6/6/2016

Properties of eigenvalues and eigenvectors

A square matrix **A** and its transpose have the same eigenvalues.

Proof. We have that

$$det(\mathbf{A}^{T} - \lambda \mathbf{I}) = det(\mathbf{A}^{T} - \lambda \mathbf{I}^{T})$$

$$= det(\mathbf{A} - \lambda \mathbf{I})^{T}$$

$$= det(\mathbf{A} - \lambda \mathbf{I})$$

so any solution of $det(\mathbf{A} - \lambda \mathbf{I}) = 0$ is a solution of $det(\mathbf{A} - \lambda \mathbf{I})^T = 0$ and vice versa. Thus \mathbf{A} and \mathbf{A}^T have the same eigenvalues.

The matrices \mathbf{A} and \mathbf{A}^{T} will usually have different eigen*vectors*.

The eigenvalues of a diagonal or triangular matrix are its diagonal elements.

Proof. Suppose the matrix \mathbf{A} is diagonal or triangular. If you subtract λ 's from its diagonal elements, the result $\mathbf{A} - \lambda \mathbf{I}$ is still diagonal or triangular. Its determinant is the product of its diagonal elements, so it is just the product of factors of the form (*diagonal element* – λ). The roots of the characteristic equation must then be the diagonal elements.

Another addition to the square matrix theorem.

An n x n matrix is invertible if and only if it doesn't have 0 as an eigenvalue.

Proof. An n x n matrix **A** has an eigenvalue 0 if and only if $det(\mathbf{A} - 0\mathbf{I}) = 0$, i.e. if and only if $det(\mathbf{A}) = 0$. Since A is invertible if and only if $det(\mathbf{A}) \neq 0$, **A** is invertible if and only if 0 is not an eigenvalue of **A**.

If a matrix **A** has eigenvalue λ with corresponding eigenvector **x**, then for any $k = 1, 2, ..., \mathbf{A}^k$ has eigenvalue λ^k corresponding to the same eigenvector **x**.

Proof. Suppose the matrix \mathbf{A} has eigenvalue λ with eigenvector \mathbf{x} , i.e. suppose that $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. Then $\mathbf{A}^2\mathbf{x} = \mathbf{A}(\mathbf{A}\mathbf{x}) = \lambda(\mathbf{A}\mathbf{x}) = \lambda(\mathbf{A}\mathbf{x}) = \lambda(\mathbf{A}\mathbf{x}) = \lambda(\mathbf{A}\mathbf{x}) = \lambda^2\mathbf{x}$. Multiply by more \mathbf{A} 's to get $\mathbf{A}^3\mathbf{x} = \lambda^3\mathbf{x}$, $\mathbf{A}^4\mathbf{x} = \lambda^4\mathbf{x}$ and so on.

12A

If **A** is an invertible matrix with eigenvalue λ corresponding to eigenvector **x**, then **A**⁻¹ has eigenvalue λ^{-1} corresponding to the same eigenvector **x**.

Proof. Multiply the equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ by $\lambda^{-1}\mathbf{A}^{-1}$:

$$\lambda^{-1}\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \lambda^{-1}\mathbf{A}^{-1}\lambda\mathbf{x},$$

i.e.

$$\lambda^{-1}\mathbf{x} = \mathbf{A}^{-1}\mathbf{x}$$
.

Thus \mathbf{A}^{-1} has eigenvalue λ^{-1} corresponding to the same eigenvector \mathbf{x} .

Eigenvectors of a matrix **A** with distinct eigenvalues are linearly independent.

Proof. Suppose the statement is not true, i.e. suppose that **A** has a linearly dependent set of eigenvectors each with a different eigenvalue. "Thin out" this set of vectors to get a linearly independent subset \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , with distinct eigenvalues λ_1 , λ_2 , ..., λ_k .

Suppose \mathbf{u} is one of the eigenvectors you thinned out because it was linearly dependent on the others:

$$\mathbf{u} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 + \dots + \mathbf{c}_k \mathbf{v}_k$$

for some scalars $c_1, c_2, ..., c_k$.

First multiply * by **A**:

Αu

6/6/2016

$$\begin{split} &= \mathbf{A}(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_k \mathbf{v}_k) \\ &= c_1 \mathbf{A} \mathbf{v}_1 + c_2 \mathbf{A} \mathbf{v}_2 + ... + c_k \mathbf{A} \mathbf{v}_k \\ &= c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + ... + c_k \lambda_k \mathbf{v}_k. \end{split}$$

Since **u** is also an eigenvector, $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ for some eigenvalue λ , so this equation gives

$$\lambda \mathbf{u} = c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + \dots + c_k \lambda_k \mathbf{v}_k.$$

Now multiply * by λ :

$$\lambda \mathbf{u} = \lambda c_1 \mathbf{v}_1 + \lambda c_2 \mathbf{v}_2 + \dots + \lambda c_k \mathbf{v}_k.$$

Subtract *** from ** to get

$$\mathbf{0} = (\mathbf{c}_1 \lambda_1 - \lambda \mathbf{c}_1) \mathbf{v}_1 + \mathbf{c}_2 \lambda_2 - \lambda \mathbf{c}_2) \mathbf{v}_2 + \dots + (\mathbf{c}_k \lambda_k - \lambda \mathbf{c}_k) \mathbf{v}_k$$

= $\mathbf{c}_1 (\lambda_1 - \lambda) \mathbf{v}_1 + \mathbf{c}_2 (\lambda_2 - \lambda) \mathbf{v}_2 + \dots + \mathbf{c}_k (\lambda_k - \lambda) \mathbf{v}_k$.

Since the \mathbf{v}_i 's are linearly independent, $c_i(\lambda_i - \lambda) = 0$ for all i = 1, 2, ..., k. Since the eigenvalues (including λ) are all different, $c_i = 0$ for all i. But this implies (from equation *) that $\mathbf{u} = \mathbf{0}$, which is impossible since \mathbf{u} is an eigenvector.

The original assumption must be false, i.e. it is not possible to have a linearly dependent set of eigenvectors with distinct eigenvalues; any eigenvectors with distinct eigenvalues must be linearly independent.