❖ A System is a combination of several components resulting in varying parameters.

❖ A Signal is a physical variable of interest, associated with a system, that varies.

S - 15 -

The New Mindset

Copyright 2015 by William J. Ebel

❖ Circuits Mindset:

input v(t)

output $i_L(t)$

♦ Systems Mindset:

Copyright 2015 by William J. Ebel

❖ A signal is *periodic* if there is some time interval, T, such that x(t) = x(t+T)

The smallest value of T is called the fundamental period, T_0 ?

• Is $x(t) = A\cos(4\pi t)$ periodic?

If so, what is the fundamental period?

cos(8)=1 IF 8= 271 K FOR INTEGER K HTT = 2TK > T= 2TK = FOR INTERIOR K

AND S112(8)=0, 1= 8=27K

FUNDAMENTAL PERIOD IS SMALLEST TOO THAT GIVES XIT) = XIT+T)

The Even and Odd Components of a Signal

Copyright 2015 by William J. Ebel

Every signal can be expressed as

$$x(t) = x_o(t) + x_e(t)$$

where

$$x_{o}(t) = \frac{x(t) - x(-t)}{2}$$

 $x_{o}(t) = \frac{x(t) - x(-t)}{2}$ $\chi_{o}(t) = \frac{x(t) - x(-t)}{2}$ $\chi_{o}(t) = \frac{x(t) + x(-t)}{2}$ $\chi_{e}(t) = \frac{x(t) + x(-t)}{2}$ $\chi_{e}(t) = \frac{x(t) + x(-t)}{2}$

is the even component

is the *odd* component and

For example, consider x(t) shown at the right

We assume that the signal x(t) has units of volts

• The energy in x(t) over [a, b] is

$$E_{a,b} = \int_{a}^{b} |x(t)|^2 dt$$
 (joules)

The average power in x(t) over [a, b] is

$$P_{x(t)} = \left(\frac{1}{b-a}\right) \int_{a}^{b} |x(t)|^{2} dt = \frac{E_{a,b}}{b-a} \quad \text{(watts)}$$

Ebel

Total Energy and Power

Copyright 2015 by William J. Ebel

We assume that the signal x(t) has units of volts

The total energy in x(t) is

$$E_{x(t)} = \lim_{T \to \infty} \left[\int_{-T}^{T} |x(t)|^2 dt \right]$$
 (joules)

The total average power in x(t) is

$$P_{x(t)} = \lim_{T \to \infty} \left[\frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \right] \quad \text{(watts)}$$

• If x(t) is periodic with period T_0 , then

$$P_{x(t)} = \frac{1}{T_0} \int_{a}^{a+T_0} |x(t)|^2 dt$$
 (watts)

- ♦ Energy & Power signal classifications:
 - The signal x(t) is an energy signal if $E_{x(t)} > 0$ and $E_{x(t)}$ is finite Usually $P_{x(t)} = 0$ if x(t) is an energy signal
 - The signal x(t) is a power signal if $P_{x(t)} > 0$ and $P_{x(t)}$ is finite Usually $E_{x(t)} = \infty$ if x(t) is a power signal
 - A signal can be neither energy nor power
- For example, is $x(t) = e^{-\alpha t}u(t)$ an energy signal, a power signal, or neither?

