Bases y componentes de vectores

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

19 de octubre de 2020

Agenda

- Bases y componentes
- Sistemas coordenados
- 3 Algebra vectorial en componentes
- Productos de vectores en componentes
- Recapitulando

• Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

- Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- Existe sistemas de vectores base ortogonales (o mejor ortonormales), es decir los vectores base $\{e_1, e_2, e_3\}$ son perpendiculares entre si.

- Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- Existe sistemas de vectores base ortogonales (o mejor ortonormales), es decir los vectores base $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ son perpendiculares entre si.
- Utilizamos la convención dextrógira : $(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3 > 0$, y construimos el conjunto de vectores unitarios $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$: $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$.

- Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- Existe sistemas de vectores base ortogonales (o mejor ortonormales), es decir los vectores base $\{e_1, e_2, e_3\}$ son perpendiculares entre si.
- Utilizamos la convención dextrógira : $(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3 > 0$, y construimos el conjunto de vectores unitarios $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$: $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$.
- Si a cada punto P del espacio asociamos un radio vector $\mathbf{r}(P) \equiv \overrightarrow{OP}$ que une el origen de coordenadas con el punto P entonces los números $\{x^1, x^2, x^3\}$ son las componentes de $\mathbf{r}(P)$. Es decir $\mathbf{r}(P) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$.

Figura: Sistemas coordenados

- Representan el sistema de coordenadas ortonormal como:
 - ${f i}\equiv {f e}_1, {f j}\equiv {f e}_2$ y ${f k}\equiv {f e}_3$ y utilizaremos los superíndices 1,2,3 para indicar las componentes del vector:

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$$
 y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.

- Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1, 2, 3 para indicar las componentes del vector:
 - $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$ y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.
- El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.

• Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1, 2, 3 para indicar las componentes del vector:

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$$
 y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.

- El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.
- Un vector unitario: $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}$,

• Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1, 2, 3 para indicar las componentes del vector:

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$$
 y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.

- El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.
- Un vector unitario: $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}$,

- Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1, 2, 3 para indicar las componentes del vector:
 - $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$ y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.
- El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.
- Un vector unitario: $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}$,
- Cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$.

Algebra vectorial en componentes

Sumas y restas de vectores

$$\mathbf{a} + \mathbf{b} = (a^{1}\mathbf{e}_{1} + a^{2}\mathbf{e}_{2} + a^{3}\mathbf{e}_{3}) + (b^{1}\mathbf{e}_{1} + b^{2}\mathbf{e}_{2} + b^{3}\mathbf{e}_{3}) = (a^{1} + b^{1})\mathbf{e}_{1} + (a^{2} + b^{2})\mathbf{e}_{2} + (a^{3} + b^{3})\mathbf{e}_{3},$$

• tres vectores: $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$, $\mathbf{b} = b^1 \mathbf{e}_1 + b^2 \mathbf{e}_2 + b^3 \mathbf{e}_3$ y $\mathbf{c} = c^1 \mathbf{e}_1 + c^2 \mathbf{e}_2 + c^3 \mathbf{e}_3$, serán linealmente independientes si se cumple que: α **a** + β **b** + γ **c** = **0** $\Rightarrow \alpha = \beta = \gamma = 0$. para la base canónica: $\mathbf{e}_1 \equiv (1,0,0), \mathbf{e}_2 \equiv (0,1,0), \mathbf{e}_3 \equiv (0,0,1)$ $\mathbf{0} = \alpha \left(a^{1} \mathbf{e}_{1} + a^{2} \mathbf{e}_{2} + a^{3} \mathbf{e}_{3} \right) + \beta \left(b^{1} \mathbf{e}_{1} + b^{2} \mathbf{e}_{2} + b^{3} \mathbf{e}_{3} \right) +$ $\gamma \left(c^1 \mathbf{e}_1 + c^2 \mathbf{e}_2 + c^3 \mathbf{e}_3 \right) \Rightarrow$ $a^{1}(b^{2}c^{3}-b^{3}c^{2})+a^{2}(b^{3}c^{1}-b^{1}c^{3})+a^{3}(b^{1}c^{2}-b^{2}c^{1})\neq 0$

Productos de vectores en componentes

- El **producto escalar** de dos vectores en una base cartesiana $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, que es una base ortonormal: $\mathbf{a} \cdot \mathbf{b} = a^1b^1 + a^2b^2 + a^3b^3$,
 - Ortogonalidad: $\mathbf{a} \cdot \mathbf{b} = 0$
 - Desigualdad de Cauchy-Schwarz:

$$\mathbf{a} \cdot \mathbf{b} = a^{1}b^{1} + a^{2}b^{2} + a^{3}b^{3} \le \sqrt{(a^{1})^{2} + (a^{2})^{2} + (a^{3})^{2}} \sqrt{(b^{1})^{2} + (b^{2})^{2} + (b^{3})^{2}} = |\mathbf{a}| |\mathbf{b}|.$$

• El Teorema del coseno y Pitágoras:

$$\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow \mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \Rightarrow |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle},$$

Productos de vectores en componentes

- El **producto escalar** de dos vectores en una base cartesiana $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, que es una base ortonormal: $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,
 - Ortogonalidad: $\mathbf{a} \cdot \mathbf{b} = 0$
 - Desigualdad de Cauchy-Schwarz:

• El Teorema del coseno y Pitágoras:

$$\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow \mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \Rightarrow |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{(\mathbf{a}, \mathbf{b})},$$

producto vectorial en componentes

$${\bf c} = {\bf a} \times {\bf b} = \left(a^2b^3 - a^3b^2\right){\bf e}_1 + \left(a^3b^1 - a^1b^3\right){\bf e}_2 + \left(a^1b^2 - a^2b^1\right){\bf e}_3 \,,$$

Productos de vectores en componentes

- El **producto escalar** de dos vectores en una base cartesiana $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, que es una base ortonormal: $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,
 - Ortogonalidad: $\mathbf{a} \cdot \mathbf{b} = 0$
 - Desigualdad de Cauchy-Schwarz:

$$\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3 \le \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2} \sqrt{(b^1)^2 + (b^2)^2 + (b^3)^2} = |\mathbf{a}| \, |\mathbf{b}| \ .$$

- El Teorema del coseno y Pitágoras: $\mathbf{c} = \mathbf{a} + \mathbf{b} \ \Rightarrow \ \mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \ \Rightarrow \ |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2 |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle},$
- producto vectorial en componentes $\mathbf{c} = \mathbf{a} \times \mathbf{b} = \left(a^2b^3 a^3b^2\right)\mathbf{e}_1 + \left(a^3b^1 a^1b^3\right)\mathbf{e}_2 + \left(a^1b^2 a^2b^1\right)\mathbf{e}_3$,
- Triple producto mixto:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |\mathbf{a} \times \mathbf{b}| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle} = \begin{vmatrix} c^1 & c^2 & c^3 \\ a^1 & a^2 & a^3 \\ b^1 & b^2 & b^3 \end{vmatrix}.$$

Expresamos las operaciones vectoriales en componentes.

1 Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- ② Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- ② Componentes coordenadas $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- ③ Algebra de vectores y componentes: Suma $(a^1 + b^1) \mathbf{e}_1 + (a^2 + b^2) \mathbf{e}_2 + (a^3 + b^3) \mathbf{e}_3$, Independencia lineal $a^1 (b^2 c^3 b^3 c^2) + a^2 (b^3 c^1 b^1 c^3) + a^3 (b^1 c^2 b^2 c^1) \neq 0$

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- ② Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- ③ Algebra de vectores y componentes: Suma $(a^1 + b^1) \mathbf{e}_1 + (a^2 + b^2) \mathbf{e}_2 + (a^3 + b^3) \mathbf{e}_3$, Independencia lineal $a^1 (b^2 c^3 b^3 c^2) + a^2 (b^3 c^1 b^1 c^3) + a^3 (b^1 c^2 b^2 c^1) \neq 0$

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- ② Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- ③ Algebra de vectores y componentes: Suma $(a^1 + b^1) \mathbf{e}_1 + (a^2 + b^2) \mathbf{e}_2 + (a^3 + b^3) \mathbf{e}_3$, Independencia lineal $a^1 (b^2 c^3 b^3 c^2) + a^2 (b^3 c^1 b^1 c^3) + a^3 (b^1 c^2 b^2 c^1) \neq 0$
- O Producto escalar $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,
- Producto vectorial $\mathbf{c} = \mathbf{a} \times \mathbf{b} = (a^2b^3 a^3b^2)\mathbf{e}_1 + (a^3b^1 a^1b^3)\mathbf{e}_2 + (a^1b^2 a^2b^1)\mathbf{e}_3$,

Expresamos las operaciones vectoriales en componentes.

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- ② Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- **3** Algebra de vectores y componentes: Suma $(a^1 + b^1)$ $\mathbf{e}_1 + (a^2 + b^2)$ $\mathbf{e}_2 + (a^3 + b^3)$ \mathbf{e}_3 , Independencia lineal $a^1 (b^2c^3 b^3c^2) + a^2 (b^3c^1 b^1c^3) + a^3 (b^1c^2 b^2c^1) ≠ 0$
- Operation Producto escalar $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,
- Producto vectorial $\mathbf{c} = \mathbf{a} \times \mathbf{b} = (a^2b^3)$

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} = (a^2b^3 - a^3b^2)\mathbf{e}_1 + (a^3b^1 - a^1b^3)\mathbf{e}_2 + (a^1b^2 - a^2b^1)\mathbf{e}_3$$

⊙ Triple producto mixto $V = \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ $a^{1} \left(b^{2}c^{3} - b^{3}c^{2}\right) + a^{2} \left(b^{3}c^{1} - b^{1}c^{3}\right) + a^{3} \left(b^{1}c^{2} - b^{2}c^{1}\right) \neq 0$