Electrodynamics Brochure

DORMANCY

August 2, 2021

"Study hard what interests you the most in the most undisciplined, irreverent and original manner possible."

— Richard Feynmann

Contents

1	Mathematical Preliminaries	3
	1.1 Gradient ∇F	3
	1.2 Divergence $\nabla \cdot F$	3
	1.3 Curl $\nabla \times \dots $	4
2	Conversation Laws	4
3	Electromagnetic Waves	5
4	Potentials and Fields	7
5	Radiation	8
6	Elctrodynamics and Relativity	9

§1 Mathematical Preliminaries

§1.1 Gradient ∇F

请默写出以下梯度的表达式:

Cylinder $\rho - \varphi - z$

Sphere $r - \theta - \phi$

§1.2 Divergence $\nabla \cdot F$

请默写出以下散度的表达式:

Cylinder $\rho - \varphi - z$

Sphere $r - \theta - \phi$

§1.3 Curl $\nabla \times$

请默写出以下散度的表达式:

Cylinder $\rho - \varphi - z$

Sphere $r - \theta - \phi$

§2 Conversation Laws

请默写出 Poynting 矢量 \vec{S} 的表达式:

请默写出 $\overset{\leftrightarrow}{T}_{ij}$

请默写出 Poynting 定理的表达式:

请默写出电磁场的动量定理 [并知道 p_{mech} 与 p_{field} 的具体表达] 表达式:	
	请默写出电磁场的单位体积力 f 与体积积分后的表达式:
	请默写出电磁场的单位体积角动量 [Angular Momentum] l 与体积积分后的表达式: 并会利用角动量计算矩 [torque] $N=\frac{dL}{dt}$
§3	Electromagnetic Waves
	Electromagnetic Waves β 公司的关系和群速度,相速度的表达式
	第四日 λ, k, w, T, f 之间的关系和群速度,相速度的表达式
	第四日 λ, k, w, T, f 之间的关系和群速度,相速度的表达式
	第四日 λ, k, w, T, f 之间的关系和群速度,相速度的表达式
	第四日 λ, k, w, T, f 之间的关系和群速度,相速度的表达式
	第3日 λ, k, w, T, f 之间的关系和群速度,相速度的表达式
	ζ 写出 λ, k, w, T, f 之间的关系和群速度,相速度的表达式 请默写出真空 [vaccum] 无电荷无电流下的 Maxwell 方程组
	ζ 写出 λ, k, w, T, f 之间的关系和群速度,相速度的表达式 请默写出真空 [vaccum] 无电荷无电流下的 Maxwell 方程组

请默写出 intensity[电磁波的强度表达式]	
请默写出线性介质 [Linear Media] 无电荷无电流下的 Maxwell 方程组	
请默写出线性介质 [Linear Media] 无电荷无电流下的边界条件	
请默写出导体中 [Conductor] 的 Maxwell 方程组	
请默写出导体中 [Conductor] 的 Maxwell 方程组的平面波解 并知道趋肤深度是什么	

请默写出导体 [Conductor] 表面的边界条件:	
会解 TM 模,TE 模的波导方程:	
04 D	
§4 Potentials and Fields	
$ \rightarrow 5$ 场 \rightarrow 粒子	

	库伦规范变换和洛伦兹规范变换的要求:
	并且在洛伦兹变换下有 d'Alembertian
	请默写出推迟势的表达式
	请默写出 Lienard-Wiechert 势的表达式
	并写出此种情况下 V 与 \boldsymbol{A} 的关系
	通过 Lienard-Wiechert 势可以求出其运动电荷的场, 请默写出对应的磁场与电场:
	通过 Dienard-Wiechert 为可以不由共趋功电间的物,相默与由对应的做物与电物。
§ 5	Radiation
P(r)	$0) = \oint \mathbf{S} \cdot d\mathbf{a}$
	$P = \lim_{r \to \infty} P(r)$
	默写拉莫尔公式 [Larmor Formula]
	默写李纳推广式 [Lienard's generalization]
	其中 $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

Dormancy (August 2, 2021)	Electrodynamics Brochure	
默写出辐射反作用力的表达式:[Abraham-Lorentz for	$\mathrm{mula}]$	
§6 Elctrodynamics and Relativity		
请默写出爱因斯坦速度叠加公式:		
请默写出 Lorentz Transformation		
请默写出不同参考系下的 E 与 B 的转换关系		
请默写出 $F^{\mu\nu}$ 与 $G^{\mu u}$ 对应的矩阵形式		