Chapter 6. The Completeness Property

So far we learned essentially the two methods for finding (or proving) the limit of a sequence:

/1st one: Squeeze Principle: can be applied to sequences whose good upper & lower sequences are expected 2nd one: Completeness Property: can be applied to sequences that are monotone (or monotone for $n \gg 1$)

Goal of this chapter is to give some new methods that can be used to construct or prove the existence of a limit.

More precisely, we will give "NIT (= Nested Intervals Theorem)" and "Cauchy criterion for convergence";

(each is equivalent to the completeness of \mathbb{R} ; well-known to experts)

Main tools for describing those two methods: "LLT" & "the notion of convergence"

6.1 Nested intervals

Def. If a sequence $\left(\left[a_n,\,b_n\right]\right)_{n=0}^{\infty}$ of closed intervals has the property that

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \cdots \supset [a_n, b_n] \supset \cdots$$

we say that the sequence $([a_n, b_n])_{n=0}^{\infty}$ is nested.

Theorem (The Nested Intervals Theorem (for short NIT): 축소 (폐)구간열 정리)

Suppose sequence $\left(\left[a_{n},\,b_{n}\right]\right)_{n=0}^{\infty}$ is a sequence of nested intervals & $\lim_{n\to\infty}\left(b_{n}-a_{n}\right)=0$.

Then $\bigcap_{n=0}^{\infty} [a_n, b_n]$ consists of exactly one point.

Moreover, \exists a real number L such that $\bigcap_{n=0}^{\infty} [a_n, b_n] = \{L\}$ & $\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} b_n$

$$\text{Pf. } \left(\left[a_{\scriptscriptstyle n}, \, b_{\scriptscriptstyle n} \, \right] \right)_{\scriptscriptstyle n=0}^{\infty} \ \text{ is nested:} \quad \left[a_{\scriptscriptstyle 0}, \, b_{\scriptscriptstyle 0} \, \right] \ \supset \ \left[a_{\scriptscriptstyle 1}, \, b_{\scriptscriptstyle 1} \, \right] \ \supset \ \left[a_{\scriptscriptstyle 2}, \, b_{\scriptscriptstyle 2} \, \right] \ \supset \cdots \supset \ \left[a_{\scriptscriptstyle n}, \, b_{\scriptscriptstyle n} \, \right] \ \supset \cdots$$

Hence it is clear that (a_n) is \uparrow & bounded above by b_0 .

By the Completeness Property, $\lim_{n \to \infty} a_n \; (\stackrel{\mathrm{let}}{=} L)$ exists.

Since $\left(a_{n}\right)$ is \uparrow , we get $a_{n}\leq L$ for all n ----- (*)

On the other hand, for any fixed n

$$a_k \le b_k \le b_n$$
 if $k \ge n$ $(\leftarrow b_n \downarrow)$

&

$$a_{\scriptscriptstyle k} \leq a_{\scriptscriptstyle n} \leq b_{\scriptscriptstyle n} \quad \text{ if } \quad k \leq n \quad \left(\leftarrow a_{\scriptscriptstyle n} \ \uparrow \right)$$

Thus we have $a_k \leq b_n$ for all k.

So by LLT,
$$L = \lim_{k \to \infty} a_k \le b_n$$
 ----- (**)

 $(*) \ \& \ (**) \ \mathrm{implies} \quad a_{\scriptscriptstyle n} \leq L \leq b_{\scriptscriptstyle n} \quad \mathrm{ for \ all } \ n$

$$\therefore \qquad \bigcap_{n=0}^{\infty} [a_n, b_n] \ni L$$

 $\bigcap_{n=0}^{\infty} [a_n, b_n] = \{L\}$ Claim:

Pf of Claim: If
$$M\in \bigcap_{n=0}^\infty[a_n,\,b_n]$$
, then $a_n\leq M,\,\,L\,\leq b_n$ for all n .
$$\Rightarrow \quad |L-M|\,\leq\,(b_n-a_n) \quad \text{for all } n$$

$$\Rightarrow \quad |L-M|\,\leq\,\lim_{n\to\infty}(b_n-a_n)=0 \quad \text{(by LLT)}$$

Remains to show $\lim_{n\to\infty} b_n = L$; but it is obvious since

$$\lim_{n\to\infty}b_{\scriptscriptstyle n}\ =\ \lim_{n\to\infty}\big(b_{\scriptscriptstyle n}-a_{\scriptscriptstyle n}\,+\,a_{\scriptscriptstyle n}\big)\ =\ \lim_{n\to\infty}\big(b_{\scriptscriptstyle n}-a_{\scriptscriptstyle n}\big)\,+\,\lim_{n\to\infty}a_{\scriptscriptstyle n}\,=\ 0\,+\,L\ =\ L$$

Exa. (An application of NIT)

Let
$$\begin{cases} a_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n-1} \frac{1}{n} & \text{for } n \geq 1 \\ a_0 = 0 & \end{cases}$$
. Show that $\left(a_n\right)$ converges.

[We have already proved that (a_n) converges to $\ln 2$ by using error-term analysis. Only give an elementary pf of just its convergence]

Sol.

From the picture, we see that

$$[a_0,\,a_1], \quad [a_2,\,a_3], \quad [a_4,\,a_5], \quad \cdots \quad [a_{2k},\,a_{2k+1}], \quad [a_{2k+2},\,a_{2k+3}], \quad \cdots$$

is a sequence of nested intervals.

