Birla Institute of Technology & Science, Pilani, Rajasthan First Semester 2019-2020 Lab 10 (Thursday)

Course: EEE F311 Communication Systems Instructor-in-Charge: S M Zafaruddin

Date: 15-11-2019

Objectives

- BER.
- Channel effects.

Task 1

- 1. Write your first name (maximum 6 letters), assign probabilities (See Table) to each alphabet, and then code each letter using Shannon-Fano source encoding. It is better to code using pen and paper. The encoded bits will be data stream to be transmitted over a channel.
- 2. Transmit your first name using binary bandpass BPSK modulation using raised cosine pulse $x(t) = PX \frac{\cos(\pi R_b t)}{1-4R_b^2 t^2} sinc(\pi R_b t) \cos(2\pi f_c t)$, where X is one of the BPSK constellation points taken randomly, and P = 23dBm is the transmitted power. The signal is transmitted over a channel $h(t) = \sqrt{\frac{G_t G_r \lambda^2}{16\pi^2 d^2}} \delta(t)$, where $G_t = G_r = 10dB$, and distance d = 100. Take a carrier frequency 890MHz, channel bandwidth 1 Hz, and $N_0/2 = -174$ dBm/Hz. Using the real time code to show the transmitted pulse and received pulse in two different subplots.

Task 2

- 1. Generate a 4-QAM constellation where each constellation point has unit energy. Randomly select one of the constellation point, multiply it with \sqrt{P} , where P=23 dBm, and transmit it over a random Gaussian channel with zero mean and variance 1. Add Gaussian noise of PSD $N_0/2=-174$ dBm. In summary, you need to generate $Y=\sqrt{P}HX+W$. Plot the transmitted constellation (in one subplot) and received signals (in second subplot) by transmitting many symbols.
- 2. Assuming known channel, plot the absolute value of error in symbol detection for each symbol if 100 symbols are transmitted. Y-axis: error, xaxis: number of symbols.

TABLE P.13.1-5Probability of Occurrence of Letters in the English Language

Letter	Probability	$-\log P_i$
Space	0.187	2.46
E	0.1073	3.22
T	0.0856	3.84
A	0.0668	3.90
O	0.0654	3.94
N	0.0581	4.11
R	0.0559	4.16
I	0.0519	4.27
S	0.0499	4.33
H	0.04305	4.54
D	0.03100	5.02
L	0.02775	5.17
F	0.02395	5.38
C	0.02260	5.45
M	0.02075	5.60
U	0.02010	5.64
G	0.01633	5.94
Y	0.01623	5.95
P	0.01623	5.95
W	0.01620	6.32
В	0.01179	6.42
V	0.00752	7.06
K	0.00344	8.20
X	0.00136	9.54
J	0.00108	9.85
Q	0.00099	9.98
Z	0.00063	10.63

Backup Codes

- 1. Please keep backup of codes and figures by sending to your emails.
- 2. Make a zip/rar folder of your codes and figures in .jpeg format and upload to (ONLY ONCE): https://www.dropbox.com/request/wcMxxj26IxIbidAFiLhB

Project Task

We have started individual tasks with a bigger picture: to design an end-to-end simulator. Study the structure module in Matlab. Create a function of source signal as a structure and field values as the signals discussed so far: sinusoidal signal, rectangular pulse, audio file.