Sprawozdanie z Laboratorium 3

Autorzy: Mateusz Pawliczek, Piotr Świerzy

Data: 18.03.25

Zadanie

Celem zadania było użycie interpolacji w celu wyznaczenia przybliżonych wartości populacji w USA w latach 1990 - 1980. Zadanie obejmuje również zbadanie jakości przybliżenia poprzez sprawdzenie wartości z poza zakresu danych oraz wpływ zaokrągleń danych na aproxymowane wyniki.

Aby wykonać to zadanie skorzystaliśmy z następującej bazy danych:

Rok	Populacja
1900	76,212,168
1910	92,228,496
1920	106,021,537
1930	123,202,624
1940	132,164,569
1950	151,325,798
1960	179,323,175
1970	203,302,031
1980	226,542,199

A, B-Utworzenie macierzy

Opracowany program realizujący zadanie korzysta z następujących bibliotek:

```
In [76]: import numpy as np
  import math
  import matplotlib.pyplot as plt
```

W celu stworzenia macierzy Vandermonde'a wybrano cztery wzory. Zostały one zaimplementowane jako wartość zwracana przez funkcję equation gdzie n określa obecnie używaną funkcję.

```
In [77]:
    def equation(t, j, n):
        match n:
            case 0:
                return t**(j-1)
            case 1:
                 return (t - 1900)**(j-1)
            case 2:
                 return (t-1940)**(j-1)
            case 3:
                 return 1
```

Funkcja create matrix tworzy macierz Vandermonde'a korzystając z wybranej funkcji dla każdego z punktów X

```
In [78]: def create_matrix(X, n):
    matrix = np.zeros((len(X), len(X)))
    for i in range(len(X)):
        for j in range(len(X)):
            matrix[i, j] = equation(X[i], j+1, n)
    return matrix
```

Z czterech stworzonych macierzy została wybrana tylko jedna, miała ona najniższy współczynnik uwarunkowania, który określa podatność na błędy numeryczne. Niższe współczynniki wykazują stosunkowo mała podatność na błędy.

```
In [79]: x = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980]
y = [76212168, 92228496, 106021537, 123202624, 132164569, 151325798, 179323175, 203302031, 226542199]

best_cond = math.inf
best_n = 0
for n in range(4):
```

```
A = create_matrix(x, n)
cond_number = np.linalg.cond(A)
if cond_number < best_cond:
    best_cond = cond_number
    best_matrix = A
    best_n = n
    print("Q" + str(n), "-", cond_number)

a = np.linalg.solve(best_matrix, y)

00 - 1.718562550900496e+38
01 - 6306565084492795.0
02 - 9315536054612.764</pre>
```

Macierzą o najmniejszym współczynniku okazała się ta która używała funkcji Q3 - ((t-1940)/40)**(j-1), która poza normalizacją danych względem roku 1940 dodatkowo skalowała je dzieląc ich wartość przez 40 w celu uzyskania mniejszych liczb, które łatwiej jest podnieść do wyższych potęg.

C - Rysowanie wykresu z wartościami Interpolowanymi

W celu narysowania wykresu stworzona została funkcja interpolate wykorzystującą schemat Hornera do zwrócenia przybliżonej wartości argumentu x. Funkcja obejmuje wartości z poza dziedziny.

```
In [80]: def interpolate(t, coeff, degree=0):
    if degree == len(coeff) - 2:
        return coeff[degree] + coeff[degree+1] * ((t-1940)/40)
    return coeff[degree] + ((t-1940)/40) * interpolate(t, coeff, degree+1)
```

Rysowanie zostało zrealizowane za pomocą poniższego kodu:

Q3 - 1605.4437004786996

```
In [81]:
    x_vals = np.arange(1900, 1991, 1)
    y_vals = [interpolate(t , a) for t in x_vals]

plt.figure(figsize=(10, 6))
    plt.plot(x_vals, y_vals, label="Wielomian interpolacyjny", color='b')
    plt.scatter(x, y, color='r', label="Wezły interpolacyjne")
    plt.xlabel("Rok")
    plt.ylabel("Populacja")
    plt.title("Wielomian interpolacyjny")
    plt.legend()
    plt.grid()
    plt.show()
```


D - Ekstrapolacja wartości dla 1990 roku

dla t = 1990, wynik porównano z faktyczną wartością populacji w USA w 1990, która wynosiła 248709873.

```
In [82]: year_1990_true = 248709873
    year_predicted = interpolate(1990 , a)
    print("Prawdziwa wartość dla 1990 roku: " , year_1990_true)
    print("Przewidziana wartość dla 1990 roku: ", year_predicted)
    relative_population_error = (abs(year_1990_true - year_predicted) / year_1990_true) * 100
    print("Błąd względny ekstrapolacji dla roku 1990:", relative_population_error)

Prawdziwa wartość dla 1990 roku: 248709873
    Przewidziana wartość dla 1990 roku: 82749141.00000246
    Błąd względny ekstrapolacji dla roku 1990: 66.72864651416454
```

Z otrzymanych wyników można wywnioskować, że metoda interpolacji nie umożliwiła przybliżenia wyników wychodzących poza przewidziany przez dane wejściowe zakres. Różnica między przybliżoną wartością populacji, a faktyczną jest bardzo duża 165 960 732. Błąd względny ekstrapolacji wyniósł ponad 66%. Jest to duża wartość i sugeruje małą dokłądność tej metody.

