Собствени вектори и инвариантни подпространства на линеен оператор.

Определение 1. Характеристичният полином на квадратна матрица $A \in M_{n \times n}(F)$ от ред n е

$$f_A(x) = \det(A - xE_n) = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ & \dots & & \dots & & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix} =$$

$$= (-1)^n x^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) x^{n-1} + \dots + \det(A).$$

Корените на $f_A(x) = 0$ се наричат характеристични корени на A.

Лема 2. Ако $A \in M_{n \times n}(F)$ и $B = T^{-1}AT \in M_{n \times n}(F)$ са подобни матрици, то характеристичните полиноми $f_A(x) = f_B(x)$ на A и B съвпадат.

Доказателство. Вземайки предвид $xE_n = x(T^{-1}E_nT) = T^{-1}(xE_n)T$, пресмятаме

$$f_B(x) = \det(B - xE_n) = \det[T^{-1}AT - T^{-1}(xE_n)T] = \det[T^{-1}(A - xE_n)T] =$$

$$= \det(T^{-1})\det(A - xE_n)\det(T) = \det(T)^{-1}f_A(x)\det(T) = f_A(x).$$

Да напомним, че матриците на линеен оператор $\varphi:V\to V$ в крайномерно пространство V спрямо различни базиси са подобни помежду си. Това дава основание за следното

Определение 3. Нека $\varphi: U \to U$ е линеен оператор в крайномерно пространство U над поле F. Характеристичният полином на матрицата на φ спрямо един, а оттам и всеки един базис на V се нарича характеристичен полином на φ и се бележи с $f_{\varphi}(x)$. Корените на $f_{\varphi}(x)$ са характеристичните корени на φ .

Определение 4. Собствен вектор на линеен оператор $\varphi: V \to V$ е ненулев вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$, изпълняващ равенството $\varphi(v) = \lambda v$ за някое $\lambda \in F$.

Казваме, че λ е собствена стойност на φ , отговаряща на собствения вектор v.

Твърдение 5. Нека $\varphi: V \to V$ е линеен оператор в крайномерно линейно пространство V над поле F. Тогава характеристичните корени на φ от F съвпадат със собствените стойности на φ .

Доказателство. Да напомним, че хомогенна система линейни уравнения $Mx = \mathbb{O}_{n \times 1}$ с квадратна матрица от коефициенти $M \in M_{n \times n}(F)$ има ненулево решение тогава и само тогава, когато размерността на пространството от решения е $n - \operatorname{rk}(M) > 0$. Последното е равносилно на $\operatorname{rk}(M) < n$ и е изпълнено точно когато $\det(M) = 0$.

Нека $e = (e_1, \ldots, e_n)$ е базис на V и $A \in M_{n \times n}(F)$ е матрицата на φ спрямо базиса e на V. Вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ с координати $x \in M_{n \times 1}(F) \setminus \{\mathbb{O}_{n \times 1}\}$ спрямо базиса e е собствен вектор на φ , отговарящ на собствена стойност $\lambda \in F$ точно когато

$$Ax = \lambda x = \lambda E_n x.$$

Това е изпълнено тогава и само тогава, когато x е ненулево решение на хомогенната система линейни уравнения

$$(A - \lambda E_n)x = \mathbb{O}_{n \times 1}.$$

Последното е еквивалентно на

$$\det(A - \lambda E_n) = 0$$

и е в сила точно когато λ е характеристичен корен на φ от полето F.

Твърдение 6. Нека $\lambda_1, \ldots, \lambda_n$ са различни собствени стойности на линеен оператор $\varphi: V \to V$ в пространство V над поле F. За всяко $1 \le i \le n$ да предположим, че $v_{i,1}, \ldots, v_{i,k_i} \in V$ са линейно независими собствени вектори на φ , отговарящи на собствената стойност λ_i . Тогава системата вектори

$$\{v_{i,j} \mid 1 \le j \le k_i, \ 1 \le i \le n\}$$

е линейно независима.

В частност, ако v_1, \ldots, v_n са собствени вектори на φ , отговарящи на различни собствени стойности $\lambda_1, \ldots, \lambda_n$, то v_1, \ldots, v_n са линейно независими, защото всеки от тези собствени вектори е ненулев, а оттам и линейно независим.

Доказателство. С индукция по броя n на собствените стойности $\lambda_1, \ldots, \lambda_n$ на φ , за n=1 няма какво да се доказва. В общия случай да разгледаме линейна комбинация

$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} \mu_{i,j} v_{i,j} = \overrightarrow{\mathcal{O}}_V \tag{1}$$

на дадените вектори, равна на нулевия вектор на V. Действието на φ върху (1) дава

$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} \mu_{i,j} \lambda_i v_{i,j} = \overrightarrow{\mathcal{O}}_V.$$
(2)

За да елиминираме $v_{n,1},\ldots,v_{n,k_n}$ от (1) и (2), умножаваме (1) с $-\lambda_n$ и прибавяме към (2). Получаваме

$$\overrightarrow{\mathcal{O}}_V = \sum_{i=1}^n \sum_{i=1}^{k_i} \mu_{i,j} (\lambda_i - \lambda_n) v_{i,j} = \sum_{i=1}^{n-1} \sum_{j=1}^{k_i} \mu_{i,j} (\lambda_i - \lambda_n) v_{i,j}.$$

По индукционно предположение, системата $\{v_{i,j} | 1 \le i \le n-1, 1 \le j \le k_i\}$ е линейно независима, така че

$$\mu_{i,j}(\lambda_i - \lambda_n) = 0$$
 за всички $1 \le i \le n-1$ и $1 \le j \le k_i$.

Съгласно $\lambda_i-\lambda_n\neq 0$ за $1\leq i\leq n-1$, стигаме до извода, че $\mu_{i,j}=0$ за всички $1\leq i\leq n-1$ и $1\leq j\leq k_i$. Сега (1) приема вида

$$\sum_{j=1}^{k_n} \mu_{n,j} v_{n,j} = \overrightarrow{\mathcal{O}}_V.$$

Съгласно линейната независимост на $v_{n,1},\dots,v_{n,k_n}$, коефициентите $\mu_{n,j}=0$ се анулират за всички $1\leq j\leq k_n$. Това доказва линейната независимост на

$$\{v_{i,j} \mid 1 \le i \le n, \ 1 \le j \le k_i\}.$$

Определение 7. (i) Ако квадратна матрица $A \in M_{n \times n}(F)$ от ред n има n различни характеристични корена от F, казваме, че A има прост спектър.

(ii) Линеен оператор $\varphi: V \to V$ в n-мерно пространство V над поле F има прост спектър, ако φ има n различни характеристични корена от F.

Твърдение 8. (i) Нека $\varphi: V \to V$ е линеен оператор с прост спектър в n-мерно пространство V над поле F. Тогава съществува базис v_1, \ldots, v_n на V, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

на φ е диагонална. Еквивалентно, съществува базис на V, съставен от собствени вектори за φ .

(ii) Нека $A \in M_{n \times n}(F)$ е матрица с прост спектър. Тогава съществува обратима матрица $T \in M_{n \times n}(F)$, така че $D = T^{-1}AT$ е диагонална.

Доказателство. (i) По определение, φ е оператор с прост спектър, ако има n различни характеристични корена $\lambda_1, \ldots, \lambda_n$ от F. Съгласно Твърдение $5, \lambda_1, \ldots, \lambda_n$ са собствени стойности на φ . Ако v_i са собствени вектори на $\varphi: V \to V$, отговарящи на собствените стойности λ_i , то v_1, \ldots, v_n са линейно независими по Твърдение 6. Следователно v_1, \ldots, v_n е базис на V, в който матрицата на φ е диагонална,

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

и диагоналните елементи са равни на съответните собствени стойности.

(ii) Нека $e=(e_1,\ldots,e_n)$ е базис на n-мерно пространство V над F, а $\varphi:V\to V$ е линейният оператор с матрица $A\in M_{n\times n}(F)$ спрямо e. Тогава φ има прост спектър и съгласно (i) съществува базис $v=(v_1,\ldots,v_n)$ на V, в който матрицата на φ е диагонална,

$$D = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{array}\right).$$

Матрицата на прехода $T \in M_{n \times n}(F)$ от базиса e към базиса v = eT е обратима и

$$D = T^{-1}AT.$$

Определение 9. Подпространство W на линейно пространство V е инвариантно относно линеен оператор $\varphi: V \to V$, ако $\varphi(W) \subseteq W$.

Лема 10. Нека $\varphi: V \to V$ е линеен оператор в линейно пространство V над поле F.

- (i) За всяко $\lambda \in F$ множеството $U_{\lambda} = \{v \in V \mid \varphi(v) = \lambda v\}$ е φ -инвариантно подпространство на V. Ако λ е собствена стойност на φ , то U_{λ} е обединението на собствените вектори на φ , отговарящи на собствената стойност λ и нулевия вектор на V. Ако λ не е собствена стойност на φ , то $U_{\lambda} = \{\overrightarrow{\mathcal{O}}\}$ е нулевото подпространство.
- (ii) Ненулев вектор $v \in V \setminus \{ \overrightarrow{\mathcal{O}}_V \}$ поражда 1-мерно φ -инвариантно подпространство l(v) на V тогава и само тогава, когато v е собствен вектор на φ .

Доказателство. (i) Подмножеството $U_{\lambda} = \{v \in V \mid \varphi(v) = \lambda v\}$ на V е подпространство на V, защото за произволни $u_1, u_2 \in U_{\lambda}$ и $\mu \in F$ е в сила $u_1 + u_2, \mu u_1 \in U_{\lambda}$, съгласно

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2) = \lambda u_1 + \lambda u_2 = \lambda(u_1 + u_2)$$
 и

$$\varphi(\mu u_1) = \mu \varphi(u_1) = \mu(\lambda u_1) = (\mu \lambda) u_1 = (\lambda \mu) u_1 = \lambda(\mu u_1).$$

Подпространството U_{λ} на V е φ -инвариантно, защото за произволен вектор $u \in U_{\lambda}$ е изпълнено $\varphi(u) = \lambda u \in U_{\lambda}$.

(ii) Ако 1-мерното подпространство l(v) на V е φ -инвариантно, то ненулевият вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ се изобразява в $\varphi(v) \in l(v)$, така че $\varphi(v) = \lambda v$ за някое $\lambda \in F$ и v е собствен вектор на φ , отговарящ на собствена стойност λ .

Обратно, ако $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ е собствен вектор на φ , отговарящ на собствена стойност λ , то произволен вектор $\mu v \in l(v)$ се изобразява в $\varphi(\mu v) = \mu \varphi(v) = \mu(\lambda v) = \mu \lambda v \in l(v)$ и 1-мерното подпространство l(v) на V е φ -инвариантно.

Приемаме без доказателство следната

Теорема 11. (Основна Теорема на алгебрата:) Всеки непостоянен полином $f(x) \in \mathbb{C}[x] \setminus \mathbb{C}$ с комплексни коефициенти има комплексен корен $\alpha \in \mathbb{C}$.

В частност, всеки линеен оператор $\varphi: V \to V$ в крайномерно пространство V над $\mathbb C$ има комплексен характеристичен корен $\lambda \in \mathbb C$. Съгласно Твърдение 5, λ е собствена стойност на φ и съществува собствен вектор $v \in V \setminus \{\overrightarrow{\mathcal O}\}$ на φ , отговарящ на собствената стойност λ . В резултат, l(v) е 1-мерно φ -инвариантно подпространство на V. Това доказва следното

Твърдение 12. Всеки линеен оператор $\varphi: V \to V$ в крайномерно линейно пространство V над полето $\mathbb C$ на комплексните числа има 1-мерно φ -инвариантно подпространство.

Твърдение 13. Всеки линеен оператор $\varphi: V \to V$ в крайномерно пространство V над полето на реалните числа $\mathbb R$ има 1-мерно или 2-мерно φ -инвариантно подпространство.

Доказателство. Избираме базис $e=(e_1,\ldots,e_n)$ на V и разглеждаме матрицата $A\in M_{n\times n}(F)$ на φ спрямо e. Ако A има реален характеристичен корен $\lambda\in\mathbb{R}$, то λ е собствена стойност на φ и произволен собствен вектор $v\in V\setminus\{\overrightarrow{\mathcal{O}}_V\}$ на φ , отговарящ на собствената стойност λ поражда 1-мерно φ -инвариантно подпространство l(v) на V. Отсега нататък ще предполагаме, че всички характеристични корени на φ и на A са комплексни нереални числа и ще докажем, че тогава φ има 2-мерно φ -инвариантно подпространство.

За целта разглеждаме кородинатния изоморфизъм $C: V \to M_{n \times 1}(\mathbb{R})$, съпоставящ на вектор $ex \in V$ координатния му стълб C(ex) = x спрямо e. Изображението

$$\varphi_o: M_{n\times 1}(\mathbb{R}) \longrightarrow M_{n\times 1}(\mathbb{R}), \quad \varphi_o(x) = Ax$$

е линейно съгласно

$$\varphi_o(x+y) = A(x+y) = Ax + Ay = \varphi_o(x) + \varphi_o(y)$$
 if $\varphi_o(\lambda x) = A(\lambda x) = \lambda(Ax) = \lambda\varphi_o(x)$

за произволни $x,y\in M_{n\times 1}(\mathbb{R})$ и $\lambda\in\mathbb{R}$. В диаграмата

$$V \xrightarrow{C} M_{n \times 1}(\mathbb{R})$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi_o}$$

$$V \xrightarrow{C} M_{n \times 1}(\mathbb{R})$$

имаме $C\varphi = \varphi_o C$, съгласно

$$C\varphi(ex) = C(\varphi(e)x) = C((eA)x) = C(e(Ax)) = Ax = \varphi_o(x) = \varphi_o(ex).$$

Влагаме наредените n-торки реални числа $M_{n\times 1}(\mathbb{R})$ в наредените n-торки комплексни числа $M_{n\times 1}(\mathbb{C})$ като елементите с нулеви имагинерни части на компонентите. Тогава линейният оператор

$$\varphi_o: M_{n\times 1}(\mathbb{R}) \to M_{n\times 1}(\mathbb{R}), \quad \varphi_o(x) = Ax$$

има С-линейно продължение до линеен оператор

$$\varphi_o^{\mathbb{C}}: M_{n\times 1}(\mathbb{C}) \longrightarrow M_{n\times 1}(\mathbb{C}), \quad \varphi_o^{\mathbb{C}}(w) = Aw$$

с $\varphi_o^{\mathbb{C}}|_{M_{n\times 1}(\mathbb{R})}=\varphi_o$, участващ в диаграмата

$$M_{n\times 1}(\mathbb{R}) \longrightarrow M_{n\times 1}(\mathbb{C})$$

$$\downarrow^{\varphi_o} \qquad \qquad \downarrow^{\varphi_o^{\mathbb{C}}} .$$

$$M_{n\times 1}(\mathbb{R}) \longrightarrow M_{n\times 1}(\mathbb{C})$$

Линейният оператор $\varphi_o^{\mathbb{C}}$ в n-мерното пространство $M_{n\times 1}(\mathbb{C})$ над \mathbb{C} има комплексен характеристичен корен $\lambda \in \mathbb{C}$, който е характеристичен корен на A, а оттам и на φ . Следователно $\lambda = a + bi \in \mathbb{C} \setminus \mathbb{R}$ е комплексно нереално число и съществува собствен вектор $w \in M_{n\times 1}(\mathbb{C}) \setminus \{\mathbb{O}_{n\times 1}\}$ на $\varphi_o^{\mathbb{C}}$, отговарящ на собствената стойност λ . Полагаме w = u + iv за $u, v \in M_{n\times 1}(\mathbb{R})$ и сравняваме реалните и имагинерните части в равенствата

$$Au + iAv = A(u + iv) = Aw = \varphi_o^{\mathbb{C}}(w) = \lambda w = (a + bi)(u + iv) = (au - bv) + i(bu + av),$$

за да изведем

$$Au = au - bv,$$

$$Av = bu + av.$$
(3)

Оттук, линейната обвивка l(u,v) е φ_o -инвариантно подпространство на $M_{n\times 1}(\mathbb{R})$ и l(eu,ev) е φ -инвариантно подпространство на V. Остава да докажем линейната независимост на u,v, за да получим, че l(eu,ev) е 2-мерно φ -инвариантно подпространство на V и да докажем твърдението.

Да допуснем, че $u, v \in M_{n \times 1}(\mathbb{R})$ са линейно зависими и съществуват реални числа $p, q \in \mathbb{R}, (p, q) \neq (0, 0)$ с

$$pu + qv = \mathbb{O}_{n \times 1}.\tag{4}$$

Действайки с φ_o върху (4) получаваме

$$\mathbb{O}_{n \times 1} = p(Au) + q(Av) = p(au - bv) + q(bu + av) = (pa + qb)u + (qa - pb)v.$$
 (5)

За да елиминираме v от (4) и (5), умножаваме почленно (4) с $qa-pb \in \mathbb{R}$, (5) с $-q \in \mathbb{R}$ и събираме. Това дава

$$-(p^2+q^2)bu = \mathbb{O}_{n\times 1}. (6)$$

От $p,q\in\mathbb{R},\ (p,q)\neq(0,0)$ следва, че $p^2+q^2\in\mathbb{R}^{>0}$ е строго положително реално число. По предположение, $\lambda=a+bi\in\mathbb{C}\backslash\mathbb{R}$ е комплексно нереално число, така че $b\neq0$. Затова $-(p^2+q^2)b\neq0$ е ненулево реално число и (6) изисква $u=\mathbb{O}_{n\times1}$. Сега от действието на φ_o върху u получаваме, че

$$\mathbb{O}_{n\times 1} = \varphi_o(\mathbb{O}_{n\times 1}) = \varphi_o(u) = Au = au - bv = -bv,$$

използвайки (3). Поради $-b \neq 0$, оттук следва $v = \mathbb{O}_{n \times 1}$ и стигаме до извода, че собственият вектор $w = u + iv = \mathbb{O}_{n \times 1} \in M_{n \times 1}(\mathbb{C})$ на $\varphi_o^{\mathbb{C}}$ е нулев. Противоречието установява линейната независимост на $u, v \in M_{n \times 1}(\mathbb{R})$ и доказва твърдението.