## Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ 

Example 2.

no z-intercepts.

p(0) = -405 p-intercept.

However there is a p-intercept.

Casel:  $\Delta > 0$   $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} \quad \text{computes the } z - \text{intercepts of multiplicity 1.}$   $p(0) = c \quad \text{computes the single } p - \text{intercept.}$ 

Given a quadratic  $p(z) = a z^2 + b z + c$  compute its discriminant  $\triangle$ :

$$p(0) = c$$
 computes the single p-intercept.   
**Example 1.**

 $p(z) = 3z^2 - 15z - 72$  compute its discriminant  $\triangle$ :

$$\triangle = 1089 > 0$$
 $z_{1,2} = -3,8$ 
 $p(0) = -72$  p-intercept.



 $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a} \quad \text{single} \quad z - \text{intercept of multiplicity 2.}$ 

## $\triangle=0$ $Z_{1,2}=6.6$

 $p(z) = 2z^2 - 24z + 72$  compute its discriminant  $\triangle$ :



**Example 3.**  $p(z) = -4z^2 + 72z - 405 \text{ compute its discriminant } \triangle: \triangle = -1296 < 0$