

警示:实验报告如有雷同,雷同各方当次实验成绩均以 0 分计;在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按 0 分计;实验报告文件以 PDF 格式提交。

院系	计算机学院		班级	<u>彰</u>	<u>软工三班</u>		学号	18342069	姓名	罗炜乐
完成日	期:	2020年	12	Ħ	28	日				

ARP 测试与防御实验

【实验要求】

选择一:使用交换机的ARP检查功能,防止ARP欺骗攻击。下面的【实验步骤】提供了建议。

选择二:在缺乏设备支持的情况下,学生可自行设计实验过程。

【实验原理】

ARP(Address Resolution Protocol,地址解析协议)是一个位于 TCP/IP 协议栈中的低层协议,负责将某个 IP 地址解析成对应的 MAC 地址。

(1) 对路由器 ARP 表的欺骗

原理:截获网关数据。它通知路由器一系列错误的内网 MAC 地址,并按照一定的频率不断进行,使真实的地址信息无法通过更新保存在路由器中,结果路由器的所有数据只能发送给错误的 MAC 地址,造成正常 PC 无法收到信息。

(2) 对内网 PC 的网关欺骗

原理: 伪造网关。它的原理是建立假网关,让被它欺骗的 PC 向假网关发数据,而不是通过正常的路由器途径上网。在 PC 看来,就是上不了网了,"网络掉线了"。

交换机的 ARP 检查功能,可以检查端口收到的 ARP 报文的合法性,并可以丢弃非法的 ARP 报文,防止 ARP 欺骗攻击。

【实验拓扑】

ARP 实验拓扑图

【实验设备】

PC机2台,其中一台需要安装ARP欺骗攻击工具路由器1台(作为网关)。

【实验步骤】

步骤1 配置IP地址,测试网络连通性。

按照拓扑图正确配置PC机、攻击机、路由器的IP地址,使用ping命令验证设备之间的连通性,保证可以互通。查看PC机本地的ARP缓存,ARP表中存有正确的网关的IP与MAC地址绑定,在命令窗口下,arp -a。

被攻击者ping其他的设备

步骤2 进行arp欺骗

使用arpspoof让攻击机欺骗被攻击机让其认为攻击机是网关。

步骤6 验证测试。

通过使用Wireshark捕获攻击机发出的报文,可以看出攻击机发送了经过伪造的ARP应答(Reply)报文。

₫ 正在#	鲸 WLAN								- a ×
文件(E) 编辑(E) 视	图(V) 跳转(G	捕获(C)	分析(A)	统计(S)	电话(Y)	无线(<u>W</u>)	工具(工)	D 帮助(L)
/A 🔳	₫ 📵 📗	N 0 9	. ⇔ ⇔ €	<u> </u>		0,0	₹ 1		
	見示过滤器 …	<ctrl-></ctrl->							+
No.	Time	Source			Destinatio	n		Protocol	1 Length Info
	7 1.2466	40 Shenzh	en_12:1a	3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	16 3.2468	76 Raspbei	rr_89:5d	b5	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	19 3.6664	68 Shenzh	en_12:1a	3c	Chongqi	n_2e:00):2d	ARP	42 Who has 192.168.1.3? Tell 192.168.1.1 (duplicate use of 192.168.1.1 detected
	20 3.6665	27 Chongq:	in_2e:00	2d	Shenzhei	n_12:1a	:3c	ARP	42 192.168.1.3 is at 5c:3a:45:2e:00:2d (duplicate use of 192.168.1.1 detected!)
	377 5.2466	71 Shenzh	en_12:1a	3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	416 7.2462	90 Shenzh	en_12:1a	3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	442 9.2476	82 Shenzh	en_12:1a	:3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	457 11.246	941 Raspbe	rr_89:5d	: b5	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	472 13.248				Chongqi			ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	486 15.247	168 Shenzh	en_12:1a	3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	503 17.247	799 Raspbei	rr_89:5d	: b5	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	515 19.247	829 Shenzh	en_12:1a	3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	521 19.577				Broadca:	st		ARP	42 Who has 192.168.1.1? Tell 192.168.1.3
		290 Shenzh			Chongqi	n_2e:00):2d	ARP	42 192.168.1.1 is at 1c:40:e8:12:1a:3c
	597 21.247	912 Shenzh	en_12:1a	3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	600 23.248				Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5
	607 25.248	438 Shenzh	en_12:1a	:3f	Chongqi	n_2e:00):2d	ARP	60 192.168.1.1 is at dc:a6:32:89:5d:b5

步骤7 验证测试。

使用PC机ping网关的地址,发现无法ping通。查看PC机的ARP缓存,可以看到PC机收到了伪造的ARP 应答报文后,更新了ARP表,表中的条目为错误的绑定,即网关的IP地址与攻击机的MAC地址进行了绑定。这可在命令窗口下用arp –a进行显示。

步骤8 配置ARP防火墙,防止ARP欺骗攻击。

步骤9 验证测试。此时被攻击机的ARP表是正常的,且能ping通网关。

Information Security 实验报告

第4页 共4页

可见,360的arp防火墙的核心是让arp表快速刷新。(只要我刷新的够快,你就骗不了我)

【思考题】

- (1) ARP 欺骗攻击比较常见,讨论有那些普通适用的防御措施。
 - a) ARP 防火墙 (arptables、360、腾讯电脑管家等)
 - b) 在被攻击机中静态绑定 IP 和 MAC
 - c) 划分 VLAN 分割重要网络
 - d) Dynamic ARP Inspection (动态 ARP 检测)
 - e) 在交换机进行 ARP 绑定
- (2) 在 IPv6 协议下,是否有 ARP 欺骗攻击?

IPv6 没有 ARP 协议。自然不存在 ARP 欺骗攻击。但是 IPv6 存在 NDP(邻居发现协议),它整合了 IPv4 中的 ARP、ICMP 和路由器广播 RA 等协议。在 NDP 中,攻击者可以像 ARP 欺骗一样针对 NS(邻居请求)/NA(邻居通告)过程进行欺骗,而针对该欺骗的防护也可以参考 ARP 欺骗防护。