Detección acústica de especies salvajes

Dante Bermúdez Marbán Aprendizaje Profundo

Contexto

- El cambio climático es uno de los problemas más grandes que enfrentamos todos
- Selvas importantes debido a que absorben gran parte del dióxido de carbono

Contexto

Descripción del problema

Para cada audio, indicar qué **especies** están presentes

 Problema de clasificación multi etiqueta

- train tp.csv
- train/*.flac
- test/*.flac

CSVs

	recording_id	species_id	songtype_id	t_min	f_min	t_max	f_max
0	003bec244	14	1	44.5440	2531.250	45.1307	5531.25
1	006ab765f	23	1	39.9615	7235.160	46.0452	11283.40
2	007f87ba2	12	1	39.1360	562.500	42.2720	3281.25
3	0099c367b	17	4	51.4206	1464.260	55.1996	4565.04
4	009b760e6	10	1	50.0854	947.461	52.5293	10852.70
			7722		7.11.		721
1211	fe8d9ac40	13	.1	53.4720	93.750	54.0960	843.75
1212	fea6b438a	4	1	43.5787	2531.250	45.7653	4031.25
1213	ff2eb9ce5	0	1	15.2267	5906.250	16.0213	8250.00
1214	ffb8d8391	5	1	14.3467	4781.250	16.6987	10406.20
1215	ffb9a7b9a	18	1	40.3200	3187.500	41.0133	5062.50

CSVs

	recording_id	species_id	songtype_id	t_min	f_min	t_max	f_max	is_tp	duration	bandwidth
0	003bec244	14	1	44.5440	2531.250	45.1307	5531.25	True	0.5867	3000.000
1	006ab765f	23	1	39.9615	7235.160	46.0452	11283.40	True	6.0837	4048.240
2	007f87ba2	12	1	39.1360	562.500	42.2720	3281.25	True	3.1360	2718.750
3	0099c367b	17	4	51.4206	1464.260	55.1996	4565.04	True	3.7790	3100.780
4	009b760e6	10	1	50.0854	947.461	52.5293	10852.70	True	2.4439	9905.239
	***	***	***	***	***	***	***	***	***	***
7776	ffd88cd84	14	1	3.2000	2531.250	3.7867	5531.25	False	0.5867	3000.000
7777	ffebe7313	1	1	35.2000	3843.750	36.0960	5625.00	False	0.8960	1781.250
7778	fff163132	17	4	22.5547	1312.500	25.0880	7406.25	False	2.5333	6093.750
7779	fff163132	14	1	37.0827	2531.250	37.6693	5531.25	False	0.5866	3000.000
7780	fffb79246	6	1	8.3573	562.500	10.5013	4406.25	False	2.1440	3843.750

8997 rows x 10 columns

	s0	s1	s2	s3	s4	s5	s6	s7	s8	s9		s14	s15	s16	s17	s18	s19	s20	s21	s22	s23
recording_id																					
00204008d	-1	-1	-1	-1	0	-1	-1	-1	0	-1		-1	-1	-1	-1	-1	-1	-1	0	-1	-1
003b04435	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1	-1	0	0
003bec244	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		1	-1	-1	-1	-1	-1	-1	-1	-1	-1
005f1f9a5	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
006ab765f	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1	-1	-1	1
***											•••	***		•••							
ffc6031f8	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		-1	-1	-1	0	-1	-1	-1	-1	-1	0
ffd88cd84	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		0	-1	-1	0	-1	-1	-1	-1	-1	-1
ffebe7313	-1	0	-1	-1	-1	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
fff163132	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1		0	-1	-1	0	-1	-1	-1	-1	-1	-1
fffb79246	-1	-1	-1	-1	-1	-1	0	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Duplicados

	recording_id	species_id	songtype_id	t_min	f_min	t_max	f_max	is_tp
19	03b96f209	16	4	30.9333	3093.75	32.7680	4593.75	True
20	03b96f209	16	4	49.6320	3093.75	51.4667	4593.75	True

	recording_id	species_id	songtype_id	t_min	f_min	t_max	f_max	is_tp
56	0c48ed342	17	1	50.0320	1312.50	56.4853	3937.50	True
1617	0c48ed342	2	1	53.6640	468.75	55.4400	3000.00	False
1618	0c48ed342	19	1	47.4933	281.25	49.0453	2812.50	False
1619	0c48ed342	17	4	43.5413	1312.50	46.0747	7406.25	False

Distribución de especies

Cantidad de especies por audio

Duración

Ancho de banda

Audios

- 1 minuto
- 4727 para entrenamiento
- 1992 para predicción

- Lidiar desbalanceo de falsos positivos
- Solamente se aplicó en "audios buenos".
- Tres técnicas
 - Ruido gaussiano
 - Desplazamiento
 - Cambio de tono

Ruido gaussiano

audio + factor*ruido_gaussiano = nuevo_audio

Desplazamiento

Cambio de tono

- Se agregaban (o quitaban) uno o dos semitonos
- Se escucha más grave o más agudo

Representaciones tiempo- frecuencia

- Espectrograma en escala lineal
- Espectrograma en escala de Mel
 - \circ n_mels = 64

Modelo

ConvBlock(in, out)

Modelo

- Las dimensiones de los mapas de características dependen de la representación tiempo-frecuencia
- Función de pérdida: Entropía cruzada binaria (solamente en especies con anotaciones)
- 5 épocas, en lotes de tamaño 4
- Optimizador: SGD con lr=0.001

Evaluación

 Label Ranking Average Precision

Para cada etiqueta positiva, ¿qué proporción de las predicciones que tuvieron mejor ranking son verdaderos?

$$LRAP(y,\hat{f}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} rac{1}{||y_i||_0} \sum_{j:y_{ij}=1} rac{|\mathcal{L}_{ij}|}{ ext{rank}_{ij}}$$

$$\mathcal{L}_{ij} = \left\{k: y_{ik} = 1, \hat{f}_{ik} \geq \hat{f}_{ij}
ight\}$$
, rank $_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij}
ight\}
ight|$

Resultados

LRAP	Train	Test
Spec	0.657	0.630
Mel	0.723	0.701

Resultados

Your most recent submission

Name conv-mel-submission.csv Submitted

12 hours ago

Wait time 1 seconds Execution time 1 seconds

Score

0.37756

Complete

Jump to your position on the leaderboard -

Conclusiones

- Espectrograma en escala de Mel resulta mejor representación
 - Explorar otras representaciones
- Los datos de evaluación podrían estar etiquetados de manera diferente
- Largos de tiempo de preprocesamiento/entrenamiento
 - o Si el tiempo no es problema, probar arquitecturas del estado del arte
- Seguir aumentando los datos, por medio de enmascarar los espectrogramas.

Referencias

- Pink, J. (2018). 3 ways climate change affects tropical rainforests.
- RFCx. (2021). Our work
- Kaggle. (2020). Rainforest Connection Species Audio Detection
- Scikit-learn. (2020). 3.3.3.2. Label ranking average precision
- Huzaifah, M. (2017). Comparison of Time-Frequency Representations for Environmental Sound Classification using
 Convolutional Neural Networks

Gracias por su atención