Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain

arxiv.org/abs/2110.03950

Dmitrii M. Ostrovskii Babak Barazandeh & Meisam Razaviyayn

> Johns Hopkins U. AMS Seminar October 14, 2021

Outline

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

- Background and challenges.
- Our approach: restricting diam(Y).
- **Sharp bound** for the critical diameter.
- Algorithms for finding stationary points.

Smooth min-max optimization

Given convex bodies $X,\,Y$ in the corresponding Euclidean spaces $\textit{E}_{x},\,\textit{E}_{y},\,$ find

$$f^* := \min_{x \in X} \max_{y \in Y} f(x, y).$$

assuming that f is smooth—has Lipschitz gradient $[\nabla_x f(x, y); \nabla_y f(x, y)]$.

- Full knowledge of X, Y: can compute proximal mappings.
- Oracle access to f: can query $f(x,y), \nabla f(x,y), ...$ at $(x,y) \in X \times Y$.
- Iterative methods: form a sequence (x_t, y_t) such that $f(x_t, y_t) \to f^*$.
- ullet Complexity: number of iterations T to guarantee a given accuracy.

Convex-concave setup

Classical setup: $f(\cdot, y)$ convex on X; $f(x, \cdot)$ concave on Y for all x, y.

• Strong duality (a.k.a. minimax theorem) under mild assumptions:

$$f^* = \min_{x \in X} \underbrace{\max_{y \in Y} f(x, y)}_{\varphi(x)} = \max_{y \in Y} \underbrace{\min_{x \in X} f(x, y)}_{\psi(y)} = f(x^*, y^*),$$

 (x^*, y^*) is a saddle point: $f(x^*, y) \leqslant f(x^*, y^*) \leqslant f(x, y^*)$ for all x, y

Primal-dual algorithms minimize the duality gap (=primal+dual gap):

$$\varphi(x_t)\underbrace{-\varphi^* + \psi^*}_{=f^* - f^* = 0} - \psi(y_t) \leqslant \langle \nabla_{\mathsf{x}} f(x_t, y_t), x_t - x^* \rangle + \langle \nabla_{\mathsf{y}} f(x_t, y_t), y^* - y_t \rangle.$$

- Complexity $O(1/\epsilon)$ to reach ϵ duality gap is optimal without further assumptions—via extragradient-type algorithms (Nemirovski '2000).
- Well developed theory by now, although there is still ongoing work.
 (E.g. convergence of the last iterate vs. the averaged iterate.)

Nonconvex-concave setup

When $f(\cdot, y)$ is nonconvex, some of the nice structure is lost; in particular:

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \min_{x \in X} \varphi(x) \neq \max_{y \in Y} \min_{x \in X} f(x, y).$$

We still can evaluate $\varphi(x)$ and its subgradient $\xi = \xi(x) \in \partial \varphi(x)$ at any x. However, $\varphi(x)$ is nonconvex, so we lose all hope to minimize it globally.

Reasonable goal is to approximate a local minimizer or a stationary point.

But what it *means* for $x \in X$ to be ε -stationary when $\varphi(x)$ is nonsmooth?

It doesn't make sense to just use the norm of subgradients of φ . E.g., $\varphi(x) = |x|$: x = 0 is stationary $(\partial \varphi(0) \ni 0)$, but $|\nabla \varphi(x)| \geqslant 1$ if $x \neq 0$.

Nash or Moreau?

But what it *means* for $x \in X$ to be ε -stationary when $\varphi(x)$ is nonsmooth?

- First-order Nash Equilibrium (ε -FNE): $\|\nabla_{\mathbf{x}} f(x,y)\| + \|\nabla_{\mathbf{y}} f(x,y)\| \le \varepsilon$. Actually more complicated, taking into account the constraint sets... Stems from the primal-dual viewpoint: treats $f(\cdot,y), f(x,\cdot)$ equally.
- Or we can hold to the "primal-only" viewpoint if we make $\varphi(\cdot)$ smooth. It is possible since φ is λ -weakly convex (i.e., $\varphi(\cdot) + \frac{1}{2}\lambda \|\cdot\|$ is convex.)

Definition

$$\phi_{\lambda}(x) := \min_{u \in Y} \left\{ \phi(u) + \lambda \|u - x\|^2 \right\}$$

is called the (standard) **Moreau envelope** of a λ -weakly convex function ϕ .

