- Decoder:
- Decoder is combinational circuit.
- Many I/P and many O/P.
- It is used to convert binary data into other code.

- Decoder:Different codes
- Binary to Octal (3x8).
- Binary to Decimal(4x10).
- Binary to Hexa-Decimal(4x10).
- BCD to seven segment .

Decoder

- Information in digital systems represented by binary codes.
- An n-bit code = 2ⁿ distinct elements of coded information.
- A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines.

Decoder: specifications

Remark:

The term <u>decoder</u> is also used in conjunction with other code converters, e.g., BCD-to-seven segment decoder.

3-to-8 Decoder

(An application in binary-to-octal)

3-to-8 Decoder Truth-table

	Inputs			Outputs								
<u>x</u>	У	Z	<i>D</i> ₀	<i>D</i> ₁	D ₂	D ₃	D ₄	D ₅	D_6			
0	0	0	1	0	0	0	0	0	0	0		
0	D	1	0	1	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0		
0	1	1	0	0	0	1	0	0	0	0		
1	0	0	0	0	0	0	1	0	0	0		
1	0	1	0	0	0	0	0	1	0	0		
1	1	0	0	0	0	0	0	0	1	0		
1	1	1	0	0	0	0	0	0	0	1		

Ex.: Full-adder logic with a Decoder

• Full-adder function: $S(x, y, z) = \Sigma(1, 2, 4, 7)$ $C(x, y, z) = \Sigma(3, 5, 6, 7)$

Example 4-to-16 line decoder using two 3-to-8 decoders

Encoder

• An encoder is a digital circuit that performs the inverse operation of a decoder.

• Encoder: 2^n (or fewer) \Longrightarrow n

Example Octal-to-Binary encoder

_				Inputs				Outputs		
D_0	D ₁	D ₂	D_3	D ₄	<i>D</i> ₅	D_6	D ₇	x	y	z
1	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	Ō	1
0	0	1	0	0	0	0	0	0	1	Ô
0	0	0	1	0	0	0	0	0	1	ì
0	0	0	0	1	0	Ō	ō	Ĭ	Ô	ń
0	0	0	0	0	1	0	Õ	i	ñ	1
0	0	0	0	0	ō	i	ŏ	i	ĭ	ň
0	0	0	Ö	ŏ	ŏ	ō	1	I	1	1

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

Octal-to-Binary encoder

Limitations of the octal-to-binary encoder

 Only one input can be active at a time.
 i.e., if two inputs are simultaneously activated then the output may produce undefined combination.

A solution: assign priority while encoding.

2. The output is '0' when all the inputs are '0'. However, the output is also '0' when D0 = '1'.

A solution: provide more output to indicate whether at least one input is '1'.

Priority Encoder

- A priority encoder is an encoder that includes the priority function.
- If two or more inputs are '1' at the same time, the input with the highest priority will take precedence.
 - => leads to an understanding of the term "protocol" in CSE/IT engineering.

Example: 4-input priority encoder

Ex.: Priority encoder logic circuit

