Sistemas de Control

Trabajo práctico N°7: Respuesta transitoria

Profesores:

Ing. Lauxmann Claudio Hernán Ing. Vázquez Emmanuel Eduardo

Alumnos:

Almeida Juan

Fernández Francisco

Grupo: 5 Año: 2022 Comisión: 5R1

1) Para esta práctica se deberá calcular y medir las respuestas del siguiente circuito:

Los valores de los componentes son:

R11 = 1,8 k
$$\Omega$$
;

$$C11 = 12 nF$$
;

$$R21 = 10 kΩ$$
;

$$R22 = 56 kΩ$$
;

$$R32 = 390 \text{ k}\Omega$$
;

$$C31 = 1,5 nF;$$

$$C32 = 1,2 nF;$$

La representación en diagramas de bloques del circuito electrónico anterior es la siguiente:

Universidad Tecnológica Nacional - Facultad Regional Tucumán

Carrera: Ingeniería Electrónica Asignatura: Sistemas de control

Guía de Trabajo Práctico N° 07

2) Encontrar la función de transferencia de cada bloque Filtro pasa bajo RC:

$$G1 = \frac{1}{R_{11}C_{11}s + 1}$$

Amplificador no inversor

$$G2 = 1 + \frac{R_{22}}{R_{21}}$$

Filtro pasa bajo de 2do orden. Configuración Sallen Key.

$$G3 = \frac{\frac{1}{R_{31}R_{32}C_{31}C_{32}}}{s^2 + s(\frac{1}{R_{31}C_{32}} + \frac{1}{R_{32}C_{32}}) + \frac{1}{R_{31}R_{32}C_{31}C_{32}}}$$

3) Colocar los valores de cada componente, calcular el numerador, el denominador y la función de transferencia continua en Matlab de cada bloque.

Bloque de filtro pasa bajo RC

Bloque amplificador no inversor

Filtro pasa bajo de 2do orden. Configuración Sallen Key.

num_G3= wn 2:

 $den_G3=[1 (1/(R32*C32)) + (1/(R31*C32)) 1/(C31*C32*R31*R32)];$

G3 = tf(num G3, den G3);

4) Luego de que se hallan todas las funciones de transferencia, calcular la función de transferencia directa

5) Como la realimentación es unitaria (H=1), la función de transferencia de lazo cerrado es igual a la función de transferencia directa.

FTLA=FTD;

FTLA =

3.482e11

0.216 s^3 + 1.113e04 s^2 + 5.337e07 s + 5.276e10

6) Y la función de transferencia de lazo cerrado será:

FTLC=feedback (FTLA,1);

FTLC =

3.482e11 ------0.216 s^3 + 1.113e04 s^2 + 5.337e07 s + 4.01e11

7) Encontrar: tr (tiempo de crecimiento), tp (tiempo de pico), Mp (sobreelongación) y ts (tiempo de asentamiento) usando el comando stepinfo().

stepinfo(FTLC);

Universidad Tecnológica Nacional - Facultad Regional Tucumán

Carrera: Ingeniería Electrónica Asignatura: Sistemas de control

Guía de Trabajo Práctico Nº 07

RiseTime: 2.2541e-04 SettlingTime: 0.0018 SettlingMin: 0.7869 SettlingMax: 1.1330 Overshoot: 30.4635

Undershoot: 0 Peak: 1.1330

PeakTime: 5.6410e-04

8) Con los valores hallados completar la siguiente tabla en la columna "Cálculo"

Símbolo	Descripción	Cálculo	Medición	Unidades
tp	Tiempo de pico	0.56	0.50	ms
tr	Tiempo de crecimiento	0.225	0.29	ms
ts	Tiempo de asentamiento	1.8	1.9	ms
Мр	Sobreelongación	30.46	36.7	%

9) Construir el circuito del punto 1. En el laboratorio, con un osciloscopio, medir los valores reales de las variables calculadas en el punto 7 y volcar los valores a la tabla del punto 8.

Tiempo de crecimiento

Tiempo de asentamiento

<u>Sobreelongación</u>

