INTELIGÊNCIA COMPUTACIONAL

TRABALHO COMPUTACIONAL - 2

Alunos: Ana Luísa Pereira, Felipe Israel, Izabela Rodrigues – 10º Engenharia Computação

Questões:

- 1) Implemente o algoritmo de treinamento e o algoritmo de operação para aproximação de função da Rede Adaline.
- 2) Gere os conjuntos de dados para treinamento e validação, contendo as amostras de f 1 (x), f 2 (x) e f 3 (x) e F(x), conforme o enunciado. O conjunto de treinamento deve ter 80% do total de amostras e o conjunto de validação 20% do total de amostras.
- 3) Execute vários treinamentos com a rede Adaline, iniciando-se o vetor de pesos $\{w\}$ em cada treinamento com valores aleatórios entre 0 e 1, de forma que em cada treinamento os valores não sejam os mesmos. Em cada treinamento experimente valores diferentes para a taxa de treinamento $\{\eta\}$ e valor de tolerância $\{\epsilon\}$.
- 4) Escolha o treinamento que apresentou melhores resultados e anote os valores do vetor de pesos obtidos. Compare-os com os valores dos coeficientes lineares da função F(x).

Coeficientes lineares				Pesos após o treinamento			
a_0	a_1	a_2	a_3	\mathbf{w}_0	\mathbf{w}_1	W ₂	W ₃
-3.1416	0.5650	2.6570	0.6740	-0.1241	0.5650	2.6570	0.6740

5) Após o treinamento da rede Adaline, utilize o algoritmo de operação para obter a saída de validação, utilizando o vetor de pesos do melhor resultado dos treinamentos. Exiba o gráfico da saída da rede Adaline na validação e compare-a com a curva da função F(x).

6) Calcule o erro médio quadrático do resultado da validação, conforme a equação abaixo. Comente sobre o resultado obtido.

Resultado: -0.0360

Resposta: Este erro determina a diferença entre o estimador e o valor verdadeiro da amostra com os dados corretos. Portanto quanto menor o valor, mais precisas são as observações do estimador.