

概述

CH132 是 ULPI 接口的高速 USB 收发器芯片(USB PHY、High Speed Transceiver),兼容 USB 2.0 协议规范和 UTMI+ Low Pin Interface (ULPI) 1.1 协议规范。支持 USB2.0 高速 480Mbps、全速 12Mbps 和低速 1.5Mbps 数据发送和接收,可用于为具有 ULPI 接口的 MCU 或 FPGA 扩展 USB 主机口或者设备口。

特点

- 兼容 USB 2.0 协议规范
- 兼容 UTMI+ Low Pin Interface (ULPI) 1.1 协议规范
- 12 Pin 的 ULPI 接口,1.8V~3.3V IO 电平,60MHz 时钟
- 支持 USB host 主机和 USB device 设备
- 支持 USB 高速 High Speed、全速 Full Speed 和低速 Low Speed
- 支持3线或6线的全速或低速串行模式
- 支持 D+和 D-信号线交换模式
- 内置 3.3V 低压差线性稳压器,支持 3.3V 或 5V 供电输入
- 内置上电复位电路、内置时钟振荡器和 PLL
- 内置阻抗匹配电阻, 内置振荡电容, 外围电路精简
- 支持 ULPI 输入时钟和输出时钟模式
- USB 引脚具有 6KV 增强 ESD 性能
- 工业级温度范围: -40~85℃
- 提供 QFN24 和 QFN32 等多种封装形式

CH132 数据手册 1 http://wch. cn

第1章 引脚信息

1.1 引脚排列

图 1-1 引脚分布

注: 0#引脚是 QFN 封装的底板。

1.2 封装

表 1-1 封装说明

封装形式	塑体宽度		引脚节距		封装说明	订货型号
QFN20C_2x2	2*2mm		0. 32mm	12.6mil	WCH 四边无引线 20 脚	CH132C
QFN24_4×4	4*4mm		0. 5mm	19. 7mil	四边无引线 24 脚	CH132F
QFN32_5x5	5*5mm		0. 5mm	19. 7mil	四边无引线 32 脚	CH132B
QFN32_5x5	5*5mm		0. 5mm	19. 7mil	四边无引线 32 脚	CH132A
QFN32_5x5	5*5mm		0. 5mm	19. 7mil	四边无引线 32 脚	CH132X

注: CH132B 基于 CH132A 升级, 增加了 VDD10 引脚, 向前兼容 CH132A 引脚。

新设计可用 CH132C/F/B/X, 优选小体积的 CH132C。

1.3 引脚描述

表 1-2 引脚定义

引脚号		引脚	类型	┰ ╽ ┷┺╌┼╈			
132C	132F	132A	132B	132X	名称	英空	功能描述
20	13	18	18	7	D+	USB	USB2. 0 高速差分信号线 DP
19	14	19	19	8	D-	USB	USB2. 0 高速差分信号线 DM
_	_	1	-	ı	CLK	0	ULPI 60MHz 时钟信号输出
7	2	1	1	14	CLK	1/0	ULPI 60MHz 时钟信号输出或 60MHz 时钟信号输入
4	3	2	2	11	NXT	0	ULPI Next 信号输出
6	1	31	31	12	DIR	0	ULPI Direction 信号输出
5	24	29	29	13	STP	I	ULPI Stop 信号输入,内置可控上拉电流
10	4	3	3	24	D0	1/0	ULPI 双向数据线 DATAO,内置弱下拉电阻
11	5	4	4	23	D1	1/0	ULPI 双向数据线 DATA1,内置弱下拉电阻
12	6	5	5	22	D2	1/0	ULPI 双向数据线 DATA2,内置弱下拉电阻
13	7	6	6	21	D3	1/0	ULPI 双向数据线 DATA3,内置弱下拉电阻
14	8	7	7	20	D4	1/0	ULPI 双向数据线 DATA4,内置弱下拉电阻
15	10	9	9	19	D5	1/0	ULPI 双向数据线 DATA5,内置弱下拉电阻
16	11	10	10	18	D6	1/0	ULPI 双向数据线 DATA6,内置弱下拉电阻
17	12	13	13	17	D7	1/0	ULPI 双向数据线 DATA7,内置弱下拉电阻
_	_	26	_	=	ΧI	IL	晶振输入端,外接 12MHz 晶体一端,或外部时钟输入

9	21	-	26	27	ХІ	IL	晶振输入端,外接 12MHz 晶体一端,或外部时钟输入,或短接 GND 则选择从 CLK 引脚输入 ULPI 时钟模式
8	20	25	25	28	ХО	0L	晶振反相输出端,需外接 12MHz 晶体另一端
18	22	27	27	_	RESET#		复位信号输入,低电平有效,内置上拉电阻
-	-	-	-	9	RESET	I	复位信号输入,高电平有效,内置下拉电阻
_	17		22	4	VBUS	_	VBUS 检测输入,高电平有效,内置上拉电阻,
	17		22	4	VD03	•	部分型号或批号不支持 VBUS,建议悬空或短接 VDD33
_	16	21	21	30	V5	Р	5V 或 3. 3V 电源输入,外接 1uF \sim 10uF 退耦电容
_	15	20	20	6	VDD33	Р	LDO 输出及 3.3V 电源输入,外接 0.1uF 并联 1uF~10uF
	13	20	20	U	VDD33	-	退耦电容
3	-	32	_	25	VDD33	Р	3. 3V 电源输入
1	9		32	32 16 VDD10	VDDIO	DIO P	ULPI 接口 I/0 信号电源电压,支持 1.8V、2.5V、3.3V
	9	_	32	10	טוטטע		电压,外接 0. 1uF 或 1uF 退耦电容
2	19	24	24	1, 2	GND	Р	公共接地端,可选但建议连接 GND
0	0	0	0	0	GND	Р	公共接地端(QFN 底板),必要连接
-	18, 23	8, 11, 12, 14, 15, 16, 17, 22, 23, 28, 30	8, 11, 12, 14, 15, 16, 17, 23, 28, 30	3, 5, 10, 15, 26, 29, 31, 32	NC.		空脚或保留引脚,禁止连接

引脚类型:

- (1) I: 对于 CH132A 是 3. 3V 信号输入,对于 CH132C/F/B/X 是 VDD10 电压的信号输入。
- (2) 0: 对于 CH132A 是 3. 3V 信号输出,对于 CH132C/F/B/X 是 VDD10 电压的信号输出。
- (3) IL: 额定 1. 2V 电压的信号输入,支持 1. 2V \sim 1. 4V 电压的信号输入。
- (4) OL: 额定 1.2V 电压的信号输出。
- (5) P: 电源或地。
- (6) USB: USB 信号。

第2章 基本功能

2.1 时钟和复位

2.1.1 时钟源

CH132 需要 12MHz 时钟源,可以从 XI 引脚输入时钟并保持 XO 悬空,或者将外部 12MHz 晶体连接在 XI 和 XO 引脚上通过内部振荡器产生时钟源。CH132 再通过 PLL 产生芯片所需的多个时钟:

- USB 低速数据传输使用的 1.5MHz 时钟
- USB 全速数据传输使用的 12MHz 时钟
- USB 高速数据传输使用的 480MHz 时钟
- ULPI 接口控制器使用的 60MHz 时钟
- 其它内部数据处理时需要的时钟

默认情况下为输出 ULPI 时钟模式,从 CLK 引脚向 ULPI 链接器 LINK 输出 60MHz 时钟。

CH132C/F/B/X 还支持输入 ULPI 时钟模式,上电复位期间,如果 CH132 检测到 XI 引脚短接 GND,则 CLK 引脚为时钟输入,由 ULPI 链接器 LINK 提供 60MHz 时钟,CH132 再由此产生所需的各时钟。

2.1.2 上电复位

CH132 内置了上电复位模块,一般无需外部提供复位信号,当电源上电时,芯片内部 POR 上电复位模块会产生上电复位时序,并延时 Trpor 以等待电源稳定。在运行过程中,当电源电压低于 V_w 时,芯片内部 LVR 低压复位模块会产生低压复位直到电压回升,并延时以等待电源稳定。图 2-1 为上电复位过程以及低压复位过程。

