HARDWARE

Supply Panel Description:

(Datasheet)

- A Ventilation holes for fans
- **B** LED indicator: Indicates the status of supply and the load condition
- **C** SVR: For DC voltage Settings
- **D** -DIP Switch: For device addressing when using the communication interface
- E SW50: Used to stabilize parallel signals when multi-supplies in parallel connection
- F Functions Pins: Used for monitoring and control functions (CN46 and CN47)
- **G** DC Terminals
- H AC Terminals

LED Indicator:

LED Indicator	Status	
Green	Operating (AC to DC, work as an ordinary power supply)	
Green (Flashing)	Recycle (DC to AC, work as a grid tie inverter)	
Red	Abnormal (OTP, OLP, fan-lock, etc)	

Pin Assignment of CN46:

Pin No.	Function	Description			
1	+12V-AUX	Auxiliary voltage output, 11.4~12.6V, referenced to GND-AUX			
		(pin 2,4). The maximum output current is 0.5A. This output is			
		not controlled by the Remote ON/OFF control			
2,4	GND-AUX	Auxiliary voltage output GND. The signal return is isolated from			
		the output terminals (+V & -V).			
3	+5V-AUX	Auxiliary voltage output, 4.5~5.5V, referenced to GND-AUX (pin			
		2,4) only for Remote ON/OFF used. This output is not controlled			
		by the Remote ON/OFF control.			
5	Remote	The unit can turn the output ON/OFF by electrical signal or dry			
	ON-OFF	contact between Remote ON/OFF and +5V-AUX(pin 3) (Isolated			
		signal, referenced to GND-AUX.)			
6	C/D Control	High (4.5 ~ 5.5V) : Battery Charging mode			
		Low (-0.5 ~ 0.5V) : Battery Discharging mode			
7	DC-OK	High (4.5 ~ 5.5V) : When the Vout ≦ 80%±5%.			
		Low (-0.5 ~ 0.5V) : When Vout ≧ 80%±5%.			
		The maximum sourcing current is 4mA and only for output.			
8	Fault	High (4.5 \sim 5.5V) : When the Vac \leq 165Vrms, OLP,			
		SCP,OTP,OVP,AC Fail, fan lock, islanding protection.			
		Low (-0.5 $^{\sim}$ 0.5V) : When Vac \geq 175Vrms and when power			
		supply work normally.			
		The maximum sourcing current is 4mA and only for output.			
9	T-ALARM	High (4.5 $^{\sim}$ 5.5V) : When the internal temperature exceeds the			
		limit of temperature alarm, or when any of the fans fails			
		Low (-0.5 \sim 0.5V) : When the internal temperature is normal,			
		and when fans work normally.			

Pin Assignment of CN47:

Pin No.	Function	Description
1,2	DA	Differential digital signal for parallel control
3,4	DB	
5,6	GND	Negative output voltage signal. Certain function reference. It
		can not be connected directly to the load.
7	CANH	Data line used in CANBus interface
8	CANL	Data line used in CANBus interface
9,10	GND-AUX	Auxiliar y voltage output GND. The signal return is isolated from
		the output terminals (+V & -V).

Functional Description of DIP Switch:

Each unit should have their unique and own device address to communicate over CANBus. This DIP switch only takes effect when the communication interface is used. It is not necessary to set this switch in general use

Description of Bidirectional Operation:

The output range of the BIC-2200 covers DC: 10V - 112V; AC: 180 - 264Vac / 47-63Hz, which can be used to applications with various voltage requirements, such as battery test equipment. To cope with different application occasions, there are two modes for selection, bi-direction auto-detect mode and programmable bidirection battery mode.

Bi-direction auto-detect mode:

This is the default factory setting, AC to DC or DC to AC conversion is controlled by BIC-2200 automatically according to operation mechanism below.

Condition	Conversion
$V_{Target} > V_{DC}$	AC to DC
$V_{Target} < V_{DC}$	DC to AC

Bi-direction battery mode:

After bi-direction battery mode is activated, users can switch the supply between AC to DC or DC to AC conversion by CANBus.

