

Universidade do Minho

Departamento de Informática Mestrado [integrado] em Engenharia Informática

N° CURSO	
00100	 Dados e Aprendizagem Automática
NOME	1° Ano, 1° Semestre
	Edição 2022/2023
	Prova escrita, 5 de janeiro, 2023

GRUPO 1 (4 valores)	RESPONDA ÀS QUESTÕES DESTE GRUPO NO ESPAÇO RESERVADO <u>PREENCHENDO OS ESPAÇOS VAZIOS</u> COM AS EXPRESSÕES CORRETAS.
QUESTÃO 1	Numa metodologia de análise de dados como o, a preparação de dados é
	uma tarefa anterior à Modelação e é preponderante visto que os dados recolhidos do mundo real podem apresentar-se Com ruido .
QUESTÃO 2	Algoritmos de <i>Clustering</i> , tais como K-Means e K-Medoids e minimplementam uma técnica de aprendizagem Nao supervisionada com o objetivo de agrupar um conjunto de casos de estudo, de tal forma que os objetos no mesmo grupo apresentam mais semelhanças entre si do que com outros grupos.
QUESTÃO 3	Feature Engineering permite a criação de a partir da informação disponível, como forma de auxiliar o a realizar previsões mais
GRUPO 2 (4 valores)	RESPONDA ÀS QUESTÕES DESTE GRUPO EM FOLHA DE TESTE SEPARADA.
QUESTÃO 1	Em alguns algoritmos de <i>Machine Learning</i> é usada a técnica de descida por gradiente (<i>gradient descent</i>) no processo de otimização dos parâmetros do algoritmo.

b) Indique 2 exemplos de algoritmos de *Machine Learning* que façam uso desta técnica.

Regressão linear e logisitca

Se for muito alto não converge. Se for baixo converge lentamente

a) Quais poderão ser os motivos para esta convergir lentamente ou não convergir?

GRUPO 3 (4 valores)	PARA CADA AFIRMAÇÃO, RESPONDA ASSINALANDO A SUA VERACIDADE (V) OU FALSIDADE (F). JUSTIFIQUE A RESPOSTA <u>EXCLUSIVAMENTE</u> NO ESPAÇO DISPONIBILIZADO. <u>NÃO SÃO CONSIDERADAS</u> RESPOSTAS PARA AS QUAIS NÃO EXISTA JUSTIFICAÇÃO.
QUESTÃO 1	O algoritmo de aprendizagem <i>Decision Tree</i> apresenta normalmente um melhor desempenho quando comparado com o algoritmo <i>Random Forest</i> , apresentando características que possibilitem mitigar o problema de <i>overfit</i> de dados.
	Decision tree tem problemas de overffitting
QUESTÃO 2	F A Off-Policy Learning verificada nos algoritmos de Reinforcement Learning considera a avaliação e a otimização da respetiva policy aplicada para a seleção das ações do algoritmo inteligente.
	Estaria certo se fosse para On-policy
QUESTÃO 3	Uma matriz de confusão é uma métrica de avaliação de desempenho de modelos de <i>Reinforcement</i> Learning.
	Apenas para os supervisonados
QUESTÃO 4	Em todos os algoritmos de <i>clustering</i> é necessário justificar a quantidade de <i>clusters</i> a procurar nos dados.
	Só é o K-means e o medois

GRUPO 4

RESPONDA ÀS QUESTÕES DESTE GRUPO NO ESPAÇO RESERVADO.

(6 valores)

Considere o *dataset* "breast_cancer", usado diversas vezes no decorrer das aulas, com o intuito de treinar um modelo de classificação com capacidade de prever a existência de um tumor mamário, de acordo com alguns dados clínicos do paciente.

Considere, ainda, o excerto de código abaixo, onde se apresenta a construção e avaliação de um modelo de aprendizagem automática.

QUESTÃO 1

O excerto de código apresentado contém imprecisões. Identifique-as e corrija-as utilizando o espaço disponível ao lado do excerto (não deve copiar todo o excerto, mas apenas aquilo que corrigiu).

[1]	<pre>df = pandas.read_csv('breast_cancer_dataset.csv')</pre>	
[2]	<pre>df['diagnosis'] =</pre>	
[3]	<pre>X = df.drop(['diagnosis', 'id'], axis=1)</pre>	
[4]	y = df['diagnosis']	
[5]	<pre>X_train, X_test, y_train, y_test =</pre>	Tem que ser menor que 1 para haver split dos dados
[6]	<pre>model = RandomForestClassifier(random_state=2023)</pre>	
[7]	<pre>model.predict(X_train, y_train)</pre>	
[8]	<pre>inferences = model.fit(X_test)</pre>	trocar para predict por fit
[9]	<pre>accuracy = accuracy_score(y_train, inferences)</pre>	deveria ser y_test
[10]	<pre>mse = MSE(y_test, inferences)</pre>	
[11]	<pre>print(classification_report(y_test, inferences))</pre>	
[12]	<pre>print(confusion_matrix(y_test, inferences))</pre>	

Figura 1. Excerto de um modelo de aprendizagem.

GRUPO 5

(2 valores)

ASSINALE A VERACIDADE (**V**) OU FALSIDADE (**F**) DE CADA UMA DAS AFIRMAÇÕES QUE SE APRESENTAM. UMA AFIRMAÇÃO INCORRETAMENTE ASSINALADA ANULA UMA RESPOSTA ASSINALADA CORRETAMENTE.

QUESTÃO 1

Qual o significado de 'boosting' no contexto de modelos de previsão?

l		Fazer diferentes modelos "votar" para obter uma solução final;			
		Validar um modelo utilizando conjuntos de dados maiores;			
	٧	Treinar modelos iterativamente de acordo com os erros de classificação;			
		Dividir aleatoriamente um conjunto de dados para produzir modelos alternativos.			

QUESTÃO 2

Qual o significado de 'categórico' quando nos referimos a uma variável num conjunto de dados?

	Uma variável categórica não pode ser transformada;
	Não se usam valores numéricos para codificar uma variável categórica;
	Uma variável categórica não pode ser utilizada como variável dependente/target,
V	Uma variável categórica não pode ser utilizada como um número/quantidade.