Attention mechanisms & Transformers

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Predecir la clase de una imagen.

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Predecir la clase de una imagen.

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Transformar audio en texto.

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Traducir entre idiomas.

Motivación

En tareas de Secuencia a Secuencia, las RNN condensan toda la información de la entrada en un único elemento. No es la mejor opción, sobre todo en largas secuencias.

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

En este contexto surgen los Transformers¹.

Esta nueva arquitectura:

- Mejora la eficiencia comptutacional de las RNN.
- Permite al modelo centrarse en partes concretas de la entrada para predecir la salida.
- Soluciona el problema de la memoria corto-placista de las RNN:
 - Permiten asociar palabras en una secuencia aunque estén muy separadas entre sí.

¹Attention is all you need, Ashish Vaswani et al

Attention mechanisms & Transformers

Attention mechanisms

Attention mechanisms

Antes de comenzar a hablar de *Transformers*, es necesario entender el funcionamiento de su componente principal, los **attention mechanisms**.

Definición

Los mecanismos de atención seleccionan que elementos de la(s) secuencia(s) de entrada son más importantes para predecir la secuencia salida.

Detalles:

- La entrada de estos mecanismos espera una o varias secuencias de datos.
- Dentro de los *Transformers* se utilizan la llamada *Self-attention* pero, como verás a continuación, existen muchas otras variaciones.

Variaciones

Variaciones

Este método requiere de los siguientes elementos:

- Secuencia de entrada: x_1, x_2, \dots, x_t
- Secuencia de salida: y_1, y_2, \dots, y_t
- Misma dimensión k para todos los vectores.

Para producir cada vector \mathbf{y}_i de la secuencia de salida, simplemente se obtiene la media ponderada de las entradas.

$$\mathbf{y}_i = \sum_j w_{ij} \mathbf{x}_j$$

Donde la j recorre toda la secuencia y la suma de todos los w_{ij} es igual a 1.

El peso $w_{i,j}$ no es un parámetro, como en una DNN, se deriva de una función sobre \mathbf{x}_i y \mathbf{x}_j .

La opción más sencilla para esta función es el producto escalar:

$$\mathbf{w}_{ij}^{'} = \left\langle \mathbf{x}_{i}^{T}, \mathbf{x}_{j} \right\rangle$$

El peso representa la importancia de cada elemento de la entrada para el elemento actual.

- Nótese que x_i es el vector de entrada en la misma posición que el vector de salida actual.
- Para \mathbf{y}_{i+1} , obtenemos una serie completamente nueva de productos escalares y una suma ponderada diferente.

El producto escalar anterior nos da valores entre $[-\inf,\inf]$.

- Para obtener valores entre [0,1], aplicamos una softmax.
- De esta forma, para cada i, todos los j pesos sumarán 1.

Finalmente:

$$w_{ij} = rac{ ext{exp } w_{ij}^{'}}{\sum_{j} ext{exp } w_{ij}^{'}}$$

De forma gráfica (softmax omitida por simplicidad):

Realizando este proceso para todos los x_i obtendremos una matriz de pesos como la representada en la figura.

Nótese que:

- Esta matriz se conoce como matrtiz de atención.
- Tras aplicar la softmax, todas las filas de esta matriz suman 1.
- A causa de esta softmax, la matriz no tiene por que ser simétrica.

¿Por qué funciona la attention?

Supongamos que diriges un videoclub, tienes películas \mathbf{m} , usuarios \mathbf{u} , y te gustaría **recomendar** películas a tus usuarios que es probable que disfruten.

- Necesitamos codificar cada usuario y película de forma numérica.
- Podemos hacerlo de forma manual en base a los géneros.

Importancia del signo:

Si \mathbf{m} es romántica y \mathbf{u} le encanta el romanticismo o viceversa: *Producto escalar positivo*. Si \mathbf{u} es romántica y \mathbf{u} odia el romanticismo o viceversa: *Producto escalar negativo*.

Importancia de la magnitud:

Las magnitudes de los géneros indican cuánto contribuye a la puntuación total.

- Una película puede ser un poco romántica, pero no de forma notable.
- Un usuario puede no preferir el romanticismo, pero ser en gran medida ambivalente.

Rellenar manualmente estos valores es muy costoso y prácticamente imposible cuando existen millones de películas y usuarios.

Para solucionarlo:

- 1 Las características de cada **m** y **u** pasarán a ser parámetros del modelo.
- 2 Pedimos a los usuarios que valoren varias películas.
- 3 Optimizamos los parámetros/características para que el producto escalar coincida con la valoración.

Atención!

Las carácteristicas de cada ${\bf u}$ y ${\bf m}$ ya no representan géneros, desconocemos su significado.

A pesar de ello, estas reflejan una semántica significativa sobre el contenido de la película.

Si representamos cada m con 2 de las 3 nuevas carácteristicas aprendidas por el modelo:

El modelo es capaz de juntar películas similares sin conocer nada sobre su contenido.

Este principio es el mismo que hace que la self-attention funcione.

Imaginemos que tenemos la secuecia de palabras (frase): "El gato camina en la calle".

Para aplicar self-attention:

1 Representamos cada palabra por un vector \mathbf{v} (también llamado *embedding*) de tamaño k.

$$\mathbf{v}_{el}, \mathbf{v}_{gato}, \mathbf{v}_{camina}, \mathbf{v}_{en}, \mathbf{v}_{la}, \mathbf{v}_{calle}$$

- 2 Los valores de ese vector se aprenderán durante el entrenamiento (como ej. anterior).
- 3 Aplicamos self-attention a la secuencia, lo que retorna:

donde \mathbf{y}_{gato} es la suma ponderada de todos los embeddings de la primera secuencia, ponderada por su producto escalar (normalizado) con \mathbf{v}_{gato} .

Importante

Como estamos aprendiendo los valores de \mathbf{v}_t , el grado de "relación" entre dos palabras está **totalmente determinado por la tarea a resolver**.

Analizando la frase anterior, en términos generales podemos esperar que:

- El artículo "El" no sea muy relevante para el resto de palabras de la frase.
 - ullet Su embedding $oldsymbol{v}_{EI}$ tendrá un producto escalar bajo o negativo con todas las demás palabras.
- Para interpretar el significado de "camina" es muy útil averiguar quién está caminando.
 - Probablemente \mathbf{v}_{camina} y \mathbf{v}_{gato} tendrá un producto escalar alto y positivo.

En resumen:

- Como se ve, el producto escalar expresa cómo de "relacionados" están dos vectores en la secuencia de entrada.
- El grado de "relación" viene definido por la tarea de aprendizaje.
- Los vectores de salida son **sumas ponderadas** sobre toda la secuencia de entrada.

¿Eso es todo?:

- No hay parámetros que aprender (por ahora): La parte de atención no aprende ningún parámetro. La codificación de la secuencia de entrada no forma parte del mecanísmo.
- La entrada es un conjunto, no una secuencia: Si alteramos el orden de las palabras, la salida será la misma, solo que también permutada. Más adelante veremos como solucionarlo.

Self-attention: Mejoras

La self-attention que se utiliza dentro de los Transformers utiliza tres mejoras adicionales.

- 1 Queries, keys y values.
- Escalado del producto escalar.
- 3 Multi-head attention.

A continuación veremos cada una de ellas en detalle.

Self-attention: Queries, keys y values

Tres representaciones

Cada vector \mathbf{x}_i de la entrada se utiliza de tres formas diferentes dentro de la self-attention.

- Query: Se compara con otros vectores para establecer los pesos de su propia salida y_i .
- **Key:** Se compara con otros vectores para establecer los pesos de la j-ésima salida \mathbf{y}_j .
- Value: Se usa en el cálculo de la media ponderada que retorna el vector de salida.

En los ejemplos que vimos hasta ahora, el vector \mathbf{x}_i ejercía de todos estos roles a la vez. Para facilitar la tarea a la atención, vamos a aprender un embedding para cada rol.

Self-attention: Queries, keys y values

Para aprender estas representaciones aplicaremos una transformación lineal al vector original.

Crearemos tres matrices de tamaño $k \times k$: $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$.

Ahora, para cada elemento x_i de la secuencia de entrada tendremos tres embeddings:

$$\mathbf{q}_i = \mathbf{W}_q \mathbf{x}_i \qquad \mathbf{k}_i = \mathbf{W}_k \mathbf{x}_i \qquad \mathbf{v}_i = \mathbf{W}_v \mathbf{x}_i$$

¿Dónde utilizarlos en self-attention?

$$w_{ij}^{'} = \left\langle \mathbf{q}_{i}^{\ T}, \mathbf{k}_{j} \right\rangle \qquad w_{ij} = \operatorname{softmax}(w_{ij}^{'}) \qquad \mathbf{y}_{i} = \sum_{i} w_{ij} \mathbf{v}_{j}$$

El producto escalar se hace entre query y key, para la media ponderada se utilizan los values.

Estas tres matrices serán los parámetros que aprende la self-attention.

Self-attention: Queries, keys y values

De forma gráfica:

Self-attention: Escalado del producto escalar

Problema del softmax

La función softmax puede ser sensible a valores de entrada muy grandes. Estos perjudican el gradente y ralentizan o detienen el aprendizaje.

- ullet Aumentar el tamaño k de los embeddings, aumenta el valor medio del producto escalar.
- Hay que reducir este valor escalando el resultado:

$$w_{ij}^{'} = \frac{\left\langle \mathbf{q}_{i}^{T}, \mathbf{k}_{j} \right\rangle}{\sqrt{k}}$$

¿Por qué \sqrt{k} ?

- Dividir por la raíz cuadrada del tamaño del embedding normaliza los valores.
- Normalizar escala los valores evitando que unos dominen o se anulen otros.

Problema

Una palabra puede significar cosas distintas para vecinos distintos.

Ejemplo: "Marta da rosas a Sara".

- \mathbf{x}_{Marta} y \mathbf{x}_{Sara} influirán en \mathbf{x}_{da} en diferente cantidad, pero no de diferente forma.
- Si queremos que la información sobre quien dio las rosas y quien las recibió acabe en diferentes partes de \mathbf{x}_{da} necesitamos más flexibilidad.

Solución:

- Combinar *r* mecanismos de autoatención para mejorar la capacidad de discriminar.
- Por tanto se aprenderán r matrices query, key y value: $\mathbf{W}_q^r, \mathbf{W}_k^r, \mathbf{W}_v^r$.

Cada uno de estos mecanismos se denimina "cabeza" o "head".

Múltiples heads, múltiples salídas

Cada \mathbf{x}_i produce un vector de salida \mathbf{y}_i^r diferente en cada self-attention head.

Para obtener una salida del mismo tamaño que la entrada:

- 1 Concatenamos las i-ésimas salidas de cada head $\forall r$.
 - Esto nos dará un vector de $r \times k$ elementos para cada entrada.
- 2 Transformamos linealmente de nuevo a tamaño k.

Necesitaremos, por tanto, una nueva matriz de pesos que denominaremos \mathbf{W}_o .

La multi-head attention se puede ver como r copias de self-attention aplicadas en paralelo.

Problema:

- Cada copia tiene su propia query, key y value.
- Mejor rendimiento, pero r veces más lento que una sola cabeza.

Si el vector \mathbf{x}_i tiene dimensión k = 256 y tenemos r = 4 heads:

Entrada	Proyección	q,k,v	Heads	Parámetros
256	256	3	1	196608
256	256	3	4	786432

Self-attention: Multi-head eficiente

Solución:

- Reducir la dimensión de las proyecciones query, key y value.
- Transformamos cada x_i a tamaño 64 (256/4) para cada *query*, *key* y *value*.

Entrada	Proyección	q,k,v	Heads	Parámetros
256	256	3	1	196608
256	256	3	4	786432
256	64	3	4	196608

Ojo, para estos ejemplos estamos omitiendo la matriz \mathbf{W}_o .

Finalmente, todo el proceso se puede representar como:

Finalmente, todo el proceso se puede representar como:

Finalmente, todo el proceso se puede representar como:

Cross-attention

Self vs Cross-attention

Como se ha visto, la self-attention busca:

• La importancia de cada elemento de la secuencia para el resto de elementos de la misma.

¿Y si el problema requiere mezclar secuencias?

En algún caso puede ser interesante obtener la importancia de cada elemento **de una secuencia** para **otra secuencia** diferente. Esto se conoce como **cross-attention**.

Cambios:

- Dos secuencias de entrada: Una con elementos x_i y otra con z_i .
- Los query se obtienen de la segunda secuencia.
- Los key y value de la primera.

Cross-attention

De forma gráfica:

Cross-attention

Aplicaciones típicas:

- Transformers: Se suele ubicar en el decoder.
- Visual Question Answering (VQA): Responder preguntas sobre imágenes:

Attention mechanisms & Transformers

Transformers

Una vez conocido el funcionamiento de los mecanismos de atención, podemos empezar a hablar de los Transformers.

The transformer model is composed of:

El Transformer se compone de:

- Encoder
- Decoder

Estos están compuestos de:

- Capas self-attention.
- Capas cross-attention.
- Capas de normalización.
- Perceptrones multicapa.
- Terceptiones muticapa
- Conexiones residuales.

El encoder:

- Recibe secuencia de entrada.
- Genera secuecia codificada.

- Recibe salida del encoder.
- Recibe su salida anterior.
- Genera hasta < end >.

El encoder:

- Recibe secuencia de entrada.
- Genera secuecia codificada.

- Recibe salida del encoder.
- Recibe su salida anterior.
- Genera hasta < end >.

El encoder:

- Recibe secuencia de entrada.
- Genera secuecia codificada.

- Recibe salida del encoder.
- Recibe su salida anterior.
- Genera hasta < end >.

El encoder:

- Recibe secuencia de entrada.
- Genera secuecia codificada.

- Recibe salida del encoder.
- Recibe su salida anterior.
- Genera hasta < end >.

El encoder:

- Recibe secuencia de entrada.
- Genera secuecia codificada.

- Recibe salida del encoder.
- Recibe su salida anterior.
- Genera hasta < end >.

El encoder:

- Recibe secuencia de entrada.
- Genera secuecia codificada.

- Recibe salida del encoder.
- Recibe su salida anterior.
- Genera hasta < end >.

Transformers: Encoder

El encoder de un Transformer se compone 6 modulos.

Cada modulo contiene, por orden:

- 1 Capa multi-head self-attention.
- 2 Conexión residual con entrada previa.
- 3 Capa de normalización.
- 4 Un MLP por cada elemento.
- 5 Conexión residual con entrada previa.
- 6 Capa de normalización.

Transformers: Encoder

En detalle:

Transformers: Decoder

El decoder de un Transformer se compone 6 modulos.

Cada modulo contiene, por orden:

- 1 Capa multi-head self-attention.
- 2 Conexión residual con entrada previa.
- 3 Capa de normalización.
- 4 Capa multi-head cross-attention (con salida de encoder).
- 5 Conexión residual con entrada previa.
- 6 Capa de normalización.
- 7 Un MLP por cada elemento.
- 8 Conexión residual con entrada previa.
- 9 Capa de normalización.

Transformers: Decoder

En detalle:

Positional encodding

Transformers: Bert

Transformers: GPT-2