PLSC 504 – Fall 2024

Regression Models for Nominal and Binary Responses

September 4, 2024

Binary Outcomes: Quick Review

Latent:

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

Observed:

$$Y_i = 0 \text{ if } Y_i^* < 0$$

 $Y_i = 1 \text{ if } Y_i^* \ge 0$

So:

$$Pr(Y_i = 1) = Pr(Y_i^* \ge 0)$$

$$= Pr(\mathbf{X}_i \boldsymbol{\beta} + u_i \ge 0)$$

$$= Pr(u_i \ge -\mathbf{X}_i \boldsymbol{\beta})$$

$$= Pr(u_i \le \mathbf{X}_i \boldsymbol{\beta})$$

$$= \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} f(u) du$$

"Standard logistic" PDF:

$$Pr(u) \equiv \lambda(u) = \frac{\exp(u)}{[1 + \exp(u)]^2}$$

CDF:

$$\Lambda(u) = \int \lambda(u)du$$

$$= \frac{\exp(u)}{1 + \exp(u)}$$

$$= \frac{1}{1 + \exp(-u)}$$

Logistic → "Logit"

$$\begin{array}{rcl} \Pr(Y_i = 1) & = & \Pr(Y_i^* > 0) \\ & = & \Pr(u_i \leq \mathbf{X}_i \beta) \\ & = & \Lambda(\mathbf{X}_i \beta) \\ & = & \frac{\exp(\mathbf{X}_i \beta)}{1 + \exp(\mathbf{X}_i \beta)} \end{array}$$

$$(\text{equivalently}) = & \frac{1}{1 + \exp(-\mathbf{X}_i \beta)}$$

$$L = \prod_{i=1}^{N} \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right)^{Y_{i}} \left[1 - \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right) \right]^{1 - Y_{i}}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) + (1 - Y_i) \ln \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) \right]$$

$Normal \rightarrow "Probit"$

$$Pr(Y_i = 1) = \Phi(\mathbf{X}_i \boldsymbol{\beta})$$

$$= \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{X}_i \boldsymbol{\beta})^2}{2}\right) d\mathbf{X}_i \boldsymbol{\beta}$$

$$L = \prod_{i=1}^{N} \left[\Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{Y_i} \left[1 - \Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{(1-Y_i)}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \Phi(\mathbf{X}_i \boldsymbol{\beta}) + (1 - Y_i) \ln [1 - \Phi(\mathbf{X}_i \boldsymbol{\beta})]$$

Logit and Probit, Explained

Things we talked about at length in PLSC 503 (here and here; code here and here):

- Odds ratios and the random utility model
- Model estimation and interpretation
- Marginal effects, predictions, etc.
- Assessing model fit
- A couple variants (e.g., c-log-log)

Extensions: Two Topics, One Theme

Things:

- Models for dealing with "separation"
- Models for rare events

Common Focus: Shortage of information on Y

Separation

"Separation" = "perfect prediction" = "monotone likelihood"

Intuition: House votes on the PPACA (3/21/2010)

$$Pr(Y = 1|X = 0) = ?$$

Separation: Effects

"Separation" means that:

•
$$\hat{\beta}_X = \pm \infty$$

•
$$\widehat{\mathsf{s.e.}}_\beta = \infty$$

•
$$\left. \frac{\partial^2 \ln L}{\partial X^2} \right|_{\hat{\beta}} = 0$$
 (monotone likelihood)

Separation Illustrated

Figure 1: Actual and Predicted Values, Simulated Logistic Regressions

Separation: What Happens

```
> set.seed(7222009)
> Z<-rnorm(500)
> W<-rnorm(500)
> Y<-rbinom(500,size=1,prob=plogis((0.2+0.5*W-0.5*Z)))
> X<-rbinom(500,1,(pnorm(Z)))
> X<-ifelse(Y==0.0.X) # Induce separation of Y on X
> summary(glm(Y~W+Z+X,family="binomial"))
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.638
                         0.133 -4.81 1.5e-06 ***
              0.653
                     0.140 4.67 3.0e-06 ***
             -1.134
                         0.146 -7.76 8.3e-15 ***
X
             20.915 861.458 0.02
                                          0.98
Number of Fisher Scoring iterations: 18
# Change the maximum # of iterations / convergence tolerance:
> summary(glm(Y~W+Z+X,family="binomial",maxit=100,epsilon=1e-16))
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -0.638
                            0.133 -4.81 1.5e-06 ***
                 0.653
                            0.140 4.67 3.0e-06 ***
                -1 134
                            0.146 -7.76 8.3e-15 ***
                34.915 5978532.779 0.00
Number of Fisher Scoring iterations: 32
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred
```

One Solution: Exact Logistic Regression

Exact logistic regression (ELR):

- Cox (1970, Ch. 4); Hirji et al. (1987 JASA); Mehta & Patel (1995 Stat. Med.); Forster et al. (2003 Stat. & Comp.); Zamar and Graham (2007 J. Stat. Soft.).
- Conditions on permutations of covariate patterns
- ullet Always has finite solutions for \hat{eta}
- Implementation:
 - · elrm in R; exlogistic in Stata
 - · Fitted via MCMC; see Forster et al. for details
 - · In practice, there are often computational issues...