2.1.3 外部复位

外部复位输入引脚 RESET#内置约 $24K\Omega$ 上拉电阻,如果外部需要对芯片进行复位,那么可以将该引脚驱动为低电平(建议开漏驱动),复位的低电平脉宽至少 Twreset。建议不要再外接上拉电阻。

CH132X 的外部复位输入引脚 RESET 内置下拉电阻,驱动该引脚为高电平将复位芯片。

2.2 电源

CH132 内置了低压差线性稳压器 LDO。默认为 3.3V 电源, 也支持 5V 电源。

对于 3.3V 供电系统, 3.3V 电源同时输入 VDD33 引脚和 V5 引脚, 用于内部模拟电路。

对于 5V 供电系统, 5V 电源输入 V5 引脚,内部 LD0 在 VDD33 引脚产生 3.3V 电源用于内部模拟电路。CH132C 没有 V5 引脚,不支持 5V 供电。

两种方式下, VDD33 和 V5 引脚都需要外接退耦电容, VDD33 建议 0.1uF 并联 10uF 或 4.7uF。

避免将 VBUS 的 5V 电源直接输入 V5 引脚,建议在 VBUS 与 V5 引脚之间加入过压保护电路。

对于 CH132C/F/B/X, VDD10 引脚用于 I/0 电路供电,支持 1.8V、2.5V、3.3V 电压。对于 CH132A, VDD33 引脚兼用于 I/0 电路供电,仅支持 3.3V 电压。

2.3 USB 收发器

CH132 的 USB 收发器承担了 USB 高速、全速和低速数据收发任务。收发器 Transceiver 包括进行 USB 高速、全速和低速数据发送必需的差分驱动电路,承担 USB 高速、全速和低速数据接收的差分和 单端接受器,探测高速总线活动性的电路,探测高速总线断开的电路。USB 端口内置了多种匹配电阻,包括阻抗匹配电阻、设备上拉电阻、主机下拉电阻等。

关于寄存器和 USB 端口模式的详细关系可以见下表 2-1。

寄存器设置 0P DM_ XCVR TERM DP_ USB 端口模式 SELECT[1:0] **SELECT** MODE [1:0] **PULLDOWN PULLDOWN** 01b 三态驱动 xxb Х Х Х 主机 Chirp 00b 0 10b 1 1 主机高速 00b 0 00b 1 1 主机全速 00b 1 x1b 1 1 主机高速或全速挂起 00b 01b 1 1 1 主机高速或全速恢复 01b 10b 1 1 1 主机低速 10b 1 00b 1 1 主机低速挂起 10b 1 00b 1 1 主机低速恢复 10b 10b 1 1 1 主机发送 J 信号/K 信号 00b 0 10b 1 1 00b 10b 0 0 从机 Chirp 1 从机高速 00b 0 00b 0 0 从机全速 01b 00b 0 0 1 从机高速或全速挂起 01b 1 00b 0 0 从机高速或全速恢复 01b 1 10b 0 0 从机发送 J 信号或 K 信号 00b 0 10b 0 0

表 2-1 寄存器设置和端口模式关系

2.4 ULPI 接口控制器

CH132 提供了兼容 ULPI (UTMI+ Low Pin Interface) 1.1 协议的 12 Pin 接口,这个接口应该连接到 ULPI 链接器 LINK 的 ULPI 接口上,链接器另一端是 USB 控制器。

此 ULPI 接口控制器具有以下功能:

- ULPI 协议兼容的接口和寄存器设置
- 允许通过 USB 主机或从机设备进行功能性控制
- 解析 USB 发送或接收的数据
- 确定 USB 数据发送、数据接收、中断和寄存器操作优先级
- 3线串行模式
- 6线串行模式

2.5 ULPI RX CMD 数据

表 2-2 RXCMD 数据位格式

位	名称	默认值		描述				
			对应 UTMI+ LineState 两个信号:					
[1:0]	LineState	00b	LineState[0]对应接收 DP 的单端数据,					
			LineState[1]对应接收 DM	的单端数据			
[3:2]	Reserved	00b	保留,总是	保留,总是 00				
			UTMI 事件信号编码:					
		00ь	数值	RxActive	RxError	HostDisconnect		
[5.4]	RxEvent		00	0	0	0		
[5:4]	KXEVent		01	1	0	0		
			11	1	1	0		
			10	Х	Х	1		
6	Reserved	0	保留,总是0					
7	Reserved	0	保留,数据需忽略					

