LOAN DOCUMENT

DTIC ACCESSION NUMBER	PHOTOGRAPH THE SHEE BY OVER TIME FIELD IN TO GET VE DOCUMENT EDENTIFICATION 18 MAR 9.3 DISTRIBUTION STATE	INVENTORY EMENTA
	Approved for Public F Distribution Unlim	Release No. of the last of t
	DISTRIBUTION ST	ATEMENT
NTIS GRAM DITC TRAC UNANNOUNCER DUSTRIBUTION/ BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP		DATE ACCESSIONED DATE ACCESSIONED A R R
		DATE RETURNED
		DATE RETURNED
	215 089	
DATE REC	EIVED IN DTIC	REGISTERED OR CERTIFIED NUMBER
	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC	
DTIC ROM 70A	DOCUMENT PROCESSING SHEET	HEWOOD BUTTONS MAY BE USED UNTIL.

DTIC QUALITY INCOMES 4

INTERIM REPORT March 18, 1993

FOR

BIOVENTING FIELD INITIATIVE

AT

ROBINS AIR FORCE BASE, GEORGIA

to

Captain Catherine M. Vogel
Department of the Air Force
AL/EQ
139 Barnes Drive
Tyndall AFB, Florida 32403-6001

by

BATTELLE Columbus Operations 505 King Avenue Columbus, Ohio 43201-2693

AQM01-03-0534

	DEFENSE TECHNICAL INFORMATION CENTER REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS					
Tit	AFCEE Collection					
		449 s. e e e e e e e e e e e e e e e e e e				
1,	Report Availability (Please check one box)	2s. Number of	2b. Forwarding Date			
X	This report is available. Complete sections 2a - 2f.	Copies Forwarded				
	This report is not available. Complete section 3.	1 each	July/2000			
	. Distribution Statement (Please check ONE DOX)	,				
Dal. des	Directive 5230.24, "Distribution Statements on Technical Documents cribed briefly below. Technical documents MUST be assigned a distrib	," 18 Mar 87, contains seve bution statement.	n distribution statements, as			
M	DISTRIBUTION STATEMENT A: Approved for public rel	ease. Distribution is a	ınlimited.			
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S. Government	Agencies only.			
	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	to U.S. Government	Agencies and their			
	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.	to U.S. Department of	f Defense (DoD) and U.S			
	DISTRIBUTION STATEMENT E: Distribution authorized components only.	to U.S. Department of	i Defansa (DoD)			
	DISTRIBUTION STATEMENT F: Further dissemination indicated below or by higher authority.	only as diracted by the	eadle ded gaillo daca e			
	DISTRIBUTION STATEMENT X: Distribution authorized individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technical	led technical data in a	ccordance with DoD			
2d.	Reason For the Above Distribution Statement (in accord	dance with DoD Directive 5	5230.24)			
2e.	Controlling Office	2f. Date of Distr Determination	ibution Statement			
	HQ AFCEE		2000			
3 . '	This report is NOT forwarded for the following reasons	. (Please check appropri	atc box)			
	It was previously forwarded to DTIC on (di	ete) and the AD numbe	ris			
	It will be published at a later date. Enter approximate dat	e if known.	a nama man ang ang ang ang ang ang ang ang ang a			
	In accordance with the provisions of DoD Directive 3200, because:	12, the requested doc	ument is not supplied			
	A STATE OF THE STA		71 - 147174537 14414 14414 14544 14544 14544 14544 14544 14544 14544 14544 14544 14544 14544 14544 14544 14544			
	INDEX.DHILLERING	**************************************	ting and the control of the graph of the graph and the graph control of the contr			
Pin / ^	t or Type Name	911.9				
ele 21	1410 - 141 (m) - 141 - 1	AQ Dismber 1	101-03-0534			

7 74 8.02

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	ii
1.0 INTRODUCTION 1.1 Objectives	2
2.0 SITE 272	. 6
3.1 Chronology of Events and Site Activities 3.1.1 Groundwater Measurements 3.1.2 Soil Gas Survey 3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 3.1.4 Soil and Soil Gas Sampling and Analyses 3.1.5 Soil Gas Permeability and Radius of Influence 3.1.6 In Situ Respiration Test 3.2 Results and Discussion	
3.2.1 Soil and Soil Gas Analyses	15 15 19 19
4.1 Chronology of Events and Site Activities 4.1.1 Groundwater Measurements 4.1.2 Soil Gas Survey 4.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 4.1.4 Soil and Soil Gas Sampling and Analyses 4.1.5 Soil Gas Permeability and Radius of Influence 4.1.6 In Situ Respiration Test 4.2 Results and Discussion 4.2.1 Soil and Soil Gas Analyses 4.2.2 Soil Gas Permeability and Radius of Influence 4.2.3 In Situ Respiration Test 4.2.4 Bioventing Demonstration	22 22 25 26 26 26 26 28 28
5.0 BACKGROUND AREA	32
5.0 FUTURE WORK	33

7.0 REFERENCE	33
APPENDIX A: TEST PLAN FOR ROBINS AFB, GEORGIA	A-1
APPENDIX B: ANALYTICAL REPORT FOR SITE UST 173 AND SITE SS-10	B-1
APPENDIX C: SITE UST 173 SOIL GAS PERMEABILITY DATA	C-1
APPENDIX D: SITE UST 173 IN SITU RESPIRATION TEST DATA)-1
APPENDIX E: SITE SS-10 SOIL GAS PERMEABILITY DATA	E-1
APPENDIX F: SITE SS-10 IN SITU RESPIRATION TEST DATA	F-1
LIST OF TABLES	
Table 1. Initial Soil Gas Composition at Site 272 Table 2. Initial Soil Gas Composition at Site UST 173 Table 3. Results From Soil and Soil Gas Analyses for BTEX and TPH at Site UST 173 Table 4. Results From Soil Chemistry Analyses at Site UST 173 Table 5. Results of Hyperventilate™ Soil Gas Permeability Analysis at Site UST 173 Table 6. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Site UST 173 Table 7. Initial Soil Gas Composition at Site SS-10 Table 8. Results From Soil and Soil Gas Analyses for BTEX and TPH at Site SS-10 Table 9. Results From Soil Chemistry Analyses at Site SS-10 Table 10. Results of Hyperventilate™ Soil Gas Permeability Analysis at Site SS-10 Table 11. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Site SS-10	9 10 16 17 17 21 23 27 29 29
LIST OF FIGURES	
Figure 1. Schematic Diagram of Robins AFB	3 4
Figure 4. Schematic Diagram of Site SS-10 at Robins AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)	5 7
Figure 5. Cross Section of Vent Well and Monitoring Points at Site UST 173 Showing Site Lithology and Construction Detail (not to scale)	12 18
Figure 7. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Site UST 173 Monitoring Point R1-MPA-14.25'	20
Figure 8. Cross Section of Vent Well and Monitoring Points at Site SS-10 Showing Site Lithology and Construction Detail (not to scale)	24

Figure 9.	Calculation of Radius of Influence at Site SS-10	30
Figure 10.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
	Respiration Test at Site SS-10 Monitoring Point R2-MPC-6.0'	31
Figure 11.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
	Respiration Test at the Background Area	34

INTERIM REPORT

FOR

BIOVENTING FIELD INITIATIVE

AT

ROBINS AIR FORCE BASE, GEORGIA

1.0 INTRODUCTION

This report describes the activities conducted at three sites at Robins Air Force Base (AFB), Georgia, as part of the Bioventing Field Initiative for the U.S. Air Force Center for Environmental Excellence (AFCEE) and the for Environmental Quality Directorate of the Air Force Armstrong Laboratory. This report summarizes the results from the first phase of the study, which includes a soil gas survey, an air permeability test, an in situ respiration test, and installation of a bioventing system. The specific objectives of this task are described in the following section. The test sites at the base are discussed individually, followed by a description of site activities at the background area.

1.1 Objectives

The purpose of these field test methods is to measure the soil gas permeability and microbial activity at three contaminated sites and to evaluate the potential application of the bioventing technology to remediate the sites. The specific test objectives are stated below.

- A small-scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system at each site. Soil gas from the candidate sites should exhibit relatively high total petroleum hydrocarbon (TPH) concentrations, relatively low oxygen concentrations, and relatively high carbon dioxide concentrations. An uncontaminated background location will also be identified.
- The soil gas permeability of the soil and the air vent (well) radius of influence will be determined for each site. This will require air to be withdrawn or injected for approximately 8 hours at vent wells located in contaminated soils. Pressure changes will be monitored in an array of monitoring points.

- Immediately following the soil gas permeability test, an in situ respiration test
 will be conducted at each site. Air will be injected into selected monitoring
 points to aerate the soils. The in situ oxygen utilization and carbon dioxide
 production rates will be measured.
- Using the data from the soil gas permeability and in situ respiration tests, an
 air injection/withdrawal rate will be determined for use in the bioventing test
 at each site. A blower will be selected, installed, and operated for 6 to 12
 months, and periodic measurements of the soil gas composition will be made
 to evaluate the long-term effectiveness of bioventing.

1.2 Site Description

Robins AFB is located approximately 10 miles south of Macon, Georgia, adjacent to the town of Warner Robins, Georgia. A schematic diagram of the base is shown in Figure 1. The dashed line on the map represents the direction from the main gate to each test site where Site R1 is Site UST 173, Site R2 is Site SS-10, and Site R3 is Site 272. Summaries of the descriptions of each site are presented in the following sections. A detailed description is provided in the Test Plan in Appendix A.

1.2.1 Site 272

A schematic diagram of Site 272 is shown in Figure 2. Site 272 consisted of a 250-gallon diesel tank abandoned in place approximately 10 years ago. The tank was removed in October 1990. Soil sampling performed after tank removal indicated TPH concentrations in excess of 2,000 ppm in some locations. Soil boring logs were not available for the site, but based on observations during tank removal, the site geology is probably similar to that of Site UST 173 (Section 1.2.2). No monitoring wells were present at this site; however, based upon general knowledge of groundwater it was estimated that the depth to water was approximately 30 feet.

1.2.2 Site UST 173

A schematic diagram of Site UST 173 is shown in Figure 3. Site UST 173 had a 1,500-gallon diesel tank next to Building 173 on the base that was abandoned in place approximately 20 years ago. The tank was removed in October 1989. Site investigation activities conducted subsequent

Figure 1. Schematic Diagram of Robins AFB

Figure 2. Schematic Diagram of Site 272 at Robins AFB (GS - Soil Gas Survey Point)

Figure 3. Schematic Diagram of Site UST 173 at Robins AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

to the tank removal indicated residual soil contamination. The site was re-excavated, and approximately 200 cubic yards of soil were removed for disposal. Soil contamination remained on the southern boundaries of the excavation, but could not be removed without undermining the foundation of a gazebo on site. Soil samples taken from the south wall of the excavation pit exhibited TPH concentrations as high as 22,600 ppm. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) also were detected. Soil borings taken at the site during a previous site investigation show dense, clayey sand to a depth of approximately 5 feet; coarse sand and gravel to approximately 25 feet; and stiff, tannish white clay below 25 feet. All borings were terminated in the stiff clay, and no groundwater was encountered. No monitoring wells were present at this site; however, based upon general knowledge of groundwater it was estimated that the depth to water was approximately 30 feet.

1.2.3 Site SS-10

A schematic diagram of Site SS-10 is shown in Figure 4. Site SS-10 is located adjacent to a JP-4 jet fuel storage tank farm. Monitoring wells were present on this site, and depth to water ranged from 5 to 19 feet. Free product has been encountered floating on the shallow groundwater, and elevated petroleum hydrocarbon concentrations have been detected in site soils. Concentrations of TPH in soil samples collected during a previous site investigation ranged from 811 up to 3,343 mg/kg, with an average concentration of 2,118 mg/kg.

2.0 SITE 272

A site deemed suitable for the bioventing demonstration should have soil gas characteristics of low oxygen, high carbon dioxide, and high TPH. This composition of soil gas would indicate that oxygen-limiting conditions for microbial activity are present and that the introduction of air may enhance biodegradation of TPH.

A limited soil gas survey was conducted on August 24, 1992 to locate a suitable test area at Site 272. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH.

Figure 4. Schematic Diagram of Site SS-10 at Robins AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

Measurements of oxygen and carbon dioxide in the soil gas were made with a GasTech Model 32530X with oxygen and carbon dioxide ranges of 0 to 25%. The analyzer was calibrated daily against atmospheric oxygen, atmospheric carbon dioxide, a 10% oxygen calibration standard, and a 5% carbon dioxide calibration standard. TPH was measured with a GasTech Trace Techtor with TPH ranges from 0 to 100, 0 to 1,000, and 0 to 10,000 ppm. The GasTech Trace Techtor was calibrated daily against a 4,200-ppm hexane standard.

The soil gas probes were driven to depths ranging from 2.5 to 10.0 feet at several locations at Site 272. Table 1 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Site 272. Oxygen concentrations ranged from 5.0 to 21.0%, with the majority of oxygen concentrations above 16%. TPH concentrations were low, with the highest measurements being 200 ppm. These results indicate that there is little contamination at this site, and it is unlikely that installation of a bioventing system would be practical.

3.0 SITE UST 173

3.1 Chronology of Events and Site Activities

3.1.1 Groundwater Measurements

No monitoring wells were present at this site; however, based upon general knowledge of groundwater it was estimated that the depth to water was approximately 30 feet. Soil borings were advanced to approximately 25 feet during this investigation and no groundwater was encountered.

3.1.2 Soil Gas Survey

A limited soil gas survey was conducted on August 25, 1992 to locate a suitable test area at Site UST 173. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas samples were analyzed as described in Section 2.0.

The soil gas probes were driven to depths ranging from 2.5 to 10.0 feet at several locations at Site UST 173. Table 2 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Site UST 173. Oxygen concentrations varied from 0 to 19.2%, whereas TPH

Table 1. Initial Soil Gas Composition at Site 272

Soil Gas Survey Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppm)
GS-1	5	14.0	5.5	155
	7.5	16.5	5.5	200
	10	16.5	6.0	200
GS-2	5	14.8	6.0	180
	7.5	21.0¹	0.5	32
	10	21.01	0.5	45
GS-3	5	16.0	4.2	135
	7.5	18.0	4.0	120
	10	17.0	5.5	150
GS-4	2.5	17.3¹	3.8	125
	5	19.0	2.5	110
	7.5	19.5¹	2.0	100
	10	20.01	1.0	120
GS-5	2.5	19.0¹	2.5	120
	5	15.0	5.0	130
	7.5	17.0	5.5	140
	10	17.0	5.5	130
GS-6	2.5	15.0	6.0	140
	5	16.5¹	6.0	150
	7.5	16.0	6.9	160
GS-7	2.5	12.0	7.5	320
	5	18.0¹	4.0	130
	7.5	19.9¹	1.9	84
GS-8	2.5	5.0	4.9	120
	5	20.01	0.8	65
GS-9	2.5	14.9¹	6.5	160
	5	20.51	0.5	40

Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

Table 2. Initial Soil Gas Composition at Site UST 173

Soil Gas Survey Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppm)
GS-1	2.5	15.0¹	4.5	145
	5	11.71	6.5	360
	7.5	17.21	3.0	160
	10	11.0	8.0	620
GS-2	2.5	11.0	7.7	380
	5	19.21	1.5	240
	7.5	0	9.2	>20,000
GS-3	2.5	9.5	7.2	380
	5	19.0¹	1.5	88
	7.5	12.0¹	5.6	230
	10	14.0¹	5.5	280
GS-4	2.5	12.3	5.8	360
	5	15.8 ¹	2.3	>10,000
	7.5	18.0¹	1.0	1,200
	10	11.5	7.5	380
GS-5	2.5	17.0¹	3.8	40
GS-6	2.5	8.5	9.5	100
	5	15.0¹	4.2	84
GS-8	2.5	13.8¹	2.5	100
	5	17.5	4.1	0

Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

concentrations ranged from 0 to greater than 20,000 ppm. These results indicate that, although not all areas of the site are oxygen-limited, some areas may respond to bioventing.

3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On August 26, 1992, the vent well (VW) and three monitoring points (MPs) were installed at Site UST 173, and collection of soil samples for analyses was begun. The monitoring points were labeled R1-MPA, R1-MPB, and R1-MPC. The locations of the vent well and monitoring points are shown in Figure 3. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 5.

The vent well was installed at a depth of 23.3 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter polyvinyl chloride (PVC) piping with 10 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed at depths as follows:

- Monitoring point R1-MPA was installed at a depth of 22.3 feet into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 6.8, 14.25, and 21.8 feet.
- Monitoring point R1-MPB was installed at a depth of 23.5 feet into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 8.0, 15.0, and 23.0 feet.
- Monitoring point R1-MPC was installed at a depth of 23.5 feet into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 8.0, 15.0, and 23.0 feet.

A Type J thermocouple was installed with monitoring points R1-MPA-6.8' and R1-MPA-21.8'.

MPC

MPB

MPA

Vent Well

Figure 5. Cross Section of Vent Well and Monitoring Points at Site UST 173 Showing Site Lithology and Construction Detail (not to scale)

3.1.4 Soil and Soil Gas Sampling and Analyses

Soil boring samples were collected from the Site UST 173 vent well borehole at depths of 4.0 to 4.5, 18.0 to 18.5 feet, and 18.5 to 19.0 feet and were labeled R1-V-4.0'-4.5', R1-V-18', and R1-V-18.5'-19', respectively. A soil sample also was taken from monitoring point R1-MPA at a depth of 8.5 to 10.0 feet and labeled R1-A-8.5'-10'. The soil samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size.

Soil gas samples were collected from the vent well, from monitoring points R1-MPA-21.8' and R1-MPC-15.0', and of ambient air. These samples were labeled R1-V, R1-A, R1-C, and ambient, respectively. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH.

