

**DTIC FILE COPY**

**AD-A155 219**

**US Army Corps  
of Engineers**

Construction Engineering  
Research Laboratory

**USA-CERL**

**(2)**

**TECHNICAL REPORT N-60**  
April 1985

**20000814024**

## **Acoustic Directivity Patterns for Army Weapons: Supplement 3—The Bradley Fighting Vehicle**

by

**Paul O. Schomer  
Steven G. Goebel**

Environmental noise emissions of the Bradley Fighting Vehicle (BFV) main gun were measured in order to develop acoustic directivity patterns. Data were also gathered on the vehicle noise for future vehicle noise prediction.

The tests were made at Aberdeen Proving Ground, MD, on the M3 Cavalry Fighting Vehicle, CPT 406, and the following gun and ammunitions:

- 25 mm, M242 Main BFV weapon
- 25 mm, M791 APDS-T (Armor Piercing Discarding Sabot—Traced)
- 25 mm, M792, HEI-T (High Explosive Incendiary—Traced)
- 25 mm, M793, TP-T (Target Practice-Traced)

These data supplement the pattern data presented in USA-CERL Technical Report N-60. They have been included in the weapon directivity load module of BNOISE 3.2 and made available to users of the Integrated Noise Contour System (INCS).



**DTIC  
ELECTED  
JUN 18 1985  
S D**

**B**

Approved for public release; distribution unlimited.

**85 5 28 273**

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

**DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED  
DO NOT RETURN IT TO THE ORIGINATOR**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                  |                                   | READ INSTRUCTIONS BEFORE COMPLETING FORM                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>CERL TR N-60                                                                                                                                                                                                                                                                                           | 2. GOVT ACCESSION NO.<br>-10-4155 | 3. RECIPIENT'S CATALOG NUMBER<br>D19                                               |
| 4. TITLE (and Subtitle)<br>ACOUSTIC DIRECTIVITY PATTERNS FOR ARMY WEAPONS:<br>SUPPLEMENT 3--THE BRADLEY FIGHTING VEHICLE                                                                                                                                                                                                   |                                   | 5. TYPE OF REPORT & PERIOD COVERED<br>FINAL                                        |
| 7. AUTHOR(s)<br>Paul D. Schomer<br>Steven G. Goebel                                                                                                                                                                                                                                                                        |                                   | 6. PERFORMING ORG. REPORT NUMBER                                                   |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Bradley Project Managers Office, the Tank<br>Automotive Command (TACOM), Warren, Michigan.                                                                                                                                                                                  |                                   | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS<br>IAO No. FVS 9-84 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>U.S. Army Construction Engr Research Laboratory<br>P.O. Box 4005<br>Champaign, IL, 61820-1305                                                                                                                                                                                   |                                   | 12. REPORT DATE<br>April 1985                                                      |
|                                                                                                                                                                                                                                                                                                                            |                                   | 13. NUMBER OF PAGES<br>22                                                          |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                |                                   | 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED                               |
|                                                                                                                                                                                                                                                                                                                            |                                   | 15a. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                                      |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                        |                                   |                                                                                    |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                 |                                   |                                                                                    |
| 18. SUPPLEMENTARY NOTES<br>Copies are obtainable from the National Technical Information Service<br>Springfield, VA 22161                                                                                                                                                                                                  |                                   |                                                                                    |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Bradley Fighting Vehicle<br>acoustic directivity patterns<br>noise(sound)<br>guns                                                                                                                                                    |                                   |                                                                                    |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>Environmental noise emissions of the Bradley Fighting Vehicle (BFV) main gun<br>were measured in order to develop acoustic directivity patterns. Data were also<br>gathered on the vehicle noise for future vehicle noise prediction. |                                   |                                                                                    |
| The tests were made at Aberdeen Proving Ground, MD, on the M3 Cavalry<br>Fighting Vehicle, CPT 406, and the following gun and ammunitions:<br><br>• 25 mm; M242 Main BFV weapon                                                                                                                                            |                                   |                                                                                    |

**UNCLASSIFIED**

**SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)**

**BLOCK 20 (Continued)**

- 25 mm, M791 APDS-T (Armor Piercing Discarding Sabot—Traced)
- 25 mm, M792, HEI-T (High Explosive Incendiary—Traced)
- 25 mm, M793, TP-T (Target Practice-Traced) □

These data supplement the pattern data presented in USA-CERL Technical Report N-60. They have been included in the weapon directivity load module of BNOISE 3.2 and made available to users of the Integrated Noise Contour System (INCS).

**UNCLASSIFIED**

## **FOREWORD**

This effort was initiated and funded by the Bradley Project Managers Office, the Tank Automotive Command (TACOM), Warren, Michigan, under Intra Army Order No. FVS 9-84, dated June 1984. The TACOM Technical Monitor was Jacques Pierre-Louis.

The work was performed by the Environmental Division (EN) of USA-CERL. The Principal Investigator was Paul D. Schomer, USA-CERL-EN.

Dr. R. K. Jain is Chief of USA-CERL-EN. COL Paul J. Theuer is Commander and Director of USA-CERL, and Dr. L. R. Shaffer is Technical Director.

|                    |                            |
|--------------------|----------------------------|
| Information Type   | 1                          |
| Subject            | 1                          |
| Classification     | 1                          |
| Controlled By      | 1                          |
| By                 | 1                          |
| Distribution       | 1                          |
| Availability Codes |                            |
| Dist               | Avail encl or<br>Specified |
| A-1                |                            |



## **CONTENTS**

|                                                                       |           |
|-----------------------------------------------------------------------|-----------|
| <b>DD FORM 1473 .....</b>                                             | <b>1</b>  |
| <b>FOREWORD .....</b>                                                 | <b>3</b>  |
| <b>LIST OF TABLES AND FIGURES .....</b>                               | <b>5</b>  |
| <b>1 INTRODUCTION .....</b>                                           | <b>7</b>  |
| Background                                                            |           |
| Purpose                                                               |           |
| Approach                                                              |           |
| Mode of Technology Transfer                                           |           |
| <b>2 DATA COLLECTION .....</b>                                        | <b>7</b>  |
| Calibration                                                           |           |
| Test Sequence                                                         |           |
| <b>3 DATA REDUCTION .....</b>                                         | <b>9</b>  |
| <b>4 VEHICLE NOISE MEASUREMENTS .....</b>                             | <b>10</b> |
| <b>5 CONCLUSIONS .....</b>                                            | <b>18</b> |
| <b>APPENDIX A: Analyzed C-Weighted SEL Data Listed by Event .....</b> | <b>19</b> |
| <b>APPENDIX B: Data Calculations .....</b>                            | <b>20</b> |
| <b>DISTRIBUTION .....</b>                                             | <b>23</b> |

## TABLES

| <b>Number</b>                                                                                                                       |  | <b>Page</b> |
|-------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| 1 Firing Sequence at Edgewood Area, APG, July 1984                                                                                  |  | 9           |
| 2 Report Data for BNOISE 3.2                                                                                                        |  | 10          |
| 3 Measured Energy Average A-Weight Vehicle, Constant Speed,<br>Passby SEL for the M3/CFV as a Function of Distance and Speed        |  | 11          |
| B1 Average of Events by Grouping and Position                                                                                       |  | 21          |
| B2 Average of Consecutive Sets of C-4                                                                                               |  | 21          |
| B3 Correction Table to Convert Measured Shell Data<br>to Omnidirectional Site Independent Data<br>re 1½ lb of C-4 (115 dB at 250 m) |  | 21          |
| B4 Corrected Shell Data by Group and Overall Average for<br>the Ammunition re 1½ lb of C-4 (115 dB at 250 m)                        |  | 21          |
| B5 Ammunition Data Averaged To Be Symmetrical<br>re 1½ lb of C-4 (115 dB at 250 m)                                                  |  | 21          |
| B6 Report Data for BNOISE 3.2                                                                                                       |  | 22          |
| B7 Differences in dB Between the Inner and<br>Outer Rings by Radial Position                                                        |  | 22          |
| B8 Selected Average Differences in dB Between<br>the Inner and Outer Rings by Position                                              |  | 22          |

