Übungsblatt 1

(Mengen)

Aufgabe 1

- (a) Sei $M = \{1, 2, 3\}$. Entscheiden Sie jeweils, welche Schreibweisen korrekt sind.
- (i) $1 \in M$, (ii) $\{1\} \in M$, (iii) $\{1\} \subseteq M$.
- (b) Sei $L = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}$. Entscheiden Sie jeweils, welche Schreibweisen korrekt sind.

- (i) $2 \in L$, (ii) $\{2\} \in L$, (iv) $\{\{2\}\} \subseteq L$.

Aufgabe 2

- (a) Gegeben seien die Mengen $X = \{1, 3, 5, 7\}, Y = \{5, 7, 8\}$ und $Z = \{1, 5\}$. Geben Sie folgende Mengen an:

- (i) $Z \setminus X$, (ii) $X \setminus Z$ (iii) $X \cap Y \cap Z$ (iv) $X \cup Y \cup Z$
- (b) In der Grundmenge $G = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ betrachten wir die Teilmengen

$$L = \{1, 2, 4, 7\}, \quad M = \{3, 5, 6, 8, 9\}, \quad N = \{4, 5, 9\}.$$

Bestimmen Sie

- (i) $\overline{L} \cap N$.
- (ii) $(L \cap \overline{M}) \cup (N \cap \overline{N})$, (iii) $L \cap \overline{N} \cap \overline{M}$.
- (c) Gegeben seien die Mengen $M_1 = \mathbb{N}, M_2 = \mathbb{N} \cup \{-1, -2, -3, \ldots\}$ und $M_3 = \{-2, -1, 0, 1, 2\}$. Bestimmen Sie die Menge $M_3 \setminus (M_2 \setminus M_1)$.
- (d) Sei $A = \{1, 2, 3\}$. Geben Sie die Menge $\{M : M \subseteq A\}$ (also die Menge aller Teilmengen von A) an, indem Sie die darin enthaltenen Elemente auflisten.

Aufgabe 3

- (a) In der Vorlesung haben wir gesehen, dass sich die Menge der geraden natürlichen Zahlen in der Form $\{2n:n\in\mathbb{N}\}$ schreiben lässt und die Menge der ungeraden natürlichen Zahlen in der Form $\{2n+1:n\in\mathbb{N}\}$. Stellen Sie folgende Mengen nach dem gleichen Prinzip dar:
 - (i) Die Menge der natürlichen Zahlen, die ohne Rest durch 7 teilbar ist.
 - (ii) Die Menge der natürlichen Zahlen, die bei Division durch 5 den Rest 3 lässt.
 - (iii) Die Menge der natürlichen Zahlen, die sowohl durch 2 als auch durch 3 ohne Rest teilbar ist.
- (b) Geben Sie folgende Mengen durch Auflistung der ersten Elemente an:
 - (i) $\{3n-2 : n \in \mathbb{N}\}$
 - (ii) $\{3n+2 : n \in \mathbb{N}\}$
 - (iii) $\{2^n : n \in \mathbb{N}\}$

(iv)
$$\{2^{2n}:n\in\mathbb{N}\}$$

Aufgabe 4

Seien A, B und C Mengen.

(a) Veranschaulichen Sie die Mengen

$$(A \cap B) \cup C$$
, $(A \cup B) \cap C$, $(A \cup C) \cap (B \cup C)$, $(A \cap C) \cup (B \cap C)$

durch Venn-Diagramme. Was fällt auf?

(b) Veranschaulichen Sie die Mengen

$$A \cup (B \cap C)$$
 und $(A \cup B) \cap C$

durch Venn-Diagramme. Was fällt auf?

(c) Sei X eine Menge und seien $A, B \subseteq X$. Veranschaulichen Sie die Mengen

$$\overline{A \cup B}$$
, $\overline{A} \cup \overline{B}$, $\overline{A \cap B}$, $\overline{A} \cap \overline{B}$

durch Venn-Diagramme. Was fällt auf?

Aufgabe 5

Seien A, B, C Teilmengen einer Grundmenge X. Kreuzen Sie an, welche Mengengleichheiten für jede Wahl von A, B, C und X immmer erfüllt sind?

		immer erfüllt	nicht immer erfüllt
(i)	$A \setminus (B \setminus C) = (A \setminus B) \setminus C$		
(ii)	$A \setminus B = A \cap \overline{B}$		
(iii)	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$		
(iv)	$A \cup (\overline{A} \cap B) = A \cup B$		

Falls eine Gleichheit nicht immer erfüllt ist, geben Sie ein konkretes Beispiel an, bei dem keine Gleichheit gilt.