Project 2 - Health Care

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

Project Task: Week 1

Data Exploration:

- 1. Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value:
 - Glucose
 - BloodPressure
 - SkinThickness
 - Insulin
 - BMI
- 2. Visually explore these variables using histograms. Treat the missing values accordingly.
- 3. There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

```
In [2]: data = pd.read_csv('health care diabetes.csv')
```

In [3]: data.head()

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

In [4]: data.isnull().sum()

Out[4]: Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0
dtype: int64

```
In [5]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
              Column
                                         Non-Null Count Dtype
              Pregnancies
                                         768 non-null
                                                          int64
              Glucose
                                         768 non-null
                                                          int64
              BloodPressure
                                         768 non-null
                                                          int64
              SkinThickness
                                         768 non-null
                                                          int64
                                         768 non-null
              Insulin
                                                          int64
              BMI
                                         768 non-null
                                                          float64
              DiabetesPedigreeFunction 768 non-null
                                                          float64
                                                          int64
                                         768 non-null
              Age
              Outcome
                                         768 non-null
                                                          int64
         dtypes: float64(2), int64(7)
         memory usage: 54.1 KB
In [6]: data.shape
Out[6]: (768, 9)
In [7]: df = data[data['Outcome']==1]
In [8]: df.head()
Out[8]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
         0
                     6
                           148
                                          72
                                                       35
                                                               0 33.6
                                                                                              50
                                                                                                       1
                                                                                       0.627
         2
                     8
                           183
                                          64
                                                        0
                                                               0 23.3
                                                                                       0.672
                                                                                              32
                                                                                                       1
                     0
                                                             168 43.1
                           137
                                          40
                                                       35
                                                                                       2.288
                                                                                              33
                                                                                                       1
                     3
                            78
                                          50
                                                       32
                                                              88 31.0
                                                                                       0.248
                                                                                              26
                                                                                                       1
                     2
                           197
                                          70
                                                       45
                                                             543 30.5
                                                                                       0.158
                                                                                              53
                                                                                                       1
```

```
In [9]: df.shape
 Out[9]: (268, 9)
In [10]: data['Glucose'].value_counts()
Out[10]: 99
                17
         100
                17
         111
                14
         129
                14
         125
                14
                 . .
         191
                 1
         177
                 1
         44
                 1
         62
                 1
         190
                 1
         Name: Glucose, Length: 136, dtype: int64
```

```
In [11]: sns.histplot(df['Glucose'])
    plt.title('Count plot - Glucose')
    plt.show()
```


In [12]: data['BloodPressure'].value_counts()

Out[12]:	70	57
	74	52
	78	45
	68	45
	72	44
	64	43
	80	40
	76	39
	60	37
	0	35
	62	34
	66 83	30
	82	30
	88 84	25
	90	23 22
	86	21
	58	21
	50	13
	56	12
	52	11
	54	11
	75	8
	92	8
	65	7
	85	6
	94	6
	48	5
	96	4
	44	4
	100	3
	106	3
	98	3
	110	3
	55	2
	108	2 2 2 2
	104	2
	46	2
	30	2
	122	1
	95	1

```
In [13]: sns.histplot(df['BloodPressure'])
    plt.title('Count plot - Blood Pressure')
    plt.show()
```


In [14]: data['SkinThickness'].value_counts()

0 1 5 4 3	_	
Out[14]:	0	227
	32	31
	30	27
	27	23
	23	22
	33	20
	28	20
	18 31	20 19
	19	18
	39	18
	29	17
	40	16
	25	16
	26	16
	22	16
	37	16
	41	15
	35	15
	36	14
	15	14
	17	14
	20	13
	24	12
	42	11
	13	11
	21	10
	46	8
	34	8
	12	7
	38	7
	11	6
	43	6
	16	6
	45	6
	14	6
	44	5 5 4
	10	5
	48	
	47	4
	49	3

```
      50
      3

      8
      2

      7
      2

      52
      2

      54
      2

      63
      1

      60
      1

      56
      1

      51
      1

      99
      1
```

Name: SkinThickness, dtype: int64

```
In [15]: sns.histplot(df['SkinThickness'])
    plt.title('Count plot - Skin Thickness')
    plt.show()
```



```
In [16]: data['Insulin'].value_counts()
Out[16]: 0
                374
         105
                 11
         130
                  9
         140
                  9
         120
                  8
         73
                  1
         171
                  1
         255
                  1
         52
                  1
         112
                  1
         Name: Insulin, Length: 186, dtype: int64
```

```
In [17]: sns.histplot(df['Insulin'])
  plt.title('Count plot - Insulin')
  plt.show()
```



```
In [18]: data['BMI'].value_counts()
Out[18]: 32.0
                 13
         31.6
                 12
         31.2
                 12
         0.0
                 11
         32.4
                 10
         36.7
                  1
         41.8
                  1
         42.6
                  1
         42.8
                  1
         46.3
                  1
         Name: BMI, Length: 248, dtype: int64
```

```
In [19]: sns.histplot(df['BMI'])
   plt.title('Count plot - BMI')
   plt.show()
```


In [20]: data.describe()

Out[20]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Project Task: Week 2

Data Exploration:

- 1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.
- 2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
- 3. Perform correlation analysis. Visually explore it using a heat map.

In [21]: df.describe()

Out[21]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	268.000000	268.000000	268.000000	268.000000	268.000000	268.000000	268.000000	268.000000	268.0
mean	4.865672	141.257463	70.824627	22.164179	100.335821	35.142537	0.550500	37.067164	1.0
std	3.741239	31.939622	21.491812	17.679711	138.689125	7.262967	0.372354	10.968254	0.0
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.088000	21.000000	1.0
25%	1.750000	119.000000	66.000000	0.000000	0.000000	30.800000	0.262500	28.000000	1.0
50%	4.000000	140.000000	74.000000	27.000000	0.000000	34.250000	0.449000	36.000000	1.0
75%	8.000000	167.000000	82.000000	36.000000	167.250000	38.775000	0.728000	44.000000	1.0
max	17.000000	199.000000	114.000000	99.000000	846.000000	67.100000	2.420000	70.000000	1.0

```
In [22]: df['Glucose'].value_counts()
```

Name: Glucose, Length: 104, dtype: int64

```
In [23]: sns.histplot(df['Glucose'])
    plt.title('Count Plot - Glucose')
    plt.show()
```


In [24]: df['BloodPressure'].value_counts()

Out[24]:	70	23
	76	18
	78	17
	74	17
	72	16
	0	16
	80	13
	64	13
	82	13
	84	12
	68	12
	66	11
	88	11
	90	11
	62	10
	86	9
	60	7
	50	5
	52	3
	92	5 3 3 3 3 2
	85	3
	94	3
	54	2
	110	2 2
	98	2
	104	2
	58	2
	48	1
	106	1
	100	1
	75	1
	102	1
	65	1
	40	1
	108	1
	96	1
	56	1
	30	1
	114	1

Name: BloodPressure, dtype: int64

```
In [25]: sns.histplot(df['BloodPressure'])
    plt.title('Count Plot - Blood Pressure')
    plt.show()
```


In [26]: df['SkinThickness'].value_counts()

Out[26]:	0 32 30	88 14 9
	33	9
	39	8
	37	8
	36	8
	35	8
	27	
	29	7 7 7
	41	
	42	6
	24	6
	31	6
	26	6
	25	5
	40	5
	46	5 5 5 4 4 4
	28	5
	22	4
	23	4
	18	4
	19	3 3 3 3 3 2
	34	3
	49 45	3
	45 44	2
	44 47	2
	48	2
	20	2
	14	2
	21	2
	43	2
	17	2
	38	2
	12	1
	63	1
	56	1
	7	1
	15	1
	13	1

51 1 99 1

Name: SkinThickness, dtype: int64

```
In [27]: sns.histplot(df['SkinThickness'])
    plt.title('Count Plot - Skin Thickness')
    plt.show()
```

Count Plot - Skin Thickness


```
In [28]: df['Insulin'].value_counts()
Out[28]: 0
                138
         130
                  6
         180
                  4
         175
                  3
         156
                  3
         29
                  1
         171
                  1
         249
                  1
         140
                  1
         510
                  1
         Name: Insulin, Length: 93, dtype: int64
```

```
In [29]: sns.histplot(df['Insulin'])
  plt.title('Count Plot - Insulin')
  plt.show()
```



```
In [30]: df['BMI'].value_counts()
Out[30]: 32.9
                 8
         31.6
                 7
         33.3
                 6
         31.2
                 5
         30.5
                 5
         37.2
                 1
         35.8
                 1
         41.8
                 1
         42.6
                 1
         24.3
                 1
         Name: BMI, Length: 148, dtype: int64
```

```
In [31]: sns.histplot(df['BMI'])
  plt.title('Count Plot - BMI')
  plt.show()
```



```
In [32]: sns.scatterplot(x=df['Glucose'],y=df['SkinThickness'])
    plt.title('Glucose vs SkinThickness')
    plt.show()
```



```
In [33]: sns.scatterplot(x=df['Glucose'],y=df['Insulin'])
    plt.title('Glucose vs Insulin')
    plt.show()
```



```
In [34]: sns.scatterplot(x=df['Glucose'],y=df['BMI'])
    plt.title('Glucose vs BMI')
    plt.show()
```



```
In [35]: sns.scatterplot(x=df['Glucose'],y=df['BloodPressure'])
    plt.title('Glucose vs Blood Pressure')
    plt.show()
```

Glucose vs Blood Pressure


```
In [36]: sns.scatterplot(x=data['BMI'],y=data['Insulin'],hue=data['Outcome'])
    plt.title('BMI vs Insulin with respect to Outcome')
    plt.show()
```

BMI vs Insulin with respect to Outcome


```
In [37]: sns.scatterplot(x=data['Glucose'],y=data['BloodPressure'],hue=data['Outcome'])
    plt.title('Glucose vs Blood Pressure with respect to Outcome')
    plt.show()
```



```
In [38]: sns.scatterplot(x=data['SkinThickness'],y=data['Insulin'],hue=data['Outcome'])
    plt.title('Skin Thickness vs Insulin with respect to Outcome')
    plt.show()
```

Skin Thickness vs Insulin with respect to Outcome


```
In [39]: sns.scatterplot(x=data['BloodPressure'],y=data['BMI'],hue=data['Outcome'])
    plt.title('Blood Pressure vs BMI with respect to Outcome')
    plt.show()
```


In [40]: data.corr()

Out[40]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcor
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.2218
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.4665
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.0650
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.0747
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.1305
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.2926
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.1738
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.2383
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.0000
4									•

In [41]: sns.heatmap(data.corr(),annot=True)

Out[41]: <AxesSubplot:>

Project Task: Week 3

Data Modeling:

