Confidence Intervals

Objectives

1 Determine confidence intervals for population mean

2 Determine confidence intervals for population proportion

3 Determine the necessary sample size

In the last section, we looked at sampling distributions of the sample mean (and proportion too). Throughout the series, we've used computer simulations to examine statistical concepts.

In the last section, we looked at sampling distributions of the sample mean (and proportion too). Throughout the series, we've used computer simulations to examine statistical concepts.

However, in real life, there are factors that can limit the number of studies and samples we can take: time, cost, etc.

In the last section, we looked at sampling distributions of the sample mean (and proportion too). Throughout the series, we've used computer simulations to examine statistical concepts.

However, in real life, there are factors that can limit the number of studies and samples we can take: time, cost, etc.

So, for our samples, how confident are we that they contain the population mean?

In the last section, we looked at sampling distributions of the sample mean (and proportion too). Throughout the series, we've used computer simulations to examine statistical concepts.

However, in real life, there are factors that can limit the number of studies and samples we can take: time, cost, etc.

So, for our samples, how confident are we that they contain the population mean?

That is where confidence intervals come into play.

How Confident Are We?

Confidence Interval

A **confidence interval** for a population parameter is an estimate of possible values for the parameter with a *given* certain level of confidence.

How Confident Are We?

Confidence Interval

A **confidence interval** for a population parameter is an estimate of possible values for the parameter with a *given* certain level of confidence.

Confidence Level

The **confidence level**, or **level of confidence**, is the percentage of the number of times our confidence intervals will contain the population parameter.

How Confident Are We?

Confidence Interval

A **confidence interval** for a population parameter is an estimate of possible values for the parameter with a *given* certain level of confidence.

Confidence Level

The **confidence level**, or **level of confidence**, is the percentage of the number of times our confidence intervals will contain the population parameter.

Typical confidence levels are 90%, 95%, 98%, and 99%.

Confidence Interval Setup

A confidence interval for a population parameter is in the form $\mbox{point estimate} \pm \mbox{margin of error}$

Confidence Interval Setup

A confidence interval for a population parameter is in the form

point estimate \pm margin of error

Point Estimate

A **point estimate** is a value based on our sample data that represents a reasonable value of the population parameter.

Confidence Interval Setup

A confidence interval for a population parameter is in the form

point estimate \pm margin of error

Point Estimate

A **point estimate** is a value based on our sample data that represents a reasonable value of the population parameter.

The margin of error is in the form

critical value × standard error

Critical Values

Critical values are typically in the form $z_{\alpha/2}$ where

Objectives

Determine confidence intervals for population mean

2 Determine confidence intervals for population proportion

3 Determine the necessary sample size

Objectives

Determine confidence intervals for population mean

2 Determine confidence intervals for population proportion

3 Determine the necessary sample size