Identity & Access Management (IAM)

Identity and Access Management (IAM) in Azure

Azure Identity and Access Management (IAM) is responsible for managing **who has access** to Azure resources and **what actions** they can perform. Key IAM concepts include **policies**, **roles**, **and permissions**:

1. IAM Policies, Roles, and Permissions in Azure

Policies

- Policies in Azure govern the security and compliance requirements of resources.
- They are defined using **Azure Policy** to enforce standards (e.g., only allowing specific regions for deployment).
- Policies are not directly used to assign access but control what users and resources can or cannot do.

Roles

- Roles define **what actions** users or groups can perform on Azure resources.
- Azure provides **built-in roles**, but **custom roles** can be created for specific needs.
- Example roles:
 - o **Owner** Full access, including permissions management.
 - Contributor Can create and modify resources but cannot assign roles.
 - o **Reader** Can view resources but cannot modify them.
 - User Access Administrator Can manage access but cannot modify resources.

Permissions

- Permissions define **specific actions** (e.g., read, write, delete) users can perform within a role.
- Permissions are grouped into **roles**, which are then assigned to users, groups, or service principals.

2. Multi-Factor Authentication (MFA) in Azure

- **MFA** enhances security by requiring users to provide **two or more verification factors** to access Azure resources.
- Authentication methods include:
 - Password + SMS code
 - Password + Authenticator app
 - O Password + **Biometric authentication**
- It helps mitigate phishing, brute-force attacks, and unauthorised access.

3. Role-Based Access Control (RBAC) in Azure

- **RBAC** is a mechanism to **control access** to Azure resources based on assigned roles.
- Instead of giving broad permissions, **RBAC follows the principle of least privilege**:
 - o Assign **only the required access** for a user, group, or application.
- RBAC components:
 - o **Security principal** Users, groups, service principals, or managed identities.
 - o **Role definition** A collection of permissions (e.g., Reader, Contributor).
 - **Scope** Specifies **where** the role is applied (e.g., subscription, resource group, or individual resource).
 - Role assignment Binding of a security principal to a role at a specific scope.

RBAC Example:

If a user needs to manage VMs but not change networking settings:

• Assign **Virtual Machine Contributor** role at the resource group level.

Summary

Feature	Description
IAM Policies	Define security and compliance rules.
IAM Roles	Define what actions users can perform on resources.
Permissions	Control specific actions within a role.
MFA	Adds an extra security layer via two-step authentication.
RBAC	Assigns roles and limits permissions to follow the least privilege principle.

This document provides a concise overview of IAM, RBAC, and MFA in Azure. For practical implementations, users can explore **Azure Portal**, **CLI**, **or PowerShell** for setting up IAM policies, role assignments, and MFA enforcement.

Step-by-Step Guide to Setting Up IAM Roles and Policies in Azure

Step 1: Sign in to Azure Portal

- 1. Go to Azure Portal and log in with your credentials.
- 2. Navigate to **Azure Active Directory** from the left menu.

Step 2: Create a Custom IAM Role (Optional)

- 1. Go to Azure Active Directory > Roles & administrators
- 2. Click + Add > New custom role
- 3. Provide a role name and description
- 4. Click **Permissions > Add permissions**
- 5. Select a **resource provider** (e.g., Microsoft.Compute for Virtual Machines)
- 6. Choose specific actions (e.g., Microsoft.Compute/virtualMachines/read)
- 7. Click **Review + Create** to save the role.
- **Purpose:** Custom roles allow precise control over what a user can do, ensuring security and compliance.

Step 3: Assign a Built-in Role to a User

- 1. Navigate to **Subscriptions** or **Resource Groups**
- 2. Select the **resource** where you want to assign permissions.
- 3. Click on Access control (IAM)
- 4. Click + Add > Add role assignment
- 5. Select a built-in role (e.g., Virtual Machine Contributor, Reader, etc.)
- 6. Choose Assign access to:
 - O User, group, or service principal
 - O Select a user from the list.
- 7. Click **Review + Assign**
- ◆ **Purpose:** Assigning roles based on the least privilege principle prevents unnecessary access.

Step 4: Configure an IAM Policy for Security

- 1. Navigate to **Azure Policy** in the Azure Portal.
- 2. Click + Assign Policy
- 3. Under **Scope**, select the Subscription or Resource Group.
- 4. Choose a **policy definition** (e.g., **Deny Public IP** to restrict public access).
- 5. Click **Review + Create**
- **Purpose:** Enforcing policies ensures compliance and enhances security by restricting actions.

Step 5: Enable Multi-Factor Authentication (MFA)

- 1. Navigate to Azure Active Directory > Security > Conditional Access
- 2. Click + New policy
- 3. Set the name (e.g., "Require MFA for Admins")
- 4. Under Assignments, choose Users and Groups
- 5. Select **All users** or specific admin roles
- 6. Under Access Controls, enable Require Multi-Factor Authentication
- 7. Click **Enable Policy > Create**
- ◆ **Purpose:** MFA adds an extra layer of security, preventing unauthorised access.