Proposta di soluzione

a cura di Stefano Cherubin*

prova del 13/02/2015

 $[{\bf Informatica~A}]$ Seconda prova in itinere, corso per Ing. Gestionale a.a. 2014/15

 $^{^*{&}lt;} nome.cognome{>} @polimi.it$

Indice

1	Analisi di codice						
	1.1 Osservazioni	3					
	Produzione di codice (struct) 2.1 Soluzione	4					
	Produzione di codice (matrici)	5					

1 Analisi di codice

Si dica cosa stampa il seguente codice e si spieghi cosa calcola la funzione ${\tt f}.$

```
void f(int a, int b) {
  if(!(b > 1 && b <= 10))
    return;
  if (a/b <= 0)
    printf("\n");
  else
    f(a/b, b);
  printf("%d", a % b);
  return;
int main() {
  int i = 0;
  char c;
  int v1[5] = \{7, 16, 34, 4, 2\};
  int v2[5] = \{2, 8, 6, 2, 2\};
  for (i = 0; i < 5; i++) {
    f(v1[i], v2[i]);
  scanf("%c",&c);
  return 0;
```

1.1 Osservazioni

La funzione f è ricorsiva. Essa prevede due casi base e un passo induttivo:

- caso base: $b \notin [2; 10]$, non esegue nulla
- caso base: $a/b \le 0$, va a capo, poi stampa a%b
- passo induttivo: a/b > 0, esegue f su a/b, b

La funzione main dichiara e inizializza 2 vettori, ciascuno di 5 elementi, e chiama la funzione una volta per ogni elemento dei vettori.

1.2 Soluzione

La funzione f esegue in modo ricorsivo l'algoritmo di cambio di base per divisioni successive. L'algoritmo non gestisce basi maggiori di 10.

Il programma fornisce in output la codifica di 7 in base 2; 16 in base 8; 34 in base 6; 4 in base 2 e 2 in base 2.

```
111 20 54 100 10
```

2 Produzione di codice (struct)

Si consideri la seguente definizione di punto:

```
typedef struct {
  int x;
  int y;
} punto;
```

Scrivere una funzione f che riceve in input:

- una matrice M di interi
 - di dimensione NxN, con N costante predefinita da una #define
- un vettore di punti
 - di dimensione N

```
int f(int M[][N], punto punti[N]);
```

La funzione deve restituire la somma di tutti i valori della matrice le cui coordinate sono indicate nel vettore di punti e che risultano essere coordinate valide della matrice.

2.1 Soluzione

```
1
  int f(int M[][N], punto punti[N]) {
2
     int i, somma;
3
     somma = 0;
     for (i = 0; i < N; i++) {
4
5
       if (punti[i].x >= 0 && punti[i].x < N &&</pre>
          punti[i].y >= 0 && punti[i].y < N) {</pre>
6
          somma += M[punti[i].x][punti[i].y];
       }
8
     }
9
     return somma;
10 }
```

3 Produzione di codice (matrici)

Implementare la funzione #define che riceve in input due matrici:

- A
- di dimensione NxN, con N costante predefinita da una #define di valore pari
- B
- di dimensione N/2

```
int riduci(int A[][N], int B[][N/2])
```

La funzione calcola i valori di B partendo da quelli di A nel seguente modo: ciascun punto di B sarà calcolato come la media di quattro punti adiacenti di A, come mostrato in figura:

a_{00}	a_{01}	b_{00}	b_{01}			
a_{10}	a_{11}	b_{10}	b_{11}		a	b
c_{00}	c_{01}	d_{00}	d_{01}		c	d
c_{10}	c_{11}	d_{10}	d_{11}			
<u>[1</u>	2 1	.00 1	[00			
3	4	10	2	ſ	2	53
10	10	20	1	[1	l1	8
12	12	10	2	_		_

3.1 Soluzione

```
1
  int riduci (int A[][N], int B[][N /2]) {
2
     int i, j;
3
     for (i = 0; i < N/2; i++) {
4
       for (j = 0; j < N/2; j++) {
         B[i][j] = A[i * 2][j * 2];
6
         B[i][j] += A[i * 2 + 1][j *
7
         B[i][j] += A[i * 2][j * 2 + 1];
         B[i][j] += A[i * 2 + 1][j * 2 + 1];
8
9
         B[i][j] /= 4;
10
11
     }
12
     return 0;
13
```

Licenza e crediti

Crediti

Quest'opera contiene elementi tratti da materiale di Alessandro Campi redatto per il corso di Informatica A per Ingegneria Gestionale a.a. 2014/15.

Licenza beerware¹

Quest'opera è stata redatta da Stefano Cherubin. Mantenendo questa nota, puoi fare quello che vuoi con quest'opera. Se ci dovessimo incontrare e tu ritenessi che quest'opera lo valga, in cambio puoi offrirmi una birra.

 $^{^{1} \}rm http://people.freebsd.org/{^{\sim}} phk/$