## SPOTIFY CASE STUDY



Adithya | Romaisa | Suranjana | Andre





#### **OBJECTIVE AND METHODOLOGY OVERVIEW**

Task 1: Song Recommendation Algorithm for Spotify.

#### Goal:

Analyze existing user data to predict unknown user values and create personalized playlists.

#### **Methodology Overview:**

- 1. User Profile Analysis: Analyze user listening habits.
- 2. Model Training: Train classifiers using musical features.
- 3. Making Predictions: Use trained models to fill in missing data.
- 4. Playlist Reconstruction: Generate and save personalized playlists.

#### **USER PROFILE ANALYSIS AND MODEL TRAINING**

#### **STEP 1: USER PROFILE ANALYSIS**

<u>Analyze Listening Habits:</u> Extract key features such as average values for various musical attributes.

#### **Example User Data:**

- User: Delta
- Average Length: 233,046.60 ms
- Average Popularity: 31.78
- Number of Songs: 696

```
# Analyze user profiles
user_profiles = labeled_data.groupby('user').agg({
    'length': 'mean',
    'popularity': 'mean',
    'song_id': 'count'
}).reset_index()
print(user_profiles)
```

#### **STEP 2: MODEL TRAINING**

<u>Expanded Features:</u> Include additional musical attributes for better predictions

 Length, Popularity, Acousticness, Danceability, Energy, Instrumentalness, Liveness, Loudness, Speechiness, Tempo, Valence.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

# Define the parameter grid for hyperparameter tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': ['auto', 'sqrt', 'log2']
}
```

## **USER PROFILE ANALYSIS**



## **USER PROFILE ANALYSIS**



## PREDICTION AND RESULTS

#### STEP 3: CHECKING THE ACCURACY OF THE MODEL

Using the Best Estimator: After hyperparameter tuning, using the best model to make predictions.

Validation Accuracy: Evaluating the model's performance on the validation set.

Here, we can see the accuracy of the model after performing Accuracy, Recall and F1-score

| Validation Accuracy: 0.6862<br>Recall: 0.6862<br>F1 Score: 0.6847 |                                      |                                      |                                      |                                 |
|-------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|
| Classification Report:                                            |                                      |                                      |                                      |                                 |
|                                                                   | precision                            | recall                               | f1-score                             | support                         |
| alpha<br>beta<br>delta<br>epsilon<br>gamma                        | 0.63<br>0.65<br>0.73<br>0.68<br>0.73 | 0.58<br>0.64<br>0.68<br>0.72<br>0.80 | 0.60<br>0.65<br>0.70<br>0.70<br>0.76 | 137<br>135<br>141<br>135<br>150 |
| accuracy<br>macro avg<br>weighted avg                             | 0.68<br>0.68                         | 0.68<br>0.69                         | 0.69<br>0.68<br>0.68                 | 698<br>698<br>698               |

## PLAYLIST RECONSTRUCTION

#### STEP 4: GENERATING TOP OF THE YEAR PLAYLISTS

Reconstruct each user's Top-of-the-Year playlists for each year

Achievements:

- Successfully reconstructed personalized "Top of the Year" playlists for each user.
- Enhanced user experience by providing tailored playlists based on predictions.

