1 \	/D:	•	C ·)
I)	(Dimen	sion	nnie

Vrai \square Faux \square \mathbb{R}^n est un espace de Hilbert.

Correction.

Cette assertion est en fait trop vague pour être vraie ou fausse. Elle est vraie si l'on considère, comme on le fait en général, que, par défaut, \mathbb{R}^n est muni du produit scalaire euclidien canonique. Comme \mathbb{R}^n muni de cette norme (comme de n'importe quelle autre) est complet, il s'agit bien d'un espace de Hilbert, qu'on appelle en général, quand la dimension est finie, espace euclidien.

Vrai \square Faux \square Pour tout $\varepsilon > 0$, la quantité

$$\left(\sum_{k=1}^{n} \varepsilon^k x_k^2\right)^{1/2}$$

définit une norme sur \mathbb{R}^n , issue d'un produit scalaire, qui en fait donc un espace de Hilbert.

Correction.

Vrai. Cette forme quadratique est bien issue de la forme bilinéaire

$$\langle x | y \rangle = \sum_{k=1}^{n} k x_k,$$

qui est bien un produit scalaire. Elle "dégénère" quand ε tend vers 0 (le comportement limite de cette norme est une question délicate,), mais pour tout $\varepsilon > 0$ elle définit bien un produit scalaire.

Vrai \square Faux \square L'expression

$$(x,y) \in \mathbb{R}^d \times \mathbb{R}^d \longmapsto \langle x | y \rangle = \left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n y_k\right)$$

définit un produit scalaire sur \mathbb{R}^n .

CORRECTION.

Faux. Il s'agit bien d'une forme bilinéaire symétrique et positive, mais elle n'est pas définie (sauf dans le cas n = 1), puisqu'il existe x non nul tel que $\langle x | x \rangle = 0$.

Vrai \square Faux \square Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ inversible, l'application

$$(x,y) \mapsto \langle Ax \,|\, y \rangle$$

(où $\langle \cdot | \cdot \rangle$ est le produit scalaire euclidien) définit un produit scalaire sur \mathbb{R}^n .

CORRECTION.

Faux. Si la matrice n'est pas symétrique, on peut trouver x et y tels que $\langle Ax | y \rangle \neq \langle Ay | x \rangle$.

En effet, si $\langle Ax | y \rangle = \langle Ay | x \rangle$ est vérifié pour tous x, y, on a $\langle (A - A^T)x | y \rangle = 0$, d'où nécessairement $A = A^T$.

Vrai \square Faux \square Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ inversible, l'application

$$x \mapsto |Ax|$$

(où $|\cdot|$ est la norme euclidienne) définit une norme euclidienne sur \mathbb{R}^n , c'est à dire issue d'un produit scalaire

CORRECTION.

Vrai. C'est bien une norme issue du produit scalaire

$$\langle x | y \rangle_A = \langle Ax | Ay \rangle = \langle A^T Ax | y \rangle,$$

où la matrice A^TA est symétrique définie positive.

 $\mathbf{2}$) Dans la suite H désigne un espace de Hilbert séparable.

Vrai \square Faux \square Soit K un sous-ensemble de H tel que l'implication suivante soit vérifiée :

$$\langle h \, | \, w \rangle = 0 \quad \forall w \in K \Longrightarrow h = 0.$$

Alors K est dense dans H.

Correction.

Faux. La propriété est valable pour les sous-espaces vectoriels. Mais par exemple la boule unité fermée B_H vérifie la propriété, mais n'est pas dense dans H.

Vrai \square Faux \square Soit (e_n) une base hilbertienne de H, espace de Hilbert de dimension infinie. Pour tout N, l'espace vectoriel F_N engendré par les N premiers e_n est fermé.

CORRECTION.

Vrai. C'est un espace vectoriel de dimension finie, et comme tel toujours fermé. En effet si l'on prend une suite (u^k) dans cet espace, on écrit chaque terme de la suite comme combinaison linéaire des e_n entre 1 et N,

$$u^k = \sum_{j=1}^N u_n^k e_n.$$

Le produit scalaire avec e_m est égal à u_n^k , qui converge donc dans \mathbb{R} par continuité du produit scalaire (conséquence immédiate de Cauchy-Schwarz). La limite s'écrit donc comme combinaison linéaire des limites des suite de coefficients.

Vrai \square Faux \square Une suite u_n qui converge fortement vers u converge faiblement vers u.

CORRECTION.

Vrai. C'est encore une conséquence de la continuité du produit scalaire.

Vrai \square Faux \square Soit u_n une suite d'éléments d'un fermé F de H, qui converge faiblement vers u. Alors u est dans F.

CORRECTION.

Faux. On peut considérer la suite des éléments d'une base hilbertienne (e_n) . Cette suite est dans la sphère unité de H, mais sa limite est $0 \notin H$. En effet, pour tout $v \in V$, $v = \sum v_n e_n$, on a $\langle e_n, v \rangle = v_n$, qui tend vers 0 car (v_n) est dans ℓ^2 .