Function approximation.

Last lectures

- Calculating Q(s,a) by different methods:
 - Montecarlo.
 - Temporal Differences (TD):
 - On-policy: Sarsa
 - Off-policy: Q-Learning
- Core idea: Store in a lookup table the statistics of how good an action is on every state.

Drawback

- Not really useful to solve really **large** problems:
 - \circ Backgammon: 10^{20} states.
 - \circ Computer Go: 10^{170} states.
 - \circ Chess: 10^{120} states.
 - Helicopter flying: continuous state space.
 - \circ Atoms in the observable universe: 10^{81} .
- **Generalization**: how can we learn about the rest of the world from limited experience?

How can we solve such problems?

- Function approximation
- ullet The goal is to find a parameter vector eta such that

$$\hat{Q}(s,a, heta)pprox Q(s,a)$$

- θ might be, for instance:
 - Weights in a neural network.
 - Coefficients for a linear regression model.

Value function approximation?

Function approximators

In principle, you can try anything:

- Linear combination of features.
- Neural networks.
- Random Forests.
- Fourier/wavelet bases.

We focus on differentiable function approximators, as this allows us to define "good" search directions to look at.

So this is supervised learning?

- Not really!
- The data is **not stationary**:
 - \circ A modification of the policy parameter θ would have influence on the rest of the trajectory!

Incremental methods

FrozenLake revisited

https://gym.openai.com/evaluations/eval_xqVczXQDREisq4xa2
 Eb5kg

Gradient descent

- Let $J(\theta)$ be a differentiable function of θ .
- The gradient of $J(\theta)$ is:

$$abla_{ heta}J(heta) = \left(rac{\partial J(heta)}{\partial heta_1}, \ldots, rac{\partial J(heta)}{\partial heta_n}
ight)^T$$

- To find a local minimum:
 - \circ Change θ in the direction of the gradient:
 - $\circ \ \Delta heta := -rac{1}{2} lpha
 abla_{ heta} J(heta)$ where lpha is a parameter.

Value function approximation

Goal: Find a parameter vector θ^* that minimizes:

$$J(heta) := \mathbb{E}\left[(Q(s,a) - \hat{Q}(s,a, heta))^2
ight]$$

where Q(s,a) is the true value function and $\hat{v}(s,\theta)$ is the approximation.

Error functional

• Goal: Find a parameter \\theta^* that minimizes:

$$J(heta) := rac{1}{2} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \left[(Q(s,a) - \hat{Q}(s,a, heta))^2
ight]$$

where Q(s,a) is the true value function and $\hat{Q}(s,a,\theta)$ is the approximation.

By gradient desscent:

$$egin{aligned} \Delta heta &= & -rac{1}{2} lpha
abla_{ heta} J(heta) \ &= & lpha \mathbb{E} \left[\left(Q(s,a) - \hat{Q}(s,a, heta)
ight)
ight]
abla_{ heta} \hat{Q}(s,a, heta) \end{aligned}$$

- Drawback:
 - We still need to calculate the expectation! (pass over all states).

Stochastic gradient descent

- Sample the gradient instead!
 - Take only one step.
 - \circ Update your parameter θ according to:

$$egin{array}{ll} \circ & \Delta heta = lpha(Q(s,a) - \hat{Q}(s,a, heta))
abla_{ heta} \hat{Q}(s,a, heta) \end{array}$$

Feature vectors

- Represent the full state as **features**:
- These could be
 - Distance from a robot to (each) wall.
 - PCA decomposition

Embedding

We have an embedding of the state space into a smaller dimensional space:

$$s\mapsto \mathbf{x}(s):=(\mathbf{x}_1(s),\!\mathbf{x}_2(s),\ldots \mathbf{x}_m(s))$$

Linear value function approximation

 Represent the value function as a linear combination of features:

$$\hat{v}(s, heta) := \sum_{i=1}^m \! \mathbf{x}_i(s) heta_i$$

The update becomes:

$$\Delta \theta = \alpha(Q(s, a) - \hat{Q}(s, a, \theta))\mathbf{x}(s)$$

where
$$\mathbf{x}(s) = (\mathbf{x}_1(s), \mathbf{x}_2(s), \dots \mathbf{x}_m(s))$$

Remarks

- Table lookup is a special case of value function approximation.
- We are **cheating**: we do not know the value function, (there is no supervisor), we only have rewards.

Function backups

- DP: $s\mapsto \mathcal{R}^a_s + \gamma \sum_{s'\in\mathcal{S}} \mathcal{P}^a_{ss'} \cdot \max_{a'\in\mathcal{A}} \hat{Q}(s',a',\theta)$
- ullet Monte-Carlo: $s\mapsto G_t=R_{t+1}+\gamma R_{t+2}+\gamma^2 R_{t+3}+\dots$
- ullet TD: $s\mapsto R_{t+1}+\gamma\hat{Q}(S_{t+1},A_{t+1} heta)$

Function backups

- In general, we have something of the form $s\mapsto g$, where g is some target value.
 - \circ Up to now, trivial updates: move the estimated value "a bit more" towards g.
 - Viewing each backup as a training example we can use any supervised learning method to estimate the value function.

How to stop cheating?

• Instead of the true value function v(s), or the action-value function Q(s,a), we plug in the corresponding updates as in the previous slide.

Convergence

- Bootstrapping
 - Updating the value function from other estimates.
- Off-policy methods do not backup state and action pairs with the same function they are estimating!
- ullet At least theoretically, it is possible that the Q —learning with function approximation will not converge.
 - In practice, it does.

MountainCar Demo

MountainCar

- https://github.com/dennybritz/reinforcement-learning
- State: 2 parameters (x,y)
- Action: Accelerate backward (0), Stay (1), Accelerate forward (2)
- An episode is solved if you get -110 points over 100 consecutive trials.