IE 525 - Numerical Methods in Finance

Monte Carlo simulation - variance reduction

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

CLiming Feng. Do not distribute without permission of the author

Variance reduction

ullet For i.i.d. $\{X_i, i \geq 1\}$ with $\mu = \mathbb{E}[X_1], \sigma^2 = \mathsf{var}(X_1)$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\sim\frac{\sigma}{\sqrt{n}}N(0,1)$$
 approximately

- Monte Carlo methods converge at rate $1/\sqrt{n}$: need to quadruple sample size to halve standard error
- Might be easier to reduce σ^2 (and hence σ) using variance reduction techniques
- In European call example: using antithetic variates, standard deviation nearly halves (would need to quadruple sample size to achieve the same standard error in the standard approach)

Control variates

• Interested in $\mathbb{E}[Y]$: generate i.i.d. $\{Y_i \sim Y, i \geq 1\}$. Standard approach: estimate $\mathbb{E}[Y]$ with

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

- Suppose
 - X and Y are correlated
 - $\mathbb{E}[X]$ is known (and hence the error $\mathbb{E}[X] X_i$ for any $X_i \sim X$)
 - Error of Y_i is "proportional" to error of X_i

$$\mathbb{E}[Y] - Y_i \approx b(\mathbb{E}[X] - X_i)$$

• Using X_i 's as control variates: generate i.i.d. $\{(X_i, Y_i) \sim (X, Y), i \geq 1\}$. Let

$$Y_i^b = Y_i + b(\mathbb{E}[X] - X_i)$$

and corresponding estimator

$$\bar{Y}_n^b = \frac{1}{n} \sum_{i=1}^n (Y_i + b(\mathbb{E}[X] - X_i))$$

By law of large numbers,

$$\bar{Y}_n^b \to \mathbb{E}[Y] + b(\mathbb{E}[X] - \mathbb{E}[X]) = \mathbb{E}[Y]$$

• Variance of \bar{Y}_n^b given by

$$\operatorname{var}(\bar{Y}_n^b) = \frac{1}{n} (\sigma_Y^2 + b^2 \sigma_X^2 - 2b\sigma_X \sigma_Y \rho_{XY})$$

where $\sigma_Y^2 = \text{var}(Y)$, $\sigma_X^2 = \text{var}(X)$, $\rho_{XY} = \text{corr}(X, Y)$

• In contrast, without control variates (b=0)

$$\operatorname{var}(\bar{Y}_n) = \frac{1}{n} \sigma_Y^2$$

Better estimation when

$$b^2 \sigma_X^2 - 2b\sigma_X \sigma_Y \rho_{XY} < 0$$

Best performance when (optimally controlled)

$$b = b^* = \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}$$

$$\operatorname{\mathsf{var}}(\bar{Y}_n^{b^*}) = (1 - \rho_{XY}^2)\operatorname{\mathsf{var}}(\bar{Y}_n)$$

High correlation preferred:

$$ho_{XY} = 0.9487, \quad 1 - \rho_{XY}^2 = 10\%$$
 $ho_{XY} = 0.8660, \quad 1 - \rho_{XY}^2 = 25\%$
 $ho_{XY} = 0.7071, \quad 1 - \rho_{XY}^2 = 50\%$

 94.87% correlation leads to a standard error that can only be achieved by increasing the sample size by 10 times in the standard approach • Usually, b^* has to be estimated (e.g., using J = 1000 pairs of (X_i, Y_i))

$$\hat{b}_J := rac{\sum_{i=1}^J (X_i - \bar{X}_J)(Y_i - \bar{Y}_J)}{\sum_{i=1}^J (X_i - \bar{X}_J)^2}$$

By law of large numbers, with probability one

$$\hat{b}_J o b^* = rac{\mathsf{cov}(X,Y)}{\mathsf{var}(X)}, \ \ J o + \infty$$

Example: pricing European options

ullet Pricing a European option with payoff $G(S_T)$

$$e^{-rT}\mathbb{E}[G(S_T)]$$

For a European vanilla call, $G(S_T) = (S_T - K)^+$

Simple control variates: asset price itself

$$\mathbb{E}[S_T] = S_0 e^{(r-q)T}$$

• Computing $\mathbb{E}[Y] := \mathbb{E}[G(S_T)]$ using control variates:

$$Y_i = G(S_T^i), X_i = S_T^i, Y_i^b = Y_i + b(S_0 e^{(r-q)T} - X_i)$$

Example: pricing Asian options

• Pricing a discrete Asian call option with maturity T, strike K, m monitoring times $t_j = j\delta, 1 \le j \le m, \delta = T/m$

$$V = e^{-rT}\mathbb{E}[\left(\bar{S}_{\mathcal{T}} - \mathcal{K}\right)^{+}], \quad \bar{S}_{\mathcal{T}} = \frac{1}{m}\sum_{j=1}^{m} S_{t_{j}}$$

Simulate n sample paths, for ith sample path, compute

$$Y_i = \left(rac{1}{m}\sum_{j=1}^m S_{t_j}^i - K
ight)^+$$

- Correlation between $(\bar{S}_T K)^+$ and S_T not strong
- Better control variates: geometric Asian call

$$X = \left(\left(\prod_{j=1}^m S_{t_j} \right)^{1/m} - K \right)^+$$

The geometric average is log-normally distributed in BSM

$$\left(\prod_{j=1}^m S_{t_j}\right)^{1/m} = S_0 \exp\left((r-q-\frac{1}{2}\sigma^2)\frac{1}{m}\sum_{j=1}^m t_j + \frac{\sigma}{m}\sum_{j=1}^m B_{t_j}\right)$$

• Since $t_j = j\delta$,

$$\frac{1}{m}\sum_{i=1}^{m}t_{i}=\frac{1}{2}(m+1)\delta=\frac{1}{2}(T+\delta):=\tilde{T}$$

• Since $\{B_t, t \geq 0\}$ is a standard BM

$$\frac{\sigma}{m}\sum_{i=1}^{m}B_{t_j}=\frac{\sigma}{m}\Big(B_{m\delta}-B_{(m-1)\delta}+2(B_{(m-1)\delta}-B_{(m-2)\delta})+\cdots+mB_{\delta}\Big)$$

is normal with mean 0 and variance

$$\frac{\sigma^2}{m^2}(1+4+\cdots m^2)\delta = \frac{\sigma^2}{6m^2}m(m+1)(2m+1)\delta = \frac{2m+1}{3m}\sigma^2\tilde{T}$$

• Define $\tilde{\sigma}$ such that

$$\tilde{\sigma}^2 = \frac{2m+1}{3m}\sigma^2$$

and denote

$$\tilde{q} = q + \frac{1}{2}\sigma^2 - \frac{1}{2}\tilde{\sigma}^2$$

then

$$\left(\prod_{j=1}^{m} S_{t_{j}}\right)^{1/m} \sim S_{0} \exp\left(\left(r - q - \frac{1}{2}\sigma^{2}\right)\tilde{T} + \tilde{\sigma}B_{\tilde{T}}\right)$$

$$= S_{0} \exp\left(\left(r - \tilde{q} - \frac{1}{2}\tilde{\sigma}^{2}\right)\tilde{T} + \tilde{\sigma}B_{\tilde{T}}\right) := \tilde{S}_{\tilde{T}}$$

For the geometric Asian call

$$\mathbb{E}[X] = e^{r\tilde{T}} \mathbb{E}[e^{-r\tilde{T}} (\tilde{S}_{\tilde{T}} - K)^{+}] = e^{r\tilde{T}} \times \mathsf{BS} \; \mathsf{call} \; \mathsf{price}$$

where the Black-Scholes call price is obtained with interest rate r, continuous yield \tilde{q} , volatility $\tilde{\sigma}$, strike K, maturity \tilde{T} , initial asset price S_0

Control variate method for pricing discrete Asian call options

$$Y_i^b = Y_i + b(\mathbb{E}[X] - X_i)$$

where $\mathbb{E}[X]$ is computed as above

Effectiveness

• Effectiveness depends on correlation ρ_{XY} , which may depend on parameters in the problem: e.g., for European call in the BSM ($r=5\%, \sigma=0.3, S_0=50, T=0.25$), the lower K, the greater the correlation between $Y=(S_T-K)^+$ and $X=S_T$

K	40	50	60
ρ	99.5%	89.5%	60.4%
$1-\rho^2$	1%	20%	64%

• For Asian call in the BSM $(r = 5\%, \sigma = 0.3, S_0 = 50, T = 0.25, K = 50, m = 13)$: $Y = \left(\frac{1}{m}\sum_{j=1}^{m}S_{t_j} - K\right)^+, X = S_T \text{ or } (S_T - K)^+ \text{ or } \left(\left(\prod_{j=1}^{m}S_{t_j}\right)^{1/m} - K\right)^+$

Figure: Correlations are 0.79, 0.85, > 0.99 respectively

Using geometric Asian call as control is the most efficient

Example: pricing in non-BSM models

Want to price a contract in the following model

$$dS_t = (r - q)S_t dt + \sigma_t S_t dB_t$$

where σ_t is a function of t and/or S_t as in local volatility models or governed by a separate stochastic process as in stochastic volatility models

• Using Ito formula, $X_t = \ln(S_t)$ is governed by

$$dX_t = (r - q - \frac{1}{2}\sigma_t^2)dt + \sigma_t dB_t$$

• For $\delta = T/m$, $t_i = i\delta$, Euler discretization leads to

$$X_{t_{i+1}} - X_{t_i} = (r - q - \frac{1}{2}\sigma_{t_i}^2)\delta + \sigma_{t_i}(B_{t_{i+1}} - B_{t_i})$$

or equivalently

$$S_{t_{i+1}} = S_{t_i} \exp\left((r - q - \frac{1}{2}\sigma_{t_i}^2)\delta + \sigma_{t_i}(B_{t_{i+1}} - B_{t_i})\right)$$

• Starting from S_0 , $\{S_{t_1},\cdots,S_{t_m}\}$ can be simulated by replacing $B_{t_{i+1}}-B_{t_i}$ by $\sqrt{\delta}Z_{i+1}$ for $Z_{i+1}\sim N(0,1)$

- For European call with strike K, one generates replicates for $Y = (S_{t_m} K)^+$ as above
- For a control, starting from S_0 , generate a sequence $\{\hat{S}_{t_1}, \cdots, \hat{S}_{t_m}\}$ as follows:

$$\hat{S}_{t_{i+1}} = \hat{S}_{t_i} \exp\left((r - q - \frac{1}{2}\sigma^2)\delta + \sigma\sqrt{\delta}Z_{i+1}\right)$$

where σ is a constant and typical value of σ_t .

• Let $X = (\hat{S}_{t_m} - K)^+$. $\mathbb{E}[X]$ is known through Black-Scholes formula. X serves as the control