

Design Portfolio

By:

Net 1 Bier

Randolph Bock 25905570

FJ Fourie 26047799

Submitted in pursuit of the degree

BACHELOR OF ENGINEERING

In

COMPUTER AND ELECTRONIC ENGINEERING

North-West -University Potchefstroom Campus

Supervisor: Prof J. Holm

Potchefstroom

2017

Contents

1 SYSTEM OPERATIONAL REQUIREMENTS	
1.1 FUNCTIONAL ANALYSIS — OPERATIONAL LEVEL ARCHITECTURE AND BEHAVIOUR	1
1.2 Physical Requirements (Form):	4
1.3 Interface requirements(Fit):	4
1.4 Additional Requirements:	5
2 EXCEL PROJECT MANAGEMENT	6
2.1 COMBINED PROJECT DOCUMENTS	6
2.1.1 Work Breakdown Allocation	
2.1.2 Project Schedule	8
2.1.3 Progress tracking	8
2.2 RISK / MITIGATION REGISTER	10
2.3 MINUTES OF MEETINGS	11
2.4 RANDOLPH BOCK	16
2.4.1 Excel Project Management Documents	
2.4.2 Experience Report	19
2.5 Anton Durandt	20
2.6 FJ FOURIE	20
2.6.1 Excel Project Management Documents	20
2.6.2 Experience Report	23
3 ENGINEERING METHODS/SKILLS/TOOLS:	24
3.1 RANDOLPH BOCK	24
3.2 Anton Durandt	24
3.3 FJ FOURIE	24
4 SUB-SYSTEM SPECIFICATION DOCUMENTS:	24
4.1 RANDOLPH BOCK	24
4.2 Anton Durandt	24
4.3 FJ FOURIE	25
5 DESIGN DOCUMENTATION:	25
5.1 System Design Documaentation	25
5.1.1 Final System Functional Definition:	25

5.1.2 Syster	m concept drawings:	26
5.1.3 Syster	m interface Definitions:	27
5.1.4 Syster	m integration testing:	30
5.2 SUB-SYSTEM	и Design Documentation Randolph Bock:	31
5.2.1 Techn	nology Survey/Datasheets	31
5.2.2 Applic	cation Notes	41
5.2.3 Trade	e off Studies	43
5.2.4 Desig	ın Drawings:	44
5.2.5 Behav	vioural Modelling:	45
5.2.6 Desig	ın implementation:	47
5.2.7 Sub-s	ystem Test and Evaluation:	48
5.3 SUB-SYSTEM	n Design Documentation FJ Fourie:	49
5.3.1 Techn	nology Survey/Datasheets	49
5.3.2 Applic	cation Notes	49
5.3.3 Trade	e off Studies	50
5.2.4 Desig	ın Drawings:	51
5.2.5 Behav	vioural Modelling:	53
5.2.6 Desig	ın implementation:	53
5.2.7 Sub-s	ystem Test and Evaluation:	56

List of Figures:

FIGURE 1: SYSTEM OPERATIONAL ARCHITECTURE	2
FIGURE 2: SYSTEM OPERATIONAL FLOW	3
FIGURE 3: BACK END INITIAL SCREEN CONCEPT	51
FIGURE 4: ADMIN LOGIN SCREEN CONCEPT	52
FIGURE 5: INCIDENT DISPLAY SCREEN CONCEPT	52
FIGURE 6: BACK END INITIAL SCREEN	54
FIGURE 7: ADMIN LOGIN SCREEN	54
FIGURE 8: INCIDENT DISPLAY SCREEN	55

List of Tables:

TABLE 1: WORK BREAKDOWN AND ALLOCATION	7
Table 2: Project Schedule	8
Table 3: Progress tracking	9
Table 4: Risks and Mitigations	10
TABLE 5: TIMELINE OF RANDOLPH BOCK	
TARLE 6: TIMELINE OF F. I FOLIRIE	22

List of abbreviations:

- FSM Finite State Machine
- UDP User Datagram Protocol
- OS Operating System
- SoC System on Chip
- SBC Single Board Computer.
- DCS Door Contact Switch

1 SYSTEM OPERATIONAL REQUIREMENTS

1.1 FUNCTIONAL ANALYSIS – OPERATIONAL LEVEL ARCHITECTURE AND BEHAVIOUR

1.1.1 System Operational Architecture:

Figure 1: System Operational Architecture

1.1.2 System Operational Flow:

Figure 2: System Operational Flow

1.2 PHYSICAL REQUIREMENTS (FORM):

- The alarm panel as well as any sensors of the system must be IP54 rated.
- The alarm panel must be wall mountable
 - o The Design must not exceed 0.5Kg as to be easily wall mountable
- Unit should not protrude at strange angles that will cause harm to people passing by.
 All edges must be smooth to the touch, with no sharp object on the unit to cut/hurt.
- Functional shape that will fit into any home without inconvenience
- Size of unit must not be to large
 - o 1m x 1m x 0,5m size constraint
- The alarm panel must allow for wires to enter the panel without damaging the wires. A
 rubber grommet is used to protect wires extruding from the unit.
- The placement on the wall cannot be too high as it will make it difficult for users to access the panels 1.6 meter from floor level is recommended, this can be varied for specific user use.
- The placement cannot be to low either as it may become a risk for small children, placement must be more than 1 meter from floor level
- The placement should not be over pre-existing water pipes or wiring in the wall

1.3 INTERFACE REQUIREMENTS(FIT):

- The interface between the end user and the alarm will be both audio and visual, and be easily understandable (I/F 1.1)
- All items on the functional architecture must be developed, apart from PIR and other sensors (I/F 1.4)
- The single board computer (SBC) will be a Raspberry Pi
- An output will be provided to the Power Block to show that motion has been detected on an "outdoor sensor"
- The input power to the Alarm Panel will be provided from the Power Block and will be 12V at a maximum of 6W (I/F 1.5)
- The interface between the incoming power and the internal power supply of the system will be a two-wire interface, positive and negative wire, to be connected to the system with screw in wire terminals. (I/F 1.5)

- The Alarm Panel will provide its own internal voltages for the SBC and other components (Unit 1.4)
- The network communication between the Alarm panel and the backend-server is to be done with a direct ethernet connection or a WIFI connection (I/F 2)
- The database server will initially be hosted on a laptop or PC.

1.4 ADDITIONAL REQUIREMENTS:

1.4.1 Environmental Requirements:

- The alarm panel as well as any sensors of the system must be IP54 rated
- Dust proof rating of 5, Limited protection against dust ingress. (no harmful deposit)
- Water resistant rating of 4, Protected against splash water from any direction.
- Temperature requirement of -5°C to 40°C
- Will be made reasonably tamper proof. Wires are tied down internally to prevent the destruction of internal component when the extruded wires are being tampered with.
- The Alarm panel is to be serviceable with the use of a key to open the unit. Key will only be available to trained technicians.
- Will be made from strong material to endure some wear a metal chassis is to be used for the alarm panel
- The system must be protected against Electro Static Discharges, ESD.

1.4.2 Safety requirements

- The system will be grounded to ensure no electrical shocks can occur to an end user
- No open wires
- Not accessible to children
- Closed box so that people who do not understand the device cannot tamper with it
- Reasonably tamper proof

1.43 Legislative Requirements (SAIDSA bylaw 25)

- Control equipment
 - Control panel installed min of 1.5 m form ceiling
 - Digital keypads must be of the data transfer technology type
 - Disarming delay no more than 30 seconds
- Signalling equipment
 - Signalling equipment will be positioned within the protected area
 - Not placed where telephone lines are vulnerable

- Maintenance
 - Inspect and test each detection device back to control panel
 - Inspecting alarm panel and transmitter
 - Inspect cables for visible damage

1.4.4 Usability Requirements:

- System must be easily operated with minimal training required to operate the system
- Compensation for mounting will be made for the control box

2 EXCEL PROJECT MANAGEMENT

2.1 COMBINED PROJECT DOCUMENTS

The following documentation has been taken and adapted from the project management excel document.

2.1.1 WORK BREAKDOWN ALLOCATION

In the following Table 1 the work allocation for each member is documented. This work allocation was done at the start of the project and as new work may arise or some work may prove to be more difficult than thought or some work may be found to be very easy this list will be adjusted accordingly.

Table 1: Work Breakdown and Allocation

Member	Work allocation
Randolph Bock	Design circuit for security inputs (Including Door switches and PIR's)
	Design circuit for output siren (to be run on 12v)
	Design and implement a user interface
	Design and code the SoC to handle all inputs and outputs
	Order parts
	Trade-off decisions
	Assemble the final unit 1 as a whole
	 Design and implement a Direct Ethernet / IP connection between SoC and Pc
	Design and implement an Ethernet / IP connection via 3g between SoC and Pc
FJ Fourie	Design database for information of users and alarm systems
	Design backend operator interface
	Write program for backend of system to manage alarms going off and instruct operators on what to do
	 Integrate backend program with database

Ensure operator interface works correctly with signals received from web
Assemble the final complete project
Designing and implementing the backend communications to the SoC

2.1.2 PROJECT SCHEDULE

Below in Table 2 the timeline for the project is documented as decided upon at the start of the project.

Table 2: Project Schedule

Date	Description
17-Jul-17	Project Initiation
10-Aug-17	Functional Analysis Test
14-Aug-17	Preliminary Design Complete
31-Aug-17	30% Completion Milestone
30-Sep-17	50% Completion Milestone
27-Oct-17	80% Completion Milestone
10-Nov-17	100% Completion Milestone
16-Nov-17 to 17-Nov-17	Demonstration

2.1.3 PROGRESS TRACKING

We use a RAG status to track the progress of the project each week with descriptions for when the project falls into the amber or red regions. This is all shown below in Table 3.

Table 3: Progress tracking

Progress Tracking					
		F	Project St	atus	
	% Complete	Green	Amber	Red	Description
Week 1	100%				
Week 2	100%				
Week 3	100%				
Week 4	100%				
Week 5	100%				
Week 6	100%				
Week 7	100%				
Week 8	100%				
Week 9	100%				
Week 10	100%				
Week 11	100%				
Week 12	100%				
Week 13	100%				
Week 14					
Etc					

2.2 RISK / MITIGATION REGISTER

Table 4: Risks and Mitigations

Risk No Date	Date	Description of Issue / Risk	Severity Impact	Impact	Mitigation / Action	Responsible person	Status
	Date when risk was identified	Description of issue / risk	(1-5)	What will happen when this risk event happens?	What needs to be done to reduce this risk.	Who will work on this risk.	
1	28-Aug-17	28-Aug-17 Availability of PIR running on 5/3,3V	1	1 Circuit will need to change to use 12V PIR's correctly	Order PIR using 5/3,3 Volt as soon as possible,	Randolph Bock	
				not to overvolt the control unit	Or change circuit to use 12V PIR's		
2	21-Aug-17	21-Aug-17 Time Manegment	5	5 If time is not managed correctly the project will be	Work with the schedule provided	All members	
				rushed, affecting quality of the project			
3	08-Aug-17	08-Aug-17 Groupwork not yet distributed	5	5 Members will not be able to work as they don't	Assigning and documenting groupwork	Randolph Bock	
				know what they should be working on	to each member		
4	11-Sep-17	11-Sep-17 Database Design	3	3 Database nor working or working incorrectly,	Work with Database design software and	FJ Fourie	
				resulting in a fail of unit 3	familiarize with the language of databases		
5	04-Sep-17	04-Sep-17 Power distribution	4	4 Under or over power of project, ultimately leading	Do power management calculations	Randolph Bock	
				to the project not working			
6	18-Sep-17	18-Sep-17 Subject know how	5	5 If one or more members do not have the necessary	Tell other members if you do not have the	All members	
				knowledge to complete their unit	knowledge and seek help		
7	24-Aug-17	24-Aug-17 Uncertainty about 30% deadline	ω.	3 We cannot complete work satisfactory and all the	Find out by asking fellow class members	Anton Durandt	
				necessary work if we do not know what it is	and talking to the lecturer		
8	18-Sep-17	18-Sep-17 Uncertainty about 50% deadline	5	5 We cannot complete work satisfactory and all the	Find out by asking fellow class members	FJ Fourie	
				necessary work if we do not know what it is	and talking to the lecturer		
9	05-Oct-17	05-Oct-17 Non-participating Member	5	5 A non-participating member, Anton Durant, results	Reallocating the work of Anton to	Randolph Bock & FJ Fourie	
				in a critical aspect of the project not working.	Randolph and FJ		
				Ultimately resulting in failure of the project.			

2.3 MINUTES OF MEETINGS

The following are the minutes of all the meetings held by the group.

Meeting 1:			
Date	08-Aug-17	,	
Time	14:00		
Chairman	Randolph Bock		
Attendance list	Randolph Bock		
	FJ Fourie		
	Anton Durandt		
Agenda			
Progress Tracking	Progress on schedule		
Issues / Risks and Mitigations	Groupwork not yet distrobuted		
Decisions	Functional Flow Diagram		
	Functional Architecture Design		
	Specification of interfaces		
Actions	Allocated work	Randolph Bock	Specification of interfaces
		FJ Fourie	Functional Flow Diagram
		Anton Durandt	Functional Architecture Design

Meeting 2:			
Date	21-Aug-17		
Time	8:00		
Chairman	FJ Fourie		
Attendance list	Randolph Bock		
	FJ Fourie		
	Anton Durandt		
Agenda			
Progress Tracking	15% complete		
Issues / Risks and Mitigations	Time Manegment		
Decisions	Members work allocation		
Actions	Allocated work	Randolph Bock	User end
			Unit 1
		FJ Fourie	Back end
			Unit 3
		Anton Durandt	Communications link
			Unit 2

Meeting 3:		
Date	24-Aug-17	,
Time	15:30)
Chairman	Anton Durandt	
Attendance list	Randolph Bock	
	FJ Fourie	
	<u>Anton Durandt</u>	
Agenda		
Progress Tracking	20% complete	
Issues / Risks and Mitigations	Uncertainty about 30% deadline	
Decisions	Portfolio	ELO 8
		ELO 5
Actions	Allocate individual and group work between members	

Meeting 4:	
Date	28-Aug-17
Time	8:00
Chairman	Randolph Bock
Attendance list	Randolph Bock
	FJ Fourie
	Anton Durandt
Agenda	
Progress Tracking	25% complete
Issues / Risks and Mitigations	Availability of PIR running on 5/3,3V
Decisions	Responsibilitys
Actions	Find out about prices and availibility of components

Meeting 5:	
Date	04-Sep-17
Time	8:00
Chairman	<u>FJ Fourie</u>
Attendance list	Randolph Bock
	<u>FJ Fourie</u>
	<u>Anton Durandt</u>
Agenda	
Progress Tracking	30% complete
Issues / Risks and Mitigations	Power distrobution
Decisions	Finilize what components are necesarry
	and create Bill of materials (BOM)
Actions	Get quotes for items in the BOM

Meeting 6:	
Date	11-Sep-17
Time	8:00
Chairman	Anton Durandt
Attendance list	Randolph Bock
	FJ Fourie
	<u>Anton Durandt</u>
Agenda	
Progress Tracking	35% complete
Issues / Risks and Mitigations	Database Design
Decisions	Code structure
Actions	Order components

Meeting 7:	
Date	18-Sep-17
Time	8:00
Chairman	Randolph Bock
Attendance list	Randolph Bock
	<u>FJ Fourie</u>
	<u>Anton Durandt</u>
Agenda	
Progress Tracking	40% complete
Issues / Risks and Mitigations	Subject know how
Decisions	Decides who is responsible for what for 50% deadline
Actions	Start work on 50% deadline

Meeting 8:	
Date	23-Sep-17
Time	11:30
Chairman	<u>FJ Fourie</u>
Attendance list	Randolph Bock
	<u>FJ Fourie</u>
	<u>Anton Durandt</u>
Agenda	
Progress Tracking	40% complete
Issues / Risks and Mitigations	Uncertainty about 50% deadline
Decisions	We are behind on work for 50% deadline
Actions	Work harder to complete work by 50% deadline

Meeting 9:				
Date	09-Oct-17			
Time	8:00			
Chairman	Randolph Bock			
Attendance list	Randolph Bock			
	<u>FJ Fourie</u>			
Agenda				
Progress Tracking	45% complete			
Issues / Risks and Mitigations	50% deadline completion was not perfect			
Decisions	Everyone needs to work on there			
	paperwork to complete 50%			
	Need to start building and coding			
	Need to report inactive member			
Actions	Plan for the rest of the semester			
	File a change request with prof Holm			
	for inactive member			
	Speak to Prof Holm on the state of member Anton			

