---- excess: 4 (g,n): (1, 13), (3, 10), (5, 7), (7, 4), (9, 1) graphs: 490 eliminated+redundant: 476 ---- edges: 10-n graphs: 10 ---- A_3 graphs: 10 ---

ID: 372 $V_{1^{n-2}} \boxtimes V_1 \boxtimes V_1$ n: 10 7 4 \longleftrightarrow ID 204

ID:
$$401 V_{1^n}$$
n: $1 \longleftrightarrow ID 260$

ID: 371 $V_{1^{n-2}}\boxtimes V_2$ n: 10 7 4 \mapsto ID 553

n: 10 7 4

ID: 425 V_{1^n}

ID: 429 $V_{1^{n-1}} \boxtimes V_1$

ID: 419 $V_{1^{n-1}} \boxtimes V_1$

ID: 428 $V_{1^{n-1}} \boxtimes V_1$

ID: 415 $V_{1^{n-2}} \boxtimes V_1 \boxtimes V_1$

→ ID 566

Redundant

n: 7 4 1

n: 7 4 1

n: 7 4

n: 7 4 1

n: 7 4 1

ID: 440 $V_{1^{n-1}} \boxtimes V_1$ ID: 417 $V_{1^{n-2}} \boxtimes V_1 \boxtimes V_1$ ID: 436 $V_{1^{n-1}} \boxtimes V_1$

→ ID 560

n: 4 1

Redundant

n: 7 4

→ ID 572

n: 4 1

