PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-212899

(43)Date of publication of application: 07.08.2001

(51)Int.CI.

B32B 5/24 A61F 13/53 A61F 13/49 A61F 13/551 A61F 13/15 B01J 20/26 D21H 27/00 // A61F 5/44

(21)Application number: 2000-024305

(71)Applicant: MITSUI CHEMICALS INC

NIPPON KYUSHUTAI GIJUTSU

KENKYUSHO:KK

(22)Date of filing:

01.02.2000

(72)Inventor: IRISATO YOSHIHIRO HIGUCHI CHOJIRO ISHITOKU TAKESHI SUZUKI MIGAKU

(54) DECOMPOSABLE HIGHLY WATER-ABSORBING COMPOSITE

PROBLEM TO BE SOLVED: To provide a sanitary article which is thin and has biodegradability and excellent water absorbing performance, and which can be treated by composting or laying

SOLUTION: A crosslinked polyamino acid resin is added to an absorbing core, and a microfibril cellulose is coated on a part or all of the surface of the resin.

LEGAL STATUS

[Date of request for examination]

06.05.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-212899

(P2001 - 212899A)

(43)公開日 平成13年8月7日(2001.8.7)

(51) Int.Cl. ⁷		識別記号	FΙ			5	γ-7]-ド(参考)
B 3 2 B	5/24		B 3 2 B	5/24			3B029
A61F	13/53		B01J	20/26		D	4 C 0 0 3
	13/49		D 2 1 H	27/00		Z	4 C 0 9 8
	13/551		A 6 1 F	5/44		Н	4F100
	13/15		A41B	13/02		D	4G066
		審査請求	大請求 請求	R項の数20	OL	(全 31 頁)	最終頁に続く
(21)出願番		特願2000-24305(P2000-24305)	(71)出願	人 000005	887		
				三井化	学株式	会社	
(22)出顧日		平成12年2月1日(2000.2.1)	(2000.2.1) 東京都千代田区霞が関三丁目2番5号				
			(71)出願。	人 592034	744		
				株式会	社日本	吸収体技術研	究所
				東京都	中央区	日本橋浜町2	丁目26番5号
			(72)発明	者 入里	義広		
				千葉県	袖ヶ浦	市長浦字拓二	号580番32 三
				井化学	朱式会	社内	
			(74)代理/	人 100065	385		
				弁理士	山下	穣平	
							最終頁に続く
			I				

(54)【発明の名称】 分解性高吸水性複合体

(57)【要約】

【課題】 生分解性を有し、使用後にはコンポスト処理、埋設処理にて処理可能な、薄型でかつ優れた吸水能を有する衛生用品を供給する。

【解決手段】 吸収コアに架橋ポリアミノ酸系樹脂を含有させ、ミクロフィブリル状セルロースにてその樹脂の表面の一部または全部を被覆する。

(a)

【特許請求の範囲】

【請求項1】 吸収体層(A層)を支持体層(B層)上 に積層してなる分解性高吸水性複合体であって、 前記吸収体層(A層)が架橋ポリアミノ酸粒子(a-1)表面の少なくとも一部をミクロフィブリル状セルロ ース (a-2) により被覆した複合体を含んで構成さ ħ.

前記支持体層(B層)が分解性支持体層であることを特 徴とする、分解性高吸水性複合体。

【請求項2】 前記分解性支持体層の少なくとも一部が 10 生分解性支持体層である、請求項1に記載の分解性高吸 水性複合体。

【請求項3】 前記分解性支持体層の少なくとも一部が コンポスト内分解性支持体層である、請求項1~2のい ずれかに記載の分解性高吸水性複合体。

【請求項4】 前記コンポスト内分解性支持体層が、分 解性高吸水性複合体 1 重量部 (乾燥状態) を、コンポス ト(堆肥)のイノキュラム(接種材料)100重量部 (ウェット状態)に仕込み、40日間、58℃で処理し たとき、分解性高吸水性複合体の処理後乾燥重量が、該 20 分解性高吸水性複合体の処理前乾燥重量を基準として、 0~50重量%となる性質を有する、請求項3に記載の 分解性高吸水性複合体。

【請求項5】 前記分解性支持体層の少なくとも一部が 土中分解性支持体層である、請求項1~4のいずれかに 記載の分解性高吸水性複合体。

【請求項6】 前記土中分解性支持体層が、分解性高吸 水性複合体1重量部(乾燥状態)を、圃場の地下300 mmに6月間埋設処理したとき、分解性高吸水性複合体 の処理後乾燥重量が、該分解性高吸水性複合体の処理前 乾燥重量を基準として、0~50重量%となる性質を有 する、請求項5に記載の分解性高吸水性複合体。

【請求項7】 前記架橋ポリアミノ酸粒子が、(1) 生理食塩水の平衡膨潤吸収量が乾燥ポリマー単位重量当 たり、20~200倍である吸水能、(2) 生理食塩 水を1分間吸収させた吸収量が乾燥ポリマー単位重量当 たり、10~150倍である吸水能、(3) 103k Pa (20g/cm²) の荷重下での生理食塩水の吸 水量が乾燥ポリマー単位重量当たり、5~150倍であ る吸水能、および(4) 生理食塩水を飽和吸収したゲ ルに3000Gの遠心力を10分間負荷した後に保持で きる保水量が、乾燥ポリマー単位重量当たり、5~15 0倍である吸水能、のいずれかの吸水能を少なくとも-つ有するものである、請求項1~5のいずれかに記載の 分解性高吸水性複合体。

【請求項8】 前記架橋ポリアミノ酸が架橋ポリアスパ ラギン酸である、請求項1~7のいずれかに記載の分解 性高吸水性複合体。

【請求項9】 前記ミクロフィブリル状セルロース(a -2)がセルロース又はセルロース誘導体である、請求 50 リル状セルロースにより被覆されていることを特徴とす

項1~8のいずれかに記載の分解性高吸水性複合体。 【請求項10】 前記ミクロフィブリル状セルロース (a-2)がパルプを摩砕及び/又は叩解して得られた ものである、請求項1~8のいずれかに記載の分解性高 吸水性複合体。

【請求項11】 前記ミクロフィブリル状セルロース (a-2)が微生物代謝により得られたものである、請 求項1~8のいずれかに記載の分解性高吸水性複合体。

【請求項12】 前記分解性支持体層が分解性高分子を 含んで構成される層である、請求項1~11のいずれか に記載の分解性高吸水性複合体。

【請求項13】 前記分解性支持体層がウエブ、シー ト、及び、フィルムからなる群から選択された少なくと も一層を含んで構成される層である、請求項1~11の いずれかに記載の分解性高吸水性複合体。

【請求項14】 前記ウエブが織布、編物、不織布、及 び、紙からなる群から選択された少なくとも一つであ る、請求項13に記載の分解性高吸水性複合体。

【請求項15】 前記分解性高吸水性複合体が、(1) 生理食塩水20mlを吸収させたときの吸収速度が、 0. 1~50m1/sec·cm² である吸水能、

(2) 生理食塩水を吸収させたときの飽和吸収量が、 0. 1~5 g/c m² である吸水能、(3) 水20mlを103kPa (20g/cm²)の荷重 を負荷させながら吸収させたときの吸収量が、0.05 ~4g/cm² である吸水能、および(4) 生理食塩 水を飽和吸収させた後に111kPa(1ton/m²

)の荷重を負荷させたときの逆戻り排水量が0~7g /cm² である吸水能、のいずれかの吸水能を少なくと 30 も一つ有するものである、請求項1~14のいずれかに 記載の分解性高吸水性複合体。

【請求項16】 吸収体層(A層)を支持体層(B層) 上に積層してなる分解性高吸水性複合体において、 前記吸収体層(A層)が、架橋ポリアミノ酸粒子(a-1)表面の少なくとも一部を、ミクロフィブリル状セル ロース(a-2)により被覆した複合体を含んで構成さ ħ,

前記支持体層(B層)が分解性高分子を含んで構成され る分解性高吸水性複合体の製造方法であって、

架橋ポリアミノ酸粒子(a-1)、ミクロフィブリル状 セルロース(a-2)、および水及び/又は水混和性有 機溶媒を含んでなる懸濁液を前記支持体層(B層)にキ ャストし、乾燥することを特徴とする、分解性高吸水性 複合体の製造方法。

【請求項17】 前記水混和性有機溶媒が、炭素原子数 1~6のアルコール、グリコール、エーテル、及び、ケ トンからなる群より選択される少なくとも一種である、 請求項16に記載の分解性高吸水性複合体の製造方法。

【請求項18】 表面の少なくとも一部がミクロフィブ

る、架橋ボリアミノ酸系樹脂。

【請求項19】 表面の少なくとも一部がミクロフィブ リル状セルロースにより被覆されていることを特徴とす る、分解性高吸水性複合体用架橋ポリアミノ酸系樹脂。

【請求項20】 請求項1記載の分解性高吸水性複合体 からなることを特徴とする、衛生用品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は分解性高吸水性複合 薄型でありながら使用時は優れた吸収特性を発現し、廃 棄時には水洗トイレへの廃棄、コンポスト処理、埋め立 て処理等により容易に処理でき、処理後は生分解され る、地球環境に優しい分解性高吸水性複合体に関する。 [0002]

【従来の技術】 [使い捨て衛生用品の技術的背景] 使い 捨て衛生用品は、尿、血液、経血、汗等の体液を効率的 に吸収できるように設計された用品であり、紙おむつ、 生理用ナプキン、失禁用バッド、母乳バッド、医療用ア ンダーパッド、手術用アンダーパッド、ペット用シート 等に使用されている。

【0003】とのような衛生用品は安価で手軽に利用で きるといった利点から、世の中に広く普及しているにも かかわらず、その使用後の廃棄処理には大きな問題があ る。すなわち、そのような問題とは、排泄物が付着した 紙おむつ、体液が付着した生理用ナプキン等の使用済み 衛生用品を一般の廃棄物と同時に廃棄していることであ

【0004】[使い捨て衛生用品廃棄物処理の技術的背 とを意図してつくられたものである。使用後は廃棄さ れ、一般の可燃性ゴミとして焼却処理されているのが現 状である。

【0005】例えば、使い捨て紙おむつの廃棄方法は、 使い捨て紙おむつ全体で廃棄物を包み込むようにおむつ を丸め、さらに、丸めた状態の紙おむつをテープファス ナー等で留めて、ゴミ箱等に廃棄し、収集されたこのよ うなゴミは、焼却処理されるのが一般的である。

【0006】しかし、紙おむつでくるんだ排泄物を短時 間でもゴミ箱等に保存するのは、悪臭や衛生上の問題が 40 あり好ましくない。また、室外においても、例えば、公 園などで使い捨て紙おむつがゴミとして放置される等、 環境衛生上の問題が生じている。

【0007】一方、使用時の排泄物が便であったときの 廃棄方法は、使い捨て紙おむつの使用者あるいは介護者 により、使用者から紙おむつをはずし、便のような排泄 物の固形部分を紙おむつから取り除いてトイレに流した 後、他の部分を一般ゴミとして処理する方法が一般的で あるため、非常にその操作は煩雑である。また、かかる 処理は、通常、使い捨て紙おむつを便器につけて流し落 50 とすことにより行っているため、軟便等の粘着している 便はおむつから剥がしにくく、便は完全に除去されない

まま、処理される場合が多い。したがって、おむつから 便を剥がすような操作は、処理者の手を汚す場合があ り、このような場合は、使い捨てでないおむつと比較し て、使い捨て紙おむつの本質的なメリットが減じられる こととなる。

【0008】また、かかる処理時には使い捨て紙おむつ が、トイレの水を吸収して重くなったり、液垂れを生じ 体に関する。詳しくは、パルプレスの構造により極めて 10 るという不都合があるほか、誤って紙おむつをトイレに 流してしまい、配水管が詰まる原因となる不都合もあ る。

> 【0009】また、女性が用いる生理用、おりもの用の ナブキン、おむつ等の吸収パッドは、使用後はゴミ入れ や、トイレ内に配置されている汚物入れに紙に包んで捨 てられている現状である。

【0010】しかしながら、捨てられた後、ゴミとして 処理されるまでに時間が経過する間に、異臭を発生して 不快感を与えたり、また、非衛生的となる場合もあっ 20 た。

【0011】さらに、公衆トイレ等において、水洗便器 に水と共に流してしまい、配管の詰まり等のトラブルの 要因ともなっていた。

【0012】[使い捨て衛生用品廃棄物の焼却処理の技 術的背景〕使い捨て衛生用品廃棄物は、不織布又は多孔 性成形ポリエチレンフィルム又はポリプロピレンフィル ム材料からなるトップシートと、ポリエチレンからなる バックシート、パルプ中に吸水性樹脂を分散させた吸収 コアを中心として構成される。これらの材料において、 景] 一般に、使い捨て衛生用品は、使用後に廃棄すると 30 特に、バックシートは防水性を維持するために、ポリエ ステル、ポリプロピレン、ポリエチレン等の合成樹脂や 合成繊維が一部に用いられているため、分解性を有しな い。これらを埋め立てなどの廃棄処理を行っても、いつ までも分解せずに残存する。同様に、水洗トイレに流し た場合、配管等への詰まりがない場合でも、それらの廃 棄物等は終末処理場等で分解せずに残存することなる。 そのため、これらの廃棄物は多量に存在するにもかかわ らず、焼却処理により処理せざるを得なかったのが現状 である。

> 【0013】すなわち、上記衛生材料の使用済みの廃棄 物は、重量換算では、全廃棄物中の数%を占めるが、と れらの使い捨て衛生材料は、分解性を有しないため、使 用後の廃棄が問題である。

【0014】従来の技術における問題点としては、例え ば、これらの廃棄物を焼却炉で処理する方法では、焼却 の対象である合成樹脂や合成繊維は燃焼熱が大きく、高 温になるため焼却時に発生する熱による炉材を損傷する ほか、排気ガスが、地球の温暖化や酸性雨の原因となる ととも指摘されている。

【0015】一方、焼却炉からのダイオキシンの発生の

原因は、炭素分、塩素分を含む物質を、低温で不完全燃 焼することによって生じることが指摘されている。特 に、紙おむつの廃棄物は、炭素分と塩化物の塩を含み、 蒸発潜熱が大きくて燃えにくい水分を多量に含むため、 局所的に、又は、全体的に、焼却炉の焼却温度を高温と できないことがあり得る。

【0016】ダイオキシン発生の抑制の観点からは、紙 おむつ構成材料そのものが、ダイオキシン発生の直接的 な原因ではないとしても、廃棄される段階においては、 紙おむつは塩を含んでおり、焼却炉内の温度が、一時的 10 クトロンビーム等で重合させて、ウエブ状の吸水性ポリ に下がり得ることから、その廃棄方法の見直しが必要で あると思われる。

【0017】また、埋め立て処理する方法では、紙おむ つ廃棄物を構成している非分解性のプラスティックは、 容積が嵩張り、腐らないため地盤が安定しない等の問題 がある上、特に国内においては、首都圏を中心として、 埋め立て用地が少なくなってきたことが大きな問題とな っている。

【0018】かかる問題に対して、衛生材料の構成材料 の一部を、分解性材料にする提案がなされている。例え 20 ば、特表平5-505318号公報では、バックシート をジオキサンベースとする重合体からなるフィルムを用 いることが提案されている。しかし、構成材料の一部の みが分解されても、他の材料が分解しない限りは廃棄処 理の根本的解決にはならず、却って、分解しない成分の 蓄積等が問題になることが予想される。

【0019】 [使い捨て衛生用品の薄型化の技術的背 景] 吸収体製品に用いられている水分や体液を吸収する 吸収体主成分としては、従来よりフラッフ状木材パルプ と、いわゆる高分子吸収体(以下「SAP」と略称す る。) との組合せから成り立っている。しかし、近年、 物流の効率化、小売店々頭での棚効率の向上のため、さ らには、省資源化のために、従来の比較的嵩張る吸収体 製品に対して、薄物化、コンパクト化への社会的要請が 大となってきた。

【0020】コンパクト化、薄物化の手段としては、S APとパルプの組合せにおいては、パルプに対して2~ 10倍ほど高い吸水能力を持つSAPの比率を上げ、バ ルプの比率を下げれば、薄く、コンパクトになり、究極 的には、SAP100%の構造をとれば、最大限に薄物 40 化、コンパクト化を追求できるはずである。

【0021】ところが、SAPの比率が高くなるほど、 水の吸収の際に、SAPの特性に基づく、いわゆる、 「ゲルブロッキング現象」が起こり、吸収体製品が計算 どうりの効率では機能しなくなるため、従来の技術で は、SAP/パルプ=1/1程度の構成が限界とされて おり、SAP/パルプ=(3/1)以上=3以上、さら には、SAP比率を上げて、SAP100%に近いパル プレス構造をとることは、極めて難しい技術課題となっ ている。

【0022】ここで、「パルプレス」という用語は、こ の分野で一般的に適用されている概念にしたがって、S APとパルプの比(SAP/パルプ)が、1以上のもの を総称するものとして使用される。

【0023】もちろん、パルプレス構造に関しては、従 来から種々の挑戦がなさている。例えば、直接紡糸やア クリル酸系繊維の部分加水分解等により、繊維状、ウエ ブ状のSAPシートをつくる方法、アクリル酸等のモノ マーをウエブに含浸させて、それを紫外線あるいはエレ マーを作る方法、又は、セルロース等の不識布をカルボ キシメチル化したのちさらに部分架橋してシート状の吸 水性ポリマーを作る方法等の様々な試みがなされてき た。

【0024】しかしながら、素材のコストの問題、およ び多大な設備投資額等により、工業的、経済的に成功し た例は報告されていない。

【0025】[吸水性樹脂の技術的背景]吸水性樹脂 は、自重の数十倍から数千倍の水を吸収できる樹脂であ り、生理用品、紙おむつ、母乳パッド、使い捨て雑巾等 の衛生用品、創傷保護用ドレッシング材、医療用アンダ ーパッド、パップ剤等の医療用品、ベット用シート、携 帯用トイレ、ゲル芳香剤、ゲル消臭剤、吸汗性繊維、使 い捨てカイロ等の生活用品、シャンプー、セット用ジェ ル剤、保湿剤等のトイレタリー用品、農・園芸用の保水 材、切り花の延命剤、フローラルフォーム(切り花の固 定化材)、育苗用苗床、水耕栽培、植生シート、種子テ ープ、流体播種、結露防止用農業用シート等の農・園芸 用品、食品用トレー用鮮度保持材、ドリップ吸収性シー 30 ト等の食品包装材、保冷材、生鮮野菜運搬用吸水性シー ト等の運搬用資材、結露防止用建築材料、土木・建築用 のシーリング材、シールド工法の逸泥防止剤、コンクリ ート混和剤、ガスケット・パッキング等の土木建築資 材、光ファイバー等の電子機器のシール材、通信ケーブ ル用止水材、インクジェット用記録紙等の電気機器関連 資材、汚泥の凝固剤、ガソリン、油類の脱水、水分除去 剤等の水処理剤、捺染用のり、水膨潤性玩具、人工雪等 の幅広い分野に使用されている。

【0026】また、その薬品徐放性を利用して、徐放性 肥料、徐放性農薬、徐放性薬剤等の用途にも期待されて いる。

【0027】さらに、その親水性を利用して湿度調整 材、電荷保持性を利用して帯電防止剤等への応用も期待 されている。

【0028】 [吸水性樹脂に関する先行技術] このよう な衛生材料に使用されている吸水性樹脂としては、例え ば、架橋ポリアクリル酸部分中和物(特開昭55-84 304号公報、米国特許4625001号公報)、澱粉 -アクリロニトリル共重合体の部分加水分解物 (特開昭 50 46-43995号公報)、澱粉-アクリル酸グラフト

共重合体(特開昭51-125468号公報)、酢酸ビ ニルーアクリル酸エステル共重合体の加水分解物(特開 昭52-14689号公報)、2-アクリルアミド-2 - メチルプロパンスルホン酸とアクリル酸の共重合架橋 物(欧州特許0068189号公報)、カチオン性モノ マーの架橋体(米国特許4906717号公報)、架橋 イソブチレン-無水マレイン酸共重合体(米国特許43 89513号公報)などが知られている。

【0029】ところが、これらの吸水性樹脂は架橋部分 の分解が起こり、水溶性樹脂とはなるが、主鎖は全く分 10 解性を有しない、又は、一部のみしか分解しないため、 使用後の廃棄が問題となる。特に、ポリアクリル酸は、 分解できるのは、7量体までで、8量体以上のオリゴマ ーやポリマーは、全く生分解性を有しないことが報告さ れている。(J. E. Glass and G. Swi ft Eds., "Agricultural and Synthetic polymers: Utili zation and Biodegradabili ty", American Chemical Soc iety, Washington, D. C. (1990 年), M. Shimao, H. Saimoto, Y. T aniguchi, N. Kato, C. sakazaw a: Appl. Environ. Microbio 1., 46卷, 605~頁(1983年), S. Mat sumura, S. Maeda, S. Yoshikaw a, N. Chikazumi: J. Jpn. Oil C hem. Soc. (YUKAGAKU), 39卷, 12 45~頁(1990年)等) すなわち、これらの樹脂は 分解性に乏しく、水中や土壌中では、半永久的に存在す るので、廃棄物処理における環境保全の観点からは、非 常に問題である。例えば、紙おむつ、生理用品等の衛生 材料に代表される使い捨て用途の樹脂の場合、それをリ サイクルすれば多大な費用がかかり、焼却するにも大量 であるため地球環境への負荷が大きい。また、架橋ポリ アクリル酸樹脂を含む廃棄物を埋設処理した場合、土壌 中でCa2+等の多価イオンとコンプレックスを形成 し、不溶性の層を形成すると報告されている(松本ら、 高分子、42巻、8月号、1993年)。しかし、この ような層は、そのもの自体の毒性は低いとはいわれてい るが、自然界には元来全く存在しないものであるので、 長期に亘るそれら樹脂の土中への蓄積による生態系への 影響は不明であるので、その使用には慎重な態度が望ま れる。

【0030】同様に非イオン性の樹脂の場合、コンプレ ックスは形成しないが、非分解性のため土壌中へ蓄積す るおそれがあり、その使用にも慎重な態度が望まれる。 【0031】さらに、これらの重合系の樹脂は、人間の 肌等に対して毒性の強いモノマーを使用しており、重合 後の製品からこれを除去するために多くの検討がなされ てきたが、完全に除去するには困難を伴うことがある。

特に工業的規模での製造では、より困難を伴うことが予 想される。

【0032】[生分解性を有する吸水性樹脂の技術的背 景] 一方、近年、「地球にやさしい素材」として生分解 性ポリマーが注目されており、これを吸水性樹脂として 使用することも提案されている。

【0033】このような用途に使用されている生分解性 を有する吸水性樹脂としては、例えばポリエチレンオキ シド架橋体(特開平6-157795号公報等)、ポリ ビニルアルコール架橋体、カルボキシメチルセルロース 架橋体(米国特許4650716号公報)、アルギン酸 架橋体、澱粉架橋体、ポリアミノ酸架橋体などが知られ ている。

【0034】この中でポリエチレンオキシド架橋体、ボ リビニルアルコール架橋体は、特殊な菌のみしか、生分 解することができないので、一般的な条件では、生分解 性は遅かったり、もしくは全く分解しなかったりする。 さらに分子量が大きくなると極端に分解性が低下した り、非分解性となる。

【0035】また、カルボキシメチルセルロース架橋 体、アルギン酸架橋体、デンプン架橋体等の糖類架橋体 は、その分子内に強固な水素結合を多く含むために、分 子間、ポリマー間の相互作用が強く、そのため分子鎖が 広く開くことができず、吸収能は高くなく、衛生用品中 の吸水性ポリマーとしては不向きであった。

【0036】 [ポリアミノ酸系吸水性樹脂の技術的背 景] 一方、ポリアミノ酸を架橋して得られる樹脂は生分 解性を有するために地球環境にやさしく、生体内に吸収 されても酵素作用により消化吸収され、しかも生体内で 30 の抗原性を示さず、分解生成物も毒性がないことが明ら かにされているので、人に対してもやさしい素材であ

【0037】[使い捨て衛生用品に対する要望]すなわ ち、使い捨て衛生用品の薄型化と廃棄物の処理に対する 要望は高く、その処理法も含めた新規の使い捨て衛生材 料の出現が強く要望されていた。

[0038]

【発明が解決しようとする課題】本発明の課題の一つ は、上記した従来の技術における問題点を解決し、生分 解性を有する分解性高吸水性複合体を提供することであ

【0039】また、本発明の課題の一つは、吸収特性に 優れ、衛生材料等に使用した場合に薄型である分解性高 吸水性複合体とその製造方法を提供することである。

【0040】さらに、本発明の課題の一つは、本発明に 係る分解性高吸水性複合体の廃棄物の処理法を提供する ことである。

[0041]

【課題を解決するための手段】本発明者らは、上記課題 50 を解決すべく鋭意検討した結果、本発明を完成するに至

10

った。

【0042】即ち本発明は、以下の[1]~[20]に記載した事項により特定される。

【0043】[1] 吸収体層(A層)を支持体層(B層)上に積層してなる分解性高吸水性複合体であって、前記吸収体層(A層)が、架橋ボリアミノ酸粒子(a-1)表面の少なくとも一部をミクロフィブリル状セルロース(a-2)により被覆した複合体を含んで構成され、前記支持体層(B層)が分解性支持体層であることを特徴とする、分解性高吸水性複合体。

【0044】[2]前記分解性支持体層の少なくとも一部が生分解性支持体層である、[1]に記載の分解性高吸水性複合体。

【0045】[3]前記分解性支持体層の少なくとも一部がコンポスト内分解性支持体層である、[1]~ [2]のいずれかに記載の分解性高吸水性複合体。

【0046】[4] 前記コンポスト内分解性支持体層が、分解性高吸水性複合体1重量部(乾燥状態)を、コンポスト(堆肥)のイノキュラム(接種材料)100重量部(ウェット状態)に仕込み、40日間、58℃で処 20理したとき、分解性高吸水性複合体の処理後乾燥重量が、該分解性高吸水性複合体の処理前乾燥重量を基準として、0~50重量%となる性質を有する、[3]に記載の分解性高吸水性複合体。

【0047】[5] 前記分解性支持体層の少なくとも一部が土中分解性支持体層である、[1]~[4]のいずれかに記載の分解性高吸水性複合体。

【0048】[6] 前記土中分解性支持体層が、分解性高吸水性複合体1重量部(乾燥状態)を、圃場の地下300mmに6月間埋設処理したとき、分解性高吸水性30複合体の処理後乾燥重量が、該分解性高吸水性複合体の処理前乾燥重量を基準として、0~50重量%となる性質を有する、[5]に記載の分解性高吸水性複合体。 【0049】[7] 前記架橋ポリアミノ酸粒子が、

(1) 生理食塩水の平衡膨潤吸収量が乾燥ボリマー単位重量当たり、20~200倍である吸水能、(2) 生理食塩水を1分間吸収させた吸収量が乾燥ボリマー単位重量当たり、10~150倍である吸水能、(3) 103kPa(20g/cm²)の荷重下での生理食塩水の吸水量が乾燥ボリマー単位重量当たり、5~150倍である吸水能、および、(4) 生理食塩水を飽和吸収したゲルに3000Gの遠心力を10分間負荷した後に保持できる保水量が、乾燥ボリマー単位重量当たり、5~150倍である吸水能、のいずれかの吸水能を少なくとも一つ有するものである、[1]~[5]のいずれかに記載の分解性高吸水性複合体。

【0050】[8] 前記架橋ポリアミノ酸が架橋ポリアスパラギン酸である、[1]~[7]のいずれかに記載の分解性高吸水性複合体。

【0051】 [9] 前記ミクロフィブリル状セルロー 50 ある、 [16] に記載した分解性高吸水性複合体の製造

ス(a-2)がセルロース又はセルロース誘導体である、 $[1] \sim [8]$ のいずれかに記載の分解性高吸水性複合体。

【0052】[10] 前記ミクロフィブリル状セルロース (a-2) がパルプを摩砕及び/又は叩解して得られたものである、[1]~[8] のいずれかに記載の分解性高吸水性複合体。

【0053】[11] 前記ミクロフィブリル状セルロース(a-2)が微生物代謝により得られたものである、[1]~[8]のいずれかに記載の分解性高吸水性複合体。

【0054】[12] 前記分解性支持体層が分解性高分子を含んで構成される層である、[1]~[11]のいずれかに記載の分解性高吸水性複合体。

【0055】[13] 前記分解性支持体層がウェブ、シート、及び、フィルムからなる群から選択された少なくとも一層を含んで構成される層である、[1]~[1]のいずれかに記載の分解性高吸水性複合体。

【0056】[14] 前記ウエブが織布、編物、不織 布、及び、紙からなる群から選択された少なくとも一つ である、[13]に記載の分解性高吸水性複合体。

【0057】[15] 前記分解性高吸水性複合体が、

(1) 生理食塩水20mlを吸収させたときの吸収速度が、0.1~50ml/sec·cm²である吸水能、(2) 生理食塩水を吸収させたときの飽和吸収量が、0.1~5g/cm²である吸水能、(3) 生理食塩水20mlを103kPa(20g/cm²)の荷重を負荷させながら吸収させたときの吸収量が、0.05~4g/cm²である吸水能、および(4) 生理食塩水を飽和吸収させた後に111kPa(1ton/m²)の荷重を負荷させたときの逆戻り排水量が0~7g/cm²である吸水能、のいずれかの吸水能を少なくとも一つ有するものである、[1]~[14]のいずれかに記載の分解性高吸水性複合体。

【0058】 [16] 吸収体層(A層)を支持体層(B層)上に積層してなる分解性高吸水性複合体において、前記吸収体層(A層)が、架橋ボリアミノ酸粒子(a-1)表面の少なくとも一部を、ミクロフィブリル状セルロース(a-2)により被覆した複合体を含んで構成され、前記支持体層(B層)が分解性高分子を含んで構成される分解性高吸水性複合体の製造方法であって、架橋ボリアミノ酸粒子(a-1)、ミクロフィブリル状セルロース(a-2)、および、水及び/又は水混和性有機溶媒を含んでなる懸濁液を前記支持体層(B層)にキャストし、乾燥することを特徴とする、分解性高吸水性複合体の製造方法。

【0059】[17] 前記水混和性有機溶媒が、炭素原子数1~6のアルコール、グリコール、エーテル、及び、ケトンからなる群より選択される少なくとも一種である。[16] に記載した分解性専門水性和合体の制造

(

方法。

【0060】[18] 表面の少なくとも一部がミクロフィブリル状セルロースにより被覆されていることを特徴とする、架橋ポリアミノ酸系樹脂。

11

【0061】[19] 表面の少なくとも一部がミクロフィブリル状セルロースにより被覆されていることを特徴とする、分解性高吸水性複合体用架橋ボリアミノ酸系樹脂

【0062】 [20] [1] 記載の分解性高吸水性複合体からなることを特徴とする、衛生用品。

[0063]

【発明の実施の形態】本発明の分解性高吸水性複合体の特徴は、構成材料が生分解性を有するために分解性を有するだけでなく、吸水能、薄型化の機能発現はもとより、より効率的に分解を促進するために構造上にも崩壊しやすいように工夫を施したものである。

【0064】すなわち、本発明の分解性高吸水性複合体は、〈吸収性〉、〈崩壊性〉、〈分解性〉、〈薄型〉を兼ね備えた複合体である。

【0065】以下に、本発明を詳細に説明する。

【0066】(1) 分解性高吸水性複合体の構造 本発明は分解性高吸水性複合体に関するものであり、吸収体層と支持体層とを含んで構成される。

【0067】本発明の分解性高吸水性複合体の吸収体層は、架橋ボリアミノ酸粒子(a-1)表面の少なくとも一部をミクロフィブリル状セルロース(a-2)により被復した複合体を含んで構成される。また、支持体層(B層)は、分解性支持体層である。

【0068】本発明の分解性高吸水性複合体は、その機能発現を妨げない範囲において、必要により、食塩、コ 30 ロイダルシリカ、ホワイトカーボン、超微粒子状シリカ、酸化チタン粉末等の無機化合物、キレート剤等の有機化合物、さらに酸化剤、酸化防止剤、還元剤、紫外線吸収剤、抗菌剤、殺菌剤、防カビ剤、肥料、香料、消臭剤、顔料等を添加しても構わない。これらの添加剤が含有される場所は、吸収体層、支持体層のいずれであっても構わない。また、必要に応じて、消臭、脱臭機能を有する材を含有しても構わない。また、菌の繁殖を抑える抗菌材を含有することもできる。

【0069】さらに、周縁部にシリコン系油剤、パラフィンワックス等の疎水性化合物を塗布する方法や、予めアルキルリン酸エステルのような親水性化合物を塗布し、周縁部における尿等の渗みによる漏れを防止しても構わない。

【0070】以下に、分解性高吸水性複合体の吸収体層を(2)に、支持体層を(3)に説明する。

【0071】(1-1) 分解性高吸水性複合体の分解 性

本発明における分解性高吸水性複合体の分解性なる語 度が は、吸水性複合体の使用後の廃棄物が、廃棄物処理によ 50 能。

って、分解することを意味する。

【0072】具体的には、生分解性、コンポスト内分解性、土中分解性を挙げることができる。但し、これら以外にも、本発明の分解性高吸水性複合体の機能発現を妨げない範囲において、これ以外の内在された特性を廃棄処理に利用することができる。例えば、高温分解性、酸化分解性、還元分解性、加水分解性、アルカリ分解性、酸分解性等が挙げられる。

【0073】また、機械的手段による攪拌、混合、破 10 砕、細断等の処理を併用させたり、前処理として行うこ とにより、分解をより効率化することもできる。

【0074】生分解性とは、構成材料が、自然環境中、 又はコンポスト等の人為的に制御された条件の下で、微 生物、菌、酵素等のバイオ(生体)によって分解され、 安全な低分子となることをいう。

【0075】コンポスト内分解性とは、コンポスト中において、微生物、菌、酵素等のバイオ(生体)によって分解され、安全な低分子となるこという。

【0076】その好ましい形態とは、例えば、分解性高 20 吸水性複合体1重量部(乾燥状態)を、コンポスト(堆 肥)のイノキュラム(接種材料)100重量部(ウェット状態)に仕込み、58℃で40日間処理したとき、分 解性高吸水性複合体の処理後乾燥重量が、分解性高吸水 性複合体の処理前乾燥重量を基準として、0~50重量 %となる性質である。

【0077】土中分解性とは、土中等に埋設される等の処理を施されたとき、土中において微生物、菌、酵素等により、バイオにより、生物学的に分解され、高分子が低分子となる性質をいう。

【0078】その好ましい形態とは、例えば、分解性高吸水性複合体1重量部(乾燥状態)を、圃場の地下300mmに6月間埋設処理したとき、分解性高吸水性複合体の処理後乾燥重量が、分解性高吸水性複合体の処理前乾燥重量を基準として、0~50重量%となる性質である。

【0079】(1-2) 分解性高吸水性複合体の好ま しい吸収能

本発明の分解性高吸水性複合体は、吸収体として吸水能 に優れていることが必要である。特に、荷重下での吸水量が大きく、荷重下での保水力が大きく、吸水速度が速いことが好ましい。

【0080】例えば、衛生材料は各種の体液を充分吸収できなければならないが、本発明では、体液の標準として生理食塩水を用いて、吸水性樹脂の吸水能を表わす。

【0081】すなわち、本発明の分解性高吸水性複合体は、以下のいずれかの吸水能を少なくとも一つ有するものであることが好ましい。

(1) 生理食塩水20mlを吸収させたときの吸収速度が、0.1~50ml/sec·cm²である吸水能

. ,

- (2) 生理食塩水を吸収させたときの飽和吸収量が、 0. 1~5 g/c m² である吸水能。
- (3) 生理食塩水20mlを103kPa(20g/)の荷重を負荷させながら吸収させたときの吸 収量が、0.05~4g/cm²である吸水能。
- (4) 生理食塩水を飽和吸収させた後に111kPa (1 t o n/m²) の荷重を負荷させたときの逆戻り 排水量が0~7g/cm²である吸水能。

【0082】さらには、以下のいずれかの吸水能を少な くとも一つ有するものであることがさらに好ましい。以 10 下の吸水能を有するものがさらに好ましい。

- (1) 生理食塩水20mlを吸収させたときの吸収速 度が、1~50ml/sec·cm2 である吸水能。
- (2) 生理食塩水を吸収させたときの飽和吸収量が、 1~5g/cm² である吸水能。
- (3) 生理食塩水20mlを103kPa(20g/ cm²)の荷重を負荷させながら吸収させたときの吸 収量が、0.5~4g/cm² である吸水能。
- (4) 生理食塩水を飽和吸収させた後に111kPa (1 t o n/m²) の荷重を負荷させたときの逆戻り 排水量が0~5g/cm²である吸水能。

【0083】これらの性能に上限はなく、(4)を除い て高い数字を示すものが好ましいが、実際に分解性高吸 水性複合体を製造できる範囲において、以上の数字範囲 が好ましい形態となる。

【0084】本発明の好ましい形態として、これらの値 に上限を設けるが、本発明の分解性高吸水性複合体を衛 生材料として使用する場合、本発明の分解性高吸水性複 合体と構成が同じであるならば、それ以上の性能を有す る分解性高吸水性複合体を使用できないわけではない。 【0085】(2) 分解性高吸水性複合体の吸収体層 本発明の分解性高吸水性複合体の吸収体層(A層)は、 架橋ボリアミノ酸粒子(a-1)表面の少なくとも一部 をミクロフィブリル状セルロース(a-2)により被覆 した複合体を含んで構成される。

【0086】本発明における、ミクロフィブリル状セル ロースにより表面の少なくとも一部を被覆した架橋ボリ アミノ酸粒子(以下、架橋ポリアミノ酸複合体と呼ぶ) を(2-1)に架橋ポリアミノ酸粒子を(2-2)、ミ クロフィブリル状セルロースを(2-3)に説明する。 【0087】本発明における分解性高吸水性複合体は、 一重の構造のみならず、多重の構造をとることもでき る。特に吸収層を重ねた構造をとったり、吸水性樹脂の 濃度勾配を持たせることにより、吸収能力を強化するこ とができる。

【0088】架橋ポリアミノ酸複合体の存在位置は、特 に限定されず、効率よく体液等を吸収できる構造であれ ば、吸収体層の上層、中層、下層の何れであっても構わ ない。その分布の状態も特に限定されず、対象とする液 体の量と注入部分に応じて、効率よく分布されることが 50 三次粒子であっても、複数個の三次粒子の集合体又は凝

好ましい。効率化するためには、予め架橋ポリアミノ酸 粒子の分布を偏在させることもできる。また、架橋ポリ アミノ酸複合体は、その性能が十分に発揮できるように 分散して分布させることもできる。

【0089】水の拡散をより効率化するために、吸収 紙、拡散紙を使用することができる。吸収紙、拡散紙に ついても、限定されないが、通常、セルロースを主体と した紙が好ましい。また、拡散を効率化するためにパル プと混合しても構わない。

【0090】(2-1) 架橋ポリアミノ酸複合体の構

本発明において、架橋ポリアミノ酸複合体は、ミクロフ ィブリル状セルロースにより表面の少なくとも一部を被 覆した架橋ポリアミノ酸粒子であり、薄型の機能を発現 できる重要な要因の一つである。

【0091】すなわち、架橋ポリアミノ酸複合体は、架 橋ポリアミノ酸粒子をコア部分とし、ミクロフィブリル 状セルロースをシェル部分とする、コア-シェル構造を とるところに特徴がある。

【0092】以下、コアーシェル構造を有する架橋ポリ アミノ酸複合体の詳細について説明する。

【0093】[語「粒子」の概念]本出願の明細書にお いて用いる「粒子」なる語の概念には、これらの語が高 分子化学において一般的に有する概念を完全に包含する が、必ずしも等価ではない。本出願の明細書において用 いる「粒子」の走査電子顕微鏡的形態の態様に関して は、球状の態様のみならず、例えば、ラズベリー状又は 金米糖(こんぺいとう、ポルトガル語のconfeit o) 状の多くの突起を有するような態様、赤血球状の偏 30 平な態様、ラグビーボール状の回転楕円体様の態様、大 腸菌状の紡錘形様の態様、雷おとし (浅草名物の菓子) 状の多孔質な態様等をも包含する。本出願の明細書にお いて用いる「粒子」なる語の概念には、例えば、ポリマ ーエマルジョン、ラテックス、ポリマーサスペンジョン を構成するような平均粒子直径 l n m ~ 1 0 μ m 程度の マイクロスフィアのみならず、平均粒子直径10μm~ 100mm程度の粒子をも包含するが、本出願に係る発 明においては、平均粒子直径100μm~25mm程度 の粒子が一般的な態様である。

【0094】このように、本出願の明細書において用い る「粒子」なる語は、これらの語が高分子化学において 一般的に有する概念と、必ずしも等価ではないのである が、本発明に係るポリマーの不均一な系の本質的態様に ついて屡々言及するに当たり便宜的に用いるものとす

【0095】[高次粒子]本発明において、粒子は一次 粒子であっても、髙次粒子であってもよい。すなわち、 複数個の一次粒子の集合体又は凝集体である二次粒子で あっても、複数個の二次粒子の集合体又は凝集体である

15 集体である四次粒子であっても、さらには、高次粒子で あっても、合目的的であれば特に制限されない。

【0096】[コア/シェル構造を有する粒子] 本出願 の明細書において用いる「コア」、「シェル」及び「コ ア/シェル」なる語は、これらの語が高分子化学におい て一般的に有する概念を完全に包含するが、必ずしも等 価なものではない。例えば、本発明に係る「コア/シェ ル」粒子に関しては、「コア」が少なくとも部分的に 「シェル」に包まれている態様を包含する。このよう に、本出願の明細書において用いる「コア」、「シェ ル」及び「コア/シェル」なる語は、これらの語が髙分 子化学において一般的に有する概念と、必ずしも等価で はないのであるが、本発明に係るポリマーの不均一な系 の本質的態様について屡々言及するに当たり便宜的に用 いるものとする。

【0097】なお、高分子化学においては、一般的に、 「コア」なる語は、「核 (core, center, n ucleus)」、「芯(core, center)」 及び「種(seed)」なる語と等価に用いられ、「シ ェル (shell)」なる語は、「殼 (shell, s kin, husk)」、「鞘(sheath)」及び 「おおい(robe)」なる語と等価に用いられる。 【0098】したがって、本出願の明細書において用い る「コア」なる語については、「核(core, cen ter, nucleus) J、「芯(core, cen ter)」及び「種(seed)」なる語と同等に用い ることもできる。同様に、「シェル」なる語について は、「殼(shell, skin, husk)」、「鞘 (sheath)」及び「おおい (robe)」なる語 と同等に用いることもできる。

【0099】 [粒子の構造] コア/シェル構造の態様と しては、例えば、以下の(1)~(7)を挙げることが できるが、これらの態様のみに限定されるものではな いり

【0100】(1) コア粒子表面が、シェルで覆い尽 くされた、典型的なコア/シェル型の態様。

【0101】(2) コア粒子表面上にシェルが一部堆 積し、完全には覆い尽くされていない構造の態様。

【0102】(3) シェルにより、複数のコア粒子が 封じ込められた、断面がサラミソーセージ状の、いわゆ 40 る、サラミ構造の態様。

[0103](4) コア粒子が中空粒子である態様。 [0104](5)コア粒子が、多孔質粒子であっ て、シェルを構成する樹脂により、多孔質粒子の空隙が 充填されていない態様。

【0105】(6) コア粒子が、多孔質粒子であっ て、シェルを構成する樹脂により、多孔質粒子の空隙の 少なくとも一部が充填されている態様。

【0106】(7) コア粒子が、多孔質粒子であっ

少なくとも一部が充填されることなく、コア相/空隙相 の界面が被覆されている態様。

【0107】本発明の粒子は、実質的に目的とする機能 が発現できれば、シェル相が一層であっても、多層であ っても構わない。

【0108】本発明の粒子のコア/シェル構造は、コア 部分とシェル部分が完全に分離した構造であっても、シ ェル部分がコア部分に浸透した状態であっても構わな い。目的を発現できるように設計できる。また、コアと 10 シェルの構造の間に気相を含有させても構わない。

【0109】本発明に係る分解性高吸水性複合体におい て、ミクロフィブリル状セルロースは、第一に、水分に 安定であると同時に、第二に、架橋ポリアミノ酸粒子の 吸収性を阻害しないような結合材として働き、架橋ポリ アミノ酸粒子を主成分とした2次構造化を果たしてい

【0110】また、本発明において、架橋ボリアミノ酸 粒子を所定の位置に拘束するネットワーク構造は、いわ ゆるミクロフィブリル状セルロースによって構成され る。このミクロフィブリル状セルロースは、一般的に は、平均直径が2.0μm~0.01μm、平均長が、 0. 01 μm~0. 1 μmの極めて細い繊維状物であっ て、架橋ポリアミノ酸粒子が水を吸収したときに、その 膨潤によって直ちに構造が崩壊するのを防止することが できる耐水性をもち、しかも、水の浸透性、架橋ポリア ミノ酸粒子の膨潤性を阻害しないような性質を有する。 【0111】ことで特記すべきことは、ミクロフィブリ ル状セルロースは、ソルベーション(束縛水)として水 と結合する、極めて強固な水和性を有するということで 30 あり、この水和性により、含水媒体中に分散されると水 和して、大きな粘性を示し、安定に分散状態を保持する 性質を示す。なお、本発明において、「ミクロフィブリ ル状セルロース」という用語は、強い水和性を示す繊維 状物を総称するもとのして使用され、場合によっては平 均直径が2.0 μmを超えるものも使用可能であり、ま た、いわゆるミクロフィブリル状セルロースとミクロフ ィブリル状セルロースとの混合体であってもよい。

【0112】図1は、分散液中のミクロフィビリル状セ ルロース (S-MFC) 濃度と、その粘度との関係を示 す一例である。図1から、低濃度でも高い粘度特性をも っていることがわかる。またこのミクロフィビリル状セ ルロースの分散液は構造粘性を示し、シェアをかけると とによって流動配向を示し、粘度が下がるが、シェアを 下げるとともに復元する。従って、このミクロフィビリ ル状セルロースの分散媒体中に架橋ポリアミノ酸粒子を 添加分散すると、低シェアの分散状態では、ミクロフィ ビリル状セルロースのネットワーク構造の中に架橋ボリ アミノ酸粒子が安定に取り込まれて、高濃度の架橋ポリ アミノ酸粒子を安定に分散することができる。またポン て、シェルを構成する樹脂により、多孔質粒子の空隙の 50 ブ等で搬送する場合には、粘度が下がって輸送しやすく

なり、シート成形後、分散媒体が除去され乾燥状態に至 ると、ミクロフィビリル状セルロース相互が自己接合し てプラスター状になって架橋ボリアミノ酸粒子を安定に 結合、固定することができる。

【0113】したがって、このミクロフィビリル状セル ロースの分散媒体中に架橋ボリアミノ酸粒子を分散する と、高濃度の架橋ポリアミノ酸粒子を安定に分散すると とができ、分散媒体が除去される過程では、強固に自己 接合してプラスター状になって、ネットワーク構造を形 成し、架橋ポリアミノ酸粒子を包み込んで機械的に包囲 10 導入しても構わない。 すると同時に、ミクロフィビリル状セルロース相互がイ オン的な水素結合効果により結合し、架橋ポリアミノ酸 粒子を確実に保持する。

【0114】(2-2) 架橋ポリアミノ酸粒子 本発明の分解性高吸水性複合体に使用される吸水性樹脂 は架橋ポリアミノ酸粒子に特定される。

【0115】使用される架橋ポリアミノ酸は、特に限定 されず、ポリアミノ酸の一部を架橋したものが使用でき る。本発明に使用されるポリアミノ酸の基本骨格は、ア ミノ酸が脱水縮合したポリペプチドから成る。アミノ酸 20 成分の具体例としては、例えば、20種類の必須アミノ 酸、L-オルニチン、一連のα-アミノ酸、β-アラニ ン、アーアミノ酪酸、中性アミノ酸、酸性アミノ酸、酸 性アミノ酸のω-エステル、塩基性アミノ酸、塩基性ア ミノ酸のN置換体、アスパラギン酸-L-フェニルアラ ニン2量体(アスパルテーム)等のアミノ酸及びアミノ 酸誘導体、L-システイン酸等のアミノスルホン酸等を 挙げることができる。α-アミノ酸は、光学活性体(L 体、D体)であっても、ラセミ体であってもよい。

【0116】また、ポリアミノ酸は他の単量体成分を含 30 む共重合体であってもよい。共重合体の単量体成分の例 としては、アミノカルボン酸、アミノスルホン酸、アミ ノホスホン酸、ヒドロキシカルボン酸、メルカプトカル ボン酸、メルカプトスルホン酸、メルカプトホスホン酸 等が挙げられる。

【0117】また、多価アミン、多価アルコール、多価 チオール、多価カルボン酸、多価スルホン酸、多価ホス ホン酸、多価ヒドラジン化合物、多価カルバモイル化合 物、多価スルホンアミド化合物、多価ホスホンアミド化 合物、多価エポキシ化合物、多価イソシアナート化合 物、多価イソチオシアナート化合物、多価アジリジン化 合物、多価カーバメイト化合物、多価カルバミン酸化合 物、多価オキサゾリン化合物、多価反応性不飽和結合化 合物、多価金属等が挙げられる。

【0118】共重合体である場合は、ブロック・コポリ マーであっても、ランダム・コポリマーであっても構わ ない。また、グラフトであっても構わない。

【0119】とれらの中で、生分解性に優れたホモボリ マーである、ポリアスパラギン酸、ポリグルタミン酸、 ポリリジンを基本骨格とした方が好ましく、高い吸水性 50 いてもよいフェニル基、置換していてもしていなくても

を有するポリアスパラギン酸及びグルタミン酸を基本骨

格とした場合が好ましく、さらに工業的生産に適したポ リアスパラギン酸が特に好ましい。

【0120】本発明の分解性高吸水性複合体に使用され る架橋ポリアミノ酸の側鎖構造については、置換基がな いポリアミノ酸残基であっても、ポリアミノ酸残基が誘 導されたペンダント基を含むものであっても構わない。 ポリアスパラギン酸の場合、単純にイミド環を開環した 構造でカルボキシル基を持つ基であるが、他の置換基を

【0121】例えば、単純にイミド環を開環した構造で カルボキシル基を持つ基、リジン等のアミノ酸残基、カ ルボキシル基を有するペンダント基、スルホン酸基を有 するペンダント基等がある。ここで、カルボキシル基、 スルホン酸基の場合は、塩となっていても構わない。カ ルボキシル基の対イオンとしては、アルカリ金属塩、ア ンモニウム塩、アミン塩等がある。

【0122】また、酸性ポリアミノ酸の場合、カルボキ シル基、もしくは側鎖基は、ポリマー主鎖のアミド結合 に対して、アスパラギン酸残基の場合は、α位に置換さ れていても、β位に置換されていても構わず、グルタミ ン酸残基の場合は、α位に置換されていても、γ位に置 換されていても構わない。

【0123】共重合体の場合、ポリアスパラギン酸及び その共重合体の場合は、アスパラギン酸もしくは共重合 体単量体のアミノ基等と、アスパラギン酸のα位のカル ボキシル基と結合した場合がα結合であり、アスパラギ ン酸のβ位のカルボキシル基と結合した場合がβ結合で ある。

【0124】ポリアスパラギン酸の場合のα結合とβ結 合は特に限定されず、その結合様式は、特に限定されな い。α結合のみであっても、β結合のみであっても、混 在していても構わない。

【0125】本発明のポリアミノ酸の基本骨格と側鎖部 分の結合部分は特に限定されない。酸性ポリアミノ酸の 場合、アミド結合、エステル結合、チオエステル結合で ある。またカルボキシル基の場合は、水素原子が結合し た形でも、塩を構成しても構わない。カルボキシル基の 対イオンとしては、アルカリ金属塩、アンモニウム塩、 40 アミン塩等がある。

【0126】本発明に使用されるポリアミノ酸は架橋体 である。本発明の基本骨格と架橋部分の結合部分は、特 に限定されない。酸性ポリアミノ酸の場合、アミド結 合、エステル結合、チオエステル結合である。これらの 架橋部分及び側鎖部分は、無置換でも、置換していても よい。

【0127】置換基としては、炭素原子数1~18の分 岐していてもしていなくてもよいアルキル基、炭素原子 数3~8のシクロアルキル基、アラルキル基、置換して

(11)

19

よいナフチル基、炭素原子数1~18の分岐していてもよいアルコキシ基、アラルキルオキシ基、フェニルチオ基、炭素原子数1~18の分岐していてもよいアルキルチオ基、炭素原子数1~18の分岐していてもしていなくてもよいアルキルアミノ基、炭素原子数1~18の分岐していてもしていなくてもよいジアルキルアミノ基、炭素原子数1~18の分岐していてもしていなくてもよいトリアルキルアンモニウム基、水酸基、アミノ基、メルカプト基、スルホニル基、スルホン酸基、ホスホン酸基及びこれらの塩、アルコキシカルボニル基、アルキル 10カルボニルオキシ基等が挙げられる。

【0128】これらボリアミノ酸系樹脂の基本骨格、架橋部、側鎖部は特に限定されず、吸収コアに含まれる吸収性樹脂として十分な吸水能を発揮できるものであれば、製造法によらず、いずれの樹脂も使用することができる。

【0129】架橋ポリアスパラギン酸としては、製造法によらず、様々な方法で製造された樹脂を使用することができる。例えば、ポリコハク酸イミドを多価アミンによりその一部を架橋し、残りのイミド環をアルカリ等で20加水分解する方法、アスパラギン酸、ポリアスパラギン酸とリジン等を混合し、重合しながら架橋する方法、ポリアスパラギン酸と多価アミンを混合し、高温において脱水縮合する方法、ポリアスパラギン酸を多価グリシジル化合物と反応させる方法、ポリアスパラギン酸の水溶液に おった樹脂は、吸収コアに含まれる吸収性樹脂として十分な吸水能を発揮できるものであれば、製造法によらず、いずれの樹脂も使用することができる。

【0130】これらの樹脂は2種類を混合して用いても構わない。また、生分解を有する他の吸水性樹脂である架橋多糖類を併用して用いても構わない。さらに必要に応じて衛生用品の生分解性を損ねない範囲で、生分解性を有しない吸水性樹脂を併用しても構わない。

【0131】本発明の吸水性樹脂の使用量は、吸収を目的とする体液の種類、量により大きくかわり、使用用途によっても変わってくる。一般的には、シート $1\,\mathrm{m}^2$ あたり $1.0\sim500\,\mathrm{g}$ が好ましく、 $10\sim200\,\mathrm{g}$ が特に好ましい。

【0132】本発明に使用する架橋ポリアミノ酸系樹脂 40 の形状は、不定形破砕状、球状、粒状、顆粒状、造粒状、リン片状、塊状、パール状、微粉末状、繊維状、棒状、フィルム状、シート状等種々のものが使用でき、用途によって好ましい形状を使用できる。また、繊維状基材や多孔質状や発泡体あるいは造粒物であってもよい。これらの架橋ポリアミノ酸系樹脂の粒子径は特に限定されないが、使用用途によって変わってくる。

【0133】例えば、紙オムツ用の場合は、速い吸収速度とゲルブロッキングが起こらないことが望まれるので、平均粒子直径は、70~1000μmが好ましく、

【0134】本発明の衛生用品に用いられる架橋ポリアミノ酸系樹脂は、吸水能に優れていることが必要であ

100~500μmがより好ましい。

る。特に、非荷重下での吸水量が大きく、荷重下での吸水量が大きく、荷重下での保水力が大きく、吸水速度が速いものである必要がある。例えば、衛生材料は各種の体液を充分吸収できなければならないが、本発明では、体液の標準として生理食塩水を用いて、吸水性樹脂の吸水能を表わす。

【0135】すなわち、本発明の衛生用品に、吸水性樹脂として使用される架橋ポリアミノ酸粒子は、以下に吸水能を有するものが好ましい。

(1) 生理食塩水の平衡膨潤吸収量が乾燥ポリマー単位重量当たり、20~200倍である吸水能、(2) 生理食塩水を1分間吸収させた吸収量が乾燥ポリマー単位重量当たり、10~150倍である吸水能、(3) 103kPa(20g/cm²)の荷重下での生理食塩水の吸水量が乾燥ポリマー単位重量当たり、5~150倍である吸水能、および、(4) 生理食塩水を飽和吸収したゲルに3000Gの遠心力を10分間負荷した後に保持できる保水量が、乾燥ポリマー単位重量当たり、5~150倍である吸水能、のいずれかの吸水能を少なくとも一つ有するものである。

【0136】さらには、以下に吸水能を有するものがさ らに好ましい。

(1) 生理食塩水の平衡膨潤吸収量が乾燥ポリマー単位重量当たり、30~200倍である吸水能、(2) 生理食塩水を1分間吸収させた吸収量が乾燥ポリマー単位重量当たり、20~150倍である吸水能、(3) 103kPa(20g/cm²)の荷重下での生理食塩水の吸水量が乾燥ポリマー単位重量当たり、5~150倍である吸水能、および、(4) 生理食塩水を飽和吸収したゲルに3000Gの遠心力を10分間負荷した後に保持できる保水量が、乾燥ポリマー単位重量当たり、5~150倍である吸水能、のいずれかの吸水能を少なくとも一つ有するものである。

【0137】これらの値に上限はなく、高い数字を示す ものが好ましいが、実際に架橋ポリアミノ酸系樹脂を製 造できる範囲において、以上の数字範囲が好ましい形態 となる。

【0138】本発明の好ましい形態としてこれらの値に 上限を設けるが、本発明の衛生材料としてそれ以上の性 能を有する樹脂を使用できないわけではない。

【0139】(2-3) ミクロフィブリル状セルロー

本発明において使用されるミクロフィブリル状セルロースは、セルロースあるいはセルロース誘導体をミクロフィブリル化処理することにより得られる。例えば木材バルブを磨砕および高度叩解することにより、図2に示す50 ような過程を経て得られる。このミクロフィブリル状セ

ルロースは、MFC (ミクロフィブリレイテッドセルロ ース)と呼ばれ、よりミクロフィブリル化の進んだもの は、S-MFC (スーパーミクロフィブリレイテッドセ

ルロース)と呼ばれる。

【0140】また、ミクロフィビリル状セルロースは微 生物の代謝によって得ることもできる。一般的には、酢 酸菌ザイリナム (Acetobactor Xylin um) 等の、いわゆる酢酸菌を適当な炭素源を含む培地 で撹拌培養して粗ミクロフィビリル状セルロースを生成 フィビリル状セルロースは、BC(バクテリアセルロー ス)と呼ばれる。

【0141】また紡糸性を有するセルロースの銅アンモ ニア溶液、アミンオキサイド溶液、セルロースザンテー ト水溶液、あるいはジアセチルセルロースのアセトン溶 液等を剪断応力下で凝固させて得られる、いわゆるフィ ブリル状の物質をさらに解解して得られるミクロフィブ リル状の物質も使用することが可能である。

【0142】好ましくはミクロフィブリル状セルロース (a-2)はセルロース又はセルロース誘導体であり、 さらに好ましくは、パルプを摩砕及び/又は叩解して得 られたもの、あるいは、微生物代謝により得られたもの

【0143】これらのミクロフィビリル状セルロースの 詳細については、特公昭48-6641号公報、特公昭 50-38720号公報等に記載され、また商品名「セ ルクリーム」(旭化成(株)製)、商品名「セリッシ ュ」(ダイセル化学工業(株)製)等として市販されて いるが、とくに本発明に適するものは、保水値が250 %以上のS-MFCおよびBCである。

【0144】(3) 分解性高吸水性複合体の支持体層 本発明の分解性高吸水性複合体の支持体層は分解性支持 体層であり、分解性高吸水性複合体がシート状の構造体 として構築されるための支持体としての働きを有する。 さらには、支持体層自身が吸収されるべき液体の拡散を 促す働きを持たせることもできる。すなわち、支持体層 は物理的サポートや、拡散の媒体として働く。

【0145】本発明の分解性高吸水性複合体の支持体層 は、その構成材料としては、分解性を有するものであれ ば特に限定されないが、分解性高分子を含んで構成され 40 るものが好ましい。

【0146】以下、分解性高吸水性複合体の支持体層の 構成材料を(3-1)に、分解性高吸水性複合体の支持 体層の構造を(3-2)に説明する。

【0147】(3-1) 分解性高吸水性複合体の支持 体層の構成材料

本発明における分解性高分子は生分解性を有する高分子 材料である。係る材料は、非溶融性の材料と溶融性の材 料に分けられる。

【0148】非溶融性の材料の具体例としては、例え

ば、バルブ、木綿、羊毛、再生セルロース繊維、溶剤紡 糸セルロース繊維等が挙げられる。パルプの具体例とし ては、例えば、木材からのパージンバルプ、古紙等から 回収したパルプが挙げられる。

【0149】溶融性の材料の具体例としては、例えば、 脂肪族ポリエステル又は脂肪族ポリエステルアミドが挙 げられる。脂肪族ポリエステルの具体例としては、例え ば、ボリグリコシド、ボリ乳酸のようなボリ(α-ヒド ロキシカルボン酸)、ポリーε-カプロラクトン、ポリ させ、次いで精製することにより得られる。このミクロ 10 ーβープロビオラクトン、ポリー3・ヒドロキシプロビ オネート、ポリー3・ヒドロキシブチレート、ポリー3 - ヒドロキシカプロレート、ボリー3 - ヒドロキシヘブ タノエート、ポリー3・ヒドロキシオクタノエート、及 びこれらとポリー3-ヒドロキシバリレート、ポリー4 -ヒドロキシブチレートとの共重合体のようなポリヒド ロキシアルカノエート、ポリエチレンオキサレート、ポ リエチレンサクシネート、ポリブチレンサクシネート、 ポリブチレンアジペートポリブチレンセバケート、ポリ ヘキサメチレンセバケート、ポリネオペンチルオキサレ 20 ート及びこれらの共重合体のように二価アルコールと二 価カルボン酸との縮合物、さらにそれらを二価イソシア ナート化合物で鎖延長したウレタン結合を有するもの等 が挙げられる。脂肪族ポリエステルアミドの具体例とし Cは、例えば、 ϵ - カプロラクトンと ϵ - カプロラクタ ムの共重合体等のラクトンとラクタムの共重合物が挙げ られる。

> 【0150】(3-2) 分解性高吸水性複合体の支持 体層の構造

本発明の分解性高吸水性複合体の支持体層は、(3-30 1)で挙げた材料を用いた構造体である。

【0151】支持体層の構造としては、例えば、無サイ ズ紙、不織布などの透水性多孔シート、セロファン、ビ ニロンフィルム、PVAフィルム、熱可塑性フィルムで フィルム製造時に微細連通孔をもつように発泡加工した もの、無機物または高融点の核発生剤を添加して延伸加 工して微細連通孔を形成したもの、生分解性プラスティ ックとパルプとの混抄紙、紙と不織布との複合体、サイ ズ紙や不織布にビスコースによってセルロース膜を形成 させたもの、セルロース膜に微細な孔を形成させたも の、生分解性プラスティックからなるプラスティックフ ィルム又は多孔性フィルム、金属箔、その一部または全 部が生分解性プラスティックの不織布、レーヨン、パル プなどの繊維に、生分解性プラスティックを含浸または 混入した不織布、生分解性プラスティックからなる不織 布等が挙げられる。

【0152】これらの中で、分解性支持体層が、ウェ ブ、シート、及び、フィルムから構成されるものである ものが好ましい。ウエブの中では、織布、編物、不織 布、及び、紙等が好ましい。さらに工業的生産を考慮す 50 ると、不織布が特に好ましい。不織布については(3(13)

3) においてその詳細について説明する。

【0153】(3-3) 分解性高吸水性複合体の支持 体を形成する不織布

不織布はASTMでは、「繊維同志を接合物質によって 接合したウエブ、あるいは、マット状の構造を持つ布状 物質」と定義され、また、日本不織布工業会では、「乾 式ウエブの機械的、熱的あるいはそれらの組み合わせに による処理により構成繊維を結合、接着して作られたも ので、製織、編織、縮じゅうなどの方法によらない布状 のもの」と定義しているが、本発明においては、さらに 10 広義な意味である「天然あるいは人造繊維ステーブル、 あるいは連続フィラメントが接着剤、溶融繊維、あるい は機械的方法により接合されら布状物質」として定義す る。

【0154】その製造方法は特に限定されず、各種の方 法が使用できる。例えば、水を媒体として用いず、紡績 用カードあるいはガーネットその他の装置により繊維シ ートを形成する方法である乾式法、水あるいは結合材を 含有した液中に原料繊維を分散させ、抄紙機を利用して シート状にする方法である湿式法、繊維を形成すると同 20 グリセリン/酸化防止剤からなるホットメルト接着剤を 時に不織布を作る直接法が挙げられる。

【0155】乾式法は、原料繊維を開綿機にかけてほぐ し、あるいは混綿機で配合し、これを薄いシート(ウエ ブ) にする工程と、得られたウェブを接合する工程によ り構成される。

【0156】ウエブ作成は、カードあるいはガーネット で作られる平行配列ウエブを交差して折り畳んで作る交 差配列ウエブ、開綿された繊維を空気流により吹き飛ば して、有孔円筒(コンデンサ)上に均一に分散集積(a ir-lay)させて作るランダム配列ウエブが挙げら れる。亜硫酸パルプや綿リンタ等の短い繊維を用いて接 着剤を用いることなく、不織布を作成しても構わない。

【0157】ウエブの接合方法は、接着剤による方法と 機械的接合法がある。接着剤による方法は、合成樹脂溶 液あるいはエマルジョンを用いる、浸漬法、ロール法、 泡末法、プリント法、スプレー法と、合成樹脂粉末を用 いる方法と、繊維を結合材として用いる方法がある。機 械的接合法は、ニードルパンチ法とステッチ法がある。

【0158】湿式法は、熱可塑性樹脂から作られた微小 な不規則な細枝状のバインダー(fibrids)を湿 40 潤したパルプのような状態で、通常の繊維と混ぜてスラ リーとし、抄紙機でシート化し、加熱してバインダー (fibrids)を溶融して接合する方法と、マルチ セルラセルフボンディングビスコースレーヨン等を多種 繊維と混合して水中にスラリーとし、湿式でマットを作 り乾燥する方法がある。また、フィブリル化した繊維も 同様な方法に使用できる。また高圧の水流によって交絡 させるスパンボンド法も湿式法に分類される。

【0159】直接法には、スプレーファイバー法とスパ ンボンド法がある。

【0160】スプレーファイバー法は、原料高分子物質 を溶液あるいは熱溶融して紡糸ノズルから噴射させ、ノ ズルの周囲から噴射される空気流により吹き飛ばされ て、切断された繊維を形成し、コンベアのスクリーン上 に集積され、きわめて細い繊維から成るランダムマット を形成させるとき、紡糸筒に静電気を与えて均一に分散 させる方法である。

【0161】スパンボンド法は、紡糸ノズルから溶融紡 糸されたフィラメントを、吸引ゼット中に導き、圧搾空 気流により延伸されるととに下方に送り、吸引ゼットに 与えた静電気によりフィラメントが帯電して均一に開繊 され、下方の受器に均一なランダムウェブを形成する方 法である。

【0162】本発明の衛生用品に用いられる不織布の材 料となる原料繊維は生分解性を有する高分子材料である ほうが好ましい。その例については、例えば、(3-1)で挙げた溶融性高分子材料とグリセリン等の有機溶 媒、酸化防止剤からなる。さらに、具体的な例として は、ポリカプロラクトン/ポリプチレンサクシネート/ 挙げることができる。

【0163】(4) 分解性高吸水性複合体の製造方法 本発明の分解性高吸水性複合体の製造方法は特に限定さ れないが、その好適な方法を例示する。

【0164】その方法としては、(4-1)架橋ポリア ミノ酸粒子、ミクロフィブリル状セルロース、および、 水及び/又は水混和性有機溶媒を含んでなる懸濁液を、 支持体層にキャストし、乾燥する方法、と(4-2)架 橋ポリアミノ酸粒子を支持体層に散布し、その上にミク 30 ロフィブリル状セルロース、および、水及び/又は水混 和性有機溶媒を含んでなる懸濁液をキャストし、乾燥す る方法、とがある。

(4-1)架橋ポリアミノ酸粒子、ミクロフィブリル状 セルロース、及び、水及び/又は水混和性有機溶媒を含 んでなる懸濁液を、支持体層にキャストし、乾燥する方 法

前記方法は、架橋ポリアミノ酸粒子の膨潤を抑制し、か つ、セルロースあるいはセルロース誘導体から得られる 水和性を有するミクロフィブリル状セルロースを水和分 散できる、水混和性のある有機溶媒と水との混合溶媒か らなる分散媒体中に、前記架橋ポリアミノ酸粒子および 前記ミクロフィブリル状セルロースを分散させ、得られ た分散液から前記架橋ボリアミノ酸粒子および前記ミク ロフィブリル状セルロースを前記混合溶媒から分離し、 ついで脱溶媒したのち乾燥させる方法である。

【0165】本発明においては、前述のような架橋ポリ アミノ酸複合体の製造に当たり、ミクロフィビリル状セ ルロースの分散媒体中での架橋ポリアミノ酸粒子の分散 挙動および脱溶媒後のミクロフィビリル状セルロースの 50 挙動を巧みに利用している。すなわち本発明の架橋ポリ

アミノ酸複合体は、ミクロフィビリル状セルロースが安定水和分散する、水混和性のある有機溶媒と水との混合溶媒からなる分散媒体中に、前記架橋ボリアミノ酸粒子および前記ミクロフィビリル状セルロースを分散させ、得られた分散液から前記架橋ボリアミノ酸粒子および前記ミクロフィビリル状セルロースを前記混合溶媒から分離し、ついで脱溶媒した後、乾燥させることによって得ることができる。この結果として、架橋ボリアミノ酸粒子が90%以上含有するような典型的なバルプレスの分解性高吸水性複合体を得ることができる。

【0166】まず、ミクロフィビリル状セルロースの分散液を調製するためには、比較的高濃度のミクロフィビリル状セルロースの水分散液を調製してこれを母液とする。この母液としては、高濃度になるほど製造装置はコンパクトになるが、一方、高粘度になるために取り扱いが難しくなるので、10%以下、好ましくは5%~1%の水分散液が用いられる。このミクロフィビリル状セルロースの母液を有機溶媒と水との混合溶媒に加えて、所定のミクロフィビリル状セルロース濃度とそれに伴う粘度を持ったミクロフィビリル状セルロース分散液を調製 20する。架橋ポリアミノ酸粒子の混合添加手段としては、上述のミクロフィビリル状セルロース分散液の中に架橋ポリアミノ酸粒子を分散させる方法が一般的である。

【0167】本発明に使用される有機溶媒は、水と相溶性のあるもので架橋ボリアミノ酸粒子をあまり膨潤させないものであれば原則使用可能であり、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール、ジオキサン、アセトン、テトラヒドロフラン、グリセリン、ネオペンチルグリコール、ベンタエリスリトール、ジメ 30チルスルホキサイド等から挙げられる。

【0168】これらの中で、乾燥時に揮発しやすく、安全性の高いものが好ましい。例えば、炭素原子数1~6のアルコール、グリコール、エーテル、ケトンが好ましい

【0169】この有機溶媒と水とからなる混合溶媒にミクロフィビリル状セルロースおよび架橋ポリアミノ酸粒子を分散させることにより、ミクロフィビリル状セルロースのネットワーク構造が形成されて架橋ポリアミノ酸粒子を組み込み、安定分散状態を確保し、その後に混合40溶媒が除去されたときは、ミクロフィビリル状セルロースの持つ物理的な絡合構造と、ミクロフィビリル状セルロース同士の安定な水素結合の形成により、3次元的な構造が形成されるものと推定される。

【0170】有機溶媒と水との混合比は、ミクロフィビリル状セルロースのネットワーク構造化を可能にし、かつ架橋ポリアミノ酸粒子の吸水をできるだけ抑制する範囲に設定される。有機溶媒としてメチルアルコール、エチルアルコールおよびアセトンを用いた場合について、各有機溶媒の濃度と架橋ポリアミノ酸粒子の吸収比との 50

関係を測定した結果を図3のグラフに示す。図3から、エチルアルコールおよびアセトンの場合には、その濃度が50%以下になると架橋ポリアミノ酸粒子の吸収比が急激に増加していることが分かる。メチルアルコールの場合には、60%以下になると架橋ポリアミノ酸粒子の吸収比が急上昇するので、有機溶媒が多い方が扱いやすい。一方、ミクロフィビリル状セルロースを水和させて、安定分散させるためには、混合溶媒中の水の含有量は多い方が有利である。したがって有機溶媒/水の混合10 比は、90/10~40/60の範囲が適当である。なおこの比率は、使用される有機溶媒と、用いる架橋ポリアミノ酸粒子の性質により多少変化する。場合によって安定領域を広くするために3成分溶媒系を採用する場合もある。例えば、PGA/エタノール/水の三溶媒系である。

【0171】との混合溶媒中での架橋ポリアミノ酸粒子とミクロフィビリル状セルロースとの共存分散状態における、架橋ポリアミノ酸粒子とミクロフィビリル状セルロースの各分散濃度と、架橋ポリアミノ酸粒子とミクロフィビリル状セルロースの濃度比についてより詳しく説明する。架橋ポリアミノ酸粒子の濃度は、系の搬送方法によっても異なるが、取り扱いの容易さから、60%以下、好ましくは50%~5%の範囲から選択される。ミクロフィビリル状セルロース濃度は、架橋ポリアミノ酸粒子の結合力と分散安定性に影響される。良好な分散安定性を保つためには0.2%以上が必要であり、好ましくは0.3%~1.0%である。

【0172】このような濃度でミクロフィビリル状セルロースを含有する混合溶媒は、前述のように良好な分散安定性を示し、長時間静置した後にも、相分離を起こし難い。実験の結果によれば、ミクロフィビリル状セルロース濃度が高くなるにしたがって分散安定性が良好になり、0.3%では1時間経過するまで相分離は起こらず、0.5%では65時間後にも相分離は認められなかった。この良好な分散安定性は、塗布時の操作を容易にするばかりでなく、架橋ポリアミノ酸粒子をミクロフィビリル状セルロースが万遍なく包囲して安定に分散できることを実証するものであり、この形状が、本発明の分解性高吸水性複合体の優れた吸水性の基幹をなすものであると推測される。

【0173】架橋ポリアミノ酸粒子に対するミクロフィビリル状セルロースの割合(MFC/架橋ポリアミノ酸粒子×100(%))は、その値が大きくなると強度が上がるが、紙状になって固くなってくるので、20%以下が望ましい。また0.3%以下では十分な結合力が得にくい。この結合力の評価は、表面強度の測定法に用いられるセロファンテーブ法を援用して行うことができ、その結果からみるより好適な範囲は5%~0.5%である。

(4-2)架橋ポリアミノ酸粒子を支持体層に散布し、

その上にミクロフィブリル状セルロース、及び、水及び /又は水混和性有機溶媒を含んでなる懸濁液をキャスト し、乾燥する方法

本製造法において、ミクロフィブリル状セルロース、及び、水及び/又は水混和性有機溶媒を含んでなる懸濁液は、乾燥し溶媒を除去すると架橋ボリアミノ酸粒子を被 覆し結合するので、被覆結合材と呼ぶ。

【0174】架橋ポリアミノ酸粒子の散布方法としては、バイブレーター付き滑り台、スクリュータイプフィーダー、グリッドロール等による散布、或いは静電塗装 10のような静電気を利用した方法等が挙げられる。

【0175】シート状支持体上に散布された架橋ボリアミノ酸粒子の一部は、シート状支持体生地の網目に絡んで固定されるが、大半の架橋ボリアミノ酸粒子は固定されない状態にある。この状態でも最終的には被覆結合材によって固定されるため問題ない。しかし、製造時、架橋ボリアミノ酸粒子を固定した方が架橋ボリアミノ酸粒子のこぼれによるロスや、ズレによる架橋ボリアミノ酸粒子の片寄りも少なく、より望ましい。

【0176】具体的には、架橋ポリアミノ酸粒子の仮固定方法としては、例えば、第1層のシート状支持体と高吸水性樹脂粉末の間には樹脂粉末の助きを固定する性質を有する固定剤を塗布することにより達成される。

【0177】つまり、例えば、架橋ポリアミノ酸粒子がシート状支持体に付着する程度の少量の水を、シート状支持体上に部分的或いは全面に架橋ポリアミノ酸粒子がシート状支持体に一時的に固定できる。

【0178】本発明で用いる固定剤は、水の代わりに、 架橋ポリアミノ酸粒子を膨潤させないエチレングリコー ル、プロピレン、グリコール等のアルコール類またはそ 30 の水溶液を用いることもできる。また、架橋ポリアミノ 酸粒子の固定強度を高めるためにミクロフィブリル状セ ルロースの被覆結合材の分散液を用いることもできる。 【0179】また、カルボキシメチルセルロース、カラ ギーナン、ヒドロキシアルキルセルロース、アルギン酸 ナトリウム、ポリビニルピロリドン、ポリエチレンオキ サイド、ポリアクリル酸ナトリウム等の粘着性水溶液、 若しくはポリ酢酸ビニルエマルジョンのようなエマルジ ョン型接着剤を塗布すれば、架橋ポリアミノ酸粒子をシ ート状支持体にしっかりと固定することができる。但 し、上記接着剤は透水性を阻害する恐れがあるため、そ の使用量は自ずと制限され、接着剤固形分換算で2.0 g/m'以下であることが望ましい。または当該接着性 水溶液にミクロフィブリル状セルロースを配合して用い れば、透水性を損なうことなく架橋ポリアミノ酸粒子の 固定強度を更に高めることができる。

【0180】被覆結合材は、透水性を有しており、しかもシート状支持体を折り曲げたり、伸縮しても、散布した架橋ポリアミノ酸粒子の移動や脱落が起きないようにしっかり固定する目的で用いられる。

【0181】即ち、本製造法で使用されるミクロフィブリル状セルロースを主要成分とする被覆結合材はミクロフィビリル状セルロース同志の物理的な交絡に加え、極めて強い水素結合で結着するため、ミクロフィブリル状セルロースのネットワーク構造が形成される。つまり、このネットワーク構造により個々の架橋ポリアミノ酸粒子表面のほぼ全域を当該ミクロフィビリル状セルロースで被覆するのではなく、図4に示すように、当該ミクロフィビリル状セルロースが架橋ポリアミノ酸粒子の上表面を覆いかくすように塗布することにより、当該ミクロフィビリル状セルロース層が形成され、架橋ポリアミノ酸粒子をシート状支持体に固定することができる。また乾燥時には極めて薄いネットワーク構造が弱まり、架橋ポリアミノ酸粒子の膨潤を阻害せずに極めて良好な透水性を有する。

【0182】被覆結合層の形成方法としては、ミクロフィブリル状セルロースの分散液を架橋ポリアミノ酸粒子の上面にスプレー散布、またはカーテン塗装する等の方法が挙げられる。同時に減圧装置を用い、架橋ポリアミノ酸粒子の散布面と異なるシート状支持体面を吸引しながら分散液を散布または塗装すると、分散液は架橋ポリアミノ酸粒子の上表面に止まらず架橋ポリアミノ酸粒子間及びシート状支持体へも分散され、架橋ポリアミノ酸粒子のシート状支持体への固定が強固になる。

【0183】上記の被覆結合材をコーティングした後、仮固定に用いた溶媒、ミクロフィビリル状セルロースの分散液として用いた水または有機溶媒を乾燥等の方法で除去することにより、複合体中に架橋ポリアミノ酸粒子が70重量%以上含有するような典型的なパルプレス分解性高吸水性複合体を得ることができる。(架橋ポリアミノ酸粒子)/(架橋ボリアミノ酸粒子+被覆結合材)は90重量%以上となる。特に水を用いた場合には水量が少ないとはいえ、架橋ボリアミノ酸粒子が吸水膨潤するのでできるだけすばやく水を除去する必要があり、5分間以内で乾燥することが望ましい。

【0184】また、被覆結合材をコーティングした後、 シート状支持体を被覆結合層面に重ねて積層し、乾燥し てもなんら差し支えない。

【0185】また、被覆結合材を架橋ポリアミノ酸粒子の散布位置の近傍でスプレー散布した場合、架橋ポリアミノ酸粒子と被覆結合材との層形成が明瞭に峻別できず、それぞれが濃度勾配を持った層となるが、そのような層形成であってもなんら差し支えない。

【0186】本発明の分解性高吸水性複合体は、架橋ボリアミノ酸粒子を被覆結合層が全面に形成されたものでもよいし、ストライブ状、或いは島状にバターン形成された形状のものでもよく、その使用目的や使用形態に応じて形状を選択すればよい。特に本発明の方法によれば、特開平11-034200号公報(特願平9-19502159号)に記載の製法と比較して、バターン状に成

形するのは極めて容易である。

【0187】架橋ポリアミノ酸粒子がストライプ状に形 成された分解性高吸水性複合体は、例えば、図5のよう に、移動するシート状支持体の上面に、架橋ポリアミノ 酸粒子の仮固定用の溶液をストライブ状に塗布した後、 多数の散布口をシートの移動方向に対して直角に配列し てある架橋ポリアミノ酸粒子散布装置より散布すること によって製造することができる。ことでは、分解性高吸 水性複合体は、架橋ポリアミノ酸粒子の仮固定用の溶液 を島状に塗布した後、上記の散布装置によって架橋ボリ アミノ酸粒子を、次いで被覆結合材を間欠的に散布する ことによって製造することができる。(4-3)その他 の添加成分架橋ポリアミノ酸粒子、ミクロフィビリル状 セルロース共存分散系に対して、他の成分の添加の可否 について説明する。本発明において、重量なポイントの 一つは、如何に架橋ボリアミノ酸粒子を高濃度の状態で 取り扱うかにある。ミクロフィビリル状セルロースと架 橋ポリアミノ酸粒子の結合効率を考えると、架橋ポリア ミノ酸粒子とミクロフィビリル状セルロースの2成分系 で望ましいが、より系の粘度安定性をさらに高めるため の増粘剤としてのCMC等の添加や、過乾燥による硬化 を防ぐため可塑剤としてのポリエチレングリコールやグ リセリンの添加も場合によっては必要になる。また、上 記分散系の中に木材バルブスラリーや合成繊維の分散ス ラリーを添加することも可能であるが、これらの添加は 分散の安定性を阻害し、ミクロフィビリル状セルロース と架橋ポリアミノ酸粒子の結合効率も低下させることに なるので、必要最小限度に留めるべきである。 (4-4)より具体的な製造方法つぎに混合溶媒中にミクロフ ィビリル状セルロースおよび架橋ポリアミノ酸粒子を分 散させた分散液から複合体を形成する方法について図面 を参照して説明する。いわゆるスラリー状の上記分散液 から複合体を形成する方法としては、例えば、図7の過 程に示すように、スラリーから溶媒を分離して得られる ブロック状物を乾燥後、粉砕して粒子状にすれば、架橋 ポリアミノ酸粒子の表面がミクロフィビリル状セルロー スで被覆された、図8(a)に示すような球状の、ある いは図8(b) に示すようなフレーク状の粒状体が得ら れ、スラリーを例えばネットで作った型に注いで固液分 離したのち乾燥すれば、用いた型に応じてペレット状、 棒状、筒状、波板状等の3次元構造の形状賦形複合体が 得られ、また連続的に薄膜を形成し、乾燥すればシート 状の分解性高吸水性複合体が得られる。このようにして 得られた複合体は、水分含有によって可撓性を示すよう になるため、シート状の分解性高吸水性複合体を、例え ば、エアレイド法によって繊維類とともにマット状に成 形し、これに湿分を与えてプレス、乾燥することによ り、シート状に再成形することも可能である。

【0188】以下、とくに汎用性の高い、分散液から直性高吸水性複合体は、単独で、トップシート、吸収体お接シート状に成形する方法について詳しく説明する。前 50 よびバックシートからなる吸収体製品の機能を持たせる

述のようなミクロフィビリル状セルロースのネットワー ク構造は、その内部に架橋ポリアミノ酸粒子を安定かつ 強固に保持した状態を保ちながら、極めて薄い層に成形 することを可能にする。すなわち、ミクロフィビリル状 セルロースおよび架橋ポリアミノ酸粒子を分散媒体に分 散させた分散液を、適当な平面上に流延し、ミクロフィ ビリル状セルロースおよび架橋ポリアミノ酸粒子のみか らなるシート状の分解性高吸水性複合体を形成すること ができる。この形態の分解性高吸水性複合体層10を図 10 9 (a) に示す。図9 (a) において、符号11はミク ロフィビリル状セルロース、12は架橋ポリアミノ酸粒 子をそれぞれ示す。好適な実例では、70倍の顕微鏡写 真からスケッチした図9(b)に示すように、各架橋ボ リアミノ酸粒子は、微細なミクロフィビリル状セルロー スによって完全に包み込まれているとともに、隣接する 架橋ポリアミノ酸粒子との間でミクロフィビリル状セル ロースで絡合された、ミクロフィビリル状セルロースの ネットワーク構造に取り込まれている。

【0189】分散液を適当なシート状支持体上に流延し た場合には、分散液の乾燥後に、シート状支持体と分解 性高吸水性複合体層とからなる分解性高吸水性複合体が 得られる。とくにシート状支持体として多孔質な不織布 を使用した場合には、その多孔質度に応じて分散液の一 部が不織布の繊維間の空間に入り込み、分散液の乾燥後 に、図10(a)および顕微鏡写真からスケッチした図 10(b)に示すように、シート状支持体13と分解性 高吸水性複合体層10とが両者の接合面で絡み合った構 造の複合体となる。この不織布の好ましい多孔質度は、 見掛比重で示すと0.2g/cm³以下、さらに好まし くは0.01~0.1g/cm3である。なお、この場 合の不織布の構成素材としては、液の浸透性の問題か ら、コットン、レーヨン、木材パルプ等の親水性素材、 あるいはポリエチレン、ポリプロピレン、ポリエステル 等の合成繊維を親水性化処理した素材を用いることが望 ましい。特にミクロフィビリル状セルロースがS-MF C、BCの場合には、物理的な交絡に加えて、水素結合 性が極めて強いため、セルロース系の基材を用いると、 乾燥時にはさらに強く安定結合する。また湿潤時には極 めて良好な浸透性も示す。支持体となる不織布の形状と しては、多孔質なカード乾式、スパンボンド等の不織布 類に加えて、表面起毛不織布、ポンディングの弱いカー ドウエブ、あるいは開織トウなどのシート状素材も使用 可能である。

【0190】また、図11に示すように、図10に示した構造において、シート状支持体13と対向して、分解性高吸水性複合体層10に接するように別のシート材料を接合することもできる。この別のシート材料として、液体不透過性のシート材料を使用すれば、図11の分解性高吸水性複合体は、単独で、トップシート、吸収体およびバックシートからなる吸収体製品の機能を持たせる

こともできる。

【0191】さらに図10の構成において、シート状支 持体の全表面にわたって分解性高吸水性複合体層を設け ることもできるが、所望のパターンで部分的に設けるこ . ともできる。例えば、図12に示すように、シート状支 持体13の一方の表面のみに、所与の幅を有する帯状の 形態で複数の分解性高吸水性複合体層10を所定間隔で 設け、隣接する分解性高吸水性複合体層10の間で山折 りと谷折りに折り畳んだ、断面ジグザグ状とすることが できる。このような構成の複合体は、平坦なものと比較 10 して、単位面積当たりに存在する分解性高吸水性複合体 層10の容積が大きくなるので、より大きい吸収能力を 発揮する。あるいは図13に示すように、ジグザグ状の 山を一方向に大きく倒した場合には、単位面積当たりに 存在する分解性高吸水性複合体層10の容積をさらに大 きくすることができる。また図14に示すように、平坦 な中央部を挟んでその両側に、互いに反対方向に傾斜し た山部を設けることもできる。

31

【0192】また、このようなジグザグ構造は、架橋ポ リアミノ酸粒子が吸収体製品として使用される際に吸収 20 による膨潤を容易に行わせるための、自由で充分なスペ ースを提供することにもなる。

【0193】図15は、本発明にしたがって構成された 分解性高吸水性複合体の一例を示す斜視図である。この 分解性高吸水性複合体は、弾性体からなるシート状支持 体13の一方の表面に、所定の間隔で相互に平行に延び る帯状に、分解性高吸水性複合体層10を配置し、その 上に波形の液体透過性不織布14を配置して、この液体 透過性不織布14の各谷部において、液体透過性不織布 14とシート状支持体13とを結合部15において結合 した構造を有し、したがって各分解性高吸水性複合体層 10は、シート状支持体13と液体透過性不織布14と の間に形成されたチャンネル16内に収容されている。 【0194】とのような構成の分解性高吸水性複合体 は、例えば生理用ナプキンあるいはオムツのような吸収 体製品において、分解性高吸水性複合体層10の長さ方 向と直行する方向に大きい伸縮性をもち、かつ優れた吸 水性をもつ複合体として有利に使用することができる。 この場合、液体不透過性不織布14が身体に接する側と して使用され、液体は、まず液体不透過性不織布14に 40 より吸収、拡散され、ついで分解性高吸水性複合体層 1 0に吸収される。吸水量が増大するにしたがって分解性 高吸水性複合体層10の体積が膨張するが、これはシー ト状支持体13と液体不透過性不織布14との間に形成 されたチャンネル16内に位置しているので、自由な膨 張が許容される。

【0195】図16は、本発明の分解性高吸水性複合体 の応用例を示す。図16において、符号21で示す液体 不透過性シートは、液体不透過性で、適度な柔軟性を有 するもので、この液体不透過性シート21に、高吸水性 50

複合シート材料22が重ね合わされている。そしてこの 両者は、所定の間隔で配置された互いに平行に線状もし くは帯状に延びる多数の結合部23において相互に結合 されている。結合部23は、液体不透過性シート21と 高吸水性複合シート材料22とを、所定の幅で通常の手 段、例えばヒートシール、髙周波接合等で熱融着するこ とにより形成されている。

【0196】互いに隣接する2つの結合部23,23間 において、高吸水性複合シート材料22の長さは、液体 不透過性シート21の長さよりも長く、したがって各結 合部23,23間では、高吸水性複合シート材料22の たるみにより、液体不透過性シート21との間にチャン ネル24が形成されている。

【0197】高吸水性複合シート材料22は、ポリプロ ピレン (P. P.) あるいはポリエチレン (P. E.) のようなポリオレフィン系のスパンボンドあるいは乾式 不織布のようなシート状支持体13の一方の表面に分解 性高吸水性複合体層10を支持させて得られる図10に 示した構造のもので、この分解性高吸水性複合体層10 が液体不透過性シート21と対面する側に置かれてい

【0198】このような構成を有するシート状製品は、 多量の液体を吸収した状態でも、安定してシート状の形 態を維持する自己保形性にきわめて優れている。

【0199】つぎに、本発明の分解性髙吸水性複合体を 製造するのに適した装置について図面を参照して説明す

【0200】図17において、符号31はイオン交換水 を貯留するタンク、32はミクロフィビリル状セルロー ス母液を貯留するタンク、33はアセトンを貯留するタ ンク、34はSAPを貯留するタンクをそれぞれ示す。 タンク32から取出されたミクロフィビリル状セルロー ス水分散母液は、撹拌器を備えた混合器35に導入さ れ、タンク31から取出された水で混合器35内で希釈 されたのち、ポンプの作用で、つぎの撹拌器を備えた混 合器36に導入される。この混合器36には、タンク3 3から取出されたアセトンが導入されており、この混合 物が、ポンプの作用で、つぎの撹拌器を備えた混合器3 7に導入される。混合器37には、タンク34から粒状 SAPが導入されており、ここでミクロフィビリル状セ ルロース、有機溶媒、水およびSAPの混合分散液が形 成される。

【0201】一方、不織布のような適当なシート状支持 体13は、ロール38から巻き出されたのち、成形部4 0に導かれる。との成形部40は、ベルトコンベア41 と、このベルトコンベアのベルト上に位置するノズル4 2を備え、このノズル42に、前記の混合器37から混 合溶媒がポンプの作用で供給されるようになっている。 シート状支持体13は、ベルトコンベア41に導かれて 所定の速度で走行する間に、その表面上にノズル42か

らの混合分散液が塗布される。 ノズル42 としては、シ ート状支持体13上に設けられるべき分解性高吸水性複 合体層のバターンに応じて適当な形状のものが設けられ る。

【0202】成形部40には、さらに1対のローラから なるロールプレス43が設けられており、混合溶媒が塗 布されたシート状支持体13をプレスすることにより、 混合溶媒に含有されている溶媒をスクイーズし、分離さ れた溶媒は、ポンプの作用で混合器36に戻される。

【0203】シート状支持体13は、成形部40を出た 10 のち、次の乾燥部50に送られる。この乾燥部50には 熱風が供給され、1対の加熱ロール51,52を備え、 シート状支持体13 およびこれに塗布された混合溶媒 は、この加熱ロール51、52の周面に沿って搬送され る間に乾燥される。

【0204】との乾燥部50を出たのち、1対のプレス ロール61,62からなる圧縮部60で圧縮され、シー ト状支持体13上に分解性高吸水性複合体層が設けられ た製品が得られる。図18は、図17に示した工程に、 アセチルセルロースからミクロフィブリル状セルロース 20 を製造する工程を組み合わせたものである。この工程に おいては、タンク31aにアセテートドープ、タンク3 2aに凝固液、タンク33aにアセトンがそれぞれ収容 され、タンク31a、32aから取出されたアセテート ドープおよび凝固液が、アスピレータ式等の適当なフィ ブリル化装置39に送られ、ことでフィブリル化が行わ れる。ミクロフィブリル状セルロースは、混合器35a で開繊され、より細かいミクロフィブリル状セルロース となってスラリー化されたのち、混合器36 aで、タン ク33aからのアセトンと混合され、ついで次段のタン 30 化剤を用いて酸化分解性を利用する酸化処理、還元剤を ク(図示せず)でSAPと混合される。以下の工程は、 図17に示した工程と同様である。

【0205】再び図17において、成形部40におい て、シート状支持体13に混合分散液を塗布する別の装 置の例を図19に示す。図19において、符号44は、 混合分散液を収容する上面解放の槽を示し、この槽44 内に、周面の一部が混合分散液中に浸漬された状態で、 水平な軸を中心として回転可能な浸漬ロール45が配置 されている。また1対のロール46、47が、それぞれ 浸漬ロール45と平行な軸を中心として回転可能に設け られている。一方のロール46は、浸漬ロール45の周 面に圧接されているとともに、例えば図20に示すよう に、多数のリング状の溝46aを周面に有しており、平 坦な表面をもつ他方のロール47との間のニップに、混 合分散液を塗布すべきシート状支持体13が通過するよ うになされている。

【0206】槽44内に収容されている混合分散液は、 その中を移動する浸漬ロール45の周面に自身の粘性で 付着し、ついで溝付きのロール46を介してシート状支 の表面には、図21に示すように、相互に平行な多数の 帯状に混合分散液層48が形成されることになる。なお ロール46 に形成される凹凸のパターンは任意に設定す ることができ、このパターンに対応したパターンでシー

ト状支持体 13 に混合分散液を塗布することが可能であ

【0207】(5) 分解性高吸水性複合体廃棄物の処

本発明の特徴の一つは、本発明で製造した分解性高吸水 性複合体の廃棄物の処理法を提案することにある。本発 明の分解性高吸水性複合体の特徴は、構成材料が生分解 性を有するために分解性を有するだけでなく、より効率 的に分解を促進するために、構造上にも崩壊しやすいよ うに工夫を施したものである。

【0208】本発明の分解性高吸水性複合体の廃棄物 は、分解性高吸水性複合体の特性に応じて廃棄処理が可 能である。その方法は、特に限定されず、分解性高吸水 性複合体の特性を生かせる方法であればいかなる方法も 採用できるが、一般的に広く利用できる方法が好まし

【0209】その好適な方法は、分解性高吸水性複合体 の生分解性を利用する方法である。例えば、生分解性中 のコンポスト内分解性を生かす方法であるコンポスト処 理、土中分解性を生かす方法である埋設処理を挙げると とができる。但し、これら以外にも、本発明の分解性高 吸水性複合体の機能発現を妨げない範囲において、これ 以外の内在された特性を廃棄処理に利用することができ る。例えば、髙温分解性を利用する髙温熱処理、特定の 薬品を用いて化学的に処理する方法である。例えば、酸 用いて還元分解性を利用する還元処理、水と加水分解を 促す触媒等を用いて加水分解性を利用する加水分解処 理、アルカリを用いてアルカリ分解性を利用するアルカ リ処理、酸を用いて酸分解性を利用する酸処理等が挙げ

【0210】また、機械的手段による攪拌、混合、破 砕、細断等の処理を併用させたり、前処理として行うと とにより、分解をより効率化することもできる。

【0211】(5-1) 分解性高吸水性複合体廃棄物 をコンポスト処理する方法

本発明の分解性高吸水性複合体廃棄物をコンポスト処理 する方法は、分解性高吸水性複合体が持つコンポスト内 分解性を発現することにより実施できる。すなわち、コ ンポスト中において、微生物、菌、酵素等のバイオ(生 体) によって分解され、安全な低分子となることを意味 する。

【0212】その好ましい形態は、例えば、分解性高吸 水性複合体 1 重量部(乾燥状態)を、コンポスト(堆 肥)のイノキュラム(接種材料)100重量部(ウェッ 持体13に転写される。したがってシート状支持体13~50~ト状態)に仕込み、40日間、58℃で処理したとき、

分解性高吸水性複合体の処理後乾燥重量が、分解性高吸水性複合体の処理前乾燥重量を基準として、0~50重量%となる性質である。

【0213】本発明の分解性高吸水性複合体廃棄物をコンポスト処理する方法は特に限定されないが、一般的には、発酵バクテリア、発酵菌等を利用する方法が取られる。詳しくは、発酵菌、バクテリアを繁殖させ、好気性分解を利用して、生ゴミを発酵させて堆肥コンポスト(堆肥)化する。

【0214】[コンポスト処理の原理]本発明の分解性 高吸水性複合体廃棄物のコンポスト処理は、例えば、紙 おむつ等に使用した分解性高吸水性複合体廃棄物単独に て処理しても、他のコンポスト化される、「生ゴミ」とと もに処理しても構わない。本発明では、一般的な「生ゴ ミ」とともに処理する場合を中心に説明する。

【0215】「生ゴミ」は、その重量の90%は水分であり、残りは高分子系に属する物質からなり、その主成分元素はC、H、O、N、Sである。また、その他、P、Ca、Fe、Zn、K、Na等の無機質を含む。これらの中の高分子成分は一般に生息している微生物が作り出 20す分解酵素によって菌体外で低分子成分に分解され、無機質は再び微生物の栄養塩として利用される。本発明の分解性高吸水性複合体廃棄物についても、その重量の90%以上は水分であり、残りは高分子系に属する物質からなり、その主成分元素はC、H、O、N、Ca、Na等からなる。

【0216】低分子化された各種の物質は菌体に吸収されて、呼吸系へ利用される。この過程で菌体はCO₂を発生する。そうして、この際、菌体は高エネルギー化合物を合成するとともに、水分を放出する。

【0217】 この高エネルギー化合物は微生物増殖の活力源として利用されるが、この繰り返し工程で低分子成分はCO2と水に分解され、極端な場合、生ゴミは消滅し、後にはN、P、Ca、Kなどの元素や無機質のみが残されるととになる。

【0218】すなわち、生物酸化→合成→自己酸化の工程によって多量の放熱が行われることになる。例えば、グルコースの好気性代謝反応、硝化菌によるアンモニアの酸化分解等が起こる。これらの発熱で生ゴミ中の水分は放出されることになる。

【0219】[コンポスト処理の方式] 本発明の分解性 高吸水性複合体廃棄物のコンポスト処理の方式は、特に 限定されず、一般的な処理の方式を利用することができ る。

【0220】例えば、自然分解方式、乾燥減量方式、人工的微生物利用方式等が挙げられる。 これらの中で、人工的微生物利用方式が発酵・分解の速度が速いので好ましい。

【0221】自然分解方式は、生ゴミ類を自然の土壌中 に存在する各種のバクテリアを用いて、ゆっくりと発酵 50 ・分解させる方式で、特別な発酵促進のための発酵菌の添加、空気吹き込み、加熱装置などを使用しないものである。特別な発酵装置を使用しないために、原料水分率を60%前後に調整するほうが好ましく、悪臭対策を施す方が好ましい。

【0222】本方式は、家庭生ゴミ処理において、半地下式、2重槽式等にて行われる。自然の菌体利用だけでなく、人工的に育成した種々な好気性菌体等を混合添加することもできる。本方式の発酵条件は、この添加菌体10 に適するように設定し、建家、発酵槽、切り返し設備を自動制御にする方が好ましい。

【0223】乾燥方式は、生ゴミに含まれる90%以上の水分を乾燥によって除去する方式である。本発明の分解性高吸水性複合体廃棄物の乾燥化には、電熱ヒーター、温風、蒸気等を用いることができる。乾燥も攪拌によるもの、回転ドラムを使った直接加熱や間接加熱などの方式が採用できる。

【0224】本方式では、水分調整材として、乾燥生成 した堆肥そのものを利用することもできる。

【0225】本発明の分解性高吸水性複合体廃棄物を含む被乾燥物(乾燥された製品)は、その利用法、廃棄方法については特定されない。堆肥化そのものの生産ではなく、乾燥ゴミを生産し、処分は焼却又は埋め立てとする方法も採用するととができる。とのことは、ゴミの減量と埋立地延命策のために役立つ。さらに、乾燥された製品は、これに発酵促進用菌体などを添加・発酵させ堆肥化することもできる。このように、乾燥方式はコンポスト化のみが目的ではなく、生ゴミの減量、減容化を一義とすることができる。

.30 【0226】人工的微生物利用方式は、人工的に育成した種々の菌体、バクテリアを複合させた好気性発酵・分解材を用いるようにした方式であり、本発明の分解性高吸水性複合体廃棄物のコンボスト処理法として特に好ましい。

【0227】本方式において、意図的に添加する微生物、菌体、バクテリアは特に限定されないが、土壌中に存在するバクテリアであるトーマス菌、硝化菌、人工的なEM菌などにいくつかの放線菌などを添加したものが使用される。また、本発明の分解性高吸水性複合体廃棄物を発酵させ、成熟させたコンポスト中の微生物、菌体、バクテリア等を使用することは好ましい。これらの菌体を有効に働かせるには、適切な温度管理、pH管理、水分調整、酸素量、栄養塩などの調整することが好ましい。この環境保持のため、必要に応じて、加熱温度、攪拌、水分調整をコンピューター制御することもできる。

【0228】本発明の分解性高吸水性複合体廃棄物の場合は、一次発酵をこの方式で行い、二次発酵以降は装置外の適当な場所で処理しても構わない。

io 【0229】[コンポスト処理の運転条件]コンポスト

00

処理は、菌体等を使用するので、これらの菌体を有効に 働かせるには、適切な温度管理、pH管理、水分調整、 酸素量、栄養塩などの調整する必要性がある。この環境 保持のため、必要に応じて、加熱温度、攪拌、水分調整 をコンピューター制御することは好ましい。

【0230】コンポスト処理における、髙速かつ髙品質なコンポストを得る運転条件としては、材料と空気の接触効率を高めて常に空気(酸素)を確保し、かつ、発酵分解生成物質(CO2ガス、水蒸気等)の揮散を良くする、材料を微生物の生息に好適な含水率と温度に保持する、材料を細粒化、均質化し、比表面積を増やして微生物の生育効率を高めること等が挙げられる。以下にこれらの好ましい形態について記す。

【0231】本発明の分解性高吸水性複合体廃棄物を発酵前に、含水量、粒度、有用微生物等を好ましいコンポスト処理の条件に調整することが好ましい。

【0232】コンボスト処理の原料としては、塊状のものは微生物との接触面積が小さいので、好ましくなく、必要に応じて、粗破砕、破砕、細断、裁断、細粒化等の前処理を行う。コンボスト処理については、系内の水分 20 を制御する必要がある。特に堆肥化の過程で発熱により水分が蒸発するので、水分管理が必要である。

【0233】一般的に、コンポスト化において40~60%の含水率が好ましい。特に、60%前後であることが好ましい。これより水分が少ないと生物が活動しにくくなり、分解が遅くなる。逆に、水分が過剰の場合、堆肥原料間の隙間に水が充満した状態となり、酸素が十分浸透しなくなるため好気性分解が阻害される。この場合、十分に酸素を供給できる装置を備えていれば、水分過剰でも構わない。

【0234】コンポスト処理の水分調整には、表面積を広くして空気との接触を良好にするため、オガコ、バーク、稲ワラ、モミガラ、乾燥オカラ等を水分調整用の原料として使用することが好ましい。また、熟成して水分が減少した堆肥も水分調整剤として使用することができる。

【0235】コンポスト処理は、好気性分解によって行われるので、十分な酸素の供給が必要である。酸素の供給が不十分であると嫌気性となり、悪臭の発生、分解速度の低下、発熱不足等を引き起こし、低温のため殺菌もできなくなる。

【0236】酸素の供給は、空気を供給して行われることが一般的である。空気の供給は、水分の蒸発が促進されない程度に行うのが好ましい。また、堆肥原料に対して均一に供給し、嫌気性の部分が生じないようにする方が好ましい。

【0237】高温にて有機物が分解されているときは、酸素消費量が大きいため、有機物1kg/当たり40~60リットルを供給する方が好ましい。

【0238】コンポスト処理は適当な温度にて行う必要 50

がある。系内の温度が下がる場合、人工的方法を用いて 加熱してやる場合もある。発酵温度が高いと有機物の分 解速度が速くなり病源菌も死滅するので好ましい。

【0239】連続式堆肥化では温度が三段階に上昇する。第一段階では40~50℃、第二段階では60~65℃、第三段階では75℃に達する。温度上昇の各段階の間に多少の遅滞期があったり、直接連続的に上昇する場合もある。遅滞期の発現とその期間は、初期の微生物の種類によって左右される。微生物の数が多いほど、温度上昇は早期に起こるので好ましい。また、分解進行中の堆肥の一部を返送添加することは、植種を行い反応を進行させるので好ましい。原料が少ない場合、発熱より放熱が多くなるので、発酵槽を保温する方が好ましい。【0240】コンボスト処理は適当な栄養源が必要である。コンボスト処理中の栄養源が不足している場合は栄養源を添加してある方が好ましい。特に、容素分の出い

る。コンポスト処理中の栄養源が不足している場合は栄養源を添加してやる方が好ましい。特に、窒素分やリン酸分等が不足する場合がある。これらの栄養分としては、特に限定されないが、動物性残渣、家畜糞尿等が挙げられる。

0 【0241】コンポスト中の菌体による発酵は炭素と窒素の比率であるC/N比によって左右される。堆肥化はC/N比が35程度まで可能であるが、16程度が好ましい。

【0242】コンポスト処理は適当なpH条件にて行う必要がある。堆肥化反応の初期にはpH5.0~6.5 が好ましい。原料のpHが5以下の場合は、弱いアルカリ等によって中和する方が好ましい。例えば、消石灰を多量に含む下水処理汚泥等を添加する方法が取られる。また、アルカリ性の高いものは、弱い酸等で中和する方が好ましい。例えば、堆肥化の過程で発生する二酸化炭素により中和する。

【0243】コンポスト処理は、例えば有害重金属等の 有害物質の混入を防ぐ必要がある。

【0244】[コンポスト処理のための付属設備]コンポスト処理を行う際に、必要により、分別機、脱臭装置等の装置を備え付ける。

【0245】コンポスト化の原料は、不均一性、異物混入をしないものが好ましいので、磁力選別機による金属 片除去、風力選別機による紙、プラスチィック片の除去 がなされている。

【0246】堆肥化は一次発酵にて、強力な悪臭発生があり、生ゴミ中の水分も発熱により蒸発し、乾燥化が進行する。この後、二次発酵で徐々に水分蒸発が進む、二次発酵は屋根のある建家などでゆっくりと1~3ヶ月かけて処理する必要がある。

【0247】コンポスト処理においては、このように悪 臭が発生するので、脱臭装置を備え付けたものが好まし い。例えば、適切な悪臭吸着剤、マスキング剤、オゾン 発生器等をつけて脱臭を行う方法がある。

| 【0248】脱臭方式としては、燃焼方式、化学反応方

40

式、オゾン分解方式、活性炭吸着方式、微生物分解方式 (土壌方式)等があり、発生する悪臭はアンモニア、ア ミン、メルカプタン等を除去する。

【0249】廃プラ、紙類を原料とする「ゴミの減容設備」や「こみの固形燃料化設備」を併用しても構わない。

【0250】[コンポスト処理の方式]生成したコンポストの処理は特に限定されるものではなく、家庭用、事業用は特に限定されず、いずれにおいても使用できる。

【0251】家庭用コンポスターの構造は特に限定されず、様々な構造のものが使用できる。例えば、底の無い逆バケツ状であり、土中に埋めて用いる埋め込み式、容器を二重構造にし、容器上部で発酵させ、発生する液肥等を容器底部に溜まるようにした2重構造式、及び、可動部分等を備え付けたヒーター加熱方式、乾燥方式、攪拌方式等が使用できる。攪拌は、手動式、電動式何れであっても構わない。

【0252】家庭用コンポスターの場合、強制排気用ファン、脱臭装置等の可動部分を備え、自動で処理を行えるタイプが好ましい。

【0253】コンポスト処理時間は、コンポスト化の目 20的にもよるが、例えば、家庭用の場合、速く処理したい場合は3~4時間となり、良質のコンポストを得たい場合は1~2日間以上にて処理する方が好ましい。

【0254】処理量についても特に限定されないが、生ゴミ減量を目的とした場合、投入量の1/3~1/10程度以下まで減容できるものが好ましい。

【0255】事業用のコンポスト処理装置も特に限定されず、様々な構造のものが使用できる。例えば、固定槽型、移動層型、落し戸型等の攪拌機付設式、かき上げ板型、攪拌破砕軸併用型等の回転円筒式、単層型、多段型等の横軸回転式、横形槽単層型、竪型槽単層型、多段型等の横軸回転式等の固定攪拌軸式、ショベル攪拌型、回転バケット型、横軸攪拌型、縦軸攪拌型等の移動攪拌軸式が挙げられる。コンポスト・プラント処理プロセスは、特に限定されないが、分別収集生ゴミ→破砕処理→前処理→発酵処理→製品貯蔵→製品コンポストなるフローにて行われるのが一般的である。

【0256】バッチ式、連続式、及びこれらの組み合わせの何れであっても構わない。

【0257】処理装置の大きさも限定されず、処理する 40 量に応じて適宜決めればいい。

【0258】(5-2) 分解性高吸水性複合体廃棄物 を埋設処理する方法

本発明の分解性高吸水性複合体廃棄物を埋設処理する方法は、分解性高吸水性複合体が持つ、土中分解性を発現するととにより、実施できるものである。すなわち、土中等に埋設される等の処理を施されたとき、土中において微生物、菌、酵素等のバイオ(生体)」によって分解され、安全な低分子となるととを示す。

【0259】その好ましい形態とは、例えば、分解性高 50 より好ましい。

吸水性複合体 1 重量部(乾燥状態)を、圃場の地下300mmに6月間埋設処理したとき、分解性高吸水性複合体の処理後乾燥重量が、分解性高吸水性複合体の処理前乾燥重量を基準として、0~50重量%となる性質である

【0260】本発明の分解性髙吸水性複合体廃棄物を埋設処理する方法は特に限定されないが、一般的には決められた埋立地に埋設する方法が取られる。埋立地は、特に限定されず、遮断型処分場、安定型処分場、管理型処分場のいずれでも構わないが、生ゴミ等を処分する管理型処分場において処理する方が好ましい。

【0261】処分場は、必要により、処分場の上部は屋根で覆ったりして雨水流入防止措置を施したり、外周仕切設備、腐食防止工、地滑り防止工、沈下防止工、遮水工を施すことができる。さらに、子供、人等の進入を防ぐ囲い、開渠、擁壁、えん堤等を設置することができる。

【0262】また、浸出液が発生する場合は、集水設備、浸出液処理設備を付設した方が好ましい。さらに、有機物が腐敗して発生するメタン・ガスによる火災を防止するために、メタン・ガスを収集する設備・装置、それを燃焼させる設備・装置等を備えることが好ましい。【0263】本発明の分解性高吸水性複合体廃棄物は、同時に生ゴミ、木材、紙等の分解性を有する廃棄物又は材料とともに処理しても構わない。これらの廃棄物の上に土等により覆いを施すことができる。

【0264】(6) 分解性高吸水性複合体を使用した 衛生用品の廃棄物処理方法

本発明の分解性高吸水性複合体を使用した衛生用品の廃 棄物処理方法は、他の構成材料が生分解性材料である場合は、(5)で説明した廃棄物処理法にて処理することができる。この場合、他の構成材料もまた、分解しやすいようにすることが好ましい。

【0265】衛生用品の廃棄物は、目的とする吸収された体液等を含んだものをいう。本発明の処理を行うために必要に応じて前処理を行うことができる。例えば、乾燥処理、殺菌処理、細断化処理等が挙げられる。特に、細断処理は、生分解性していく速度が速くなるため有効な前処理である。また、病院等で使用した場合など、病原菌等に対する対策として殺菌処理を施すことは有効な方法である。

【0266】本発明の生分解性材料から構成される廃棄物の処理方法は、特に限定されない。これらの処理により、衛生用品の全構成要素の重量の50~100%生分解性をすることが好ましく、70~100%生分解することが特に好ましい。また、トップシートあるいはバックシート等が非生分解性の材料でできている場合は、それらを分離回収後、残りの全重量の70~100%が生分解する方が好ましく、80~100%分解する方がより好ましい。

【0267】本発明の分解性高吸水性複合体を用いた衛生用品の廃棄物は、コンポストで処理したとき、早期に生分解し、安全な低分子化合物となることが好ましい。例えば、実用的には、40日間で、全重量が処理する前の重量に対して0~50%になることが好ましい。さらには3週間で全重量が処理する前の重量に対して0~50%になることがより好ましい。

41

【0268】本発明の分解性高吸水性複合体を用いた衛生用品の廃棄物の埋設処理の方法は特に限定されず、一般的に用いられる方法を用いることができる。

【0269】本発明の分解性高吸水性複合体を用いた衛生用品の廃棄物は、埋設処理したとき、早期に生分解し、安全な低分子化合物となることが好ましい。例えば、実用的には、埋設処理したとき、6ヶ月間で全重量が処理する前の重量に対して0~50%になることが好ましい。

【0270】(7) 分解性高吸水性複合体の応用本発明の分解性吸収性複合体は、単独で種々の形態、例えば粉末状、粒子状、ペレット状、シート状もしくは任意の形状の三次元構造物等の形態に成形することが可能 20であるが、不織布のような任意のシート状支持体をベースとしてその上にシート状に成形することもできる。

スとしてその上にシート状に成形することもできる。 【0271】その使用用途は、特に限定されない。例え ば、生理用品、ナブキン、紙おむつ、失禁バッド、母乳 パッド、使い捨て雑巾等の衛生用品、創傷保護用ドレッ シング材、医療用アンダーパッド、パップ剤等の医療用 品、ペット用シート、携帯用トイレ、ゲル芳香剤、ゲル 消臭剤、吸汗性繊維、使い捨てカイロ等の生活用品、シ ャンプー、セット用ジェル剤、保湿剤等のトイレタリー 用品、農・園芸用の保水材、切り花の延命剤、フローラ ルフォーム(切り花の固定化材)、育苗用苗床、水耕栽 培植生シート、種子テープ、流体播種用媒体、結露防止 用農業用シート等の農・園芸用品、食品用トレー用鮮度 保持材、ドリップ吸収性シート等の食品包装材、保冷 材、生鮮野菜運搬用吸水性シート等の運搬用資材、結露 防止用建築材料、土木・建築用のシーリング材、シール ド工法の逸泥防止剤、コンクリート混和剤、ガスケット ・パッキング等の土木建築資材、電子機器、光ファイバ ー等のシール材、通信ケーブル用止水材、インクジェッ ト用記録紙等の電気機器関連資材、汚泥の凝固剤、ガソ リン、油類の脱水、水分除去剤等の水処理剤、捺染用の り、水膨潤性玩具、人工雪、徐放性肥料、徐放性農薬、 徐放性薬剤、湿度調整材、帯電防止剤等が挙げられる。 【0272】これらの中で多量の水を吸収したり、漏れ ることが好ましくない用途には、好適に使用することが できる。例えば、生理用品、ナプキン、紙おむつ、失禁 パッド、母乳パッド、医療用アンダーパッド、ペット用 シート、携帯用トイレ等のトイレタリー用品、育苗用苗 床、水耕栽培植生シート、食品用トレー用鮮度保持材、

吸水性シート等の運搬用資材、ガソリン、油類の脱水、水分除去剤等の水処理剤等が挙げられる。さらには、生理用品、ナプキン、紙おむつ、失禁パッド、医療用アンダーパッド、ペット用シート等のトイレタリー用品等が特に好ましい。

【0273】(8) 分解性高吸水性複合体の衛生用品 への応用

本発明は分解性高吸水性複合体は、吸収体として衛生用品の構造の一部として使用できる。

10 【0274】衛生用品の構造は特に限定されず、一般の 衛生用品に使用されている構造を取ることができる。本 発明の衛生用品の構造は、使用する衛生用品の種類、形 状、スタイルに応じて大きさを選択できる。これらは一 般的に、トップシート、バックシート、吸収コアからな ることを基本とする。

【0275】本発明の分解性高吸水性複合体は、吸収コアとして使用できる。もちろん、トップシート及び/又はバックシートを本発明の分解性高吸水性複合体により兼ねることができる。

1 【0276】本発明の分解性高吸水性複合体を衛生用品として使用する場合、必要に応じて上記以外の必要なパーツを含んでいても構わない。例えば、紙おむつ用品としては、上記パーツ以外に、ウエストギャザー、モレ防止ギャザー、インナーレッグギャザー、アウターレッグギャザー、フロンタルテープ、粘着剤、マジックテープ、ファッスンテープシステム、リリーズテープシステム、ベルクロなどのメカニカルファッスニングシステム、液拡散層等が挙げられる。

【0277】また、本発明の分解性高吸水性複合体を衛生用品に用いた場合、衛生用品は必要に応じて、トップシート及び/又はバックシートがない構造もとることができる。すなわち、本発明の衛生用品に不可欠な要素は吸収コアであり、それを含んだ衛生用品であれば、他のパーツについては特に限定されず、様々なパーツを組み合わせて衛生用品を構築できる。

【0278】さらに、一つのパーツで同時に2以上の機能を持たせる場合も構わない。例えば、吸収コアに拡散機能を持たせることができる。また、トップシート層/アクイジッション層、エンドキャップ/ウエストギャザー、リリーズテープ/ファッスンテープのコンポジット化、トップシートとサイドシート及びインナーレッグギャザーなどの複合化、バックシートと吸収体とが複合されたフィルムレスの複合化等が挙げられる。

を組み合わせて多層構造にすることができる。

【0280】本発明の分解性高吸水性複合体を用いた衛 生用品は、使用される衛生用品の特定の種類、形状また はスタイルに関して特定されず、一般に使用されている ものが選択できる。すなわち、本発明は、廃棄処理を深 く考慮した衛生用品の特定の材料の選択に関するもので ある。特に吸水性樹脂として高性能を有する架橋ポリア ミノ酸系樹脂を用いることにより、衛生用品として優れ た特性を発揮でき、その廃棄物の処理方法として新規の 方法を提示するものである。

【0281】例えば、衛生用品の種類として、子供用紙 おむつ、大人用紙おむつ、生理用ナプキン、タンポン、 パンティーライナー、生理用シーツ、失禁用バッド、医 療用血液吸収体等が挙げられる。本発明の衛生用品は、 その種類に関して特に区別されず、吸収体としての機能 を必要とする何れにも使用できる。

【0282】また、生理用品の形状についても特定され ず、例えば、紙おむつの場合、パンツ・タイプ、パッド ・タイプ、メカニカル・ファッスン・システム・タイプ 等を例としてが挙げることができる。

【0283】同様に本発明の分解性高吸水性複合体を用 いた衛生用品の使用のスタイルについても区別されるも

【0284】さらに、本発明の分解性高吸水性複合体を 用いた衛生用品の大きさについても、特に限定されず、 使用する衛生用品の種類、形状、スタイルに応じて大き さを選択できる。

[0285](9)分解性高吸水性複合体の効果 本発明で得られる分解性高吸水性複合体を組み入れた吸 収体製品の特徴、性能についても要約説明しておく。本 30 発明の分解性高吸水性複合体を吸収体製品に用いると、 第一に、使用前でも使用時でも、非吸水状態では極めて 薄くコンパクトな構造を持ち、架橋ポリアミノ酸粒子が 強固に固定、安定化されているため、たとえ折り曲げや 伸縮が働いても、架橋ポリアミノ酸粒子が移動すること はなく、架橋ポリアミノ酸粒子の脱落、構造の破壊も起 こりにくい。

【0286】第二に、吸水時には架橋ポリアミノ酸粒子 が90%以上のパルプレス構造にもかかわらず、ミクロ フィビリル状セルロースの親水性とその物性形態の故 に、吸収速度が早くしかもブロッキングを起こさないこ

【0287】第三に、吸水後もミクロフィビリル状セル ロースのネットワークによりゆるやかに膨潤ポリマーを 把持し、脱落を防ぐことである。

【0288】第四に、使用後の廃棄時の特性である。本 発明の吸収体は過剰の水に接した場合、静置状態では安 定であるが、シェアをかけると直ちに離解する性質があ るので、フラッシャブルな商品設計に適している。また

て高く、土中埋設により短期間で構造がバラバラにな る。

[0289]

【実施例】以下、実施例によって本発明をより具体的に 説明するが、本発明は実施例のみに限定されるものでは ない。以下の実施例及び比較例において「部」とは「重 量部」を意味する。

【0290】本発明では、(1)樹脂の吸水能の測定、

(2)分解性高吸水性複合体の吸水能の測定、(3)分 10 解性高吸水性複合体の生分解性の測定、について行なっ tc.

【0291】(1) 樹脂の吸水能の測定

実施例中の樹脂の吸水能は、生理食塩水を対象とし、平 衡膨潤吸水量、吸水速度、荷重下での吸水量、保水量に ついて行った。

【0292】(1-1) 樹脂の平衡膨潤吸水量の測定 樹脂の平衡膨潤吸水量はティーバッグ法を用いて測定し た。すなわち、樹脂約0.1部を不織布製のティーバッ グ(80mm×50mm)に入れ、過剰の対応する溶液 20 中に浸して該樹脂を1時間膨潤させた後、ティーバッグ を引き上げて1分間水切りを行った後、多量のティッシ ュペーパーに余分な水を吸収させた後、膨潤した樹脂を 含むティーバッグの重量を測定した。同様な操作をティ ーバッグのみで行った場合をブランクとして、膨潤した 樹脂を含むティーバッグの重量からブランクの重量と樹 脂の重量を減じた値を、樹脂の重量で除した値を吸水量 (g/g-樹脂)とした。なお、生理食塩水はO.9重 量%塩化ナトリウム水溶液である。

【0293】(1-2) 樹脂の吸水速度の測定

1部の樹脂を用いて、ウォーターディマンド法により2 0部の生理食塩水を吸水させ、水が無くなったところを 終点としその所用時間を測定した。

【0294】(1-3) 樹脂の加重下での吸水量の測 定

1重量部の樹脂を用いて、250kPa(1.5kg/ cm²)の荷重下をかけて、ウォーターディマンド法 により吸水させ、1時間後の荷重下での吸水量を測定し た。

【0295】(1-4) 樹脂の保水量の測定

1部の樹脂を用いて、平衡膨潤吸水させたゲルを遠心分 離器内にいれ3000Gの遠心力を10分間かけ、保水 量を測定した。

【0296】(2) 分解性高吸水性複合体の吸水能の 測定

分解性高吸水性複合体の吸水能は、生理食塩水と人工尿 を対象とし、飽和吸水量、吸水速度、荷重下吸水量、リ ウェットについて行った。

【0297】(2-1) 分解性高吸水性複合体の吸水 速度の測定

ミクロフィブリル状セルロースはセルラーゼ活性が極め 50 分解性高吸水性複合体の吸水速度の測定は、被吸収液2

46

0mlを吸収する吸収速度を測定した。

【0298】(2-2) 分解性高吸水性複合体の飽和 吸水量の測定

分解性高吸水性複合体の飽和吸水量の測定は、ウォーターディマンド法により吸水させ、1時間後の吸水量を測定した。

【0299】(2-3) 分解性高吸水性複合体の荷重 下吸水量の測定

層体の荷重下吸水量の測定は、103kPa(20g/ cm²)の荷重下、ウォーターディマンド法により吸 10 水させ、1時間後の吸水量を測定した。

[0300](2-4) 分解性高吸水性複合体のウェットバックの測定

分解性高吸水性複合体のウェットバックの測定は、ウォーターディマンド法により吸水させ、飽和吸収したものに、 $111kPa(1ton/m^2)$ の荷重をかけたときの逆戻りした液を多量のティッシュペーパーに吸わせて、その重量を測定した。

【0301】(3) 分解性高吸水性複合体の生分解性 の測定

実施例中の分解性高吸水性複合体の生分解性は、作成した分解性高吸水性複合体を用いて、コンポスト中の生分解性、埋設による生分解性、水中における生分解性について測定を行った。

【0302】(3-1) 分解性高吸水性複合体のコンポスト中での生分解性の測定

吸収パッドのコンポスト中の生分解性の測定は、コンポスト法により行った。コンポスト法は、ASTM D-5338.92の応用であるISO CD 14855 に準じて行った。すなわち、まず試験サンブルに、800部のイノキュラムに加え、58℃において40日間生分解を行い、吸収パッドの分解度合いを目視により観察した。また、非分解物が残存している場合は、取り出した分解残渣の重量を測定し、元の構成材料に対する重量変化を分解率(%)で表わした。

【0303】(3-2) 分解性高吸水性複合体の埋設 による生分解性の測定

吸収パッドの埋設の生分解性の測定は、試験サンプルを 地中から30cmのところに埋め、6ヶ月間生分解を行い、吸収パッドの分解度合いを目視により観察した。また、非分解物が残存している場合は、取り出した分解残 渣の重量を測定し、元の構成材料に対する重量変化を分解率(%)で表わした。

【0304】(3-3) 分解性高吸水性複合体の水中 における生分解性の測定

分解性高吸水性複合体の水中における生分解性の測定は、培養液(culture solution, デュボス媒質)を調製し、これを用いて試験管中で試験を行った。なお、前記培養液の組成を以下に示す。オートクレーブ中で120℃で10分間これらを複拌し、溶解

させた。

【0305】セルロース分解微生物(microbes)の調製

分解(decomposition)試験 デシケーター中で1日以上乾燥して恒量となった分解性 高吸水性複合体と標準セルロース繊維を裁断し、それぞれ0.5gを上記溶液100mlを含む300mlフラ スコに入れ、そとへ500mlの水を注ぎ、2週間時々 内容物を振りながら培養した。

【0306】培養(cultivation)後、それぞれのフラスコの内容物を洗い出し、直径1μmの貫通穴(perforation)を持つ直径47mmのグラスフィルター上に吸引・ろ過し、105~110℃で2時間乾燥後、デシケーター内で乾燥し、重量を測定した。分解率は

 $[(W_{k0}-W_{k1})/W_{0}][W_{s1}(W_{0}/(W_{s0}-W_{s1}))]$ で表わす。

【0307】[化合物製造実施例1]リジンメチルエス 20 テル・2 塩酸塩 7. 2 部とリジン・1 塩酸塩 2 2. 6 部 を蒸留水40部に溶解し、苛性ソーダ7.8部を少しず つ加えて中和し、リジン水溶液を調製した。一方、窒素 気流下、分子量9.6万のポリコハク酸イミド100部 を400部のDMFに溶解し、リジン水溶液を加え、室 温で1時間攪拌後、撹拌を止め、20時間反応した。反 応物を刃付き攪拌翼がついたミキサーに移送し、蒸留水 400部とメタノール400部を加え、8000rpm において5分間ゲルを細断し、さらに27重量%苛性ソ ーダ水溶液129.7部を2時間かけて滴下した。滴下 30 後、さらに2時間攪拌後、7重量%塩酸水を用いてpH =7になるまで中和した。中和後さらにメタノール30 0部を加え、沈殿物を60℃で乾燥すると、吸水性ポリ マー143部が得られた。さらにサンプルミルを用いて 粉砕し、100~500μmに分級した。

【0308】この樹脂の吸水能について測定したところ、平衡膨潤吸収量は58倍であり、生理食塩水に対する吸水速度は1分間において27倍であり、加重下での吸水量は23であり、保水量は28倍であった。

【0309】 [化合物製造実施例2] ヘキサメチレンジ 7:23.0部を、DMF40部に溶解し、苛性ソーダ 7.8部を少しずつ加えて中和し、リジン水溶液を調製した。一方、窒素気流下、重量平均分子量15.3万のポリコハク酸イミド100部を、DMF400部に溶解し、この溶液にリジン水溶液を加え、室温で1時間攪拌後、撹拌を止め、20時間反応させ、架橋ポリコハク酸イミドのゲルを、刃付攪拌翼を具備したミキサーに移送し、蒸留水400部とメタノール400部を加え、8000rpmにおいて5分間ゲルを粉砕した。

クレーブ中で120 $\, \mathbb{C}$ で10分間これらを撹拌し、溶解 50 【0310】さらに、樹脂の彫潤度を3〜100倍の範

囲内に保ちつつ、この中に、27重量%苛性ソーダ水溶 液129.7部を2時間かけて滴下した。滴下終了後、 さらに2時間攪拌し、その後7重量%塩酸水を加えてp H7となるように中和した。中和終了後、さらにメタノ ール300部を加え、沈殿物を60℃で乾燥し、吸水性 ポリマーである架橋ポリアスパラギン酸系樹脂125部 を得た。

【0311】この樹脂の吸水能について測定したとこ ろ、平衡膨潤吸収量は64倍であり、生理食塩水に対す る吸水速度は1分間において28倍であり、加重下での 10 し、50℃で減圧乾燥を行った。 吸水量は28倍であり、保水量は35倍であった。

【0312】(実施例1)

ミクロフィビリル状セルロース(MFC)分散液の調製 S-MFC (特種製紙(株)製)のゲル状の3.0%水 分散体を母液として、これにエチルアルコールとイオン 交換水を加えて、エチルアルコール/水比が70/3 0、S-MFC濃度がそれぞれ0.2%、0.5%、1 %の3水準のS-MFC分散液を用意した。

【0313】S-MFC/架橋ポリアミノ酸粒子共存分*

* 散液の調製

上記3水準のS-MFC分散液50mlに、化合物製造 実施例1にて製造した架橋ボリアミノ酸粒子の60~1 00メッシュ区分け品を10g添加して、スラリー状の S-MFC/架橋ボリアミノ酸粒子分散液を調製した。 【0314】S-MFC/架橋ポリアミノ酸複合体の形 成

上記分散液を攪拌しつつ、グラスフィルターを用いてア スピレーター減圧により脱溶媒した後、不織布上に塗布

【0315】乾燥後の複合体は大豆状の塊となった。と れをそれぞれメッシュの細かい金巾に包んで木槌で叩い て粉砕し、メッシュ区分40~60の部分を区分して吸 水性テストを行った。

【0316】使用した架橋アミノ酸粒子の吸水量と粉砕 処理したS-MFC/SAP複合体の吸水量を表1に示 す。

[0317]

【表1】

実験No.	吸水量(倍)
使用した架橋ポリアミノ酸粒子	4 5
S-MFC濃度0.2%の条件で得られた複合体	4 6
S-MFC濃度0.5%の条件で得られた複合体	4 7
S-MFC濃度1.0%の条件で得られた複合体	4 5

吸水量においてほとんど変化しないことが観察された。 【0318】(実施例2)

ミクロフィビリル状セルロース濃度と分解性高吸水性複 合体の特性の関係

ミクロフィビリル状セルロース分散液の調製 バクテリアセルロース(BC)母液の調製

固形分濃度30%のBC(B.P.R.社製)をイオン 交換水に溶解して、固形分濃度1.2%の母液を調製し た。攪拌はミキサーを用いて2時間行った。

【0319】・BCのエチルアルコール/水混合溶媒分 散液の調製

所定量の母液をとり、それにエチルアルコール、イオン※

※交換水を加えて、0.02%~0.80%のBC分散液 を調製した。

【0320】・BC/架橋ポリアミノ酸粒子共存分散液 の調製

30 0.02%~0.80%のBC分散液50mlに架橋ポ リアミノ酸粒子を5g添加して、BC/架橋ポリアミノ 酸粒子分散液を調製した。この分散液はBC濃度が低い 場合には架橋ボリアミノ酸粒子の沈殿物を形成したが、 濃度が高くなると安定になった。系の条件を合わせるた めにミキサーで撹拌しつつ、系の安定を維持した。 [0321]

【表2】

実験 No.	エチルアルコール/水 (重量比)	BC濃度(%)	(BC/架橋ポリアミ ノ酸粒子)×100 (%)
No.11 No.12 No.13 No.14 No.15 No.16 ブランク	70/30 70/30 70/30 70/30 70/30 70/30 70/30	0.02% 0.05% 0.10% 0.20% 0.40% 0.80%	0.2 0.5 1.0 2.0 4.0 8.0

BC/架橋ポリアミノ酸複合体の形成

上記分散液を減圧装置に連結されたブッフナー漏斗(内 径11cm) にろ紙、基材不織布 (二村化学製TCF4 03、見掛比重0.07g/cm³)を重ね、その基材 圧により脱溶媒した後、熱風乾燥させて複合体とした。 【0322】分解性髙吸水性複合体の吸水量、保水量の 評価

上記分解性高吸水性複合体を十分な量の生理食塩水中に 不織布上に20m1の粘稠な分散液をすばやく注ぎ、減 50 30分間浸漬後、JIS K-7223に準じて吸水

50

※2層構成スルエアーサーマルボンドウエブ40g/

m'、目掛比重0.06の不織布で下記の構成を持った

量、保水量を測定し、その値を架橋ポリアミノ酸粒子含 * [0323] 有量に換算したところ、表3のような結果が得られた。* 【表3】

実験 No.	吸水量 (倍)	保水量(倍)
架橋ポリアミノ酸粒子	45	37
No.12	44	36
No.13	46	38
No.14	48	86

(実施例3)図19に示した塗布装置を備えた、図17 に示す製造装置を用いて、分解性高吸水性複合体を製造 した。使用材料は下記のとおりである。

10 ものを用いた。

[0324]

(1) ミクロフィビリル状セルロース: S-MFC (特 種製紙社製)

(2)架橋ポリアミノ酸粒子:化合物製造実施例1にて 製造したもの

(3)混合溶媒

:メタノール/水系

(4) 盤工成分組成

重量構成比 成分

S-MFC

0.4

架橋ポリアミノ酸粒子

30.0

メタノール

48.8

水

20.8

(5)シート状支持体

×

20

上層: レーヨン (4 d×5 1 mm)

 $25 \,\mathrm{g/m^2}$

下層:ポリ乳酸スパンボンドウェブ

15g/m'

上記シート状支持体13を10m/minの速度で走行 させながら、その上層表面に上記(4)の成分の混合分 散液を幅5mmの間隔をおきながら約10mm幅で連続 **塗工した。その後、ロールで圧縮して溶媒を除去した** 後、熱風乾燥した。得られた分解性高吸水性複合体は表 4のような特性を持っていた。

水量をJIS K-7223に基づいて測定した。その 結果、架橋ポリアミノ酸粒子1g当たり40.2gの保 水量を示し、ブランクとほぼ同等の数値が得られた。

【0326】また、コンポスト中での生分解性試験の結 果、分解率は95%と非常に良好であった。さらに埋設 による生分解性試験の結果、分解率は60%と良好であ

【0327】(実施例4)市販の汎用超薄型紙オムツを ブランクとし、このオムツからテッシュを含む吸収体部 分を取り除き、代わりに本発明の分解性高吸水性複合体 40 お、測定値は5サンプルの平均値で示した。 を備えた吸収体を組み込んでサンプルを作製した。

【0328】このサンブルに組み込んだ吸収体は、以下

の手順で作製された。まず、上記の実施例3で得られた 分解性高吸水性複合体を図25に示す形状および寸法で 切り取った。一方、約90g/cm゚のテッシュ付きパ ルプマットを準備し、これに家庭アイロン用のハンドス プレーにより2~3g/cm'になるように水滴を吹き 付け、その上に上記の寸法に切り取った吸収体を重ね合 【0325】なお、得られた分解性高吸水性複合体の保 30 わせ、140~150℃のアイロンで加圧プレスした。 【0329】同一のサンブルを5個用意し、各サンブル について、吸収量、保水量およびリウェット(rewe t)を測定した。吸収量および保水量はJIS K-7 223に基づいて測定した。また、サンブルに生理食塩 水120m1を5分間隔で3回注ぎ、1回目、2回目、 3回目の各々について、1.33MPa(12.5kg /c m')/吸収体面積の加圧下でリウェットを行い、 リウェット量を測定した。

【0330】上記の試験結果をまとめて表4に示す。な

[0331]

【表4】

	測定項目	プランク	本発明サンプル
吸収体構 成	厚み 全吸収体重量 フラッフパルプ テッシュ 架橋ポリアミノ酸	3.2mm 26.0g/p 11.8/p 4.0g/p 10.2g/p	1.5mm 17.5g/p 6.1g/p 0.5g/p 10.9g/p
吸収体の性能	吸水量 保水量 リウェット 1 回目(120ml) 2 回目(240ml) 3 回目(360ml)	665g 420g 0.6g 0.8g 3.9g	577g 425g 0.4g 0.9g 2.2g

上記の表4から、本発明の分解性高吸水性複合体を用いて構成された吸収体を組み込んで得られるサンブルは、市販のオムツと比較して、重量が約70%、厚みは1/2以下であるにもかかわらず、吸収性能は同等またはそれ以上であることが判明した。

【0332】[化合物比較例1]生分解性を有する架橋カルボキシメチルセルロースについて、吸水能を測定したところ、平衡膨潤吸収量は36倍であり、生理食塩水に対する吸水速度は1分間で12倍であり、加重下での吸水量は12倍であり、保水量は15倍であった。

【0333】[分解性高吸水性複合体製造比較例1]吸水性樹脂を用いないで吸収体を製造し、その吸収能について測定を行った。生理食塩水に対しては、吸水速度は0.45ml/sec·cm²であり、リウェット量は0.074g/cm²であった。

【0334】人口尿に対しては、吸水速度は0.55m l/sec·cm²であり、飽和吸水量は24g/cm²であり、加重下吸水量は18g/cm²であり、リウェット量は0.072g/cm²であった。

【0335】[分解性高吸水性複合体製造比較例2]架 30 橋ポリアミノ酸系樹脂を用いて、不織布とバックシート にポリエチレンを用いて吸収バッドを製造し、その生分解性について測定したところ、コンポスト中および埋設 の場合、どちらの場合も、パルプの部分を除き、全く生分解していなかった。

[0336]

【発明の効果】以上に説明したように、本発明の分解性 高吸水性複合体によれば、水膨 潤性固状体を種々の形態、例えば粉末状、粒子状、ペレット状、シート状もし くは任意の形状の三次元構造物等の形態に成形すること 40 吸水性複合体の縦断面図 が可能であり、その取扱い性を向上させるとともに、利用の範囲を拡大することができる。また特に、大量生産 化より容易に安価に入手できる架橋ポリアミノ酸粒子を 利用し、これをミクロフィビリル状セルロースのネット ワーク構造で安定に保持した場合には、粒子状のままで 使用することはもちろん、任意の形態の吸収体を容易に 構成することが可能になる。とくにシート状に構成した 場合には、きわめて大きい吸水容量を有しながら、その 厚さを薄くすることができ、幼児用および成人用オム ツ、生理用ナプキン等の吸収体製品全体の厚さを極限ま 50 吸水性複合体の縦断面図 【図16】 本発明の第 吸水性複合体の縦断面図 【図17】 本発明の第 吸水性複合体の縦断面図 【図16】 本発明の第 吸水性複合体の縦断面図 【図16】 本発明の第 吸水性複合体の縦断面図 【図16】 本発明の第 吸水性複合体の縦断面図 【図16】 本発明の第

で減少させることができる。また分解性高吸水性複合体 を別のシート状支持体に支持させた場合には、優れた吸 収性を有する複合体として広範な用途に利用可能であ る。

【図面の簡単な説明】

- 【図1】 溶媒中のミクロフィビリル状セルロース濃度 と粘度の関係を示す図
- 【図2】 セルローズからミクロフィビリル状セルロースを得る過程を示す説明図
- 20 【図3】 有機溶媒濃度とSAPの吸収比との関係を示すグラフ
 - 【図4】 本発明を構成する分解性高吸水性複合体の縦 断面図
 - 【図5】 本発明の方法に従って分解性高吸水性複合体 を製造する装置の斜視図
 - 【図6】 本発明の方法によって得られる分解性高吸水 性複合体の縦断面図
 - 【図7】 スラリー状の分散液から種々の分解性高吸水性複合体を形成する過程を示す図
 - 0 【図8】 本発明の第1の実施態様例による分解性高吸水性複合体の形態を示す断面図で、(a)は粒子状のもの、(b)はフレーク状のものを示す図
 - 【図9】 本発明の第2の実施態様例による分解性高吸水性複合体を示し、(a)は縦断面図、(b)はその顕微鏡写真をスケッチして作成した図
 - 【図10】 本発明の第3の実施態様例による分解性高 吸水性複合体を示し、(a)は縦断面図、(b)はその 顕微鏡写真をスケッチして作成した図
 - 【図11】 本発明の第4の実施態様例による分解性高 吸水性複合体の縦断面図
 - 【図12】 本発明の第5の実施態様例による分解性高 吸水性複合体の縦断面図
 - 【図13】 本発明の第6の実施態様例による分解性高 吸水性複合体の縦断面図
 - 【図14】 本発明の第7の実施態様例による分解性高吸水性複合体の縦断面図
 - 【図15】 本発明の第8の実施態様例による分解性髙 吸水性複合体の縦断面図
 - 【図16】 本発明の第9の実施態様例による分解性高 吸水性複合体の縦断面図

53

【図17】 本発明の方法に従って分解性高吸水性複合体を製造する工程のフロー図

【図18】 図17の工程の変形例を示すフロー図

【図19】 図17に示したフローに使用される他の塗布装置の縦断面図

【図20】 図19の装置に使用された溝付きロールの 平面図

【図21】 図19、図20に示した装置で混合溶媒層が塗布されたシート状支持体の横断面図

【図22】 剛柔性 (mm) の測定方法を示す図

【図23】 図22のA-A線に沿った断面図

【図24】 SAPの結合安定性の判定基準を示すチャート図

【図25】 本発明の実施例4でサンブルに組み込むために用意された分解性高吸水性複合体の平面図 【符号の説明】

1 巻きだしロール

2 仮固定溶液用スプレーノズル

3 SAP供給フィーダー

4 ミクロフィブリル状セルロース用スプレーノズル

5 熱ロール

6 固定化SAP層

7 高吸水性シート

10 分解性高吸水性複合体層

11 ミクロフィビリル状セルロース

*12 SAP粒子

13 シート状支持体

14 液体不透過性不織布

15,23 結合部

16 チャンネル

21 液体不透過性シート

22 高吸水性複合シート材料

24 チャンネル

31~34 タンク

10 35~37 混合器

40 成形部

41 ベルトコンベヤ

42 ノズル

43 ロールプレス

44 槽

45 浸漬ロール

46,47 ロール

46a 溝

48 混合溶媒層

20 50 乾燥部

51,52 加熱ロール

60 圧縮部

61,62 プレスロール

63,63' チューブ

* 64,64' モーター

【図1】

【図3】

【図2】

【図4】

12:SAP粒子 13:シート状文装体

【図6】

7:高級水性シート 11:3クロフィブリル伏セルロース

12:8AP粒子 13:シート状文特件

13:シート状文時件 21:液体不透過性シート

【図13】 【図14】

2 Kana Man 13, 15, 15, 10

【図17】

【図18】

[図22]

【図19】

【図20】

【図24】

【図23】

【図25】

テーマコード(参考)

M 4L055

フロントページの続き

 (51)Int.Cl.'
 識別記号
 FI

 B 0 1 J
 20/26
 A 4 1 B
 13/02

 D 2 1 H
 27/00
 A 6 1 F
 13/18
 3 0 0

 // A 6 1 F
 5/44
 3 8 3

 者 鈴木 磨
 DC06B DC10B DC12B DC13B

 東京都中央区日本橋浜町2丁目26番5号
 DC15B EA061 EH312 EJ862

 株式会社日本吸収体技術研究所内
 GB66 JB10A JB20A JC00

 JC00B JD15 JD15A JM10A

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.