## FIGURES

| <b>Number</b>                                                                                                                  |  | <b>Page</b> |
|--------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| 1 General Site Layout for Noise Measurements of the BFV<br>25-mm, M242 Main Gun, Edgewood Area, APG, MD, July 1984             |  | 8           |
| 2 Microphone Layout, Edgewood Area, APG, MD, July 1984                                                                         |  | 9           |
| 3 General Site and Microphone Layout for Passby<br>Noise Measurements of the M3/CFV,<br>Edgewood Area, APG, MD, July 1984      |  | 11          |
| 4 Measured Energy - Average Maximum 1/2 Sec, 1/3<br>Octave Spectrum for a Constant High<br>Speed Passby of the M3/CFV at 50 Ft |  | 12          |

## **FIGURES (cont'd)**

| <b>Number</b> |                                                                                                                               | <b>Page</b> |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5             | Measured Energy—Average Maximum<br>1/2 Sec, 1/3 Octave Spectrum for a Constant<br>Medium Speed Passby of the M3/CFV at 50 Ft  | 13          |
| 6             | Measured Energy—Average Maximum<br>1/2 Sec, 1/3 Octave Spectrum for a Constant<br>Low Speed Passby of the M3/CFV at 50 Ft     | 14          |
| 7             | Measured Energy—Average Maximum<br>1/2 Sec, 1/3 Octave Spectrum for a Constant<br>High Speed Passby of the M3/CFV at 100 Ft   | 15          |
| 8             | Measured Energy—Average Maximum<br>1/2 Sec, 1/3 Octave Spectrum for a Constant<br>Medium Speed Passby of the M3/CFV at 100 Ft | 16          |
| 9             | Measured Energy—Average Maximum<br>1/2 Sec, 1/3 Octave Spectrum for a Constant<br>Low Speed Passby of the M3/CFV at 100 Ft    | 17          |

## **ACOUSTIC DIRECTIVITY PATTERNS FOR ARMY WEAPONS: SUPPLEMENT 3— THE BRADLEY FIGHTING VEHICLE**

### **1 INTRODUCTION**

#### **Background**

On 20 May 1981, the Army instituted the Installation Compatible Use Zone program (ICUZ). Under ICUZ, an Army installation works with the local civilian community to find ways to prevent or lessen the encroachment of off-installation housing and other noise-sensitive land uses into areas that are, or are likely to be, impacted by Army training noise.<sup>1</sup>

Vital to the success of the ICUZ program is a noise-prediction computer tool developed by the U.S. Army Construction Engineering Research Laboratory (USA-CERL). The Integrated Noise Contour System (INCS) creates noise contours using data on the type, frequency, and time of training operations; weapon types and charge sizes; and target and firing point locations. These contours portray the yearly average total noise emissions of an installation. When overlayed on a map of an installation and its environs, these contours identify existing or potential conflicts between noise levels produced by training operations and noise-sensitive land uses on or near an installation. Using BNOISE 3.2, the blast noise prediction computer program associated with INCS, contours also can be created that predict how changes in training range operations, siting, use intensity, and weapon types will alter an installation's noise-impact profile.<sup>2</sup> The Army Environmental Hygiene Agency (AEHA) can make noise predictions for any Army installation using USA-CERL's INCS/BNOISE 3.2 program.

Contours predict total yearly average noise emissions of an installation. Whether a noise problem exists, however, depends on numerous factors such

as proximity of noise-sensitive land uses to range areas, weapon type, frequencies of operations, and time of day. For this reason, no "acceptable" or "excessive" levels have been defined for specific weapons. Nevertheless, one important data type needed for INCS/BNOISE 3.2 is the individual acoustic directivity pattern associated with each impulse-noise producing weapon in the Army inventory. These patterns form a standard module of data for the INCS/BNOISE 3.2 prediction program.

USA-CERL Technical Report (TR) N-60 lists directivity pattern data obtained during tests at Fort Sill, OK, for many weapons used routinely in Army training.<sup>3</sup> Supplements 1 and 2 to TR N-60 contain directivity pattern data for the LAW and TOW antitank weapons, three regularly used weapon simulators, and the proposed Abrams Tank (M1-E1) 120-mm main gun.

#### **Purpose**

The purpose of this study was to determine the acoustic directivity pattern of Bradley Fighting Vehicle 25-mm M242 main gun, and to measure the vehicle noise emissions.

#### **Approach**

Noise measurements were made on the 25-mm M242 gun at Aberdeen Proving Ground, MD. The measurement method was basically the same as that described in USA-CERL TR N-60. Weapon firings were interspersed with detonations of C-4 plastic explosive. The C-4 was used to "calibrate" the site and provide for correcting the data for wind and terrain effects.

#### **Mode of Technology Transfer**

The directivity patterns obtained from this study have been added to the INCS/BNOISE 3.2 input data bank and are available for use by AEHA and all Department of Defense activities.

### **2 DATA COLLECTION**

Measurements were performed at Aberdeen Proving Ground (APG), MD as part of an ongoing test at that facility. The test site was in the

<sup>1</sup> Paul D. Schomer, "Noise Impact Prediction and Control," *Military Engineer*, Volume 74, Number 479 (April 1982).

<sup>2</sup> Paul D. Schomer, et al., *Blast Noise Prediction Volume I: Data Bases and Computational Procedures*, and Lincoln M. Little, et al., *Volume II: BNOISE 3.2 Computer Program Description and Program Listing*, Technical Report N-98/ADA099440 and ADA099335 (U.S. Army Construction Engineering Research Laboratory [USA-CERL], 1981).

<sup>3</sup> P. D. Schomer, L. M. Little, and A. B. Hunt, *Acoustic Directivity Patterns for Army Weapons*, Technical Report N-60, ADA066223 (USA-CERL, 1979).

Edgewood Area on an open, grassy field. Figure 1 shows the general test area and Figure 2 shows the detailed test site layout. There were two concentric rings of sensors; the inner ring had a radius of 250 yards (228.6 m) and the outer ring (except for stations 8 and 12 as noted on Figure 2) had a radius of 500 yards (457.2 m). The inner ring was entirely on the grassy field with no nearby reflecting objects. On the outer ring, sites 11 and 12 were adjacent to a tree line. The measurements were made early July 1984 when there was full foliage.

The microphones on the inner ring were Endevco piezoresistive transducers close-coupled to USA-CERL-built preamplifiers and line drivers. (Appendix B of Supplement 1 describes the Endevco device and the USA-CERL preamplifiers.) Each microphone was wired to the USA-CERL mobile field

acoustics laboratory, where the signal was recorded on an Ampex PR2230 14-channel FM recorder.

The outer ring consisted of a variety of equipment. Sites 8 through 12 each had a B&K 4921 outdoor microphone, a USA-CERL "Blue-Box" noise monitor,<sup>4</sup> and a Nagra DJ tape recorder. Sites 8 and 12 were operated over a long cable by personnel at sites 9 and 11, respectively. USA-CERL line drivers were used to vary amplifier gain for these two remote stations. Site 7 had a B&K 4921 microphone system connected over a long line to the van and its PR2230 FM tape recorder. USA-

<sup>4</sup> Aaron Averbuch, et al., *True-Integrating Environmental Noise Monitor and Sound-Exposure Level Meter*, Volumes I through IV, Technical report N-41, ADA050958, ADA072002, ADA083320, and ADA083321 (USA-CERL, 1978, 1979, and 1980).



Figure 1. General site layout for noise measurements of the Bradley Fighting Vehicle 25-mm M242 main gun, Edgewood Area, APG, MD, July 1984.



RADIUS OF INNER CIRCLE IS 750 ft,  
RADIUS OF OUTER CIRCLE IS 1500 ft,  
EXCEPT #8 IS AT 1455 ft AND #12 IS AT 1465 ft.

**Figure 2. Microphone layout, Edgewood Area, APG, MD, July 1984.**

CERL Blue-Box noise monitors were also used in the van for immediate date checking and readout.

#### Calibration

Calibration was done (1) at the beginning and end of each tape and/or testing period, (2) when the equipment or equipment placement was changed, and (3) when any equipment malfunction was suspected. The six Endevco stations were calibrated with a B&K 4420 pistonphone. USA-CERL constructed special housings for the Endevco microphones so calibration could be performed using standard laboratory and field devices. At the beginning of each FM tape, the calibration tone was recorded for about 15 seconds at the measurement tape speed of 30 in./second (762 mm/second). The B&K 4921 microphone system was calibrated initially using the B&K-type 4220 pistonphone. Subsequent calibrations were performed using its internal 1000-Hz electrostatic actuator.

#### Test Sequence

Three types of ammunition for the 25-mm gun were measured:

- Cartridge, 25 mm Armor Piercing Discarding Sabot-Traced (APDS-T), M791
- Cartridge, 25 mm High Explosive Incendiary-Traced (HEI-T), M792
- Cartridge, 25 mm Target Practice-Traced (TP-T), M793.

Table 1 lists the test sequence for these rounds and the C-4 calibration shots. The test sequence generally consisted of two or more C-4 shots followed by two or more rounds of the shell under test. This is essentially the same procedure used during the original Fort Sill measurements and the measurements described in Supplements 1 and 2.

### 3 DATA REDUCTION

Primary data reduction was done using the USA-CERL-developed True-Integrating Environmental Noise Monitor and Sound-Exposure Level Meter. This data reduction resulted in a measure of the C-weighted sound exposure level (CSEL). The Data 6000 computing oscilloscope was used to remeasure C-weighted data for each gun round at sites 1, 2, 6, 7, and 11. These were the sites that also received a shell-generated ballistic wave. The Data 6000 was used to separate muzzle blast data from the ballistic wave data. Background noise was also measured to

**Table 1**  
**Firing Sequence at Edgewood Area, APG, July 1984**

| Event(s) | Type   |
|----------|--------|
| 1,2      | C-4    |
| 3,9      | TP-T   |
| 10,11    | C-4    |
| 12,21    | TP-T   |
| 22,23    | C-4    |
| 24-33    | TP-T   |
| 34-36    | C-4    |
| 37,47    | HEI-T  |
| 48       | C-4    |
| 49,58    | HEI-T  |
| 59,60    | C-4    |
| 61       | APDS-T |
| 62,63    | C-4    |
| 64-77    | APDS-T |
| 78,79    | C-4    |

ensure that the recorded data were far enough above the noise level to be valid. Appendix A lists analyzed data by event.

Each series of shell data was first corrected by the adjacent (in-time) C-4 calibration events. A set of numbers was found for the C-4 events just before and after the shell events. The C-4 data were corrected to data for an omnidirectional hemispherical (actually circular in the ground plane) radiating source. The shell data were averaged by microphone and corrected by the set of numbers found to convert the C-4 to a perfect, circular source. These averages are listed in Appendix B. Similar shells (after correction by adjacent C-4 calibration) were then combined (energy-averaged by microphone) to form the overall weapon device directivity pattern. Corrections were made to form a symmetrical pattern. Appendix B lists the resultant data by weapon device.

Table 2, which is based on the data given in Appendix B, lists the data as they are included in the BNOISE 3.2 weapons input table. In the table, the reference distance is 250 m (rather than 250 yards). At this distance, 1½ lb (0.57 kg) of C-4 exploded on the ground typically produces a CSEL of 115 dB.

#### 4 VEHICLE NOISE MEASUREMENTS

Currently, AEHA can include vehicle noise assessments as a part of a general noise assessment

as required on a case-by-case basis; the computerized INCS does not include a module for vehicles. In the future a module in INCS will handle vehicle passby noise. With this case-by-case application of AEHA and the future INCS module in mind, passby noise emission data were gathered for the M3 Bradley Cavalry Fighting Vehicle (M3 CFV). Although this was a cavalry fighting vehicle, the infantry fighting vehicle has the same engine and track; differences are in space for personnel and materials. Thus the noise produced by either is about the same and can be thought of as interchangeable for environmental noise purposes.

The test site was an open, grassy field bisected by an approximately straight tar and gravel road (Figure 3). Four microphones were located in a line perpendicular to the road, two on each side at distances of 50 and 100 ft (15.2 and 30.5 m). The test zone was a straight line segment of the road extending 900 ft (274.3 m) to either side of the line of microphones. The Bradley Fighting Vehicle maintained one of three constant speeds within this zone: low, medium, and high speed (approximately 15, 25, and 35 miles per hour, respectively). As shown in Figure 3, an additional half mile of road was used beyond either end of the test zone for the vehicle to decelerate, turn around and accelerate for the next test. These long stretches for deceleration and acceleration assured constant speed during the vehicle's passby in the test zone.

Two USA-CERL operators ran the measurement equipment; one near each of the 100 ft (30.5 m) microphones. Cables connected their equipment to

Table 2  
Report Data for BNOISE 3.2

|        | Value                   | Position (degrees) |       |       |      |      |      |      |      |      |      |       |       | AVE   |
|--------|-------------------------|--------------------|-------|-------|------|------|------|------|------|------|------|-------|-------|-------|
|        |                         | 0°                 | 30°   | 60°   | 90°  | 120° | 150° | 180° | 210° | 240° | 270° | 300°  | 330°  |       |
| TP-T   | Value                   | 103.8              | 102.2 | 100.6 | 98.4 | 96.3 | 96.6 | 96.7 | 96.6 | 96.3 | 98.4 | 100.6 | 102.2 | 99.9  |
| TP-T   | Value re<br>rear of gun | 7.1                | 5.5   | 3.9   | 1.7  | -0.4 | -0.1 | -0.9 | -0.1 | -0.4 | 1.7  | 3.9   | 5.5   | 3.2   |
| HEI-T  | Value                   | 104.2              | 102.4 | 100.5 | 98.6 | 97.0 | 96.7 | 96.3 | 96.7 | 97.0 | 98.6 | 100.5 | 102.4 | 100.1 |
| HEI-T  | Value re<br>rear of gun | 7.9                | 6.1   | 4.2   | 2.3  | 0.7  | 0.4  | 0.0  | 0.4  | 0.7  | 2.3  | 4.2   | 6.1   | 3.8   |
| APDS-T | Value                   | 104.1              | 102.8 | 101.5 | 99.5 | 97.9 | 97.7 | 97.3 | 97.7 | 97.9 | 99.5 | 101.5 | 102.8 | 100.7 |
| APDS-T | Value re<br>rear of gun | 6.6                | 5.3   | 4.0   | 2.0  | 0.4  | 0.2  | 0.0  | 0.2  | 0.4  | 2.0  | 4.0   | 5.3   | 3.2   |

\* Value altered from the 55° measurement position to the 60° standard position.



**Figure 3.** General site and microphone layout for passby noise measurements of the M3/CFV, Edgewood Area, APG, MD, July 1984.

the adjacent 50 ft (15.2 m) microphones. The equipment for this measurement consisted of a USA-CERL "blue box" noise monitor and a Nagra DJ tape recorder, both connected to a B&K type 4921 outdoor microphone system. Calibration was performed (1) at the beginning and end of each tape and/or testing period, and (2) when the equipment was changed or equipment malfunction was suspected. The equipment was calibrated using the B&K outdoor microphone's internal 1000 Hz electrostatic actuator.

