Project 1

Carson Carpenter, Nathan Landino

Mathematical Analysis

Complete Exercises 3-14 (a) and 3-14 (b) from Algorithm Design in Three Acts.

3-14: Each of the following is a problem, and pseudocode for an algorithm solving that problem. For each algorithm, derive a complexity function for its running time T(n), then prove the efficiency class O(f(n)) that T(n) belongs to.

```
(a) mean\ problem input: a non-empty list L of n numbers output: the mean (average) of L
```

```
def mean(L):
total = 0
for x in L:
    total += x
return total / len(L)
```

```
Time Complexity = T(n) = 2n + 2
```

By properties of O, O(T(n)) = O(2n + 2) = O(n)

```
So 2n + 2 \subseteq O(n)
```

```
(b) square matrix construction
(b) input: a positive integer n and number x
output: an n × n matrix with each element equal to x
```

```
def construct_square_matrix(n, x):
rows = []
for r in range(n):
    rows.append([])
    for c in range(n):
        rows[r].append(x)
return rows
```

Time Complexity = $T(n) = 2n^2 + 2n + 2$

By properties of O, $O(T(n)) = O(2n^2 + 2n + 2) = O(n^2)$

So $2n^2 + 2n + 2 \in O(n^2)$

Empirical Analysis

These results were found by timing how long it took to calculate the mean of an array of varying size. The resulting graph is linear, which matches the result from 3-14(a) which predicted an O(n) algorithm.

Algorithm 1: Mean of Array

These experimental results were found by timing how long it took to initialize a square matrix of varying size. The resulting graph is exponential, which matches the result from 3-14(b) which predicted an $O(n^2)$ algorithm.

Algorithm 2: Square Matrix

