2 Chapter 11

Since 0=90°, qE=qvB(1)

(Zb) The E-field is constant.

the drift velocity is $vd = \frac{I}{ngeA}$ so, V = Vd

$$\Delta v = B\Delta x I$$
 $R = 1.33$

$$\Delta x = Zcm = .02m$$

$$\Delta x = Zcm = .0Zm$$

$$T = 10A$$
 $n = 2 \times 10^{28} \, \text{m}^{-3}$

$$\Delta v = \frac{1.33 (Z \times 10^{-2}) 10}{(Z \times 10^{-3})^2} A = \frac{(1 \times 10^{-3})^2}{(1 \times 10^{-3})^2}$$

3)
$$t = NIAB \sin \theta$$
 (a.5) $N = 1$
 $T = (1)(1.05 \times 10^4) (17(.45 \times 10^{-15})^2)(1)A = 17(.65 \times 10^{-15})^2$
 $= (1.05 \times 10^4) (133 \times 10^{-50})(a.5)B = 13.5$
 $T = 3.48 \times 10^{-26} N \cdot m$

3 Chapter 12

[a) $B = M_0 n I$
 $B = (4\pi \times 10^{-7})(500)(.3)$
 $B = 0.3A$
 $B = 0.3A$
 $B = 0.3A$
 B

$$\frac{7b)}{r} = 9 \sqrt{B}$$

$$\Rightarrow r = \frac{mv^2}{9+B} = \frac{mv}{9B}$$

Since
$$V = E$$
 $M = 16(1.67 \times 10^{-27})$
 $B = 1.602 \times 10^{-19}$
 $B = 6.01 T$

S= 0.01T

$$Y = [2.672 \times 10^{-26})(10)$$

 $(1.602 \times 10^{-19})(10^{-2})^{2}$

$$= 2.672 \times 10^{-25} = 0.0168 \text{ m}$$

$$\frac{1.602 \times 10^{-23}}{1.602 \times 10^{-23}} = 0.0168 \text{ m}$$

1)
$$B(t) = B_0 \left(\frac{1}{2} + \frac{2}{5} \sin(2\pi f t) - \frac{2}{3\pi} \sin(6\pi f t) + \frac{2}{5\pi} \sin(10\pi f t) \right)$$

Since
$$\xi = -N \frac{d\theta}{d\epsilon} \Rightarrow \xi = \frac{d\theta}{d\epsilon} \Rightarrow \frac{2 \cos(10\pi f \epsilon)}{40\pi f}$$

and $\phi = BA$, $\xi = -A(\frac{dB}{d\epsilon})$ so, $A = \pi r^2$

and
$$\phi = BA$$
 , $\epsilon = -A \left(\frac{dB}{dt} \right)$ so, $A = \pi v^{2}$

1)
$$L = .50 - H$$

$$\Delta V = -L \left(\frac{dI}{dL} \right)$$

$$\Delta \frac{dI}{dL} = \Delta V$$

Z)
$$\Delta V = -L \left(\frac{dT}{dL}\right)$$
 $\Delta V = 500V$

$$L = 2 \times 10^{-3} - H$$

$$T = -6100 A$$

$$500 = -(2x10^{-3})(-.1)$$