

Упрощенное представление текста. TF-IDF, Word2Vec

План занятия (лекция + семинар)

- 1. Векторное представление текста
- 2. Модель «Мешок слов» (BOW)
- 3. Модель TF*IDF
- 4. Word2Vec CBOW и Skip-gram

Векторное представление слов

Векторное представление слов (англ. word embedding) — общее название для различных подходов к моделированию языка, направленных на сопоставление словам из некоторого словаря векторов небольшой размерности.

Как представлять текст в компьютере?

Текст – набор слов. Как представлять слова?

Мешок слов (Bag of Words, BoW)

Мешок слов (англ. bag-of-words)— это упрощенное представление текста

Текст (одно предложение или весь документ) представляется в виде мешка (мультимножества) его слов без какого-либо учета семантики, синтаксиса и порядка слов, но с сохранением информации об их количестве

Мешок слов (Bag of Words, BoW)

при правильной предобработке текста (в первую очередь удалении стоп-слов, которые и будут наиболее частотными) этот метод показывает неплохие результаты.

BOW с помощью класса Counter модуля Collection

```
# из модуля collections импортируем класс Counter
from collections import Counter

# применяем класс Counter к словам после лемматизации
# на выходе нам возвращается словарь { слово : его частота в тексте }

bow_counter = Counter(lemmatized)
# print(bow_counter)

# функция most_common() упорядочивает словарь по значению
# посмотрим на первые 10 наиболее частотных слов
print(bow_counter.most_common(10))
```

Мешок слов (Bag of Words, BoW)

Этот же метод можно реализовать с помощью класса CountVectorizer библиотеки

Scikit-learn

```
# импортируем класс CountVectorizer из библиотеки Scikit-learn
from sklearn.feature extraction.text import CountVectorizer
# создаём объект этого класса и
# указываем, что хотим перевести слова в нижний регистр, а также
# отфильтровать стоп-слова через stop words = {'english'}
vectorizer = CountVectorizer(analyzer = "word",
                             lowercase = True,
                             tokenizer = None,
                             preprocessor = None,
                             stop_words = {'english'},
                             max features = 5000)
# применяем этот объект к предложениям (ещё говорят документам)
bow_cv = vectorizer.fit_transform(sentences)
# на выходе получается матрица csr
print(type(bow cv))
# для этого можно использовать .toarray()
print(bow_cv.toarray())
```

One-Hot Encoding

Признаковое пространство в one-hot векторах имеет размерность, равную мощности словаря коллекции текстов. Для каждого слова в вектор-столбце "зарезервировано" единицей свое место.

Проще говоря: берем вектор, длина которого равна длине словаря, и на все места ставим нули, кроме того места, номер которого совпадает с номером слова в словаре.

Подходы к векторизации текста

- TF-IDF. Это статистическая мера, используемая для оценки важности слова в контексте документа, который является частью коллекции документов или корпуса. Представляет каждый документ как вектор, где координата соответствует частоте уникального слова из всего корпуса в этом документе, нормированной на обратную частоту этого слова во всем корпусе. Слова, которые редко встречаются в корпусе, но часто встречаются в одном документе, будут иметь большую важность.
- Word2Vec. Это нейронная сетевая модель для представления слов в векторном пространстве. Учитывает контекст слова в предложении, что позволяет ему улавливать семантические и синтаксические отношения между словами. Обучает векторы так, чтобы слова, встречающиеся в похожих контекстах, были ближе друг к другу в векторном пространстве. Это приводит к интересным свойствам: например, векторное отношение между "король" и "мужчина" может быть подобно векторному отношению между "королева" и "женщина".

Подходы к векторизации текста

- TF-IDF
- ✓ прост в понимании и имплементации
- √ хорошо работает для задач классификации документов и поиска документов
- Word2Vec
- √ улавливает семантические и синтаксические отношения между словами
- ✓ обучение требует значительно больше времени и вычислительных ресурсов

TF-IDF. TF (Term Frequency)

- 1. "Кот съел рыбу"
- 2. "Кот любит рыбу"
- 3. "Собака любит кота"

$$tf(this,d_1)=rac{ ext{частотность слова}}{ ext{всего слов}} \ \ tf(this,d_2)=rac{ ext{частотность слова}}{ ext{всего слов}}$$

	кот	съел	рыбу	любит	собака
1	1	1	1	0	0
2	1	0	1	1	0
3	1	0	0	1	1

TF-IDF. IDF (Inverse Document Frequency)

	кот	съел	рыбу	любит	собака
1	1	1	1	0	0
2	1	0	1	1	0
3	1	0	0	1	1

	IDF
кот	log(3 / 3) = 0
съел	log(3 / 1) = 1.098
рыбу	log(3 / 2) = 0.405
любит	log(3 / 2) = 0.405
собака	log(3 / 1) = 1.098

TF-IDF

- 1. "Кот съел рыбу"
- 2. "Кот любит рыбу"
- 3. "Собака любит кота"

$$tf-idf(this,d_1,D)$$
 = $tf-idf(this,d_2,D)$ =

T	F	•	II)F
_	_			<i></i>

	кот	съел	рыбу	любит	собака
1	0	1.098	0.405	0	0
2	0	0	0.405	0.405	0
3	0	0	0	0.405	1.098

TF-IDF

В итоге каждый документ представлен вектором TF-IDF значений его слов

Эти векторы можно использовать для сравнения документов между собой или для обучения моделей машинного обучения

	кот	съел	рыбу	любит	собака
1	0	1.098	0.405	0	0
2	0	0	0.405	0.405	0
3	0	0	0	0.405	1.098

TF-IDF с помощью библиотеки Scikit-learn

Способ 1. CountVectorizer + TfidfTransformer

- 1) ТF или частоту слов мы можем взять из расчета (BOW)
- 2) Теперь нужно рассчитать IDF

```
# импортируем TfidfTransformer (CountVectorizer уже импортирован)
from sklearn.feature_extraction.text import TfidfTransformer

# создадим объект класса TfidfTransformer
tfidf_trans = TfidfTransformer(smooth_idf = True, use_idf = True)

# и рассчитаем IDF слов
tfidf_trans.fit(bow_cv)

# поместим результат в датафрейм
df_idf = pd.DataFrame(tfidf_trans.idf_, index = tokens, columns = ["idf_weights"])
```

3) Остается TF x IDF

```
# рассчитаем TF-IDF (по сути умножим TF на IDF)
tf_idf_vector = tfidf_trans.transform(bow_cv)
tf_idf_vector
```

TF-IDF с помощью библиотеки Scikit-learn

Способ 2. Tfidfvectorizer

```
from sklearn.feature_extraction.text import TfidfVectorizer
 Задаем коллекцию документов
documents = [
    'Кот съел рыбу',
    'Кот любит рыбу',
    'Собака любит кота'
# Инициализируем TfidfVectorizer
vectorizer = TfidfVectorizer()
# Вычисляем TF-IDF для каждого документа в коллекции
tfidf_matrix = vectorizer.fit_transform(documents)
# Результат - это матрица TF-IDF, где строки соответствуют документам, а
столбцы – словам
print(tfidf_matrix.toarray())
print(vectorizer.get_feature_names_out())
```

Word2Vec

Двухслойная нейронная сеть, которая обучается представлять слова в векторном пространстве. Обучение происходит на "центральном слове" и "контекстном слове"

CBOW (Continuous Bag of Words)

Кроме двух слов перед целевым, можно учитывать ещё два слова после него. Рассматривает текст как мешок слов с контекстом

Skip-gram

Работает как скользящее окно (фактически создает n отдельных образцов в наборе данных обучения), пытается угадать соседние слова по текущему слову

Word2Vec

CBOW (Continuous Bag of Words)

обучается по паре (контекст, центральное слово) и пытается предсказать центральное слово, основываясь на его контексте.

Skip-gram

обучается по паре (центральное слово, контекст) и пытается предсказать контекст, основываясь на центральном слове.

Word2Vec

CBOW (Continuous Bag of Words)

Jay was hit by a _____ bus in...