Meeting 10:	
Date	16-Oct-17
Time	8:00
Chairman	<u>FJ Fourie</u>
Attendance list	Randolph Bock
	<u>FJ Fourie</u>
Agenda	
Progress Tracking	60% complete
Issues / Risks and Mitigations	Non- Participating member
Decisions	Complete all documentation for next Monday
	Need to take case of inactive member further
Actions	Speak to Holm and report state of inactive member
	Arange meeting with inactive member Anton

Meeting 11:	
Date	17-Oct-17
Time	9:00
Chairman	Randolph Bock
Attendance list	Randolph Bock
	FJ Fourie
	Anton Durandt
Agenda	
Progress Tracking	60% complete
Issues / Risks and Mitigations	Non- Participating member
Decisions	Allow member chance to catch up with the
	work, Finish documentation for 80% completion
Actions	Work allocated for the 80% deadline
	deadline set for non-participating member Anton

2.4 RANDOLPH BOCK

2.4.1 EXCEL PROJECT MANAGEMENT DOCUMENTS

2.4.1.1 EXPERTISE

- Software
- Hardware
- Documentation

2.4.1.2 PARTS OF THE PROJECT THE MEMBER IS RESPONSIBLE FOR

2.4.1.3 UNIT BREAKDOWN:

System Definitions Unit 1:

2.4.1.4 WORK BREAKDOWN

- Design circuit for security inputs (Including Door switches and PIR's)
- Design circuit for output siren (to be run on 12v)
- Design and implement a user interface
- Design and code the SoC to handle all inputs and outputs
- Order parts
- Trade-off decisions

• Assemble the final unit as a whole

2.4.1.5 TIMELINE

Table 5: Timeline of Randolph Bock

Date	Description				
17-Jul-17	Project Initiation				
10-Aug-17	Functional Analysis Test				
14-Aug-17	Preliminary Design Complete				
31-Aug-17	30% Completion Milestone				
30-Sep-17	50% Completion Milestone				
7-Oct-17	Design of inputs and outputs Unit 1				
14-Oct-17	Code and implementation on SoC				
20-Oct-17	Final assembly of Unit 1				
27-Oct-17	80% Completion Milestone				
10-Nov-17	100% Completion Milestone				
16-Nov-17 to 17-Nov-17	Demonstration				

2.4.1.6 PROGRESS TRACKING

Progress Tracking					
		Project Status			
	% Complete	Green	Amber	Red	Description
Week 1	100%				
Week 2	100%				
Week 3	100%				
Week 4	100%				
Week 5	100%				
Week 6	100%				
Week 7	100%				
Week 8	100%				
Week 9	100%				
Week 10	100%				
Week 11	100%				
Week 12	100%				
Week 13	100%				
Week 14					
Etc					

2.4.2 EXPERIENCE REPORT

Myself and two other members has been tasked to design and implement an alarm system for our third years project. The project was divided into 3 units, each member will be responsible for their own unit. The units consist of the physical Alarm Panel, communications, and backend server. Unit 1 has been allocated to me as I had the most experience in hardware solutions.

The task was daunting at first, but after doing research and determining the requirement, the task then seemed doable within the given timeframe.

Skills required for the task of design Unit 1 the alarm panel is electronic knowledge for the electrical connection required. Programming knowledge to write the embedded system program, as well as knowledge of the Linux operating system distribution, "Raspbian".

2.5 ANTON DURANDT

Member missing in action.

2.6 FJ FOURIE

2.6.1 EXCEL PROJECT MANAGEMENT DOCUMENTS

2.6.1.1 EXPERTISE

- Software
- Documentation
- Databases

2.6.1.2 PARTS OF THE PROJECT THE MEMBER IS RESPONSIBLE FOR

- I/F 4 Operator Interface
- I/F 3 Cloud Interface
- I/F 5 Cellular Network

2.6.1.3 UNIT BREAKDOWN

2.6.1.4 WORK BREAKDOWN

- Design database for information of users and alarm systems
- Design backend operator interface
- Write program for backend of system to manage alarms going off and instruct operators on what to do
- Integrate backend program with database
- Ensure operator interface works correctly with signals received from web
- Assemble the final complete project

2.6.1.5 TIMELINE

Table 6: Timeline of FJ Fourie

Description			
Project Initiation			
Functional Analysis Test			
Preliminary Design Complete			
30% Completion Milestone			
50% Completion Milestone			
Design database and program for Unit 3			
Write program and integrate program with database			
Final assembly of Unit 3			
80% Completion Milestone			
100% Completion Milestone			
Demonstration			

2.6.1.6 PROGRESS TRACKING

Progress Tracking					
		F	Project Sta		
	% Complete	Green	Amber	Red	Description
Week 1	100%				
Week 2	100%				
Week 3	100%				
Week 4	100%				
Week 5	100%				
Week 6	100%				
Week 7	100%				
Week 8	100%				
Week 9	100%				
Week 10	100%				
Week 11	100%				
Week 12	100%				
Week 13	100%				
Week 14					
Etc					

2.6.2 EXPERIENCE REPORT

In 2017 which is my 3rd year of studying I have been put into a team of 3 students to complete a project. The project that has been allocated to us is that of an alarm security system we must design and construct the entire system. The project was divided into 3 major units with each member being tasked with completing a unit. The first unit is the alarm panel and user end of the system, the second unit is the communication of the first unit with third unit over the cellular network. The third unit of this project is the backend program that will be connected to a database in the cloud and will be manned by an operator, this is the unit I have been given and tasked with completing. I went about completing this task by firstly identifying all the requirements and individual parts of my unit after which I started researching each component in an attempt to find the best possible solution for each requirement. Through my research and eventual completion of the unit have I broaden my knowledge of the fields of telecommunication, databases, programming and cloud hosting. This has also been a great opportunity for me to have grown as an engineer and thru this process I have grown my skills and abilities in these fields, my knowledge and abilities with the QT programming environment

have increased drastically as well as my capabilities in the C++ programming language. I have also learnt a lot about Databases learning to use the program and tools provided by MYSQL to create and host databases. This was also a great opportunity to increase my understanding and abilities with transmission of data over a wireless network using different protocols some of which are existing protocols and others which we designed ourselves. I have also gotten a much broader understanding of the engineering process and all the documentation involved with it as well as all the additional tools used before starting the actual building or programming of the project such as using functional analysis. I have also increased my abilities to work in a team and have learned a lot of important team skills that will be necessary in the work place one day.

3 ENGINEERING METHODS/SKILLS/TOOLS:

3.1 RANDOLPH BOCK

See additional Document: Design 2017 - Randolph ELO5 - Net1Bier.docx

3.2 ANTON DURANDT

Member missing in action.

3.3 FJ FOURIE

See additional Document: Design 2017 - FJ ELO5 - Net1Bier.docx

4 SUB-SYSTEM SPECIFICATION DOCUMENTS:

4.1 RANDOLPH BOCK

See additional Document: Design 2017 - Randolph Sub-System-specification-Document-Net1Bier.docx

4.2 ANTON DURANDT

Member missing in action.

I/F 4 OPERATOR INTERFACE

3.2

DATABASE

4.3 FJ FOURIE

See additional Document: Design 2017 - FJ Sub-System-specification-Document-Net1Bier.docx

5 DESIGN DOCUMENTATION:

5.1 SYSTEM DESIGN DOCUMAENTATION

5.1.1 FINAL SYSTEM FUNCTIONAL DEFINITION:

5.1.2 SYSTEM CONCEPT DRAWINGS:

5.1.3 SYSTEM INTERFACE DEFINITIONS:

Interface control document (I/F 1.5)

This interface control document is the interaction between the power block and the alarm.

I/F 1.5

Power block

Alarm Panel

Electrical requirements

The power block will provide 12 V and 6 W power to the alarm panel.

Mechanical requirements:

The mechanical interface will be a two-point screw terminal for both sides so that a wire can be connected between the two.

This document was signed in Potchefstroom on the date 2017/09/4 as an agreement between the EERI327/ INEM327 and REII327 students regarding the power supply to the alarm panel. This document is binding until the end of the 3rd year design module 2017.

Representatives

C.F. Greyling

FJ Fourie

Witnesses

Witness 1

Witness 2

Interface control document (I/F 2):

This interface control document is the network interaction between the Alarm panel and the Back-end security software.

Network requirements:

Transmission Control Protocol, TCP, to be used to send data from Panel to backend services.

For network connection:

- 1. The Alarm panel will send out a broadcast command over User Datagram Protocol, UDP. (Port 7000)
- 2. The Back-end server will then send it's IP over UDP to the alarm panel
- 3. A TCP Connection will be set-up between the server and the alarm panel. (Port 7000)
- 4. Communications will then take place according to the protocol requirements below

Protocol requirements:

Protocol payload fields:

Protocol	ID	Client ID	Date	Time	Section code	Parity
('1B')						

The payload fields will be "#" separated.

5.1.4 SYSTEM INTEGRATION TESTING:

Action	Expected Results	√/x
Trigger Alarm	Message sent through network to PC	
Read from Database	Read specific data from database to PC	

5.2 SUB-SYSTEM DESIGN DOCUMENTATION RANDOLPH BOCK:

5.2.1 TECHNOLOGY SURVEY/DATASHEETS

2N2222

Low Power Bipolar Transistors

Features:

- NPN Silicon Planar Switching Transistors.
- · Switching and Linear application DC and VHF Amplifier applications.

TO-18 Metal Can Package

Dimensions	Minimum	Maximum	
Α	5.24	5.84	
В	4.52	4.97	
С	4.31	5.33	
D	0.40	0.53	
E	-	0.76	
F	-	1.27	
G	-	2.97	
Н	0.91	1.17	
J	0.71	1.21	
K	12.70	-	
L	45°		

Dimensions : Millimetres

- Pin Configuration:
- 1. Emitter
- 2. Base
- Collector

multicomp

Page 1 06/04/06 V1.0

2N2222

Low Power Bipolar Transistors

Absolute Maximum Ratings (T_a = 25°C unless specified otherwise)

Description	Symbol	2N2222	Unit	
Collector Emitter Voltage	V _{CEO}	30		
Collector Base Voltage	V _{CBO}	60	v	
Emitter Base Voltage	V _{EBO}	5]	
Collector Current Continuous	lc	800	mA	
Power Dissipation at T _a = 25°C Derate above 25°C	PD	500 2.28	mW mW/°C	
Power Dissipation at T _C = 25°C Derate above 25°C	10	1.2 6.85	W mW/°C	
Operating and Storage Junction Temperature Range	T _J , Tstg	-65 to +200	°C	

Electrical Characteristics (T_a = 25°C unless specified otherwise)

Description	Symbol	Test Condition	Value		Unit	
Description	Symbol	rest Condition	Minimum	Maximum	Onit	
Collector Emitter Breakdown Voltage	BV _{CEO}	I _C = 10mA, I _B = 0	30	-		
Collector Base Breakdown Voltage	BV _{CBO}	I _C = 10μA, I _E = 0	60	-	V	
Emitter Base Breakdown Voltage	V _{EBO} r	I _E = 10μA, I _C = 0	5	-		
Collector Leakage Current	I _{CBO}	V _{CB} = 50V, I _E = 0 V _{CB} = 50V, I _E = 0 T _a = 150°C	-	10 10	nA μA	
Collector Emitter Saturation Voltage	*VCE (Sat)	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	•	0.4 1.6	V	
Base Emitter Saturation Voltage	*V _{BE (Sat)}	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	0.6	1.3 2.6	•	

2N2222

Low Power Bipolar Transistors

multicomp

Electrical Characteristics (T_a = 25°C unless specified otherwise)

Parameter	Symbol	Test Condition	2N:	2222	Unit
Farameter	Symbol	rest Condition	Minimum	Maximum	
DC Current Gain	h _{FE}	I _C = 0.1mA, V _{CE} = 10V* I _C = 1mA, V _{CE} = 10V I _C = 10mA, V _{CE} = 10V* I _C = 150mA, V _{CE} = 1V* I _C = 150mA, V _{CE} = 1V* I _C = 500mA, V _{CE} = 10V*	35 50 75 50 100 30	300	-
Dynamic Characteristics					
Transition Frequency	ft	I _C = 20mA, V _{CE} = 20V f = 100MHz	250	-	MHz
Output Capacitance	C _{ob}	V _{CB} = 10V, I _E = 0 f = 100kHz	-	8	
Input Capacitance	C _{lb}	V _{EB} = 0.5V, I _C = 0 f = 100kHz	-	30	pF
Switching Characteristics					
Delay Time	t _d	I _C = 150mA,I _{B1} = 15mA	-	10	
Rise Time	tr	V _{CC} = 30V, V _{BE (off)} = 0.5V	-	25	ns
Storage Time	t _s	I _C = 150mA, I _{B1} = 15mA	-	225	113
Fall Time	tr	I _{B2} = 15mA, V _{CC} = 30V	-	60	

^{*}Pulse Condition: Pulse Width ≤300μs, Duty Cycle ≤2%.

Part Number Table

Package	Part Number
TO-18	2N2222

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	-100				
R _{DS(on)} (Ω)	V _{GS} = -10 V	0.30			
Q _g max. (nC)	38				
Q _{gs} (nC)	6.8				
Q _{gd} (nC)	21				
Configuration	Sin	gle			

FEATURES

- · Dynamic dV/dt rating
- · Repetitive avalanche rated
- P-channel
- . 175 °C operating temperature
- · Fast switching
- · Ease of paralleling
- · Simple drive requirements
- · Material categorization; for definitions of compliance please see www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF9530PbF
Lead (FD)-III-00	SiHF9530-E3
SnPb	IRF9530
SHED	SiHF9530

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)							
PARAMETER			SYMBOL	LIMIT	UNIT		
Drain-Source Voltage			V _{DS}	-100	v		
Gate-Source Voltage			V _{GS}	± 20	T *		
Continuous Drain Current V _{GS} at - 10 V T _C = 25 °C				- 12			
Continuous Drain Current	VGS at - 10 V	T _C = 100 °C	l _D	-8.2	Α		
Pulsed Drain Current ^a			I _{DM}	-48	1		
Linear Derating Factor				0.59	W/°C		
Single Pulse Avalanche Energy b			E _{AS}	400	mJ		
Repetitive Avalanche Current a			I _{AR}	-12	Α		
Repetitive Avalanche Energy a			E _{AR}	8.8	mJ		
Maximum Power Dissipation	T _C = 3	25 °C	P _D	88	W		
Peak Diode Recovery dV/dt c			dV/dt	- 5.5	V/ns		
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C		
Soldering Recommendations (Peak temperature) d	for 1	10 s		300	7		
Mounting Torque	6-32 or N	12 corous		10	lbf ⋅ in		
Mounting Torque	0-32 OF N	no scieW		1.1	N⋅m		

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. V_{DD} = -25 V, starting T_J = 25 °C, L = 4.2 mH, R_g = 25 Ω , I_{AS} = -12 A (see fig. 12). c. I_{BD} ≤ -12 A, dl/dt ≤ 140 A/µs, V_{DD} ≤ V_{DS} , T_J ≤ 175 °C. d. 1.6 mm from case.

S16-0754-Rev. C, 02-May-16 1 For technical questions, contact: hvm@vishav.com Document Number: 91076

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER SYMBOL TYP. MAX. UNIT						
Maximum Junction-to-Ambient	R _{thJA}	-	62			
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	1.7			