Firth's (1993) Correction

Firth proposed:

$$L(\boldsymbol{\beta}|\boldsymbol{Y})^* = L(\boldsymbol{\beta}|\boldsymbol{Y}) |\mathbf{I}(\boldsymbol{\beta})|^{\frac{1}{2}}$$

$$\ln L(\boldsymbol{\beta}|\boldsymbol{Y})^* = \ln L(\boldsymbol{\beta}|\boldsymbol{Y}) + 0.5 \ln |\mathbf{I}(\boldsymbol{\beta})|$$

"Penalized likelihood":

- Is consistent
- Eliminates small-sample bias
- Exist given separation
- To Bayesians, it's "Jeffreys' prior":

$$P(\theta) = \sqrt{\det[I(\theta)]}$$

Potential Drawbacks

- "Profile" (= "concentrated") likelihood
- $\hat{\beta}$ can be asymmetrical...
- ullet \rightarrow can affect "normal" inference...
- Plotting the profile likelihood and calculating alternative C.I.s is recommended

Software

Two directions:

- R
- elrm (exact logistic regression via MCMC)
- brlr ("bias-reduced logistic regression")
- logistf ("Firth's logistic regression")
- Stata
 - exlogistic (exact logistic regression)
 - firthlogit (Firth corrected logit)

Example: Pets as Family

Some data, and a silly question:

- CBS/NYT Poll, April 1997
- Standard political/demographics, plus
- "Do you consider your pet to be a member of your family, or not?"
- Yes = 84.4%, No = 15.6%

Data:

> summary(Pets)

petfamily	female	married	partyid	education
Min. :0.000	Min. :0.000	Married :442	Democrat :225	< HS : 71
1st Qu.:1.000	1st Qu.:0.000	Widowed : 46	Independent:214	HS diploma :244
Median :1.000	Median :1.000	Divorced/Sep:118	GOP :229	Some college:184
Mean :0.844	Mean :0.556	NBM :118	NA's : 58	College Grad:131
3rd Qu.:1.000	3rd Qu.:1.000	NA's : 2		Post-Grad : 96
Max. :1.000	Max. :1.000			

Pets as Family: Basic Model

```
> Pets.1<-glm(petfamily~female+as.factor(married)+as.factor(partyid)
             +as.factor(education),data=Pets,family=binomial)
> summarv(Pets.1)
Coefficients:
                               Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                 2.0133
                                            0.5388
                                                      3.74 0.00019 ***
femaleMale
                                            0.2142
                                                    -3.25 0.00116 **
                                -0.6959
as factor(married)Married
                                -0.0657
                                            0.2911
                                                     -0.23 0.82147
as.factor(married)NBM
                                 0.4599
                                            0.3957 1.16 0.24504
as.factor(married)Widowed
                                -0.1568
                                            0.4921
                                                     -0.32 0.75007
as.factor(partyid)Democrat
                                -0.1241
                                            0.4286
                                                     -0.29 0.77213
as.factor(partvid)GOP
                                -0.0350
                                            0.4321
                                                     -0.08 0.93537
as.factor(partyid)Independent
                                            0.4299
                                -0.1521
                                                     -0.35 0.72338
as.factor(education)College Grad
                                0.2511
                                            0.4121
                                                      0.61 0.54228
as.factor(education)HS diploma
                                0.0595
                                            0.3685
                                                    0.16 0.87182
as.factor(education)Post-Grad
                                            0.4331
                                                     0.45 0.65321
                                0.1946
                               0.0587
as.factor(education)Some college
                                            0.3867
                                                      0.15 0.87928
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
   Null deviance: 627.14 on 723 degrees of freedom
Residual deviance: 612.76 on 712 degrees of freedom
ATC: 636.8
Number of Fisher Scoring iterations: 4
```


Pets as Family: More Complicated Model

> summary(Pets.2)

Coefficients:

	Estimate	Sta. Error	z varue	Pr(> Z)	
(Intercept)	2.2971	0.6166	3.73	0.0002 *	**
femaleMale	-1.1833	0.5305	-2.23	0.0257 *	
as.factor(married)Married	-0.3218	0.4470	-0.72	0.4716	
as.factor(married)NBM	0.1854	0.6140	0.30	0.7628	
as.factor(married)Widowed	-0.7415	0.5780	-1.28	0.1995	
as.factor(partyid)Democrat	-0.1575	0.4297	-0.37	0.7140	
as.factor(partyid)GOP	-0.0445	0.4334	-0.10	0.9182	
as.factor(partyid)Independent	-0.1757	0.4312	-0.41	0.6837	
as.factor(education)College Grad	0.2332	0.4137	0.56	0.5730	
as.factor(education)HS diploma	0.0558	0.3703	0.15	0.8801	
as.factor(education)Post-Grad	0.2171	0.4342	0.50	0.6171	
as.factor(education)Some college	0.0358	0.3890	0.09	0.9266	
femaleMale:as.factor(married)Married	0.4853	0.5908	0.82	0.4114	
femaleMale:as.factor(married)NBM	0.5260	0.8051	0.65	0.5136	
femaleMale:as.factor(married)Widowed	15.2516	549.3719	0.03	0.9779	

Null deviance: 627.14 on 723 degrees of freedom Residual deviance: 607.42 on 709 degrees of freedom

AIC: 637.4

Number of Fisher Scoring iterations: 14

What's Going On?

```
> xtabs(~petfamily+as.factor(married)+female)
, , female = 0
         as.factor(married)
petfamily Married Widowed Divorced/Sep NBM
               47
              168
                                     33 47
, , female = 1
         as.factor(married)
petfamily Married Widowed Divorced/Sep NBM
        0
               28
                                          5
                       32
              199
                                         58
```

