Übung 02

Prognosen und Exponentielles Glätten

Aufgabe 1: Prognose mit Trend und Saison

Luigi's Eisdiele in Duisburg hat saisonal stark schwankende Verkaufszahlen (in hundert Litern Eis). Es gibt vier Quartale pro Jahr. Luigi hat die Verkaufszahlen der letzten zwei Jahre gesammelt:

Jahr	Quartal	Verkauf (100L) y_t
1	Q1	8
1	Q2	20
1	Q3	25
1	Q4	10
2	Q1	10
2	Q2	24
2	Q3	30
2	Q4	12

Luigi hat bereits (vereinfachte) Saisonindizes für die vier Quartale bestimmt:

- Q1: 0.6
- Q2: 1.4
- Q3: 1.7
- Q4: 0.8

Er geht von einem multiplikativen Saisonmodell aus $(Y = T \cdot S \cdot I)$.

Ihre Aufgaben:

- 1. Bereinigen Sie die Verkaufszahlen, indem Sie jeden Wert durch den entsprechenden Saisonindex teilen. Diese Werte ${\cal Y}_d$ repräsentieren die Trend-Komponente (plus Rest).
- 2. Auf die bereinigten Daten Y_d wenden Sie nun eine Prognosemethode für Trenddaten an. Verwenden Sie hierfür die exponentielle Glättung mit Trendkorrektur.
 - Nutzen Sie einen Glättungsfaktor $\alpha = 0.2$.
 - Initialisierungswerte für die bereinigten Daten (Y_d) zum Zeitpunkt t=0:
 - Geschätztes Niveau $\hat{a}_{d,0}=13$
 - Geschätzter Trend $\hat{b}_{d,0}=0.5$ Berechnen Sie zuerst $y_{d,0}^{(1)}$ und $y_{d,0}^{(2)}$ basierend auf $\hat{a}_{d,0}$, $\hat{b}_{d,0}$ und α .
- 3. Prognostizieren Sie die bereinigten Werte für die vier Quartale des nächsten Jahres (Jahr 3, Q1 bis Q4). Hier ist t der Index des letzten Beobachtungspunktes der bereinigten Reihe.

4. Saisonalisieren Sie diese Prognosen, indem Sie sie mit den entsprechenden Saisonindizes multiplizieren, um die finalen Verkaufsprognosen zu erhalten.

Lösung (Python-Code):

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcdefaults()
plt.style.use('tableau-colorblind10')
data_task4 = {
   'Jahr': [1]*4 + [2]*4,
    'QuartalStr': ['Q1', 'Q2', 'Q3', 'Q4'] * 2, # String für Mapping
    'Verkauf': [8, 20, 25, 10, 10, 24, 30, 12]
}
df task4 = pd.DataFrame(data task4)
df_task4['Periode'] = range(1, len(df_task4) + 1)
saison_indizes = {'Q1': 0.6, 'Q2': 1.4, 'Q3': 1.7, 'Q4': 0.8}
df_task4['Saisonindex'] = df_task4['QuartalStr'].map(saison_indizes)
print("Verkaufsdaten Gelato Paradiso:")
print(df task4)
# 1. Désaisonieren
df_task4['Verkauf_desaisoniert'] = df_task4['Verkauf'] /
df_task4['Saisonindex']
print("\nDésaisonierte Verkaufsdaten (Y d):")
print(df_task4[['Jahr', 'QuartalStr', 'Verkauf', 'Saisonindex',
'Verkauf desaisoniert']].round(2))
y_d_actual = df_task4['Verkauf_desaisoniert'].tolist()
# 2. Holt's Methode auf désaisonierte Daten Y_d
alpha_t4 = 0.2
ad0_hat = 13 # Niveau-Schätzung für Y_d bei t=0
bd0 hat = 0.5 # Trend-Schätzung für Y d bei t=0
# Initialisierung y_d, 0^(1), y_d, 0^(2)
if alpha_t4 == 0 or alpha_t4 == 1:
   print("Alpha darf nicht 0 oder 1 sein für diese Initialisierung.")
   yd0_1 = np.nan
   yd0 2 = np.nan
else:
   yd0_1 = ad0_hat - bd0_hat * (1 - alpha_t4) / alpha_t4
   yd0_2 = ad0_hat - 2 * bd0_hat * (1 - alpha_t4) / alpha_t4
print(f"\nInitialisierung für désaisonierte Daten Y_d:")
print(f''y_d, 0^(1) = {yd0_1:.2f}'')
print(f"y_d,0^(2) = {yd0_2:.2f}")
```

```
# Arrays für die Speicherung der Werte für Y_d
y1_d_vals = [0.0] * (len(y_d_actual) + 1)
y2_d_vals = [0.0] * (len(y_d_actual) + 1)
a d hat vals = [0.0] * (len(y d actual) + 1)
b_d_{at_vals} = [0.0] * (len(y_d_{actual}) + 1)
y1_d_vals[0] = yd0_1
y2_d_vals[0] = yd0_2
results t4 desais = []
print("\nHolt's Methode auf désaisonierten Daten Y_d (t=1 bis 8):")
for t_idx in range(1, len(y_d_actual) + 1): # t_idx von 1 bis 8
    y_dt = y_d_actual[t_idx-1]
    y1_d_vals[t_idx] = alpha_t4 * y_dt + (1 - alpha_t4) *
y1 d vals[t idx-1]
    y2_d_vals[t_idx] = alpha_t4 * y1_d_vals[t_idx] + (1 - alpha_t4) *
y2 d vals[t idx-1]
    a_d_{at_vals}[t_idx] = 2 * y1_d_vals[t_idx] - y2_d_vals[t_idx]
    if alpha t4 == 1:
        b_d_hat_vals[t_idx] = float('inf') if (y1_d_vals[t_idx] -
y2 d vals[t idx]) != 0 else 0
    else:
        b d hat vals[t idx] = (alpha t4 / (1 - alpha t4)) *
(y1_d_vals[t_idx] - y2_d_vals[t_idx])
    results t4 desais.append({
        't': t_idx, 'y_d_t': y_dt,
        'y1_d_t': y1_d_vals[t_idx], 'y2_d_t': y2_d_vals[t_idx],
        'a_d_hat_t': a_d_hat_vals[t_idx], 'b_d_hat_t': b_d_hat_vals[t_idx]
    })
df results t4 desais = pd.DataFrame(results t4 desais)
# Add calculated a_d_hat_t and b_d_hat_t to the original df_task4 for
easier plotting if needed
# Merge based on 't' (Periode)
df_results_t4_desais.rename(columns={'t': 'Periode'}, inplace=True)
df_task4 = pd.merge(df_task4, df_results_t4_desais[['Periode', 'a_d_hat_t',
'b d hat t']], on='Periode', how='left')
print(df_results_t4_desais.round(2))
# 3. Prognose der désaisonierten Werte für Jahr 3 (Periode 9, 10, 11, 12)
# Basierend auf a_d_hat_8 und b_d_hat_8
a d hat final = a d hat vals[len(y d actual)] # a d hat 8
b_d_hat_final = b_d_hat_vals[len(y_d_actual)] # b_d_hat_8
prognosen_desaisoniert_j3 = []
quartale_j3_str = ['Q1', 'Q2', 'Q3', 'Q4']
```

```
print(f"\nLetzte Parameter für Y d (t=8):")
print(f"a_d_hat_8 = {a_d_hat_final:.2f}")
print(f"b_d_hat_8 = {b_d_hat_final:.2f}")
print("\nPrognostizierte désaisonierte Werte Y d für Jahr 3:")
for i in range(1, 5): \# i = 1, 2, 3, 4 (für Periode 9, 10, 11, 12)
    # p_d,8+i = a_d_hat_8 + b_d_hat_8 * i
    p_di = a_d_hat_final + b_d_hat_final * i
    prognosen_desaisoniert_j3.append({
        'Periode': len(y d actual) + i,
        'QuartalStr': quartale_j3_str[i-1],
        'Prognose Desaisoniert': p di
    print(f"Jahr 3, {quartale_j3_str[i-1]} (Periode {len(y_d_actual) + i}):
{p di:.2f}")
df_prognosen_desaisoniert_j3 = pd.DataFrame(prognosen_desaisoniert_j3)
# 4. Resaisonieren
df_prognosen_desaisoniert_j3['Saisonindex'] =
df_prognosen_desaisoniert_j3['QuartalStr'].map(saison_indizes)
df_prognosen_desaisoniert_j3['Prognose_Final'] =
df_prognosen_desaisoniert_j3['Prognose_Desaisoniert'] *
df_prognosen_desaisoniert_j3['Saisonindex']
print("\nFinale Verkaufsprognosen für Jahr 3 (resaisoniert):")
print(df_prognosen_desaisoniert_j3[['Periode', 'QuartalStr',
'Prognose_Desaisoniert', 'Saisonindex', 'Prognose_Final']].round(2))
# Plot für Aufgabe 4
plt.figure(figsize=(7, 5))
# Tatsächliche Verkäufe
plt.plot(df_task4['Periode'], df_task4['Verkauf'], marker='o',
linestyle='-', label='Tats\u00e4chlicher Verkauf \u00e4Y t\u00e4')
# Désaisonierte Verkäufe
plt.plot(df_task4['Periode'], df_task4['Verkauf_desaisoniert'], marker='s',
linestyle='--', label='Désaisonierter Verkauf')
# Trend der désaisonierten Daten (a d hat t)
plt.plot(df_task4['Periode'], df_task4['a_d_hat_t'], marker='x',
linestyle=':', label='Geglättetes Niveau (Trend) der dés. Daten')
# Resaisonierte Prognosen für Jahr 3
plt.plot(df_prognosen_desaisoniert_j3['Periode'],
df_prognosen_desaisoniert_j3['Prognose_Final'], marker='*', linestyle='-',
color='red', markersize=10, label='Resaisonierte Prognose')
plt.title(f'Eisverkauf: Ist, Désaisoniert und Prognose')
plt.xlabel('Periode (Quartal)')
plt.ylabel('Verkauf (100 Liter)')
```

```
# X-Ticks für bessere Lesbarkeit
num_total_periods = len(df_task4) + len(df_prognosen_desaisoniert_j3)
tick_positions = list(range(1, num_total_periods + 1))
tick_labels = [f"J{df_task4.loc[p-1, 'Jahr']}-Q{df_task4.loc[p-1,
'QuartalStr'][-1]}" if p <= len(df_task4) else f"J3-
Q{df_prognosen_desaisoniert_j3.loc[p-len(df_task4)-1, 'QuartalStr'][-1]}"
for p in tick_positions]
plt.xticks(tick_positions, tick_labels, rotation=45, ha="right")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
Verkaufsdaten Gelato Paradiso:
  Jahr QuartalStr Verkauf Periode Saisonindex
                       8
     1
               01
                                1
                                           0.6
1
                       20
                                 2
     1
               02
                                           1.4
2
     1
               03
                       25
                                 3
                                           1.7
3
                       10
     1
               04
                                 4
                                           0.8
                                 5
4
     2
               Q1
                       10
                                           0.6
5
     2
               02
                       24
                                 6
                                           1.4
     2
                                 7
                                           1.7
6
               Q3
                       30
7
     2
               04
                       12
                                 8
                                           0.8
Désaisonierte Verkaufsdaten (Y d):
  Jahr QuartalStr Verkauf Saisonindex Verkauf_desaisoniert
                       8
0
     1
               Q1
                                   0.6
                                                      13.33
1
     1
               02
                       20
                                   1.4
                                                      14.29
2
                       25
     1
               Q3
                                   1.7
                                                      14.71
3
                       10
     1
               04
                                   0.8
                                                      12.50
4
     2
               Q1
                       10
                                   0.6
                                                      16.67
5
     2
               02
                       24
                                   1.4
                                                      17.14
6
     2
               03
                       30
                                   1.7
                                                      17.65
7
     2
               04
                       12
                                   0.8
                                                      15.00
Initialisierung für désaisonierte Daten Y_d:
y_d,0^(1) = 11.00
y_d,0^(2) = 9.00
Holt's Methode auf désaisonierten Daten Y_d (t=1 bis 8):
  Periode y_d_t y1_d_t y2_d_t a_d_hat_t b_d_hat_t
        1 13.33 11.47
0
                          9.49
                                                0.49
                                     13.44
                                                0.51
1
        2 14.29 12.03
                          10.00
                                     14.06
2
        3 14.71 12.57 10.51
                                     14.62
                                                0.51
3
        4 12.50 12.55 10.92
                                     14.18
                                                0.41
        5 16.67 13.38
4
                          11.41
                                     15.34
                                                0.49
5
        6 17.14 14.13
                         11.96
                                     16.30
                                                0.54
6
        7 17.65 14.83
                          12.53
                                     17.13
                                                0.58
7
        8 15.00 14.87
                          13.00
                                     16.73
                                                0.47
```

```
Letzte Parameter für Y_d (t=8):
a_d_{hat_8} = 16.73
b_d_{at_8} = 0.47
Prognostizierte désaisonierte Werte Y_d für Jahr 3:
Jahr 3, Q1 (Periode 9): 17.20
Jahr 3, Q2 (Periode 10): 17.67
Jahr 3, Q3 (Periode 11): 18.14
Jahr 3, Q4 (Periode 12): 18.60
Finale Verkaufsprognosen für Jahr 3 (resaisoniert):
   Periode QuartalStr Prognose_Desaisoniert Saisonindex Prognose_Final
0
         9
                   Q1
                                        17.20
                                                        0.6
                                                                       10.32
1
        10
                   02
                                        17.67
                                                        1.4
                                                                       24.74
2
        11
                   Q3
                                                                       30.83
                                        18.14
                                                        1.7
3
        12
                   Q4
                                        18.60
                                                        0.8
                                                                       14.88
```


Aufgabe 2: Saisonindizes selbst berechnen

Das Unternehmen Frosty, das auch die Eisdiele von Luigi beliefert, hat sich auf die Herstellung und den Verkauf von handgemachtem Eis spezialisiert. Die Geschäftsführerin hat festgestellt, dass die Verkaufszahlen (in tausend Euro) stark von der Jahreszeit abhängen. Um die Produktionsmengen besser planen und Marketingkampagnen gezielter ausrichten zu können, möchte sie die saisonalen Schwankungen genauer verstehen. Sie hat die Verkaufsdaten der letzten **drei** Jahre gesammelt:

Jahr	Quartal	Verkauf (Tsd. €) y_t
1	Q1	150
1	Q2	250
1	Q3	350
1	Q4	180
2	Q1	170
2	Q2	280
2	Q3	390
2	Q4	210
3	Q1	190
3	Q2	310
3	Q3	430
3	Q4	240

Die Geschäftsführerin geht von einem multiplikativen Saisonmodell aus $(Y = T \cdot C \cdot S \cdot I)$ und möchte die Saisonindizes mit der "Ratio to Moving Average"-Methode bestimmen. Da es vier Quartale pro Jahr gibt, wird ein gleitender Durchschnitt der Ordnung 4 verwendet.

Ihre Aufgaben:

- 1. Berechnen Sie den zentrierten gleitenden Durchschnitt (ZGD) der Ordnung 4 für die Verkaufsdaten.
- 2. Bestimmen Sie die Roh-Saisonfaktoren (si_{tm}) , indem Sie die tatsächlichen Verkaufszahlen y_{tm} durch die entsprechenden ZGD-Werte teilen.
- 3. Berechnen Sie die durchschnittlichen Saisonfaktoren (s_m) für jedes Quartal, indem Sie die Roh-Saisonfaktoren für das jeweilige Quartal über die Jahre mitteln.
- 4. Normieren Sie die durchschnittlichen Saisonfaktoren, sodass ihre Summe der Anzahl der Saisons (hier 4) entspricht. Diese normierten Werte sind die finalen Saisonindizes (\hat{s}_m) .

Lösung (Python-Code):

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.rcdefaults()
plt.style.use('tableau-colorblind10')

# Daten für Aufgabe 3
data_task3 = {
    'Jahr': [1]*4 + [2]*4 + [3]*4,
    'QuartalStr': ['Q1', 'Q2', 'Q3', 'Q4'] * 3,
    'Verkauf': [150, 250, 350, 180, 170, 280, 390, 210, 190, 310, 430, 240]
}
df_task3 = pd.DataFrame(data_task3)
```

```
df_task3['Periode'] = range(1, len(df_task3) + 1)
print("Verkaufsdaten FrostyFun Eiscreme:")
print(df task3)
# 1. Zentrierter Gleitender Durchschnitt (ZGD) der Ordnung 4
# Einfacher GD der Ordnung 4
df task3['GD4'] = df task3['Verkauf'].rolling(window=4).mean()
# Zentrierter GD (Durchschnitt von 2 aufeinanderfolgenden GD4 Werten)
df_task3['ZGD4'] = df_task3['GD4'].rolling(window=2).mean().shift(-2)
print("\nVerkaufsdaten mit GD4 und ZGD4:")
print(df task3[['Periode', 'Verkauf', 'GD4', 'ZGD4']].round(2))
# 2. Roh-Saisonfaktoren (si_tm = y_tm / ZGD_tm)
df_task3['Roh_SF'] = df_task3['Verkauf'] / df_task3['ZGD4']
print("\nVerkaufsdaten mit Roh-Saisonfaktoren:")
# Anzeigen der relevanten Spalten, Zeilen mit NaN in Roh_SF werden erstmal
ignoriert für die Ausgabe
print(df_task3[['Periode', 'QuartalStr', 'Verkauf', 'ZGD4',
'Roh SF']].dropna().round(3))
# 3. Durchschnittliche Saisonfaktoren (s_m)
# Zuerst Quartalsnummer extrahieren (1, 2, 3, 4)
df_task3['QuartalNum'] = df_task3['QuartalStr'].str[1].astype(int)
durchschnittliche sf = df task3.groupby('QuartalNum')
['Roh SF'].mean().reset index()
durchschnittliche_sf.rename(columns={'Roh_SF': 's_m_durchschnitt'},
inplace=True)
print("\nDurchschnittliche Saisonfaktoren (s_m):")
print(durchschnittliche_sf.round(3))
# 4. Normierte Saisonindizes (s dach m)
summe_s_m = durchschnittliche_sf['s_m_durchschnitt'].sum()
anzahl saisons = 4
normierungsfaktor = anzahl_saisons / summe_s_m
durchschnittliche_sf['Saisonindex_Normiert'] =
durchschnittliche_sf['s_m_durchschnitt'] * normierungsfaktor
print(f"\nSumme der durchschnittlichen SF: {summe s m:.3f}")
print(f"Normierungsfaktor: {normierungsfaktor:.3f}")
print("\nFinale normierte Saisonindizes:")
print(durchschnittliche_sf[['QuartalNum', 's_m_durchschnitt',
'Saisonindex Normiert']].round(3))
print(f"Summe der normierten Saisonindizes:
{durchschnittliche sf['Saisonindex Normiert'].sum():.2f}")
# Plot für Aufgabe 3 (Optional, aber hilfreich zur Visualisierung)
plt.figure(figsize=(8, 5))
```

```
plt.plot(df_task3['Periode'], df_task3['Verkauf'], marker='o',
linestyle='-', label='Tatsächlicher Verkauf Y_t')
plt.plot(df_task3['Periode'], df_task3['ZGD4'], marker='s', linestyle='--',
label='Zentrierter GD (Ordnung 4)')
plt.title('FrostyFun Eisverkauf und Trendkomponente (ZGD)')
plt.xlabel('Periode (Quartal)')
plt.ylabel('Verkauf (Tsd. €)')
tick_positions = df_task3['Periode'].tolist()
tick_labels = [f"J{df_task3.loc[p-1, 'Jahr']}-Q{df_task3.loc[p-1,
'QuartalStr'][-1]}" for p in tick_positions]
plt.xticks(tick_positions, tick_labels, rotation=45, ha="right")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# Tabelle der Saisonindizes für die Präsentation
saisonindizes_final =
pd.Series(durchschnittliche_sf['Saisonindex_Normiert'].values, index=['Q1',
'Q2', 'Q3', 'Q4'])
print("\nÜbersicht der finalen Saisonindizes:")
print(saisonindizes_final.round(3))
```

Ver	Verkaufsdaten FrostyFun Eiscreme:			
	Jahr Qua	rtalStr	Verkauf	Periode
0	1	Q1	150	1
1	1	Q2	250	2
2	1	Q3	350	3
3	1	Q4	180	4
4	2	Q1	170	5
5	2	Q2	280	6
6	2	Q3	390	7
7	2	Q4	210	8
8	3	Q1	190	9
9	3	Q 2	310	10
10	3	Q 3	430	11
11	3	04	240	12
Ver	rkaufsdate	n mit GD4	und ZGI	04:
	Periode	Verkauf	GD4	ZGD4
0	1	150	NaN	NaN
1	2	250	NaN	NaN
2	3	350	NaN	235.00
3	4	180	232.5	241.25
4	5	170	237.5	250.00
5	6	280	245.0	258.75
6	7	390	255.0	265.00
7	8	210	262.5	271.25

```
8 9 190 267.5 280.00
9 10 310 275.0 288.75
10 11 430 285.0 NaN
11 12 240 292.5 NaN
Verkaufsdaten mit Roh-Saisonfaktoren:
```

	Periode	QuartalStr	Verkauf	ZGD4	Roh_SF
2	3	Q3	350	235.00	1.489
3	4	Q4	180	241.25	0.746
4	5	Q1	170	250.00	0.680
5	6	Q2	280	258.75	1.082
6	7	Q3	390	265.00	1.472
7	8	Q4	210	271.25	0.774
8	9	Q1	190	280.00	0.679
9	10	Q2	310	288.75	1.074

Durchschnittliche Saisonfaktoren (s_m):

	QuartalNum	<pre>s_m_durchschnitt</pre>
0	1	0.679
1	2	1.078
2	3	1.481
3	4	0.760

Summe der durchschnittlichen SF: 3.998

Normierungsfaktor: 1.001

Finale normierte Saisonindizes:

	QuartalNum	s_m_durchschnitt	Saisonindex_Normiert
0	1	0.679	0.680
1	2	1.078	1.078
2	3	1.481	1.481
3	4	0.760	0.761

Summe der normierten Saisonindizes: 4.00


```
Übersicht der finalen Saisonindizes:
Q1 0.680
Q2 1.078
Q3 1.481
Q4 0.761
dtype: float64
```

Aufgabe 3: Holt's Methode für Trenddaten

Das kleine Startup "Deep Learning" im Herzen von Duisburg hat kürzlich ein neues KI-Tool für die Analyse von Textdaten auf den Markt gebracht. Die Kunden sind begeistert, und die Verkaufszahlen steigen stetig. Die Firma möchte nun die zukünftige Nachfrage besser planen können, um genügend Mitarbeiter zur Betreuung der Kunden zu haben und gleichzeitig Überstunden zu vermeiden. Die Firma hat die Verkaufszahlen der letzten 8 Monate sorgfältig dokumentiert:

Monat (t)	Verkäufe (y_t)
1	50
2	52
3	58
4	69
5	70
6	72
7	77

```
Monat (t) Verkäufe (y_t)
8 83
```

Deep Learning hat sich entschieden, das **Verfahren von Holt** zu verwenden, um eine Prognose zu erstellen. Dieses Verfahren berücksichtigt sowohl das aktuelle Niveau der Nachfrage als auch den Trend.

Ihre Aufgaben:

- 1. Verwenden Sie das Verfahren von Holt, um die geglätteten Werte für das Niveau (\hat{a}_t) und den Trend (\hat{b}_t) für die Monate t=1 bis t=8 zu berechnen.
 - Nutzen Sie die folgenden Glättungsfaktoren:
 - $\alpha = 0.3$ (für das Niveau)
 - $\beta = 0.2$ (für den Trend)
 - Die Initialisierungswerte zum Zeitpunkt t=0 sind:
 - Geschätztes Niveau $\hat{a}_0 = 48$ Verkäufe
 - Geschätzter Trend $\hat{b}_0 = 4$ Verkäufe pro Monat
- 2. Erstellen Sie eine Prognose für die Verkaufszahlen der nächsten **zwei** Monate (Monat 9 und Monat 10).
- 3. Was ist der Unterschied zwischen der Prognose aus der letzten Übung und dem Verfahren von Holt?
- 4. Würden Sie denken, dass das Verfahren von Holt und Winters besser geeignet wäre, um die Verkaufszahlen zu prognostizieren?

Lösung (Python-Code):

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcdefaults()
plt.style.use('tableau-colorblind10')
# Daten für Aufgabe 2
data_task2 = {
    'Monat': list(range(1, 9)),
    'Verkauf': [50, 52, 58, 69, 70, 72, 77, 83]
df_task2 = pd.DataFrame(data_task2)
print("Verkaufsdaten Deep Learning:")
print(df_task2)
# Parameter für Holt's Methode
alpha t2 = 0.3
beta_t2 = 0.2
a0_hat_t2 = 48
b0_hat_t2 = 4
# Arrays für die Speicherung der Werte
```

```
a_hat_vals_t2 = [0.0] * (len(df_task2) + 1)
b_hat_vals_t2 = [0.0] * (len(df_task2) + 1)
p_vals_t2 = [0.0] * (len(df_task2) + 1) # Prognose p_t für y_t
a_hat_vals_t2[0] = a0_hat_t2
b_hat_vals_t2[0] = b0_hat_t2
results t2 = []
print("\nBerechnung mit Holt's Methode (t=1 bis 8):")
for t_idx in range(1, len(df_task2) + 1): # t_idx von 1 bis 8
        y t = df task2.loc[t idx-1, 'Verkauf']
        # Prognose für die aktuelle Periode t (basierend auf t-1 Werten)
        \# p_t = a_{a_t t-1} + b_{a_t t-1} (f "ur" i=1)
         p_{vals_t2[t_idx]} = a_{hat_vals_t2[t_idx-1]} + b_{hat_vals_t2[t_idx-1]}
        # Update Niveau
         a hat vals t2[t idx] = alpha t2 * y t + (1 - alpha t2) *
(a_hat_vals_t2[t_idx_1] + b_hat_vals_t2[t_idx_1])
         # Update Trend
         b_hat_vals_t2[t_idx] = beta_t2 * (a_hat_vals_t2[t_idx] -
a_{t_1} = a_{t_2} + a_{t_3} + a_{t_4} + a_{t
         results t2.append({
                  't': t_idx,
                  'y_t': y_t,
                  'p_t': p_vals_t2[t_idx], # p_t = a_hat_t-1 + b_hat_t-1
                  'a_hat_t': a_hat_vals_t2[t_idx],
                  'b_hat_t': b_hat_vals_t2[t_idx]
         })
df results t2 = pd.DataFrame(results t2)
print(df_results_t2.round(2))
# 2. Prognose für Monat 9 und 10
# Basierend auf a_hat_8 und b_hat_8
a_hat_final_t2 = a_hat_vals_t2[len(df_task2)] # a_hat_8
b_hat_final_t2 = b_hat_vals_t2[len(df_task2)] # b_hat_8
print(f"\nLetzte Parameter (t=8):")
print(f"a hat 8 = {a hat final t2:.2f}")
print(f"b_hat_8 = {b_hat_final_t2:.2f}")
prognosen_t2_future = []
print("\nPrognosen für die nächsten 2 Monate:")
for i in range(1, 3): \# i = 1 (Monat 9), i = 2 (Monat 10)
         p_future = a_hat_final_t2 + b_hat_final_t2 * i
         prognosen t2 future.append({
                  'Monat': len(df_task2) + i,
                  'Prognose': p_future
```

```
})
    print(f"Monat {len(df_task2) + i}: {p_future:.2f} Verkäufe")
df prognosen t2 future = pd.DataFrame(prognosen t2 future)
# Plot für Aufgabe 2
plt.figure(figsize=(7, 5))
plt.plot(df_task2['Monat'], df_task2['Verkauf'], marker='o', linestyle='-',
label='Tatsächlicher Verkauf')
plt.plot(df_results_t2['t'], df_results_t2['p_t'], marker='x',
linestyle='--', color='gray', label='Ein-Schritt-Prognose')
plt.plot(df results t2['t'], df results t2['a hat t'], marker='s',
linestyle=':', label='Geschätztes Niveau')
plt.plot(df_prognosen_t2_future['Monat'],
df_prognosen_t2_future['Prognose'], marker='*', linestyle='-', color='red',
markersize=10, label='Zukunftsprognose')
plt.title(f'Deep Learning: Ist, Niveau und Prognose (Holt,
alpha={alpha t2}, beta={beta t2})')
plt.xlabel('Monat')
plt.ylabel('Verkauf (Verkaufe)')
all_months = list(df_task2['Monat']) +
list(df_prognosen_t2_future['Monat'])
plt.xticks(all months)
plt.legend()
plt.grid(True)
plt.tight layout()
plt.show()
```

```
Verkaufsdaten Deep Learning:
  Monat Verkauf
0
      1
             50
1
      2
             52
2
      3
             58
3
      4
             69
     5
4
             70
5
      6
             72
      7
             77
6
7
      8
             83
Berechnung mit Holt's Methode (t=1 bis 8):
           p_t a_hat_t b_hat_t
  t y_t
0 1
      50 52.00
                           3.88
                  51.40
1 2
      52 55.28
                           3.68
                  54.30
2 3
     58 57.98 57.99
                          3.68
3 4
     69 61.67 63.87
                          4.12
4 5
      70 67.99
                  68.60
                           4.24
5 6
      72 72.84
                  72.59
                           4.19
6 7
      77 76.78
                  76.85
                           4.21
7 8
      83 81.05
                  81.64
                           4.32
```

```
Letzte Parameter (t=8):
a_hat_8 = 81.64
b_hat_8 = 4.32

Prognosen für die nächsten 2 Monate:
Monat 9: 85.96 Verkäufe
Monat 10: 90.29 Verkäufe
```


3. Der Hauptunterschied liegt in der Art und Weise, wie das Niveau und der Trend der Zeitreihe geschätzt und geglättet werden. Das Verfahren aus Übung 1 (Exponentielle Glättung mit Trendkorrektur)verwendet einen einzigen Glättungsfaktor. Das Niveau und der Trend werden durch eine doppelte exponentielle Glättung derselben Zeitreihe abgeleitet. Aus diesen beiden Reihen werden dann die Schätzungen für Niveau und Trend berechnet. Die Reaktion auf Änderungen im Niveau und im Trend ist somit durch denselben Parameter alpha gekoppelt. Das Verfahren von Holt verwendet zwei separate Glättungsfaktoren: alpha für das Niveau und beta für den Trend. Das Niveau wird direkt aus dem aktuellen Beobachtungswert y t und der vorherigen Schätzung für Niveau und Trend (a t-1 + b t-1) berechnet. Der Trend (b t) wird direkt aus der Veränderung des Niveaus (a t - a t-1) und der vorherigen Trendschätzung (b t-1) berechnet. Dies ermöglicht eine flexiblere Anpassung, da man unabhängig voneinander festlegen kann, wie stark die Glättung auf Veränderungen im Niveau bzw. im Trend reagieren soll. Wenn sich beispielsweise das Grundniveau schnell ändert, der Trend aber relativ stabil ist, kann man unterschiedliche Werte für alpha und beta wählen. Zusammenfassend lässt sich sagen, dass das Verfahren von Holt durch die Verwendung von zwei getrennten Glättungsfaktoren eine differenziert-

- ere Anpassung an Niveau und Trend einer Zeitreihe erlaubt als die exponentielle Glättung mit Trendkorrektur, die nur einen Glättungsfaktor nutzt.
- 4. Das Verfahren von Holt-Winters erweitert das Holt-Verfahren um eine saisonale Komponente. Es ist also besonders dann geeignet, wenn die Zeitreihe nicht nur einen Trend, sondern auch wiederkehrende saisonale Muster aufweist (z.B. quartalsweise oder monatliche Schwankungen, die sich jedes Jahr ähnlich wiederholen). Diese Daten zeigen einen deutlichen Trend (steigende Verkaufszahlen). Ob auch eine signifikante Saisonalität vorliegt, lässt sich anhand von nur 8 Monaten Daten schwer beurteilen. Für die Identifizierung von saisonalen Mustern benötigt man in der Regel Daten über mehrere Saisons hinweg (z.B. mindestens 2-3 Jahre bei monatlichen Daten, um zu sehen, ob sich bestimmte Monate systematisch von anderen unterscheiden). Mit den aktuell vorliegenden 8 Datenpunkten ist das Verfahren von Holt eine gute Wahl, da es den sichtbaren Trend adressiert. Um zu entscheiden, ob Holt-Winters besser wäre, müssten mehr Daten gesammelt werden. Wenn sich dann klare saisonale Muster zeigen, wäre Holt-Winters eine sinnvolle Erweiterung. Andernfalls ist Holt ausreichend.