toy user manual

Title	toy (Assembler and simulator for the Princeton TOY machine)
Author	Nikolaos Kavvadias 2010, 2011, 2012, 2013, 2014, 2015, 2016
	toy.c written by Christopher W. Fraser.
Contact	nikos@nkavvadias.com
Website	http://www.nkavvadias.com
Release Date	02 December 2014
Version	0.0.3
Rev. history	
v0.0.3	2014-12-02
	Added project logo to README.
v0.0.2	2014-10-27
	Updated for Github.
v0.0.1	2010-12-06
	Initial release.

1. Introduction

toy is a collection of software development tools for the Princeton TOY processor. toyasm is a single-pass assembler and toy is the TOY simulator by Chris Fraser.

2. File listing

The toy distribution includes the following files:

/toy	Top-level directory
AUTHORS	List of toy authors.
LICENSE	The modified BSD license governs toy.
Makefile	Makefile for toy and toyasm.
README.html	HTML version of README.

README.pdf	PDF version of README.
README.rst	This file.
VERSION	Current version of the project sources.
fibo.asm	TOY assembly implementation of Fibonacci's algorithm.
fibo.c	Reference implementation of Fibonacci sequence generation in ANSI C.
fibo.toy	TOY machine code file of fibo.asm for the toy simulator.
main.c	Driver C file for the toyasm assembler.
popcount.asm	TOY assembly implementation of population count.
popcount.c	Reference implementation of population count in ANSI C.
popcount.toy	TOY machine code file of popcount.asm for the toy simulator.
rst2docs.sh	Bash script for generating the HTML and PDF versions of the documentation (README).
toy.c	The toy simulator.
toy.1	Lexer for the TOY assembler.
toy.png	PNG image for the toy project logo.
toy.y	Parser for the TOY assembler.
toy-cheatsheet.txt	TOY reference card

3. Usage

1. Run make from the Cygwin/MinGW/Linux command line:

```
$ make clean
$ make
```

2. Run a test for fibo:

```
$ ./toyasm[.exe] fibo.asm > fibo.toy
$ ./toy[.exe] fibo.toy
```

When prompted give a 16-bit hexadecimal constant (e.g. 0008) from stdin (the toy simulator features an interactive console). Then the simulator executes and prints 0015 (21 in decimal) as the correct result for the 8-th element of Fibonacci's sequence.

Similarly, you can run a test for popcount by entering a hexadecimal number; the TOY simulator console will then return the number of ones in that number.

4. Prerequisites

• Standard UNIX-based tools: make, gcc.