Pets as Family: Firth Model

	coef	se(coef)	lower 0.95	upper 0.95	Chisq	р
(Intercept)	2.15893	0.597	1.054	3.404	16.17636	0.0000577
femaleMale	-1.13866	0.517	-2.187	-0.145	5.04186	0.0247420
as.factor(married)Married	-0.27387	0.433	-1.192	0.531	0.41518	0.5193531
as.factor(married)NBM	0.15888	0.588	-0.991	1.367	0.07322	0.7867048
as.factor(married)Widowed	-0.72627	0.561	-1.839	0.384	1.67233	0.1959467
as.factor(partyid)Democrat	-0.11818	0.418	-0.992	0.661	0.08159	0.7751592
as.factor(partyid)GOP	-0.00776	0.422	-0.888	0.780	0.00034	0.9852893
as.factor(partyid)Independent	-0.13643	0.419	-1.013	0.646	0.10813	0.7422784
as.factor(education)College Grad	0.23904	0.405	-0.574	1.024	0.34480	0.5570689
as.factor(education)HS diploma	0.07531	0.362	-0.667	0.763	0.04289	0.8359331
as.factor(education)Post-Grad	0.21837	0.425	-0.627	1.050	0.26307	0.6080189
as.factor(education)Some college	0.05240	0.380	-0.721	0.781	0.01888	0.8906980
femaleMale:as.factor(married)Married	0.45582	0.577	-0.661	1.613	0.63550	0.4253467
femaleMale:as.factor(married)NBM	0.52329	0.779	-1.023	2.050	0.45133	0.5017022
femaleMale:as.factor(married)Widowed	2.40167	1.684	-0.139	7.374	3.37453	0.0662116

Likelihood ratio test=17.3 on 14 df, p=0.242, n=724

Profile Likelihood Plot

Note: Plot shows estimated profile likelihood for different values of the parameter estimate for the interaction term femaleMale:as.factor(married)Widowed. Horizontal dotted line is the likelihood associated with $P \leq 0.05$. Vertical dashed line is $\hat{\gamma}$; vertical dotted line indicates $\hat{\gamma} = 0$.

Wrap-Up

- Separation is an estimation problem...
- Separation → dropping covariates!
- Firth's approach > ELR
- Can also be applied to other sparse-data situations:
 - · "Fixed effects" logit models (Cook et al. 2020)
 - Multinomial logit (Cook et al. 2018)
 - · Survival models (Anderson et al. 2020)

Finally: Read this twitter thread before it's gone.

"Rare" Events

If events ("1s") are rare, we can...

- Collect lots of "0s" for a few "1s"
- → Classification bias...

Example: Suppose that:

$$Pr(Y_i) = \Lambda(0 + 1X_i)$$

then:

$$E(\hat{eta}_0-eta_0)pprox rac{ar{\pi}-0.5}{Nar{\pi}(1-ar{\pi})}$$

where $\bar{\pi} = \overline{\Pr(Y=1)}$ is < 0.5.

Rare Events Bias

Bias is:

- always negative,
- worse as $\bar{\pi} \to 0$ (for fixed N),
- disappearing as $N \to \infty$.

Implication: Logit/probit "work best" around $\bar{\pi}=0.5$.

Rare Event Bias, Illustrated

The Case-Control Alternative

- Calculate $\tau = \frac{N_1 s}{N}$
- Collect data on all "1s"
- Sample from the "0s"
- Estimate a logit*
- *Correct* the estimates ex post...

Sampling and Weighting

Sampling...

- $\tau =$ fraction of "1s" in the population
- $\bar{Y} = \text{fraction of '1s"}$ in the sample
- K&Z suggest $\bar{Y} \in [0.2, 0.5]$

Weighting...

$$w_1=rac{ au}{ar{Y}}$$
 (weights for "1s") $w_0=rac{1- au}{1-ar{Y}}$ (weights for "0s")

$$\ln L(\beta|Y) = \sum_{i=1}^{N} w_1 Y_i \ln \Lambda(\mathbf{X}_i \beta) + w_0 (1 - Y_i) \ln[1 - \Lambda(\mathbf{X}_i \beta)]$$

Weighting: Pluses and Minuses

Weighting:

- Good under (possible) misspecification, but
- Not as efficient as "prior correction," and
- Gets s.e.s wrong...

Case-Control Data: Prior Correction

$$\hat{eta}_{0
m pc}=\hat{eta}_0-\ln\left[\left(rac{ar{Y}}{ au}
ight)\left(rac{ar{Y}}{1-ar{Y}}
ight)
ight]$$
 bias $(\hat{eta})=({f X}'{f W}{f X})^{-1}{f X}'{f W}\xi$ where $\xi=f[w_i,\hat{\pi}_i,{f X}]$.

Correction is

$$ilde{oldsymbol{eta}} = \hat{oldsymbol{eta}} - \mathsf{bias}(\hat{oldsymbol{eta}})$$

- Bias correction introduces additional variability...
- Ignoring it yields underpredictions (again).

Post-Correction Adjustments

Use:

$$\Pr(Y_i = 1) \approx \tilde{\pi}_i + C_i$$

where

$$C_i = (0.5 - \tilde{\pi}_i)\tilde{\pi}_i(1 - \tilde{\pi}_i)\mathbf{X}_i\mathbf{V}(\tilde{\boldsymbol{\beta}})\mathbf{X}_i'$$

Connections...

Puhr et al. (2017) note that Firth's method indices bias (toward 0.5) in predicted probabilities, and that the bias is worse when the baseline $Pr(Y_i = 1)$ is low.

They introduce two modifications to deal with this:

- "Firth's logit with intercept correction" (FLIC)
- "Firth's logit with added covariate" (FLAC)

Through simulations, they show that both remove the bias; they have a slight preference for FLAC, but note that both work well relative to unmodified Firth regression.

