INTELIGÊNCIA ARTIFICIAL INTRODUÇÃO

Luís Morgado 2015

INTELIGÊNCIA ARTIFICIAL

Artificial Intelligence, or **AI**, is the field that studies the synthesis and analysis of computational agents that act intelligently.

[Poole & Mackworth, 2010]

INTELIGÊNCIA ARTIFICIAL PARA SISTEMAS AUTÓNOMOS

INTELIGÊNCIA ARTIFICIAL

PERSPECTIVA ANTROPOMÓRFICA Inteligência humana como referência

CICLO: PERCEPÇÃO – DELIBERAÇÃO – ACÇÃO

- Tarefas consideradas difíceis para os humanos são facilmente realizáveis por computadores
- Tarefas aparentemente fáceis para os humanos são extremamente difíceis de realizar por computadores

EXEMPLO: BACTÉRIAS

- Under nutritional stress bacterial colonies can organize themselves in such a way so as to maximize nutrient availability
- Bacteria reorganize themselves under antibiotic stress
- Individual cells of myxobacteria and cellular slime moulds coordinate to produce complex structures or move as multicellular entities

PRINCIPAIS PARADIGMAS DE IA

SIMBÓLICO

A inteligência é resultante da acção de processos computacionais sobre estruturas simbólicas

CONEXIONISTA

A inteligência é uma propriedade emergente das interacções de um número elevado de unidades elementares de processamento

COMPORTAMENTAL

A inteligência resulta da dinâmica comportamental individual e conjunta de múltiplos sistemas a diferentes escalas de organização

PARADIGMA SIMBÓLICO

HIPÓTESE DO SISTEMA DE SÍMBOLOS FÍSICO

(Alan Newell e Herbert Simon, 1976)

Um sistema de símbolos físico tem os meios necessários e suficientes para a actividade inteligente em geral.

Independentemente desta conjectura ser ou não verdade a computação simbólica tornou-se um dos suportes principais da inteligência artificial.

INTELIGÊNCIA = PROCESSOS + ESTRUTURAS SIMBÓLICAS

REPRESENTAÇÃO SIMBÓLICA

REPRESENTAÇÕES SIMBÓLICAS

ESTRUTURAS DE SÍMBOLOS

SÍMBOLOS
SIGNIFICADO?

REPRESENTAÇÕES SIMBÓLICAS

ESTRUTURAS DE SÍMBOLOS

SÍMBOLOS
SIGNIFICADO?

REPRESENTAÇÕES SIMBÓLICAS

SÍMBOLOS COMO REPRESENTAÇÃO DA REALIDADE

ANCORAGEM SIMBÓLICA

(Symbolic Grounding)

REPRESENTAÇÃO DE CONHECIMENTO

CONSTRUÇÃO DE SIGNIFICADO ATRAVÉS DE RELACIONAMENTO

REDE SEMÂNTICA ONTOLOGIA

REPRESENTAÇÃO DE CONHECIMENTO

DADOS, INFORMAÇÃO, CONHECIMENTO

Hidden layer

MEMÓRIA ASSOCIATIVA

GERAÇÃO DE COMPORTAMENTO POR RECONHECIMENTO DE PADRÕES

GERAÇÃO DE COMPORTAMENTO ATRAVÉS DE MAPAS TOPOGRÁFICOS

Sensory topographic map (metrically deformed) Motor topographic map Arm $(\theta, \varphi) = f(\alpha, \beta)$

FORMAÇÃO DE CONCEITOS COM BASE EM PROTÓTIPOS

PARADIGMA COMPORTAMENTAL

COMO SABER SE UM COMPUTADOR É INTELIGENTE?

TESTE DE TURING

(Alan Turing, 1950)

O teste consiste numa conversa que um avaliador humano estabelece com um computador e outro humano.

Um computador é inteligente se o avaliador não for capaz de distinguir se foi o computador ou o ser humano que respondeu às suas perguntas.

A fim de testar a inteligência do computador e não a sua capacidade de transformar palavras em sons, a conversa é limitada a um canal de texto.

THE CHINESE ROOM EXPERIMENT

(John Searle, 1980)

LIMITES COMPUTACIONAIS

COMPUTABILIDADE E NÃO-COMPUTABILIDADE

Existe alguma actividade que não possa ser feita de forma mecânica (algorítmica)?

Um problema é solúvel algoritmicamente se existe uma Máquina de Turing que resolva esse problema.

EXISTEM PROBLEMAS INSOLÚVEIS ALGORITMICAMENTE!

(Alan Turing, 1936)

REMOTE AGENT EXPERIMENT (RAX)

NASA Deep Space 1 Mission

- Controlo de voo com base em tecnologia de agentes inteligentes
- Planeamento automático para concretização de objectivos de missão
- Detecção e recuperação de falhas

MARS ROVER

[http://ti.arc.nasa.gov/projects/remote-agent]

SISTEMAS ROBÓTICOS

Domésticos, industriais, militares

RECONHECIMENTO DE PADRÕES E VISÃO ARTIFICIAL

JOGOS DE COMPUTADOR E APLICAÇÕES INTERACTIVAS

CONTROLO LOGÍSTICO

Gestão de materiais e transportes Sistemas de armazenamento Instalações industriais

INSTALAÇÕES FABRIS

Automação de linhas de produção (e.g. indústria automóvel) Escalonamento de produção

SERVIÇOS DE LARGA ESCALA

Produção e distribuição de energia Captação e distribuição de água Telecomunicações

CORREIOS

Reconhecimento automático de endereços Separação e encaminhamento de correio

BANCOS

Leitura automática de cheques Verificação de assinaturas Apoio à decisão na atribuição de crédito Detecção automática de fraudes

MERCADOS FINANCEIROS

Gestão de investimentos Transacções financeiras

TRANSPORTE INTELIGENTE (ITS)

BIBLIOGRAFIA

[Poole & Mackworth, 2010]

D. Poole, A. Mackworth, *Artificial Intelligence: Foundations of Computational Agents*, Cambridge University Press, 2010.

[Gardner, 1993]

H. Gardner, Frames Of Mind: The Theory Of Multiple Intelligences, Basic Books, 1993.

[Ben-Jacob, 1998]

E. Ben-Jacob, Bacterial Wisdom, Godel's Theorem and Creative Genomic Webs, Physica A 48,57-76, 1998.

[Damásio, 2003]

A. Damásio, O Sentimento de Si, Publicações Europa-América, 2003.

[Mainzer, 1990]

K. Mainzer, *Thinking in Complexity: The Computational Dynamics of Matter, Mind and Mankind (4th ed.)*, Springer, 2004.

[Franklin, 1997]

S. Franklin, Artificial Minds, Bradford Books, 1997