```
In [1]: # import all the packages needed
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
```

In [3]: # Reading the data from the file. exercise007 = pd.read csv("/Users/paulwen/OneDrive - The University of Texa

In [4]: display(exercise007)

	Strain	Mutation_rate
0	st_alpha	10.612005
1	st_alpha	12.586371
2	st_alpha	8.997583
3	st_alpha	11.681775
4	st_alpha	14.408237
163	st_delta	2.716249
164	st_delta	2.467378
165	st_delta	2.119801
166	st_delta	1.316537
167	st_delta	2.060472

168 rows × 2 columns

```
In [16]:
            Histograms
         sns.displot(exercise007, x="Mutation_rate", hue = "Strain", kind="hist", alp
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x7feadc270970>


```
In [31]:
            Most pretty gragh I picked
         # Kernel Density Estimate (KDE) plots
         kde_plot = sns.displot(exercise007, x="Mutation_rate", hue="Strain", kind="
         plt.legend(title='Strains', labels=['String Alpha', 'String Beta', 'String Ga
         plt.xlabel('Mutation Rate')
         kde_plot
```

Out[31]: <seaborn.axisgrid.FacetGrid at 0x7feadcca0190>

Out[12]: <AxesSubplot:xlabel='Mutation rate', ylabel='Strain'>


```
box plots
In [13]:
         sns.boxplot(data=exercise007, x="Mutation_rate", y="Strain")
```

Out[13]: <AxesSubplot:xlabel='Mutation_rate', ylabel='Strain'>

