Дисциплина: Базы данных

«Data Manipulation Language: Select»

Преподаватель: Лут А.В.

Data Manipulation Language (DML)

Операторы выборки (SELECT), вставки (INSERT), обновления (UPDATE) и удаления (DELETE) относятся к операторам манипулирования данными. Эту группу называют также \underline{DATA} $\underline{MANIPULATION\ LANGUAGE}$ (DML).

Оператор SELECT

Оператор SELECT довольно сложен, но основные его возможности описываются следующей конструкцией:

SELECT <список выражений выборки>

[FROM <список источников данных>]

[WHERE < условие выборки>]

[ORDER BY <список выражений, по которым выполняется сортировка>] [ASC|DESC]

Результатом работы оператора SELECT является <u>таблица</u> со столбцами, перечисленными в списке полей выборки.

<u>Выражение из списка выражений выборки</u> — произвольное выражение языка Transact SQL:

1) константа любого типа, например: SELECT 2,3.14159,'Привет'

Рисунок 1 — Результат константного запроса

2) переменная: SELECT @xyz, @MyVar

```
Сообщения 137, уровень 15, состояние 2, строка 1 Необходимо объявить скалярную переменную "@xyz".

Время выполнения: 2022-10-23T21:52:05.5632567+05:00
```

Рисунок 2 – Ошибка после запроса переменных

Почему ошибка?

3) **\$IDENTITY** — значение столбца, обладающего свойством IDENTITY:

select \$IDENTITY from Passgr

order by \$IDENTITY

Рисунок 3 —

Запрос \$IDENTITY

В Сообщения Passgr_ID 9 11

select * from Passgr

	Результаты	🖺 Сообщ	ения		
	Passgr_ID	Flight_ID	Seat_ID	FIO	Passp
1	3	1	1	Сидоров Сидор Сидорович	66 00 432326
2	4	3	10	Аслямов Ильдар Флоридович	23 00 777777
3	5	7	30	Варлей Наталья Михайловна	76 00 888888
4	7	11	10	Шумахер Михаэль Васильевич	765432
5	9	12	10	Пушкин Александр Сергеевич	66 88 54321
6	11	13	1	Петряев Василий Батькович	75 00 234566
7	15	23	46432	Иванов Иван Иванович	54 98 654321
8	19	20	46431	Горбачев Михаил Сергеевич	23 54 456789
9	20	3	10	Петров Петр Петрович	75 00 765234
10	21	5	46432	Федоров Федор Федорович	78 00 543987
11	25	5	52107	Михайлов Михаил Михайлович	76 00 543751
12	27	1	46428	Пётр Иванович Неуважай-Корыто	55 00 999999
13	28	23	52062	Джонсон	66 00 555555
14	29	24	43418	Шестаков Александр	44 345876
15	30	24	52102	Медников Пётр Иванович	66 876123
16	32	26	43418	Шестаков Александр	66 876123
17	33	25	52104	Шестаков Александр	66 876123

Рисунок 4 — Все данные в таблице Passgr

4) \$ROWGUID – значение столбца типа uniqueidentifier

5) имя поля из таблицы базы данных. Синтаксис обращения к полю таблицы имеет в общем случае вид

[<имя базы данных>.] [<имя схемы>.][<имя таблицы>.]<имя поля>

SELECT BD_Warehouse.dbo.Tovar.TovarName
FROM BD_Warehouse.dbo.Tovar
WHERE IsTovar=1

Таким образом, можно выполнять запрос находясь в другой базе данных.

Рисунок 5 — Запрос на поле таблицы

Данные извлекаются из <u>источников данных</u>, в качестве которых могут выступать:

1) таблица базы данных, например: SELECT A.x, B.y from A,B

SELECT Seat.Seat_ID, Passgr_ID

FROM Passgr, Seat

2) view (представление) – это виртуальная таблица, основанная на

наборе результатов оператора SQL.

CREATE VIEW NewCity AS

SELECT City_ID, CityName

FROM City

WHERE City_ID>3

SELECT *

FROM NewCity
DROP VIEW NewCity

 Полити в приментать в приментать

Рисунок 6 — Запрос на view

3) функция, возвращающая таблицу (будет дальше) select *

from [dbo].[TicketSales] ('20000101', '20240101')

4) оператор *SELECT*, например:

select A.FIO, A.SeatName

from (select FIO, SeatName

from Passgr P, Seat S

where P.Seat_ID=S.Seat_ID) as A

5) соединение (имеется в виду операция соединения реляционной алгебры) двух и более таблиц (через join).

	FIO	SeatName
1	Сидоров Сидор Сидорович	1A
2	Аслямов Ильдар Флоридович	18A
3	Варлей Наталья Михайловна	205
4	Шумахер Михаэль Васильевич	18A
5	Пушкин Александр Сергеевич	18A
6	Петряев Василий Батькович	1A
7	Иванов Иван Иванович	35
8	Горбачев Михаил Сергеевич	1A
9	Петров Петр Петрович	18A
10	Федоров Федор Федорович	35
11	Михайлов Михаил Михайлович	25Γ
12	Пётр Иванович Неуважай-Корыто	23A
13	Джонсон	16A
14	Шестаков Александр	1A
15	Медников Пётр Иванович	18A
16	Шестаков Александр	1A
17	Шестаков Александр	205

Рисунок 7 – Select как источник данных

Синтаксис соединения (join):

<источник 1>

[<тип соединения>] JOIN <источник 2>

ON <условие соединения>

Пример:

select FIO, SeatName, PlaneTypeName

from Passgr P

[INNER] JOIN Seat S ON P.Seat_ID=S.Seat_ID

Рисунок 8 – join

SeatName

35

Plane Type Name

Ty-134 Ty-134

Ty-134 Ty-134

TY-134

TY-134

Боинг-747

Боинг-747

Боинг-747

Боинг-747 АН-2

A-310 A-310

A-310

A-310

A-310

TY-134

Результаты Разультаты В Сообщения

Сидоров Сидор Сидорович

Аслямов Ильдар Флоридович

Варлей Наталья Михайловна

Шумахер Михаэль Васильевич

Пушкин Александр Сергеевич

Петряев Василий Батькович

Горбачев Михаил Сергеевич

Федоров Федор Федорович

Михайлов Михаил Михайлович

Пётр Иванович Неуважай-Корыто

Иванов Иван Иванович

Петров Петр Петрович

Шестаков Александр Медников Пётр Иванович

Шестаков Александр

Шестаков Александр

Джонсон

[INNER] JOIN PlaneType PT ON PT.PlaneType_ID=S.PlaneType_ID

select FIO, SeatName, PlaneTypeName -- тоже самое

from Passgr P, Seat S, PlaneType PT

WHERE PT.PlaneType_ID=S.PlaneType_ID

AND P.Seat_ID=S.Seat_ID

Типы соединений

- A [inner] join B on ...
- A left [outer] join B on ...
- A right [outer] join B on ...
- A full [outer] join B on ... (как LEFT и RIGHT)
- A cross join B

	FIO	Seat_ID	Seat_ID	Seat Name
1	Сидоров Сидор Сидорович	1	1	1A
2	Петряев Василий Батькович	1	1	1A
3	Аслямов Ильдар Флоридович	10	10	18A
4	Шумахер Михаэль Васильевич	10	10	18A
5	Пушкин Александр Сергеевич	10	10	18A
6	Петров Петр Петрович	10	10	18A
7	Варлей Наталья Михайловна	30	30	20Б
8	Шестаков Александр	43418	43418	1A
9	Шестаков Александр	43418	43418	1A
10	NULL	NULL	44168	3Г
11	NULL	NULL	46426	2A
12	NULL	NULL	46427	15
13	Пётр Иванович Неуважай-Корыто	46428	46428	23A
14	NULL	NULL	46429	235
15	NULL	NULL	46430	23B
16	Горбачев Михаил Сергеевич	46431	46431	1A
17	Иванов Иван Иванович	46432	46432	35
18	Федоров Федор Федорович	46432	46432	35
19	NULL	NULL	46448	25

Например,

Рисунок 9 – right join

select FIO, P.Seat_ID, S.Seat_ID, SeatName

from Passgr P

RIGHT [OUTER] JOIN Seat S ON P.Seat_ID=S.Seat_ID

Результатом CROSS JOIN является декартово произведение левого и правого операндов операции соединения.

select FIO, P.Seat_ID, S.Seat_ID, SeatName
from Passgr P
CROSS JOIN Seat S

До версии 2008 г. записывалось так: select FIO, P.Seat_ID, S.Seat_ID, SeatName from Passgr P, Seat S where P.Seat_ID*=S.Seat ID

	FIO	Seat_ID	Seat_ID	SeatName	
1	Сидоров Сидор Сидорович	1	1	1A	
2	Сидоров Сидор Сидорович	1	10	18A	
3	Сидоров Сидор Сидорович	1	30	205	
4	Сидоров Сидор Сидорович	1	43418	1A	
5	Сидоров Сидор Сидорович	1	44168	3Г	
6	Сидоров Сидор Сидорович	1	46426	2A	
7	Сидоров Сидор Сидорович	1	46427	15	
8	Сидоров Сидор Сидорович	1	46428	23A	
9	Сидоров Сидор Сидорович	1	46429	235	
10	Сидоров Сидор Сидорович	1	46430	23B	
11	Сидоров Сидор Сидорович	1	46431	1A	
12	Сидоров Сидор Сидорович	1	46432	35	
13	Сидоров Сидор Сидорович	1	46448	26	
14	Сидоров Сидор Сидорович	1	46685	4Д	
15	Сидоров Сидор Сидорович	1	46686	5A	
16	Сидоров Сидор Сидорович	1	51206	8A	
17	Сидоров Сидор Сидорович	1	52062	16A	
18	Сидоров Сидор Сидорович	1	52102	18A	
19	Сидоров Сидор Сидорович	1	52103	15	
20	Сидоров Сидор Сидорович	1	52104	205	
21	Сидоров Сидор Сидорович	1	52105	2A	
22	Сидоров Сидор Сидорович	1	52106	8A	

Рисунок 10 – cross join

<u>Условие выборки</u> – логическое выражение, которому должны удовлетворять записи выборки.

Логическое любые выражение может включать выражения, сравниваемые с помощью обычных, рассмотренных ранее, операций сравнения, логические операции AND, OR, NOT.

Пример:

select Passgr_ID

FROM Passgr P

имер.	III	Результаты	В Сообщения
		Passgr_ID	FIO
ect Passgr_ID	1	3	Сидоров Сидор Сидорович
<u> </u>	2	4	Аслямов Ильдар Флоридович
OM Daggar D	3	5	Варлей Наталья Михайловна
OM Passgr P	4	7	Шумахер Михаэль Васильевич
_	5	9	Пушкин Александр Сергеевич
	6	11	Петряев Василий Батькович
	7	15	Иванов Иван Иванович
	8	19	Горбачев Михаил Сергеевич
	9	20	Петров Петр Петрович
	10	21	Федоров Федор Федорович
	11	25	Михайлов Михаил Михайлович
	12	27	Пётр Иванович Неуважай-Корыто
	13	28	Джонсон
Рисунок 11 –	14	29	Шестаков Александр
I heyhok II —	15	30	Медников Пётр Иванович
Rect 11050n	16	32	Шестаков Александр
Весь набор	17	33	Шестаков Александр

select Passgr_ID, FIO

FROM Passgr P

WHERE P.Passgr_ID>=25

OR P.FIO='Аслямов Ильдар Флоридович'

	Passgr_ID	FIO
1	4	Аслямов Ильдар Флоридович
2	25	Михайлов Михаил Михайлович
3	27	Пётр Иванович Неуважай-Корыто
4	28	Джонсон
5	29	Шестаков Александр
6	30	Медников Пётр Иванович
7	32	Шестаков Александр
8	33	Шестаков Александр

Рисунок 12 –

Указанный набор

Предикат LIKE

<выражение> [NOT] LIKE <шаблон> [ESCAPE <символ>]

Возвращает истину, если выражение удовлетворяет шаблону. В шаблон могут входить обычные символы, которые обозначают сами себя, а также символы — заменители:

- 1) % любая строка, например, @x LIKE '%еее%' означает поиск буквосочетания 'еее' в переменной @x.
- 2) _ (подчеркивание) любой одиночный символ, например, WHERE [Фамилия] LIKE '_a%' будет отыскивать фамилии со второй буквой 'a'.
- 3) [] любой одиночный символ из указанного диапазона, например, [a-f] или [asxz]. Также, [^] любой одиночный символ, не принадлежащий указанному диапазону, например, [^a-f] или [^asxz].

select CityName

FROM City C

WHERE CityName like 'M%'

select CityName

FROM City C

WHERE CityName not like ' a%'

Чебоксары

Мелитополь

Миасс

Абакан

Полетаево

8

Рисунок 13 – Исходная таблица и примеры like

select CityName

FROM City C

WHERE CityName like '[a-e]%'

ИЛИ WHERE CityName not like '[^a-e]%'

ДЗ: Что выдает запрос? select * from Student where StudName

like '_e%!e%' escape '!'

Предикат BETWEEN (между)

Например, @x between 1 and 12. Результат будет иметь значение true, если @x>=1 и @x<=12

select City_ID, CityNameFROM City CWHERE City_ID between 3 and 10

Рисунок 14 – Поиск «между»

declare @q int, @x int
set @q=1
if @q+1 between 0 and 5-@q
 set @x=2
else

set @x=4+@q select @x

Рисунок 15 – Результат вычисления

Предикат IN

означает принадлежность множеству значений и имеет 2 формы.

Во первых, может быть указано фиксированное множество значений, задается оператором *SELECT*: например:

select City_ID, CityName FROM City C WHERE City_ID in(1,2,3)

Рисунок 16 – IN в значениях

Bo втором случае множество

select c.City_ID, c.CityName FROM City C WHERE City_ID in (select c1.City_ID from City c1 where c1.CityName='Челябинск')

Pисунок 17 – IN в select

Предикат ALL

<скалярное выражение><операция сравнения> ALL(<подзапрос>)

Пример: $x \ge ALL(select y from MyTable)$.

Результат — истина, если x больше или равно всех значений y,

возвращаемых оператором SELECT.

select City_ID, CityName

FROM City C

WHERE City_ID>ALL(select City_ID

from City

where CityName='Челябинск')

	Результаты	В Сообщения
	City_ID	CityName
1	4	Магадан
2	5	Екатеринбург
3	209	Чебоксары
4	359	Мелитополь
5	431	Миасс
6	440	Абакан
7	455	Санкт-Петербург
8	572	Полетаево

Рисунок 18 – ALL

Предикат ANY (SOME)

<скалярное выражение> <операция сравнения> {ANY | SOME} (<подзапрос>)

Пример: $x \le ANY(select y from MyTable)$.

