ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук

Департамент программной инженерии

ПРОГРАММА, КОТОРАЯ РЕШАЕТ МОГУТ ЛИ ОТРЕЗКИ ЯВЛЯТЬСЯ СТОРОНАМИ МНОГОУГОЛЬНИКА

Пояснительная записка

Исполнитель

Студент группы БПИ 196

Сахаров Никита Денисович

Оглавление

1.	Постановка задачи		2
		ие Алгоритма	
		исание методов	
		InputLine	
	2.1.2.	LinesInput	3
	2.1.3.	CanConstuctPolygon	3
	2.1.4.	LenLinesOutput	3
3.	Приложение 1. Код программы		4
4.	Приложение 2 Тестирование программы		9

1. Постановка задачи

Разработать программу, которая по параметрам N>3 отрезков (задаются как декартовы координаты концов отрезков в виде целых чисел) решает, могут ли эти отрезки являться сторо нами многоугольника.

2. Описание Алгоритма

Для решения этой задачи был выбран подход проверки математического критерия составления многоугольника. Критерий говорит о том, что можно составить из данных отрезков многоугольник тогда и только тогда, когда большая его сторона меньше суммы остальных. Используя средства FPU, я подсчитал для каждого отрезка его длину, нашел максимальный отрезок и сумму всех длин. После чего вычел из суммы максимальную длину и сравнил разность с ней же.

2.1. Описание методов

2.1.1. InputLine

Описание: Метод считывает у пользователя концы отрезка, проверяет валидность ввода и подсчитывает квадрат длинны этого отрезка.

Возвращаемое значение: Метод записывает концы отрезка в глобальные переменные x1, y1, x2, y2 и пишет в глобальную переменную lenLine квадрат его длинны.

2.1.2. LinesInput

Описание: Метод вызывает считывание каждого отрезка, извлекает корень и каждой длинны, попутно ищет максимум и считает сумму всех длин.

Возвращаемое значение: Метод записывает максимум и сумму в глобальные переменные max и sumOfLines, а также формирует массив длин для вывода справки в конце программы.

2.1.3. CanConstuctPolygon

Описание: Метод определяет по сумме и максимуму можно ли сложить многоугольник и выводит соответствующее сообщение.

Возвращаемое значение: Строка вердикта выводится в консоль.

2.1.4. LenLinesOutput

Описание: Метод выводит максимальную длину и сумму всех длин. А так же весь массив подсчитанных длин отрезков.

Возвращаемое значение: Вывод информации об отрезках в консоль.

