

In [9]: M Data.isnull() Out[9]: Name Domain Age Location Salary Exp 0 False False False False False False 1 False False False False False False 2 False False True True False False 3 False False True False False True 4 False False False True False False 5 False False False False False False In [96]: ▶ Data.isnull().sum() Out[96]: Name Domain Age 2 Location 2 Salary Exp

dtype: int64

```
In [7]: M Data["Name"]
    Out[7]: 0
                   Mike
                  Teddy^
             2
                  Uma#r
             3
                   Jane
             4
                 Uttam*
             5
                   Kim
             Name: Name, dtype: object
In [10]: M Data["Age"]
   Out[10]: 0 34 years
                   45' yr
NaN
NaN
67-yr
             5 55yr
Name: Age, dtype: object
In [11]: M Data["Location"]
   Out[11]: 0
                     Mumbai
             Mummaai
Bangalore
NaN
Hyderbad
NaN
Delhi
```

```
In [11]: M Data["Location"]
  Out[11]: 0 Mumbal
1 Bangalore
NaN
                  NaN
              Hyderbad
           3
           4
                NaN
Delhi
           Name: Location, dtype: object
Out[12]: 0 5^00#0
               10%%000
           2 1$5%000
           3 2000^0
4 30000-
5 6000^$0
           Name: Salary, dtype: object
In [13]: M Data["Exp"]
  Out[13]: 0 2+
1 <3
              4> yrs
NaN
           2
           3
           4 5+ year
5 10+
                          19 40 19
```

In [15]: M Data[["Name","Domain","Age"]]

Out[15]:

	Name	Domain	Age
0	Mike	Datascience#\$	34 years
1	Teddy^	Testing	45' yr
2	Uma#r	Dataanalyst^^#	NaN
3	Jane	Ana^^lytics	NaN
4	Uttam*	Statistics	67-yr
5	Kim	NLP	55yr

Out[16]:		Name	Domain	Age	Location	Salary	Exp
	0	Mike	Datascience#\$	34 years	Mumbal	5^00#0	2+
	1	Teddy^	Testing	45' уг	Bangalore	10%%000	<3
	2	Uma#r	Dataanalyst^^#	NaN	NaN	1\$5%000	4> yrs
	3	Jane	Ana^^lytics	NaN	Hyderbad	2000^0	NaN
	4	Uttam*	Statistics	67-yr	NaN	30000-	5+ year
	5	Kim	NLP	55уг	Delhi	6000^\$0	10+

Missing value treatement

In [35]: ► import numpy as np

In [36]: ► clean_data

Out[36]:

	Name	Domain	Age	Location	Salary	Ехр
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	NaN	NaN	15000	4
3	Jane	Analytics	NaN	Hyderbad	20000	NaN
4	Uttam	Statistics	67	NaN	30000	5
5	Kim	NLP	55	Delhi	60000	10

```
Out[39]: 0
                45
           2
              NaN
           3
               NaN
           4
               67
           5
                55
           Name: Age, dtype: object
In [40]: M clean_data["Age"] = clean_data["Age"].fillna(np.mean(np.mean(pd.to_numeric(clean_data["Age"]))))
In [41]: | clean_data["Age"]
  Out[41]: 0
                 34
                 45
               50.25
           2
           3
4
               50.25
67
               55
           5
           Name: Age, dtype: object
```



```
In [44]: M clean_data["Exp"] = clean_data["Exp"].fillna(np.mean(np.mean(pd.to_numeric(clean_data["Exp"]))))
```

In [45]: ▶ clean_data

Out[45]:

	Name	Domain	Age	Location	Salary	Exp
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50.25	NaN	15000	4
3	Jane	Analytics	50.25	Hyderbad	20000	4.8
4	Uttam	Statistics	67	NaN	30000	5
5	Kim	NIP	55	Delhi	60000	10

2 Umar Dataanalyst 50.25 Bangalore 15000 4

4 Uttam Statistics 67 Bangalore 30000 5

Analytics 50.25 Hyderbad 20000 4.8

NLP 55 Delhi 60000 10

3 Jane

2 Umar Dataanalyst 50 Bangalore 15000

Analytics 50 Hyderbad 20000

Statistics 67 Bangalore 30000 5

NLP 55 Delhi 60000 10

3 Jane

4 Uttam

5 Kim

In [55]: M clean_data.info()

clean_uata.imo()

class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 6 columns):
Column Non-Null Count Dtype

0 Name 6 non-null object
1 Domain 6 non-null object
2 Age 6 non-null int32
3 Location 6 non-null object
4 Salary 6 non-null int32
5 Exp 6 non-null int32
dtypes: int32(3), object(3)
memory usage: 344.0+ bytes


```
Out[60]:
             Name
                     Domain Age Location Salary Exp
            0 Mike Datascience 34 Mumbai 5000 2
            1 Teddy
                     Testing 45 Bangalore 10000
            2 Umar Dataanalyst 50 Bangalore 15000 4
                     Analytics 50 Hyderbad 20000
            4 Uttam Statistics 67 Bangalore 30000 5
            5 Kim
                    NLP 55
                                  Delhi 60000 10
In [61]: M clean_data.to_csv("clean_data.csv")
In [62]: ▶ import os
           os.getcwd()
  Out[62]: 'E:\\python 2023\\praksh sir ds project'
In [63]: | clean_data.columns
```

Out[63]: Index(['Name', 'Domain', 'Age', 'Location', 'Salary', 'Exp'], dtype='object')

In [60]: ► clean_data

	Name	Domain	Age	Location	Salary	Ехр
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50	Bangalore	15000	4
3	Jane	Analytics	50	Hyderbad	20000	4
4	Uttam	Statistics	67	Bangalore	30000	5
5	Kim	NLP	55	Delhi	60000	10

In [83]: | x_iv = clean_data.drop(["Salary"],axis=1)

In [84]: 🔰 clean_data

Out[84]:

	Name	Domain	Age	Location	Salary	Ехр
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50	Bangalore	15000	4
3	Jane	Analytics	50	Hyderbad	20000	4
4	Uttam	Statistics	67	Bangalore	30000	5
5	Kim	NLP	55	Delhi	60000	10

	Name	Domain	Age	Location	Salary	Ехр
0	Mike	Datascience	34	Mumbai	5000	2
1	Teddy	Testing	45	Bangalore	10000	3
2	Umar	Dataanalyst	50	Bangalore	15000	4
3	Jane	Analytics	50	Hyderbad	20000	4
4	Uttam	Statistics	67	Bangalore	30000	5
5	Kim	NLP	55	Delhi	60000	10

In [95]: ▶ imputation Out[95]: Age Salary Exp Name_Jane Name_Kim Name_Mike Name_Teddy Name_Umar Name_Uttam Domain_Analytics Domain_Dataanalyst Domain_Dataanal 0 34 5000 1 45 10000 2 50 15000 50 20000 4 67 30000 5 55 60000 10