></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35844, pI: 5.45, NX(S/T): 2

MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL FRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF SAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYP YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP RAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPA NNGSPCPELEEEAECVPDNCV

Important features: Signal peptide: amino acids 1-26

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGTGA TATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGGCGGA ${ t CAGCTTTAGTGGCCGGCCGGCCGCTCTCATCCCCCGTAAGGAGCAGAGTCCTTTGTACTGAC}$ CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGGAAGGTTTTATTGAAAACTA CAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTGCAGAAATTTT ATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGTTGTGCCTGGTTT CATTCAAAGATGAATTTCATTCACGGTTGCGTTTTAATCGGAGAGGACTGGTTGCCATGGCA AATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACTGGGTCGAGCAGATGAACT TAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATACAGTATATAACATGTTGCGAC TGTCAGAAGTAGACATTGATGATGACGAAAGACCACATAATCCACACAAAATAAAAGCTGT GAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAGGGAAATTAAAAGGCTGAAAAAAGA GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTTTAGTTTACTTT CATTTGGAGAGGAAGCTGAGGAAGAAGAGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT TGTAGAAAGTGAAAAAGGTGATGCACCAGATTTAGTTGATGATGGAGAAGATGAAAGTGCAG AGCATGATGAAATATTTGATGGTGATGAAAAGAACCTGATGAGAAAAGAATTGCCAAAAAA TTAAAAAAGGACACAAGTGCGAATGTTAAATCAGCTGGAGAAGGAGAAGTGGAGAAGAAATC AGTCAGCCGCAGTGAAGAGCTCAGAAAAGAAGCAAGACAATTAAAACGGGAACTCTTAGCAG CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAAAGAAGTGAAGAGGAAGAA GCCCCTCCAGATGGTGCTGTTGCCGAATACAGAAGGAAAAGCAAAAGTATGAAGCTTTGAG GAAGCAACAGTCAAAGAAGGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGT TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAA GTAGAAGATGATGAAGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGT GAAAGATGCAAGCATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGA GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTG TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTG AAAAACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGG TACATGTGTTTTTTCCTAGCTGACCTTTTATATTGCTAAATCTGAAATAAAATAACTTTCCT ТССАСАААААААААААААААААААААААА

FIGURE 1

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGCCCAGTGGGCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGCCGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGAGGCACAGGTGGCCCCCACCACCCGGAGG AGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA AGGCCACCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCT TCTGGTGTTGGCAGTGGGCGCCACAGAGCACGCCTACCGGCCCGGCCGTTAGGGTGTGTGCT GTCCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCC TCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATTTATAGGACCGCCTAC CGCCGCAGCCCTGGCCTGCCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAG GACCAGCGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAG GGAGCTGTGTCCAGCCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAG TCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCATCAACACCGC CGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG TGCCCAAGGGAGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG GAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCT GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC CTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAGACTCGTGACTGCCCAGCGCCCCAGG CTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTC CCACCCTGGCTACCCCCACCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCA GCTGAGGGAAGGTACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC CGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAA AGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGT TACAAAT

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGDPV SESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW EGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS QALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163, 191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site.

amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature.

amino acids 123-135

GTCAGCCCACGGGGGGACTATGGTGAAATTCCCGGCGCTCACGCACTACTGGCCCCTGATC CGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAA CCGGGGCATTGCTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT ACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTGACTTCAAAAATGTGGGCCTGGTGTTT GTGAACAGCAAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCGC TGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGC ACCATGTGGACGAGTCGGTGGGGAGCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTT CCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAACACAAATACAGTTT CCTGGTGGGATGTGCCTCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTGC TTCACAGTCACCTGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCCTTGTACATGGGC GCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACTACAAGAACATTCACGACATCATCCC GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTT TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATC AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTTGGAC ACCCAACGTGTCTGAGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCACAGTGAGGGCGCAT CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCG GATCATCGTCCTCATCGCCAGCCTCGTGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCC TGGGCGTGGGCTCCTGGCGGGCTTTGTGGGAGAATCCACCATGGTCGCCATCGCTGCG TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGA GAAAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACT TTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCTGCCTCACGGTTGACGTTGTGTCC TCCTCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGT CACCCTGCACAGCAGGCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGG TTAAAACTCGGCTTCCTTTGATTTGCTTCCCAGTCACATGGCCGTACAAAGAGATGGAGCCC CGGTGGCCTCTTAAATTTCCCTTCTGCCACGGAGTTCGAAACCATCTACTCCACACATGCAG GAGGCGGTGGCACGCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC CACAGCAGGCTGACAGATGGACAGAATCTCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGG GGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGATCTGAGCAA GCTGTCAGTTCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAA CTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACTTTGCATTTTAGTTTT TACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAAC TTTTGAAGTAGATATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA TTGAGAATGTACTACGGTACTTCCCTCCCACACCATACGATAAAGCAAGACATTTTATAACG ATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCAGTGCAGTA TATTTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACT AAATTGATTTAGTCAGAATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATA TAAATATATGCTGTATATGTTATGTAATTTATTTTAGGCTATAATACATTTCCTATTTTCGC ATTTTCAATAAAATGTCTCTAATACAAAAA

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLR
IFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374, 408-423, 431-445

CCTGACAGAAGTGCCCCGGAGCTGGGGGAGATNCAACATTAAGAAGATGCTGAGCTTCTGGT
GCCNTTTGGCTCTAATTCTGGCCACACAGAGAANCAGTCGGCCTATTGTCAACCTCTTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA
CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTTATCCTGCTTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCGGCCCACATC
AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC
TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTCCCAGTTCCAGTCACAGTGAGGGCGCAT
CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTC

TGACGGAATCCCGGGCTGGGTATCCTGGTTTNGACAAGATAAACCCCCAGCAANAAATTGGG
GAGCAGGCCAAAACAGTNACGGGCAGCCCACATCAAGAAGTTCACCTTNGTTTGNATGGNTC
TGTCAACTCACGCTNTGTTTCGTGATGTTTTGGACACCCAAAGTGTTTGAGAAAATTTTGAT
AGACATNATCGGAGTGGANTTTGCCTTTGCAGAANTTTGNGNTGTTCCTTTGCGGATTTTCT
CCTTTTTCCCAGTTCCAGTCACAGNGAGGGCGCATCTCACCGGGNGGNTGATGACANTGAAG
AAAACCTTTGTCCTTGCCCCCAGCTNTTTGGTGCGGATCATTGTCCTNATNGCCAGCCTTGT
GGTCCTACCCTACCTGGGGGTGCACGGTGCGACCCTGGGCGTGGGTTCCCTCCTGGCGGGCA

 $\label{thm:condition} \begin{minipage}{0.5\textwidth} \textbf{TATTCCCAGTTCACGGGGAGGGCGCATNTCACCGGGTGGCTGANGACACTGAAGAAA} \\ \textbf{ACCTTNGTCCTTGCCCCCAGNTTTGTGNTGCGGATNATCGTCCTCATCGCCAGCCTNGTGGT} \\ \textbf{CCTACCCTACCTGGGGGTGCACGGTGAGAC} \\ \end{minipage}$

GCCCCGCGCCCGGGCGCCCGAAGCCGGGAGCCACCGCCATGGGGA GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCCGCCTCTGCCCCCTGCATCCTGTGCAG $\tt CTGCTGCCCGCCAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCC$ TGGGGGTGCTGGTCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG CCCTGGGTGTGTGAGGAGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGG $\tt CTCCCTGCTTGGCTACCGCGTGTCTACCGCATGTGCTTCGCCACGGCGGCCTTCTTCTTCT$ TCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCCGGGACCCCCGGGCTGCCATCCAG AATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACAT ${\tt TCCTCATCCAGCTGGTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGTGGCTGGGC}$ CTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT GCCACGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCT GCTGTCCTGCCCAAGGTCCAGGACGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCAT CACCCTCTACACCATGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA ACCCCCATTTGCCAACCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAG ACCCAGTGGTGGGATGCCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTT CATCAGTCTGCGCTCCTCAGACCACCGGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCC CACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGCTGTGAGGGCCGGGCC TTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCT GGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCGGAAGA TGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTC ${\tt TACCTGTGGACCCTGGTAGCCCCACTCCTGCGCAACCGCGACTTCAGC{\tt TGA}_{\tt GGCAGCCT}}$ ${\tt CACAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTGACAGCCAACCT}$ GCCCCCTCCCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGCTCCAGGACCTG CCCCTGAGCCGGGCCTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGAGCATCAGGCTCCTGCA TGCCCATACTCAGCATCTCGGATGAAAGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGG CTGCTGGAGAGAGCGGGAACTCCCACCACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTT CCTGGTCACGTCCCCAGGGGACCCTGCCCCCTTCCTGGACTTCGTGCCTTACTGAGTCTCT AAGACTTTTTCTAATAAACAAGCCAGTGCGTGTAAAAAAA

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTLLMLCVSSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSW
NQRWLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLYLWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GAGCGAGGCCGGGGACTGAAGGTGTGGGTGTCGAGCCCTCTGGCAGAGGGTTAACCTGGGTC AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGGCACGTCCGCGAGGACTTGA ${\tt AGTCCTGAGCGCTCAAGTTTGTCCGTAGGTCGAGAGAGGCC} {\tt ATG} {\tt GAGGTGCCGCCACCGGC}$ ACCGCGGAGCTTTCTCTGTAGAGCATTGTGCCTATTTCCCCGAGTCTTTGCTGCCGAAGCTG TGACTGCCGATTCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCC TATTACCCGGAATCTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAG AATTTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGCATCATTGGCTGGG TGTATGGGGGAATACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA GAAATTTATCATAACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTT CATTCGTTATGGCTGGCGCTTGGGGGTTGGAGAACTGCAGTGTTTGTGACTATATTCAACACAG TGAACACTAGTCTGAATGTATACCGAAATAAAGATGCCTTAAGCCATTTTGTAATTGCAGGA AATTGGAGCCTTGCTGGGCACTCCTGTAGGAGGCCTGCTGATGGCATTTCAGAAGTACGCTG GTGAGACTGTTCAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAAACTGGAA GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTTACG GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAACCTTCCTAGAAACC $\tt CTTCAGTAATAGATAAACAAGACAAGGAC{\color{blue}TGA}AAGTGCTCTGAACTTGAAACTCACTGGAGA$ ${\tt TGACAAATTTAAGTGCTGGTACCTGTGGTGGCAGTGGCTTGCTCTTGTCTTTTCTT}$ GCAGTAAATAAAACATTTCGCAAAAGATTAAAGTTGAATTTTACAGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23318

><subunit 1 of 1, 285 aa, 1 stop

><MW: 32190, pI: 9.03, NX(S/T): 2

MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRLRELF GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIYHNRFDAVQSAH RAATRGFIRYGWRWGWRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGACCGCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGAA
TACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATCAT
AACCGGTTTGATGCTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTCGTTCATG
GCTGGCGCCGAACC

TCAAGTTTGTCCGTAGGTCGAGAGAGGCCATGGAGGTGCCGCCACCGGCACCGCGGAGCTT
TTTTCTGTAGAGCATTGTGCCTATTTCCCCGAGTTTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGA
ATACCAGCTTTTATTCATGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATNA
TAACC

GCGTTGCTGCCCCGCCTGGGCCAGGCCCCAAAGGCAAGGACAAAGCAGCTGTCAGGGAACCT CCGCCGGAGTCGAATTTACGTGCAGCTGCCGGCAACCACAGGTTCCAAGATGGTTTGCGGGG GCTTCGCGTGTTCCAAGAACTGCCTGTGCGCCCTCAACCTGCTTTACACCTTGGTTAGTCTG CTGCTAATTGGAATTGCTGCGTGGGGCATTGGCTTCGGGCTGATTTCCAGTCTCCGAGTGGT CGGCGTGGTCATTGCAGTGGGCATCTTCTTGTTCCTGATTGCTTTAGTGGGTCTGATTGGAG GTTCAGTTTTCTGTATCTTGCGCTTGTTTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT GGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT GTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTCTGGCTAGCTGTGTTAAAAGTGACCAC TCGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGAGATTTGTTGG TGGCATTGGCCTGTTCTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACCTACAGATACA GGAACCAGAAAGACCCCCGCGCGAATCCTAGTGCATTCCTT**TGA**TGAGAAAACAAGGAAGAT TTCCTTTCGTATTATGATCTTGTTCACTTTCTGTAATTTTCTGTTAAGCTCCATTTGCCAGT TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGAATTATATATTTTTACT CTATGTTTCTCTACATGTTTTTTTTTTTCTTTCCGTTGCTGAAAAATATTTGAAACTTGTGGTCTC TGAAGCTCGGTGGCACCTGGAATTTACTGTATTCATTGTCGGGCACTGTCCACTGTGGCCTT TCTTAGCATTTTTACCTGCAGAAAACTTTGTATGGTACCACTGTGTTGGTTATATGGTGAA TCTGAACGTACATCTCACTGGTATAATTATGTAGCACTGTGCTGTGTAGATAGTTCCTAC TGGAAAAAGAGTGGAAATTTATTAAAATCAGAAAGTATGAGATCCTGTTATGTTAAGGGAAA TCCAAATTCCCAATTTTTTTTGGTCTTTTTAGGAAAGATTGTTGTGGTAAAAAGTGTTAGTA TAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAAATAGTTAT GTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTGGTTT CATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCATCAGAATGGAACGAGTTT TGAGTAATCAGGAAGTATATCTATATGATCTTGATATTGTTTTATAATAATTTGAAGTCTAA AAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGATATTTG ATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAATTTCTCAGTATTGTAACAGCAACTT GTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATTGTGTG ATTAAAAGAAAGTAATGGAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979</pre>

><subunit 1 of 1, 204 aa, 1 stop

><MW: 22147, pI: 8.37, NX(S/T): 3

MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLALNQEQQGQLLEVGWNNTASARNDIQR NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTEILGVWL TYRYRNQKDPRANPSAFL

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

TGATTGGAGCTGTAAAAAANTCTTCAGGTGTTGTNATTTTTTATATGATTATTCTGTAANT
TGTATTTATTGTTCAGTTTTNTGTATCTTGCGCTTGTTTAGCCNTGAACCAGGAGCAACAGG
GTCAGNTTNTGGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAAT
NTAAACTGCTGTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTNTGGCTAGCTGTGTTAA
AAGTGACCACTNGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGAGTTTTGA
GATTTGTTGGTGGCATTGGCCTGTTNTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACC
TACAGATACAGGAACCAG

AATCCCAAATTCCCCAATTTTTTTGGNCTTTTTAGGGAAAGATGTGTTGTGGTAAAAAGTGT
TAGTATAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAATAG
TTATGTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCCATCAGAATGGAACG
AGTTTTGAGTAATCCAGGAAGTATATCTATATGATCTTGATATTGTTTTATATAATTTGAAG
TCTAAAAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGAT
ATTTGATTATCTTAAAAAATTGTTAAATACCGTTTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATT
GTGTGGAGGAAAATGGCAATCTTATGTGTGCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTTATGGTATCTTGCGCTTGTTTAGCCC
CTGAAACCAGGAGCAACAGGGNNCAGCTTCCTGGAGGTTGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTTAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTCGCCATGTGCTCCAA
TCATAGGAGAATATGC

