Il prodotto semidiretto

di Gabriel Antonio Videtta

Nota. Nel corso del documento con G un qualsiasi gruppo.

Siano H e K due gruppi. Allora, dato un omomorfismo $\varphi: K \to \operatorname{Aut}(H)$ e detto $\varphi_k := \varphi(k)$, si può costruire un gruppo su $H \times K$ detto **prodotto semidiretto** tra H e K, indicato con $H \rtimes_{\varphi} K$, dove l'operazione è data da:

$$(h,k)(h',k') = (h\varphi_k(h'),kk').$$

In questo gruppo l'inverso di (h, k) è dato da $(\varphi_k^{-1}(h^{-1}), k^{-1})$, infatti:

$$(h,k)(\varphi_k^{-1}(h^{-1}),k^{-1})=(h\,\varphi_k(\varphi_k^{-1}(h^{-1})),kk^{-1})=(e,e).$$

In particolare, se φ è banale, e quindi $k \xrightarrow{\varphi} \mathrm{Id}_H$, $H \rtimes_{\varphi} K$ ha la stessa struttura usuale del prodotto diretto. Nel prodotto semidiretto $H \rtimes_{\varphi} K$ si possono identificare facilmente H e K nei sottogruppi $H \times \{e\}$ e $\{e\} \times K$.

Detto $\alpha: H \rtimes_{\varphi} K \to K$ la mappa che associa (h, k) a k, si verifica che α è un omomorfismo con Ker $\alpha = H \times \{e\}$. Pertanto $H \times \{e\}$ è un sottogruppo normale di $H \rtimes_{\varphi} K$, mentre in generale $K \times \{e\}$ non lo è.

Si illustra adesso un teorema che permette di decomporre, sotto opportune ipotesi, un gruppo in un prodotto semidiretto di due suoi sottogruppi:

Teorema (di decomposizione in prodotto semidiretto). Siano¹ H e K due sottogruppi di G con $H \cap K = \{e\}$ e $H \leq G$. Allora vale che $HK \cong H \rtimes_{\varphi} K$ con $\varphi : K \to \operatorname{Aut}(H)$ tale per cui² $k \stackrel{\varphi}{\mapsto} [h \mapsto khk^{-1}]$.

Dimostrazione. Si costruisce un isomorfismo tra $H \rtimes_{\varphi} K$ e HK. Sia $\alpha: H \rtimes_{\varphi} K \to HK$ tale per cui $(h,k) \stackrel{\alpha}{\mapsto} hk$. Si verifica che α è un omomorfismo:

$$\alpha((h,k)(h',k'))=\alpha(hkh'k^{-1},kk')=hkh'k^{-1}kk'=hkh'k'=\alpha(h,k)\alpha(h',k').$$

Chiaramente α è iniettivo dal momento che $hk = e \implies h = k^{-1} \in H \cap K \implies h = k = e$. Infine α è surgettiva dal momento che $hk = \alpha(h, k)$, e quindi α è un isomorfismo. \square

¹Si osserva che questo teorema richiede *quasi* le stesse ipotesi del Teorema di decomposizione in prodotto diretto. L'unica ipotesi che manca è quella della normalità di K. Ciononostante, questo teorema copre anche il teorema analogo sul prodotto diretto: se K fosse normale, φ sarebbe l'identità (h e k commuterebbero), e quindi $H \rtimes_{\varphi} K$ sarebbe esattamente $H \times K$.

²Tale mappa è ben definita dal momento che H è normale in G.

Esempio $(S_n \cong \mathcal{A}_n \rtimes_{\varphi} \langle \tau \rangle)$. Sia τ una trasposizione di S_n . Allora \mathcal{A}_n è normale in S_n , $\mathcal{A}_n \cap \langle \tau \rangle = \{e\}$ e $|\mathcal{A}_n| |\langle \tau \rangle| = |S_n| \implies S_n = \mathcal{A}_n \langle \tau \rangle$. Allora, per il Teorema di decomposizione in prodotto semidiretto, vale che:

$$S_n \cong \mathcal{A}_n \rtimes_{\varphi} \langle \tau \rangle,$$

 $\operatorname{con} \varphi : \langle \tau \rangle \to \operatorname{Aut}(\mathcal{A}_n)$ tale per $\operatorname{cui} \tau \stackrel{\varphi}{\mapsto} [h \mapsto \tau h \tau^{-1}].$

Esempio $(D_n \cong \mathcal{R} \rtimes_{\varphi} \langle sr^k \rangle)$. Sia sr^k una qualsiasi simmetria di D_n . Allora \mathcal{R} è normale in D_n , $\mathcal{R} \cap \langle sr^k \rangle = \{e\}$ e $|\mathcal{R}| |\langle sr^k \rangle| = |D_n| \implies D_n = \mathcal{R} \langle sr^k \rangle$. Allora, come prima, vale che:

$$D_n \cong \mathcal{R} \rtimes_{\varphi} \langle sr^k \rangle,$$

 $\operatorname{con} \varphi : \langle sr^k \rangle \to \operatorname{Aut}(\mathcal{R}) \text{ tale per cui } sr^k \stackrel{\varphi}{\mapsto} [h \mapsto sr^k h(sr^k)^{-1}].$

Si illustrano adesso due lemmi che verranno riutilizzati successivamente per classificare i gruppi di ordine pq.

Lemma 1. Siano φ , $\psi: K \to \operatorname{Aut}(H)$ tali per cui esistono $\alpha \in \operatorname{Aut}(H)$ e $\beta \in \operatorname{Aut}(K)$ che soddisfano la seguente identità:

$$\alpha \circ \varphi_k \circ \alpha^{-1} = \psi_{\beta(k)}, \quad \forall k \in K.$$

Allora vale che $H \rtimes_{\varphi} K \cong H \rtimes_{\psi} K$.

Dimostrazione. Si costruisce la mappa $F: H \rtimes_{\varphi} K \to H \rtimes_{\psi} K$ tale per cui $(h, k) \stackrel{F}{\mapsto} (\alpha(h), \beta(k))$. Si verifica che F è un omomorfismo:

$$F(h\varphi_k(h'), kk') = (\alpha(h)\alpha(\varphi_k(h')), \beta(k)\beta(k')),$$

e quindi, poiché $\alpha \circ \varphi_k = \psi_{\beta(k)} \circ \alpha$:

$$F(h\varphi_k(h'), kk') = (\alpha(h)\psi_{\beta(k)}(\alpha(h')), \beta(k)\beta(k')) = F(h, k)F(h', k').$$

Chiaramente F è anche iniettiva e surgettiva, e quindi F è l'isomorfismo desiderato dalla tesi.

Lemma 2. Siano $\mathbb{Z}/q\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z}$ e $\mathbb{Z}/q\mathbb{Z} \rtimes_{\psi} \mathbb{Z}/p\mathbb{Z}$ due prodotti semidiretti con p, q primi tali per cui p è minore di q e $p \mid q-1$. Allora, se φ e ψ sono entrambi omomorfismi non banali, $\mathbb{Z}/q\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z}$ è isomorfo a $\mathbb{Z}/q\mathbb{Z} \rtimes_{\psi} \mathbb{Z}/p\mathbb{Z}$.

Dimostrazione. Poiché $\mathbb{Z}/p\mathbb{Z}$ è ciclico, sia φ che ψ sono univocamente determinati come omomorfismi da $\varphi_{\overline{1}}$ e $\psi_{\overline{1}}$. In particolare, affinché i due omomorfismi non siano banali, gli ordini di queste valutazioni devono entrambi essere p, dato che ord $(\varphi_{\overline{1}})$, ord $(\psi_{\overline{1}})$ | ord $(\overline{1}) = p$.

Poiché $\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong \mathbb{Z}/(q-1)\mathbb{Z}$ è ciclico, $\operatorname{ord}(\varphi_{\overline{1}}) = \operatorname{ord}(\psi_{\overline{1}}) \Longrightarrow \langle \varphi_{\overline{1}} \rangle = \langle \psi_{\overline{1}} \rangle$, e quindi esiste³ $\ell \in \{1, \dots, p-1\}$ tale per cui $\varphi_{\overline{1}} = \psi_{\overline{1}}^{\ell}$. Si osserva inoltre che $\psi_{\overline{1}}^{\ell} = \psi_{\overline{\ell}}$.

³Si scarta la possibilità in cui $\ell = 0$ dal momento che altrimenti $\varphi_{\overline{1}}$ sarebbe l'identità di Aut $(\mathbb{Z}/q\mathbb{Z})$.

Sia $\beta \in \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ l'automorfismo⁴ di $\mathbb{Z}/p\mathbb{Z}$ univocamente determinato da $\beta(\overline{1}) = \overline{\ell}$. Allora vale che:

$$\varphi_{\overline{n}} = \varphi_{\overline{1}}^n = \psi_{\overline{\ell}}^n = \psi_{n\overline{\ell}} = \psi_{\beta(\overline{n})}, \quad \forall \overline{n} \in \mathbb{Z}/p\mathbb{Z}.$$

Si conclude allora per il Lemma 1 che $\mathbb{Z}/q\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z}$ è isomorfo a $\mathbb{Z}/q\mathbb{Z} \rtimes_{\psi} \mathbb{Z}/p\mathbb{Z}$.

Proposizione. Sia G un gruppo di ordine pq con p e q primi tali per cui p < q. Allora G è isomorfo a \mathbb{Z}_{pq} se $p \nmid q - 1$. Altrimenti G è isomorfo a $\mathbb{Z}/pq\mathbb{Z}$ o a $\mathbb{Z}/q\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z}$ con $\varphi : \mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})$ univocamente determinata dalla relazione $\overline{1} \stackrel{\varphi}{\mapsto} f$ con f un qualsiasi elemento di ordine p di $\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})$ (ossia φ non è banale). In particolare esiste un solo gruppo non abeliano di ordine pq a meno di isomorfismo.

Dimostrazione. Per il Teorema di Cauchy, esistono due elementi x e y di G con ord(x) = q e ord(y) = p. Siano $H = \langle x \rangle$ e $K = \langle y \rangle$. Allora, poiché [G:H] = p è il più piccolo primo che divide |G| = pq, H è normale. Inoltre $H \cap K = \{e\}$, dacché $|H \cap K| \mid MCD(p,q) = 1$. Pertanto $|HK| = |H| |K| = pq \implies G = HK$.

Per il Teorema di decomposizione di un gruppo in un prodotto semidiretto, G è isomorfo al prodotto semidiretto $H \rtimes_{\varphi} K$ con $\varphi : K \to \operatorname{Aut}(H)$ tale per cui $k \stackrel{\varphi}{\mapsto} [h \mapsto khk^{-1}]$. Si osserva che $H \cong \mathbb{Z}/q\mathbb{Z}$, $\operatorname{Aut}(H) \cong \mathbb{Z}/(q-1)\mathbb{Z}$ e analogamente che $K \cong \mathbb{Z}/p\mathbb{Z}$.

Deve inoltre valere anche che $|\operatorname{Im} \varphi| \mid \operatorname{MCD}(|K|, |\operatorname{Aut}(H)|) = \operatorname{MCD}(p, q - 1)$. Pertanto, se $p \nmid q - 1$, $\operatorname{MCD}(p, q - 1) = 1$, e quindi $\operatorname{Im} \varphi$ è banale. In tal caso φ è la mappa che associa ogni k all'identità di $\operatorname{Aut}(H)$, e quindi $G \cong H \times K \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$, dove si è usato il Teorema cinese del resto.

Altrimenti MCD(p, q - 1) = p, e quindi $Im \varphi$ può essere banale (riconducendoci al caso di prima, in cui $G \cong \mathbb{Z}/pq\mathbb{Z}$), oppure $|Im \varphi| = p$, e in tal caso G è isomorfo, per⁵ il Lemma 2, a tutti i prodotti semidiretti non banali (e quindi, a meno di isomorfismo, ne esiste soltanto uno). Tale prodotto semidiretto dà luogo ad un gruppo non abeliano⁶, e pertanto non può essere isomorfo a $\mathbb{Z}/pq\mathbb{Z}$.

In particolare, si osserva che se G non abeliano ha ordine pq, allora Z(G) è banale. Infatti $|Z(G)| \neq p$, q (altrimenti G/Z(G) sarebbe ciclico, e quindi G sarebbe abeliano), né tantomeno |Z(G)| = pq.

$$(h',k')(e,k)(h',k')^{-1} = (h',k'k)(\varphi_{k'^{-1}}(h'^{-1}),k'^{-1}) = (h'\varphi_k(h'^{-1}),k),$$

e quindi dovrebbe valere $\varphi_k(h') = h'$ per ogni $h' \in H$. In tal caso però φ_k sarebbe l'identità per ogni $k \in K$, e φ sarebbe quindi in particolare banale.

 $^{^4\}beta$ è in effetti un automorfismo dal momento che $\ell \neq 0$, e quindi $\bar{\ell}$ è un altro generatore di $\mathbb{Z}/p\mathbb{Z}$.

⁵Infatti $H \cong \mathbb{Z}/q\mathbb{Z}$ e $K \cong \mathbb{Z}/p\mathbb{Z}$, e quindi i prodotti semidiretti tra H e K sono gli stessi di $\mathbb{Z}/q\mathbb{Z}$ e $\mathbb{Z}/p\mathbb{Z}$.

⁶Se $H \rtimes_{\varphi} K$ con φ non banale fosse un gruppo abeliano, allora $\{e\} \times K$ sarebbe normale. Pertanto, $(h', k')(e, k)(h', k')^{-1}$ dovrebbe appartenere a $\{e\} \times K$. Tuttavia vale che: