- 1 Find the limits and determine the rates of convergence.
 - a. $\lim_{n \to \infty} \ln(n^2 + (-1)^n n) 2 \ln n$
 - b. $\lim_{h \to 0} \frac{\sin h he^{-h}}{h}$
- **Solution** a. Using the properties of logarithms, we can rewrite the function as

$$\ln\left(\frac{n^2 + (-1)^n n}{n^2}\right) = \ln\left(1 + \frac{(-1)^n}{n}\right).$$

Since $\ln(\cdot)$ is continuous, we can pass the limit to the argument of the function to get

$$\lim_{n \to \infty} \ln(n^2 + (-1)^n n) - 2 \ln n = \ln \left[\lim_{n \to \infty} \left(1 + \frac{(-1)^n}{n} \right) \right] = \ln 1 = 0.$$

By the mean value theorem,

$$\left| \ln(n^2 + (-1)^n n) - 2 \ln n \right| = \left| \ln(n^2 + (-1)^n n) - \ln n^2 \right| \le \frac{1}{\xi} \left| (n^2 + (-1)^n n - n^2) \right| = \frac{n}{\xi},$$

for some $\xi \in [n^2 + (-1)^n n, n^2]$ (or the other way around). In either case, have

$$\xi \ge n^2 - n \implies \frac{1}{\xi} \le \frac{1}{n^2 - n} \le \frac{1}{n^2 - n^2/2} = \frac{2}{n^2}.$$

Thus,

$$\left| \ln(n^2 + (-1)^n n) - 2 \ln n \right| \le \frac{n}{\xi} \le \frac{2n}{n^2} = 2 \cdot \frac{1}{n},$$

SO

$$\left|\ln(n^2 + (-1)^n n) - 2\ln n\right| = \mathcal{O}\left(\frac{1}{n}\right).$$

b. By Taylor's theorem and the fact that $h^3 \leq h^2 \implies h^3 = \mathcal{O}(h^2)$ for $|h| \leq 1$, we can write

$$\frac{\sin h - he^{-h}}{h} = \frac{(h + \mathcal{O}(h^3)) - (h - \mathcal{O}(h^2))}{h} = \frac{\mathcal{O}(h^2)}{h} = \mathcal{O}(h).$$

This also shows that the limit is 0.

2 Write an algorithm to sum the finite series $\sum_{k=1}^{N} kx_k$ is reverse order.

Solution Here is the algorithm:

Input :
$$x_1, ..., x_N$$

Output: The sum $\sum kx_k$
Initialize $sum = 0$;
for $i = 0, ..., N-1$ do
 $\sum sum = sum + (N-i)x_{N-i}$
return sum

3 Let
$$f(x) = x^2 - 5x + 3$$
.

- a. Find out the exact solution p to f(x) = 0 on [0, 1].
- b. If we are to use the Bisection method to find the solution of f(x) = 0 on [0,1] accurate to 10^{-4} (i.e., the absolute error of the solution is no greater than 10^{-4}), how many iterations do we need? Provide a reasonable estimate for this.
- c. Manually implement the Bisection method to solve f(x) = 0 on [0,1]. Write your results as fractions. You may stop the iteration when the length of the subinterval is less than 0.1; return the midpoint p^* of the final subinterval as an approximate solution.
- d. Calculate the absolute and relative errors of the approximate solution p^* obtained in the previous part.

Solution a. By the quadratic formula,

$$p = \frac{5 - \sqrt{25 - 12}}{2} \approx 0.697224362268.$$

b. The error $|p-p^*|$ after the *n*-th iteration is bounded by $\frac{b-a}{2^n} = \frac{1}{2^n}$, so a precision of 10^{-4} occurs at about 14 iterations, since

$$2^{-14} \approx 0.00006103515625 \approx 0.5 \times 10^{-5}$$
.

c.							
	n	a_n	b_n	$f(a_n)$	$f(b_n)$	p_n	$f(p_n)$
	0	0	1	3	-1	1/2	1/2
	1	1/2	1	3/4	-1	3/4	-3/16
	2	1/2	3/4	3/4	-3/16	5/8	17/64
	3	5/8	3/4	17/64	-3/16	11/16	9/256
	4	11/16	3/4	9/256	-3/16	23/32	

Our estimate is $p^* = 23/32 = 0.71875$.

a.		Error
	p-p*	0.02152563773
	$\left \frac{p-p*}{n}\right $	0.03087332987

4 We mentioned in class that when implementing the Bisection method on a computer, it is suggested to use

$$p_n = a_n + \frac{b_n - a_n}{2}$$
 instead of $p_n = \frac{a_n + b_n}{2}$

to compute the midpoint of the interval $[a_n, b_n]$, although the former may lead to loss of accuracy when a_n and b_n are very close—due to subtraction of nearly equal numbers. The problem of the latter formula in the finite-digit arithmetic, however, is that it may return a number outside the interval $[a_n, b_n]$, which is fatal to the Bisection method. The following is an example.

Let a = 0.7326 and b = 0.7329.

- a. Compute p = (a + b)/2 using 4-digit chopping.
- b. Compute p' = (a + b)/2 using 4-digit rounding.
- c. Compute p'' = a + (b a)/2 using 4-digit rounding. (You are also encouraged to try 4-digit chopping.)

Solution a.
$$p = \frac{a+b}{2} = \frac{\text{fl}(\text{fl}\,a+\text{fl}\,b)}{2} = \frac{1.465}{2} = 0.7325 < a.$$

b.
$$p' = \frac{a+b}{2} = \frac{\text{fl}(\text{fl}\,a + \text{fl}\,b)}{2} = \frac{1.466}{2} = 0.733 > b.$$

c.
$$p'' = a + \frac{b-a}{2} = \text{fl}\left[\text{fl } a + \frac{\text{fl}(\text{fl } b - \text{fl } a)}{2}\right] = \text{fl}(0.7326 + 0.00015) = 0.7328 \in [a, b].$$

5 Show that $g(x) = \cos x$ has a unique fixed point on [1/2, 1].

Solution We need to show two things: that q has a fixed point, and that the fixed point is unique.

Consider $f(x) = x - \cos x$. Then f(1/2) < 0 and f(1) > 0, so by the intermediate value theorem, f has a 0 on the interval [1/2, 1], which is equivalent to saying that g has a fixed point on the same interval.

Next, we will show uniqueness. Notice that

$$|g'(x)| = |-\sin x| = |\sin x|.$$

Since $[1/2,1] \subseteq (0,\pi/2)$. Since $\sin x$ is increasing on $[0,\pi/2]$ and $\sin \pi/2 = 1$, it follows that $|\sin x| < 1$ on [1/2, 1]. Moreover, sin x is continuous and [1/2, 1] is compact, so sin x obtains a maximum value 0 < k < 1on [1/2, 1]. Hence, $|g'(x)| \le k < 1$, so by the uniqueness theorem for the fixed point method, the fixed point of g is unique.