1. Технические задачки:)

- а) Величины $X_1, ..., X_{10}$ независимы и равномерны на [0;1]. Величины $Y_1, ..., Y_{10}$ это отсортированные по возрастанию квадраты X_i . В частности, $Y_1 = \min\{X_1^2, ..., X_{10}^2\}$, и $Y_{10} = \max\{X_1^2, ..., X_{10}^2\}$
 - Выпишите совместную функцию плотности Y_3 и Y_5 в точке (a, b).
- б) Компоненты двумерного вектора X независимы и нормальны $\mathcal{N}(0;1)$. Как распределен квадрат косинуса угла между вектором и положительным направлением оси абсцисс?
- в) Компоненты четырёхмерного вектора X независимы и нормальны $\mathcal{N}(0;1)$. Грета Тунберг выбрала в четырёхмерном пространстве два ортогональных двумерных плоскости. Обозначим L_1 и L_2 квадраты длин проекций вектора X на эти две плоскости. Как распределено отношение L_1/L_2 ?
- 2. Рассмотрим модель множественной регрессии, $y=X\beta+u$, где регрессоры детерминистические, а $u\sim \mathcal{N}(0;\sigma^2\cdot I)$. Параметры β и σ^2 неизвестны. Мы хотим проверить гипотезу H_0 : $\sigma=1$.
 - а) Выведите формулы для статистик W, LR, LM.
 - б) Сравните эти статистики между собой, если это возможно.
- 3. Найдите ожидаемую информацию Фишера:
 - а) для классической множественной регрессии;
 - б) для логистической регрессии;
- 4. Есть 101 наблюдение и три переменных: x_i , y_i и z_i . Вектор выборочных средних равен $(0,1,2)^T$, обратная матрица к выборочной ковариационной матрице равна

$$\begin{pmatrix}
10 & -1 & 6 \\
-1 & 9 & 2 \\
6 & 2 & 25
\end{pmatrix}$$

Найдите все коэффициенты в регрессии y_i на x_i и z_i с константой.

5. Винни-Пух знает, что мёд бывает правильный, $honey_i=1$, и неправильный, $honey_i=0$. Пчёлы также бывают правильные, $bee_i=1$, и неправильные, $bee_i=0$. По 100 своим попыткам добыть мёд Винни-Пух составил таблицу сопряженности:

	$honey_i = 1$	$honey_i = 0$
$bee_i = 1$	10	30
$bee_i = 0$	20	40

Винни-Пух использует логистическую регрессию с константой для прогнозирования правильности мёда с помощью правильности пчёл.

- а) Какие оценки коэффициентов получит Винни-Пух?
- б) Какой прогноз вероятности правильности мёда при встрече с неправильными пчёлами даёт логистическая модель? Как это число можно посчитать без рассчитывания коэффициентов?
- в) Проверьте гипотезу о том, что правильность пчёл не оказывает влияние на правильность мёда с помощью тестов LR, LM и W.
- 6. Как изменятся оценки МНК и классическая оценка ковариационной матрицы оценок МНК, если каждое наблюдение учесть два раза?
- 7. Предположим, что $y_i = \beta_1 + \beta_2 x_i + u_i$, наблюдения независимы и одинаково распределены, предпосылки теоремы Гаусса-Маркова выполнены.

Эконометрист Кирилл строит оценку коэффициентов следующим образом: через каждую пару точек проводит прямую, а затем усредняет угловые коэффициенты всех прямых (получает $\hat{\beta}_2$), усредняет точки пересечения с вертикальной осью всех прямых (получает $\hat{\beta}_1$).

Будут ли оценки Кирилла несмещёнными? Состоятельными?