Math 341: Midterm 2

Daniel Ko

Spring 2020

§1

Let

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} e \\ f \end{pmatrix}$$
 (1)

a. Suppose that $a \neq 0$, compute the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ using row reduction and provide the conditions on a, b, c, d such that your computations are valid. Express the result as a simplified expression. (**Hint:** recall that you can not divide by zero)

Proof. We perform reduced row echelon form (rref) on the augmented matrix

$$(A|b) = \begin{bmatrix} a & b & | & e \\ c & d & | & f \end{bmatrix}$$

$$R_2 \leftarrow R_2 - \frac{c}{a}R_1 \begin{bmatrix} a & b & | & e \\ 0 & d - \frac{cb}{a} & | & f - \frac{ce}{a} \end{bmatrix}$$

$$\begin{bmatrix} a & b & | & e \\ 0 & \frac{ad-cb}{a} & | & \frac{af-ce}{a} \end{bmatrix}$$

$$R_2 \leftarrow \frac{a}{ad-cb}R_2 \quad \text{Assuming that } ab-cd \neq 0 \quad \begin{bmatrix} a & b & | & e \\ 0 & 1 & \frac{af-ce}{ad-cb} \end{bmatrix}$$

$$R_1 \leftarrow R_1 - bR_2 \begin{bmatrix} a & 0 & | & e - b\frac{af-ce}{ad-cb} \\ 0 & 1 & \frac{af-ce}{ad-cb} \end{bmatrix}$$

$$R_1 \leftarrow \frac{R_1}{a} \begin{bmatrix} 1 & 0 & | & \frac{1}{a}(e-b\frac{af-ce}{ad-cb}) \\ 0 & 1 & \frac{af-ce}{ad-cb} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & \frac{de-bf}{ad-cb} \\ 0 & 1 & | & \frac{af-ce}{ad-cb} \end{bmatrix}$$

 $x = \begin{bmatrix} \frac{de - bf}{ad - cb} \\ \frac{af - ce}{ad - cb} \end{bmatrix} \quad \text{where } ad - cb \neq 0$

b. If a=0, and $c\neq 0$, is your above computation still valid? How would you modify it? (explain briefly) (**Hint:** recall that you can swap the equations and the result is the same)

Proof. If a=0, and $c\neq 0$, then the above computation will not be valid as we divided by a multiple times when we computed the rref. I would swap the first and second rows so that it would look like

 $\left[\begin{array}{c|c} c & d & f \\ 0 & b & e \end{array}\right]$

1

and compute the rref, assuming that $b \neq 0$. We obtain the rref,

$$\left[\begin{array}{cc|c} 1 & 0 & \frac{bf-de}{bc} \\ 0 & 1 & \frac{e}{b} \end{array}\right]$$

c. If a = 0, c = 0, but $b \neq 0$, $d \neq 0$, what are the conditions on e and f such that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution? Is the solution unique? (**Hint:** recall that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} can be written as a linear combination of the columns of \mathbf{A})

Proof. If a = 0, c = 0, $b \neq 0$, $d \neq 0$, we get the augmented matrix

$$\left[\begin{array}{cc|c} 0 & b & e \\ 0 & d & f \end{array}\right]$$

Performing row reduction,

$$\left[\begin{array}{cc|c} 0 & 1 & \frac{e}{b} \\ 0 & 1 & \frac{f}{d} \end{array}\right]$$

So the condition of the solution is,

$$x_2 = \frac{e}{b} = \frac{f}{d}$$

Thus, there exists a infinite amount of solution.

d. Solve the system

$$\begin{bmatrix} \sqrt{2} & 3\sqrt{2} \\ 2\sqrt{2} & \sqrt{2} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5\sqrt{2} \\ 5\sqrt{2} \end{pmatrix}. \tag{2}$$

(Hint: You may want to use the formula you just deduced)

Proof.

$$x_{1} = \frac{de - bf}{ad - cb}$$

$$= \frac{\sqrt{2}(5\sqrt{2}) - 3\sqrt{2}(5\sqrt{2})}{\sqrt{2}\sqrt{2} - 3\sqrt{2}(2\sqrt{2})}$$

$$= \frac{10 - 30}{2 - 12}$$

$$= \frac{-20}{-10}$$

$$= 2$$

$$x_2 = \frac{\sqrt{2}(5\sqrt{2}) - 2\sqrt{2}(5\sqrt{2})}{\sqrt{2}\sqrt{2} - 3\sqrt{2}(2\sqrt{2})}$$
$$= \frac{10 - 20}{-10}$$
$$= 1$$

§2

Let

$$\mathbf{A} = \begin{bmatrix} 0 & -\alpha & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 3 \\ -2 & -2 & 4 & 2\alpha \\ 0 & \alpha & -1 & 2\alpha + 1/2 \end{bmatrix}, \quad \text{and } \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 2 + \alpha \\ 2\beta + \alpha - 2 \end{bmatrix}$$
(3)

What are the conditions on α and β such that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$:

a. Has no solution?

