Student Number: 8772452

LAB #2

ELCN8005-21F-Sec1-Electronics Design Principles Basic Op Amps

OBJECTIVE

- A) Inverting amplifier
- B) Non-inverting amplifier
- C) Voltage follower

Design a circuit using one of the quad Op-amps in your first semester

ESD kit.

1) Decide the power to be applied to the IC based on your datasheet.

State your reason. (hint: +/- 3 up to +/- 10)

- 2) Prepare circuits in advance and prepare the tables with predicted/calculated outcomes to compare with the actual values (minimum 10 entries).
- 3) The amplification should be approximately 2 for both amplifiers.
- 4) Use a potentiometer (variable resister) to vary the input voltage.

EQUIPMENTS

Op amp – LM348N

Resistor

Multimeter - 1

Function generator - 1

Oscilloscope - 1

Multisim

Name: Naren Subburaj Student Number: 8772452

SCHEMATIC IN MULTISIM

Non-inverting amplifier:

Inverting amplifier:

Name: Naren Subburaj Student Number: 8772452

Voltage Follower:

OUTPUT

Non-inverting amplifier:

Student Number: 8772452

Inverting amplifier:

Voltage Follower:

Student Number: 8772452

INPUT

Non-inverting amplifier:

Case	Rf	R2
1	22k	5k
2	22k	10k
3	22k	22k
4	4.7k	3k
5	4.7k	4.7k

Inverting amplifier:

Case	Rf	R2
1	10k	1k
2	10k	2k
3	20k	3k
4	20k	6k
5	10k	10k

CALCULATIONS

Inverting:

Av = -Rf/R2

Case 1:

Av = -Rf/R2

Av = -10k/1k = -10

Case 2:

Av = -Rf/R2

Av = -10k/2k = -5

Case 3:

Student Number: 8772452

$$Av = -Rf/R2$$

$$Av = -20k/3k = -6.6$$

Case 4:

$$Av = -Rf/R2$$

$$Av = -20k/6k = -3.3$$

Case 5:

$$Av = -Rf/R2$$

$$Av = -10k/10k = -1$$

Non-Inverting:

$$Av=1+Rf/R2$$

Case 1:

$$Av = 1+Rf/R2$$

$$Av = 1+22k/5k = -10$$

Case 2:

$$Av = 1+Rf/R2$$

$$Av = 1+22k/10k = -5$$

Case 3:

$$Av = 1+Rf/R2$$

$$Av = 1+22k/22k = -6.6$$

Case 4:

$$Av = 1+Rf/R2$$

$$Av = 1+4.7k/3k = -3.3$$

Student Number: 8772452

Case 5:

$$Av = 1+Rf/R2$$

$$Av = 1+10k/10k = -1$$

Slew rate = $2 \pi f V$

Ex:
$$F = 2khz V = 8v$$

$$2 \pi * 1 \text{khz} * 8 = 0.05024 \text{V/}\mu\text{S}$$

Maximum Frequency the Op Amp Can Handle

 $fmax = SR / 2\pi A$

SR = 0.5 V/us

A = 8v

fmax = 9952.22 Hz

THEORY VS PARCTICAL

Non-inverting amplifier:

Case	Gain	I/p V	O/p V
1	5.4	2.82	9.131
2	3.2	2.82	8.15
3	2	2.82	5.656
4	2.56	2.82	7.234
5	2	2.82	5.656

Name: Naren Subburaj Student Number: 8772452

Inverting amplifier:

Case	Gain	I/p V	O/p V
1	-10	2.82	9.514
2	-5	2.82	8.901
3	-6.6	2.82	9.322
4	-3.3	2.82	8.237
5	-1	2.82	2.831

Voltage follower:

Vin = Vout

CONCLUSION

- The theory and practical gain vary by +-2. The value of the output changes according to the value of the resistor is changed.
- This tolerance also occurs because of the passive and active components used in the circuit such as resistor and operational amplifier

DISCUSSION

The inverting amplifier inverts the input sine wave into 180-degree shift.

The non-inverting amplifier changes it input by the gain.	Name: Naren Subburaj Student Number: 8772452 s output according to the
Voltage follower the output is equal to	input.
r chaige remainer and campain is equiante	