Multi-Path Quic over 5G

Siao-Ting Wang

Outline

- What is QUIC
- What is Multi-Path?
- Current QUIC status in 5G
- Why need Multi-Path QUIC in 5G?
- Current Multi-Path QUIC design
- Conclusion

What is QUIC

- QUIC is Quick UDP Internet Connections.
- The goal of QUIC:
 - Replaces most of the traditional HTTPS stack: HTTP/2 + TLS + TCP.
- The performance results from Google compare to traditional HTTPS stack
 - Reduces latency of Google Search responses by 8.0% for desktop users.
 - Reduces rebuffer rates of YouTube playbacks by 18.0% for desktop users.

What is QUIC

- Key advantages of QUIC over TCP+TLS+HTTP2
 - Low latency of connection establishment
 - QUIC handshakes frequently require zero roundtrips before sending payload, as compared to 1-3 roundtrips for TCP+TLS

First time connection establishment

Subsequence connections

What is QUIC

- Key advantages of QUIC over TCP+TLS+HTTP2
 - Support stream multiplexing without head-of-line blocking
 - QUIC use a lightweight data-structuring abstraction,streams, which are multiplexed within a single connection so that loss of a single packet blocks only streams with data in that packet.

(a) HTTP1.1 (b) HTTP 2.0 (c) QUIC

What is Multipath TCP

- Allows multiple paths to be used simultaneously by a single transport connection.
- Transparently to the application.
 - Original TCP is a single-path protocol
 - When a TCP connection is established, the connection is bound to the IP addresses of the two communicating hosts.
 - Networks today is multipath
 - Mobile devices have multiple wireless interfaces
 - Data centers have many redundant paths between servers

Data transmission with plain TCP

Data transmission with MPTCP

All the available links are used

What is Multipath TCP

- Two key benefits of multipath transport
 - To increase the reliability of the connectivity by providing multiple paths, protecting end hosts from the failure of one (seamless handoff)
 - To increase the efficiency of the resource usage, and thus increase the network capacity available to end hosts (sharing load)

Current QUIC Status in 5G

In Technical Specification (TS) 23.501 -- known as System Architecture for the 5G System -- the 3GPP is currently standardizing what is known as the Service-Based Architecture (SBA) for 5G Core. It uses service-based interfaces between control-plane functions, while user-plane functions connect over point-to-point links. This is shown in the figure below. The service-based interfaces will use HTTP 2.0 over TCP in the initial release, with QUIC transport being considered for later releases.

Service-Based Architecture for 5G Core

Why need Multipath QUIC in 5G

- 5G has high throughput and low latency requirements.
 - HTTP will need to become more streamlined and lightweight.
- 5G wireless networks comprise a lot of Radio Access Technologies (RATs).
 - Seamless handoff can provide better user experience.
- Solution
 - Using Multipath TCP
 - Load sharing and seamless handoff
 - Using QUIC
 - Have better performance in traditional HTTPS stack.
 - UDP-based, stream-multiplexing, always-encrypted transport protocol focused on minimizing application latency.
 - Provide better end-user experience while accessing web-based services
 - Using Multipath QUIC

Multi-Path QUIC

Quentin De Coninck Olivier Bonaventure

How Does Multi-Path QUIC Work

- How to define the packets belong to the same path
 - UDP: (src ip, src port, dst ip, dst port)
 - QUIC: (QUIC, connection ID)

```
±-----
Flags (8) | Connection ID (64) (optional)
Version (32) (client-only, optional) | Diversification Nonce (256)
Packet Number (8 - 48) | ->
 Frame 1 | Frame 2 | ... | Frame N
      Stream frame
       Type (8) | Stream ID (8 - 32) | Offset (0 - 64)
       Data length (0 or 16) | Stream Data (data length)
```

How Does Multi-Path QUIC Work

- Multi-Path QUIC:
 - A logical association between two hosts over which packets can be sent.
 - A path is identified by a Path ID.
- Connection ID
 - MCID: Master Connection ID
 - Uniquely identifies the connection.
 - o PCID: Path Connection ID
 - Packets belongs to the same path has the same PCID

How Does Multi-Path QUIC Work

Notes:

- 1. No need to modify the header
- Add new control frames, such as MAX_PATHS frame and NEW CONNECTION ID frame.

Performance Results

Experimental design parameters

Figure 2: Simple network with two hosts and disjoint paths.

Factor	Low-BDP		High-BDP	
	Min.	Max.	Min.	Max.
Capacity [Mbps]	0.1	100	0.1	100
Round-Trip-Time [ms]	0	50	0	400
Queuing Delay [ms]	0	100	0	2000
Random Loss [%]	0	2.5	0	2.5

Table 1: Experimental design parameters [37].

Performance Results

Figure 3: QUIC and TCP exhibit similar performances. On average, Multipath QUIC tends to be faster than Multipath TCP.

Figure 5: In low-BDP scenarios (Multipath) QUIC reacts faster than (Multipath) TCP to random losses.

Figure 8: QUIC performs better than TCP in high-BDP environments when there are random losses.

Multi-Path Tester

 An iOS application that uses several network paths such as WiFi and cellular on the iPhone to evaluate MultiPath TCP and MultiPath QUIC

Conclusion

- QUIC is a protocol combines the functions of HTTP/2, TLS, and TCP over UDP, with the goal to reduce the latency of client-server communication.
- Multipath QUIC has better performance comparing to MultiPath TCP no matter in lossy or non-lossy scenarios.
- With Multipath QUIC, it's more possible to achieve high throughput and low latency goals for web services in 5G environment.

Thank You

Reference

- https://www.chromium.org/quic
- https://datatracker.ietf.org/wg/quic/charter/
- https://multipath-quic.org/multipathtester.html
- https://tools.ietf.org/html/rfc6824
- https://tools.ietf.org/html/draft-deconinck-quic-multipath-00
- https://tools.ietf.org/pdf/draft-ietf-quic-transport-10.pdf
- http://blog.3g4g.co.uk/2018/02/quic-possibly-in-5g-3gpp-release-16.html
- http://www0.cs.ucl.ac.uk/staff/M.Handley/papers/9346-login1210_bonaventur
 e.pdf