Lecture 23: Process modeling & balance laws

- Process modeling, structure and methodolgy
- Balance laws
 - Closure relations

Book: 10.4, 11.1-11.4

Process equations

- Balance laws
 - Mass
 - Momentum
 - Energy
 - ...

- Constitutive equations
 - For (generalized) flows
 - Thermodynamic equations of state
 (e.g. ideal gas law)
 - Phenomenological relationships (e.g. between friction force and flow in a pipe)
 - **–** ...

- Constraints
 - Geometric relationships
 - Equilibrium conditions
 - ..

Also called «closure relations» as they «close» the balance laws (such that #equations = #variables)

Example – structure of process models

Example: Tank

- Mass balance: $\frac{dm}{dt} = (q_i q_0)\rho$
- Constitutive equation: $q_0 = C\sqrt{p-p_0}$ (2) $p = p_0 + \rho g h$ (3)
- Constraints: $m = V \rho$ (4) V = Ah (5)
- How many variables?
- Need to define parameter and inputs
 - Parameters: C, g, A, ρ
 - Inputs: q_i, p_0

Structural index:

	q_0	p	V	h
(2)	\bigotimes	Х		
(3)		\otimes		Х
(4)			X	
(5)				\otimes

-> regular str. index

Example: Bubble reactor I

Model reactor as quasi-homogenous

- Assumptions:
 - Ideally mixed
 - Inflows are pure substances
 - Substance A and C are in liquid phase, substance B is gaseous
 - The total surface area of the bubbles depends on the inflow B

$$\bullet \quad S_R = S_R(N_{B,in})$$

 The reaction rate can be calculated based on the concentration of A and the pressure in the reactor

•
$$R_0 = R_0(c_{A,liq}, p)$$

- Densities ρ_A and ρ_C and mole masses M_A and M_C are constant and known
- The gas phase can be described by the ideal gas law

•
$$p V_{gas} = n_B R_m T$$

The volume of the reactor is constant and known

 $\uparrow N_{B,out}$

Bubble reactor - Balances

(1)
$$\frac{dn}{dt} = N_{A,in} + N_{B,in} - N_{B,out} - N_{P}$$

$$+ S_{R} (R_{A} + R_{B} + R_{C})$$

(2)
$$\frac{dN_A}{dt} = N_{Arim} - \frac{n}{\chi_A} N_P + S_R R_A$$

Bubble reactor – closure relations I

$$(5) \quad \mathbb{R}_{4} = -\mathbb{R}_{0}^{13}$$

(7)
$$R_c = R_o$$

(8) $R_o = R_o \left(c_{A_1 c_1 q_1} p \right)$

$$(9) \quad \chi_{A} = \frac{n_{A}}{n_{A} + n_{C}}$$

(13)
$$P V_{gas} = n_0 Rm T^{23}$$

(44) $V^{25} = V_{gas} + V_{eig}$

$$(44) \qquad \bigvee^{25} = \bigvee_{gab} + \bigvee_{eig}$$

(10)
$$N = N_A + N_B + N_C$$

(11) $C_{A_1C_1C_1C_2} = \frac{N_A}{V_{Q_1Q_1}}$
(12) $V_{Q_1Q_1} = N_A M_A - \frac{\Lambda}{P_A} + N_C M_C \frac{1}{P_C}$

Bubble reactor - DoF

Equation: #14 } DOF #11
Variables: #25

• Variables: $[n; N_{A,in}; N_{B,in}; N_{B,out}; N_P; S_R; R_A; R_B; R_C; n_A; x_A; n_B; R_0; c_{A,liq}; p; n_C; V_{liq}; M_A; \rho_A; M_C; \rho_C; V_{gas}; R_m; T; V]$

Bubble reactor – structural index

	S_R	R_A	R_B	R_c	R_0	n_C	x_A	$c_{A,liq}$	p	V_{gas}	V_{liq}
(4)	\otimes										
(5)		\bigotimes			X						
(6))	\bigotimes		X						
(7)				\otimes	X						
(8))	\bigotimes			X	X		
(9)						X	X				
(10)						\bigotimes					
(11)								8			X
(12)						X					\otimes
(13)									\bigotimes	X	
(14)										\otimes	×

-> structural index : regular

Bubble reactor – energy balance

(15)
$$\frac{dU^{26}}{dt} = N_{A,in} h_{A,in} + N_{B,in} h_{B,in}$$
- N - hB - NP hP

Bubble reactor - closure relations II

- · Assumptions: Adiabat reactor
 - Specific enthalpies of inputs are model inputs
 - Spedific enthalpies of pure substances A, B, C are given by $h_i = h_i(T, p)$

(19)
$$N_{c} = N_{c}(T_{1}p)$$

(20) $X_{c} = \frac{N_{c}}{N_{c} + N_{A}}$
(21) $U = H - pV$
(22) $H = N_{A}N_{A} + N_{B}N_{B} + N_{c}N_{A}$

Bubble reactor – structural index II

• Variables: $[n; N_{A,in}; N_{B,in}; N_{B,out}; N_P; S_R; R_A; R_B; R_C; n_A; x_A; n_B; R_0; c_{A,liq}; p; n_C; V_{liq}; M_A; \rho_A; M_C; \rho_C; V_{gas}; R_m; T; V U; h_{A,in}; h_{B,in}; h_B; h_P; h_A; x_C; h_C; H]$

H34 variables - H22 equentions: #12DoF Inputs: [Nain; Noin; Noint; Np; hain; hoin] Parameter [V, Pa, Pc, Ma, Mc, Rm]

		<u> </u>	• • •	<u> </u>						
	h_B	h_P	x_{C}	h_C	h_A	T	Н	n_C	p	x_A
(16)	X					\bigotimes			X	
(17)		8	X	×	X					\times
(18)					\otimes	X			×	
(19)				(X)		X			X	
(20)			8					X		
(21)							\otimes		X	
(22)	3			×	X		×	×		