

DevOps Lab

CLOUD COMPUTE - GCP

NETWORKING

Home tasks

Legal Notice:

This document contains privileged and/or confidential information and may not be disclosed, distributed or reproduced without the prior written permission of EPAM®.

It's aiming to gain knowledge about Networking in Google Cloud.

TASK 1

Learn about two types of load balancers in Google Cloud Platform:

a L3 Network Load Balancer and

Lab Link: codelabs: LoadBalancers

Thank you for using Google Cloud Platform - nginx-q6h0.

TASK 2

The Objectives are to learn:

- How to measure latency between Google Compute Engine regions and zones
- How to test network connectivity and performance using open source tools
- How to set up up basic firewalling to secure your networks
- How to set up a global HTTP Load Balancer with Managed Instance Groups to automatically scale your resources up and down based on request load

Thank you for using Google Cloud Platform - nginx-0jrm.

How to test and monitor your HTTP Load Balancer setup

These exercises are ordered to reflect a common cloud developer experience as follows:

- Set up your lab environment and learn how to work with your GCP environment.
- 2. Use of common open source tools to explore your network around the world.
- Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server.
- 4. Testing and monitoring your network and instances.
- Cleanup.

Lab Link: codelabs: Neworking 101

TASK 3

The Objectives are to learn:

- Setting up NAT gateways
- How to restrict network traffic that certain tiers of an app cannot talk to each other

- Setting up alternate connectivity options to instances
- Map an external service to look like an internal service
- How to setup an Egress proxy limiting access to specific resources

Lab Link: codelabs: Neworking 102

faux- on- prem- svc	us- central1- f	10.128.0.9 (nic0)	35.223.19.30 ☑	SSH +
onat-gw-	europe- west1-c	192.168.20.2 (nic0)	104.155.36.226	SSH +
onat-gw- us	us- central1- f	192.168.10.2 (nic0)	35.192.71.94	SSH +
nat- node- eu	europe- west1-c	192.168.20.3 (nic0)	None	SSH -
nat- node- gcp-eu	europe- west1-c	192.168.20.5 (nic0)	35.240.92.202	SSH →
nat- node- us	us- central1- f	192.168.10.3 (nic0)	None	SSH -
nat- node- w-eu	europe- west1-c	192.168.20.4 (nic0)	None	SSH -
nat- node- w-us	us- central1- f	192.168.10.4 (nic0)	None	SSH -

Result after 16th step:

Step 19 (default access):

```
[valentinratomskiy@nat-node-gcp-eu ~]$ gsutil ls gs://
^CCaught CTRL-C (signal 2) - exiting
[valentinratomskiy@nat-node-gcp-eu ~]$ gcloud compute instances list
^C
Command killed by keyboard interrupt
[valentinratomskiy@nat-node-gcp-eu ~]$ curl -L www.google.com
```

Step 20:

```
[valentinratomskiy@nat-node-gcp-eu ~]$ curl -I www.google.com
HTTP/1.1 403 Forbidden
Server: squid/3.5.20
Mime-Version: 1.0
Date: Wed, 02 Sep 2020 16:21:31 GMT
Content-Type: text/html;charset=utf-8
Content-Length: 3522
X-Squid-Error: ERR_ACCESS_DENIED 0
```

```
[valentinratomskiy@nat-node-gcp-eu ~]$ gsutil ls gs://
Traceback (most recent call last):
    File "/usr/lib64/google-cloud-sdk/platform/gsutil/gsutil", line 21, in <module>
        gsutil.RunMain()
    File "/usr/lib64/google-cloud-sdk/platform/gsutil/gsutil.py", line 123, in RunMain
        sys.exit(gslib.__main__.main())
    File "/usr/lib64/google-cloud-sdk/platform/gsutil/gslib/__main__.py", line 438, in main
        user_project=user_project)
    File "/usr/lib64/google-cloud-sdk/platform/gsutil/gslib/__main__.py", line 767, in _RunNamedCommandAndHandleExceptions
        __HandleUnknownFailure(e)
    File "/usr/lib64/google-cloud-sdk/platform/gsutil/gslib/__main__.py", line 633, in _RunNamedCommandAndHandleExceptions
        user_project=user_project)
```

```
[valentinratomskiy@nat-node-gcp-eu ~]$ gcloud compute instances list
ERROR: gcloud crashed (HTTPError): (403, 'Forbidden')
```

At the last stage of the lab, problems occurred, and it was not possible to make a proxy exception.

TASK 4

The Objectives are to learn:

Secure app in custom network

Lab Link: codelabs: custom_network

Name ↑	Region	Subnets	Mode	IP address ranges	Gateways
custom-net		2	Custom		
	us- west1	private- sub		192.168.1.0/24	192.168.1.1
	us- west1	public- sub		192.168.0.0/24	192.168.0.1

Name ^	Zone	Recommendation	In use by	Internal IP	External IP
private- vm	us- west1- b			192.168.1.2 (nic0)	34.82.134.235
public- vm	us- west1- a			192.168.0.2 (nic0)	35.199.162.135

Ping public VM:

```
valentinratomskiy@cloudshell:~ (amplified-coder-288007)$ ping 35.199.162.135
PING 35.199.162.135 (35.199.162.135) 56(84) bytes of data.
64 bytes from 35.199.162.135: icmp_seq=1 ttl=52 time=139 ms
64 bytes from 35.199.162.135: icmp_seq=2 ttl=52 time=139 ms
64 bytes from 35.199.162.135: icmp_seq=3 ttl=52 time=139 ms
64 bytes from 35.199.162.135: icmp_seq=4 ttl=52 time=139 ms
```

Ping from private-vm:

```
entinratomskiy@private-vm:~$ ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp seq=1 ttl=64 time=0.026 ms
64 bytes from 192.168.1.2: icmp seq=2 ttl=64 time=0.028 ms
64 bytes from 192.168.1.2: icmp seq=3 ttl=64 time=0.029 ms
 -- 192.168.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2038ms
rtt min/avg/max/mdev = 0.026/0.027/0.029/0.006 ms
 alentinratomskiy@private-vm:~$ ping 192.168.0.2
PING 192.168.0.2 (192.168.0.2) 56(84) bytes of data.
64 bytes from 192.168.0.2: icmp seq=1 ttl=64 time=1.90 ms
64 bytes from 192.168.0.2: icmp seq=2 ttl=64 time=0.312 ms
64 bytes from 192.168.0.2: icmp seq=3 ttl=64 time=0.300 ms
^C
 -- 192.168.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 0.300/0.838/1.902/0.752 ms
 alentinratomskiy@private-vm:~$
```

From host to private:

```
valentinratomskiy@cloudshell:~ (amplified-coder-288007)$ ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
^C
--- 192.168.1.2 ping statistics ---
29 packets transmitted, 0 received, 100% packet loss, time 707ms

valentinratomskiy@cloudshell:~ (amplified-coder-288007)$ ping 34.82.134.235
PING 34.82.134.235 (34.82.134.235) 56(84) bytes of data.
^C
--- 34.82.134.235 ping statistics ---
93 packets transmitted, 0 received, 100% packet loss, time 311ms
```

From public to private:

```
valentinratomskiy@public-vm:~$ ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=1.56 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.295 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.300 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.284 ms
```

TASK 5

Create network configuration via terraform.

Resources should be used:

 google_compute_network (to create network) https://www.terraform.io/docs/providers/google/r/compute_network.html

Network name: \${student_name}-vpc

2) google_compute_firewall

(to create rules for external (allow 80,22) /internal access (allow 0-65535)) https://www.terraform.io/docs/providers/google/r/compute_firewall.html

3) google_compute_subnetwork

https://www.terraform.io/docs/providers/google/r/compute_subnetwork.html ranges:

Public range: 10."\${student_IDnum}".1.0/24Private range: 10."\${student_IDnum}".2.0/24

4) google_compute_instance

https://www.terraform.io/docs/providers/google/r/compute instance.html

1. nginx with default page "Hello from \${student_name}"

All resources should contain description (where it's possible)

Network topology.

All reports/code please place into repository:

https://github.com/MNT-Lab/google-cloud-module into appropriate branches: first char of name + surname.

For example:

Student: Siarhei Ivanou Branch Name: **sivanou**

Format depends on case: README.md/scripts/terraform files

Email pattern: [MNT-CD-10.3]-FirstName-LastName

Email should contain the link to personalized branch.