Aufgaben zu "Rationale Funktionen"

- 1. Berechnen Sie alle Lösungen von $x^4 \frac{9}{2}x^3 + 7x^2 \frac{9}{2}x + 1 = 0$.
- 2. Schreiben Sie als Summe einer ganz rationalen Funktion und einer gebrochen rationalen Funktion, bei der das Zählerpolynom einen kleineren Grad hat als das Nennerpolynom:
 - a) $f(x) = \frac{x^4 + x^3 + 2x^2 + 1}{x^3 1} \ , \qquad b) \quad g(x) = \frac{x^5 + x^7 1}{x^4 1} + \frac{x^3 2x + 1}{x^2 1} \quad .$
- 3. Zerlegen Sie in Partialbrüche und gegebenenfalls ganz rationalen Anteil:
 - a) $f(x) = \frac{x^5}{(x^2 4)^2}$, b) $g(x) = \frac{4x^2 22x + 9}{x^3 9x^2 + 21x 18}$.
- 4. Schreiben Sie das Polynom $f(x) = 0.2x^4 + 0.3x^3 x^2 2$ mit Hilfe des vollständigen Horner-Schemas
 - a) als Polynom in (x-2), b) als Polynom in (x+2).
- 5. Bestimmen Sie alle reellen Lösungen von
 - a) $4x^3 4x^2 23x + 30 = 0$, b) $x^6 + 2x^4 4x^2 8 = 0$, c) $x^4 3x^3 + x^2 + 4 = 0$.
- 6. Zerlegen Sie in Partialbrüche:
 - a) $\frac{x^3 + 4x^2}{(x+3)^4(x-1)}$, b) $\frac{x^3 x^2 3}{x^3 x^2 + 3x 3}$.
- 7. Zeigen Sie, dass bei der Partialbruchzerlegung die Ansätze
 - (*) $\frac{a_1}{x-a} + \frac{a_2}{(x-a)^2} + \dots + \frac{a_n}{(x-a)^n}$ und (**) $\frac{b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}}{(x-a)^n}$

gleichwertig sind. Anders ausgedrückt: jeder Ausdruck der Form (*) lässt sich in der Form (**) schreiben und umgekehrt.

Kontrollfragen zum Verständnis:

Woran erkennt man eine Kreisgleichung (bezüglich eines kartesischen Koordinatensystems) ?

Wie kann man anhand einer solchen Gleichung Mittelpunkt und Radius des Kreises bestimmen ?