Gerak Lurus

Gerak

- Semuanya bergerak! Gerak adalah salah satu topik utama dalam Fisika I
- Fenomena kompleks merupakan gabungan dari fenomena sederhana
- Gerak lurus (GLB dan GLBB)
- Penyederhanaan: Anggap objek bergerak sebagai partikel, yaitu yang bergerak seperti partikel — "objek titik"

4 Kuantitas Dasar dalam Kinematika

Displacement, Velocity, Time and Acceleration

Posisi X Satu Dimensi

- Gerak dapat didefinisikan sebagai perubahan posisi dari waktu ke waktu.
- Bagaimana merepresentasikan posisi sepanjang garis lurus?
- Definisi Posisi:
 - Tentukan titik awal: origin (x = 0), x relative terhadap origin
 - Arah: positif (ke kanan atau atas), negative (ke kiri atau bawah)
 - Bergantung waktu: t = 0 (mulai), x(t=0) tidak selalu 0.
- Posisi memiliki unit [Panjang]: meter.

Vektor dan Skalar

- Besaran vektor dicirikan oleh memiliki besar dan arah.
 - Perpindahan, Kecepatan, Percepatan, Gaya ...
 - Dilambangkan dengan huruf tebal \mathbf{v} , \mathbf{a} , \mathbf{F} ... atau dengan panah di atasnya \vec{v} , \vec{a} , \vec{F} ...
- Besaran skalar memiliki nilai, tetapi tidak memiliki arah.
 - Jarak, Massa, Temperatur, Waktu ...
- Untuk gerak sepanjang garis lurus, arahnya hanya diwakili oleh tanda + dan –.
 - + : Kanan atau Atas.
 - : Kiri atau Bawah.
- Gerak 1-D dapat dianggap sebagai komponen gerak 2D dan 3D.

Kuantitas dalam Gerak

- Setiap gerak meliputi 3 konsep
 - Perpindahan
 - Kecepatan
 - Akselerasi
- Konsep ini dapat digunakan untuk mempelajari objek dalam gerak.

Perpindahan

- Perpindahan adalah perubahan posisi terhadap waktu.
- Perpindahan:

$$\Delta x = x_f(t_f) - x_i(t_i)$$

- f singkatan dari final dan i singkatan dari inisial.
- Merupakan kuantitas vektor.
- Memiliki kedua besar dan arah: tanda + or –
- Memiliki unit [panjang]: meter.

$$x_1(t_1) = +2.5 \text{ m}$$

 $x_2(t_2) = -2.0 \text{ m}$
 $\Delta x = -2.0 \text{ m} - 2.5 \text{ m} = -4.5 \text{ m}$

$$\mathbf{x}_{1}(\mathbf{t}_{1}) = -3.0 \text{ m}$$
 $\mathbf{x}_{2}(\mathbf{t}_{2}) = +1.0 \text{ m}$
 $\Delta \mathbf{x} = +1.0 \text{ m} + 3.0 \text{ m} = +4.0 \text{ m}$

Grafik Jarak dan Waktu

TABLE 2.1

Position of the Car at Various
Times

Position	$t(\mathbf{s})$	x(m)
A	0	30
B	10	52
©	20	38
(D)	30	0
E	40	-37
(F)	50	-53

- Perpindahan dalam ruang
 - Dari A ke B: $\Delta x = x_B x_A = 52 \text{ m} 30 \text{ m} = 22 \text{ m}$
 - Dari A ke C: $\Delta x = x_c x_A = 38 \text{ m} 30 \text{ m} = 8 \text{ m}$
- Jarak adalah Panjang jalur yang dilalui oleh partikel
 - Dari A ke B: $d = |x_B x_A| = |52 \text{ m} 30 \text{ m}| = 22 \text{ m}$
 - Dari A ke C: $d = |x_B x_A| + |x_C x_B| = 22 \text{ m} + |38 \text{ m} 52 \text{ m}| = 36 \text{ m}$
- Perpindahan bukanlah jarak.

Kecepatan

- Kecepatan adalah laju perubahan posisi.
- Kecepatan adalah kuantitas vektor.
- Kecepatan memiliki kedua besar dan arah.
- Kecepatan memiliki unit [Panjang/waktu]: meter/detik.
- We will be concerned with three quantities, defined as:
 - Kecepatan rata-rata
- $v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f x_i}{\Delta t}$

perpindahan

Kelajuan rata-rata

$$s_{\text{avg}} = \frac{\text{total distance}}{\Delta t}$$

Kecepatan sesaat

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

jarak

Perpindahan

Kecepatan Rata-rata

Kecepatan rata-rata

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{\Delta t}$$

adalah kemiringan garis antara 2 titik akhir pada grafik.

- Dimensi: Panjang/waktu (L/T) [m/s].
- Unit SI: m/s.
- Merupakan vector (bertanda), dan arah perpindahan menentukan tanda ini.

Kelajuan Rata-Rata

• Kelajuan rata-rata

$$s_{\text{avg}} = \frac{\text{total jarak}}{\Delta t}$$

- Dimensi: Panjang/waktu, [m/s].
- Skalar: Tidak memiliki arah.
- Tidak perlu berkaitan V_{avg}:
 - $S_{avg} = (6m + 6m)/(3s+3s) = 2 m/s$
 - $V_{avg} = (0 \text{ m})/(3s+3s) = 0 \text{ m/s}$

Interpretasi Grafik Kecepatan

- Kecepatan dapat ditentukan dari grafik posisi-waktu
- Kecepatan rata-rata sama dengan kemiringan garis yang menghubungkan titik posisi awal dan akhir.
- Merupakan kuantitas vektor.
- Objek yang bergerak dengan kecepatan konstan memiliki grafik berbentuk garis lurus.

Kecepatan Sesaat

- Sesaat adalah: "pada waktu tertentu". Kecepatan sesaat mengindikasikan apa yang terjadi pada setiap saat.
- Proses limit:
 - Garis singgung mendekati tangen dengan $\Delta t => 0$
 - Kemiringan mengukur laju perubahan posisi
- Kecepatan sesaat: $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$
- Merupakan kuantitas vektor
- Dimensi: Panjang/waktu (L/T), [m/s].

• Kecepatan sesaat v(t) merupakan fungsi waktu.

Kecepatan Uniform

- Kecepatan uniform adalah kasus khusus dari kecepatan konstan
- Dalam hal ini, kecepatan sesaat selalu sama, semua kecepatan sesaat akan sama dengan kecepatan rata-rata
- Dimulai dengan $v_x = \frac{\Delta x}{\Delta t} = \frac{x_f x_i}{\Delta t}$ kemudian $x_f = x_i + v_x \Delta t$

Percepatan Rata-Rata

- Perubahan kecepatan (non-uniform) artinya terdapat percepatan.
- Percepatan adalah laju perubahan kecepatan.
- Percepatan adalah kuantitas vektor.
- Percepatan memiliki kedua besar dan arah.
- Percepatan memiliki dimensi panjang/waktu²: [m/s²].
- Definisi:
 - Percepatan rata-rata
 - Percepatan sesaat

$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$

Percepatan Rata-Rata

• Percepatan rata-rata

$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

Kecepatan adalah fungsi waktu

$$v_f(t) = v_i + a_{avg} \Delta t$$

- Menggoda untuk menyebut Percepatan negatif sebagai "perlambatan," tetapi catatan:
 - Ketika tanda kecepatan dan Percepatan sama (+ atau -), maka kelajuan meningkat
 - Ketika tanda kecepatan dan Percepatan berlawanan arah, kelajuan menurun
- Percepatan rata-rata adalah kemiringan garis penghubung antara kecepatan awal dan kecepatan final pada grafik kecepatan-waktu

Percepatan Sesaat dan Uniform

• Limit percepatan sesaat dimana interval waktu mendekati 0

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$

- Ketika percepatan sesaat selalu sama, percepatan akan sama, percepatan uniform. Percepatan sesaat akan sama dengan percepatan rata-rata
- Percepatan sesaat adalah kemiringan dari tangen terhadap kurva dari grafik Kecepatan-waktu

