Raviteja Meesala

Functional Analysis

Homework 1

February 12, 2017

Question 1. If X is a finite dimensional vector space over \mathbb{R} or \mathbb{C} , then any two norms on X are equivalent. Also prove that any finite dimensional normed linear space is a Banach space.

Proof. Consider any 2 norms over X. Let them be n_1 and n_2 . Since X is a finite dimensional linear space, we can seek a finite basis $\{x_i\}_{i=1}^n$. Now, since n_1 and n_2 are norms, we have that $\{n_1(x_i)\}_{i=1}^n$ and $\{n_2(x_i)\}_{i=1}^n$ are finite and positive. \implies we can find $c_1 > 0$ and $c_2 > 0$ such that

$$Max(\{n_2(x_i)\}_{i=1}^n) < c_1 * n_1(x_i)$$

$$Max(\{n_1(x_i)\}_{i=1}^n) < c_2 * n_2(x_i)$$

Consider any x in X; then $n_1(x) = n_1(\sum_{i=1}^n p_i * x_i)$ (by the definition of basis) Using the definition of norm we then have that:

$$n_1(x) = \sum_{i=1}^{n} |p_i| * n_1(x_i) \le n * |p| * Max(n_1(x_i))$$

$$\leq n * |p| * c_2 * \sum_{i=1}^{n} |p_i| * n_2(x_i)$$
 (using the above inequalities)

$$\implies n_1(x) \le n * |p| * c_2 * n_2(x) \le M_1 * n_2(x)$$

Similarly we can prove that

$$\implies n_2(x) < n * |p| * c_1 * n_1(x) < M_2 * n_1(x)$$

Hence, we have established that the norms are equivalent and since they have been chosen arbitrarily we have that any two norms are equivalent.

X is a Banach space

Consider any Cauchy sequence $\{y_n\} \in X$. Each y_m can be represented as:

$$y_m = (\sum_{i=1}^n p_i^m * x_i)$$

It follows that p_i^m is a cauchy(for a given i) if y_m is, for each i. And since p_i^m is in \mathbb{R} or \mathbb{C} , we know that this sequence(cauchy) converges to some p_i in \mathbb{R} or \mathbb{C} accordingly. It can then be verified by using the definition of norm, that y_m converges to $\sum_{i=1}^n p_i * x_i$

Question 2. Let $X = C^1[0, 1]$, then X is vector space over \mathbb{R} or \mathbb{C} w.r.t. the usual addition and scalar multiplication. Check whether X is a normed linear space in the following cases. Also check whether they are Banach spaces.

a. $\|f\| = \sup_{x \in [0,1]} |f'|$ Consider the constant function f = c for some $c \neq 0$ in [0,1], $\implies f'(x) = 0$ in [0,1]. $\implies \|f\| = 0$; but $f \neq 0$ in $C^1[0,1]$ Hence, this does not define a norm ($\|f\| = 0$ does not necessarily imply f = 0)

b.
$$\|\mathbf{f}\| = (\int_0^1 |f(x)|^p)^{\frac{1}{p}}$$

||f|| defines a norm for $p \ge 1$, as a consequence of Minkowski's inequality. For p < 1, we have the counter example $f, g \in C^1[0, 1]$ as follows:

$$f(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} \\ (1/2 - x)^2 & \frac{1}{2} \le x \le 1 \end{cases}$$

$$g(x) = \begin{cases} (1/2 - x)^2 & 0 \le x \le \frac{1}{2} \\ 0 & \frac{1}{2} \le x \le 1 \end{cases}$$

We obtain that, since f, g are symmetric wrt. x = 1/2;

$$||f+g|| = 2^{1/p}||f|| = 2^{1/p}||g||$$

$$\implies \|f+g\| \geq \|f\| + \|g\|$$
 ; when p < 1

Hence, the triangular inequality is violated whenever

To check if it's a banach space for $p \ge 1$. We will be using the result that

$$\left(\int_{x}^{y} |f(x)|^{p}\right)^{\frac{1}{p}} \leq \left(\int_{0}^{1} |f(x)|^{p}\right)^{\frac{1}{p}}$$

for $0 \le x \le y \le 1$ and

$$\left(\int_{0}^{1} |f(x)|^{p}\right)^{\frac{1}{p}} \leq \left(\int_{0}^{1} |g(x)|^{p}\right)^{\frac{1}{p}}$$

whenever $f \leq g \in [0,1]$ (These are trivially true when given f and g are continuous functions)

