

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 48MHz Cortex-M0+32 位 CPU 平台
- HC32L190/HC32L196 系列具有灵活的 功耗管理系统,超低功耗性能
 - 0.6μA @ 3V 深度休眠模式: 所有时钟 关闭,上电复位有效, IO 状态保持, IO 中断有效,所有寄存器、RAM 和 CPU 数据保存状态时的功耗
 - 1.0μA @3V 深度休眠模式+ RTC 工作
 - 8μA @32.768kHz 低速工作模式: CPU 运行,外设关闭,从 Flash 运行程序
 - 30μA/MHz@3V@24MHz 休眠模式:
 CPU 停止,外设关闭,主时钟运行
 - 130μA/MHz@3V@24MHz 工作模式:
 CPU 运行,外设关闭,从 Flash 运行程序
 - 4μs 超低功耗唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
- 256K 字节 Flash 存储器,具有擦写保护功能,支持 ISP、ICP、IAP
- 32K 字节 RAM 存储器,附带奇偶校验, 增强系统的稳定性
- 通用 I/O 管脚 (88IO/100PIN, 72IO/80PIN, 56IO/64PIN, 40IO/48PIN, 26IO/32PIN)
- 时钟、晶振
 - 外部高速晶振 4~32MHz
 - 外部低速晶振 32.768kHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8/38.4kHz
 - − PLL 时钟 8 ~ 48MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个1通道互补输出通用16位定时器
 - 1个3通道互补输出通用16位定时器
 - 2个低功耗16位定时器,支持级联
 - 1个超低功耗脉冲计数器 PCNT,具备低功耗模式下自动定时唤醒功能,最大定时达 1024 秒

- 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
- 1 个可编程 16 位定时器 PCA, 支持 5 通道捕获比较, 5 通道 PWM 输出
- 1 个 20 位可编程看门狗电路,内建专用 10kHz 振荡器提供 WDT 计数
- 通讯接口
 - 4路 UART 标准通讯接口
 - 2 路 LPUART 低功耗通讯接口,深度 休眠模式下可工作
 - 2路 SPI 标准通讯接口
 - 2路 I2C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC16 / CRC32 模块
- AES-128/192/256 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 4*52 / 6*50 / 8*48 LCD 驱动
- 全球唯一 10 字节 ID 号
- 12位1Msps 采样的高速高精度 SARADC, 内置跟随器,可测量高输出阻抗的信号
- 1路12位500Ksps DAC
- 集成 1 个多功能运算放大器,可以作为 DAC 的输出 Buffer
- 集成 3 路电压比较器,具有 6 位 DAC 和 可编程比较基准
- 集成低电压侦测器,可配置 16 阶比较电压,可监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40~85°C, 1.8~5.5V
- 封装形式: LQFP100/80/64/48, QFN32

支持型号

HC32L196PCTA-LQFP100	HC32L196JCTA-LQ48
HC32L196MCTA-LQFP80	HC32L190JCTA-LQ48
HC32L196KCTA-LQFP64	HC32L190FCUA-QFN32TR
HC32L196KCTA-LQ64	

声明

- ▶ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ➤ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- > XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ➤ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的 产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2022 小华半导体有限公司 - 保留所有权利

目 录

产品	品特性		1
声	明		2
目	录		3
1	简介		6
	1.1	32 位 CORTEX M0+ 内核	7
	1.2	256K Byte FLASH	7
	1.3	32K Byte RAM	7
	1.4	时钟系统	7
	1.5	工作模式	8
	1.6	实时时钟 RTC	8
	1.7	端口控制器 GPIO	8
	1.8	中断控制器 NVIC	8
	1.9	复位控制器 RESET	9
	1.10	DMA 控制器 DMAC	10
	1.11	定时器 TIM	10
	1.12	脉冲计数器 PCNT	12
	1.13	看门狗 WDT	13
	1.14	通用同步异步收发器 UART0~UART3	13
	1.15	低功耗同步异步收发器 LPUART0~LPUART1	14
	1.16	串行外设接口 SPI	14
	1.17	I2C 总线	15
	1.18	蜂鸣器 Buzzer	15
	1.19	时钟校准电路模块 CLKTRIM	15
	1.20	器件电子签名	16
	1.21	循环冗余校验 CRC	16
	1.22	高级加密标准模块 AES	16
	1.23	真随机数发生器 TRNG	16
	1.24	模数转换器 ADC	16
	1.25	数模转换器 DAC	17
	1.26	模拟电压比较器 VC	17
	1.27	低电压检测器 LVD	17
	1.28	运算放大器 OPA	18
	1.29	液晶控制器 LCD	18
	1.30	嵌入式调试系统	18
	1.31	编程模式	19
	1.32	高安全性	19
2	产品阵	E容	20
	2.1	产品名称	20
	2.2	功能	21
3	引脚配	· 	23

	3.1	引脚配置图	23
	3.2	引脚功能说明	29
	3.3	模块信号说明	42
4	功能	框图	44
5	存储	区映射图	45
6	典型	应用电路图	47
7	电气	特性	48
	7.1	测试条件	48
		7.1.1 最小和最大数值	48
		7.1.2 典型数值	48
	7.2	绝对最大额定值	49
	7.3	工作条件	51
		7.3.1 通用工作条件	51
		7.3.2 上电和掉电时的工作条件	51
		7.3.3 内嵌复位和 LVD 模块特性	52
		7.3.4 内置的参考电压	54
		7.3.5 供电电流特性	54
		7.3.6 从低功耗模式唤醒的时间	58
		7.3.7 外部时钟源特性	59
		7.3.7.1 外部输入高速时钟	59
		7.3.7.2 外部输入低速时钟	59
		7.3.7.3 高速外部时钟 XTH	60
		7.3.7.4 低速外部时钟 XTL	62
		7.3.8 内部时钟源特性	64
		7.3.8.1 内部 RCH 振荡器	64
		7.3.8.2 内部 RCL 振荡器	65
		7.3.9 PLL 特性	65
		7.3.10 存储器特性	66
		7.3.11 EFT 特性	66
		7.3.12 ESD 特性	67
		7.3.13 I/O 端口特性	67
		7.3.13.1 输出特性——端口	67
		7.3.13.2 输入特性——端口 PA,PB,PC,PD,PE,PF	69
		7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock	69
		7.3.13.4 端口漏电特性——PA,PB,PC,PD,PE,PF	70
		7.3.14 RESETB 引脚特性	70
		7.3.15 ADC 特性	70
		7.3.16 VC 特性	74
		7.3.17 OPA 特性	75
		7.3.18 LCD 控制器	
		7.3.19 DAC 特性	
		7.3.20 TIM 完时哭蛙性	77

		7.3.21 通信接口	79
		7.3.21.1 I2C 特性	79
		7.3.21.2 SPI 特性	80
8	封装信	言息	83
	8.1	封装尺寸	83
	8.2	焊盘示意图	89
	8.3	丝印说明	95
	8.4	封装热阻系数	96
9	订购信	言息	97
10	版本证	己录 & 联系方式	98

1 简介

HC32L190/ HC32L196 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、宽电压工作范围的 MCU。集成 12 位 1Msps 高精度 SARADC,1 个 12 位 DAC 以及集成了比较器、运放、内置高性能 PWM 定时器、LCD 显示、多路 UART、SPI、I2C 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用、物联网应用
- 智能仪表、无线模块、温控器、货架标签
- 智能交通、报警系统
- 智能家居、医疗设备

1.1 32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断(break point)以及2个观察点
	(watch point)

1.2 256K Byte FLASH

内建全集成 FLASH 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

1.3 32K Byte RAM

根据客户选择不同的超低功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

1.4 时钟系统

- 一个频率为 4~24MHz 可配置的高精度内部时钟 RCH。在配置 24MHz 下,从低功耗模式到工作模式的唤醒时间为 4μs,全电压全温度范围内的频率偏差小,可以不外接昂贵的高频晶体。
- 一个频率为 4~32MHz 的外部晶振 XTH。
- 一个频率为 32.768kHz 的外部晶振 XTL, 主要提供 RTC 实时时钟。

- 一个频率为 32.8/38.4kHz 的内部时钟 RCL。
- 一个频率为 8~48MHz 输出的 PLL。

1.5 工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止,低功耗功能模块运行。

1.6 实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32.768kHz 晶振作为 其时钟,能实现万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间 模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要永久高精度实时时钟的测量设备仪表的最佳选择。

1.7 端口控制器 GPIO

最多可提供 88 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持位置位,位清零,位置位清零操作。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 18mA 的电流驱动能力。所有通用 IO 可支持外部异步中断。

1.8 中断控制器 NVIC

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

, , , ,	1
中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC/GPIO_PE
[3]	GPIO_PD/GPIO_PF
[4]	DMAC
[5]	TIM3
[6]	UART0/UART2
[7]	UART1/UART3
[8]	LPUART0
[9]	LPUART1
[10]	SPI0
[11]	SPI1
[12]	I2C0
[13]	I2C1
[14]	TIM0
[15]	TIM1
[16]	TIM2
[17]	LPTIM0/LPTIM1
[18]	TIM4
[19]	TIM5
[20]	TIM6
[21]	PCA
[22]	WDT
[23]	RTC
[24]	ADC/DAC
[25]	PCNT
[26]	VC0
[27]	VC1/VC2
[28]	LVD
[29]	LCD
[30]	RAM FLASH
[31]	CLKTRIM
	· · · · · · · · · · · · · · · · · · ·

1.9 复位控制器 RESET

本产品具有7个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会指向起始地址。

	复位来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

1.10 DMA 控制器 DMAC

DMAC(直接内存访问控制器)功能块可以不通过 CPU 高速传输数据。使用 DMAC 能提高系统性能。

- DMAC 配有独立的总线,所以即便是在使用 CPU 总线的同时, DMAC 也可进行传输操作。
- 由 2 条通道组成,能执行 2 种相互独立的 DMA 传输。
- 可设置传输目标地址、传输源地址、传输数据大小、传输请求源以及传输模式,并能控制各通道的传输操作启动、传输的强行终止以及传输的暂停。
- 可控制所有通道批量传输的启动、强行终止及暂停。
- 多通道同时操作时,可用固定方法或循环方法选择操作通道的优先级。
- 支持使用外设中断信号的硬件 DMA 传输。
- 遵从系统总线(AHB),支持32位地址空间(4GB)。

1.11 定时器 TIM

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
器			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3

			32/64/256	下计数/			
			32/04/230	上下计数			
				上下月剱			
低功耗定	LPTIM0	16	1/2/4/8/16/	上计数	无	无	无
时器			32/64/256				
	LPTIM1	16	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

通用定时器包含四个定时器 TIM0/1/2/3。

通用定时器特性

- PWM 独立输出,互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出
- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIM0/1/2 功能完全相同。TIM0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIM0/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

低功耗定时器 LPTIM 是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部 低速 RC 或者外部低速晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波					
	• 递加、递减计数方向					
	• 软件同步					
	• 硬件同步					
甘士	• 缓存功能					
基本功能	• 正交编码计数					
	• 通用PWM输出					
	• 保护机制					
	• AOS关联动作					
	计数比较匹配中断					
中断类型	计数周期匹配中断					
	死区时间错误中断					

1.12 脉冲计数器 PCNT

PCNT (Pulse Counter)模块用以对外部脉冲进行计数,支持单路以及双路(正交编码与非交叉编码)脉冲。它可以在低功耗休眠模式下无需软件参与进行计数。

脉冲计数器特性:

- 支持重载功能的 16 bit 计数器
- 单通道脉冲计数
- 双通道非交脉冲计数
- 双通道正交脉冲计数,不失码
- 加/减计数溢出中断

- 脉冲超时中断
- 4种解码错误中断,非交脉冲模式
- 1 种方向改变中断,正交脉冲模式
- 多级脉冲宽度滤波
- 输入脉冲极性可配置
- 支持低功耗模式计数
- 支持唤醒低功耗模式下 MCU
- 支持任意脉冲沿间距不小于1个计数时钟周期
- 具备低功耗模式下自动定时唤醒功能,最大定时达 1024 秒

1.13 看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位; 内建 10kHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行; 只有写入特定序列才能重启 WDT。

1.14 通用同步异步收发器 UART0~UART3

- 4 路通用同步异步收发器(Universal Asynchronous Receiver/Transmitter), UART0~UART3。 通用 UART 基本功能:
 - 半双工和全双工传输
 - 8/9-Bit 传输数据长度
 - 硬件奇偶校验
 - 1/1.5/2-Bit 停止位
 - 四种不同传输模式
 - 16-Bit 波特率计数器
 - 多机通讯
 - 硬件地址识别
 - DMAC 硬件传输握手
 - 硬件流控
 - 支持单线模式

1.15 低功耗同步异步收发器 LPUART0~LPUART1

2 路低功耗模式下可以工作的同步异步收发器(Low Power Universal Asynchronous Receiver/Transmitter),LPUART0/LPUART1。

LPUART 基本功能:

- 传输时钟 SCLK (SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器
- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控
- 支持单线模式

1.16 串行外设接口 SPI

2 路同步串行接口(Serial Peripheral Interface)

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大分频系数为 PCLK/2, 最高通信速率为 16M bps
- 从机模式最大分频系数为 PCLK/4, 最高通信速率为 12M bps
- 可配置的串行时钟极性和相位
- 支持中断

- 8位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

1.17 I2C 总线

2 路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。 I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps)/ 快速(400Kbps)/ 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

1.18 蜂鸣器 Buzzer

4个通用定时器与2个低功耗定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 18mA 的 sink 电流,互补输出,不需要额外的三极管。

1.19 时钟校准电路模块 CLKTRIM

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 5 种待校准时钟源
- 支持中断方式

1.20 器件电子签名

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。UID 地址为: 0x00100E74 - 0x00100E7D。

1.21 循环冗余校验 CRC

CRC16 符合 ISO/IEC13239 中给出的多项式 X¹⁶ + X¹² + X⁵ + 1。

CRC32 符合 ISO/IEC13239 中给出的多项式 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ 。

1.22 高级加密标准模块 AES

AES(The Advanced Encryption Standard)是美国国家标准技术研究所(NIST)在 2000年 10月 2日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 Bit,而密钥长度支持 128/192/256 Bit。

1.23 真随机数发生器 TRNG

TRNG 是一个真随机数发生器,用来产生真随机数。

1.24 模数转换器 ADC

单调不失码的 12 位逐次逼近型模数转换器,在 24MHz ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5V 或 2.5V)或从外部输入或电源电压。30 个输入通道,包括 26 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压、DAC 内部输出。内置电压跟随器,可测量高输出阻抗的信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1Msps 转换速度;
- 30 个输入通道,包括 26 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、DAC 内部输出;

- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5V 参考电压、内置 2.5V 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 4种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率:
- 内置电压跟随器,可测量高输出阻抗的信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

1.25 数模转换器 DAC

1 通道 12bit 500Ksps DAC,可以进行数模转换。

1.26 模拟电压比较器 VC

内建 3 路 VC, 芯片管脚电压监测/比较电路。16 个可配置的正外部输入通道,11 个可配置的负外部输入通道;5 个内部负输入通道,包括 1 路内部温度传感器电压、1 路内建 BGR 2.5V 参考电压、1 路内建 BGR 1.2V 电压、1 路 64 阶电阻分压。VC 输出可供通用定时器 TIM0/1/2/3,低功耗定时器 LPTIM 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

1.27 低电压检测器 LVD

对芯片电源电压或芯片管脚电压进行检测。16档电压监测值(1.8~3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断:
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

1.28 运算放大器 OPA

OPA 可以灵活配置,适用于简易滤波器和电压跟随器应用。可以作为 DAC 输出缓存器 使用,也可以配置为运放使用。

1.29 液晶控制器 LCD

LCD 控制器是一款适用于单色无源液晶显示器(LCD)的数字控制器/驱动器,最多具有 8 个公用端子(COM)和 48 个区段端子(SEG),用以驱动 208 (4x52)或 384 (8x48) 个 LCD 图像元素。可以选择电容分压或电阻分压,支持内部电阻分压。内部电阻分压可以调节对比度。支持 DMA 硬件数据传输。

LCD 基本特性:

- 高度灵活的帧速率控制。
- 支持静态、1/2、1/3、1/4、1/6 和 1/8 占空比。
- 支持 1/2、1/3 偏置。
- 多达 16 个寄存器的 LCD 数据 RAM。
- 可通过软件配置 LCD 的对比度。
- 3 种驱动波形生成方式
 - 内部电阻分压、外部电阻分压,外部电容分压方式
 - 可通过软件配置内部电阻分压方式的功耗,从而匹配 LCD 面板所需的电容电荷
- 支持低功耗模式: LCD 控制器可在 Active、Sleep、DeepSleep 模式下进行显示。
- 可配置帧中断。
- 支持 LCD 闪烁功能且可配置多种闪烁频率
- 未使用的 LCD 区段和公共引脚可配置为数字或模拟功能。

1.30 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4 个硬断点以及多个软断点。

1.31 编程模式

支持两种编程模式: 在线编程、离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

支持统一编程接口: ISP 协议与 SWD 协议共用 SWD 端口。

当复位时 BOOT0 (PF11) 管脚为高电平,芯片工作于 ISP 编程模式,可通过 ISP 协议对 Flash 进行编程。

当复位时 BOOT0 (PF11) 管脚为低电平,芯片工作于用户模式,芯片执行 Flash 内的程序代码,可通过 SWD 协议对 Flash 进行编程。

1.32 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2 产品阵容

2.1 产品名称

2.2 功能

产品名称		名称	HC32L196PCTA	HC32L196MCTA	HC32L196KCTA	HC32L196JCTA HC32L190JCTA	HC32L190FCUA				
引脚数			100	80	64	48	32				
GP	PIO 引脚	数	88	72	56	40	26				
		内核			Cortex M0+						
CP		页 率		48MHz							
电	源电压剂	 古围			1.8 ~5.5V						
单	/双电源				单电源						
温	度范围				-40 ~ 85°C						
调	试功能				SWD 调试接口						
唯	一识别码	<u></u> 马			支持						
通	通信接口		UART0/1/2/3 LPUART0/1 SPI0/1 12C0/1			UART0/1 LPUART0/1 SPI0/1 I2C0/1	UARTO/1 LPUARTO SPIO I2C0/1				
定	时器		通用定时器 TIM0/1/2/3 高级定时器 TIM4/5/6 低功耗定时器 LPTIM0/1								
12	位 A/D	转换器	24ch	23	ch	17ch	8ch				
模	拟电压比	七 较器	VC0/1/2								
实	时时钟				有						
端	口中断		88	72	56	40	26				
低电压检测复位		则复位	1								
内部高速振荡 器			RCH 4/8/16/22.12/24MHz								
时	内部低 器	K速振荡		RCL 32.8/38.4kHz							
钟	PLL			8~48MHz							
外部高速晶振 振荡器			4~32MHz								

产品名称	HC32L196PCTA	HC32L196MCTA	HC32L196KCTA	HC32L196JCTA HC32L190JCTA	HC32L190FCUA		
蜂鸣器	Max 5ch						
Flash 安全保护	支持						
RAM 奇偶校验	支持						

3 引脚配置及功能

3.1 引脚配置图

HC32L196PCTA-LQFP100

HC32L196MCTA-LQFP80

HC32L196KCTA-LQFP64 / LQ64

HC32L196JCTA-LQ48

- BOOT0 引脚用于控制 FLASH 编程,详见模块信号说明。

HC32L190JCTA-LQ48

- BOOT0 引脚用于控制 FLASH 编程,详见模块信号说明。

HC32L190FCUA-QFN32TR

- Exposed Thermal Pad 需要连接到 DVSS。
- 在应用中,需要将该封装未引出的 IO 引脚设为输入并使能上拉。
- 该封装未引出的 IO 详见引脚功能说明。
- BOOT0 引脚用于控制 FLASH 编程,详见模块信号说明。

图 3-1 引脚配置图

3.2 引脚功能说明

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
1	1				PE02	PCA_ECI	
2	2				PE03	PCA_CH0	
3	3				PE04	PCA_CH1	
4	4				PE05	PCA_CH2	
5					PE06	PCA_CH3	
6	5	1	1	1	VCAP		
7	6	2	2		PC13	RTC_1HZ	LVD0
						TIM3_CH1B	
8	7	3	3	2	PC14		XTLI
9	8	4	4	3	PC15		XTLO
10					PF09	TIM0_CHA	
11					PF10	TIM0_CHB	
12	9	5	5	4	PF00	I2C0_SDA	XTHI
						UART1_TXD	
13	10	6	6	5	PF01	I2C0_SCL	XTHO
						TIM4_CHB	
						UART1_RXD	
14	11	7	7	6	RESETB		
15	12	8			PC00	LPTIM0_GATE	AIN10
						PCNT_S0	VC0_INP0
						UART1_CTS	VC1_INN0
						UART2_RTS	SEG27
16	13	9			PC01	LPTIM0_TOG	AIN11
						TIM5_CHB	VC0_INP1
						UART1_RTS	VC1_INN1
						PCNT_S0FO	SEG26
						UART2_CTS	
17	14	10			PC02	SPI1_MISO	AIN12
						LPTIM0_TOGN	VC0_INP2
						PCNT_S1	VC1_INN2
						UART2_RXD	SEG25
18	15	11			PC03	SPI1_MOSI	AIN13
						LPTIM0_ETR	VC0_INP3
						LPTIM0_TOGN	VC1_INN3
						PCNT_S1FO	SEG24
						UART2_TXD	
19					PF02		
20	16	12	8		AVSS		

