Lecture 5

Multivariate Linear Regression

Readings: Johnson & Wichern 2007, Chapter 7; DSA 8020 Lectures 1-4 [Link]; Zelterman, 2015, Chapter 9

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University

Multivariate Linear Regression	
5.1	

Agenda

- Motivation
- Model and Assumptions
- Parameter Estimation
- 4 Inference and Prediction
- Motor Trend Car Road Tests Data Analysis

Notes

Notes

Example: Motor Trend Car Road Tests

> head(mtcars)

 mpg
 cyl
 disp
 hp
 drat
 wt
 qsec
 vs
 am
 gear
 carb

 21.0
 6
 160
 110
 3.90
 2.620
 16.46
 0
 1
 4
 4

 21.0
 6
 160
 110
 3.90
 2.875
 17.02
 0
 1
 4
 4
 Mazda RX4 Mazda RX4 Wag 4 108 93 3.85 2.320 18.61 1 6 258 110 3.08 3.215 19.44 1 8 360 175 3.15 3.440 17.02 0 Datsun 710 22.8 21.4 Hornet 4 Drive Hornet Sportabout 18.7 Valiant 18.1 6 225 105 2.76 3.460 20.22 1

Suppose we would like to study the (linear) relationship between mpg, disp, hp, wt (responses) and cyl, am, carb (predictors)

Multiple regression predicts one outcome; multivariate regression predicts several simultaneously

Notes

Why Multivariate Regression Instead of Separate Regressions?

Estimation:

- Coefficient estimates are the same as running separate regressions
- Inference: The real gain comes from joint modeling
 - Test hypotheses across multiple outcomes simultaneously
 - Accounts for correlations among responses ⇒ more powerful and accurate tests

• Examples:

- Does a predictor affect all outcomes jointly?
- Multivariate analog of ANOVA (MANOVA)

Notes

Notes

Notes

5.4

Review: Linear Regression Model

The multiple linear regression model has the form:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i, \quad i = 1, \dots, n,$$

where

- ullet y_i is the response for the i-th observation
- x_{ij} is the *j*-th predictor for the *i*-th observation
- β_0 and β_j 's are the regression intercept and slopes for the response, respectively
- ε_i is the error term for the response of the i-th observation

Motivation

Model and Assumptions

Inference and

Prediction

Road Tests Data

5.5

The Multivariate Linear Regression Model: Scalar Form

The multivariate (multiple) linear regression model has the form:

$$y_{ik} = \beta_{0k} + \sum_{j=1}^{p} \beta_{jk} x_{ij} + \varepsilon_{ik}, \quad i = 1, \dots, n, \quad k = 1, \dots, d,$$

where

- y_{ik} is the k-th response for the i-th observation
- ullet x_{ij} is the j-th predictor for the i-th observation
- β_{0k} and β_{jk} 's are the regression intercept and slopes for k-th response, respectively
- ullet ε_{ik} is the error term for the k-th response of the i-th observation

Motivation

Model and

Estimation

Inference and Prediction

5.

The Multivariate Linear Regression Model: **Assumptions**

The assumptions of the model are:

- Relationship between $\{x_j\}_{j=1}^p$ and Y_k is linear for each $k \in \{1, \cdots, d\}$
- \bullet $(\varepsilon_{i1},\cdots,\varepsilon_{id})^T\stackrel{i.i.d.}{\sim} \mathrm{N}(\mathbf{0},\Sigma)$ is an unobserved random
- $[Y_{ik}|x_{i1},\cdots,x_{ip}]\sim \mathrm{N}(\beta_{0k}+\sum_{j=1}^p\beta_{jk}x_{ij},\sigma_{kk})$ for each $k\in\{1,\cdots,d\}$

Notes			

The Multivariate Linear Regression Model: Matrix Form

The multivariate multiple linear regression model has the form

$$Y = XB + E$$
,

where

- ullet $oldsymbol{Y} = [oldsymbol{y}_1, \cdots, oldsymbol{y}_d]$ is the n imes d response matrix, where $oldsymbol{y}_k = (y_{1k}, \cdots, y_{nk})^T$ is the k-th response vector
- $X = [1, x_1, \cdots, x_p]$ is the $n \times (p+1)$ design matrix
- $\boldsymbol{B} = [\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_d]$ is the $(p+1) \times d$ matrix of regression coefficients
- ullet $oldsymbol{E} = [oldsymbol{arepsilon}_1, \cdots, oldsymbol{arepsilon}_d]$ is the n imes d error matrix

Notes

Another Look of the Matrix Form

Matrix form writes the multivariate linear regression model for all $n \times d$ points simultaneously as

$$Y = XB + E$$

$$\begin{bmatrix} y_{11} & \cdots & y_{1d} \\ y_{21} & \cdots & y_{2d} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{nd} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & x_{1p} \\ 1 & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_{01} & \cdots & \beta_{0d} \\ \beta_{11} & \cdots & \beta_{1d} \\ \vdots & \ddots & \vdots \\ \beta_{p1} & \cdots & \beta_{pd} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} & \cdots & \varepsilon_{1d} \\ \varepsilon_{21} & \cdots & \varepsilon_{2d} \\ \vdots & \ddots & \vdots \\ \varepsilon_{n1} & \cdots & \varepsilon_{nd} \end{bmatrix}$$

Assuming that n subjects are independent, we have

- $\bullet \ \varepsilon_k \sim N(0, \sigma_{kk}), \quad k \in \{1, \cdots, d\}$
- $\bullet \ \varepsilon_i \stackrel{i.i.d.}{\sim} \mathrm{N}(\mathbf{0}, \Sigma), \quad i = 1, \cdots, n$

Notes		

N	lotes			
_				
_				
_				
_				
_				

Ordinary Least Squares

The ordinary least squares OLS estimate is

$$\underset{\boldsymbol{B} \in \mathbb{R}^{(p+1) \times d}}{\operatorname{argmin}} ||\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{B}||^2 = \underset{\boldsymbol{B} \in \mathbb{R}^{(p+1) \times d}}{\operatorname{argmin}} \sum_{i=1}^n \sum_{k=1}^d \left(y_{ik} - \beta_{0k} - \sum_{j=1}^p \beta_{jk} x_{ij} - \beta_{0k} - \beta_{0$$

where $||\cdot||$ denotes the Frobenius norm.

$$\bullet \frac{\partial \text{OLS}(\boldsymbol{B})}{\partial \boldsymbol{B}} = -2\boldsymbol{X}^T\boldsymbol{Y} + 2\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{B}$$

The OLS estimate has the form

$$\hat{\boldsymbol{B}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} \Rightarrow \hat{\boldsymbol{\beta}}_k = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}_k, \quad k \in \{1, \dots, d\}$$

Notes

Expected Value of Least Squares Coefficients

The expected value of the estimated coefficients is given by

$$\mathbb{E}(\hat{\boldsymbol{B}}) = \mathbb{E}\left[(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y}\right]$$
$$= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{Y})$$
$$= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{B}$$
$$= \boldsymbol{B}$$

 $\Rightarrow \hat{B}$ is an unbiased estimator of B

Notes

Notes

Fitted Values and Residuals

Fitted values are given by

$$\hat{\boldsymbol{Y}} = \boldsymbol{X}\hat{\boldsymbol{B}},$$

i.e.,
$$\hat{y}_{ik} = \hat{\beta}_{0k} + \sum_{j=1}^{p} \hat{\beta}_{jk} x_{ij}, \quad i = 1, \cdots, n, \quad k = 1, \cdots, d$$

Residuals are given by

$$\hat{\boldsymbol{E}} = \boldsymbol{Y} - \hat{\boldsymbol{Y}},$$

i.e.,
$$\hat{\varepsilon}_{ik}=y_{ik}-\hat{y}_{ik}, \quad i=1,\cdots,n, \quad k=1,\cdots,d$$

Hat Matrix

Just like in univariate linear regression we can write the fitted values as

$$\hat{Y} = X\hat{B}$$

$$= X(X^TX)^{-1}X^TY$$

$$= HY.$$

where $\boldsymbol{H} = \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T$ is the hat matrix

 \Rightarrow ${\pmb H}$ projects ${\pmb y}_k$ onto the column space of ${\pmb X}$ for $k \in \{1, \cdots, d\}$

Multivariate Linear Regression CLEMS NIVERSIT

Model and

Parameter Estimation

Inference and

Motor Irend Car Road Tests Data

5.13

Partitioning the Total Variation

We can partition the total covariation in $\{y_i\}_{i=1}^n$ (SSCP $_{\mathrm{Tot}}$)as

$$SSCP_{tot} = \sum_{i=1}^{n} (\mathbf{y}_i - \bar{\mathbf{y}})^T (\mathbf{y}_i - \bar{\mathbf{y}})$$

$$= \sum_{i=1}^{n} (\mathbf{y}_i - \hat{\mathbf{y}}_i + \hat{\mathbf{y}}_i - \bar{\mathbf{y}}) (\mathbf{y}_i - \hat{\mathbf{y}}_i + \hat{\mathbf{y}}_i - \bar{\mathbf{y}})^T$$

$$= \sum_{i=1}^{n} (\hat{\mathbf{y}}_i - \bar{\mathbf{y}}) (\hat{\mathbf{y}}_i - \bar{\mathbf{y}})^T + \sum_{i=1}^{n} (\mathbf{y}_i - \hat{\mathbf{y}}_i) (\mathbf{y}_i - \hat{\mathbf{y}}_i)^T$$

$$+ 2 \sum_{i=1}^{n} (\hat{\mathbf{y}}_i - \bar{\mathbf{y}}) (\mathbf{y}_i - \hat{\mathbf{y}}_i)$$

$$= SSCP_{Pog} + SSCP_{Err}$$

The corresponding degrees of freedom are d(n-1) for $\mathrm{SSCP}_{\mathrm{Tot}}; dp$ for $\mathrm{SSCP}_{\mathrm{Reg}};$ and d(n-p-1) for $\mathrm{SSCP}_{\mathrm{Err}}$

Motivation

Model and Assumptions

Parameter

nference and Prediction

Motor Trend Car Road Tests Data Analysis

6.14

Notes	

Notes

Estimated Error Covariance

The estimated error covariance matrix is

$$\hat{\boldsymbol{\Sigma}} = \frac{\sum_{i=1}^{n} (\boldsymbol{y}_i - \hat{\boldsymbol{y}}_i) (\boldsymbol{y}_i - \hat{\boldsymbol{y}}_i)^T}{n - p - 1}$$
$$= \frac{\text{SSCP}_{Err}}{n - p - 1}$$

- $\bullet \ \hat{\Sigma}$ is an unbiased estimate of Σ
- ullet The estimate $\hat{f \Sigma}$ is the mean ${
 m SSCP}_{Err}$

Multivariate
Linear
Regression
CLEMS S N

Motivation

Model and

Parameter Estimation

Inference and Prediction

Motor Trend Car

Sampling Distributions of \hat{B}, \hat{Y} , and \hat{E}

We would need to figure out the sampling distributions of estimator and predictor in order to drawn inference

Given the model assumptions, we have

$$\begin{split} & \operatorname{vec}(\hat{\boldsymbol{B}}) \sim \operatorname{N}(\operatorname{vec}(\boldsymbol{B}), \boldsymbol{\Sigma} \otimes (\boldsymbol{X}^T \boldsymbol{X})^{-1}) \\ & \operatorname{vec}(\hat{\boldsymbol{Y}}) \sim \operatorname{N}(\operatorname{vec}(\boldsymbol{X}\boldsymbol{B}), \boldsymbol{\Sigma} \otimes \boldsymbol{H}) \\ & \operatorname{vec}(\hat{\boldsymbol{E}}) \sim \operatorname{N}(\boldsymbol{0}, \boldsymbol{\Sigma} \otimes (\boldsymbol{I} - \boldsymbol{H})), \end{split}$$

where $\mathrm{vec}(\cdot)$ is the vectorization operator and \otimes is the Kronecker product

Multivariate Linear Regression CLEVIS Notation Model and Assumptions Parameter Estimation Inference and Prediction Motor Trend Car Road Tests Data Analysis

Notes

Inference about Multiple $\hat{\beta}_{ik}$

Assume that q < p and want to test if a reduced model is sufficient:

$$H_0: \boldsymbol{B}_2 = \boldsymbol{0}_{p-q} \times d, \quad \text{versus} \quad H_a: \boldsymbol{B}_2 \neq \boldsymbol{0}_{p-q} \times d,$$

where

$$m{B} = egin{bmatrix} m{B}_1 \ m{B}_2 \end{bmatrix}$$

is the partitioned of the coefficient vector We can compare the ${\rm SSCP}_{\it Err}$ for the full model:

$$y_{ik} = \beta_{0k} + \sum_{j=1}^{p} \beta_{jk} x_{ij} + \varepsilon_{ik}, \quad k = 1, \dots, d$$

and the reduced model:

$$y_{ik} = \beta_{0k} + \sum_{j=1}^{q} \beta_{jk} x_{ij} + \varepsilon_{ik}, \quad k = 1, \dots, d$$

Motivation

Model and
Assumptions

nference and

Motor Trend Car Road Tests Data

6.17

Notes				

Some Test Statistics

Let $\tilde{E}=n\tilde{\Sigma}$ denote the SSCP_{Err} matrix from the full model, and let $\tilde{H}=n\left(\tilde{\Sigma}_1-\tilde{\Sigma}\right)$ denote the hypothesis SSCP_{Err} matrix

Some test statistics for

 $H_0: \boldsymbol{B}_2 = \boldsymbol{0}_{p-q} \times d, \quad \text{versus} \quad H_a: \boldsymbol{B}_2 \neq \boldsymbol{0}_{p-q} \times d:$

Wilks's Lambda

$$\Lambda^* = \frac{|\tilde{E}|}{|\tilde{H} + \tilde{E}|}$$

Reject H_0 if Λ^* is "small"

Hotelling-Lawley Trace

$$T_0^2 = \operatorname{tr}(\tilde{\boldsymbol{H}}\tilde{\boldsymbol{E}}^{-1})$$

Reject H_0 if T_0^2 is "large"

Pillai's Trace

$$V = \operatorname{tr}(\tilde{\boldsymbol{H}}(\tilde{\boldsymbol{H}} + \tilde{\boldsymbol{E}})^{-1})$$

Reject H_0 if V is "large"

Notes			

Interval Estimation

We would like to estimate the expected value of the response for a given predictor $x_h = (1, x_{h1}, \cdots, x_{hp})$.

Note that we have

$$\hat{\boldsymbol{y}}_h \sim \mathrm{N}(\boldsymbol{B}^T \boldsymbol{x}_h, \boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h \boldsymbol{\Sigma})$$

We can exploit the duality between interval estimation and hypothesis testing. That is, we can test

$$H_0: \mathbb{E}(\boldsymbol{y}_h) = \boldsymbol{y}_h^*$$
 versus $H_a: \mathbb{E}(\boldsymbol{y}_h)
eq \boldsymbol{y}_h^*$

The $100(1-\alpha)\%$ confidence region is the collection of y_h^* values that fail to reject H_0 at α level

Notes			

Interval Estimation (Cont'd)

Test statistics:

$$T^2 = \left(\frac{\hat{\boldsymbol{B}}^T \boldsymbol{x}_h - \boldsymbol{B}^T \boldsymbol{x}_h}{\sqrt{\boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h}}\right)^T \hat{\boldsymbol{\Sigma}}^{-1} \left(\frac{\hat{\boldsymbol{B}}^T \boldsymbol{x}_h - \boldsymbol{B}^T \boldsymbol{x}_h}{\sqrt{\boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h}}\right)$$

$$\stackrel{H_0}{\sim} \frac{d(n-p-1)}{n-p-d} F_{d,n-p-d}$$

Therefore, the $100(1-\alpha)\%$ simultaneous confidence interval for y_{hk} is

$$\hat{y}_{hk} \pm \sqrt{\frac{d(n-p-1)}{n-p-d}} F_{d,n-p-d} \sqrt{\boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h \hat{\sigma}_{kk}},$$

 $k \in \{1, \cdots, d\}$

Notes

Predicting New Observations

Here we want to predict the observed value of response for a given predictor

- Note: interested in actual \hat{y}_h instead of $\mathbb{E}(\hat{y}_h)$
- Given $x_h = (1, x_{h1}, \cdots, x_{hp})$, the fitted value is still $\hat{\boldsymbol{y}}_h = \hat{\boldsymbol{B}}^T \boldsymbol{x}_h$

We can exploit the duality between interval estimation and hypothesis testing. That is, we can test

$$H_0: oldsymbol{y}_h = oldsymbol{y}_h^*$$
 versus $H_a: oldsymbol{y}_h
eq oldsymbol{y}_h^*$

The $100(1-\alpha)\%$ prediction interval is the collection of ${m y}_h^*$ values that fail to reject H_0 at α level

Notes

140103			

Predicting New Observations (Cont'd)

Test statistics:

$$T^2 = \left(rac{\hat{oldsymbol{B}}^Toldsymbol{x}_h - oldsymbol{B}^Toldsymbol{x}_h}{\sqrt{1 + oldsymbol{x}_h^T(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_h}}
ight)^T\hat{oldsymbol{\Sigma}}^{-1} \left(rac{\hat{oldsymbol{B}}^Toldsymbol{x}_h - oldsymbol{B}^Toldsymbol{x}_h}{\sqrt{1 + oldsymbol{x}_h^T(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_h}}}
ight)^T\hat{oldsymbol{\Sigma}}^{-1} \left(rac{\hat{oldsymbol{B}}^Toldsymbol{x}_h - oldsymbol{B}^Toldsymbol{x}_h}{\sqrt{1 + oldsymbol{x}_h^T(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_h}}}
ight)^T\hat{oldsymbol{\Sigma}}^{-1} \left(rac{\hat{oldsymbol{B}}^Toldsymbol{x}_h - oldsymbol{B}^Toldsymbol{x}_h}{\sqrt{1 + oldsymbol{x}_h^T(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_h}}
ight)^T\hat{oldsymbol{\Sigma}}^{-1} \left(rac{\hat{oldsymbol{B}}^Toldsymbol{x}_h - oldsymbol{B}^Toldsymbol{x}_h}{\sqrt{1 + oldsymbol{x}_h^T(oldsymbol{X}^Toldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_h}}
ight)^T\hat{oldsymbol{\Sigma}}^{-1} \left(rac{\hat{oldsymbol{B}}^Toldsymbol{x}_h - oldsymbol{B}^Toldsymbol{x}_h}{\sqrt{1 + oldsymbol{x}_h^T(oldsymbol{X}^Toldsymbol{X}^Toldsymbol{X}^Toldsymbol{X}^Toldsymbol{X}}}^{-1}oldsymbol{x}_h$$

Therefore, the $100(1-\alpha)\%$ simultaneous prediction interval for y_{hk} is

$$\hat{y}_{hk} \pm \sqrt{\frac{d(n-p-1)}{n-p-d}} F_{d,n-p-d} \sqrt{\left(1 + \boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h\right) \hat{\sigma}_{kk}},$$

$$k \in \{1, \cdots, d\}$$

Multivariate Linear Regression

CLEMS

Modivation

Modification

Modification

Modification

Modification

Inference and Prediction

Motor Trend Car Road Tests Data Analysis

Motor Trend Car Road Tests Data Analysis

Study the linear relationship between $\tt mpg,\ disp,\ hp,$ wt (responses) and <code>cyl, am, carb</code> (predictors) in the <code>mtcars</code> dataset

Multivariate
Linear
Regression

CLEMS

Motivation

Model and
Assumptions

Parameter
Estimation
Inference and
Prediction

Motor Trend Car
Road Tests Data
Analysis

Notes

Notes

Multivariate Regression Fit

- Model: $lm(Y \sim cyl + am + carb, data = mtcars)$
- Key findings:
 - mpg: decreases with more cylinders, increases with manual transmission
 - disp: strongly influenced by cyl
 - hp: influenced by cyl and carb
 - wt: influenced by cyl, am, carb
- Note: Multivariate regression produces the same point estimates as running separate regressions for each response

Multivariate Linear
Regression
CLEMS # N

Model and Assumptions Parameter Estimation

Inference and

Motor Trend Car Road Tests Data Inalysis

SSCP & Error Covariance

SSCP decomposition:

$$SSCP_{Tot} = SSCP_{Reg} + SSCP_{Err}$$

• Estimated error covariance matrix $(\hat{\Sigma})$

```
        mpg
        disp
        hp
        wt

        mpg
        7.8680094
        -53.27166
        -19.7015979
        -0.6575443

        disp
        -33.271607
        2504.87095
        425.132888
        18.1065416

        hp
        -19.7015979
        425.13290
        577.2703337
        0.4662491

        wt
        -06575443
        418.0654
        -0.462091
        -0.2573503

        mpg
        1.0000000
        -0.3794645
        -0.29233405
        -0.46209388

        disp
        -0.3794645
        -0.29233405
        -0.4620938
        -0.7131492

        hp
        -0.2923340
        0.33535431
        0.0000000
        0.03825304

        wt
        -0.4620939
        0.7131493
        0.03825304
        1.00000000
```

 \Rightarrow Captures residual dependencies among responses

Do We Need "cy1"?

```
> mvlm0 <- lm(Y \sim am + carb, data = mtcars)
> anova(mvlm, mvlm0, test = "Wilks")
Analysis of Variance Table
Model 1: Y ~ cyl + am + carb
Model 2: Y ~ am + carb
 Res.Df Df Gen.var. Wilks approx F num Df
     27
             29.862
     29 2 43.692 0.16395
2
                               8.8181
 den Df
           Pr(>F)
1
2
     48 2.525e-07 ***
```

Interpretation: cylinder count explains variation across responses

F 00

Notes

Notes

Confidence and Prediction Intervals

Default predict () lacks multivariate CI/PI, so we use an $\tt R$ function from Prof. Helwig at the University of Minnesota

> n	ewdata	<-	data	a.fram	e(cyl = f)	actor(6	, leve	ls = c(4,	6,	8)),
+					am = 1,	carb =	4)			
> #	confi	dend	e ir	iterva	1					
> p	red.ml	m(mv	lm,	newda	ta)					
		mpg		disp	hp		wt			
fit	21.51	824	159.	2707	136.98500	2.6311	08			
lwr	16.65	593	72.	5141	95.33649	1.7517	36			
upr	26.38	8055	246.	0273	178.63351	3.5104	79			
> #	predi	ctic	n ir	iterva	1					
> p	red.ml	m(mv	lm,	newda	ta, inter	/al = "	predic	tion")		
		mpg	5	dis	p I	пр	wt			
fit	21.51	8246	159	2707	0 136.985	00 2.63	11076			
lwr	9.68	0053	-51	.9543	5 35.583	97 0.49	01152			
upr	33.35	6426	376	.4957	6 238.386	93 4.77	20999			

Multivariate
Linear
Regression
CLEMS#N

Model and Assumptions Parameter

Inference and

Motor Trend Car Road Tests Data

nalysis

Notes			

Summary

In this lecture, we learned about Multivariate Linear Regression

- Model and Assumptions
- Parameter Estimation
- Inference and Prediction

Multivariate Linear Regression
CLEMS N
Motor Trend Car Road Tests Data Analysis

Notes			
Notes			
Notes			