

#### Introduction

Recently, FixMatch [1] utilizes the confidence-based threshold to select more accurate pseudo-labels and proves the superiority of this technique.



We try to ask — is the confidence-based threshold really necessary for pseudo-labeling?



We consider only using distribution alignment (DA) to improve the pseudo-labels without additional hyperparameters.



However, original DA is based on a strong assumption: "labeled data and unlabeled data share the same distribution".





#### Motivation

The original distribution alignment technique fails in the SSL with mismatched distribution, while the confidence threshold is difficult to set.



Explore a more general distribution alignment technique to address the challenges of mismatched distributions.



Mismatched distributions

Confidence threshold is difficult to set



A new distribution alignment technique based on **pseudo-label** and **complementary label** distribution is proposed to improve pseudo-label quality



Improve pseudo-labeling by maximizing input-output mutual information [2]

How to maximize input-output mutual information?





### Proposition 1 (Reverse Operation).

In the case of using  $\mathcal{A}$  to predict pseudo-labels, we have  $\overline{q} = Norm(\mathbb{1} - q)$ , where  $\mathbb{1}$  is all-one vector and Norm(x) is the normalized operation.

- Generate complementary labels from labeled data to train Auxiliary Classifier A
- ◆ Reverse the pseudo-labels and complementary labels output by the Default Classifier and Auxiliary Classifier respectively (Reverse Operation)
- ◆ Align the pseudo-label distribution from Default Classifier to the reversed distribution of complementary labels from Auxiliary Classifier, while aligning the complementary label distribution to the reversed distribution of pseudo-labels





 $\mathcal{L} = \mathcal{L}_{sd} + \lambda_a \mathcal{L}_{sa} + \lambda_{cd} \mathcal{L}_{cd} + \lambda_{ca} \mathcal{L}_{ca},$ 





We show theoretically that the input-output mutual information can be maximized by *reciprocal distribution alignment* 





### ◆ Conventional SSL setting: CIFAR10, mini-ImageNet, STL-10

| Method                               |                                       | CIFA                                  | mini-ImageNet                      | STL-10                           |                                      |                                      |
|--------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|
|                                      | 20 labels                             | 40 labels                             | 80 labels                          | 100 labels                       | 1000 labels                          | 1000 labels                          |
| MixMatch*<br>AlphaMatch <sup>†</sup> | $27.84 \pm 10.63$                     | $51.90 \pm 11.76$<br>$91.35 \pm 3.38$ | 80.79±1.28<br>-                    | _                                |                                      | 38.02±8.29<br>-                      |
| FixMatch $CoMatch$                   | $84.97 \pm 10.37$<br>$88.43 \pm 7.22$ | $89.18 \pm 1.54$<br>$93.21 \pm 1.55$  | $91.99 \pm 0.71 \\ 94.08 \pm 0.31$ | $93.14\pm0.76$<br>$94.55\pm0.27$ | $39.03 \pm 0.66$<br>$43.72 \pm 0.58$ | $65.38 \pm 0.42^*  79.80 \pm 0.38^*$ |
| RDA                                  | $92.03{\pm}2.01$                      | $94.13 {\pm} 1.22$                    | $94.24 \pm 0.42$                   | $94.35 \pm 0.25$                 | $46.91 \pm 1.16$                     | $82.63 \pm 0.54$                     |

In the conventional SSL setting, where the labeled and unlabeled data have the same distribution and are uniformly distributed, RDA achieves superior performance.

- ◆ Mismatched distribution scenarios: CIFAR-10/100, mini-ImageNet
- The labeled data is imbalanced, the unlabeled data is balanced
- The labeled data is balanced, the unlabeled data is imbalanced
- The labeled data and unlabeled data are imbalanced and mismatched



|                | CIFAR-10          |                    |                  | CIFAR-100        |                   | ${\rm mini\text{-}ImageNet}$ |                         |                    |
|----------------|-------------------|--------------------|------------------|------------------|-------------------|------------------------------|-------------------------|--------------------|
| Method         | 40 labels         |                    | 100 labels       |                  | 400 labels        | 1000 labels                  | ls   1000 labels        |                    |
|                | $N_0 = 10$        | 20                 | 40               | 80               | 40                | 80                           | 40                      | 80                 |
| FixMatch       | $85.72 \pm 0.93$  | $76.53 \pm 3.03$   | $93.01 \pm 0.72$ | $71.57 \pm 1.88$ | $25.66 \pm 0.46$  | $40.22 \pm 1.00$             | $36.20 \pm 0.36$        | $28.33 \pm 0.41$   |
| FixMatch w. DA | $71.23\pm1.25$    | $47.85 {\pm} 1.99$ | $56.78 \pm 1.28$ | $34.18 \pm 0.86$ | $22.66 \pm 1.53$  | $31.06 \pm 0.51$             | $33.87 \pm 0.40$        | $23.53 {\pm} 0.72$ |
| CoMatch        | $60.27 \pm 3.22$  | $39.48 \pm 2.20$   | $52.82 \pm 2.03$ | $26.91 \pm 0.75$ | $23.97 \pm 0.62$  | $28.35 \pm 1.20$             | $30.24\pm1.37$          | $21.47 \pm 0.86$   |
| RDA            | $ 92.57{\pm}0.53$ | $81.78 \pm 6.44$   | $94.23{\pm}0.36$ | $79.00{\pm}2.67$ | $ 30.86{\pm}0.78$ | $41.29 \pm 0.43$             | $ullet{42.73 \pm 0.84}$ | $36.73 \pm 1.01$   |

| $\mathbf{Method}$                             |                                      | mini-ImageNet                        |                                      |                                      |                                        |
|-----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
|                                               | $40 \text{ labels}, N_0 = 10$        |                                      | 100 labels                           | s, $N_0 = 40$                        | $1000 \text{ labels}, N_0 = 40$        |
|                                               | $\gamma=2$                           | 5                                    | 5                                    | 10                                   | 10                                     |
| $\overline{\mathrm{FixMatch}}$ $\mathrm{RDA}$ | $74.97{\pm}5.80$<br>$88.58{\pm}4.05$ | $64.62{\pm}6.13$<br>$79.90{\pm}2.80$ | $58.72 \pm 3.61$<br>$79.33 \pm 1.37$ | $57.49 \pm 4.56$<br>$70.93 \pm 2.91$ | $21.40\pm0.53$<br>${\bf 25.99\pm0.19}$ |

| Method   |                  | CIFAR-10         | STL-10 $(\gamma_l \neq \gamma_u)$ |                  |                  |                  |
|----------|------------------|------------------|-----------------------------------|------------------|------------------|------------------|
|          | $ \gamma_u =1$   | 50               | 150                               | 100 (reversed)   | $\gamma_l = 10$  | 20               |
| FixMatch | $68.90 \pm 1.95$ | $73.90 \pm 0.25$ | $69.60 \pm 0.60$                  | $65.50 \pm 0.05$ | $72.90\pm0.09$   | $63.40 \pm 0.21$ |
| DARP     | $85.40\pm0.55$   | $77.30 \pm 0.17$ | $72.90 \pm 0.24$                  | $74.90 \pm 0.51$ | $77.80 \pm 0.33$ | $69.90\pm0.40$   |
| RDA      | $93.35\pm0.24$   | $79.77 \pm 0.06$ | $74.48 \pm 0.24$                  | $79.25 \pm 0.52$ | $87.21 \pm 0.44$ | $83.21 \pm 0.52$ |

In the mismatched scenario, RDA still achieves a superior performance advantage.