DATASCI207-005/007 Applied Machine Learning

Vilena Livinsky, PhD(c)

School of Information, UC Berkeley

Week 7: 02/19/2025 & 02/20/2025

Today's Agenda

- KNN
- Decision Trees
- Ensemble Learning
- Walkthroughs/ Practice:
 - KNN
 - Decision Trees
 - Ensemble Learning

KNN: "Lazy Learner"

Train Step:

- Remember the train dataset
- Model: Nonparametric? Parametric?

Prediction Step:

- predict label of new data point ("Majority Vote")
- KNN algorithm
- Distance Measures
 - Scale your features!
 - Ex: Euclidean Distance (L2):
 - Larger distance values will dominate
 - https://scikitlearn.org/stable/modules/generated/sklearn.metrics.pairwise. distance_metrics.html#sklearn.metrics.pairwise.distance_me trics

*Higher dimensional spaces: everything is further apart

- Neighbours become less similar
- Density decreases with the number of dimensions

Image Source: Raschka S., Introduction to Machine Learning

k in kNN

- choosing k
 - Consider how smooth a boundary would be the larger/ smaller the k is
 - Ex.: Binary Classification
 - squares vs triangles
 - Where's k = 1?

Image Source: Raschka S., Introduction to Machine Learning

Decision Trees

Decision Trees

Goal: Split nodes at the most informative features

objective function: maximize the Information Gain at each split

Impurity:

- Entropy
- Gini
- Both maximal if the classes are perfectly mixed

to reduce the combinatorial search space, most libraries (ex. scikit-learn) implement binary decision trees

Information Gain

IG = Entropy before - Entropy after

IG > 0

Weighted by number of examples


```
H_0 =
          -.5 \log(.5)
          -.5 \log(.5) = 1
H_1 =
          -.625 \log(.625)
          -.375 \log(.375) =
. 95
H_2 =
          -0 \log(0)
          -1 \log(1) = 0
IG(Int'l Plan) =
 1 - [.8(.95) + .2(0)] =
 1 - .76 =
 .24
```

Measuring "purity" of a split

Certainty about Yes/No after a split:

```
pure set (5 yes, 0 no)
                                     very much certain (100%)
impure (3 yes, 3 no)
                                     very much uncertain (50%)
```


Entropy btw. 0 & 1

= Entropy is 0

Ensemble Methods

Tree-based methods: Majority Voting, Bagging, Boosting (AdaBoost/ Gradient Boosting), Random Forests

Majority Voting

can be built from:

 <u>different</u> classification algorithms

can be built from:

 same base classification algorithm (ex.: different decision tree classifiers) fitting <u>different subsets</u> of the training dataset

Random Forests bagging (data sampling) with trees + random feature subsets at each node

Image Source: Raschka, S., & Mirjalili, V. (2019). Python Machine Learning, Third Edit.

"Soft" Voting $\hat{y} = \arg \max_{j} \sum_{i=1}^{n} w_i p_{i,j}$

$$p_{i,j}$$
: predicted class membership probability of the *i*th classifier for class label *j*

$$W_j$$
: optional weighting parameter, default $w_i = 1/n, \forall w_i \in \{w_1, \dots, w_n\}$

Binary classification example

$$j \in \{0,1\}$$
 $h_i (i \in \{1,2,3\})$
 $h_1(\mathbf{x}) \to [0.9,0.1]$
 $h_2(\mathbf{x}) \to [0.8,0.2]$
 $h_3(\mathbf{x}) \to [0.4,0.6]$

$$p(j = 0 \mid \mathbf{x}) = 0.2 \cdot 0.9 + 0.2 \cdot 0.8 + 0.6 \cdot 0.4 = 0.58$$

$$p(j = 1 \mid \mathbf{x}) = 0.2 \cdot 0.1 + 0.2 \cdot 0.2 + 0.6 \cdot 0.6 = 0.42$$

$$\hat{y} = \arg\max_{i} \left\{ p(j = 0 \mid \mathbf{x}), p(j = 1 \mid \mathbf{x}) \right\}$$

Image (Edited) Source: Raschka S., Introduction to Machine Learning

Scikit-learn default = "hard"

```
from sklearn.datasets import make_moons
from sklearn.ensemble import RandomForestClassifier,
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

X, y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

voting_clf = VotingClassifier(
    estimators=[
        ('lr', LogisticRegression(random_state=42)),
        ('rf', RandomForestClassifier(random_state=42)),
        ('svc', SVC(random_state=42))
    ]
)
voting_clf.fit(X_train, y_train)
```

