DL-specific deployment

Efficient model inference

Lecture plan

- Scope
- Ways to optimize models
- Efficient architectures
- Reducing number of model's parameters
- Get the most out of training
- Relations with inference engines

Scope

- Task
- Data collection
- Architecture choice
- Train the model (parallelism, fast tools, etc.)
- ???
- Deployment
- Profit!

Our goal

Acquire the most efficient model for inference

Our goal

Acquire the most efficient model for inference

but...

- 1. Why?
- 2. What is efficient model?

Model size

What does the model size affect?

Loading speed, device choice (2 models per device / 3 models per device?), FLOPs

Model speed

- The inference time is **how long** is takes for a forward propagation
- Three core ideas:
 - FLOPs or Floating Point Operations are total number of calculations such as addition, subtraction, division, multiplication
 - FLOPS are the Floating Point Operations per Second
 - MACs or Multiply-Accumulate Computations are operations that perform addition and multiplication, that is, 2 operations

As a rule, we consider 1 MAC = 2 FLOPs

Model speed [calculating FLOPs]

- The model will do FLOPs = 60,840 + 259,200 + 737,280 + 2,560 = 1,060,400 operations
- Say we have a CPU that performs 1 GFLOPS
 FLOPs/FLOPS = (1,060,400)/(1,000,000,000) = 0,001 s or 1ms

What slows down the model?

- Unnecessary / ineffective operations (attention examples, depthwise convs)
- Synchronisation costs (global pooling, squeeze-and-excitation blocks)
- Memory access (branches in ConvNets)

Ways to optimize models

- Efficient architectures
- Number of parameters reduction
 - Knowledge distillation
 - Pruning
 - Matrices decompositions
- Get the most from training
 - Quantization aware training
 - Stochastic weight averaging
- Take the best framework / engine / server solution

Ways to optimize models

- Efficient architectures
- Number of parameters reduction
 - Knowledge distillation
 - Pruning
 - Matrices decompositions
- Get the most from training
 - Quantization aware training
 - Stochastic weight averaging
- Take the best framework / engine / server solution

Efficient architectures [CV]

What's the time of 256x256 image classification on CPU?

Efficient architectures [CV]

What's the time of 256x256 image classification on CPU?

- MobileNets (2017-2019)
 - Convolutions → depthwise-separable convolutions
 - V3: ~ 1ms on IPhone 12, ImageNet accuracy 72%, 3.4kk params
- MobileOne (2022)
 - Reparametrization of branches
 - ∼ 1ms on IPhone 12, ImageNet accuracy 78%, 4.5kk params

Efficient architectures [CV] — MobileNet

Main idea: replace ConvBlocks with depthwise convolutions + pointwise convolutions

Input: $D_F \times D_F \times M$; Output: $D_F \times D_F \times N$

Kernel: $D_K \times D_K \times M \times N$

Standard convolution: $D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$

Depthwise convolution: $D_K \cdot D_K \cdot M \cdot D_F \cdot D_F$

Depthwise-separable: $D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F$

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

Efficient architectures [CV] — MobileNet

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million		
	Accuracy	Mult-Adds	Parameters		
1.0 MobileNet-224	70.6%	569	4.2		
GoogleNet	69.8%	1550	6.8		
VGG 16	71.5%	15300	138		

Table 13. COCO object detection results comparison using different frameworks and network architectures. mAP is reported with COCO primary challenge metric (AP at IoU=0.50:0.05:0.95)

Framework Resolution	Model	mAP	Billion Mult-Adds	Million Parameters
	deeplab-VGG	21.1%	34.9	33.1
SSD 300	Inception V2	22.0%	3.8	13.7
	MobileNet	19.3%	1.2	6.8
Faster-RCNN	VGG	22.9%	64.3	138.5
300	Inception V2	15.4%	118.2	13.3
	MobileNet	16.4%	25.2	6.1
Faster-RCNN	VGG	25.7%	149.6	138.5
600	Inception V2	21.9%	129.6	13.3
	Mobilenet	19.8%	30.5	6.1

Efficient architectures [CV] — MobileOne

Main idea: remove overparametrized branches from depthwise-separable ConvBlocks

Efficient architectures [CV] — MobileOne

Advantages of branches removal:

- Fast
- Memory-economical
- Flexible architecture

BN and convolution fusion

Efficient architectures [NLP] — ALBERT

- Projections for embeddings
- Parameters sharing for layers

Model		Parameters	Layers	Hidden	Embedding	Parameter-sharing
	base	108M	12	768	768	False
BERT	large	334M	24	1024	1024	False
ALBERT	base	12M	12	768	128	True
	large	18M	24	1024	128	True
	xlarge	60M	24	2048	128	True
	xxlarge	235M	12	4096	128	True

Mod	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7x
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
ALBERT	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x

Efficient architectures [NLP] — Linformer

$$\begin{split} \overline{\mathbf{head}_i} &= \mathrm{Attention}(QW_i^Q, E_iKW_i^K, F_iVW_i^V) \\ &= \underbrace{\mathrm{Softmax}\left(\frac{QW_i^Q(E_iKW_i^K)^T}{\sqrt{d_k}}\right) \cdot \underbrace{F_iVW_i^V}_{k \times d}}_{\bar{P}:n \times k} \end{split}$$

Efficient architectures [NLP] — Linear Transformer

- Linear time w.r.t. sequence length
- Constant memory
- Causal masking

$$V_{i}' = \frac{\sum_{j=1}^{N} \sin(Q_{i}, K_{j}) V_{j}}{\sum_{j=1}^{N} \sin(Q_{i}, K_{j})}$$

$$V_{i}' = \frac{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j})}$$

$$V_{i}' = \frac{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$

Ways to optimize models

- Efficient architectures
- Number of parameters reduction
 - Knowledge distillation
 - Pruning
 - Matrices decompositions
- Get the most from training
 - Quantization aware training
 - Stochastic weight averaging
- Take the best framework / engine / server solution

