Lecture 3

Current plan: include algorithms

- ▶ Next week: Eulerian and Hamiltonian Graphs
- ▶ 4 Lectures each of the last 3 units

Today: three quick hits

- Basic definitions
- Trees
- Applications to Chemistry

Basic Definitions

Basic graphs and concepts

- ▶ The *empty graph* E_n has n vertices and no edges
- ▶ The *complete graph* K_n has n vertices, and each vertex is connected to every other.
- ▶ The path graph P_n has n vertices $\{1, ..., n\}$ with an edge between i and i + 1
- ▶ The cycle graph C_n has n vertices $\{1, ..., n\}$ with an edge between i and i + 1 and between n and 1.

The Petersen Graph

Connected means we can "get from any vertex to another"

Definition (Walk)

Let G be a simple graph. A *walk* in G is a sequence of vertices v_1, v_2, \ldots, v_n so that v_i is adjacent to v_{i+1} . We we say the walk goes from v_1 to v_n .

Definition (Connected)

A graph G is *connected* if there is a walk between any two vertices v and w in G.

Definitions I won't use without explaining:

- ▶ A trail is a walk that doesn't repeat any edges
- A path is a walk that doesn't repeat any vertices

Bipartite graphs

Definition (Bipartite graphs)

A graph G is *bipartite* if we can colour every vertex either blue or red so that every edge goes between a blue vertex and a red vertex.

Definition (Complete bipartite graphs)

The complete bipartite graph $K_{m,n}$ consists of m+n vertices, m coloured red, n coloured blue, and an edge between any red vertex and any blue vertex.

Examples

Another way to characterise bipartite graphs

Lemma

A graph G is bipartite if and only if it doesn't have any cycles of odd length (i.e., subgraphs of the form C_{2k+1}).

Bipartite \implies no odd cycles:

Subgraphs of bipartite graphs are bipartite

No odd cycles \implies Bipartite:

Try to colour G by distance from v

Definition (Distance)

Let G be connected, and let v, w be two vertices. The *distance* from v to w is the least number of edges in any walk from v to w.

Trees

A forest is a bunch of trees

Figure: A forest of three trees

Definition

- ► A *forest* is a graph without cycles
- ▶ A *tree* is a connected graph without cycles

The Treachery of Definitions (After Magritte)

Figure: Ceci n'est pas un arbre (This is not a tree)

$\lfloor 13/2 \rfloor$ ways of looking a tree (After Wallace Stevens)

Proposition:

Let G be a graph with n vertices. The following are equivalent.

- 1. G is a tree (i.e., G connected but has no cycles)
- 2. There is a unique path in G between any two vertices
- 3. G is connected and has n-1 edges
- 4. G has no cycles and has n-1 edges
- 5. G is connected, but removing any edge disconnects G
- 6. G has no cycles, but adding any edge creates a cycle

Informally: Trees are Goldilocks graphs

- ► Trees have enough edges: they're connected
- Trees don't have too many edges: they have no cycles

Make like a tree and get out of here (After Biff Tannen)

Definition (Tree)

Let T be a tree. A vertex $v \in T$ is a *leaf* if it has degree 1.

Lemma

Let T be a tree with $2 \le n < \infty$ vertices. Then T has at least two leaves.

Proof 1: See title of slide.

Pick an edge, and try to "leave" - that is, walk as far as you can.

- ▶ No loops, so you'll never return to where you are
- Finitely many vertices, so it can't go on forever

Eventually you'll get stuck - that's a leaf.

Pruning Trees

Part of Proposition:

If T is a tree with n vertices, then T has n-1 edges.

Proof: Induct on n

- ▶ Base case: n = 1
- Now assume that all trees with n-1 vertices have n-2 edges
- If T is a tree with n vertices, it has a leaf v (by Lemma)
- Delete v and the edge next to it to get a new tree T'
- ▶ T' has n-1 vertices, so n-2 edges, so T has n-1 edges.

Another use of the handshaking lemma

Part of Proposition:

If G is a connected graph with n vertices and n-1 edges, then G is a tree.

Proof: induct on n

- ▶ Base case: n = 1
- ▶ Assume proposition is true for all graphs with n-1 vertices
- ▶ Since *G* is connected, it has no vertices of degree 0
- ▶ Use handshaking to show *G* must have a vertex *v* of degree 1
- ightharpoonup Delete v and the edge next to it to get a new graph G'
- G' is a tree, so G must have been as well

Chemistry

Chemical formulas encode degree sequences

Group ↓Perio		2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																		2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	*	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
			*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
			*	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Atom	C	Ν	0	Η
Degree	4	3	2	1

Shortcuts around Carbon and Hydrogen

Figure: Two pictures of Caffeine

- Unlabelled vertices are Carbon
- ► Hydrogen not drawn; inferred to make degrees correct

Isomers are graphs with the same degree sequence

Definition

An Alkane is a molecule with formula C_nH_{2n+2}

Definition (Isomer)

Two different molecules are *isomers* if they have the same chemical formula.

Lemma: Any alkane is a tree.

Proof: Handshaking.

Question: How many isomers does C_5H_{12} have?