

CRESCIMENTO E EFEITOS DE INTERFACE SOBRE PROPRIEDADES ÓTICAS DE FILMES ORGÂNICOS MULTICAMADAS

José RODRIGUES¹, Célio Borges², Francisco GUIMARÃES³

¹IFPI, e-mail: joesilvarodrigues@gmail.com ²UFPI, e-mail: celioborges@ufpi.edu.br ³USP, e-mail: <u>guimarae@ifsc.usp.br</u>

Resumo: Neste artigo é apresentado o estudo de crescimento e caracterização ótica de filmes orgânicos multicamadas. Os filmes foram processados usando a técnica de depoisção layer-by-layer e os seguintes materiais: (indium oxide doped with tin (ITO), PSS (polystyrene sulfonate), MEHPPV poly[2-methoxy,5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene]),PDAC poly(diallyldimethylammonium chloride)), PSS (poly (styrene sulfonate) e alumínio (Al). O processo de adsorção dos filmes PEDOT/MEHPPV/PDAC/PSS mostrou um comportamento não auto limitado em função do número de camadas. A cinética de crescimento dos filmes multicamadas foi acompanhada por absorção ótica.

Palavras-chave: orgânico, filmes, crescimento, multicamadas, ótica

1. INTRODUÇÃO

A quase totalidade dos equipamentos eletrônicos incorpora displays e emissores coloridos, sendo os mais comuns os LEDs (Light Emitting Diodes) e os LCDs (Liquid Crystal Displays).

Todavia, ao longo das ultimas décadas houve um grande desenvolvimento na pesquisa para se obter dispositivos integrados baseados em materiais orgânicos, os quais são fortes candidatos à substituição dos LEDs e LCDs convencionais (BLASSE & GRABMAIER,1994; KIDO & OKAMOTO, 2002). O investimento corporativo na área de novos materiais para dispositivos optoeletrônicos tem sido muito elevado.

A Samsung® investiu 470 milhões de dólares para a construção de uma planta de produção em massa de OLEDs, iniciada em 2007. Este investimento gera um retorno bastante promissor para a empresa. Em apenas três semanas, vendeu cerca de dois milhões de celulares Gallaxy S e Wave no mundo todo. Empresas de grande porte como Covion Orgânic Semiconductor®(Alemanha), Dow Chemical® e Dupont/Uniax (EUA), Tohoku Pioneer® (Japão) e muitas outras estão também na disputa pela descoberta de equipamentos mais duráveis e eficientes.

Os principais desafios para a inserção desses novos materiais como elementos de dispositivos componentes de bens de consumo são o aumento da eficiência e do tempo de vida. Para alcançar tal nível de desenvolvimento, muitos trabalhos têm sido publicados tendo em vista a compreensão dos mecanismos de injeção de carga através da interface metal/polímero (HUMMEL et al., 1996; LEE et al, 1998) no desenvolvimento de camadas transportadoras de elétrons e/ou lacunas (LEE et al, 1998), e compreensão dos mecanismos de injeção de carga entre essas camadas e camada emissiva polimérica (HUMMEL et al., 1996; LEE et al, 2005)

Outro desafio a ser vencido nos PLEDs é atingir um balanço de cargas adequado para que ocorra uma maior recombinação de portadores, resultando em uma maior eficiência luminosa dos dispositivos. Tanto a quantidade quanto a mobilidade de buracos injetados na camada ativa do dispositivo é maior que a de elétrons (FEYNMAN, 1987).

Devido a isto, são propostas estruturas de dispositivos com multicamadas, contendo camadas transportadoras de elétrons (ETL - Electron Transport Layer) e camadas transportadoras de buracos (HTL - Hole Transport Layer), que visam cumprir a finalidade de se atingir um balanço de cargas adequado.

O trabalho apresentado nesse artigo tem como objetivo apresentar resultados experimentais e teóricos de uma investigação científica sobre respostas óticas de filmes multicamadas observando efeitos de camadas formadas por polieletrólitos sobre a camada ativa.

2. MATERIAL E MÉTODOS

Na confecção das amostras, o MEHPPV poly[2{metóxi{5{(2'{etilhexilóxi)} {1,4{fenilenovinileno}}, foram utilizados para a produção da camada ativa. Os polieletrólitos foram o polieletrólito com cargas positivas PDAC Poli(cloreto de dialildimetil amônia) e o polieletrólito com cargas negativas PSS poli(estireno sulfonado). Como camada injetora de buracos utilizamos o PEDOT:PSS (poli(3,4-etilenodioxitiofeno):poli estireno sulfonado), todas as soluções são da Aldrich Co.

