Machine Learning & Pattern Recognition

SONG Xuemeng

sxmustc@gmail.com

http://xuemeng.bitcron.com/

Review of Probability

- Probability
 - Axioms and properties
 - Conditional probability
 - Law of total probability
 - Bayes theorem
- Random Variables
 - Discrete
 - Continuous
- Random Vectors
- Gaussian Random Variables

Basics of Probability

Definitions (informal)

- **Probabilities** are numbers assigned to events that indicate "how likely" it is that the event will occur when a random experiment is performed.
- A probability law for a random experiment is a rule that assigns probabilities to the events in the experiment.
- The sample space S of a random experiment is the set of all possible outcomes.

Axioms of probability

- Axiom 1: $0 \le P[A]$
- Axiom 2: P(S) = 1
- Axiom 3: if $A_i \cap A_j = \emptyset$, then $P[A_i \cup A_j] = P[A_i] + P[A_j]$

Basics of Probability

$$\blacksquare \quad P[A^C] = 1 - P[A]$$

- \blacksquare $P[A] \leq 1$
- $\blacksquare \quad P[\emptyset] = 0$

- Given $\{A_1, A_2, ..., A_N\}$, if $\{A_i \cap A_j = \emptyset, \forall i, j\} \Rightarrow P[\bigcup_{k=1}^N A_k] = \sum_{k=1}^N P[A_k]$

- If $A_1 \subset A_2$, then $P[A_1] \leq P[A_2]$

Conditional Probability

If A and B are two events, the probability of event A when we already know that event B has occurred is defined by the relation

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \text{ for } P[B] > 0 \qquad \text{(product rule)}$$

- This conditional probability $P[A \cap B]$ is read:
 - "The conditional probability of A conditioned on B" or simply
 - "The probability of A given B"

Conditional Probability

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \text{ for } P[B] > 0$$

Interpretation

- The new evidence "B has occurred" has the following effects:
 - The original sample space S (the whole square) becomes B (the rightmost circle);
 - The event A becomes $A \cap B$.
- lacksquare P[B] simply re-normalizes the probability of events that occur jointly with B.

- Let $B_1, B_2, ..., B_N$ be mutually exclusive events whose union equals the sample space S. We refer to theses sets as a *partition* of S.
- An event A can be represented as:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \dots \cup B_N)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_N)$

- Let $B_1, B_2, ..., B_N$ be mutually exclusive events whose union equals the sample space S. We refer to theses sets as a *partition* of S.
- An event A can be represented as:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \dots \cup B_N)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_N)$

E.g., A: There is a traffic jam in Beijing.

 B_1 : It is a rainy day in Beijing.

 B_2 : It is not a rainy day in Beijing.

 $A \cap B_1$: There is a traffic jam on a rainy day in Beijing.

 $A \cap B_2$: There is a traffic jam on a non-rainy day in Beijing.

- Let $B_1, B_2, ..., B_N$ be mutually exclusive events whose union equals the sample space S. We refer to theses sets as a *partition* of S.
- An event A can be represented as:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \dots \cup B_N)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_N)$

E.g., A: A person is lying.

 B_1 : The person is a man.

 B_2 : The person is a woman.

 $A \cap B_1$: A man is lying.

 $A \cap B_2$: A woman is lying.

- Let $B_1, B_2, ..., B_N$ be mutually exclusive events whose union equals the sample space S. We refer to theses sets as a *partition* of S.
- An event A can be represented as:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \dots \cup B_N)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_N)$

E.g., A: The word "university" would appear in the document.

 B_1 : The document belongs to topic 1.

 B_2 : The document belongs to topic 2.

 B_N : The document belongs to topic N.

Assume that there are *N* topics in total and each document must belong to only one topic.

 $A \cap B_i$: The word "university" would appear in a document belongs to topic i.

- Let $B_1, B_2, ..., B_N$ be mutually exclusive events whose union equals the sample space S. We refer to theses sets as a *partition* of S.
- An event A can be represented as:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \dots \cup B_N)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_N)$

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + \dots + P[A \cap B_N]$$

$$= P[A|B_1]P[B_1] + \dots + P[A|B_1]P[B_N] = \sum_{k=1}^{N} P[A|B_k]P[B_k]$$

$$P[A] = \sum_{k=1}^{N} P[A|B_k]P[B_k]$$

E.g., A: The word "university" would appear in the document.

 B_1 : The document belongs to topic 1.

 B_2 : The document belongs to topic 2.

 B_N : The document belongs to topic N.

Assume that there are *N* topics in total and each document must belong to only one topic.

 $P[B_i]$: Probability that the document belongs to topic i.

 $P[A|B_i]$: Probability that the word "university" would appear if the document belongs to topic i.

P[A]: Probability that the word "university" would appear in the document.

Given $B_1, B_2, ..., B_N$, a partition of the sample space S. Suppose that event A occurs; what is the probability of event B_i ?

