

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II Chương 4 Mạch số

Nội dung

- ■Mạch số
- ■Mạch tổ hợp
- ■Thiết kế mạch tổ hợp
- ■Mạch tuần tự
- ■Thiết bị lưu trữ
- ■Bài tập

Kiến trúc
Vi kiến trúc
Luận lý
Mạch số

Mạch số (1/3)

- Mạch số là mạch thu nhận, truyền, lưu trữ và xử lý tín hiệu số
- Thiết kế mạch số:
 - Xác định chức năng của mạch số
 - ■Tìm mối quan hệ giữa các ngõ vào và các ngõ ra:
 - □Hàm Boolean
 - □Bảng chân trị
 - Xác định cấu trúc của mạch số (hiện thực)
 - Tìm và kết nối các thiết bị thực hiện các toán tử luận lý:
 - □AND, OR, NOT

1. Mạch số (2/3) – Xác định cấu trúc

Tên	Ký hiệu	Hàm Boolean
AND		F = AB
OR		F = A + B
NOT		$\mathbf{F} = \overline{\mathbf{A}}$

$$F = (\overline{A} + B)(C + D + E)$$

$$A \longrightarrow B \longrightarrow F$$

$$C \longrightarrow F$$

Hiện thực các hàm luận lý sau:

$$F1(A, B, C, D) = (\overline{A} + B)(C + D)B$$
$$F2(A, B, C, D) = (\overline{A} + BC)(C + ABD) + D$$

Mạch số (3/3) – Các cổng luận lý khác

Tên	Ký hiệu	Hàm Boolean	Bảng chân trị		Tên	Ký hiệu	Hàm	Båı	ng cl	nân	
			A	В	F			Boolean		trị	
		\supset $F = \overline{AB}$						$F = A \oplus B$	A	В	F
			0	0	1				0	0	0
NAND			0	1	1	XOR			0	1	1
			1	0	1				1	0	1
			1	1	0				1	1	0
			A	В	F						F
			- 11	D	1				A 	В	F
		$F = \overline{A + B}$	0	0	1	VNOR		$F = \overline{A \bigoplus B}$	0	0	1
NOR	NOR		0	1	0	XNOR (NXOR)			0	1	0
			1	0	0				1	0	0
			1	1	0				1	1	1

Hiện thực các hàm luận lý sau:

$$F1(A, B, C, D) = (\overline{AB} + C)\overline{A + B} + D$$

$$F2(A, B, C, D) = \overline{A} + (B \oplus C)(C + \overline{A \oplus D})$$

Mạch tổ hợp (1/2) – Thiết bị tổ hợp

- Thiết bị tổ hợp là thiết bị có tính chất sau:
 - ☐Có một hay nhiều ngõ vào
 - □Có một hay nhiều ngõ ra
 - □Có đặc tả chức năng mô tả chi tiết giá trị mỗi ngõ ra cho mọi tổ hợp giá trị của tất cả ngõ vào (Hàm Boolean)
 - □Có đặc tả định thời mô tả thời gian lan truyền (thời gian tối thiểu mà ngõ ra sẽ ổn định và hợp lệ khi 1 ngõ vào thay đổi)
- Ví dụ: AND, OR, NOT, XOR, XNOR, NAND, NOR

Mạch tổ hợp (2/2)

- Mạch tổ hợp là mạch chỉ chứa các thiết bị tổ hợp được kết nối với nhau và không tồn tại hồi tiếp
 - ☐ Một thiết bị tổ hợp cũng được xem là một mạch tổ hợp
 - □ Hồi tiếp: Ngõ ra được dùng như ngõ vào để tính toán lại ngõ ra

Thiết kế mạch tổ hợp (1/2)

- Mục tiêu: Có được bản vẽ sơ đồ mạch tối ưu nhất về diện tích
 - Hàm Boolean ánh xạ ngõ ra phải có biểu thức tối ưu nhất
 - ■Tối ưu luận lý (Đại số Boolean / K-map)
 - □Bảng chân trị biểu diễn chức năng của mạch
- Quy trình thiết kế

Thiết kế mạch tổ hợp (2/2) – Ví dụ

Bài toán: Thiết kế mạch báo động (A = 1) cho lái xe với các tình huống: Bugi bật (B = 1) và cửa mở (C = 0), hoặc chưa cài dây an toàn (D = 0) và bugi bật (B = 1).

В	C	D	A
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	

- Thiết kế mạch tổ hợp có chức năng phát hiện một ký số thập phân lớn hơn 7
 - □Gợi ý: 4 ngõ vào, 1 ngõ ra

Mạch tuần tự (1/2)

- Vấn đề của mạch tổ hợp:
 - □ Số lượng tín hiệu cần xử lý tăng lên
 - ■Tăng số lượng ngõ vào để nhận tín hiệu
 - Mạch trở nên phức tạp và khó để hiện thực
- Liên hệ thực tế: Chỉ có 1 phòng học nhưng có tới 3 lớp cần sử dụng
 - ☐Giải pháp: Chia 3 ca, mỗi lớp học 1 ca
- Áp dụng cho mạch số: Nhập nhiều tín hiệu cho 1 ngõ vào bằng cách "chia ca": Mạch tuần tự!

Mạch tuần tự (2/2) – Cấu trúc

Trạng thái là tổ hợp các giá trị được lưu trong các thiết bị lưu trữ

- Thiết bị lưu trữ: Lưu trữ trạng thái hiện tại
- Luận lý tổ hợp: Xử lý để xác định trạng thái kế tiếp và ngõ ra
- Ngô vào: Các ngô vào
- Ngô ra: Các ngô ra
- NAP: Ngõ vào điều khiển việc cập nhật giá trị

Thiết bị lưu trữ (1/4)

- Có ít nhất 1 ngô ra mang giá trị mà chúng lưu trữ (Q)
- Có ít nhất 1 ngô vào để thu nhận dữ liệu hoặc điều khiển
- Có 1 ngô vào NAP để điều khiển việc cập nhật giá trị (E, CLK)
 - □ Latch: Tích cực theo mức
 - ☐ Flipflop: Tích cực theo cạnh

Đọc và ghi theo một tín hiệu điều khiển

Thiết bị lưu trữ (2/4) - Latch

Latch là một thiết bị lưu trữ tích cực theo mức có khả năng lưu trữ 1 bit thông tin

E	D	Q	Q^+		
0	0	0	0		
0	0	1	1	-	
0	1	0	0	<u>E</u>	
	1	1	1	0	Q D
0	0	0	0	1	D
1		1	0		
1	1	0	1		
1	1	1	1		

Thiết bị lưu trữ (3/4) - Flipflop

■ Flipflop là một thiết bị lưu trữ tích cực theo cạnh có khả năng lưu trữ 1 bit thông tin

Hoàn thành dạng sóng của Q1 và Q2

■ Biết rằng C luôn luôn tích cực, lập bảng chân trị cho hàm luận lý Y(X, A, B)

Thiết bị lưu trữ (4/4) – Thanh ghi

- Thanh ghi là một thiết bị lưu trữ được cấu tạo bởi các flipflop nối chung ngô vào CLK
 - Có thể bổ sung khối luận lý tổ hợp để xử lý

■ INC là bộ tăng giá trị lên 1. Trong đó O là ngõ ra và I là ngõ vào. Mối quan hệ giữa O và I là: O = I + 1. REG là thanh ghi chứa 2 D flipflop. Giả sử ban đầu Q = 0, sau 4 lần ngõ vào CLK tích cực thì Q bằng bao nhiêu?

Bài tập (1/2)

Thiết kế mạch số phát hiện người chiến thắng trong một cuộc thi "oẳn tù tì" giữa 2 người.

Biết rằng 3 đòn được mã hóa như bên dưới:

Đòn	Mã hóa
Giấy	01
Kéo	10
Búa	11

Bài tập (2/2)

Ngõ vào D của D flipflop có biểu thức D = AR + E. Hãy vẽ dạng sóng của ngõ ra Q

THẢO LUẬN

