DiffGeo

Luka Ilić, Johannnes Mader, Jakob Deutsch, Fabian Schuh 17. März 2018

Inhaltsverzeichnis

Vorwort		3	
1	Kur	ven	4
	1.1	Parametrisierung und Bogenlänge	4
	1.2	Streifen und Rahmen	6

Vorwort

Das folgende Skriptum ist begleitend zur Vorlesung Differentialgeometrie gehalten von Univ.Prof. Hertrich - Jeromin und wird von einigen Studenten (oben angeführt) während der Vorlesung geschrieben und danach auf Fehler kontrolliert und bearbeitet. Natürlich schleichen sich nach Möglichkeit Fehler ein, die übersehen werden, dies ist gerne bei den schreibenden Personen anzumerken. Das Skriptum enthält großteils das Tafelbild der Stunden und keinenfalls die Garantie in irgendeiner Weise vollständig zu sein. (Wir geben unser Bestes.)

Viel Vergnügen mit DiffGeo!

Bemerkung. Literaturempfehlung (zusätzlich):

- 1. Strubecker: Differentialgeometrie I III; Sammlung Göschen
- 2. Spivak: A comprehensive Introduction to Diffenrential Geometry I V; Publisher Perish
- 3. O'Neil: Semi.Riemannian Geometrie; Acad. Press
- 4. Hicks: Notes on Differential Geometry (Es gibt (möglicherweise nicht legale) Versionen im Internet.)
 - (ersteres ist kompakter, zweiteres eher komplementär gedacht, drittes für Physik-Interessierte, letzteres vergleicht die Methoden der Differentialgeometrie)

1 Kurven

1.1 Parametrisierung und Bogenlänge

Wiederholung: Ein Euklidischer Raum \mathcal{E} ist:

- 1. Ein affiner Raum (\mathcal{E}, V, τ)
- 2. über einem Euklid. Vektorraum (V, <, >).

Wobei $\tau: V \times \mathcal{E} \to \mathcal{E}; (v, X) \mapsto \tau_v(X) =: X + v$ genügt

- 1. $\tau_0 = id_{\mathcal{E}} \text{ und } \forall v, w \in V \ \tau_v \circ \tau_w = \tau_{v+w}$
- 2. $\forall X, Y \in \mathcal{E} \exists ! v \in V \ \tau_v(x) = Y \ ((d.h. \ \tau \ ist \ einfach \ transitiv)).$

Definition. Eine (parametrisierte-) Kurve ist eine Abbildung

$$X:I\to\mathcal{E}$$

auf einem offenen Intervall $I \subseteq \mathbb{R}$, die regulär ist (d.h. $\forall t \in I \ X'(t) \neq 0$). Wir nennen X auch Parametrisierung der Kurve C = X(I).

Bemerkung. Alle Abbildungen in dieser VO sind beliebig oft differenzierbar (d.h. C^{∞}).

Beispiel. Eine (Kreis-) Helix mit Radius r > 0 und Ganghöhe h ist die Kurve

$$X: \mathbb{R} \to \mathcal{E}^3; t \mapsto X(t) := O + e_1 r \cos(t) + e_2 r \sin(t) + e_3 ht.$$

Für h = 0 beschreibt diese Kurve einen Kreis.

Definition. Eine *Umparametrisierung* einer param. Kurve $X:I\to\mathcal{E}$ ist eine param. Kurve

$$\widetilde{X}:\widetilde{I}\to\mathcal{E};s\mapsto\widetilde{X}(s)=X(t(s)),$$

wobei $t:\widetilde{I}\to I$ eine surjektive, reguläre Abbildung ist.

Motivation: Für eine Kurve $t \mapsto X(t)$

- 1. X'(t) ist Geschwindigkeit(-svektor) ("velocity"),
- 2. |X'(t)| ist (skalare) Geschwindigkeit ("speed").

Rekonstruktion durch Integration:

$$X(t) = X(o) + \int_{o}^{t} X'(t)dt$$

und die Länge des Weges von X(0) nach X(t):

$$s(t) = \int_0^t |X'(t)| dt$$

Definition.

Die Bogenlänge einer Kurve $X: I \to \mathcal{E}$ ab X(o) für $o \in I$, ist

$$s(t) := \int_0^t |X'(t)| dt$$

(wobei $\int_0^s |X'(t)| dt$ auch als $\int_0^t ds$ geschrieben wird)

Bemerkung. Dies ist tatsächlich die Länge des Kurvenbogens zwischen X(o) und X(t), wie man z.B. durch polygonale Approximation beweist (s. Ana2 VO) Also: Die Bogenlänge zwischen zwei Punkten ist *invariant* ("ändert sich nicht") unter Umparametrisierung.

Lemma und Definition. Jede Kurve $t \mapsto X(t)$ kann man nach Bogenlänge (um-) parametrisieren, d.h. so, dass sie konstante Geschwindigkeit 1 ($|X'(t)| \equiv 1$) hat. Dies ist die Bogenlängenparametrisierung und üblicherweise notiert $s \mapsto X(s)$ diesen Zusammenhang.

Beweis. Wähle $o \in I$ und bemerke

$$s'(t) = |X'(t)| > 0.$$

Also ist $t \mapsto s(t)$ streng monoton wachsend, kann also invertiert werden, um t = t(s) zu erhalten: Damit erhält man für

$$\widetilde{X} := X \circ t$$
$$|\widetilde{X}'(s)| = |X'(t(s))| * |t'(s)| = \frac{s'(t)}{s'(t)} = 1,$$

d.h. \widetilde{X} ist nach Bogenlänge parametrisiert. (nämlich durch Division mit der Inversen.)

Bemerkung. Eine Bogenlängenparametrisierung ist eindeutig bis auf Wahl von o und Orientierung.

Beispiel. Eine Helix

$$t \mapsto X(t) = O + e_1 r \cos(t) + e_2 r \sin(t) + e_3 ht$$

hat Bogenlänge

$$s(t) = \int_{0}^{t} \sqrt{r^2 + h^2} dt = \sqrt{r^2 + h^2} * t$$

und somit Bogenlängenparametrisierung

$$s \mapsto \widetilde{X}(s) = O + e_1 r \cos \frac{s}{\sqrt{r^2 + h^2}} + e_2 r \sin \frac{s}{\sqrt{r^2 + h^2}} + e_3 \frac{hs}{\sqrt{r^2 + h^2}}.$$

Bemerkung und Beispiel.

Üblicherweise ist es nicht möglich eine Bogenlängenparam. in elem. Funktionen anzugeben: Eine Ellipse

$$t \mapsto O + e_1 a \cos(t) + e_2 b \sin(t) (a > b > 0)$$

hat Bogenlänge

$$s(t) = \int_{0}^{t} \sqrt{b^2 + (a^2 - b^2)\sin(t)} dt,$$

dies ist ein elliptisches Integral, also nicht mit elem. Funktionen invertierbar.

1.2 Streifen und Rahmen

Definition.

Sei $X : \mathbb{R} \supseteq I \to \mathcal{E}$ eine parametrisierte Kurve. Die *Tangente* an einem Punkt X(t), wird durch den Punkt und seinen Tangentialvektor X'(t) beschrieben. $\mathcal{T}(t) = X(t) + [X'(t)]$ notiert diese Gerade. Die Ebene $\mathcal{N}(t) = X(t) + \{X'(t)\}^{\perp}$ heißt *Normalebene*.

Alternativ können wir sagen, wir erhalten Tangente, bzw. Normalebene, durch legen des Tangentialraumes [X'(t)] bzw. $Normalraumes \{X'(t)\}^{\perp}$ durch den Punkt X(t).

Definition. Das Tangential- und Normalbündel einer Kurve $X:I\to\mathcal{E}^3$ werden durch die folgenden Abbildungen definiert:

$$I \ni t \mapsto T_t X := [X'(t)] \subseteq V$$
 bzw.

$$I \ni t \mapsto N_t X := \{X'(t)\}^{\perp}.$$

eine Abbildung $Y:I\to V$ heißt

1. ein Tangentialfeld entlang X, falls

$$\forall t \in I : X(t), \in T_t X$$

2. ein Normalenfeld entlang X, falls

$$\forall t \in I : X(t) \in N_t X.$$

Bemerkung und Definition.

Jede Kurve hat ein eindeutiges harmonisches Einheitstangentenfeld (ETF)

$$T: I \to V; t \mapsto \frac{X'(t)}{|X'(t)|}.$$

Aber-es gibt haufenweise Normalenfelder.

Definition. Ein Streifen ("ribbon") ist ein Paar (X, N), wobei

$$X:I\to\mathcal{E}$$

eine Kurve und

$$N:I \to V$$

ein Einheitsnormalenfeld (ENF) ist, d.h.,

$$N \perp T$$
 und $|N| = 1$.

Bemerkung und Definition. (Im dreidimesionalen Raum können wir folgendes sagen:) Ein Streifen ist also eine Kurve mit einer "vertikalen Richtung". Weiters erhält man eine "seitwärts Richtung" durch die *Binormale*

$$B := T \times N : I \to V.$$

(Hier ist $T \times N$ das "bekannte" Kreuzprodunkt)

Lemma und Definition.

Der (angepasste) Rahmen eines Streifens $(X, N): I \to \mathcal{E}^3 \times S^2$ ist eine Abbildung

$$F = (T, N, B) : I \to SO(V)$$

seine Strukturgleichungen sind von der Form

$$F' = F\phi \text{ mit } |X'| \begin{pmatrix} 0 & -\kappa_n & \kappa_g \\ \kappa_n & 0 & \tau \\ -\kappa_g & \tau & 0 \end{pmatrix},$$

wobei

- 1. κ_n die Normalkrümmung,
- 2. κ_q die geodärische Krümmung, und
- 3. τ die Torsion des Streifens (X, N) bezeichnen.

Beweis. Da $F: I \to SO(V)$, gilt

$$F^t F \equiv id$$

und daher

$$0 = (F^t F)' = F'^t F + F^t F' = (F\phi)^t F + F^t F \phi = \phi^t F^t F + F^t F \phi = \phi^t + \phi,$$

d.h., $\phi: I \to o(V)$ ist schiefsymmetrisch. Insbesondere: Es gibt Funktionen κ_n, κ_g, τ , so dass ϕ von der behaupteten Form ist.

Wiederholung:

$$O(V) := \{ A \in End(V) \mid A^t A \equiv id \}$$

$$SO(V) := \{ A \in O(V) \mid det(A) = 1 \}$$

$$o(V) := \{ B \in End(V) \mid B^t + A \equiv 0 \}$$

Bemerkung. Krümmung und Torsion eines Streifens sind *geometrische Invarianten* des Streifens, d.h., sie sind unabhängig von Position und (in gewisser Weise) Parametrisierung des Streifens.

1. Ist $(\widetilde{X}, \widetilde{N}) = (\widetilde{o} + A(X - o), AN)$ mit $o, \widetilde{o} \in \mathcal{E}$ und $A \in SO(V)$ eine Euklidsche Bewegung des Streifens (X, N), so sind $\widetilde{T} = AT$ und $\widetilde{B} = AT \times AN = A(T \times N)$, also $\widetilde{F} = AF$ und damit $\widetilde{\phi} = \widetilde{F}^t \widetilde{F}' = F^t A^t A F' = \phi$.

2. Ist $s \mapsto (\widetilde{X}, \widetilde{N})(t(s))$ eine orientierungstreue Umparametrisierung, d.h., t' > 0, von $t \mapsto (X, N)(t)$, so gilt

$$\widetilde{\phi}(s) = \widetilde{F}^t(s)\widetilde{F}'(s) = F^t(t(s))F'(t(s)) \cdot t'(s)$$

und

$$|\widetilde{X}'(s)| = |X'(t(s))| \cdot |t'(s)| = |X'(t(s))| \cdot t'(s)$$

und damit $\widetilde{\kappa_n}(s) = \kappa_n(t(s))$ usw.

Bemerkung und Definition. Ist ein Streifen $(\widetilde{X}, \widetilde{N})$ gegeben durch eine Normalrotation eines Streifens (X, N), d.h., $\widetilde{X}, \widetilde{N} = (X, N \cos \varphi + B \sin \varphi)$ mit $\varphi : I \to \mathbb{R}$, so gilt

$$\begin{pmatrix} \widetilde{\kappa_n} \\ \widetilde{\kappa_g} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \kappa_n \\ \kappa_g \end{pmatrix}$$

und

$$\widetilde{\tau} = \tau + \frac{\varphi'}{|X'|}.$$

Beispiel.

1. **Helix**: Betrachte den Streifen (X, N) mit $t \mapsto X(t) = o + e_1 r \cos t + e_2 r \sin t + e_3 h t$ und $t \mapsto N(t) = -(e_1 \cos t + e_2 \sin t)$. Für

$$T(t) = (-e_1 r \sin t + e_2 r \cos t + e_3 h) \frac{1}{\sqrt{r^2 + h^2}}$$

und

$$N(t) = (e_1 h \sin t - e_2 h \cos t + e_3 r) \frac{1}{\sqrt{r^2 + h^2}}$$

bekommt man $F = (T, N, B) : \mathbb{R} \to SO(V)$ und damit

$$T' = N \cdot \frac{r}{\sqrt{r^2 + h^2}}$$

$$N' = T \cdot \frac{-r}{\sqrt{r^2 + h^2}} + B \cdot \frac{h}{\sqrt{r^2 + h^2}}$$

$$B' = \frac{-h}{\sqrt{r^2 + h^2}}$$

also (mit $|X'| = \sqrt{r^2 + h^2}$),

$$\kappa_n = \frac{r}{r^2 + h^2} \qquad \qquad \kappa_g = 0 \qquad \qquad \tau = \frac{h}{r^2 + h^2}$$

2. sphärische Kurve: Sei $s \mapsto X(s) \in \mathcal{E}^3$ eine bogenlängenparametrisierte Kurve, d.h., mit Mittelpunkt $o \in \mathcal{E}^3$ und Radius r > 0, der Sphäre gilt:

$$|X - o|^2 \equiv r^2 \text{ und } |X'|^2 \equiv 1.$$

Bemerke: $\langle X', X - o \rangle = \frac{1}{2}(|X - o|^2)' = 0$. Also liefert $N := (X - o)\frac{1}{r}$ ein ENF. Damit berechnen wir

$$\kappa_n = -\langle N', T \rangle \equiv \frac{1}{r}$$

$$\kappa_g = -\langle B, T' \rangle = -\frac{1}{r} \langle X' \times (X - o), X'' \rangle = \frac{\det(X - o, X', X'')}{r}$$

$$\tau = \langle N', B \rangle = \frac{1}{r^2} \langle X', X' \times (X - o) \rangle \equiv 0.$$

Bemerkung. $\kappa_g \equiv 0$ im ersten Bsp. und $\tau \equiv 0$ im zweiten Bsp.

Satz. Fundamentalsatz für Streifen

Seien

$$\kappa_n, \kappa_q, \tau: I \to \mathbb{R}; s \mapsto \kappa_n(s), \kappa_q(s), \tau(s)$$

gegeben. Dann gibt es eine bogenlängenparametrisierte Kurve

$$X:I\to\mathcal{E}$$

und ein ENF

$$N:I\to V$$
.

so dass κ_n, κ_g, τ Normal- bzw. geodätische Kruümmung und Torsion des Streifens (X, N) sind. Dieser Streifen ist bis auf Euklid. Bewegung eindeutig.

Beweis. Wähle $o \in I$ und $F_o \in SO(V)$ beliebig und fest. Nach Satz von Picard-Lindelöf hat das AWP

$$F' = F\phi, \ F(o) = F_o$$

 $_{
m mit}$

$$\phi = \begin{pmatrix} 0 & -\kappa_n & \kappa_g \\ \kappa_n & 0 & -\tau \\ -\kappa_g & \tau & 0 \end{pmatrix}$$

eine eindeutige Lösung $F = (T, N, B) : I \to End(V)$. Nun zeigen wir, dass F ein Rahmen ist:

- 1. $(FF^t)' = F(\phi + \phi^t)F^t \equiv 0$ also $FF^t \equiv id$, und $F: I \to O(V)$
- 2. $det: O(V) \to \{\pm 1\}$ ist stetig, also $detF: I \to \{\pm 1\}$ konstant und somit

$$detF = detF_0 = 1$$
,

also $F: I \to SO(V)$.

Insbesondere $|T| \equiv 1$ und man erhält eine bogenlängenparametrisierte Kurve

$$X: I \to \mathcal{E}^3, t \mapsto O + \int_0^t T(s) ds.$$

(X,N) mit F=(T,N,B) liefert einen Streifen, Krümmung und Torsion wie behauptet. Eindeutigkeit bis auf Euklid. Bewegung folgt aus der Eindeutigkeit in Picard-Lindelöf und jener der Integration.