

SEQUENCE LISTING

SEQUENCE LISTING

<110> HAN, XIANG-YANG
PHAM, AUDREY S.

<120> METHOD OF DETERMING A SPECIES OF A BACTERIUM

<150> 10/697,802
<151> 2003-10-31

<160> 145

<200>CHARACTERISTICS:

<210> 1
<211> 1383
<212> DNA
<213> Mycobacterium abscessus

<400> 1
acatgcaagt cgaacggaaa aggcccttcg gggtaactcga gtggcgaacg ggtgagtaac 60
acgtgggtga tctgccttcg actctggat aagcctggaa aactgggtct aataccggat 120
aggaccacac acttcatggt gagtggtgca aagcttttcg ggtgtggat gagcccgccg 121
ccttatcagct tgttgggtgg gtaatggccc accaaggcga cgacgggtag ccggccttag 180
agggtgaccg gccacactgg gactgagata cggcccagac tcctacggga ggcagcagt 240
ggaaatattt cacaatgggc gcaaggcctga tgcagcgcacg ccgcgtgagg gatgacggcc 300
ttcgggttgtt aaacctcttt cagtagggac gaagcgaaag tgacggtacc tacagaagaa 360
ggaccggcca actacgtgcc agcagccgcg gtaatacgtt gggtccgagc gttgtccgga 420
attactgggc gtaaaagagct cgttaggttgt ttgtcgcgtt gttcgtgaaa actcacagct 480
taactgtggg cgtgcgggc atacgggcag actagagttac tgcaggggag actggaattc 540
ctgggttagc ggtggaatgc gcagatatca ggaggaacac cgggtggcga 600
tgggcagtaa ctgacgctga ggagcgaaag cgtgggttagc gaacaggatt agataccctg 660
gtagtcacgc cctgttaacgg tgggtacttag gtgtgggtt ccttccttgg gatccgtgcc 720
gtagctaacg cattaagtac cccgccttgg gtagtacggc gcaagactaa aactcaaagg 780
aattgacggg ggccgcaca agcggcgag catgtggatt aattcgatgc aacgcgaaga 840
accttacctg ggtttgcacat gcacaggacg tatctagaga taggtattcc cttgtggcct 900
gtgtcaggt ggtgcattggc tgtcgtcagc tcgtgtcggt agatgttggg ttaagtccc 960
caacgagcgc aacccttgc tcatgttgcc agcgggtaat gccggggact cgtaggagac 1020
tgccgggtgc aactcgagg aagggtggga tgacgtcaag tcatcatgccc ctttatgtcc 1080
agggcttcac acatgtaca atggccagta cagagggtcg cgaagccgt aaggtaggcg 1140
aatcccttaa agctggtctc agttcgatt ggggtctgca actcgaccccc atgaagtccg 1200
agtcgtctgt aatcgcagat cagcaacgct gcggtgaata cggtccggg 1260
accgcccgtc acgtcatgaa agtcggtaac acccgaagcc agtggcctaa cttttggag 1320
gga 1323

<210> 2
<211> 1454
<212> DNA
<213> Mycobacterium avium

<400> 2
gacgaacgct ggcggcgtgc ttaacacatg caagtcgaac ggaaaggcct cttcggaggt 60
actcgagtgg cgaacgggtg agtaacacgt gggcaatctg ccctgcactt cgggataagc 120
ctggaaaact gggcttaata ccggatagga cctcaagacg catgtcttct ggtggaaagc 180
ttttcggtg tggatgggc ccgcggccta tcagttgtt ggtgggtga cggcctacca 240
aggcgcacac gggtagccgg cctgagaggg tgtccggcca cactggact gagatacggc 300
ccagactcct acgggaggca gcagtgggaa atattgcaca atgggcgaa gcctgatgca 360
gcfacgcgcgt gtggggatg acggccttcg ggtttaaac ctctttcacc atcgacgaag 420
gtccgggttt tctcgatgt acggttaggtg gagaagaagc accggccaac tacgtgccag 480
cagccgcgtt aatacgtagg gtgcgagcgt tgcgtggaa tactggcgt aaagagctcg 540
taggtggttt gtcgcgttgt tcgtgaaatc tcacggctt actgtgagcg tgcggcgt 600

SEQUENCE LISTING

acgggcagac	tagagtactg	caggggagac	tggattcct	ggtagcggt	tggaatgcgc	660
agatatcagg	aggaacaccc	gtggcgaagg	cgggtctctg	ggcagtaact	gacgctgagg	720
agcgaaagcg	tggggagcga	acaggattag	atacccttgt	agtccacgccc	gtaaacggtg	780
ggtacttaggt	gtgggtttcc	ttccttggg	tccgtccgt	agctaacgc	ttaagtaccc	840
cgcctgggga	gtacggccgc	aaggctaaaa	ctcaaaaggaa	ttgacggggg	ccgcacaag	900
cggcggagca	tgtggattaa	ttcgtgcaa	cgcgaagaac	cttacctggg	tttgacatgc	960
acaggacgc	tcttagagata	ggcgttccct	tgtggcctgt	gtgcagggtgg	tgcatggctg	1020
tcgtcagctc	gtgtcgttag	atgttgggtt	aagtcccgca	acgagcgc	cccttgctc	1080
atgttgcag	cgggtaatgc	cgggactcg	tgagagactg	ccgggtca	ctcggaggaa	1140
ggtggggatg	acgtcaagtc	atcatgcccc	ttatgtccag	ggcttcacac	atgtctacaat	1200
ggccgttaca	aagggctcg	atgccgtaa	gttaagcgaa	tcctttaaa	gcccgttca	1260
gttcggattg	gggtctgca	ctcgacccca	tgaagtcgga	gtcgctagta	atcgcagatc	1320
agcaacgctg	cggtaatac	gttccgggc	tttgtacaca	ccgcccgtca	cgtcatgaaa	1380
gtcggtaaca	cccgaaagcca	gtggccta	cctttggg	gggagctgtc	gaaggtggg	1440
tcggcgattg	ggac					1454

<210> 3

<211> 1421

<212> DNA

<213> ORGANISM: Mycobacterium bovis

<400> 3

ggcggcgtgc	ttaacacatg	caagtcgaac	ggaaaggct	cttcggagat	actcgagttg	60
cgaacgggtg	agtaacacgt	gggtgatctg	ccctgcactt	cggataagc	ctgggaaact	120
gggtctaata	ccggatagga	ccacggatg	catgtcttg	ggtnaaagc	gttttagcgg	180
tgtggatga	gcccgcggcc	tatcagctt	ttgggtgggt	nacggcctac	caaggcga	240
acgggtagcc	ggcctgagag	ggtgtccggc	cacactggg	ctgagatacg	gcccagactc	300
ctacgggagg	cagcagtggg	aatattgca	caatgggcgc	aagcctgtat	cagcga	360
gcgtggggga	tgacggcctt	cgggttgtaa	acctcttta	ccatcgacga	agg	420
tctctcgat	tgacggtagg	tggagaagaa	gcaccggcca	actacgtg	ccgcg	480
gtaatacgta	gggtgcgagc	gttgcggg	attactggg	gttaaagagct	cgtagg	540
ttgtcgcgtt	gttcgtgaaa	tctcacggct	taatgttag	ctgcccggc	atacggc	600
actagatgt	tgaggggag	actggaaattc	ctgggtgt	gttggaaatgc	gcagatata	660
ggaggaacac	cggtgncgaa	ggcgggtctc	ttggcagtaa	ctgacgctg	ggagc	720
cgtggggagc	gaacaggatt	agataccctg	gtngtccac	ccgtaaacgg	tgggtact	780
gtgtgggtt	ccttccttgg	gatccgtg	gtagctaac	cattaagtac	ccgccttgg	840
gatcggcc	gcaaggctaa	aactcaaagg	aattgacggg	ggccgcaca	agcggcg	900
catgtggatt	aattcgatgc	aacgcgaaga	accttac	ggttgcacat	gcacagg	960
cgtctagaga	taggcgttcc	tttgtggct	gtgtcaggt	gttgcac	tgcgtc	1020
tcgtcgtg	agatgttggg	ttaagtcccg	caacgagc	aacccttgc	tcatgttgc	1080
agcacgtat	ggtggggact	cgtgagagac	tgccgggtc	aactcggagg	aagg	1140
tgacgtcaag	tcatcatg	ccttatgtcc	agggcttac	acatgtaca	atggccgt	1200
caaaggctn	cgatgcccgc	aggttaagcg	aatcctt	agccgtctc	atcgatc	1260
ggggctgtca	actcgacccc	gtgaagtcg	agtgc	aatcgacat	cagcaacg	1320
gcgtgtata	cgtcccg	ccttgtacac	accgcgc	acgtcatgaa	atcggt	1380
accgaagcc	atggcctaa	cccttggg	ggagctgtc	a		1421

<210> 4

<211> LENGTH 1439

<212> DNA

<213> ORGANISM: Mycobacterium chelonae

<400> 4

gacgaacgct	ggcggcgtgc	ttaacacatg	caagtcgaac	ggaaaggcc	cttcgggt	60
ctcgagtggc	gaacgggtga	gtAACACGTG	ggtgatctg	cctgcactt	gggataagcc	120
tggaaactg	ggtctaatac	cggataggac	cacacactt	atggtagtg	gtgcaaagct	180
tttgcgtgt	gggatgagcc	cgcggctat	cagcttgg	gtgggtat	ggccaccaa	240
ggcgaacgac	ggtagccggc	ctgagagggt	gaccggccac	actgggactg	agatacggcc	300
cagactcc	ggggaggccag	cagtggggaa	tattgcacaa	tgggcgca	cctgatgc	360
cgacccgc	tgagggtatg	cggccttcgg	gtttaaacc	tctttcagta	gggacga	420
gaaagtgc	gtacctacag	aagaaggacc	ggccaactac	gtgcgc	ccgcggta	480

SEQUENCE LISTING

acgttagggtc	cgagcgttgc	ccgaaattac	tgggcgtaaa	gagctcgtag	gtggtttgc	540
gcgttgttcg	tgaaaaactca	cagcttaact	gtgggcgtgc	gggcgatacg	ggcagactag	600
agtactcag	gggagactgg	aattcctggt	gtagcgggtg	aatgcgcaga	tatcaggagg	660
aacaccggtg	gcaaggcggt	gtctctggc	agtaactgac	gctgaggagc	gaaagcgtgg	720
gtagcgaaca	ggattagata	ccctggtagt	ccacccgt	aacgtgggt	actaggtgt	780
ggtttcttc	cttgggatcc	gtgcccgt	taacgcatt	agtacccgc	ctggggagta	840
cggtcgcaag	actaaaactc	aaaggaattt	acgggggccc	gcacaagcg	cggagcatgt	900
ggattaattc	gatgcaacgc	gaagaacctt	acctgggtt	gacatgcgc	ggacgtatct	960
agagataggt	attcccttg	ggcctgcgt	caggtgggtc	atggctgtc	tcagctcg	1020
tcgtgagat	ttgggttaag	tcccgcaacg	agcgcacccc	ttgtcctatg	ttgccagcgg	1080
gtaatgccgg	ggactcgtag	gagactgccc	gggtcaactc	ggaggaaggt	ggggatgacg	1140
tcaagtcatc	atgcccccta	tgtccaggct	ttcacacatg	ctacaatggc	cagtacagag	1201
ggctgcgaag	ccgcaagggt	gagcgaatcc	cttaaagctg	gtctcagttc	ggattgggt	1261
ctgcaactcg	accccatgaa	gtcggagtcg	ctagtaatcg	cagatcagca	acgctgcgt	1321
gaatacgttc	ccgggcctt	tacacaccgc	ccgtcmcg	atgaaagtgc	gtaacaccg	1380
aagccagtgg	cctaaccctt	tggagggagc	tgtcgaaggt	gggatcggcg	attgggacg	1439

<210> 5

<211> 1482

<212> DNA

<213> *Mycobacterium farcinogenes*

<400> 5

cgaacgctcg	cggcgtgctt	aacacatgca	agtcgaacgg	aaaggccctt	cgggtactc	60
gagtggcga	cggtttagt	acacgtgggt	gatctgcct	gcactttggg	ataaggcttg	120
gaaactgggt	ctaataccgg	ataggaccac	gcgcttcat	gtgtgtgggt	gaaagctttt	180
gcggtgtgg	atgggcccgc	ggccttatc	cttgggtgt	ggtaatggc	ctaccaaggc	240
gacgacgggt	agccggcc	agaggggtgac	cggccacact	gggactgaga	tacggccag	300
actcctacgg	gaggcagcag	tgggaaat	tgcacaatgg	gcgcacgc	atgcagcga	360
cggcgtgt	gggatgacgg	ccttcgggtt	gtaaacccct	ttcaataggg	acgaagcgc	420
agtgcacgtt	cctatagaag	aaggaccgc	caactacgt	ccagcagcgc	cggtaatacg	480
tagggtccg	gcgttgcgt	gaattactgg	gcgtttaggt	ctcgtaggt	tttgcgcg	540
tttgcgtgt	aaactcag	cttaactgt	ggcgtgcggg	cgatcgggc	agactagat	600
actgcagggg	agacttggat	tccttgcgt	gcgttggaaat	gcgcagat	caggaggaac	660
accggtggcg	aaggcgggtc	tctgggcagt	aactgacgt	gaggagcga	agcgtgggaa	720
gcgaacagga	ttagatacc	ttgttagtcca	cgccgtaaac	ggtgggtact	aggtgtgggt	780
ttccttcctt	gggatccgt	ccgtactaa	cgcattaaat	acccgcctg	gggagtacgg	840
ccgcaaggct	aaaactcaaa	ggaatttgc	ggggcccgca	caagcggcgg	agcatgttga	900
ttaattcgat	gcaacgcgaa	gaacccatt	tgggtttgac	atgcacagga	cggcagttaga	960
gatattgggt	cccttgcgt	ctgtgtgc	gtgggtgc	gctgtcgtc	gctcgtgtcg	1020
tgagatgtt	gggttaatgc	cgcaacag	gcaacccct	tctcatgtt	ccagcacgtt	1080
atggtgggg	ctcgttgc	actgcgggg	tcaactcgt	ggaagggtgg	gatgacgtca	1140
agtcatcatg	ccccttatgt	ccagggtt	acacatgt	caatggccgg	tacaaaggc	1200
tgcgtatcc	tgagggtgg	cgaatcc	caaaggccgt	ctcagttcg	atcggggct	1260
gcaactcgac	cccgtaagt	cggatgcgt	agtaatcgca	gatcagca	gctcgggt	1320
atacgttcc	gggccttgc	cacaccgccc	gtcacgtat	gaaatcggt	aacaccgaa	1380
gccggtggcc	taacccttgc	ggagggagcc	gtcgaagggt	ggatcggcg	ttgggacgaa	1440
gtcgtaacaa	ggtagccgt	ccggaaagggt	cggctggatc	ac		1482

<210> 6

<211> 1449

<212> DNA

<213> *Mycobacterium fortuitum*

<400> 6

ggcggcgtgc	ttaacacat	caagtgcac	ggaaaggccc	ttcgggtact	cgagtggcga	60
acgggtgagt	aacacgtgg	tgatctgc	tgcactttt	gataaggct	ggaaacttgg	120
tctaatacc	aatatgacc	cgcacttcc	gggtgtgt	ggaaagctt	tgcgggtgt	180
gatggggcc	cggcctatc	gcttgggt	ggggtaatgg	cctaccaagg	cgacgacgg	240
tagccggcc	gaggggtg	ccggccacac	tgggactgag	atacggccca	gactcctac	300

SEQUENCE LISTING

ggaggcagca	gtgggaaata	ttgcacaatg	ggcgcaagcc	tgatgcagcg	acgcccgcgt	360
agggatgacg	gccttcgggt	tgtaaacctc	tttcaatagg	gacgaagcgc	aagtgacggt	420
acctatagaa	gaaggaccgg	ccaactacgt	gccagcagcc	gcggttaatac	gtagggtccg	480
agcgttgtcc	ggaattactg	ggcgtaaaga	gctcgtaggt	ggttgcgc	tttgttgcgt	540
aaaactcaca	gcttaactgt	gggcgtgcgg	gcgatacggg	cagactagag	tactgcaggg	600
gagactgaa	ttcctgggt	agcgggtggaa	tgcgcagata	tcaggaggaa	caccgggtgc	660
gaaggcgggt	ctctgggcag	taactgacgc	tgaggagcga	aagcgtgggg	agcgaacagg	720
attagatacc	ctggtagtcc	acgnctaaa	cggtggtac	taggtgtggg	tttccttcct	780
tgggatccgt	gcccgtagcta	acgcattaaag	taccccgccct	ggggagtagc	gcccgaaggc	840
taaaactcaa	agaaaattgac	gggggnccgc	acaagcggcg	gagcatgtgg	attaattcga	900
tgcaacgcga	agaaccttac	ctgggtttga	catgcacagg	acgcagtag	agatattgtt	960
tcccttgtt	cctgtgtgca	ggtgggtcat	ggctgtcgtc	agctgtgtc	tgagatgtt	1020
gggttaagtc	ccgcaacgag	cgcaaccctt	atcttatgtt	gccagcgcgt	aatggcgggg	1080
actcgtgaga	gactgcccgg	gtcaactcg	aggaagggtgg	ggatgacgtc	aagtcatcat	1140
gccccttatg	tccagggctt	cacacatgct	acaatggccg	gtacaaaggg	ctgcgatgcc	1200
gtgagggtga	gcaaatcctt	tcaaagccgg	tctcagttcg	gatcggggtc	tgcaactcga	1260
ccccgtgaag	tcggaggtcgc	tagtaatcgc	agatcagcaa	cgctcggtg	aatacgttcc	1320
cgggccttgc	acacaccgc	cgtcacgtca	tgaaagtccgg	taacacccga	agccgggtgc	1380
ctaacccttgc	tggagggagc	cgtcgaaggt	gggatcggcg	attgggacga	agtcgttaaca	1440
agtagccg						1449

<210> 7
<211> 1461
<212> DNA
<213> *Mycobacterium gordoneae*
<400> 7

ggcggcgtgc	ttaacacatg	caagtgcac	ggtaaggccc	ttcgggntac	acgagtggcg	60
aacgggttag	taacacgtgg	gtaatctgcc	ctgcacatcg	ggataagcct	gggaaactgg	120
gtctaatacc	gaataggacc	acaggacaca	tgtcctgtgg	tggaaagctt	ttgcgggtgt	180
ggatggccccc	ggggcctatc	agcttgggt	tgggggtatg	gcctaccaag	gcgacgacgg	240
gtagccggcc	tgagagggtg	tccggccaca	ctgggactga	gatacggccc	agactnctac	300
gggaggcagc	agtggggat	attgcacaat	gggcgaaagc	ctgtgcagc	gacgcccgt	360
gggggatgac	ggccttcggg	ttgttaaacct	tttccacat	cgacagaggt	ccgggttttc	420
tcgggctgac	ggttaggtgg	gaagaagcac	cggccaacta	cgtgccagca	gccgcgntaa	480
tacgttaggt	gcgagcgtt	tccggattt	ctggggctaa	agagctcgta	gttggttgt	540
cgcgttgtt	gtaaaaatctc	acggcttaac	tgtgagcgtg	cggnncgatac	gggcagactt	600
gagtactgca	ggggagactg	gaattccctgg	tgtagcgtg	aatgcgcag	atatcaggag	660
gaacaccgg	ggcgaaggcg	ggtctctggg	cagtaactga	cgctgaggag	cgaaagcgtg	720
gggagcgaac	aggattagat	accctggtag	tccacgnct	aaacgggtgg	tacttaggtt	780
gggtttccctt	ccttgggatc	cgtgccgtag	ctaacgcatt	aagtaccccg	cctggggagt	840
acggcngcaa	ggctaaaact	caaagaaatt	gacgggggn	cgcacaagcg	gcggagcatg	900
tggatttaatt	cgtgcac	cgaagaacct	tacctgggtt	tgacatgcac	aggacgcccgg	960
cagagatgtc	ggttcccttg	tggctgtgt	gcagggtgg	catgnctgc	gtcagctcgt	1020
gtcgtgagat	gttgggttaa	gtcccgcaac	gagcgcac	cttgcctcat	ttgccacgc	1080
ggttaatgcgc	gggactcgt	agagactgc	ggggtaact	cggaggaagg	tggggatgac	1140
gtcaagtcat	catgccccat	atgtccagg	cttccacat	gctacaatgg	ccggatacaaa	1201
gggctcgat	ggccgcagg	taagcgaatc	cttttaaagc	cggtctcagt	tcggatcgg	1261
gtctgcaact	cgaccccgt	aagtccggat	cgctagtaat	cgcagatcg	caacgctcgc	1320
gtgaatacgt	tcccgggcct	tgtacacacc	gcccgtcag	tcatgaaagt	cggtaacacc	1381
cgaagccagt	ggcctaacct	ttgggaggg	gctgtcgaag	gtgggatcgg	cgattgggac	1440
gaagtcgtaa	caaggtagcc	g				1461

<210> 8
<211> 1527
<212> DNA
<213> *Mycobacterium heckeshornense*

<400> 8
tgatcctggc tcaggacgaa cgctggcggc gtgcttaaca catgcaagtc gaacggaaag 60

SEQUENCE LISTING

gcccgcctcg	gtgggtgctc	gagtggcgaa	cgggtgagta	acacgtgggt	gacctgcct	120
gcacttcggg	ataaggcctgg	gaaactgggt	ctaataccgg	ataggaccgc	gccatgcatt	180
tggtgtggtg	gaaagcgtgt	ggtagtggtg	tgggatgggc	ccgcggccct	tcagcttgg	240
ggtgggggtga	tggcctacca	aggcgacgac	gggttagccg	cctgagaggg	tgtccggcca	300
caactgggact	gagatacggc	ccagactcct	acgggaggca	gcagtgggga	atattgcaca	360
atgggcgc当地	gcctgtatgca	gcgacgcccgc	gtggggatg	acggccttcg	ggttgtaaac	420
ctcttttacc	atcgacgaag	ccgcagctt	tgttgtggtg	acggtaggtg	gagaagaagc	480
accggccaac	tacgtgccag	cagccgcgtt	aatacgttagg	gtcaagcgt	tgtccggaaat	540
tactgggctg	aaagagctcg	tagggcgctt	gtcgcgttgt	tcgttggaaatg	ccacagctt	600
actgtgggctg	tgcgggcat	acgggcaggc	tggagtgctg	caggggagac	tggaaattct	660
ggtgtagcgg	tggaatgcgc	agatatcagg	aggaacaccg	gtggcgaagg	cgggtctctg	720
ggcagtaact	gacgctgagg	agcgaaagcg	tggggagcga	acaggattag	ataccctgg	780
agtccacgccc	gtaaacgggt	ggtacttaggt	gtgggttctt	tcctgaagga	tccgtgccgt	840
agctaacgc当地	ttaagtaccc	cgcctgggga	gtacggccgc	aaggctaaaa	ctcaaaggaa	900
ttgacggggg	cccgcacaag	ccggcggagca	tgtggattaa	ttcgtatgca	cgcgaagaac	960
cttacctggg	tttgacatgc	acaggacgc当地	tctagagata	ggcgttccct	tgtggctctgt	1020
gtgcagggtgg	tgcattggctg	tcgtcagctc	gtgtcgttag	atgttgggtt	aagtccccca	1080
acgagcgc当地	cccttgcc	atgttggccag	cacgtgatgg	tggggactca	tgggagactg	1140
ccgggggtca	ctcgggagaa	ggtggggatg	acgtcaagt	atcatgcccc	ttatgtccag	1200
ggcttcacac	atgctacaat	ggccgtata	aagggtcg	atgccgttag	gttaagcga	1260
tcctttaaa	gcccgtctca	gttcggatcg	gggtctgca	ctcgaccccc	tgaagtccga	1320
gtcgctagta	atcgcagatc	agcaatgtcg	cggtaatc	gttccggggc	cttgacaca	1380
ccgcccgtca	cgtcatgaaa	gtcggtaaca	cccgaagccc	atggcccaac	ccggttggg	1440
gggagtggtc	gaaggtggga	tcggcgattg	ggacgaagtc	gtaacaaggt	agccgtaccg	1500
gaaggtgc当地	ctggatcacc	tccttaa				1527

<210> 9
<211> 1452
<212> DNA
<213> *Mycobacterium intracellulare*

<400> 9						
ttaacacatg	caagtnaac	ggaaagnccc	cttcgggta	ctcgagttgc	gaacgggtga	60
gtaacacgtg	ggcaatctgc	cctgcacttc	gggataagcc	tggaaaactg	ggtctaatac	120
cggataggac	ctttaggcgc	atgtctttag	gtggaaagct	tttgcgggt	gggatgggcc	180
cgcggcctat	cagttgtt	gtgggggtat	ggcctaccaa	ggcgtacgacg	ggtagccgc	240
ctgagagggt	gtccggccac	actggactg	agatacggcc	cagactncta	cgggaggcag	300
cagtgggaa	tattgcacaa	tggcgcaag	cctgtatgcag	cgacgcccgc	tggggatg	360
cggccttcgg	gttgtaaacc	tcttcacca	tcgacgaagg	tccgggtttt	ctcggattg	420
cggtaggtgg	agaagaagca	ccggccaact	acgtgtccagc	agccgcgtta	atacgttagg	480
tgcgagcgtt	gtccggaaatt	actgggcgt	aagagctcg	aggttggttt	tcgcgttgtt	540
cgtgaaatct	cacggcttaa	ctgtgagcgt	gcggggtata	cgggcagact	agagtaactg	600
aggggagact	ggaattccctg	gtgttagcggt	ggaatgcgc当地	gatatcagga	ggaacaccgg	660
tggcgaaggc	gggtctctgg	gcagtaactg	acgctgagga	gcgaaagcgt	ggggagcga	720
caggattaga	taccctggta	gtccacgcng	taaacgggtt	gtacttaggt	tgggtttcc	780
tccttgggat	ccgtggcgt	gctaacgt	taagtaccn	gcctggggag	tacggccca	840
aggctaaaac	tcaaaggaaat	tgacggggc	cnccacaagg	ggcggagcat	gtggattaat	900
tcgatgcaac	gcaagaacc	ttacctgggt	tttgatcgca	caggacgcgt	ctagagatag	960
gcgttccctt	gtggcctgt	tgcaagggtt	gcatggctgt	cgtcagctcg	tgtcgtgaga	1020
tgttgggtt	agtcccgcaa	cgagcgc当地	cttgtctca	tgttgc当地	ggtaatgcc	1080
ggggactcgt	gagagactgc	cggggtcaac	tcggaggaag	gtggggatg	cgtcaagtca	1140
tcatgcccct	tatgtccagg	gcttcacaca	tgctacaatg	gccgtacaa	agggctgcga	1200
tgccgtcaagg	ttaagcgaat	ccttttaaaag	ccggtctcag	ttcgattgg	ggtctgc当地	1260
tcgaccccat	gaagtccggag	tcgctagtaa	tcgcagatca	gcaacgc当地	ggtgaatacg	1320
ttcccgcc	ttgtacacac	cgcccgtcac	gtcatgaaag	tcggtaacac	ccgaagccag	1380
tggccctaacc	cttgggaggg	agctgtcgaa	ggtgggatcg	gcgattggg	cgaagtcgta	1440
acaaggtagc	cg					1452

<210> 10

SEQUENCE LISTING

<211> LENGTH 1463

<212> DNA

<213> ORGANISM: Mycobacterium kansasii

<400> 10

gcggcgtgct	taaacacatgc	aagtcaacg	gaaaggcttc	ttcgagaca	ctcgagtggc	60
gaacgggtga	gtaaacacgtg	ggcaatctgc	cctgcacacc	gggataagcc	tgggaaactg	120
ggtctaatac	cggataggac	cacttggcgc	atgccttg	gtggaaagct	tttgcggtgt	180
gggatgggcc	cgcggcctat	cagctgttg	gtgggggtgac	ggcctaccaa	ggcgcacgac	240
ggtagccgc	ctgagagggt	gtccggccac	actgggactg	agatacggcc	cagactccta	300
cgggaggcag	cagtggggaa	tattgcacaa	tgggcgcaag	cctgatgcag	cgacgcccgc	360
tggggatga	cggccttcgg	gtttaaacc	tcttcacca	tcgacgaagg	tccgggttct	420
ctcgattga	cggtaggtgg	agaagaagca	ccggccaact	acgtgccagc	agccgcgnta	480
atacgttaggg	tgcgagcgtt	gtccggaatt	actgggcgt	aagagctcg	aggtggttg	540
tcgcgttgtt	cgtaaaatct	cacggcttaa	ctgtgagcgt	gcgnncgata	cgggcagact	600
agagtactgc	aggggagact	ggaattcctg	gtgtagcgt	ggaatgcgc	gatatcagga	660
ggaacacccg	tggcgaaggc	gggtctctgg	gcagtaactg	acgctgagga	gcgaaagcgt	720
ggggagcga	caggattaga	taccctggta	gtccacgcng	taaacggtgg	gtactaggtg	780
tgggttcct	tccttgggat	ccgtggcgt	gctaacgc	taagtacccc	gcctggggag	840
tacggcngca	aggctaaaac	tcaaggaa	tgacgggggn	ccgcacaagc	ggcggagcat	900
gtggattaat	tcgatgcac	gcgaagaacc	ttacctgggt	ttgacatgc	caggacgcgt	960
ctagagatag	gcgttccctt	gtggcctgt	tgccagggt	gcatggctgt	cgtcagctcg	1020
tgtcgtgaga	tgttgggtt	agtcccgca	cgagcgca	ccttgtctca	tgttgcac	1080
gggtaatgcc	ggggactcgt	gagagactgc	cggggtca	tcggaggaag	gtggggatga	1140
cgtcaagtca	tcatgcccct	tatgtccagg	gcttcacaca	tgctacaatg	gccggatcaa	1200
agggctgcga	tgccgcgagg	ttaagcgaat	ccttttaaag	ccggctc	ttcggatcg	1260
ggtctgcaac	tcgacccccgt	gaagtccggag	tcgctagtaa	tcgacatca	gcaacgcgtc	1320
ggtgaatacg	ttcccggg	ttgtacacac	cgcccg	gtcatgaaag	tcggtaaacac	1380
ccgaagccag	tggcctaacc	ctcgggaggg	agctgtcgaa	ggtgggatcg	gcfattggga	1440
cgaagtctgt	acaaggtagc	cgt				1463

<210> 11

<211> 1321

<212> DNA

<213> Mycobacterium kubicae

<400> 11

gtgcttaaca	catgcaagtc	gaacggaaag	gccccttcgg	gggtactcga	gtggcgaacg	60
ggtagtaac	acgtgggtga	tctaccctgc	acttcgggat	aagcctggga	aactgggtct	120
aataccggat	aggaccatga	gatgcacat	ttatggtgg	aagctttgc	ggtgtggat	180
gggcccgg	cctatcagct	tgttggtgg	gtacggcct	accaaggcga	cgacgggtag	240
ccggcctgag	agggtgtcc	gccacactgg	gactgagata	cggcccagac	tcctacggg	300
ggcagcagt	ggaaatattt	cacaatgggc	gcaaggcctg	tgccagcagc	ccgcgtggg	360
gatgacggcc	ttcgggtt	aaacctctt	cagcaggagc	gaagcgc	tgacggtacc	420
tgcagaagaa	gcacccggca	actactgt	agcagccgc	gtaatacgt	gggtgcgac	480
tttgtccgga	attactggc	gtaaaagact	cgtaggtgt	tttgtcgtt	tttgtcgtaaa	540
accggggct	taaccctcg	cgtggggcg	atacggc	actggagat	tgcaggggag	600
acttggattc	ctgggtgtac	ggtggaaatgc	gcagatata	ggagaaacac	cggtggcgaa	660
ggcgggtctc	tggcagtaa	ctgacgctg	ggagcga	cgtggggagc	gaacaggatt	720
agataccctg	gtagtccac	ccgtaaacgg	tgggtactag	gtgtgggtt	ccttccttg	780
gatccgtcc	gtagctaac	cattaagtac	cccgcttgg	gagtagcggcc	gcaaggctaa	840
aactcaaagg	aattgacggg	ggcccgaca	agcggcggag	catgtggatt	aattcgatgc	900
aacgcgaaga	accttac	ggttgacat	gcacaggac	cgtctagaga	taggcgttcc	960
cttggccct	gtgtgcaggt	ggtgcac	tgctcgt	tcgtgtcg	agatgttgg	1020
ttaagtcccg	caacgagcgc	aacccttgc	tcatgttgc	agcgggtat	gccggggact	1080
cgtgagagac	tgccgggg	aactcggagg	aagggtggg	tgacgtcaag	tcatcatgc	1140
ccttatgtcc	agggcttcac	acatgtaca	atggccgt	caaaggctg	cgatggccgc	1200
aggtaagcg	aatcctttt	aagccgtct	cagttcgat	cgggtctgc	aactcgaccc	1260
cgtgaagt	gagtgcgt	taatcgcaga	ttagcaacgc	tgcgtgt	acgttcccg	1320
g						1321

SEQUENCE LISTING

<210> 12
 <211> 1421
 <212> DNA
 <213> Mycobacterium lentiflavum

<400> 12

ggcggcgtgc	ttaacacatg	caagtcgaac	ggaaaggcct	cttcggaggt	actcgagtgg	60
cgaacgggtg	agtaaacacgt	gggtaatctg	ccctgcacctt	cgggataagc	ctgggaaact	120
gggtctaata	ccggatagga	cctttggcg	catgcctttt	ggtgaaaagc	ttttgcgttg	180
tgggatggc	ccgcggccta	tcagcttgtt	ggtgggggtga	cggcctacca	aggcagcac	240
ggtagccgg	cctgagaggg	tgtccggcca	cactgggact	gagatacggc	ccagactcct	300
acgggaggca	gcagtgggga	atattgcaca	atgggcccac	gcctgatgca	gcgacgcgc	360
gtggggatg	acggccttcg	ggtttaaac	ctctttcagc	aggacgaaag	cgcaagtgc	420
ggtacctgca	gaagaagcac	cggccaaact	cgtccagaca	gccgcgttaa	tacgttaggt	480
gcgagcgtt	tccggatta	ctggcgtaa	agagctgt	gttgttgg	cgcgttggc	540
gtaaaaaccg	ggggcttaac	cctcgccgt	cgggcgatc	ggcagactg	gagtaactgca	600
ggggagactg	gaattcctgg	tgtacgggt	aatgcgcag	atatcaggag	gaacaccgt	660
ggcgaaggcg	gttctctggg	cagtaactga	cgctgaggag	cggaaacgt	gggagcgaac	720
aggattagat	accctggtag	tccacccgt	aaacgggtgg	tactaggtgt	gggttcctt	780
ccttggaaatc	cgtgccccgt	ctaaccgtt	aagtaccccg	cctggggagt	acggccgcaa	840
ggctaaaact	caaaggaaatt	gacggggggc	cgcacaacgc	gcggagcatg	tggattaatt	900
cgtcaacg	cgaagaaccc	tacctgggtt	tgacatgcac	aggacgcccgg	cagagatgtc	960
gttcccttg	tggcctgtgt	gcaggtgggt	catggctgtc	gtcagctcg	gtcgtgagat	1020
gttgggttaa	gtcccgcaac	gagcgcaccc	cttgcgtcat	gttgcgcagc	cgtaatggcg	1080
gggactcg	agagactgccc	ggggtaact	cgaggaaagg	tggggatgac	gtcaagtcat	1140
catgccccctt	atgtccaggg	cttcacacat	gctacaatgg	ccggtaaaaa	gggctgcgt	1200
gccgttaagg	taagcgaatc	cttttaaagc	cggtctca	tcggatcggg	gtctgcaact	1260
cgaccctgt	aagtccggat	cgctagtaat	cgcagatcag	caacgcgtcg	gtgaataacgt	1320
tcccgccct	tgtacacacc	gcccgtcac	tcatgaaatg	cggtaacacc	cgaagccagt	1380
ggcctaacct	tttgggggg	gctgtcaag	gtgggatcgg	c		1421

<210> 13
 <211> 1455
 <212> DNA
 <213> Mycobacterium mucogenicum

<400> 13

gacgaacgct	ggcggcgtgc	ttaacacatg	caagtcgaac	ggaaaggccc	ttcggggtac	60
tcgagtggcg	aacgggttag	taacacgtgg	gtgatctgcc	ctgcactttt	ggataaggct	120
gggaaactgg	gtctaatacc	gaataggacc	acgcgcctca	tgggtgttgg	tggaaagctt	181
ttgcgggtg	ggatggggcc	gcccgttac	actgtgttgg	tgggtaatg	gcctaccaag	241
gcgacgacgg	gtagccggcc	ttaggggtg	accggccaca	ctgggactga	gatacggccc	301
agactctac	ggggaggcagc	agtggggat	attgcacaat	gggccaagc	ctgatgcagc	361
gacgccccgt	ggggatgac	ggccttcggg	ttgttaaacct	ctttcaatag	ggacgaagcg	420
caagtgcacgg	tacctataga	agaagcaccg	gccaactacg	tgccagcagc	cgcgttaata	480
cgttaggggtc	gaggcgttgc	cggaattact	gggctaaag	agctcgtagg	tggtttgcg	540
cgttggcgt	aaaaactcac	agcttaactg	tgggcgtgc	ggcgatacgg	gcagactaga	600
gtactgcagg	ggagactgga	attctgggt	tagcgttga	atgcgcagat	atcaggagga	660
acaccgggtt	cgaaggccgg	tctctggca	gtaactgac	ctgaggagcg	aaagcgtgg	720
gagcgaacag	gattagatac	cctggtagtc	cacgcccgtaa	acgggtggta	ctaggtgtgg	780
gttccttcct	tgggatccgt	gcccgtacta	acgcattaa	tacccgcct	ggggagtagc	840
gccgcaaggc	taaaactcaa	aggaattgac	ggggggcccg	acaacgcgc	gagcatgtgg	900
attaattcga	tgcaacgcga	agaacccat	ctgggtttga	catgcacagg	acgcggcag	961
agatgtcggt	tcccttgg	cctgtgtgc	ggtgggtcat	ggctgtcg	agctcggtc	1021
gtgagatgtt	gggttaagtc	ccgcaacgcag	cgcaacccctt	gtccatgtt	gccagcgggt	1080
tatgcgggg	actcgttagga	gactgcccgg	gtcaactcg	aggaagggtgg	ggatgacgtc	1140
aagtcatcat	gcccccttat	tccagggtt	cacacatgt	acaatggccg	gtacaaagg	1200

SEQUENCE LISTING

ctgcgatgcc	gtgaggtgga	gcgaatcctt	tcaaagccgg	tctcagttcg	gatcggggtc	1260
tgcaactcga	ccccgtgaag	tcggagtcgc	tagtaatcgc	agatcagcaa	cgctgcggtg	1320
aatacgttcc	cgggccttgt	acacaccgccc	cgtcacgtca	tgaaagtccgg	taacacccga	1380
agccgggtggc	ctaacccttg	tggagggagc	cgtcgaaggt	gggatcggcg	attggggacga	1440
	1441 agtcgtaaaca	aggtta				

<210> 14
<211> 1415
<212> DNA
<213> *Mycobacterium paraffinicum*

<400>	14	cgtgcttaac	acatgcaga	cgaacggaaa	ggccc	ttc	gggtactcg	agtggcAAC	60
gggtgagtaa	cacgttngca	atctgcctg	cacttcggga	taagc	tttgcgg	aaactgggtc	120		
taataccgga	taggaccact	tggcgcatgc	cttgtggtg	aaagcttttgc	cggtgtggga	180			
tggggcccg	gccttatcagc	ttgttggtgg	ggtgatggcc	taccaaggcg	acgacgggt	240			
gccccctg	gagggtgtcc	ggccacactg	ggactgagat	acggcccaga	ctcctacgg	300			
aggcagcagt	ggggaatatt	gcacaaatgg	cgcacggctg	atgcacgac	gcccgtgtgg	360			
ggatgacggc	cttcgggttg	taaaccttctt	tacccatcg	cgaaggctca	tttcgtgagt	420			
tgacggtagg	tggagaagaa	gcaccggcca	actacgtgc	acgaggcg	ttataactcg	480			
gggtgcgagc	gttgtccgga	attactggc	gtttaagagct	cgtagg	tttgtcgcgtt	540			
gttcgtgaaa	tctcacggct	taactgtgag	cgtgcgggc	atacgggcag	actagagta	600			
tgcaggggag	acttggattc	ctgggttagc	gttggaaatgc	gcagatatca	ggaggaacac	660			
cggtgtcgaa	ggcggtctc	tggcagtaa	ctgacgctga	ggagc	ggagcggagc	720			
gaacaggatt	agataccctg	gtagtccacg	ccgtaaacgg	tgggtactag	gtgtgggtt	780			
ccttccttgg	gatccgtgcc	gtagctaacg	cattaagtac	ccgccttgg	gagtacggcc	840			
gcaaggctaa	aactcaaagg	aattgacggg	ggcnngnaca	agcggcggag	catgtggatt	900			
aattcgatgc	aacgcgaaga	accttacctg	gttttgcacat	gcacaggacg	cgtctagaga	960			
taggcgttcc	cttggtggcct	gtgtgcagg	gttgc	tgtcgtc	tctgtgtcg	1020			
agatgttggg	ttaagtcccg	caacgcgc	aacccttgc	tcatgttgc	agcgggttaat	1080			
gccccggact	cgtgagagac	tgccggggtc	aactcggagg	aagggtggga	tgacgtcaag	1140			
tcatcatgcc	ccttatgtcc	agggttcac	acatgttaca	atggccgttgc	caaagggtctg	1200			
cgtatccgc	aggtaagcg	aatccttttgc	aagccgggtct	cagttcggtat	cggggtctgc	1260			
aactcgaccc	cgtgaagtgc	gagtgcgtag	taatcgcaga	tcagcaacgc	tgccgtgaat	1320			
acgttcccg	gccttgtaca	caccgcccgt	cacgtcatga	aagtccgtaa	cacccgaaagc	1380			
cagtggccta	acccttggga	gggagctgtc	gaagg						

1415

<210> 15
<211> 1544
<212> DNA
<213> *Mycobacterium simiae*

SEQUENCE LISTING

cgatgcaacg	cgaagaacct	tacctgggtt	tgacatgcac	aggacgccgg	cagagatgtc	1020
ggttcccttg	tggcctgtgt	gcaggtgggt	catggctgtc	gtcagctcg	gtcgtgagat	1080
gttgggttaa	gtcccccaac	gagcgcacc	tttgtctcat	gttgcagcg	gtaatgccg	1140
gggactcgtg	agagactgcc	ggggctcaact	cgagggaaagg	tggggatgac	gtcaagtcat	1200
catggccctt	atgtcccgagg	cttcacacat	gctacaatgg	ccggataaaa	gggctgcgat	1260
gccgcaagggt	taagcgaatc	cttttaaagc	cggctctca	tcggatcggg	gtctgcaact	1320
cgaccctgtg	aagtccggat	cgcttagtaat	cgcagatcag	caacgcgtcg	gtgaatacgt	1380
tcccggccct	tgtacacacc	gcccgtcacg	tcatgaaaatg	cggtaaacacc	cgaagccagt	1440
ggcctaacc	tttggaggga	gctgtcgaaag	gtggggatcgg	cgattgggac	gaagtcgtaa	1500
caaggtagcc	gtaccggaaag	gtgcggctgg	atcacctcct	ttct		1554

<210> 16

<211> 1462

<212> DNA

<213> *Mycobacterium szulgai*

<400> 16

ggcggcgtgc	ttaacacatg	caagtcgaac	ggaaagnccc	cttcgggnta	ctcgagtgcc	60
gaacgggtga	gtaacacgtg	ggtaatctgc	cctgcacttc	gggataagcc	tgggaaactg	120
ggtctaatac	cggataggac	cccgaggcgc	atgccttggg	gtggaaagct	tttgcgtgt	180
gggatgggccc	cgcggcttat	cagctgttg	gtggggatgac	ggcctaccaa	ggcgcacgacg	240
ggtagccgc	ctgagagggt	gtccggccac	actgggactg	agatacggcc	cagactccta	300
cgggaggcag	cagtggggaa	tattgcacaa	tgggcgcaag	cctgatgcag	cgacgcccgc	360
tggggatgta	cggccttcgg	gttgtaaacc	tcttcacca	tcgacgaagg	tccgggttt	420
ctcgattgta	cggtaggtgg	agaagaagca	ccggccaact	acgtgcgcagc	agccgcgtta	480
atacgttaggg	tgcgagcgtt	gtccggaaatt	actgggctga	aagagctcgt	aggtggttg	540
tcgcgttgg	cgtgaaatct	cacggcttaa	ctgtgagcgt	gcggncgata	cgggcagact	600
ggagtactgc	aggggagact	ggaattcctg	gtgtagcn	ggaatgcgc	gatatcagga	660
ggaacacccg	tggcgaaggc	gggtctctgg	gcagtaactg	acgctgagga	gcgaaagcgt	720
ggggagcga	caggattaga	taccctggta	gtccacgn	taaacggtgg	gtactaggtg	780
tgggttcct	tccttgggat	ccgtccgt	gctaacgc	taagtacccc	gcctggggag	840
tacggcngca	aggctaaaac	tcaaaggaa	tgacgggggn	ccgcacaacg	ggcggagcat	900
gtggattaat	tcgatgcac	gcgaagaacc	ttacctgggt	ttgacatgc	caggacgcgt	960
ctagagatag	gcgttccctt	gtggccctgt	tgccagggt	gcattggctgt	cgtcagctcg	1020
tgtcgtgaga	tgttgggtta	agtcccgaa	cgagcgcac	ccttgtctca	tgttgcacg	1080
ggtaatgcc	ggggactcgt	gagagactgc	cggggtca	tcggaggaag	gtggggatga	1140
cgtcaagtca	tcatgcccct	tatgtccagg	gcttcacaca	tgctacaatg	gccggatcaa	1200
agggctgcga	tgccgcgagg	ttaagcgaat	ccttttaaag	ccggctctcg	tccggatcgg	1260
ggtctgcaac	tcgacccct	gaagtcggag	tcgctagtaa	tcgacatca	gcaacgcgtc	1321
ggtaatac	ttcccggcc	ttgtacacac	cgcccgtcac	gtcatgaaaag	tcggtaaacac	1380
ccgaagccag	tggcctaacc	cttgggagg	agctgtcgaa	ggtgggatcg	gcgattggga	1440
cgaagtgc	acaaggtagc	cg				1462

<210> 17

<211> 1416

<212> DNA

<213> *Mycobacterium tuberculosis*

<400> 17

ggcggcgtgc	ttaacacatg	caagtcgaac	ggaaaggct	cttcggagat	actcgagtg	60
cgaacgggtg	agtaacacgt	gggtgatctg	ccctgcactt	cgggataa	ctgggaaact	120
gggtctaata	ccggatagga	ccacgggat	catgtcttct	ggtggaaagc	gttttagcgg	180
tgtggatgta	gcccgcggcc	tatcgat	ttgggtgggt	gacggcctac	caaggcgcacg	240
acgggtagcc	ggcctgagag	ggtgtccggc	cacactggga	ctgagatacg	gcccagactc	300
ctacgggagg	cagcagtggg	aatattgca	aatgggcgc	aagctgtat	cagcgcacgc	360
gcgtggggga	tgacggcctt	cggggtgtaa	acctcttca	ccatcgacga	aggccgggt	420
tctctcgat	tgacggtagg	tggagaagaa	gcaccggcca	actacgtgc	agcagccgc	480
taatacgt	gggtgcgagc	gttgcgg	attactggc	gtaaagagct	cgttaggtgt	540

SEQUENCE LISTING

ttgtcgctt gttcgtgaaa tctcacggct taactgtgag cgtgcgggag atacggcag 600
actagagtac tgccaggggag actggaattc ctgggtgtac ggtgaatgc gcagatatca 660
ggaggaacac cggtggcgaa ggcgggtctc tgggcagtaa ctgacgctga ggagcgaag 720
cggtgggagc gaacaggatc agataccctg gtatccacg ccgtaaacgg tgggtactag 780
gtgtgggtt cttcccttg gatccgtgcc gttagctaacc cattaagtac cccgcctggg 840
gatgtacggcc gcaaggctaa aactcaaagg aattgacggg ggcccgcaca agcggcgag 900
catgtggatt aattcgtac aacgcgaaga accttacctg gtttgacat gcacaggacg 960
cgtagaga taggcgttcc ctgtggcct gtgtgcaggt ggtgcattgc tgtcgtcagc 1020
tcgtgtcgta agatgttggg ttaagtcccg caacgagcgc aacccttgtc tcatgttgcc 1080
agcacgtaat ggtgggact cgtgagagac tgccgggtc aactcggagg aagggtggga 1140
tgacgtcaag tcatcatgcc ctttatgtcc agggcttac acatgttaca atggccggt 1201
caaaggctg cgatgcccgc aggttaagcg aatccctaaa agccggtctc agttcggatc 1260
ggggctcgca actcgacccc gtgaagtcgg agtcgctagt aatcgcagat cagcaacgct 1320
gcggtaata cgttcccggg cttgtacac accgccccgtc acgtcatgaa agtcggtaac 1380
acccgaagcc agtggcctaa cccttggag ggagct 1416

<210> 18
<211> 15
<212> DNA
<213> Synthetic construct

<400> 18
TAACACATGCAAGTC

<210> 19
<211> 16
<212> DNA
<213> Synthetic construct

<400> 19
TTAACACATGCAAGTC

<210> 20
<211> 17
<212> DNA
<213> Synthetic construct

<400> 20
CTTAACACATGCAAGTC

<210> 21
<211> 18
<212> DNA
<213> Synthetic construct

<400> 21
GCTTAACACATGCAAGTC

<210> 22
<211> 17
<212> DNA
<213> Synthetic construct

<400> 22
GCTTAACACATGCAAGT

<210> 23

SEQUENCE LISTING

<211> 16
<212> DNA
<213> Synthetic construct

<400> 23
GCTTAACACATGCAAG

<210> 24
<211> 15
<212> DNA
<213> Synthetic construct

<400> 24
GCTTAACACATGCAA

<210> 25
<211> 15
<212> DNA
<213> Synthetic construct

<400> 25
TGCTTAACACATGCA

<210> 26
<211> 16
<212> DNA
<213> Synthetic construct

<400> 26
TGCTTAACACATGCAA

<210> 27
<211> 17
<212> DNA
<213> Synthetic construct

<400> 27
TGCTTAACACATGCAAG

<210> 28
<211> 18
<212> DNA
<213> Synthetic construct

<400> 28
TGCTTAACACATGCAAGT

<210> 29
<211> 19
<212> DNA
<213> Synthetic construct

<400> 29
TGCTTAACACATGCAAGTC

<210> 30

SEQUENCE LISTING

<211> 20
<212> DNA
<213> Synthetic construct

<400> 30
GTGCTTAACACATGCAAGTC

<210> 31
<211> 19
<212> DNA
<213> Synthetic construct

<400> 31
GTGCTTAACACATGCAAGT

<210> 32
<211> 18
<212> DNA
<213> Synthetic construct

<400> 32
GTGCTTAACACATGCAAG

<210> 33
<211> LENGTH 17
<212> DNA
<213> Synthetic construct

<400> 33
GTGCTTAACACATGCAA

<210> 34
<211> 16
<212> DNA
<213> Synthetic construct

<400> 34
GTGCTTAACACATGCA

<210> 35
<211> 15
<212> DNA
<213> Synthetic construct

<400> 35
CGTGCTTAACACATG

<210> 36
<211> 16
<212> DNA
<213> Synthetic construct

<400> 36
CGTGCTTAACACATGC

<210> 37

SEQUENCE LISTING

<211> 17
<212> DNA
<213> Synthetic construct

<400> 37
CGTGCTTAACACATGCA

<210> 38
<211> 18
<212> DNA
<213> Synthetic construct

<400> 38
CGTGCTTAACACATGCAA

<210> 39
<211> 19
<212> DNA
<213> Synthetic construct
<400> 39
CGTGCTTAACACATGCAAG

<210> 40
<211> 20
<212> DNA
<213> Synthetic construct

<400> 40
CGTGCTTAACACATGCAAGT

<210> 41
<211> 21
<212> DNA
<213> Synthetic construct

<400> 41
CGTGCTTAACACATGCAAGTC

<210> 42
<211> 22
<212> DNA
<213> Synthetic construct

<400> 42
GCGTGCTTAACACATGCAAGTC

<210> 43
<211> LENGTH 21
<212> DNA
<213> Synthetic construct

<400> 43
GCGTGCTTAACACATGCAAGT

<210> 44
<211> 20
<212> DNA

SEQUENCE LISTING

<213> Synthetic construct

<400> 44

GCGTGCTTAACACATGCAAG

<210> 45

<211> 19

<212> DNA

<213> Synthetic construct

<400> 45

GCGTGCTTAACACATGCAA

<210> 46

<211> 18

<212> DNA

<213> Synthetic construct

<400> 46

GCGTGCTTAACACATGCA

<210> 47

<211> 17

<212> DNA

<213> Synthetic construct

<400> 47

GCGTGCTTAACACATGC

<210> 48

<211> 16

<212> DNA

<213> Synthetic construct

<400> 48

GCGTGCTTAACACATG

<210> 49

<211> 15

<212> DNA

<213> Synthetic construct

<400> 49

GCGTGCTTAACACAT

<210> 50

<211> 15

<212> DNA

<213> Synthetic construct

<400> 50

TTAACACATGCAAGT

<210> 51

<211> 15

<212> DNA

SEQUENCE LISTING

<213> Synthetic construct

<400> 51
CTTAACACATGCAAG

<210> 52
<211> 16
<212> DNA
<213> Synthetic construct

<400> 52
CTTAACACATGCAAGT

<210> 53
<211> 15
<212> DNA
<213> Synthetic construct

<400> 53
GTGCTTAACACATGC

<210> 54
<211> 15
<212> DNA
<213> Synthetic construct

<400> 54
GATATCTGCGCATT

<210> 55
<211> 16
<212> DNA
<213> Synthetic construct

<400> 55
TGATATCTGCGCATT

<210> 56
<211> 15
<212> DNA
<213> Synthetic construct

<400> 56
TGATATCTGCGCATT

<210> 57
<211> 15
<212> DNA
<213> Synthetic construct

<400> 57
CTGATATCTGCGCAT

SEQUENCE LISTING

<210> 58
<211> 16
<212> DNA
<213> Synthetic construct

<400> 58
CTGATATCTGCGCATT

<210> 59
<211> 17
<212> DNA
<213> Synthetic construct

<400> 59
CTGATATCTGCGCATTC

<210> 60
<211> 18
<212> DNA
<213> Synthetic construct
<400> 60
CCTGATATCTGCGCATT

<210> 61
<211> 16
<212> DNA
<213> Synthetic construct

<400> 61
CCTGATATCTGCGCATT

<210> 62
<211> 16
<212> DNA
<213> Synthetic construct

<400> 62
CCTGATATCTGCGCAT

<210> 63
<211> 16
<212> DNA
<213> Synthetic construct

<400> 63
CCTGATATCTGCGCA

<210> 64
<211> LENGTH 16
<212> DNA
<213> Synthetic construct

<400> 64
TCCTGATATCTGCGC

SEQUENCE LISTING

<210> 65
<211> 16
<212> DNA
<213> Synthetic construct

<400> 65
TCCTGATATCTGCGCA

<210> 66
<211> 17
<212> DNA
<213> Synthetic construct

<400> 66
TCCTGATATCTGCGCAT

<210> 67
<211> 18
<212> DNA
<213> Synthetic construct

<400> 67
TCCTGATATCTGCGCATT

<210> 68
<211> 19
<212> DNA
<213> Synthetic construct

<400> 68
TCCTGATATCTGCGCATT

<210> 69
<211> 20
<212> DNA
<213> Synthetic construct

<400> 69
CTCCTGATATCTGCGCATT

<210> 70
<211> LENGTH 19
<212> DNA
<213> Synthetic construct

<400> 70
CTCCTGATATCTGCGCATT

<210> 71
<211> 18
<212> DNA
<213> Synthetic construct

<400> 71
CTCCTGATATCTGCGCAT

SEQUENCE LISTING

<210> 72
<211> 17
<212> DNA
<213> Synthetic construct

<400> 72
CTCCTGATATCTGCGCA

<210> 73
<211> 16
<212> DNA
<213> Synthetic construct

<400> 73
CTCCTGATATCTGCGC

<210> 74
<211> 15
<212> DNA
<213> Synthetic construct

<400> 74
CTCCTGATATCTGCG

<210> 75
<211> 15
<212> DNA
<213> Synthetic construct

<400> 75
CCTCCTGATATCTGC

<210> 76
<211> 16
<212> DNA
<213> Synthetic construct

<400> 76
CCTCCTGATATCTGCG

<210> 77
<211> 17
<212> DNA
<213> Synthetic construct

<400> 77
CCTCCTGATATCTGCGC

<210> 78
<211> 18
<212> DNA
<213> Synthetic construct

<400> 78
CCTCCTGATATCTGCGA

SEQUENCE LISTING

<210> 79
<211> 19
<212> DNA
<213> Synthetic construct

<400> 79
CCTCCTGATATCTGCGCAT

<210> 80
<211> 20
<212> DNA
<213> Synthetic construct

<400> 80
CCTCCTGATATCTGCGCATT

<210> 81
<211> 21
<212> DNA
<213> Synthetic construct

<400> 81
CCTCCTGATATCTGCGCATT

<210> 82
<211> 22
<212> DNA
<213> Synthetic construct

<400> 82
TCCTCCTGATATCTGCGCATT

<210> 83
<211> 21
<212> DNA
<213> Synthetic construct

<400> 83
TCCTCCTGATATCTGCGCATT

<210> 84
<211> 20
<212> DNA
<213> Synthetic construct

<400> 84
TCCTCCTGATATCTGCGCAT

<210> 85
<211> 19
<212> DNA
<213> Synthetic construct

<400> 85
TCCTCCTGATATCTGCGCA

SEQUENCE LISTING

<210> 86
<211> 18
<212> DNA
<213> Synthetic construct

<400> 86
TCCTCCTGATATCTGCGC

<210> 87
<211> 17
<212> DNA
<213> Synthetic construct

<400> 87
TCCTCCTGATATCTGCG

<210> 88
<211> 16
<212> DNA
<213> Synthetic construct

<400> 88
TCCTCCTGATATCTGC

<210> 89
<211> 15
<212> DNA
<213> Synthetic construct

<400> 89
TCCTCCTGATATCTG

<210> 90
<211> LENGTH 16
<212> DNA
<213> Synthetic construct

<400> 90
CAGCCGCGGTAATAC

<210> 91
<211> 16
<212> DNA
<213> Synthetic construct
<400> 91
GCAGCCGCGGTAATAC

<210> 92
<211> 15
<212> DNA
<213> Synthetic construct
<400> 92
GCAGCCGCGGTAATA

SEQUENCE LISTING

<210> 93
<211> 16
<212> DNA
<213> Synthetic construct

<400> 93
AGCAGCCGCGGTAAATA

<210> 94
<211> 17
<212> DNA
<213> Synthetic construct

<400> 94
AGCAGCCGCGGTAAATAC

<210> 95
<211> 15
<212> DNA
<213> Synthetic construct

<400> 95
AGCAGCCGCGGTAAAT

<210> 96
<211> 15
<212> DNA
<213> Synthetic construct

<400> 96
CAGCAGCCGCGGTAA

<210> 97
<211> 16
<212> DNA
<213> Synthetic construct

<400> 97
CAGCAGCCGCGGTAAAT

<210> 98
<211> 17
<212> DNA
<213> Synthetic construct

<400> 98
CAGCAGCCGCGGTAAATA

<210> 99
<211> 18
<212> DNA
<213> Synthetic construct

<400> 99
CAGCAGCCGCGGTAAATAC

SEQUENCE LISTING

<210> 100
<211> 19
<212> DNA
<213> Synthetic construct

<400> 100
CCAGCAGCCGCGGTAAATAC

<210> 101
<211> 18
<212> DNA
<213> Synthetic construct

<400> 101
CCAGCAGCCGCGGTAAATA

<210> 102
<211> 17
<212> DNA
<213> Synthetic construct

<400> 102
CCAGCAGCCGCGGTAAAT

<210> 103
<211> 16
<212> DNA
<213> Synthetic construct

<400> 103
CCAGCAGCCGCGGTAA

<210> 104
<211> 15
<212> DNA
<213> Synthetic construct

<400> 104
CCAGCAGCCGCGGTAA

<210> 105
<211> 15
<212> DNA
<213> Synthetic construct

<400> 105
GCCAGCAGCCGCGGT

<210> 106
<211> 16
<212> DNA
<213> Synthetic construct

<400> 106
GCCAGCAGCCGCGGTAA

SEQUENCE LISTING

<210> 107
<211> LENGTH 17
<212> DNA
<213> Synthetic construct

<400> 107
GCCAGCAGCCGCGGTAA

<210> 108
<211> 18
<212> DNA
<213> Synthetic construct

<400> 108
GCCAGCAGCCGCGGTAAAT

<210> 109
<211> LENGTH 19
<212> DNA
<213> Synthetic construct

<400> 109
GCCAGCAGCCGCGGTAAATA

<210> 110
<211> 20
<212> DNA
<213> Synthetic construct

<400> 110
GCCAGCAGCCGCGGTAAATAC

<210> 111
<211> LENGTH 21
<212> DNA
<213> Synthetic construct

<400> 111
TGCCAGCAGCCGCGGTAAATAC

<210> 112
<211> 20
<212> DNA
<213> Synthetic construct

<400> 112
TGCCAGCAGCCGCGGTAAATA

<210> 113
<211> 19
<212> DNA
<213> Synthetic construct

<400> 113
TGCCAGCAGCCGCGGTAAAT

SEQUENCE LISTING

<210> 114
<211> 18
<212> DNA
<213> Synthetic construct
<400> 114
TGCCAGCAGCCGCGGTAA

<210> 115
<211> 17
<212> DNA
<213> Synthetic construct
<400> 115
TGCCAGCAGCCGCGGTAA

<210> 116
<211> 16
<212> DNA
<213> Synthetic construct
<400> 116
TGCCAGCAGCCGCGGT

<210> 117
<211> 15
<212> DNA
<213> Synthetic construct
<400> 117
TGCCAGCAGCCGCGG

<210> 118
<211> 15
<212> DNA
<213> Synthetic construct
<400> 118
TTGCAGGGACTTAACC

<210> 119
<211> 16
<212> DNA
<213> Synthetic construct
<400> 119
GTTGCAGGGACTTAACC

<210> 120
<211> 15
<212> DNA
<213> Synthetic construct
<400> 120
GTTGCAGGGACTTAAC

<210> 121

SEQUENCE LISTING

<211> 15
<212> DNA
<213> Synthetic construct

<400> 121
CGTTGCAGGACTTAA

<210> 122
<211> 16
<212> DNA
<213> Synthetic construct

<400> 122
CGTTGCAGGACTTAAAC

<210> 123
<211> 17
<212> DNA
<213> Synthetic construct

<400> 123
CGTTGCAGGACTTAAACC

<210> 124
<211> 18
<212> DNA
<213> Synthetic construct

<400> 124
TCGTTGCAGGACTTAAACC

<210> 125
<211> 17
<212> DNA
<213> Synthetic construct

<400> 125
TCGTTGCAGGACTTAAAC

<210> 126
<211> 16
<212> DNA
<213> Synthetic construct

<400> 126
TCGTTGCAGGACTTAA

<210> 127
<211> 15
<212> DNA
<213> Synthetic construct

<400> 127
TCGTTGCAGGACTTA

<210> 128

SEQUENCE LISTING

<211> 15
<212> DNA
<213> Synthetic construct

<400> 128
CTCGTTGCGGGACTT

<210> 129
<211> 16
<212> DNA
<213> Synthetic construct

<400> 129
CTCGTTGCGGGACTTA

<210> 130
<211> 17
<212> DNA
<213> Synthetic construct

<400> 130
CTCGTTGCGGGACTTAA

<210> 131
<211> 18
<212> DNA
<213> Synthetic construct

<400> 131
CTCGTTGCGGGACTTAAC

<210> 132
<211> 19
<212> DNA
<213> Synthetic construct

<400> 132
CTCGTTGCGGGACTTAACC

<210> 133
<211> 20
<212> DNA
<213> Synthetic construct

<400> 133
GCTCGTTGCGGGACTTAACC

<210> 134
<211> 19
<212> DNA
<213> Synthetic construct

<400> 134
GCTCGTTGCGGGACTTAAC

<210> 135

SEQUENCE LISTING

<211> 18
<212> DNA
<213> Synthetic construct

<400> 135
GCTCGTTGCAGGACTTAA

<210> 136
<211> 17
<212> DNA
<213> Synthetic construct

<400> 136
GCTCGTTGCAGGACTTA

<210> 137
<211> 16
<212> DNA
<213> Synthetic construct

<400> 137
GCTCGTTGCAGGACTT

<210> 138
<211> 15
<212> DNA
<213> Synthetic construct

<400> 138
GCTCGTTGCAGGACT

<210> 139
<211> 15
<212> DNA
<213> Synthetic construct

<400> 139
CGCTCGTTGCAGGAC

<210> 140
<211> 16
<212> DNA
<213> Synthetic construct

<400> 140
CGCTCGTTGCAGGACT

<210> 141
<211> 17
<212> DNA
<213> Synthetic construct

<400> 141
CGCTCGTTGCAGGACTT

<210> 142

SEQUENCE LISTING

<211> LENGTH 18
<212> DNA
<213> Synthetic construct

<400> 142
CGCTCGTTGCGGGACTTA

<210> 143
<211> 19
<212> DNA
<213> Synthetic construct

<400> 143
CGCTCGTTGCGGGACTTAA

<210> 144
<211> 20
<212> DNA
<213> Synthetic construct

<400> 144
CGCTCGTTGCGGGACTTAAC

<210> 145
<211> 21
<212> DNA
<213> Synthetic construct

<400> 145
CGCTCGTTGCGGGACTTAACC