The contact mapping class group of lens spaces

Hyunki Min MIT/UCLA

July 7, 2022

The contact mapping class group

Definitions

• A contact form of a 3-manifold M

• A contact structure of α

Examples

• The standard contact structure of \mathbb{R}^3

The standard contact structure $(\mathbb{R}^3, \xi_{std})$

Definitions

- A strict contactomorphism
- A coorientation preserving contactomorphism
- A coorientation reversing contactomorphism

Examples

- $\alpha_1 = dz ydx$, $\alpha_2 = dz + xdy$
- coorientation preserving contactomorphism

coorientation reserving contactomorphism

Today

- We only consider coorientation preserving contactomorphisms
- We focus on contact structures, not contact forms
- Strict contactomorphisms depend on the choice of a contact form.
- Coorientation reversing contactomorphisms are confusing.

Definitions

• The group of contactomorphism : $\operatorname{Cont}(M,\xi)$

• The contact mapping class group: $\pi_0(\operatorname{Cont}(M,\xi))$

Exotic phenomena

• $i: \operatorname{Cont}(M, \xi) \to \operatorname{Diff}_{+}(M)$

• An exotic contactomorphism : $\ker i_* \neq 0$

Exotic phenomena

- $(S^1 \times S^2, \xi_{std})$
- f: a Dehn twist about $\{p\} \times S^2$
- (Gompf) $f^n \sim f^m$ if $m \neq n$

The exact sequence from a fibration

- $\Xi(M,\xi)$: the space of contact structures on M isotopic to ξ .
- $\operatorname{Diff}_0(M)$: the connected component of $\operatorname{Diff}(M)$ containing id.
- $\operatorname{Cont}_0(M,\xi) = \operatorname{Diff}_0(M) \cap \operatorname{Cont}(M,\xi)$

The exact sequence from a fibration

• $\operatorname{Cont}_0(M,\xi) \hookrightarrow \operatorname{Diff}_0(M) \to \Xi(M,\xi)$

The contact mapping class group

Almost nothing is known

General strategy

- Fix a submanifold
- Determine the contact mapping class group of the complement

General strategy

• (S^3, ξ_{std})

02.

Lens spaces

Main theorem

$$\pi_0(\operatorname{Cont}(L(p,q),\xi_{std})) = \begin{cases} \mathbb{Z}_2 & p \neq 2 \text{ and } q \equiv -1 \, (\operatorname{mod} \, p) \\ \mathbb{Z}_2 & q \not\equiv \pm 1 \, (\operatorname{mod} \, p) \text{ and } q^2 \equiv 1 \, (\operatorname{mod} \, p) \\ 1 & \text{otherwise} \end{cases}$$

Applications

• (Baker-Etnyre-M-Onaran, work in progress) Classification of Legendrian torus knots in L(p,q)

Strategy

- Classify Legendrian rational unknots in L(p,q)
- Perturb contactomorphism to fix a neighborhood of a Legendrian rational unknot
- Determine the contact mapping class group of the complement.

Legendrian rational unknots in $(\mathbb{RP}^3, \xi_{std})$

Legendrian rational unknots in $(\mathbb{RP}^3, \xi_{std})$

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>