3.1.5 Soil Gas Permeability and Radius of Influence

A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is given in the Test Plan and Technical Protocol (Hinchee et al., 1992).

The monitoring points at Site UST 173 were allowed to set up for 24 hours prior to air injection. A portable 1-horsepower (HP) explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The HyperventilateTM computer model was used to calculate the soil gas permeability.

3.1.6 In Situ Respiration Test

Immediately following the soil gas permeability test at Site UST 173, air containing approximately 1% helium was injected into the soil for approximately 24 hours beginning on September 1, 1992. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test was as described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through monitoring points

R1-MPA-14.25', R1-MPA-21.8', R1-MPC-15.0', and R1-MPC-23.0' at the depths indicated by the labels. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on September 8.

Helium concentrations were measured during the in situ respiration test to quantify helium leakage to or from the surface around the monitoring points. Helium loss over time is attributed to either diffusion or leakage. A rapid drop in helium concentration followed by a leveling is an indication of leakage. A gradual loss along with an apparent first-order curve is an indicator of diffusion. As a rough estimate, the diffusion of gas molecules is inversely proportional to the square root of the molecular weight of the gas. Based on molecular weights of 4 for helium and 32 for oxygen, helium diffuses about 2.8 times faster than oxygen, or the diffusion of oxygen is 0.35 times the rate of helium diffusion. As a general rule, we have found that if helium concentrations are at least 50% to 60% of the initial levels at test completion, measured oxygen uptake rates are representative. Greater helium loss indicates a problem, and oxygen utilization rates are not considered representative.

To compare data from one site to another, a stoichiometric relationship of the oxidation of the hydrocarbon was assumed. Hexane was used as the representative hydrocarbon for the organic contaminant. The stoichiometric relationship is given by:

$$C_6H_{14} + 9.5O_2 - 6CO_2 + 7H_2O$$
 (1)

Based on the utilization rates (% per day), the biodegradation rates in terms of milligrams as a hexane equivalent per kilogram of soil per day were computed using the equation below by assuming a soil porosity of 0.2 and a bulk density of 1,440 kg/m³.

$$K_{\beta} = \frac{-K_{o}AD_{o}C}{100}$$
 (2)

where: K_B = biodegradation rate (mg/kg/day)

K_o = oxygen utilization rate (percent per day)

A = volume of air/kilogram of soil, in this case 300/1,440 = 0.21

D_o = density of oxygen gas (mg/L) assumed to be 1,330 mg/L

C = mass ratio of hydrocarbon to oxygen required for mineralization, assumed to be 1:3.5 from the above stoichiometric equation.

3.2 Results and Discussion

3.2.1 Soil and Soil Gas Analyses

Results of the soil analyses for BTEX and TPH at Site UST 173 are presented in Table 3. Relatively low concentrations of the BTEX compounds were found in soil samples, with concentrations ranging from below the detection limit up to 3.0 mg/kg (total xylenes). TPH concentrations were high in sample R1-A-8.5'-10' (5,700 mg/kg), whereas the other soil samples contained relatively low TPH concentrations. The soil gas analyses also showed relatively low BTEX and TPH concentrations with concentrations ranging from less than the detection limit up to 2.2 ppmv (total xylenes) and from 27 to 300 ppmv of TPH (Table 3). The results from the soil chemistry analyses are summarized in Table 4. The laboratory report for the BTEX, TPH, and the soil chemistry analyses is given in Appendix B.

3.2.2 Soil Gas Permeability and Radius of Influence

The raw data for the soil gas permeability test at Site UST 173 are presented in Appendix C. Using the HyperventilateTM computer model, soil gas permeabilities were calculated at each of the monitoring points. These data are presented in Table 5. The soil gas permeability varied considerably between points with values ranging from 3.8 up to 2.2 x 10° darcy. Typically, the radius of influence is calculated by plotting the log of the pressure change at a specific monitoring point versus the distance from the vent well. The radius of influence would then be the distance where 1 inch of water pressure can be measured. However, in this instance, 1 inch of water pressure was not achieved at any monitoring point (Figure 6); therefore, a radius of influence based on these specifications cannot be definitively determined at this site, other than to say it is less than 10.0 feet.

Table 3. Results From Soil and Soil Gas Analyses for BTEX and TPH at Site UST 173

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	R1-V-4.0'-4.5'	< 0.29	< 0.33	0.33	3.0	37
	R1-V-18.5'-19'	< 0.0007	< 0.0008	< 0.0006	0.0037	8.0
	R1-A-8.5′-10′	< 0.0007	0.002	0.009	0.079	5,700
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	TPH² (ppmv)
Soil Gas	R1-V	< 0.004	0.025	0.31	2.2	300
	R1-A	< 0.002	0.052	0.055	0.81	290
	R1-C	< 0.002	0.006	0.14	0.098	27
	Ambient ³	< 0.002	< 0.002	< 0.002	< 0.002	0.20

Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

² TPH referenced to jet fuel (molecular weight = 156).

³ Sample taken at R1-MPA.

Table 4. Results From Soil Chemistry Analyses at Site UST 173

	Sample Name					
Parameter	R1-V-4.0	-4.5 ′	R1-V-18'		R1-A-8.5'-10'	
Alkalinity (mg/kg CaCO ₃)	< 50		< 50		< 50	
Moisture (% by weight)	16.2		9.1		17.	5
рН	4.9		5.4		5.2	2
Iron (mg/kg)	11,30	0	4,72	20	1,98	30
Total Phosphorous (mg/kg)	110		64		79	
Total Kjeldahl Nitrogen (mg/kg)	110		92		68	
Particle Size Analysis	Gravel:	0	Gravel:	3	Gravel:	0
	Sand:	49	Sand:	40	Sand:	59
	Silt: 20		Silt:	37	Silt:	22
	Clay:	31	Clay:	20	Clay:	19

Table 5. Results of Hyperventilate™ Soil Gas Permeability Analysis at Site UST 173

Monitoring Point	Depth (ft)	Soil Gas Permeability (darcy)
R1-MPA	6.8	3.8
	14.25	1,000
	21.8	2.2 x 10°
R1-MPB	8.0	21
	15.0	390
	23.0	380
R1-MPC	8.0	35
	15.0	620
	23.0	780

Figure 6. Radius of Influence at Site UST 173

3.2.3 In Situ Respiration Test

The results of the in situ respiration test for Site UST 173 are presented in Appendix D. Each figure in Appendix D illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization and carbon dioxide production at this site is shown in Figure 7, which shows oxygen, carbon dioxide, and helium at monitoring point R1-MPA-14.25'. Oxygen utilization and carbon dioxide production rates were relatively low at this site at all monitoring points. The rates of oxygen utilization and carbon dioxide production and the corresponding biodegradation rates are summarized in Table 6. The biodegradation rates measured at this site were fairly consistent between the monitoring points, with rates ranging from 0.38 to 0.75 mg/kg/day based upon oxygen and from 0.31 to 0.68 mg/kg/day for carbon dioxide, with a fairly good correlation between the oxygen utilization and carbon dioxide production rates.

Loss of <u>helium</u> was insignificant at all monitoring points, indicating that the monitoring points were well-sealed and that the oxygen depletion observed was a result of biodegradation.

Soil temperatures were measured during the in situ respiration test. Although two thermocouples were installed at this site, only one thermocouple was functioning properly at the time of the test. Temperatures during the test ranged from 25.0°C to 25.4°C at monitoring point R1-MPA-6.8'.

3.2.4 Bioventing Demonstration

The decision was made to install a bioventing system at Site UST 173. The same blower that was used for the soil gas permeability test was installed for the bioventing system. Continuous air injection was initiated on September 4, 1992 at a flowrate of 12 cubic feet per minute (cfm).

Figure 7. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Site UST 173 Monitoring Point R1-MPA-14.25'

Table 6. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ

Respiration Test at Site UST 173

priority installation of bioxidity system

Monitoring Point	Oxygen Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)	Carbon Dioxide Production Rate (%/hour)	Biodegradation Rate (mg/kg/day)
Background	0	0	0	0
R1-MPA-14.25'	0.039	0.75	0.015	0.31
R1-MPA-21.8'	0.028	0.54	0.031	0.68
R1-MPC-15.0'	0.029	0.56	0.024	0.51
R1-MPC-23.0'	0.020	0.38	0.015	0.31

4.0 SITE SS-10

4.1 Chronology of Events and Site Activities

4.1.1 Groundwater Measurements

The groundwater level measured at Well RI-4-JP6W, shown as the existing well in Figure 4, was 7.74 feet. Two other monitoring wells, RI-4-JP7W and LF1-3, were accessible for groundwater measurement, with levels measured at 7.22 and 7.48 feet, respectively.

4.1.2 Soil Gas Survey

A limited soil gas survey was conducted on September 1, 1992 to locate a suitable test area at Site SS-10. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Measurements of oxygen, carbon dioxide, and TPH in the soil gas were made as described in Section 2.0.

The soil gas probes were driven to depths ranging from 2.5 to 7.5 feet at several locations at Site SS-10. Table 7 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Site SS-10. Oxygen concentrations varied from 0 to 20.5%, whereas TPH concentrations ranged from 4 to greater than 20,000 ppm. These results indicate that, although not all areas of the site are oxygen-limited, some areas may respond to bioventing.

4.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On September 1, 1992, the vent well and three monitoring points were installed at Site SS-10, and collection of soil samples for analyses was begun. The monitoring points were labeled R2-MPA, R2-MPB, and R2-MPC. The locations of the vent well and monitoring points are shown in Figure 4. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 8.

The vent well was installed at a depth of 7.25 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 5.0 feet of ten-slot screen from

Table 7. Initial Soil Gas Composition at Site SS-10

Soil Gas Survey Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	ТРН (ррт)
GS-1	2.5	· 20¹	0.1	4
	5	0	25	>20,000
GS-2	2.5	5.0¹	6.5	280
	5	20.51	0.5	230
	7.5	20¹	0.6	620
GS-3	2.5	15.8 ¹	5.8	>10,000
	5	3.01	20	>10,000
GS-5	5	0	>25	>20,000
GS-6	2.5	1.5	>25	>10,000

Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

MPC

MPB

MPA

Vent Well

Figure 8. Cross Section of Vent Well and Monitoring Points at Site SS-10 Showing Site Lithology and Construction Detail (not to scale)

2.0 feet to 7.0 feet. The annular space corresponding to the screened area of the well was filled with silica sand; the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes consisted of ¼-inch tubing with a 3-inch screened area 1-inch in diameter. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed as follows:

- Monitoring point R2-MPA was installed at a depth of 7.5 feet into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 3.0, 4.5, and 6.0 feet.
- Monitoring point R2-MPB was installed at a depth of 7.5 feet into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 3.0, 4.5, and 6.0 feet.
- Monitoring point R2-MPC was installed at a depth of 8.0 feet into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 3.0, 4.5, and 6.0 feet.

A Type J thermocouple was installed with monitoring points R2-MPA-4.5', R2-MPA-6.0', R2-MPC-4.5', and R2-MPC-6.0'.

4.1.4 Soil and Soil Gas Sampling and Analyses

A soil sample was collected from the Site SS-10 vent well borehole at a depth of 7.25 to 7.75 feet and was labeled R2-V-7'3". Soil samples also were taken from monitoring point R2-MPA at depths of 3.0 to 3.5 feet and from 5.0 to 5.5 feet and were labeled R2-A-3'-3.5' and R2-A-5'-5.5', respectively. The soil samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size.

Soil gas samples were collected from the vent well and from monitoring points R2-MPA-5.0' and R2-MPC-8.0', and of ambient air. These samples were labeled R2-VW, R2-A-5', R2-C-8, and ambient, respectively. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH.

4.1.5 Soil Gas Permeability and Radius of Influence

A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is given in the Test Plan and Technical Protocol (Hinchee et al., 1992).

The monitoring points at Site SS-10 were allowed to set up for 24 hours prior to air injection. A portable 2.5-HP explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The Hyperventilate^{ne} computer model was used to calculate the soil gas permeability.

4.1.6 In Situ Respiration Test

Immediately following the soil gas permeability test at Site SS-10, air containing approximately 1% helium was injected into the soil for approximately 24 hours beginning on September 4. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test was as described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through monitoring points R2-MPA-4.5', R2-MPA-6', R2-MPC-4.5', and R2-MPC-6' at the depths indicated by the labels. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on September 9. Results of the in situ respiration were calculated as described in Section 3.1.6.

4.2 Results and Discussion

4.2.1 Soil and Soil Gas Analyses

Results of the soil analyses for BTEX and TPH at Site SS-10 are presented in Table 8. Relatively high concentrations of toluene, ethylbenzene, and xylenes were found in soil samples from the vent well, with concentrations ranging from 39 mg/kg (ethylbenzene) up to 220 mg/kg (total xylenes). Lower concentrations were found at monitoring point A [0.098 mg/kg (toluene) up to 6.8

Table 8. Results From Soil and Soil Gas Analyses for BTEX and TPH at Site SS-10

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	R2-V-7'3"	<1.3	59	39	220	9,000
	R2-A-3'-3.5'	0.053	0.098	0.054	0.54	150
	R2-A-5'-5.5'	< 0.26	0.70	2.0	6.8	58
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	TPH ² (ppmv)
Soil Gas	R2-VW	260	120	11	81	42,000
	R2-A-5'	220	87	14	72	50,000
	R2-C-8	330	120	22	100	72,000
	Ambient ³	< 0.002	< 0.002	< 0.002	< 0.002	0.55

¹ Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

² TPH referenced to jet fuel (molecular weight = 156).

³ Sample taken between vent well and R2-MPA.

mg/kg (total xylenes)], and benzene was detected only in sample R2-A-3'-3.5'. TPH concentrations were highest in the soil sample R2-V-7'3" (9,000 mg/kg), whereas concentrations of 58 and 150 mg/kg were detected in the soil samples from monitoring point A. The soil gas analyses also showed high BTEX and TPH concentrations, with concentrations ranging from 11 ppmv (ethylbenzene) up to 330 ppmv (benzene), and from 42,000 to 72,000 ppmv of TPH (Table 8). The results from the soil chemistry analyses are summarized in Table 9. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B.

4.2.2 Soil Gas Permeability and Radius of Influence

The raw data for the soil gas permeability test at Site SS-10 are presented in Appendix E. Using the HyperventilateTM computer model, soil gas permeabilities were calculated at each of the monitoring points. These data appear in Table 10. The soil gas permeability varied considerably between points with values ranging from 1.7 up to 8.3 x 10⁸ darcy. The radius of influence where 1 inch of pressure was measured was calculated by plotting the log of the pressure change at the monitoring points versus the distance from the vent well (Figure 9). The radius of influence at Site SS-10 is estimated to be approximately 22 feet using a 2-HP blower.

4.2.3 In Situ Respiration Test

The results of the in situ respiration test for Site SS-10 are presented in Appendix F. Each figure in Appendix F illustrates the oxygen, helium, and carbon dioxide concentrations as a function of time. An example of typical oxygen utilization and carbon dioxide production at this site is shown in Figure 10, which shows oxygen, helium, and carbon dioxide at monitoring point R2-MPC-6.0'. These results are typical for oxygen utilization and carbon dioxide production at monitoring point R2-MPC, whereas the rates were somewhat slower at monitoring point R2-MPA. The rates of oxygen utilization and carbon dioxide production and the corresponding biodegradation rates are summarized in Table 11. The biodegradation rates measured at this site ranged from 1.2 to 6.4 mg/kg/day based on oxygen and from 0.19 to 0.57 mg/kg/day based on carbon dioxide. Biodegradation rates based on carbon dioxide production were consistently lower than those calculated based upon oxygen utilization, suggesting that carbon dioxide was reacting chemically in the soil.

Table 9. Results From Soil Chemistry Analyses at Site SS-10

	Sample Name						
Parameter	R2-V-7'3"		R2-A-5'-5.5'		R2-A-3'-3.5'		
Alkalinity (mg/kg CaCO ₃)	< 50		< 50		< 50		
Moisture (% by weight)	8.2		11.8		9.8		
рН	5.2		5.0		5.8		
Iron (mg/kg)	1,780		4,070		4,960		
Total Phosphorous (mg/kg)	43		81		110		
Total Kjeldahl Nitrogen (mg/kg)	37		31		70		
Particle Size Analysis	Gravel:	0	Gravel:	0	Gravel:	4	
	Sand:	61	Sand:	49	Sand:	57	
	Silt:	25	Silt:	25	Silt:	19	
	Clay:	14	Clay:	26	Clay:	20	

Table 10. Results of Hyperventilate™ Soil Gas Permeability Analysis at Site SS-10

Monitoring Point	Depth (ft)	Soil Gas Permeability (darcy)		
R2-MPA	3.0	4.8 x 10 ⁸		
	4.5	8.3 x 10 ⁸		
	6.0	1.7		
R2-MPB	3.0	1,200		
	4.5	1.8 x 10 ⁵		
	6.0	6.1 x 10 ⁵		
R2-MPC	3.0	79		
	4.5	170		
	6.0	210		

Figure 9. Calculation of Radius of Influence at Site SS-10

Figure 10. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Site SS-10 Monitoring Point R2-MPC-6.0'

Table 11. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Site SS-10

Standard Or util?

		AMONER OF MAN		
Monitoring Point	Oxygen Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)	Carbon Dioxide Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)
Background	0	0	0	0
R2-MPA-4.5'	0.061	1.2	0.0086	0.19
R2-MPA-6.0'	0.074	1.4) 7	0.0095	0.20
R2-MPC-4.5'	0.34	(6.4) 7	0.024	0.51
R2-MPC-6.0'	0.26	5.0	0.026	0.57

Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well sealed and that the oxygen depletion observed was a result of biodegradation.

Soil temperatures were measured at two thermocouples during the in situ respiration test. Temperatures during the test ranged from 26.3°C to 28.4°C at monitoring point R2-MPA-4.5′ and from 25.2°C to 26.8°C at monitoring point R2-MPA-6.0′.

4.2.4 Bioventing Demonstration

The decision was made to install a bioventing system at Site SS-10. The same blower that was used for the soil gas permeability test was installed for the bioventing system. Continuous air injection was initiated on September 10 at a flowrate of 27 cfm.

5.0 BACKGROUND AREA

A background vent well was installed on August 31, 1992 at the location shown in Figure 1. The depth of this vent well was 23 feet. Ten feet were screened using Schedule 40, 2-inch-diameter, 10-slot PVC, and the remaining 13 feet consisted of Schedule 40, 2-inch-diameter PVC riser. The first 15 feet of the vent well were surrounded by sand, and 6 of the remaining 8 feet were enclosed

by bentonite to seal the vent well. The site lithology in this area was similar to that found at the contaminated sites.

An in situ respiration test was conducted at the background area beginning on September 5 after 24 hours of air injection. The test was concluded on September 9. No significant biodegradation was detected in this area, as shown in Figure 11.

6.0 FUTURE WORK

Base personnel will be required to perform a simple weekly system check to ensure that the blower is operating within its intended flowrate, pressure, and temperature range. An on-site briefing was conducted for base personnel who will be responsible for blower system checks. The principle of operation was explained, and a simple checklist and logbook were provided for blower data. Base personnel will perform minor maintenance activities, such as replacing filters or gauges, or draining condensate from knockout chambers, but they will not be expected to perform complicated repairs or analyze gas samples. Replacement filters and gauges will be provided and shipped to the base and serious problems, such as motor or blower failures, will be corrected by Battelle.

The progress of this system will be monitored by conducting semiannual respiration tests in the vent well and in each monitoring point, and by regularly measuring the oxygen, carbon dioxide, and hydrocarbon concentrations in the extracted soil gas and comparing them to background levels. At least twice each year, the progress of the bioventing test will be reported to the base point-of-contact.

7.0 REFERENCE

Hinchee, R.E., S.K. Ong, R.N. Miller, D.C. Downey, and R. Frandt. 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing (Rev. 2), Report prepared by Battelle Columbus Operations, U.S. Air Force Center for Environmental Excellence, and Engineering-Science, Inc. for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

Figure 11. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at the Background Area

APPENDIX A

TEST PLAN FOR ROBINS AFB, GEORGIA

de Ballelle

505 King Avenue Columbus, Ohio 43201-2693 Telephone (614) 424-6424 Facsimile (614) 424-5263

July 20, 1992

Captain Catherine Vogel HQ AFCESA/RAVW 139 Barnes Drive Tyndall AFB, Florida 32403-5319

SUBJECT: TEST PLAN FOR BIOVENTING INITIATIVE FIELD TEST

AT USTS 173, 272 AND SITE SS10, ROBINS AFB, GA

Dear Cathy:

Attached is the report "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing." This document was developed as a generic test plan for the Air Force Bioventing Initiative Project in which Robins AFB is participating. This letter outlines site specific information to support the generic test plan.

The sites chosen for the bioventing test initiative are UST site 173, UST site 272, and JP-4 spill site SS10. The tanks at UST sites 173 and 272 were both abandoned in place for a number of years before being removed October 18, 1989. Site SS10 is a JP-4 spill site with free product present on the shallow water table.

The purpose of this project is to investigate the feasibility of using the bioventing technology to remediate petroleum-contaminated soils at the above mentioned sites.

Site descriptions

Robins AFB is located approximately 10 miles south of Macon, Georgia, adjacent to the town of Warner Robins, GA. A map of Robins is shown in Figure 1. Summaries of the available descriptions of each site proposed for the Bioventing Initiative are presented below.

Site UST 173 - This site consisted of a 1500 gallon diesel tank abandoned in place approximately 20 years ago. The tank was removed in October 1989. Site investigation activities conducted subsequent to the tank removal indicated residual contamination. The site was re-excavated and approximately 200 cubic yards of soil were removed for disposal. Soil

FIGURE 1. BASE MAP OF ROBINS AFB, GA.

contamination remained on the southern boundaries of the excavation but could not be removed without undermining the foundation of a gazebo on site. Soil samples taken from the south wall of the excavation pit exhibited total petroleum hydrocarbon (TPH) concentrations as high as 22,600 ppm. Elevated BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations were also detected. Tables 1 and 2 present the analytical data for site UST 173. Figures 2 and 3 are site diagrams of UST 173 showing soil sampling locations for Tables 1 and 2, respectively. Soil borings taken at the site during the site investigation show dense, clayey sand to approximately 5 ft., coarse sand and gravel to approximately 25 ft, and stiff tannish white clay below 25 ft. All borings were terminated in the stiff clay and no groundwater was encountered. A representative soil boring is shown in Figure 4.

Site UST 272 - This site consisted of a 250 gallon diesel tank abandoned in place approximately 10 years ago. The tank was removed in October of 1989. Soil sampling performed after the tank removal has indicated TPH concentrations in excess of 2000 ppm in some locations. A site sketch showing sampling locations is shown in Figure 5 and associated analytical results are presented in Table 3. Soil boring logs were not available for the site, but based on observations during tank removal, site geology is likely to be similar to UST 173.

Site SS10 - This site is located adjacent to a JP-4 fuel storage tank farm. Unlike sites UST 173 and UST 272 groundwater is present on this site at depths ranging from 5 to 19 ft. Free product has been encountered floating on the shallow groundwater and elevated petroleum hydrocarbon concentrations have been detected in site soils (see Table 4). Figure 6 shows the location of JP-4 spill site SS10. Figure 7 presents the estimated extent of the free product plume. Figure 8 shows a representative geologic cross-section of the spill site.

Project activities

The following field activities are planned for the bioventing project at Robins AFB. The same procedures will be followed at each site. Additional details can be found in Section 5.0 of the attached test plan and technical protocol.

- A small scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system. The soil gas survey will be conducted in areas which site data have shown to be the most contaminated. Soil vapor from the candidate site should exhibit high petroleum hydrocarbon concentrations (10,000 ppm or greater), relatively low O₂ concentrations (0 % to 2.0 %), and relatively high CO₂ concentrations (depending on soil type, 2.0 % to 10.0 %, or higher). An uncontaminated background location will also be identified.
- Once the installation sites are located one vent well and three 3-level soil gas
 monitoring points will be installed in the contaminated location and one vent well
 will be installed in the background area (one background area will be used for all

TABLE 1. UST CAVITY CONTAMINANT CONCENTRATIONS AT UST SITE 173, ROBINS AFB, GA.

	SAMPLE						\0.4 T\ T	
	LOCATION	DEPTH(ft)	TPH	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE	
	#1	8	122	<.010	<.010	<.010	<.020	
	#2	8	187	<.010	<.040	<.010	<.020	
	#3	8	50	<.010	<.020	<.010	<.020	
	#4	8	34	<.010	<.020	<.010	<.020	-
	#5	8	41	<.010	<.020	<.010	<.020	-
1	#6	. 8	22600	<.100	1.87	17.30	239.00	-
1	#7	8	3670	<200	0.60	3.05	43.30	
	#8	8	24	<.010	<.020	<.010	<.020	
	#9	8	29	<.010	<.040	<.010	<.020	
				l	i '	l l		i

#1

2

#6

#7

TABLE 2. SOIL BORING CONTAMINANT CONCENTRATIONS AT UST SITE 173, ROBINS AFB

SAMPLE LOCATION	DEPTH(ft)	TPH	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE
173-B1-2	8.5-10.0	NA	BDL	BDL	BDL	89.42
173-B1-3	13.5-15	NA	BDL	0.51	0.22	0.11
173-B1-4	18.5-20.0	NA	BDL	0.24	BDL	0.13
173-B1-5	23.5-25.0	NA	BDL	BDL	BDL	BDL
173-B2-3	13.5–15	NA	BDL	BDL	BDL	BDL
173-B4-3	 13.5–15	NA	BDL	BDL	BDL	BDL
173-B5-2	 8.5–10.0	NA	BDL	0.23	0.53	0.27
173-B6-2	 8.5–10.0	NA	BDL	BDL	BDL	BDL
173-B8-3	13.5–15	NA	BDL	0.22	BDL	0.43
173-B9-3	13.5–15	NA	BDL	0.20	0.52	0.27

BDL - BELOW DETECTION LIMIT
NA - NOT APPLICABLE (sample analyzed for BTEX only)

M3-81-2

TABLE 3. CONTAMINANT CONCENTRATIONS AT UST SITE 272, ROBINS AFB, GA.

SAMPLE LOCATION	DEPTH(ft)	TPH	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE	
1A	10	<40	NA	NA	NA	NA	
(2A)	3	2810	NA NA	NA NA	NA	NA	
3A	10	<40	NA	NA NA	NA	NA	
4A	10	<40	NA NA	NA NA	NA NA	NA	
5A	10	<40	NA NA	NA.	NA NA	NA	
A23 *	3	738_	- NA	NA	NA NA	NA	
A23 *	6	547	NA NA	NA NA	NA NA	NA	
A23 *	10	310	NA NA	NA NA	NA NA	NA	
A23 *	15	141	NA NA	NA NA	NA NA	· NA	
A24 *	3	89.8	NA NA	NA	· NA	NA	
A24 *	5	1090-	_ NA	NA.	NA NA	NA	
A25	5	134	NA NA	l NA	NA NA	NA	
A25	10	<20	NA	NA NA	NA NA	NA	
A25	15	<20	NA NA	i NA	NA	· NA	
A 26	 6	<20	NA NA	 NA	NA	NA .	
A 26	 10	<20	NA NA	 NA	NA NA	NA	
* A26	15	<20	l NA	l NA	NA NA	NA .	

BDL - BELOW DETECTION LIMIT

NA - NOT APPLICABLE (sample analyzed for TPH only)

^{* -} CONCENTRATIONS WERE EXPRESSED AS mg/L, HAVE ASSUMED mg/Kg WAS INTENDED

TABLE 4. CONTAMINANT CONCENTRATIONS AT JP-4 SPILL SITE SS10, ROBINS AFB, GA.

SAMPLE LOCATION	DEPTH(ft)	TPH	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE
RI4-1	NR	28	1.10	0.59	0.09	0.51
RI4-2	NR	BDL	BDL	BDL	BDL	BDL
RI4-3	NR	BDL	BDL	BDL	BDL	BDL
RI4-4	NR	6990	4.60	22.00	26.00	170.00
RI4-5	NR	BDL	BDL	BDL	BDL	BDL
RI4-6	NR	594	0.07	0.13	0.04	0.20
RI4-7	NR	10100	11.00	70.00	38.00	20.00
RI4-8	NR	1550	5.60	43.00	! 24.00	160.00

BDL - BELOW DETECTION LIMIT NR - NOT REPORTED

Excavate and stockpile top 5 feet of soil.

Remove and dispose of soil from 5 feet to 15 feet depth.

Excavate an area to include but not exceed, 27 feet on the east and west side and 22 feet on the north and south side. The contaminated soil excavated and disposed of should not exceed a total value of 220 cubic yards.

The site is located 23 feet form the southwest corner of Bldg. 173 and 2 feet west.

FIGURE 3. SOIL BORING LOCATIONS - UST 173.

Borng and sampling - Astm D-1986 Core Depling - Astm D-2112

PENETRATION IS THE NUMBER OF BLOWS OF 140 LB. HAMMER FALLING 30 IN. REQUIRED TO DRIVE L4 IN. LD. SAMPLER 1 FT.

STANKS CHENTERICAN

10% % ROCK CORE RECOVERY

WATER TABLE 24 HR.

WATER TABLE, T.O.D.

. < LOSS OF DRILLING WATER

TEST BORING RECORD

BORING NO. 173-9 (pg. 1 of 1)

DATE DRILLED 1-18-90

Sampling grid for building 273

mated dontamination piume. 18 28 10 mg/l

B1d 272

lower depths are required. sampling below five feet impossible with drill ri Norki Bample point A24 has obstructions, making Buggested alternate backhoe and shovel,

11

2 A- 2810-TH- 3581

Sampling in contamiated area (2A) was limited arge object that resisted core drilling in this entire area. to a depth of 3'

> 1090-TPH-S A24-

738-TPH-3'

A23-

FIGURE 5. SOIL SAMPLING LOCATIONS - UST 272.

FIGURE 6. LOCATION MAP OF JP-4 SPILL SITE 8810.

FIGURE 8. GEOLOGIO CROSS-SECTION OF BPILL SITE 8810,

evels at other locations may differ from

See Grain Size Analysis

three test sites, if possible). The wells and monitoring points will be installed using a two-man power auger or a portable drill rig to bore down to just above the water table. Three to four soil samples will be collected for chemical/physical analysis.

- The air permeability test will be conducted in the contaminated test location.
- Following the air permeability test, in situ respiration tests will be conducted in both the contaminated and the background test locations.
- Depending on the results of the air permeability test and the in situ respiration test, a decision will be made whether or not to install a blower system in the contaminated area for the long term bioventing test. If the decision is made to install, the blower will be plumbed to the vent well and bioventing will be started (assuming power is available). Site personnel will be trained for blower operation prior to Battelle leaving the site.
- A report detailing the results of the in situ respiration test and the air permeability test will be provided to the project officer and the base POC.

Schedule

Field activities at Robins AFB are planned to begin on August 24, 1992. Battelle will have 2 to 3 people on site for approximately 3 weeks. Site work at SS10 will be conducted during the 3 week period if time allows, otherwise SS10 field work will begin 12/7/92.

Base Support

Robins AFB needs to be able to provide the following:

- Digging permits and utility clearance need to be obtained prior to the initiation of the field work. Underground utilities should be clearly marked to reduce the chance of utility damage or personal injury during soil gas probe and well installation. Battelle will not be able to begin field operations without these clearances.
- Electrical power will need to be easily accessible from the project site. The air permeability test and in situ respiration test can be performed using a gasoline powered electric generator. The operation of the bioventing system will require

a permanent 220/110 V power source. If power will not be available immediately after the test is completed the bioventing system will be installed for start-up at a later date.

- Regulatory approval, if any is required, will need to be obtained by the base prior to start-up of the bioventing system. The system will likely be configured for air injection so there will be no point source vapor emission from the system. The wells to be installed will not intersect the apparent water table and no groundwater will be pumped.
- The Air Force will need to provide drums to contain soil cuttings and disposal of contaminated soil.
- Base and site clearance will be required for Battelle's site employees. We will furnish you with personal information for each person at least one week prior to starting field operations.

Thank you for your support for this bioremediation research project. If you have any questions please fell free to call me at (614) 424-6122.

Sincerely,

Jeffrey A. Kittel Researcher Environmental Technology Department

JAK:sh

APPENDIX B

ANALYTICAL REPORT FOR SITE UST 173 AND SITE SS-10

(a) AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9209004

Work Order Summary

CLIENT:

Mr. Jeff Kittel

BILL TO:

Accounts Payable

Battelle

Engineering Science

505 King Ave.

1700 Broadway Ste. 900

Columbus, OH 43201

Denver, CO 80290

PHONE:

614-424-6122

INVOICE # 8415

FAX:

614-424-3667

P.O. # DE268.03

DATE RECEIVED:

9/1/92

AMOUNT: \$565.98

DATE REPORTED:

9/8/92

PROJECT # E-S JOB DE268.03

Receipt

FRACTION #	NAME	TEST	VAC./Press.	PRICE
01A	R1-V	TO-3	0.5 "Hg	\$120.00
02A	R1-C	TO-3	1.5 "Hg	\$120.00
03A	Ambient -R1	TO-3	0 "Hg	\$120.00
04A	R1-A	TO-3	1.0 "Hg	\$120.00
05A	Lab Blank	TO-3	NA	NC

Misc. Charges

1 Liter SUMMA Canister Preparation (4) @ \$10.00 each.

\$40.00

Shipping (8/27/92)

\$45.98

CERTIFIED BY: Jinda J. Truman

SAMPLE NAME: R1-V ID#: 9209004-01A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil Factor:	609030! 4.		Date of Collection Date of Analysis:	ı: 8/30/92 9/3/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.004	0.013	Not Detected	Not Detected
Toluene	0.004	0.015	0.025	0.092
Total Xylenes	0.004	0.017	2.2	9.3
Ethyl Benzene	0.004	0.017	0.31	1.3

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	609030 4.		Date of Collection Date of Analysis:	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.041	0.16	300	1200

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: R1-C ID#: 9209004-02A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	6090300 2.1		Date of Collection Date of Analysis:	n: 8/30/92 9/3/92
***************************************	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	Not Detected	Not Detected
Toluene	0.002	0.007	0.006	0.019
Total Xylenes	0.002	0.007	0.098	0.31
Ethyl Benzene	0.002	0.007	0.14	0.44

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	6090306 2. 1		Date of Collection Date of Analysis:	s: 8/30/92 9/3/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.021	0.084	27	110

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Ambient -R1 ID#: 9209004-03A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name:	6090308	3	Date of Collection	n: 8/30/92
Dil. Factor:	2.9	0	Date of Analysis:	9/3/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.006	Not Detected	Not Detected
Toluene	0.002	0.007	Not Detected	Not Detected
Total Xylenes	0.002	0.008	Not Detected	Not Detected
Ethyl Benzene	0.002	0.008	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	609030 2.		Date of Collection Date of Analysis:	a: 8/30/92 9/3/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.020	0.080	0.20	0.80

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: R1-A ID#: 9209004-04A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	609030! 2.1		Date of Collection Date of Analysis:	1: 8/30/92 9/3/92
Dir. r ikeor.	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	Not Detected	Not Detected
Toluene	0.002	0.008	0.052	0.19
Total Xylenes	0.002	0.009	0.81	3.4
Ethyl Benzene	0.002	0.009	0.055	0.23

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name:	609030	9	Date of Collection	
Dil. Factor:	MDL	L MDL	Date of Analysis: Amount	9/3/92 Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.021	0.084	290	1200

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Lab Blank ID#: 9209004-05A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	6090303 1.1	_	Date of Collection Date of Analysis:	ı: NA 9/3/92
***************************************	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name:	6090303	3	Date of Collection	ı: NA
Dil. Factor:	1.4		Date of Analysis:	9/3/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.010	0.040	Not Detected	Not Detected
			•	

^{*}TPH referenced to Jet Fuel (MW=156)

Battelle

45

CHAIN OF CUSTODY RECORD

Form No. _

Remarks Received by: Received by: (Signature) (Signature) Containers Number Container No. Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time Joele World Received for Laboratory by: (Signature) Grain Porget Received by: (Signature) Received by: (Signature) SAMPLE I.D. 07.1 Date/Time 年 八十二日 コマン Date/Time Date/Time 1. 15 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. -1.1 18/0 3 Project Title Jan Marin TIME Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) 11:11 - 11 MILLIAN OF THE SAMPLERS: (Signature) Columbus Laboratories 141111 --DATE Proj. No. 4

7

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9209019

Work Order Summary

CLIENT:

Mr. Jeff Kittel

BILL TO:

Accounts Payable

Battelle

Engineering Science

505 King Ave.

1700 Broadway Ste. 900

Columbus, OH 43201

Denver, CO 80290

PHONE:

614-424-6122

INVOICE # 8436

FAX:

614-424-3667

P.O. #

DATE RECEIVED:

9/4/92

AMOUNT: \$520.00

DATE REPORTED:

9/14/92

PROJECT # DE268.03

Receipt

FRACTION #	NAME	TEST	VAC./Press.	PRICE
01A	Ambient	TO-3	1.5 "Hg	\$120.00
02A	R2-C-8	TO-3	0.5 "Hg	\$120.00
03A	R2-A-5'	TO-3	0 "Hg	\$120.00
04A	R2-VW	TO-3	0.5 "Hg	\$120.00

Misc. Charges 1 Liter SUMMA Canister Preparation (4) @ \$10.00 each. \$40.00

DEMEMBED BY.

CEPTIFIED DV.

DATE

DATE: 9

SAMPLE NAME: Ambient ID#: 9209019-01A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	6090809 2. 1		Date of Collection Date of Analysis:	· · · · · · · · · · · · · · · · · · ·
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	Not Detected	Not Detected
Toluene	0.002	0.008	Not Detected	Not Detected
Total Xylenes	0.002	0.009	Not Detected	Not Detected
Ethyl Benzene	0.002	0.009	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	609080 2.		Date of Collection Date of Analysis:	
Compound	MDL (ppmv)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	0.021	0.084	0.55	2.2

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: R2-C-8 ID#: 9209019-02A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name:	609081	0	Date of Collection	n: 9/3/92
Dil. Factor:	5200)	Date of Analysis:	9/8/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	5.2	16	330	1000
Toluene	5.2	16	120	370
Total Xylenes	5.2	16	100	310
Ethyl Benzene	5.2	16	22	69

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name:	6090816		Date of Collection	
Dil. Factor:	5200		Date of Analysis:	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	52	210	72000	290000

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: R2-A-5' ID#: 9209019-03A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil Factor:	609081. 10000		Date of Collection Date of Analysis:	
DIL FACTOR.	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	10	31	220	690
Toluene	10	37	87	320
Total Xylenes	10	42	72	310
Ethyl Benzene	10	42	14	59

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	609081 10000		Date of Collection Date of Analysis:	······································
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	100	400	50000	200000

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: R2-VW ID#: 9209019-04A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	609081: 10000		Date of Collection Date of Analysis:	
DIL FRCUI.	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	10	31	260	810
Toluene	10	37	120	440
Total Xylenes	10	42	81	340
Ethyl Benzene	10	42	11	47

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name:	609081		Date of Collection	
Dil. Factor:	1000i	D MDL	Date of Analysis: Amount	9/8/92 Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	100	400	42000	170000

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Lab Blank ID#: 9209019-05A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: 6090808 Date of Collection: NA Dil. Factor: 1.0 Date of Analysis: 9/8/92						
	MDL	MDL	Amount	Amount		
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)		
Benzene	0.001	0.003	Not Detected	Not Detected		
Toluene	0.001	0.004	Not Detected	Not Detected		
Total Xylenes	0.001	0.004	Not Detected	Not Detected		
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected		

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: Dil. Factor:	6090808 1.1		Date of Collection Date of Analysis:	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.010	0.040	Not Detected	Not Detected

*TPH referenced to Jet Fuel (MW=156)

CHAIN OF CUSTODY RECORD

Form No.

Remarks eranistno O Number of Container No. 3 SAMPLE TYPE (V) 315_ 7 Ź 7 1 MARLY CATTELLES SAMPLE I.D. Acceptant Y Ł Project Title TIME SAMPLERS: (Signature) Columbus Laboratories () · !! | - | · ! | DATE Proj. No.

Received by: (Signature) Received by: (Signature) Date/Time Date/Time Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time Received for Laboratory by: Received by: (Signature) Received by: (Signature) (Signature) (B) H Date/Time Date/Time Date/Time Relinquished by: (Signature) 1 200 Relinquished by: (Signature) Relinquished by: (Signature)

RESEARCH AND DEVELOPMENT LABORATORY 600 BANCROFT WAY BERKELEY. CALIFORNIA 94710 (415) 841-7353

.....

ENGINEERING-SCIENCE, INC.

Report Date: October 9, 1992

Work Order No.:4294

Client:

Jeff Kittel Battelle

505 King Ave.

Columbus, OH 43201

Date of Sample Receipt: 09/01/92

Your soil samples identified as:

R1-A-8.5'-10 R1-V-4.0'-4.5'

were analyzed for BTEX by EPA Method 8020, pH, alkalinity, iron, total Kjeldahl nitrogen, mositure, TRPH by EPA Method 418.1, soil classification by ASTM D422 and total phosphorus.

In addition your soil sample identified as:

R1-V-18'

was analyzed for pH, alikalinity, iron, total Kjeldahl nitrogen, moisture soil classification by ASTM D422 and total phosphorus.

Finally your soil sample identified as:

R1-V-18.5-19'

was analyzed for BTEX by EPA Method 8020 and TRPH by EPA Method 418.1.

The analytical reports for the samples listed above are attached.

LEGEND FOR INORGANIC RESULT QUALIFIERS

- U The analyte was analyzed for but not detected.
- B Reported value is less than Reporting limit but greater than the IDL.
- N Spiked sample recovery not within control limits.
- S Reported value was determined by the Method of Standard Additions.
- * Duplicate analysis not within control limits.
- W Post digestion spike for Furance AA analysis out of control limits (85-115%), while sample absorbane is less than 50% of spike absorbance
- Correlation co-efficient for MSA is less than
 0.995.
- E The reported value is estimated because of the presence of interference.
- Quality Control indicates that data are not usable (compound may or may not be present). Re-sampling and re-analysis is necessary for verification.
- M Duplicate injection precision not met.

GC VOLATILES DATA PACKAGE

Work Order NO.: 4294

% Moisture: 17.5

Client ID:R1-A-8.5'-10'

Matrix:SOIL

Laboratory ID:4294-1

Level:LOW

Unit:ug/KG

Dilution Factor:

1

Date Analyzed:09/04/92 Date Confirmed:09/08/92

	•		
Compound	Primary Result	Confirmatory Result	Reportin Limit
Benzene	ND	ND	0.7
Ethyl Benzene	6.3	9.0	0.6
Toluene	2.7	2.0	0.8
Xylenes (total)	89.6	79.0	1.1

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AD

GROUP LEADER:

furel

Work Order NO.: 4294

% Moisture: 16.2

Client ID:R1-V-4.0'-4.5'

Matrix:SOIL

Laboratory ID: 4294-2

Level:MEDIUM

Unit:ug/KG

Dilution Factor:

1

Date Analyzed:09/08/92 Date Confirmed:09/09/92

Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	290.0
Ethyl Benzene	330.0	330.0	240.0
Toluene	ND	ND	330.0
Xylenes (total)	1200	3000.0	430.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: A

GROUP LEADER: Furn

Work Order NO.: 4294

% Moisture: 14.9

Client ID:R1-V-18.5'-19'

Matrix: SOIL

Laboratory ID:4294-4

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Xylenes (total)

Date Analyzed:09/08/92 Date Confirmed: 09/04/92

Reportin Primary Confirmatory Compound Limit Result Result 0.7 ND ND Benzene 0.6 ND ND Ethyl Benzene 0.8 ND ND Toluene

3.7

1.1

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AM

GROUP LEADER: LUM

Work Order NO.: 4294

% Moisture: NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID:MSVG5920904

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 09/04/92 Date Confirmed:

Co	mpound	Primary Result	Confirmatory Result	Reporting Limit
Ве	nzene	ND	ND	0.6
Et	hyl Benzene	ND	ND	0.5
To	luene	ND	ND	0.7
Хy	lenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: NO

GROUP LEADER: Luxur

Work Order No.: 4294

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID:MWVG5920909

Level: MEDIUM

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:09/09/92

Date Confirmed: NA

Primary Result	Confirmatory Result	Reportir Limit
**********	======================================	
ND	ND	60.0
ND	ND	50.0
ND	ND	70.0
ND	ND	90.0
	Result ND ND ND	Result Result ND ND ND ND ND ND

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: A

GROUP LEADER: KIND

Work Order NO.:4294

% Moisture:NA

Client ID: METHOD BLANK

Matrix: SOIL

Laboratory ID:MSVG3920908B

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:09/08/92 Date Confirmed:

Compound	Primary	Confirmatory	Reportin
	Result	Result	Limit ~
Benzene	ND	ND	0.6
Ethyl Benzene	ND	ND	0.5
Toluene	ND	ND	0.7
Xvlenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST:

GROUP LEADER: RUEM

Work Order NO.: 4294

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID: MWVG3920908B

Level: MEDIUM

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:09/08/92

Date Confirmed:NA

Reporting
60.0
50.0
70.0
90.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AB

GROUP LEADER: Rushil

WO # 4294

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/08/92

LAB SAMPLE ID: MWVG3920908B

DATE EXTRACTED : NA

MATRIX : MEDIUM SOIL

INSTRUMENT ID: VGC-3

LAB	CLIENT	DATE
SAMPLE ID	SAMPLE ID	ANALYZED
MWVG3920908B	METHOD BLANK	09/08/92
4294-2	R1-V-4.0-4.5'	09/08/92

WO # 4294

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/09/92

LAB SAMPLE ID: MWVG5920909

DATE EXTRACTED : NA

MATRIX : MEDIUM SOIL

INSTRUMENT ID: VGC-5

LAB	CLIENT	DATE
SAMPLE ID	SAMPLE ID	ANALYZED
MWVG5920909	METHOD BLANK R1-V-4.0-4.5'	09/09/92 09/09/92

WO # 4294

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/04/92

LAB SAMPLE ID: MSVG5920904 DATE EXTRACTED : NA

MATRIX : SOIL INSTRUMENT ID: VGC-5

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED
MSVG5920904	METHOD BLANK	09/04/92
SSVG5920904A	SPIKE	09/04/92
SSVG5920904B	SPIKE DUP	09/04/92
4294-1	R1-A-8.5'-10'	09/04/92
4294-4	R1-V-18.5'-19'	09/04/92

WO # 4294

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/08/92

LAB SAMPLE ID: MSVG3920908B

DATE EXTRACTED : NA

MATRIX :SOIL

INSTRUMENT ID: VGC-3

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE
MSVG3920908B	METHOD BLANK	09/08/92
4294-1	R1-A-8.5'-10'	09/08/92
4292-4	R1-V-18.5'-19'	09/08/92

600 BANCROFT WAY ES-ENGINEERING SCIENCE, INC. BERKELEY, CA 94710 GC ANALYTICAL REPORT ANALYTICAL REPORT BTEX AROMATIC COMPOUNDS COLUMN ID: VGC-5 DB624 DATE:09/09/92 MATRIX: MEDIUM SOIL CLIENT ID a-a-a-TriFluoro LABORATORY NO. Toluene METHOD BLANK 97 MWVG5920909 R1-V-4.0'-4.5' 62 4294-2

600 BANCROFT WAY ES-ENGINEERING SCIENCE, INC. BERKELEY, CA 94710 _____ GC ANALYTICAL REPORT ANALYTICAL REPORT BTEX AROMATIC COMPOUNDS COLUMN ID: VGC-3 VOCOL DATE:09/08/92 MATRIX: MEDIUM SOIL CLIENT ID a-a-a-TriFluoro LABORATORY NO. Toluene 118 METHOD BLANK MWVG3920908B R1-V-4.0'-4.5' 52

4294-2

ES-ENGI	NEERING SCIENCE	,INC.		600 BANCROFT WAY BERKELEY, CA 94710
		GC ANALYTICAL ANALYTICAL RE BTEX AROMATIC	PORT	
MATRIX:	SOIL	COLUMN ID:	VGC-3 VOCOL	DATE:09/08/92
	LABORATORY NO.		CLIENT ID	a-a-a-TriFluoro Toluene
	MSVG3920908B 4294-1 4294-4		METHOD BLANK R1-A-8.5'-10' R1-V-18.5'-19'	110 77 97

ES-ENGINEERI	NG SCIENCE, INC.		600 BANCROFT WAY BERKELEY, CA 94710
	GC ANALYTIC ANALYTICAL BTEX AROMAT		
MATRIX: SOIL	COLUMN I	D: VGC-5 DB624	DATE: 09/04/92
323323332223		*************	*****************
LABC	RATORY NO.	CLIENT ID	a-a-a-TriFluoro Toluene
*******		: # = = # = # = # = # = # = # = # = # =	**********
ssve		METHOD BLANK SPIKE SPIKE DUP R1-A-8.5'-10' R1-V-18.5'-19'	99 105 101 73 88

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS DATA PACKAGE

ORGANIC ANALYTICAL REPORT

Work Order NO.: 4294

Matrix: Soil

Parameter: TPH

Unit: mg/Kg

Analytical

Method: 418.1

Date Extracted: 09/15/92

QC Batch NO.: S92QCB023TPH

Date Analyzed: 09/22/92

		=========		
Sample ID:	Client ID:	Result	Reporting Limit	Percent Moisture
	=			
4294-01 4294-02 4294-04 MSTPH920915	R1-A-8.5'-10' R1-V-4.0'-4.5' R1-V-18.5'-19' METHOD BLANK	5700 37 8 หอ	5 5 4	17.5 16.2 14.9 NA

NA_ Not Analyzed ND_ Not Detected

ANALYST:

GROUP LEADER:

hum

ORGANIC QUALITY CONTROL RESULTS SUMMARY Blank Spike/Spike Duplicate

Work Order NO.: 4294

QC Sample NO.: SSTPH920915A & B Analytical Method: 418.1

Blank I.D.: MSTPH920915 Matrix: Soil

QC Batch NO.: S92QCB023TPH Unit: mg/Kg

		 *****	 3333333	******	******	3525335	3 3
Parameter	Analyzed			BSD		RPD	
TPH	09/22/92				104	_	= =

BS-Blank Spike
BSD-Blank Spike Duplicate
SA-Spike Added
BR_Blank Result
NA-Not Applicable
NC-Not Calculated
ND-Not Detected

RPD = ((BS - BSD) / ((BS + BSD) / 2)) * 100

PR=((BS OR BSD -BR)/SA)*100

ANALYST:

QUALITY CONTROL:

INORGANICS DATA PACKAGE

INORGANICS ANALYTICAL REPORT

Client: ES-Denver Work Order: 4294
Project: AFCEE Matrix: Solid

Client's ID: R1-A R1-V R1-V -8.5'-10' -4.0'-4.5' -18'

Sample Date: 08/27/92 08/26/92 08/26/92 % Moisture: Lab ID: 4294.01 4294.02 4292.03

Parameter		Results		Method	Normal Report Limit	Units	Date Analyzed
Alkalinity	ND	ND	ND	SM 403(M)	50	mg/Kg CaCO3	09/10/92
Moisture	17.5	16.2	9.1	ASTM D2216	5 .1	% by wt	09/04/92
pH	5.2	4.9	5.4	EPA 9045	NA	pH Units	09/15/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST: Um Illector

GROUP LEADER:

INORGANICS ANALYTICAL REPORT

Client:

ES-Denver

Work Order:

4294

Project:

AFCEE

Matrix:

Solid

Client's ID:

Prep

Blank

Sample Date:

% Moisture:

Lab ID:	Prep Blank	Method	Normal Report Limit	Units	Date Analyzed
Alkalinity	ND	SM 403(M	•	mg/Kg CaCO3	09/10/92
Moisture	NA	ASTM D22		% by wt	09/04/92
pH	NA	EPA 9045		pH Units	09/15/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

Deaton ANALYST:

GROUP LEADER:

600 Bancroft Way Berkeley, CA 94710

INORGANICS QC SUMMARY - LAB CONTROL SAMPLE

Work Order:

4294

% Moisture:

NA

Lab ID of LCS:

Matrix:

Solid

Alkalinity: 452.22 LCS

Units:

mg/Kg CaCO3

Parameter	Date Analyzed LCS	LCS Result	Conc Added	% Rec LCS	Advisory Limits % Rec Low High
Alkalinity	09/10/92	23000.00	23650.00	97	80 120

ANALYST: Don Dete 9/28/92 REVIEWER: NW Date 9/28/92

INORGANIC OC SUMMARY - MS and MSD

Work Order:

4294

% Moisture:

NA

Lab ID Spk/Dup:

Alkalinity Moisture pH

Matrix:

Solid

QC Batch:

Blank Spk 4286.01 4294.01 452.22 451.51 453.34

Units: mg/Kg CaCO3 (Alk)

t by wt. (Mois) pH Units (pH)

	Date		Results		RPD	RPD QC	-Conc Ac	ided-	Perc Recov	
Parameter	Analyzed MS/Dup	Unspiked Sample	MS/Sample	MSD/Dap		Limit	KS	MSD	NS.	KSD
									•	
Alkalinity	09/10/92	0.00	23000.00	23000.00	0	20	23650.00	23650.00	97	97
Moisture	09/04/92		15.34	18.00	16	20				
Вq	09/15/92		5.21	5.49	5	20				

* or H = Outside QC Limit:

OC Limits for & Rec:

75 - 125

File: M1QCHSWH

Mestor___ Date 9/28/92 REVIEWER:

METALS CASE NARRATIVE WORK ORDER NO.4294 SOILS

The concentration of iron in sample MPA-18 was greater than four times the spike added to the MS and MSD samples. The LCS and duplicate LCS results for iron were checked, and the laboratory was found to be in control. All iron results in this batch are therefore reported unqualified based on matrix spike recovery.

The serial dilution sample result for iron did not agree with the undiluted result within 10%, and the diluted sample result was greater than ten times the iron MDL. All iron results in this batch are therefore flagged with "E".

Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference:

CLIENT ID	ABRIDGED ID
R1-A-8.5'-10'	A-8.5'
R1-V-4.0'-4.5'	V-4.0'
R1-V-18'	V-18'

	Engine		nce - Berkeley ganics Report	La	borato		IENT SAMPLE ID
	:	INORGANIC	ANALYSES DATA	SHE	ET	. —	
Lab Name: E_S_	_BERKELEY_L	ABORATORY_	Contract: Al	FCE	E		A-8.5′
ib Code: ESBL	Ca	se No.: 42	94S SAS No.	: _		SDO	G No.: A-3
atrix (soil/wa	ater): SOIL	_		La	b Samp	le II	D: 4294.01
evel (low/med): LOW_	_		Da	te Samp	pled	: 08/27/92
Solids:	_82.	5					
Cor	ncentration	Units (ug	/L or mg/kg dr	y w	eight)	: MG	/KG
	CAS No.	 Analyte	 Concentration	c	Q	М	
	7439-89-6	Iron	1980		E	P_	
			<u> </u>	_ _			
1							
				_			
1							
				-		!—!	1

omments:

CLIENT SAMPLE ID

		TNORGANIC	ANALYSES DATA S	SHEET	CHIBNI CHILLE ID
	, .				V-4.0'
ab Name: E_S_	_BERKELEY_L	ABORATORY_	Contract: Al	FCEE	
ab Code: ESBL	Ca	se No.: 42	94S SAS No.	:	SDG No.: A-3
atrix (soil/wa	ater): SOIL	_		Lab Sample	e ID: 4294.02
evel (low/med): LOW_	_		Date Samp	led : 08/26/92
Solids:	_83.	8			
Cor	ncentration	Units (ug	/L or mg/kg dry	y weight):	MG/KG
	I GAG No	l Analysta	 Concentration		
	1	1		1 1 1	
	7439-89-6	Iron	11300	_ _E	P_
	ļ			_ .	_
				_ .	
·				_	
				-	_
				-	
				-	<u></u>
				_ .	_
				_ .	_
				_ _	_
	1	1			
					-
		•			
omments:					

3

Comments:

FORM I - IN

		2	,		CLIENT SAMPLE ID
		INORGANIC	ANALYSES DATA S	SHEET	
ab Name: E_S_	_BERKELEY_L	ABORATORY_	Contract: Al	FCEE	V-18'
b Code: ESBL	Ca	se No.: 42	94S SAS No.	:	SDG No.: A-3
trix (soil/w	ater): SOIL	_		Lab Samp	le ID: 4294.03
evel (low/med): LOW_	_		Date Sam	pled : 08/26/92
Solids:	_90.	9			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: MG/KG
	CAS No.	Analyte	 Concentration	Q	
ſ ı	7439-89-6	Iron	4720	E	P_
				-	<u> </u>
					<u> </u>
				-	
					<u> </u>
				_	_
				_	<u> </u>
	1				. !
			-		
omments:					

FORM I - IN

INORGANIC ANALYSES DATA SHEET

CLIENT SAMPLE ID

					PBLANK
Lab Name: E_S_					
Lab Code: ESBL	Cas	se No.: 42	94S SAS No.	:	. SDG No.: A-3
Matrix (soil/w	ater): SOIL	_		Lab Samp	ole ID: PREP BLANK
Level (low/med): LOW	_		Date Sam	pled : 09/16/92
% Solids:	100.0	2			
Co	ncentration	Units (ug	/L or mg/kg dr	ry weight)	: MG/KG
		1	1		
	CAS No.	Analyte	Concentration	1 C Q	M _
	7439-89-6	Iron	4.7	7 U E	P_
				_ _	-
				_ _	-
				_ _	_
				_ _	_
				_ _	
				- -	-
				_ _	- <u> </u> <u> </u>
				_ _	
				_ _	_
				_ _	
				_ _	_
				_ _	
Commonts			-	-	
Comments:					

FORM I - IN

				ganics Report SAMPLE RECOVEI	o v	CLI	ENT SAME	PLE	: ID
		25.1	VΓ	SAMPLE RECOVER	. I		MPA-188	 51	_
ab Name:	E_SBERF	KELEY_LABORATORY		Contract:	AF	CEE			
ab Code:	ESBL	Case No.:	42	294S SAS No	. :	SDG	No.: A-	-3_	
atrix (so	il/water)	: SOIL				Level (low	/med): I	LOF	!
Solids f	or Sample	e: _9 4 .7							
	Concent	tration Units (u	g/I	L or mg/kg dry	we	eight):MG/KG			
	 Control				1				
Analyte		Spiked Sample Result (SSR)	С	Sample Result (SR)	C	Spike Added (SA)	%R	Q	м
Tron		5182.9989_		4092.6921	! !	105.60	_1032.5		P_
			-						
			-					<u> </u>	
	[-		_			-	
			_					_	-
					_				
			_ 					_ _	_
			_		_ _			-	-
			-						
			_ _		_			_ _	
			_		-			<u> </u> _	
			_					_	
			_ _						
				1					

CLIENT SAMPLE ID SPIKE SAMPLE RECOVERY MPA-18S2 Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____ Lab Code: ESBL___ Case No.: 4294S SAS No.: ____ SDG No.: A-3___ Level (low/med): LOW___ Matrix (soil/water): SOIL___ % Solids for Sample: _94.7 Concentration Units (ug/L or mg/kg dry weight):MG/KG |Control| Analyte | ___4673.5023_|___4092.6921|_|___100.57|__577.5|_|P_| Iron___

Comments:	

FORM V (Part 1) - IN

CLIENT	SAMPLE	ID
--------	--------	----

								MPA-18SD	
a h	Name.	E	S	BERKELEY	LABORATORY	Contract:	AFCEE		_

ub Code: ESBL___ Case No.: 4294S SAS No.: ____ SDG No.: A-3___

Solids for Sample: _94.7 % Solids for Duplicate: _94.9

Concentration Units (ug/L or mg/kg dry weight):MG/KG

Analyte	Control Limit		Sample Spike Duplicate (D) C	
Iron		5182.9989 _	4673.5023	10.3_ _P_
	.		_	
	.		_	
	.		_	
	_		_	
	_			
	-			
				- -
	_			_
				11

BLANK SPIKE SAMPLE

Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____

Lab Code: ESBL___ Case No.: 4294S SAS No.: ____ SDG No.: A-3___

Solid LCS Source: ESBL-LCSS____

Aqueous LCS Source:

Analyte	Aque True	eous (ug/L Found)		Found		Limits		
Iron		[100.0 _	84.9	_ 8	80.0	120.0	_84.9
						_			
						_	_		
				-		_			
				-		_			
					· · · · · · · ·	_	_		
						_			
		!				_	_		

BLANK SPIKE SAMPLE

h:b Name: E_S	SBERKELEY_LABORAT	ORY_ Con	tract: AFCEE	Account	
Lab Code: ESI	BL Case No.	: 4294S SAS	No.:	SDG No.: A	3
lid LCS Sou	irce: ESBL-LCSS_	_			
■ Aqueous LCS S	Source:				

Analyte	Aque True	ous (ug/L Found	,) %R	True	Soli Found	.d (mg/kg) Lim	its	%R
Tron	-			100.0	87.1	- -	80.01	120.0	_87.
	_					- -			
						_ _			
	_					- -			
	_					- -			
						_ _			

BLANK SPIKE DUPLICATE	ICATE
-----------------------	-------

Lab Name: E_SBERKELEY_LABORA	ATORY_ Contract: AF	FCEE	
Lab Code: ESBL Case No	o.: 4294S SAS No.:	: SDG No	o.: A-3
Matrix (soil/water). SOIL		Level (low/me	ed): _LOW

% Solids for Duplicate: 100.0 % Solids for Sample: 100.0

Matrix (soil/water): SOIL_

Concentration Units (ug/L or mg/kg as received):MG/KG

	Control	Blank		Blank Spike		200		1
Analyte	Limit	Spike (S)	CI	Duplicate (D)	_		Q	I
Iron		84.9380		87.1320	_ _	2.6_	_	P_
			_ _				_	
			- -					
			- -		- -		_	_ _
			- -		-			_
			- -					-
			- -					<u> </u> _
								<u> </u> _
			- -					_
			- -				_	<u> </u> _
			- -				_	<u> </u>
							<u>-</u>	<u> </u> _

ICP SERIAL DILUTION

EPA SAMPLE NO.

						MPA-18L
Lab	Name:	E_S_	_BERKELEY_LABORATORY_	Contract:	AFCEE	

b Code: ESBL__ Case No.: 4294S_ SAS No.: ____ SDG No.: A-3___

F trix (soil/water): SOIL_ Level (low/med): LOW___

Concentration Units: ug/L

1	1	1	Serial		%	1	
	Initial Sample	i	Dilution	1	Differ-	1	
Analyte	Result (I)	ci	Result (S)	C	ence	IQ	M
Iron	39532.95		43887.12_		11.0_	E	P_
		1_1		_ _	<u> </u>	!	!
		1_1		_ _	<u> </u>	!!-	!
		_		-!-!	!!	!!-	!!
		<u> </u>		_!_!	!		
		!-!		-!-!		-	
		!-!		- -	!	-	!!
		-		- -		-	
		-		-{-{		-	
		-		- -	<u> </u>	i	i —
		-		- -		i	
		-		-i -i		ΙÏΞ	<u> </u>
		i – i		_i_i			
		i		_ _		11_	
		İΞİ			l	11_	1
		1_1		_ _		11_	1_
		1_1		_ _		!!_	!—
		1_1		_ _	<u> </u>	!!_	!
		_		_!_!		!!-	!
		1_1		_!_!		!!-	!—
		<u> _ </u>		-!-!		!!-	!—
		<u> </u>		- -	!	!!-	!
		1_1		_1_1		11_	.1

Engineering Science - Berkeley Laboratory

Method Detection Limits (Annually)

Lab Name: E_SBERKELEY_LABORATORY_	Contract: AFCEB
Lab Code: ESBL Case No.: 4294S_	SAS No.: SDG No.: A-3
CCP ID Number: TJA_61M	Date: 09/01/92
Flame AA ID Number :	Matrix: SOIL_
Furnace AA ID Number :	(ug/L in 1.00g to 100ml digestate)

			·		
	Wave-				
	length	Back-		MDL	
Analyte	(nm)	ground	i	(ug/L)	М
unarice		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	
	271 44			47.0	P
Iron	_2/1.44_				- —
			ļ		
					l
			!		
					!

Comments:	

PREPARATION LOG

Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____

Ab Code: ESBL___ Case No.:_4294S_ SAS No.: ____ SDG No.:A-3___

: :thod: P_

EPA	! !		
Sample	Preparation		Volume
No.	Date	(gram)	(mL)
A-3	_09/16/92		
	_09/16/92		
A-8.5'	_09/16/92		
LCSS		1.00	
LCSSD		1.00	100
MPA-07	_09/16/92	1.06	100
MPA-18	_09/16/92	1.02	100
MPA-1852_	_09/16/92	1.05	100
MPA-1851_	_09/16/92	1.00	1001
MPB-06	[_09/16/92]	1.03	100
MPB-18	_09/16/92	1.00	100
MPC-06	1_09/16/92	1.00	100
MPD5'8	_09/16/92	1.03	100
PBLANK	_09/16/92	1.00	100
V-18'	[_09/16/92	1.06	100
V-4.0'	[_09/16/92	1.02	100
V-7'3"	09/16/92	1.02	100
VW-8	09/16/92	1.05	100
1			
	1		
	·		

FORM XIII - IN

ANALYSIS RUN LOG

Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____

Lab Code: ESBL__ Case No.: 4294S_ SAS No.: ____ SDG No.:A-3___

Instrument ID Number: TJA 61 M_ Method: P_

Start Date: 09/17/92

End Date: 09/17/92

														Ar	ıal	yt	es	5										
EPA				_	!_					-														1	1	1	1	_
Sample	D/F	Time	%	R	F				ļ	- 1	. !	1	. !			1		- 1	. !	1	- !				ı	- 1	1	
No.					E				į		1														_	_	_	
STD1	1.00	1423			X	_								_	_	_	_	_	_		_	_	_	_	_		_	_
STD2	1.00	1427			X	_	_	_	_	_	_	_	_	_	_	_		_	_!	_!	_!	_	_	_	_!	-!	-!	_
STD3	1.00				X	_	_	_	_	_	_	_	_	_	_	_	_	_	_!	_!	_	_	_	_	_	-!	-!	_
STD4	1.00	1437			X	_	_	_	_	_	_	_	_	_	_	_	_	_	_ [_!	_	-	_	_	_	-!	-!	_
ICV	1.00	1441			X	_	_	_	_1	_	_	_	_	_	_	_	_	_	_!	_!	_	_	_	_	_	_!	-!	_
ICB	1.00	1446			X	_	_	_	_	_		_	_	_	_	_	_	_		_!	_	_	<u> </u> _	_	_	-!	-!	_
ICSA	1.00	1451			X	_	_	_	_1	_1	_	_	_	_	_	_	_	_	_	_!	_	_	<u> </u> _	_	-	-!	-!	_
ICSAB	1.00	1455			X	_	_	_	_		_	_	_		_	_	_	_	_	_	_	_	_	_	_	-!	-!	_
CRI	1.00	1500			1_1	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	 	_	_	_!	-!	-!	-
PBLANK	1.00	1504			X	_	_	_	_	_	_	_	_	!	_	_	_	_	_	_	_	_	_	_	-	-!	-!	. –
ZZZZZZ	1.00	1509			1_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_		_	_	_	-	-!	-¦	_
LCSS	1.00	1514			X		_	_	_	_	_	_	_	_	_	_	_	_	_		-	_	-	_	-	-!	-!	-
LCSSD	1.00	1518			X		 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ļ — l	_	-	-	-!	-
A-8.5'	1.00	1523			X	_	_	_	_	_	_	_	_		<u> </u>	_	_	_	_	_	_	! —	!	-	!!	_	-	-
V-4.0'		1527			X	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		—		-		-	i –
V-18'		1532			X		! _	<u> </u> _	_	_	_	_	_	_	_	_	-	-	-	_	-	! —	-		-		-	, -
CCVI		1537			X	_	!	_	_	_	_	_	_	_		_	-	_	-	-	_	! —	-	¦ —	-		-	-
CCB		1541			X	_	<u> </u>	_	_	_	_	_	_	_	-	ļ —	-	-	_	-	-	—	! —	! —	-	-	-	i –
V-7'3"	1.00				X		! —	_	_	_	_	-	_	-	-	! —	-	-	-	-	-	! —	!-	-			-	-
A-5	1.00				X	_	<u> </u> –	_	_	_	_	-	_	! -	<u> </u>	—		! —	-	-	-	!-	-	-	-		-	ı –
A-3	1.00				X		_	-	_	_	_	_	—	_	_	-	-	<u> </u> _ :			-	! —	¦ —	¦ —	-	-	-	i
VW-8		1600			X	_	! —	-	_	_	-	-	—	-	! —	—		-	-	-	-	-	¦ —	-	-	-	_	i –
MPA-07		1604			X	_	<u> </u> –	-	_	_		-		-		! —	!-	i —	-		-	!-	-	-	-	-	-	ī
MPA-18_		1609			X		-		_	_	<u> </u>	-	—	-	—	! —	¦ —	-	_	-	-	-	¦ –	-	-	-	_	Ī
MPA-1851		1614			X	_	!-	-	_	_	-	_			-	! —	-	! —	-		-	¦ —	-	¦ –	-	-		ı –
MPA-1852		1618			X	_	-	! —	-	_	-	! —	-	-	<u> </u> –	-	-	-	-	-	1-	<u> </u> –	1-	-	i – i		_	1
MPA-18L_	1.00				X	_	!-	-	-	-	-	! — <u>'</u>	! —	-	-	! —	-	!-		-	¦ —	¦ –	¦-	;	-	i-i	_	Ī
ccv		1627			X		-	! —	-	-	—	-	-		! —	¦ —	-	-	-	-	-	1-	i –	i –	-		_	i
CCB	1.00				X	_	!-	-	-	—	¦ —	-	-	-	<u> </u> –	!-	1-	-	<u> </u>	-	-	i –	1-	i —	-		_	i
MPB-18	1.00	1637	! ——		X		!-	-		! —			-	<u> </u> —	<u> </u>	-	-	-	-	i – i	-	i –	i –	i –	-	i – i		Ī
MPB-06			ļ		X		!-	! —	-		—	-	¦ —	! -	-	-	-	i —	1-	-	-	i	i –	i	i —	_ i		i _
MPC-06	1.00	1646	!		X	! —	! —	! —	-		-	-	-	!-	! —	!-	-	-	<u> </u>	-	¦ —	-	i —	i –	i –	i	_	1

ANALYSIS RUN LOG

Lab Name: E_S__BERKELEY_LABORATORY_ Contract: AFCEE_____

_b Code: ESBL__ Case No.: 4294S_ SAS No.: ____ SDG No.:A-3___

I strument ID Number: TJA 61 M_

Method: P_

Start Date: 09/17/92

End Date: 09/17/92

				!	 						An	al	yt	es	-										-
EPA Sample No.	D/F	 Time	% R	F				1										1				1			-
No. IPD5'8 ICSA ICSAB ICSAB ICRI ICV ICB	1.00																								

TOTAL KJELDAHL NITROGEN

TOTAL PHOSPHATE

SOIL CLASSIFICATION

DATA PACKAGE

Engineering Science, Inc. 600 Bancroft Way

Client Project ID: Sample Descript: W.O. #4294

Sampled: Received:

8/26-27/92 Sep 2, 1992

Berkeley, CA 94710 Attention: Tom Paulson Analysis for: First Sample #: Soil Total Kjeldahl Nitrogen 209-0160

Analyzed: Reported:

Sep 3, 1992 Sep 21, 1992

LABORATORY ANALYSIS FOR:

Total Kjeldahl Nitrogen

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
209-0160	R1-A-8.5'-10'	20	68
209-0161	R1-V-4.0'-4.5'	20	110
209-0162	R1-V-18'	20	92
•	Method Blank	20	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

JODIE

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

2090160.ENG <5>

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript: W.O. #4294

Soil

Total Phosphorous

Analysis for: Total Pho First Sample #: 209-0160 Sampled:

8/26-27/92

Received: Analyzed:

Sep 2, 1992 Sep 16, 1992

Reported:

Sep 21, 1992

LABORATORY ANALYSIS FOR:

Total Phosphorous

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
209-0160	R1-A-8.5'-10'	10	79
209-0161	R1-V-4.0'-4.5'	10	.110
209-0162	R1-V-18'	10	64
-	Method Blank	10	N.D.