An Example

- Washington University's American Panel Study (TAPS)
- $N \approx 1000$ U.S. respondents, 2012-2017
- Outcome: "During the past year, have you ever run out of gas while driving a car or other vehicle?" (RunOutOfGas; 0=no, 1=yes)
- Predictors:
 - Education twelve-category ordinal variable with values ranging from 3 to 15;
 - Income a 15-category ordinal variable (each unit roughly corresponds to an increase of \$10,000 in annual income);
 - · Age in years, as of 2016 (divided by 10);
 - · Female a binary indicator of sex, naturally-coded;
 - Racial classifications binary variables for White, Black, and Asian identification;
 - · Binary political party variables for Democrat and GOP; and
 - Ideology a seven-point Likert variable, higher values indicate greater political conservatism

Basic Logit...

```
> table(TAPS$RunOutOfGas)
943 28
> prop.table(table(TAPS$RunOutOfGas))
    Ω
0.9712 0.0288
> ROGlogit<-glm(RunOutOfGas~Education+Age10+Female+White+Black+Asian+
                     Democrat+GOP+Ideology,data=TAPS,family=binomial)
> summary(ROGlogit)
Deviance Residuals:
   Min
           10 Median
                                 Max
-0.661 -0.248 -0.206 -0.170 2.962
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9347
                      1.8114
                               -1.07
                                         0.285
Education -0.1185
                       0.1118
                                -1.06
                                         0.289
Age10
           -0.2107
                     0.1341
                                -1.57
                                        0.116
Female
           0.2911
                     0.3966
                                0.73
                                        0.463
White
             0.4348
                     0.7260
                                0.60
                                         0.549
Black
            1.3503
                     0.7602
                                1.78
                                        0.076 .
Asian
            1.8616
                     0.8717
                                2 14
                                        0.033 *
Democrat
             0.2743
                       0.4999
                                 0.55
                                         0.583
GOP
            -0.3170
                                        0.593
                       0.5926
                                -0.53
Ideology
             0.0217
                       0.1097
                                 0.20
                                         0.843
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 253.77 on 970 degrees of freedom
Residual deviance: 238.13 on 961 degrees of freedom
ATC: 258.1
```

Firth Logit (for comparison)

```
Democrat+GOP+Ideology.data=TAPS)
> summary(relogit.firth)
logistf(formula = RunOutOfGas ~ Education + Age10 + Female +
   White + Black + Asian + Democrat + GOP + Ideology, data = TAPS)
Model fitted by Penalized ML
Coefficients:
             coef se(coef) lower 0.95 upper 0.95 Chisq
(Intercept) -1.7929
                  1.657
                             -5.362
                                      1.6045 1.0457 0.3065
Education -0.1167 0.103 -0.331 0.1009 1.1154 0.2909
Age10
       -0.2071 0.124
                          -0.469 0.0498 2.4952 0.1142
Female
         0.2749 0.367
                          -0.478 1.0490 0.5124 0.4741
       0.3782
White
                          -1.007 1.7513 0.2769 0.5987
                 0.646
Black
      1.3409 0.677
                          -0.182
                                      2.7141 2.9875 0.0839
         1.9202
                  0.766
                           0.149
Asian
                                      3.4429 4.4610 0.0347
         0.2550 0.464
                          -0.688 1.2418 0.2767 0.5989
Democrat
                          -1.479
GOP
         -0.3061 0.546
                                      0.7889 0.2969 0.5858
         0.0267
                   0.101
                           -0.191
Ideology
                                      0.2333 0.0613 0.8044
Method: 1-Wald, 2-Profile penalized log-likelihood, 3-None
Likelihood ratio test=17.5 on 9 df, p=0.0415, n=971
```

Wald test = 318 on 9 df. p = 0

> relogit.firth<-logistf(RunOutOfGas~Education+Age10+Female+White+Black+Asian+

Firth Logit with FLIC

```
> relogit.flic<-logistf(RunOutOfGas~Education+Age10+Female+White+Black+Asian+
                        Democrat+GOP+Ideology.data=TAPS.flic=TRUE)
> summary(relogit.flic)
logistf(formula = RunOutOfGas ~ Education + Age10 + Female +
   White + Black + Asian + Democrat + GOP + Ideology, data = TAPS.
   flic = TRUE)
Model fitted by Penalized ML
Coefficients:
             coef se(coef) lower 0.95 upper 0.95 Chisq
                                                         p method
(Intercept) -1.9430
                   1.807
                              -5.486
                                        1.5995 1.0457 0.3065
Education
          -0.1167
                  0.112
                           -0.331 0.1009 1.1154 0.2909
Age10
         -0.2071
                  0.134
                           -0.469 0.0498 2.4952 0.1142
Female
         0.2749
                  0.397
                           -0.478 1.0490 0.5124 0.4741
White
          0.3782
                  0.720
                           -1.007 1.7513 0.2769 0.5987
          1.3409
                  0.756
                            -0.182
                                        2.7141 2.9875 0.0839
Black
          1.9202
                  0.857
                             0.149
                                        3.4429 4.4610 0.0347
Asian
                            -0.688 1.2418 0.2767 0.5989
Democrat 0.2550
                  0.501
                                        0.7889 0.2969 0.5858
COP
          -0.3061
                   0.590
                            -1.479
          0.0267
                   0.110
                              -0.191
                                        0.2333 0.0613 0.8044
Ideology
Method: 1-Wald, 2-Profile penalized log-likelihood, 3-None
Likelihood ratio test=17.5 on 9 df, p=0.0415, n=971
Wald test = 299 on 9 df. p = 0
```

Summarizing: $\hat{\beta}$ s

Some Final Thoughts

- The key to doing King-Zeng is to be able to conduct C-C sampling in advance
- BUT: The R implementation of K&Z (in Zelig) is currently a bit buggy (its dependencies are all messed up...)
- In practice: the Firth + FLIC approach is generally superior to King/Zeng (and arguably should *always* be used for binary-response regressions, especially with small-to-medium *N*s)
- Also: Remember that as your *N* gets big, the problem goes away; Paul Allision has a (old, but useful) blog post on that topic.

Other Binary-Response Extensions

Things we'll talk about later:

- Binary responses in panel / longitudinal data
- Multilevel / hierarchical models for binary responses
- Models with (binary) sample selection
- Measurement models for binary outcomes (e.g., item response models)

Things we won't talk about:

- Semi- and non-parametric models (see, e.g., Horowitz and Savin 2001)
- "Heteroscedastic" models (where $\sigma_i^2 \neq \sigma^2 \, \forall \, i$) (see, e.g., Alvarez and Brehm 1995, 1997; Tutz 2018)
- "Bivariate" probit models, where:

$$\{Y_{1i}, Y_{2i}\} \sim BVN(0, 0, 1, 1, \rho)$$

(e.g., Zorn 2002)

Nominal Outcomes

Motivation: Discrete Outcomes

$$\Pr(Y_i = j) = P_{ij}$$

$$\sum_{j=1}^{J} P_{ij} = 1$$

$$P_{ij} = \exp(\mathbf{X}_i \boldsymbol{\beta}_j)$$

Motivation, continued

Rescale:

$$\Pr(Y_i = j) \equiv P_{ij} = \frac{\exp(\mathbf{X}_i \beta_j)}{\sum_{j=1}^{J} \exp(\mathbf{X}_i \beta_j)}$$

Ensures

- $Pr(Y_i = j) \in (0,1)$
- $\sum_{j=1}^{J} \Pr(Y_i = j) = 1.0$

Identification

Constrain $\beta_1 = \mathbf{0}$; then:

$$\Pr(Y_i = 1) = \frac{1}{1 + \sum_{i=2}^{J} \exp(\mathbf{X}_i \boldsymbol{\beta}_i')}$$

$$\Pr(Y_i = j) = \frac{\exp(\mathbf{X}_i \boldsymbol{\beta}_j')}{1 + \sum_{j=2}^{J} \exp(\mathbf{X}_i \boldsymbol{\beta}_j')}$$

where $oldsymbol{eta}_j' = oldsymbol{eta}_j - oldsymbol{eta}_1$.

Alternative Motivation: Discrete *Choice*

$$\begin{aligned} \mu_i &= \mathbf{X}_i \boldsymbol{\beta}_j \\ \Pr(Y_i = j) &= \Pr(U_{ij} > U_{i\ell} \, \forall \, \ell \neq j \in J) \\ &= \Pr(\mu_i + \epsilon_{ij} > \mu_i + \epsilon_{i\ell} \, \forall \, \ell \neq j \in J) \\ &= \Pr(\mathbf{X}_i \boldsymbol{\beta}_j + \epsilon_{ij} > \mathbf{X}_i \boldsymbol{\beta}_\ell + \epsilon_{i\ell} \, \forall \, \ell \neq j \in J) \\ &= \Pr(\epsilon_{ij} - \epsilon_{i\ell} > \mathbf{X}_i \boldsymbol{\beta}_\ell - \mathbf{X}_i \boldsymbol{\beta}_j \, \forall \, \ell \neq j \in J) \end{aligned}$$

 $U_{ii} = \mu_i + \epsilon_{ii}$

Discrete Choice (continued)

 $\epsilon \sim ???$

- Type I Extreme Value
- Density: $f(\epsilon) = \exp[-\epsilon \exp(-\epsilon)]$
- CDF: $\int f(\epsilon) \equiv F(\epsilon) = \exp[-\exp(-\epsilon)]$
- → Multinomial Logit

Estimation

Define:
$$\delta_{ij} = 1 \text{ if } Y_i = j,$$
 $= 0 \text{ otherwise.}$

Then:

$$L_{i} = \prod_{j=1}^{J} [\Pr(Y_{i} = j)]^{\delta_{ij}}$$
$$= \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{X}_{i}\beta_{j})}{\sum_{j=1}^{J} \exp(\mathbf{X}_{i}\beta_{j})} \right]^{\delta_{ij}}$$

More Estimation

$$L = \prod_{i=1}^{N} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{X}_{i}\beta_{j})}{\sum_{j=1}^{J} \exp(\mathbf{X}_{i}\beta_{j})} \right]^{\delta_{ij}}$$

and (of course):

$$\ln L = \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \ln \left[\frac{\exp(\mathbf{X}_{i}\beta_{j})}{\sum_{j=1}^{J} \exp(\mathbf{X}_{i}\beta_{j})} \right]$$

Conditional Logit (CL)

It is exactly the same as the multinomial logit model. Period.

Conditional Logit (CL)

CL with choice-varying predictors $\mathbf{Z}_{ij}\gamma$ is:

$$\Pr(Y_{ij} = j) = \frac{\exp(\mathbf{Z}_{ij}\gamma)}{\sum_{j=1}^{J} \exp(\mathbf{Z}_{ij}\gamma)}$$

Combinations: $\mathbf{X}_{i}\boldsymbol{\beta}$ and $\mathbf{Z}_{ij}\gamma$:

- "Fixed effects" for each possible outcome / choice
- Observation-specific Xs
- Interactions...

MNL and CL: Practical Things

The PLSC 503 <u>slides</u> and <u>code</u> include some additional detail, plus a running example (the three-candidate 1992 U.S. presidential election), with discussions of:

- Model estimation (including choosing the baseline/reference outcome),
- Model interpretation and discussion (odds ratios, predicted probabilities, etc.),
- Model fit, and
- Diagnostics.

I've included most of the code for those examples in today's code as well.

Independence of Irrelevant Alternatives ("IIA")

"An individual's choice does not depend on the availability or characteristics of unavailable alternatives."

