Section 4 Charts and APIs and Data Analysis

You dont need anything other than the basic pre requisite libraries for this section :'

```
#Importing libraries esp requests
import requests
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

#Listing all urls to call here
dayone = "https://api.covid19api.com/dayone/country/singapore"
todayglobalsummary = "https://api.covid19api.com/summary"
sgdailycases = "https://api.covid19api.com/dayone/country/singapore/status/recovered"
sgrunningtotal = "https://api.covid19api.com/total/dayone/country/singapore/status/recovered"
```

Calling the covid 19 API to scrape data and pull them into a dataframe using pandas

Data is looking good so far, although we can be quite sure the cases displayed here are CUMULATIVE, not daily

In []:

```
response = requests.request("GET", dayone)
singapore = pd.DataFrame(response.json())
#Returns Cumulative Total for Singapore for all confirmed/active/deaths/recovered cases each day beginnin
```

#Returns Cumulative Total for Singapore for all confirmed/active/deaths/recovered cases each day beginnin g 01 Jan 2020

singapore

	ID	Country	CountryCode	Province	City	CityCode	Lat	Lon	Confirmed	Deaths	Recovered	Active	
0	f1471591- 909d-4c12- 9e8b- 26ce43fa3b4e	Singapore	SG				1.35	103.82	1			1	202 23T
1	ad7bf6e4- 27b0-46e9- bdc5- 998458be7e6c	Singapore	SG				1.35	103.82	3			3	202 247
2	25bb999d- 2443-4505- 925d- 27f21af143f6	Singapore	SG				1.35	103.82	3			3	202 251
3	297dd8d4- 5417-4922- 9ac9- a93b9902d4c8	Singapore	SG				1.35	103.82	4			4	202 261
4	bee2a95e- 2cf6-46e5- b2a5- 9f4b4cca9613	Singapore	SG				1.35	103.82	5			5	202 271
680	691eaac8- 5a1c-46f0- b532- 199607de0e93	Singapore	SG				1.35	103.82	267916	744		267172	202
681	a6c9290f- 66cb-4395- 972a- 54d27c5acf05	Singapore	SG				1.35	103.82	268659	746		267913	202 047
682	3edd9b12- f2e3-413e- 8625- a9661bf66388	Singapore	SG				1.35	103.82	269211	759		268452	202
683	9fb7b3f3- 3e05-4a46- 8e2b- 9357f44159ed	Singapore	SG				1.35	103.82	269873	763		269110	202
684	741fc758- f044-4adb- b72d- d8a70a06b502	Singapore	SG				1.35	103.82	269873	763		269110	202

685 rows × 13 columns

Since this is cumulative, i want additional columns taking the difference of the latest row, with the row before so i know the daily cases for each status

```
In [ ]:
   i in range(1, len(singapore))
    singapore.loc[i, 'Daily_Confirmed'] = singapore.loc[i, 'Confirmed'] - singapore.loc[i-1, 'Confirmed'
   singapore.loc[i, 'Daily_Deaths'] = singapore.loc[i, 'Deaths'] - singapore.loc[i-1, 'Deaths'
   singapore.loc[i, 'Daily_Recovered'] = singapore.loc[i, 'Recovered'] - singapore.loc[i-1, 'Recovered']
   singapore.loc[i, 'Daily_Active'| = singapore.loc[i, 'Active'] - singapore.loc[i-1, 'Active']
               Country CountryCode Province City CityCode Lat Lon Confirmed Deaths Recovered Active
               Singapore SG
               Singapore SG
    27f21af143f6
               Singapore SG
   a93b9902d4c8
               Singapore SG
680
               Singapore SG
               Singapore SG
   f2e3-413e-
683
               Singapore SG
```

```
ID object
Country object
CountryCode object
Province object
City object
City object
City object
Lat object
Lon object
Confirmed int64
Deaths int64
Recovered int64
Active int64
Date object
```

So far so good, data is as expected so far, now time to drop unnecessary columns and drop missing values and also changing index to datetime

```
In [ ]:
           'Date'] = pd.to_datetime(singapore['Date'], infer_datetime_format=True
                ngapore.set_index('Date'
               ngapore.drop(['Province','City','CityCode','CountryCode','Lat','Lon'],axis = 1
ingapore.dropna(inplace=True
              ID Country Confirmed Deaths Recovered Active Daily_Confirmed Daily_Deaths Daily_Recovered Daily_
Date
2020-
      27b0-46e9-
01-24
                  Singapore 3
                  Singapore 4
01-26
     a93b9902d4c8
                  Singapore 5
2020-
                  Singapore 7
01-28
     691eaac8-
                  Singapore 267916
                  Singapore 268659
12-04
2021-
     f2e3-413e-
12-05
2021-
12-06
                  Singapore 269873
```

First plot - Singapore Cumulative Confirmed COVID-19 Cases

Second plot - All subplots for both cumulative status and daily statuses. Looks like there could be something wrong!

There could be something wrong with the data above

- It seems that at 2021-08-04 the API Counter resetted and total recovered cases suddenly dropped to 0 and total active cases suddenly increased from 2014 to 65468 cases on 2021-08-05 hmmm
- Lets attempt to verify this further before proceeding
- This returns the days where something went wrong with the API, as you can see, the daily recovered cases are
 negative, which means somehow the cumulative recovered cases all dropped to 0 on the 2021-08-05

In []:

This returns the days where something went wrong with the API, as you can see, the daily recovered cases are negative, which means somehow the cumulative recovered cases all dropped to 0 on the 2021-08-05 singapore[singapore.Daily Recovered< 0]

	I	D	Country	Confirmed	Deaths	Recovered	Active	Daily_Confirmed	Daily_Deaths	Daily_Recovered	Daily_
Date											
2021- 06-30	815a14db- 566e-4c1f- a0ee- 94310472b68		Singapore	62579	36	62228	315	16.0	0.0	-335.0	7.0
	c0d0131e- 4312-484f- 8f83- 42fba788ad8		Singapore	65508	40	0	65468		1.0	-63357.0	63454.

- This returns one day before the previous 2021-08-05 for 2021-08-04 where you can see there were 63357 covid cases
 cumulative who have recovered but the next day this counter has resetted to 0.
- How strange! Perhaps the count was resetted to zero due to some API error?
- Lets verify this with the other API endpoints as well

In []:

This returns one day before the previous 2021-08-05 for 2021-08-04 where you can see there were 63357 covid cases cumulative who have recovered but the next day this counter has resetted to 0.

singapore.loc['20210804'

ID	170da623-3a7a-4225-9fe3-fa83c8b81694
Country	Singapore
Confirmed	65410
Deaths	39
Recovered	63357
Active	2014
Daily_Confirmed	95
Daily_Deaths	1
Daily_Recovered	105
Daily_Active	-11
Name: 2021-08-04 0	00:00:00, dtype: object

In []:

This confirms my suspicions that even using a different API endpoint, the results for recovered and ac tive cases seem to be the same.

```
response = requests.request("GET", sgrunningtotal)
verification = pd.DataFrame(response.json())
verification[verification.Cases == 63357]
```

As suspected all API endpoints return the same data, the problem could be due to the API itself, unlikely to be a result of Singapore's COVID cases

Now it seems like we have two choices, we can try to rectify the above data by replacing erranous data with an averaged value, or we could perhaps focus on daily_deaths and daily_cpnfirmed cases. I will focus on the latter. I am going to add more features into our dataset, so we can plot moving averages for confirmed covid cases. First, i will try to find seasonality within daily_confirmed cases. From this point onwards i will only be looking at confirmed status.

Seasonality

Resampling for months or weeks and making bar plots is another very simple and widely used method of finding seasonality. Here I am making a bar plot of month data for 2020 and 2021. For the index, I will use [2020:]. Because our dataset contains data until 2021. So, 2020 to end should bring 2020 and 2021.

```
In [ ]:
 .ngapore month = singapore.resample("M").mean()
ig, ax = plt.subplots(figsize=(10, 6))
ox.bar(singapore month['2020':].index, singapore month.loc['2020':, "Daily Confirmed"], width=25 align=
'center'
lt.title('Monthly Average Cases'
                               Monthly Average Cases
 3000
 2500
 2000
 1500
 1000
  500
          2020.04
                                                  2021.07
                                                         2021-10
```

Third plot - Resampling daily cases to give a monthly average as a bar chart

```
month["Daily_Confirmed"].plot(figsize=(8, 6
      ylabel('Cases')
                     locator(ticker.MultipleLocator(21))
        e('Weekly Average Cases')
No handles with labels found to put in legend.
                          Weekly Average Cases
3000
2500
2000
1500
1000
 500
                            Oct
                                                             Oct
                                                     Jul
           Apr
                                            Apr
  Jan
2020
                                    Jan
2021
```

Fourth Plot - Resample daily cases to obtain weekly average as line chart

```
In [ ]:
     pore week = singapore.resample("W").mean()
       end = '2020-01', '2021-12'
 ix.plot(singapore.loc[start:end, 'Daily_Confirmed'], marker='.', linestyle='-', linewidth = 0.5, label='D
aily', color='black')
  .plot(singapore_week.loc[start:end, 'Daily_Confirmed'], marker='o', markersize=3.0, linestyle='-', labe
 ='Weekly', color='coral')
ax.set ylabel('Cases')
             major_locator(ticker.MultipleLocator(21))
     et_size_inches(21, 10.5
 lt.title('Daily Confirmed Cases and Weekly Average'
olt.show()
```

Fifth plot - Daily confirmed cases and weekly average cases

```
In [ ]:
         7d_rolling = singapore.rolling(7, center=True).mean()
 art, end = '2020-01', '2021-12'
ig, ax = plt.subplots()
           apore.loc[start:end, 'Daily_Confirmed'], marker='.', linestyle='-'
             idth=0.5, label='Daily'
            apore_week.loc[start:end, 'Daily_Confirmed'], marker='o', markersize=3
        inestyle='-', label = 'Weekly mean cases'
   lot(singapore_7d_rolling.loc[start:end, 'Daily_Confirmed'], marker='.', markersize = 2,linestyle='-'
abel='7d Rolling Average')
  set ylabel('Cases')
            _major_locator(ticker.MultipleLocator(21))
       size_inches(21, 10.5)
       le('Daily Confirmed Cases and Simple Moving Average')
                                      Daily Confirmed Cases and Simple Moving Average
```

Sixth plot - Daily confirmed cases, Weekly average confirmed cases and Simple moving average over 7 days