Ensembles, relations, fonctions

R1.06 - Mathématiques discrètes

monnerat@u-pec.fr ₺

15 octobre 2021

IUT de Fontainebleau

Partie 5

Cardinalité

Cardinalité

Cardinal d'un ensemble fini

Principe des tiroirs

Dénombrement

Motivations

Opération sur les ensembles

Arrangement

Combinaison

Cardinalité des ensembles infinis

Ensemble dénombrable

Ensemble non dénombrable

Cardinalité
Cardinal d'un ensemble fini

Cardinal d'un ensemble fini

Comment compter les éléments d'un ensemble?

Définition

Pour n > 0 entier, on note $\mathbb{N}_n = \{1, 2, 3, \dots, n\}$, et $\mathbb{N}_0 = \emptyset$.

Un ensemble E est fini s'il est en bijection avec un \mathbb{N}_n . Cet entier est unique; il est appelé le cardinal de E, noté card(E), |E| ou encore #E.

Pour montrer que cet entier est unique, on prouve la proposition suivante :

Proposition

S'il existe une application $\begin{cases} injective \\ surjective \end{cases} \text{ de } \mathbb{N}_n \text{ dans } \mathbb{N}_k, \text{ alors } \begin{cases} \leq \\ n \geq k \\ = \end{cases}$

Cardinal d'un ensemble fini

Comment compter les éléments d'un ensemble?

Définition

Pour n > 0 entier, on note $\mathbb{N}_n = \{1, 2, 3, \dots, n\}$, et $\mathbb{N}_0 = \emptyset$.

Un ensemble E est fini s'il est en bijection avec un \mathbb{N}_n . Cet entier est unique; il est appelé le cardinal de E, noté card(E), |E| ou encore #E.

Qui se traduit de la manière suivante avec les cardinaux.

Proposition

Soient *E* et *F* deux ensembles finis.

Il existe une
$$\begin{cases} \textit{injection} \\ \textit{surjection} \end{cases} \text{ de } E \text{ dans } F \text{ ssi } \begin{cases} \leq \\ \textit{card}(E) \geq \textit{card}(F) \end{cases}$$

Preuve : Montrons par récurrence sur k que s'il existe une injection de \mathbb{N}_n dans \mathbb{N}_k , alors $n \leq k$.

- k = 0. si $n \neq 0$, il n'existe pas d'application d'un ensemble non vide dans l'ensemble vide. Donc n = 0 < k.
- supposons la propriété vraie pour k. Montrons la pour k+1. Soit i une injection de \mathbb{N}_n dans \mathbb{N}_{k+1} . Si n=0, on a bien $n\leq k+1$. Sinon, on pose x=i(n)

On considère la permutation π de \mathbb{N}_{k+1} qui permutte x et k+1 (éventuellement égaux). Par construction $\pi \circ i$ est une injection de \mathbb{N}_n dans \mathbb{N}_{k+1} qui envoie n sur k+1.

 $\pi \circ i$ induit donc une injection de \mathbb{N}_{n-1} sur \mathbb{N}_k . En appliquant l'hypothèse de récurrence, on a donc $n-1 \leq k$, soit $n \leq k+1$.

Quel est le cardinal de $X = \{a, b, c, d\}$

Figure 1: bijection de X dans \mathbb{N}_4

$$card(X) = 4$$

Principe des tiroirs

Cardinalité

Principe des tiroirs (Dirichlet)

Principe des tiroirs

Soient E et F deux ensembles finis et $f: E \to F$ une application. Si card(E) > card(F) alors il existe $x_1, x_2 \in E$ tels que $f(x_1) = f(x_2)$. (f n'est pas injective)

Nombre moyen de cheveux : 150000

Nombre d'habitants à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.

Principe des tiroirs (Dirichlet)

Principe des tiroirs

Soient E et F deux ensembles finis et $f: E \to F$ une application. Si card(E) > card(F) alors il existe $x_1, x_2 \in E$ tels que $f(x_1) = f(x_2)$. (f n'est pas injective)

Nombre moyen de cheveux : 150000

Nombre d'habitants à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.

Principe des tiroirs généralisé

Soient E et F deux ensembles finis non vides et $f: E \to F$ une application. Si card(E) > kcard(F) avec $k \in \mathbb{N}^*$ alors il existe une valeur de f qui est répétée au moins k+1 fois.

Cardinalité
Dénombrement

Cardinalité Motivations

Pourquoi dénombrer un ensemble fini?

En informatique vous utiliserez la notion de dénombrement au moins dans les deux cas de figures suivants :

- dénombrer le nombre de cas à analyser par un algorithme en vu d'étudier sa complexité;
- lorsqu'on tire au hasard un élément dans un univers finis Ω de manière équiprobable (c'est à dire que chaque élément à la même probabilité d'être tiré), la probabilité que cet élément soit dans l'ensemble $A\subseteq \Omega$ est

$$P(A) = \frac{cardA}{card\Omega}.$$

Cardinalité

Opération sur les ensembles

Dénombrement et opérations sur les ensembles

Union

$$card(A \cup B) = card(A) + card(B) - card(A \cap B)$$

$$card(A \cup B \cup C) = card(A) + card(B) + card(C)$$

$$- card(A \cap B) - card(A \cap C) - card(B \cap C) + card(A \cap B \cap C)$$

Passage au complémentaire

$$card(\overline{A}) = card(\Omega) - card(A)$$

Dénombrement et opérations sur les ensembles

Produit cartésien

$$cardA \times B = cardA \times cardB$$

 $cardA_1 \times \cdots \times A_n = cardA_1 \times \cdots \times cardA_n$

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3\}, card A \times B = 4 \times 3 = 12$$

Dénombrement et opérations sur les ensembles

Ensemble des parties (E fini)

$$card\mathcal{P}(E) = 2^{cardE}$$

Ensembles des applications (de E dans F, noté F^E)

$$card F^E = card F^{card E}$$

Cardinalité Arrangement

Arrangement

Permutation de n éléments

Nombre de façon de ranger *n* objets dans l'ordre.

