

RCC4703 Análise de Regressão

Prof. Dr. Marcelo Botelho da Costa Moraes

mbotelho@usp.br

Turma: 3º Trimestre / 2020

Agenda – Aula 5/8

- Programação R
- Diferenças em Diferenças
- Efeitos de Moderação
- Propensity Score Matching

Aplicação em Softwares

 Antes de começar # Instalando Pacotes (só precisa instalar uma única vez) install.packages("stargazer") install.packages("dplyr") install.packages("ggpubr") install.packages("rstatix") install.packages("psych") install.packages("plm") install.packages("AER") install.packages("dynpanel")

Carregando Pacotes (tem que carregar todas as vezes)

library(xlsx)

library(stargazer)

library(dplyr)

library(ggpubr)

library(rstatix)

library(psych)

library(stargazer)

library(Imtest)

library(sandwich)

library(car)

library(plm)

library(Imtest)

library(AER)

library(dynpanel)

Importando dados do Excel – ajuste o endereço de onde a planilha está no seu computador

Caixa <read.xlsx("C:/Users/mbote/Documents/Aula4_Sald
oCaixa.xlsx", 1) # importar a primeira planilha

- Estatística Descritiva
- Comando: Estat_Descritiva <- summary(Caixa)
- Teste de Normalidade
- Comando: shapiro_test(Caixa\$CASH)
- Comando múltiplas variáveis: Caixa %>% shapiro_test(DIVDUMMY, ALAVANC, TAM, INV, ENDIV, MATDIV, ATIVLIQ, FLCX, CAPEX, GOVDUMMY, FINBNDES, IFRS, CASH)
- Winsorização
- Comando: wCaixa <- winsor(Caixa, trim=0.01, na.rm=TRUE)
- wCaixa <- cbind(Caixa\$EMPRESA, Caixa\$ANO, wCaixa\$DIVDUMMY, wCaixa\$ALAVANC, wCaixa\$TAM, wCaixa\$INV, wCaixa\$ENDIV, wCaixa\$MATDIV, wCaixa\$ATIVLIQ, wCaixa\$FLCX, wCaixa\$CAPEX, wCaixa\$GOVDUMMY, wCaixa\$FINBNDES, wCaixa\$IFRS, wCaixa\$CASH)
- colnames(wCaixa) <- c("EMPRESA", "ANO", "DIVDUMMY", "ALAVANC", "TAM", "INV", "ENDIV", "MATDIV", "ATIVLIQ", "FLCX", "CAPEX", "GOVDUMMY", "FINBNDES", "IFRS", "CASH")

- Regressão Linear
 # Modelo de Regressão Linear
- wCaixa <- as.data.frame(wCaixa)
- # CASH = b0 + betas [DIVDUMMY, ALAVANC, TAM, INV, ENDIV, MATDIV, ATIVLIQ, FLCX, CAPEX, GOVDUMMY, FINBNDES, IFRS]
- tabela.modeloCash <- wCaixa[c(15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)]
- formula.Cash <- formula(tabela.modeloCash)
- lm.Cash <- lm(data = tabela.modeloCash, formula = formula.Cash)

- # Reportando os Resultados
- Comando: summary(lm.Cash)
- Para opção melhor formatada:

```
stargazer(lm.Cash, type = 'text', font.size = 'small',
title = 'Estimativa de Cash por OLS',
dep.var.labels=c('Caixa'),
omit.stat = c('ser'), ci=TRUE, ci.level=0.90,
single.row=TRUE)
```


- Verificar Heterocedasticidade
- Comando: bptest(lm.Cash)
- Se rejeitar H0, deve refazer o modelo com erro padrão
- Caso necessite modelo Robusto:
- Comando: coeftest(lm.Cash, vcov = vcovHC(lm.Cash, "HC1")) # HC1 gives us the White standard errors

- Multicolinearidade
- Comando: vif(lm.Cash)

- Gráfico dos Resíduos
- Comando:

```
lm.Cash.res <- resid(lm.Cash)
plot(lm.Cash.res, ylab="Residuos", xlab="Casos",
main="Gráfico dos Residuos")</pre>
```


- Análise dos Resíduos (Regressão Múltipla e POLS)
- summary(lm.Cash.res)
- shapiro_test(lm.Cash.res)
- cor(tabela.modeloCash, lm.Cash.res)
- cor(tabela.modeloCash, lm.Cash.res, method = "spearman") # caso de não normalidade

- Dados Balanceados?
- Comando: is.pbalanced(wCaixa)
- Ffeitos Fixos
- Comando:

Cash.fixed <- plm(formula = formula.Cash, data = as.data.frame(wCaixa), index = c("EMPRESA","ANO"), model = "within") summary(Cash.fixed)

fixef(Cash.fixed) #constante por empresa

pFtest(Cash.fixed, Im.Cash) #teste para efeitos fixos vs. pooled

- Teste para heterocedasticidade:
- Comando: bptest(formula.Cash, data = wCaixa, studentize=F)

- Efeitos Fixos com erro-padrão Robusto
- Comando:

coeftest(Cash.fixed) #coeficientes originais coeftest(Cash.fixed, vcovHC) #coeficientes robustos

Efeitos Aleatórios

```
Cash.random <- plm(formula = formula.Cash, data = as.data.frame(wCaixa), index = c("EMPRESA","ANO"), model = "random")
summary(Cash.random)
```

- Efeitos Aleatórios com erro-padrão Robusto
- Comando:

coeftest(Cash.random) #coeficientes originais coeftest(Cash.random, vcovHC) #coeficientes robustos

- Teste Breusch-Pagan
- Comando:

```
Cash.pooled <- plm(formula = formula.Cash, data = as.data.frame(wCaixa), index = c("EMPRESA","ANO"), model = "pooling") summary(Cash.pooled) plmtest(Cash.pooled, type=c("bp"))
```

- Teste Hausman
- Comando: phtest(Cash.fixed, Cash.random)

R Studio – Variáveis Instrumentais

- Variáveis Instrumentais
- Comando:

Cash.iv = ivreg(CASH ~ TAM + ENDIV | ENDIV + FLCX + CAPEX, data = wCaixa)

summary(Cash.iv, vcov = sandwich, diagnostics = TRUE)

R Studio – Painel Dinâmico

- Painel Dinâmico
- Comando:

Cash.dyn <dpd(formula.Cash,wCaixa,index=c("EMPRESA",
"ANO"),1,1) #número de lags e tipo: 0 → IV, 1 →
menor número de instrumentos, 2 → IV método 3, 3
→ número de momentos crescentes

summary(Cash.dyn)

- Amostra = 91 empresas
 - 49 classificadas como Insolventes Concordatárias → CLASS_Y
 = 0
 - 42 classificadas como Solventes → CLASS_Y = 1
- Variáveis:
 - LS Liquidez Seca = (AC-Est)/PC
 - GA Giro do Ativo = Receita/AT
 - Rep_EST Representatividade do Estoque = EST/AT
 - Rep_PC Representatividade do Passivo Circulante = PC/PT
 - EST_CUSTO Estoque a preço de custo = estoque/custo
 - FORN_VEN Relação fornecedores x Receita de Vendas = Fornec/Receita

 Análise Discriminante library(MASS)

Comando: modelo.lda <- Ida(CLASS_Y~., data = Aula4_PrevisaoFalencia)

plot(modelo.lda) #gráfico grupos

predictions <- modelo.lda %>%
predict(Aula4_PrevisaoFalencia) #previsões

mean(predictions\$class==Aula4_PrevisaoFalencia\$CLASS_Y)
#acerto do modelo

classes previstas

head(predictions\$class, 6)

previsão de classes posterior

head(predictions\$posterior, 6)

modelo discriminante

head(predictions\$x, 3)

os números representam a quantidade demonstrada


```
    Matriz de Confusão

install.packages("e1071")
library(pROC)
library(caret)
library(e1071)
lda.pred <- ifelse(predictions$class=="1", "Solvente",</pre>
"Insolvente")
Class_Y <- ifelse(Aula4_PrevisaoFalencia$CLASS_Y > 0.5, "Solvente", "Insolvente")
CM.lda <- table(lda.pred, Class Y)
confusionMatrix(CM.lda)
```


R Studio – Regressão Logística

- Regressão Logística
- Comando:

```
modelo.log <- glm(CLASS_Y~., data = Aula4_PrevisaoFalencia, family = binomial)
```

summary(modelo.log)

```
glm.probs <- predict(modelo.log,type = "response") #previsão</pre>
```

```
glm.pred <- ifelse(glm.probs > 0.5, "Solvente", "Insolvente") #classificação
```

table(glm.pred, Aula4_PrevisaoFalencia\$CLASS_Y)

R Studio – Regressão Logística

Matriz de Confusão

```
Class_Y <- ifelse(Aula4_PrevisaoFalencia$CLASS_Y > 0.5, "Solvente", "Insolvente")
```

CM.log <- table(glm.pred, Class_Y)

confusionMatrix(CM.log)

R Studio – Regressão Logística

Curva ROC

roc <- roc(Aula4_PrevisaoFalencia\$CLASS_Y,
glm.probs)</pre>

Diferenças em Diferenças

Differences Diff-in-Diff

Pressuposto

- O que tenha acontecido com o grupo de controle ao longo do tempo é o que teria acontecido com o grupo de tratamento na ausência da variação (choque exógeno)
- Talvez uma das estratégias de identificação mais popular na pesquisa aplicada atual
- Tentativas de imitar a atribuição aleatória com tratamento e amostra de "comparação" (controle)
- Aplicação do modelo de efeitos fixos de duas vias (twoway fixed effects model)

	Antes Tratamento	Depois Tratamento	Diferença
Grupo 1	Y _{t1}	Y _{t2}	ΔY_t
(Treat)			$= Y_{t2} - Y_{t1}$
Grupo 2	Y _{c1}	Y_{c2}	ΔY_c
(Control)			$=Y_{c2}-Y_{c1}$
Diferença			ΔΔΥ
			$\Delta Y_t - \Delta Y_c$

Pressupostos chave

- Grupo de controle identifica o caminho do tempo dos resultados que teriam ocorrido na ausência do tratamento
- Neste exemplo, Y cai por Y_{c2}-Y_{c1} mesmo sem o tratamento
- Observe que os "níveis" subjacentes de resultados não são importantes

Differences-in-Differences

- Em contraste, o importante é que as tendências de tempo na ausência do tratamento são as mesmas em ambos os grupos
- Se o tratamento ocorrer em uma área com uma tendência diferente, então se subestima / supera o efeito do tratamento
- Neste exemplo, suponha que a intervenção ocorra em área com queda mais rápida

Modelo Econométrico Básico

- Dados variam por
 - indivíduo (i) → firma
 - tempo (t)
 - Resultado é Y_{it}
- Somente dois períodos
- Tratamento vai ocorrer apenas em um grupo de observações (ex. firmas, etc.)

Modelo Econométrico

- Três variáveis
 - T_{it} =1 se obs i pertence ao grupo que será eventualmente tratado
 - A_{it} =1 no período em que o tratamento ocorre
 - T_{it}A_{it} -- termo de interação, tratamento após a intervenção
- $Y_{it} = \beta_0 + \beta_1 T_{it} + \beta_2 A_{it} + \beta_3 T_{it} A_{it} + \epsilon_{it}$

$$Y_{it} = \beta_0 + \beta_1 T_{it} + \beta_2 A_{it} + \beta_3 T_{it} A_{it} + \varepsilon_{it}$$

	Antes Tratam.	Depois Tratam.	Diferença
Grupo 1 (Treat)	$\beta_0 + \beta_1$	β_0 + β_1 + β_2 + β_3	ΔY_t = β_2 + β_3
Grupo 2 (Control)	β ₀	β_0 + β_2	ΔY_c = β_2
Diferença			$\Delta \Delta Y = \beta_3$

Modelo Econométrico Geral

- Dados variam por
 - indivíduo (i) → firma
 - tempo (t)
 - Resultado é Y_{it}
- Muitos períodos
- A intervenção ocorrerá em um grupo de firma, mas também em uma variedade de tempo

Modelo Econométrico Geral

- u_i é um efeito da firma
- v_t é um conjunto complete do efeito do ano (tempo)
- Modelo de análise de covariância

•
$$Y_{it} = \beta_0 + \beta_3 T_{it} A_{it} + u_i + \lambda_t + \varepsilon_{it}$$

Vantagem do Diff-in-Diff

- Suponha que os tratamentos não sejam aleatórios, mas sistemáticas
 - Ocorre em firmas com maior ou menor média Y
 - Ocorre em períodos de tempo com diferentes Y's
- Isso é capturado pela inclusão dos efeitos firmas / tempo - permite a covariância entre
 - u_i and T_{it}A_{it}
 - λ_t and $T_{it}A_{it}$

Vantagem do Diff-in-Diff

- Efeitos de grupo (firma)
 - Captura as diferenças entre os grupos que são constantes ao longo do tempo
- Efeitos do ano
 - Captura as diferenças ao longo do tempo que são comuns a todos os grupos (firmas)

Differences-in-Differences

Verificação de Robustez

- Se possível, use dados em vários períodos de pré-tratamento para mostrar que a diferença entre tratamento e controle é estável
 - Não é necessário que as tendências sejam paralelas, apenas para saber a função de cada uma
- Se possível, use dados em vários períodos pós-tratamento para mostrar que a diferença incomum entre tratamento e controle ocorre apenas concomitantemente ao programa.
- Alternativamente, use dados em vários indicadores para mostrar que a resposta ao programa é apenas manifestada para aqueles que esperamos que seja (por exemplo, a estimativa diff-in-diff do impacto da adoção das IFRS nas receitas deve ser zero)

Variáveis de Interação

Variáveis de Interação

- A interação é um conceito de três variáveis. Uma delas é a variável dependente (Y) e as outras duas são variáveis explicativas (X1 e X2)
- Existe uma interação entre X1 e X2 se o impacto de um aumento em X2 em Y depender do nível de X1
- Para incorporar a interação no modelo de regressão múltipla, adicionamos a variável explicativa $(X_1 \bar{X}_1) \times (X_2 \bar{X}_2)$. Há evidência de uma interação se o coeficiente de $(X_1 \bar{X}_1) \times (X_2 \bar{X}_2)$ for significativo (teste t com p-valor \leq 0,05)

Variáveis de Interação

Propensity Score Matching

PSM

Propensity Score Matching

- Viés na regressão múltipla
 - Endogeneidade
 - Má especificação da forma funcional dos modelos
- Efeito de tratamento médio (avarage treatment effect – ATE)
 - $W_i = \beta_0 + \beta_1 D_1 + \varepsilon_i$ Experimento não plausível
 - $W_i = \beta_0 + \beta_1 D_1 + \beta X_i + \varepsilon_i$

Propensity Score Matching

- O PSM
 - $D_i = \beta_0 + \beta X_i + \varepsilon_i$
 - Grupo de Tratamento $\rightarrow D_i = 1$
 - Grupo de Controle $\rightarrow D_i = 0$

Decisões no PSM

Escolhas Primárias na estimativa do Propensity Score

• Identificação dos grupos de tratamento e controle

• Especificação do modelo preditivo

Decisões no PSM

Escolhas Primárias na formação da Amostra Pareada (Matching)

Matching com e sem reposição

Distância do Calibrador

 Correspondência "Um-para-Um" e "Um-para-Muitos"

Para a Próxima Aula

 Artigo: Performance matched discretionary accrual measures. Kothari, Leone & Wasley. JAE 2005.

Obrigado pela Atenção!!!

Até a próxima aula

/mbotelhocm

/mbotelhocm

/in/mbotelhocm

