

Química Inorgânica I

Mestrado Integrado em Engenharia Química e Bioquímica Licenciatura em Química Aplicada

Séries de Problemas 2020-2021 (V)

I. Constantes de Complexação – Equilíbrio em dissolução-Espectros Óticos, Cor, e magnetismo

1.-Durante um estúdio realizado por Titulação ácido base (pH) utilizando um elétrodo de vidro (em 2M de NH₄NO₃ aquoso) os valores obtidos para as constantes de estabilização do Niquel(II) a 303 K para o complexo:

 $[Ni(H_2O)_{6-x}(NH_3)_x]^{2+}$ (x = 1-6), foram:

```
Log K_1 = 2.79

Log K_2 = 2.26

Log K_3 = 1,69

Log K_4 = 1,25

Log K_5 = 0,74

Log K_6 = 0,03
```

- a) Calcular a constante β_6 para o complexo [Ni(NH₃)₆]²⁺
- b) Calcular o valor de ΔG_1° a 303 K?
- c) Sendo o valor de $\Delta H_1^{\circ}(303 \text{K}) = -16.8 \text{ kJ.mol}^{-1}$, calcular $\Delta S_1^{\circ}(303 \text{K})$? (R= 8.314 JK⁻¹Mol⁻¹)

2.-Durante uma Titulação ácido base (pH) utilizando um elétrodo de vidro em solução aquosa para a formação dos complexos de Alumínio (III) e o ligando acetilacetonato, [acac] os valores obtidos para as constantes de estabilização a 303 K foram

Log
$$K_1 = 8,6$$

Log $K_2 = 7,9$
Log $K_3 = 5, 8$

- a) A que equilíbrios químicos referem-se esses valores?
- b) Determine o valor de ΔG_1° a 303 K, ΔG_2° a 303 K, e ΔG_2° a 303 K, e comente os valores obtidos.

3.- Quantos anéis estão presentes nos seguintes complexos formados pelos ligandos indicados, assumindo sempre que todos os átomos doadores estão envolvidos na coordenação ao metal. Desenhe os complexos formados e selecione o ligado certo em cada complexo.

Gerir uma serie de estabilidade iniciando com o complexo mais estável ate o de menor estabilidade.

- (a) [Cu(trien)]2+
- (b) $[Fe(ox)_3]^{3}$
- (c) $[Ru(bpy)^3]^{2+}$
- (d) $[Co(dien)_2]^{3+}$
- (e) [K(18-crown-6)]+

- 4.- O complexo $[Au(CN)_2]$ -tem uma constante de estabilidade de K = 10^{39} a 298K.
 - a) Escreva a reação de formação de este complexo, e calcule o valor de ΔG° a 298 K para esse processo.
 - b) Comente o valor obtido.
 - c) Esse complexo de ouro é utilizado no processo de extração do ouro das menas metálicas do metal. Comente e ajuste a reação em medio básico e diga que complexo se formaria quando o Zn(0) é utilizado como agente redutor.
- **5.** Os iões Ti³⁺ e Co²⁺ apresentam soluções aquosas coradas. O ião Mn²⁺ é incolor. Explique estas observações com base na previsão das possíveis transições eletrónicas.

<u>Dados</u>: Números atómicos: Ti= 22; Co=27; Mn=25 [Ar] $3d^24s^2$ [Ar] $3d^74s^2$ [Ar] $3d^54s^2$

- **6.** Considere os seguintes complexos de níquel (II) (número atómico=28) e os respetivos espectros eletrónicos [<u>Atenção</u>: o espectro está em unidades de energia (cm⁻¹)].
- A $[Ni(gly)_3]^-$ B - $[Ni(en)_3]^{2+}$ C - $[Ni(bipy)_3]^{2+}$

Nota: A glicina (gly⁻), a etilenodiamina (en) e a bipiridina (bipy) são todos ligandos bidentados. (Tenha cuidado com a carga do ligando)

- a) Calcule o número de bandas a observar nos espectros destes compostos.
- b) Calcule a energia de desdobramento do campo octaédrico (Δ o) produzido por estes ligandos. Construa uma série espectroquímica.
- c) tendo em conta os ligandos prediga qual vai ser mais estável
- **7.** Indique a configuração eletrónica e a multiplicidade de spin do estado fundamental dos iões Cr³+ (octaédrico spin alto) e Fe²+ (tetraédrico). Preveja o número de bandas de absorção a observar.

