1. 梯度下降

- 1.1 对于梯度下降的数学理解
- 1.2 单变量函数的梯度下降
- 1.3 双变量的梯度下降
- 1.4 学习率的选择

1. 梯度下降

1.1 对于梯度下降的数学理解

梯度下降的数学公式:

$$\theta_{n+1} = \theta_n - \eta \cdot \nabla J(\theta) \tag{1}$$

其中:

- θ_{n+1}: 下一个值;
- θ_n: 当前值;
- 一: 减号,梯度的反向;
- η : 学习率或步长,控制每一步走的距离,不要太快以免错过了最佳景点,不要太慢以免时间 太长;
- ∇: 梯度, 函数当前位置的最快上升点;
- J(θ): 函数。

梯度下降的目的就是使得x值向极值点逼近。

1.2 单变量函数的梯度下降

假设一个单变量函数: $J(x) = x^2$

为求解该函数的最小值,得到如下图形:

1.3 双变量的梯度下降

假设一个双变量函数: $J(x,y) = x^2 + \sin^2(y)$

注意看两张图中间那条隐隐的黑色线,表示梯度下降的过程

1.4 学习率的选择

学习率被表示为 η 。在代码里,我们把学习率定义为 learning_rate ,或者 eta

学习率	迭代路线图	说明
1.0	08a-1.000000 40 23 23 24 25 15 10 10 10 10 10 10 10 10 10 10	学习率太大,迭代的情况很糟糕,在一条水平线上跳来 跳去,永远也不能下降。
0.8	00-15000 00 00 00 00 00 00 00 00 00 00 00 00	学习率大,会有这种左右跳跃的情况发生,这不利于神 经网络的训练。
0.4	##	学习率合适,损失值会从单侧下降,4步以后基本接近了 理想值。
0.1	## 15000 10 10 10 10 10 10 10 10 10 10 10 10	学习率较小,损失值会从单侧下降,但下降速度非常慢,10步了还没有到达理想状态。