Predicting Clinical Trial Success

Team: Richard Do, Nathan Maton

In partnership with: Yamina Hakem, Brian Lucena, and Jason Moore from

Turning data into profits

How would you make a \$2.6 billion decision?

Industry Standard Uses Basic Probability of Success

Source: Biomedtracker 2006-2015 report

Problem Statement: Predict Success and Time to Market

Can we predict:

- Whether a drug will succeed?
- 2. Which drug will be first to market and quantify the time?

Strategy - Focus on Breast Cancer

Clean trials data

Model success

Use markov chains with each trial phase getting its own state

Test in industry

Work with industry partners and assess value

Extract drug features from ADIS Insight trial database

Simple Markov Chain Explanation

Probability of Success

Engineer Features

- Subjects in each phase
- Organizations for drug
- Trial centers
- Trial length
- Trial design (12 types, e.g. Randomized)

Question 1: Predict Drug Success

Drivers of Success

	# of Subjects	# of Orgs	Prospective Trial Design
Phase I	Neg	Pos	-
Phase II	Neg	Pos	Pos
Phase III	Pos	Neg	Pos

Model Improvement Over Industry Standard by 14%

Impact:

360+ million

on average, cost savings for drug development

Assumption: Phase success is independent

Question 2: Predict First to Market

Expected Trial Lengths Vary Per Phase

Predicted Phase Completion Better than Industry Standard

Impact:

+12% market share

for first drug to market, on average (300+ million/year)

(source)

Assumption: Phase length is independent

Exciting Results for Partnership Meetings Next Week

- Can make \$360+ million, on average, more per drug developed
- First drug to market gains 12% more revenue on average
- Engineering features are the drive to model improvement
- Scale to other diseases

Contact information

Richard Do

/rdoooooo/

in/rdo/

richardddo@gmail.com

Nathan Maton

/NathanMaton/

in/nathanmaton/

nathanmaton@gmail.com

Thanks!

Appendix

Tools used

Key features to understand drivers of trial length

	# of subjects	# of Orgs	Prospective trial design
Phase I	***		8
Phase II	8		
Phase III	8	-	8

Methodology - Two data sources

Data Available

- Clinical Trials: Data about clinical trials to help Breast Cancer starting in 2000
- Drug data: Data about drug characteristics in same timeframe

ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world.