$$f_P = \frac{1}{2\pi Z_{in}(1+A_\nu)C_f}$$

 $\frac{v_{out}}{i_{in}}$

f

 $R_{in}A_{\nu}$

 E_c

 E_{FE}

 E_V

 qV_{BE}

 ΔE_G

 E_{FB}

 E_{FC}

 n^+Si

p-5 $Si_{1-x}Ge_x$

 qV_{BC}

 $\gamma e^- e^+$

 $l_1 \ l_2 \ l_3 \ l_4 \ l_5 \ l_6$

 $10^2 \ 10^3 \ 10^4 \ 10^5$

(a) $[m_a, g_{aWW}] = [0.165, 1.8 \cdot 10^{-4}]$

(b) $[m_a, g_{aWW}] = [0.208, 1.0 \cdot 10^{-4}]$

(c) $[m_a, g_{aWW}] = [0.320, 3.2 \cdot 10^{-5}]$

 \mathbf{DUT} 0: $P_{\mathrm{density}} = 0.08\,\mathrm{W/cm^2}$ - $\mathrm{HV} = 160~\mathrm{V}$

 $^{109}\mathbf{Cd}$ Source measurement

 $Peak_1$: (51.66 ± 0.03) mV

Peak₂: $(57.98 \pm 0.10) \text{ mV}$

 $P_{\rm density} = 1.8 \, {\rm W/cm^2}$ - $V_{th} = 6 \sigma_{\rm V}$

CERN SPS test beam with 180 GeV/c pions