Universität Duisburg-Essen Fachbereich VWL Lehrstuhl Ökonometrie

Dr. Yannick Hoga Thilo Reinschlüssel

Multivariate Time Series Analysis Exercise Sheet 7

Exercise 1: The optimal forecast

a) Show that the stationary VAR(1) process $z_t = \phi z_{t-1} + a_t$ with a_t a standard white noise has the following causal representation:

$$z_t = \sum_{i=0}^{\infty} \theta_i \, a_{t-i}.$$

b) Assume the linear forecasting model $y_T(h) = \Psi y_T$ and show that $\Psi = \phi^h$ minimises the MSE of $y_T(h)$ given that y_t is a VAR(1) process.

Exercise 2: Properties of forecast errors

a) Show that for a general VAR(p) process

$$z_{T+h} - z_T(h) = e_T(h) = \sum_{i=0}^{h-1} \theta_i a_{T+h-i},$$

where $z_T(h)$ is assumed to be the optimal forecast.

Hint: (5.9)

- b) Assume that $a_t \sim N(0, \Sigma_a)$. Derive the distribution of $e_T(h)$.
- c) Prove that $Cov(e_T(h)) \to \Gamma_0$ as $h \to \infty$.

Exercise 3: Forecast intervals

Derive the confidence ellipsoid for $e_T(h)$ (see slide 5-14) from (5.9) based on your results in Exercise 2.

Exercise 4: Delta Method

For this task, assume both y_t and x_t to be $K \times 1$ vectors and $x_t \stackrel{iid}{\sim} [\mu_x, \Sigma_x]$.

- a) Let $y_t = f(x_t) = \phi_1 x_t$. Compute the mean and variance of y_t .
- b) Derive the distribution of $\sqrt{T}(\overline{y_T} E(y))$ from your results in a).
- c) Now let $f(\cdot)$ be some function $f(x): \mathbb{R}^k \to \mathbb{R}^k$. Derive the first order Taylor expansion for f(x) at μ_x and write it down in detail.

 Hint: You need the Jacobian matrix.
- d) Based on the expression obtained in c), show that a CLT applies for $\sqrt{T}(f(\overline{x_T}) f(\mu_x))$, and derive the distribution. Hint: Factor out deterministic parts. Since $f(\cdot)$ is deterministic, f(c) is deterministic if c is.
- e) Lastly, assume the variable x_t to be known (meaning it is not stochastic). We want to predict y_t using $y_t = \phi_1 x_t$. Unfortunately, we only have $\hat{\phi}_1$ which is stochastic with $\sqrt{T} \left(\hat{\phi}_1 \phi_1 \right) \stackrel{d}{\to} N \left(0, \Sigma_{\phi_1} \right)$. Can we say something about the distribution of the prediction error $\hat{y}_t y_t$?

This exercise sheet will be discussed in the tutorial on Wednesday, 4 December 2019