This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

4-00 16-TH

MENU

SEARCH

INDEX

DETAIL

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 10092158

(43)Date of publication of application: 10.04.1998

(51)Int.CI.

G11B 27/00 G11B 19/02 G11B 20/12 H04N 5/92

(21)Application number: 09241272

(71)Applicant:

TOSHIBA CORP

(22)Date of filing: 05.09.1997

(72)Inventor:

KANESHIGE TOSHIHIKO TOMIDOKORO SHIGERU

TOSHIBA AVE CORP

KOJIMA TADASHI

(30)Priority

Priority number: 08 986 Priority date: 08.01.1996 Priority country: JP

(54) DISC REPRODUCING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent discontinuation and disturbance of an image by dividing a cell into a plurality of cells, time-division-multiplexing the cells in each scene and arranging and recording the cells to be reproduced continuously within the distance of the particular amount of codes to shorten the physical moving distance during the reproducing operation. SOLUTION: A video program has a preceding front trunk scene A, a plurality of branch scenes 80 to B3 and a successive rear trunk scene C. In the case of recording a plurality of branch scenes into a recording medium, any branch scene is arranged in such a manner that a scene cell appears in the same rate for the summed total scene length. Arrangement should be done so that when the time for jumping the distance for the amount of particular codes is defined as Ts, the relationship Tc -[(Tc × Pr/Rr]>Ts can be set for the amount of leadout data Rr. amount of codes consumed Pr and image reproducing time Tc. When arrangement for recording is performed, a physical moving distance during the reproducing operation can be shortened and

generation of discontinuation and disturbance of image can be prevented.

LEGAL STATUS

[Date of request for examination]

05.09,1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2857129

[Date of registration]

27.11.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998 Japanese Patent Office

MENU

SEARCH

INDEX

DETAIL

4-0016-TF

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-92158

(43)公開日 平成10年(1998)4月10日

(51) IntCl.6	識別記号	F I	
G11B 27/00		G11B 27/00 D	
19/02	501	19/02 5 0 1 D	
20/12	103	20/12 1 0 3	
H 0 4 N 5/92		H 0 4 N 5/92 K	
		G11B 27/00 D	
		審査請求 有 請求項の数3 OL (全 28 頁)	
(21)出願番号	特願平9-241272	(71)出願人 000003078	
(62)分割の表示	特願平9-78536の分割	株式会社東芝	
(22)出顧日 平成9年(1997)1月7日		神奈川県川崎市幸区場川町72番地	
		(71)出顧人 000221029	
(31)優先権主張番号	特顯平8-986	東芝エー・ブイ・イー株式会社	
(32)優先日	平8 (1996) 1月8日	東京都港区新橋3丁目3番9号	
(33)優先権主張国	日本(JP)	(72)発明者 兼重 敏彦	
		東京都港区新橋3丁目3番9号 東芝工	
		ー・ブイ・イー株式会社内	
		(72)発明者 富所 茂	
		東京都港区新橋3丁目3番9号 東芝エ	
		ー・ブイ・イー株式会社内	
		(74)代理人 弁理士 鈴江 武彦 (外6名)	
		最終質に続く	

(54) 【発明の名称】 ディスク再生装置

(57)【要約】

【課題】 複数のストーリーやシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくて済み、再生映像のとぎれや乱れが生じるのを抑圧できるようにする。

【解決手段】映像、音声、文字等で構成される映像プログラムであって、前部の幹ストーリーから分岐するための分岐点Xと後部の幹ストーリーに結合するための結合 点Yとの間に任意に選択可能な複数の枝ストーリーB 0、B1、B2、B3が存在するマルチストーリープログラムが記録される。ここで、分岐点Xと結合点Yとの間の記録状態としては、前記複数の枝ストーリーがそれ それ複数のセルに分割され、かつ各枝ストーリーのセルが時分割多重された形で記録されている。

【特許請求の範囲】

【請求項1】 映像プログラムであって記録トラック上に任意に選択可能な複数のシーンが存在するマルチシーンプログラムが記録されており、その記録状態は、前記複数のシーンがそれぞれ複数のセルに分割されており、1つのセルは所定の映像再生時間に相当するものであり、また各シーンのセルが時分割多重され、かつ連続再生すべきセルは所定符号量の距離内に配置された形で記録されている情報記録媒体の情報を再生する装置であって、

前記所定符号量の距離をジャンプするのに要する時間が Ts、単位時間当たりのデータ読み取り符号量がRr、 単位時間あたりの映像再生に対して消化する最大符号量 がPrである再生装置を有し、

前記Tsと、前記再生装置が1つのセルをデコーダでデコードして映像再生出力を得る時間Tcとは

 $Tc-[(Tc\times Pr)/Rr]>Ts$

なる関係となるように設定されていることを特徴とする ディスク再生装置。

【請求項2】 映像プログラムであって、記録トラック 上に任意に選択可能な複数のシーンが存在するマルチシ ーンプログラムを記録媒体に記録するために、前記複数 のシーンをそれぞれ複数のセルに分割し、かつ各シーン のセルを時分割多重して配列する場合、

再生装置のピックアップから読み取られた再生セルの映像未再生部分を再生回路で映像再生する実際の再生時間をTpとし、前記再生セルに続く各シーンのための次セルを前記ピックアップがサーチして読み取るまでの読み取り時間をTsとすると、

Tp>Tsとなる関係となる条件を満足するように前記 複数のセルが分割され、かつ時分割多重されて配列され ていることを特徴とする情報記録方法。

【請求項3】 前記再生装置の再生回路で映像再生する 再生時間Tpは、再生信号を蓄積するパッファメモリの 容量と、データ量×圧縮率、読み出しクロック周波数で 決定し、前記読み取り時間Tsは、前記ピックアップの 応答速度を主とするパラメータとして決定していること を特徴とする請求項2記載の情報記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、映像、音声、副 映像等を記録した光ディスクなどの情報記録媒体を再生 する場合に有効なディスク再生装置及びまた情報記録媒 体の情報記録方法に関する。

[0002]

【従来の技術】近年、映像、音声、副映像等を符号化して高密度で記録した光学式ディスク及びその再生装置が開発されている。この光学式ディスクに映画等の情報を記録する場合、同時進行する複数のストーリーのストーリーデータを記録することも考えられている。同時進行

する複数のストーリーのストーリーデータとは、例えば 兄弟A、Bが成長の過程で途中から別々の道を歩きだ し、一方は警察官(第1のストーリー)、他方はギャン グの世界を過ごし(第2のストーリー)、大事件の後、 再会して一緒に過ごすというストーリーである。

【0003】また、光学式ディスクに映画等の情報を記録する場合、同時進行する同一イベントを複数のアングルから撮影したマルチアングルシーンを記録することも考えられている。同時進行するマルチアングルシーンとは、例えば、海洋を航海している船を陸から見た様子を表す第1のシーンと、同時刻に当該船から陸を見た様子を表す第2のシーンとの関係をもつような複数のシーンである。

【0004】制作者としては、上記した第1と第2のストーリーの双方を組み立てて視聴者に見せたい場合、第1のストーリーを主にして視聴者に見せたい場合、第2のストーリーを主にして視聴者に見せたい場合等のいくつかの選択の余地があるが、従来の映画制作においてはいずれか1つを選択して制作せざるを得ない。

【0005】また、上記した第1と第2のシーンの場合も同様なことが言える。ここで、第1と第2のストーリーあるいは第1と第2のシーンのいずれかを視聴者が自由に選択可能であるとすると、制作者は、その制作の自由度が高まる。

【0006】そこで、近年の光学式ディスクとその再生 装置では、映画等の情報を記録する場合、同時進行する 複数のストーリーや複数のシーンを予め記録しておき、 この中から、視聴者が自由に選択可能としたものが開発 されている。

[0007]

【発明が解決しようとする課題】ここで、複数のストーリーやシーンのデータを光学式ディスクに記録する場合、再生時にデータの扱いが便利となるように記録する方が好ましい。例えば、第1と第2のストーリーのストーリーデータが直列に記録されていた場合を考える。再生時にいずれか一方のストーリーのみを再生するとすると、他方のストーリーの記録エリアへジャンプする必要がある。しかし、他方のストーリーが短時間のものであれば、ピックアップの物理的移動もすくなく問題はないが、他方のストーリーが長時間のものであれば、ピックアップの物理的移動も大きくなり、そのために、再生映像のとぎれや乱れが生じることがある。

[0008]

【課題を解決するための手段】そこでこの発明は、複数のストーリーやアングルシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくて済み、再生映像のとぎれや乱れが生じるのを抑圧できる情報記録媒体の情報記録方法と、その情報を再生するディスク再生装置を提供することを目的とする。

【0009】上記の目的を達成するためにこの発明の再生装置では、映像プログラムであって記録トラック上に任意に選択可能な複数のシーンが存在するマルチシーンプログラムが記録されており、その記録状態は、前記複数のシーンがそれぞれ複数のセルに分割されており、1つのセルは所定の映像再生時間に相当するものであり、また各シーンのセルが時分割多重され、かつ連続再生すべきセルは所定符号量の距離内に配置された形で記録さ

【0010】そして前記所定符号量の距離をジャンプするのに要する時間がTs、単位時間当たりのデータ読み取り符号量がRr、単位時間あたりの映像再生に対して消化する最大符号量がPrである再生装置を有し、前記Tsと、前記再生装置が1つのセルをデコーダでデコードして映像再生出力を得る時間Tcとは

れている情報記録媒体の情報を再生するものである。

 $Tc-[(Tc \times Pr)/Rr]>Ts$ なる関係となるように設定されていることを特徴とする。

【0011】このように配列して記録することにより、 再生時には同一シーンのセルをピックアップしてデータ 再生が行われるのであるが、いずれの枝シーンを再生す る場合であっても、ピックアップ移動距離が少なく、再 生映像のとぎれや乱れが生じるのを抑圧することができ る。

[0012]

【発明の実施の形態】以下、この発明の実施の形態を図面を参照して説明する。

【0013】図1は、この発明の一実施の形態を説明す るために、映像プログラムの流れを時間軸上に示してい る。この映像プログラムは、先行する前部幹ストーリー (又はシーン) Aと複数の枝ストーリー (又はシーン) B0~B3と、後続する後部幹ストーリー (又はシー ン)Cとを有する。枝ストーリーは、前部幹ストーリー Aの最終位置である分岐点Xで分岐し、後部幹ストーリ - Cの開始点である結合点Yで結合するものである。こ こで、この映像プログラムの前部幹ストーリー、枝スト ーリー、後続幹ストーリーは、それぞれ複数のシーンセ ルに分割されている。枝ストーリーB0のセルをB0-5、B0-4、…、B0-1というふうに表し、枝スト ーリーB1のセルをB1-2、B1-1というふうに表 し、枝ストーリーB2のセルをB2-5、B2-4、 …、B2-1というふうに表し、枝ストーリーB3のセ ルをB3-5、B3-4、…、B3-1というふうに表 している。

【0014】1つのシーンセルを定義する方法としては 以下に述べるような各種の方法が可能である。

【0015】例えば、1つのシーンセルを、記録媒体上のトラックの物理的な長さを単位として定義し、いずれのシーンセルも同じ長さとなるように設定する。また1つのシーンセルを、再生した時の時間長を単位として定

義し、いずれのシーンセルも同じ再生時間長となるよう に設定する。またデータが符号化されている場合、1つ のシーンセルを符号量として定義し、いずれのシーンセ ルも同符号量となるように設定する。いずれの定義にお いても、それぞれのシーンセルが厳密に同一長さあるい は量となるように設定する必要はなく、ほぼ同一であれ ばよい。

【0016】上記のように、複数の枝ストーリーがある場合、これを記録媒体に記録するときは、いずれの枝ストーリーも、全体を加算したシーン長に対して同一の割合でシーンセルが現れるように、配列される。図1の例であると、枝ストーリーが4つであり、第0の枝ストーリーは2シーンセル、第2、第3の枝ストーリーは、5シーンセルである。ここで全体を加算したシーン長は17セルである。そこで第0、第2、第3の枝ストーリーはそれぞれ5/17の割合、つまり、ほぼ3.5セルに1回の割合で配分されて配列される。

【0017】このような配列にすると、図1の各セルの 記録配列に見られるように、特に第1の枝ストーリーを 再生する場合のジャンプ間隔は、第2の枝ストーリーを 集合させて配列した場合に形成されるジャンプ間隔より も小さくなる。

【0018】図2Aには、上記した配列パターンとした場合の第0の枝ストーリー (実線矢印) のピックアップ間隔、第3の枝ストーリーのピックアップ間隔 (点線矢印)、第1の枝ストーリーのピックアップ間隔 (一点鎖線矢印)を示している。

【0019】これに対して図2Bには各枝ストーリーを順次配列した場合例であり、第0の枝ストーリーのビックアップ間隔(実線矢印)、第3の枝ストーリーのビックアップ間隔(点線矢印)、第1の枝ストーリーのビックアップ間隔(一点鎖線矢印)を示している。このようにすると、ビックアップ間隔が非常に長くなり、再生映像のとぎれや乱れが生じやすくなる。しかし、本発明の如く配列すると図2Aに示すようなパターンを得ることができ、ビックアップ間隔が狭くなり、再生映像のとぎれや乱れを抑圧することができる。

【0020】次に、各枝ストーリーのシーンセルを決定した後に、シーンセルを具体的に配列する手法について説明する。

【0021】今、図3Aに示すような複数の枝ストーリー (マルチアングルシーンを含む)を有した映像プログラムがあるとする。マルチアングルシーンとは、例えば、コンサート会場において、指揮者のみをアップで撮影した映像と、オーケストラ全体を客席側から撮影した映像のように、別々の角度から撮影した同時進行する複数の映像のことである。

【0022】図3Aにおいて、A0は、前部幹シーンであり、B0は疑似枝ストーリー、B1、B2はそれぞれ内容の異なる枝ストーリーである。この映像プログラムは、例えば図3Bに示すようにシーンセルに分割される。各シーンセルにはデータ容量を記して、かつセル番号を付している。分割点に、黒丸を付しているが、この例は、各シーンセルのデータを再生したとさの時間長が同じとなるように設定されている。またこのデータは、可変圧縮データであるために、各シーンセルのデータ容量が同じとは限らない。図3Bにおいて、B0は1つの黒丸で示されているがこの場合は、疑似ストーリーであり実際のデータはないものとする。

【0023】上記のようにシーンセルを設定すると、図 4 Aに示すように接続先シーンセルのセル番号を示したテーブルL 1 が出来上がる。即ち、シーンセル番号A 0-1 に接続されるシーンセル番号としてはA 0-0 のみである。セル番号A 0-0 に接続されるセル番号としては、B 1-3、B 2-2、C 0-0、C 1-0 のいずれかである。このように接続先のシーンセルを各シーンセルに対応させてまとめると図 4 Aに示すテーブルL 1 を得ることができる。

【0024】図4Bは、図4Aのテーブルの情報に基づいて、実際に記録媒体のトラックに各シーンセルを直列に配列するために作成したセル番号のテーブルL2を示している。

【0025】次に、上記の如くシーンセルの接続先が整理された情報に基づいて、実際に記録媒体のトラックに各シーンセルを直列に配列する、つまりテーブルL2の配列を得る場合には、次のような手順で配列順が決定される。

【0026】図5はセル番号配列順を決定するためのアルゴリズムを示している。

【0027】まず、テーブルL1より第1行目のセル番号と容量をテーブルL2の第1行目に書き込む(ステップS1、S2)。また接続先シーンのセル番号も読み取っておく。次に、テーブルL2において、接続完了フラッグが付いていないセル番号のうち、当該セル番号の接続先セル番号のすべてが当該セル番号位置に対して前後方向へ最大ジャンプ許容範囲(Jmax という)内であるかどうかを判断する。

【0028】最大ジャンプ許容範囲 (J max という) は、再生装置のピックアップの応答速度と、再生用の復号データを出力するために一時的にデータを蓄えておく出力バッファの容量 (再生時間) によって、決まる値である。

【0029】セル番号A0-1,接続先セル番号A0-0との関係では、上記のJmax (この例では20Mbとしている)を満足するので、テーブルL20A0-10

行には接続完了フラッグが付加される(ステップS 4)。次に、テーブルL1からセル番号A0-0と、そのデータ容量が読み取られると共に、接続先セル番号B1-3、B2-2、C0-0、C1-0が読み取られる(ステップS 3)。

【0030】そして、接続完了フラッグが付いていないセル番号A0-0、B1-3、B2-2、C0-0、C1-0のうち、当該セル番号の接続先セル番号のすべてが当該セル番号位置に対して前後方向へ最大ジャンプ許容範囲(Jmax)内であるかどうかを判断する。この場合は、A0-0からC0-0と、C1-0までの距離がJmax 以上であるためにステップS5を経由してステップS6進む。

【0031】ステップS5、接続完了フラッグが付いていないセル番号は1つのみで、その接続先セル番号は存在しないかどうかを判定しているもので、配列処理が完了した最終的な判断を行うステップである。

【0032】セル番号A0-0を読み取った段階では、配列は完了していないので、ステップS6に進む。ステップS6では、セル番号A0-0と、接続先シーンのセル番号B1-3、B2-2、C0-0、C1-0を用いて、次のような判定を行う。即ち、シーンセル番号を第一口と表すと、まず\$が最小のものを選択する。この例であると、B、CがあるのでBを選択する(この例ではA<B<Cであるものとしている)。さらに口が最大で、mが最小のものを抽出する。つまり、口が大きいということは分割数が多いということであり、mが小さいということは、枝ストーリーに予め付けている優先順位が高いということである。

【0033】上記の例であると、図3Bからも分かるように、A0-0に続くシーンセル番号としては、B1-3ということになる。次に、この抽出したセル番号B1-3の接続先セル番号B1-2をテーブルL2の最終行に仮配列する(ステップS7)。B1-3の次は、B1-2である。したがって、A0-0と、B1-3、B2-2、C0-0、C1-0、B1-2の配列となる。

【0035】ステップS3においては、先の仮配列がB

1-3、B2-2、C0-0、C1-0、B1-2であり、これらは正規のものとして接続完了フラッグが設けられていることになるから、接続完了フラッグが付いていないものは、B2-1、D0-0、D1-0、D0-0、D1-0が存在することになる。

【0036】次に、B2-1、D0-0、D1-0、D0-0、D1-00、D1-00、D1-00、D1-00 に続いて、それぞれの接続先セル番号を配列するものとする。つまり、B2-1、D0-0、D1-0、D0-00、D1-00、B2-00、E0-00、E1-00、E0-00、E1-00 と配列するものとする。そして、ステップS3で、当該セル番号(接続完了フラッグがついていないもの)の接続先セル番号のすべてが当該セル番号位置に対して前後方向へ最大ジャンプ許容範囲(Jmax という)内であるかどうかを判断する。この場合は、すべてJmax 以上となるために、ステップS6に移行し、ここではB2-1が抽出され、さらにステップS7でB2-0が取り出され、B2-10000、D1-00、D1-00、D1-00、D1-00 と最終部に配列される。

【0037】次に再度ステップS8において、抽出したセル番号(B2-1)以外で、接続未了の各セル番号(D0-0、D1-0、B2-0)のすべての接続先セルを仮配列に後続して配列した場合、接続未了の各セル番号とその接続先セルとの符号量距離はすべてJ max (20 Mb)以下かどうかを判定する(Z テップS8)。つまり(D0-0、D1-0、D0-0、D1-0、B2-0)に続いて、E0-0、E1-0、E0-0、E1-0、E0-0、E1-0 、E1-0 、E0-0 、E1-0 、E

【0038】よってこの場合は、ステップS9に進む。ここでは、条件を満たさないセル番号が2つ以上あったかどうかの判定を行い、2つ以上のときはエラーがあったものとする。この事例の場合は1つであり、ステップS10に進む。