Proof. We begin by putting the augmented matrix $(\mathbf{A}|\mathbf{b})$ in its reduced form.

$$(\mathbf{A}|\mathbf{b}) = \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 2 & 2 & 2 & 3 & 4 \\ -2 & -2 & 4 & 2\alpha & 2\beta + \alpha - 2 \end{bmatrix}$$

$$R_5 \leftarrow R_5 + R_1 \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 2 & 2 & 2 & 3 & 4 \\ -2 & -2 & 4 & 2\alpha & 2 + \alpha \\ 0 & \alpha & -1 & 2\alpha + 1/2 & 2\beta + \alpha - 2 \end{bmatrix}$$

$$R_5 \leftarrow R_5 + R_1 \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 2 & 2 & 2 & 3 & 4 \\ -2 & -2 & 4 & 2\alpha & 2 + \alpha \\ 0 & 0 & 1 & 2\alpha + 1/2 & 2\beta + \alpha \end{bmatrix}$$

$$R_3 \leftarrow R_3 - 2R_2 \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ -2 & -2 & 4 & 2\alpha & 2 + \alpha \\ 0 & 0 & 1 & 2\alpha + 1/2 & 2\beta + \alpha \end{bmatrix}$$

$$R_4 \leftarrow R_4 + 2R_2 \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2\alpha + 2 & 4 + \alpha \\ 0 & 0 & 1 & 2\alpha + 1/2 & 2\beta + \alpha \end{bmatrix}$$

$$R_4 \leftarrow R_4 - 2R_3, R_5 \leftarrow R_5 - \frac{1}{2}R_3 \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 2\alpha & 2\beta + \alpha + 1 \end{bmatrix}$$

$$R_5 \leftarrow R_5 - R_4 \begin{bmatrix} 0 & -\alpha & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\beta - 1 \end{bmatrix}$$

$$R_1 \leftrightarrow R_2 \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & -\alpha & 2 & 0 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 2\alpha & \alpha \\ 0 & 0 & 0 & 0 & 0 & 2\beta - 1 \end{bmatrix}$$

Thus this system will have no solution if $2\beta - 1 \neq 0$, which is when $\beta \neq \frac{1}{2}$. expain more...

b. Has an unique solution? Find the solution. (**Hint:** you will need to row reduce the augmented system to echelon form, and then use the theorems seen in class to impose the conditions on α and β).

Proof. Combining Theorem 3.10 and the corollary to Theorem 4.7, we get that a system has a unique solution if and only if $\det(\mathbf{A}) \neq 0$. The determinant of an upper triangular matrix is the product of its diagonal entries by property 4 of determinants in section 4.4. Using this fact we can compute the condition of α as such that

$$1*-\alpha*2*2\alpha \neq 0$$
$$-4\alpha^2 \neq 0$$
$$\alpha \neq 0$$

and from (a), $\beta = \frac{1}{2}$. Combining these two conditions we get the following system,

$$\begin{bmatrix}
1 & 1 & 0 & 1 & | & 1 \\
0 & -\alpha & 2 & 0 & | & 2 \\
0 & 0 & 2 & 1 & | & 2 \\
0 & 0 & 0 & 2\alpha & | & \alpha \\
0 & 0 & 0 & 0 & | & 0
\end{bmatrix}$$

By performing back substitution we compute the generic solution as

$$x = \begin{bmatrix} \frac{1}{2} + \frac{1}{2\alpha} \\ -\frac{1}{2\alpha} \\ \frac{3}{4} \\ \frac{1}{2} \end{bmatrix}$$

c. Has infinite amount of solutions? Find the solution set in parametric form. (**Hint:** You may have one equations for α and one for β that have to be satisfied simultaneously).

Proof. Having an infinite amount of solutions is by definition another way of saying that a system that is consistent and that the solutions are not unique. A system is consistent if and only if $rank(\mathbf{A}) = rank(\mathbf{A}|\mathbf{b})$ by Theorem 3.11. If $det(\mathbf{A}) = 0$, the solution, if it exists, is not unique by Theorem 3.10 and the corollary to Theorem 4.7.

