

Modern Myoelectric Intelligent Hand Prostheses

Tobias Stocker (Advisor: Pascal Weiner)

Seminar: Humanoid Robotics, WS 2017/18

Institute for Anthropomatics and Robotics (IAR), High Performance Humanoid Technologies (H2T)

Outline

Motivation and Challenges

Overview of Hand Prostheses

Comparison of Hand Prostheses

Conclusion

Motivation

- Why myoelectric hand prostheses?
 - Make a normal life possible for amputees
 - Enable users to perform different grasps for activities of daily living (ADLs)
 - Allow the user to control the hand through muscle contraction (with EMG)
 - Electric actuators are rather small, quiet and have good precision and controllability

Motivation

- Desired properties:
 - comfortable (lightweight, small)
 - many different grasps possible
 - High finger forces / fast joint speed
 - easy to use
 - high durability (robust, easy to repair)
 - low-cost
 - intelligent functions (sensor-feedback, grasp adaption)

Desired properties are contradicting ⇒ trade-offs are mandatory

Challenges

- "Even state-of-the art devices lack a combination of high functionality, durability, adequate cosmetic appearance, and affordability"
 - Joseph T. Belter, 2013
- lacktriangle Total weight should be below 500g (human hand: $\sim 400g$)
 - ⇒ lightweight materials, small and low number of actuators
 - ⇒ transmission systems that allow for many different grasps
- Finger tip force in precision grasp should be 65 N (human hand: \sim 95 N) and joint speed should be 230 °/s (human hand: > 2000°/s)
- Finger kinematic designs should be simple and robust
- User should be able to move the hand without concentrating
- User should get sensor feedback from the hand

Transmission systems

Tendons

Four-bar linkage

Gears/belts

Outline

Motivation and Challenges

Overview of Hand Prostheses

Comparison of Hand Prostheses

Conclusion

Tact

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2015	350	11	6	6	Four-bar linkage

- Matches performance of other myoelectric prosthetic hands,
 while being very cheap (\$ 250)
- Easy to manufacture with 3D-printer and of-the shelf parts
- Open-source

Hand of Bennett et al.

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2015	546	12	12	4	Tendons

- Four motor units in unique configuration:
 - 2 for thumb and 1 for index (fully actuated)
 - 1 for other fingers (underactuated)
- Embedded control system that enables
 self-contained control of hand movement

Hand of Bennett et al.

- Embedded system:
 - Consists of a single , four-layer circuit board
 - Accepts and executes motion/force commands from a high-level controller
 - Returns processed position/force information

Hand of Zhang et al.

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2015	420	15	5	5	Four-bar linkage

- Fingers are equipped with numerous torque and position sensors
- Integrated motion control system consisting of a motion control subsystem and several sensory subsystems
- New concept for sensory feedback system
 based on an electrical stimulator

Hand of Zhang et al.

- Sensor system:
 - Equipped with 18 proprioceptive and exteroceptive sensors

- Embedded system:
 - Consists of a motion control subsystem and several sensory subsystems

SSSA-MyHand

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2016	478	10	4	3	Four-bar linkage, Geneva drive

- Only three actuators
- Abduction/adduction of the thumb and flexion/extension of the index with single actuator via Geneva drive
- Embedded controller and sensory system with force/position sensors and automatic grasp control

SSSA-MyHand

- Embedded system:
 - Master-slave configuration based on a pair of 8-bit microcontrollers

- Supports:
 - Identification of external commands
 - Implementation of automatic motor functions

- Real time processing of the internal sensors
- Potential delivery of sensory feedback

AstoHand v.1

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2016	261	10	5	5	Tendons

Special feature:

- Low-cost
- Very lightweight
- Built with 3D-printed material (easy to manufacture and maintain)

Embedded system:

- Arduino Nano microcontroller
- Control algorithm developed in Simulink
- Digital input is used for selecting one of seven grip patterns

X-Hand

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2016	-	16	4	4	Tendons

- Anthropomorphic grasping ability via special motion distribution mechanism structure
- Can replicate almost all natural movement of the human hand while using few actuators

Six-DOF-Hand

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2016	584	10	6	6	Gears/Belts

- Special feature:
 - Inexpensive
 - Open source
 - Independent finger movements
 - Actuators with encoders for motor position feedback

Bionic Hand

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2016	-	24	24	13	Tendons

- Hybrid actuated with Brushless DC motors and Shape Memory Alloy (SMA)
- Close replication of the human hand (with all structures, joints and tendons)
- 24 degrees of freedom

SoftHand Pro-D

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2016	-	19	19	1	Tendons

- Strongly underactuated softhand
- 19 joints with only one single actuator
- Can move along two different synergistic directions to perform either precision or power grasp
- Decoding of movement intensions using the dynamic frequency content

UOMPro

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2017	432	10	6	6	Four-bar linkage

- Simple serial communication interface to link with high-level control methods
- The implemented low-level controller can handle individual finger position commands or hand grip pattern commands

UOMPro

- Embedded system:
 - Low-level controller for close loop control of the motors using various control techniques

High-level controller to identify the motion intention

MORA Hap-2

Year	Mass (g)	Joints	DoF	Actuators	Transmission
2017	250	14	11	4	Four-bar linkage

- Self-adaption ability
- Finger mechanism is capable of generating passively different flexion/extension angles
- Fingers have under-actuation mechanism

Outline

- Motivation and Challenges
- Overview of Hand Prostheses

Comparison of Hand Prostheses

Conclusion

Physical properties

Name	Weight (g)	Size (length x width x thickness in mm)
Tact	350	200 x 98 x 27
Hand of Bennett et al.	546	200 x 89 x -
Hand of Zhang et al.	420	159 x 79 x 21
MyHand	478	200 x 84 x 56
AstoHand v.1	261	180 x 85 x 50
X-Hand	-	Human hand size
Six-DOF-Hand	584	202 x 99 x 61
Bionic Hand	-	-
SoftHand Pro-D	-	-
UOMPro	432	189 x 88 x -
MORA Hap-2	250	95 (fingers) x 83 x 25

Finger Kinematics

Name	Number of Joints	Joints per Finger		
		Thumb	Index	Others
Tact	11	3	2	2
Hand of Bennett et al.	12	3	3	2
Hand of Zhang et al.	15	3	3	3
MyHand	10	2	2	2
AstoHand v.1	10	2	2	2
X-Hand	16	4	3	3
Six-DOF-Hand	10	2	2	2
Bionic Hand	24	3	4	4
SoftHand Pro-D	19	3	4	4
UOMPro	10	2	2	2
MORA Hap-2	14	2	3	3

Actuation and Transmission

Name	Actuators	Transmission system
Tact	6	Four-bar linkage
Hand of Bennett et al.	4	Tendons
Hand of Zhang et al.	5	Four-bar linkage
MyHand	3	Four-bar linkage, Geneva drive
AstoHand v.1	5	Tendons
X-Hand	4	Tendons
Six-DOF-Hand	6	Gears / Belts
Bionic Hand	13	Tendons
SoftHand Pro-D	1	Tendons
UOMPro	6	Four-bar linkage
MORA Hap-2	4	Four-bar linkage

Grasping

- Most of the hands are capable of performing the known grasping patterns:
 - Power grasp (Cylindrical grasp)
 - Precision grasp (Pinch grasp)
 - Lateral grasp
 - Hook grasp
- The MORA Hap-2 is mainly developed for power and hook grasp
- The SoftHand Pro-D with its single actuator can perform power and precision grasps

Dynamics

Name	Individual Finger Force	Joint Speed
Tact	4.2 N	250 °/s
Hand of Bennett et al.	25-30 N	-
Hand of Zhang et al.	4.3-10 N	68-118 °/s
MyHand	12-31 N	160-250 °/s
AstoHand v.1	-	-
X-Hand	-	-
Six-DOF-Hand	4.1 N	128 °/s
Bionic Hand		-
SoftHand Pro-D	-	-
UOMPro	-	-
MORA Hap-2	-	-

Outline

- Motivation and Challenges
- Overview of Hand Prostheses

Comparison of Hand Prostheses

Conclusion

Conclusion

- There are still a lot of open problems in designing myoelectric hand prostheses
- Many research groups develop prosthetic hands with new features
- The main goal in the last years was to develop preferably low-cost protheses
- Most research groups currently focus mainly on one novel design approach in their hand design
- Only a few groups tried to incorporate intelligent functions

Thank you for your attention!