CAGTCACCATGAAGCTGGGCTGTGTCCTCATGGCCTGGGCCCTCTACCTTTCCCTTGGTGTG CTCTGGGTGGCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAGGGACCTGT CTGCACTGAGGAGAGCAGCTGCCACACGGAGGATGACTTGACTGATGCAAGGGAAGCTGGCT TCCAGGTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTG ATCCTCCAAGGTCCAGCCAAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGC CTGGCAAGACTGGCCACTGACTCAGGTGACCTTCTACCGAGATGGCTCAGCTCTGGGTCCCC CCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCAGACAGCGGGCACTACCAC TGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTGGCTAT CACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAG CAGGAAGCCCCATGACCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGC CTCCTCTTCTCCTCTACAAGGATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATT ACAACCAAGTTTGGAAACAGAGCCCCCAGCTAGAGATCAGAGTGCAGGGTGCTTCCAGCTCT GCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCTGA GGAGGCCCCTGGGCCTCCGCCGCCAACCCCATCTTCTGAGGATCCAGGCTTTTCTT CTCCTCTGGGGATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATG CAGGATGTGAGAGTCCTCCTCGGTCACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCA GAAGCCTGGGACCACAAAGGCTACTGCTGAA<u>TAG</u>AAGTAAACAGTTCATCCATGATCTCACT TAACCACCCAATAAATCTGATTCTTTATTTTCTCTTCCTGTCCTGCACATATGCATAAGTA CTTTTACAAGTTGTCCCAGTGTTTTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAAATTT ATATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTTAACACAACAGAATTC TGCTGTCTAGATCAGGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAA CTAATGGAAGTGGATTGAATACAGCAGTCTCAACTGGGGGCCAATTTTGCCCCCCCAGAGGACA TTGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGGGGGGTTGGGGGATGGTGGGGATGT GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTATAATGCACAG GGCAGTACCCCACAACGAAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAA CCCCAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTAT TATCTCTTTCCAGCCTCATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATG GTCTGTTCTTAGTTCTAGTTTGTATCCCCTCAAAAGCCATTATGTTGAAATCCTAATCCCC AAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAGATCAGGAGTGCAGAGCCCTC ATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTTCCACCAT ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAACAGCTGTCGCCAAACACCG ACTCTGTCGTTGCCTTGATCTTGAACTTCCAGCCTCCAGAACTATGAGAAATAAAATTCTGG TTGTTTGTAGCCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594

><subunit 1 of 1, 359 aa, 1 stop

><MW: 38899, pI: 5.21, NX(S/T): 0

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHQMGLLLKHMQDVRVLLGHLLMELRELSGHQKPGTTKATAE

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence:

amino acids 12-33

Protein kinase C phosphorylation site:

amino acids 353-355

CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCGCCACGCGGCCACCAGAAGTT TGAGCCTCTTTGGTAGCAGGAGGCTGGAAGAAAGGACAGAAGTAGCTCTGGCTGTG<mark>ATG</mark>GGG ATCTTACTGGGCCTGCTACTCCTGGGGCACCTAACAGTGGACACTTATGGCCGTCCCATCCT GGAAGTGCCAGAGAGTGTAACAGGACCTTGGAAAGGGGATGTGAATCTTCCCTGCACCTATG ACCCCCTGCAAGGCTACACCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCCT GTCACCATCTTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAGGGCCG CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCCAATTGAGCACCCTGGAGATGG ATGACCGGAGCCACTACACGTGTGAAGTCACCTGGCAGACTCCTGATGGCAACCAAGTCGTG AGAGATAAGATTACTGAGCTCCGTGTCCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC TGGCAGCGGTTATGGCTTCACGGTGCCCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTC GGGGTTCTCCCCATCAGTTATATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC AAAGTAGCAACCCTAAGTACCTTACTCTTCAAGCCTGCGGTGATAGCCGACTCAGGCTCCTA TTTCTGCACTGCCAAGGGCCAGGTTGGCTCTGAGCAGCACAGCGACATTGTGAAGTTTGTGG TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC ${\tt TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTTGCCATCATCCTCATCATCT}$ CCTTGTGCTGTATGGTGGTTTTTACCATGGCCTATATCATGCTCTGTCGGAAGACATCCCAA ${\tt CAAGAGCATGTCTACGAAGCAGCCAGG} \underline{{\tt TAA}} \underline{{\tt GAAGAGTCTCTCTTTCCATTTTGACCCCGT}}$ CCCTGCCCTCAATTTTGATTACTGGCAGGAAATGTGGAGGAGGGGGGGTGTGGCACAGACCC AATCCTAAGGCCGGAGGCCTTCAGGGTCAGGACATAGCTGCCTTCCCTCTCTCAGGCACCTT AGAATCCCTGGGTGGTAGGATCCTGATAATTAATTGGCAAGAATTGAGGCAGAAGGGTGGGA AACCAGGACCACAGCCCCAAGTCCCTTCTTATGGGTGGTGGGCCTCTTGGGCCATAGGGCACA TGCCAGAGAGGCCAACGACTCTGGAGAAACCATGAGGGTGGCCATCTTCGCAAGTGGCTGCT CCAGTGATGAGCCAACTTCCCAGAATCTGGGCAACAACTACTCTGATGAGCCCTGCATAGGA TCTGGATTATGAGTTTCTGGCCACTGAGGGCAAAAGTGTCTGTTAAAAATGCCCCATTAGGC CAGGATCTGCTGACATAATTGCCTAGTCAGTCCTTGCCTTCTGCATGGCCTTCTTCCCTGCT ACCTCTCTTCCTGGATAGCCCAAAGTGTCCGCCTACCAACACTGGAGCCGCTGGGAGTCACT GGCTTTGCCCTGGAATTTGCCAGATGCATCTCAAGTAAGCCAGCTGCTGGATTTGGCTCTGG GCCCTTCTAGTATCTCTGCCGGGGGCTTCTGGTACTCCTCTAAATACCAGAGGGAAGATG CCCATAGCACTAGGACTTGGTCATCATGCCTACAGACACTATTCAACTTTGGCATCTTGCCA CCAGAAGACCCGAGGGAGGCTCAGCTCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT TTCTCTTTCTTCAGGGCCAGACAGCTTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA ATCATAACAGC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416

><subunit 1 of 1, 321 aa, 1 stop

><MW: 35544, pI: 8.51, NX(S/T): 0

MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTKTEAPTTMT
YPLKATSTVKQSWDWTTDMDGYLGETSAGPGKSLPVFAIILIISLCCMVVFTMAYIMLCRKT
SQQEHVYEAAR

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC $\tt GGG\underline{\textbf{ATG}} \texttt{TCCCTCCTCTCTCTCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA}$ TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGCGAGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG ATTTTCCTCTTGGTGTGGCTGCTAATCCGAAGGAAAGACAAAGAAGATATGAGGAAGAAGA GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ${\tt ACGGTC}{\color{blue}{\bf TGA}}{\tt ATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC}$ TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA ${ t AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC}$ TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

GTCGTTCCTTTGCTCTCTCGCGCCCCAGTCCTCCTCCTGGTTCTCCTCAGCCGCTGTCGGAGGAGAGCACCCGGA AGCCTCCCTTGCCGCCTCCTCTGCCCGGCCGCAGCAGTGCACATGGGGTGTTGGAGGTAGATGGGCTCCCG GCCCGGGAGGCGGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCCGGGCG GCCCGCCGAGCCACGACGATGATCGCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACAGCTCAG $\tt CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT$ GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACAAGCCTGCGCGTCTGCAGCAGTTGCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCCATGGCCAATG ${\tt ATTGAGAAATTACCTTGTGCCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT}$ ACCTGTGCCCCCCATACGGTGTGTCCTGTGGGTTGGGGTGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCGG TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTGCCTTCTAGTGTGATGAAATGCAAAGCATACACAGACTGT ${ t TCCAGCTCCACCTCACCTTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT$ TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG CCAAACCTTCAGGTAGTCAACCACCAGCAAGGCCCCCACCACAGACACCTCCTGAAGCTGCTGCCGTCCATGGAG GCCACTGGGGGCGAGAAGTCCAGCACGCCCATCAAGGGCCCCAAGAGGGGGACATCCTAGACAGAACCTACACAAG ${\tt CATTTGACATGAGGCATTTGCCCTGGATGATTGTGCTTTTCCTGCTGCTGCTGCTGTGGTGATTGTGGTG}$ TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA GGGCTGAAGAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT AAGATTCGTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG CTTAGCCCGAGCCCCATCCCCAGCCCCAACGCGAAACTTGAGAATTCCGCTCTCCTGACGGTGGAGCCTTCCCCA ${\tt CAGGACAAGAACAAGGGCTTCTTCGTGGATGAGTCGGAGCCCCTTCTCCGCTGTGACTCTACATCCAGCGGCTCC}$ TCCGCGCTGAGCAGGAACGGTTCCTTTATTACCAAAGAAAAGAAGGACACAGTGTTGCGGCAGGTACGCCTGGAC CCCTGTGACTTGCAGCCTATCTTTGATGACATGCTCCACTTTCTAAATCCTGAGGAGCTGCGGGTGATTGAAGAG $\tt CTCCTGGACTCTGTTTATAGCCATCTTCCTGACCTGTTAGACATAGGGATACTGCATTCTGGAAATTACTCA$ ${\tt GTGTGTGTGTGTGTGTGTGTGTTTTAACAGAGAATATGGCCAGTGCTTGAGTTCTTCTCCTTCTC}$ ${\tt TCTCTCTTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA}$ ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTTGCCTTCTTATGTATTTTCAAGATTATTCTG ${\tt TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT}$ AAAAACAAATATTATTACTATTTTTATTATTGTTTGTCCTTTATAAATTTTCTTAAAGATTAAGAAAATTTAAGA ${\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG}$ ${\tt TCTTCTTATGCTAATATGCTCTGGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTTGCTATTTAAGTGGCTT}$ ${\tt GACAACTGGGCCACCAAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT}$ GGAAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG ${\tt TTTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGATTCCTTCACCAATT}$ ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTTGCAACTATGCTCCCATTTACAAATG AAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594</pre>

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCA
ALTDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASQTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

ATGGGAAGCCAGTAACAČTGTGGCCTACTATCTCTTCCGTGGTGCCATCTACATTTTTGGGA CTCGGGAATTATGAGGTAGAGGTGGAGGCGGAGCCGGATGTCAGAGGTCCTGAAATAGTCAC CATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTTCTCATTCCGATCGCTTTTTGGCC TTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCAGATGCTGTTGCTGCACAGATCCTG TCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC ACTGGCCATTGGTCTGGGCATCCACTTCGACTGCTCAGGGAAGTACAGATGTCGCTCATCCT TTAAGTGTATCGAGCTGATAGCTCGATGTGACGGAGTCTCGGATTGCAAAGACGGGGAGGAC GAGTACCGCTGTGTCCGGGTGGTCAGAATGCCGTGCTCCAGGTGTTCACAGCTGCTTC GTGGAAGACCATGTGCTCCGATGACTGGAAGGGTCACTACGCAAATGTTGCCTGTGCCCAAC TGGGTTTCCCAAGCTATGTGAGTTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTC CGGGAGGAGTTTGTGTCCATCGATCACCTCTTGCCAGATGACAAGGTGACTGCATTACACCA CTCAGTATATGTGAGGGAGGGATGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCT TGGCCCTGGCAGGCCAGCCTTCAGTTCCAGGGCTACCACCTGTGCGGGGGGCTCTGTCATCAC GCCCCTGTGGATCATCACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGA CCATCCAGGTGGGTCTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAG ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCT ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAGGATGGGGGGCCCACAGAGGATGGAGGTGAC GCCTCCCCTGTCCTGAACCACGCGGCCGTCCCTTTGATTTCCAACAAGATCTGCAACCACAG GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCGCGGGCTACCTGACGGGTGGCG TGGACAGCTGCCAGGGGGACAGCGGGGGCCCCTGGTGTGTCAAGAGAGGAGGCTGTGGAAG TTAGTGGGAGCGACCAGCTTTGGCATCGGCTGCGCAGAGGTGAACAAGCCTGGGGTGTACAC GAGGAAGGGGACAAGTAGCCACCTGAGTTCCTGAGGTGATGAAGACAGCCCGATCCTCCCCT GGACTCCCGTGTAGGAACCTGCACACGAGCAGACACCCTTGGAGCTCTGAGTTCCGGCACCA GTAGCAGGCCCGAAAGAGGCACCCTTCCATCTGATTCCAGCACAACCTTCAAGCTGCTTTTT GTTTTTTTTTTTTTTTGAGGTGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGAAA TCCCTGCTCACTGCAGCCTCCGCTTCCCTGGTTCAAGCGATTCTCTTGCCTCAGCTTCCCCA GTAGCTGGGACCACAGGTGCCCGCCACCACCCAACTAATTTTTGTATTTTAGTAGAGAC AGGGTTTCACCATGTTGGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTGCCTGCTT CAGCCTCCCACAGTGCTGGGATTACAGGCATGGGCCACCACGCCTAGCCTCACGCTCCTTTC TGATCTTCACTAAGAACAAAAGAAGCAGCAACTTGCAAGGGCGGCCTTTCCCCACTGGTCCAT CTGGTTTTCTCTCCAGGGTCTTGCAAAATTCCTGACGAGATAAGCAGTTATGTGACCTCACG TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCACCAGCCCAGAAGTGCAGAACTGCAGTC ACTGCACGTTTTCATCTCTAGGGACCAGAACCCAAACCCCCTTTCTACTTCCAAGACTTAT TTTCACATGTGGGGAGGTTAATCTAGGAATGACTCGTTTAAGGCCTATTTTCATGATTTCTT CATTGTCTGGCGTGTCTGCGTGGACTGGAATCAAAATCATCCACTGAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234</pre>

><subunit 1 of 1, 453 aa, 1 stop

><MW: 49334, pI: 6.32, NX(S/T): 1

MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA
LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCVRVGGQNAVLQVFTAAS
WKTMCSDDWKGHYANVACAQLGFPSYVSSDNLRVSSLEGQFREEFVSIDHLLPDDKVTALHH
SVYVREGCASGHVVTLQCTACGHRRGYSSRIVGGNMSLLSQWPWQASLQFQGYHLCGGSVIT
PLWIITAAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKRLGNDIALMKL
AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAVPLISNKICNHR
DVYGGIISPSMLCAGYLTGGVDSCQGDSGGPLVCQERRLWKLVGATSFGIGCAEVNKPGVYT
RVTSFLDWIHEQMERDLKT

Signal Peptide:

amino acids 1-20

Transmembrane domain:

amino acids 240-284

GCTCAGCGGCGCGCGCGCGCGCGAGGCTCCGGAGCTCACTCGCCGAGGCAGAAATCCCTCCGGTCGCGA CGCCCGGCCCCGGCTCGGCGCGCGTGGGATGCTGCAGCGCTCGCCGCCGGGCCCGAGAGCTGCTGCACTGAAG GCCGGCGACG<u>ATG</u>GCAGCGCCCCGCTGCCCGTGTCCCCGCCCCGCCCCTCCTGCTCGCCCTGGCCGGTGCTCT GCTCGCGCCCTGCGAGGCCCGAGGGGTGAGCTTATGGAACCAAGGAAGAGCTGATGAAGTTGTCAGTGCCTCTGT ${\tt TCGGAGTGGGGACCTCTGGATCCCAGTGAAGAGCTTCGACTCCAAGAATCATCCAGAAGTGCTGAATATTCGACT}$ ACAACGGAAAGCAAAGAACTGATCATAAATCTGGAAAGAATGAAGGTCTCATTGCCAGCAGTTTCACGGAAAC CCACTATCTGCAAGACGGTACTGATGTCTCCCTCGCTCGAAATTACACGGGTCACTGTTACTACCATGGACATGT ${\tt ACGGGGATATTCTGATTCAGCAGTCTCAGCACGTGTTCTGGTCTCAGGGGGACTTATTGTGTTTGAAAATGA}$ AAGCTATGTCTTAGAACCAATGAAAAGTGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTGAAAAGCGT CCGGGGATCATGTGGATCACACACACACACACCCAAACCTCGCTGCAAAGAATGTGTTTCCACCACCCTCTCAGAC ATGGGCAAGAAGGCATAAAAGAGAGACCCTCAAGGCAACTAAGTATGTGGAGCTGGTGATCGTGGCAGACAACCG AGAGTTTCAGAGGCAAGGAAAAGATCTGGAAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA GTTTTACAGACCACTGAACATTCGGATCGTGTTGGTAGGCGTGGAAGTGTGGAATGACATGGACAAATGCTCTGT AAGTCAGGACCCATTCACCAGCCTCCATGAATTTCTGGACTGGAGGAAGATGAAGCTTCTACCTCGCAAATCCCA TGACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCAAGGGACCACCATCGGCATGGCCCCAATCATGAGCATGTG CACGGCAGACCAGTCTGGGGGAATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACA TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCGGTTGAGAA GGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTGTTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGGCCA GAAGTGTGGGAACAGATTTGTGGAAGAAGGAGGAGGAGTGTGACTGTGGGGAGCCAGAGGAATGTATGAATCGCTG CTGCAATGCCACCTGTACCCTGAAGCCGGACGCTGTGTGCGCACATGGGCTGTGCTGTGAAGACTGCCAGCT GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCTGTGACCTCCCAGAGTTCTGCACAGGGGCCAGCCC TCACTGCCCAGCCAATGTGTACCTGCACGATGGCACTCATGTCAGGATGTGGACGGCTACTGCTACAATGGCAT CTGCCAGACTCACGAGCAGCAGTGTGTCACGCTCTGGGGACCAGGTGCTAAACCTGCCCCTGGGATCTGCTTTGA GAGAGTCAATTCTGCAGGTGATCCTTATGGCAACTGTGGCAAAGTCTCGAAGAGTTCCTTTGCCAAATGCGAGAT GAGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGGTACCAATGCCGTTTC CATAGAAACAACATCCCTCTGCAGCAAGGAGGCCGGATTCTGTGCCGGGGGACCCACGTGTACTTGGGCGATGA CATGCCGGACCCAGGGCTTGTGCTTGCAGGCACAAAGTGTGCAGATGGAAAAATCTGCCTGAATCGTCAATGTCA AAATATTAGTGTCTTTGGGGTTCACGAGTGTGCAATGCAGTGCCACGCAGAGGGGTGTGCAACAACAGGAAGAA CATCCGGCAAGCAGAAGCAGGAAGCTGCAGAGTCCAACAGGGAGCGCGGCCAGGGCCCAGGAGCCCGTGGG ${\tt ATCGCAGGAGCATGCGTCTACTGACTCATC} \underline{{\tt TGA}} {\tt GCCCTCCCATGACATGGAGACCGTGACCAGTG}$ $\tt CTGCTGCAGAGGGGTCACGCGTCCCCAAGGCCTCCTGTGACTGGCATTGACTCTGTGGCTTTGCCATCGTT$ TCCATGACAACAGACACACAGTTCTCGGGGCTCAGGAGGGGGAAGTCCAGCCTACCAGGCACGTCTGCAGAAA AGAGTAGCAGGTTACCACTCTGGCAGGCCCCAGCCCTGCAGCAAGGAGGAAGAGGACTCAAAAGTCTGGCCTTTC ${\tt ACTGAGCCTCCACAGCAGTGGGGGGAGAAGCAAGGGTTGGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCT}$ TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTTAGCATTTATTATATGAAAAT ${\tt TGAAACAAACTGGAGAAGAAGGTAGGAGAAAGGGCGGTGAACTCTGGCTCTTTGCTGTGGACATGCGTGACCAGC}$ AGTACTCAGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCCATCATTTAACAAGTAAGAA TGTTAAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCGTGGCCATTACTGCATAAAATAGAGTGCATTT GAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624

><subunit 1 of 1, 735 aa, 1 stop

><MW: 80177, pI: 7.08, NX(S/T): 5

MAARPLPVSPARALLLALAGALLAPCEARGVSLWNQGRADEVVSASVRSGDLWIPVKSFDSK
NHPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKSVRGSCGSHHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVKQRLIEIANHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMKLLPRKSHDNAQLVSGVYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRGCSCQMAVEK
GGCIMNASTGYPFPMVFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNAVSIETNIPLQQGGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCHCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide:

amino acids 1-28

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTTGCATTGTTTCCCTGACAACGAAA
ACAAAACAGTTTTGGGGGTTCAGGAGGGGAANTCCAGCCTACCCAGGAAGTTTGCAGAAACA
GTGCAAGGAAGGCAGGANTTCCTGGTTGAGNTTTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCACTTTTGGCAGGCCCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAAGTTTGGCCTTTCACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTT
GGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCTTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTTAGCATTTATTATATGAAAATAGCAGGGTTTT
AGTTTTTAATTTATCAGAGACCCTGCCACCCCATTCCATNTCCATCCAAG

CATCCTGCAACATGGTGAAACCACGCCTGGCTAATTTTGTTGTTATTTTTGGTAGAGATGGGA TTTCACCGTGTTAGCCAGGATTGTCTCAATCTGACCTCATGATCTGCCCGCCTCGGCCTCCC AAAGTGCTGGGATTACAGGCGAGTGCAACCACACCCGGCCACAAACTTTTTAAGAAGTTAAT GAAACCATACCTTTTACATTTTTAATGACAGGAAAATGCTCACAATAATTGTTAACCCAAAA TTCTGGATACAAAGTACAATCTTTACTGTGTAAATACATGTATATGTACTATATGAAAATA TACCAAATATCAATAATACTTATCTCTGGGTAAAAACCTCTTCTCATACCCTGTGCTAACAA CTTTTAACAAAAATTTGCATCACTTTTAAGAATCAAGAAAAATTTCTGAAGGTCATATGGG ACAGAAAAAAAACCAAGGGAAAAATCACGCCACTTGGGAAAAAAGATTCGAAATCTGCCT ${ t TTTTATAGATTTGTTAATAAGGTCCAGGCTTTCTAAGCAACTTAAATGTTTTGTTTCGA$ AACAAAGTACTTGTCTGGATGTAGGAGGAAAGGGAGTGATGTCACTGCCATTATGATGCCCC ACACTGAGCAGCAAGCTGGACACACGGCACACTGATCCAAATGGGTAAGGGGATGGTGGCGA ${\tt TGCTCATTCTGGGTCTGCTACTTCTGGCGCTGCTGCTGCCGTGCAGGTTTCTTCATTTGTT}$ CCTTTAACCAGTATGCCGGAAGCTACTGCAGCCGAAACCACAAAGCCCTCCAACAGTGCCCT ${ t ACAGCCTACAGCCGGTCTCGTGGTCTTGCTTGCCCTTCTACATCTCTACCAT}$ CAGGTCAAGAAACAGCTACAGTTCTCCAACCCATACACTAAAACCGAATCCAAATGGTGCCT AGAAGTTCAATGTGGCAAGGAAAAAACCAGGTCTTCATCAAATCTACTAATTTCACTCCTT GACTAGATGATAAATGCCTGTACTCCCAGTACTTTGGGAGGCCTAGGCCGGCGGATCACCTG AGGTCAGGAGTTTGAGACTAACCTGGCCAAAATGGTGAAACCCCATCTGTACTAAAAATACA ACAATCACTTGAACTCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCTACTGCACTCTA ${\tt CACGCCTGTAATCCCGGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCAGGAGATCA}$ AGACCATCCTGGCTAATACAGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCCGGG GATGGTGGCAGCACCTGGAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGTGAA CTCAGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCTACTGCACTCCAGCCTGGGCGACAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48309</pre>

><subunit 1 of 1, 67 aa, 1 stop

><MW: 6981, pI: 7.47, NX(S/T): 0

 ${\tt MGKGMVAMLILGLLLLALLLPVQVSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLAL}$

LHLYH

Signal peptide:

amino acids 15-27

AGGCGCGCGGCGGCGGCGGCCGCCCCCCGGCGCAGACGGCGAGACGGCACAGCACCCCCACAGCAAGCACC TGTACACGGCCGACATGTTCACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTTCGCGCCCTGGTGTG GACACTGCCAGCGGCTGCAGCCGACTTGGAATGACCTGGGAGACAAATACAACAGCATGGAAGATGCCAAAGTCT ATGTGGCTAAAGTGGACTGCACGGCCCACTCCGACGTGTGCTCCGCCCAGGGGGTGCGAGGATACCCCACCTTAA AGCTTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCAGGGTCCTCGGGACTTCCAGACACTGGAAAACTGGATGC ${\tt GGCTGTATGAGCTCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCGACCACTTTATCAAGTTCTTCGCTC}$ TCAAGATTGGCAAGGTTGATTGTACACAGCACTATGAACTCTGCTCCGGAAACCAGGTTCGTGGCTATCCCACTC TTCTCTGGTTCCGAGATCGGAAAAAGGTGGATCAGTACAAGGGAAAGCGGGATTTGGAGTCACTGAGGGAGTACG TGGAGTCGCAGCTGCAGCGCACAGAGACTGGAGCGACGGAGACCGTCACGCCCTCAGAGGCCCCGGTGCTGGCAG ${\tt TAACCTTCATCAAGTTTTATGCTCCATGGTGTGGTCATTGTAAGACTCTGGCTCCTACTTGGGAGGAACTCTCTA}$ AAAAGGAATTCCCTGGTCTGGCGGGGGTCAAGATCGCCGAAGTAGACTGCACTGCACTGAACGGAATATCTGCAGCA AGTATTCGGTACGAGGCTACCCCACGTTATTGCTTTTCCGAGGAGGAAAAGTCAGTGAGCACAGTGGAGGCA GAGACCTTGACTCGTTACACCGCTTTGTCCTGAGCCAAGCGAAAGACGAACTTTAGGAACACAGTTGGAGGTCAC ATTCTTTATTAAGTTAAGTTTCTCTAAGTAAATGTGTAACTCATGGTCACTGTGTAAACATTTTCAGTGGCGATA TATCCCCTTTGACCTTCTCTTGATGAAATTTACATGGTTTCCTTTGAGACTAAAATAGCGTTGAGGGAAATGAAA CCACGAGTTCTGGAAAGGTGGCCTTGTGGCAGTATTGACGTTCCTCTGATCTTAAGGTCACAGTTGACTCAATAC TGGAGCTTCTGTTGCTGTGAATACTTCTCTCAGTGTGAGAGGGTTAGCCGTGATGAAAGCAGCGTTACTTCTGACC GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTTATGTGTCGATACTTGTCAAATCAGTTACTGTTCAGGGGAT ${\tt CCTTCTGTTTCTCACGGGGTGAAACATGTCTTTAGTTCCTCATGTTAACACGAAGCCAGAGCCCACATGAACTGT}$ ${\tt TGGATGTCTTCCTTAGAAAGGGTAGGCATGGAAAATTCCACGAGGCTCATTCTCAGTATCTCATTAACTCATTGA}$ AAGATTCCAGTTGTATTTGTCACCTGGGGTGACAAGACCAGACAGGCTTTCCCAGGCCTGGGTATCCAGGGAGGC TCTGCAGCCCTGCTGAAGGGCCCTAACTAGAGTTCTAGAGTTTCTGATTCTCAGTAGTCCTTTTAGAGG CTTGCTATACTTGGTCTGCTTCAAGGAGGTCGACCTTCTAATGTATGAAGAATGGGATGCATTTGATCTCAAGAC CAAAGACAGATGTCAGTGGGCTGCTCTGGCCCTGGTGTGCACGGCTGTGGCAGCTGTTGATGCCAGTGTCCTCTA ${\tt ACTCATGCTGTCCTTGTGATTAAACACCTCTATCTCCCTTGGGAATAAGCACATACAGGCTTAAGCTCTAAGATA}$ CCCATACGCAAGGGGATGTGGATACTTGGCCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCACTTATA TATGGTTCACAGATAATTCTTTTTTAAAAAAACCCAACCTCCTAGAGAAGCACAACTGTCAAGAGTCTTGTACA GATACTTTCTAAATAAACTCTTTTTTTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46776</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47629, pI: 5.90, NX(S/T): 0

MPARPGRLLPLLARPAALTALLLLLLGHGGGGRWGARAQEAAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNDLGDKYNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSASNFELHVAQGDHFIKFFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLREYVESQLQRTETGATETVTPSEA
PVLAAEPEADKGTVLALTENNFDDTIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCTAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDSLHRFVLSQAKDEL

Signal sequence:

amino acids 1-32

 $\tt CTTTTCTGAGGAACCACAGCA{\color{blue} ATG}AATGGCTTTGCATCCTTGCTTCGAAGAAACCAATTTAT$ CCTCCTGGTACTATTCTTTTGCAAATTCAGAGTCTGGGTCTGGATATTGATAGCCGTCCTA GGAGATCCAGGAGAAGGAAAGCATGGCAAAGTGGGACGCATGGGGCCGAAAGGAATTAA AGGAGAACTGGGTGATATGGGAGATCAGGGCAATATTGGCAAGACTGGGCCCATTGGGAAGA AGGGTGACAAAGGGGAAAAAGGTTTGCTTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT GTCTGTGATTGTGGAAGATACCGGAAATTTGTTGGACAACTGGATATTAGTATTGCTCGGCT CAAGACATCTATGAAGTTTGTCAAGAATGTGATAGCAGGGATTAGGGAAACTGAAGAGAAAT TCTACTACATCGTGCAGGAAGAAGAACTACAGGGAATCCCTAACCCACTGCAGGATTCGG GGTGGAATGCTAGCCAAGGATGAAGCTGCCAACACACTCATCGCTGACTATGTTGC TGTCCACAGACACACTCCACTGCAGAACTATAGCAACTGGAATGAGGGGGAACCCAGCGAC CCCTATGGTCATGAGGACTGTGTGGAGATGCTGAGCTCTGGCAGATGGAATGACACAGAGTG CCATCTTACCATGTACTTTGTCTGTGAGTTCATCAAGAAGAAAAG**TAA**CTTCCCTCATCCT ATTGTACTACATTTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT CCATCATCAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980</pre>

><subunit 1 of 1, 277 aa, 1 stop

><MW: 30645, pI: 7.47, NX(S/T): 2

MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG KHGKVGRMGPKGIKGELGDMGDQGNIGKTGPIGKKGDKGEKGLLGIPGEKGKAGTVCDCGRY RKFVGQLDISIARLKTSMKFVKNVIAGIRETEEKFYYIVQEEKNYRESLTHCRIRGGMLAMP KDEAANTLIADYVAKSGFFRVFIGVNDLEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC VEMLSSGRWNDTECHLTMYFVCEFIKKKK

Signal peptide:

amino acids 1-25

GGTTCTATCGATTCGAATTCGGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC GCCAGCGCACGCGCCCCCTGGAAGGAGAAGTCTCAGCTAGAACGAGCGGCCCTAGGTTTT CGGAAGGGAGGATCAGGGATGTTTGCGAGCGGCTGGAACCAGACGGTGCCGATAGAGGAAGC GGGCTCCATGGCTGCCCCTGCTGCTGCCCCTGCTGCTGCTGCTACCGCTGCTGCTGA ${ t AGCTACACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCT}$ CTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGGCTGCCGCCGACCCGGAAGG ACACCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGCGCGAGAGTAAC AGGGCTGCACGCGCCTTCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGGCGACAG CGGCGAGGGGAGCGCTGGAGAAGGCGAGCGGGCAGCCGGGAGACCGGAGATGCAGCGGCCG GAAGCGGCGCGGAGTTTGCCGGAGGGGGACGGTGCCGCCAGAGGTGGAGGAGCCGCCGCCCCT CTGTCACCTGGAGCAACTGTGGCGCTGCTCCTCCCCGCTGGCCCAGAGTTTCTGTGGCTCTG GTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCCGGGGCC GAGTCCCTGGAGCCGGACCTGCCCGCCCTGAGAGCCATGGGGCTCCACCTGTGGGCTGCAGG GGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACGTGCCTGTACATCTTC ACCTCTGGCACCACGGCCTCCCCAAGGCTGCTCGGATCAGTCATCTGAAGATCCTGCAATG CCAGGGCTTCTATCAGCTGTGTGTGTCCACCAGGAAGATGTGATCTACCTCGCCCTCCCAC TCTACCACATGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGCCATTGGGGCCACAGTG GTGCTGAAATCCAAGTTCTCGGCTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGAC GGTGTTCCAGTACATTGGGGAGCTGTGCCGATACCTTGTCAACCAGCCCCCGAGCAAGGCAG AACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGGCTGCGCCCAGATACCTGGGAGCGT TTTGTGCGGCGCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACGT ATATCTTCCCCTTCTCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCC CAGGGGCACTGTATGGCCACATCTCCAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCA GCAGTCCCCATTCCTGGGCTATGCTGGCGGGGCCAGAGCTGGCCCAGGGGAAGTTGCTAAAGG ${ t ATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCTGCGATGACCAA}$ GGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGC CACAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATG GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTTCTGCGTCCCCCC CACGCTTTGGACCTTATGCAGCTCTACACCCACGTGTCTGAGAACTTGCCACCTTATGCCCG GCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAGAGACCTTCAAACAGCAGAAAG ${ t TTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCTGTCTGACCCACTGTACGTTCTGGAC$ CAGGCTGTAGGTGCCTACCTGCCCCTCACAACTGCCCGGTACAGCGCCCCTCCTGGCAGGAAA CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTTT AAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913</pre>

><subunit 1 of 1, 730 aa, 1 stop

><MW: 78644, pI: 7.65, NX(S/T): 2

MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLLPLLLLLPL
LLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQ
RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGEGSAGEGERAAPGAGD
AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTAL
RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSA
EVDGPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYL
ALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP
SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASW
LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK
LLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEV
NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFK
QQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI

Type II transmembrane domain:

amino acids 45-65

Other transmembrane domain:

amino acids 379-398

cAMP- and cGMP-dependent protein kinase phosphorylation site starting at amino acid 136

CUB domain protein motif

amino acids 254-261

putative AMP-binding domain siganture

amino acids 332-343

N-glycosylation sites

amino acids 37-40 and 483-486

CCTGTGTTAAGCTGAGGTTTCCCCTAGATCTCGTATATCCCCAACACATACCTCCACGCACA GCTTGTCCATCTCCCTCCCGGGGGAGCCGGCGCGCGCTCCCACCTTTGCCGCACACTCCGGC GAGCCGAGCCCGCAGCGCTCCAGGATTCTGCGGCTCGGAACTCGGATTGCAGCTCTGAACCC CCATGGTGGTTTTTAAACACTTCTTTTCCTTCTCTTCCTCGTTTTGATTGCACCGTTTCCA CCATCTGGCTTATAAAAGTTTGCTGAGCGCAGTCCAGAGGGCTGCGCTGCTCGTCCCCTCGG CTGGCAGAAGGGGGTGACGCTGGGCAGCGCGAGGAGCGCGCCGCTGCCTCTGGCGGGCTTT CGGCTTGAGGGGCAAGGTGAAGAGCGCACCGGCCGTGGGGTTTACCGAGCTGGATTTGTATG ${\tt TTGCACC} {\tt ATG} {\tt CCTTCTTGGATCGGGGCTGTGATTCTTCCCCTCTTGGGGCTGCTCTCCC}$ TCCCCGCCGGGGCGATGTGAAGGCTCGGAGCTGCGGAGAGGTCCGCCAGGCGTACGGTGCC AAGGGATTCAGCCTGGCGGACATCCCCTACCAGGAGATCGCAGGGGAACACTTAAGAATCTG TCCTCAGGAATATACATGCTGCACCACAGAAATGGAAGACAAGTTAAGCCAACAAAGCAAAC TCGAATTTGAAAACCTTGTGGAAGAGACAAGCCATTTTGTGCGCACCACTTTTGTGTCCAGG CATAAGAAATTTGACGAATTTTTCCGAGAGCTCCTGGAGAATGCAGAAAAGTCACTAAATGA TATGTTTGTACGGACCTATGGCATGCTGTACATGCAGAATTCAGAAGTCTTCCAGGACCTCT TCACAGAGCTGAAAAGGTACTACACTGGGGGGTAATGTGAATCTGGAGGAAATGCTCAATGAC TTTTGGGCTCGGCTCCTGGAACGGATGTTTCAGCTGATAAACCCTCAGTATCACTTCAGTGA AGACTACCTGGAATGTGTGAGCAAATACACTGACCAGCTCAAGCCATTTGGAGACGTGCCCC GGAAACTGAAGATTCAGGTTACCCGCGCCTTCATTGCTGCCAGGACCTTTGTCCAGGGGCTG ACTGTGGGCAGAGAAGTTGCAAACCGAGTTTCCAAGGTCAGCCCAACCCCAGGGTGTATCCG TGCCCTCATGAAGATGCTGTACTGCCCATACTGTCGGGGGCCTTCCCACTGTGAGGCCCTGCA ACAACTACTGTCTCAACGTCATGAAGGGCTGCTTGGCAAATCAGGCTGACCTCGACACAGAG ${\tt TGGAATCTGTTTATAGATGCAATGCTCTTGGTGGCAGAGCGACTGGAGGGGCCATTCAACAT}$ TGAGTCGGTCATGGACCCGATAGATGTCAAGATTTCTGAAGCCATTATGAACATGCAAGAAA ACAGCATGCAGGTGTCTGCAAAGGTCTTTCAGGGATGTGGTCAGCCCAAACCTGCTCCAGCC CTCAGATCTGCCCGCTCAGCTCCTGAAAATTTTAATACACGTTTCAGGCCCTACAATCCTGA GGAAAGACCAACAACTGCTGCAGGCACAAGCTTGGACCGGCTGGTCACAGACATAAAAGAGA AATTGAAGCTCTCTAAAAAGGTCTGGTCAGCATTACCCTACACTATCTGCAAGGACGAGAGC GTGACAGCGGCACGTCCAACGAGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT GCCTGAGATCATGAATGATGGGCTCACCAACCAGATCAACAATCCCGAGGTGGATGTGGACA TCACTCGGCCTGACACTTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA CTAAAAAACGCCTACAATGGCAATGATGTCAATTTCCAGGACACAAGTGATGAATCCAGTGG CTCAGGGAGTGGCATGGATGACGTGTCCCACGGAGTTTGAGTTTGTCACCA CAGAGGCCCCGCAGTGGATCCCGACCGGAGAGAGGTGGACTCTTCTGCAGCCCAGCGTGGC CACTCCCTGCTCTCCTGGTCTCTCACCTGCATTGTCCTGGCACTGCAGAGACTGTGCAGATA ${f \underline{A}}$ TCTTGGGTTTTTGGTCAGATGAAACTGCATTTTAGCTATCTGAATGGCCAACTCACTTCTT TTCTTACACTCTTGGACAATGGACCATGCCACAAAAACTTACCGTTTTCTATGAGAAGAGAG CAGTAATGCAATCTGCCTCCCTTTTTGTTTTCCCAAAGAGTACCGGGTGCCAGACTGAACTG CTTCCTCTTCCTCAGCTATCTGTGGGGACCTTGTTTATTCTAGAGAGAATTCTTACTCAA ATTTTTCGTACCAGGAGATTTTCTTACCTTCATTTGCTTTATGCTGCAGAAGTAAAGGAAT CTCACGTTGTGAGGGTTTTTTTTTTTTTTCTCATTTAAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914

><subunit 1 of 1, 555 aa, 1 stop

><MW: 62736, pI: 5.36, NX(S/T): 0

MPSWIGAVILPLLGLLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIAGEHLRICPQ
EYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFFRELLENAEKSLNDMF
VRTYGMLYMQNSEVFQDLFTELKRYYTGGNVNLEEMLNDFWARLLERMFQLINPQYHFSEDY
LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVGREVANRVSKVSPTPGCIRAL
MKMLYCPYCRGLPTVRPCNNYCLNVMKGCLANQADLDTEWNLFIDAMLLVAERLEGPFNIES
VMDPIDVKISEAIMNMQENSMQVSAKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER
PTTAAGTSLDRLVTDIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE
IMNDGLTNQINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESSGSG
SGSGCMDDVCPTEFEFVTTEAPAVDPDRREVDSSAAQRGHSLLSWSLTCIVLALQRLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

CGGACGCGTGGGCGACGCGTGGGCAAAAGAACTCGGAGTGCCAAAGCTAAATAAGTTAGCTGAGAAAACGCACG ${\tt TAGGGACCCGGCTTTGGCCTTCAGGCTCCCTAGCAGCGGGGAAAAGGAATTGCTGCCGGAGTTTCTGCGGAGGT}$ AAAGGACTGGGGAAAATAGCCCTGGGAAAGTGGAGAAGGTGATCAGGAGGCCGGTCCACTACGGCAGTTTATCTG ${\tt TCTGATCAGAGCCAGACGCGTCCACTTCGCAGTTCTTTCCAGGTGTGGGGACCGCAGGACAGACGGCCGA}$ TCCCGCCGCCCTCCGTACCAGCACTCCCAGGAGAGTCAGCCTCGCTCCCCAACGTCGAGGGCGCTCTGGCCACGA $\tt CGGACATGGTGACAGCTGAGAGGAGGAGGATTTCTTGCCAGGTGGAGAGTCTTCACCGTCTGTTGGGTGCATG$ ${\tt TGTGCGCCCGCAGCGGCGCGGGGCGCGTGGTTCTCCGCGTGGAGTCTCACCTGGGACCTGAGTGA{\tt ATG}GCTCCCA$ AAGAAGGGCCTTACTAGCTCAAGCTGGAGAGAAACTAGAGCCCAGCACAACTTCCACCTCCCAGCCCCATCTCA TTTTCATCCTAGCGGATGATCAGGGATTTAGAGATGTGGGTTACCACGGATCTGAGATTAAAACACCTACTCTTG ACAAGCTCGCTGCCGAAGGAGTTAAACTGGAGAACTACTATGTCCAGCCTATTTGCACACCATCCAGGAGTCAGT TTATTACTGGAAAGTATCAGATACACCCGGACTTCAACATTCTATCATAAGACCTACCCAACCCAACTGTTTAC $\tt CTCTGGACAATGCCACCTACCTCAGAAACTGAAGGAGGTTGGATATTCAACGCATATGGTCGGAAAATGGCACT$ TGGGTTTTAACAGAAAAGAATGCCATGCCCACCAGAAGAGGATTTGATACCTTTTTTGGTTCCCTTTTTGGGAAGTG GGGATTACTATACACACTACAAATGTGACAGTCCTGGGATGTGTGGCTATGACTTGTATGAAAACGACAATGCTG CCTGGGACTATGACAATGGCATATACTCCACACAGATGTACACTCAGAGAGTACAGCAAATCTTAGCTTCCCATA TCGAACACTACCGATCCATTATCAACATAAACAGGAGAAGATATGCTGCCATGCTTTCCTGCTTAGATGAAGCAA TCAACAACGTGACATTGGCTCTAAAGACTTATGGTTTCTATAACAACAGCATTATCATTTACTCTTCAGATAATG GTGGCCAGCCTACGGCAGGAGGAGTAACTGGCCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGGATCC GGGCTGTAGGCTTTGTGCATAGCCCACTTCTGAAAAACAAGGGAACAGTGTGTAAGGAACTTGTGCACATCACTG ACTGGTACCCCACTCTCATTTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT GGGAGACCATAAGTGAGGGTCTTCGCTCACCCCGAGTAGATATTTTGCATAACATTGACCCCTATACACCAAGGC AAAAAATGGCTCCTGGGCAGCAGGCTATGGGATCTGGAACACTGCAATCCAGTCAGCCATCAGAGTGCAGCACTG GAAATTGCTTACAGGAAATCCTGGCTACAGCGACTGGGTCCCCCCTCAGTCTTTCAGCAACCTGGGACCGAACCG GTGGCACAATGAACGGATCACCTTGTCAACTGGCAAAAGTGTATGGCTTTTCAACATCACAGCCGACCCATATGA ${ t GAGGGTGGACCTATCTAACAGGTATCCAGGAATCG{ t TGA}} { t AGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAAC}$ TGCAGTGCCGGTCAGGTATCCCCCCAAAGACCCCCAGAAGTAACCCTAGGCTCAATGGAGGGGTCTGGGGACCATG GAAGAAGAAACAGCAGAAAGCAGTCTCAGGTAAACCAGCAAATTTGGCTCGATAATATCGCTGGCCTAAGCGTCA ${\tt CCAAGGTGCTACTCTTGCAAGCCACACTTAGAGAGAGTGGAGATGTTTATTTCTCTCGCTCCTTTAGAAAACGTG}$ GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCAACTGACCAAACACTGCTTTGAATTATAGGAGGAGAACAATA ACCTACCATCCGCAAGCATGCTAATTTGATGGAAGTTACAGGGTAGCATGATTAAAACTACCTTTGATAAATTAC

FIGURE 42B

CACATGTGAACAGCTTGCACCTCATTTTACCATGCGTGAGGGAATGGCAAATAAGAATGTTTGAGCACACTGCCC GAAAAATATTTTGTTGTTTTTATAAAAAGTTATGCAAATGACTTTTATTTTTATTTCCTGCATACCATTAGAAGA ATTTTATTCATTTCATATATCAAGCACTGTAATACTATAAATTAATGTAATACTGTGTGAATTCAGACTA ATTACTTGGAAATTCAATGTTTGTGCAGAGTTGAGACAACTTTATTGTTTCTATCATAAACTATTTATGTATCTT AATTATTAAAATGATTTACTTTATGGCACTAGAAAATTTACTGTGGCTTTTCTGATCTAACTTCTAGCTAAAATT GTATCATTGGTCCTAAAAAATAAAAATCTTTACTAATAGGCAATTGAAGGAATGGTTTGCTAACAACCACAGTAA TATAATATGATTTTACAGATAGATGCTTCCCCTTGGCTATGACATGGAGAAAGATTTTCCCATAATAATAACTAA TATTTATATTAGGTTGGTGCAAAACTAGTTGCGGTTTTTCCCATTAAAAGTAATAACCTTACTCTTATACAAAGT ACATGCAAACGTCATGAGGAGAATTAAAGGAGTATTATCAGTAATGAAGTTTATCATGGGTCATCAATGAGCATA GATTGGTGTGGATCCTGTAGACCCTGGTGTTTTCTTTGAAGTGCCCTCTCCTAATGCAGAGGCCTTGAAGCTTAC AGTATACACTTGAAAAGTCACAGATAGCTAGAATTATGATCTTTGAAGTTATAACTGTGATCTGAAAATGTGTGT GGTGGTATGACAGCATTAAATACATTTACATCACAGCTCAAAGGACTGTGATATAATCCATTTATATCAC AACTCAAAGGACTGTGATATAATCCATTTATATCACAGCTCACAGTTTCTGAAAATGTATAAAAGAATCTATAAT ${\tt CTAGTACTGAAATTACGGTAAGATGATTTAAATGATTTTAACATTTTAACATTTTATTTCTAGAATATAT}$ GGCTCCATTTTATTTTATAGTGTAAAGTTGTATTTCCTAAAGTTTGTGTGTTTTGTCGACAGTATCTTTTAAATGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296</pre>

><subunit 1 of 1, 515 aa, 1 stop

><MW: 56885, pI: 6.49, NX(S/T): 5

MAPRGCAGHPPPPSPQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEEEEGALLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKTPTLDKLAAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVGYSTHMVGKWHLGFNRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRRYAAMLSCLDEAINNVTLA
LKTYGFYNNSIIIYSSDNGGQPTAGGSNWPLRGSKGTYWEGGIRAVGFVHSPLLKNKGTVCK
ELVHITDWYPTLISLAEGQIDEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1.

amino acids 120-132

Sulfatases signature 2.

amino acids 168-177

Tyrosine kinase phosphorylation site.

amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

CGGACGCGTGGGTGCGAGTGGAGCGGAGGACCCGAGCGGCTGAGGAGAGAGGAGGCGGCGGC TTAGCTGCTACGGGGTCCGGCCGCCCCTCCCGAGGGGGGCTCAGGAGGAGGAGGAGGACGAC CCGTGCGAGAATGCCTCTGCCCTGGAGCCTTGCGCTCCCGCTGCTCCTCCTGGGTGGCAG GTGGTTTCGGGAACGCGGCCAGTGCAAGGCATCACGGGTTGTTAGCATCGGCACGTCAGCCT GGGGTCTGTCACTATGGAACTAAACTGGCCTGCTGCTACGGCTGGAGAAGAACAGCAAGGG GCAGATGCTTTCCAGGATACACCGGGAAAACCTGCAGTCAAGATGTGAATGAGTGTGGAATG AAACCCCGGCCATGCCAACACAGATGTGTGAATACACACGGAAGCTACAAGTGCTTTTGCCT CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGTGAACTCTAGGACATGTGCCATGATAA ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGGGCCACAGTGCCTGTGTCCATCCTCAGGA CTCCGCCTGGCCCAAATGGAAGAGACTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT CATCTGTCCCTACAATCGAAGATGTGTGAACACATTTGGAAGCTACTACTGCAAATGTCACA ATGGATAGCCATACGTGCAGCCACCATGCCAATTGCTTCAATACCCAAGGGTCCTTCAAGTG TAAATGCAAGCAGGGATATAAAGGCAATGGACTTCGGTGTTCTGCTATCCCTGAAAATTCTG AAAAACAGCATGAAAAAGAAGGCAAAAATTAAAAATGTTACCCCAGAACCCACCAGGACTCC TACCCCTAAGGTGAACTTGCAGCCCTTCAACTATGAAGAGATAGTTTCCAGAGGCGGGAACT CTCATGGAGGTAAAAAAGGGAATGAAGAGAAATGAAAGAGGGGCCTTGAGGATGAGAAAAGAG AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCCGAAGCCTGCGAGGAGATGTTTTTCCCT AAGGTGAATGAAGCAGGTGAATTCGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACTTCCAA ACTGGAACATAAAGATTTAAATATCTCGGTTGACTGCAGCTTCAATCATGGGATCTGTGACT GGAAACAGGATAGAGAAGATGATTTTGACTGGAATCCTGCTGATCGAGATAATGCTATTGGC CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTTGCTCTTTGATTACCGGCTGGCCGGAG ACAAAGTCGGGAAACTTCGAGTGTTTGTGAAAAACAGTAACAATGCCCTGGCATGGGAGAAG ACCACGAGTGAGGATGAAAAGTGGAAGACAGGGAAAATTCAGTTGTATCAAGGAACTGATGC TACCAAAAGCATCATTTTTGAAGCAGAACGTGGCAAGGGCAAAACCGGCGAAATCGCAGTGG ATGGCGTCTTGCTTGTTTCAGGCTTATGTCCAGATAGCCTTTTATCTGTGGATGACTGAATG TTACTATCTTTATATTTGACTTTGTATGTCAGTTCCCTGGTTTTTTTGATATTGCATCATAG GACCTCTGGCATTTTAGAATTACTAGCTGAAAAATTGTAATGTACCAACAGAAATATTATTG TAAGATGCCTTTCTTGTATAAGATATGCCAATATTTGCTTTAAATATCATATCACTGTATCT TCTCAGTCATTTCTGAATCTTTCCNCATTATATTATAAAATNTGGAAANGTCAGTTTATCTC CCCTCCTCNGTATATCTGATTTGTATANGTANGTTGATGNGCTTCTCTCTACAACATTTCTA GAAAATAGAAAAAAAGCACAGAGAAATGTTTAACTGTTTGACTCTTATGATACTTCTTGGA AACTATGACATCAAAGATAGACTTTTGCCTAAGTGGCTTAGCTGGGTCTTTCATAGCCAAAC TTGTATATTTAATTCTTTGTAATAATAA

MPLPWSLALPLLLSWVAGGFGNAASARHHGLLASARQPGVCHYGTKLACCYGWRRNSKGVCE
ATCEPGCKFGECVGPNKCRCFPGYTGKTCSQDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRLAPNGRDCLDIDECASGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFNTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNSMKKKAKIKNVTPEPTRTPTPK
VNLQPFNYEEIVSRGGNSHGGKKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature. amino acids 80-91

Calcium-binding EGF-like domains amino acids 103-124, 230-251 and 185-206

GGGAGCTGCTGTGGCTGCTGGTGCTGCTGCTGCTCCTGCTCTTGGTGCAGCTGCTG CGCTTCCTGAGGGCTGACGCGACCTGACGCTACTATGGGCCGAGTGGCAGGGACGACGCCC AGAATGGGAGCTGACTGAT**ATG**GTGGTGTGGGTGACTGGAGCCTCGAGTGGAATTGGTGAGG AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTTCTCTTGTGCTGTCAGCCAGAAGAGTGCAT GAGCTGGAAAGGGTGAAAAGAAGATGCCTAGAGAATGGCAATTTAAAAGAAAAAGATATACT TGTTTTGCCCCTTGACCTGACCGACACTGGTTCCCATGAAGCGGCTACCAAAGCTGTTCTCC AGGAGTTTGGTAGAATCGACATTCTGGTCAACAATGGTGGAATGTCCCCAGCGTTCTCTGTGC ATGGATACCAGCTTGGATGTCTACAGAAAGCTAATAGAGCTTAACTACTTAGGGACGGTGTC CTTGACAAAATGTGTTCTGCCTCACATGATCGAGAGGAAGCAAGGAAAGATTGTTACTGTGA CTCCGGGGTTTTTTTAATGGCCTTCGAACAGAACTTGCCACATACCCAGGTATAATAGTTTC TAACATTTGCCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGTGCGG CTGATGTTAATCAGCATGGCCAATGATTTGAAAGAAGTTTGGATCTCAGAACAACCTTTCTT GTTAGTAACATATTTGTGGCAATACATGCCAACCTGGGCCTGGTGGATAACCAACAAGATGG ${\tt GGAAGAAAGGATTGAGAACTTTAAGAGTGGTGTGGATGCAGACTCTTCTTATTTTAAAATC}$ GAAAACATGAAAACAGCAATCTTCTTATGCTTCTGAATAATCAAAGACTAATTTGTGATTTT ATTGCCATGAATCTTGCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343

><subunit 1 of 1, 289 aa, 1 stop

><MW: 32268, pI: 9.21, NX(S/T): 0

MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDL TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWISEQPFLLVTYLW QYMPTWAWWITNKMGKKRIENFKSGVDADSSYFKIFKTKHD

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase amino acids 80-90, 131-168, 1-13 and 176-185

GCGACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTTC TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTCTGTCC TGATGCTGCTGAGCTCCCTGGTGTCTCTCGCTGGTTCTGTCTACCTGGCCTGGATCCTGTTC TTCGTGCTCTATGATTTCTGCATTGTTTGTATCACCACCTATGCTATCAACGTGAGCCTGAT GTGGCTCAGTTTCCGGAAGGTCCAAGAACCCCAGGGCAAGGCTAAGAGGCACTGAGCCCTCA ACCCAAGCCAGGCTGACCTCATCTGCTTTGCTTTTGGTCTTCAAGCCGCTCAGCGTGCCTGTG GACAGCGTGGCCCCGGCCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC $\tt CTGGGTCCTCACTGCTGCCCACTGCTTTGAAAAGGCAGCAGCAACAGAACTGAATTCCTGGT$ CAGTGGTCCTGGGGTTCTCTGCAGCGTGAGGGACTCAGCCCTGGGGCCGAAGAGGTGGGGGTG GCTGCCCTGCAGTTGCCCAGGGCCTATAACCACTACAGCCAGGGCTCAGACCTGGCCCTGCT $\tt CTACGCAATCTGCGCCTGCGTCTCATCAGTCGCCCCACATGTAACTGTATCTACAACCAGCT$ GCACCAGCGACACCTGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGGCCCCCAGCCTG GGGTGCAGGGCCCCTGTCAGGGAGATTCCGGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGA CACTGGGTTCAGGCTGGCATCATCAGCTTTGCATCAAGCTGTGCCCAGGAGGACGCTCCTGT GCTGCTGACCAACACAGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTT TCCTGGCCCAGAGCCCAGAGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGA TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCTCCCCATGGCCCTGGGAGGCCAGGCT GATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTCAGAGGAGGCGGTGCTAACTG CTGCCCACTGCTTCATTGGGCGCCCAGGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGA TCTGCCTGCCCTATCCTGACCACCACCTGCCTGATGGGGAGCGTGGCTGGGTTCTGGGACGG GCCCGCCAGGAGCAGCATCAGCTCCCTCCAGACAGTGCCCGTGACCCTCCTGGGGCCTAG GGCCTGCAGCCGGCTGCATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG TGTGTACCAGTGCTGTGGGTGAGCTGCCCAGCTGTGAGGGCCTGTCTGGGGCACCACTGGTG CATGAGGTGAGGGCACATGGTTCCTGGCCGGGCTGCACAGCTTCGGAGATGCTTGCCAAGG CCCCGCCAGGCCGCGCTCTTCACCGCGCTCCCTGCCTATGAGGACTGGGTCAGCAGTTTGG ACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCGAGGCTGAGCCTGGAAGCTGCCTGGCC AACATAAGCCAACCAGCTGCTGACAGGGGACCTGGCCATTCTCAGGACAAGAGAATGC AGGCAGGCAAATGGCATTACTGCCCCTGTCCTCCCCACCCTGTCATGTGTGATTCCAGGCAC CTCCCCACCCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCAACTCTGCTACCAAGC AAAATAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571

MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRHGNTV
PGEWPWQASVRRQGAHICSGSLVADTWVLTAAHCFEKAAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRLRLISRPTCNCIYNQLHQRHLSNPARPGMLCGGPQPGVQGPCQGDSGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLTNTAAHSSWLQARVQGAAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQGQLACGGALVSEEAVLTAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPGAGISSLQTVPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPARPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISQPTSC

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family amino acids 79-95, 343-359 and 237-247

N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

amino acids 79-96, 343-360 and 235-247

CGGGCCGCCCCGGCCCCATTCGGGCCGGGCCTCGCTGCGGCGGCGACTGAGCCAGGCTGG GCCGCGTCCCTGAGTCCCAGAGTCGGCGCGCGCGCGGCAGGGCAGCCTTCCACCACGGGGAG CCCAGCTGTCAGCCGCCTCACAGGAAGATGCTGCGTCGGCGGGGCAGCCCTGGCATGGGTGT GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG TCCCTGAAGACCCAGTGGTGGCACTGGTGGCCACCGATGCCACCCTGTGCTCCTCTCCC CCTGAGCCTGGCTCCACCTCACCTCATCTGGCAGCTGACAGATACCAAACA GCTGGTGCACAGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC GACGAGGCCAGCTTCACCTGCTTCGTGAGCATCCGGGATTTCGGCAGCGCTGCCGTCAGCCT GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCTGGAGCCCAACAAGGACCTGCGGC CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTTC TGGCAGGATGGGCAGGTGTGCCCCTGACTGGCAACGTGACCACGTCGCAGATGGCCAACGA GCAGGGCTTGTTTGATGTGCACAGCGTCCTGCGGGTGGTGCTGGGTGCGAATGGCACCTACA GCTGCCTGGTGCGCAACCCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCACCATCACAGGG TGCACTGCTGGCCCTGGCTTTCGTGTGCTGGAGAAAGATCAAACAGAGCTGTGAGGAGG AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGGGAGAAGGCTCCAAGACAGCCCTGCAGCCT $\tt CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCC\underline{TGA}CCATGAGGACCAGG$ GAGCTGCTACCCCTACAGCTCCTACCCTCTGGCTGCAATGGGGCTGCACTGTGAGCCC TGCCCCAACAGATGCATCCTGCTCTGACAGGTGGGCTCCTTCTCCAAAGGATGCGATACAC AGACCACTGTGCAGCCTTATTTCTCCAATGGACATGATTCCCAAGTCATCCTGCTGCCTTTT GCCTTATTTCACAGTACATACATTTCTTAGGGACACAGTACACTGACCACATCACCACCCTC TTCTTCCAGTGCTGGACCATCTGGCTGCCTTTTTTCTCCAAAAGATGCAATATTCAGA $\tt CTGACTGACCCCTGCCTTATTTCACCAAAGACACGATGCATAGTCACCCCGGCCTTGTTTC$ TCCAATGGCCGTGATACACTAGTGATCATGTTCAGCCCTGCTTCCACCTGCATAGAATCTTT TCTTCTCAGACAGGGACAGTGCGGCCTCAACATCTCCTGGAGTCTAGAAGCTGTTTCCTTTC CCCTCCTTCCTCCCCAAGTGAAGACAGGGCAGGGCCAGGAATGCTTTGGGGACACCG AGGGGACTGCCCCCACCCCCACCATGGTGCTATTCTGGGGCTGGGGCAGTCTTTTCCTGGC TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTTCCG GATGTCATCTCCCCTGCCCCAGGAATGGAAGATGTGAGGACTTCTAATTTAAATGTGGGAC AAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386
><subunit 1 of 1, 316 aa, 1 stop, 1 unknown</pre>

><MW: -1, pI: 4.62, NX(S/T): 4

MLRRRGSPGMGVHVGAALGALWFCLTGALEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 251-270

N-glycosylation site.

amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC

amino acids 217-234

TTCGTGACCCTTGAGAAAAGAGTTGGTGGTAAATGTGCCACGTCTTCTAAGAAGGGGGGAGTC CTGAACTTGTCTGAAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCG AGGGACCTTTCGCTGCTTTTGTAGGGACTTCTTTCCTTGCTTCAGCAACATGAGGCTTTTCT TGTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGCTTTGATCCCTGAACCA GAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCAAAGGAGGGGA TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC ACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCATCCTGGAGGCTCTCAAAGGT TGGGACCAGGGCTTGAAAGGAATGTGTGTAGGAGAGAAGAGAAAGCTCATCATTCCTCCTGC TCTGGGCTATGGAAAAGAAGGAAAAGGTAAAATTCCCCCAGAAAGTACACTGATATTTAATA TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAATCATTCCAAGAAATGGATCTT AATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGTTTGAAAA ACATGGTGCGGTGGATGAAAGTCATCATGATGCTTTGGTGGAGGATATTTTTGATAAAG AAGATGAAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA TAGAGATACATCTACCCTTTTAATATAGCACTCATCTTTCAAGAGAGGGCAGTCATCTTTAA AGAACATTTTATTTTATACAATGTTCTTTCTTGCTTTGTTTTTTATTTTTTATATATTTTTT GGGAAGAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTCACAG ATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTAAAATGTTGCAACTGGGAATATACC ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTC TCCAAGTTAGAGGTCAACATTTGAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCAT GTTATAATGAAATAGTTTATGTGTAACTGGCTCTGAGTCTCTGCTTGAGGACCAGAGGAAAA TGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGATGTGCAATGCTGAAG TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAG GCTGAGGCGGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAA CCCTATCTCTACTAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCT ACCCAGGAAGGCTGAGGCGCAGAATCACTTGAACCCGAGGCCGAGGTTGCGGTAAGCCGAG ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGGCTCCTAGTGAT TGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGAGTTTCTTTGTAATAAAATG TATCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGC TAGCGGAATATCCTTCCTGGTTCTTTAATGGGTAGTCTATAGTATATTATACTACAATAACA TTGTATCATAAGATAAAGTAGTAAACCAGTCTACATTTTCCCATTTCTGTCTCATCAAAAAC TGAAGTTAGCTGGGTGTGGCTCATGCCTGTAATCCCAGCACTTTGGGGGCCCAAGGAGGG TGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTA CTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAG GCTGAGACAGGAGATTTGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCC CCTACAGCAGCTACTATTGAATAAATACCTATCCTGGATTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44194

><subunit 1 of 1, 211 aa, 1 stop

><MW: 24172, pI: 5.99, NX(S/T): 1

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSL FHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED IFDKEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

CCAACCATTCCTCCCTTGTAGTTCTCGCCCCCTCAAATCACCCTCTCCCGTAGCCCACCCGA CTAACATCTCAGTCTCTGAAAATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCT CACGGGGCTCAGTCTCTTTTCTCTTTGGTGCCACCAGGACGGAGCATGGAGGTCACAGTAC CTGCCACCCTCAACGTCCTCAATGGCTCTGACGCCCGCCTGCCCCTGCACCTTCAACTCCTGC TACACAGTGAACCACAAACAGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTC TGAGGAGATGTTCCTCCAGTTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAG ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTG CAGCCGGAGGATGAGGGGATTTACAACTGCTACATCATGAACCCCCCTGACCGCCACCGTGG CCATGGCAAGATCCATCTGCAGGTCCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG CCGTGATTGTGGGTGCCTCCGTCGGGGGCTTCCTGGCTGTGGTCATCTTGGTGCTGATGGTG GTCAAGTGTGTGAGGAGAAAAAAGGGCAGAAGCTGAGCACAGATGACCTGAAGACCGAGGA CTCTTGGTGTGCTTCCCGTGACCTAGGACCCCAGGGCCCACCTGGGGCCTCCTGAACCCCCG ACTTCGTATCTCCCACCCTGCACCAAGAGTGACCCACTCTCTTCCATCCGAGAAACCTGCCA TGCTCTGGGACGTGTGGGCCCTGGGGAGAGAGAAAGGGCTCCCACCTGCCAGTCCCTGG GGAGGGCCGCTGTCACCTGCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG GGAGGGAGGCTTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTTGGCCTGGCACGGCTG TGCTCCTCCCTGCTCCCAGCCCAGAGCAGCCATCAGGCTGGAGGTGACGATGAGTTCCTGA AACTTGGAGGGCATGTTAAAGGGATGACTGTGCATTCCAGGGCACTGACGGAAAGCCAGGG CTGCAGGCAAAGCTGGACATGTGCCCTGGCCCAGGAGGCCATGTTGGGCCCTCGTTTCCATT GCTAGTGGCCTCCTTGGGGCTCCTGTTGGCTCCTAATCCCTTAGGACTGTGGATGAGGCCAG ACTGGAAGAGCAGCTCCAGGTAGGGGGCCATGTTTCCCAGCGGGGACCCACCAACAGAGGCC AGTTTCAAAGTCAGCTGAGGGGCTGAGGGGTGGGGCTCCATGGTGAATGCAGGTTGCTGCAG GCTCTGCCTTCTCCATGGGGTAACCACCCTCGCCTGGGCAGGGGAGCCAAGGCTGGGAAAT GAGGAGGCCATGCACAGGGTGGGGCAGCTTTCTTTGGGGCTTCAGTGAGAACTCTCCCAGTT GCCCTTGGTGGGGTTTCCACCTGGCTTTTGGCTACAGAGAGGGAAGGGAAAGCCTGAGGCCG GCATAAGGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGTCCCATCTGCGGCCACG CTACTCGCTCCTCCCAACACTCCCTTCGTGGGGACAAAGTGACAATTGTAGGCCAGGC ACAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATTACCTCCAT CTGTTTAGTAGAAATGGGCAAAACCCCATCTCTACTAAAAATACAAGAATTAGCTGGGCGTG GTGGCGTGTGCCTGTAATCCCAGCTATTTGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCG GGAAGCAGAGGTTGCAGTGAACTGAGATAGTGATAGTGCCACTGCAATTCAGCCTGGGTGAC ATAGAGAGACTCCATCTCAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415</pre>

<subunit 1 of 1, 215 aa, 1 stop

<MW: 24326, pI: 6.32, NX(S/T): 4

MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI YNCYIMNPPDRHRGHGKIHLQVLMEEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK KEQKLSTDDLKTEEEGKTDGEGNPDDGAK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

GTTGTATATGTCCTGAAGTACATCCGTGCATTTTTTTTAGCATCCAACCATCCTCCCTTGTA
GTTCTCGCCCCCTCAAATCACCTTCTCCCTTAGCCCACCCNACTAACATCTCAGTCTCTGAA
AATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCTCACGGGGCTCAGTCTCTTT
TCTCTTTGGTGCCACCAGGACGGAGCATGGAGGTCCACAGTACCTGNCCACCCTCAACGTCC
TCAATGGCTCTGACGCCCGCCTGCCCTTCAACTCCTGCTACACAGTGAACCACAAAC
AGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTCTGAGGAGATGTTCCTCCAG
TTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAGACCGCGTGGAGTTCTCAGG
GAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTGCAGCCGGAGGATGAGGGGA
TTTACAACTGCTACATCATGAACCCCCC

TGCGGCGACCGTCGTACACC<u>ATG</u>GGCCTCCACCTCCGCCCCTACCGTGTGGGGCTGCTCCCGGATGGCCTCCTGT CTGGTGATTTGGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACTACCTCTGCTCCAAGAAGA CCGAAAGCTACTTCACAATCTGGCTGAACCTGGAACTGCTGCCTGTCATCATTGACTGCTGGATTGACAATA TCAGGCTGGTTTACAACAAACATCCAGGGCCACCCAGTTTCCTGATGGTGTGGATGTACGTGTCCCTGGCTTTG GGAAGACCTTCTCACTGGAGTTCCTGGACCCCAGCAAAAGCAGCGTGGGTTCCTATTTCCACACCATGGTGGAGA GCCTTGTGGGCTGGGGCTACACACGGGGTGAGGATGTCCGAGGGGCTCCCTATGACTGGCGCCGAGCCCCAAATG TGGTTGCCCACAGTATGGGCAACATGTACACGCTCTACTTTCTGCAGCGGCAGCCGCAGGCCTGGAAGGACAAGT ACAACAACCGGATCCCAGTCATCGGGCCCCTGAAGATCCGGGAGCAGCAGCGGTCAGCTGTCTCCACCAGCTGGC TGCTGCCCTACAACTACACATGGTCACCTGAGAAGGTGTTCGTGCAGACACCCACAATCAACTACACACTGCGGG AAGCCACGATGCCACCTGGCGTGCAGCTGCACTGCCTCTATGGTACTGGCGTCCCCACACCAGACTCCTTCTACT ATGAGAGCTTCCCTGACCGTGACCCTAAAATCTGCTTTGGTGACGGCGATGGTACTGTGAACTTGAAGAGTGCCC TGCAGTGCCAGGCCTGGCAGAGCCGCCAGGAGCACCAAGTGTTGCTGCAGGAGCTGCCAGGCAGCAGCACATCG AGATGCTGGCCAACGCCACCACCTGGCCTATCTGAAACGTGTGCTCCTTGGGCCC<u>TGA</u>CTCCTGTGCCACAGGA CTCCTGTGGCTCGGCCGTGGACCTGCTGTTGGCCTCTGGGGCTGTCATGGCCCACGCGTTTTGCAAAGTTTGTGA GTGGCAGTGAAGAAGGAAGAATGAGAGTCTAGACTCAAGGGACACTGGATGGCAAGAATGCTGCTGATGGTGGA ${\tt TGTCCCCCTATTCCTGTGGGCTTTTCATACTTGCCTACTGGGCCCTGGCCCCGCAGCCTTCCTATGAGGGATGTT}$ ACTGGGCTGTGGTCCTGTACCCAGAGGTCCCAGGGATCGGCTCCTGGCCCCTCGGGTGACCCTTCCCACACACCA $\tt CCTGGGACATCTCACTCCACTCCCTTACCACCAGGAGCATTCAAGCTCTGGATTGGGCAGCAGATGTG$ GAAAGGGAATCCAAGGAAGCAGCCAAGGCTGCTCGCAGCTTCCCTGAGCTGCACCTCTTGCTAACCCCACCATCA TGAGGCCCCCTAGGGGCTTTCTGTCTGCCCCAGGGTGCTCCATGGATCTCCCTGTGGCAGCAGGCATGGAGAGT CAGGGCTGCCTTCATGGCAGTAGGCTCTAAGTGGGTGACTGGCCACAGGCCGAGAAAAGGGTACAGCCTCTAGGT ${\tt TTGCATACATGCCTGGCATCTGTTCCCCCTTGTTCCTGAGTGGCCCCCACATGGGGCTCTGAGCAGGCTGTATCTG}$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189</pre>

><subunit 1 of 1, 412 aa, 1 stop

><MW: 46658, pI: 6.65, NX(S/T): 4

MGLHLRPYRVGLLPDGLLFLLLLMLLADPALPAGRHPPVVLVPGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLELLLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSWLLPYNYTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDPKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

 $\tt CGGACGCGTGGGCGGCGTGGGGCGGCGGCGGCGACGGCGAC\underline{ATG}GAGAGCGGG$ GCCTACGGCGCGCCAAGGCGGGCGCTCCTTCGACCTGCGGCGCTTCCTGACGCAGCCGCA GGTGGTGGCGCGCGCGTGTGCTTGGTCTTCGCCTTGATCGTGTTCTCCTGCATCTATGGTG AGGGCTACAGCAATGCCCACGAGTCTAAGCAGATGTACTGCGTGTTCAACCGCAACGAGGAT GCCTGCCGCTATGGCAGTGCCATCGGGGTGCTGGCCTTCTTGGT GGTCGACGCGTATTTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG ACCTGCTCTTCTCAGCTCTCTGGACCTTCCTGTGGTTTGTTGGTTTCTGCTTCCTCACCAAC CAGTGGGCAGTCACCAACCCGAAGGACGTGCTGGTGGGGGGCCGACTCTGTGAGGGCAGCCAT ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACTCCGGACCCCAACACT GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACTACCAACAGCCACCCTTCACCCAGAA $\tt CGCGGAGACCACCGAGGGCTACCAGCCGCCCCCTGTGTAC\underline{TGA}_{GTGGCGGTTAGCGTGGGAA}$ GGGGGACAGAGAGGGCCCTCCCCTCTGCCCTGGACTTTCCCATCAGCCTCCTGGAACTGCCA CACTCCTCCAGGGCACTTTTAGGAAAGGGTTTTTAGCTAGTGTTTTTTCCTCGCTTTTAATGA ${\tt CCTCAGCCCGCCTGCAGTGGCTAGAAGCCAGCAGGTGCCCATGTGCTACTGACAAGTGCCT}$ CAGCTTCCCCCGGCCCGGGTCAGGCCGTGGGAGCCGCTATTATCTGCGTTCTCTGCCAAAG ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTCTTGTGTCCTCA $\tt CTCAGGTTTGCTTCCCCTGTGCCCACTGCTGTATGATCTGGGGGGCCACCACCCTGTGCCGGT$ GGCCTCTGGGCTGCCTCCCGTGGTGTGAGGGCGGGGCTGGTGCTCATGGCACTTCCTCCTTG CTCCCACCCTGGCAGCAGGGAAGGGCTTTGCCTGACAACACCCCAGCTTTATGTAAATATTC TGCAGTTGTTACTTAGGAAGCCTGGGGAGGGCAGGGGTGCCCCATGGCTCCCAGACTCTGTC TGTGCCGAGTGTATTATAAAATCGTGGGGGAGATGCCCGGCCTGGGATGCTGTTTGGAGACG GAATAAATGTTTTCTCATTCAAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304</pre>

<subunit 1 of 1, 224 aa, 1 stop</pre>

<MW: 24810, pI: 4.75, NX(S/T): 1

MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESKQMYCVFN RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIGDLLFSALWTFLWFVGFC FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

GAGCCACCTACCCTGCTCCGAGGCCAGGCCTGCAGGGCCTCATCGGCCAGAGGGTGATCAGTGAGCAGAAGG**ATG** ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCCGGGGCTACCTCCGCCTGGTGCCCCTGTTTGTGCTGCTG CAGGTGTACTCAGGCAGTCTGCGTGTACTCAATCGCCACTTCTCCCAGGATCTTACCCGCCGGGAATCTAGTGCC TTCCGCAGTGAAACCGCCAAAGCCCAGAAGATGCTCAAGGAGCTCATCACCAGCACCCGCCTGGGAACTTACTAC AACTCCAGCTCCGTCTATTCCTTTGGGGAGGGACCCCTCACCTGCTTCTTCTGGTTCATTCTCCAAATCCCCGAG CACCGCCGGCTGATGCTGAGCCCCGAGGTGGTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCCACAGTCAACAGC TCGGCTGCCGTCCCCTACAGGGCCGAGTACGAAGTGGACCCCGAGGGCCTAGTGATCCTGGAAGCCAGTGTGAAA GACATAGCTGCATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCCAGGGCCAGGTCCTCCGGCTG AAGGGGCCTGACCACCTGGCCTCCAGCTGCCTGTGGCACCTGCAGGGCCCCAAGGACCTCATGCTCAAACTCCGG ATCACCTCGGTGTACGGCTGCAGCCGCCAGGAGCCCGTGGTGGAGGTTCTGGCGTCGGGGGCCATCATGGCGGTC GTCTGGAAGAAGGCCCTGCACACCTACTACGACCCCTTCGTGCTCTCCCGTGCAGCCGGTGGTCTTCCAGGCCTGT TCGCCCCAAACCCACTGCTCCTGGCACCTCACGGTGCCCTCTCTGGACTACGGCTTGGCCCTCTGGTTTGATGCC TATGCACTGAGGAGGCAGAAGTATGATTTGCCGTGCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGT GGCTTGCGCATCCTGCAGCCCTACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACC TCCCAGATCTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCCCTGGA ${\tt GAGTTCCTCTGTTGAATGGACTCTGTGTCCCTGCCTGTGATGGGGTCAAGGACTGCCCCAACGGCCTGGAT}$ ${\tt GAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGACAGCACATGCATCTCACTGCCCAAGGTCTGT}$ GATGGGCAGCCTGATTGTCTCAACGGCAGCGATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACC TTCCAGTGTGAGGACCGGAGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGC TCGGATGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGTCCTCCGAG GGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGGGGGGCCCTCATCGCTGACCGC ${\tt TGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCATGGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGC}$ ${\tt AAGGTGTGGCAGAACTCGCGCTGGCCTGGAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCAC}$ GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCCGTGCGC $\tt CCCGTCTGCCTGCCCGCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCTGGGGCGCCTTG$ CGCGAGGGCGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTGATCCCACAGGACCTGTGCAGCGAG GCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGCCGGCTACCGCAAGGGCCAAGAAGGATGCCTGTCAGGGT GACTCAGGTGGTCCGCTGGTGTGCAAGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTG GGCTGTGGCCGGCCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGTG ${\tt ACC}_{{\tt TGA}}{\tt GGAACTGCCCCCCTGCAAAGCAGGCCCACCTCCTGGACTCAGAGAGCCCAGGGCAACTGCCAAGCAGG}$ GCAGTGGCTCAGCAGCAAGAATGCTGGTTCTACATCCCGAGGAGTGTCTGAGGTGCGCCCCACTCTGTACAGAGG CTGTTTGGGCAGCCTTGCCTCCAGAGAGCAGATTCCAGCTTCGGAAGCCCCTGGTCTAACTTGGGATCTGGGAAT ${\tt GGAAGGTGCTCCCATCGGAGGGGACCCTCAGAGCCCTGGAGACTGCCAGGTGGGCCTGCTGCCACTGTAAGCCAA}$ AAGGTGGGGAAGTCCTGACTCCAGGGTCCTTGCCCCACCCTGCCACCTGGGCCCTCACAGCCCAGACCCT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 88846, pI: 6.41, NX(S/T): 7

MPVAEAPQVAGGQGDGGDGEEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYNSSSVYSFGEGPLTCFFWFILQIPEHRRLMLSPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRYSYVGQGQVLRLKGPDHLASSCLWHLQGPKDLML
KLRLEWTLAECRDRLAMYDVAGPLEKRLITSVYGCSRQEPVVEVLASGAIMAVVWKKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSYYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVATAGITINFTSQISLTGP
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCLNGSDEEQCQEGVPCGTFTFQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVRGRHICGGALIADRWVITAAHCFQEDSMASTVL
WTVFLGKVWQNSRWPGEVSFKVSRLLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDSGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIOOVVT

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447 and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

GCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCTTGCGCATCCTGCAGCCC TACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACCTCCCAGAT CTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCC TGCCCCAACGGCCTGGATGAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGA CAGCACATGCATCTCACTGCCCAAGGTCTGTGATGGGCAGCCTGATTGTCTCAACGGCAGCG ATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACCTTCCAGTGTGAGGACCGG AGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGCTCGGA TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGT CCTCCGAGGGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGG GGGGCCCTCATCGCTGACCGCTGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCAT GGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGCAAGGTGTGGCAGAACTCGCGCTGGCCTG GAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCACGAAGAGGACAGCCAT GACTACGACGTGGCGCTGCAGCTCGACCACCCGGTGGTGCGCCTCGGCCGCCGTGCGCCC CGTCTGCCTGCCCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCT GGGGCGCCTTGCGCGAGGGCCGCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTG ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGC CGGCTACCGCAAGGCCAAGAAGGATGCCTGTCAGGGTGACTCAGGTGGTCCGCTGGTGTGCA AGGCACTCAGTGGCCGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTGGGCCGG CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT GACCTGAGGAACTGCCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGC AACTGCCAAGCAGGGGGACAAGTAT

GGACGAGGCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGG CTCCGTGCCGCCAAGTTTTCATTTTCCACCTTCTCTGCCTCCAGTCCCCAGCCCCTGGCCG ${\tt ACTTCTGTTTCTTGGGAGGGGTGTGGCGGGGCAGG} \underline{{\tt ATG}} {\tt AGCAACTCCGTTCCTGCTCTG}$ GGCTGGAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG TTTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGGCCACAG CCAGCCCTTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATCACGGAT GGACGATGAGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACAAGA GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGA TGCGGTCAATAATACCAGGGTGGTGGGACACAGCATTGCCAGGATGCTCGACTGGCTGCAGG AGAAGGACGATTTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTG GCCGGGTATGCAGGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGC CGGGCCCATGTTTGAAGGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTG TGGATGTCCTCCACACCCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTG TCCACCTCTTTGTTGACTCTCTGGTGAATCAGGACAAGCCGAGTTTTGCCTTCCAGTGCACT GACTCCAATCGCTTCAAAAAGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCAT TGGCTACAATGCCAAGAAAATGAGGAACAAGAGGAACAGCAAAATGTACCTAAAAACCCGGG ${\tt CAGGCATGCCTTCAGAGGTAACCTTCAGTCCCTGGAGTGTCCC} {\color{blue}{\bf TGA}{\bf GGAAGGCCCTTAATA}}$ CCTCCTTCTTAATACCATGCTGCAGAGCAGGGCACATCCTAGCCCAGGAGAAGTGGCCAGCA CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646

><subunit 1 of 1, 354 aa, 1 stop

><MW: 39362, pI: 8.35, NX(S/T): 2

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHE
GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWL
PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTV
GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDF
QPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLS
CRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

CGGCAAAGTTTGGCCCGAAGAGGAAGTGGTCTCAAACCCCGGCAGGTGGCGACCAGGCCAGACCAGGGGGCGCTCG CTGCCTGCGGGCGGCTGTAGGCGAGGGCGCCCCAGTGCCGAGACCCGGGGGCTTCAGGAGCCGGCCCCGGGAG AGAAGAGTGCGGCGGCGGACGGAGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGCTGCCG $\tt CCGCCTCCCCGCCCCAGCCCTGGCATCCAGAGTACGGGTCGAGCCCGGGCCATGGAGCCCCCTGGGGAGGCGG$ CACCAGGGAGCCTGGGCGCCGGGGCTCCGCCGCGACCCCATCGGGTAGACCACAGAAGCTCCGGGACCCTTCCG ${\tt GCACCTCTGGACAGCCCAGG}$ ACCGGATTATTTTTCCAAATCATGCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGCAGGGCACCTTACAGA GGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG ${ t TCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAGAGCGCTTAACCCTACGCTCCCCTCTCCAGCCAC$ TGATCTCCCTGTGTGAGGCACCTCCCAGCCCTCTGCAGCTGCCCGGGGGGCAACGTCACCATCACTTACAGCTATG $\tt CTGGGGCCAGAGCACCCATGGGCCAGGGCTTCCTGCTCTCCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAG$ AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT ${ t TCACCTTGGAGGACTTCTATGGGGTCTTCTCCTCTCCTGGATATACACACCTAGCCTCAGTCTCCCACCCCAGT$ $\tt CCTGCCATTGGCTGGACCCCCATGATGGCCGGCGGCTGCGCTTCACAGCCCTGGACTTGGGCTTTG$ GAGATGCAGTGCATGTATGACGGCCCTGGGCCCCTGAGAGCTCCCGACTACTGCGTAGTCTCACCCACTTCA GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCCAGGCTGTTGTGTCCTACCACACAGTTGCTTGGAGCA GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT $\tt CTGGTGCCACAGCCTGCTGCCTGCCTGACCGCTGCAACTACCAGACTTTCTGTGCTGATGGAGCAGATGAGA$ ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG $\tt CTGCAGTCATTGGCAGCCTAGTGTGCGGCCTGCTCCTGGTCATCGCCCTGGGCTGCACCTGCAAGCTCTATGCCA$ $\tt CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA$ ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG $\tt CCCGCCGTCGTCAGCGGGGCCGCTTGATGCGACGCCTGGTACGCCGTCTCCGCCGCTGGGGCTTGCTCCCTCGAA$ CAGGACCAACCCGGAGCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ${ t ACCACTTCCTTCCCTGTCCCTGGATTTCAGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT}$ TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT TCACCACCACCTGCTCCCCACGCCACCATTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA GGTCTGGACACTCCATCCTTGCCAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA $\tt CCCTCCAGCCCCCAAGGGGAGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG$ $\tt CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA$ GGAATCATACATCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631</pre>

<subunit 1 of 1, 713 aa, 1 stop

<MW: 76193, pI: 5.42, NX(S/T): 4

MLLATLLLLLIGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL
GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAP
MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRP
VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH
VYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLP
WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT
ACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCS
YVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY
GQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRQRGRLMRRLVR
RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGEQAPPLPIKA
PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAV
LALEDEDDVLLVPLAEPGVWVAEAEDEPLLT

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins amino acids 411-431, 152-171, 331-350 and 374-393

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645

><subunit 1 of 1, 152 aa, 1 stop

><MW: 17170, pI: 9.62, NX(S/T): 1

MDNVQPKIKHRPFCFSVKGHVKMLRLALTVTSMTFFIIAQAPEPYIVITGFEVTVILFFILL YVLRLDRLMKWLFWPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD GALIYRKLLFNPSGPYQKKPVHEKKEVL

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:

amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.

amino acids 110-115

Ribonucleotide reductase large subunit protein

amino acids 116-127

GGGCGAGAAGTAGGGGAGGGCGTGTTCCGCCGCGGTGGCGGTTGCTATCGTTTTGCAGAACC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGCTGGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATCGCCCCTTCTGCTTCAGTGTGAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTTTTATNATCGCACAAGCCCC
TGAACCATATATTGTTATCACTGGATTTGAAGTCACCGTTATCTTATTTTTCATACTTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTTTGGCCTTTGCTTGATATTATCAAC
TCACTGGTAACAACAGTATTCATGCTCATCGTATCTGTTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGGTGTTTGCACTTGTGACAGCAGTATGCTGACAC

CAGCCCGCGCGCCGAGTCGCTGAGCCGCGGCTGCCGGACGGGACGGGACCGGCTAGG $\tt CTGGGCGCCCCCGGGCCCCGTGGGC\underline{ATG} GGCGCACTGGCCGGGCGCTGCTGCTGC$ CTCTGCTGGCCCAGTGGCTCCTGCGCGCCCCCGGAGCTGGCCCCCGCGCCCTTCACGCTG CCCCTCCGGGTGGCCGCGCCACGCAACCGCGTAGTTGCGCCCACCCCGGGACCCCGGGACCCC TGCCGAGCGCCACGCCTTGGCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGCGG GCGCCGCCAACTTCTTGGCCATGGTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTAC CTGGAGATGCTGATCGGGACCCCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG TAACTTTGCCGTGGCAGGAACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGT CTAGCACATACCGCTCCAAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACG GGCTTCGTTGGGGAAGACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAA CATTGCCACTATTTTTGAATCAGAGAATTTCTTTTTTGCCTGGGATTAAATGGAATGGAATAC ${\tt TTGGCCTAGCTTATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCC}$ $\tt CTGGTGACAAGCAAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCC$ ATAAAGGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG AAATTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC CATCGTGGACAGTGGCACCACGCTGCTGCCCCCAGAAGGTGTTTGATGCGGTGGTGG AAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCCCAG $\tt CTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATCTACCT$ GAGAGACGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTACATTCAGC CCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCATCCACAAAT GCGCTGGTGATCGGTGCCACGGTGATGGAGGGCCTTCTACGTCATCTTCGACAGAGCCCAGAA GAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCAGTGTCTGAAATTT CCGGGCCTTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCCGCTCAGTCTTTGAGCGAG AATCGTCCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCCGTGACCCTGAGGTCGTCA ATGATGAGTCCTCTCGGTCAGACATCGCTGGAAA<u>TGA</u>ATAGCCAGGCCTGACCTCAAGCAA CCATGAACTCAGCTATTAAGAAAATCACATTTCCAGGGCAGCAGCCGGGATCGATGGTGGCG ${\tt CTTTCTCCTGTGCCCACCCGTCTTCAATCTCTGTTCTGCTCCCAGATGCCTTCTAGATTCAC}$ TGTCTTTTGATTCTTGATTTTCAAGCTTTCAAATCCTCCCTACTTCCAAGAAAATAATTAA AAAAAAACTTCATTCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45493</pre>

><subunit 1 of 1, 518 aa, 1 stop

><MW: 56180, pI: 5.08, NX(S/T): 2

MGALARALLIPLIAQWILRAAPELAPAPFTI.PLRVAAATNRVVAPTPGPGTPAERHADGI.AL
ALEPALASPAGAANFI.AMVDNIQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS
YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTI.PKGFNTSFLVNIATIFESENF
FLPGIKWNGILGI.AYATLAKPSSSLETFFDSLVTQANI.PNVFSMQMCGAGL.PVAGSGTNGGS
LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDCREYNADKAIVDSGTTLLR
LPQKVFDAVVEAVARASLI.PEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR
ITILPQLYI.QPMMGAGLNYECYRFGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA
EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVCGAILLVLIVLLLL.PFRC
QRR.PRD.PEVVNDESSLVR.HRWK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 466-494

N-glycosylation sites.

amino acids 170-173 and 366-369

Leucine zipper pattern.

amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases

amino acids 109-118, 252-261 and 298-310

 $\tt CGCCTCCGCCTTCGGAGGCTGACGCCCCGGGCGCCCGTTCCAGGCCTGTGCAGGGCGGATCG$ GCAGCCGCCTGGCGGCGATCCAGGGCGGTGCGGGGCCTGGGCGGGAGCCGGGAGCCGGCCC GGC<u>ATG</u>GAGGCGCTGCTGGCGGGCGCGGGTTGCTGCTGGGCGCTTACGTGCTTGTCTACTA CAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAACCTGCGGGGCCGCACGGCCGTGG TCACGGGCGCCAACAGCGGCATCGGAAAGATGACGCGCGCTGGAGCTGGCGCGCGGGGAGCG GGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGC GGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCC GGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATAT $\tt CGGTCCCTTTCTGCTGACACATCTGCTGCTGCCTGAAGGCATGTGCCCCTAGCCGCG$ TGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGACCGC CCAGTGGTGGCTGGCGGCAGGGCTGCGGCCATATGCTGACACTAAGCTGGCTAATGTACT GTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC CAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTGGATGGCTGCGCCCACTTTTG CGCCCATTGGCTTGGCTGGTGCTCCGGGCACCAAGAGGGGGTGCCCAGACACCCCTGTATTG TGCTCTACAAGAGGGCATCGAGCCCCTCAGTGGGAGATATTTTGCCAACTGCCATGTGGAAG AGGTGCCTCCAGCTGCCCGAGACGACCGGCCAGCCCATCGGCTATGGGAGGCCAGCAAGAGG CTGGCAGGCTTGGGCCTGGGGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTC AGAGGCCCCATCTTCTCTAAGCACCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACC CCAGCCCTCAGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAG $\tt CCTGAGATCCAGCTCTCC\underline{TAA}CCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTT$ GAAAACCTCGGATGTGTGAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTC ${\tt CGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAAT}$ AATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCT AGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTTCAGGCCCCACCCTTATTGATTCTG ATCAGCTCTGGAGCAGGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAG TGAACTGATCCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCCATGTTAATGAAGCG GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG GGATCTGAACCCAAGGGTCTGAGGCCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGA GTCAGGGCAGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGG ATGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227</pre>

<subunit 1 of 1, 377 aa, 1 stop</pre>

<MW: 40849, pI: 7.98, NX(S/T): 0

MEALLLGAGLLLGAYVLVYYNLVKAPPCGGMGNLRGRTAVVTGANSGIGKMTALELARRGAR
VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG
ISSCGRTREAFNLLLRVNHIGPFLLTHLLLPCLKACAPSRVVVVASAAHCRGRLDFKRLDRP
VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFLRHVPGWLRPLLR
PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDDRAAHRLWEASKRL
AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSPQSSPDLSKMTHRIQAKVEP
EIQLS

Important features:

Signal peptide:

amino acids 1-16

Glycosaminoglycan attachment site.

amino acids 46-49

Short-chain alcohol dehydrogenase family amino acids 37-49 and 114-124

 ${\tt GGAGGAGACAGCCTCCTGGGGGGGCAGGGGTTCCCTGCCTCTGCTGCTCCTGCTCATC{\tt ATG}{\tt GGAGGCATGGCTCAG}{\tt GGAGGAGGCATGGCTCAG}{\tt GGAGGAGGCATGGCTCAG}{\tt GGAGGCATGGCTCAG}{\tt GGAGGCATGGCTCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCA$ GCCCTGTCCACAGACCTGGGTGTCTACACATGTGAGGCCAGCAACCGGCTTGGCACGGCAGTCAGCAGAGGCGCT TTTACTCTGGAATGTGGGCCGCCCTGGGGCCACCCAGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG ${\tt CAGGACTACACGGAGCCTGTGGAGCTTCTGGCTGTGCGAATTCAGCTGGAAAATGTGACACTGCTGAACCCGGAT}$ TCTTACACGGCCTTGTTCAGGACCCAGACTGCCCCGGGAGGCCAGGGAGCTCCGTGGGCAGAGGAGCTGCTGGCC GGCTGGCAGAGCGCAGAGCTTGGAGGCCTCCACTGGGGCCAAGACTACGAGTTCAAAGTGAGACCATCCTCTGGC $\tt CGGGCTCGAGGCCCTGACAGCAACGTGCTGCTCCTGAGGCTGCCGGAAAAAGTGCCCAGTGCCCCACCTCAGGAA$ GTGACTCTAAAGCCTGGCAATGGCACTGTCTTTGTGAGCTGGGTCCCACCACCTGCTGAAAACCACAATGGCATC ATCCGTGGCTACCAGGTCTGGAGCCTGGGCAACACATCACTGCCACCAGCCAACTGGACTGTAGTTGGTGAGCAG ${ t ACCCAGCTGGAAATCGCCACCCATATGCCAGGCTCCTACTGCGTGCAAGTGGCTGCAGTCACTGGTGCTGGAGCT}$ GGTCCCTGGACCCTGGAGCAGCTGAGGGCTACCTTGAAGCGGCCTGAGGTCATTGCCACCTGCGGTGTTGCACTC TGGCTGCTGCTTCTGGGCACCGCCGTGTGTATCCACCGCCGGCGCCCGAGCTAGGGTGCACCTGGGCCCAGGTCTG GACCCACTAGACTGTCGTCGCTCCTTGCTCTCCTGGGACTCCCGAAGCCCCGGCGTGCCCCTGCTTCCAGACACC ${\tt AGCACTTTTTATGGCTCCCTCATCGCTGAGCTGCCCTCCAGTACCCCAGCCCAGGCCCAGGTCCCAGGTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCAGCTCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCAGCTCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCAGCTCCCAGCTCCAGCTCCCAGCTCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCAGCTCCAGCTCAGCTCCAGCTC$ GTCAGGCGCCTCCCAGCCCAGCTGGCCCAGCTCTCCAGCCCCTGTTCCAGCCTCAGACAGCCTCTGCAGCCGCAGG ${\tt GGACTCTCTTCTCCCCGCTTGTCTCTGGCCCCTGCAGAGGCTTGGAAGGCCCAAAAAGAAGCAGGAGCTGCAGCAT}$ GCCAACAGTTCCCCACTGCTCCGGGGCAGCCACTCCTTGGAGCTCCGGGCCTGTGAGTTAGGAAATAGAGGTTCC AAGAACCTTTCCCAAAGCCCAGGAGCTGTGCCCCAAGCTCTGGTTGCCTGGCGGGCCCTGGGACCGAAACTCCTC AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTCTTTCCTCATGAAACTCCCCCAACTCAG $\tt CTCAGTGAGGGTGAGGAGACTCCCAGGAACAGCGTCTCTCCCATGCCAAGGGCTCCTTCACCCCCCACCACCTAT$ GGGTACATCAGCGTCCCAACAGCCTCAGAGTTCACGGACATGGGCAGGACTGGAGGAGGGGGGCCCCAAGGGG GCTCACTTTGCCCGGGCCCTGGCAGTGGCTGTGGATAGCTTTGGTTTCGGTCTAGAGCCCAGGGAGGCAGACTGC GTCTTCATAGATGCCTCATCACCTCCCTCCCCACGGGATGAGATCTTCCTGACCCCCAACCTCTCCCTGCCCCTG ${\tt TGGGAGTGGAGGCCAGACTGGAAGACATGGAGGTCAGCCACCCAGCGGCTGGGAAGGGGGATGCCTCCCC}$ ${\tt TGGCCCCTGACTCTCAGATCTCTTCCCAGAGAAGTCAGCTCCACTGTCGTATGCCCAAGGCTGGTGCTTCTCCT}$ ${ t ACCTGGGCTGTGTGTGGGCTTTGGCCTGTGTTTCTCTGCAGCTGGGGTCCACCTTCCCAAGCCTCCAGAGAG}$ TTCTCCCTCCACGATTGTGAAAACAAATGAAAACAAAATTAGAGCAAAGCTGACCTGGAGCCCTCAGGGAGCAAA ${\tt ACATCATCTCCACCTGACTCCTAGCCACTGCTTTCTCCTCTGTGCCATCCACCACCACCAGGTTGTTTTGGC}$ $\tt CTGAGGAGCAGCCTGCTGCTGCTTTCCCCCACCATTTGGATCACAGGAAGTGGAGGAGCCAGAGGTGCCTTT$ GGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41404</pre>

<subunit 1 of 1, 985 aa, 1 stop

<MW: 105336, pI: 6.55, NX(S/T): 7

MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLP DGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFQIQPRDM VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCV ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKV SGPAAPAQSYTALFRTQTAPGGQGAPWAEELLAGWQSAELGGLHWGQDYEFKVRPSSGRARG PDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYQVWSLGNTSLPP ANWTVVGEQTQLEIATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEQAMERATQEPSEHGPW TLEQLRATLKRPEVIATCGVALWLLLLGTAVCIHRRRRARVHLGPGLYRYTSEDAILKHRMD ${\tt HSDSQWLADTWRSTSGSRDLSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTST}$ FYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSLCSRRGLSSPRLSLAPAEA WKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLS SSNELVTRHLPPAPLFPHETPPTQSQQTQPPVAPQAPSSILLPAAPIPILSPCSPPSPQASS LSGPSPASSRLSSSSLSSLGEDQDSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTY GYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARA SLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP LWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

 $\tt CTCCCACGGTGTCCAGCGCCCAGA{\color{red} ATG} CGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTGCT$ CCCAGGTTATGAAGCCCTGGAGGGCCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCCAGGAGACAAT GAAGGGCAGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA $\tt GCTGGGCTTCTCGAAGTTTGTCTCAGCG\underline{TAG}GGCAGGGCCCTCCTGGCCAGGCCAGCAGT$ GAAGCAGTATGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCCAGGCTCTCCTTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCCTGGAGAAGGGGTCGGGGGTGGTGAAAGTA GCACAACTACTATTTTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGGAAAGGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128

 ${\tt TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGGCGTGGGGGTGGCAGGA}$ GCCGCAGAGCCAGACAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTC GCTCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCT GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAA $\tt GCCCTGTTTCTCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAA$ ${\tt CAGGGCTCTCAGAAGGCGGTGCTCCCAGCTGGGATC} {\color{red} {\bf ATG}} {\tt TTGTTGGCCCTGGTCTGTCTGC}$ TCAGCTGCCTGCTACCCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTG $\tt CTACATGACTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGC$ TTATTTCACAAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACA ACGGGATCTTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAAC $\tt GTGTGCCGGATGTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGC$ ${\tt CATGAAGATAACCCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC}$ ${\tt AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTC} {\color{red}{\bf TAG}{\bf GATGGACGGAACCATGCA}}$ CAGCAGGCTGGGAAATGTGGTTTGGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATA AAGGATGGTTGAACGTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187</pre>

<subunit 1 of 1, 146 aa, 1 stop</pre>

<MW: 16430, pI: 5.05, NX(S/T): 1

 ${\tt MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD}$ ${\tt YEADGSTNNGIFQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQEPQGLGY}$ ${\tt WEAWRHHCQGKDLTEWVDGCDF}$

Important features:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C proteins. amino acids 34-58 (catalytic domain), 111-132 and 66-107

AGCCGCTGCCCGGGCCGGCGCCGCGCGCGCACCATGAGTCCCCGCTCGTGCCTGCGTTC GCTGCGCCTCCTCGTCTTCGCCGTCTTCTCAGCCGCCGCGAGCAACTGGCTGTACCTGGCCA AGCTGTCGTCGGTGGGGAGCATCTCAGAGGAGGAGACGTGCGAGAAACTCAAGGGCCTGATC CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCGCGGGTGC CCAGCTGGCCATTGAGGAGTGCCAGTACCAGTTCCGGAACCGGCGCTGGAACTGCTCCACAC TCGACTCCTTGCCCGTCTTCGGCAAGGTGGTGACGCAAGGGACTCGGGAGGCGGCCTTCGTG TACGCCATCTCTCGGCAGGTGTGGCCTTTGCAGTGACGCGGGCGTGCAGCAGTGGGGAGCT GGAGAAGTGCGGCTGTGACAGGACAGTGCATGGGGTCAGCCCACAGGGCTTCCAGTGGTCAG GATGCTCTGACAACATCGCCTACGGTGTGGCCTTCTCACAGTCGTTTGTGGATGTGCGGGAG AGAAGCAAGGGGGCCTCGTCCAGCAGAGCCCTCATGAACCTCCACAACAATGAGGCCGGCAG GAAGGCCATCCTGACACACATGCGGGTGGAATGCAAGTGCCACGGGGTGTCAGGCTCCTGTG AGGTAAAGACGTGCCGGCGAGCCGTGCCGCCCTTCCGCCAGGTGGGTCACGCACTGAAGGAG AAGTTTGATGGTGCCACTGAGGTGGAGCCACGCCGCGTGGGCTCCTCCAGGGCACTGGTACC ACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACCTGGTGTACTTGGAGCCTAGCCCCG ACTTCTGTGAGCAGGACATGCGCAGCGGCGTGCTGGGCACGAGGGGCCGCACATGCAACAAG GGTGGAGCTGGAACGCTGCAGCTGCAAATTCCACTGGTGCTGCTTCGTCAAGTGCCGGC AACCACCTAGTGGCCCAGGGAAGGCCGATAATTTAAACAGTCTCCCACCACCTACCCCAAGA ACCAGGCAGCCAACCCCAAGGGCACCAACCAGGGCCTCCCCAAAGCCTGGGCCTTTGTGGCT GCCACTGACCAAAGGGACCTTGCTCGTGCCGCTGGCTGCCCGCATGTGGCTGCCACTGACCA CTCAGTTGTTATCTGTGTCCGTTTTTCTACTTGCAGACCTAAGGTGGAGTAACAAGGAGTAT TACCACCACATGGCTACTGACCGTGTCATCGGGGAAGAGGGGGCCTTATGGCAGGGAAAATA GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAGAACTCTTAACTCTCCAGCACACA TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG GAACAGCAGATACCAGGTCAAGGGCACCAGGTTCATTTCAGCCCTTACATGGACAGCTAGA GGTTCGATATCTGTGGGTCCTTCCAGGCAAGAAGAGGGGAGATGAGAGCAAGAGACGACTGAA GTCCCACCCTAGAACCCAGCCTGCCCCAGCCTGCCCCTGGGAAGAGGAAACTTAACCACTCC CCAGACCCACCTAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCCGGCTGTGCCTT GAGAGGAGGAAAGGGCTGTGCCTTTGCAGTCATGCCCGAGTCACCTTTCACAGCACTGTTCCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328</pre>

<subunit 1 of 1, 351 aa, 1 stop

<MW: 39052, pI: 8.97, NX(S/T): 2

MSPRSCLRSLRLLVFAVFSAAASNWLYLAKLSSVGSISEEETCEKLKGLIQRQVQMCKRNLE VMDSVRRGAQLAIEECQYQFRNRRWNCSTLDSLPVFGKVVTQGTREAAFVYAISSAGVAFAV TRACSSGELEKCGCDRTVHGVSPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSSRALM NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDGATEVEPRR VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC CGRGFHTAQVELAERCSCKFHWCCFVKCRQCQRLVELHTCR

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

 $\tt CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCTGGGTGCCTGCAT$ CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCCTGGTC ACCACAGTCCTTTGGGCTGTGATTCTGAGTATCCTATTGTCCAAGGCCTCCACGGAGCGCGC GGCGCTGCTTGACGGCCACGACCTGCTGAGGACAAACGCCTCGAAGCAGACGGCGGCGCTGG GTGCCCTGAAGGAGGAGGTCGGAGACTGCCACAGCTGCTCGGGGACGCAGGCGCAGCTG CAGACCACGCGCGCGGAGCTTGGGGAGGCGCGCGCGAAGCTGATGGAGCAGGAGAGCGCCCT GCGGGAACTGCGTGAGCGCGTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACG TCCGCACTGAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCG TGCCCCACGTCGTGGCTGTCCTTCGAGGGCTCCTGCTACTTTTTCTCTGTGCCAAAGACGAC GTGGGCGCGCGCAGATCACTGCGCAGATGCCAGCGCGCACCTGGTGATCGTTGGGGGCC CAGCCACTGGAACCAGGGAGAGCCCAATGACGCTTGGGGGCGCGAGAACTGTGTCATGATGC TGCACACGGGGCTGTGGAACGACGCACCGTGTGACAGCGAGAAGGACGGCTGGATCTGTGAG $AAAAGGCACAACTGC\underline{TGA}CCCCGCCCAGTGCCCTGGAGCCGCCCCATTGCAGCATGTCGTA$ CATCCACCGCTGCTGAGTCTCAGAAACACTTGGCCCAACATAGCCCTGTCCAGCCCAGTGCC TGGGCTCTGGGACCTCATGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAACC TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAA ${\tt CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTTGGTTTTCTCGCATTTTCCACCAAACTGGA}$ AGCTGTTTTTGCAGCCTGAGGAAGCATCAATAAATATTTGAGAAATGAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352</pre>

<subunit 1 of 1, 293 aa, 1 stop

<MW: 32562, pI: 6.53, NX(S/T): 2

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR ELRERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTW AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFS HWNQGEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

GCCAGGGGAAGAGGTGATCCGACCCGGGGAAGGTCGCTGGGCAGGGCGAGTTGGGAAAGCG GCAGCCCCGCCGCCCCCGCAGCCCCTTCTCCCCTTTCTCCCACGTCCTATCTGCCTCTCG GCCCTCTGCGCTCTCCTGGCCACTCTCGGCGCCGCCGGCCAGCCTCTTGGGGGAGAGTC CATCTGTTCCGCCAGAGCCCCGGCCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGA CGGCCTTCCCCAAGCAGTACCCCCTGTTCCGCCCCCTGCGCAGTGGTCTTCGCTGCGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAGTAACGGGCTGCG CGCTGCAGAGCGTGCACGAGGTGTTTTCGGCGCCCCGCCGTCCCCAGCGGCACCGGGCAGACG TCGGCGGAGCTGGAGGTGCAGCGCAGCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCC CAGCCCCGACTGGTCGTGGGCGTGGACAGCCTGGACCTGTGCGACGGGGACCGTTGGCGGG ${\tt AACAGGCGGCGCTGGACCTGTACCCCTACGACGCCGGGACGGCGGCTTCACCTTCTCCC}$ TCCCCCAACTTCGCCACCATCCCGCAGGACACGGTGACCGAGATAACGTCCTCCTCCCAG CCACCCGGCCAACTCCTTCTACTACCCGCGGCTGAAGGCCCTGCCTCCCATCGCCAGGGTGA AGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGCCGCTGGACTGCGAGGTCTC CCTGTGGTCGTCCTGGGGACTGTGCGGAGGCCACTGTGGGAGGCTCGGGACCAAGAGCAGGA ${\tt GCTGAGTGCGTCCTGATAACTGCGTC} {\color{red}{\textbf{TAA}}} {\color{red}{\textbf{GACCAGAGCCCCTGGGGCCCCCCG}}$ GAGCCATGGGGGTGTCGGGGGGCTCCTGTGCAGGCTCATGCTGCAGGCGGCCGAGGGCACAGGG GGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGCCGCCGACCATCTCTGCACTGAAGGGCCCT CTGGTGGCCGGCACGGGCATTGGGAAACAGCCTCCTCCTTTCCCAACCTTGCTTCTTAGGGG CCCCCGTGTCCCGCTCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATTGTCCTTCATCG TCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAGACCTGGTGCTGTGCTG AGCCCACTCTCCCGAGGGCGCATCCAAGCGGGGGCCACTTGAGAAGTGAATAAATGGGGCGG TTTCGGAAGCGTCAGTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCT