1. Introduction

This project implements a **hybrid retrieval system** that combines dense-vector semantic search with sparse keyword-based retrieval. The motivation is to leverage the advantages of both methods:

- Vector search captures semantic similarity and paraphrasing.
- Keyword search provides precision with explicit term matches.
- Hybrid retrieval fuses the two to achieve more robust and stable search results.

2. System Design

Indexing:

- Document metadata and chunks stored in SQLite.
- Embeddings for each chunk stored in FAISS (cosine similarity).

Retrieval methods:

- Vector-only (FAISS) semantic similarity search.
- o Keyword-only (BM25/FTS5) sparse retrieval using keyword matches.
- \circ *Hybrid-sum* weighted sum of normalized vector and keyword scores (default α =0.6).
- Hybrid-rrf Reciprocal Rank Fusion (RRF) with constant C=60.

Implementation:

- Model: sentence-transformers/all-MiniLM-L6-v2
- o Chunk size: 500 tokens, overlap: 50
- FastAPI endpoint /hybrid_search serving the four retrieval modes.

3. Evaluation Setup

Dataset:

Three example documents: 01_transformers, 02_bm25, 03_faiss.

Queries:

 At least 10 test queries covering each document, including multi-answer queries.

Gold standard:

Each query mapped to one or more relevant documents.

Metrics:

o Recall@k, MRR@k, nDCG@k (for k=1,3,5).

Alpha sweep:

 \circ Evaluated weighted-sum fusion at $\alpha = 0.3, 0.5, 0.7$.

4. Results

4.1 Quantitative Results

From scores_by_method_and_k.csv:

- **Vector-only:** Strong at capturing paraphrasing, but sometimes ranks irrelevant documents.
- **Keyword-only:** Accurate when exact terms appear, but brittle with synonyms.
- Hybrid-sum and Hybrid-rrf: Achieve consistently higher Recall@3 and nDCG compared to single methods.

📊 Figures:

- Bar charts of Recall/MRR/nDCG by method (k=1/3/5).
- Line chart of Recall@3 vs α (from alpha_sweep_k3.csv).
 - o Performance is stable across α = 0.3–0.7, best around α=0.6.

4.2 Qualitative Results

Based on qualitative_examples.md:

Query	Gold Doc	Vector-only	Keyword-only	Hybrid-sum
what is attention in transformers	01_transformers	Hits correct doc at rank 1, but also includes irrelevant (faiss, bm25).	Hits correct doc (explicit terms), also includes noise.	Correct doc boosted to top with max score; noise down- weighted.
why are transformers good for long texts	01_transformers	Captures semantic link (long texts vs long sequences).	Hits correct doc due to keyword, weaker on paraphrase.	Correct doc remains rank 1, irrelevant docs ranked lower.
self-attention explained simply	01_transformers	Correct doc retrieved, but noise in other ranks.	Returns only the correct doc (low recall).	Combines both, keeps correct doc top-1 while balancing recall.

Observations:

- Vector-only: good semantic recall, risk of drift.
- Keyword-only: precise but limited coverage.
- Hybrid: balances precision and recall, more stable top-k results.

5. Discussion

- **Strengths of hybrid:** Robust to synonyms and paraphrases while preserving keyword precision.
- Limitations: Current dataset is very small; real-world performance requires scaling.
- **Future improvements:** Larger corpus, advanced rank fusion (e.g., learning-to-rank), and neural rerankers (e.g., cross-encoders).

6. Reproducibility

- **Config:** Recorded in config.json (model, chunking, a values, db path).
- Environment:

- o Python 3.10+
- OS: Windows 11 (based on db path)
- o Dependencies: requirements.txt exported with pip freeze.

Steps:

- 1. pip install -r requirements.txt
- 2. Prepare docs/ folder with input texts.
- 3. Run python build_index.py.
- 4. Start API with uvicorn api:app --reload.
- 5. Evaluate with python eval_hybrid_plus.py.
- 6. Visualize results with generated CSV/figures.

7. Conclusion

The hybrid retrieval system demonstrates clear advantages over vector-only and keyword-only methods. Both quantitative metrics (Recall/MRR/nDCG) and qualitative analysis show that fusion methods (sum, rrf) produce more reliable top-k results. The project highlights the effectiveness of combining dense and sparse retrieval for robust information access.