Результат — истина, если x меньше или равно чем хотя бы одно значение y, возвращаемое оператором SELECT.

select c.City_ID, c.CityName

FROM City C

WHERE City_ID>=SOME(select c1.City_ID

from City c1

where c1.CityName='Челябинск')

and City_ID<=ANY(select c1.City_ID

from City c1

where c1.CityName='Мелитополь')

	City_ID	CityName
1	3	Челябинск
2	4	Магадан
3	5	Екатеринбург
4	209	Чебоксары
5	359	Мелитополь

Рисунок 19 – SOME

Квантор существования (EXISTS)

Синтаксис:

[NOT] EXISTS(<подзапрос>)

Пример: ... WHERE EXISTS (SELECT * FROM TT).

Результат — истина, если оператор *SELECT* возвращает непустое множество записей.

select c.City_ID, c.CityName

FROM City C

WHERE exists (select c1.City_ID

from City c1

where c1.CityName='Челябинск'

and c.City_ID=c1.City_ID) -- строка обязательна

Рисунок 20 – EXISTS

Квантор общности (NOT EXISTS)

Синтаксис:

NOT EXISTS(<подзапрос>)

Квантор общности — не существует такого объекта, которого не выполнено условие.

select c.City_ID, c.CityName

FROM City C

WHERE not exists (select c1.City_ID

from City c1

where c1. CityName='Челябинск'

	City_ID	CityName
1	1	Москва
2	2	Васюки
3	4	Магадан
4	5	Екатеринбург
5	209	Чебоксары
6	359	Мелитополь
7	431	Миасс
8	440	Абакан
9	455	Санкт-Петербург
10	572	Полетаево

Рисунок 21 – NOT EXISTS

and c.City_ID=c1.City_ID) -- строка обязательна

Фраза ORDER BY

Предписывает порядок, в котором должны следовать записи результирующего множества. Синтаксис:

[ORDER BY { выражение [ASC | DESC] } [,...n]]

Например:

...ORDER BY A.t, B.x DESC

что означает, что выборка упорядочивается по A.t в порядке возрастания (ASC), а в пределах подмножеств записей с одинаковыми значениями A.t — по B.t в порядке убывания (DESC). В список выражений упорядочения могут входить псевдонимы полей

Пример фразы ORDER BY

select c.City_ID, c.CityName
FROM City C
order by CityName asc

Рисунок 22 – Прямой порядок

select c.City_ID, c.CityName
FROM City C
order by CityName desc, City_ID asc

	City_ID	CityName
1	3	Челябинск
2	209	Чебоксары
3	455	Санкт-Петербург
4	572	Полетаево
5	1	Москва
6	431	Миасс
7	359	Мелитополь
8	4	Магадан
9	5	Екатеринбург
10	2	Васюки
11	440	Абакан

Рисунок 23 – Набор порядков

SELECT INTO

Оператор *SELECT* может помещать результат выборки в новую таблицу. Например:

```
SELECT T1.x, T2.y into NewTable FROM T1, T2
```

WHERE T1.z=T2.z

Если таблица NewTable уже существует, то операция будет отвергнута.

Пример:

```
select g.GruppName, s.StudName into ttt
```

from student s, Gruppa g

where g.Grupp_ID=s.grupp_ID

order by GruppName, StudName

Ограничение объёма выборки

В операторе SELECT может присутствовать фраза, ограничивающая объем выборки:

SELECT [ALL | DISTINCT] [TOP n [PERCENT]]...

Умолчанием является ALL. В этом случае оператор SELECT возвращает все записи, удовлетворяющие условию во фразе WHERE.

- *DISTINCT* означает, что все возвращаемые записи должны быть различны. Дубликаты будут исключены из результирующего множества.
- TOP n в результат будут включены только n первых записей.

- $TOP\ n\ PERCENT$ — в результат будут включены только n процентов числа записей, удовлетворяющих условию выборки.

<u>Distinct.</u> Список пассажиров (FIO), когда либо летавших в Санкт-Петербург на самолете A-310. (буква A — кириллица). Примечание: предполагается, что FIO пассажиров уникальны. Упорядочить по алфавиту.

select distinct FIO[, Dat]

from Passgr pg, Flight f, City c, PlaneType pt

where pg.Flight_ID=f.Flight_ID
and f.PlaneType_ID=pt.PlaneType_ID
and f.CityTo_ID=c.City_ID
and c.CityName='Cанкт-Петербург'
and pt.PlaneTypeName='A-310'
order by FIO

select Top 50 percent c.City_ID, c.CityName
FROM City C
order by City_ID
 select Top 7 c.City_ID, c.CityName

FROM City C

order by City_ID

CityName Москва Васюки Челябинск Магадан Екатеринбург Чебоксары Мелитополь 8 Миасс Абакан Санкт-Петербург Полетаево

В Результаты Сообщения select Top 7 c.City_ID, c.CityName

1 Москва
2 Васюки
3 Челябинск select Top 7 c.City_ID, c.CityName

1 Оптература (Стура) (Ст

Рисунок 25 – Исходная таблица и выборки

ш	i coynoran	ы 🖺 Сообщения
	City_ID	CityName
1	1	Москва
2	2	Васюки
3	3	Челябинск
4	4	Магадан
5	5	Екатеринбург
6	209	Чебоксары

	City_ID	CityName
1	1	Москва
2	2	Васюки
3	3	Челябинск
4	4	Магадан
5	5	Екатеринбург
6	209	Чебоксары
7	359	Мелитополь

Вместе с ТОР может быть использован параметр <u>WITH TIES</u>, который позволяет дополнить строки, получаемые применением ТОР строками, имеющими такие же значение выражений, упомянутых во фразе ORDER BY. Например, пусть требуется получить список из 2х товаров, имеющих наименьшие цены. Без применения WITH TIES это запрос имеет вид:

Результаты В Сообщения select top 6 TovarName, Price TovarName Price Рисунок 26 – Болгарский перец 20,00 from Tovar Сравнение 22,00 Черешня 23.00 Груша where 1=IsTovar and price is not null результатов 30.00 Горбулка 45.80 Ананас order by Price Результаты В Сообщения Футболка 50,00 TovarName Price select top 6 with ties TovarName, Price Болгарский перец 20.00 22,00 Черешня from Tovar Груша 23,00 30.00 Горбулка where 1=IsTovar and price is not null 45.80 Ананас 50,00 Футболка order by Price 50,00 Калготки

даёт результат, соответствующий тому факту, что более чем один товар имеет олинаковую цену.

Агрегатные запросы

Оператор *SELECT* может подсчитывать итоги. Для этих целей используются агрегатные функции и группировка. Имеются следующие агрегатные функции:

SUM(выражение) – суммирование;

AVG(выражение) – вычисление среднего значения;

COUNT(выражение) – подсчет числа записей;

MIN(выражение) – нахождение минимального значения;

МАХ(выражение) – нахождение максимального значения.

Фраза

GROUP BY <список выражений группировки>

указывает выражения, по которым выполняется группировка.

use Warehouse

-- На какую сумму организации приобрели товары по годам

select OrgName, year(n.Dat) as [Год], sum(Amount*Price) as [Сумма]

from Org o, Nakl n, SostNakl sn
where o.Org_ID=n.Org_ID
and n.Nakl_ID=sn.Nakl_ID
and n.InOut='-'
group by OrgName, year(Dat)
order by OrgName, year(Dat)

	OrgName	Год	Сумма
1	Крокодиловая ферма на Миассе	2015	63.0000000
2	Крокодиловая ферма на Миассе	2017	43340.0000000
3	Крокодиловая ферма на Миассе	2019	1291.4000000
4	Организация Объединённых Наций	2016	41638.0000000
5	Протыкание дырок в сыре	2015	2499.0000000

Рисунок 27 – Товары по годам

Все поля, возвращаемые оператором *SELECT* с группировкой, должны либо находиться под агрегатной функцией, либо входить во фразу *GROUP BY*.

HAVING

Агрегатный запрос может включать фразу *HAVING*, которая играет для результата группировки ту же роль, что и фраза *WHERE* для отдельных записей, которые являются исходными данными для выполнения группировки.

Модифицируем последний запрос следующим образом: искать только суммы превышающие 1000 рублей.

select OrgName, year(n.Dat) as [Год], sum(Amount*Price) as [Сумма]

from Org o, Nakl n, SostNakl sn
where o.Org_ID=n.Org_ID
and n.Nakl_ID=sn.Nakl_ID
and n.InOut='-'

group by OrgName, year(Dat)
having sum(Amount*Price)>1000
order by OrgName, year(Dat)

	OrgName	Год	Сумма
1	Крокодиловая ферма на Миассе	2017	43340.0000000
2	Крокодиловая ферма на Миассе	2019	1291.4000000
3	Организация Объединённых Наций	2016	41638.0000000
4	Протыкание дырок в сыре	2015	2499.0000000

Рисунок 28 – Товары по годам превышающие 1000 руб.

Операторы UNION, EXCEPT, INTERSECT

Оператор <u>UNION</u> может объединять результаты двух операторов *SELECT*, например:

SELECT 1, 2

UNION

SELECT 1, 2

Рисунок 29 – Union

имеет результат, содержащий две строки.

Если *ALL* присутствует, то в результат будут включены все записи, в противном случае дубликаты будут исключены.

SELECT 1, 2

UNION ALL

SELECT 1, 2

Рисунок 30 – Union all

EXCEPT и INTERSECT— вычитание и пересечение

<оператор SELECT> EXCEPT <оператор SELECT>

<оператор SELECT> INTERSECT <оператор SELECT>

Для все трёх операторов поля с одинаковыми номерами необязательно должны быть одного типа, но необходимо, чтобы в операторах *SELECT* могли быть неявно приведены к типу одного из них, например:

SELECT 3+8 AS a, 4 AS b, getdate() AS d

UNION

SELECT 1,'2', '20191118'

	Резуль	тать	в Сообщения
	a	b	d
1	11	4	2022-10-24 01:03:10.360
2	1	2	2019-11-18 00:00:00.000

Рисунок 31 – Неявное приведение типов

Поля результата будут иметь те же имена, что и в первом из операторов *SELECT*.

Для операторов EXCEPT и INTERSECT дубликатные записи в результат не помещаются.

Примеры.

(SELECT 1, 3

UNION

SELECT 1, 2)

EXCEPT

SELECT 1, 2

(SELECT 1, 3

UNION

SELECT 1, 2)

INTERSECT

SELECT 1, 2

Рисунок 32 – Вычитание

Рисунок 32 – Пересечение

Примеры операторов SELECT

1) Товары и история цен до сегодняшнего дня.

SELECT Tovar.Tovar_ID, Tovar.TovarName,

DateStart, PriceList.Price, DateEnd

FROM Tovar left join PriceList

on Tovar_ID=PriceList.Tovar_ID

where IsTovar=1

--and DateStart<=getdate()</pre>

ORDER BY TovarName

	Tovar_ID	TovarName	DateStart	Price	DateEnd
1	35	Ананас	2010-11-08 00:00:00.000	45,80	2016-12-11 00:00:00.000
2	10	Апельсин	2014-02-02 00:00:00.000	12,00	2016-07-30 00:00:00.000
3	10	Алельсин	2008-09-01 00:00:00.000	60,00	2009-02-25 00:00:00.000
4	10	Алельсин	2016-07-31 00:00:00.000	77,00	NULL
5	28	Батон нарезной	2011-04-28 00:00:00.000	30,00	2015-05-31 00:00:00.000
6	28	Батон нарезной	2015-06-01 00:00:00.000	120,00	2015-06-30 00:00:00.000
7	28	Батон нарезной	2019-01-01 00:00:00.000	20,00	2019-01-31 00:00:00.000
8	28	Батон нарезной	2019-01-15 00:00:00.000	25,00	2019-02-10 00:00:00.000
9	42	Болгарский перец	2010-06-27 00:00:00.000	77,00	2015-07-30 00:00:00.000
10	69	Вело	NULL	NULL	NULL
11	27	Горбулка	2011-09-12 00:00:00.000	43,00	2013-01-01 00:00:00.000
12	36	Груша	2010-11-08 00:00:00.000	55,90	2015-12-11 00:00:00.000
13	39	Калготки	2010-11-08 00:00:00.000	50,00	2015-12-11 00:00:00.000
14	51	Мандарины	NULL	NULL	NULL
15	70	Семечки	NULL	NULL	NULL
16	37	Футболка	2010-06-27 00:00:00.000	30,00	2015-07-30 00:00:00.000
17	43	Черешня	2008-10-26 00:00:00.000	80,00	2016-02-28 00:00:00.000
18	43	Черешня	2020-06-02 00:00:00.000	200,00	2020-06-30 00:00:00.000
19	43	Черешня	2020-06-20 00:00:00.000	250,00	2020-07-30 00:00:00.000
20	38	Шуба	2010-06-27 00:00:00.000	100.00	2016-07-30 00:00:00.000

Рисунок 34 – Товары и цены

Примечание: используется левое внешнее соединение таблиц Tovar и PriceList, с тем, чтобы в результат вошли все товары, в том числе не имеющие цены.

2) другое решение задачи 1 SELECT t.Tovar_ID, t.TovarName, p.Price, p.DateStart, DateEnd FROM Tovar t left join PriceList p on t.Tovar_ID=p.Tovar_ID where t.IsTovar=1 and DateStart<=getdate() and (DateEnd is null or DateEnd>=getdate())

ORDER BY TovarName

Рисунок 35 – Товары и цены

В чем отличие?

3) оператор *SELECT* используется в списке извлекаемых полей **SELECT** Tovar.Tovar_ID, Tovar.TovarName,

(SELECT top 1 Price

FROM PriceList

WHERE Tovar.Tovar_ID=PriceList.Tovar_ID

and DateStart<=getdate()

and (DateEnd is null

or DateEnd>=getdate())

ORDER BY DateStart desc

) as Price

FROM Tovar

where IsTovar=1 ORDER BY TovarName

Рисунок 36 – Select как поле выборки

4) список организаций, закупавших «Апельсин»

SELECT distinct Org.*

FROM Org, Nakl, SostNakl, Tovar

WHERE Nakl.Org_ID=Org.Org_ID

and Nakl.Nakl_ID=SostNakl.Nakl_ID

and SostNakl.Tovar_ID=Tovar.Tovar_ID

and Nakl.InOut='-'

and Tovar.TovarName='Апельсин'

ORDER BY OrgName

	Результать	ы ह≣ Сообщения		
	Org_ID	OrgName	Address	Phone
1	7	Крокодиловая ферма на Миассе	Зоопарк за углом в Лондоне на Бейкер-street	NoPhone
2	8	Протыкание дырок в сыре	Лондон-сити	222222

Рисунок 37 – Покупатели апельсинов

5) другое решение задачи 4 с квантором существования

SELECT Org.*

FROM Org

WHERE exists

	Результать	ы В Сообщения		
	Org_ID	OrgName	Address	Phone
1	7	Крокодиловая ферма на Миассе	Зоопарк за углом в Лондоне на Бейкер-street	NoPhone
2	8	Протыкание дырок в сыре	Лондон-сити	222222

Рисунок 38 – Покупатели апельсинов

(SELECT SostNakl.*

FROM Nakl, SostNakl, Tovar

WHERE Nakl.Org_ID=Org.Org_ID

and Nakl.Nakl_ID=SostNakl.Nakl_ID

and SostNakl.Tovar_ID=Tovar.Tovar_ID

and Tovar.TovarName='Апельсин'

and Nakl.InOut='-'

ORDER BY OrgName

б) пример иллюстрирует соединение таблицы с самой собой. Получить список пар организаций, имеющих одинаковый адрес.

