

Paper Introduction:

Geeleher et al. Genome Biology (2016) 17:190 DOI 10.1186/s13059-016-1050-9

Genome Biology

METHOD

Open Access

Cancer biomarker discovery is improved by accounting for variability in general levels of drug sensitivity in pre-clinical models

Paul Geeleher¹, Nancy J. Cox^{2,3} and R. Stephanie Huang^{1*}

Dongfang Wang Group Meeting 2016-09-02 1

Background

- Most biomarkers are initially identified through cell line drug sensitivity screening.
- Countless failures when biomarker predictions from pre-clinical data have been applied in the clinic.
- Three largest publicly available cell line pharmacogenomics studies:
 - GDSC: 138 compounds/drugs
 - CCLE: 24 compounds/drugs
 - CTRP: 481 compounds/drugs

MDR: Multi-drug resistance

Figure: Ways of MDR. Figures from Gottesman, 2002.

4日 > 4周 > 4 至 > 4 至 >

GLDS: General Level of Drug Sensitivity

 IC_{50} : half maximal inhibitory concentration.

GLDS: General Level of Drug Sensitivity

(1). Pairwise correlation between IC_{50} values of all 138 drugs across all 714 cell lines in GDSC.

Dongfang Wang Group Meeting 2016-09-02 5 / 3

Similar classes of drugs don't clustering together strongly.

Strong correlations are not only observed between drugs within the same class, but also drigs with different mechanisms.

(2). Iterative matrix completion of IC_{50} values matrix \boldsymbol{X} .

- Initially, impute missing values by mean values of the same drug.
- Iteration:
 - Estimate PCs of X;
 - For each cell line, using PCs of other cell lines to estimate the missing values. (lasso regression)

Figure: Imputed against measured IC_{50} values from 8-fold CV.

(3). Summarize the pattern of GLDS using SVD/PCA.

Figure: PCA of drug's IC_{50} values.

Dongfang Wang Group Meeting 2016-09-02 8 / 36

Figure: Use 38 drugs' PCs to predict other 100 drugs' IC_{50} values.

Cell lines tend to exhibit sensitivity or resistance to many drugs, regardless of canonical drug mechanisms.

(4). Biological drivers of GLDS in cell lines.

Figure: Boxplot of PC1 (estimated in all 714 cell lines) against tissue-of-origin in CGP.

Explain only 8% of variance.

10 / 36

Dongfang Wang Group Meeting 2016-09-02

Detect genes associated with GLDS:

- ullet 810, 4,680 and 4,457 were detected significantly associated with PC1 in GDSC, CCLE, CTRP, respectively.
- 185 genes were found in all 3 studies.

Gene Set Enrichment Analysis:

- \bullet MDR1 gene (efflux protein) is associated with GLDS in all 3 studies.
- All associated with cell cycle, growth and apoptosis in GDSC. In CTRP.
 - "Growth" ia associated with PC2.
 - "Regulation of apoptosis" is associated with PC3 and PC5.
 - "Lipid Transporter Activity" is associated with PC1.

Prediction based on GLDS

Why controlling for GLDS:

- Cancer drug biomarkers, are often subsequently tested on relapsed patients, who have undergone multiple rounds of chemotherapy and developed resistance to many drugs.
- New drugs are often tested in addition to existing standard-of-care multi-drug regimes.

For each drug,

- Select drugs as "negative controls": unrelated mechanism of action; not highly correlated.
- ullet Use the fist 10 PCs of these drugs as covariates.
- Use linear model to test IC_{50} values against the mutation status of cancer genes.

- Of 25 significant associations before,
 - 9, P values improved. (supported by existing evidence).
 - 4, no longer significant (FDR > 0.05): PARP inhibitors - EWS-FLI1
- 18 new mutation-drug associations:
 - MK-2206 PIK3CA mutation (phase II clinical studies)
 - CI-1040 sensitivity KRAS mutation (in vitro and in vivo data)
 - Bosutinib PTEN wild-type (mechanism documented)

- Reproducibility between large pharmacogenomics datasets:
 - 15 drugs and 63 sequenced cancer genes common in CCLE and GDSC
 - Improved from 47%(11 of 23 significant associations) to 62.5% (10 of 16)

GLDS estimated by expression

- Identify genes most associated with GLDS using a linear model.
- In GDSC, 65 genes are identified.
- Compare results of uncorrected, 65 genes corrected with GLDS corrected in other dataset;
 - FDR < 0.05, 62(uncorrected), 53(expression corrected) (62% and 68% of GLDS corrected)
 - FDR < 0.25, 760(uncorrected, only 232 GLDS-corrected) and 368(expression corrected, 201 GLDS-corrected)
- In TCGA breast cancer samples, 32 of 60 (sequenced of 65) genes were associated with alive/dead status.