To set to "soft":

```
voting_clf.voting = "soft"
voting_clf.named_estimators["svc"].probability = True
voting_clf.fit(X_train, y_train)
voting_clf.score(X_test, y_test)
```

- Example Implementation:
- https://github.com/ageron/handsonml3/blob/main/07_ensemble_learning_and_ra ndom_forests.ipynb

Example

- Example Classifying Iris Flowers Using Different Classification Models (Raschka, mlxtend)
 - Notebook:

https://rasbt.github.io/mlxtend/user_guide/c lassifier/EnsembleVoteClassifier/

Bagging: Bootstrap Aggregating

Bootstrap Sampling

No dependency between sampling rounds

Bagging Classifier

Bagging: Bootstrap Aggregating

Bootstrap Sampling

No dependency between sampling rounds

Sample indices			
I	2	7	
2	2	3	
3	I	2	
4	3	I	
5	7	I	
6	2	7	
7	4	7	
	, c,	C_2	C_{σ}

Bagging Classifier

Image Source: Raschka S., Introduction to Machine Learning

Bagging: Implementation (Scikit-learn)

Pass a DecisionTreeClassifier to Bagging

```
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(
    DecisionTreeClassifier(), n_estimators=500,
    max_samples=100, bootstrap=True, random_state=42)
bag_clf.fit(X_train, y_train)
y_pred = bag_clf.predict(X_test)
```

Evaluate

- Example:
- https://github.com/ageron/handsonml2/blob/master/07_ensemble_learning_and_random_forests.ipynb

Decision Tree Classifier alone:

```
tree_clf = DecisionTreeClassifier(random_state=42)
tree_clf.fit(X_train, y_train)
y_pred_tree = tree_clf.predict(X_test)
print(accuracy_score(y_test, y_pred_tree))
```


Random Forest (Bagging + Decision Trees):

```
from sklearn.ensemble import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, random_state=42)
rnd_clf.fit(X_train, y_train)

y_pred_rf = rnd_clf.predict(X_test)
```

Boosting

- Ex.: Adaptive Boosting (AdaBoost)
- Ex.: Gradient Boosting
- weak learners (build very simple base classifiers)
 - Those with slightly better performance over random guessing
 - Ex.: decision tree stump
 - **Goal**: focus on training examples that are hard to classify
 - weak learners learn from misclassified training examples to improve the performance of the ensemble

Boosting (Original Procedure)

- 1. Draw a random subset (sample) of training examples, d_1 , without replacement from the training dataset, D, to train a weak learner, C_1 .
- 2. Draw a second random training subset, d_2 , without replacement from the training dataset and add 50 percent of the examples that were previously misclassified to train a weak learner, C_2 .
- 3. Find the training examples, d_3 , in the training dataset, D, which C_1 and C_2 disagree upon, to train a third weak learner, C_3 .
- 4. Combine the weak learners C_{1} , C_{2} , and C_{3} via majority voting.

AdaBoost

- 1. Set the weight vector, w, to uniform weights, where $\sum_{i} w_{i} = 1$ 2. For j in m hoosting round
- - 1. Train a weighted weak learner: $C_j = \operatorname{train}(X, y, w)$
 - 2. Predict class labels: $\widehat{\boldsymbol{y}} = \operatorname{predict}(C_j, \boldsymbol{X})$
 - 3. Compute weighted error rate: $\varepsilon = \boldsymbol{w} \cdot (\widehat{\boldsymbol{y}} \neq \boldsymbol{y})$
 - 4. Compute coefficient: $lpha_j = 0.5 \log rac{1-oldsymbol{arepsilon}}{oldsymbol{arepsilon}}$
 - 5. Update weights: $\mathbf{w} := \mathbf{w} \times \exp(-\alpha_j \times \widehat{\mathbf{y}} \times \mathbf{y})$
 - $\mathbf{w} := \mathbf{w} / \sum_{i} w_{i}$ 6. Normalize weights to sum to 1:
 - $\widehat{y} = \left(\sum_{j=1}^{m} \left(\alpha_j \times \operatorname{predict}(C_j, X)\right) > 0\right)$

3. Compute the final prediction:

Index	×	У	Weights	$\hat{y}(x \le 3.0)$?	Correct?	Updated weights
I	1.0	I	0.1	I	Yes	0.072
2	2.0	I	0.1	I	Yes	0.072
3	3.0	I	0.1	I	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	-1	0.1	-1	Yes	0.072
7	7.0	I	0.1	-1	No	0.167
8	8.0	I	0.1	-1	No	0.167
9	9.0	I	0.1	-1	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

Image Source: Raschka, S., & Mirjalili, V. (2019). Python Machine Learning, Third Edit.