Elementary Linear Algebra - MATH 2250 - Day 21

Name:

1. T F If λ is an eigenvalue of A and μ is an eigenvalue of B then $\lambda + \mu$ is an eigenvalue of A + B. Explain.

2. T F If λ is an eigenvalue of A and μ is an eigenvalue of B then with the same eigenvector x, then $\lambda + \mu$ is an eigenvalue of A + B. Explain.

3. Let x = (2,3,1) be an eigenvector of A corresponding to the eigenvalue 3. Evaluate Ax.

4. The Fundamental Theorem of Algebra asserts that any polynomial of degree n has exactly n (complex) roots. How many eigenvalues does an $n \times n$ matrix have? Why?

5. If A is singular then one of its eigenvalues is _____.

6. If P is a nonzero projection matrix in \mathbb{R}^3 , then two of its eigenvalues are _____, and _____.

7. If λ is an eigenvalue of A, then $A - \lambda I$ is a(n) _____ matrix.

8. What is the sum of the eigenvalues of the $n \times n$ identity matrix?

9. What is the sum of the eigenvalues of $A = diag(d_1, \ldots, d_n)$?

10. Let's find (guess?) all the eigenvalues of $A = \text{diag}(d_1, \ldots, d_n)$. Let e_i be the vector with a 1 in its *i*-th position and 0's elsewhere, e.g. $e_1 = (1, 0, 0, \ldots, 0)$ etc. What is Ae_i , for each *i*?

11. What is the trace (the sum of the eigenvalues) of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$?

12. If λ is an eigenvalue of A, then $A - \lambda I$ is a(n) _____ matrix

13. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. What is the characteristic equation of A?

- 14. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix}$. What is the characteristic equation of A? What are all the eigenvalues of A?
- 15. Let \boldsymbol{x} be an eigenvector of A for an eigenvalue λ . is $2\boldsymbol{x}$ an eigenvector of A? For what eigenvalue?

What are all the eigenvectors of A for the eigenvalue λ ? (Agreement: we do not consider the zero vector, and eigenvalue for any eigenvalue, not even for the zero eigenvalue!)

16. Find a matrix with eigenvalues 1, 2, 3, and 4.

17. Let A be a matrix with an eigenvalue λ and the corresponding eigenvector x. Let B = 2A, and evaluate Bx.

What can you tell about the eigenvalue of B in terms of the eigenvalues of A?

18. Find an eigenvector for each of the eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix}$.

19. Let A be as in problem 11, and let B = A + 2I. What are the eigenvalues of B?

Find an eigenvector for each of the eigenvalues of B.

What relations hold between the eigenvalues and eigenvectors of A and B?

20. Find all the eigenvalues and their corresponding eigenvectors of $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. (refer to problem 10)

21. Find all the eigenvalues and their corresponding eigenvectors of $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Do eigenvectors of the matrix from problem 20 work?

22. We are not going to prove this, but it is good to remember that

- (a) the eigenvalues of any symmetric matrix are _____ numbers, and
- (b) the eigenvalues of any skew-symmetric matrix are _____ numbers.