- 1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.
- 2. Apply an appropriate classification algorithm to build a model. Compare various models with the results from KNN algorithm.

```
In [42]: data.head()
Out[42]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
          0
                     6
                           148
                                        72
                                                     35
                                                            0 33.6
                                                                                                   1
                                                                                   0.627
                                                                                          50
                           85
                                                            0 26.6
                                                                                   0.351
                                                                                         31
                                                                                                   0
                                        66
                           183
                                                            0 23.3
                                                                                   0.672
                                                                                         32
                                        64
                                                     23
                                                           94 28.1
                                                                                         21
                                                                                                   0
                           89
                                        66
                                                                                   0.167
                     0
                           137
                                        40
                                                     35
                                                          168 43.1
                                                                                   2.288
                                                                                         33
                                                                                                   1
In [43]: features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
In [44]: | target = data.iloc[:,-1].values
In [45]: features
Out[45]: array([[ 6.
                        , 148.
                                 , 72. , ..., 33.6 ,
                                                            0.627,
                               , 66. , ..., 26.6 ,
                                                            0.351,
                                                            0.672, 32.
                        , 121. , 72. , ..., 26.2 ,
                        , 126.
                                , 60. , ..., 30.1 ,
                                                            0.349, 47.
                               , 70. , ..., 30.4 ,
                                                            0.315, 23.
                                                                          11)
```

```
In [46]: target
Out[46]: array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
                1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
                0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
                1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
                0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
                1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
                1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
                1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
                0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
                1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
                0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
                0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
                0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
                1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
                0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
                0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0]
               dtype=int64)
```

```
In [47]: from sklearn.linear model import LogisticRegression
In [48]: from sklearn.model_selection import train_test_split
In [49]: X_train,X_test,y_train,y_test = train_test_split(features,target,test_size=0.20,random_state=10)
In [50]: | lr = LogisticRegression()
In [51]: lr.fit(X train,y train)
Out[51]: LogisticRegression()
In [52]: y pred = lr.predict(X test)
In [53]: from sklearn.metrics import accuracy score, confusion matrix, classification report
In [54]: | accuracy score(y test,y pred)
Out[54]: 0.7662337662337663
In [55]: confusion matrix(y test,y pred)
Out[55]: array([[88, 7],
                [29, 30]], dtype=int64)
```

```
Data Science Career Bootcamp Capstone - Project 2 - Health Care - Jupyter Notebook
In [56]: print(classification_report(y_test,y_pred))
                         precision
                                       recall f1-score
                                                            support
                      0
                               0.75
                                         0.93
                                                    0.83
                                                                 95
                      1
                               0.81
                                         0.51
                                                    0.62
                                                                 59
                                                     0.77
                                                                154
              accuracy
             macro avg
                                                    0.73
                                                                154
                               0.78
                                         0.72
          weighted avg
                              0.77
                                         0.77
                                                    0.75
                                                                154
          Accuracy Score from Logistic Regression: 76.6%
In [57]: from sklearn.tree import DecisionTreeClassifier
In [58]: dtc = DecisionTreeClassifier(max depth=5)
In [59]: dtc.fit(X train,y train)
Out[59]: DecisionTreeClassifier(max depth=5)
```

[26, 33]], dtype=int64)

In [60]: y pred dtc = dtc.predict(X test)

In [61]: | accuracy_score(y_test,y_pred_dtc)

In [62]: confusion_matrix(y_test,y_pred_dtc)

Out[61]: 0.7597402597402597

Out[62]: array([[84, 11],

```
In [63]: print(classification_report(y_test,y_pred_dtc))
                        precision
                                      recall f1-score
                                                          support
                     0
                             0.76
                                        0.88
                                                  0.82
                                                               95
                     1
                             0.75
                                        0.56
                                                  0.64
                                                               59
                                                   0.76
                                                              154
              accuracy
                                                  0.73
                                                              154
             macro avg
                             0.76
                                        0.72
          weighted avg
                             0.76
                                        0.76
                                                  0.75
                                                              154
         Accuracy Score from Decision Tree Classifier: 76%
In [64]: from sklearn.ensemble import RandomForestClassifier
```

```
In [65]: rfc = RandomForestClassifier(n estimators=10)
In [66]: rfc.fit(X train,y train)
Out[66]: RandomForestClassifier(n estimators=10)
In [67]: y pred rfc = rfc.predict(X test)
In [68]: accuracy_score(y_test,y_pred_rfc)
Out[68]: 0.7402597402597403
In [69]: confusion_matrix(y_test,y_pred_rfc)
Out[69]: array([[84, 11],
                [29, 30]], dtype=int64)
```

```
In [70]: print(classification_report(y_test,y_pred_rfc))
                        precision
                                      recall f1-score
                                                          support
                     0
                              0.74
                                        0.88
                                                   0.81
                                                               95
                     1
                              0.73
                                        0.51
                                                  0.60
                                                               59
                                                   0.74
                                                              154
              accuracy
                                                  0.70
                                                              154
             macro avg
                              0.74
                                        0.70
         weighted avg
                             0.74
                                        0.74
                                                  0.73
                                                              154
         Accuracy Score from Random Forest Classifier: 71.4%
```

	precision	recall	f1-score	support
0	0.62	1.00	0.76	95
1	0.00	0.00	0.00	59
accuracy			0.62	154
macro avg	0.31	0.50	0.38	154
weighted avg	0.38	0.62	0.47	154

C:\Users\Vinosh\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precisi on and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` paramet er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Vinosh\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precisi on and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` paramet er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Vinosh\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precisi on and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` paramet er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Accuracy Score from Support Vector Machines(SVM): 61.7%

```
In [78]: from sklearn.neighbors import KNeighborsClassifier
```

```
In [79]: knn = KNeighborsClassifier(n_neighbors=7,metric='minkowski',p=2)
```

```
In [80]: knn.fit(X_train,y_train)
```

