Actions d'un champ magnétique

#chapitre29 #magnetique

Forces de Laplace

$$oxed{dec{F_L} = Iec{dl} \wedge ec{B}}$$

- Perpendiculaire à la direction du courante et du champ \vec{B}
- Proportionnelle à la longueur du conducteur et à l'intensité du champ.

Rails de Laplace

Tige rectiligne conductrice libre de glisser le long de deux rails conducteurs.

• Résultant des Forces de Laplace : $R_L = IBL ec{e_x}$

Circuit fermé:

Resultant nulle

Puissance:

$$d\mathcal{P}(dec{F_L}) = dec{F_L} \cdot ec{v}$$

Non nulle et donc cette force peut fournir un travail.

Couple et puissance de $ec{F_L}$ pour une spire

• Couple : $ec{\Gamma} = I ec{S} \wedge ec{B} = ec{\mu} \wedge ec{B}$

• Puissance : $\mathcal{P}_L = -BIS\dot{ heta}\sin(heta)$

Actions d'un champ magnétique uniforme sur un aimant

Les forces de Laplace ne permettent pas de décrire les forces subies par un aimant permanent. Mais $\vec{\Gamma}=\vec{\mu}\wedge\vec{B}$ reste valable.

Positions d'équilibre de l'aimant : $ec{\Gamma} = ec{0}$

• Parallèle ($\vec{\mu}$ et \vec{B} même sens) : $\theta=0$ stable

• Antiparallèle : $\theta = \pi$ instable

Effet moteur

On peut générer un champ magnétique tourant en un point à l'aide de deux solénoïdes d'axes perpendiculaires.

$$ullet \ ec{B} = I_0 K egin{pmatrix} \cos(\omega_0 t) \ \sin(\omega_0 t) \ 0 \end{pmatrix}$$

Lois de l'induction

Comment un champ magnétique peut provoquer l'apparition d'un courante dans un circuit fermé.

Induit

portion de circuit dans laquelle un courante électrique est généré.

Inducteur

Système créant le champ magnétique à l'origine du phénomène d'induction

Induction statique ou motionnelle

Statique

Induit supposé rigide et fixe. \vec{B} varie avec le temps due à un mouvement de l'inducteur ou variation de la courante

Motionnelle

Champ stationnaire. Variation de \vec{B} due au mouvement ou déformation de l'induit

Flux magnétique

C'est une grandeur physique mesurable caractérisant l'intensité et la répartition spatiale du champ magnétique.

$$ullet \left[\phi_s = \int \int_{M \in S} ec{B}(M) ec{dS}
ight]$$
 en Wb weber

Pour une spire:

$$\phi_s = \vec{B} \cdot \vec{S} = BS\cos(\theta)$$

- Le flux est d'autant plus grand que le vecteur "rentre" dans la surface. nul si le vecteur est dans le plan de la surface
- Flux positive si le vecteur "rentre" (selon la main droite) et négative sinon

Pour un solénoïde

 $\phi_{tot} = \mu \phi_i$ avec μ le moment magnétique.

Loi de Faraday

Relie le courant induit dans un circuit fermé à la variation de flux magnétique via la notion de force électromotrice (f.é.m.) induit.

$$ullet \left[e(t) = -rac{d\Phi}{dt}
ight]$$

Loi de Lenz

Les effets des phénomènes d'induction s'opposent aux causes qui leur ont donnée naissance.