# Rapport package team

# Outlier tests

## 2011-04-26 20:25 CET

# Contents

| Desc | ription        |  | • |  | • |  |  |  |  |  |  |  |  |  |  |  | 1 |
|------|----------------|--|---|--|---|--|--|--|--|--|--|--|--|--|--|--|---|
|      | Charts         |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 2 |
|      | Lund test .    |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 2 |
|      | Grubb's test   |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 3 |
|      | Dixon's test   |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 3 |
| Desc | ription        |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 3 |
|      | Charts         |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 4 |
|      | Lund test $$ . |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 4 |
|      | Grubb's test   |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 5 |
|      | Dixon's test   |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 5 |
| Desc | ription        |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 5 |
|      | Charts         |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 6 |
|      | Lund test .    |  |   |  |   |  |  |  |  |  |  |  |  |  |  |  | 6 |

# Description

This template will check if provided variable has any outliers.

### Charts



### Lund test

It seems that 4 extreme values can be found in "Internet usage for educational purposes (hours per day)". These are: 10, 0.5, 1.5, 0.5.

**Explanation** The above test for outliers was based on  $lm(1 \sim edu)$ :

|             | Estimate  | Std. Error | t value     | $\Pr(> t )$ |  |  |  |
|-------------|-----------|------------|-------------|-------------|--|--|--|
| (Intercept) | 2.048e+00 | 7.797e-02  | 2.627e + 01 | 7.939e-105  |  |  |  |

Table 1: Fitting linear model: var  $\sim 1$ 

#### References

- Lund, R. E. 1975, "Tables for An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 4, pp. 473-476.
- Prescott, P. 1975, "An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 1, pp. 129-132.

#### Grubb's test

Grubbs test for one outlier shows that highest value 12 is an outlier (p=0.0001964).

#### References

• Grubbs, F.E. (1950). Sample Criteria for testing outlying observations. Ann. Math. Stat. 21, 1, 27-58.

#### Dixon's test

chi-squared test for outlier shows that highest value 12 is an outlier (p=7.441e-07).

#### References

 Dixon, W.J. (1950). Analysis of extreme values. Ann. Math. Stat. 21, 4, 488-506.

### Description

This template will check if provided variable has any outliers.

### Charts



Lund test

It seems that 4 extreme values can be found in "Internet usage for educational purposes (hours per day)". These are: 10, 0.5, 1.5, 0.5.

**Explanation** The above test for outliers was based on  $lm(1 \sim edu)$ :

|             | Estimate  | Std. Error | t value     | $\Pr(> t )$ |  |  |  |
|-------------|-----------|------------|-------------|-------------|--|--|--|
| (Intercept) | 2.048e+00 | 7.797e-02  | 2.627e + 01 | 7.939e-105  |  |  |  |

Table 2: Fitting linear model: var  $\sim 1$ 

#### References

- Lund, R. E. 1975, "Tables for An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 4, pp. 473-476.
- Prescott, P. 1975, "An Approximate Test for Outliers in Linear Models", Technometrics, vol. 17, no. 1, pp. 129-132.

#### Grubb's test

Grubbs test for one outlier shows that highest value 12 is an outlier (p=0.0001964).

#### References

• Grubbs, F.E. (1950). Sample Criteria for testing outlying observations. Ann. Math. Stat. 21, 1, 27-58.

#### Dixon's test

chi-squared test for outlier shows that highest value 12 is an outlier (p=7.441e-07).

#### References

 Dixon, W.J. (1950). Analysis of extreme values. Ann. Math. Stat. 21, 4, 488-506.

### Description

This template will check if provided variable has any outliers.

### Charts



### Lund test

It seems that 4 extreme values can be found in "Internet usage for educational purposes (hours per day)". These are: 10, 0.5, 1.5, 0.5.

**Explanation** The above test for outliers was based on  $lm(1 \sim edu)$ :

|             | Estimate  | Std. Error | t value     | $\Pr(> t )$ |  |  |  |
|-------------|-----------|------------|-------------|-------------|--|--|--|
| (Intercept) | 2.048e+00 | 7.797e-02  | 2.627e + 01 | 7.939e-105  |  |  |  |

Table 3: Fitting linear model: var  $\sim 1$ 

This report was generated with R (2.15.1) and rapport (0.4) in 0.916 sec on x86\_64-unknown-linux-gnu platform.



Figure 1: