Day 5 Geometric BGG Part 1 Graded S-modules induce sheaves on PM. Eisenbud - Fløysted-Schryer, 03: There is a version of BGG for sheaves on P", and the functors can be computed explicitly. Crash course on sheaves and sheef cohomology: Projective n-space: $P^{n} = k^{n+1} \setminus \{0\} / (a_{0}, a_{n}) \sim (\lambda_{90}, a_{n}), \lambda \in k \setminus \{0\}.$ Defin: (Sketch) A (coherent) sheet of modules on P" is a collection of (fg) $S\left[\frac{1}{x}\right]$ -modules M_i for $0 \le i \le n$ satisfying: $M_{i} \otimes_{S[\frac{1}{x_{i}}]_{i}} S[\frac{1}{x_{i}x_{j}}]_{i} \cong M_{j} \otimes_{S[\frac{1}{x_{i}}]_{i}} S[\frac{1}{x_{i}x_{j}}]_{i}$ for all i,jThe isomorphisms in I are "competible". [cocycle condition] (2) Idea: a sheef of modules on Ph is the result of gluing not modules over a polynomial viz. Analogy: shears are to P" as modules are to S. Any (fg) graded 5-module M determines a (coherent) sheaf \widetilde{M} on $\mathbb{P}^n: M[\frac{1}{x_0}]_{0,\ldots}, M[\frac{1}{x_0}]_{0,\ldots}$ Every coherent sheet on Ph ariser this way. But M H M is not a bijection. Ex: If $\dim_{\mathbb{R}} M < \infty$, then $M\left[\frac{1}{x_1}\right] = 0$ $\forall i$, so $\widetilde{M} = 0$.

Notetion: $G(i) := \widehat{S(i)}$. $\widehat{M}(j) := \widehat{M} \otimes U(j) (\cong M(j))$. $Coh(\mathbb{P}^n) : category of coherent shears on <math>\mathbb{P}^n$. Exact squences of shower make sense in cohilph). IF M' - M - M" is an exect seguence of gdd S-modules, $\widetilde{M'} \longrightarrow \widetilde{M} \longrightarrow \widetilde{M''}$ is exact. \Rightarrow If $M' \subseteq M$, and $\lim_{k} M/M' < \omega$, then $\widetilde{M}' \cong \widetilde{M}$ Sheef whomology: Let $M \in Mud(S)$. The Euch complex of \widetilde{M} is the complex $\tilde{C}(\tilde{M})$ of k-vector spaces of its term $C'(\widetilde{M}) = \bigoplus_{0 \leq j_0 < \dots < j_i \leq n} M \left[\frac{1}{x_{j_0 \cdots x_{j_i}}} \right] 0 \qquad (for 0 \leq i \leq n).$ Write an element $\lambda \in \mathcal{E}^{i}(\widetilde{M})$ as a tuple $(\lambda_{j_0, \dots, j_i})$. The differential $C(\widetilde{M})^{i} \longrightarrow C(\widetilde{M})^{i+1}$ sends of the tuple do such that (J_{λ}) := $\mathcal{E}(-1)^{\ell}$ $\mathcal{E}(-1)^{\ell}$ $\mathcal{E}(-1)^{\ell}$. (This does not depend on the choice of M). Ex: n=1, M= S(j), jε Z. $\mathcal{C}(\mathcal{O}(j)) = S\left[\frac{1}{x_n}\right]_i \oplus S\left[\frac{1}{x_1}\right]_i \xrightarrow{(-1 \ 1)} S\left[\frac{1}{x_nx_n}\right]_i$ Defin: The ith cohomology of M is: $H^{1}(\mathbb{P}^{n}, \widetilde{M}) := H^{1} \widetilde{C}(\widetilde{M})$

Short exercise: compute H° (P', G(j)), Vj & Z.