- 1. V trapezu ABCD sta vzporedni stranici AB in DC, stranica AB pa je dvakrat daljša od stranice DC. V kakšnem razmerju deli diagonala BD diagonalo AC?
- 2. V \mathbb{R}^3 naj bodo dane točke $A(5,-2,2),\,B(3,-4,6)$ in C(2,1,-1).
 - (a) Izračunaj dolžino daljice AB.
 - (b) Izračunaj kot $\angle BAC$.
- 3. V \mathbb{R}^3 naj bodo dane točke A(5,-3,4),~B(7,-2,2) in C(3,-1,3). Pokaži, da je $\triangle ABC$ enakokrak pravokotni trikotnik in izračunaj dolžino hipotenuze trikotnika.
- 4. V kvadru s stranicami dolžin 1, 2 in 3 izračunaj dolžino telesne diagonale.
- 5. V enakokrakem trapezu naj bo dolžina daljše osnovnice enaka 2, dolžina krakov pa 1. Pri tem naj kraka z daljšo osnovnico oklepata kot 60⁰. S pomočjo vektorjev izračunaj dolžino diagonal in krajše osnovnice.
- 6. Naj bosta \vec{a} in \vec{b} enotska vektorja (torej vektorja dolžine 1), ki oklepata kot 60° . Določi takšno konstanto α , da bosta vektorja $2\vec{a} + \vec{b}$ in $\alpha \vec{a} + 5\vec{b}$ pravokotna.
- 7. Vektor $2\vec{a} \vec{b}$ je pravokoten na vektor $\vec{a} + \vec{b}$, vektor $\vec{a} 2\vec{b}$ pa je pravokoten na vektor $2\vec{a} + \vec{b}$. Določi kot med vektorjema \vec{a} in \vec{b} .
- 8. Naj bosta vektorja \vec{a} in \vec{b} pravokotna. Kaj mora še veljati za vektorja \vec{a} in \vec{b} , da bosta vektorja $2\vec{a} + \vec{b}$ in $\vec{a} \vec{b}$ pravokotna?
- 9. Dana sta vektorja $\vec{a} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$ in $\vec{b} = \begin{bmatrix} 2 \\ 1 \\ -5 \end{bmatrix}$.
 - (a) Določi takšno število α in tak vektor $\vec{c} \perp \vec{a},$ da bo $\vec{b} = \alpha \vec{a} + \vec{c}.$
 - (b) Določi takšno število β in tak vektor $\vec{d}\perp\vec{b},$ da bo $\vec{a}=\beta\vec{b}+\vec{d}.$
- 10. Naj bosta \vec{a} in \vec{b} takšna vektorja, da je $||\vec{a}||=2$, kot med njima $\angle(\vec{a},\vec{b})=60^0$ in da sta vektorja $2\vec{a}+\vec{b}$ ter $\vec{a}-\vec{b}$ pravokotna. Določi dolžino vektorja \vec{b} .
- 11. Dan je trikotnik z oglišči A(-1,0,1), B(2,3,1), C(1,0,-1). Poišči točko T, kjer višina iz točke C na stranico AB seka to stranico.
- 12. V prostoru so dane točke A(1,0,0), B(0,5,1) in C(1,-1,1).
 - (a) Poišči takšno točko D, da bodo A, B, C in D določale paralelogram, v katerem je $AB \mid\mid CD$ in $AD \mid\mid BC$.
 - (b) Izračunaj kosinus notranjega kota pri oglišču A in ploščino paralelograma.
- 13. Dane so točke A(1,-2,-1), B(1,2,1) in D(1,-1,2). Določi takšno točko C, da bo ABCD paralelogram (v katerem je AB || CD in AD || BC) in izračunaj njegovo ploščino ter dolžine njegovih višin.

- 14. Naj bodo točke A(-1,0,1), B(0,-1,3) in C(2,0,4) oglišča pravilnega šestkotnika ABCDEF, v katerem je AB || ED, BC || EF in CD || AF.
 - (a) Izračunaj koordinate oglišč D, E in F.
 - (b) Izračunaj ploščino šestkotnika ABCDEF.
 - (c) Izračunaj ostri kot, ki ga oklepata diagonali AC in BF.
 - (d) Določi tisto točko na diagonali AC, ki je najbližja oglišču F.
 - (e) Določi tisto točko na diagonali AD, ki je najbližja oglišču F.
- 15. Izračunaj ploščino, dolžine stranic in notranje kote trikotnika z oglišči A(1, -1, 1), B(-1, 1, 1), C(1, 0, 2).
- 16. Vektorja \vec{a} in \vec{b} določata paralelogram s ploščino 5. Kolikšna je ploščina paralelograma, ki ga določata vektorja $-\vec{a} 3\vec{b}$ in $3\vec{a} + 3\vec{b}$?
- 17. Naj bosta $\vec{a} = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}$ in \vec{b} takšna vektorja v \mathbb{R}^3 , da oklepata kot 30° in da velja $||\vec{b}|| = 2$. Določi ploščino paralelograma z robovi $\vec{a} + \vec{b}$ in $2\vec{a} \vec{b}$.
- 18. Izračunaj volumen paralelepipeda ABCDEFGH, ki je napet na točke A(2,5,-3), B(1,0,-2), D(2,2,-3) ter E(0,-1,5) (pri tem sta ABCD ter EFGH njegovi vzporedni ploskvi in $AE \mid\mid BF\mid\mid CG\mid\mid DH$).
- 19. Vektorji $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ naj bodo paroma pravokotni in naj velja $||\vec{a}|| = 1$, $||\vec{b}|| = 2$ in $||\vec{c}|| = 2$.
 - (a) Določi volumen paralelepipeda z robovi $\vec{a}, \, \vec{b}, \, \vec{c}.$
 - (b) Določi volumen paralelepipeda z robovi $\vec{a} + 2\vec{b}$, $\vec{b} 2\vec{c}$ in $\vec{a} + 3\vec{c}$.
- 20. Vektorji \vec{a} , \vec{b} in \vec{c} določajo paralelepiped s prostornino 5. Določi prostornino paralelepipeda, ki ga določajo vektorji $3\vec{a} + \vec{b} \vec{c}$, $-2\vec{a} + \vec{b} + 3\vec{c}$ in $-3\vec{a} 2\vec{b}$.
- 21. Naj bosta \vec{a} in \vec{b} takšna vektorja v \mathbb{R}^3 , da velja $||\vec{a}|| = ||\vec{b}|| = 2$ in da sta vektorja $\vec{c} = \vec{a} + 6\vec{b}$ in $\vec{d} = \vec{a} \vec{b}$ pravokotna. Preveri, da sta vektorja \vec{a} in \vec{c} neničelna, in pokaži, da sta vzporedna.
- 22. V \mathbb{R}^3 naj bodo dane točke A(-1,0,1), B(0,-1,3) in C(2,0,4).
 - (a) Določi enačbo premice p, ki poteka skozi točki A in C.
 - (b) Določi enačbo premice q, ki je vzporedna premici BC in poteka skozi A.
- 23. Poišči enačbo ravnine, ki gre skozi točke A(3,1,-2), B(3,-1,1) in C(1,2,3).
- 24. Poišči točko, ki je presek premice

$$p: \quad x - 1 = \frac{y - 3}{-2} = \frac{z}{2}$$

in ravnine

$$\Sigma: x+y-z=1$$
.

25. Poišči točko, ki je presek ravnin

$$x - y + z = 0$$
,
 $2x + y - z = 3$,
 $-x + 2y + z = 4$.

26. V \mathbb{R}^3 sta dani premici

$$p: x-1=y-2=z$$

in

$$q: \frac{x-2}{-1} = \frac{y-3}{2} = \frac{z-1}{3}$$
.

Pokaži, da se premici sekata in zapiši enačbo ravnine, ki ju vsebuje.

27. V \mathbb{R}^3 sta dani premici

$$p: \frac{x-1}{2} = \frac{y-3}{2} = z-1$$

in

$$q: x+2 = \frac{y-3}{-2} = \frac{z+2}{2}$$
.

Določi njuno presečišče P in zapiši enačbo premice, ki poteka skozi P in je pravokotna na p in q.

28. Naj bosta Π in Σ ravnini z enačbama

$$\Pi: \ 2x + y = 4$$
 in $\Sigma: \ x + y - 3z = 6$

in naj bo premica p njun presek. Poišči smerni vektor premice p in ugotovi ali je premica p vzporedna ravnini z enačbo

$$x - z = 2$$
.

29. Poišči enačbo premice, ki je presek ravnin z enačbama

$$2x - y = 4$$
 in $x + 2y - 3z = 6$.

30. Izračunaj razdaljo med premicama

$$p: \frac{x-1}{2} = \frac{y-2}{-2} = z$$

in

$$q: x-2=\frac{y}{2}=\frac{z+1}{2}$$
.

31. V \mathbb{R}^3 sta dani premica

$$p: \frac{x}{-3} = \frac{y-1}{-2} = \frac{z+1}{2}$$

in ravnina

$$\Sigma: 2x - y + 2z = 2.$$

Pokaži, da sta p in Σ vzporedni in izračunaj razdaljo med njima.

- 32. V prostoru so dane 4 točke A(1,2,1), B(2,3,3), C(4,3,4) in D(3,2,2).
 - (i) Pokaži, da A, B, C in D ležijo na skupni ravnini in določi njeno enačbo.
 - (ii) Pokaži, da A, B, C in D napenjajo paralelogram.
- 33. Prezrcali točko A(-1,3,0) preko ravnine z enačbo

$$2x - y + z = 7.$$

34. Točko T(1,1,1) prezrcali čez premico p

$$\frac{x}{2} = y - 3 = \frac{z}{2}.$$

- 35. Piramida ima oglišča A(3,1,1), B(1,3,4), C(-1,-1,1) in D(3,-2,7). Označimo s T nožišče višine iz točke D. Določi koordinate točke T. Nasvet: Poišči (pravokotno) projekcijo točke D na ravnino, ki je določena s točkami A,B in C.
- 36. Poišči pravokotno projekcijo premice z enačbo

$$\frac{x-5}{4} = \frac{y-4}{1} = \frac{z}{-1}$$

na ravnino x + y + z = 0.

37. Premico p

$$\frac{x-1}{1} = \frac{y+1}{-1}, \ z = 0$$

prezrcali čez ravnino Π

$$2x + y = 0.$$

38. Naj bop premica skozi točko A(2,1,0) in s smernim vektorjem $\vec{s}=\begin{bmatrix} -1\\1\\0 \end{bmatrix}$. Zapiši vektor

$$\vec{a} = \begin{bmatrix} 5 \\ -5 \\ 2 \end{bmatrix}$$

kot vsoto dveh vektorjev, od katerih je eden vzporeden s premico p, drugi pa je pravokoten nanjo.

39. Poišči enačbo premice, ki gre skozi točko A(1,2,-1) in seka premico z enačbo

$$x - 4 = \frac{y - 6}{4} = \frac{z}{-1}$$

pod pravim kotom.

40. Na premici

$$p = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} + t \begin{bmatrix} 1\\-1\\0 \end{bmatrix}; t \in \mathbb{R} \right\}$$

poišči točki, ki sta od ravnine

$$\Sigma: \quad 2x + y - 2z = 2$$

oddaljeni za 1.

41. Dana je premica

$$p: \frac{x+1}{2} = y+2 = \frac{z-1}{-2}$$
.

Določi enačbo premice q, ki seka p pod pravim kotom in gre skozi točko A(2,1,1).

42. Na premici p, ki je presek ravnin Π in Σ

$$\Pi: \ 2x - y = 2, \quad \Sigma: \ x - y - z = 1$$

poišči točko, ki je enako oddaljena od točkA(4,1,1) in B(2,1,1).

 $Re\check{s}itve:$

1. 2:1

2. (a)
$$2\sqrt{6}$$

(b)
$$\cos \angle BAC = -\frac{\sqrt{2}}{3}$$

- 3. Pokaži, da je $\vec{AB} \cdot \vec{AC} = 0$, $||\vec{AB}|| = ||\vec{AC}|| = 3$ in dolžina hipotenuze $||\vec{BC}|| = 3\sqrt{2}$.
- 4. $\sqrt{14}$.
- 5. dolžini diagonal: $\sqrt{3}$, dolžina krajše osnovnice: 1
- 6. $\alpha = -4$
- 7. $\cos \angle (\vec{a}, \vec{b}) = -\frac{\sqrt{10}}{10}$.
- 8. Vektorja $\vec{a} + \vec{b}$ in $\vec{a} \vec{b}$ sta pravokotna, ko velja $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 0$, torej

$$\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{b} = 0$$

Upoštevamo simetričnost skalarnega produkta ter definicijo dolžine vektorja in dobimo $||\vec{a}|| = ||\vec{b}||$.

9. (a)
$$\alpha = -\frac{1}{6}, \vec{c} = \begin{bmatrix} \frac{8}{3} \\ \frac{2}{3} \\ -\frac{14}{2} \end{bmatrix}$$

(b)
$$\beta = -\frac{2}{15}$$
, $\vec{d} = \begin{bmatrix} \frac{64}{15} \\ -\frac{28}{15} \\ \frac{4}{3} \end{bmatrix}$.

10.
$$||\vec{b}|| = \frac{-1+\sqrt{33}}{2}$$

- 11. T(0,1,1)
- 12. (a) D(2, -6, 0)

(b)
$$\cos(\angle A) = -\frac{31}{\sqrt{999}}, \ pl_{ABCD} = \sqrt{38}.$$

13.
$$C(1,3,4)$$
, $pl_{ABCD} = 10$, $v_{AB} = \sqrt{5}$, $v_{AD} = \sqrt{10}$.

14. (a)
$$D = (3, 2, 3), E = (2, 3, 1)$$
 in $F = (0, 2, 0)$.

- (b) $pl = 9\sqrt{3}$.
- (c) 60^0
- (d) A(-1,0,1)
- (e) $T\left(0, \frac{1}{2}, \frac{3}{2}\right)$

15.
$$pl_{ABC} = \sqrt{3}$$
, $||AB|| = 2\sqrt{2}$, $||AC|| = \sqrt{2}$, $||BC|| = \sqrt{6}$, $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$, $\angle C = 90^{\circ}$.

- 16. 30
- 17. 21
- 18. 18
- 19. (a) 4

- 20. 55
- 21. Namig: Preveri, da je $||\vec{a}|| > 0$, $||\vec{c}|| > 0$ in $||\vec{a} \times \vec{c}|| = 0$.

22. (a)
$$p: \frac{x+1}{3} = \frac{z-1}{3}, y = 0.$$

(b)
$$q: \frac{x+1}{2} = y = z - 1$$
.

23.
$$13x + 6y + 4z = 37$$

- 24. A(2,1,2)
- 25. A(1,2,1)

$$26. \ x - 4y + 3z = -7$$

$$27. \ \frac{x+1}{2} = \frac{y-1}{-1} = \frac{z}{-2}$$

$$28. \left[\begin{array}{c} -3 \\ 6 \\ 1 \end{array} \right]$$

$$29. \ \frac{x-1}{3} = \frac{y+2}{6} = \frac{z+3}{5}$$

- 30. $\frac{2}{3}$
- 31. $\frac{5}{3}$

32.
$$x + 3y - 2z = 5$$

33.
$$A'(7,-1,4)$$

34.
$$T'(-\frac{1}{9}, \frac{49}{9}, -\frac{1}{9})$$

35.
$$T(1,2,3)$$

$$36. \ \frac{x-2}{8} = \frac{y-1}{-1} = \frac{z+3}{-7}$$

37.
$$x = \frac{y}{-7}, \ z = 0$$

$$38. \left[\begin{array}{c} 5 \\ -5 \\ 0 \end{array} \right] + \left[\begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right]$$

39.
$$x-1=z+1, y=2$$

40.
$$A(-1,3,1), B(5,-3,1)$$

41.
$$x-2=\frac{y-1}{2}=\frac{z-1}{2}$$

42.
$$C(3,4,-2)$$