Correct the sensor-tilt problem

by Wenshan Wang

1 Problem

The sensor tilt may cause a phase shift and value bias in the observed downwelling shortwave radiation (I). It can be corrected by $(Goswami\ et\ al.,\ 2000)$:

$$I_h = I_t \cdot \frac{\sin \alpha + d_f}{\cos i + d_f \cdot (1 + \cos \beta)/2 + \rho \cdot (\sin \alpha + d_f)(1 - \cos \beta)/2} \tag{1}$$

Where,

 I_h and I_t are the downwelling shortwave fluxes on the horizontal and tilted surface, separately; α is solar altitude angle;

 d_f is the ratio of diffuse solar radiation, which will be estimated from satellite observed cloud fraction; i is the solar zenith angle observed from the tilted surface;

 β is the tilt angle of the surface;

 ρ is ground reflectance, which is 0.8 for snow cover;

 $\cos i$ depends on a_w (the rotated angle) and β (the tilted angle). In order to get I_h , a_w and β need to be estimated.

2 Strategy

Under clear sky conditions, when $d_f = 0.2$ (van As, 2011), I_h simulated by CRM with AIRS profiles can be used to estimate (a_w, β) , which will be used to correct the tilt problem in this month.

3 Equations (Goswami et al., 2000)

$$\cos i = \cos \alpha \, \cos(a_s - a_w) \sin \beta + \sin \alpha \, \cos \beta \tag{2}$$

$$a_s = \sin^{-1}(\cos d_s \sin h_s / \cos \alpha) \tag{3}$$

$$\alpha = \sin^{-1}(\sin \operatorname{lat} \sin d_s + \cos \operatorname{lat} \cos d_s \cos h_s) \tag{4}$$

Where.

 α is the solar altitude angle;

 a_s is solar azimuth angle;

 d_s is solar declination;

 h_s is solar hour;

lat is latitude.

 d_s is calculated using *Reda and Andreas* (2004).

$$h_s = (\text{solar time} - 12:00 \,\text{pm})/4 \tag{5}$$

solar time = LST + ET +
$$(lon_{ref} - lon) \times 4$$
 (6)

$$ET = 9.87 \sin 2B - 7.53 \cos B - 1.5 \sin B \tag{7}$$

$$B = 360(n - 81)/364 \tag{8}$$

$$d_f = 0.2 + 0.8 \times \text{cf}$$
 (9)

Where,

n is the day of the year;

LST is local standard time;

ET is equation of time;

lon is longitude;

 lon_{ref} is the reference longitude of the time zone;

B is just a constant.

cf is cloud fraction from CERES.

Theoretical shortwave downwelling radiation under clear-sky conditions $(I_{h,t})$:

$$I = I_0 \cdot \left[1 + 0.034 \cos \left(\frac{360n}{365.25} \right)^{\circ} \right] \tag{10}$$

$$I_{h,t} = C_n \cdot I \cdot e^{-k/\sin\alpha} \cdot (d_f + \sin\alpha) \tag{11}$$

Where,

I is shortwave downwelling radiation at TOA according to my understanding; I_0 is solar constant;

 C_n is clearness parameter; $C_n = 1$ in one example of the book k is the optical depth (there is a look-up table);

4 Assumptions

• $\beta < 45^{\rm o}$

5 Steps

- 1. Find the (a_w, β) pair from $(-180^{\circ} < a_w < +180^{\circ}, 0^{\circ} < \beta < 45^{\circ})$ to meet requirement:
 - reproduce solar noon shift observed from the tilted surface;
 - reproduce the true solar noon after correction;
- 2. Sort the pairs according to the difference between the corrected and the simulated I_h ;
- 3. Pick the best pair which let the corrected I_h be as close as possible to simulated I_h .

Bibliography

- Goswami, D., F. Kreith, and J. Kreider (2000), Radiation on tilted surface, in *Principles of Solar Engineering, Second Edition*, Taylor & Francis. 1, 3
- Reda, I., and A. Andreas (2004), Solar position algorithm for solar radiation applications, *Solar Energy*, 76(5), 577–589, doi:10.1016/j.solener.2003.12.003. 3
- van As, D. (2011), Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland, *Journal of Glaciology*, 57(202), 208–220, doi:10.3189/002214311796405898. 2