引力波天文学笔记

GasinAn

2023年5月29日

Copyright © 2022–2023 by GasinAn

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher, except by a BNUer.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories, technologies and programs to determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these techniques or programs contained in this book. The author and publisher shall not be liable in any event of incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these techniques or programs.

Printed in China

目录

第一章	引力波	5
1.1	Linearized Gravity	5
1.2	Radiation Gauge	5
1.3	Quadrupole Approximation	6
1.4	$+ \ Mode \ and \ \times \ Mode \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	7
1.5	电磁—引力对比	8
	1.5.1 电偶极—引力对比	9
	1.5.2 电四极—引力对比	9
第二章	能量	11
第三章	双星系统	13
3.1	基本公式	13
3.2	Post-Newtonian Approximation	13
3.3	Stationary Phase Approximation	13
第四章	宇宙学效应	15
第五章	电磁引力	17
5.1	时空张量转化为空间张量	17
5.2	电磁空间矢量	18
5.3	引力空间张量	19
第六章	Varying G	21
6.1	Modification of Amplitude	21
6.2	Modification of Phase	27

第一章 引力波

1.1 Linearized Gravity

[7]. 流形 \mathbb{R}^4 . 任意坐标系 $\{x^{\mu}\}$, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} = \eta_{\mu\nu} + \gamma_{\mu\nu}s + O(s^2)$, $g^{\mu\nu} = ?^{\mu\nu} + ??^{\mu\nu}s + O(s^2)$, 则 $\delta^{\mu}{}_{\lambda} = ?^{\mu\nu}\eta_{\nu\lambda} + ?^{\mu\nu}\gamma_{\nu\lambda}s + ??^{\mu\nu}\eta_{\nu\lambda}s + O(s^2)$, 所以 $2^{\mu\nu} = \eta^{\mu\nu}$, $2^{\mu\nu} = ??^{\mu\sigma}\delta_{\sigma}{}^{\nu} = ??^{\mu\sigma}\eta_{\sigma\lambda}\eta^{\lambda\nu} = -?^{\mu\sigma}\gamma_{\sigma\lambda}\eta^{\lambda\nu} = -\eta^{\mu\sigma}\gamma_{\sigma\lambda}\eta^{\lambda\nu} = -\gamma^{\mu\nu}$, 所以 $g^{\mu\nu} = \eta^{\mu\nu} - \gamma^{\mu\nu}s + O(s^2) = \eta^{\mu\nu} - h^{\mu\nu} + O(s^2)$.

$$R_{\mu\nu\lambda\sigma} = \partial_{\sigma}\partial_{[\mu}h_{\lambda]\nu} - \partial_{\nu}\partial_{[\mu}h_{\lambda]\sigma} + O(s^2). \tag{1.1}$$

 $\bar{h}_{\mu\nu}:=h_{\mu\nu}-\tfrac{1}{2}\eta_{\mu\nu}\eta^{\lambda\sigma}h_{\lambda\sigma}=h_{\mu\nu}-\tfrac{1}{2}\eta_{\mu\nu}h.$

$$-\frac{1}{2}\partial^{\lambda}\partial_{\lambda}\bar{h}_{\mu\nu} + \partial^{\lambda}\partial_{(\mu}\bar{h}_{\nu)\lambda} - \frac{1}{2}\eta_{\mu\nu}\partial^{\lambda}\partial^{\sigma}\bar{h}_{\lambda\sigma} + \mathcal{O}(s^{2}) = 8\pi T_{\mu\nu}.$$
 (1.2)

存在 $\{x^{\mu}\}$, 使得 $\partial^{\nu}\bar{h}_{\mu\nu} + O(s^2) = 0$ (Lorentz gauge). 设 $x'^{\mu} = x^{\mu} - \xi^{\mu} = x^{\mu} - \zeta^{\mu}s - O(s^2)$, 则 $\frac{\partial^2}{\partial x'^{\mu}} = \frac{\partial^2}{\partial x^{\lambda}} \frac{\partial x^{\lambda}}{\partial x'^{\mu}} = \frac{\partial^2}{\partial x^{\lambda}} (\delta^{\lambda}_{\mu} + \frac{\partial \xi^{\lambda}}{\partial x'^{\mu}}) = \frac{\partial^2}{\partial x^{\nu}} + O(s^2)$, $g'_{\mu\nu} = g_{\lambda\sigma} \frac{\partial x^{\lambda}}{\partial x'^{\mu}} \frac{\partial x^{\sigma}}{\partial x'^{\nu}} = g_{\lambda\sigma} (\delta^{\lambda}_{\mu} + \frac{\partial \xi^{\lambda}}{\partial x'^{\mu}}) (\delta^{\sigma}_{\nu} + \frac{\partial \xi^{\sigma}}{\partial x'^{\nu}}) = g_{\mu\nu} + g_{\mu\sigma} \frac{\partial \xi^{\sigma}}{\partial x'^{\nu}} + g_{\lambda\nu} \frac{\partial \xi^{\lambda}}{\partial x'^{\mu}} = g_{\mu\nu} + (\eta_{\mu\sigma} + O(s)) (\frac{\partial \xi^{\sigma}}{\partial x^{\nu}} + O(s^2)) + (\eta_{\lambda\nu} + O(s)) (\frac{\partial \xi^{\lambda}}{\partial x^{\mu}} + O(s^2)) = g_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} + O(s^2)$, 所以 $h'_{\mu\nu} = g'_{\mu\nu} - \eta_{\mu\nu} = g_{\mu\nu} - \eta_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} + O(s^2) = 0$ [7]. 令 $\{x^{\mu}\}$ 满足 $\partial^{\nu}\bar{h}_{\mu\nu} + O(s^2) = 0$, 则

$$\partial^{\lambda} \partial_{\lambda} \bar{h}_{\mu\nu} + \mathcal{O}(s^2) = -16\pi T_{\mu\nu}. \tag{1.3}$$

略去 $O(s^2)$ 条件: $h_{\mu\nu}$, $\partial_{\lambda}h_{\mu\nu}...$ 小.

1.2 Radiation Gauge

[7]. 存在 $\{x^{\mu}\}$, 使得 "无源处" $h + O(s^2) = 0$ (TT gauge [8]) 且 $h_{0\mu} + O(s^2) = 0$.

1.3 Quadrupole Approximation

[7]. 下略 $O(s^2)$. 由(1.3)得

$$\bar{h}_{\mu\nu}(t,\vec{r}) = 4 \int \frac{T_{\mu\nu}(t - |\vec{r} - \vec{r}'|, \vec{r}')}{|\vec{r} - \vec{r}'|} \, dV'.$$
 (1.4)

$$\hat{\bar{h}}_{\mu\nu}(\omega, \vec{r}) := \frac{1}{\sqrt{2\pi}} \int \bar{h}_{\mu\nu}(t, \vec{r}) e^{i\omega t} dt$$
 (1.5)

$$=4\int \frac{\hat{T}_{\mu\nu}(\omega, \vec{r}')}{|\vec{r}-\vec{r}'|}e^{i\omega|\vec{r}-\vec{r}'|}\,\mathrm{d}V'. \tag{1.6}$$

$$-i\omega\hat{\bar{h}}_{0\mu} = \sum_{i} \frac{\partial\hat{\bar{h}}_{i\mu}}{\partial x^{i}}.$$
 (1.7)

 $|\vec{r}|\gg |\vec{r'}| \, \stackrel{\textstyle \perp}{\perp} \, \omega \ll 1/\, |\vec{r'}|,$

$$\hat{\bar{h}}_{ij}(\omega, \vec{r}) = 4 \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{T}_{ij}(\omega, \vec{r}') \, dV'.$$
 (1.8)

$$\int \hat{T}_{ij} \, dV' = \int \sum_{i} (\hat{T}_{kj} \frac{\partial x'^{i}}{\partial x'^{k}}) \, dV'$$
(1.9)

$$= \sum_{k} \left[\int \frac{\partial}{\partial x'^{k}} (\hat{T}_{kj} x'^{i}) \, dV' - \int \frac{\partial \hat{T}_{kj}}{\partial x'^{k}} x'^{i} \, dV' \right]$$
 (1.10)

$$= \sum_{k} \int \partial_{k}' \left(\hat{T}_{kj} x'^{i} \right) dV' - \sum_{k} \int \frac{\partial \hat{T}_{kj}}{\partial x'^{k}} x'^{i} dV'$$
 (1.11)

$$= \int \hat{T}_{kj} x^{\prime i} \, dS^{\prime} - \sum_{k} \int \frac{\partial \hat{T}_{kj}}{\partial x^{\prime k}} x^{\prime i} \, dV^{\prime}$$
 (1.12)

$$= -\sum_{k} \int \frac{\partial \hat{T}_{kj}}{\partial x'^{k}} x'^{i} \, dV'$$
 (1.13)

$$= -\int (\sum_{k} \partial_{k}' \hat{T}_{kj}) x^{\prime i} \, \mathrm{d}V' \tag{1.14}$$

$$= -\int (\partial_0 \hat{T}_{0j}) x'^i \, \mathrm{d}V' \tag{1.15}$$

$$= -i\omega \int \hat{T}_{0j} x^{\prime i} \, \mathrm{d}V^{\prime} \tag{1.16}$$

$$= \int \hat{T}_{(ij)} \, \mathrm{d}V' \tag{1.17}$$

$$= -i\omega \int \hat{T}_{0(j}x^{\prime i)} \,\mathrm{d}V^{\prime} \tag{1.18}$$

$$= -\frac{i\omega}{2} \int (\hat{T}_{0j}x'^{i} + \hat{T}_{0i}x'^{j}) \,dV', \tag{1.19}$$

$$-\frac{i\omega}{2} \int (\hat{T}_{0j}x'^{i} + \hat{T}_{0i}x'^{j}) \, dV' = -\frac{i\omega}{2} \int \sum_{k} (\hat{T}_{0k}x'^{i} \frac{\partial x'^{j}}{\partial x'^{k}} + \hat{T}_{0k} \frac{\partial x'^{i}}{\partial x'^{k}} x'^{j}) \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \left[\int \frac{\partial}{\partial x'^{k}} (\hat{T}_{0k}x'^{i}x'^{j}) \, dV' - \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV' \right]$$

$$= -\frac{i\omega}{2} \sum_{k} \int \partial'_{k} (\hat{T}_{0k}x'^{i}x'^{j}) \, dV' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= -\frac{i\omega}{2} \sum_{k} \int \hat{T}_{0k}x'^{i}x'^{j} \, dS' + \frac{i\omega}{2} \sum_{k} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i}x'^{j} \, dV'$$

$$= \frac{i\omega}{2} \sum_{i} \int \frac{\partial \hat{T}_{0k}}{\partial x'^{k}} x'^{i} x'^{j} dV'$$
 (1.24)

$$= \frac{i\omega}{2} \int \left(\sum_{k} \partial_{k}' \hat{T}_{0k}\right) x'^{i} x'^{j} dV'$$
 (1.25)

$$= \frac{i\omega}{2} \int (\partial_0 \hat{T}_{00}) x'^i x'^j \, dV'$$
 (1.26)

$$= -\frac{\omega^2}{2} \int \hat{T}_{00} \, x'^i x'^j \, dV'. \tag{1.27}$$

$$q_{ij}(t) := \int T_{00} \, x'^i x'^j \, \mathrm{d}V', \tag{1.28}$$

$$\hat{\bar{h}}_{ij}(\omega, \vec{r}) = -2\omega^2 \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \hat{q}_{ij}(\omega), \qquad (1.29)$$

$$\bar{h}_{ij}(t, \vec{r}) = \frac{2}{|\vec{r}|} \frac{\mathrm{d}^2}{\mathrm{d}t^2} q_{ij}(t - |\vec{r}|). \tag{1.30}$$

$1.4 + Mode and \times Mode$

寻新标架 $(e'^1)_a = (e^+)_a$, $(e'^2)_a = (e^\times)_a$, $(e'^3)_a = (e^r)_a$, $\bar{h}_{ij}(e^i)_a(e^j)_b = \bar{h}'_{ij}(e'^i)_a(e'^j)_b$, 取 x, y 分量后去迹, $h_+ = \frac{1}{2}(\bar{h}'_{11} - \bar{h}'_{22})$, $h_\times = \bar{h}'_{12} = \bar{h}'_{21}$. (?)

[6]

[2],
$$\vec{n} := \frac{\vec{r}}{|\vec{r}|}$$
,
$$h_{ij}^{\text{TT}} = \frac{2}{|\vec{r}|} \mathcal{P}_{ijkm} \frac{d^2}{dt^2} Q^{km} (t - |\vec{r}|), \tag{1.31}$$

$$\mathcal{P}_{ijkm} := (\delta_{ik} - \vec{n}_i \vec{n}_k) (\delta_{jm} - \vec{n}_j \vec{n}_m) - \frac{1}{2} (\delta_{ij} - \vec{n}_i \vec{n}_j) (\delta_{km} - \vec{n}_k \vec{n}_m), \quad (1.32)$$

$$Q^{km}(t) := \int T_{00} \left(x'^k x'^m - \frac{1}{3} \delta^{km} \sum_n x'^n x'^n \right) dV'$$
 (1.33)

1.5 电磁—引力对比

$$A_{\mu}(t, \vec{r}) = \frac{\mu_0}{4\pi} \int \frac{J_{\mu}(t - |\vec{r} - \vec{r}'|, \vec{r}')}{|\vec{r} - \vec{r}'|} dV'$$
(1.34)

$$\bar{h}_{\mu\nu}(t,\vec{r}) = 4G \int \frac{T_{\mu\nu}(t - |\vec{r} - \vec{r}'|, \vec{r}'')}{|\vec{r} - \vec{r}'|} \, dV'$$
(1.35)

$$A_{\mu}(t, \vec{r}) = \frac{1}{\sqrt{2\pi}} \int \hat{A}_{\mu}(\omega, \vec{r}) e^{-i\omega t} dt$$
 (1.36)

$$\bar{h}_{\mu\nu}(t,\vec{r}) = \frac{1}{\sqrt{2\pi}} \int \hat{\bar{h}}_{\mu\nu}(\omega,\vec{r}) e^{-i\omega t} dt$$
 (1.37)

$$\hat{A}_{\mu}(\omega, \vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\hat{J}_{\mu}(\omega, \vec{r}')}{|\vec{r} - \vec{r}'|} e^{i\omega|\vec{r} - \vec{r}'|} dV'$$
(1.38)

$$\hat{\bar{h}}_{\mu\nu}(\omega, \vec{r}) = 4G \int \frac{\hat{T}_{\mu\nu}(\omega, \vec{r}')}{|\vec{r} - \vec{r}'|} e^{i\omega|\vec{r} - \vec{r}'|} dV'$$
(1.39)

$$\hat{A}_{\mu}(\omega, \vec{r}) = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{J}_{\mu}(\omega, \vec{r}') e^{-i\omega(\frac{\vec{r}}{|\vec{r}|} \cdot \vec{r}')} \, dV'$$
 (1.40)

$$\hat{\bar{h}}_{\mu\nu}(\omega, \vec{r}) = 4G \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{T}_{\mu\nu}(\omega, \vec{r}') e^{-i\omega(\frac{\vec{r}'}{|\vec{r}|} \cdot \vec{r}')} \, dV'$$
(1.41)

$$\hat{A}_{\mu}(\omega, \vec{r}) = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{J}_{\mu}(\omega, \vec{r}') \left[1 - i\omega \left(\frac{\vec{r}}{|\vec{r}|} \cdot \vec{r}' \right) - \dots \right] dV'$$
 (1.42)

$$\hat{\bar{h}}_{\mu\nu}(\omega, \vec{r}) = 4G \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{T}_{\mu\nu}(\omega, \vec{r}') \left[1 - i\omega(\frac{\vec{r}}{|\vec{r}|} \cdot \vec{r}') - \dots \right] dV'$$
 (1.43)

1.5.1 电偶极—引力对比

$$\hat{A}_i = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{J}_i \, dV' \tag{1.44}$$

$$\hat{\bar{h}}_{ij} = 4G \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \int \hat{T}_{ij} \, dV'$$
(1.45)

$$\int \hat{J}_i \, dV' = -i\omega \int \hat{J}_0 x'^i \, dV' \tag{1.46}$$

$$\int \hat{T}_{ij} \, dV' = -\frac{\omega^2}{2} \int \hat{T}_{00} \, x'^i x'^j \, dV'$$
 (1.47)

$$\hat{p}_i = \int \hat{J}_0 x'^i \, \mathrm{d}V' \tag{1.48}$$

$$\hat{q}_{ij} = \int \hat{T}_{00} \, x'^i x'^j \, dV' \tag{1.49}$$

$$\hat{A}_i = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} (-i\omega\hat{p}_i)$$
(1.50)

$$\hat{\bar{h}}_{ij} = 4G \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \left(-\frac{\omega^2}{2} \hat{q}_{ij}\right)$$
(1.51)

$$A_{i} = \frac{\mu_{0}}{4\pi} \frac{1}{|\vec{r}|} \frac{d}{dt} p_{i}(t - |\vec{r}|)$$
 (1.52)

$$\bar{h}_{ij} = 4G \frac{1}{|\vec{r}|} \frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}t^2} q_{ij} (t - |\vec{r}|)$$
(1.53)

1.5.2 电四极—引力对比

$$\hat{A}_i(\omega, \vec{r}) = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} (-i\omega) \int \hat{J}_i(\omega, \vec{r}') (\frac{\vec{r}}{|\vec{r}|} \cdot \vec{r}') \,dV'$$
 (1.54)

$$\hat{A}_i = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} (-i\omega) \int \hat{J}_i' n^j x_j' \, dV'$$
(1.55)

$$\hat{A}_i = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} (-i\omega) \int n^j x_j' \hat{J}_i' \, dV'$$
(1.56)

$$\hat{A}_i = \frac{\mu_0}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} (-i\omega) n^j \left[\int x'_{(j} \hat{J}'_{i)} \, \mathrm{d}V' \right]$$
(1.57)

$$\int x'_{(j}\hat{J}'_{i)} \, dV' = \frac{1}{2} \int (\hat{J}'_{j}x'_{i} + \hat{J}'_{i}x'_{j}) \, dV'$$
(1.58)

$$= \frac{1}{2} \int \sum_{i} (\hat{J}'_{k} x'^{i} \frac{\partial x'^{j}}{\partial x'^{k}} + \hat{J}'_{k} \frac{\partial x'^{i}}{\partial x'^{k}} x'^{j}) \, dV'$$
 (1.59)

$$= \frac{1}{2} \sum_{k} \left[\int \frac{\partial}{\partial x'^{k}} (\hat{J}'_{k} x'^{i} x'^{j}) \, dV' - \int \frac{\partial \hat{J}'_{k}}{\partial x'^{k}} x'^{i} x'^{j} \, dV' \right]$$
(1.60)

$$= \frac{1}{2} \sum_{k} \int \partial_{k}' (\hat{J}_{k}' x'^{i} x'^{j}) \, dV' - \frac{1}{2} \sum_{k} \int \frac{\partial \hat{J}_{k}'}{\partial x'^{k}} x'^{i} x'^{j} \, dV' \quad (1.61)$$

$$= \frac{1}{2} \sum_{k} \int \hat{J}'_{k} x'^{i} x'^{j} \, dS' - \frac{1}{2} \sum_{k} \int \frac{\partial \hat{J}'_{k}}{\partial x'^{k}} x'^{i} x'^{j} \, dV'$$
 (1.62)

$$= -\frac{1}{2} \sum_{k} \int \frac{\partial \hat{J}'_k}{\partial x'^k} x'^i x'^j \, dV'$$
 (1.63)

$$= -\frac{1}{2} \int \left(\sum_{k} \partial_k' \hat{J}_k' \right) x'^i x'^j \, \mathrm{d}V'$$
 (1.64)

$$= -\frac{1}{2} \int (\partial_0 \hat{J}_0') x'^i x'^j \, dV'$$
 (1.65)

$$= -\frac{i\omega}{2} \int \hat{J}_0' x'^i x'^j \, \mathrm{d}V' \tag{1.66}$$

$$\hat{D}_{ij} = \int \hat{J}_0' \, x'^i x'^j \, dV' \tag{1.67}$$

$$\hat{A}_{i} = \frac{\mu_{0}}{4\pi} \frac{e^{i\omega|\vec{r}|}}{|\vec{r}|} \left(-\frac{\omega^{2}}{2} n^{j} \hat{D}_{ij}\right)$$
 (1.68)

$$A_{i} = \frac{\mu_{0}}{4\pi} \frac{1}{|\vec{r}|} n^{j} \frac{1}{2} \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} D_{ij}(t - |\vec{r}|)$$
(1.69)

第二章 能量

[**7**], [**5**]

第三章 双星系统

3.1 基本公式

$$\mathcal{M} := \mu^{3/5} M^{2/5} \tag{3.1}$$

$$h_{+} = \frac{4\mathcal{M}}{D} [\pi \mathcal{M}F(t)]^{2/3} \frac{1 + \cos^{2} \iota}{2} \cos \Phi(t)$$
 (3.2)

$$h_{\times} = \frac{4\mathcal{M}}{D} [\pi \mathcal{M} F(t)]^{2/3} \cos \iota \sin \Phi(t)$$
 (3.3)

$$h = F_+ h_+ + F_\times h_\times \tag{3.4}$$

3.2 Post-Newtonian Approximation

3.3 Stationary Phase Approximation

[4], if $\zeta(t)$ varies slowly near $t=t_0$ where the phase has a stationary point: $\phi'(t_0)=0$,

$$\int \zeta(t)e^{i\phi(t;f)} dt = \int \zeta(t)e^{i[\phi(t_0) + \phi'(t_0)(t - t_0) + \frac{1}{2}\phi''(t_0)(t - t_0)^2 + \dots]} dt \qquad (3.5)$$

$$\simeq e^{i\phi(t_0)} \int \zeta(t) e^{i\left[\frac{1}{2}\phi''(t_0)(t-t_0)^2\right]} dt$$
 (3.6)

$$\simeq e^{i\phi(t_0)} \int \zeta(t_0) e^{\frac{-\sqrt{-i\phi''(t_0)^2}(t-t_0)^2}{2}} dt$$
 (3.7)

$$= \frac{\sqrt{2\pi}}{\sqrt{-i\phi''(t_0)}} \zeta(t_0) e^{i\phi(t_0)}.$$
 (3.8)

$$h = \frac{\mathcal{M}}{D} [\pi \mathcal{M} F(t)]^{2/3} Q \cos \Phi(t)$$
 (3.9)

$$= \frac{\mathcal{M}}{D} [\pi \mathcal{M} F(t)]^{2/3} Q_{\frac{1}{2}} [e^{i\Phi(t)} + e^{-i\Phi(t)}]$$
 (3.10)

$$\tilde{h}(f) = \int h(t)e^{i2\pi ft} dt \tag{3.11}$$

$$= \int \frac{\mathcal{M}}{D} [\pi \mathcal{M} F(t)]^{2/3} Q_{\frac{1}{2}}^{1} [e^{i\Phi(t)} + e^{-i\Phi(t)}] e^{i2\pi ft} dt$$
 (3.12)

$$= \int \frac{\mathcal{M}}{D} [\pi \mathcal{M} F(t)]^{2/3} Q^{\frac{1}{2}} \{ e^{i[2\pi f t + \Phi(t)]} + e^{i[2\pi f t - \Phi(t)]} \} dt$$
 (3.13)

$$\simeq \int \frac{\mathcal{M}}{D} [\pi \mathcal{M} F(t)]^{2/3} Q^{\frac{1}{2}} e^{i[2\pi f t - \Phi(t)]} dt$$
(3.14)

$$= \int \frac{\mathcal{M}}{D} [\pi \mathcal{M}F]^{2/3} Q^{\frac{1}{2}} e^{i[2\pi f t(F) - \Phi(F)]} \frac{\mathrm{d}t}{\mathrm{d}F} \,\mathrm{d}F$$
(3.15)

$$\simeq \frac{\sqrt{2\pi}}{\sqrt{-i[2\pi f t(F) - \Phi(F)]_{F=f}^{"}}}$$
 (3.16)

$$\left[\frac{\mathcal{M}}{D}(\pi\mathcal{M}F)^{2/3}Q^{\frac{1}{2}}\frac{\mathrm{d}t}{\mathrm{d}F}\right]_{F=f}e^{i[2\pi ft(f)-\Phi(f)]}$$
(3.17)

$$\simeq \frac{\sqrt{2\pi}}{\sqrt{-i\left\{2\pi f\left[-\frac{5}{256}\mathcal{M}(\pi\mathcal{M}F)^{-8/3}\right] - \left[\frac{1}{16}(\pi\mathcal{M}F)^{-5/3}\right]\right\}_{F=f}^{"}}}$$
(3.18)

$$\left\{ \frac{\mathcal{M}}{D} (\pi \mathcal{M}F)^{2/3} Q^{\frac{1}{2}} \left[\frac{5\pi \mathcal{M}^2}{96} (\pi \mathcal{M}F)^{-11/3} \right] \right\}_{F=f} e^{i[2\pi f t(f) - \Phi(f)]}$$
(3.19)

$$= \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{D} f^{-7/6} e^{i[2\pi f t(f) - \Phi(f) - \frac{\pi}{4}]} \quad (pnspa.py)$$
(3.20)

另可考 [1].

第四章 宇宙学效应

$$\frac{\mathrm{d}\eta}{\mathrm{d}(ct)} = \frac{1}{a} \tag{4.1}$$

$$ds^{2} = -d(ct)^{2} + a^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$
(4.2)

$$ds^{2} = a^{2} \left[-d\eta^{2} + \frac{dr^{2}}{1 - kr^{2}} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$
(4.3)

第五章 电磁引力

[3].

5.1 时空张量转化为空间张量

$$h_{ab} := g_{ab} + Z_a Z_b. \tag{5.1}$$

$$h_a{}^b = \delta_a{}^b + Z_a Z^b. (5.2)$$

$$Z^a h_{ab} = 0. (5.3)$$

$$V_{\langle a \rangle} := h_a{}^b V_b. \tag{5.4}$$

$$Z^a V_{\langle a \rangle} = 0. (5.5)$$

$$T_{\langle ab\rangle} := h_{(a}^{\ \ c} h_{b)}^{\ \ d} T_{cd} - \frac{1}{3} h_{cd} T^{cd} h_{ab}. \tag{5.6}$$

$$Z^{a}(h_{a}{}^{c}h_{b}{}^{d}T_{cd}) = 0. (5.7)$$

$$Z^{a}(h_{b}{}^{c}h_{a}{}^{d}T_{cd}) = 0. (5.8)$$

$$Z^{a}(h_{(a}{}^{c}h_{b)}{}^{d}T_{cd}) = 0. (5.9)$$

$$Z^{a}(h_{cd}T^{cd}h_{ab}) = 0. (5.10)$$

$$Z^a T_{\langle ab \rangle} = 0. (5.11)$$

$$T_{(\langle ab \rangle)} = T_{\langle ab \rangle}. \tag{5.12}$$

$$h^{ab}T_{\langle ab\rangle} = 0. (5.13)$$

$$\varepsilon_{abc} := \varepsilon_{abcd} Z^d. \tag{5.14}$$

$$\varepsilon_{0123} := -\sqrt{|g|}.\tag{5.15}$$

$$T_a := \frac{1}{2} \varepsilon_{abc} T^{[bc]}. \tag{5.16}$$

$$[U,V]_a := \varepsilon_{abc} U^b V^c. \tag{5.17}$$

$$[S,T]_a := \varepsilon_{abc} g_{de} S^{bd} T^{ce}. \tag{5.18}$$

$$D_t T^{a\dots}_b := Z^c \nabla_c T^{a\dots}_b . \tag{5.19}$$

$${}^{3}\nabla_{a}T^{b\dots}_{c\dots} := h_{a}{}^{p}h^{b}_{q}\dots h_{c}{}^{r}\dots \nabla_{p}T^{q\dots}_{r\dots}.$$
 (5.20)

$$(\operatorname{div} V) := {}^{3}\nabla^{a}V_{a}. \tag{5.21}$$

$$(\operatorname{curl} V)_a := \varepsilon_{bca}{}^3 \nabla^b V^c. \tag{5.22}$$

$$(\operatorname{div} T)_a := {}^{3}\nabla^b T_{ab}. \tag{5.23}$$

$$(\operatorname{curl} T)_{ab} := \varepsilon_{cd(a}{}^{3}\nabla^{c}g_{b)e}T^{ed}. \tag{5.24}$$

5.2 电磁空间矢量

$$^*F_{ab} := \frac{1}{2}\varepsilon_{abcd}F^{cd} \tag{5.25}$$

$$E_a := F_{ab} Z^b = E_{\langle a \rangle}. \tag{5.26}$$

$$B_a := {}^*F_{ab}Z^b = B_{\langle a \rangle}. \tag{5.27}$$

$$\rho = -Z^a J_a. \tag{5.28}$$

$$j_a = h_a{}^b J_b. (5.29)$$

$$\nabla_{[a}F_{bc]} = 0. ag{5.30}$$

$$\nabla^a F_{ab} = \mu J_b. \tag{5.31}$$

$$(\operatorname{div} E) = \mu \rho - \dots \tag{5.32}$$

$$(\operatorname{div} B) = + \dots \tag{5.33}$$

$$(\operatorname{curl} E)_a + \dots = -D_t B_{\langle a \rangle} - \dots$$
 (5.34)

$$(\operatorname{curl} B)_a + \dots = \mu j_a + D_t E_{\langle a \rangle} + \dots$$
 (5.35)

5.3 引力空间张量

$$^*C_{abcd} := \frac{1}{2} \varepsilon_{abef} C^{ef}_{cd}. \tag{5.36}$$

$$E_{ab} := C_{acbd} Z^c Z^d = E_{\langle ab \rangle}. \tag{5.37}$$

$$B_{ab} := {^*C_{acbd}} Z^c Z^d = B_{\langle ab \rangle}. \tag{5.38}$$

$$(\operatorname{div} E)_a = \kappa \frac{1}{3} {}^3 \nabla_a \rho - \dots$$
 (5.39)

$$(\operatorname{div} B)_a = \kappa(\rho + p)\omega_a + \dots \tag{5.40}$$

$$(\operatorname{curl} E)_{ab} + \dots = -D_t B_{\langle ab \rangle} - \dots$$
 (5.41)

$$(\operatorname{curl} B)_{ab} + \dots = \kappa \frac{1}{2} (\rho + p) \sigma_{ab} + D_t E_{\langle ab \rangle} + \dots$$
 (5.42)

第六章 Varying G

6.1 Modification of Amplitude

$$\partial^c \partial_c \bar{h}_{ab} = -16\pi \frac{G_0}{c_0^4} T_{ab}, \quad \partial^a \bar{h}_{ab} = 0 \tag{6.1}$$

$$\Gamma^{c}_{ab} = \frac{1}{2} \eta^{cd} (2\partial_{(a} h_{b)d} - \partial_{d} h_{ab})$$
(6.2)

$$U^a \partial_a U^c + \Gamma^c_{\ ab} U^a U^b = 0 \tag{6.3}$$

$$U^a \partial_a U^c = -\frac{1}{2} \eta^{cd} (2\partial_{(a} h_{b)d} - \partial_d h_{ab}) U^a U^b$$
(6.4)

$$T_{ab} = c_0^2 (2U_{(a}J_{b)} + U^c J_c U_a U_b)$$
(6.5)

$$J_b c_0^2 = -U^a T_{ab} (6.6)$$

$$A_b = -\frac{1}{4}U^a \bar{h}_{ab} \tag{6.7}$$

$$A_0 = -\frac{1}{4}c_0\bar{h}_{00} = -\frac{1}{2}c_0(\bar{h}_{00} - \frac{1}{2}\eta_{00}\eta^{00}\bar{h}_{00}) = -\frac{1}{2}c_0h_{00}$$
 (6.8)

$$A_i = -\frac{1}{4}c_0\bar{h}_{0i} = -\frac{1}{4}c_0h_{0i} \tag{6.9}$$

$$U^{\mu}\partial_{\mu}U^{i} = -\frac{1}{2}\eta^{i\sigma}(\partial_{\mu}h_{\nu\sigma} + \partial_{\nu}h_{\mu\sigma} - \partial_{\sigma}h_{\mu\nu})U^{\mu}U^{\nu}$$
 (6.10)

$$-\frac{1}{2}\eta^{i\sigma}(\partial_0 h_{0\sigma} + \partial_0 h_{0\sigma} - \partial_\sigma h_{00})U^0U^0 = \frac{1}{2}c_0^2\eta^{i\sigma}\partial_\sigma h_{00}$$
 (6.11)

$$= \frac{1}{2}c_0^2 \partial^i h_{00} \tag{6.12}$$

$$= -c_0 \partial^i A_0 \tag{6.13}$$

$$= -E^i (6.14)$$

$$-\frac{1}{2}\eta^{i\sigma}(\partial_0 h_{j\sigma} + \partial_j h_{0\sigma} - \partial_\sigma h_{0j})U^0U^j = -\frac{1}{2}c_0\eta^{i\sigma}(\partial_j h_{0\sigma} - \partial_\sigma h_{0j})v^j \quad (6.15)$$

$$= -\frac{1}{2}c_0\eta^{ik}(\partial_j h_{0k} - \partial_k h_{0j})v^j \quad (6.16)$$

$$=2\eta^{ik}(\partial_i A_k - \partial_k A_i)v^j \tag{6.17}$$

$$= -2\eta^{ik}(\partial_k A_i - \partial_i A_k)v^j \tag{6.18}$$

$$= -2(\partial^i A_i - \partial_i A^i)v^j \tag{6.19}$$

$$= -2\varepsilon^i_{\ ik}v^jB^k \tag{6.20}$$

$$-\frac{1}{2}\eta^{i\sigma}(\partial_j h_{k\sigma} + \partial_k h_{j\sigma} - \partial_\sigma h_{jk})U^j U^k = 0$$
 (6.21)

$$a^{i} = -E^{i} - 4\varepsilon^{i}_{ik}v^{j}B^{k} \tag{6.22}$$

$$\partial^i(\frac{1}{4\pi G_0}E_i) = \rho \tag{6.23}$$

$$\partial^i B_i = 0 \tag{6.24}$$

$$\varepsilon^{i}_{jk}\partial^{j}E^{k} = -\partial_{t}B^{i} \tag{6.25}$$

$$\varepsilon^{i}_{jk}\partial^{j}(\frac{c_{0}^{2}}{4\pi G_{0}}B^{k}) = j^{i} + \partial_{t}(\frac{1}{4\pi G_{0}}E^{i})$$
(6.26)

$$\varepsilon_{G0} := \frac{1}{4\pi G_0}, \quad \mu_{G0} := \frac{4\pi G_0}{c_0^2}$$
(6.27)

$$\begin{cases} \vec{\nabla} \cdot (\varepsilon_{G0}\vec{E}) = \rho \\ \vec{\nabla} \cdot \vec{B} = 0 \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t}\vec{B} \end{cases}$$

$$(6.28)$$

$$\vec{a} = -\vec{E} - 4\vec{v} \times \vec{B} \tag{6.29}$$

$$\varepsilon_{\rm G} = \frac{1}{4\pi G}, \quad \mu_{\rm G} = \frac{4\pi G}{c^2} \tag{6.30}$$

$$x^{\mu} = (ct, x, y, z) \tag{6.31}$$

$$\begin{cases} \vec{\nabla} \cdot (\varepsilon_{G}\vec{E}) = \rho \\ \vec{\nabla} \cdot \vec{B} = 0 \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t}\vec{B} \\ \vec{\nabla} \times (\mu_{G}^{-1}\vec{B}) = \vec{j} + \frac{\partial}{\partial t}(\varepsilon_{G}\vec{E}) \end{cases}$$

$$(6.32)$$

$$\vec{a} = -\vec{E} - 4\vec{v} \times \vec{B} \tag{6.33}$$

$$A_{\mu} = -\frac{1}{4}c\bar{h}_{0\mu} \tag{6.34}$$

$$\begin{cases} \vec{\nabla} \cdot \vec{E} = \varepsilon_{G}^{-1} \rho \\ \vec{\nabla} \times \vec{B} = \mu_{G} \vec{j} + \varepsilon_{G} \mu_{G} \frac{\partial}{\partial t} \vec{E} \end{cases}$$
(6.35)

$$\frac{1}{c^2}\frac{\partial}{\partial t}\varphi + \vec{\nabla} \cdot \vec{A} = 0 \tag{6.36}$$

$$\begin{cases} -\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \varphi + \vec{\nabla}^2 \varphi = \varepsilon_{G}^{-1} \rho \\ -\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{A} + \vec{\nabla}^2 \vec{A} = \mu_{G} \vec{j} \end{cases}$$

$$(6.37)$$

$$\begin{cases} -\frac{1}{c^2} \frac{\partial^2}{\partial t^2} c^{-1} \varphi + \vec{\nabla}^2 c^{-1} \varphi = \mu_{\rm G} c \rho \\ -\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{A} + \vec{\nabla}^2 \vec{A} = \mu_{\rm G} \vec{j} \end{cases}$$
(6.38)

$$\begin{cases} \vec{\nabla} \cdot (\varepsilon_{G}\vec{E}) = 0 \\ \vec{\nabla} \cdot (\mu_{G}\vec{H}) = 0 \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t}(\mu_{G}\vec{H}) \\ \vec{\nabla} \times \vec{H} = +\frac{\partial}{\partial t}(\varepsilon_{G}\vec{E}) \end{cases}$$
(6.39)

$$E_r = 0, \quad H_r = 0 \tag{6.40}$$

$$\begin{cases} \frac{\varepsilon_{G}}{r\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta E_{\theta}) + \frac{\varepsilon_{G}}{r\sin\theta} \frac{\partial}{\partial \phi} (E_{\phi}) = 0 \\ \frac{\mu_{G}}{r\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta H_{\theta}) + \frac{\mu_{G}}{r\sin\theta} \frac{\partial}{\partial \phi} (H_{\phi}) = 0 \\ \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial \theta} (\sin\theta E_{\phi}) - \frac{\partial}{\partial \phi} (E_{\theta}) \right] \vec{e}_{r} - \frac{1}{r} \frac{\partial}{\partial r} (rE_{\phi}) \vec{e}_{\theta} + \frac{1}{r} \frac{\partial}{\partial r} (rE_{\theta}) \vec{e}_{\phi} = -\mu_{G} \frac{\partial}{\partial t} (H_{\theta} \vec{e}_{\theta} + H_{\phi} \vec{e}_{\phi}) \\ \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial \theta} (\sin\theta H_{\phi}) - \frac{\partial}{\partial \phi} (H_{\theta}) \right] \vec{e}_{r} - \frac{1}{r} \frac{\partial}{\partial r} (rH_{\phi}) \vec{e}_{\theta} + \frac{1}{r} \frac{\partial}{\partial r} (rH_{\theta}) \vec{e}_{\phi} = +\varepsilon_{G} \frac{\partial}{\partial t} (E_{\theta} \vec{e}_{\theta} + E_{\phi} \vec{e}_{\phi}) \end{cases}$$

$$(6.41)$$

$$\vec{E} = E_{\theta}\vec{e}_{\theta}, \quad \vec{H} = H_{\phi}\vec{e}_{\phi} \tag{6.42}$$

$$\begin{cases}
\frac{\varepsilon_{G}}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta E_{\theta}) = 0 \\
\frac{\mu_{G}}{r \sin \theta} \frac{\partial}{\partial \phi} (H_{\phi}) = 0 \\
-\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (E_{\theta}) \vec{e}_{r} + \frac{1}{r} \frac{\partial}{\partial r} (r E_{\theta}) \vec{e}_{\phi} = -\mu_{G} \frac{\partial}{\partial t} (H_{\phi}) \vec{e}_{\phi} \\
+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta H_{\phi}) \vec{e}_{r} - \frac{1}{r} \frac{\partial}{\partial r} (r H_{\phi}) \vec{e}_{\theta} = +\varepsilon_{G} \frac{\partial}{\partial t} (E_{\theta}) \vec{e}_{\theta}
\end{cases}$$
(6.43)

$$\begin{cases} \frac{\partial}{\partial r}(rE_{\theta}) + \mu_{G}\frac{\partial}{\partial t}(rH_{\phi}) = 0\\ \frac{\partial}{\partial r}(rH_{\phi}) + \varepsilon_{G}\frac{\partial}{\partial t}(rE_{\theta}) = 0 \end{cases}$$
(6.44)

$$\begin{cases}
\mu_{\mathcal{G}} \frac{\partial}{\partial r} \mu_{\mathcal{G}}^{-1} \frac{\partial}{\partial r} (r E_{\theta}) - \varepsilon_{\mathcal{G}} \mu_{\mathcal{G}} \frac{\partial}{\partial t} \frac{\partial}{\partial t} (r E_{\theta}) = 0 \\
\varepsilon_{\mathcal{G}} \frac{\partial}{\partial r} \varepsilon_{\mathcal{G}}^{-1} \frac{\partial}{\partial r} (r H_{\phi}) - \varepsilon_{\mathcal{G}} \mu_{\mathcal{G}} \frac{\partial}{\partial t} \frac{\partial}{\partial t} (r H_{\phi}) = 0
\end{cases}$$
(6.45)

$$\begin{cases} \mu_{\mathcal{G}} \frac{\partial}{\partial r} \mu_{\mathcal{G}}^{-1} \frac{\partial}{\partial r} (rE_{\theta}) - \frac{\partial}{\partial (ct)} \frac{\partial}{\partial (ct)} (rE_{\theta}) = 0 \\ \varepsilon_{\mathcal{G}} \frac{\partial}{\partial r} \varepsilon_{\mathcal{G}}^{-1} \frac{\partial}{\partial r} (rH_{\phi}) - \frac{\partial}{\partial (ct)} \frac{\partial}{\partial (ct)} (rH_{\phi}) = 0 \end{cases}$$

$$(6.46)$$

$$\begin{cases} \frac{\partial}{\partial r} \frac{\partial}{\partial r} (rE_{\theta}) - \frac{\partial}{\partial r} (\ln \mu_{G}) \frac{\partial}{\partial r} (rE_{\theta}) - \frac{\partial}{\partial (ct)} \frac{\partial}{\partial (ct)} (rE_{\theta}) = 0\\ \frac{\partial}{\partial r} \frac{\partial}{\partial r} (rH_{\phi}) - \frac{\partial}{\partial r} (\ln \varepsilon_{G}) \frac{\partial}{\partial r} (rH_{\phi}) - \frac{\partial}{\partial (ct)} \frac{\partial}{\partial (ct)} (rH_{\phi}) = 0 \end{cases}$$
(6.47)

$$\frac{\partial^2}{\partial r^2} f(r,t) - p(r) \frac{\partial}{\partial r} f(r,t) - \frac{\partial^2}{\partial (ct)^2} f(r,t) = 0$$
 (6.48)

$$f(r,t) = f(r)e^{-ikct} (6.49)$$

$$\frac{d^2}{dr^2}f(r) - p(r)\frac{d}{dr}f(r) + k^2f(r) = 0$$
(6.50)

$$\frac{d^2}{dr^2}f(r) - p\frac{d}{dr}f(r) + k^2f(r) = 0$$
(6.51)

$$f(r) = e^{(p/2)r} \left[C_{+} e^{i\sqrt{k^2 - (p/2)^2}r} + C_{-} e^{-i\sqrt{k^2 - (p/2)^2}r} \right]$$
 (6.52)

$$f(r,t) = e^{(p/2)r} [C_{+}e^{i(+\sqrt{k^2-(p/2)^2}r-kct)} + C_{-}e^{i(-\sqrt{k^2-(p/2)^2}r-kct)}] \quad (6.53)$$

$$f(r,t) = e^{(p/2)r} \left[C_{+} e^{i(+\sqrt{(\omega/c)^{2} - (p/2)^{2}}r - \omega t)} + C_{-} e^{i(-\sqrt{(\omega/c)^{2} - (p/2)^{2}}r - \omega t)} \right]$$

$$(6.54)$$

$$f(r,t) = e^{\int (p/2)dr} \left[C_{+} e^{i(+\int \sqrt{(\omega/c)^{2} - (p/2)^{2}} dr - \omega t)} + C_{-} e^{i(-\int \sqrt{(\omega/c)^{2} - (p/2)^{2}} dr - \omega t)} \right]$$
(6.55)

$$\begin{cases}
r_{2} |E_{\theta}|_{r=r_{2}} = r_{1} |E_{\theta}|_{r=r_{1}} e^{\int_{r_{1}}^{r_{2}} \frac{1}{2} \frac{\partial}{\partial r} (\ln \mu_{G}) dr} \\
r_{2} |H_{\phi}|_{r=r_{2}} = r_{1} |H_{\phi}|_{r=r_{1}} e^{\int_{r_{1}}^{r_{2}} \frac{1}{2} \frac{\partial}{\partial r} (\ln \varepsilon_{G}) dr}
\end{cases} (6.56)$$

$$\begin{cases}
E_2 = \sqrt{\frac{\mu_{G_2}}{\mu_{G_1}}} \frac{r_1}{r_2} E_1 \\
H_2 = \sqrt{\frac{\varepsilon_{G_2}}{\varepsilon_{G_1}}} \frac{r_1}{r_2} H_1
\end{cases}$$
(6.57)

$$\begin{cases}
E_2/c_2 = \sqrt{\frac{\mu_{G_2}}{\mu_{G_1}}} \frac{c_1}{c_2} \frac{r_1}{r_2} E_1/c_1 \\
B_2 = \sqrt{\frac{\mu_{G_2}}{\mu_{G_1}}} \frac{c_1}{c_2} \frac{r_1}{r_2} B_1
\end{cases}$$
(6.58)

$$\begin{cases} (\omega/c_2)c_2(\bar{h}_{00})_2 = \sqrt{\frac{\mu_{G_2}}{\mu_{G_1}}} \frac{c_1}{c_2} \frac{r_1}{r_2} (\omega/c_1)c_1(\bar{h}_{00})_1 \\ (\omega/c_2)c_2(\bar{h}_{0i})_2 = \sqrt{\frac{\mu_{G_2}}{\mu_{G_1}}} \frac{c_1}{c_2} \frac{r_1}{r_2} (\omega/c_1)c_1(\bar{h}_{0i})_1 \end{cases}$$
(6.59)

$$h_2 = \sqrt{\frac{c_1^4/G_1}{c_2^4/G_2}} \frac{r_1}{r_2} h_1 \tag{6.60}$$

双星系统引力辐射本为

$$h = \frac{\mathcal{M}[\pi \mathcal{M}F(t)]^{2/3}}{r} Q(\theta, \phi, \psi, \iota) \cos\left[\int 2\pi F(t) dt\right]$$
 (6.61)

设双星系统常量 c^* , G^* , 一观者临近双星系统且与双星系统相对静止, 其与双星系统距离为 r, 测得强度 h_r , 频率 F_r , 则¹

$$h_r = \frac{\mathcal{M}[\pi \mathcal{M} F_r(t)]^{2/3}}{r/c^*} Q(\theta, \phi, \psi, \iota)$$
(6.62)

设地球观者与双星系统距离为 d, 双星系统红移为 z, 测得强度 h_d , 频率 $F_d = F_r/(1+z)$, 则

$$h_d = \sqrt{\frac{c^{*4}/G^*}{c^4/G}} \frac{r}{d} h_r \tag{6.63}$$

$$= \sqrt{\frac{c^{*4}/G^{*}}{c^{4}/G}} \frac{\mathcal{M}[\pi \mathcal{M} F_{r}(t)]^{2/3}}{d/c^{*}} Q(\theta, \phi, \psi, \iota)$$
 (6.64)

所以地球观者测得

$$h = \sqrt{\frac{c^{*4}/G^{*}}{c^{4}/G}} \frac{\mathcal{M}[\pi \mathcal{M}F_{r}(t)]^{2/3}}{d/c^{*}} Q(\theta, \phi, \psi, \iota) \cos[\int 2\pi \frac{F_{r}(t)}{1+z} dt]$$
 (6.65)

记 $F_{\text{obs}}(t) = F_r(t)/(1+z)$, $\mathcal{M}_{\text{obs}} = \mathcal{M}(1+z)$, 光度距离 $d_{\text{L}} = d(1+z)$, 则

$$h = \sqrt{\frac{c^{*4}/G^{*}}{c^{4}/G}} \frac{\mathcal{M}[\pi \mathcal{M}F_{r}(t)]^{2/3}}{d(1+z)/c^{*}} Q(\theta, \phi, \psi, \iota) \cos[\int 2\pi F_{\text{obs}}(t) dt]$$
 (6.66)

 $^{{}^{1}\}mathcal{M}$ 和 c^{*} , G^{*} 简并, 所以可以笼统地仍记作 \mathcal{M} .

$$= \sqrt{\frac{c^{*4}/G^{*}}{c^{4}/G}} \frac{\mathcal{M}_{\text{obs}}[\pi \mathcal{M}_{\text{obs}} F_{\text{obs}}(t)]^{2/3}}{d_{\text{L}}/c^{*}} Q(\theta, \phi, \psi, \iota) \cos[\int 2\pi F_{\text{obs}}(t) dt]$$

$$= \sqrt{\frac{c^{*6}/G^{*}}{c^{6}/G}} \frac{\mathcal{M}_{\text{obs}}[\pi \mathcal{M}_{\text{obs}} F_{\text{obs}}(t)]^{2/3}}{d_{\text{L}}/c} Q(\theta, \phi, \psi, \iota) \cos[\int 2\pi F_{\text{obs}}(t) dt]$$
(6.68)

用引力波测距测得 $d_{L,G}$, 则

$$d_{\rm L,G} = d_{\rm L} \sqrt{\frac{c^6/G}{c^{*6}/G^*}}$$
 (6.69)

[4]

$$h(t) = \frac{\mathcal{M}[\pi \mathcal{M}F(t)]^{2/3}}{\xi d_{L}} Q(\text{angles}) \cos \Phi(t)$$
 (6.70)

$$\tilde{h}(f) = \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{\xi d_{\text{L}}} f^{-7/6} e^{i[2\pi f t(f) - \Phi(f) - \frac{\pi}{4}]}$$
(6.71)

问题转化为估计 ε

$$p(\mu) \propto p^{(0)}(\mu) \exp[-\frac{1}{2}\Gamma_{ab}(\mu^a - \hat{\mu}^a)(\mu^b - \hat{\mu}^b)]$$
 (6.72)

$$p^{(0)}(\mu) \propto \exp\left[-\frac{1}{2}\Gamma_{ab}^{(0)}(\mu^a - \bar{\mu}^a)(\mu^b - \bar{\mu}^b)\right]$$
 (6.73)

设待估参数为 $\mu=(\ln\xi,\ln(d_{\rm L}/d_{\rm L0}),\ln Q,\dots),\dots$ 为其他参数 (如 \mathcal{M}),则 $\tilde{h}_{,\ln\xi}=\tilde{h}_{,\ln(d_{\rm L}/d_{\rm L0})}=-\tilde{h}_{,\ln Q}=-\tilde{h},\,\tilde{h}$ 对其他参数求偏导皆为纯虚数,则由 $\Gamma_{ab}=\langle h_{,a}|h_{,b}\rangle$ 和 SNR := $\rho=\sqrt{\langle h|h\rangle}$ 得

$$\Gamma_{ab} = \begin{bmatrix}
\rho^2 & \rho^2 & -\rho^2 & 0 & \dots \\
\rho^2 & \rho^2 & -\rho^2 & 0 & \dots \\
-\rho^2 & -\rho^2 & \rho^2 & 0 & \dots \\
0 & 0 & 0 & ? & \dots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}$$
(6.74)

又设

$$\Gamma_{ab}^{(0)} = \begin{pmatrix}
0 & 0 & 0 & 0 & \dots \\
0 & 1/\sigma_{\ln d_{L}}^{2} & 0 & 0 & \dots \\
0 & 0 & 1/\sigma_{\ln Q}^{2} & 0 & \dots \\
0 & 0 & 0 & 0 & \dots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$
(6.75)

则由
$$\Sigma_{ab} = (\Gamma_{ab}^{(0)} + \Gamma_{ab})^{-1}$$
 得

$$\Sigma_{ab} = \begin{bmatrix} \rho^2 & \rho^2 & -\rho^2 \\ \rho^2 & \rho^2 + 1/\sigma_{\ln(d_{L}/d_{L0})}^2 & -\rho^2 \\ -\rho^2 & -\rho^2 & \rho^2 + 1/\sigma_{\ln Q}^2 \end{bmatrix}^{-1} & 0 \\ 0 & [?]^{-1} \end{bmatrix}$$
(6.76)

而

$$\begin{bmatrix}
\rho^{2} & \rho^{2} & -\rho^{2} \\
\rho^{2} & \rho^{2} + 1/\sigma_{\ln(d_{L}/d_{L0})}^{2} & -\rho^{2} \\
-\rho^{2} & -\rho^{2} & \rho^{2} + 1/\sigma_{\ln Q}^{2}
\end{bmatrix}^{-1}$$
(6.77)

$$= \begin{bmatrix} 1/\rho^2 + \sigma_{\ln(d_{\rm L}/d_{\rm L0})}^2 + \sigma_{\ln Q}^2 & -\sigma_{\ln(d_{\rm L}/d_{\rm L0})}^2 & \sigma_{\ln Q}^2 \\ -\sigma_{\ln(d_{\rm L}/d_{\rm L0})}^2 & \sigma_{\ln(d_{\rm L}/d_{\rm L0})}^2 & 0 \\ \sigma_{\ln Q}^2 & 0 & \sigma_{\ln Q}^2 \end{bmatrix}$$
(6.78)

6.2 Modification of Phase

$$\frac{d^2}{dz^2}H(z) + 2p(z)\frac{d}{dz}H(z) + \left[\omega^2 + q(z)\right]H(z) = 0.$$
 (6.79)

$$H = Ae^{i\Phi}. (6.80)$$

 $k = \frac{d\Phi}{dz}$

$$\frac{d^2A}{dz^2} + 2p\frac{dA}{dz} + \left[\omega^2\left(1 - \frac{k^2}{\omega^2}\right) + q\right]A = 0, \tag{6.81}$$

$$2\frac{dA}{dz}k + A\frac{dk}{dz} + 2pAk = 0, (6.82)$$

$$2\frac{1}{A}\frac{dA}{dz} + \frac{1}{k}\frac{dk}{dz} + 2p = 0, (6.83)$$

$$A \propto e^{-\int p \, dz} k^{-1/2}$$
. (6.84)

 $\Gamma = e^{\int p \, dz}$ and $K = (k/\omega)^{-1/2}$,

$$\frac{d^2K}{dz^2} - \left(\frac{1}{\Gamma}\frac{d^2\Gamma}{dz^2} - q\right)K + \omega^2K(1 - K^{-4}) = 0,$$
(6.85)

 $\Xi = \frac{1}{\Gamma} \frac{d^2 \Gamma}{dz^2} - q$ and make $\omega = 1$,

$$\frac{d^2K}{dz^2} + K[(1-\Xi) - K^{-4}] = 0. {(6.86)}$$

 $\Xi = \text{const},$

$$K = (1 - \Xi)^{-1/4} = 1 + \frac{1}{4}\Xi + \frac{5}{32}\Xi^2 + O(\Xi^3), \tag{6.87}$$

$$k = (1 - \Xi)^{1/2} = 1 - \frac{1}{2}\Xi - \frac{1}{8}\Xi^2 + O(\Xi^3),$$
 (6.88)

 $\Xi \neq \text{const}, \, \Xi(z) = \kappa^2 \tilde{\Xi}(\tilde{z}), \, \text{where } \tilde{z} = \kappa z.$

$$K^{3} \frac{d^{2}K}{d\tilde{z}^{2}} \kappa^{2} - K^{4} \tilde{\Xi}(\tilde{z}) \kappa^{2} + K^{4} - 1 = 0.$$
 (6.89)

$$K = \sum_{n=0}^{\infty} K_n(\tilde{z}) \kappa^{2n}, \tag{6.90}$$

$$K_0^4 - 1 = 0, (6.91)$$

$$K_0^3 K_0'' - K_0^4 \tilde{\Xi} + 4K_0^3 K_1 = 0, (6.92)$$

$$(K_0^3 K_1'' + 3K_0^2 K_1 K_0'') - 4K_0^3 K_1 \tilde{\Xi} + (4K_0^3 K_2 + 6K_0^2 K_1^2) = 0.$$
 (6.93)

$$K_0 = 1,$$
 (6.94)

$$K_1 = \frac{1}{4}\tilde{\Xi},\tag{6.95}$$

$$K_2 = \frac{5}{32}\tilde{\Xi}^2 - \frac{1}{16}\frac{d^2\tilde{\Xi}}{d\tilde{z}^2},\tag{6.96}$$

[4]

$$h(t) = \frac{\mathcal{M}[\pi \mathcal{M}F(t)]^{2/3}}{d\tau} Q(\text{angles}) \cos \Phi(t)$$
 (6.97)

$$\tilde{h}(f) = \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{d_{\rm L}} f^{-7/6} e^{i[2\pi f t(f) - \Phi(f) - \frac{\pi}{4}]}$$
(6.98)

$$\tilde{h}(f) = \int h(t)e^{2\pi i f t} dt$$
(6.99)

$$h(t) = \int \tilde{h}(f)e^{-2\pi i f t} df \qquad (6.100)$$

$$A = \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{d_{\rm L}} f^{-7/6} \,\mathrm{d}f \tag{6.101}$$

$$A \propto \Gamma^{-1} K \tag{6.102}$$

$$K|_{z=d_1} = K|_{z=0} = 0 (6.103)$$

$$\frac{A|_{z=d_{\rm L}}}{A|_{z=d_0}} = e^{-\int_0^{d_{\rm L}} p \, dz} \tag{6.104}$$

$$A = \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{d_{\rm L}} f^{-7/6} e^{-\int_0^{d_{\rm L}} p \, dz} \, \mathrm{d}f$$
 (6.105)

$$A = \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{e^{\int_0^{d_{\rm L}} p \, dz} d_{\rm I}} f^{-7/6} \, \mathrm{d}f$$
 (6.106)

$$A = \frac{\sqrt{30}}{48\pi^{2/3}} \frac{\mathcal{M}^{5/6}Q}{\xi d_{\rm L}} f^{-7/6} \,\mathrm{d}f \tag{6.107}$$

$$A = \mathcal{A}f^{-7/6} \,\mathrm{d}f \tag{6.108}$$

$$k = \omega \left[1 - \frac{1}{2} \frac{\Xi}{\omega^2}\right] \tag{6.109}$$

$$\psi = \int k \, dz = 2\pi f t(f) - \Phi(f) - \frac{\pi}{4} \tag{6.110}$$

$$\psi = \int k \, dz = 2\pi f t(f) - \Phi(f) - \frac{\pi}{4} - \int_0^{d_L} \frac{1}{2} \frac{\Xi}{\omega^2} \omega \, dz \tag{6.111}$$

$$\psi = \int k \, dz = 2\pi f t(f) - \Phi(f) - \frac{\pi}{4} - \frac{1}{2} \frac{\int_0^{d_{\rm L}} \Xi \, dz}{(2\pi f)^2} (2\pi f)$$
 (6.112)

$$\psi = \int k \, dz = 2\pi f t(f) - \Phi(f) - \frac{\pi}{4} - \Omega(2\pi f)^{-1}$$
 (6.113)

$$\tilde{h}(f) = \mathcal{A}f^{-7/6}e^{i[2\pi f t(f) - \Phi(f) - \frac{\pi}{4} - \Omega(2\pi f)^{-1}]}$$
(6.114)

$$\tilde{h}(f) = \mathcal{A}f^{-7/6}e^{i[2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128}(\pi \mathcal{M}f)^{-5/3} - \Omega(2\pi f)^{-1}]}$$
(6.115)

$$\vec{\theta} = (\ln \mathcal{A}, f_0 t_c, \phi_c, \ln \mathcal{M}, \Omega / f_0)$$
(6.116)

$$\tilde{h}_{,1} = \tilde{h} \tag{6.117}$$

$$\tilde{h}_{,2} = (2\pi f/f_0)i\tilde{h} \tag{6.118}$$

$$\tilde{h}_{,3} = -i\tilde{h} \tag{6.119}$$

$$\tilde{h}_{,4} = -\frac{5i}{128} (\pi \mathcal{M}f)^{-5/3} \tilde{h}$$
(6.120)

$$\tilde{h}_{,5} = -(2\pi f/f_0)^{-1}i\tilde{h} \tag{6.121}$$

参考文献

- [1] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A. Sundararajan. Parameter estimation of inspiralling compact binaries using 3.5 postnewtonian gravitational wave phasing: The nonspinning case. *Physical Review D*, 71(8):084008, Apr 2005.
- [2] L. Blanchet. Gravitational radiation from relativistic sources. In J.-A. Marck and J.-P. Lasota, editors, *Relativistic Gravitation and Gravitational Radiation*, page 33, Jan. 1997.
- [3] R. Maartens. Nonlinear gravito-electromagnetism. General Relativity and Gravitation, 40(6):1203–1217, June 2008.
- [4] E. Poisson and C. M. Will. Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-newtonian waveforms. *Physical Review D*, 52:848–855, Jul 1995.
- [5] S. K. Roy, R. Koley, and P. Majumdar. Probing the post-minkowskian approximation using recursive addition of self-interactions. *Phys. Rev.* D, 102:084045, Oct 2020.
- [6] B. S. Sathyaprakash and B. F. Schutz. Physics, astrophysics and cosmology with gravitational waves. Living Reviews in Relativity, 12(1):2, Dec. 2009.
- [7] R. M. Wald. General Relativity. University of Chicago Pr., 1984.
- [8] 王运永. 引力波探测. 科学出版社, 2020.