1.	A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture).	1 / 1 point
	False	
	○ True	
	✓ Correct Correct! A Transformer Network can ingest entire sentences all at the same time.	
2.	Transformer Network methodology is taken from: (Check all that apply)	1 / 1 point
	Convolutional Neural Network style of processing.	
	✓ Correct	
	Attention mechanism.	
	✓ Correct	
	None of these.	
	Convolutional Neural Network style of architecture.	
3.		1 / 1 point

The concept of *Self-Attention* is that:

- Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.

✓ Correct

4. Which of the following correctly represents *Attention?*

1 / 1 point

 $igotimes Attention(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$

- $igcap Attention(Q,K,V) = min(rac{QV^T}{\sqrt{d_k}})K$
- $igcap Attention(Q,K,V) = softmax(rac{QV^T}{\sqrt{dk}})K$
- $igcap Attention(Q,K,V) = min(rac{QK^T}{\sqrt{dk}})V$
 - ✓ Correct
- 5. Are the following statements true regarding Query (Q), Key (K) and Value (V)?

1 / 1 point

Q = interesting questions about the words in a sentence

K = specific representations of words given a Q

V = qualities of words given a Q

- False
- True

✓ Correct

Correct! Q = interesting questions about the words in a sentence, K = qualities of words given a Q, V = specific representations of words given a Q

6. Attention($W_i^Q Q, W_i^K K, W_i^V V$)

1 / 1 point

 $\it i$ here represents the computed attention weight matrix associated with the $\it ith$ "word" in a sentence.

- False
- True
 - ✓ Correct

Correct! i here represents the computed attention weight matrix associated with the ith "head" (sequence).

7. Following is the architecture within a Transformer Network. *(without displaying positional encoding and output layers(s))*

What information does the Decoder take from the Encoder for its second block of Multi-Head Attention? (Marked X, pointed by the independent arrow)

(Check all that apply)

- □ Q
- \(\)

8. Following is the architecture within a Transformer Network. *(without displaying positional encoding and output layers(s))*

What is the output layer(s) of the Decoder? (Marked Y, pointed by the independent arrow)

- O Softmax layer followed by a linear layer.
- Linear layer followed by a softmax layer.
- Linear layer
- Softmax layer

Correct

9.	Why is positional encoding important in the translation process? (Check all that apply)	1 / 1 point
	Position and word order are essential in sentence construction of any language.	
	✓ Correct	
	☐ It helps to locate every word within a sentence.	
	☐ It is used in CNN and works well there.	
	✓ Providing extra information to our model.	
	✓ Correct	
10.	Which of these is a good criteria for a good positionial encoding algorithm?	1 / 1 point
	It should output a unique encoding for each time-step (word's position in a sentence).	
	✓ Correct	
	Distance between any two time-steps should be consistent for all sentence lengths.	
	✓ Correct	

The algorithm should be able to generalize to longer sentences.

None of the these.