

Radboud University Nijmegen

Behavioural Science Institute

CHAOS, TURBULENCE and other unsolved mysteries

What can we say about chaos?

4. Sensitive dependence on initial conditions

The Lyapounov Exponent characterises (quantifies) the rate of separation of two infinitesimally close trajectories in state space.

Calculate if you have a model May be experimentally accessible Analytic techniques (in R) are available

CHAOS, TURBULENCE and other unsolved mysteries

What can we say about chaos?

4. Sensitive dependence on initial conditions

The *Lyapounov Exponent* characterises (quantifies) the rate of separation of two infinitesimally close trajectories in state space.

Calculate if you have a model

May be experimentally accessible

Analytic techniques (in R) are available

Sensitive Dependence on Initial Conditions

What can we say about deterministic chaos and complexity?

$$X_0 = 0.01$$

$$X_0 = 0.0100000001$$

Tiny differences in initial conditions can yield diverging time-evolutions of system states

Lorenz observed this in his models of the upper atmosphere:

The divergence was so extreme it resembled a butterfly flapping its wings -or notcould be the difference between weather developing as a hurricane or a summer breeze