The McGraw-Hill Companies

Discrete Mathematics and Its Applications

Chapter 9
Relations

• Relations & their properties

Definition 1

Let A and B be sets. A binary relation from A to B is a subset of A * B.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B.

- Notation:

$$aRb \Leftrightarrow (a, b) \in R$$

 $aRb \Leftrightarrow (a, b) \notin R$

R	a	b
0	X	X
1	X	
2		X

Example:

A = set of all cities
B = set of the 50 states in the USA
Define the relation R by specifying that (a, b)
belongs to R if city a is in state b.

```
(Boulder, Colorado)
(Bangor, Maine)
(Ann Arbor, Michigan)
(Cupertino, California)
Red Bank, New Jersey)
```

- Functions as relations
 - The graph of a function f is the set of ordered pairs (a, b) such that b = f(a)
 - The graph of f is a subset of A * B ⇒ it is a relation from A to B
 - Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph

- Relations on a set
 - Definition 2

A relation on the set A is a relation from A to A.

- Example: A = set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) \mid a \text{ divides } b\}$

Solution: Since (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b

$$R = \{(1,1), (1,2), (1.3), (1.4), (2,2), (2,4), (3,3), (4,4)\}$$

Properties of Relations

- Definition 3

A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every element $a \in A$.

 Example (a): Consider the following relations on {1, 2, 3, 4}

```
\begin{split} R_1 &= \{(1,1),\, (1,2),\, (2,1),\, (2,2),\, (3,4),\, (4,1),\, (4,4)\} \\ R_2 &= \{(1,1),\, (1,2),\, (2,1)\} \\ R_3 &= \{(1,1),\, (1,2),\, (1,4),\, (2,1),\, (2,2),\, (3,3),\, (3,4),\, (4,1),\, (4,4)\} \\ R_4 &= \{(2,1),\, (3,1),\, (3,2),\, (4,1),\, (4,2),\, (4,3)\} \\ R_5 &= \{(1,1),\, (1,2),\, (1,3),\, (1,4),\, (2,2),\, (2,3),\, (2,4),\, (3,3),\, (3,4),\, (4,4)\} \\ R_6 &= \{(3,4)\} \end{split}
```

Which of these relations are reflexive?

Solution:

 R_3 and R_5 : reflexive \Leftarrow both contain all pairs of the form (a, a): (1,1), (2,2), (3,3) & (4,4).

 R_1 , R_2 , R_4 and R_6 : not reflexive \Leftarrow not contain all of these ordered pairs. (3,3) is not in any of these relations.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

- Definition 4:

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all a, $b \in A$.

A relation R on a set A such that $(a, b) \in R$ and $(b, a) \in R$ only if a = b, for all $a, b \in A$, is called antisymmetric.

- Example: Which of the relations from example (a) are symmetric and which are antisymmetric?

Solution:

 R_2 & R_3 : symmetric \Leftarrow each case (b, a) belongs to the relation whenever (a, b) does.

For R_2 : only thing to check that both (1,2) & (2,1) belong to the relation

For R_3 : it is necessary to check that both (1,2) & (2,1) belong to the relation.

None of the other relations is symmetric: find a pair (a, b) so that it is in the relation but (b, a) is not.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

Solution (cont.):

- ❖ R_4 , R_5 and R_6 : antisymmetric ←for each of these relations there is no pair of elements a and b with $a \neq b$ such that both (a, b) and (b, a) belong to the relation.
 - None of the other relations is antisymmetric.: find a pair (a, b) with $a \ne b$ so that (a, b) and (b, a) are both in the relation.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

- Definition 5:

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b,c) \in R$, then $(a, c) \in R$, for all $a, b, c \in R$.

- Example: Which of the relations in example (a) are transitive?
- R₄, R₅ & R₆: transitive \Leftarrow verify that if (a, b) and (b, c) belong to this relation then (a, c) belongs also to the relation R₄ transitive since (3,2) and (2,1), (4,2) and (2,1), (4,3) and (3,1), and (4,3) and (3,2) are the only such sets of pairs, and (3,1), (4,1) and (4,2) belong to R₄. Same reasoning for R₅ and R₆.
- R_1 : not transitive \Leftarrow (3,4) and (4,1) belong to R_1 , but (3,1) does not.
- R_2 : not transitive \Leftarrow (2,1) and (1,2) belong to R_2 , but (2,2) does not.
- R_3 : not transitive \Leftarrow (4,1) and (1,2) belong to R_3 , but (4,2) does not.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

- Combining relations
 - Example:

```
Let A = \{1, 2, 3\} and B = \{1, 2, 3, 4, \}. The relations R_1 = \{(1,1), (2,2), (3,3)\} and R_2 = \{(1,1), (1,2), (1,3), (1,4)\} can be combined to obtain:
```

$$R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$$

$$R_1 \cap R_2 = \{(1,1)\}$$

$$R_1 - R_2 = \{(2,2), (3,3)\}$$

$$R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$$

- Definition 6:

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of **R** and **S** is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by **S** \circ R.