Given $B_1, B_2, ..., B_N$, a partition of the sample space S. Suppose that event A occurs; what is the probability of event B_i ?

$$P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^{N} P[A|B_k]P[B_k]}$$

$$P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

Assume that there are *N* topics in total and each document must belong to only one topic.

E.g., A: The word "university" would appear in the document.

 B_1 : The document belongs to topic 1.

 B_2 : The document belongs to topic 2.

:

 B_N : The document belongs to topic N.

$$P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

Assume that there are *N* topics in total and each document must belong to only one topic.

E.g., A: The word "university" would appear in the document.

 B_1 : The document belongs to topic 1.

 B_2 : The document belongs to topic 2.

:

 B_N : The document belongs to topic N.

If we know

• • •

 $P[B_i]$: Probability that the document belongs to topic i.

 $P[A|B_i]$: Probability that word "university" would appear if the document belongs to topic j.

$$P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

Assume that there are *N* topics in total and each document must belong to only one topic.

E.g., A: The word "university" would appear in the document.

 B_1 : The document belongs to topic 1.

 B_2 : The document belongs to topic 2.

:

 B_N : The document belongs to topic N.

If we know

•••

 $P[B_i]$: Probability that the document belongs to topic i.

 $P[A|B_j]$: Probability that word "university" would appear if the document belongs to topic j.

Then we can get... $P[B_j|A] = \text{wh}$

 $P[B_j|A] = \text{what is the meaning?}$

$$P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

Assume that there are *N* topics in total and each document must belong to only one topic.

E.g., A: The word "university" would appear in the document.

 B_1 : The document belongs to topic 1.

 B_2 : The document belongs to topic 2.

:

 B_N : The document belongs to topic N.

If we know

•••

 $P[B_i]$: Probability that the document belongs to topic i.

 $P[A|B_i]$: Probability that word "university" would appear if the document belongs to topic j.

Then we can get...

 $P[B_j|A] = \text{Probability that the document belongs to topic } j \text{ if word "university" appears in it.}$

Given $B_1, B_2, ..., B_N$, a partition of the sample space S. Suppose that event A occurs; what is the probability of event B_j ?

$$P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

- This is known as Bayes Theorem or Bayes Rule, one of the most useful relations in probability and statistics.
 - Bayes theorem is definitely the fundamental relation in statistical pattern recognition.

Rev. Thomas Bayes (1702-1761)

Exercise

Before I show you the color of one side of the card:

$$P(A) = P(B) = P(C) = \frac{1}{3}$$

After I show you the color of one side of the card which turns out to be RED, what can you infer about the card?

Q: Is the card more or equally likely to be C?

Exercise: An Intuitive Approach

$$P(red \cap A) = \frac{1}{3}$$

$$P(red \cap B) = 0 \qquad P(red) = 1/2$$

$$P(red \cap C) = \frac{1}{6}$$

$$P(red) = 1/2$$

$$P(A|red) = \frac{P(red \cap A)}{P(red)} = \frac{2}{3}$$

$$P(C|red) = \frac{P(red \cap C)}{P(red)} = \frac{1}{3}$$

$$P(C|red) = \frac{P(red \cap C)}{P(red)} = \frac{1}{3}$$

Exercise: Bayes Formulation

$$P(red|A) = 1$$

$$P(red|B) = 0$$

$$P(red|C) = \frac{1}{2}$$

$$P(red) = P(red|A)P(A) + P(red|B)P(B) + P(red|C)P(C) = \frac{1}{2}$$

$$P(A|red) = \frac{P(red|A)P(A)}{P(red)} = \frac{2}{3}$$

$$P(B|red) = \frac{P(red|B)P(B)}{P(red)} = 0$$

$$P(B|red) = \frac{P(red|B)P(B)}{P(red)} = 0 \qquad P(C|red) = \frac{P(red|C)P(C)}{P(red)} = \frac{1}{3}$$

When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome:
 - When sampling a population → Interested in their heights

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome:
 - When sampling a population → Interested in their heights
 - When rating the performance of two computers → Interested in the execution time of a benchmark

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome:
 - When sampling a population → Interested in their heights
 - When rating the performance of two computers → Interested in the execution time of a benchmark
 - When recognizing an intruder aircraft → Interested in the parameters that characterize its shape

- A random variable X is a function that assigns a real number $X(\zeta)$ to each outcome ζ in the sample space of a random experiment.
 - This function $X(\zeta)$ is performing a mapping from all the possible elements in the sample space onto the real line (real numbers).

- A random variable X is a function that assigns a real number $X(\zeta)$ to each outcome ζ in the sample space of a random experiment.
 - $lacksquare X(\cdot)$ is performing a mapping from all the possible elements in the sample space onto the real line (real numbers).

- The function *X* is fixed and deterministic
 - E.g, the rule "count the number of heads in three coin tosses".
 - The randomness the observed values is due to the underlying randomness of the argument ζ (the outcome of the experiment) of the function X

Two Types of Random Variables

- Discrete Random Variable
 - Has countable number of values
 - E.g., the resulting number of rolling a dice (any number from 1,2,3,4,5,6)
 - Probability distribution is defined by probability mass function (pmf) 概率质量函数

Two Types of Random Variables

Discrete Random Variable

- Has countable number of values
- E.g., the resulting number of rolling a dice (any number from 1,2,3,4,5,6)
- Probability distribution is defined by probability mass function (pmf) 概率质量函数

Continuous Random Variable

- Has values that are continuous
- E.g., the weight of an individual (any real number within the range of human weight)
- Probability distribution is defined by probability density function (pdf) 概率密度函数

Cumulative Distribution Function 累积

累积分布函数

The cumulative distribution function $F_X(\mathbf{x})$ of a random variable X is defined as the probability of the event $\{X \leq \mathbf{x}\}$

$$F_X(x) = P[X \le x]$$
 for $-\infty < x < +\infty$

CDF for continuous RV

- \bullet 0 \leq F_X(x) \leq 1
- $\lim_{x\to\infty} F_X(x) = 1, \quad \lim_{x\to-\infty} F_X(x) = 0$
- \blacksquare $F_X(a) \le F_X(b)$ if $a \le b$
- $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$

cdf for a person's weight

- $0 \le F_X(x) \le 1$
- \blacksquare $F_X(a) \le F_X(b)$ if $a \le b$
- $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$

$$P(a < X \le b) = F(b) - F(a)$$

$$0 \le F_X(x) \le 1$$

- $\lim_{x \to \infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0$
- \blacksquare $F_X(a) \le F_X(b)$ if $a \le b$
- $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$

$$P(a < X \le b) = F(b) - F(a)$$

P(a person's weight between 100 and 200) =?

$$\bullet$$
 0 \leq F_X(x) \leq 1

- \blacksquare $F_X(a) \le F_X(b)$ if $a \le b$
- $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$

$$P(a < X \le b) = F(b) - F(a)$$

P(a person's weight between 100 and 200) = F(200) - F(100)

Discrete RV: Probability Mass Function

 \blacksquare Given a discrete RV X, the probability mass function is defined as

$$P(a) = P(X = a)$$

Satisfies all axioms of probability

CDF satisfies

$$F_X(a) = P(X \le a) = \sum_{k \le a} P(X = k)$$

Continuous RV: Probability Density Function

Probability density function is the derivative of CDF,

$$f_{X}(x) = \frac{dF_{X}(x)}{dx}$$

CDF satisfies

$$F_{X}(a) = P(X \le a) = \int_{-\infty}^{a} f_{X}(x) dx$$

$$P(a < X \le b) = \int_{a}^{b} f_{X}(x) dx$$

General usage

Statistical Characterization of RVs

- The cdf or the pdf are SUFFICIENT to characterize a random variable.
- A random variable can be also PARTIALLY characterized by other measures:

Statistical Characterization of RVs

- The cdf or the pdf are SUFFICIENT to characterize a random variable.
- A random variable can be also **PARTIALLY** characterized by other measures:

Expectation
$$E[X] = \mu = \int_{-\infty}^{+\infty} x f_x(x) dx$$

Variance
$$VAR[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2 \int_{-\infty}^{+\infty} (x - \mu)^2 f_X(x) dx$$

Standard deviation
$$STD[X] = \sqrt{VAR[X]}$$

Statistical Characterization of RVs

 \blacksquare For two random variables X and Y,

Covariance
$$COV[X, Y] = E[\{X - E[X]\}\{Y - E[Y]\}] = E[XY] - E[X]E[Y]$$

The extent to which *X* and *Y* vary together.

$$|COV[X,Y]| \le \sqrt{VAR[X]VAR[Y]}$$

Cauchy–Schwarz inequality.

Variance
$$VAR[X + Y] = VAR[X] + VAR[Y] - COV[X, Y]$$

If X and Y are independent,
$$VAR[X + Y] = VAR[X] + VAR[Y]$$

Interpretation of The Correlation Coefficient ho

 \blacksquare Correlation coefficient ρ (normalized covariance)

$$\rho(X,Y) = \frac{COV[X,Y]}{\sqrt{VAR[X]VAR[Y]}}$$

- $\rho(X,Y)$ measures the strength and direction of the linear relationship between X and Y.
- If X and Y have non-zero variance, then $\rho(X,Y) \in [-1,1]$.
- Y is a linearly increasing function of X if and only if $\rho(X,Y)=1$
- Y is a linearly decreasing function of X if and only if $\rho(X,Y) = -1$
- X and Y are uncorrelated, if and only if $\rho(X,Y)=0$

