RESOLUTION NUMERQIQUE EQUATION DE SCHRÖDINGER

LABLACK Sofiane 27/05/2018

SOMMAIRE

INTRO

POSITION DU PROBLEME

RESULTATS

CONCLUSION

REFERENCES

INTRODUCTION

Objectif: -Résoudre numériquement l'équation de Schrödinger stationnaire unidimensionnelle.

$$[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V]\psi = E\psi$$

-Déterminer les coefficient de réflexion et de transmission.

POSITION DU PROBLEME

On veut résoudre l'équation de Schrödinger pour une particule qui

rencontre une barrière de

Solutions en dehors de la barrière connues: Particule libre C.L. d'exponentielles complexes.

Solutions dans la barrière: C.L. d'exponentielles réelles.

Problème: La continuité de la fonction d'onde et de la dérivée.

Approche résolution

- -On trace les solutions analytique avant et après la barrière.
- -On écrit les relations de continuités avant et après la barrière.
- -On résout dans la barrière à l'aller
- -On utilise la continuité pour fixer les nouvelles conditions initiales pour le retour.
- -On utilise l'algorithme d'optimisation pour minimiser l'écart entre l'aller et le retour
- -On a la bonne phase.

Cas particule libre: On s'assure que ça marche pour un potentiel nul.


```
E=1,602e-19J;
M=9,109e-31kg;
V=2*E J;
Hbar=1,05e-34J.s;
B0=-1; B1=0;
a=1e-10m
```


REFERENCES

- Claude Cohen-Tannoudji Bernard Diu Franck Laloë "Mécanique quantique Tome I". chez Dunod
- D. Marchand: POTENTIELS « CARRES » OU CONSTANTS PAR « MOR-
- CEAUX »,ESPCI https://cours.espci.fr/site.php?id=73&fileid=382
- Brian P. Flannery, Saul Teukolsky, William Press et William T. Vetterling :
- Numerical Recipes in C: The Art of Scientific Computing Chapter16.Integration of Ordinary Differential Equations
- http://www.aip.de/groups/soe/local/numres/bookcpdf/c16-1.pdf