Base-two primitive groups and their Saxl graphs

Hong Yi Huang

Groups and Graphs

24 July 2022

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in G. Then

$$\bigcap_{lpha\in\Omega} \mathcal{G}_lpha=1.$$

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in G. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Let $G \leqslant \operatorname{\mathsf{Sym}}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Examples

•
$$G = S_n$$
, $\Omega = \{1, \dots, n\}$ and $\Delta = \{1, \dots, n-1\}$.

Let $G \leqslant \operatorname{\mathsf{Sym}}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Examples

- $G = S_n$, $\Omega = \{1, ..., n\}$ and $\Delta = \{1, ..., n-1\}$.
- G = GL(V), $\Omega = V \setminus \{0\}$ and Δ contains a basis of V.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

Definition

A base for $G \leq \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Definition

A base for $G \leq \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

Definition

A base for $G \leq \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V \setminus \{0\}$: b(G) = dim(V).

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Question: How small can a base be?

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Question: How small can a base be?

Some applications:

- Minimal dimensions
- Generation of finite groups
- Graphs defined on groups

Observations: If G is transitive, then

• $b(G) = 1 \iff G$ is regular;

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in *G*.

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in *G*.

Problem. Classify the finite primitive groups G with b(G) = 2.

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

• $\{1,2\}$ is a base, so b(G) = 2;

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in *G*.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

- $\{1,2\}$ is a base, so b(G) = 2;
- \bullet G is primitive iff n is a prime.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leq G \leq Aut(T)$ for non-abelian simple T.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• Burness et al., 2010/11: T alternating or sporadic \checkmark

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• Burness et al., 2010/11: T alternating or sporadic \checkmark

• G Lie type: Partial answers

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

Burness et al., 2010/11: T alternating or sporadic √

• G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $A_k \nleq P \implies b(G) = 2$.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g. $G \leqslant T^k.(\operatorname{Out}(T) \times P)$ with $A_k \not\leqslant P \implies b(G) = 2$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g. $G \leqslant T^k$.(Out(T) \times P) with $A_k \not\leqslant P \implies b(G) = 2$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

• Bailey & Cameron, 2013: Explicit $b(L \wr P) \checkmark$

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g. $G \leqslant T^k$.(Out(T) \times P) with $A_k \not\leqslant P \implies b(G) = 2$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

- Bailey & Cameron, 2013: Explicit $b(L \wr P) \checkmark$
- Progress where $G < L \wr P$ (Burness & H, 2022+)

Probabilistic methods

Let $G \leqslant \mathsf{Sym}(\Omega)$ be a transitive permutation group of degree n. Then

$$Q(G) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha} \cap G_{\beta} \neq 1\}|}{n^2}$$

is the probability that a random pair in Ω is not a base for G.

Probabilistic methods

Let $G \leqslant \mathsf{Sym}(\Omega)$ be a transitive permutation group of degree n. Then

$$Q(G) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha} \cap G_{\beta} \neq 1\}|}{n^2}$$

is the probability that a random pair in Ω is not a base for G.

Note.
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Probabilistic methods

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n. Then

$$Q(G) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha} \cap G_{\beta} \neq 1\}|}{n^2}$$

is the probability that a random pair in Ω is not a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

Let $G \leqslant \mathsf{Sym}(\Omega)$ be a transitive permutation group of degree n. Then

$$Q(G) = \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha} \cap G_{\beta} \neq 1\}|}{n^2}$$

is the probability that a random pair in Ω is not a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|}{|x^G|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n. Then

$$Q(G) = \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha} \cap G_{\beta} \neq 1\}|}{n^2}$$

is the probability that a random pair in Ω is not a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{D}} \frac{|x^G \cap G_{\alpha}|}{|x^G|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G.

Probabilistic method: $\widehat{Q}(G) < 1 \implies b(G) \leqslant 2$.

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the **Saxl graph** $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the **Saxl graph** $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

From now on, we assume G is transitive and $b(G) \leq 2$.

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the **Saxl graph** $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

From now on, we assume G is transitive and $b(G) \leq 2$.

•
$$G = D_8 = \langle (1234), (24) \rangle$$
, $\Omega = \{1, 2, 3, 4\}$:

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the **Saxl graph** $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

From now on, we assume G is transitive and $b(G) \leq 2$.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \bigcup$$

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the **Saxl graph** $\Sigma(G)$ is a graph with

- vertex set Ω ;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

From now on, we assume G is transitive and $b(G) \leq 2$.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) = \Box$$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle, \Omega = \{1, 2, 3, 4, 5\}$$
:

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the **Saxl graph** $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

From now on, we assume G is transitive and $b(G) \leq 2$.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) = \Box$$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle, \ \Omega = \{1, 2, 3, 4, 5\} : \Sigma(G) = \bigcup$$

•
$$G = \mathsf{GL}_2(q)$$
 and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \mathsf{dim}(\mathbb{F}_q^2) = 2$.

• $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \dim(\mathbb{F}_q^2) = 2$. **Note.** $\{v, w\}$ is a base $\iff \{v, w\}$ is linearly independent.

• $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \dim(\mathbb{F}_q^2) = 2$. Note. $\{v, w\}$ is a base $\iff \{v, w\}$ is linearly independent. So $\Sigma(G) = \mathbf{K}_{q^2-1} - (q+1)\mathbf{K}_{q-1}$ is complete multipartite.

- $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \dim(\mathbb{F}_q^2) = 2$. Note. $\{v, w\}$ is a base $\iff \{v, w\}$ is linearly independent. So $\Sigma(G) = \mathbf{K}_{q^2-1} - (q+1)\mathbf{K}_{q-1}$ is complete multipartite.
- $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

- $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \dim(\mathbb{F}_q^2) = 2$. Note. $\{v, w\}$ is a base $\iff \{v, w\}$ is linearly independent. So $\Sigma(G) = \mathbf{K}_{q^2-1} - (q+1)\mathbf{K}_{q-1}$ is complete multipartite.
- $G = \operatorname{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1.$

- $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \dim(\mathbb{F}_q^2) = 2$. Note. $\{v, w\}$ is a base $\iff \{v, w\}$ is linearly independent. So $\Sigma(G) = \mathbf{K}_{q^2-1} - (q+1)\mathbf{K}_{q-1}$ is complete multipartite.
- $G = \operatorname{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha,\beta\}$ is a base $\iff |\alpha \cap \beta| = 1.$ Hence, $\Sigma(G) \cong J(q+1,2)$ is a Johnson graph.

- $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\} \implies b(G) = \dim(\mathbb{F}_q^2) = 2$. Note. $\{v, w\}$ is a base $\iff \{v, w\}$ is linearly independent. So $\Sigma(G) = \mathbf{K}_{q^2-1} - (q+1)\mathbf{K}_{q-1}$ is complete multipartite.
- $G=\mathsf{PGL}_2(q)$ and $\Omega=\{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha}\cong D_{2(q-1)}$ and $\{\alpha,\beta\}$ is a base $\iff |\alpha\cap\beta|=1.$ Hence, $\Sigma(G)\cong J(q+1,2)$ is a **Johnson graph**.

 For example, when q=4 we have the complement of the Petersen.

Notes.

• $\Sigma(G)$ is the union of the **regular orbital graphs** of G.

- $\Sigma(G)$ is the union of the **regular orbital graphs** of G.
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Notes.

- $\Sigma(G)$ is the union of the **regular orbital graphs** of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Notes.

- $\Sigma(G)$ is the union of the **regular orbital graphs** of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Notes.

- $\Sigma(G)$ is the union of the **regular orbital graphs** of G.
- *G* is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, it asserts that $\Sigma(G)$ has diameter at most 2.

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

ullet All primitive groups of degree up to 4095 \checkmark

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- ullet All primitive groups of degree up to 4095 \checkmark
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q)$ \checkmark

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \mathsf{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: almost simple groups with G_{α} soluble \checkmark
- Lee & Popiel, 2021+: some affine groups

Let v(G) be the valency of $\Sigma(G)$ and recall that

$$Q(G) = 1 - \frac{v(G)}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

Let v(G) be the valency of $\Sigma(G)$ and recall that

$$Q(G) = 1 - \frac{v(G)}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

•
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Let v(G) be the valency of $\Sigma(G)$ and recall that

$$Q(G) = 1 - \frac{v(G)}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

Let v(G) be the valency of $\Sigma(G)$ and recall that

$$Q(G) = 1 - \frac{v(G)}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.
- $Q(G) < 1/t \implies \Sigma(G)$ has clique number at least t+1.

Let v(G) be the valency of $\Sigma(G)$ and recall that

$$Q(G) = 1 - \frac{v(G)}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

Notes.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.
- $Q(G) < 1/t \implies \Sigma(G)$ has clique number at least t+1.

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $Q(G)\to 1$ as $q\to\infty$. But $\Sigma(G)=J(q+1,2)$ still has the common neighbour property.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Note. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Note. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Recall: BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Note. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Recall: BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets **every** regular G_{β} -orbit.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Note. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Recall: BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets **every** regular G_{β} -orbit.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Note. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Recall: BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets **every** regular G_{β} -orbit.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

Evidence:

All primitive groups of degree up to 4095 √

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Note. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Recall: BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets **every** regular G_{β} -orbit.

Theorem (Burness & H, 2022+)

BG conjecture and BH conjecture are equivalent.

- All primitive groups of degree up to 4095 √
- $G = \mathsf{PSL}_2(q)$ and G_α of type $\mathsf{GL}_1(q) \wr S_2$

Saxl graphs:

Generalised Saxl graphs

Saxl graphs:

- Generalised Saxl graphs
- Valencies (Chen & H, 2022: some results)

Saxl graphs:

- Generalised Saxl graphs
- Valencies (Chen & H, 2022: some results)
- Other invariants of Saxl graphs (e.g. the independence number)

Saxl graphs:

- Generalised Saxl graphs
- Valencies (Chen & H, 2022: some results)
- Other invariants of Saxl graphs (e.g. the independence number)

Other problems on bases:

Irredundant bases

Saxl graphs:

- Generalised Saxl graphs
- Valencies (Chen & H, 2022: some results)
- Other invariants of Saxl graphs (e.g. the independence number)

Other problems on bases:

- Irredundant bases
- Bounds for b(G) in a general setting

Thank you!