数据结构与算法 (Python) ^{算法分析}

谢正茂 webg@PKU-Mail

计算机学院数据所

March 4, 2025

目录

- 本章目标
- 什么是算法分析
 - 大 O 表示法
 - 例子:"变位词"判断问题
 - 例子: "稳定匹配"问题
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

本章目标

- 了解算法分析的重要性
- 能够采用"大 O"表示法来描述算法执行时间
- 了解 Python 列表和字典类型中通用操作执行时间的"大 O"级别;
- 了解 Python 数据类型的具体实现对算法分析的影响;
- 了解如何对简单 Python 程序进行执行时间检测。

目录

- 本章目标
- 什么是算法分析
 - 大 O 表示法
 - 例子:"变位词"判断问题
 - 例子: "稳定匹配"问题
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

如何对比两个程序或者算法

- 同一个问题"自然数序列求和", 如何对比两个程序或者算法?
 - 看起来不同,但解决同一个 问题的程序,哪个"更好"?
- 我们来看一段程序,完成从1 到 n 的累加,输出总和
 - 设置累计变量 =0
 - 从1到 n 循环,逐次累加到 累计变量
 - 返回累计变量

```
def sumOfN(n):
    theSum = 0
    for i in range(1, n + 1):
        theSum = theSum + i
    return theSum
print(sumOfN(10))
```

如何对比两个程序或者算法

- 再看第二段程序, 是否感觉怪怪的?
 - 但实际上本程序功能与前面那段相同
 - 这段程序失败之处在于:
 - 变量命名, foo, bar, baz, * 文档/注释 *
 - 有无用的垃圾代码
- 比较程序的"好坏",有很多因素
 - 代码风格、可读性等等
- 这里我们只关注算法本身
- 算法分析主要就是从计算资源消耗的角度来评判和比较算法
 - 更高效利用计算资源/更少占用资源的算法,就是好算法
 - 从这个角度,前述两段程序实际上是基本相同的,它们都采用了一样 的算法来解决累计求和问题

```
def foo(tom):
    fred = 0
    for bill in range(1, tom + 1):
        barney = bill
        fred = fred + barney
    return fred

print(foo(10))
```

算法好坏的评价标准

- 在算法有穷、确定、可行(正确)的基础上
 - 首先要保证是个算法
- 评价主要看3方面的指标
 - 运行所花费的时间 (时间复杂度)
 - 运行所占用的存储空间(空间复杂性)
 - 其他(如可读性、健壮性、易于维护性)
- 用"复杂"去形容一个算法的不同情况
 - 算法的描述: 算法好不好懂
 - 算法的效率:运行所需的时间和存储空间
 - 算法的实现: 代码好不好懂
- 算法分析: 从效率和正确性两个方面

计算资源指标

- 那么何为计算资源?
- 一种是算法的执行时间
 - 我们可以对程序进行实际运行测试,获得真实的运行时间
- 一种是算法解决问题过程中需要的存储空间或内存
 - 算法运行过程中所需要的存储空间
 - 除了存储输入、输出外, 更需要用于存储中间结果
 - Python 中存储一个整数 N,通常需要 logN 空间,当 N 较小(比如 1 个亿),也可以认为是个常数
- Python 中有一个 time 模块,可以获取系统当前时间(浮点数)
 - 在算法开始前和结束后分别记录系统时间,即可得到运行时间


```
>>> from time import strftime, localtime, time
>>> time()
1740983453.553101
>>> strftime('%Y-%m-%d %H:%M:%S', localtime(time()))
'2025-03-03 14:31:01'
```

运行时间检测

- 累计求和程序的运行时间检测
 - 增加了总运行时间
 - 函数返回一个元组 tuple
 - 包括累计和,以及运行时间(秒)
- 在交互窗口连续运行5次看看
 - 1 到 10,000 累加
 - 每次运行约需 0.0007 秒

```
import time
def sumOfN2(n):
    stort = time.time()
    theSum = 0
    for i in range(1, n+1):
        theSum = theSum + i
    end = time.time()
    return theSum, end - start
    for i in range(5):
        print("Sum is %d required %10.7f seconds"
        % sumOfN2(10000))
```

```
Sum is 50005000 required 50007000 required 50007000 required 50005000 required 50005000 required 50005000 required 50005000 required 50007000 required 50007000 seconds
```

运行时间检测

- 如果累加到 100,000?
 - 看起来运行时间增加到 10,000 的 10 倍

- 进一步累加到 1,000,000?
 - 运行时间又是 100,000 的 10 倍了

```
Sum is 500000500000 required 0.0817859 seconds
Sum is 5000005500000 required 0.79781529 seconds
Sum is 5000005500000 required 0.0803300 seconds
Sum is 5000005500000 required 0.0783160 seconds
Sum is 5000005500000 required 0.0776238 seconds
```

第二种无迭代的累计算法

● 利用求和公式的无迭代算法

$$S_n = \frac{n(a_1 + a_n)}{2}$$

- 采用同样的方法检测运行时间
 - 10,000; 100,000; 1,000,000
 - 10,000,000; 100,000,000
- 发现两点
 - 新算法的运行时间比旧算法 短很多
 - 运行时间与累计对象n的大 小没有关系(而旧算法是正 比例关系)

```
14 def sumOfN3(n):
15     start = time.time()
16     theSum = (n * (n + 1 )) / 2
17     end = time.time()
18     return theSum, end - start
```

```
Sum is 50005000 required 0.000010 seconds
Sum is 5000050000 required 0.0000000 seconds
Sum is 500000500000 required 0.0000010 seconds
Sum is 50000005000000 required 0.0000000 seconds
Sum is 500000005000000 required 0.0000000 seconds
```

运行时间检测的分析

- 观察一下第一种迭代算法
 - 包含了一个循环,可能会执行更多语句
 - 这个循环运行次数跟累加值 n 有关系, n 增加, 循环次数也增加
- 但关于运行时间的实际检测, 有点问题
 - 关于编程语言和运行环境
- 同一个算法,采用不同的编程语言编写,放在不同的机器上运行, 得到的运行时间会不一样,有时候会大不一样:
 - 比如把非迭代算法放在老旧机器上跑,甚至可能慢过新机器上的迭 代算法
 - 论文中比较自己算法的效率时,都必须尽可能的说明实验的运行环境
 - 有时觉得这样描述算法效率有点麻烦...

解决问题所需的时间

目录

- 本章目标
- 什么是算法分析
 - 大〇表示法
 - 例子:"变位词"判断问题
 - 例子: "稳定匹配"问题
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

大 O 表示法 (Big-O)

- 一个算法所实施的操作数量或步骤数可作为独立于具体程序/机器的度量指标
- 分析一个算法中,所有要执行的语句的数量
 - 抛弃那些不太重要的因素,只保留最主要的影响因素
- 以"行"或"条"为单位,分析 SumOfN 的执行的语句数量,忽略不同语句行的执行时间差别
 - 对于"问题规模"n, 讨论 4~7 行代码
 - 执行语句数量 T(n) = 1 + (n+1) + n + 1 = 2n + 3

```
3 def sumOfN(n):
4    theSum = 0
5    for i in range(1, n+1):
6         theSum = theSum + i
7    return theSum
```

语句频度和时间复杂度

- 语句频度
 - 语句可能重复的最大次数
 - 语句频度是针对每条语句的
- 时间复杂度
 - 设算法所有语句的语句频度的和是 T(n)
 - 引入函数 f(n),满足如下条件:

f(n)是当n趋向无穷大时,与T(n)为同阶无穷大,则:

- 则算法的时间复杂度T(n)=O(f(n))
- n为算法的计算量或者问题规模(size)
- f(n)是运算时间随n增大时的增长率
- O(f(n))是算法时间特性的量度

Big-O 的数学含义-函数渐近的界

设f和g是定义域为自然数集N上的函数

- (1) f(n)=O(g(n))若存在正数c和n₀使得对一切n≥n₀有0≤f(n)≤cg(n)
- (2) $f(n) = \Omega(g(n))$ 若存在正数c和 n_0 使得对一切 $n \ge n_0$ 有 $0 \le cg(n) \le f(n)$
- (3) f(n)=o(g(n)) 对所有正数c>0存在 n_0 使得对一切 $n\geq n_0$ 有 $0\leq f(n)< cg(n)$
- (4) $f(n)=\omega(g(n))$. 对所有正数c>0存在 n_0 使得对一切 $n\geq n_0$ 有 $0\leq cg(n)\leq f(n)$
- (5) $f(n)=\Theta(g(n)) \Leftrightarrow f(n)=O(g(n)) \perp f(n)=\Omega(g(n))$
- (6) O(1)表示常数函数

大"O"和小"o"的区别

- 类似于 ≤ 和 < 的区别。
 - f(n) = O(f(n))
 - $f(n) \neq o(f(n))$
- 同阶无穷大: f(n) = O(g(n)) 且 g(n) = O(f(n))
- 与数学定义不同,计算机中的大"O"表示法实际上是要求"同阶无穷大"
 - $T(n) = 2n + 3 = O(n^3)$ 不是我们想要的。
- 10086 $n^3 = O(n^3), n^3 = O(10086n^3)$ 系数没有意义

大 O 表示法 (Big-O)

- 以自然数累计求和为例,讨论问题规模对算法执行时间的影响,
 - 需要累计的自然数个数为问题规模的指标
 - 前十万个自然数求和,对比前一千个自然数求和,算是同一问题的更大规模
 - 算法分析的目标是要找出问题规模会怎么影响一个算法的执行时间
- 数量级函数 (Order of Magnitude function)
 - 基本操作数量函数 T(n) 的精确值并不是特别重要,重要的是 T(n) 中 起决定性因素的主导部分
 - 用动态的眼光看,就是当问题规模增大的时候,T(n)中的一些部分会盖过其它部分的贡献
 - 数量级函数描述了 T(n) 中随着 n 增加而增加速度最快的部分
 - 称作"大 O"表示法,记作 O(f(n)),其中 f(n)表示 T(n)中的主导部分

语句频度和时间复杂度 (举例)

例子	程序	语句频度	时间复杂度	
1	x=x+1	1	O(1)	常数阶
2	for i in range(n):	n+1		
	x=x+1	n	T(n)=2n+1	
			O(n)	线性阶
3	for i in range(n):	n+1		
	for j in range(n):	n(n+1)	$T(n)=2n^2+2n+1$	
	x=x+1	n^2	$O(n^2)$	平方阶

计算"时间复杂度"常见的三种错误:

● 混淆频度和复杂度,保留常数,保留次重要项

统计语句频度的有力工具

```
from line_profiler import LineProfiler
def sumss(n):
    res = 0
    for i in range(n):
        res += i
        return sum
if __name__ == "__main__":
    lprofiler = LineProfiler(sumss)
    lprofiler.run('sumss(5)')
    lprofiler.print_stats()
```

Timer unit: 1e-06 s

Total time: 3e-05 s

File: /var/folders/wl/0jh0p1h13jq40llp05qw5rt00000gn/T/ipykernel_75995/3807192936.py Function: sumss at line 2

Line	#	Hits	Time	Per Hit	% Time	Line Contents
	2					<pre>def sumss(n):</pre>
	3	1	2.0	2.0	6.7	res = 0
	4	6	12.0	2.0	40.0	for i in range(n):
	5	5	7.0	1.4	23.3	res += i
	6	1	9.0	9.0	30.0	return sum

• 注意 for-loop 中控制语句的执行次数

语句的执行次数?

```
1  n=100
2  m=0
3  for i in range(n):
4     for j in range(0, i*2, 2):
5          m += 1
6  print(m)
```

• 求上图中的第5行代码执行的次数与 n 的关系: n(n+1), 2n, ...

$$\sum_{i=0}^{n-1} i = (n-1)n/2$$

确定运行时间数量级大○的方法

- 例 1: T(n)=n+1
 - 当 n 增大时,常数 1 在最终结果中显得越来越无足轻重
 - 所以可以去掉 1,保留 n作为主要部分,运行时间数量级就是 O(n)
- 例 2: T(n)=5n²+27n+1005
 - 当 n 很小时,常数 1005 其决定性作用
 - 但当 n 越来越大, n² 项就越来越重要, 其它两项对结果的影响则越来越小
 - 同样, n² 项中的系数 5, 对于 n² 的增长速度来说也影响不大
 - 所以可以在数量级中去掉27n+1005,以及系数5的部分,确定为 O(n²)

最好、平均、和最差时间复杂度

- 有时决定运行时间的不仅是问题规模,具体情况也会影响算法运行时间
 - 分为最好、最差和平均情况,平均状况体现了算法的主流性能

		<u> </u>				
排序方式	时间复杂度			空间复杂	稳定性	复杂性
	平均情况	最坏情况	最好情况	度		
插入排序	O(n ²)	O(n ²)	O(n)	O(1)	稳定	简单
希尔排序	O(n ^{1.3})			O(1)	不稳定	较复杂
冒泡排序	O(n ²)	O(n ²)	O(n)	O(1)	稳定	简单
快速排序	O(nlog ₂ n)	O(n ²)	O(nlog ₂ n)	O(log ₂ n)	不稳定	较复杂
选择排序	O(n ²)	O(n ²)	O(n ²)	O(1)	不稳定	简单
堆排序	O(nlog ₂ n)	O(nlog ₂ n)	O(nlog ₂ n)	O(1)	不稳定	较复杂
归并排序	O(nlog ₂ n)	O(nlog ₂ n)	O(nlog ₂ n)	O(n)	稳定	较复杂
基数排序	O(d(n+r))	O(d(n+r))	O(d(n+r))	O(r)	稳定	较复杂

讨论算法复杂度的习惯

- 算法原地工作 (in-place) 是指算法所需的辅助空间是常量,空间复杂度 O(1)。
- 默认 N≫1,复杂度为 O(n) 的算法必然优于复杂度为 O(n¹+δ) 的算法。
- 在没有特别指明的情况下,时间复杂度就是指"最坏情况"复杂度。
- 同一个算法用不同的程序设计语言实现,运行效率有较大差异,但 从复杂度的角度来看是一样的。

常见的大O数量级函数

- 通常当 n 较小时,难以确定其数量级
- 当 n 增长到较大时,容易看出其主要变化量级

f(n)	名称
1	常数
log(n)	对数
n	线性
n*log(n)	对数线性
n²	平方
n³	立方
n ^k	多项式
2 n	指数
n!	阶乘

从代码分析确定执行时间数量级函数

- 代码中语句执行可以分为 4 个部分
 - $T(n)=3+[(n+1)+(n+1)n+3n^2]+[(n+1)+2n]+1=4n^2+5n+6$
- 仅保留最高阶项 n²,去掉所有系数
- 数量级为 O(n²)

```
3
3 c = 10
4 for i in range(n):
                                n+1
                                     n+1
       for j in range(n): n+1
                                    (n+1)n
           y = j * j
           z = i * j
   for k in range(n): n+1
                                      n+1
10
       w = a * k + 45
                                      2n
                           *n
       v = b * b
11
12 d = 33
```

目录

- 本章目标
- 什么是算法分析
 - 大 O 表示法
 - 例子:"变位词"判断问题
 - 例子:"稳定匹配"问题
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

"变位词"判断问题

- "变位词"判断问题可以很好地展示不同数量级的算法
- 问题描述
 - 所谓"变位词"是指两个词之间存在组成字母的重新排列 关系
 - 如: heart 和 earth, python 和 typhon
 - 为了简单起见,假设参与判断的两个词仅由小写字母构成,而且长度相等
- 解题目标:写一个bool函数,以两个词作为参数,返回真假,表示 这两个词是否变位词

解法 1:逐字检查

- 解法思路为将字符串 1 中的字符逐个到字符串 2 中检查是否存在,存在就"打勾"标记(防止重复检查),如果每个字符都能找到,则两个词是变位词,只要有 1 个字符找不到,就不是变位词
- 程序技巧
 - 实现"打勾"标记:将字符串 2 对应字符设为 None
 - 由于字符串是不可变类型,需要先复制到列表中

解法 1:逐字检查-程序代码

```
复制s2到列表
      def anagramSolution1(s1, s2):
          alist = list(s2)
          pos1 = 0
                                                    循环s1的每个字符
 4
          stillOK = True
5
          while pos1 < len(s1) and stillOK:
6
              pos2 = 0
                                                         在s2列表逐个对比
              found = False
8
              while pos2 < len(alist) and not found:
9
                  if s1[pos1] == alist[pos2]:
10
                      found = True
11
                  else:
12
                      pos2 = pos2 + 1
                                                 找到, 打勾
13
              if found:
14
                  alist[pos2] = None
15
              else:
                  stillOK = False
16
17
              pos1 = pos1 + 1
          return stillOK
19
20
      print(anagramSolution1('abcd', 'dcba'))
21
```

解法 1:逐字检查-算法分析

- 问题规模:词中包含的字符个数 n
- 主要部分在于两重循环
- 外重循环要遍历字符串 1 每个字符,将内层循环执行 n 次
- True: 而內重循环在字符串 2 中查找字符,每查找一个字符的操作 次数,分别是 1、2、3......n 中的一个,而且各不相同
- False: 提前返回,执行次数小于 True。
- 所以总执行次数是 1+2+3+.....+n
- 可知其数量级为 O(n²)

$$\frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n\tag{1}$$

解法 2: 排序比较

● 解题思路为:将两个字符串都按照字母顺序排好序,再逐个字符对 比是否相同,如果相同则是变位词

解法 2: 排序比较

```
def anagramSolution2(s1, s2):
2
           alist1 = list(s1)
3
           alist2 = list(s2)
4
                                 分别都排序
5
          alist1.sort()
6
           alist2.sort()
           pos = 0
                                                   逐个对比
8
          matches = True
9
          while pos < len(s1) and matches:</pre>
10
               if alist1[pos] == alist2[pos]:
11
                   pos = pos + 1
12
               else:
13
                   matches = False
14
           return matches
15
16
17
      print(anagramSolution2('abcde', 'edcba'))
```

解法 2: 排序比较-算法分析

- 粗看上去,本算法只有一个循环,最多执行 n 次,数量级应该是O(n)
- 但循环前面的两个 sort 并不是无代价的
- 如果查询下后面的章节,会发现排序算法采用不同的解决方案,其 运行时间数量级差不多是O(n²)或者O(n log n),大过循环的O(n)
- 所以本算法中其决定性作用的步骤是排序步骤
- 本算法的运行时间数量级就等于排序过程的数量级 O(n log n)

解法3:暴力法

- 暴力法解题思路为: 穷尽所有可能组合
- 对于变位词问题来说,暴力法具体是,将字符串1中出现的字母进行全排列,再查看字符串2是否出现在全排列列表中
- 这里最大的困难是产生字符串 1 所有字母的全排列,根据组合数学的结论,如果 n 个字符进行全排列,其所有可能的字符串个数为 n!
- 我们已知 n! 的增长速度甚至超过 2ⁿ
 - 例如,对于20个字符长的词来说,将产生 20!=2,432,902,008,176,640,000个候选词
 - 如果每秒钟处理一个候选词的话,需要77,146,816,596年(百亿)的时间来做完所有的匹配。
- 执行次数: n!*n
- 结论:暴力法恐怕不能算是个好算法
- 密码学:只有"暴力法"能破解的算法,就是安全的。

解法 4: 计数比较

- 最后一个算法解题思路为:对比两个字符串中每个字母出现的次数,如果26个字母出现的次数都相同的话,这两个字符串就一定是变位词
- 具体做法:为每个字符串设置一个26位的计数器,先检查每个字符串,在计数器中设定好每个字母出现的次数
- 计数完成后,进入比较阶段,看两个字符串的计数器是否相同,如果相同则输出是变位词的结论

解法 4: 计数比较-程序代码

```
anagramSolution4(s1, s2):
          c1 = [0] * 26
          c2 = [0] * 26
                                                 分别都计数
4
          for i in range(len(s1)):
5
              pos = ord(s1[i]) - ord('a')
6
              c1[pos] = c1[pos] + 1
          for i in range(len(s2)):
8
              pos = ord(s2[i]) - ord('a')
              c2[pos] = c2[pos] + 1
10
11
          stillOK = True
                                                  计数器比较
12
          while j < 26 and stillOK:
13
              if c1[i] == c2[i]:
14
                  j = j + 1
15
              else:
16
                  stillOK = False
17
          return stillOK
18
19
      print(anagramSolution4('apple', 'pleap'))
20
```

解法 4: 计数比较-算法分析

- 计数比较算法中有3个循环迭代,但不象解法1那样存在嵌套循坏
 - 前两个循环用于对字符串进行计数,操作次数等于字符串长度 n
 - 第3个循环用于计数器比较,操作次数总是26次
- 所以总操作次数 T(n)=2n+26, 其数量级为 O(n), 这是一个线性数量级的算法, 是 4 个变位词判断算法中性能最优的。
- 值得注意的是,本算法依赖于两个长度为 26 的计数器列表,来保存字符计数,这相比前 3 个算法需要更多的存储空间
 - 由于仅限于26个字母构成的词,本算法对空间额外的需求并不明显,但如果考虑由大字符集构成的词(如中文具有上万不同字符),情况就会有所改变。
- 牺牲存储空间来换取运行时间,或者相反,这种在时间空间之间的 取舍和权衡,在选择问题解法的过程中经常会出现。

解法 4: 计数比较-更多实现

熟悉、善用 Python 自带的各种模块

```
#变 位 词 判 定: 计 数 法
 2 from collections import Counter
 3 def anagramSol(s1, s2):
 4
      return Counter(s1) == Counter(s2)
 5
  def anagramSol1(s1, s2):
     d1 = \{\}
 8
    for i in s1:
          d1[i] = d1.qet(i, 0) + 1
10
    d2 = \{\}
d2[i] = d2.get(i, 0) + 1
16
      print(anagramSol('apple', 'pleap'))
      print(anagramSol1('apple', 'pleap'))
```

多项式函数与指数函数

• 可以看出:为什么关心问题在不在 P 中。

时间复杂	问题规模						
度函数	10	20	30	40	50	60	
n	10-5	2*10-5	3*10-5	4*10-5	5*10-5	6*10-5	
n ²	10-4	4*10-4	9*10-4	16*10-4	25*10-4	36*10-4	
n ³	10-3	8*10 ⁻³	27*10-3	64*10-3	125*10-3	216*10-3	
<i>n</i> ⁵	10-1	3.2	24.3	1.7 分	5.2 分	13.0 分	
2^n	.001 秒	1.0 秒	17.9 分	12.7 天	35.7 年	366 世纪	
3 ⁿ	.059 秒	58分	6.5 年	3855 世纪	2*108世纪	1.3*1013世纪	

表中默认单位为秒

多项式函数与指数函数

时间复杂度 函数	1小时可解的问题实例的最大规模				
	计算机	快100倍的计算机	快1000倍的计算机		
n	\mathbf{N}_1	100 N ₁	1000 N ₁		
n ²	N ₂	10 N ₂	31.6 N ₂		
<i>n</i> ³	N_3	4.64 N ₃	10 N ₃		
n ⁵	N_4	2.5 N ₄	3.98 N ₄		
2"	N ₅	N ₅ + 6.64	N ₅ +9.97		
3 ⁿ	N_6	N ₆ +4.19	N ₆ +6.29		

目录

- 本章目标
- 什么是算法分析
 - 大 O 表示法
 - 例子:"变位词"判断问题
 - 例子: "稳定匹配"问题
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

稳定匹配问题 stable-matching

- 出现在两个集合之间元素进行双向选择时的众多场景中
 - 暑期实习的大学生和公司之间
 - 准备保研的毕业生和导师之间
 - 准备恋爱或结婚的男女之间
- 每个元素都依据自身的利益或喜好选择"尽量"满意的对象
- 选择过程容易出现"失信毁约"现象,所有人都感觉很折腾
- 我们这里讨论一个"找舞伴"的简单场景,选择是一对一的
 - n 个男同学和 n 个女同学为元旦舞会挑选舞伴, 一对一结对
 - 男同学的集合 $M = \{m_1, ..., m_n\}$,女同学的集合 $W = \{w_1, ..., w_n\}$
 - 所有可能的配对集合 $M \times W = \{(m, w) | m \in M \land w \in W\}$
 - S是一个匹配 matching: S ⊂ M × W 并且 M 与 W 中的所有元素在 S 中最多出现一次
 - S'是一个完美匹配 perfect-matching: S' ⊂ M × W 并且 M 与 W 中 的所有元素在 S' 中出现且只出现一次,也叫双射关系

稳定匹配问题 stable-matching

什么是稳定匹配呢?

- 所有男生对女生都有自己独立的喜好倾向, 女生对男生也一样
 - 依据喜好倾向打分,排序构成意向表 preference list
 - 如果男生 m 给女生 w 打分高于女生 w', 则称为 m prefer w to w'
- 假设 $S \in M \times W$ 的一个完美匹配,如果 $\{(m, w'), (m', w)\} \subset S$ 满足 m prefer w to w',并且 w prefer m to m',那么 m 和 w 就有打破原来的配对重新选择的动机,称 (m,w) 为 S 的不稳定性
- 如果S不存在这样的不稳定性,则称S是一个稳定匹配。
- 这时从一个男生的角度来看:现在的舞伴也许不是我的最佳选择, 但是我心目中更好的女生也不会放弃她们现在的舞伴来选择我。于 是我不会有什么要改变的冲动。

稳定匹配问题 stable-matching

- 一个简单的例子: $M = \{m, m'\}, W = \{w, w'\}$
 - 第一种情况,男生的 prefer_list 一致,女生同样
 - m prefer w to w'
 - m' prefer w to w'
 - w prefer m to m'
 - w' prefer m to m'
 - 这时 $S = \{(m, w), (m', w')\}$ 是唯一的稳定匹配
 - 还有一种情况,两个男生和两个女生之间形成了四角的喜欢关系。
 - m prefer w to w'
 - w prefer m' to m
 - m' prefer w' to w
 - w' prefer m to m'
 - 出现两种稳定匹配 $S_1 = \{(\textit{m}, \textit{w}), (\textit{m}', \textit{w}')\}, \ S_2 = \{(\textit{m}, \textit{w}'), (\textit{m}', \textit{w})\}$

稳定匹配: Gale-Shapley 算法

● propose: 邀请

• engage: 结对

• preference list: 意向表

```
Initially all m in M and w in W are free
While there is a man who is free and hasn't proposed to every woman
 Choose such a man "m"
 Let w be the highest-ranked woman in m's preference list to whom
     m has not vet proposed
 If w is free then
    (m,w) become engaged
 Else w is currently engaged to m'
    If w prefers m' to m then
     m remains free
    Else w prefers m to m'
      (m,w) become engaged
     m' becomes free
    Endif
 Endif
FndWhile
Return the set S of engaged pairs
```

稳定匹配: 算法分析

- 从女生的角度看算法过程,
 - 从第一次被邀请开始,女生一直保持"结对"的状态,不会重新 free
 - 后来只有更倾心的男生才会让她选择重新"结对"
 - 与之结对的男生序列, 在女生的意向表中是递升的
- 从男生的角度看,
 - 向女生发出邀请,都是从自己的意向表中第一个开始,逐个邀请的。
 - 因此男生邀请的女生序列,在意向表中是递降的。
 - 一个男生邀请同一个女生, 最多只有一次。
- 估计一下算法的复杂度上界
 - 算法只有一个 While 循环
 - 定义 $\varphi(t) = \{(m, w) | \text{ 在前 } t \text{ 轮迭代中 } m \text{ 向 } w \text{ 发出过结对邀请 } \}$
 - 每次迭代都有 m 邀请新的 w, 故 $|\varphi(t+1)| = |\varphi(t)| + 1$
 - $\varphi(\cdot) \subseteq M \times W$,并且 $|M \times W| = n^2$
 - t≤n², 算法最多迭代 n² 轮
 - ullet 在这里 arphi(t) 被用作进度条 progress measure

稳定匹配: 算法正确性

- 算法最后返回的匹配 S 是完美匹配
 - 任何时候,如果存在 free 的 m,必然存在 free 的 w,而且 m 还没有邀请过 w
 - 算法结束的时候,不可能存在 free 的 m 或 w
- S 中不存在不稳定性, 反证法
 - 假设∃{(m, w'), (m', w)} ⊂ S 并且
 - m prefer w to w'
 - w prefer m to m'
 - m 在邀请 w' 之前肯定先邀请过 w,
 - m 之前邀请 w, 有两种结果
 - m 成为 w 的舞伴, w prefer m to m'
 - 当时w的舞伴m", w prefer m" to m, to m'
 - 而 m'是 w 最后选择的, m 或 m"都不应该出现在 w 的舞伴序列中
 - 导出矛盾,所以不稳定性不存在 ■

目录

- 本章目标
- 什么是算法分析
 - 大 O 表示法
 - 例子:"变位词"判断问题
 - 例子: "稳定匹配"问题
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

重温基本概念

- 数据结构:是相互之间存在一种或多种特定关系的数据元素的集合,包括逻辑结构和物理结构。
 - 线性表、队列、树、图; 顺序、链式、散列。
 - 它是一个多义词: 也可以是一门课, 或者某一方面知识的统称。
- 数据类型:是一个值的集合和定义在这个值集上的一组操作的总称。Python数据类型有简单类型,也有复杂类型;有内置类型,也有用户定义类型。
- 抽象数据类型:是指一个数学模型以及定义在该模型上的一组操作。它的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关,讨论它的效率是没有意义的事情。
- 同一个名词在不同的语境下,可能指一种数据结构,也可能指一个数据类型或抽象数据类型。

Python 数据类型的性能

- 前面我们了解了"大 表示法"以及对不同的算法的评估
- 下面来讨论下 Python 两种内置数据类型上各种操作的大 O 数量级
 - 列表 List 和字典 Dictionary
 - 这是两种重要的 Python 数据类型,后面的课程会用来实现各种数据 结构
 - 通过运行试验来确定其各种操作的运行时间数量级
- 对比 List 和 Dictionary

类型	索引	添加	删除	更新	正查	反查	其它
list	连续整数i	append extend insert	pop remove*	a[i]=v	a[i] a[i:j]	index(v) count(v)	reverse sort
dict	不可变类 型值k	b[k]=v	pop	b[k]=v	b[k] copy	无	has_key update

目录

- 本章目标
- 什么是算法分析
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

List 数据类型

- List 数据类型各种操作(interface)的实现方法有很多,如何选择 具体采用哪种实现方法?
- 总的方案就是, 让最常用的操作性能最好, 牺牲不太常用的操作
 80/20 准则: 80% 的功能其使用率只有 20%
- 我们来看一些常用的 List 操作
- 最常用的是:按索引取值和赋值(v= a[i], a[i]= v)
 - 由于列表的随机访问特性,这两个操作执行时间与列表大小无关,均 为 O(1)
- 另一个是列表增长,可以选择 append() 和 __add__()
 - lst.append(v),不改变 lst 的 id 值,执行时间是 O(1)
 - lst= lst+ [v₁, v₂, ..., v_k], 执行时间是 O(n+k), k 是被加的列表长度
 - 如何选择具体方法,决定了程序的性能

4 种生成前 n 个整数列表的方法

- 第一种方法是用循环连接列表(+)方 式生成
- 然后是用 append() 方法来添加元素生成
- 接着用列表推导式(List Comprehension)来做
- 最后是 range 函数调用转成列表

```
def test1():
    1 = []
    for i in range(1000):
        1 = 1 + [i]

def test2():
    1 = []
    for i in range(1000):
        1.append(i)

def test3():
    1 = [i for i in range(1000)]

def test4():
    1 = list(range(1000))
```

使用 timeit 模块对函数计时

- 对于每个函数具体的执行时间, timeit 模块提供了一种在一致的运行环境下可以反复调用并计时的机制
- timeit 计时的使用方法
 - 首先创建一个 Timer 对象,需要两个参数,第一个是需要反复运行的语句,第二个是为了建立运行环境而只需要运行一次的"安装语句"
 - 然后调用这个对象的 timeit 方法,其中可以指定反复运行多少次,计时完毕后返回以秒为单位的时间

```
from timeit import Timer
t1 = Timer("test1()", "from __main__ import test1")
print("concat in {} seconds".format(t1.timeit(number=1000)))
t2 = Timer("test2()", "from __main__ import test2")
print("append in {} seconds".format(t2.timeit(number=1000)))
t3 = Timer("test3()", "from __main__ import test3")
print("comprehension in {} seconds".format(t3.timeit(number=1000)))
t4 = Timer("test4()", "from __main__ import test4")
print("concat in {} seconds".format(t4.timeit(number=1000)))
```

4 种生成前 n 个整数列表的方法计时

- 我们看到, 4 种方法运行时间差别很大
 - 列表连接 (concat) 最慢, List range 最快, 速度相差近 200 倍。
 - append 也要比 concat 快得多
 - 另外, 我们注意到列表推导式速度是 append 两倍的样子
- 当然,如果仔细分析,严格来说,上述时间除了具体列表操作的耗时,应该还包括函数调用的时间在内。
 - 但函数调用花销的时间是常数
 - 可以通过调用空函数来确定
 - 并从上述时间减除掉函数调用时间

```
>>>
concat 1.889487 seconds
append 0.091561 seconds
comprehension 0.038418 seconds
list range 0.009710 seconds
```

```
1 l = [1]
2 print("original l: ",id(l))
3 l.append(2)
4 print("after append: ", id(l))
5 l = l + [3]
6 print("after concat: ", id(l))
7
original l: 4369644096
after append: 4369644096
after concat: 4369641536
```

List 基本操作的大 O 数量级

- 我们注意到 pop 这个操作
 - pop() 从列表末尾移除元素, O(1)
 - pop(i) 从列表中部移除元素,
 O(n)
- 原因在于 Python 所选择的实现方法(*食堂排队)
 - 从中部移除元素的话,要把 移除元素后面的元素全部向 前挪位复制一遍
 - 这个看起来有点笨拙
 - 但后面章节我们会看到这种 实现方法能够保证列表按索 引取值和赋值的操作很快, 达到 O(1)
 - 这也算是一种对常用操作和 不常用操作的折衷方案

Operation	Big-O Efficiency
index []	O(1)
index assignment	O(1)
append	O(1)
pop()	O(1)
pop(i)	O(n)
insert(i,item)	O(n)
del operator	O(n)
iteration	O(n)
contains (in)	O(n)
get slice [x:y]	O(k)
del slice	O(n)
set slice	O(n+k)
reverse	O(n)
concatenate	O(k)
sort	O(n log n)
multiply	O(nk)

list.pop 的计时试验

- 为了验证表中的大 数量级, 我们把两种情况下的 pop 操作来实 际计时对比,相对同一个大小的 list,分别调用 pop()和 pop(0)
- 并对不同大小的 list 做计时试验, 我们期望的结果是
 - pop() 的时间不随 list 大小变化, pop(0) 的时间随着 list 变大而变长
- 首先我们看对比

 - pop() 时间是 0.0007 秒
 - pop(0) 时间是 0.8 秒
 - 相差 1000 倍

```
>>> x = list(range(2000000))
• 对于长度 2 百万的列表, 执行 >>> popzero.timeit(number=1000)
                            0.7688910461739789
                            >>> x = list(range(2000000))
```

```
>>> popend.timeit(number=1000)
0.0007347123802041722
```

```
import timeit
popzero = timeit.Timer("x.pop(0)", "from __main__ import x")
popend = timeit.Timer("x.pop()", "from main import x")
```

list.pop 的计时试验

● 我们通过改变列表的大小来测试两个操作的增长趋势

```
import timeit
popzero = timeit.Timer("x.pop(0)", "from main import x")
popend = timeit.Timer("x.pop()", "from main import x")
print "pop(0)
                pop()"
                                                 pop(0)
                                                          pop()
for i in range(1000000,100000001,1000000):
                                                         0.23149.
                                                                         0.00078
    x = list(range(i))
                                                         0.68661.
                                                                         0.00020
    pt = popend.timeit(number=1000)
                                                         1.43575.
                                                                         0.00045
    x = list(range(i))
                                                         2.00506,
                                                                         0.00027
    pz = popzero.timeit(number=1000)
                                                         2.71711,
                                                                         0.00032
    print "%15.5f, %15.5f" %(pz,pt)
                                                         3.32652,
                                                                         0.00030
                                                         4.03600,
                                                                         0.00032
                                                         4.56179,
                                                                         0.00026
                                                         5.17211,
                                                                         0.00034
                                                         5.75793.
                                                                         0.00025
                                                         6.28499.
                                                                         0.00028
                                                         6.63129.
                                                                         0.00033
                                                         7 15702
                                                                         0 00027
```

list.pop 的计时试验

- 通过将试验数据画成图表,可以看出增长趋势
 - pop() 是平坦的常数
 - pop(0) 是线性增长的趋势
- 其中散落的点是误差导致
 - 系统中其它进程调度
 - 资源占用等
- list 是 Python 编程中最常用的 数据类型,用好它至关重要!

目录

- 本章目标
- 什么是算法分析
- Python 数据类型的性能
 - 列表 List
 - 字典 Dictionary

Dictionary 数据类型

- 字典与列表不同,它可以根据关键码(key)来找到数据项,而列表是根据位置(index)来找到数据项
- 后面的课程会介绍字典的几种不同实现方法
- 最常用的取值 get item 和赋值 set item 操作, 其性能为 O(1)
- 另一个重要操作是判断字典中是否存在某个关键码 (key), 这个性能也是 O(1)
- 某些罕见的情况下性能会劣化
 - set/get/contains -> O(n)
 - 后面讲到实现的时候会分析

operation	Big-O Efficiency
сору	O(n)
get item	O(1)
set item	O(1)
delete item	O(1)
contains (in)	O(1)
iteration	O(n)

List 和 Dictionary 的 in 操作对比

- 设计一个性能试验,来对比从不同的容器 List 与 Dictionary 中,检索一个值花的时间。
 - 把[0..N-1] 放到一个 List 中,同时把它作为 Key 放到一个字典中, N 等于容器的大小,看作问题的规模。
 - 从容器中检索不同的「值往往花不同的时间。有最好的情况,也有最坏的情况,我们随机产生一些「来检验、估计出一个"平均"时间。
 - 我们安排 N 进行等差增长,取得每一个 N 下容器 in 操作的"平均"时间,进行比较。

使用 timeit 来作算法计量, 需要考虑到的问题

- 同一台计算机, CPU 负载波动影响算法 F 的运行时间。
- 问题 F 在规模为 N 的情况下重复 number 次: F(N) * number
- 为什么要重复"* number"
 - 减少计算机负载波动带来的测量误差。
 - F(N) 可能有内部的 cache 机制:第一遍运行花时间,以后的运行可以是瞬间完成。
 - 所以需要在每次运行时加入一定的随机性,破坏掉 cache。见前面的"in" 操作对比。
- 如果N超出了计算机内存的规模,运行效率会产生新的问题
 - 使用硬盘缓存、内存频繁扇入扇出,造成颠簸。
 - 扩大内存,也会显著提高计算机性能。

List 和 Dictionary 的 in 操作对比

- 可见字典的执行时间与字典规模大小无关,是常数
- 而列表的执行时间则随着列表的规模加大而线性上升
- Python 官方的算法复杂度网站:
 - https://wiki.python.org/moin/TimeComplexity

10000,	0.0541,	0.0004
30000,	0.1065,	0.0004
50000,	0.1699,	0.0004
70000,	0.2384,	0.0004
90000,	0.3077,	0.0003
110000,	0.3733,	0.0003
130000,	0.4492,	0.0004
150000,	0.5177,	0.0004
170000,	0.6071,	0.0004
190000,	0.6388,	0.0004

Python 小知识:特殊方法

- foo(obj) 或 foo obj ====> obj.__foo__() 需要特殊函数做"内应"
- Python 有很多内置的语句、函数和操作符,可以用在不同的类型中
 - print(a), 可以在输出终端显示不同类型变量的字符串形式
 - del a, 可以销毁对象 a; del lst[2], 可以删除列表第 3 个元素
 - len(a), 返回列表、元组或字典类型变量所包含元素的个数
 - int(a),float(a),转换整数、浮点数、字符串为整数或浮点数
 - a+b、可以返回整数和、浮点数和、字符串的连接、列表的连接
 - a*b, 可以返回整数乘积、浮点数乘积、字符串重复、列表的重复
- 这些语句、函数和操作符,同样也可以用于用户自定义的类
 - 这些内置的语句函数和操作符,应用到用户自定义的类,会产生什么后果呢?
 - 比如我们定义了一个类 Color, 那 print 一个 Color 对象会出现什么? 两个 Color 对象的加法,结果怎么样?

Python 小知识: 特殊方法

Python 提供了一些特殊机制,来让自定义的类也能响应上述的内置语句、函数和操作符

```
class Color(object):
                                def __init__(self, r, g, b):
                                    self.value= (r, g, b)
                                    if (r, g, b) == (255,0,0):
                                        self.name= "red"
>>> a= Color(255, 0, 0)
                                    elif (r, g, b)== (0, 255, 0):
>>> b= Color(0, 255, 0)
                                        self.name= "green"
>>> a
                                    elif (r, g, b)== (255, 255, 0):
red
                                        self.name= "vellow"
>>> b
                                    else:
green
                                        self.name= "N/A"
>>> a+b <
                             def __add__(self, b):
vellow
                                    return Color(self.value[0]+ b.value[0], \
>>> c= Color(128, 0, 0)
                                                  self.value[1]+ b.value[1], \
>>> c
                                                  self.value[2]+ b.value[2])
Color(128,0,0)

<u>→ def</u> __str__(self):

>>> print a, b, c <=
                                    if self.name!= "N/A":
red green Color(128,0,0)
                                        return self.name
>>> str(c)
                                    else:
'Color(128,0,0)'
                                        return "Color(%d,%d,%d)" % self.value
>>>
                                __repr__= __str__
```

Python 小知识:模块

- Python 在核心语言成分之外, 还有很多实现不同功能的函数 库, 称为 module 模块, Python 自带的模块很多
 - 字符串处理
 - 扩展的数据类型
 - 数值计算与数学函数
 - 文件与目录访问
 - 数据持久化
 - 数据压缩与存档
 - 多种格式文件读写(csv、ini 等)
 - 加密处理
 - 操作系统底层服务
 - 进程间通讯和网络
 - XML 数据处理啊

continue ...

- Internet 数据处理 (email 编解码等)
 Internet 通讯协议处理
- (HTTP,SMTP,POP, 各种 Server)
- 多媒体数据处理(音频、图像)
- 国际化语言
- 可执行程序处理
- 图形用户界面 Tk
- 开发工具
- 调试工具
- 软件打包与发布
- Python 运行环境服务
- Python 代码解析和运行
- 与具体操作系统相关的模块

Python 小知识: 使用模块

- 要用到这些模块的功能,就需要使用 import 语句导入模块(类似 C 语言里面的 include)
- import 语句除了导入模块, 还为程序引入了新的名字空间
 - import time
 - time.time()
- 由于要频繁引用导入模块的功能,有时调用模块的名字空间比较繁琐
 - import timeit
 - t= timeit.Timer.timeit(....)
- 可以用 from ... import ... 来直接将模块的某些部分导入当前命名空间
 - from timeit import Timer
 - t= Timer(....)
 - 不足之处在于如果导入到当前命名空间的符号太多的话,容易引起 混淆冲突

Python 小知识: 使用模块

并不是所有的模块都自带了,有时候 import 会报错,找不到所需的 模块

```
>>> import matplotlib.pyplot as plt
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'matplotlib'
>>> from sys import path
>>> path
['', 'usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/pytho
n36.zip', '/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/Versions/3.6/lib/
python3.6'. '/usr/local/Cellar/python3/3.6,4_2/Frameworks/Python,framework/Versions/3.6/li
b/python3.6/lib-dynload'l
>>> from stack import Stack
>>>
Mini2-1:code zhenamaoxie$ ls
 __pycache__
                                                intRef.pv
                                                                 stack.pvc
                hw
                                hw.py
aa.py
                                in2post.pv
                                                postEval.py
                                                                varRef.py
                hw.c
                hw.dSYM
                                indent.pv
                                                stack.pv
                                                                while.pv
except.pv
Mini2-1:code zhenamaoxie$
```

- 可以通过 pip 安装没有找到的模块
 - \$python -m pip install -U matplotlib

Python 小知识:缺省参数

- python 的参数列表可以设置缺省参数以及缺省值
 - def func(a, b= 0, c= "abc")
 - func(2)
 - func(2, 4)
 - func(2, 4, "xyz")
 - func(2, c= "xyz"):中间的参数采用缺省值,需要指明后面参数的名称