Schematy punktowania zadań do Arkusza II

Zadanie 12.

L. p.	Wykonana czynność	L. punktów
1.	Zapisanie wyrażenia $\frac{x(x-1)(x-2)}{x^2-3x+2}$ w prostszej postaci. Odp. x .	1
2.	Obliczenie granicy funkcji f w punkcie $x = 1$. Odp. 1.	1
3.	Obliczenie granicy funkcji f w punkcie $x = 2$. Odp. 2	1
4.	Sformułowanie odpowiedzi. Odp. Funkcja f jest ciągła w punkcie $x = 1$; funkcja f nie jest ciągła w punkcie $x = 2$. Za każdą część odpowiedzi - 1 punkt.	2

Zadanie 13.

L. p.	Wykonana czynność	L. punktów
	Obliczenie $P(B)$.	
1.	Odp. $P(B) = \frac{1}{4}$.	1
	Obliczenie $P(A \cap B)$.	
2.	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	1
2.	Odp. $P(A \cap B) = \frac{1}{8}$.	1
3.	Porównanie liczb $P(A \cap B)$ oraz $P(A) \cdot P(B)$ i	
	zapisanie odpowiedzi, że zdarzenia A i B są	1
	niezależne.	

Zadanie 14.

L. p.	Wykonana czynność	L. punktów
1.	Ustalenie, że punkt D jest obrazem punktu A oraz punkt C jest obrazem punktu B. Fakt ten może być opisany słownie, przedstawiony rysunkiem lub wykorzystany podczas rozwiązania.	1
2.	Wyznaczenie równania prostej AD . Odp. $y = 0$.	1
3.	Wyznaczenie równania prostej BC . Odp. $y = 2x - 2$.	1
4.	Wyznaczenie współrzędnych środka jednokładności. Odp. (1,0).	1

Zadanie 15.

L. p.	Wykonana czynność	L. punktów
1.	Naszkicowanie wykresu funkcji f. Odp3 -2 -1 0 1 2 3 4 5 6	1
2.	Wyznaczenie wzoru funkcji $f \circ g$. Odp. $(f \circ g)(x) = 2^{-x}$.	1
3.	Naszkicowanie wykresu funkcji $f \circ g$.	1
4.	Wyznaczenie wzoru funkcji $h \circ f \circ g$. Odp. $(h \circ f \circ g)(x) = 2^{-x} - 2$.	1
5.	Naszkicowanie wykresu funkcji $h \circ f \circ g$.	1

Zadanie 16.

L. p.	Wykonana czynność	L. punktów
1.	Zapisanie liczby wszystkich zdarzeń elementarnych za pomocą symbolu Newtona. Odp. $\binom{42}{5}$.	1
2.	Obliczenie liczby wszystkich zdarzeń elementarnych. Odp. 850668.	1
3.	Zapisanie liczby zdarzeń sprzyjających trafieniu co najmniej 4 spośród 5 liczb z wykorzystaniem symbolu Newtona. Odp. $\binom{5}{4}\binom{37}{1}+1$.	1

4.	Obliczenie liczby zdarzeń sprzyjających.	1
	Odp. 186.	1
	Obliczenie prawdopodobieństwa trafienia co najmniej 4 spośród 5 liczb.	
5.	$\frac{186}{2} \approx 0,0002186$	1
	$\frac{1}{850668} \approx 0,0002180$	
	Odp. 0,00022.	

Zadanie 17.

L. p.	Wykonana czynność	L. punktów
1.	Zapisanie równania w postaci $2\sin^2 x - 5\sin x + 2 = 0$.	1
2	Zapisanie równania z niewiadomą $t = \sin x$.	1
2.	Odp. $2t^2 - 5t + 2 = 0$.	1
	Wyznaczenie rozwiązań równania $2t^2 - 5t + 2 = 0$.	
3.	Odp. $t = 2$, $t = \frac{1}{2}$.	1
	Sup. $i=2$, $i=\frac{1}{2}$.	
4.	Zapisanie, że równanie $\sin x = 2$ nie ma rozwiązań.	1
	Zapisanie rozwiązań równania	
	$2\cos^2 x + 5\sin x - 4 = 0.$	
5.	Odp. $x = \frac{\pi}{6} + 2k\pi, k \in C \text{ lub } x = \frac{5}{6}\pi + 2k\pi, k \in C.$	1
	(Uznajemy też wynik zapisany w postaci.	
	$x = 30^{0} + k \cdot 360^{0}$, gdzie $k \in C$ lub $x = 150^{0} + k \cdot 360^{0}$,	
	gdzie $k \in C$).	

Zadanie 18.

L. p.	Wykonana czynność	L. punktów
1.	Wykonanie polecenia a). Odp. $y = \frac{5}{8}$. Za podanie współczynnika kierunkowego stycznej lub wartości pochodnej funkcji f dla $x=0$ przyznajemy 1 punkt.	2
2.	Podanie argumentu, dla którego funkcja f osiąga minimum. Odp. $x = 3$.	1
3.	Podanie minimum funkcji f . Odp. $f_{min}(3) = -1$.	1
4.	Wykonanie polecenia c). Odp. Najmniejsza wartość funkcji f jest równa – 1.	1

Zadanie 19.

L. p.	Wykonana czynność	L. punktów
	Wykonanie polecenia zadania.	
1	Odp. Równanie nie ma rozwiązań dla $m \in (-\infty, 0)$;	2
1.	równanie ma 1 rozwiązanie dla $m \in (0, +\infty)$.	2
	Po 1 punkcie za każdy z rozważonych przypadków.	
	Uzasadnienie odpowiedzi.	
2.	Odp. Funkcja g określona wzorem $g(x) = f(x-1)$	2
	jest funkcją różnowartościową. Zbiorem wartości	

funkcji g jest przedział $(0,+\infty)$.
Po 1 punkcie za każdy element uzasadnienia.

Zadanie 20.

L. p.	Wykonana czynność	L. punktów
1.	Sprawdzenie, czy dla $n = 1$ zachodzi dana równość. Odp. Lewa strona równości jest równa 2. Prawa strona jest równa $\frac{3}{2} + \frac{1}{2} = 2$.	1
2.	Zapisanie założenia indukcyjnego. Odp. $2+5+8++(3k-1)=\frac{3}{2}k^2+\frac{1}{2}k$, gdzie k jest dowolną ustaloną liczbą naturalną większą lub równą 1.	1
3.	Zapisanie tezy indukcyjnej. Odp. $2+5+8++(3k-1)+(3k+2)=\frac{3}{2}(k+1)^2+\frac{1}{2}(k+1)$	1
4.	Przeprowadzenie dowodu tezy indukcyjnej. Odp. $2+5+8++(3k-1)+(3k+2)=\frac{3}{2}k^2+\frac{1}{2}k+(3k+2)=$ $=\frac{3}{2}k^2+3k+\frac{3}{2}+\frac{1}{2}k+\frac{1}{2}=\frac{3}{2}(k+1)^2+\frac{1}{2}(k+1)$	2
5.	Sformułowanie odpowiedzi. Odp. Na mocy zasady indukcji matematycznej dana równość jest prawdziwa dla każdej liczby całkowitej, dodatniej <i>n</i> .	1

Zadanie 21.

L. p.	Wykonana czynność	L. punktów
1.	Wykonanie rysunku i wprowadzenie oznaczeń. Odp.	1
2.	Zapisanie jaką bryłą jest bryła po obrocie danego trójkąta. Odp. Powstała bryła jest stożkiem z wyciętym stożkiem o tej samej podstawie. Punkt przyznajemy także jeśli zaznaczony jest stożek na rysunku.	1
3.	Wyznaczenie długości odcinka \overline{AB} . Z twierdzenia kosinusów	1

	$\left \overline{AB} \right ^2 = \left \overline{AC} \right + \left \overline{BC} \right - 2 \left \overline{AC} \right \cdot \left \overline{BC} \right \cos \angle ACB.$	
	Odp. $ \overline{AB} = 7$.	
4.	Wyznaczenie długości odcinka \overline{AD} .	
	$\left \overline{AD} \right = \left \overline{AC} \right \cdot \sin \angle ACB$	1
	Odp. $ \overline{AD} = 4\sqrt{3}$.	
5.	Wyznaczenie długości odcinka \overline{CD} .	
	$\left \overline{CD} \right = \left \overline{AC} \right \cdot \cos \angle ACB$	1
	Odp. $ \overline{CD} = 4$.	
6.	Obliczenie objętości powstałej bryły.	
	$V = \frac{1}{3}\pi \left \overline{AD} \right ^2 \cdot \left \overline{CD} \right - \frac{1}{3}\pi \left \overline{AD} \right ^2 \cdot \left \overline{BD} \right $	1
	Odp. 48π.	
7.	Obliczenie pola powierzchni całkowitej.	
	$P = \pi \left \overline{AD} \right \cdot \left \overline{AC} \right + \pi \left \overline{AD} \right \cdot \left \overline{AB} \right $	
	Odp. $60\sqrt{3}\pi$.	2
	Jeśli wyznaczone zostało pole powierzchni bocznej	
	tylko jednego stożka przyznajemy 1 punkt.	

Zadanie 22.

L. p.	Wykonana czynność	L. punktów
1.	Zapisanie warunku jaki musi spełniać niewiadoma x . Odp. $\begin{cases} x > 0 \\ \log_3 x > 0 \\ \log_9 x > 0 \end{cases}$	1
2.	Wyznaczenie dziedziny równania. Odp. $x \in (1, +\infty)$.	1
3.	Zapisanie równania w postaci $\log_9(\log_9 x)^2 = \log_9(\log_3 x)$. Za zastosowanie twierdzenia o zamianie podstaw – 1 punkt.	2
4.	Zapisanie równania w postaci $(\log_9 x)^2 - \log_3 x = 0$.	1
5.	Zapisanie równania w postaci $(\log_9 x)^2 - 2\log_9 x = 0$.	1
6.	Wyznaczenie rozwiązań równania $(\log_9 x)^2 - 2\log_9 x = 0$. Odp. $x = 1$ lub $x = 81$. Zapisanie w postaci $(\log_9 x - 2)\log_9 x = 0$ - 1 punkt. Zapisanie alternatywy: $\log_9 x = 0$ lub $\log_9 x = 2$ - 1 punkt. Wyznaczenie rozwiązań równania - 1 punkt.	3
7.	Wyznaczenie rozwiązań równania $\log_3(\log_9 x) = \log_9(\log_3 x)$. Odp. $x = 81$.	1

Za prawidłowe rozwiązanie każdego z zadań inną od przedstawionej w schemacie punktowania metodą zgodną z poleceniem przyznajemy maksymalną liczbę punktów.