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
21	17	13	9	7	AVCC		
22					PF03		
23	18	14	10		PA00	UART1_CTS	AIN0
						LPUART1_TXD	VC0_INP4
						TIM0_ETR	VC0_INN0
						VC0_OUT	VC1_INP0
						TIM1_CHA	VC1_INN4
						TIM3_ETR	SEG23
						TIM0_CHA	
24	19	15	11		PA01	UART1_RTS	AIN1
						LPUART1_RXD	VC0_INP5
						TIM0_CHB	VC0_INN1
						TIM1_ETR	VC1_INP1
						TIM1_CHB	VC1_INN5
						HCLK_OUT	SEG22
						SPI1_MOSI	
25	20	16	12	8	PA02	UART1_TXD	AIN2
						TIM0_CHA	VC0_INP6
						VC1_OUT	VC0_INN2
						TIM1_CHA	VC1_INP2
						TIM2_CHA	SEG21
						PCLK_OUT	
						SPI1_MISO	
26	21	17	13		PA03	UART1_RXD	AIN3
						TIM0_GATE	VC0_INP7
						TIM1_CHB	VC0_INN3
						TIM2_CHB	VC1_INP3
						SPI1_CS	SEG20
						TIM3_CH1A	
						TIM5_CHA	
27					DVSS		
28					DVCC		
	22	18			PF04		
	23	19			PF05		
29	24	20	14	9	PA04	SPIO_CS	AIN4
						UART1_TXD	VC0_INP8
						PCA_CH4	VC0_INN4
						TIM2_ETR	VC1_INP4
						TIM5_CHA	DAC_OUT
						LVD_OUT	OPA_OUT0
						TIM3_CH2B	SEG19
						11113_011215	22017

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
30	25	21	15	10	PA05	SPI0_SCK	AIN5
						TIM0_ETR	VC0_INP9
						PCA_ECI	VC0_INN5
						TIM0_CHA	VC1_INP5
						TIM5_CHB	VC2_INP0
						XTL_OUT	VC2_INN0
						XTH_OUT	OPA_OUT1
							SEG18
31	26	22	16	11	PA06	SPI0_MISO	AIN6
						PCA_CH0	VC0_INP10
						TIM3_BK	VC0_INN6
						TIM1_CHA	OPA_OUT2
						VC0_OUT	SEG17
						TIM3_GATE	
						LPUART0_CTS	
32	27	23	17	12	PA07	SPI0_MOSI	AIN7
						PCA_CH1	VC0_INP11
						HCLK_OUT	VC0_INN7
						TIM3_CH0B	OPA_OUT3
						TIM2_CHA	SEG16
						VC1_OUT	
						TIM4_CHB	
33	28	24			PC04	LPUART0_TXD	AIN14
						TIM2_ETR	VC0_INN8
						IR_OUT	OPA_OUT4
						VC2_OUT	SEG15
34	29	25			PC05	LPUART0_RXD	AIN15
						TIM6_CHB	VC0_INN9
						PCA_CH4	OPA_INN
							SEG14
35	30	26	18	13	PB00	PCA_CH2	AIN8
						TIM3_CH1B	VC0_INN10
						LPUART0_TXD	VC1_INN6
						TIM5_CHB	OPA_INP
						RCH_OUT	SEG13
						RCL_OUT	
						PLL_OUT	

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
36	31	27	19	14	PB01	PCA_CH3	AIN9/EXVREF
						PCLK_OUT	VC1_INP6
						TIM3_CH2B	VC1_INN7
						TIM6_CHB	VC2_INP1
						LPUART0_RTS	VC2_INN1
						VC2_OUT	SEG12
						TCLK_OUT	
37	32	28	20		PB02	LPTIM0_TOG	AIN16
						PCA_ECI	VC1_INP7
						LPUART1_TXD	VC1_INN8
						TIM4_CHA	SEG11
						TIM1_BK	
						TIM0_BK	
						TIM2_BK	
38					PE07	TIM3_ETR	
						LPTIM1_GATE	
39					PE08	TIM3_CH0B	
						LPTIM1_EXT	
40					PE09	TIM3_CH0A	VC2_INP2
						LPTIM1_TOG	
41					PE10	TIM3_CH1B	VC2_INP3
						LPTIM1_TOGN	
42	33				PE11	TIM3_CH1A	VC2_INP4
							VC2_INN2
43	34				PE12	TIM3_CH2B	SEG51
						SPI0_CS	
						UART3_CTS	
44	35				PE13	TIM3_CH2A	AIN25
						SPI0_SCK	VC2_INP5
						UART3_RTS	SEG50
45	36				PE14	TIM3_CH0B	AIN24
						SPI0_MISO	VC2_INP6
						UART3_RXD	SEG49
46					PE15	TIM3_BK	AIN23
						SPI0_MOSI	VC2_INP7
						UART3_TXD	VC2_INN3
							SEG48

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
47	37	29	21		PB10	I2C1_SCL SPI1_SCK TIM1_CHA LPUART0_TXD TIM3_CH1A LPUART1_RTS UART1_RTS	AIN17 VC1_INP8 SEG10
48	38	30	22	15	PB11	I2C1_SDA TIM1_CHB LPUART0_RXD TIM2_GATE TIM6_CHA LPUART1_CTS UART1_CTS	AIN18 VC2_INP8 VC2_INN4 SEG9
49	39	31	23	16	DVSS		
50	40	32	24	17	DVCC		
51	41	33	25		PB12	SPI1_CS TIM3_BK LPUART0_TXD TIM0_BK LPUART0_RTS TIM6_CHA	AIN19 VC1_INP9 SEG8
52	42	34	26		PB13	SPI1_SCK I2C1_SCL TIM3_CH0B LPUART0_CTS TIM1_CHA TIM1_GATE TIM6_CHB	AIN20 VC1_INP10 SEG7
53	43	35	27		PB14	SPI1_MISO I2C1_SDA TIM3_CH1B TIM0_CHA RTC_1HZ LPUART0_RTS TIM1_BK	AIN21 VC1_INP11 VC2_INP9 VC2_INN5 SEG6
54	44	36	28		PB15	SPI1_MOSI TIM3_CH2B TIM0_CHB TIM0_GATE LPUART1_RXD	AIN22 SEG5

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
55	45				PD08	LPUART0_TX	SEG47
56	46				PD09	LPUART0_RX	VC2_INP10 SEG46
57	47				PD10	LPUARTO_TX	VC2_INP11 VC2_INN6 SEG45
58	48				PD11	LPUARTO_CTS	VC2_INP12 VC2_INN7 SEG44
59					PD12	LPUART0_RTS UART2_RTS	SEG43
60					PD13	UART2_RX	SEG42
61					PD14	UART2_TX	SEG41
62					PD15	UART2_CTS	SEG40
63	49	37			PC06	PCA_CH0 TIM4_CHA TIM2_CHA LPTIM1_GATE UART3_RXD	SEG4
64	50	38			PC07	PCA_CH1 TIM5_CHA TIM2_CHB LPTIM1_EXT UART3_TXD	VC2_INP13 VC2_INN8 SEG3
65	51	39			PC08	PCA_CH2 TIM6_CHA TIM2_ETR LPTIM1_TOG UART3_CTS	SEG2
66	52	40			PC09	PCA_CH3 TIM4_CHB TIM1_ETR LPTIM1_TOGN UART3_RTS	SEG1
67	53	41	29	18	PA08	UARTO_TXD TIM3_CH0A TIM1_GATE TIM4_CHA TIM3_BK	SEG0

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
68	54	42	30	19	PA09	UART0_TXD TIM3_CH1A TIM0_BK I2C0_SCL HCLK_OUT TIM5_CHA	COM0
69	55	43	31	20	PA10	UARTO_RXD TIM3_CH2A TIM2_BK I2C0_SDA TIM2_GATE PCLK_OUT TIM6_CHA	COM1
70	56	44	32	21	PA11	UARTO_CTS TIM3_GATE I2C1_SCL VC0_OUT SPI0_MISO TIM4_CHB	COM2
71	57	45	33	22	PA12	UART0_RTS TIM3_ETR I2C1_SDA VC1_OUT SPI0_MOSI PCNT_S0	COM3
72	58	46	34	23	PA13	IR_OUT UART0_RXD LVD_OUT TIM3_ETR RTC_1HZ PCNT_S1 VC2_OUT	SWDIO
73	59	47	35		PF06	I2C1_SCL LPUART1_CTS UART0_CTS	
	60	48	36		PF07	I2C1_SDA LPUART1_RTS UART0_RTS	
74					DVSS		
75					DVCC		

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
76	61	49	37	24	PA14	UART1_TXD UART0_TXD TIM3_CH2A LVD_OUT RCH_OUT RCL_OUT	SWCLK
77	62	50	38	25	PA15	PLL_OUT SPI0_CS UART1_RXD LPUART1_RTS TIM0_ETR TIM0_CHA TIM3_CH1A	
78	63	51			PC10	LPUART1_TXD LPUART0_TXD PCA_CH2	COM4/SEG39
79	64	52			PC11	LPUART1_RXD LPUART0_RXD PCA_CH3 PCNT_S0FO	COM5/SEG38
80	65	53			PC12	LPUART0_TXD LPUART1_TXD PCA_CH4 PCNT_S1FO	COM6/SEG37
81	66				PD00	SPI1_CS	
82	67				PD01	SPI1_SCK	
83	68	54			PD02	PCA_ECI LPUART0_RTS TIM1_ETR	COM7/SEG36
84	69				PD03	UART1_CTS SPI1_MISO LPTIM1_TOG	
85	70				PD04	UART1_RTS SPI1_MOSI LPTIM1_TOGN	
86					PD05	UART1_TX LPTIM1_GATE	
87					PD06	UART1_RX LPTIM1_EXT	
88					PD07	UART1_TX	

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
89	71	55	39	26	PB03	SPI0_SCK	VC1_INN9
						TIM0_CHB	SEG35/VLCDH
						TIM1_GATE	
						TIM3_CH0A	
						LPTIM0_GATE	
						XTL_OUT	
						XTH_OUT	
90	72	56	40	27	PB04	SPI0_MISO	VC0_INP12
						PCA_CH0	VC1_INP12
						TIM2_BK	SEG34/VLCD3
						UART0_CTS	
						TIM2_GATE	
						TIM3_CH0B	
						LPTIM0_ETR	
91	73	57	41	28	PB05	SPI0_MOSI	VC0_INP13
						TIM1_BK	SEG33/VLCD2
						PCA_CH1	
						LPTIM0_GATE	
						PCNT_S0	
						UART0_RTS	
92	74	58	42	29	PB06	I2C0_SCL	VC0_INP14
						UART0_TXD	VC1_INP14
						TIM1_CHB	SEG32/VLCD1
						TIM0_CHA	
						LPTIM0_ETR	
						TIM3_CH0A	
						LPTIM0_TOG	
93	75	59	43	30	PB07	I2C0_SDA	VC1_INP15
						UART0_RXD	LVD2
						TIM2_CHB	SEG31
						LPUART1_CTS	
						TIM0_CHB	
						LPTIM0_TOGN	
						PCNT_S1	
94	76	60	44	31	воото		SEG30
					/PF11		
95	77	61	45		PB08	I2C0_SCL	LVD1
						TIM1_CHA	SEG29
						TIM2_CHA	
						TIM0_GATE	

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
						TIM3_CH2A	
						UART0_TXD	
96	78	62	46		PB09	I2C0_SDA	SEG28
						IR_OUT	
						SPI1_CS	
						TIM2_CHA	
						TIM2_CHB	
						UART0_RXD	
97					PE00	TIM1_CHA	
98					PE01	TIM2_CHA	
99	79	63	47	32	DVSS		
100	80	64	48		DVCC		

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

Г				Px_SEL	<u> </u>	<u> </u>	1		
0	1	2	3	4	5	6	7		
PA00	UART1_CTS	LPUART1_TXD	TIM0_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIM0_CHA		
PA01	UART1_RTS	LPUART1_RXD	TIM0_CHB	TIM1_ETR	TIM1_CHB	HCLK_OUT	SPI1_MOSI		
PA02	UART1_TXD	TIM0_CHA	VC1_OUT	TIM1_CHA	TIM2_CHA	PCLK_OUT	SPI1_MISO		
PA03	UART1_RXD	TIM0_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA		
PA04	SPI0_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B		
PA05	SPI0_SCK	TIM0_ETR	PCA_ECI	TIM0_CHA	TIM5_CHB	XTL_OUT	XTH_OUT		
PA06	SPI0_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE	LPUART0_CTS		
PA07	SPI0_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB		
PA08	UART0_TXD	TIM3_CH0A			TIM1_GATE	TIM4_CHA	TIM3_BK		
PA09	UART0_TXD	TIM3_CH1A	TIM0_BK	I2C0_SCL		HCLK_OUT	TIM5_CHA		
PA10	UART0_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA		
PA11	UART0_CTS	TIM3_GATE	I2C1_SCL		VC0_OUT	SPI0_MISO	TIM4_CHB		
PA12	UART0_RTS	TIM3_ETR	I2C1_SDA		VC1_OUT	SPI0_MOSI	PCNT_S0		
PA13	IR_OUT	UART0_RXD	LVD_OUT	TIM3_ETR	RTC_1HZ	PCNT_S1	VC2_OUT		
PA14	UART1_TXD	UART0_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT		
PA15	SPI0_CS	UART1_RXD	LPUART1_RTS	TIM0_ETR	TIM0_CHA	TIM3_CH1A			
PB00	PCA_CH2	TIM3_CH1B	LPUART0_TXD	TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT		
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB	LPUART0_RTS	VC2_OUT	TCLK_OUT		
PB02	LPTIM_TOG	PCA_ECI	LPUART1_TXD	TIM4_CHA	TIM1_BK	TIM0_BK	TIM2_BK		
PB03	SPI0_SCK	TIM0_CHB	TIM1_GATE	TIM3_CH0A	LPTIM_GATE	XTL_OUT	XTH_OUT		
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UARTO_CTS	TIM2_GATE	TIM3_CH0B	LPTIM_ETR		
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1	LPTIM_GATE	PCNT_S0	UART0_RTS		
PB06	I2C0_SCL	UART0_TXD	TIM1_CHB	TIM0_CHA	LPTIM_ETR	TIM3_CH0A	LPTIM_TOG		
PB07	I2C0_SDA	UART0_RXD	TIM2_CHB	LPUART1_CTS	TIM0_CHB	LPTIM_TOGN	PCNT_S1		
PB08	I2C0_SCL	TIM1_CHA		TIM2_CHA	TIM0_GATE	TIM3_CH2A	UART0_TXD		
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA		TIM2_CHB	UART0_RXD		
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA	LPUART0_TXD	TIM3_CH1A	LPUART1_RTS	UART1_RTS		
PB11	I2C1_SDA	TIM1_CHB	LPUART0_RXD	TIM2_GATE	TIM6_CHA	LPUART1_CTS	UART1_CTS		
PB12	SPI1_CS	TIM3_BK	LPUART0_TXD	TIM0_BK		LPUART0_RTS	TIM6_CHA		
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B	LPUARTO_CTS	TIM1_CHA	TIM1_GATE	TIM6_CHB		
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIM0_CHA	RTC_1HZ	LPUART0_RTS	TIM1_BK		
PB15	SPI1_MOSI	TIM3_CH2B	TIM0_CHB	TIM0_GATE			LPUART1_RXD		
PC00	LPTIM_GATE	PCNT_S0	UART1_CTS	UART2_RTS					
PC01	LPTIM_TOG	TIM5_CHB	UART1_RTS	PCNT_S0FO		UART2_CTS			
PC02	SPI1_MISO	LPTIM_TOGN	PCNT_S1	UART2_RXD					
PC03	SPI1_MOSI	LPTIM_ETR	LPTIM_TOGN	PCNT_S1FO	UART2_TXD				
PC04	LPUART0_TXD	TIM2_ETR	IR_OUT	VC2_OUT					
PC05	LPUART0_RXD	TIM6_CHB	PCA_CH4						

				I	I	I	Ī
PC06	PCA_CH0	TIM4_CHA	TIM2_CHA	LPTIM1_GATE		UART3_RXD	
PC07	PCA_CH1	TIM5_CHA	TIM2_CHB	LPTIM1_ETR		UART3_TXD	
PC08	PCA_CH2	TIM6_CHA	TIM2_ETR	LPTIM1_TOG		UART3_CTS	
PC09	PCA_CH3	TIM4_CHB	TIM1_ETR	LPTIM1_TOGN		UART3_RTS	
PC10	LPUART1_TXD	LPUART0_TXD	PCA_CH2				
PC11	LPUART1_RXD	LPUART0_RXD	PCA_CH3	PCNT_S0FO			
PC12	LPUART0_TXD	LPUART1_TXD	PCA_CH4	PCNT_S1FO			
PC13		RTC_1HZ	TIM3_CH1B				
PC14							
PC15							
PD00		SPI1_CS					
PD01		SPI1_SCK					
PD02	PCA_ECI	LPUART0_RTS	TIM1_ETR				
PD03	UART1_CTS	SPI1_MISO	LPTIM1_TOG				
PD04	UART1_RTS	SPI1_MOSI	LPTIM1_TOGN				
PD05	UART1_TXD	LPTIM1_GATE					
PD06	UART1_RXD	LPTIM1_ETR					
PD07	UART1_TXD						
PD08	LPUART0_TXD						
PD09	LPUART0_RXD						
PD10	LPUART0_TXD						
PD11	LPUARTO_CTS						
PD12	LPUARTO_RTS	UART2_RTS					
PD13	UART2_RXD						
PD14	UART2_TXD						
PD15		UART2_CTS					
PE00	TIM1_CHA						
PE01	TIM2_CHA						
PE02	PCA_ECI						
PE03	PCA_CH0						
PE04	PCA_CH1						
PE05	PCA_CH2						
PE06	PCA_CH3						
PE07	TIM3_ETR	LPTIM1_GATE					
PE08	TIM3_CH0B	LPTIM1_ETR					
PE09	TIM3_CH0A	LPTIM1_TOG					
PE10	TIM3_CH1B	LPTIM1_TOGN		_			
PE11	TIM3_CH1A						
PE12	TIM3_CH2B	SPI0_CS	UART3_CTS				
PE13	TIM3_CH2A	SPI0_SCK	UART3_RTS				
PE14	TIM3_CH0B	SPI0_MISO	UART3_RXD				

PE15	TIM3_BK	SPI0_MOSI	UART3_TXD		
PF00	I2C0_SDA		UART1_TXD		
PF01	I2C0_SCL	TIM4_CHB	UART1_RXD		
PF02					
PF03					
PF04					
PF05					
PF06	I2C1_SCL	LPUART1_CTS	UART0_CTS		
PF07	I2C1_SDA	LPUART1_RTS	UART0_RTS		
PF09	TIM0_CHA				
PF10	TIM0_CHB				
PF11					

3.3 模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	VCAP	LDO内核供电输出(仅限内部电路使用,需外接不小于1uF
		的去耦电容)
ISP	BOOT0	当复位时 BOOT0 (PF11) 管脚为高电平,芯片工作于ISP
		编程模式,可通过ISP协议对Flash进行编程。
		当复位时 BOOT0 (PF11) 管脚为低电平,芯片工作于用
		户模式,芯片执行Flash内的程序代码,可通过SWD协议对
		Flash进行编程。
ADC	AIN0~AIN23	ADC输入通道0~23
	ADC_VREF	ADC外部参考电压
VC	VCIN0~VCIN15	VC 输入0~15
	VC0_OUT	VC0比较输出
	VC1_OUT	VC1比较输出
	VC2_OUT	VC2比较输出
LVD	LVDIN0	电压侦测输入0
	LVDIN1	电压侦测输入1
	LVDIN2	电压侦测输入2
	LVD_OUT	电压侦测输出
OPA	OPA_INN	OPA负端输入
y=0~4	OPA_INP	OPA正端输入
	OPA_OUTy	OPA输出
LCD	COMx	LCD公共端输出
x=0~7	SEGy	LCD区段端输出
y=0-52 z=1,2,3,H	VLCDz	外部电阻模式,外部电容模式使用管脚
UART	UARTx_TXD	UARTx数据发送端
x=0,1,2,3	UARTx_RXD	UARTx数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTx RTS
LPUART	LPUARTx_TXD	LPUART数据发送端
x=0,1	LPUARTx_RXD	LPUART数据接收端
	LPUARTx_CTS	LPUART CTS
	LPUARTx_RTS	LPUART RTS
SPI	SPIx_MISO	SPI模块主机输入从机输出数据信号
		·

x=0,1	SPIx_MOSI	SPI模块主机输出从机输入数据信号
	SPIx_SCK	SPI模块时钟信号
	SPIx_CS	SPI 片选
I2C	I2Cx_SDA	I2C模块数据信号
x=0,1	I2Cx_SCL	I2C模块时钟信号
通用定时器	TIMx_CHA	Timer的捕获输入比较输出A
TIMx	TIMx_CHB	Timer的捕获输入比较输出B
x=0,1,2	TIMx_ETR	Timer的外部计数输入信号
	TIMx_GATE	Timer的门控信号
通用定时器	TIM3_CHyA	Timer的捕获输入比较输出A
TIM3	TIM3_CHyB	Timer的捕获输入比较输出B
y=0,1,2	TIM3_ETR	Timer的外部计数输入信号
<i>y</i> 3,1,2	TIM3_GATE	Timer的门控信号
低功耗定时器	LPTIMx_TOG	LPTimer的翻转输出信号
LPTIMx	LPTIMx_TOGN	LPTimer的翻转输出反向信号
x=0,1	LPTIMx_EXT	LPTimer的外部计数输入信号
	LPTIMx_GATE	LPTimer的门控信号
可编程计数阵列	PCA_ECI	外部时钟输入信号
PCA	PCA_CH0	捕获输入/比较输出/PWM输出 0
	PCA_CH1	捕获输入/比较输出/PWM输出 1
	PCA_CH2	捕获输入/比较输出/PWM输出 2
	PCA_CH3	捕获输入/比较输出/PWM输出 3
	PCA_CH4	捕获输入/比较输出/PWM输出 4
PCNT	PCNT_S0	PCNT 脉冲计数输入0
	PCNT_S1	PCNT 脉冲计数输入1
	PCNT_S0FO	整形之后的SO脉冲信号,可供调试观察
	PCNT_S1FO	整形之后的S1脉冲信号,可供调试观察
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端A
Advanced Timer	TIM4_CHB	Advanced Timer4 比较输出/捕获输入端B
	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端A
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端B
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端A
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端B

表 3-1 模块信号说明

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

4 功能框图

5 存储区映射图

0x2000_8	保留
	SRAM (32KByte)
0x2000_0	0000
	100 000
	保留
0x0004_0	0000
	主闪存区 (256KByte)
0x0000_0	0000

6 典型应用电路图

注意:

- AVCC 与 DVCC 电压必须相同。
- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

7 电气特性

7.1 测试条件

除非特别说明,所有电压的都以 VSS 为基准。

7.1.1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 $T_A=25$ °C 和 $T_A=T_A$ max 下执行的测试(T_A max 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

7.1.2 典型数值

除非特别说明,典型数据是基于 $T_A=25$ °C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。 这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
V_{IN}	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	V
\Delta VCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大	:值电气参数	V

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > VCC 时,有一个正向注入电流;当 V_{IN} < VSS 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
I_{VCC}	经过DVCC/AVCC电源线的总电流(供应电流)(1)	300	mA
I _{vss}	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
	任意I/O和控制引脚上的输出灌电流	25	mA
I_{IO}	任意I/O和控制引脚上的输出电流	-25	mA
	RESETB引脚的注入电流	+/-5	mA
$I_{\text{INJ(PIN)}}^{(2)(3)}$	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{CS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\sum I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 $4 \uparrow I/O$ 端口上 $\sum I_{INJ(PIN)}$ 最大值的特性。

符号	描述	数值	单位
${ m T_{STG}}$	储存温度范围	-60 ~ + 150	°C
T_{J}	最大结温度	105	°C

表 7-3 温度特性

7.3 工作条件

7.3.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
f_{HCLK}	内部AHB时钟频率		0	48	MHz
f _{PCLK0}	内部APB0时钟频率		0	48	MHz
f _{PCLK1}	内部APB1时钟频率		0	48	MHz
DVCC	数字部分工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与DVCC ⁽²⁾ 相同	1.8	5.5	V
P_{D}	功率耗散 TA=85℃	LQFP100		476	mW
	功率耗散 TA=85℃	LQFP80		465	mW
	功率耗散 TA=85℃	LQFP64		455	mW
	功率耗散 T _A =85℃	LQFP48		364	mW
	功率耗散 T _A =85℃	QFN32		357	mW
T _A	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(3)	-40	105	°C
T _J	结温度范围		-40	105	°C

表 7-4 通用工作条件

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_I 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

7.3.2 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
$t_{ m Vcc}$	VCC上升速率		0	5	V/µs
$t_{ m Vcc}$	VCC下降速率		0	5	V/µs

表 7-5 上电和掉电的工作条件

7.3.3 内嵌复位和 LVD 模块特性

1. 设计保证,不在生产中测试。

图 7-1 POR/Brown Out 示意图

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压 (掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000		1.8±3.5%		V
		LVD_CR.VTDS =0001		1.9±3.5%		
		LVD_CR.VTDS =0010		2.0±3.5%		
		LVD_CR.VTDS =0011		2.1±3.5%		
		LVD_CR.VTDS =0100		2.2±3.5%		
		LVD_CR.VTDS=0101		2.3±3.5%		
		LVD_CR.VTDS=0110		2.4±3.5%		
		LVD_CR.VTDS=0111		2.5±3.5%		
		LVD_CR.VTDS=1000		2.6±3.5%		
		LVD_CR.VTDS=1001		2.7±3.5%		
		LVD_CR.VTDS=1010		2.8±3.5%		
		LVD_CR.VTDS=1011		2.9±3.5%		
		LVD_CR.VTDS=1100		3.0±3.5%		
		LVD_CR.VTDS=1101		3.1±3.5%		
		LVD_CR.VTDS=1110		3.2±3.5%		
		LVD_CR.VTDS=1111		3.3±3.5%		
Icomp	功耗			0.12		μΑ
Tresponse	响应时间			80		μs
Tsetup	建立时间			400		μs
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		μs
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-7 LVD 模块特性

7.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5V Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5V Reference Voltage	-40 ~85°C 2.8~5.5V	2.463	2.5	2.525	V [1]
V _{REF15}	Internal 1.5V Reference Voltage	常温25℃ 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference Voltage	-40 ~85°C 1.8~5.5V	1.477	1.5	1.519	V ^[1]
T_{Coeff}	Internal 2.5V 1.5V temperature coefficient	-40 ~ 85°C			120	ppm/ °C

^{1.} 数据基于考核结果,不在生产中测试

7.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 f_{HCLK} 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fpclK0 = fhclK, fpclK1 = fhclK。

Symbol	Parameter		Conditions	3	Typ ⁽¹⁾	Max ⁽²⁾	Unit
				4M	750		
			DCH	8M	1460		
	RCH clock source	16M	2850				
T	I_{DD} All peripherals clock ON, (Run in Run while (1) in RAM) $V_{CC}=3$.	V _{CAP} =1.5V	Clock source	22.12M	3940		
		$V_{CC}=3.3V$ $T_{A}=2xC$	3.3V	24M	4270		μΑ
· ·			PLL	32M	5750		
10.111)			RCH4M to				
			xxM	48M	8540		
			clock source				
				4M	350		μΑ

				8M	660		
			RCH	16M	1250		
			clock source	22.12M	1710		
	All peripherals clock OFF,	$V_{CAP} = 1.5V$	clock source	24M	1850		
	Run while(1) in RAM	V _{CC} =3.3V	PLL	32M	2560		
		T _A =2xC	RCH4M to	32101	2300		
			xxM	48M	3770		
			clock source	TOW	3770		
			orden source	4M	790		
				8M	1470		
			RCH	16M	2780		
I_{DD}	All peripherals clock OFF,	V _{CAP} =1.5V	clock source	22.12M	3720		
(Run	Run CoreMark in Flash	V _{CC} =3.3V		24M	4000		μΑ
CoreMark)		T _A =2xC	PLL		.000		
			RCH4M to	48M FlashWait=1	6080		
			xxM				
				4M	1000	1430	
		$V_{CAP}=1.5V$		8M	1890	2710	
		V _{CC} =1.8-5.5V	RCH	16M	3710	5160	μА
		T _A =N40C-	clock source	22.12M	5010	7000	
		85C		24M	5400	7570	
		V _{CAP} =1.5V		16M	3930	4990	
		$V_{CC} = 1.8$ - 5.5V	PLL	24M	5480	7080	
	All peripherals clock ON,		RCH4M to	32M FlashWait=1	6590	7640	μΑ
	Run while(1) in Flash	T _A =N40C-	xxM	40M FlashWait=1	8100	9470	
		85C	clock source	48M FlashWait=1	9610	11200	
				16M	3990	5030	
I_{DD}		V _{CAP} =1.5V	PLL	24M	5530	7130	
(Run		$V_{CC}=1.8-5.5V$	RCH8M to	32M FlashWait=1	6640	7680	μΑ
mode)		T _A =N40C-	xxM	40M FlashWait=1	8160	9470	
		85C	clock source	48M FlashWait=1	9670	11240	
				4M	610	990	
		V _{CAP} =1.5V		8M	1090	1830	
		V _{CC} =1.8-5.5V	RCH	16M	2080	3350	μΑ
		T _A =N40C-	clock source	22.12M	2770	4480	
	All peripherals clock OFF,	85C		24M	2970	4810	
	Run while(1) in Flash	V _{CAP} =1.5V	PLL	16M	2290	3150	
		V _{CC} =1.8-5.5V	RCH4M to	24M	3060	4360	
		$V_{CC}=1.8-5.5V$ $T_{A}=N40C-$		32M FlashWait=1	3410	4020	μΑ
		85C	clock source			4950	
		85C	clock source	40M FlashWait=1	4110	4950	

				48M FlashWait=1	4860	5870	
				16M	2340	3210	
		$V_{CAP}=1.5V$	PLL	24M	3120	4410	
		V _{CC} =1.8-5.5V	RCH8M to	32M FlashWait=1	3460	4070	μΑ
		T _A =N40C-	xxM	40M FlashWait=1	4160	4980	•
		85C	clock source	48M FlashWait=1	4910	5910	
				4M	550	620	
		V _{CAP} =1.5V		8M	1060	1190	
		V _{CC} =1.8-5.5V	RCH	16M	2050	2280	μΑ
		T _A =N40C-	clock source	22.12M	2830	3160	
		85C		24M	3070	3420	
				16M	2290	2560	
		V _{CAP} =1.5V	PLL	24M	3200	3590	
	All peripherals clock ON	$V_{CC}=1.8-5.5V$	RCH4M to	32M FlashWait=1	4190	4710	μΑ
		T _A =N40C-	xxM	40M FlashWait=1	5200	5850	·
		85C	clock source	48M FlashWait=1	6190	6980	
				16M	2350	2620	
		V _{CAP} =1.5V	PLL	24M	3250	3650	μА
		V _{CC} =1.8-5.5V	RCH8M to	32M FlashWait=1	4240	4760	
		T _A =N40C-	xxM	40M FlashWait=1	5250	5890	
I _{DD}		85C	clock source	48M FlashWait=1	6250	7010	
(Sleep		V _{CAP} =1.5V V _{CC} =1.8-5.5V T _A =N40C- 85C	RCH clock source	4M	150	180	
mode)				8M	260	310	μА
				16M	450	520	
				22.12M	610	700	
				24M	650	740	
				16M	690	780	
		V _{CAP} =1.5V	PLL	24M	790	890	
	All peripherals clock OFF	V _{CC} =1.8-5.5V	RCH4M to	32M FlashWait=1	990	1110	μΑ
		T _A =N40C- 85C	xxM	40M FlashWait=1	1200	1340	
		830	clock source	48M FlashWait=1	1410	1570	
				16M	740	840	
		V _{CAP} =1.5V	PLL	24M	840	950	
		V _{CC} =1.8-5.5V	RCH8M to	32M FlashWait=1	1040	1170	μΑ
		T _A =N40C- 85C	xxM clock source	40M FlashWait=1	1250	1400	
		0.50	Clock Source	48M FlashWait=1	1460	1630	
			XTL32K	T _A =N40-25C	11	20	
		V _{CAP} =1.5V close	clock source TA	T _A =50C	12	19	μΑ
(LP Run)		V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	19	27	
			Driver=0x0	-11 000			

	A11	V 1.577	XTL32K	T _A =N40-25C	8	16	
	All peripherals clock OFF, Run while(1) in Flash	$V_{CAP}=1.5V$ $V_{CC}=1.8-5.5V$	clock source	T _A =50C	9	15	μΑ
	Kun wime(1) in riasii	VCC=1.6-3.3 V	Driver=0x0	T _A =85C	16	24	
			XTL32K	T _A =N40-25C	6	7	
	All peripherals clock ON	V _{CAP} =1.5V	clock source	T _A =50C	7	8	μΑ
		V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	14	17	
			XTL32K	T _A =N40-25C	3	3	
I _{DD}	All peripherals clock OFF	$V_{CAP}=1.5V$ $V_{CC}=1.8-5.5V$	clock source	T _A =50C	4	5	μΑ
(LP Sleep)		VCC=1.8-3.3 V	Driver=0x0	T _A =85C	11	14	
	LpTimer+RTC+32K clk		XTL32K	T _A =N40-25C	3	4	
	ON,	V _{CAP} =1.5V	clock source	T _A =50C	4	5	μΑ
	Other clk OFF	V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	11	14	
	RTC+WDT+LPT+XTL32			T _A =N40-25C	1130	1340	
	K	V _{CAP} =1.5V	XTL32K Driver=0x0	T _A =50C	1860	2270	nA
	+DeepSleep	V _{CC} =1.8-5.5V	Diivei-0x0	T _A =85C	6520	8010	
-			VTI 22V	T _A =N40-25C	1030	1230	nA
	LPT+XTL32K +DeepSleep	$V_{CAP}=1.5V$ $V_{CC}=1.8-5.5V$	XTL32K Driver=0x0	T _A =50C	1760	2150	
	+Беерзгеер	VCC-1.6-3.3 V	Diivei-0x0	T _A =85C	6460	7840	
		V _{CAP} =1.5V V _{CC} =1.8-5.5V	XTL32K Driver=0x0	T _A =N40-25C	990	1170	
	RTC+XTL32K +DeepSleep			T _A =50C	1720	2100	nA
	+Беерзгеер			T _A =85C	6390	7820	
I_{DD}				T _A =N40-25C	990	1170	
(DeepSlee	XTL32K +DeepSleep	$V_{CAP}=1.5V$ $V_{CC}=1.8-5.5V$	XTL32K	T _A =50C	1720	2110	nA
p mode)	+Беерзісер	VCC-1.6-3.3 V	Driver=0x0	T _A =85C	6390	7790	
				T _A =N40-25C	930	1100	
	IRC32K +DeepSleep	$V_{CAP}=1.5V$ $V_{CC}=1.8-5.5V$		T _A =50C	1660	2010	nA
	+Беерзгеер	VCC-1.6-3.3 V		T _A =85C	6330	7650	
				T _A =N40-25C	710	840	
	WDT +DeepSleep	V _{CAP} =1.5V		T _A =50C	1430	1740	nA
	+Deepsteep	V _{CC} =1.8-5.5V		T _A =85C	6080	7500	
				T _A =N40-25C	610	730	
	DeepSleep	V _{CAP} =1.5V V _{CC} =1.8-5.5V		T _A =50C	1330	1630	nA
		VCC-1.0-3.3 V		T _A =85C	5990	7360	

表 7-1 工作电流特性

- 1. 若没有其他指定条件,该 Typ 的值是在 25 °C & V_{CC} = 3.3V 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 $^{\circ}$ C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试。

7.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式: 时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		$F_{MCLK} = 16MHz$		5.0		μs
		$F_{MCLK} = 24MHz$		4.0		μs

^{1.} 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7 外部时钟源特性

7.3.7.1 外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
f _{XTH_ext}	用户外部时钟频率(1)		0	8	32	MHz
V_{XTHH}	输入引脚高电平电压		0.7VCC		VCC	V
V_{XTHL}	输入引脚低电平电压		VSS		0.3VCC	V
T _{r(XTH)}	上升的时间(1)				20	ns
T _{f(XTH)}	下降的时间(1)				20	ns
T _{w(XTH)}	输入高或低的时间(1)		16			ns
C _{in(XTH)}	输入容抗(1)			5		pF
Duty	占空比		40		60	%
I_L	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.2 外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
f_{XTL_ext}	用户外部时钟频率(1)		0	32.768	1000	kHz
V_{XTLH}	输入引脚高电平电压		0.7VCC		VCC	V
V_{XTLL}	输入引脚低电平电压		VSS		0.3VCC	V
$T_{r(XTL)}$	上升的时间(1)				50	ns
$T_{f(XTL)}$	下降的时间(1)				50	ns
T _{w(XTL)}	输入高或低的时间(1)		450			ns
C _{in(XTL)}	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		30		70	%
I_{L}	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.3 高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振(1)(2)

符号	参数	条件	最小值	典型值	最大值	单位	
F _{CLK}	振荡频率		4		32	MHz	
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm	
		4M		400	1500	Ohm	
$C_{LX}^{(3)}$	负载电容	按晶体制造商要求进行配置。					
Duty	占空比		40	50	60	%	
Idd ⁽⁴⁾	电流	32M Xtal, CL=12pF, ESR=30ohm		600		μΑ	
g _m	跨导	起振	700			μA/V	
T _{start} (5)	启动时间	32MHz @ XTH_CR.Driver=1111		300		μs	
		4MHz @ XTH CR.Driver=0011		2		ms	

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. CLX指XTAL的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为8pF时,匹配电容的容值应为16pF。考虑PCB与MCU引脚之间的分布电容,建议选择容值为15pF或12pF的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 4. 电流跟随频率变化而变化,测试条件: XTH_CR.Driver=1110
- 5. Tstart 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而

变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。
 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。
 如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。
- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.7.4 低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率			32.768		kHz
ESR _{CLK}	支持的晶振ESR范围			65	85	kΩ
$C_{Lx}^{(2)}$	负载电容	按晶体制造商要求进行配置				
DC _{ACLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 kΩ		350	1000	nA
	· 电机	C _L =12 pF				
$g_{\rm m}$	跨导	起振	2.5			μA/V
T _{start} ⁽⁴⁾	启动时间	ESR=65 kΩ,		500		ms
		$C_L=12 pF$,				
		40% - 60% duty cycle has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. CLX 指 XTAL 的两个管脚的负载电容,用户**必须**按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。 如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。。

- 3. 典型值为XTL_CR.Driver=1001时的功耗。选择具有较小ESR值的高质量振荡器,可以通过减小XTL_CR.Driver设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。 如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。
- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.8 内部时钟源特性

7.3.8.1 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User trimming step for given		0.25		%
		VCC and T _A conditions				
		$VCC = 1.8 \sim 5.5V$	-3.5		+3.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F_{CLK}	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μА
		$F_{MCLK} = 8MHz$		100		μА
		$F_{MCLK} = 16MHz$		120		μА
		$F_{MCLK} = 24MHz$		140		μА
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

7.3.8.2 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User trimming step for given		0.5		%
		VCC and T _A conditions				
		VCC = 1.8 ~ 5.5V	-5		+5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		VCC = 1.8 ~ 5.5V	-3		+3	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		kHz
				32.768		
T _{CLK}	启动时间			150		μs
DC_{CLK}	占空比(1)		25	50	75	%
I_{CLK}	功耗			0.35		μA

^{1.} 由综合评估得出,不在生产中测试。

7.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	-	48	MHz
Duty ⁽¹⁾	输出占空比		48%	-	52%	
Tlock ⁽¹⁾	锁定时间	输入频率4MHz	-	100	200	μs

^{1.} 由综合评估得出,不在生产中测试。

7.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{FLASH}	擦写次数	Regulator voltage=1.5V,	20			kcycles
		$T_{AMB} = 25$ °C				
RET_{FLASH}	数据保存期限	$T_{AMB} = 85$ °C,	20			Years
		after 20 kcycles				
T_{b_prog}	编程时间 (字节)		22		30	μs
T_{w_prog}	编程时间(字)		40		52	μs
T_{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

7.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO (IEC61000-4-4)	Class:4 (A)
EFT to Power (IEC61000-4-4)	Class:4 (A)

软件建议

软件的流程中必须包含应对程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 EFT 测试时,可以把超出应用要求的干扰直接施加在芯片电源或 IO 上,当检测到意外动作的地方,软件部分进行加强以防止发生不可恢复的错误。

7.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		kV
VESD _{CDM}	ESD @ Charge Device Mode			1		kV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.13 I/O 端口特性

7.3.13.1 输出特性——端口

符号	参数	条件	最小值	最大值	单位
V_{OH}	High level output	Sourcing 4 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Source Current	Sourcing 8 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
V_{OL}	Low level output voltage	Sinking 5 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 14 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output	Sourcing 8 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Double source Current	Sourcing 18 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V_{OLD}	Low level output voltage	Sinking 8 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 18 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-4 端口输出特性

NOTES: 1. The maximum total current, I_{OH}(max) and I_{OL}(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.

2. The maximum total current, I_{OH}(max) and I_{OL}(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

7.3.13.2 输入特性——端口 PA,PB,PC,PD,PE,PF

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going input	VCC=1.8V	0.7VCC			V
	threshold voltage	VCC=3.3V	0.7VCC			V
		VCC=5.5V	0.7VCC			V
V _{IL}	Negative-going input	VCC=1.8V			0.3VCC	V
	threshold voltage	VCC=3.3V			0.3VCC	V
		VCC=5.5V			0.3VCC	V
V _{hys(1)}	Input voltage hysteresis	VCC=1.8V		0.3		V
	$(V_{IH} - V_{IL})$	VCC=3.3V		0.4		V
		VCC=5.5V		0.6		V
R _{pullhigh}	Pullup resistor	Pullup enabled		80		kΩ
		VCC=3.3V				
R_{pulllow}	Pulldown resistor	Pulldown enabled		40		kΩ
		VCC=3.3V				
Cinput	Input capacitance			5		pF

^{1.} 由综合评估得出,不在生产中测试。

7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External interrupt	External trigger signal for the	1.8V	30		ns
	timing	interrupt flag (see Note 1)	3.3V	30		ns
			5.5V	30		ns
t(cap)	Timer capture	Timer4/5/6 capture pulse	1.8V	0.5		μs
	timing	width	3.3V	0.5		μs
		Fsystem = 4MHz	5.5V	0.5		μs
t(clk)	Timer clock	Timer0/1/2/4/5/6 external	1.8V		PCLK/2	MHz
	frequency applied	clock input	3.3V		PCLK/2	MHz
	to pin	Fsystem = 4MHz	5.5V		PCLK/2	MHz
t(pca)(2)	PCA clock	PCA external clock input	1.8V		PCLK/8	MHz
	frequency	Fsystem = 4MHz	3.3V		PCLK/8	MHz
	applied to pin		5.5V		PCLK/8	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

^{2.} 由综合评估得出,不在生产中测试。

7.3.13.4 端口漏电特性——PA,PB,PC,PD,PE,PF

符号	参数	条件	最小值	典型值	最大值	单位
I _{lkg(Px.y)}	Leakage current	V _(Px.y) (see Note 1,2)		±50		nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

7.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{IL}(\text{RESETB})}^{\ \ (1)}$	输入低电平电压		-0.3		0.3VCC	V
V _{IH(RESETB)}	输入高电平电压		0.7VCC		VCC+0.3	V
$V_{\text{hys(RESETB)}}$	施密特触发器电压迟滞			200		mV
R_{PU}	弱上拉等效电阻	$V_{IN} = V_{SS}$		80		ΚΩ
$V_{\text{F(RESETB)}}^{(1)}$	输入滤波脉冲				100	ns
$V_{NF(RESETB)}^{(1)}$	输入非滤波脉冲		300			ns

^{1.} 由设计保证,不在生产中测试。

7.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
V _{ADCREFIN}	Input range of external	Single ended	0		AVCC	V
	reference voltage	Single chied			Avec	
DEV _{AVCC/3}	AVCC/3精度			3		%
I _{ADC1}	Active current					
	including reference	200Ksps		2		mA
	generator and buffer					
I _{ADC2}	Active current without					
	reference generator and	1Msps		0.5		mA
	buffer					
C _{ADCIN}	ADC input capacitance			16	19.2	pF
R _{ADC} ⁽¹⁾	ADC sampling switch			1.5		kΩ
	impedance					
R _{AIN} ⁽¹⁾	ADC external input			100	kΩ	
	resistor ⁽²⁾				100	KS2
FADCCLK	ADC clock Frequency				24M	Hz
TADCSTART	Startup time of			20		μs

^{2.} The port pin must be selected as input.

	reference					
	generator and ADC					
	core					
T _{ADCCONV}	Conversion time		20	24	28	cycles
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V	10.3		Bit	
		200Ksps@VCC>=1.8V			Bit	
		REF=EXREF				
		1Msps@VCC>=2.7V		10.3		
	Effective Bits	500Ksps@VCC>=2.4V				Bit
ENOB	Effective Bits	200Ksps@VCC>=1.8V				Bit
		REF=VCC				
		200Ksps@VCC>=1.8V		9.4		Bit
		REF=internal 1.5V				Bit
		200Ksps@VCC>=2.8V		0.4		Bit
		REF=internal 2.5V		9.4		DIL
	Signal to Noise Ratio	1Msps@VCC>=2.7V	68.2			
		500Ksps@VCC>=2.4V			dB	
		200Ksps@VCC>=1.8V		00.2		ub
		REF=EXREF				
SNR		1Msps@VCC>=2.7V	68.2			
		500Ksps@VCC>=2.4V			dB	
		200Ksps@VCC>=1.8V		00.2		ub
		REF=VCC				
		200Ksps@VCC>=1.8V		60		dB
		REF=internal 1.5V		00		ub
		200Ksps@VCC>=2.8V		60		dB
		REF=internal 2.5V		00		uD
DNL ⁽¹⁾	Differential non-	200Ksps;	-1		1	LSB
	linearity	VREF=EXREF/AVCC			1	LSD
INL ⁽¹⁾	Integral non-linearity	200Ksps;	-3		3	LSB
		VREF=EXREF/AVCC				155
Eo	Offset error			0		LSB
E_g	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表。

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	M
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R_{AIN} (k Ω)	$F_{ADC}(kHz)$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量減小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25°C 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		μΑ
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		μs
	when one input cross	VCx_BIAS_SEL=01		5		
	another	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time	VCx_BIAS_SEL=00		20		μs
	when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable			20		μs
	to 1.2V BGR reference,					
	Temp sensor voltage, ADC					
	internal 1.5V , 2.5V					
	reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μs
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

7.3.17 OPA 特性

OPA: $(AVCC=2.2 \sim 5.5 \text{ V}, AVSS=0 \text{ V}, Ta=-40 \sim +85 ^{\circ}\text{C})$

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVCC	V
Vo	输出电压(1)		0.1	-	AVCC-0.2	V
Io	输出电流(1)				1	mA
RL	负载电阻(1)		5K			Ohm
Tstart	初始化时间(2)				20	μs
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2,		±6		mV
V 10	- 個八大 - 四 - 巴	RL= $5k\Omega$, Rs= 50 pF		±0		III V
PM	相位裕度(1)	Vic=AVCC/2, Vo=AVCC/2		80		deg
FIVI	7日7五7日/文气	RL=5kΩ, CL=50pF		80	-	ueg
UGBW	单位增益带宽(1)	Vic=AVCC/2, Vo=AVCC/2		9.3		MHz
UGBW	一千四相皿市见"	RL=5kΩ, CL=50pF		7.3		MIUZ
SR	压摆率(1)	RL=5kΩ, CL=50pF		8		V/µs

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

7.3.18 LCD 控制器

符号	参数	工作条件	最小值	典型值	最大值	单位
	工作电流	VCC=3.3V,外部电容 模式		0.2		μΑ
I_{LCD}		VCC=3.3V,外部电阻 模式		0.2		μΑ
		VCC=3.3V,内部电阻 模式		3.3		μΑ
R _H	低驱动电阻			1M		Ω
R_{L}	高驱动电阻			360K		Ω
V_{LCDH}	LCD 可调最高电压				VCC	V
V_{LCD3}	LCD 最高电压				VLCDH	V
V_{LCD2}	LCD 2/3电压				2/3 VLCDH	V
V_{LCD1}	LCD 1/3电压				1/3 VLCDH	V
$V_{\rm LCD0}$	LCD 最低电压		0			V
$\triangle V_{XX}$	LCD 电压偏差	T _A =-40~85°C		±5%		

7.3.19 DAC 特性

符号	参数	工作条件	最小值	典型值	最大值	单位
V_{DACOUT}	Output voltage	AVDD voltage reference,	0		Vcc	V
· DACOUT	range	single ended			, 55	,
V_{DACCM}	Output common		0		Vcc	V
▼ DACCM	mode voltage range		U		VCC	•
I_{DAC}	Active current	500KSamples/s		15u		μΑ
SR_{DAC}	Sample rate				500	Ksps
t _{DACCONV}	Conversion time		2			μs
t _{DACSETTLE}	Setting time			5		μs
SNR _{DAC}	Signal to Noise			59		dB
SINKDAC	Ratio			39		uБ
SNDR _{DAC}	Signal to Noise and			57		dB
SINDRDAC	Distortion Ratio			37		uБ
CEDD	Spurious Free			56		dB
SFDR _{DAC}	Dynamic Range			30		uБ
V _{DACOFFSET}	Offset voltage	w/o buffer		2		mV
DMI	Differential non-			.1		LSB
DNL_{DAC}	linearity			±1		LSB
INII	Integral non-			.5		I CD
INL_{DAC}	linearity			±5		LSB

7.3.20 TIM 定时器特性

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM 输出)的特性 详情,参见下表。

符号	参数	条件	最小值	最大值	单位
	定时器分辨时间		1		t _{TIMCLK}
t_{res}		f _{TIMCLK} =48MHz	20.8		ns
c	外部时钟频率		0	f _{TIMCLK/2}	MHz
f _{ext}		f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
T _{counter}	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
Т	具十可 4 4 4 4 4 4 4 4 4 4 4 4 4			67108864	t _{TIMCLK}
T _{MAX_COUNT}	最大可能计数	f _{TIMCLK} =48MHz		1.4	S

1. 由设计保证,不在生产中测试。

表 7-2 高级定时器 (ADVTIM) 特性

符号	参数	条件	最小值	最大值	单位
4	定时器分辨时间		1		t _{TIMCLK}
t _{res}		f _{TIMCLK} =48MHz	20.8		ns
f	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}	外部的 钾	f _{TIMCLK} =48MHz	0	24	MHz
Des	定时器分辨率			16	位
Res _{Tim}		模式0自由计数		32	位
т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
T _{counter}	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
т				16777216	t _{TIMCLK}
T _{MAX_COUNT}	最大可能计数	f _{TIMCLK} =48MHz		349.5	ms

1. 由设计保证,不在生产中测试。

表 7-3 通用定时器特性

符号	参数	条件	最小值	最大值	单位
•	定时器分辨时间		1		t _{TIMCLK}
t_{res}		f _{TIMCLK} =48MHz	20.8		ns
t	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}		f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
Т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
$T_{counter}$	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
Т	最大可能计数			2097152	t _{TIMCLK}
T _{MAX_COUNT}	取入り配订数	f _{TIMCLK} =48MHz		43.69	ms

1. 由设计保证,不在生产中测试。

表 7-4 PCA 特性

符号	参数	条件	最小值	最大值	单位
_	定时器分辨时间		1		t _{TIMCLK}
t_{res}		f _{TIMCLK} =48MHz	20.8		ns
c	外部时钟频率		0	f _{TIMCLK/2}	MHz
f _{ext}		f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
T _{counter}	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
T _{MAX_COUNT}				16777216	t _{TIMCLK}
	最大可能计数	f _{TIMCLK} =48MHz		349.53	ms

1. 由设计保证,不在生产中测试。

表 7-5 低功耗定时器特性

符号	参数	条件	最小值	最大值	单位
t _{res}	WDT 溢出时间	f _{WDTCLK} =10kHz	1.6	52000	ms

1. 由设计保证,不在生产中测试。

表 7-6 WDT 特性

7.3.21 通信接口

7.3.21.1 I2C 特性

I2C 接口特性如下表:

符号	参数	标准模式	标准模式 (100K)		快速模式(400K)		高速模式(1M)	
175	少 数	最小值	最大值	大值 最小值		最小值	最大值	位
t _{SCLL}	SCL 时钟低时间	4.7		1.25		0.5		μs
t _{SCLH}	SCL 时钟高时间	4.0		0.6		0.26		μs
t _{SU.SDA}	SDA 建立时间	250		100		50		ns
t _{HD.SDA}	SDA 保持时间	0		0		0		μs
t _{HD.STA}	开始条件保持时间	2.5		0.625		0.25		μs
t _{SU.STA}	重复的开始条件建立时间	2.5		0.6		0.25		μs
t _{SU.STO}	停止条件建立时间	0.25		0.25		0.25		μs
	总线空闲(停止条件至开	4.7		1.2		0.5		
$t_{ m BUF}$	始条件)	件) 4.7	1.3		0.5		μs	

1. 由设计保证,不在生产中测试。

表 7-7 I2C 接口特性

图 7-3 I2C 接口时序

7.3.21.2 SPI 特性

符号	参数	条件	最小值	最大值	单位
		主机模式	62.5	-	ns
		从机模式	125		
t _{c(SCK)}	串行时钟的周期	$f_{PCLK} = 48MHz$	125	-	ns
		从机模式	250		
		$f_{PCLK} = 16MHz$	250	-	ns
	串行时钟的高电平时间	主机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{w(SCKH)}	中11 时7700间电1时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
	串行时钟的低电平时间	主机模式	$0.5 \times t_{c(SCK)}$	-	ns
$t_{w(SCKL)}$	中11的针的低电干时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{su(SSN)}	从机选择的建立时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{h(SSN)}	从机选择的保持时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{v(MO)}	主机数据输出的生效时间	$f_{PCLK} = 48MHz$	-	3	ns
t _{h(MO)}	主机数据输出的保持时间	$f_{PCLK} = 48MHz$	2	-	ns
t _{v(SO)}	从机数据输出的生效时间	$f_{PCLK} = 48MHz$	-	50	ns
t _{h(SO)}	从机数据输出的保持时间	$f_{PCLK} = 48MHz$	30	-	ns
t _{su(MI)}	主机数据输入的建立时间		10	-	ns
t _{h(MI)}	主机数据输入的保持时间		2	-	ns
t _{su(SI)}	从机数据输入的建立时间		10	-	ns
t _{h(SI)}	从机数据输入的保持时间		2	-	ns

^{1.} 由设计保证,不在生产中测试。

表 7-8 SPI 接口特性

SPI 接口信号的波形和时序参数如下:

图 7-4 SPI 时序图 (主机模式)

图 7-5 SPI 时序图 (从机模式 cpha=0)

图 7-6 SPI 时序图 (从机模式 cpha=1)

8 封装信息

8.1 封装尺寸

LQFP100 封装

	14 x 14 Millimeter					
Symbol	Min	Nom	Max			
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
С	0.13		0.17			
c1	0.12	0.13	0.14			
D	15.80	16.00	16.20			
D1	13.90	14.00	14.10			
Е	15.80	16.00	16.20			
E1	13.90	14.00	14.10			
eB	15.05		15.35			
e		0.50BSC				
L	0.45		0.75			
L1		1.00REF				
θ	0		7°			

NOTE:

WITH PLATING

SECTION B-B

 Dimensions "D1" and "E1" do not include mold flash.

BASE METAL

LQFP80 封装

	12	12 x 12 Millimeter				
Symbol	Min	Nom	Max			
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
c	0.13		0.17			
c1	0.12	0.13	0.14			
D	13.80	14.00	14.20			
D1	11.90	12.00	12.10			
E	13.80	14.00	14.20			
E1	11.90	12.00	12.10			
eB	13.05		13.25			
e	0.50BSC					
L	0.45	0.60	0.75			
L1		1.00REF				
θ	0		7°			

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP64 封装

	L	LQFP64 (10x10)			LQFP64 (7x7)		
Symbol	Min	Nom	Max	Min	Nom	Max	
A			1.60			1.60	
A1	0.05		0.15	0.05		0.15	
A2	1.35	1.40	1.45	1.35	1.40	1.45	
A3	0.59	0.64	0.69	0.59	0.64	0.69	
b	0.18		0.26	0.16		0.24	
b1	0.17	0.20	0.23	0.15	0.18	0.21	
С	0.13		0.17	0.13		0.17	
c1	0.12	0.13	0.14	0.12	0.13	0.14	
D	11.80	12.00	12.20	8.80	9.00	9.20	
D1	9.90	10.00	10.10	6.90	7.00	7.10	
Е	11.80	12.00	12.20	8.80	9.00	9.20	
E1	9.90	10.00	10.10	6.90	7.00	7.10	
eB	11.05		11.25	8.10		8.25	
e	0.50BSC			0.40BSC			
L	0.45		0.75	0.45		0.75	
L1	1.00REF			1.00REF			
θ	0°		7°	0°		7°	

NOTE:

- Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

	7 x 7 Millimeter				
Symbol	Min	Min Nom			
A			1.60		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
b	0.18		0.26		
b1	0.17	0.20	0.23		
С	0.13		0.17		
c1	0.12	0.13	0.14		
D	8.80	9.00	9.20		
D1	6.90	7.00	7.10		
Е	8.80	9.00	9.20		
E1	6.90	7.00	7.10		
eB	8.10		8.25		
e	0.50BSC				
L	0.40		0.65		
L1		1.00REF			
θ	0		7°		

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

QFN32 封装

	4 x 4 Millimeter					
Symbol	3.61	N	2.6			
	Min	Nom	Max			
A	0.70	0.75	0.80			
A1	0	0.02	0.05			
AI	0	0.02	0.03			
b	0.15	0.20	0.25			
b1		0.14REF				
01		0.14REI				
c	0.18	0.20	0.25			
D	3.90	4.00	4.10			
Ъ	3.70	4.00	4.10			
D2	2.70	2.80	2.90			
e	0.40BSC					
		01.0250				
Nd	2.80BSC					
Г	2.00	4.00	4.10			
Е	3.90	4.00	4.10			
E2	2.70	2.80	2.90			
Ne	2.80BSC					
L	0.25	0.30	0.35			
h	0.30	0.35	0.40			
- 11	0.30	0.55	0.70			
L/F 载体尺寸						
(Mil)	122*122					

8.2 焊盘示意图

LQFP100 封装 (14mm x 14mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP80 封装 (12mm x 12mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP64 封装 (10mm x 10mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP64 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP48 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

QFN32 封装 (4mm x 4mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

8.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

LQFP100 封装(14mm x 14mm) / LQFP80 封装(12mm x 12mm) LQFP64 封装(10mm x 10mm) / LQFP64 封装(7mm x 7mm) LQFP48 封装(7mm x 7mm)

QFN32 封装 (4mm x 4mm)

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

8.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 $T_j(^{\circ}\mathbb{C})$ 可以按照下面的公式计算:

$$T_j = T_{amb} + (P_D \ x \ \theta_{JA})$$

- Tamb 是指封装芯片工作时的工作环境温度,单位是℃;
- θ_{JA} 是指封装对工作环境的热阻系数,单位是℃/W;
- P_D 等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 I_{DD} x V_{DD} ,I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_j ,不可以超出芯片可容许的最大结温度 T_J 。

Package Type and Size	Thermal Resistance Junction-ambient Value (θ_{JA})	Unit
LQFP100 14mm x 14mm / 0.5mm pitch	50 +/- 10%	°C/W
LQFP80 12mm x 12mm / 0.5mm pitch	55 +/- 10%	°C/W
LQFP64 10mm x 10mm / 0.5mm pitch	65 +/- 10%	°C/W
LQFP64 7mm x 7mm / 0.4mm pitch	75 +/- 10%	°C/W
LQFP48 7mm x 7mm / 0.5mm pitch	75 +/- 10%	°C/W
QFN32 4mm x 4mm / 0.4mm pitch	53 +/- 10%	°C/W

表 8-1 各封装热阻系数表

9 订购信息

PartN	um ber	H C 32L196P C TA-LQ FP 100	HC32L196MCTA-LQFP80	HC32L196KCTA-LQFP64	HC32L196KCTA-LQ64	HC32L196JCTA-LQ48	HC32L190JCTA+LQ48	HC32L190FCUA-QFN32TR
M em ory	Flash	256K	256K	256K	256K	256K	256K	256K
мешогу	RAM	32K	32K	32K	32K	32K	32K	32K
14	,	88	72	56	56	40	40	26
	G T IM E R	4	4	4	4	4	4	4
TMER	ATM ER	3	3	3	3	3	3	3
IMEK	LPT MER	2	2	2	2	2	2	2
	R TC	√	√	√	√	√	√	√
	UART	4	4	4	4	2	2	2
Connectivity	LPUART	2	2	2	2	2	2	1
c onnec as as	12C	2	2	2	2	2	2	2
	SPI	2	2	2	2	2	2	1
	ADC *12bit	24ch	23ch	23ch	23ch	17ch	17ch	8ch
Analog	DAC*12bit	1 ch	1ch	1 ch	1 ch	1ch	1 ch	1 ch
ппарв	0 P	1	1	1	1	1	1	1
	Comp	3	3	3	3	3	3	3
D isplay	LC D	4*52/6*50/8*48	4*47,6*45,8*43	4*40/6*38/8*36	4*40,6*38,8*36	4*26/6*24/8*22	-	-
Secrety	AES	√	√	√	√	√	√	√
LV	D	√	√	√	√	√	√	√
LV	R	√	√	√	√	√	√	√
Votage	V dd	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v
Pack	age	LQFP100(14*14)	LQFP80(12*12)	LQFP64(10*10)	LQ FP 64 (7*7)	LQ FP 48 (7*7)	LQ FP 48 (7*7)	QFN 32 (4*4)
出货	形式	盘装	盘装	盘装	盘装	盘装	盘装	卷带
胂值]距	0.5m m	0.5m m	0.5m m	0.4m m	0.5m m	0.5m m	0.4m m

订购前,请联系销售窗口咨询最新量产信息。

10 版本记录 & 联系方式

版本	修订日期	修订内容摘要
Rev1.0	2019/9/11	初稿发布。
Rev1.1	2020/1/17	更新以下信息:①丝印说明;②典型应用电路图;③高速外部时钟XTH和低速外部时钟XTL中配图和注意事项。
Rev1.2	2020/3/20	更新以下信息: ①内部 RCL振荡器; ② "OP3" → "OPA"。
Rev1.3	2020/4/30	更新以下数据:①ADC特性中增加AVCC/3精度;②7.3.7.2中修正笔误;③LCD控制器中I _{LCD} ; ④7.3.8.2中RCL振荡器精度。
Rev1.4	2020/7/31	更新以下数据: ①增加7.3.20、7.3.21、8.2和8.4节; ②7.3.11等级; ③7.3.13.2中V _{IH} 和V _{IL} 的值。
Rev1.5	2020/9/30	更新以下信息: ①增加SPI 特性; ②1.4描述; ④7.3.14的V _{IL} 和V _{IH} 。
Rev1.6	2021/5/31	更新以下信息:①修改声明;②I2C 特性中t _{HD.STA} 和t _{SU.STO} 参数;③存储器特性中数据保存期限;④增加外部时钟源特性中gm参数。
Rev1.7	2022/3/9	公司Logo更新。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@xhsc.com.cn

网址: http://www.xhsc.com.cn

通信地址: 上海市浦东新区中科路 1867号 A座 10层

邮编: 201210

