光栅衍射实验报告

江灿 2019011325

清华大学 物理系, 北京 100084

【摘 要】 本次实验是光栅衍射实验,进一步熟悉了分光计的调整与使用,利用衍射光测定了四种光波的波长与光栅常数,并与标准值进行对比。最后使用最小偏向角法测出波长较长的黄线的波长

【关键词】 光栅衍射, 波长, 光栅常数, 最小偏向角

- 1 实验目的
- 2 实验仪器
- 3 实验原理
- 4 实验步骤

5 实验数据

5.1 实验数据整理

入射角 $i=0^\circ$ 时,测定光栅常数和光波波长的数据整理如下

其中入射角方位 $\varphi_{10}=252^{\circ}41'$ $\varphi_{20}=72^{\circ}41'$

波长 (nm)	黄1		黄2		546.1		*	
衍射光谱级次 m	2		2		2		2	
游标	1	п	1		1		- 1	
左侧衍射光方位	272*52	92°55'	272*50'	92°50'	271°43′	91°43′	265°48'	87°43'
右侧衍射光方位	232°28'	52°28'	232°31'	52°31	233°49"	53°38'	237°36'	57°35'
φ_m	20*13*		20°9'		19*2'		15*5'	

图 1 测定光栅常数和光波波长数据

入射角 $i=15^{\circ}0'$ 时,测量波长较短的黄线的波长的数据整理如下

其中光栅平面法线方位 $\varphi_{1n}=252^{\circ}41'$ $\varphi_{2n}=72^{\circ}41'$

	游标	入射光方位	入射角	入射角平均值	
	1	237°41'	15°0'	15°O'	
	п	48°41'	15°0'	16-0	
	游标	左侧衍射角 方位 φ	衍射角φ	φ左平均值	同or异
光谱级次m	1	215°33'	37°08'	37°08'	异
尤语纵/人 m	п	36°32'	37°08'	37-08	
	游标	右侧衍射角 方位 φ	衍射角φ	φ右平均值	同or异
光谱级次m	ı	279°08'	4°53'	49501	同
ルル 無数/大 m	П	99°08'	4°53'	4°53'	

图 2 测量波长较短的黄线的波长

班级: 软件 02 循环组号: 双日下 M 组内顺序号: 7号

5.2 数据处理

相对误差计算为

$$\frac{\delta}{\mu} = \frac{|x - \mu|}{\mu} \times 100\%$$

其中x为测量值, μ 为标准值

5.2.1 级次的处理

在课前预习题中已经计算出了

$$(\frac{\Delta d}{d})^2 = (\frac{\Delta \varphi_m}{tan\varphi})^2$$

$$(\frac{\Delta\lambda}{\lambda})^2 = (\frac{\Delta d}{d})^2 + (\frac{1}{tan\varphi_m})^2\Delta\varphi_m^2 + (\frac{\Delta m}{m})^2$$

在实际测量时,应该在能看清的基础上,尽可能的 选择级次更大的进行测量,减少偏差。

因此在第一个实验中,选择了测量级次 m=2 进行实验测量

5.2.2 光栅常数和光波波长

d 的求解:

已经测出 $\varphi_m=19^{\circ}2'$ 可求出 $\Delta\varphi_m=\frac{\sqrt{2}}{2}=0.707'$

$$d = \frac{m\lambda}{\sin\varphi_m} = 3349.1nm$$

$$\Delta d = \lambda \sqrt{(\frac{\Delta d}{d})^2 + (\frac{1}{tan\varphi_m})^2 \Delta \varphi_m^2 + (\frac{\Delta m}{m})^2} = 2.2nm$$

求得 $d = (3349.1 \pm 2.2nm)$

λ的求解:

$$dsin\varphi_m = m\lambda$$
$$\lambda = \frac{dsin\varphi_m}{m}$$

1. 黄光 $1(\varphi_m = 20^{\circ}13')$

$$\lambda = \frac{dsin\varphi_m}{m} = 578.6nm \quad \Delta\lambda = 0.3nm$$

$$\lambda = (578.6 \pm 0.3)nm)$$

$$\frac{\delta}{\mu} = \frac{|578.6 - 579.1|}{579.1} \times 100\% = 0.01\%$$

2. 黄光 2 $(\varphi_m = 20^{\circ}9')$

$$\lambda = \frac{dsin\varphi_m}{m} = 576.8nm \quad \Delta\lambda = 0.4nm$$

$$\lambda = (576.8 \pm 0.4)nm)$$

$$\frac{\delta}{u} = \frac{|576.8 - 577.0|}{577.0} \times 100\% = 0.01\%$$

3. 紫光 (
$$\varphi_m = 15°5'$$
)

$$\lambda = \frac{dsin\varphi_m}{m} = 435.7nm \quad \Delta\lambda = 0.4nm$$

$$\lambda = (435.7 \pm 0.4)nm)$$

$$\frac{\delta}{\mu} = \frac{|435.7 - 435.8|}{435.8} \times 100\% = 0.01\%$$

5.2.3 波长较短的黄线的波长

$$d(\sin\varphi + \sin i) = m\lambda, i = 15^{\circ}, m = 2$$

可求得

$$arphi_m = 37^{\circ}08'$$
 异侧 $\lambda = 576.9nm$ $arphi_m = 4^{\circ}53'$ 同侧 $\lambda = 576.2nm$

$$\bar{\lambda} = \frac{\lambda_1 + \lambda_2}{2} = 576.6nm$$

相对误差为:

$$\frac{\delta}{\mu} = \frac{|576.6 - 577.0|}{577.0} \times 100\% = 0.09\%$$

5.2.4 最小偏向角测较长黄光波长

$$2d\sin\frac{\delta}{2} = m\lambda, m = 0, \pm 1, \pm 2, \pm 3, \cdots$$

测量出 $2\delta=40^{\circ}6'$ 即 $\delta=20^{\circ}3'$, 此时级次 m=2,带人可求得 $\lambda=579.4$

相对误差为:

$$\frac{\delta}{\mu} = \frac{|579.4 - 579.1|}{579.1} \times 100\% = 0.06\%$$

与实际值误差较小。

6 实验总结

这次实验延续着上次分光计的时间,需要在 开始调节望远镜,平行光管,使得二者的光轴都垂 直于分光计主轴。这个环节在上一次实验的时候 很艰难,不过在这次实验时,遵循着先粗调后细 调,调节的过程比上次轻松了不少。

不过在三棱镜调好之后,换上光栅的时候却 一直无法找到像,最后感谢助教的帮助成功的完 成调节。

最后在测量最小偏向角的时候,刚开始直接 测的 δ , 后来为提高测量精度, 重新测量了 2δ 。

这是第二次的光学实验,感受和上次相似,光 学实验对于眼睛的考验是很大的,同时也感谢助 教的耐心指导,使得这次实验顺利完成

原始数据

后附页