Tarea #2: Respuesta Transitoria de un Sistema Dinámico

Carlos Vásquez 1155057

April 7, 2019

Resolver el siguiente problema

a) Encontrar la velocidad final de un auto de 1,000 kg con una fuerza de 500 N y tomando en cuenta la fricción que existe entre las llantas y el suelo de 50 $\frac{N \cdot m}{s}$. b) Encontrar el tiempo que el auto alcanzó su velocidad constante. c) Graficar la functión de v(t).

a) Solución

Asumimos las condiciones iniciales del auto como cero. Utilizando la segunda ley de Newton podemos expresar el sistema dinámico en forma de ecuación diferencial:

$$\sum_{t} F = ma$$

$$m(t) \frac{d}{dt} v(t) = F(t) - \mu v(t)$$
(1)

Dado que la masa del sistema se mantiene constante y la fuerza de 500 N la podemos considerar como una constante aplicada al sistema cuando $t \ge 0$, nuestra ecuación diferencial se reduce a

$$m\frac{d}{dt}v(t) = F \cdot \mathcal{U}(t) - \mu v(t) \tag{2}$$

Aplicando la transformada de Laplace obtenemos la siguiente ecuación:

$$\mathcal{L}{f(t)} \Rightarrow MsV(s) = \frac{F}{s} - \mu V(s) \tag{3}$$

Despejando a $\frac{V(s)}{\mathscr{U}(s)}$ para obtener nuestra función de transferencia obtenemos:

$$\boxed{\frac{V(s)}{\mathscr{U}(s)} \Rightarrow sV(s) = \frac{F}{Ms + \mu}} \tag{4}$$

Sin embargo, para encontrar v(t) cuando $t \to \infty$ debemos de despejar V(s) y aplicar la integral de Bromwich para obtener nuestro sistema en el dominio del tiempo.

$$V(s) = \frac{F}{Ms^2 + \mu s}$$

$$\mathcal{L}^{-1}{V(s)} = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} V(s) ds$$
(5)

$$\mathcal{L}^{-1}\{V(s)\} = F\left(\frac{1}{\mu} - \frac{e^{\frac{-\mu t}{M}}}{\mu}\right) \tag{6}$$

Y para nuestro sistema en particular:

$$\mathcal{L}^{-1}\{V(s)\} = 500 \left(\frac{1}{50} - \frac{e^{\frac{-t}{20}}}{50}\right) \tag{7}$$

Por tanto, si dejamos que $t \to \infty$, la velocidad que experimentará el automóvil será:

$$v(t \to \infty) = 500 \left(\frac{1}{50} - 0\right)$$

$$v(t \to \infty) = \frac{500}{50} = 10 \ m/s$$
(8)

b) Solución

El tiempo para el cual se considera que el transitorio ha terminado es de 5τ y dado que $\tau=20$, podemos asumir que el tiempo que tarda en llegar a la velocidad final es de 100 s. Realizando el cálculo en este tiempo observamos que la velocidad para t=100~s es bastante aproximada a 10~m/s.

$$v(100 \ s) = 500 \left(\frac{1}{50} - \frac{e^{\frac{-100}{20}}}{50}\right) \approx 9.9326 \ m/s$$
 (9)

c) Solución

Listing 1: Código de la función encontrada para v(t)

```
t = 0:1:100;
v = 500*((1/50) - (exp(-t/20)/50));
plot(t,v)
```


Figure 1: Gráfica de v(t)