Interpretation of The Correlation Coefficient ho

- \blacksquare Y is a linearly increasing function of X if and only if $\rho(X,Y)=1$
- Y is a linearly decreasing function of X if and only if $\rho(X,Y) = -1$
- \blacksquare X and Y are uncorrelated, if and only if $\rho(X,Y)=0$

Interpretation of The Correlation Coefficient ho

 \blacksquare Correlation coefficient ρ (normalized covariance)

$$\rho(X,Y) = \frac{COV[X,Y]}{\sqrt{VAR[X]VAR[Y]}}$$

- $\rho(X,Y)$ measures the strength and direction of the linear relationship between X and Y.
- If X and Y have non-zero variance, then $\rho(X,Y) \in [-1,1]$.
- Y is a linearly increasing function of X if and only if $\rho(X,Y)=1$
- Y is a linearly decreasing function of X if and only if $\rho(X,Y) = -1$
- X and Y are uncorrelated, if and only if $\rho(X,Y)=0$

Can you prove that for any two RV's X and Y, if $\rho(X,Y)=0$, then there must be no linear dependence between them (i.e., "uncorrelated"=="linearly independent")?

A function that assigns a **vector** of **real numbers** to each outcome ζ in the sample space S. (An **extension** of RV's.)

A function that assigns a vector of real numbers to each outcome ζ in the sample space S. (An extension of RV's.)

- The notions of cdf and pdf are replaced by "joint cdf" and "joint pdf".
- Given random vector, $\vec{\mathbf{X}} = [x_1, x_2, ..., x_N]^T$, we define,

A function that assigns a vector of real numbers to each outcome ζ in the sample space S. (An extension of RV's.)

- The notions of cdf and pdf are replaced by "joint cdf" and "joint pdf".
- Given random vector, $\vec{\mathbf{X}} = [x_1, x_2, ..., x_N]^T$, we define,

Joint cdf
$$F_{\vec{X}}(\vec{X}) = P_{\vec{X}}[\{X_1 \le X_1\} \cap \{X_2 \le X_2\} \cap \dots \cap \{X_N \le X_N\}]$$

Joint pdf
$$f_{\vec{X}}(\vec{X}) = \frac{\partial^{N} F_{\vec{X}}(X)}{\partial X_{1} \partial X_{2} ... \partial X_{N}}$$

- Marginal pdf: the pdf of a subset of all the random vector dimensions
 - Can be obtained by integrating out the variables that are not interest.

E.g., for a two-dimensional random vector $\vec{\mathbf{X}} = [x_1, x_2]^T$, where we have the joint pdf $f_{x_1x_2}(x_1x_2)$, then the marginal pdf of x_1 ,

$$f_{x_1}(x_1) = \int_{x_2 = -\infty}^{x_2 = +\infty} f_{x_1 x_2}(x_1 x_2) dx_2$$

Statistical Characterization of Random Vectors

- A random vector can be fully characterized by its joint cdf or joint pdf
- Alternatively, we can partially describe a random vector with measures as follows.

Mean vector
$$E[X] = [E[X_1], E[X_2], ..., E[X_N]]^T = [\mu_1 \mu_2 ... \mu_N] = \mu$$

Covariance matrix

$$COV[X] = \Sigma = E[(X - \mu)(X - \mu)^{T}]$$

$$= \begin{bmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] \dots E[(X_{1} - \mu_{1})(X_{N} - \mu_{N})] \\ \vdots \\ E[(X_{N} - \mu_{N})(X_{1} - \mu_{1})] \dots E[(X_{N} - \mu_{N})(X_{N} - \mu_{N})] \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} \dots \sigma_{1N} \\ \vdots \\ \sigma_{N1} \dots \sigma_{N}^{2} \end{bmatrix}$$

Statistical Characterization of Random Vectors

- A rar
- Alter

Mean

ollows.

Covariance matrix

$$COV[X] = \Sigma = E[(X - \mu)(X - \mu)^{T}]$$

$$= \begin{bmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] \dots E[(X_{1} - \mu_{1})(X_{N} - \mu_{N})] \\ \vdots \\ E[(X_{N} - \mu_{N})(X_{1} - \mu_{1})] \dots E[(X_{N} - \mu_{N})(X_{N} - \mu_{N})] \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} \dots \sigma_{1N} \\ \vdots \\ \sigma_{N1}^{2} \dots \sigma_{N}^{2} \end{bmatrix}$$

■ The covariance matrix indicates the tendency of each pair of dimensions (features) in a random vector to vary together, i.e., to co-vary.

Important Properties

- If x_i and x_k tend to increase together, then $c_{ik} > 0$
- If x_i tends to decrease when x_k increases, then $c_{ik} < 0$
- If x_i and x_k are uncorrelated, then $c_{ik} = 0$
- $|c_{ik}| \le \sigma_i \sigma_k$, where σ_i is the standard deviation of x_i
- $c_{ii} = \sigma_i^2 = VAR(x_i)$
- Symmetric: $c_{ji} = c_{ij}$

■ The covariance matrix indicates the tendency of each pair of dimensions (features) in a random vector to vary together, i.e., to co-vary.

