1. Data type of columns in a table

⊞	Custo	omers	Q QUEF	RY ▼	+ ⊈SHA	RE I	COPY	± \$	SNAPSI
S	СНЕМА	DETAILS	PF	REVIEW	LI	NEAGE			
	∓ Filt	er Enter propert	y name o	r value					
		Field name		Ty	/pe	Mode		Collation	n D
		customer_id		S	TRING	NULLA	BLE		
		customer_unique	e_id	S	TRING	NULLA	BLE		
		customer_zip_co	de_prefix	IN	ITEGER	NULLA	BLE		
		customer_city		S	TRING	NULLA	BLE		
		customer_state		S	TRING	NULLA	BLE		
=	Orde	rs QQ	UERY ▼	+2	SHARE	Г сог	PΥ	± SNAP\$	SHOT
							РΥ	± SNAP\$	БНОТ
	СНЕМА	DETAILS	PF	REVIEW		COF	РΥ	⊞ SNAPS	SHOT
	СНЕМА		PF	REVIEW			ΡΥ	∄ SNAP\$	внот
	СНЕМА	DETAILS	PF	REVIEW			PY Mode	∄ SNAPS	SHOT
	CHEMA Filt	DETAILS er Enter propert	PF	REVIEW	LII	NEAGE			
	CHEMA Filt	DETAILS er Enter propert	PF	REVIEW	LI	NEAGE	Mode	ABLE	
	CHEMA Filt	DETAILS Ter Enter propert Field name order_id	PF	REVIEW	Type STRIN	NEAGE	Mode NULL	ABLE ABLE	
	CHEMA Filt	DETAILS Ter Enter propert Field name order_id customer_id order_status order_purchase_	y name o	r value	Type STRING STRING STRING TIMES	NEAGE G G TAMP	Mode NULLA NULLA NULLA	ABLE ABLE ABLE	
	CHEMA Filt	DETAILS Ter Enter propert Field name order_id customer_id order_status order_purchase_ order_approved_	y name o	r value	Type STRING STRING STRING TIMES	NEAGE G G TAMP	Mode NULLA NULLA NULLA NULLA	ABLE ABLE ABLE ABLE	
SI SI	CHEMA Filt	DETAILS Ter Enter propert Field name order_id customer_id order_status order_purchase_ order_approved_ order_delivered_	PF y name of	r value	Type STRING STRING STRING TIMES TIMES	NEAGE G G TAMP TAMP	Mode NULLA NULLA NULLA	ABLE ABLE ABLE ABLE	
	CHEMA Filt	DETAILS Ter Enter propert Field name order_id customer_id order_status order_purchase_ order_approved_	PF y name of	r value	Type STRING STRING STRING TIMES	NEAGE G G TAMP TAMP	Mode NULLA NULLA NULLA NULLA	ABLE ABLE ABLE ABLE ABLE	

Data types of columns in Customers and Orders table.

2. Time period for which the data is given

```
SELECT

min(order_purchase_timestamp) as Min_order_date,
max(order_purchase_timestamp) as Max_order_date

FROM

`sqldemo-381616.Target_BusinessCase.Orders`;
```

Query results JOB INFORMATION RESULTS JSON EXECUTION DETAILS Row Min_order_date Max_order_date // 2016-09-04 21:15:19 UTC 2018-10-17 17:30:18 UTC

3. Cities and States of customers ordered during the given period

```
SELECT

distinct customer_city as no_of_cities,
customer_state as no_of_states

FROM

`sqldemo-381616.Target_BusinessCase.Customers` c

join

`sqldemo-381616.Target_BusinessCase.Orders` o

on

c.customer_id = o.customer_id

where

o.order_purchase_timestamp

between

'2016-09-04 21:15:19' and '2018-10-17 17:30:18'

limit 10;
```

Row	cities ▼	states ▼
1	acu	RN
2	ico	CE
3	ipe	RS
4	ipu	CE
5	ita	SC
6	itu	SP
7	jau	SP
8	luz	MG
9	poa	SP
10	uba	MG

City and state of customers who ordered in between given timestamp.

2.

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT

extract (year from order_purchase_timestamp) as Year,
extract (month from order_purchase_timestamp) as Month,
count(order_id) as Orders_Count

FROM

`sqldemo-381616.Target_BusinessCase.Orders`
group by
Year,
Month

order by
Year,
Month;
```

Query results						
JOB IN	JSON	EX				
Row	Year	Month	Orders_Count			
1	2016	10	324			
2	2016	9	4			
3	2016	12	1			
4	2017	11	7544			
5	2017	12	5673			
6	2017	4	2404			
7	2017	7	4026			
8	2017	10	4631			
9	2017	6	3245			
10	2017	9	4285			

We can observe a growing trend in e-commerce in the Year 2017 while in the year 2018 there are fluctuations in trend.

Row	Month ▼	Orders_Count ▼
1	8	10843
2	5	10573
3	7	10318
4	3	9893
5	6	9412
6	4	9343
7	2	8508
8	1	8069
9	11	7544
10	12	5674

We can see that in the month of August, May and July number of orders are at peak.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

SELECT

Order_Time,

```
Count(Order_Time) as Most_Favourable_Time
from
(Select
Case
when extract(time from order_purchase_timestamp) between '7:00:00' and '12:00:00' then 'Morning'
when extract(time from order_purchase_timestamp) between '13:00:00' and '18:00:00' then 'Afternoon'
when extract(time from order_purchase_timestamp) between '19:00:00' and '23:00:00' then 'Night'
when extract(time from order_purchase_timestamp) between '00:00:00' and '6:00:00' then 'Dawn'
END as
Order_Time
FROM
`sqldemo-381616.Target_BusinessCase.Customers` c join `sqldemo-381616.Target_BusinessCase.Orders` o on
c.customer_id = o.customer_id
group by
Order_Time
order by
Most_Favourable_Time desc;
```

Row	Order_Time ▼	4	Most_Favourable_Tir
1	Afternoon		32370
2	Night		24209
3	Morning		21738
4	Dawn		4740

- Afternoon time Brazilians tend to buy more.
- Very less people shop at late night, this is one area where Target can focus to improve sales during this time.

3.

1. Get month on month orders by states

SELECT

```
FORMAT_DATETIME("%B",DATETIME (order_purchase_timestamp))
        as Month_Name,c.customer_state ,count(*)as No_of_Orders FROM `sqldemo-
        381616.Target_BusinessCase.Customers` c
left join
        `sgldemo-381616.Target_BusinessCase.Orders` o on c.customer_id = o.customer_id
group by
        c.customer_state,Month_Name
order by
       No_of_Orders desc
LIMIT 1000;
```


JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXECUT
Row	Month_Name	le	customer_state	1.	No_of_Orders
1	August		SP		4982
2	May		SP		4632
3	July		SP		4381
4	June		SP		4104
5	March		SP		4047
6	April		SP		3967
7	February		SP		3357
8	January		SP		3351
9	November		SP		3012
10	December		SP		2357

- State SP has most number of orders as to other states and AC, AP & RR have least no of orders.
- 2. Distribution of customers across the states in Brazil

```
SELECT

customer_state,

count(customer_unique_id) as Customers_count

FROM

`sqldemo-381616.Target_BusinessCase.Customers`

group by

customer_state

order by

Customers_count desc

LIMIT 1000;
```

Query results						
JOB INFORMATION		RESULTS	JSON	EXE		
Row	customer_state	h	Customers_cour			
1	SP		41746			
2	RJ		12852			
3	MG		11635			
4	RS		5466			
5	PR		5045			
6	SC		3637			
7	BA		3380			
8	DF		2140			
9	ES		2033			
10	GO		2020			

- ❖ More than 2/3rd population lies in 3 states i.e. SP, RJ, MG
- almost 2/3rd of the customers is coming from 3 states. Target can focus on other states to attract more customers and boost sales

4.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
SELECT round(((Sales_2 - Sales_1)/Sales_1)*100,0) as YOY_Growth from(

SELECT
sum(case when Year = 2017 and Month between 1 and 8 then payment_valueend) as Sales_1
,
sum(case when Year = 2018 and Month between 1 and 8 then payment_valueend) as Sales_2
from(

SELECT extract(Month from order_purchase_timestamp) as Month,extract(Year from order_pu
```

rchase_timestamp) as Year,
p.payment_value FROM `sqldemo-381616.Target_BusinessCase.Orders` o join `sqldemo-

381616.Target_BusinessCase.Payments` p on o.order_id = p.order_id));

- ❖ YOY Growth % is 137.
 - 2. Mean & Sum of price and freight value by customer state

```
SELECT
    c.customer_state,
    round(avg(oi.price),2) as Mean_Price,
    round(sum(oi.price),2) as Total_price,
    round(avg(oi.freight_value),2) as Mean_freight,
    round(sum(oi.freight_value),2) as Total_Freight
FROM
    `sqldemo-381616.Target_BusinessCase.Customers` c
left join
    `sqldemo-381616.Target_BusinessCase.Orders` o
on
    c.customer_id = o.customer_id join `sqldemo-381616.Target_BusinessCase.OrderItems` oi
on
    o.order_id = oi.order_id

group by
    c.customer_state;
```

Row	customer_state ▼	Mean_Price ▼	Total_price ▼	Mean_freight ▼	Total_Freight ▼
1	SP	109.65	5202955.05	15.15	718723.07
2	RJ	125.12	1824092.67	20.96	305589.31
3	MG	120.75	1585308.03	20.63	270853.46
4	RS	120.34	750304.02	21.74	135522.74
5	PR	119.0	683083.76	20.53	117851.68
6	BA	134.6	511349.99	26.36	100156.68
7	SC	124.65	520553.34	21.47	89660.26
8	PE	145.51	262788.03	32.92	59449.66
9	GO	126.27	294591.95	22.77	53114.98
10	DF	125.77	302603.94	21.04	50625.5

- SP, RJ & MG have highest freight value
- States like PR and RR have lowest freight value
- ❖ Difference between highest and lowest average freight value is very large
- There are states like RR, PR where freight is very high, these areas can be focused to cut operation cost related to freight

5.

1. Calculate days between purchasing, delivering and estimated delivery

SELECT

from

order_delivered_customer_date)) as days_to_delivery

FROM

`sqldemo-381616.Target_BusinessCase.Orders`;

SELECT

abs(extract(day from order_estimated_delivery_date) - extract (day from order_deliver ed_customer_date)) as diff_estimated_deliveryDays

FROM

`sqldemo-381616.Target_BusinessCase.Orders`;

JOB INFORMATION				
Row	time_to_delivery			
1	0			
2	0			
3	28			
4	29			
5	27			
6	29			
7	27			
8	0			
9	0			
10	Λ			

JOB INFORMATION				
Row	diff_estimated_c			
1	26			
2	26			
3	26			
4	27			
5	30			
6	29			
7	29			
8	29			
9	26			
10	26			

2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_purchase_timestamp order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

SELECT

abs(extract(hour from order_purchase_timestamp) - extract (hour from order _delivered_customer_date)) as time_to_delivery

FROM

`sqldemo-381616.Target_BusinessCase.Orders`;

SELECT

abs(extract(hour from order_estimated_delivery_date) - extract (hour from or der_delivered_customer_date)) as diff_estimated_delivery

FROM

`sqldemo-381616.Target_BusinessCase.Orders`;

Row	time_to_delivery 🔻
1	23
2	23
3	23
4	23
5	23
6	23
7	23
8	23
9	23
10	23

- Highest avg time to delivery is 28 days is in state RR
- avg difference of estimated vs delivered date ranges from 8-20 days. The variance can be improved to give smoother experience to customers
- Highest Avg time to deliver a product is 28 days which is very high. This can be worked upon to cut delivery time to make customers more satisfied.

Query results				
JOB IN	NFORMATION	R		
Row	diff_estimated_c			
1	7			
2	5			
3	7			
4	6			
5	3			
6	7			
7	3			
8	3			
9	3			
10	3			

- SP has lowest avg time to delivery which is 8 days
- ❖ Avg difference of delivery vs estimated dates differ in the range of 8-20 days
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT

```
c.customer_state as State,
        Round(avg(oi.freight_value),2) as Mean_Freight,
        Round(abs(avg(extract(hour from o.order_purchase_timestamp)-
        extract(hour from o.order_delivered_customer_date))),0) as time_to_delivery
        Round(abs(avg(extract(day from o.order_estimated_delivery_date)-
        extract(day from o.order_delivered_customer_date))),0) as diff_estimated_de
        livery
FROM
        `sqldemo-381616.Target_BusinessCase.Customers` c
join
        `sqldemo-381616.Target_BusinessCase.Orders` o
on
        c.customer_id = o.customer_id join `sqldemo-
        381616.Target_BusinessCase.OrderItems` oi
        o.order_id = oi.order_id
group by
        c.customer_state
order by
        Mean_Freight desc;
```

	-	
-	•	
	•	

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXECUT
Row	State	/1	Mean_Freight	time_to_delivery	diff_estimated_c
1	RR		42.98	2.0	2.0
2	PB		42.72	1.0	1.0
3	RO		41.07	0.0	0.0
4	AC		40.07	1.0	2.0
5	PI		39.15	1.0	1.0
6	MA		38.26	0.0	0.0
7	ТО		37.25	0.0	0.0
8	SE		36.65	1.0	1.0
9	AL		35.84	0.0	0.0
10	PA		35.83	1.0	0.0

5.

```
select
                c.customer_state,Round(avg(oi.freight_value),2) as Average_freight_value
        FROM
                `sqldemo-381616.Target_BusinessCase.Customers` c
        join
                `sqldemo-381616.Target_BusinessCase.Orders` o
        on
                 c.customer_id = o.customer_id
        join
                 `sqldemo-381616.Target_BusinessCase.OrderItems` oi
        on
                o.order_id = oi.order_id
        group by
                c.customer_state
        order by
                Average_freight_value desc
        limit 5;
select
        c.customer_state,
        Round(avg(oi.freight_value),2) as Average_freight_value
FROM
```

```
`sqldemo-381616.Target_BusinessCase.Customers` c

join

`sqldemo-381616.Target_BusinessCase.Orders` o

on

c.customer_id = o.customer_id

join

`sqldemo-381616.Target_BusinessCase.OrderItems` oi

on

o.order_id = oi.order_id

group by

c.customer_state

order by

Average_freight_value

limit 5;
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECU
Row	customer_state	//	Average_freight_	
1	RR	**	42.98	
2	PB		42.72	
3	RO		41.07	
4	AC		40.07	
5	PI		39.15	

JOB IN	IFORMATION	RESULTS	JSON
Row	customer_state	6	Average_freight_
1	SP		15.15
2	PR		20.53
3	MG		20.63
4	RJ		20.96
5	DF		21.04

6. SELECT

c.customer_state as State,

 $\label{lem:cond} Round(abs(avg(extract(Hour from o.order_purchase_timestamp)-extract(Hour from o.order_delivered_customer_date))), \cite{O}) as time_to_delivery$

```
`sqldemo-381616.Target_BusinessCase.Customers` c
join
        `sqldemo-381616.Target_BusinessCase.Orders` o
on
        c.customer_id = o.customer_id
join
        `sqldemo-381616.Target_BusinessCase.OrderItems` oi
on
        o.order_id = oi.order_id
group by
        c.customer_state
order by
        time_to_delivery desc
limit 5;
SELECT
        c.customer_state as State,
        Round(abs(avg(extract(Hour from o.order_purchase_timestamp)-
        extract(hour from o.order_delivered_customer_date))),0) as time_to_delivery
FROM
        `sqldemo-381616.Target_BusinessCase.Customers` c
join
        `sqldemo-381616.Target_BusinessCase.Orders` o
on
        c.customer_id = o.customer_id
join
        `sqldemo-381616.Target_BusinessCase.OrderItems` oi
on
        o.order_id = oi.order_id
group by
        c.customer_state
order by
        time_to_delivery
limit 5;
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EX
Row	State		time_to_delivery	
1	CE		2.0	
2	MG		2.0	
3	RJ		2.0	
4	GO		2.0	
5	DF		2.0	

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXE
Row	State	li	time_to_delivery	
1	AP S	tate	0.0	
2	PE		1.0	
3	SP		1.0	
4	MA		1.0	
5	AL		1.0	

7. SELECT

```
c.customer_state as State,
        Round(abs(avg(extract(hour from o.order_estimated_delivery_date)-
        extract(hour from o.order_delivered_customer_date))),0) as diff_estimated_delivery
 FROM
        `sqldemo-381616.Target_BusinessCase.Customers` c join `sqldemo-
        381616.Target_BusinessCase.Orders` o
on
        c.customer_id = o.customer_id
join
        `sqldemo-381616.Target_BusinessCase.OrderItems` oi
        o.order_id = oi.order_id
group by
        c.customer_state
order by
        diff_estimated_delivery desc
limit 5;
```

Query re	esults
----------	--------

JOB IN	IFORMATION	RESULTS	JSON	EXE
Row /	State	10	diff_estimated_d	
1	SP		16.0	
2	MT		16.0	
3	MA		16.0	
4	MG		16.0	
5	AL		16.0	

Query results JOB INFORMATION JSON RESULTS **EXECU** diff_estimated_d Row State РΒ 15.0 1 2 AC 15.0 3 ΑP 15.0 4 SP 16.0 5 RS 16.0

6. 1. SELECT

```
FORMAT_DATETIME("%B",DATETIME (o.order_purchase_timestamp))

as Month_Name,p.payment_type as payment_type, count(*) as Count_of_Orders

FROM

`sqldemo-381616.Target_BusinessCase.Orders` o

left join

`sqldemo- 381616.Target_BusinessCase.Payments` p

on

o.order_id = p.order_id

group by

payment_type,

Month_Name

order by

Count_of_Orders desc

LIMIT 10;
```


JOB I	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXECUT
Row	Month_Name	le	payment_type	h	Count_of_Orders
1	May		credit_card		8350
2	August		credit_card		8269
3	July		credit_card		7841
4	March		credit_card		7707
5	April		credit_card		7301
6	June		credit_card		7276
7	February		credit_card		6609
8	January		credit_card		6103
9	November		credit_card		5897
10	December		credit_card		4378

2. select

Query results		
JOB IN	IFORMATION	RESULTS
Row	installments //	Count_of_orders
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626
10	9	644

Most of the credit card payments are having 3 or less installments, this information can be used to cross sell more products to people who use credit card.