Key ID: 009

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	21.3	21.8	27.2				
sample 2:	8.8	10.9	9.9	10.3	11.4	10.4	9

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)					2	0	0	0
	(b)					9	9	2	0
	(c)					1	9	2	2
	(d)			-	3	2	3	6	6
	(e)					5	7	6	6
	(f)					6	9	2	1
	(g)					0	0	2	0
	(h)					0	0	4	0
	(i)	no							

Key ID: 009

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 23.4$$

$$\overline{X_2} = 10.1$$

$$s_1 = 3.27$$

$$s_2 = 0.949$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 7) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(3.27)^2}{3} + \frac{(0.949)^2}{7}} = 1.922$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-32.366, 5.766)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.1 - 23.4) - 0}{1.922} = -6.92$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 6.92$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

- (a) 2
- (b) 9.92
- (c) 1.922
- (d) -32.366
- (e) 5.766
- (f) 6.921
- (g) 0.02
- (h) 0.04
- (i) no