Classification

BA810: Supervised Machine Learning
Nachiketa Sahoo

Recap

- R^2 : fraction of variation in Y explained by the regression
- β_k: how much y increases when x_k increases by 1, holding other xs constant
- How reliable is the estimate?
 - Confidence interval around \hat{eta}_k
 - p-value of $\hat{\beta}_k$: probability of obtaining this value by chance even if true β_k was 0
- Overfitting (low training error, high test error) and underfitting (high train and test error)

- The bias-variance tradeoff: predict at a point refitting to different training sets
 - Bias: Average prediction is off target
 - Variance: Predictions varying a lot
- · Bias-variance tradeoff in practice
 - Complex models have more variance, but less bias (more likely to overfit)
 - Pick complexity to minimize validation data error

Classification

• Qualitative variables take values in an unordered set *C*:

```
eye\ color \in \{brown, blue, green\}

email \in \{spam, good\}
```

- Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) that takes as input the feature vector X and predicts its value for Y; i.e., $C(X) \in C$.
 - ullet Often, we are interested in estimating the probabilities that X belongs to each category in ${\cal C}$
 - Matters if predicting spam with 90% probability of 51%
 - Thus, a continuous score is typically estimated

Example: Credit Card Default

Can we use Linear Regression?

Suppose for the Default classification task that we code

$$Y = \begin{cases} 0 \text{ if No} \\ 1 \text{ if Yes} \end{cases}$$

and take them to mean probability of default.

• Can we simply regress of Y on X and classify as Yes if $\hat{Y} > 0.5$?

Linear vs Logistic Regression

Logistic Regression

Let p(X) = Pr(Y = 1|X). Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$
, where $e \approx 2.7$ [Euler's number.]

 β s are chosen to maximize the probability of observed classes in the training data. p(X), per this formula, must be between 0 and 1.

Rearranging gives:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

log odds ratio or logit transformation of p(X) is a linear function of features/columns.

Linear versus Logistic Regression Interpreting the coefficients

- Linear regression: $y = \beta_0 + \beta_1 x$
 - When x increases by 1, y increases by β_1
- Logistic regression: $\log\left(\frac{p(y=1|x)}{1-p(y=1|x)}\right) = \beta_0 + \beta_1 x$, or $\frac{p(y=1|x)}{1-p(y=1|x)} = e^{\beta_0 + \beta_1 x}$
 - Increase x by 1 \rightarrow RHS: $e^{\beta_0 + \beta_1(x+1)} = e^{\beta_0 + \beta_1 x} \times e^{\beta_1}$
 - For small β_1 s: $e^{\beta_1} \approx 1 + \beta_1$
 - when x increases by 1, the odds ratio of positive class (y=1) increases by β_1 fraction

Making Predictions

Let's say the estimates are

-	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Estimated probability of default at balance = \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006: \text{No}$$

With balance = \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$
: Yes

Linear Regression vs. Logistic Regression continued

Target has >2 values

A patient presents at the emergency room, and we must classify them according to their symptoms.

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

Can we use a linear regression here?

• Multiclass Logistic Regression (also known as: multinomial regression) or other classifiers are more appropriate.

$$P(Y = k|X) = \frac{e^{\beta_{0k} + \beta_{1k}X_1 + \dots + \beta_{pk}X_p}}{\sum_{l}^{K} e^{\beta_{0l} + \beta_{1l}X_1 + \dots + \beta_{pl}X_p}}$$

A linear function for each class.

Bayes Theorem: A Way to Invert Conditional Probabilities

- ullet Let A and ${\mathcal C}$ be two binary random variables
 - Each observation is a joint observation of two
- Conditional Probability

$$P(C|A) = \frac{P(A,C)}{P(A)} \text{ and } P(A|C) = \frac{P(A,C)}{P(C)}$$

· Bayes theorem

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)}$$

Use easier to collect conditional probability to estimate the hard to collect one

Example of Bayes Theorem

- Consider the following scenario
 - A doctor knows that 50% of the patients with meningitis have stiff neck
 - Probability of any patient having meningitis is 1/50,000
 - Probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

A simple Bayesian classifier

More Complex Classifiers using Bayes Rule

• Let Y be the target class taking K values and X be the set of predictors, then

$$P(Y = k | X = x) = \frac{\Pr(X = x | Y = k) \Pr(Y = k)}{\Pr(X = x)}$$

- $\Pr(Y = k)$ is the marginal or prior probability of class k (π_k)
- Pr(X = x | Y = k) is the distribution of the attribute in class
 - Both can be calculated from the training data
- $\Pr(X = x)$ can be calculated as $\sum_{l=1}^{K} \Pr(X = x | Y = l) \Pr(Y = l)$.
 - Though often unnecessary for predicting class.
- Naïve Bayes classifier
 - Components of X are conditionally independent of each other given (within) a class
 - · Strong assumption, works OK for prediction, though probabilities are not accurate ("well calibrated")
 - Some components can be categorical and others numeric (with different distributions)

K-nearest Neighbor (k-NN)

- To predict the class label of each item in test set
 - find the k most similar items in training set
 - use the label that is most common among them
- How do you select k?
 - Try different k values and see what leads to lowest error in validation data
 - Set aside a portion as test data
 - Using the remaining training data use cross validation to choose
- Illustration
- Any challenges with this approach?

Evaluating a Classifier

Metrics for Performance Evaluation

- We focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix (cells contain counts of records with certain predicted and actual class labels)

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

Metrics for Performance Evaluation...

	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	a (TP)	b (FN)	
	Class=No	c (FP)	d (TN)	

Most widely-used metric:

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

- When you have more than two classes
 - sum of diagonal numbers / sum of all numbers

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class No examples = 9990
 - Number of Class Yes examples = 10
- If model predicts everything to be class **No**, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class Yes example
- Many real-world datasets have skewed class distribution
 - E.g., fraudulent credit card transactions aren't as common as good transactions
- Better alternative: Balanced Accuracy
 - Average of fractions of true Yes's predicted to be Yes and true No's predicted to be No

$$\frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

• Or the average of the positive and negative recall (defined next)

Evaluation from Retrieval Perspective

How good is the classifier in getting/detecting the positive records?

Can it do so without making many mistakes?

• Precision
$$(p) = \frac{a}{a+c}$$

How many of the positive records can it get?

•
$$Recall(r) = \frac{a}{a+b}$$

• Possible to rig these scores. How?

•
$$F$$
-measure $(F) = \frac{2rp}{r+p}$

F is the Harmonic Mean of Precision and Recall

$$\frac{1}{F} = \frac{1}{2} \left(\frac{1}{p} + \frac{1}{r} \right)$$

	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	а	b	
	Class=No	С	d	

Receiver Operating Characteristic (ROC) Curve

- Most classifiers produce a continuous score of a record being positive
 - The larger this score, the record is more likely to be positive
- · Asked to find one record that is positive
 - which record would you present?
- A test dataset sorted in the decreasing order of probability of records being positive (as estimated by the classifier)
 - A classifier asked to find more and more positive records from the test set
 - · How would the performance evolve?

ROC Curve

Which is the best performing model in the following three graphed?

Summary

Classifiers

- Logistic regression: fits a linear function to odds ratio
- Bayes classifiers: use Bayes rule to invert the direction of conditional probability
- 3. K-nearest-neighbors: predict the label frequent nearby
- 1&2: model based (learn and use compact statistics from training data)
- 3: instance based (remember the whole training data and use to predict)

Evaluation

- · Confusion matrix,
 - True Positive, True Negative, False Positive, False Negative
- (Balanced) Accuracy, Precision, Recall, F-measure
- ROC curve, Area Under the Curve (AUC)

Next Class

 Cost based evaluation, Cross validation, Regularization