

ICT713 Advanced Database Management

Lecture 1 – Chapter 2 Data models

Adopted from: Coronel, C. and Morris, S. (2022). *Database Systems: Design, Implementation, & Management,* 14th Edition., Cengage Learning Compiled By: Divya Leekha

Subject Learning Outcomes

Subject Learning Outcomes Model and design databases based on given requirements using ERDs and EERDs b) Optimise querying, storing and indexing of databases Articulate the trade-offs in using distributed databases and data warehousing technologies d) Employ emerging trends in the field of database design and development

Learning Objectives

- After completing this chapter, you will be able to:
 - Discuss data modeling and why data models are important
 - Describe the basic data-modeling building blocks
 - Define what business rules are and how they influence database design
 - Understand how the major data models evolved
 - List emerging alternative data models and the needs they fulfill
 - Explain how data models can be classified by their level of abstraction

Data Modeling and Data Models

- Data modeling: creating a specific data model for a determined problem domain
 - Data model: simple representation of complex real-world data structures
 - Useful for supporting a specific problem domain
 - Model: abstraction of a more complex real-world object or event

The Importance of Data Models

- The importance of data modeling cannot be overstated
 - Facilitates communication
 - Gives various views of the database
 - Organizes data for various users
 - Provides an abstraction for the creation of good a database

Data Model Basic Building Blocks

- Entity: person, place, thing, or event about which data will be collected and stored
 - Attribute: characteristic of an entity
 - Relationship: association among entities
 - One-to-many (1:M OR 1..*)
 - Many-to-many (M:N or *..*)
 - One-to-one (1:1 OR 1..1)
 - Constraint: restriction placed on data
 - Ensures data integrity

- Brief, precise, and unambiguous description of a policy, procedure, or principle
 - Create and enforce actions within that organization's environment
 - Establish entities, relationships, and constraints

Discovering Business Rules (1 of 2)

- Sources of business rules
 - Company managers
 - Policy makers
 - Department managers
 - Written documentation
 - Direct interviews with end users

Discovering Business Rules (2 of 2)

- Reasons for identifying and documenting business rules
 - Standardize company's view of data
 - Facilitate communications tool between users and designers
 - Assist designers
 - Understand the nature, role, scope of data, and business processes
 - Develop appropriate relationship participation rules and constraints
 - Create an accurate data model

Translating Business Rules into Data Model Components

- Business rules set the stage for the proper identification of entities, attributes, relationships, and constraints
 - Nouns translate into entities
 - Verbs translate into relationships among entities
- Relationships are bidirectional
 - Questions to identify the relationship type
 - How many instances of B are related to one instance of A?
 - How many instances of A are related to one instance of B?

Naming Conventions

- Entity name requirements
 - Be descriptive of the objects in the business environment
 - Use terminology that is familiar to the users
- Attribute name
 - Required to be descriptive of the data represented by the attribute
- Proper naming
 - Facilitates communication between parties
 - Promotes self-documentation

Hierarchical and Network Models (1 of 2)

- Hierarchical models: developed to manage large amounts of data for complex manufacturing projects
 - Represented by an upside-down tree which contains segments
 - Segments are the equivalent of a file system's record type
 - Depicts a set of one-to-many (1:M) relationships

Hierarchical and Network Models (2 of 2)

- Network models: created to represent complex data relationships effectively
 - Improved database performance and imposed a database standard
 - Allows a record to have more than one parent
- Standard database concepts that emerged with the network model are still used by modern data models
 - Schema and subschema
 - Data manipulation language (DML)
 - Data definition language (DDL)

The Relational Model (1 of 4)

- Produced an automatic transmission database that replaced standard transmission databases
 - Based on a relation (i.e., table): matrix composed of intersecting tuples (rows) and attributes (columns)
- Describes a precise set of data manipulation constructs

The Relational Model (2 of 4)

- Relational database management system (RDBMS)
 - Performs basic functions provided by the hierarchical and network DBMS systems
 - Makes the relational data model easier to understand and implement
 - Hides the complexities of the relational model from the user

The Relational Model (3 of 4)

FIGURE 2.2 A RELATIONAL DIAGRAM

The Relational Model (4 of 4)

- SQL-based relational database application
 - End-user interface
 - Allows end user to interact with the data
 - Collection of tables stored in the database
 - Each table is independent from another
 - Rows in different tables are related based on common values in common attributes
 - SQL engine
 - Executes all queries

The Entity Relationship Model (1 of 2)

- Graphical representation of entities and their relationships in a database structure
 - Entity relationship diagram (ERD): uses graphic representations to model database components
 - Entity instance or entity occurrence: rows in the relational table
 - Attributes: describe particular characteristics
 - Connectivity: term used to label the relationship types

The Entity Relationship Model (2 of 2)

FIGURE 2.3 THE ER MODEL NOTATIONS

The Object-Oriented Data Model (1 of 3)

- Both data and its relationships are contained in a single structure known as an object
 - Object-oriented database management system(OODBMS): based on OODM
- Object: contains data and their relationships with operations that are performed on it
 - Basic building block for autonomous structures
 - Abstraction of real-world entity
- Attribute: describes the properties of an object

The Object-Oriented Data Model (2 of 3)

- Class: collection of similar objects with shared structure and behavior organized in a class hierarchy
- Class hierarchy: resembles an upside-down tree in which each class has only one parent
- Inheritance: object inherits methods and attributes of classes above it
- Unified Modeling Language (UML): describes sets of diagrams and symbols to graphically model a system

The Object-Oriented Data Model (3 of 3)

Object/Relational and XML

- Extended relational data model (ERDM)
 - Supports OO features, extensible data types based on classes, and inheritance
 - Object/relational database management system (O/R DBMS): based on ERDM
- Extensible Markup Language (XML)
 - Manages unstructured data for efficient and effective exchange of structured, semistructured, and unstructured data

Emerging Data Models: Big Data and NoSQL (1 of 3)

- Goals of Big Data
 - Find new and better ways to manage large amounts of web and sensor-generated data
 - Provide high performance at a reasonable cost
- Characteristics of Big Data
 - Volume
 - Velocity
 - Variety

Emerging Data Models: Big Data and NoSQL (2 of 3)

- Challenges of Big Data
 - Volume doesn't allow usage of conventional structures
 - Expensive
 - OLAP tools proved inconsistent dealing with unstructured data
- New technologies of Big Data
 - Hadoop
 - Hadoop Distributed File System (HDFS)
 - MapReduce
 - NoSQL

Emerging Data Models: Big Data and NoSQL (3 of 3)

- NoSQL databases
 - Not based on the relational model
 - Support distributed database architectures
 - Provide high scalability, high availability, and fault tolerance
 - Support large amounts of sparse data
 - Geared toward performance rather than transaction consistency
 - Provides a broad umbrella for data storage and manipulation

Data Models: A Summary

Advantages

- Promotes data sharing
- Parent/child relationship promotes conceptual simplicity and data integrity
- Database security is provided and enforced by DBMS
- Efficient with 1:M relationships

Disadvantages

- Requires knowledge of physical data storage characteristics
- Navigational system requires knowledge of hierarchical path
- Changes in structure require changes in all application programs
- Implementation limitations
- No data definition
- Lack of standards

Advantages

- Conceptual simplicity
- Handles more relationship types
- Data access is flexible
- Data owner/member relationship promotes data integrity
- Conformance to standards
- Includes data definition language (DDL) and data manipulation language (DML)
- Disadvantages
 - System complexity limits efficiency
 - Navigational system yields complex implementation, application development, and management
 - Structural changes require changes in all application programs

Relational Model

Advantages

- Structural independence is promoted using independent tables
- Tabular view improves conceptual simplicity
- Ad hoc query capability is based on SQL
- Isolates the end user from physical-level details
- Improves implementation and management simplicity

Disadvantages

- Requires substantial hardware and system software overhead
- Conceptual simplicity gives untrained people the tools to use a good system poorly
- May promote information problems

Entity Relationship Model

- Advantages
 - Visual modeling yields conceptual simplicity
 - Visual representation makes it an effective communication tool
 - Is integrated with the dominant relational model
- Disadvantages
 - Limited constraint representation
 - Limited relationship representation
 - No data manipulation language
 - Loss of information content occurs when attributes are removed from entities to avoid crowded displays

Object-Oriented Model

- Advantages
 - Semantic content is added
 - Visual representation includes semantic content
 - Inheritance promotes data integrity
- Disadvantages
 - Slow development of standards caused vendors to supply their own enhancements
 - Complex navigational system
 - Learning curve is steep
 - High system overhead slows transactions

Advantages

- High scalability, availability, and fault tolerance are provided
- Uses low-cost commodity hardware
- Supports Big Data
- Key-value model improves storage efficiency
- Disadvantages
 - Complex programming is required
 - There is no relationship support
 - There is no transaction integrity support
 - In terms of data consistency, it provides an eventually consistent model

Degrees of Data Abstraction

FIGURE 2.6 DATA ABSTRACTION LEVELS

Degree of Abstraction		Characteristics	
High	ER Object-Oriented	Hardware-independent Software-independent	
Medium	Relational	Hardware-independent Software-dependent	
Low	Network Hierarchical	Hardware-dependent Software-dependent	

The External Model (1 of 2)

- End users' view of the data environment
 - People who use the application programs to manipulate the data and generate information
- ER diagrams are used to represent the external views
 - External schema: specific representation of an external view

The External Model (2 of 2)

The Conceptual Model (1 of 2)

- Represents a global view of the entire database by the entire organization
 - Conceptual schema: basis for the identification and high-level description of the main data objects
 - Logical design: task of creating a conceptual data model
- Conceptual model advantages
 - Macro-level view of data environment
 - Software and hardware independent

The Conceptual Model (2 of 2)

The Internal Model

- Representing database as seen by the DBMS mapping conceptual model to the DBMS
 - Internal schema: specific representation of an internal model, using the database constructs supported by the chosen database
 - Logical independence: changing internal model without affecting the conceptual model
 - Hardware independent: unaffected by the type of computer on which the software is installed

The Physical Model (1 of 2)

- Operates at lowest level of abstraction
 - Describes the way data are saved on storage media such as magnetic, solid state, or optical media
- Requires the definition of physical storage and data access methods
 - Software and hardware dependent
- Relational model aimed at logical level
 - Does not require physical-level details
- Physical independence: changes in physical model do not affect internal model

The Physical Model (2 of 2)

Table 2.4 Levels of Data Abstraction			
Model	Degree of Abstraction	Focus	Independent of
External	High	End-user views	Hardware and software
Conceptual	Medium-High	Global view of data (database model independent)	Hardware and software
Internal	Medium-Low	Specific database model	Hardware
Physical	Low	Storage and access methods	Neither hardware nor software

Summary

- A data model is an abstraction of a complex real-world data environment
- There are many types of data models (e.g., hierarchical, network, relational, object-oriented, extended relational data model, etc.)
- Data-modeling requirements are a function of different data views (global versus local) and the level of data abstraction