Out[80]: KNeighborsClassifier(n_neighbors=7)

```
In [81]: y pred knn = knn.predict(X test)
         C:\Users\Vinosh\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other re
         duction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts alo
         ng. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over w
         hich the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to Tru
         e or False to avoid this warning.
           mode, = stats.mode( v[neigh ind, k], axis=1)
In [82]: accuracy score(y test,y pred knn)
Out[82]: 0.6948051948051948
        confusion matrix(y test,y pred knn)
In [83]:
Out[83]: array([[76, 19],
                [28, 31]], dtype=int64)
In [84]: print(classification report(y test,y pred knn))
                                    recall f1-score
                        precision
                                                        support
                             0.73
                                       0.80
                                                 0.76
                                                             95
                    1
                             0.62
                                       0.53
                                                 0.57
                                                             59
                                                 0.69
                                                            154
             accuracy
                                                 0.67
                                                            154
            macro avg
                             0.68
                                       0.66
         weighted avg
                             0.69
                                      0.69
                                                 0.69
                                                            154
```

Accuracy Score from K-Neighbours Classifier(KNN): 69.5%

Project Task: Week 4

Data Modeling:

1. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc. Please be descriptive to explain what values of

In [85]: from sklearn.metrics import roc_curve, roc_auc_score

ROC curve(Receiver Operating Characteristics Curve) for Logistic Regression

```
In [86]: probs = lr.predict_proba(features)
probs = probs[:,1]

auc = roc_auc_score(target,probs)
print('AUC :',auc)

fpr, tpr, threshold = roc_curve(target,probs)
print('True Positive Rate - {}, False Positive Rate - {}, Threshold - {}'.format(tpr,fpr,threshold))

plt.plot([0,1],[0,1],linestyle='--')
plt.plot(fpr,tpr,marker='.')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive rate')
plt.show()
```

```
AUC: 0.8365149253731343
                                 0.00373134 0.02985075 0.02985075 0.03731343 0.03731343
True Positive Rate - [0.
 0.04477612 0.04477612 0.05970149 0.05970149 0.06716418 0.06716418
 0.09328358 0.09328358 0.12686567 0.12686567 0.20522388 0.20522388
 0.24626866 0.24626866 0.29477612 0.29477612 0.29850746 0.29850746
 0.30597015 0.30597015 0.32462687 0.32462687 0.3358209 0.3358209
 0.34328358 0.34328358 0.35820896 0.35820896 0.3619403 0.3619403
 0.36940299 0.36940299 0.39552239 0.39552239 0.40298507 0.40298507
 0.41044776 0.41044776 0.42537313 0.42537313 0.44029851 0.44029851
 0.44402985 0.44402985 0.44776119 0.44776119 0.45895522 0.45895522
 0.46268657 0.46268657 0.4738806 0.4738806 0.49626866 0.49626866
 0.5
            0.5
                       0.50373134 0.50373134 0.50746269 0.50746269
 0.5261194   0.5261194   0.52985075   0.52985075   0.53731343   0.53731343
 0.54104478 0.54104478 0.54477612 0.54477612 0.54850746 0.54850746
 0.55597015 0.55597015 0.56716418 0.56716418 0.57462687 0.57462687
 0.59328358 0.59328358 0.59701493 0.59701493 0.60447761 0.60447761
 0.60820896 0.60820896 0.6119403 0.6119403 0.61567164 0.61567164
 0.61940299 0.61940299 0.62686567 0.62686567 0.63059701 0.63059701
 0.64179104 0.64179104 0.64552239 0.64552239 0.64925373 0.64925373
 0.65298507 0.65298507 0.6641791 0.6641791 0.67164179 0.67164179
 0.67537313 0.67537313 0.68283582 0.68283582 0.68656716 0.68656716
 0.69029851 0.69029851 0.69776119 0.69776119 0.70149254 0.70149254
 0.70895522 0.70895522 0.71641791 0.71641791 0.7238806 0.7238806
 0.73134328 0.73134328 0.73880597 0.73880597 0.74626866 0.74626866
 0.75373134 0.75373134 0.77238806 0.77238806 0.77985075 0.77985075
 0.79104478 0.79104478 0.80223881 0.80223881 0.80970149 0.80970149
 0.81343284 0.81343284 0.81716418 0.81716418 0.82089552 0.82089552
 0.83208955 0.83208955 0.83955224 0.83955224 0.84328358 0.84328358
 0.84701493 0.84701493 0.85074627 0.85074627 0.85447761 0.85447761
 0.85820896 0.85820896 0.86940299 0.86940299 0.87313433 0.87313433
 0.88059701 0.88059701 0.89179104 0.89179104 0.89552239 0.89552239
 0.89925373 0.89925373 0.90298507 0.90298507 0.90671642 0.90671642
 0.9141791 0.9141791 0.91791045 0.91791045 0.92537313 0.92537313
 0.92910448 0.92910448 0.93656716 0.93656716 0.94029851 0.94029851
 0.94402985 0.94402985 0.94776119 0.94776119 0.95149254 0.95149254
 0.95522388 0.95522388 0.95895522 0.95895522 0.96268657 0.96268657
 0.96641791 0.96641791 0.97014925 0.97014925 0.9738806 0.9738806
 0.97761194 0.97761194 0.98134328 0.98134328 0.98507463 0.98507463
 0.98880597 0.98880597 0.99253731 0.99253731 0.99626866 0.99626866
 1.
            1.
                      ], False Positive Rate - [0.
                                                      0. 0. 0.002 0.002 0.004 0.004 0.006 0.006 0.008 0.008 0.
```

01

```
0.01 0.012 0.012 0.014 0.014 0.018 0.018 0.024 0.024 0.026 0.026 0.028
0.028 0.03 0.03 0.032 0.032 0.034 0.034 0.036 0.036 0.04 0.04 0.046
0.046 0.048 0.048 0.05 0.05 0.052 0.052 0.054 0.054 0.056 0.056 0.058
0.058 0.06 0.06 0.064 0.064 0.072 0.072 0.074 0.074 0.076 0.076 0.078
0.078 0.08 0.08 0.084 0.084 0.086 0.086 0.09 0.09 0.096 0.096 0.106
0.106 0.108 0.108 0.116 0.116 0.124 0.124 0.128 0.128 0.134 0.134 0.136
0.136 0.138 0.138 0.14 0.14 0.146 0.146 0.15 0.15 0.152 0.152 0.154
0.154 0.156 0.156 0.158 0.158 0.16 0.16 0.164 0.164 0.166 0.166 0.168
0.168 0.17 0.17 0.174 0.174 0.18 0.18 0.182 0.182 0.186 0.186 0.19
0.19 0.214 0.214 0.218 0.218 0.224 0.224 0.228 0.228 0.23 0.23 0.24
0.24 0.242 0.242 0.254 0.254 0.258 0.258 0.264 0.264 0.274 0.274 0.276
0.276 0.294 0.294 0.298 0.298 0.306 0.306 0.32 0.32 0.326 0.326 0.33
0.366 0.374 0.374 0.38 0.38 0.398 0.398 0.4 0.4 0.402 0.402 0.408
0.408 0.414 0.414 0.416 0.416 0.442 0.442 0.464 0.464 0.468 0.468 0.47
0.47 0.49 0.49 0.498 0.498 0.51 0.51 0.54 0.552 0.552 0.556
0.556 0.568 0.568 0.594 0.594 0.612 0.612 0.622 0.622 0.648 0.648 0.706
0.706 0.72 0.72 0.782 0.782 0.82 0.82 0.862 0.862 0.972 0.972 0.986
        ], Threshold - [1.98701958 0.98701958 0.94267813 0.93864767 0.93299793 0.92965234
0.92449809 0.92295419 0.9109033 0.9089279 0.89986778 0.89430642
0.8751992 0.87398928 0.85595595 0.85073959 0.80122753 0.80058422
0.76977526 0.76759245 0.7439569 0.74038711 0.73746476 0.73738287
0.73576096 0.73482429 0.72598562 0.72549377 0.7229558 0.72267404
0.71273193 0.71256592 0.70019619 0.69929725 0.69694969 0.69041877
0.68611012 0.68590784 0.6762251 0.67580406 0.67034738 0.66457106
0.59909079 0.59824388 0.59301877 0.59300751 0.58164358 0.57809436
0.57775975 0.57536941 0.57418329 0.56811984 0.56563107 0.56548073
0.55489933 0.55184235 0.54886894 0.53716694 0.52127787 0.51026704
0.50875682 0.50060969 0.5003371 0.49221375 0.49115548 0.48690113
0.48374831 0.48059014 0.47838555 0.47267881 0.46910984 0.46868878
0.45606003 0.45538138 0.45216607 0.45199098 0.45144526 0.44536687
0.44477876 0.44111613 0.43921584 0.43913741 0.43809249 0.43311663
0.42895914 0.4254682 0.42213722 0.42185714 0.41998808 0.41860876
0.41607864 0.41484523 0.41378442 0.41103317 0.40738591 0.40592932
0.40592529 0.40278561 0.39789206 0.39448681 0.39368984 0.38902675
0.37324015 0.3608211 0.36076678 0.35557766 0.35481391 0.35424796
0.35051158 0.34707509 0.34387902 0.34349274 0.33632515 0.32565849
0.31472705 0.31079557 0.30211361 0.29743473 0.29608229 0.2954971
```