Note that $||f|| \leq \sup_{x \in [0,1]} |f| \implies$ A cauchy sequence in the sup norm is always a cauchy sequence in the given norm. Since C[0,1] is complete in the sup norm, consider any cauchy sequence (for ex. polynomials) converging to a continuous function that is not differentiable everywhere. Define one such function, f as follows:

$$f(x) = \begin{cases} x & 0 \le x \le \frac{1}{2} \\ 1 - x & \frac{1}{2} \le x \le 1 \end{cases}$$

Clearly, f is continuous but not differentiable (at $x = \frac{1}{2}$). We can construct a sequence of polynomials p_n (the advantage of the choice being that they are continuously differentiable) uniformly converging to f in [0,1]. Note that these p_n will be cauchy in the l_p sense above as well. But f is not in $C^1[0,1]$. The proof is complete by realizing the below claim.

Claim: p_n cannot converge to any continuous function, other than f in the l_p sense. Assume $p \neq f$ be the other desired continuous function. Then $p(x) \neq f(x)$ for at least one $x \in (0,1)$. Let M = |f(x) - p(x)|. Since f and p are continuous functions we have that \exists a δ neighborhood around x such that |f(y) - p(y)| > M/2 whenever $|y - a| < \delta$. We then have the following:

$$\left(\int_{x-\delta}^{x+\delta} |f(x) - p(x)|^p \right)^{\frac{1}{p}} \le \left(\int_0^1 |f(x) - p(x)|^p \right)^{\frac{1}{p}}$$

But,

$$\left(\int_{x-\delta}^{x+\delta} |f(x) - p(x)|^p\right)^{\frac{1}{p}} \ge M * \delta/2$$

Using,

$$\left(\int_{x-\delta}^{x+\delta} |f(x) - p(x)|^p \right)^{\frac{1}{p}} \le \left(\int_{x-\delta}^{x+\delta} |f(x) - p_n(x)|^p \right)^{\frac{1}{p}} + \left(\int_{x-\delta}^{x+\delta} |p(x) - p_n(x)|^p \right)^{\frac{1}{p}}$$

and since p_n converges to f in l_p sense, we have,

$$\left(\int_{x-\delta}^{x+\delta} |p(x) - p_n(x)|^p\right)^{\frac{1}{p}} \ge \left(\int_{x-\delta}^{x+\delta} |f(x) - p(x)|^p\right)^{\frac{1}{p}} \ge M * \delta/2$$

 p_n does not converge to p in the l_p sense. Since f is not in $C^1[0,1]$, the cauchy sequence p_n in $C^1[0,1]$ does not converge with the l_p norm. Hence, it is not a Banach space. \square

c.
$$||f|| = \int_0^{\frac{1}{2}} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$$
 $||f||$ defines a norm.

i) ||c.f|| = |c|||f||

We will use the following properties of $C^1[0,1]$

$$\left(\int_{a}^{b} |cf(x)|\right) = |c| \left(\int_{a}^{b} |f(x)|\right)$$

and

$$(cf(x))' = c(f'(x))$$

ii) $||f + g|| \le ||f|| + ||g||$ Follows because,

$$\left(\int_{a}^{b} |f(x) + g(x)|\right) \le \left(\int_{a}^{b} |f(x)|\right) + \left(\int_{a}^{b} |g(x)|\right)$$

and

$$|(f'(x) + g'(x))| \le |f'(x)| + |g'(x)|$$

iii)
$$||f|| = 0 \implies f = 0$$

Let $f \neq 0$, then \exists x such that |f(x)| ξ ϵ for some ϵ ξ 0. Further, we can find a δ ξ 0 neighborhood around x such that $|f(y)| > \epsilon/2$ whenever $|y - x| < \delta$ If x < 1/2, then we have that

$$\left(\int_{0}^{1/2} |f(x)|\right) \ge \epsilon * \delta/2 > 0$$

else, we have that f(y)=0 for any $y\leq \frac{1}{2}$ and f(x)>0. Then, by mean value theorem we have that \exists c \in [y,x] such that $|f'(c)|=|\frac{f(x)-f(y)}{x-y}|>0$.

