PROBLEM STATEMENT:

TO PREDICT THE RAINFALL BASED ON VARIOUS FEATURES OF THE DATASET

IMPORTING LIBRARIES

In [1]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r"C:\Users\monim\OneDrive\Desktop\rainfall.csv")
df
```

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	£
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	

4116 rows × 19 columns

DATA CLEANING AND PREPROCESSING

In [4]:

df.head()

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNU
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	256€
												_			

In [5]:

df.tail()

Out[5]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	AN
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	
4		_			_		_	_	_	_					

In [6]:

df.shape

Out[6]:

(4116, 19)

In [7]:

```
df.isnull().sum()
```

Out[7]:

SUBDIVISION 0 YEAR 0 JAN 4 FEB 3 MAR 6 APR 4 3 MAY 5 JUN 7 JUL 4 AUG 6 SEP 7 OCT 11 NOV DEC 10 ANNUAL 26 Jan-Feb 6 9 Mar-May Jun-Sep 10 Oct-Dec 13 dtype: int64

In [8]:

df.isna().any()

Out[8]:

SUBDIVISION False YEAR False JAN True FEB True MAR True APR True MAY True JUN True JUL True AUG True SEP True OCT True NOV True DEC True ANNUAL True Jan-Feb True Mar-May True Jun-Sep True Oct-Dec True dtype: bool

In [9]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4116 entries, 0 to 4115 Data columns (total 19 columns): Non-Null Count # Column Dtype -------------SUBDIVISION 4116 non-null 0 object 1 YEAR 4116 non-null int64 float64 2 JAN 4112 non-null 4113 non-null float64 3 FEB 4110 non-null float64 4 MAR 4112 non-null float64 5 APR 4113 non-null float64 6 MAY float64 7 JUN 4111 non-null float64 8 JUL 4109 non-null float64 9 AUG 4112 non-null float64 10 SEP 4110 non-null float64 11 OCT 4109 non-null 12 NOV 4105 non-null float64 13 DEC 4106 non-null float64 14 ANNUAL 4090 non-null float64 15 Jan-Feb 4110 non-null float64 16 Mar-May 4107 non-null float64

18 Oct-Dec 4103 non-null float64 dtypes: float64(17), int64(1), object(1)

4106 non-null

float64

memory usage: 611.1+ KB

In [10]:

df.describe()

17 Jun-Sep

Out[10]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	4109.000000
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	347.214334
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	269.539667
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	175.600000
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	284.800000
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	418.400000
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000

In [11]:

```
df.fillna(method='ffill',inplace=True)
```

```
In [12]:
df.columns
Out[12]:
dtype='object')
In [13]:
df['ANNUAL'].value_counts()
Out[13]:
ANNUAL
790.5
        4
770.3
        4
1836.2
        4
1024.6
        4
        3
1926.5
443.9
       1
689.0
        1
605.2
        1
509.7
        1
1642.9
        1
Name: count, Length: 3712, dtype: int64
In [14]:
df['Jan-Feb'].value_counts()
Out[14]:
Jan-Feb
0.0
      238
0.1
       80
0.2
       52
0.3
       38
       32
0.4
23.3
       1
95.2
        1
76.9
        1
66.5
        1
```

69.3

1

Name: count, Length: 1220, dtype: int64

```
In [15]:
df['Mar-May'].value_counts()
Out[15]:
Mar-May
         29
0.0
0.1
         13
0.3
         11
8.3
         11
11.5
         10
246.3
         1
248.1
         1
151.3
          1
249.5
          1
223.9
          1
Name: count, Length: 2262, dtype: int64
In [16]:
df['Jun-Sep'].value_counts()
Out[16]:
Jun-Sep
434.3
          4
334.8
          4
573.8
          4
613.3
          4
1082.3
          3
301.6
         1
380.9
          1
409.3
          1
229.4
          1
958.5
          1
Name: count, Length: 3683, dtype: int64
In [17]:
df['Oct-Dec'].value_counts()
Out[17]:
Oct-Dec
         16
0.0
         15
0.1
         13
0.5
0.6
         12
0.7
         11
191.5
         1
124.5
         1
139.1
          1
41.5
          1
Name: count, Length: 2389, dtype: int64
```

EXPLORATORY DATA ANALYSIS

In [18]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [19]:

```
df.columns
```

Out[19]:

```
Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')
```

In [20]:

```
x=df[["FEB"]]
y=df["JAN"]
```

LINEAR REGRESSION

In [21]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [22]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

9.650666612303553

Out[22]:

coefficient

FEB 0.442278

In [23]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.1793580786264921

In [24]:

```
predictions=reg.predict(X_test)
```

In [25]:

```
plt.scatter(y_test,predictions)
```

Out[25]:

<matplotlib.collections.PathCollection at 0x22335c982e0>

In [26]:

```
df500=df[:][:500]
sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
plt.show()
```


In [27]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

Out[27]:

```
v LinearRegression
LinearRegression()
```

In [28]:

```
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='black')
plt.plot(X_test,y_pred,color='red')
plt.show()
```


In [29]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.16376967430831024

RIDGE RGRESSION

In [30]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [31]:

```
features= df.columns[0:5]
target= df.columns[-5]
```

In [32]:

```
x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,2)
```

In [33]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

In [34]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

In [35]:

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

Ridge Model:

the train score for ridge model is0.9999999999874192 the test score for ridge model is0.9999999998833

In [36]:

```
lr=LinearRegression()
```

In [37]: lt.figure(figsize= (10,10)) lt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='red',label=r'R lt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='LinearRegressio lt.xticks(rotation = 90) lt.legend() lt.show() Ridge; $\alpha = 10$ DEC LinearRegression APR MAR FEB JAN ΜĀ APR

LASSO MODEL

In [38]:

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999207747038827 The test score for ls model is 0.9999206791315256

In [39]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[39]:

<Axes: >

In [40]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.99999999999921

0.999999999999921

In [41]:

```
igure(figsize= (10,10))
lot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='green',label=r'Rid
lot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso;$\alpha
lot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='LinearRegression')
ticks(rotation = 90)
egend()
how()
```


ELASTICNET

```
In [42]:
```

```
from sklearn.linear_model import ElasticNet
el=ElasticNet()
el.fit(x,y)
print(el.coef_)
print(el.intercept_)
print(el.score(x,y))
```

[9.99098574e-01 0.000000000e+00 3.02728910e-05 0.00000000e+00 0.00000000e+00] 0.01625860696662329 0.9999992160905338

In [47]:

```
y_pred_elastic = el.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

0.0008816302333966198

CONCLUSION:

The linear model:- 0.16376967430831024 The lasso model:- 0.99999999999991 The Ridge model:- 0.99999999998833 The elasticnet:- 0.0008816302333966198 we compare to this model lasso is the highest accuracy so we prefer this dataset

In []: