Differential Core of Prime Ideals

Tian-Cheng, Qi

School of Mathematical Sciences, Fudan University

August 22, 2023

Let A be an algebra **over a field** \mathbbm{k} **of characteristic zero**. The aim of this note is to show that for any set of \mathbbm{k} -derivations on A, say δ , the Δ -core of any prime ideal of the \mathbbm{k} -differential algebra (A, Δ) is still prime.

Recall that the Δ -core of an arbitrary ideal I in A is the largest Δ -ideal contained in I, which can be described as follows:

$$(I:\Delta) = \{a \in R | \delta_1 \cdots \delta_n(a) \in I, \forall \delta_1, \dots, \delta_n \in I, n > 0\}.$$

Lemma ([Dix96]). Let (A, Δ) be a differential k-algebra. Then $(P; \Delta)$ is prime for all prime ideals P of A.

Proof. To simplify notations, we shall write Q for $(P : \Delta)$. Let $a, b \in A$ such that $aAb \subseteq Q$, we must show that either a or b belongs to Q. Under this assumtion, we claim that

Claim. Let
$$\delta_1, ..., \delta_p \in \Delta, m_1, ..., m_p \in \mathbb{N}$$
 such that $\delta_1^{m_1} \cdots \delta_p^{m_p} b \notin P$, then $\delta_1^{n_1} \cdots \delta_p^{n_p} a \in P, \forall n_1, ..., n_p \in \mathbb{N}$.

Provide \mathbb{N}^p with the lexicographic ordering \leq , then it is clear that (\mathbb{N}^p, \leq) is a well-ordering set. The proof of the claim proceeds by transfinite induction in (\mathbb{N}^p, \leq) . Firstly, we can take the smallest element of \mathbb{N}^p such that $\delta_1^{s_1} \cdots \delta_p^{s_p} b \notin P$. For any $x \in A$, write

$$\delta_1^{n_1+s_1}\cdots\delta_p^{n_p+s_p}(axb) = \sum_{\substack{i_k+j_k+l_k=n_k+s_k\\1\leq k\leq p}} \alpha(i_1,j_1,l_1,...,i_p,j_p,l_p) \delta_1^{i_1}\delta_2^{i_2}\cdots\delta_p^{i_p}(a) \delta_1^{j_1}\delta_2^{j_2}\cdots\delta_p^{j_p}(x) \delta_1^{l_1}\delta_2^{l_2}\cdots\delta_p^{l_p}(b),$$

where $\alpha(i_1, j_1, l_1, ..., i_p, j_p, l_p) \in \mathbb{Z}_{\geq 1}$. Then one can rewrite the above expression as

$$\delta_1^{n_1+s_1}\cdots\delta_p^{n_p+s_p}(axb)=\delta_1^{n_1}\cdots\delta_p^{n_p}(a)x\delta_1^{s_1}\cdots\delta_p^{s_p}(b)+r,$$

where r is a sum of the form $\alpha(i_1,j_1,l_1,...,i_p,j_p,l_p)\delta_1^{i_1}\delta_2^{i_2}\cdots\delta_p^{i_p}(a)\delta_1^{j_1}\delta_2^{j_2}\cdots\delta_p^{j_p}(x)\delta_1^{l_1}\delta_2^{l_2}\cdots\delta_p^{l_p}(b)$ such that $(i_1,...,i_p)<(n_1,...,n_p)$ or $(l_1,...,l_p)<(s_1,...,s_p)$. For $(n_1,...,n_p)=(0,0,...,0)$, it is easy to see $r\in P$, hence $ax\delta_1^{s_1}\cdots\delta_p^{s_p}(b)\in P$ since $axb\in Q$. It follows that $a\in P$ since x is arbitrary. By the induction hypothesis, one has $\delta_1^{i_1}\delta_2^{i_2}\cdots\delta_p^{i_p}(a)\in P$, $\forall (l_1,...,l_p)<(s_1,...,s_p)$. Thus $\alpha(n_1,0,s_1,...)\delta_1^{n_1}\cdots\delta_p^{n_p}(a)x\delta_1^{s_1}\cdots\delta_p^{s_p}(b)\in P$ by using the fact that $axb\in Q$. Since chark =0 and x is arbitrary, it follows immediately that $\delta_1^{n_1}\cdots\delta_p^{n_p}(a)\in P$. This proves our claim.

Having established this, we finish by showing that $a \in Q$ if $b \notin Q$. For any $\delta_1, ..., \delta_p \in \Delta$, we must show that $\delta_1 \cdots \delta_p(a) \in P$. Since $b \notin Q$, there are $\delta_{p+1}, ..., \delta_t \in \Delta$ such that $\delta_1^0 \cdots \delta_p^0 \delta_{p+1}^1 \cdots \delta_t^1(b) \notin P$. From our claim, we have $\delta_1^1 \cdots \delta_p^1(a) = \delta_1^1 \cdots \delta_p^1 \delta_{p+1}^0 \cdots \delta_t^0(a) \in P$.

References

[Dix96] Jacques Dixmier. Enveloping algebras. Number 11. American Mathematical Soc., 1996.

[LWW21] Juan Luo, Xingting Wang, and Quanshui Wu. Poisson dixmier-moeglin equivalence from a topological point of view. *Israel Journal of Mathematics*, 243:103–139, 2021.