3. Приложение 1. Код программы

```
format PE console
entry start
include 'win32a.inc'
; Разработать программу, которая попараметрам N>3
;отрезков (задаются какдекартовы координаты концов отрезков ввиде целых
чисел) решает,
; могут ли этиотрезки являться сторонамимногоугольника
; (Я подходил к вам после семинара и мы с Вами решили, что проверить
математический критерий достаточно.
;Для этого я включил в свою работу взаимодействие с FPU)
;Вариант: 20
;Студент: Сахаров Никита
;Группа: БПИ196
;------
section '.data' data readable writable
  strArrSize
                db 'Input count of line segments (400 >= x > 3): ', 0
  strLineFormat db 'Format of input: ', 10 , 13, ' Line[i]: x1 y1 x2
  y2',10 , 0
  strIncorSize db 'Incorrect count of lines = %d', 10, 0
  strScanInt db '%d', 0
  strLineElemI db 'Line [%d]: ', 0
  strScanLine db '%d %d %d', 0
strNewLine db 10, 0
strdouble db '%f', 10, 0
strNANSize db 'The size of the line count must be a positive
  integer', 0
  strNANElem
                db 'The ends of line segment must be integer between -
  1000 and 1000', 10, 0
  strANS db 'MAX = %f Summ of all segments length = %f', 10, 0 strSuccsess db 'You can create a polygon from these line segments',
  10, 0
                db 'You can not create a polygon from these line
  strFail
  segments,',\
   ' because max legnth of line segments less than sum of others', 10, 0
                 db 'Line[%d] legnth: %f', 10, 0
  strSeparrator db 10, '-----
   ----', 10, 10, 0
              db 'Lines legnth info:', 10, 10, 0
   strInfo
                db 'Your lines:', 10, 0
   strLines
  line count dd 0
  arrOfLen rq 10000
              dd ?
             dd ?
  tmpb
              dd ?
  x1
              dd ?
  x2
              dd ?
   у1
               dd ?
   у2
               dd ?
   sqx
               dd ?
   sqy
               dd ?
   lenLine
  tmpStack dd?
   summOfLines dq ?
```

```
max dq ? currLen dq ?
;-----
section '.code' code readable executable
  FINIT ; intialization of FPU
  FLDZ
  FSTP [summOfLines] ; set sum 0
  FLDZ
  FSTP [max]
                       ; set max 0
  call LinesInput
                       ; array input
  call CanConstuctPolygon ; get verdict
  call LenLinesOutput ; print info about lines
finish:
  call [getch]
  push 0
  call [ExitProcess]
;------
-----
LinesInput:
  mov [tmpStack], esp
  cinvoke printf, strArrSize ; input size
  push line count
  push strScanInt
  call [scanf]
  cmp eax , 0
                          ; check scan succsess
  je failGetLineToSize
  mov eax, [line count]
  cmp eax, 3
  jle failSize
  cmp eax, 400
  jle getLines
failSize:
                                 ; branch for incorrect size of
array
  push [line count]
  push strIncorSize
  call [printf]
  call [getch]
  push 0
  call [ExitProcess]
                                 ; branch for incorrect size of
failGetLineToSize:
array
  push strNANSize
```

```
call [printf]
  call [getch]
  push 0
   call [ExitProcess]
getLines:
  cinvoke printf, strSeparrator
                                 ; print info about format input
  cinvoke printf, strLineFormat
  cinvoke printf, strSeparrator
  cinvoke printf, strLines
  xor ecx, ecx
  mov ebx, arrOfLen
  mov ecx, [line count]
getLinesLoop:
  push ecx
  mov [tmpb], ebx
  mov eax, [line_count]
  sub eax, ecx
  mov [i], eax
  cinvoke printf, strLineElemI, [i] ;
  call InputLine
  FILD [lenLine]
  FSQRT
                                    ; get srtr from length of line segmet
  FST [currLen]
  FCOM [max]
                                    ; compare to max
  fstsw AX
  sahf
  jb Skip
                                    ; skip update max
  FST [max]
                                     ; update max
Skip:
  FSTP [currLen]
  FLD [summOfLines]
  FADD [currLen]
                                   ; add current length to sum
  FSTP [summOfLines]
                                    ; update sum
  mov ebx, [tmpb]
  mov eax, dword[currLen]
                                   ; send value of length to array
  mov edx, dword[currLen + 4]
  mov [ebx], eax
  mov [ebx + 4], edx
  add ebx, 8
  pop ecx
  loop getLinesLoop
   jmp endInputLines
failGetLineToArr:
                                          ; branch for fail get line
  push strNANElem
  call [printf]
  call [getch]
```

```
push 0
  call [ExitProcess]
endInputLines:
  mov esp, [tmpStack]
;-----
InputLine:
  cinvoke scanf, strScanLine, x1, y1, x2, y2 ; input ends of lint
  segment
  cmp eax , 4
  jl failGetLineToSize
  mov edx, [x1] cmp edx, 1000
  jg failGetLineToArr
  cmp edx, -1000
                                         ; check bounds
  jl failGetLineToArr
  mov edx, [y1]
  cmp edx, 1000
  jg failGetLineToArr
  cmp edx, -1000
                                         ; check bounds
  jl failGetLineToArr
  mov edx, [x2]
  cmp edx, 1000
  jg failGetLineToArr
  cmp edx, -1000
                                          ; check bounds
  jl failGetLineToArr
  mov edx, [y2]
  cmp edx, 1000
  jg failGetLineToArr
  cmp edx, -1000
                                          ; check bounds
  jl failGetLineToArr
  mov eax, [x1]
  sub eax, [x2]
  imul eax
                                          ; get squre for OX axis
  mov [sqx], eax
  mov eax, [y1]
  sub eax, [y2]
  imul eax
  mov [sqy], eax
                                          ; get squre for OY axis
  add eax, [sqx]
                                          ; get squre of length
  mov [lenLine], eax
;-----
CanConstuctPolygon:
  cinvoke printf, strSeparrator
  FLD [summOfLines]
FSUB [max]
                                  ; get su, without max
  FST [currLen]
```

```
FCOMP [max]
                                     ; check criterion
  fstsw AX
  sahf
  jnb SuccessConsturt
FailConstruct:
  cinvoke printf, strFail
  jmp endCanConstruct
                                    ; print fail verdict
SuccessConsturt:
  cinvoke printf, strSuccsess
                                    ; print succsess verdict
endCanConstruct:
  ret
;-----
LenLinesOutput:
  mov [tmpStack], esp
  cinvoke printf, strSeparrator
  cinvoke printf, strInfo
  cinvoke printf, strANS, dword[max], dword[max+4], dword[summOfLines],
  dword[summOfLines + 4]
  cinvoke printf, strNewLine
  xor ecx, ecx
  mov ebx, arrOfLen
OutputLoop:
  mov [tmpb], ebx
  cmp ecx, [line count]
  je endOutputArrays
  mov [i], ecx
  cinvoke printf, strOutLen, [i], dword[ebx], dword[ebx + 4]
                ; print current line segmet length
  mov ecx, [i]
  inc ecx
  mov ebx, [tmpb]
  add ebx, 8
  jmp OutputLoop
endOutputArrays:
  mov esp, [tmpStack]
;-----
section '.idata' import data readable
library kernel, 'kernel32.dll',\
     msvcrt, 'msvcrt.dll',\
     user32, 'USER32.DLL'
include 'api\user32.inc'
include 'api\kernel32.inc'
import kernel,\
     ExitProcess, 'ExitProcess',\
     HeapCreate, 'HeapCreate', \
     HeapAlloc, 'HeapAlloc'
include 'api\kernel32.inc'
import msvcrt,\
     printf, 'printf',\
scanf, 'scanf',\
getch, '_getch'
```

4. Приложение 2 Тестирование программы

Введем строку вместо числа:

Введем размер массива меньше нижней границы:

```
■ E\PE\avs\microproject1\mcproj1.exe

— □ X

Input count of line segments (400 >= x > 3): 3

Incorrect count of lines = 3

A
```

Введем размер массива больше верхней границы:

Введем строку вместо конца отрезка:

```
☐ EXPE\avs\microproject1\mcproj1.exe

☐ Input count of line segments (400 >= x > 3): 4

Format of input:
   Line[i]: x1 y1 x2 y2

Your lines:
Line [0]: asd 1 2 3
The size of the line count must be a positive integer
```

Введем конец отрезка выходящий за установленные границы:

Введем отрезки из которых нельзя сложить многоугольник:

Введем отрезки из которых можно сложить многоугольник:

Введем много отрезков:

```
You can create a polygon from these line segments

Lines legnth info:

MAX = 2304.729919 Summ of all segments length = 414748.138270

Line[0] legnth: 1336.516741
```

(Данные для этого теста хранятся в репозитории на github файлы 8.txt и 8test.txt)