

Exercises Trees

1 Decision Trees: Binary Classification

Consider the following data with features A,B,C and the binary class target.

Α	В	С	target
Τ	Τ	1.0	+
\mathbf{T}	\mathbf{T}	6.0	+
\mathbf{T}	\mathbf{F}	5.0	_
\mathbf{F}	\mathbf{F}	4.0	+
\mathbf{F}	\mathbf{T}	7.0	_
\mathbf{F}	\mathbf{T}	3.0	_
\mathbf{F}	\mathbf{F}	8.0	_
\mathbf{T}	\mathbf{F}	7.0	+
\mathbf{F}	Τ	5.0	-

Consider all three impurity measures: What is the best split according to each of the three measures?

2 Decision Trees: Binary Classification (XOR)

Consider the following data. Note that the target column is obtained by $A + B + C \mod 2$ (in Boolean logic this is called eXclusive OR - XOR -).

A	В	\mathbf{C}	target
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- 1. Draw the decision tree (class is *target*) obtained by tree induction using Gini impurity (if the gain of two features is equal, you are allowed to choose one of them randomly).
- 2. Does the tree change if you use entropy?
- 3. Suppose you use **prepruning** (so you stop growing the tree) by requiring more than one instance per leaf. How does your tree look like?