IIA, Statistically

$$\frac{\Pr(Y_i = k)}{\Pr(Y_i = \ell)} = \frac{\frac{\exp(\mathbf{X}_i \beta_k)}{\sum_{j=1}^{J} \exp(\mathbf{X}_i \beta_j)}}{\frac{\exp(\mathbf{X}_i \beta_\ell)}{\sum_{j=1}^{J} \exp(\mathbf{X}_i \beta_j)}}$$

$$= \frac{\exp(\mathbf{X}_i \beta_k)}{\exp(\mathbf{X}_i \beta_\ell)}$$

$$= \exp[\mathbf{X}_i (\beta_k - \beta_\ell)]$$

Alternatively:

$$\frac{\Pr(Y_i = k|S_J)}{\Pr(Y_i = \ell|S_J)} = \frac{\Pr(Y_i = k|S_M)}{\Pr(Y_i = \ell|S_M)} \ \forall \ k, \ell, J, M$$

IIA, Intuitively

- Initially: Pr(Car) = Pr(Red Bus) = 0.5, $\frac{Pr(Car)}{Pr(Red Bus)} = 1$.
- Enter the Blue Bus...
 - · Intuitively: Pr(Car) = 0.5, Pr(Red Bus) = 0.25, Pr(Blue Bus) = 0.25
 - · IIA requires that $\frac{Pr(Car)}{Pr(Red Bus)} = 1$.
 - · So, that could be Pr(Car) = Pr(Red Bus) = Pr(Blue Bus) = 0.33, or
 - · Pr(Car) = Pr(Red Bus) = 0.4 and Pr(Blue Bus) = 0.2...

Random utility model:

$$U_{ij} = \mu_{ij} + \epsilon_{ij}$$
$$= \mathbf{X}_i \boldsymbol{\beta}_j + \epsilon_{ij}$$

... means that:

$$Pr(Y_{i} = j) = Pr(U_{ij} > U_{i\ell}) \forall \ell \neq j \in J$$

$$= Pr(\mathbf{X}_{i}\beta_{j} + \epsilon_{ij} > \mathbf{X}_{i}\beta_{\ell} + \epsilon_{i\ell}) \forall \ell \neq j \in J$$

$$= Pr(\epsilon_{ij} - \epsilon_{i\ell} > \mathbf{X}_{i}\beta_{\ell} - \mathbf{X}_{i}\beta_{j}) \forall \ell \neq j \in J$$

IIA Tests: Hausman/McFadden and Small/Hsiao

$$HM = (\hat{eta}_r - \hat{eta}_u)'[\hat{\mathbf{V}}_r - \hat{\mathbf{V}}_u]^{-1}(\hat{eta}_r - \hat{eta}_u)$$

$$\widehat{HM} \sim \chi^2_{(J-2)k}$$

$$SH = -2\left[L_r(\hat{\beta}_u^{AB}) - L_r(\hat{\beta}_r^{B})\right]$$

$$\widehat{SH} \sim \chi_{k_r}^2$$

IIA Freedom: Multinomial Probit

 $\epsilon_{ii} \sim MVN(0, \Sigma)$, where:

$$\mathbf{\Sigma}_{J \times J} = \left[\begin{array}{ccc} \sigma_1^2 & \dots & \sigma_{1J} \\ \vdots & \ddots & \vdots \\ \sigma_{J1} & \dots & \sigma_J^2 \end{array} \right]$$

Define $\eta_{ii\ell} = \epsilon_{ij} - \epsilon_{i\ell}$. Then:

$$\begin{array}{lcl} \Pr(Y_i = j) & = & \Pr(\eta_{ij\ell} > \mathbf{X}_i \boldsymbol{\beta}_{\ell} - \mathbf{X}_i \boldsymbol{\beta}_j) \, \forall \, \ell \neq j \in J \\ & = & \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}_1 - \mathbf{X}_i \boldsymbol{\beta}_j} ... \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}_{\ell} - \mathbf{X}_i \boldsymbol{\beta}_j} \phi_J(\eta_{ij1}, \eta_{ij2}, ... \eta_{ij\ell}) d\eta_{ij1}, \eta_{ij2}, ... \eta_{ij\ell} \end{array}$$

MNP: Issues and Estimation

- Identification: (Potentially) Fragile
- Estimation:
 - · Always hard
 - · Via "GHK" algorithm, or
 - · Gaussian quadrature, or
 - · Simulation (MCMC) (preferred)
- Software:
 - mlogit with probit = TRUE (Geweke-Hajivassiliou-Keane algorithm)
 - MNP package (Bayesian/MCMC)
 - · endogMNP package (Bayesian with endogenous switching)
 - · Others?

IIA Freedom: HEV

$$f(\epsilon_{ij}) = \lambda(\epsilon_{ij})$$

$$= \frac{1}{\theta_j} \exp\left(-\frac{\epsilon_{ij}}{\theta_j}\right) \exp\left[-\exp\left(-\frac{\epsilon_{ij}}{\theta_j}\right)\right]$$

$$F(\epsilon_{ij}) = \Lambda(\epsilon_{ij})$$

$$= \int_{-\infty}^{z} f(\epsilon_{ij}) d\epsilon_{ij}$$

$$= \exp\left[-\exp\left(-\frac{\epsilon_{ij}}{\theta_i}\right)\right]$$

Means:

$$\Pr(Y_i = j) = \int_{-\infty}^{\infty} \prod_{\ell \neq i} \Lambda\left(\frac{\mathbf{X}_i \beta_j - \mathbf{X}_i \beta_\ell + \epsilon_{ij}}{\theta_\ell}\right) \frac{1}{\theta_j} \lambda\left(\frac{\epsilon_{ij}}{\theta_j}\right) d \epsilon_{ij}$$

With $w = \frac{\epsilon_{ij}}{\theta_i}$:

$$\Pr(Y_i = j) = \int_{-\infty}^{\infty} \prod_{\ell \neq i} \Lambda\left(\frac{\mathbf{X}_i \beta_j - \mathbf{X}_i \beta_\ell + \theta_j w}{\theta_\ell}\right) \lambda(w) dw$$

 $\mathsf{MNL} \subset \mathsf{HEV}$: When $\theta_i = 1 \ \forall \ j \rightarrow$

$$\Pr(Y_i = j) = \int_{-\infty}^{\infty} \prod_{\ell \neq i} \Lambda(\mathbf{X}_i \beta_j - \mathbf{X}_i \beta_\ell + \epsilon_{ij}) \lambda(\epsilon_{ij}) d\epsilon_{ij}$$

IIA Freedom: "Mixed Logit"

$$U_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + \epsilon_{ij},$$

$$\epsilon_{ij} = \eta_i + \xi_{ij}$$

$$\Pr(Y_i = j | \eta) \equiv \Pr(Y_{ij} = 1 | \eta) = \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta} + \eta_i)}{\sum_{i=1}^{J} \exp(\mathbf{X}_{ij}\boldsymbol{\beta} + \eta_i)}$$

What to do with the η s?

