```
Ввод [5]: import numpy as np import pandas as pd import scipy.stats as st import matplotlib.pyplot as plt

from statsmodels.stats.weightstats import _zconfint_generic, _tconfint_generic from statsmodels.stats.proportion import proportion_confint

✓
```

Ввод [2]: data = pd.read_csv('data.csv')

Ввод [3]: data.head()

Out[3]:

	id	required_amt	installment_flg	monthly_income_amt	age	has_high_education_flg	approved_flg
0	1	23906.0	0	80000	37	0	0
1	2	13111.0	1	43000	22	0	0
2	3	43266.0	1	20000	34	0	0
3	4	68782.0	1	35000	24	0	0
4	5	19550 0	1	25000	42	1	0

- id идентификатор заявки на получение кредита на товар/услугу
- required_amt запрошенная сумма кредита
- installment_flg флаг промо продукта
- monthly_income_amt ежемесячный доход заявителя
- age возраст заявителя
- has_high_education_flg наличие высшего образования
- approved_flg одобрил ли банк заявку

Out[46]: []

Тогда

$$\log X \sim N(\mu, \sigma^2)$$

$$\frac{\log X - \mu}{S} \sim t_{n-1}$$

В таком случае предсказательный интервал примет вид

$$\mathbf{P}\left\{\exp\{\hat{\mu}-t_{n-1,1-\frac{\alpha}{2}}S\} < X < \exp\{\hat{\mu}+t_{n-1,1-\frac{\alpha}{2}}S\}\right\} \approx 1-\alpha$$

```
Ввод [67]: sample_req = data[ (data.required_amt < data.required_amt.quantile(0.99)) & (data.required_amt >
           sample_inc = data[ (data.monthly_income_amt < data.monthly_income_amt.quantile(0.99)) & (data.mo</pre>
Ввод [68]: log_req_pred_int= _zconfint_generic(np.log(sample_req).mean(),
                                      np.var(np.log(sample_req)),
                                       0.05,
                                       'two-sided'
           log_inc_pred_int= _zconfint_generic(np.log(sample_inc).mean(),
                                      np.var(np.log(sample_inc)),
                                       0.05,
                                       'two-sided'
                                  )
           print(f'required_amt 95% predictive interval: [{np.exp(log_req_pred_int[0]):,.2f}] - {np.exp(log_r
           print(f'monthly_income_amt 95% predictive interval: [{np.exp(log_inc_pred_int[0]):,.2f}] - {np.exp
           required amt 95% predictive interval: [10,947.75] - 76,428.13 ]
           monthly_income_amt 95% predictive interval: [25,161.05] - 62,566.92 ]
 Ввод [ ]:
```

Ввод []: