto G_0 . dobbiamo provare che $G \cup e$ ha un $\{s_1', s_2', t_1', t_2'\}$ – collegamento per ogni arco e non in G. Poiché G_0 non contiene 3-cicli separatori non contiene K_4 e di conseguenza $G \cup \{e\}$ contiene un cammino di lunghezza uno, due o tre che hanno solo le estremità x, y in comune con G_0 in modo che x, y non siano adiacenti in G. Ora $G_0 \cup (x, y)$ non è un sottografo di una $\{s_1', s_2', t_1', t_2'\}$ – rete, contiene tutti i vertici della rete ma ha un arco aggiuntivo, segue che, dalla prima parte del teorema, $G_0 \cup (x, y)$ include un $\{s_1', s_2', t_1', t_2'\}$ – collegamento. Questo conclude la dimostrazione.

▶ **Definizione 3.4.** Sia H un grafo, siano $A_1,..., A_l \subseteq V(H)$ a due a due disgiunti sui nodi e sia $A = \{A_1, ..., A_l\}$. Diciamo che A è un insieme 3-separato di H se:

- 1. per $1 \le i, j \le l, i \ne j, N_H(A_i) \cap A_j = \emptyset$ e
- 2. per $1 \le i \le l$, $|N_H(A_i)| \le 3$.
- ▶ **Definizione 3.5.** Diciamo che H si può immergere nel piano, ripettivamente ad A, se H(A) può essere disegnato nel piano, dove H(A) è il grafo ottenuto eliminando A_i (per ogni i) da H e aggiungendo nuovi archi che congiungono ogni coppia di nodi distinti in $N_H(A_i)$.

Ora diamo una formulazione equivalente del teorema 3.3:

- ▶ **Teorema 3.6.** Sia H un grafo, e siano dati quattro nodi s_1, t_1, s_2, t_2 . Allora o
 - 1. esistono due cammini disgiunti sui nodi P_1, P_2 tale che P_i connetta s_i, t_i per i=1,2 oppure
 - 2. esiste un insieme 3-separato \mathbf{A} di H con $s_1, t_1, s_2, t_2 \notin A_j$ per ogni $A_j \in \mathbf{A}$, ed esiste un'immersione di H nel piano, rispettivamente ad \mathbf{A} , tale che $\partial H(\mathbf{A})$ contiene i quattro vertici s_1, s_2, t_1, t_2 in senso orario.
- ▶ Osservazione 3.7. Nel punto 2. possiamo scegliere l'insieme A in modo che valga la seguente proprietà:

Per ogni *i*, se $|N_H(A_i)|$ = 3 allora $N_H(A_i)$ induce una faccia triangolare in $H(\mathbf{A})$.

Proof. Per vedere questo possiamo scegliere \mathbf{A} in modo che il numero di triangoli che non siano facce in $H(\mathbf{A})$ indotte dagli elementi di \mathbf{A} sia minimo. Possiamo supporre, senza perdita di generalità, che $|N_H(A_1)|=3$ e $N_H(A_1)$ induca un triangolo T_1 in $H(\mathbf{A})$, che non sia una faccia. Sia $D_1\subseteq V(H(\mathbf{A}))$ tale che, per ogni $x\in V(H)$ $x\in D_1$ se e solo se x è contenuto nella regione delimitata da T_1 . Definiamo $A_1'\subseteq V(H)$ tale che, per ogni $x\in V(H)$, $x\in A_1'$ se e solo se $x\in D_1-N_H(A_1)$ oppure $x\in A_j$ per qualche A_j tale che $N_H(A_j)\subseteq D_1$. Sia $A'=(A-\{A_j:N_H(A_j)\subseteq D_1\})\cup\{A_1'\}$. Allora \mathbf{A}' è un insieme 3-separato, ma il numero di triangoli che non sono faccie è minore in $H(\mathbf{A}')$ che in $H(\mathbf{A})$, il che è una contraddizione.

Quando ci troviamo nel caso 2. del teorema 3.6, prendiamo l'insieme **A** 3-separato cosicchè **A** sia il più piccolo possibile, al quale ci riferiamo come "minimale". Questo significa che non esiste un insieme **A**' che soddisfi tutte le seguenti proprietà: $\mathbf{A}' \neq \mathbf{A}$, per ogni $A' \in \mathbf{A}'$ esiste un $A \in \mathbf{A}$ tale che $A' \subset A$, e $H(\mathbf{A}')$ rispetti le stesse condizioni di $H(\mathbf{A})$.

Ora enunciamo alcune proposizioni che ci serviranno per la dimostrazione del teorema principale:

▶ Proposizione 3.8. Si veda [9]. Sia H un grafo, \mathbf{A} un sottoinsieme 3-separato minimale di H in modo che $H(\mathbf{A})$ sia un grafo planare. Siano $s_1, s_2 \in V(H(\mathbf{A}))$ e $t_1^*, t_2^* \in V(H)$. Sia t_i un vertice in $A_i \cup N_H(A_i)$ se $t_i^* \in N_H(A_i)$ per qualche $A_i \in \mathbf{A}$ con $A_1 \neq A_2$; altrimenti $t_i = t_i^*$. Supponiamo esistano due cammini disgiunti sui nodi P_1^*, P_2^* in $H(\mathbf{A})$ tali che P_i^* connetta s_i e t_i^* . Allora H ha due cammini disgiunti sui nodi P_1, P_2 tali che P_i connetta s_i e t_i , e $V(P_i \cap \mathbf{A}H(\mathbf{A})) = V(P_i^*)$.

▶ **Proposizione 3.9.** Sia H un grafo, \mathbf{A} un sottoinsieme di H 3-separato minimale con $H(\mathbf{A})$ planare. Supponiamo esista una separazione (K_1, K_2) di ordine due o tre in H con $|K_1| \le 4$ e $K_1 \cap K_2 \subset V(H(\mathbf{A}))$. Allora $K_1 \cap a \ne \emptyset$ per ogni $a \in A$. Ovvero K_1 è contenuto nel grafo planare H(V).

Proof. Supponiamo che $K_1 \cap A \neq \emptyset$ per qualche $A \in \mathbf{A}$. Sia $A' = K_1 \cap A$. Per la nostra supposizione abbiamo $K_1 \cap K_2 \subset V(H(\mathbf{A}))$, $|A'| \leq |K_1 - K_2| \leq 2$. Aggiungendo A' alla faccia che contiene $K_1 \cap K_2 \subset V(H(\mathbf{A}))$, possiamo trovare una nuova immersione di H nel piano, rispettivamente a $(\mathbf{A} - \{A\}) \cup \{A - A'\}$. Ma questo contraddice la minimalità di \mathbf{A} .

A questo punto il paper originale [5] enuncia una proposizione senza dimostrazione:

▶ **Proposizione 3.10.** Supponiamo che H sia un grafo planare 2-connesso, e siano s_1, t_1, s_2, t_2 quattro suoi vertici. Richiediamo inoltre che s_1 non sia contenuto in ∂H . Allora se non esistono due cammini disgiunti sui nodi P_1, P_2 tali che P_i connetta s_i e t_i per i = 1, 2 esiste una 2-separazione (K_1, K_2) tale che $K_1 \cap K_2 \subset V(\partial H), s_1 \in K_1 - K_2$ e K_2 contenga s_2, t_1 e t_2 .

Purteoppo a questa proposizione, con le ipotesi date, esiste un facile controesempio. Si prenda un 4-ciclo che contenga s_1, t_1, s_2, t_2 in ordine e un altro vartice w adiacente a tutti gli altri, questo grafo rispetta tutte le ipotesi ma non esiste una 2-separazione che rispertta la proposizione.

Chapter 3 Teorema dei due cammini

Questa proposizione veniva usata una sola volta nella dimostrazione del claim 4.7, in questa tesi ho formulato un'ipotesi alternativa all'interno di questo claim.

Dimostrazione del teorema principale

Ora proseguiamo con la dimostrazione del teorema 2.4.

- ▶ **Teorema 2.4** Sia *G* un grafo internamente 4-connesso. Allora *G* non ha due cicli dispari disgiunti sui nodi se e solo se soddisfa una delle seguenti:
 - 1. $G \{x\}$ è bipartito per qualche nodo $x \in V(G)$,
 - 2. $G \{e_1, e_2, e_3\}$ è bipartito per qualche arco $e_1, e_2, e_3 \in E(G)$ tale che e_1, e_2, e_3 formino un triangolo,
 - 3. $|G| \le 5$, e
 - 4. *G* può essere immerso nel piano proiettivo cosicché ogni faccia abbia perimetro pari.

È facile vedere che se un grafo rispetta una delle quattro proprietà non contiene due cicli dispari disgiunti.

Partendo dalla prima proprietà sia $G - \{x\}$ bipartito per un qualche vertice x, allora, poiché come visto precedentemente un grafo bipartito non contiene cicli dispari, si ha che ogni ciclo dispari di G contiene x di conseguenza non possono esserci cammini dispari disgiunti.

Chapter 4 Dimostrazione del teorema principale

Per la seconda proprietà possiamo usare un ragionamento simile, se un grafo risulta bipartito eliminado tre archi tali che questi formino un triangolo, abbiamo che uno o tutti questi archi collegano nodi della stessa partizione, se è uno è immediato vedere che ogni ciclo dispari contiene quell'arco e di conseguenza due cicli dispari non possono essere disgiunti, se tutti i tre archi connettono vertici della stessa partizione ho che ogni ciclo dispari conterrà uno di questi tre archi, di conseguenza le sue estremità, ed essendo che i tre vertici formano un triangolo i tre archi hanno a due a due un estremità in comune, e di conseguenza non possono esistere cammini dispari disgiunti poiché ognuno di essi conterrebbe due dei tre vertici del triangolo.

La terza proprietà è immediata, un ciclo dispari contiene almeno tre vertici, se un grafo ha cinque o meno vertici è ovvio che non può contenere due cicli dispari disgiunti.

L'ultima proprietà è meno immediata da vedere, si ha che ogni faccia finita ha come perimetro un ciclo pari, di conseguenza ogni ciclo che delimita una porzione finita di spazio è pari (il numero di archi, e conseguentemente di nodi, del ciclo sono la somma degli archi dei cicli che delimitano tali facce a cui si tolgono gli archi interni i quali vengono tolti due volte faccendo parte di due facce). Quindi ogni ciclo dispari deve passare per un punto all'infinito e quindi oltrepassare il bordo del quadrato elementare, due cicli disgiunti non possono ovviamente contenere lo stesso punto all'infinito e, per come sono identificati i bordi, due coppie di punti identificati sul bordo si dispongono alternatamente sul perimetro del quadrato. Di conseguenza due percorsi che connettono gli elementi delle due coppie devono necessariamente intersecarsi nel piano.

Dimostriamo la necessità di una di queste proprietà per non avere due cicli dispari disgiunti. Sia G un grafo internamente 4-connesso senza due cicli dispari disgiunti. Se $|G| \le 8$ è facile verificare che una delle quattro condizioni è verificata, di conseguenza possiamo assumere $|G| \ge 9$.

Prendiamo H un sottografo bipartito ricoprente 2-connesso tale che |E(H)| sia più grande possibile. Notiamo che per ogni arco $(u,v) \in E(G) - E(H)$, sia u che v appartengono alla stessa partizione di H, poiché in caso contrario potremmo aggiungerlo ad H il che contraddice la scelta di H. Questo implica il seguente fatto che useremo frequentemente nella dimostrazione:

▶ Osservazione 4.1. Per ogni arco $(u,v) \in E(G) - E(H)$, e per ogni cammino P di H che connette u e v, uPvu è un ciclo dispari.

Supponiamo che esistano due archi indipendenti (u_1, v_1) e (u_2, v_2) in E(G) – E(H). Se esistessero due cammini disgiunti sui nodi P_1, P_2 in H tali che P_i

connetta u_i e v_i , allora $u_1P_1v_1u_1$ e $u_2P_2v_2u_2$ sono due cicli dispari disgiunti, il che è una contraddizione. Perciò non esistono tali cammini disgiunti. Da questo otteniamo il seguente claim.

▶ Claim 4.2. Per ogni coppia di vertici indipendenti (u_1, v_1) e (u_2, v_2) in E(G) – E(H) non esistono due cammini disgiunti P_1, P_2 tali che P_i connetta u_i e v_i per i = 1, 2.

Se non esistono due archi indipendenti in E(G)-E(H), allora vale la proprietà 1 o la proprietà 2 del teorema 2.4. Quindi, d'ora in poi, assumiamo che esistano due archi indipendenti (u_1,v_1) e (u_2,v_2) in E(G)-E(H). Dal claim e dal teorema 3.6, esiste un sottoinsieme 3-separato di H con $u_1,v_1,u_2,v_2 \notin a$ per ogni $A \in \mathbf{A}$ ed esiste una immersione nel piano, rispetto ad \mathbf{A} , di H in cui $\partial H(\mathbf{A})$ contiene u_1,v_1,u_2,v_2 in senso orario. Ora sia

 $S = \{u \in V(H) : uv \text{ è un arco di } E(G) - E(H)\}$

Prendiamo un tale insieme A e un'immersione di H nel piano, con rispettivamente ad A, in modo che:

- 1. A sia minimale
- 2. $|\partial H(\mathbf{A}) \cap S|$ sia il più grande possibile, rispettando 1.

Ora noi proveremo che tutti gli archi mancanti possono essere inseriti nella frontiera $\partial H(\mathbf{A})$ cosicché formino il "crosscap". allora questo grafo apparterrebbe alla classe definita dal teorema 2.4.

Poiché H è 2-connesso, chiaramente $H(\mathbf{A})$ è 2-connesso. Ora scegliendo \mathbf{A} tale che valga 1. possiamo applicare le proposizioni 3.8 e 3.9.

Il nostro scopo ora è di dimostrare:

▶ Claim 4.3. Vale che G soddisfa la proprietà 2 del teorema 2.4 o alternativamente $S \subset \partial H(\mathbf{A})$.

Infatti, una volta dimostrato questo claim possiamo completare la dimostrazione del teorema principale. A questo scopo assumiamo che valga il claim 4.3 e che G non soddisfi la proprietà 2 del teorema 2.4. Mostriamo che $\mathbf{A} = \emptyset$. Supponiamo per assurdo che $\mathbf{A} \neq \emptyset$, $A \in \mathbf{A}$. Per il claim 4.3, $S \cap a = \emptyset$, e, di conseguenza, $N_G(\mathbf{A}) = N_H(\mathbf{A})$. Allora $(\widehat{A}, V(G) - A)$ è una 3-separazione in G con $|V(G) - A| \ge 4$, dove $\widehat{A} = a \cup N_G(A)$. Se avessimo $|V(G) - A| \ge 5$ allora $|\widehat{A}| \le 4$ poiché G è internamente 4-connesso. Ma questo contraddice la proposizione 3.8

essendo $(\widehat{A},V(G)-A)$ una 2- o 3-separazione in H. quindi |V(G)-A|=4, e quindi $V(G)-A=\{u_1,u_2,v_1,v_2\}$. Essendo $|N_G(A)|=|N_H(\mathbf{A})|\leq 3$, possiamo assumere che $v_2\notin N_G(A)$. Dal fatto che G è 3-connesso segue che $N_G(v_2)=\{u_1,u_2,v_1\}$. Notiamo che $G-\{u_1v_1,u_1v_2,v_1v_1\}=(H-\{u_1v_2,v_1v_2\})\cup\{u_2v_2\}$. Allora u_1v_1,u_1v_2,v_1v_2 formano un triangolo tale che $G-\{u_1v_1,u_1v_2,v_1v_2\}$ sia bipartito, di conseguenza varrebbe la proprietà 2 del teorema. Di conseguenza abbiamo $\mathbf{A}=\emptyset$.

Ora inseriamo il "crosscap" nella faccia esterna di $H(\mathbf{A})=H$, avremmo tutti gli archi immersi di E(G)-E(H) in questo "crosscap". Notiamo che per costruzione il perimetro di ogni faccia di H ha lunghezza pari. Perciò se riuscissimo a immergere ogni arco di E(G)-E(H) nel "crosscap", allora G soddisferebbe la proprietà 4 del teorema e possiamo concludere la dimostrazione.

