

知识梳理

一、运用勒夏特列原理解释实际问题

1. 勒夏特列原理

如果改变影响平衡的一个条件(如浓度、温度或压强等)时,平衡就能向减弱这种改变的方向移动。

2. 几个问题:

- (1) 气体在水中的溶解度随着温度的升高而降低,压强的增大而增大,为什么?
- (2) 为什么用饱和食盐水除去氯气中的 HCl 气体?
- 【答案】(1) 存在溶解平衡,例: CO₂(g) CO₂(aq)+Q, 升高温度,平衡向生成气体二氧化碳的方向移动,所以升高温度,气体的溶解度减小;增大压强,平衡向溶解的方向移动,所以加压,气体的溶解度变大。
- (2) 氯气溶于水,存在可逆反应 Cl_2+H_2O ——HCl+HClO,利用饱和食盐水,首先 HCl 极易溶于水,而在饱和食盐水中,氯离子的含量较大,使得上述平衡逆向移动,减少了氯气的损失。 【练一练】
- 1. 下列事实不能用勒夏特列原理解释的是()
 - A. 饱和食盐水法收集 Cl₂
 - B. 温度控制在 500℃有利于合成氨反应
 - C. 加入催化剂有利于氨的合成
- D. 工业制取金属钾 Na(l)+ KCl(l)——NaCl(l)+ K(g)选取适宜的温度,使 K 成蒸气从反应混合物中分离出来

【答案】C

- 2. 下列有关合成氨工业的叙述,可用勒沙特列原理来解释的是(
 - A. 使用铁触媒, 使 N₂和 H₂的混合气体有利于合成氨
 - B. 高压比常压条件更有利于合成氨的反应
 - C. 500℃左右比室温更有利于合成氨的反应
 - D. 合成氨时采用循环操作,可提高原料的利用率

【答案】B

二、应用勒夏特列原理讨论平衡移动影响因素及方向

1. 浓度

其他条件不变的条件下,增大反应物的浓度或减小生成物的浓度,平衡向_____方向 移动。反之依然。

注意点:增加或减少固态物质(或液态纯物质)不能使平衡发生移动。

2. 温度

升高温度,平衡向_____方向移动;降低温度,平衡向_____方向移动注意点:对任何一个平衡体系,温度改变都会使平衡发生移动。

3. 压强

在含有气态物质的平衡体系里,增大压强,平衡向着_____的反应方向移动;降低压强,平衡向着_____的反应方向移动。

注意点:

- ① 因压强的影响<u>**实质是浓度**</u>的影响,所以只有当这些"改变"能造成浓度改变时,平 衡才有可能移动。
 - ② 对反应前后气体体积不变的平衡体系,压强改变_______使平衡态发生移动。
- ③ 恒温恒容下,向容器中充入惰性气体,平衡____。因压强虽增加,但各 反应物和生成物的浓度都不改变。

4. 催化剂

可以极大程度地改变反应的速率,缩短(或延缓)到达平衡所需的时间,因催化剂能同等程度 改变正逆反应速率,故对平衡状态不影响,即使用催化剂不能改变可逆反应所能达到的最大限 度,不能提高反应转化率,不能改变原有平衡的各组份含量。

答案正反应 吸热反应 放热反应 气体体积缩小 气体体积增大不会 不发生移动 气体体积增大

三、常见的几种平衡图像 反应 mA(气)+nB(气) ──pC(气)+qD(气)+Q

1. 速率-时间图

①增大反应物浓度

②升高温度

③增大压强 (m+n<p+q)

④加催化剂

 $1.01 \times 10^{6} Pa$

2. 转化率-时间图

$1.01 \times 10^{7} Pa$ 1.01×106Pa $1.01 \times 10^{7} Pa$ 时间 时间

▲A 的转化率

P 一定时, Q>0

T 一定时,m+n<p+q T 一定时,m+n=p+q

3. 含量-时间图

4. 转化率-温度-压强图

5. 含量-温度-压强图

【练一练】

- 1. 同压、不同温度下的反应: $A(g) + B(g) \Longrightarrow C(g)$; A的含量和温度的关系如图 3 所示,下列结论正确的是(
- A. $T_1 > T_2$, Q<0
- B. $T_1 < T_2$, Q<0
- C. $T_1 > T_2$, Q > 0
- D. $T_1 < T_2$, Q > 0

【答案】C

2. 现有可逆反应 A(g) + 2B(g) \Longrightarrow nC(g); Q>0, 在相同温度、不同 压强时,A 的转化率跟反应时间(t)的关系如图 4,其中结论正确的是(

- B. $p_1 < p_2, n > 3$
- C. $p_1 < p_2$, n < 3
- D. $p_1 > p_2$, n=3

【答案】B

例题解析

知识点1:极端假设

【例1】(双选)在密闭容器中进行 X(g) + 3Y(g) **二** 2Z(g)的反应,其中 X、Y、Z 的起始浓度分别是0.1mol/L、0.3mol/L 和0.2mol/L,当反应达到平衡后,各物质的浓度可能是(

- A. [X]=0.2 mol/L, [Y]=0.6 mol/L
- B. [Y]=0.5mol/L
- C. [X]=0.2 mol/L, [Z]=0.4 mol/L
- D. [Z]=0.4 mol/L

【难度】★★

【答案】AB

变式 1: 在密闭容器中进行反应: $X_2(g)+Y_2(g)$ = 2Z(g), 已知 X_2 、 Y_2 、Z 的起始浓度分别为 0.1 mol·L $^{-1}$ 、 0.3 mol·L^{-1} 、 0.2 mol·L^{-1} ,在一定条件下,当反应达到平衡时,各物质的浓度有可能是(

A. Z为 0.3 mol·L⁻¹

B. Y₂为 0.4 mol·L⁻¹

C. X₂为 0.2 mol·L⁻¹

D. Z 为 0.4 mol·L⁻¹

【难度】★★【答案】A

变式 2: 一定条件下,对于可逆反应 X(g)+3Y(g) = 2Z(g),若 $X \times Y \times Z$ 的起始浓度分别为 $c_1 \times c_2 \times C_3$ *c*₃(均不为零), 达到平衡时, X、Y、Z 的浓度分别为 0.1 mol·L⁻¹、0.3mol·L⁻¹、0.08 mol·L⁻¹,则下 列判断正确的是(

- A. $c_1: c_2=3:1$
- B. 平衡时, Y和Z的生成速率之比为2:3
- C. X、Y的转化率不相等
- D. c₁的取值范围为 0 mol·L⁻¹<c₁<0.14 mol·L⁻¹

【难度】★★【答案】D

【方法提炼】极端假设法确定各物质浓度范围

根据极端假设法判断,假设反应正向或逆向进行到底,求出各物质浓度的最大值和最小值, 从而确定它们的浓度范围。

0. 2

0. 2

假设反应正向进行到底: $X_2(g) + Y_2(g) = 2Z(g)$

起始浓度(mol·L⁻¹)

0. 1 0.3 0.2

改变浓度(mol·L⁻¹)

0.1 0.1 0. 2

终态浓度(mol·L⁻¹) 0 0.2

0.4

假设反应逆向进行到底: $X_{2}(g) + Y_{2}(g) = 2Z(g)$

起始浓度(mol·L⁻¹)

0. 1 0. 3

改变浓度(mol·L⁻¹)

0. 1 0. 1

终态浓度(mol • L⁻¹)

0. 2 0. 4

平衡体系中各物质的浓度范围为 $X_2 \in (0, 0.2)$, $Y_2 \in (0.2, 0.4)$, $Z \in (0, 0.4)$ 。

知识点 2: 平衡移动问题

【例2】可逆反应: 3A(气) = 3B(?)+C(?); 开始向容器中冲入 A, 随着反应的进行, 气体平均相对 分子质量变小,则下列判断正确的是()

A. B和C可能都是固体

B. B和C一定都是气体

C. B和C不可能都是气体

D. 若 C 为固体,则 B 一定是气体

【难度】★★★

【答案】D

变式 1: 在一定条件下,合成氨反应到达平衡状态,此时,再进行如下操作,平衡不发生移动的是

A. 恒温、恒压时, 充入 NH₃

B. 恒温、恒容时, 充入 N₂

C. 恒温、恒压时, 充入 He

D. 恒温、恒容时, 充入 He

【难度】★★【答案】D

变式 2: 在带活塞的圆筒内装入 NO₂ 气体,慢慢压缩,下列叙述正确的是()

- A. 体积减半, 压强为原来的 2 倍
- B. 体积减半, 压强比原来大2倍
- C. 体积减半,压强增大,但小于原来的2倍
- D. 体积减半,达到平衡后,则有一半 NO₂

【难度】★★【答案】C

【方法提炼】解析化学平衡移动题目的一般思路

知识点 3: 图像问题

【例 1】A(g)+3B(g) \Longrightarrow 2C(g)+Q(Q>0) 达到平衡,改变下列条件,正反应速率始终增大,直达到新平衡的是(

A. 升温

- B. 加压
- C. 增大 c(A)

D. 降低 c(C)

E. 降低 c(A)

【难度】★★【答案】A

变式 1: 对达到平衡状态的可逆反应 $X+Y \longrightarrow Z+W$,在其他条件不变的情况下,增大压强,反应速率变化图象如图 1 所示,则图象中关于 X、Y、Z、W 四种物质的聚集状态为(

- A. Z、W 均为气体, X、Y 中有一种是气体
- B. Z、W中有一种是气体,X、Y皆非气体
- C. X、Y、Z、W 皆非气体
- D. X、Y 均为气体, Z、W 中有一种为气体

【难度】★★★

【答案】A

变式 2: (双选)对于反应 2A(g) + B(g) = 2C(g); Q > 0,下列图象正确的是(

【难度】★★★【答案】AD

【方法提炼】解图像题之前一定要摸清楚图像所给的横纵坐标。解题之前一定要理解平衡移动的本 质。

知识点 4: 综合题

【**例1**】1200°C时可用反应 2BBr₃(g)+3H₂(g) 高温 2B(s)+6HBr(g) 来制取晶体硼。

完成下列填空:

- (1) 下列说法能说明该反应达到平衡的是 (选填序号,下同)。
 - a. $v_{\mathbb{H}}(BBr_3)=3v_{\mathbb{H}}(HBr)$
- b. $2c(H_2) = c(HBr)$
- c. 密闭容器内压强不再变化
- d. 容器内气体平均摩尔质量不再变化
- (2) 若密闭容器体积不变,升高温度,晶体硼的质量增加,下列说法正确的是
 - a. 在平衡移动时正反应速率先增大后减小 b. 在平衡移动时逆反应速率始终增大

c. 正反应为放热反应

- d. 达到新平衡后反应物不再转化为生成物
- (3) 若上述反应在 10L 的密闭容器内反应,5min 后,气体总质量减少1.1 g,则该时 间段内氢气的平均反应速率为
- (4) 往容器中充入 0.2 mol BBr₃ 和一定量 H₂, 充分反应达到平衡后, 混合气体中 HBr 百分含量与起始通入 H₂ 的物质的量有如图关系。

在 a、b、c 三点中, H₂ 的转化率最高的是 (选填字母)。

b点达到平衡后,再充入 H2 使平衡到达 c点,此过程中平衡移动的方向为 (填"正向"、"逆向"或"不移动")。

【难度】★★★

【答案】(1) cd (2) ab (3) 0.003mol/(L·min) (4) a, 正向

变式1: 工业上高纯硅可以通过下列反应制取:

$$SiCl_4(g) + 2H_2(g) \Longrightarrow Si(s) + 4HCl(g) -236kJ$$

完成下列填空:

(1) 在一定温度下进行上述反应, 若反应容器的容积为 2L, H₂ 的平均反应速率为 0.1mol/(L·min), 3min 后达到平衡,此时获得固体的质量 g。

- (2) 该反应的平衡常数表达式 K=。可以通过使 K 增大。
- (3) 一定条件下,在密闭恒容容器中,能表示上述反应一定达到化学平衡状态的是。
 - a. $2v_{ij}(SiCl_4) = v_{ij}(H_2)$
 - b. 断开 4molSi-Cl 键的同时,生成 4molH-Cl 键
 - c. 混合气体密度保持不变
 - d. $c(SiCl_4)$: $c(H_2)$: $c(HCl_4) = 1:2:4$
- (4) 若反应过程如右图所示,纵坐标表示氢气、氯化氢的物质的量(mol),横坐标表示时间(min),若整个反应过程没有加入或提取各物质,则第 1.5 分钟改变的

条件是______,第 3 分钟改变的条件是_______,各 n 平衡态中氢气转化率最小的时间段是 。

【难度】★★★【答案】(1) 8.4

- (2) K=c(HCl)⁴/c(SiCl₄)·c(H₂)², 升温。
- (3) ac
- (4) 减压,升温(且加催化剂),1——1.5分钟

- (1) 写出反应的平衡常数表达式: K=
- (2) 右图表示反应过程中有关物质的能量,则反应过程中的 Q_____0 (填>、<、=);
 (I)、(II) 两曲线中,使用催化剂的是 曲线。
- (3) 反应的速率可以用 I_3 与加入的淀粉溶液反应显蓝色的时间 t 来度量,t 越小,反应速率越大。下表是在 20 企进行实验时所记录的数据

实验编号	1	2	3	4	⑤
$c(I^-)/\text{mol}\cdot L^{-1}$	0.040	0.080	0.080	0160	0.160
$c(S_2O_8^{2^-})/\text{mol}\cdot L^{-1}$	0.040	0.040	0.080	0.080	0.040
t/s	88	44	22	11	t_1

从表中数据分析,	该实验的目的是_	

表中显色时间 t_1 = s;最终得出的结论是

【难度】★★★

【答案】(1)
$$K = \frac{[SO_4^{2-}]^2 \cdot [I_3^-]}{[I^-]^3 \cdot [S_2O_9^{2-}]}$$
 (2) > ; (II)

(3) 研究 I、S₂O₈²-浓度对反应速率的影响: 22

反应速率与反应物浓度乘积成正比

【方法提炼】此类题较综合,涉及到的化学反应速率和化学平衡各方面的知识。这方面的知识重在 理解才能以不变应万变。

课后作业

1. 下列实验不能用勒沙特列原理解释的是()
-----------------------	---

- A. 工业生产硫酸的过程中使用过量氧气,以提高 SO₂ 的转化率
- B. 合成氨工厂通常采用 20MPa-50MPa 压强,以提高原料的利用率
- C. 实验室用排饱和食盐水的方法收集氯气
- D. 在铁和硫酸反应液中加入少量硫酸铜溶液,反应明显加快

【难度】★【答案】B

2	对于且 CO₂(≈) + C(a) == 2CO₂(≈) + O	下列各条件变化时两项均能使平衡向右移动的(`
۷.	$ 11 \times CO2(g) + C(s) 2CO(g) + Q; $	广列有录作文化时构织构能仪工铁固有物构的(,

- A. 加压 升温 B. 加压 降温 C. 减压 降温 D. 减压 升温

【难度】★★【答案】C

- 3. (双选)一定温度下,在一恒容的密闭容器中,可逆反应有 2NO₂(g) N₂O₄ (正反应为放热) 达到平衡时,升高温度,发生的平衡移动对容器中混合气体的正确影响是(
 - A. 混合气体的压强增大
- B. 混合气体颜变浅的
- C. 混合气体的密度变小
- D. 混合气体的总质量不变

【难度】★★★

【答案】AD

- 4. 下列反应达到平衡后,增大压强或升高温度,平衡都向正反应方向移动的是(
 - A. 2NO₂ ——N₂O₄ (正反应放热反应)
 - B. $3O_2 \longrightarrow 2O_3$ (正反应为吸热反应)
 - C. $H_2(g) + I_2(g) = 2 HI(g)$ (正反应为放热反应)
 - D. NH₄HCO₃ (s) NH₃ + H₂O + CO₂ (正反应为吸热反应)

【难度】★★【答案】B

5. 某温度下,反应 S_2Cl_2 (液) + Cl_2 (气) →2 SCl_2 (液),该反应放热,在密闭容器中达到平衡,

(橙黄色) (鲜红色)

下列说法错误的是()

A. 温度不变,增大容器的体积,S₂Cl₂的转化率降低

	B. 温度不变,缩小容器的体积,液体颜色加深	
	C. 压强不变,升高温度,液体的颜色变浅	
	D. 体积不变,降低温度,氯气的转化率降低	
	【难度】★★【答案】D	
6.	压强变化不会使下列化学反应的平衡发生移动的是()	
	A. $H_2(g) + I_2(g) = 2HI(g)$ B. $3H_2(g) + N_2(g) = 2NH_3(g)$	
	C. $2SO_2(g) + O_2(g) = 2SO_3(g)$ D. $C(s) + CO_2(g) = 2CO(g)$	
	【难度】★【答案】A	
7.	. 改变化学平衡体系中的一个条件后,某一生成物的浓度增大,则该平衡()	
	A. 一定没有移动 B. 一定向正方向移动	
	C. 一定向逆方向移动 D. 无法确定	
	【难度】★★【答案】D	
8.	. 对已建立化学平衡的某可逆反应,当改变条件使化学平衡向正反应方向移动时,下列有	关叙述
	正确的是()	
	①生成物的百分含量一定增加 ②生成物的产量一定增加	
	③反应物的转化率一定增大 ④反应物的浓度一定降低	
	⑤正反应速率一定大于逆反应速率 ⑥使用了适宜的催化剂	
	A. 25 B. 12 C. 35 D. 46	
9.	【难度】★★【答案】A . 合成氨所需的氢气可用煤和水作原料经多步反应制得,其中的一步反应为	
	$CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g) + Q$	
	反应达到平衡后,为提高 CO 的转化率,下列措施中正确的是 ()	
	A. 增加压强 B. 降低温度	
	C. 增大 CO 的浓度 D. 使用催化剂	
10.	【 难度 】★★【答案】B 0. COCl ₂ (g) 	入惰性
	气体 ③增加 CO 浓度 ④减压 ⑤加催化剂 ⑥恒压通入惰性气	体,能
	提高 COCl ₂ 转化率的是()	
	A. ①②④ B. ①④⑥ C. ②③⑤ D. ③⑤	6
	【难度】★★【答案】B	
11.	1. 反应速率 ν 和反应物浓度的关系是用实验方法测定的。化学反应 $H_2 + Cl_2 \rightarrow 2HCl$ 的反应	☑速率 ν

可表示为 $v = k[c(H_2)]^m[c(Cl_2)]^n$,式中k为常数,m、n值可用下表中数据确定之。

С	c (Cl ₂)	v [mol/(L·s)]
(H ₂)(mol/L)	(mol/L)	
1.0	1.0	1.0 <i>k</i>
2.0	1.0	2.0k
2.0	4.0	4.0 <i>k</i>

由此可推得,m、n 值正确的是(

A. m=1, n=1

B. $m = \frac{1}{2}$, $n = \frac{1}{2}$

C. $m = \frac{1}{2}$, n = 1

D. m=1, $n=\frac{1}{2}$

【难度】★★★【答案】D

【解析】分析表格中数据,当 c (Cl₂)不变时,c (H₂)增大 2 倍,v 也增大 2 倍,m=1;当 c (H₂)不变时,c (Cl₂)增大 4 倍,v 只增大 2 倍,n= $\frac{1}{2}$

对于可逆反应: $A_2(g) + 3B_2(g)$ ===2 $AB_3(g)$ Q>0, 下列图象中正确的是(

【难度】★★【答案】A

12. (双选)反应: L(固)+aG(气) \longrightarrow bR(气)达到平衡时,温度和压强对该反应的影响图所示: 图中: 压强 $p_1 > p_2$, x 轴表示温度,y 轴表示平衡混合气中 G 的体积分数。据此可判断(

- A. 上述反应是放热反应
- B. 上述反应是吸热反应

C. a>b

D. a<b

【难度】★★★【答案】BD

13. 在一定温度不同压强($P_1 < P_2$)下,可逆反应 $2X(g) \longleftrightarrow 2Y(g) + Z(g)$ 中,生成物 Z 在反应混合物中的体积分数(ψ)与反应时间(t)的关系有以下图示,正确的是(

【难度】★★【答案】B

- 14. 在 $mA(g) + nB(g) \longrightarrow pC(g) + qD(g)$ 反应中,达到平衡后,的质量分数 D% 随温度、压强的变化曲线如下图所示正确的结论是(
 - A. 正反应放热,且 m+n>p+q
 - B. 正反应放热, 且 m+n < p+q
 - C. 正反应吸热,且 m+n>p+q
 - D. 正反应吸热,且 m+n < p+q

【难度】★★【答案】B

15. 将 $3 mol O_2$ 加入到 V 升的反应器中,在高温下放电,经 $t_1 s$ 建立了平衡体系: $3 O_2$ 至 $2 O_3$,此时测知 O_2 的转化率为 30%,下列图象能正确表示气体的物质的量浓度(m)跟时间(t)的关系的是(

【难度】★★【答案】C

16. 一定条件下的密闭容器中有如下反应: 4NH₃(g) + 5O₂(g) ← 4NO(g)+6H₂O(g)+905.9 kJ·mol⁻¹, 下列叙述正确的是 ()

- A. 4 mol NH₃和 5 mol O₂反应,达到平衡时放出热量为 905.9 kJ
- B. 平衡时 $\nu_{\mathbb{H}}(O_2) = \frac{4}{5} \nu_{\mathbb{H}}(NO)$
- C. 平衡后减小压强,混合气体平均摩尔质量增大
- D. 平衡后升高温度,混合气体中 NO 含量降低

【难度】★★★【答案】D

【解析】A 项,由于该反应是可逆反应,故达到平衡时反应物不能全部转化为生成物,放出热量小于 905.9 kJ,不正确; B 项,反应速率之比等于反应方程式前的计量数之比,所以平衡时的正逆反应速率关系应为 $\nu_{\scriptscriptstyle \perp}(O_2)=\frac{5}{4}\nu_{\scriptscriptstyle \perp}(NO)$,故不正确; C 项,减小压强,化学平衡向正反应方向移动,

气体总质量不变, 而气体总的物质的量增大, 则平均摩尔质量减小, 不正确: D 项, 正反应是放热

反应,升温,化学平衡逆向移动,NO含量降低,正确。

- 17. 反应 $N_2O_4(g)$ \longrightarrow $2NO_2(g)$ 57 kJ·mol^{-1} ,在温度为 T_1 、 T_2 时,平衡体系中 NO_2 的体积分数 随压强的变化曲线如图所示。下列说法正确的是(
 - A. $a \times c$ 两点的反应速率: a > c
 - B. $a \times c$ 两点气体的颜色: a 深, c 浅
 - C. 由状态 b 到状态 a,可以用加热的方法
 - D. $a \times c$ 两点气体的平均相对分子质量: a > c

【难度】★★★【答案】C

【解析】c点压强大于a点压强,故反应速率a<c, A错误;反应是吸热的,升高温度平衡正向移动,NO₂的体积分数增大,C正确;增大压强平衡逆向移动,气体平均相对分子质量是增大的(a<c),D错误

- 18. 某温度下,在一个 2 L 的密闭容器中加入 4 mol A 和 2 mol B 进行如下反应: 3A(g) + 2B(g) 4C(s) + D(g),反应 2 min 后达到平衡,测得生成 1.6 mol C,下列说法正确的是
 - A. 前 2 min D 的平均反应速率为 0.2 mol·L⁻¹·min⁻¹
 - B. 此时, B 的平衡转化率是 40%
 - C. 增大该体系的压强,平衡不移动,化学平衡常数不变
 - D. 增加 B, 平衡向右移动, B 的平衡转化率增大

【难度】★★★【答案】B

19. 在相同温度下,将 H_2 和 N_2 两种气体按不同比例通入相同的恒容密闭容器中,发生反应: $3H_2 + N_2 = 2NH_3$ 。 $\frac{n(H_2)}{n(N_2)}$ 表示起始时 H_2 和 N_2 的物质的量之比,且起始时 H_2 和 N_2 的物质的量之和

相等。下列图像正确的是()

【难度】★★★【答案】D

【解析】A中,随着 $\frac{n(H_2)}{n(N_2)}$ 的增大,氢气含量增多,氢气的平衡转化率降低,A错误;随着 $\frac{n(H_2)}{n(N_2)}$ 的增大, 氢气含量增多, 混合气体的质量减小, B 错误; 随着 $\frac{n(H_2)}{n(N_1)}$ 的增大, 氢气含量增多, 氮气的 平衡转化率增大,C 错误; 随着 $\frac{n(H_2)}{n(N_2)}$ 的增大,氢气含量增多,混合气体的质量减小,则混合气体的 $n(N_2)$ 密度减小, D 正确。

- 20. 图 2表示 800℃时 A、B、C 三种气体物质的浓度随时间的变化情况,t₁是到达平衡状态的时间.试
 - (1) 该反应的反应物是;
 - (2) 反应物的转化率是 ;
 - (3)该反应的化学方程式为

【难度】★

【答案】 (1) A (2) 40%

- (3) 2A \longrightarrow B+3C
- 21. 对于 A+2B(g) \longleftarrow nC(g), 在一定条件下达到平衡后,改变下列条件,请回答:
 - (1)A 量的增减,平衡不移动,则 A 为 态。
 - (2)增压,平衡不移动,当 n=2 时,A 为_____态;当 n=3 时,A 为_____态。
 - (3)若 A 为固态,增大压强, C 的组分含量增大, n=。
 - (4)升温,平衡向右移动,则该反应的逆反应为 热反应。

【难度】★★【答案】固

固或液

气

放

1

22. 某温度下,在密闭容器中 SO_2 、 O_2 、 SO_3 三种气态物质建立化学平衡后,改变条件对反应[$2SO_2(g)$ $+O_2(g)$ \longrightarrow $2SO_3(g)+Q]$ 的正、逆反应速率的影响如图所示:

- (1)加催化剂对反应速率影响的图像是____(填序号,下同),平衡移动。
- (2)升高温度对反应速率影响的图像是 , 平衡向 方向移动。
- (3)增大反应容器体积对反应速率影响的图像是 , 平衡向 方向移动。

【对	【マア日ノ\ ∪Z HJYN/×ハJ <i>D</i>	反应速率影响的图像是	,平衡向	方向移动。
- 2.2	進度】★★			
【答	答案】(1)C 不	(2)A 逆反应 (3)D 逆反应 (4)F	3 正反应
		用下,以下反应可以将汽车		
	2NO(g)+2CO(g)	$N_2(g)+2CO_2(g)+Q(Q>0)$.		
(1) 该/	反应的化学平衡常数	表达式为	; 20min 时,	若改变反应条件,导
致N	N ₂ 浓度发生如图所示的	的变化,则改变的条件可能	是(选填	编号)。
①加	口入催化剂	②降低温度		
③缩	富小容器体积	④增加 CO2 的	星里	
(2) 铂-	-铑"三效"催化剂还可	帮助将汽车尾气中的烃类较	· 变成无害气体,生成	的无害气体。是
	o			
(3) 有	文献报道,在铂-铑"	三效"催化剂作用下,280℃	ご时,NOx"转化率"达	到 90%,这是否指铂-
铑"三	效"催化剂能移动化学	平衡? 试作出分析		o
(4) 等特	物质的量的 NO 和 CC)气体反应时,若 NO 的转	化率为 90%,所得混合	合气体的平均相对分子
质量为_		_ (保留 2 位小数)。		
【难	註度】★★ 【答案】((1) $K = \frac{c(N_2)c^2(CO_2)}{c^2(NO)c^2(CO)}$	② (1分)	
(2))CO ₂ 和 H ₂ O(2 分)			
(3)) 不是 (1 分); 是指	催化效率高,NOx 转化速率	を快,排放少(1 分)。	
(4)) 37.42 (1分)			
24. 氮化	比硅(Si ₃ N ₄)是一种新	新型陶瓷材料,它可在高温 [*]	下的氮气流中由石英!	与焦炭通过以下反应制
得:				
			() + 0 (0>0)	
	$3SiO_2(s) + 6C(s) + 2N$	N_2 (g) \Longrightarrow $Si_3N_4(s) + 6CO$	Q(g) + Q(Q>0)	
完成	3SiO ₂ (s) + 6C(s) + 2N 艾下列填空:	$V_2(g) \Longrightarrow Si_3N_4(s) + 6CO$	(g) + Q (Q>0)	
	戈下列填空 :	N ₂ (g) ≕ Si ₃ N ₄ (s) + 6CO 与 2L 的密闭容器中进行,2m		有 2mol 电子发生转移,
(1)某温度	战下列填空: 度下该反应在一容积为		nin 后达到平衡,刚好不	
(1)某温度 则 2min	战下列填空: 度下该反应在一容积为	为 2L 的密闭容器中进行, 2m CO) =;该质	nin 后达到平衡,刚好不	
(1)某温度 则 2min (2)其它翁	战下列填空: 度下该反应在一容积为 内反应的速率为:ν(C	为 2L 的密闭容器中进行, 2m CO) =; 该质 虽,则。	nin 后达到平衡,刚好不	
(1)某温度 则 2min (2)其它翁 a. I	成下列填空: 度下该反应在一容积为 内反应的速率为: v(C 条件不变时仅增大压强	为 2L 的密闭容器中进行, 2m CO) =;该质 强,则。 反应方向移动	nin 后达到平衡,刚好不	
(1)某温度 则 2min (2)其它系 a. I b. I	成下列填空: 度下该反应在一容积为 内反应的速率为: v(C 条件不变时仅增大压强 K 值减小,平衡向逆质	为 2L 的密闭容器中进行, 2m CO) =;该质 强,则。 反应方向移动 反应方向移动	nin 后达到平衡,刚好不	
(1)某温度 则 2min (2)其它名 a. I b. I c. I	成下列填空: 度下该反应在一容积为 内反应的速率为: v(C 条件不变时仅增大压强 K 值减小,平衡向逆是 K 值增大,平衡向正是	为 2L 的密闭容器中进行, 2m (CO) =;该质强,则。 反应方向移动 反应方向移动 反应方向移动	nin 后达到平衡,刚好不	
(1)某温度 则 2min (2)其它名 a. I b. I c. I d. I	成下列填空: 度下该反应在一容积为 内反应的速率为: v(C) 条件不变时仅增大压强 K值减小,平衡向逆是 K值增大,平衡向正是 K值不变,平衡向逆是 K值不变,平衡向逆是	为 2L 的密闭容器中进行, 2m (CO) =;该质强,则。 反应方向移动 反应方向移动 反应方向移动	nin 后达到平衡,刚好不	为。

c. 固体质量不再改变 d. 气体密度不再改变
(4)达到平衡后改变某一条件,反应速率 v 与时间 t 的关系如右图所示。
若不改变 N ₂ 与 CO 的量,则图中 t ₄ 时引起变化的原因可能是;
图中 t6 时引起变化的原因可能是。
由图可知,平衡混合物中 CO 含量最高的时间段是。
【难度】★★★
【答案】(1) 0.25 mol/L·min (1 分,计算或单位错不给分); $K = \frac{[CO]^6}{[N_2]^2}$ (1 分)
(2) c (1分) (3) c、d (1分×2)
(4) 升高温度或缩小体积(增大压强)(1分); 加入了催化剂(1分)。t ₃ ~t ₄ (1分)。
25. Cl ₂ 合成有机物时会产生副产物 HC1。4HCl+O ₂ —— 2Cl ₂ +2H ₂ O,可实现氯的循环利用。
完成下列填空:
(1)该反应平衡常数的表达式 $K=$
后达到平衡,测得容器内物质由 2.5mol 减少至 2.25mol,则 HCl 的平均反应速率为
mol/L· min。
(2)若该反应在体积不变的密闭容器中发生,当反应达平衡时,下列。叙述正确的是。
a. $v \text{ (HCl)}=2 v \text{(Cl}_2)$
b. $4v_{\mathbb{E}}(HCl) = v_{\mathbb{E}}(O_2)$
c. 又加入 1mol O ₂ , 达新平衡时, HCl 的转化率增大
d. 分离出 H ₂ O,达新平衡时,ν _π (HCl)增大
(3)下图是该反应两种投料比[n (HCl): n (O ₂)分别为 4:1 和 2:1] 下,戶 χ 温度对 HCl 平衡转化率影
响的曲线。下列叙述正确的是。
a. 该反应的正反应是放热反应
a. 该反应的正反应是放热反应
c. 若平衡常数 K 值变大,达新平衡前 v _逆 始终减小 380 400 420 440 380 400 420 400 420 440 380 400 420 400 400 400 400 400 400 400 40
\mathbf{d} . 若平衡常数 K 值变大,则平衡向正反应方向移动
(4)投料比为 4:1、温度为 400℃时,平衡混合物中 Cl₂ 的物质的量分数是。 。
【难度】★★★
【答案】(1) $K = \frac{[Cl_2]^2[H_2O]^2}{[HCl]^4[O_2]}$ (1 分) 0.0625mol/L·min (1 分)

(2) a、c (2分) (3) a、d (2分) (4) 0.3529 (0.353、0.35均可) (2分)