Example: What is the composite of the relations R and S where R is the relation from {1,2,3} to {1,2,3,4} with R = {(1,1), (1,4), (2,3), (3,1), (3,4)} and S is the relation from {1,2,3,4} to {0,1,2} with S = {(1,0), (2,0), (3,1), (3,2), (4,1)}?

Solution: **S** • **R** is constructed using all ordered pairs in R and ordered pairs in S, where the **second element of the ordered in R agrees with the first element of the ordered pair in S**.

For example, the ordered pairs (2,3) in R and (3,1) in S produce the ordered pair (2,1) in S $^{\circ}$ R. Computing all the ordered pairs in the composite, we find

$$S \circ R = ((1,0), (1,1), (2,1), (2,2), (3,0), (3,1))$$

9.3 Representing Relations

- To represent binary relations
 - Ordered pairs
 - Tables
 - Zero-one matrices
 - Directed graphs

Representing Relations Using Matrices

• Suppose that R is a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}$. R can be represented by the matrix $\mathbf{M}_R = [\mathbf{m}_{ij}]$, where $\mathbf{m}_{ij} = 1$ if $(\mathbf{a}_i, \mathbf{b}_j) \in \mathbb{R}$, or 0 if $(\mathbf{a}_i, \mathbf{b}_j) \notin \mathbb{R}$.

- Ex.1-6

FIGURE 1 (9.3)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 1 The Zero-One Matrix for a Reflexive Relation.

FIGURE 2 (9.3)

© The McGraw-Hill Companies, Inc. all rights reserved.

(a) Symmetric

(b) Antisymmetric

FIGURE 2 The Zero-One Matrices for Symmetric and Antisymmetric Relations.

Representing Relations Using Digraphs

- Definition 1: A *directed graph* (*digraph*) consists of a set V of *vertices* (or *nodes*) and a set E of ordered pairs of elements of V called *edges* (or *arcs*). The vertex a is called the *initial vertex* of the edge (a,b), and the vertex b is called the *terminal vertex* of this edge.
 - -Ex.7-10

FIGURE 3 (9.3)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 3 The Directed Graph.

FIGURE 4 (9.3)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 4 The Directed Graph of the Relations *R*.

FIGURE 5 (9.3)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 5 The Directed Graph of the Relations *R*.

FIGURE 6 (9.3)

© The McGraw-Hill Companies, Inc. all rights reserved.

(a) Directed graph of R

(b) Directed graph of S

FIGURE 6 The Directed Graph of the Relations *R* and *S*.

9.5 Equivalence Relations

- Definition 1: A relation on a set A is called an *equivalence relation* if it is reflexive, symmetric, and transitive.
- Definition 2: Two elements a and b are related by an equivalence relation are called *equivalent*.
 - The notation a~b: to denote that a and b are equivalent elements with respect to a particular equivalence relation
 - Ex. 1-5: equivalence relations
 - Ex. 6-7: not equivalence relations

Equivalence Classes

- Definition 3: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a.
 - Denoted by $[a]_R$ or [a]
 - $[a]_R = {s | (a,s) \in R}$
 - If $b \in [a]_R$, then b is called a representative of the equivalence class
 - Ex. 8-11

9.6 Partial Orderings

- Definition 1: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
 - A set S together with its partial ordering R is called a partially ordered set, or poset, (S, R).
 - Proof.
 - Ex.1-3: ≥, |, ⊆
 - Ex.4: older than
 - Notation: ≺
 - \prec : a \leq b, but a \neq b

Partial Orderings (cont.)

- Definition 2: The elements a and b of a poset (S, \preceq) are called *comparable* if either $a \preceq b$ or $b \preceq a$.
 - If neither a ≼ b nor b ≼ a, a and b are incomparable. ("partial")
 - Ex. 5
 - When every two elements in the set are comparable, the relation is called a *total* ordering

Partial Orderings (cont.)

- Definition 3: If (S, \preceq) is a poset and every two elements of S are comparable, S is called a *totally* ordered or linearly ordered set (or a chain), and \preceq is called a *total order* or a *linear order*.
 - Ex.6: (**Z**, ≤)
 - Ex.7: (**Z**+, |)
- Definition 4: (S, \preceq) is a well-ordered set if it is a poset such that \preceq is a total ordering and every nonempty subset of S has a least element.
 - Ex.8

Partial Orderings (cont.)

- Theorem 1: (The Principle of Well-Ordered Induction) Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if (inductive step): For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.
 - Proof.

Lexicographic Order

- $(A_1, \leq_1), (A_2, \leq_2)$
 - $-(a_1, a_2) \prec (b_1, b_2)$
 - Either if $a_1 \prec_1 b_1$
 - Or if $a_1=b_1$ and $a_2 \prec_2 b_2$
 - Ex.9-10
 - n-tuples (Fig. 1)
 - Ex.11

	© The Me	cGraw-Hill	Companies	s, Inc. all ri	ghts reserv	red.	
•			•		•	•	
•	•	•	•	•	•	•	
*		*	¥.	87	25		
•	•	•	•	•	•	•	
(1,7)	(2,7)	(3,7)	(4,7)	(5,7)	(6,7)	(7,7)	
•	•	•	•	•	•	•	
(1,6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)	(7,6)	
•	•	•		•	•	•	
(1,5)	(2,5)	(3,5)	(4, 5)	(5,5)	(6,5)	(7,5)	
•	•	•		•	•	•	
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)	(7,4)	
(-, -)	17.7	(0, 1)	(., .,	(0, .)	(0, 1)	(,,,)	FIGURE 1
•	•	•	•	•		•	The Ordered
(1,3)	(2,3)	(3,3)	(4, 3)	(5,3)	(6, 3)	(7,3)	Pairs Less Than
(2,0)	(2,0)	(0,0)	(., . ,	(0,0)	(0,0)	(,,=)	
		_	_	_		**************************************	(3,4) in
(1.2)	(2.2)	(2.2)	(4.2)	(5.2)	(6.2)	(7.2)	Lexicographic
(1,2)	(2,2)	(3, 2)	(4, 2)	(5,2)	(6,2)	(7,2)	•
							Order.
•	•	•	•	•	•	•	
(1,1)	(2,1)	(3,1)	(4, 1)	(5,1)	(6, 1)	(7,1)	
歐亞書局							P. 570
欧亚吉河							1.070

Hasse Diagrams

- Hasse Diagrams: some edges do not have to be shown
 - Reflexive: loops can be removed
 - Transitive: if (a,b) and (b,c), then (a,c) can be removed
 - Remove all the arrows
 - Ex. 12: (Fig. 3)
 - Ex. 13: (Fig. 4)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 2 Constructing the Hasse Diagram for $(\{1,2,3,4\},\leq)$.

FIGURE 3 (9.6) © The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 3 Constructing the Hasse Diagram of ({1,2,3,4,6,8,12}, |).

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 4 The Hasse Diagram of $(P(\{a,b,c\}), \subseteq)$.

Maximal and Minimal Elements

- a is maximal in the poset (S, \preceq) if there is no $b \in S$ such that $a \preceq b$.
- a is minimal in the poset (S, \leq) if there is no $b \in S$ such that $b \leq a$.
 - Ex. 14: (Fig. 5)
 - Ex. 15: (Fig. 6)
 - Ex. 16-17

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 5 The Hasse Diagram of a Poset.

FIGURE 6 (9.6)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 6 Hasse Diagrams of Four Posets.

Maximal and Minimal Elements (cont.)

- In a subset A of a poset (S, \preceq) , if u is an element of S such that $a \preceq u$ for all $a \in A$, then u is an *upper bound* of A.
- In a subset A of a poset (S, \preceq) , if l is an element of S such that $1 \preceq a$ for all $a \in A$, then l is an *lower bound* of A.
 - Ex. 18: (Fig. 7)
 - Ex. 19: (Fig. 7)
 - Ex. 20

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 7 The Hasse Diagram of a Poset.

Lattices

• A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a *lattice*

- Ex. 21: (Fig. 8)
- Ex. 22-25

FIGURE 8 (9.6)

© The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 8 Hasse Diagrams of Three Posets.

Thank You