Important Properties

- If x_i and x_k tend to increase together, then $c_{ik} > 0$
- If x_i tends to decrease when x_k increases, then $c_{ik} < 0$
- If x_i and x_k are uncorrelated, then $c_{ik} = 0$
- $|c_{ik}| \le \sigma_i \sigma_k$, where σ_i is the standard deviation of x_i
- $c_{ii} = \sigma_i^2 = VAR(x_i)$
- Symmetric: $c_{ji} = c_{ij}$
- Positive semi-definite:
 - Eigenvalues are nonnegative
 - Determinant is nonnegative, $|C| \ge 0$

Covariance Matrix: Quiz

■ You are given the heights and weights of a certain set of individuals in unknown units. Which one of the following four matrices is the most likely to be the sampled covariance matrix?

(a)
$$\begin{bmatrix} 1.232 & 0.867 \\ -0.867 & 2.791 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1.232 & -0.867 \\ -0.867 & 2.791 \end{bmatrix}$ (c) $\begin{bmatrix} 1.232 & 0.867 \\ 0.867 & 2.791 \end{bmatrix}$ (d) $\begin{bmatrix} 1.232 & 3.307 \\ 3.307 & 2.791 \end{bmatrix}$

Covariance Matrix: Quiz

You are given the heights and weights of a certain set of individuals in unknown units. Which one of the following four matrices is the most likely to be the sampled covariance matrix?

(a)
$$\begin{bmatrix} 1.232 & 0.867 \\ -0.867 & 2.791 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1.232 & -0.867 \\ -0.867 & 2.791 \end{bmatrix}$ (c) $\begin{bmatrix} 1.232 & 0.867 \\ 0.867 & 2.791 \end{bmatrix}$ (d) $\begin{bmatrix} 1.232 & 3.307 \\ 3.307 & 2.791 \end{bmatrix}$

- Uncorrelation VS. Independence
 - Two random variables x_i and x_j are uncorrelated (linearly independent) if $E[x_ix_k] = E[x_i]E[x_k]$, i.e., $\rho(x_i, x_k) = 0$
 - Two random variables x_i and x_j are independent if $P(x_i \cap x_k) = P(x_i)P(x_k)$.
 - The joint pdf factorizes into the product of the factors (marginal), one involving only x_i and one involving only x_k .

- Uncorrelation VS. Independence
 - Two random variables x_i and x_j are uncorrelated (linearly independent) if $E[x_ix_k] = E[x_i]E[x_k]$, i.e., $\rho(x_i, x_k) = 0$
 - Two random variables x_i and x_j are independent if $P(x_i \cap x_k) = P(x_i)P(x_k)$.
 - The joint pdf factorizes into the product of the factors (marginal), one involving only x_i and one involving only x_k .

- One is based on probability while the other one based on expectation.
- Two variables that are independent have zero covariance (uncorrelated).
- Two variables that have $\rho(x_i, x_k) \neq 0$ are dependent.
- For two variables $\rho(x_i, x_k) = 0$, there must be no linear dependence between them.

Uncorrelation VS. Independence

- Two random variables x_i and x_j are uncorrelated (linearly independent) if $E[x_ix_k] = E[x_i]E[x_k]$, i.e., $\rho(x_i,x_k) = 0$
- Two random variables x_i and x_j are independent if $P(x_i \cap x_k) = P(x_i)P(x_k)$.
 - The joint pdf factorizes into the product of the factors (marginal), one involving only x_i and one involving only x_k .

- Independence is a stronger requirement than $\rho(x_i, x_k) = 0$, as independence also excludes nonlinear relationship.
- It is possible for two variables x_i and x_k are dependent with $\rho(x_i, x_k) = 0$.

Uncorrelation VS. Independence

- Two random variables x_i and x_j are uncorrelated (linearly independent) if $E[x_ix_k] = E[x_i]E[x_k]$, i.e., $\rho(x_i, x_k) = 0$
- Two random variables x_i and x_j are independent if $P(x_i \cap x_k) = P(x_i)P(x_k)$.
 - The joint pdf factorizes into the product of the factors (marginal), one involving only x_i and one involving only x_k .

- Independence is a stronger requirement than $\rho(x_i, x_k) = 0$, as independence also excludes nonlinear relationship.
- It is possible for two variables x_i and x_k are dependent with $\rho(x_i, x_k) = 0$.
- E.g., suppose $Y = X^2$. Clearly, X and Y are not independent, as Y is completely determined by X. However, COV(X,Y) = 0.

- Uncorrelation VS. Independence
 - Uncorrelated (linearly independent): $E[x_ix_k] = E[x_i]E[x_k]$
 - Independent : $P[x_i \cap x_k] = P[x_i]P[x_k]$.