【0039】ステップS10では、条件を満たさない接続未了のセルの接続先セルをすべて配列し、そのセル番号と符号量を読み取る(この場合はC0-0、C1-0を読み取る)。

【0040】ステップS10から、ステップS6に戻ることになる。ここでは、上述した原則にしたがってセル番号が選択される。つまり、セル番号\$m-nの\$が最小のもので、nが最大で、mが最小のものを抽出する。そしてステップS7、S8へと進むことになる。

【0041】上記したようにこのアルゴリズムでは、複数の枝ストリームが存在した場合、各枝ストリームを例えば再生時間が等しくなる符号量で分割しておき、次に、ステップS3とS6に示す原則で配列順序を決めて

いくものである。

【0042】図6には、上記のように配列記録されたディスクにおいて、幾つかの再生例を示すもので、矢印の順序がシーンセルをピックアップする順序である。

【0043】上記の例は1つの例であり、この発明では種々の実施の形態が可能である。

【0044】図3Bに示した分割方法としては各種の実施の形態が可能である。上記した分割点の決め方は、まず枝ストーリーを複数に分割する場合、全ての枝ストーリーのセルの再生時間が同じになるような符号量で分割し、ピックアップがジャンプする距離が最大ジャンプ量Jmax 以内にあるかどうかを判定する場合、符号量を参照して上述したアルゴリズムにより判定した。

【0045】しかし分割点を決める場合、各枝ストーリーを別々に分割してもよい。

【0046】図7は、3つの枝ストーリーがあり、第1の枝ストーリー、第2の枝ストーリー、第3の枝ストーリーのそれぞれが符号量が等しくなるように3つに等分された例である。即ち、図7Aに示すように、第1の枝ストーリーは、等しい符号量(5Mb)単位のセル番号B0-0、B0-1、B0-2に分離され、第2の枝ストーリーは、等しい符号量(7Mb)単位のセル番号B1-0、B1-1、B1-2に分離され、第3の枝ストーリーは、等しい符号量(6Mb)単位のセル番号B2-0、B2-1、B2-2に分離されている。各枝ストーリーの分割数は同じであり、この例であると3つである。

【0047】このように分割した場合、図7Bに示すようにセル番号B0-0、B1-0、B2-0の集合をシーンセルプロック#0とし、セル番号B0-1、B1-1、B2-1の集合をシーンセルプロック#1とし、セル番号B0-2、B1-2、B2-2の集合をシーンセルプロック#2とすると、各シーンセルプロックの符号 量は等しい。

【0048】符号量(データ量)が等しいということは、B0の枝ストリームを再生する場合も、B1の枝ストリームを再生する場合も、B1の枝ストリームを再生する場合も、ジャンプ距離は同じであるということである。

【0049】上記の例は、符号量で分割するとしたが、 各枝を均等な再生時間で分割してもよい。

【0050】図8は、4つの枝ストーリーがあり、第1の枝ストーリー、第2の枝ストーリー、第3の枝ストーリー、第4の枝ストーリーのそれぞれが再生時間が等しくなるように3つに等分された例である。即ち、図8Aに示すように、第1の枝ストーリーは、等しい再生時間単位のセル番号B0-0、B0-1、B0-2、B0-3に分離され、第2の枝ストーリーは、等しい再生時間単位のセル番号B1-0、B1-1、B1-2、B1-3に分離され、第3の枝ストーリーは、等しい再生時間

単位のセル番号B2-0、B2-1、B2-2、B2-3に分離されている。

【0051】この場合も、図8Bに示すように、シーンセルブロック#0~#3を得ることができる。

【0052】上記の例は、マルチストーリーに関してのセル配列方法を説明したが、マルチアングルについても同様な考えかたで配列することが可能である。途中から異なるアングルの映像を見たいような場合、例えば、コンサート会場において、指揮者のみをアップで撮影した映像をみている途中で、オーケストラ全体を客席側から撮影した映像を見たい場合に、マルチアングルの映像が記録されていた場合は、自由に角度を変えた映像をみることができる。

【0053】図9Aはマルチアングルの映像情報であり、第1のアングルシーンD0-0~D0-3と第2のアングルシーンD1-0~D1-3とが情報源として存在した場合、例えば図9Bに示すように、シーンセルプロック#0~#3が形成されて配列される。

【0054】図10Aは、マルチストーリーの1つが極端に短い時間で終わるような場合のソースの例を示している。図10Bは、各枝ストーリーを所定の分割数

(4) で分割し、セルを得た様子を示している。

【0055】このように極端に1つの枝ストーリーが短いと、単純にストーリーB0のセルを他のストーリーのセルと一緒にして多重化しても、B0のストーリー再生から次のC0のストーリー再生に移行するときのジャンプ間隔が長くなり、条件を満たすことができない場合が生じる。

【0056】そこでこの問題を解決するためには、図11に示すような手法が用いられる。即ち、まず、図11Aに示すように、後部の幹ストーリーC0の一部を各枝ストーリーB0、B1、B2にプラスし、接続点を後方に移行させる。そして、各枝ストーリーを図11Bに示すようにB0(E)、B1(E)、B2(E)とする。そしてこれらの枝ストーリーB0(E)、B1(E)、B2(E)をそれぞれ図11Cに示すように分割し、セル番号を付ける。以後の配列の方法は先に説明した手順と同じである。この例では、各枝ストーリーが5分割されている。

【0057】図12は、上記した各枝ストーリーからセルを1つずつ選択して、セルブロック#0、#1、…を作成して配列した状態を示している。これらのシーンセルブロックには、誤り訂正コードが含まれている。またこの例は、シーンセルブロックがそれぞれ同じ符号最である。さらに全体としてMPEG2方式の圧縮データの場合、セルの先頭には、非圧縮の映像データ、つまりIピクチャー又はフレーム内圧縮データ又は他のフレーム圧縮データを用いないで伸張可能なデータが含まれるように分割されている。これは、圧縮方式の都合上、先頭のセルに非圧縮の映像データがないとすると、後続する

圧縮映像データを再現できないからである。

【0058】図13は、マルチストーリーを分割して記録する場合、その分割例を数式により説明するための図である。

【0059】図13Aに示すように、映像、音声、文字等で構成される映像プログラムであって、前部の幹ストーリーAから分岐するための分岐点Xと後部の幹ストーリーCに結合するための結合点Yとの間に任意に選択可能な複数の枝ストーリーB0、B1、B2が存在するものとする。分岐点Xと結合点Yとの間の記録媒体への記録状態は、図13Bの如く配列されているものとする。今、図13Cに示すように枝ストーリーB0の系統の再生が行われるものとする。すると、再生装置はセル間をジャンプしながら再生しなければならない。実際には、ピックアップはデータを読み取りながら、読み取ったデータを確認しながら処理を行うことになる。

【0060】ここで各枝ストーリーが同じ数mに分割されるものとする。すると、全体で最短のストーリーこの例ではB0の再生間隔(ジャンプ距離)が最も長いことになる。そこで最短のストーリーに着目する。

【0061】B0の全体容量をV0とすると、B0の1 セルの容量はV0/mとなる。

【0062】次に、再生装置の単位時間あたりの最大の符号再生レートをPr、再生装置の読み取りレートをRrとすると、B0-0の再生時間Tpは

Tp = (V0/m)/Pr

B0-0の読み取り時間Trは

【0063】また、B0再生時においてジャンプすべき 1回当たりの符号量VJは

 $VJ = \Sigma^{k-1}_{i=1}$ (Vi/m) で表され、BO再生時の (iはストーリー番号、Mはストーリー数) ジャンプ時間 T ipは

 $TJP = \sum_{i=1}^{N-1} [(Vi/m)/Jp]$ で表される。

【0064】Jpは再生装置が単位時間あたりにジャンプできる符号量である。ここで、再生時間よりも、次のセルまでジャンプするジャンプ時間が小さいというTpーTr>TJP の条件を付けると $[(V0/m)/P r]-[(V0/m)/Rr]> <math>\Sigma^{\text{B-1}}$:= [(V1/m)/Jp] … (1)を得ることができ、この式 (1)に基づいて分割数mが設定される。

【0065】上記したセルを得るための分割点は、データの形式に応じて、再生データの乱れが生じないように決められるべきである。したがって、上記の条件のみを満足させて機械的に厳密に分割する必要はない。例えば、圧縮映像データ、圧縮音声データ、圧縮副映像データ等を時分割で有する映像プログラムにおいては、時分割された区切りのよい点をセル分割点とすべきである。また、セルの中には圧縮映像データ、圧縮音声データ、

圧縮副映像データが含まれるものである。さらにまたM PEG 2 方式により圧縮された符号化映像データの場合、分割単位としては0. $4\sim0$. 5 s 程度の再生時間をもつグループオプピクチャー単位で分割することが好ましい。

【0066】この発明は上記の説明に限定されるものではなく、各種の実施の形態が可能であり、また変形も可能である。上記の説明はこの発明の基本的な原理の説明である。

【0067】また、上記したセルには、それぞれ自己の識別番号と、次に連続すべきセルの識別番号が付加されていると、再生時に取扱いが便利である。またセルを取り扱うには、セルの再生順序等を設定した管理情報が、再生装置の制御部において利用される。また、セルには、データの信頼性を上げるためにセルにて訂正処理が完結する誤り訂正コードが含まれていてもよい。また、図7、図8の実施例では、各枝シーンのセルが時分割多重された状態は、第1乃至第nのシーンセルブロックが、順次繰り返し配列されており、それぞれのシーンセルブロックは異なる枝シーンからのセルが持ち込まれ組み合わせられたブロックである。この場合、シーンセルブロックには、シーンセルブロックにて完結する誤り訂正コードが含まれていてもよい。

【0068】またこの発明では、複数の枝シーンをそれ ぞれ複数のセルに分割し、かつ各枝シーンのセルを時分 割多重して配列する場合、大まかに述べると以下のよう になる。

【0069】即ち、再生装置のビックアップから読み取られた再生セルの映像未再生部分を再生回路で映像再生する実際の再生時間をTpとし、前記再生セルに続く次セルを前記ビックアップがサーチして読み取るまでの読み取り時間をTsとすると、Tp>Tsとなる関係となる条件を満足するように前記複数のセルが分割され、かつ時分割多重されて配列されていることになる。この場合、再生装置の再生回路で映像再生する再生時間は、再生信号を蓄積するバッファメモリの容量と、データ量×圧縮率、読み出しクロック周波数で決定し、前記読み取り時間は前記ビックアップの応答速度を主とするバラメータとして決定している。

【0070】また光学ディスクにおいては、前記分岐点と前記結合点との間の記録状態は、複数の枝シーンがそれぞれ複数のセルに分割されており、1つのセルは所定の映像再生時間に相当するものであり、また各枝シーンのセルが時分割多重され、かつ連続再生すべきセルは所定符号量の距離内に配置された形で記録されている。ここで再生装置側においては、所定符号量の距離をシークするのに要する時間がTs、単位時間当たりのデータ読み取り符号量がRr、単位時間あたりの映像再生に対して消化する最大符号量がPrであるとする。すると、前記Tsと、前記再生装置が1つのセルをデコーダでデコ

ードして映像再生出力を得る時間 T_c とは $T_c - [(T_c \times P_r) / R_r] > T_s$ なる関係となるように設定されている。

【0071】図14には、上述した情報記録媒体(光デ イスク)を再生する再生装置の構成例を示している。 【0072】ディスク100は、ターンテーブル101 上に載置され、モータ102により回転駆動される。 今、再生モードであるとすると、ディスク100に記録 された情報は、ビックアップ部103によりビックアッ プされる。ピックアップ部103は、ピックアップドラ イブ部104により移動制御及びトラッキング制御され ている。ピックアップ部103の出力は、復調部201 に入力されて復調される。ここで復調された復調データ は、エラー訂正部202に入力されて、エラー訂正され た後、デマルチプレクサ203に入力される。デマルチ プレクサ203は、映像情報、字幕及び文字情報、音声 情報、制御情報等を分離して導出する。つまりディスク 100には、映像情報に対応して字幕及び文字情報 (サ ブピクチャー)、音声情報等が記録されているからであ る。この場合、字幕及び文字情報や音声情報としては、 各種の言語を選択することができ、これはシステム制御 部204の制御に応じて選択される。

【0073】システム制御部204に対しては、ユーザによる操作入力が操作部205を通して与えられる。

【0074】デマルチプレクサ203で分離された映像 情報は、ビデオデコーダ206に入力され、表示装置の 方式に対応したデコード処理が施される。例えばNTS C、PAL、SECAM、ワイド画面、等に変換処理さ れる。またデマルチプレクサ203で分離されたサブビ クチャーはサブピクチャー処理部207に入力され、字 幕や文字映像としてデコードされる。 ビデオデコーダ2 06でデコードされたビデオ信号は、加算器208に入 力され、ここで字幕及び文字映像 (=サブピクチャー) と加算され、この加算出力は出力端子209に導出され る。またデマルチプレクサ203で選択され分離された 音声情報は、オーディオデコーダ211に入力されて復 調され、出力端子212に導出される。また、オーディ オ処理部としては、オーディオデコーダ211の他にオ ーディオデコーダ213を有し、他の言語の音声を再生 して出力端子214に出力することもできる。

【0075】ここで、エラー訂正部202の後段にはパッファメモリ220が設けられており、このパッファメモリ220に再生データが一旦蓄積されてデコード速度に応じてデマルチプレクサ203に供給されるようになっている。通常の連続再生においてパッファメモリ220のデータ量が溢れる場合には、システム制御部204は、キックパック処理を行う。キックバック処理は、今まで読み取った所定セクタ分のデータを再度読み取ることであり、パッファメモリ220でデータ溢れが生じても、データ欠落を補償する機能である。

【0076】マルチストーリーを含む光ディスクが再生される場合には、ディスクの管理情報としてマルチストーリーの選択枝が例えばモニタ画面あるいはシステムのサブ表示部にメニューとして表示される。ユーザはそのメニューを見ながらリモコン操作部205を介して枝ストーリーの選択を予め行うことができる。

【0077】ここで選択情報が与えられると、システム制御部204は、枝ストーリーの識別情報を把握するので、その識別情報がヘッダに付加されているデータをパッファメモリ220から抽出し、デマルチプレクサ203に与える。

【0078】以上説明したようにこの発明によると、複数のストーリーやシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくて済み、再生映像のとぎれや乱れが生じるのを抑圧できる。

【0079】次に具体的に本発明が適用された光ディスク再生装置のシステムについて説明する。

【0080】まず、光ディスクには、本発明に関連する情報としてどのような情報が記録されているかを説明する。

【0081】図15は、光学式ディスク100のボリウム空間を示している。図15に示すように、ボリウム空間は、ポリウム及びファイル構成ゾーン、DVDビデオゾーン、他のゾーンからなる。ボリウム及びファイル構成ゾーンには、UDF (Universal Disk Format Specification Revision 1.02) ブリッジ構成が記述されており、所定規格のコンピュータでもそのデータを読み取れるようになっている。DVDビデオゾーンは、ビデオマネージャー(VMG)、ビデオタイトルセット(VTS)を有する。ビデオマネージャー(VMG)、ビデオタイトルセット(VTS)は、それぞれ複数のファイルで構成されている。ビデオマネージャー(VMG)は、ビデオタイトルセット(VTS)を制御するための情報である。

【0082】図16には、ビデオマネージャー (VMG) とビデオタイトルセット (VTS) の構造をさらに詳しく示している。

【0083】ビデオマネージャー(VMG)は、制御データとしてのビデオマネージャーインフォメーション(VMGI)と、メニュー表示のためのデータとしてのビデオオブジェクトセット(VMGM_ VOBS)を有する。また前記VMGIと同一内容であるバックアップ用のビデオマネージャーインフォメーション(VMGI)も有する。

【0084】ビデオタイトルセット (VTS) は、制御データとしてのビデオタイトルセットインフォメーション (VTSI) と、メニュー表示のためのデータとしてのビデオオブジェクトセット (VTSM_ VOBS) と、映像表示のためのビデオオブジェクトセットである

ビデオタイトルセットのタイトルのためのビデオオブジェクトセット (VTSTT_ VOBS) とが含まれる。また前記VMGIと同一内容であるパックアップ用のビデオタイトルセットインフォメーション (VTSI) も有する。

【0085】さらに、映像表示のためのビデオオブジェクトセットである ($VTSTT_VOBS$) は、複数のセル (Cell) で構成されている。各セル (Cell) にはセル ID 番号が付されている。

【0086】図17には、上記のビデオオブジェクトセット (VOBS) とセル (Cell) の関係と、さらにセル (Cell) の中身を階層的に示している。DVD の再生処理が行われるときは、映像の区切り (シーンチェンジ、アングルチェンジ、ストーリーチェンジ等) や特殊再生に関しては、セル (Cell) 単位またはこの下位の層であるビデオオブジェクトユニット (VOBU) 単位、さらにはインターリーブドユニット (ILVU) 単位で取り扱われるようになっている。

【0087】ビデオオブジェクトセット(VOBS)は、まず、複数のビデオオブジェクト(VOB_IDN $1 \sim VOB_LIDN$ $1 \sim C_LIDN$ $1 \sim C_LIDN$ 1

【0088】ナビゲーションパック (NV_PCK) は、主として所属するビデオオブジェクトユニット内のデータの再生表示制御を行うための制御データ及びビデオオブジェクトユニットのデータサーチを行うための制御データとして用いられる。

【0089】ビデオバック (V_PCK) は、主映像情報であり、MPEG等の規格で圧縮されている。またサブピクチャーバック (SP_PCK) は、主映像に対して補助的な内容を持つ副映像情報である。オーディオバック (A_PCK) は、音声情報である。

【0090】図18には、プログラムチェーン (PGC) により、上記のセル (Cells) がその再生順序を制御される例を示している。

【0091】プログラムチェーン (PGC) としては、データセルの再生順序として種々設定することができるように、種々のプログラムチェーン (PGC#1、PGC#2、PGC#3…) が用意されている。したがって、プログラムチェーンを選択することによりセルの再生順序が設定されることになる。

【0092】プログラムチェーンインフォメーション (PGCI) により記述されいてるプログラム#1~プログラム#nが実行される例を示している。図示のプログラムは、ビデオオブジェクトセット (VOBS) 内の (VOB_IDN #s、CIDN#1) で指定されるセル以降のセルを順番に指定する内容となっている。

【0093】プログラムチェーンは、光ディスクの管理情報記録部に記録されており、光ディスクのビデオタイトルセットの読み取りに先行して読み取られ、システム制御部のメモリに格納される情報である。管理情報は、ビデオマネージャー及び各ビデオタイトルセットの先頭に配置されている。

【0094】図19にはビデオオプジェクトユニット (VOBU)と、このユニット内のビデオバックの関係 を示している。VOBU内のビデオデータは、1つ以上 のGOPにより構成している。エンコードされたビデオ データは、例えばISO/IEC13818-2に準拠 している。VOBUのGOPは、Iビクチャー、Bビク チャーで構成され、このデータの連続が分割されビデオ バックとなっている。

【0095】次に、マルチアングル情報が記録再生される場合のデータユニットについて説明する。被写体に対する視点の違う複数シーンがディスクに記録される場合、シームレス再生を実現するためには、記録トラック上にインターリープブロック部が構築される。インターリーブブロック部分は、アングルの異なる複数のビデオオブジェクト(VOB)が、それぞれ複数のインターリーブユニットに分割される。さきに説明したように、シームレス再生が可能なように配列されて記録される。

【0096】なお、先の説明で、複数のストーリを時分割で多重することの説明をおこなった。そして、その説明では、全て分割されたブロックも名称をセルと呼んだ。しかし、これ以後は、特にインターリーブされたブロックを、インターリーブユニットと呼ぶことにする。【0097】図20には、インターリーブブロックの配列例を示している。この例は、1~mのビデオオブジェクト(VOB)がそれぞれn個のインターリーブユニットに分割されて、配列された例を示している。各ビデオオブジェクト(VOB)は、それぞれ同じ数のインターリーブユニットに分割されている。したがって、さきの説明の図7の例に相当する。

【0098】図21には、例えば2つの(VOB)、つまりアングル1とアングル2のシーンのビデオオブジェクトがそれぞれ3つのインターリーブユニット($ILVU1-2\sim ILVU3-2$)に分割され、1つのトラック上に配列された

記録状態と、例えば、アングル1を再生した場合の再生 出力例を示している。この場合はアングル2の情報は取 り込みされない。

【0099】図22は、図14に示した再生装置を簡素化して示している。上記したようなジャンプ再生が行われる場合には、デコーダ206に対してデータがとぎれないように供給する必要がある。そのためにトラックバッファ220が設けられている。Vrはトラックバッファ220にエラー訂正処理部220から供給されるデータの転送レートであり、Voは、トラックバッファ220からデコーダに供給されるデータの転送レートである。ディスクからのデータの読み取りは、エラー訂正プロック毎に実行される。1エラー訂正プロックは16セクタ分に相当する。

【0100】図23は、インターリーブブロックが再生されるときのバッファ220へのデータ入力の増加及び減少が、最悪の場合を示している。このときには、記録トラック上のインターリーブユニットのジャンプと、ジャンプ先のインターリーブユニットデータの読み取り及び再生処理が実行される。

【0101】図において、Vrはトラックバッファ220にエラー訂正処理部220から供給されるデータの転送レートであり、また、Voは、トラックバッファ220からデコーダに供給されるデータの転送レートである。

【0102】Tjはジャンプ時間であり、トラックをシークする時間とそのために付随している必要な時間(レイテンシータイム latency time)を含む。bは、1つのBCCプロックのデータサイズ(例えば162144ピット)であり、Teは1つのECCプロックをパッファに読み込むのに必要な時間である。またBxは、ジャンプが開始されたとき(時点t4)にパッファ220に残っているデータ量である。

【0103】図23のデータ量を示す曲線は、時点t2から傾斜(Vr-Vo)の蓄積率で、バッファ220にデータが蓄積されていくことを示している。また、曲線は、時間t6では、バッファのデータ量が零になったことを示している。このバッファのデータは、時間t3から傾斜-Voの減少率で減少し、時間t6で零になっている。

【0104】この曲線から理解できることは、以下のようなことである。即ち、バッファ220から連続してデータが出力される条件、つまりデータがとぎれることなくデコーダへ供給されるための条件は、

Bx≧Vo (Tj+3Te) … (2) である。 【0105】

またインターリープユニットのサイズ (ILVU SZ) は、 ILVU SZ $\geq \{(Tj \times Vr \times 10^6 + 2b)/(2048 \times 8)\} \times Vo/(Vr-Vo)$

(セクタ)

の条件を導きたせる。

【0106】この式は、式(1)と等価であり、インタ

であり、インタ 【0107】即ち、

[(V0/m)/Pr] - [(V0/m)/Rr]> $\Sigma^{M-1}_{i=1}$ (Vi/m)/Jp] ... (1)

(1) 式の (V0/m) は、インターリーブユニットのサイズに相当し、PrはVo、 $RrはVrに相当する。【0108】また (1) 式の右辺はジャンプ時間であり、 (3) 式ではこのジャンプ時間に相当するセクタ数を<math>\{(Tj \times Vr \times 10^6 + 2b)/(2048 \times 8)\}$ として厳密に表している。

【0109】(1)式を(3)式に近付けるべく変形してみる。

ープユニットの数mが除去されているだけである。

【0110】 (V0/m) をユニットサイズとしてUS Zとおき、Pr=Vo、Rr=Vr、(1) 式の右辺を Tipとおくと、以下のように変形することができる。 【0111】

 $USZ \times (1/Vo) - USZ \times (1/Vr) \ge T j p$ $USZ \times \{ (1/Vo) - (1/Vr) \} \ge T j p$ $USZ \times \{ (Vr-Vo) / (VoVr) \} \ge T j p$ $USZ \ge T j p \times Vr \times \{ (Vo) / (Vr-Vo) \}$

... (4)

を得ることができる。

【0112】この(4)式はディメンジョンがデータ量で表されており、(3)式の 10^6 と $1/(2048\times8)$ の要素が省略された形である。T j p はT j + 2 b に対応する。

【0113】次に、バッファメモリとしてどの程度の容量が必要であるかを検討してみる。バッファメモリの容量は、再生装置がキックバック動作して、続いてインターリーブユニットのジャンプを行っても、メモリ出力データのとぎれがないような容量であることが望ましい。キックバックは、ディスクが一回転する間、ピックアップが読取りを待っているような状態であり、ディスクが一回転した後に、隣のトラックへ読取り位置をシークすることである。

【0114】図24は、再生装置においてキックバック動作が行われ、続いて最大級のジャンプ動作が行われた場合の時間と、バッファメモリにおけるデータの低減状況を示している。

【0115】Bmはトラックバッファのサイズ Tkはキックバック時間(ディスクの1回転時間相当) Teは1ECCプロックの読取り時間(24msec) Tjはジャンプ時間

=トラックシークタイム(tj)+latency time(=Tk) MAX Voは、ILVUの最大読み出しレート上記の要件を用いて、再生装置においてキックバック動作が行われ、続いて最大級のジャンプ動作が行われた場合に、データの継続を補償するバッファメモリの容量を求めると、 $Bm \ge \{(2Tk+tj+4Te) \times MAX_Vo\times10^6\}/(2048\times8)$ となる。 $Bm はセクタであり、Tk、t j、Teのそれぞれの単位は[sec]であり、MAX_Voの単位は、[Mbps]である。$

【0116】上記のことから、必要とされるトラックバッファサイズは、再生装置の Tk、tj、Teに依存し、tj はシーク動作の性能に依存する。またTk、Teは、ディスクの回転速度に依存する。 図25には、デジタルビデ オディスクを再生する再生装置のトラックバッファの最小容量 (Bm) と、キックバック及びシーク時間と、ジャンプ距離と、単位時間当たりのトラックバッファからの出力データ量との設計例を示している。

【0117】次に、上記したインターリープユニット及びこのインターリープユニットを再生する場合の管理情報について説明する。

【0118】図26には、ビデオタイトルセット(VTS)の中のビデオタイトルセットインフォーメーション(VTSI)を示している。ビデオタイトルセットインフォーメーション(VTSI)の中にビデオタイトルセットプログラムチェーンインフォメーションテーブル(VTS_PGCIT)が記述されている。したがって、1つのビデオタイトルセット(VTS)内のビデオオブジェクトセット(VOBS)が再生されるときは、このビデオタイトルセットプログラムチェーンインフォメーションテーブル(VTS_PGCIT)で提示される複数のプログラムチェーンの中から製作者が指定した又はユーザが選択したプログラムチェーンが利用される

【0119】VTSIの中には、そのほかに、次のようなデータが記述されている。

【0120】VTSI_MAT…ビデオタイトルセット情報の管理テーブルであり、このビデオタイトルセットにどのような情報が存在するのか、また、各情報のスタートアドレスやエンドアドレスが記述されている。

【0121】VTS_PTT_SRPT…ビデオタイトルセット パート オブ タイトルサーチポインターテーブルであり、ここでは、タイトルのエントリーポイント等が記述されてる。

【 0 1 2 2 】 V T S M_ P G C I_ U T ··· ビデオタイト ルセットメニュープログラムチェーンインフォメーションユニットテーブルであり、ここには、各種の言語で記述されるビデオタイトルセットのメニューが記述されている。したがって、どの様なビデオタイトルセットが記

述されており、どのようなスタイルの再生順序で再生できるのか記述されているのかをメニューで確認できる。【0123】VTS_TMAPT…ビデオタイトルセットタイムマップテーブルであり、このテーブルには、各プログラムチェーン内で管理され、ある一定の秒間隔で指示される各VOBUの記録位置の情報が記述されている。

【0124】VTSM_ C_ ADT…ビデオタイトルセットメニューセルアドレステーブルであり、ビデオタイトルセットメニューを構成するセルのスタート及びエンドアドレス等が記述されている。

【0125】VTSM_ VOBU_ ADMAP…ビデオ タイトルセットメニュービデオオブジェクトユニットア ドレスマップであり、このマップにはメニュービデオオ ブジェクトユニットのスタートアドレスが記述されてい る。

【0126】VTS_ C_ ADT…ビデオタイトルセットセルアドレステーブルであり、このマップにはセルのアドレス情報が記述されている。

【0127】再生装置においては、プログラムチェーンが選択されると、そのプログラムチェーンによりセルの再生順序が設定される。また再生においては、ビデオオブジェクトユニットに含まれるNV_PCKが参照される。

【0128】 NV_PCK は、表示内容、表示タイミングを制御するための情報や、データサーチのための情報を有する。したがって、この NV_PCK テーブルの情報に基づいて V_PCK の取り出しと、デコードが行われる。また他のバックの取り出し及びデコードが行われるが、その場合は、製作者又はユーザが指定しているところの言語の A_PCK 、 SP_PCK の取り出しが行われる。

【0129】図27には、ビデオタイトルセットプログラムチェーンインフォメーションテーブル(VTS_PGCIT)の内容を示している。このテーブルには、ビデオタイトルセットPGCIテーブル情報(VTS_PGCITI)、ビデオタイトルセットプログラムチェーンインフォメーションのサーチポインタ(VTS_PGCI_SRP#1~#n)、具体的なプログラムチェーイン情報(VTS_PGCI)が記述されている。

【0130】 (VTS_ PGCITI) には、サーチボインタの数とこのテーブルのエンドアドレスが記述されている。

【0131】(VTS_PGCI_SRP#1~#n)には、ビデオタイトルセットプログラムチェーンのカテゴリーとして、対象となるビデオタイトルセットのタイトル数、プログラムチェーンが1つのブロックで完結するものでるか、別のブロックのチェーンに続くものであるか等がタイプが記述されている。またビデオタイトルセットプログラムチェーンのスタートアドレスが、この

デーブルのスタート位置からの相対アドレスで記述されている。

【0132】図28には、プログラムチェーン情報 (PGCI) の構成を記述している。

【0133】 PGC I は、プログラムチェーン一般情報 (PGCI_GI)、プログラムチェーンコマンドテーブル (PGC_CMDT)、プログラムチェーンプログラムマップ (PGC_PGMAP)、セルブレイパック情報 (C_PBI)、セル位置情報テーブル (C_POSIT) を有する。

【0134】 $PGCI_GI$ には、このプログラムチェ ーンの対象となるプログラム数、セル数が記述されてい る (この情報はPGCコンテンツ (PGC_CNT) と 呼ばれる)。また、このプログラムチェーンの対象とす る全ての再生時間が示されている (この情報はPGC再 生時間 (PGC_ PB_ TM) と呼ばれる)。また、こ のプログラムチェーンにより再生されるプログラムは、 ユーザの操作が許可されているどうか、例えばアングル 切り換えが可能であるかどうかのコードが記述されてい る(この情報はPGCユーザ操作制御(PGC_UPR **_ CTL)と呼ばれる)。さらにまた、オーディオスト** リームの切り換えができるかどうか、またどの様なオー ディオストリーム(例えりニアPCM、AC-3、MP EG等)に切り換え移行できるかどうかのコードも記述 されている(この情報はPGCオーディオストリーム制 御テーブル (PGC_AST_CTLT) と呼ばれ る)。また、副映像の切り換えができるかどうか、また どの様な副映像 (例えば異なるアスペクト比) に切り換 え移行できるかどうかのコードも記述されている (この 情報はPGC副映像ストリーム制御テーブル (PGC_ SPST_CTLT)と呼ばれる)。

【0135】さらにまた、このPGCI_GIには、次のプログラムチェーンの番号及び先行するプログラムチェーンの番号をで先行するプログラムチェーンの対象となるプログラムが連続再生用であるか、ランダム再生用であるか、シャッフル用であるかどうかも記述されている(この情報はPGCナビゲーション制御(PGC_NV_CTL)と呼ばれる)。さらにまた、副映像はどの様な色に表示されるべきか色指定も行われている(この情報はPGC副映像パレット(PGC_SP_PLT)と呼ばれる)。

【0136】また、プログラムチェーンコマンドテープルのスタートアドレス(PGC_CMDT_SA)、プログラムチェーンのプログラムマップのスタートアドレス(PGC_PGMAP_SA)、セル再生情報テーブルのスタートアドレス($CPBIT_SA$)、セル位置情報のスタートアドレス($CPBIT_SA$)が記述されている。

【0137】プログラムチェーンコマンドテーブルには、当該プログラムチェーンのプリコマンド及びポスト

コマンド、及びセルコマンドが記述されている。プリコマンドは、プログラムチェーンが実行される前に処理されるべきコマンドであり、ポストコマンドはプログラムチェーンが実行された後に処理されるべきコマンドである。プリコマンド及びポストコマンドはプレーヤ側やディスクの制作者側により予め取り決めたコマンドやパラメータに基づいて、ビデオタイトルやオーディオの再生状態や再生ストリームを規定するのに利用される。またセルコマンドは、セルが再生処理を実行された後に続い

【0138】プログラムチェーンのプログラムマップのスタートアドレス (PGC_PGMAP) には、当該プログラムチェーンの対象となるプログラムの構成が示されており、存在するプログラムのエントリーセル番号などが記述されている。

て処理されるべきコマンドのことである。

【0139】セル再生情報テーブル (C_ PBIT) には、当該プログラムチェーンの対象となるセルの再生順序を示す情報が記述されている。

【0140】図29には、セル再生情報(C_ PBI T)とセル再生情報の内容を示している。C_ CAT は、セル属性情報であり、セルブロックのモードを示している。セルブロックのモードとは、第1番目のセルであるかどうか、最後のセルであるかどうか示している。またシームレス再生されるものであるかどうかの情報、インターリーブプロックに属するものであるかどうか、シームレスアングル切り換えに関する情報も含まれている。シームレスアングル切り換えに関する情報は、シームレスでアングル切り換えができるのか、ノンシームレスで切り換えができるのかを示している。

【0141】C_PBTMは、セル再生時間を示しており、C_FVOBU_SAは、当該セルの最初のビデオオブジェクトユニット(VOBU)のスタートアドレス、CILVU_EAは、当該セルの最初のインターリーブユニット(ILVU)のエンドアドレス、C_FVOBU_SAは、当該セルの最後のビデオオブジェクトユニット(VOBU)のスタートアドレス、C_FVOBU_EAは、当該セルの最後のビデオオブジェクトユニット(VOBU)のエンドアドレスを示している。上記のアドレスは、当該セルが属するVOBSの最初の論理ブロックからの相対論理プロック番号で記述される。【0142】このセル再生情報を参照することにより、

現在の再生状態がセルの終りであるかどうかを判定することにより、 現在の再生状態がセルの終りであるかどうかを判定する ことができる。次のセルを再生する場合には、セル再生 情報テーブル内の次のセル再生情報が参照されて、次の セル(またはインターリーブユニット)の最初のVOB Uのスタートアドレスが決定することになる。

【0143】図30は、セル位置情報テーブル (C_ P S I T) の内容を示している。セル位置情報としては、 当該セルが含まれるビデオオブジェクトの I D 番号 (C_ VOB_ I D N) と、当該セルのセル I D 番号 (C_ IDN) がある。

【0144】上記したように、管理情報には、セル再生情報が記述されおり、その中にはセルの属性情報があり、マルチアングル等のインターリーブユニットが記録されているかどうかが示されている。

【0145】このようにマルチアングルの映像、あるいはマルチストーリの映像が記録されている場合、ユーザの操作に応じて再生装置は、再生しているアングルを切り換えたり、また再生しているストーリーを切り換える必要がある。その場合、再生装置は、以下に述べるような情報に基づいて、ユーザの操作に応答することになる。まずパックの構成から説明する。

【0146】図31には、1つのパックとパケットの構成例を示している。1パックは、パックヘッダ、パケットで構成される。パックヘッダ内には、パックスタートコード、システムクロックリファレンス(SCR)等が記述されている。パックスタートコードは、パックの開始を示すコードであり、システムクロックリファレンス(SCR)は、再生装置全体に再生経過時間における所在時間を示す情報である。1パックの長さは、2048パイトであり、光ディスク上の1論理プロックとして規定され、記録されている。

【0147】1パケットは、パケットヘッダとビデオデータまたはオーディオデータ又はサブビクチャーデータまたはナビゲーションデータで構成されてる。パケットのパケットヘッダには、スタッフィングが設けられる場合もある。またパケットのデータ部にはパディングが設けられる場合もある。

【0148】図32には、NV_PCK(図17参照)を取り出して示している。

【0149】NV_PCKは、基本的には表示画像を制御するためのピクチャーコントロールインフォーメーション (PCI) パックと、同じピデオオブジェクト内に存在するデータサーチインフォメーション (DSI) パックを有する。各パックにはパックヘッダとサブストリームIDが記述され、その後にそれぞれデータが記述されている。各パックヘッダにはストリームIDが記述され、NV_PCI、DSIの識別をおこなっている。また各パックヘッダには、パケットスタートコード、ストリームID、パケット長が記述され、続いて各データが記述されている。

【0150】PCIバケットは、このNVバケットが属するビデオオブジェクトユニット(VOBU)内のビデオデータの再生に同期して表示内容を変更するためのナビゲーションデータである。

【0151】 PCIパケットには、一般情報であるPCIジェネラルインフォメーション (PCI_GI) と、ノンシームレスアングルインフォメーション (NSMLANGLI) と、ハイライトインフォメーション (HL

I) と、記録情報であるレコーディングインフォーメーション (RECI) が記述されている。

【0152】PCI_GIには、このPCIの一般的な 情報であり以下のような情報を記述されている。このナ ピゲーションバックのアドレスである論理プロックナン バー (NV_ PCK_ LBN) 、このPCIで管理され るビデオオブジェクトユニット (VOBU) の属性を示 すビデオオブジェクトユニットカテゴリー (VOBUC AT)、このPCIで管理されるビデオオブジェクトユ ニットの表示期間におけるユーザの操作禁止情報である ユーザオペレーションコントロール (VOBU_ UOP _ CTL)、ビデオオブジェクトユニットの表示の開始 時間である (VOBU_S_PTM)、ビデオオプジェ クトユニットの表示の終了時間である (VOBU_ E_ PTM) を含む。VOBU_S_PTMによって指定さ れる最初の映像は、MPEGの規格におけるIピクチャ ーである。さらにまた、ビデオオブジェクトユニットの 最後のビデオの表示時間を示すビデオオブジェクトユニ ット シーケンス エンド プレゼンテーションタイム (VOBU_SE_EPTM) や、セル内の最初のビデ オフレームからの相対表示経過時間を示すセル エラブ ス タイム (C_ ElTM) 等も記述されている。

【0153】また、NSML_ANGLIは、アングル チェンジがあったときの目的地のアドレスを示してい る。つまり、ビデオオブジェクトユニットは、異なる角 度から撮像した映像をも有する。そして、現在表示して いるアングルとは異なるアングルの映像を表示させるた めにユーザからの指定があったときは、次に再生を行う ために移行するVOBUのアドレスが記述されている。 【0154】HLIは、画面内で特定の領域を矩形状に 指定し、この領域の輝度やここに表示される副映像のカ ラー等を可変するための情報である。この情報には、ハ イライトジェネラルインフォーメーション (HL_ G I)、ユーザにカラー選択のためにボタン選択を行わせ るためのポタンカラーインフォーメーションテーブル (BTN_ COLIT)、また選択ポタンのためのポタ ンインフォーメーションテーブル (BTNIT) が記述 されている。

【0155】RECIは、このビデオオブジェクトユニットに記録されているビデオ、オーディオ、サブビクチャーの情報であり、それぞれがデコードされるデータがどようなものであるかを記述している。例えば、その中には国コード、著作権者コード、記録年月日等である。【0156】DSIバケットは、ビデオオブジェクトユニットのサーチを実行させるためのナビゲーションデータである。

【0157】DSIパケットには、一般情報であるDSI一般情報 (DSI_GI) と、シームレスプレイパックインフォーメーション (SML_PBI)、シームレスアングルインフォメーション (SML_AGLI)、

ピデオオプジェクトユニットサーチインフォメーション $(VOBU_SRI)$ 、同期情報 (SYNCI) 等が記述されている。

【0158】図33に示すようにDSI_GIには、次のような情報が記述されている。

【0159】NV_ PCKのデコード開始基準時間を示 すシステムクロックリファレンスであるNV_PCK_ SCR、NV_PCKの論理アドレスを示す(NV_P CKLBN)、このNV_PCKが属するビデオオブジ ェクトユニットの終了アドレスを示す (VOBU E A) が記述されている。さらにまた、最初にデコードす るための第1の基準ピクチャー (Iピクチャー) の終了 アドレス (VOBUISTREF_ EA) 、最初にデコ ードするための第2の基準ピクチャー (Pピクチャー) の終了アドレス (VOBU_ 2NDREF_ EA) 、最 初にデコードするための第3の基準ピクチャー (Bピク チャー) の終了アドレス (VOBU3RDREF_ E A) が記述されている。さらにまた、このDSIが属す るVOBのID番号 (VOBU_ VOB_ IDN)、ま たこのDSIが属するセルのID番号(VOBU_ C_ IDN)、セル内の最初のビデオフレームからの相対経 過時間を示すセル エラプス タイム (C_ E1TM) も記述されている。

【0160】図34に示すようSML_ PBIには、次のような情報が記述されている。

【0161】このDSIが属するVOBUはインターリ ープドされたユニット (ILVU) であるか、ビデオオ ブジェクトの接続を示す基準となるプリユニット (PR EU) であるかを示すビデオオブジェクトユニットシー ムレスカテゴリー (VOBUSML_ CAT) がある。 またインターリーブドユニットの終了アドレスを示す (ILVU_EA)、次のインターリープドユニットの 開始アドレスを示す(ILVU_SA)、次のインター リープドユニットのサイズを示す(ILVUSZ)、ビ デオオブジェクト (VOB) 内でのビデオ表示開始タイ ムを示す (VOB_ V_ S_ PTM) 、ビデオオブジェ クト (VOB) 内でのビデオ表示終了タイムを示す (V **OB_ V_ E_ PTM)** 、ビデオオブジェクト (VO B) 内でのオーディオ停止タイムを示す (VOB_ A_ STP_ PTM)、ビデオオプジェクト (VOB) 内で のオーディオギャップ長を示す (VOB_ A_ GAP_ LEN) 等がある。

【0162】 プリユニット (PREU) は、インターリープユニットの直前のBOVUの最後のユニットである。

【0163】上記のビデオオプジェクトユニットシーム レスカテゴリー (VOBU_SMLCAT) には、さら に、インターリープユニットがスタート時点におけるユ ニットであるのか否かを示すフラッグ、また終了時点に おけるユニットであるのか否かを示すフラッグの記述さ れている。

【0164】図35は、シームレスアングル情報(SML_AGLI)の内容を示している。 $C1\sim C9$ はアングル数を示し、最大9つのアングルの情報が存在してもその行き先のインターリーブユニットのアドレス及びサイズを示すことができる。即ち各アングルにおける次に移行目的とするインターリーブユニットのアドレス及びサイズ(SML_AGL_Cn_DSTA)($n=1\sim 9$)が記述されている。視聴中にユーザの操作によりアングル変更の操作があった場合はこの情報が参照され、再生装置は、つぎのインターリーブユニットの再生位置を認識できる。

【0165】図36はVOBU サーチ情報 (VOBU SRI) であり、特殊再生時等に参照される。

【0166】この情報は、現在のビデオオブジェクトユニット(VOBU)の開始時間よりも(0.5×n)秒前及び後のVOBUの開始アドレスを記述している。即ち、当該DSIを含むVOBUを基準にしてその再生順にしたがってフォワードアドレス(FWDINn)として+1から+20、+60、+120及び+240までのVOBUのスタートアドレス及びそのユニットにビデオバックが存在することのフラッグが記述されている。スタートアドレスは、当該VOBUの先頭の論理セクタから相対的な論理セクタ数で記述されている。この情報を利用することにより、再生したいVOBUを自由に選択することができる。

【0167】図37には同期情報を示している。この同期情報には、同期すべき目的オーディオバックのアドレスと、同期すべき目的副映像バックのVOBUスタートアドレスが記述されている。

【0168】上記したような管理情報が光学ディスクに 記述される。再生装置のシステム制御部は、ビデオマネ ージャーのプログラムチェーン情報を参照することによ り、セル再生情報を取得する。そしてセルの属性情報を 参照することにより、マルチアングルのためのインター リープユニットプロックが記録されているかどうかを認 識する。マルチアングルのためのインターリーブユニッ トプロックが記録されている場合、再生の途中において NV_ PACのシームレス再生情報、シームレスアング ル情報が取得されてバッファメモリにストアされる。そ して、ユーザの操作によりアングル切り換え情報が入力 すると、シームレスアングル情報が参照される。この参 照により、ユーザが希望したアングルのインターリーブ ユニットの再生が開始される。以後は、取得したNV_ PACに含まれるシームレスセル再生情報が参照され て、次に再生すべきインターリーブユニットが認識され る。セル再生情報を参照することにより、現在の再生状 態がセルの終りであるかどうかを判定することができ る。次のセルを再生する場合には、セル再生情報テープ ル内の次のセル再生情報が参照されて、次のセル (また

はインターリーブユニット)の最初のVOBUのスタートアドレスが決定することになる。

【0169】図14に示した再生装置のシステム制御部204には、上記したような各種の管理情報、プログラムチェーン、ナビゲーションパックなどのデータを処理し、またリモコン操作部205からの操作入力を処理する手段が設けられている。したがって、セル属性情報、セル再生シーケンス情報、枝シーンの切り換え情報(アングル情報等)の検出手段をする。そして、操作入力に応答して、検出手段にストアされている情報を参照ストプローズのより、再生すべきインターリーブユニットのストリームを決定している。この場合にビックアップ部103のトラッキング制御部を制御したりエラー訂正部202のデータ取り込みタイミングを制御することにより、キックパック及びジャンプ処理を実現している。

[0170]

【発明の効果】この発明は、マルチメディアにおける光学式ディスクの製造、販売、及び光学式ディスクの記録再生装置の製造、販売に適用できる。そして複数のストーリーやシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくてすみ、再生画像のとぎれや乱れが生じるの抑圧できる。

【図面の簡単な説明】

【図1】この発明の情報記録媒体及び記録方法の一実施の形態を説明するための説明図。

【図2】図1のセルの配列例と再生順の例を説明するための説明図。

【図3】この発明の情報記録媒体及び記録方法の他の実施の形態を説明するための説明図。

【図4】図3のセルの接続先及びセルの具体的配列例を 説明するための説明図。

【図5】図3のセルの配列アルゴリズムの例を説明する ための説明図。

【図6】図3のような配列セルの再生例を説明するための説明図。

【図7】この発明の情報記録媒体及び記録方法のさらに他の実施の形態を説明するための説明図及びセルをトラック上に配列した場合の配列例を示す図。

【図8】この発明の情報記録媒体及び記録方法のさらに また他の実施の形態を説明するための説明図及びセルを トラック上に配列した場合の配列例を示す図。

【図9】この発明の情報記録媒体及び記録方法のまた他の実施の形態を説明するための説明図及びセルをトラック上に配列した場合の配列例を示す図。

【図10】この発明の情報記録媒体及び記録方法のさらにまた他の実施の形態を説明するための説明図。

【図11】この発明の情報記録媒体及び記録方法のまた他の実施の形態を説明するための説明図。

【図12】図11のセルの配列例を説明するための説明図。

【図13】この発明の記録媒体にマルチストーリーを記録する場合の分割方法をさらに説明するために示した説明図。

【図14】この発明の記録媒体を再生する再生装置の例 を示す図。

【図15】この発明が適用された光学式ディスクのポリウム空間を示す説明図。

【図16】ビデオマネージャー (VMG) とビデオタイトルセット (VTS) の構造をさらに詳しく示す説明図。

【図17】ビデオオブジェクトセット (VOBS) とセル (Ce11) の関係と、さらにセル (Ce11) の中身を階層的に示す説明図。

【図18】プログラムチェーン (PGC) により、セル (Cells) がその再生順序を制御される例を示す説明図。

【図19】ビデオオブジェクトユニット (VOBU) と、このユニット内のビデオバックの関係を示す説明 図。

【図20】インターリーププロックを配列した例を示す 説明図。

【図21】アングル1とアングル2のシーンのビデオオブジェクトがそれぞれ3つのインターリーブユニット(ILVU1-1~ILVU3-1)(ILVU1-2~ILVU3-2)に分割され、1つのトラック上に配列された記録状態と、アングル1を再生した場合の再生出力の例を示す説明図。

【図22】図14に示した光ディスク再生装置を簡素化して示す説明図。

【図23】インターリーブブロックが再生されるときのトラックパッファへのデータ入力の増加及び減少が、最悪の場合を示す説明図。

【図24】再生装置においてキックバック動作が行われ、続いて最大級のジャンプ動作が行われた場合の時間と、バッファメモリにおけるデータの低減状況を示す説明図。

【図25】再生装置のトラックバッファの最小容量(Bm)と、キックバック及びシーク時間と、ジャンプ距離と、単位時間当たりのトラックバッファからの出力データ量との設計例を示す説明図。