```
# Save reconstructed playlists
for user in data['user_complete'].unique():
    playlist = data[data['user_complete'] == user]
    playlist.to_csv(f"{user}_top_playlist.csv", index=False)
```

#### **TASK 2: RECOMMENDATION ALGORITHM**

- 1. Retrieve lost user playlist data
- 2. Generate a song recommendation algorithm and suggest several song features as an algorithm input

## **Pipeline Overview**

Data Overview: Looking on features

Features Selection and scaling

Model Training and Prediction: Selecting Model / Approaches

Evaluation

## **Dataset Overview**

Dataset have 22 columns which we will group to 3 categories

Song Metadata(6)

Name

Album

Artist

Release\_date

Uri

Release\_year

Users Data (2)

Top\_year (user's top tracks year) user

Song Technical

Features (14)

Length

Acousticness

Danceability

Energy

Instrumentalness

Liveness

Loudness

Speechiness

Tempo

Valence

Time\_signature

Key

Mode

Popularity (0-100, track popularity based on

number of play and recent play)

Numerical values with different scale

#### **DATASET OVERVIEW**

Create User-Item Matrix and Check Sparsity, we get the sparsity is 20% in this dataset

| Users | Song | Popularity |
|-------|------|------------|
| Alpha | 1    | 80         |
| Beta  | 2    | 50         |
| Gamma | 3    | 50         |



|       | Song 1 | Song 2 | Song 3 |
|-------|--------|--------|--------|
| Alpha | 80     |        |        |
| Beta  |        | 50     |        |
| Gamma | 50     |        |        |

#### Calculate Matrix Sparsity

#### FEATURES SELECTION AND SCALING

Since we have 14 audio features, we will do feature selection to get the most relevant audio features with popularity as the target label

#### The workflow is as follows:

- 1. Create a pipeline consisting of scaling (MinMaxScaler) and feature selection (SelectKBest) with score function regression since we wanted features that positively correlated with popularity
- 2. Add Hyperparameter tuning for parameter K in SelectKBest using Grid Search with cross-validation and apply Negative MSE as scoring metric since the feature selection is regression
- 3. Apply the best parameter and check the selected features

#### MODEL TRAINING: MODEL SELECTION



After we have selected the best features, we need to choose the algorithm of our recommender system. We will use the hybrid of Collaborative filtering and content-based filtering to taking account of User-Item interaction(CF) and Item-Item Similarity (CBF). To give recommendation for specific users and also with similar songs

## MODEL TRAINING: MODEL SELECTION

For the collaborative filtering, looking at our dataset, since we have a smaller dataset (one family account) and high sparsity (20%) therefore we will use a model-based approach specifically the Alternating Least Square (ALS) algorithm because it can handle sparse dataset



## MODEL TRAINING: COLLABORATIVE FILTERING

We will use User-Item interaction matrix which in our data is:

- user, popularity and top\_year
- Create a matrix of users and songs with the value is interaction score

Predicted value

|       | Song 1 | Song 2 | Song 3 |
|-------|--------|--------|--------|
| Alpha | 0.8    |        |        |
| Beta  |        | 0.5    |        |
| Gamma | 0.5    |        |        |

Alternating Least Square



Parameter: Factor Regularization

|       | Song 1 | Song 2 | Song 3 |
|-------|--------|--------|--------|
| Alpha | 0.8    | 0.6    | 0.5    |
| Beta  | 0.7    | 0.5    | 0.4    |
| Gamma | 0.5    | 0.7    | 0.8    |

Interaction Score = scaled popularity x scaled top\_year

- Popularity (assuming higher popularity is more favourable by users)
- And top\_year which will be scaled from 0 to 1 as factor to popularity (more recent year give higher score)

#### MODEL TRAINING: CONTENT-BASED FILTERING

Create item-item similarity matrix using song technical features from feature selection results applying cosine similarity



#### MODEL TRAINING: CREATING HYBRID MODEL

Combining collaborative filtering and content-based filtering by giving a weight factor to each results

Final Recommendation =  $\alpha$  x scaled\_ALS\_score +  $\beta$  x scaled\_CBF\_score



We try to set  $\alpha$  = 0.4 and  $\beta$  = 0.6 to emphasize more on song related factor since the user-item data is very sparse

#### **EVALUATION**

To evaluate the recommendation result we will use **Precision@K** and **Recall@K** where:

- Precision@K is the proportion of the number of relevant items to the K recommendation
- Recall@K is the proportion of relevant items in K recommendation to the total relevant items

To determine relevant items, we will use final score threshold of 0.8 to be considered as relevant items for users

## APPENDIX

- 1.How to Design and Build a Recommendation System Pipeline in Python (Jill Cates)
  2.Recommendation Systems A walk through
  3.Basics of Content Based and Collaborative Based Recommendation Engines

# THANK OF THE PROPERTY OF THE P