Conclusion

- Identify GLDS as a novel phenomenon comfounding biomarker discovery.
- This bias may be found in all pre-clinical models: cell lines, mouse xenografts and in data derived directly from clinical studies.
- Develop methods to estimate and remove this confounder.
- Improve dramatically the clinical success rate of drug discovery.

Paper Introduction:

ARTICLES

Robust enumeration of cell subsets from tissue expression profiles

 $Aaron\ M\ Newman^{1,2,10}, Chih\ Long\ Liu^{1,2,10}, Michael\ R\ Green^{2,3,9}, Andrew\ J\ Gentles^{3,4}, Weiguo\ Feng^5,\ Yue\ Xu^6, Chuong\ D\ Hoang^6, Maximilian\ Diehn^{1,5,7}\ \&\ Ash\ A\ Alizadeh^{1-3,7,8}$

Introduction

- Levels of different cell types are associated with tumour growth, cancer progression and patient outcome.
- Can we predict fractions of multiple cell types in gene expression profiles (GEP)?
 - mixtures with unknown contents and noise (for example, solid tumour);
 - mixture of closely related cell types (for example, naïve and memory B cells).

CIBERSORT Methods

$\underline{\underline{C}}$ ell-type $\underline{\underline{I}}$ dentifiction $\underline{\underline{B}}$ y $\underline{\underline{E}}$ stimating $\underline{\underline{R}}$ elative $\underline{\underline{S}}$ ubsets $\underline{\underline{O}}$ f $\underline{\underline{R}}$ NA Transcripts

Deconvolution model:

$$m = f \times B$$

- m: a mRNA mixture $(1 \times g$, suppose we use g genes.)
- f: fraction of cell -types (1 \times k, suppose we have k cell types.)
- $m{B}$: signature matrix

Genes with expression profiles enriched in each cell type can be leveraged to impute unknown cell fractions from mixture profiles.

• Signature matrix:

- Obtain purified or enriched cell populations
- Detect significantly differentially expressed genes between each cell population and all other populations (q < 0.3)
- Adaptively select genes by condition number:

$$\kappa(m{B}) = rac{\sigma_{ ext{max}}(m{B})}{\sigma_{ ext{min}}(m{B})}$$

Use top G marker genes from each type to combine a matrix \boldsymbol{B} and iterate G from 50 to 200, selecting the lowest condition number.

- Normalized B to zero mean and unit variance.

Purified cell populations: (LM22)

