* النهايات *

🛈 نهايات بعض الدوال المرجعية

$\lim_{x \to 0} \frac{1}{x} = +\infty$	$\lim_{x \to 0} \frac{1}{x} = -\infty$	$\lim_{x\to +\infty} \frac{1}{x} = 0^+$	$\lim_{x\to-\infty}\frac{1}{x}=0^-$	الدالة مقلوب
$\lim_{x \to a} \frac{1}{\sqrt{a-x}} = +\infty$	$\lim_{x \to a} \frac{1}{\sqrt{x - a}} = +\infty$	$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0^+$	$\lim_{x \to +\infty} \sqrt{x} = +\infty$	الدالة جذر
$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$	$\lim_{x \to -\infty} x^n = -\infty$ مع <i>n</i> فردي	$\lim_{x \to -\infty} x^n = +\infty$ مع n زوجي	$\lim_{x \to +\infty} x^n = +\infty$	x^n الدالة $n \in \mathbb{N}^*$

② حالات عدم التعيين وطرق إزالتها

+∞ - ∞	$+\infty-\infty$ $0\times\infty$ $\frac{\infty}{\infty}$		$\frac{0}{0}$	حالات عدم التعيين
$\frac{0}{\infty} = 0$	$\frac{\ell}{\infty} = 0$	$\frac{\infty}{0} = \infty$	$\frac{\ell}{0} = \infty$	حالات يمكن التعيين
على درجة في البسط وَ المقام الات نضرب وَ نقسم في المرافق	∞ بالنسبة لدوال كثيرات الحدود عندما x يؤول إلى ∞ + أو ∞ — نأخذ نهاية الحد الأعلى (الأكبر) درجة النسبة لدوال ناطقة عندما x يؤول إلى ∞ + أو ∞ — نأخذ نهاية الحد الأعلى درجة في البسط و المقام النسبة لدوال جذرية عندما x يؤول إلى ∞ + أو ∞ — أو x في معظم الحالات نضرب و نقسم في المرافق عندما x يؤول إلى x نستعمل الجداءات الشهيرة أو التحليل أو العامل المشترك			

③ مبرهنات في النهايات

$-\infty$ نعتبر v ، v v v v v v v ، v ، v ، v ، v نعتبر v ، v نعتبر v ، v	مبرهنة التركيب
$\lim_{x \to a} f(x) = \ell : \lim_{x \to a} h(x) = \ell $ يَذَا كَانَ $\lim_{x \to a} f(x) = \ell : \lim_{x \to a} g(x) = \ell $ عيث $\lim_{x \to a} g(x) = \ell $ يذا كان	مبرهنة الحصر
$\lim_{x \to a} f(x) = +\infty$: غإذا كان $f(x) \ge g(x)$ حيث $f(x) \ge g(x)$ غإذا كان $f(x) \ge g(x)$	
$\lim_{x \to a} f(x) = -\infty$: غإذا كان $f(x) \le g(x)$ حيث $f(x) \le g(x)$ غإذا كان $f(x) \le g(x)$	مبرهنات المقارنة
$\lim_{x \to a} f(x) = \ell$: فإن $\lim_{x \to a} g(x) = 0$: ڪيث $ f(x) - \ell \le g(x)$ إذا كان	

نهايات الدوال المثلثية

$\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$	$\lim_{x\to 0} \frac{1-\cos x}{x} = 0$	$\lim_{x \to 0} \frac{\sin \alpha \ x}{\sin \beta \ x} = \frac{\alpha}{\beta}$	$\lim_{x\to 0}\frac{\tan x}{x}=1$	$\lim_{x\to 0}\frac{\sin x}{x}=1$

* المستقيمات المقاربة *

. $\left(0;ec{i}\,,ec{j}
ight)$ التمثيل البياني لها في مستوي منسوب إلى معلم متعامد و متجانس البياني لها في التكن

التمثيل البياني	التفسير الهندسي	النهاية
$x = x_0$ $x = x_0$	يقبل مستقيم مقارب عمودي $\left(C_f ight)$ معادلته $x=x_0$	$\lim_{x \to x_0} f(x) = +\infty$ $\int_{x \to x_0}^{0} f(x) = -\infty$ $\int_{x \to x_0}^{0} f(x) = -\infty$
$y = y_0 \qquad (C_f)$ $0 \qquad x$	يقبل مستقيم مقارب أفقي معادلته $\left(C_f ight)$ يعب $y=y_0$	$\lim_{x \to +\infty} f(x) = y_0$ g^{\dagger} $\lim_{x \to -\infty} f(x) = y_0$
y = ax + b	يقبل مستقيم مقارب مائل $\left(C_f ight)$ يقبل مستقيم مقارب مائل $y=a\ x+b$ معادلته	$\lim_{x \to +\infty} \left[f(x) - (ax + b) \right] = 0$ $\lim_{x \to -\infty} \left[f(x) - (ax + b) \right] = 0$

* الاستمرارية و مبرهنة القيم المتوسطة *

a يشمل العدد الحقيقي I لتكن f دالة معرفة على مجال

① الاستمرارية

	$\ell \in \mathbb{R}$ حيث $\lim_{x \to a} f(x) = f(a) = \ell$	a عند f عند
$\ell_1=\ell_2$ إذا كان	$\ell_1 \in \mathbb{R}$ ڪيث $\lim_{x \xrightarrow{>} a} f(x) = f(a) = \ell_1$	a استمرارية الدالة f على يمين
a فإن f مستمرة عند	$\ell_2 \in \mathbb{R}$ حيث $\lim_{x \stackrel{\checkmark}{\longrightarrow} a} f(x) = f(a) = \ell_2$	a استمرارية الدالة f على يسار

② صورة مجال بواسطة دالة مستمرة

I دالة متناقصة تماماً على f	I دالة متزايدة تماماً على f	
f(I)	f(I)	I المجال
[f(b);f(a)]	[f(a);f(b)]	[a;b]
$\lim_{x \xrightarrow{\leftarrow} b} f(x); f(a)$	$\left[f(a); \lim_{x \to b} f(x)\right]$	[a;b[
$\left[f(b); \lim_{x \to a} f(x)\right]$	$\left]\lim_{x \to a} f(x); f(b)\right]$]a;b]
$\lim_{x \to b} f(x); \lim_{x \to a} f(x)$	$\lim_{x \to a} f(x); \lim_{x \to b} f(x)$]a;b[

③ مبرهنة القيم المتوسطة

$f\left(b ight)$ و $f\left(a ight)$ و كان العدد الحقيقي k محصور بين $f\left(a ight)$ و $f\left(a ight)$ و $f\left(a ight)$ و $f\left(a ight)$ و المعادلة $f\left(a ight)$ تقبل حلاً على الأقل في المجال a المجال a المجال a المجال على الأقل في المجال a	مبرهنة 🛈
إذا كانت f دالة مستمرة وَ رتيبة تماماً على المجال $igl[a;bigr]$ وَ كان العدد الحقيقي $a;bigr[a;bigr]$ محصور بين $f\left(a ight)$ وَ $f\left(b ight)$ فإن المعادلة $f\left(x ight)$ تقبل حلاً وحيداً في المجال	مبرهنة 2
إذا كانت f دالة مستمرة على المجال $a;b$ و كان $a(a)(a)(a)(a)$ فإنه يوجد على الأقل عدد حقيقي $a(a)(a)(a)(a)(a)(a)(a)$.	مبرهنة 3
إذا كانت f دالة مستمرة وَ رتيبة تماماً على المجال $a;b$ و كان $a(a)$ كان $f(a)$ فإن المعادلة $a;b$ وحيداً في المجال $a;b$	مبرهنة 🍑

* الاشتقاقية *

. D_f دالة معرفة على مجال D_f من $\mathbb R$ و a عدد من

① الاشتقاقية

	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$	a عند f قابلية اشتقاق الدالة
$f_d^{\prime}\!\left(a ight) = f_g^{\prime}\!\left(a ight)$ إذا كان	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'_d(a)$	a على يمين f على يمين
a فإن f قابلة للاشتقاق عند	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'_g(a)$	a على يسار f على يسار

2 مشتقات الدوال المألوفة

f(x)	f'(x)	مجال قابلية الاشتقاق
$a\in\mathbb{R}$ حيث a	0	$\mathbb R$
X	1	$\mathbb R$
a x	а	$\mathbb R$
$n \in \mathbb{N}^* - \{1\}$ حيث x^n	$n.x^{n-1}$	$\mathbb R$
$\frac{1}{x}$	$\frac{-1}{x^2}$	ℝ*
$n \in \mathbb{N}^* - \{1\} \simeq \frac{1}{x^n}$	$\frac{-n}{x^{n+1}}$	R *
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[
cos x	− sin <i>x</i>	$\mathbb R$
sin x	cos x	$\mathbb R$
$\cos(ax+b)$	$-a\sin(a x+b)$	\mathbb{R}
$\sin(a x + b)$	$a\cos(a x+b)$	\mathbb{R}

③ المشتقات و العمليات على الدوال

uov	u ⁿ	\sqrt{u}	$\frac{u}{v}$	$\frac{1}{v}$	u×v	a u	$u \pm v$	الدالة
v'.u'(v)	$n \times u^{n-1} \times u'$ $n \in \mathbb{N}^* - \{1\}$	$\frac{u'}{2\sqrt{u}}$	$\frac{u'v-v'u}{v^2}$	$-\frac{v'}{v^2}$	u'v-v'u	a u'	$u' \pm v'$	الدالة المشتقة

التفسيرات الهندسية للاشتقاقية

التفسير الهندسي	الاستنتاج	النهاية
مماساً $A(x_0;f(x_0))$ یقبل عند النقطة $A(x_0;f(x_0))$ مماساً x_0 مماساً x_0 معادلته: $y = f'(x_0)(x-x_0) + f(x_0)$	x_0 تقبل الاشتقاق عند $f'ig(x_0ig)=a$ وَ	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$
مماساً موازي $Aig(x_0;f(x_0)ig)$ يقبل عند النقطة $Aig(x_0;f(x_0)ig)$ مماساً موازي x $y=fig(x_0ig)$ معادلته: x	x_0 تقبل الاشتقاق عند $f'ig(x_0ig)=0$ و $f'ig(x_0ig)=0$	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$
يقبل عند النقطة $A(x_0;f(x_0))$ نصف $A(x_0;f(x_0))$ يقبل عند النقطة $A(x_0;f(x_0))$ نصف x $y=f_d'(x_0)(x-x_0)+f(x_0)$ مماس معادلته:	f تقبل الاشتقاق على يمين $f_d'\left(x_0 ight)=a$ و x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$
يقبل عند النقطة $A(x_0;f(x_0))$ نصف $A(x_0;f(x_0))$ يقبل عند النقطة $A(x_0;f(x_0))$ نصف $A(x_0;f(x_0))$ عماس معادلته: $A(x_0;f(x_0))$ مماس معادلته: $A(x_0;f(x_0))$	f تقبل الاشتقاق على يسار $f_g'\left(x_0 ight)=b$ و x_0	$\lim_{x \xrightarrow{\leq} x_0} \frac{f(x) - f(x_0)}{x - x_0} = b$
يقبل عند النقطة $A(x_0; f(x_0))$ نصفي $A(x_0; f(x_0))$ يقبل عند النقطة $A(x_0; f(x_0))$ نصفي $A(x_0; f(x_0))$ مماسين حيث A تسمى نقطة زاوية .	لا تقبل الاشتقاق عند x_0 و $f_g'(x_0) eq f_d'(x_0)$	$\lim_{x \xrightarrow{\longrightarrow} x_0} \frac{f(x) - f(x_0)}{x - x_0} \neq$ $\lim_{x \xrightarrow{\longrightarrow} x_0} \frac{f(x) - f(x_0)}{x - x_0}$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يمين النقطة $Aig(x_0;fig(x_0ig)ig)$ يقبل على يمين النقطة نحو الأعلى معادلته $x=x_0$ نصف مماس عمودي موجه نحو الأعلى معادلته	غير قابلة للاشتقاق x_0 على يمين x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يمين النقطة $Aig(x_0;fig(x_0ig)ig)$ يقبل على يمين النقطة نحو الأسفل معادلته $x=x_0$ نصف مماس عمودي موجه نحو الأسفل معادلته	غير قابلة للاشتقاق x_0 على يمين x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يسار النقطة $Aig(x_0;fig(x_0ig)ig)$ يقبل على يسار النقطة نحو الأسفل معادلته $x=x_0$ نصف مماس عمودي موجه نحو الأسفل معادلته	غير قابلة للاشتقاق على يسار x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يسار النقطة $Aig(x_0;fig(x_0ig)ig)$ نصف مماس عمودي موجه نحو الأعلى معادلته $x=x_0$	غير قابلة للاشتقاق f على يسار x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$

* شفعية دالة - مركز تناظر و محور تناظر *

🛈 شفعية دالة

التمثيل البياني	التفسير الهندسي	التعريف	
, y	يقبل محور التراتيب $\left(C_{f} ight)$: دالة زوجية يعني من أجل كل f	
	·	$-x \in D_f \ g \ x \in D_f$	الدالة الزوجية
<i>o x</i>	كمحور تناظر	f(-x) = f(x): فإن	
y 1	0 (a) (a)	: دالة فردية يعني من أجل كل f	
<i>o x</i>	O يقبل مبدأ المعلم $\left(C_f ight)$ كمركز تناظر	$-x \in D_f$ g $x \in D_f$	الدالة الفردية
		f(-x) = -f(x) فإن	

② مركز تناظر وَ معور تناظر دالة

التمثيل البياني	التعريف	
, y	مركز تناظر لـ $\left(C_f ight)$ يعني من أجل كل $\omega(lpha;eta)$	
ω x	$(2\alpha - x) \in D_f \subseteq x \in D_f$	مركز تناظر
	$f(2\alpha-x)+f(x)=2\beta$: فإن	
<i>y x</i> + -1	محور تناظر لـ $\left(C_f ight)$ يعني من أجل كل $x\!=\!lpha$	
	$(2\alpha - x) \in D_f g x \in D_f$	محور تناظر
	$f(2\alpha-x)=f(x)$: فإن	

🖈 الوضع النسبي بين منحني و مستقيم 🖈

. y=a~x+b التمثيل البياني للدالة f وَ $\left(\Delta
ight)$ مستقيم ذو المعادلة $\left(C_{f}
ight)$

الوضعية النسبية	f(x) – y إشبارة الفرق
$\left(\Delta ight)$ يقع فوق $\left(C_{f} ight)$	f(x)-y>0
$\left(\Delta ight)$ يقع تحت $\left(C_{f} ight)$	f(x)-y<0
وَ $\left(\Delta ight)$ يتقاطعان $\left(C_{f} ight)$	f(x) - y = 0

🖈 اِنشاء منحنی باستعمال منحنی آخر معلوم 🖈

. $\left(0;\vec{i}\,,\vec{j}
ight)$ الترتيب في معلم متعامد و متجانس و g على الترتيب في معلم متعامد و متجانس للدالتين الدالتين ا

التمثيل البياني	الدالة
$bec{j}$ هو صورة $\left(C_{g} ight)$ بالانسحاب الذي شعاعه $\left(C_{f} ight)$	f(x) = g(x) + b
$-aec{i}$ هو صورة $\left(C_{g} ight)$ بالانسحاب الذي شعاعه $\left(C_{f} ight)$	f(x) = g(x+a)
$ec{v}\left(-a;b ight)$ هو صورة $\left(C_{g} ight)$ بالانسحاب الذي شعاعه $\left(C_{f} ight)$	f(x) = g(x+a) + b
المنحنيين $\left(C_{f} ight)$ و $\left(C_{g} ight)$ متناظران بالنسبة لمحور الفواصل	f(x) = -g(x)
المنحنيين $\left(C_{f} ight)$ و $\left(C_{g} ight)$ متناظران بالنسبة لمحور التراتيب	f(x) = g(-x)
المنحنيين $\left(C_{f} ight)$ و $\left(C_{g} ight)$ متناظران بالنسبة إلى مبدأ المعلم	f(x) = -g(-x)
$\left(C_g ight)$ ينطبق على $\left(C_f ight)$ هنه $f\left(x ight)=g\left(x ight)$ فإن $x\geq 0$ هنه $f\left(x ight)=g\left(-x ight)$ هو نظير $x\leq 0$ المرسوم في المجال الموجب إذا كان $x\leq 0$ فإن $x\leq 0$ دالة زوجية $f\left(x ight)$ دالة زوجية $f\left(x ight)$	f(x) = g(x)
(C_g) ينطبق على (C_f) فإن $f(x)=g(x)$ منه $f(x)=g(x)$ ينطبق على $g(x)\geq 0$ النصبة $g(x)\leq 0$ إذا كان $g(x)\leq 0$ فإن $g(x)=-g(x)$ منه $g(x)\leq 0$ بالنسبة لمحور الفواصل	f(x) = g(x)

* المناقشة البيانية *

. $y=a\;x+b$ منى الدالة f و َ $\left(\Delta
ight)$ مستقيم مائل (مماس أو مستقيم مقارب) معادلته و $\left(C_{f}
ight)$

$(extbf{ extit{m}} \in \mathbb{R})$ المناقشة البيانية	المعادلة من الشبكل
حلول المعادلة هي فواصل نقاط تقاطع المنحنى $\left(C_f ight)$ مع المستقيمات الموازية لمحور الفواصل	f(x) = m
(Δ) حلول المعادلة هي فواصل نقاط تقاطع المنحنى $(C_f$ مع المستقيمات الموازية لـ	f(x) = a x + m
$\left(0;b ight)$ مع المستقيمات الدورانية حول النقطة المنحنى $\left(C_{f} ight)$ مع المستقيمات الدورانية حول النقطة	f(x) = m x + b
حلول المعادلة هي فواصل نقاط تقاطع المنحنى $\left(C_f ight)$ مع المستقيمات الموازية لمحور الفواصل	$f(x) = m^2$
أو $ m =m$) لكن المناقشة تبدأ من محور الفواصل نحو الأعلى	f(x)= m 1
حلول المعادلة هي فواصل نقاط تقاطع المنحنى $\left(C_f ight)$ مع المستقيمات الموازية لمحور الفواصل	f(x) = f(m)
y = f(m) معادلتها	

ملاحظات: 🗢 نقول أن للمعادلة حل موجب إذا كانت نقطة التقاطع تقع على يمين محور التراتيب.

- 🗢 نقول أن للمعادلة حل سالب إذا كانت نقطة التقاطع تقع على يسار محور التراتيب .
 - 🗢 نقول أن للمعادلة حل مضاعف إذا كانت نقطة التقاطع هي نقطة المماس.