Fundamentos de análisis y diseño de algoritmos

El problema de la mochila 0/1

Se tienen N objetos y una mochila de capacidad (de peso) M, cada objeto tiene un peso w_i , $1 \le i \le N$. Cada objeto puede estar, o no, en la mochila. Ademas, se tiene un beneficio b_i por cada objeto

El problema consiste en maximizar el beneficio. La solución se representa indicando para cada objeto si se debe colocar o no en la mochila

Se tienen N objetos y una mochila de capacidad (de peso) M, cada objeto tiene un peso w_i , $1 \le i \le N$. Cada objeto puede estar, o no, en la mochila. Además, se tiene un beneficio b_i por cada objeto

De manera formal, el problema consiste en encontrar $\langle x_1, x_2, ..., x_n \rangle$ tal que:

$$\sum_{1 \le i \le N} b_i x_i$$
sea máximo, sujeto a

$$\sum_{1 \le i \le N} w_i x_i \le M$$

 $x_i \in \{0,1\}$, donde 0 significa que el objeto i no se coloca en la mochila y 1 que si

Se tienen N objetos y una mochila de capacidad (de peso) M, cada objeto tiene un peso w_i , $1 \le i \le N$. Cada objeto puede estar, o no, en la mochila. Además, se tiene un beneficio b_i por cada objeto

De manera formal, el problema consiste en encontrar $\langle x_1, x_2, ..., x_n \rangle$ tal que:

$$\sum_{1 \le i \le N} b_i x_i$$
sea máximo, sujeto a

Problema mochila(1, N, M)

$$\sum_{1 \le i \le N} w_i x_i \le M$$

 $x_i \in \{0,1\}$, donde 0 significa que el objeto i no se coloca en la mochila y 1 que si

N=3, M=9, b=<10,6,8>, w=<3,4,5>

<1,0,1> es una solución que indica colocar en la mochila los objetos 1 y 3, esto implica un beneficio de 18

<1,1,0> es una solución que indica colocar en la mochila los objetos 1 y 2, esto implica un beneficio de 16

<0,1,1> es una solución que indica colocar en la mochila los objetos 2 y 3, esto implica un beneficio de 14

<1,0,0>, <0,1,0>, <0,0,1>

Debido a los pesos no se pueden colocar todos los objetos en la mochila

N=3, M=9, b=<10,6,8>, w= $<\frac{7}{2},4,5>$

Muestre soluciones indicando el beneficio

N=3, M=9, b=<10,6,8>, w= $<\frac{7}{2},4,5>$

<1,0,0>: beneficio 10

<0,1,0>: beneficio 6

<0,0,1>: beneficio 8

<0,1,1>: beneficio 14

Solución óptima: <0,1,1>

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>

Muestre todas las soluciones indicando el beneficio. Presente la solución óptima

$$X = \{1,1,3,3,1,-\}$$
 $Y = \{1,1,3,3,1,-\}$ $Y = \{2,1,1,2,3,-\}$ $Y = \{2,1,1,2,3,-\}$ $Y = \{2,2,3,3,3,-\}$ $Y = \{2,3,3,3,3,-\}$ $Y = \{2,3,3,3,3,3,-\}$

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>

Considere la solución óptima <1,1,0,1>

Encuentre subproblemas y soluciones óptimas a esos subproblemas (utilice la notación mochila(L,N,M) para indicar el problema de la mochila utilizando de L a N elementos y una capacidad M)

Primer paso de la receta: Caracterización la solución óptima.

- 1) La solución de los subproblemas es optima
- 2) La combinación de soluciones

Problema: encontrar $\langle x_k, x_{k+1}, ..., x_l \rangle$ tal que:

$$\sum_{k \le i \le l} b_i x_i$$
 sea máximo, sujeto a

$$\sum_{k < i < l} w_i x_i \le P$$

Problema mochila(k, I, P)

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Si <1,1,0,1> es una solución óptima de mochila(1,4,20) ...

