

Theoretische Informatik

D. Flumini, L. Keller, O. Stern

Lösungen zum Übungsblatt 1

Alphabete, Wörter und Sprachen

Lösung 1.

Gegeben waren die Alphabete $\Sigma_1 = \{a, b, c, \dots, z\}, \Sigma_2 = \{*, -, +, /\}$ und $\Sigma_3 = \{0, 1, 2, \dots, 9\}$ sowie die Wörter $w_1 = \varepsilon, w_2 = 5 + 2 - 3, w_3 = a + 5, w_4 = a^3uk^4$ und $w_5 = abbeec$.

(a) Die Längen der Wörter sind

$$|w_1| = |\varepsilon| = 0$$

$$|w_2| = |5 + 2 - 3| = 5$$

$$|w_3| = |a + 5| = 3$$

$$|w_4| = |aaaukkk| = 8$$

$$|w_5| = |abbeec| = 6$$

$$|w_1xw_2efg| = |x5 + 2 - 3efg| = 9.$$

(b) Das Wort w_1 ist teil der Sprache Σ_2^* .

Das Wort w_2 gehört zu keiner der angegebenen Sprachen.

Das Wort w_3 gehört zu keiner der angegebenen Sprachen.

Das Wort w_4 ist teil der Sprache Σ_1^+

Das Wort w_5 ist teil der Sprache Σ_1^+ .

(c) Das Wort w_1 ist ein Wort über allen Alphabeten Σ_1 , Σ_2 und Σ_3 .

Das Wort w_4 ist ein Wort über Σ_1 .

Das Wort w_5 ist ein Wort über Σ_1 .

Lösung 2.

Bei dieser Aufgabe ist zu beachten, dass für jedes Wort u sowohl das leere Wort ε wie auch das Wort u selbst Präfix, Suffix und Teilwort des Wortes u sind.

- (a) Die Präfixe des Wortes $u \text{ sind } \varepsilon$, 1, 12 und 123.
 - Die Suffixe des Wortes u sind ε , 3, 23 und 123.

Die Teilwörter des Wortes u sind ε , 1, 2, 3, 12, 23, und 123.

(b) Die Teilwörter ε , su und sugusu sind Präfix und Suffix von v.

Lösung 3.

Gegeben waren die Sprachen $L_1 = \{a, aa, x1a, xxx1a\}, L_2 = \{x^{5*n-4*n} \mid n \in \mathbb{N} \text{ ist gerade}\}, L_3 = \{w \in \Sigma^* \mid |w|_a = 6\} \text{ und } L_4 = \{w \in \Sigma^6 55 \mid |w|_x < |w|_1\} \text{ mit dem Alphabet } \Sigma = \{a, 1, x\}.$

- (a) Die Sprache L_1 ist endlich, da sie nur vier Wörter enthält.
- (b) Die Sprache L_2 ist unendlich, da es unendlich viele gerade Zahlen gibt.
- (c) Die Sprache L_3 ist unendlich, da sie (unter anderem) alle Wörter der Form

$$a^6, a^6x, a^6x^2, a^6x^3, \dots$$

enthält.

(d) Die Sprache L_4 ist endlich, da sie eine Teilmenge der (endlichen) Sprache aller Wörter der Länge 655 über Σ ist.

Lösung Zusatzaufgabe 1.

Entscheiden Sie, ob die nachfolgenden Aussagen wahr oder falsch sind:

Aussage	Wahr	Falsch
Eine Sprache darf nur eine endliche Anzahl von Wörtern enthalten.		X
Die Sprache L sei eine Konkatenation aus den Sprachen	X	
$A = \{w \mid w \text{ ist ungerade und } w > 448\} \text{ und } B = \{w \mid w \text{ ist prim}\}.$		
Es gibt mindestens ein Wort aus der Sprache L , welches sowohl		
zur Sprache A als auch zur Sprache B gehört.		
Ein Wort kann nicht unendlich gross sein.	X	
$\Sigma^* = \Sigma^+ - \{\varepsilon\}$		X
Gegeben sind die Sprachen $L = \{\}$ und $K = \{\varepsilon\}$. In diesem Fall ist		X
L=K.		
Das leere Wort ε ist auch in der leeren Sprache enthalten.		X
Unter der Konkatenation von Sprachen versteht man die Vereinigung der		X
zugrundeliegenden Alphabete.		