BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION FIRST SEMESTER, 2016-2017 COURSE HANDOUT PART-II (ON-CAMPUS)

Date: 01/08/2016

In addition to Part-I (General handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No : ME G512

Course Title : FINITE ELEMENT METHODS Instructor-In-Charge : SRINIVASA PRAKASH REGALLA

Course Description: Fundamental concepts, matrix algebra and Gauss elimination, one-dimensional problems, trusses, two-dimensional problems using constant strain triangles, axisymmetric solids subjected to axisymmetric loading, two-dimensional isoparametric elements and numerical integration, beams and frames, three-dimensional problems in stress analysis, scalar field problems, dynamic considerations, pre-processing and post processing.

Scope and Objective: The course covers intermediate to advanced topics of finite element methods including scalar field problems,

Text Book:

T1. T. R. Chandrupatla, A. D. Belegundu, Introduction to Finite Elements in Engineering, 3rd Edition, Prentice Hall of India, New Delhi.

Reference Books:

R1. Reddy J. N., *An Introduction to Finite Element Method*, 3rd Edition, Tata-McGraw Hill Edition, 2006, New Delhi. R2. Rao S. S., *The finite element method in engineering*, fourth edition, Elsevier, 2005, MA, USA.

Course Plan:

Module	Modularized Learning Items	Reference:	No. of	
		T1: Chapter 1	Lectures 2	
M1: Fundamental	8			
Concepts	conditions, strain-displacement relations, stress-strain relations			
	RL1.2: Temperature effects, potential energy and equilibrium, Rayleigh-			
	Ritz method, Galerkin method, von-Mises stress			
M2: Matrix algebra in	x algebra in RL2.1: Important concepts of matrix implementation of FEM			
FEM	calculations, eigenvalues and eigenvectors, positive definite matrix,			
	cholesky decomposition, Gaussian elimination, conjugate gradient			
	method			
M3: Finite element	Finite element RL3.1: Finite element modeling, linear and quadratic shape functions		3	
modeling of one-	RL3.2: Rayleigh-Ritz & Galerkin approaches, assembly of equations	4		
dimensional vector-field	and application of essential and natural boundary conditions by different			
problems	methods, temperature effects			
	RL3.3: Finite element modeling of planar trusses, allusion to three-			
	dimensional trusses, assembly of global stiffness matrix			
M4: Finite element	RL4.1: Finite element modeling using CST element, isoparametric	T1: Chapter 5, 6	5	
modeling of two-	representation	and 7		
dimensional vector-field	RL4.2: Modeling of orthotropic material system			
problems	RL4.3: Finite element modeling of axisymmetric solids subjected to			
*	axisymmetric loading			
	RL4.4: Application of boundary conditions in axisymmetric problems			

Module	Modularized Learning Items	Reference:	No. of Lectures	
	with different examples RL4.4: Two dimensional isoparametric modeling with four node			
	quadrilateral element			
	RL4.4: Numerical integration			
	RL4.5: Higher order elements and modeling of axisymmetric problems, conjugate gradient implementation of the quadrilateral elements			
	SM5.1: Beams and Frames	T1: Chapter 5	5	
M5 : Modeling of fourth	RL5.1.1: Modeling using Euler-Bernoulli Beam elements using	R1: Chapter 7		
	Rayleigh-Ritz and Galerkin approaches, Load vector and boundary	R2: Chapter 10		
	conditions, shear force and bending moment, beams on elastic supports			
order problems	RL5.1.2: Plane frames, three-dimensional frames			
order problems	RL5.1.3: Modeling using Timoshenko beam elements			
	SM5.2: Plate bending			
	RL5.2.1: Analysis of plates using membrane elements with in-plane			
	loads			
	RL5.2.2: Modeling of bending of plates under transverse loads			
M6. Modeling of 3-	M6.1: Formulation of 3D problems, stress calculations, hexahedral	T1: Chapter 9	1	
dimensional problems	elements, solution procedures			
M7: Modeling of	RL7.1.1: Formulation of Eigen value problems, mass matrices and	T1: Chapter 11	3	
eigenvalue and dynamic	stiffness matrices	R1: Chapter 6		
problems	RL7.1.2: Formulation of time dependent problems, parabolic equations RL7.1.3: Formulation of time dependent problems, hyperbolic equations	R2: Chapter 12		
	RL6.1: Boundary value problems	T1: Chapter 10	8	
M8: Finite element	RL6.2: mesh generation and boundary conditions	R1: Chapter 8		
modeling of single	RL6.3: applications to heat transfer	R2: Chapters 13		
variable scalar field	RL6.4: applications to potential flow, seepage fluid mechanics	to 16		
problems	RL6.5: application to solid mechanics			
	RL6.6: application to torsion			
M9: Finite element	RL9.1: Equations of fluid mechanics, modeling procedure	R2: Chapter 17-		
analysis fluid flow as	• • • • • • • • • • • • • • • • • • • •		8	
vector field problems				
M10: Introduction to	RL10.1: Solution of quasi-harmonic equations	R2: Chapter 20 to	6	
	RL10.2: Solution of Helmholtz equation	22		
Advanced Topics	RL10.3: Solution of Reynolds equation			
	Total Lecture Classes: 42			

Evaluation Scheme:

EC	Evaluation	Duration	%Wgt	Date & Time	Nature of Component
No.	Component				
1	Test-I	1 hr	15%	13/9, 4.005.00 PM	Closed Book
2	Test-II	1 hr	15%	21/10, 4.005.00 PM	Closed Book
3	Weekly	2 hours each	20%	Central CAD Lab (D208)	Open Book: Comprehensive Practicals
	Practicals	week		3 PM to 5 PM every Friday	Examination at the end of the Semester
4	Project	-	20%		Open Book
5	Comprehensive	3 hrs	30%	06/12 FN	Closed Book Quiz (15%) + Open Book
	Examination				(15%)

Chamber Consultation Hour: will be announced in the class. **Make up policy:** Only genuine cases will be granted make up.

Notices: All in The CMS and if very important also on the Department Notice Board.

NOTE: The border cases in final grading will be decided based on mainly class room attendance and attentiveness in the classroom.