Lista 1 Matricula: 2024.1.08.030 Nome: 30ão Pedro Carvalho Geneira 1.(a) (1 -301 (c) Não é possível calcular essa esquessão, pois as matriges Captim orders distintas. (b) (2)

tilibra

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 -4 8 -8 -19 1 3 -16 9 -10 3 19 + -93 4 -11 = -33 1 1 2 -4 4 -16 -8 4 -14 -19 8
(1) $(2 \ 3 \ -1)^{t}$ $(1 \ 0)$ $(-2+1)$ $(1 \ 0)$ $(-2+1)$ $(-2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Não está definida a matriz resultante.

..........

(i)
$$(0.5)$$
 $(-2.3 - 7)$ (1) $(0+35)$ $(0-10)$ (1) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (1) (2) (3) (4) (4) (5) (7) (7) (9) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (7) (7) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (4) (4) (5) (7) (7) (9) (1) (1) (1) (1) (2) (3) (4) (4) (4) (4) (5) (7) (7) (9) (1)

$$\begin{pmatrix} 35 & -15 & -10 \end{pmatrix} \begin{pmatrix} 1 & (35+30-0) & (65) \\ 18 & 12 & -16 \end{pmatrix} \begin{pmatrix} -16 & -18 & -24 & -0 \end{pmatrix} \begin{pmatrix} -42 & -18 & -24 & -0 \end{pmatrix}$$

2.(a) Agra Bgry-Cary Bgry Agra måd está definido
(b) Ayxi Bixa - Cyxa Bixa Ayxi não está definido
(c) Apra Baxa mão está definido Baxa Axa está definido
(d) Assa Baxz = Csxz Baxz Assa não esti definido
(e) Ayxy Boxo mats esta definido Boxo Ayxy mas esta definido
(f) Ayxo Boxy = Cyxy Boxy Ayxo está definido
(9) Agri Birs = Cars Birs Agri mas está definido
(R) Agra Bgra = Cora Baxa Axa está definido

3.6)
$$(3.1-2.1)$$
 $3.1-2.2$ $3.1-2.3)$ $(3-2)$ $(3-4)$ $(3-6)$ $(3-2)$ $(3-2)$ $(3-2)$ $(3-6)$ $(3-2)$ $(3-2)$ $(3-2)$ $(3-6)$

$$A = \begin{pmatrix} 1 & -1 & -3 \\ 4 & 2 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2.1+1 & 1^2-2 & 1^2-3 \end{pmatrix} \begin{pmatrix} 2+1 & 1-2 & 1-3 \end{pmatrix}$$

 $B = \begin{pmatrix} 2^2-1 & 2\cdot2+2 & 2^2-3 & -4-1 & 4+2 & 4-3 \end{pmatrix}$
 $\begin{pmatrix} 3^2-1 & 3^2-2 & 2\cdot3+3 \end{pmatrix} \begin{pmatrix} 9-1 & 9-2 & 6+3 \end{pmatrix}$

(c)
$$C = \begin{pmatrix} 1^1 & 2^1 & 3^1 & 4^1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 1^2 + 1^2 & 2.1.2 & 2.1.3 & 2.1.4 \end{pmatrix}$$
 $\begin{pmatrix} 1+1 & 4 & 6 & 9 \\ 2.2.1 & 2^2+2^2 & 2.2.3 & 2.2.4 & -4 & 4+4 & 12 & 16 \\ 2.3.1 & 2.3.2 & 3^2+3^2 & 2.3.4 & 6 & 12 & 9+9 & 24 \\ 2.4.1 & 2.4.2 & 2.4.3 & 4^2+4^2 & 8 & 16 & 24 & 16+16 \end{pmatrix}$

4.(a)
$$(1 \ 0 \ 3)$$
 $(1 \ 2 \ 1)$ $(1-0+3)$ $(2-0+12)$ $(1+0+15)$ $(3-1)$ $(3$

(b)
$$799$$
 199

$$\begin{bmatrix}
 2 & -3 & -6 \\
 -14 & 1 & -52 & = -52 \\
 -6 & -9 & -66
 \end{bmatrix}$$

