PreCalculus-Limit at Infinity (Learning Target LF)

APMA Faculty University of Virginia

July 12, 2024

"Guess"

"Guess" the limit works well sometimes and can be tried before applying any specific technique.

Example

Find $\lim e^{\frac{1}{x}}$

Solution: take x values very big, eg. $x = 1000, 10000, 100000, \cdots$, we can see that the power $\frac{1}{x} \to 0$, so the limit is like e^0 , which is 1.

Similarly, by plugging in some values tending to $+\infty$ or $-\infty$, we can get

Note:
$$sgn(a) = 1$$
 if $a > 0$ and $sgn(a) = -1$ if $a < 0$.

1.
$$\lim_{x\to\infty} \mathbf{e}^x = \infty$$
 & $\lim_{x\to-\infty} \mathbf{e}^x = 0$

2.
$$\lim_{x \to \infty} \ln(x) = \infty$$
 & $\lim_{x \to \infty} \ln(x) = -\infty$

3. If
$$r > 0$$
 then $\lim_{x \to \infty} \frac{b}{x^r} = 0$

4. If
$$r > 0$$
 and x^r is real for negative x
then $\lim_{x \to -\infty} \frac{b}{x^r} = 0$

5.
$$n \text{ even} : \lim_{x \to +\infty} x^n = \infty$$

2.
$$\lim_{x \to \infty} \ln(x) = \infty$$
 & $\lim_{x \to 0^+} \ln(x) = -\infty$ 6. $n \text{ odd}$: $\lim_{x \to \infty} x^n = \infty$ & $\lim_{x \to -\infty} x^n = -\infty$

7.
$$n \text{ even}: \lim_{x \to \pm \infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$$

8.
$$n \text{ odd}: \lim_{x\to\infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$$

9.
$$n \text{ odd}$$
: $\lim_{x \to -\infty} a x^n + \dots + c x + d = -\operatorname{sgn}(a) \infty$

The type of $\pm \frac{\infty}{\infty}$

Technique 1: Compare the growth speed:

when $x\to\infty$, here is a list of functions in order of their rate of growth to $+\infty$, quickest to slowest:

$$x!, \dots, 4^x, 3^x, e^x, 1.5^x, \dots, x^4, x^3, x^2, x * logx, x, logx, \dots, 3, 2, 1$$

by category, it is

 $\mathit{factorial} \gg \mathit{exponential} \gg \mathit{algebraic} \gg \mathit{logarithmic} \gg \mathit{constant}$

Then
$$\lim_{x \to \pm \infty} \frac{n(x)}{d(x)} = \lim_{x \to \pm \infty} \frac{\text{dominant term of } n(x)}{\text{dominant term of } d(x)}$$
,

Examples

$$\lim_{x \to \infty} \frac{4^x - x^7 + 2x}{x! + x^1 - 1} = \lim_{x \to \infty} \frac{4^x}{x!} = ? \text{ (soon)}$$

Case 1: If the numerator

Examples

Note: sometimes you need to do some algebraic manipulation to apply the above techniques.

Find
$$\lim_{x\to 0^+} (x * \ln x)$$

Find
$$\lim_{x \to 2} \left(\frac{4}{x^2 - 4} - \frac{1}{x - 2} \right)$$