Relations d'ordre

Exercice 1. On considère l'ensemble $E = \mathcal{P}(\{1,2,3\})$.

- 1. Quel est le cardinal de *E*.
- 2. Montrer que l'inclusion, noté \subset , défini une relation d'ordre sur E.
- 3. Tracer le diagramme de Hasse de (E, \subset) .
- 4. Remplir le tableau suivant :

	A	В	С
Eléments minimaux			
Eléments maximaux			
Plus petit élément			
Plus grand élément			
Borne inférieure			
Borne supérieure			

Pour les ensembles :

$$A = \{\{1\}, \{1, 2\}, \{1, 3\}\}\$$

$$B = \{\{2\}, \{3\}, \{2, 3\}\}\$$

$$C = A \cup B$$

Exercice 2. Soit \mathcal{A} l'alphabet composé des 26 lettres usuelles a,b,c,\ldots On note \mathcal{A}^* l'ensemble des mots (finis) formés à l'aide des éléments de \mathcal{A} ; ε désignera le mot vide, de longueur 0. On définit sur \mathcal{A}^* la relation préfixe, notée \Box , par la condition suivante :

 $u \sqsubset v$ si et seulement si le mot v commence par le mot u.

- 1. Démontrer que la relation \square définit un ordre sur \mathcal{A}^* . Cet ordre est appelé ordre préfixe.
- 2. Cet ordre est-il total?
- 3. Comparer cet ordre avec l'ordre lexicographique (celui du dictionnaire) c'est à dire est ce que $u \sqsubset v \Longrightarrow u \leq_{lex} v$ ou bien $u \leq_{lex} v \Longrightarrow u \sqsubset v$.
- 4. L'ensemble ordoné $(\mathcal{A}^*, \sqsubset)$ possède-t-il un plus petit élément? Et un plus grand élément?
- 5. Déterminer, s'ils existent, les mots suivants :
 - (a) max{mer, merveille}, sup{mer, merveille},
 - (b) min{mer,merveille}, inf{mer,merveille},
 - (c) max{toto,totem}, sup{toto,totem},
 - (d) min{toto,totem}, inf{toto,totem},
 - (e) max{malicieux, malveillant, maternel}, sup{malicieux, malveillant, maternel}
 - $(f) \ \min\{\texttt{malicieux}, \texttt{malveillant}, \texttt{maternel}\}, \inf\{\texttt{malicieux}, \texttt{malveillant}, \texttt{maternel}\}.$

Exercice 3. Sur \mathbb{N}^* on considère la relation \mathcal{R} définie par

$$xRy \iff (x = y)$$
 ou bien $(x \text{ est impair et } x < y)$

- 1. Montrer que la relation \mathcal{R} est un ordre.
- 2. Dessiner le diagramme de Hasse pour les entiers inférieurs à 8.
- 3. Y a-t-il pour cet ordre des éléments minimaux? maximaux? un plus petit élément? un plus grand élément?

Exercice 4. Soit A et B deux ensembles munis respectivement des relations d'ordre \leq_A et \leq_B tel que \leq_A est total. Montrer qu'une application $f: A \to B$ strictement croissante est injective.

Exercice 5. Soit A un alphabet fini, on rappelle que \leq_{lex} est l'ordre lexicographique sur A^* . On définit l'ordre militaire sur A^* par

$$u \leq_{mil} v \iff \begin{cases} |u| < |v| \\ \text{ou} \\ |u| = |v| \text{ et } u \leq_{lex} v \end{cases}$$

- 1. Montrer que \leq_{mil} est une relation d'ordre.
- 2. Montrer que \leq_{mil} est un ordre bien fondé mais pas \leq_{lex} .