COSC 302, Spring 2018

Lecture 6.1: Red-black trees

Prof. Darren Strash

Department of Computer Science Colgate University

Binary Search Trees

Dynamically store items in a way that maintains order

Why dynamic?:

Use an array otherwise

Can represent all binary searches as a tree.

1	2	4	5	7	9	10	11	12	14	16	17	18	20
---	---	---	---	---	---	----	----	----	----	----	----	----	----

Decision tree lower bounds for search

Recall: decision trees model any algorithm that performs comparisons.

Comparison-based search:

 Search by comparing elements, but unable to inspect or use the values of those elements in the algorithm.

Model as a decision tree!

leaves
$$\leq 2^h$$
 lg $n \leq h$

Binary search trees (BST)

Consist of *n* nodes, containing search *keys*

Binary search tree property:

Let *b* be a node, with left subtree *A* and right subtree *C*.

Then for $a \in A$, $key[a] \le key[b]$, and for $c \in C$, $key[c] \ge key[b]$.

Red-black trees

A binary search tree with height matching the **search lower bound**. All operations take time proportional to height $= O(\lg n)$.

In red-black trees:

- Every node is colored red or black
- The root is black
- Every leaf is black
- Every red node has only black children.
- For each node, all paths from that node to a leaf have the same number of black nodes.

Critical!

Balance in red-black trees

Why properties? What if we try to keep perfect balance?

→ Maintain balance (What's wrong with these trees?)

No amount of local rebalancing will help.

→ Properties make local rebalancing is possible.

Other balanced BSTs maintain balance differently: AVL trees

Balance in red-black trees

Lemma: A red-black tree on n elements has height at most $2 \lg(n+1)$.

Proof.

Red-black trees: insertion

Insert as leaf with color red

 \rightarrow does not change number of black nodes on any path.

→ but red node may have red child

Goal: Fix while maintaining black height.

→ fix one red node at a time. May introduce another red node.

Red-black trees: insertion, case 1

Case 1: current red node z has a red uncle.

To ensure paths with equal numbers of black nodes:

- Color z's grandparent p[p[z]] red
- Color p[p[z]]'s children black.
- \rightarrow Set z = p[p[z]] and test again for violations.

Red-black trees: insertion, case 2

Case 2: current red node z has a black uncle.

uncle[z]

Red-black trees: deletion, case 0

Case 0: spliced node is red.

 \rightarrow No rotations or recoloring required.

Case 1: spliced node is black and sibling is red.

Case 1: spliced node is black and sibling is red.

if red, recolor black, and finish.

Case 1: spliced node is black and sibling is red.

Case 1: spliced node is black and sibling is red.

Case 2: make p[w] black, w red

Case 1: spliced node is black and sibling is red.

Case 2: make p[w] black, w red

Case 1: spliced node is black and sibling is red.

Case 2: make p[w] black, w red

If case 2 does not apply, then need to add black node with case 3 or 4...

Cases 3/4: spliced node is black with a black sibling with a red child

Cases 3/4: spliced node is black with a black sibling with a red child

Cases 3(4) spliced node is black with a black sibling with a red child

Case 4: Right child is red

right

Cases 3(4) spliced node is black with a black sibling with a red child

Case 4: Right child is red

right

Cases 3(4) spliced node is black with a black sibling with a red child

Case 4: Right child is red

right

Cases 3/4: spliced node is black with a black sibling with a red child

Case 4: Right child is red

Case 3: Right child is black (and left child is red)

Cases 3/4: spliced node is black with a black sibling with a red child

Case 4: Right child is red

Case 3: Right child is black (and left child is red)

