ΚΕΦΑΛΑΙΟ 10

Ταλαντώσεις

Στο Παράδειγμα 1.9 είδαμε τη μελέτη της κίνησης υλικού σημείου μάζας m, που βρίσκεται στο ένα άκρο ελατηρίου με το άλλο άκρο του ελατηρίου σταθερό. Θα επανεξετάσομε το ίδιο πρόβλημα εδώ χρησιμοποιώντας δυο διαφορετικά συστήματα συντεταγμένων. Τη μια φορά θα πάρομε το μηδέν του άξονά μας στη θέση ισορροπίας της μάζας m και την άλλη φορά θα το πάρομε στο σταθερό άκρο τού ελατηρίου. Για να μην μπερδευόμαστε, θα χρησιμοποιήσομε διαφορετικά σύμβολα για τους δύο άξονες

Ας θεωρήσομε ελατήριο σταθεράς k και φυσικού μήκους ℓ με το αριστερό άκρο του σταθερό και στο δεξί άκρο του σημειακή μάζα m. Το ελατήριο είναι οριζόντιο και η μόνη δύναμη που ασκείται στη μάζα m είναι η δύναμη Hooke. Θεωρούμε έναν άξονα ξ , κατά μήκος του ελατηρίου, με το μηδέν του άξονα στη θέση ισορροπίας της μάζας m και την κατεύθυνσή του προς τα δεξιά. Η εξίσωση κίνησης της μάζας m είναι

$$m\frac{d^2\xi}{dt^2} = -k\xi \ . \tag{10.1}$$

Αυτή η εξίσωση είναι ίδια με την πρώτη εξίσωση του Παραδείγματος 1.9, μόνο που αλλάξαμε τον συμβολισμό και αντί για x γράψαμε ξ .

Ας θεωρήσομε τώρα και τον άξονα x που το μηδέν του είναι στο σταθερό άκρο τού ελατηρίου. Την τυχούσα χρονική στιγμή t η μάζα m έχει συντεταγμένη $\xi(t)$ στον έναν άξονα και x(t) στον άλλον. Η σχέση μεταξύ αυτών των δυο ποσοτήτων είναι

$$\xi(t) = x(t) - \ell. \tag{10.2}$$

Αντικαθιστούμε το $\xi(t)$ στην εξίσωση (10.1) και έχομε

$$m\frac{d^2x}{dt^2} = -k(x - \ell),$$
(10.3)

όπου, για συντομία, δεν γράψαμε ρητά την εξάρτηση από τον χρόνο.

Ας δούμε τώρα τι μας λέει η εξίσωση (10.3) και πως θα μπορούσαμε να τη γράψομε κατ' ευθείαν. Αυτή λέει ότι η δύναμη F ,μ που ασκεί το ελατήριο στη μάζα, έχει μέτρο ίσο με

$$|F| = \begin{pmatrix} \Sigma \tau \alpha \theta \varepsilon \rho \alpha \\ \tau o \upsilon \\ \varepsilon \lambda \alpha \tau \eta \rho \iota o \upsilon \end{pmatrix} \times \left[\begin{pmatrix} \Sigma \tau \iota \gamma \mu \iota \alpha \iota o \\ \mu \eta \kappa o \varsigma \\ \varepsilon \lambda \alpha \tau \eta \rho \iota o \upsilon \end{pmatrix} - \begin{pmatrix} \Phi \upsilon \sigma \iota \kappa o \\ \mu \eta \kappa o \varsigma \\ \varepsilon \lambda \alpha \tau \eta \rho \iota o \upsilon \end{pmatrix} \right]. \tag{10.4}$$

Για να βρούμε το πρόσημο της F πρέπει να σκεφθούμε αν το ελατήριο «σπρώχνει» ή «τραβά» τη μάζα m. Την «τραβά» προς τα αριστερά (δηλαδή δύναμη αρνητική) αν το ελατήριο είναι τεντωμένο, δηλαδή αν το στιγμιαίο μήκος του ελατηρίου x [που είναι η συντεταγμένη του τέλους του (δηλαδή x) μείον τη συντεταγμένη της αρχής του (δηλαδή 0)] είναι μεγαλύτερο από το φυσικό μήκος του ελατηρίου, που είναι ℓ . Έτσι λοιπόν για να είναι σωστή η δύναμη F πρέπει να γράψομε

$$F = -\begin{pmatrix} \Sigma \tau \alpha \theta \varepsilon \rho \alpha \\ \tau o \upsilon \\ \varepsilon \lambda \alpha \tau \eta \rho \iota o \upsilon \end{pmatrix} \times \begin{bmatrix} \Sigma \tau \iota \gamma \mu \iota \alpha \iota o \\ \mu \eta \kappa o \varsigma \\ \varepsilon \lambda \alpha \tau \eta \rho \iota o \upsilon \end{pmatrix} - \begin{pmatrix} \Phi \upsilon \sigma \iota \kappa o \\ \mu \eta \kappa o \varsigma \\ \varepsilon \lambda \alpha \tau \eta \rho \iota o \upsilon \end{pmatrix} = -k(x - \ell), \quad (10.5)$$

δηλαδή <u>να βάλομε με το χέρι το αρνητικό πρόσημο</u>. Αν δεν το βάζαμε, θα ήταν σαν να λέμε ότι για <u>τεντωμένο</u> ελατήριο η δύναμη είναι <u>θετική</u>, δηλαδή «σπρώχνει» τη μάζα προς τα δεξιά, που είναι τρελό.

Παρά το γεγονός ότι συζητήσαμε την περίπτωση που το ελατήριο είναι τεντωμένο, η εξίσωση είναι σωστή αν το ελατήριο είναι συμπιεσμένο. Αν το ελατήριο είναι συμπιεσμένο, δηλαδή αν το στιγμιαίο μήκος του ελατηρίου x [που είναι η συντεταγμένη του τέλους του (δηλαδή x) μείον τη συντεταγμένη της αρχής του (δηλαδή 0)] είναι μικρότερο από το φυσικό μήκος του ελατηρίου, που είναι ℓ , το ελατήριο θα «σπρώξει» τη μάζα προς τα δεξιά, δηλαδή δύναμη $\underline{\theta}$ ετική. Όντως, για $x < \ell$ η δύναμη F (εξίσωση 10.5) είναι $\underline{\theta}$ ετική.

Κάποιος μπορεί να ρωτήσει: Μια χαρά δεν ήταν η εξίσωση (10.1), τι τα θέλαμε όλα τα υπόλοιπα; Η απάντηση είναι: Όντως, μια χαρά είναι η εξίσωση (10.1) και μπορούμε να τη χρησιμοποιούμε αν στο πρόβλημά μας υπάρχει θέση ισορροπίας. Υπάρχουν όμως περιπτώσεις όπου δεν υπάρχει θέση ισορροπίας. Σε τέτοιες περιπτώσεις πρέπει να είμαστε σε θέση να γράφομε τις εξισώσεις κίνησης σε τυχόν σύστημα συντεταγμένων. Ας δούμε ένα παράδειγμα.

Παράδειγμα 10.1: Θεωρήστε το εξής απλό μοντέλο για το μόριο του CO. Στον άξονα x θεωρείστε ένα ελατήριο σταθεράς k και φυσικού μήκους ℓ με δυο σημειακές μάζες, m_1 στο αριστερό άκρο του και m_2 στο δεξί άκρο του. Το ελατήριο και οι μάζες μπορούν να βρίσκονται οπουδήποτε στον άξονα x και να κινούνται όπως θέλουν, φυσικά πάντοτε με τη μάζα m_1 στο αριστερό άκρο του και την m_2 στο δεξί. Την τυχούσα χρονική στιγμή t, η μάζα m_1 βρίσκεται στη θέση $x_1(t)$ και η μάζα m_2 στη $x_2(t)$. Βαρύτητα δεν υπάρχει. Να γραφούν οι εξισώσεις κίνησης των μαζών.

Λύση: Η εξίσωση κίνησης της μάζας m_1 είναι

$$m_1 \frac{d^2 x_1}{dt^2} = k[(x_2 - x_1) - \ell].$$

Το μέτρο της ασκούμενης δύναμης είναι αυτό που λέει η εξίσωση (10.4), διότι το $x_2 - x_1$ είναι το στιγμιαίο μήκος του ελατηρίου (δηλαδή, η συντεταγμένη του τέλους του μείον τη συντεταγμένη της αρχής του). Αν το ελατήριο είναι τεντωμένο, θα

«τραβήξει» τη μάζα m_1 προς τα δεξιά, δηλαδή θα ασκήσει θετική δύναμη. Η δύναμη $k\big[(x_2-x_1)-\ell\big]$ είναι όντως θετική για τεντωμένο ελατήριο, δηλαδή για $x_2-x_1>\ell$. Αρα δεν χρειάζεται να αλλάξομε το πρόσημο της δύναμης με το χέρι.

Η εξίσωση κίνησης της μάζας m_2 είναι

$$m_2 \frac{d^2 x_2}{dt^2} = -k[(x_2 - x_1) - \ell].$$

Το μέτρο της ασκούμενης δύναμης είναι αυτό που λέει η εξίσωση (10.4), διότι το x_2-x_1 είναι το στιγμιαίο μήκος του ελατηρίου (δηλαδή, η συντεταγμένη του τέλους του μείον τη συντεταγμένη της αρχής του). Αν το ελατήριο είναι τεντωμένο, θα «τραβήξει» τη μάζα m_2 προς τα αριστερά, δηλαδή θα ασκήσει αρνητική δύναμη. Όμως, η δύναμη $k[(x_2-x_1)-\ell]$ είναι θετική για τεντωμένο ελατήριο, δηλαδή για $x_2-x_1>\ell$. Άρα πρέπει να της αλλάξομε το πρόσημο με το χέρι. Αυτό κάναμε και βάλαμε το - στη δύναμη, ώστε για τεντωμένο ελατήριο να είναι αρνητική η δύναμη.

<u>Παρατήρηση</u>: Είναι προφανές ότι στο συγκεκριμένο Παράδειγμα <u>δεν υπάρχουν</u> <u>θέσεις ισορροπίας των μαζών</u>. Παρ' όλα αυτά, ο νόμος του Hooke ισχύει και έπρεπε να τον γράψομε σωστά.

Ασκηση 10.1: Βεβαιωθείτε ότι οι εξισώσεις κίνησης του Παραδείγματος 10.1 είναι σωστές αν το ελατήριο είναι συμπιεσμένο. Με άλλα λόγια, βεβαιωθείτε ότι οι εξισώσεις κίνησης είναι σωστές ανεξαρτήτως της κατάστασης του ελατηρίου.

Ασκηση 10.2: Δυο ελατήρια με σταθερές k_1,k_2 και φυσικά μήκη ℓ_1,ℓ_2 αντιστοίχως, καθώς και τρεις σημειακές μάζες m_1,m_2,m_3 είναι συνδεμένα στον οριζόντιο άξονα x ως εξής: Το ελατήριο 1 έχει στο αριστερό άκρο του τη μάζα m_1 , ενώ στο δεξί άκρο του βρίσκεται η μάζα m_2 καθώς και το αριστερό άκρο του ελατηρίου 2. Στο δεξί άκρο του ελατηρίου 2 βρίσκεται η μάζα m_3 . Την τυχούσα χρονική στιγμή t οι θέσεις των τριών μαζών είναι $x_1(t),x_2(t),x_3(t)$, με $x_1(t)< x_2(t)< x_3(t)$. Βαρύτητα δεν υπάρχει. Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $x_1(t),x_2(t),x_3(t)$.

Παράδειγμα 10.3: Δυο ελατήρια με σταθερές k_1,k_2 και φυσικά μήκη ℓ_1,ℓ_2 αντιστοίχως, καθώς και δυο σημειακές μάζες m_1,m_2 είναι συνδεμένα στον οριζόντιο άξονα x ως εξής: Το ελατήριο 1 έχει το αριστερό άκρο του σταθερό στη θέση x=0. Στο δεξί άκρο του βρίσκεται η μάζα m_1 καθώς και το αριστερό άκρο του ελατηρίου 2. Στο δεξί άκρο του ελατηρίου 2 βρίσκεται η μάζα m_2 . Την τυχούσα χρονική στιγμή t οι θέσεις των δυο μαζών είναι $x_1(t), x_2(t)$, με $x_1(t) < x_2(t)$. Βαρύτητα δεν υπάρχει.

- Α) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $x_1(t), x_2(t)$.
- Β) Να βρεθούν οι θέσεις ισορροπίας των μαζών.

Γ) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $\xi_1(t), \xi_2(t)$, που μετρώνται από τις θέσει ισορροπίας.

Λύση: Α) Στη μάζα m_1 δρουν τόσο το ελατήριο 1 όσο και το ελατήριο 2. Στη μάζα m_2 δρα μόνο το ελατήριο 2. Έτσι, οι εξισώσεις κίνησης των μαζών είναι

$$m_1 \frac{d^2 x_1}{dt^2} = -k_1(x_1 - \ell_1) + k_2[(x_2 - x_1) - \ell_2],$$

$$m_2 \frac{d^2 x_2}{dt^2} = -k_2 [(x_2 - x_1) - \ell_2].$$

Β) Για τα βρούμε τις θέσεις ισορροπίας των μαζών αρκεί να μηδενίσομε τις δυνάμεις που δρουν σ' αυτές, δηλαδή

$$0 = -k_1(x_1 - \ell_1) + k_2[(x_2 - x_1) - \ell_2],$$

$$0 = -k_2[(x_2 - x_1) - \ell_2].$$

Το σύστημα των εξισώσεων έχει λύση

$$x_1^{i\sigma} = \ell_1,$$

$$x_2^{i\sigma} = \ell_1 + \ell_2.$$

Φυσικά, δεν ήταν απαραίτητο να λύσομε το σύστημα για να βρούμε τις θέσεις ισορροπίας. Από διαίσθηση και μόνο θα μπορούσαμε να τις γράψομε.

Γ) Θέτοντας στις εξισώσεις κίνησης του ερωτήματος Α

$$x_1(t) = x_1^{i\sigma} + \xi_1(t),$$

 $x_2(t) = x_2^{i\sigma} + \xi_2(t),$

βρίσκομε

$$m_1 \frac{d^2 \xi_1}{dt^2} = -k_1 \xi_1 + k_2 (\xi_2 - \xi_1),$$

$$m_2 \frac{d^2 \xi_2}{dt^2} = -k_2 (\xi_2 - \xi_1).$$

Κι αυτές τις εξισώσεις θα μπορούσαμε να τις γράψομε κατ' ευθείαν. Ο πρώτος όρος της πρώτης εξίσωσης είναι κατανοητός. Ο δεύτερος όρος της πρώτης εξίσωσης λέει ότι αν οι δυο απομακρύνσεις από τις θέσεις ισορροπίας είναι ίσες, η δύναμη που ασκεί το ελατήριο 2 είναι μηδέν. Αυτό είναι σωστό, διότι αν $\xi_2 = \xi_1$, το ελατήριο 2 έχει απλώς μετατοπιστεί, δεν είναι ούτε τεντωμένο ούτε συμπιεσμένο. Αν $\xi_2 > \xi_1$, το ελατήριο 2 είναι τεντωμένο και η δύναμη που ασκεί στη μάζα m_1 είναι θετική, όπως πρέπει.

Ασκηση 10.3: Τρία ελατήρια με σταθερές k_1,k_2,k_3 και φυσικά μήκη ℓ_1,ℓ_2,ℓ_3 αντιστοίχως, καθώς και τρεις σημειακές μάζες m_1,m_2,m_3 είναι συνδεμένα στον οριζόντιο άξονα x ως εξής: Το ελατήριο 1 έχει το αριστερό άκρο του στερεωμένο στη θέση x=0. Στο δεξί άκρο του βρίσκεται η μάζα m_1 καθώς και το αριστερό άκρο του ελατηρίου 2. Στο δεξί άκρο του ελατηρίου 2 βρίσκεται η μάζα m_2 καθώς και το αριστερό άκρο του ελατηρίου 3. Στο δεξί άκρο του ελατηρίου 3 βρίσκεται η μάζα m_3 . Την τυχούσα χρονική στιγμή t οι θέσεις των τριών μαζών είναι $x_1(t), x_2(t), x_3(t)$, με $0 < x_1(t) < x_2(t) < x_3(t)$. Βαρύτητα δεν υπάρχει.

- Α) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $x_1(t), x_2(t), x_3(t)$.
- Β) Να βρεθούν οι θέσεις ισορροπίας $x_1^{i\sigma}, x_2^{i\sigma}, x_3^{i\sigma}$ των μαζών.
- Γ) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $\xi_1(t), \xi_2(t), \xi_3(t)$, που μετρώνται από τις θέσεις ισορροπίας, δηλαδή $x_1(t) = x_1^{t\sigma} + \xi_1(t)$ και ομοίως για τα $x_2(t), x_3(t)$.

Παράδειγμα 10.4: Ένα ελατήριο με σταθερά k_1 και φυσικό μήκος ℓ_1 κρέμεται από το ταβάνι (z=0). Στο ελεύθερο άκρο του βρίσκεται μάζα m_1 . Θεωρείστε τον άξονα z με φορά προς τα κάτω. Την τυχούσα χρονική στιγμή t η θέση της μάζας είναι $z_1(t)$. Θεωρείστε σταθερό πεδίο βαρύτητας.

- Α) Να γραφεί η εξίσωση κίνησης της μάζας με συντεταγμένη $z_1(t)$.
- Β) Να βρεθεί η θέση ισορροπίας της μάζας.
- Γ) Να γραφεί η εξίσωση κίνησης της μάζας με συντεταγμένη $\xi_1(t)$, που μετράται από τη θέση ισορροπίας.

Λύση: Α) Στη μάζα m_1 δρουν τόσο το ελατήριο 1 όσο και η βαρύτητα. Έτσι, η εξίσωση κίνησης της μάζας είναι

$$m_1 \frac{d^2 z_1}{dt^2} = -k_1(z_1 - \ell_1) + m_1 g$$
.

Β) Για τα βρούμε τη θέση ισορροπίας ης μάζας αρκεί να μηδενίσομε τη συνισταμένη δύναμη που δρα σ' αυτή, δηλαδή

$$0 = -k_1(z_1 - \ell_1) + m_1 g ,$$

που έχει λύση

$$z_1^{i\sigma}=\ell_1+\frac{m_1g}{k_1}.$$

Δεν ήταν απαραίτητο να λύσομε την εξίσωση για να βρούμε τη θέση ισορροπίας. Από διαίσθηση και μόνο θα μπορούσαμε να τη γράψομε.

Γ) Θέτοντας στην εξίσωση κίνησης του ερωτήματος Α

$$z_1(t) = z_1^{i\sigma} + \xi_1(t) ,$$

βρίσκομε

$$m_1 \frac{d^2 \xi_1}{dt^2} = -k_1 \xi_1.$$

Κι αυτή την εξίσωση θα μπορούσαμε να τη γράψομε κατ' ευθείαν. Το τέντωμα του ελατηρίου κατά m_1g/k_1 εξισορροπεί τη βαρύτητα και άρα η βαρύτητα στη θέση

ισορροπίας
$$z_1^{\iota\sigma}=\ell_1+\frac{m_1g}{k_1}$$
 είναι σαν να μην υπάρχει.

Ασκηση 10.4: Δυο ελατήρια με σταθερές k_1,k_2 και φυσικά μήκη ℓ_1,ℓ_2 αντιστοίχως, καθώς και δυο σημειακές μάζες m_1,m_2 είναι συνδεμένα στον κατακόρυφο άξονα z (με φορά προς τα κάτω) ως εξής: Το ελατήριο 1 έχει το πάνω άκρο του στερεωμένο στο z=0 ενώ στο κάτω άκρο του υπάρχει η μάζα m_1 (με συντεταγμένη z_1) και το πάνω άκρο του ελατηρίου 2. Στο κάτω άκρο του ελατηρίου 2 βρίσκεται η μάζα m_2 (με συντεταγμένη z_2). Την τυχούσα χρονική στιγμή t οι θέσεις των δυο μαζών είναι $z_1(t), z_2(t)$, με $0 < z_1(t) < z_2(t)$. Θεωρείστε σταθερό πεδίο βαρύτητας.

- Α) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $z_1(t), z_2(t)$.
- Β) Να βρεθούν οι θέσεις ισορροπίας των μαζών.
- Γ) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $\xi_1(t), \xi_2(t)$, που μετρώνται από τις θέσει ισορροπίας.

Ασκηση 10.5: Δυο ελατήρια με σταθερές k_1,k_2 και φυσικά μήκη ℓ_1,ℓ_2 αντιστοίχως, καθώς και δυο σημειακές μάζες m_1,m_2 είναι συνδεμένα στον κατακόρυφο άξονα z (με φορά προς τα $\underline{\pi}$ άνω) ως εξής: Το ελατήριο 1 έχει το κάτω άκρο του στερεωμένο στο z=0 ενώ στο πάνω άκρο του υπάρχει η μάζα m_1 (με συντεταγμένη z_1) και το κάτω άκρο του ελατηρίου 2. Στο πάνω άκρο του ελατηρίου 2 βρίσκεται η μάζα m_2 (με συντεταγμένη z_2). Την $\underline{\tau}$ υχούσα χρονική στιγμή t οι θέσεις των δυο μαζών είναι $z_1(t), z_2(t)$, με $0 < z_1(t) < z_2(t)$. Θεωρείστε σταθερό πεδίο βαρύτητας.

- Α) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $z_1(t), z_2(t)$.
- Β) Να βρεθούν οι θέσεις ισορροπίας των μαζών.
- Γ) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $\xi_1(t), \xi_2(t)$, που μετρώνται από τις θέσει ισορροπίας.

Ασκηση 10.6: Τρία ελατήρια με σταθερές k_1,k_2,k_3 και φυσικά μήκη ℓ_1,ℓ_2,ℓ_3 αντιστοίχως, καθώς και τρεις σημειακές μάζες m_1,m_2,m_3 είναι συνδεμένα στον κατακόρυφο άξονα z (με φορά προς τα κάτω) ως εξής: Το ελατήριο 1 έχει το πάνω άκρο του στερεωμένο στο z=0 ενώ στο κάτω άκρο του υπάρχει η μάζα m_1 (με συντεταγμένη z_1) και το πάνω άκρο του ελατηρίου 2. Στο κάτω άκρο του ελατηρίου 2 βρίσκεται η μάζα m_2 (με συντεταγμένη z_2) καθώς και το πάνω άκρο του ελατηρίου 3. Στο κάτω άκρο του ελατηρίου 3 βρίσκεται η μάζα m_3 (με συντεταγμένη

- z_3). Την <u>τυχούσα</u> χρονική στιγμή t οι θέσεις των τριών μαζών είναι $z_1(t), z_2(t), z_3(t)$, με $0 < z_1(t) < z_2(t) < z_3(t)$. Θεωρείστε σταθερό πεδίο βαρύτητας.
- Α) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $z_1(t), z_2(t), z_3(t)$.
- Β) Να βρεθούν οι θέσεις ισορροπίας των μαζών.
- Γ) Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $\xi_1(t), \xi_2(t), \xi_3(t)$, που μετρώνται από τις θέσεις ισορροπίας.

Απάντηση: Β)

$$\begin{split} z_1^{i\sigma} &= l_1 + \frac{(m_1 + m_2 + m_3)g}{k_1} \,, \\ z_2^{i\sigma} &= l_1 + \frac{(m_1 + m_2 + m_3)g}{k_1} + l_2 + \frac{(m_2 + m_3)g}{k_2} \\ z_3^{i\sigma} &= l_1 + \frac{(m_1 + m_2 + m_3)g}{k_1} + l_2 + \frac{(m_2 + m_3)g}{k_2} + l_3 + \frac{m_3g}{k_3} \,. \end{split}$$

Σημείωση: Μάλλον θα σας είναι προφανές ότι τα παραπάνω αποτελέσματα γράφτηκαν με κάποια λογική και όχι μετά από πράξεις. Όντως έτσι είναι. Ας δούμε λοιπόν τη λογική.

Ας σκεφθούμε τη διαδικασία κρεμάσματος του συστήματος των ελατηρίων από το ταβάνι. Πρώτα κρεμάμε το ελατήριο 1. Αυτό, ως αβαρές, εκτείνεται κατά ℓ_1 . Μετά κρεμάμε τη μάζα 1. Αυτό έχει ως συνέπεια την επιμήκυνση του ελατηρίου 1 κατά m_1g/k_1 . (Η επιμήκυνση Δz είναι τόση ώστε η δύναμη του ελατηρίου $k_1\Delta z$ να εξισορροπεί το βάρος m_1g της κρεμασμένης μάζας.) Μετά κρεμάμε το ελατήριο 2, το οποίο, ως αβαρές, δεν μετατοπίζει την μάζα 1. Όταν όμως κρεμάσομε την μάζα 2, αυτή επιμηκύνει το μεν ελατήριο 2 κατά m_2g/k_2 το δε ελατήριο 1 κατά m_2g/k_1 . Μετά κρεμάμε το ελατήριο 3, το οποίο, ως αβαρές, δεν μετατοπίζει ούτε τη μάζα 1 ούτε τη μάζα 2. Όταν όμως κρεμάσομε την μάζα 3, αυτή επιμηκύνει το ελατήριο 3 κατά m_3g/k_3 , το ελατήριο 2 κατά m_3g/k_2 και το ελατήριο 1 κατά m_3g/k_1 .

Με βάση τα παραπάνω,

η θέση ισορροπίας της μάζας 1 απέχει από το ταβάνι ℓ_1 συν τις τρεις επιμηκύνσεις m_1g/k_1 , m_2g/k_1 και m_3g/k_1 που υπέστη το ελατήριο 1.

Η θέση της μάζας 2 βρίσκεται ακόμη πιο κάτω κατά ℓ_2 συν τις δυο επιμηκύνσεις m_2g/k_2 και m_3g/k_2 που υπέστη το ελατήριο 2.

Η θέση της μάζας 3 βρίσκεται ακόμη πιο κάτω κατά ℓ_3 συν την επιμήκυνση $m_3 g/k_3$ του ελατηρίου 3.

Παράδειγμα 10.5: Δυο ελατήρια και δυο μάζες είναι συνδεμένα ως εξής στην περιφέρεια κύκλου ακτίνας R, που βρίσκεται στο επίπεδο xy, με κέντρο την αρχή των αξόνων. Την τυχούσα χρονική στιγμή, η διανυσματική ακτίνα της μάζας m_1

σχηματίζει γωνία θ_1 με τον θετικό ημιάξονα x, ενώ η διανυσματική ακτίνα της μάζας m_2 σχηματίζει γωνία $\theta_2 > \theta_1$ με τον θετικό ημιάξονα x. Στο τόξο του κύκλου μεταξύ των γωνιών θ_1 και θ_2 υπάρχει το ελατήριο 1 με σταθερές k_1 , ℓ_1 . Στο άκρο του που βρίσκεται στη γωνία θ_1 είναι συνδεμένη η μάζα m_1 ενώ στο άκρο του που βρίσκεται στη γωνία θ_2 είναι συνδεμένη η μάζα m_2 . Στο υπόλοιπο μέρος της περιφέρειας υπάρχει το ελατήριο 2 με σταθερές k_2 , ℓ_2 . Στα άκρα αυτού του ελατηρίου είναι συνδεμένες οι μάζες m_1 και m_2 . Με άλλα λόγια, η σειρά είναι: Μάζα m_1 , ελατήριο 1, μάζα m_2 , ελατήριο 2.

Βαρύτητα δεν υπάργει.

- Α) Να σχεδιαστεί το σύστημα ελατηρίων μαζών καθώς και οι άξονες x, y και οι γωνίες θ_1 , θ_2 .
- Β) Να γραφούν οι εξισώσεις κίνησης των μαζών.

Λύση: Εδώ οι συντεταγμένες των μαζών είναι τόξα κύκλου, που μετρώνται από τον άξονα x. Έτσι, η συντεταγμένη της μάζας m_1 είναι $R\theta_1$ και η συντεταγμένη της μάζας m_2 είναι $R\theta_2$. Παρατηρείστε ότι η θετική φορά των συντεταγμένων είναι αντίθετη αυτής των δεικτών του ωρολογίου. Οι εξισώσεις κίνησης των μαζών είναι

$$m_1 \frac{d^2 R \theta_1}{dt^2} = k_1 [R(\theta_2 - \theta_1) - \ell_1] - k_2 [R(2\pi - \theta_2 + \theta_1) - \ell_2],$$

$$m_2 \frac{d^2 R \theta_2}{dt^2} = -k_1 [R(\theta_2 - \theta_1) - \ell_1] + k_2 [R(2\pi - \theta_2 + \theta_1) - \ell_2].$$

Ασκηση 10.7: Τρία ελατήρια και τρεις μάζες είναι συνδεμένα ως εξής στην περιφέρεια κύκλου ακτίνας R, που βρίσκεται στο επίπεδο xy, με κέντρο την αρχή των αξόνων. Την τυχούσα χρονική στιγμή, η διανυσματική ακτίνα της μάζας m_1 σχηματίζει γωνία θ_1 με τον θετικό ημιάξονα x, η διανυσματική ακτίνα της μάζας m_2 σχηματίζει γωνία $\theta_2 > \theta_1$ με τον θετικό ημιάξονα x και η διανυσματική ακτίνα της μάζας της μάζας m_3 σχηματίζει γωνία $\theta_3 > \theta_2$ με τον θετικό ημιάξονα x. Στο τόξο του κύκλου μεταξύ των γωνιών θ_1 και θ_2 υπάρχει το ελατήριο 1 με σταθερές k_1 , ℓ_1 . Στο τόξο του κύκλου μεταξύ των γωνιών ℓ_2 και ℓ_3 υπάρχει το ελατήριο 2 με σταθερές ℓ_2 , ℓ_2 . Στο υπόλοιπο μέρος της περιφέρειας υπάρχει το ελατήριο 3 με σταθερές ℓ_3 , ℓ_3 . Με άλλα λόγια, η σειρά είναι: Μάζα ℓ_3 , ελατήριο 1, μάζα ℓ_3 , ελατήριο 2, μάζα ℓ_3 , ελατήριο 3, μάζα ℓ_3 . Βαρύτητα δεν υπάρχει.

- Α) Να σχεδιαστεί το σύστημα ελατηρίων μαζών καθώς και οι άξονες x, y και οι γωνίες θ_1 , θ_2 , θ_3 .
- Β) Να γραφούν οι εξισώσεις κίνησης των μαζών.

Παράδειγμα 10.6: Τρία ελατήρια και τρεις σημειακές μάζες είναι συνδεμένα ως εξής: Το ελατήριο 1, με σταθερά k_1 και φυσικό μήκος ℓ_1 , βρίσκεται στον άξονα x. Στο αριστερό άκρο του υπάρχει η σημειακή μάζα m_1 , με συντεταγμένες $(x_1,0)$, ενώ

στο δεξιό άκρο του υπάρχει η σημειακή μάζα m_2 , με συντεταγμένες $(x_2,0)$. Στον άξονα y και με συντεταγμένες $(0,y_3)$, βρίσκεται σημειακή μάζα m_3 , η οποία είναι συνδεμένη αφενός μέσω του ελατηρίου 2, σταθεράς k_2 και φυσικού μήκους ℓ_2 , με την μάζα m_2 και αφετέρου μέσω του ελατηρίου 3, σταθεράς k_3 και φυσικού μήκους ℓ_3 , με την μάζα m_1 . Τα x_1,x_2,y_3 είναι στιγμιαίες θέσεις των μαζών και άρα είναι συναρτήσεις του χρόνου. Βαρύτητα δεν υπάρχει.

- Α) Να γραφούν οι εξισώσεις κίνησης των μαζών χρησιμοποιώντας μόνον τα δοθέντα στοιχεία, δηλαδή m_1 , m_2 , m_3 , x_1 , x_2 , y_3 , k_1 , k_2 , k_3 , ℓ_1 , ℓ_2 , ℓ_3 . Θεωρείστε ότι $x_1(t) < 0$, $x_2(t) > 0$ και $y_3(t) > 0$.
- B) Αλλάζουν οι εξισώσεις αν $0 < x_1(t) < x_2(t)$ και, αν ναι, πώς γίνονται;
- Γ) Αλλάζουν οι εξισώσεις αν $x_1(t) < x_2(t) < 0$ και, αν ναι, πώς γίνονται;
- Δ) Αλλάζουν οι εξισώσεις αν $y_3(t) < 0$ και, αν ναι, πώς γίνονται;

Λύση: Α) Στη μάζα m_1 δύναμη ασκούν τα ελατήρια 1 και 3. Στη μάζα m_2 δύναμη ασκούν τα ελατήρια 1 και 2. Στη μάζα m_3 δύναμη ασκούν τα ελατήρια 2 και 3.

Συνεπώς, οι εξισώσεις κίνησης είναι:

$$m_1 \frac{d^2 x_1}{dt^2} = k_1 (x_2 - x_1 - \ell_1) + k_3 (\sqrt{x_1^2 + y_3^2} - \ell_3) \cos \theta,$$

$$m_2 \frac{d^2 x_2}{dt^2} = -k_1 (x_2 - x_1 - \ell_1) - k_2 (\sqrt{x_2^2 + y_3^2} - \ell_2) \cos \phi,$$

$$m_3 \frac{d^2 y_3}{dt^2} = -k_3 (\sqrt{x_1^2 + y_3^2} - \ell_3) \sin \theta - k_2 (\sqrt{x_2^2 + y_3^2} - \ell_2) \sin \phi,$$

όπου θ είναι η <u>οξεία</u> γωνία που σχηματίζει το ελατήριο 3 με το ελατήριο 1 και ϕ είναι η <u>οξεία</u> γωνία που σχηματίζει το ελατήριο 2 με το ελατήριο 1. Στην πρώτη εξίσωση υπεισέρχεται η x συνιστώσα της δύναμης του ελατηρίου 3, στη δεύτερη εξίσωση υπεισέρχεται η x συνιστώσα της δύναμης του ελατηρίου 2 και στην τρίτη εξίσωση υπεισέρχεται η y συνιστώσα της δύναμης τόσο του ελατηρίου 3 όσο και του ελατηρίου 2. Αντικαθιστώντας τις τιμές για τα $\cos \theta$, $\cos \phi$, $\sin \theta$, οι εξισώσεις κίνησης γίνονται:

$$m_1 \frac{d^2 x_1}{dt^2} = k_1 (x_2 - x_1 - l_1) + k_3 (\sqrt{x_1^2 + y_3^2} - l_3) \frac{(-x_1)}{\sqrt{x_1^2 + y_3^2}},$$

$$m_2 \frac{d^2 x_2}{dt^2} = -k_1 (x_2 - x_1 - l_1) - k_2 (\sqrt{x_2^2 + y_3^2} - l_2) \frac{x_2}{\sqrt{x_2^2 + y_2^2}},$$

$$m_3 \frac{d^2 y_3}{dt^2} = -k_3 (\sqrt{x_1^2 + y_3^2} - l_3) \frac{y_3}{\sqrt{x_1^2 + y_3^2}} - k_2 (\sqrt{x_2^2 + y_3^2} - l_2) \frac{y_3}{\sqrt{x_2^2 + y_3^2}}.$$

Προσοχή: Η γωνία θ είναι <u>οξεία</u>, επομένως και το ημίτονό της και το συνημίτονό της είναι <u>θετικές ποσότητες</u>. Γι' αυτό γράψαμε $\cos\theta=(-x_1)/\sqrt{x_1^2+y_3^2}$, αφού μας δίνεται ότι $x_1(t)<0$.

B) Για $x_1(t) < 0$, ο όρος $k_3(\sqrt{x_1^2 + y_3^2} - l_3) \frac{(-x_1)}{\sqrt{x_1^2 + y_3^2}}$, που γράψαμε στο ερώτημα A, είναι <u>θετικός</u>. Αυτό είναι σωστό, διότι αν το ελατήριο 3 είναι τεντωμένο θα τείνει να ασκήσει δύναμη στη μάζα m_1 προς τα δεξιά, δηλαδή <u>θετική</u>.

Αν τώρα $x_1(t)>0$, οι μάζες m_1 και m_2 είναι και οι δυο στον θετικό ημιάξονα x. Αν το ελατήριο 3 είναι τεντωμένο θα τείνει να ασκήσει δύναμη στη μάζα m_1 προς τα αριστερά, δηλαδή αρνητική. Ο όρος $k_3(\sqrt{x_1^2+y_3^2}-l_3)\frac{(-x_1)}{\sqrt{x_1^2+y_3^2}}$, που γράψαμε στο ερώτημα A, είναι τώρα αρνητικός.!!! Δηλαδή έχει το πρόσημο που θέλομε. Άρα, η εξίσωση για τη μάζα m_1 είναι σωστή είτε $x_1(t)<0$ είτε $x_1(t)>0$. Οι εξισώσεις είναι σωστές και για τις δυο άλλες μάζες.

- Γ) Με όμοιο τρόπο βρίσκομε ότι η εξίσωση για τη μάζα m_2 είναι σωστή είτε $x_2(t) > 0$ είτε $x_2(t) < 0$. Οι εξισώσεις είναι σωστές και για τις δυο άλλες μάζες.
- Δ) Η εξίσωση για τη μάζα m_3 είναι σωστή είτε $y_3(t)>0$ (δηλαδή αρνητική δύναμη) είτε $y_3(t)<0$ (θετική δύναμη). Οι εξισώσεις είναι σωστές και για τις δυο άλλες μάζες.

Ασκηση 10.8: Τέσσερα ελατήρια και τέσσερις σημειακές μάζες είναι συνδεμένα ως εξής: Η μάζα m_1 έχει συντεταγμένες $(x_1,0)$, η μάζα m_2 έχει συντεταγμένες $(x_2>x_1,0)$, η μάζα m_3 έχει συντεταγμένες $(0,y_3)$ και η μάζα m_4 έχει συντεταγμένες $(0,y_4< y_3)$. Οι μάζες m_1 και m_4 είναι στα άκρα του ελατηρίου 1 με σταθερές k_1 , ℓ_1 . Οι μάζες m_4 και m_2 είναι στα άκρα του ελατηρίου 2 με σταθερές k_2 , ℓ_2 . Οι μάζες m_2 και m_3 είναι στα άκρα του ελατηρίου 3 με σταθερές k_3 , ℓ_3 . Οι μάζες m_3 και m_1 είναι στα άκρα του ελατηρίου 4 με σταθερές k_4 , ℓ_4 . Τα x_1, x_2, y_3, y_4 είναι στιγμιαίες θέσεις των μαζών και άρα είναι συναρτήσεις του χρόνου. Βαρύτητα δεν υπάρχει. Να γραφούν οι εξισώσεις κίνησης των μαζών χρησιμοποιώντας μόνον τα δοθέντα στοιχεία.

Ασκηση 10.9: Τρία ελατήρια με σταθερές k_1,k_2,k_3 και φυσικά μήκη ℓ_1,ℓ_2,ℓ_3 αντιστοίχως, καθώς και δυο σημειακές μάζες m_1,m_2 είναι συνδεμένα στον οριζόντιο άξονα x ως εξής: Το ελατήριο 1 έχει το αριστερό άκρο του στερεωμένο στη θέση x=0. Στο δεξί άκρο του βρίσκεται η μάζα m_1 καθώς και το αριστερό άκρο του

ελατηρίου 2. Στο δεξί άκρο του ελατηρίου 2 βρίσκεται η μάζα m_2 καθώς και το αριστερό άκρο του ελατηρίου 3. Το δεξί άκρο του ελατηρίου 3 είναι στερεωμένο στη θέση x=L, όπου το L δεν ισούται γενικώς με $\ell_1+\ell_2+\ell_3$. Την τυχούσα χρονική στιγμή t οι θέσεις των δυο μαζών είναι $x_1(t), x_2(t)$, με $0 < x_1(t) < x_2(t)$. Βαρύτητα δεν υπάρχει. Να γραφούν οι εξισώσεις κίνησης των μαζών με συντεταγμένες $x_1(t), x_2(t)$.