As indicated above, measurements were made with the vehicle travelling at low, medium and high speeds and with microphones at distances of 50 and 100 ft (15.2 and 30.5 m). Three analyses were performed on the data:

1. The maximum  $\frac{1}{2}$ -second A-weighted sound level
2. The passby A-weighted sound exposure level (SEL)

3. The flat-weighted spectrum for the maximum  $\frac{1}{2}$ -second A-weighted sound level.

The A-weighted SELs and maximum levels are shown in Table 3. Figures 4 through 9 show the average (energy)  $\frac{1}{3}$ -octave spectrum at 50 and 100 ft (15.2 and 30.5 m), respectively, for the  $\frac{1}{2}$  second during which A-weighted maximum occurred. The field measurements with the "blue box" were performed for most of the time that the vehicle was at

**Table 3**  
Measured Energy Average A-Weight Vehicle,  
Constant Speed, Passby SEL for the M3/CFV  
as a Function of Distance and Speed

| Distance/Speed (ft) | Low   | Moderate | High  |
|---------------------|-------|----------|-------|
| 50                  | 95.3* | 94.5**   | 97.1* |
| 100                 | 91.9* | 90.5**   | 93.3* |

\* The average for 10 measurements.

\*\* The average for 8 measurements.



Figure 4. Measured energy—average maximum 1/2 sec, 1/3 octave spectrum for a constant high speed passby of the M3/CFV at 50 ft. The average is for 10 measurements.



Figure 5. Measured energy—average maximum 1/2 sec, 1/3 octave spectrum for a constant medium speed passby of the M3/CFV at 50 ft. The average is for 8 measurements.



Figure 6. Measured energy—average maximum 1/2 sec, 1/3 octave spectrum for a constant low speed passby of the M3/CFV at 50 ft. The average is for 10 measurements.



Figure 7. Measured energy—average maximum 1, 2 sec, 1/3 octave spectrum for a constant high speed passby of the M3 CFV at 100 ft. The average is for 10 measurements.



Figure 8. Measured energy—average maximum 1/2 sec, 1/3 octave spectrum for a constant medium speed passby of the M3/CFV at 100 ft. The average is for 8 measurements.



Figure 9. Measured energy—average maximum 1/2 sec, 1/3 octave spectrum for a constant low speed passby of the M3/CV at 100 ft. The average is for 10 measurements.

constant speed in the measurement zone. Typically this was 10 to 20 seconds. Analysis of the tape recordings showed that the 10-dB-down interval was more like 5 seconds, so the "blue box" data encompass all of the energy of interest. Differences between the field readings and the readings taken from the tape recorders using just the 10-dB-down interval were very small: 0.1 to 0.2 dB.

In the future these data will be sufficient to predict SEL versus distance curves for the carrier as needed by AEHA or as part of a new noise assessment module in INCS.

## 5 CONCLUSIONS

This report gives the acoustic directivity patterns for the Bradley Fighting Vehicle 25-mm, M242 main gun. These data supplement the pattern data presented in USA-CERL Technical Report N-60. These supplemental pattern data have been included in the weapon directivity pattern load module of BNOISE 3.2 and made available to users of the Integrated Noise Contour System. The vehicle noise emissions were also gathered for future use.

**APPENDIX A:**  
**ANALYZED C-WEIGHTED SEL DATA BY EVENT**

**Bradley Fighting Vehicle 25-mm, M242 Main Gun, Aberdeen Proving Ground**

| Event     | Station 1 | Station 3 | Station 4 | Station 5 | Station 6 | Station 8 | Station 9 | Station 10 | Station 11 | Station 12 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| 1. C4     | 113.9     |           |           |           |           | 106.5     | 108.9     | 105.3      | 113.0      | 109.8      |
| 2. C4     | 114.9     | 113.1     | 115.5     | 118.4     | 114.8     | 108.3     | 109.0     | 112.1      | 113.3      | 105.9      |
| 3. TP-T   | 105.0     | 96.1      | 99.6      | 100.8     | 103.5     | 95.2      | 83.5      | 88.9       | 93.4       | 92.8       |
| 4. TP-T   | 104.4     | 95.0      | 98.0      | 98.6      | 102.6     | 95.8      | 81.4      | 86.1       | 98.1       | 94.6       |
| 5. TP-T   | 103.9     | 96.7      | 98.0      | 99.5      | 102.3     | 90.0      | 81.1      | 86.4       | 95.9       | 90.9       |
| 6. TP-T   | 105.2     | 94.0      | 98.0      | 98.7      | 101.8     | 90.2      | 81.2      | 88.3       | 94.9       | 91.5       |
| 7. TP-T   | 104.4     | 95.4      | 97.0      | 99.9      | 101.8     | 90.8      | 81.8      | 87.3       | 95.4       | 89.4       |
| 8. TP-T   | 104.2     | 96.2      | 97.2      | 99.7      | 101.6     | 92.3      | 83.6      | 87.8       | 94.8       | 91.1       |
| 9. TP-T   | 105.0     | 95.9      | 98.0      | 100.2     | 102.0     | 92.9      | 83.4      | 86.7       | 95.5       | 91.3       |
| 10. C4    | 115.0     | 113.0     | 115.2     | 118.9     | 115.1     | 108.4     | 108.7     | 111.8      | 113.8      | 110.5      |
| 11. C4    | 114.7     | 112.8     | 115.3     | 118.2     | 114.9     | 108.6     | 107.9     | 111.4      | 113.6      | 111.0      |
| 12. TP-T  | 104.6     | 96.4      | 98.0      | 100.2     | 101.6     | 89.6      | 83.5      | 89.0       | 94.9       | 91.4       |
| 13. FP-T  | 103.6     | 95.6      | 98.0      | 99.7      | 101.8     | 90.8      | 82.7      | 87.7       | 94.6       | 90.6       |
| 14. TP-T  | 105.1     | 96.0      | 97.8      | 98.7      | 102.0     | 91.1      | 83.8      | 87.4       | 93.9       | 90.9       |
| 15. TP-T  | 105.5     | 95.9      | 97.4      | 99.7      | 101.5     | 87.9      | 82.7      | 86.6       | 94.4       | 90.8       |
| 16. TP-T  | 105.2     | 95.6      | 97.5      | 99.8      | 102.5     | 92.9      | 82.3      | 86.4       | 95.2       | 91.9       |
| 17. TP-T  | 104.5     | 96.6      | 96.9      | 99.3      | 102.0     | 92.9      | 82.4      | 86.5       | 94.6       | 90.4       |
| 18. TP-T  | 103.9     | 96.0      | 97.9      | 99.1      | 102.0     | 93.4      | 83.0      | 88.3       | 94.2       | 90.0       |
| 19. TP-T  | 105.4     | 96.5      | 96.9      | 99.4      | 102.5     | 94.2      | 83.8      | 87.3       | 94.5       | 90.5       |
| 20. TP-T  | 104.6     | 96.6      | 97.9      | 98.8      | 102.0     | 92.0      | 84.1      | 87.4       | 94.4       | 90.0       |
| 21. TP-T  | 105.1     | 96.4      | 97.7      | 98.2      | 101.8     | 90.9      | 84.7      | 87.8       | 94.3       | 90.4       |
| 22. C4    | 116.9     | 115.3     | 116.8     | 119.1     | 117.1     | 107.9     | 108.5     | 110.8      | 113.5      | 105.9      |
| 23. C4    | 116.6     | 115.9     | 116.9     | 118.5     | 117.3     | 109.7     | 108.4     | 111.5      | 113.7      | 107.8      |
| 24. TP-T  | 104.4     | 96.6      | 97.6      | 99.1      | 102.0     | 92.4      | 83.8      | 87.4       | 93.7       | 92.5       |
| 25. TP-T  | 103.4     | 96.6      | 97.1      | 99.4      | 101.3     | 91.9      | 85.1      | 88.4       | 94.1       | 91.5       |
| 26. TP-T  | 104.8     | 97.2      | 98.0      | 99.2      | 101.1     | 90.8      | 85.1      | 88.2       | 94.2       | 91.1       |
| 27. TP-T  | 104.4     | 97.5      | 97.3      | 99.3      | 101.7     | 92.5      | 85.8      | 88.7       | 93.8       | 89.8       |
| 28. TP-T  | 104.0     | 97.4      | 98.1      | 99.1      | 101.1     | 93.4      | 85.6      | 88.0       | 93.8       | 90.6       |
| 29. TP-T  | 105.2     | 97.6      | 98.1      | 98.6      | 101.3     | 95.0      | 86.1      | 88.5       | 93.3       | 90.5       |
| 30. TP-T  | 104.4     | 97.7      | 98.6      | 98.7      | 101.2     | 93.0      | 84.3      | 89.0       | 94.6       | 91.1       |
| 31. TP-T  | 103.8     | 97.1      | 98.1      | 98.9      | 101.1     | 92.7      | 84.3      | 90.0       | 93.8       | 90.9       |
| 32. TP-T  | 104.1     | 97.4      | 97.6      | 98.7      | 100.5     | 93.0      | 85.3      | 88.7       | 93.7       | 90.7       |
| 33. TP-T  | 104.1     | 97.2      | 98.0      | 98.7      | 101.3     | 91.7      | 84.7      | 88.0       | 93.7       | 90.4       |
| 34. C4    | 116.6     | 116.0     | 117.1     | 118.8     | 118.4     | 110.4     | 108.9     | 111.3      | 113.5      |            |
| 35. C4    | 117.4     | 116.1     | 117.1     | 118.5     | 117.4     | 109.7     | 108.5     | 111.7      | 113.8      | 110.0      |
| 36. C4    | 117.1     | 116.2     | 117.1     | 118.5     | 115.8     | 109.5     | 108.9     | 112.2      | 113.6      | 109.2      |
| 37. HEI-T | 104.0     | 98.2      | 98.1      | 99.2      | 101.3     | 95.2      |           | 90.4       | 94.8       | 92.6       |
| 38. HEI-T | 105.5     | 96.7      | 98.0      | 99.8      | 102.4     | 93.9      | 84.5      | 90.0       | 94.2       | 90.4       |
| 39. HEI-T | 104.8     | 97.0      | 97.7      | 100.4     | 102.6     | 95.0      | 84.4      | 89.1       | 96.0       | 90.1       |
| 40. HEI-T | 105.5     | 96.4      | 97.8      | 100.1     | 102.4     | 95.6      | 84.3      | 88.2       | 93.0       | 89.4       |
| 41. HEI-T | 104.4     | 97.2      | 97.7      | 100.1     | 102.5     | 95.8      | 86.0      | 88.1       | 94.1       | 89.1       |
| 42. HEI-T | 104.8     | 97.8      | 97.7      | 99.2      | 101.2     | 92.4      | 85.7      | 88.6       | 94.0       | 89.6       |
| 43. HEI-T | 101.5     | 97.3      | 97.4      | 99.8      | 102.0     | 91.3      | 84.9      | 88.0       | 92.0       | 89.7       |
| 44. HEI-T | 104.8     | 97.8      | 97.7      | 98.9      | 101.7     | 93.7      | 85.1      | 89.6       | 94.5       | 90.6       |
| 45. HEI-T | 104.1     | 97.7      | 98.4      | 99.1      | 100.8     | 93.3      | 86.1      | 89.0       | 94.0       | 91.1       |
| 46. HEI-T | 104.1     | 97.7      | 97.6      | 100.3     | 102.7     | 92.9      | 86.2      | 89.5       | 94.6       | 93.7       |
| 47. HEI-T | 104.3     | 98.2      | 97.9      | 100.3     | 101.7     | 94.8      | 85.9      | 90.2       | 95.3       | 93.7       |
| 48. C4    | 113.9     | 114.7     | 115.4     | 116.3     | 115.4     | 104.6     | 106.8     | 108.4      | 111.9      | 108.8      |
| 49. HEI-T | 104.7     | 97.0      | 97.8      | 99.5      | 102.2     | 93.8      | 84.5      | 90.7       | 93.9       | 94.6       |
| 50. HEI-T | 104.9     | 97.2      | 97.8      | 99.8      | 102.0     | 94.3      | 84.4      | 88.3       | 94.6       | 94.2       |
| 51. HEI-T | 104.4     | 97.0      | 97.9      | 99.3      | 102.4     | 93.9      | 85.2      | 89.0       | 93.9       | 94.4       |
| 52. HEI-T | 104.7     | 97.2      | 97.5      | 100.0     | 102.4     | 93.1      | 84.7      | 87.9       | 95.3       | 94.7       |
| 53. HEI-T | 104.5     | 97.0      | 97.5      | 99.7      | 102.2     | 93.1      | 85.0      | 88.4       | 94.5       | 94.2       |

