5. PARAMETRIC LEAST-SQUARES ADJUSTMENT

♦ This chapter provides the detailed implementation of the least squares solution for the parametric method (also known as the observation equation least squares).

5.1. Estimated Parameters and Adjusted Observations

• Recall that the parametric math model is given by:

$$l_{n,1} = f_{n,1} (x_{u,1})$$

Starting with the linearized functional model

$$\mathbf{A}_{\mathbf{n},\mathbf{u}}\hat{\mathbf{\delta}}_{\mathbf{u},\mathbf{1}} + \mathbf{w}_{\mathbf{n},\mathbf{1}} = \hat{\mathbf{v}}_{\mathbf{n},\mathbf{1}} \qquad \text{with POE: } \mathbf{x}^{\mathbf{o}}$$

• The problem now on hand is to get the best estimate \hat{x} where

$$\hat{\mathbf{x}} = \mathbf{x}^{\mathbf{o}} + \hat{\mathbf{\delta}}$$

◆ As discussed before, the best estimate is the one that satisfies the least-squares condition:

$$\phi = \sum v^2 = \min$$
 or $\sum pv^2 = \min$

In matrix form, this is:

$$\phi = \hat{\mathbf{v}}_{1,n}^{\mathrm{T}} \mathbf{P}_{n,1} \hat{\mathbf{v}}_{n,1} = \min$$

- P is the weight matrix $P \propto C_l^{-1}$ (C_l is the variance-covariance matrix of the observations)
- Substituting for $\hat{v} = A \hat{\delta} + w$ in the variation function ϕ

$$\varphi = \left(\mathbf{A}_{n,u}\hat{\delta}_{u,1} + \mathbf{W}_{n,1}\right)^{T} \mathbf{P}_{n,n} \left(\mathbf{A}_{n,u}\hat{\delta}_{u,1} + \mathbf{W}_{n,1}\right)$$

Transposing the 1st term (recall: $(A B)^T = B^T A^T$)

$$= \left(\hat{\delta}_{1,u}^{T} A_{u,n}^{T} + w_{1,n}^{T}\right) P_{n,n} \left(A_{n,u} \hat{\delta}_{u,1} + w_{n,1}\right)$$

Including P inside the 2nd term

$$\begin{split} &= \left(\hat{\delta}_{1,u}^T \mathbf{A}_{u,n}^T + \mathbf{w}_{1,n}^T\right) \! \left(\mathbf{P}_{n,n} \mathbf{A}_{n,u} \hat{\delta}_{u,1} + \mathbf{P}_{n,n} \mathbf{w}_{n,1}\right) \\ &= \hat{\delta}^T \mathbf{A}^T \mathbf{P} \mathbf{A} \hat{\delta} + \underbrace{\hat{\delta}_{1,u}^T \mathbf{A}_{u,n}^T \mathbf{P}_{n,n} \mathbf{w}_{n,1}}_{1 \times 1} + \underbrace{\mathbf{w}_{1,n}^T \mathbf{P}_{n,n} \mathbf{A}_{n,u} \hat{\delta}_{u,1}}_{1 \times 1} + \mathbf{w}^T \mathbf{P} \mathbf{w} \end{split}$$

Note that: $\hat{\delta}_{1,u}^T \mathbf{A}_{u,n}^T \mathbf{P}_{n,n} \mathbf{W}_{n,1} = \mathbf{W}_{1,n}^T \mathbf{P}_{n,n} \mathbf{A}_{n,u} \hat{\delta}_{u,1} = \text{scalar quantity},$ therefore:

$$\begin{split} \hat{\delta}_{1,u}^T \mathbf{A}_{u,n}^T \mathbf{P}_{n,n} \mathbf{w}_{n,1} + \mathbf{w}_{1,n}^T \mathbf{P}_{n,n} \mathbf{A}_{n,u} \hat{\delta}_{u,1} &= 2(\mathbf{w}_{1,n}^T \mathbf{P}_{n,n} \mathbf{A}_{n,u} \hat{\delta}_{u,1}) = 2(\hat{\delta}_{1,u}^T \mathbf{A}_{u,n}^T \mathbf{P}_{n,n} \mathbf{w}_{n,1}) \\ \hline \phi &= \hat{\boldsymbol{\delta}}^T \left(\mathbf{A}^T \mathbf{P} \mathbf{A} \right) \hat{\boldsymbol{\delta}} + 2 \left(\mathbf{w}^T \mathbf{P} \mathbf{A} \right) \hat{\boldsymbol{\delta}} + \mathbf{w}^T \mathbf{P} \mathbf{w} = \mathbf{min} \end{split}$$

- The condition for ϕ to be a minimum quantity means its derivative with respect to all variables within the equation must be zero. The only variable in the minimization (variation) function ϕ is the vector $\hat{\boldsymbol{\delta}}$.
- Therefore, for $\phi = \min \rightarrow \frac{\partial \phi}{\partial S} = 0$ (recall: $\frac{\partial (x^T C x)}{\partial y} = 2x^T C$) $\frac{\partial \varphi}{\partial s} = 2\hat{\delta}^{T} \left(\mathbf{A}^{T} \mathbf{P} \mathbf{A} \right) + 2 \left(\mathbf{w}^{T} \mathbf{P} \mathbf{A} \right) + \mathbf{0} = \mathbf{0}$
- Transpose the whole equation (note because P is symmetric matrix, then: $P^{T} = P$)

$$\frac{\left(A_{u,n}^{T}P_{n,n}A_{n,u}\right)\hat{\delta}_{u,1} + A_{u,n}^{T}P_{n,n}w_{n,1}}{N_{u,u}\hat{\delta}_{u,1} + u_{u,1}} = 0$$

$$N_{\mathbf{u},\mathbf{u}}\hat{\delta}_{\mathbf{u},\mathbf{1}} + u_{\mathbf{u},\mathbf{1}} = 0$$

This expression is known as the normal equation

N = normal equations matrix

 \mathbf{u} = normal equations vector (also known as the vector of constant terms)

• The solution of the normal equations for δ is:

$$\begin{vmatrix} \hat{\delta} = -\mathbf{N}^{-1}\mathbf{u} \\ \hat{\delta} = -(\mathbf{A}^{T}\mathbf{P}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{P}\mathbf{w} \\ \hat{\mathbf{x}} = \mathbf{x}^{o} + \hat{\delta} \end{vmatrix}$$

adjusted parameters

♦ It is interesting to note here that the normal equations system can be derived directly from the variation function in a more direct way:

$$\phi = \hat{\mathbf{v}}^{\mathrm{T}} \mathbf{P} \hat{\mathbf{v}} = \min$$

where

$$\hat{\mathbf{v}} = \mathbf{A}\hat{\mathbf{\delta}} + \mathbf{w}$$

Therefore:

$$\frac{\partial \phi}{\partial \delta} = \frac{\partial \phi}{\partial \mathbf{v}} \cdot \frac{\partial \mathbf{v}}{\partial \delta} = \left(\mathbf{2} \hat{\mathbf{v}}^T \mathbf{P} \right) \cdot \left(\mathbf{A} \right) = \mathbf{0}$$

which, after transposing, yields the following:

$$\mathbf{A}^{T}\mathbf{P}\hat{\mathbf{v}} = \mathbf{0}$$

$$\mathbf{A}^{T}\mathbf{P}\left(\mathbf{A}\hat{\boldsymbol{\delta}} + \mathbf{w}\right) = \mathbf{0}$$

$$\left(\mathbf{A}^{T}\mathbf{P}\mathbf{A}\right)\hat{\boldsymbol{\delta}} + \mathbf{A}^{T}\mathbf{P}\mathbf{w} = \mathbf{0}$$

$$\mathbf{N} \quad \hat{\boldsymbol{\delta}} \quad + \mathbf{u} = \mathbf{0}$$

• Solution for the residuals vector (the correction to the observations):

$$\begin{split} \hat{\mathbf{v}} &= \mathbf{A}\boldsymbol{\delta} + \mathbf{w} \\ &= -\mathbf{A} \left(\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A} \right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{w} + \mathbf{w} \\ &= \left(-\mathbf{A} \left(\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A} \right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} + \mathbf{I} \right) \mathbf{w} \\ \hat{\mathbf{v}} &= \left(\mathbf{I} - \mathbf{A} \left(\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A} \right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \right) \mathbf{w} \end{split}$$

♦ The adjusted observations vector:

$$\hat{l}_{n,1} = l_{n,1}^{obs} + \hat{v}_{n,1}$$

5.2. Estimated Variance-Covariance Matrices for the Adjusted Parameters and the Adjusted Observables

- Since least squares only estimates the values of $\hat{\mathbf{x}}$ ($\hat{\mathbf{x}} = \mathbf{x}^o + \hat{\boldsymbol{\delta}}$) and $\hat{\mathbf{l}}$ ($\hat{\mathbf{l}} = \mathbf{l} + \hat{\mathbf{v}}$), it is always necessary to compute a measure of precision for these estimated quantities ($\mathbf{C}_{\hat{\mathbf{x}}}$ and $\mathbf{C}_{\hat{\mathbf{l}}}$).
- \bullet The only general way to compute $C_{\hat{x}}$ and $C_{\hat{i}}$ is through the use of the covariance law.
- 5.2.1. \mathbf{C}_{δ} The V-C matrix of the solution vector $\hat{\delta}$:

Functional model:

$$\begin{split} \hat{\delta} &= -\textbf{N}^{-1}\textbf{u} \\ &= - \left(\textbf{A}^{T}\textbf{P}\textbf{A} \right)^{-1} \textbf{A}^{T}\textbf{P}\textbf{w} \\ &= - \left(\textbf{A}^{T}\textbf{P}\textbf{A} \right)^{-1} \textbf{A}^{T}\textbf{P} \left(\textbf{f} \left(\textbf{x}^{0} \right) - \textbf{l}^{\text{obs}} \right) \\ &= - \underbrace{ \left(\textbf{A}^{T}\textbf{P}\textbf{A} \right)^{-1} \textbf{A}^{T}\textbf{P}}_{\text{CONSTANT}} \textbf{f} \left(\textbf{x}^{0} \right) + \underbrace{ \left(\textbf{A}^{T}\textbf{P}\textbf{A} \right)^{-1} \textbf{A}^{T}\textbf{P}}_{\text{VARIABLE}} \\ &\vdots \hat{\delta}_{\textbf{u},\textbf{1}} = \textbf{K}_{2_{\textbf{u},\textbf{1}}} + \textbf{K}_{1_{\textbf{u},\textbf{n}}} \textbf{l}^{\text{obs}}_{\textbf{n},\textbf{1}} & \left(\textbf{K}_{\textbf{1}} = \textbf{N}^{-1}\textbf{A}^{T}\textbf{P} \right) \end{split}$$

Using the law of propagation of V-C (covariance law)

$$\mathbf{C}_{\delta u,u} = \mathbf{J}_{1u,n} \mathbf{C}_{1n,n} \mathbf{J}_{1n,u}^{\mathrm{T}}$$
$$\mathbf{C}_{\delta} = \mathbf{K}_{1} \mathbf{C}_{1} \mathbf{K}_{1}^{\mathrm{T}}$$

Recall that

$\mathbf{P} \propto \mathbf{C}_{\mathbf{l}}^{-1}$	$C_1 = V-C$ matrix of the observations
$\mathbf{P} = \sigma_0^2 C_l^{-1}$	σ_0^2 is called the variance factor (or variance of unit weight, or a-priori variance factor) It is usually chosen = 1 (one)
$C_{l} = \sigma_{0}^{2} \mathbf{P}^{-1}$	It is usually chosen = 1 (one)

Using the covariance law,

$$\mathbf{C}_{\delta} = \mathbf{K}_{1} \mathbf{C}_{1} \mathbf{K}_{1}^{\mathrm{T}} \quad Note : \mathbf{K}_{1} = \mathbf{N}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \text{ and } C_{l} = \sigma_{0}^{2} \mathbf{P}^{-1}$$
Substituting for \mathbf{K}_{1} and $C_{l} = \sigma_{0}^{2} \mathbf{P}^{-1}$

$$= (N^{-1}A^{T} P) \sigma_{0}^{2} P^{-1} (N^{-1}A^{T} P)^{T}$$

$$= N^{-1}A^{T}\sigma_{0}^{2} P P^{-1} (N^{-1}A^{T} P)^{T}$$

$$= \sigma_{0}^{2} N^{-1}A^{T} I (N^{-1}A^{T} P)^{T}$$

$$= \sigma_{0}^{2} N^{-1}A^{T} (P A N^{-1})$$

$$= \sigma_{0}^{2} N^{-1} A^{T} P A N^{-1}$$

$$= \sigma_{0}^{2} N^{-1} NN^{-1}$$

$$= \sigma_{0}^{2} N^{-1} NN^{-1}$$

$$= \sigma_{0}^{2} N^{-1} NN^{-1}$$

That is, the variance-covariance matrix of the solution vector $\hat{\boldsymbol{\delta}}$ is

$$oldsymbol{\mathbf{C}}_{\delta} = oldsymbol{\sigma}_0^2 \, \, oldsymbol{\mathbf{N}}^{-1}$$

5.2.2. $\mathbf{C}_{\hat{\mathbf{x}}}$ - The V-C matrix of the adjusted parameters $\hat{\mathbf{x}}$:

$$\hat{\mathbf{x}} = \mathbf{x}^{\mathbf{o}} + \hat{\mathbf{\delta}}$$

$$\mathbf{C}_{\hat{\mathbf{x}}} = \mathbf{J}_{\delta} \mathbf{C}_{\delta} \mathbf{J}_{\delta}^{T}$$
$$= \left(\frac{\partial \hat{\mathbf{x}}}{\partial \delta}\right) \mathbf{C}_{\delta} \left(\frac{\partial \hat{\mathbf{x}}}{\partial \delta}\right)^{T}$$

$$\therefore \mathbf{C}_{\hat{\mathbf{x}}} = \mathbf{C}_{\delta} = \mathbf{N}^{-1}, \text{ note that if } \begin{bmatrix} \hat{\boldsymbol{\sigma}}_0^2 \neq 1, & then \\ C_{\hat{x}} = \hat{\boldsymbol{\sigma}}_0^2 N^{-1} \end{bmatrix}$$

Note: we have introduced a new quantity $\hat{\sigma}_0^2$ which is called the a-posteriori variance

factor, where
$$\hat{\sigma}_0^2 = \frac{\hat{\mathbf{v}}^T \mathbf{P} \hat{\mathbf{v}}}{\mathbf{d.o.f}}$$
 (degree of freedom (d.o.f.) = n - u)

5.2.3. $\mathbf{C}_{\hat{\mathbf{l}}}$ - The V-C matrix of the adjusted observations $\hat{\mathbf{l}}$:

Function model:

$$\hat{\mathbf{l}} = \mathbf{f}(\hat{\mathbf{x}}) = \mathbf{A}\hat{\mathbf{x}}$$

To get C_i , apply the covariance law

$$\mathbf{C}_{\hat{\mathbf{l}}} = \left(\frac{\partial \hat{\mathbf{l}}}{\partial \hat{\mathbf{x}}}\right) \mathbf{C}_{\hat{\mathbf{x}}} \left(\frac{\partial \hat{\mathbf{l}}}{\partial \hat{\mathbf{x}}}\right)^{T} = \mathbf{J}_{\hat{\mathbf{x}}} \mathbf{C}_{\hat{\mathbf{x}}} \mathbf{J}_{\hat{\mathbf{x}}}^{T}$$

$$\mathbf{C}_{\hat{\mathbf{l}} \mathbf{n}, \mathbf{n}} = \mathbf{A}_{\mathbf{n}, \mathbf{u}} \mathbf{C}_{\hat{\mathbf{x}} \mathbf{u}, \mathbf{u}} \mathbf{A}_{\mathbf{u}, \mathbf{n}}^{T}$$

We can also derive an expression for the variance-covariance matrix for $\widehat{\boldsymbol{v}}$ (the residuals vector)

$$\mathbf{C}_{\hat{\mathbf{v}}} = \mathbf{C}_{\mathbf{l}} - \mathbf{C}_{\hat{\mathbf{l}}}$$

5.3. Iterative Solution to the Parametric Model

- ♦ Steps:
 - 1. Identify the elements of $\mathbf{x}_{\mathbf{u},\mathbf{1}}$ and $\mathbf{l}_{\mathbf{n},\mathbf{1}}$
 - 2. Form the observation equations $\mathbf{l} = \mathbf{f}(\mathbf{x})$
 - 3. Find approximate values for $\mathbf{x}^{\mathbf{0}}$ (using *u* observation equations) and use them to evaluate the design linearized equations:

$$\hat{\mathbf{v}}_{\mathbf{n},\mathbf{1}} = \mathbf{A}_{\mathbf{n},\mathbf{u}}\hat{\boldsymbol{\delta}}_{\mathbf{u},\mathbf{1}} + \mathbf{W}_{\mathbf{n},\mathbf{1}}$$

Where

$$\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{0}} \qquad \qquad \mathbf{w}_{\mathbf{n}, \mathbf{1}} = \mathbf{f}_{\mathbf{n}, \mathbf{1}} \left(\mathbf{x}^{0} \right) - \mathbf{l}_{\mathbf{n}, \mathbf{1}}^{\text{obs}}$$

- 4. Establish the C_1 matrix (check the units)
- 5. Establish the weight matrix

 $\mathbf{P} = \sigma_0^2 \mathbf{C}_1^{-1}$ (choose the desired variance factor to simplify the computations)

Usually σ_0^2 can be assumed = 1 (one).

Note: If C_1 is diagonal matrix

$$\mathbf{C}_{\mathbf{l}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ & 4 & 0 & 0 \\ sym & 6 & 0 \\ & & & 9 \end{bmatrix} \Rightarrow \mathbf{C}_{\mathbf{l}}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ & \frac{1}{4} & 0 & 0 \\ sym & \frac{1}{6} & 0 \\ & & & \frac{1}{9} \end{bmatrix}$$

- 6. Solve for $\hat{\delta}_1 = -N_1^{-1}u_1$, where $N_1 = A_1^T P A_1$ and $u_1 = A_1^T P w_1$
- 7. Update the approximate values

$$\hat{\boldsymbol{x}}_1 = \boldsymbol{x}_1^0 + \hat{\boldsymbol{\delta}}_1$$

Note: If model is linear go to step 11

- 8. Check the magnitude of each element of $\hat{\delta}_1$ for significance
- 9. If $\hat{\delta}_1$ had significant element (will be discussed later) choose the new POE

$$\mathbf{x}_2^0 = \hat{\mathbf{x}}_1$$

- Calculate A_2 , w_2 with x_2^0 and l^{obs}
- Solve for $\hat{\delta}_2 = -\mathbf{N}_2^{-1} \mathbf{u}_2$ (step 6)
- Update the approximate values (step 7)
- Check the elements of $\hat{\delta}_2$ (step 8)
- 10. Repeat step 9 until there is no significant elements in $\hat{\delta}$

11. Calculate
$$C_{\hat{x}}$$
, $C_{\hat{i}}$, $C_{\hat{v}}$ and $\hat{\sigma}_{0}^{2} = \frac{\hat{\mathbf{v}}^{T} \mathbf{P} \hat{\mathbf{v}}}{\mathbf{d.o.f}}$

5.4. Numerical Example: Parametric Least Squares

◆ The opposite sketch shows a levelling network *abcd*, in which point (a) is assumed to be fixed with zero elevation.

	Section	h
	length	Ĭ Å
Observations:		
$\left\lceil \Delta h_1 \right\rceil \left\lceil 6.16 \right\rceil$	4 km	
Δh_2 12.57	2 km	h_4 h_5 h_6
$\left \mathbf{l}_{c1} \right = \left \Delta \mathbf{h}_3 \right = \left 6.41 \right \mathbf{m}$	2 km	d / ns
$\begin{vmatrix} \mathbf{I}_{6,1} = \Delta \mathbf{h}_4 \end{vmatrix} = \begin{vmatrix} 1.09 \end{vmatrix}$	4 km	
Δh_5 11.58	2 km	$a \qquad h_2 \qquad h_3 \qquad c$
$\left[\Delta h_6\right]$ $\left[5.07\right]$	4 km	$H_a = 0.0$
Parameters (unknowns):		H _a = 0.0
$igg\lceil h_b igg ceil$		h_1
$\mathbf{x}_{3,1} = h_c $		
$\lfloor h_d floor$		

♦ Required

Given that the variance of the elevation differences = 1 cm²/km estimate the elevation of points b, c, d and their variance-covariance matrix $\mathbf{C}_{\hat{\mathbf{x}}}$.

Note:
$$n = 6, u = 3$$

- ♦ Solution
 - 1. The six observation equations $-\hat{\mathbf{l}} = \mathbf{f}(\hat{\mathbf{x}})$

$$\begin{array}{lllll} \Delta \hat{h}_{1} = & \hat{h}_{c} & -h_{a} \\ \Delta \hat{h}_{2} = & \hat{h}_{d} & -h_{a} \\ \Delta \hat{h}_{3} = & -\hat{h}_{c} & +\hat{h}_{d} \\ \Delta \hat{h}_{4} = \hat{h}_{b} & -h_{a} \\ \Delta \hat{h}_{5} = -\hat{h}_{b} & +h_{d} \\ \Delta \hat{h}_{6} = & -\hat{h}_{b} & +\hat{h}_{c} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$$

2. Estimate an approximate value (POE) of the parameters \mathbf{x}^{0} using any 3 equations of the 6 observation equations.

Using equations 4, 1, and 2 (use the simplest equations):

$$h_b^0 = ha + \Delta h_4 = 0.0 + 1.09 = 1.09m$$

 $h_c^0 = ha + \Delta h_1 = 0.0 + 6.16 = 6.16m$
 $h_d^0 = ha + \Delta h_2 = 0.0 + 12.57 = 12.57m$

Hence

$$\mathbf{x}_{3,1}^{o} = \begin{bmatrix} 1.09 \\ 6.16 \\ 12.57 \end{bmatrix} m$$

3. Calculate the misclosure vector: $\mathbf{w} = \mathbf{f}(\mathbf{x}^{o}) - \mathbf{l}^{obs}$

(Remember that our model $\mathbf{l} = \mathbf{f}(\mathbf{x})$ will not provide unique value for \mathbf{x} because \mathbf{l} contains random errors and this is the main reason for vector \mathbf{w} not being zero. We use an approximate value for \mathbf{x} which we call \mathbf{x}^0 and while a different \mathbf{x}^0 will lead to a different \mathbf{w} , we should end up with the same solution)

$$\begin{bmatrix} \mathbf{W}_{1} \\ \mathbf{W}_{2} \\ \mathbf{W}_{3} \\ \mathbf{W}_{4} \\ \mathbf{W}_{5} \\ \mathbf{W}_{6} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{h}_{c} & -\mathbf{h}_{a} \\ \mathbf{0} \\ -\mathbf{h}_{c} & +\mathbf{h}_{d}^{0} \\ \mathbf{0} \\ \mathbf{h}_{b} & -\mathbf{h}_{a} \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{h}_{b} & +\mathbf{h}_{d} \\ \mathbf{0} & \mathbf{0} \\ -\mathbf{h}_{b} & +\mathbf{h}_{c} \end{bmatrix} - \begin{bmatrix} \Delta \mathbf{h}_{1} \\ \Delta \mathbf{h}_{2} \\ \Delta \mathbf{h}_{3} \\ \Delta \mathbf{h}_{4} \\ \Delta \mathbf{h}_{5} \\ \Delta \mathbf{h}_{6} \end{bmatrix} = \begin{bmatrix} \mathbf{0}.0 \\ \mathbf{0}.0 \\ \mathbf{0}.0 \\ \mathbf{0}.0 \\ -\mathbf{0}.1 \\ \mathbf{0}.0 \end{bmatrix} \mathbf{m}$$

Note: equations 4, 1, and 2 will, definitely, have zero elements for the w vector

4. Write down the linearized equations: $\hat{\mathbf{v}}_{6,1} = \mathbf{A}_{6,3}\hat{\mathbf{\delta}}_{3,1} + \mathbf{w}_{6,1}$

$$\mathbf{A}_{6,3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
 unitless

Note: the units of \hat{v} , w, and $\hat{\delta}$ are all in metres.

5. Construct the C_l matrix – in a levelling network the variance of the observed elevation-differences are proportional to the length of the corresponding section and are usually uncorrelated.

$$\therefore \sigma_{\Delta h}^2 \propto L \quad \text{in our example } \sigma_{\Delta h_i}^2 = 1 \text{cm}^2 / \text{km}$$

$$\begin{split} \mathbf{C_{16,6}} &= diag \Big[\sigma_{\Delta h_1}^2 \quad \sigma_{\Delta h_2}^2 \quad \sigma_{\Delta h_3}^2 \quad \sigma_{\Delta h_4}^2 \quad \sigma_{\Delta h_5}^2 \quad \sigma_{\Delta h_6}^2 \Big] \\ \mathbf{C_1} &= diag \Big[4 \quad 2 \quad 2 \quad 4 \quad 2 \quad 4 \Big] cm^2 \end{split}$$

Scale C_1 to (metre)² to be consistent with v, w, and δ

$$C_1 = 10^{-4} \text{diag} [4 \ 2 \ 2 \ 4 \ 2 \ 4] \text{m}^2$$

And recalling that \mathbf{P} matrix $\propto \mathbf{C}_1^{-1}$, $\mathbf{P} = \sigma_0^2 \mathbf{C}_1^{-1}$

$$\mathbf{P} = \sigma_0^2 \cdot \underbrace{10^4 \cdot \text{diag} \left[\frac{1}{4} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \right] \frac{1}{m^2}}_{\mathbf{C}_1^{-1}}$$

If we assume $\sigma_0^2 = 10^{-4}$

$$\therefore \mathbf{P} = 10^{-4} \cdot 10^{-4} \text{diag} \left[\frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{4} \right] \frac{1}{m^2}$$

$$\therefore \mathbf{P} = \operatorname{diag} \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix} \frac{1}{m^2}$$

Note: we choose σ_0^2 to simplify the computations.

6. Solve for the estimated parameters

$$\hat{\delta}_{3,1} = -N_{3,3}^{-1}u_{3,1}$$

$$\mathbf{N}_{3,3} = \mathbf{A}_{3,6}^{\mathsf{T}} \mathbf{P}_{6,6} \mathbf{A}_{6,3} = \begin{bmatrix} 1.0 & -0.25 & -0.5 \\ -0.25 & 1.0 & -0.5 \\ -0.5 & 0.5 & 1.5 \end{bmatrix}$$
 (Note: N is always symmetric)

$$\mathbf{N}^{-1} = \begin{bmatrix} 1.6 & 0.8 & 0.8 \\ 0.8 & 1.6 & 0.8 \\ 0.8 & 0.8 & 1.2 \end{bmatrix} \qquad \mathbf{u}_{3,1} = \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{w} = \begin{bmatrix} 0.05 \\ 0.00 \\ -0.05 \end{bmatrix}$$

$$\hat{\boldsymbol{\delta}} = -\mathbf{N}^{-1}\mathbf{u} = \begin{bmatrix} -0.04 \\ 0.00 \\ 0.02 \end{bmatrix} \mathbf{m} \to \hat{\mathbf{x}} = \mathbf{x}^{0} + \hat{\boldsymbol{\delta}} = \begin{bmatrix} 1.09 \\ 6.16 \\ 12.57 \end{bmatrix} + \begin{bmatrix} -0.04 \\ 0.00 \\ 0.02 \end{bmatrix} = \begin{bmatrix} 1.05 \\ 6.16 \\ 12.59 \end{bmatrix} \mathbf{m}$$

Adjusted parameters:
$$\hat{\mathbf{x}} = \begin{bmatrix} 1.05 \\ 6.16 \\ 12.59 \end{bmatrix} m$$

7. Adjusted observations $\hat{l}=l+\hat{v}$

$$\hat{\mathbf{v}} = \mathbf{A}\hat{\boldsymbol{\delta}} + \mathbf{w} = \begin{bmatrix} 0.00 \\ 0.02 \\ 0.02 \\ -0.04 \\ -0.04 \\ 0.04 \end{bmatrix} m \quad \hat{\mathbf{l}} = \mathbf{l} + \hat{\mathbf{v}} = \begin{bmatrix} 6.16 \\ 12.57 \\ 6.41 \\ 1.09 \\ 11.58 \\ 5.07 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.02 \\ 0.02 \\ -0.04 \\ -0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 6.16 \\ 12.59 \\ 6.43 \\ 1.05 \\ 11.54 \\ 5.11 \end{bmatrix} m$$

Note: If we use any 3 equations of the 6 observation equations and we use $\hat{\mathbf{l}}$ instead of \mathbf{l} , we should estimate the same $\hat{\mathbf{x}}$.

8. Now, we estimate some parameters which express the accuracy of $\hat{\mathbf{x}}$ and $\hat{\mathbf{l}}$

$$\mathbf{C}_{\hat{\mathbf{x}}_{3,3}} = \hat{\sigma}_0^2 \mathbf{N}^{-1}$$

$$\hat{\sigma}_0^2 = \text{a-posteriori variance factor} = \frac{\hat{\mathbf{v}}_{1,6}^T \mathbf{P}_{6,6} \hat{\mathbf{v}}_{6,1}}{\underbrace{\mathbf{n} - \mathbf{u}}_{\text{degrees of freedom}}} = \frac{0.002}{6 - 3} = 6.7 \times 10^{-4}$$

Note: $v \sim metre$, $P \sim 1/metre^2$: $\hat{\sigma}_0^2 \sim unitless$

$$\mathbf{C}_{\hat{\mathbf{x}}} = \hat{\sigma}_0^2 \mathbf{N}^{-1} = 10^{-4} \begin{bmatrix} 10.67 & 5.33 & 5.33 \\ 5.33 & 10.67 & 5.33 \\ 5.33 & 5.33 & 8.00 \end{bmatrix} m^2$$

$$\sigma_{h_b} = \sqrt{10^{-4} \times 10.67} = 3.27 cm$$

$$\sigma_{h_c} = \sqrt{10^{-4} \times 10.67} = 3.27 cm$$

$$\sigma_{h_s} = \sqrt{10^{-4} \times 8} = 2.83 cm$$

Finally (if needed), the V-C matrix of $\hat{\mathbf{l}}$ is computed

$$\mathbf{C_{\hat{i}}} = \mathbf{AC_{\hat{x}}A^{T}} = 10^{-4} \begin{bmatrix} 10.67 & 5.33 & -5.33 & 5.33 & 0.00 & 5.33 \\ 8.00 & 2.67 & 5.33 & 2.67 & 0.00 \\ & 8.00 & 0.00 & 2.67 & -5.33 \\ & & 10.67 & -5.33 & -5.33 \\ & & & 8.00 & 5.33 \\ & & & & 10.67 \end{bmatrix}$$

Homework: Try to solve this problem with $\mathbf{x}^{\circ} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$, you should end up with the

same results. In general, for any linear model, you can always assume $\mathbf{x}^{0} = 0$.