Test Summary - DeepSpeech

Environments & Configurations & Setup

Docker image:

harbor.ops.veritone.com/challenges/deepspeech

DeepSpeech Version:

TensorFlow: v2.3.0-6-g23ad988 DeepSpeech: v0.9.3-0-gf2e9c85

Docker Resource setting:

CPU: 4

Memory: 2GB Swap: 1GB

Disk Image Size: 59.6GB

No limits set

DeepSpeech is the only container running in the dockerbox.

Sample File:

audio1.wav, audio2.wav, audio3.wav, audio4.wav, audio5.wav

Third-party library:

jiwer2.2.0(https://pypi.org/project/jiwer/): Calculate WER between expected
and actual result

SetUp:

- 1. Pull docker image
- 2. Start the container with entrypoint /bin/bash to keep the container
- 3. Set CPU gather interval to 1s

TearDown:

- 1. Stop the container
- 2. Process test run raw data to csv files

Feature Testing

Test Case 1: Happy Path - process 1 audio - audio got transcripted && if pass rate 80%

Test Result: See is_pass column for individual result

audioName	size	cpu	process_tim e	expected_a ccurancy	actual_accu rancy	is_pass	is_processe
		117.806666	7.08491611		0.5555555		
audio1.wav	1556696	7	5	0.8	6	FALSE	TRUE
audio2.wav	11917312	122.87	48.9436748	0.8	1	TRUE	TRUE
			75.5710840		0.99378881		
audio3.wav	8944318	125.5472	2	0.8	9	TRUE	TRUE

		123.831666	25.4266092		0.61904761		
audio4.wav	8454138	7	8	0.8	9	FALSE	TRUE
		126.110666	30.8806369		0.10526315		
audio5.wav	10532390	7	3	8.0	8	FALSE	TRUE

Test Case 2: Process 5 audios sequentially - Compare on corresponding audio result from test case 1 - No significant change

Test Result: Pass

audioName	size	cpu	process_tim e	expected_a ccuracy	actual_accu racy	is_pass	is_processe
audio1.wav	1556696	123.765	7.92394518 9	0.8	0.5555555 6	FALSE	TRUE
audio2.wav	11917312	125.437916 7	48.4488959 3	0.8	1	TRUE	TRUE
audio3.wav	8944318	125.5472	75.5710840 2	0.8	0.99378881 9	TRUE	TRUE
audio4.wav	8454138	123.781851 9	26.3893210 9	0.8	0.61904761 9	FALSE	TRUE
audio5.wav	10532390	125.441428 6	36.9364790 9	0.8	0.10526315 8	FALSE	TRUE

average cpu	average process_time	average accuracy
125.18	39.05394506	0.6547310305

Test Case 3: Process 5 audios parallelly - Compare on corresponding audio result from test case 1 - No change

Test Result: Pass for accuracy rate, Fail for process time. Processing time increases 123%

audioName	size	cpu	process_tim e	expected_a ccuracy	actual_accu racy	is_pass	is_processe d
audio1.wav	1556696	403.076818 2	21.9960460 7	0.8	0.5555555 6	FALSE	TRUE
audio2.wav	11917312	346.996695 7	115.519012 2	0.8	1	TRUE	TRUE
audio3.wav	8944318	303.163846 2	144.656186 1	0.8	0.99378881 9	TRUE	TRUE
audio4.wav	8454138	398.697857	70.3710160	0.8	0.61904761	FALSE	TRUE

		1	3		9		
		392.727023	84.8276889		0.10526315		
audio5.wav	10532390	8	3	8.0	8	FALSE	TRUE

		average accuracy
303.1638462	87.47398987	0.6547310305

Negative Testing

Test Case 1: Audio file cannot be found - Correct error/warnings displayed (manual test case)

Test Result: PASSExplicte error displays:

FileNotFoundError: [Errno 2] No such file or directory: 'audio7.wav'

Test Case 2: Audio file isn't parsed in - Correct error/warnings displayed (manual test case)

Test Result: PASSExplicite error displays:

deepspeech: error: the following arguments are required: --audio

Performance Testing

Test Case 1: Load - Run one audio file repeatedly for multiple times - Processing time, cpu utilization and accuracy rate are keeping consistent

Limit to the laptop capability, set the replication number to 64

Test Result: PASS

		average accuracy
123.1784802	7.144031584	0.555555556

process_time, actual_accuracy (left axis) and cpu(right axis)

Test Case 2: Load - Start multiple threads upload the same audio parallelly Limit to the laptop capability, set the threads number to 8. Test Result:

- 1. Accuracy rate keeps consistent.
- 2. The average cpu utilization and processing time has been significantly increased by ~300% and ~400%

		average
average cpu	process_time	accuracy
402.6327027	37.67524719	0.555555556

process_time, actual_accuracy (left axis) and cpu(right axis)

Test Case 3: Load - Run 5 audios repeatedly for multiple times Limit to the laptop capability, set the replication number to $64/5 \sim 13$ Test Result:

- 1. Accuracy rate keeps consistent. Processing time keeps consistent per file.
- 2. From processing time/million byte, we can find the processing time relevant to file a lot (Patten over repetition keeps the same).
- 3. CPU utilization hasn't changed significantly.
- 4. No failure process

		average
average cpu	process_time	accuracy
123.4266801	38.57782697	0.6547310305

process_time per million byte (left axis) and cpu(right axis)

Test Case 4: Load - Start multiple threads upload different audios parallelly Limit to the laptop capability, set the threads number to 8/5~2.

Test Result:

- 1. Accuracy rate keeps consistent with original rate by individual run
- 2. Average processing time significantly increased than run videos individually/sequentially
- 3. CPU utilization rate significantly increased
- 4. No failure process

		average accuracy
407.8162642	177.2537795	0.6547310305

process_time per million byte (left axis) and cpu(right axis)

Future work

- 1. Add memory usage or other values to estimate in performance testing.
- 2. Performance Load & Stress testing:
 - a. Add data variance to the indices and largest allowance variance threshold.
 - b. Stress test: keep increasing the number of thread processing files, when the cpu utilization > threshold, the number of total threads get saved.
 - c. Stress test: keep increasing the number of thread processing files, when the accuracy rate < threshold, the number of total threads get saved.
 - d. Random sends files with a random number of threads, gathering performance.
- 3. If accuracy rate drops by time for the same file, need a test case to measure when it may happen.
- Spiking testing: Given a base line of file processing, suddenly increase the files sent to a large scale, measure all the indices change like cpu utilization increase rate, wer drop rate etc.
- 5. Volume Testing: Send files to process, increase the file size by binary.
- 6. Scalability test: Perform testing with scalability settings
- 7. Network testing: Perform testing with proxy or other network settings.
- 8. Test cases around audio do not exist in the server, but have to be uploaded from local first. (mimic use case)