SPECIFICATIONS (T _J = 25 °C, u PARAMETER	SYMBOL		CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static	STIMBOL	1231	CONDITIONS		1115.	mr.	Oiti
		1 1/	0.0 A	100	-		v
Drain-Source Breakdown Voltage	V _{DS}		0 V, I _D = -250 μA	-100	-	-	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference to 25 °C, I _D = -1 mA		-	-0.10	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} = \	/ _{GS} , I _D = -250 μA	-2.0	-	-4.0	٧
Gate-Source Leakage	I _{GSS}	V	_{3S} = ± 20 V	-	-	± 100	nΑ
Zero Gate Voltage Drain Current	loss	$V_{DS} = -$	100 V, V _{GS} = 0 V	-	-	-100	цΑ
Zero date voltage brain ourient	USS	$V_{DS} = -80 \text{ V},$	V _{GS} = 0 V, T _J = 150 °C	-	-	-500	μΛ
Drain-Source On-State Resistance	Ros(on)	V _{GS} = -10 V I _D = -7.2 A ^b		-	-	0.30	Ω
Forward Transconductance	9ts	V _{DS} = -	50 V, I _D = -7.2 A b	3.7	-	-	S
Dynamic							
Input Capacitance	Clas	,	V _{GS} = 0 V,	-	860	-	
Output Capacitance	Coss		v _{GS} = 0 v, _{DS} = -25 V,	-	340	-	pF
Reverse Transfer Capacitance	Crss	f = 1.0	MHz, see fig. 5	-	93	-	1
Total Gate Charge	Qq				-	38	
Gate-Source Charge	Qgs	V _{GS} = -10 V I _D = -12 A, V _{DS} = -80 V, see fig. 6 and 13 b		-	-	6.8	пC
Gate-Drain Charge	Q _{gd}	† -	see fig. 6 and 13 5	-	-	21	t
Turn-On Delay Time	t _{d(on)}			-	12	-	
Rise Time	t _r	† ,,	ł		52	_	†
Turn-Off Delay Time	t _{d(off)}		-50 V, I _D = -12 A, _D = 3.9 Ω, see fig. 10 ^b	_	31	-	ns
Fall Time	t _f	† *		_	39	_	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") fr		-	4.5	-	
Internal Source Inductance	Ls	package and c die contact		-	7.5	-	nH
Gate Input Resistance	Rg	f = 1 M	MHz, open drain	0.4	-	3.3	Ω
Drain-Source Body Diode Characteristic							
Continuous Source-Drain Diode Current	ls	MOSFET symb		-	-	-12	
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p -n junction diode		-	-	-48	A
Body Diode Voltage	V _{SD}	T _J = 25 °C,	s = -12 A, V _{GS} = 0 V b	-	-	-6.3	٧
Body Diode Reverse Recovery Time	t _{rr}	T - 05 %C 1	-12 A, dl/dt = 100 A/µs b	-	120	240	ns
Body Diode Reverse Recovery Charge	Q _{rr}	I _J = 25 ⁻ U, I _F =	-12 A, avat = 100 Avµ8 b	-	0.46	0.92	μC
Forward Turn-On Time	t _{on}	Intrinsic tun	n-on time is negligible (turn	on is dor	ninated b	y L _s and	L _D)

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 -Typical Output Characteristics, T_C = 25 °C

Fig. 2 - Typical Output Characteristics, $T_C = 175$ °C

Fig. 3 -Typical Transfer Characteristics

Fig. 4 -Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 -Typical Gate Charge vs. Gate-to-Source Voltage

Vishay Siliconix

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 9 -Maximum Drain Current vs. Case Temperature

Fig. 8 -Maximum Safe Operating Area

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

4 Document Number: 91076

Vishay Siliconix

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Fig. 13a - Basic Gate Charge Waveform

Fig. 13b - Gate Charge Test Circuit

Vishay Siliconix

Peak Diode Recovery dV/dt Test Circuit

· Compliment N-Channel of D.U.T. for driver

Fig. 14 -For P-Channel

Vishay Silliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishav.com/ppg?91076.

Package Information

Vishay Siliconix

TO-220-1

DIM.	MILLIN	METERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
A	4.24	4.65	0.167	0.183
ь	0.69	1.02	0.027	0.040
b(1)	1.14	1.78	0.045	0.070
С	0.36	0.61	0.014	0.024
D	14.33	15.85	0.564	0.624
E	9.96	10.52	0.392	0.414
е	2.41	2.67	0.095	0.105
e(1)	4.88	5.28	0.192	0.208
F	1.14	1.40	0.045	0.055
H(1)	6.10	6.71	0.240	0.264
J(1)	2.41	2.92	0.095	0.115
L	13.36	14.40	0.526	0.567
L(1)	3.33	4.04	0.131	0.159
ØP	3.53	3.94	0.139	0.155
Q	2.54	3.00	0.100	0.118
ØP Q	3.53 2.54 364-Rev. C,	3.94 3.00	0.139	

Note

 M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Revison: 14-Dec-15 1 Document Number: 66542

	raopporty		PIO Header	
Pin#	NAME		NAME	Pin#
01	3.3v DC Power	O	DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

5.2.2 APPLICATION NOTES

GPIO pins can be configured as either general-purpose input, general-purpose output or as one of up to 6 special alternate settings, the functions of which are pin-dependant.

There are 3 GPIO banks on BCM2835.

Each of the 3 banks has its own VDD input pin. On Raspberry Pi, all GPIO banks are supplied from 3.3V. Connection of a GPIO to a voltage higher than 3.3V will likely destroy the GPIO block within the SoC.

A selection of pins from Bank 0 is available on the P1 header on Raspberry Pi.

GPIO Pads

The GPIO connections on the BCM2835 package are sometimes referred to in the peripherals datasheet as "pads" - a semiconductor design term meaning "chip connection to outside world".

The pads are configurable CMOS push-pull output drivers/input buffers. Register-based control settings are available for

- Internal pull-up / pull-down enable/disable
- Output <u>drive strength</u>
- Input Schmitt-trigger filtering

Power-On States

All GPIOs revert to general-purpose inputs on power-on reset. The default pull states are also applied, which are detailed in the alternate function table in the ARM peripherals datasheet. Most GPIOs have a default pull applied.

Interrupts

Each GPIO pin, when configured as a general-purpose input, can be configured as an interrupt source to the ARM. Several interrupt generation sources are configurable:

- Level-sensitive (high/low)
- Rising/falling edge
- Asynchronous rising/falling edge

Level interrupts maintain the interrupt status until the level has been cleared by system software (e.g. by servicing the attached peripheral generating the interrupt).

The normal rising/falling edge detection has a small amount of synchronisation built into the detection. At the system clock frequency, the pin is sampled with the criteria for generation of an interrupt being a stable transition within a 3-cycle window, i.e. a record of "1 0 0" or "0 1 1". Asynchronous detection bypasses this synchronisation to enable the detection of very narrow events.

Alternative Functions

Almost all the GPIO pins have alternative functions. Peripheral blocks internal to BCM2835 can be selected to appear on one or more of a set of GPIO pins, for example the I2C busses can be configured to at least 3 separate locations. Pad control, such as drive strength or Schmitt filtering, still applies when the pin is configured as an alternate function.

5.2.3 TRADE OFF STUDIES

Visual Human Machine interface (I/F 1):

	LCD		7-	
	Screen	LED's	Segment	Weight
Cost	3	10	7	0,5
Reliability	6	9	7	0,3
Ease of				
use	6	7	6	0,2
	4,5	9,1	6,8	

Input Human Machine interface (I/F 1):

		Turn		
	Remote	key	Keypad	Weight
Cost	1	5	9	0,5
Reliability	2	2	8	0,3
Ease of				
use	7	9	6	0,2
	2,5	4,9	8,1	

5V Voltage regulator

	LM7805	LM371	usb1002	Weight
Efficiency	3	4	8	0,5
Cost	8	8	7	0,2
Reliability	7	8	9	0,3
	5,2	6	8,1	

44

5.2.4 DESIGN DRAWINGS:

Front:

Side:

Internal Layout:

5.2.5 BEHAVIOURAL MODELLING:

Alarm Finite State machine:

States = {Setup, Idle, Disarmed, Triggered, Error} Inputs = ({Check, trig, fault} = {absent, present}, {input} = string) Outputs = ({Siren} = {absent, present} Initial_State = Setup.

5.2.6 DESIGN IMPLEMENTATION:

Final construction of Alarm Panel:

5.2.7 SUB-SYSTEM TEST AND EVALUATION:

Action	Expected Results	√/x
Program started	Terminal shows program has started and heartbeat signal is shown on the power status LED	
Buttons are Pressed on the Keypad	Terminal shows the button pressed	✓
The "*" button is pressed in idle mode to enter armed Mode	The terminal displays that the system is arming, when the system is armed the terminal will display armed, and a heartbeat signal will show on the Armed status LED	✓
Moving the reed switch while in armed mode	The siren starts ringing. The terminal displays a trigger on the Reed sensor. The Triggered status LED starts flashing	√
Moving the PIR sensor while in armed mode	The siren starts ringing. The terminal displays a trigger on the PIR sensor. The Triggered status LED starts flashing	✓

Action	Expected Results	
Power up	The system run through the setup phase and the	
	heartbeat signal is shown on the power status LED.	
	The system is then in the idle state.	
The "*" button is pressed	A buzzer will start sounding and after 5 second the	
in idle mode to enter	system will enter the armed state. A heartbeat signal	
armed Mode	will show on the Armed status LED	
Moving the reed switch	The Triggered status LED starts flashing. The user is	
(DCS) while in armed mode	then given time to disarm the system. After the time	
	has elapsed (20 seconds) and no passcode has been	
	entered or the incorrect passcode has been entered.	
	The siren starts ringing. A UDP message is sent	
	showing a Door switch trigger has occurred	
Disarming the system	The system turns of the armed status LED, and the	
when the Reed Switch	Triggered status LED. Thereafter the system returns	
(DCS) has been triggered	to the idle state	
Triggering the PIR sensor	The siren starts ringing. The Triggered status LED	
while in armed mode	starts flashing. A UDP message is sent showing a	
	PIR sensor trigger has occurred	
Enter the passcode + "#"	The system turns of the armed status LED and	
while in armed state	returns to the idle state	
Enter the passcode + "#"	The system turns of the triggered status LED and	
while in triggered state	returns to the idle state	

5.3 SUB-SYSTEM DESIGN DOCUMENTATION FJ FOURIE:

5.3.1 TECHNOLOGY SURVEY/DATASHEETS

Datasheets in separate PDF

5.3.2 APPLICATION NOTES

Application notes in separate PDF

5.3.3 TRADE OFF STUDIES

Programming Language

	QT	IDLE	Matlab		Weight
Ease of use	8	6	7		0,2
Available					
information	8	9	10		0,3
Functionality	10	7	8		0,5
	9	7,4	8,9		

Database program bundles

z a tanoa o program zamanec					
	Oracle				
	Database	XAMPP	MYSQL		Weight
Ease of use	7	10	9		0,2
Available					
information	6	8	9		0,3
Functionality	8	9	10		0,5
	7,2	8,9	9,5		

5.2.4 DESIGN DRAWINGS:

Figure 3: Back end initial screen concept

Figure 4: Admin login screen concept

Figure 5: Incident display screen concept

5.2.5 BEHAVIOURAL MODELLING:

5.2.6 DESIGN IMPLEMENTATION:

Screenshots from backend program that has been made from the design drawings above.

Figure 6: Back end initial screen

Figure 7: Admin login screen

Figure 8: Incident display screen

5.2.7 SUB-SYSTEM TEST AND EVALUATION:

Action	Expected Results	√/x
Program started	Displays screen that cannot be exited can only navigate to admin login screen	√
Login Pressed	When button is pressed navigate to admin login screen	√
Incident occurs	If an incident occurs immediately open the incident window with no possibilities of closing it or going back	√
Admin check login button pressed	Checks if admin user credentials are correct before giving him access to the database	√
Admin Override pressed	Checks if admins override password is correct and if correct close incident	√
Password check pressed	If the password typed in is the users correct passcode close the incident	√