Exame Época Normal 2014

1. Suponha que X={1,2,3,,16} é uma variável aleatória Nestas condições assinale <u>as opções verdadeiras:</u>
a)
\Box $H(X) = 4$
$\checkmark H(X) \le 4$
\Box $H(X) \ge 0$
nenhuma das anteriores
correcção do prof: $H(X) \le 4$ e $H(X) \ge 0$
Edit: Penso que é correto afirmar que H(X) >= 0 também é verdadeiro.
$H(x) \le \log 2(16) = 4$
b)
$\Box H(X,X) = H(X)$
$\checkmark H(X,X) = H(X) + H(X)$
$\Box H(X,X) = H(X) + H(X X)$
nenhuma das anteriores
correcção do prof: $H(X,X) = H(X)$ e $H(X,X) = H(X)+H(X X)$
H(x,y) = H(x) + H(y), se os acontecimentos forem independentes
c)
$\checkmark I(X;X) = 0$
$\Box I(X;X) = H(X X)$
$\Box I(X;X) = H(X)$
nenhuma das anteriores
correcção do prof: $I(X;X) = H(X)$
Como os acontecimentos são independentes então I(X;Y) = 0
d)
Suponha agora que $Y(X)$ é um processo que para cada X produz duas cópias de X . Nestas circunstâncias, assinale as opções verdadeiras:
i.)
H(X Y)= 0
$\Box H(X Y)=H(Y)$
\Box H(X Y)=H(X,Y)

✓ nenhuma das anteriores

```
correcção do prof: H(X|Y)= 0
```

Supostamente deveria ser H(X|Y)=H(X,Y)-H(Y)

ii.)

- \Box H(X,Y)=H(X)+H(Y)
- \Box H(X,Y)=H(Y)
- \checkmark H(X,Y)=H(X)+H(Y|X)
- nenhuma das anteriores

correcção do prof: H(X,Y)=H(Y) e H(X,Y)=H(X)+H(Y|X)

$$H(Y|X)=H(X,Y) - H(X) \Leftrightarrow H(X,Y) = H(X) + H(Y|X)$$

iii.)

- \Box I(X;Y) = 0
- \checkmark I(X;Y) = H(X)-H(X|Y)
- \Box I(X;Y) = H(X)
- nenhuma das anteriores

correcção do prof:
$$I(X;Y) = H(X)-H(X|Y)$$
 e $I(X;Y) = H(X)$

Fórmula de Informação Mútua

iv.)

- □ H(X)>H(Y)
- □ H(Y)=0
- \Box H(X,Y)=H(X)
- ✓ nenhuma das anteriores

correcção do prof:H(X,Y)=H(X)

Nenhuma das anteriores está correcta

2. A fonte num canal de comunicação ruidoso é uma variável aleatória X pertencente ao dicionário {a,b,c,d}. A saída deste canal é a variável aleatória Y pertencente ao mesmo

	x = a	x = b	x = c	x = d
y = a	<u>1</u> 8	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
y = b	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$	0
y = c	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{16}$	0
y = d	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{16}$	0

dicionário. A distribuição de probabilidades conjunta é a que se apresenta na tabela seguinte:

Nestas circunstâncias assinale as opções verdadeiras:

- a)
 - ☐ H(X)=2.275 bits
 - \Box H(X)=3.375 bits
 - \Box H(X)=1.750 bits
 - ✓ nenhuma das anteriores

$$H(X) = 2 bits$$

- b)
- \Box H(Y)=2 bits
- ☐ H(Y)=3.375 bits
- ☐ H(Y)=2.750 bits
- ✓ nenhuma das anteriores

$$H(Y) = 1.75 \text{ bits}$$

- c)
- \Box H(Y|X)= 2 bits
- \Box H(Y|X)= 1.625 bits
- \Box H(Y|X)= 0 bits
- ✓ nenhuma das anteriores

$$H(Y|X) = H(X,Y) - H(X) = 1.375, H(X,Y) = 3.375$$

- d)
- ✓ I(X;Y) = 0.375
- \Box I(X;Y) = 1.750
- \Box I(X;Y) = 1.625
- nenhuma das anteriores

$$I(X;Y) = H(Y) - H(Y|X) = 0.375$$

3. Para cada uma das alíneas indique se o código de prefixo apresentado é óptimo para a distribuição de probabilidades apresentada. Justifique a sua resposta.

X	p(x)	C(x)
1	0.25	0110
2	0.5	00
3	0.1	010
4	0.1	0111

i.)

R: Não é óptimo

X	p(x)	C(x)
1	0.25	00
2	0.25	0
3	0.25	10
4	0.25	111

ii.) R:Não é óptimo

X	p(x)	C(x)
1	0.25	110
2	0.25	10
3	0.25	110
4	0.25	111

iii.)

R:Não é óptimo

x	p(x)	C(x)
1	0.3	00
2	0.3	01
3	0.2	10
4	0.2	11

iv.)

R: É óptimo¹

- 4. Considere uma fonte $X=\{1,2,3,4,5\}$ tal que P(X=1)=0.1, P(X=2)=0.1, P(X=3)=0.4, P(X=4)=0.2 e P(X=5)=0.2.
- a) Nestas condições, determine o número de bits a usar na codificação por recurso a um código aritmético de mensagens agrupadas com 4 símbolos.

R: 2.62 bits

^2.62 bits/símbolo (H(X)+2/n)? não será log2(1/p(mínima)^n)+1? acho que é a primeira formula -> a primeira é o bitrate (bit/símbolo), logo no mínimo a mensagem com 4 símbolos necessitaria de 4* 2.62 bits

b) Dada a mensagem "1133", determine a TAG necessária à transmissão desta mensagem por recurso a um código aritmético. Apresente a sua codificação binária.

c) Dada a mensagem "1133", determine a sequência de bits por recurso a um código de Huffman estático. Apresente a árvore de Huffman.

R: 00000011? check, tambem me deu -> expliquem como chegaram lá! fazendo a árvore segundo os powerpoints, têm uma igual

A mim deu-me 1100110000

d) Assumindo independência estatística dos símbolos, quantos nós deverá ter a árvore de Huffman estática para codificar agrupamentos de 4 símbolos?

1

5. Demonstre, com recurso ao princípio da máxima entropia, que a entropia de uma dada
variável aleatória X é máxima quando os acontecimentos são equiprováveis.
R:

6. Seja p = 7919 e q = 17389. Seja e = 66909025. Observa-se que e2 mod (p1)(q-1) = 1. Considerando que a mensagem é m = 12345, qual será o resultado da cifra se houver duas encriptações consecutivas com a chave (n, e)?

R:

7. No esquema de encriptação DES não é necessário implementar de forma explícita o algoritmo de desencriptação. Indique como é que o algoritmo de desencriptação pode ser realizado à custa do algoritmo de encriptação?

R:

8. Comente a seguinte afirmação: "No GIF o código de RESET deverá existir pelo menos uma vez, podendo ocorrer o número (≥1) de vezes que se quiser "?

R: