

2000 P 23439 DE

1

Beschreibung

Verfahren zum Erzeugen eines Auslösesignals nach dem Strom-differentialschutzprinzip und Stromdifferentialschutzanordnung

5 nung

Die Erfindung bezieht sich auf ein Verfahren zum Erzeugen eines Auslösesignals nach dem Stromdifferentialschutzprinzip bei einem Fehler auf einem Abschnitt eines elektrischen Energieversorgungsnetzes, bei dem Differenzstromwerte auf Überschreiten eines vorgegebenen unteren Grenzwertes des Differenzstromes (Differenzstromgrenzwert) sowie auf Überschreiten mit einem Kennlinienfaktor bewerteter Stabilisierungsstromwerte überwacht werden und das Auslösesignal erzeugt wird, wenn gleichzeitig positive Ergebnisse beider Überwachungen vorliegen.

Ein Verfahren dieser Art ist aus der deutschen Patentschrift DE 44 36 254 C1 bekannt. Bei diesem bekannten Verfahren werden mittels Stromwandlern Ströme an den Enden eines Abschnittes eines elektrischen Energieversorgungsnetzes erfasst, der auf das Auftreten eines inneren Fehlers zu überwachen ist. Die mittels der Stromwandler gewonnenen Ströme werden bei dem bekannten Verfahren in einer Messwertvorverarbeitungseinrichtung in effektivwertproportionale Messgrößen umgewandelt, mit denen Differenz- und Stabilisierungsstromwerte gewonnen werden. Um einen Fehler auf dem zu überwachenden Abschnitt eines Energieversorgungsnetzes zu erfassen, werden Differenzstromwerte auf Überschreiten eines vorgegebenen unteren Grenzwertes des Differenzstromes (Differenzstromgrenzwert) sowie auf Überschreiten mit einem Kennlinienfaktor bewerteter Stabilisierungsstromwerte überwacht; es wird das Auslösesignal er-

DE 44 36 254 C1

2000 P 23439 DE

2

zeugt, wenn gleichzeitig positive Ergebnisse beider Überwachungen vorliegen.

- Besondere Vorkehrungen müssen bei dem bekannten Verfahren gegen Fehlauslösungen infolge von Sättigungserscheinungen in den Stromwandlern getroffen werden. Stromwandler übertragen nämlich unter Umständen nur für jeweils einen begrenzten kurzen Zeitraum jeder Periode die Messwerte einwandfrei, weil sie bei größeren Stromwerten in Sättigung gehen. Durch die Sättigungserscheinungen in den Stromwandlern können an sich bezüglich des zu überwachenden Abschnittes außenliegende Fehler irrtümlicherweise als innere Fehler eingestuft werden, was dann zu unerwünschten Auslösungen führen kann. Um dem vorzubeugen, ist bei dem bekannten Verfahren nach dem Stromdifferentialschutzprinzip dafür gesorgt, dass nach Feststellen eines außen liegenden Fehlers im Zustand ungesättigter Stromwandler die Ausgabe eines Auslösesignals blockiert wird. Das Blockieren wird dabei nicht für eine fest vorgegebene Zeit vorgenommen, sondern erfolgt von einem von den jeweiligen Verhältnissen abhängigen Zeitpunkt an für eine vorgegebene Zeitdauer. Nach Ablauf dieser Zeitdauer kann das bekannte Verfahren dann wieder auf einen inneren Fehler ansprechen.
- Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Erzeugen eines Auslösesignals nach dem Stromdifferentialschutzprinzip vorzuschlagen, mit dem bei einem inneren Fehler schnell und zuverlässig - unter Vermeidung von Fehlauslösungen bei äußeren Fehlern mit Wandlersättigung - ein Auslöse- signal erzeugt werden kann.

Zur Lösung dieser Aufgabe werden bei einem Verfahren der eingesetzten Art erfindungsgemäß die Differenzstromwerte

2000 P 23439 DE

3

und die Stabilisierungsstromwerte Stabilisierungsstrommomente mit Momentanwerten der am elektrischen Energieversorgungsnetz erfassten Ströme errechnet, und es wird eine dem Differentialquotienten des Stabilisierungsstromes nach der 5 Zeit proportionale erste Messgröße gebildet und in einem Auswertungsvorgang überprüft, ob diese erste Messgröße einen vorgegebenen Grenzwert des Differentialquotienten des Differenzstromes nach der Zeit (Differenzstromquotientengrenzwert) überschreitet; es wird ferner eine dem Differentialquotienten 10 des Differenzstromes nach der Zeit proportionale zweite Messgröße gebildet und in einem weiteren Auswertungsvorgang überprüft, ob die zweite Messgröße den Differenzstromquotientengrenzwert übersteigt, und es wird das Auslösesignal erzeugt, wenn beide Auswertungsvorgänge gleichzeitig mit den beiden 15 Überwachungen positive Ergebnisse erbringen.

Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens wird darin gesehen, dass durch die Verarbeitung von Momentanwerten der am elektrischen Energieversorgungsnetz erfassten Ströme zunächst einmal der Rechenaufwand vergleichsweise gering gehalten werden kann. Dies wird noch dadurch gefördert, dass die Auswertungsvorgänge beim erfindungsgemäßen Verfahren relativ einfach ablaufen, so dass insgesamt der Rechenaufwand vergleichsweise gering ist. Andererseits besteht mit dem erfindungsgemäßen Verfahren die vorteilhafte Möglichkeit, die Rechenoperationen in vergleichsweise kurzen Abständen durchzuführen zu können, ohne eine relativ große Datenverarbeitungseinrichtung einsetzen zu müssen.

Um mit besonders hoher Sicherheit Fehlauslösungen bei äußerer Fehlern mit einhergehender Sättigung der Stromwandler auszuschließen, wird bei einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens geprüft, ob die erste Messgröße grö-

DEUTSCHE
PATENT-
UND
MARKEN-
OFFICE
BERLIN
1900

2000 P 23439 DE

4

Bei als die zweite Messgröße ist, und ggf. das Auslösesignal erzeugt.

Ferner hat es sich zur weiteren Steigerung der Zuverlässigkeit des erfindungsgemäßen Verfahrens als vorteilhaft heraus-
5 keit, wenn überprüft wird, ob die zweite Messgröße die gestellt, wenn überprüft wird, ob die zweite Messgröße die mit dem Kennlinienfaktor bewertete erste Messgröße über- schreitet; ggf. wird das Auslösesignal erzeugt.

10 Um bei dem erfindungsgemäßen Verfahren zu verhindern, dass aufgrund von Impedanzunterschieden der Einspeisungen bei einem Fehler auf dem zu überwachenden Abschnitt des elektrischen Energieversorgungsnetzes ein scheinbarer Fehlerort außerhalb des Abschnittes erkannt wird, wird bei einer weiteren
15 vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens jeweils in einem Zeitbereich, in dem die erste Messgröße kleiner als Null wird, der kleinste Wert des Stabilisierungsstroms bestimmt wird, und jeweils in einem Zeitbereich, in dem die erste Messgröße größer als Null wird, ihr größter Wert bestimmt wird; es wird überprüft, ob der Stabilisie-
20 rungsstrom größer als das KMIN-Fache des kleinsten Wertes des Stabilisierungsstroms ist mit $1 < KMIN < \sqrt{2}$ sowie des 0,5fachen Wertes des größten Wertes ist und gegebenenfalls das Auslösesignal erzeugt.

25 Bei einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird das Auslösesignal erzeugt, wenn bei den Auswertungsvorgängen und den Überwachungen Ns-Mal hintereinander positive Ergebnisse erzielt worden sind, wobei Ns frei wählbar ist. Damit lässt sich eine Schnellauslösung bewirken,
30 wenn Ns sehr klein, z. B. Ns=1 oder Ns=2 gewählt wird.

2000 P 23439 DE

5

Lässt sich mit dem erfindungsgemäßen Verfahren keine Schnell-
auslösung erreichen, dann wird vorteilhafterweise beim Aus-
bleiben von Ns-Ergebnissen das Auslösesignal dann erzeugt,
wenn mindestens die Überwachungen Nz-Mal positive Ergebnisse
erbracht haben mit $Ns < Nz$.

Bei dem erfindungsgemäßen Verfahren wird es zur Vermeidung
von Fehlauslösungen ferner als vorteilhaft angesehen, wenn
beim Ausbleiben eines Auslösesignals ein internes Sperrsignal
erzeugt wird, wenn die erste Messgröße größer ist als der
Grenzwert dieser Größe, ferner die zweite Messgröße kleiner
ist als der mit dem k-Faktor bewertete Momentanwert der ers-
ten Messgröße und dabei der Momentanwert des Stabilisierungs-
stroms größer ist als ein Grenzwert, ein erster umbewerteter
Grenzwert, ein zweiter umbewerteter Grenzwert und ein als
Mittelwert aus vorangehenden Werten berechneter Vergleichs-
wert.

Die Erfindung bezieht sich ferner auf eine Stromdifferential-
schutzanordnung für einen Abschnitt eines elektrischen Ener-
gieversorgungsnetzes mit einer Messwertvorverarbeitungsein-
richtung, in der aus an den Enden des Abschnittes erfassten
Strömen fortlaufend jeweils Differenzstromwerte und diesen
jeweils zugeordnete Stabilisierungsstromwerte gebildet wer-
den, mit einer der Messwertvorverarbeitungseinrichtung nach-
geordneten Auswerteeinrichtung, in der der Differenzstrom
darauf geprüft wird, ob er einen vorgegebenen Differenzstrom-
grenzwert überschreitet, und mit einer Logikschaltung, die
eingangsseitig an die Auswerteeinrichtung angeschlossen ist
und einen Ausgang zur Abgabe eines Auslösesignals aufweist.
Eine solche Stromdifferentialschutzanordnung ist in der ein-
gangs bereits behandelten deutschen Patentschrift
DE 44 36 254 C1 beschrieben.

TOP SECRET - 020402

2000 P 23439 D

Um mit einer solchen Stromdifferentialschutzanordnung schnell und zuverlässig Auslösesignale bei einem inneren Fehler auf den zu überwachenden Abschnitt eines elektrischen Energieversorgungsnetzes gewinnen zu können, ist erfindungsgemäß die 5 Messwertvorverarbeitungseinrichtung so ausgebildet, dass sie Differenzstrommomentanwerte und Stabilisierungsstrommomentanwerte erzeugt; ferner ist einem mit Stabilisierungsstrommomentanwerten beaufschlagten ersten Differenzierer eine erste 10 Grenzwertstufe nachgeordnet, die eingangsseitig auch an einen Differenzstromquotientengrenzwert-Geber angeschlossen; es ist auch einem mit Differenzstrommomentanwerten beaufschlagten zweiten Differenzierer eine zweite Grenzwertstufe nachgeordnet, die eingangsseitig auch an den Differenzstromquotienten- 15 Geber angeschlossen ist, und den Grenzwertstufen ist die Logikschaltung nachgeordnet, die beim Vorliegen von Ausgangssignalen der Grenzwertstufen das Auslösesignal erzeugt.

Weitere vorteilhafte Ausgestaltung dieser Stromdifferential- 20 schutzanordnung ergeben sich aus den Ansprüchen 9 bis 13, wobei darauf hinzuweisen ist, dass der Aufbau der erfindungsgemäßen Stromdifferentialschutzanordnung insgesamt zweckmäßig- gerweise durch eine Datenverarbeitungseinrichtung erfolgt.

25 Zur weiteren Erläuterung des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Stromdifferentialschutzanordnung ist in der Figur 1 ein Blockschaltbild zur Beschreibung des Ablaufs ei- nes Ausführungsbeispiels des erfindungsgemäßen Verfahrens und 30 in Figur 2 eine Ausführungsform einer Logikschaltung des Block- schaltbildes gemäß Figur 1

DRAFT - DRAFT - DRAFT

2000 P 23439 DE

7

wiedergegeben.

Die Figur 1 zeigt einen auf Fehler zu überwachenden Abschnitt E eines Energieversorgungsnetzes N, der von Stromwandlern W1 und W2 begrenzt ist. Mittels der Stromwandler W1 und W2 werden den Strömen durch die Primärwicklungen dieser Wandler proportionale Sekundärströme i_1 und i_2 gewonnen, die einer Messwertvorverarbeitungseinrichtung MV mit nachgeordneter Auswerteeinrichtung AW zugeführt werden.

In dieser Messwertvorverarbeitungseinrichtung MV sind u. a. Tiefpässe vorhanden, mit denen beispielsweise durch äußere elektromagnetische Beeinflussung verursachte Veränderungen der Ströme i_1 und i_2 eliminiert werden. Ferner werden in der Messwertvorverarbeitungseinrichtung MV Differenzstrommomentanwerte i_d gemäß der nachstehenden Gleichung (1) gebildet.

$$i_d = |\sum (i_1, i_2)| \quad (1)$$

In der Messwertvorverarbeitungseinrichtung MV werden auch Stabilisierungsstrommomentanwerte i_s gemäß der nachstehenden Gleichung (2) erzeugt.

$$i_s = \sum |i_1| |i_2| \quad (2)$$

Der Theorie nach lässt sich durch Betrachtung der Ströme i_d und i_s auf einen fehlerfreien Abschnitt E schließen, wenn der Differenzstrom i_d Null ist; ein Fehler auf dem Abschnitt E ist dann gegeben, wenn der Differenzstrom i_d genauso groß wie der Stabilisierungsstrom i_s ist. In der Praxis sind die Verhältnisse jedoch erheblich komplizierter, weil bei der Erfassung der Sekundärströme i_1 und i_2 Messfehler durch den Ein-

 1000
500
250
125
62.5
31.25
15.625
7.8125

2000 P 23439 DE

8

satz der Stromwandler W1 und W2 auftreten. Diese Messfehler sind dann besonders groß, wenn die Stromwandler W1 und W2 in die Sättigung gelangen, was bei einem Kurzschluss im Energieversorgungsnetz N mit einhergehenden Kurzschlussströmen der

5 Fall sein kann.

In der Praxis wird deshalb im Falle eines Fehlers auf dem Abschnitt E angenommen, dass dann

(5)

10 $id > idg$

(6)

 $id > K \cdot is$

Dabei ist mit idg ein Grenzwert des Differenzstromes id gemeint. Mit K ist ein Kennlinienfaktor bezeichnet, der in bekannter Weise in seiner Größe zwischen Null und 1 liegt. Mit diesem Kennlinienfaktor K wird berücksichtigt, dass Messfehler bei der Erfassung der Ströme i_1 und i_2 mit wachsendem Strom auf dem Abschnitt E größer werden können, dass über den Abschnitt E fließende normale Lastströme dem Fehlerstrom überlagert sein können und unterschiedliche Impedanzen angeschlossener Leitungen Phasenunterschiede bewirken können. Unter den üblichen Betriebsverhältnissen der Netze kann eine ausreichende Stabilität einer mit diesen Kriterien arbeitenden Stromdifferentialschutzanordnung erreicht werden, wenn der Differenzstromgrenzwert idg und der Kennlinienfaktor K hoch genug eingestellt werden; dabei ist aber zu beachten, dass eine für den Anwendungsfall befriedigende Empfindlichkeit gesichert sein muss, indem diese Größen niedrig genug eingestellt werden.

