Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»						
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,						
информационные технологии»							

Практическое занятие №2

«Графическое представление статистических данных, выборочные числовые характеристики на основе большой выборки»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУ	(Сафронов Н.С.							
	(подпись)		(Ф.И.О.)						
Проверил:		(Никитенко У.В.						
	(подпись)		(Ф.И.О.)						
Дата сдачи (защиты):									
Результаты сдачи (защиты	:								
- Балльная оценка:									
	Оценка:								

Цель работы: овладение приёмами первичной обработки большой выборки, выдвижение гипотезы о законе распределения генеральной совокупности.

Вариант 14

Постановка задачи

Для обработки преподавателем выдается случайных чисел.

Эти числа хранятся в файле TestNN.csv.

- 1. Выборка подвергается обработке и оформляется в виде таблицы.
- 2. Графические характеристики выборки строим гистограмму и полигон приведенных частот. Выдвигаем гипотезу о виде плотности вероятности генерального распределения.
 - 3. Находим выборочные характеристики положения и рассеивания.
- 4. Для сравнения с гистограммой и полигоном приведенных частот на одном чертеже постройте графики гистограммной оценки плотности вероятности $f_{\Gamma}(x)$ параметрической оценки плотности вероятности $f_{\Pi}(x)$, и усредненную ядерную оценку плотности вероятности $f_{V_{\Pi}}(x)$.
- 5. Значения оценок плотности вероятности в средних точках промежутков группированного статистического ряда оформите в виде таблицы.
- 6. Проанализируйте близость оценок по средним квадратическим отклонениям $f_{yg}(x)$ и $f_{\Pi}(x)$ от $f_{\Gamma}(x)$.

Листинг программы

```
import argparse
import csv

import numpy as np
import prettytable

import matplotlib.pyplot as plt
import statistics as st
from scipy.stats import gaussian_kde

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-file") or "./data/Test14.csv"

    args = parser.parse args()
```

```
file = args.file
points = []
with open(file, newline='') as csvfile:
    reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
    for row in reader:
        points.append(float("".join(row)))
points.sort()
min point = points[0]
\max point = points[-1]
points range = max point - min point
print(f"Размах выборки: {points range:.2f}")
num bins = 1 + int(np.ceil(np.log2(len(points))))
print(f"Количество интервалов: {num bins}")
step = points range / num bins
print(f"Длина интервала: {step:.2f}")
bins = []
for i in range (num bins):
    current min = min point + i * step
    current max = min point + (i + 1) * step
    current range = (current min, current_max)
    count = len(
        list(
            filter(
                lambda x: current min <= x <= current max, points</pre>
            )
        )
    current average = (current max + current min) / 2.
    bins.append(
            "average": round(current average, 4),
            "minimum": round(current min, 4),
            "maximum": round(current max, 4),
            "count": round(count, 4)
        }
    )
table = prettytable.PrettyTable()
table.field names = [
    "Номер промежутка", "a_{i-1}", "a_i", "n_i",
    "Средняя точка промежутка"
]
index = 1
for bin in bins:
    table.add row([index := index + 1, bin["minimum"], bin["maximum"],
        bin["count"], bin["average"]])
print(table)
print(f"Выборочное среднее: {np.mean(points):.2f}")
print(f"Meдиана: {np.median(points):.2f}")
print(f"Moдa: {st.mode(points):.2f}")
```

```
print(f"Размах выборки: {max(points) - min(points):.2f}")
   print(f"Выборочная дисперсия: {np.var(points):.2f}")
   print(f"Стандартное отклонение выборки: {np.sqrt(np.var(points)):.2f}")
   print(f"Коэффициент вариации: "
          f"{np.sqrt(np.var(points)) / np.mean(points) / 100:.2f}")
   plt.hist(
       points, color="grey", edgecolor="black", bins=num bins, range=(
            min point,
            max point), alpha=0.5, density=True, label="Гистограмма"
    centers = [bin["average"] for bin in bins]
   bins plot = [bin["count"] / 49 for bin in bins]
   plt.plot(centers, bins plot, color="black")
   plt.show()
    def normal distribution(x):
        return 1 / np.sqrt(2 * np.pi) / np.sqrt(np.var(points)) * (
            np.exp(-1 / 2 * (
                    (x - np.mean(points)) / np.sqrt(np.var(points))) ** 2
        )
    kde = gaussian kde(points)
   xs = np.linspace(min point, max point, 100)
   plt.hist(
        points, color="grey", edgecolor="black", bins=num bins, range=(
            min point,
            max point), alpha=0.5, density=True, label="Гистограмма"
   plt.plot(xs, [kde(x) for x in xs], color="red",
        label="Усреднённая ядерная оценка")
   plt.plot(xs, [normal distribution(x) for x in xs], color="green",
        label="Параметрическая оценка")
   plt.legend()
   plt.show()
    table = prettytable.PrettyTable()
    table.field names = [
        "z i", "n i", "f \Gamma(x)", "f YA(x)", "f \Pi(x)", "(f YA(x)-f \Gamma(x))^2",
        "(f \Pi(x)-f \Gamma(x))^2",
    index = 1
    for bin in bins:
       current_average = bin["average"]
        current_count = bin["count"]
        current histogram = round(current count / len(points) / 0.5, 4)
        current kde = round(float(kde(current average)), 4)
        current parametric = round(normal distribution(current average), 4)
        diff kde = round((current kde - current histogram) ** 2, 4)
       diff parametric = round((current parametric - current histogram) **
2, 4)
       table.add row([
            current_average, current_count, current_histogram,
            current kde, current parametric, diff kde, diff parametric
```

```
])
print(table)
```

Результаты выполнения программы

Размах выборки: 3.25 Количество интервалов: 9 Длина интервала: 0.36

Рисунок 1 – Параметры построения гистограммы

+			-+-		+		+		+		+
1	Номер	промежутка		a_{i-1}						Средняя точка промежутка	l
+							+				t
1		2		-1.538		-1.1768		10		-1.3574	l
1		3		-1.1768		-0.8157		16		-0.9963	l
1				-0.8157		-0.4546		13		-0.6352	ı
- 1				-0.4546		-0.0935		20		-0.274	I ,
1				-0.0935		0.2677		22		0.0871	I ,
1		7		0.2677		0.6288		20		0.4482	I ,
Į I		8		0.6288		0.9899		5		0.8093	ı
I				0.9899		1.351		19		1.1705	ı
		10		1.351		1.7121		10		1.5316	ı
+											+

Рисунок 2 – Результат обработки выборки

Рисунок 3 – Построенные гистограмма и полигон частот

Выборочное среднее: 0.07 Медиана: 0.05 Мода: -1.54 Размах выборки: 3.25 Выборочная дисперсия: 0.74 Стандартное отклонение выборки: 0.86 Коэффициент вариации: 0.12

Рисунок 4 – Выборочные характеристики положения и рассеяния

Рисунок 5 – Параметрическая и усреднённая ядерная оценки выборки

z_i	n_i 1	f_Г(x)	 f_УЯ(x)	f_П(x)	т (f_УЯ(х)-f_F(x))^2	(f_Π()	<)-f_Γ(x))^2	Ī
+									+
-1.3574	10 0	0.1481	0.1685	0.1169		.0004		0.001	1
-0.9963	16 0	9.237	0.2556	0.2146		.0003		0.0005	1
-0.6352	13 0	0.1926	0.3149	0.3306		.015		0.019	1
-0.274	20 0	0.2963	0.3752	0.4272		.0062		0.0171	1
0.0871	22 0	0.3259	0.4212	0.463		.0091		0.0188	1
0.4482	20 0	0.2963	0.3592	0.421		.004		0.0156	1
0.8093	5 0	0.0741	0.2637	0.3211		.0359		0.061	1
1.1705	19 0	0.2815	0.2508	0.2054		.0009		0.0058	1
1.5316	10 0	0.1481	0.184	0.1102		.0013		0.0014	1
+									+

Рисунок 6 – Значения плотностей вероятности в средних точках интервалов

Усреднённая ядерная оценка находиться ближе к гистограммной оценке плотности, поскольку в отличие от параметрической она является ассиметричной.

Вывод: в ходе лабораторной работы были изучены приёмы первичной обработки большой выборки для выдвижения гипотезы о законе распределения генеральной совокупности.