



## Step 2: Obtain Architecture

- $\rightarrow$  7 states
- → 3 bit for incoming states
- → input : a
- > outputs : x,y,z

## Step 3: Encode States

| States | 52 | 5, | So |
|--------|----|----|----|
| s1     | 0  | 0  | 0  |
| 52     | 0  | 0  | 1  |
| s3     | 0  | 1  | 0  |
| s4     | 0  | 1  | 1  |
| s5     | 1  | 0  | 0  |
| 56     | 1  | 0  | 1  |
| s7     | 1  | 1  | 0  |
|        |    |    |    |

## Step 4 : Generate State Table

|                | S <u>.</u> | 5, | So | a | × | y | z | N <sub>2</sub> | n, | n <sub>o</sub> |
|----------------|------------|----|----|---|---|---|---|----------------|----|----------------|
| s1             | 0          | 0  | 0  | Ō | 0 | 0 | 0 | 0              | 0  | 0              |
|                | 0          | 0  | 0  | 1 | 0 | 0 | 0 | 0              | 0  | 1              |
| <b>s</b> 2     | 0          | 0  | 1  | 0 | 0 | 1 | 1 | 0              | 0  | 1              |
| 52             | 0          | 0  | 1  | 1 | 0 | 1 | 1 | 0              | 1  | 0              |
| <b>s</b> 3     | 0          | 1  | 0  | 0 | 1 | 1 | 1 | 0              | 1  | 0              |
| 30             | 0          | 1  | 0  | 1 | 1 | 1 | 1 | 0              | 1  | 1              |
| cl             | 00         | 1  | 1  | 0 | 0 | 1 | 0 | 0              | 1  | 1              |
| 54             | 0          | 1  | 1  | 1 | 0 | 1 | 0 | 1              | 0  | 0              |
| s5             | 1          | 0  | 0  | 0 | 0 | 0 | 1 | 1              | 0  | 0              |
| 27             | 1          | 0  | 0  | 1 | 0 | 0 | 1 | 1              | 0  | 1              |
| s6             | 1          | 0  | 1  | 0 | 1 | 0 | 1 | 1              | 0  | 1              |
| 50             | 1          | 0  | 1  | 1 | 1 | 0 | 1 | 1              | 1  | 0              |
| s <del>7</del> | 1          | 1  | 0  | 0 | 1 | 0 | 0 | 1              | 1  | 0              |
| 57             | 1          | 1  | 0  | 1 | 1 | 0 | 0 | 0              | 0  | 0              |
|                | 1          | 1  | 1  | 0 | × | X | Χ | Χ              | X  | X              |
|                | 1          | 1  | 1  | 1 | × | X | Χ | X              | X  | ×              |

## Step 5: Boolean Expressions and Controller

| 5, a<br>5, 5, | 00 | 01 | 11 | 10 |
|---------------|----|----|----|----|
| 00            |    |    |    |    |
| 01            | 1  | 1  |    |    |
| 11            | 1  | 1  | X  | ×  |
| 10            |    |    | 1  | 1  |

| 52 54 | 00 | 01 | 11 | 10 |
|-------|----|----|----|----|
| 00    |    |    | 1  | 1  |
| 01    | 1  | 1  | 1  | 1  |
| 11    |    |    | ×  | ×  |
| 10    |    |    |    |    |
|       |    |    |    |    |

$$X = S_1 S_0' + S_2 S_0$$

5, a 5, 5, 00 01 11 10

|   | 00 | 01 | 11 | 10 | 5, a 0 |
|---|----|----|----|----|--------|
|   |    |    | 1  | 1  | 00     |
| Ī | 1  | 1  |    |    | 01     |
| Ī |    |    | ×  | ×  | 11     |
| Ī | 1  | 1  | 1  | 1  | 10     |

$$y = s_{2}'s_{1} + s_{2}'s_{0}$$

$$s_{2}s_{1}' = 00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 01 \quad 1$$

$$11 \quad 1 \quad \times \quad \times$$

$$Z = S_2'S_1S_0' + S_2'S_1'S_0 + S_2S_1'$$

| 00 | 01 | 11    | 10                |
|----|----|-------|-------------------|
|    |    | 1     |                   |
| 1  | 1  |       | 1                 |
| 1  |    | ×     | ×                 |
|    |    | 1     |                   |
|    | 00 | 00 01 | 00 01 11<br>1 1 × |

 $\Pi_2 = S_2 S_0' Q' + S_1 S_0 Q + S_2 S_1'$ 

Ahmet Tujakan Ayhan

