LEAD SCORING CASE STUDY

```
In [1]: #importing libraries
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          import warnings
          warnings.filterwarnings('ignore')
          from sklearn.preprocessing import StandardScaler
         #importing dataset to csv
In [2]:
          leads=pd.read_csv("Leads.csv")
In [3]:
         # Looking at first few entries
         leads.head()
Out[3]:
                                                                                               Total
                                                                                                      Page
                                                           Do
                                                                Do
                                                                                               Time
                                                                                                     Views
                                          Lead
                                                   Lead
                              Lead
                                                              Not
                                                                     Converted TotalVisits
              Prospect ID
                                                          Not
                                                                                              Spent
                           Number
                                        Origin
                                                                                                       Per
                                                Source
                                                         Email Call
                                                                                                 on
                                                                                                       Visit
                                                                                            Website
                7927b2df-
               8bba-4d29-
                                                  Olark
                            660737
                                           API
                                                                              0
                                                                                       0.0
                                                                                                        0.0
                                                           No
                                                                No
                   b9a2-
                                                   Chat
             b6e0beafe620
                2a272436-
               5132-4136-
                                                Organic
         1
                                           API
                                                                              0
                                                                                       5.0
                                                                                                        2.5
                            660728
                                                           No
                                                                No
                                                                                                674
                    86fa-
                                                 Search
             dcc88c88f482
                8cc8c611-
                                       Landing
                a219-4f35-
                                                  Direct
         2
                            660727
                                                                              1
                                                                                       2.0
                                                                                               1532
                                          Page
                                                           No
                                                                No
                                                                                                        2.0
                    ad23-
                                                  Traffic
                                    Submission
             fdfd2656bd8a
                0cc2df48-
                                       Landing
                7cf4-4e39-
                                                  Direct
         3
                                                                              0
                            660719
                                          Page
                                                           No
                                                                No
                                                                                       1.0
                                                                                                305
                                                                                                        1.0
                    9de9-
                                                  Traffic
                                    Submission
             19797f9b38cc
                3256f628-
                                       Landing
               e534-4826-
                            660681
                                          Page
                                                 Google
                                                           No
                                                                No
                                                                              1
                                                                                       2.0
                                                                                               1428
                                                                                                        1.0
                    9d63-
                                    Submission
             4a8b88782852
         5 rows × 37 columns
```

In [4]: #checking total rows and cols in dataset
leads.shape

```
Out[4]: (9240, 37)
```

This dataset has:

- 9240 rows,
- 37 columns

In [5]: #basic data check leads.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9240 entries, 0 to 9239 Data columns (total 37 columns):

Daca	columns (cocal 57 columns).		
#	Column	Non-Null Count	Dtype
0	Prospect ID	9240 non-null	object
1	Lead Number	9240 non-null	int64
2	Lead Origin	9240 non-null	object
3	Lead Source	9204 non-null	object
4	Do Not Email	9240 non-null	object
5	Do Not Call	9240 non-null	object
6	Converted	9240 non-null	int64
7	TotalVisits	9103 non-null	float64
8	Total Time Spent on Website	9240 non-null	int64
9	Page Views Per Visit	9103 non-null	float64
10	Last Activity	9137 non-null	object
11	Country	6779 non-null	object
12	Specialization	7802 non-null	object
13	How did you hear about X Education	7033 non-null	object
14	What is your current occupation	6550 non-null	object
15	What matters most to you in choosing a course	6531 non-null	object
16	Search	9240 non-null	object
17	Magazine	9240 non-null	object
18	Newspaper Article	9240 non-null	object
19	X Education Forums	9240 non-null	object
20	Newspaper	9240 non-null	object
21	Digital Advertisement	9240 non-null	object
22	Through Recommendations	9240 non-null	object
23	Receive More Updates About Our Courses	9240 non-null	object
24	Tags	5887 non-null	object
25	Lead Quality	4473 non-null	object
26	Update me on Supply Chain Content	9240 non-null	object
27	Get updates on DM Content	9240 non-null	object
28	Lead Profile	6531 non-null	object
29	City	7820 non-null	object
30	Asymmetrique Activity Index	5022 non-null	object
31	Asymmetrique Profile Index	5022 non-null	object
32	Asymmetrique Activity Score	5022 non-null	float64
33	Asymmetrique Profile Score	5022 non-null	float64
34	I agree to pay the amount through cheque	9240 non-null	object
35	A free copy of Mastering The Interview	9240 non-null	object
36	Last Notable Activity	9240 non-null	object
	es: float64(4), int64(3), object(30)		
memo	ry usage: 2.6+ MB		

In [6]: leads.describe()

Out[6]:		Lead Number	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Asymmetrique Activity Score	Asymmetriq Profile Sco
	count	9240.000000	9240.000000	9103.000000	9240.000000	9103.000000	5022.000000	5022.0000
	mean	617188.435606	0.385390	3.445238	487.698268	2.362820	14.306252	16.3448
	std	23405.995698	0.486714	4.854853	548.021466	2.161418	1.386694	1.8113
	min	579533.000000	0.000000	0.000000	0.000000	0.000000	7.000000	11.0000
	25%	596484.500000	0.000000	1.000000	12.000000	1.000000	14.000000	15.0000
	50%	615479.000000	0.000000	3.000000	248.000000	2.000000	14.000000	16.0000
	75%	637387.250000	1.000000	5.000000	936.000000	3.000000	15.000000	18.0000
	max	660737.000000	1.000000	251.000000	2272.000000	55.000000	18.000000	20.0000

```
In [7]: #check for duplicates
sum(leads.duplicated(subset = 'Prospect ID')) == 0
```

No duplicate values in Prospect ID

Out[7]:

```
In [8]: #check for duplicates
    sum(leads.duplicated(subset = 'Lead Number')) == 0
Out[8]: True
```

No duplicate values in Lead Number

Clearly Prospect ID & Lead Number are two variables that are just indicative of the ID number of the Contacted People & can be dropped.

EXPLORATORY DATA ANALYSIS

Data Cleaning & Treatment:

```
In [9]: #dropping Lead Number and Prospect ID since they have all unique values
    leads.drop(['Prospect ID', 'Lead Number'], 1, inplace = True)

In [10]: #Converting 'Select' values to NaN.
    leads = leads.replace('Select', np.nan)

In [11]: #checking null values in each rows
    leads.isnull().sum()
```

Out[11]:	Lead Origin	0
out[II].	Lead Source	36
	Do Not Email	0
	Do Not Call	0
	Converted	0
	TotalVisits	137
	Total Time Spent on Website	0
	Page Views Per Visit	137
	Last Activity	103
	Country	2461
	Specialization	3380
	How did you hear about X Education	7250
	What is your current occupation	2690
	What matters most to you in choosing a course	2709
	Search	0
	Magazine	0
	Newspaper Article	0
	X Education Forums	0
	Newspaper	0
	Digital Advertisement	0
	Through Recommendations	0
	Receive More Updates About Our Courses	0
	Tags	3353
	Lead Quality	4767
	Update me on Supply Chain Content	0
	Get updates on DM Content	0
	Lead Profile	6855
	City	3669
	Asymmetrique Activity Index	4218
	Asymmetrique Profile Index	4218
	Asymmetrique Activity Score	4218
	Asymmetrique Profile Score	4218
	I agree to pay the amount through cheque	0
	A free copy of Mastering The Interview	0
	Last Notable Activity	0
	dtype: int64	

In [12]: #checking percentage of null values in each column

leads.isnull().mean()*100

```
Out[12]: Lead Origin
                                                            0.000000
         Lead Source
                                                            0.389610
         Do Not Email
                                                            0.000000
         Do Not Call
                                                            0.000000
         Converted
                                                            0.000000
         TotalVisits
                                                            1.482684
         Total Time Spent on Website
                                                            0.000000
         Page Views Per Visit
                                                            1.482684
         Last Activity
                                                            1.114719
         Country
                                                           26.634199
         Specialization
                                                           36.580087
         How did you hear about X Education
                                                           78.463203
         What is your current occupation
                                                           29.112554
         What matters most to you in choosing a course
                                                           29.318182
         Search
                                                            0.000000
         Magazine
                                                            0.000000
         Newspaper Article
                                                            0.000000
         X Education Forums
                                                            0.000000
                                                            0.000000
         Newspaper
         Digital Advertisement
                                                            0.000000
                                                            0.000000
         Through Recommendations
         Receive More Updates About Our Courses
                                                            0.000000
                                                           36.287879
         Lead Quality
                                                           51.590909
         Update me on Supply Chain Content
                                                           0.000000
         Get updates on DM Content
                                                           0.000000
         Lead Profile
                                                           74.188312
                                                           39.707792
         City
         Asymmetrique Activity Index
                                                           45.649351
         Asymmetrique Profile Index
                                                           45.649351
         Asymmetrique Activity Score
                                                          45.649351
         Asymmetrique Profile Score
                                                         45.649351
         I agree to pay the amount through cheque
                                                           0.000000
         A free copy of Mastering The Interview
                                                            0.000000
         Last Notable Activity
                                                            0.000000
         dtype: float64
In [13]: #dropping cols with more than 40% missing values
          cols=leads.columns
          for i in cols:
              if((leads[i].isnull().mean()*100) >= 40):
                  leads.drop(i, 1, inplace = True)
In [14]: #checking null values percentage
         leads.isnull().mean()*100
```

Out[14]: Lead Origin 0.000000 Lead Source 0.389610 Do Not Email 0.000000 Do Not Call 0.000000 Converted 0.000000 TotalVisits 1.482684 Total Time Spent on Website 0.000000 Page Views Per Visit 1.482684 Last Activity 1.114719 Country 26.634199 Specialization 36.580087 What is your current occupation 29.112554 What matters most to you in choosing a course 29.318182 Search 0.000000 0.000000 Magazine Newspaper Article 0.000000 X Education Forums 0.000000 0.000000 Newspaper Digital Advertisement 0.000000 Through Recommendations 0.000000 Receive More Updates About Our Courses 0.000000 36.287879 Update me on Supply Chain Content 0.000000 Get updates on DM Content 0.000000 City 39.707792 I agree to pay the amount through cheque 0.000000 A free copy of Mastering The Interview 0.000000 0.000000 Last Notable Activity dtype: float64

Categorical Attributes Analysis:

