Optimization Division

```
clear all; close all; clc
% % Load matrix for imputation of subregion
M = readmatrix('cp_exp_unique_1.csv');
l = length(M(:,1));
%%
% Travel time matrix
PT = readmatrix('PT.csv', "NumHeaderLines", 1);
% Distance matrix
PD = readmatrix('PD.csv',"NumHeaderLines",1);
ind = zeros(1);
m = \max(M(:,4));
ad_sub = zeros(m,m);
for i=1:1
    ind = find(PD(i,:) == min(PD(i,M(:,4)\sim=M(i,4))));
    % Neighbours advacent to subregion M(i,4)
    ad_sub(M(i,4),M(ind,4)) = 1;
end
ad_sub = (ad_sub + ad_sub')/2>0;
G = graph(ad_sub);
gr = plot(G);
saveas(gr,'graph_sub','svg')
```


Load dataset for the problem

```
Ms = readmatrix('sub_exp_unique_.csv');
```

Additive statistic for balance

```
X = 0.8*Ms(:,2)+0.1*Ms(:,3)+0.1*Ms(:,4); % Diligencias + Address + Km2 (all scaled)
```

We declare the optimization variables

```
D = optimvar('D',length(X),25,'Type','integer','LowerBound',0,'UpperBound',1);
T = optimvar('T',25,25,'LowerBound',0);
```

We declare the constraints

Define the aggregated statistic for every region

```
y = X'*D;
```

The next constraint require every subregion k to be assigned to exactly one region r

```
assignment = sum(D,2) == ones(length(X),1);
```

Aditional constraints (LP formulation)

```
for i=1:25
    for j=1:25
        additional1(i,j) = T(i,j) >= y(j)-y(i);
        additional2(i,j) = T(i,j) >= y(i)-y(j);
    end
end
```

Adyacency constraints & Grouping constraints

Declare the optimization problem

```
optDiv = optimproblem;
```

The objective function to minimize is the sum of the absolute value of differences.

```
balance = sum(sum(T));
optDiv.Objective = balance;
```

Include the constraints in the problem.

```
optDiv.Constraints.as = assignment;
optDiv.Constraints.ad1 = additional1;
optDiv.Constraints.ad2 = additional2;
optDiv.Constraints.adc = ad_const;
optDiv.Constraints.adc = gp_const;
```

Solution to the problem

```
opts = optimoptions('intlinprog','MaxTime',18000, 'Display','iter','PlotFcn',@optimplotmilp);
[sol,fval,exitflag,output] = solve(optDiv,'options',opts);
```

Solving problem using intlinprog.

LP: Optimal objective value is 0.000000.

Cut Generation: Applied 2 Gomory cuts, and 5 mir cuts.

Lower bound is 0.000000.

Heuristics: Found 2 solutions using diving.

Upper bound is 343.695678. Relative gap is 99.71%.

Cut Generation: Applied 8 Gomory cuts,

and 116 flow cover cuts. Lower bound is 0.000000. Relative gap is 99.71%.

Branch and Bound:

nodes	total	num int	integer	relative
explored	time (s)	solution	fval	gap (%)
294	308.57	3	2.765048e+02	9.963965e+01
328	315.42	4	2.321947e+02	9.957117e+01
331	316.22	5	2.286407e+02	9.956454e+01
332	316.80	6	2.133358e+02	9.953344e+01
644	371.84	7	2.078453e+02	9.952118e+01
651	373.12	8	2.058895e+02	9.951665e+01
10651	888.44	8	2.058895e+02	9.951665e+01
10757	892.76	9	2.020824e+02	9.950759e+01
10757	892.76	10	2.011705e+02	9.950537e+01
20757	1399.60	10	2.011705e+02	9.950537e+01
21560	1439.51	11	1.976733e+02	9.949666e+01
21562	1439.68	12	1.973947e+02	9.949595e+01
31562	1976.59	12	1.973947e+02	9.949595e+01
41562	2510.83	12	1.973947e+02	9.949595e+01
51562	3059.03	12	1.973947e+02	9.949595e+01
61562	3617.47	12	1.973947e+02	9.949595e+01
71562	4132.55	12	1.973947e+02	9.949595e+01
81562	4677.61	12	1.973947e+02	9.949595e+01
91562	5189.48	12	1.973947e+02	9.949595e+01
101562	5742.14	12	1.973947e+02	9.949595e+01
111562	6300.06	12	1.973947e+02	9.949595e+01
121562	6807.17	12	1.973947e+02	9.949595e+01

131562	7334.71	12	1.973947e+02	9.949595e+01
141562	7858.14	12	1.973947e+02	9.949595e+01
151562	8336.16	12	1.973947e+02	9.949595e+01
161562	8806.26	12	1.973947e+02	9.949595e+01
171562	9317.33	12	1.973947e+02	9.949595e+01
181562	9775.56	12	1.973947e+02	9.949595e+01
191562	10256.31	12	1.973947e+02	9.949595e+01
201562	10773.90	12	1.973947e+02	9.949595e+01
211562	11216.04	12	1.973947e+02	9.949595e+01
221562	11668.37	12	1.973947e+02	9.949595e+01
231562	12134.97	12	1.973947e+02	9.949595e+01
241562	12615.93	12	1.973947e+02	9.949595e+01
251562	13105.11	12	1.973947e+02	9.949595e+01
261562	13594.82	12	1.973947e+02	9.949595e+01
271562	14041.55	12	1.973947e+02	9.949595e+01
281562	14505.56	12	1.973947e+02	9.949595e+01
291562	15000.53	12	1.973947e+02	9.949595e+01
301562	15476.23	12	1.973947e+02	9.949595e+01
311562	15963.00	12	1.973947e+02	9.949595e+01
321562	16417.06	12	1.973947e+02	9.949595e+01
331562	16844.37	12	1.973947e+02	9.949595e+01
341562	17270.42	12	1.973947e+02	9.949595e+01
351562	17745.76	12	1.973947e+02	9.949595e+01

Solver stopped prematurely. Integer feasible point found.

Intlinprog stopped because it exceeded the time limit, options.MaxTime = 18000 (the selected value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).

Optimal division

```
sol.D
ans = 52 \times 25
  1.0000
           0
                 0
                       0
                              0
                                    0
                                          0
                                                0 . . .
     0
           0
                 0
                       0
                             0
                                    0
                                          0
                                                0
     0
           0
                 0
                       0
                             0
                                    0
                                          0
                                                0
           0
     0
                 0
                       0
                             0
                                          0
                                   0
                                                0
          0
                             0
     0
                0
                       0
                                   0
                                         0
                                                0
     0
           0
                0
                      0
                            0
                                   0
                                         0
                                                0
  1.0000
           0
                0
                      0
                            0
                                   0
                                         0
                                                0
                0
                      0
          0
                            0
                                  0
                                         0
                                                0
    0
     0 1.0000
                0
                      0
                            0
                                   0
                                          0
                                                0
                 0
                       0
                             0
                                   0
                                          0
           0
                                                0
```

Optimal value function

```
fval
```

```
fval = 197.3947
```

```
if isempty(sol) % If the problem is infeasible or you stopped early with no solution
    disp('The solver did not return a solution.')
    return % Stop the script because there is nothing to examine
end
```

Examine the exit flag and the infeasibility of the solution.

```
exitflag
exitflag =
   IntegerFeasible
infeas1 = max(max(infeasibility(assignment, sol)))
infeas1 = 7.9536e-13
res = [Ms, sol.D]
res = 52 \times 33
   1.0000
           1.0948 1.5882
                             2.9762 19.3246 -99.1627
                                                       1.0000
                                                               1.0000 · · ·
   2.0000 0.6313 0.9758
                             3.0088 19.3101 -99.1290
                                                       1.0000
                                                               2.0000
   3.0000
         0.4352 0.4360
                             3.0696 19.2757 -99.1960
                                                       1.0000
                                                               3.0000
   4.0000
           0.3001 0.3910 1.6239 19.2857 -99.1680
                                                       1.0000
                                                               4.0000
   5.0000
          0.0064 0.0069 1.0542 19.2485 -99.1663
                                                       1.0000
                                                               5.0000
   6.0000
          0.2604 0.3287 2.9106 19.2506 -99.0909
                                                       1.0000
                                                               6.0000
          0.0042 0.0138 0.0396 19.2937 -99.1837
   7.0000
                                                       1.0000
                                                               7.0000
   8.0000
          0.3815
                  0.4913 1.4084 19.3567 -99.0635
                                                       2.0000
                                                               8.0000
                                                       2.0000
   9.0000
           0.4296 0.6194
                             0.9395 19.3665 -99.1065
                                                               9.0000
  10.0000
                             1.4711 19.3777 -99.0973
           0.9851
                    0.8512
                                                       2.0000
                                                              10.0000
colNames = {'reg_sub', 'num_diligencias_sub', 'num_addr_sub', 'area_sqkm_sub', ...
```

```
'lat_c', 'lon_c', 'region', 'id', ...
'r1','r2','r3','r4','r5','r6','r7','r8','r9','r10',...
'r11','r12','r13','r14','r15','r16', 'r17','r18','r19','r20','r21','r22','r23','r24','r25']
sTable = array2table(res,'VariableNames',colNames);
writetable(sTable,'sub_exp_res.csv')
```