Inlab8 – Big-O Notation

Objective

The objective of this in lab is to gain some practice with Big-O notation.

The definition of Big-O notation is as follows:

Suppose f and g are real-valued functions defined on the non-negative integers. We say:

$$f \in O(g) \Leftrightarrow \exists c > 0$$
, and $n_0 \ge 0$ such that $\forall n \ge n_0$ $f(n) \le cg(n)$

In this exercise f will be the running time function T(n) for the program or algorithm in question. The function g will be a simple function like n, n^2 , n^3 , etc.

Part I

For each T(n) below, what is the Big-O complexity? You should provide the "tightest" simple function:

- 1. T(n) = 10n + 100
- 2. $T(n) = 3n^2 + 1$
- 3. $T(n) = n^4 / 100 + 9999n^3 100n + 2000$
- 4. T(n) = 10
- 5. $T(n) = n + 10\log(n)$

Part II

For each f and g, decide if $f \in O(g)$.

If you think the answer is true, indicate appropriate c and n_0 choices.

f	$oldsymbol{g}$
20n	n + 5
100	n + 5
$3n^3$	$10n^2 + n$
$log_2(n)$	n
100 n ²	$n^3 / 100$

What to Turn In

Turn in your written answers to the TA.