Методы доменной адаптации

Безлепский, Прохоров 5030102/10401

Постановка проблемы

GTA 5 & SYNTHIA

Cityscape

Наши данные

USA:

Russia:

| 15.00 | 10.00 | 10.40 | 17.00 | 15.0

Спектральные индексы

Data Descriptor | Open access | Published: 08 April 2023

A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research

<u>David Montero</u> , <u>César Aybar</u>, <u>Miguel D. Mahecha</u>, <u>Francesco Martinuzzi</u>, <u>Maximilian Söchting</u> & <u>Sebastian</u>

Wieneke

Scientific Data 10, Article number: 197 (2023) | Cite this article

23k Accesses | 78 Altmetric | Metrics

short	long	type	formula
LSWI	Land Surface Water Index	water	(N - S1)/(N + S1)
BI	Bare Soil Index	soil	((S1 + R) - (N + B))/((S1 + R) + (N + B))
BNDVI	Blue Normalized Difference Vegetation Index	vegetation	(N - B)/(N + B)
MGRVI	Modified Green Red Vegetation Index	vegetation	(G ** 2.0 - R ** 2.0) / (G ** 2.0 + R ** 2.0)
NDCI	Normalized Difference Chlorophyll Index	water	(RE1 - R)/(RE1 + R)
NLI	Non-Linear Vegetation Index	vegetation	((N ** 2) - R)/((N ** 2) + R)
INLI	Non-Linear vegetation index	vegetation	((N 2) - N)/((N 2) + N)

Channels N 0 1 2 3 4 5 6 7 8 9 Sentinel-2A B02 B03 B04 B05 B06 B07 B08 B8A B11 B12 Standard B G R RE1 RE2 RE3 N N N S1 S2

Архитектура CNN

```
self.spatial_transforms = Compose([
    RandomVerticalFlipWithMask(p=0.5),
    RandomHorizontalFlipWithMask(p=0.5),
self.non_spatial_transforms = Compose([
    RandomBrightnessContrast(p=0.2),
    ChannelDropout(channel_drop_range=(1, 2), fill_value=0, p=0.3)
]) if transforms is None else transforms
                    class
```

Наблюдаемые метрики

Точность (**Precision**): показывает, насколько точна модель при предсказании определенного класса местности. Другими словами, она отвечает на вопрос: "Из всех пикселей, которые модель отнесла к определенному классу местности, сколько на самом деле принадлежат этому классу?"

Полнота (Recall): измеряет, насколько хорошо модель идентифицирует все пиксели, относящиеся к определенному классу местности. Она отвечает на вопрос: "Из всех пикселей, которые на самом деле принадлежат определенному классу местности, сколько модель правильно идентифицировала?"

F1-мера: сбалансированная метрика, которая объединяет точность и полноту. Она предоставляет единственное значение, отражающее общую производительность модели, используя гармоническое среднее точности и полноты.

Использовалось макроусреднение метрик по классам

$$Precision = \frac{True Positives (TP)}{True Positives (TP) + False Positives (FP)}$$

$$Recall = \frac{True Positives (TP)}{True Positives (TP) + False Negatives (FN)}$$

$$F1$$
-score = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

Процесс обучения

Модель 1: без доменной адаптации

Модель 2: с доменной адаптацией

Результаты эксперимента

Спасибо за внимание