【図26】ビデオタイトルセット (VTS) の中のビデオタイトルセットインフォーメーション (VTSI) を示す説明図。

【図27】ビデオタイトルセットプログラムチェーンインフォメーションテーブル (VTS_PGCIT) の内容を示す説明図。

【図28】プログラムチェーン情報(PGCI)の構成を示す説明図。

【図29】セル再生情報 (C_PBIT) とセル再生情報の内容を示す説明図。

【図30】セル位置情報テーブル (C PSIT) の内容を示す説明図。

【図31】光学式ディスクに記録されている1つのバックとバケットの構成例を示す説明図。

【図32】NV_PCKを取り出して示す説明図。

【図33】データサーチー般情報 (DSI_GI) に記述されている情報を示す図。

【図34】シームレス再生情報 (SML_ PBI) に記述されいてる情報を示す図。

【図35】シームレスアングル情報 (SML_AGLI) の内容を示す図。

【図36】 VOBU サーチ情報 (VOBU_ SRI) を示す図。

【図37】同期情報を示す図。

【符号の説明】

100…光ディスク

101…ターンテーブル

102…モータ

103…ピックアップ部

104…ピックアップドライブ部

201…復調部

202…エラー訂正部

203…デマルチプレクサ

204…システム制御部

205…リモコン操作部

206…ビデオデコーダ

207…サブピクチャー処理部

211213…オーディオデコーダ

220…パッファメモリ。

【図1】

【図2】

【図3】

【図4】

(A)					
シーンセル	データ容量	接接先シーンセル番号			
掛号	(Mb)				
A 0 - 1	5	A0-0			
A0-0	7	81-3	82-2	C0-0	C1-0
81-3	4	81-2			
B1-2	7	B I - 1			
B1-1	5.	81-0			
B1-0	4	C 0 - 0	01-0		
B 2 - 2	6	B 2-1			
82-1	8	B 2 - 0			
B2-0	4	C 0 - D	C1-0		
C0-0	6	00-0	D1-0		
C1-0	5	0-00	D1-0		
D0-0	6	E0-0	E1-0		
D1-0	5	E0-0	EI-0		
E0-0	4	F0-2			
E1-0	7	F0-2			
F0-2	4	F0-1			
FQ-1	6	F0-0			
F0-0	5				
(L1)				···	

(B)		
シーンセル	データ容量	挨続完了
一個母	(MP)	フラグ
A0-1	5	1
A0-0	7	-
B1-3	4	1
B 2 - 2	6	1
C0-0	6	ı
C1-0	5	1
B1-2	7	. 1
B 2 - [8	1
81-1	5 .	. 1
D0-0	5	
DI-0	4	1
B2-0	4	1
B1-0	4	1
C0-0	6	1
C1-0	5	,
E1-0	6	1
E0-0	7	1
F0-2	4	1
F0-1	6	\$
F0-0	5	0
(L2)		

【図6】

再生例 1 再生例 2 再生例 3 再生例 4 A 0 - 1 A 9 - 0 B1-3 B 2 - 2 C 0 - 0 C1-0 B1-2 B 2 - 1 B1-1 D 0 - 0 D1-0 B 2 - 0 · B1-0 C 0 - 0 C1-0 E 0 - 0 E1-0 F0-2 F 0 - 1 F0-0

【図19】

【図22】

Vr パッファ Vo デコーダ

【図5】

【図7】

【図8】

【図15】

【図9】

【図10】

【図18】

【図11】

【図12】

【図13】

【図20】

【図14】

【図16】

【図25】

最大IWX_%	[Mbps]	8	8	7.5	7
最大ジャンプ距離	(SECTOR)	5.000	10,000	15,000	20,000
最大(2Tk+tj)	[risec]	209+106	209+146	209+175	209+200
最小 8m	(SECTOR)	201	221	220	216

【図17】

【図21】

【図23】

【図24】

【図26】

【図29】

【図30】

[図28]

【図31】

プログラムチェーン情報 (PGCI)

【図34】

SML_PB! (シームレス再生情報)

VOBU_SML_CAT	ゔー&レズVOBUのカテコ゚リー
ILVU_EA	インターリープト・ユニット終了フト・ルス
NXT_ILVU_SA	次のインターワーブドユニットの開始アドレス
NXT_JLVU_SZ	次のインターワープドユニットのサイズ
VOB_V_S_PTM	VOB内でのビデオ表示開始時間
VOB_V_E_PTM	VOB内でのビデヤ表示終了時間
VOB_A_STP_PTM	VO8内でのオーディオ停止時間
VOB_A_GAP_LEN	VOB内でのオーディキギヤップ長

【図32】

【図33】

DSI_GI (DSI 一般情報)

NV_PCK_SCR	NVA" TOSCR
NV_PCK_LBN	NVパックのLBN
VOBU_EA	VOBUの終了アト゚レス
VOBU_ISTREF_EA	第1の基準ピリチャーの終了アトンス
VOBU_2NDREF_EA	第2の基準ピクチャーの終了スドレス
VOBU_SRDREF_EA	第3の基準ピタチャーの終了アドレス
AOBN_AOB_IDM	VQBUのiD番号
	于的
VOBU_C_IDN	VOBUの中ID最合
C_ELTM	tAの経過時間

【図35】

SML_AGLI(シームレス・アングル情報)

SML_AGL_C1_DSTA	アングルC1の目的ILVUのアドレス及びサイズ
SML_AGL_C2_DSTA	アングルC2の自的LVUのアドレス及びサイズ
SML_AGL_C3_DSTA	アングルC3の目的ILVUのアドレス及びサイズ
SML_AGL_C4_DSTA	アングルC4の目的ILVUのアドレス及びサイズ
SML_AGL_C5_DSTA	アングルCSの自的ILVUのアドレス及びサイズ
SML_AGL_C8_DSTA	アングルC6の目的ILVUのアドレス及びサイズ
SML_AGL_C7_DSTA	アングルC7の自的ILVUのアドレス及びサイズ
SML_AGL_C8_DSTA	アングルCBの目的ILVUのアドレス及びサイズ
SML_AGL_C9_DSTA	アングルC9の目的ILVUのアドレス及びサイズ

[図36]

内容

	FTE
FWDI VIDE	とデオデータを有する次のVOBU
FWDI 240	+240VOBUのスタートアドルス及びビデオがある髪のメーダ
FW0I 120	160VOBUのスチートアドレスアンロ゚デオーイをみなのた。
FWDI 20	+20VOBUのスタートアドレス及びピデオが有る旨のテラン゙
FWOI 15	十15VOBUの29十71、42及びと、デオが有る量の757
FWDI 14	十14VOBUのスナートアドレス及びビデオが右る髪のアラゥ゙
FWDI 13	十13VOBUのスクートアドレス及びビデナが右るをのフラヴ
FWD! 12	十12VOBUのスシートアドレスみ(み゚デオが言るどのフーセッ゚
FWDI 11	十11VOBUのスタートアドレス及びビデオが有る旨のフラヴ
FWOI 10	+10VO8Uのスナートアドレス及びもずずが有る旨のフサラ゙
FWDI 8	十9VOBUのスタートアドレス及びビデオがある旨のフテジ
FWDI 8	十8VO8Uのスタートアドレス及びピデナボヤヤまるほのフータッ
FWDI 7	十7VOBUのスチートアドレス及びピデオが有る旨のフテグ
FWDI 6	十らVOBUのスナートアト・レス及びピディナがある旨のデク
FWDI 5	十5VOBUのスタートアドレス及びビデナが石る旨のフラグ
FWDI 4	十40080のスタートアドレス及びビデオがなるほのフテダ
FWDI3	十つVOBUのスタートアドレス及びピデオがまる日のテンタ・
FWDI 2	十2VOBUのスタートアドレス及びビデオがきるどのアサヴ
PWDI 1	十1VOBUの対外がいる及びも、ディが有る質のフラン
FWDI NEXT	次のVOBUのスタートアドレス及セチビデナが含みそのコシベ
BWDI PREV	〒町のVOBUのスタ→アドレススタスタィター゙デォルテンスはのテッジ
BWDI 1	】 一 1VOBUのスタートアドレス及びビデォが有る岩のアラグ
BWDI2	ー 2VOBUのスタートアドレス及びビデオが宿る旨のフテジ
BW013	―3VO8Uのスタートアドレス及びビデオがあるおのでが
BWDI4	ー 4VOBUのスタートアドレス及イレビデイが右るどのテラジ
BWDI 5	ー 5VOBUのスタートアドレス及びビデナが有る行のフテン゙
8W016	一6VOBUのスタートアドレス及びビデオが高る足のフテゥ゙
BWDI 7	ー 7VO8Uのスタートアドレスススぴピデォがあるにのフラッ゚
BWDI 8	~8VOSUのスタートアドレス及びピデオが育るをかフォゥ゙
BWDI 9	ー BVOBUのスタートアドレス及びピデオが有る旨のフラヴ
BWDI 10	一 TOVOBUのスタートアドレス及びビデオが有る旨のスラダ
BWDI 11	一 11VO8Uのスタートアドレス及びビデオが有る分のフライン
SWDI 12	一 12VOBUのスタートアドレス及びが、ディオペニスにかったが、
BWDI 13	ー 13VOBUのスタートアドレス及びピデオが有るどのフテグ
BWOI 14	- 14VOBUのスタートアドレス及びピデオがある旨のテッグ
BWDI 15	一 15VOBUのスタートアド以及びビデナが含みなのコテベ
BWDI 20	- 20VOBUO31-171 LZ BISE + 40-1 E
BM01 60	60VOBUのスタートアドレス及びピデォがある日のテニネー
BWDI 120	120VOBUのなーアドレュコメアテーデタータートーートー
BWDI 240	- 240VUBUの以上71、12万75/デジタをませる。
BWDI VIDEO	手腕のVOBUのスタートアドレス及びビデネが有る旨のアラグ

【図37】

SYNCI (同期情報)

A_SYNCA 0 to 7	同期対象のオーディオパックのアドレス
SP_SYNCA 0 to 31	VOBU内の対象の副映像パックの開始アドレス

フロントページの続き

(72)発明者 小島 正

神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内