# **Hands-on Machine Learning**

3. Classification

# 1. The Dataset

#### **MNIST** Dataset

MNIST dataset is a set of 70,000 small images of handwritten digits.

```
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)
```

- ➤ The sklearn.datasets package contains three types of functions:
  - fetch\_\* functions such as fetch\_openml() to download real-life datasets.
  - > load \* functions to load small toy datasets bundled with Scikit-Learn.
  - make \* functions to generate fake datasets, useful for tests.
- Datasets loaded by Scikit-Learn have a similar dictionary structure:
  - "DESCR": a description of the dataset
  - "data": the input data, usually as a 2D NumPy array
  - "target": the labels, usually as a 1D NumPy array

## The Dataset Structure

The "data" has 70,000 datapoints, each one consists of 784 (28×28) features which represents pixels of a 28×28-pixels image.

| X, y = X | mnist  | .data, | mnist  | .targe | t      |        |        |        |        |         |              |          |          |          |          |          |          |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------------|----------|----------|----------|----------|----------|----------|
|          | pixel1 | pixel2 | pixel3 | pixel4 | pixel5 | pixel6 | pixel7 | pixel8 | pixel9 | pixel10 | <br>pixel775 | pixel776 | pixel777 | pixel778 | pixel779 | pixel780 | pixel781 |
| 0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 1        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 2        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 3        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 4        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |        |        |        |        |        |        |        |        |        |         | <br>         |          |          |          |          |          |          |
| 69995    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 69996    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 69997    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 69998    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| 69999    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0     | <br>0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |



70000 rows × 784 columns

#### The Dataset Structure

➤ The "target" is a vector of 70,000 labels (digits 0-9), each one shows what digit the datapoint represents.

```
69995
  69996
  69997
  69998
  69999
  Name: class, Length: 70000, dtype: category
  Categories (10, object): ['0', '1', '2', '3', ..., '6', '7', '8', '9']
y.shape
  (70000,)
```

## The Dataset Structure

MNIST dataset contains images, and DataFrames aren't ideal for that, so it's preferable to set as frame=False to get the data as NumPy arrays.

```
mnist = fetch_openml('mnist_784', as_frame=False)
```

Or use to numpy() function:

## **Datapoints**

```
import matplotlib.pyplot as plt

def plot_digit(image_data):
    image = image_data.reshape(28, 28)
    plt.imshow(image, cmap="binary")
    plt.axis("off")

some_digit = X[0]
plot_digit(some_digit)
plt.show()
```



# **Complexity of the Task**

## **Split Data into Test and Train**

> The MNIST dataset is actually already split into a training set (the first 60,000 images) and a test set (the last 10,000 images):

```
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
```

- The training set is already shuffled for us:
  - > All cross-validation folds will be similar.
    - You don't want one fold to be missing some digits
  - Some learning algorithms are sensitive to the order of the training instances.
    - They perform poorly if they get many similar instances in a row.

## **Training a Binary Classifier**

Make a *binary classifier*, capable of distinguishing between just two classes, 5 and not-5:

```
y_train_5 = (y_train == '5') # True for all 5s, False for all other digits
y_test_5 = (y_test == '5')
```

➤ A good place to start is with a *Stochastic Gradient Descent* (SGD) classifier, using Scikit-Learn's SGDClassifier class.

```
from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)
```

Make a prediction:

```
sgd_clf.predict([some_digit])
array([ True])
```

# 2. Performance Measures

## Measuring Accuracy Using Cross-Validation

Use 3-fold cross-validation:

```
from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604])
```

Above 95% accuracy (ratio of correct predictions)! Compare with a dumb classifier that classifies every image in the "not-5" class.

```
from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier()
dummy_clf.fit(X_train, y_train_5)
print(any(dummy_clf.predict(X_train))) # prints False: no 5s detected

cross_val_score(dummy_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.90965, 0.90965, 0.90965])
```

## **Confusion Matrix**



## **Confusion Matrix**

To compute the confusion matrix, you first need to have a set of predictions so that they can be compared to the actual targets:

Negative

Positive

| Negative   | Positive  |
|------------|-----------|
| TN = 53892 | FP = 687  |
| FN = 1891  | TP = 3530 |

#### **Precision and Recall**

> Precision: the accuracy of the positive predictions.

$$precision = \frac{TP}{TP + FP}$$

- You can have perfect precision by making one single positive prediction and ensure it is correct!
- > Recall (aka sensitivity or true positive rate (TPR)): the ratio of positive instances that are correctly detected by the classifier

$$recall = \frac{TP}{TP + FN}$$

You can have perfect recall by predicting all instances as positive!

#### **Precision and Recall**



# $F_1$ Score

 $\triangleright$  The  $F_1$  score is the *harmonic mean* of precision and recall:

$$F_1 = rac{2}{rac{1}{ ext{precision} + rac{1}{ ext{recall}}} = 2 imes rac{ ext{precision} imes ext{recall}}{ ext{precision} + ext{recall}} = rac{TP}{TP + rac{FN + FP}{2}}$$

```
from sklearn.metrics import precision_score, recall_score
precision_score(y_train_5, y_train_pred) # == 3530 / (687 + 3530)
0.8370879772350012
```

```
from sklearn.metrics import f1_score

f1_score(y_train_5, y_train_pred)

0.7325171197343846
```

| TN = 53892 | FP = 687  |
|------------|-----------|
| FN = 1891  | TP = 3530 |

# Precision/Recall Trade-off

- > How the SGDClassifier makes its classification decisions?
- > It computes a score based on a *decision function*:

```
y_scores = sgd_clf.decision_function([some_digit])
```

If that score is greater than a threshold, it assigns the instance to the positive class.



# Precision/Recall Trade-off

```
y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
                                method="decision function")
from sklearn.metrics import precision recall curve
  precisions, recalls, thresholds = precision recall curve(y train 5, y scores)
        y_scores[:5]
           array( 1200.93051237, -26883.79202424, -33072.03475406, -15919.5480689,
                   -20003.539701911)
              0.6
                                                                          Precision
                                                                          Recall
                                                                         threshold
              0.4
              0.2
              0.0
                     -40000
                                  -20000
                                                             20000
                                                                           40000
                                              Threshold
```

# Precision/Recall Trade-off



# **Achieve a Target Precision**

➤ Suppose you decide to aim for 90% precision. Search for the lowest threshold that gives you at least 90% precision:

```
idx_for_90_precision = (precisions >= 0.90).argmax()
threshold_for_90_precision = thresholds[idx_for_90_precision]
threshold_for_90_precision
```

To make predictions, instead of calling the classifier's predict() method, you can run this code:

```
y_train_pred_90 = (y_scores >= threshold_for_90_precision)

precision_score(y_train_5, y_train_pred_90)
0.9000345901072293
```

#### The ROC Curve

- The *receiver operating characteristic* (ROC) curve is similar to the precision/recall curve.
- The ROC curve plots the *true positive rate* (i.e. recall) against the *false positive rate* (FPR).
- The FPR is the ratio of negative instances that are incorrectly classified as positive:  $\frac{FP}{FP+TN}$
- ➤ FPR = 1 the *true negative rate* (TNR or *specificity*), which is the ratio of negative instances that are correctly classified as negative.
- $\triangleright$  The ROC curve plots *sensitivity* (recall) versus 1 specificity.

## The ROC Curve

```
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
```



#### **ROC AUC**

- > One way to compare classifiers is to measure the area under the curve (AUC).
- > A perfect classifier will have a ROC AUC equal to 1, whereas a purely random classifier will have a ROC AUC equal to 0.5.

```
▶ from sklearn.metrics import roc_auc_score
  roc auc score(y train 5, y scores)
```

0.9604938554008616

> We prefer the precision/recall (PR) curve whenever the positive class is rare or when you care more about the false positives than the false negatives. Otherwise, use the ROC curve.

## **Random Forest Classifier**

- RandomForestClassifier class does not have a decision\_function() method. Instead, it has a predict proba() method.
- The predict\_proba() method returns an array containing a row per instance and a column per class, each containing the probability that the given instance belongs to the given class.

# **Comparing Classifiers**

The precision\_recall\_curve() function expects labels and scores, but instead of scores you can give it class probabilities:

```
y_scores_forest = y_probas_forest[:, 1]
precisions_forest, recalls_forest, thresholds_forest = precision_recall_curve(y_train_5, y_scores_forest)
```

```
y_train_pred_forest = y_probas_forest[:, 1] >= 0.5 # positive proba ≥ 50%
f1_score(y_train_5, y_train_pred_forest)
0.9274509803921569

// roc_auc_score(y_train_5, y_scores_forest)
0.9983436731328145

// precision_score(y_train_5, y_train_pred_forest)
0.9897468089558485

// recall_score(y_train_5, y_train_pred_forest)
0.8725327430363402
```

