a) linear repression and Adynamic requesion

where
$$x: [1, x, x, \dots]$$
 for the feature and $x: [1, x, x, \dots]$

- + { We can we defend norms for pendly fundasons
- + Repubritation

- + Other possible updestation
 - * [rejularization | 0 (loss problem)

* 1170112 - smothy (Laglacian)

In variational from: min
$$\int (y-\theta)^2 + \varepsilon \int \nabla \theta^2 = f_*(\theta)$$

* 1701 > Total variation

b) Logistic repussion / classification

* Classification: the subjust variable y 6 30,15

* Thresholding (Hearisde function)

$$g(h_0(x)) = \begin{cases} 0 & h_0(x) < 0 \\ -thesholding \end{cases}$$

* Signald function: (Logitic function)

$$g(z) = \frac{A}{A + e^{-z}}$$
, $g(z)$

* Interpretation of (h. (x)):

* Deison boundary

* (oot function: Negative Explications) / cross-entropy

$$f_{0}(0) = \frac{1}{m} \underbrace{\{1 - y^{i}\} (-b_{0}(1 - \{(h_{0}(x^{0}))\}) + y^{i}(-b_{0}(\{(h_{0}(x^{0}))\})\})}_{y_{i} = 0} \underbrace{\{1 - y^{i}\} (-b_{0}(1 - \{(h_{0}(x^{0}))\}) + y^{i}(-b_{0}(\{(h_{0}(x^{0}))\}))\})}_{y_{i} = 0}$$

to Property of Figured function

$$= - \underbrace{A}_{i=1}^{m} \left\{ \left\{ \left(h_{i}(x^{n}) \right) - y^{i} \right\} x^{(i)} = 0 \right\}$$

$$= - \underbrace{A}_{i=1}^{m} \left\{ \left\{ \left(h_{i}(x^{n}) \right) - y^{i} \right\} x^{(i)} = 0 \right\}$$

$$= x^{n} \left[x - y^{n} \right]$$

$$= x^{n} \left[x - y^{n} \right]$$

Remarks

* You can use product method: Oct = Oc - 2 7/0 (bi)

* Sochaske present, randomly select & values of the date

* Regularization also important

Typical we take hundreds of data
to congulate the
stochastic gradient
when we have used that we spend an

Fn 4 norm rejularization

ux: Poximal

31-(10)=, 1 = [1(h,(x))-yi]x10+ > 8

) * Gratient expensive -> Stochastic

A stopping criteria is expensive -> 117/ 11,.... no iterations

to Computing cost expensive to We don't compute it to be small to be small by Backetsackery to be small

