

Politechnika Wrocławska Wydział Elektroniki

Zastosowania Informatyki w Medycynie

Komputerowe wspomaganie diagnozowania zawałów z wykorzystaniem algorytmu KNN

Autorzy:

Bartosz Rodziewicz 226105 Kamil Dobrysiewicz 225961

Prowadzący:

Dr inż. Paweł Ksieniewicz

Spis treści

1	Założenia projektowe	2
2	Charakterystyka analizowanego problemu	3
3	Opis zastosowanych algorytmów 3.1 Metryki odległości	4
4	Stworzenie rankingu cech	6

1 Założenia projektowe

Celem niniejszego projektu jest nabycie umiejętności zastosowania algorytmu klasyfikacji nadzorowanej (w przypadku tego projektu algorytmu KNN) w zadaniu diagnozowania zawałów. Wymaga to odpowiedniej selekcji cech. Dostępność danych rzeczywistych umożliwi w przyszłości eksperymentalną ocenę skuteczności algorytmu i sprawdzenie, w jaki sposób jakość klasyfikacji zależy od liczby atrybutów wykorzystanych do skonstruowania modelu.

Wyróżniono następujące etapy realizacji projektu:

- 1. Zapoznanie się z aglorytmem klasyfikacji, określonym w temacie projektu.
- 2. Zapoznanie się z materiałem empirycznym analiza danych wejściowych, określenie liczby i znaczenia klas oraz dokonanie charakterystyki cech.
- 3. Opracowanie sposobu wyznaczania rankingu cech w wykorzystaniem rozwiązań dostępnych w bibliotece scikit-learn.
- 4. Zaplanowanie badań eksperymentalnych.
- 5. Implementacja algorytmu klasyfikacji.
- 6. Przeprowadzenie badań eksperymentalnych.
- 7. Analiza wyników i wyciągnięcie wniosków.
- 8. Przygotowanie kompletnej dokumentacji.

2 Charakterystyka analizowanego problemu

Do badań wykorzystane będą dane dostarczone przez prowadzącego, zawierające 901 obiektów. Podzielono je na pięć plików, reprezentujących dostępne w badaniach diagnozy:

- dusznicę bolesną,
- dusznicę odmienną (Prinzmetala),
- zawał mięśnia sercowego (pełnościenny),
- zawał mięśnia sercowego (podwsierdziowy),
- ból nie związany z sercem.

W każdym z zestawów danych znajdują się informacje o obiektach opisanych za pomocą 59 cech, oznaczających wyniki badań pojedyńczego pacjenta. Cechy podzielono na 8 grup, które opisują:

- dane o wieku i płci pacjenta,
- informacje o bólu, który wystąpił u chorego (lokalizacja, promieniowanie, charakter bólu, czas trwania ostatniego wystąpienia bólu),
- inne symptomy, które wystąpiły razem z bólem (nudności, pocenie się, odbijanie),
- historię wystąpień podobnego bólu (bóle związane z zawałem, dusznicą bolesną, powiązane z sercem),
- historię chorób pacjenta (występowanie zawałów w przeszłości, przewlekła niewydolnośc serca, nadciśnienie),
- informacje o obecnie zażywanych lekach (beta blokery, diuretyki, niesteroidowe leki przeciwzapalne),
- wyniki badania fizykalnego (ciśnienie krwi, tętno, sinica, szmery oddechowe),
- wyniki badania elektrokardiografem (EKG).

Większość cech ma charakter binarny, czyli posiada tylko dwie wartości (0 lub 1), np. płeć, czy pacjent zażywa beta blokery, czy chory ma nadciśnienie. Jest to najprostsza odmiana atrybutu kategorycznego. W zbiorze cech znaleźć można też kilka cech kategorycznych, które przyjmować mogą kilka wartości z grupy możliwych opcji, np. lokalizacja bólu, moment wystąpienia bólu, jego charakter, czy kierunek promieniowania. Wyróżnić można także cechy ciągłe, takie jak: wiek pacjenta, liczba godzin od rozpoczęcia bólu, ciśnienie skurczowe, tętno.

3 Opis zastosowanych algorytmów

3.1 Metryki odległości

W grupie algorytmów minimalno-odległościowych, do której należy algorytm k-NN istotną rolę odgrywa zastosowana metryka odległości, wg której mierzone są odległości pomiędzy badanymi punktami. Spośród metryk dostpęnych w bibliotece *scikit-learn* wybrano odległość Euklidesową oraz metrykę miejską (zwaną inaczej odległością Manhattan).

3.1.1 Odległość Euklidesowa

Odległość Euklidesowa stanowi jeden z najpopularniejszych sposobów obliczania odległości między obiektami w przestrzeni wielowymiarowej. Jej wartość obliczana jest za pomocą wzoru:

$$d(A, B) = \sqrt{\sum_{i=1}^{n} (x_{Ai} - x_{Bi})^2}$$

Odległość Euklidesowa jest więc równa długości odcinka, który łączy dwa dane punkty.

