Problem 1:

Consider the continuous time system with transfer function $H(s) = \frac{1}{s^2 + s + 1}$.

1. Sketch the ROC if the system is causal.

Poles are at $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$. The causal system has ROC = {s: Re s > -1/2}

2. Sketch the ROC if the system is stable.

The stable system has $ROC = \{s: Re \ s > -1/2\}$

Problem 2:

For the causal discrete time system with transfer function $H(z) = \frac{2(z-1)}{z^2(z-0.8)}$

1. Sketch the region of convergence of H(z). Is the system stable?

Poles are at 0, 0, 0.8. The causal ROC is ROC = $\{z: |z| > 0.8\}$ It contains the unit circle, hence the system is stable.

2. Compute the unit step response (x(n)=u(n)).

$$Y(z) = H(z)X(z) = \frac{2(z-1)z}{z^{2}(z-0.8)(z-1)} = \frac{2}{z(z-0.8)}; ROC = \{z:1 < |z|\}$$

$$= \left\{\frac{2/(-0.8)}{z}\right\}_{RS} + \left\{\frac{2/0.8}{z-0.8}\right\}_{RS}$$

$$= \left\{\frac{-2.5}{z}\right\}_{RS} + \left\{\frac{2.5}{z-0.8}\right\}_{RS}$$

$$y(n) = -2.5\delta(n-1) + 2.5(0.8)^{n-1}u(n-1)$$

Alt.

$$Z^{-1}\left\{\frac{2}{z(z-0.8)}\right\} = Z^{-1}\left\{\frac{2}{(z-0.8)}\right\}_{n=n-1} = 2(0.8)^{n-1}u(n-1)\Big|_{n=n-1} = 2(0.8)^{n-2}u(n-2) = 2.5(0.8)^{n-1}u(n-2)$$

The two expressions are equivalent since the first one yields y(1) = -2.5 + 2.5 = 0.