

Estadistica parte 2

Curso de Investigación en Radiología

Héctor Henriquez Leighton MD, MS
hhenriquez@miuandes.cl
Profesor Asistente Universidad de los Andes
Investigador Principal CVLab U Andes
Clínica Santa Maria, Santiago de Chile

Contenidos

- Correlación entre variables
- Modelos de regresión lineal.
- Métricas de regresión lineal.
- Modelos de regresión logística.
- Métricas de clasificación.

ABC de modelos predictivos

$$f(x) = y \qquad \Rightarrow \qquad \hat{y} = \beta_0 + \beta_1 X + \epsilon$$

- Regresión
- Clasificación

Medidas de dependencia lineal

- Covarianza:
 - Si hay relación lineal positiva, la covarianza es positiva y grande.
 - Si hay relación lineal negativa, la covarianza es negativa y valor absoluto grande.
 - Si no hay relación entre las variables o marcadamente no lineal, la covarianza es próxima a cero.
 - El problema: covarianza depende de las unidades de medida de las variables.

Cov
$$(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Medidas de dependencia lineal

- Coeficiente de correlación lineal:
 - Medida de dependencia lineal que no depende de las unidades de medida de las variables.
 - Valores entre -1 y 1

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Medidas de dependencia lineal

Covarianza: 280.05

Correlación lineal: 0.80

Covarianza (y escalado): 28005.99 Correlación lineal(y escalado): 0.80

Correlación no es causalidad

$$\hat{y} = \beta_0 + \beta_1 X_1 + \epsilon$$

ŷ: Predicción

 β_0 : Intercepto

 β_1 : Pendiente

 X_1 : Variable independiente

 ϵ : Ruido

Clínica Santa María	4
Especialistas en t	

ŷ	1 -	+ 37	

X	y	Pred
0	9	1
1	-4	4
2	12	7
3	1	10
4	8	13
5	25	16

Clínica Santa María
Especialistas en ti

$$\hat{y} = 1 + 3X_1$$

X	y	Pred
0	9	1
1	-4	4
2	12	7
3	1	10
4	8	13
5	25	16

Métricas

Error Medio Absoluto

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \hat{y}_i \right|$$

Error Cuadrático Medio

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Raíz Cuadrada del Error Cuadrático Medio

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Entrenamiento del modelo

$$f(x) = y \qquad \Rightarrow \qquad \hat{y} = \beta_0 + \beta_1 X + \epsilon$$

Iteración	MSE
1	77,38
2	
3	
4	
5	
6	
7	
8	
9	
10	

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Modelos de clasificación

Modelo lineal

Modelos de clasificación

Modelo lineal

Support Vector Machine

Regresión logistica

$$\log it(p) = \log \left(\frac{p}{1-p}\right)$$

$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Regresión logistica

Métricas

$$exactitud = \frac{VP + VN}{VP + VN + FN + FP}$$

Sensibilidad =
$$\frac{VP}{VP + FN}$$

$$especificidad = \frac{VN}{VN + FP}$$

$$precision = \frac{VP}{VP + FP}$$

$$F1score = 2 \cdot \frac{ \text{Precisión} \cdot \text{Sensibilidad} }{ \text{Precisión} + \text{Sensibilidad} }$$