Foundations of Software Fall 2022

Week 11

Different Kinds of Maps

What is missing?

```
Term \rightarrow Term (\lambda x.t)

Type \rightarrow Term (\Lambda X.t)
```

Different Kinds of Maps

What is missing?

Agenda today:

- ► Type operators
- ► Dependent types

Type Operators and System F_{ω}

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at type-level.

 $\lambda X :: K.T$

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at type-level.

 $\lambda X :: K.T$

Two Problems:

- ► Type checking of type operators
- ► Equivalence of types

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

Kinding

```
Problem: avoid meaningless types, like MkFun[Int, String].
```

```
 \begin{array}{lll} * & & \text{proper types, e.g. } \textit{Bool, Int} \rightarrow \textit{Int} \\ * \Rightarrow * & & \text{type operators: map proper type to proper type} \\ * \Rightarrow * \Rightarrow * & & \text{two-argument operators} \\ (* \Rightarrow *) \Rightarrow * & & \text{type operators: map type operators to proper types} \\ \end{array}
```

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

```
* proper types, e.g. Bool, Int \rightarrow Int

* \Rightarrow * type operators: map proper type to proper type

* \Rightarrow * \Rightarrow * two-argument operators

(* \Rightarrow *) \Rightarrow * type operators: map type operators to proper types
```


Equivalence of Types

Problem: all the types below are equivalent

```
egin{aligned} \textit{Nat} & \rightarrow \textit{Bool} & \textit{Nat} & \rightarrow \textit{Id} \; \textit{Bool} & \textit{Id} \; \textit{Nat} & \rightarrow \textit{Id} \; \textit{Bool} \\ \textit{Id} \; \textit{Nat} & \rightarrow \textit{Bool} & \textit{Id} \; (\textit{Nat} & \rightarrow \textit{Bool}) & \textit{Id} \; (\textit{Id} \; (\textit{Id} \; \textit{Nat} & \rightarrow \textit{Bool}) \\ \end{aligned}
```

We need to introduce definitional equivalence relation on types, written $\mathcal{S}\equiv\mathcal{T}.$ The most important rule is:

$$(\lambda X :: K.S) T \equiv [X \mapsto T]S$$
 (Q-APPABS)

And we need one typing rule:

$$\frac{\Gamma \vdash t : S \qquad S \equiv T}{\Gamma \vdash t : T}$$
 (T-Eq)

First-class Type Operators

makeInt[Option](() => None)

Scala supports passing type operators as argument:

```
def makeInt[F[_]](f: () => F[Int]): F[Int] = f()
makeInt[List](() => List[Int](3))
```

First-class type operators supports *polymorphism* for type operators, which enables more patterns in type-safe functional programming.

System F_{ω} — Syntax

Formalizing first-class type operators leads to $\textit{System } F_{\omega}$:

 $\begin{array}{lll} \textbf{X} & & \textit{type variable} \\ \textbf{T} \rightarrow \textbf{T} & & \textit{type of functions} \\ \forall \textbf{X} :: \textbf{K}.\textbf{T} & & \textit{universal type} \\ \lambda \textbf{X} :: \textbf{K}.\textbf{T} & & \textit{operator abstraction} \\ \textbf{T} \textbf{T} & & \textit{operator application} \end{array}$

 $\begin{array}{ccc} \mathtt{K} & ::= & & \\ & * & \\ & \mathsf{K} \Rightarrow \mathsf{K} & \end{array}$

kinds kind of proper types kind of operators

type abstraction

types

System F_{ω} — Semantics

$$\frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2} \tag{E-App1}$$

$$\frac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'} \tag{E-App2}$$

$$(\lambda x: T_1.t_1) \ v_2 \longrightarrow [x \mapsto v_2]t_1$$
 (E-Appabs)

$$\frac{t\longrightarrow t'}{t\left[T\right]\longrightarrow t'\left[T\right]}\tag{E-TAPP}$$

$$(\lambda X :: K.t_1)[T] \longrightarrow [X \mapsto T]t_1$$
 (E-TAPPTABS)

System F_{ω} — Kinding

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$
 (K-TVAR)

$$\frac{\Gamma, X :: \mathcal{K}_1 \vdash \mathcal{T}_2 : \mathcal{K}_2}{\Gamma \vdash \lambda X :: \mathcal{K}_1, \mathcal{T}_2 :: \mathcal{K}_1 \Rightarrow \mathcal{K}_2}$$
 (K-Abs)

$$\frac{\Gamma \vdash \mathcal{T}_1 : \mathcal{K}_1 \Rightarrow \mathcal{K}_2 \qquad \Gamma \vdash \mathcal{T}_2 : \mathcal{K}_1}{\Gamma \vdash \mathcal{T}_1 \ \mathcal{T}_2 :: \mathcal{K}_2} \tag{K-App}$$

$$\frac{\Gamma \vdash T_1 : * \qquad \Gamma \vdash T_2 : *}{\Gamma \vdash T_1 \to T_2 : *}$$
 (K-Arrow)

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \forall X :: K_1, T_2 :: *}$$
 (K-All)

System F_{ω} — Type Equivalence

$$T \equiv T$$

$$\frac{T \equiv S}{S \equiv T}$$

$$\frac{S \equiv U \qquad U \equiv T}{S \equiv T}$$

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2}$$
 (Q-Arrow)

$$\frac{S_2 \equiv T_2}{\forall X :: K_1. S_2 \equiv \forall X :: K_1. T_2}$$
 (K-All)

$$\frac{S_2 \equiv T_2}{\lambda X :: K_1.S_2 \equiv \lambda X :: K_1.T_2} \tag{Q-Abs}$$

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 S_2 \equiv T_1 T_2} \tag{Q-APP}$$

$$(\lambda X :: K.T_1) T_2 \equiv [X \mapsto T_2]T_1$$
 (Q-AppAbs)

System F_{ω} — Typing

$$\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \tag{T-VAR}$$

$$\frac{\Gamma \vdash T_1 :: * \qquad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \to T_2}$$
 (T-Abs)

$$\frac{\Gamma \vdash t_1 : S \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 \ t_2 : T} \tag{T-App)}$$

$$\frac{\Gamma, X :: \mathcal{K}_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda X :: \mathcal{K}_1 . t_2 : \forall X :: \mathcal{K}_1 . T_2}$$
 (T-TAbs)

$$\frac{\Gamma \vdash t : \forall X :: K, T_2 \qquad \Gamma \vdash T :: K}{\Gamma \vdash t \ [T] : [X \mapsto T] T_2} \qquad \text{(T-TAPP)}$$

$$\frac{\Gamma \vdash t : S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t : T}$$
 (T-Eq)

Example

```
type \ PairRep[Pair :: * \Rightarrow * \Rightarrow *] = \{ \\ pair : \forall X. \forall Y. X \rightarrow Y \rightarrow (Pair \ X \ Y), \\ fst : \forall X. \forall Y. (Pair \ X \ Y) \rightarrow X, \\ snd : \forall X. \forall Y. (Pair \ X \ Y) \rightarrow Y \\ \}
def \ swap[Pair :: * \Rightarrow * \Rightarrow *, X :: *, Y :: *] \\ (rep : PairRep \ Pair) \\ (pair : Pair \ X \ Y) : Pair \ Y \ X = \\ let \ x = rep.fst \ [X] \ [Y] \ pair \ in \\ let \ y = rep.snd \ [X] \ [Y] \ pair \ in \\ rep.pair \ [Y] \ [X] \ y \ x
```

The method swap works for any representation of pairs.

Properties

Theorem [Preservation]: if $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Theorem [Progress]: if $\vdash t: T$, then either t is a value or there exists t' with $t \longrightarrow t'$.

Dependent Types

Why Does It Matter?

Example 1. Track length of vectors in types:

```
	extit{NVec} :: 	extit{Nat} 	o * first : (n:Nat) 	o NVec (n+1) 	o Nat
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Why Does It Matter?

Example 1. Track length of vectors in types:

```
NVec :: Nat \rightarrow *

first : (n:Nat) \rightarrow NVec (n+1) \rightarrow Nat
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Example 2. Safe formatting for *sprintf*:

```
\begin{array}{lll} \textit{sprintf} & : & (\textit{f:Format}) \rightarrow \textit{Data}(\textit{f}) \rightarrow \textit{String} \\ \\ \textit{Data}([]) & = & \textit{Unit} \\ \textit{Data}("\%d" :: cs) & = & \textit{Nat} * \textit{Data}(cs) \\ \\ \textit{Data}("\%s" :: cs) & = & \textit{String} * \textit{Data}(cs) \\ \\ \textit{Data}(c :: cs) & = & \textit{Data}(cs) \\ \\ \end{array}
```

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

If T does not depend on x, it degenerates to function types:

$$(x:S) \rightarrow T = S \rightarrow T$$
 where x does not appear free in T

The Calculus of Constructions

The Calculus of Constructions: Typing x:T

$$\vdash * : \Box \text{ (T-Axiom)}$$
 $\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \text{ (T-Var)}$

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x : S . t : (x : S) \to T}$$
 (T-Abs)

$$\frac{\Gamma \vdash t_1 : (x:S) \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 \ t_2 : [x \mapsto t_2]T} \tag{T-App)}$$

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x : S \vdash T : s_2}{\Gamma \vdash (x : S) \to T : s_2}$$
 (T-PI)

$$\frac{\Gamma \vdash t : T \qquad T \equiv T' \qquad \Gamma \vdash T' : s}{\Gamma \vdash t : T'} \qquad \text{(T-Conv)}$$

The equivalence relation $T \equiv T'$ is based on β -reduction.

Four Kinds of Lambdas

Example	Туре	
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$	
$\lambda f{:}\mathbb{N}\to\mathbb{N}.f\; x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$	

Four Kinds of Lambdas

Example	Туре
λx : \mathbb{N} . $x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}. x$	$(F:* \to *) \to (F \mathbb{N}) \to (F \mathbb{N})$

Four Kinds of Lambdas

Example	Type
$\lambda x: \mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
λF :* \rightarrow *. λx : $F \mathbb{N}$. x	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F \mathbb{N}	(* o *) o *

Four Kinds of Lambdas

Example	Type
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F:* \to *.\lambda x:F \mathbb{N}.x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F $\mathbb N$	(* o *) o *
λn :N.NVec n	$\mathbb{N} o *$
$\lambda f: \mathbb{N} \to \mathbb{N}. NVec (f 6)$	$(\mathbb{N} \to \mathbb{N}) \to *$

Strong Normalization

Given the following β -reduction rules

$$\frac{t_1 \longrightarrow t_1'}{\lambda x : T_1.t_1 \longrightarrow \lambda x : T_1.t_1'} \tag{β-Abs)}$$

$$rac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2}$$
 (\beta-App1)

$$\frac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'} \tag{\beta-APP2}$$

$$(\lambda x: T_1.t_1)t_2 \longrightarrow [x \mapsto t_2]t_1$$
 $(\beta$ -AppAbs)

Theorem [Strong Normalization]: if $\Gamma \vdash t : T$, then there is no infinite sequence of terms t_i such that $t = t_1$ and $t_i \longrightarrow t_{i+1}$.

Dependent Types in Coq

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ightharpoonup proofs \longleftrightarrow programs
- ▶ propositions ←→ types

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- $\blacktriangleright \ \mathsf{proofs} \longleftrightarrow \mathsf{programs}$
- ▶ propositions ←→ types

Two impactful projects based on Coq:

- ► CompCert: certified C compiler
- ► Mechanized proof of 4-color theorem

Type Universes in Coq The rule $\Gamma \vdash Type : Type$ is unsound (Girard's paradox). $\Gamma \vdash Prop : Type_1$ $\Gamma \vdash Set : Type_1$ $\Gamma \vdash Type_i : Type_{i+1}$ $\frac{\Gamma, x:A \vdash B : Prop \qquad \Gamma \vdash A : s}{\Gamma \vdash (x : A) \rightarrow B : Prop}$ $\frac{\Gamma, x:A \vdash B : Set \qquad \Gamma \vdash A : s \qquad s \in \{Prop, Set\}}{\Gamma \vdash (x : A) \rightarrow B : Set}$ $\frac{\Gamma, x:A \vdash B : Type_i \qquad \Gamma \vdash A : Type_i}{\Gamma \vdash (x : A) \rightarrow B : Type_i}$

```
Coq 101 - inductive definitions and recursion

1 Inductive nat : Type :=
2  | 0
3  | S (n : nat).
```

Coq 101 - inductive definitions and recursion

```
Inductive nat : Type :=
    | 0
    | S (n : nat).

Fixpoint double (n : nat) : nat :=
    match n with
    | 0 => 0
    | S n' => S (S (double n'))
    end.

Recursion has to be structural.
```

Coq 101 - inductive definitions and recursion

```
Inductive nat : Type :=
    | 0
    | S (n : nat).

Fixpoint double (n : nat) : nat :=
    match n with
    | 0 => 0
    | S n' => S (S (double n'))
    end.

Recursion has to be structural.

Inductive even : nat -> Prop :=
    | even0 : even 0
    | evenS : forall x:nat, even x -> even (S (S x)).
```

Definition even_prop := forall x:nat, even (double x). Fixpoint even_proof(x: nat): even (double x) := match x with | 0 => even0 | S n' => evenS (double n') (even_proof n') end.

Coq 101 - proofs

Coq 101 - proofs

```
Definition even_prop := forall x:nat, even (double x).

Fixpoint even_proof(x: nat): even (double x) :=
    match x with
    | 0 => even0
    | S n' => evenS (double n') (even_proof n')
    end.

Check even_proof : even_prop.
```

The 2nd branch has the type even S(S(double n')), and Coq knows by normalizing the types:

```
even S(S(double n')) \equiv_{\beta} even(double(S n'))
```

Recap: Curry-Howard Correspondence

9 Check even_proof : even_prop.

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t:(A,B)
$A \vee B$	t : A + B
$A \rightarrow B$	t:A o B
	t : False
$\neg A$	$t:A o extit{False}$
∀ <i>x</i> : <i>A</i> . <i>B</i>	$t:(x:A)\to B$
∃ <i>x</i> : <i>A</i> . <i>B</i>	t: (x:A,B)

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=  \begin{array}{cccc} & & & \\ 2 & & & \\ conj : A -> B -> A / \backslash B \\ & & \\ & & \\ \end{array}  where "A /\ B" := (and A B) : type_scope.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
loc_introl : A -> A \/ B
loc_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=

conj : A -> B -> A /\ B

where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=

| or_introl : A -> A \/ B

| or_intror : B -> A \/ B

where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.

Definition not (A:Prop) := A -> False.
Notation "~ x" := (not x) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
1 Notation "A -> B" := (forall (_ : A), B) : type_scope.
2 Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
3 Notation "A <-> B" := (iff A B) : type_scope.

1 Inductive ex (A:Type) (P:A -> Prop) : Prop :=
2    ex_intro : forall x:A, P x -> ex (A:=A) P.

3 Notation "'exists' x .. y , p" :=
5    (ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A

Notation "x = y" := (eq x y) : type_scope.
```

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved.

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
► LEM: \forall P.P \lor \neg P

► DNE: \forall P.\neg \neg P \to P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

```
However, \forall P.P \rightarrow \neg \neg P can be proved. How?
```

We will prove that LEM is equivalent to DNE:

```
Definition LEM: Prop := forall P: Prop, P \/^P.
Definition DNE: Prop := forall P: Prop, ~~P -> P.
Definition LEM_DNE_EQ: Prop := LEM <-> DNE.
```

$\mathsf{LEM} \to \mathsf{DNE}$

$\mathsf{DNE} \to \mathsf{LEM}$

```
Definition DNE_To_LEM :=

fun (dne: forall P : Prop, ~~P -> P) (Q:Prop) =>

(dne (Q \/ ~ Q))

(fun H: ~(Q \/ ~Q) =>

let nq := (fun q: Q => H (or_introl q))

in H (or_intror nq)

).

Check DNE_To_LEM : DNE -> LEM.

Definition proof := conj LEM_To_DNE DNE_To_LEM.

Check proof : LEM <-> DNE.
```

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- ► Scala supports path-dependent types and literal types.
- ▶ Dependent Haskell is proposed by researchers.

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- ► Scala supports path-dependent types and literal types.
- ▶ Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.

Problem with Type Checking

Value constructors:

```
\begin{array}{lll} \textit{NVec} & : & \mathbb{N} \to * \\ \textit{nil} & : & \textit{NVec} \ 0 \\ \textit{cons} & : & \mathbb{N} \to (n : \mathbb{N}) \to \textit{NVec} \ n \to \textit{NVec} \ n + 1 \end{array}
```

Appending vectors:

```
\begin{array}{ll} \textit{append} & : & (m:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{NVec } m \to \textit{NVec } n \to \textit{NVec } (n+m) \\ \textit{append} & = & \lambda m:\mathbb{N}.\,\lambda n:\mathbb{N}.\,\lambda l:\textit{NVec } m.\,\lambda t:\textit{NVec } n. \\ & & \textit{match } l \textit{ with } \\ & | \textit{nil} \Rightarrow t \\ & | \textit{cons} \times r \textit{ y} \Rightarrow \textit{cons} \times (r+n) \textit{ (append } r \textit{ n} \textit{ y} \textit{ t)} \end{array}
```

Question: How does the type checker know S(r+n) = n + (Sr)?