SELECT t1.OrgName AS Org1, t2.OrgName AS Org2

FROM Org t1, Org t2
WHERE t1.Address=t2.Address
and t1.Org_ID<t2.Org_ID

	Org1	Org2
1	Организация Объединённых Наций	Бюро по приватизации жилья
2	Страусиный питомник	Черные ассоциации восточной океании
3	Страусиный питомник	Новая организация
4	Черные ассоциации восточной океании	Новая организация
5	Страусиный питомник	Уральский Социально-Экономический Инстит
6	Черные ассоциации восточной океании	Уральский Социально-Экономический Инстит
7	Новая организация	Уральский Социально-Экономический Инстит
8	Организация Объединённых Наций	ЮУрГУ
9	Бюро по приватизации жилья	ЮУрГУ

Рисунок 39 – Одинаковые адреса

условие t1.Org_ID<t2.Org_ID добавлено, чтобы в результирующем множестве записей не появлялись пары вида:

(A, A), (A, B), (B, A).

7) оператор *SELECT* во фразе *FROM*. Получить список накладных на поступление товаров от организаций, расположенных на улице 'Свободы' с 1 января 2001 г. по 30 апреля 2022 г.

```
SELECT Nakl.*, o.OrgName, Address
FROM Nakl, (SELECT * FROM Org) AS o
WHERE Nakl.Org_ID=o.Org_ID
and Address like '%Свободы%'
and Nakl.InOut='+'
and (Dat BETWEEN '20010101' and '20220430')
```

ORDER BY o.OrgName, Nakl.Dat

	Результаты	В Сообщения						
	Nakl_ID	Dat	Numb	Org_ID	InOut	SumNakl	OrgName	Address
1	52	2015-05-15 00:00:00.000	224	22	+	20792,80	Новая организация	Свободы 155-А

Рисунок 40 – Накладные

8) запрос с группировкой. Получить суммы закупок организаций по месяцам 2009 г. для организаций, для которых сумма закупок превысила 1000 р. Результатом должна явиться таблица с полями Организация, Месяц, Сумма закупок. Обратите внимание, что во фразах GROUP BY, HAVING, ORDER BY использование псевдонимов полей не допускается.

SELECT OrgName, month(Nakl.Dat) AS Mon,

SUM(SostNakl.Amount*SostNakl.Price) AS Summa

FROM Org, Nakl, SostNakl

WHERE Org.Org_ID=Nakl.Org_ID

and Nakl.Nakl_ID=SostNakl.Nakl_ID

and Nakl.InOut='-' and year(Nakl.Dat)=2015

 В Результаты
 В Сообщения

 OrgName
 Mon
 Summa

 1
 Протыкание дырок в сыре
 5
 2499.0000000

Рисунок 41 – Запрос с группировкой

GROUP BY OrgName, month(Nakl.Dat)

HAVING SUM(SostNakl.Amount*SostNakl.Price)>1000

ORDER BY OrgName, month(Nakl.Dat)

9) оператор select может появиться и во фразе WHERE. Получить данные о последней накладной для каждой организации.

select o.OrgName, n1.*

from Org o, Nakl n1

where o.Org_ID=n1.Org_ID

and n1.Dat = (select max(Dat))

from Nakl n2

where n2.Org_ID=o.Org_ID)

	OrgName	Nakl_ID	Dat	Numb	Org_ID	InOut	SumNakl
1	Новая организация	52	2015-05-15 00:00:00.000	224	22	+	20792,80
2	Microsoft	66	2018-10-21 00:00:00.000	4333	14	+	0.00
3	Протыкание дырок в сыре	65	2019-10-21 00:00:00.000	3334	8	+	0,00
4	Крокодиловая ферма на Миассе	50	2019-09-30 00:00:00.000	4321	7	527	1291,40
5	Крокодиловая ферма на Миассе	64	2019-09-30 00:00:00.000	4321	7	- 55	0.00
6	Бюро по приватизации жилья	51	2011-05-13 00:00:00.000	22	2	+	857,44
7	Организация Объединённых Наций	59	2016-02-15 00:00:00.000	300	1	0.00	41638,00

Рисунок 42 – Последние накладные

Замечания

1. Объявив другое название таблицы, следует указывать только его.

Сообщения

Сообщение 4104, уровень 16, состояние 1, строка 3

Не удалось привязать составной идентификатор "Passgr.Seat_ID".