In [15]: #checking value counts of Country column

leads['Country'].value_counts(dropna=False)

```
6492
          India
Out[15]:
          NaN
                                    2461
          United States
                                      69
          United Arab Emirates
                                      53
          Singapore
                                      24
          Saudi Arabia
                                      21
          United Kingdom
                                      15
          Australia
                                      13
          Qatar
                                      10
                                       7
          Bahrain
                                       7
          Hong Kong
          Oman
                                       6
          France
                                       6
                                       5
          unknown
          Kuwait
                                       4
          South Africa
                                       4
          Canada
                                       4
          Nigeria
                                       4
                                       4
          Germany
          Sweden
                                       3
          Philippines
                                       2
                                       2
          Uganda
                                       2
          Italy
          Bangladesh
                                       2
          Netherlands
                                       2
                                       2
          Asia/Pacific Region
                                       2
          China
          Belgium
                                       2
          Ghana
                                       2
          Kenya
                                       1
          Sri Lanka
                                       1
          Tanzania
                                       1
          Malaysia
                                       1
          Liberia
                                       1
          Switzerland
                                       1
          Denmark
                                       1
          Russia
                                       1
          Vietnam
                                       1
          Indonesia
                                       1
          Name: Country, dtype: int64
```

In [16]: #plotting spread of Country columnn plt.figure(figsize=(15,5)) s1=sns.countplot(leads.Country, hue=leads.Converted) s1.set_xticklabels(s1.get_xticklabels(),rotation=90) plt.show()


```
In [17]: # # Imputing missing values in Country column with "'not provided"
           leads['Country'] = leads['Country'].replace(np.nan,'Not Provided')
In [18]: #plotting spread of Country columnn after replacing NaN values
           plt.figure(figsize=(15,5))
           s1=sns.countplot(leads.Country, hue=leads.Converted)
           s1.set_xticklabels(s1.get_xticklabels(),rotation=90)
           plt.show()
             4000
             3500
             3000
             2500
           2000
             1500
             1000
                                                             Converted
             500
                 Provided
                   ndia
                             United Arab Emirates
                               United States
                 Not
                                                             Country
```

As we can see the Number of Values for India are quite high (nearly 97% of the Data), this column can be dropped

```
In [19]: #creating a list of columns to be droppped
          cols_to_drop=['Country']
In [20]: #checking value counts of "City" column
          leads['City'].value_counts(dropna=False)
         NaN
                                         3669
Out[20]:
                                         3222
         Mumbai
         Thane & Outskirts
                                          752
         Other Cities
                                          686
         Other Cities of Maharashtra
                                          457
         Other Metro Cities
                                          380
         Tier II Cities
                                           74
         Name: City, dtype: int64
        leads['City'] = leads['City'].replace(np.nan,'Not Provided')
In [21]:
In [22]: #plotting spread of City columnn after replacing NaN values
          plt.figure(figsize=(10,5))
          s1=sns.countplot(leads.City, hue=leads.Converted)
          s1.set_xticklabels(s1.get_xticklabels(),rotation=90)
          plt.show()
```


In [23]: #checking value counts of Specialization column
leads['Specialization'].value_counts(dropna=False)

Ou+[22].	NaN	3380
Out[23]:	Finance Management	976
	Human Resource Management	848
	Marketing Management	838
	Operations Management	503
	Business Administration	403
	IT Projects Management	366
	Supply Chain Management	349
	Banking, Investment And Insurance	338
	Travel and Tourism	203
	Media and Advertising	203
	International Business	178
	Healthcare Management	159
	Hospitality Management	114
	E-COMMERCE	112
	Retail Management	100
	Rural and Agribusiness	73
	E-Business	57
	Services Excellence	40
	Name: Specialization, dtype: int64	

In [24]: # Lead may not have mentioned specialization because it was not in the list or maybe
and don't have a specialization yet. So we will replace NaN values here with 'Not's
leads['Specialization'] = leads['Specialization'].replace(np.nan, 'Not Specified')

```
In [25]: #plotting spread of Specialization columnn

plt.figure(figsize=(15,5))
s1=sns.countplot(leads.Specialization, hue=leads.Converted)
```


We see that specialization with **Management** in them have higher number of leads as well as leads converted. So this is definitely a significant variable and should not be dropped.


```
In [28]: #What is your current occupation
leads['What is your current occupation'].value_counts(dropna=False)
```

Out[28]: Unemployed 5600
NaN 2690
Working Professional 706
Student 210
Other 16
Housewife 10
Businessman 8

Name: What is your current occupation, dtype: int64

In [29]: #imputing Nan values with mode "Unemployed"
leads['What is your current occupation'] = leads['What is your current occupation'].

In [30]: #checking count of values
leads['What is your current occupation'].value_counts(dropna=False)

Out[30]: Unemployed 5600
NOt Provided 2690
Working Professional 706
Student 210
Other 16
Housewife 10
Businessman 8

Name: What is your current occupation, dtype: int64

In [31]: #visualizing count of Variable based on Converted value

s1=sns.countplot(leads['What is your current occupation'], hue=leads.Converted)
s1.set_xticklabels(s1.get_xticklabels(),rotation=90)
plt.show()

- Working Professionals going for the course have high chances of joining it.
- Unemployed leads are the most in terms of Absolute numbers.

```
In [32]: #checking value counts
         leads['What matters most to you in choosing a course'].value_counts(dropna=False)
         Better Career Prospects
                                      6528
Out[32]:
         NaN
                                       2709
         Flexibility & Convenience
         Other
         Name: What matters most to you in choosing a course, dtype: int64
In [33]: #replacing Nan values with Mode "Better Career Prospects"
         leads['What matters most to you in choosing a course'] = leads['What matters most to
In [34]: #visualizing count of Variable based on Converted value
         s1=sns.countplot(leads['What matters most to you in choosing a course'], hue=leads.Co
         s1.set_xticklabels(s1.get_xticklabels(),rotation=90)
         plt.show()
```



```
#checking value counts of variable
In [35]:
         leads['What matters most to you in choosing a course'].value_counts(dropna=False)
         Better Career Prospects
                                      9237
Out[35]:
         Flexibility & Convenience
                                         2
                                         1
         Other
         Name: What matters most to you in choosing a course, dtype: int64
         #Here again we have another Column that is worth Dropping. So we Append to the cols_
In [36]:
         cols_to_drop.append('What matters most to you in choosing a course')
         cols_to_drop
         ['Country', 'What matters most to you in choosing a course']
Out[36]:
         #checking value counts of Tag variable
In [37]:
         leads['Tags'].value_counts(dropna=False)
```

```
NaN
                                                                                                3353
Out[37]:
              Will revert after reading the email
                                                                                                2072
                                                                                                1203
              Interested in other courses
                                                                                                 513
              Already a student
                                                                                                 465
              Closed by Horizzon
                                                                                                 358
              switched off
                                                                                                 240
              Busy
                                                                                                 186
              Lost to EINS
                                                                                                 175
              Not doing further education
                                                                                                 145
              Interested in full time MBA
                                                                                                 117
              Graduation in progress
                                                                                                 111
              invalid number
                                                                                                   83
              Diploma holder (Not Eligible)
                                                                                                   63
              wrong number given
                                                                                                   47
              opp hangup
                                                                                                   33
              number not provided
                                                                                                   27
              in touch with EINS
                                                                                                   12
              Lost to Others
                                                                                                    7
              Still Thinking
                                                                                                    6
              Want to take admission but has financial problems
                                                                                                    6
              In confusion whether part time or DLP
                                                                                                    5
                                                                                                    5
              Interested in Next batch
              Lateral student
                                                                                                    3
              Shall take in the next coming month
                                                                                                    2
                                                                                                    2
              University not recognized
              Recognition issue (DEC approval)
                                                                                                    1
              Name: Tags, dtype: int64
              #replacing Nan values with "Not Specified"
In [38]:
               leads['Tags'] = leads['Tags'].replace(np.nan,'Not Specified')
In [39]: #visualizing count of Variable based on Converted value
               plt.figure(figsize=(15,5))
               s1=sns.countplot(leads['Tags'], hue=leads.Converted)
               s1.set_xticklabels(s1.get_xticklabels(),rotation=90)
               plt.show()
                      Converted
                2500
                        1
                2000
                1500
                1000
                 500
                           Ringing
                                    Not Specified
                                        Lost to EINS
                                             In confusion whether part time or DLP
                                                  Busy
                                                      switched off
                                                          in touch with EINS
                      Interested in other courses
                                Will revert after reading the email
                                                                   Diploma holder (Not Eligible)
                                                                        Graduation in progress
                                                                            Closed by Horizzon
                                                                                 number not provided
                                                                                      opp hangup
                                                                                          Not doing further education
                                                                                               invalid number
                                                                                                   wrong number given
                                                                                                        Interested in full time MBA
                                                                                                                     Shall take in the next coming month
                                                                                                                               Interested in Next batch
                                                                                                                                   Recognition issue (DEC approval)
                                                                                                                                       Want to take admission but has financial problems
                                                                                                                                            University not recognized
                                                                                                                 Lost to Others
```

```
#replacing tags with low frequency with "Other Tags"
In [40]:
          leads['Tags'] = leads['Tags'].replace(['In confusion whether part time or DLP', 'in
                                                'Approached upfront', 'Graduation in progress', '
                                               'Lost to Others', 'Shall take in the next coming r
                                               'Recognition issue (DEC approval)', 'Want to take
                                               'University not recognized'], 'Other_Tags')
          leads['Tags'] = leads['Tags'].replace(['switched off',
                                                 Already a student',
                                                  'Not doing further education',
                                                  'invalid number',
                                                  'wrong number given',
                                                  'Interested in full time MBA'] , 'Other_Tags
In [41]: #checking percentage of missing values
          leads.isnull().mean()*100
Out[41]: Lead Origin
                                                           0.000000
         Lead Source
                                                           0.389610
         Do Not Email
                                                           0.000000
         Do Not Call
                                                           0.000000
         Converted
                                                           0.000000
         TotalVisits
                                                           1.482684
         Total Time Spent on Website
                                                           0.000000
         Page Views Per Visit
                                                           1.482684
         Last Activity
                                                           1.114719
         Country
                                                           0.000000
         Specialization
                                                           0.000000
         What is your current occupation
                                                           0.000000
         What matters most to you in choosing a course
                                                           0.000000
         Search
                                                           0.000000
         Magazine
                                                           0.000000
         Newspaper Article
                                                           0.000000
         X Education Forums
                                                           0.000000
         Newspaper
                                                           0.000000
         Digital Advertisement
                                                           0.000000
         Through Recommendations
                                                           0.000000
         Receive More Updates About Our Courses
                                                           0.000000
                                                           0.000000
         Update me on Supply Chain Content
                                                           0.000000
         Get updates on DM Content
                                                           0.000000
         City
                                                           0.000000
         I agree to pay the amount through cheque
                                                           0.000000
         A free copy of Mastering The Interview
                                                           0.000000
         Last Notable Activity
                                                           0.000000
         dtype: float64
In [42]: #checking value counts of Lead Source column
```

leads['Lead Source'].value counts(dropna=False)

```
2868
         Google
Out[42]:
         Direct Traffic
                              2543
         Olark Chat
                              1755
         Organic Search
                             1154
                              534
         Reference
         Welingak Website
                               142
         Referral Sites
                               125
                                55
         Facebook
         NaN
                                36
         bing
                                 6
         google
                                 5
         Click2call
                                 4
         Press_Release
                                 2
                                 2
         Social Media
                                 2
         Live Chat
         youtubechannel
                                 1
         testone
                                 1
         Pay per Click Ads
         welearnblog_Home
                                 1
         WeLearn
                                 1
         blog
         NC_EDM
                                 1
         Name: Lead Source, dtype: int64
```

```
In [43]: #replacing Nan Values and combining low frequency values
    leads['Lead Source'] = leads['Lead Source'].replace(np.nan,'Others')
    leads['Lead Source'] = leads['Lead Source'].replace('google','Google')
    leads['Lead Source'] = leads['Lead Source'].replace('Facebook','Social Media')
    leads['Lead Source'] = leads['Lead Source'].replace(['bing','Click2call','Press_Releative Source'].replace(['bing','Click2call','Press_Releative
```

We can group some of the lower frequency occuring labels under a common label 'Others'

```
In [44]: #visualizing count of Variable based on Converted value
  plt.figure(figsize=(15,5))
  s1=sns.countplot(leads['Lead Source'], hue=leads.Converted)
  s1.set_xticklabels(s1.get_xticklabels(),rotation=90)
  plt.show()
```


Inference

- Maximum number of leads are generated by Google and Direct traffic.
- Conversion Rate of reference leads and leads through welingak website is high.

• To improve overall lead conversion rate, focus should be on improving lead converion of olark chat, organic search, direct traffic, and google leads and generate more leads from reference and welingak website.

```
In [45]: # Last Activity:
         leads['Last Activity'].value_counts(dropna=False)
         Email Opened
                                          3437
Out[45]:
         SMS Sent
                                          2745
         Olark Chat Conversation
                                          973
         Page Visited on Website
                                          640
         Converted to Lead
                                          428
         Email Bounced
                                           326
         Email Link Clicked
                                           267
         Form Submitted on Website
                                          116
         NaN
                                           103
         Unreachable
                                            93
         Unsubscribed
                                            61
         Had a Phone Conversation
                                            30
                                             9
         Approached upfront
         View in browser link Clicked
         Email Received
                                             2
         Email Marked Spam
                                             2
         Visited Booth in Tradeshow
                                             1
         Resubscribed to emails
                                             1
         Name: Last Activity, dtype: int64
In [46]: #replacing Nan Values and combining low frequency values
         leads['Last Activity'] = leads['Last Activity'].replace(np.nan,'Others')
         leads['Last Activity'] = leads['Last Activity'].replace(['Unreachable', 'Unsubscribed
                                                                   'Had a Phone Conversation',
                                                                   'Approached upfront',
                                                                   'View in browser link Clicked
                                                                   'Email Marked Spam',
                                                                   'Email Received', 'Resubscribe
                                                                   'Visited Booth in Tradeshow
In [47]: # Last Activity:
         leads['Last Activity'].value_counts(dropna=False)
         Email Opened
                                       3437
Out[47]:
         SMS Sent
                                       2745
         Olark Chat Conversation
                                        973
         Page Visited on Website
                                        640
         Converted to Lead
                                        428
         Email Bounced
                                        326
         Others
                                        308
         Email Link Clicked
                                        267
         Form Submitted on Website
                                        116
         Name: Last Activity, dtype: int64
In [48]: #Check the Null Values in All Columns:
         leads.isnull().mean()*100
```

```
Lead Origin
                                                           0.000000
Out[48]:
         Lead Source
                                                           0.000000
         Do Not Email
                                                           0.000000
         Do Not Call
                                                           0.000000
         Converted
                                                           0.000000
         TotalVisits
                                                           1.482684
         Total Time Spent on Website
                                                           0.000000
         Page Views Per Visit
                                                           1.482684
         Last Activity
                                                           0.000000
         Country
                                                           0.000000
         Specialization
                                                           0.000000
         What is your current occupation
                                                           0.000000
         What matters most to you in choosing a course
                                                           0.000000
         Search
                                                           0.000000
                                                           0.000000
         Magazine
         Newspaper Article
                                                           0.000000
         X Education Forums
                                                           0.000000
         Newspaper
                                                           0.000000
         Digital Advertisement
                                                           0.000000
         Through Recommendations
                                                           0.000000
         Receive More Updates About Our Courses
                                                           0.000000
                                                           0.000000
         Update me on Supply Chain Content
                                                           0.000000
         Get updates on DM Content
                                                           0.000000
         City
                                                           0.000000
         I agree to pay the amount through cheque
                                                           0.000000
         A free copy of Mastering The Interview
                                                           0.000000
         Last Notable Activity
                                                           0.000000
         dtype: float64
```

In [49]: #Drop all rows which have Nan Values. Since the number of Dropped rows is less than .
leads = leads.dropna()

In [50]: #Checking percentage of Null Values in All Columns:
 leads.isnull().mean()*100

```
0.0
         Lead Origin
Out[50]:
         Lead Source
                                                           0.0
         Do Not Email
                                                           0.0
         Do Not Call
                                                           0.0
         Converted
                                                           0.0
         TotalVisits
                                                           0.0
         Total Time Spent on Website
                                                           0.0
         Page Views Per Visit
                                                           0.0
         Last Activity
                                                           0.0
         Country
                                                           0.0
         Specialization
                                                           0.0
         What is your current occupation
                                                           0.0
         What matters most to you in choosing a course
                                                           0.0
         Search
                                                           0.0
                                                           0.0
         Magazine
         Newspaper Article
                                                           0.0
         X Education Forums
                                                           0.0
         Newspaper
                                                           0.0
         Digital Advertisement
                                                           0.0
         Through Recommendations
                                                           0.0
         Receive More Updates About Our Courses
                                                           0.0
                                                           0.0
         Update me on Supply Chain Content
                                                           0.0
         Get updates on DM Content
                                                           0.0
         City
                                                           0.0
         I agree to pay the amount through cheque
                                                           0.0
         A free copy of Mastering The Interview
                                                           0.0
                                                           0.0
         Last Notable Activity
         dtype: float64
In [51]: #Lead Origin
         leads['Lead Origin'].value_counts(dropna=False)
         Landing Page Submission
                                     4886
Out[51]:
         API
                                     3578
         Lead Add Form
                                      608
         Lead Import
                                       31
         Name: Lead Origin, dtype: int64
In [52]: #visualizing count of Variable based on Converted value
          plt.figure(figsize=(8,5))
          s1=sns.countplot(leads['Lead Origin'], hue=leads.Converted)
          s1.set xticklabels(s1.get xticklabels(),rotation=90)
```

plt.show()

- API and Landing Page Submission bring higher number of leads as well as conversion.
- Lead Add Form has a very high conversion rate but count of leads are not very high.
- Lead Import and Quick Add Form get very few leads.
- In order to improve overall lead conversion rate, we have to improve lead converion of API and Landing Page Submission origin and generate more leads from Lead Add Form.

```
In [53]: #Do Not Email & Do Not Call
#visualizing count of Variable based on Converted value

plt.figure(figsize=(15,5))

ax1=plt.subplot(1, 2, 1)
ax1=sns.countplot(leads['Do Not Call'], hue=leads.Converted)
ax1.set_xticklabels(ax1.get_xticklabels(),rotation=90)

ax2=plt.subplot(1, 2, 2)
ax2=sns.countplot(leads['Do Not Email'], hue=leads.Converted)
ax2.set_xticklabels(ax2.get_xticklabels(),rotation=90)
plt.show()
```



```
9102
                      Nο
Out[62]:
                      Yes
                      Name: Newspaper, dtype: int64
                      leads['Digital Advertisement'].value_counts(dropna=False)
In [63]:
                      No
Out[63]:
                      Yes
                      Name: Digital Advertisement, dtype: int64
In [64]:
                       leads['Through Recommendations'].value_counts(dropna=False)
                      No
Out[64]:
                      Yes
                      Name: Through Recommendations, dtype: int64
                      leads['Receive More Updates About Our Courses'].value_counts(dropna=False)
In [65]:
                                    9103
Out[65]:
                      Name: Receive More Updates About Our Courses, dtype: int64
                       leads['Update me on Supply Chain Content'].value_counts(dropna=False)
In [66]:
                                    9103
                      No
Out[66]:
                      Name: Update me on Supply Chain Content, dtype: int64
In [67]:
                       leads['Get updates on DM Content'].value counts(dropna=False)
                                    9103
Out[67]:
                      Name: Get updates on DM Content, dtype: int64
                      leads['I agree to pay the amount through cheque'].value_counts(dropna=False)
In [68]:
                                    9103
Out[68]:
                      Name: I agree to pay the amount through cheque, dtype: int64
In [69]:
                      leads['A free copy of Mastering The Interview'].value_counts(dropna=False)
                                      6215
                      Nο
Out[69]:
                                      2888
                      Yes
                      Name: A free copy of Mastering The Interview, dtype: int64
In [70]: #adding imbalanced columns to the list of columns to be dropped
                       cols_to_drop.extend(['Search', 'Magazine', 'Newspaper Article', 'X Education Forums', 
                                                               'Digital Advertisement', 'Through Recommendations', 'Receive More Upd
                                                               'Update me on Supply Chain Content',
                                                               'Get updates on DM Content','I agree to pay the amount through cheq
In [71]:
                       #checking value counts of last Notable Activity
                       leads['Last Notable Activity'].value_counts()
```

```
Modified
                                          3270
Out[71]:
         Email Opened
                                          2827
         SMS Sent
                                          2172
         Page Visited on Website
                                           318
         Olark Chat Conversation
                                           183
         Email Link Clicked
                                           173
         Email Bounced
                                            60
         Unsubscribed
                                            47
         Unreachable
                                            32
         Had a Phone Conversation
                                            14
         Email Marked Spam
                                             2
         Approached upfront
                                             1
         Resubscribed to emails
                                             1
         View in browser link Clicked
                                             1
         Form Submitted on Website
                                             1
         Email Received
                                             1
         Name: Last Notable Activity, dtype: int64
```

