## МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Факультет радіоелектроніки, комп'ютерних систем та інфокомунікацій Кафедра комп'ютерних систем, мереж і кібербезпеки

# Звіт

| 3       | Навчальної практики  (назва дисципліни)      |
|---------|----------------------------------------------|
| на тему | «Зворотний і додатковий код числа»           |
|         |                                              |
|         |                                              |
|         | Виконав: студент 1 курсу групи № 515a        |
|         | $\square$ Пахарь Б. $\mathcal{E}$ .          |
|         | (прізвище й ініціали студента)               |
|         | Керівник: <u>доцент, к.т.н. Бабешко Є.В.</u> |
|         |                                              |

(посада, науковий ступінь, прізвище й ініціали)

# Зміст

| Зміст                  |  |
|------------------------|--|
| 1. Мета роботи         |  |
| 2. Реферат             |  |
| 3. Завдання            |  |
| 3.1 Варіант № 4        |  |
| 3.2 Метод рішення      |  |
| 3.3 Алгоритми          |  |
| 3.4 Код програми       |  |
| 4. Тестування програми |  |
| 5 Висновок             |  |

# 1. Мета роботи

1) Опанувати навичками використання розподіленої системи керування версіями для проектування та командної роботи.



3) Виконати поставлену задачу.

## 2. Реферат

При дослідженні сфери комп'ютерних технологій двійковий код являється одною з найголовніших тем вивчення схеми роботи техніки та комп'ютерів. Його частиною  $\epsilon$  зворотний код, а також додатковий код.

Зворотний код — метод обчислювальної математики, який дозволяє вирахувати одне число від другого, виконуючи тільки одну операцію сумми над натуральними числами. Раніше метод використовувався в механічних калькуляторах (арифмометрах). Багато ранніх комп'ютерів, включаючи СDC 6600, LINC, PDP-1 и UNIVAC 1107, використовували зворотний код. Більшість сучасних комп'ютерів використовують додатковий код.

Доповняльний код — найпоширеніший спосіб подання від'ємних чисел у комп'ютерах. Дозволяє замість команди віднімання використовувати команду додавання, для знакових і беззнакових чисел, що зменшує вимоги до архітектури комп'ютера.

Далі буде продемонстровано самостійно розроблена програма по розрахунку зворотного та додаткового коду на мові C, з алгоритмами й поясненням. А також виконане тестування програми, з табличними даними та скріншотами.

## 3. Завдання

#### 3.1 Варіант № 4

Умова: Знайти зворотний і додатковий код числа.

### 3.2 Метод рішення

Поставлену задачу було вирішено виконати за допомогою одновимірних масивів цілого типу, та групою циклів for (;;), while. Окремі частини програми організовані у вигляді функцій.

## 3.3 Алгоритми



Рисунок 1.1 – Функція по знаходженню прямого коду числа.



Рисунок 1.2 – Функція по знаходженню зворотного коду.



Рисунок 1.3 – Функція по знаходженню додаткового коду.



Рисунок 1.4 – Функція по перевірці коректності вхідних даних.



Рисунок 1.5 – Головна функція Main ().

#### 3.4 Код програми

```
/**
* @author Pahar B.E., gr.515a
 @date 24.06.2020
* @brief Practice
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <math.h>
#define MAX 16 //количество бит
int direct_code(int, int[], int[]);
int check_num(int);
int reverse_code(int, int[], int[]);
int additional_code(int, int[], int[]);
int main()
{
    int num;
    int rev_linecode[MAX]; //пр. код наоборот
    int linecode[MAX]; //прямой код
    int rev_code[MAX]; //обратный код
    int add_code[MAX]; //дополнительный код
    setlocale(LC_ALL, "Rus");
    printf("Введите число [-32767 ; 32767]: "); //вводим число
    scanf_s("%d", &num);
    check_num(num); //проверка на корректность входных данных
    for (int i = 0; i < 16; i++)
        rev_linecode[i] = 0; //заполняем массив нулями 0000 0000
    //вычисление прямого кода числа
    direct_code(num, rev_linecode, linecode);
    printf("Прямой код числа:
    for (int i = 0; i < 16; i++) {
        printf("%d", linecode[i]);
        if (i == 3 || i == 7 || i == 11) printf(" ");
    //вычисление обратного кода числа
                                        ");
    printf("\nОбратный код числа:
    reverse_code(num, rev_linecode, linecode, rev_code);
    //вычисление дополнительного кода
    printf("\пДополнительный код числа: ");
    additional_code(num, linecode, rev_code);
    return 0;
/* Вычисление прямого кода числа
  @ param num
  @ param rev_linecode[]
   @ param linecode[]
  @ return 0 - функция ничего не возвращает
int direct_code (int num, int rev_linecode[], int linecode[]) {
    int num2 = fabs(num);
    int i = 0;
    while (num2 != 0) {
        rev_linecode[i] = num2 % 2;
        num2 /= 2;
        i++;
    //reverse
```

```
for (int i = 0, j = 15; i < 16; i++, j--)
         linecode[i] = rev_linecode[j];
    if (num < 0) linecode[0] = 1;
    return 0;
}
/* Вычисление обратного кода числа
   @ param num
  @ param rev_linecode[]
* @ param linecode[]
* @ param rev_code[]
* @ return 0 - функция ничего не возвращает
*/
int reverse_code (int num, int rev_linecode[], int linecode[], int rev_code[]) {
    if (num >= 0) {
         for (int i = 0; i < 16; i++) {
             printf("%d", linecode[i]);
             if (i == 3 || i == 7 || i == 11) printf(" ");
    }
    else {
         linecode[0] = 0; //new
         for (int i = 0; i < 16; i++) {
             if (linecode[i] == 0)
                  rev_code[i] = 1;
             else
                  rev_code[i] = 0;
         for (int i = 0; i < 16; i++) {
             printf("%d", rev_code[i]);
if (i == 3 || i == 7 || i == 11) printf(" ");
         }
    return 0;
}
/* Вычисление дополнительного кода числа
   @ param num
   @ param rev_linecode[]
   @ param linecode[]
  @ return 0 - функция ничего не возвращает
*/
int additional_code (int num, int linecode[], int rev_code[]) {
    if (num >= 0) {
         for (int i = 0; i < 16; i++) {
    printf("%d", linecode[i]);
    if (i == 3 || i == 7 || i == 11) printf(" ");</pre>
         }
    else {//дополнительный код отрицательного числа
         int i = 15;
         int index = 16; //13
         while (rev_code[i] == 1) {
             index = i;
             i--;
             if (i == -1) break;
         rev_code[index - 1] = 1;
         for (i = 15; i >= index; i--) {
             rev_code[i] = 0;
         for (int i = 0; i < 16; i++) {
             printf("%d", rev_code[i]);
if (i == 3 || i == 7 || i == 11) printf(" ");
```

```
}
    return 0;
}

/* Проверка корректности ввода числа
* @ param num
* @ return 0 - функция ничего не возвращает
*/
int check_num (int num) {
    if (num > 32767 || num < -32767) {
        printf("Вы ввели число больше диапазона!");
        exit(1);
    }
    return 0;
}
```

# 4. Тестування програми

Тест №1. Перевірка на правдивість результату

| Тест<br>№ | Вхідні<br>данні | Вихідні данні                                                                                                                                                            | Результат |
|-----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1         | 0               | Введите число [-32767 ; 32767]: 0<br>Прямой код числа: 0000 0000 0000 0000<br>Обратный код числа: 0000 0000 0000 0000<br>Дополнительный код числа: 0000 0000 0000 0000   | Успіх     |
| 2         | 5               | Введите число [-32767 ; 32767]: 5<br>Прямой код числа: 0000 0000 0000 0101<br>Обратный код числа: 0000 0000 0000 0101<br>Дополнительный код числа: 0000 0000 0000 0101   | Успіх     |
| 3         | 36              | Введите число [-32767 ; 32767]: 36<br>Прямой код числа: 0000 0000 0010 0100<br>Обратный код числа: 0000 0000 0010 0100<br>Дополнительный код числа: 0000 0000 0010 0100  | Успіх     |
| 4         | 145             | Введите число [-32767 ; 32767]: 145<br>Прямой код числа: 0000 0000 1001 0001<br>Обратный код числа: 0000 0000 1001 0001<br>Дополнительный код числа: 0000 0000 1001 0001 | Успіх     |
| 5         | 256             | Введите число [-32767 ; 32767]: 256<br>Прямой код числа: 0000 0001 0000 0000<br>Обратный код числа: 0000 0001 0000 0000<br>Дополнительный код числа: 0000 0001 0000 0000 | Успіх     |
| 6         | 4678            | Введите число [-32767 ; 32767]: 4678<br>Прямой код числа: 0001 0010 0110<br>Обратный код числа: 0001 0010 0100 0110<br>Дополнительный код числа: 0001 0010 0100 0110     | Успіх     |

| 7  | 32767  | Введите число [-32767 ; 32767]: 32767<br>Прямой код числа: 0111 1111 1111<br>Обратный код числа: 0111 1111 1111<br>Дополнительный код числа: 0111 1111 1111               | Успіх |
|----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8  | -36    | Введите число [-32767 ; 32767]: -36<br>Прямой код числа: 1000 0000 0010 0100<br>Обратный код числа: 1111 1111 1101 1011<br>Дополнительный код числа: 1111 1111 1101 1100  | Успіх |
| 9  | -875   | Введите число [-32767 ; 32767]: -875<br>Прямой код числа: 1000 0011 0110 1011<br>Обратный код числа: 1111 1100 1001 0100<br>Дополнительный код числа: 1111 1100 1001 0101 | Успіх |
| 10 | -32767 | Введите число [-32767 ; 32767]: -32767<br>Прямой код числа: 1111 1111 1111<br>Обратный код числа: 1000 0000 0000 0000<br>Дополнительный код числа: 1000 0000 0000 0001    | Успіх |

Тест №2. Перевірка на коректність вхідних даних.

| Тест | Вхідні | Вихідні данні                                                              | Результат |
|------|--------|----------------------------------------------------------------------------|-----------|
| №    | данні  |                                                                            |           |
| 1    | 32768  | Введите число [-32767 ; 32767]: 32768<br>Вы ввели число больше диапазона!  | Успіх     |
| 2    | -32768 | Введите число [-32767 ; 32767]: -32768<br>Вы ввели число больше диапазона! | Успіх     |
| 3    | -99999 | Введите число [-32767 ; 32767]: -99999<br>Вы ввели число больше диапазона! | Успіх     |
| 4    | 40000  | Введите число [-32767 ; 32767]: 40000<br>Вы ввели число больше диапазона!  | Успіх     |

#### 5. Висновок

Під час виконання завдання я досить в значної мірі опанував навичками використання розподіленої системи керування версіями для проектування та командної роботи.

Git – розподілена система зберігання контролю версій програмного забезпечення. Вона відрізняється від численних аналогів можливістю зберігати інформацію в репозиторії на жорсткому диску, ефективно відстежувати будь-які зроблені зміни, відкочуватися на один або кілька кроків назад, якщо в цьому виникне необхідність.

А також я вдосконалив свої знання на практиці в мові програмування С.