3.1.2 Metryka miejska

Metryka miejska to sposób obliczania odległości, gdzie możliwe jest poruszanie się tylko w dwóch prostopadłych do siebie kierunkach. Inna nazwa tej metryki to odległość Manhattan, ponieważ przypomina ona poruszanie się po ulicach Manhattanu. Jej wartość obliczana jest ze wzoru:

$$d(A, B) = \sum_{i=1}^{n} |x_{Ai} - x_{Bi}|$$

3.2 Algorytm K-NN

Algrytm K-NN (k nearest neighbours - k najbliższych sąsiadów) jest jednym z nadzorowanych algorytmów uczenia maszynowego. Jego działanie opiera się na bardzo prostej idei przewidywania nieznanych wartości poprzez ich dopasowanie do najbardziej podobnych już znanych wartości. W przypadku poszukiwania najbardziej podobnego rozwiązania uzyskujemy algorytm 1NN. Zazwyczaj warto jednak wziąć pod uwagę kilka lub kilkanaście podobnych rozwiązań i wybrać rozwiązanie najbardziej popularne w tym zbiorze. Podobieństwo jest w tym przypadku obliczane na podstawie metryki odległości, jaka została przez nas wybrana, na przykład wcześniej omówionej odległości Euklidesowej, czy metryki miejskiej.

Na rysunku 1 zaprezentowany został prosty przykład problemu klasyfikacji przy pomocy algorytmu KNN. W przypadku, kiedy wartość k wynosi 5, niebieski okrąg reprezentujący niesklasyfikowany obiekt zostanie przyporządkowany do zbioru zielonych kwadratów (3 kwadraty w pobliżu, zaś tylko 2 trójkąty). Do podobnej klasyfikacji dojdzie w przypadku, gdy wartość k wyniesie 10. Wtedy obiekt testowy również zostanie uznany za zielony kwadrat, których w pobliżu niebieskiego okręgu znajdzie się 6.

Rysunek 1: Przykład klasyfikacji przy pomocy algorytmu KNN

4 Stworzenie rankingu cech

Przygotowanie pełnego rankingu cech jest na tym etapie projektu nie możliwe. Zgodnie z metodą 2-krotnej walidacji krzyżowej, która polega na dzieleniu zbioru danych na zbiór danych do uczenia algorytmu, oraz testowania, nie jest możliwe wyznaczenie jednego optymalnego rankingu cech. Możliwe jest wykonanie obliczeń na wszystkich obiektach każdej klasy, jednak zaburza to założenie nieznajomości zbioru wykorzystywanego do testowania na etapie uczenia modelu.

W naszym projekcie zdecydowaliśmy się na użycie algorytmu filtrowania cech χ^2 -distribution. Algorytm chi-squared został wybrany z powodu lepszego radzenia sobie ze zmiennymi nie-ciągłymi spośród wszystkich dostępnych algorytmów w bibliotece scikit-learn.

Ranking cech stworzony na podstawie wszystkich obiektów znajduje się w Tab. 1.

Numer cechy	Nazwa cechy	Wartość χ^2
35	Systolic blood pressure	1980.234530
6	Number of hours since onset	978.577747
2	Pain location	340.518254
53	New ST segment depression	223.468210
49	New Q wave	200.255889
55	New T wave inversion	193.397661
51	New ST segment elevation	188.224104
54	Any ST segment depression	176.999688
57	New intraventricular conduction defect	159.891546
56	Any T wave inversion	151.671957
38	Respiration rate	120.295290
43	Diastolic murmur	117.164923
58	Any intraventricular conduction defect	117.095337
21	Prior angina prectoris	116.642864
3	Chest pain radiation	114.724420
37	Heart rate	109.556062
50	Any Q wave	108.815692
45	S3 gallop	105.087366
17	Prior pain related to heart	101.630463
18	Prior pain due to MI	89.168603
46	S4 gallop	87.110979
19	Prior pain due to angina prectoris	85.870499
23	Congestive heart failure	85.265596
42	Systolic murmur	84.497398
25	Hiatal hernia	83.614284
12	Dizziness/syncope	83.285357
10	Palpitations	82.348879
31	Beta blockers	79.733144
36	Diastolic blood pressure	78.562607
30	Nitrates	76.574549
52	Any ST segment elevation	75.294437
34	Antacids/H2 blockers	73.567453
7	Duration of the last episode	63.415290
32	Digitalis	60.113284
40	Cyanosis	58.805874

Tablica 1: 35 najlepszych cech w
g rankingu wyznaczonego dla wszystkich obiektów $\,$