In bi-direction battery mode, although users can determine direction of the conversions on their demand, however if the setting voltage does not match the actual DC end voltage, AC to DC (charging) or DC to AC (discharging) conversion may not work as expected. Here are examples that will cause conversion errors:

- 1. During AC to DC conversion if battery voltage is higher than the value of command VOUT_SET (charge voltage), the BIC-2200 will perform DC to AC conversion instead, but limiting discharge current at 5% of rated current. If you want to ensure AC to DC conversion working properly, please make sure value of command VOUT_SET is higher than the battery voltage.
- During DC to AC conversion if battery voltage is lower than the value of command VOUT_SET_REV, the BIC-2200 will perform AC to DC conversion instead, but then limiting charge current at 5% of rated current. To ensure DC to AC conversion working properly, please make sure value of command VOUT_SET_REV is lower than the battery voltage.

Remote Control Operation:

CN46 Remote ON/OFF to +5V-AUX	Condition
-0.5~0.5V	ON
4.5~5.5V	OFF

- Built-in remote ON/OFF control circuit, which is used to turn on/off the supply.
- Please be aware that "remote ON/OFF and "+5V-AUX" on CN46 should be linked together to allow the unit to operate normally; if kept open, there will be no output.
- Maximum input voltage 5.5V.

CANBus Protocol:

CANBus communication interface provides control and monitoring functions. It is helpful when users intent to modify the parameters remotely. Users can read and write the parameters through the bus, which includes bi-directional battery mode switch, ON/OFF, charge voltage/ current, discharge voltage/ current, temperature, etc.

CANBus Addressing:

Each BIC-2200 unit should have their unique and own device address to communicate over the CANBus. PIN 1 - PIN 3 of the DIP switch allows users to designate an address for their supply units (with maximum of 8 addresses). Please refer to below for the detailed setup advice.

Model No.	DIP Switch Position				
	1	2	3		
0	ON	ON	ON		
1	OFF	ON	ON		
2	ON	OFF	ON		
3	OFF	OFF	ON		
4	ON	ON	OFF		
5	OFF	ON	OFF		
6	ON	OFF	OFF		
7	OFF	OFF	OFF		

Protections:

Anti-islanding Protections:

BIC-2200 is designed to refer to IEC 62116(2008), the supply shuts off within 2 seconds when AC is cut or abnormal. Please be aware that it is necessary to install an AC circuit breaker that complies with grid-tie standard in your country before the supply.

Over Temperature Protection (OTP) and Alarm:

Built-in thermal detection circuit, once the internal temperature exceeds a threshold value, the supply will shut down automatically (the fans will still be running to cool down the supply). Please switch off the supply, remove all possible causes and then leave the supply

cooling down to a normal working temperature (approximate 10 minutes – 1 hour) before repower on again.

AC Fail Protection:

When AC voltage/frequency is abnormal, BIC-2200 will enter protection mode to prevent damaging itself or affect quality of the grid no matter which conversion it is, D/A or A/D. The supply will restore automatically when AC voltage/frequency back to normal.

Short Circuit Protection:

When there is short circuit at AC/DC end of BIC-2200, the supply will enter protection mode and shut down. Repower on to restore after short-circuit condition is resolved.

Over Current Protection:

In AC to DC conversion, when the load current exceeds 110%? 5% of the rated current, protection mode will be triggered. Repower on to restore after over-current condition is resolved.

DC Over Voltage Protection:

When the DC end voltage is too high, the DC over-voltage protection circuit will be triggered. Repower on to restore after over-voltage condition is resolved.

CAN Module (USB CAN A)

The USB CAN A module by waveshare (<u>USB-CAN-A - Waveshare Wiki</u>) works on serial communication. It adopts STM32 chip solution, stable and reliable communication. The chip converts the serial communication data frames into CAN compatible frames. Using this module we can communicate with the power supply.

The module works proper on sending the user data in a particular format over serial which it will then decode and send the desired data over CAN bus. The frame information can found in the following link: Frame Format

SOFTWARE

GUI:

- A COM PORT Selection Section
- B Readings Section (Updates every 1 second)
- C Flags Section (Updates every 1 second)
- **D** Reference Input Section

Details Tab:

E - Manufacture's Details Section

Mode Tab:

F – Mode and Direction Input Section

<u>A – COM PORT Selection Section:</u>

COM Port :	~	Refresh	Start	Stop	Resume Updates	Pause Updates	
------------	---	---------	-------	------	----------------	---------------	--

Component	Description
COM Port	A list showing the available Com ports
Refresh	To refresh the com port list
Start	To start the serial communication on the selected com port in
	the COM Port list and hence starting CAN communication with
	the power supply
Stop	To stop the serial communication on the selected com port and
	hence stopping CAN Communication with the power supply
	(disabled until serial communication is started)
Resume Updates	To resume the readings and flags data updates (updates every
	one second)
	(enabled only when the updates are paused by Pause Updates
	and serial communication is started)
Pause Updates	To pause the readings and flags data updates
	(enabled only when the updates are resumed by Resume
	Updates and serial communication is started)

B – Readings Section:

(Disabled until Serial Communication is not started)

Input Voltage :

Output Voltage :

Output Current:

Temperature :

Reference Output Voltage:

Reference Output Current:

Reference Discharge Voltage :

Reference Discharge Current:

Component	Description	Display Range	Tolerance	Default	
				Auto-	Battery
				detect	mode
				mode	
Input Voltage	AC Voltage	180 – 240V	± 10V	N/A	N/A
	reading value				
Output	DC Voltage	0 – 56V	± 0.48V	N/A	N/A
Voltage	reading value				
Output	DC current	-45 – 54A	± 0.45A	N/A	N/A
Current	reading value				
Temperature	Internal	-40 – 110°C	± 5°C	N/A	N/A
	ambient				
	temperature				
Reference	Charge voltage	38 – 65V	± 0.48V	48V	50.4V
Output	set value				
Voltage					
Reference	Charge current	0.45 – 49.5A	± 0.45A	49.5A	40A
Output	set value				
Current					
Reference	Discharge	38 – 65V	± 0.48V	38V	38V
Discharge	voltage set				
Voltage	value				
Reference	Discharge	-38.3 – -0.45A	± 0.45A	-38.3A	-32.2A
Discharge	current set				
Current	value				

C - Flags Section:

(Disabled until Serial Communication is not started)

This section various flags which are set by the power supply during its operation each having different meaning. These various flags are displayed using led's which are to the right on the above figure. These led's will turn green, red or remain grey depending on the flags given by the power supply. Detailed table explaining each flag is given below. (Initially before starting communication all the led's are grey)

Components	Led Colour				
	Green	Red	Grey		
Operation	Supply is ON	N/A	Supply is OFF		
Fan Fail	N/A	Fan is Locked	Fan working normally		
Over Temperature	N/A	Internal temperature abnormal	Internal temperature normal		
DC Over Voltage	N/A	DC over voltage protected	DC voltage normal		
DC Over Current	N/A	DC over current protected	DC current normal		
Short Circuit	N/A	Shorted circuit protected	Shorted circuit do not exist		
AC Fail	N/A	AC range abnormal	AC range normal		
DC Status	N/A	DC turned off	DC turned on		

Components	Led Colour				
	Green	Red	Grey		
High Temperature	N/A	Internal	Internal		
		temperature	temperature		
		abnormal	normal		
HV Over Voltage	N/A	HV over voltage	HV voltage normal		
		protected			
Is Slave	Supply is a slave	N/A	N/A		
Is Master	Supply is a master	N/A	N/A		
Secondary DD output	N/A	Secondary DD	Secondary DD		
voltage		output voltage	output voltage		
		status TOO LOW	status NORMAL		
Primary PFC	N/A	Primary PFC OFF or	Primary PFC ON		
		abnormal	normally		
Active Dummy Load	N/A	Active dummy load	Active dummy load		
		off	on		
Device Initialized	Device has initialized	Device is	N/A		
		uninitialized			
EEPROM Data Access	N/A	EEPROM data access	EEPROM data access		
		error	normal		
Is AC/DC	Direction Is AC to DC	N/A	N/A		
Is DC/AC	Direction Is DC to AC	N/A	N/A		
Is Auto-Detect	In auto-detect mode	N/A	N/A		
Is Battery	In battery mode	N/A	N/A		

<u>D – Reference Input Section</u>

(Disabled until Serial Communication is not started)

Component	Description	Adjustable	Tolerance
		Range	
Operation	Operating Status of supply	OFF or ON	N/A
Output Voltage	Charge voltage setting	38 – 65V	± 0.48V
Output Current	Charge current setting	0.45 – 49.5A	± 0.45A
Discharge Voltage	Discharge voltage setting	38 – 65V	± 0.48V
Discharge Current	Discharge current setting	-38.3 – -0.45A	± 0.45A
Set Reference	To process the input values	N/A	N/A
	and send commands to		
	supply accordingly		

E - Manufacturer's Detail Section

(Disabled until Serial Communication is not started)

Manufacturer's Name :

Manufacturer's Model Name :

Firmware Revision :

Manufacturer's Date :

Product Serial Number :

Component	Description	
Manufacturer's Name	Power Supply manufacturer's name	
Manufacturer's Model Name	Power Supply manufacturer's model name	
Firmware Revision	Power Supply revision number	
Manufacturer's Date	Power Supply manufacturer's date	
Product Serial Number	Power supply serial number	

F - Mode and Direction Input Section

(Disabled until Serial Communication is not started)

Direction Control: AC/DC DC/AC

Bidirection Mode: Auto-Detect Battery

Set Mode

Component	Description	Adjustable Range
Direction Control	Sets the direction of power supply	AC/DC or DC/AC
	(only enabled when supply is in	
	battery mode)	
Bidirection Mode	Sets the control mode of power	Auto-Detect or Battery
	supply	
	(Note : When the bidirectional	
	mode is changed, the power	
	supply needs to be rebooted)	
Set Mode	To process the input values and	N/A
	send commands to supply	
	accordingly	

Warnings and Errors:

There will be pop up messages in case of an error or a warning indicating the user about the problem which occurred during execution. The following are pop up messages and their meaning and how to handle them.

COM Port Opening Error:

This error comes when the application is unable to open the serial port selected in the **COM Port** list. Please make sure the correct com port is selected and try again. If the error still persists then trying unplugging the can module and re-plugging it. This should in most cases solve the error.

COM Port Closing Error:

This error comes when the application is unable to close the serial port selected in the **COM Port** list. Please make sure the correct com port is plugged in and not disconnected. If the error still persists then trying running the application again.

COM Port send/read Error:

This error comes when the application is unable to send data or read data from to the serial port selected in the **COM Port** list. Please make sure the correct com port is plugged in and not disconnected. Also make sure the correct com port is selected and try again. If the error

still persists then trying unplugging the can module and re-plugging it or re-running the application

CAN Bus read Error:

This error comes when the application is unable to communicate with the can bus i.e the power supply. Please make sure there is proper connection between the CAN wires of the can module and the power supply including the ground connection. Try switching Off the power supply, disconnecting the serial port, disconnecting the wires and making a fresh connection.

Wrong Input Warning:

This warning comes when the user inputs any other character apart from numbers in the input field. Please make sure there is not space or any unwanted characters in the input field. (Decimal point is allowed)

Wrong Range Warning:

This warning comes when the user inputs a number which is not in the range specified in the datasheet as well as the GUI. Please make sure the value is between proper range defined for each input field.

Mode Change Confirmation:

Either one of the confirmations comes (depending on the current control mode as well as user selected mode) when the user wants changes the control mode of the power supply. It indicates that the supply must be rebooted in order to have the changes reflected. Clicking Yes will send the command for mode change and the serial communication will be stopped. It must be started manually again. If clicked No, no changes will be done and no need of reboot. (Please note if no confirmation comes then it means that the selected control mode is already the one the supply is working on)

CONNECTIONS

Steps:

- 1. Set the ID of the BIC-2200 to "0", that is setting the DIP switch to ON/ON/ON positions.
- 2. In the USB CAN A module ON the 120 ohm resistor by placing the switch on top in ON position
- 3. Connect the CANH, CANL, and GND pins of USB CAN A module to the CANH (Pin7), CANL (PIN 8) and GND-AUX (PIN9) pins of CN47 connecter of power supply
- 4. Connect the USB CAN A module to the PC and run the application named app.exe
- 5. Select the desired COM Port from the COM port list and press Start
- 6. If any error occurs, please look in the Warning and Errors Section of the document
- 7. The user can Pause and Resume the Readings and Flags update by pressing the Pause Updates and Resume Updates Buttons respectively
- 8. The user can input in the fields given to change the voltage and current of the power supply
- 9. If the user wishes to change the control mode or direction of the power supply, they must navigate to the Mode Tab to the necessity.
- 10. Finally, short circuit ON-OFF (PIN5) and +5-AUX (PIN3) pins of the CN46 connector on the supply to remote on it to charge the batteries or provide energy to the loads.
- 11. If the user wishes to stop the serial communication, it can be done by pressing the Stop Button (Please Note that the power supply will remain ON in this case)