LINEAR PROGRAMMING

- DUALITY

- ZERO-SOM GAMES.

PROOFS OF UPPER BOUNDS ON OBJECTIVE $(2\pi_1 + \pi_2 \leq 100) \cdot 0 \leftarrow Flour$ (30) · 5 e Susur (- x2 < 60.) . 4 e Esso 1/20 $5n_1 + 4n_2 < 5.30 + 4.60 = 390$ 127,0 $5x_1 + 4x_2$ Manimize

OPT < 390.

x, = Basel x, = Donut

UPPER BOWNOS
$$(2 x_1 + x_2 \le 100) \cdot 3$$

 $(x_1 \le 30) \cdot 0 + 3$
 $x_1 > 0$
 $(x_2 \le 60) \cdot 1$
 $x_2 \le 60) \cdot 1$
 $x_2 \le 60) \cdot 4$
Maximize $5x_1 + 4x_2$ opt ≤ 360
 $(2 x_1 + x_2 \le 100) \cdot 5/2$
 $(x_1 \le 30) \cdot 0$
 $x_1 > 0$
 $x_2 \le 60) \cdot 3/2$
 $x_2 \le 60) \cdot 3/2$
 $x_2 \le 60) \cdot 3/2$
Maximize $5x_1 + 4x_2 \le (100) \cdot 5/2 + 60 \cdot (3/2)$
Maximize $5x_1 + 4x_2 = 340$

< 100y, + 30yz + 60 yz

DUAL LP THM (WEAK OUALITY) H' feasible solution y
to DUAL Minimisation H feasible solution. X to PRIMAL Maximination 1004, +304, 760 pg 5x, +9x $5x_1 + 4x_2 < (2y_1 + y_2)x_1 + (y_1 + y_3).x_2$ < 100y, + 30yz + 60yz Value of Value of solution 10 Primal"

COROLLARY: PRIMAL OPT & DUAL OPT

OBJECTIVE VALUE

THM (STRONG CONVEXITY)

"If the PRIMAC OPT is bounded

PRIMAL OPT = DUAL OPT

OBJECT 100

ZERO-SUM GAMES		ROCK	PAPER	Scissor	
- A matrix A (i,j)					
- Row player picks a row "r" - Column player picks column "c"	PAPER -				ŀ
	Scissor				
Row player: Alro	ROW PLAYERS PAYOFF				

TERMINOLOGY

PURE STRATERY = a single row / single column

MIXED STRATERY = a prob. distribution over "puve" strategies.

Pr[Rock] = /2 Pr[Rock] = /4 Pr(Scissor) = /4)

GAME 1: 12 * COLUMN announces mixed *Row announces mixed 1 20 10 * COWMN plays second * ROW plays second. man [min Expected] min [man Expected] (Row) (Cocumn) (Row) (Payoff) (Row player is Strong

(Strong

Ovality)

Better off in

Game 2 1.0* * Order of play doesn't change the Value. * I an optimal strategy for NOW, for every column player stad

enjected ROW
Players lagor

FACT:

Maximise Minimise 20 p.q.

(ROW, MIXED STRATEGIES) (LOP, 92 HIXED STRATEGIES) (STRATEGIES) (LOP29, -30pm)

P1, 92 91, 92

Maximise Minimise 20 p. 9,1

POWS

MIXED

STRATEGIES

PIPE

9,92

9,92

$$= \max_{0 \le 100} \min_{0 \le 100} \left(\frac{20p_1 + 10p_2}{10p_1 - 30p_2} \right)$$

$$= \lim_{0 \le 100} \max_{0 \le 100} \left(\frac{10p_1 - 30p_2}{10p_1 - 30p_2} \right)$$

mox min $[20p_1 + 10p_2, 10p_1 - 30p_2]$ Maximise Z 2 < 20 p, +10 pz 3 $2 < 10p_1 - 30p_2$ P(+ R = 1

VALUE OF GAME I

GAME 2= * COLUMN announces mixed * ROW plays second. -30 * Pr [COLUMN 1] = 9,1 Pr [COLUMN 2] = 9,2 * FOR ROW PLAYER: Expected PAYOFF for ROW 1 = 209, + 1092 Expected PAYOFF for ROW2 = 109, -3092VALUE (GAME2) = min Max COCUMN ROW MIXED/ MIXED + 10 P29, -30 P2 STRATEGIES LSTRATEGIES, 9,592=1 W() 9,99,21

7*

Min 2 $20q_1 + 10q_2 \le 2$ $10q_1 - 30q_2 \le 2$ $q_1 + q_2 = 1$ $q_1, q_2 \ne 0$