

Deadline-Driven Auctions for NPC Host Allocation in P2P MMOGs

MMVE'09

Lu Fan, Phil Trinder, and Hamish Taylor Heriot-Watt University, Edinburgh, UK

Overview

- Introduction
- Related Work
- DDA Design
- Design Analysis
- DDA Aspects
- Implementation
- Evaluation
- Discussion

Introduction

- ❖ In a MMOG large numbers of users interact via avatars with
 - each other
 - NPCs: AI-controlled virtual actors who drive storylines or combat player characters

Introduction

- Client/Server (C/S) Architectures
 - Dominant architecture for conventional MMOGs
 - Exhibit cost & reliability drawbacks as they scale up...
 - Hence, research interest in P2P MMOGs
 - Entail a set of design issues...
- Among these issues
 - NPC hosting is a key challenge
 - Previously, NPCs were hosted by game servers
 - Now need to be hosted by peers

Introduction

- Deadline-Driven Auctions (DDA) for NPC hosting in P2P MMOGs
 - A distributed task mapping infrastructure
 - Highly heterogeneous environment
 - Peers
 - Communication latency
 - Task size/deadlines

How have NPCs been hosted previously?

- Region-based approaches
 - Partition a game world into multiple regions
 - Select a super-peer in each region
 - The super-peer hosts all the NPCs in its region
 - E.g. P2P Support '04, Zoned Federation '04
- Virtual-distance-based approaches
 - Attempt to distribute NPCs to more game participants
 - Allocate NPCs according to locality in game world
 - A NPC is hosted by the closest player
 - E.g. AtoZ '04, Colyseus '06, Voronoi '08

Pros & Cons

- Region-based
- © Easy to implement
- © Easy to secure
- (8) Lack of load-balancing
- © Super-peer selection issue
- Super-peer dependability issue
- No guarantee of communication latency

Pros & Cons

Region-based

- © Easy to implement
- © Easy to secure
- Lack of load-balancing
- © Super-peer selection issue
- © Super-peer dependability issue
- No guarantee of communication latency

Virtual-Distance-based

- Better resource utilisation
- Minimises communication latency
- Not optimal for 1:N interactions
- NPC host switching delays
- Higher computation overhead
- (a) Hard to prevent/detect cheating

General Design Aims

- Self-Organisating: infrastructure is assembled & managed automatically
- Real-time Resource Allocation: large number of tasks within deadlines
- QoS for 1:N Interactions: minimise latency between NPC hosts & players
- Cooperative Economic Model: provide an incentive mechanism & shares tasks fairly

DDA Specific Design Objectives

- Specific Design Objectives:
 - Efficient Resource Utilisation
 Allocate NPC hosts according to resource availability
 - Game Interactivity
 Reduce communication latency for 1:N interactions
 - Efficiency
 Keep up with the fast pace of a MMOG
 - Dependability
 Recover from a range of exceptions
 - Viability
 Persuade application participants to contribute resources

System Model

- Abstraction of a NPC tasks
 - **indivisible** hosted by a single peer
 - computational consumes processing power
 - **interactive** communicates with other peers
 - **real-time** must start working before deadline
- Task mapping in a network with heterogeneous peers, tasks & communication links
- System components
 - Work Source that generates NPC tasks
 - Resource Providers the peers
 - Matchmakers a super-peer infrastructure

- Self-Organising Super-Peer Infrastructure
 - Provided by *Mediator* "Mediator: A Design Framework for P2P MMOGs", NetGames '07.
 - Boot Mediator bootstrapping
 - Zone Mediator zone maintenance
 - Player Resource Providers
 - IM Mediator Source of NPC tasks
 - Resource Mediator Matchmakers

- ❖ Task Mapping to allocate a NPC to a peer with
 - adequate computing resources
 - low comm. latency to peers 'near' the NPC

Local Scheduling

- Game participants' own scheduling activities
- Includes:
 - Disclose resource availability to an RM
 - Discover communication latency to other zone members
 - Volunteer for super-peer backup at the ZM
- Driven by accounting mechanisms
 - Reward according to contributions
 - Charge according to playing time
- Reinforced by reputation mechanisms
 - Discourage false resource offers
 - Punish anti-social behaviours

- Zone-Level Scheduling
 - Cooperation between an IMM & multiple RMs

IMM:

- Distributes NPC task requests to RMs
- Maintains auction for each task

RM:

- Buffers the NPC task requests
- Matches tasks to resource offers
- Sends bid to IMM with good resource

Design Analysis

- Meeting the deadline for each task
 - Every match-making task T_i must be completed before its deadline D_i : $\forall_{i \in 1...n_{\bullet}} C(T_i) < D_i$ (1)
 - Completion time $C(T_i)$ comprises:
 - Time for processing the previous *i-1* tasks
 - Time for RMs' match-making
 - Time for the communication among IMM & RMs
 - Deadline D_i is determined by:
 - Spawning interval for periodically spawned NPCs
 - A specific time if the NPC is triggered by a game event

Design Analysis

Variables involved in our analysis:

Variable	Meaning	Nominal Value
P	zone population	
R	NPC : PC ratio	5:1
TTL	NPC life time expectation	300 (second)
r	event triggering rate	1/60 (per second)
Int	respawning interval	
RTT	round trip time	0.5 (second)
l	RM resource queue length	50 (RAds)
t	matchmaking time	1 (ms per RAd)

To meet NPCs' deadlines, should satisfy this equation

$$RTT + (\frac{P*R}{TTL} + r*P)*Int*l*t < Int$$
 (4)

Design Analysis

Result & Inferences:

$$(600 - P) * Int > 300 \tag{5}$$

- According to the assumptions, the design can support up to 600 players in each game zone.
- For a P2P MMOG whose maximal zone population is
 500 players, the minimal spawning interval is 3 seconds.
- As a peer may obtain a NPC task in every 10 spawning intervals, the credits awarded should exceed corresponding playing costs.

DDA Aspects 1: Reducing Resource Tie-up

- The Resource Tie-up problem
 - RMs' match-making time is short compared with communication time
 - As a result, many rejected resource bids are tied up

 RMs should slow down match-making process, but still guarantee that all tasks meet their deadlines.

DDA Aspects 1: Reducing Resource Tie-up

- Solution: RMs buffer NPC tasks using a Multilevel Feedback Delay Queue (MFDQ)
 - A MFDQ comprises multiple run queues
 - Each run queue is Earliest
 Deadline First (EDF)
 - Run queues are organised in a cycle: *Instant* → *Head* → ... → *Tail*
 - A run queue is executed when its delay has expired

DDA Aspects 2: Flexible Match-Making Policies

* A friendly incentive policy

- By default RMs select resource providers offering best game interactivity.
- Hence less competitive peers are starved of credits
- A friendly policy relaxes selection criteria & favours poor peers with acceptable interactivity.

Other possible policies

- RM may favour a trustworthy peer according to its reputation.
- RM may favour a dependable peer according to its history.
- RM may favour a senior peer for its loyalty to the game.
- •

DDA Implementation

DDA Prototype

- Self-organised super-peer infrastructure
 - Uses Java-based FreePastry 2.1
 - Super-peer dependability enhanced by *MAMBO* "Membership-Aware Multicast with Bushiness Optimisation", DEBS '08.
- Match-making mechanism
 - Uses ClassAds 2.2 from Condor.
 - Local scheduling simulated by virtual resource managers

Test-bed Application

- Uses the Direct discrete event simulator
- Network topology model created by GT-ITM
- 2D game world & random way point algorithm

DDA Implementation

Screen Shot

Evaluation

- Experimental Results
 - Real-time Resource Allocation
 - ➤ All tasks' deadlines are met.
 - ➤ 90% latencies below mean network latency using EDFQ
 - ➤ 95% latencies below mean network latency using MFDQ
 - More friendly incentive
 policies have more latencies
 greater than the mean network
 latency

Evaluation

- Cooperative Economic Model
- Economic gap is significant using strict incentive policy (5% peers are richer than 500, while 20% peers are poorer than -300)
- This gap is narrowed using friendly incentive policies.
- Low resource peers are always in debt

Discussion

DDA's Strengths

- Task mapping infrastructure in a highly heterogeneous environment
 - Assembled & Managed automatically
 - Super-peers are fault-tolerant, e.g. sustain peer churn of 5% per hour
 - Meets deadlines for large numbers of tasks
 - Provides DCRC-like incentive mechanism & shares tasks fairly
- Compared to virtual-distance-based approaches
 - Reduces communication latency for 1:N interactions
 - Allocates NPC hosts according to actual resource availability
 - Applicable to any P2P application requiring real-time computation
 & interactive tasks

Discussion

DDA's Limitations

- Opportunistic resource allocation
 - Only optimises game interactivity for players in the vicinity of an NPC's initial position, but
 - both NPCs and player avatars are mobile
 - New players may arrive
- Not ideal for 1:1 interactions
 - NPCs are likely to be hosted by other peers, inducing communication latency & overhead
 - A supplement rather than a substitute for virtual-distance-based approaches

Discussion

Conclusions

- DDA is a novel NPC host allocation mechanism for P2P MMOGs, using heterogeneous task mapping
- DDA design and analysis
- DDA implementation & evaluation
- DDA evaluation

Future Work

- To enhance NPC host dependability with a reputation system
- To explore DDA's usage for other P2P applications, e.g. distributed video encoding

Thank you for your attention!

Q & A

Lu Fan lf16@hw.ac.uk
Phil Trinder p.w.trinder@hw.ac.uk
Hamish Taylor h.taylor@hw.ac.uk
School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, UK