Евгений Борисов

методы ML

- метрические измеряем расстояния, определить ближайших
- логические построить правило (комбинацию предикатов)
- <u>статистические</u> восстановить плотность, определить вероятность
- линейные построить разделяющую поверхность
- композиции собрать несколько классификаторов в один

Х - объекты, Ү - метки классов

$$X \times Y$$
- вероятностное пространство с плотностью $p(x,y)$

Х - объекты, Ү - метки классов

$$X\! imes\!Y$$
- вероятностное пространство с плотностью $p(x,y)$

выборка:
$$(X' \times Y') \subset (X \times Y)$$

Задача: построить классификатор с минимальной ошибкой

$$a: X' \rightarrow Y'$$

Х - объекты, Ү - метки классов

$$X\! imes\!Y$$
- вероятностное пространство с плотностью $p(x,y)$

выборка:
$$(X' \times Y') \subset (X \times Y)$$

Задача: построить классификатор с минимальной ошибкой

$$a: X' \rightarrow Y'$$

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{argmax} P(y|x)$$

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} P(y|x) = \underset{y \in Y}{\operatorname{argmax}} P(y) p(x|y)$$

$$P(y)$$
 - априорная вероятность класса у

$$p\left(x|y
ight)$$
 - ф-ция правдоподобия класса у

$$p\left(y|x
ight)$$
 - апостериорная вероятность класса у

формула Байеса:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

о функционале среднего риска

$$a: X' \rightarrow Y'$$
 - классификатор

$$A_y = \{x \in X | a(x) = y\}$$
, $y \in Y$ - разбиение X на части

о функционале среднего риска

$$a: X' \rightarrow Y'$$
 - классификатор

$$A_y = \{x \in X | a(x) = y\}$$
, $y \in Y$ - разбиение X на части

Ошибка: объект x класса y попал в класс s

 A_s , $s \neq y$ - множество ошибочно классифицированных

о функционале среднего риска

$$a: X' \rightarrow Y'$$
 - классификатор

$$A_y = \{x \in X | a(x) = y\}$$
, $y \in Y$ - разбиение X на части

Ошибка: объект x класса y попал в класс s

 A_s , $s \neq y$ - множество ошибочно классифицированных

Вероятность ошибки
$$P(A_s,y) = \int\limits_{A_s} p(x,y) dx$$
 где $p(x,y)$ - плотность вероятностного пространства

о функционале среднего риска

Вероятность ошибки
$$P(A_s,y) = \int\limits_{A_s} p(x,y) dx$$
 где $p(x,y)$ - плотность вероятностного пространства

Определим константы для каждого класса - потеря от ошибки

$$\lambda_{ys} > 0, ys \in Y \times Y$$

о функционале среднего риска

Вероятность ошибки
$$P(A_s, y) = \int_{A_s} p(x, y) dx$$

где p(x,y) - плотность вероятностного пространства

Определим константы для каждого класса - потеря от ошибки

$$\lambda_{ys} > 0; y, s \in Y$$

Средний риск: мат.ожидание потери классификатора

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y)$$

Средний риск: мат.ожидание потери классификатора

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y)$$

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов $\,P(y)\,$
- плотности их распределений p(x,y)
- потери от ошибки $\lambda_{ys} > 0$

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов $\,P(\,y)\,$
- плотности их распределений p(x,y)
- потери от ошибки $\lambda_{vs} > 0$

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Дополнение:

если
$$\lambda_{yy} = 0$$
; $\lambda_y \equiv \lambda_{ys}$ то $a(x) = \underset{y \in Y}{argmax} \lambda_y P(y) p(x|y)$

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{argmax} P(y|x)$$

формула Байеса:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

байесовский классификатор

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

$$\lambda_{_{\scriptscriptstyle \it V}}$$
 - потеря для объектов у

$$P\left(\,y\,
ight)$$
 - доля примеров класса у (априорная вероятность)

$$p(x|y)$$
- плотность класса у

git clone https://github.com/mechanoid5/ml_lectorium.git

К.В. Воронцов Байесовская теория классификации и методы восстановления плотности. - Курс "Машинное обучение" ШАД Яндекс 2014

Борисов E.C. Байесовский классификатор. http://mechanoid.su/ml-bayes.html