Sia $S=\{u_1,u_2,..,u_l\}$ tale che $u_1,u_2,..,u_l$ appaiano in ordine orario. Se esistessero due archi indipendenti $u_1u_j,u_pu_q\in E(G)-E(H)$ con $1< j< p< q\leq l,$ allora possiamo facilmente trovare due cammini in H disgiunti sui nodi che connettono u_1 a u_j e u_p a u_q lungo $\partial H,$ il che è una contraddizione del claim 4.2. Di conseguenza non esistono due archi disgiunti $u_1u_j,u_pu_q\in E(G)-E(H)$ i quali vertici u_i,u_j,u_p,u_q appaiano in $\partial H(\mathbf{A})$ in questo ordine. Se esistessero due archi $u_1u_i,u_iu_j\in E(G)-E(H)$ con 1< i< j, allora per ogni u_p con $j\leq p\leq l$ e per ogni u_q con $q\neq i$, abbiamo $u_pu_q\notin E(G)-E(H)$; poiché altrimenti si avrebbe che u_p,u_q,u_i,u_j o u_1,u_i,u_q,u_p apparirebbero in questo ordine in ∂H contraddicendo il punto precedente.

Questi fatti implicano che tutti i vertici di S appaiono in un ordine "particolare" in ∂H , e possiamo di conseguenza immergere tutti gli archi di E(G) - E(H) nel "crosscap". Questo completa la dimostrazione del teorema 2.4.

Ci rimane da dimostrare soltanto il claim 4.3. Supponiamo che $S - \partial H(\mathbf{A}) \neq \emptyset$, prendiamo $u \in S - \partial H(\mathbf{A})$, e sia uv un arco in E(G) - E(H). Poiché $u \neq u_1, u_2, v_1, v_2$, almeno un arco tra u_1v_1 e u_2v_2 è indipendente con uv, supponiamo sia u_1v_1 .

▶ Claim 4.4. Esiste una 2-separazione (K_1, K_2) in H tale che $(K_1 - K_2) \cap \partial H(A) \neq \emptyset$, $(K_2 - K_1) \cap \partial H(\mathbf{A}) \neq \emptyset$, $u \in K_1 - K_2 - \partial H(\mathbf{A})$, e $u_1, v_1, v \in K_2$.

Proof. Supponiamo per assurdo che una tale separazione non esista. Sia $u^* = u$ se $u \notin A$, per ogni $A \in \mathbf{A}$; alternativamente sia un nodo di $N_H(\mathbf{A})$ con $u \in A \in \mathbf{A}$. Definiamo allo stesso modo $v^* \in V(H(\mathbf{A}))$ per v.

Per la nostra assunzione che il claim 4.4 non valga, $H(\mathbf{A})$ non ha alcuna 2-separazione (K_1^*, K_2^*) tale che $(K_1^* - K_2^*) \cap \partial H(\mathbf{A}) \neq \emptyset$, $(K_2^* - K_1^*) \cap \partial H(\mathbf{A}) \neq \emptyset$

Chapter 4 Dimostrazione del teorema principale

 $u^* \in K_1^* - K_2^* - \partial H(\mathbf{A})$, $e \ u_1, v_1, v^* \in K_2^*$. Questo implica che esiste un cammino P^* in $H(\mathbf{A})$ che connette u^* e v^* tale che si abbia $V(P^*) \cap u_1 \partial H(\mathbf{A}) v_1 = \emptyset$, oppure $V(P^*) \cap v_1 \partial H(\mathbf{A}) u_1 = \emptyset$. Possiamo assumere che $V(P^*) \cap u_1 \partial H(\mathbf{A}) v_1 = \emptyset$, sia ora $Q^* = u_1 \partial H(\mathbf{A}) v_1$. Dalla proposizione 3.8, esistono due cammini disgiunti sui vertici P, Q in P che connettono rispettivamente P0 con P1 quali contengono rispettivamente P1 Questo contraddice il claim 4.2.

Sia ora (K_1, K_2) una 2-separazione come nel claim 4.4, e sia $\{x, y\} = K_1 \cap K_2$. Assumendo il claim 4.4 abbiamo $x, y \in \partial H(\mathbf{A})$.

► Claim 4.5. $\partial H(\mathbf{A}) \cap (K_1 - K_2) \cap S \neq \emptyset$

Proof. Supponiamo $\partial H(\mathbf{A}) \cap (K_1 - K_2) \cap S = \emptyset$. Si noti che $u \in K_1 - K_2 - \partial H(\mathbf{A})$. Sia $\mathbf{A}' = \{A \in \mathbf{A} : A \cap K_2 \neq \emptyset\} \cup \{K_1 - \{x, y, u\}\}$. Allora otteniamo che \mathbf{A}' è un sottoinsieme 3-separato di H con $u_1, v_1, u_2, v_2 \notin A$ per ogni $A \in \mathbf{A}$, inoltre esiste un'immersione di H nel piano, rispettivamente ad \mathbf{A}' , con le stesse proprietà di \mathbf{A} . Allora è chiaro che esiste una collezione B tale che $b \subset k_1 - \{x, y, u\}$ per ogni $b \in B$ e che $\mathbf{A}'' = \{A \in \mathbf{A} : A \cap K_2 \neq \emptyset\} \cup B$ sia minimale. Poiché abbiamo che u appare in $\partial H(\mathbf{A}'')$, $|\partial H(\mathbf{A}'') \cap S| \geq |\partial H(\mathbf{A}) \cap S| + 1$, il che contraddice la proprietà di massimalità di $|\partial H(\mathbf{A}) \cap S|$ posta in precedenza. ■

Prendiamo tale 2-separazione (K_1, K_2) in H in modo che $|K_1|$ sia più piccola possibile. Dal claim 4.5, esiste un vertice $u' \in \partial H(\mathbf{A}) \cap (K_1, K_2) \cap S$, e sia v' un vertice con $u'v' \in E(G) - E(H)$. Siano P'_{ux} e P'_{uy} i cammini in K_1 corrispondenti a $u'\partial H(\mathbf{A})x$ e $y\partial H(\mathbf{A})u'$ rispettivamente.

Avendo $\{x,y\} = K_1 \cap K_2$, possiamo assumere $K_1 \cap \partial H(\mathbf{A}) = y \partial H(\mathbf{A})x$ e $K_2 \cap \partial H(\mathbf{A}) = x \partial H(\mathbf{A})y$. Dal momento che abbiamo preso $|K_1|$ minima, esistono due cammini P_{ux} e P_{uy} in $K_1 - (\partial H(\mathbf{A}) - \{x,y\})$ che connettono u con x e y rispettivamente. Chiaramente $P_{ux}, P_{uy}, P'_{ux}, P'_{uy}$ sono cammini a due a due disgiunti con eccezione nelle estremità.

Se $v' \in K_1 - \{u\}$, allora esiste un cammino P' in K_1 che connette u' con v' tale che P' è disgiunto da almeno uno tra P_{ux} e P_{uy} , assumiamo sia P_{ux} . Allora $uP_{ux}xQv$ e u'P'v' sono due cammini disgiunti sui nodi, dove Q è un cammino in K_2 che connette x e v, una contraddizione al claim 4.2. Quindi $v' \in (K_2 - K_1) \cup \{u\}$.

▶ **Claim 4.6.** In *G* non esistono due archi indipendenti che connettono $K_1 - K_2$ e $K_2 - K_1$. In particolare, v' = u oppure v' = v.

Proof. Supponiamo che esistano due archi indipendenti in G che connettono $K_1 - K_2$ e $K_2 - K_1$. Allora, rinominando i vertici qualora necessario, possiamo trovare due archi indipendenti uv e u'v' tali che $u \in K_1 - K_2 - \partial H(\mathbf{A}), u' \in \partial H(\mathbf{A}) \cap K_1 - K_2$, e $v, v' \in K_2 - K_1$.

Poiché $K_2 + xy$ è 2-connesso, esistono due cammini disgiunti sui nodi Q_1, Q_2 in K_2 da $\{v,v'\}$ a $\{x,y\}$. Per simmetria, possiamo assumere che Q_1 connetta v e x e Q_2 connetta v' e y. Allora $uP_{ux}xQ_1v$ e $u'P'_{uy}yQ_2v'$ sono due cammini disgiunti sui nodi, una contraddizione al claim 4.2.

Di conseguenza non esistono due archi indipendenti in G che connettono $K_1 - K_2$ e $K_2 - K_1$. Avendo $v' \in (K_2 - K_1) \cup \{u\}$, segue che v' = u oppure v' = v.

Poiché $u \in K_1 - K_2 - \partial H(\mathbf{A})$ e $u' \in \partial H(\mathbf{A}) \cap K_1 - K_2$, $|K_1| \geq 4$. Se $|K_2| \geq 5$, allora per il claim 4.6 $(\widehat{K_1}, K_2)$ è una 3-separazione in G con $|\widehat{K_1}|$, $|K_2| \geq 5$, dove $\widehat{K_1} = K_1 \cup \{v\}$. questo contraddice il fatto che G è internamente 4-connesso. Di conseguenza otteniamo $|K_2| \leq 4$. Per simmetria, possiamo assumere che $xv \in E(G)$. Dalla proposizione 3.9 abbiamo $K_2 \cap A = \emptyset$ per ogni $A \in \mathbf{A}$.

▶ Claim 4.7. Non esiste alcun arco in E(G) - E(H) che connette due vertici di K_1 eccetto xy. In particolare, v' = v.

Proof. Supponiamo ci sia un arco u_3v_3 in E(G) - E(H) che connette due vertici di K_1 diverso da xy. Se entrambi u_3 e v_3 sono in $\partial H(\mathbf{A})$, allora il cammino R lungo $\partial H(\mathbf{A}) - \{x,y\}$ tra u_3 e v_3 , e il cammino P_{ux} insieme a v, sono disgiunti sui vertici, il che è una contraddizione al claim 4.2.

Allora possiamo assumere $u_3 \notin V(\partial H(\mathbf{A}))$. Per simmetria, possiamo assumere anche $u \neq v_3$, si noti che $v \neq u_3, v_3$. Supponiamo $u \neq u_3$. Dal claim 4.2 abbiamo che non esistono due cammini disgiunti sui nodi P_1, P_2 tale che P_1 congiunga u e v, e P_2 congiunga u_3 e v_3 .

Ipotesi aggiuntiva: Possiamo sostituire la proposizione 3.10 con la seguente assunzione: in H(A) esiste una 2-separazione (K_1', K_2') tale che $K_1' \cap K_2' \subset V(\partial H(\mathbf{A})), u_3 \in V(K_1' - K_2'), e u, v, v_3 \in K_2'$.

Possiamo vedere che per l'esistenza dei cammini $P_{ux}, P_{uy}, x, y \in K_2'$ e K_1' non contiene alcun vertice in $K_2 - K_1$. Segue che $|K_2'| \ge 5$. Possiamo inoltre osservare che la 2-separazione (K_1', K_2') può essere estesa a una 2-separazione (K_1'', K_2'') in H tale che $K_1'' \cap K_2''' \subset V(\partial H(\mathbf{A})), u_3 \in V(K_1''' - K_2''')$, e $u, v, v_3 \in K_2''$. Inoltre $|K_2''| \ge 5$. Ma allora questo contraddice la nostra scelta di (K_1, K_2) sulla minimalità di K_1 , poiché $u_3 \in V(\partial H(\mathbf{A}))$. Di conseguenza $u = u_3$. Se $v_3 \ne u'$, allora considerando due coppie (u', v') e (u_3, v_3) nell'argomentazione precedente al

posto di (u,v) e (u_3,v_3) , otteniamo la stessa contraddizione. Quindi abbiamo $v_3 = u'$, in particolare, non esiste alcun arco in E(G) - E(H) che connetta due vertici di K_1 con eccezione per xy e uu'.

Se esistesse un cammino P in $K_1 - \{x, y\}$ che connetta u e u', allora uPu'u e $u_1Qv_1u_1$ sono due cammini dispari disgiunti sui nodi, dove Q è un cammino in K_2 che connette u_1 e v_1 , una contraddizione. Di conseguenza, esiste una 2-separazione (F_1, F_2) in K_1 tale che $u \in F_1, u' \in F_2$ e $F_1 \cap F_2 = \{x, y\}$.

Ricordiamo che non esiste alcun arco in E(G)-E(H) che connetta due vertici di K_1 eccetto xy e uu'. Se $|F_1| \ge 5$, segue dal ragionamento appena fatto e dal claim 4.6 che $(F_1, \widehat{K_2})$ è una 3-separazione in G con $|F_1|$, $|\widehat{K_2}| \ge 5$, una contraddizione, dove $\widehat{K_2} = F_2 \cup K_2$. Di conseguenza $|F_1| \le 4$, e per simmetria, $|F_2| \le 4$. Per la proposizione 3.9, $F_1 \cap a = F_2 \cap a = \emptyset$ per ogni $A \in \mathbf{A}$. Questo implica $|G| \le 8$, che contraddice la prima assunzione di questo capitolo. Questo completa la dimostrazione del claim 4.7.

Prendendo $|K_2| = 4$, e sia v'' l'unico vertice in $K_2 - \{v, x, y\}$. Usando la simmetria di K_2 e il fatto che H è 2-connesso e bipartito, possiamo applicare il claim 4.6 per avere i seguenti tre casi:

- 1. $|K_2| = 3$, $x = u_1$, e $y = v_1$,
- 2. $|K_2| = 4$, $x = u_1$, $y = v_1$, e $E(K_2) = \{u_1v, u_1v'', vv_1, v''v_1\}$
- 3. $|K_2| = 4$, $x = u_1$, $v'' = v_1$, e $E(K_2) = \{u_1v, vv_1, v_1y\}$.

Dal claim 4.6, $(N_G(v'') \cap K_1) - K_2 = \emptyset$, e di conseguenza, essendo G 3-connesso, $N_G(v'') = \{v, x, y\}$.

Sia V_1, V_2 le due partizioni del grafo bipartito H con $u \in V_1$. Notiamo che $v \in V_1$ e $u_1, v_1 \in V_2$ per la scelta di H e la precedente costruzione di K_2 .

Nel caso delle proprietà 1. e 2. del teorema 2.4 otteniamo $xy=u_1v_1$, e nel caso della proprietà 3. $xy \notin E(G)-E(H)$ poiché $x \in V_2, y \in V_1$. Di conseguenza per i claim 4.6 e 4.7, $G-\{vu_1,vv_1,u_1v_1\}$ è un grafo bipartito su V_1' e V_2' , dove $V_1'=V_1-\{v\}$ e $V_2'=V_2\cup\{v\}$. Perciò vale la proprietà 2. ; in caso contrario $S\subset \partial H(A)$, e con questo concludiamo il nostro lavoro.

Bibliography

- [1] B. Reed, D. Rautenbach, The Erdős–Pósa Property for Odd Cycles in Highly Connected Graphs. Combinatorica (2001)
- [2] C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combin. Theory Ser. B 29 (1980), 244-271
- [3] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
- [4] D. Slilaty, Projective-Planar Signed Graphs and Tangled Signed Graphs. Journal of Combinatorial Theory, Series B, 97 (5), (2007), 693-717.
- [5] K. Kawarabayashi, K. Ozeki, A simpler proof for the two disjoint odd cycles theorem. Journal of Combinatorial Theory Series B, 103 (3), (2013), 313–319
- [6] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305–359.
- [7] P.D. Seymour, Matroid minors, in: Handbook of Combinatorics, 1, Elsevier, Amsterdam, 1995, pp. 527–550.
 - [8] C. Thomassen, 2-Linked graph, European J. Combin. 1 (1980) 371–378.
- [9] X. Yu, Disjoint paths in graphs I, 3-planar graphs and basic obstructions, Ann. Comb. 7, (2003), 89–103.