Probability Theory

February 3, 2019

1 Probability space

Definition: The 3-tuple (Ω, \mathcal{F}, P) is called a probability space, where

- 1. Ω is a set called the sample space.
- 2. \mathcal{F} is a σ -field.

Definition of \sigma-field: \mathcal{F} is a non-empty collection of subsets of Ω which satisfies

- (S1) $\Omega \in \mathcal{F}$.
- (S2) If $A \subseteq \Omega$ and $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- (S3) If each set in the collection $\{A_n; n \in \mathbb{N}\}$ belongs to \mathcal{F} , *i.e.*, $A_n \in \mathcal{F}$, $\forall n \in \mathbb{N}$ (not necessarily disjoint), then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Note that $A \subseteq \Omega$ is called \mathcal{F} -set if $A \in \mathcal{F}$.

3. P is a probability measure.

Definition of probability measure: $P: \mathcal{F} \to [0,1]$ is called a probability measure if it satisfies:

- (M1) $P(\Omega) = 1$ and $P(\emptyset) = 0$.
- (M2) If $\{A_n\}_{n\in\mathbb{N}}$ is a <u>disjoint collection</u> of \mathcal{F} -sets, *i.e.*, $A_k \cap A_j = \emptyset$, for $k \neq j$, then

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n). \tag{1}$$

This property is called the *countable additivity of the probability measure*.

Remark 1. A similar concept to countable additivity is the finite additivity which is defined as follows: If $\{A_i; 1 \leq i \leq n\}$ is a finite collection of disjoint \mathcal{F} -sets, then $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$. Note that countable

additivity implies finite additivity. Indeed, by considering the countable collection $\{B_i; i \in \mathbb{N}\}$, where $B_1 = A_1, \ldots, B_n = A_n$, and $B_k = \emptyset$, for k > n, the claim follows.

Lemma 1. If A and B are \mathcal{F} -sets with $A \subseteq B$, then $P(A) \leq P(B)$. Also, $P(B \setminus A) = P(B) - P(A).$

Proof. Note that since $A \subseteq B$, we have $B = A \cup (B \setminus A)$ and, A and $B \setminus A$ are disjoint. Now, by the finite additivity of P, we have

$$P(B) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0}$$

$$\Rightarrow P(B) \geq P(A).$$
(2)

$$\Rightarrow P(B) \ge P(A)$$
.

This proves the first part. The second part follows from Eq. (2).

Lemma 2. If A is an \mathcal{F} -set, then $P(A^c) = 1 - P(A)$.

Proof. Note that $A \cup A^c = \Omega$. Also, A and A^c are disjoint. Therefore by finite additivity property of P and M1, we have

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c).$$

Hence, the claim follows.

1.1 Limit of sets

Definition: (Liminf of a sequence of sets) Given a sequence of sets $\{A_n\}_{n\in\mathbb{N}}$, where $A_n \subseteq \Omega$, we define

$$\liminf_{n} A_n = \bigcup_{n} \cap_{k \ge n} A_k.$$
(3)

Definition: (Limsup of a sequence of sets) Given a sequence of sets $\{A_n\}_{n\in\mathbb{N}}$, where $A_n\subseteq\Omega$, we define

$$\limsup_{n} A_n = \bigcap_{n} \bigcup_{k \ge n} A_k.$$
(4)

Definition: (Limit of a sequence of sets) We say the limit of the sequence of sets $\{A_n\}_{n\in\mathbb{N}}$ exists if $\liminf_n A_n = \limsup_n A_n$ and the $\lim_n A_n$ is that common set.

We will consider specific sequences here

Monotonically increasing sequence of sets

Definition: A sequence $\{A_n\}_{n\in\mathbb{N}}$ is called monotonically increasing sequence if $A_n \subseteq A_{n+1}, \forall n \in \mathbb{N}$.

