AIM 5002 Computational Statistics and Probability (Spring 2021)

Assignment 4

Submit your assignment at CANVAS by uploading your file. Due date: Tuesday, 23 rd of the March, 2021 by 11:59 PM	Name:	/5	

1. If X is a random variable that is uniformly distributed between -1 and 1, find the PDF of e^{X} .

2. Suppose that a random variable X satisfies

$$E[X] = 0$$
, $E[X^2] = 1$, $E[X^3] = 1$, $E[X^4] = 0$

and let

$$Y = a + bX + cX^2$$

Find the correlation coefficient $\sigma(X,Y)$.

- 3. A retired professor comes to the office at a time which is uniformly distributed between 9 a.m. and 1 p.m., performs a single task, and leaves when the task is completed. The duration of the task is exponentially distributed with parameter $\lambda(y) = 1/(5-y)$, where y is the length of the time interval between 9 a.m. and the time of his arrival.
 - (a) What is the expected amount of time that the professor devotes to the task?

(b) What is the expected time at which the task is completed?

4. Let X be a random variable that takes the values 0, 1, 3, 5:

$$P(X=0) = 1/3$$
, $P(X=1) = 1/5$, $P(X=3) = 1/5$, $P(X=5) = 4/15$.

Find the transform associated with X and use it to obtain the mean and variance.

5. A pizza parlor serves n different types of pizza, and is visited by a number of K of customers in a given period of time, where K is a nonnegative integer random variable with a known associated transform $M_K(s) = E[e^{sK}]$. Each customer orders a single pizza with all types of pizza being equally likely, independent of the number of other customers and the types of pizza they order. Give a formula, in terms of $M_K(*)$ for the expected number of different types of pizzas ordered.