Contents

- Controller Design for Motor Speed Controller
- Drive with P-Controller
- Drive with PI-Controller
- Non-Linear effects
- Comparison of Different Controller

Controller Design for Motor Speed Controller

```
L = 0.23e-3;

cm = 23.4e-3;

R = 2.4;

J = 0.23e-6;

D = 0.4191e-5;

U = 240;
```

Equation generated for Controller Design of the Motor

Transfer Function of the model:

4.423e08 -----s^2 + 1.045e04 s + 1.054e07

Zero-Pole-Gain:

4.4234e+08 -----(s+9322) (s+1131)

^{*}Integrator and zeros added while PM = 60deg

PI Controller:

0.12516 (s+1160) -----s

Drive with P-Controller

```
figure(1);

plot(ScopeData.time,ScopeData.signals(1).values(:,1),'r');
legend('P controller');
xlabel('t(time)');ylabel('w(Angular Velocity)');
title('Drive with P-Controller');
```


Drive with PI-Controller

```
figure(2);

plot(ScopeData1.time,ScopeData1.signals(1).values(:,1),'b');
legend('PI controller');
xlabel('t(time)');ylabel('w(Angular Velocity)');
title('Drive with PI-Controller');
```


Non-Linear effects

```
figure(3);

plot(ScopeData1.time,ScopeData2.signals(1).values(:,1),'g');
legend('non-linear effects');
xlabel('t(time)');ylabel('w(Angular Velocity)');
title('Control with non-linear effects');
```


Comparison of Different Controller

Published with MATLAB® R2018b