THIS REPORT HAS BEEN
APPROVED AND REVIEWED BY

ESBL PROJECT MANAGER

DAT

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

-PETT

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

2090160.ENG <4>

Engineering Science, Inc.

Client Project ID: W.O. #4294

600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson

QC Sample Group: 209-0160-62

Reported: Sep 21, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Total Kjeldahl Nitrogen	Total Phosphorous
	144090.	
Method:	EPA351.4	EPA365.3
Analyst:	G. Kern	K. Follett
Reporting Units:	mg/kg	mg/kg
Date Analyzed:	Sep 3, 1992	Jul 16, 1992
QC Sample #:	209-0162	209-0841
Sample Conc.:	84	40
, Campio Caman		
Spike Conc.		
Added:	4000	100
Conc. Matrix		
Spike:	4600	120
- 1		
Matrix Spike		
% Recovery:	113	80
,3 ,100010. j.		
Conc. Matrix		
Spike Dup.:	4600	130
Shive pah	4000	
Matrix Spike		
Duplicate		
% Recovery:	113	90
Relative		
% Difference:	0.0	8.0
70 Dinici Ciroc.	3.3	

SEQUOIA ANALYTICAL

10010

Tod Granicher Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2090160.ENG <6>

Engineering Science, Inc.

600 Bancroft Way Berkeley, CA 94710 Client Project ID:

W.O. #4294

Sampled:

Aug 27, 1992

Sample Descript:

Soil, R1-A-8.5'-10' Method of Analysis: ASTM D422-63

Received: Analyzed: Sep 2, 1992 Sep 9, 1992

Attention: Tom Paulson

Lab Number:

209-0160

Reported:

Sep 21, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

229.98g
0.75g
99.67

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in.	0.0	0.0	0.0	100
3/8in.	0.0	0.0	0.0	100
No. 4	0.0	0.0	0.0	100
No. 10	0.75g	0.33	0.33	99.67
	0.0			

PAN 0.75g TOTAL

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
	°C	READING (H)	READING (R)	(L)	DIAM. (S)
(T) 2	21	22	18	13.3	0.035
5	21	20	16	13.7	0.022
10	21	19	15	13.8	0.016
15	21	18	14	14.0	0.013
25	21	18	14	14.0	0.010
40	21	18	14	14.0	0.0080
60	21	17	13	14.2	0.0067
90	21	17	13	14.2	0.0054
120	21	17	13	14.2	0.0046
1440	21	16	12	14.3	0.0013

% SUSPENDED
(P) 28
28
25 23 22 22 22 22 20 20 20
23
22
22
22
20
20
20
19

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65g 0.988 2.65 3 1 0.01348

FORMULAS:

R = H - E - F

S = K[SQRT(L/T)]P = (R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

200m

Tod Granicher Project Manager

2090160.ENG <1>

Engineering Science, Inc. 600 Bancroft Wav

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript:

Lab Number:

W.O. #4294 Soil, R1-V-4.0'-4.5'

Method of Analysis: ASTM D422-63 209-0161

Sampled: Received: Analyzed: Aug 26, 1992 Sep 2, 1992

Reported:

Sep 9, 1992 Sep 21, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

155.43g	
0.50g	
99.68	_

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in.	0.0	0.0	0.0	100
3/8in.	0.0	0.0	0.0	100
No. 4	0.0	0.0	0.0	100
No. 10	0.50	0.32	0.32	99.68
PAN	0.0			

0.50 TOTAL

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	21	29	25	12.2	0.033
5	21	28	25	12.4	0.021
10	21	27	23	12.5	0.015
15	21	27	23	12.5	0.012
25	21	27	23	12.5	0.0095
40	21	26	22	12.7	0.0076
60	21	26	22	12.7	0.0062
90	21	25	21	12.9	0.0051
120	21	24	20	13.0	0.0044
1440	21	24	20	13.0	0.0013

% SUSPENDED
(P)
(P) 38 37 35 35 35 34 34 32 31
37
35
35
35
34
34
32
31
31

CHODENDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

	65g
	0.996
	2.65
į	3
	1
	0.01348

FORMULAS:

R = H-E-F

S = K[SQRT(L/T)]

P = (R/W) 100 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

Tod Granicher Project Manager

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

W.O. #4294

Soil, R1-V-18'

Sample Descript: Method of Analysis: ASTM D422-63

Lab Number:

209-0162

Sampled:

Aug 26, 1992

Received:

Sep 2, 1992 Sep 9, 1992

Analyzed: Reported:

Sep 21, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

185.38g	
38.93g	
79.00	

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in.	0.0	0.0	0.0	100
3/8in.	0.0	0.0	0.0	100
No. 4	5.49	2.96	2.96	97.04
No. 10	33.44	18.04	21.00	79.00
			1	
PAN	0.0			

38.93 TOTAL

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	21	22	18	13.3	0.035
5	21	20	16	13.7	0.022
10	21	19	15	13.8	0.016
15	21	19	15	13.8	0.013
25	21	19	15	13.8	0.010
40	21	18	14	14.0	0.0080
60	21	18	14	14.0	0.0065
90	21	18	14	14.0	0.0053
120	21	17	13	14.2	0.0046
1440	21	17	13	14.2	0.0013

% SUSPENDED
(P)
(P) 28 25
25
23 22 22 22 22 20 20
22
22
22
20
20
20
19

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65g	ı
0.991	
2.65	
3	l
1.	l
0.01348	

FORMULAS:

R = H - E - F

S = K[SQRT(L/T)]

P = (R/W)100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

TONE

Tod Granicher Project Manager

2090160.ENG <3>

ENGINEENING-BCIENCE

CHAIN OF CUSTODY RECORD

PI	PROJECT NAME/LOCATION	PRI	PRESERVATIVES	ES REQUIRED	RED	BHIP TO:
4294		N				
		1/1/ 1/1/	ANALYBES	REQUIRED		
SIGNATURES	URES	137AHG 15M0 1450	wrog			
ESTELTO N. DELOS TRINOS	vixtos	25/10/2017 - 10/2018	my S			
- 1	1	57805 51602 51602				ремлика
ELD 6	FIELD SAMPLE IDENTIFIER	_				
- A-B	RI-A-B,5-10' (4294.018)		20	0	0	2 week 119T
4-1	21-1-4,0-4,51(4294,028)	7	70	0	ا –	Report to Torn Painker 1 Es
2	RI-V-181 (4294,038	7	7 0	0	7 9	Report resultion
						dry soil basis. Rigart
						My Inso + Stank results
						Total phasp. by 365.3
						TKN 64 3512
LINQI	RELINQUISHED BY:	Jaren			DATE: G	177 QUEINE: 1/25
	AIRBILL #	ON	RECEIPT:	CUBTODY	BEALB?	; TEMP:
TAROL	DILLEGISTRES TO TABORATORY BY:				DATE: 9	9 12 192 TIME: 11:25 AC
				()		10 to 170

CHAIN OF CUSTODY RECORD

1602 91455 102 31455 Brass Sleene Hdd Soil alass Bases Sleeve 3/11/55 Brass Stee 0,485 4 03 9 m SS 63/41/54 16 06 9 HISS Remarks 402 1662 Received by: Received by: (Signature) (Signature) Containers to Number Container No. Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) 9/1/93 0930 7. Date/Time 7 7 7 7 Ľ H97/1774 Received for Labbratory by: Z['] Received by: (Signature) 4.5. 19 (Signatura (Signature) 2 8.5'- 10' SAMPLE I.D. 5 RI-A-85' 4.0 4.0 9:15 AFB 30:50 RI- A-RI- V-21-1-Date/Time Date/Time Date/Time R1-V--11-10 PI- V 18/31 3DAUG 92 Robins Project Title mark-1 TIME Stukn Borner Relinquished by: (Signature) Relinquished by: (Signature) 0430 0930 1515 0930 1400 1400 1515 1400 Amand Luch SAMPLERS: (Signature) Columbus Laboratories Proj. No. (Job DE268.03 Su AUG 92 26 AUG 92 20 AUG 92 27 AUG 92 26 AUG 93 24 AUB 42 26 Au6 92 27 AUG 92 27 Aug 92 DATE

Baffelle

Pane

ċ

BERKELEY LABORATORY 600 BANCROFT WAY BERKELEY, CA 94710 Tel: (415) 841-7353

Report Date: October 15, 1992

Work Order No.:4310

Client:

Jeff Kittel Battelle

505 King Ave

Columbus, OH 43201

Date of Sample Receipt: 09/04/92

Your soil samples identified as:

R2-V-7'-3" R2-A-5-5.5' R2-A-3-3.5'

were analyzed for BTEX by EPA Method 8020, pH, alkalinity, iron, total kjeldahl nitrogen, soil moisture, TRPH by EPA Method 418.1, soil classification by ASTM D422 and total phosphorus.

The analytical reports for the samples listed above are attached.

GC VOLATILES DATA PACKAGE

Work Order NO.:4310

% Moisture: 8.18

Client ID:R2-V-7'3"

Matrix:SOIL

Laboratory ID:4310-1

Level: MEDIUM

Unit:ug/KG

Dilution Factor:

20

Date Analyzed:09/09/92 Date Confirmed:09/14/92

Comp	oound	Primary Result	Confirmatory Result	Reportin Limit
Benz	ene	ND	ND	1300.0
Ethy	yl Benzene	24000.0	39000.0	1100.0
Tolu	iene	68000.0	59000.0	1500.0
Xyle	enes (total)	170000.0	220000.0	2000.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST:

GROUP LEADER: KULL

Work Order NO.:4310

% Moisture: 8.18

Client ID: R2-A-5-5.5'

Matrix: SOIL

Laboratory ID:4310-2

Level: MEDIUM

Unit:ug/KG

Dilution Factor:

Date Analyzed:09/09/92 Date Confirmed: 09/14/92

Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	260.0
Ethyl Benzene	480.0	2000.0	220.0
Toluene	870.0	700.0	300.0
Xylenes (total)	3600.0	6800.0	390.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: A

GROUP LEADER: Kusul

Work Order NO.:4310

% Moisture: 11.82

Client ID: R2-A-3-3.5'

Matrix:SOIL

Laboratory ID:4310-3

Level:LOW

Unit:ug/KG

Dilution Factor:

=

Date Analyzed:09/10/92 Date Confirmed:09/14/92

	Compound	Primary Result	Confirmatory Result	Reportin Limit
-	Benzene	80.0	53.0	3.4
	Ethyl Benzene	83.0	54.0	2.8
	Toluene	100.0	98.0	4.0
	Xylenes (total)	480.0	540.0	5.1

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: A

GROUP LEADER: Ky MI

Work Order NO.:4310

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID: MSVG3920910

Level:LOW

Unit:ug/KG

Dilution Factor:

1

Date Analyzed: 09/10/92
Date Confirmed:

Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	0.6
Ethyl Benzene	ND	ИD	0.5
Toluene	ND	ND	0.7
Xylenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AB

GROUP LEADER: full

Work Order NO.:4310

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID: MSVG5920914

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:09/14/92

Date Confirmed:

<u></u>	Compound	Primary Result	Confirmatory Result	Reportin Limit
-	Benzene	ND	ND	0.6
	Ethyl Benzene	ND	ND	0.5
	Toluene	ND	ND	0.7
	Xylenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AB

GROUP LEADER: LUM

Work Order NO.:4310

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID: MWVG3920909

Level: MEDIUM

Unit:ug/KG

Dilution Factor:

1

Date Analyzed:09/09/92
Date Confirmed:

Compou	nd	Primary Result	Confirmatory Result	Reporting Limit
Benzen	e	ND	ND	60.0
Ethyl I	Benzene	ND	ND	50.0
Toluen	e	ND	ND	70.0
Xylene	s (total)	ND	ND	90.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AB

GROUP LEADER: K WILL

Work Order NO.:4310

% Moisture: NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID: MWVG2920914

Level: MEDIUM

Unit:ug/KG

Dilution Factor:

1

Date Analyzed:09/14/92

Date Confirmed:

Compound	Primary Result	Confirmatory Result	Reportin Limit
Benzene	ND	ND	60.0
Ethyl Benzene	ND	ND	50.0
Toluene	ND	ND	70.0
Xylenes (total)	ND	ND	9 0 .0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: A

GROUP LEADER: Kusm

ES-ENGI	NEERING SCIENCE	, INC.		600 BANCROFT WAY BERKELEY, CA 94710
		GC ANALYTICAL ANALYTICAL RE BTEX AROMATIC	PORT	
MATRIX:	LOW SOIL	COLUMN ID:	AGC-3 AOCOF	DATE:09/10/92
				•
	LABORATORY NO.		CLIENT ID	a-a-a-TriFluoro Toluene

ES-ENGINEERING SCIENC	E, INC.	-	BANCROFT WAY RKELEY, CA 94710
	GC ANALYTICAL REPO ANALYTICAL REPORT BTEX AROMATIC COMP		
MATRIX: LOW SOIL	COLUMN ID: VGC	-5 DB624 DA	re:09/14/92
LABORATORY NO	. CLI		a-a-TriFluoro luene

ES-ENGINEERING SCIENCE, INC. 600 BANCROFT WAY BERKELEY, CA 94710 GC ANALYTICAL REPORT ANALYTICAL REPORT BTEX AROMATIC COMPOUNDS MATRIX: MEDIUM SOIL COLUMN ID: VGC-3 VOCOL DATE:09/09/92 LABORATORY NO. CLIENT ID a-a-a-TriFluoro Toluene MWVG3920909 METHOD BLANK 78 SWVG3920909A SPIKE 98 SWVG3920909B SPIKE DUP 99

R2-V-7'3"

R2-A-5-5.5'

71

98

4310-1

4310-2

ES-ENGINEERING SCIENCE, INC.	600 BANCRO	600 BANCROFT WAY BERKELEY, CA 94710	
ANALYTICA	CAL REPORT L REPORT TIC COMPOUNDS		
MATRIX: MEDIUM SOIL COLUMN	ID: VGC-2 DB624 DATE:09/14	/92	
LABORATORY NO.	CLIENT ID a-a-a-TriF Toluene	luoro	
MWVG2920914 4310-1	METHOD BLANK R2-V-7'3" R2-A-5-5.5'	98 140 118	

.

WO # 4210

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/10/92

LAB SAMPLE ID: MSVG3920910

DATE EXTRACTED : NA

MATRIX :SOIL

INSTRUMENT ID: VGC-3

CLIENT SAMPLE ID	DATE ANALYZED
METHOD BLANK	09/10/92
SPIKE	09/10/92
SPIKE DUPLICATE	09/10/92
R2-A-3-3.5'	09/10/92
	SAMPLE ID METHOD BLANK SPIKE SPIKE DUPLICATE

WO # 4310

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/14/92

LAB SAMPLE ID: MSVG5920914

DATE EXTRACTED : NA

MATRIX :SOIL

INSTRUMENT ID: VGC-5

LAB Sample ID		
MSVG5920914	METHOD BLANK	09/14/92
SSVG5920914A	SPIKE	09/14/92
SSVG5920914B	SPIKE DUPLICATE	09/14/92
4310-3	R2-A-3-3.5'	09/14/92

WO # 4310

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/10/92

LAB SAMPLE ID: MWVG3920909 DATE EXTRACTED : NA

MATRIX : MEDIUM SOIL INSTRUMENT ID: VGC-3

LAB	CLIENT	DATE	
SAMPLE ID	SAMPLE ID	ANALYZED	
MWVG3920909 SWVG3920909A SWVG3920909B 4310-1 4310-2	METHOD BLANK SPIKE SPIKE DUP R2-V-7'3" R2-V-5-5.5'	09/09/92 09/09/92 09/09/92 09/09/92 09/09/92	

WO # 4310

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :09/14/92

LAB SAMPLE ID:MWVG2920914 DATE EXTRACTED : NA

MATRIX :MEDIUM SOIL INSTRUMENT ID:VGC-2

LAB	CLIENT	DATE
SAMPLE ID SAMPLE ID		ANALYZED
MWVG2920914	METHOD BLANK	09/14/92
4310-1	R2-V-7'-3"	09/14/92
4310-2	R2-A-5-5.5'	09/14/92

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS DATA PACKAGE

ORGANIC ANALYTICAL REPORT

Work Order NO.: 4310

Matrix: Soil

Parameter: TPH

Unit: mg/Kg

Analytical

Method: 418.1

Date Extracted: 09/22/92

QC Batch NO.: S92QCB023TPH

Date Analyzeď: 09/22/92

Sample ID:	Client ID:	Result	Reporting Limit	Percent Moisture
4310-01	R2-V-7'3"	9000	4	8.2
4310-02	R2-A-5-5.5'	58	5	11.8
4310-03	R2-A-3-3.5'	150	4	9.8
MSTPH920922	METHOD BLANK	ND	4	NA

NA_ Not Analyzed ND_ Not Detected

ANALYST:

GROUP LEADER:

him

ORGANIC QUALITY CONTROL RESULTS SUMMARY Blank Spike/Spike Duplicate

Work Order NO.: 4310

QC Sample NO.: SSTPH920915A & B

Analytical Method: 418.1

Blank I.D.: MSTPH920915

Matrix: Soil

QC Batch NO.: S92QCB023TPH

Unit: mg/Kg

222222222		 	 	3888888			=
Parameter	Date Analyzed			BSD	PR	RPD	
ŢРН	09/22/92					2	_

BS-Blank Spike
BSD-Blank Spike Duplicate
SA-Spike Added
BR_Blank Result
NA-Not Applicable
NC-Not Calculated
ND-Not Detected

RPD = ((BS - BSD) / ((BS + BSD) / 2)) * 100

PR=((BS OR BSD -BR)/SA)*100

ANALYST:

QUALITY CONTROL:

MM

INORGANICS DATA PACKAGE

新、たいても、これのとのではなるとなっているという。

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Denver AFCEE			Work Order Matrix:	r:	4310 Solid	
Client's ID	: R2-V -7'3"	R2-A -5-5.5'	R2-A -3-3.5'				• • •
Sample Date % Moisture:	: 09/01/92	09/01/92	09/01/92				· .
Lab ID:	4310.01	4310.02	4310.03		Normal		
Parameter		Results		Method	Report Limit	Units	Date Analyzed
Alkalinity	ND	ND	ND	SM 403(M)	50	mg/Kg CaCO3	09/10/92
Moisture pH	8.2 5.2	11.8 5.0	9.8 5.8	ASTM D2216 EPA 9045	.1 NA	% by wt pH Units	09/18/92 09/15/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST: Non Meaton

GROUP LEADER

pH Units

NA

09/15/92

INORGANICS ANALYTICAL REPORT

Client:

ES-Denver

Work Order:

4310

Project:

AFCEE

Matrix:

EPA 9045

Solid

Client's ID:

Prep

Blank

NA

Sample Date:

% Moisture:

Lab ID:

pH

Prep Blank

Lab ID: Parameter	Results	Method	Normal Report Limit	Units	Date Analyzed
Alkalinity	ND NA	SM 403(M) ASTM D221	50 6 .1	mg/Kg CaCO3	09/10/92 09/18/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

ANALYST.

GROUP LEADER:

INORGANICS QC SUMMARY - LAB CONTROL SAMPLE

Work Order:

4310

% Moisture:

NA

Lab ID of LCS:

Alkalinity:

452.22 LCS

Matrix:

Solid

Units:

mg/Kg CaCO3

Parameter	Date Analyzed LCS	LCS Result	Conc Added	% Rec LCS	Advisory Lim % Rec - Low H	
Alkalinity	09/10/92	23000.00	23650.00	97	80	120

on Meator Date 9/28/92 REVIEWER: My Date 9/19/92

File:M1QCLCSW

INORGANIC QC SUMMARY - MS and MSD

Work Order:

4310

1 Moisture:

HA

Lab ID Spk/Dup:

Alkalinity Hoisture pН Matrix:

Solid

75 -

125

OC Batch:

Blank Spk 4310.01 4294.01 451.52 453.34 452.22

Units: mg/Kg CaCO3 (Alk)

t by wt. (Mois)

pH Units (pH)

	Date Analyzed	Result	J	RPD	RPD	-Conc Ad	ided-	Perc Recov	
Parameter	MS/Dap	Sample MS/Sam	ple MSD/Dup		Limit	KS	KSD	KS	HSD
Alkalinity	09/10/92	9.00 23000		9		23650.00	23650.00	97	97
Hoisture pH	09/18/92 0 9/15/92	_	. 18 8.18 . 21 5.49	9 5	20 20		•		

QC Limits for & Rec: * or H = Outside QC Limit: Mester Date 9/28/92 REVIEWER: ABALYST:

File: H1QCHSWH

METALS DATA PACKAGE

Engineering Science - Berkeley Laboratory Inorganics Report CLIENT SAMPLE ID

INORGANIC ANALYSES DATA SHEET V-7'3" Lab Name: E_S__BERKELEY_LABORATORY_ Contract: AFCEE____ Lab Code: ESBL___ Case No.: 4294S SAS No.: ____ SDG No.: A-3___ Lab Sample ID: 4310.01____ Matrix (soil/water): SOIL_ Date Sampled: 09/01/92 Level (low/med): LOW _91.8 % Solids: Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	 Analyte	 Concentration	C	 Q	 M
7439-89-6	Iron	1780	_	E	P_
			-		
			_ _		<u> </u>
			- -		
			_ _		
			-		
			_		
			_		
			_		
			-		
			_		
			_		
			_		i I

omments:				

Engineering Science - Berkeley Laboratory Inorganics Report CLIENT SAMPLE ID

		INORGANIC	ANALYSES DATA S	SHEET	
ab Name: E_S_	_BERKELEY_L	ABORATORY_	Contract: AF	FCEE	A-5
ab Code: ESBL	Cas	se No.: 42	94S SAS No.:		SDG No.: A-3
atrix (soil/w	ater): SOIL	-		Lab Samp	ole ID: 4310.02
evel (low/med): LOW_	_		Date Sam	pled: 09/01/92
Solids:	_88.2	2			
Co	ncentration	Units (ug	/L or mg/kg dry	y weight)	: MG/KG
	CAS No.	Analyte	 Concentration	C Q	м
	7439-89-6	Iron	4070	_ E	_ _ P
					-
				-	
				_	- -
					_
				-	-
				-	-
				-	
				-	-
					-¦
comments:					

INORGANIC ANALYSES DATA SHEET

CTTTMI	SWELTE	10

					A-3
			Contract: Al		
Lab Code: ESBL	Cas	se No.: 42	94S SAS No.		SDG No.: A-3
Matrix (soil/w	ater): SOIL	-		Lab Sample	e ID: 4310.03
Level (low/med): LOW	_		Date Samp	led: 09/01/92
% Solids:	_90.3	2			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight):	MG/KG
	1		!		_
	i		Concentration	_	M
	7439-89-6	Iron	4960	_ _E ¹	P_
					_ <u> </u>
				_	
				_	_
				_ .	
					_
					_
				_	_
				- -	_
					_
				_ .	<u>-</u> [
	<u> </u>			_	_
				-	_
				l _ l l .	1
					
					
Comments:					
		77	ODY T . TY		

		Inor	ganics Report		CLIENT SAM	MPLE ID
	:	INORGANIC	ANALYSES DATA	SHEET		
ab Name: E_S_	_BERKELEY_L	ABORATORY_	Contract: A	FCEE	PBLANI	K
ıb Code: ESBL	Ca:	se No.: 42	94S SAS No.	:	SDG No.: A	A-3
trix (soil/w	ater): SOIL			Lab Samp	le ID: PREP	BLANK
evel (low/med): LOW	_		Date Sam	pled : 09/1	5/92
Solids:	100.0	2				·
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: MG/KG	
	CAS No	Analyte	 Concentration		 M	
				1_1	<u>.ii</u>	
	1/439-89-6		4.7	!-!	P	
i				_	. .	
				_	.	
i						
				-		
				-		
				_	.ll .ll	
				-	.	
1				-		
					· — · —	
			I	_		

mments:						

ICP SERIAL DILUTION

EPA SAMPLE NO.

lab Name: E_S__BERKELEY_LABORATORY_ Contract: AFCEE___

Lab Code: ESBL___ Case No.: 4294S__ SAS No.: ____ SDG No.: A-3___

fatrix (soil/water): SOIL_

Level (low/med): LOW___

Concentration Units: ug/L

		Serial	%	
	Initial Sample	Dilution	Differ-	
Analyte	Result (I) C	Result (S) C	ence Q	М
Iron	39532.95 _	43887.12	11.0 E	P_
				_
			.	
			.	_
			. _ .	
			.	
				_
			.	
			.	
				_
			. - -	
		-	.	_
	-			
			·'	_
				_

Engineering Science - Berkeley Laboratory

Method Detection Limits (Annually)

hb Name: 1	E_S_BERKE	LEY_LABOR	ATORY_	Contract	AFCEE				
b Code: 1	ESBL	Case No.:	42948_	SAS No.:		s	DG No.:	A-3	-
ICP ID Num	ber:	TJA_61_	м	Date:	09/01/9	2			
ame AA II	D Number :		•	Matrix:	SOIL_				
rnace AA	ID Number	:		(ug/L in	1.00g to	100m	l diges	tate)	
				1	1	<u> </u>			
		Wave- length			 MDL	 			
_	Analyte			1	(ug/L)	М			
		271 44			47.0				
_	Iron	_2/1.44_ 			47.0	-			
=									
				<u> </u>					
						<u> _ </u>			
-									
						i = i			
-									
_									
•					ļ		•		
					l				
_									
comments:									
						· · · · · · · · · · · · · · · · · · ·			

FORM X - IN

ILMO2.

PREPARATION LOG

.ab Name: E_S__BERKELEY_LABORATORY_ Contract: AFCEE____

.ab Code: ESBL___ Case No.: _4294S_ SAS No.: ____ SDG No.: A-3___

fethod: P_

EPA Sample No.	 Preparation Date	Weight (gram)	Volume (mL)
No. A-3		(gram) 1.06 1.01 1.00 1.00 1.00 1.06 1.05	(mL) 100 100 100 100 100 100 100 1
V-4.0' V-7'3" VW-8		1.02	100

FORM XIII - IN

ILMO2.1

ANALYSIS RUN LOG

Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____

Code: ESBL__ Case No.: 4294S_ SAS No.: ____ SDG No.:A-3___

L strument ID Number: TJA 61 M_ Method: P_

tart Date: 09/17/92

End Date: 09/17/92

	· · · · · · · · · · · · · · · · · · ·			1									Ar	ıa]	Lyt	tes	5										<u> </u>
EPA		1 1		1_																							_
→ Sample	D/F	Time	% R	F																					[!
No.				E																					 		1
_TD1	1.00	1423		X	_												_	<u> </u>		_		_		_			_
TD2	1.00	1427		X	I_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_ _	_
STD3	1.00	1432		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_ _	_
STD4	1.00	1437		X	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	·:	_	_	_	_	_ _	_[
CV	1.00	1441		X	_	_	_	_	_	_	_	_	1_1	_	_	_	_	_	_	_		_	_	_	1_1	_ _	_
LCB	1.00	1446		X	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_		_ _	_
ICSA	1.00	1451		X	_	_	_	_1	_	_	_	_	_	_	_		_		_		_	_	_	_		_ _	_
CSAB	1.00	1455		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1_1	_1.	_
RI	1.00	1500		.1_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		-1-	_
PBLANK	1.00	1504		X	_	_	_	_	_	_	_	_	_	_	ا ــ ا	_	_	_	_	_	_	_	_	_		_ _	_
L ZZZZZ_	1.00	1509		. _	_	_	_	_	_	_	_	_	_	_	_	_	_	 _	_		_	_	 _	_	_1	_ _	_
css	1.00	1514		X	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_ _	_
LCSSD	1.00	1518		X	_	_	_	_	_	_	_	_	1_1	_	_	_	_	_	_	_	_	_	_	_		_ _	_
1-8.5'_	1.00	1523		X	_	_	_	_	_	_	_	_	1_1	_	_	_	_	_	_	_	_	_	_	_		_ _	_
-4.0'_	1.00	1527		X	_		_	_!	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_ _	_
v-18'	1.00	1532		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-1-	_[_
[ccv	1.00	1537		X	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		_ _	_
_ CB	1.00	1541		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_ _	_
-7'3"	1.00	1546		X	 _	_	_	_	_	_	 _	_	_	_	_	_	_	_	_	_	_	_	_	_		_ _	_
TA-5	1.00	1551		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_ -	_[
3	1.00	1555		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_ _	_
W-8	1.00	1600		X	 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		-1-	_
MPA-07	1.00	1604		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_!-	_
MPA-18		1609		X	1_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		-!-	_
■ PA-1851	1.00	1614		X	_	_	_	_	_	_	_	_	 _	_	_	_	_	_	_		_	_	_	_		_ -	_
-PA-1852	1.00	1618		X	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_ _	_
TMPA-18L_	1.00	1623		X	1_	_	_	_		_	_	_	1_1	_	_	_	_	_	_	_	_	_	_	_		_[_	_
_ CV	1.00	1627		X	1_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_[_	_
CB	1.00	1632		X	1_	_	_	_	_	_	1_1	 _	1_1	_	_	_	_	_	_	_	_	_	_	_		_ _	_
MPB-18	1.00	1637		X	1_	<u> </u>	_	_	_	_	_	_	1_1	_	_	_	_	_	_	_	_	_	_	_	_	_ _	_
"PB-06	1.00	1641		X	1_	_	 _	_	_	_	_	_	_	_	<u>_</u>	_	_	_	_		_	_	_	_		_ _	_
PC-06	1.00	1646		X	_ -	_	_ _	_	_ _	_	_ _	_	_	_ _	_	_ _	_ _	_	_ _	_	_	_ _	_	_ _		1:	_

ILMO2.1

ANALYSIS RUN LOG

ab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____

Lab Code: ESBL__ Case No.: 4294S_ SAS No.: ____ SDG No.:A-3___

Instrument ID Number: TJA 61 M_ Method: P_

Start Date: 09/17/92

End Date: 09/17/92

777							 			 Ar	nal	yt	es	;								
EPA Sample No.	D/F	Time	%	R	F				[. 		
No. MPD5'8 ICSA ICSAB CRI CCV CCB	1.00 1.00 1.00 1.00 1.00	1651 1655 1700 1704 1709 1714			E																	

ILMO2.1

TOTAL KJELDAHL NITROGEN TOTAL PHOSPHATE SOIL CLASSIFICATION DATA PACKAGE

TP 9/28/92

Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710

Attention: Tom Paulson

Client Project ID: Sample Descript: W.O. #4310 Soil

209-0841

Soil Total Kjeldahl Nitrogen Sampled: Received: Analyzed: Aug-1, 1992 Sep 8, 1992

Analyzed: Reported: Sep 16, 1992 Sep 22, 1992

LABORATORY ANALYSIS FOR:

Analysis for:

First Sample #:

Total Kjeldahl Nitrogen

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
209-0841	R2-V-7'-3"	20	37
209-0842	R2-A-5'-5.5'	20	31
209-0843	R2-A-3'-3.5'	20	70
-	Method Blank	20	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

2090841.ENG <5>

Sep. TP 9/28/92

Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710

Attention: Tom Paulson

Client Project ID: Sample Descript: Analysis for:

W.O. #4310 Soil

Total Phosphorous

Sampled: Received: Aug 1, 1992 Sep 8, 1992

First Sample #:

209-0841

Analyzed: Reported: Sep 16, 1992 Sep 22, 1992

LABORATORY ANALYSIS FOR:

Total Phosphorous

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
209-0841	R2-V-7'-3"	10	43
209-0842	R2-A-5'-5.5'	10	81
209-0843	R2-A-3'-3.5'	10	110
	Method Blank	10	N.D.

THIS REPORT HAS BEEN
APPROVED AND REVIEWED BY

ESBL PROJECT MANAGER

DATE

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

2090841.ENG <4>

Engineering Science, Inc.

Client Project ID: W.O. #4310

600 Bancroft Way Berkeley, CA 94710

Attention: Tom Paulson

QC Sample Group: 209-0841-43

Revised: Sep 28, 1992

QUALITY CONTROL DATA REPORT

ANALYTE		Total Kjeldahl
	Total Phosphorous	Nitrogen
Method:	EDAGE 9	EPA351.4
Analyst:	EPA365.3 K. Follett	G. Kem
		mg/kg
Reporting Units: Date Analyzed:	mg/kg Jul 16, 1992	Sep 16, 1992
QC Sample #:	209-0841	209-0843
QC Sample #.	209-0041	203-00-13
Sample Conc.:	43	70
Spike Conc.		
Added:	110	4300
Conc. Matrix	400	0000
Spike:	130	3900
Matrix Spike		
% Recovery:	79	89
A necovery.		•
Conc. Matrix		
Spike Dup.:	140	4100
Matrix Spike		
Duplicate		
% Recovery:	88	94
A 1 - 1		
Relative	7.4	5.0
% Difference:	7.4	5.0

SEQUOIA ANALYTICAL

_مدحد

Tod Granicher Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
	Spike Conc. Added		
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
•	(Conc. of M.S. + Conc. of M.S.D.) / 2		

2090841.ENG <6>

Engineering Science, Inc. 600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson

Client Project ID: Sample Descript:

Lab Number:

W.O. #4310 Soil, R2-V-7'-3"

Method of Analysis: ASTM D422-63 209-0841

Sampled: Received: Analyzed:

Aug 1, 1992 Sep 8, 1992 Sep 15, 1992

Reported: Sep 22, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

211.94a 2.99q 98.59%

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in.	0.0	0.0	0.0	100
3/8in.	0.0	0.0	0.0	100
No. 4	0.35	0.17	0.17	99.83
No. 10	2.64	1.25	1.42	98.58
PAN	0.0			

TOTAL 2.99

HYDROMETER TEST

	ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
	(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
Γ	2	21	21	17	13.5	0.035
Ī	5	21	20	16	13.7	0.022
ı	10	21	19	15	13.8	0.016
Ī	15	21	18	14	14.0	0.013
T	25	21	18	14	14.0	0.010
ſ	40	21	17	13	14.2	0.0080
Γ	60	21	17	13	14.2	0.0066
Γ	90	21	16	12	14.3	0.0054
Γ	120	21	15	11	14.5	0.0047
	1440	21	12	8	15.0	0.0014

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65q FORMULAS: 0.994 R = H - E - F 2.65 S = K[SQRT(L/T)]

3

1

0.01348

P = (R/W) 100 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

2710 **Tod Granicher**

Project Manager

2090841.ENG <1>

Engineering Science, Inc. 600 Bancroft Way

600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: W.O. #4310

Sample Descript: Soil, R2-A-5'-5.5' Method of Analysis: ASTM D422-63

Lab Number: 209-0842

Sampled: Aug 1, 1992 Received: Sep 8, 1992

Analyzed: Sep 15, 1992

Reported: Sep 22, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

	222.32g
_	4.03g
_	98.19%

TOTAL

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	SIEVE SIZE	WEIGHT RETAINED, g	% RETAINED	CUMULATIVE % RETAINED	CUMULATIVE % PASSING
•			0.0	0.0	100
ļ	1½in.	0.0		0.0	100
١	3/8in.	0.0	0.0		99.92
١	No. 4	0.18	0.08	0.08	
١	No. 10	3.85	1.73	1.81	98.19
١					
ı					
	PAN	0.0			

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	20	28	24	12.4	0.034
5	20	27	23	12.5	0.022
10	20	26	22	12.7	0.015
15	20	25	21	12.9	0.013
25	20	25	21	12.9	0.010
40	20	24	20	13.0	0.0078
60	20	24	20	13.0	0.0064
90	20	24	20	13.0	0.0052
120	20	23	19	13.2	0.0045
1440	20	20	16	13.7	0.0013

	% SUSPENDED
	(P)
E	37
	35
I	34
ſ	32
ſ	32
ſ	30
ſ	30
ſ	30
ſ	29
I	24
-	

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

	65g	FOR
	0.992	R
Ì	2.65	S
	3	P
	1	
	0.01365	

4.03

FORMULAS: R = H - E - F

S = K[SQRT(L/T)]

P = (R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

TEN

Tod Granicher Project Manager

2090841.ENG <2>

Engineering Science, Inc. 600 Bancroft Way

Client Project ID: Sample Descript:

W.O. #4310 Soil, R2-A-3'-3.5'

Sampled: Received: Aug 1, 1992 Sep 8, 1992

Berkeley, CA 94710 Attention: Tom Paulson

Lab Number:

Method of Analysis: ASTM D422-63 209-0843

Analyzed: Reported:

Sep 15, 1992 Sep 21, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

205.99a 19.88q 90.35%

TOTAL

19.88

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in.	0.0	0.0	0.0	100
3/8in.	2.80	1.36	1.36	98.64
No. 4	4.91	2.38	3.74	96.26
No. 10	12.17	5.91	9.65	90.35
PAN	0.0			*

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	20	24	20	13.0	0.035
5	20	23	19	13.2	0.022
10	20	22	18	13.3	0.016
15	20	22	18	13.3	0.013
25	20	22	18	13.3	0.010
40	20	21	17	13.5	0.0079
60	20	20	16	13.7	0.0065
90	20	20	16	13.7	0.0053
120	20	19	15	13.8	0.0046
1440	20	18	14	14.0	0.0013

% SUSPENDED
(P) 28
28
27
25
25
25
24
22
22
21
20

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

	FORMULAS:
0.990	R = H - E - F
2.65	S = K[SQRT(L/T)]
3	P = (R/W) 100
1	$W = (J \cdot 100) / C$
0.01365	J = D·G

SEQUOIA ANALYTICAL

TOTA Tod Granicher **Project Manager**

ENGINEERING-SCIENCE

CHAIN OF CUSTODY RECORD

		1				•	
ES JOB NO.	PROJECT N	PROJECT NAME/LOCATION		PRESERVATIVES		REQUIRED	BHIP TO:
 - 	4310	0	2.79.	won			
FIELD CONTACT:	ı.		sno.	A NNALYBES	ss required	UED .	
n a	NAMES & SIGNATURES	ES	2121	פובחו			
	1/2		31	72			
ESTELITO	OFLOS TRINOS	21165	YHSOI Id m	340			
/ 27	•		10 3 N>	NL			
Monte TIME		FIELD SAMPLE IDENTIFIER	84 11	54			пемапкв
84/43 1300		R.2-V-7"3" (4310,01C)	/		20x 08	7	TX1135-1. 2-
1		R2-4-5-5,5(430,02C)	/			175	Phosphrus 365.3
		127-4-3-35 (4310,030)	//		\rightarrow	43	2 WK TAT
							Ringt to Tom Paulon
							7883
							Report resultion
							drysail basis
FIELD CUSTODY	OY RELINQUIBIED	ED BY:	1	La de las	0	DATE:	918192 TIME: 1125
SHIPPED VIA:	AIRBILL	11.11	ō	ON RECEIPT:	CUBTODY	Y BEALB?	r TEMP:
RECEIVED FOR	RECEIVED FOR LABORATORY BY:	No.	. M			DATE:	9 /8 /92 TIHE: 11: 25 4m
OSHED GASHED	87.1	18/8	401.1 Cb		Lack by-	- K. Graves	web-8-8-62

Battelle A Columbus Laboratories

CHAIN OF CUSTODY RECORD

Form No.

		S	ranistu	Ge	Brass Sture	1 402, 6455	1 1602 61455	1 Bass Stewn	402 9/455	16er 6455	Brass Stury	402 aluss	160 glans	22				Received by:	ture)	Received by:	(ture)		
			nmber of	N					_	_	_	_	_					Receiv	(Signature)	Receiv	(Signature)		
		-	oN 19ui	stno														Date/Time		Date/Time			
	SAMPLE TYPE	1	VASON	4 JA101			7			7			2					r: (Signature)		: (Signature)		Remarks	
	18	7	_ `	Al Kalir Pool Solar Kalir Solar Kalir Solar Kalir Solar Solar Pool		7	7		7	7		7	7					Relinquished by: (Signature)		Relinquished by: (Signature)		Date/Time	
				1/1218 H4	·	7		7	7		7	7	īs					Apr (Signaphre)	W. X	by:	(0	Received for Laboratory by:	/ /
	1 2 Hollo			SAMPLE I.D.	R2-V- 7'3"		R2-V-7'3"	A -	- H	- 5 -	A - 3 -	. 3 -	- A - 3 -					Date/Time Received	9-3-921310 UM	Date/Time Received by:	(Signature)	Date/Time Received fo	I (Signacut
es /	Project Title	KALD	urel Bush	TIME	1300 RZ		1300 R2			1500 R2-									Bush 9-3-				
Columbus Laboratories	Proj. No.	175 268.03	SAMPLERS: (Signature)	DATE	11 5001 93 1		-		95				Sept 92					Relinquished by: (Signature)	Amande	Relinquished by (Signature)		Relinquished by: (Signature)	

APPENDIX C SITE UST 173 SOIL GAS PERMEABILITY DATA

Table C-1. Results of Soil Gas Permeability Test at Monitoring Point R1-MPA

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H ₂ O) by Depth	epth
Time (min)	,8'9	14.25′	21.8′	Time (min)	6.8′	14.25′	21.8′
0	0	0.01	0.01	20	0	0.22	0.25
1	0	0.14	0.23	23	0	0.215	0.25
2	0	0.145	0.235	26	0	0.22	0.25
3	0	0.155	0.235	29	0	0.215	0.25
4	0	0.165	0.235	32	0	0.22	0.25
5	0.005	0.170	0.24	37	0	0.22	0.25
9	0.005	0.180	0.24	42	0	0.205	0.25
7	0.005	0.185	0.24	47	0	0.235	0.25
8	0	0.19	0.239	57	0	0.235	0.25
6	0	0.185	0.245	<i>L</i> 9	0	0.25	0.30
10	0	0.185	0.245	77	0	0.25	0.35
12	0	0.190	0.25	87	0	0.25	0.35
14	0	0.190	0.25	107	0	0.25	0.35
16	0	0.195	0.25	127	0	0.25	0.35
18	0	0.20	0.25	147	0	0.25	0.35

Table C-2. Results of Soil Gas Permeability Test at Monitoring Point R1-MPB

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H ₂ O) by Depth	epth
Time (min)	8.0′	15.0′	23.0′	Time (min)	8.0′	15.0′	23.0′
0	0>	0>	0.02	23	0.01	0.19	0.20
1	0.005	0.1	0.12	26	0.01	0.19	0.20
2	0.01	0.12	0.135	29	0.01	0.185	0.19
3	0.015	0.13	0.14	32	0.005	0.175	0.19
4	0.025	0.13	0.145	38	0.005	0.18	0.195
5	0.02	0.135	0.155	48	0.03	0.195	0.21
9	0.025	0.14	0.155	53	0.025	0.20	0.22
7	0.025	0.14	0.155	58	0.02	0.2	0.22
∞	0.025	0.145	0.16	89	0.03	0.21	0.235
6	0.25	0.14	0.16	78	0.14	0.25	0.30
10	0.025	0.14	0.16	88	0.10	0.25	0:30
12	0.02	0.16	0.17	86	0.04	0.25	0.27
14	0.015	0.16	0.175	108	0>	0.24	0.25
16	0.01	0.165	0.185	118	0>	0.22	0:30
18	0.015	0.17	0.19	138	0>	0.22	0:30
20	0.01	0.18	0.20	148	0>	0.21	0.30

Table C-3. Results of Soil Gas Permeability Test at Monitoring Point R1-MPC

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H,O) by Depth	epth
Time (min)	8.0′	15.0′	23.0′	Time (min)	8.0′	15.0′	23.0′
0	0	0.02	0.02	26	0.013	0.165	0.165
1	0	0.095	0.10	29	0.015	0.165	0.165
2	0	0.11	0.11	32	0.013	0.173	0.170
3	0.005	0.115	0.119	35	0.013	0.173	0.175
4	0.007	0.12	0.12	40	0.013	0.167	0.163
5	0.01	0.135	0.135	45	0.015	0.185	0.185
9	0.01	0.145	0.145	50	0.015	0.193	0.193
7	0.01	0.137	0.140	55	0.010	0.193	0.193
8	0.01	0.139	0.140	09	0.017	0.203	0.196
6	0.01	0.140	0.140	70	0.020	0.200	0.196
10	0.01	0.147	0.150	08	0.020	0.220	0.220
12	0.01	0.155	0.155	06	0.020	0.227	0.227
14	0.01	0.155	0.157	100	0.017	0.225	0.222
16	0.013	0.163	0.165	110	0.015	0.222	0.222
18	0.013	0.165	0.167	120	0.025	0.245	0.243
20	0.015	0.180	0.183	140	0.05	0.220	0.220
23	0.013	0.183	0.183				

APPENDIX D SITE UST 173 IN SITU RESPIRATION TEST DATA

Figure D-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R1-MPA-14.25'

Figure D-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R1-MPA-21.8'

Figure D-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R1-MPC-15.0'

Figure D-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R1-MPC-23.0'

APPENDIX E
SITE SS-10 SOIL GAS PERMEABILITY DATA

Table E-1. Results of Soil Gas Permeability Test at Monitoring Point R2-MPA

	Press	Pressure ("H2O) by Depth	epth		Press	Pressure ("H ₂ O) by Depth	epth
Time (min)	.0.9	4.5′	3.0′	Time (min)	6.0′	4.5′	3.0′
0	0.005	0.005	0	18	18.0	17.9	0.015
1	17.5	17	0.015	21	18.1	18.0	0.015
2	17.6	17.5	0.015	24	18.0	17.9	0.015
3	17.7	17.8	0.015	27	18.1	17.9	0.015
4	18	17.9	0.015	30	18.2	17.9	0.015
5	18.5	17.9	0.015	35	18.2	17.9	0.015
9	18.5	17.5	0.015	40	18.2	17.9	0.015
7	18.5	17.5	0.015	45	18.2	18.0	0.015
8	18.0	17.5	0.15	55	18.2	18.1	0.015
6	17.9	17.6	0.010	65	18.3	18.0	0.015
10	17.9	17.6	0.010	75	18.5	18.0	0.015
11	17.9	17.5	0.010	95	18.5	18.0	0.015
12	17.9	17.5	0.010	115	18.5	18.0	0.015
15	17.9	17.5	0.010	135	18.5	18.0	0.015

Table E-2. Results of Soil Gas Permeability Test at Monitoring Point R2-MPB

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H ₂ O) by Depth	epth
Time (min)	3.0′	4.5'	9.0,	Time (min)	3.0′	4.5'	9.0,
0	0	0.015	0.02	15	0.05	6.0	6.5
1	0.02	3.7	4.5	17	0.054	6.0	6.5
2	1			20	0.054	6.0	6.5
3	0.042	5.6	6.2	25	0.066	6.4	9.9
4	I			30	0.055	6.3	6.7
5	0.047	6.0	6.4	40	0.055	6.4	6.9
9	1	_		50	90.0	6.5	7.0
7	0.052	6.0	6.4	09	0.057	9.9	7.2
8	l	1	1	80	0.049	6.7	7.4
6	0.050	5.9	6.3	100	0.047	6.8	7.5
10			Greenste	120	0.044	7.0	7.6
11	0.05	5.9	6.3	140	0.047	7.0	7.7
13	0.05	0.9	6.4				

Table E-3. Results of Soil Gas Permeability Test at Monitoring Point R2-MPC

6.0' Time (min) 3.0' 0 13 0 2 0.04 15 0 2 0.04 15 0 3 0.06 20 0 3 0.06 20 0 3 0.06 25 0 4 0 0 0 5 0.085 50 0 5 0.07 80 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 7 100 0 0		Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H ₂ O) by Depth	epth
0 0 0 13 0 0 < 0.02 0.04 15 0 0 17 0 0 0 0	Time (min)	3.0′	4.5′	6.0′	Time (min)	3.0′	4.5′	6.0′
<0	0	0	0	0	13	0	0.225	0.22
0 0.03 0.06 20 0 0 0.03 0.06 20 0 0 - - 25 0 0 0.1 0.125 30 0 0 - - 40 0 0 0.065 0.085 50 0 0 0.045 0.07 80 0 0 0.045 0.07 80 0 0 0.205 0.19 0 0	1	<0>	0.02	0.04	15	0	0.27	0.245
0 0.03 0.06 20 0 - - - 25 0 0 0 0.1 0.125 30 0 0 - - - 40 0 0 0 0.065 0.085 50 0 0 0 - - - 60 0 0 0 0.02 0.045 0.07 80 0 0 0 0 0 0.205 0.19 0.19 0 0 0	2	1	1	_	17	0	0.29	0.270
25 0 0 0.1 0.125 30 0 40 0 0 0 0.065 0.085 50 0 0 60 0 0 0.02 0.045 0.07 80 0 0 0 0 0.205 0.19 0 0 0	3	0	0.03	0.06	20	0	0.37	0.32
0 0.1 0.125 30 0 - - - 40 0 0 0.065 0.085 50 0 - - - 60 0 0.02 0.045 0.07 80 0 0 0.205 0.19 0 0	4	1	-	_	25	0	0.23	0.27
- - 40 0 0 0.065 0.085 50 0 - - - 60 0 0.02 0.045 0.07 80 0 - - - 100 0 0 0.205 0.19 0 0	5	0	0.1	0.125	30	0	0.27	0.23
0 0.065 0.085 50 0 60 0 0.02 0.045 0.07 80 0 100 0 0 0.205 0.19 0	9	-	ı	-	40	0	0.22	0.205
- - - 60 0 0.02 0.045 0.07 80 0 - - - 100 0 0 0.205 0.19 0 0	7	0	0.065	0.085	20	0	0.27	0.25
0.02 0.045 0.07 80 0 — — — 100 0 0 0.205 0.19 0 0	8				09	0	0.23	0.22
- - 100 0 0 0.205 0.19 0	6	0.05	0.045	0.07	80	0	0.23	0.222
0.205	10			-	100	0	0.235	0.215
	11	0	0.205	0.19				

APPENDIX F SITE SS-10 IN SITU RESPIRATION TEST DATA

Figure F-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R2-MPA-4.5'

Figure F-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R2-MPA-6.0'

Figure F-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R2-MPC-4.5'

Figure F-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point R2-MPC-6.0'