The computational problem

Feature rating data

(Osherson, D. N., et. al. "Category-based Induction." *Psychological Review* 197 (1990): 185-200.)

- People were given 48 animals, 85 features, and asked to rate whether each animal had each feature.
- E.g., elephant:

'gray' 'hairless' 'toughskin'
'big' 'bulbous' 'longleg'
'tail' 'chewteeth' 'tusks'
'smelly' 'walks' 'slow'
'strong' 'muscle' 'quadrapedal'
'inactive' 'vegetation' 'grazer'
'oldworld' 'bush' 'jungle'
'ground' 'timid' 'smart'
'group'

Property Induction: Biology

Subjects rated two kinds of arguments:

Dolphins can catch Disease X Seals can catch Disease X Dolphins can catch Disease X Seals can catch Disease X

Horses can catch Disease X

All mammals can catch Disease X

Specific

General

(Osherson, Smith, Wilkie, Lopez, & Shafir, 1990)

Probability that property Q holds for species x:

$$p(Q(x)|d) = \sum_{\substack{h \text{ consistent with } Q(x), d}} p(h) / \sum_{\substack{h \text{ consistent with } d}} p(h)$$

Features

Generalization Hypothesis New property

"Empiricist" Bayes:

(Heit, E. "A Bayesian Analysis of Some Forms of Inductive Reasoning." In *Rational Models of Cognition*. Edited by M. Oaksford and N. Chater. Oxford: Oxford University Press, 1998, pp. 248-274.)

"Theory-based" Bayes

Two principles

1. Species generated by an evolutionary branching process.

2. Features generated by stochastic mutation process over the tree

Generating Features: p(h|T)

Choosing a tree

Find T that maximizes p(Features|T)

Features

Generalization Hypothesis

Best tree for Osherson data

Results

Theory-based Bayes

Bias is just right!

Taxonomic Bayes

Image removed due to copyright considerations.

Bias is too strong

"Empiricist"
Bayes

Bias is too weak

An Unstructured PDP Approach

Image removed due to copyright considerations. Please see:

McClelland and Rogers. "The Parallel Distributed Processing Approach to Semantic Cognition."

Nature Reviews Neuroscience 4 (April 2003): 1-14.

Emergent Structure

Image removed due to copyright considerations.

PDP simulations

- Architectures: 48-64-85, 40-20-20-85, 48-35-64-85, 48-100-100-85, 48-15-30-85
- Learning rates: 0.05, 0.005, 0.1
- Momentum: **0**, 0.9
- Bias: 0, -2
- Training epochs: 2000, 4000, 8000, 12000, 20000

Structured

PDP

Specific

Image removed due to copyright considerations.

General

The space of smooth functions

Functions the PDP model is happy to learn

PDP

Functions consistent with a specific tree structure

PDP

Evolutionary model

Functions consistent with sparse data D

PDP

Evolutionary model

Function chosen by algorithm

PDP

Evolutionary model

Structured model is better than PDP approach if the distribution of true functions looks like this

Some connectionists agree

- Geman, 1992
 - ".. strong a priori representations are unavoidable"
 - "the paradigm of near *tabula rasa* learning, which has been so much emphasized in the neural computing literature of the last decade, may be of relatively minor biological importance"

Inductive bias

- The prior matters:
 - a prior that matches the world does better than a prior that doesn't
 - a tree-based prior is good for biological induction because the world is actually structured that way
 - generic smoothness priors are not sufficient!
- Where does the prior come from?
 - How do people know to use a tree representation for biology?

Innate Biological Knowledge?

Atran, 1998

'Universal Taxonomy' is a core module -- an 'innately determined cognitive structure'

Keil:

"Those who argue for the importance of constraints almost invariably share the assumption that there are domain-specific or autonomous cognitive subsystems"

A domain-general framework for learning structured, domain-specific representations

Telluric Screw

• Beguyer de Chancourtois, 1862

Image removed due to copyright considerations.

Chemistry

Benfey's periodic spiral, 1960.

Image removed due to copyright considerations.

Structure discovery and induction

• "One can predict the discovery of many new elements, for example analogues of Si and Al with atomic weights of 65-75."

• "A few atomic weights will probably require correction; for example Te cannot have the atomic weight 128, but rather 123-126."

(Mendeleev)

Structure Discovery

- Cultures all over the world group animals into hierarchies
- Children learn the properties of the integers
- Primates discover dominance hierarchies
- Time is cyclic on many levels (days, seasons)
- Children learn kinship systems

p(D|S): Generating properties

S: D: P1 mouse mouse squirrel squirrel chimp chimp gorilla gorilla

p(D|S): Generating properties

S: D: P1 P2 mouse mouse squirrel squirrel chimp chimp gorilla gorilla

p(S|G): Generating structures

p(G): Generating structure grammars

Image removed due to copyright considerations.

Characterizing the space of structures

- Grammars with multiple productions
- Probabilistic productions
- Ways of combining structures (eg cartesian product)

Structure Learning

Biological Data

• 50 mammals, 85 properties

	Tail	Hands	Smart
Mouse		0	0
Squirrel		0	0
Chimp	0		
Gorilla	0		

(Osherson, Stern, Wilkie, Stob & Smith, 1992)

Supreme Court Data

- Judgments from 1981 to 1985
- 9 judges
- 637 cases

Three Grammars

Gtree:

$$\bigcirc \Rightarrow \bigcirc -$$

G_{linear}:

Gdisconnected:

$$\bigcirc \Rightarrow \bigcirc \bigcirc$$

$log p(G|D_{obs})$

Data	G _{tree}	Glinear	Gdisconnected
Biology	339	230	0
Supreme Court	883	1312	0
Scrambled Biology	0	74	138

Best Structure: Biological Data

Best Structure: Supreme Court Data

Marshall Liberal Brennan Stevens Blackmun White Burger Rehnquist O'Connor **Powell** Conservative

Why learn structural constraints?

- More explanatory than assuming innate, domainspecific constraints
- Allows structure-discovery in novel domains
- Allows developmental shifts within a single domain

• Keil: innate, domain-specific structural constraints

Developmental Shift

Similarity Data

Relational Data

Relational Data

structure grammar structure object-

property

matrix

Why learn structure grammars?

- Allow representations to grow as new objects are encountered
- Transfer across related sub-domains
 Why learn structures?
- Structured representations provide an inductive bias that matches a structured world

Knowledge Transfer

Image removed due to copyright considerations.

Sir Joseph Banks

Issues

- Cultural transmission is often important
- Even in cases where cultural transmission is vital there's still something to explain. Consider a child learning the properties of the natural numbers.

Issues

• Can we learn the constraints discussed by Keil?

