IE2111 ISE Principles & Practice II Solutions to Assignment #4

- MARR = 10%
- Study period = 5 years

	Project A	Project B
Initial investment cost	\$120,000	\$80,000
Equivalent Uniform Annual Benefits	\$30,000	\$20,000
Salvage Value	\$18,000	\$10,000
Useful Life	5 years	5 years

(a) Base Value Analysis:

•
$$PW(10\%)$$
 for Project $A = -120,000 + 30,000 [P/A, 10\%, 5] + 18,000 [P/F, 10\%, 5]$
= $-120,000 + 30,000 (3.7907868) + 18,000 (0.6209213)$
= $\$4,900.19$

•
$$PW(10\%)$$
 for Project $B = -80,000 + 20,000 [P/A, 10\%, 5] + 10,000 [P/F, 10\%, 5]$
= $-80,000 + 20,000 (3.7907868) + 10,000 (0.6209213)$
= $\$ 2,024.95$

• Project A should be selected.

(b) Break-Even Cost of Project B's Initial Cost.

- Based on base values Project A is preferred as it has a higher PW.
- The Initial cost of Project B must to be <u>decreased</u> by at least 4,900.19 2,024.95 = 2,875.24 to reverse the decision in (a).

(c) Probabilistic Risk Analysis for Project A

• Initial Investment:

• Salvage value: Uniform (\$16,000, \$20,000)

Mean =
$$(16,000 + 20,000)/2 = $18,000$$
 // same as base value

Variance =
$$(20,000 - 16,000)^2 / 12$$

= \$\$ 1,333,333.33

• Annual profits: Discrete Distribution

Cash Flow	Probability
\$25,000	0.25
\$30,000	0.50
\$35,000	0.25

Mean =
$$0.25 (25,000) + 0.5 (30,000) + 0.25 (35,000) = $30,000$$
 // same as base value Variance = $0.25 (25,000 - 30,000)^2 + 0.5 (30,000 - 30,000)^2 + 0.25 (35,000 - 30,000)^2$ = \$\$ 12,500,000

- E[PW of Project A] = \$ 4,900.19 // from part (a)
- Var [PW of Project A]

$$= 0 + 12,500,000 [P/A, 10\%, 5]^2 + 1,333,333.33 [P/F, 10\%, 5]^2$$

= 0 + 12,500,000 (3.7907868)² + 1,333,333.33 (0.6209213)²

- = \$\$ <u>180,139,861.86</u>
- Standard Deviation of PW of Project $A = \sqrt{180,139,861.86} = \$ 13,421.62$

(d) Probabilistic Risk Analysis for Project B

• Salvage value: Triangular (8,000, 12,000, 10,000)

Mean =
$$(8,000 + 12,000 + 10,000) / 3 = \$10,000$$
 // same as base value
Var = $(8,000^2 + 12,000^2 + 10,000^2 - 8,000 \times 12,000 - 8,000 \times 10,000 - 12,000 \times 10,000)/18$
= $\$\$ 666,666.67$

• Equivalent uniform annual profits: Normal (\$20,000, \$5,000)

Mean =
$$$20,000$$
 // same as base case $Var = 5,000^2 = $$25,000,000$

- E[PW of Project B] = \$ 2.024.95 // from part (a)
- Var [PW of Project B]

=
$$0 + 25,000,000$$
 [P/A, 10% , 5]² + $666,666.67$ [P/F, 10% , 5]² = $0 + 25,000,000$ (3.7907868)² + $666,666.67$ (0.6209213)²

- = \$\$ 359,508,637.14
- Standard Deviation of *PW* of Project $B = \sqrt{359,508,637.14} = \$ 18,960.71$

(e) Mean-Variance Dominance Analysis

• Comparing the Mean and Standard Deviation of PW of Projects A and B:

	Mean	Standard Deviation
Project A	\$4,900.19	\$13,421.62
Project B	\$2,024.95	\$18,960.71

• Choose Project A as it has a higher Expected PW and a Smaller Standard Deviation of PW.

(f) Risk Analysis using @Risk

@Risk Model (See Excel Files for details)

Risk Profiles Generated by @Risk (100,000 trials)

Stochastic Dominance Analysis

- There is no First Order Stochastic Dominance.
- Need to check for higher orders Stochastic Dominance.

Comparing Simulation and Analytical Results

Method	EV of Project A	Std Dev of Project A
Monte Carlo Simulation	\$ 4,900.19	\$ 13,420.40
Analytical	\$ 4,900.19	\$ 13,421.62
Method	EV of Project B	Std Dev of Project B
Monte Carlo Simulation	\$ 2,024.88	\$ 18,961.08
Analytical	\$2,024.95	\$ 18,960.71

Downside Risks

Project A: 25.0%Project B: 45.7%

Upside Potentials for *PW***=\$20,000**

Project A: 25.0%Project B: 17.1%

Equivalent Present VaR(95%)

Project A: \$ 14,793.77Project B: \$ 29,195.57

Recommendation:

• Although there is no Mean-Var dominance, we would recommend Project A as it has a lower downside risk, a higher upside potential for a realistic target, and a lower VaR.