TESTING REFLEXIVE PROPERTY OF A RELATION-MATRIX

Code for $n \times n$ Relation Matrix R.

```
for (i = 0; i < n; i++) //n = #(rows) = #(columns) in R
   if (R[i][i] == 0) return(false);
return(true);</pre>
```

Performance for n = 4.

- The diagonal items r_{11} , r_{22} , ... are now $R_{0,0} = R[0][0]$, $R_{1,1} = R[1][1]$, (Here, $R_{i,j}$ as a short form of R[i][j].)
- Next to each '?' (which means "don't care") is shown in parentheses #(choices).

#(comparisons	Return	D	D	D	D	Other	#(<i>R</i>)
$R_{ii}=0)$	value	$R_{0,0}$	$R_{1,1}$	$R_{2,2}$	$R_{3,3}$	12 $R_{i,j}$'s	$\pi(K)$
1	false	0	? (2)	? (2)	? (2)	$?(2^{12})$	2^{15}
2	false	1	0	? (2)	? (2)	$?(2^{12})$	2^{14}
3	false	1	1	0	? (2)	$?(2^{12})$	2^{13}
4	false	1	1	1	0	$?(2^{12})$	2^{12}
4	true	1	1	1	1	? (2 ¹²)	2 ¹²

- Aver. #(comparisons) = $2^{12}(1\times8 + 2\times4 + 3\times2 + 4\times1 + 4\times1)/2^{16} = 30/16 = 15/8 = 2(1-1/16)$.
- The general case:

Aver. #(comparisons) =
$$(1.2^{n-1} + 2.2^{n-2} + 3.2^{n-3} + \dots + n.1 + n.1)/2^n$$

= $[(1 + 2x + 3x^2 + \dots + nx^{n-1}) + nx^{n-1}]/2$, where $x = 1/2$
= $\frac{1}{2} \left[\frac{1 - x^n}{(1 - x)^2} - \frac{nx^n}{1 - x} + nx^{n-1} \right]$
= $2 \left(1 - \frac{1}{2^n} \right)$.

TESTING SYMMETRY PROPERTY OF A RELATION-MATRIX

Code for $n \times n$ Relation Matrix R.

```
for (i = 0; i < n; i++) //ith row
    for (j = i+1; j < n; j++) //i < j for upper-diagonal items
        if (R[i][j] != R[j][i]) return(false);
return(true);</pre>
```

• This is same as testing H = W, where H(W) corresponds to upper-diagonal items in R arranged row-by-row (and lower-diagonal items arranged column-by-column) as indicated below by successive underlined parts.

$$H = [R_{0,1}, R_{0,2}, \cdots, R_{0,n-1}, R_{1,2}, R_{1,3}, \cdots, R_{1,n-1}, \cdots, R_{n-1,n-1}]$$

$$W = [R_{1,0}, R_{2,0}, \cdots, R_{n-1,0}, R_{2,1}, R_{3,1}, \cdots, R_{n-1,1}, \cdots, R_{n-1,n-1}]$$

Performance for n = 3.

- Each row below shows the values of different off-diagonal pairs (R_{ij}, R_{ji}) that together results in the appropriate return-value.
- Next to each '?' is shown in parentheses #(choices).

#(compares.	Return	i=0, j=1	i=0, j=2	i=1, j=2	Diagonal	#(<i>R</i>)
$R_{ij} \neq R_{ji}$)	value	$(R_{0,1}, R_{0,1})$	$(R_{0,2}, R_{0,2})$	$(R_{1,2}, R_{2,1})$	$3 R_{i,i}$'s	$\pi(K)$
1	false	(0,1), (1,0)	$?(2^2)$	$?(2^2)$	$?(2^3)$	2.2^{7}
2	false	(0,0),(1,1)	(0,1), (1,0)	$?(2^2)$	$?(2^3)$	$2^2 \cdot 2^5$
3	false	(0,0),(1,1)	(0,0),(1,1)	(0,1), (1,0)	$?(2^3)$	$2^{3.}2^{3}$
3	true	(0,0), (1,1)	(0,0), (1,1)	(0,0), (1,1)	? (2 ³)	$2^3.2^3$

- Aver. #(comparisons) = $2^6(1\times4 + 2\times2 + 3\times1 + 3\times1)/2^9 = 14/8 = 2(1 1/8)$.
- The general case is the same as testing H = W for array-length N = n(n-1)/2:

Aver. #(comparisons) =
$$2\left(1 - \frac{1}{2^N}\right) = 2\left(1 - \frac{1}{2^{n(n-1)/2}}\right)$$
.

Practice Questions.

1. Show the following code does not correctly test the symmetry property by giving an example 3×3 relation-matrix R that makes the code return wrong value in fewest #(comparisons). (Use '?' for items in R that are not looked at by the code before returning.)

```
for (i = 0; i < n; i++)
    for (j = i+1; j < n; j++)
        if (R[i][j] == R[j][i]) return(true);
return(false);</pre>
```

- 2. Clearly state when the code in Problem 1 returns the correct true/false values when R is an $n \times n$ relation-matrix. Also, give #(relations) for which it correctly returns true-value and for which it correctly returns false-value.
- 3. Clearly state the reason(s) for inefficiency in the following code that (correctly) tests the symmetry property of a relation-matrix R. In particular, give the extra #(comparisons $R[i][j] \neq R[i][j]$)" this code does in returning true-value compared to the original code given in the notes.

```
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
        if (R[i][j] != R[j][i]) return(false);
return(true);</pre>
```

TESTING ANTI-SYMMETRY PROPERTY OF A RELATION-MATRIX

Code for $n \times n$ Realtion Matrix R.

```
for (i = 0; i < n; i++) //n = #(rows) = #(columns) in R
   for (j = i+1; j < n; j++) //i < j for upper-diagonal items
        if (R[i][j] + R[j][i] == 2) //same as R[i][j] + R[j][i] > 1
        return(false);
return(true);
```

• This is same as testing $H \cap W = \emptyset$, where H(W) corresponds to upper- (lower-) diagonal items in R, arranged row-by-row (column-by-column) as shown below.

$$H = [R_{0,1}, R_{0,2}, \cdots, R_{0,n-1}, R_{1,2}, R_{1,3}, \cdots, R_{1,n-1}, \cdots, R_{n-1,n-1}]$$

$$W = [R_{1,0}, C_{2,0}, \cdots, R_{n-1,0}, R_{2,1}, R_{3,1}, \cdots, R_{n-1,1}, \cdots, R_{n-1,n-1}]$$

Performance for n = 3.

- Each row below shows the values of different off-diagonal pairs (R_{ij}, R_{ji}) that together results in the appropriate return-value.
- Next to each '?' is shown in parentheses #(choices).

#(compares. $R_{ij}+R_{ji}=2$	Return value	$(R_{0,1}, R_{0,1})$	$(R_{0,2}, R_{2,0})$	$(R_{1,2}, R_{2,1})$	Diagonal $3 R_{i,i}$'s	#(<i>R</i>)
$K_{ij} \cdot K_{ji} - Z$	varuc				$J K_{i,i} S$	
1	false	(1,1)	$?(2^2)$	$?(2^2)$	$?(2^3)$	2^7
2	false	(0,0), (0,1), (1,0)	(1,1)	? (2 ²)	? (2 ³)	3.2^5
3	false	(0,0), (0,1), (1,0)	(0,0), (0,1), (1,0)	(1,1)	? (2 ³)	$3^{2} \cdot 2^{3}$
3	true	(0,0), (0,1), (1,0)	(0,0), (0,1), (1,0)	(0,0), (0,1), (1,0)	? (2 ³)	$3^3.2^3$

- Aver. #(comparisons) = $2^3(1\times2^4 + 2\times3\times2^2 + 3\times3^2\times1 + 3\times3^3\times1)/2^9 = 148/64 = 37/16$.
- The general case (testing $H \cap W = \emptyset$ for array-length N = n(n-1)/2):

Aver. #(comparisons)
=
$$(2^{n}/2^{n^{2}})(1.2^{2N-2} + 2.3.2^{2N-4} + 3.3^{2}.2^{2N-6} + \dots + N.3^{N-1}.1 + N.3^{N})$$

= $(2^{n}/2^{n^{2}})(2^{2N-2}[1 + 2.(3/4) + 3.(3/4)^{2} + \dots + N.(3/4)^{N-1}] + N.3^{N})$
= $\frac{2^{n}}{2^{n^{2}}} \left(2^{2N-2} \left[\frac{1 - (3/4)^{N}}{(1 - 3/4)^{2}} - \frac{N(3/4)^{N}}{1 - 3/4}\right] + N3^{N}\right) = 4\left(1 - \frac{3^{N}}{4^{N}}\right).$

Practice Questions.

1. Show the following code does not correctly test the anti-symmetry property by giving an example 3×3 relation-matrix R that makes the code return wrong value in fewest #(comparisons). (Use '?' for items in R that are not looked at by the code before returning.)

```
for (i = 0; i < n; i++)
    for (j = i+1; j < n; j++)
        if (R[i][j] + R[j][i] <= 1) return(true);
return(false);</pre>
```

- 2. Clearly state when the code in Problem 1 returns the correct true/false values when R is an $n \times n$ relation-matrix. Also, give #(relations) for which it correctly returns true-value and for which it correctly returns false-value.
- 3. Clearly state the reason(s) for inefficiency in the following code that (correctly) tests the anti-symmetry property of a relation-matrix R.

```
for (i = 0; i < n; i++)
    for (j = i+1; j < n; j++)
        if ((R[i][j] == 1) && (R[j][i] == 1)) return(false);
return(true);</pre>
```