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>

Si 1,1,0,1> es una solución óptima de mochila(1,4,20)

entonces <1,1,0> es una solución óptima de mochila(1,3,20-8)

mochila(1,3,12) es el problema de colocar los elementos 1, 2 y 3 en la mochila de capacidad 12

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Si <1,1,0,1> es una solución óptima de mochila(1,4,20) entonces <1,1,0> es una solución óptima de mochila(1,3,20-8)

Si <1,1,0 es una solución óptima de mochila(1,3,12) entonces <1,1 es una solución óptima de mochila(1,2,12)

Un 0 en la solución óptima significa que el elemento no se coloca en la mochila. Note que no se disminuye la capacidad de la mochila

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Si <1,1,0,1> es una solución óptima de mochila(1,4,20) entonces <1,1,0> es una solución óptima de mochila(1,3,20-8)

Si <1,1,0> es una solución óptima de mochila(1,3,12) entonces <1,1> es una solución óptima de mochila(1,2,12)

Si 1,1> es una solución óptima de mochila(1,2,12) entonces 1> es una solución óptima de mochila(1,1,12-5)

En términos generales se tiene que, sea $\langle y_1, y_2,...,y_N \rangle$ una secuencia óptima para $\langle x_1,x_2,...x_N \rangle$, dada una mochila de capacidad M, entonces:

• Si $y_N=0$ entonces $\langle y_1,...,y_{N-1}\rangle$ es una secuencia óptima para mochila(1,N-1,M)

• Si $y_N=1$ entonces $\langle y_1,...,y_{N-1}\rangle$ es una secuencia óptima para mochila $(1,N-1,M-w_N)$

En nuestra receta, este es el segundo paso

Definiri recursivamente la solución óptima (Es como llegar desde los subproblemas al problema solución)

Definición de las estructura*

Si $\langle y_1, y_2,...,y_N \rangle$ una secuencia óptima para mochila(1,N,M) entonces $\langle y_1, y_2,...,y_i \rangle$ y $\langle y_{i+1}, y_{i+2},...,y_N \rangle$ son soluciones optimas a los problemas:

$$mochila(1, j, \sum_{1 \leq i \leq j} w_i x_i) \qquad \text{\forall} \quad mochila(j+1, N, M - \sum_{1 \leq i \leq j} w_i x_i)$$

Sea $g_j(M)$ el valor de la solución óptima de mochila(1,j,M), por la subestructura óptima, se puede decir que:

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

 $g_{0}(M)=0$

esto es, seleccionar el máximo entre los beneficios de 1) no colocar el elemento j en la mochila y 2) colocar j en la mochila, se debe entonces colocar el beneficio b_j y disminuir el peso máximo de la mochila, que ahora será M- w_j

```
El valor de g_N(M) se expresa en términos de g_{N-1}(M) y g_{N-1}(M-w_N)

El valor de g_{N-1}(M) se expresa en términos de g_{N-2}(M) (g_{N-2}(M-w_{N-2})) y g_{N-2}(M-w_{N-2}-w_{N-1})
```

hasta llegar a $g_0(M)$ que vale 0

N=4, M=20, b= $\langle 3,2,1,4 \rangle$, w= $\langle 7,5,6,8 \rangle$ mochila(1,4,20) tiene valor $g_4(20)$, donde: $g_4(20) = \max(g_3(20), g_3(12) + 4)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_4(20)=\max(g_3(20), g_3(12)+4)$$

$$g_j(M)=\max(g_{j-1}(M), g_{j-1}(M-w_j)+b_j)$$
 b=<3,2,1,4>, w=<7,5,6,8>

$$g_4(20)=\max(g_3(20))g_3(12)+4$$

 $g_3(20)=\max(g_2(20),g_2(14)+1)$
 $g_3(12)=\max(g_2(12),g_2(6)+1)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_{4}(20)=\max(g_{3}(20),\ g_{3}(12)+4)$$

$$g_{3}(20)=\max(g_{2}(20),\ g_{2}(14)+1)$$

$$g_{3}(12)=\max(g_{2}(12),\ g_{2}(6)+1)$$

$$g_{2}(20)=\max(g_{1}(20),\ g_{1}(15)+2)$$

$$g_{2}(14)=\max(g_{1}(14),\ g_{1}(9)+2)$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

