Исходные данные:

Каждый из выданных файлов соответствует одной из навигационных станций сбора измерений международной сети IGS (http://www.igs.org/). Первые 4 символа в названии файла соответствуют названию станции. В файлах содержится измерительная информация, а также ряд геофизических параметров по всем спутникам GPS или ГЛОНАСС, наблюдаемым станциями на интервале 9 часов (для GPS) или 6 часов (для ГЛОНАСС). Интервал следования данных 30 секунд. Моменты времени, к которым относятся те или иные измерения, принято называть эпохами. На каждую временнУю эпоху по наблюдаемым спутникам в строке указаны следующие величины (по столбцам):

sat.id – номер спутника

го – скорректированная дальность до спутника с учётом ряда смещений в измерениях

P1 – измерение псевдодальности на частоте L1 (метры)

P2 – измерение псевдодальности на частоте L2 (метры)

L1 – измерение псевдофазы на частоте L1 (метры)

L2 – измерение псевдофазы на частоте L2 (метры)

Mw – функция отображения для влажной составляющей тропосферной задержки (б/р)

Md – функция отображения для сухой составляющей тропосферной задержки (б/р)

Td – расчётная сухая составляющая тропосферной задержки (метры)

Тw – расчётная влажная составляющая тропосферной задержки (метры)

Tw_estimate – не берём

dt – смещение показаний спутниковых часов относительно показаний часов системы (метры)

dTrec_estimate – меньше знаешь, крепче спишь (метры)

А – действительное значение неоднозначности псевдофазового измерения (метры)

windup_metr – wind-up поправка (метры)

elevation – угол возвышения (градусы)

x_sat – X координата спутника на момент предшествия (метры)

у_sat - Y координата спутника на момент предшествия (метры)

z_sat - Z координата спутника на момент предшествия (метры)

РЗ – ионосферосвободная комбинация измерений псевдодальности Р1 и Р2 (метры)

L3 – ионосферосвободная комбинация измерений псевдофазы L1 и L2 (метры)

R_geom – геометрическая дальность до спутника (метры)

Задание:

Найти геоцентрические координаты используемой станции при помощи сайта Международной службы IGS (http://www.igs.org/). Для заданных файлов измерений со станции выбрать трёхчасовые интервалы видимости трёх различных спутников. Для выбранных интервалов времени для каждого из выбранных спутников оценить:

- угловую скорость спутника относительно потребителя (станции),
- линейную скорость движения спутника вдоль орбиты,
- среднюю угловую скорость спутника относительно потребителя (станции),
- среднюю линейную скорость движения спутника вдоль орбиты.

Построить зависимости указанных величин от времени наблюдений. Усреднять на всём выбранном интервале видимости. Стоит почитать про орбитальные группировки GPS и ГЛОНАСС и чуточку потренировать пространственное воображение.

Замечания и рекомендации:

- 1. Реализация программного считывания измерений из файла крайне приветствуется и поощряется.
- 1. Рекомендуемая среда для реализации MATLAB. Допустимы любые другие программные пакеты, за исключением Microsoft Office. Необходимо ориентироваться в коде и уметь пояснять его особенности (!). Правильно работающий код без правильных базовых пояснений это неклассно (оценка неуд.).
- 2. При защите будет проверка корректности приведённых зависимостей, а также беседа на предмет понимания того, какие данные приведены и как посчитаны, в чём измеряются, где взяты и т.д.
- 3. **Графики должны петь** (указание размерностей величин, откладываемых вдоль осей; удобно выбранный крупный масштаб, позволяющий анализировать зависимость).
- 4. Крайне важно представлять и уметь пояснить геометрическую интерпретацию этапов решения задачи.
- 5. Файлы с исходными данными рекомендуется просматривать программой Notepad++ (это HE встроенная в ОС Windows утилита под названием Notepad/Блокнот).
- 6. Необходимая теория самостоятельно ищется где-нибудь (Интернет, учебные пособия, монографии, научные статьи, ноосфера, заборы и пр.).

Группа М4О-503С-20

№ п/п	ФИО	Вариант задания
1	Кузнецов Евгений Олегович	bshm_1-10.dat, GPS
2	Лубовинин Николай Иванович	hueg_1-10.dat, GPS
3	Лукашук Александр Евгеньевич	ONSA_1-6.dat, ГЛОНАСС
4	Назаров Егор Андреевич	POTS_6hours.dat, ГЛОНАСС
5	Орлов Григорий Денисович	svtl_1-10.dat, GPS
6	Петрухин Илья Сергеевич	TITZ_6hours.dat, ГЛОНАСС
7	Подрядчиков Денис Романович	warn_1-10.dat, GPS
8	Потапов Андрей Дмитриевич	WTZZ_6hours.dat, ГЛОНАСС
9	Тихонова Мария Алексеевна	zeck_1-10.dat, GPS
10	Хомченко Арсений Александрович	leij_1-10.dat, GPS
11	Чикалев Сергей Сергеевич	BOGI_1-6.dat, ГЛОНАСС,
12	Шалавин Владислав Сергеевич	ONSA_1-6.dat, GPS
13	Шарапов Иван Андреевич	POTS_6hours.dat, GPS
14	Шидловский Никита Сергеевич	TITZ_6hours.dat, GPS
15	Баширов Рустам Шамильевич	zeck_1-10.dat, GPS