MATH 7320, Functional Analysis I

HOMEWORK 5 – Due Friday November 15

- 1. Let \mathcal{H} be a Hilbert space and $\phi: \mathcal{H} \to \mathcal{H}$ be a surjective distance-preserving function with $\phi(0) = 0$. Prove that $\phi(r\xi + s\eta) = r\phi(\xi) + s\phi(\eta)$ for all $r, s \in \mathbb{R}$ and $\xi, \eta \in \mathcal{H}$.
- 2. Let \mathcal{H} be a Hilbert space and $S \subset \mathcal{H}$ a non-empty subset. Prove that $(S^{\perp})^{\perp} = \overline{\operatorname{span}}(S)$.
- 3. Let \mathcal{X} and \mathcal{Y} be Banach spaces. Show that the space $\mathcal{K}(\mathcal{X}, \mathcal{Y})$ of all linear compact operators from \mathcal{X} to \mathcal{Y} is a closed subspace of $\mathcal{B}(\mathcal{X}, \mathcal{Y})$. Moreover, if \mathcal{Z} is a normed space, $T \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ and $S \in \mathcal{B}(\mathcal{X}, \mathcal{Z})$, then $S \circ T \in \mathcal{K}(\mathcal{X}, \mathcal{Z})$.
- 4. Let \mathcal{H} be a Hilbert space and $\mathcal{M} \leq \mathcal{H}$ a closed subspace. Show that the map $\pi: \mathcal{M}^{\perp} \to \mathcal{H}/\mathcal{M}$ defined by $\pi(\xi) = \xi + \mathcal{M}$, is isometric.
- 5. Let \mathcal{X} and \mathcal{Y} be Banach spaces. Suppose that $T \in \mathcal{B}(\mathcal{X}^*, \mathcal{Y})$ has the property that $||Tf_i|| \to 0$ whenever $(f_i)_{i \in I}$ is a net in \mathcal{X}^* such that $f_i(x) \to 0$ for all $x \in \mathcal{X}$. Prove that T is a compact operator.
- 6. Show that if $T \in \mathcal{K}(\mathcal{H})$ and $\{e_n : n \in \mathbb{N}\}$ is an orthonormal basis for \mathcal{H} , then $T(e_n) \to 0$.
- 7. Let \mathcal{H} be a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Prove that the following are equivalent:
 - i) T is an isometry;
 - ii) $\langle T(\xi), T(\eta) \rangle = \langle \xi, \eta \rangle$ for all $\xi, \eta \in \mathcal{H}$;
 - iii) $T^*T = I$.
- 8. Let \mathcal{H} be a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Prove that the following are equivalent:
 - i) T is a normal isometry;
 - ii) T is an isometric bijection;
 - iii) $T^*T = TT^* = I$.
- 9. Let \mathcal{H} be a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Show that $\ker(T) = T^*(\mathcal{H})^{\perp}$.
- 10. Let \mathcal{H} be a Hilbert space, and $T \in \mathcal{F}(\mathcal{H})$. Show that $T^* \in \mathcal{F}(\mathcal{H})$.

- 11. Let $T: L^2([0,1]) \to L^2([0,1])$ be defined by T(f)(x) = xf(x). Prove that $T \in \mathcal{B}(L^2([0,1])), T = T^*, T$ is injective but not bijective, and that T has no eigenvectors.
- 12. Let $(\alpha_n)_{n\in\mathbb{N}}\in\ell^{\infty}$, and let $T:\ell^2\to\ell^2$ be defined by $T(\delta_n)=\alpha_n\delta_n$ for all $n\in\mathbb{N}$.
 - i) Show that T is bounded with $||T|| = ||(\alpha_n)||_{\infty}$.
 - ii) Prove that T is compact if and only if $(\alpha_n) \in \mathbf{c_0}$
 - iii) Prove that $T^*(\delta_n) = \overline{\alpha_n} \delta_n$
- 13. Let \mathcal{H} be a Hilbert space, $T \in \mathcal{B}(\mathcal{H})$, and $\mathcal{M} \leq \mathcal{H}$ a closed subspace.
 - i) Prove that \mathcal{M} is invariant under T if and only if $TP_{\mathcal{M}} = P_{\mathcal{M}}TP_{\mathcal{M}}$.
 - ii) Prove that \mathcal{M} reduces T if and only if $TP_{\mathcal{M}} = P_{\mathcal{M}}T$.
 - iii) Prove that \mathcal{M} reduces T if and only if \mathcal{M} is invariant under both T and T^* .
 - iv) Show that if \mathcal{M} reduces T, then $(T|_{\mathcal{M}})^* = T^*|_{\mathcal{M}}$
 - v) Is part iii) true if \mathcal{M} is only invariant under T?
- 14. Let \mathcal{H} be a Hilbert space, and $P, Q \in \mathcal{B}(\mathcal{H})$ be projections, i.e. $P^2 = P = P^*$ and similarly for Q.
 - i) Prove that P + Q is a projection if and only if $P(\mathcal{H}) \perp Q(\mathcal{H})$, and in this case $(P + Q)(\mathcal{H}) = P(\mathcal{H}) + Q(\mathcal{H})$ and $\ker(P + Q) = \ker(P) \cap \ker(Q)$.
 - ii) Prove that PQ is a projection if and only if PQ = QP if and only if P + Q PQ is a projection, and in this case $(PQ)(\mathcal{H}) = P(\mathcal{H}) \cap Q(\mathcal{H})$ and $\ker(P+Q) = \ker(P) + \ker(Q)$.