Lecture 13

Protein-protein Docking

Protein-Protein Docking

Ab initio **Protein-protein docking** is the determination of the molecular structure of *complexes* formed by two or more proteins without the need for *experimental* measurement.

Background

Aloy et al. (2004). Nat. Biotechnology

Calderwood M A et al. (2007) *PNAS* **104**, 7606-7611.

Protein Interaction

- ➤ Identify the interacting surface for two given protein molecules.
 - To model the protein complex structure formed out of two protein molecules — protein-protein docking

Docking Strategy

Generation methods

- Tagline "Higher the decoys; better the possibility of having a hit"
- How many is good?
- Move to discrete space

Geometric Hashing

- Models are represented in a redundant affine invariant way and stored in a table (off-line).
- Hashing is used for organizing and searching the table.

Affine Invariants

- Each triplet of <u>non-collinear</u> model points forms a basis of a coordinate system that is invariant under affine transformations.
- Represent model points in an affine invariant way by rewriting them in terms of this coordinate system.

(u,v) are affine invariant!

Preprocessing and Recognition

Preprocessing Step

For each model do:

- (1) Extract model's point features.
- (2) For each ordered set of three, non-collinear, points (p_1, p_2, p_3)
 - (a) Compute the coordinates (u,v) of the remaining features in the coordinate frame defined by the model basis (p_1, p_2, p_3)
 - (b) After a proper quantization, use the computed coordinates (u,v) as an index to a two dimensional hash table, and record in the corresponding hash table bin the information (model, (p₁, p₂, p₃))

Hash Function: $h(Q(u), Q(v)) \rightarrow$

Preprocessing and Recognition

Recognition Step

- (1) Extract the image point features
- (2) Choose an arbitrary ordered pair (p'₁, p'₂, p'₃)
- (3) Compute the coordinates (u',v'), of the remaining feature points in the coordinate frame defined by the image basis (p'_1, p'_2, p'_3)
- (4) After quantization, use the computed coordinates as an index to the hash table. For every entry (model, (p_1, p_2, p_3)) found in the corresponding bin, cast a vote.

Recognition Step (cont'd)

- (5) Histogram all the hash table entries that received one or more votes. Determine those entries that received more than a certain number of votes -- each such entry corresponds to a potential match (hypothesis generation).
- (6) For each potential match, consider all the model-image feature pairs which voted for a particular entry, and recover the affine transformation A that results in the best least-squares match between all the corresponding feature points.

Recognition Step (cont'd)

- (7) Map the model onto the image using the computed transform and compare the model edges with the image edges (verification step).
- (8) If the verification fails for all the models computed in step
- (5), go back to step (2) and repeat the procedure using a different image basis.

Recognition Example

Bad hypothesis

Complexity

• Preprocessing Step:

 $O(Mm^4)$

Recognition Step:

worst case: O(i⁴Mm⁴)

(M: #models, m: #model points, i: #scene points)

Geometric Hashing

Pro:

* Faster

Con:

- ❖ Storage requirement is very high and increases with the increase in object points.
- ❖ Proper identification of object points are crucial for the success.