## Privacy-Preserving Data Analysis via the Johnson-Lindenstrauss Transform

CS798: Course Project — Presentation

Shlok Mishra, Srishti Chandra

IIT Kanpur Differential Privacy in Machine Learning Instructor: Dr. Sayak Chowdhury

20.04.2025



#### Contents

- Introduction and Motivation
- 2 Johnson-Lindenstrauss Transform
- 3 Differential Privacy Overview
- Privacy-Preserving Dimensionality Reduction
- 5 Comparisons with Alternative Privacy Methods
- 6 JL Transform as an Inherently Private Mechanism
- Theoretical Guarantees and Open Problems

## Differential Privacy in Dimensionality Reduction Using the JL Transform

- With the growth of data-intensive applications, privacy-preserving data analysis is becoming crucial in machine learning and statistics.
- Dimensionality reduction techniques, like the Johnson-Lindenstrauss (JL) transform, help to simplify data while preserving key structural properties.
- Two influential studies by Kenthapadi et al. [2013] and Blocki et al. [2012] demonstrate that the JL transform can also enhance differential privacy.
- We explore how the JL transform can be leveraged not only to reduce dimensionality but also to ensure rigorous privacy guarantees.

### Motivation: Curse of Dimensionality & Privacy Needs

- High-dimensional data poses challenges:
  - Computational complexity grows significantly with data dimension.
  - Data sparsity makes algorithms inefficient and prone to overfitting.
- Privacy challenges:
  - Sharing detailed, high-dimensional data can inadvertently leak sensitive individual information.
  - Conventional anonymization methods are inadequate against sophisticated privacy attacks.
- Our goal: Use random projections (JL transform) to simultaneously achieve dimensionality reduction and differential privacy, facilitating safer and more efficient data analysis.

### Illustration of the Curse of Dimensionality



Distances to nearest and farthest points as n increases (Image by the author)

#### **Curse of Dimensionality Illustration**

- In high-dimensional spaces, all points tend to become nearly equidistant from each other. This is a hallmark of the curse of dimensionality.
- Loss of contrast: It becomes difficult to distinguish between "close" and "far" points, which undermines the effectiveness of algorithms that rely on distance (such as clustering, nearest neighbor search, etc.).
- Interpretation: As the dimension increases, the usefulness of distance as a measure of similarity diminishes.

#### Johnson-Lindenstrauss Lemma: Intuition

- The Johnson-Lindenstrauss lemma enables dimensionality reduction by approximately preserving distances between points.
- Intuition: Randomly projecting data points from a high-dimensional space onto a much lower-dimensional space typically preserves pairwise distances up to a small distortion.
- Useful in scenarios where exact distances are less critical than relative distances.
- Enables efficient storage, computation, and visualization of high-dimensional datasets.

#### Johnson-Lindenstrauss Lemma: Dimentionality Reduction

#### Linear Dimensionality Reduction



Figure: Johnson-Lindenstrauss Theoram Solves This Question

Shlok Mishra, Srishti Chandra IIT Kanpur 20.04.2025 7/27

#### Johnson-Lindenstrauss Lemma: Formal Statement

• Formally, for any set of points in  $\mathbb{R}^d$ , there exists a random linear projection to  $\mathbb{R}^k$  (with  $k=O(\frac{\log n}{\epsilon^2})$ ) such that:

$$(1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$$

- ullet Here, u and v are any two points,  $\epsilon$  is the allowed distortion, and n is the number of points.
- Projection matrix often chosen randomly from Gaussian or binary distributions for practical ease.

Shlok Mishra, Srishti Chandra

#### Differential Privacy: Concept and Definition

- Differential privacy provides strong guarantees against privacy breaches by limiting the influence of individual data points.
- Definition: A randomized algorithm A is  $(\epsilon, \delta)$ -differentially private if for any two datasets X and X' differing by one individual's data, and for any event  $S \subseteq \mathsf{Range}(A)$ :

$$\Pr[A(X) \in S] \le e^{\epsilon} \cdot \Pr[A(X') \in S] + \delta$$

- $\epsilon$ : privacy budget (smaller  $\epsilon$  means stronger privacy).
- $\delta$ : probability of privacy guarantee failure (usually very small).

### Mechanisms for Differential Privacy (Noise & Sensitivity)

- Key mechanisms to achieve differential privacy include adding carefully calibrated random noise to query outputs.
- Laplace mechanism: Adds Laplace-distributed noise scaled to the query's  $\ell_1$ -sensitivity, suitable for  $(\epsilon,0)$ -privacy.
- ullet Gaussian mechanism: Adds Gaussian noise scaled to  $\ell_2$ -sensitivity, suitable for  $(\epsilon,\delta)$ -privacy and commonly used for its tighter concentration around zero.
- Sensitivity: Measures maximum possible change in the query result from altering one individual's data. Lower sensitivity allows adding smaller noise, thereby preserving more utility.

#### Key Differences

| Aspect            | Kenthapadi et al. [2013]                                                      | Blocki et al. [2012]                                                                   |  |
|-------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Noise Addition    | Explicit Gaussian noise added after projection.                               | No explicit noise; relies solely on randomness from projection.                        |  |
| Data Requirements | No stringent requirements on data structure.                                  | Requires specific data conditions (large singular values, rank-1 bounded differences). |  |
| Applications      | General-purpose distance-based analysis (e.g., clustering, nearest neighbor). | Specific linear-algebraic and graph-based queries (cuts, covariance matrices).         |  |
| Utility Advantage | Good accuracy and minimal distortion in distances due to controlled noise.    | Superior scalability (dimension-independent noise magnitude).                          |  |

Table: Key Differences Between Kenthapadi et al. [2013] and Blocki et al. [2012]

#### Privacy via JL Transform - Algorithm

- Kenthapadi et al. [2013] propose using JL transform combined with Gaussian noise addition to achieve differential privacy.
- Procedure:
  - **4** Generate a random JL projection matrix P.
  - ② Project original data points using y = Px.
  - **3** Add Gaussian noise  $\mathcal{N}(0, \sigma^2 I_k)$  to each projected point to preserve privacy.
- ullet Resulting noisy projection  $ilde{y}$  provides rigorous privacy guarantees while maintaining geometric structures.

#### JL Projection Workflow with Privacy



#### Utility - Preserving Distances with Noise

- Despite adding Gaussian noise, pairwise distances are preserved in expectation.
- Adjusted distance calculation:

$$\|\tilde{y}_i - \tilde{y}_j\|^2 - 2k\sigma^2$$

removes the expected noise contribution, yielding an unbiased estimate of the original squared distance.

• High probability guarantees ensure distances remain close to true values, enabling tasks like clustering and nearest neighbor search effectively.

# Comparisons – Direct Noise Addition and Randomized Response

- Direct noise addition: Adds noise directly to each entry in pairwise distance matrix.
  - Requires significantly higher noise levels to achieve comparable privacy.
  - High sensitivity due to influence of individual changes on many distances.
- Randomized response: Flips individual bits randomly to obscure true data.
  - Performs poorly for moderately different data points.
  - Good for very large or very small differences but ineffective in mid-range scenarios.
- JL transform-based method balances privacy and accuracy effectively, outperforming direct noise addition and randomized response in typical scenarios.

#### JL-Based Differential Privacy for Graphs

- Blocki et al. [2012] proposed that a single Johnson–Lindenstrauss (JL) random projection can provide both dimensionality reduction and differential privacy.
- Goal: Answer many private cut queries efficiently.
- Steps:
  - Smooth edge weights to reduce sensitivity.
  - Apply JL projection to edge-incidence matrix.
  - Publish a noisy Laplacian sketch.
- Output:
  - Use the sketch to estimate any cut size.
  - No extra noise or privacy cost per query.
- **Result:** One-time release → unlimited, private, accurate cut queries.

16 / 27

#### Flowchart: JL-Based DP for Graphs

Input: Graph with Edge Set Smooth Edge Weights (Add small weight to all edges) Apply JL Projection to Edge-Incidence Matrix Compute and Publish Noisy Laplacian Sketch Estimate Any Cut Size Using Published Sketch Accurate, Private Answers for All Cuts

### Comparison of Differential Privacy Mechanisms

| Feature          | Input Pert. | Output Pert. | MW Mech. | JL-Based |
|------------------|-------------|--------------|----------|----------|
| High-Dim Utility | Х           | √ (limited)  | ✓        | 1        |
| Many Queries     | ✓           | Х            | ✓        | ✓        |
| One-Time Publish | ✓           | ✓            | Х        | ✓        |
| Simple to Use    | ✓           | ✓            | Х        | ✓        |
| Non-Interactive  | ✓           | ✓            | Х        | ✓        |

 $\checkmark = Advantage, X = Limitation$ 

#### Theoretical Guarantees – Privacy & Utility Summary

- Both Kenthapadi et al. [2013] and Blocki et al. [2012] methods provide formal differential privacy guarantees.
- Utility guarantees:
  - Distances preserved within small multiplicative and additive errors.
  - Error bounds independent of original data dimensionality.
- Projection-based methods significantly enhance the trade-off between privacy protection and data utility.

### Discussion & Open Questions

- How can privacy guarantees be extended when data distributions are not well-conditioned?
- Improving accuracy for very similar data points remains a challenge.
- Optimal parameter selection (projection dimension, noise levels) for practical applications.
- Exploring JL transform applicability beyond Euclidean distance scenarios.
- Future research directions to expand the practicality and effectiveness of JL-based privacy preservation.

#### Thank You!

Questions?

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform itself preserves differential privacy. In *2012 IEEE 53rd Annual Symposium on Foundations of Computer Science*, pages 410–419, 2012. doi: 10.1109/FOCS.2012.67.

Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. Privacy via the johnson-lindenstrauss transform. *Journal of Privacy and Confidentiality*, 5(1), Aug. 2013. doi: 10.29012/jpc.v5i1.625. URL https://journalprivacyconfidentiality.org/index.php/jpc/article/view/625.

22 / 27

## Appendix A: Privacy Proof Sketch

- DP Guarantee: Add Gaussian noise  $\Delta \sim \mathcal{N}(0, \sigma^2 I)$  with  $\sigma \geq w_2(P) \, \frac{\sqrt{2(\ln \frac{1}{2\delta} + \varepsilon)}}{\varepsilon}$ , where  $w_2(P) = \max_i \|e_i P\|_2$ . (Noise scale matches maximum row-sensitivity of P.)
- Core Lemma: If  $\|Y' Y\|_2 \le w$ , then for any measurable  $S \subset \mathbb{R}^k$ :

$$\Pr[Y' + \Delta \in S] \le e^{\varepsilon} \Pr[Y + \Delta \in S] + \delta.$$

(Extends 1D Gaussian mechanism to k dimensions via spherical symmetry.)

- Proof Sketch:
  - **1** A bit-flip in X changes a single row of XP, so  $||Y'-Y||_2 \le w_2(P)$ .
  - Rotate coordinates to align change along one axis (simplifies densities).
  - Partition output space into:
    - Inner region: bound density ratios by  $e^{\varepsilon}$ .
    - Outer region: use Gaussian tail bound to cap mass by  $\delta$ .

See Section 3.2.1 of the paper for full derivation.



## Appendix B: Utility Proof Sketch

#### Unbiasedness:

$$E[||xP + \Delta - (yP + \Delta')||_2^2 - 2k\sigma^2] = ||x - y||_2^2$$
. (Noise has zero mean; projection preserves expectation.)

#### Variance Decomposition:

Write error 
$$=Z_1+Z_2+Z_3$$
 with  $Z_1=\|(x-y)P\|_2^2,\ Z_2=2\langle(x-y)P,\Delta-\Delta'\rangle,\ Z_3=\|\Delta-\Delta'\|_2^2-2k\sigma^2.$  (Analyzes distortion from projection and from noise.)

#### Variance Formula:

[error] = 
$$2||x - y||_2^4/k + 8\sigma^2||x - y||_2^2 + 8\sigma^4k$$
.  
(Term1: JL randomness: Term23: cross- and noise variance.)

#### Deviation Bound:

With prob. 
$$1 - (\delta_{JL} + \delta_{\chi^2} + \delta_N)$$
,

$$|\mathsf{error} - \|x - y\|_2^2| \le \lambda_{JL} \|x - y\|_2^2 + 4\sigma^2 (\sqrt{k}\lambda_{\chi^2} + \lambda_{\chi^2}^2) + 4\sigma(1 + \lambda_{JL})\lambda_N \|x - y\|_2.$$

(Combine JL lemma for  $Z_1$ , chi-square tails for  $Z_3$ , and Gaussian tail for  $Z_2$ .)

See Section 3.2.2 of the paper for full details.

#### Appendix C: Supporting Lemmas

- Gaussian DP Mechanism: Noise  $\sigma$  gives  $(\varepsilon, \delta)$ -DP if  $\sigma \geq S \sqrt{2(\ln \frac{1}{2\delta} + \varepsilon)}/\varepsilon$  where S=sensitivity.
- Johnson–Lindenstrauss Lemma:  $M \in {}^{r \times m} \sim N(0,1)$  for any x,  $(1-\lambda)\|x\|^2 \leq \frac{1}{\pi}\|Mx\|^2 \leq (1+\lambda)\|x\|^2$  w.p.  $1-2e^{-r\lambda^2/8}$ .
- Tail Bounds:
  - Gaussian:  $\Pr[|N(0,1)| > t] \le e^{-t^2/2}$ .
  - Chi-square:  $\Pr[\chi_k^2 > k + 2\sqrt{kx} + 2x] \le e^{-x}$ . (Used to bound  $Z_3$  and DJL deviations.)

## Appendix D: Graph DP Proof Sketch

- Row-wise DP: Each sample  $y^T E_G$  is a Gaussian with cov  $L_G$ , so by 1D analysis, it satisfies  $(\varepsilon_0, \delta_0)$ -DP for  $\varepsilon_0 = \varepsilon/\sqrt{4r\ln(2/\delta)}$ ,  $\delta_0 = \delta/(2r)$ .
- Matrix-level bounds:
  - $L_G \leq L_{G'}$  after smoothing covariances monotonic.
  - Eigenvalues  $\sigma_i(L_G) \geq w$  well-conditioned.
  - Determinant ratio  $\sqrt{\det L_{G'}/\det L_{G}} \leq e^{\varepsilon_0/2}$ .
- PDF Ratio:

$$\frac{G'(x)}{G(x)} = \frac{e^{-\frac{1}{2}x^T L_G^{\dagger} x}}{e^{-\frac{1}{2}x^T L_G^{\dagger} x}} \cdot \sqrt{\frac{\det L_G}{\det L_{G'}}} \le e^{\varepsilon_0} + \delta_0.$$

• Compose r independent rows overall  $(\varepsilon, \delta)$ -DP.

See Section 3.1 of Blocki et al. for derivation.

### Appendix E: Graph Utility Proof Sketch

- JL Preservation:  $\frac{1}{r}\|ME_G1_S\|^2=(1\pm\eta)1_S^TL_G1_S$  w.p.  $1-\nu$  by JL lemma.
- Smooth Laplacian: Published  $L_H = \frac{w}{n}K + (1 \frac{w}{n})L_G$  shifts all eigenvalues w/n.
- Query Recovery:  $R(S) = \frac{1}{1-w/n}(y \frac{w}{n}s(n-s))$  exacts the cut size.
- $\begin{array}{l} \bullet \ \ \ \ \, \text{Error: Multiplicative} \ 1 \pm \eta \ \text{plus additive} \ O\big(s \cdot \eta\big) = O\big(s \frac{\sqrt{\ln(1/\delta) \ln(1/\nu)}}{\varepsilon}\big). \\ (\textit{Combine JL distortion with arithmetic on} \ L_H.) \end{array}$

See Theorem 3.2 of Blocki et al. for full proof.

Shlok Mishra, Srishti Chandra

#### Appendix F: Covariance Algorithm Proof Sketch

- Data Translation: Add deterministic offset so singular values  $\sigma_i(A) \geq w$ . (Ensures 'small' directions get lifted above sensitivity floor.)
- Row-wise DP: Each projected row of MA is Gaussian with cov  $AA^T$ , so DP as in D.
- JL-Utility: For any unit vector x,

$$\|(MA/\sqrt{r})^T x\|^2 = (1 \pm \eta) \|Ax\|^2 + w^2 \eta.$$

(JL lemma on rows of A in translated basis.)

• Resulting Error: Subtract  $w^2$  to center variance multiplicative  $(1\pm\eta)$ , additive  $O(\eta w^2) = O\Big(\frac{\ln(1/\delta)\ln(1/\nu)}{\varepsilon^2\eta}\Big)$ .

See Section 4 of Blocki et al., for details,