Date: Mar 28 Made by Eric

In this note, V always stand for an inner product vector space over $\mathbb F$

Definition and Theorem

Definition 1. If $\langle w, v \rangle = 0$, then $w \perp v$

Definition 2. Let $S \subseteq V$

$$S^{\perp} = \{ w \in V | \forall v \in S, w \perp v \}$$

Definition 3. Let $S \subseteq V$

S is an orthogonal set if
$$\forall v, v' \in S, v \perp v'$$

Theorem 1. Let S be an orthogonal set

S is linearly independent

Proof. Write
$$S = \{v_1, v_2, ..., v_n\}$$

We prove by induction

Base step: $\{v_1, v_2\}$ is linearly independent

Assume $\{v_1, v_2\}$ is linearly dependent

Write $v_2 = cv_1, \exists c \neq 0 \in \mathbb{F}$

$$\langle v_1, v_2 \rangle = \overline{c} \langle v_1, v_1 \rangle \neq 0$$
 CaC

Induction step: $\{v_1,\ldots,v_k\}$ is independent $\implies \{v_1,\ldots,v_{k+1}\}$ is independent

Assume $\{v_1, \ldots, v_{k+1}\}$ is linearly dependent

Write
$$v_{k+1} = a_1 v_1 + \dots + a_k v_k$$

Pick $i: 1 \le i \le k$, such that $a_i \ne 0$

$$\langle v_{k+1}, v_i \rangle = \langle a_1 v_1 + \dots + a_k v_k, v_i \rangle = a_i \langle v_i, v_i \rangle \neq 0$$
 CaC

Theorem 2. Let $S \subseteq V$

$$S^{\perp}$$
 is a subspace of V

Proof. Let $w, w' \in S^{\perp}$

$$\forall v \in S, \langle w+w',v\rangle = \langle w,v\rangle + \langle w,'v\rangle = 0 + 0 = 0 \implies w+w' \in S^{\perp}$$

$$\forall c \in \mathbb{F}, \forall v \in V, \langle cw, v \rangle = c \langle w, v \rangle = 0 \implies \forall c \in \mathbb{F}, cw \in S^{\perp}$$

Theorem 3. Let $S = \{w_1, w_2, \dots, w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, \dots, v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_i\|^2} v_j$$
 for $2 \le k \le n$

Then S' is an orthogonal basis of span(S)

Proof. We prove by induction

Base step:
$$span(v_1, v_2) = span(w_1, w_2)$$

$$v_1 = w_1 \in W$$

$$v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\|v_1\|^2} v_1 \in W$$

$$c_1v_1 + c_2v_2 = 0 \implies (c_1 - c_2 \frac{\langle w_2, v_1 \rangle}{\|v_1\|^2})w_1 + c_2w_2 = 0$$

So
$$c_2 = 0$$

$$c_1 = 0$$

Then v_1, v_2 is linearly independent

Induction step:
$$span(v_1, ..., v_k) = span(w_1, ..., w_k) \implies span(v_1, ..., v_{k+1}) = span(w_1, ..., w_{k+1})$$

$$v_{k+1} = w_{k+1} - \sum_{j=1}^{k} \frac{\langle w_{k+1}, v_j \rangle}{\|v_j\|^2} v_j \in W$$

Let $1 \le i \le k$

$$\langle v_{k+1}, v_i \rangle = \langle w_{k+1} - \sum_{j=1}^k \frac{\langle w_{k+1}, v_j \rangle}{\|v_j\|^2} v_j, v_i \rangle = \langle w_{k+1}, v_i \rangle - \sum_{j=1}^k \frac{\langle w_{k+1}, v_j \rangle}{\|v_j\|^2} \langle v_j, v_i \rangle = \langle w_{k+1}, v_i \rangle - \frac{\langle w_{k+1}, v_i \rangle}{\|v_i\|^2} \langle v_i, v_i \rangle = \langle w_{k+1}, v_i \rangle - \langle w_{k+1}, v_i \rangle = 0$$

Then $\{v_1,\ldots,v_{k+1}\}$ consist an orthogonal set, thus linearly independent

REMARK: Notice the process is
$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j$$
, but not $v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle v_k, w_{k+1} \rangle}{\|v_j\|^2} \langle v_j, v_i \rangle$

Corollary 3.1. Let S' be an orthogonal subset of V

We can extend S' to be an orthogonal basis containing S'

Theorem 4. Let $S = \{v_1, \dots, v_k\}$ be an orthogonal subset of V. Let $y \in span(S)$

$$y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$$

Proof. S is linearly independent, so S is a basis of span(S)

