Paper Reading: Neural Machine Translation with Gumbel-Greedy Decoding (AAAI 2018)

Jiatao Gu, Daniel Jiwoong Im, Victor O.K. Li

The University of Hong Kong

Motivation

- Once the model is trained, the most probable output which maximum the log-likelihood during training cannot be properly found at the test time.
- Avoid solving the maximum a posteriori problem over translation sentences at test phase.

Discriminator-Generator framework

- NMT-discriminator: measures the log-likelihood at word level- $log_{p_{\theta}}(Y \mid X)$ given the source sentence X and a translation Y.
- NMT-generator: generates the translation by taking the output of the word as an input to next step recursively, $Y = G_{\theta}(X)$, given the source sentence X. (G is usually a search-based method).
- NMT discriminator's score:

$$J\left(\phi\right) = \mathbb{E}_{Y \sim G_{\phi}} \log p_{\theta}\left(Y|X\right)$$

Discriminator, Generator and Gumbel-Greedy Decoding

Gumbel-Greedy Decoding

The Gumbel-Max Trick:

$$y = \operatorname{argmax} (g + a), g \sim \operatorname{Gumbel i.i.d.}$$

Where each element in g can be computed using the inverse transform sampling of an auxiliary random uniform variable u_i U(0,1), $g_i = -log(-log(u_i))$

Gumbel-Softmax Relaxation:

$$\hat{y} = \operatorname{softmax}((g+a)/\tau), g \sim \operatorname{Gumbel i.i.d.}$$

Where $\tau \in (0, \infty)$. The softmax function approaches argmax operations as $\tau \longrightarrow 0$, and it becomes uniform when $\tau \longrightarrow \infty$.

➤ Stright-Throught(ST) Gumbel: During the forward phase, use the Gumbel-max, while computing the gradient of the Gumbel-softmax.

Arbitrary Decoding Algorithms as Gumbel-Greedy Decoding:

$$y = \operatorname{argmax} (g + a), g \sim Q$$

$$g_i^* = \begin{cases} g', & y_i \text{is selected} \\ g' - \log\left[1 + e^{g' - \tilde{g}_i}\right], \text{ otherwise} \end{cases}$$
 (12)

where

$$\tilde{g}_i = -\log(-\log(u_i)) + a_i, u_i \sim \mathcal{U}(0, 1)$$

and the "top-gumbel"

$$g' = -\log(-\log(u)) + \log\left(\sum_{i} \exp(a_i)\right), u \sim \mathcal{U}(0, 1)$$

Gumbel-Greedy Decoding Algorithm

▶ With Regularization:

$$\mathbb{E}_{G_{\phi}} \left[\log p_{\theta} \left(Y | X \right) \right] - \mathbb{E}_{G_{\phi}} \left[\log p_{\phi'} \left(Y | X \right) \right] \tag{13}$$

where we use ϕ' to represent a copy of the current parameters ϕ and make it as a "discriminator". Note that gradients w.r.t ϕ will not flow into ϕ' .

► Adversarial Learning:

$$\mathbb{E}_{D} \left[\log p_{\theta} \left(Y | X \right) \right] - \mathbb{E}_{G} \left[\log p_{\theta} \left(Y | X \right) \right]$$
(14)

where D is the empirical distribution of real translation. In practice, we alternate the training of the generator and the discriminator iteratively.

Algorithm 1 Gumbel-Greedy Decoding

4: else 5:

8: Return Y. Ŷ

6:

Obtain Y = G(X)Infer g with Eq. 12

Obtain \hat{Y} with Eq. 8

```
Require: discriminator p_{\theta}, generator G_{\phi}, N_d \geq 0, N_q > 0
  1: Train \theta using MLE/REINFORCE on training set D;
 2: Initialize \phi using \theta:
 3: Shuffle D twice into D_{\theta} and D_{\phi}
     while stopping criterion is not met do
 5:
         for t=1:N_a do
                                 // learn the generator
             Draw a translation pair: (X, ) \sim D_{\phi}:
 6:
             Obtain Y, \hat{Y} = \text{GUMBELDEC}(G, X)
 7.
             Compute forward pass \sim X, Y with Eq. 13
 8:
             Compute backward pass \sim X, \hat{Y}, update \phi
 9:
         for t = 1 : N_d do
                                  // learn the discriminator
10.
11:
             Draw a translation pair: (X, Y^*) \sim D_{\theta};
12:
             Obtain Y_{,-} = GUMBELDEC(G, X)
13:
             Compute forward pass \sim X, Y, Y^* with Eq. 14
14:
             Compute backward pass \sim X, Y, Y^*, update \theta
Function: GUMBELDEC(G, X)
  1: if G = 'sampling' then
         Sample q \sim Gumbel i.i.d.
         Obtain Y, \hat{Y} with Eq. 7 and Eq. 8
```

Experiments

	Model	DE-EN	EN-DE	CS-EN	EN-CS
Greedy	MLE	21.63	18.97	18.90	14.49
	RL	22.56	19.32	19.45	15.02
	GGD	23.27	19.81	20.62	16.04
Beam	MLE	24.46	21.33	21.20	16.20
	RL	25.12	22.13	21.92	17.02
	GGD	25.32	21.97	22.47	17.64

Table 1: The greedy decoding and the beam-search performance of models trained with GGD-GAN against MLE and REINFORCE (referred to RL). BLEU scores are calculated on the test sets.

Conclusion

▶ Use the Gumbel-Softmax reparameterization trick to make the generative network differentiable and can be trained through standard stochastic gradient methods.