Lista 4

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

- (6.7.1)
- (6.7.2)

Vamos primeiramente relembrar o que é uma família crescente \mathcal{A} de grafos. Uma família de grafos é crescente se para todo $G \in \mathcal{A}$, se $G \subseteq G'$, então $G' \in \mathcal{A}$.

Vamos construir dois modelos G(n, p), um com probabilidade p_1 e outro com probabilidade p_2 , de modo que $0 \le p_1 < p_2 \le 1$. Vamos construir os grafos de maneira natural: escolhemos de maneira uniforme um número real r aleatório no intervalo [0, 1], para cada par de vértices em um grafo com n vértices. Se $r \le p_1$, adicionamos à aresta referente ao par de vértices em $G(n, p_1)$. Se $r \le p_2$, adicionamos a aresta em $G(n, p_2)$.

Pela maneira como o grafo foi construído, note que se uma aresta existe em $G(n, p_1)$, ela também existe em $G(n, p_2)$, uma vez que $p_1 < p_2$. Logo, temos certeza que $G(n, p_1) \subseteq G(n, p_2)$. Pela hipótese inicial, sabemos que \mathcal{A} é uma família crescente em grafos. Se $G(n, p_1)$ pertence a \mathcal{A} , então com certeza $G(n, p_2) \in \mathcal{A}$. Isso nos mostra que $\mathbb{P}(G(n, p) \in \mathcal{A})$ é uma função que cresce com p, isto é:

$$\mathbb{P}(G(n, p_1) \in \mathcal{A}) \le \mathbb{P}(G(n, p_2) \in \mathcal{A})$$

para todo $p_1 \leq p_2$.

• (6.7.5)