张量基础

申尚昆

December 29, 2020

Contents

1	符号说明	1
	1.1 爱因斯坦记号	
	1.2 克罗内克 δ 函数(Kronecker delta)	1
	1.3 利威尔-奇维塔符号 (Levi-Civita symbol)	1
2 常见运算表		2
3	部分公式推导	3
	3.1 向量相关	3
糸	· · 老文献	3

1 符号说明

为不失一般性,一般的用如下记号表示标量、向量、张量。

名称	符号	IATEX 代码	示例
标量	小写字母	a, b, c	a,b,c
向量	加粗 小写字母	\mva, \mvb, \mvc	$oldsymbol{a},oldsymbol{b},oldsymbol{c}$
向量分量	小写字母加下标	a_i, b_j, c_k	a_i, b_j, c_k
张量	加粗 大写字母	\mma, \mmb, \mmc	$oldsymbol{A},oldsymbol{B},oldsymbol{C}$
张量分量	大写字母加下标	A_{ij}, B_{ijk}, C_{ijkl}	$A_{ij}, B_{ijk}, C_{ijkl}$

1.1 爱因斯坦记号

一般的,如果没有额外说明,在用下标表示的张量计算中,将采用爱因斯坦求和约定(Einstein summation convention),或者也被称为爱因斯坦记号(Einstein Notation)。举例说明,如向量的点积(内积),其张量(向量)表示为 $c=a\cdot b$,而使用爱因斯坦记号可以表示为 $c=a_ib_i$ 。这是由于有如下约定

$$a_i b_i = \sum_i a_i b_i = \boldsymbol{a} \cdot \boldsymbol{b}$$

这里的下标i被称作哑指标,表示对下标i进行缩并。在爱因斯坦记号的帮助下,许多张量计算可以更简洁的表示。

这里引入两个常用记号,克罗内克 δ 函数 (Kronecker delta),以及利威尔-奇维塔符号 (Levi-Civita symbol)。

1.2 克罗内克 δ 函数 (Kronecker delta)

克罗内克 δ 函数一般被定义为一个二元函数 δ_{ij} ,其自变量一般为两个整数,当且仅当两个整数恰好相同时,其取值为 1,否则为 0。即

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

1.3 利威尔-奇维塔符号(Levi-Civita symbol)

利威尔-奇维塔符号 $\epsilon_{a_1,a_2,\cdots,a_n}$ 由其每一个下标指标 a_1,a_2,\cdots,a_n 的取值所构成的排列的奇偶性来确定。这里直接给出一些结论:

在二维中, 符号 ϵ_{ij} 的定义如下所示

$$\epsilon_{ij} = \begin{cases} +1, & \text{if } (i,j) = (1,2), \\ -1, & \text{if } (i,j) = (2,1), \\ 0, & \text{otherwise.} \end{cases}$$

此时, ϵ_{ij} 恰好为一个大小为 2×2 的反对称矩阵

$$\begin{pmatrix} \epsilon_{11} & \epsilon_{12} \\ \epsilon_{21} & \epsilon_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

一般的,利威尔-奇维塔符号多见于 3 维或更高的维度当中。以三维的符号 ϵ_{ijk} 举例,其定义与二维类似

$$\epsilon_{ijk} = \begin{cases} +1, & \text{if } (i,j,k) \in \{(1,2,3),(2,3,1),(3,1,2)\}, \\ -1, & \text{if } (i,j,k) \in \{(3,2,1),(1,3,2),(2,1,3)\}, \\ 0, & \text{otherwise.} \end{cases}$$

即其定义是通过序列 (i,j,k) 是奇排列还是偶排列定义其取值。一般规定,自然排列 (1,2,3) 的取值为 1; 当有任意两个指标相同时,其符号为 0。对于序列 (i,j,k) 如果可以通过奇数次交换变换成自然排列 (1,2,3),则称其为奇排列,其符号取值为 -1; 否则为偶排列,其符号取值与自然排列保持一致,为 1。如果将序列扩展到更高的维度,则可以类似的定义符号,这里不再额外赘述。

2 常见运算表

下面列举部分简单二元运算的张量写法与爱因斯坦记号写法。为不失一般性,下表中的向量 $a\in\mathbb{R}^n$ 也可以用列向量 $a\in\mathbb{R}^{n\times 1}$ 来表示。同时如没有额外说明,张量一般为二阶张量 $A\in\mathbb{R}^{n\times m}$,同时这里的乘法与指标缩并均满足其定义规定。

运算	张量写法	爱因斯坦记号写法
同阶向量/张量加减	$C=A\pm B$	$c_{ij} = a_{ij} \pm b_{ij}$
标量与向量/张量相乘	$\boldsymbol{B} = k \boldsymbol{A}$	$b_{ij} = ka_{ij}$
对应项相乘(Hadamard product)	$C = A \circ B$	$c_{ij} = a_{ij}b_{ij}$
向量点积 (内积)	$c = \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}$	$c = a_i b_i$
向量叉积 (向量积)	$oldsymbol{c} = oldsymbol{a} imes oldsymbol{b}$	$c_i = \epsilon_{ijk} a_j b_k$
向量外积 (张量积)	$oldsymbol{C} = oldsymbol{a} \otimes oldsymbol{b} = oldsymbol{a} oldsymbol{b}^{ ext{T}}$	$c_{ij} = a_i b_j$
矩阵转置	$oldsymbol{C} = oldsymbol{A}^{ ext{T}}$	$c_{ji} = a_{ij}$
矩阵的迹	$c = \mathrm{tr} oldsymbol{A}$	$c = a_{ii}$

运算	张量写法	爱因斯坦记号写法
矩阵乘法	C = AB	$c_{ij} = a_{ik}b_{kj}$
Frobenius inner product	$oldsymbol{C} = oldsymbol{A}: oldsymbol{B} = \langle oldsymbol{A}, oldsymbol{B} angle_F = \operatorname{tr} \left(oldsymbol{A}^{\mathrm{H}} oldsymbol{B} ight)$	$c = \overline{a_{ij}}b_{ij}$
Kronecker product	$oldsymbol{C} = oldsymbol{A} \otimes oldsymbol{B}$	$c_{ijkl} = a_{ij}b_{kl}$

3 部分公式推导

3.1 向量相关

$$(a \cdot b)c$$

$$\mathbf{d} = (\mathbf{a} \cdot \mathbf{b})\mathbf{c} = \mathbf{a}^{\mathrm{T}}\mathbf{b}\mathbf{c}$$

$$\implies d_j = (a_ib_i)c_j = a_i(b_ic_j) = c_jb_ia_i = (c_jb_i)a_{i1}$$

$$\implies \mathbf{d} = (\mathbf{b} \otimes \mathbf{c})^{\mathrm{T}}\mathbf{a}$$