Calul intégral

41 Soit
$$K = \int_{1}^{2} x^{2} \ln(x) dx$$
.

- **1.** En utilisant la méthode d'intégration par parties, justifier que $K = \left[\frac{1}{3}x^3\ln(x)\right]_1^2 \int_1^2 \frac{1}{3}x^2 dx$.
- 2. Vérifier alors que $K = \frac{8}{3} ln(2) \frac{7}{9}$.

$$\int_{1}^{2} u(x) \, dx = \left[u(x) \, v(x) \right]_{1}^{2} - \int_{1}^{2} u(x) \, v(x) \, dx$$

$$\int_{\Lambda} x^{2} \ln(x) dx = \left[\frac{1}{3}x^{2} \ln(x)\right]_{\Lambda}^{2} - \left(\frac{1}{3}x^{2} \ln(x)\right)_{\Lambda}^{2} + \left(\frac{1}$$

dome (2 x² ln 6 i dn = [1 3 2 ln (n)], - (1 3 2 dn

et ainsi
$$K = \frac{8}{3} \ln(2) - \frac{1}{3} \times 1 \times \ln(1) - \left(\frac{1}{3} \times \frac{1}{3} \times 1 \times \frac{1}{3} \times$$

$$K = 8 \ln(2) - \frac{1}{3} \left[\frac{x^3}{3} \right]^2 - \frac{8}{3} - \frac{1}{3} x^{\frac{7}{3}}$$

94 Soit la suite
$$(u_n)$$
 définie pour tout entier naturel n , par

$$u_n = \int_0^1 \frac{x^n}{1+x} dx.$$

1. Calculer
$$u_0 = \int_0^1 \frac{1}{1+x} dx$$
.

2. a. Démontrer que, pour tout entier naturel
$$n$$
,

$$u_{n+1} + u_n = \frac{1}{n+1}.$$

b. En déduire la valeur exacte de
$$u_1$$

3. Démontrer que la suite
$$(u_n)$$
 est décroissante.

1)
$$M_0 = \left(\frac{1}{x} dx - \left[ln(|1+x|) \right] \right)$$

$$=\int_{0}^{1}\frac{x^{n}(x+x)}{x+y}dx$$

$$m^{4} + m^{2} = \left(\frac{1}{2} \cos^{2} dx - \left[\frac{m^{4}}{2} \right] - \frac{m^{4}}{2} \right)$$

	27 cm 'applique la farmule précèdente over n=0:
	$y_1 + y_0 = \frac{1}{0+1} = 1$ or $y_0 = 2m(2)$
	or uo - 2n (2)
	u, = 1- No= ln(e)-ln(2)=ln(e)
•	
_	But but redque o < x < 1 > 0 : Con a Oxxxx & xm+1 < xx > 0
	•
1	uis 0 < 20 / 1/2 < 20 over 1+20 over
ęr'	ace of (milder) of the dr i.a. dup Math & Mar
e\rst	m M > rank end - s.
	Autremèthede. un étudie le signe
	de la différence Mmtr-Mm

95 Soit
$$(I_n)$$
 et (J_n) les suites définies sur \mathbb{N}^* par :

$$I_n = \int_0^1 \frac{1}{1+x^n} dx \text{ et } J_n = \int_0^1 \frac{x^n}{1+x^n} dx.$$

1. a. Justifier que, pour tout réel
$$x$$
 de $[0; 1]$, $\frac{1}{1+x^n} \le 1$.

b. Montrer que la suite
$$(I_n)$$
 est majorée par 1.

2. a. Montrer que, pour
$$n$$
 dans \mathbb{N}^* , $0 \le J_n \le \frac{1}{n+1}$.

b. En déduire la limite de la suite
$$(J_n)$$
.

3. a. Calculer, pour tout
$$n$$
 de \mathbb{N}^* , $I_n + J_n$.

b. Déterminer la limite de la suite
$$(I_n)$$
.

done 1 > 1/1/2" > 1/2

donc $0 \leq 5m \leq \left[\frac{x^{m+1}}{m+1}\right]_0$ donc $0 \leq 5m \leq 1$ 6). D'une part pour tout n E M+. OS 5m < 1 M+1 Noutre parti. Compton m+1 Donc d'après le Kréarême de limite par encadrement lim 5m = 6 m > toB) a) Pour tout m E M#.

In +5m = (1 dx + 1 m)

Atrin $= \int_{0}^{1} \frac{1}{1+x^{2}} dx$ $= \int_{0}^{1} \frac{1}{1+x^{2}} dx - \int_{0}^{1} 1 dx - 1$ $= \int_{0}^{1} \frac{1}{1+x^{2}} dx - \int_{0}^{1} 1 dx - 1$

On a pour tout m E INI +: Im+5m=1 Donc In-1-In De plus lim 5m=6 m->tal Dong par sonne lim Iny = 1 over n