FISH 604 Module 3: Exploratory data analysis

Instructor: Franz Mueter Lena Point, Rm 315 796-5448 fmueter@alaska.edu

Objectives & Outcomes

You should appreciate...

- ... the importance of visually analyzing your data
- .. the variety of methods available to displaying multidimensional data

You should know...

- ...how to assess (approximate) normality
- ... how to detect outliers and what to do in the presence of outliers

You should be able to ...

- ...quickly and efficiently explore the main features of simple and complex data sets
- ... identify and apply appropriate data transformations as needed

Exploratory data analysis

- Visualizing data
- Assessing distributions
- Outliers
- Standardization
- Transformations
- Correlations

Visualizing data

- Explore spatial / temporal structure
- Detect relationships / correlations
 - Scatterplot
 - Scatterplot matrix
 - Parallel coordinates
- Explore grouped data (differences among groups)
 - Co-plots / Trellis graphics / ggplot 'aesthetics' & facets
- Assess distribution
 - Histograms, q-q plots, dotplots, boxplots
- Assess dependence
 - Serial correlation
 - Spatial correlation

Spatial structure

Quick maps for exploring / mapping data locations & attributes

Spatial data are ubiquitous in ecology & environmental science
→ GIS useful but not necessary

Spatial structure

...or fancier maps with appropriate projections

- → Learn how to quickly and efficiently map your data
- → Carefully design graphs and maps for publication

Spatial patterns

- Location
- Magnitude
 - symbol type
 - size
 - color

Iron (Beaufort Sea sediments)

Displaying multiple attributes using 'aesthetics' (ggplot)

- x-axis (X1)
- y-axis (X2)
- color (X3)
- size (X4)
- shape (X5)

Mix of continuous (X1-X4) & categorical variables (X5)

Dotplots: Show each datapoint (whenever possible)!

Metal concentrations, Beaufort Lagoon

Concentration

Relationships among variables: Scatterplot matrix

R function:

pairs(data, lower.panel=panel.smooth)

Relationships among variables: Parallel coordinates

Index (for example 'time' in years or days)

Multivariate exploration (e.g. "brushing") (e.g. using GGOBI)

Exploring grouped data: Co-plots

- GAK 1 data
- T-S plots by
 - depth and
 - time period

Exploring grouped data: ggplot (non-overlapping groups)

Exploring grouped data: Trellis graphics

Ocean temperature data collected irregularly over multiple years

R code: xyplot(temperature \sim dec.year | Year, data = GAK1, subset = depth==0) 15

Visualizing model fits

Fitted non-linear mixed-effects model

→ Learn how to visualize simple and complex model fits

R code (requires library nlme):
plot(augPred(fitted.object))

Visualizing model fits

for visualizing model fits for many "standard" models, but be aware of what you are doing!

Example: Logistic regression fit with two groups

Dose or environmental gradient

Assessing distributions

<u>Visually</u>

- histograms / density plots / boxplots
- quantile-quantile plots (q-q plots)

<u>Statistical</u>

- tests for normality
- testing against any distribution
 - Kolmogorov-Smirnov test

R functions

```
hist(); histogram(); density(); boxplot()
qqplot(); qqnorm(); qqline()
shapiro.test(); ks.test()
```


Histogram with density

Algorithms to determine bin size:

Scott (1979): "optimal" bin width $= 3.49 \cdot \sigma \cdot N^{-\frac{1}{3}}$

Freedman and Diaconis (1981): "robust" bin width $= 2 \cdot IQR \cdot N^{-\frac{1}{3}}$

quantile-quantile plots

Normal q-q plot

Sample quantiles

- Sort data: $x_{(i)}$
- $f_i = (i-0.5)/n$
- $x_{(i)}$ is the f_i quantile of the data

Theoretical quantiles

- $q_{\mu,\sigma}(f_i)$ is normal f_i quantile
- $q_{\mu,\sigma}(f) = \mu + \sigma q_{0,1}(f)$

Normal q-q plot

• $x_{(i)}$ **VS.** $q_{0,1}(f_i)$

→ usually sufficient as a diagnostic check of normality assumption!

MSL Boxplot

- → Extremely effective for visualizing / comparing many distributions
- → Be aware of what boxes & whiskers show and explain it in figure captions

Tests for normality

- Shapiro-Wilk test
- Kolmogorov-Smirnov test
- Many others!!!

```
R functions
shapiro.test(); ks.test()
```

- → Remember that we only care about normality of <u>residuals</u> from a linear model, NOT normality of the response variable (or the independent variables)
- → Residuals from other models (e.g. GLM) often transformed to 'approximate' normality for <u>visual</u> assessment only

Shapiro-Wilk test

- Tests the null hypothesis that a sample $x_1, ..., x_n$ came from a normally distributed population
- Test statistic: $W = \frac{\left(\sum_{i=1}^n a_i x_{(i)}\right)^2}{\sum_{i=1}^n (x_i \overline{x})^2}$

where $x_{(i)}$ is ith order statistic a_i are constants that depend on expected values and covariance of order statistics

Null hypothesis is rejected if W is too small

Kolmogorov-Smirnov test

- Null hypoptheses:
 - Two samples have the same underlying probability distributions
 - A single sample comes from a hypothesized distribution (e.g. normal)
- Test is based on maximum distance between two cumulative distribution functions:

$$D = \max \left(F_n - \frac{i-1}{N}, \frac{i}{N} - F_n\right)$$

$$\sum_{i=0}^{\infty} F_i$$

$$\sum_{$$

Reading assignment

 Zuur et al. (2007). Analyzing Ecological Data. Springer. Chapter 4: Exploration (see pdf posted on Canvas)

Further reading

Graphical analysis

- Cleveland, W.S., 1993. Visualizing Data. AT&T Bell Laboratories, Murray Hill, NJ.
- Wilkinson, L. 1999. The Grammar of Graphics. Springer, New York
- Yau, Nathan 2013. Data Points: Visualization that means something.
 Wiley.

Multivariate data

 Cook, D., Swayne, D.F., and Buja, A. 2007. Interactive and Dynamic Graphics for Data Analysis: With R and GGobi. Springer, New York.

General exploratory analyses

- Zar, J.H., 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.
- Barnett V, 2004. Environmental Statistics: methods and applications, John Wiley & Sons, Chichester, England.