| Event      | Station 1 | Station 3 | Station 4 | Station 5 | Station 6 | Station 8 | Station 9 | Station 10 | Station 11 | Station 12 |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| 54. HEI-T  | 105.3     | 97.2      | 97.6      | 100.2     | 102.6     | 93.8      | 85.2      | 88.2       | 95.8       | 94.5       |
| 55. HEI-T  | 104.9     | 97.6      | 97.5      | 99.8      | 102.1     | 94.4      | 85.1      | 89.1       | 95.2       | 93.6       |
| 56. HEI-T  | 105.5     | 96.5      | 97.8      | 99.6      | 102.9     | 95.6      | 84.6      | 88.5       | 95.1       | 94.8       |
| 57. HEI-T  | 105.3     | 97.0      | 96.8      | 99.8      | 102.7     | 95.4      | 85.7      | 87.8       | 94.6       | 94.6       |
| 58. HEI-T  | 104.8     | 97.1      | 97.9      | 99.5      | 102.8     | 95.0      | 85.1      | 89.7       | 94.9       | 95.4       |
| 59. C4     | 116.6     | 116.9     | 117.5     | 118.5     | 117.0     | 108.5     | 109.6     | 111.9      | 113.5      | 110.0      |
| 60. C4     | 116.6     | 116.6     | 117.2     | 118.2     | 116.8     | 108.7     | 109.3     | 112.7      | 113.7      | 110.1      |
| 61. APDS-T | 106.8     | 99.0      | 99.6      | 101.2     | 104.0     | 97.2      | 89.3      | 90.4       | 96.5       | 95.9       |
| 62. C4     | 116.1     | 116.6     | 117.2     | 118.2     | 116.6     | 110.2     | 108.8     | 111.8      | 113.2      | 109.9      |
| 63. C4     | 116.7     | 116.7     | 117.3     | 118.2     | 116.5     | 108.6     | 109.3     | 111.9      | 113.8      | 110.2      |
| 64. APDS-T | 106.0     | 99.0      | 99.9      | 101.6     | 104.3     | 95.8      | 88.2      | 90.9       | 96.7       | 96.6       |
| 65. APDS-T | 105.7     | 99.0      | 99.9      | 101.6     | 104.3     | 97.1      | 88.0      | 90.3       | 95.6       | 95.2       |
| 66. APDS-T | 105.7     | 99.2      | 99.0      | 101.3     | 103.3     | 96.7      | 87.4      | 92.0       | 95.8       | 95.2       |
| 67. APDS-T | 105.5     | 98.9      | 99.0      | 101.5     | 103.8     | 95.7      | 87.4      | 90.6       | 95.7       | 95.6       |
| 68. APDS-T | 106.4     | 99.3      | 99.6      | 100.4     | 103.6     | 95.3      | 89.5      | 91.2       | 95.9       | 95.8       |
| 69. APDS-T | 105.5     | 100.1     | 99.5      | 100.8     | 103.6     | 95.7      | 88.3      | 91.4       | 95.7       | 96.9       |
| 70. APDS-T | 105.9     | 99.3      | 99.3      | 100.9     | 103.6     | 95.5      | 89.0      | 91.6       | 96.5       | 95.3       |
| 71. APDS-T | 105.6     | 99.3      | 100.3     | 101.4     | 103.3     | 94.0      | 87.4      | 90.5       | 96.9       | 95.8       |
| 72. APDS-T | 105.2     | 99.3      | 99.5      | 101.3     | 103.4     | 93.9      | 87.1      | 90.9       | 96.1       | 95.8       |
| 73. APDS-T | 105.9     | 99.0      | 99.4      | 101.4     | 103.5     | 95.1      | 88.0      | 91.0       | 96.0       | 95.2       |
| 74. APDS-T | 104.9     | 98.8      | 99.2      | 101.1     | 103.4     | 97.1      | 86.8      | 91.9       | 97.0       | 96.6       |
| 75. APDS-T | 106.0     | 98.8      | 99.7      | 101.5     | 104.1     | 94.9      | 87.5      | 90.7       | 98.2       | 96.7       |
| 76. APDS-T | 105.7     | 98.9      | 100.1     | 102.2     | 104.0     | 96.1      | 87.3      | 90.1       | 97.1       | 96.8       |
| 77. APDS-T | 104.9     | 99.3      | 99.9      | 101.7     | 105.1     | 96.5      | 87.3      | 91.8       | 97.8       | 96.4       |
| 78. C4     | 116.3     | 115.1     | 116.4     | 118.4     | —         | 107.7     | 108.5     | 112.3      | 113.6      | 111.1      |
| 79. C4     | 116.8     | 116.0     | 117.1     | 118.8     | 117.1     | 109.3     | 108.4     | 111.2      | 113.7      | 110.9      |

