Genome Sequencing

Michael Schatz

Sept 4, 2019

Lecture 2: Computational Biomedical Research

Welcome!

The goal of this course is to prepare undergraduates to understand and perform state-of-the-art biomedical research. This will be accomplished through three main components:

- I. <u>Lectures</u> on cross cutting techniques for biomedical research focusing on data visualization, statistical inference, and scientific computing
- 2. Research presentations from distinguished faculty on their active research projects
- A major research project with in-class research labs;
 Satisfies the CS TEAM requirement

Course Webpage:

https://github.com/schatzlab/biomedicalresearch2019

Course Discussions: http://piazza.com

Class Hours: Mon + Wed @ 3p - 3:50p Hodson 311

Office Hours: Monday @ 4-5p and by appointment

Please try Piazza first!

Course Webpage

Assignment I: Chromosome Structures Due Wed Sept II @ II:59pm

GradeScope

Piazza

Sequencing Capacity

DNA SEQUENCING SOARS Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show three possible future growth curves. Projection Recorded growth Cumulative number of human genomes Double every 7 months (historical growth rate) · Double every 12 months (Illumina estimate) Double every 18 months (Moore's law) ······ Current amount ExAC TCGA Human Genome Project 1st personal genome 2010 2001 2005 2015 2020 2025

Big Data: Astronomical or Genomical?Stephens, Z, et al. (2015) PLOS Biology DOI: 10.1371/journal.pbio.1002195

De novo Genetics of Autism

- In 593 family quads so far, we see significant enrichment in de novo *likely gene killers* in the autistic kids
 - Overall rate basically 1:1
 - 2:1 enrichment in nonsense mutations
 - 2:1 enrichment in frameshift indels
 - 4:1 enrichment in splice-site mutations
 - Most de novo originate in the paternal line in an age-dependent manner (56:18 of the mutations that we could determine)
- Observe strong overlap with the 842 genes known to be associated with fragile X protein FMPR
 - Related to neuron development and synaptic plasticity
 - Also strong overlap with chromatin remodelers

Second Generation Sequencing

Illumina NovaSeq 6000 Sequencing by Synthesis

>3Tbp / day

1. Attach

2. Amplify

3. Image

Metzker (2010) Nature Reviews Genetics 11:31-46 https://www.youtube.com/watch?v=fCd6B5HRaZ8

Illumina Quality

QV	p _{error}
40	1/10000
30	1/1000
20	1/100
10	1/10


```
LLEULLBELLEULLBELLEULLBELLEULLBELLEULLBELLEULL.
 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopgrstuvwxyz{|}-
33
                                     73
                                                                 104
                                                                                     126
           Phred+33, raw reads typically (0, 40)
S - Sanger
            Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0-unused, 1-unused, 2-Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Assembly, Mapping & Genotyping

Week 2/3/4

- Distinguishing SNPs from sequencing error typically a likelihood test of the coverage
 - Hardest to distinguish between errors and heterozygous SNP.
 - Coverage is the most important factor!
 - Target at least 10x, 30x more reliable

Fast gapped-read alignment with Bowtie 2 Langmead & Salzberg. (2012) *Nature Methods*. 9:357-359.

SIMD dynamic programming

SAM alignments

CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA

MD:Z:36 YT:Z:UU

AS:i:0 XS:i:-2 XN:i:0 XM:i:0 XO:i:0 XG:i:0

Extension candidates

SA:684, chr12:1955

SA:211: chr4:762

SA:213: chr12:1935

SA:652: chr12:1945

SA:624, chr2:462

The Sequence Alignment/Map format and SAMtools Li H et al. (2009) *Bioinformatics*. 25:16 2078-9

Typical sequencing coverage

Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs \$1

If the genome is 10 Mbp, should we sequence 100k 100bp reads?

Ix sequencing

Histogram of balls in each bin

2x sequencing

Histogram of balls in each bin

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key properties:

- The standard deviation is the square root of the mean.
- For mean > 5, well approximated by a normal distribution

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Normal Approximation

Can estimate Poisson distribution as a normal distribution when $\lambda > 10$

Pop Quiz!

I want to sequence a 10Mbp genome to 24x coverage. How many 120bp reads do I need?

I need I0Mbp x 24x = 240Mbp of data 240Mbp / I20bp / read = 2M reads

Next Steps

- I. Reflect on the magic and power of DNA ©
- 2. Check out the course webpage
- 3. Register on Piazza & GradeScope
- 4. Work on Assignment I
 - I. Set up Dropbox for yourself!
 - 2. Get comfortable on the command line