

TÉCNICAS DE MINERAÇÃO DE DADOS PARA PREDIÇÃO DE CONSUMO ENERGÉTICO DE UM VEÍCULO ELÉTRICO

Giulianna N. T. Mandolesi Prof. Dr. Stanley R. de M. Oliveira

Sumário

- Tema do Projeto e Motivações
- Objetivos e Planejamento
- Banco de Dados
- Implementação
 - Determinação de Volta
 - Predição de Energia
- Validação
- Discussões e Trabalhos Futuros

Tema do Projeto e Motivações

- Mobilidade Elétrica em Expansão
- Carga lenta de Veículos Elétricos -> Necessidade de prever Autonomia
- Poucos estudos a respeito, conhecimento limitado de Baterias de Li-lon ->
 Data Mining

Objetivos e Planejamento

- Adquirir conhecimento necessário do problema
 - Análise dos Dados <-> Papers
 - Desorganização dos Dados
 - Falta de alguns Dados
- Separar dados por voltas
- Predição de Consumo Energético

Banco de Dados

- Unicamp E-Racing
 - Monoposto elétrico
 - Ambiente Hostil
 - Grande periodicidade
- 5 percursos com mais de 90 atributos
 - Seleção de Atributos
 - Conhecimento prévio
 - PCA
 - Dados ruidosos

Periodicidade

K-means

K-means

K-means

Cross Correlation

Fine Tuning

Ruído

KNN

Não adiciona atraso

PCA

PCA

$$E = \int P \cdot dt$$

$$P_{mec} = T \cdot \omega$$

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
Energia (kW)	0,14	-0,09	-0,29	0,82	0,05	-0,46	0,06	-0,08	0,04	0,00
Tempo de Volta (s)	-0,01	-0,07	-0,02	0,02	0,74	0,23	0,63	-0,02	0,01	0,03
Velocidade Máxima (rpm)	0,98	-0,07	-0,01	-0,18	0,02	-0,01	0,00	0,01	0,01	0,00
Torque Máximo (Nm)	0,00	0,00	0,00	0,04	-0,13	-0,09	0,22	0,96	0,02	0,06
Torque Regenerativo Máximo (Nm)	0,06	-0,06	0,95	0,29	0,04	-0,04	-0,02	-0,01	-0,01	-0,01
Demanda Média de Pedal (%)	0,05	0,50	0,02	0,04	-0,20	-0,04	0,34	-0,06	-0,56	-0,52
Temperatura da Chapa de Arrefecimento (oC)	0,05	0,69	0,02	0,04	0,26	-0,02	-0,22	0,08	0,59	-0,21
Temperatura do Rotor (oC)	0,04	0,49	0,03	0,02	-0,14	-0,04	0,20	-0,12	-0,13	0,82
Temperatura do Estator (oC)	0,00	0,10	-0,03	0,01	0,53	-0,07	-0,58	0,20	-0,56	0,11
Temperatura da Bateria (oC)	0,10	0,04	-0,10	0,46	-0,14	0,85	-0,14	0,08	-0,04	0,02
Autovalores	3,80	1,20	1,00	0,70	0,40	0,20	0,20	0,00	0,00	0,00

 $\lambda_i > 0.7$

(Joliffe)

Regressão Multi-Linear

	Energia Gasta	
Caso 1	1.22 kW	
Caso 2	3.57 kW	Treinamento
Caso 3	3.17 kW	Tremamento
Caso 4	4.43 kW	
Caso 5	1.64 kW	Validação

Regressão Multi-Linear

	Energia Predita	Energia Gasta	Erro de Predição
Caso 5	1.51 kWh	1.64 kW	8.3%

Discussões e Trabalhos Futuros

- Erro alto (cerca de 2 voltas)
- Implementação de outros algoritmos de predição
- Considerar como parâmetro o motorista
- Atualização por Volta
- Simulações *In-The-Loop*

