COMP2610/COMP6261 - Information Theory

Tutorial 8: Source Coding

Young Lee and Bob Williamson **Tutors**: Debashish Chakraborty and Zakaria Mhammedi

Week 10 (9th – 13th Oct), Semester 2, 2017

1. Optimal Coding and Huffman Codes

Consider the ensemble *X* with probabilities $\mathcal{P}_X = \mathbf{p} = \{\frac{1}{2}, \frac{1}{4}, \frac{31}{128}, \frac{1}{128}\}$ and the code $C = \{0, 11, 100, 101\}$.

- (a) What is the entropy H(X)?
- (b) What is the expected length L(C, X)? Is C an optimal code for X?
- (c) What are the code lengths for X? Construct a prefix Shannon code C_S for X. Compute the expected code length $L(C_S, X)$.
- (d) What are the probabilities $\mathbf{q} = \{q_1, q_2, q_3, q_4\}$ for the code lengths of C?
- (e) Compute the relative entropy $D(\mathbf{p}\|\mathbf{q})$. What do you notice about $D(\mathbf{p}\|\mathbf{q})$, H(X), L(C,X), and $L(C_S,X)$?
- (f) Construct a Huffman code C_H for X. How does its code lengths compare to C and C_S ? How do their expected code lengths compare?

2. Binary Representations

Express the following numbers in binary.

- (a) 4.25₁₀
- (b) 8.1_{10}

3. Shannon-Fano-Elias Coding

Let X be an ensemble with alphabet $A_X = \{x_1, x_2, x_3, x_4\}$ and probabilities $p_X = (0.25, 0.5, 0.125, 0.125)$.

- (a) Compute the cumulative distribution function $F(x_i)$ for each symbol x_i .
- (b) Compute the symbol intervals $[F(x_{i-1}), F(x_i)]$ for each symbol x_i . (Recall that we assume for convenience that $F(x_0) = 0$.)
- (c) Compute the modified cumulative distribution function $\bar{F}(x_i)$ for each symbol x_i .
- (d) Compute the Shannon-Fano-Elias codewords for each symbol x_i .
- (e) Decode the string 10001.
- (f) Suppose you only use the first $\lceil \log \frac{1}{p(x)} \rceil$ bits to code the above ensemble. Will the result be a prefix code?

4. Arithmetic Coding

- (a) For the same ensemble as the previous section, compute an arithmetic code for the sequence c. Assume here that $d = \Box$, i.e. that the symbol d denotes the end of stream. Assume also that at each iteration, the probability of the various outcomes is unchanged.
- (b) Compute an arithmetic code for the sequence ca, with the same setup as the previous part. Does the codeword for ca start with that for c?
- (c) Compute an arithmetic code for the sequence ca using adaptive probabilities, assuming an initial set of virtual counts $\mathbf{m} = (1, 1, 1)$ and a constant end-of-stream probability $p(\mathbf{d}) = 0.25$.