TOPOLOGY HW 4

CLAY SHONKWILER

24.1

(a) Show that no two of the spaces (0,1), (0,1], and [0,1] are homeomorphic.

Proof. Suppose (0,1) and (0,1] are homeomorphic, with the homeomorphism given by f. If $A=(0,1)-\{f^{-1}(1), \text{ then } f|_A: A\to (0,1) \text{ is a homeomorphism, by Theorem 18.2(d). However, the interval <math>(0,1)$ is connected, whereas

$$A = (0, f^{-1}(1)) \cup (f^{-1}(1), 1)$$

is not connected, so A and (0,1) cannot be homeomorphic. From this contradiction, then, we conclude that (0,1) and (0,1] are not homeomorphic.

Similarly, suppose $g:(0,1]\to [0,1]$ is a homeomorphism. Then, if $B=(0,1]-\{g^{-1}(0),g^{-1}(1)\},\ g|_B:B\to (0,1)$ is a homeomorphism. However, $g^{-1}(0)\neq g^{-1}(1)$, so at most one of these can be 1, meaning one must lie in the interval (0,1). Suppose, without loss of generality, that $g^{-1}(0)\in (0,1)$. Then

$$B = (0, g^{-1}(0)) \cup (g^{-1}(0), 1] - \{g^{-1}(1)\}$$

is not connected, whereas (0,1) is, so the two cannot be homeomorphic. From this contradiction, then, we conclude that (0,1] and [0,1] are not homeomorphic.

A similar argument easily demonstrates that (0,1) and [0,1] are not homeomorphic, so we see that no two of the spaces (0,1), (0,1], and [0,1] are homeomorphic.

(b) Suppose that there exist imbeddings $f: X \to Y$ and $g: Y \to X$. Show by means of an example that X and Y need not be homeomorphic.

Example: Let $f:(0,1)\to [0,1]$ be the canonical imbedding and let $g:[0,1]\to (0,1)$ such that

$$g(x) = \frac{x}{3} + \frac{1}{3}.$$

Then $g([0,1]) = [\frac{1}{3}, \frac{2}{3}]$. Obtain g' by restricting the range of g to $g([0,1]) = [\frac{1}{3}, \frac{2}{3}]$. We claim that g' is a homeomorphism. Since multiplication and addition are continuous, as are the inclusion map and compositions of continuous functions, we see that g' is continuous, as is g'^{-1} , where

$$g'^{-1}(x) = 3\left(x - \frac{1}{3}\right).$$

Both of these maps are also bijective, so we see that g' is indeed a homeomorphism, meaning g is an imbedding.

However, as we saw in part (a) above, (0,1) and [0,1] are not homeomorphic, so two spaces need not be homeomorphic for each to be imbedded in the other.

(c) Show \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

Lemma 0.1. If $f: X \to Y$ is a homeomorphism and X is path-connected, then Y is path-connected.

Proof. Let $x, y \in Y$. Then there exists a continuous path $g : [a, b] \to X$ such that $g(a) = f^{-1}(x)$ and $g(b) = f^{-1}(b)$. Define

$$h := f \circ q$$
.

Then $h:[a,b]\to Y$ is continuous and

$$h(a) = (f \circ g)(a) = f(g(a)) = f(f^{-1}(x)) = x$$

and

$$h(b) = (f \circ g)(b) = f(g(b)) = f(f^{-1}(y)) = y$$

since f is bijective. Hence, h is a path from x to y, so, since our choice of x and y was arbitrary, Y is path connected.

Proposition 0.2. \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

Proof. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a homeomorphism. Then, restricting the domain to $\mathbb{R}^n - \{0\}$ gives a homeomorphism of the punctured euclidean space to $\mathbb{R} - \{f(0)\}$. However, the punctured euclidean space is path-connected (as shown in Example 4), whereas $\mathbb{R} - \{f(0)\}$ is not even connected, let alone path-connected. To see this, we need only note that

$$\mathbb{R} - \{f(0)\} = (-\infty, f(0)) \cup (f(0), \infty)$$

so the open sets $(-\infty, f(0))$ and $(f(0), \infty)$ give a separation of this space. Hence, by the above lemma, the punctured euclidean space and $\mathbb{R} - \{f(0)\}$ are not homeomorphic, a contradiction. Therefore, we conclude that \mathbb{R}^n and \mathbb{R} are not homeomorphic.

1. 24.8

(a) Is a product of path-connected spaces necessarily path-connected?

Answer: Yes. Suppose X and Y are path-connected. Let $x_1 \times y_1, x_2 \times y_2 \in X \times Y$. Now, we know that $X \times y_1$ is homeomorphic to X and, therefore, is path-connected. Hence, there exists a continuous map $f: [0,1] \to X \times y_1$ such that

$$f(0) = x_1 \times y_1 \ f(1) = x_2 \times y_1.$$

Also, $x_2 \times Y$ is homeomorphic to Y and is, therefore, path connected, so there exists a continuous map $g:[0,1] \to x_2 \times Y$ such that

$$g(0) = x_2 \times y_1 \ g(1) = x_2 \times y_2.$$

*

Now, define

$$h(x) = \begin{cases} f\left(\frac{x}{2}\right) & 0 \le x \le \frac{1}{2} \\ g\left(\frac{x}{2} + \frac{1}{2}\right) & \frac{1}{2} \le x \le 1. \end{cases}$$

By the pasting lemma, then, h is continuous. Furthermore,

$$h(0) = f\left(\frac{0}{2}\right) = f(0) = x_1 \times y_1$$

and

$$h(1) = g\left(\frac{1}{2} + \frac{1}{2}\right) = g(1) = x_2 \times y_2.$$

Hence, h is a path from $x_1 \times y_1$ to $x_2 \times y_2$. Since our choice of $x_1 \times y_1$ and $x_2 \times y_2$ was arbitrary, we see that $X \times Y$ is path-connected.

(b) If $A \subset X$ and A is path-connected, is \overline{A} necessarily path connected? **Answer:** No. In Example 7, we saw that, if $A = \{x \times \sin(1/x) | 0 < x \le 1\}$, then \overline{A} , the topologist's sine curve, is not path connected. To see that A is path-connected, let $s, y \in A$. Then $x = a \times \sin(1/a)$ for some $a \in (0, 1]$ and $y = b \times \sin(1/b)$ for some $b \in (0, 1]$. Define the map $f : [a, b] \to A$ by

$$f(z) = z \times \sin(1/z).$$

Then f is continuous since its coordinate functions are continuous and $f(a) = a \times \sin(1/a) = x$ and $f(b) = b \times \sin(1/b) = y$, so f is a path from x to y. Since our choice of x and y was arbitrary, we see that A is path-connected.

(c) If $f: X \to Y$ is continuous and X is path-connected, is f(X) necessarily path connected?

Answer: Yes. Let f be continuous and let $y_1, y_2 \in f(X)$. Let $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$. Then, since X is path-connected, there exists a continuous map $g: [a, b] \to X$ such that $g(a) = x_1$ and $g(b) = x_2$. Define $h := f \circ g$. Then

$$h(a) = (f \circ g)(a) = f(g(a)) = f(x_1) = y_1$$

and

$$h(b) = (f \circ g)(b) = f(g(b)) = f(x_2) = y_2.$$

Furthermore, h is continuous, since f and g are, so h is a path from y_1 o y_2 . Since our choice of y_1 and y_2 was arbitrary, we conclude that f(X) is path-connected.

(d) If $\{A_{\alpha}\}$ is a collection of path-connected subspaces of X and if $\bigcap A_{\alpha} \neq \emptyset$, is $\bigcup A_{\alpha}$ necessarily path-connected?

Answer: Yes. Let $x, y \in \bigcup X_{\alpha}$ and let $z \in \bigcap A_{\alpha}$. Then $x \in A_{\beta}$ and $y \in A_{\gamma}$ for some β and γ . Furthermore, $z \in A_{\beta}$, $z \in A_{\gamma}$. Since A_{β} is path connected, there exists a path f from x to z. Since A_{γ} is path connected,

there exists a path g from z to y. Using the pasting lemma, we can glue these two paths together to make a path h from x to y (much as we did in part (a) above).

25.1

What are the components and path components of \mathbb{R}_{ℓ} ? What are the continuous maps $f: \mathbb{R} \to \mathbb{R}_{\ell}$?

Answer: Each component and path component of \mathbb{R}_{ℓ} consists of a single point. To see this, suppose not. Then there exists a component containing two points, x and y. This means there exists a connected subspace $A \subset \mathbb{R}_{\ell}$ containing x and y. However, $x \in A \cap (-\infty, y)$ and $y \in A \cap [y, \infty)$, both of these subsets are open in A, and A is equal to their union, so A can be separated by $A \cap (-\infty, y)$ and $A \cap [y, \infty)$, a contradiction. Hence, we conclude that each component (and, therefore, path component) of \mathbb{R}_{ℓ} is a point.

Furthermore, since the continuous image of a connected space is connected, we can conclude that the continuous maps $f: \mathbb{R} \to \mathbb{R}_{\ell}$ are just the constant maps. This is because \mathbb{R} is connected, so it's continuous image in \mathbb{R}_{ℓ} must be connected. The only connected subspaces of \mathbb{R}_{ℓ} are single points, so such a continuous map must map all of \mathbb{R} to a single point.

26.1

(a) Let τ and τ' be two topologies on the set X; suppose that $\tau' \supset \tau$. What does compactness of X under one of these topologies imply about compactness under the other?

Answer: If X is compact under τ' , then it must be compact under τ . To see this, suppose \mathcal{A} is an open cover of X in τ . Then \mathcal{A} is also an open cover of X in τ' , since every open set in τ is open in τ' . Since X is compact under τ' , \mathcal{A} contains a finite subcover of X. Since our choice of \mathcal{A} was arbitrary, we conclude that X is compact under τ .

On the other hand, if $X = \mathbb{R}$, τ is the trivial topology and τ' is the discrete topology, then $\tau' \supset \tau$ and X is compact under τ , but not under τ' . To see this last, we merely construct the open cover $\{\{x\}|x\in\mathbb{R}\}$, which certainly contains no finite subcover.

(b) Show that if X is compact Hausdorff under both τ and τ' , then either τ and τ' are equal or they are not comparable.

Proof. Suppose $\tau \neq \tau'$ and that τ and τ' are comparable. Suppose, without loss of generality, that $\tau \subsetneq \tau'$. Then there exists $U \in \tau'$ such that $U \notin \tau$. Therefore, X - U is not closed in X under τ . Since X is compact under τ , the contrapositive of Theorem 26.3 implies that X - U is not compact.

*

*

_

Let $\{U_{\alpha}\}$ be an open cover of X-U in τ . Since $\tau \subset \tau'$, $U_{\alpha} \in \tau'$ for all α . Furthermore, since $U \in \tau'$, X-U is closed in X under τ' . Therefore, by Theorem 26.2, it is compact, so the open cover $\{U_{\alpha}\}$ contains a finite subcover $\{U_{\alpha_i}\}_{i=1}^n$. Each $U_{\alpha} \in \tau$, so it is certainly true that $U_{\alpha_i} \in \tau$ for all $i = 1, \ldots, n$. That is to say,

$$\{U_{\alpha_i}\}_{i=1}^n \subseteq \{U_{\alpha}\}_{{\alpha}\in J}$$

is an open cover of X-U in τ . In other words, the open cover $\{U_{\alpha}\}$ contains a finite subcover. Since our choice of open cover was arbitrary, we conclude that, in fact, X-U is compact under τ , a contradiction. From this contradiction, we conclude that either $\tau=\tau'$ or τ and τ' are not comparable.

26.8

Let $f: X \to Y$; let Y be compact Hausdorff. Then f is continuous if and only if the graph of f,

$$G_f = \{x \times f(x) | x \in X\}$$

is closed in $X \times Y$.

Proof. (\Rightarrow) Suppose f is continuous. To show G_f is closed, it suffices to show that $X \times Y - G_f$ is open in $X \times Y$. Therefore, let $x_0 \times y \in (X \times Y) - G_f$. Clearly, $y \neq f(x_0)$ so, since Y is Hausdorff, there exist open neighborhoods V_y and $V_{f(x_0)}$ of y and $f(x_0)$, respectively, such that

$$V_y \cap V_{f(x_0)} = \emptyset.$$

Since f is continuous, there exists an open neighborhood U of x_0 such that

$$f(U) \subseteq V_{f(x_0)}$$
.

Note that this implies that $f(U) \cap V_y = \emptyset$. Also, note that $x_0 \times y \in U \times V_y$ and that $U \times V_y$ is open in $X \times Y$.

Now, we want to show that $U \times V_y \subseteq (X \times Y) - G_f$. Let $z \times w \in U \times V_y$. Then, since f(U) and V_y are disjoint, $w \notin f(U)$. However, since $z \in U$, $f(z) \in f(U)$. Therefore, $w \neq f(z)$, so

$$z \times w \notin G_f$$
.

In other words,

$$z \times w \in (X \times Y) - G_f$$
.

Therefore, we can conclude that, indeed, $(X \times Y) - G_f$ is open, meaning that G_f is closed in $X \times Y$.

 (\Leftarrow) On the other hand, suppose that G_f is closed in $X \times Y$. Let $x_0 \in X$ and let V be an open neighborhood of $f(x_0)$ in Y. Since V is open in Y, Y - V is closed and so, since X closed in X, $x \times (Y - V)$ is closed in $X \times Y$. Since G_f closed in $X \times Y$,

$$G_f \cap (X \times (Y - V))$$

is closed in $X \times Y$. Since the projection $\pi_1: X \times Y \to X$ is closed,

$$U = \pi_1 (G_f \cap (X \times (Y - V))) = \{x \in X | f(x) \notin V\}$$

is closed in X. Note that $U = X - f^{-1}(V)$, so we see that $f^{-1}(V)$ is open in X. Also, $x \in f^{-1}(V)$ and $f(f^{-1}(V)) \subseteq V$. Hence, f is continuous at x. Since our choice of x was arbitrary, we see that f is continuous at every point in X, which is to say that f is continuous.

Having demonstrated both directions, we conclude that f is continuous if and only if it's graph is closed in $X \times Y$.

27.6

(a) Show that the Cantor set C is totally disconnected.

Proof. Suppose not. Then there is an interval $[a,b] \subseteq C$. Let $N \in \mathbb{N}$ such that

$$N > \log_3\left(\frac{1}{b-a}\right)$$
.

Then, for n > N, $\frac{1}{3^n} < b - a$. However, since $C = \cap A_j$, C, if it contains intervals at all, must contain intervals of length less than $\frac{1}{3^n}$. Hence, C contains no intervals, so C is totally disconnected.

(b) Show that C is compact.

Proof. We show, by induction, that each A_n is closed in [0,1]. Clearly, $A_0 = [0,1]$ is closed in [0,1]. Now, suppose A_k is closed. Then $A_k = [0,1] - U$, where U is open. Define

$$V_k = \bigcup_{i=0}^{\infty} \left(\frac{1+3i}{3^{k+1}}, \frac{2+3i}{3^{k+1}} \right).$$

Then

$$A_{k+1} = A_k - V_k = ([0,1] - U) - V_k = [0,1] - (U \cup V_k).$$

Since U and V_k are open, so is $U \cup V_k$, so A_{k+1} is closed. Hence, by induction, A_n is closed for all $n \in \mathbb{N}$. Therefore, since C is an intersection of closed sets, C is closed. C is also clearly bounded, so, by Theorem 27.3, C is compact.

(c) Show that each set A_n is a union of finitely many disjoint closed intervals of length $1/3^n$; and show that the end points of these intervals lie in C.

Proof. By induction. Clearly, $A_0 = [0,1]$ is the union of a single closed interval of length $1 = 1/3^0$. $0 \in C$, since $0 < \frac{1+3k}{3^n}$ for all $n, k \in \mathbb{N} \cup \{0\}$.

Also, $3^{n-1} \in \mathbb{N}$ for all n, so $3^{n-1} - \frac{2}{3} \notin \mathbb{N}$. Hence, there exists $k \in \mathbb{N}$ such that

$$\begin{array}{cccc} k & <3^{n-1}-\frac{2}{3} & < k+\frac{2}{3} \\ k & <\frac{3^{n}-2}{3} & < k+\frac{2}{3} \\ 3k & <3^{n}-2 < 3k+2 \end{array}$$

$$\begin{array}{c} 2+3k < 3^{n} < 4+3k \\ \frac{2+3^{k}}{3^{n}} < 1 < \frac{1+3(k+1)}{3^{n}} \end{array}$$

for all $n \in \mathbb{N}$. Hence, the endpoint $1 \in C$.

Now, suppose A_{k-1} is a union of finitely many disjoint closed intervals of length $1/3^{k-1}$ and that the endpoints of these intervals lie in C. Denote A_{k-1} by

$$A_{k-1} = \bigcup_{1}^{n} [a_j, b_j].$$

Note that, if $(c,d) \subset [a,b]$,

$$[a, b] - (c, d) = [a, c] \cup [d, b].$$

Now,

$$A_k = A_{k-1} - \bigcup_{j=0}^{\infty} \left(\frac{1+3j}{3^k}, \frac{2+3j}{3^k} \right)$$

$$= \bigcup_{1}^{n} [a_i, b_i] - \bigcup_{j=0}^{\infty} \left(\frac{1+3j}{3^k}, \frac{2+3j}{3^k} \right)$$

$$= \bigcap_{j=0}^{\infty} \left(\bigcup_{1}^{n} [a_i, b_i] - \left(\frac{1+3j}{3^k}, \frac{2+3j}{3^k} \right) \right)$$

which is simply an intersection of unions of closed intervals, which is itself a union of closed intervals. Furthermore, these closed intervals have length $1/3^k$ since we are deleting the middle third from intervals of length $1/3^{k-1}$. Finally, an argument similar to the one used to show that $1 \in C$ shows that each of these endpoints is in C. Therefore, by induction, each set A_n is a union of finitely many disjoint closed intervals of length $1/3^n$ and the end points of these intervals lie in C.

(d) Show that C has no isolated points.

Proof. Since every basic open set in C is of the form $(a,b) \cap C$ where (a,b) is open in [0,1], it suffices to show that no set of this form is a singleton set (a simple modification takes care of basis elements of the form [0,b) and (a,1]). Let $(a,b) \in [0,1]$ such that $(a,b) \cap C \neq \emptyset$. Let $x \in (a,b) \cap C$. Since we showed in part (c) above that each A_n is a finite union of closed intervals of length $1/3^n$ and that the endpoints of these intervals are in C, we can find such an endpoint not equal to x that is in $(a,b) \cap C$.

Let $p = \min\{x - a, b - x\}$. Choose $N \in \mathbb{N}$ such that $N > \log_3\left(\frac{1}{p}\right)$. Then, for m > N, $x \in A_m$, so x lies in an interval [c, d] of length $1/3^m$. Note that

$$\max\{x - c, d - x\} < p,$$

so $[c,d] \subset (a,b)$. From (c), we know that $c,d \in C$, so

$$\{x, c, d\} \in (a, b) \cap C.$$

Even if x is equal to one of these endpoints, we still see that $(a,b) \cap C$ is not a singleton set.

Since our choice of basis element (a, b) was arbitrary, we conclude that no singleton set is open in C, meaning C has no isolated points. \square

(e) Show that C is uncountable.

Proof. C is clearly non-empty, since we showed in part (c) that it contains endpoints of closed intervals; specifically, $0 \in C$. We showed in (b) that C is compact and in (d) that C has no isolated points. Furthermore, we know that C is Hausdorff since [0,1] is. Therefore, we can use Theorem 27.7 to conclude that C is uncountable.

Α

Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an arbitrary collection of connected topological spaces. Show that in the product topology $X=\prod_{{\alpha}\in J}X_{\alpha}$ is connected.

Proof. Let $(y_{\alpha}) = y \in \prod X_{\alpha}$. Let $A_{\beta} = \{(a_{\alpha})_{\alpha \in J} | a_{\alpha} = y_{\alpha} \text{ for all } \alpha \neq \beta\}$. Then let

$$A = \bigcup_{\beta \in J} A_{\beta}.$$

Since $y \in A_{\beta}$ for all $\beta \in J$ and each A_{β} is connected, A is connected. Now, we want to show that $\prod_{\alpha \in J} X_{\alpha} = \overline{A}$. Let $x \in \prod X_{\alpha}$ and let

$$U_x = \prod_{\alpha \in J} U_\alpha$$

be a basis element of the product topology containing x. Then $U_{\alpha} = X_{\alpha}$ for all but finitely many α . Let $\alpha_1, \ldots \alpha_n$ be the indices for which this equality does not hold. Let

$$a = (a_{\alpha})_{\alpha \in J}$$

where $a_{\alpha_i} = x_{\alpha_i}$ and $a_{\gamma} = y_{\gamma}$ for all $\gamma \notin \{\alpha_1, \dots, \alpha_n\}$. Then, clearly,

$$a \in \bigcup_{1}^{n} A_{\alpha_{j}} \subset A$$

and, since $y_{\gamma} \in U_{\gamma} = X_{\gamma}$ for all $\gamma \notin \{\alpha_1, \dots, \alpha_n\}$,

$$a \in U_x$$
.

Hence, we can conclude that $\bigcup_{\alpha \in J} X_{\alpha}$ is connected, since it is the closure of a connected set.

В

Suppose $f:(0,1)\to (0,1)$ is a continuous map. Does f have a fixed point?

Answer: No. As a counter-example, consider $f(x) = x^2$. For $c \in (0,1)$,

$$c - f(c) = c - c^2 = c(1 - c) < c$$

since 0 < 1 - c < 1. Hence, $f(c) \neq c$ for all $c \in (0, 1)$, so f has no fixed points.

DRL 3E3A, UNIVERSITY OF PENNSYLVANIA *E-mail address*: shonkwil@math.upenn.edu

*