Create and use custom devices in ZEN Blue using the Arduino microcontroller

 How to leverage the full potential of ZEN Blue and 3rd party image processing (or hardware) in your image processing and analysis workflows (and image acquisition)

Usual choices for development of home-made custom devices

- Write a new software from scratch
- Labview
- Matlab (ScanImage)
- Micro-Manager
- Proprietary software (eg ZEN)

Lumalum, a root imaging robot

with Hélène Javot and Michel Philibert (CEA)

Open Source Microscopy Software

java com layer mm bsh mm plugin ij macros

• •

Simplifying MM device interaction


```
run("MM MacroExtensions");
for (i = 0; i < 50; i = i+2)
  Ext.moveRelativeXYZ(0,0,i);
  Ext.snap();
run ("Images to Stack");
run ("EDF Easy", "quality='0' topology='1");
```

MM design model

https://micro-manager.org/wiki/Micro-Manager%20Project %20Overview

Zeiss MTB design model

1.1 Components of the MTB2011

Carl Zeiss MicroToolbox 2011

Elements of device interaction

The Zeiss *.mtb device model & Micro Tool Box Configuration


```
▼<MTB2004Export Version="2.7.0.5">
 V<MTBConfiguration Name="New Configuration1" MyChildId="0">
    > < Device Class="MTBCtrlDevice, MTBKernel" Name="Wega.Stand" External="false"
     PortType="None" PortNo="1" PortBaudAddr="57600" RTSCTS="false" CanNode="25"
      MyChildId="1">...</Device>
    ▶ < Device Class="MTBCtrlElectronicModuleDeviceREO, MTBKernelREO"
      Name="Wega_Gateway_V16.EMS3" External="false" PortType="USB" PortNo="4111"
      PortBaudAddr="" RTSCTS="false" CANConnection="" CanNode="40" MyChildId="11600">...
      </Device>
     ▼ < Device Class = "MTBCtrlDeviceSycop3, MTBKernelWEGA" Name = "Wega.Main" External = "false"
      PortType="USB" PortNo="4111" PortBaudAddr="" RTSCTS="false" CanNode="25" MyChildId="0">
       <SimulationMode>true</SimulationMode>
       <SimulationClass>ZEISS.MTB.Simulation.MTBSimDeviceWegaMain/SimulationClass>
       <TechReport>ReportWegaMain</TechReport>
      ▼<Components>
        ▼ < Component Class = "MTBCtrlMicroscopeManagerSycop3, MTBKernelREO"
         Name="REO.MicroscopeManager" MTBId="MTBMicroscopeManager" CANId="00"
         MyChildId="11024">
           <LightManagerModes>Off</LightManagerModes>
         </Component>
       </Components>
      </Device>
    ▶ < Device Class="MTBCtrlOpticsDeviceWEGA, MTBKernelWEGA" Name="Wega.OpticsDevice mot"
      External="false" PortType="USB" PortNo="4111" PortBaudAddr="" RTSCTS="false"
      CanNode="32" MyChildId="0">...</Device>
    ▶ <Device Class="MTBCtrlFocusDeviceREO, MTBKernelREO" Name="Wega.FocusDevice mot"
      External="false" PortType="USB" PortNo="4111" PortBaudAddr="" RTSCTS="false"
      CanNode="36" CANConnection=" MyChildId="11500">...</Device>
     ▶ <Device Class="MTBCtrlOpticsDeviceREO, MTBKernelREO" Name="Wega.FLTube mot"
      External="false" PortType="USB" PortNo="4111" PortBaudAddr="" RTSCTS="false"
      CanNode="102" CANConnection="" MyChildId="11502">...</Device>
      <Device Active="false" Name="ApoTome.none" MyChildId="11604"/>
     ▶ < Device Class="MTBCtrlCan29HXP120Device, MTBKernelCan29Changers" Name="HXP120.Device"
      External="false" PortType="USB" PortNo="4099" PortBaudAddr="" RTSCTS="false"
      CANConnection=" CanNode="54" MyChildId="11601">...</Device>
      <Device Active="false" Name="Stage.none" MyChildId="11602"/>
      <Device Active="false" Name="Incubation.AtmoTemp none" MyChildId="14000"/>
      <Device Active="false" Name="Incubation.FlowTemp none" MyChildId="14001"/>
      <Device Active="false" Name="Linkam.none" DisplayName="No Linkam Heating Stage"</pre>
      DisplayName-de="Kein Linkam Heiztisch" MyChildId="9914"/>
      <Device Active="false" Name="IOCard.NoIOCard" DisplayName="No IOCard" DisplayName=</pre>
      de="Keine IO-Karte" External="true" PortType="RS232" PortNo="2" PortBaudAddr="9600"
      RTSCTS="true" MyChildId="25100"/>
      <Device Active="false" Name="NoFilterWheelsShutters" DisplayName="No Filter Wheels and</pre>
      Shutters DisplayName-de= Keine Filterräder und Verschlüsse External= "true"
      PortType="RS232" PortNo="2" PortBaudAddr="9600" RTSCTS="true" MyChildId="30050"/>
    </Devices>
  </MTBConfiguration>
 </MTB2004Export>
```

J.Mutterer, MIAP OAD workshop, Freiburg

Chosen device: Sutter Lambda 10-3

Emulating the Sutter protocol

https://www.sutter.com/manuals/LB10-3_OpMan.pdf https://www.arduino.cc/ https://www.eltima.com/products/serial-port-monitor/

MTB connection test

102	26/07/2019 12:23:46	IRP_MJ_CREATE	DOWN			C:\Program File		COM2
103	26/07/2019 12:23:46	IRP_MJ_CREATE	UP	STATUS_SUCCESS		C:\Program File		COM2
104	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_BAUD_RATE)	DOWN					COM2
105	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_BAUD_RATE)	UP	STATUS_SUCCESS	80 25 00 00	€%	4	COM2
106	26/07/2019 12:23:46	<pre>IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_LINE_CONTROL)</pre>	DOWN					COM2
107	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_LINE_CONTROL)	UP	STATUS_SUCCESS	00 00 08		3	COM2
108	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_CHARS)	DOWN					COM2
109	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_CHARS)	UP	STATUS_SUCCESS	00 00 00 00 11		6	COM2
110	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_HANDFLOW)	DOWN					COM2
111	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_GET_HANDFLOW)	UP	STATUS_SUCCESS	01 00 00 00 40	@dd	16	COM2
112	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_BAUD_RATE)	DOWN		80 25 00 00	€%	4	COM2
113	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_BAUD_RATE)	UP	STATUS_SUCCESS				COM2
114	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_RTS)	DOWN					COM2
115	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_RTS)	UP	STATUS_SUCCESS				COM2
116	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_DTR)	DOWN					COM2
117	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_DTR)	UP	STATUS_SUCCESS				COM2
118	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_LINE_CONTROL)	DOWN		00 00 08	***	3	COM2
119	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_LINE_CONTROL)	UP	STATUS_SUCCESS				COM2
120	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_CHARS)	DOWN		00 00 00 00 11		6	COM2
121	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_CHARS)	UP	STATUS_SUCCESS				COM2
122	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_HANDFLOW)	DOWN		01 00 00 00 40	@dd	16	COM2
123	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_HANDFLOW)	UP	STATUS_SUCCESS				COM2
124	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_TIMEOUTS)	DOWN		e8 03 00 00 00	èè	20	COM2
125	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_TIMEOUTS)	UP	STATUS_SUCCESS				COM2
126	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_QUEUE_SIZE)	DOWN		e8 03 00 00 e8	èè	8	COM2
127	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_QUEUE_SIZE)	UP	STATUS_SUCCESS				COM2
128	26/07/2019 12:23:46	IRP_MJ_READ	_ DOWN		1_		1	_COM2
129	26/07/2019 12:23:46	IRP_MJ_WRITE	UP	STATUS_SUCCESS	ee	ì	1	COM2
130	26/07/2019 12:23:46	IRP_MJ_WRITE	UP	STATUS_SUCCESS	ee	ì	1	COM2

Protocol standard: not standard

		18.60
Transfer to	238	Puts controller on-line
On Line	EE	
	11101110	

5.6.2 Command Transmission Protocol

The Lambda 10-3 does not use any of the standard protocols commonly used for serial line or USB communications between computers or between a computer and a peripheral device. The Lambda 10-3 controller, however, does generate a primitive form of protocol of which control software running on the remote computer can, and should, make use. This protocol consists of two main components: "confirmation command echo" and "command completion indicator". This command transmission protocol is used in the same manner for RS-232 serial port, USB, and parallel port connections.

5.6.2.1 Confirmation Command Echo

When the host computer sends a command to the Lambda 10-3, each byte received is immediately echoed back to the host computer. This echoing back of each sent byte is a confirmation that the byte has been received and will be acted upon shortly. A short period after the last byte of a command has been echoed back, the Lambda 10-3 sends a confirmation byte (described next) that indicates the operation associated with the command completed.

5.6.2.2 Command Completion Indicator

When the Lambda 10-3 completes the operation associated with the command it has just received, it transmits back to the host computer a byte value of 13 decimal (0D hexadecimal, 00001101 binary). This byte value corresponds to an ASCII carriage return (often abbreviated as "CR").

```
ZEN SUTTERLAMBDA10 3.ino §
byte cmd ;
void setup() {
  Serial.begin(9600);
  pinMode(13, OUTPUT);
  digitalWrite(13,LOW);
void loop()
  if (Serial.available()) {
    cmd = Serial.read();
    processCommand(cmd);
void processCommand(byte s) {
  if (s==0xee) {
   Serial.write(s); // echo ONLINE cmd
   Serial.write(0x0d);
```

Configuration command **0xFD**: simple echo not enough

127	26/07/2019 12:23:46	IRP_MJ_DEVICE_CONTROL (IOCTL_SERIAL_SET_QUEUE_SIZE)	UP	STATUS_SUCCESS					COM2
128	26/07/2019 12:23:46	IRP_MJ_READ	DOWN					1	COM2
129	26/07/2019 12:23:46	IRP_MJ_WRITE	DOWN		ee	ì	1	1	COM2
130	26/07/2019 12:23:46	IRP_MJ_WRITE	UP	STATUS_SUCCESS	ee	ì	1		COM2
131	26/07/2019 12:23:46	IRP_M3_READ	UP	STATUS_SUCCESS	ee	ì	1		COM2
132	26/07/2019 12:23:46	IRP_MJ_READ	DOWN					1	COM2
133	26/07/2019 12:23:46	IRP_MJ_READ	UP	STATUS_SUCCESS	0d		1		COM2
134	26/07/2019 12:23:46	IRP_MJ_READ	DOWN					1	COM2
135	26/07/2019 12:23:47	IRP_MJ_READ	UP	STATUS_TIMEOUT					COM2
136	26/07/2019 12:23:47	IRP_MJ_READ	DOWN					1	COM2
137	26/07/2019 12:23:47	IRP_MJ_WRITE	DOWN		fd	ý	1	1	COM2
138	26/07/2019 12:23:47	IRP_MJ_WRITE	UP	STATUS_SUCCESS	fd	ý	1		COM2
139	26/07/2019 12:23:47	IRP_MJ_READ	UP	STATUS_SUCCESS	fd	ý	1		COM2
140	26/07/2019 12:23:47	IRP_M3_READ	DOWN					1	COM2
141	26/07/2019 12:23:47	IRP_M3_READ	UP	STATUS_SUCCESS	0d		1		COM2
142	26/07/2019 12:23:47	IRP_MJ_READ	DOWN					1	COM2
143	26/07/2019 12:23:47	IRP_M3_READ	UP	STATUS_TIMEOUT					COM2
144	26/07/2019 12:23:47	IRP_M3_READ	DOWN					1	COM2

Just the model (10-3) is enough for MTB test check, but not for ZEN! x

Fully functional reply to configuration command **0xFD**

5.4.9 Get Controller Type and Configuration

This command is used to obtain information about the controller as to its model and configuration. The following table shows the type of information returned when issuing this command.

Table 5-8. "Get Controller Type and Configuration" command return codes and data.

Total	Description						
Num.	Category	Num	Possible Values				
Bytes		Byte s	ASCII String	Meaning			
	Controller Type	4	10-3	Lambda 10-3			
			WA-25	25mm			
		5	WA-32	32mm			
	Trile - Mile - 1 A Trans		WA-HS	High Speed			
	Filter Wheel A Type		WA-BD	Belt Driver			
			WA-NC	Not Connected			
			WA-ER	Error			
	Filter Wheel B Type	5	WB-25	25mm			
			WB-32	32mm			
			WB-HS	High Speed			
			WB-BD	Belt Driver			
29			WB-NC	Not Connected			
			WB-ER	Error			
	÷	5	WB-25	25mm			
			WB-32	32mm			
	Filton Whool C Tomo		WB-HS	High Speed			
	Filter Wheel C Type		WB-BD	Belt Driver			
			WB-NC	Not Connected			
		8	WB-ER	Error			
	Chutton A Tomo	5	SA-IQ	SmartShutter			
	Shutter A Type	5	SA-VS	Vincent Shutter			
	Chuttan D Tyme	5	SB-IQ	SmartShutter			
	Shutter B Type	5	SA-VS	Vincent Shutter			

```
void processCommand(byte s) {
  if (s == 0xee) {
    Serial.write(s); // echo ONLINE cmd
    Serial.write(0x0d):
  } else if (s == 0xfd) {
    Serial.write(s); // echo CONFIG cmd
    Serial.print("10-3WA-BDWB-NCWC-NCSA-VSSB-VS");
    Serial.write(0x0d);
                Filter Wheels and Shutters(Lambda 10-3)
                🨭 Filterwheel A
                   No Filterwheel B
                   No Filterwheel C
                   No Shutter B
```

Full reply to the status command **0xCC**

5.4.2 Status

The Status command is used to return information about the filter wheel state (if installed) and the state of one or two shutters (if, and as, installed). The following table describes the type of data and information returned by the Status command.

Table 5-7	Ctatue	command	eatures.	and	ac and	dota
Table 3-7.	Status	command	ICLUIII	CUU	es anu	uata.

Order	Num. Category of Category (Decimal, bytes binary)		Description		
1	1	Command echo		204 CC 11001100	The Status command byte code echoed back.
2	1		Filter Wheel (Bit 7): 0		
		Wheel A Speed and byte: 0 – 121 S		Speed (Bits 6, 5, & 4): 0 – 7.	
		Status	1 OSITION	00 – 79 00000000 – 01111001 *	Position (Bits 3, 2, 1, & 0): 0 -9

10,		1	8 8	01111001	1
5	1	Shutter A open/- closed	Open	170 AA 10101010	Shutter A is in the open state.
		state	Open state is conditional	171 AB 10101011	The open state of Shutter A is conditional upon the movement of the Filter Wheel A.
			Closed	172 AC 10101100	Shutter A is in the closed state.

```
void processCommand(byte s) {
  if (s == 0xee) {
    Serial.write(s); // echo ONLINE cmd
    Serial.write(0x0d);
  } else if (s == 0xfd) {
    Serial.write(s); // echo CONFIG cmd
    Serial.print("10-3WA-BDWB-NCWC-NCSA-VSSB-VS");
    Serial.write(0x0d);
    Serial.flush();
  } else if (s == 0xcc) {
    Serial.write(s);
                          // echo STATUS cmd
    Serial.write(0x00):
                          // FWA
    Serial.write(0x80);
                          // FWB
    Serial.write(0xfc);
                          // FWC
    Serial.write(0x00);
    Serial.write(0xac):
                          // SA closed
    Serial.write(0xbc):
                          // SB closed
    Serial.write(0xdc);
                          // SA SmartShutter Fast mode
    Serial.write(0x01):
    Serial.write(0xdc):
                          // SB SmartShutter Fast mode
    Serial.write(0x02);
    Serial.write(0x0d);
                          // confirmation
    Serial.flush();
                          J.Mutterer, MIAP OAD workshop, Freiburg
```

Functional Shutter


```
DOWN
                                                             COM
      STATUS_SUCCESS
                                                             COM2
UP
      STATUS_SUCCESS
                                                             COM2
DOWN
                                                             COM
      STATUS_SUCCESS
UP
                                                             COM
DOWN
                                                             COM
UP
      STATUS_TIMEOUT
                                                             COM2
DOWN
                                                             COM
DOWN
                                                             COM
      STATUS_SUCCESS
                                                             COM2
UP
      STATUS_SUCCESS
                                                             COM2
                                                             COM
DOWN
                                                             COM2
UP
      STATUS_SUCCESS
```


Construction of the objective support

er, MIAP OAD workshop, Freiburg

Levels of Zen Blue 2.3 integration # Experiment Feedback ✓ Show All Edit Feedback Script... ■ Microscope Control ✓ Show All Select script runtime conditions 50x Free Run Favorites Configure... Script runs freely → Analysis → HD Writing Acquisition 100% Came... Test Camera Script Run* Test Camer... 100% Obse... Macro Editor Closed none ApoTome Closed 0 % File Edit Record Debug Help 5x / 0.16 User Documents New Macro Record Debug Step Over Run 👼 demo toulouse ■ Macro-01 demo toulouse (8) Macro-02 Macro-02 import time def leds(name,t): led.Load(name) Bright Field 0 % Zen.Devices.ApplyHardwareSetting(led) 6 time.sleep(t) led = ZenHardwareSetting() Microscope...TL Vert Closed ApoTome P... leds("on",0) leds("blue",1) leds("white",2)

leds("red",1)
leds("off",0)

burg

Link to this presentation:

https://docs.google.com/presentation/d/1BIDqrpJWmzF-OCsNnKX5SfcnYt5UuXP2ksjkCaLP0ZQ/edit ?usp=sharing

Link to the github repository with example code for emulated devices:

https://github.com/mutterer/MM_CustomArduino