& 2. CONVERGENCE OF SEQUENCES. LIMIT POINTS. DEF An open ball B(xo, r) in the metric space R is the set of all points x in R which satisfy the condition P(x, x0) < r. xo is called the centre and r the radius. Sometimes the open ball is called a neighbourhood of xo, denoted as N-(xo) EXP The open balls with xo = origin, r=1 in metric spaces (IR2, P1). (IR2, P2) = Euclidean 2-space, (R2, P4), and (R2, P00). (R2. P.): [x1+14]<1 (R2. P.): (x2+42)= (R2. P.): (x2+42)= (R2. P.): man([x],14])= A closed ball B[xo, r] is the set of all points x in R DEF which satisfy the condition P(x, x0) & r. A point x is called a contact point of the set M if every neighbourhood of x contains at least one point of M. The set of all contact points of the set M is the

s	ubject : Date:
	closure of M. denoted by M.
EXP	In last example, the closure of B ((0.0), 1), the open ball, is
	B[(0.0), 1], the closed ball, in each of the four metric
	spaces.
QUE	Is B(xo, r) = B[xo, r] true in all metric spaces?
1	No. Counterexample: the discrete metric space. Let X be
	any set of more than one element, and $P(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$. The closure of the closure of M is equal to the closure
THM	The closure of the closure of M is equal to the closure
	of $M: \overline{M} = \overline{M}$
PRF	Every point of M is a contact point of M, so MZM,
	M 2 M. Need to show that if x ∈ M. then x ∈ M. If
	not suppose the neighbourhood NE(X) does not intersect M
	But since $x \in \overline{M}$, $N_{\xi_2}(x)$ contains a point x , in \overline{M} , and then
	New(x,) contains a point x2 in M. Hence
	$P(x, x_2) \leq P(x, x_1) + P(x_1, x_2) \qquad (triangle axiom)$ $\leq E/2 + E/2 = E$
	and $x_i \in N_{\epsilon}(x) \cap M$ Contradiction

THM If M. S M2. then M. S M2. PRF Exercise. The closure of a sum is equal to the sum of closures: $M, UM, = \overline{M}, U\overline{M},$ By the theorem above M.UM, 2 M. and M.UM. 2 M. Hence M. UM, > M. UM, if x & M. UM, <> x & M. and x & M. then there exist NE(x) that does not intersect M. and Nez(x) that does not intersect Mz. Hence Nmin(E, E) (x) does not intersect M. U.M., which means x & M. U.M. Thus we also obtain M, UM, S M, UM, I DEF The point x is called a limit point of the set M if an arbitrary neighbourhood of x contains an infinite number of points of M, and is called an isolated point of M if x is in M and has a neighbourhood NE(x) that does not contain any point of M different from x. THM Every contact point of the set M is either a limit point or an

isolated point of M. PRF Let x be a contact point of M but not a limit point. That is, there enists a neighbourhood NE(X) that contains only finitely many points x, x, -- x in M that are distinct from x. Let P(x, xi) = Ei and take Epro to be less than any Ei. Then NEO(X) contains no points in M other than x itself, and it is an isolated point of M. I Thus \bar{M} = fisolated points | Uflimit points that belong to M | Uflimit points that does not belong to M). Let x1, x2, --- be a sequence of points in the metric space R. We say this sequence converges to the point x if every neighbourhood NE(x) contains all points xn starting with some one of them. The point x is called the limit of the sequence [x] Two simple proporties: O No sequence can have two distinct limits 1 If Ixn't converges to x, so does any of its subsequence. THM OThe point x is a comtact point of the set M if any only if there enists a sequence funt of points of the set M which

converges to x.

De The point x is a limit point of M if any only if there exists a sequence {xn} of distinct points of the set M which converges

to X

PRF If {xn} C M converges to x, then in any neighbourhood Ne(x) there are points {xn, xn+1, xn+1, -} which are in M lying in NE(x). (Here n depends on E). So x is a contact point. Further more, if fxn. xnn, ... r are distinct points, then Ne(x) contains infinitely many points of M, and it is a limit point. Conversely, if x is a contact point of M. then for h=1,2,3,each Ny (x) contains a point Say xn, is M. Then {x, x2, ---Xn. --) is a sequence converging to x. Furthermore : f x is a limit point, we can choose x, x, -- consecutively such that Xn is distinct from X, ---, Xn., (since Nym(x) contains infinitely many points in M), and make the points in the sequence [xn]

	Subject : Date:
DEF	Let A and B be two sets in the metric space R. The setA
	is dense in B if A 2 B. In particular. A is everywhere
	dense if $\bar{A} = R$
DEF	The metric space R is separable if it has an everywhere
	dense subset that is countable.
- Exp	The metric space R = (IR, P(x,y) = 1x-y1) is separable and
	the countable set of rational numbers is everywhere dense.
PRF	For any real number x, let xn be the largest rational number
	in the form of 10n (m is an integer) that is < x. Then
	1x.x2 + converges to x. By last theorem, x & rational number)
EXP	The metric space R= (Rm, Poo(x.y) = max(xk-yk) is separable
	and the countable set $A = \{x = (x_1,, x_m) : x_k \text{ is rational for } \}$
	k=1,2,,mf is everywhere dense
PRF	For any point $\bar{x} = (\bar{x}_1,, \bar{x}_m)$, let the sequence $\{x_k^{(n)}\}$ be
	that constructed for \$\in\$ in last example. Then as n > 00.
	$\chi^{(n)}: (\chi^{(n)}, \chi^{(n)}, \dots, \chi^{(n)}) \in A$ converges to $\bar{\chi}$.
-	

ubject : Date:
l∞ space is NOT seperable.
To show that we need the fact
The subsets of the set of all positive integers constitute
an uncountable set.
of the example: Let S be any subset of \$1.2.3, J. Define
$\chi^{(s)} = (\chi^{(s)}, \chi^{(s)}, \chi^{(s)})$ as $\chi^{(s)} = \begin{cases} 1 & \text{if } k \in S \\ 0 & \text{if } k \notin S \end{cases}$ Then it is not
hard to see that $l_{\infty}(x^{(s)}, x^{(s')}) = \begin{cases} 0 & \text{if } s \neq s' \\ 0 & \text{if } s = s' \end{cases}$
Suppose A is an everywhere dense subset of R. For each xx, there
is an $\alpha^{(s)} \in A$ such that $\int_{-\infty}^{\infty} (\alpha^{(s)}, x^{(s)}) < \frac{1}{3}$. If $S \neq S'$, then
$a^{(s)} \neq a^{(s)}$, otherwise $P(x^{(s)}, x^{(s')}) \leq P(x^{(s)}, a^{(s)}) + P(a^{(s)}, x^{(s')})$
< \frac{1}{3} = \frac{2}{3}. Thus A contains uncountably many elements also.
Let A and B be arbitrary sets in the metric space R, and X
be a point in R. The distance from x to A is defined as
$P(A,x) = \inf \{P(a,x) : a \in A\}$
and the distance between A and B is defined as
P(A, B) = inf { P(a,b): acA, be B}.

	Subject : Date:
	We can show that $P(A, x) = 0$ if and only if x is a contact point
	of A.
DEF	If A is a set in the metric space R. then all limit points of
	A constitute the derived set of A, denoted by A'.
	Note: (M') = M' is NOT true. For example, R= (IR, PIX.4) = [X.4]
	$M = \{\frac{1}{n}: n = 1, 2, \dots\}$
, , , , , , , , , , , , , , , , , , , ,	
<u> </u>	