In [72]: #clubbing lower frequency values

```
In [73]: #visualizing count of Variable based on Converted value

plt.figure(figsize = (14,5))
ax1=sns.countplot(x = "Last Notable Activity", hue = "Converted", data = leads)
ax1.set_xticklabels(ax1.get_xticklabels(),rotation=90)
plt.show()
```



```
In [74]: #checking value counts for variable
leads['Last Notable Activity'].value_counts()
```

```
3270
         Modified
Out[74]:
         Email Opened
                                    2827
         SMS Sent
                                   2172
         Page Visited on Website
                                   318
         Olark Chat Conversation
                                    183
         Email Link Clicked
                                    173
                                    160
         Other_Notable_activity
         Name: Last Notable Activity, dtype: int64
In [75]: #list of columns to be dropped
         cols_to_drop
Out[75]: ['Country',
          'What matters most to you in choosing a course',
          'Do Not Call',
          'Search',
          'Magazine',
          'Newspaper Article',
          'X Education Forums',
          'Newspaper',
          'Digital Advertisement',
          'Through Recommendations',
          'Receive More Updates About Our Courses',
          'Update me on Supply Chain Content',
          'Get updates on DM Content',
          'I agree to pay the amount through cheque']
In [76]:
         #dropping columns
         leads = leads.drop(cols_to_drop,1)
         leads.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 9103 entries, 0 to 9239
         Data columns (total 14 columns):
            Column
                                                     Non-Null Count Dtype
         --- -----
                                                      _____
          0 Lead Origin
                                                     9103 non-null object
                                                     9103 non-null object
             Lead Source
          1
            Do Not Email
                                                     9103 non-null object
                                                     9103 non-null
          3 Converted
                                                                     int64
                                                     9103 non-null
             TotalVisits
                                                                     float64
                                                    9103 non-null
                                                                     int64
          5
              Total Time Spent on Website
          6
             Page Views Per Visit
                                                     9103 non-null
                                                                    float64
          7
                                                     9103 non-null object
             Last Activity
          8 Specialization
                                                     9103 non-null
                                                                     object
                                                     9103 non-null
              What is your current occupation
                                                                     object
          10 Tags
                                                     9103 non-null
                                                                     object
                                                     9103 non-null
                                                                     object
          12 A free copy of Mastering The Interview 9103 non-null
                                                                     object
                                                     9103 non-null
          13 Last Notable Activity
                                                                     object
         dtypes: float64(2), int64(2), object(10)
         memory usage: 1.0+ MB
```

Numerical Attributes Analysis:

```
In [77]: #Check the % of Data that has Converted Values = 1:
    Converted = (sum(leads['Converted'])/len(leads['Converted'].index))*100
    Converted
```

Out[77]: 38.02043282434362

```
In [78]: #Checking correlations of numeric values
    # figure size
    plt.figure(figsize=(10,8))

# heatmap
sns.heatmap(leads.corr(), cmap="YlGnBu", annot=True)
plt.show()
```


We can see presence of outliers here

```
In [80]: #checking percentile values for "Total Visits"
          leads['TotalVisits'].describe(percentiles=[0.05,.25, .5, .75, .90, .95, .99])
         count
                   9103.000000
Out[80]:
         mean
                      3.445238
                      4.854853
         std
         min
                      0.000000
         5%
                      0.000000
         25%
                      1.000000
         50%
                      3.000000
         75%
                      5.000000
         90%
                      7.000000
         95%
                     10.000000
         99%
                     17.000000
                    251.000000
         max
         Name: TotalVisits, dtype: float64
In [81]: #Outlier Treatment: Remove top & bottom 1% of the Column Outlier values
          Q3 = leads.TotalVisits.quantile(0.99)
          leads = leads[(leads.TotalVisits <= Q3)]</pre>
          Q1 = leads.TotalVisits.quantile(0.01)
          leads = leads[(leads.TotalVisits >= Q1)]
          sns.boxplot(y=leads['TotalVisits'])
          plt.show()
```



```
In [82]: leads.shape
Out[82]: (9020, 14)
```

Check for the Next Numerical Column:

```
In [83]: #checking percentiles for "Total Time Spent on Website"
          leads['Total Time Spent on Website'].describe(percentiles=[0.05,.25, .5, .75, .90, .
         count
                   9020.000000
Out[83]:
                   479.759534
         mean
                    544.688157
         std
         min
                     0.000000
         5%
                     0.000000
         25%
                      7.000000
         50%
                    243.000000
         75%
                   915.250000
         90%
                   1371.000000
         95%
                   1554.050000
         99%
                   1836.620000
                   2272.000000
         Name: Total Time Spent on Website, dtype: float64
In [84]: #visualizing spread of numeric variable
          plt.figure(figsize=(6,4))
          sns.boxplot(y=leads['Total Time Spent on Website'])
          plt.show()
```


Since there are no major Outliers for the above variable we don't do any Outlier Treatment for this above Column

Check for Page Views Per Visit:

```
In [85]: #checking spread of "Page Views Per Visit"
         leads['Page Views Per Visit'].describe()
         count
                  9020.000000
Out[85]:
                     2.337271
         mean
         std
                     2.062363
         min
                     0.000000
         25%
                     1.000000
         50%
                     2.000000
         75%
                     3.000000
         max
                    16.000000
         Name: Page Views Per Visit, dtype: float64
In [86]: #visualizing spread of numeric variable
         plt.figure(figsize=(6,4))
         sns.boxplot(y=leads['Page Views Per Visit'])
         plt.show()
```



```
In [87]: #Outlier Treatment: Remove top & bottom 1%

Q3 = leads['Page Views Per Visit'].quantile(0.99)
leads = leads[leads['Page Views Per Visit'] <= Q3]
Q1 = leads['Page Views Per Visit'].quantile(0.01)
leads = leads[leads['Page Views Per Visit'] >= Q1]
sns.boxplot(y=leads['Page Views Per Visit'])
plt.show()
```



```
In [88]: leads.shape
Out[88]: (8953, 14)

In [89]: #checking Spread of "Total Visits" vs Converted variable
    sns.boxplot(y = 'TotalVisits', x = 'Converted', data = leads)
    plt.show()
```


- Median for converted and not converted leads are the close.
- Nothing conclusive can be said on the basis of Total Visits

- Leads spending more time on the website are more likely to be converted.
- Website should be made more engaging to make leads spend more time.

```
In [91]: #checking Spread of "Page Views Per Visit" vs Converted variable
sns.boxplot(x=leads.Converted,y=leads['Page Views Per Visit'])
plt.show()
```


- Median for converted and unconverted leads is the same.
- Nothing can be said specifically for lead conversion from Page Views Per Visit

```
In [92]: #checking missing values in leftover columns/
          leads.isnull().mean()*100
         Lead Origin
                                                    0.0
Out[92]:
         Lead Source
                                                    0.0
         Do Not Email
                                                    0.0
         Converted
                                                    0.0
         TotalVisits
                                                    0.0
                                                    0.0
         Total Time Spent on Website
         Page Views Per Visit
                                                    0.0
         Last Activity
                                                    0.0
         Specialization
                                                    0.0
         What is your current occupation
                                                    0.0
                                                    0.0
                                                    0.0
         A free copy of Mastering The Interview
                                                    0.0
         Last Notable Activity
                                                    0.0
         dtype: float64
```

There are no missing values in the columns to be analyzed further

Dummy Variable Creation:

```
Out[93]: Index(['Lead Origin', 'Lead Source', 'Do Not Email', 'Last Activity',
                  'Specialization', 'What is your current occupation', 'Tags', 'City',
                 'A free copy of Mastering The Interview', 'Last Notable Activity'],
                dtype='object')
 In [94]: # List of variables to map
          varlist = ['A free copy of Mastering The Interview', 'Do Not Email']
          # Defining the map function
          def binary_map(x):
              return x.map({'Yes': 1, "No": 0})
          # Applying the function to the housing list
          leads[varlist] = leads[varlist].apply(binary_map)
In [95]: #getting dummies and dropping the first column and adding the results to the master
          dummy = pd.get_dummies(leads[['Lead Origin','What is your current occupation',
                                        'City']], drop_first=True)
          leads = pd.concat([leads,dummy],1)
          dummy = pd.get_dummies(leads['Specialization'], prefix = 'Specialization')
In [96]:
          dummy = dummy.drop(['Specialization_Not Specified'], 1)
          leads = pd.concat([leads, dummy], axis = 1)
          dummy = pd.get_dummies(leads['Lead Source'], prefix = 'Lead Source')
 In [97]:
          dummy = dummy.drop(['Lead Source_Others'], 1)
          leads = pd.concat([leads, dummy], axis = 1)
          dummy = pd.get_dummies(leads['Last Activity'], prefix = 'Last Activity')
 In [98]:
          dummy = dummy.drop(['Last Activity Others'], 1)
          leads = pd.concat([leads, dummy], axis = 1)
          dummy = pd.get_dummies(leads['Last Notable Activity'], prefix = 'Last Notable Activity']
In [99]:
          dummy = dummy.drop(['Last Notable Activity_Other_Notable_activity'], 1)
          leads = pd.concat([leads, dummy], axis = 1)
          dummy = pd.get_dummies(leads['Tags'], prefix = 'Tags')
In [100]:
          dummy = dummy.drop(['Tags Not Specified'], 1)
          leads = pd.concat([leads, dummy], axis = 1)
In [101]: #dropping the original columns after dummy variable creation
          leads.drop(cat_cols,1,inplace = True)
In [102]:
         leads.head()
```

\cap u+	[102]	
Uul	[TOZ]	

	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	What is your occupation_Ho
0	0	0.0	0	0.0	0	0	0	
1	0	5.0	674	2.5	0	0	0	
2	1	2.0	1532	2.0	1	0	0	
3	0	1.0	305	1.0	1	0	0	
4	1	2.0	1428	1.0	1	0	0	

5 rows × 59 columns

Train-Test Split & Logistic Regression Model Building:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6267 entries, 9196 to 5825

	Data colu	nns (total	58	columns):
--	-----------	------------	----	---------	----

