Phone: (+65) 8625 1560 Email: m210053@e.ntu.edu.sg

Beverley YEO

linkedin.com/in/beverleyy beverleyy.github.io

Research engineer with both experimental and computational fluid dynamics (CFD) experience seeking to develop better, faster, and more accurate turbulence models and CFD schemes using generalizable data-driven approaches.

EDUCATION

Nanyang Technological University, Singapore (NTU)

Master of Engineering (Mechanical & Aerospace Engineering)

Thesis: Investigating Galilean invariance in CFD

Bachelor of Engineering (Aerospace Engineering), Honors with Distinction

Thesis: On the flow behavior of confined vortex-rings

Purdue University, West Lafayette, IN, USA - Study abroad

Expected Dec 2022

(Thesis under examination)

Aug 2017 - Jun 2021

Jan 2020 - May 2020

PUBLICATIONS & PRESENTATIONS

Journal Papers

- Yeo K.W.B., Chan W.L., Elhadidi B. (2022). *Challenging the Galilean Invariance assumption in CFD*. Submitted to *Journal of Fluid Mechanics* (Dec 2022), under review.
- Yeo K.W.B., Koh J.Y., Long J., New T.H. (2020). Flow transitions in collisions between vortex-rings and density interfaces. Journal of Visualization 23:783-791. doi:10.1007/s12650-020-00666-7

Conference Presentations

- Yeo K.W.B., Koh J.Y., Long J., New T.H. (2019). Flow transitions in collisions between vortex-rings and density interfaces. 15th Asian Symposium on Visualization, Busan, South Korea, 2019.
- Yeo K.W.B., Koh J.Y., Long J., New T.H. (2019). Flow transitions in collisions between vortex-rings and free surfaces. 17th European Turbulence Conference, Turin, Italy, 2019.

RESEARCH EXPERIENCE

Influence of High Transonic Mach Number in the Range 0.90 to 1.10 on Generalized Aerodynamic Forces for High Frequency Modes

Institute of High Performance Computing (IHPC), A*STAR

Aug 2022 - present

Supervisor: Dr. Daniel WISE

- Project funded by Bombardier Inc. under Singapore Aerospace Programme Cycle 16.
- · Compute aerodynamic coefficient matrices of CRM wing from 2.5D harmonic balance analysis using SU2.
- Evaluate and compare performance of doublet-lattice methods to conventional Navier-Stokes solvers in predicting aerodynamic forces at high frequency modes in transonic flow regimes using NASTRAN and in-house DLM codes.

Investigating Galilean invariance assumptions applied to CFD

May 2021 - present

School of Mechanical & Aerospace Engineering, NTU

Supervisors: Dr. Wai Lee CHAN, Dr. Basman ELHADIDI

- Project funded by Ministry of Education Academic Research Fund Tier 1 Grant.
- Computed wakes and forces from flow over cylinder in different reference frames with LES and DNS in OpenFOAM.
- Developed new adaptive meshing code that enables reuse of background mesh cells in simulation with overset grid.
- · Co-supervised an undergraduate final-year project student and provided technical assistance with ANSYS Fluent.
- Initiated a collaboration with IHPC, A*STAR to process and perform modal decomposition on turbulent LES results.

On the flow behavior of confined vortex-rings

School of Mechanical & Aerospace Engineering, NTU

Dec 2020 - Jun 2021 Supervisor: Dr. Daniel NEW

• Computed flow properties of vortex-rings in confined cylindrical geometries using Unsteady RANS in ANSYS Fluent to investigate wall shear stress and pressure distributions induced by vortex-rings on walls of confinement geometry.

- Experimentally validated results of CFD simulations using colored dye flow visualization.
- Assisted with supervision of three undergraduate students by providing basic CFD training and data analysis.

Fusing engineering knowledge with communication skills

College of Engineering, NTU

May 2020 - Jun 2021

Supervisor: Dr. Wai Lee CHAN

- Project funded by Ministry of Education Tertiary Research Fund Grant.
- Analyzed statistics from participants' pre- and post-treatment test scores using ANOVA and MANOVA in MATLAB.
- Analyzed and summarized student participants' qualitative learning outcomes and feedback.
- Built webapp using NodeJS and SQL to automate participant attendance checking.

BEVERLEY YEO CURRICULUM VITAE

System Identification of VTOL UAV

May 2019 - May 2021

School of Mechanical & Aerospace Engineering, NTU

Supervisor: Dr. Basman ELHADIDI

 Develop least-square regression models combined with usage of MATLAB system identification toolbox to determine stability and aerodynamic coefficients from dynamic pitch response testing in wind tunnel

Investigating flow transitions in vortex-ring collisions

Dec 2017 - Aug 2020

School of Mechanical & Aerospace Engineering, NTU

Supervisor: Dr. Daniel NEW

- Performed flow visualization of vortex-ring collisions with density interfaces and free surfaces using planar laser-induced fluorescence (PLIF) and time-resolved particle-image velocimetry (TR-PIV) techniques.
- · Processed TR-PIV data in MATLAB to obtain velocity and vorticity vector fields.

Simulations of propeller aeroacoustics (internship)

Jun 2020 - Aug 2020

Temasek Laboratories @ National University of Singapore

- Simulated and analyzed aerodynamic properties and aeroacoustics of unsteady flows using ANSYS Fluent.
- · Generated meshes of propeller models from CAD files using Pointwise.

HONORS & AWARDS

2022 A*STAR National Science Scholarship (PhD) – Full funding for doctoral studies under government sponsorship

2021 T.H. New Flow Visualization Award – Best flow visualization done by final-year project students

2020 AY2019/20 Dean's List, School of Mechanical & Aerospace Engineering, NTU

Spring 2020 Dean's List, Purdue University Aeronautics & Astronautics

CNYSP Research Award (Gold)

2019 Best Presentation Student Award, 15th Asian Symposium on Visualization

2017 Nanyang Scholarship (CN Yang Scholars Programme)

NTU College of Engineering (CoE) Dean's Award – S\$5,000

MAE Enrichment Grant - S\$7,000

ACADEMIC SERVICE

Peer Instructor, CN Yang Scholars Club

Sep 2019 - Aug 2020

 Tutored junior CN Yang Scholars majoring in aerospace engineering by demonstrating solutions to example questions and preparing material to supplement lecture notes for aircraft propulsion and aerodynamics.

OTHER PROJECTS

Weird Take-off and Landing UAV

Jan 2021 - May 2021

Class project for MA4878 Unmanned Aerial Vehicles

- Led a team of 6 in constructing a unique fixed-wing quadcopter that trims at negative angle of attack.
- Performed dynamic pitch response tests in open wind tunnel for different motor thrust inputs.
- Performed numerical analysis in XFLR5 to obtain aerodynamic properties of aircraft.

Project Escalator

Jan 2020 - May 2020

Class project for AAE450 Spacecraft Design

 Worked with a team of 60 to numerically investigate propellantless space propulsion technologies and cycler vehicle trajectories to and from Mars using MATLAB, Simulink and GMAT.

Mini Delivery Quadcopter

May 2018 - Aug 2018

Class project for CY2003 Making & Tinkering

- · Led a team of 4 in building and modifying a racing quadcopter for autonomous package delivery.
- Optimized part selection for minimum weight and maximum range in MATLAB.
- Designed and 3D-printed package container and release mechanism using SolidWorks.

SKILLS

Programming MATLAB, C, C++, Python, Javascript, HTML, CSS, NodeJS, SQL, Bash scripting, LTEX

Software SolidWorks, ANSYS Fluent, OpenFOAM, SU2, TECPLOT, Paraview, Pointwise, Photoshop, Illustrator

Technical Arduino, 3D printing, soldering, wind & water tunnel testing

Languages English (native), Mandarin (fluent), Korean (basic)

References available on request.