Verification Report

AHB-LITE

Introduction to the Device-Under-Test (DUT)

AHB-Lite is a subset of the full AHB specification for use in designs where only a single bus master is used. This can either be a simple single-master system, or a multi-layer AHB-Lite system where there is only one AHB master per layer.

AHB-Lite addresses the requirements of high-performance synthesizable designs. It is a bus interface that supports a single bus master and provides high-bandwidth operation

Masters designed to the AHB-Lite interface specification are significantly simpler in terms of interface design, than a full AHB master. AHB-Lite enables faster design and verification of these masters, and you can add a standard off-the-shelf bus mastering wrapper to convert an AHB-Lite master for use in a full AHB system.

Any master that is already designed to the full AHB specification can be used in an AHB-Lite system with no modification. The majority of AHB slaves can be used interchangeably in either an AHB or AHB-Lite system. This is because AHB slaves that do not use either the Split or Retry response are automatically compatible with both the full AHB and the AHB-Lite specification. It is only existing AHB slaves that do use Split or Retry responses that require you to use an additional standard off-the-shelf wrapper in your AHB-Lite system. Any slave designed for use in an AHB-Lite system works in both a full AHB and an AHB-Lite design.

Verification Plan

No.	Feature	Test Description	Ref.	Expected outcome	Typ e	Resu It	Comments
1	Keep HSEL low and send a transfer	Generate a transfer and give to AHB Lite memory while keeping HSEL low.	AMBA AHB- LITE.pdf/Sec. 1	Slave is not selected so there will be no output	TR	Pass	
2	Send high HWRITE	Generate 8 bit HADDR and 32 bit HWDATA with high HWRITE signal	AMBA AHB- LITE.pdf/Sec. 1	Data should be written on HADDR	TR		
3	Send Low HWRITE	Send the same HADDR with the low HWRITE signal.	AMBA AHB- LITE.pdf/Sec. 2	Same data should be read	TR		
4	Send Low HREADY for 1 clock cycle	Send low HREADY with low HWRITE signal.	AMBA AHB- LITE.pdf/Sec. 2	Data should appear on HRDATA after 1 clock cycle wait	A	Pass	
5	Send low HREADY for 2 clock cycle	Send low HREADY with low HWRITE signal.	AMBA AHB- LITE.pdf/Sec. 1	Data should appear on HRDATA after 2 clock cycle wait	A	Pass	
6	Send 00 value of HTRANS	Send a transfer with HTRANS value set to 00	AMBA AHB- LITE.pdf/Sec. 3	. Slave should ignore transfer and set HRESP = 0(okay) within next 2 cycles	A		
7	Send 01 value of HTRANS	Send a transfer with HTRANS value set to 01.	AMBA AHB- LITE.pdf/Sec. 3	Slave should ignore transfer and set HRESP = 0(okay) within next 2 cycles	A		
8	Send HSIZE signal with HBURST 000	Generate 3 bit HBURST signal of value 000 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Single burst should be written on memory	TR		
9	Send HSIZE signal with HBURST 001	Generate 3 bit HBURST signal of value 001 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Long undefined increment should be written to the memory	TR		
10	Send HSIZE signal with HBURST 010	Generate 3 bit HBURST signal of value 010 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Wrap4 burst should be written to the memory	TR		

11	Send HSIZE signal with HBURST 011	Generate 3 bit HBURST signal of value 011 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Increment 4 burst should be written to the memory	TR		
12	Send HSIZE signal with HBURST 100	Generate 3 bit HBURST signal of value 100 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	,	TR		
13	Send HSIZE signal with HBURST 101	Generate 3 bit HBURST signal of value 101 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Increment 8 burst should be written to the memory	TR		
14	Send HSIZE signal with HBURST 110	Generate 3 bit HBURST signal of value 110 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Wrap 16 burst should be written to the memory	TR		
15	Send HSIZE signal with HBURST 111	Generate 3 bit HBURST signal of value of 111 with constant HSIZE and send through AHB-lite interface with a transfer	AMBA AHB- LITE.pdf/Sec. 3	Increment 16 burst should be written to the memory	TR		
16	Read after write transfer	Send Multiple HBURST of different HSIZES. Perform read and write operation setting HWRITE low and high consecutively.	AMBA AHB- LITE.pdf/Sec. 3	The memory should read the data written on the same address before	TR		
17	Send Low HREADY signal during a burst	Generate a HBURST of size HSIZE and insert HREADY low during bead transfer.	AMBA AHB- LITE.pdf/Sec. 3	Operation should terminate and no data should be written	TR		
18	Set HTRANS 00 and send a burst.	HTRANS 00 represents an idle state. A burst of any size should be generated and try to write or read to memory	AMBA AHB- LITE.pdf/Sec. 3	There shouldn't be any data on read or write bus in next clock cycle. HRESP should signal okay(zero) within next 2 cycles	A	Pass	
19	Change HTRANS type by keeping HREADY low	Add idle state between two non-sequential states and keep HREADY low for transfer. Address must remain constant for non-sequential type until HREADY is high	AMBA AHB- LITE.pdf/Sec. 3	HRESP should signal okay within next 2 cycles	A	Pass	
20	Send non- sequential transfer to a non-existent address	Generate an address that is not present in the memory. Send non seq. transfer to that address.	AMBA AHB- LITE.pdf/Sec. 4	HRESP should become high for such transfer within next 2 cycles	A	Pass	

21	Send sequential	Generate an address that is not present in the memory.	AMBA AHB-	HRESP should	Α	Pass	
	transfer to a non-	Send seq. transfer to that address. HRESP should	LITE.pdf/Sec.	become high for such			
	existent address	become high for such transfer	4	transfer within next 2			
				cycles			
	Send single burst to	Generate a single burst and send to random address in	AMBA AHB-	HRESP should be	Α	Pass	
	the memory	the memory	LITE.pdf/Sec.	zero and HREADY			
			5	should be 1 in next			
				cycle which signals a			
				successful transfer			