#	Column	Non-Null Count	Dtype
0	TotalVisits	6267 non-null	float64
1	Total Time Spent on Website	6267 non-null	int64
2	Page Views Per Visit	6267 non-null	float64
3	Lead Origin_Landing Page Submission	6267 non-null	uint8
4	Lead Origin_Lead Add Form	6267 non-null	uint8
5	Lead Origin_Lead Import	6267 non-null	uint8
6	What is your current occupation_Housewife	6267 non-null	uint8
7	What is your current occupation_NOt Provided	6267 non-null	uint8
8	What is your current occupation_Other	6267 non-null	uint8
9	What is your current occupation_Student	6267 non-null	uint8
10	What is your current occupation_Unemployed	6267 non-null	uint8
11	What is your current occupation_Working Professional		uint8
12	City_Not Provided	6267 non-null	uint8
13	City_Other Cities	6267 non-null	uint8
14	City_Other Cities of Maharashtra	6267 non-null	uint8
15 16	City_Other Metro Cities	6267 non-null	uint8 uint8
16	City_Thane & Outskirts City Tier II Cities	6267 non-null 6267 non-null	
17 18	Specialization_Banking, Investment And Insurance	6267 non-null	uint8 uint8
19	Specialization_Business Administration	6267 non-null	uint8
20	Specialization_E-Business	6267 non-null	uint8
21	Specialization E-COMMERCE	6267 non-null	uint8
22	Specialization International Business	6267 non-null	uint8
23	Specialization_Management_Specializations	6267 non-null	uint8
24	Specialization_Media and Advertising	6267 non-null	uint8
25	Specialization_Rural and Agribusiness	6267 non-null	uint8
26	Specialization_Services Excellence	6267 non-null	uint8
27	Specialization_Travel and Tourism	6267 non-null	uint8
28	Lead Source_Direct Traffic	6267 non-null	uint8
29	Lead Source_Google	6267 non-null	uint8
	Lead Source_Live Chat	6267 non-null	uint8
31	Lead Source_Olark Chat	6267 non-null	uint8
	Lead Source_Organic Search	6267 non-null	uint8
33	Lead Source_Reference	6267 non-null	uint8
34	-	6267 non-null	
35 36	Lead Source_Social Media	6267 non-null 6267 non-null	uint8 uint8
36 37	Lead Source_Welingak Website Last Activity_Converted to Lead	6267 non-null	uint8
38	Last Activity_Email Bounced	6267 non-null	uint8
39	Last Activity_Email Link Clicked	6267 non-null	uint8
40	Last Activity_Email Opened	6267 non-null	uint8
41	Last Activity_Form Submitted on Website	6267 non-null	uint8
42	Last Activity_Olark Chat Conversation	6267 non-null	uint8
43	Last Activity_Page Visited on Website	6267 non-null	uint8
44	Last Activity_SMS Sent	6267 non-null	uint8
45	Last Notable Activity_Email Link Clicked	6267 non-null	uint8
46	Last Notable Activity_Email Opened	6267 non-null	uint8
47	Last Notable Activity_Modified	6267 non-null	uint8
48	Last Notable Activity_Olark Chat Conversation	6267 non-null	uint8
49	Last Notable Activity_Page Visited on Website	6267 non-null	uint8
50	Last Notable Activity_SMS Sent	6267 non-null	uint8
51	Tags_Busy	6267 non-null	uint8
52	Tags_Closed by Horizzon	6267 non-null	uint8
53 54	Tags_Interested in other courses	6267 non-null	uint8
54	Tags_Lost to EINS	6267 non-null	uint8
55 56	Tags_Other_Tags Tags_Ringing	6267 non-null 6267 non-null	uint8 uint8
57	Tags_Will revert after reading the email	6267 non-null	uint8
١ ر	1082 MITT LEVEL C OLCEL LEGATING CHE GINGTT	OZO/ HOH-HULL	UTITO

dtypes: float64(2), int64(1), uint8(55)
memory usage: 532.5 KB

Scaling of Data:

```
In [106]: #scaling numeric columns

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

num_cols=X_train.select_dtypes(include=['float64', 'int64']).columns

X_train[num_cols] = scaler.fit_transform(X_train[num_cols])

X_train.head()
```

Out[106]:

	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	What is your curre occupation_Housew
9196	0.668862	1.848117	1.455819	1	0	0	
4696	-0.030697	-0.037832	0.399961	1	0	0	
3274	0.319082	-0.642138	-0.127967	1	0	0	
2164	-0.380477	-0.154676	-0.127967	0	0	0	
1667	0.319082	1.258415	-0.481679	0	0	0	

5 rows × 58 columns

Model Building using Stats Model & RFE:

```
In [107]: import statsmodels.api as sm
In [108]:
          from sklearn.linear_model import LogisticRegression
          logreg = LogisticRegression()
          from sklearn.feature_selection import RFE
          rfe = RFE(logreg, n features to select=20) # running RFE with 20 variables a
          rfe = rfe.fit(X train, y train)
In [109]:
         rfe.support_
         array([False, True, False, False, True, False, False, True, False,
Out[109]:
                False, False, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False,
                False, True, False, False, True, False, True, False,
                 True, False, True, False, False, False, False, True,
                 True, False, True, True, False, False, True, True, True,
                 True, True, True])
In [110]: list(zip(X_train.columns, rfe.support_, rfe.ranking_))
```

```
Out[110]: [('TotalVisits', False, 21),
            ('Total Time Spent on Website', True, 1),
            ('Page Views Per Visit', False, 20),
            ('Lead Origin_Landing Page Submission', False, 10),
            ('Lead Origin_Lead Add Form', True, 1),
            ('Lead Origin_Lead Import', False, 39),
            ('What is your current occupation_Housewife', False, 14),
            ('What is your current occupation_NOt Provided', True, 1),
            ('What is your current occupation_Other', False, 31),
            ('What is your current occupation_Student', False, 17),
            ('What is your current occupation_Unemployed', False, 15),
            ('What is your current occupation_Working Professional', False, 7),
            ('City_Not Provided', False, 36),
            ('City_Other Cities', False, 19),
            ('City Other Cities of Maharashtra', False, 26),
            ('City_Other Metro Cities', False, 37),
            ('City_Thane & Outskirts', False, 34),
            ('City_Tier II Cities', False, 13),
            ('Specialization_Banking, Investment And Insurance', False, 9),
            ('Specialization_Business Administration', False, 33),
            ('Specialization_E-Business', False, 28),
            ('Specialization_E-COMMERCE', False, 25),
            ('Specialization_International Business', False, 27),
            ('Specialization_Management_Specializations', False, 29),
            ('Specialization_Media and Advertising', False, 22),
            ('Specialization_Rural and Agribusiness', False, 32),
            ('Specialization_Services Excellence', False, 24),
            ('Specialization_Travel and Tourism', False, 4),
            ('Lead Source_Direct Traffic', True, 1),
            ('Lead Source_Google', True, 1),
            ('Lead Source_Live Chat', False, 38),
            ('Lead Source Olark Chat', False, 16),
            ('Lead Source_Organic Search', True, 1),
            ('Lead Source_Reference', False, 23),
            ('Lead Source_Referral Sites', True, 1),
            ('Lead Source_Social Media', False, 5),
            ('Lead Source_Welingak Website', True, 1),
            ('Last Activity_Converted to Lead', False, 8),
            ('Last Activity Email Bounced', True, 1),
            ('Last Activity_Email Link Clicked', False, 30),
            ('Last Activity_Email Opened', False, 12),
            ('Last Activity_Form Submitted on Website', False, 18),
            ('Last Activity Olark Chat Conversation', False, 3),
            ('Last Activity_Page Visited on Website', False, 6),
            ('Last Activity_SMS Sent', True, 1),
            ('Last Notable Activity_Email Link Clicked', True, 1),
            ('Last Notable Activity_Email Opened', False, 11),
            ('Last Notable Activity_Modified', True, 1),
            ('Last Notable Activity Olark Chat Conversation', True, 1),
            ('Last Notable Activity_Page Visited on Website', False, 35),
            ('Last Notable Activity_SMS Sent', False, 2),
            ('Tags_Busy', True, 1),
            ('Tags_Closed by Horizzon', True, 1),
            ('Tags_Interested in other courses', True, 1),
            ('Tags_Lost to EINS', True, 1),
            ('Tags_Other_Tags', True, 1),
            ('Tags_Ringing', True, 1),
            ('Tags Will revert after reading the email', True, 1)]
In [111]: #list of RFE supported columns
           col = X train.columns[rfe.support ]
           col
```

```
Out[111]: Index(['Total Time Spent on Website', 'Lead Origin_Lead Add Form',
                  'What is your current occupation_NOt Provided',
                  'Lead Source_Direct Traffic', 'Lead Source_Google',
                  'Lead Source_Organic Search', 'Lead Source_Referral Sites',
                  'Lead Source_Welingak Website', 'Last Activity_Email Bounced',
                  'Last Activity_SMS Sent', 'Last Notable Activity_Email Link Clicked',
                  'Last Notable Activity_Modified',
                  'Last Notable Activity_Olark Chat Conversation', 'Tags_Busy',
                  'Tags_Closed by Horizzon', 'Tags_Interested in other courses',
                  'Tags_Lost to EINS', 'Tags_Other_Tags', 'Tags_Ringing',
                  'Tags Will revert after reading the email'],
                 dtype='object')
In [112]: X_train.columns[~rfe.support_]
          Index(['TotalVisits', 'Page Views Per Visit',
Out[112]:
                  'Lead Origin_Landing Page Submission', 'Lead Origin_Lead Import',
                  'What is your current occupation Housewife',
                  'What is your current occupation_Other',
                  'What is your current occupation_Student'
                  'What is your current occupation_Unemployed',
                  'What is your current occupation_Working Professional',
                  'City_Not Provided', 'City_Other Cities',
                  'City_Other Cities of Maharashtra', 'City_Other Metro Cities',
                  'City_Thane & Outskirts', 'City_Tier II Cities',
                  'Specialization_Banking, Investment And Insurance',
                  'Specialization_Business Administration', 'Specialization_E-Business',
                  'Specialization_E-COMMERCE', 'Specialization_International Business',
                  'Specialization_Management_Specializations',
                  'Specialization Media and Advertising',
                  'Specialization_Rural and Agribusiness',
                  'Specialization_Services Excellence',
'Specialization_Travel and Tourism', 'Lead Source_Live Chat',
                  'Lead Source_Olark Chat', 'Lead Source_Reference',
                  'Lead Source_Social Media', 'Last Activity_Converted to Lead',
                  'Last Activity_Email Link Clicked', 'Last Activity_Email Opened',
                  'Last Activity_Form Submitted on Website',
                  'Last Activity_Olark Chat Conversation',
                  'Last Activity_Page Visited on Website',
                  'Last Notable Activity_Email Opened',
                  'Last Notable Activity_Page Visited on Website',
                  'Last Notable Activity SMS Sent'],
                 dtype='object')
In [113]: #BUILDING MODEL #1
           X train sm = sm.add constant(X train[col])
           logm1 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
           res = logm1.fit()
           res.summary()
```

Out[113]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6267
Model:	GLM	Df Residuals:	6246
Model Family:	Binomial	Df Model:	20
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1094.9
Date:	Mon, 17 Feb 2025	Deviance:	2189.9
Time:	21:41:38	Pearson chi2:	9.17e+03
No. Iterations:	8	Pseudo R-squ. (CS):	0.6244

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	1.1637	0.167	6.977	0.000	0.837	1.491
Total Time Spent on Website	1.0704	0.065	16.494	0.000	0.943	1.198
Lead Origin_Lead Add Form	0.7656	0.478	1.601	0.109	-0.172	1.703
What is your current occupation_NOt Provided	-2.4331	0.160	-15.236	0.000	-2.746	-2.120
Lead Source_Direct Traffic	-1.4597	0.188	-7.772	0.000	-1.828	-1.092
Lead Source_Google	-0.9336	0.172	-5.424	0.000	-1.271	-0.596
Lead Source_Organic Search	-0.9830	0.216	-4.548	0.000	-1.407	-0.559
Lead Source_Referral Sites	-0.9687	0.497	-1.949	0.051	-1.943	0.005
Lead Source_Welingak Website	2.7132	1.124	2.413	0.016	0.509	4.917
Last Activity_Email Bounced	-1.2093	0.452	-2.678	0.007	-2.095	-0.324
Last Activity_SMS Sent	2.0629	0.129	16.037	0.000	1.811	2.315
Last Notable Activity_Email Link Clicked	-1.2555	0.507	-2.478	0.013	-2.248	-0.263
Last Notable Activity_Modified	-1.4286	0.133	-10.751	0.000	-1.689	-1.168
Last Notable Activity_Olark Chat Conversation	-2.3959	0.541	-4.433	0.000	-3.455	-1.336
Tags_Busy	-1.1713	0.263	-4.454	0.000	-1.687	-0.656
Tags_Closed by Horizzon	5.5504	1.029	5.396	0.000	3.534	7.566
Tags_Interested in other courses	-3.8144	0.429	-8.894	0.000	-4.655	-2.974
Tags_Lost to EINS	4.9972	0.631	7.916	0.000	3.760	6.234
Tags_Other_Tags	-4.0446	0.247	-16.370	0.000	-4.529	-3.560
Tags_Ringing	-5.1361	0.276	-18.621	0.000	-5.677	-4.596
Tags_Will revert after reading the email	2.8699	0.221	12.960	0.000	2.436	3.304

```
In [114]: # Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor

# Create a dataframe that will contain the names of all the feature variables and the vif = pd.DataFrame()
  vif['Features'] = X_train[col].columns
  vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_tra: vif['VIF'] = round(vif['VIF'], 2)
```

```
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[114]:		Features	VIF
	4	Lead Source_Google	2.67
	3	Lead Source_Direct Traffic	2.56
	2	What is your current occupation_NOt Provided	2.41
	19	Tags_Will revert after reading the email	2.26
	1	Lead Origin_Lead Add Form	1.97
	17	Tags_Other_Tags	1.97
	11	Last Notable Activity_Modified	1.93
	18	Tags_Ringing	1.78
	5	Lead Source_Organic Search	1.65
	9	Last Activity_SMS Sent	1.64
	0	Total Time Spent on Website	1.44
	15	Tags_Interested in other courses	1.38
	7	Lead Source_Welingak Website	1.37
	14	Tags_Closed by Horizzon	1.33
	13	Tags_Busy	1.13
	8	Last Activity_Email Bounced	1.10
	16	Tags_Lost to EINS	1.09
	6	Lead Source_Referral Sites	1.08
	12	Last Notable Activity_Olark Chat Conversation	1.07
	10	Last Notable Activity_Email Link Clicked	1.05

p-value of variable Lead Source_Referral Sites is high, so we can drop it.

Out[116]:

Dep. Variable:	Converted	No. Observations:	6267
Model:	GLM	Df Residuals:	6247
Model Family:	Binomial	Df Model:	19
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1096.3
Date:	Mon, 17 Feb 2025	Deviance:	2192.6
Time:	21:42:12	Pearson chi2:	9.22e+03
No. Iterations:	8	Pseudo R-squ. (CS):	0.6242
_			

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	1.2111	0.164	7.369	0.000	0.889	1.533
Total Time Spent on Website	1.0716	0.065	16.460	0.000	0.944	1.199
What is your current occupation_NOt Provided	-2.4402	0.160	-15.292	0.000	-2.753	-2.127
Lead Source_Direct Traffic	-1.5237	0.184	-8.286	0.000	-1.884	-1.163
Lead Source_Google	-0.9897	0.169	-5.870	0.000	-1.320	-0.659
Lead Source_Organic Search	-1.0421	0.213	-4.883	0.000	-1.460	-0.624
Lead Source_Referral Sites	-1.0233	0.498	-2.054	0.040	-2.000	-0.047
Lead Source_Welingak Website	3.4325	1.030	3.334	0.001	1.414	5.451
Last Activity_Email Bounced	-1.2169	0.454	-2.681	0.007	-2.107	-0.327
Last Activity_SMS Sent	2.0770	0.128	16.189	0.000	1.826	2.328
Last Notable Activity_Email Link Clicked	-1.2696	0.504	-2.520	0.012	-2.257	-0.282
Last Notable Activity_Modified	-1.4414	0.133	-10.850	0.000	-1.702	-1.181
Last Notable Activity_Olark Chat Conversation	-2.4231	0.541	-4.479	0.000	-3.483	-1.363
Tags_Busy	-1.1697	0.263	-4.444	0.000	-1.686	-0.654
Tags_Closed by Horizzon	5.8192	1.018	5.715	0.000	3.823	7.815
Tags_Interested in other courses	-3.8096	0.430	-8.868	0.000	-4.652	-2.968
Tags_Lost to EINS	5.0213	0.631	7.958	0.000	3.785	6.258
Tags_Other_Tags	-4.0334	0.247	-16.333	0.000	-4.517	-3.549
Tags_Ringing	-5.1153	0.275	-18.570	0.000	-5.655	-4.575
Tags_Will revert after reading the email	2.9394	0.217	13.518	0.000	2.513	3.366

Since 'All' the p-values are less we can check the Variance Inflation Factor to see if there is any correlation between the variables

```
In [117]: # Create a dataframe that will contain the names of all the feature variables and the
  vif = pd.DataFrame()
  vif['Features'] = X_train[col].columns
  vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_tra:
    vif['VIF'] = round(vif['VIF'], 2)
  vif = vif.sort_values(by = "VIF", ascending = False)
  vif
```

Out[117]:		Features	VIF
	3	Lead Source_Google	2.49
	2	Lead Source_Direct Traffic	2.39
	1	What is your current occupation_NOt Provided	2.35
	10	Last Notable Activity_Modified	1.93
	16	Tags_Other_Tags	1.92
	18	Tags_Will revert after reading the email	1.86
	17	Tags_Ringing	1.73
	8	Last Activity_SMS Sent	1.60
	4	Lead Source_Organic Search	1.58
	0	Total Time Spent on Website	1.41
	14	Tags_Interested in other courses	1.36
	12	Tags_Busy	1.13
	13	Tags_Closed by Horizzon	1.12
	7	Last Activity_Email Bounced	1.10
	15	Tags_Lost to EINS	1.08
	5	Lead Source_Referral Sites	1.07
	11	Last Notable Activity_Olark Chat Conversation	1.06
	6	Lead Source_Welingak Website	1.05
	9	Last Notable Activity_Email Link Clicked	1.05

There is a high correlation between two variables so we drop the variable with the higher valued VIF value

Out[119]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6267
Model:	GLM	Df Residuals:	6248
Model Family:	Binomial	Df Model:	18
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1098.6
Date:	Mon, 17 Feb 2025	Deviance:	2197.2
Time:	21:42:59	Pearson chi2:	9.25e+03
No. Iterations:	8	Pseudo R-squ. (CS):	0.6240

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	1.1476	0.161	7.114	0.000	0.831	1.464
Total Time Spent on Website	1.0547	0.065	16.335	0.000	0.928	1.181
What is your current occupation_NOt Provided	-2.4564	0.159	-15.418	0.000	-2.769	-2.144
Lead Source_Direct Traffic	-1.4455	0.180	-8.027	0.000	-1.798	-1.093
Lead Source_Google	-0.9097	0.164	-5.532	0.000	-1.232	-0.587
Lead Source_Organic Search	-0.9623	0.210	-4.580	0.000	-1.374	-0.551
Lead Source_Welingak Website	3.4778	1.029	3.378	0.001	1.460	5.495
Last Activity_Email Bounced	-1.2051	0.454	-2.654	0.008	-2.095	-0.315
Last Activity_SMS Sent	2.0859	0.128	16.284	0.000	1.835	2.337
Last Notable Activity_Email Link Clicked	-1.2699	0.510	-2.489	0.013	-2.270	-0.270
Last Notable Activity_Modified	-1.4313	0.133	-10.789	0.000	-1.691	-1.171
Last Notable Activity_Olark Chat Conversation	-2.4336	0.542	-4.487	0.000	-3.497	-1.371
Tags_Busy	-1.1905	0.262	-4.539	0.000	-1.705	-0.676
Tags_Closed by Horizzon	5.8283	1.018	5.725	0.000	3.833	7.824
Tags_Interested in other courses	-3.8911	0.434	-8.974	0.000	-4.741	-3.041
Tags_Lost to EINS	5.0308	0.631	7.977	0.000	3.795	6.267
Tags_Other_Tags	-4.0453	0.247	-16.401	0.000	-4.529	-3.562
Tags_Ringing	-5.1188	0.275	-18.610	0.000	-5.658	-4.580
Tags_Will revert after reading the email	2.9211	0.217	13.486	0.000	2.497	3.346

```
In [131]: # Create a dataframe that will contain the names of all the feature variables and the
  vif = pd.DataFrame()
  vif['Features'] = X_train[col].columns
  vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_tra:
    vif['VIF'] = round(vif['VIF'], 2)
  vif = vif.sort_values(by = "VIF", ascending = False)
  vif
```

