

MAKE school

TREES

So log-arithmic. (Get it!?)

TREE

Nodes and edges
(references to child
nodes) without any cycle

TREES

NOT TREES

root

topmost node

parent

converse of child

descendant

node reachable from parent to child

ancestor

node reachable from child to parent

leaf / external node

node with no children

internal node

node with at least one child

height (tree)

number of edges on longest downward path from root to leaf

height (node)

number of edges on longest downward path from node to leaf

level

1 + number of edges between the node and the root

depth

number of edges between the node and the root

size

number of nodes in the tree

BINARY TREE

Tree in which each node has at most two children

Size 9 Height 3

COMPLETE TREE

Every level except possibly last is completely filled and nodes are as far left as possible

BALANCED TREE

All leaves are at minimum possible depth

Balanced

Unbalanced

BINARY SEARCH TREE

Always sorted

For each node

Left children are smaller

Right children are larger

No duplicate keys

WHY USE A BST?

Fast search, insertion, deletion - especially when balanced

Sort as you go instead of all at once

Fairly simple implementation for good performance

WHY USE A BST?

Only allocates memory as it's needed

Doesn't have to reallocate memory to grow (like a hash table)

ANOTE ON LOG N

When discussing complexity of computational algorithms, log n means log₂n

BINARY LOGARITHM

$$log_2 n = x \leftrightarrow 2^x = n$$

the power by which 2 must be raised by to obtain n

$$\log_2 16 = 4$$
 $\log_2 32 = 5$ $\log_2 143 = 7.15987$

SEARCH

```
# call initially with node == root node
def find_recursive(key, node):
    if node is None or node.key == key:
        return node
    elif key < node.key:
        return find_recursive(key, node.left)
    else:
        return find_recursive(key, node.right)</pre>
```


INSERTION

Same as search except once you find a node without a child on the next side you're traversing, add it there.

DELETION

Three cases

No children

One child

Two children

NO CHILDREN

ONE CHILD

TWO CHILDREN

COMPLEXITY

	Average Case	Worst Case
Space	O(n)	O(n)
Search	O(log n)	O(n)
Insert	O(log n)	O(n)
Delete	O(log n)	O (n)

WHY IS LOG N GOOD?

Imagine a BST with 2³² items

2³² is 4,294,967,296

When searching, we only have to touch a maximum of 32 nodes to find the node we're looking for

MAKE school