

PELATIHAN ARTIFICIAL INTELLIGENCE & BIG DATA (DATA SCIENCE) PROGRAM UPSKILLING DAN RESKILLING GURU KEJURUAN SMK

Made Agus Andi Gunawan Student Ambassador BISAAI

Decision Tree

Aplikasi Decision Tree pada proses pengambilan keputusan

Outline

- 1. Pengenalan Decision Tree
- 2. Pengenalan komponen Decision Tree: root, node, leaf
- 3. Pengenalan Gini Impurity
- 4. Pengenalan Information Gain
- 5. Membangun Decision Tree
- 6. Training model Decision Tree Classifier
- 7. Visualisasi model Decision Tree
- 8. Evaluasi model Decision Tree

Decision Tree

salah satu model decision tree ditemukan oleh

J. Ross Quinlan

pada bukunya

1986

Decision Tree

Decision tree atau pohon keputusan adalah salah satu algoritma supervised learning yang dapat dipakai untuk masalah klasifikasi dan regresi. Decision tree merupakan algoritma yang powerful alias mampu dipakai dalam masalah yang kompleks. Decision tree juga merupakan komponen pembangun utama algoritma Random Forest, yang merupakan salah satu algoritma paling powerful saat ini.

Decision tree memprediksi sebuah kelas (klasifikasi) atau nilai (regresi) berdasarkan aturan-aturan yang dibentuk setelah mempelajari data.

komponen pohon terdiri dari

Komponen Decision Tree

Root Node terletak paling atas

terletak paling atas dari suatu pohon.

Internal Node

node percabangan, memiliki 1 input dan minimall 2 output

Leaf Node

node akhir, memiliki 1 input dan tidak memiliki output

Studi Kasus Sederhana

Laper mau makan tapi bingung harus ngapain?

Langkah pertama yaitu membuat root node yang berisi 'apakah saya lapar?'

Solusinya ngapain biar gak laper?

Keunggulan vs Kekurangan

- 1. Dapat digunakan untuk regresi atau klasifikasi.
- 2. Dapat ditampilkan secara grafis. Sangat bisa ditafsirkan.
- Dapat ditentukan sebagai serangkaian aturan, dan lebih mendekati pengambilan keputusan manusia daripada model lainnya.
- 4. Prediksinya cepat.
- 5. Fitur tidak perlu penskalaan.
- 6. Secara otomatis mempelajari interaksi fitur.
- 7. Cenderung mengabaikan fitur yang tidak relevan.

- 1. Kinerja (umumnya) tidak kompetitif dengan metode pembelajaran terawasi terbaik.
- 2. Diperlukan penyetelan
- 3. varian tinggi
- Pemisahan biner rekursif membuat keputusan "optimal secara lokal" yang mungkin tidak menghasilkan pohon yang optimal secara global.
- Tidak berfungsi dengan baik dengan kumpulan data yang tidak seimbang.

Gini Impurity

Ruas Kiri: Ruas Kanan:

$$G = 1 - \sum_{i}^{n} P_{i}^{2}$$

$$= 1 - P(biru)^{2}$$

$$= 1 - (\frac{4}{4})^{2} = 0$$

$$= 1 - (\frac{1}{6})^{2} + (\frac{5}{6})^{2}) = 0.278$$

Average Gini Impurity:

$$G = \frac{4}{4+6} \times 0 + \frac{6}{4+6} \times 0.278$$
$$= 0.1668$$

Information Gain

Information Gain = 0.6779 - 0.1668 = 0.51

Membangun Decision Tree

$$G = 1 - (P(apple)^{2} + P(grape)^{2} + P(lemon)^{2})$$

$$= 1 - ((\frac{2}{5})^{2} + (\frac{2}{5})^{2} + (\frac{1}{5})^{2})$$

$$= 0.63$$

Outlook	Temperature	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cold	Normal	False	Yes
Sunny	Cold	Normal	True	No
Overcast	Cold	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cold	Normal	False	Yes
Rainy	Mild	Normal	False	Yes

Attributes

Classes

Outlook	Temperature	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

Decision Tree

Misalnya kita memiliki data seperti di atas. Data berisi informasi mengenai kondisi cuaca pada hari tertentu dan apakah cocok untuk bermain golf di kondisi cuaca tersebut.

Sebuah pohon keputusan dapat dibuat dari data sebelumnya.

Perhatikan contoh pohon keputusan di bawah. Pohon ini
menggunakan beberapa atribut, diantaranya adalah kondisi langit dan
kecepatan angin untuk menentukan bermain golf atau tidak.

Decision Tree Diagram

Decision Tree

Decision Tree Algorithm

- a. ID3 (Iterative Dichotomiser 3)
- b C4.5 (successor of ID3)
- c. CART (Classification And Regression Tree)^[6]
- d. Chi-square automatic interaction detection (CHAID). Performs multi-level splits when computing classification trees.^[14]
- e. MARS: extends decision trees to handle numerical data better.
- f. Conditional Inference Trees. Statistics-based approach that uses non-parametric tests as splitting criteria, corrected for multiple testing to avoid overfitting. This approach results in unbiased predictor selection and does not require pruning.^{[15][16]}

Training Algorithm	CART		
	(Classification and Regression Trees)		
Target(s)	Classification and Regression		
Metric	Gini Index		
Cost function (Based on what to split?)	Select its splits to achieve the subsets that minimize Gini Impurity		

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R_s: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Asset

https://drive.google.com/drive/folders/168bLU4P 9kNAtIA_PVTLPSADz1POoll3o?usp=sharing

Referensi

https://medium.com/analytics-vidhya/decision-tree-algorithm-explained-bd6b7b22eab9

https://www.saedsayad.com/decision_tree.htm

https://dinhanhthi.com/decision-tree-classifier/

https://www.kdnuggets.com/2020/02/decision-tree-intuition.html

https://rapidminer.com/

Terima Kasih

See You Next Time