$$g_{4}(20)=\max(g_{3}(20), g_{3}(12)+4)$$

$$g_{3}(20)=\max(g_{2}(20), g_{2}(14)+1)$$

$$g_{2}(20)=\max(g_{1}(20), g_{1}(15)+2)$$

$$g_{2}(14)=\max(g_{1}(14), g_{1}(9)+2)$$

$$g_{3}(12)=\max(g_{2}(12), g_{2}(6)+1)$$

$$g_{2}(20)=\max(g_{0}(20), g_{0}(13)+3)$$

$$g_{1}(15)=\max(g_{0}(15), g_{0}(8)+3)$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_{3}(20) = \max(g_{2}(20), g_{2}(14) + 1)$$

$$g_{3}(12) = \max(g_{2}(12), g_{2}(6) + 1)$$

$$g_{2}(20) = \max(g_{1}(20), g_{1}(15) + 2)$$

$$g_{2}(14) = \max(g_{1}(14), g_{1}(9) + 2)$$

$$g_{1}(20) = \max(g_{0}(20), g_{0}(13) + 3)$$

$$g_{1}(20) = \max(0,3)$$

$$g_{1}(15) = \max(0,3)$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

$$g_{4}(20) = \max(g_{3}(20), g_{3}(12) + 4)$$

$$g_{3}(20) = \max(g_{2}(20), g_{2}(14) + 1)$$

$$g_{3}(12) = \max(g_{2}(12), g_{2}(6) + 1)$$

$$g_{2}(20) = \max(g_{1}(20), g_{1}(15) + 2)$$

$$g_{2}(14) = \max(g_{1}(14), g_{1}(9) + 2)$$

$$g_{1}(20) = \max(g_{0}(20), g_{0}(13) + 3)$$

$$g_{1}(15) = \max(g_{0}(15), g_{0}(8) + 3)$$

$$g_{1}(15) = \max(g_{0}(3), g_{0}(3))$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

$$g_{4}(20) = \max(g_{3}(20), g_{3}(12) + 4)$$

$$g_{3}(20) = \max(g_{2}(20), g_{2}(14) + 1)$$

$$g_{2}(20) = \max(g_{1}(20), g_{1}(15) + 2)$$

$$g_{2}(14) = \max(g_{1}(14), g_{1}(9) + 2)$$

$$g_{1}(20) = \max(g_{0}(20), g_{0}(13) + 3)$$

$$g_{1}(20) = 3$$

$$g_{1}(15) = \max(0, 3)$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_{3}(20)=\max(g_{2}(20), g_{2}(14)+1)$$

$$g_{3}(12)=\max(g_{2}(12), g_{2}(6)+1)$$

$$g_{2}(20)=\max(g_{1}(20), g_{1}(15)+2)$$

$$g_{2}(14)=\max(g_{1}(14), g_{1}(9)+2)$$

$$g_{3}(12)=\max(g_{2}(12), g_{2}(6)+1)$$

$$g_{3}(12)=\max(g_{3}(12), g_{2}(12), g_{2}(12), g_{2}(12)$$

$$g_{3}(12)=\max(g_{3}(12), g_{3}(12)+1)$$

$$g_{3}(12)=\min(g_{3}(12), g_$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_4(20)=\max(g_3(20), g_3(12)+4)$$

$$g_3(20)=\max(g_2(20), g_2(14)+1)$$

$$g_3(12)=\max(g_2(12), g_2(6)+1)$$

$$g_2(20)=\max(g_1(20), g_1(15)+2)$$

$$g_2(14)=\max(g_1(14), g_1(9)+2)$$

$$=\max(3,5)=5$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

$$g_4(20)=\max(g_3(20), g_3(12)+4)$$

 $g_3(20)=\max(g_2(20), g_2(14)+1$
 $g_3(12)=\max(g_2(12), g_2(6)+1)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_{4}(20)=\max(g_{3}(20), g_{3}(12)+4)$$
 $g_{3}(20)=\max(g_{2}(20), g_{2}(14)+1$
 $g_{3}(12)=\max(g_{2}(12), g_{2}(6)+1)$
 $g_{2}(12)=\max(g_{1}(12), g_{1}(7)+2)$
 $g_{2}(6)=\max(g_{1}(6), g_{1}(1)+2)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_{3}(20) = \max(g_{2}(20), g_{2}(14) + 1$$

$$= \max(5,6)$$

$$g_{3}(12) = \max(g_{2}(12), g_{2}(6) + 1)$$

$$g_{2}(12) = \max(g_{1}(12), g_{1}(7) + 2)$$

$$g_{2}(6) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{0}(12), g_{0}(5) + 3)$$

$$g_{1}(7) = \max(g_{0}(7), g_{0}(0) + 3)$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

$$g_{3}(20) = \max(g_{2}(20), g_{2}(14) + 1)$$

$$= \max(5,6)$$

$$g_{3}(12) = \max(g_{2}(12), g_{2}(6) + 1)$$

$$g_{2}(12) = \max(g_{1}(12), g_{1}(7) + 2)$$

$$g_{2}(6) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{3}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{2}(6) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{3}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{4}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{5}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{6}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(12), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(12), g_{1}(1) + 2)$$

$$g_{2}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{3}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{4}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{5}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{6}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{2}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{3}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{4}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{5}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{6}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{2}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{3}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{4}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{5}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{6}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{6}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{7}(12) = \max(g_{1}(6), g_{1}(1) + 2)$$

$$g_{1}(12) = \min(g_{1}(6), g_{1}$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

$$g_4(20)=\max(g_3(20), g_3(12)+4)$$

 $g_3(20)=\max(g_2(20), g_2(14)+1$
 $=\max(5,6)$
 $g_3(12)=\max(g_2(12), g_2(6)+1)$
 $g_2(12)=\max(g_1(12), g_1(7)+2)$
 $g_2(6)=\max(g_1(6), g_1(1)+2)$
 $g_2(6)=\max(g_1(6), g_1(1)+2)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_{4}(20)=\max(g_{3}(20), g_{3}(12)+4)$$

$$g_{3}(20)=\max(g_{2}(20), g_{2}(14)+1 \qquad g_{3}(12)=\max(g_{2}(12), g_{2}(6)+1)$$

$$g_{2}(12)=\max(g_{1}(12), g_{1}(7)+2) \qquad g_{2}(6)=\max(g_{1}(6), g_{1}(1)+2)$$

$$=\max(3,5)$$

$$g_{1}(6)=0 \qquad g_{1}(1)=0 \quad (\text{no cabe})$$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

$$g_4(20)=\max(g_3(20), g_3(12)+4)$$

 $g_3(20)=\max(g_2(20), g_2(14)+1$
 $=\max(5,6)$
 $g_3(12)=\max(g_2(12), g_2(6)+1)$
 $g_2(12)=\max(g_1(12), g_1(7)+2)$
 $g_2(6)=\max(g_1(6), g_1(1)+2)$
 $g_2(6)=\max(0,2)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

max(6, 9) ---> 9

$$g_4(20)=\max(g_3(20), g_3(12)+4)$$
 $g_3(20)=\max(g_2(20), g_2(14)+1)$
 $g_3(12)=\max(g_2(12), g_2(6)+1)$
 $g_3(12)=\max(g_2(12), g_2(6)+1)$
 $g_3(12)=\max(g_2(12), g_2(6)+1)$

$$g_{j}(M)=\max(g_{j-1}(M), g_{j-1}(M-w_{j})+b_{j})$$

b=<3,2,1,4>, w=<7,5,6,8>

```
g_4(20)=\max(g_3(20), g_3(12)+4)
= max(6,9)
= 9
9 es el valor óptimo
```

Construir una matriz BMAX de dimensiones MXN de forma que BMAX[i,j] contenga el beneficio máximo que se puede obtener si la capacidad de I y se cuenta con los primeros J elementos

$$BMAX(I,1) = \begin{cases} B(1) \text{ si } I \ge W(1) \\ 0 \text{ si } I < W(1) \end{cases}$$

$$BMAX(I,J) = MAX(BMAX(I,J-1), \\ BMAX(I-W(J), j-1) + B(J))$$

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Se crea una matriz de 20x4

$$BMAX(I,1) = \begin{cases} B(1) \text{ si } I \ge W(1) \\ 0 \text{ si } I < W(1) \end{cases}$$

	1	2	3	4
1	0			
2	0			
3	0			
4	0			
5	0			
6	0			
7	3			
8	3			
9	3			
10	3			
11	3			
12	3			
13	3			
14	3			
15	3			
16	3			
17	3			
18	3			
19	3			
20	3			
		-		

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Se crea una matriz de 20x4 BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=???			1	2	3	4
Se crea una matriz de $20x4$ BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=???	N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	(\$	X	X
BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=??? BMAX(5,2)=???		2	0	()	X	X
BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(5,2)=??? BMAX(5,2)=???	Se crea una matriz de 20x4	3	0	⊘	X	X
BMAX(I,J)-MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) 7 8 3 9 10 3 11 3 12 3 13 14 3 15 16 3 17 3 18 3 19 3		4	0		X	X
BMAX(I-W(J), j-1) + B(J)) 7 3 8 3 9 3 9 3 9 10 11 3 12 3 12 3 14 3 15 3 16 3 17 3 18 3 19 3 19 3 19 3	BMAX(T.T)=MAX(BMAX(T.T-1)	5	0	2		
BMAX(5,2)=??? 8 3 9 3 10 3 11 3 12 3 14 15 3 16 3 17 3 18 3 19 3		6	0			
9 3 10 3 11 3 3 12 3 13 3 14 15 3 16 3 17 3 18 3 19 3 19 3	BMAX(I-W(J), j-1) + B(J))	7	3			
9 3 10 10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	BMAX(5,2)=???	8	3			
11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 19 3		9	3			
12 3 3 3 14 3 3 15 16 3 17 3 18 3 19 3 19 3	$M \times M \times$	10	3			
B 13 3 14 3 15 3 16 3 17 3 18 3 19 3 19 3		11	3			
14 3 15 3 16 3 17 3 18 3 19 3 19 3		12	3			
15 3 16 3 17 3 18 3 19 3	7	13	3			
16 3 17 3 18 3 19 3	$\mathcal{L} = \mathcal{L} = $	14	3			
17 3 18 3 19 3		15	3			
18 3 19 3		16	3			
19 3	\sim	17	3			
		18	3			
20 3		19	3			
		20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1).	5	0	2	2	
Se crea una matriz de 20x4 AX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J))	6	0			
BWYX(T-M(T), T-T) + B(T)	7	3			
BMAX(5,3)=MAX(BMAX(5,2),	8	3			
BMAX(5-W(3) 1) + B(3)	9	3			
	10	3			
como 3 no cabe, el maximo sigue	11	3			
siendo BMAX(5,2)=2	12	3			
	13	3			
	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			
			- <u> </u>		

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I.J)=MAX(BMAX(I.J-1).	5	0	2	2	2
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Se crea una matriz de 20x4 AX(I,J)=MAX(BMAX(I,J-1),	6	0			
BWYX(T-M(1), 1-1) + B(1)	7	3			
BMAX(5,4)=MAX(BMAX(5,3),	8	3			
BMAX(5-W(4) 1) + B(4)	9	3			
	10	3			
como 4 no cabe, el maximo sigue	11	3			
siendo BMAX(5,3)=2	12	3			
	13	3			
	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),	5	0	2	2	2
	6	0	2		
BMAX(1-VV(J), J-1) + B(J)	7	3			
BMAX(6,2)=MAX(BMAX(6,1),	8	3			
BMAX(6-W(2) 1) + B(2)	9	3			
	10	3			
=MAX(O,	11	3			
BMAX(1, 1) + 2)	12	3			
=2	13	3			
- -	14	3			
BMAX(I-W(J), j-1) + B(J)) $MAX(6,2)=MAX(BMAX(6,1),$ $BMAX(6-W(2), 1) + B(2))$ $=MAX(0,$	15	3			
	16	3			
BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(6,2)=MAX(BMAX(6,1), BMAX(6-W(2), 1) + B(2)) =MAX(0, BMAX(1, 1) + 2) =2	17	3			
donde BMAX(1,1) ya se conoce	18	3			
	19	3			
	20	3			
	'				

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(6,3)=MAX(BMAX(6,2), BMAX(6-W(3), 2) + B(3)) =MAX(2,	4	0	X	X	X
BMAX(I.J)=MAX(BMAX(I.J-1).	5	0	2	2	2
	6	0	2	2	
BMAX(I-W(J), J-1) + B(J)	7	3			
BMAX(6,3)=MAX(BMAX(6,2), BMAX(6-W(3), 2) + B(3))	8	3			
BMAX(6-W(3), 2) + B(3)	9	3			
	10	3			
=MAX(2,	11	3			
BMAX(0, 1) + 1)	12	3			
-2	13	3			
-6	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),	5	0	2	2	2
	6	0	2	2	2
BMAX(I-W(J), j-1) + B(J))	7	3	3		
BMAX(7,2)=MAX(BMAX(7,1),	8	3			
BMAX(7-W(2), 1) + B(2)	9	3			
	10	3			
=MAX(3,	11	3			
BMAX(2,1) + 2)	12	3			
=MAX(3,2)=3	13	3			
-141717((3, 2) - 3	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			
			-	-	

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Se crea una matriz de 20x4 BMAX(I,J)=MAX(BMAX(I,J-1),			1	2	3	4
Se crea una matriz de $20x4$ BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(8,2)=MAX(BMAX(8,1), BMAX(8-W(2), 1) + B(2)) =MAX(3, BMAX(3,1) + 2) =MAX(3, 2) = 3 BMAX(3,1) + 2) =MAX(3, 2) = 3 BMAX(3,1) + 2) =MAX(3,1) + 3 =MAX(3,	N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(8,2)=MAX(BMAX(8,1), BMAX(8-W(2), 1) + B(2)) =MAX(3, BMAX(3,1) + 2) =MAX(3, 2) = 3 BMAX(3,1) + 2) =MAX(3, 2) = 3		2	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(8,2)=MAX(BMAX(8,1), BMAX(8-W(2), 1) + B(2)) =MAX(3, BMAX(3,1) + 2) =MAX(3, 2) = 3 BMAX(3,2) = 3 BMAX(1,J-1), BMAX(Se crea una matriz de 20x4	3	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-I),		4	0	X	X	X
BMAX(I-W(J), j-1) + B(J)) BMAX(8,2)=MAX(BMAX(8,1), BMAX(8-W(2), 1) + B(2)) =MAX(3, BMAX(3,1) + 2) =MAX(3, 2) = 3 BMAX(3, 2) = 3 BMAX(3, 2) = 3 BMAX(3, 3) = 3 BMAX(3,	BMAX(I,J)=MAX(BMAX(I,J-1),	5	0	2	2	
BMAX(8,2)=MAX(BMAX(8,1), BMAX(8-W(2), 1) + B(2)) =MAX(3, BMAX(3,1) + 2) =MAX(3, 2) = 3 BMAX(3,2) = 3 BMAX(3,1) + 2) 10 3 3 3 3 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 3 19		6	0	2	2	2
BMAX(8-W(2), 1) + B(2)) =MAX(3,	BMAX(I-M(J), J-I) + B(J)	7	3	3	3	3
BMAX(8-W(2), 1) + B(2)) =MAX(3, BMAX(3,1) + 2) =MAX(3, 2) = 3 10 3 3 3 12 3 13 15 3 16 3 17 3 18 3 19 3	BMAX(8,2)=MAX(BMAX(8,1),	8	3	3		
=MAX(3,1) + 2) =MAX(3,1) + 2) =MAX(3,2) = 3 10 3 3 3 12 3 3 14 3 15 3 16 3 17 3 18 3 19 3	BMAX(8-W(2) 1) + B(2)	9	3			
BMAX(3,1) + 2) =MAX(3,2) = 3 12 3 3 14 3 15 3 16 3 17 3 18 3 19 3		10	3			
=MAX(3,2) = 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3	=MAX(3,	11	3			
=MAX(3, 2) = 3 14 3 15 3 16 3 17 3 18 3 19 3	BMAX(3,1) + 2)	12	3			
14 3 15 3 16 3 17 3 18 3 19 3	-MAX(32)-3	13	3			
16 3 17 3 18 3 19 3	-M/M(0, 2) - 0	14	3			
17 3 18 3 19 3		15	3			
18 3 19 3		16	3			
19 3		17	3			
		18	3			
20 3		19	3			
		20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	×
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),	5	0	2	2	2
BMAX(I-W(J), j-1) + B(J)	6	0	2	2	2
BWAX(I-M(J), J-I) + B(J)	7	3	3	3	3
BMAX(8,4)=MAX(BMAX(8,3),	8	3	3	3	4
BMAX(8-W(4) 1) + B(4)	9	3			
	10	3			
=MAX(3,	11	3			
BMAX(0,1) + 4)	12	3			
=MAX(3.4)=4	13	3			
-//// (5, 1) - 1	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),	5	0	2	2	2
	6	0	2	2	2
BMAX(I-W(J), j-1) + B(J))	7	3	3	3	3
BMAX(8,4)=MAX(BMAX(8,3),	8	3	3	3	4
BMAX(8-W(4), 1) + B(4)	9	3	3	3	4
	10	3	3	3	4
=MAX(3,	11	3			
BMAX(0,1) + 4)	12	3			
=MAX(3,4)=4	13	3			
-////X((3, +) - +	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>	1	0	X	X	X
	2	0	X	X	X
Se crea una matriz de 20x4	3	0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),	5	0	2	2	2
BMAX(I-W(J), j-1) + B(J)	6	0	2	2	2
BMAX(I-M(J), J-I) + B(J)	7	3	3	3	3
BMAX(11,2)=MAX(BMAX(11,1),	8	3	3	3	4
BMAX(11-W(2) 1) + B(2)	9	3	3	3	4
	10	3	3	3	4
=MAX(3,	11	3	3		
BMAX(6,1) + 2)	12	3			
=MAX(3,2)=3	13	3			
-M/M(3, 2) - 3	14	3			
	15	3			
	16	3			
	17	3			
	18	3			
	19	3			
	20	3			

			1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>		1	0	X	X	X
		2	0	X	X	X
Se cre	Se crea una matriz de 20x4		0	X	X	X
		4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),		5	0	2	2	2
		6	0	2	2	2
	BMAX(I-W(J), j-1) + B(J))	7	3	3	3	3
BMAX(11,3)=MAX(BMAX(11,2),		8	3	3	3	4
BMAX(11-W(3), 2) + B(3)	9	3	4	4	4	
=MAX(3, BMAX(5,2) + 2) =MAX(3,4) = 4		10	3	4	4	4
		11	3	3	4	
		12	3			
		13	3			
		14	3			
		15	3			
		16	3			
	El 4 se obtiene entonces por <0,1,1,0>	17	3			
		18	3			
		19	3			
		20	3			

		1	2	3	4
N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Se crea una matriz de 20x4		0	X	X	X
		0	X	X	X
		0	X	X	X
	4	0	X	X	X
BMAX(I,J)=MAX(BMAX(I,J-1),		0	2	2	2
		0	2	2	2
BMAX(I-W(J), j-1) + B(J)	7	3	3	3	3
BMAX(12,2)=MAX(BMAX(12,1),		3	3	3	4
BMAX(12-W(2), 1) + B(2))	9	3	4	4	4
= MAX(3,		3	4	4	4
		3	3	4	4
BMAX(7,2) + 2)	12	3	5		
=MAX(3,5)=5		3			
-MMX(3,3)-3	14	3			
	15	3			
Se continua el proceso, al final	16	3			
se tendrá el valor optimo	17	3			
•	18	3			
	19	3			
	20	3			
	'				

N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8> Se crea una matriz de 20x4 BMAX(I,J)=MAX(BMAX(I,J-1), BMAX(I-W(J), j-1) + B(J)) BMAX(12,2)=MAX(BMAX(12,1), BMAX(12-W(2), 1) + B(2)) =MAX(3, BMAX(7,2) + 2) =MAX(3,5) = 5 Para obtener la respuesta se guardan los valores de j con los que se obtiene el valor máximo 1 0			1	2	3	4
Se crea una matriz de $20x4$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	N=4, M=20, b=<3,2,1,4>, w=<7,5,6,8>		0	X	X	X
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	0	X	X	X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Se crea una matriz de 20x4	3	0	X	X	X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	X	X	X
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BMAX(I J)=MAX(BMAX(I J-1)	5	0	2	2	2
BMAX(12,2)=MAX(BMAX(12,1), BMAX(12-W(2), 1) + B(2)) =MAX(3, BMAX(7,2) + 2) =MAX(3,5) = 5 Para obtener la respuesta se guardan los valores de j con los guardan los valores de j con los a so			0	2	2	2
BMAX(12-W(2), 1) + B(2)) =MAX(3, BMAX(7,2) + 2) =MAX(3,5) = 5 Para obtener la respuesta se guardan los valores de j con los para obtener la respuesta se guardan los valores de j con los para obtener la respuesta se guardan los valores de j con los para obtener la respuesta se guardan los valores de j con los para obtener la respuesta se guardan los valores de j con los para obtener la respuesta se guardan los valores de j con los	BMAX(I-W(J), J-1) + B(J)) 7	3	3	3	3
BMAX(12-W(2), 1) + B(2)) =MAX(3, BMAX(7,2) + 2) =MAX(3, 5) = 5 Para obtener la respuesta se guardan los valores de j con los para obtener la respuesta se guardan los valores de j con los successor de obtener la respuesta se guardan los valores de j con los successor de obtener la respuesta se guardan los valores de j con los successor de obtener la respuesta se guardan los valores de j con los	BMAX(12,2)=MAX(BMAX(12,1),	8	3	3	3	4
=MAX(3, BMAX(7,2) + 2) =MAX(3,5) = 5 Para obtener la respuesta se guardan los valores de j con los 10 3	=MAX(3, BMAX(7,2) + 2)		3	4	4	4
BMAX(7,2) + 2) =MAX(3,5) = 5 12 3 5 13 3 14 3 15 3 16 3 Para obtener la respuesta se guardan los valores de j con los 18 3 19 10 11 12 13 14 15 16 17 3 18 18 18 18 18 18 18 18 18			3	4	4	4
=MAX(3,5) = 5 13 3 14 3 15 3 16 3 Para obtener la respuesta se guardan los valores de j con los 18 3			3	3	4	4
=MAX(3,5) = 5 14 3 15 3 16 3 Para obtener la respuesta se guardan los valores de j con los 18 3			3	5		
Para obtener la respuesta se guardan los valores de j con los 18 3			3			
Para obtener la respuesta se guardan los valores de j con los 18 3			3			
Para obtener la respuesta se 17 3 guardan los valores de j con los 18 3			3			
guardan los valores de j con los 18 3		16	3			
	•	17	3			
que se obtiene el valor máximo 19 3		18	3			
	que se obtiene el valor máximo	19	3			
20 3		20	3			

1. Resuelve aplicando programación dinámica el problema siguiente: Se trata de asignar días de estudio para preparar los exámenes de cuatro asignaturas. Se dispone de 10 días para todas ellas, y estos días han de repartirse de manera que se optimice la mejora prevista en las calificaciones totales de las mismas.

Se ha estimado que para un cierto número de días asignado a cada asignatura se pueden conseguir las mejoras en las notas que se indican en la tabla siguiente:

	A	Asignatura					
Días	1	2	3	4			
1	1	3	1	2			
2	3	4	2	4			
3	4	4	4	5			
4	5	5	4	5			

A ninguna asignatura se le asignarán más de cuatro días, y a cada una de ellas se le asignará al menos un día.

Sugerencia: Define como etapas la asignación de días de estudio a cada una de las asignaturas.

0) Paso 0: Entendimiento del problema. ¿Dé la solución optima de una instancia que se ve en la table? Solución al problema

Ganancia =
$$3 + 5 + 4 + 2 = 14$$

Identifico = A= {A1, A2, ... An} # días que días que estudio por asignatura Matriz B = GananciasD = # Dias disponibles para estudiar

Asignatura(1,1)

Asignatura(1,

k número máximo dias esti

1) Cuando termina la asigturas

¿Que soluciones trivlaes ven?

- A(0,0) --> 0

2) SOluciones no factibles

A(X>0, Y<=0) <-- Faltan asignaturas por asignar (Problemas NO se expanden), pero debemos considerarlo Como queremos maximizar la ganancia, en caso de no factible colocamos una ganancia negativa muy grande

El problema codifique como Asignacion(#Cursos, #DiasDIsponibles)

2) Definición recursiva de la solución óptima:

D = 0 y C = 0

