基于人工智能技术在颞叶癫痫患者¹⁸F-FDG PET/MRI多模态影像研究

汇报人:吴环华 导师:徐浩 教授*

暨南大学第一临床医学院

2023-02-14

第一部分 绪论

Background

图 1: Epilepsy Epidemiology

Aims

图 2: Black-box of AI

图 3: Learning Performance Versus Explainability Trade-Off of Al

Scheme

图 4: Flowchart of TLE Postsurgical IML

第二部分 颞叶癫痫患者术前定位研究

Combined of PET Radiomics and Clinical Features

图 5: PET Radiomics Score and Clinical-PET Features

Exploratory Data Analysis

图 6: Heatmap of Clinical-PET Features

Benchmark

Table 1: Performance Comparison Eleven ML Algorithms

Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	APC
Ada Boost Classifier	0.883	0.789	0.4	0.433	0.393	0.345	0.357	0.59
Extreme Gradient Boosting	0.884	0.777	0.3	0.4	0.333	0.287	0.295	0.607
Random Forest Classifier	0.884	0.763	0.2	0.35	0.25	0.217	0.23	0.612
Gradient Boosting Classifier	0.89	0.762	0.35	0.483	0.39	0.346	0.36	0.591
Light Gradient Boosting Machine	0.859	0.749	0.25	0.325	0.267	0.211	0.221	0.512
Logistic Regression	0.878	0.669	0.05	0.1	0.067	0.055	0.059	0.448
Extra Trees Classifier	0.884	0.662	0.1	0.2	0.133	0.118	0.127	0.443
K Neighbors Classifier	0.865	0.646	0.2	0.2	0.183	0.14	0.149	0.283
Linear Discriminant Analysis	0.884	0.642	0.1	0.2	0.133	0.119	0.128	0.418
Naive Bayes	0.251	0.586	0.9	0.129	0.226	0.014	0.072	0.332
Decision Tree Classifier	0.798	0.584	0.3	0.264	0.259	0.158	0.167	0.218
Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0.200

AdaBoost Algorithm

图 7: Illustration of AdaBoost Algorithm

AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=0.2, n_estimators=230, random_state=123)

Tuned AdaBoost

Table 2: K-folds Cross-validation of the Selected AdaBoost

Tuned_Ada	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	APC
1	0.882	0.733	0.000	0.000	0.000	0.000	0.000	0.361
2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	0.824	0.550	0.000	0.000	0.000	-0.085	-0.091	0.183
4	0.875	0.893	0.000	0.000	0.000	0.000	0.000	0.500
5	0.938	0.929	0.500	1.000	0.667	0.636	0.683	0.750
6	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
7	0.875	0.554	0.000	0.000	0.000	0.000	0.000	0.321
8	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
9	0.938	1.000	0.500	1.000	0.667	0.636	0.683	1.000
10	0.938	0.679	0.500	1.000	0.667	0.636	0.683	0.591
Mean	0.914	0.827	0.350	0.600	0.433	0.410	0.432	0.637
Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0.200

第三部分 颞叶癫痫患者术后复发预测研究

Permutation Importance

```
Weight Feature
0.0394 ± 0.0329 Al radscore
0.0197 ± 0.0138 Lat radscore
0.0085 ± 0.0138 Durmon
0.0085 ± 0.0138 SGS
0.0028 ± 0.0113 Onsetmon
     0 ± 0.0000 Freq
     0 \pm 0.0000 side
     0 ± 0.0000 Sex
     0 ± 0.0000 MRI
     0 ± 0.0000 history_of_previous_surgery
     0 ± 0.0000 early_brain_injury
     0 ± 0.0000 familial epilepsy
     0 ± 0.0000 brain hypoxia
     0 ± 0.0000 Central Nervous System Infections
     0 ± 0.0000 traumatic brain injury
     0 ± 0.0000 SE
-0.0028 ± 0.0113 Surgmon
```

图 8: Permutation Importance of AdaBoost

第四部分 总结与展望

Key Points

 Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;
- IML technique can further deepen the understanding of the principle of ML models and the decision-making process for professional and intuitive interpretation

Limitations

► More data, especially external validation cohort;

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;
- Other subtypes of drug-resistant epilepsy

For more theoretical approaches to machine learning model explanation, see Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, refer to (Beghi et al. 2019), (Rajpurkar 2021), (Marc Becker 2022), (Molnar 2022).

Email: wane199@outlook.com

THANKS!

Beghi, Ettore, Giorgia Giussani, Emma Nichols, Foad Abd-Allah, Jemal Abdela, Ahmed Abdelalim, Haftom Niguse Abraha, et al. 2019. "Global, Regional, and National Burden of Epilepsy, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016." *The Lancet Neurology* 18 (4): 357–75.

Marc Becker, et al. 2022. Mlr3book. https://mlr3book.mlr-org.com. Molnar, Christoph. 2022. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2nd ed.

https://christophm.github.io/interpretable-ml-book

Rajpurkar, Pranav Samír. 2021. Deep Learning for Medical Image Interpretation. Stanford University.