In this case, note that for $n \in \mathbb{N}$,

$$\bigcap_{k>n} A_k = A_n$$
, since $A_n \subseteq A_{n+1} \subseteq A_{n+2} \dots$

Therefore,

$$\liminf_{n} A_n = \cup_n \cap_{k \ge n} A_k = \cup_n A_n. \tag{5}$$

Note that for n > 1, since $A_1 \subseteq A_2 \cdots \subseteq A_{n-1} \subseteq A_n$, we have

$$\bigcup_{k=1}^{n} A_k = A_n \Rightarrow \bigcup_{k \ge n} A_k = \bigcup_{k \ge 1} A_k \tag{6}$$

Therefore,

$$\limsup_{n} A_n = \bigcap_{n} \bigcup_{k \ge n} A_k = \bigcap_{n} \bigcup_{k \ge 1} A_k = \bigcup_{k \ge 1} A_k. \tag{7}$$

Therefore, by the definition of $\lim_{n} A_n$, we have

$$\lim_{n} A_n = \cup_n A_n. \tag{8}$$

The next question is what happens to the probability of the monotonically increasing sets A_n when each A_n is an \mathcal{F} -set. Indeed, we are considering the real sequence $\{P(A_n)\}_{n\in\mathbb{N}}$. The real sequence $\{P(A_n)\}_{n\in\mathbb{N}}$ is bounded since $0 \leq P(A_n) \leq 1, \forall n \in \mathbb{N}$. Also since the set sequence $\{A_n\}_{n\in\mathbb{N}}$ is monotonically increasing, we have, for $n \in \mathbb{N}$,

$$A_{n+1} \supseteq A_n \Rightarrow P(A_{n+1}) \ge P(A_n)$$
, (follows from Lemma 1)

Therefore, the real sequence $\{P(A_n)\}_{n\in\mathbb{N}}$ is a monotonically increasing bounded sequence. Hence it should converge. But where does it converge to?

Theorem 1. If $\{A_n\}_{n\in\mathbb{N}}$ is a monotonically increasing sequence of \mathcal{F} -sets, then

$$\lim_{n \to \infty} P(A_n) = P(\lim_n A_n) = P(\cup_n A_n). \tag{9}$$

Proof. Let $A_0 = \emptyset$. Now set

$$B_1 := A_1 \setminus A_0;$$

$$B_2 := A_1 \setminus A_1;$$

$$\vdots$$

$$B_n := A_n \setminus A_{n-1};$$

$$\vdots$$

Now note that the set sequence $\{B_n\}_{n\in\mathbb{N}}$ is a disjoint sequence, *i.e.*, $B_i\cap B_j=\emptyset$, for $i\neq j$. Also,

$$\cup_n B_n = \cup_n A_n. \tag{10}$$

Therefore, from Eq. (10) and the fact that the set sequence $\{A_n\}_{n\in\mathbb{N}}$ is monotonically increasing, we have

$$\begin{split} P(\lim_n A_n) &= P(\cup_n A_n) = P(\cup_n B_n) \\ &= \sum_{n \in \mathbb{N}} P(B_n) \text{ (follows from M2)} \\ &= \lim_{n \to \infty} \sum_{i=1}^n P(B_i) \\ &= \lim_{n \to \infty} \sum_{i=1}^n P(A_i) - P(A_{i-1}) \text{ (follows from Lemma 1)} \\ &= \lim_{n \to \infty} P(A_n) - \underbrace{P(A_0)}_{=0} \\ &= \lim_{n \to \infty} P(A_n). \end{split}$$

1.1.2 Monotonically decreasing sequence of sets

Definition: A sequence $\{A_n\}_{n\in\mathbb{N}}$ is called *monotonically decreasing* sequence if $A_{n+1}\subseteq A_n, \, \forall n\in\mathbb{N}$.

In this case, note that for $n \in \mathbb{N}$,

$$\bigcup_{k > n} A_k = A_n$$
, since $A_n \supseteq A_{n+1} \supseteq A_{n+2} \dots$

Therefore,

$$\limsup_{n} A_n = \cap_n \cup_{k \ge n} A_k = \cap_n A_n. \tag{11}$$

Note that for n > 1, since $A_1 \supseteq A_2 \cdots \supseteq A_{n-1} \supseteq A_n$, we have

$$\bigcap_{k=1}^{n} A_k = A_n \Rightarrow \bigcap_{k \ge n} A_k = \bigcap_{k \ge 1} A_k \tag{12}$$

Therefore,

$$\liminf_{n} A_n = \bigcup_{n} \cap_{k \ge n} A_k = \bigcup_{n} \cap_{k \ge 1} A_k = \cap_{k \ge 1} A_k. \tag{13}$$

Therefore, by the definition of $\lim_{n} A_{n}$, we have

$$\lim_{n} A_n = \cap_n A_n. \tag{14}$$

What happens to the probability of the monotonically decreasing sets A_n when each A_n is an \mathcal{F} -set. Here also, the real sequence $\{P(A_n)\}_{n\in\mathbb{N}}$ is bounded since $0 \leq P(A_n) \leq 1$, $\forall n \in \mathbb{N}$. Also since the set sequence $\{A_n\}_{n\in\mathbb{N}}$ is monotonically decreasing, we have, for $n \in \mathbb{N}$,

$$A_{n+1} \subseteq A_n \Rightarrow P(A_{n+1}) \le P(A_n)$$
, (follows from Lemma 1)

Therefore, the real sequence $\{P(A_n)\}_{n\in\mathbb{N}}$ is a monotonically decreasing bounded sequence. Hence it should converge.

Theorem 2. If $\{A_n\}_{n\in\mathbb{N}}$ is a monotonically decreasing sequence of \mathcal{F} -sets, then

$$\lim_{n \to \infty} P(A_n) = P(\lim_n A_n) = P(\cap_n A_n). \tag{15}$$

Proof. Since $\{A_n\}_{n\in\mathbb{N}}$ is a monotonically decreasing sequence of \mathcal{F} -sets, we have $\{A_n^c\}_{n\in\mathbb{N}}$ to be a monotonically increasing sequence of \mathcal{F} -sets. This follows from S2.

Now from Theorem 1, we know that

$$\lim_{n \to \infty} P(A_n^c) = P(\lim_n A_n^c) = P(\cup_n A_n^c) \tag{16}$$

However, note that $\bigcup_n A_n^c = (\cap_n A_n)^c$. Therefore from Lemma 2 and Eq. (16), we have

$$\lim_{n \to \infty} 1 - P(A_n) = 1 - P(\cap_n A_n)$$

$$\Leftrightarrow 1 - \lim_{n \to \infty} P(A_n) = 1 - P(\cap_n A_n)$$

$$\Leftrightarrow \lim_{n \to \infty} P(A_n) = P(\cap_n A_n).$$

2 Random Variables

Notation: \mathbb{R}^* is the extended real line, *i.e.*,

$$\mathbb{R}^* = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}. \tag{17}$$

Definition: (Borel σ -field) The smallest σ -field on \mathbb{R}^* containing intervals. Recall that intervals are of the form (a,b),[a,b],[a,b),(a,b], where $a,b\in\mathbb{R}^*$ and $a\leq b$.

Remark 2. The definition is indeed well-defined. Note that given a collection C of subsets of \mathbb{R}^* , one can ask what is the smallest σ -field containing C. We denote such a sigma field as $\sigma(C)$. Indeed, one can obtain $\sigma(C)$ as follows. Consider the new collection $\mathcal{G} := \{\mathcal{H} \text{ s.t. } \mathcal{H} \text{ is a } \sigma\text{-field and } C \subseteq \mathcal{H}\}$. Note that this is a collection of σ -fields. Is \mathcal{G} non-empty? YES - since the power set of \mathbb{R}^* itself is a σ -field and it contains C. Hence the power set belongs to \mathcal{G} . Now it is easy to verify that

$$\sigma(C) = \cap_{\mathcal{H} \in \mathcal{G}} \mathcal{H}. \tag{18}$$

Definition: (Random variable) A function $X: \Omega \to \mathbb{R}^*$ is called a random variable (r.v.) if $X^{-1}(B) \in \mathcal{F}$, for every $B \in \mathcal{B}$. Here, $X^{-}(B)$ is defined as follows: for $B \subseteq \mathbb{R}^*$,

$$X^{-1}(B) := \{ \omega \in \Omega : X(w) \in B \}. \tag{19}$$