Knowledge distillation

Knowledge distillation

Knowledge distillation [response-based]

- Update **student** weights and freeze **teacher** weights
- The **responses** can be logits, offsets, heatmaps and so on

Knowledge distillation [response-based]

- Optimise weighted combination of student and distillation losses
- As usual, student loss is cross-entropy and distillation loss is Kullback-Leibler divergence

Knowledge distillation [response-based]

Temperature	Logits	Softmax Probabilities
1	[30, 5, 2, 2]	$[1\mathrm{e}+0, 1.38\mathrm{e}-11, 6.91\mathrm{e}-13, 6.91\mathrm{e}-13]$
10	[3, 0.5, 0.2, 0.2]	[0.8308, 0.0682, 0.0505, 0.0505]

- Soft targets contain the informative dark knowledge from the teacher model
- Higher temperatures produce softer probabilities which provides a stronger signal to the student

Knowledge distillation [feature-based]

• Directly match the feature activations of the teacher and the student

Knowledge distillation [feature-based]

Alignment Function (MLP, Conv)

Knowledge distillation [feature-based] — TinyBERT

$$\mathcal{L}_{ ext{attn}} = rac{1}{h} \sum_{i=1}^h ext{MSE}ig(m{A}_i^S, m{A}_i^Tig)$$

$$\mathcal{L}_{ ext{hidn}} = ext{MSE}ig(oldsymbol{H}^S W_h, oldsymbol{H}^Tig)$$

$$\mathcal{L}_{ ext{embd}} = ext{MSE}ig(oldsymbol{E}^Soldsymbol{W}_e, oldsymbol{E}^Tig)$$

$$\mathcal{L}_{ ext{pred}} \, = ext{CE}ig(oldsymbol{z}^T/t,oldsymbol{z}^S/tig)$$

$$\mathcal{L}_{ ext{model}} = \sum_{x \in \mathcal{X}} \sum_{m=0}^{M+1} \lambda_m \mathcal{L}_{ ext{layer}} \left(f_m^S(x), f_{g(m)}^T(x)
ight)$$

Knowledge distillation [a good teacher]

- Distillation as function matching
- Consistent teaching
- Patient teaching
- Good for new data

Knowledge distillation [schemes]

Knowledge distillation [schemes]

- Fewer layers or fewer channels in each layer
- Quantized version
- Efficient basic operations

$$-\sum_{i=1}^{N}\log p(y_{i}\mid x_{i},W)+\lambda\sum_{\eta\in\mathcal{H},\;w_{\eta}\in W}\left\Vert w_{\eta}
ight\Vert _{2}
ightarrow\min$$

$$ext{threshold}_{ au}(w_i) = egin{cases} w_i, & ext{if } |w_i| ext{ in TOP-p} \ 0, & else \end{cases}$$

Pruning

$$\min_{eta \in \mathbb{R}^p} \Biggl(\left\| \mathbf{y} - \sum_{g=1}^G \mathbf{X_g} eta_g
ight\|_2^2 + \lambda_1 \sum_{g=1}^G \left\| eta_g
ight\|_2 + \lambda_2 \|eta\|_1 \Biggr)$$

Matrices decompositions

Matrices decompositions

- Linear layer: Y = X W; where X is (p, n) and W is (n, m)
- SVD: W = U Σ V^T; where U is (n, n), Σ is diagonal (n, m), V is (m, m)
- Truncate SVD
- Change order of multiplications
- Acquired complexity change: $p \ n \ m \rightarrow p \ n \ k + k \ m \ n$
- k

Ways to optimize models

- Efficient architectures
- Number of parameters reduction
 - Knowledge distillation
 - Pruning
 - Matrices decompositions
- Get the most from training
 - Quantization aware training
 - Stochastic weight averaging
- Take the best framework / engine / server solution

Quantization

Quantization

Quantization

Quantize:

$$Q(r) = \operatorname{Int}(r/S) - Z$$

$$S = rac{eta - lpha}{2^b - 1}$$

$$Z=-\Bigl(rac{lpha}{S}-lpha_q\Bigr)$$

Dequantize:

$$\tilde{r} = S(Q(r) + Z)$$

Quantization [uniformity]

Quantization [clustering]

Quantization [static VS dynamic]

- Static quantization
 - Post training procedure
 - Activations are fused to layers if possible
 - Scaling factors are computed on the representative dataset
 - Suitable for CNNs
- Dynamic quantization
 - On the fly during inference
 - Weights are converted to int8, activations are in full precision
 - Scaling factors are computed on the fly in full precision based on activations
 - Suitable for Transformers

Quantization [quantization aware training]

Stochastic weight averaging

Stochastic weight averaging

Get better models to lose less quality while reducing model's size

Simple averaging of the model's weights for the last several epochs may improve convergence

Ways to optimize models

- Efficient architectures
- Number of parameters reduction
 - Knowledge distillation
 - Pruning
 - Matrices decompositions
- Get the most from training
 - Quantization aware training
 - Stochastic weight averaging
- Take the best framework / engine / server solution

Take the best framework / engine / server solution

Use ONNX to fuse layers and quantize model

Use DeepSpeed with ONNX RT and everything else we've teached you previously

Takeaways

- Carefully chose architecture for your problem
- Use knowledge distillation
- Quantize model
- Use best practices for training
- Use efficient software