WF4133-Fisheries Science

Housekeeping

Total Points

Final Exam 250 Report 150

Class 25- Review

Housekeeping

• Final Exam Wednesday May 3rd 8-11 am

MWF, MW, M, W, F CLASSES						
If Class N	feets		Exam	will Be	=	
8:00 am	MWF	Thu	May 4	8:00 am to 11:00 am	٥	
9:00 am	MWF	Wed	May 3	8:00 am to 11:00 am	٥	
10:00 am	MWF	Tue	May 2	8:00 am to 11:00 am	0	
11:00 am	MWF	Thu	May 4	12:00 pm to 3:00 pm	0	
12:00 pm	MWF	Fri	Apr 28	12:00 pm to 3:00 pm	0	
12:30 pm	MW	Fri	Apr 28	12:00 pm to 3:00 pm	0	
1:00 pm	MWF	Mon	May 1	12:00 pm to 3:00 pm	0	
2:00 pm	F	Thu	May 4	3:00 pm to 6:00 pm	0	
2:00 pm	w	Thu	May 4	3:00 pm to 6:00 pm	0	

http://www.registrar.msstate.edu/students/schedules/exam-schedule/s/?year[value][year]=2017&semester=spring

The Fish on My Plate

http://www.pbs.org/video/3000267728/

SIZE STRUCTURE

Adding length categories

Gabelhouse (1984): need to move beyond a two-cell model of length categorization and further refine PSD by using:

- stock (S)
- quality (Q)
- preferred (P)
- memorable (M)
- trophy (T)

Calculation of length categories

Figure 14.3 Gabelhouse's adoption of Weithman's (1978) fish quality index to identify length ranges from which (or near to which) minimum stock, quality, preferred, memorable, and trophy lengths were selected (from Gabelhouse 1984a).

Length categories

Category	Largemouth bass (mm)	Bluegill (mm)
Stock	200	80
Quality	300	150
Preferred	380	200
Memorable	510	250
Trophy	630	300

Traditional PSD

$$PSD - X = \frac{\text{Number of fish} \ge \text{ specified length}}{\text{Number of fish} \ge \text{ stock length}} \cdot 100$$

Category	N	Value
PSD-S	400	100
PSD-Q	100	40
PSD-P	75	25
PSD-M	80	14
PSD-T	10	2

Incremental PSD

$$PSD - X = \frac{\text{Number of fish in bin}}{\text{Number of fish}} \cdot 100$$

Category	N	Value
PSD-S-Q	400	60
PSD-Q-P	100	15
PSD-P-M	75	11
PSD-M-T	80	12
PSD-T	10	2

Should sum to 100

LENGTH-WEIGHT

Population characteristics

Quantities and indices of a population

Length-weight relationship

Isometric scaling

If b=3 then fish growth is isometric

- all dimensions change similarly over time
- shape of fish does not change over time

$$W = a \cdot L^{b=3}$$

Allometric scaling

- if b<3 then fish gets more fusiform with time

$$W = a \cdot L^{b < 3}$$

Allometric scaling

- if b>3 then fish gets more plump with time

$$W = a \cdot L^{b>3}$$

Using length-weight relationships

- Estimate weight from length
- Measure variation from the <u>expected</u> weight for length of individual fish or relevant group of individuals as indications of fatness, general 'well-being,' gonad development, etc.
 - Does a fish weigh more than another even though they are the same length?

Estimating weight from length

Straightening the curve

Law of logarithms

$$W = a \cdot L^b$$

$$\log_{10}(W) = \log_{10}(a \cdot L^b)$$

$$\log_{10}(W) = \log_{10}(a) + b \cdot \log_{10}(L)$$

$$\log_{10}(W) = a' + b \cdot \log_{10}(L)$$

Estimating weight from length

Can estimate weight from length!

Length-weight data

Condition

von Bertalanffy Growth Function

AGE-LENGTH

Gompertz

Logistic

Power

Length at age?

Example

 $Length_{\infty} = 400$

K = 0.3

 $t_0 = 0.1$

Proposed minimum length limit

8 inch limit

$$t_{0} + \frac{\log\left(1 - \frac{Length_{age}}{Length_{\infty}}\right)}{-K} = age$$

$$0.1 + \frac{\log\left(1 - \frac{203}{400}\right)}{-0.3} = age$$

$$0.1 + \frac{\log\left(1 - \frac{203}{400}\right)}{-0.3} = age$$

$$0.1 + \frac{-3.05}{-0.3} = age$$

$$0.1 + 10.16 = age$$

$$2.46 = age$$

12 inch limit

$$\begin{aligned} &\log\left(1 - \frac{Length_{age}}{Length_{\infty}}\right) = age \\ &\frac{1}{-K} = \frac{\log\left(1 - \frac{304}{400}\right)}{-0.3} = age \\ &0.1 + \frac{-1.427}{-0.3} = age \\ &0.1 + 4.757 = age \\ &4.857 = age \end{aligned}$$

Length limit & growth

Fish dynamics

RECRUITMENT

What is recruitment?

The addition of new fish into the catchable, harvestable, or adult populations.

Constant recruitment

$$CV = 10\%$$

$$CV = 20\%$$

The magnitude of recruitment variation is important to because...

Beverton-Holt

Ricker

Sheperd curve

Beverton Holt

Recruitment variability

Recruitment variability

- Match-mismatch: food resources don't match emergence timing
- · Micropredation: smaller fish eating eggs
- Allee effect: spawners have a tough time finding each other
- · Depensation?
- Depensation-offspring reduced at low spawning levels

Recruitment variability

- Temperature-incubation time
- · Water quality-turbidity,
- Spawning Habitat-gravel, aerated substrates
- Macrophytes-needed to spawn for some fish Water levels-access to spawning areas

HYPERSTABILITY & HYPERDEPLETION

CPE, catchability, & biomass

Hyperstability

Hyperdepletion

The whole picture

OVERFISHING, MSY, MEY & OSY

Fish dynamics

Graham-Schaefer model

dA/dt versus Abundance

Sustainability

- 1. Ability to persist in the long-term. Often used as "short hand" for sustainable development;
- 2. Characteristic of resources that are managed so that the natural capital stock is non-declining through time, while production opportunities are maintained for the future.

https://www.st.nmfs.noaa.gov/st4/documents/FishGlossary.pdf

Graham-Schaefer model

Graham-Schaefer model

dA versus A

Pella-Tomlinson

dA versus A

Fox model

dN/dt versus N

Biomass dynamics

Maximum sustained yield (MSY)

Maximum sustained yield (MSY)

Epitaph for MSY

TRANSACTIONS of the AMERICAN FISHERIES SOCIETY

January 1977 VOLUME 106 NUMBER 1

An Epitaph for the Concept of Maximum Sustained Yield

Institute of Animal Resource Ecology, University of British Columbia
Vancouver, British Columbia V6T 1W5

About 30 years ago, when I was a graduat student, the idea of managing fisheries fo maximum sustained yield was just beginnin to really catch on. Of course, the ideas ha already been around for quite a while. Be ranov (1918) was the first to combine infor mation on growth and abundance to develofamous "green book," the first version of hi handbook (Ricker 1958); Fry (1947) devel oped the virtual population idea; and Schaefer (1954) proposed his method for estimating surplus production under nonequilibrium con ditions. The literature crackled with new information and new ideas. The solidification

$F_{0.1}$

The use of $F_{0.1}$ has emerged as a useful "rule of thumb" for managing fisheries, but according to Hilborn and Walters (1992) this is an arbitrary, ad hoc strategy with no theoretical basis.

How do we figure out F_{0.1}

- 1. Find slope at origin
- 2. Plot line with 10% of this slope
- 3. Find tangent of curve at this slope

Slope at origin

10% of slope at origin

10% of slope at origin

F_{0.1}

Optimal sustained yield (OSY)

Maximize difference between maximum economic yield and cost

MEY & OSY

Predicted biomass and roe yields

