Apache Mesos:

A Fault-Tolerant Cluster Computing Framework

Lyubomir Ivanov s141736

Antonios Spyropoulos s141707

Dimitrios Danampasis s141732

What is Mesos?

A platform for sharing commodity clusters between multiple diverse cluster computing frameworks (e.g. Hadoop and MPI)

What can Mesos do?

Mesos abstracts CPU, memory, storage, and other compute resources away from machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to easily and effectively be built and executed.

Figure 1. Resource sharing

Architecture

Mesos consists of a master daemon that manages slave daemons running on each cluster node, and Mesos applications (also called frameworks) that run tasks on these slaves.

Master

The master enables fine-grained sharing of resources (cpu, ram, ...) across applications by making them resource offers. Each resource offer contains a list of:

<slave ID, resource1: amount1, resource2, amount2, ...>

Frameworks

A framework running on top of Mesos consists of two components: a scheduler that registers with the master to be offered resources, and an **executor** process that is launched on **slave** nodes to run the framework's tasks. Figure 3 illustrates a resource offer example.

Figure 2. Mesos Architecture

Figure 3. Resource offer example

Figure 4. Mesos running in high availability

Implementation

4 VMs with: 2 processors, 512 MB RAM

Total resources for Mesos slaves are offering to the master would be approximately 8 processors and 1 GB of RAM in total.

To simulate fault types, we are going to:

- forcefully power off a virtual machine
- forcefully kill some of the processes in the environment
- forcefully re-segment the network

Fault-Tolerance

Mesos deals with:

- machine failures
- software failures

Components that are resilient to these failures:

- master
- slave
- framework

Detection & Localisation

- Health Checks
- Registry

Handling

- If the elected Master fails, ZooKeeper elects new leading master from the standby-s (Figure 4).
- If a slave is separated from ZooKeeper (network segmentation), it ignores elected master messages until reconnected.

Registry

- Adds a minimal amount of persistent state to the master.
- Contains a list with the registered slaves.

Slave Recovery

A slave process can be:

- restarted
- reconnected

based on checkpoints that are stored in the registry.

Checkpointing

Slave checkpoints store information such as:

- Task Info
- Executor Info
- Status Updates

Health Checks

Determine if a task is healthy

Figure 5.Health checks

