Résumé de l'analyse

Top group, Lyon

30août2012

Table des matières

1	Dat	asets	2
	1.1	MC	2
	1.2	Data	2
2	Frit		2
	2.1	$m = 750 \text{ GeV} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	2
	2.2	m = 1000 GeV	2
	2.3	m = 1250 GeV	3
	2.4	m = 1500 GeV	3
	2.5	Efficacités	3
		2.5.1 Efficacités de sélection	3
		2.5.2 Efficacité totales	3
3	σ_{ref}		4
	3.1	$m = 750 \text{ GeV} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	4
	3.2	m = 1000 GeV	4
	3.3	m = 1250 GeV	4
	3.4	m = 1500 GeV	5
	3.5	Sections efficaces	5
4	Erre	eurs systématiques	5

	4.1	JEC	5
	4.2	Signal	5
	4.3	Background	7
5	Like	elihood scan	8
	5.1	$m = 750 \text{ GeV} \dots \dots \dots \dots \dots \dots \dots \dots$	8
	5.2	m = 1000 GeV	9
	5.3	m = 1250 GeV	10
	5.4	m = 1500 GeV	11
	5.5	Limites observées	11
6	Toy	$^{\circ}$ MC	11
	6.1	$m = 750 \text{ GeV} \dots \dots \dots \dots \dots \dots \dots \dots$	12
	6.2	m = 1000 GeV	13
	6.3	m = 1250 GeV	14
	6.4	m = 1500 GeV	15
	6.5	Limites attendues	16
7	Lim	aites	16

2 FRIT

1 Datasets

1.1 MC

-m = 500 GeV: @@m-500-entries@@ entrées.

-m = 750 GeV: @@m-750-entries@@ entrées.

-m = 1000 GeV: @@m-1000-entries@@ entrées.

-m = 1250 GeV: @@m-1250-entries@@ entrées.

-m = 1500 GeV: @@m-1500-entries@@ entrées.

1.2 Data

@@data-entries@@ entrées.

2 Frit

2.1 m = 750 GeV

2.2 m = 1000 GeV

4 2 FRIT

2.3 m = 1250 GeV

2.4 m = 1500 GeV

2.5 Efficacités

2.5.1 Efficacités de sélection

$m_{tar{t}}$	750 GeV	1000 GeV	1250 GeV	1500 GeV
$\epsilon(Z'), semi - mu \ (\%)$	2.75 ± 0.04	3.73 ± 0.07	3.58 ± 0.09	2.94 ± 0.05
$\epsilon(Z'), semi-e~(\%)$	2.01 ± 0.03	2.90 ± 0.06	2.76 ± 0.08	2.35 ± 0.06

2.5.2 Efficacité totales

$m_{tar{t}}$	750 GeV	$1000~{\rm GeV}$	1250 GeV	$1500~{ m GeV}$
$\epsilon(Z')$, semi-mu	2.11	2.76	2.55	2.08
$\epsilon(Z')$, semi-e	1.74	2.52	2.39	2.04

5 3 σ_{REF}

3 σ_{ref}

3.1m = 750 GeV

Nominal

Nominal, échelle log

- $-\chi^2 = 0.97254472971$
- Statut du fit : OK

$m = 1000 \; {\rm GeV}$ 3.2

Nominal

Nominal, échelle log

- $\begin{array}{l} \ \chi^2 = 0.988131582737 \\ \ {\rm Statut} \ {\rm du \ fit} : {\rm OK} \end{array}$

3.3 $m = 1250 \,\, {\rm GeV}$

Nominal

Nominal, échelle log

- $-\chi^2 = 1.0089353323$
- Statut du fit : OK

m = 1500 GeV3.4

- $\chi^2 = 0.969866275787$ Statut du fit : OK

3.5 Sections efficaces

$m_{tar{t}}$	750 GeV	1000 GeV	1250 GeV	1500 GeV
σ (pb)	-4.58870211453	0.760380954765	0.271851266856	-0.616997357645

Erreurs systématiques 4

JEC 4.1

$m_{tar{t}}$	750 GeV		$1000 \; \mathrm{GeV}$		1250 GeV		1500 GeV	
	JEC up	JEC down	JEC up	JEC down	JEC up	JEC down	JEC up	JEC down
χ^2	1.0373	0.9478	1.0516	0.953	1.0637	0.971	1.0422	0.9481
Fit	OK	OK	OK	OK	OK	OK	OK	OK
σ (pb)	-4.1846	-3.8448	0.5194	0.9009	0.3104	-0.033	-0.4854	-0.4717
σ_{syst} (pb)	0.1251		0.	2508	0.	6316	0.	2244

Signal 4.2

Paramètre	Variation	χ^2	σ (pb)	Statut du fit		
m = 750 GeV						
muon_mean	up	0.9729	-4.5746	OK		
muon_mean	down	0.9722	-4.6093	OK		
muon_sigma	up	0.9730	-4.6346	OK		
IIIuon_sigina	down	0.9724	-4.5368	OK		
electron_sigma	up	0.9725	-4.6285	OK		
electron_sigma	down	0.9725	-4.5536	OK		
	_	La suite	page suivante			

Paramètre	Variation	χ^2	σ (pb)	Statut du fit		
	up	0.9725	-4.5887	OK		
muon_alpha	down	0.9728	-4.5860	OK		
electron_mean	up	0.9733	-4.5288	OK		
	down	0.9718	-4.6519	OK		
alastnan alpha	up	0.9725	-4.5887	OK		
electron_alpha	down	0.9726	-4.5937	OK		
$\sigma_{syst} = 0.0194 \text{ p}$	ob .					
m = 1000 GeV						
muon_mean	up	0.9880	0.7654	OK		
IIIuoII_IIIeaII	down	0.9884	0.7522	OK		
muon_sigma	up	0.9882	0.7664	OK		
muon_sigma	down	0.9882	0.7513	OK		
electron_sigma	up	0.9875	0.7915	OK		
electron_sigma	down	0.9888	0.7290	OK		
muon_alpha	up	0.9878	0.7644	OK		
muon_aipna	down	1.2645	0.7644	OK		
electron_mean	up	0.9885	0.7454	OK		
electron_mean	down	0.9878	0.7738	OK		
alastron alpha	up	0.9884	0.7439	OK		
electron_alpha	down	0.9879	0.7764	OK		
$\sigma_{syst} = 0.0519 \text{ p}$	ob .					
m = 1250 GeV						
muon_mean	up	1.0095	0.2474	OK		
IIIdoii_IIIddii	down	1.0095	0.2799	OK		
muon_sigma	up	1.0089	0.2625	OK		
1114011_5151114	down	1.0089	0.2798	OK		
electron_sigma	up	1.0088	0.2591	OK		
ciccuron_bigina	down	1.0091	0.2844	OK		
muon_alpha	up	1.0140	0.2514	OK		
IIIdoii_dipiid	down	1.0092	0.2804	OK		
electron_mean	up	1.0139	0.2559	OK		
Ciccifonimean	down	1.0145	0.2764	OK		
electron_alpha	up	1.0095	0.2613	OK		
ciccuron_aipiia	down	1.0095	0.2655	OK		
$\sigma_{syst} = 0.1094 \text{ p}$	ob					
m = 1500 GeV						
muon_mean	up	0.9696	-0.6120	OK		
	down	0.9704	-0.6191	OK		
muon_sigma	up	0.9699	-0.6168	OK		
iiidoii_bigiiid	down	0.9699	-0.6176	OK		
			La suite	page suivante		

Paramètre	Variation	χ^2	σ (pb)	Statut du fit	
electron_sigma	up	0.9702	-0.6171	OK	
electron_sigma	down	0.9697	-0.6160	OK	
muon_alpha	up	0.9693	-0.6016	OK	
muon_aipna	down	0.9707	-0.6312	OK	
electron_mean	up	0.9706	-0.6048	OK	
electron_mean	down	0.9692	-0.6279	OK	
electron_alpha	up	0.9708	-0.5915	OK	
electron_alpha	down	0.9690	-0.6424	OK	
$\sigma_{syst} = 0.0515 \text{ pb}$					

4.3 Background

Fonction de bkg	χ^2	σ (pb)	Statut du fit
m = 750 GeV			
fit_pdf_falt.json	1.0058	-4.1771	OK
$\sigma_{syst} = 0.0897 \text{ pb}$			
m = 1000 GeV			
$fit_pdf_falt.json$	0.9887	1.2250	Echec
$\sigma_{syst} = 0.6110 \text{ pb}$			
m = 1250 GeV			
fit_pdf_falt.json	0.9960	0.4204	OK
$\sigma_{syst} = 0.5465 \text{ pb}$			
m = 1500 GeV			
fit_pdf_falt.json	0.9383	-0.8119	OK
$\sigma_{syst} = 0.3159 \text{ pb}$			

Likelihood scan 5

5.1 m = 750 GeV

 $N_{sig} > 0$

5.2 m = 1000 GeV

5.3 m = 1250 GeV

 $6 ext{ TOY MC}$

5.4 m = 1500 GeV

5.5 Limites observées

$m_{tar{t}}$	750 GeV	$1000~{\rm GeV}$	1250 GeV	1500 GeV
Limite observée (pb)	1.2303	2.1121	1.0865	0.4383

6 Toy MC

Nombre de toys par masse : 1000
Nombre de jobs par masse : 100
Nombre de toys par jobs : 10

 $6 \quad TOY MC$ 13

6.1 m = 750 GeV

 $6 ext{ TOY MC}$

6.2 m = 1000 GeV

 $6 \quad TOY MC$ 15

6.3 m = 1250 GeV

6 TOY MC

6.4 m = 1500 GeV

7 LIMITES 17

6.5 Limites attendues

$m_{tar{t}}$	750 GeV	1000 GeV	1250 GeV	1500 GeV
Limite attendue (pb)	2.9833	1.4773	0.869	0.7934
Bande d'exclusion (68%) (pb)	$+1.0167 \\ -0.7045$	$+0.4065 \\ -0.3251$	$+0.3101 \\ -0.2154$	$+0.2138 \\ -0.1896$
Bande d'exclusion (95%) (pb)	$+2.35 \\ -1.1929$	$+0.9798 \\ -0.5401$	$+0.6468 \\ -0.3632$	$+0.484 \\ -0.3406$

7 Limites

$m_{tar{t}}$	750 GeV	1000 GeV	1250 GeV	1500 GeV
Limite observée (pb)	1.2303	2.1121	1.0865	0.4383
Limite attendue (pb)	2.9833	1.4773	0.869	0.7934
Bande d'exclusion (68%) (pb)	$+1.0167 \\ -0.7045$	$+0.4065 \\ -0.3251$	$+0.3101 \\ -0.2154$	$+0.2138 \\ -0.1896$
Bande d'exclusion (95%) (pb)	$+2.35 \\ -1.1929$	$+0.9798 \\ -0.5401$	$+0.6468 \\ -0.3632$	$^{+0.484}_{-0.3406}$