- We have $\varphi(\cdot) = \max_{y \in Y} f(\cdot, y)$; each $f(\cdot, y)$ is λ -smooth $\Rightarrow \lambda$ -weakly convex.
 - $\varphi_{\lambda}(\cdot)$ is differentiable and λ -smooth—same as each component $f(\cdot, y)$.

Moreau envelope criterion

Definition

$$\phi_{2\lambda}(x) := \min_{u \in X} \left\{ \phi(u) + \lambda \|u - x\|^2 \right\}$$

is called the (standard) Moreau envelope of a λ -weakly convex function ϕ .

Proposition (Ostrovskii, Lowy, Razaviyayn '2020).

If $\|\nabla \phi_{\lambda}(x)\| \leqslant \varepsilon$ for $x \in X$, then $x^+ := \underset{u \in X}{\operatorname{argmin}} \{\phi(u) + \lambda \|u - x\|^2\}$ satisfies

$$\|x^+ - x\| \leqslant \frac{\varepsilon}{2\lambda} \quad \text{ and } \quad \lambda \|x^+ - \Pi_X[x^+ - \frac{1}{\lambda}\xi]\| \leqslant \varepsilon \text{ for some } \xi \in \partial \phi(x^+).$$

Here $f(x, \cdot)$ doesn't have to be concave. This motivates using $\|\nabla \varphi_{\lambda}(\cdot)\|$ as a measure of stationarity in the **general (nonconvex-nonconcave) setup.**

Definition (ε -first-order stationary point, or ε -FSP)

Let $f(\cdot, y)$ be λ -smooth $\forall y$. Then $x \in X$ is called ε -FSP if $\|\nabla \varphi_{\lambda}(x)\| \leqslant \varepsilon$.

Finding an ε -FSP: main challenge

From now on, we assume $\nabla_x f(\cdot)$ is Lipschitz: for any $x', x \in X$ and $y', y \in Y$:

$$\|\nabla_{\mathbf{x}}f(\mathbf{x}',\mathbf{y}) - \nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y})\| \leqslant \lambda \|\mathbf{x}' - \mathbf{x}\|,$$

$$\|\nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y}') - \nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y})\| \leqslant \mu \|\mathbf{y}' - \mathbf{y}\|.$$

Thus, λ is the weak convexity modulus of φ , and μ is the coupling parameter.

Problem of interest

Given a problem instance of the form $\min_{x \in X} \max_{y \in Y} f(x, y)$ and $\varepsilon > 0$, find a point x^* such that $\|\nabla \varphi_{\lambda}(x)\| \leqslant \varepsilon$, where φ_{λ} is the Moreau envelope.

Hard: Lyapunov-type analyses of local search methods (gradient descent-ascent, proximal-point method) rely on **full** maximization in y.

Key insight

Easy problem if Y is a singleton. Does this extend to the case of **small** Y?

Our strategy

Let $\hat{f}_k(x, y)$ be the k-order Taylor approximation of $f(x, \cdot)$ at some $\hat{y} \in Y$.

- $\hat{f}_k(x,\cdot)$ is a multivariate polynomial—**global** maximization for $k \leq 2$:
 - $\hat{f}_k(x,\cdot)$ is constant for k=0 and affine for k=1;
 - $\hat{f}_k(x,\cdot)$ is quadratic for k=2, admits global maximization via first-order algorithms—see e.g. (Carmon and Duchi '2020).

Surrogate problem: $\min_{x \in X} \max_{y \in Y} \hat{f}_k(x, y)$.

Strategy

1°. Prove that any ε -FSP of the surrogate problem remains $O(\varepsilon)$ -FSP for the initial problem when $D := \operatorname{diam}(Y)$ is smaller than some D^* .

We expect
$$D^* = O(\varepsilon^p)$$
 for some $p = p(k) > 0$.

 2^o . Find some ε -FSP in the surrogate problem by an efficient algorithm.

Accuracy of Taylor approximation

• Assuming k^{th} -order regularity in y, i.e. that $\nabla_{y^k}^k f(x,\cdot)$ is ρ_k -Lipschitz

$$\|\nabla_{\mathbf{y}^k}^k f(\mathbf{x}, \mathbf{y}') - \nabla_{\mathbf{y}^k}^k f(\mathbf{x}, \mathbf{y})\| \leqslant \rho_k \|\mathbf{y}' - \mathbf{y}\|,$$

 $|\hat{f}_k(x,y)-f(x,y)|\leqslant \frac{\rho_k D^{k+1}}{(k+1)!}.$

• Similarly, assuming
$$\nabla_{y^k}^k f$$
 is Lipschitz in x ("higher-order interaction")
$$\|\nabla_{y^k}^k f(x',y) - \nabla_{y^k}^k f(x,y)\| \leqslant \sigma_k \|x' - x\|,$$

allows to control how well $\nabla_x \hat{f}_k(x, y)$ approximates $\nabla_x f(x, y)$.

Lemma (Approximation error for $\nabla_{\mathbf{x}} f$.)

yields

$$\|\nabla_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) - \nabla_{\mathbf{x}} \hat{f}_k(\mathbf{x}, \mathbf{y})\| \leqslant \begin{cases} \frac{2\sigma_k \mathsf{D}^k}{k!} & \text{for } k \geqslant 1, \\ \min\{\mu \mathsf{D}, \sigma_0\} & \text{for } k = 0. \end{cases}$$

Accuracy of Taylor approximation (cont'd)

We have a problem:

- ε -FSP definition requires λ -weak convexity of $\varphi(x) = \max_{y \in Y} f(x, y)$.
- ullet So to even talk about arepsilon-FSP for the surrogate, we have to ensure that

$$\hat{\varphi}(x) := \max_{y \in Y} \hat{f}_k(x, y),$$

the surrogate primal function, is also λ -weakly convex.

• Bilinear coupling (BC), i.e. $f(x,y) = g(x) + \langle Ax, y \rangle - h(y)$, ensures

$$\nabla_{\mathsf{xx}}^2 f(\mathsf{x}, \mathsf{y}) \left[= \nabla^2 g(\mathsf{x}) = \nabla_{\mathsf{xx}}^2 f(\mathsf{x}, \hat{\mathsf{y}}) \right] = \nabla_{\mathsf{xx}}^2 \hat{f}_{\mathsf{k}}(\mathsf{x}, \mathsf{y})$$

for all y, so in this case $\hat{f}_k(\cdot,y)$ is λ -smooth and $\hat{\varphi}$ is λ -weakly convex. More generally, assuming $\|\nabla_{y^kx^2}^{k+2}f\|<\infty$ we have the following result:

Lemma (Weak convexity of $\hat{\varphi}$, simplified)

$$\nabla_{\mathbf{x}}\hat{f}_k(\cdot,y)$$
 is $\bar{\lambda}_k$ -Lipschitz ($\hat{\varphi}$ is $\bar{\lambda}_k$ -weakly convex) for $\bar{\lambda}_k=\lambda+O(\mathsf{D}^k)\approx\lambda$.

Main result: critical diameter

Theorem

Given $k \geqslant 1$, let x^* be an ε -FSP in the **surrogate problem** (using λ_k -weak convexity). Then x^* is also a 6ε -FSP for the **initial problem**, provided that

$$\min \left\{ \mu \mathsf{D} + \frac{\sigma_k \mathsf{D}^k}{k!}, \quad \sqrt{\frac{\bar{\lambda}_k \rho_k \mathsf{D}^{k+1}}{(k+1)!}} \right\} \lesssim \varepsilon.$$

Moreover, for k = 0 it suffices that $\mu D \lesssim \varepsilon$.

ullet In other words, for $k\geqslant 1$ the surrogate works as long as $D\lesssim_k \bar{D}$ with

$$ar{\mathsf{D}} := \mathsf{max} \left\{ rac{arepsilon}{\mu}, \left(rac{arepsilon^2}{\lambda
ho_k}
ight)^{rac{1}{k+1}}
ight\}.$$

- For k=0 we have $\bar{D}=\frac{\varepsilon}{\mu}$, same as for k=1 except for a constant factor $\frac{1}{\mu}\leqslant \frac{1}{\min\{\mu,\sqrt{\lambda\rho_1}\}}$. Modest deterioration, and only if $\mu\geqslant\sqrt{\lambda\rho_1}$.
- For k=2 we have $\bar{\mathsf{D}}=\frac{\varepsilon^{2/3}}{(\lambda \rho_k)^{1/3}}$, independent from μ whenever $\varepsilon\ll 1$.

Proof: μ -independent bound

Proposition 1. Moreau envelope gradients for φ and $\hat{\varphi}$ are *uniformly close*:

$$\|\nabla \hat{\varphi}_{\overline{\lambda}_k}(x) - \nabla \varphi_{\overline{\lambda}_k}(x)\| \lesssim \sqrt{\frac{\overline{\lambda}_k \rho_k \mathsf{D}^{k+1}}{(k+1)!}} \quad \textit{for all } x \in X.$$

Proof:

 1^o . By the first-order optimality conditions for $\varphi_{\lambda}(x)$ and $\hat{\varphi}_{\lambda}(x)$ we have

$$abla arphi_{\overline{\lambda}_k}(x) = 2\overline{\lambda}_k(x-x^+), \quad
abla \hat{arphi}_{\overline{\lambda}_k}(x) = 2\overline{\lambda}_k(x-\hat{x}^+),$$

where x^+ and \hat{x}^+ are the proximal-point mappings of x as per φ and $\hat{\varphi}$:

where
$$x^+$$
 and x^+ are the proximal-point mappings of x as per φ and φ :
$$x^+ = \underset{u \in X}{\operatorname{argmin}} \{ \varphi(u) + \overline{\lambda}_k \| u - x \|^2 \}, \quad \hat{x}^+ = \underset{u \in X}{\operatorname{argmin}} \{ \hat{\varphi}(u) + \overline{\lambda}_k \| u - x \|^2 \}.$$

Thus $\|\nabla \varphi_{\bar{\lambda}_k}(x) - \nabla \hat{\varphi}_{\bar{\lambda}_k}(x)\| = 2\bar{\lambda}_k \|\hat{x}^+ - x^+\|$. Let's bound $\|\hat{x}^+ - x^+\|$.

Proof: μ -independent bound (cont'd)

Proposition 1. Moreau envelope gradients for φ and $\hat{\varphi}$ are uniformly close:

$$\|
abla \hat{arphi}_{ar{\lambda}_k}(x) -
abla arphi_{ar{\lambda}_k}(x)\| \lesssim \sqrt{rac{ar{\lambda}_k
ho_k \mathsf{D}^{k+1}}{(k+1)!}} \quad ext{for all } x \in X.$$

Proof:

2°. Functions $\varphi(\cdot) + \bar{\lambda}_k \|\cdot -x\|^2$ and $\hat{\varphi}(\cdot) + \bar{\lambda}_k \|\cdot -x\|$ are $\bar{\lambda}_k$ -strongly convex and minimized at x^+ and \hat{x}^+ correspondingly, hence

Summing the two inequalities results in
$$\overline{X} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{$$

Summing the two inequalities results in
$$\bar{\lambda}_k \|\hat{x}^+ - x^+\|^2 \leqslant \hat{\varphi}(x^+) - \varphi(x^+) + \varphi(\hat{x}^+) - \hat{\varphi}(\hat{x}^+) \leqslant 2 \sup_{x \in X} |\hat{\varphi}(x) - \varphi(x)|.$$
 3°. Finally, we get $|\hat{\varphi}(x) - \varphi(x)| \leqslant \sup_{y \in Y} |\hat{f}_k(x, y) - f(x, y)| \leqslant \frac{\rho_k D^{k+1}}{(k+1)!}$.

$$\frac{1}{2}\bar{\lambda}_{k}\|\hat{x}^{+} - x^{+}\|^{2} \leqslant \varphi(\hat{x}^{+}) + \bar{\lambda}_{k}\|\hat{x}^{+} - x\|^{2} - \varphi(x^{+}) - \bar{\lambda}_{k}\|x^{+} - x\|^{2},$$

$$\frac{1}{2}\bar{\lambda}_{k}\|\hat{x}^{+} - x^{+}\|^{2} \leqslant \hat{\varphi}(x^{+}) + \bar{\lambda}_{k}\|x^{+} - x\|^{2} - \hat{\varphi}(\hat{x}^{+}) - \bar{\lambda}_{k}\|\hat{x}^{+} - x\|^{2}.$$

Proof: μ -dependent bound

Proposition 2. For any $x^* \in X$ such that $\|\nabla \hat{\varphi}_{2\bar{\lambda}_{\iota}}(x^*)\| \leq \varepsilon$, one has

$$\|\nabla \hat{\varphi}_{\bar{\lambda}_k}(x^*) - \nabla \varphi_{\bar{\lambda}_k}(x^*)\| \lesssim \begin{cases} \mu \mathsf{D} + \frac{\sigma_k \mathsf{D}^k}{k!} + \varepsilon & \text{for } k \geqslant 1, \\ \min\{\mu \mathsf{D}, \sigma_0\} + \varepsilon & \text{for } k = 0. \end{cases}$$

Proof: (assuming $X = E_x$ and $k \ge 1$ for simplicity)

1º. Now let x^+, \hat{x}^+ be the proximal-point mappings of x^* as per $\varphi, \hat{\varphi}$:

$$abla arphi_{ar{\lambda}_L}(x^*) = 2ar{\lambda}_k(x^* - x^+), \quad
abla \hat{\phi}_{ar{\lambda}_L}(x^*) = 2ar{\lambda}_k(x^* - \hat{x}^+),$$

Thus $\|\nabla \varphi_{\bar{\lambda}_k}(x^*) - \nabla \hat{\varphi}_{\bar{\lambda}_k}(x^*)\| = 2\bar{\lambda}_k \|\hat{x}^+ - x^+\|$.

2°. By the $\bar{\lambda}_k$ -strong convexity of $\varphi(\cdot) + \bar{\lambda}_k \|\cdot -x^*\|^2$ and Cauchy-Schwarz:

$$\frac{1}{2}\bar{\lambda}_{k}\|\hat{x}^{+} - x^{+}\|^{2} \leqslant \bar{\lambda}_{k}\|\hat{x}^{+} - x^{*}\|^{2} + \varphi(\hat{x}^{+}) - \varphi(x^{+}) - \bar{\lambda}_{k}\|x^{+} - x^{*}\|^{2}$$
$$\leqslant 4\bar{\lambda}_{k}\|\hat{x}^{+} - x^{*}\|^{2} + \varphi(\hat{x}^{+}) - \varphi(x^{+}) - \frac{3}{4}\bar{\lambda}_{k}\|\hat{x}^{+} - x^{+}\|^{2}.$$

Proof: μ -dependent bound (cont'd)

Rearranging, we get

$$(\bar{\lambda}_k \|\hat{x}^+ - x^+\|)^2 \leq 8(\bar{\lambda}_k \|\hat{x}^+ - x^*\|)^2 + 2\bar{\lambda}_k \left[\varphi(\hat{x}^+) - \varphi(x^+) - \frac{3}{4}\bar{\lambda}_k \|\hat{x}^+ - x^+\|^2\right].$$

3°. Since x^* is an ε -FSP for $\hat{\varphi}_k$, the Moreau criterion characterization gives

$$\|\hat{x}^+ - x^*\| \leqslant \frac{\varepsilon}{2\bar{\lambda}_k} \quad \text{and} \quad \|\hat{\xi}\| \leqslant \varepsilon \ \text{ for some } \hat{\xi} \in \partial \hat{\varphi}(\hat{x}^+).$$
 Using the first inequality

Using the first inequality,

$$(\bar{\lambda}_k \|\hat{x}^+ - x^+\|)^2 \leqslant 2\varepsilon^2 + 2\bar{\lambda}_k \left[\varphi(\hat{x}^+) - \varphi(x^+) - \frac{3}{4}\bar{\lambda}_k \|\hat{x}^+ - x^+\|^2 \right].$$

4°. By convexity of $\varphi(\cdot) + \frac{1}{2}\overline{\lambda}_k \|\cdot -\hat{x}^+\|^2$, for **arbitrary** $\xi \in \partial \varphi(\hat{x}^+)$ we get

$$\varphi(\hat{x}^+) - \varphi(x^+) - \frac{\bar{\lambda}_k}{2} \|\hat{x}^+ - x^+\|^2 \leqslant \langle \xi, \hat{x}^+ - x^+ \rangle,$$

whence

$$(ar{\lambda}_k \|\hat{x}^+ - x^+\|)^2 \leqslant 2arepsilon^2 + 2ar{\lambda}_k \left[\langle \xi, \hat{x}^+ - x^+
angle - rac{1}{4}ar{\lambda}_k \|\hat{x}^+ - x^+\|^2
ight]$$

