```
In [5]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
class PCA:
    def fit_transform(self, X, n_components=2):
        # Mean center the data
        mean = np.mean(X, axis=0)
        X_{centered} = X - mean
        # Calculate covariance matrix
        cov = np.cov(X_centered.T)
        # Calculate eigenvalues and eigenvectors
        eigenvalues, eigenvectors = np.linalg.eig(cov)
        # Sort the eigenvectors in decreasing order of eigenvalues
        idxs = np.argsort(eigenvalues)[::-1]
        eigenvectors = eigenvectors[:, idxs]
        # Select the top n_components eigenvectors
        components = eigenvectors[:, :n_components]
        # Transform the data
        X projected = np.dot(X centered, components)
        return X projected
# Load dataset
X = load iris().data
y = load_iris().target
# Perform PCA
pca = PCA()
X_projected = pca.fit_transform(X)
print("Shape of Data:", X.shape)
print("Shape of transformed Data:", X_projected.shape)
# Plot the results
plt.figure(figsize = (5,3))
plt.scatter(X_projected[:, 0], X_projected[:, 1], c=y, cmap="jet")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.colorbar(label='Class')
plt.show()
Shape of Data: (150, 4)
Shape of transformed Data: (150, 2)
```

