CSCI 335 Notes

Anton Goretsky Ralph Vente

Contents

Rules																	1	
Rule 1																	1	
Rule 2																	2	
Rule 3																	2	

Big O notation

 $T(n) = O(n^2)$ bounding the algorithm with the $O(n^2)$ time.

O(n) notation means that the runtime of the algorithm on a dataset of n is bounded above by O(n).

$$T(n) = \Omega(n^2)$$

Omega is the best case runtime.

$$T(n) = \Theta(n^2)$$

Theta is a tight constraint on the runtime.

Alternatively, Big O can be thought of as...

$$T(n) = O(f(N)) \equiv \lim_{N \to \infty}$$

Rules

Rule 1

$$T_1(N) = O(f(N))$$
 and $T_2(N) = O(g(N))$

then

a)
$$T_1(N) + T_2(N) = O(f(N) + g(N))$$

b)
$$T_1(N)T_2(N) = O(f(N)g(N))$$

Rule 2

If T(n) is a polynomial degree k, then $T(N) = \Theta(N^k)$

Rule 3

$$\log^k(N) = O(n)$$

Limits are used to determine the relative growth rate of two functions.