Assume:

$$\eta_i \sim g(\mathbf{0}, \mathbf{\Omega})$$

Yields:

$$\Pr(Y_i = j) = \int \left| \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta} + \eta_i)}{\sum_{i=1}^{J} \exp(\mathbf{X}_{ij}\boldsymbol{\beta} + \eta_i)} \right| g(\eta|\mathbf{\Omega}) d\eta$$

Nested Logit

- "Nested" choices
- A priori information about "subsets"
- IIA holds within (but not across) subsets...

Example: 2002 Swedish Election (N = 6610)

> summary(Sweden)

part	ychoice	fe	emale	ur	nion	left	right
Conservatives	:1469	Min.	:0.0000	Min.	:1.000	Min.	:1.000
Liberals	:1212	1st Qu	1.:0.0000	1st Qu	1.:1.000	1st Qu	1.:2.000
Social Democra	ts:2975	Mediar	1 :0.0000	Mediar	:3.000	Median	:3.000
Left Party	: 954	Mean	:0.4882	Mean	:2.709	Mean	:2.868
		3rd Qu	1.:1.0000	3rd Qu	1.:4.000	3rd Qu	1.:4.000
		Max.	:1.0000	Max.	:4.000	Max.	:5.000

age

Min.:17.00 1st Qu::29.00 Median:42.00 Mean:42.93 3rd Qu::55.00 Max::90.00

Swedish Election: MNL

```
> library(mlogit)
> Sweden.Long<-mlogit.data(Sweden.choice="partychoice".shape="wide")
> Sweden.MNL<-mlogit(partychoice~1|female+union+leftright+age,data=Sweden.Long)
> summary(Sweden.MNL)
Frequencies of alternatives:
  Conservatives
                      Left Party
                                         Liberals Social Democrats
        0 22224
                                                           0.45008
                         0 14433
                                          0 18336
Coefficients .
                               Estimate Std. Error t-value Pr(>|t|)
altLeft Party
                             13.3907039 0.3788540 35.3453 < 2.2e-16 ***
altLiberals
                              4.4121638 0.2928137 15.0682 < 2.2e-16 ***
altSocial Democrats
                             11.3821332 0.3289066 34.6060 < 2.2e-16 ***
altLeft Partv:female
                              0 7211951 0 1218437 5 9190 3 239e-09 ***
altLiberals:female
                              0.5585172 0.0848597 6.5817 4.652e-11 ***
altSocial Democrats:female
                              0.3881456 0.0945266 4.1062 4.022e-05 ***
altLeft Party:union
                             -0.4334637 0.0513499 -8.4414 < 2.2e-16 ***
altLiberals:union
                             -0.0563136 0.0388720 -1.4487 0.1474228
altSocial Democrats:union
                            -0.4145682 0.0408153 -10.1572 < 2.2e-16 ***
altLeft Party:leftright
                             -4.0917135 0.0930610 -43.9681 < 2.2e-16 ***
altLiberals:leftright
                             -1.1274488 0.0593125 -19.0086 < 2.2e-16 ***
altSocial Democrats:leftright -2.7555009 0.0719411 -38.3022 < 2.2e-16 ***
                             -0.0277444 0.0038808 -7.1491 8.737e-13 ***
altLeft Partv:age
altLiberals:age
                             -0.0064185 0.0025768 -2.4909 0.0127410 *
altSocial Democrats:age
                             -0.0105052 0.0029196 -3.5982 0.0003204 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Log-Likelihood: -5627.5
McFadden R^2: 0.33693
Likelihood ratio test : chisq = 5719 (p.value=< 2.22e-16)
```

Hausman-McFadden IIA Test

```
> # Restricted model (omitting Social Democrats)
> Sweden.MNL.Restr<-mlogit(partychoice~1|female+union+leftright+age,
+ Sweden.Long,alt.subset=c("Conservatives","Liberals","Left Party"))
> hmftest(Sweden.MNL,Sweden.MNL.Restr)

Hausman-McFadden test

data: Sweden.Long
chisq = 19.1137, df = 10, p-value = 0.03884
alternative hypothesis: IIA is rejected
```

Swedish Election: HEV

```
> Sweden.Het<-mlogit(partychoice~1|female+union+leftright+
                     age.data=Sweden.Long.heterosc=TRUE)
> summary(Sweden.Het)
Coefficients :
                          Estimate Std. Error z-value Pr(>|z|)
Left Party:(intercept)
                           7.84569
                                     0.42849
                                              18.31 < 2e-16 ***
                           3.09199
Liberals: (intercept)
                                     0.30607 10.10 < 2e-16 ***
Social Democrats: (intercept) 6.74242
                                     0.32038 21.04 < 2e-16 ***
                           0.29096 0.08057 3.61 0.0003 ***
Left Party:female
Liberals:female
                           0.05718 2.72 0.0065 **
Social Democrats:female
                           0.15572
                          -0.22645 0.03704 -6.11 9.7e-10 ***
Left Party:union
                          -0.03498
                                     0.02685 -1.30 0.1926
Liberals:union
Social Democrats:union
                          -0.23786
                                     0.03319 -7.17 7.8e-13 ***
Left Party:leftright
                          -2.43814
                                     0.17450 -13.97 < 2e-16 ***
Liberals:leftright
                          -0.77255
                                     0.04629
                                             -16.69 < 2e-16 ***
Social Democrats:leftright
                          -1.60927
                                     0.09462
                                             -17.01 < 2e-16 ***
Left Party:age
                          -0.01612
                                     0.00338
                                            -4.77 1.9e-06 ***
                                     0.00176 -1.14 0.2543
Liberals:age
                          -0.00200
                                     0.00175 -1.53 0.1258
Social Democrats:age
                          -0.00267
                           0.90017
                                     0.14304 6.29
                                                    3.1e-10 ***
sp.Left Party
sp.Liberals
                           0.59981
                                     0.09925 6.04 1.5e-09 ***
sp.Social Democrats
                                               6.78 1.2e-11 ***
                           0.69163
                                     0.10197
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Log-Likelihood: -5840
McFadden R^2: 0.312
Likelihood ratio test : chisq = 5300 (p.value = <2e-16)
```

