The Σ_1 -definable universal finite sequence

Kameryn J Williams

University of Hawai'i at Mānoa

Cantor Meets Robinson

Set Theory, Model Theory, and their Philosophy

2018 Dec 15

This is joint work with Joel David Hamkins and Philip Welch.

Multiversism versus universism in set theory

- The universist: *The* universe of sets is uniquely determined.
- The multiversist: There are many universes of sets, and every universe is contained inside a bigger, better universe.

• Zermelo: The set-theoretic universe is always dynamically growing upward; V is V_{κ} for κ inaccessible in a larger universe.

- Zermelo: The set-theoretic universe is always dynamically growing upward; V is V_{κ} for κ inaccessible in a larger universe.
- The generic multiverse: move to new universes by forcing or by going to grounds.

- Zermelo: The set-theoretic universe is always dynamically growing upward; V is V_{κ} for κ inaccessible in a larger universe.
- The generic multiverse: move to new universes by forcing or by going to grounds.
- The toy multiverse of countable transitive models.

- Zermelo: The set-theoretic universe is always dynamically growing upward; V is V_{κ} for κ inaccessible in a larger universe.
- The generic multiverse: move to new universes by forcing or by going to grounds.
- The toy multiverse of countable transitive models.
- A more radical multiversism: Hamkins's multiverse axioms, including the Well-foundedness Mirage axiom—every universe is seen to be ill-founded from some larger universe.

4 / 21

- Zermelo: The set-theoretic universe is always dynamically growing upward; V is V_{κ} for κ inaccessible in a larger universe.
- The generic multiverse: move to new universes by forcing or by going to grounds.
- The toy multiverse of countable transitive models.
- A more radical multiversism: Hamkins's multiverse axioms, including the Well-foundedness Mirage axiom—every universe is seen to be ill-founded from some larger universe.
 - The multiverse consisting of the countable, recursively saturated models of set theory satisfy Hamkins's axioms. (Gitman and Hamkins)

Potentialism as a general framework

- A potentialist system is a collection of structures of the same type, ordered by a relation
 ⊂ which refines the substructure relation.
- Used to formalize a domain we think of as dynamically growing.

5 / 21

Potentialism as a general framework

- A potentialist system is a collection of structures of the same type, ordered by a relation
 ⊂ which refines the substructure relation.
- Used to formalize a domain we think of as dynamically growing.
- $\Box \varphi$ holds in a world M if φ holds in every N extending M.
- $\Diamond \varphi$ holds in a world M if φ holds in some N extending M.

Potentialism as a general framework

- A potentialist system is a collection of structures of the same type, ordered by a relation ⊆ which refines the substructure relation.
- Used to formalize a domain we think of as dynamically growing.
- $\Box \varphi$ holds in a world M if φ holds in every N extending M.
- $\Diamond \varphi$ holds in a world M if φ holds in some N extending M.
- Warning! There is no guarantee that a potentialist system be linearly ordered or even directed. There are branching potentialist systems which have incompatible extensions.

- A modal assertion is valid if it is true at any world under any substitution of propositional variables.
- $\Box p \Rightarrow p$ is valid, because if φ holds in every structure extending M, it in particular holds at M.

6 / 21

- A modal assertion is valid if it is true at any world under any substitution of propositional variables.
- $\Box p \Rightarrow p$ is valid, because if φ holds in every structure extending M, it in particular holds at M.
- Key Question: given a potentialist system, what are its modal validities?

6 / 21

- A modal assertion is valid if it is true at any world under any substitution of propositional variables.
- $\Box p \Rightarrow p$ is valid, because if φ holds in every structure extending M, it in particular holds at M.
- Key Question: given a potentialist system, what are its modal validities?
- The modal theory S4 is valid in every potentialist system, where S4 has axioms $\Box(n \rightarrow a) \rightarrow (\Box n \rightarrow \Box a)$

$$\Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q)$$

$$\neg \diamondsuit p \Leftrightarrow \Box \neg p$$

$$\Box p \Rightarrow p$$

$$\Box p \Rightarrow \Box \Box p$$

ullet Because the potentialist system is partially ordered by \subseteq .

- A modal assertion is valid if it is true at any world under any substitution of propositional variables.
- $\Box p \Rightarrow p$ is valid, because if φ holds in every structure extending M, it in particular holds at M.
- Key Question: given a potentialist system, what are its modal validities?
- The modal theory S4 is valid in every potentialist system, where S4 has axioms $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$

$$\Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q)$$

$$\neg \diamondsuit p \Leftrightarrow \Box \neg p$$

$$\Box p \Rightarrow p$$

$$\Box p \Rightarrow \Box \Box p$$

- Because the potentialist system is partially ordered by ⊆.
- This gives an easy lower bound. The real work is in getting upper bounds.

We can analyze the modal validities of a potentialist system using control statements.

• A button is a statement β so that $\Diamond \Box \beta$ holds in every world. The button is pushed if $\Box \beta$ holds.

- A button is a statement β so that $\Diamond \Box \beta$ holds in every world. The button is pushed if $\Box \beta$ holds.
- A switch is a statement σ so that $\Diamond \sigma$ and $\Diamond \neg \sigma$ hold in every world.

- A button is a statement β so that $\Diamond \Box \beta$ holds in every world. The button is pushed if $\Box \beta$ holds.
- A switch is a statement σ so that $\Diamond \sigma$ and $\Diamond \neg \sigma$ hold in every world.
- For forcing potentialism: CH is a switch, " ω_1^L is countable" is a button.

- A button is a statement β so that $\Diamond \Box \beta$ holds in every world. The button is pushed if $\Box \beta$ holds.
- A switch is a statement σ so that $\Diamond \sigma$ and $\Diamond \neg \sigma$ hold in every world.
- \bullet For forcing potentialism: CH is a switch, " ω_1^L is countable" is a button.
- If there are arbitrarily large families of independent switches, then the modal validities are contained within S5, which is S4 plus the axiom $\Diamond \Box p \Rightarrow p$.

- A button is a statement β so that $\Diamond \Box \beta$ holds in every world. The button is pushed if $\Box \beta$ holds.
- A switch is a statement σ so that $\Diamond \sigma$ and $\Diamond \neg \sigma$ hold in every world.
- For forcing potentialism: CH is a switch, " ω_1^L is countable" is a button.
- If there are arbitrarily large families of independent switches, then the modal validities are contained within S5, which is S4 plus the axiom

 □ p ⇒ p.
- If there are arbitrarily large families of independent buttons and switches, then the modal validities are contained within S4.2, which is S4 plus the axiom $\Diamond \Box p \Rightarrow \Box \Diamond p$.

Potentialism in set theory

- Zermelo upward potentialism: worlds are V_{κ} for κ inaccessible.
 - Height potentialist.

- \bullet Forcing potentialism: worlds are forcing extensions of M.
 - Width potentialist.
- Countable transitive model potentialism.
 - Height and width potentialist.

Potentialism in set theory

- Zermelo upward potentialism: worlds are V_{κ} for κ inaccessible.
 - Height potentialist.
 - Modal validities are S4.3. (Hamkins and Linnebo)
 - S4.3 is S4 plus

$$(\diamondsuit \varphi \land \diamondsuit \psi) \Rightarrow (\varphi \land \diamondsuit \psi) \lor (\diamondsuit \varphi \land \psi).$$

- \bullet Forcing potentialism: worlds are forcing extensions of M.
 - Width potentialist.
 - Modal validities are \$4.2. (Hamkins and Löwe)
- Countable transitive model potentialism.
 - Height and width potentialist.
 - Modal validities are S4.2. (Hamkins and Linnebo)

Flavors of potentialism

- maximality principles S5 S4.3 linear
- S4.2 directed
- S4 incompatible branching

The Σ_2 -definable universal finite set for rank-extensions

 $N \supseteq M$ is a rank-extension of M if every $b \in N \setminus M$ has rank in $N \setminus M$.

Theorem (Hamkins and Woodin)

There is a Σ_2 definition for a finite set $\{b_0, \ldots, b_n\}$ with the following properties.

- **1** ZFC proves that the definition defines a finite set.
- 2 In any transitive model of ZFC the set is empty.
- **③** If $M \models \mathsf{ZFC}$ is countable, has s as its universal finite set, and $t \in M$ is a finite set extending s, then there is $N \models \mathsf{ZFC}$ a rank-extension of M which has t as its universal finite set.

The Σ_2 -definable universal finite set for rank-extensions

 $N \supseteq M$ is a rank-extension of M if every $b \in N \setminus M$ has rank in $N \setminus M$.

Theorem (Hamkins and Woodin)

There is a Σ_2 definition for a finite set $\{b_0, \ldots, b_n\}$ with the following properties.

- 1 ZFC proves that the definition defines a finite set.
- 2 In any transitive model of ZFC the set is empty.
- If $M \models \mathsf{ZFC}$ is countable, has s as its universal finite set, and $t \in M$ is a finite set extending s, then there is $N \models \mathsf{ZFC}$ a rank-extension of M which has t as its universal finite set.

Theorem (Hamkins and Woodin)

The modal validities of rank-extensional set theoretic potentialism are precisely S4.

End-extensions versus rank-extensions

- $N \supseteq M$ is an end-extension of M if $a \in b$ in N and b in M implies a is in M.
- Elementary end-extensions are always rank-extensions.
- But not all end-extensions are rank-extensions. For example, if M is an inner model of N then N end-extends M.

End-extensions versus rank-extensions

- $N \supseteq M$ is an end-extension of M if $a \in b$ in N and b in M implies a is in M.
- Elementary end-extensions are always rank-extensions.
- But not all end-extensions are rank-extensions. For example, if M is an inner model of N then N end-extends M.
- Key fact: the assertions which are preserved in arbitrary end-extensions are the Σ_1 assertions.

$$\exists y \qquad \underbrace{\varphi(x,y)}_{\text{quantifiers bounded}}$$

The Σ_1 -definable universal finite sequence for end-extensions

Let ZF^+ be a computably enumerable extension of ZF.

Theorem (Hamkins, Welch, W.)

There is a Σ_1 definition for a finite sequence b_0, b_1, \ldots, b_n with the following properties.

- ZF⁺ proves that the sequence is finite.
- 2 In any transitive model of ZF⁺ the sequence is empty.
- **3** Let M be a countable model of ZF^+ which defines the sequence as s. Then if t in M is any finite sequence extending s, there is $N \models ZF^+$ end-extending M in which the universal sequence is t.

The Σ_1 -definable universal finite sequence for end-extensions

Let ZF^+ be a computably enumerable extension of ZF.

Theorem (Hamkins, Welch, W.)

There is a Σ_1 definition for a finite sequence b_0, b_1, \ldots, b_n with the following properties.

- ZF⁺ proves that the sequence is finite.
- 2 In any transitive model of ZF⁺ the sequence is empty.
- **3** Let M be a countable model of ZF^+ which defines the sequence as s. Then if t in M is any finite sequence extending s, there is $N \models ZF^+$ end-extending M in which the universal sequence is t.
- Indeed, it suffices in (3) that M has an inner model W of ZF⁺ satisfying such.

Intended for ω -nonstandard models. A different process is used for ω -standard models.

• Proceed in stages to produce b_0, b_1, \ldots, b_n , using auxiliary information: countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and natural numbers $k_0 > k_1 > \cdots > k_n$.

Intended for ω -nonstandard models. A different process is used for ω -standard models.

- Proceed in stages to produce b_0, b_1, \ldots, b_n , using auxiliary information: countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and natural numbers $k_0 > k_1 > \cdots > k_n$.
- At stage n: Are there $\alpha > \alpha_{n-1}$, $k < k_{n-1}$, and $b \in L_{\alpha}$ so that L_{α} has no end-extension to N satisfying the first k axioms of ZF^+ plus "process A succeeds at stage n and defines b"? If so, stage n is successful and set (b_n, α_n, k_n) to be the L-least triple of such (b, α, k) .

Intended for ω -nonstandard models. A different process is used for ω -standard models.

- Proceed in stages to produce b_0, b_1, \ldots, b_n , using auxiliary information: countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and natural numbers $k_0 > k_1 > \cdots > k_n$.
- At stage n: Are there $\alpha > \alpha_{n-1}$, $k < k_{n-1}$, and $b \in L_{\alpha}$ so that L_{α} has no end-extension to N satisfying the first k axioms of ZF^+ plus "process A succeeds at stage n and defines b"? If so, stage n is successful and set (b_n, α_n, k_n) to be the L-least triple of such (b, α, k) .
- This self-reference is allowed by the Gödel–Carnap fixed-point lemma.

Intended for ω -nonstandard models. A different process is used for ω -standard models.

- Proceed in stages to produce b_0, b_1, \ldots, b_n , using auxiliary information: countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and natural numbers $k_0 > k_1 > \cdots > k_n$.
- At stage n: Are there $\alpha > \alpha_{n-1}$, $k < k_{n-1}$, and $b \in L_{\alpha}$ so that L_{α} has no end-extension to N satisfying the first k axioms of ZF^+ plus "process A succeeds at stage n and defines b"? If so, stage n is successful and set (b_n, α_n, k_n) to be the L-least triple of such (b, α, k) .
- This self-reference is allowed by the Gödel–Carnap fixed-point lemma.
- Claim: The map $n \mapsto (b_n, \alpha_n, k_n)$ is Σ_1 -definable.
- Claim: Each k_i must be nonstandard.
- Claim: There are only finitely many successful stages.

Seeing that Process A has the plus one extension property

Consider countable M in which the universal sequence is b_0, \ldots, b_{n-1} and take any $b \in M$ and nonstandard $k < k_{n-1}$.

• Because stage n is unsuccessful in M this means L^M thinks every countable set can be end-extended to a model of the first k axioms of ZF^+ in which the universal sequence is b_0, \ldots, b_{n-1}, b .

Seeing that Process A has the plus one extension property

Consider countable M in which the universal sequence is b_0, \ldots, b_{n-1} and take any $b \in M$ and nonstandard $k < k_{n-1}$.

- Because stage n is unsuccessful in M this means L^M thinks every countable set can be end-extended to a model of the first k axioms of ZF^+ in which the universal sequence is b_0, \ldots, b_{n-1}, b .
- This is a Π_2^1 assertion, so by the Shoenfield absoluteness theorem is true in M. It is also true in any elementary end-extension of M, as well as their forcing extensions.

Seeing that Process A has the plus one extension property

Consider countable M in which the universal sequence is b_0, \ldots, b_{n-1} and take any $b \in M$ and nonstandard $k < k_{n-1}$.

- Because stage n is unsuccessful in M this means L^M thinks every countable set can be end-extended to a model of the first k axioms of ZF^+ in which the universal sequence is b_0, \ldots, b_{n-1}, b .
- This is a Π_2^1 assertion, so by the Shoenfield absoluteness theorem is true in M. It is also true in any elementary end-extension of M, as well as their forcing extensions.
- By the Keisler–Morley theorem, let M^+ be an elementary end extension of M and fix an ordinal θ in $M^+ \setminus M$. Consider $M^+[G]$ the forcing extension in which V_{θ} is collapsed to be countable.

Seeing that Process A has the plus one extension property

Consider countable M in which the universal sequence is b_0, \ldots, b_{n-1} and take any $b \in M$ and nonstandard $k < k_{n-1}$.

- Because stage n is unsuccessful in M this means L^M thinks every countable set can be end-extended to a model of the first k axioms of ZF^+ in which the universal sequence is b_0, \ldots, b_{n-1}, b .
- This is a Π_2^1 assertion, so by the Shoenfield absoluteness theorem is true in M. It is also true in any elementary end-extension of M, as well as their forcing extensions.
- By the Keisler–Morley theorem, let M^+ be an elementary end extension of M and fix an ordinal θ in $M^+ \setminus M$. Consider $M^+[G]$ the forcing extension in which V_{θ} is collapsed to be countable.
- So V_{θ}^{M} has in $M^{+}[G]$ an end-extension N in which the universal sequence is b_0, \ldots, b_{n-1}, b . But N is also an end-extension of M.

• Again go in stages: produce b_0, b_1, \ldots, b_n using auxiliary information countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and countable ordinals $\lambda_0 > \lambda_1 > \cdots > \lambda_n$

- Again go in stages: produce b_0, b_1, \ldots, b_n using auxiliary information countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and countable ordinals $\lambda_0 > \lambda_1 > \cdots > \lambda_n$.
- At stage n: are there $\alpha > \alpha_{n-1}$, $\lambda < \lambda_n$, and $b \in L_\alpha$ so that L_α has no end-extension to N satisfying ZF^+ plus "process B succeeds at stage n and defines b", with the well-founded tree canonically representing this Π^1_1 assertion having rank λ ? If so, stage n is successful and set $(b_n, \alpha_n, \lambda_n)$ to be the L-least triple of such (b, α, λ) .

- Again go in stages: produce b_0, b_1, \ldots, b_n using auxiliary information countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and countable ordinals $\lambda_0 > \lambda_1 > \cdots > \lambda_n$.
- At stage n: are there $\alpha > \alpha_{n-1}$, $\lambda < \lambda_n$, and $b \in L_\alpha$ so that L_α has no end-extension to N satisfying ZF⁺ plus "process B succeeds at stage n and defines b", with the well-founded tree canonically representing this Π^1_1 assertion having rank λ ? If so, stage n is successful and set $(b_n, \alpha_n, \lambda_n)$ to be the L-least triple of such (b, α, λ) .
- Claim: The map $n \mapsto (b_n, \alpha_n, \lambda_n)$ is Σ_1 -definable.
- Claim: Each λ_i must be nonstandard.
- Claim: There are only finitely many successful stages.

- Again go in stages: produce b_0, b_1, \ldots, b_n using auxiliary information countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and countable ordinals $\lambda_0 > \lambda_1 > \cdots > \lambda_n$.
- At stage n: are there $\alpha > \alpha_{n-1}$, $\lambda < \lambda_n$, and $b \in L_\alpha$ so that L_α has no end-extension to N satisfying ZF⁺ plus "process B succeeds at stage n and defines b", with the well-founded tree canonically representing this Π^1_1 assertion having rank λ ? If so, stage n is successful and set $(b_n, \alpha_n, \lambda_n)$ to be the L-least triple of such (b, α, λ) .
- Claim: The map $n \mapsto (b_n, \alpha_n, \lambda_n)$ is Σ_1 -definable.
- Claim: Each λ_i must be nonstandard.
- Claim: There are only finitely many successful stages.
- Claim: Process B has the plus one extension property.

- Again go in stages: produce b_0, b_1, \ldots, b_n using auxiliary information countable ordinals $\alpha_0 < \alpha_1 < \cdots < \alpha_n$ and countable ordinals $\lambda_0 > \lambda_1 > \cdots > \lambda_n$.
- At stage n: are there $\alpha > \alpha_{n-1}$, $\lambda < \lambda_n$, and $b \in L_\alpha$ so that L_α has no end-extension to N satisfying ZF⁺ plus "process B succeeds at stage n and defines b", with the well-founded tree canonically representing this Π^1_1 assertion having rank λ ? If so, stage n is successful and set $(b_n, \alpha_n, \lambda_n)$ to be the L-least triple of such (b, α, λ) .
- Claim: The map $n \mapsto (b_n, \alpha_n, \lambda_n)$ is Σ_1 -definable.
- Claim: Each λ_i must be nonstandard.
- Claim: There are only finitely many successful stages.
- Claim: Process B has the plus one extension property.

Can merge Processes A and B into a single Process C which works for all models.

The Barwise extension theorem

The Barwise extension theorem can be derived as a corollary of our theorem.

Theorem (Barwise)

Every countable model of ZF end-extends to a model of ZFC + V = L.

The universal sequence for *L*-extensions

Corollary (Hamkins, Welch, W.)

There is a Σ_1 definition for a finite sequence b_0, b_1, \ldots, b_n with the following properties.

- **1** ZF + V = L proves that the sequence is finite.
- ② In any standard model of ZF + V = L the sequence is empty.
- **1** Let M be a countable model of ZF + V = L which defines the sequence as s. Then if t in M is any finite sequence extending s, there is an L-extension N of M in which the universal sequence is t.

Railyard labelings

- A tree is a partial order T so that $\{s \in T : s \le t\}$ is well-ordered for every $t \in T$. A pre-tree is a pre-order which quotients to a tree.
- A railyard labeling of a pre-tree T is an assignment ρ_t of statements to nodes $t \in T$ so that each structure satisfies exactly one ρ_t and $\Diamond \rho_s$ holds iff $t \leq_T s$.

Railyard labelings

- A tree is a partial order T so that $\{s \in T : s \le t\}$ is well-ordered for every $t \in T$. A pre-tree is a pre-order which quotients to a tree.
- A railyard labeling of a pre-tree T is an assignment ρ_t of statements to nodes $t \in T$ so that each structure satisfies exactly one ρ_t and $\Diamond \rho_s$ holds iff $t \leq_T s$.
- If there are railyard labelings for every finite pre-tree, then the modal validities for the corresponding potentialist system are contained within S4.

The universal finite sequence and railyard labelings

The universal finite sequence and railyard labelings

Step 1: the subsequence \(\lambda_i \rangle \) of finite ordinals from the universal finite sequence tell you how to descend the tree to determine your cluster. If \(B \) is the branching of the current node, then \(n_i \) mod \(B \) tells you where to go.

The universal finite sequence and railyard labelings

- Step 1: the subsequence \(n_i \) of finite ordinals from the universal finite sequence tell you how to descend the tree to determine your cluster. If \(B \) is the branching of the current node, then \(n_i \) mod \(B \) tells you where to go.
- Step 2: the final infinite ordinal λ + m on the sequence tells you where in your cluster you are. If K is the size of the cluster, then m mod K identifies your node in the cluster. (If no infinite ordinals are on the sequence, default to 0.)

The modal validities of end-extensional set theoretic potentialism

Theorem (Hamkins, Welch, W.)

Consider the potentialist system consisting of countable models of ZF⁺ ordered by end-extension.

- For any world M, the modal validities, allowing for a single parameter for the length of the universal finite sequence, are precisely S4.
- **2** For any ω -standard world M, the modal validities, allowing no parameters, are precisely S4.

Thank you!