数学分析复习讲座

王尔卓

强基数学 2101

2024年7月6日

目录

1 幂级数

② 含参变量积分与广义积分

③ 稠密与分离

栈的定义

栈是计算机科学中的一种抽象数据类型,只允许在有序的线性数据 集合的一端(称为堆栈顶端,top)进行插入数据(PUSH)和删除数据 (POP)的运算。

• 一个栈的进栈序列为 1,2,3,···,n,请问有多少个不同的出栈序列?

- 一个栈的进栈序列为 1,2,3,…,n,请问有多少个不同的出栈序列?
- 我们记 C_n 为进栈序列 $1, 2, 3, \dots, n$ 的出栈个数, 显然 $C_0 = 1, C_1 = 1$

- 一个栈的进栈序列为 1,2,3,···, n,请问有多少个不同的出栈序列?
- 我们记 C_n 为进栈序列 $1, 2, 3, \dots, n$ 的出栈个数, 显然 $C_0 = 1, C_1 = 1$
- 注意到有递推公式:

$$\begin{cases}
C_0 = 1 \\
C_n = C_0 \cdot C_{n-1} + C_1 \cdot C_{n-2} + C_2 \cdot C_{n-3} + \dots + C_{n-1} \cdot C_0 \\
= \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i} , \quad n \ge 1
\end{cases}$$

C_n 的通项公式

在数学分析中我们知道如下幂级数

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \quad \forall x \in (-1,1)$$

其中 $\alpha \in \mathbb{R} - \mathbb{Z}_{\geq 0}$. 现在我们用这个幂级数的性质给出 C_n 的通项公式.

设 Cn 的生成函数为

$$G(x) = \sum_{n=0}^{\infty} C_n x^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n + \dots (仅为形式幂级数)$$

$$G^2(x) = (C_0)^2 + (C_0 C_1 + C_1 C_0) x + \left(C_0 C_2 + (C_1)^2 + C_2 C_0\right) x^2 + \dots + (C_0 C_n + C_1 C_{n-1} + \dots + C_n C_0) x^n + \dots$$

$$= 1 + C_2 x + C_3 x^2 + \dots + C_{n+1} x^n + \dots$$

所以 $xG^2(x) - G(x) + 1 = 0$ 解此二元一次方程并由 G(0) = 1 得到 $G(x) = \frac{1}{2x} - \frac{1}{2x}\sqrt{1-4x}$ 利用 $(1+x)^a = 1 + \sum_{n=1}^{\infty} \frac{a(a-1)...(a-n+1)}{n!} x^n$ 对 G(x) 进行泰勒展开可得

$$G(x) = \frac{1}{2x} \sum_{n=1}^{\infty} \frac{(-1)^n (2n-3)!!}{2^n n!} (-4x)^n$$

$$= \frac{1}{2x} \sum_{n=1}^{\infty} \frac{(-1)^n}{2^n n!} \frac{(2n-2)!}{2 \cdot 4 \cdot \dots \cdot (2n-2)} (-4x)^n$$

$$= \sum_{n=1}^{\infty} \frac{1}{n} \frac{(2n-2)!}{(n-1)!(n-1)!} x^{n-1} = \sum_{n=1}^{\infty} \frac{1}{n} C_{2n-2}^{n-1} x^{n-1}$$

收敛范围

对于幂级数

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \quad \forall x \in (-1,1)$$

对于区间端点的收敛情况, 我们有如下结论:

- 当 $\alpha \leq -1$ 时, 收敛域为 (-1,1);
- 当 $-1 < \alpha < 0$ 时, 收敛域为 (-1,1];
- 当 $\alpha > 0$ 时, 收敛域为 [-1, 1].

