Dealing with NetCDF files Training module 1...

F. Viola¹

¹CMCC – Centro EuroMediterraneo sui Cambiamenti Climatici OPA Division – Ocean Predictions and Applications

2021/05/04

Supported languages

The NetCDF file format is highly supported. Among the many languages implementing NetCDF, we mention:

- Fortran
- Python
- ► C/C++
- Java
- Ruby
- ▶ R
- Matlab
- ► IDL
- Perl
- ► Tcl/Tk
- Ada

Python

In Python it is first advisable to create an environment with conda:

- \$ conda create -n envName
- \$ conda activate envName

Python

In Python it is first advisable to create an environment with conda:

- \$ conda create -n envName
- \$ conda activate envName

The netcdf library that we will use in Python is called netCDF4

\$ conda install netcdf4

Python (1)

First of all import the library:

from netCDF4 import Dataset

Python (1)

```
First of all import the library:
```

from netCDF4 import Dataset

Then, we can open NetCDF files with:

ds = Dataset(filename, "r", "NETCDF4")

Python (2)

- ▶ ds shows several information
- ds.dimensions returns a dictionary of all the dimensions
- ds.variables shows a dictionary of all the variables
- ▶ ds["varname"] shows info about the variable varname
- ▶ ds["varname"][:] access data according to numpy rules (see slicing)

Python (3)

- ▶ dim1 = Dataset.createDimension(...) to create a dimension
- var1 = Dataset.createVariable(...) to create a variable
- var1[:] = data to assign data to the variable

Python (4)

The library NetCDF4 is quite useful in many cases, but you will soon feel limited using it... Then, the natural evolution will be to use xarray.

