

a) let initial dist, P= (Pg, ..., Pn)

- Determine the stochastic matrix $M=(m_{ij})_{ij}$

Mij = prob of going from u; to uj

characteristic

L some

(iff

Vi e N(Vi) U {Vi}) relse

reighbours

reighbours

Therefore b. Ms yeilds the distribution of steps wester, so multiply from left.

-> The sum of any now (i' of M has to be 1.

 $\sum_{i=1}^{N} m_{i,j} = \sum_{i=1}^{N} \frac{1}{d_{i}+1} \mathbb{1} \left(v_{j} \in N(v_{i}) \cup \{v_{i}\}_{j} \right)$

$$= \frac{1}{di+1} \sum_{j=1}^{N} \frac{1}{(v_j \in ...)}$$

$$= \frac{1}{di+1} \cdot |\mathcal{N}(v_i) \cup \{v_i\}|$$

$$= \frac{1}{di+1} \cdot |\mathcal{N}(v_$$

We want to show I'll entry of TM

is same as I'm entry of TM.

$$(TM)_{j} = \left(\frac{1}{i} , \frac{m_{ij}}{m_{ij}} \right) \text{ one column}$$

$$= \left(\frac{1}{i} , \frac{m_{ij}}{m_{ij}} \right) \left(\frac{1}{m_{ij}} , \frac{1}{m_{ij}} \right)$$

$$= \left(\frac{1}{i} , \frac{1}{m_{ij}} \right) \left(\frac{1}{m_{ij}} , \frac{1}{m_{ij}} \right)$$

$$= \left(\frac{1}{i} , \frac{1}{m_{ij}} \right) \left(\frac{1}{m_{ij}} , \frac{1}{m_{ij}} \right)$$

$$= \left(\frac{1}{i} , \frac{1}{m_{ij}} \right) \left(\frac{1}{m_{ij}} , \frac{1}{m_{ij}} \right)$$

= 1 [Vje H(vi) v{Vi}]
2 [E| + [V] i it is the nodes near the node of $=\frac{1}{2|E|+|V|}. (dj+1) = \pi j$ Thus Proved => X is a Stationary distribution.

(only possible if bidirectional edges) () Regular graph > any vertex has the degree of from (b), the stationary diot is $T = \begin{bmatrix} \frac{d+1}{2|E|+|V|} \end{bmatrix} + \frac{d+1}{2|E|+|V|} \end{bmatrix} = \mathbb{R}$ Remarks: $f(x) = f(x) + \frac{d+1}{2|E|+|V|}$ Remarks: $f(x) = f(x) + \frac{d+1}{2|E|+|V|}$ Remarks: $f(x) = f(x) + \frac{d+1}{2|E|+|V|}$ The first in $f(x) = f(x) + \frac{d+1}{2|E|+|V|}$ The second is $f(x) = f(x) + \frac{d+1}{2|E|+|V|}$ there is an unique stationary dist T. Any other

Some is an unique stationary dist T. Any other

Some is an unique stationary dist T. Any other

initial dust p converge some M is irreducible > every verten is reachable from any other verten. (provided 9 is commutal) · M is aperiodic -> due to self loops. (M is a Markov chain for our Random walk, I so it has the props of the Grafsh) Ihus existence of and convergence towards T is verified: ~> Task: Estimate no of Red nodes in G. (Ui) 1516T > be the sequence of T vicited nodes. Promoter for redundes en G. -) Let $r = \frac{n}{T} \sum_{i} 1(u; is red)$ if T \rightarrow \infty, converges to correct no. of red nodes.

d) $P_{t+1} = P_t$, M (t is timesteps) $= P_1 \cdot M^t$ • Eigenvalue M^{-1} exists and corresponds to

eigenvector \mathcal{T} .

eigenvalue M^{-1} eigenvalue M^{-1} eigenvalue

• Every other eigenvalue has an absolute

value M^{-1} eigenvalue M^{-1} an absolute