Implementation of a Reduced System Model to a Continuous Direct Compression Manufacturing Process

Adam Butterbaugh, Salvador García-Muñoz, Carla Luciani, Ian Leavesley, Ahmad Almaya

Advanced Process Modeling Forum – London, Apr. 2016

Continuous Manufacturing of Drug Product

- Shift in processing times
 - Days→ Minutes
- Less material handling
- Lean manufacturing
- Small footprint
- Accelerated development

Model Based Design

Process Design:

The study of continuous flow of material and it's mixing is a very well understood science

 Some adjustments need to be done for powders, but the major points still apply.

Model Based Design

 Continuous mixing is a very well understood principle in chemical engineering

gPROMS implementation

Parameter Estimation

System components are characterized by introducing step tests

Current Solution – Reduced System Model

 Knowing expected dispersion and noise sequence for a given new formula this model can be used (among other uses) to:

1. Aid Product Development

- On-Line Model Based Application!
 - Moving Horizon Estimation

Disturbance rejection study

 Can system reject disturbances from feeders for a given compound/formulation?

Yes, integration across system successfully rejects disturbances for this case.

Current Solution – Reduced System Model

- Knowing expected dispersion and noise sequence for a given new formula this model can be used (among other uses) to:
 - 1. Aid Product Development
 - 1. On-Line Model Based Application!
 - Moving Horizon Estimation

Desired solution – Non Linear State Estimation

 On-line, non-linear state estimation and prediction of downstream impact.

- Working towards this, but not there today
 - Computationally intense

Current Solution – Reduced System Model

- Knowing expected dispersion and noise sequence for a given new formula this model can be used (among other uses) to:
 - Aid product development
 - 2. For the conditions chosen, what is the **Impact to Product**, **Time to Product** and **Time to Clear** for a disturbance in the feeders to enter/leave the system.

Product Impact, Time to Product and Time to Clear

TASKS and SCHEDULE

 Implementation is laborious and complex to transfer to a new owner

```
g500E5411
File Edit View Entity Activities Tools Window Help
SCHEDULE
                                                                                                                     #continue for 5000
                                                                                                                           SEQUENCE
  Styrten AS MISS. Blod Abens Sexcip 200mg effect to posted being studied
                                                                                                                                CONTINUE FOR 100
                             AN PEAL
  4 SE HT BAX
                             AS REAL
                                                                                                                                    Flowsheet.FDR6 Abema.mass flowrate S kg hr := 0;
  FID_OUTHAN
                             AS REAL
  MAPI_FLOW_SP
                             AT BEAL
                                                                                                                               CONTINUE FOR 2000
  G APT BASS FRAC SP.
                             AS REAL
  S ARPLITUDE PRACTION INCREMENT AS REAL
  O AMPLITUDE MIN
                             AS REAL
  I ARPLITUDE BAX
                             AS REAL
  2 DUBATION INCREMENT
                             AS REAL
                                                                                                                     # Generate T2P (System is Flowsheet,
  DESIRATION MAKE
                             AS REAL
                                                                                                                                                           PID OUTMAX
                                                                                                                                                                                     is 1000.
                                                                                                                                                                                                         #Typical value for 100mg is 10000 when not generating T2P
  A DEPATION MIN
                                                                                                                                                           PID GAIN
                                                                                                                                                                                                         #Typical value for 100mg is 50 when not generating T2P
                                                                                                                                                                                     is 50,
                                                                                                                                                                                                         #Steps of +10% Level
                                                                                                                                                           VSH HT SP INCREMENT
                                                                                                                                                                                     is 0.031,
 LT # Persentarium AS INTEGER () SEAL () LOGICAL
                                                                                                                                                           VSH HT SP MIN
                                                                                                                                                                                     is 0.031,
                                                                                                                                                                                                         #Height a 10% fill
  IM # ParameterMane AT 20/2003_ALTHRESITON || HEAL_ELTHRESITON || LOGICAL_ELTHRESITON
                                                                                                                                                                                     is 0.31.
                                                                                                                                                                                                         #Max. for angled hopper
 19 # TareacturNess AS MCEEL ModelName
                                                                                                                                                           FLOW RT MULT INCREMENT is 0.05,
                                                                                                                                                                                                         #Based on 35.71% / 6
                                                                                                                                                           FLOW RT MULT MIN
                                                                                                                                                                                                         # 90% of flow as min
                                                                                                                                                                                    is .90 ,
                                                                                                                                                           FLOW RT MULT MAX
                                                                                                                                                                                                         # 110% of flow as max
                                                                                                                                                                                     is 1.1 ,
  APPLITUDE AT SEAL
  DEPATION AS FEAL
                                                                                                                                                           FDR1 MASSFLOW SP
                                                                                                                                                                                     is 0.5184 ,
                                                                                                                                                                                                         #For 36.3 kg/h B100
  IL CHUMTER AT INTEREST
                                                                                                                                                           FDR2 MASSFLOW SP
                                                                                                                                                                                     is 2.0736 ,
                                                                                                                                                                                                         #For 36.3 kg/h B100
                                                                                                                                                           FDR3 MASSFLOW SP
                                                                                                                                                                                                         #For 36.3 kg/h B100
                                                                                                                                                           FDR4 MASSFLOW SP
                                                                                                                                                                                                         #For 36.3 kg/h B100
                                                                                                                                                            FDR5 MASSFLOW SP
  DE SECET System. FID_controller001.meximum_output :- FID_EUTBAX: EN
                                                                                                                                                                                     is 1.8144 ,
                                                                                                                                                                                                         #For 36.3 kg/h B100
                                                                                                                                                            FDR6 MASSFLOW SP
  MESET System. PID_controller001.pxin :- FID_GAIN_SF; IND
                                                                                                                                                                                     is 6.48 ,
                                                                                                                                                                                                         #For 36.3 kg/h B100
  M MEGET System. FID_controller001. set_point := SH_HT_SF: EMO
                                                                                                                                                           API MASS PONT SP
                                                                                                                                                                                     is 35.714058)
  NESET System.Surge Mapper.initial height := SH HT SP / SH HT MAX: THE
  M MAYE "InitialCondition"
  11 COUNTER 1-11
  4 AMPLITUDE :- AMPLITUDE_MIN:
                                                                                                                              Generate FFConc (System is Flowsheet,
  DE WHILE AMPLITUDE <= (AMPLITUDE MAX + 0.05) 30
                                                                                                                                                 SH_HT_SP is 0.1319,
                                                                                                                                                                              #Surge hopper height at 50%
                                                                                                                                                 SH HT MAX is 0.307986315, #Surge hopper maximum height
          DUBATION :- DUBATION HIM:
                                                                                                                                                 PID OUTMAX is 500,
                                                                                                                                                                          #PID Controller maxiumum output
          WHILE DODATEDS <- (DODATEDS_BAX + 8.05) DO
                                                                                                                                                                             #PID Controller gain setpoint
                                                                                                                                                 PID GAIN SP is 50.
               PESTORE "Initial Confiction"
                                                                                                                                                 AMPLITUDE FRACTION INCREMENT is 0.1,
                HEDETTAL System. Fun_Blader WITH System. Fun_Blader - COUNTER; EMC
                                                                                                                                                 AMPLITUDE_MIN is 1,
                Whatform the step to AMNLITHE for BURSTON
                                                                                                                                                 AMPLITUDE_MAX is 2,
                                                                                                                                                 DURATION_INCREMENT is 20,
                RESET System. FORS Abena. mans_flowcosts_5 kg hr := AMPLITUDE * API_FLOW_SP: EMD
                CONTINUE FOR DEPARTURE
                                                                                                                                                 DURATION MIN is 120,
                RESET System. ROS Abens, mass flowcate 5 kg hr :- AFI FLOW SF: EMD
                                                                                                                                                 DURATION MAX is 180,
                                      $400 for 12, 2 80/h. 200 for 54, 5 80/h
                                                                                                                                                 API FLOW SP is 6.48,
                CONTINUE UNTIL ADD (system. Food Frame, mass function, percent, hasis ("Blend", "API") -API MASS (RAC SP) < 1.052-1.
                                                                                                                                                API_MASS_FRAC_SP is 35.714058)
                DORATION :- DORATION + DORATION_INCREMENT)
                COUNTRY 1+ COUNTRY + 1 :
```

Current implementation

- Simulated dispensed disturbances THOUSANDS!
 - Spans from minute to large in both severity and duration
 - Example for Impact to Product:

Peak of concentration upset is worst case

Resulting surface encompasses output of digital

experiments

Practical execution would take days and consume large amounts of API

 Removing portion where disturbances do <u>not</u> impact product quality

X-Y projection (done for simplicity of upset

testing)

The "Funnel"
Plot

Construction of a Reduced System Model – Time to Product/Clear

- Again, digital experiment in the Thousands
- Patient safety a core focus!

• Looking for earliest sign of drift from target

Time to Product Module

 Reduction of temporal element of deterministic model to simple surface

Matlab Interpolants

- Surfaces become interpolants in Matlab
 - Feed Frame Conc Prediction
 - Time to Product (Time to Reject)
 - Time to Clear (Time to Accept)
- Compiled in Matlab to DLLs and ran on the SynTQ server under a Matlab execution, as needed
 - Pass DV data to Matlab DLLs in SynTQ
 - Return predictions, calculate times within DV

Characterizing Disturbance

- Easy in a retrospective, post-mortum analysis
 - Given the following disturbance:

Characterizing Disturbance

- Real time future trending unknown
 - Given the following disturbance:

• Product impact for disturbance $f(\max|\%LCD - 100\%|, \max t)$

Characterizing Disturbance

Time to Product/Clear

Given the following disturbance:

- $T2P_i = min(T2P_{i-1}, T2P(VSH, MF))$
- $T2C_i = max(T2C_{i-1}, T2C(max|%LCD 100%|, max t))$
- Again, erring on patient safety

Funnel Plot for LY1 (20 mg) Challenge

LY1 (20 mg) Challenge

Funnel Plot for LY1 (10 mg) Challenge

LY1 (10 mg) Challenge

Funnel Plot for LY2 (150 mg) Challenge

31

150 mg Challenge

Funnel Plot for LY2 (200 mg) Challenge

200 mg Challenge

Final Remarks

- An adequate model for the drug product continuous manufacturing process was built and implemented in gPROMS.
- Observability continues to be an issue in a powder manufacturing line.
- Real-time implementation of a reduced system model is done by pre-computing key actionable indexes from the full model.
- Such a scheme is part of the control strategy for the process.
- Real-time non-linear state estimation continues to be the goal.