Compact Knapsack: a Semidefinite Approach

Hubert Villuendas

 \square : hubert.villuendas@univ-grenoble.fr

Laboratoire d'Informatique de Grenoble Université Grenoble Alpes

November 20th, 2024

Items labelled $i \in \{1, ..., n\}$, with costs c_i and weights w_i , $q \in \mathbf{R}_+$.

• Knapsack: find a selection $S \subseteq \{1, \ldots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

• Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed $\Delta \geqslant 1$.

Items labelled $i \in \{1, ..., n\}$, with costs c_i and weights w_i , $q \in \mathbf{R}_+$.

• Knapsack: find a selection $S \subseteq \{1, ..., n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

 Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed $\Delta \ge 1$.

Example with n = 7 and $\Delta = 2$

Items labelled $i \in \{1, ..., n\}$, with costs c_i and weights w_i , $q \in \mathbf{R}_+$.

• Knapsack: find a selection $S\subseteq\{1,\ldots,n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

Compactness: [Santini and Malaguti, 2024]
 S contains no gap that exceed Δ ≥ 1.

A non-compact example with n = 7 and $\Delta = 2$

Items labelled $i \in \{1, ..., n\}$, with costs c_i and weights w_i , $q \in \mathbf{R}_+$.

• Knapsack: find a selection $S \subseteq \{1, \ldots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

• Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed $\Delta \geqslant 1$.

A non-compact example with n = 7 and $\Delta = 2$

Items labelled $i \in \{1, ..., n\}$, with costs c_i and weights w_i , $q \in \mathbf{R}_+$.

• Knapsack: find a selection $S \subseteq \{1, \ldots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

Compactness: [Santini and Malaguti, 2024]
 S contains no gap that exceed Δ ≥ 1.

A compact example with n = 7 and $\Delta = 2$

Items labelled $i \in \{1, \dots, n\}$, with costs c_i and weights w_i , $q \in \mathbf{R}_+$.

• Knapsack: find a selection $S \subseteq \{1, \dots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

Compactness: [Santini and Malaguti, 2024]
 S contains no gap that exceed Δ ≥ 1.

Example with n = 7 and $\Delta = 2$

minimize
$$c^{ op}x$$
 subject to $w^{ op}x\geqslant q$ $\forall i,j\in \llbracket n
rbracket, j-i>\Delta, \quad x_i+x_j-1\leqslant \sum\limits_{k=i+1}^{j-1}x_k$ $x\in \{0,1\}^n$

Items labelled $i \in \{1, ..., n\}$, with costs c_i and weights w_i , $q \in \mathbb{R}_+$.

• Knapsack: find a selection $S \subseteq \{1, \ldots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geqslant q$$

Compactness: [Santini and Malaguti, 2024]
 S contains no gap that exceed Δ ≥ 1.

Example with n = 7 and $\Delta = 2$

minimize
$$c^{\top}x$$

subject to $w^{\top}x\geqslant q$
 $\forall i,j\in \llbracket n\rrbracket, j-i>\Delta, \qquad \left\lfloor\frac{j-i-1}{\Delta}\right\rfloor(x_i+x_j-1)\leqslant \sum\limits_{k=i+1}^{j-1}x_k$
 $x\in\{0,1\}^n$

Given a time serie $\{y_1, \ldots, y_n\}$, how to detect mean/variance changes?

Given a time serie $\{y_1, \ldots, y_n\}$, how to detect mean/variance changes?

A time series with its possible change points in variance [Santini and Malaguti, 2024]

Given a time serie $\{y_1, \ldots, y_n\}$, how to detect mean/variance changes?

Probabilities associated with each time point [Santini and Malaguti, 2024]

Given a time serie $\{y_1, \ldots, y_n\}$, how to detect mean/variance changes?

Credible set relative to the first change point [Santini and Malaguti, 2024]

Given a time serie $\{y_1, \dots, y_n\}$, how to detect mean/variance changes?

Credible set relative to the first change point with the compactness constraint [Santini and Malaguti, 2024]

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

Substitute $X = xx^{\top}$. Then $X_{ij} = x_ix_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{bmatrix} \text{minimize} & c^\top x \\ \text{subject to} & w^\top x \geqslant q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor (x_i + x_j - 1) \leqslant \sum_{k=i+1}^{j-1} x_k \\ & x \in \{0,1\}^n \end{bmatrix}$$

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{bmatrix} \text{ minimize } & \operatorname{tr}\left(\operatorname{Diag}(c)X\right) \\ \text{ subject to } & \operatorname{tr}\left(\operatorname{Diag}(w)X\right) \geqslant q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leqslant \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & X \text{ has coefficients in } \left\{0,1\right\} \\ & \operatorname{rank}(X) = 1 \\ & X \succeq 0 \end{aligned}$$

4/16

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_ix_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}\left(\operatorname{Diag}(c)X\right) \\ \text{subject to} & \operatorname{tr}\left(\operatorname{Diag}(w)X\right) \geqslant q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leqslant \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & X \text{ has coefficients in } \left\{0,1\right\} \\ & \operatorname{rank}(X) = 1 \\ & X \succeq 0 \end{array}$$

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let
$$\overline{X} = \begin{pmatrix} 1 & \mathsf{diag}(X)^\top \\ \mathsf{diag}(X) & X \end{pmatrix} \succeq 0$$
, $X \neq 0$. The following are equivalent:

- rank(X) = 1
- $X = xx^{\top}$ with $x \in \{0,1\}^n$
- X has coefficients in $\{0,1\}$.

Substitute $X = xx^{\top}$. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{bmatrix} \text{ minimize } & \operatorname{tr}\left(\operatorname{Diag}(c)X\right) \\ \text{ subject to } & \operatorname{tr}\left(\operatorname{Diag}(w)X\right) \geqslant q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leqslant \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix}\right) \succeq 0 \\ & \operatorname{rank}(X) = 1 \end{aligned}$$

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let
$$\overline{X} = \begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$$
, $X \neq 0$. The following are equivalent:

- $\operatorname{rank}(X) = 1$
- $X = xx^{\top}$ with $x \in \{0, 1\}^n$
- X has coefficients in $\{0,1\}$.

4/16

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_ix_j$ and $X_{ii} = x_i^2 = x_i$.

$$\text{ minimize } \quad \text{tr}\left(\text{Diag}(c)X\right) \\ \text{ subject to } \quad \text{tr}\left(\text{Diag}(w)X\right) \geqslant q \\ \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leqslant \sum\limits_{k=i+1}^{j-1} X_{kk} \\ \left(\begin{matrix} 1 & \text{diag}(X)^\top \\ \text{diag}(X) & X \end{matrix}\right) \succeq 0 \\ \frac{\text{rank}(X) = 1}{2} \end{aligned}$$

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let $\overline{X} = \begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$, $X \neq 0$. The following are equivalent:

- $\operatorname{rank}(X) = 1$
- $X = xx^{\top}$ with $x \in \{0, 1\}^n$
- X has coefficients in {0,1}.

4/16

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

 $\forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leqslant \sum_{k=i+1}^{j-1} X_{kk}$ $\begin{pmatrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$

minimize $\operatorname{tr}(\operatorname{Diag}(c)X)$ subject to $\operatorname{tr}(\operatorname{Diag}(w)X) \geqslant q$

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let
$$\overline{X} = \begin{pmatrix} 1 & \mathsf{diag}(X)^\top \\ \mathsf{diag}(X) & X \end{pmatrix} \succeq 0$$
, $X \neq 0$. The following are equivalent:

- rank(X) = 1
- $X = xx^{\top}$ with $x \in \{0,1\}^n$
- X has coefficients in $\{0,1\}$.

Opt is the optimal integer solution and Opt_M is the optimal solution returned by model M; here for the linear (—) and semidefinite (—) relaxations

If $\operatorname{\mathsf{rank}}(X) \geqslant 2$ then it is possible to have $i,j \in \{1,\ldots,n\}$ such that

$$X_{ij} < X_{ii} + X_{jj} - 1$$

If $\operatorname{rank}(X)\geqslant 2$ then it is possible to have $i,j\in\{1,\ldots,n\}$ such that

$$X_{ij} < X_{ii} + X_{jj} - 1$$

$$(1-x_i)(1-x_j) \geqslant 0$$

$$x_i x_j \geqslant x_i + x_j - 1$$

$$X_{ij}\geqslant X_{ii}+X_{jj}-1$$

If x is a solution of

If
$$x$$
 is a solution of
$$\begin{bmatrix} & \text{minimize} & c^\top x \\ & \text{subject to} & w^\top x \geqslant q \\ & & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor (x_i+x_j-1) \leqslant \sum_{k=i+1}^{j-1} x_k \\ & & 0 \leqslant x \leqslant 1 \end{bmatrix}$$

then we set
$$X = \begin{pmatrix} x_1 & \cdots & x_1 x_n \\ \vdots & \ddots & \vdots \\ x_1 x_n & \cdots & x_n \end{pmatrix}$$
.

8/16

If x is a solution of

$$\begin{bmatrix} \text{minimize} & c^\top x \\ \text{subject to} & w^\top x \geqslant q \\ & \forall i, j \in \llbracket n \rrbracket, j - i > \Delta, \quad \left\lfloor \frac{j - i - 1}{\Delta} \right\rfloor (x_i + x_j - 1) \leqslant \sum_{k = i + 1}^{j - 1} x_k \\ & 0 \leqslant x \leqslant 1 \end{bmatrix}$$

then we set
$$X = \begin{pmatrix} x_1 & \cdots & x_1 x_n \\ \vdots & \ddots & \vdots \\ x_1 x_n & \cdots & x_n \end{pmatrix}$$
.

Conjecture

Above X is a solution of (min-KPC)_{SDP}. In particular,

$$\mathsf{Opt}\left((\mathsf{min}\mathsf{-}\mathsf{KPC})_{\mathsf{SDP}}\right) = \mathsf{Opt}\left((\mathsf{min}\mathsf{-}\mathsf{KPC})_{\mathsf{LP}}\right) \leqslant \mathsf{Opt}\left((\mathsf{min}\mathsf{-}\mathsf{KPC})_{\mathsf{int}}\right).$$

8/16

Since $x \in \{0,1\}^n$, we deduce the following constraints:

For all $i, j, k \in \llbracket n \rrbracket$:

$$egin{aligned} X_{ij} &\geqslant 0 \ X_{ii} &\geqslant X_{ij} \ X_{ij} &\geqslant X_{ii} + X_{ji} - 1 \ X_{kk} + X_{ij} &\geqslant X_{ik} + X_{jk} \ X_{ik} + X_{jk} + X_{jj} + 1 &\geqslant X_{ii} + X_{jj} + X_{kk} \end{aligned}$$

Cauchy-Schwarz inequality on tr(Diag(w)X) yields:

$$\sum_{i=1}^n w_i^2 X_{ii} + 2 \sum_{1 \leqslant i < k \leqslant n} w_i w_k X_{ik} \leqslant \left(\sum_{i=1}^n w_i^2\right) \left(\sum_{1 \leqslant i, k \leqslant n} X_{ik}\right)$$

With the added quadratic constraints

Figure 2: relative gap for the model with the semidefinite relaxation when

10/16

Definitions (Insufficient subset)

ullet We call $S\subseteq\{1,\ldots,n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

Definitions (Insufficient subset)

ullet We call $S\subseteq\{1,\ldots,n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

• We say that S is maximal if:

$$\forall j \notin S, \qquad w_j + \sum_{i \in S} w_i \geqslant q.$$

Definitions (Insufficient subset)

• We call $S \subseteq \{1, \ldots, n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

• We say that S is maximal if:

$$\forall j \notin S, \qquad w_j + \sum_{i \in S} w_i \geqslant q.$$

$$\sum_{i \notin S} x_i \geqslant 1 \tag{MISC}$$

Definitions (Insufficient subset)

• We call $S \subseteq \{1, \ldots, n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

• We say that S is maximal if:

$$\forall j \notin S, \qquad w_j + \sum_{i \in S} w_i \geqslant q.$$

$$\sum_{i \notin S} x_i \geqslant 1 \tag{MISC}$$

Greedy algorithm to compute maximal insufficients subsets

 $S \leftarrow$ random sufficient subset while $\sum_{i \in S} w_i \geqslant q$ do

Remove the heaviest object in S.

end while return S

With MISC cuts

Model with a randomly generated (MISC) (- -) in comparison with the linear relaxation (—) and the semidefinite relaxation (—)

12/16

With MISC cuts

Model with a several independently randomly generated (MISC) (- -) in comparison with the linear relaxation (—) and the semidefinite relaxation (—

Consider a linear problem (P)

$$z_P = \min \left\{ c^\top x \mid Ax \geqslant b, x \geqslant 0 \right\}$$

and a known upper bound for (P), $z_{UB} \geqslant z_P$.

Consider a linear problem (P)

$$z_P = \min \left\{ c^\top x \mid Ax \geqslant b, x \geqslant 0 \right\}$$

and a known upper bound for (P), $z_{UB} \geqslant z_P$.

Definitions (Reduced cost, fixing)

- $\forall i \in [n], \ \overline{c}_i = c_i u^{*\top} A_i \text{ is the reduced cost of the variable } x_i, \ u^* \text{ optimal solution of the dual of } (P).$
- Whenever $x_i = 0$ reduced costs fixing technique consists of fixing $x_i^* = 0$ when solving for (P) if $z_P + \overline{c}_i \geqslant z_{UB}$.

Consider a linear problem (P)

$$z_P = \min \left\{ c^\top x \mid Ax \geqslant b, x \geqslant 0 \right\}$$

and a known upper bound for (P), $z_{UB} \geqslant z_P$.

Definitions (Reduced cost, fixing)

- $\forall i \in [n], \ \overline{c}_i = c_i u^{*\top} A_i \text{ is the reduced cost of the variable } x_i, \ u^* \text{ optimal solution of the dual of } (P).$
- Whenever $x_i = 0$ reduced costs fixing technique consists of fixing $x_i^* = 0$ when solving for (P) if $z_P + \overline{c}_i \geqslant z_{UB}$.

Linear relaxation (min-KPC)_{LP}

Consider a linear problem (P)

$$z_P = \min \left\{ c^\top x \mid Ax \geqslant b, x \geqslant 0 \right\}$$

and a known upper bound for (P), $z_{UB} \geqslant z_P$.

Definitions (Reduced cost, fixing)

- $\forall i \in [n], \ \overline{c}_i = c_i u^{*\top} A_i \text{ is the reduced cost of the variable } x_i, \ u^* \text{ optimal solution of the dual of } (P).$
- Whenever $x_i = 0$ reduced costs fixing technique consists of fixing $x_i^* = 0$ when solving for (P) if $z_P + \overline{c}_i \geqslant z_{UB}$.

Linear relaxation (min-KPC)_{LP} $\begin{array}{c} \mathsf{solve} \\ \mathsf{for} \ u^* \\ \longrightarrow \end{array}$

Get z_{UB} with

Consider a linear problem (P)

$$z_P = \min \left\{ c^\top x \mid Ax \geqslant b, x \geqslant 0 \right\}$$

and a known upper bound for (P), $z_{UB} \geqslant z_P$.

Definitions (Reduced cost, fixing)

- $\forall i \in [n], \ \overline{c}_i = c_i u^{*\top} A_i \text{ is the reduced cost of the variable } x_i, \ u^* \text{ optimal solution of the dual of } (P).$
- Whenever $x_i = 0$ reduced costs fixing technique consists of fixing $x_i^* = 0$ when solving for (P) if $z_P + \overline{c}_i \geqslant z_{UB}$.

Linear relaxation (min-KPC)_{LP} solve for u^*

Get z_{UB} with heuristics

fixing

Reduce the size of (min-KPC)_{SDF}

With reduced costs fixing

Model where some variable are fixed with a pre-solve (- -) in comparison with the linear relaxation (—) and the semidefinite relaxation (—)

Conclusion

• Compactness constraint brings a new layer of difficulties to the standard knapsack problem.

Conclusion

- Compactness constraint brings a new layer of difficulties to the standard knapsack problem.
- Semidefinite relaxation effectively improves the bounds on this combinatorial problem when we tighten the model with quadratic constraints.

Conclusion

- Compactness constraint brings a new layer of difficulties to the standard knapsack problem.
- Semidefinite relaxation effectively improves the bounds on this combinatorial problem when we tighten the model with quadratic constraints.
- The linear relaxation can be used to presolve our model with a reduced cost fixing heuristic, and to generate a maximal insufficient subset that separates an optimal fractional point.

Thank you for your attention!

References

Cappello, L. and Padilla, O. H. M. (2022).

Bayesian variance change point detection with credible sets. arXiv preprint arXiv:2211.14097.

De Meijer, F. and Sotirov, R. (2024).

On integrality in semidefinite programming for discrete optimization. *SIAM Journal on Optimization*, 34(1):1071–1096.

Santini, A. and Malaguti, E. (2024).

The min-knapsack problem with compactness constraints and applications in statistics.

European Journal of Operational Research, 312(1):385-397.

Appendix - PSD matrices

Definition (Positive semidefinite matrix)

A symmetric matrix $X \in \mathsf{M}_n(\mathsf{R})$ is *positive semidefinite* if for all $v \in \mathsf{R}^n$, $v^\top X v \geqslant 0$. We write $X \succ 0$.

Properties

- $X \succeq 0 \iff X = \sum_{i=1}^r \lambda_i x_i x_i^{\top}$ with $\lambda_i \geqslant 0$ and $x_i \in \mathbf{R}^n$.
- $X \succeq 0 \iff$ all prinicpal minors of X are nonnegative.

Proposition (Schur complement's lemma)

Let X be the symmetric matrix defined by

$$X = \begin{pmatrix} A & B^{\top} \\ B & C \end{pmatrix}$$

with A invertible. Then $X \succeq 0$ if and only if $C - BA^{-1}B^{\top} \succeq 0$.