FRM Part 1

Book 3 - Financial Markets and Products

SWAPS

Learning Objectives

After completing this reading you should be able to:

- ✓ Explain the mechanics of a plain vanilla interest rate swap and compute its cash flows.
- Explain how a plain vanilla interest rate swap can be used to transform an asset or a liability and calculate the resulting cash flows.
- ✓ Explain the role of financial intermediaries in the swaps market.
- Describe the role of the confirmation in a swap transaction.
- Describe the comparative advantage argument for the existence of interest rate swaps and evaluate some of the criticisms of this argument.
- Explain how the discount rates in a plain vanilla interest rate swap are computed.
- Calculate the value of a plain vanilla interest rate swap based on two simultaneous bond positions.
- Calculate the value of a plain vanilla interest rate swap from a sequence of forward rate agreements (FRAs).
- Explain the mechanics of a currency swap and compute its cash flows.
- Explain how a currency swap can be used to transform an asset or liability and calculate the resulting cash flows.
- Calculate the value of a currency swap based on two simultaneous bond positions.
- ✓ Calculate the value of a currency swap based on a sequence of FRAs.
- ✓ Describe the credit risk exposure in a swap position.
- ✓ Identify and describe other types of swaps, including commodity, volatility, and exotic swaps.

What's an Interest Rate Swap?

 An interest rate swap is an agreement to exchange one stream of interest payments for another, based on a specified principal amount, over a specified period of time.

Example

What's an Interest Rate Swap?

- An interest rate swap is an agreement to exchange one stream of interest payments for another, based on a specified principal amount, over a specified period of time.
- Example

- First net payment for A: 5% (LIBOR+1%) = 4% LIBOR
- First net payment for B: (LIBOR+1%) − 5%) = LIBOR − 4%
- "One man's gain is another man's loss"
 - [Loser/winner depends on how LIBOR moves]

Cash Flows of a Plain Vanilla Interest Rate Swap

- In a plain vanilla interest rate swap, company A agrees to pay Company B a periodic fixed rate on a notional principal over the term of the swap.
- In return, Company B agrees to pay Company A a periodic floating rate on the same notional principal.
 - Both payments are in the same currency, and only the net payment is exchanged.
- The floating leg of the swap uses LIBOR as the reference rate. For example, the rate could be set at the three-month LIBOR + 1%.

Example

- Let's assume companies A and B have just entered into a two-year plain vanilla IRS with semiannual payments and the 6-month LIBOR as the reference.
- We assume further that the fixed leg is pegged at 2.75%, and the notional principal is \$10 million.

Cash Flows of a Plain Vanilla Interest Rate Swap

The fixed leg is pegged at 2.75%, and the notional principal is \$10 million.

Beginning of the period	LIBOR
1	2.0%
2	2.5%
3	3.0%
4	3.5%

End of period	LIBOR at beginning of period	Fixed cash flow	Floating cash flow	Net cash flow	Paid by
1	2.0%	137,500	100,000	37,500	А
2	2.5%	137,500	125,000	12,500	А
3	3.0%	137,500	150,000	12,500	В
4	3.5%	137,500	175,000	37,500	В

The Role of Financial Intermediaries and Confirmation In a Swap Transaction

- Just like in other OTC instruments, parties to a swap do not interact one on one.
 - A financial intermediary intertwines themselves between the parties such that all transactions occur through them.
 - In most cases, therefore, a swap party stays unaware of the identity of the party in the offsetting position.
- The details of each swap agreement are contained in a document called the confirmation.
 - Such documents are drafted by the International Swaps and Derivatives Association (ISDA).

The Comparative Advantage Argument

- Let's look at an example of two firms, A and B.
 - They could either borrow at the their fixed or floating borrowing rates, but A prefers floating and B prefers fixed.

Firm	Fixed borrowing	Floating borrowing
Α	6%	LIBOR + 100bp
В	8%	LIBOR + 250 <i>bp</i>

- Firm A has an absolute advantage in both markets but a comparative advantage in the fixed market.
- B has a comparative advantage in the floating market.
- When a comparative advantage exists, the implication is that the parties involved can reduce their borrowing costs by entering into a swap agreement.
- A borrows at fixed 6% and B borrows at LIBOR + 2.5%; Enter swap
- B pays A 7.75%; A pays B (LIBOR + 2.5%)
- Net Payment for A: +7.75% {LIBOR + 2.5%} 6% = LIBOR + 0.75%
- Net Payment for B: -{LIBOR + 2.5%} 7.75% + {LIBOR + 2.5%} = 7.75%

The Comparative Advantage Argument

 If we assume that the net borrowing savings are split evenly between the parties, we will divide the total borrowing savings by 2, i.e.

Borrowing saving
$$=\frac{\Delta \text{ fixed } - \Delta \text{ floating}}{2} = \frac{200bps - 150bps}{2} = 25bps$$

- A problem with the comparative advantage argument is that it assumes the floating rates will remain in force in the long-term.
 - In practice, the floating rate is reviewed at 6-month intervals and may increase or decrease to reflect the credit risk of the borrower.
 - It also assumes zero transaction costs even when an intermediary is involved in the swap.

Computing The Discount Rate In A Plain Vanilla Interest Rate Swap

- In essence, a swap is a series of cash flows, and therefore its value is determined by discounting all those cash flows to the present (valuation date).
 - The cash flows are discounted using spot rates developed using the swap curve.
- The curve makes use of the following relationship between forward rates and spot rates, assuming continuous compounding:

$$R_{forward} = R2 + (R2 - R1) \frac{T1}{T2 - T1}$$

- Where:
 - R_i = spot rate corresponding with T_i years
 - o $R_{forward}$ = forward rate between T_1 and T_2

Value of a Plain Vanilla Interest Rate Swap Using the Bond Methodology

- In essence, the pay fixed party has a long position in a floating rate (since it's an inflow) and a short position in the fixed rate (since it's an outflow).
- The pay floating party has a short position in the floating rate (since it's an outflow) and a long position in the fixed rate (since it's an inflow).
- If we denote the value of the swap as V_{swap} , the present value of fixed-leg payments as P_{fix} , and the present value of floating-leg payments as P_{float} , then:
 - To the pay fixed, receive floating,

$$V_{swap} = Pfloat - Pfix$$

To the pay floating, receive fixed,

The important thing to note here is that the two positions are **mirror images of each other**.

Currency Swap

 A currency swap works much like an interest rate swap, but there are several key differences:

A currency swap involves the exchange of **both principal and interest rate payments**, in different currencies.

Currency swaps use the spot exchange rate.

Because the principals in a currency swap are in different currencies, they are **exchanged at the inception of the swap**.

This ensures the principals have equal value using the spot exchange rate.

In a currency swap, there's **no netting of payments**, again because the payments are not in the same currency.

Currency Swap

- Currency swaps can be used to:
 - Transform a liability in one currency into a liability in a different currency.
 - Transform an **investment** in one currency into an **asset** in another currency.
- Two companies can also get into a currency swap to exploit their comparative advantages regarding borrowing in different currencies.

Example

- Firm X can borrow in \$ at 6%, or in £ at 4%
- Firm Y can borrow in \$ at 4.5%, or in £ at 3.2%
- If Firm X wants to borrow £, and Firm Y wants to borrow \$, the two may be able to able to save on their borrowing costs.
- That could happen if each borrows in the market in which they have a comparative advantage, and then swapping into their preferred currencies for their liabilities.

Other Types of Swaps

Equity swap

- One of the parties commits themselves to make payments reflecting the return on a stock, portfolio, or stock index.
- In turn, the counterparty commits themselves to make payments based on either a **floating rate** or a **fixed rate**.

Swaption

- A swaption gives the holder the right to enter into an interest rate swap.
- It's **purchased for a premium** whose value is determined by the strike rate specified in the swaption.
- Swaptions can either be American or European.

Commodity swap

 A floating (or market or spot) price based on an underlying commodity is traded for a fixed price over a specified period.

Book 3 - Financial Markets and Products

SWAPS

Learning Objectives Recap:

- Explain the mechanics of a plain vanilla interest rate swap and compute its cash flows.
- Explain how a plain vanilla interest rate swap can be used to transform an asset or a liability and calculate the resulting cash flows.
- ✓ Explain the role of **financial intermediaries in the swaps market**.
- ✓ Describe the role of the **confirmation in a swap transaction**.
- Describe the comparative advantage argument for the existence of interest rate swaps and evaluate some of the criticisms of this argument.
- Explain how the discount rates in a plain vanilla interest rate swap are computed.
- ✓ Calculate the value of a plain vanilla interest rate swap based on two simultaneous bond positions.
- Calculate the value of a plain vanilla interest rate swap from a sequence of forward rate agreements (FRAs).
- Explain the mechanics of a currency swap and compute its cash flows.
- Explain how a currency swap can be used to transform an asset or liability and calculate the resulting cash flows.
- Calculate the value of a currency swap based on two simultaneous bond positions.
- Calculate the value of a currency swap based on a sequence of FRAs.
- ✓ Describe the **credit risk exposure in a swap position**.
- ✓ Identify and describe **other types of swaps**, including commodity, volatility, and exotic swaps.