

Syllabus

TY B. Tech Electronics Engineering (Third Year: Semester V-VI)

From Academic Year 2022-23 (Revision-1)

Approved by FOET __/_/2021 and AC __/__/2021 TY B. Tech /ETRX/Revision 1.0

K J Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U06O521		The	Ardu	ino Pl	atfo	rm and	C programming	
	TH		P		TUT	Total		
Teaching Scheme (Hrs.)	3			0		0	3	
Credits Assigned		2		0		0	2	
	Marks							
Examination Scheme	CA		ESE	TXX		De O	Total	
Dammadon Scheme	ISE	IA	ESE	TW	O	P&O	Total	
	30	20					50	

Course prerequisites:

Elements of Electrical and Electronics Engineering (2UHC107)

Course Objectives:

This course aims at developing students' ability to build hands-on things without having special electronics skills such as soldering. The course focuses on one of the currently trending advanced Arduino boards. There are many embedded systems that can be developed using the Arduino microcontroller board and students taking this subject will be able to learn and use this kit and make the most out of it. At the end of course the student is expected to make a project using the Arduino board. This course will help students in developing their projects.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand hardware details of Arduino

CO2: Use embedded C programming with Arduino

CO3: Learn to interface the Arduino with peripheral devices

CO4: Understand the different communication protocols of Arduino

CO5: Skills to develop various projects using Arduino

Module No.	Unit No.	Details	Hrs.	CO
1	Introd	uction to Arduino	10	CO1
	1.1	Types of Arduino boards, Comparison of different Arduino boards.		
	1.2	Arduino Uno R3 processing board: Schematic details.		
	1.3	ATmega 328 Hardware: Features, Memory, Port system, Internal scheme.		
	1.4	ATmega 2560 Hardware: Feature, Memory, Port system.		
2	Progra	mming with Arduino	10	CO2
	2.1	C data types for Arduino		
	2.2	C program elements: Header and source files, preprocessor directives		
	2.3	C program elements: Libraries, Functions, data structures, modifiers, statements, loops, pointers		
3	Interfa	cing with Arduino	10	CO3
	3.1	Interfacing display, actuators, and sensors		
	3.2	Interfacing diagram		
	3.3	Code using libraries		
4	Commi	unication protocol using Arduino	10	CO4
	4.1	Wired communication (SPI, I2C, UART)		
	4.2	Wireless communication (ESP8266, Bluetooth)		
5	Applica	ations of Arduino	05	CO5
	5.1	Home security, smart home, etc. using Arduino		
	5.2	Robotic automation using Arduino e.g., robotic arm		
	5.3	Webservers using Arduino		
		Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of Publication
110.	1144110175		I diblibilet With	or r upincution

			country	
1.	Steven F. Barrett	Arduino Microcontroller Processing for Everyone!	Morgan & Claypool Publishers, USA	Third Edition, Year 2013
2.	Michael Margolis	Arduino cookbook	O'Reilly Media, USA	Second Edition, Year 2012
3.	Jack J Purdum	Beginning C for Arduino, Second Edition: Learn C Programming for the Arduino 2nd ed. Edition	Apress	2nd edition, Year 2015
4.	Jeremy Blum	Exploring Arduino: Tools and Techniques for Engineering Wizardry	Wiley	2nd edition, Year 2019
5.	Simon Monk	Programming Arduino: Getting Started with Sketches	McGraw-Hill Education	2nd edition, Year 2016

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116U06O522		3D Printing Technology							
	TH		P		TUT	Total			
Teaching Scheme(Hrs.)	3		0		0	3			
Credits Assigned	2		2			0		0	2
	Marks								
Examination Scheme	C	CA		TW		P&O	Total		
Zammuon benefit	ISE	IA	ESE	1 77	O	P&O	Total		
	30	20					50		

Course prerequisites: Elements of Electrical and Electronics Engineering

Course Objectives: The objective of this course is to make students understand the basic principles involved in 3D printing. The students are expected to learn new trends in the emerging technology of 3D printing such as SLA, prusa, RepRap technology and additive manufacturing. Another objective is to make students learning 3D printing technology software and optimization of printing.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand the basics of 3D printing

CO2: Implement 3D printer hardware

CO3: Decide on the components required for 3D printer to work

CO4: Design 3D object and configure it using slicer

CO5: Know what are the features available with Commercial 3D printers

Module No.	Unit No.	Details	Hrs.	СО		
1	Introd	uction to 3D printing	10	CO1		
	1.1	Types of 3D printers, Comparison of different 3D printers				
	1.2	Fused deposition modeling (FDM), Stereolithography (SLA)				
	1.3	Digital Light Processing (DLP), Selective Laser Sintering (SLS)				
	1.4	Selective laser melting (SLM), Laminated object manufacturing (LOM), Digital Beam Melting (EBM)				
2	3D pri	nter parts	10	CO2		
	2.1	Extruder, Printer bed, Hot-end				
	2.2	3D Printing Materials: PLA, ABS, PVA, Flexible				
	2.3	Printer assembly, Effects of different printer temperatures, Effects of different nozzles, Effects of different extrusion rates				
3	3 Electronics in 3D printers		10	CO3		
	3.1	Driver boards, Arduino Mega, Power supply				
	3.2	Stepper motors and drivers, Heat bed and Sensors used with 3D printers				
4	3D Pri	nter software	10	CO4		
	4.1	Slicing software: Cura, Repetier, Slic3r, MakerBot Print				
	4.2	3D design software: AutoCAD, Solidworks, ThinkerCAD, FreeCAD, SketchUp				
	4.3	Basic G-code programming				
5	Comm	ercial 3D printers	05	CO5		
	5.1 Replicator, Ultimaker 3d printers and their types					
	5.2	Prusa i3 and other open-source RepRap printers, Anet Printers, Creality Printers, Delta Printer				
	5.3	Other 3D printers: Da Vinci, Flash forge etc.				
		Total	45			

Sr.	Name/s of Author/s	Title of Book	Name of Publisher	Edition and Year	
-----	--------------------	---------------	-------------------	------------------	--

No.			with country	of Publication
1.	Richard Horne, Kalani Kirk Hausman	3D Printing For Dummies	John Wiley & Sons, USA	1- Edition, 2017
2.	Anna Kaziunas France	Make: 3D Printing: The Essential Guide to 3D Printers	Maker Media, USA	1- Edition, 2013
3.	Richard Salinas	3D Printing with RepRap Cookbook	Packt Publishing, UK	1- Edition, 2014
4	Floyd Kelly	3D Printing: Build Your Own 3D Printer and Print Your Own 3D Objects	Que Publishing, UK	1- Edition, 2014
5	John M. Jordan	3D Printing	MIT press, USA	1 Edition, 2019

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title								
116U06O523		Linear Algebra for Machine Learning								
		TH	P TUT		ГUТ	Total				
Teaching Scheme(Hrs.)		03						03		
Credits Assigned		02						02		
		Marks								
Examination Scheme	C	CA		TW	o	О	P P&O	Total		
Examination Scheme	ISE IA	ESE	1 77	r		1 Otal				
	30	20						50		

Course prerequisites:

Mathematics

Course Objectives: This course aims to provide the perfect mathematical background required by an engineer to understand and develop basic and advanced level of machine learning algorithms. Linear algebra is mathematics of data.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Understand vectors and software needed for implementation.

CO2: Perform matrix operations in linear algebra.

CO3: Understand matrix factorization.

CO4: Understand statistics and linear regression

CO5: Apply mathematical tools for solving real life problems.

Module	Unit	Details	Hrs.	CO		
No.	No.					
1	Found	ation for the course				
	1.1	Introduction, Spatial Vectors, Vector Spaces				
	1.2	Linear mapping, Inner product spaces	08	CO1		
	1.3	Introduction to software tool and setting up the environment for implementation	- 08	COI		
2	Algebr	ra of Matrices				
	2.1 Vector Norms, Matrix arithmetic and operations, Sparse matrix in machine learning, System of linear equations, Gauss Elimination, Gauss Seidel, Eigen values and eigen vectors					
	2.2	Software implementation				
3	Factor	ization				
	3.1	Matrix Decomposition: Gram-Schmidt Orthogonalization, LU, QR, Cholesky, Eigen decomposition	10	GOA		
	3.2	Singular Value Decompostion	12	CO3		
	3.3	Software implementation				
4	Statist	ics				
	4.1	Multivariate statistics: Mean, Variance, Covariance, correlation				
	4.2	Principal Component Analysis, Linear regression and its variants	10	CO4		
	4.3	Software implementation	1			

5	Applic	ation of Linear Algebra in Machine Learning		
	5.1	Case studies based on images, linear regression, PCA, SVD and Deep learning	07	CO5
		Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
140.	Author/8		country	Publication
1.	Jason	Basics of Linear Algebra for	Machine	1st Edition,
	Brownlee	Machine Learning: Discover the	Learning	2018
		Mathematical Language of Data	Mastery	
		in Python		
2.	Seymour	Schaum's Outlines: Linear	Mc Gram Hill	3rd Edition, 2001
	Lipschutz	Algebra	Education	
3.	Marc Peter	Mathematics for Machine	Cambridge	1st Edition, 2019
	Deisenroth	Learning	University	
	A. Aldo	-	Press	
	Faisal			
	Cheng Soon			
	Ong			

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U06O524	Sensor Technology and Applications in Automation				n Automation			
	ТН			P		TUT	Total	
Teaching Scheme(Hrs.)	3			0		0	3	
Credits Assigned	2			0		0	2	
	Marks							
	CA		ECE	TW	0	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		rau	Total	
	30	20					50	

Course prerequisites:

Nil

Course Objectives:

The objective of the course is to impart knowledge of different sensors used in an automated system.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand sensors used in different environments

CO2: Study sensors for distance measurement

CO3: Study sensors for chemical and agriculture applications

CO4: Study sensors for biological applications

CO5: Interfacing sensors for specific applications

Module No.	Unit No.	Details	Hrs.	СО
1	Intro	10	CO1	
	1.1	Types of Environments : Industrial, Agricultural, Space, Under-Water/Sea, Nuclear, Ambient-Environment		
	1.2	Types of Sensors : 0D, 1D, 2D, 3D, 4D Sensors , Active - Passive, Contact- Non-Contact, Wearable- Non-Wearable, Digital-Analog, Angular- Linear, Encoded- Incremental Sensors		
	1.3	Sensor Specification : Static, Dynamic, Characteristics, Types of Sealing, Packaging		
2	Electr	rical / Electro-Mechanical Sensors and Transducers	12	CO2
	2.1	Displacement / Level Sensors : Contact - non-contact type level sensors, capacitive level sensors, inductive level sensors, ultrasonic range sensors, radiation based level sensors, digital displacement sensors (X,Y,Z Axis), variable resistance sensors (angular, linear displacement)		
	2.2	Optical / Light Sensor: Optical displacement sensor, zone distance sensor, color sensors		
	2.3	Flow Sensors / Transducers: Hot-wire anemometers, differential-pressure low-meter, Doppler effect flow-meters, electro-magnetic flow-meter, transit-time delay flow-meter, specifications of flowmeters and interfacing		
	2.4	Proximity / Limit Sensors : Inductive and capacitive proximity sensors, photoelectric proximity switches, ultrasonic proximity switches, mechanical Limit switches, specifications of proximity switches, interfacing of proximity sensors		
	2.5	Temperature Sensors : RTD, thermocouple, thermistor, Non-contact temperature sensors, infra-red sensors		
3	Envir	07	CO3	
	3.1	Gas sensors, wind direction- velocity sensors, smoke detection / sensing, fire - heat detections		
	3.2	Soil moisture sensors, soil-micronutrients sensing, soil temperature sensors, soil-pH sensing, humidity sensors		
4	Biological / Biomedical Sensors			CO4
	4.1	Body-Parameter Sensors: Respiration rate, heart-rate, body-temperature, blood-flow sensors, body-perspiration sensors		

	4.2	Other Parameter Sensors: Alcohol sensor, glucose sensors		
	4.3	System Introductions: ECG-measurement, EMG-measurement, EEG-measurement, FMRI, MRI, NMR, Dialysis		
5	_	rating Sensors and Processing Units for Industrial nations	08	CO5
	5.1	Encoders applications : encoder, types, selection, theory, wiring, applications, interfacing with controllers and PLC - HMI system, working on real models		
	5.2	Types of sensors in robots, external sensors (exterocepters), force/torque sensors, tactile sensors, proximity sensors, range sensors, machine vision sensors, velocity sensors, internal sensors (proprioceptors)		
	5.3	Sensors in home automation: Level sensor, movement sensor, temperature sensor, LDR (light dependent relay), gas and smoke detectors, parking sensors, door gate sensors, elevator sensors		
	5.5	Advanced Sensing Technology: Smart sensors, IoT based sensing, MEMS sensors		
		Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication	
1.	Seung Bok Choi, Prasad Yarlagadda, Mohammad Abdullah-Al-Wadud	Sensors, Mechatronics and applications	Trans Tech Publications Ltd	1 st edition 2013	
2.	Jacob Fraden	Handbook of Modern Sensors: Physics, Designs, and Applications	Springer, USA	5 th edition 2015	
3.	Randy Frank	Understanding Smart Sensors	Artech House Publications	2 nd edition 2000	
4.	Krzystof Iniewski	Smart Sensors for Industrial Applications	CRC Press, UK	1 st edition 2013	