1 Riešenie optimalizačnej úlohy

V tejto časti sa venujeme riešeniu optimalizačnej úlohy ?? rôznymi metódami. Tie boli implementované v Pythone. Konkrétne sme implementovali gradientné metódy (s optimálnou a konštnantou dĺžkou kroku) a kvázinewtonovské metódy BFGS a DFP (s približne optimálnou dĺžkou kroku nájdenou backtracking-om alebo s optimálnou dĺžkou kroku, nájdenou bisekciou).

Ako štartovací bod sme pri každej metóde volili $x_0=(0,0,0,0)^T$ a ako kritérium optimality bolo použité $||\nabla J(x^k)||\leq 10^{-3}$. Optimálnym bodom bude teda vektor parametrov x, ktorý budeme používať v logistickej funkcii na odhadovanie solventnosti klienta podľa jeho dát.

1.1 Kvázinewtonovské metódy

Minimalizujeme ?? pomocout metód BFGS a DFP s optimálnym krokom (nájdeným bisekciou) a približne optimálnym krokom (nájdeným backtrackingom).

	x_0	x_1	x_2	x_3
BFGS + backtracking	0.20751015	-0.04712048	0.31535175	0.30654686
BFGS + bisekcia	0.20751337	-0.04712051	0.31535088	0.30654664
DFP + backtracking	0.20750999	-0.04712047	0.31535176	0.30654688
DFP + bisekcia	0.20751338	-0.04712052	0.31535087	0.30654663

Všetky štyri minimalizácie skonvergovali k minimu (vzhľadom na kritérium optimality) za menej ako 13 iterácií. Vidíme, že optimálne hodnoty všetkých štyroch minimalizácií sa odlišujú najskôr v ráde 10^{-5} , čiže môžeme predpokladať, že konvergujú k rovnakému bodu minima.

Môžeme si všimnúť, že pozitívny vplyv na pravdepodobnosť solventnosti klienta má druhý sledovaný parameter, čiže pomer úspor a investícií, a tretí sledovaný porameter, čiže počet rokov v súčasnom zamestnaní. Takisto si môžeme všimnúť, že počet mesiacov od otvorenia účtu (prvý sledovaný parameter), má na odhad pravdepodobnosti solventnosti klienta negatívny vplyv, čo je prekvapivý výsledok.

Nájdený koeficient x_0 má za následok to, že pre klienta, ktorého parametre sú $(0,0,0)^T$, po dosadení do logistickej funkcie dostaneme pravdepodobnosť solventnosti približne 0.5517.

Môžeme si takisto porovnať čas (v sekundách) potrebných na nájdenie minima pre jednotlivé metódy.

	čas[s]
BFGS + backtracking	0.0067
BFGS + bisekcia	0.0074
DFP + backtracking	0.0031
DFP + bisekcia	0.0069

Vidíme, že pre obidve implementované kvázinewtonovské metódy je implementácia s približne optimálnou dĺžkou rýchlejšia.

1.2 Gradientné metódy

Podobne ako vyššie, minimalizujeme $\ref{eq:continuous}$ pomocou gradientnej metódy s optimálnym a s konštantným krokom. Na nájdenie optimálneho kroku používame bisekciu, ako konštantný krok používame $2 \cdot 10^{-5}$.

	x_0	x_1	x_2	x_3
optimálny krok	0.20742273	-0.04711977	0.31535679	0.30656397
konštantný krok	0.19322267	-0.0470058	0.31617533	0.30934507

Gradientná metóda s optimálnym krokom skonvergovala (vzhľadom na kritérium optimality) po rádovo 5000 iteráciách. Gradientná metóda s konštantným krokom nedokonvergovala (vzhľadom na kritérium optimality) ani po 10000 iteráciách (neboli sme experimentovaním nájsť vhodnú dĺžku kroku).

Signifikancia jednotlivých parametrov klientov je zhodná s tou, ktorá je popísaná vyššie. Takisto, pre klienta $(0,0,0)^T$ je odhad pravdepodobnosti solventnosti približne 0.5517 (pre optimálny krok), resp. 0.5482 (pre konštantný krok).

Rovnako ako vyššie, môžeme porovnať časy potrebné na minimalizáciu.

	čas[s]
optimálny krok	6.1772
konštantný krok	0.8142

Vidíme, že hľadanie optimálneho kroku v každej iterácií pridá približne 5.3 sekundy k času výpočtu, aj keď iterácií bolo rádovo polovica oproti konštantnému kroku. Skúsili sme preto nastaviť maximálny počet iterácií pre gradientnú metódu s konštatným krokom na 10^5 . Už po rádovo 30000 iteráciách bolo dosiahnuté kritérium optimality a jeho nájdenie trvalo približne 0.9181 sekundy. Vidíme teda, že pri vysokom počte iterácií môže mať zmysel použiť skôr konštatný krok, keďže vieme výrazne ušetriť čas potrebný na hľadanie optimálneho kroku.

$$J^*_{GM\ const} = (0.20742016,\ -0.04711976,\ 0.31535694,\ 0.30656448)^T$$