2.63线和6线串行模式

CH132 提供了 3 线或 6 线串行模式,根据需要选择 3 线或 6 线接口的串行模式以传输全速或低速 USB 包。3 线串行模式接口映射如表 2-3 所示,6 线串行模式接口映射如表 2-4 所示。

进入或退出 3 线或 6 线串行模式可以参考 R8_INTF_CTRL 寄存器中关于 3PIN_FSLS_SERIAL 或 6PIN_FSLS_SERIAL 位的描述。

表 2-3 3线串行接口 ULPI 映射表

/≐□	对应 ULPI 接口	士白	描述
旧写	对应 ULPI 接口	力回	畑 坐

信号	对应 ULPI 接口	方向	描述
			模式选择,发送使能,高电平有效
TX_ENABLE	DATAO	I	0:接收数据;
			1: 发送数据
	DATA1	1/0	TX_ENABLE = 1 时,发送 DP 和 DM 的差分数据;
DAT	DATA1		TX_ENABLE = 0 时,接收 DP 和 DM 的差分数据
cco.	DATA2	1/0	TX_ENABLE = 1 时,发送 DP 和 DM 的 SEO 数据;
SE0		1/0	TX_ENABLE = 0 时,接收 DP 和 DM 的 SEO 数据
Reserved	DATA3	O, PD	保留, CH132 引脚输出数据需忽略
Reserved[7:4]	DATA[7:4]	O, PD	保留, CH132 引脚提供下拉电阻或输出低电平

表 2-4 6 线串行接口 ULPI 映射表

信号	对应 ULPI 接口	方向	描述
TX_ENABLE	DATA0	I	发送使能,高电平有效
TX_DAT	DATA1	I	发送 DP 和 DM 的差分数据。
TX_SE0	DATA2	I	发送 DP 和 DM 的 SEO 数据。
Reserved	DATA3	O, PD	保留,CH132 引脚输出数据需忽略
RX_DP	DATA4	0	接收 DP 的单端数据
RX_DM	DATA5	0	接收 DM 的单端数据
RX_RCV	DATA6	0	接收 DP 和 DM 的差分数据
Reserved	DATA7	O, PD	保留, CH132 引脚提供下拉电阻或输出低电平

第3章 ULPI 寄存器

3.1 寄存器描述

本手册中在对寄存器进行描述时可能使用了下列缩写:

寄存器位属性	属性描述
R0	只读属性,数据由硬件生成和改变。
WO	只写属性(不可读,读值不确定)
RW	可读,可写。

CH132 系列芯片 ULPI 接口操作相关寄存器描述,默认基于 CH132B 和 CH132C/F/X。其它型号例如 CH132A,如果存在部分不同则特别加注。本手册不适用于 CH132H。

		THI 1/2					
名称	坩	也址(6 b	it)		描述	有点估	
40 1/10	Read	Write	Set	Clear	田匹	复位值	
R8_VENDOR_ID_L	0x00	ı	ı	-	厂商 ID 寄存器的低字节	0x86 [注 10]	
R8_VENDOR_ID_H	0x01	ı	ı	_	厂商 ID 寄存器的高字节	0x1A [注 11]	
R8_PRODUCT_ID_L	0×02	I	ı	-	产品 ID 寄存器的低字节	0x32 [注 12]	
R8_PRODUCT_ID_H	0×03	-	-	-	产品 ID 寄存器的高字节	0x01 [注 13]	
R8_FUNC_CTRL	0x04 - 0x06	0x04	0x05	0x06	功能控制寄存器	0x41	
R8_INTF_CTRL	0x07 - 0x09	0x07	0x08	0x09	接口控制寄存器	0x00	
R8_OTG_CTRL	0x0A - 0x0C	0x0A	0x0B	0x0C	OTG 控制寄存器	0×06	
R8_USB_INTR_EN_R	0x0D - 0x0F	0x0D	0x0E	0x0F	USB 上升中断使能寄存器	0x01	
R8_USB_INTR_EN_F	0x10 - 0x12	0x10	0x11	0x12	USB 下降中断使能寄存器	0x01	
R8_USB_INTR_STAT	0x13	-	-	-	USB 中断状态寄存器	0x00	
R8_USB_INTR_L	0x14	-	-	-	USB 中断锁存寄存器	0x00	
R8_SCRATCH	0x16 - 0x18	0x16	0x17	0x18	测试寄存器	0x00	
R8_USB_IO_SWAP	0x39 - 0x3B	0x39	0x3A	0x3B	USB I/O 引脚交换寄存器	0x00 [注 14]	
	其它				保留	0x00	

