

What's in the species_info.csv?

The csv contains the different species in the National Park. This has the following columns:

-category

-scientific_name

-common_names

-conservation_status

conservation_status	common_names	scientific_name	category	
NaN	Gapper's Red-Backed Vole	Clethrionomys gapperi gapperi	Mammal	0
NaN	American Bison, Bison	Bos bison	Mammal	1
NaN	Aurochs, Aurochs, Domestic Cattle (Feral), Dom	Bos taurus	Mammal	2
NaN	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	Ovis aries	Mammal	3
NaN	Wapiti Or Elk	Cervus elaphus	Mammal	4
NaN	White-Tailed Deer	Odocoileus virginianus	Mammal	5
NaN	Feral Hog, Wild Pig	Sus scrofa	Mammal	6
Species of Concern	Coyote	Canis latrans	Mammal	7
Endangered	Gray Wolf	Canis lupus	Mammal	8
Endangered	Red Wolf	Canis rufus	Mammal	9
NaN	Common Gray Fox, Gray Fox	Urocyon cinereoargenteus	Mammal	10
NaN	Black Fox, Cross Fox, Red Fox, Silver Fox	Vulpes fulva	Mammal	11
NaN	Red Fox	Vulpes vulpes	Mammal	12
NaN	Mountain Lion	Felis concolor	Mammal	13
NaN	Wild Cat, Wildcat	Felis silvestris	Mammal	14
NaN	Bobcat	Lynx rufus	Mammal	15
NaN	Panther (Mountain Lion)	Puma concolor	Mammal	16
NaN	Striped Skunk	Mephitis mephitis	Mammal	17
NaN	Eastern Spotted Skunk	Spilogale putorius	Mammal	18
NaN	River Otter	Lontra canadensis	Mammal	19
NaN	Northern River Otter	Lutra canadensis	Mammal	20

There are **5541** different number of species

Categories of Species

There are (7) seven different values of categories in species.

Mammal

nourish their young with milk secreted by mammary glands, have the skin usually more or less covered with hair, and include humans.

Bird

also known as Aves, are a group of endothermic vertebrates, characterised by feathers.

Reptile

are tetrapod animals in the class Reptilia, comprising today's turtles, crocodilians, snakes, amphisbaenians, lizards, tuatara, and their extinct relatives.

Amphibians

are ectothermic, tetrapod vertebrates of the class Amphibia.

Categories of Species

There are (7) seven different values of categories in species.

Fish

are gill-bearing aquatic craniate animals that lack limbs with digits.

Non Vascular Plant

also known as Aves, are a group of endothermic vertebrates, characterised by feathers.

Vascular Plant

also known as tracheophytes and also as higher plants Out[6]: array([nan, 'Species of Concern', 'Endangered', 'Threatened', 'In Recovery'], dtype=object)

Conservation

Different values of conservation status

NaN

None

Threatened

vulnerable to endangerment in the near future

Species of Concern

declining or appear to be in need of conservation

In Recovery

formerly Endangered, but currently neither in danger of extinction throughout all or a significant portion of its range

Endangered

seriously at risk of extinction

5363

No Intervention are being made to 5633 species.

The data shows that most of the species has no intervention yet. We still don't know the conservation status of the species.
Thus, it is necessary to conduct interventions the soonest.

Significance Calculations

Null Hypothesis: It looks like species in category Mammal are more likely to be endangered than species in Bird.

I did a significance test calculations for Mammal and Bird species using Chi Square test. Have created a contingency table using chi2_contingency function in Python.

	protected	not protected
Mammal	?	?
Bird	?	?

In [63]: from scipy.stats import chi2_contingency

Significance Calculations

After the test, it showed that there is no significant difference between Mammal and Bird. Therefore, we reject the null hypothesis.

```
In [58]: pval = chi2_contingency(contingency)[1]
    print (pval)

if pval < 0.05:
        print ("There is significant difference between mammals and birds")
    else:
        print ("There is no significant difference between mammals and birds")

0.6875948096661336
    There is no significant difference between mammals and birds

It looks like this difference isn't significant!</pre>
```

Difference between Reptile & Mammal?

Have took another test for Reptile and Mammal.

Null Hypothesis:

There is a significant difference between Reptile & Mammal.

Difference between Reptile & Mammal?

```
contingency_rep_mammal = [30, 146], [5, 73]
pval_rep_mammal = chi2_contingency(contingency_rep_mammal)[1]
pval_rep_mammal

if pval_rep_mammal < 0.05:
    print ("There is significant difference between mammals and reptile")
else:
    print ("There is no significant difference between mammals and reptile")</pre>
```

There is significant difference between mammals and reptile

Based on the result, we are going to accept the null hypothesis.

Recommendation

Based on the results, the category that has least protection are plants namely Vascular and Nonvascular plants. Next to these is the Reptiles.

[18]:	ca	tegory_pivot			
t[18]:		category	not_protected	protected	percent_protected
	0	Amphibian	73	7	0.087500
	1	Bird	442	79	0.151631
	2	Fish	116	11	0.086614
	3	Mammal	176	38	0.177570
	4	Nonvascular Plant	328	5	0.0150 <mark>1</mark> 5
	5	Reptile	74	5	0.063291
	6	Vascular Plant	4424	46	0.010291

Recommendation

I highly recommend to do intervention and protection to our plants both Vascular and Nonvascular plants. Aside from the fact that they have given least attention, they are also the food of the aforementioned animals.

Also, give attention to Reptiles. Extinction of these species may lead to imbalance of our ecosystem.

Minimum Detectable Effect

Our scientists know that 15% of sheep at Bryce National Park have foot and mouth disease. Park rangers at Yellowstone National Park have been running a program to reduce the rate of foot and mouth disease at that park. The scientists want to test whether or not this program is working. They want to be able to detect reductions of at least 5 percentage points. For instance, if 10% of sheep in Yellowstone have foot and mouth disease, they'd like to be able to know this, with confidence.

Use <u>Codecademy's sample size calculator</u> to calculate the number of sheep that they would need to observe from each park. Use the default level of significance (90%).

33.33 % Minimum Detectable Effect

We used the 15% baseline in calculating the Minimum Detectable Effect

Minimum Detectable Effect = 100 * (old - new) / old

Minimum Detectable Effect = 100 * (15-10) / 10

33.33 % Minimum Detectable Effect

Number of Weeks

How many weeks would you need to observe sheep at Bryce National Park in order to observe enough sheep? How many weeks would you need to observe at Yellowstone National Park to observe enough sheep?

```
In [5]: samplesize = 870
    bryce = 870 / 250.
    yellowstone = 810 / 507

In [6]: bryce
Out[6]: 3.48

In [8]: yellowstone
Out[8]: 1.5976331360946745
```

Number of Weeks

It would take about 3.5 weeks for bryce and 1.5 weeks for yellowstone.

BIODIVERSITY GRAPHS

Conservation Status by Species

The graph shows that that most of the species has No Intervention.

Conservation of Sheep per Week

The graph shows that Yellowstone has the greatest number of observations.

END