Write
$$y = \sum_{i=1}^k a_i v_i, \exists a_i \in \mathbb{F}$$

Then for each $1 \leq j \leq k$, we have $\langle y, v_j \rangle = \sum_{i=1}^k a_i \langle v_i, v_j \rangle = a_j \langle v_j, v_j \rangle$

So
$$a_j = \frac{\langle y, v_j \rangle}{\|v_j\|^2}$$

Corollary 4.1. Let V be a finite dimensional inner product space with an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$. Let T be a linear operator on β . Let $A = [T]_{\beta}$

$$A_{i,j} = \langle T(v_j), v_i \rangle$$

Definition 4. Let β be an orthonormal subset of an inner product space V, and let $x \in V$

The **Fourier coefficients** of x relative to β is $\langle x, y \rangle$, where $y \in \beta$

Theorem 5. Let W be a finite-dimensional subspace of V, and let $y \in V$

there exists unique $u \in W$ and $z \in W^{\perp}$, such that y = u + z

Proof. Let $\{w_1, \ldots, w_n\}$ be a basis of W

Let
$$u = \sum_{i=1}^{n} \frac{\langle y, w_i \rangle}{\|w_i\|^2} w_i$$

Let z = y - u

$$\forall 1 \leq i \leq n, \langle z, w_i \rangle = \langle y - u, w_i \rangle = \langle y, w_i \rangle - \langle u, w_i \rangle = \langle y, w_i \rangle - \sum_{j=1}^n \frac{\langle y, w_j \rangle}{\|w_j\|^2} \langle w_j, w_i \rangle = \langle y, w_i \rangle - \frac{\langle y, w_i \rangle}{\|w_i\|^2} \langle w_i, w_i \rangle = \langle y, w_i \rangle - \langle y, w_i \rangle = 0$$

So $z \in W^{\perp}$, such pair of u, z at least exists

Let u+z=u'+z', where $u'\in W$ and $z'\in W^{\perp}$

$$\begin{array}{ll} u-u'=z'-z\in W\cap W^\perp \implies u-u'=z'-z=0 \implies u=u' \text{ and } z=z' \end{array}$$

Theorem 6. Let W be a finite-dimensional subspace of V

$$V=W\oplus W^\perp$$

Proof. Let $\{w_1, \ldots, w_n\}$ be a basis of W

Let $\{v_1, \dots\}$ be a basis of W^{\perp}

We now prove $\{w_1, \ldots, w_n\} \cup \{v_1, \ldots\}$ is a basis of V

Assume $\{w_1, \ldots, w_n\} \cup \{v_1, \ldots\}$ is linearly dependent

Let
$$\sum_{I} c_i w_i + \sum_{J} c_j v_j = 0, \exists \{c_i \neq 0 | i \in I\}, \{c_j \neq 0 | j \in J\}, I, J$$

Such non-empty J must exists, otherwise $\{w_1,\ldots,w_n\}$ is linearly dependent, CaC

Then we see $0=\sum_I c_i w_i+\sum_J c_j v_j=2\sum_I c_i w_i+2\sum_J c_j v_j$, where $\sum_I c_i w_i\neq 0$ (otherwise, $\{w_1,\ldots,w_n\}$ is linearly independent) CaC to the uniqueness of Theorem 5

Exercises

2.(a)

Proof. $v_1 = \frac{1}{\sqrt{2}}(1, 0, 1)$ $v_2 = \sqrt{\frac{4}{6}}(\frac{1}{-2}, 1, \frac{1}{2})$ $v_3 = \sqrt{3}(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3})$ $\langle x, v_1 \rangle = \frac{1}{\sqrt{2}}(3)$ $\langle x, v_2 \rangle = \sqrt{\frac{3}{2}}$ $\langle x, v_3 \rangle = 0$

2.(c)

Proof. $v_1 = 1$

$$v_2 = \sqrt{12}(x - \frac{1}{2})$$

$$v_3 = \sqrt{180}(x^2 - x + \frac{1}{6})$$

$$h(x) = \frac{3}{2}v_1 + \frac{\sqrt{12}}{12}v_2$$

4.

Proof.
$$S^{\perp} = span((2, -1 + i, -2i))$$

6.

Proof. Pick a basis $\{w_1, \ldots, w_n\}$ of W

Do Gram-Schmidt on $\{w_1,\ldots,w_n\}$ and we have an orthogonal basis $\{w'_1,\ldots,w'_n\}$ of W

Extend
$$\{w'_1,\ldots,w'_n\}$$
 to a basis $\{w'_1,\ldots,w'_n,v_{n+1},\ldots,v_k,\ldots\}$ of V

Do Gram-Schmidt on $\{w_1',\ldots,w_n',v_{n+1},\ldots,v_k\}$ and we have an orthogonal basis $\{w_1',\ldots,w_n',v_{n+1}',\ldots,v_k',\ldots\}$ of V

Express
$$x = a_1 w'_1 + \dots + a_n w'_n + a_{n+1} v'_{n+1} + \dots + a_k v'_k + \dots$$

We know there exists $i: n+1 \le i \le k$, such that $a_i \ne 0$, otherwise, $x \in W$

$$\langle x, v_i' \rangle = \langle a_i v_i', v_i' \rangle = a_i \langle v_i', v_i' \rangle \neq 0$$

11.

Proof. Let $Row: M_{n\times n}(\mathbb{F})\times i\to \mathbb{F}^n$ maps (A,i) to (the i-th row of $A)^t$

Let $Col: M_{n\times n}(\mathbb{F}) \times i \to \mathbb{F}^n$ maps (A, i) to (the i-th column of A)

Let $\overline{(x_1,x_2,\ldots,x_n)}$ be defined by $(\overline{x_1},\overline{x_2},\ldots,\overline{x_n})$

Notice $Col(A^*, j) = \overline{Row(A, j)}$

From $AA^* = I$, we know that $\langle Row(A, i), Col(A^*, j) \rangle = 0$, if $i \neq j$, and that $\langle Row(A, i), Col(A^*, j) \rangle = 1$, if i = j

So $\forall i \neq j, \langle Row(A, i), Row(A, j) \rangle = 0$, and $\forall i, \langle Row(A, i), Row(A, i) \rangle = 1$

This implies that the rows of A form an orthonormal basis for \mathbb{C}^n

Conversely, the rows of A form an orthonormal basis for \mathbb{C}^n implies that $\forall i \neq j, \langle Row(A,i), Row(A,j) \rangle = 0$, and $\forall i, \langle Row(A,i), Row(A,i) \rangle = 1$

And this implies that $\langle Row(A,i), Col(A^*,j) \rangle = 0$, if $i \neq j$, and that $\langle Row(A,i), Col(A^*,j) \rangle = 1$, if i=j

This tell us $AA^* = I$

13.

13.(a)

Proof. Let $x \in S^{\perp}$

$$\forall s \in S, x \perp s \implies \forall s \in S_0, x \perp s_0$$

So
$$x \in S_0^{\perp}$$

13.(b)

Proof. Let $s \in S$

$$\forall x \in S^{\perp}, x \perp s \implies s \in (S^{\perp})^{\perp}$$

13.(c)

Proof. $W \subseteq (W^{\perp})^{\perp}$ by 13.(b)

Let $x \in (W^{\perp})^{\perp}$

Let $\{v_1, \dots\}$ be a basis of W^{\perp}

and $\{w_1,\ldots,w_n\}$ be an orthogonal basis of W

Assume $x \notin W$

Write
$$x = \sum_{i=1}^{n} c_i w_i + \sum_{J} c_j v_j, \exists \{c_1, \dots, c_n\}, \{c_j \neq 0 | j \in J\}, J$$

There must exists such non-empty J , otherwise $x \in W$

Arbitrarily pick k from J

$$\langle x, v_k \rangle = \langle \sum_{i=1}^n c_i w_i + \sum_J c_j v_j, v_k \rangle = c_k \langle v_k, v_k \rangle \neq 0 \text{ CaC to that } x \in (W^\perp)^\perp$$

13.(d)

Proof. This is Theorem 6

18.

Proof. We now prove $W_o \subseteq W_e^{\perp}$

Let $f \in W_o$

Let $g \in W_e$

fg is an odd function

So
$$\int_{-1}^{1} fg dt = 0$$

That is $\langle f,g \rangle = 0$ (done)

We now prove $W_e^{\perp} \subseteq W_o$

Let
$$f\in W_e^\perp$$

We know $1 \in W_e$

So we know $\langle f,1\rangle=0$

That is
$$\int_{-1}^{1} f 1 dt = 0$$

So f is an odd function, an element of W_o (done)

19.(b)

Proof.
$$(2,1,3) = (\frac{29}{14}, \frac{17}{14}, \frac{20}{7}) + (\frac{-1}{14}, \frac{-3}{14}, \frac{1}{7})$$

19.(c)

Proof.
$$x + \frac{13}{3}$$