Ensemble Models

Stacking, Bagging, and Boosting

Agenda

Justification

- An old mantra

Stacking

- Weighted Averaging

Bagging

- Layers of randomization
- Synchronic Aggregation

Boosting

- Diachronic Learning

Justification

An Old Mantra

Data Collection:

- One data point is good, but more data points are better!

Bootstrapping:

 One sample is good, but more samples are better!

Modeling:

 One model is good, but more models are better!

Justification

Model Composed of Other Models

- Building models beyond the first is good for comparison's sake.
- But we can also combine models together to form new models.

Stacking

Different Models, Same Data

- Similar to a bagging approach, stacking is a form of averaging
- Unlike a bagging approach, stacking typically uses the same training data for every model
- The innovation of stacking is the use of different kinds of models

Stacking

* C1, C2, and C3 are considered level 1 classifiers.

Meta-Classifier/Meta-Regressor

- First, we ask several different models to make predictions about the target
- Rather than taking a simple average or vote to determine the outcome, feed these results into a final model that makes the prediction based on the other models' predictions
- If it seems like we are approaching a neural network...you are correct!

Strategy

- Many models naturally overfit
- Randomization → New models
- New models overfit in different ways
- Aggregation → Smooth over different ways of overfitting to reduce variance

shutterstock.

Synchronic Aggregation

- Bootstrap Aggregating.
- Algorithm to repeat many times:
 - a. Create a sample from your data.
 - b. Train a model (e.g. a decision tree) on that sample.
- Final model comes by averaging over those many models.

Random Forests

- We already have: Level 1 of Randomization
 - o Train each model on random sample
- Add: Level 2 of Randomization
 - Choose a random set of features at each decision point

Extremely Randomized Trees

- We already have: Level 1 and Level 2 of Randomization
 - Train each model on random sample
 - Choose a random set of features at each decision point
- Add: Level 3 of Randomization
 - Choose a path at random!

Boosting

Strategy

- Prevent overfitting from start
- Train an **underfit** model *m*
- Update m by training a new model on the residuals of m

Boosting

Diachronic Learning

- Prevent overfitting from start
- Train a bad model *m*
- Improve *m* by making quantitative use of the **residuals of** *m*