Proof: μ -dependent bound (cont'd)

$$(\bar{\lambda}_k \|\hat{x}^+ - x^+\|)^2 \leqslant 2\varepsilon^2 + 2\bar{\lambda}_k \left[\left\langle \xi, \hat{x}^+ - x^+ \right\rangle - \frac{1}{4}\bar{\lambda}_k \|\hat{x}^+ - x^+\|^2 \right]$$
 5°. Applying Cauchy-Schwarz twice we get

 $(\bar{\lambda}_k \|\hat{x}^+ - x^+\|)^2 \leqslant 4\varepsilon^2 + 4\bar{\lambda}_k \left[\langle \hat{\xi}, \hat{x}^+ - x^+ \rangle - \frac{1}{4}\bar{\lambda}_k \|\hat{x}^+ - x^+\|^2 \right] + 4\|\hat{\xi} - \xi\|^2$

$$\leqslant 4\varepsilon^2 + 4\|\hat{\xi}\|^2 + 4\|\hat{\xi} - \xi\|^2.$$

Recall that $\hat{\xi} \in \partial \hat{\varphi}(\hat{x}^+)$ was chosen to guarantee $\|\hat{\xi}\| \leqslant \varepsilon$. Thus we get $(\bar{\lambda}_{\nu} \| \hat{x}^{+} - x^{+} \|)^{2} \leq 8\varepsilon^{2} + 4 \| \hat{\xi} - \xi \|^{2}$

6°. It remains to bound $\|\hat{\xi} - \xi\|^2$. By the "subgradient of maximum" rule:

$$\hat{\xi} \in \overline{\mathsf{conv}}\left(\left\{
abla_{\mathsf{x}} \hat{f}_k(\hat{x}^+, y), \ y \in \mathsf{Argmax}_{y \in Y} \ \hat{f}_k(\hat{x}^+, y) \right\} \right).$$

Also, we can choose $\xi = \nabla_x f(\hat{x}^+, y^*)$ for $y^* \in \operatorname{Argmax}_{v \in Y} f(\hat{x}^+, y)$.

Whence by convexity of the norm:
$$\|\hat{\xi}_X^+ - \xi^+\| \leq \max_{v \in Y} \|\nabla_x \hat{f}_k(\hat{x}^+, y) - \nabla_x f(\hat{x}^+, y^*)\|$$

$$\|\zeta_{X} - \zeta^{-}\| \leqslant \|\operatorname{IIIdX}_{Y \in Y} \| \nabla_{x} I_{k}(x^{-}, y) - \nabla_{x} I(x^{-}, y^{-}) \|$$

$$\leq \|\nabla_{x} f(\hat{x}^{+}, \bar{x}) - \nabla_{x} f(\hat{x}^{+}, \bar{x}) \| + \|\nabla_{x} f(\hat{x}^{+}, \bar{x}) - \nabla_{x} \hat{f}(\hat{x}^{+}, \bar{x}) \|$$

$$\leq \|\nabla_{\mathsf{x}} f(\hat{x}^+, \bar{y}) - \nabla_{\mathsf{x}} f(\hat{x}^+, y^*)\| + \|\nabla_{\mathsf{x}} f(\hat{x}^+, y^*) - \nabla_{\mathsf{x}} \hat{f}_k(\hat{x}^+, y^*)\|.$$

$$\leq \mu \mathsf{D} + \frac{2\sigma_k}{k!}.$$

"Honest" Hessian approximation

Lemma (Weak convexity of $\hat{\varphi}$)

Assume $\|\nabla_{\mathbf{y}^k \mathbf{x}^2}^{k+2} f\| \leqslant \tau_k$. Then $\nabla_{\mathbf{x}} \hat{f}_k(\cdot, \mathbf{y})$ is $\bar{\lambda}_k$ -Lipschitz with $\bar{\lambda}_k$ given by

$$\bar{\lambda}_k := \lambda + \frac{2\tau_k \mathsf{D}^k}{k!} \mathbb{1}\{k \geqslant 1\}.$$

In fact, under some mild measurability condition it suffices to assume that $\nabla_{y^k x}^{k+1} f(\cdot, y)$ is τ_k -Lipschitz for all $\forall y \in Y$, so we don't need $f \in C^{k+2}$.