第5回 関数列

問題 5.1. 次の関数 $f_n(x)$ に対して、関数列 $\{f_n(x)\}_{n=1,2,...}$ の一様収束性を調べよ.

(1)
$$f_n(x) = xe^{-nx}$$
 (2) $f_n(x) = \frac{nx}{nx+1}$ (3) $f_n(x) = nx(1-x)^n$ (0 < x < 1)

(4)
$$f_n(x) = 1 + x^2 - \frac{1}{(1+x^2)^{n-1}}$$

問題 5.2. 次の級数の一様収束性を調べよ.

$$(1) \sum x e^{-nx} \quad (2) \sum \frac{1}{x^2+n^2} \quad (3) \sum \frac{x^2}{n^2x+1} \quad (x>0) \quad (4) \sum \frac{1}{n^a+n^bx^2} \quad (a>0)$$

(5)
$$\sum ne^{-nx}$$
 (6) $\sum \frac{(-1)^n}{n+\sin x}$ (7) $\sum \frac{x^{n-1}}{1+x^n}$ ($|x| \le q < 1$)

問題 5.3.
$$u_n(x) = \frac{x}{1+n^2x^2} - \frac{x}{1+(n+1)^2x^2}$$
 とおくとき, $\sum_{n=1}^{\infty} u_n(x)$ の (1) 一様収束性 (2) 極

限関数の連続性 (3) 項別積分可能性 (4) 項別微分可能性 について調べよ.

問題 5.4. 函数項級数

$$\sum_{n=1}^{\infty} \frac{x}{(1+x)^n}$$

は [0,1] 上で一様収束するか.

問題 **5.5.** $\alpha > 0$ のとき $f_n(x) = n^{\alpha} x e^{-nx^2}$ について,

$$\lim_{n \to \infty} \int_0^x f_n(t)dt = \int_0^x \lim_{n \to \infty} f_n(t)dt$$

となるような α の値を求めよ.

問題 5.6. 次の極限を求めよ.

$$\lim_{n \to \infty} \int_{1}^{e} \frac{n}{\sin x + nx} dx$$

問題 5.7. f を $I=\{x\in\mathbb{R}\mid x\geqslant 0\}$ 上の実数値連続関数とする. $n\in\mathbb{N}$ に対し, I 上の関数 f_n を $f_n(x)=f(x+n)$ で定める. $\{f_n(x)\}$ が I 上一様収束するとき, 以下の問いに答えよ.

- (1) $g(x) = \lim_{n \to \infty} f_n(x)$ で定めると, g は I 上で一様連続であることを示せ.
- (2) f は I 上で一様連続であることを示せ.

問題 5.8. 区間 I 上で与えられた有界な関数列 $\{f_n(x)\}$ が I 上で一様に f(x) に収束するならば、 $e^{f_n(x)}$ は I 上で一様に $e^{f(x)}$ に収束することを示せ.

問題 **5.9.** 実数 $x \ge 0$ と整数 $n \ge 1$ に対し, $f_n(x) = x^{\frac{n}{n+1}}$ と定める.

- (1) 関数列 $\{f_n(x)\}_{n=1}^{\infty}$ は [0,2) 上で一様収束するか.
- (2) 関数項級数 $\sum_{n=1}^{\infty} \sin(f_n(x)^n)$ は [0,1) 上で各点収束するか、また一様収束するか.

問題 **5.10.** $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ は用いてよい.

- (1) 任意の $x \in \mathbb{R}$ に対して級数 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{x^2 + n^4}$ は収束し、その極限値 f(x) は x について連続であることを示せ、
- (2) 広義積分 $\int_0^\infty f(x)dx$ が収束することを示し、その値を求めよ.

問題 5.11. p を実数とする. \mathbb{R} 上の関数 $f_n(x) = n^p x - n^{p+1} \sin \frac{x}{n}$ $(n=1,2,3,\dots)$ に対し、以下の問いに答えよ.

- (1) p < 2 ならばすべての $x \in \mathbb{R}$ に対して $\lim_{n \to \infty} f_n(x) = 0$ であることを示せ.
- (2) p < 1 ならば $\sum_{n=1}^{\infty} f_n(x)$ は任意の有界閉区間上で一様収束することを示せ.
- (3) 関数列 $\{f_n(x)\}_{n=1}^\infty$ は $\mathbb R$ 上で一様収束しないことを示せ.

問題 5.12. 以下の問いに答えよ.

- (1) 極限 $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} \log n\right)$ が存在することを示せ.
- (2) 数列 $\{A_n\},\{B_n\}$ を

$$A_n = \sum_{k=1}^n \frac{1}{2k-1}, B_n = \sum_{k=1}^n \frac{1}{2k}$$

により定義する. 正整数 p,q に対して $\lim_{n\to\infty}(A_{pn}-B_{qn})$ を求めよ.

問題 5.13. 次の整級数の収束半径を求めよ.

$$(1) \sum nx^n \quad (2) \sum \frac{x^{n-1}}{n\log(n+1)} \quad (3) \sum \frac{x^n}{n^22^n} \quad (4) \sum \frac{(-1)^n}{2n} x^{2n} \quad (5) \sum \frac{x^n}{n} \log(1+\frac{1}{n})$$

(6)
$$\sum (-1)^{n-1} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n$$
 (7) $\sum (-1)^n \frac{x^{2n}}{(2n)!}$

問題 5.14. 次の関数の x=0 のまわりの整級数展開を求めよ.

(1)
$$\frac{1}{1-x-x^2}$$
 (2) $(\cos x)^2$ (3) $\log(x+\sqrt{1+x^2})$ (4) $\frac{\log(1+x)}{1-x}$ (5) $\sin^{-1}x$

(6)
$$e^x \sin x$$
 (7) $y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$

問題 5.15. フィボナッチ数列 $a_0=0, a_1=1, a_n=a_{n-1}+a_{n-2} \quad (n\geq 2)$ を係数とする整級数

$$\sum_{n=0}^{\infty}a_nx^n$$
 の表す関数を求めよ、また、 a_n の一般形を決定し、収束半径も求めよ、

問題 **5.16.** 次の関数の x=0 のまわりの整級数展開の第 4 項までを求めよ.

$$y = \frac{1}{\cos x}$$

問題 5.17. 次の関数の x=0 のまわりの整級数展開を求めよ.

$$\int_0^x \sqrt{1+t^3} dt$$

問題 5.18. 次の整級数が表す関数を求めよ.

$$\sum_{n=1}^{\infty} n^2 x^n$$

問題 5.19. 次の無限級数の和を求めよ.

$$(1) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \qquad (2) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \qquad (3) \frac{1}{\sqrt{3}} \sum_{n=0}^{\infty} \frac{1}{4n+1} \left(\frac{1}{3}\right)^{2n}$$

問題 **5.20.** (1) 次の等式を示せ. $(ヒント: tan^{-1}x$ の整級数展開)

$$\pi = \sum_{n=0}^{\infty} \frac{(-1)^n 2\sqrt{3}}{(2n+1)3^n}$$

(2) $\pi > 3.1$ を示せ.