IN THE SPECIFICATION:

Please amend the specification as follows:

Page 1, just below the title, please amend as follows:

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Application 10/374,509, filed February 27, 2003, now U.S. Patent 6,943,941 the entire contents of which are incorporated herein by reference.

Page 1, delete the paragraph [0004] and replace it with the following new paragraph:

[0004] An example of such a patterning device is a mask. The concept of a mask is well known in lithography, and it includes mask types such as binary, alternating phase shift, and attenuated phase shift, as well as various hybrid mask types. Placement of such a mask in the radiation beam causes selective transmission (in the case of a transmissive mask) or reflection (in the case of a reflective mask) of the radiation impinging on the mask, according to the pattern on the mask. In the case of a mask, the support structure will generally be a mask table, which ensures that the mask can be held at a desired position in the incoming radiation beam, and that it can be moved relative to the beam if so desired.

Page 2, delete the paragraph [0006] and replace it with the following new paragraph:

[0006] An alternative embodiment of a programmable mirror array employs a matrix arrangement of tiny mirrors, each of which can be individually tilted about an axis by applying a suitable localized electric field, or by employing piezoelectric actuators. Once again, the mirrors are matrix addressable, such that addressed mirrors will reflect an incoming radiation beam in a different direction to unaddressed mirrors. In this manner, the reflected beam is patterned according to the addressing pattern of the matrix-addressable mirrors. The required matrix addressing can be performed using suitable electronics. In both of the situations described hereabove, the patterning device can comprise one or more programmable mirror arrays. More information on mirror arrays as here referred to can be

seen, for example, from United States Patents U.S. 5,296,891 and 5,523,193, and PCT publications WO 98/38597 and WO 98/33096. In the case of a programmable mirror array, the support structure may be embodied as a frame or table, for example, which may be fixed or movable as required.

Page 2, delete the paragraph [0007] and replace it with the following new paragraph:

[0007] Another example of a patterning device is a programmable LCD array. An example of such a construction is given in U. S. Patent 5,229,872. As above, the support structure in this case may be embodied as a frame or table, for example, which may be fixed or movable as required.

Page 3, delete the paragraph [0009] and replace it with the following new paragraph:

[0009] In current apparatus, employing patterning by a mask on a mask table, a distinction can be made between two different types of machine. In one type of lithographic projection apparatus, each target portion is irradiated by exposing the entire mask pattern onto the target portion at once. Such an apparatus is commonly referred to as a wafer stepper. In an alternative apparatus, commonly referred to as a step and scan apparatus, each target portion is irradiated by progressively scanning the mask pattern under the projection radiation beam in a given reference direction (the "scanning" direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction. Since, in general, the projection system will have a magnification factor M (generally < 1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. More information with regard to lithographic devices as here described can be seen, for example, from U.S. Patent 6,046,792.

Page 4, delete the paragraph [0011] and replace it with the following new paragraph:

[0011] For the sake of simplicity, the projection system may hereinafter be referred to as the "lens." However, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example. The radiation system may also include components operating according to any of

these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a "lens." Further, the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such "multiple stage" devices the additional tables may be used in parallel or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in U.S. Patent 5,969,441 and 6,262,796.

Page 8, delete the paragraph [0027] and replace it with the following new paragraph:

[0027] According to another aspect of the invention a lithographic projection apparatus is provided. The apparatus includes a radiation system configured to provide a projection beam of radiation, a support structure configured to supporting a patterning device, the patterning device configured to pattern the projection radiation beam according to a desired pattern, a substrate table configured to hold a substrate, a projection system configured to project the patterned beam onto a target portion of the substrate, and a polarizer device constructed and arranged to polarize the beam of radiation in a transverse electric polarization direction. The polarizer device includes a plurality of elongated elements and a thin layer of absorbing material, the thin layer of absorbing material absorbing radiation at a wavelength of the electromagnetic radiation. The plurality of elongated elements are coated with the thin layer of absorbing material.

Page 15, delete the paragraph [0062] and replace it with the following new paragraph:

[0062] Figure 1 schematically depicts a lithographic projection apparatus 1 according to an embodiment of the invention. The apparatus 1 includes a radiation system Ex, IL constructed and arranged to supply a projection beam PB of radiation (e.g. EUV radiation), which in this particular case also comprises a radiation source LA; a first object table (mask table) MT provided with a mask holder that holds a mask MA (e.g. a reticle), and connected to a first positioning device PM that accurately positions the mask with respect to a projection system PL. A second object table (substrate table) WT provided with a substrate holder that holds a substrate W (e.g. a resist-coated silicon wafer), and connected to a second positioning

device PW that accurately positions the substrate with respect to the projection system PL. The projection system ("lens") PL (e.g. a mirror group) is constructed and arranged to image an irradiated portion of the mask MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.

Page 15, delete the paragraph [0064] and replace it with the following new paragraph:

[0064] The source LA (e.g. a discharge or laser-produced plasma source) produces a beam of radiation. This beam radiation is fed into an illumination system (illuminator) IL, either directly or after having traversed a conditioning device, such as a beam expander Ex, for example. The illuminator IL may comprise an adjusting device AM that sets the outer and/or inner radial extent (commonly referred to as σ -outer and σ -inner, respectively) of the intensity distribution in the beam. In addition, it will generally comprise various other components, such as an integrator IN and a condenser CO. In this way, the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.

Page 17, delete the paragraph [0068] and replace it with the following new paragraph:

[0068] In scan mode, essentially the same scenario applies, except that a given target portion C is not exposed in a single "flash." Instead, the mask table MT is movable in a given direction (the so-called "scan direction", e.g., the Y direction) with a speed v, so that the projection beam PB is caused to scan over a mask image. Concurrently, the substrate table WT is simultaneously moved in the same or opposite direction at a speed V = Mv, in which M is the magnification of the lens PL (typically, M = 1/4 or 1/5). In this manner, a relatively large target portion C can be exposed, without having to compromise on resolution.

Page 26, delete the paragraph [0097] and replace it with the following new paragraph:

[0097] Referring to Figure 10, a device manufacturing method according to the present invention includes providing a substrate that is at least partially covered by a layer of radiation-sensitive material S110, providing a projection beam of radiation using a radiation

system S120, using a patterning device to endow the projection beam with a pattern in its cross-section S130, projecting the patterned beam of radiation onto a target portion of the layer of radiation-sensitive material S140, and polarizing the beam of radiation in a transverse electric polarization S150.