Dimensionality Reduction

December 7, 2012

S & S

Principal Component Analysis (PCA) statistical problem formulation

- $\sigma_{2,2}$ Covariation matrix for (a) (
- $\sigma_{1,2}$ $\sigma_{2,2}$ ightharpoonup Covariation matrix for (c) $\int_{-\infty}^{\sigma_{1,1}}$ $\langle \sigma_{2,1}$

2000

gliji

Let each x_i has zero mean $\sigma_{i,j} = \frac{1}{n-1} x_i^T x_j$

$$\sigma_{i,j} = \frac{1}{n-1} x_i^T x_j$$

- ightharpoonup j=j variance
- ightharpoonup i <> j covariance
- if $\sigma_{i,j} = 0$ then x_i and x_j tottaly uncorrelated

 $S_X = \frac{1}{n-1}X^TX$ - covariance matrix

Change of Basis

Let P be the $n \times n$ matrix. And each row is basis vector of new subspace

where each $||p_i||=1$

- **Each** product $p_i \cdot x_j$ is the length of progection of each x_j onto vector p;
- ▶ In other words each product $p_i \cdot x_j$ is the coordinate on axis p_i

Desired Covariance Properties

► We would like to find matrix P such that the covariances between transformed feature vectors to be zero.

$$S_{y} = \frac{1}{n-1} Y^{T} Y$$
, where $Y = PX$

- ► In this case we eliminate all redundancy.
- ► The rows of matrix P are the principal components

Eigenvectors of Covariance

► It could be shown that if rows of matrix P will be chosen as eigenvectors of XX^T

$$S_Y = \frac{1}{n-1} YY^T = \frac{1}{n-1} (PX)(PX)^T = \frac{1}{n-1} D$$

► D - some diagonal matrix

Egenvectors and SVD

SVD - of $m \times n$ matrix M is a factorization of the form

$$M = U\Sigma V^T$$

- U is an $m \times m$ real or complex unitary matrix
- ightharpoonup is an $m \times n$ diagonal matrix with nonnegative real numbers on the diagonal
- V^T is an $n \times n$ real or complex unitary matrix.
- ► It could be easily shown that
- ightharpoonup columns of U is the eigenvectors of MM^T
- squares of Σ diagonal elements is the eigenvalues of $MM^{\,T}$

Usage of SVD for PCA

We want to map vector $x^{(i)} \in \mathbb{R}^n o y^{(i)} \in \mathbb{R}^k$

- Extract mean from each column of X
- ightharpoonup Estimate covariance matrix S_X
- Using SVD factorize XX^T columns of U is principal components of X

 \triangleright Convert each $x^{(i)}$ element to $y^{(i)}$ by

$$U'^T \cdot \chi^{(i)} = y^{(i)}$$