Сообщение 4104, уровень 16, состояние 1, строка 3

Не удалось привязать составной идентификатор "Seat.Seat_ID".

Сообщение 4104, уровень 16, состояние 1, строка 1

Не удалось привязать составной идентификатор "Passgr.Seat_ID".

Сообщение 4104, уровень 16, состояние 1, строка 1

Не удалось привязать составной идентификатор "Seat.Seat_ID".

Время выполнения: 2022-10-23T22:20:33.0964355+05:00

Рисунок 43 — Неправильное указание источника и правильное

SELECT FIO, p.Seat_ID, s.Seat_ID, SeatName FROM Passgr p, Seat s Where p.Seat_ID=s.Seat_ID

	FIO	Seat_ID	Seat_ID	SeatName
1	Сидоров Сидор Сидорович	1	1	1A
2	Аслямов Ильдар Флоридович	10	10	18A
3	Варлей Наталья Михайловна	30	30	20Б
4	Шумахер Михаэль Васильевич	10	10	18A
5	Пушкин Александр Сергеевич	10	10	18A
6	Петряев Василий Батькович	1	1	1A
7	Иванов Иван Иванович	46432	46432	35
8	Горбачев Михаил Сергеевич	46431	46431	1A
9	Петров Петр Петрович	10	10	18A
10	Федоров Федор Федорович	46432	46432	35
11	Михайлов Михаил Михайлович	52107	52107	25Г
12	Пётр Иванович Неуважай-Корыто	46428	46428	23A
13	Джонсон	52062	52062	16A
14	Шестаков Александр	43418	43418	1A
15	Медников Пётр Иванович	52102	52102	18A
16	Шестаков Александр	43418	43418	1A
17	Шестаков Александр	52104	52104	205

2. Поля таблицы находятся только после указания их в строке FROM

Рисунок 44 – Поля и таблицы в MS SQL

3. Упорядочивание полей без строки ORDER BY идет по порядку

внесения записей в таблицы

SELECT Seat.Seat_ID, Passgr_ID

FROM Passgr, Seat

SELECT Passgr_ID, Seat.Seat_ID

FROM Passgr, Seat

SELECT FIO, Passgr_ID

FROM Passgr

	FIO	Passgr_ID
1	Сидоров Сидор Сидорович	3
2	Аслямов Ильдар Флоридович	4
3	Варлей Наталья Михайловна	5
4	Шумахер Михаэль Васильевич	7
5	Пушкин Александр Сергеевич	9
6	Петряев Василий Батькович	11
7	Иванов Иван Иванович	15
8	Горбачев Михаил Сергеевич	19
9	Петров Петр Петрович	20
10	Федоров Федор Федорович	21
11	Михайлов Михаил Михайлович	25
12	Пётр Иванович Неуважай-Корыто	27
13	Джонсон	28
14	Шестаков Александр	29
15	Медников Пётр Иванович	30
16	Шестаков Александр	32
17	Шестаков Александр	33

T.к. Seat был заполнен ранее и на него ссылался Passgr требуя наличия

Рисунок 45 – Порядок без указания

ш	Результаты	🖺 Сообщения
	Seat_ID	Passgr_ID
1	1	3
2	10	3
3	30	3
4	43418	3
5	44168	3
6	46426	3
7	46427	3
8	46428	3
9	46429	3
10	46430	3
11	46431	3
12	46432	3
13	46448	3
14	46685	3
15	46686	3
16	51206	3
17	52062	3
18	52102	3
19	52103	3
20	52104	3
21	52105	3
22	52106	3
23	52107	3
24	54057	3
25	54058	3
26	54059	3
27	54063	3
28	54091	3
29	54092	3
30	1	27
31	10	27
32	30	27

4. Способы переименовать поля выборки (столбцы), а также как их указать в упорядочивании.

SELECT FIO as ФИО, p.Seat_ID Mecтo1,

s.Seat_ID Wsv, SeatName [Mecto]

FROM Passgr p, Seat s

Where p.Seat_ID=s.Seat_ID

order by ФИО, p.Seat_ID, Wsv, [Место]

	ФИО	Место 1	Wsv	Место
1	Аслямов Ильдар Флоридович	10	10	18A
2	Варлей Наталья Михайловна	30	30	205
3	Горбачев Михаил Сергеевич	46431	46431	1A
4	Джонсон	52062	52062	16A
5	Иванов Иван Иванович	46432	46432	3Б
6	Медников Пётр Иванович	52102	52102	18A
7	Михайлов Михаил Михайлович	52107	52107	25Г
8	Пётр Иванович Неуважай-Корыто	46428	46428	23A
9	Петров Петр Петрович	10	10	18A
10	Петряев Василий Батькович	1	1	1A
11	Пушкин Александр Сергеевич	10	10	18A
12	Сидоров Сидор Сидорович	1	1	1A
13	Федоров Федор Федорович	46432	46432	3Б
14	Шестаков Александр	43418	43418	1A
15	Шестаков Александр	43418	43418	1A
16	Шестаков Александр	52104	52104	20Б
17	Шумахер Михаэль Васильевич	10	10	18A

Рисунок 46 – Результат запроса