

UJIAN TENGAH SEMESTER GENAP TAHUN AKADEMIK 2017/2018 FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS AL AZHAR INDONESIA

Program Studi Mata Kuliah/SKS Nama Dosen Teknik Informatika Pengenalan Pola/3 SKS Ali Akbar Septiandri

Firmansyah Asnawi

Hari/Tanggal : Selasa, 24 April 2018 Sifat : Buka buku, kalkulator

Waktu : 120 menit

Peraturan

• Jawab semua soal berikut

• Notasi pemisah ribuan adalah koma (,), sedangkan desimal ditulis dengan titik (.)

Model Linear dan Optimasi

1.1 Gradient Descent

(a) Diberikan gambar metode optimasi numerik dengan gradient descent untuk fungsi error $E(w) = \log^2 w$ seperti pada Gambar 1. Deskripsikan cara kerja gradient descent.

[2 poin]

(b) Inisialisasi nilai w=2, lalu berikan contoh cara kerjanya dalam dua *epoch* dan tunjukkan, dalam gambar dan hitungan, efek besarnya laju pembelajaran (*learning rate*; η), misalnya saat $\eta=0.1$ dan $\eta=2$. Catatan: Gambar Anda tidak perlu sangat akurat. Gunakan Gambar 1 sebagai panduan.

[4 poin]

(c) Jika nilai inisialisasi w = 1, apa yang akan terjadi pada proses gradient descent? Mengapa?

[2 poin]

(d) Jika Anda hanya diberikan fungsi *likelihood* L(w), apa yang harus Anda sesuaikan dari metode *gradient descent* agar dapat mencapai titik optimum?

[1 poin]

1.2 Regresi Linear

(a) Apakah nilai optimal untuk bobot dari regresi linear sederhana dengan metode *gradient descent* saat konvergen akan sama dengan nilai optimal dari metode optimasi analitis? Jika ya, berapa nilainya? Jika tidak, mengapa nilainya akan berbeda?

[2 poin]

(b) Apa yang dapat dilakukan untuk model regresi linear dengan bias yang tinggi?

[2 poin]

(c) Apa yang dapat dilakukan untuk model regresi linear dengan variansi yang tinggi?

[2 poin]

2 Principal Component Analysis

Diberikan data berupa tiga vektor dua dimensi sebagai berikut:

$$\mathbf{x}_1 = (-4, 4)^T, \mathbf{x}_2 = (2, 1)^T, \mathbf{x}_3 = (8, -2)^T$$

Catatan: Sebagian besar pertanyaan berikut dapat dijawab tanpa menggunakan kalkulator.

(a) Hitung nilai **matriks kovariansi** Σ dari dataset tersebut. Tulis hasilnya dalam bentuk matriks.

(b) Cari semua **eigenvectors** (e) dari matriks kovariansi Σ . Tulis hasilnya dalam bentuk sekumpulan vektor kolom.

[4 poin]

[3 poin]

Gambar 1: Fungsi $E(w) = \log^2 w$ untuk w > 0

(c) Identifikasi semua **eigenvalues** (λ) dari Σ .

[2 poin]

(d) Tentukan *principal components* yang menjelaskan minimal 95% dari keseluruhan variansi dari data. Tulis dalam bentuk kumpulan vektor kolom. Tulis pula persentase dari variansi yang dijelaskan oleh dimensi yang direduksi tersebut.

[2 poin]

(e) Anda mendapatkan objek baru dalam data Anda: $\mathbf{x}_4 = (6,9)^T$. Proyeksikan objek baru ini ke dalam dimensi baru yang telah ditentukan pada bagian (d). Tuliskan koordinat baru \mathbf{x}_4 .

[4 poin]

3 Evaluasi Model

Asumsikan Anda mempunyai 4 contoh dengan kelas positif (+1) dan 8 contoh dengan kelas negatif (-1). Anggaplah bahwa Anda menggunakan model yang menghasilkan nilai probabilistik $p(y=+1|\mathbf{x})$. Model dari data latih mendapatkan **probabilitas** sebagai berikut untuk masing-masing contoh dalam kedua kelas yang ada:

- y = +1: {0.9, 0.4, 0.7, 0.8}
- y = -1: {0.1, 0.7, 0.2, 0.3, 0.2, 0.5, 0.3, 0.6}
- (a) Gambarkan ROC curves dengan menggunakan nilai-nilai batas (*threshold*) berikut: 0.00, 0.25, 0.45, 0.65, 1.00!

[6 poin]

(b) Hitunglah nilai *precision* jika Anda menggunakan *threshold* $p(y=+1|\mathbf{x})>0.45$ untuk mengklasi-fikasikan suatu objek sebagai kelas positif.

[2 poin]

(c) Apakah cukup untuk menggunakan nilai *precision* saja untuk mengetahui seberapa baik model Anda? Jelaskan!

[2 poin]