```
3
                                       Lead Source_Google 2.40
             2
                                   Lead Source_Direct Traffic 2.32
                What is your current occupation_NOt Provided 2.23
             1
                              Last Notable Activity_Modified
             8
            14
                                           Tags_Other_Tags 1.85
            16
                        Tags_Will revert after reading the email 1.81
            15
                                             Tags_Ringing 1.68
             7
                                      Last Activity_SMS Sent 1.59
             4
                                Lead Source_Organic Search 1.54
             0
                                Total Time Spent on Website 1.39
            12
                             Tags_Interested in other courses 1.31
            10
                                                Tags_Busy 1.12
             6
                                 Last Activity_Email Bounced 1.10
            11
                                   Tags_Closed by Horizzon 1.10
            13
                                          Tags_Lost to EINS 1.07
             9
                 Last Notable Activity_Olark Chat Conversation 1.06
             5
                              Lead Source_Welingak Website 1.05
            #dropping variable with high VIF
In [120]:
            col = col.drop('Last Notable Activity_Email Link Clicked',1)
In [121]: #BUILDING MODEL #4
            X_train_sm = sm.add_constant(X_train[col])
            logm4 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
            res = logm4.fit()
            res.summary()
```

Features VIF

Out[131]:

Out[121]:

Generalized	Linear	Model	Rec	iression	Results	
oci ici anzea	LIIICai	MOGCI	1100	11 6331011	INCOURTS	

Dep. Variable:	Converted	No. Observations:	6267
Model:	GLM	Df Residuals:	6249
Model Family:	Binomial	Df Model:	17
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1102.2
Date:	Mon, 17 Feb 2025	Deviance:	2204.3
Time:	21:44:40	Pearson chi2:	9.21e+03
No. Iterations:	8	Pseudo R-squ. (CS):	0.6235

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	1.0980	0.160	6.880	0.000	0.785	1.411
Total Time Spent on Website	1.0602	0.065	16.412	0.000	0.934	1.187
What is your current occupation_NOt Provided	-2.4599	0.159	-15.501	0.000	-2.771	-2.149
Lead Source_Direct Traffic	-1.4379	0.180	-7.988	0.000	-1.791	-1.085
Lead Source_Google	-0.8941	0.164	-5.448	0.000	-1.216	-0.572
Lead Source_Organic Search	-0.9492	0.210	-4.522	0.000	-1.361	-0.538
Lead Source_Welingak Website	3.4581	1.028	3.365	0.001	1.444	5.472
Last Activity_Email Bounced	-1.1791	0.454	-2.598	0.009	-2.069	-0.289
Last Activity_SMS Sent	2.1180	0.128	16.585	0.000	1.868	2.368
Last Notable Activity_Modified	-1.4004	0.132	-10.596	0.000	-1.659	-1.141
Last Notable Activity_Olark Chat Conversation	-2.3921	0.543	-4.406	0.000	-3.456	-1.328
Tags_Busy	-1.1788	0.262	-4.493	0.000	-1.693	-0.665
Tags_Closed by Horizzon	5.7930	1.018	5.689	0.000	3.797	7.789
Tags_Interested in other courses	-3.8893	0.434	-8.970	0.000	-4.739	-3.039
Tags_Lost to EINS	5.0192	0.631	7.948	0.000	3.782	6.257
Tags_Other_Tags	-4.0527	0.246	-16.467	0.000	-4.535	-3.570
Tags_Ringing	-5.1135	0.275	-18.595	0.000	-5.653	-4.575
Tags_Will revert after reading the email	2.9135	0.216	13.507	0.000	2.491	3.336

```
In [123]: # Create a dataframe that will contain the names of all the feature variables and the
  vif = pd.DataFrame()
  vif['Features'] = X_train[col].columns
  vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_tra:
    vif['VIF'] = round(vif['VIF'], 2)
  vif = vif.sort_values(by = "VIF", ascending = False)
  vif
```

Out[123]:		Features	VIF
	3	Lead Source_Google	2.40
	2	Lead Source_Direct Traffic	2.32
		What is your current occupation_NOt Provided	2.23
	8	Last Notable Activity_Modified	1.90
	14	Tags_Other_Tags	1.85
	16	Tags_Will revert after reading the email	1.81
	15	Tags_Ringing	1.68
	7	Last Activity_SMS Sent	1.59
		Lead Source_Organic Search	1.54
	0	Total Time Spent on Website	1.39
	12	Tags_Interested in other courses	1.31
	10	Tags_Busy	1.12
	6	Last Activity_Email Bounced	1.10
	11	Tags_Closed by Horizzon	1.10
	13	Tags_Lost to EINS	1.07
	9	Last Notable Activity_Olark Chat Conversation	1.06
	5	Lead Source_Welingak Website	1.05

So the Values all seem to be in order so now, Moving on to derive the Probabilities, Lead Score, Predictions on Train Data:

```
In [124]: # Getting the Predicted values on the train set
                                           y_train_pred = res.predict(X_train_sm)
                                          y_train_pred[:10]
                                          9196
                                                                        0.303204
Out[124]:
                                          4696
                                                                        0.033072
                                          3274
                                                                        0.306033
                                          2164
                                                                        0.005222
                                          1667
                                                                        0.988475
                                          7024
                                                                        0.543223
                                          8018
                                                                        0.009206
                                          778
                                                                        0.092466
                                          6942
                                                                        0.005068
                                          4440
                                                                        0.041033
                                          dtype: float64
 In [125]: y_train_pred = y_train_pred.values.reshape(-1)
                                          y_train_pred[:10]
Out[125]: array([0.30320369, 0.03307186, 0.30603259, 0.0052217, 0.98847546,
                                                                      0.54322336, 0.00920607, 0.09246557, 0.00506774, 0.04103274])
 In [126]: y_train_pred_final = pd.DataFrame({'Converted':y_train.values, 'Converted_prob':y_train.values, 'Converted_prob':y_tr
                                           y_train_pred_final['Prospect ID'] = y_train.index
                                           y_train_pred_final.head()
```

```
Converted Converted_prob Prospect ID
Out[126]:
           0
                      1
                               0.303204
                                              9196
                      0
                               0.033072
           1
                                              4696
           2
                      0
                               0.306033
                                              3274
           3
                      0
                               0.005222
                                              2164
                               0.988475
                                              1667
           4
                      1
In [127]: y_train_pred_final['Predicted'] = y_train_pred_final.Converted_prob.map(lambda x: 1 :
           # Let's see the head
           y_train_pred_final.head()
              Converted Converted_prob Prospect ID Predicted
Out[127]:
                                                          0
           0
                               0.303204
                                              9196
                      1
           1
                      0
                               0.033072
                                              4696
                                                           0
           2
                      0
                               0.306033
                                              3274
                                                           0
           3
                      0
                               0.005222
                                              2164
                                                           0
           4
                      1
                               0.988475
                                              1667
                                                           1
In [128]: from sklearn import metrics
           # Confusion matrix
           confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final
           print(confusion)
           [[3723 159]
            [ 248 2137]]
In [129]: # Let's check the overall accuracy.
           print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.Predict
           0.9350566459230892
In [130]: TP = confusion[1,1] # true positive
           TN = confusion[0,0] # true negatives
           FP = confusion[0,1] # false positives
           FN = confusion[1,0] # false negatives
In [131]: # Let's see the sensitivity of our logistic regression model
           TP / float(TP+FN)
          0.8960167714884696
Out[131]:
           # Let us calculate specificity
In [132]:
           TN / float(TN+FP)
          0.9590417310664606
Out[132]:
In [133]: # Calculate False Postive Rate - predicting conversion when customer does not have co
           print(FP/ float(TN+FP))
           0.04095826893353941
```

```
# positive predictive value
In [134]:
          print (TP / float(TP+FP))
          0.9307491289198606
In [135]: # Negative predictive value
          print (TN / float(TN+ FN))
          0.9375472173256106
```

PLOTTING ROC CURVE

```
In [136]: def draw_roc( actual, probs ):
              fpr, tpr, thresholds = metrics.roc_curve( actual, probs,
                                                         drop_intermediate = False )
              auc_score = metrics.roc_auc_score( actual, probs )
              plt.figure(figsize=(5, 5))
              plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score )
              plt.plot([0, 1], [0, 1], 'k--')
              plt.xlim([0.0, 1.0])
              plt.ylim([0.0, 1.05])
              plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
              plt.ylabel('True Positive Rate')
              plt.title('Receiver operating characteristic example')
              plt.legend(loc="lower right")
              plt.show()
              return None
         fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final.Converted, y_train_pred
In [137]:
```

draw_roc(y_train_pred_final.Converted, y_train_pred_final.Converted_prob) In [138]:

The ROC Curve should be a value close to 1. We are getting a good value of 0.97 indicating a good predictive model.

Finding Optimal Cutoff Point

0.3

0.5

0.6

0.7

0.8

0.9

0.3 0.928355 0.934172 0.924781

0.9 0.904420 0.764361 0.990469

0.4 0.935535 0.919916

0.5 0.935057 0.896017

0.6 0.931706 0.866667

0.7 0.926919 0.843606

0.8 0.918302 0.811740

Above we had chosen an arbitrary cut-off value of 0.5. We need to determine the best cut-off value and the below section deals with that:

```
# Let's create columns with different probability cutoffs
In [139]:
           numbers = [float(x)/10 \text{ for } x \text{ in } range(10)]
           for i in numbers:
               y_train_pred_final[i]= y_train_pred_final.Converted_prob.map(lambda x: 1 if x >
           y_train_pred_final.head()
Out[139]:
                                        Prospect
              Converted Converted prob
                                                 Predicted 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
                                              ID
           0
                      1
                                0.303204
                                                                                                0
                                            9196
                                                         0
                                                             1
                                                                               0
                                                                                   0
                                                                                       0
                                                                                            0
                                                                  1
                                                                      1
                                                                          1
                      0
                                0.033072
                                            4696
                                                         0
                                                                  0
                                                                      0
                                                                          0
                                                                               0
                                                                                   0
                                                                                        0
                                                                                            0
           2
                      0
                                0.306033
                                            3274
                                                                               0
                                                                                   0
                                                                                       0
                                                                                                0
                                                         0
                                                             1
                                                                  1
                                                                      1
                                                                          1
                                                                                            0
           3
                      0
                                0.005222
                                            2164
                                                         0
                                                                  0
                                                                      0
                                                                          0
                                                                               0
                                                                                   0
                                                                                       0
                                                                                            0
           4
                                0.988475
                      1
                                            1667
                                                             1
                                                                  1
                                                                          1
                                                                                            1
                                                         1
                                                                      1
                                                                               1
                                                                                   1
                                                                                        1
In [140]:
           # Now let's calculate accuracy sensitivity and specificity for various probability co
           cutoff_df = pd.DataFrame( columns = ['prob', 'accuracy', 'sensi', 'speci'])
           from sklearn.metrics import confusion_matrix
           # TP = confusion[1,1] # true positive
           # TN = confusion[0,0] # true negatives
           # FP = confusion[0,1] # false positives
           # FN = confusion[1,0] # false negatives
           num = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
           for i in num:
               cm1 = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final[
               total1=sum(sum(cm1))
               accuracy = (cm1[0,0]+cm1[1,1])/total1
               speci = cm1[0,0]/(cm1[0,0]+cm1[0,1])
               sensi = cm1[1,1]/(cm1[1,0]+cm1[1,1])
               cutoff_df.loc[i] =[ i ,accuracy,sensi,speci]
           print(cutoff df)
                prob accuracy
                                    sensi
                                               speci
           0.0
                 0.0 0.380565 1.000000 0.000000
           0.1
                 0.1 0.887187 0.970650 0.835909
           0.2
                 0.2 0.917664 0.952201 0.896445
```

0.945131

0.959042

0.971664

0.978104

0.983771

In [141]: # Let's plot accuracy sensitivity and specificity for various probabilities.
 cutoff_df.plot.line(x='prob', y=['accuracy', 'sensi', 'speci'])
 plt.show()

In [142]: #### From the curve above, 0.3 is the optimum point to take it as a cutoff probabili:
 y_train_pred_final['final_Predicted'] = y_train_pred_final.Converted_prob.map(lambda
 y_train_pred_final.head()

Out[142]:	Out[142]:		Converted_prob	Prospect ID	Predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
	0	1	0.303204	9196	0	1	1	1	1	0	0	0	0	0	
	1	0	0.033072	4696	0	1	0	0	0	0	0	0	0	0	
	2	0	0.306033	3274	0	1	1	1	1	0	0	0	0	0	
	3	0	0.005222	2164	0	1	0	0	0	0	0	0	0	0	
	4	1	0.988475	1667	1	1	1	1	1	1	1	1	1	1	

In [143]: y_train_pred_final['Lead_Score'] = y_train_pred_final.Converted_prob.map(lambda x: u
y_train_pred_final[['Converted','Converted_prob','Prospect ID','final_Predicted','Lead_prob','Prospect ID','final_Predicted','Lead_prob'

	0	1	0.303204	9196	1	30
	1	0	0.033072	4696	0	3
	2	0	0.306033	3274	1	31
	3	0	0.005222	2164	0	1
	4	1	0.988475	1667	1	99
In [144]:			overall accura core(y_train_p		ted, y_tra	in_pred_final.final_Predic [.]
Out[144]:	0.92835487	747407053				
In [145]:	confusion:		cs.confusion_m	atrix(y_train_pr	ed_final.C	onverted, y_train_pred_fina
Out[145]:	array([[35],]], dtype=int64	4)		
In [146]:	TN = confe FP = confe	usion2[0, usion2[0,	1] # true posi 0] # true nega 1] # false pos 0] # false neg	tives itives		
In [147]:	# Let's so TP / fload		nsitivity of o	ur logistic regr	ession mod	el
Out[147]:	0.93417190	077568135				
In [148]:	# Let us of TN / float		specificity			
Out[148]:	0.92478104	407006698				

Converted Converted_prob Prospect ID final_Predicted Lead_Score

Observation:

Out[143]:

So as we can see above the model seems to be performing well. The ROC curve has a value of 0.97, which is very good. We have the following values for the Train Data:

Accuracy: 92.29%Sensitivity: 91.70%Specificity: 92.66%

Some of the other Stats are derived below, indicating the False Positive Rate, Positive Predictive Value, Negative Predictive Values, Precision & Recall.

```
In [149]: # Calculate False Postive Rate - predicting conversion when customer does not have conversion print(FP/ float(TN+FP))

0.07521895929933024
In [150]: # Positive predictive value print (TP / float(TP+FP))
```

0.8841269841269841

```
# Negative predictive value
In [151]:
           print (TN / float(TN+ FN))
          0.9580998131838805
In [152]: #Looking at the confusion matrix again
           confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final
           confusion
          array([[3590, 292],
Out[152]:
                 [ 157, 2228]], dtype=int64)
          ##### Precision
In [153]:
           TP / TP + FP
           confusion[1,1]/(confusion[0,1]+confusion[1,1])
          0.8841269841269841
Out[153]:
In [154]:
          ##### Recall
           TP / TP + FN
           confusion[1,1]/(confusion[1,0]+confusion[1,1])
          0.9341719077568135
Out[154]:
In [155]:
          from sklearn.metrics import precision_score, recall_score
           precision_score(y_train_pred_final.Converted , y_train_pred_final.final_Predicted)
In [156]:
          0.8841269841269841
Out[156]:
           recall_score(y_train_pred_final.Converted, y_train_pred_final.final_Predicted)
In [157]:
          0.9341719077568135
Out[157]:
           from sklearn.metrics import precision_recall_curve
In [158]:
In [159]:
           y_train_pred_final.Converted, y_train_pred_final.final_Predicted
           p, r, thresholds = precision_recall_curve(y_train_pred_final.Converted, y_train_pred_
           plt.plot(thresholds, p[:-1], "g-")
In [160]:
           plt.plot(thresholds, r[:-1], "r-")
           plt.show()
```



```
In [161]: #scaling test set
    num_cols=X_test.select_dtypes(include=['float64', 'int64']).columns
    X_test[num_cols] = scaler.fit_transform(X_test[num_cols])
    X_test.head()
```

Out[161]:

	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	What is your curre occupation_Housew
768	0.575687	-0.311318	0.092860	1	0	0	
984	-0.090676	-0.550262	0.356568	1	0	0	
813	-0.423857	0.812462	-0.170849	1	0	0	
691	0.242505	-0.628665	-0.170849	1	0	0	
271	-0.090676	-0.421456	0.356568	0	0	0	

5 rows × 58 columns

```
In [162]: X_test = X_test[col]
    X_test.head()
```

Out	1	6	2]	

	Total Time Spent on Website	What is your current occupation_NOt Provided	Lead Source_Direct Traffic	Lead Source_Google	Lead Source_Organic Search	Lead Source_Welingak Website
7681	-0.311318	0	1	0	0	0
984	-0.550262	0	0	0	1	0
8135	0.812462	1	1	0	0	0
6915	-0.628665	0	0	1	0	0
2712	-0.421456	0	0	1	0	0

In [163]: X_test_sm = sm.add_constant(X_test)

PREDICTIONS ON TEST SET

```
In [164]: y_test_pred = res.predict(X_test_sm)
In [165]: y_test_pred[:10]
          7681
                  0.024955
Out[165]:
          984
                  0.022540
          8135
                  0.544807
          6915
                  0.003773
          2712
                  0.935270
          244
                  0.002161
          4698
                  0.009019
                  0.023944
          8287
                  0.978512
          6791
          8970
                  0.004523
          dtype: float64
In [166]: # Converting y_pred to a dataframe which is an array
           y_pred_1 = pd.DataFrame(y_test_pred)
In [167]: # Let's see the head
           y_pred_1.head()
                      0
Out[167]:
           7681 0.024955
            984 0.022540
           8135 0.544807
           6915 0.003773
           2712 0.935270
In [168]: # Converting y_test to dataframe
           y_test_df = pd.DataFrame(y_test)
          # Putting CustID to index
In [169]:
           y_test_df['Prospect ID'] = y_test_df.index
```

```
In [170]:
           # Removing index for both dataframes to append them side by side
           y_pred_1.reset_index(drop=True, inplace=True)
           y_test_df.reset_index(drop=True, inplace=True)
           # Appending y_test_df and y_pred_1
In [171]:
           y_pred_final = pd.concat([y_test_df, y_pred_1],axis=1)
In [172]: y_pred_final.head()
              Converted Prospect ID
                                          0
Out[172]:
           0
                      0
                               7681 0.024955
           1
                      0
                                984 0.022540
           2
                               8135 0.544807
                      0
           3
                      0
                               6915 0.003773
           4
                      1
                               2712 0.935270
           # Renaming the column
In [173]:
           y_pred_final= y_pred_final.rename(columns={ 0 : 'Converted_prob'})
In [174]: y_pred_final.head()
              Converted Prospect ID Converted_prob
Out[174]:
           0
                      0
                               7681
                                           0.024955
           1
                      0
                                984
                                           0.022540
           2
                      0
                               8135
                                           0.544807
           3
                      0
                               6915
                                           0.003773
                      1
                               2712
                                           0.935270
           4
In [175]: # Rearranging the columns
           y_pred_final = y_pred_final[['Prospect ID','Converted','Converted_prob']]
           y_pred_final['Lead_Score'] = y_pred_final.Converted_prob.map( lambda x: round(x*100)
           # Let's see the head of y_pred_final
In [176]:
           y_pred_final.head()
              Prospect ID Converted Converted_prob Lead_Score
Out[176]:
           0
                                 0
                                                             2
                    7681
                                           0.024955
                     984
                                                             2
           1
                                  0
                                           0.022540
           2
                    8135
                                  0
                                           0.544807
                                                            54
           3
                    6915
                                           0.003773
                                                             0
           4
                    2712
                                  1
                                           0.935270
                                                            94
          y_pred_final['final_Predicted'] = y_pred_final.Converted_prob.map(lambda x: 1 if x >
In [177]:
In [178]: y_pred_final.head()
```

	0	7681	0	0.024955	2	0				
	1	984	0	0.022540	2	0				
	2	8135	0	0.544807	54	1				
	3	6915	0	0.003773	0	0				
	4	2712	1	0.935270	94	1				
In [179]:		check the ov accuracy_sco		uracy. _final.Convert	ced, y_pre	d_final.final	l_Predicted)			
Out[179]:	0.938198	30640357409								
In [180]:	confusion confusion		.confusio	n_matrix(y_pre	ed_final.C	onverted, y_p	pred_final.final_Pred			
Out[180]:	array([[[[1563, 113], [53, 957]]	, dtype=i	nt64)						
In [181]:	<pre>TP = confusion2[1,1] # true positive TN = confusion2[0,0] # true negatives FP = confusion2[0,1] # false positives FN = confusion2[1,0] # false negatives</pre>									
In [182]:		see the sens	itivity o	f our logistic	regressi	on model				
Out[182]:	0.947524	17524752475								
In [183]:	<pre># Let us calculate specificity TN / float(TN+FP)</pre>									
Out[183]:	0.9325775656324582									
In [184]:	precisio	on_score(y_pr	ed_final.	Converted , y_	_pred_fina	l.final_Pred:	icted)			
Out[184]:	0.894392	25233644859								
In [185]:	recall_s	score(y_pred_	final.Con	verted, y_pred	l_final.fi	nal_Predicted	d)			
Out[185]:	0.947524752475									

Prospect ID Converted Converted_prob Lead_Score final_Predicted

Observation:

Out[178]:

After running the model on the Test Data these are the figures we obtain:

• Accuracy: 92.78% • Sensitivity: 91.98% • Specificity: 93.26%

Final Observation:

Let us compare the values obtained for Train & Test:

Train Data:

Accuracy: 92.29%Sensitivity: 91.70%Specificity: 92.66%

Test Data:

Accuracy: 92.78%Sensitivity: 91.98%Specificity: 93.26%

In []: