4 生成系・元の位数・巡回群

G を群, X を G の部分集合とするとき, X を含む G の部分群のうち最小のものを $\langle X \rangle$ と書き, X の生成する G の部分群という. とくに $G = \langle X \rangle$ のとき, G は X により生成される, または, X は G の (-つの) 生成系である, という. なお, X が有限集合で $X = \{x_1, \ldots, x_n\}$ と書けるとき, $\langle X \rangle$ を $\langle x_1, \ldots, x_n \rangle$ と書くことがある.

問題 4.1 群 G の 1 つの元 $x \in G$ をとるとき, $\langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}$ となることを示せ.

群 G の元の個数を |G| と書き (#G や o(G) などと書くこともある), G の位数という. 位数が有限の群を有限群と呼び, そうでない群を無限群と呼ぶ. また, 元 $x \in G$ に対し, x の生成する部分群 $\langle x \rangle$ の位数を x の位数という. x の位数が有限ならば, これは x^m が単位元となるような自然数 m (≥ 1) のうち最小のものと一致する. もし, ある $x \in G$ が存在して $G = \langle x \rangle$ となるなら, G を巡回群と呼ぶ. 例えば $\mathbb Z$ は加法 + により群となるが, $\mathbb Z = \langle 1 \rangle$ となり, $\mathbb Z$ は巡回群である.

問題 4.2 G を群とし、S を G の空でない部分集合とする.

- (1) G の元の位数がすべて有限であるとする. このとき, もし $a,b \in S \Rightarrow ab \in S$ が成り立つならば. S は G の部分群になることを示せ.
- (2) G に無限位数の元が存在する場合は, $a,b \in S \Rightarrow ab \in S$ が成り立っても S が G の部分群にならないこともある. そのような例を挙げよ.

問題 4.3 巡回群の部分群は必ず巡回群になることを示せ、

問題 $\mathbf{4.4}$ G を群, $a \in G$ とし, a の位数を m とする. 自然数 n が $a^n = e$ をみたすとき, n は m の倍数であることを示せ.

¹ホームページ http://www.math.tsukuba.ac.jp/~amano/lec2012-2/e-algebra-ex/index.html