Random_grain_thermalization

October 15, 2021

1 Quantum bath coupled to a localized chain - an introduction

1.1 Contents of this notebook

This notebook is intended as a test of the implementation of the random ergodic grain included in the larger Hamiltonian. The theory is given in the paper by David Luitz et. al. on "How a small quantum bath can thermalize a long localized chain."

1.1.1 Some preliminary calculations, instantiation of the Hamiltonian etc.

1.1.2 Define the model constants

For now, we resort to those used in the paper. With $L_{\rm b}$, we denote the bath length, while $L_{\rm loc}$ denotes the length of the localized portion of the system. Disorder strength parameter is denoted, as usually, by W and g_0 and α specify the couplings of LIOMs to the bath, respectively. Bath parameters are controlled by setting the value of β . We also provide a brief explanation in the comments.

1.1.3 Set up the Hamiltonian

Please wait, building the Hamiltonian ... Building the Hamiltonian finished!
Calculating nnz, o_nnz, d_nnz!
Calculating nnz, o_nnz, d_nnz finished!

1.1.4 Display the matrix properties, perform diagonalization etc.

Only a portion of the matrix of size $2^L \times 2^L$ is shown.

<matplotlib.image.AxesImage at 0x7fd0526566d0>

1.1.5 S^z operator on different sites

/home/jan/.local/lib/python3.7/site-packages/ipykernel_launcher.py:5: ComplexWarning: Casting complex values to real discards the imaginary part

Text(0.5, 1.0, 'std. for diagonal \$S^z\$ operators')

1.2 Below the critical point

1.2.1 Above the critical point

1.2.2 At the critical point