M22 Cells	Cell Type Description	Reference (PMID)	Authors	Cell Separation Method	Markers used	Purity
B cells	B cells naive	15789058	Abbas AR et al.	MACSB CD138 microbeads and CD19 microbeads	CD19+CD27- lgG/A-	Not stated
	B cells memory	15789058	Abbas AR et al.	MACSB CD138 microbeads and CD19 microbeads, then FACS	CD19+ CD27+	Not stated
PCs	Plasma cells	15789058	Abbas AR et al.	MACSB CD138 microbeads, then FACS	CD20+, CD138+ and CD19+	Not stated
CD8 T	T cells CD8	15789058	Abbas AR et al.	rosenesep - Coov I-cer emormen cocksir, co-e	CD3, CD8, CD45RA	>90
	Ticells CD4 naive	16791882	Rasheed AU et al.	Fical, then MACS CD4+ T cell isolation kit	CD4+	>98%
	T cells CD4 memory resting	15789058	Abbas AR et al.	Fical, then FACS	CD45R0 ^{Nijo}	Not stated
	T cells CD4 memory activated			Ficoll, then FACS, then activated by anti-CD3 (plate- bound) + anti-CD28 (soluble)		>90%
	T cells follicular helper	16791882	Rasheed AU et al.	Ficall, then MACS CD4+ T cell isolation kit, then FACS	CXCR5 ^N , ICOS ^N	>95%
	T cells regulatory (Tregs)			Ficoli-Hypaque, then MACS CD4+ T cell isolation kit, then FACS		>98%
Gamma delta T cells	T cells gamma delta	16339519	Chtanova T et al.	Fical, then FACS	Not stated	Not stated
	NK cells resting	15789058	Abbas AR et al.	RosetteSep™ NK-cell enrichment cocktail + CD2 Microbeads	CD56	Not stated
	NK cells activated	15789058	Abbas AR et al.	RosetteSep™ N4C-cell enrichment cocktail + CD2 Microbeads + IL2 or IL15 for activation	CD56 + CD69	Not stated
Monocytes and Macrophages	Monocytes	15789058	Abbas AR et al.	MACS® CD14 Microbeads, monocyte subset	N/A	Not stated
	Macrophages M0	15789058	Abbas AR et al.	Differentiated from monocytes	None known; identified by morphology and phagocytic capability	Not stated
	Macrophages M1	17244792	Cho HJ et al.	monocyte isolation list and LS columns, then differentiated with 1% medium supplement nutridoma-HU + 10 nM M-CSF, then activated with 20 ng/ml IFN-g+	None known; identified by morphology and phagocytic capability	>97% (at mono stage)
	Macrophages M2	17244792	Cho HJ et al.	Histopaque 1.077, then Militaryi negative selection monocyte isolation kit and LS columns, then differentiated with 1% medium supplement nutridoma-HU + 100 nM M-CSF, then acticated with 20 ng/ml IFN-g+ 100 ng/ml LPS and 20 ng/ml L-4	None known; identified by morphology and phagocytic capability	>97% (at mono stage)
Dendritic cells	Dendritic cells resting	15789058	Abbas AR et al.	Monocytes differentiated with 17 ng/ml IL4, and 67 ng/ml GMCSF		Not stated
	Dendritic cells activated	15789058	Abbas AR et al.	Monocytes differentiated with 17 ng/ml IL4, and 67 ng/ml GMCSF, then stimulated with 1 us/ml LPS		Not stated
Mast cells	Mast cells resting	16339519	Chtanova T et al.	Fical of cord blood, then 100 ng/ml SCF + 10 ng/ml IL-10 + 5 ng/ml IL-6		95%
	Mast cells activated	16339519	Chtanova T et al.	Fical of cord blood, then 100 ng/ml SCF + 10 ng/ml IL-10 + 5 ng/ml IL-6 + laE receptor activation	N/A	
Eos	Eosinophils	16339519	Chtanova T et al.	0.6% Dextron T500, then Percoil gradient (70%, 80%), then negative selection with MACS CD16 Microbeads	N/A	>97%
PMNs	Neutrophils	16339519, 15789058	Chtanova T et al., Abbas AR et al.	0.6% Dextran T500, then Percoll gradient (70%, 60%), then negative selection with IMACS anti-CCR3 + anti- mouse IsG Microbeads	CD62L	>97%

Support vector regression:

Fit a hyperplane $y = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b$, such that:

$$\min \qquad \frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{i=1}^{N}(\xi_i + \xi_i^*)$$
s.t.
$$\begin{cases} y_i - \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle - b \le \epsilon + \xi_i \\ -y_i + \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b \le \epsilon + \xi_i^* \\ \xi_i, \xi_i^* \ge 0 \end{cases}$$

Summary of methods:

$$m = f \times B$$

- Construction of signature matrix $oldsymbol{B}$
- Using SVR to obatin \hat{f}
- $f_i = \max\{\hat{f}_i, 0\}$ and then normalized to 1.
- Robustness to noise and overfitting owning to SVR and feature selection of genes from signature matrix.

Results

 Perfomance in external datasets of variably purified leukocyte subsets:

Performance on well-defined mixtures:

• Simulation of bulk tissues:

- Tumor content (from 0% to < 100%) (a colon cancer cell line)
- Mixtures of 4 blood cell lines (simulate tomour with infiltrating leukocytes)
- Add noise from log-Gaussian: $2^{\mathcal{N}(0,f \times \sigma)}$

• Consistency on mixtures with unknown content or noise:

• Comparision to flow cytometry(ground-truth measurements of leukocyte content in solid tissues)

Conclusion

- Characterize cell heterogeneity using RNA mixtures from nearly any tissues.
- Fidelity of reference profiles, which could deviate in cells undergoing heterotypic interactions, phenotypic plasticity or disease-induced dysregulation.

Paper Introduction:

Perspective

Translating cancer 'omics' to improved outcomes

Emily A. Vucic, 1,2,6,7 Kelsie L. Thu, 1,6 Keith Robison, 3 Leszek A. Rybaczyk, 4 Raj Chari, 1,2,5 Carlos E. Alvarez, 4 and Wan L. Lam 1,2

¹ British Columbia Cancer Research Centre, Vancouver V5Z 1L3, Canada; ² Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 1Z4, Canada; ³ Warp Drive Bio, Cambridge, Massachusetts 02142, USA; ⁴ Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA; ⁵ Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

37 / 36