Sistema de evaluación y Bio-Feedback para balance postural

Héctor Gabriel Peredo Urbina

Noviembre 2016

Agenda

- Introducción.
- Objetivos.
- 3 Diseño del Sistema de Bio-feedback.
- Resultados
- Conclusiones

Balance Postural

• El mantener la posición bipeda-quieta.

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

• Obtener información de un ser vivo.

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

- Obtener información de un ser vivo.
- Mediante Sensores.

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

- Obtener información de un ser vivo.
- Mediante Sensores.
- Controlar o mejorar problemas.

Soluciones Presentes para el Estudio del Balance

Figura: Kistler Force Plate

Soluciones Presentes para el Estudio del Balance

Figura: Kistler Force Plate

Figura: Balance SD

Sistema de Bio-feedback

• Sistema de Bio-feedback para el Balance Postural.

Objetivos General

Objetivo General

Diseñar e implementar un prototipo de software-hardware basado en un microcontrolador Arduino y un sensor de velocidad angular y acelerometría de 3 ejes, para el registro y representación gráfica del centro de masa y bio-realimentación..

Objetivos Específicos

Objetivos Específicos

 Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).

Objetivos Específicos

Objetivos Específicos

- Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).
- Diseñar sistema que permita el registro y visualización de todas las variables cinemáticas (posición y velocidad angular) del centro de masa.

Objetivos Específicos

Objetivos Específicos

- Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).
- Diseñar sistema que permita el registro y visualización de todas las variables cinemáticas (posición y velocidad angular) del centro de masa.
- Construcción de un sistema que facilite mediante bio-realimentación la posición del centro de presión (proyección del centro de masa).

• Conexión del Sensor MPU6050 con la placa Arduino.

- Conexión del Sensor MPU6050 con la placa Arduino.
- Establecer comunicación Sensor \leftrightarrow Arduino (I^2C).

- Conexión del Sensor MPU6050 con la placa Arduino.
- Establecer comunicación Sensor \leftrightarrow Arduino (I^2C).

- Conexión del Sensor MPU6050 con la placa Arduino.
- Establecer comunicación Sensor \leftrightarrow Arduino (I^2C).

 Establecer comunicación con el Micro-controlador Arduino (Serial).

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.
- Despliegue en Tiempo real.

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.
- Despliegue en Tiempo real.

• Análisis de la información.

Análisis de la información.

Evaluación y comparación de algoritmos

 Algoritmos para cálculo de ángulo (Sin Filtro, Filtro Complementario y Filtro Kalman).

Evaluación y comparación de algoritmos

- Algoritmos para cálculo de ángulo (Sin Filtro, Filtro Complementario y Filtro Kalman).
- Algoritmos de obtención del desplazamiento (Recorrido Curvo y Proyección)

Evaluación y comparación de algoritmos

- Algoritmos para cálculo de ángulo (Sin Filtro, Filtro Complementario y Filtro Kalman).
- Algoritmos de obtención del desplazamiento (Recorrido Curvo y Proyección)

 Obtención del desplazamiento Centro de Masa usando Dispositivo de Bio-feedback.

- Obtención del desplazamiento Centro de Masa usando Dispositivo de Bio-feedback.
- Contraste entre Kistler y Dispositivo.

Figura: Comparativa Kistler vs Dispositivo

Pruebas	Espalda		Izquierda		Frontal	
	A.P	M.L	A.P	M.L	A.P	M.L
Coeficiente Correlación	0.98790	0.90179	0.94307	0.81876	0.94733	0.96013
Rango Kistler (cm)	18.655	4.6465	17.679	4.9096	19.085	19.105
Error Medio Porcentual	3.9034	5.7586	8.9823	8.1358	9.2246	4.6773
Mínimo Error Porcentual	$5.3548e^{-4}$	0.0024053	0.0030168	0.0031829	0.0063938	0.0016166
Máximo Error Porcentual	14.952	22.976	35.381	30.957	32.014	28.542

Figura: Tabla resumen resultados

Conclusiones

Conclusiones

• Los sensores inerciales montados en una placa Arduino genera resultados similares a una plataforma especializada en el estudio del Balance.

Conclusiones

Conclusiones

- Los sensores inerciales montados en una placa Arduino genera resultados similares a una plataforma especializada en el estudio del Balance.
- El bajo coste de la solución propuesta frente a las soluciones existentes.

Conclusiones

Conclusiones

- Los sensores inerciales montados en una placa Arduino genera resultados similares a una plataforma especializada en el estudio del Balance.
- El bajo coste de la solución propuesta frente a las soluciones existentes.
- Los resultados expuestos son un buen punto de partida para nuevas investigaciones.

Trabajos Futuros

Trabajos Futuros

Los trabajos futuros que pueden desprenderse de esta tesis son:

• Validación de la solución como un instrumento para el estudio del Balance.

Trabajos Futuros

- Validación de la solución como un instrumento para el estudio del Balance.
- Añadir interfaces para comunicación inalámbrica.

Trabajos Futuros

- Validación de la solución como un instrumento para el estudio del Balance.
- Añadir interfaces para comunicación inalámbrica.
- Mejora de algoritmos y sensores utilizados.

Trabajos Futuros

- Validación de la solución como un instrumento para el estudio del Balance.
- Añadir interfaces para comunicación inalámbrica.
- Mejora de algoritmos y sensores utilizados.
- Generar un sistema empaquetado.

Sistema de evaluación y Bio-Feedback para balance postural

Héctor Gabriel Peredo Urbina

Noviembre 2016