$$\implies sup_{x \in [0,1]} |f'(x)| > 0$$

 $\therefore f \neq 0, \implies ||f|| \neq 0$

Note that, $\sup_{x \in [0,1]} |f'(x)| < ||f||$. \Longrightarrow if f_n is cauchy in the given norm, then it is cauchy in the sup-norm.

Now, consider any cauchy sequence f_n w.r.t the given norm, then f'_n converges uniformly. And since the sup-norm is complete w.r.t continuous functions, we can find a g such that f'_n converges uniformly to g in the sup-norm.

Using the fundamental theorem of calculus, we know that f_n can be written as:

$$f_n(x) = \left(\int_0^x f'_n(x)\right) + c_n$$
$$|f_n(x) - f_m(x)| \le \left(\int_0^x |f'_n(x) - f'_m(x)|\right) + |c_n - c_m|$$

It follows that f_n converges pointwise iff c_n is cauchy. Since c_n is cauchy in \mathbb{R} , it will converge to some $c \in \mathbb{R}$. Hence, defining

$$f(x) = \left(\int_0^x g(x)\right) + c$$

it follows that f_n converges to f in the sup sense and f'_n converges to (f'=g) in the sup sense. And that every cauchy sequence converges in $C^1[0,1]$ w.r.t the given norm. \therefore the norm defines a banach space

d.
$$||f|| = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$$

||f|| defines a norm.

i) ||c.f|| = |c|||f||

We will use the following properties of $C^1[0,1]$

$$(cf(x)) = c(f(x)), (cf(x))' = c(f'(x)),$$

ii) $||f + g|| \le ||f|| + ||g||$ Follows because,

$$|(f(x) + g(x))| \le |f(x)| + |g(x)|$$
$$|(f'(x) + g'(x))| \le |f'(x)| + |g'(x)|$$

iii)
$$||f|| = 0 \implies f = 0$$

Let $f \neq 0$, then $\exists x$ such that $|f(x)| \neq \epsilon$
 $\implies sup_{x \in [0,1]} |f(x)| > 0$

$$\therefore f \neq 0, \implies ||f|| \neq 0$$

Note that, $\sup_{x \in [0,1]} |f'(x)| < ||f||$. \Longrightarrow if f_n is cauchy in the given norm, then it is cauchy in the sup-norm.

Now, consider any cauchy sequence f_n w.r.t the given norm, then f'_n converges uniformly. And since the sup-norm is complete w.r.t continuous functions, we can find a g such that f'_n converges uniformly to g in the sup-norm.

Using the fundamental theorem of calculus, we know that f_n can be written as:

$$f_n(x) = \left(\int_0^x f'_n(x)\right) + c_n$$
$$|f_n(x) - f_m(x)| \le \left(\int_0^x |f'_n(x) - f'_m(x)|\right) + |c_n - c_m|$$

It follows that f_n converges pointwise iff c_n is cauchy. Since c_n is cauchy in \mathbb{R} , it will converge to some $c \in \mathbb{R}$. Hence, defining

$$f(x) = \left(\int_0^x g(x)\right) + c$$

it follows that f_n converges to f in the sup sense and f'_n converges to (f' = g) in the sup sense. \therefore the norm defines a banach space

e. ||f|| defines a norm (since $p \ge 1$) as a consequence of Minkowski's inequality.

