Corrigé - Colle 6 (Sujet 1)

BCPST1B Année 2021-2022

9 novembre 2021

Exercice 1. Simplifier l'expression suivante :

$$\sum_{k=1}^{n} \ln \left(1 + \frac{1}{k} \right) .$$

Solution de l'exercice 1. C'est une somme télescopique. On a

$$\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) = \sum_{k=1}^{n} \ln\left(\frac{1+k}{k}\right) = \sum_{k=1}^{n} \ln\left(k+1\right) - \ln(k) = \ln(n+1) - \ln(1) = \ln(n+1) .$$

Exercice 2. Soient

- 1. Montrer que tout réel x, f(x) > 0.
- 2. Montrer que la composée $f \circ g$ est bien définie sur \mathbb{R}_+^* et calculer $(f \circ g)(x)$ pour tout x > 0.
- 3. De même, montrer que la composée $g \circ f$ est bien définie sur \mathbb{R} et calculer $(f \circ g)(x)$ pour tout $x \in \mathbb{R}$.
- 4. Que peut-on en conclure?

Solution de l'exercice 2. 1. On a

$$f(x) > 0 \Leftrightarrow \sqrt{x^2 + 1} > x \Leftrightarrow x^2 + 1 > x^2 \Leftrightarrow 1 > 0$$

ce qui est bien sûr vraie pour tout $x \in \mathbb{R}$. Ainsi, f(x) > 0 pour tout $x \in \mathbb{R}$.

2. $f \circ g$ est bien définie lorsque pour tout $x \in \mathbb{R}_+^*$ puisque f est définie sur \mathbb{R} et g est bien définie sur \mathbb{R}^* et donc sur \mathbb{R}_+^* . De plus,

$$(f \circ g)(x) = f(g(x)) = \sqrt{\left(\frac{1-x^2}{2x}\right)^2 + 1} - \frac{1-x^2}{2x} = \sqrt{\frac{1-2x^2+x^4}{4x^2} + 1} - \frac{1-x^2}{2x}.$$

Après calcul, on arrive à

$$(f\circ g)(x) = \sqrt{\frac{1+2x^2+x^4}{4x^2}} - \frac{1-x^2}{2x} = \sqrt{\frac{(1+x^2)^2}{4x^2}} - \frac{1-x^2}{2x}.$$

Or, $\sqrt{(1+x^2)^2} = |(1+x^2)^2| = (1+x^2)^2$ car $(1+x^2)^2 \ge 0$ et de plus, puisque $x \in \mathbb{R}_+^*$, $\sqrt{4x^2} = |2x| = 2x$. Ainsi, on a finalement,

$$(f \circ g)(x) = \frac{1+x^2}{2x} - \frac{1-x^2}{2x} = x.$$

3. La composée $g \circ f$ est définie sur \mathbb{R} car f est définie sur \mathbb{R} , f(x) > 0 pour tout $x \in \mathbb{R}$ et g est bien définie sur \mathbb{R}^* et donc sur \mathbb{R}^*_+ . De plus,

$$(g \circ f)(x) = g(f(x)) = \frac{1 - (\sqrt{x^2 + 1} - x)^2}{2(\sqrt{x^2 + 1} - x)} = \frac{1 - (x^2 + 1 - 2x\sqrt{x^2 + 1} + x^2)}{2(\sqrt{x^2 + 1} - x)}.$$

Après calcul, on arrive à

$$(g \circ f)(x) = \frac{1 - x^2 - 1 + 2x\sqrt{x^2 + 1} - x^2}{2(\sqrt{x^2 + 1} - x)} = \frac{2x(\sqrt{x^2 + 1} - x)}{2(\sqrt{x^2 + 1} - x)} = x.$$

4. On a montré que

$$f \circ g : \mathbb{R}_{+}^{\star} \to \mathbb{R}_{+}^{\star}$$
 et $g \circ f : \mathbb{R} \to \mathbb{R}$. $x \mapsto x$

Autrement dit,

$$f \circ g = Id_{\mathbb{R}^*_{\perp}}$$
 et $g \circ f = Id_{\mathbb{R}}$.

On peut en déduire que l'on a en réalité montré que f et g sont des applications réciproques l'une de l'autre.

- **Exercice 3.** 1. Soit $f: E \to F$ et $A \subset F$. Montrer que $A \subset f^{-1}(f(A))$. Trouver un contreexemple pour l'autre inclusion. Que peut-on dire si f est de plus injective?
 - 2. Soit $f: E \to F$ et $A \subset F$. Montrer que $f^{-1}(f(A)) \subset A$. Trouver un contre-exemple pour l'autre inclusion. Que peut-on dire si f est de plus surjective?
- Solution de l'exercice 3. 1. (a) Soit $x \in A$. Alors, $x \in f^{-1}(f(A))$ équivaut à $f(x) \in f(A)$. Or $f(x) \in f(A)$ puisque $x \in A$ donc on a bien $A \subset f^{-1}(f(A))$.
 - (b) Donnons un contre-exemple lorsque f n'est pas injective. On peut choisir $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(x)$. Pour $A = [0, 2\pi]$ on a f(A) = [-1, 1] et $f^{-1}f(A) = \mathbb{R}$. Donc $f^{-1}(f(A))$ n'est pas inclu dans A.
 - (c) Supposons que f est injective. Soit $x \in f^{-1}(f(A))$. Alors, $f(x) \in f(A)$. Donc il existe $x' \in A$ tel que f(x) = f(x'). Par injectivité de f, on a donc x = x'. D'où $x \in A$ et $f^{-1}(f(A)) \subset A$. Ainsi, lorsque f est injective on a $f^{-1}(f(A)) = A$.

- 2. (a) Si $y \in f(f^{-1}(A))$ alors il existe $x \in f^{-1}(A)$ tel que y = f(x). $x \in f^{-1}(A)$ donc $f(x) \in A$ d'où $y \in A$ donc on a bien $f(f^{-1}(A)) \subset A$.
 - (b) Donnons un contre-exemple lorsque f n'est pas surjective. On peut choisir $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(x)$. Pour $A = [1, +\infty[$ on a $f^{-1}(A) = \{2k\pi, \ k \in \mathbb{Z}\}$ et $f(f^{-1}(A)) = \{1\}$. Donc A n'est pas inclu dans $f(f^{-1}(A))$.
 - (c) Supposons que f est surjective. Soit $y \in A$. Alors, comme $y \in F$, il existe $x \in E$ tel que y = f(x) par surjectivité de f. Pour montrer que $y \in f(f^{-1}(A))$ il reste à prouver que $x \in f^{-1}(A)$ c'est-à-dire que $f(x) \in A$. Or $f(x) = y \in A$ donc on a bien $A \subset f(f^{-1}(A))$. Ainsi, lorsque f est surjective on a donc $f(f^{-1}(A)) = A$.

Exercice 4. Soit $n \in \mathbb{N}$. On note

$$a_n = \sum_{k=1}^n k$$
 , $b_n = \sum_{k=1}^n k^2$ et $c_n = \sum_{k=1}^n k^3$.

On admet que

$$a_n = \frac{n(n+1)}{2}$$
 , $b_n = \frac{n(n+1)(2n+1)}{6}$ et $c_n = a_n^2$.

Calculer

$$\sum_{1 \le i \le i \le n} ij \quad \text{ et } \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \min(i,j).$$

Solution de l'exercice 4. 1. On a

$$\sum_{1 \leq i \leq i \leq n} ij = \sum_{j=1}^{n} j \left(\sum_{i=1}^{n} i \right)$$

$$= \sum_{j=1}^{n} j a_{j}$$

$$= \sum_{j=1}^{n} j \frac{j(j+1)}{2}$$

$$= \frac{1}{2} \sum_{j=1}^{n} j^{3} + j^{2}$$

$$= \frac{b_{n} + c_{n}}{2}$$

$$= \frac{n(n+1)(n+2)(3n+1)}{24}.$$

2. Posons, pour i fixé, $S_i = \sum_{j=1}^n \min(i,j)$ et commençons par calculer la valeur de S_i . Alors, on a

$$S_i = \sum_{i=1}^n j + \sum_{j=i+1}^n i = \frac{i(i+1)}{2} + (n-i)i = \left(n + \frac{1}{2}\right)i - \frac{i^2}{2}.$$

On en déduit

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j) = \sum_{i=1}^{n} S_i$$

$$= \sum_{i=1}^{n} \left(n + \frac{1}{2} \right) i - \frac{i^2}{2}$$

$$= \left(n + \frac{1}{2} \right) \frac{n(n+1)}{2} - \frac{n(n+1)(2n+1)}{12}$$

$$= \frac{n(n+1)(2n+1)}{6}.$$