3.4.1

Use the methods of this chapter to prove that $\forall x (P(x) \land Q(x))$ is equivalent to $\forall x P(x) \land \forall x Q(x)$.

We want to prove $\forall x (P(x) \land Q(x) \iff \forall x P(x) \land \forall x Q(x))$.

Theorem. The statement $\forall x (P(x) \land Q(x))$ is equivalent to $\forall x P(x) \land \forall x Q(x)$.

Proof. (\rightarrow) Suppose $\forall x(P(x) \land Q(x))$. Let y be arbitrary. Since $\forall x(P(x) \land Q(x))$ it follows P(y) and Q(y). Since y was arbitrary, we can conclude $\forall x P(x)$ and $\forall x Q(x)$ or $\forall x P(x) \land \forall x Q(x)$.

 (\leftarrow) Let y be arbitrary. Since $\forall x P(x)$ and $\forall x Q(x)$ then it follows P(y) and Q(y). Since y was arbitrary we can conclude $\forall x (P(x) \land Q(x))$.

3.4.2

Prove that if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$.

Theorem. If $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$.

Proof. Let x be arbitrary and suppose $x \in A$. Since $A \subseteq B$ then $x \in B$ and since $A \subseteq C$ then $x \in C$ or $x \in B \cap C$. Therefore, if $x \in A$ then $x \in B \cap C$ and since x was arbitrary we can conclude $A \subseteq B \cap C$.

1 3.4.3

Suppose $A \subseteq B$. Prove that for every set $C, C \setminus B \subseteq C \setminus A$.

Theorem. Suppose $A \subseteq B$, then for every set C, $C \setminus B \subseteq C \setminus A$.

Proof. Suppose $A \subseteq B$ and C is an arbitrary set. Let x be arbitrary and suppose $x \in C \setminus B$, which means $x \in C$ and $x \notin B$. Since $x \notin B$ and $A \subseteq B$, then $x \notin A$, which means that $x \in C \setminus A$. Therefore, if $x \in C \setminus B$ then $x \in C \setminus A$ and since x and C were arbitrary, we can conclude $\forall C(C \setminus B \subseteq C \setminus A)$.