# Algorithmes probabilistes

Quentin Fortier

December 12, 2024

# Algorithme probabiliste

#### Définition

Un algorithme probabiliste est défini comme un algorithme ayant accès à une opération élémentaire  ${\tt random}()$  renvoyant un bit uniformément au hasard (0 ou 1 avec probabilité  $\frac{1}{2}$ ).

Plusieurs appels à random() donnent des bits mutuellement indépendants.

#### Exercice

Comment générer un entier dans  $[\![1,n]\!]$  uniformément au hasard en utilisant random ? Avec quelle complexité ?

# Algorithme probabiliste

En pratique, on utilise le plus souvent un générateur pseudo-aléatoire qui renvoie des termes d'une suite  $u_n$  où  $u_0$  (graine) est donné par l'utilisateur et  $u_{n+1}=f(u_n)$  avec f une fonction bien choisie. En C :

- void srand(int) permet d'initialiser u<sub>0</sub> (souvent avec le nombre de secondes écoulées depuis 1970)
- int rand(void) renvoie le prochain terme  $u_n$ , où  $u_{n+1} = (au_n + b) \mod N$

|                                            | OCaml           |
|--------------------------------------------|-----------------|
| Initialiser avec la graine s               | Random.init s   |
| $\mathcal{U}(\llbracket 0, n-1  rbracket)$ | Random.int n    |
| Booléen aléatoire                          | Random.bool ()  |
| $\mathcal{U}([0,1])$                       | Random.float 1. |

|                                            | С                           |
|--------------------------------------------|-----------------------------|
| Initialiser avec la graine s               | srand(s)                    |
| $\mathcal{U}(\llbracket 0, n-1  rbracket)$ | rand() % n                  |
| Booléen aléatoire                          | (rand() & 1) == 0           |
| $\mathcal{U}([0,1])$                       | ((double)rand() / RAND_MAX) |

# Algorithme probabiliste

#### Exercice

En utilisant une fonction **float**  $\mathbf{r}()$  renvoyant un réel uniformément au hasard dans [0,1]:

- Écrire une fonction int bernoulli(float p) simulant une loi de Bernoulli de paramètre p.
- écrire une fonction int geometrique(float p) simulant une loi géométrique de paramètre p.
- Écrire une fonction int binomiale(int n, float p) simulant une loi binomiale de paramètres n et p.

#### Définition

Un algorithme probabiliste est de type Las Vegas s'il renvoie toujours un résultat correct mais avec un temps d'exécution variable (pour une même entrée).

#### Définition

Soit A un algorithme probabiliste et t(n) une fonction.

Sur une entrée x, le nombre T(x) d'opérations élémentaires effectuées par A est une variable aléatoire, à valeurs dans  $\mathbb{N} \cup \{+\infty\}$ .

On dit que l'espérance du temps de calcul de A est en  $\mathrm{O}(t(n))$  s'il existe une constante  $\lambda$  telle que  $\mathbb{E}(T(x)) \leq \lambda t(|x|)$  pour toute entrée x.

On moyenne donc la complexité sur les différentes exécutions possibles de  $\cal A$  pour une entrée x.

Ne pas confondre avec la complexité en moyenne pour un algorithme déterministe qui moyenne la complexité sur toutes les entrées possibles (de taille n).

Exemple : Le tri rapide avec choix aléatoire du pivot est un algorithme de Las Vegas.

Sur un même tableau de taille n, sa complexité peut varier entre  $n\log(n)$  et  $n^2$ . Son espérance du temps de calcul est en  $O(n\log(n))$ . Sa complexité en moyenne n'est pas définie car ce n'est pas un algorithme déterministe.

#### Exercice

Soit void shuffle(int\*, int) une fonction mélangeant un tableau (appliquant une permutation uniformément au hasard sur ses éléments) en complexité linéaire.

- Écrire une fonction bool sorted(int\*, int) déterminant si un tableau est trié par ordre croissant.
- écrire une fonction void bozo\_sort(int\*, int) triant un tableau à l'aide d'un algorithme de Las Vegas.
- $footnotesize Soit $T(n)$ le nombre d'itérations de bozo_sort pour un tableau de $n$ entiers distincts. Calculer <math>\mathbb{E}[T(n)]$  et en déduire la complexité moyenne de bozo\_sort.

### Définition

Un algorithme probabiliste est de type Monte-Carlo s'il peut renvoyer un résultat incorrect mais avec toujours le même temps d'exécution pour une même entrée.

Ainsi, l'aléatoire est sur le temps d'exécution pour un algorithme de Las Vegas et sur la valeur de retour pour un algorithme de Monte-Carlo.

Si p est premier alors l'algorithme de Monte-Carlo suivant renverra toujours Vrai. Si p n'est pas premier, il peut renvoyer Vrai ou Faux.

Test de primalité de Fermat

Entrée :  $p \in \mathbb{N}^*$ .

Choisir  $a \in [\![ 2,p-1 ]\!]$  aléatoirement.

Renvoyer  $a^{p-1} \equiv 1 \mod p$ 

#### Définition

Soit A un algorithme de Monte Carlo pour un problème de décision. Un faux positif (resp. faux négatif) est une exécution de A qui renvoie Vrai (resp. Faux) pour une instance négative (resp. positive).

Exemple: Le test de primalité de Fermat n'a pas de faux négatif. Un nombre de Carmichael (entier n non premier tel que  $a^n \equiv a \mod n$  pour tout a premier avec n) peut donner un faux positif.

### Théorème

Supposons que l'on dispose d'un algorithme Monte Carlo pour un problème de décision  $\Pi$  dont la probabilité de faux négatif est nulle et la probabilité de faux positif est majorée par p.

Alors pour tout  $k\in\mathbb{N}^*$ , on peut obtenir un algorithme de type Monte Carlo résolvant  $\Pi$  sans faux négatif et avec une probabilité de faux positif majorée par  $p^k$ .

### Exercice

Soit  $\varphi$  une formule de k-SAT avec n variables.

### Algorithme 1

# **Répéter** p fois :

 $v \longleftarrow$  valuation au hasard sur les variables de  $\varphi$  Si v satisfait  $\varphi$  :

**Renvoyer** Vrai

Renvoyer Faux

### Supposons $\varphi$ satisfiable.

- Soit v une valuation choisie uniformément au hasard. Minorer  $\mathbb{P}(v \text{ satisfait } \varphi)$ .
- ② Avec quelle valeur de p l'algorithme 1 renvoie Vrai avec probabilité au moins  $\frac{1}{2}$  ?

$$v \longleftarrow$$
 valuation au hasard sur les variables de  $\varphi$  **Répéter**  $p$  fois :

Si v satisfait  $\varphi$ :

Renvoyer Vrai

 $\overset{-}{C}\longleftarrow$  clause non satisfaite au hasard de  $\varphi$ 

 $x \longleftarrow$  variable au hasard de C $v(x) \longleftarrow \neg v(x)$ 

Renvoyer Faux

On suppose  $\varphi$  satisfiable et on note  $v^*$  une valuation qui satisfait  $\varphi$ . Si v est une valuation, on note  $d(v,v^*)=|\{x\mid v(x)\neq v^*(x)\}|$  le

nombre de variables pour lesquelles v et  $v^*$  diffèrent.

• Soient v une valuation obtenue à une étape de l'algorithme 2 et v' la valuation obtenue à l'étape suivante. On suppose que v ne satisfait pas  $\varphi$ .

Montrer que  $\mathbb{P}(d(v', v^*) = d(v, v^*) - 1) \geqslant \frac{1}{\iota}$ .

### Algorithme 2

 $v \longleftarrow \text{valuation au hasard sur les variables de } \varphi$ 

# **Répéter** p fois :

Si v satisfait  $\varphi$ :

Renvoyer Vrai

 $C \longleftarrow \text{clause non satisfaite au hasard de } \varphi$   $x \longleftarrow \text{variable au hasard de } C$ 

 $v(x) \longleftarrow \neg v(x)$ 

### Renvoyer Faux

On suppose k=2 et on admet que, si  $\varphi$  est satisfiable et  $p=\infty$ , il faut en moyenne  $\mathrm{O}(n^2)$  itérations pour que l'algorithme 2 renvoie Vrai.

• En déduire un algorithme de Monte-Carlo en complexité polynomiale et avec une probabilité d'erreur  $O(\frac{1}{n})$  pour déterminer si  $\varphi$  est satisfiable.