Justino DaSilva

Fundamentals in artificial Intelligence.

May 26th, 2025

Part 2 Written Problem Solving.

Question 1 given the grid below

Consider the **4x3** world shown in table1. There is an impassable wall/obstacle at state (2,2). The state **(4,3)** is a terminal state with a reward of **+1**, and state **(4,1)** is a terminal state with a reward of **-1**. All other states yield a reward of **-0.04** upon exiting them.

Note: Added this new gride to gridworld.py

Execute iterations with command.

python gridworld.py -a value -i 1000 -g BookGridWrittenQ1 -r -0.04 -p 0.8

	+1
#	
	-1

State (4,1) is a terminal state with a reward of -1.

Results after 1000 iterations

a. What us the optimal values for states (1,1), (2,1), (1,2)?

$$(1,1) = 0.31$$

$$(2,1)=0.29$$

$$(1,2)=0.41$$

b. What is the optimal policy for (1,1)(2,1),(1,2)?

Question 2

Consider the following 3 x 3 grid world:

Note: Added Grid to gridworld.py and executed 1000 iterations

Execute iterations with command:

python gridworld.py -a value -i 1000 -g ThreebyThree -r -0.4 -d 0.9 -p 0.8

Α		В
	#	

A is the starting state and B is the terminal state with reward +5. The middle square contains a wall. The agent receives a reward of -0.04 in all other states. The discount factor γ is 0.9.

Execute iterations with command

python gridworld.py -a value -i 1000 -g ThreebyThree -r -0.4 -d 0.9 -p 0.8

After 1000 iterations

- a. What is the optimal value of each state (excluding B)?
 - (1,1) = 1.35
 - (2,1) = 2.01
 - (3,1) = 2.85
 - (1,2) = 2.01
 - (1,3)[A] = 2.85
 - (2,3) = 3.90
 - (3,2) = 3.90
- b. What is the optimal policy from each state?
 - (1,1) = North
 - (2,1) = East
 - (3,1) =North
 - (1,2) =North
 - (1,3)[A] = East
 - (2,3) = East
 - (3,2) = North