To check if its a banach space:

Consider the sequence

$$f_n = \frac{1}{1 + (2x)^n}$$

They are point-wise convergent to 1 for $x \in [0,1/2)$ and point-wise convergent to 0 for $x \in (1/2,1]$. $\implies f_n$ are cauchy in the l_p sense. Now define:

$$g_n(x) = \left(\int_0^x f_n(x)\right)$$

Since f_n are cauchy in the l_p sense, and are continuous, it follows that g_n is continuous and $\{g_n\}$ is cauchy in the sup-norm. $\Longrightarrow \{g_n\}$ is cauchy in the l_p sense. Further $g'_n = f_n$ is also cauchy in the l_p sense. $\Longrightarrow g_n$ is cauchy as per the given norm. But, \exists no continuous function f such that f_n converges to f in the l_p sense. If f_n converges to f with respect to the given norm, then f_n converges to f in C[0,k] and $C[1-k,1] \forall 0 \mid k \mid 1/2$. But as per the claim proved in part(b) we will have that f = 0 in [0,1/2) and f = 1 in (1/2,1]. \Longrightarrow f cannot be continuous at f converges to f contradiction. f The space is not Banach.

$$f. ||f|| = Max(\sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|).$$

The result that this is a norm and defines a banach space follows from the following. The triangular inequality of the norm, also using part(d) follows from

$$\{ \sup_{x \in [0,1]} |f(x)|, \sup_{x \in [0,1]} |f'(x)| \} \le ||f||$$

We get equivalence of the two norms as

$$||f|| \le \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)| \le 2 * ||f||$$

Question 3.

a. $C_c(\mathbb{R})$ is a linear space.

If $f,g \in C_c(\mathbb{R})$ then so is f + g, as let K_f and K_g , their supports, are compact, so is their sum (from question 7). Since $\operatorname{supp}(f + g) \subset (K_f + K_g)$ and support is a closed set, $\operatorname{supp}(f+g)$ is compact.

If f has compact support, so does αf for any scalar α , as $f(x) = 0 \implies \alpha f(x) = 0$

 $||f||_{\infty}$ is a norm

- i. If $f \neq 0$ in $C_c(\mathbb{R})$, then |f(x)| > 0 for some $x \in \mathbb{R}$. $\Longrightarrow ||f||_{\infty} > 0$
- ii. $|\alpha f(x)| = |\alpha||f(x)|$. Since f is compactly supported sup is well defined.
- iii . Consider h = f + g; Then $supp(h) \subset supp(f) + supp(g)$. Since supp(f,g,h) lie on compact set (union of their supports) the triangular inequality follows.
 - b. $C_0(\mathbb{R})$ is a linear space.

If $f,g \in C_c(\mathbb{R})$ then so is f+g, as let K_f and K_g , be compact sets outside which |f| and $|g| < \epsilon/2$,. Since sum of compact sets is compact, say K, have that $|(f+g)| < \epsilon$ outside K.

Similarly $\alpha f \in C_0\mathbb{R}$ whenever f is. Since \exists compact set K_f such that $|f| < \epsilon/|alpha|$, we have that $|\alpha f| < \epsilon$ outside K_f .

Since $C_0(\mathbb{R})$ is a linear space and sup-norms are well defined, it follows that $||f||_{\infty}$ defines a norm.

To prove it is banach or otherwise.

Consider any cauchy sequence $\{f_n\}$. Note that, this sequence is cauchy over every compact set in the sup-norm. \Longrightarrow Over compact sets [-n,n] (any compact set can be covered by these compact sets), we can find a continuous function f^n to which these functions uniquely converge. \Longrightarrow the extensions of f^n to f^{n+1} , such that the above sequences converge over their respective compact sets, are unique and so are the restrictions. Further we have that the convergence is also point-wise over these sets. \Longrightarrow if we define f as the point-wise limit(exists as they are Cauchy) of f_n , then we only need to prove that $f \in C_0(\mathbb{R})$.

Consider any $\epsilon
otin 0$ Since f_n is cauchy, choose N such that $|f_N - f_m| < \epsilon/2 \, \forall \, m > N$. Now, \exists a compact set K such that $|f_N| < \epsilon/2$ outside K. $\Longrightarrow |f_m| < \epsilon \, \forall \, m > N$ outside K. $\Longrightarrow |f| < \epsilon$ (as its defined as a point-wise limit of f_n) outside K. $\Longrightarrow f \in C_0(\mathbb{R})$.

c. Consider $f \in C_0(\mathbb{R})$. Let K_1 be a compact set such that $|f| < \epsilon$ outside K_1 . Choose n such that $K_1 \subset [-n,n]$ and be a compact set $|f| < \epsilon/2$ outside K_2 . Choose m ξ n such that $K_2 \subset [-m,m]$. Lets now define a function g as follows:

$$g(x) = \begin{cases} 1 & -n \le x \le n \\ (m - |x|)/(m - n) & n \le x \le m \\ 0 & |x| \ge m \end{cases}$$

Note that $g \in C_c\mathbb{R}$. Hence, so is fg. Further, |fg - f| = 0 over [-n,n]. and $|fg - f| \le |f|$ outside. $\Longrightarrow |fg - f| \le \epsilon$ outside. $\Longrightarrow |fg - f|_{\infty} \le \epsilon$ $\therefore C_c\mathbb{R}$ is dense in $C_0\mathbb{R}$

Question 4. Prove that for $1 \leq p < \infty$, the space l_p is separable, but l_{∞} is not separable.

Proof.

Lets consider the case for p = 1;

Consider the following set of sequences $S_k = \{(x_n) : x_i = 0 \text{ if } i > k ; x_i \text{ in } \mathbb{Q} \text{ otherwise} \}$ It follows that S_k is countable for each k; hence their union taken over $k \in \mathbb{N}$ (represented as S henceforth) is also countable

Now consider any given $(x_n) \in l_1$;

 \implies we have that $\sum_{i=n}^{\infty} |x_i| < \epsilon$ for some $n \in \mathbb{N}$

For each x_i for i < n we can find q_i (that is rational) such that $|x_i - q_i| < \epsilon/n$ Note that the sequence defined by $\{x_m : x_i = q_i fori < nelse x_i = 0\} \in S$.

Further, $\sum_{i=1}^{\infty} |x_i - q_i| < 2 * \epsilon$ Hence, we have that S(a countable set) is dense in l_1 . The same arguments can be repeated for any $1 \le p < \infty$, given that

$$\sum_{i=1}^{\infty} |x_i|^p < \infty \iff \{\sum_{i=1}^{\infty} |x_i|^p\}^{\frac{1}{p}} < \infty$$

For $p = \infty$;

Assume \exists a countable dense subset A.

 \implies we can represent it as a sequence a_n ; where each $a_i \in l_{\infty}$

Define a sequence q_i as follows:

$$q_i = 0 \text{ if } (|a_i^i| > 1);$$

$$q_i = 2$$
 otherwise

Note that $(q_i) \in l_{\infty}$. Further $||a_j - q_i|| > 1 \, \forall \, \mathbf{j}$ (as $|a_j^j - q_j| > 1$ by definition $\forall \, \mathbf{j}$).

 \implies A(or any countable subset) is not dense in l_{∞}

$$\implies l_{\infty}$$
 is not separable

Question 5. Let X, Y be a topological vector spaces. Assume that X has a countable local base at 0. Prove that a mapping $f: X \to Y$ is continuous iff it is sequentially continuous. Sequentially continuous means: $x_n \to x$ in $X \Longrightarrow f(x_n) \to f(x)$ in Y

Proof. Assume f is continuous. Consider any neighborhood V of f(x) in Y. Let x_n be a sequence such that $x_n \to x$ in X. Then $f^{-1}(V)$ is a neighborhood of $x \in X$ (as f is continuous). \Longrightarrow we can find N such that $x_n \in f^{-1}(V)$ [by the definition of convergence] if n > N.

 $\therefore f(x_n) \in V$ f $\forall n > N$. The same arguments holds for any neighborhood V of f(x). $\implies f(x_n) \to f(x)$ in Y

Converse: Assume f is discontinuous. $\implies \exists$ a open set in Y such that $U = f^{-1}(Y)$ is not open in X.

Let $x \in U$ be s.t. $\not\exists$ a open set of $x \in U$. (we can ask for at least one such x as U is not open)

Since X has a countable base, and is a topological vector space, so does x(by translation). \implies for each open set $x + V_n \exists a x_n$ such that $x_n \notin U$.

Clearly, since V_n constitutes the base, we have that $x_n \to x \in U$.

But $f(x_n) \not\to f(x)$ as no $f(x_n) \in V$ (as $x_n \notin U$)

Raviteja Meesala

Homework 1

9

Since V is an open neighborhood of f(x) in Y, we have that f is discontinuous (not sequentially continuous at x)

Question 6. X is a vector space.

a. A is convex iff (s + t)A = sA + tA, for all positive scalar s, t. If A is convex, then we know that for positive s,t

$$\frac{s}{s+t}A + \frac{t}{s+t}A = A$$

 $\implies sA + tA = (s + t)A$ multiplication scalar on both sides

The converse follows by dividing the above equality by (s+t) on both sides we will have that:

$$\frac{s}{s+t}A + \frac{t}{s+t}A = A \forall \text{ positive s,t}$$

 \implies A is convex (by definition)

b. Consider an arbitrary union S of balanced sets $\{B_i\}$;

$$S = \bigcup B_i$$

Consider any $x \in S$. Then $x \in B_i$ for some index i;

- $\implies \alpha \ge B_i$ for | alpha | ≤ 1 as B_i is balanced.
- $\implies \alpha \ \mathbf{x} \in \mathbf{S}$ which implies that S is balanced.

Now, for arbitrary intersection T of $\{B_i\}$

$$T = \cap B_i$$

Consider any $x \in T$. Then $x \in B_i$ for all i;

- $\implies \alpha x \in B_i$ for $|alpha| \le 1$ as B_i is balanced and this is true for each B_i .
- $\implies \alpha \ x \in T$ which implies that T is balanced.

c. Consider an arbitrary intersection S of convex sets $\{B_i\}$;

$$S = \bigcup B_i$$

Consider any $x,y \in S$. Then $x,y \in B_i$ for each i;

- \implies s*x + (1-s)*y $\in B_i$ for each B_i , whenever s \in [0,1] as it is convex
- \implies s*x + (1-s)*y \in S, whenever s \in [0,1]. \therefore S is convex.

d. Given A and B are convex.

Let S = A + B. Then consider any $x,y \in S$.

Then x can be written as $x = x_A$ (which is in A) + x_B (which is in B). Similarly $y = y_A + y_B$

Now consider: $s^*x + (1-s)^*y$ (can be expanded using distributive property as) = $(s^*(x_A) + (1-s)^*y_A) + (s^*(x_B) + (1-s)^*y_B)$; Note that $(s^*(x_A) + (1-s)^*y_A) \in A$ as A is convex $(s \in [0,1])$ and $(s^*(x_B) + (1-s)^*y_B) \in B$ as B is convex $(s \in [0,1])$. $\implies s^*x + (1-s)^*y \in S$ whenever $x,y \in S$ and $s \in [0,1]$. S is convex Given A and B are bounded. Let S = A + B. Then consider any $x \in S$. Then x can be written as $x = x_A$ (which is in A) + x_B (which is in B). Now consider: $\alpha x = \alpha(x_A) + \alpha(x_B)$; $(|\alpha| \le 1)$ Note that $\alpha(x_A) \in A$ as A is bounded and similarly $\alpha(x_B) \in B$ $\implies \alpha(x_A) + \alpha(x_B) = \alpha x \in S$. S is bounded

Question 7. X is a topological vector space.

b. Given A and B are bounded. Let V be any 0 neighborhood. Then we can find a balanced neighborhood W such that $W \subset V$. Now, given A we can find $t_A > 0$ such that $A \subset t_A W$, as A is bounded similarly we can find $t_B > 0$ such that $B \subset t_B W$. $A \to B \subset t_A W + t_B W \subset (t_A + t_B) W$ (as W is balanced). Since $W \subset V$ we have

 \implies A + B \subset t_A W + t_B W \subset $(t_A + t_B)$ W (as W is balanced). Since W \subset V, we have $(t_A + t_B)$ W \subset $(t_A + t_B)$ V

$$\implies$$
 (A + B) \subset ($t_A + t_B$)V \therefore A + B is bounded

c. Given A and B are compact. We know that compact sets are bounded in X (i.e. a topological vector space)

From part (b) we have that some of 2 bounded sets is bounded.

$$\implies$$
 A + B is bounded

d. Given A and B are compact. Since addition is a continuous operation, we have that A + B is compact if A and B are compact

e. Given A is closed and B is compact. We will try to construct an open set V around $x \notin A+B$ that does not not intersect A+B to prove the result. Consider any $x \notin A+B$. $\implies x - B \notin A$. x - B is compact ($\{x\}$ and B are compact and using the result in (d)) and A is closed.

 \implies we can find an open neighborhood V s.t. $(x-B+V) \cap (A+V) = \emptyset$

Consider the following open cover of B with open sets $x_B + V$; where x_B are elements of B. Since B is compact we have a finite sub-cover such that $B \subset \bigcup_{i=1}^n b_i + V$ for some $b_i \in B$. Now, from above we have that $(x-B+V) \cap A = \emptyset$

$$\implies (x - B + V + b_1) \cap (A + b_1 + V) = \emptyset$$

 $(x-B+V+b_1)$ is open(because V is) and contains x, denote this is V_1

Similarly we can construct till V_n , and let $V_x = \bigcap_{i=1}^n V_i$, V_X is open as its a finite intersection of open sets and contains x.

Further, we have that $V_x \cup (\cap_{i=1}^n (A+b_i+V)) = \emptyset$. Now since $B \subset \bigcup_{i=1}^n b_i+V$ we have that

$$(A + B) \subset \bigcap_{i=1}^{n} (A + b_i + V)$$

 $\implies V_x \cap (A+B) = \emptyset$. Since V_x is open and contains x we are done. $\therefore A+B$ is closed if A is closed and B is compact.

f. Consider the following 2 closed sets $\in \mathbb{R}$.

$$A = \{n + \frac{1}{n}; \forall n > 0 \in \mathbb{N}\}$$

$$B = \{-n + \frac{1}{n}; \forall n > 0 \in \mathbb{N}\}\$$

Clearly A and B are closed as they do not have any limit points. Consider a sequence $c_n = a_n + b_n = n + \frac{1}{n} - n + \frac{1}{n} = \frac{2}{n}$; this converges to 0. Let $a = i + \frac{1}{i} \in A$ and $b = -j + \frac{1}{j} \in B$.

Then $a + b = i - j + (\frac{1}{i} + \frac{1}{i}) \neq 0$ for any $i, j \in \mathbb{N}$. $\Longrightarrow 0 \notin A + B$.

But 0 is a limit point of A + B as from above. Hence A + B is not closed. Since \mathbb{R} is a topological vector space, we have a counterexample.

g. Given A is bounded it is trivial that all its subsets(countable or otherwise) are bounded. Let's assume A is not bounded. $\Longrightarrow \exists$ a neighborhood V such that for each $n \in \mathbb{N}$, we have a $x_n \in A$ s.t. $x_n \notin nV$. (We can always choose distinct x_n for this given V) This countable subset(as x_n are distinct) S of A is not bounded, because \exists no t > 0, such that $S \subset kV$ whenever k > t as a direct consequence of the above construction of S.

 \therefore S is the required subset of A which is not bounded if A is not.

h. We will use the fact that the closure of a set is the "smallest" closed set containing the set itself. Consider any point $y \in x + \bar{A}$. Let V be any neighborhood of $y \in X$. $y - x \in \bar{A}$. $\Longrightarrow V - x$, a neighborhood of (y-x), intersects with A.

 \implies V intersects A + x. \implies $y \in \overline{A + x}$. \implies $x + \overline{A} \subset \overline{A + x}$.

