☐ Résumé détaillé du cours Interconnexion de Réseaux (Modèle OSI)

□ Introduction

- Historiquement, les réseaux étaient fermés et propriétaires (IBM : SNA, Bull : DSA).
- © L'ISO (Organisation Internationale de Normalisation) a standardisé l'interconnexion avec le modèle OSI pour éviter les monopoles et rendre les équipements interopérables.
- Ce modèle est hiérarchique en 7 couches, séparant les fonctions complexes en sousensembles simples.

☐ Le Modèle OSI – Vue Générale

Couche	Nom	Rôle principal	
7	Application	Interface utilisateur / services applicatifs (mail, HTTP, FTP)	
6	Présentation	Conversion, chiffrement, compression	
5	Session	Synchronisation des échanges, gestion des connexions	
4	Transport	Communication fiable de bout en bout	
3	Réseau	Acheminement (routage) des données	
2	Liaison de données	Transmission fiable sur un lien physique	
1	Physique	Transmission des bits sur le support matériel	
☐ Principe d'encapsulation :			

Chaque couche ajoute un en-tête à la donnée qu'elle reçoit de la couche supérieure avant de l'envoyer à la couche inférieure.

☐ Relations entre Services, Protocoles, Entités et SAP

☐ Service

- Offert par une couche à la couche supérieure via une interface de service.
- O Composé de primitives :

Type Sens Requête (N+1) vers N Indication N vers (N+1)

Réponse (N+1) vers N (optionnelle) Confirmation N vers (N+1) (optionnelle)

Exemple: appel téléphonique

• Requête: Composer un numéro • Indication : Le téléphone sonne

O Réponse : Décrochage

Occimination : Connexion établie

□ Protocole
 Définit les règles d'échange entre entités homologues. Utilise des PDU (Protocol Data Units) échangées horizontalement.
☐ SAP (Service Access Point)
 ① Interface entre couches N et N+1. ② La SDU (Service Data Unit) transite via le SAP et est encapsulée en PDU au niveau N.
☐ Les 7 Couches OSI en Détail
☐ 1. Couche Physique
 Ø Gère la transmission binaire sur le support. Ø Paramètres : tension, codage, durée des symboles, connectique.
☐ 2. Couche Liaison de Données
 Découpe en trames (L-PDU), gère : Contrôle d'erreur Contrôle de flux Détection de duplication Accusés de réception
☐ 3. Couche Réseau
 © Routage © Adressage © Fragmentation / Réassemblage © Contrôle de congestion (selon les architectures) © Les PDU sont appelées paquets.
☐ 4. Couche Transport
© Communication de bout en bout. © Gère : © Contrôle d'erreur et retransmission © Contrôle de flux © Multiplexage / démultiplexage
Mode Fiabilité Exemple
Connecté Oui TCP Non connecté Non UDP
□ 5. Couche Session
 Ø Gère les sessions applicatives. Ø Synchronisation avec jalons (points de reprise). Ø Peu utilisée → souvent intégrée à la couche Application ou Transport.

☐ **6.** Couche Présentation **©** Gère: **©** Format des données (ex: ASCII, JPEG...) **©** Compression **©** Chiffrement O Conversion dans un format commun d'échange. \square 7. Couche Application • Interface utilisateur et services réseau : • Web (HTTP), Mail (SMTP), FTP, DNS... \bullet Pas de service au-dessus \rightarrow pas de couche 8! ☐ Fonctionnalités Transversales (multi-couches) **Fonction** Couches concernées Mode connecté / non connecté 2 (Liaison), 3 (Réseau), 4 (Transport) 3 (Réseau), 4 (Transport) Multiplexage 2 (MAC), 3 (IP), 4 (Port) Adressage Fragmentation / Réassemblage 3 (souvent) ou autres couches Contrôle d'erreur 2, 4 Contrôle de flux 2, 4 3, 4 Contrôle de congestion \square Relation Service \leftrightarrow Protocole **©** Service : Interface exposée à la couche supérieure (via primitives) **© Protocole** : Règles d'échange entre entités de même niveau **©** Indépendants : On peut changer un protocole sans affecter le service. ☐ Comparaison avec Autres Architectures Modèle **Couches couvertes** Particularité TCP/IP Pas de distinction claire service/protocole 3, 4, 7 **IEEE** (802.x) 1, 2 Coupe la couche liaison : MAC + LLC **Télécoms (ITU)** 1-3 (souvent fusionnées) Plan C (commande), U (usager), M (gestion) Schéma simplifié de l'architecture OSI CopierModifier Machine A Machine B Application | ◀ ▶ Application |

Présentation - Protocole-

▶ | Présentation |

☐ En résumé

- **10** Le modèle OSI est **conceptuel** et non une implémentation.
- **1** Il offre modularité, indépendance, évolutivité.
- Bien que **peu implanté tel quel**, il reste **fondamental pour comprendre** les réseaux actuels.