Experimental Setting

ชุดข้อมูลทั้งหมด จะถูก normalize โดย standard scaler ซึ่งเป็น library ของ python จากนั้นการทดลองจะ ถูกแบ่งออกเป็นสองกลุ่มใหญ่ได้แก่

- 1) กลุ่มที่มี attribute เหมือนกับสมการของสัตว์แพทย์ ['Weight','PCV','PCV\ndonor','Volume']
- 2) กลุ่มที่มี attribute มากกว่าสมการของสัตว์แพทย์ ['Weight', 'PCV', 'PCV\ndonor', 'Volume', 'WBC', 'PLT\n____', 'PLATELETS', 'HGB', 'RBC', 'MCV', 'MCHC', 'MCH', 'SEGS', 'LYMPH', 'MONO', 'PROTEIN (REFRACT)', 'RDW']

จากนั้น ข้อมูลทั้งสองกลุ่ม จะถูกนำไปเทรนด้วยวิธีการดังต่อไปนี้ ซึ่งจะถูกแบ่งเป็นวิธีการที่ปรับค่าที่เหมาะสม และวิธีการที่ไม่ได้ปรับค่าของอัลกอลึทึม

- 1) วิธีการที่ไม่ได้ปรับค่าอัลกอลิทึม
 - 1) Linear Regression
 - 2) XG boost
- 2) วิธีการที่ปรับค่าอัลกอลึทึมให้เหมาะสม
 - 1) Artificial Neural Network
 - 2) Support Vector Regression
 - 3) Ridge Regression

สำหรับอัลกอลีทึมที่ต้องปรับค่า ให้เหมาะสม ตามอัลกอลีทึมประเภทที่ 2 ข้างต้น เราได้ใช้วิธี Double Leave One Out ในการหาค่าพารามิเตอร์ที่เหมาะสมให้กับแต่ละอัลกอลีทึม โดย ANN จะได้รับการปรับค่าที่แตกต่าง กันสำหรับข้อมูลที่มี attribute ไม่เท่ากัน ได้แก่ จำนวนเลเยอร์ตั้งแต่ 1-8 สำหรับข้อมูลประเภท 1 และจำนวน เลเยอร์ตั้งแต่ 1-20 สำหรับข้อมูลประเภท 2. และในกรณีของ SVR. จะได้รับการปรับค่าของ C โดยใช้ค่าตั้งแต่ 10^-10 ถึง 10^9 โดยใช้ kernel เป็น linear และในกรณีของ Ridge Regression ใช้การปรับค่า alpha ตั้งแต่ 10^-10 ถึง 10^9

ผลการทดลอง

กลุ่มที่ข้อมูลที่. 1 attribute เหมือนกับสมการของสัตว์แพทย์

Formular	LR	XG Boost	ANN	SVR	Ridge
7.503460	4.776738	5.134629	21.176700	5.118797	4.735336

กลุ่มที่ข้อมูลที่. 2 attribute มากกว่าสมการของสัตว์แพทย์

Formular	LR	XG Boost	ANN	SVR	Ridge
7.503460	7.9669	5.555596	20.345881	10.478592	7.449860

จากผลการทดลองพบว่า หากใส่จำนวนฟีเจอร์ที่มีจำนวนมากกว่าสัตวแพทย์เข้าไป จะทำให้ Linear model ให้ ผลลัพธ์ที่แย่ แต่หากใส่ฟีเจอร์เท่ากับที่สมการแพทย์ Linear model จะให้ผลลัพธ์ที่ดีกว่า แต่ในทางกลับกัน XG boost ให้ผลลัพธ์ที่ดีกว่าสัตวแพทย์เสมอ และ ANN เป็นผลลัพธ์ที่แย่ที่สุดเสมอ