1.33 Theorem. Let $a, b, n, r \in \mathbb{Z}$ with a and b not both 0. If a = bn + r, then (a, b) = (b, r).

Proof. Let $a, b, n, r \in \mathbb{Z}$ with a and b not both 0 be given such that a = bn + r. Since a and b are not both 0, b and r are also both not 0. We want to show (a, b) = (b, r). Let $d_1, d_2 \in \mathbb{Z}$ such that $d_1 = (a, b)$ and $d_2 = (b, r)$.

Since $d_1 = (a, b)$, we can say $d_1 \mid a$ and $d_1 \mid b$, and similarly, $d_2 \mid b$ and $d_2 \mid r$, provided $d_2 = (b, r)$. Observing a = bn + r, since $d_2 \mid b$, d_2 divides any multiple of b. Both terms are divisible by d_2 , therefore, the sum is also divisible by d_2 . Thus, d_2 also divides a.

Since $d_1 = (a, b)$, we can say d_2 is a common factor of a and b. This leads us to

$$d_2 < d_1$$
.

Observing a - bn = r, since $d_1 \mid b$, d_1 divides any multiple of b. Both terms are divisible by d_1 , therefore, the sum is also divisible by d_1 . Thus, d_1 also divides r.

Since $d_2 = (b, r)$, we can say d_1 is a common factor. This leads us to

$$d_1 < d_2$$
.

Since d_1 cannot be less than and greater than d_2 at the same time, (a, b) = (b, r).