演習ミクロ経済学 Ⅰ 第2回

2017年4月19日

問題の解答について

問題の解答は、http://k-kumashiro.github.io/website の、「講義」→「ミクロ経済学 I 演習」へ 辿ったページにアップします.

定義の確認

定義 1 (連続な選好). \mathbb{R}^n_+ 上の選好 \succsim が連続である.

$\mathbf{x}^0 \in \mathbb{R}^n_+$ に対し、集合 $\{\mathbf{x} \in \mathbb{R}^n_+ \mid \mathbf{x} \succsim \mathbf{x}^0\}$ と $\{\mathbf{x} \in \mathbb{R}^n_+ \mid \mathbf{x} \precsim \mathbf{x}^0\}$ がどちらも
である.
定義 2 (連続関数). 関数 $f: \mathbb{R} \to \mathbb{R}$ が点 x^0 において連続である.
\iff 任意の $\varepsilon>0$ に対してある $\delta>0$ が存在して, $d(x,x^0)<\delta$ である任意の x に対して $d(f(x),f(x^0))<\varepsilon$ が成り立つ.
$ullet$ 定義域の全ての x^0 に対してこれが成り立つとき、単に f は連続であるという.
定義 3 (局所非飽和). \mathbb{R}^n_+ 上の選好 \succsim が局所非飽和を満たす. \Longleftrightarrow $\mathbf{x}^0 \in \mathbb{R}^n_+$ と $\varepsilon > 0$ に対し、ある $\mathbf{x} \in B_{\varepsilon}(\mathbf{x}^0)$ が存在し、 $\mathbf{x} \succ \mathbf{x}^0$ を満たす.
定義 4 (強単調性). \mathbb{R}^n_+ 上の選好 \succsim が強単調性を満たす. \iff \mathbf{x}^0 , $\mathbf{x}^1 \in \mathbb{R}^n_+$ について, $\mathbf{x}^1 > \mathbf{x}^0$ のとき が成り立ち, $\mathbf{x}^1 \gg \mathbf{x}^0$ のとき が成り立つ.
定義 5 (凸性). \mathbb{R}^n_+ 上の選好 \succsim が凸性を満たす. $\Longleftrightarrow \mathbf{x}^1 \succsim \mathbf{x}^0$ を満たす $\boxed{\qquad} \mathbf{x}^0, \mathbf{x}^1 \in \mathbb{R}^n_+$ と $\boxed{\qquad} t \in [0,1]$ について, $t\mathbf{x}^0 + (1-t)\mathbf{x}^1 \succsim \mathbf{x}^0$ が成り立つ.
定義 6 (強凸性). \mathbb{R}^n_+ 上の選好 \succsim が強凸性を満たす. $\iff \mathbf{x}^1 \succsim \mathbf{x}^0$ と $\mathbf{x}^1 \neq \mathbf{x}^0$ を満たす $\boxed{\qquad} \mathbf{x}^0, \mathbf{x}^1 \in \mathbb{R}^n_+$ と $\boxed{\qquad} t \in (0,1)$ について, $t\mathbf{x}^0 + (1-t)\mathbf{x}^1 \succ \mathbf{x}^0$ が成り立つ.

定義 7 (凹関数). $f: D \to \mathbb{R}$ が凹関数である.

 \iff 任意の \mathbf{x}^1 , \mathbf{x}^2 と任意の $t \in [0,1]$ について,

定義 8 (狭義凹関数). $f: D \to \mathbb{R}$ が狭義凹関数である.

 \iff $\mathbf{x}^1 \neq \mathbf{x}^2$ を満たす任意の \mathbf{x}^1 , \mathbf{x}^2 と任意の $t \in (0,1)$ について,

定義 9 (準凹関数). $f: D \to \mathbb{R}$ が準凹関数である.

 \iff 任意の \mathbf{x}^1 , \mathbf{x}^2 と任意の $t \in [0,1]$ について,

定義 10 (狭義準凹関数). $f: D \to \mathbb{R}$ が狭義準凹関数である.

 \iff $\mathbf{x}^1 \neq \mathbf{x}^2$ を満たす任意の \mathbf{x}^1 , \mathbf{x}^2 と任意の $t \in (0,1)$ について,

命題 1 (準凹関数の性質). 関数 $f: \mathbb{R}^n_+ \to \mathbb{R}$ が準凹関数である \iff 任意の $y \in \mathbb{R}$ について, $S(y) \equiv \{\mathbf{x} \in \mathbb{R}^n_+ \mid f(\mathbf{x}) \geqslant y\}$ は凸集合である.

問題

問題 1. 消費集合を \mathbb{R}_+ とする. 次の効用関数を考える.

$$u(x) = \begin{cases} x & \text{if } x \leqslant 1\\ x+1 & \text{if } x > 1 \end{cases}$$

- (a) この効用関数が連続関数かどうか答え、それを示しなさい.
- (b) この効用関数が表す選好関係が連続性を満たすかどうか答え、それを示しなさい.

問題 2. 消費集合を \mathbb{R}^2_+ とする. 次のそれぞれの選好 \succsim が強単調性,強凸性を満たすかどうか答え,それを示しなさい.

- (1) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 x_2^1 \geqslant x_1^2 x_2^2$
- (2) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 x_2^1 \geqslant x_1^2 x_2^2$
- (3) $\mathbf{x}^1 \gtrsim \mathbf{x}^2 \iff \min\{x_1^1, x_2^1\} \geqslant \min\{x_1^2, x_2^2\}$

問題 3. 消費集合を \mathbb{R}_+ とする.以下の効用関数が表す選好が局所非飽和を満たすかどうか答え,それを示しなさい.

$$u(x) = -(x-5)^2$$

問題 4. 以下の関数 $f\colon \mathbb{R}^2_+ \to \mathbb{R}$ が準凹関数であることを確かめなさい.

$$f(\mathbf{x}) = \min\{x_1, x_2\}$$

問題 5. 命題1を証明しなさい.