Estimation of flow trajectories in a multiple lines network

Case studies with *transports publics de la région lausannoise* (tl) data

Guillaume Guex Romain Loup François Bavaud

University of Lausanne

Table of contents

1. Introduction

2. The single line problem

Introduction

Context

The tl dataset, used by Romain Loup for his PhD:

- 1 year of data (2019).
- 115 millions of passengers.
- 42 bus and subway lines.
- 1361 stops and 497 "superstops".
- Every journey data: traveling time, waiting time, embarking and disembarking passengers at each stops, etc.

Context

```
##
    stop_id stop_name line_id direction order embarkment disembarkment
## 1 MALAD_N Maladière
                                    Α
                                               164558
                                                                0
## 2 MTOIE E Montoie
                                              136236
                                                             12705
## 3 BATEL E Batelière
                                   Α
                                               203045
                                                            13409
## 4 RTCOU_E Riant-Cour
                                            156015
                                                             24909
     stop_id stop_name line_id direction order embarkment disembarkment
##
## 42 RTCOU O Riant-Cour
                                     R
                                         19
                                                 23634
                                                             132201
## 43 BATEL_O Batelière
                                               13707
                                         20
                                                           168884
## 44 MTOIE_O Montoie
                                     R.
                                         21
                                                 4259
                                                           128255
## 45 MALAD_N Maladière
                                         22
                                                    0
                                                            146798
```


The multiple lines network

Having only lines data, the structure is a **disconnected oriented graph**.

In addition to **line edges**, it is possible to construct **transfer edges** to make the graph connected, by using, e.g.,

- Superstops names,
- Pedestrian time,
- Distance.

With transfer edges, we have a unilaterally connected graph.

The problematic

This dataset offers multiple axes of research. In this presentation, we will focus on one question:

Knowing (1) the network structure and (2) the number of passengers embarking and disembarking at each stop, can we deduce trajectories of the passengers in the network?

The problematic

Short answer: No.

Thank you for your attention!

Questions?

The problematic

Exact trajectories are impossible to know, but with additional hypotheses, we can **estimate** them.

We will divide this problematic into two parts:

- The estimation of trajectories on a single line.
- The estimation of trajectories on the multiple lines network.

The single line problem

Formal problem definition

Let a line (in one direction), which have n stops. Let $\rho_{\rm in}=(\rho_s^{\rm in})$ and $\rho_{\rm out}=(\rho_t^{\rm out})$ be two vectors representing, respectively, the passengers entering and leaving lines at each stop.

We search a $(n \times n)$ origin-destination matrix $N = (n_{st})$ where components represents

 n_{st} = "the number of passengers entering line at s and leaving at t".

These components must verify

- 1. $n_{st} \geq 0$,
- 2. $n_{s\bullet} = \rho_s^{\text{in}}$,
- 3. $n_{\bullet t} = \rho_t^{\text{out}}$.
- (• indicates a sum on the replaced index)

Formal problem definition

It reads:

In fact, we already know that some components are null:

$$\mathsf{N} = \begin{bmatrix} \mathbf{0} & \sigma_2^{\mathsf{out}} & \cdots & \sigma_{n-1}^{\mathsf{out}} & \sigma_n^{\mathsf{out}} \\ \sigma_1^{\mathsf{in}} & \sigma_2^{\mathsf{in}} & \mathbf{0} & n_{12} & \cdots & n_{1,n-1} & n_{1n} \\ \mathbf{0} & \mathbf{0} & n_{23} & \cdots & n_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \sigma_{n-1}^{\mathsf{in}} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & n_{n-1,n} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Formal problem definition

In this form, the problem is **ill posed**, because it has multiple solutions. An exemple of solution is to make passengers follow a **first in**, **first out** (FIFO) scheme.

In such a case, a principle of mathematical modeling is to find the solution which makes the **least assumptions about passenger behavior**.

References i