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2(\times 1)$$

- Le nombre de bijection de $\{1, 2, ..., n\}$ dans lui-même se note \mathfrak{S}_n
- 0! = 1

Exemples:

• Voici les 4! = 24 permutations de quatre éléments a, b, c et d:

abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

• De combien de façons pouvez-vous ranger 10 livres sur une étagère?

$$10! = 3628800$$

Arrangement

Arrangements de p éléments parmi n (sans répétition)

Nombre de listes ordonnées de p éléments parmi n

$$A_n^p = n \times (n-1) \times (n-2) \times \cdots \times (n-p+1) = \frac{n!}{(n-p)!}$$

Arrangement

Exemples:

• Les $A_4^3 = 4 \times 3 \times 2 = 24$ arrangements de 3 éléments choisis parmi a, b, c, d:

• Quinze chevaux participes à une course, le nombre de tiercé est :

$$A_{15}^3=15\times14\times13$$

• Nombre d'injections de $E = \{1, 2, 3\}$ dans $F = \{1, 2, \dots, 15\}$:

$$A_{15}^3 = 15 \times 14 \times 13$$

Cardinalité Combinaison

Combinaison

Combinaisons de p éléments parmi n (sans répétition)

Nombre de sous-ensembles de p éléments dans un ensemble contenant n éléments

$$C_n^p = \frac{A_n^p}{p!} = \frac{n!}{p!(n-p)!}$$

Exemples:

Les $C_3^2 = \frac{3!}{2!1!} = 3$ combinaisons de 2 éléments choisis parmi a, b, c :

$$\{a,b\}$$
 $\{a,c\}$ $\{b,c\}$

Les $C_4^2 = \frac{4!}{2!2!} = 6$ combinaisons de 2 éléments choisis parmi a, b, c, d:

$$\{a,b\}$$
 $\{a,c\}$ $\{a,d\}$ $\{b,c\}$ $\{b,d\}$ $\{c,d\}$

Combinaison

Proposition

•
$$C_n^{n-k} = C_n^k$$
 $C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$

- $C_n^{n-k} = C_n^k$ $C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$ $(a+b)^n = \sum_{n=1}^n C_n^k a^k b^{n-k}$ (formule du binôme de Newton)
- $\bullet \ \sum_{k=0}^{n} C_{n}^{K} = 2^{n}$

Triangle de Pascal

Cardinalité des ensembles infinis

Cardinalité des ensembles infinis Ensemble dénombrable

Ensembles dénombrables

Définition : Ensemble dénombrable

Un ensemble est dénombrable s'il est fini ou s'il est en bijection \mathbb{N} .

Montrer que les ensembles suivants sont dénombrables :

- $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ est dénombrable par la bijection??
- l'ensemble des nombres pairs, noté $2\mathbb{N}$, est dénombrable par la bijection ? ?
- l'ensemble des nombres impairs, noté $2\mathbb{N}+1$, est dénombrable par la bijection ? ?
- l'ensemble des entiers relatifs $\mathbb Z$ est dénombrable par la bijection ??

Proposition

Tout sous-ensemble $X \subseteq \mathbb{N}$ est dénombrable.

Comment compter les couples de \mathbb{N}^2 ? fonction de couplage de Cantor

Hôtel de Hilbert

Hôtel avec un nombre infini (dénombrable) de chambres, mais il est plein.

Un client arrive (ou un nombre fini).

Hôtel de Hilbert

Un bus avec une infinité (dénombrable) de client arrive.

Hôtel de Hilbert

Une infinité dénombrable de bus avec une infinité (dénombrable) de clients arrivent.

Cardinalité des ensembles infinis Ensemble non dénombrable

Ensembles non dénombrables

Théorème (Cantor)

Soient E un ensemble. Il n'existe pas d'application bijective de E dans $\mathcal{P}(E)$.

Preuve: cf TD.

On en déduit que $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable.

En fait, $\mathcal{P}(\mathbb{N})$ est en bijection avec \mathbb{R} . Ils ont le même cardinal.

- La cardinal de N est ℵ₀ (se lit aleph 0)
- Le cardinal de $\mathcal{P}(\mathbb{N})$ et de \mathbb{R} est \aleph_1 (se lit aleph 1)

Théorème

L'ensemble [0,1[(et donc $\mathbb{R})$ n'est pas dénombrable.

Supposons que f soit une bijection de \mathbb{N} dans [0,1[. Tout nombre de [0,1[peut s'écrire de manière unique en base 2. $(a_{ij} \in \{0,1\})$

f(0)	0	,	a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	a ₀₅	
f(1)	0	,	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	
f(2)	0	,	a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	
f(3)	0	,	a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	
f(4)	0	,	a ₄₀	a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅	

On construit le nombre réel $x=0, x_0x_1x_2x_3x_4x_5\ldots \in [0,1[$ en posant

$$x_i = 1 - a_{ii}$$

x n'est pas dans la liste des valeurs prises par f (pourquoi?)

[argument de la diagonale de Cantor (1891)]