Учреждение образования

"Белорусский государственный университет информатики и радиоэлектроники"

Кафедра интеллектуальных информационных технологий

Лабораторная работа №1

"Сжатие графической информации линейной рециркуляционной сетью"

Выполнил студент группы 821701: Залесский А.А.

Проверил: Ивашенко В.П.

МИНСК 2020

Цель:

Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации.

Постановка задачи:

Реализовать модель линейной рециркуляционной сети с адаптивным шагом обучения (6 вариант).

Входными данными являются: растровое изображение размера WxH, размеры блоков (прямоугольников) m - ширина и n - высота, p - количество нейронов на втором слое, е - максимально допустимая ошибка. Результатом является сжатое линейной рециркуляционной сетью изображение.

Таблицы и графики:

1. Зависимость числа итераций обучения от коэффициента сжатия Z:

Опыты проводились с изменением количества нейронов на втором слое - р для изменения коэффициента сжатия Z.

Были зафиксированы следующие параметры:

- Исходное изображение размера 300х300
- Размеры блоков 8х8
- Максимально допустимая ошибка е = 2000

Результат:

Коэффициент сжатия Z	Число итераций
8,06	63
6,51	34
5,29	20
4,23	18
3,02	17
2,64	16

Таблица 1: зависимость числа итераций обучения от коэффициента сжатия

Зависимость числа итераций от коэффициента сжатия Z

График 1: зависимость числа итераций обучения от коэффициента сжатия Z

2. Зависимость числа итераций обучения для разных изображений:

Опыты проводились с изменением исходного изображения.

Были зафиксированы следующие параметры:

- Размер изображения 300х300
- Размеры блоков 8х8
- Количество нейронов на втором слое р = 32
- Максимально допустимая ошибка е = 3000
- Коэффициент сжатия Z = 5,29

Результат:

Изображение 300х300	Число итераций обучения
---------------------	-------------------------

Таблица 2: Зависимость числа итераций обучения для разных изображений

3. Зависимость числа итераций обучения от максимально допустимой ошибки е:

Опыты проводились с изменением параметра е.

Были зафиксированы следующие параметры:

- Изображение размера 300х300
- Размеры блоков 8х8
- Количество нейронов на втором слое р = 32

Результат:

Максимально допустимая ошибка е	Число итераций обучения
1900	23
2000	21
2500	13
3500	8
5000	5
6000	4

Таблица 3: Зависимость числа итераций обучения от максимально допустимой ошибки е

Зависимость числа итераций от максимально допустимой ошибки

e

График 2: Зависимость числа итераций обучения от максимально допустимой ошибки е

Вывод:

Результатом данной лабораторной работы является модель линейной рециркуляционной сети. В процессе выполнения лабораторной работы был проведен ряд опытов, в результате которых были выявлены различные зависимости и построены соответствующие графики этих зависимостей.

Первая зависимость - зависимость числа итераций обучения от коэффициента сжатия Z. В результате опытов было установлено следующее: с увеличением коэффициента сжатия Z увеличивается число итераций обучения. Это также видно из графика 1.

Вторая зависимость - зависимость числа итераций обучения для разных изображений. В результате опытов было установлено, что число итераций также зависит от изображения. Эта зависимость приведена в таблице 2. Можно заметить, что число итераций для черно-белого изображения меньше, чем у остальных.

Третья зависимость - зависимость числа итераций обучения от максимально допустимой ошибки е. В результате опытов было установлено, что с увеличением максимально допустимой ошибки число итераций обучения уменьшается. Это видно из графика 2 и таблицы 3. Также было установлено, что для разных размеров изображений с фиксированными остальными параметрами коэффициент сжатия Z также различался.