

Квадратный трёхчлен и его корни. Квадратичная функция



### В этом уроке



- Квадратный трёхчлен
- Квадратное уравнение
- Квадратичная функция

# Основные определения



### Квадратным трёхчленом называют трёхчлен вида

$$ax^2 + bx + c,$$

где  $a,b,c\in\mathbb{R}$ ,  $a\neq 0$ , а x — переменная.

a, b, c — коэффициенты; a — старший коэффициент, c — свободный член.

### Основные определения



Квадратным трёхчленом называют трёхчлен вида

$$ax^2 + bx + c,$$

где  $a,b,c\in\mathbb{R}$ ,  $a\neq 0$ , а x — переменная.

a, b, c — коэффициенты; a — старший коэффициент, c — свободный член.

Корнем квадратного трёхчлена называется любое значение переменной x, такое, что квадратный трёхчлен  $ax^2+bx+c$  обращается в нуль.

# Нахождение корней квадратного трёхчлена



- С помощью дискриминанта
- О С помощью теоремы Виета
- Выделением полного квадрата

# С помощью дискриминанта



• Найти значение дискриминанта по формуле:

$$D = b^2 - 4ac$$

- В зависимости от значения дискриминанта вычислить корни по формулам:
  - Если D>0, то квадратный трёхчлен имеет два корня, которые можно найти по формуле:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

• Если D=0, то квадратный трёхчлен имеет один корень, который можно найти по формуле:

$$x = \frac{-b}{2a}$$

ullet Если D < 0, то квадратный трёхчлен не имеет действительных корней.



Определите, сколько корней имеет квадратный трёхчлен

$$-3x^2 + 2x + 8$$
,

и найдите их.

### Решение примера 1



$$D = b^2 - 4ac = 2^2 - 4 \cdot (-3) \cdot 8 = 4 + 96 = 100$$

Квадратный трёхчлен  $-3x^2 + 2x + 8$  имеет два корня, так как D > 0:

$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-2 + 10}{-6} = -\frac{8}{6} = -1\frac{1}{3},$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-2 - 10}{6} = 2$$

Oтвеau: квадратный трёхчлен  $-3x^2+2x+8$  имеет два корня:  $x_1=-1\frac{1}{3}$ ,  $x_2=2$ .



### Теорема (Виет)

Корни квадратного уравнения  $ax^2 + bx + c = 0$  являются решениями системы уравнений:

$$\begin{cases} x_1 + x_2 = \frac{-b}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$



С помощью теоремы Виета найдите корни квадратного трёхчлена  $x^2 + 6x - 7$ .



С помощью теоремы Виета найдите корни квадратного трёхчлена  $x^2 + 6x - 7$ .

Решение:

$$\begin{cases} x_1 + x_2 = \frac{-b}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases} \Rightarrow \begin{cases} x_1 + x_2 = -6 \\ x_1 \cdot x_2 = -7 \end{cases} \Rightarrow \begin{cases} x_1 = -7 \\ x_2 = 1 \end{cases}$$

Ответ:  $x_1 = -7$ ,  $x_2 = 1$ .

# Выделение полного квадрата



### Пример 3

Найти корни квадратного трёхчлена  $x^2 + 4x - 5$ .

#### Решение:

$$x^2 + 4x - 5 = 0 \Rightarrow x^2 + 4x = 5$$

$$(x^2+4x+4)-4=5$$

$$(x+2)^2 - 4 = 5$$

$$(x+2)^2 = 9$$

**6** 
$$x+2=\pm\sqrt{9}=\pm 3$$

**6** 
$$x_1 = 1$$
,  $x_2 = -5$ 

Ответ:  $x_1 = 1$ ,  $x_2 = -5$ .

# Формула разложения квадратного трёхчлена



### Формула разложения квадратного трёхчлена

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

Сократите дробь: 
$$\frac{x^2 - 5x + 6}{x - 3}$$
.

#### Решение:

$$x^2 - 5x + 6 = 0$$

2 
$$D = b^2 - 4ac = (-5)^2 - 4 \cdot 1 \cdot 6 = 25 - 24 = 1$$

3 
$$x_1 = \frac{5 - \sqrt{1}}{2 \cdot 1} = \frac{4}{2} = 2$$
,  $x_2 = \frac{5 + \sqrt{1}}{2 \cdot 1} = \frac{6}{2} = 3$ 

$$x^2 - 5x + 6 = (x - 2)(x - 3)$$

$$\frac{x^2 - 5x + 6}{x - 3} = \frac{(x - 2)(x - 3)}{x - 3} = x - 2$$

Ответ: x - 2.



# Квадратичная функция

# Квадратичная функция



Функция вида

$$y = ax^2 + bx + c,$$

где  $a,\,b,\,c$  — некоторые вещественные числа, причем  $a \neq 0$ , а  $x,\,y$  — переменные, называется квадратичной функцией.

Графиком квадратичной функции  $y=ax^2+bx+c$  является парабола  $y=ax^2$ , сдвинутая так, чтобы её вершина попала в точку  $M_v(x_v;y_v)$ , где

$$x_v = -\frac{b}{2a}, \ y_v = -\frac{D}{4a}$$





# Общий вид параболы



- ullet a>0 ветви параболы направлены вверх
- a < 0 ветви параболы направлены вниз



# Пересечение параболы с осью Ox



- Если квадратный трёхчлен имеет два различных корня (дискриминант положителен), то парабола пересекает ось Ox в точках с координатами  $(x_1;0)$  и  $(x_2;0)$ .
- Если квадратный трёхчлен имеет два совпавших корня (дискриминант равен 0), то парабола касается оси Ox в точке с координатой  $(x_v;0)$ . В этом случае  $x_1=x_2=x_v=-b/2a$
- Если квадратный трёхчлен корней не имеет (дискриминант отрицателен), то парабола ось Ox вообще не пересекает.



Квадратичную функцию  $y=ax^2+bx+c$  всегда можно преобразовать к виду:

$$y = a \cdot (x+k)^2 + p$$
, где  $k = \frac{b}{2a}$ ,  $p = \frac{4ac - b^2}{4a}$ .



Определить знаки коэффициентов a, b, c, исходя из расположения параболы  $ax^2 + bx + c$ , изображенной на рисунке справа, относительно осей координат.



# Решение примера 5



- Поскольку ветви параболы направлены вверх, то a>0.
- Поскольку парабола пересекает ось Oy в точке с отрицательной ординатой, то c<0.
- Поскольку  $x_v > 0$  то, в силу того, что a > 0, заключаем, что b < 0.

Ответ: a > 0, b < 0, c < 0.





### Пример б

Найти координаты точек пересечения графиков функций y=4-x и  $y=x^2-3x+2.$ 

# Решение примера 6



Координаты (x,y) каждой точки пересечения графиков указанных функций удовлетворяют системе уравнений:

$$\begin{cases} y = 4 - x \\ y = x^2 - 3x + 2 \end{cases}$$

Поэтому  $x^2 - 3x + 2 = 4 - x$ , что эквивалентно  $x^2 - 2x - 2 = 0$ .

$$D = b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot (-2) = 4 + 8 = 12$$

2 
$$x_1 = \frac{2 - \sqrt{12}}{2 \cdot 1} = 1 - \sqrt{3} \approx -0.73, y_1 = 4 - x_1 = 4 + 0.73 = 4.73$$

3 
$$x_2 = \frac{2 + \sqrt{12}}{2 \cdot 1} = 1 + \sqrt{3} \approx 2.73, \ y_2 = 4 - x_2 = 4 - 2.73 = 1.27$$

Ответ: (-0.73; 4.73), (2.73; 1.27).