- Uncorrelation VS. Independence
 - Uncorrelated (linearly independent): $E[x_i x_k] = E[x_i]E[x_k]$
 - Independent : $P[x_i \cap x_k] = P[x_i]P[x_k]$.

The Normal or Gaussian Distribution of a RV

Deutsche Mark

Image				Description		Date of		
Obverse	Reverse	Dimensions	Main Color	Obverse	Reverse	First Printing	Issue	Withdrawal
A731519856 A731519856 A731519856	Field Devecto Mark	122×62 mm	Yellowish Green	Bettina von Arnim	Brandenburg Gate	1/8/1991	27/10/1992	31/12/2001
G664144931.3 WWW. HICHMAN 100 100 100 100 100 100 100 100 100 10	Zohn Deutsche Mork	130×65 mm	Blue Violet	Carl Friedrich Gauss	Sextant	2/1/1989	16/4/1991	31/12/2001
CENTRAL CONTROL ENGINEER CONTROL CONTR	20 Zwanzing Doubleton Mark	138×68 mm	Bluish Green	Annette von Droste-Hülshoff	A quill pen and a beech-tree	1/8/1991	20/3/1992	31/12/2001
AKG0000087#3 WMM HOGENS OFFI KG005087Y3	Note that the second of the se	146×71 mm	Yellowish Brown	Balthasar Neumann	Partial view of the Würzburg Residence	2/1/1989	30/9/1991	31/12/2001
AD5203416U6 NOOI AD5203416U6 AD5203416U6	Harden Measure	154×74 mm	Dark Blue	Clara Schumann	Grand Piano	2/1/1989	1/10/1990	31/12/2001

The Norma

GN4480100S8

Frankfurt am Main 1. September 1999

Finding Deutsche Mark	146×71 mm	Yellowish Brown	Balthasar Neumann	Partial view of the Würzburg Residence	2/1/1989	30/9/1991	31/12/2001	
Mandada Mesk	154×74 mm	Dark Blue	Clara Schumann	Grand Piano	2/1/1989	1/10/1990	31/12/2001	

Brief History

- In 1738, de Moivre published in the second edition of his "The Doctrine of Chances" the study of the coefficients in the binomial expansion of $(a + b)^n$.
- In 1774, <u>Laplace</u> first posed the problem of aggregating several observations... and first calculated the value of the integral $\int e^{-t^2} dt = \sqrt{\pi}$ in 1782...
- In 1809 <u>Gauss</u> published his monograph "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" where he introduces several important statistical concepts, such as the <u>method of least squares</u>, the <u>method of maximum likelihood</u>, and the normal distribution.
- In 1809 an American mathematician Adrain published two derivations of the normal probability law, simultaneously and independently from Gauss.
- In the middle of the 19th century <u>Maxwell</u> demonstrated that the normal distribution is not just a convenient mathematical tool, but may also occur in natural phenomena: "The number of particles whose velocity....

Brief History

• In 1738, de Moivre published in Chances" the study of the coefficients in the bi

lions...

stium

 In 1774, <u>Laplace</u> first posed the problem of agg and first calculated the value of the integral ∫ e

• In 1809 <u>Gauss</u> published his monograph "Theoria motus coin sectionibus conicis solem ambientium" where he important statistical concepts, such as the <u>method of least</u> the <u>method of maximum likelihood</u>, and the normal distribution.

 In 1809 an American mathematician <u>Adrain</u> published two derivation normal probability law, simultaneously and independently from Gauss

• In the middle of the 19th century <u>Maxwell</u> demonstrated that the normal distribution is not just a convenient mathematical tool, but may also occur in natural phenomena: "The number of particles whose velocity....

The Normal or Gaussian Distribution of a RV

Probability density function:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right]$$

- μ = mean (or expected value) of x
- σ^2 = expected squared deviation or variance

The Normal or Gaussian Distribution of a RV

How long does the flight from Sydney to Los Angeles take?

- $\blacksquare \qquad \mu = 14.5 \text{ hours}$
- $\sigma = 0.5$ hours

- Motivation example: monitoring machines in a data center.
- If we model the variables x_1 and x_2 separately.

- Motivation example: monitoring machines in a data center.
- If we model the variables x_1 and x_2 separately.

- Motivation example: monitoring machines in a data center.
- If we model the variables x_1 and x_2 separately.

- Motivation example: monitoring machines in a data center.
- If we model the variables x_1 and x_2 separately.

- Motivation example: monitoring machines in a data center.
- If we model the variables x_1 and x_2 separately.

Probability density function:

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

- **Mean vector**: μ Covariance matrix: Σ
- Mahalanobis distance: $\sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$

Probability density function:

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

- **Mean vector**: μ Covariance matrix: Σ
- Mahalanobis distance: $\sqrt{(x \mu)^T \Sigma^{-1} (x \mu)}$
 - \checkmark Represents the distance of the test point x from the mean μ .
 - ✓ If $\Sigma = I$, Mahalanobis distance \leftrightarrow Euclidean distance.

Mahalanobis Distance: $\sqrt{(\chi - \mu)^T \Sigma^{-1} (\chi - \mu)}$

Points of equal Mahalanobis distance to the mean lie on an ellipse.

Euclidean Distance: $\sqrt{(x-\mu)^T(x-\mu)}$

Points of equal Euclidean distance to the mean lie on a circle.

Independent Gaussian Models

 $x = [x_1 \ x_2]$

■ Special Case: Assume that x_1 and x_2 are independent.

$$p(x_1) = \frac{1}{\sqrt{2\pi}\sigma_1} exp\left[-\frac{1}{2}(\frac{x_1 - \mu_1}{\sigma_1})^2\right] \qquad p(x_2) = \frac{1}{\sqrt{2\pi}\sigma_2} exp\left[-\frac{1}{2}(\frac{x_2 - \mu_2}{\sigma_2})^2\right]$$

$$p(x_1)p(x_2) = \frac{1}{2\pi\sigma_1\sigma_2} exp\left[\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$
$$\boldsymbol{\mu} = [\mu_1 \ \mu_2] \qquad \boldsymbol{\Sigma} = diag(\sigma_1^2, \sigma_2^2)$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.6 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 1 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$

Affine Transformation of Multivariate Gaussian

Theorem: If Y = AX + b is an affine transformation of $X \sim N(\mu, \Sigma)$, where $A \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^{M}$, then $Y \sim N(A\mu + b, A\Sigma A^{T})$.

We would not prove this. JUST REMEMBER.

If $X \sim N(\mu, \Sigma)$, $X \in \mathbb{R}^N$, then

- > Q1: What would the marginal pdf of multivariate Gaussian like?
 - E.g., $(X_1, X_2, X_4)^T \sim ?$
- > Q2: What would the conditional pdf of multivariate Gaussian like?
 - E.g., $(X_1|X_2=x_2)\sim$?

Marginal Pdf of the Multivariate Gaussian

Marginal pdf of the multivariate Gaussian is also Gaussian.

E.g., If $X = [x_1, x_2] \sim$ Gaussian, then $x_1 \sim$ Gaussian and $x_2 \sim$ Gaussian.

Marginal Pdf of the Multivariate Gaussian

Theorem: If Y = AX + b is an affine transformation of $X \sim N(\mu, \Sigma)$, where $A \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^{M}$, then $Y \sim N(A\mu + b, A\Sigma A^{T})$.

Given $X \in \mathbb{R}^N$, let us see the marginal pdf of $(X_1, X_2, X_4)^T$ (a subset of the X_i 's). Use the following A:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{3 \times N}$$
 which extracts the desired elements directly!!!

Applying the above **Theorem**, we can say...

If $X \sim N(\mu, \Sigma)$, then any subset of the X_i 's has a marginal distribution that is also multivariate normal.

Conditional Pdf of the Multivariate Gaussian

Conditional pdf of the multivariate Gaussian is also Gaussian.

E.g., If
$$X = [X_1, X_2] \sim$$
 Gaussian, then., $(X_1 | X_2 = x_2) \sim$ Gaussian

Conditional Pdf of the Multivariate Gaussian

Theorem: Let $X \in \mathbb{R}^N$, $X \sim N(\mu, \Sigma)$. We do the partition as follows.

$$m{X} = egin{bmatrix} m{X}_1 \ m{X}_2 \end{bmatrix}$$
, where $m{X}_1 \in \mathbb{R}^q$ and $m{X}_2 \in \mathbb{R}^{N-q}$.

Accordingly,

$$m{\mu} = egin{bmatrix} m{\mu}_1 \ m{\mu}_2 \end{bmatrix}, \quad m{\Sigma} = egin{bmatrix} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{bmatrix}$$

Then we have $(X_1|X_2=a)\sim N(\overline{\mu},\overline{\Sigma})$, where

$$\overline{\mu} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\alpha - \mu_2), \quad \overline{\Sigma} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Conditional Pdf of the Multivariate Gaussian

Theorem: Let $X \in \mathbb{R}^N$, $X \sim N(\mu, \Sigma)$. We do the partition as follows.

$$m{X} = egin{bmatrix} m{X}_1 \\ m{X}_2 \end{bmatrix}$$
, where $m{X}_1 \in \mathbb{R}^q$ and $m{X}_2 \in \mathbb{R}^{N-q}$.

