Programmable Logic

PAL, PLA

PLAs

Programmable Logic Array

- Pre-fabricated building block of many AND/OR gates (or NOR, NAND)
- General purpose logic building blocks
- "Personalized" or "customized" by making/breaking connections among the gates
- This process is called "programming"

PLA

Realizes Sums of Products

PLA

PLA

• A 3×2 PLA with 4 product terms.

Design for PLA: Example

◄ Implement the following functions using PLA

Personality Matrix

Product	Inputs	Outputs	
term	АВС	F_0 F_1 F_2	F_3
ΑB	1 1 -	0 0 0	0
$\overline{B}C$	- 01	0 0 0	1
$A\overline{C}$	1 - 0	0 ① 0	0
$\overline{B}\overline{C}$	- 00	\bigcirc 0 \bigcirc	0
Α	1	$A \oplus O \oplus O$	\bigcirc

Input Side:

1 = asserted in term0 = negated in term- = does not participate

Output Side:

1 = term connected to output 0 = no connection to output

Example: Continued

Personality Matrix

Product	Inputs	Outputs
term	АВС	F_0 F_1 F_2 F_3
AΒ	1 1 -	0 0 0
ВC	- 01	0 0 0 0
$A\overline{C}$	1 - 0	0 10 0
ВC	- 00	$\bigcirc 0 \bigcirc 0$
Α	1	$A \oplus A \oplus A \oplus A$

Generating Constant 1 at output

- Sometimes a PLA output must be programmed to be a constant 1 or a constant 0.
- Use OR gates to generate a constant 1

Generating Constant 0 at output

Use one of the AND gates to generate a constant 0

BCD to Gray Code Converter

Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0 0	1	0	1	1	1	1	0
	1	1	0	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1 0	1	0	0	0
1	0 0	1	0	X X	0 X	Χ	Χ
1	0	1	1	Χ	Χ	Χ	Χ
1	1	0	0	Χ	Χ	Χ	Χ
1	1	0	1	Χ	Χ	Χ	X X
1	1	1	0	X X X	Χ	Χ	Χ
1	1	1	1	Χ	Χ	Χ	Χ

Minimized Functions:

$$W = A + BD + BC$$

X = B C'

Y = B + C

Z = A'B'C'D + B C D + A D' + B' C D'

Example (Continued)

Notes:

- 4 product terms preassigned to each OR gates' inputs
- The OR gates' inputs may or may not be internally pulled down by the manufacturer
- It is a safe engineering practice to not leave any OR input unconnected
- A PLA achieves higher flexibility at the cost of lower speed!

Too much programmability?

PALs

- Programmable Array Logic
 - ≺ Realizes Sums of Products but with a fixed OR array

PAL

$$W = AB'C' + CD$$

 $X = A'BC' + A'CD + ACD' + BCD$
 $Y = A'C'D + ACD + A'BD$

Helper Terms

- ✓ If an I/O pin's outputcontrol gate produces a constant 1, → the output is always enabled, but the pin may still be used as an input too.
- → outputs can be used to generate first-pass "helper terms" for logic functions that cannot be performed in a single pass with the limited number of AND terms available for a single output.

