Covariance matrix for coefficients is positive definition

Uma Roy

October 11, 2018

Theorem 1. Let Σ be the covariance matrix of a Gaussian graphical model on p nodes (i.e. $\Sigma \in \mathbb{R}^{p \times p}$) and let N_1, N_2, \ldots, N_S be subsets of [p] such that for all subsets N_t , it is of the form $N_t = \{k, l, \text{neigh}(k), r_t\}$, where r_t is a random vertex $r_t \neq k, l$, neigh(k) that satisfies the following property: There exists at least 1 path from l to r not going through k or neigh(k).

Given a matrix M, we let M_{N_t,N_q} denote the submatrix obtained by taking all rows corresponding to nodes in N_t and all columns in N_q . We also let S denote the empirical covariance matrix of samples drawn from our Gaussian graphical model.

Let \vec{X} be the vector where the t-th component $X_t = (S_{N_t,N_t})_{k,l}^{-1}$, where we abuse notation a bit by letting the entry (k,l) of this matrix correspond to the position of (k,l) in N_t (as opposed to the position of (k,l) in [p], as would be normal). We see that $X_t = -\rho_{\{\text{neigh}(k),r_t\}}^{k,l} \cdot \sqrt{\sigma^{kk}\sigma^{ll}}$ (where $\sigma^{kk} = (\Sigma)_{kk}^{-1}$) i.e. the negative partial covariance between nodes k, l when conditioning on $neigh(k), r_t$. $Cov(\vec{X})$ is an important quantity because it reveals how the coefficient of k is correlated across the different regressions of node k on subsets

This theorem shows that $Cov(\vec{X})$ is positive definite (full-rank).

Proof. By Taylor expansion, we have

$$(S_{N_t,N_t})^{-1} = (\Sigma_{N_tN_t})^{-1} + ISS((\Sigma_{N_tN_t})^{-1})(S_{N_tN_t} - \Sigma_{N_tN_t}).$$

Let $S_{N_tN_t} = D_t \cdot S$. We note that we are treating $S_{N_tN_t}$ as a vector $\in \mathbb{R}^d$ and $S \in \mathbb{R}^{d'}$ as a vector, where $d = \frac{|N_t|(|N_t|+1)}{2}$ and $d' = \frac{p(p+1)}{2}$. Then $D_t \in R^{d \times d'}$.

$$\lim_{n\to\infty} (S-\Sigma) \to \mathcal{N}(0,G),$$

where $G \in \mathbb{R}^{d' \times d'}$ and $G = ISS(\Sigma)$.

We note that

$$\mathbb{E}\left[\left(S_{N_t,N_t}\right)^{-1}\right] = \left(\Sigma_{N_tN_t}\right)^{-1},\,$$

since $\mathbb{E}[S - \Sigma] = \vec{0}$.

Then to compute $Cov(X_t, X_q)$, we must compute the following:

$$\mathbb{E}\left[\left(\left(S_{N_{t},N_{t}}\right)^{-1}-\left(\Sigma_{N_{t},N_{t}}\right)^{-1}\right)\left(\left(S_{N_{q},N_{q}}\right)^{-1}-\left(\Sigma_{N_{q},N_{q}}\right)^{-1}\right)^{T}\right]$$

$$=\mathbb{E}\left[\left(\mathrm{ISS}\left(\left(\Sigma_{N_{t}N_{t}}\right)^{-1}\right)\left(S_{N_{t}N_{t}}-\Sigma_{N_{t}N_{t}}\right)\right)\left(\mathrm{ISS}\left(\left(\Sigma_{N_{q}N_{q}}\right)^{-1}\right)\left(S_{N_{q}N_{q}}-\Sigma_{N_{q}N_{q}}\right)\right)^{T}\right]$$

$$=\mathrm{ISS}\left(\left(\Sigma_{N_{t}N_{t}}\right)^{-1}\right) \text{ and } I_{\sigma} \text{ similarly.}$$

Let
$$I_t = ISS\left(\left(\Sigma_{N_t N_t}\right)^{-1}\right)$$
 and I_q similarly.