X= 4 B-4

		tors da	0.1
5.(a) 2x+A=3B+C	(d)		160).4
2X=3B+C-A			
$\frac{1}{4}(2x) = \frac{1}{4}(3B+C-A)$	2.04		G & No 11 life)
$X = \frac{3}{9}B + \frac{1}{9}C - \frac{1}{9}A$			1. 2./
x=3 (2 1), 1 (0 2)	1 (1 1)	16 3\ /	0 2 [17]
2 4 3 9 1 0	7 (2 6)	722+	2 9 2
		12 9	1 0 2 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 -1		I G THE AR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 3	178 X 18 1 1 1 1	D+10=(40113(6)
7 4 1 2 2	(4 4)	T G-2T 1-2 -4-7	40 1 80 31 F34 R W
$(b)Y + A = \frac{1}{4}(B - C)^{t}$	FE4191(3)	12 15 18 18	(A) J- (19) H(1)
Y=1 (B-C)t-A			
11 1 (0 1) (0 0) Tt	(, 1) [0	Tt /	-1
Y=1 2 1 0 2 -	$\begin{pmatrix} -1 & 7 & 2 \\ 2 & 6 & 3 \end{pmatrix}$	$\frac{-1}{3} - \frac{1}{2}$	
	190) [3	31 / 2	6/
[23] [-17] [3-4]	i e ola	LE OFFICE	LEN
[-1 3] - [2 6] -3 -3	2 P. 40 4		1 BIE-1 - 51 4
	0 3 9 1	VI- I- F-	
(c) $3X+A=B-X$ $\Rightarrow X=\frac{1}{4}$	$\begin{pmatrix} 2 & 1 & 1 \\ 4 & 3 & 4 \end{pmatrix}$	(-1 7) = /3	1 - 4 - 4 -
3X+X=B-A $4X=B-A$	(4 3) 4	12 6/ 4	4 4 6 4
$\frac{1}{4}(4x) = \frac{1}{4}(B-A) / 3 = 6$	/3 3)	\	4/44
# (AV)=#(D-H) / 5 -P	13 3	1 (4 15 3)	1

(d)
$$(x+y=3A)$$
 $(x=3)$ $(x=3)$

1.(a) A(B+C) (b) B^{t} A^{t} A^{t} A^{t}

(c) $C^{\dagger}A^{\dagger}$ (d) (ABA)C $(AC)^{\dagger}-Y^{\dagger}$ (AB)(AC)=XY

8.(a) $A = A^{t}$ $\begin{pmatrix} 4 & x+2 \end{pmatrix} = \begin{pmatrix} 4 & 2x-3 \end{pmatrix} = 4 = 4 & x+2 = 2x-3 \\ 2x-3 & x+1 \end{pmatrix} = \begin{pmatrix} x+2 & x+1 \end{pmatrix} = \begin{pmatrix} x+2 & x+1 \end{pmatrix} = \begin{pmatrix} x-2x=-3-2 \end{pmatrix}$

 $A = \begin{pmatrix} 4 & 5+9 & 4 & 1 \\ 2.5-3 & 5+1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 1 & 6 \end{pmatrix}$ $\boxed{x=5}$

(b) $-\beta = \beta^{t}$ $\begin{pmatrix} 0 & 4 & -2 \\ -x & 0 & -1-z \end{pmatrix} = \begin{pmatrix} 0 & x & y & x = 4 \end{pmatrix} \begin{bmatrix} y = -2 & -2z = 1 - z \\ -4 & 0 & 2z \end{bmatrix}$ $\begin{pmatrix} -2z & 0 & 2z & -2z = 1 \\ 2z & -2z & 0 & -2z = 1 \end{bmatrix}$ $\begin{pmatrix} -2z & 0 & -2z = 1 \\ -2z & -1 & -2z = 1 \end{bmatrix}$

 $\frac{9.3}{(z t)} = \frac{(x 6)}{(-1)} + \frac{(4)}{(z+t)} = \frac{(x+y)}{(z+t)}$

3t = 2t + 3 3z = -1 + z + 3 3t - 2t = 3 3z - z = 2 0z = 1t = 3 2z = 2

tilibra

10. (a) AAt-At A=h RR = (coso seno) (coso -Sen 0 COSO cos20+5en20 -cososeno+senocoso) -Senocosotcososeno senotcoso Rt R=/coso -seno//coso seno/ seno coso/-seno coso (costo +sento cososeno-senocosa senº o+costo Senocoso-cososeno Logo, R(O) e otogonal (b) A At = 12 1+0+x2 0+0+xx 0+0+xz) xy 0+0+8x 0+1+48 0+1+42 0+0+23c 0+1+24 0+1+29 tilibra