Accordingly,

$$m{\mu} = egin{bmatrix} m{\mu}_1 \ m{\mu}_2 \end{bmatrix}, \quad m{\Sigma} = egin{bmatrix} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{bmatrix}$$

Then we have $(X_1|X_2=a){\sim}N(\overline{\mu},\overline{\Sigma})$, where

$$\overline{\mu} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\alpha - \mu_2), \quad \overline{\Sigma} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

$$p(x) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} exp \left[-\frac{1}{2} (x - \mu)^T \mathbf{\Sigma}^{-1} (x - \mu) \right]$$

Write the eigen-decomposition for $\mathbf{\Sigma} = V \mathbf{\Lambda} V^T$

$$\mathbf{\Sigma} = \begin{bmatrix} \uparrow & \uparrow & \\ \boldsymbol{v_1} & \boldsymbol{v_2} & \dots \end{bmatrix} \begin{bmatrix} \lambda_1 & \\ & \lambda_2 & \\ & \ddots & \end{bmatrix} \begin{bmatrix} \leftarrow \boldsymbol{v_1^T} \rightarrow \\ \leftarrow \boldsymbol{v_2^T} \rightarrow \\ \vdots & \end{bmatrix}$$

V is orthonormal (i.e., $VV^T = I$)

Then we do the following transformation $y = V^T x$

$$p(x) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} exp \left[-\frac{1}{2} (x - \mu)^T \mathbf{\Sigma}^{-1} (x - \mu) \right]$$

Write the eigen-decomposition for $\mathbf{\Sigma} = V \mathbf{\Lambda} V^T$

$$\mathbf{\Sigma} = \begin{bmatrix} \uparrow & \uparrow & \\ \boldsymbol{v_1} & \boldsymbol{v_2} & \dots \end{bmatrix} \begin{bmatrix} \lambda_1 & \\ & \lambda_2 & \\ & & \ddots \end{bmatrix} \begin{bmatrix} \leftarrow \boldsymbol{v_1^T} \rightarrow \\ \leftarrow \boldsymbol{v_2^T} \rightarrow \\ \vdots \end{bmatrix}$$

V is orthonormal (i.e., $VV^T = I$)

Then we do the following transformation $y = V^T x$ Then p(y) = ?

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right] \qquad \mathbf{\Sigma} = \begin{bmatrix} \uparrow & \uparrow & \\ v_1 & v_2 & \dots \end{bmatrix} \begin{bmatrix} \lambda_1 & \\ & \lambda_2 & \\ & & \ddots \end{bmatrix} \begin{bmatrix} \leftarrow v_1^T \rightarrow \\ \leftarrow v_2^T \rightarrow \\ \vdots \end{bmatrix}$$

$$p(\mathbf{y}) = \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi\lambda_i}} exp \left[-\frac{\left(y_i - \mu_{y_i}\right)^2}{2\lambda_i} \right]$$

- Remember: matrix ↔ linear transformation.
- y: before the transformation of V. (x: after)
- \triangleright Eigenvectors of Σ are the principle directions.
- Eigenvalues are the variances.

The Central Limit Theorem

- If $(X_1, X_2, ..., X_n)$ are independent and identically distributed (i.e., iid) continuous variables
- Define $Z = f(X_1, X_2, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$
- As $n \to \text{infinity}$, $p(Z) \to \text{Gaussian with mean } E[X_i]$ and variance $Var[X_i]/n$
- This explains the ubiquity (everywhere) of the normal probability distribution.

The Central Limit Theorem

Flip the coin

$$p(X=1)=p; \ p(X=0)=1-p$$
 Bernoulli distribution
$$p(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$$
 Binomial distribution

Z: the average number of heads.

The Central Limit Theorem

 $p(X=1)=p; \ p(X=0)=1-p$ Bernoulli distribution $p(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$ Binomial distribution

Flip the coin

Z: the average (sum) number of heads.

Why Gaussian

Analytical tractability

- \triangleright (μ, Σ) are sufficient to uniquely characterize the distribution.
- \triangleright If (Gaussian) x_i 's are mutually uncorrelated, then they are independent.
- The marginal and conditional densities are also Gaussian.
- Any linear transformation of any N jointly Gaussian RV's results in N RV's also Gaussian (affine transformation Theorem)

Ubiquity-Frequently observed

Central limit theorem (Many distributions we wish to model are truly close to being normal distributions.

Summary

Bayesian Rule

$$ightharpoonup P[B_j|A] = \frac{P[B_j \cap A]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

Covariance Matrix

- \triangleright $COV[X] = \Sigma = E[(X \mu)(X \mu)^T]$
- Symmetric and Positive semi-definite

Uncorrelation VS. Independence

- \triangleright Uncorrelated (linearly independent): $E[x_i x_k] = E[x_i]E[x_k]$
- ➤ Independent : $P[x_i \cap x_k] = P[x_i]P[x_k]$.

■ Multivariate Gaussian

- μ = mean vector, Σ = covariance matrix
- Geometry of the Gaussian
 - \checkmark Eigenvectors of Σ are the principle directions.
 - ✓ Eigenvalues are the variances.

■ The Central Limit Theorem

