

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (1) of (31)

TEST REPORT Part 90

Equipment under test Curbside Valet

Model name CURBTX

FCC ID WDC-CURBTX

Applicant HME Wireless, Inc.

Manufacturer Lee Technology Korea Co., Ltd.

Date of test(s) $2015.04.16 \sim 2015.04.23$

Date of issue 2015.05.08

Issued to

HME Wireless, Inc.

1400 Northbrook Parkway Suite 320 Suwanee GA 30024

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by :
	Zelon
Hyeon-su Jang	Jeff Do
Test engineer	Technical manager

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (2) of (31)

Revision history

Revision	Date of issue	Test report No.	Description
-	2015.05.08	KES-RF-15T0042	Initial

C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (3) of (31)

TABLE OF CONTENTS

General	information	4
1.1.	EUT description	4
1.2.	Test frequency	4
1.3.	Information about derivative model	4
1.4.	Device modifications	4
Summar	y of tests	5
3.1	RF output power	6
3.2	Bandwidth limitation	9
3.3	Emission mask	
3.4	Conducted spurious emissions	
3.5	Frequency stability	17
3.6	Transient frequency behavior of the transmitter	
3.7	Radiation spurious emissions	24
endix A.	Test equipment used for test	30
endix B.	Test setup photo	31
	1.1. 1.2. 1.3. 1.4. Summary Test results 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Dendix A.	1.2. Test frequency 1.3. Information about derivative model 1.4. Device modifications. Summary of tests Test results 3.1 RF output power. 3.2 Bandwidth limitation. 3.3 Emission mask. 3.4 Conducted spurious emissions 3.5 Frequency stability. 3.6 Transient frequency behavior of the transmitter. 3.7 Radiation spurious emissions

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (4) of (31)

1. General information

Applicant HME Wireless, Inc.

Applicant address 1400 Northbrook Parkway Suite 320 Suwanee GA 30024

Test site KES Co., Ltd.

Test site address C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,431-716, Korea

473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Rule part(s) Part 90

Test device serial No. Production Pre-production Engineering

1.1. EUT description

Equipment under test Curbside Valet

Frequency range $450.025 \text{ MHz} \sim 469.975 \text{ MHz}$

Model:CURBTXType of emission10K2F1DChannel separation12.5 kHzRated power0.03 W

Antenna specification Fixed type (Helical antenna) // -3dBi

Power source 4.5 V dc // Alkaline battery(Size D, 3ea)

1.2. Test frequency

	Low channel	Middle channel	High channel	
Frequency (Mb)	450.025	457.575	469.975	

1.3. Information about derivative model

N/A

1.4. Device modifications

N/A

C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (5) of (31)

2. Summary of tests

Reference	Parameter	
90.205	RF output power	
90.209	Bandwidth limitation	
90.210(d)	Emission mask	
90.210(d)	Conducted spurious emissions	
90.213	Frequency stability	
90.214	Transient frequency behavior	
90.210(d)	Radiated spurious emissions	

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (6) of (31)

3. Test results

3.1 RF output power

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 2 MHz

RBW = 100 kHz

 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

Limit

According to FCC 90.205(h) $450 \sim 470$ Mz. (1) The maximum allowable station effective radiated p ower (ERP) is dependent upon the station's antenna HAAT and required service area and will be au thorized in accordance with table 2. Applicants requesting an ERP in excess of that listed in table 2 must submit an engineering analysis based upon generally accepted engineering practices and stan dards that includes coverage contours to demonstrate that the requested station parameters will not p roduce coverage in excess of that which the applicant requires.

Table 2. 450 ~ 470 Mb — Maximum ERP/Reference HAAT for a Specific Service Area Radius

	Service area radius (km)									
	3 8 13 16 24 32 40 ⁴ 48 ⁴ 64 ⁴ 80 ⁴						804			
Maximum ERP (W) ¹	<u>2</u>	100	² 500							
Up to reference HAAT (m) ³	<u>15</u>	15	15	27	63	125	250	410	950	2700

¹Maximum ERP indicated provides for a 39 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 29 (See §73.699, Fig. 10 b).

- When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation: ERP_{allow}=ERP_{max}× (HAAT_{ref}/HAAT_{actual})².
- Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 39 dBu.

²Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 39 dBu.

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (7) of (31)

Test results

Frequency (Mbz)	Output power(dBm)	Output power(W)	Rated power(dBm)
450.025	14.45	0.03	
457.575	14.22	0.03	14
469.975	13.99	0.03	

Low channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (8) of (31)

Middle channel

High channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (9) of (31)

7.091172214 kH

450.0210200 MH

3.2 Bandwidth limitation

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

-40 dBn

70 dBm

CF 450.025 MHz

Date: 20.APR.2015 16:00:26

Span = 50 kHz

RBW = 300 Hz

 $VBW = 300 \text{ Hz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

3. Mark the peak frequency and -20 dB(Upper and lower) frequency.

Limit

N/A

Test results

Ref Level 20,78 dBm Offset 20,78 dB RBW 300 Hz Att 15 dB SWT 6.3 ms VBW 300 Hz Mode Auto FFT Ply View D1 14.510 dBm O dBm D2 -5.490 dBm D2 -5.490 dBm -20 dBm

Low channel

691 pts

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (10) of (31)

Middle channel

High channel

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (11) of (31)

3.3 Emission mask

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 120 kHz RBW = 100 Hz VBW = 100 Hz (\geq RBW) Sweep = auto Detector function = peak

Trace = max hold

- 3. Mark the peak frequency with maximum peak power as the center of the display of the spectrum analyzer.
- 4. Record the power spectrum analyzer and compare to the mask.

Limit

According to FCC part 90.210(d) Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power(P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz, but no more than 12.5 kHz: At least 7.27 (f_d-2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10log(P) dB or 70 dB, whichever is the lesser attenuation.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (12) of (31)

Test results

Low channel

Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (13) of (31)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (14) of (31)

3.4 Conducted spurious emissions

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 30 MHz to 5 GHz

RBW = 100 kHz

 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

Limit

According to FCC part 90.210(d) Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power(P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10log(P) dB or 70 dB, whichever is the lesser attenuation.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (15) of (31)

Test results

Low channel

Middle channel

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (16) of (31)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (17) of (31)

3.5 Frequency stability

Test setup

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The transmission time was measured with the spectrum analyzer using RBW=1 kHz, VBW=1 kHz.
- 3. Set the temperature of chamber to $-30\,^{\circ}$ C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10° C decreased per stage until the highest temperature 50° C is measured, record all measured frequencies on each temperature step.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (18) of (31)

Limit

- 1. According to FCC part 2 section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30 ℃ to +50 ℃ centigrade.
- 2. According to FCC part section 2.1055(d)(2), for battery powered equipment the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. According to FCC part 90 section 90.213, (a) Unless noted elsewhere, transmitters used in the services overned by this part must have a minimum frequency stability as specified in the following table.

Minimum Frequency Stability [Parts per million (ppm)]

174111	Trequency Stability	y [Parts per million (ppm	· -
Frequency range (Mb)	Fixed and base stations	Mobile	stations
rrequency range (mb)	Fixed and base stations	Over 2 watts output power	2 watts or less output power
Below 25	1,2,3100	100	200
25–50	20	20	50
72–76	5		50
150–174	5,115	⁶ 5	^{4,6} 50
216–220	1.0		1.0
220–222 ¹²	0.1	1.5	1.5
421–512	^{7,11,14} 2.5	⁸ 5	⁸ 5
806–809	¹⁴ 1.0	1.5	1.5
809–824	¹⁴ 1.5	2.5	2.5
851–854	1.0	1.5	1.5
854–869	1.5	2.5	2.5
896–901	¹⁴ 0.1	1.5	1.5
902–928	2.5	2.5	2.5
902–928 ¹³	2.5	2.5	2.5
929–930	1.5		
935–940	0.1	1.5	1.5
1427–1435	9300	300	300
Above 2450 ¹⁰			

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (19) of (31)

- ¹Fixed and base stations with over 200 watts transmitter power must have a frequency stability of 50 ppm except for equipment used in the Public Safety Pool where the frequency stability is 100 ppm.
- ²For single sideband operations below 25 Mb, the carrier frequency must be maintained within 50 Hz of the authorized carrier frequency.
- 3 Travelers information station transmitters operating from $530 \sim 1\,700\,$ kHz and transmitters exceeding 200 watts peak envelope power used for disaster communications and long distance circuit operations pursuant to \$90.242 and \$90.264 must maintain the carrier frequency to within 20 Hz of the authorized frequency.
- ⁴Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.
- 5 In the 150 \sim 174 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.
- 6 In the 150 \sim 174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth or designed to operate on a frequency specifically designated for itinerant use or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.
- 7 In the 421 ~ 512 Mz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.
- 8 In the 421 \sim 512 Mb band, mobile stations designed to operate with a 12.5 kb channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kb channel bandwidth must have a frequency stability of 1.0 ppm.
- ⁹Fixed stations with output powers above 120 watts and necessary bandwidth less than 3 kHz must operate with a frequency stability of 100 ppm. Fixed stations with output powers less than 120 watts and using time-division multiplex, must operate with a frequency stability of 500 ppm.
- ¹⁰Except for DSRCS equipment in the 5 850 \sim 5 925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5 850 \sim 5 925 MHz band is specified in subpart M of this part.
- ¹¹Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the $150 \sim 174$ MHz band and 2.5 ppm in the $421 \sim 512$ MHz band.
- ¹²Mobile units may utilize synchronizing signals from associated base stations to achieve the specified carrier stability.
- ¹³Fixed non-multilateration transmitters with an authorized bandwidth that is more than 40 kHz from the band edge, intermittently operated hand-held readers, and mobile transponders are not subject to frequency tolerance restrictions.
- ¹⁴Control stations may operate with the frequency tolerance specified for associated mobile frequencies.
- (b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (20) of (31)

Test results

Assigned frequency (Mb): 457.575

Test voltage (%)	Test voltage (V)	Temperature (℃)	Measure frequency (Mbz)	Frequency deviation (Hz)	Frequency deviation (ppm)	Limit (ppm)
		-30	457.574 122	-878	-1.92	
		-20	457.574 156	-844	-1.84	
		-10	457.574 295	-705	-1.54	
		0	457.574 311	-689	-1.51	
100 %	4.50	10	457.574 352	-648	-1.42	
		20	457.574 461	-539	-1.18	2.5
		30	457.574 671	-329	-0.72	
		40	457.574 780	-220	-0.48	
		50	457.574 797	-203	-0.44	
115 %	5.18	20	457.574 805	-195	-0.43	
Battery end point	2.70	20	457.574 804	-196	-0.43	

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (21) of (31)

3.6 Transient frequency behavior of the transmitter

Test procedure

- 1. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -15 dBm.
- 2. Key the transmitter.
- 3. Supply sufficient attenuation via the RF attenuator to provide an input level to the test receiver that is 40 dB below the test receiver maximum allowed input power when the transmitter is operating at its rated power level.
- 4. Unkey the transmitter.
- 5. Adjust the RF level of the signal generator to provide RF power into the RF power meter equal to the level this signal generator RF level shall be maintained throughout the rest of the measurement.
- 6. Connect the output of the RF combiner network to the input of the Modulation analyzer.
- 7. Set the horizontal sweep rate on the storage oscilloscope to 10 milliseconds per division and adjust the display to continuously view the 1 000 Hz tone. Adjust the vertical amplitude control of the oscilloscope to display the 1 000 Hz at ±4 divisions vertically centered on the display.
- 8. Key the transmitter and observe the stored display once the modulation Analyzer demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 kHz test signal is completely suppressed (including any capture time due to phasing) is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t1 and t₂. See the figure in the appropriate standards section.
- 9. During the time from the end of t_2 to the beginning of t_3 the frequency difference should not exceed the limits set by the FCC in 47 CFR 90.214 and outlined in 3.2.2. The allowed limit is equal to the transmitter frequency times its FCC frequency tolerance times ± 4 display divisions divided by 12.5 kHz.
- 10. Key the transmitter and observe the stored display. The trace should be maintained within the allowed divisions after the end of t₂ and remain within it until the end of the trace. See the figure in the appropriate standards sections.
- 11. To test the transient frequency behavior during the period t_3 the transmitter shall be keyed.

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (22) of (31)

- 12. Adjust the oscilloscope trigger controls so it will trigger on a decreasing magnitude from the Modulation analyzer, at 1 division from the right side of the display, when the transmitter is turned off. Set the controls to store the display. The moment when the 1 $\,\mathrm{kHz}$ test signal starts to rise is considered to provide to t_{off} .
- 13. The transmitter shall be unkeyed.
- 14. Observe the display. The trace should remain within the allowed divisions during period t3. See the figures in the appropriate standards section.

Limit

According to FCC 90.214, Transmitters designed to operate in the $150 \sim 174~\text{Mz}$ and $421 \sim 512~\text{Mz}$ frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency	All equ	ipment
Time intervals	difference ³	150 to 174 Mb	421 to 512 Mb
Transie	ent frequency behaviour for equipm	ent designed to operate on 25 kHz o	channel
t1 ⁴	±25.0 kHz	5.0 ms	10.0 ms
t2	±12.5 kHz	20.0 ms	25.0 ms
t3 ⁴	±25.0 kHz	5.0 ms	10.0 ms
Transient	Frequency Behaviour for Equipme	ent Designed to Operate on 12.5 kHz	Channel
t1 ⁴	±12.5 kHz	5.0 ms	10.0 ms
t2	±6.25 kHz	20.0 ms	25.0 ms
t3 ⁴	±12.5 kHz	5.0 ms	10.0 ms
Transient	Frequency Behaviour for Equipme	ent Designed to Operate on 6.25 kHz	Channel
t1 ⁴	±6.25 kHz	5.0 ms	10.0 ms
t2	±3.125 kHz	20.0 ms	25.0 ms
t3 ⁴	±6.25 kHz	5.0 ms	10.0 ms

¹_{on} is the instant when a 1 klz test signal is completely suppressed, including any capture time due to phasing.

 t_1 is the time period immediately following t_{on} .

 t_2 is the time period immediately following t_1 .

t₃ is the time period from the instant when the transmitter is turned off until t_{off}.

 t_{off} is the instant when the 1 kHz test signal starts to rise.

² During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in §90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency.

⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time may exceed the maximum frequency difference for this period.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (23) of (31)

Test results

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (24) of (31)

3.7 Radiation spurious emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz Emissions.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (25) of (31)

The diagram below shows the test setup for substituted method

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (26) of (31)

Test procedure: Based on ANSI/TIA 603C: 2004

- 1. On a test site, the EUT shall be placed at 80 cm height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using
 - 1) RBW: 100 kHz (< 1 GHz), 1 MHz (> 1 GHz).
 - 2) VBW: 100 kHz(< 1 GHz), 1 MHz(> 1 GHz).
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole(below 1 000 吨) or horn antenna(above 1 000 吨) connected to a signal generator.
- 11. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Limit

According to $\S90.210(d)$, Spurious attenuated in dB = $50 + 10\log(Power output in watts)$

C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (27) of (31)

Test results

Measurement Condition

Ambient temperature : $18 \,^{\circ}\text{C}$ Relative humidity : $36 \,^{\circ}\text{R.H.}$

Fundamental output power

Frequency (Mb)	Ant. Pol.(H/V)	Output power(dBm)	Output power(W)
450.025	Н	-2.51	0.000 561
450.025	V	1.72	0.001 486
457.575	Н	-2.35	0.000 582
	V	2.16	0.001 644
460.075	Н	-3.55	0.000 442
469.975	V	-0.40	0.000 912

Low channel

Frequency	Ant. Pol.	S.C. Lovol		Absolute level	Spurious attenuation	Limit	Margin
					_		
(MHz)	(H/V)	(dBm)	(dB)	(dBm)	(dBc)	(dBc)	(dB)
900.050	Н	-52.00	3.96	-48.04	49.76	21.72	28.04
900.050	V	-41.00	4.08	-36.92	38.64	21.72	16.92
1350.075	Н	-64.00	1.04	-62.96	64.68	21.72	42.96
1350.075	V	-68.00	0.93	-67.07	68.79	21.72	47.07
1800.100	Н	-52.00	1.98	-50.02	51.74	21.72	30.02
1800.100	V	-57.00	2.81	-54.19	55.91	21.72	34.19
2250.125	Н	-52.00	2.09	-49.91	51.63	21.72	29.91
2250.125	V	-55.00	1.19	-53.81	55.53	21.72	33.81
2700.150	Н	-51.00	2.09	-48.91	50.63	21.72	28.91
2700.150	V	-47.00	2.03	-44.97	46.69	21.72	24.97
3150.175	Н	-45.00	3.59	-41.41	43.13	21.72	21.41
3150.175	V	-40.00	3.43	-36.57	38.29	21.72	16.57
3600.200	Н	-43.00	4.04	-38.96	40.68	21.72	18.96
3600.200	V	-35.00	3.82	-31.18	32.90	21.72	11.18
4050.225	Н	-47.00	4.54	-42.46	44.18	21.72	22.46
4050.225	V	-42.00	4.95	-37.05	38.77	21.72	17.05

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (28) of (31)

Middle channel

	Wildle Chamie							
Frequency	Ant. Pol.	S.G. Level	Correction factor	Absolute level	Spurious attenuation	Limit	Margin	
(MHz)	(H/V)	(dBm)	(dB)	(dBm)	(dBc)	(dBc)	(dB)	
915.150	Н	-56.00	3.44	-52.56	54.72	22.16	32.56	
915.150	V	-45.00	3.97	-41.03	43.19	22.16	21.03	
1372.725	Н	-64.00	1.33	-62.67	64.83	22.16	42.67	
1372.725	V	-66.00	1.81	-64.19	66.35	22.16	44.19	
1830.300	Н	-48.00	1.76	-46.24	48.40	22.16	26.24	
1830.300	V	-54.00	2.44	-51.56	53.72	22.16	31.56	
2287.875	Н	-47.00	1.99	-45.01	47.17	22.16	25.01	
2287.875	V	-54.00	1.88	-52.12	54.28	22.16	32.12	
2745.450	Н	-49.00	2.06	-46.94	49.10	22.16	26.94	
2745.450	V	-44.00	2.20	-41.80	43.96	22.16	21.80	
3203.025	Н	-51.00	3.50	-47.50	49.66	22.16	27.50	
3203.025	V	-44.00	3.31	-40.69	42.85	22.16	20.69	
3660.600	Н	-42.00	4.45	-37.55	39.71	22.16	17.55	
3660.600	V	-35.00	4.00	-31.00	33.16	22.16	11.00	
4118.175	Н	-52.00	5.08	-46.92	49.08	22.16	26.92	
4118.175	V	-44.00	4.40	-39.60	41.76	22.16	19.60	
4575.750	Н	-49.00	4.94	-44.06	46.22	22.16	24.06	
4575.750	V	-40.00	4.85	-35.15	37.31	22.16	15.15	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0042 Page (29) of (31)

High channel

			8	Chamile			
Frequency	Ant. Pol.	S.G. Level	Correction factor	Absolute level	Spurious attenuation	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	(dBm)	(dBc)	(dBc)	(dB)
939.950	Н	-59.00	5.22	-53.78	53.38	19.60	33.78
939.950	V	-51.00	5.49	-45.51	45.11	19.60	25.51
1409.925	Н	-62.00	3.56	-58.44	58.04	19.60	38.44
1409.925	V	-67.00	4.20	-62.80	62.40	19.60	42.80
1879.900	Н	-42.00	4.23	-37.77	37.37	19.60	17.77
1879.900	V	-48.00	4.71	-43.29	42.89	19.60	23.29
2349.875	Н	-56.00	4.85	-51.15	50.75	19.60	31.15
2349.875	V	-59.00	4.41	-54.59	54.19	19.60	34.59
2819.850	Н	-55.00	5.89	-49.11	48.71	19.60	29.11
2819.850	V	-51.00	5.66	-45.34	44.94	19.60	25.34
3289.825	Н	-46.00	8.58	-37.42	37.02	19.60	17.42
3289.825	V	-38.00	7.63	-30.37	29.97	19.60	10.37
3759.800	Н	-50.00	7.64	-42.36	41.96	19.60	22.36
3759.800	V	-44.00	7.92	-36.08	35.68	19.60	16.08
4229.775	Н	-48.00	8.53	-39.47	39.07	19.60	19.47
4229.775	V	-38.00	8.48	-29.52	29.12	19.60	9.52
4699.750	Н	-54.00	9.03	-44.97	44.57	19.60	24.97
4699.750	V	-43.00	9.57	-33.43	33.03	19.60	13.43

%Remark;

- 1. Correction factor: Substitution antenna gain Tx cable loss
- 2. E.R.P. or E.I.R.P = S.G. Level + correction factor

C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (30) of (31)

Appendix A. Test equipment used for test

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV30	101389	1 year	2016.01.22
Vector signal generator	R&S	SMBV100A	1407.6004K02	1 year	2015.07.24
Preamplifier	HP	8447F	2805A02570	1 year	2016.01.23
Preamplifier	НР	8449B	3008A00538	1 year	2015.07.23
Preamplifier	Schwarzbeck	BBV 9721	9721-003	1 year	2015.09.04
Attenuator	НР	8495B	110504721	1 year	2016.01.22
Trilog-broadband antenna	Schwarzbeck	VULB 9168	9168-385	2 years	2015.05.09
Horn antenna	A.H.	SAS-571	414	2 years	2017.02.09
Horn antenna	ETS-LINDGREN	3117	00135889	2 years	2016.07.24
Dipole antenna	R&S	VHAP	574	2 years	2015.05.09
Dipole antenna	R&S	VHAP	575	2 years	2015.05.09
Dipole antenna	R&S	UHAP	545	2 years	2015.05.09
Dipole antenna	R&S	UHAP	546	2 years	2015.05.09
High pass filter	Mini-circuits	NHP-800+	15542	1 year	2015.07.23
High pass filter	Weinschel	WHKX1.2/15G-6TT	1	1 year	2015.07.23
Oscilloscope	Tektronix	TDS3014B	B014381	1 year	2015.09.26
Four-port junction pad	ANRITSU	6502	MA1612A	1 year	2015.07.23
DC power supply	НР	6813A	3729A00754	1 year	2016.01.22

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
N/A			

C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.: KES-RF-15T0042 Page (31) of (31)

Appendix B. Test setup photo

Radiated field emissions

