

MODEL FOR REGRESSION

BY TAUTOLOGY

Model Evaluation

What is Model Evaluation?

Why need Model Evaluation?

Model Evaluation for Regression

What is Model Evaluation?

Model Evaluation คือการวัดประสิทธิภาพของโมเดล

Model Evaluation

What is Model Evaluation?

Why need Model Evaluation?

Model Evaluation for Regression

Why need Model Evaluation?

model1(x 2 mn), model2(x 3 mn)

- เพื่อเลือก model ที่ดีที่สุด ผ่านการเปรียบเทียบประสิทธิภาพ
- เพื่อวิเคราะห์ model แล้วนำไปปรับปรุง และพัฒนาต่อ
- เพื่อวัดประสิทธิภาพของ model ก่อนนำไปใช้งานจริง

Model Evaluation

What is Model Evaluation?

Why need Model Evaluation?

Model Evaluation for Regression

Model Evaluation for Regression

ТАUT LOGY

R^2 score

- What is R^2 score?
- Formula
- Step to Calculate R²
- Example
- Code

What is R^2 score? $(-\infty, 1]$

R² score คือ ค่าที่บอกความสัมพันธ์ระหว่างค่าจริง และค่าพยากรณ์

Formula

$$\mathbb{R}^2 = 1 \iff \sum_{i=1}^{n} (\gamma_i - \hat{\gamma}_i)^2 = 0 \iff \forall i, \gamma_i = \hat{\gamma}_i$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

- ullet y_i คือ sample ที่ i
- \hat{y}_i คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- ullet $ar{y}_i$ คือ ค่าเฉลี่ยของข้อมูล ($ullet_{arg}$ e^{ullet})
- $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$

Step to calculate R^2

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2 หาคา $ar{y}$
- 3. วัดประสิทธิภาพของ model ตามสูตรของ \mathbb{R}^2

1. เก็บค่า y_i และ \hat{y}_i

	y_i	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

2. หาค่า \bar{y}

$$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\bar{y} = \frac{1188 + 1468 + \dots + 897}{7}$$

$$\bar{y} = 919.29$$

3. วัดประสิทธิภาพของ model ตามสูตรของ \mathbb{R}^2

	y_i	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

$$R^{2} = 1 - \frac{(1168 - 1204.183)^{2} + \dots + (897 - 873.342)^{2}}{(1168 - 919.29)^{2} + \dots + (897 - 919.29)^{2}}$$

$$R^2 = 0.997$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

1 r2_score(y_true, y_pred)

0.9971801836617127

 R^2 = 0.99718

Model Evaluation for Regression

Mean Squared Error

- What is Mean Squared Error?
- Formula
- Step to Calculate MSE
- Example
- Code

What is Mean Squared Error?

Mean Squared Error (MSE) คือ ค่าเฉลี่ยของ error (ผลต่างของค่าจริงและค่า พยากรณ์) <mark>ยกกำลังสอง</mark>

$$e_i = y_i - \widehat{y}_i$$

Formula

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

- ullet y_i คือ sample ที่ i
- $oldsymbol{\hat{y}}_i$ คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- ullet n คือ จำนวน sample

Step to Calculate MSE

- 1. $\,$ เก็บค่า y_i และ \widehat{y}_i
- 2. วัดประสิทธิภาพของ model ตามสูตรของ mean squared error (MSE)

1. เก็บค่า y_i และ \hat{y}_i

	${\bf y_i}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

2. วัดประสิทธิภาพของ model ตามสูตรของ mean squared error (MSE)

	y_i	$\widehat{\mathbf{y}}_{i}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$MSE = \frac{(1168 - 1204.183)^2 + \dots + (897 - 873.342)^2}{7}$$

$$MSE = 462.113$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

Tourantina
$$(y - \hat{y})^2 = 400 \rightarrow y - \hat{y} = 20$$

1 mean_squared_error(y_true, y_pred)

462.1128826530673

$$\hat{y} = 1000 \in [980, 1020]$$
 $\hat{y} = 200, \text{ mse} = 100 \Rightarrow y - \hat{y} = 10$
(190,210)

Model Evaluation for Regression

Mean Absolute Error

- What is Mean Absolute Error?
- Formula
- Step to Calculate MAE
- Example
- Code

What is Mean Absolute Error?

Mean Absolute Error (MAE) คือ ค่าเฉลี่ยของ absolute ของ error (ผลต่างของค่า จริงและค่าพยากรณ์)

$$e_i = y_i - \widehat{y}_i$$

Formula

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

- ullet y_i คือ sample ที่ i
- \hat{y}_i คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- ullet n คือ จำนวน sample

Step to Calculate MAE

- 1. เก็บค่า y_i และ \hat{y}_i
- 2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute error (MAE)

1. เก็บค่า y_i และ \hat{y}_i

	${\bf y_i}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute error (MAE)

	y_i	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$$

$$MAE = \frac{1}{7} \{ |1168 - 1204.183| + \dots + |897 - 873.342| \}$$

$$MAE = 16.998$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

$$\hat{y} = 100 \implies y \in [100 - 17, 100 + 17]$$
[83, 117]

1 mean_absolute_error(y_true, y_pred)

16.998086734694034

Mean Absolute Percentage Error

- What is Mean Absolute Percentage Error?
- Formula
- Step to Calculate MAPE
- Example
- Code

What is Mean Absolute Percentage Error?

Mean Absolute Percentage Erro<mark>r (MAPE)</mark> คือ ค่าเฉลี่ยของ absolute ของ อัตราส่วนระหว่าง error (ผลต่างของค่าจริงและค่าพยากรณ์) และข้อมูลจริง

$$e_i = y_i - \widehat{y}_i$$

Formula

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y_i}}{y_i} \right|$$

- ullet y_i คือ sample ที่ i
- \hat{y}_i คือ ค่าที่พยากรณ์ได้จากโมเดลของ sample ที่ i
- *n* คือ จำนวน sample

Step to Calculate MAPE

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute percentage error (MAPE)

Example

1. เก็บค่า y_i และ \hat{y}_i

	${oldsymbol{y_i}}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

Example

2. วัดประสิทธิภาพของ model ตามสูตรของ mean absolute percentage error (MAPE)

	y_i	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1168	1204.183
1	1488	1498.152
2	1232	1199.06
3	949	947.087
4	439	438.018
5	262	275.159
6	897	873.342

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y_i}}{y_i} \right|$$

$$MAPE = \frac{1}{7} \left\{ \left| \frac{1168 - 1204.183}{1168} \right| + \dots + \left| \frac{897 - 873.342}{897} \right| \right\}$$

$$MAPE = 0.021$$

	Actual_SalePrice	Predicted_SalePrice
0	1168.0	1204.18303571
1	1488.0	1498.15178571
2	1232.0	1199.06026786
3	949.0	947.08705357
4	439.0	438.01785714
5	262.0	275.15848214
6	897.0	873.34151786

ตารางแสดงข้อมูลของราคาบ้านจริง และราคาบ้านที่พยากรณ์ได้จากโมเดล โดยใช้ feature ที่ใช้คือจำนวนห้องและพื้นที่ของบ้าน

$$\hat{y} = 100$$
, $y \in [100 - 2\%, 100 + 2\%] = [98, 102]$

- 1 mean_absolute_percentage_error(y_true, y_pred)
- 0.02076988136170835

Conclusion

Name	Formula	
R^2	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$	(-0,1]
MSE	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	MSe = 9 $\hat{y} = 100$ $y \in [97, 103]$
MAE	$MAE = \frac{1}{n} \sum_{i=1}^{n} y_i - \widehat{y}_i $	
MAPE	$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left \frac{y_i - \widehat{y_i}}{y_i} \right $	mape = 0.02 error = 2% ŷ= 100 y \(\) [98, 102]

MA E อยากได้ปริมาณที่ ดาดเหลื่อน

mape =
$$\frac{1}{n} \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{|y_i|}$$

ก้ามี
$$y_j$$
 โกลั γ 0

ยก ตัวจร่าง เช่น $y_j = 0.0001$
 $\hat{y}_j = 1$
 $\hat{y}_j = 1$

Model Evaluation

What is Model Evaluation?

Why need Model Evaluation?