www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

SAMPLING DISTRIBUTIONS

A *sampling distribution* is the probability distribution for the means of all samples of size n from a given distribution. The sampling distribution will be normal distributed with parameters $\mu_{\bar{x}}$ and $\sigma_{\bar{x}}$, if either

- the population from which the samples are drawn is normally distributed, or
- the samples are large ($n \ge 30$)

where

$$\mu_{ar{\chi}} = \mu$$
 and $\sigma_{ar{\chi}} = \frac{\sigma}{\sqrt{n}}$ [for large samples]

NB: • the sampling distribution has the same centre as the population

- the measure of variability of a sampling distribution, $\sigma_{\bar{x}}$, is called the **standard error**. The distribution of means is not as spread out as the values in the population from which the sample was drawn.
- if we do not know the population standard deviation we approximate with the sample standard deviation: $s_{\overline{x}} \cong \sigma_{\overline{x}}$ and $\frac{s}{\sqrt{n}} \cong \frac{\sigma}{\sqrt{n}}$)

Consider the little 'population' of values $P = \{1 \ 2 \ 3 \ 4 \ 5\}$

This population has $\mu = 3$ and $\sigma = 1.41$

If a sample of size n = 3 was drawn from this population it could be any one of...

$$(1\ 2\ 3)$$
 $(1\ 2\ 4)$ $(1\ 2\ 5)$ $(1\ 3\ 4)$ $(1\ 3\ 5)$ $(1\ 4\ 5)$ $(2\ 3\ 4)$ $(2\ 3\ 5)$ $(2\ 4\ 5)$ $(3\ 4\ 5)$

The means of each of the samples, and a histogram of the distribution of means, are shown in the table and graph below:

					•
Sample				Mean	
1	2	3		$\bar{x} = 2$	
1	2	4		$\bar{x} = 2.33$	
1	2	5		$\bar{x} = 2.67$	
1	3	4		$\bar{x} = 2.67$	
1	3	5		$\bar{x} = 3$	$, \qquad \bar{\bar{x}} = 3$
1	4	5		\bar{x} = 3.33	$\sigma_{\bar{x}} = 0.61$
2	3	4		$\bar{x} = 3$	
2	3	5		$\bar{x} = 3.33$	
2	4	5		$\bar{x} = 3.67$	
3	4	5		$\bar{x} = 4$	

The sampling distribution of the means for samples of size 3 is:

\overline{X}	2	2.33	2.67	3	3.33	3.67	4
$P(\overline{X} = \overline{x})$	0.1	0.1	0.2	0.2	0.2	0.1	0.1

Even though this sample is small, and the population is not normally distributed (though it is symmetric) the sampling distribution is reasonably normally distributed:

We can see that the mean of the sampling distribution (the mean of all the means) is the same as the population mean, $\bar{x} = \mu = 3$. But the variability in the sampling distribution is less than that of the population: $\sigma_{\bar{x}} = 0.61$ and $\sigma = 1.41$. Because larger samples, or those drawn from normally distributed populations, will follow a normal distribution we can use the properties of

normal distributions to find probabilities relating to samples: $z_{\bar{x}} = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$

Example

The shire of Bondara has 1200 preschoolers. The mean weight of pre-schoolers is known to be 18kg with a standard deviation of 3kg. What is the probability that a random sample of 50 preschoolers will have a mean weight more than 19kg?

$$n = 50$$
, $\mu = 18$ and $\sigma = 3$

The sampling distribution of the means for samples of size 50 will have $\mu_{\bar{\chi}} = \mu = 18$, and standard error, $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{50}} = 0.42$.

$$z_{\bar{x}} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{19 - 18}{\frac{3}{\sqrt{50}}} = 2.38$$

$$Pr(\bar{x} > 19) = Pr(Z_{\bar{x}} > 2.38)$$

= 1 - 0.9913 [from tables]
= 0.0087

Exercise

- 1. List all samples of size 2 for the population {1, 2, 3, 4, 5, 6}. What is the probability of obtaining a sample mean of less than 3?
- 2. Samples of size 40 are drawn from a population with $\mu = 50$ and $\sigma = 5$.
 - (a) What are the mean and standard error of the sampling distribution?
 - (b) What is the probability that a particular sample has a mean less than 48.5?
- 3. If IQ in the general population of secondary students is known to follow a normal distribution with $\mu=100$ and $\sigma=10$,
 - (a) find the mean and standard error for a random samples of size 100.
 - (b) To test whether a secondary school is representative of the general population a sample of 100 students from that school is chosen. What is the probability of the mean IQ being more than 105?
 - (c) What would be your conclusion?

Answers

- 1. 4/15
- 2. (a) $\mu_{\bar{x}} = 50$ and $\sigma_{\bar{x}} = 0.79$ (b) 0.0288
- 3. (a) $\mu_{\bar{x}} = 100$ and $\sigma_{\bar{x}} = 1$ (b) 0.00003 (c) either the sample was not random (perhaps all the smartest students were in the sample) or this school has a higher IQ than the general population.