

ACCELERATING BLOCKSPARSE DMRG WITH GPUS

KARL PIERCE
MILES STOUDENMIRE
MATT FISHMAN

A many variable function is represented as a tensor network

The wave function is minimized variationally via the linear least squares algorithm

$$f(\psi) = \frac{1}{2} ||H|\psi\rangle - E|\psi\rangle||^2$$

Pairs of blue nodes on this graph are optimized using a least squares algorithm.

Partial contractions are stored for convenience

Take the derivative of the network with respect to wavefunction tensors

$$\chi \sim 100 \text{ to } 10,000+$$

 $w \sim 10 \text{ to } 100$
 $d \sim 2 \text{ to } 10$

 $\chi \sim 100$ to 10,000+ $w \sim 10$ to 100 $d \sim 2$ to 10

Contraction Cost: $\chi^3 w d^2$

 $\chi \sim 100$ to 10,000+ $w \sim 10$ to 100 $d \sim 2$ to 10

Contraction Cost: $d^3w^2\chi^2$

 $\chi \sim 100$ to 10,000+ $w \sim 10$ to 100 $d \sim 2$ to 10

Contraction Cost: $d^3w^2\chi^2$

 $\chi \sim 100$ to 10,000+ $w \sim 10$ to 100 $d \sim 2$ to 10

Contraction Cost: $\chi^3 d^2 w$

The term with the highest computational cost is relatively square

Typical block distribution of χ : 2D momentum Hubbard

Typical block distribution of χ : 2D momentum Hubbard

Sorted block distribution for different symmetries

DMRG Timing: 2D Momentum Hubbard

Typical block distribution of χ : 2D Heisenberg

Block distribution, 2D Heisenberg

DMRG Timing: 2D Heisenberg