含参变量积分

考虑一个含参变量积分

$$I(\alpha) = \int_{-\infty}^{+\infty} e^{-\pi x^2} \cos 2\pi \alpha x \, dx$$

我们把这个积分改写成

$$I(\alpha) = \int_{-\infty}^{+\infty} e^{-\pi x^2} e^{-2\pi i x \alpha} dx$$

由分部积分

$$\frac{d}{d\alpha}I(\alpha) = \int_{\mathbb{R}} 2\pi i x e^{-\pi x^2} e^{-2\pi i x \alpha} dx$$
$$= 2\pi \alpha I(\alpha)$$

考虑 $g(\alpha)=e^{-\pi\alpha^2}I(\alpha)$, 由上式求导得到 $g(\alpha)$ 为常数, 且由 g(0)=1, 我们有

$$I(\alpha) = e^{-\pi \alpha^2}$$

事实上,对一个 $\mathbb R$ 上绝对可积的函数 f(x),我们定义它的傅里叶变换为

$$\mathcal{F} f(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi \cdot x} dx$$

上面的关于含参变量积分的计算告诉我们 $e^{-\pi x^2}$ 的傅里叶变换等于自身! 如果 $f(x): \mathbb{R} \to \mathbb{C}$ 是绝对可积函数,我们定义

$$f^{\vee}(x) = \widehat{f}(-x) = \int_{\mathbb{R}} f(\xi) e^{2\pi i \xi \cdot x} d\xi$$

为傅里叶逆变换.

更多可以尝试的傅里叶变换以及逆变换

- $f(x) = e^{-2\pi|\xi|}$,求傅里叶逆变换 (Laplace 分布的密度函数)
- $f(\xi) = \max(0, 1 |\xi|)$, 求傅里叶逆变换
- $f(x) = e^{-2\pi x} x^{a-1}$ for x > 0 and f(x) = 0 for $x \le 0$, 求 f 的傅里叶变换.(卡方分布的密度函数)

$$\phi(x) = \int_{-1}^{0} (1+\xi)e^{2\pi i\xi \cdot x} d\xi + \int_{0}^{1} (1-\xi)e^{2\pi i\xi \cdot x} d\xi$$
$$= \frac{e^{2\pi ix} + e^{-2\pi ix} - 2}{(2\pi ix)^{2}} = \left(\frac{\sin \pi x}{\pi x}\right)^{2}$$

- . Given a > 0, let $f(x) = e^{-2\pi x}x^{a-1}$ for x > 0 and f(x) = 0 for $x \le 0$.
 - **a.** $f \in L^1$, and $f \in L^2$ if $a > \frac{1}{2}$.
 - **b.** $\widehat{f}(\xi) = \Gamma(a)[(2\pi)(1+i\xi)]^{-a}$. (Here we are using the branch of z^a in the right half plane that is positive when z is positive. Cauchy's theorem may be used to justify the complex substitution $y = (1+i\xi)x$ in the integral defining \widehat{f} .)
 - **c.** If $a, b > \frac{1}{2}$ then

$$\int_{-\infty}^{\infty} (1 - ix)^{-a} (1 + ix)^{-b} dx = \frac{2^{2-a-b} \pi \Gamma(a+b-1)}{\Gamma(a)\Gamma(b)}.$$

Gamma 函数

设 $x \notin \mathbb{Z}_{\leq 0}$, 证明

$$\frac{1}{\Gamma(\mathbf{x})} = \mathbf{x} \mathbf{e}^{\gamma \mathbf{x}} \prod_{n=1}^{\infty} \left(1 + \frac{\mathbf{x}}{\mathbf{n}} \right) \mathbf{e}^{-\frac{\mathbf{x}}{\mathbf{n}}},$$

其中 γ 是 Euler 常数。

Theorem (Hadamard's factorization theorem)

Suppose f is entire and has growth order ρ_0 . Let k be the integer so that $k \leq \rho_0 < k+1$. If a_1, a_2, \ldots denote the (non-zero) zeros of f, then

$$f(z) = e^{P(z)} z^m \prod_{n=1}^{\infty} E_k (z/a_n),$$

where P is a polynomial of degree $\leq k$, and m is the order of the zero of f at z=0.

稠密子集与连续函数

稠密子集与连续函数

● 回顾稠密的定义: $E \in \mathbb{R}^n$ 的一个子集, 如果 E 的闭包为 \mathbb{R}^n 则称 E 是一个稠密子集.

稠密子集与连续函数

- 回顾稠密的定义: $E \in \mathbb{R}^n$ 的一个子集, 如果 E 的闭包为 \mathbb{R}^n 则称 E 是一个稠密子集.
- 习题: 设 f 与 g 是从 \mathbb{R}^n 到 \mathbb{R}^m 的两个连续映射, E 是 \mathbb{R}^n 的一个稠 密子集,并且对任意的 $\mathbf{x} \in E$ 有 $f(\mathbf{x}) = g(\mathbf{x})$,证明 f = g.

我们考虑这个习题的逆命题什么时候成立,也就是说,在何种条件下,给定一个稠密子集 E 上的连续函数,我们可以将这个连续函数延拓为 \mathbb{R}^n 上的连续函数.

我们考虑这个习题的逆命题什么时候成立,也就是说,在何种条件下,给定一个稠密子集 E 上的连续函数,我们可以将这个连续函数延拓为 \mathbb{R}^n 上的连续函数.

我们考虑这个习题的逆命题什么时候成立,也就是说,在何种条件下,给定一个稠密子集 E 上的连续函数,我们可以将这个连续函数延拓为 \mathbb{R}^n 上的连续函数

• 我们给出一个该命题成立的充分条件,如果 $f: E \to \mathbb{R}^m$ 一致连续,则我们可以将 f 唯一延拓至 \mathbb{R}^n

我们考虑这个习题的逆命题什么时候成立,也就是说,在何种条件下,给定一个稠密子集 E 上的连续函数,我们可以将这个连续函数延拓为 \mathbb{R}^n 上的连续函数

- 我们给出一个该命题成立的充分条件,如果 $f: E \to \mathbb{R}^m$ 一致连续,则我们可以将 f 唯一延拓至 \mathbb{R}^n
- Step 1: 对 $x \in \mathbb{R}^n$, 取一列 $x_n \in E$ 使得 $\lim_{n \to \infty} x_n = x$, 定义 $f(x) = \lim_{n \to \infty} f(x_n)$.
- Step 2: 证明这个定义 well defined.
- Step 3: 证明 f 是连续的.

度量空间上的版本:

Theorem (extension theorem)

Suppose Y and Z are metric spaces, and Z is complete. Also suppose X is a dense subset of Y, and $f\colon X\to Z$ is uniformly continuous. Then f has a uniquely determined extension $\bar f\colon Y\to Z$ given by

$$\bar{f}(y) = \lim_{\substack{x \to y \\ x \in X}} f(x) \quad \text{ for } y \in Y$$

and \bar{f} is also uniformly continuous.

• 关于分离性的一道习题: 设 $A, B \in \mathbb{R}^n$ 中的两个闭集且 $A \cap B = \emptyset$, 证明存在开集 G_1 和 G_2 满足 $A \subseteq G_1$, $B \subseteq G_2$ 且 $G_1 \cap G_2 = \emptyset$.

- 关于分离性的一道习题: 设 $A, B \in \mathbb{R}^n$ 中的两个闭集且 $A \cap B = \emptyset$, 证明存在开集 G_1 和 G_2 满足 $A \subseteq G_1$, $B \subseteq G_2$ 且 $G_1 \cap G_2 = \emptyset$.
- Proof:

Lemma

对 \mathbb{R}^n 的任意两个非空子集 A 和 B, 记

$$d(A,B) = \inf_{\mathbf{x} \in A, \mathbf{y} \in B} |\mathbf{x} - \mathbf{y}|.$$

若 A 是紧集, B 是闭集则 $A \cap B = \emptyset$, 证明 d(A, B) > 0 。

设 A, B 是不相交闭集, 不妨设它们都不是 $\emptyset. \forall x \in X$, 则 d(x, A) + d(x, B) > 0. 规定 X 上连续函数 f 为

$$f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}.$$

则当 $x \in A$ 时, f(x) = 0; $x \in B$ 时, f(x) = 1. 任取实数 $t \in (0,1)$, 则 $f^{-1}((-\infty,t))$ 和 $f^{-1}((t,+\infty))$ 是 A 和 B 的不相交邻域.

19/20

Theorem (Usysohn's lemma)

Let X be a normal space; let A and B be disjoint closed subsets of X. Let [a,b] be a closed interval in the real line. Then there exists a continuous map

$$f: X \longrightarrow [a, b]$$

such that f(x) = a for every x in A, and f(x) = b for every x in B.