Hubungan Antara Percepatan dan Kecepatan (Tahap pertama)

- Kecepatan dan Percepatan memiliki arah yang sama
- Percepatan uniform (panah biru dengan panjang yang sama)
- Kecepatan meningkat (panah merah makin panjang)

$$v_f(t) = v_i + at$$

Kecepatan positif dan percepatan positif

Hubungan Antara Percepatan dan Kecepatan (Tahap kedua)

- Kecepatan uniform (panah merah memiliki panjang yang sama)
- Percepatan sama dengan nol

$$v_f(t) = v_i + at$$

Hubungan Antara Percepatan dan Kecepatan (Tahap Ketiga)

- percepatan dan kecepatan berlawanan arah
- percepatan uniform (panah biru memiliki Panjang yang sama)
- kecepatan menurun (panah merah makin pendek)

$$v_f(t) = v_i + at$$

kecepatan positif dan percepatan negatif

Variabel Kinematika: x, v, a

- Posisi merupakan fungsi waktu: x = x(t)
- kecepatan adalah laju perubahan posisi.
- percepatan adalah laju perubahan kecepatan.

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

• Posisi
$$\xrightarrow{\frac{d}{dt}}$$
 kecepatan $\xrightarrow{\frac{d}{dt}}$ percepatan

• Hubungan grafis antara x, v, dan a

Plot yang sama dapat diterapkan pada sebuah elevator yang awalnya stasioner, kemudian bergerak keatas dan berhenti. Plot v dan a sebagai fungsi waktu.

Kasus Khusus: Gerak dengan Percepatan Uniform

- percepatan konstan
- Persamaan Kinematika

$$v = v_0 + at$$

$$\Delta x = \overline{v}t = \frac{1}{2}(v_0 + v)t$$

$$\Delta x = v_0 t + \frac{1}{2} a t^2$$

$$v^2 = {v_0}^2 + 2a\Delta x$$

Derivasi Persamaan (1)

- Kondisi awal:
 - a(t) = konstan = a, $v(t = 0) = v_0$, $x(t = 0) = x_0$
- Mulai dari definisi percepatan rata-rata:

$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0} = \frac{v - v_0}{t - 0} = \frac{v - v_0}{t} = a$$

Kita dapatkan persamaan pertama

$$v = v_0 + at$$

- Menunjukkan kecepatan sebagai fungsi dari percepatan dan waktu
- Gunakan Ketika perpindahan tidak diketahui dan tidak ditanyakan

Derivasi Persamaan(2)

Kondisi awal:

•
$$a(t) = \text{konstan} = a$$
, $v(t = 0) = v_0$, $x(t = 0) = x_0$

Mulai dari kecepatan rata-rata:

$$v_{avg} = \frac{x - x_0}{t} = \frac{\Delta x}{t}$$

Karena kecepatan berubah dengan laju konstan, maka

$$\Delta x = v_{avg}t = \frac{1}{2}(v_0 + v)t$$

- Memberikan perpindahan sebagai fungsi dari kecepatan dan waktu
- Gunakan Ketika percepatan tidak diketahui dan tidak ditanyakan

Derivasi Persamaan(3)

- Kondisi awal:
 - a(t) = konstan = a, $v(t = 0) = v_0$, $x(t = 0) = x_0$
- Dimulai dengan dua persamaan yang diturunkan sebelumnya:

$$v = v_0 + at$$

$$v = v_0 + at$$
 $\Delta x = v_{avg}t = \frac{1}{2}(v_0 + v)t$

• Didapat
$$\Delta x = \frac{1}{2}(v_0 + v)t = \frac{1}{2}(v_0 + v_0 + at)t$$
 $\Delta x = x - x_0 = v_0 t + \frac{1}{2}at^2$

$$\Delta x = x - x_0 = v_0 t + \frac{1}{2} a t^2$$

- Memberikan perpindahan sebagai fungsi dari 3 kuantitas: waktu, kecepatan awal dan percepatan
- Gunakan Ketika kecepatan final tidak diketahui dan tidak ditanyakan

Derivasi Persamaan(4)

- Kondisi awal:
 - a(t) = konstan = a, $v(t = 0) = v_0$, $x(t = 0) = x_0$
- Ditulis ulang definisi dari percepatan rata-rata

$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t} = a$$
, untuk mencari waktu $t = \frac{v - v_0}{a}$

• Gunakan untuk mengeleminasi t pada persamaan kedua:

$$\Delta x = \frac{1}{2}(v_0 + v)t = \frac{1}{2a}(v + v_0)(v - v_0) = \frac{v^2 - {v_0}^2}{2a}$$
, atur Kembali untuk mendapatkan

$$v^2 = v_0^2 + 2a\Delta x = v_0^2 + 2a(x - x_0)$$

- Memberikan kecepatan sebagai fungsi dari percepatan dan perpindahan
- Gunakan Ketika waktu tidak diketahui dan tidak ditanyakan

Bantuan dalam Menyelesaikan Permasalahan

- Baca permasalahan
- Gambar diagram
 - Pilih sistem koordinat, beri label titik awal dan finalnya, tentukan arah positif untuk kecepatan dan percepatan

- Beri label semua kuantitas, pastikan semua unit konsisten
 - Konversi jika diperlukan
- Pilih persamaan Kinematika yang sesuai
- Solusi untuk yang tidak diketahui
 - Mungkin dibutuhkan dua persamaan untuk dua yang tidak diketahui
- Periksa hasilnya

$$v = v_0 + at$$

$$\Delta x = v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a\Delta x$$

Contoh

 Pesawat memiliki kelajuan angkat 30 m/s setelah berjalan sejauh 300 m, berapa percepatan konstan minimumnya?

$$v = v_0 + at$$

$$v = v_0 + at$$
 $\Delta x = v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a \Delta x$

$$v^2 = v_0^2 + 2a\Delta x$$

Berapa waktu take-offnya?

$$v = v_0 + at$$

$$v = v_0 + at$$
 $\Delta x = v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a \Delta x$

$$v^2 = {v_0}^2 + 2a\Delta x$$

Percepatan Jatuh Bebas

- Gravitasi bumi memberikan percepatan konstan.
- Percepatan jatuh bebas tidak tergantung terhadap massa.
- Besarnya: $|a| = g = 9.8 \text{ m/s}^2$
- Arah: selalu ke bawah, maka a_g negative jika kita nyatakan "ke atas" adalah positif,

$$a = -g = -9.8 \text{ m/s}^2$$

• Usahakan untuk menentukan origin dimana $x_i = 0$

Jatuh Bebas untuk Pemula

Batu dilempar dari atap bangunan dengan kecepatan awal 20.0 m/s ke atas, pada ketinggian awal 50.0 m diatas tanah. Setelah itu batu jatuh kebawah. Tentukan

- (a) Waktu yang dibutuhkan batu untuk mencapai ketinggian maksimum.
- (b) Ketinggian maksimum.
- (c) Waktu yang dibutuhkan untuk Kembali ke posisi awal dilempar dan tentukan kecepatan batu pada saat tersebut.
- (d) waktu yang dibutuhkan batu untuk mencapai tanah
- (e) kecepatan dan posisi batu pada waktu t = 5.00s

Ringkasan

- Tipe gerak paling sederhana
- Merupakan dasar untuk gerak yang lebih kompleks
- Variabel Kinematika dalam satuan dan dimensi

•	Posisi	x(t)	m	L
•	kecepatan	v(t)	m/s	L/T
•	percepatan	a(t)	m/s ²	L/T ²

- Semua tergantung waktu
- Semua vektor: vektor dengan besar dan arah
- Persamaan gerak dengan percepatan konstan: kuantitas yang tidak ada

•
$$v = v_0 + at$$
 $x - x_0$
• $x - x_0 = v_0 t + \frac{1}{2} at^2$ v
• $v^2 = v_0^2 + 2a(x - x_0)$ t
• $x - x_0 = \frac{1}{2}(v + v_0)t$ a
• $x - x_0 = v_0 t - \frac{1}{2}at^2$