$$= \mathbb{E}\left[(I_t \cdot D_t(S - \Sigma))(I_q \cdot D_q(S - \Sigma))^T \right]$$

$$= \mathbb{E}\left[I_t \cdot D_t(S - \Sigma)(S - \Sigma)^T D_q^T I_q^T\right]$$

$$= I_t \cdot D_t \cdot G \cdot D_q^T \cdot I_q^T.$$

Thus we can compute the (t,q)-th entry of $\operatorname{Cov}(\vec{X})$ as follows:

$$Cov(\vec{X})_{t,q} = \left(I_t \cdot D_t \cdot G \cdot D_q^T \cdot I_q^T\right)_{(k,l),(k,l)},$$

where we again abuse notation and take the entry of the resulting matrix that corresponds position of entry (k,l) in (S_{N_t,N_t}) (when we treat it as a vector $\in \mathbb{R}^d$) and similarly for the position of (k,l) in (S_{N_q,N_q}) .

Because of the matrix identity: $(ABC^T)_{i,j} = A_iB(C_j)^T$, where A_i is the *i*-th row of A, if we let $I'_t := I_t \cdot D_t$, then we can rewrite

$$\operatorname{Cov}(\vec{X})_{t,q} = \left(I_t \cdot D_t \cdot G \cdot D_q^T \cdot I_q^T\right)_{(k,l),(k,l)} = (I_t')_{(k,l)} G\left((I_q')_{(k,l)}\right)^T,$$

where by yet another abuse of notation, $(I'_t)_{(k,l)}$ denotes the row of I'_t that corresponds to the pair (k,l) in S_{N_t,N_t} (regarded as a vector $\in \mathbb{R}^d$).

If we let $\mathcal{I} \in \mathbb{R}^{S,d'}$ (where S is the number of susbets we're considering) be the matrix where each row $\mathcal{I}_t = (I'_t)_{(k,l)}$, again using the same matrix identity as before, we have

$$Cov(\vec{X}) = \mathcal{I}G\mathcal{I}^T.$$

We know that G is full-rank because it is an Isserlis matrix. Thus to show $Cov(\vec{X})$ is positive definite, it suffices to show that $v^T \mathcal{I} \neq \vec{0}$ for $v \neq \vec{0}$, i.e. \mathcal{I} has full row-rank.

To show that \mathcal{I} has full row-rank, we show that the rows of \mathcal{I} are all linearly independent. In particular, we show that for each row of \mathcal{I} , there is at least 1 entry that is non-zero *only* in that row, which implies the rows are linearly independent.

Recall that the t-th row of \mathcal{I} is: $(I_t \cdot D_t)_{(k,l)} = (I_t)_{(k,l)} \cdot D_t$. Effectively D_t is transforming entries of I_t to the corresponding indexing used for all nodes (since I_t is indexed by only the nodes in N_t). In particular, if we let $\mathcal{I}_{t,(u,v)}$ denote the entry in row t of \mathcal{I} that corresponds to the pair of nodes (u,v), then

$$\mathcal{I}_{t,(u,v)} = \begin{cases} (I_t)_{(k,l),(u,v)}, & \text{if } (u,v) \in N_t \times N_t \\ 0, & \text{otherwise.} \end{cases}$$
(1)

In particular for each t, consider the entry $\mathcal{I}_{t,(k,r_t)}$. By the formula for Isserlis matrices, we have that $\mathcal{I}_{t,(k,r_t)}=(I_t)_{(k,l),(k,r_t)}=\sigma_{N_t}^{kk}\sigma_{N_t}^{lr_t}+\sigma_{N_t}^{kr_t}\sigma_{N_t}^{lk}=\sigma_{N_t}^{kk}\sigma_{N_t}^{lr_t}$, since $\sigma_{N_t}^{lk}=0$, since all paths from k to l must go through neigh $(k)\in N_t$. However, since we imposed the condition that there is a path from l to r_t that does not go through k or neigh(k), we have that $\sigma_{N_t}^{lr_t}\neq 0$ and since $\sigma_{N_t}^{kk}\neq 0$, we have that $\mathcal{I}_{t,(k,r_t)}\neq 0$. But consider the same entry in any other row, i.e. $\mathcal{I}_{q,(k,r_t)}$, for $q\neq t$. Then we have that since $r_t\notin N_q$, this entry is necessarily =0. Thus we have shown each row of \mathcal{I} has at least 1 entry that is non-zero in only that row, proving that it has full row-rank, which completes the proof.