Den Gleichungen (5) und (6) ist bei dem Ausführungsbeispiel nach Figur 1 dadurch Rechnung getragen, dass an einen Diffe-

HANDELSGESELLSCHAFT

2

2000 P 23439 DE

9

- renzstrommomentanwerte id führenden Ausgang A1 der Messvorverarbeitungseinrichtung MV mit einem Eingang eine Vergleichsanordnung VA1 der Auswerteeinrichtung AW angeschlossen ist; mit ihrem anderen Eingang ist die Vergleichsanordnung 5 VA1 an einen Grenzwertgeber G1g angeschlossen, der an seinem Ausgang eine dem Differenzstromgrenzwert igd proportionale Messgröße abgibt. Außerdem ist an den Ausgang A1 der Messwertvorverarbeitungseinrichtung MV eine weitere Vergleichsanordnung VA2 mit ihrem einen Eingang angeschlossen; ein weiterer Eingang dieser weiteren Vergleichsanordnung VA2 ist über 10 eine Bewertungsstufe B mit einem weiteren Ausgang A2 der Messwertvorverarbeitungseinrichtung MV verbunden; an diesem Ausgang A2 treten Stabilisierungsstrommomentanwerte is auf.

15 Ist die Gleichung (5) erfüllt, dann wird von der Vergleichsanordnung VA1 ein Betätigungssignal an einen Eingang E1 einer Logikschaltung L abgegeben, die der Auswerteeinrichtung AW nachgeordnet ist. Ist die Gleichung (6) erfüllt, dann liefert 20 die weitere Vergleichsanordnung VA2 ein Betätigungssignal an einen Eingang E2 der Logikschaltung L.

Bei dem dargestellten Ausführungsbeispiel wird von der Logikschaltung L, deren Funktion später noch im einzelnen beschrieben wird, nicht bereits dann ein Auslösesignal A erzeugt, wenn an beiden Eingängen E1 und E2 Betätigungssignale 25 zeugt, wenn an beiden Eingängen E1 und E2 Betätigungssignale der Vergleichsanordnungen VA1 und VA2 anstehen, sondern es müssen zur Ausgabe des Auslösesignals A noch weitere - unten näher beschriebene - Bedingungen erfüllt sein.

30 Zur Überprüfung der weiteren Bedingungen ist an den weiteren Ausgang A2 der Messwertvorverarbeitungseinrichtung MV ein erster Differenzierer DS angeschlossen, der an seinem Ausgang eine dem Differentialquotienten des Stabilisierungsstromes is

2000 P 23439 DE

10

nach der Zeit proportionale erste Messgröße istd erzeugt.
 Diese erste Messgröße istd wird einem Eingang einer ersten
 Grenzwertstufe Gs zugeführt, die mit ihrem anderen Eingang an
 einem Differenzstromquotientengrenzwert-Geber G1 liegt. Mit
 5 diesem Geber G1 wird ein Grenzwert des Differentialquotienten
 des Differenzstromes id nach der Zeit vorgegeben, der im Fol-
 genden kurz mit Differenzstromquotientengrenzwert igd1 be-
 zeichnet wird. Ist die erste Messgröße istd größer als der
 Differenzstromquotientengrenzwert igd1, gilt also die Bezie-
 10 hung (7)

(7)

 $istd > igd1$

dann wird von der ersten Grenzwertstufe Gs ausgangsseitig an
 15 einen Eingang E3 der Logikschaltung L ein weiteres Betäti-
 gungssignal abgegeben.

Auch dem einen Ausgang A1 der Messvorverarbeitungseinrichtung
 MV ist ein zweiter Differenzierer Dd nachgeordnet, der an
 20 seinem Ausgang eine zweite Messgröße idd erzeugt, die dem
 Differentialquotienten des Differenzstromes id nach der Zeit
 entspricht. Diese zweite Messgröße idd liegt an einem Eingang
 einer zweiten Grenzwertstufe Gd, deren anderer Eingang eben-
 falls mit dem einen Geber G1 verbunden ist. Ist die zweite
 25 Messgröße idd größer als der Differenzstromgrenzwert igd1,
 gilt also die nachstehende Gleichung (8)

(8)

 $idd > igd1$

30 dann wird von dieser zweiten Grenzwertstufe Gd an einen Ein-
 gang E4 der Logikschaltung L ein zusätzliches Betätigungs-
 signal abgegeben.

2000 P 23439 DE

11

Durch die zusätzlichen Signale an den Eingängen E3 und E4 ist das erfindungsgemäße Verfahren schon vergleichsweise sicher in Bezug auf unerwünschte Fehlauslösungen geworden, es lässt sich jedoch in seiner Funktionsweise im Hinblick auf die Vermeidung von Fehlauslösungen noch sicherer gestalten, wenn eine weitere Beziehung (9) berücksichtigt wird, die nachstehend aufgeführt ist.

isd > idd

(9)

10

In der Figur 1 ist dazu ein erster Komparator K1 vorgesehen, der mit seinem einen Eingang an dem Ausgang des zweiten Differenzierers Dd liegt und somit mit der zweiten Messgröße idd beaufschlagt ist; ein weiterer Eingang des ersten Komparators K1 ist an den Ausgang des einen Differenzierers Ds angegeschlossen und daher mit der einen Messgröße isd beaufschlagt. Ist die obige Beziehung (9) erfüllt, dann gibt der eine Komparator K1 ein zusätzliches Betätigungssignal an einen Eingang E5 der Logikschaltung L ab.

20

An einen weiteren Eingang E6 der Logikschaltung L liegt mit seinem Ausgang ein zweiter Komparator K2, der zur Auswertung der nachstehenden Beziehung (10) dient.

25 idd > K · isd

(10)

Zu diesem Zweck ist der zweite Komparator K2 mit einem Eingang an den Ausgang des zweiten Differenzierers Dd angeschlossen. Ein weiterer Eingang des zweiten Komparators K2 ist über eine Umwertungsstufe U1 an den Ausgang des ersten Differenzierers Ds angeschlossen. Ist die Bedingung (10) erfüllt, dann gibt der zweite Komparator K2 ein Betätigungs-signal an den Eingang E6 der Logikschaltung L ab.

T 0 0 S I L F E R - O R G A N I C

2000 P 23439 DE

12

Ferner ist bei dem Ausführungsbeispiel nach Figur 1 eine Prüfschaltung P vorgesehen, die mit ihrem Eingang am Ausgang des zweiten Differenzierers Dd liegt und überprüft, ob die zweite Messgröße i_{dd} größer als Null ist. Ist dies der Fall, 5 dann gibt sie einen Impuls an einen Eingang E7 der Logikschaltung L ab. Ein weiterer Eingang E8 der Logikschaltung L ist mit einem Ausgang einer Vergleicherstufe VS verbunden. Diese ist an einem Eingang mit dem Stabilisierungsstrom is 10 beaufschlagt, während ihr anderer Eingang über eine Bewertungseinrichtung BE mit einer Ermittlungseinrichtung U verbunden ist; diese ist eingangsseitig mit dem Stabilisierungsstrom is beaufschlagt und stellt den aktuell kleinsten Wert ismin und des größten Wertes ismax des Stabilisierungsstroms 15 is fest. Ist die nachstehende Beziehung (11) erfüllt,

$$0,5is_{\max} < is > KMIN \cdot is_{\min}$$

(11)

dann wird von der Vergleichsstufe VS ein Signal über den Eingang E8 an die Logikschaltung L abgegeben. 20

Die Logikschaltung L weist außerdem Eingänge E11, E12, E13, E14 und E15 auf. An den Eingang E11 ist eine erste Vergleichsstufe V1 angeschlossen, die eingangsseitig an den Ausgang A2 der Messwertvorverarbeitungseinrichtung MV und einen zweiten Grenzwertgeber G2g angeschlossen ist. Die Vergleichsstufe V1 überprüft, ob die Beziehung (12) eingehalten ist: 25

30

$$is > is_h$$

(12)

T0054754102041020

2000 P 23439 DE

13

Ist dies der Fall, dann wird ein Sperrsignal an den Eingang E11 abgegeben.

An den Eingang E12 ist eine zweite Vergleichsstufe V2 mit ihrem Ausgang angeschlossen; mit ihrem einen Eingang ist die zweite Vergleichsstufe V2 über eine Umwertungsstufe U2 (Faktor 1/K) an den Grenzwertgeber G1g für den Differenzstromquotientengrenzwert idg angeschlossen, während der andere Eingang direkt mit dem Stabilisierungsstrom is beaufschlagt ist.
 5 Es wird somit mit der zweiten Vergleichsstufe V2 anhand eines ersten unbewerteten Grenzwertes idg/K die folgende Bedingung
 10 (13) überprüft:

 $is > idg / K$

(13)

Ist diese Bedingung und gleichzeitig mit einem zweiten unbewerteten Grenzwert $1,5 * idg$ die Bedingung $is > 1,5 * idg$ erfüllt, dann tritt am Eingang E12 der Logikschaltung L ein Sperrsignal auf.

Eine dritte Vergleichsstufe V3 ist eingangsseitig einerseits mit dem Ausgang des ersten Differenzierers DS und andererseits mit dem Ausgang des zweiten Geberts G2 verbunden; ausgangsseitig ist die dritte Vergleicherstufe V3 mit dem Eingang E13 der Logikschaltung L verbunden und gibt an diese ein Sperrsignal dann ab, wenn die folgende Bedingung (14) erfüllt ist:
 25

 $isd > igd2$

(14)

Eine vierte Vergleichsstufe V4 ist eingangsseitig einerseits über eine weitere Umwertungsstufe U3 (Faktor KA) mit dem weiteren Ausgang A2 der Messwertvorverarbeitungseinrichtung MV

THERMOTEST

2000 P 23439 DE

14

verbunden sowie andererseits direkt mit dem einen Ausgang A1 der Messwertvorverarbeitungseinrichtung MV. Ausgangsseitig ist die vierte Vergleichsstufe V4 mit einem Eingang E14 der Logikschaltung L verbunden und gibt an diesen Eingang ein Sperrsignal ab, wenn die folgende Beziehung (15) erfüllt ist:

5

(15)

$$id < KA \cdot is$$

Schließlich wird mittels einer Vergleichereinrichtung VE überprüft, ob die nachstehenden Beziehungen (16) und (17) erfüllt ist:

10

(16)

$$is > KMIN \cdot is_{min}$$

(17)

$$is > 0,5 \cdot is_{max}$$

15

zu diesem Zwecke ist die Vergleichseinrichtung VE eingangsseitig direkt mit dem Ausgang A2 der Messwertvorverarbeitungseinrichtung MV verbunden; ausgangsseitig ist die Vergleichseinrichtung VE mit dem Eingang E15 der Logikschaltung L verbunden. In der Vergleichereinrichtung wird ein berechneter Vergleichswert ermittelt, indem von dem Effektivwert des Stabilisierungsstromes is_{eff} ein Vergleichswert subtrahiert wird. Der berechnete Vergleichswert wird mit dem Momentanwert des Stabilisierungsstromes verglichen.

20

Wie die Figur 2 erkennen lässt, weist die der Auswerteeinrichtung AW nachgeordnete Logikschaltung L eingangsseitig mehrere UND-Glieder UG1 bis UG5 auf, die in der aus der Figur ersichtlichen Weise eingangsseitig mit den Eingängen E1 bis E14 der Logikschaltung verbunden sind. Ist die erste Messgröße isd kleiner als der vorgegebene Differenzstromquotientengrenzwert igd_1 , und kleiner als die zweite Messgröße idd und übersteigt auch die zweite Messgröße idd diesen Grenzwert

DOKUMEN-TATION

2000 P 23439 DE

15

nicht und ist sie kleiner als die mit dem Kennlinienfaktor k bewertete erste Messgröße ist, dann wird am Ausgang des UND-Gliedes UG5 ein Sperrglied B erzeugt, wenn die Bedingungen

5 $isd > igd2$ $idd > k \cdot isd$

gegeben sind und gleichzeitig für den Momentanwert des Stabilisierungsstromes is gilt:

10

 $is > ish$ $is > idg / k$ $is > 1,5 \cdot idg$ $is > im$

15

Dabei bezeichnet im einen Vergleichswert, der aus vorangehenden Effektivwerten des Stabilisierungsstromes is zuzüglich einem Schwellwert berechnet wird. Das Sperrsignal B trifft also bei einem äußeren Fehler bezüglich des zu überwachenden Abschnitts E des Energieversorgungsnetzes N auf.

Mit dem Sperrsignal B wird einerseits ein weiteres UND-Glied UG6 und andererseits eine Schnellstufe bildender Zähler Z1 an seinem Rücksetzeingang beaufschlagt, so dass beim Auftreten des Sperrsignals B und einem Signal am Empfang E15 ein Zeitgeber ZG zurückgesetzt wird und auch der Zähler Z1 zurückgesetzt wird. Es wird damit ein weiterer Zähler Z2 wirksam, der als Zeitstufe wirkt und bei einem Zählerstand größer als der von einem Geber GZ2 vorgegebene Zählwert Nz über einen Vergleicher VZ2 und ein zusätzliches UND-Glied UG7 einen Signal an ein ODER-Glied OG abgibt.

DOPOEDE

2000 P 23439 DE

16

Die Schnellstufe mittels des Zählers Z1 wird wirksam, wenn in einem nachgeschalteten Vergleicher VZ1 ermittelt wird, dass im Zähler Z1 ein Zählerstand erreicht ist, der größer als ein vorgegebener Zählwert Ns eines weiteren Gebers GZ1 ist. Ns ist dabei erheblich kleiner als Nz gewählt. Ist der Zählerstand des Zählers Z1 größer als Ns, wird das Auslösesignal A erzeugt.

40061454-0204-02

2000 P 23439 DE

17

Patentansprüche

1. Verfahren zum Erzeugen eines Auslösesignals (A) nach dem Stromdifferentialschutzprinzip bei einem Fehler auf einem Abschnitt (E) eines elektrischen Energieversorgungsnetzes, bei dem
- Differenzstromwerte (i_d) auf Überschreiten eines vorgegebenen unteren Grenzwertes des Differenzstromes (i_d) (Differenzstromgrenzwert (i_{gu})) sowie auf Überschreiten mit einem Kennlinienfaktor (K) bewerteter Stabilisierungsstromwerte (i_s) überwacht werden und
 - das Auslösesignal (A) erzeugt wird, wenn gleichzeitig positive Ergebnisse beider Überwachungen vorliegen, dadurch gekennzeichnet, dass
 - die Differenzstromwerte (i_d) und die Stabilisierungsstromwerte (i_s) mit Momentanwerten der an dem Abschnitt (E) des elektrischen Energieversorgungsnetzes erfassten Ströme (i_1, i_2) als Momentanwerte errechnet werden,
 - eine dem Differentialquotienten des Stabilisierungsstromes (i_s) nach der Zeit proportionale erste Messgröße (i_{sd}) gebildet und in einem Auswertungsvorgang überprüft wird, ob diese erste Messgröße (i_{sd}) einen vorgegebenen Grenzwert des Differentialquotienten des Differenzstromes nach der Zeit (Differenzstromquotientengrenzwert (i_{gd1})) überschreitet,
 - eine dem Differentialquotienten des Differenzstromes (i_d) nach der Zeit proportionale zweite Messgröße (i_{dd}) gebildet und in einem weiteren Auswertungsvorgang überprüft wird, ob die zweite Messgröße (i_{dd}) den Differenzstromquotientengrenzwert (i_{gd1}) übersteigt, und
 - das Auslösesignal (A) erzeugt wird, wenn beide Auswertungsvorgänge gleichzeitig mit den beiden Überwachungen positive Ergebnisse erbringen.

100054554 - 0200402

2000 P 23439 DE

18

2. Verfahren nach Anspruch 1.

dadurch gekennzeichnet, dass

- geprüft wird, ob die erste Messgröße (isd) größer als die zweite Messgröße (idd) ist, und gegebenenfalls das Auslösersignal (A) erzeugt wird.

3. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass

- 10 geprüft wird, ob die zweite Messgröße (idd) die mit dem Kennlinienfaktor (K) bewertete erste Messgröße (isd) überschreitet, und gegebenenfalls das Auslösesignal (A) erzeugt wird.

4. Verfahren nach einem der vorangehenden Ansprüche,

15 d a d u r c h g e k e n n z e i c h n e t , dass

- jeweils in einem Zeitbereich, in dem die erste Messgröße (isd) kleiner als Null wird, der kleinste Wert (ismin) des Stabilisierungsstroms (is) bestimmt wird,
 - jeweils in einem Zeitbereich, in dem die erste Messgröße (isd) größer als Null wird, ihr größter Wert (ismax) bestimmt wird, und
 - überprüft wird, ob der Stabilisierungsstrom (is) größer als das KMIN-fache des kleinsten Wertes (ismin) mit $1 < \text{KMIN} < \sqrt{2}$ sowie des 0,5fachen Wertes des größten Wertes (ismax) ist und
 - gegebenenfalls das Auslösesignal (A) erzeugt wird.

5. Verfahren nach einem der vorangehenden Ansprüche,

durch gekennzeichnet, dass

- 30 - das Auslösesignal (A) erzeugt wird, wenn bei den Auswertungsvorgängen und den Überwachungen N_s -Mal hintereinander positive Ergebnisse erzielt worden sind, wobei N_s frei wählbar ist.

2000 P 23439 DE

19

6. Verfahren nach Anspruch 5,

- dadurch gekennzeichnet, dass
- beim Ausbleiben von Ns-Ergebnissen das Auslösesignal (A) dann erzeugt wird, wenn mindestens die Überwachungen Nz-Mal positive Ergebnisse erbracht haben mit $Ns < Nz$.

7. Verfahren nach einem der vorangehenden Ansprüche,

- dadurch gekennzeichnet, dass
- 10 - beim Ausbleiben eines Auslösesignals (A) ein internes Sperrsignal (B) erzeugt wird, wenn
 - die erste Messgröße (isd) größer ist als der Grenzwert dieser Größe (igd2),
 - ferner die zweite Messgröße (idd) kleiner ist als der mit dem k-Faktor bewertete Momentanwert der ersten Messgröße ($k*isd$) und dabei der Momentanwert des Stabilisierungsstroms (is) größer ist als
 - ein Grenzwert (ish),
 - ein erster unbewerteter Grenzwert (idg/k),
 - ein zweiter unbewerteter Grenzwert ($1,5*idg$) und
 - ein als Mittelwert aus vorangehenden Werten berechnete Vergleichswert (iseff-Vergleichswert).

8. Verfahren nach Anspruch 7,

- 25 dadurch gekennzeichnet, dass
- nach dem Erzeugen eines Sperrsignals ein Auslösesignal erst dann erzeugt wird, wenn mindestens Nz-Mal die Überwachungen und/oder die Auswertungen ein positives Ergebnis erbracht haben.

30

9. Stromdifferentialschutzanordnung für einen Abschnitt (E) eines elektrischen Energieversorgungsnetzes mit

DRAFT - DO NOT FOLD

2000 P 23439 DE

20

- einer Messwertvorverarbeitungseinrichtung (MV), in der aus an den Enden des Abschnittes (E) erfassten Strömen (i₁, i₂) fortlaufend jeweils Differenzstromwerte (id) und diesen jeweils zugeordnete Stabilisierungsstromwerte (is) gebildet werden, mit
 - einer der Messwertvorverarbeitungseinrichtung (MV) nachgeordneten Auswerteeinrichtung (AW),
 - in der der Differenzstrom (id) darauf geprüft wird, ob er einen vorgegebenen Differenzstromgrenzwert (idg) überschreitet, und mit
 - einer Logikschaltung (L₁), die eingeschlossen ist und einen Ausgang zur Abgabe eines Auslösesignals (A) aufweist, dadurch gekennzeichnet, dass die Messwertvorverarbeitungseinrichtung (MV) so ausgebildet ist, dass sie Differenzstrommomentanwerte und Stabilisierungsstrommomentanwerte (is) erzeugt,
 - einem mit Stabilisierungsstrommomentanwerten (is) beaufschlagten ersten Differenzierer (D_s) eine erste Grenzwertstufe (G_s) nachgeordnet ist, die eingeschlossen auch an einen Differenzstromquotientengrenzwert-Geber (G₁) angeschlossen ist,
 - einem mit Differenzstrommomentanwerten beaufschlagten zweiten Differenzierer (D_d) eine zweite Grenzwertstufe (G_d) nachgeordnet ist, die eingeschlossen auch an den Differenzstromquotienten-Geber (G₁₉) angeschlossen ist, und den Grenzwertstufen die Logikschaltung (L₁) nachgeordnet ist, die beim Vorliegen von Ausgangssignalen der Grenzwertstufen das Auslösesignal (A) erzeugt.

10. Stromdifferentialschutzanordnung nach Anspruch 9, durch gekennzeichnet, dass

2000 P 23439 D

21

- an die beiden Differenzierer (Dd, Ds) ein erster Komparator (K1) angeschlossen ist, der ausgangsseitig an die Logikschaltung (L1) angeschlossen ist.

5 11. Stromdifferentialschutzanordnung nach Anspruch 7 oder 8,
dadurch gekennzeichnet, dass
- dem ersten Differenzierer (Ds) über eine Umwertungsstufe
10 (U1) und dem zweiten Differenzierer (Dd) mittelbar ein
zweiter Komparator (K2) nachgeordnet ist, der ausgangssei-
tig an die Logikschaltung (L1) angeschlossen ist.

12. Stromdifferentialschutzanordnung und einem der Ansprüche
9 bis 11,

dadurch gekennzeichnet, dass

15 - eine Ermittlungseinrichtung (U) für den kleinsten Wert
(ismin) des Stabilisierungsstroms (is) vorgesehen ist,
- an die Ermittlungseinrichtung (U) eine Bewertungseinrich-
tung (BE) angeschlossen ist und
- der Bewertungseinrichtung (BE) eine Vergleichsstufe (VS)
20 nachgeordnet ist, die eingangsseitig auch mit den Stabili-
sierungsstrommomentanwerten (is) beaufschlagt ist und aus-
gangsseitig an die Logikschaltung (L1) angeschlossen ist.

13. Stromdifferentialschutzanordnung nach einem der Ansprüche
25 9 bis 12,

dadurch gekennzeichnet, dass

- einem Geber (G1g) für den Differenzstromquotientengrenzwert

(idg) und einem zweiten Geber (G2) für den Stabilisie-
rungsquotientengrenzwert (igs) eine Vergleichsstufe (V1)

30 nachgeordnet ist, die ausgangsseitig an die Logikschaltung
(L1) angeschlossen ist,

- eine weitere Vergleichsstufe (V2) eingangsseitig einer-
seits mit dem Eingang des ersten Differenzierers (Ds) und

4000445402

2000 P 23439 D

22

andererseits über eine weitere Umwertungsstufe (U2) mit einem Geber (G1g) für den Grenzwert (idg) des Differenzstromes (id) verbunden ist und ausgangsseitig an die Logikschaltung (L1) angeschlossen ist,

- 5 - eine dritte Vergleichsstufe (V3) eingangsseitig einerseits mit dem Ausgang des ersten Differenzierers (Ds) und andererseits mit dem Ausgang des weiteren Gebers (G2) verbunden ist und ausgangsseitig an die Logikschaltung (L1) angeschlossen ist,
- 10 - eine vierte Vergleichsstufe (V4) eingangsseitig einerseits an den Eingang des zweiten Differenzierers (Dd) und andererseits über eine dritte Umwertungsstufe (U3) an den Eingang des einen Differenzierers (Ds) angeschlossen ist und ausgangsseitig mit der Logikschaltung (L1) verbunden ist
- 15 - und
- eine fünfte Vergleichsstufe (V5) eingangsseitig einerseits mit dem Ausgang des zweiten Differenzierers (Dd) und andererseits über eine vierte Umwertungsstufe (U3) mit dem Ausgang des ersten Differenzierers (Ds) verbunden ist und ausgangsseitig an die Logikschaltung (L1) angeschlossen ist.

4 DOCUMENTATION

2000 P 23439 D

23

Zusammenfassung

Verfahren zum Erzeugen eines Auslösesignals nach dem Stromdifferentialschutzprinzip und Stromdifferentialschutzanordnung

5

Die Erfindung bezieht sich auf ein Verfahren und eine Anordnung zum Erzeugen eines Auslösesignals nach dem Stromdifferentialschutzprinzip bei einem Fehler auf einem Abschnitt eines elektrischen Energieversorgungsnetzes, bei dem Differenzstromwerte und Stabilisierungsstromwerte erfasst und auf Überschreiten von Grenzwerten überwacht werden; es wird ein Auslösesignal erzeugt, wenn positive Ergebnisse der Überwachungen vorliegen.

15

Um bei einem solchen Verfahren zuverlässig und sicher bei einem Fehler auf dem Abschnitt eines elektrischen Energieversorgungsnetzes ein Auslösesignal zu gewinnen, werden erfindungsgemäß die Differenzstromwerte (id) und die Stabilisierungsstromwerte (is) mit Momentanwerten der erfassten Netzströme als Momentanwerte errechnet. Es wird eine dem Differentialquotienten des Stabilisierungsstromes (is) nach der Zeitproportionale erste Messgröße (isd) sowie eine dem Differentialquotienten des Differenzstromes (id) nach der Zeitproportionale zweite Messgröße (idd) gebildet und es wird mittels Auswertung überprüft, ob die beiden Messgrößen (isd , idd) einen vorgegebenen Grenzwert des Differentialquotienten des Differenzstromes nach der Zeit (igd) überschreiten. Wenn die Auswertungen und die Überwachungen positive Ergebnisse erbringen, wird das Auslösesignal (A) erzeugt.

Fig. 1