Dissolved Oxygen Determination

• Sample water with DO + Chemical Compound which takes oxygen from water and oxidizes

Concentration of oxidized chemical compound α DO

DO Determination - Winkler's method

i) Oxygen present in sample water oxidizes Mn²⁺ to Mn⁴⁺

DO Determination - Winkler's method

- i) Mn^{4+} in sulphate form reacts with KI and liberates I_2 (Iodometric titration)
 - ii) [DO] α [Mn⁴⁺] α [I₂]

(Sodium thiosulphate can be used to estimate the concentration of I_2 with Starch Indicator)

Estimation of DO by Winkler's method

Theory of Winkler's Method:

- Oxygen in the water sample oxidizes iodide ion (I-) to iodine (I₂) quantitatively.
- O The amount of iodine generated is then determined by titration with a standard thiosulfate $(S_2O_3^{-2})$ solution.
- O The endpoint is determined by using starch as a visual indicator.

Estimation of DO by Winkler's method

Estimation of DO by Winkler's method

$$\begin{split} & MnSO_4 + 2KOH \longrightarrow Mn(OH)_2 + K_2SO_4 \\ & 2Mn(OH)_2 + O_2 \longrightarrow 2MnO(OH)_2 \\ & MnO(OH)_2 + H_2SO_4 \longrightarrow MnSO_4 + 2H_2O + [O] \\ & 2KI + H_2SO_4 + [O] \longrightarrow K_2SO_4 + H_2O + I_2 \\ & I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI \end{split}$$

o The amount of oxygen can then be computed from the titre values