MODELOS

LA GRAN DISYUNTIVA

PARTICIONES

ELIMINACIÓN DEL RIESGO ASOCIADO A LA PARTICIÓN SIMPLE

VALIDACIÓN MODELOS DE CLASIFICACIÓN

VALIDACIÓN MODELOS DE CLASIFICACIÓN

Métrica	Fórmula	Interpretación	
Exactitud	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Rendimiento general del modelo	
Precisión	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Que tan precisas son las predicciones positivas	
Exhaustividad Sensibilidad	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Cobertura de la muestra positiva real	
Especificidad	$rac{ ext{TN}}{ ext{TN} + ext{FP}}$	Cobertura de la muestra negativa real	
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Métrica híbrida útil para clases desbalanceada:	

VALIDACIÓN MODELOS DE REGRESIÓN

Suma total de cuadrados	Suma de cuadrados explicada	Suma residual de cuadrados
$SS_{++} = \sum_{i=1}^{m} (u_i - \overline{u})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	$SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$
$\sum_{i=1}^{n} (g_i - g)$	$SS_{\text{reg}} = \sum_{i=1}^{\infty} (J(x_i) - g)$	$\sum_{i=1}^{n} (g_i - f(x_i))$

$$R^2 = 1 - rac{
m SS_{res}}{
m SS_{tot}}$$

OTROS PROBLEMAS: IMBALANCEO