$\hat{oldsymbol{eta}}$ s: MNL vs. HEV

Tests:

```
> MNL.HEV.Wald <- waldtest(Sweden.Het, heterosc = FALSE) # Wald test
> MNI. HEV Wald
Wald test
data: homoscedasticity
chisq = 20, df = 3, p-value = 0.0004
> MNL.HEV.LR <- lrtest(Sweden.Het) # LR test
> MNI.. HEV. I.R.
Likelihood ratio test
Model 1: partychoice ~ 1 | female + union + leftright + age
Model 2: partychoice ~ 1 | female + union + leftright + age
 #Df LogLik Df Chisq Pr(>Chisq)
1 18 -5836
2 15 -5627 -3 416 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> MNL.HEV.Score <- scoretest(Sweden.MNL, heterosc = TRUE) # score test
> MNI..HEV.Score
 score test
data: heterosc = TRUE
chisq = 20, df = 3, p-value = 0.00002
alternative hypothesis: heteroscedastic model
```

Swedish Election: MNP

- > library(MNP)
- > Sweden.MNP<-mnp(partychoice~female+union+leftright+age, data=Sweden)
- > summary(Sweden.MNP)

Coefficients:

	mean	std.dev.	2.5%	97.5%
(Intercept):Liberals	3.964677	0.879442	0.983572	4.669
(Intercept):Social Democ	rats 7.993453	1.495732	3.986961	9.812
(Intercept):Left Party	10.342468	2.082971	4.845935	12.714
female:Liberals	0.293136	0.046373	0.204654	0.382
female:Social Democrats	0.290311	0.079166	0.124746	0.447
female:Left Party	0.613163	0.163673	0.289974	0.944
union:Liberals	-0.083366	0.036782	-0.140052	0.024
union:Social Democrats	-0.275696	0.059260	-0.369943	-0.145
union:Left Party	-0.346922	0.087131	-0.489992	-0.148
leftright:Liberals	-0.913247	0.168331	-1.045781	-0.350
leftright:Social Democra	ts -1.920076	0.362403	-2.371245	-0.977
leftright:Left Party	-3.409277	0.750701	-4.308455	-1.576
age:Liberals	-0.003350	0.001490	-0.006264	-0.000409
age:Social Democrats	-0.007171	0.002630	-0.012327	-0.002
age:Left Party	-0.025595	0.007323	-0.039641	-0.011

Covariances:

	mean	std.dev.	2.5%	97.5%
Liberals:Liberals	1.0000	0.0000	1.0000	1.000
Liberals:Social Democrats	1.4083	0.3925	0.2116	1.830
Liberals:Left Party	2.4450	1.0779	0.6731	3.988
Social Democrats:Social Democrats	2.6696	0.9215	0.5630	3.898
Social Democrats:Left Party	4.4852	2.1846	0.3521	7.524
Left Party:Left Party	9.4811	5.0787	1.1682	17.095

Base category: Conservatives
Number of alternatives: 4
Number of observations: 6610
Number of estimated parameters: 20
Number of stored MCMC draws: 5000

How I Stopped Worrying and Learned To Love MNL...

Software

Model	Stata	SAS	R
Multinomial Logit	mlogit	proc catmod	vglm, mlogit, multinom*
Conditional Logit	clogit	proc mdc	clogit, mlogit
Multinomial Probit	mprobit / asmprobit	proc mdc	mnp*, mlogit
Heteroscedastic Extreme Value	No(?)	proc mdc	mlogit
Mixed Logit	mixlogit	proc mdc	mlogit
Nested Logit	nlogit	proc mdc	mlogit

^{*} See also bayesm.

Things To Read

- Bhat, Chandra R. 1995. "A Heteroscedastic Extreme Value Model of Intercity Travel Mode Choice." Transportation Research Part B: Methodological 29(6):471-83.
- Colonescu, Constantin. 2016. Principles of Econometrics with R. Chapter 16: "Qualitative and LDV Models." Available here.
- Hensher, David A., and William H. Greene. 2002. "Specification and Estimation of the Nested Logit Model: Alternative Normalisations." Transportation Research Part B 36:1-17.
- Imai, Kosuke, and D. A. van Dyk. 2005. "A Bayesian Analysis of the Multinomial Probit Model Using Marginal Data Augmentation." Journal of Econometrics 124:311-334.
- McFadden, Daniel. 1974. "The Measurement of Urban Travel Demand." Journal of Public Economics 3:303-28.
- Patty, John W., and Elizabeth M. Penn. 2019. "A Defense of Arrow's Independence of Irrelevant Alternatives." Public Choice 179:145-164.
- Sarrias, Mauricio, and Ricardo Daziano. 2017. "Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The Gmnl Package." Journal of Statistical Software, Articles 79(2):1-46.
- Seshadri, Arjun, and Johan Ugander. 2020. "Fundamental Limits of Testing the Independence of Irrelevant Alternatives in Discrete Choice." Working paper, arXiv:2001.07042.
- Train, Kenneth. 2009. Discrete Choice Methods with Simulation. New York: Cambridge University Press.