= i^{-1} Rot_{20} (α_i)

ton a nobotic anom with n-links, a D-H table u typically provided n-links, a D-H table u typically provided uN-1 uN-1

Forward Kinematics

Transformation

metricas

also describe

position + orientation $\chi^2 = 0$ χ^2

Forward Kinematics

finding the end-effector

pose in the buse

postoniental

coordinate system when

the joint angles (joint)

ore given

Numerical solutions to IK problems: Jacobian inverse technique

Inverse Kinematics: The problem of finding motor angle (joint states) so that the end effector adrières a given pose. Skile (1) Closed forum solutions

for simple arms (2-DOF)

Do FK analytically -> Solve Systems of egns

(2) Minmonial At L: 14. 2 Numerical orz : iterative solutions -> Small changes to motor angles (sout states) that more the end-effector towards desired pose Given: Position of end effector PEIR 3x1 Find: motor angle/joint states OEIR $P = \int_{0}^{\infty} T(\Phi) \begin{cases} 0 \\ 0 \end{cases} \Rightarrow P(\Phi) = \begin{cases} \text{position of end-effector} \\ \text{onight of end-effector} \end{cases}$ $\int_{0}^{\infty} T(\Phi) \begin{cases} 0 \\ 0 \end{cases} \Rightarrow P(\Phi) = \begin{cases} \text{position of end-effector} \\ \text{onight of end-effector} \end{cases}$

Taylor series approximation f(x) $f(z+\Delta z) = f(z) + \Delta z f'(z) + L \Delta z^2 f'(z)$ Vector-valued f(2) = IRmx1 rector functions or EIRMXI $f(2+\Delta z) = f(2) + J_2f(2)\Delta z +$ $f(x+\Delta x) \sim f(x) + J_n f(x) \leq x$ 107/12/1/21

Inverse Rimematics $P(\theta) \in \mathbb{R}^{3\times}$ $P(\theta + \Delta \theta) \approx P(\theta) + \int_{0}^{\infty} P(\theta) \Delta \theta_{n_{K_{1}}} \qquad \theta \in \mathbb{R}^{n_{K_{1}}}$ $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta}$

$$\int_{0}^{\infty} b(\theta) = \int_{0}^{\infty} \frac{\partial b_{1}(\theta)}{\partial \theta_{1}} \frac{\partial b_{2}(\theta)}{\partial \theta_{2}} - \frac{\partial b_{1}(\theta)}{\partial \theta_{1}}$$

$$b(\theta) = \begin{cases} b(\theta) \\ b_{2}(\theta) \\ b_{3}(\theta) \end{cases} = \begin{cases} b(\theta) \\ b_{3}(\theta) \end{cases}$$

$$b(\theta) = \begin{cases} b(\theta) \\ b(\theta) \end{cases}$$

$$b(\theta) = \begin{cases} b(\theta) \\ b$$

$$p(\underline{0}+\underline{A}\underline{O})\approx p(\underline{0})+J_{0}p(\underline{O})\underline{A}\underline{O}.$$

Inverse of a matrix is only defined for square motherical Pseudo inverse of a materix A is Aniff

At Anxm = Anxm AAAAA = Amxn Capital letter = matrice small letters = vector Solution to a system of Linear equations 2 = Atb If the number of equations m > nthe number how many exact. solution = 0 y want approximate solution then you can minimize an error My | Az-b||2 y = mx + (

y, = m7,+C y2 = m 22 + C y = m 7/2+($\begin{vmatrix}
d_1 \\
y_2 \\
y_3
\end{vmatrix} = \begin{pmatrix}
\chi_1 & 1 \\
\chi_2 & 1 \\
\chi_3 & 1
\end{pmatrix} \begin{bmatrix}
\chi_1 \\
\zeta
\end{bmatrix}$ \tilde{b} $\tilde{\lambda}$ $\tilde{\kappa}$ ||7||2= 次立 ||Az-b|| = (Az-b) (Az-b) $= \left(2^{\mathsf{T}}A^{\mathsf{T}} - b^{\mathsf{T}}\right) \left(A_2 - b\right)$ = 2^TA^TA² - 5^TA² - 2^TA^Tb + b^Tb quadratic completing The squares form (x-y) + not containing x this true why DAZ = XTATE MM NXI IXN NXM MXI Ani=b Z E (Rnx) $\left(\underbrace{b}^{\mathsf{T}} A_{2} \right)^{\mathsf{T}} = \left(\underbrace{b}^{\mathsf{T}} A_{2} \right)$ b ∈ IR MXI

$$||A_{2}-b||^{2} = 2^{T}AA_{2} - 2b^{T}A_{2} + b^{T}b$$

$$= x^{T}(A^{T}A)(A^{T}A)(A^{T}A) = (x^{2}-2bx+6)(x-2) - 2b^{T}A(A^{T}A) = (x^{2}-2bx+6)(x-2) - 2a^{T}A = (x^{2}-2bx+6)(x-2) - 2a^{$$

- (2TATA -YT) (ATA) (ATAZ-Y)

$$= 2(A^{T}A)(A^{T}A)(A^{T}A) = 2 (A^{T}A)(A^{T}A) = 2$$

$$+ y^{T}(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{T}A)(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A) = 2$$

$$= 2(A^{T}A)(A^{$$

Jon m < n $2 = A^{T}(AA^{T})^{-1}b$ $A^{T}Jonm(n)$