It is also clear that

$$\left| a_{2k+1} - a_{2k} \right| = \frac{1}{2k+1} \quad \to \quad 0$$

$$\exists \ \ \text{a real number} \ L \ \ \text{such that} \\ \lim_{k \to \infty} a_{2k} \ = \ L \ = \ \lim_{k \to \infty} a_{2k+1}$$

 $a_{2k} \le L \le a_{2k+1}$ for all kMoreover,

It follows that

$$|a_n - L| = \begin{cases} L - a_{2k} & \text{if} \quad n = \text{even} = 2k \\ a_{2k+1} - L & \text{if} \quad n = \text{odd} = 2k + 1 \end{cases}$$

$$\leq a_{2k+1} - a_{2k} = \frac{1}{2k+1}$$

So,
$$|a_{2k} - L| \le \frac{1}{2k+1} < \frac{1}{2k}$$
 & $|a_{2k+1} - L| \le \frac{1}{2k+1}$

Consequently, $|a_n - L| \le \frac{1}{n}$ regardless of whether n is even or odd $\therefore \lim_{n \to \infty} a_n = L$

Ex. (A modification of NIT; it is also called the NIT)

Let $I_n = [a_n, b_n]$ for $n = 0, 1, 2, \cdots$.

$$\begin{array}{ll} \text{If} & I_0 \supset I_1 \supset I_2 \supset \cdots & \text{(i.e., } \left(I_n\right)_1^\infty \text{ is nested), then} \\ & \bigcap\limits_{n=0}^\infty I_n = [L, \ M], \text{ where } L = \lim\limits_{n \to \infty} a_n & \& \quad M = \lim\limits_{n \to \infty} b_n & (\& \ L \leq M) \end{array}$$

O Archimedian Property (for short, AP)

$$0 < \underbrace{a}_{\text{small}} < \underbrace{b}_{\text{big}} \qquad \Rightarrow \quad \exists \ \ \text{a natural number} \ \ n_0 \ \ \text{such that} \ \ n_0 a \ > \ b$$

Pf. Suppose the conclusion were false; i.e., suppose $an \leq b$ for every $n \in \mathbb{N}$.

Then the sequence

$$a, 2a, 3a, \cdots, na, \cdots$$
 is strictly \uparrow & bounded above (by b)

 $\overset{\text{Completeness Property}}{\Rightarrow} \qquad \lim_{n \to \infty} na \; \; \text{exists,} \quad \text{call it} \; \; L \, .$

So, for given $\varepsilon > 0$, $|na - L| < \varepsilon$ for $n \gg 1$ (say, for $n \ge N$)

In particular, |(N+1)a-L|<arepsilon & |Na-L|<arepsilon

$$|(N+1)a - Na| < 2\varepsilon$$

i.e.,
$$|a| < 2\varepsilon$$
 for any $\varepsilon > 0$ $\therefore a = 0$; contradiction to $a > 0$

Key idea: $\lim_{n\to\infty} na = L \text{ [assume]} \Rightarrow \lim_{n\to\infty} (n+1)a = L$

$$\Rightarrow 0 = L - L = \lim_{n \to \infty} (n+1)a - \lim_{n \to \infty} na = \lim_{n \to \infty} \left((n+1)a - na \right) = \lim_{n \to \infty} a = a : \text{contrdicts } a > 0$$

Note.

(1) Let
$$I_n=(0,\ 1/n)$$
 for $n=1,2,\cdots$. Then it is clear that
$$I_1\supset I_2\supset I_3\supset\cdots\quad\text{and}\quad \ell(I_n)=1/n\to 0\quad\text{as}\quad n\to\infty\,;$$
 but $\bigcap\limits_{n=1}^{\infty}I_n=\varnothing$

Pf. If x > 0, then by AP

$$\exists n_0 \in \mathbb{N} \text{ such that } 0 < 1/n_0 < x$$

So
$$x\not\in I_{n_0}=(0,\ 1/n_0)$$
, and thus $x\not\in\bigcap_{n=1}^\infty I_n$
$$\therefore\bigcap_{n=1}^\infty I_n=\varnothing$$

(2) Let
$$I_n=[n, \infty)$$
 for $n=1,2,\cdots$. Then it is clear that
$$I_1\supset I_2\supset I_3\supset\cdots\ ;$$
 but $\bigcap_{n=1}^\infty I_n=\varnothing$

Pf. If x > 0, then by AP

$$\exists \quad n_{\scriptscriptstyle 0} \in \mathbb{N} \quad \text{such that} \quad n_{\scriptscriptstyle 0} > \quad x$$

So
$$x \not\in I_{n_0} = [n_0, \infty)$$
, and thus $x \not\in \bigcap_{n=1}^{\infty} I_n$ $\therefore \bigcap_{n=1}^{\infty} I_n = \varnothing$

(3) Let
$$I_n=(-1/n,\ 1/n)$$
 for $n=1,2,\cdots$. Then it is clear that
$$I_1\supset I_2\supset I_3\supset\cdots\quad\text{and}\quad \ell(I_n)=2/n\quad\to\quad 0\ \ \text{as}\ \ n\to\infty\,;$$
 but $\bigcap\limits_{n=1}^\infty I_n=\{0\}$

$$I'_n \equiv [-1/2n, \ 1/2n] \subset I_n = (-1/n, \ 1/n) \subset I''_n \equiv [-1/n, \ 1/n]$$

Each of $(I_n')_{n=1}^{\infty}$ & $(I_n'')_{n=1}^{\infty}$ is nested, and

$$\ell(I'_n) = 1/n \to 0$$
 & $\ell(I''_n) = 2/n \to 0$

Thus by NIT

Since
$$0 \in \bigcap_{n=1}^{\infty} I'_n$$
 & $\bigcap_{n=1}^{\infty} I''_n$ consists of a single point, respectively $0 \in \bigcap_{n=1}^{\infty} I'_n$ & $0 \in \bigcap_{n=1}^{\infty} I''_n$, we get

Since
$$0 \in \bigcap_{n=1}^{\infty} I'_n$$
 & $0 \in \bigcap_{n=1}^{\infty} I''_n$, we get

$$\bigcap_{n=1}^{\infty} I'_n = \{0\} = \bigcap_{n=1}^{\infty} I''_n$$

$$\therefore \bigcap_{n=1}^{\infty} I_n = \{0\}.$$

Cluster points of sequences

Def. K is called a cluster point (집 적점) of the sequence (a_n) if

given
$$\varepsilon > 0$$
, $a_n \approx K$ for infinitely many n .

