Tarefa 4: Busca dos melhores hiperparâmetros para uma SVM

Equipe:

- Flávia Érika Almeida Giló Azevedo | RA: 162641
- Elian Raquel Laura Riveros | RA: 265685
- Yuliana Guadalupe Apaza Yllachura | RA: 234986

In [1]:

```
import numpy as np
from sklearn.svm import SVR
from sklearn.model_selection import cross_val_score
```

Leitura dos arquivos de treino e teste

In [2]:

```
!wget https://www.ic.unicamp.br/~wainer/cursos/1s2021/431/X.npy
!wget https://www.ic.unicamp.br/~wainer/cursos/1s2021/431/y.npy
--2021-04-29 12:39:44-- https://www.ic.unicamp.br/~wainer/cursos/1s
2021/431/X.npy
Resolving www.ic.unicamp.br (www.ic.unicamp.br)... 143.106.7.54, 280
1:8a:40c0:cafe::54
Connecting to www.ic.unicamp.br (www.ic.unicamp.br) | 143.106.7.54 | :44
3... connected.
HTTP request sent, awaiting response... 200 OK
Length: 52752 (52K)
Saving to: 'X.npy'
X.npy
                   148KB/s
in 0.3s
2021-04-29 12:39:45 (148 KB/s) - 'X.npy' saved [52752/52752]
--2021-04-29 12:39:45-- https://www.ic.unicamp.br/~wainer/cursos/1s
2021/431/y.npy
Resolving www.ic.unicamp.br (www.ic.unicamp.br)... 143.106.7.54, 280
1:8a:40c0:cafe::54
Connecting to www.ic.unicamp.br (www.ic.unicamp.br) | 143.106.7.54 | :44
3... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4176 (4.1K)
Saving to: 'y.npy'
y.npy
                   4.08K --.-KB/s
in 0s
2021-04-29 12:39:46 (206 MB/s) - 'y.npy' saved [4176/4176]
```

```
In [3]:

X = np.load("X.npy")
y = np.load("y.npy")

In [4]:

X.shape

Out[4]:
(506, 13)

In [5]:

y.shape

Out[5]:
(506,)

In [6]:

# Nesta lista vamos salvar os valores obtidos por cada algoritmo
melhores_valores = []
```

Random search

```
In [7]:
```

```
from sklearn.model_selection import RandomizedSearchCV
```

```
In [8]:
```

```
# Definição do intervalo de busca dos hiperparâmetros
c = 2**np.random.uniform(-5, 15, 125) # uniforme nos expoentes
gamma = 2**np.random.uniform(-15, 3, 125) # uniforme nos expoentes
epsilon = np.random.uniform(0.05, 1, 125) # uniforme no intervalo

# Dicionário que será passado para a função de busca pelos melhores hiperparâmet
ros
intervalo_hiperparametros = {'C': c, 'gamma': gamma, 'epsilon': epsilon}
```

In [9]:

```
# Busca pelos melhores hiperparâmetros
busca hiperparametros = RandomizedSearchCV(estimator = SVR(kernel='rbf'), \
                                           param distributions = intervalo hiper
parametros, \
                                           n iter = 125, \
                                           scoring = 'neg root mean squared erro
r', \
                                           cv = 5)
melhores hiperparametros = busca_hiperparametros.fit(X, y)
melhor c = melhores hiperparametros.best params ['C']
melhor gamma = melhores hiperparametros.best params ['gamma']
melhor epsilon = melhores hiperparametros.best params ['epsilon']
rmse busca hiperparametros = melhores hiperparametros.best score
melhores valores.append([melhor c, melhor gamma, melhor epsilon, -rmse busca hip
erparametros])
# Reporte dos melhores valores de hiperparâmetros obtidos e o RMSE associado
print("Random search - Melhores valores dos hiperparâmetros e RMSE")
print(f"C: {melhor c}")
print(f"Gamma: {melhor gamma}")
print(f"Epsilon: {melhor epsilon}")
print(f"RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâmetro
s: {-rmse busca hiperparametros}")
Random search - Melhores valores dos hiperparâmetros e RMSE
C: 673.9899526046084
```

```
Random search - Melhores valores dos hiperparâmetros e RMSE
C: 673.9899526046084
Gamma: 0.0001271316998152192
Epsilon: 0.8686368520247699
RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâm etros: 4.581288084986051
```

Grid search

```
In [10]:
```

```
from sklearn.model_selection import GridSearchCV
```

In [11]:

```
# Definição do intervalo de busca dos hiperparâmetros
c = 2**np.random.uniform(-5, 15, 5) # uniforme nos expoentes
gamma = 2**np.random.uniform(-15, 3, 5) # uniforme nos expoentes
epsilon = np.random.uniform(0.05, 1, 5) # uniforme no intervalo

# Dicionário que será passado para a função de busca pelos melhores hiperparâmet
ros
intervalo_hiperparametros = {'C': c, 'gamma': gamma, 'epsilon': epsilon}
```

In [12]:

```
# Busca pelos melhores hiperparâmetros
busca hiperparametros = GridSearchCV(estimator = SVR(kernel='rbf'), \
                        param grid = intervalo hiperparametros, \
                        scoring = 'neg root mean squared error', \
                        cv = 5)
melhores hiperparametros = busca hiperparametros.fit(X, y)
melhor c = melhores hiperparametros.best params ['C']
melhor gamma = melhores_hiperparametros.best_params_['gamma']
melhor epsilon = melhores hiperparametros.best params ['epsilon']
rmse busca hiperparametros = melhores hiperparametros.best score
melhores valores.append([melhor c, melhor gamma, melhor epsilon, -rmse busca hip
erparametros])
# Reporte dos melhores valores de hiperparâmetros obtidos e o RMSE associado
print("Grid search - Melhores valores dos hiperparâmetros e RMSE")
print(f"C: {melhor c}")
print(f"Gamma: {melhor gamma}")
print(f"Epsilon: {melhor epsilon}")
print(f"RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâmetro
s: {-rmse busca hiperparametros}")
Grid search - Melhores valores dos hiperparâmetros e RMSE
C: 2199.031573303586
Gamma: 3.393197597912491e-05
```

Otimização bayesiana usando BayesSearchCV do pacote scikit-optimize

RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâm

In [13]:

In [14]:

from skopt import BayesSearchCV

Epsilon: 0.2489651808832541

etros: 4.323574850823

```
!pip install scikit-optimize

Requirement already satisfied: scikit-optimize in /usr/local/lib/pyt hon3.7/dist-packages (0.8.1)

Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist-packages (from scikit-optimize) (0.22.2.post1)

Requirement already satisfied: pyaml>=16.9 in /usr/local/lib/python 3.7/dist-packages (from scikit-optimize) (20.4.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python 3.7/dist-packages (from scikit-optimize) (1.0.1)

Requirement already satisfied: scipy>=0.19.1 in /usr/local/lib/python 3.7/dist-packages (from scikit-optimize) (1.4.1)

Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python 3.7/dist-packages (from scikit-optimize) (1.19.5)

Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packages (from pyaml>=16.9->scikit-optimize) (3.13)
```

In [15]:

```
# Definição do intervalo de busca dos hiperparâmetros
c = 2**np.random.uniform(-5, 15, 125) # uniforme nos expoentes
gamma = 2**np.random.uniform(-15, 3, 125) # uniforme nos expoentes
epsilon = np.random.uniform(0.05, 1, 125) # uniforme no intervalo

# Dicionário que será passado para a função de busca pelos melhores hiperparâmet
ros
intervalo_hiperparametros = {'C': c, 'gamma': gamma, 'epsilon': epsilon}
```

In [16]:

```
# Busca pelos melhores hiperparâmetros
busca hiperparametros = BayesSearchCV(estimator = SVR(kernel='rbf'), \
                                      search spaces = intervalo hiperparametros,
\
                                      n iter = 125, \
                                      scoring = 'neg root mean squared error', \
                                      cv = 5)
melhores hiperparametros = busca hiperparametros.fit(X, y)
melhor c = melhores hiperparametros.best params ['C']
melhor gamma = melhores hiperparametros.best params ['gamma']
melhor epsilon = melhores hiperparametros.best params ['epsilon']
rmse busca hiperparametros = melhores hiperparametros.best score
melhores valores.append([melhor c, melhor gamma, melhor epsilon, -rmse busca hip
erparametros])
# Reporte dos melhores valores de hiperparâmetros obtidos e o RMSE associado
print("Otimização bayesiana - Melhores valores dos hiperparâmetros e RMSE")
print(f"C: {melhor c}")
print(f"Gamma: {melhor gamma}")
print(f"Epsilon: {melhor epsilon}")
print(f"RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâmetro
s: {-rmse busca hiperparametros}")
Otimização bayesiana - Melhores valores dos hiperparâmetros e RMSE
C: 15061.272903853895
Gamma: 3.528585255057165e-05
Epsilon: 0.2853673547828034
```