Dados: Números atómicos Cr=24; Fe=26

8. Na tabela seguinte são indicados dados espectrais de complexos octaédricos de níquel (número atómico = 28) em números de onda. Calcule o valor de $\Delta_{\rm oct}$ para cada um dos compostos indicados. Construa uma série espectroquímica para os ligandos considerados. Qual o significado desta série?

Composto	Energia das bandas de absorção (cm ⁻¹)			
Ni(DMSO) ₆ ²⁺	7700	13000	24000	
$Ni(DMA)_6^{2+}$	7500	12700	23800	
$Ni(H_2O)_6^{2+}$	8700	14500	25300	
$Ni(NH_3)_6^{2+}$	10800	17500	28200	

DMSO = dimetilsulfóxido; DMA = N,N-dimetilacetamida

9. Considere os seguintes compostos de coordenação octaédricos:

 $[Co(NH_3)_6]^{3+}$; $[Fe(H_2O)_6]^{3+}$; $[Fe(CN)_6]^{3-}$

- a) Determine o estado de spin destes complexos.
- b) Preveja o número de bandas de absorção destes complexos e identifique as transições eletrónicas.

		$\Delta_{ m oct}$ (cm $^{ ext{-}1}$)			D (1)
		H ₂ O	NH ₃	CN⁻	P (cm ⁻¹)
Fe ³⁺	d^5	13700	22800	31000	29900
Co ³⁺	d^6	18600	23000	34000	23625

10.-

- **10.-** O espectro ultravioleta visível em acetonitrilo (CH₃CN) (2,0x10⁻⁵ M) de um complexo de Fe(II) é: λ_{max} (ϵ) 245 nm (48 200), 276 nm (74 100), 284 nm (81 700), 324 nm (45 100), 569 nm (25 000 dm³ mol⁻¹cm⁻¹) foi medido numa cuvette de quartzo com passo de luz 1cm.
 - a) Explicar se o composto tem cor, e qual é a cor esperada?
 - b) Qual é a banda de absorção com a menor energia e em que região espectral é esperada?
 - c) Os dados obtidos resultam de uma representação entre Absorbância e Cumprimento de onda. Qual é o valor da Absorbância máxima da banda a 245nm?
- **11.** Considere os seguintes complexos de ferro (III): $[FeF_6]^{3-}$; $[FeCl_4]^{-}$ e $[Fe(CN)_6]^{3-}$. Considerando que as energias de emparelhamento electrónico para o ião férrico são da ordem de 80 Kcal/mole e o valor para o desdobramento de campo de ligandos é: $\Delta F^{-} = \Delta Cl^{-} = 70$ Kcal/mole; $\Delta CN^{-} = 90$ Kcal/mole, determine o estado de spin electrónico destes complexos.

Dado: Número atómico Fe=26

- **12.** Calcule as EECL (Energias de Estabilização de Campo de Ligandos) dos aquocomplexos de iões metálicos de d⁰ a d¹⁰. Note que estes complexos são de campo fraco.
- **13.** Na Tabela seguinte comparam-se os valores de desdobramento de campo octaédrico (Δ_0) com a energia de emparelhamento electrónico (P) para complexos de Mn²⁺, Fe³⁺ e Co³⁺. Para cada um destes complexos:
- a) Determine o estado de spin electrónico
- b) Calcule a energia de estabilização de Campo de Ligandos (EECL)

Ião	Sistema d	$\Delta_{ m oct}$ (cm $^{ ext{-}1}$)	P (cm ⁻¹)
Mn ²⁺	d ⁵	7500	23800
Fe ³⁺	d^5	14000	29900
Fe ²⁺	d^6	10000	19200
Co ³⁺	d^6	23600	19000

- **14.** Mostre que para sistemas d³ e d8 (simetria octaédrica) a energia de estabilização de Campo de Ligandos (EECL) é a mesma, qualquer que seja o estado de spin.
- **15.** Represente as configurações electrónicas dos seguintes complexos, usando a Teoria do Campo cristalino.
- a) [Fe(H₂O)₆]²⁺ (spin alto)
- b) $[Co(C_2O_4)_3]^{3-}$ (spin baixo)
- c) $[Ni(NH_3)_6]^{2+}$ (spin alto)
- **16.** Considere os seguintes compostos de coordenação:

$$[Co(NH_3)_6]^{3+}$$
; $[Fe(H_2O)_6]^{3+}$; $[Fe(CN)_6]^{3-}$

a) Determine o estado de spin destes complexos e preveja o momento magnético.

		$\Delta_{ m oct}$ (cm $^{ ext{-}1}$)			D (1)
		H₂O	NH ₃	CN⁻	P (cm ⁻¹)
Fe ³⁺	d^5	13700	22800	31000	29900
Co ³⁺	d^6	18600	23000	34000	23625

17. Preveja, usando a Teoria do Campo Cristalino, os momentos magnéticos dos seguintes compostos:

a)
$$[Cr(NH_3)_6]^{2+}$$
 (s.a)

b)
$$[Fe(CN)_6]^{4-}$$
 (s.b)

$$Cr^{2+} d^4$$

$$Fe^{2+} d^6$$

18. Quais dos seguintes compostos são paramagnéticos segundo a TCC?

Composto	Geometria	Nº de electrões d do metal	
[PtCl ₄] ²⁻	Quadrangular planar	Pt ²⁺ (d ⁸)	
[NiCl ₄] ²⁻	Tetraédrica	Ni ²⁺ (d ⁸)	
[Co(NH ₃) ₆] ²⁺ (s.b.)	Octaédrica	Co ²⁺ (d ⁷)	

19. Considere os três compostos de número de coordenação 4 cujos momentos magnéticos se indicam:

Composto	μ (MB)	
[NiCl ₄] ²⁻	2,83	
[Ni(CN) ₄] ²⁻	0	
[MnCl ₄] ²⁻	5,92	

Preveja a geometria de coordenação destes compostos.

<u>Dados</u>: Números atómicos Mn=25; Ni=28

20. O ião ferro, nos estados de oxidação +2 e +3 é um elemento essencial aos sistemas biológicos devido à versatilidade de estados de spin que pode apresentar. Mostre, com base na TCC, que dentro das estruturas mais correntes em compostos de coordenação (tetraédrica, quadrangular plana e octaédrica), podem ser encontrados estados de spin entre 0 e 5/2.

Dado: Número atómico Fe=26

21. O complexo $[Ni(CN)_4]^{2^-}$ é diamagnético, mas o complexo $[NiCl_4]^{2^-}$ é paramagnético, com dois electrões desemparelhados. Do mesmo modo, o complexo $[Fe(CN)_6]^{3^-}$ tem só um electrão desemparelhado, mas o complexo $[Fe(H_2O)_6]^{3^+}$ tem cinco electrões desemparelhados. Use a TCC para prever estes resultados.

- **22.** A Teoria do Campo Cristalino representa uma aproximação teórica à interpretação da ligação química em compostos de coordenação.
- a) O complexo $[NiCl_4]^{2-}$ é diamagnético mas o complexo $[NiCl_4]^{2-}$ é paramagnético (μ = 2,83 MB). O complexo $[Fe(H_2O)_6]^{3+}$ é paramagnético (μ = 5,92 MB) mas o complexo $[Fe(CN)_6]^{3-}$ tem apenas um electrão desemparelhado. Interprete estes resultados com base na teoria indicada.

Dados: Números atómicos Fe=26; Ni=28

- **23.-** O espectro ultravioleta visível em diclorometano (CH₂Cl) (1,0x10⁻⁵ M) de um complexo de Ouro(I) é: λ_{max} (ϵ) 239nm (92 500), 269 nm (67 000), 286 nm (72 000), 303 nm (28 000), 315 nm (21 000 dm³ mol⁻¹cm⁻¹) foi medido numa cuvette de quartzo com passo de luz 1cm.
 - a) Explicar se o composto de ouro(I) tem cor, e qual é a cor esperada?
 - b) Qual é a banda de absorção com a menor energia e em que região espectral é esperada?
 - c) Os dados obtidos resultam de uma representação entre Absorbância e Cumprimento de onda. Qual é o valor da Absorbância máxima da banda a 315nm?
- **24.-** Em cada um dos seguintes complexos, racionalize o número de eletrões desemparelhados sabendo o tipo de composto que forma, assim como o número de bandas esperadas nos espectros de UV-vis
 - a) $[Mn(CN)_6]^{4-}$
 - b) [Mn(CN)₆]²⁻
 - c) $[Cr(en)_3]^{2+}$
 - d) $[Fe(ox)_3]^{3-}$

e)	[Pd(CN) ₄] ²
f)	[CoCl ₄] ²⁻
g)	[NiBr ₄] ²⁻

(Tenha em conta a serie de *Ryutaro Tsuschida* para saber o tipo de complexo formado)

Considere as configurações eletrónicas que pertençam a cada metal:

[Ar]	$3d^54s^2$
	3d⁵4s¹
[Ar]	$3d^64s^2$
[Kr]	4d10
[Ar]	$3d^74s^2$
	3d84s2

- **25.-** O ião ferrocianeto $[Fe(CN)_6]^{4-}$ é muito estável e tem uma constante de formação de 1.0 x 10^{35} . Calcular a concentração do ião cianeto em equilíbrio com uma concentração de 0.65M em complexo de potássio.
- **26.-** Calcule o momento magnético total dos seguintes complexos, e comente a natureza magnética (diamagnéticos ou paramagnéticos), calculando o momento de spin.

Composto	S	μ = MB	Magnetismo	Geometria de coordenação do metal
Na ₂ [MnCl ₄]				
[Cr(NH ₃) ₆]Cl ₃				
[Ni(en) ₃]SO ₄				
[NiBr ₂ (PPh ₃) ₂]				
K ₄ [Hg(CN) ₆]				

27. Calcular a quantidade de ião chumbo que fica livre em solução (não complexado) quando se adiciona Na_2H_2Y (sal dissódico do ácido etilenodiaminotetracético = EDTA) para uma concentração final de 0,0650 M a uma solução de 0,0525 M em Pb(NO_3)₂. A solução está tamponizada a pH = 11.

Dados:

H₄Y ou EDTA (ácido etilenodiaminotetracético) é um ácido tetraprótico que forma complexos com número de coordenação 6 na sua forma completamente desprotonada, da forma:

Numa solução a pH = 10 podem desprezar-se as espécies protonadas: H_4Y ; H_3Y^- ; H_2Y^2 -; HY^3 -.

Valores das constantes de acidez: $pKa_1 = 1,99$; $pKa_2 = 2,67$; $pKa_3 = 6,16$; $pKa_4 = 10,26$.

Constante de estabilidade do complexo [PbY] $^{2-}$ = 1,1 x 10 18 .

28. Considerar os complexos do ião Zn^{2+} com trietilenotetramina (*trien*), e com amoníaco.

$$\mathbf{N} \stackrel{\mathsf{CH_2\text{-}CH_2\text{-}NH_2}}{\longleftarrow} \\ \mathbf{CH_2\text{-}CH_2\text{-}NH_2} \\ \mathbf{CH_2\text{-}CH_2\text{-}NH_2} \\$$

O zinco forma com estes ligandos complexos com o mesmo número de coordenação. A constante de formação do complexo do ião zinco com o ligando polidentado (4,5 x 10^{14}) é 4 x 10^5 vezes maior do que com o ligando monodentado.

a) Identifique as espécies complexas de zinco e explique as diferenças observadas para os valores das constantes de estabilidade.

Material de Apoio

Cálculo do Δ o $/\Delta$ T

 d^1 , d^4 , d^6 , d^9 (Octaédrico ou Tetraédrico) Só há uma única transição pelo que o Δ é direto

d², d³, d⁷ e d⁸ (Octaédricos) Temos 3 Transições

