u^{b}

UNIVERSITÄT BERN

Statistical Inference for Data Science

Dr. Anja Mühlemann

31. August 2023

Questions from Day 2

Day 3

Hypothesis Testing

Today's Topics

- Hypotheses
- p-values
- Error types
- Frequently used tests

Inferential Statistics

Inferential Statistics

With a certain degree of certainty, one would like to draw conclusions from empirical data, even if the data are subject to error or incomplete.

3 main techniques

- Parameter estimates: Calculation estimate for unknown parameter of underlying probability distribution
- Confidence intervals: Calculation of a region within which unknown parameter should lie with certain degree of certainty
- Tests: Tests are intended to prove that a certain effect,
 e.g. the effect of a vaccine, is indeed present.

Tests

- Method for deciding on the correctness of hypotheses under uncertainty
 - e.g., new medication is better than the old one

2 Hypotheses:

- Working hypothesis (H1): Motivation of the study
 e.g., the new medication is better than the old one
- Null hypothesis (H0): Opposite of H1
 e.g. the new medication is not better than the old one

Goal: reject the null hypothesis with some degree of certainty

Statistical test rely on a test statistic, for which distribution under the test assumptions and H0 is known.

- We calculate the value of the test statistic for the sample at hand (\hat{T})
- And check whether this value is probable for the distribution under H0.
- To this end the p-value is calculated
- If the p-value < 1 desired degree of certainty, we reject
 H0
- Otherwise, we cannot reject H0, which does not necessarily imply that H1 holds

Tests

F

- To illustrate what a p-value is, I'll illustrate the one sample t-test in a little more detail
- Assumptions: independent observations, approx. normal
- Possible hypotheses:

$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$, H_0 : $\mu \leq \mu_0$, H_1 : $\mu > \mu_0$, H_1 : $\mu > \mu_0$, H_1 : $\mu < \mu_0$,

Test statistic:

$$T = \frac{\hat{\mu} - \mu_0}{\hat{\sigma}} \sqrt{n}$$

• Thus, T is large (≥ 0) if H_1 holds, and T is small (< 0) if H_0 holds

p-value

• Distribution: One can show that if H_0 holds, then T follows a t-distribution with n-1 degrees of freedom

H_0 H_1 p-value $1-\alpha$ $q_{1-\alpha}$ T

 Thus, the p-value is «the probability to observe a even more extreme value in terms of H₀ than the one at hand»

p-value

Tests

- Type 1: Wrongly reject the null hypothesis due to a fluctuation (false positive)
- Type 2: Wrongly keep the null hypothesis by interpreting a real effect as a fluctuation (false negative)

Errors

Prison example

Innocent person set free	Innocent person jailed
Guilty person set free	Guilty person jailed

Types of Tests

- One group: the mean monthly income is larger than 5000.-
- Two groups: the mean income of men is larger than that of women
- ≥ Three groups: effect of tea on weight loss (green, black, none)

≥ Two groups:

- Paired: dependent, repeated measurements on same individual, e.g. blood pressure before and after surgery
- Unpaired: independent, from separate individuals, e.g. blood pressure after medication 1 vs. blood pressure after medication 2

- F
- Many test assume that the sample comes from a normal distribution
- Thus, we need to check whether this is fulfilled before performing such a test
- Shapiro-Wilk test, Shapiro-Francia test, Q-Q-Plot, ...

Normality

Exercise

- 3 Slides to be uploaded to ILIAS today
 - 1 slide: Question that the test tries to answer, assumptions on data, other details
 - 1 slide: example from "real live" (if possible)
 - 1 slide: your conclusion from the Notebook on this test
- Will be presented at tomorrow's discussion session

	Nr	Test
S		
	1	One-sample t-test
on	2	One-sample Wilcoxon SR test
~ "	3	Paired t-test
е	4	Paired Wilcoxon SR test
	5	Unpaired t-test
S	6	Unpaired t-test with Welsch's correction
	7	Mann-Withney U test
	8	One-way ANOVA