L is the limit of the sequence (a_n) if Recall

given
$$\varepsilon > 0$$
, $a_n \approx L$ for $n \gg 1$ (i.e., for all but finitely many n).

If L is the limit of the seq (a_n) , then Trivial fact:

L is (automatically) a cluster point.

But there are cluster points which are not limits

Exa A.

 $1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \cdots$ (a)

Every positive integer is a cluster point, but the sequence has no limit.

(b)
$$1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \cdots$$
:

1 & 0 are cluster points, but the sequence has no limit.

(c) $\sin 1$, $\sin 2$, $\sin 3$, \cdots , $\sin n$, \cdots :

Every real number in [-1, 1] is a cluster point of this sequence

(Its proof is very difficult)

But the sequence has no limit (already proved)

(d) $1, 2, 3, 4, \cdots$ has no cluster point.

Note: Other names for cluster point are "accumulation point" or "limit point"

Caution: $limit point \neq limit$

*Theorem (Cluster point theorem)

K is a cluster point of the sequence (a_n)

 \Leftrightarrow K is the limit of some subsequence (a_{n_i})

 $\text{Pf.} \ \ \, \Leftarrow \ \ \, (\text{easy}): \quad \text{given} \ \, \varepsilon > 0, \quad a_{n_i} \mathop{\approx}\limits_{\varepsilon} K \quad \text{ for } i \gg 1, \quad \text{say, for all } \ \, i \geq I$

So,
$$a_{n_I}, a_{n_{I+1}}, a_{n_{I+2}}, \cdots \approx K$$

 $\therefore a_n \approx K$ for infinitely many n

 \therefore K is a cluster point of (a_n)

 \Rightarrow : By hypo, we can choose a_{n_1} so that

$$a_{n_1} \approx K$$

By hypo again, we can choose a_{n_2} so that

$$a_{n_2} \underset{\frac{1}{2}}{\approx} K \quad \text{and} \quad n_2 > n_1$$

By the same way, we can choose a_{n_3} so that

Since $n_i > n_{i-1}, \quad (a_{n_i})$ forms a subsequence of (a_n) .

Moreover,

given
$$\varepsilon > 0$$
, $a_{n_i} \underset{\varepsilon}{\approx} K$ for $\frac{1}{i} < \varepsilon$, i.e., for $i > \frac{1}{\varepsilon}$

 $\therefore \quad K \, = \, \lim_{i \to \infty} a_{n_i} \qquad \text{i.e.,} \quad K \quad \text{is the limit of the subsequence} \quad \left(a_{n_i}\right)$

Exa B. Let $a_n = \frac{1}{n} + (-1)^n$. Show (a_n) has -1 & 1 as cluster points, but no limit

Pf.
$$a_{2k+1} = \frac{1}{2k+1} - 1 \rightarrow -1 \text{ as } k \rightarrow \infty$$

$$a_{2k} = \frac{1}{2k} + 1 \rightarrow 1 \text{ as } k \rightarrow \infty$$

 \therefore -1 & 1 are cluster points (by the Cluster point theorem)

Since $\lim_{k\to\infty}a_{2k+1}\neq\lim_{k\to\infty}a_{2k},\ \lim_{n\to\infty}a_n$ does not exist.

Exa1. Find the cluster points of $\left(\sin\frac{n\pi}{2}\right)_0^{\infty}$.

Sol.
$$\left(\sin\frac{n\pi}{2}\right)_0^{\infty}$$
: 0, 1, 0, -1; 0, 1, 0, -1; ...

 \therefore the cluster points are 0, 1, -1

Exa2. Prove that if a sequence is convergent, it has only one cluster point.

 $\mbox{Pf.} \quad \mbox{Say} \quad a_n \ \, \rightarrow \ \, L \, . \quad \mbox{Then} \ \, L \ \, \mbox{is a cluster point.}$

If K is also a cluster point, then by the Cluster point theorem, \exists a subsequence (a_{n_i}) such that

$$\lim_{i\to\infty}a_{n_i}=K.$$

But since $\lim_{n\to\infty}a_n=L$, we have $\lim_{i\to\infty}a_{n_i}=L$ by the Subsequence Theorem.

Hence K = L

Exa3. Find a sequence that having only one cluster point, yet not convergent.

Sol. $1, 2, 1, 3, 1, 4, \cdots$

Its cluster point is 1, but clearly it has no limit.

6.3 The Bolzano-Weierstrass theorem

Sequences in general do not converge, but they often have subsequences which converge.

Question: What kind of sequence has a convergent subsequence?

* Theorem (Bolzano-Weierstrass Theorem: BWT for short)

If (x_n) is a bounded sequence, then it has a convergent subsequence.

Pf. key idea: the Method of Bisection plus NIT

By the Cluster point theorem, it suffices to show that the bounded sequence (x_n) has a cluster point.

Since (x_n) is bounded, there are points a_0 and b_0 such that

$$a_0 \le x_n \le b_0$$
 for all n

We set $\operatorname{length}[a_0, b_0] = d$

We can assume d > 0, otherwise, (x_n) is constant (\Rightarrow OK)

$$\begin{array}{c|c} & & & \\ & & \\ a_0 & & c = \frac{a_0 + b_0}{2} & & b_0 \end{array}$$

At least one of the half-intervals $\ [a_0,\ c]\ \&\ [c,\ b_0]\$ contains infinitely many $\ x_n$.

