Announcements

Project 2 autograder will be up later tonight (?).

- Due Wednesday (pushed back a day for technical difficulties) at 11:59 PM.
- Tests basic cursor position activities.

CS61B

Lecture 17: Asymptotic Analysis

61B: Writing Efficient Programs

An engineer will do for a dime what any fool will do for a dollar.

Efficiency comes in two flavors:

- Programming cost (course to date).
 - How long does it take to develop your programs?
 - How easy is it to read, modify, and maintain your code?
 - More important than you might think!
 - Majority of cost is in maintenance, not development!
- Execution cost (from today to the end of the course).
 - O How much time does your program take to execute?
 - How much memory does your program require?

Example of Algorithm Cost

Objective: Find a pair of duplicates in a sorted array.

Given sorted array A, find indices i and j where A[i] = A[j].

		-3	-1	2	4	5	8	10	12
--	--	----	----	---	---	---	---	----	----

Silly algorithm: Create a list of all pairs and iterate through pairs.

• (-3, -1), (-3, 2), (-3, 4), ..., (10, 12)

Better algorithm?

Example of Algorithm Cost

Objective: Find a pair of duplicates in a sorted array.

Given sorted array A, find indices i and j where A[i] = A[j].

-3 -1 2 4 5 8 10 12	2
---	---

Silly algorithm: Create a list of all pairs and iterate through pairs.

Today's goal: Introduce standardized framework for comparing algorithmic efficiency.

Better algorithm?

 For each number A[i], just look at A[i+1], and return true the first time you see a match.

countZeros

For the next many slides, we'll be considering the runtime of the function below.

 What this function does isn't important, we just want to know about its runtime.

```
public static void kviate(int[] a, int k) {
   int count = 0, N = a.length;
   for (int i = 0; i < N; i++) {
      if (a[i] == k) {
          count += 1;
  a[k] += count;
```

Techniques for Measuring Computational Cost

Technique 1: Measure execution time in seconds using a client program.

- Tools:
 - Unix has a built in time command that measures execution time.
 - Princeton Standard library has a stopwatch class.
- Good: Easy to measure, meaning is obvious.
- Bad: Varies with machine, compiler, input data, etc.

```
public static void main(String[] args) {
   int[] array = new int[5000000000];
   Stopwatch sw = new Stopwatch();
   kviate(array, 0);
   double x = sw.elapsedTime();
   System.out.println("Time: " + x);
}
```

Techniques for Measuring Computational Cost

Technique 2: Count operations for some fixed input size.

- Good: Machine independent.
- Bad: Still input dependent. Doesn't tell you actual time.

```
int count = 0, N = a.length;
for (int i = 0; i < N; i++) {
    if (a[i] == k) {
        count += 1;
    }
}
a[k] += count;</pre>
```

operation	count, N=10000
declare variable	3
assignment	3
less than	10001
equal to (==)	10000
array access	10002
increment	10001 to 20001

Techniques for Measuring Computational Cost

Technique 3: Determine symbolic execution times.

- Give statement counts or runtime in terms of input size.
- Good: Relates runtime to input sizes. **Tells you how the algorithm scales.**
- Bad: Doesn't tell you about actual times.

```
int count = 0, N = a.length;
for (int i = 0; i < N; i++) {
    if (a[i] == k) {
        count += 1;
    }
}
a[k] += count;</pre>
```

	operation	count	count, N=10000
	declare variable	3	3
	assignment	3	3
	less than	N+1	10001
	equal to (==)	N	10000
	array access	N+2	10002
	increment	N+1 to 2N+1	10001 to 20001

Why Scaling?

Suppose we have two algorithms that zerpify an array of size N.

- One algorithm takes 500N operations.
- The other takes 2N² operations.

For small N, the 2N² will be faster, but as dataset grows, the N² is going to fall further and further behind.

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

We'll informally refer to the "shape" of a runtime function as its *order of growth* (will formalize soon).

Effect is dramatic! Determines whether a problem can be solved at all.

	п	n log ₂ n	n ²	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Since we're primarily interested in scaling, we can simplify:

- Pick some representative operation, e.g. increment.
 - Example of a bad choice: variable declaration.
 - We call this our *cost model*.

```
int count = 0;
for (int i = 0; i < N; i++)
   if (a[i] == 0)
      count++;
hist[count] += 1;</pre>
```

operation	count	count, N=10000
declare variable	3	3
assignment	3	3
less than	N+1	10001
equal to	N	10000
array access	N+1	10001
increment	N+1 to 2N+1	10001 to 20001

Since we're primarily interested in scaling, we can simplify:

arbitrary

- Pick some representative operation (cost model), e.g. increment.
- Don't worry about small inputs.
 - Assume N is a lot bigger than 1.

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
     count++;</pre>
```

operation	count	count, N=10000	
increment	N+1 to 2N+1	10001 to 20001	

hist[count] += 1;

Since we're primarily interested in scaling, we can simplify:

arbitrary

- Pick some representative operation (cost model), e.g. increment.
- Don't worry about small inputs.
 - Assume N is a lot bigger than 1.
- Ignore constant scaling factors. 2N has same shape as N.

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
      count++;</pre>
```

operation	approx count	count, N=10000	
increment	N to 2N	10001 to 20001	

```
hist[count] += 1;
```

Since we're primarily interested in scaling, we can simplify:

arbitrary

- Pick some representative operation (cost model), e.g. increment.
- Don't worry about small inputs.
 - Assume N is a lot bigger than 1.
- Ignore constant scaling factors. 2N has same shape as N.

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
      count++;</pre>
```

operation	approx count	count, N=10000
increment	N	10001 to 20001

```
hist[count] += 1;
```

Formalizing our Intuitive Simplifications

Converted "N+1 to 2N+1" to just "N" using some intuitive rules.

- Basic idea: For really huge N, "N+1 to 2N+1" looks-just-like N.
- How do we describe this process with mathematical precision?
 - Let's try another example before tackling this question.

Intuitive Shapeness

Suppose we have a function $f(N) = 3813 + 387N + 2N^2$.

For very large N, what function does f(N) "look like"?

- a. g(N) = c. A constant.
- b. g(N) = N. A line.
- c. $g(N) = N^2$. A parabola.
- d. None of these.

Intuitive Shapeness

Suppose we have a function $f(N) = 3813 + 387N + 2N^2$.

For very large N, what function does f(N) look-just-like?

- a. g(N) = c. A constant.
- b. g(N) = N. A line.
- c. $g(N) = N^2$. A parabola.
- d. None of these.

See: Wolfram Alpha

Or if you know Calculus, can use limits.

Formalizing our Intuitive Simplifications

Converted "N+1 to 2N+1" to just "N" using some intuitive rules.

- Basic idea: For really huge N, "N+1 to 2N+1" looks-just-like N.
- $3813 + 387N + 2N^2$ looks-just-like N^2 .
- How do we describe this process with mathematical precision?

Asymptotic notation (sometimes referred to as Bachmann-Landau notation) to describe *order of growth*.

- Big O: Used for bounding above (less than).
- Big Omega: Used for bounding below (greater than).
- Big Theta: Used for bounding both above and below (equals).
 - Big Theta captures what we just did with our intuitive simplifications.

Big-Theta

Suppose we have some performance measurement R(N), where N is the size of our problem.

$$R(N) \in \Theta(f(N))$$

means there exist positive constants k1 and k2 such that:

$$k_1 \cdot f(N) \le R(N) \le k_2 \cdot f(N)$$

for all values of N that are 'very large'.

Big-Theta Challenge

Suppose we have some performance measurement R(N), where N is the size of our problem.

• Suppose R(N) = 2N + 1. Find a simple f(N) and corresponding k_1 and k_2 .

$$R(N) \in \Theta(f(N))$$

means there exist positive constants k1 and k2 such that:

$$k_1 \cdot f(N) \le R(N) \le k_2 \cdot f(N)$$

for all values of N that are 'very large'.

to be more precise, for all N greater than some N_o

Big-Theta Challenge Solution

Suppose we have some performance measurement R(N), where N is the size of our problem.

- Suppose R(N) = 2N + 1. Find a simple f(N) and corresponding k_1 and k_2 .
 - One solution: $f(N) = , k_1 = , k_2 =$

$$R(N) \in \Theta(f(N))$$

means there exist positive constants k1 and k2 such that:

$$k_1 \cdot f(N) \le R(N) \le k_2 \cdot f(N)$$

for all values of N that are 'very large'.

to be more precise, for all N greater than some N_o

Big-Theta Challenge #2

- Suppose we have $R(N) = 3813 + 387N + 2N^2$.
 - Find a simple f(N) and corresponding k_1 and k_2 .

$$R(N) \in \Theta(f(N))$$

means there exist positive constants k1 and k2 such that:

$$k_1 \cdot f(N) \le R(N) \le k_2 \cdot f(N)$$

for all values of N that are 'very large'.

to be more precise, for all N greater than some N_o

Big-Theta Challenge #2 Solution

- Suppose we have $R(N) = 3813 + 387N + 2N^2$.
 - Find a **simple** f(N) and corresponding k_1 and k_2 .

$$f(N) = N^2, k_1 = 1, k_2 = 3$$

See N2Example.py or N2Example.java for a visualization.

$$R(N) \in \Theta(f(N))$$

means there exist positive constants k1 and k2 such that:

$$k_1 \cdot f(N) \le R(N) \le k_2 \cdot f(N)$$

for all values of N that are 'very large'.

- What is the order of growth of R(N)?
 - A. $R(N) \subseteq \Theta(1)$ C. $R(N) \subseteq \Theta(N^2)$
 - B. $R(N) \subseteq \Theta(N)$ D. Something else.

```
public boolean checkDuplicate(int[] a) {
   int N = a.length;
   for (int i = 0; i < N; i += 1) {
       for (int j = 0; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
   return false;
```

- What is the order of growth of R(N)?
 - A. $R(N) \subseteq \Theta(1)$ C. $R(N) \subseteq \Theta(N^2)$
 - B. $R(N) \subseteq \Theta(N)$ D. Something else.

