

Bread First Search - explores equally

in cell directions. It is incredibly fast and explores everywhere

Dijkstra's Algorithm - also called

uniform cost search, prioritizes which path to search. However, instead of exploring equally, it looks at the cost of Haking a certain route and chooses the cheapest first

A* - a modification of Dijkstra's

algorithm, but is optimized for a single destination. It uses a hearistic to drive it

BFS or DA

- D Expand trontier

 move in all possible directions

 calculate cost of move

 stop when there is no longer any place to explore
- (2) Start from goal and move to start taking the lowest cost path
 - A Both explore entire enviornment from the start and expand outward in all directions

At is Similar A* always expands to goal - Heuristic Function (h) - often gradient decent A4/3/2/2 optomistic guess to goal
2/1/80/ w/o obsticals A>B 4 Steps h(x,y) & distance to good of Doosn't have to be accurate, just gorde the robot * If it was accorate, then you probably alreads solved it open Lo, 07 g-value f-value f-value = g+h(xiy) now look @ this when moving Open [7:1] 5 9 95 expand node lower f-val Jaid closer to goal [4,2] 6,9 [4,3]7,9 [3,2]7,11

[3,3]8,11

[4,4] 8,9 & flis will take you goal Note: don't expand the open

Dynamic Programing	5
Given Map + Goal Outputs Best path from anywhere	
has policy x,y = action	
- thus if you find yourself somewhere other	
- thus if you find yourself somewhere other than where you thought, you know how to	
new; gate	
- Good in dynamic Environment	
- every grid of tells you direction to go	
value function (f) for each cell	
$f(x,y) = \min_{\alpha} f(x,y) + 1$	
[6]4[3/2]	
5141312 hill climbing action	
At Summary	
At Summoury Cost. hueristic	
A+ Summery	
At Summary Cost. hueristic	
At Summary Cost. hveritic 2 1 6 0	
A* Summary Cost- 1 S 0 1 2 1 G 0 3 S 2 1 2 1 2 3 3 2	you
A+ Summoury Cost. 1 8 0 1 3 8 2 1 6 0 1 3 8 2 1	you
At Summerry Cost. 1 S 0 1 2 1 G 0 1 S 0 1 2 1 G 0 hveristic would never let search in the shaded	you