Call this half-interval $[a_1, b_1]$ (; if both do, use the left-hand one)

We then have

$$[a_0, b_0] \supset [a_1, b_1],$$
 length $[a_1, b_1] = \frac{d}{2}$
 $[a_1, b_1]$ contains infinitely many x_n

Similiarly, by dividing $\begin{bmatrix} a_1, & b_1 \end{bmatrix}$ in half, we get an $\begin{bmatrix} a_2, & b_2 \end{bmatrix}$ such that

$$[a_1, b_1] \supset [a_2, b_2],$$
 length $[a_2, b_2] = \frac{d}{2^2}$
 $[a_2, b_2]$ contains infinitely many x_n

Continuing, we get a sequence of nested intervals such that

$$[a_0,\ b_0]\supset [a_1,\ b_1]\supset [a_2,\ b_2]\supset\cdots\supset [a_n,\ b_n]\supset\cdots$$

$$\operatorname{length}[a_n,\ b_n]=\frac{d}{2^n}$$

$$[a_n,\ b_n]\ \operatorname{contains\ infinitely\ many\ }x_n$$

Since
$$\frac{d}{2^n} \to 0$$
 as $n \to \infty$, by NIT

$$\exists \ \ \text{a unique point} \ \ L \ \ \ \sup_{n=1}^{\infty} [a_n, \ \ b_n] = \{L\}$$

Claim: L is a cluster point of (x_n)

Pf of claim: Given $\varepsilon > 0$, choose an i so that $\operatorname{length}[a_i, b_i] = \frac{d}{2^i} < \varepsilon$

Since $[a_i, b_i]$ contains an infinitely many $x_n \& a_i \le L \le b_i$, we get

 $x_n \approx L$ for infinitely many x_n

contains infinitely many x_n

 \therefore L is a cluster point of (x_n)

Summary of the pf (without using Cluster point theorem):

$$(x_n)$$
 is bounded \Rightarrow all $x_n \in [a_0, b_0] =: I_0$

Bisect I_0 into two equal halves.

Choose I_1 to be one of the two equal halves of I_0 containing infinitely many number of terms of x_n ; and take $x_{n_1} \in I_1$.

Choose I_2 to be one of the two equal halves of I_1 containing infinitely many number of terms of x_n ; and take $x_{n_2} \in I_2$ with $n_2 > n_1$.

Continuing in this fashion, we obtain, for every index $i \in \mathbb{N}$,

$$\text{an interval} \quad I_i =: [a_i,b_i] \quad \& \quad \text{a point} \quad x_{n_i} \in I_i \quad \text{with} \quad n_i > n_{_{i-1}} \quad \text{and} \quad I_{_{i-1}} \supset I_i$$

Note that
$$\operatorname{length}(I_i) = b_i - a_i = \frac{\ell(I_0)}{2^i} = \frac{b_0 - a_0}{2^i} \to 0 \text{ as } i \to \infty$$
.

Thus by NIT, $\ \exists \ \ \mbox{a unique point} \ \ L \ \ \mbox{such that} \quad \bigcap_{i=1}^{\infty} I_i = \{L\}$

Notice that $\ L \ \& \ x_{n_i} \in I_i$. It follows that

$$\left|x_{n_i} - L\right| \le b_i - a_i \to 0 \text{ as } i \to \infty$$

 $\therefore \lim_{n \to \infty} x_{n_i} = L$ (i.e., (x_{n_i}) is a convergent subsequence of (x_n))

Exa. Let
$$(a_n)_{n=0}^{\infty} = \{\sin(n^2 + n + 1)\}_{n=0}^{\infty}; \qquad (b_n)_0^{\infty} = \{e^{\sin n}\}_{n=0}^{\infty}.$$

Then it is clear that (a_n) & (b_n) are bounded sequences.

6.4 Cauchy sequences

Def. We say that the sequence (a_n) is a Cauchy sequence if,

given
$$\varepsilon > 0$$
, $a_m \underset{\varepsilon \text{ or } K\varepsilon}{\approx} a_n$ for $m, n \gg 1$ (or for $m > n \gg 1$)

i.e., given $\varepsilon > 0$, \exists a number $N (= N(\varepsilon))$ such that $a_m \underset{\varepsilon \text{ or } K\varepsilon}{\approx} a_n \quad \text{for all } m, \ n \geq N \quad \text{(or for all } m > n \geq N)$

Exa.
$$a_n = \frac{3n+1}{n+2}$$
 Show (a_n) is Cauchy.

Pf. Let $\varepsilon > 0$ be given. Then

$$\begin{aligned} \left| a_m - a_n \right| &= \left| \frac{3m+1}{m+2} - \frac{3n+1}{n+2} \right| = \left| \frac{5(m-n)}{(m+2)(n+2)} \right| \\ &\leq \frac{5m}{(m+2)(n+2)} + \frac{5n}{(m+2)(n+2)} \\ &\leq \frac{5}{n+2} + \frac{5}{m+2} < \varepsilon / 2 + \varepsilon / 2 = \varepsilon \quad \text{if} \quad n+2 > \frac{10}{\varepsilon} & \& \ m+2 > \frac{10}{\varepsilon} \end{aligned}$$

Thus

$$|a_m - a_n| < \varepsilon$$
 if $m, n > \frac{10}{\varepsilon} - 2$

So $a_m \approx a_n$ for $m, n \gg 1$ $\therefore (a_n)$ is Cauchy

 \odot Fact (easy): (a_n) is convergent \Rightarrow (a_n) is a Cauchy sequence

Pf. Suppose $\lim_{n\to\infty} a_n = L$. Then

given
$$\varepsilon > 0$$
, $a_n \approx L$ for $n \gg 1$

So,
$$a_m \underset{\varepsilon}{\approx} L$$
 & $a_n \underset{\varepsilon}{\approx} L$ for $m, n \gg 1$

Thus

$$a_m \underset{2\varepsilon}{\approx} a_n$$
 for $m, n \gg 1$

 \therefore (a_n) is a Cauchy sequence

Question: What about the converse?

Ans is yes (Next theorem)

Theorem (The Cauchy criterion for convergence)

If (a_n) is a Cauchy sequence, then (a_n) converges.

Pf. Let (a_n) be a Cauchy sequence.

 1^{st} step: (a_n) is bounded

To prove this, take $\varepsilon = 1$. Then by the def of Cauchy sequence \exists an N such that

$$a_n \approx a_m$$
 for all $n, m \ge N$

In particular,

$$a_n \underset{1}{\approx} a_N$$
 for all $n \ge N$ i.e., $a_N - 1 < a_n < a_N + 1$ for all $n \ge N$

This says (a_n) is bounded for $n \gg 1$

This gives (a_n) is bounded for all n

 2^{nd} step: (a_n) has a convergent subsequence (a_{n_i})

[: proved
$$(a_n)$$
 is bounded $(\leftarrow 1^{st} \text{ step})$

 \Rightarrow (a_n) has a convergent subsequence; call it (a_{n_i})]

 3^{rd} step: Claim: Write $L = \lim_{i \to \infty} a_{n_i}$ Then $\lim_{n \to \infty} a_n = L$

To prove the Claim, let $\varepsilon > 0$ be given.

Since (a_n) is Cauchy, $\exists N \in \mathbb{N}$ such that

$$n, m \ge N \quad \Rightarrow \quad |a_n - a_m| < \varepsilon$$

Since $L = \lim_{i \to \infty} a_{n_i}$, $\exists I \in \mathbb{N}$ such that

$$i \ge I \implies \left| a_{n_i} - L \right| < \varepsilon$$
.

$$n \ge N$$
 \Rightarrow $\left| a_n - L \right| < \left| a_n - a_{n_{i_0}} \right| + \left| a_{n_{i_0}} - L \right| < \varepsilon + \varepsilon = 2\varepsilon$
 $\therefore \lim_{n \to \infty} a_n = L$ by $K - \varepsilon$ principle

Question: If a sequence (a_n) satisfies;

given
$$\varepsilon > 0$$
, $a_{n+1} \approx a_n$ for $n \gg 1$,

is (a_n) convergent?

For example, the sequence $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ satisfies;

given
$$\varepsilon > 0$$
, $\left| a_{n+1} - a_n \right| = \frac{1}{n+1} < \frac{1}{n} < \varepsilon$ if $n > \frac{1}{\varepsilon}$

So, given
$$\varepsilon > 0$$
, $a_{n+1} \approx a_n$ for $n \gg 1$.

However, we have already seen that (a_n) is divergent.

• Typical examples of Cauchy sequences.

Type1.

$$\left|a_m - a_n\right| \le c_n$$
 for every $m, n \in \mathbb{N}$ (or $m, n \gg 1$) & $\lim_{n \to \infty} c_n = 0$

 \Rightarrow (a_n) is Cauchy

Pf.
$$\lim_{n\to\infty} c_n = 0 \implies \text{given } \varepsilon > 0, |c_n| < \varepsilon \text{ for } n \gg 1$$

So
$$|a_m - a_n| \le |c_n| < \varepsilon$$
 for $m, n \gg 1$

i.e., given
$$\varepsilon > 0$$
, $a_m \approx a_n$ for $m, n \gg 1$.

Exa. If $|a_m - a_n| \le \frac{1}{m+n}$, then show that (a_n) is Cauchy

Pf. For every $m, n \in \mathbb{N}$.

$$\left|a_m - a_n\right| \le \frac{1}{m+n} < \frac{1}{n}$$
 & $\frac{1}{n} \to 0$

***Type2.** Let (a_n) be a sequence.

If \exists constants C > 0 and K, with 0 < K < 1, such that

$$|a_{n+1} - a_n| \le CK^n$$
 for every n (or $n \gg 1$),

then (a_n) is a Cauchy sequence

Pf. Let m > n. Then

$$\begin{aligned} |a_{m} - a_{n}| &\leq |a_{n} - a_{n+1}| + |a_{n+1} - a_{n+2}| + \dots + |a_{m-1} - a_{m}| \\ &\leq CK^{n} + CK^{n+1} + \dots + CK^{m-1} \\ &< CK^{n} \left(1 + K + K^{2} + \dots \right) = \frac{CK^{n}}{1 - K} \equiv c_{n}; \qquad c_{n} \to 0 \text{ since } 0 < K < 1 \end{aligned}$$

Thus (a_n) is a sequence of Type1

$$\therefore$$
 (a_n) is Cauchy

Exa. If (a_n) satisfies $|a_{n+1} - a_n| \le (1/2)^n$ for every n (or $n \gg 1$), then (a_n) is Cauchy.

Def. A sequence (a_n) is said to be contractive if \exists a constant K with 0 < K < 1, such that $|a_{n+2} - a_{n+1}| \le K |a_{n+1} - a_n|$ for all n

Type3. If (a_n) is a contractive sequence, then (a_n) is Cauchy.

Pf. By hypo, we have for every n

$$|a_{n+2} - a_{n+1}| \le K |a_{n+1} - a_n| \le K^2 |a_n - a_{n-1}| \le \dots \le K^n |a_2 - a_1|$$

 \therefore (a_n) is a sequence of Type2 \therefore (a_n) is Cauchy

Exa. Recall the sequence of Fibonacci fractions is defined by

$$a_1 = 1$$
, $a_{n+1} = \frac{1}{a_n + 1}$ for $n \ge 1$.

Using Cauchy criterion for convergence, prove that (a_n) converges, and determine its limit.

Remark. We already proved that (a_n) converges, by using an error-term analysis.

Pf. To prove (a_n) is convergent, it suffices to show (a_n) is a Cauchy sequence.

$$\begin{aligned} \left| a_{n+2} - a_{n+1} \right| &= \left| \frac{1}{a_{n+1} + 1} - \frac{1}{a_n + 1} \right| = \frac{\left| a_{n+1} - a_n \right|}{(a_{n+1} + 1)(a_n + 1)} \\ &\leq \frac{1}{(1/2 + 1)(1/2 + 1)} \left| a_{n+1} - a_n \right| = \frac{2}{3} \cdot \frac{2}{3} \left| a_{n+1} - a_n \right| = \frac{4}{9} \left| a_{n+1} - a_n \right| \end{aligned}$$

 $\llbracket \, : \,$

$$a_1 = 1 \qquad \Rightarrow \quad a_2 = \frac{1}{1+a_1} = \frac{1}{2} \quad \Rightarrow \quad 1 \le 1 + a_2 \le 3/2$$

$$\Rightarrow \quad 2/3 \le a_3 = \frac{1}{1+a_2} \le 1$$

$$\Rightarrow \quad 1/2 \le a_3 \le 1$$

Expect: $1/2 \le a_n \le 1$ for all n

Suppose $1/2 \le a_n \le 1$ for all n. Then

$$3/2 \le a_n + 1 \le 2$$

$$\Rightarrow \frac{1}{2} \le \frac{1}{a_n + 1} \le \frac{2}{3}$$

$$\Rightarrow \frac{1}{2} \le \frac{1}{a_n + 1} = a_{n+1} \le 1$$

Thus by Math. Induction, $1/2 \le a_n \le 1$ for all n.

Alternative easy way: It is clear that $a_n \le 1$ for $\forall n \ge 1$;

thus we see also that $a_n \ge 1/2$ for $\forall n \ge 1$ because $a_{n+1} = \frac{1}{a_n + 1}$ for $n \ge 1$

 \therefore (a_n) is contractive So (a_n) is Cauchy \therefore (a_n) is convergent

Writing $\lim_{n\to\infty} a_n = L$, and taking limits on the relation $a_{n+1} = \frac{1}{a_{-} + 1}$ give

$$L = \frac{1}{L+1}$$
 i.e., $L^2 + L - 1 = 0$ $\therefore L = \frac{-1 + \sqrt{5}}{2}$ $(\because L > 0)$

Remark. Another way of expecting that $1/2 \le a_n \le 1$ for all n:

Draw the graph
$$y = \frac{1}{x+1}$$

Exa. Assume $x_0 = a$, $x_1 = b$ with 0 < a < b &

$$x_{n+1} = \frac{x_n + 3x_{n-1}}{4}$$
 for $n \ge 1$

Show that (x_n) converges, and determine its limit.

Sol.
$$x_{n+1} = \frac{4x_n - 3x_n + 3x_{n-1}}{4}$$

$$\therefore x_{n+1} - x_n = -\frac{3}{4}(x_n - x_{n-1})$$

$$\therefore |x_{n+1} - x_n| = \frac{3}{4}|x_n - x_{n-1}|$$

 \therefore (x_n) is a contractive sequence. So (x_n) is convergent.

Writing $\lim_{n\to\infty} x_n = L$, and taking limits on both sides of the given relation $x_{n+1} = \frac{x_n + 3x_{n-1}}{4}$ give

$$L = \frac{L + 3L}{4}$$
 i.e., $L = L$ (give no conclusion)

Thus we need new idea.

Back to the relation: $x_{n+1} - x_n = -\frac{3}{4}(x_n - x_{n-1})$

From this, we get

$$x_{2} - x_{1} = -\frac{3}{4}(x_{1} - x_{0}) = -\frac{3}{4}(b - a)$$

$$x_{3} - x_{2} = -\frac{3}{4}(x_{2} - x_{1}) = \left(-\frac{3}{4}\right)^{2}(x_{1} - x_{0}) = \left(-\frac{3}{4}\right)^{2}(b - a)$$
:

$$x_{n} - x_{n-1} = \left(-\frac{3}{4}\right)^{n-1} (b-a)$$

$$x_{n} = x_{1} + (b-a) \left[-\frac{3}{4} + \left(-\frac{3}{4}\right)^{2} + \dots + \left(-\frac{3}{4}\right)^{n-1}\right]$$

$$= b + (b-a) \frac{-\frac{3}{4} \left(1 - \left(-\frac{3}{4}\right)^{n-1}\right)}{1 + \frac{3}{4}} \rightarrow b + (b-a) \frac{-\frac{3}{4}}{\frac{7}{4}} = \frac{3}{7}a + \frac{4}{7}b$$

Def. A function $f: \stackrel{\text{an interval}}{\widehat{I}} \to \mathbb{R}$ is said to be contractive if \exists a constant K > 0, with 0 < K < 1, such that

$$|f(x)-f(y)| \le K|x-y|$$
 for all $x, y \in I$

Suppose $f: I \to \mathbb{R}$ is a contractive function on I, and define

$$a_{n+1} = f(a_n)$$
 for $n \ge 1$.

Then show that (a_n) is a Cauchy sequence.

Pf.
$$\left|a_{n+2}-a_{n+1}\right| = \left|f(a_{n+1})-f(a_n)\right| \le K\left|a_{n+1}-a_n\right|$$
 (for some $0 < K < 1$) $\forall n \ge 1$
 \therefore (a_n) is contractive So (a_n) is a Cauchy sequence.

Ex. Let $f: I \to \mathbb{R}$ be differentiable on I.

If \exists a constant K > 0, with 0 < K < 1, such that

$$|f'(x)| \le K$$
 for all $x \in I$,

then show that f is contractive

Pf.
$$x, y \in I \implies f(x) - f(y) = f'(c)(x - y)$$
 for some $c \in (x, y)$ or $c \in (y, x)$

$$\therefore |f(x) - f(y)| = |f'(c)| |x - y| \le K|x - y| \text{ for all } x, y \in I$$

So far we discussed the "Completeness Property for sequences of numbers".

We now discuss the "Completeness Property for a set of numbers"

- * a sequence of numbers : (a countable set) : the numbers are ordered in a list
- * a set of numbers (for example, the set of irrational numbers): an unordered collection

Def. Let S be a set of real numbers (i.e., $S \subset \mathbb{R}$).

If a number b has the property that $x \le b$ for all $x \in S$, then b is called an *upper bound* for S.

A set S is said to be *bounded above* if S has an upper bound.

A number m is called the maximum of S if

(i) m is an upper bound for S, and (ii) $m \in S$ (i.e., $x \le m$ for every $x \in S$, and $m \in S$)

Notation: $m = \max S$

Ex. S = [0,1]: bounded above (by 1) & max S = 1

Ex. S=(0,1): bounded above (by 1), but it has no maximum (: if m is an upper bound for S, then $m \ge 1$. But such $m \notin S$)

Def. Let $S \subset \mathbb{R}$. The supremum of S is a number \overline{m} satisfying:

sup-1: \overline{m} is an upper bound for S (i.e., $x \le \overline{m}$ for all $x \in S$)

sup-2: $\overline{m} \le$ any upper bound of S (i.e., \overline{m} is the least upper bound for S)

i.e., $x \le b$ for all $x \in S$ $\Rightarrow \overline{m} \le b$

(In other words, b is any upper bound for $S \implies \overline{m} \le b$)

Equivalently(대수), if $b < \overline{m}$, then b is not an upper bound for S

That is, $b < \overline{m} \implies \exists x \in S \text{ such that } b < x$

Or, for any $\varepsilon > 0$, $\exists x \in S$ such that $\overline{m} - \varepsilon < x \le \overline{m}$

Notation: $\overline{m} = \sup S$ (\leftarrow supremum: Latin language) = lub S (\leftarrow least upper bound) Caution: $\sup S \in S$ is false in general [즉, 일반적으로 $\sup S \in S$ 라는 보장은 없음]

 \bigcirc Simple fact: $\sup S$ is unique, if it exists

Pf. Let $\overline{m_1} = \sup S$ and $\overline{m_2} = \sup S$

Since $\overline{m_1}$ is an upper bound for S & $\overline{m_2}$ is a least upper bound for S,

$$\overline{m_2} \leq \overline{m_1}$$

Interchanging the role of m_1 and m_2 , we have

$$\overline{m_1} \le \overline{m_2}$$

$$\overline{m_1} = \overline{m_2}$$

Exa. $S = \left\{1 - \frac{1}{n} : n = 1, 2, 3, \dots\right\}$ Find $\sup S$ and $\max S$

Sol. Any $b \ge 1$ is an upper bound.

If b < 1, then 1 - b > 0

Thus by AP, \exists a natural number n_0 such that $\frac{1}{n_0} < 1 - b$

That is, $b < 1 - \frac{1}{n_0}$ (& RHS \in S)

So b is not an upper bound for S

$$\therefore$$
 sup $S = 1$

Since any upper bound of S can not belong to S, max S does not exist.

Exa. $S = \left\{1 + \frac{1}{n} : n = 1, 2, 3, \dots\right\}$ Find $\sup S$ and $\max S$

Sol. Any $b \ge 2$ is an upper bound.

If b < 2, b is not an upper bound for S

$$\therefore$$
 sup $S = 2$

Since $2 \in S$, $\max S = 2$

Proposition

If $\max S$ exists, then $\sup S$ exists and $\sup S = \max S$

Pf. Let $m = \max S$. Then by the def of maximum

$$m \in S$$
 and $x \le m$ for all $x \in S$

So m is an upper bound for S --- (i)

On the other hand,

if
$$x \le b$$
 for all $x \in S$, then $m \le b$ (since $m \in S$) --- (ii)

From (i) and (ii), we conclude that $m = \sup S$ (that is, $\max S = \sup S$)

***** Theorem (Completeness Property for sets)

If $S(\subset \mathbb{R}) \neq \emptyset$ and bounded above, then $\sup S$ exists.

(that is, if a nonempty set in $\,\mathbb{R}\,$ has an upper bound, it has a least upper bound)

Pf. Let b_0 be an upper bound for S

We can choose $a_0 \in S$ since $S \neq \emptyset$

$$\therefore a_0 \leq b_0$$

$$a_0 \in S$$
 b_0

an upper bound for S

Bisect the interval $[a_0,b_0]$ with its midpoint $c\left(=\frac{a_0+b_0}{2}\right)$.

Choose the half-interval $[a_0, c]$ if c is an upper bound for S.

Otherwise, choose $[c,b_0]$. Call this half-interval $[a_1,b_1]$. Then

$$b_1$$
 (= the right endpoint) is an upper bound for S

&

 $[a_1,b_1]$ contains a point of S.

 Γ : If $c \left(= \frac{a_0 + b_0}{2} \right)$ is an upper bound for S, then

$$\begin{array}{ccc}
a_0 & & & b_0 \\
c & \left(=\frac{a_0 + b_0}{2}\right) & & & b_0
\end{array}$$

$$[a_0,c]$$
 contains a_0 & $a_0 \in S$.

Otherwise (i.e., if c is not an upper bound for S), we have

$$\overrightarrow{a_0}$$
 \overrightarrow{c} $\overleftarrow{b_0}$ (an upper bound)
$$\exists x \in S \quad s.t. \quad c < x \le b_0$$

$$\therefore$$
 $[c,b_0]$ contains $x \& x \in S$

Repeat this halving process with $[a_1,b_1]$ and continue. Then we can get a sequence of nested intervals

$$[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_n,b_n]\supset\cdots$$

such that

 b_n is an upper bound for S & $[a_n,b_n]$ contains a point of $\,S$, and also length $[a_n,b_n]\,\to\,0$

By NIT,
$$\exists \overline{m} \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$
 with $\lim_{n \to \infty} a_n = \overline{m}$ & $\lim_{n \to \infty} b_n = \overline{m}$ (notice that $b_n \downarrow \overline{m}$)

We now show that $\overline{m} = \sup S$ (it is expected from the fact that $b_n \downarrow \overline{m}$)

(i) **sup-1**: \overline{m} is an upper bound for S

 \vec{m} is an upper bound for S

(ii) **sup-2**: $\overline{m} \le$ any upper bound of S

Let
$$x \le b$$
 for all $x \in S$ (i.e., let b be an upper bound for S)
$$\Rightarrow a_n \le b \text{ for all } n \text{, since each } [a_n, b_n] \text{ contains a point of } S$$

$$\text{(that is, } a_n \le x_n \text{ for some } x_n \in S \text{)}$$

$$\Rightarrow \lim_{n \to \infty} a_n (= \overline{m}) \le b, \text{ by LLT } \bot$$

Exa. Let $S = \{r : r \text{ is an irrational number s.t. } r < 1\}$. sup S = ?

Sol. Any $b \ge 1$ is an upper bound.

If b < 1, then (by the density of rational numbers)

$$\exists$$
 a rational number $\frac{m}{n}$ such that $b < \frac{m}{n} < 1$

We can choose a sufficiently small $\varepsilon > 0$ so that

$$b < \frac{m}{n} < \underbrace{\varepsilon\sqrt{2} + \frac{m}{n}}_{\text{irrational number}} < 1;$$

which shows any b (b < 1) is not an upper bound for the set S.

Therefore, $\sup S = 1$.

Ex. Let $S = \{r : r \text{ is a rational number s.t. } r < 1\}$. Determine $\sup S$.

Ex. Let $S = \{r : r \text{ is a rational number s.t. } r < \sqrt{2}\}$. Determine $\sup S$

Theorem (easy to expect) [Remember the conclusion]

- (i) (a_n) is \uparrow & bounded above $\Rightarrow \lim_{n\to\infty} a_n$ exists & $\lim_{n\to\infty} a_n = \sup\{a_n : n \in N\}$
- (ii) (a_n) is \downarrow & bounded below $\Rightarrow \lim_{n \to \infty} a_n$ exists & $\lim_{n \to \infty} a_n = \inf\{a_n : n \in N\}$

Pf. (i)
$$S \stackrel{\text{let}}{=} \{a_n : n \in N\}$$

 \Rightarrow $S \neq \emptyset$ and bdd above

Completeness Property
$$\Rightarrow$$
 $\sup S (=\overline{m})$ exists

Suffices to show: $\overline{m} = \lim_{n \to \infty} a_n$

For this, let $\varepsilon > 0$ be given. Then

$$\overset{\sup(2)}{\Rightarrow} \qquad \exists \ a_N \in S \quad \text{s.t.} \quad \overline{m} - \varepsilon < a_N \leq \overline{m}$$

$$\frac{1}{m} - \varepsilon \qquad \frac{1}{m}$$

$$\exists a_N \in S$$

Since (a_n) is \uparrow , it follows that

$$\overline{m} - \varepsilon < a_N \le a_n \le \overline{m}$$
 for every $n \ge N$

$$\downarrow \text{(clearly)}$$

$$\overline{m} - \varepsilon < a_n < \overline{m} + \varepsilon$$
 for every $n \ge N$

i.e.,
$$a_n \approx \overline{m}$$
 for every $n \ge N$

$$\therefore \quad \overline{m} = \lim_{n \to \infty} a_n$$

- (ii) The proof is similar to that of (i)
- Def. Let $S \subset \mathbb{R}$. If a number b has the property that $x \ge b$ for all $x \in S$, then b is called a *lower bound* for S.

A set S is said to be *bounded below* if S has a lower bound.

A number m is called the minimum of S if

(i) m is a lower bound for S, and (ii) $m \in S$ (i.e., $x \ge m$ for every $x \in S$, and $m \in S$)

Notation: $m = \min S$

Def. Let $S \subset \mathbb{R}$. The infimum of S is a number \underline{m} satisfying:

inf-1: m is a lower bound for S (i.e., $x \ge m$ for all $x \in S$)

inf-2: $\underline{m} \ge$ any lower bound of S (i.e., \underline{m} is the greatest lower bound for S)

i.e.,
$$x \ge b$$
 for all $x \in S$ \Rightarrow $\underline{m} \ge b$

(In other words, b is any lower bound for $S \implies \underline{m} \ge b$)

Equivalently(\mathfrak{P}), if $b > \underline{m}$, then b is not a lower bound for S

That is,
$$b > \underline{m} \implies \exists x \in S \text{ such that } x < b$$

Or, for any
$$\varepsilon > 0$$
, $\exists x \in S$ such that $\underline{m} \le x < \underline{m} + \varepsilon$

Notation: $m = \inf S$ ($\leftarrow \inf$ mum) = glb S ($\leftarrow greatest$ lower bound)

Ex.
$$S = \left\{1 - \frac{1}{n} : n = 1, 2, 3, \dots\right\}$$
 \Rightarrow inf $S = 0$ and min $S = 0$

Ex.
$$S = \left\{1 + \frac{1}{n} : n = 1, 2, 3, \dots\right\}$$
 \Rightarrow inf $S = 1$ and min S does not exist

Proposition

If $\min S$ exists, then $\inf S$ exists and $\inf S = \min S$

Pf. Exercise

Theorem

If $S(\subset \mathbb{R}) \neq \emptyset$ and bounded below, then inf S exists.

Pf.

M1. This can be proved by using the same argument seen before

M2. Let $S \neq \emptyset$ be bounded below. Then

 \exists a number b s.t. $x \ge b$ $\forall x \in S$ --- (*)

Expect: the point is infS

How can we prove the existence of $\inf S$

$$-S := \{-x : x \in S\}$$

$$('''')^{0} \quad ('''''')^{*} \quad \text{sup}(-S)$$

$$= -\inf S \quad \text{(by inspection)}$$

(*) \Leftrightarrow \exists a number b s.t. $-x \le -b$ $\forall x \in S$

 \therefore $-S \neq \emptyset$ and it is bounded above by -b

Completeness Property

 \Rightarrow

 $\sup(-S)$ exists

We shall show: $\sup(-S) = -\inf S$

(If this is proved, inf $S = -\sup(-S)$, so that inf S exists)

$$\overline{\cdot \cdot \cdot}$$
 $\sup(-S)^{\text{let}} = \alpha$. Then

(i) α is an upper bound for -S

(i.e., $-x \le \alpha$ for any $x \in S$)

(ii) if b is an upper bound for -S, then $\alpha \le b$ (i.e., $-x \le b$ for any $x \in S \implies \alpha \le b$)

Note that

(i) \Leftrightarrow $x \ge -\alpha$ for any $x \in S$

(i.e., $-\alpha$ is a lower bound for S)

(ii) \Leftrightarrow if $x \ge -b$ for any $x \in S$, then $-\alpha \ge -b$

(i.e., $-\alpha \ge$ any lower bound of S)

Therefore

$$-\alpha = \inf S$$

i.e., $(\sup(-S) =) \alpha = -\inf S$

Ex. Let $S = \{r : r \text{ is a rational number s.t. } r > \sqrt{2} \}$. Determine $\inf S$