```
public boolean checkDuplicate(int[] a) {
   int N = a.length;
   for (int i = 0; i < N; i += 1) {
       for (int j = 0; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
   return false;
```

- What is the order of growth of R(N)?
- A. $R(N) \subseteq \Theta(1)$ C. $R(N) \subseteq \Theta(N^2)$
 - B. $R(N) \subseteq \Theta(N)$ D. Something else.

```
public boolean dupFinderBetter(int[] a) {
   int N = a.length;
   for (int i = 0; i < N; i += 1) {
       for (int j = i + 1; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
   return false;
```

- What is the order of growth of R(N)?
 - A. $R(N) \subseteq \Theta(1)$ C. $R(N) \subseteq \Theta(N^2)$
 - B. $R(N) \subseteq \Theta(N)$ D. Something else (depends on the input).

```
public boolean dupFinderBetter(int[] a) {
   int N = a.length;
   for (int i = 0; i < N; i += 1) {
       for (int j = i + 1; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
   return false;
```

- What is the order of growth of R(N)?
 - It depends! In the **worst case**, $R(N) \subseteq \Theta(N^2)$.
 - However, if input is sorted and contains duplicates, $R(N) \subseteq \Theta(1)$.

```
public boolean dupFinderBetter(int[] a) {
   int N = a.length;
   for (int i = 0; i < N; i += 1) {
       for (int j = i + 1; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
   return false;
```

Big O

Big O: Similar to Big Theta, but only bounds from above. Examples:

- $N^2 \subseteq O(N^2)$
- $N^2 \in O(N^{500})$
- $\lg N \subseteq O(N^2)$

Informally: The order of growth of R(N) is less than or equal to f(N).

$$R(N) \in O(f(N))$$

means there exists a positive constant such that:

$$R(N) \le k \cdot f(N)$$

for all values of N that are 'very large'.

Which statement is more precise?

- A. Every house in the neighborhood is worth less than \$1,000,000.
- B. The most expensive house in the neighborhood is worth \$1,000,000.

Which statement is more precise?

- A. Every house in the neighborhood is worth less than \$1,000,000.
- B. The most expensive house in the neighborhood is worth \$1,000,000.

Which statement is more precise?

- A. $R(N) \subseteq O(N^2)$.
- B. In the worst case, $R(N) \subseteq \Theta(N^2)$.

Which statement is more precise?

- A. $R(N) \subseteq O(N^2)$.
- B. In the worst case, $R(N) \subseteq \Theta(N^2)$.

Note: Even though B is a stronger statement than A, for convenience, people usually just say A.

Example:

- Runtime of checkDuplicates is O(N²).
- This statement is true, but runtime is also $O(N^5)$, and $O(2^N)$.
- Stronger (but wordier) statement: In the worst case, runtime of checkDuplicates is $\Theta(N^2)$.

Summary and What's Next

		Informal meaning:	Family	Family Members
	Big Theta Θ(f(N))	Order of growth is f(N).	$\Theta(N^2)$	$N^2/2$ $2N^2$ $N^2 + 38N + N$
	Big O O(f(N))	Order of growth is less than or equal to f(N).	O(N ²)	N ² /2 2N ² lg(N)
More on 🗡	Big Omega $\Omega(f(N))$	Order of growth is greater than or equal to f(N).	$\Omega(N^2)$	$N^2/2$ $2N^2$ e^N
Wednesday	Tilde ~f(N)	Ratio converges to 1 for very large N.	~2N ²	$2N^2$ $2N^2 + 5$

Summary and What's Next

Asymptotics provide an approximation for the scaling behavior of an algorithm.

 Will serve as our primary measure for comparing efficiency of algorithms and data structures.

Coming up:

- Wednesday: Big-omega and tilde notation. Theoretical and empirical code analysis.
- Friday: Amortized algorithm analysis.

Citations

TSP problem solution, title slide:

http://support.sas.com/documentation/cdl/en/ornoaug/65289/HTML/default/viewer.htm#ornoaug_optnet_examples07.htm#ornoaug.optnet.map002g

Table of runtimes for various orders of growth: Kleinberg & Tardos, Algorithm Design.

Big Oh/Big Omega graphs: Paul Hilfinger

Selecting a cost model.

When picking a representative operation (or operations) to count.

- Using Big Theta: Doesn't matter if we pick one or many operations.
- Make sure the operation we're counting R(N) is in the same family as the function for the runtime T(N).
 - $\circ \quad \mathsf{R}(\mathsf{N}) \subseteq \Theta(\mathsf{T}(\mathsf{N}))$

operation	count
declare variable	N+2
assignment	N+2
less than	(N+1)(N+2)/2
equal to	N(N-1)/2
array access	N(N-1)
increment	N(N-1)/2 to N(N-1)

Computational Cost

Common problem

- Novice programmer does not understand performance characteristics of data structure
 - In this case, results in poor performance that rapidly gets worse as input grows.