

Bioengineering for Medical Diagnostics, Therapeutics, and Imaging:

1-2 Diagnostic Biomarkers, Technology, and Regulatory Considerations

Session Chair: Christopher Kinsinger February 5, 2013

Where Clinical Proteomics Is Today

Few biomarker candidates translating into clinical utility

Year of FDA Approval

- 109 FDAapproved protein biomarkers in total
- 96 LDTs with protein biomarkers

Source: Anderson, N. L. Clin. Chem. 2010, 56, 1.

Coordination with FDA

- NCI-FDA Interagency Oncology Task Force (Molecular Diagnostics Subcommittee)
- Workshop: Identify analytical validation needs for proteomic technologies (e.g., mass spectrometry and affinity arrays) in the context of intended use.
- Outputs: Summary Document and Mock 510(k) Pre-Applications to serve as guidance to the proteomics community
 - Multiplex MRM assay
 - Multiplex affinity-based assay

Pathway to FDA clearance

Fig. 1. Schematic description of the process that may lead from a biomarker discovery to an FDA-cleared or approved diagnostic test.

Nine steps (shown in 2 rows) can generally occur in succession, and activities governed by quality systems as defined by the FDA [FDA (4)] in some cases may start right after the first step.

High-Quality Affinity Reagents (Ab Characterization Program)

Data

Reagents (mAb and Hybridoma)

Reagents Currently Available

Antigens

- > 80 purified soluble proteins (> 10 mg)
- Available at http://antigens.anl.gov

Antibodies

- 220 monoclonal Abs to 80 targets
- Available at http://antibodies.cancer.gov

Understanding the cancer genome: what role for proteomics?

- TCGA is generating huge datasets on genomic characteristics of human cancers
 - 20 types of cancer; 1000 tumors/cancer type
- Biggest challenge is to translate genomic variation to function and cancer phenotypes

NCI-CPTAC: Proteomics can help answer questions about the molecular mechanisms of cancer

Biological mechanisms:

- Are genomic aberrations detectable at protein level?
- What is their effect on protein function?
- Which events are drivers?Which are passengers?

Clinical applications:

- Can proteomic information provide a better molecular taxonomy of cancer?
- Can genotypic information guide protein marker development?

Source: The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 30 June 2011, Vol. 474, p. 609.

Map proteome/PTMs to each patient's genome; develop assays for pathways and candidate biomarkers

The Centers: Broad/FHCRC; PNNL; Vanderbilt; Wash U.; Johns Hopkins

TCGA biospecimen collection and QC focused on DNA and RNA, not proteins/PTMs

- Primary, adult tumors (except for melanoma and triplets)
- Malignant (no in situ cases)
- No neo-adjuvant or chemotherapy prior to sample collection
- Pathology review: > 60% tumor cellularity and < 20% necrosis
- Sufficient sample to yield 15 micrograms of DNA and RNA
- Snap frozen in OCT
 - Ligation time not recorded
 - Up to 60min from excision to freezing
- Matched germline DNA: blood, saliva or skin
 - few/no "normal" tissue collected

Post excision delay-to-freezing time could have profound effects on posttranslational modifications

- Time between ligation, excision and freezing for the TCGA samples (post-excision delay, PDT) varied from many minutes to >1 hour
- Effects of ischemia and physical tissue trauma on PTM's not well studied
- Activated kinases and phosphatases can act in seconds-minutes
 - Alterations in phosphosignaling in cancer well established
- Prior studies have shown that the phosphorylation site stoichiometry can change significantly post tumor excision
 - Duration from ligation of blood flow to excision highly variable and often not taken into account (shortest time evaluated ca. 15 min.)
 - few p-sites evaluated (RPPA)

Study goal: evaluate changes in proteome and phosphoproteome (<1 min and longer) induced by PDT using quantitative LC-MS/MS

Study Design

Samples: two xenografted human breast cancer tumors (basal-like; luminal-like) and five patient-derived ovarian cancer tumors

Collection: excision prior to ligation; immediate LN2

Timepoints: "0" (≤60s from excision to freezing); 5 minutes; 30 minutes and 60 minutes

Tumor processing: Covaris "Cryoprep" freeze-fracturing to prepare identical powdered tumor (WHIM or OC) to each analysis site

Proteomic Data Generation: high performance instruments capable of robust iTRAQ mass-tag generation

Quantification method: 4-plex iTRAQ labeling

Proteomic Data Analysis: Groups used software they are experienced with for identifying and quantifying peptides and PTMs with iTRAQ labeling

- Use common agreed upon DB to search
- Searched data through two common analysis pipes

Broad and PNNL: An integrated workflow for global proteomic and phosphoproteomic analysis

Cold ischemia times up to 1 hour cause no change in

proteome but up to 17% change in phosphoproteome											
		Bas	al Breas	st Cance	r Xeno	"///	Luminal Breast Cancer Xeno)
				≥2fold		down			≥2fold		down
			Reg-	at	up at	700		Reg-	at	up at	
		quantified	ulated	60min	60min	60min	quantified	ulated	60min	60min	60min
	Avg. per										
Proteins	replicate	12,279					9,637				
	in ≥2										
	replicates	11,586	0	0	0	0	9,175	0	1	0	0
	Avg. per										
pSTY-sites	replicate	27,883					28,851				
	fully localized										
	sites	15,942					19,412				
	in ≥2										
	replicates	24,607	1,129	996	791	338	26,686	4,623	1,766	3599	1,024
			4.6% *	4.0%				17% *	6.6%		
phosphorylated											
proteins	replicates	7,072	778				6,920	2,285			
kinase pSTY-	in ≥2 										
sites	replicates in ≥2	1,350	77				1,466	252			
pTyr-sites	replicates	442	27				441	62			

* Moderated F-test, p=0.01

Summary

- http://antibodies.cancer.gov
- Regnier et al. *Clin Chem.* 56:2 165, **2010**