表 3-1 CH132 ULPI 寄存器表

- (1) R: Read, 可读寄存器, 如果没有对应的 W/S/C 则说明是只读寄存器。
- (2) W: Write, 寄存器写入,操作时新的数据将直接覆盖此寄存器原有的数据。
- (3) S: Set, 寄存器按位置 1, 操作时新的数据将与此寄存器原数据按位或运算后写入。
- (4) C: Clear, 寄存器按位清 0, 操作时新的数据将与此寄存器原数据按位与运算后写入。
- 注 10、注 11、注 12、注 13: 对于 CH132A 为 0x00。
- 注 14: CH132A 不支持此寄存器。
- 建议:每次上电或复位后向 R8_FUNC_CTRL 和 R8_OTG_CTRL 寄存器中设置目标参数,不管原值; 无需操作和使用 R8_USB_INTR_*各寄存器,可以用 RXCMD 中的 RxEvent/LineState 状态实现。

功能控制寄存器(R8_FUNC_CTRL, Address R = 04h/05h/06h, W = 04h, S = 05h, C = 06h)

位	名称	访问	描述	复位值
7	Reserved	R0	保留	0
6	SUSPENDM	RW	芯片挂起: 进入低功耗模式,低有效。ULPI 链接器可以通过 STP 退 出低功耗模式。当芯片退出低功耗模式自动置 1 此位。 0: 低功耗模式; 1: 正常。	1
5	RESET	RW	内部复位: 高有效。此复位不复位 ULPI 接口和寄存器。 当复位结束后,芯片将解除 DIR 并自动清零此位。 0: 正常; 1: 使能复位。	0
[4:3]	OP MODE	RW	操作模式:选择传输过程中的位编码方式。 00:正常; 01:不驱动; 10:关闭位插入和 NRZI 编码; 11:保留	00Ь
2	TERM SELECT	RW	端口电阻选项: 控制端口上拉下拉电阻和高速传输匹配电阻,取决于 XCVR SELECT、OP MODE、DP_PULLDOWN和 DM_PULLDOWN。 详见表 2-1	0
[1:0]	XCVR SELECT	RW	收发器速度选择: 00: 使能高速收发器; 01: 使能全速收发器; 10: 使能低速收发器; 11: 使能全速收发器,收发低速包(自动加全速包前缀)	01b

接口控制寄存器(R8_INTF_CTRL, Address R = 07h/08h/09h, W = 07h, S = 08h, C = 09h)

位	名称	访问	描述	复位值
7	INTF_PROT_DIS	RW	关闭接口保护: 当 ULPI 链接器不向 STP 和 DATA[7:0]输出时,控制芯片内 置的 ULPI 接口保护电路。 0:使能 ULPI 接口保护电路,STP 提供弱上拉。 1:关闭 ULPI 保护电路,关闭 STP 的弱上拉	0
[6:2]	Reserved	R0	保留	00000b
1	3PIN_FSLS_SERIAL	RW	3 线全速低速串行模式: 将 ULPI 接口变为 3 位串行接口, 在退出 3 线串行模式时芯	0

		片自动清零此位。 0: 关闭 3 线串行模式,全速低速包通过 ULPI 并口传输; 1: 使能 3 线串行模式,全速低速包通过 3 线接口传输	
O 6PIN_FSLS_SERIAL	RW	6 线全速低速串行模式: 将 ULPI 接口变为 6 位串行接口,在退出 6 线串行模式时芯片自动清零此位。 0: 关闭 6 线串行模式,全速低速包通过 ULPI 并口传输; 1: 使能 6 线串行模式,全速低速包通过 6 线接口传输	0

OTG 控制寄存器(R8_OTG_CTRL, Address R = OAh/OBh/OCh, W = OAh, S = OBh, C = OCh)

位	名称	访问	描述	复位值
[7:3]	Reserved	R0	保留	00000b
			使能 DM 的主机下拉电阻:	
2	DM_PULLDOWN	RW	0: 关闭 DM 的下拉电阻;	1
			1: 使能 DM 的下拉电阻	
			使能 DP 的主机下拉电阻:	
1	DP_PULLDOWN	RW	0: 关闭 DP 的下拉电阻;	1
			1: 使能 DP 的下拉电阻	
0	Reserved	R0	保留	0

USB 上升中断使能寄存器(R8_USB_INTR_EN_R, Address R = ODh/OEh/OFh, W = ODh, S = OEh, C = OFh)

位	名称	访问	描述	复位值
[7:1]	Reserved	R0	保留	0000000ь
0	HOST DISCON R	RW	主机端口断开中断使能:	1
0 HUS1_	11031_D1300N_K	IN W	使能当 HOST_DISCON 从 0 到 1,即断开时产生中断	1

USB 下降中断使能寄存器(R8_USB_INTR_EN_F, Address R = 10h/11h/12h, W = 10h, S = 11h, C = 12h)

位	名称	访问	描述	复位值
[7:1]	Reserved	R0	保留	0000000ь
O HOST DISCON E		DN E DW	主机端口断开中断使能:	1
0 HOST_DISCON_F	HUST_DISCON_F	RW	使能当 HOST_DISCON 从 1 到 0,即连接时产生中断	1

USB 中断状态寄存器(R8_USB_INTR_STAT, Address R = 13h)

位 名称 访问 描述 复位值

位	名称	访问	描述	复位值
[7:1]	Reserved	R0	保留	0000000ь
0	HOST_DISCON	RO	主机端口断开状态: 提供 UTMI+主机端口断开状态值。 0: 已连接,主机端口检测到 USB 设备; 1: 已断开,没有检测到 USB 设备连接。 只支持高速 USB 断开检测,不支持全速和低速断开检测	0

USB 中断锁存寄存器 (R8_USB_INTR_L, Address R = 14h)

位	名称	访问	描述	复位值
[7:1]	Reserved	R0	保留	0000000ь
0	HOST_DISCON	RO	锁存主机端口断开状态: 当一个未屏蔽的 HOST_DISCON 事件发生时,此位置 1,读 取时自动清零	0

测试寄存器 (R8_SCARTCH, Address R = 16h)

位	名称	访问	描述	复位值
[7:0]	SCARTCH	RW	测试使用的寄存器,可读可写,不影响芯片功能	0000000ь

USB I/O 引脚交换寄存器(R8_USB_IO_SWAP, Address R = 39h/3Ah/3Bh, W = 39h, S = 3Ah, C = 3Bh)

位	名称	访问	描述	复位值
[7:2]	Reserved	R0	保留	000000ь
1	USB_IO_SWAP	RW	交换 USB 信号引脚使能: 0: 不交换 D+和 D-引脚; 1: 交换 D+和 D-引脚	0
0	Reserved	R0	保留	0

第4章 参数

4.1 绝对最大值 (临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	${\mathbb C}$
TS	储存时的环境温度	-55	150	${\mathbb C}$
V5	LDO 输入电源电压(V5 引脚接电源,GND 引脚接地)	-0. 4	5. 5	٧
VDD33	3.3V 电源电压(VDD33 引脚接电源,GND 引脚接地)	-0. 4	3. 8	٧
VDD10	VDDIO 引脚的 ULPI 接口 I/O 电源电压	-0. 4	3. 8	٧
VUSB	USB 信号引脚上的电压	-0. 4	VDD33+0. 4	٧
VIO	其它输入或者输出引脚上的电压(不含 XI 和 X0)	-0. 4	VDD33+0. 4 VDD10+0. 4	٧
VXI	XI 引脚上的电压	-0. 3	1. 5	٧
VESD	USB 引脚上的 HBM 人体模型 ESD 耐压		6K	٧

4.2 电气参数 (测试条件: TA=25℃, V5=VDD33=3.3V, VDD10=3.3V, 不含 USB 信号引脚)

名称	参数	参数说明			最大值	单位
	CH132F/B/X	LDO 输入电源电压,	3. 8	5. 0	5. 25	
V5	CH132A	启用内部 LD0	4. 5	5. 0	5. 25	٧
	外供电源电压	无需内部 LD0	3. 15	3. 3	3. 45	
VDD33	LDO 输出电压	启用内部 LD0	3. 15	3. 3	3. 45	٧
אטטט	外供 3. 3V 电压	无需内部 LD0	3. 15	3. 3	3. 45	V
VDD10	ULPI 接口 I/0	1. 7	3. 3	3. 6	٧	
ILD0	内部电源调节器			30	mA	
100	高速 USB 传输		27		mA	
1000	高速空闲状态		19		mA	
ISLP	低功耗模式的电源电		0. 13	0. 4	mA	
VILXI	XI引脚低F	0		0. 3	٧	
VIHXI	XI引脚高雨	0. 9		1. 2	٧	
RPD	D7∼D0 引服	50	70	100	ΚΩ	
VIvr	VDD33 电源低压	复位的电压门限	2. 5	2. 9	3. 15	٧

VDD10=3	VDD10=3.3V							
VIL33	ULPI 接口 I/O 引脚低电平输入电压	0		0. 8	٧			
V1H33	ULPI 接口 I/O 引脚高电平输入电压	1. 9		VDD10	٧			
V0L33	I/O 引脚低电平输出电压 @吸入 12mA 电流		0. 4	0. 6	٧			
V0H33	I/O 引脚高电平输出电压 @输出 12mA 电流	VDD10-0.6	VDD10-0. 4		٧			
IPU33	STP 引脚的上拉电流	20	40	80	uA			
VDD I 0=1	. 8V							
VIL18	ULPI 接口 I/O 引脚低电平输入电压	0		0. 5	٧			
VIH18	ULPI 接口 I/O 引脚高电平输入电压	1. 2		VDDIO	٧			
V0L18	I/0 引脚低电平输出电压 @吸入 5mA 电流		0. 4	0. 6	٧			
V0H18	I/0 引脚高电平输出电压 @输出 5mA 电流	VDD10-0. 6	VDD10-0. 4		٧			
IPU18	STP 引脚的上拉电流	7	15	30	uA			

4.3 时序参数 (测试条件: TA=25℃, V5=VDD33=3.3V, VDD10=3.3V)

名称	参数说明	最小值	典型值	最大值	单位
Fxi	XI 输入时钟频率、XI 外接晶体频率	11. 995	12	12. 005	MHz
Dutyxi	XI 输入时钟的占空比	35	50	65	%
Fstart	初始状态下 ULPI 的 CLK 时钟频率	55	60	65	MHz
Fsteady	稳定状态下 ULPI 的 CLK 时钟频率	59. 97	60	60. 03	MHz
Dutycko	ULPI 的 CLK 时钟的占空比	45	50	55	%
Tsteady	XI 或 CLK 输入时钟稳定到 PLL 稳定的时间		0. 5	1. 5	mS
Tstart	退出低功耗模式到 PLL 稳定的时间		2	4	mS
Trpor	电源上电或低压复位到正常工作的时间	10	14	17	mS
Twreset	RESET#引脚输入复位的低电平脉宽	2			uS
Iwreset	RESET 引脚输入复位的高电平脉宽	2			uS
Trreset	引脚输入复位到正常工作的时间	10	13	15	mS
输出 ULF	PI 时钟模式				
TSC	STP 输入建立时间			6	nS
THC	STP 输入保持时间	0			nS
TSD	数据 DO~D7 输入建立时间			6	nS

THD	数据 DO~D7 输入保持时间	0			nS
TDC	DIR 或 NXT 输出有效的延时	0. 8		6	nS
TDD	数据 DO~D7 输出有效的延时	0. 8		8	nS
输入 ULPI 时钟模式					
TSC	STP 输入建立时间			2. 5	nS
THC	STP 输入保持时间	1			nS
TSD	数据 DO~D7 输入建立时间			2. 5	nS
THD	数据 DO~D7 输入保持时间	1			nS
TDC	DIR 或 NXT 输出有效的延时	1. 5		6. 5	nS
TDD	数据 DO~D7 输出有效的延时	1.5		7	nS

第5章 封装

说明:

尺寸标注的单位是 mm (毫米)

引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

5. 1 QFN20C_2x2

5. 2 QFN24_4x4

5.3 QFN32_5x5

第6章 应用

6.1 最小系统

CH132 作为单片机的 USB PHY,需连接 12 根信号线。RESET#引脚默认为不连接。图中晶体可以用单片机或 FPGA 提供的 12MHz 时钟代替(注意 XI 引脚电压仅 1. 2V,或改用 CLK 时钟输入模式)。MLCC 电容 C1 和 C2 可选范围为 $1uF\sim4$. 7uF。

VDDIO 为 ULPI 接口 I/O 引脚电源,需加 0. 1uF \sim 1uF 退耦电容,VDDIO 电压应该与 MCU 或 FPGA 的 I/O 电压相同。

建议 CH132 优选 3.3V 外部供电,该 3.3V 同时从 V5 引脚和 VDD33 引脚输入。

图中 R9 默认不连接,为输出 ULPI 时钟模式,CLK 引脚输出 60MHz 时钟。如果 R9 短路,则使能输入 ULPI 时钟模式,可以去掉 X1,外部的 60MHz 时钟从 CLK 引脚输入。

6.2 带 VBUS 电源控制的 HOST 应用

CH132 作为 MCU 或 FPGA 的 USB PHY,需连接 12 根信号线。RESET#引脚是可选连接,默认为悬空,如有连接则建议对方驱动设置为开漏输出。CH132 的 XI 和 X0 引脚已内置晶体振荡电容,外部只需要晶体 X1。如果 MCU 或 FPGA 可以提供 12MHz 时钟,那么可以去掉晶体 X1 并将 R3 改为 0(注意 XI 引脚电压仅 1. 2V,或改用 CLK 时钟输入模式)。MLCC 电容 C2 可选范围为 $1uF\sim10uF$,建议再并联 0. 1uF。

图中优选小体积的 CH132C, VDD33 和 V5 均与 MCU 或 FPGA 使用外部提供的同一个 3. 3V 电源。

对于 USB host 应用, 还需要向 VBUS 提供 5V 电源, 建议考虑 VBUS 过流保护, 参考下图可选 CH217 或类似的 USB 限流电源开关芯片并由 MCU 或 FPGA 控制实现 VBUS 过流保护。在 USB 设备带电热插拔时, 动态负载可能使 VBUS 电压瞬时降低, 如果启用 CH132 内部 LDO, 那么建议将 C2 换为 0. 1uF 和 10uF 两个电容并联,以避免 5V 降低影响 VDD33 进而导致 CH132 复位。图中 CH132 未启用内部 LDO。

简单的 USB host 应用中也可以用 300mA \sim 1A 保险电阻 R1 代替图中的 U5、R11、R21。

对于 USB device 应用,可以从 VBUS 得到 5V 电源,参考下图去掉 U5、R11、R21 和 C11,并将 R1 改为 0 或保险电阻,C4 根据 USB 规范减小到 10uF 之内。三种电源方案如下:

- ①、自供电 3. 3V 方案,不用 VBUS 电源,如果需要检测也可以将 VBUS 通过 $10K\Omega$ 电阻接入 MCU 引脚进行检测:
- ②、外部 LDO 降压方案,通过外置 LDO 将 VBUS 降为 3.3V 供 MCU 和 CH132 使用,参考下图 U4 降压;
- ③、内部 LDO 降压方案,如果 MCU 功耗较小,那么也可以由 CH132 内部 LDO 降压后统一供电 3.3V,但 C2 需要适当加大,例如 10uF 并联 0.1uF,并且 VBUS 需加过压保护器件。

