Job No.: Hyslop Homes - 1 Address: 546 Masterton Castlepoint Rd, Masreton, New Zealand Date: 24/01/2024

Latitude: -40.965323 Elevation: 139 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.7 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	38.93 m/s
Wind Pressure	0.91 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 5.10 m Cpe = -0.9 pe = -0.73 KPa pnet = -0.73 KPa

For roof CP,e from 5.10 m To 10.20 m Cpe = -0.5 pe = -0.41 KPa pnet = -0.41 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 16.10 m Cpe = 0.7 pe = 0.58 KPa pnet = 0.85 KPa

For side wall CP,e from 0 m To 5.10 m Cpe = pe = -0.53 KPa pnet = -0.53 KPa

Maximum Upward pressure used in roof member Design = 0.73 KPa

Maximum Downward pressure used in roof member Design = 0.43 KPa

Maximum Wall pressure used in Design = 0.85 KPa

Maximum Racking pressure used in Design = 0.83 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 5750 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
$V_{0.9D\text{-}WnUp}$	0.00 Kn-m	Capacity	0.00 Kn-m	Passing Percentage	NaN %

Deflections

First Page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Wookock et al, 1999 Span/100 = 57.50 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm

Girt's Span = 4025 mm

Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward = NaN S1 Downward = NaN S1 Upward = NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
V _{0.9D-WnUp}	0.00 Kn-m	Capacity	0.00 Kn-m	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al. 1999 Span/100 = 40.25 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

225 UNI H5	Dry Use	Height	4400 mm
Area	39741 mm2	As	29805.46875 mm2
Ix	125741821 mm4	Zx	1117705 mm3
Iy	125741821 mm4	Zx	1117705 mm3
Lateral Restraint	3400 mm c/c		

Loads

Total Area over Pole = 46.28750000000001 m²

Dead	11.57 Kn	Live	11.57 Kn
Wind Down	19.90 Kn	Snow	0.00 Kn
Moment wind	13.15 Kn-m		
Phi	0.8	K8	0.90
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Second page

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	512.60 Kn	PhiMnx Wind	27.49 Kn-m	PhiVnx Wind	70.58 Kn
PhiNcx Dead	307.56 Kn	PhiMnx Dead	16.50 Kn-m	PhiVnx Dead	42.35 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.56 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.31 < 1 \text{ OK}$

Deflection at top under service lateral loads = 34.55 mm < 44.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
$V \cap -$	$(1 \sin(20)) / (1 \pm \sin(20))$				

 $(1-\sin(30))/(1+\sin(30))$ $(1+\sin(30))/(1-\sin(30))$ Kp =

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
------	--------	---------------

1600 mm L =Pile embedment length

3525 mm f1 =Distance at which the shear force is applied Distance of top soil at rest pressure

f2 = $0 \, \mathrm{mm}$

Loads

Moment Wind =	13.15 Kn-m
Shear Wind =	3.73 Kn

Pile Properties

0.55 Safety Factory

7.12 Kn Hu= Ultimate Lateral Strength of the Pile, Short pile

Mu =14.81 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.89 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.58 Kn

Uplift on one Pile = 23.38 Kn

Uplift is ok