Using this fact we can compute the condition of α as such that

$$1*-\alpha*2*2\alpha = 0$$
$$-4\alpha^2 = 0$$
$$\alpha = 0$$

Given that $\alpha=0$, and that $\beta=\frac{1}{2}$ from part (a) we get the following system,

$$\left[\begin{array}{ccc|cccc}
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 2 & 0 & 2 \\
0 & 0 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

It is clear that $rank(\mathbf{A}) = rank(\mathbf{A}|\mathbf{b})$ because **b** is a linear combination of the second and third column from **A**. Hence, this system is consistent.

4

By performing back substitution we compute the generic solution as

$$x = \begin{bmatrix} \gamma \\ 1 - \gamma \\ 1 \\ 0 \end{bmatrix}$$

where $\gamma \in \mathbb{R}$.

§3

Let $A \in M_{n \times n}(F)$, for a field F. We want to prove that $rank(A^2) - rank(A^3) \le rank(A) - rank(A^2)$. The solution to this exercise requires the notion of quotient spaces. Even though you should already be familiar with quotient spaces we will prove a few properties that will be useful.

Let W be a subspace of a vector space V over a field F. For any $v \in V$ the set $\{v\} + W = \{v + w : w \in W\}$ is called the coset of W containing v. It is customary to denote this coset by v + W rather than $\{v\} + W$. Following this notation we write $V/W = \{v + W : v \in V\}$, which is usually called the quotient space V module W. Addition and scalar multiplication by scalars can be defined in the collection V/W as follows:

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

for all $v_1, v_2 \in V$ and

$$a(v+W) = av + W$$

for all $v \in V$ and $a \in F$

a. Prove that $v_1 + W = v_2 + W$ if and only if $v_1 - v_2 \in W$. (**Hint**: recall that $v_1 + W$ is a set, thus you need to prove equality between sets)

Proof.

i.
$$v_1+W=v_2+W\Rightarrow v_1-v_2\in W$$

If $v_1+W=v_2+W$, then $\exists w_1,w_2\in W$ such that $v_1+w_1=v_2+w_2$
 $v_1-v_2=w_2-w_1$
Since, $w_2-w_1\in W$ (clourse under addition)
Therefore, $v_1-v_2\in W$

ii.
$$v_1 - v_2 \in W \Rightarrow v_1 + W = v_2 + W$$

This means $v_1 - v_2 = w$ where $w \in W$ (*)
Now let $x \in v_1 + W$

By definition, $\exists w_x \in W$ such that $x = v_1 + w_x$

By
$$(*)$$
 $v_1 = v_2 + w$

So,
$$x = v_2 + w + w_x$$

Since, $w + w_x \in W$ (closure under addition)

We have $x \in v_2 + W$

So,
$$v_1 + W \subseteq v_2 + W$$

Without loss of generality, we can show $v_2 + W \subseteq v_1 + W$

Therefore, $v_1 + W = v_2 + W$

Therefore,
$$v_1 + W = v_2 + W$$
 if and only if $v_1 - v_2 \in W$

b. Show that V/W with the operations defined above is a linear vector space.

VS 1: For all x, y in V/W, x + y = y + x (commutativity of addition)

Proof. Let $x = v_x + W$, $y = v_y + W$ where v_x , $v_y \in V$.

$$x + y = (v_x + W) + (v_y + W)$$

$$= (v_x + v_y) + W$$

$$= (v_y + v_x) + W$$

$$= (v_y + W) + (v_x + W)$$

$$= v + x$$

VS 2: For all x, y, z in V/W, (x + y) + z = x + (y + z) (associativity of addition)

Proof. Let $x = v_x + W$, $y = v_y + W$, $z = v_z + W$, where v_x , v_y , $v_z \in V$.

$$(x + y) + z = ((v_x + W) + (v_y + W)) + (v_z + W)$$

$$= ((v_x + v_y) + W) + (v_z + W)$$

$$= (v_y + v_x + v_z) + W$$

$$= (v_x + W) + ((v_y + v_z) + W)$$

$$= (v_x + W) + ((v_y + W) + (v_z + W))$$

$$= x + (y + z)$$

VS 3: There exists an element in V/W denoted by 0 such that x + 0 = x for each x in V/W

Proof. Let $x = v_x + W$ where $v_x \in V$. Let the zero vector in V/W be defined as 0 + W, where $0 \in V$.

$$x + (0 + W) = (v_x + W) + (0 + W)$$

$$= (v_x + 0) + W$$

$$= v_x + W$$

$$= x$$

§4