Skip-gram Jay was hit by a red bus in...

input 1 input 2 input 3 input 4 output by a bus in red

Jay was hit by a red bus in...

red

а

by

bus

input	output
red	by
red	а
red	bus
red	in

Negative Sampling

Многие слова в текстах не встречаются вместе, поэтому модель выполняет много лишних вычислений

Подсчёт softmax — вычислительно дорогая операция

Negative Sampling позволяет максимизировать **вероятность** встречи нужного слова в контексте, который является для него типичным, и минимизировать – в редком/нетипичном контексте.

Negative Sampling

Vanilla Skip-Gram

W_output (old)			Learning R.		grad_W_out	put			W_output (r	iew)			
[-0.560	0.340	0.160	l —	0.05	×	0.064	0.071	-0.014	=	-0.563	0.336	0.161
١	-0.910	-0.440	1.560				0.098	0.015	0.063		-0.915	-0.441	1.557
١	-1.210	-0.130	-1.320				0.069	0.089	0.045		-1.213	-0.134	-1.322
١	1.670	-0.150	-1.030				0.014	0.085	0.079		1.669	-0.154	-1.034
١	1.720	-1.460	0.730	0.40			-0.021	0.067	0.071	0.40	1.721	-1.463	0.726
١	0.000	1.390	-0.120S4	048.git	hub.io		-0.098	-0.088	0.091	048.gith	ub. 0.005	1.394	-0.125
١	-0.060	1.520	-0.790				-0.072	-0.078	-0.089		-0.056	1.524	-0.786
١	0.800	1.850	-1.670				0.046	-0.079	-0.053		0.798	1.854	-1.667
١	-1.370	1.320	-0.480				-0.049	-0.087	0.025		-1.368	1.324	-0.481
١	0.670	1.990	-1.850				-0.060	0.092	0.042		0.673	1.985	-1.852
l	-1.520	-1.740	-1.860	ļ			0.074	0.050	0.070		-1.524	-1.743	-1.864
	(11X3)						(11X3)				(11X3)		

Negative Sampling

Реализация Word2Vec c Gensim


```
from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
# Исходные текстовые документы
documents = [
    'Кот съел рыбу',
    'Кот любит рыбу',
    'Собака любит кота'
# Предобработка и токенизация документов
tokenized_docs = [simple_preprocess(doc) for doc in documents]
# Создание и обучение модели Word2Vec
model = Word2Vec(sentences=tokenized_docs, vector_size=50, window=5,
min_count=1, workers=4)
# Сохранение модели
model.save("word2vec.model")
```

Реализация Word2Vec c Gensim


```
# Для получения вектора конкретного слова
vector = model.wv['кот']
print(vector)

# Для получения наиболее близких слов к данному
similar_words = model.wv.most_similar('кот', topn=5)
print(similar_words)
```


ДЕМОНСТРАЦИЯ

Пример работы с библиотеками для работы с текстом как векторным представлением

Полезные ссылки

įΘ

- 1. Обработка естественного языка. URL: https://www.dmitrymakarov.ru/intro/topic-identification-19/
- 2. Word2vec в картинках. URL: https://habr.com/ru/articles/446530/
- 3. Реализация Word2Vec с библиотекой Gensim на Python URL: https://tonais.ru/library/realizatsiya-word2vec-s-bibliotekoy-gensim-na-python
- 4. Google News и Лев Толстой: визуализация векторных представлений слов с помощью t-SNE. URL: https://habr.com/ru/companies/vk/articles/426113/
- 5. Репозиторий курса по анализу текстов и обработке естественного языка на ФИВТ МФТИ. URL: https://github.com/andybelov/nlp_mipt
- 6. Векторное представление слов. URL: https://neerc.ifmo.ru/wiki/index.php?title=Векторное_представление_слов
- 7. Нейросети для работы с последовательностями. URL: https://academy.yandex.ru/handbook/ml/article/nejroseti-dlya-raboty-s-posledovatelnostyami
- 8. Обзор четырёх популярных NLP-моделей. URL: https://proglib.io/p/obzor-chetyreh-populyarnyh-nlp-modeley-2020-04-21

Спасибо за внимание!

Контакты

- Корнеева Елена
- https://t.me/Allyonzy