Um espectrofotômetro HITACHI 2900 e um perfilômetro Veeco Dektak foram utilizados para acompanhar o crescimento e determinação das espessuras dos filmes de PDAC/PSS, MEHPPV e de PEDOT:PSS, assim como filmes de PDAC/PSS sobre MEHPPV/PEDOT:PSS através de medidas de absorbância e de perfilometria. Estas medidas tiveram como propósito avaliar a possibilidade de controle do crescimento e das espessuras dos filmes ultrafinos automontados sobre substratos. O PDAC, PSS e PEDOT:PSS são soluções em água, enquanto que o MEHPPV tem como solvente o clorofórmio.

3. RESULTADOS E DISCUSSÃO

3.1 Estudo de Filmes PDAC/PSS

Filme ultrafino de PDAC/PSS, automontado sobre substrato de quartzo, foi investigado através de espectros de absorção medidos após a adsorção de cada bicamada.

A Figura 1 mostra cinco medidas de absorbância na região UV de filmes finos de 2, 4, 6, 8 e 10 camadas da díade (PDAC/PSS) adsorvidas sobre substrato de quartzo.

Figura 1. Evolução da absorbância de um filme de PDAC/PSS. O crescimento linear da absorbância em 197 nm em função do número de bicamadas é mostrado no detalhe.

Duas bandas largas de absorção com máximos em torno de 197 nm e 218 nm são observados em cada espectro, ambas atribuídos as transições entre estados localizados de alta energia relacionados com o anel aromático presente na estrutura do PSS.

A taxa de crescimento da absorção em função do número de bicamadas adsorvida sobre o substrato de quartzo é observada no detalhe da figura 1. A dependência linear do aumento da absorbância (197 nm) com o número de bicamadas de PDAC/PSS sugere que houve um crescimento gradual e controlado da espessura do filme adsorvido sobre o substrato de quartzo.

Espessura de um filme de 20 bicamadas de PDAC/PSS foi investigada por perfilometria. Uma ponta fina do perfilômetro rasga a amostra formando um sulco. A distância vertical deste sulco foi

examinada em três regiões com a mesma ponta de prova e assim determinada a espessura do filme em cada região.

A figura 2 mostra perfil do sulco em um filme de PDAC/PSS de 20 bicamadas em uma região com varredura de $80~\mu m$. Distância vertical média de 60~nm determina a espessura do filme de 20~bicamadas. Este resultado também sugere que cada bicamada de PDAC/PSS apresenta uma espessura média de 3~nm.

Figura 2. Medida de espessura do filme de 20 bicamadas (PDAC/PSS) determina uma espessura média de 60 nm, correspondendo a 3 nm por bicamada.

3.2. Estudo de Filme PDAC/PSS sobre MEHPPV

Filme ultrafino da díade PDAC/PSS, automontado sobre uma camada de MEHPPV, foi investigado através de espectros de absorção medidos após a adsorção de cada bicamada da díade sobre MEHPPV depositado sobre substrato de quartzo.

O crescimento díade sobre MEHPPV foi acompanhado através de medidas de absorbância. A espessura do filme de MEHPPV foi investigada através de perfilometria. A figura 3 mostra medidas de absorbância na região do UV-Vis de 2, 4, 6, 8 e 10 bicamadas da díade sobre MEHPPV.

Figura 3. EVolução da absorbância na região do UV-Vis de um filme multicamadas MEHPPV/PDAC/PSS sobre substrato de quartzo. O detalhe mostra um crescimento linear da absorbância em 197 nm em função do número de bicamadas e PDAC/PSS sobre o filme de MEHPPV.

O crescimento linear da absorbância com o número de bicamadas pode ser observado no detalhe da figura 3. Este resultado sugere que houve um crescimento linear e controlável da espessura do filme.

Na figura 3 pouco se percebe uma supressão da banda de absorção, em torno de 480 nm com a adsorção da díade (PDAC/PSS). Não se acredita em uma remoção do filme de MEHPPV, como o resultado pode sugerir, uma vez que ambos PDAC e PSS têm mesmo solvente que diferem do solvente a solução de MEHPPV.

Filme de MEHPPV depositado sobre substrato de vidro pelo método "spincoated" a uma rotação de 3000 rpm foi investigada por perfilometria para a determinação de sua espessura.

A figura 4 mostra perfil do sulco em um filme de MEHPPV com região de varredura de 80 mm. A distância vertical de 45 nm do sulco determina a espessura do filme.

Figura 4. Perfis de filme MEHPPV por perfilometria em quatro locais determinam espessura média de 44 nm.

3.3 Estudo de Filmes de PDAC/PSS sobre PEDOT/MEHPPV

Filme ultrafino da díade PDAC/PSS, automontado sobre a heteroestrutura PEDOT/MEHPPV, foi investigado através de espectros de absorção medidos após a adsorção de cada bicamada da díade sobre PEDOT/MEHPPV depositado sobre substrato de quartzo. A espessura do filme de PEDOT foi investigada através de perfilometria.

A Figura 5 mostra medidas de absorbância na região do UV-Vis, no intervalo de 200 a 400 nm (a) e de 400 a 600 nm (b), de uma camada de PEDOT:PSS (linha preta), de uma camada de MEHPPV sobre PEDOT:PSS, uma camada de PDAC e 2, 4, 6, 8 e 10 bicamadas de PDAC/PSS sobre PEDOT:PSS/MEHPPV.

Figura 5. EVolução da absorbância de um filme multicamadas da díade PDAC/PSS sobre PEDOT:PSS/MEHPPV no intervalo de 200 a 400 nm (a) e de 400 a 600 nm (b) . O detalhe da figura (a) mostra a variação da absorbância da díade (quadrado) (197 nm) e do filme de MEHPPV (bola) (504 nm) em função do número de bicamadas da díade.

A absorbância do filme da díade em 197 nm aumenta linearmente com número de bicamadas adsorvidas sobre PEDOT:PSS/MEHPPV conforme mostra detalhe da figura 5.5 a. Uma diminuição da absorbância do filme de MEHPPV (504 nm) após a adsorção da 1ª camada de PDAC é novamente observada conforme mostra a figura 5.5 b. No entanto, acredita-se que o crescimento do filme PDAC/PSS foi assegurado pelo aumento da absorbância em 197 nm. Filme de PEDOT:PSS depositado sobre substrato de vidro pelo método "spin coated" (6000 r.p.m.) foi investigado por perfilometria para a determinação de sua espessura.

A figura 6 mostra perfis do sulco em um filme de PEDOT em uma região com varredura de 80 μ m. Distância vertical média de 35 nm do sulco determina a espessura do filme.

Figura 6. Perfis de filme PEDOT:PSS por perfilometria em três locais determinam espessura média de 34,6 nm.

A díade PDAC/PSS apresentou um crescimento linear tanto sobre o substrato de quartzo como também sobre o PEDOT:PSS/MEHPPV, tornando viável a produção de uma heteroestrutura contendo materiais de mesmo solvente como PEDOT:PSS e a díade. Para tanto, foi necessário submeter cada estrutura ao tratamento térmico.

6. CONCLUSÕES

Investigamos efeitos de interface utilizando dispositivos multicamadas. Resultados preliminares de crescimento de filmes multicamadas seguido por absorção ótica apresentaram um crescimento linear com o número de camadas dos polieletrólitos.

Mesmo com um crescimento linear dos polieletrólitos sobre a hetero estrutura, houve uma supressão da banda de absorção do filme de MEHPPV em 480 nm logo após a deposição dos polieletrólitos, a esta supressão foi atribuída uma provável transferência de cargas do MEHPPV para a camada PDAC.

AGRADECIMENTOS

Agradecemos ao Programa de Apoio à Pesquisa Científica e Tecnológica – ProAGRUPAR do Instituto Federal do Piauí –IFPI, ao Grupo de Materiais e nanobiotecnologia da UFPI, Centro de Ciências da Natureza, Departamento de Física, Universidade Federal do Piauí – Teresina e ao Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil.

REFERÊNCIAS

BLASSE, G.; GRABMAIER, B.C. Luminescent Materials, Springer Verlag Heidelberg, 1994.

KIDO, J.; OKAMOTO, Y. **Organo Lanthanide Metal Complexes for Electroluminescent Materials**. Chem. Rev.102 (2002) 2357.

HUMMELGEN, I.A., et al. **Polymer and polymer/metal interface characterization via Fowler-Nordheim tunneling measurements**. Applied Physics Letter, v. 68, n. 22, p. 3194-3196, 1996.

LEE, H.M., et al. Use of ionomer as an electron injecting and hole blocking material for polymer light-emmiting diodes. Applied Physics Letter, v. 87, p. 2382-2384, 1998.

LEE, H.M., et al. Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emmiting diodes. Applied Physics Letter, v. 72, p. 231106-1-3, 2005.

FEYNMAN,R. P., La molécula de hidrógeno. Física III: Mecânica cuantica, México: Addison Wesley Iberoamericana. 1987. Cap 10-3, p.10-11{10-14. ISBN 0-201-02976-6.