

RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit Neural Representations

Jiajun He *,1 , Gergely Flamich *,1 , Zongyu Guo 2 , José Miguel Hernández Lobato 1 st equal contribution, 1 University of Cambridge, 2 University of Science and Technology of China

TL;DR: We improve the compression performance of Bayesian INRs by using reparameterized weights, learned positional embeddings and hierarchical weight priors.

Motivation

COMBINER:

- Represent data as NN $\hat{\mathbf{y}} = g(\mathbf{x} \mid \mathbf{w})$
- Overfit posterior $q_{\mathbf{w}}$ to data \mathcal{D} using

$$eta D_{\mathrm{KL}}[q_{\mathbf{w}} \| p_{\mathbf{w}}] + rac{1}{D} \sum_{i=1}^{D} \mathbb{E} \left[\Delta(\mathbf{y}_i, \hat{\mathbf{y}}_i) \right]$$

• Encode a sample $\mathbf{w} \sim q_{\mathbf{w}}$ using REC

Challenges:

- Overfitting: COMBINER uses fully factorized Gaussian variational posterior $q_{\mathbf{w}}$.
- Stable optimization
- Scaling to high-res data

RECOMBINER

(a) Three-level hierarchical model and the corresponding graphical model.

reshape &

upsample

 $F\times W\times H$

spilt by pixels

 $\{\gamma(\mathbf{x}_i)\}_i$

(b) Permutation.

Experimental Results

Ablation Study

bitrate 0.287 bpp; PSNR 25.62 dB.

(b) with positional encodings; (c) with positional encodings; bitrate 0.316 bpp; PSNR 26.85 dB. bitrate 0.178 bpp; PSNR 25.05 dB.