Otimização bayesiana usando Hyperopt

etros: 3.787595441326054

In [17]:

```
from hyperopt import fmin, tpe, hp, Trials
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from sklearn import metrics
import numpy as np
```

RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâm

```
In [18]:
```

```
random state = 42
num folds=5
# Split data
X train, X test, y train, y test = train test split(X, y,
                                                         test size=0.20, shuffle=
True,
                                                        random state=random state
kf = KFold(n splits=num folds, random state=42, shuffle=True)
# Create space of hyperparameters
space=\{'C': hp.loguniform('C', np.log(2**-5), np.log(2**15)),
       'gamma': hp.loguniform('gamma', np.log(2**-15), np.log(2**3)),
       'epsilon': hp.uniform('epsilon',0.05, 1.0)
# Define objective function
def f(params, random state = random state, cv=kf, X=X train, y=y train):
    # create a SV Regressor
    model = SVR(kernel = 'rbf', **params)
    # and then conduct the cross validation with the folds
    score = -cross val score(model, X, y, cv=cv, scoring="neg mean squared erro
r").mean()
    return score
# Optimization
trials = Trials()
best = fmin(fn = f,
            space = space,
            algo = tpe.suggest,
            max evals = 125,
            trials = trials,
            rstate = np.random.RandomState(random state))
```

```
100% | 125/125 [02:46<00:00, 1.33s/it, best loss: 17.7637 2019993554]
```

In [19]:

best

```
Out[19]:
```

```
{'C': 21094.73842148089,
'epsilon': 0.7914103617911319,
'gamma': 3.534421343783635e-05}
```

In [20]:

RMSE: 4.182742416094278

PSO

In [21]:

```
!pip install pyswarm
```

Requirement already satisfied: pyswarm in /usr/local/lib/python3.7/d ist-packages (0.6)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from pyswarm) (1.19.5)

In [22]:

```
from pyswarm import pso
```

In [23]:

```
# Definição do intervalo de busca dos hiperparâmetros
lw_PSO = [-5, -15, 0.05]
up_PSO = [15, 3, 1.0]
```

```
In [24]:
```

```
# Busca pelos melhores hiperparâmetros
def funcao svr(x):
  c = 2**x[0]
  q = 2**x[1]
  e = x[2]
  svr = SVR(kernel = 'rbf', gamma = g, C = c, epsilon = e)
  modelo svr = cross val score(svr, X, y, cv = 5, scoring = 'neg root mean squar
ed error')
  rmse svr = modelo svr.mean()
  return -rmse svr
xopt, fopt = pso(funcao svr, lw PSO, up PSO, maxiter = 11, swarmsize = 11)
melhor c = 2**xopt[0]
melhor gamma = 2**xopt[1]
methor epsilon = xopt[2]
rmse busca hiperparametros = fopt
melhores valores.append([melhor c, melhor gamma, melhor epsilon, rmse busca hipe
rparametros])
# Reporte dos melhores valores de hiperparâmetros obtidos e o RMSE associado
print("\n\nPSO - Melhores valores dos hiperparâmetros e RMSE")
print(f"C: {melhor c}")
print(f"Gamma: {melhor gamma}")
print(f"Epsilon: {melhor epsilon}")
print(f"RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâmetro
s: {rmse busca hiperparametros}")
```

Stopping search: maximum iterations reached --> 11

```
PSO - Melhores valores dos hiperparâmetros e RMSE
C: 20600.394964096373
Gamma: 3.0517578125e-05
Epsilon: 0.12679707438288512
RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâm etros: 3.717740787122218
```

Simulated annealing

```
In [25]:
```

```
# Vamos implementar o simulated annealing com o pacote scipy.optimize.dual-annea
ling
# Ao utilizarmos no_local_search = true, um algoritmo Generalized Simulated Anne
aling tradicional é utilizado, sem estratégia de busca local
from scipy.optimize import dual_annealing
```

```
In [26]:
```

```
# Definição do intervalo de busca dos hiperparâmetros
lw_annealing = [-5, -15, 0.05]
up_annealing = [15, 3, 1.0]
```

```
In [27]:
```

```
# Busca pelos melhores hiperparâmetros
def funcao svr(x):
  c = 2**x[0]
  q = 2**x[1]
  e = x[2]
  svr = SVR(kernel = 'rbf', gamma = g, C = c, epsilon = e)
  modelo svr = cross val score(svr, X, y, cv = 5, scoring = 'neg root mean squar
ed error')
  rmse svr = modelo svr.mean()
  return -rmse svr
retorno = dual annealing(funcao svr, bounds = list(zip(lw annealing, up annealin
g)), no local search = True, maxiter = 125)
melhor c = 2**retorno.x[0]
melhor gamma = 2**retorno.x[1]
melhor epsilon = retorno.x[2]
rmse busca hiperparametros = retorno.fun
melhores valores.append([melhor c, melhor gamma, melhor epsilon, rmse busca hipe
rparametros])
# Reporte dos melhores valores de hiperparâmetros obtidos e o RMSE associado
print("Simulated annealing - Melhores valores dos hiperparâmetros e RMSE")
print(f"C: {melhor c}")
print(f"Gamma: {melhor gamma}")
print(f"Epsilon: {melhor epsilon}")
print(f"RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâmetro
s: {rmse busca hiperparametros}")
Simulated annealing - Melhores valores dos hiperparâmetros e RMSE
```

```
Simulated annealing - Melhores valores dos hiperparâmetros e RMSE C: 19263.21534679803
Gamma: 3.122117946365449e-05
Epsilon: 0.052318871342082754
RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâm etros: 3.7254341254857435
```

CMA-ES

```
In [28]:
```

import cma

```
pip install cma

Requirement already satisfied: cma in /usr/local/lib/python3.7/dist-
packages (3.0.3)

Requirement already satisfied: numpy in /usr/local/lib/python3.7/dis
t-packages (from cma) (1.19.5)

In [29]:
```

In [30]:

```
# Definição do intervalo de busca dos hiperparâmetros
# Precisamos trabalhar com intervalos de mesmo tamanho para as três variáveis
lw_cma = [0, 0, 0]
up_cma = [1, 1, 1]

# Ponto inicial aleatório
x0 = [0.5, 0.5, 0.5]

# Desvio padrão igual a 1/4 do intervalo de valores das variáveis
sigma = 0.25
```

In [31]:

```
# Busca pelos melhores hiperparâmetros
def funcao svr(x):
 c = 2**(-5 + x[0] * 20) # manipulação para compensar o fato de estarmos trabal
hando com intervalo [0, 1]
  q = 2**(-15 + x[1] * 18) # manipulação para compensar o fato de estarmos traba
lhando com intervalo [0, 1]
 e = x[2]
 svr = SVR(kernel = 'rbf', gamma = g, C = c, epsilon = e)
 modelo svr = cross val score(svr, X, y, cv = 5, scoring = 'neg root mean squar
ed error')
 rmse svr = modelo svr.mean()
  return -rmse svr
opts = cma.CMAOptions()
opts.set('bounds', [lw_cma, up_cma])
opts.set('maxfevals', 125)
es = cma.CMAEvolutionStrategy(x0, sigma, inopts = opts)
es.optimize(funcao svr)
melhor c = 2**(-5 + es.result.xbest[0] * 20)
methor gamma = 2**(-15 + es.result.xbest[1] * 18)
melhor epsilon = es.result.xbest[2]
rmse_busca_hiperparametros = es.result.fbest
melhores valores.append([melhor c, melhor gamma, melhor epsilon, rmse busca hipe
rparametros])
# Reporte dos melhores valores de hiperparâmetros obtidos e o RMSE associado
print("\n\nCMA-ES - Melhores valores dos hiperparâmetros e RMSE")
print(f"C: {melhor c}")
print(f"Gamma: {melhor gamma}")
print(f"Epsilon: {melhor epsilon}")
print(f"RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâmetro
s: {rmse busca hiperparametros}")
```

```
(3 \text{ w}, 7)-aCMA-ES (mu w=2.3,w 1=58%) in dimension 3 (seed=800200, Thu
Apr 29 13:47:44 2021)
                 function value axis ratio sigma min&max std t
Iterat #Fevals
[m:s]
           7 5.555650820742432e+00 1.0e+00 2.36e-01 2e-01 2e-01 0:
    1
02.3
    2
          14 4.299066944429675e+00 1.2e+00 2.96e-01
                                                     3e-01 4e-01 0:
07.8
          21 4.282447459001660e+00 1.8e+00 3.30e-01
                                                      3e-01 4e-01 0:
    3
29.9
          28 5.271643575288637e+00 2.4e+00 3.00e-01
                                                      2e-01 3e-01 0:
    4
34.0
          42 3.826998217428316e+00 1.7e+00 2.24e-01
    6
                                                      2e-01 2e-01 1:
02.4
          49 3.820474059402440e+00 1.4e+00 2.63e-01
                                                      2e-01 3e-01 2:
23.6
          56 3.734530531714269e+00 1.7e+00 2.51e-01
                                                      1e-01 2e-01 2:
    8
44.3
    9
          63 3.903690462100827e+00 2.1e+00 2.85e-01
                                                      1e-01 3e-01 4:
00.1
          70 4.870506557094204e+00 2.6e+00 2.61e-01
   10
                                                      1e-01 3e-01 5:
17.3
          77 4.163424192207741e+00 3.6e+00 2.24e-01
                                                      9e-02 3e-01 5:
   11
30.1
          84 3.769008336158570e+00 3.6e+00 2.23e-01
                                                      9e-02 3e-01 6:
   12
03.4
   13
          91 3.770760037665773e+00 3.9e+00 2.26e-01
                                                      8e-02 3e-01 7:
28.7
          98 3.787755037743595e+00 4.2e+00 2.02e-01
   14
                                                      6e-02 2e-01 8:
40.9
         105 3.740945282564641e+00 5.0e+00 1.98e-01
   15
                                                      5e-02 2e-01 1
0:11.2
         112 3.877725348683133e+00 5.6e+00 1.99e-01
                                                      5e-02 2e-01 1
   16
1:32.5
         119 3.807446014896867e+00 5.6e+00 1.97e-01
   17
                                                      4e-02 2e-01 1
2:39.1
   18
         126 3.830285062290729e+00 6.2e+00 1.91e-01 4e-02 2e-01 1
3:33.6
```

CMA-ES - Melhores valores dos hiperparâmetros e RMSE

C: 17991.340111110334

Gamma: 3.0953014006019875e-05 Epsilon: 0.13332341411220963

RMSE do 5-fold cross-validation para o melhor conjunto de hiperparâm

etros: 3.7345305317142694

Comentários

O objetivo deste trabalho foi encontrar os melhores hiperparâmetros para um regressor de SVM usando seis algoritmos de otimização para comparar os resultados a partir do valor RMSE.

Os hiperparâmetros são C, Gamma e Epsilon, que são gerados com distribuições uniformes.

Os dados são divididos com o método cross-validation considerando 5 folds.

Os resultados para cada algoritmo são listados a seguir.

Nota-se, da tabela abaixo, que os maiores valores de RMSE foram obtidos com os algoritmos Random search (4.58) e Grid search (4.32), enquanto os menores valores de RMSE foram obtidos com PSO (3.71) e Simulated Annealing (3.72).

In [32]:

```
import pandas as pd
tabla = pd.DataFrame(melhores_valores, columns=['C', 'Gamma', 'Epsilon', 'RMSE'
])
tabla.index = ['Random search', 'Grid search', 'Otimização bayesiana', 'PSO', 'S
imulated annealing', 'CMA-ES']
tabla
```

Out[32]:

	С	Gamma	Epsilon	RMSE
Random search	673.989953	0.000127	0.868637	4.581288
Grid search	2199.031573	0.000034	0.248965	4.323575
Otimização bayesiana	15061.272904	0.000035	0.285367	3.787595
PSO	20600.394964	0.000031	0.126797	3.717741
Simulated annealing	19263.215347	0.000031	0.052319	3.725434
CMA-FS	17991.340111	0.000031	0.133323	3.734531