ON THE STANDARDIZATION

OF ²⁰⁹Po AND ²¹⁰Pb

R. Collé

(with L. Laureano-Perez)

Ionizing Radiation Division
Physics Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

Who are we?

And what do we do?

Highest authority in USA

- for <u>setting</u> physical measurement <u>standards</u>
- and ensuring accurate measurements

typical features of NIST standardization work

Standardized by **primary method** ("direct," w/o recourse to other calibrations or standards)

Validity supported & **confirmed** by one or more <u>independent</u> confirmatory measurement methods

Utilize many trials, experimental conditions, etc..

Linked back to all previous standardizations (when possible) through stored solutions or through calibration factors for secondary instruments

Uncertainties (k = 2) typically < 1 % ----- u(k = 1) few tenths of %

Comparisons with other metrology labs / demonstrate international consistency

+ radionuclidic impurity analyses for ²²⁸Th impurity correction

⁹⁰Sr standards ---- 33 years of linkage

Primary method shift

⁶³Ni standards ---- 38 years of linkage

Different methods + another lab

Collé, et al., Appl. Radiat. Isot. 66, 60 (2008).

Collé, et al., to be publ., J. Res.NIST (2008).

Metrology

⇒ 130⁺ nuclides

²⁰⁹Po first 1994²¹⁰Pb first 2006

⇒ Many geometries⇒ > 30 systems

Standards (SRMs)

- ⇒ 60⁺ nuclides
- ⇒ 9 natural matrix (multi-nuclide)
- \Rightarrow 500 1000 units per year // > 200 users
- ⇒ 20 users buy 10 or more SRMs per year

Calibrations

- \Rightarrow > 100 routine per year
- \Rightarrow 20 30 nuclides; many geometries

MQA programs

- ⇒ environment
- ⇒ radiopharmaceuticals
- ⇒ source suppliers
- ⇒ nuclear power

In applications

- use of ²¹⁰Po tracer for ²¹⁰Pb assays

In our standardization measurements

World needs a Po tracer standard!

²¹⁰Po

0.4 a

5.3 MeV α

²⁰⁸Po

2.9 a

5.1 MeV α

²⁰⁹Po

102 a

4.9 MeV α + junk

< 1980 only ²¹⁰Po calibration sources

1984 <u>208Po</u> standard (SRM 4327)

1994 <u>209Po</u> standard (SRM 4326)

> 2007 no Po tracer standard available

Po solutions & standards are stable

"Long-term stability of carrier-free polonium solution standards"

R. Collé, *Radioact. Radiochem.* **4**, no.2, 20-35 (1993).

Fig. 2. Partial decay scheme for the 219 Po alpha and electron capture branch decays.

Fig. 11. LS counting rate concentrations $R_{\alpha e}$ (closed triangles) and R_{α} (closed circles) obtained with the Beckman instrument for the N series samples as a function of m_s (and sample quenching). The solid lines are linear regressions fitted to the data.

Fig. 12. LS counting rate concentrations $R_{\alpha e}$ and R_{α} as a function of m_s (analogous to that of Fig. 11) as obtained with the Packard instrument.

Fig. 13. LS counting rate concentrations $R_{\alpha e}$ and R_{α} obtained with the two LS systems for the P and Q series samples in 1994. Closed squares ($R_{\alpha e}$) and open squares (R_{α}) represent the mean values for samples Q5 through Q8 with the Packard; closed and open triangles represent $R_{\alpha e}$ and R_{α} , respectively, for samples P1 through P5 with the Packard; closed and open triangles ($R_{\alpha e}$ and R_{α}) are for samples Q1 through Q4 with the Beckman; and closed and open circles ($R_{\alpha e}$ and R_{α}) are for samples P1 through P5 with the Beckman. Each plotted value corresponds to the mean of 5 to 18 replicate measurements on each sample. The error bars represent standard deviation uncertainty intervals on the means. The solid lines are unweighted linear fits to the data. Although the $R_{\alpha e}$ values vary with the instrument used to perform the measurements (Packard or Beckman) and with sample compositions, all of the R_{α} values are statistically equivalent and invariant.

In 1994

LS result confirmed by $2\pi\alpha$ proportional counting

from

Collé, et al., *J. Res. Natl. Inst. Stds. Tech.* **100**, 1 (1995).

Fig. 6. Comparison of the ²⁰⁹Po LS spectra obtained with the Beckman and Packard instruments.

Fig. 14. LS spectra of increasingly quenched samples Q5 through Q8 obtained with the Packard counting system.

Fig. 15. Details of the broad alpha peaks shown in the full spectra of Fig. 14. The peak widths (FWHM) on a relative basis and peak areas are approximately equal in all four samples Q5 through Q8.

15 march 1994
$$R_{\alpha} = (85.42 \pm 0.18) \text{ s}^{-1}\text{g}^{-1}$$

15 November 2005
$$R_{\alpha} = (80.20 \pm 0.22) \text{ s-1g-1}$$

2 point fit gives

$$T_{1/2} = 128 \text{ a}$$

$$U = 5.5 \% (7 a)$$

Not considered a new determination

Collé, et al., *Appl. Radiat. Isot.* **65**, 728 (2007)

HOW COULD IT BE SO WRONG?

Andre, Huizenga, et al. 1956 Phys Rev. 101, 645-651

"private communication"

with
$$T_{1/2}(^{208}\text{Po}) = (2.93 \pm 0.03) \text{ a}$$
,
got $T_{1/2}(^{208}\text{Po}) = 103 \text{ a}$

$$A/N = \lambda$$

$$T_{209} = T_{208} \left(\frac{N_{209}}{N_{208}} \right) \left(\frac{A_{208}}{A_{209}} \right)$$

Compiler M. Martin, 1991

with
$$T_{1/2}(^{208}\text{Po}) = 2.898 \pm 0.002 \text{ a}$$
,
got $T_{1/2}(^{208}\text{Po}) = (102 \pm 5) \text{ a}$

must be wrong

4.9 %

²⁰⁹Po half-life in error by 25 %!!

Result supported by work on ²¹⁰Pb – next story

Collé, Laureano, Outola, Appl. Radiat. Isot. 65, 728 (2007)

$$T_{209} = T_{208} \left(\frac{N_{209}}{N_{208}} \right) \left(\frac{A_{208}}{A_{209}} \right)$$

New determination urgently needed

Attempts at collaboration with other labs ... not going well

- •Institute of Nuclear Physics (Krakow) / Institute of Geological Sciences (Warsaw) -- Polish Academy of Sciences labs
- Laboratoire National Henri Bequerel (France)
- Los Alamos Natl. Lab (USA)

Need supply of ²⁰⁸Po

210Pb

Difficult case

rarely done by metrology labs

different methods used

Compare with NPL standard

NIST standardization

Laureano-Perez, et al. Appl. Radiat. Isot. 65, 1368 (2007)

²⁰⁶Pb

Need to detect

- low medium energy β
- conversion e
- high energy β
- $\bullet \alpha$

LS results (CN2003 code)

Pb-210

Series	Average	sd (%)	Normal	nc	ns	Counter	Scint	Age start	Age end	f _{H2O}	ε _{H-3}
	9037.397	0.029	Υ	3	11	Packard	HS	0.21	2.12		
	9043.779	0.008	Υ	3	11	Beckman	HS	2.95	4.65	1	
	9041.030	0.014	Υ	3	11	Wallac	HS	10.76	12.4	0.1	0.36-0.30
1	9030.169	0.021	Y*	3	11	Packard	HS	13	14.9		
77	9030.377	0.017	Y*	5	11	Packard	HS	17.22	20.46		
	9046.129	0.007	Y*	3	11	Wallac	HS	26.93	28.57	1	
2	9034.269	0.031	N	5	7	Packard	PCS	0.11	4.06	0.01	
	9035.597	0.035	Υ	5	7	Packard	PCS	0.11	4.06	0.04	1
	9039.466	0.027	N	3	7	Wallac	PCS	4.78	6.91	0.01	1
	9044.048	0.014	Υ	3	7	Wallac	PCS	4.78	6.91	0.04	0.40-0.22
	9040.539	0.026	no	3	7	Beckman	PCS	10.74	12.83	0.01	
	9041.935	0.026	yes	3	7	Beckman	PCS	10.74	12.83	0.04	
	9032.072	0.056	no	5	7	Packard	PCS	14.17	18.6	0.01	
	9026.263	0.034	yes	5	7	Packard	PCS	14.17	18.6	0.04	

* Data normal after removing sample with unstable cocktail

436 determinations

Series	Average	SD	SD (%)	Normal
1	9038.147	6.7577	0.07477	Yes
2	9036.774	5.8702	0.06496	Yes
Total	9037.362	6.0511	0.06696	Yes

CN2003 vs EFFY4 code differences

(just Beta efficiency part)

differences not due to spectra

CN2003 vs EFFY4 code differences – due to assumed Quench function

EFFY4 – for toluene cocktailsCN2003 – for DIN (like HS3 used)but also used xylene based (PCS)

Effect seen for other nuclides, like $^{63}Ni \,$ -- 17 keV $E_{\beta(ave)}$ allowed

²¹⁰Pb massic activity results

	kBq/g (k = 2)	diff from LS	
LS (CN2003)	9.037 ± 2.4 %		
γ-spect (HPGe)	9.46 ± 8.3 %	+ 4.7 %	big unc. if don't use ²¹⁰ Pb γ std
4πβ(LS)-γ(NaI) anticoincidence (attempt)	9.10 ± 3.3 %	+ 0.7 %	lots of assumptions, big extrapolation
α -spect	8.77	- 3.0 %	$T_{1/2} = 102 \text{ a}$
(Po tracer)	± 1 %		
	8.92	- 1.3 %	$T_{1/2}$ = 128 a

Relatively large 2.4 % uncertainty because of

- (1) LS cocktail composition effects
- (2) tracing code differences & assumptions,
- (3) lack of good confirmatory measurements,

NPL Standard (A050187)

nominal 10 g 1 mol·L⁻¹ HNO₃ 50 μ g Pb⁺² & Bi⁺³ per g

333 Bq-g⁻¹ at 1200 GMT 1 January 2007

relative uncertainty (k = 2) = **1.8** %

(4πα proportional counting of ²¹⁰Po ingrowth)

NPL confirmation with Cerenkov counting of ²¹⁰Bi ingrowth following chemical separation (²¹⁰Bi efficiency by LS ³H std CNET)

NIST Standard (SRM 4437)

 (5.133 ± 0.002) g 1 mol·L⁻¹ HNO₃ 11 μ g Pb⁺² per g & 21 μ g Bi⁺³ per g

9.037 kBq·g⁻¹ at 1200 EST 15 June 2006

relative uncertainty (k = 2) = 2.4 %

Confirmatory measurements by anticoincidence counting, HPGE, and ²¹⁰Po assays.

Comparison of the NIST and NPL ²¹⁰Pb standards by five measurement methods.

method	NPL / NIST ratio relative standard uncertainty			difference
NPL and NIST certified values from primary standardizations	0.037484	1.5 %		
4πγ(NaI)	0.037373	0.56 %		- 0.30 %
HPGe spectrometry	0.037542	0.71 %		+ 0.15 %
4 παβ(LS)	0.037249	0.17 %		- 0.63 %
²¹⁰ Po assay (2πα spect.)	0.03736	0.75 %		- 0.33 %
Si(Li) low-energy spectrometry	0.0381	1.9 %		+ 1.6 %

difference in stds

0.11 % (unwgtd)

0.50 % (wgtd)

Suspect both NIST & NPL uncertainties are overestimated

conclude

²⁰⁹Po

need replacement standard now!

utility limited by $T_{1/2}$ uncertainty (in doubt) ($T_{1/2}$ needs to be done)

²¹⁰Pb

stds by NIST & NPL probably have overestimated uncertainties (may know much better)

need to examine with another method (TDCR?!)

contributions & thanks to

Lizbeth Laureano-Perez (NIST)

Ryan Fitzgerald (NIST)

lisa Outola (NIST)

Chris Gilligan (NPL)

Leticia Pibida (NIST)

Philippe Cassette (LNHB)

Brian Zimmerman (NIST)

.....others (world)

Summary of some recent NIST primary standardizations and comparison to confirmatory measurements.

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁶³ Ni	4π LS TDCR (NIST)	0.16 %	$4\pi\beta$ LS TDCR (LNHB) $4\pi\beta$ LS CNET (NIST)	-0.31 -0.77
⁵⁵ Fe (NIST)	4π calorimetry (linked by LS)	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM)	4π calorimetry (linked by LS)	0.39 %	weighted mean value of 15 NMI labs	-0.37
²¹⁰ Pb	4παβ LS CNET	1.2 %	$4\pi\alpha\beta$ (LS)-γ(NaI) anticoin. counting 210 Po α spect. (102 a 209 Po tracer) 210 Po α spect. (128 a 209 Po tracer) HPGe photon spect.	+0.7 -3.0 -1.3 +4.7
²⁴¹ Pu	4πβ LS CNET	1.9 %	LS (241 Am ingrowth) $4\pi\beta$ LS TDCR (NIST) $4\pi\beta$ LS TDCR (LNHB)	+1.2 -7.9 * -7.7 *
²¹⁰ Pb	4παβ LS CNET	1.2 %	compare to NPL standard (5 methods) see Table2	-0.3
⁹⁰ Sr	4πβ LS TDCR	0.51 %	4πβ LS CNET	+ 0.09
²⁴¹ Am	4πα LS	0.22 %	$4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)	-0.05 -0.01 -0.15
²²⁹ Th	4παβ(LS)-γ(NaI) anticoincidence counting	0.28 %	4παβ LS CNET 4παβ LS TDCR 2π α proportional counting HPGe photon spectrometry	-0.09 -1.7 -0.09 +2.1

^{*} Values are discrepant, and not considered to have confirmed