数列极限与实数 Limits of Sequences & Real Numbers

数列极限的定义

对于数列 $\{x_n\}_{n=1}^{\infty}$,如果存在 $l \in \mathbb{R}$,使得对于任意 $\varepsilon > 0$,总能找到一个对应的 N,使得对于任意满足 n > N 的 x_n ,都有 $|x_n - l| < \varepsilon$,则称数列 $\{x_n\}_{n=1}^{\infty}$ 收敛(到 l),或者说数列 $\{x_n\}_{n=1}^{\infty}$ 趋于 l,或称 l 是数列 $\{x_n\}_{n=1}^{\infty}$ 的极限,记为

$$\lim_{n \to \infty} x_n = l \quad \text{if} \quad x_n \to l, \quad n \to \infty$$

对于数列而言,在研究极限时仅考虑 $n\to\infty$ 的情形,这一点和后面要讲到的函数的极限是不同的。因此我们可以更精简 地记为 $\lim x_n=l$ 和 $x_n\to l$.

- 直白地说,上面的定义是在描述:通过选择合适的 N,我们可以将 $|x_n-l|$ 控制到任意小. 即无论给定一个多么小的正数 ε ,总能找到若干合适的 N_ε ,从而将数列在超过 N_ε 的部分严格地控制在区间 $(l-\varepsilon,l+\varepsilon)$ 以内.
- 我们用 N_{ε} 而不是 $N(\varepsilon)$,来澄清 N 和 ε 并不是一个严格的映射(函数)关系。对于每一个 ε ,我们有不止一种选择 N 的方式。假如我们找到了一个合适的 N_{ε}^{\star} ,则显然 $N_{\varepsilon}^{\star}+1$ 、 $N_{\varepsilon}^{\star}+4$ 甚至 $N_{\varepsilon}^{\star}+10000$ 等也可以作为 N_{ε} 的选取方式。

对于数列 $\{x_n\}_{n=1}^{\infty}$,只要能找到符合上述定义的 $l \in \mathbb{R}$,则称其为**收敛** (convergent) 的,否则是**发散** (divergent) 的。

无穷小量和无穷大量

无穷小量和无穷大量的概念

如果数列 $\{x_n\}_{n=1}^{\infty}$ 的极限是 0,则其又称为**无穷小量**,记作

$$x_n = o(1), \quad n \to \infty$$

因此,数列 $\{x_n\}_{n=1}^{\infty}$ 收敛至 l 这一命题**等价于:** x_n-l 是无穷小量。

不能把无穷小量视作数字 0(虽然有些场景下这样处理确实很爽,但有些场景则会出现 0/0 或者 $0\times\infty$ 的复杂情形)。无穷小量并不是一个静态的数字,而是一个动态的变量,一个被下标 n 调控的量。我们可以调控 n 以使得这个变量的值可以任意小,因而称为无穷小量。

如果数列 $\{x_n\}$ 满足:对任意的 E>0,总存在 $N_E>0$,使得对于任意 $n>N_E$,总有 $|x_n|>E$,则称数列 $\{x_n\}$ 为 无穷大量。记为 $\lim x_n=\infty$ 或者 $x_n\to\infty$. 特别地,如果 x_n 在这一过程中保持符号,例如,对任意的 E>0,总存在 $N_E>0$,使得对于任意 $n>N_E$,总有 $x_n>E$ (注意这里没有绝对值号),则记为 $\lim x_n=+\infty$ 或 $x_n\to+\infty$ 。如果 $\{x_n\}$ 满足 $-x_n\to+\infty$,则可以记作 $\lim x_n=-\infty$ 或 $x_n\to-\infty$.

- 上面的定义是在描述: 通过选择合适的 N, 我们可以将 $|x_n|$ (或者 x_n , 或者 $-x_n$) 控制到任意大.
- 无穷大量同样也不是一个静态的数,而是一个变量。

无穷小量和无穷大量的性质

- (1) 加法: 有限个无穷小量的和仍然是无穷小量,即 o(1) + o(1) = o(1).
- (2) **乘法**: 若 $\{x_n\}$ 有界,则 $\{x_n\}$ 和一个无穷小量的积也是无穷小量。

(3) **倒数**:若 $\{x_n\}$ 是无穷大量,则 $\left\{\frac{1}{x_n}\right\}$ 是无穷小量;若 $\{x_n\}$ 是无穷小量且 $x_n \neq 0$,则 $\left\{\frac{1}{x_n}\right\}$ 是无穷大量.

极限的相关性质 Properties of Limits

单个数列极限的性质

(1)**保序性、保号性:** 假定 $\lim x_n=a$ 且 a>p,则从某一项开始(或者说,存在一个 N_p ,使得对于任意的 $n>N_p$),总有 $x_n>p$ 。同理,若 a<q,则从某一项开始,总有 $x_n<q$ 。是为极限的**保序性**。

证明思路是很直接的:以a>p为例,只需要取一个足够小的 ε 满足 $a-\varepsilon>p$ (例如可以取 $\varepsilon=\frac{a-p}{2}$)。则对任意 $n>N_{\varepsilon}$,总有 $x_n>a-\varepsilon>p$ 。另一种情况同理。

特别地,当 a > 0 时,可以取 p = 0; 当 a < 0 时,可以取 q = 0。即:若数列趋于一个正数,则从某一项开始数列恒正;若数列趋于一个负数,则从某一项开始数列恒负。是为数列的**保号性**。

(2) **有界性:** 收敛数列必有界。即若 $\{x_n\}$ 收敛到a,则存在M>0,使得对于**所有** x_n ,均有 $|x_n|\leqslant M$.

任意取 ε 和一个对应的 N_{ε} ,则对于 $n>N_{\varepsilon}$ 的部分,有 $|x_n|<|a|+\varepsilon$; 对于 $1\leqslant n\leqslant N_{\varepsilon}$ 的部分,这 N_{ε} 个有限的 $|x_n|$ 中总能照到一个最大值,令 $M=\max\left\{\max_{1\leqslant n\leqslant N_{\varepsilon}}|x_n|,|a|+\varepsilon\right\}$ 即可。

(3) **唯一性:** 收敛数列有且仅有一个极限。即若 $x_n \to a$ 且同时 $x_n \to b$,则必然有 a = b。

多个数列极限的性质