E - Interpolacja metoda Lagrange'a

Ta część zadania ma na celu wyznaczenie corocznych wartości za pomocą wielomianu interpolacyjnego Lagrange'a. W tym celu zostały stworzone funkcje lagrange basis oraz lagrange interpolation.

```
In [83]:

def lagrange_basis(x, i, t):
    result = 1.0
    for j in range(len(x)):
        if j != i:
            result *= (t - x[j]) / (x[i] - x[j])
    return result

def lagrange_interpolation(x, y, t):
    result = 0.0
    for i in range(len(x)):
        result += y[i] * lagrange_basis(x, i, t)
    return result
```

Obliczone wartości zostały nałożone na wykres:

```
In [84]: y_vals = np.array([lagrange_interpolation(x,y,t) for t in x_vals])

plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals, label='Wielomian Lagrange'a', color='blue')
plt.scatter(x, y, color='red', label='Wezły interpolacji')
plt.xlabel('Rok')
plt.ylabel('Populacja')
plt.title('Interpolacja populacji USA - Wielomian Lagrange'a')
plt.legend()
plt.grid()
plt.show()
```


F - Interpolacja metoda Newtona

Ta część zadania ma na celu wyznaczenie corocznych wartości za pomocą wielomianu interpolacyjnego Newtona. W tym celu zostały stworzone funkcje divided_differences oraz newton_interpolation.

Obliczone wartości zostały nałożone na wykres:

```
In [86]: coef = divided_differences(x, y)

y_vals = np.array([newton_interpolation(x, coef, t) for t in x_vals])

plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals, label='Wielomian Newtona', color='blue')
plt.scatter(x, y, color='red', label='Węzły interpolacji')
plt.xlabel('Rok')
plt.ylabel('Populacja')
plt.title('Interpolacja populacji USA - Wielomian Newtona')
plt.legend()
plt.grid()
plt.show()
```


G - Interpolacja Populacji dla wartości Zaokrąglonych

W ramach tego zadania zostaną ponownie wykonane czynności wymagane do interpolacji danych populacji lat 1900 - 1980. Schemat wykonania zadanie nie zmieni się, natomiast dane wejściowe zostaną zaokrąglone do wartości milionowych. Poniżej znajduje się realizacja tego zadania nałożona na wykres:

```
In [87]: x = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980]
y = [76000000, 92000000, 106000000, 123000000, 132000000, 151000000, 179000000, 203000000, 227000000]

A_rounded = create_matrix(x, best_n)
a_rounded = np.linalg.solve(best_matrix, y)

y_vals = [interpolate(t , a_rounded) for t in x_vals]

plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals, label="Wielomian interpolacyjny", color='b')
plt.scatter(x, y, color='r', label="Wezły interpolacyjne")
plt.xlabel("Rok")
plt.ylabel("Populacja")
plt.title("Wielomian interpolacyjny")
plt.title("Wielomian interpolacyjny")
plt.gejad()
plt.grid()
plt.show()
```


Porównane zostały również współczynniki przed zaokrągleniem i po:

```
In [88]: print("Współczynniki przed zaokrągleniem")
print(a)
print("Współczynniki po zaokrągleniu")
print(a_rounded)

Współczynniki przed zaokrągleniem
[ 1.32164569e+08 4.61307656e+07 1.02716315e+08 1.82527130e+08
-3.74614715e+08 -3.42668456e+08 6.06291250e+08 1.89175576e+08
-3.15180235e+08]

Współczynniki po zaokrągleniu
[ 1.32000000e+08 4.59571429e+07 1.00141270e+08 1.81111111e+08
-3.56755556e+08 -3.38488889e+08 5.70311111e+08 1.86920635e+08
-2.94196825e+08]
```

Korzystając z otrzymanego wielomianu interpolacyjnego wyznaczono wartość przybliżoną na rok 1990. Z uzyskanych danych wyznaczono błąd bezwzględny.

```
year_predicted_rounded = interpolate(1990 , a_rounded)
print("Prawdziwa wartość dla 1990 roku: " , year_1990_true)
print("Przewidziana wartość dla 1990 roku: ", year_predicted_rounded)
relative_population_error_rounded = (abs(year_1990_true - year_predicted_rounded) / year_1990_true) * 100
print("Błąd względny ekstrapolacji dla roku 1990:", relative_population_error_rounded)
```

Prawdziwa wartość dla 1990 roku: 248709873 Przewidziana wartość dla 1990 roku: 109000000.00000283 Błąd względny ekstrapolacji dla roku 1990: 56.17383472348006

Przybliżona wartość dla roku 1990 **109000000** jest większa niż wartość przybliżona dla wielomianu interpolacyjnego stworzonego z danych bez zaokrągleń **82749141**. Błąd względny jest mniejszy z czego wynika, że zaokrąglenie poprawiło przewidywania, ale i tak jest to błąd około 50%, co jest wynikiem bardzo złym.

WNIOSEK

Interpolacja to świetne narzędzie pozwalające na przybliżenie wartości wychodzących poza znane nam argumenty. Metoda ta nie powinna być jednak używana do przewidywania wyników zdarzeń przyszłych. Najlepsze zastosowanie znajduje w uzupełnianiu danych z przeszłości.