Now since \bar{A} is closed, so is $x + \bar{A}$. And $x + \bar{A} \subset x + \bar{A}$ (which is closed)

$$\implies$$
 x + $\bar{A} = \overline{A + x}$

i. We will use the fact the interior of a set is the "largest" open set contained in the given set. It is trivial that $A + B^{\circ} \subset A + B$. Further, since B° is open, so is $A + B^{\circ}$. \Box

j.

i. Since $\overline{A^{\circ}}$ is closed, it is sufficient to show that $A \subset \overline{A^{\circ}}$. As \overline{A} is smallest closed set containing A, and since $A^{\circ} \subset A$, it follows that $\overline{A^{\circ}} = \overline{A}$.

Since A° is non-empty, let $y \in A^{\circ}$. $\Longrightarrow \exists a \ 0$ neighborhood V_y such that $y + V_y \subset A^{\circ}$. Let $x \in A$, we will try to prove that $x \in \overline{A^{\circ}}$.

Now, since $y + V_y$ is open and A is convex (so is A°), we have that $tx + (1-t)(y+(V_y))$ is open in A (for $0 \le t < 1$), hence $tx + (1-t)(y+(V_y)) \in A^{\circ}$. In particular, $tx + (1-t)y \in A^{\circ}$ for $0 \le t < 1$.

Now, consider any neighborhood of x: $V_x = V + x$, and we can find a bounded neighborhood W \subset V.

 \implies we can find s > 0 such that $t(y-x) \in W \ \forall \ 0 < t < s$. In other words, W + x intersects the set (1-t)x + t(y) for 0 < t < s

 $\implies V_x$ intersects the set $\{tx + (1-t)(y+(V_y))\}$ for some 0 < t < 1

- $\implies V_x \text{ intersects } A^{\circ}.$ $\implies \mathbf{x} \in \overline{A^{\circ}}.$
- ii. This follows from (i) by observing that $(\overline{A^{\circ}})^{\circ} = A^{\circ}(asA^{\circ})$, being open, is the largest open set contained in its closure). And since $\overline{A^{\circ}} = \overline{A}$, we have that $(\overline{A})^{\circ} = (\overline{A^{\circ}})^{\circ} = A^{\circ}$

k. Let $\{x_n\}$ be a cauchy sequence. Consider any 0 neighborhood V. Then we can find a balanced neighborhood W \subset of V. Now since W is a neighborhood, by definition of Cauchy we can find an N such that $x_n - x_N \in W \ \forall n > N$. Since W is balanced, we can find s > 0 such that $\{x_1, x_2, ..., x_N\} \in tW$ whenever t > s. $\implies x_n \in tW + W \forall n \in \mathbb{N}$ $\implies \{x_n\} \subset (t+1)W \subset (t+1)V : \{x_n\}$ is bounded.

Question 8. Let X be a vector space over \mathbb{R} or \mathbb{C} . Let A be a convex balanced absorbing set. Let P_A be the Minkowski function of A.

Proof. Assume (a) is true, $\Longrightarrow \exists$ no $x \neq 0 \in X$ such that $P_A(x) = 0$. Else, $x \in A$ (as A is balanced absorbing set). Further, we have that $\alpha x \in A \ \forall \ \alpha \text{ in } \mathbb{R} \text{ or } \mathbb{C} \text{ as } P_A(\alpha x) = |\alpha|P_A(x) = 0$. $\Longrightarrow A$ contains the linear subspace $\{x \neq 0\}$. Contradiction.

Assume (a) is not true, Let Y be the linear subspace containing elements other than 0. Let $x \in Y \subset A$. $\Longrightarrow \alpha x \in A \ \forall \ \alpha \text{ in } \mathbb{R} \text{ or } \mathbb{C}$. $\Longrightarrow \text{ By the definition of } P_A$, we have that $P_A(x) = 0 \ (P_A(x) < 1/n \text{ as } nx \in A)$, although $x \neq 0 \in X$. $\Longrightarrow P_A$ is not a norm.