	Milyen szinten érettségizett matematikából? emelt közép Járt-e középiskolában matematika fakultációra? igen nem	
1.	Válassza ki, hogy az alábbiak közül melyikkel egyezik meg a következő kifejezés, ha x pozitív szám! $\sqrt[3]{x^{-4}x^{13}}$ x^2 x^3 x^9 x Ezek egyike sem.	1.
2.	Gömb sugarát $1,2$ szeresére növeljük, hány százalékkal nő a felszíne? $20\%\text{-kal} \qquad \qquad 2\%\text{-kal} \qquad \qquad 44\%\text{-kal} \qquad \qquad 50\%\text{-kal}$	2.
3.	Oldja meg a $3^{x+1}+3^x>36$ egyenlőtlenséget! $x>0 \qquad x<3 \qquad x>9 \qquad x<2 \qquad x>2$	ώ
4.	Legyen $f(x)=x^2$, $g(x)=x+12$. Mely x valós számokra teljesül az $f(x)\leq g(x)$ egyenlőtlenség? $x\geq 4 \text{ vagy} \qquad -3\leq x\leq 4 \qquad -3< x<4 \qquad -4< x<3 \qquad -4\leq x\leq 3$ $x\leq -3$	4.
5.	Mennyi $\cos^2\alpha-\sin^2\alpha$ értéke, ha $\sin\alpha=\frac{\sqrt{3}}{2}$? $1 \qquad \qquad \frac{1}{2} \qquad \qquad 1-\sqrt{3} \qquad \qquad \text{T\"{o}bb ilyen \'{e}rt\'{e}k is} \qquad -\frac{1}{2} \qquad \qquad \text{van}.$	5.
.9	Mekkora szöget zár be az ${\bf u}-{\bf v}$ vektor a koordinátasík x tengelyével, ha ${\bf u}=(2\sqrt{3}-1;\ 5)$ és ${\bf v}=(\sqrt{3}-1;\ 4)$?	
	20° 30° 45° 60° 120°	6.
7.	Ha tíz törpe nagyság szerint sorba áll, akkor két egymás melletti törpe közti magasságkülönbség $2\mathrm{cm}$ lesz. Milyen magas lenne a törpetorony, ha egymás fejére állítanánk őket, és a legalacsonyabb $45\mathrm{cm}$? A következők $100\mathrm{cm}$ $260\mathrm{cm}$ $1080\mathrm{cm}$ $540\mathrm{cm}$ egyike se.	6. 7.
8. 7.	Ha tíz törpe nagyság szerint sorba áll, akkor két egymás melletti törpe közti magasságkülönbség $2\mathrm{cm}$ lesz. Milyen magas lenne a törpetorony, ha egymás fejére állítanánk őket, és a legalacsonyabb $45\mathrm{cm}$? A következők $100\mathrm{cm}$ $260\mathrm{cm}$ $1080\mathrm{cm}$ $540\mathrm{cm}$	
	Ha tíz törpe nagyság szerint sorba áll, akkor két egymás melletti törpe közti magasságkülönbség $2\mathrm{cm}$ lesz. Milyen magas lenne a törpetorony, ha egymás fejére állítanánk őket, és a legalacsonyabb $45\mathrm{cm}$? A következők $100\mathrm{cm}$ $260\mathrm{cm}$ $1080\mathrm{cm}$ $540\mathrm{cm}$ egyike se. Mely intervallumba esik $1+\sqrt{5}$	7.

11.	Oldja meg a $\log_2^2 x - \log_2 x - 2 = 0$ egyenletet a valós számok halmazán és tekintse az oldalt látható kijelentéseket! Az alábbiak közül melyik állítás igaz? A és C A vagy C A vagy B A: Az egyenletnek egy megoldása van. B: Az egyenletnek csak pozitív megoldása van. C: Az egyenletnek van prímszám megoldása.	11.
12.	Fejezze ki a $\log_2(X+1) + \log_2(X-1) = Z$ egyenlőségből az X változót, ha $X>1$! $X=2^Z+1 \qquad X=2^Z-1 \qquad X=\sqrt{2^Z+1} \qquad X=\pm\sqrt{2^Z+1} \qquad X=\pm\sqrt[3]{2^Z+1}$	12.
13.	Az alábbiak közül mivel egyenlő a $\sin(x-\frac{\pi}{2})+\cos x$ kifejezés értéke? $2\sin x \hspace{1cm} 1 \hspace{1cm} 0 \hspace{1cm} \sin(\frac{\pi}{2}-x)+\cos x \hspace{1cm} \sin x+\cos x$	13.
14.	Az alábbi függvények közül melyik grafikonja megy át az origón? $f(x)=\sin x^2, \qquad g(x)= x-1 +1, \qquad h(x)=-1+\log_3(x+3)$ Csak f és h . Csak a g és a h . Egyik sem.	14.
15.	Az alábbi függvények közül melyik szigorúan monoton növekvő az $[1;2]$ intervallumon? $f(x)=\sin x, \qquad g(x)= x , \qquad h(x)=2^{x-3}$ Csak f és h . Csak a g és a h . Egyik sem.	15.