0.289750460.282503230.281193050.279986680.278226540.276775750.276578580.268683020.268057090.265706910.265337520.263087270.259657330.259332120.255504780.249561070.249536430.246649820.244482160.243084410.242704230.236987160.235942630.234322170.233625810.229436780.22512440.223822260.223017070.218724260.217582560.216327040.215491920.215151840.215116250.212968990.212399970.208701190.207557820.206532570.204506080.189843730.185973850.179068520.178722360.177826260.176890930.176792990.175534860.169603620.16867410.163888220.163398770.158575750.155806080.147800340.147745280.145758320.145706420.14495630.121132630.116902650.116267770.110006480.109714830.099056930.098822090.095809510.095745610.081917070.08090580.069126870.069087080.05980580.057646990.022246740.021946560.014866930.013156790.00210894]

ROC Curve (Receiver Operating Characteristics Curve) for K-Neighbors Classifiers(KNN)

```
In [87]: probs = knn.predict proba(features)
         probs = probs[:,1]
         auc = roc_auc_score(target,probs)
         print('AUC :',auc)
         fpr,tpr,threshold = roc curve(target,probs)
         print('True Positive Rate - {}, False Positive Rate - {}, Threshold - {}'.format(tpr,fpr,threshold))
         plt.plot([0,1],[0,1],linestyle='--')
         plt.plot(fpr,tpr,marker='.')
         plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.show()
         AUC: 0.8361492537313433
         True Positive Rate - [0.
                                           0.06716418 0.23880597 0.44776119 0.60074627 0.75373134
                                     ], False Positive Rate - [0. 0. 0.02 0.056 0.12 0.248 0.428 0.668 1. ], T 0.85714286 0.71428571 0.57142857 0.42857143
          0.88059701 0.98507463 1.
         hreshold - [2.
                          1.
          0.28571429 0.14285714 0.
```


ROC Curve (Receiver Operating Characteristics Curve) for Decision Tree Classifier

```
In [88]: probs = dtc.predict proba(features)
        probs = probs[:,1]
        auc = roc auc score(target,probs)
        print('AUC :',auc)
        fpr,tpr,threshold = roc curve(target,probs)
        print('True Positive Rate - {}, False Positive Rate - {}, Threshold - {}'.format(tpr,fpr,threshold))
        plt.plot([0,1],[0,1],linestyle='--')
        plt.plot(fpr,tpr,marker='.')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.show()
        AUC : 0.8720783582089552
        True Positive Rate - [0.
                               0.06343284 0.39552239 0.64179104 0.66044776 0.78358209
         0.78731343 0.79477612 0.90298507 0.96641791 0.98507463 1. ], False Positive Rate - [0. 0.002 0.026 0.092
        0.104 0.192 0.202 0.212 0.344 0.636 0.702 1. ], Threshold - [2. 1.
                                                                                   0.89285714 0.65789474 0.4444444
        4 0.40983607
```


ROC Curve (Receiver Operating Characteristics Curve) for Random Forest Classifier

```
In [89]: probs = rfc.predict_proba(features)
probs = probs[:,1]

auc = roc_auc_score(target,probs)
print('AUC :',auc)

fpr,tpr,threshold = roc_curve(target,probs)
print('True Positive Rate - {}, False Positive Rate - {}, Threshold - {}'.format(tpr,fpr,threshold))

plt.plot([0,1],[0,1],linestyle='--')
plt.plot(fpr,tpr,marker='.')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()
```


In [90]: from sklearn.metrics import f1_score, precision_recall_curve, auc, average_precision_score

Precision Recall Curve for Logistic Regression

```
In [91]: probs = lr.predict_proba(features)
probs = probs[:,1]

precision, recall, threshold = precision_recall_curve(target, probs)

pred_lr = lr.predict(features)

f1 = f1_score(target,pred_lr)

auc = auc(recall,precision)

ap = average_precision_score(target, probs)

print('F1 score - {}, AUC - {}, AP - {}'.format(f1,auc,ap))

plt.plot([0,1], [0.5,0.5], linestyle='--')
plt.plot(recall, precision, marker='.')
plt.show()
```

F1 score - 0.6239316239316239, AUC - 0.7259547659317013, AP - 0.7269516907977814

Precision Curve for K-Neighbors Classifier(KNN)

```
In [92]: from sklearn.metrics import precision_recall_curve, f1_score, auc, average_precision_score

probs = knn.predict_proba(features)
probs = probs[:,1]

precision, recall, threshold = precision_recall_curve(target,probs)

pred_knn = knn.predict(features)

f1_knn = f1_score(target,pred_knn)
auc_knn = auc(recall, precision)

ap_knn = average_precision_score(target,probs)

print('F1 score - {}, AUC - {}, AP - {}'.format(f1_knn,auc_knn,ap_knn))

plt.plot([0,1],[0.5,0.5],linestyle='--')
plt.plot(recall, precision, marker='.')
plt.show()
```

F1 score - 0.6584867075664621, AUC - 0.752077039652761, AP - 0.7091456115784129

C:\Users\Vinosh\anaconda3\lib\site-packages\sklearn\neighbors_classification.py:228: FutureWarning: Unlike other re duction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts alo ng. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over w hich the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to Tru e or False to avoid this warning.

```
mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
```


Precision Curve for Decision Tree Classifier

```
In [93]: from sklearn.metrics import f1_score, precision_recall_curve, auc, average_precision_score
    probs = dtc.predict_proba(features)
    probs = probs[:,1]

    precision, recall, threshold = precision_recall_curve(target,probs)

    pred_dtc = dtc.predict(features)

    f1_dtc = f1_score(target,pred_dtc)
    auc_dtc = auc(recall,precision)

    ap_dtc = average_precision_score(target,probs)

    print('F1 Score - {}, AUC - {}, AP - {}'.format(f1_dtc,auc_dtc,ap_dtc))

    plt.plot([0,1],[0.5,0.5],linestyle = '--')
    plt.plot(recall, precision,marker='.')
    plt.show()
```

F1 Score - 0.7078189300411523, AUC - 0.7997247354617167, AP - 0.7613968981593674

Precision Curve for Random Forest Classifier

```
In [94]: from sklearn.metrics import f1_score, precision_recall_curve, auc, average_precision_score
    probs = rfc.predict_proba(features)
    probs = probs[:,1]

    precision, recall, threshold = precision_recall_curve(target,probs)

    pred_rfc = rfc.predict(features)

    f1_rfc = f1_score(target,pred_rfc)
    auc_rfc = auc(recall, precision)

    ap_rfc = average_precision_score(target, probs)

    print('F1 Score - {}, AUC - {}, AP - {}'.format(f1_rfc,auc_rfc,ap_rfc))

    plt.plot([0,1],[0.5,0.5],linestyle='--')
    plt.plot(recall,precision,marker='.')
    plt.show()
```

F1 Score - 0.8954635108481261, AUC - 0.9663159778578709, AP - 0.9575481238287105

In []: