COA Division Algorithm

Contents

- 1. Restoring Division Algorithm
- 2. Non Restoring Division Algorithm
- 3. Examples

Restoring Division

Division of unsigned rittegers

Division is more complex operation than multiplication.

We know:

If Dividend = D

Divisor = V

Quotient = Q

& Remainder = R

Then, D = QV + R where $0 \le R \le V$

In case of Restoring Division method, three n bit registers: A, M, & Q are used

for dividing two n bit

numbers. Here, M = Holding

the Divisor

When Athe Az lgonithatote initial test dregister A contains the remainder account to the remaind

Restoring Division Algorithm Flowshart

Let us con**Example** dend Q = 7 = 0111 Divisor M = 3 = 0011

Initial Configuration:	M A	Q		<u>Size</u>
_	00011	00000 011	1	4
<u>Step 1:</u>				
LS (AQ)	00011	00000	111	
A=A-M	00011	11101	111	
As Sign of $A = -ve$ Set $Q[0] = 0$				
& Restore A	00011	00000	1110	3
& Restore 11	00011	00000	1110	3
<u>Step 2:</u>				
LS (AQ)	00011	00001	110	
A=A-M	00011	11110	110	
As Sign of $A = -ve$ Set $Q[0] = 0$				
& Restore A	00011	00001	1100	2
	30011	23001	1100	_

& Remainder A = 00001 = 1

Previous Colinguapia:	M	A	Q	Size
	00011	00001	1100	2
Step 3:				
LS (AQ)	00011	00011	100	
A=A-M	00011	00000	100	
As Sign of $A = +ve$				
Set Q[0] = 1	00011	00000	1001	1
Step 4:				
LS (AQ)	00011	00001	001	
A=A-M	00011	11110	001	
As Sign of A = -ve				
Set $Q[0] = 0$				
& Restore A	00011	00001	0010	0
Therefore, Ouotient $O = 0$	010 = 2			

Non Restoring Division

In case of Restoring Division method, some extra additions are required to restore the number, when A is -ve. Proper restructuring of the Restoring Division algorithm can eliminate that restoration step. This is known as Non restoring Division algorithm.

The three steps of Restoring Division algorithm were:

- Shift content of AQ register pair to the left one position.
- 2. A = A M
- 3. If the sign of A is +ve after step 2, set Q[0] = 1; otherwise set Q[0]= 0 and restore A.

Now, if step 3 is performed first and then step 1 followed by step 2, we may get two cases:

- If A is +ve, shifting A register to the left one position \equiv 2A M
- When A is -ve, first restore A by adding the content of M and then shift A to the left one position. After that A will be subtracted from; 8 i.e. $\equiv 2A + M$

Let us Example ividen	d Q = 7 =			
Divisor	M = 3 = 00	11		
Initial Configuration:	M A	Q		Size
	00011	00000	0111	4
<u>Step 1:</u>				
As Sign of $A = +ve$				
Left Shift (AQ)	00011	00000)	111 _
A= A- M	00011	1110	1	111 —
As Sign of $A = -ve$				
Set Q[0] = 0	00011	1110	1 1110	3
Step 2: As Sign of A = -ve				
Left Shift (AQ)	00011	11011		110
A = A + M	00011	11110	110	
As Sign of $A = -ve$				
Set Q[0] = 0	00011	11110	1100 2	

Non Restoring Division Algorithm Example

Example				<u>Size</u>
Previous Configuration: Step 3:	M A Q 00011	11110 11	100	2
As Sign of $A = -ve$	00011	11110 1	100	
Left Shift (AQ)	00011	11101	100	
A = A + M	00011	00000	100	_
As Sign of $A = +ve$				
Set Q[0] = 1	00011	00000	1001	1
Step 4:				
As $\stackrel{-}{\text{Sign}}$ of A = +ve				
Left Shift (AQ)	00011	00001	001	
A = A - M	00011	11110	001	
As Sign of A = -ve				
Set Q[0] = 0	00011	11110	0010	0
Therefore, Quotient $Q = 0$	010 = 2			4.0
& Remainder $A = 00001 = 1 (A = A + M)$				12