## APPENDIX B: DATA CALCULATIONS

Table B1 contains energy averages by microphone of like sources. For example, C1 is for the first set of C-4 charges, events 1 and 2. Event 61, an AP round, was averaged with events 64-77 which were APDS-T rounds. The raw data are taken from Appendix A. Stations two and seven did not function properly so these data are omitted from Appendix A.

Table B2 contains the energy average of consecutive C-4 groups. For example, C12 is the average of groups C1 and C2 from Table B1. These data are used to form Table B3 and correct the data,  $S_i$ , for site factors such as wind which cause the sound propagation for a blast to depart from omnidirectional spherical spreading.

Table B3 contains the corrections to be subtracted from corresponding shell data. In each case, CR  $i+1$  is used to correct  $S_i$ . For example CR 4.5 is used to correct  $S_4$ . For example, the first row, first

column entry is -0.3 which is (114.7 - 115.0). Thus, in each case, the real entry is the difference between the data entry in Table B2 and 115.0 dB, where 115.0 dB is the standard value for 1½ lb of C-4 set off on a 3-ft (0.9 m) post at a distance of 250 m.<sup>5</sup> Because of the small gun size, 1½ lb of C-4 was used instead of the standard 5 lb.

Table B4 contains the S-values from Table B1 corrected by the corresponding CR values in Table B3. This table also contains the energy average for all the ammunition rounds.

Table B5 contains the ammunition data, averaged to be symmetrical. That is, position 3 is averaged with position 5. (Positions 1, 4 and 6 have no counterparts.)

Table B6 contains the data for the BNOISE 3.2 input. First, the data from Table B5 are extrapolated to fill every 30 degree position (rows 1 and 3 in

<sup>5</sup> Blast Noise Prediction Volume I: Data Bases and Computational Procedures, p. 41, Figure 16.

Table B6). Second, the value for the rear of the gun (180 degrees) is subtracted from every value (rows 2 and 4 in Table B6). In Table B6, the AVE values come from the energy average of each row.

Tables B7 and B8 show calculated noise differences between the inner and outer rings of microphones and averages based on these values, respectively.

**Table B1**  
**Average of Events by Grouping and Position**

| Event(s)    |    | Measurement Position |       |       |       |       |       |       |       |       |       |
|-------------|----|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|             |    | 1                    | 3     | 4     | 5     | 6     | 8°    | 9°    | 10°   | 11°   | 12°   |
| 1,2         | C1 | 144.4                | 113.1 | 115.5 | 118.4 | 114.8 | 107.5 | 109.0 | 112.1 | 113.2 | 108.3 |
| 3,9         | S1 | 104.6                | 95.7  | 98.0  | 99.7  | 102.3 | 93.0  | 82.4  | 87.5  | 95.6  | 91.9  |
| 10,11       | C2 | 114.9                | 112.9 | 115.3 | 118.6 | 115.0 | 108.5 | 108.3 | 111.6 | 113.7 | 110.8 |
| 12,21       | S2 | 104.8                | 96.2  | 97.6  | 99.3  | 102.0 | 91.9  | 83.4  | 87.5  | 94.5  | 90.7  |
| 22,23       | C3 | 116.8                | 115.6 | 116.9 | 118.8 | 117.2 | 108.9 | 108.5 | 111.2 | 113.6 | 107.0 |
| 24,33       | S3 | 104.3                | 97.2  | 97.9  | 99.0  | 101.3 | 92.8  | 85.1  | 88.5  | 93.9  | 91.0  |
| 34,36       | C4 | 117.0                | 116.1 | 117.1 | 118.6 | 117.3 | 109.9 | 108.8 | 111.7 | 113.6 | 109.6 |
| 37,47       | S4 | 104.5                | 97.5  | 97.8  | 99.8  | 102.0 | 94.2  | 85.4  | 89.2  | 94.4  | 91.2  |
| 48          | C5 | 113.9                | 114.7 | 115.4 | 116.5 | 115.4 | 104.6 | 106.8 | 108.4 | 111.9 | 108.8 |
| 49,58       | S5 | 104.9                | 97.1  | 97.6  | 99.7  | 102.4 | 94.5  | 85.0  | 88.9  | 94.8  | 94.5  |
| 59,60,62,63 | C6 | 116.5                | 116.7 | 117.3 | 118.3 | 116.7 | 109.1 | 109.3 | 112.1 | 113.6 | 110.1 |
| 61,64,77    | S6 | 105.7                | 99.2  | 99.6  | 101.3 | 103.8 | 95.9  | 88.0  | 91.1  | 96.6  | 96.0  |
| 78,79       | C7 | 116.6                | 115.6 | 116.8 | 118.6 | 117.1 | 108.6 | 108.5 | 111.8 | 113.7 | 111.0 |

\* Outer ring.

**Table B2**  
**Average of Consecutive Sets of C-4**

|     | 1     | 3     | 4     | 5     | 6     |
|-----|-------|-------|-------|-------|-------|
| C12 | 114.7 | 113.0 | 115.4 | 118.5 | 114.9 |
| C23 | 116.0 | 114.5 | 110.2 | 118.7 | 116.2 |
| C34 | 116.9 | 115.9 | 117.0 | 118.7 | 117.3 |
| C45 | 115.7 | 115.5 | 116.3 | 117.7 | 116.5 |
| C56 | 115.4 | 115.8 | 116.5 | 117.5 | 116.1 |
| C67 | 116.6 | 116.2 | 117.1 | 118.5 | 116.9 |

**Table B3**  
**Correction Table to Convert Measured Shell Data to Omnidirectional Site Independent Data re 1/4 lb of C-4 (115 dB at 250 m)**

|        | 1    | 3    | 4   | 5   | 6    |
|--------|------|------|-----|-----|------|
| CR 1,2 | -0.3 | -2.0 | 0.4 | 3.5 | -0.1 |
| CR 2,3 | 1.0  | -0.5 | 1.2 | 3.7 | 1.2  |
| CR 3,4 | 1.9  | 0.9  | 2.0 | 3.7 | 2.3  |
| CR 4,5 | 0.7  | 0.5  | 1.3 | 2.7 | 1.5  |
| CR 5,6 | 0.4  | 0.8  | 1.5 | 2.5 | 1.1  |
| CR 6,7 | 1.6  | 1.2  | 2.1 | 3.5 | 1.9  |

**Table B4**  
**Corrected Shell Data by Group and Overall Average for the Ammunition re 1/4 lb of C-4 (115 dB at 250 m)**

|             | 1     | 3    | 4    | 5    | 6     |
|-------------|-------|------|------|------|-------|
| S1          | 104.9 | 97.7 | 97.6 | 96.2 | 102.4 |
| S2          | 103.8 | 96.7 | 96.4 | 95.6 | 100.8 |
| S3          | 102.4 | 96.3 | 95.9 | 95.3 | 99.0  |
| TP-T AVE.   | 103.3 | 96.9 | 96.7 | 95.7 | 101.0 |
| S4          | 103.8 | 97.0 | 96.5 | 97.1 | 100.5 |
| S5          | 104.5 | 96.3 | 96.1 | 97.2 | 101.3 |
| HEI-T AVE.  | 104.2 | 96.7 | 96.3 | 97.2 | 100.9 |
| S6          | 104.1 | 98.0 | 97.5 | 97.8 | 101.9 |
| APDS-T AVE. | 104.1 | 98.0 | 97.5 | 97.8 | 101.9 |

**Table B5**  
**Ammunition Data Averaged to be Symmetrical re 1/4 lb of C4 (115 dB at 250 m)**

|        | 1     | 3     | 4    | 5    | 6    |
|--------|-------|-------|------|------|------|
| TP-T   | 103.8 | 101.0 | 96.3 | 96.7 | 96.3 |
| HEI-T  | 104.2 | 100.9 | 97.0 | 96.3 | 97.0 |
| APDS-T | 104.1 | 101.9 | 97.9 | 97.5 | 97.9 |

**Table B6**  
**Report Data for BNOISE 3.2**

|        |                         | Position (degrees) |       |       |      |      |      |      |      |      |      |       |       |       |
|--------|-------------------------|--------------------|-------|-------|------|------|------|------|------|------|------|-------|-------|-------|
|        |                         | 0                  | 30    | 60*   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 360   | 330   | AVE   |
| TP-T   | Value                   | 103.8              | 102.2 | 100.6 | 98.4 | 96.3 | 96.6 | 96.7 | 96.6 | 96.3 | 98.4 | 100.6 | 102.2 | 99.9  |
|        | Value re<br>rear of gun | 7.1                | 5.5   | 3.9   | 1.7  | -0.4 | -0.1 | 0.0  | -0.1 | -0.4 | 1.7  | 3.9   | 5.5   | 3.2   |
| HEI-T  | Value                   | 104.2              | 102.4 | 100.5 | 98.6 | 97.0 | 96.7 | 96.3 | 96.7 | 97.0 | 98.6 | 100.5 | 102.4 | 100.1 |
|        | Value re<br>rear of gun | 7.9                | 6.1   | 4.2   | 2.3  | 0.7  | 0.4  | 0.0  | 0.4  | 0.7  | 2.3  | 4.2   | 6.1   | 3.8   |
| APDS-T | Value                   | 104.1              | 102.8 | 101.5 | 99.5 | 97.9 | 97.7 | 97.5 | 97.7 | 97.9 | 99.5 | 101.5 | 102.8 | 100.7 |
|        | Value re<br>rear of gun | 6.6                | 5.3   | 4.0   | 2.0  | 0.4  | 0.2  | 0.0  | 0.2  | 0.4  | 2.0  | 4.0   | 5.3   | 3.2   |

\* Value altered from the 55° measurement position to the 60° standard position.

**Table B7**  
**Differences in dB Between the Inner  
and Outer Rings by Radial Position**

|    | 3-9  | 4-10 | 5-11 | 6-12 |
|----|------|------|------|------|
| C1 | 4.1  | 3.4  | 5.2  | 6.5  |
| S1 | 13.3 | 10.5 | 4.1  | 10.4 |
| C2 | 4.6  | 3.7  | 4.9  | 4.2  |
| S2 | 12.8 | 10.1 | 4.8  | 11.3 |
| C3 | 7.1  | 5.7  | 5.2  | 10.2 |
| S3 | 12.1 | 9.4  | 5.1  | 10.3 |
| C4 | 7.3  | 5.4  | 5.0  | 7.7  |
| S4 | 12.1 | 8.6  | 5.4  | 10.8 |
| C5 | 7.9  | 7.0  | 4.6  | 6.6  |
| S5 | 12.1 | 8.7  | 4.9  | 7.9  |
| C6 | 7.4  | 5.2  | 4.7  | 6.6  |
| S6 | 11.2 | 8.5  | 4.7  | 7.8  |
| C7 | 7.1  | 5.0  | 4.9  | 6.1  |

**Table B8**  
**Selected Average Differences in dB  
Between the Inner and Outer Rings by Position**

|            | 3-9  | 4-10 | 5-11 | 6-12 | AVE  |
|------------|------|------|------|------|------|
| TP-T       | 12.8 | 10.0 | 4.7  | 10.7 | 10.4 |
| HEI-T      | 12.1 | 8.7  | 5.2  | 9.6  | 9.5  |
| APDS-T     | 11.2 | 8.5  | 4.7  | 7.8  | 8.6  |
| All Shells | 12.1 | 9.1  | 4.9  | 9.5  | 9.6  |
| All C-4    | 6.7  | 5.2  | 4.9  | 7.2  | 6.1  |

# USA-CERL DISTRIBUTION

Chief of Engineers  
 ATTN: Tech Monitor  
 ATTN: DAEN-ASI-L (2)  
 ATTN: DAEN-CCP  
 ATTN: DAEN-CW  
 ATTN: DAEN-CWE  
 ATTN: DAEN-CWM-R  
 ATTN: DAEN-CVO  
 ATTN: DAEN-CWP  
 ATTN: DAEN-EC  
 ATTN: DAEN-ECC  
 ATTN: DAEN-ECE  
 ATTN: DAEN-ECR  
 ATTN: DAEN-RD  
 ATTN: DAEN-RDC  
 ATTN: DAEN-RDM  
 ATTN: DAEN-RM  
 ATTN: DAEN-ZCE  
 ATTN: DAEN-ZCF  
 ATTN: DAEN-ZCI  
 ATTN: DAEN-ZCM  
 ATTN: DAEN-ZCZ

FESA, ATTN: Library 22060  
 ATTN: DET III 79906

US Army Engineer Districts  
 ATTN: Library (41)

US Army Engineer Divisions  
 ATTN: Library (14)

US Army Europe  
 AAEEN-ODCS/Engr 09403  
 ISAE 09081  
 V Corps  
 ATTN: DEM (11)  
 VII Corps  
 ATTN: DEM (15)  
 21st Support Command  
 ATTN: DPM (12)  
 USA Berlin  
 ATTN: DEM (11)  
 USASZTAF  
 ATTN: DEM (10)  
 Allied Command Europe (ACE)  
 ATTN: DEM (3)

8th USA, Korea (19)

ROK/US Combined Forces Command 96101  
 ATTN: EUSA-HMC-CFC/Engr

USA Japan (USAJ)  
 ATTN: AJEN-DEM 96343  
 ATTN: DEM-Honshu 96343  
 ATTN: DEM-Okinawa 96331

616th Engineer Command 60623  
 ATTN: Facilities Engineer

US Military Academy 10966  
 ATTN: Facilities Engineer  
 ATTN: Dept of Geography &  
 Computer Science  
 ATTN: DSCPER/MASH-A

AMREC, ATTN: DRNR-WE 02172

JSA ARRCOM 61299  
 ATTN: DRCLIS-RI-1  
 ATTN: DESAR-1S

AMC - Dir., Inst., & Servc  
 ATTN: DEM (23)

DIA ATTN: DIA-WI 22316

DIA ATTN: NADS 20305

FORSCON  
 FORSCON Engr, ATTN: AFEN-DEM  
 ATTN: DEM (23)

NSC  
 ATTN: NSLO-F 78236  
 ATTN: Facilities Engineer  
 Pittsburgh AMC 80240  
 Walter Reed AMC 20012

INSCOM - Ch, Instl. Div  
 ATTN: Facilities Engineer (3)

MDW, ATTN: DEM (3)

HTMC  
 ATTN: HTMC-SA 20315  
 ATTN: Facilities Engineer (3)

NARADCOM, ATTN: DRDMA-F 01760

TANCOM, Fac. Div. 48090

TRADOC  
 HQ, TRADOC, ATTN: ATEN-DEM  
 ATTN: DEM (19)

TSARCOM, ATTN: STSAS-F 63120

USACC, ATTN: Facilities Engr (2)

WESTCOM  
 ATTN: DEM, Ft. Shafter 96858  
 ATTN: AFEN-IM

SHAPE 09055  
 ATTN: Surv. Section, CCB-OPS  
 Infrastructure Branch, LANDA

HQ USEUCOM 09128  
 ATTN: ECJ 4/7-LOC

Fort Belvoir, VA 22070 (7)  
 ATTN: Canadian Liaison Office  
 ATTN: Water Resources Support Ctr  
 ATTN: Engr Studies Center  
 ATTN: Engr Topographic Lab.  
 ATTN: ATZA-DTE-SU  
 ATTN: ATZA-DTE-EN  
 ATTN: R&D Command

CRREL, ATTN: Library 03755

WES, ATTN: Library 39180

HQ, XVIII Airborn Corps  
 and Fort Bragg  
 ATTN: AFPA-FR-EE 28307

Area Engineer, AEAO-Area Office  
 Arnold Air Force Station, TN 37389

Chanute AFB, IL 61868  
 3345 CES/DE, Stop 27

Morton AFB, CA 92609  
 ATTN: AFRECE-MX/DEE

NAVPAC  
 ATTN: Engineering Command (7)  
 ATTN: Division Offices (6)  
 ATTN: Naval Public Works Center (9)  
 ATTN: Naval School, Morell Library  
 ATTN: Naval Civil Engr Lab. (3)

NCEL ATTN: Library, Code 108A 93061

Defense Technical Info. Center 22314  
 ATTN: DDA (12)

Engr Societies Library, NY 10017

Natl Guard Bureau Instl. Div 20310

US Govt Printing Office 22306  
 Receiving Sect/Depository Copies (3)

US Army Env. Hygiene Agency  
 ATTN: HSNS-E 21016

National Bureau of Standards 20760

ENA Team Distribution

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Chief of Engineers<br>ATTN: DAEN-ECE-E<br>ATTN: DAEN-ECE-B<br>ATTN: DAEN-ECE-I (2)<br>ATTN: DAEN-ZCF-B<br>ATTN: DAEN-ECI-A<br>ATTN: DAEN-ZCE-D (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th US Army 04129<br>ATTN: AFKFC-EN                                      | Federal Highway Administration 22201<br>Region 15                                                  |
| US Army Engineer District<br>New York 10007<br>ATTN: Chief, Design Br<br>Philadelphia 19106<br>ATTN: Chief, NAPEN-E<br>Baltimore 21203<br>ATTN: Chief, Engr Div<br>Norfolk 23510<br>ATTN: Chief, NAEN-D<br>Huntington 25721<br>ATTN: Chief, ORMED<br>Wilmington 28401<br>ATTN: Chief, SAWEN-D<br>Savannah 31402<br>ATTN: Chief, SASAS-L<br>Mobile 36628<br>ATTN: Chief, SAMEN-D<br>Louisville 40201<br>ATTN: Chief, Engr Div<br>St. Paul 55101<br>ATTN: Chief, ED-D<br>Chicago 60604<br>ATTN: Chief, WCCPE-PES<br>Rock Island 61201<br>ATTN: Chief, Engr Div<br>St. Louis 63101<br>ATTN: Chief, ED-D<br>Omaha 68102<br>ATTN: Chf Engr Div | 7th Army Combined Arms Trng. Cntr. 09407<br>ATTN: AETTM-HRD-EHD          | NASA 23365 (2)                                                                                     |
| New Orleans 70160<br>ATTN: Chief, LMED-DG<br>Little Rock 72203<br>ATTN: Chf, Engr Div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Armament & Dev. Command 21005<br>ATTN: DRDAR-BLT                         | National Bureau of Standards 20234<br>Office of Noise Abatement 20590<br>ATTN: Office of Secretary |
| Tulsa 74102<br>ATTN: Chief, Engr Div<br>Ft. Worth 76102 (3)<br>ATTN: Chief, SWFED-D<br>San Francisco 94105<br>ATTN: Chief, Engr Div<br>Sacramento 95814<br>ATTN: Chief, SPKED-D                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US Army Tank Command<br>ATTN: AMCPM-LCV-T 48090                          | USA Logistics Management Center 23801                                                              |
| Far East 36301<br>ATTN: Chief, Engr Div<br>Seattle 98124<br>ATTN: Chief, EN-DB-ST<br>Walla Walla 99362<br>ATTN: Chief, Engr Div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USA ARRADCOM 07801<br>ATTN: DRDAR-LCA-OK                                 | Airports and Construction Services Dir<br>Ottawa, Ontario, Canada K1A 0M8                          |
| Alaska 99501<br>ATTN: Chief NPASA-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DARCOM 22333<br>ATTN: DRCPA-E<br>ATTN: DRCIS-A                           | Division of Building Research<br>Ottawa, Ontario, Canada K1A 0R6                                   |
| US Army Engineer Division<br>New England 02154<br>ATTN: Chief, MEDED-T<br>North Atlantic 10007<br>ATTN: Chief, NAEN-T<br>Middle East (Rear) 22601<br>ATTN: Chief, MEDED-T<br>South Atlantic 30303<br>ATTN: Chief, SAEN-TS<br>Huntsville 35807<br>ATTN: Chief, HNDED-CS<br>ATTN: Chf, HNDED-SR<br>Ohio River 45201<br>ATTN: Chief, Engr Div                                                                                                                                                                                                                                                                                                | TRADOC<br>Ft. Monroe, VA 23651                                           | National Defense HQDA<br>Ottawa, Ontario, Canada K1A 0K2                                           |
| Missouri River 68101<br>ATTN: Chief, HRDDE-T<br>Southwestern 75202<br>ATTN: Chief, SWDED-T<br>South Pacific 94111<br>ATTN: Chief, SPOED-TG<br>Pacific Ocean 96858<br>ATTN: Chf, Engr Div                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ft. Clayton, Canal Zone 34004<br>ATTN: DFAE                              | 103<br>+48<br>2-85                                                                                 |
| North Pacific 97208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ft. Detrick, MD 21701                                                    |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ft. Leavenworth, KS 66027<br>ATTN: ATZLCA-SA                             |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ft. McPherson, GA 30330 (2)                                              |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ft. Monroe, VA 23651 (6)                                                 |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ft. Rucker, AL 36360 (2)                                                 |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aberdeen Proving Ground, MD 21005<br>ATTN: DRDAR-BLL<br>ATTN: STEAP-MT-E |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Human Engineering Lab. 21005 (2)                                         |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Army Environmental Hygiene Agency 21005                                  |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naval Air Station 92176<br>ATTN: Code 661                                |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAVFAC 22332 (2)                                                         |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naval Air Systems Command 20360                                          |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US Naval Oceanographic Office 39522                                      |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naval Surface Weapons Center 22485<br>ATTN: N-43                         |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naval Undersea Center, Code 401 92152 (2)                                |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bolling AFB, DC 20332<br>AF/LEEUU                                        |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Patrick AFB, FL 32925<br>ATTN: XRO                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IACOM 48090                                                              |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wright-Patterson AFB, OH 45433 (3)                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Building Research Advisory Board 20418                                   |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Transportation Research Board 20418                                      |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dept of Housing and Urban Development 20410                              |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dept of Transportation Library 20590                                     |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Illinois EPA 62706 (2)                                                   |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Federal Aviation Administration 20591                                    |                                                                                                    |

**END**

**FILMED**

**7-85**

**DTIC**