Esercizi sulla Dualità

4.4 Duale di un problema di PL. Scrivere il duale del problema di PL:

min
$$2x_2 + x_3 - 3x_4$$

$$x_1 - x_2 + 2x_4 \ge 2$$

$$2x_2 + x_3 = 4$$

$$2x_1 - x_3 + x_4 \le 1$$

$$x_1 \ge 0 \quad x_2 \ge 0$$

$$x_3, x_4 \quad \text{libere}$$

4.5 **Duale del problema di trasporto**. Supponiamo di avere n impianti di produzione, ciascuno con una capacità produttiva pari a p_i , $i \leq n$, ed m depositi, aventi fabbisogno pari a d_j , $j \leq m$. Si denota con c_{ij} il costo di trasporto da un impianto i ad un deposito j. Indicando con x_{ij} la quantità di merce da trasportare dall'impianto i al deposito j, il problema di trasporto può essere formulato come segue:

(P1) min
$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$
$$-\sum_{j=1}^{m} x_{ij} \ge -p_i \quad \forall i = 1, \dots, n$$
$$\sum_{i=1}^{n} x_{ij} \ge d_j \quad \forall j = 1, \dots, m$$
$$x_{ij} \ge 0$$

Supponendo il problema ammissibile (il che equivale alla condizione $\sum_{j=1}^{m} d_j \leq \sum_{i=1}^{n} p_i$, cioè che la totalità del fabbisogno non ecceda la totalità di produzione), determinare il duale del problema di trasporto e darne un'interpretazione economica.

4.6 Scarti complementari. Sia

(P2)
$$\max 2x_1 + x_2 x_1 + 2x_2 \le 14 2x_1 - x_2 \le 10 x_1 - x_2 \le 3 x_1, x_2 \ge 0$$

- a) scrivere il problema duale;
- b) verificare che $\bar{x} = (\frac{20}{3}, \frac{11}{3})$ è soluzione ammissibile;
- c) dimostrare che \bar{x} è anche una soluzione ottima (teorema degli scarti complementari);
- d) determinare la soluzione ottima del duale.

SOLUZIONI

4.4 Duale di un problema di PL. Il duale del problema dato è il seguente:

4.5 **Duale del problema di trasporto**. Assegnando le variabili duali u_i e v_j alle due rispettive classi di vincoli, e notando che ogni colonna della matrice dei vincoli del primale ha solo due elementi non zero, uno che vale -1 (corrispondente alla prima classe di vincoli) e l'altro che vale 1 (corrispondente alla seconda classe di vincoli), il duale è:

(D1)
$$\max -\sum_{i=1}^{n} p_{i}u_{i} + \sum_{j=1}^{m} d_{j}v_{j}$$

$$v_{j} - u_{i} \leq c_{ij} \qquad \forall i = 1, \dots, n, j = 1, \dots, m$$

$$u_{i} \geq 0, v_{j} \geq 0 \qquad \forall i = 1, \dots, n, j = 1, \dots, m$$

Interpretazione economica: supponiamo che un'azienda fornitrice di servizi logistici si rivolga all'impresa di produzione cui si riferisce il modello (P1), proponendo di acquistare il prodotto disponibile presso l'impianto di produzione i al prezzo unitario di u_i euro e di vendere il prodotto richiesto al deposito j al prezzo unitario di v_j euro. Supponendo che tutte le unità disponibili debbano essere prelevate dagli impianti di produzione, e che tutte le unità richieste debbano essere consegnate ai depositi, l'obiettivo dell'azienda logistica può essere espresso come:

$$\max - \sum_{i=1}^{n} p_i u_i + \sum_{j=1}^{m} d_j v_j$$

Per convincere il produttore ad avvalersi dei servizi offerti, l'azienda logistica deve imporre che i prezzi di acquisto u_i e di vendita v_j soddisfino la seguente condizione: il costo derivante al produttore dalla vendita di un'unità di prodotto presso l'impianto di produzione i e dall'acquisto di un'unità presso il deposito j deve essere non superiore al costo unitario di trasferimento diretto da i a j, ovvero $v_j - u_i \le c_{ij} \ \forall i = 1, \ldots, n, j = 1, \ldots, m$.

4.6 Scarti complementari.

a) Il duale del problema dato è:

(D2) min
$$14y_1 + 10y_2 + 3y_3$$

 $y_1 + 2y_2 + y_3 \ge 2$
 $2y_1 - y_2 - y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

- b) $\bar{x} = (\frac{20}{3}, \frac{11}{3})$ soddisfa i vincoli di (**P2**), quindi è una soluzione ammissibile.
- c) Il teorema degli scarti complementari implica che se $\bar{x} = (x_1, x_2)$ è ammissibile nel primale e $\bar{y} = (y_1, y_2, y_3)$ è ammissibile nel duale, ed entrambe soddisfano

$$y_i(a_i^T x - b_i) = 0 \qquad \forall i$$
$$(c_j - y^T A_j) x_j = 0 \qquad \forall j$$

allora \bar{x} è l'ottimo del primale e \bar{y} del duale. Quindi

$$y_1(x_1 + 2x_2 - 14) = 0$$
$$y_2(2x_1 - x_2 - 10) = 0$$
$$y_3(x_1 - x_2 - 3) = 0$$

$$x_1(y_1 + 2y_2 + y_3 - 2) = 0$$
$$x_2(2y_1 - y_2 - y_3 - 1) = 0$$

 $\bar{x} = (\frac{20}{3}, \frac{11}{3})$ soddisfa all'uguaglianza il primo ed il terzo vincolo di (P2), ma non il secondo; di conseguenza, $y_2 = 0$. Dato che $x_1 > 0$ e $x_2 > 0$, inoltre, abbiamo:

$$y_1 + 2y_2 + y_3 - 2 = 0$$

$$2y_1 - y_2 - y_3 - 1 = 0$$

E quindi, dato che $y_2 = 0$, otteniamo $y_1 = 1$ e $y_3 = 1$. Poiché $\bar{y} = (1, 0, 1)$ è una soluzione duale ammissibile (soddisfa ai vincoli del duale di $\mathbf{P2}$), e la coppia di soluzioni primale/duale (\bar{x}, \bar{y}) soddisfa le condizioni degli scarti complementari, \bar{x} è la soluzione ottima del problema primale.

d) Per il teorema degli scarti complementari, si ha anche che $\bar{y}=(1,0,1)$ è la soluzione ottima del duale.