Data Preparation:

Reduction and Transformation

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Main Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapter 2) + slides by Lijun Zhang
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 2)
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 3)

Data reduction and transformation

Sampling

≃ "Less rows"

Dimensionality Reduction or Feature Selection

≃ "Less columns"

Why reduce/transform data?

- Advantages
 - Reduce space complexity
 - Reduce time complexity
 - Reduce noise
 - Reveal hidden structures (e.g., manifold learning)
- Disadvantages
 - Information loss

Sampling for static data

- Uniform random sampling
 - with/without replacement
- Biased sampling
 - e.g., emphasize recent items
- Stratified sampling
 - Partition data in strata, sample in each stratum

Sampling example

- There are 10000 people which contain 100 millionaires
- Uniform random sample of 100 people
 - In expectation, one millionaire will be sampled
 - There is $\approx 37\%$ chance no millionaires are sampled, why?
- Stratified Sampling
 - Unbiased Sampling 1 from 100 millionaires
 - Unbiased Sampling 99 from remaining

Sampling from data streams

- Suppose you want to give away for free 10 VIP passes at a concert
 - You want everybody to have exactly the same chance of getting the VIP pass, independently on when they arrived, as long they arrive before the concert starts
 - Once people leave the entrance area they become impossible to find, so if you win, you should receive the VIP pass at the door
 - People arrive in sequence, and you do not know how many people will arrive
- Reservoir sampling algorithm ... seen in the stream processing part

Reducing data dimensionality

Note: PCA/SVD covered well in other courses, won't be part of our exam

Feature selection

- Unsupervised Feature Selection
 - Using the performance of unsupervised learning (e.g, clustering)
 to guide the selection
- Supervised Feature Selection
 - Using the performance of supervised learning (e.g., classification)
 to guide the selection

An axis rotation may help :-)

Source: Centauro Blog (2017)

Dimensionality reduction with axis rotation (perfect case)

 Motivation: three points in a line in twodimensional space

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_{2} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Dimensionality reduction with axis rotation (perfect case, cont.)

Coordinates after axes rotation

$$\mathbf{x}_{1} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \qquad \qquad \mathbf{y}$$

$$\mathbf{x}_{2} = \begin{bmatrix} 2\sqrt{2} \\ 0 \end{bmatrix} \qquad \qquad \mathbf{z}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 3\sqrt{2} \\ 0 \end{bmatrix} \qquad \qquad \mathbf{x}_{3} = \begin{bmatrix} 3\sqrt{2} \\ 0 \end{bmatrix}$$

Dimensionality reduction with axis rotation (perfect case, cont.)

Coordinates after axes rotation

Drop second coordinate, no information is lost.

2D data reduced to 1D data

Dimensionality reduction with axis rotation (noisy case)

Suppose points don't lie exactly on a line

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 0.9 \end{bmatrix}$$

$$\mathbf{x}_{2} = \begin{bmatrix} 2.1 \\ 2 \end{bmatrix}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 2.9 \\ 3.1 \end{bmatrix}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 2.9 \\ 3.1 \end{bmatrix}$$

Dimensionality reduction with axis rotation (noisy case, cont.)

Suppose points don't lie exactly on a line

$$\mathbf{x}_{1} = \begin{bmatrix} 1.34 \\ 0.07 \end{bmatrix}$$

$$\mathbf{x}_{2} = \begin{bmatrix} 2.89 \\ 0.07 \end{bmatrix}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 4.24 \\ -0.14 \end{bmatrix}$$

Dimensionality reduction with axis rotation (noisy case, cont.)

Suppose points don't lie exactly on a line

Drop second coordinate, some information is lost. $x_1 = \begin{bmatrix} 2.89 \\ 0.07 \end{bmatrix}$ $x_2 = \begin{bmatrix} 2.89 \\ 0.07 \end{bmatrix}$ $x_3 = \begin{bmatrix} 4.24 \\ -0.14 \end{bmatrix}$

How does this work in reality?

- Change of axes removes correlations and reduces dimensionality
- Techniques
 - Principal Component Analysis (PCA)
 - Singular-Value Decomposition (SVD)

(Seen elsewhere: **not in the exams** on this subject)

Summary

Things to remember

- Data sampling methods
- Why would we want to reduce dimensionality?
- What are the main techniques for doing so

Exercises for TT03-TT05

- Exercises 3.7 of Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al.
- Exercises 2.6 of Introduction to Data Mining,
 Second Edition (2019) by Tan et al.
 - Mostly the first exercises, say 1-6

Additional contents (not included in exams)

Axis rotation - formulation

 Points are usually described with respect to the standard basis

$$\mathbf{x} = \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^d \end{bmatrix} \in \mathbb{R}^d \iff \mathbf{x} = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + \dots + x^d \mathbf{e}_d$$

Axis rotation – formulation (cont.)

We will determine **new coordinates** under basis W:

$$W = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_d]$$
 is a orthonormal matrix

$$\mathbf{x} = WW^{\mathsf{T}}\mathbf{x} = \left(\sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{w}_{i}^{\mathsf{T}}\right) \mathbf{x} = \sum_{i=1}^{d} \mathbf{w}_{i} (\mathbf{w}_{i}^{\mathsf{T}} \mathbf{x})$$
$$= (\mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_{1} + (\mathbf{w}_{2}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_{2} + \dots + (\mathbf{w}_{d}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_{d}$$

Thus, the new coordinates are

$$\mathbf{y} = \begin{bmatrix} \mathbf{w}_1^\mathsf{T} \mathbf{x} \\ \mathbf{w}_2^\mathsf{T} \mathbf{x} \\ \vdots \\ \mathbf{w}_d^\mathsf{T} \mathbf{x} \end{bmatrix} \in \mathbb{R}^d$$

Vector x has n dimensions, but vector y has $d \le n$ dimensions

PCA formulation: optimization

• Find new basis $\{ w_1, w_2, ..., w_k \}$, with $k \le d$ such that the variance of this set is maximized:

$$\left\{\mathbf{y}_{1} = \begin{bmatrix} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{1} \\ \mathbf{w}_{2}^{\mathsf{T}} \mathbf{x}_{1} \\ \vdots \\ \mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{1} \end{bmatrix}, \mathbf{y}_{2} = \begin{bmatrix} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{2} \\ \mathbf{w}_{2}^{\mathsf{T}} \mathbf{x}_{2} \\ \vdots \\ \mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{2} \end{bmatrix}, \cdots, \mathbf{y}_{n} = \begin{bmatrix} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{n} \\ \mathbf{w}_{2}^{\mathsf{T}} \mathbf{x}_{n} \\ \vdots \\ \mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{n} \end{bmatrix} \right\}$$

SVD formulation

- The rotated data is obtained by multiplying U^TX

Algorithms for PCA and SVD

- PCA $\begin{cases} \textbf{1.} & \text{Calculate the mean vector } \bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \\ \textbf{2.} & \text{Calculate the covariance matrix } C = \\ & \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \bar{\mathbf{x}}) (\mathbf{x}_i \bar{\mathbf{x}})^{\mathsf{T}} \\ \textbf{3.} & \text{Calculate the k-largest eigenvectors of C} \end{cases}$

- SVD 1. Calculate the mean vector $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ SVD 2. Calculate the k largest left singular vectors of $\bar{X} = [\mathbf{x}_1 \bar{\mathbf{x}}, ..., \mathbf{x}_n \bar{\mathbf{x}}]$