# Resolución de ecuaciones de SSM

Métodos Numéricos Avanzados ——

Grupo 2

Clozza - Della Sala - Mamone -Rodríguez - Santoflaminio

#### **Fundamentos**

#### **Fundamentos**

Resolución de la ecuación de **Kuramoto-Shivansky (KS)**:  $u_t = -uu_{xx} - u_{xx} - u_{xxx}$ 

Se utiliza para modelar fluidos en una pared vertical, reacciones químicas o fluctuaciones de posición de frentes de llamas.

Utilizando los métodos **Spectral Splitting Methods (SSM)**. Se separan las transformadas discretas de Fourier en la parte *Lineal* y la *No Lineal*.

#### Métodos utilizados

- Lie Trotter
- Strang
- Método afín simétrico
- Método afín asimétrico

# **Implementación**

## **Implementación**

- Programa desarrollado en Matlab
  - → Probado en Matlab de manera local (Prueba por 30 días)
  - → Se pueden correr también en Octave todos los métodos excepto los paralelos (Octave no reconoce los comandos spmd)

• Implementaciones propias de la transformada rápida de Fourier, así como de su inversa. (No se utilizaron las funciones *fft* e *ifft* de Matlab)

#### **Parámetros**

- **method:** Método a utilizar.
- **h:** Paso a utilizar.
- pert: Para realizar pequeñas perturbaciones aleatorias.
- **q:** El orden, para los métodos en cuáles sea relevante cambiarlo.

### Transformada Rápida de Fourier

• Se implementó una versión recursiva del algoritmo:

Caso Base: largo <= 1

Sino, se llama dos veces a la función para calcular los valores de la parte par e impar.

Para su inversa:

$$IFFT(X) = \frac{1}{N}conj(FFT(conj(X)))$$

### Métodos

#### **Lie Trotter**

- Método de primer orden.
- Definido según la siguiente fórmula:  $\Phi_{Lie}(h, u) = \phi_1(h, \phi_0(h, u))$ .

# **Strang**

- Método de segundo orden.
- Definido según la siguiente fórmula:  $\Phi_{Strang}(h, u) = \phi_0(h/2, \phi_1(h/2, u))$

#### **Afin Simétrico**

- Método implementado en serie y en paralelo.
- Utiliza el parámetro q para definir el orden del mismo.
- Definido según la siguiente fórmula:  $\Phi_{Asymmetric}(h) = \sum_{m=1}^{s} \gamma_m \phi_m^{\pm}(h/m)$
- **Serie:** utiliza el método Lie Trotter iterativamente.
- Paralelo: utiliza la función spmd de Matlab para la creación de un pool paralelo.

#### **Afin Asimétrico**

- Similar al método simétrico.
- Difiere en la utilización del método Lie Trotter para los llamados sucesivos.
- Definido según la siguiente fórmula:  $\Phi_{Symmetric}(h) = \sum_{m=1}^{s} \gamma_m (\phi_m^+(h/m) + \phi_m^-(h/m))$ .

### **Resultados**

#### Comparación de la exactitud entre diferentes métodos

| Método                    | Error Global | Error Local |
|---------------------------|--------------|-------------|
| Lie Trotter               | 4.56         | 75.28       |
| Strang                    | 3.35         | 107.46      |
| Afín Simétrico (orden 4)  | 35.82        | 91.62       |
| Afín Asimétrico (orden 4) | 29.11        | 119.88      |

Error Global calculado con pasos 0.002 y 0.004. Error Local con paso 0.25. tmax = 150.

# Comparación entre distintos órdenes para los métodos afines en serie con paso 0.025

| Método          | Orden | Error Local |
|-----------------|-------|-------------|
| Afín Simétrico  | 2     | 138.14      |
| Afín Simétrico  | 4     | 91.62       |
| Afín Asimétrico | 2     | 148.36      |
| Afín Asimétrico | 4     | 137.19      |
| Afín Asimétrico | 6     | 96.95       |

# Comparación entre distintos pasos para los métodos afines en serie de orden 4

| Método          | Paso  | Error Local |
|-----------------|-------|-------------|
| Afín Simétrico  | 0.25  | 91.62       |
| Afín Simétrico  | 0.025 | 84.23       |
| Afín Asimétrico | 0.25  | 137.19      |
| Afín Asimétrico | 0.025 | 57.75       |

# Comparación entre métodos afines en serie y paralelo con paso 0,025

| Método                   | Orden | Tiempo de cómputo [s] |
|--------------------------|-------|-----------------------|
| Afín Simétrico Serie     | 4     | 119                   |
| Afín Simétrico Paralelo  | 4     | 783                   |
| Afín Asimétrico Serie    | 4     | 220                   |
| Afín ASimétrico Paralelo | 4     | 773                   |
| Afín Asimétrico Serie    | 4     | 220                   |

# Comparación del speed up variando el orden para los métodos afines en paralelo con paso 0.025

| Método          | Orden | Speed Up |
|-----------------|-------|----------|
| Afín Simétrico  | 2     | 0.08     |
| Afín Simétrico  | 3     | 0.08     |
| Afín Simétrico  | 4     | 0.17     |
| Afín Asimétrico | 2     | 0.18     |
| Afín Asimétrico | 3     | 0.23     |
| Afín Asimétrico | 4     | 0.23     |

#### **Perturbaciones**



### **Conclusiones**

#### **Conclusiones**

- Un mayor orden nos permite bajar el error.
- Un menor paso nos permite bajar el error.
- No se llegó a una conclusión con los tiempos de cómputo entre los métodos afines en serie y paralelo debido a limitaciones propias.