Projeto 2 ASA

93075 Gonçalo Azevedo

99205 Diogo Vieira

January 5, 2023

1 Descrição do problema

Procura-se obter o maior valor possível de trocas comerciais minimizando o número de troços necessários numa rede de regiões da Caracolândia ligadas por ferrovia. O problema trata-se assim de encontrar uma \mathbf{MST} para o grafo G = (V, E) não dirigido onde cada V simboliza uma região e E simboliza um conjunto de troços definidos como próximos após uma triangulação de $\mathbf{Delauny}$ com um valor de trocas comerciais associado. Neste caso, o objetivo passa por calcular o valor de uma $\mathbf{Maximum}$ $\mathbf{Spanning}$ \mathbf{Tree} , cujo processo é semalhante a qualquer algoritmo abordado em aula de cálculo de uma $\mathbf{Minimum}$ $\mathbf{Spanning}$ \mathbf{Tree} . Uma vez que há a probabilidade de existirem subcomponentes disconectas no grafo o algoritmo de \mathbf{Prim} não será um bom candidato para este problema, logo, iremos recorrer ao algoritmo de $\mathbf{Kruskal}$ com $\mathbf{Disjoint}$ \mathbf{Sets} . Foi então feita a implementação de uma estrutura que nos permita utilizar as propriedades \mathbf{Union} e \mathbf{Find} de um $\mathbf{Disjoint}$ \mathbf{Set} e, no fim, foi aplicado o algoritmo de $\mathbf{Kruskal}$ ao conjunto de arestas (E) ordenadas por ordem $\mathbf{decrescente}$ do seu peso. Será utilizado um $\mathbf{Disjoint}$ \mathbf{Set} na forma de "árvore" com \mathbf{union} \mathbf{by} \mathbf{rank} e \mathbf{path} $\mathbf{compression}$.

2 Análise Teórica

• Input: A leitura do input é caracterizada por um simples loop que é executado |E| vezes para ler todas as arestas do grafo, onde cada aresta é definida pelos vértices que conecta (v1 e v2) e pelo seu peso (w).

```
Let Edges be a new array

for i \leftarrow 1 to E do

read Edge into Edges[i]

end for
```

A complexidade desta operação é assim $\Theta(\mathbf{E})$.

• Inicialização do Disjoint Set: Após a leitura dos dados, é necessário a inicialização da estrutura Disjoint Set para a utilização do algoritmo de Kruskal. Esta estrutura guarda em si dois vectores, um que mantém informação sobre o representante de cada vértice e outro sobre o rank de cada vértice (estimativa de tamanho da árvore originada pelo vértice). Assim, é necessário inicializar o vetor P (de parent), sinalizando cada vértice como o seu próprio representante.

```
Let P be a new array

Let R be a new array of 0's

for i \leftarrow 1 to V do

P[i] \leftarrow i

end for
```

Podemos assim concluir que a complexidade desta operação é de $\Theta(\mathbf{V})$.

- Ordenação de Edges por peso: Para finalizar, antes da aplicação do algoritmo de Kruskal, iremos proceder à ordenação do vector de arestas por ordem decrescente do valor de peso, uma vez que optámos por não utilizar uma MaxHeap na leitura das arestas. É utilizada a função sort incluida na STL do C++. Este algoritmo apresenta uma compleidade de O(Elog(E)), onde E simboliza o número de arestas.
- Algorimo de Kruskal: Por fim será aplicado o algoritmo de Kruskal para se obter o peso total de uma Maximum Spanning Tree do grafo G.

```
\begin{split} total &= 0 \\ \textbf{for all } (u,v) \in Edges \ \textbf{do} \\ \textbf{if } Find(u) \neq Find(v) \ \textbf{then} \\ Union(u,v) \\ total+ &= weight((u,v)) \\ \textbf{end if} \\ \textbf{end for} \end{split}
```

Para o algoritmo foi utilizado um **Disjoint Set** recorrendo a **union by rank** e **path compression**, assim, como se encontra demonstrado na Secção 21.4 do livro CRLS, temos que o número de m operações sobre n elementos é $O(m \cdot \alpha(n))$, onde α é uma função sub logaritmica. Podemos então concluir que o loop do pseudocódigo apresentado se resume à complexidade $O(E \cdot \alpha(V))$. Para efeitos práticos consideramos $\alpha(V) \leq 4$ e concluimos que a complexidade total desta secção será $\mathbf{O}(\mathbf{E})$.

Assim, temos que a complexidade final deste algoritmo será O(V + Elog(E)).

3 Avaliação experimental dos resultados

Decidimos então testar múltiplos grafos igualmente densos (gerados pelo programa contido em dgg.c) com número de vértices até 20000 (ficheiros de 3 GB!). Com a variação dos eixos x definida para V + Elog(E) obtivemos o seguinte gráfico que comprova a complexidade prevista na análise teórica. De notar que, fazer variar o x com Elog(V) ou Elog(E) produziram resultados semelhantes de gráficos com crescimento linear, algo que corrobora a complexidade do algoritmo de Kruskal abordado em aula.

