# Network Representation Learning a.k.a. Graph Embedding

Bogumił Kamiński Paweł Prałat François Théberge\* theberge@ieee.org

August 2019

### **Outline**

- Quick overview of graph embedding
- A few algorithms: node2vec, LINE, Verse
- Framework to compare embeddings
- Examples

Objective: Map network (nodes) to vector (feature) space





Map *similar* nodes to nearby location in vector space. Similar may have different meaning:

- close w.r.t. graph topology
- similar role in graph (ex: similar degree)
- similar node attributes

#### Examples of applications:

- feature learning (rather than engineering)
- visualization
- link prediction
- community detection
- anomaly detection
- network evolution (dynamics)

INPUT: G = (V, E)

OUTPUT: vectors  $z_v \in \mathbb{R}^k$ ,  $\forall v \in V$ 





Several methods are based on random walks and the SkipGram approach for word embedding.

- A word can be characterized by the company it keeps
- Words in similar context (nearby word(s)) have similar meaning
- Consider a window around each word; build "word vectors" (ex: word2vec)
- Use those as training data

## SkipGram

#### **Training** Source Text Samples The quick brown fox jumps over the lazy dog. -(the, quick) (the, brown) The quick brown fox jumps over the lazy dog. -(quick, the) (quick, brown) (quick, fox) The quick brown fox jumps over the lazy dog. -(brown, the) (brown, quick) (brown, fox) (brown, jumps) The quick brown fox jumps over the lazy dog. -(fox, quick) (fox, brown) (fox, jumps) (fox. over)

## DeepWalk

- words are nodes  $v \in V$
- sentences are random walks on G
- word frequency in sentences show power law distribution
- vertex distribution in walks also shows power law

- node2vec defines biased random walks
- mix of breadth and depth first search



Figure 1: BFS and DFS search strategies from node u (k = 3).

REF: node2vec: Scalable Feature Learning for Networks, A. Grover and J. Leskovec

#### Key parameters:

- p: controls probability of re-visiting same node (stay in neighbourhood)
- q: controls probability of exploring further away



Figure 2: Illustration of the random walk procedure in node2vec. The walk just transitioned from t to v and is now evaluating its next step out of node v. Edge labels indicate search biases  $\alpha$ .

#### Parameters allow to tradeoff between:

- low p: explore locally; this will focus on community structure in the topology of the graph (homophily);
- low q: explore further away; this allows to capture some structural similarity between nodes (ex: hubs, bridges);

Example from Les Misérables co-occurrence graph showing homophily:



Example from Les Misérables co-occurrence graph structural equivalence:



## Other Algorithms

| Category      | Year | Published   | Method              | Time Complexity | Properties preserved                   |
|---------------|------|-------------|---------------------|-----------------|----------------------------------------|
| Factorization | 2000 | Science[26] | LLE                 | $O( E d^2)$     | 1 <sup>st</sup> order proximity        |
|               | 2001 | NIPS[25]    | Laplacian Eigenmaps | $O( E d^2)$     |                                        |
|               | 2013 | WWW[21]     | Graph Factorization | O( E d)         |                                        |
|               | 2015 | CIKM[27]    | GraRep              | O( V 3)         | $1 - k^{th}$ order proximities         |
|               | 2016 | KDD[24]     | HOPE                | $O( E d^2)$     |                                        |
| Random Walk   | 2014 | KDD[28]     | DeepWalk            | O( V d)         |                                        |
|               | 2016 | KDD[29]     | node2vec            | O( V d)         | 1 – k <sup>th</sup> order proximities, |
|               |      |             |                     |                 | structural equivalence                 |
| Deep Learning | 2016 | KDD[23]     | SDNE                | O( V  E )       | 1st and 2nd order proximities          |
|               | 2016 | AAAI[30]    | DNGR                | $O( V ^2)$      | 1 – k <sup>th</sup> order proximities  |
|               | 2017 | ICLR[3]     | GCN                 | $O( E d^2)$     | 1 – k <sup>th</sup> order proximities  |
| Miscellaneous | 2015 | WWW[22]     | LINE                | O( E d)         | 1st and 2nd order proximities          |

Table 1: List of graph embedding approaches

REF: Graph Embedding Techniques, Applications, and Performance: A Survey, P. Goyal and E. Ferrara

# **Embedding Algorithms**

#### In our tests, we used:

- node2vec with q = 1 and varying p
   (https://snap.stanford.edu/node2vec/);
- VERSE: Versatile Graph Embeddings from Similarity Measures (with personalized page rank) with default parameters (https://github.com/xgfs/verse);
- LINE: Large-scale Information Network Embedding, which uses an approximate factorization of the adjacency matrix trying to preserve first and second order proximities (https://github.com/tangjianpku/LINE).

## Which embedding?

- which embedding algorithm should I use?
- how to I select the parameters?
- how do I know if the representation is good?
- GIGO: bad representation in vector space leads to bad results ...

## Which embedding?

Results can vary a lot between algorithms, and with the choice of parameters...

Ex: two instances of node2vec on the Karate dataset:



## Proposed Framework

Given G = (V, E) on n vertices with the degree distribution  $\mathbf{w} = (w_1, \dots, w_n)$  and an embedding of its vertices to k-dimensional space,  $\mathcal{E} : V \to \mathbb{R}^k$ .

Our goal is to assign a "divergence score" to this embedding.

The lower the score, the better the embedding is. This will allow us to compare several embeddings, possibly in different dimensions.

#### Overview

- Non-random graphs exhibit community-like structure
- We group nodes in clusters
- We measure edge density between and within clusters
- We compare with predicted densities from a spatial model in embedded (vector) space by computing a divergence score
- We select the embedding with the best score

### Overview

We have two main ingredients in our framework:

- Graph topology view: a good, stable graph clustering algorithm; we use ECG by default, but we also tried with Louvain and InfoMap;
- Spatial view: we introduce the Geometric Chung-Lu (GCL) model based on the degree distribution w and the embedding £.

# Chung-Lu Model

In the original Chung-Lu model, each set  $e = \{v_i, v_j\}, v_i, v_j \in V$ , is independently sampled as an edge with probability given by:

$$p_{i,j} = \begin{cases} \frac{\deg_G(v_i)\deg_G(v_j)}{2|E|}, & i \neq j \\ \frac{\deg_G^2(v_i)}{4|E|}, & i = j. \end{cases}$$

It yields a distribution that preserves the expected degree for each vertex.

We now consider the expected degree distribution

$$\mathbf{w} = (w_1, \dots, w_n) = (\deg_G(v_1), \dots, \deg_G(v_n))$$

as well as an embedding of the nodes  $\mathcal{E}:V\to {\rm I\!R}^k$  such that we know all distances:

$$d_{i,j} = \operatorname{dist}(\mathcal{E}(v_i), \mathcal{E}(v_j)).$$

Model should be such that  $p_{i,j} \propto g(d_{i,j})$  for some decreasing function g, so long edges should occur less frequently than short ones.

There are many natural choices for g(). We use the following, normalized function  $g:[0,\infty)\to[0,1]$  for a fixed  $\alpha\in[0,\infty)$ :

$$g(d) := \left(1 - \frac{d - d_{\min}}{d_{\max} - d_{\min}}\right)^{\alpha},$$

where

$$d_{\min} = \min\{\operatorname{dist}(\mathcal{E}(v), \mathcal{E}(w)) : v, w \in V\}$$
  
$$d_{\max} = \max\{\operatorname{dist}(\mathcal{E}(v), \mathcal{E}(w)) : v, w \in V\}$$

We use clipping to force  $g(d_{\min}) < 1$  and/or  $g(d_{\max}) > 0$ .

With  $\alpha = 0$ , we recover the original Chung-Lu model, so pairwise distances are neglected.

The larger parameter  $\alpha$  is, the larger aversion for long edges is.

Thus, the only parameter of the model is  $\alpha \in [0, \infty)$ .

In practice, we try a range of values and keep the best fit.

Decreasing function g() for  $0 \le \alpha \le 7$ :



The GCL model is the random graph  $\mathcal{G}(\mathbf{w}, \mathcal{E}, \alpha)$  on the vertex set  $V = \{v_1, \dots, v_n\}$  where  $v_i, v_j$ , forms an edge with probability:

$$p_{i,j} = x_i x_j g(d_{i,j})$$

for some carefully tuned weights  $x_i \in \mathbb{R}_+$ .

The weights are selected such that the expected degree of  $v_i$  is  $w_i$  for all i:

$$w_i = \sum_j p_{i,j} = x_i \sum_j x_j g(d_{i,j}).$$

#### Theorem

There exists a unique selection of weights, provided that the maximum degree in G is less than the sum of degrees of all other vertices.

Since each connected component of G can be embedded independently, we may assume that G is connected and so the minimum degree of G is at least 1. As a result, this very mild condition is trivially satisfied unless G is a star on n vertices.

## Solving GCL

We use a simple numerical approximation procedure.

Start with an arbitrary vector  $\mathbf{t}^0 = (t_1^0, \dots, t_n^0) = (1, \dots, 1)$ 

Given  $\mathbf{t}^s = (t_1^s, \dots, t_n^s)$ , if we introduce an edge between  $v_i$  and  $v_i$  with probability

$$p_{i,j}^s = t_i^s t_j^s g(d_{i,j}),$$

then the expected degree of  $v_i$  would be

$$s_i^s = \sum_j p_{i,j}^s = t_i^s \sum_j t_j^s g(d_{i,j}).$$

Adjust the weights so that  $s_i^s$  matches  $w_i$  by replacing  $t_i^s$  with  $t_i^s(w_i/s_i^s)$ .

## Solving GCL

This also affect other values of  $\mathbf{s}^s$  and changes in other parts of  $\mathbf{t}$  affect  $\mathbf{s}^s_i$  too.

Thus, we let each vertex take a small step into the right direction

This process quickly converge to the desired state:  $s_i^s$  being very close to  $w_i$  for all i.

# Solving GCL

For each i, 1 < i < n, we define

$$t_i^{s+1} = (1-\epsilon)t_i^s + \epsilon t_i^s(\mathbf{w}_i/\mathbf{s}_i^s) = t_i^s + \epsilon t_i^s(\mathbf{w}_i/\mathbf{s}_i^s - 1).$$

Repeat the tuning process until  $\max_i |\mathbf{w}_i - \mathbf{s}_i^s| < \delta$ .

We used  $\epsilon = 0.1$  and  $\delta = 0.001$ .

## Algorithm

#### Algorithm to compute embedding divergence score

Given G = (V, E), its degree distribution **w** on V, and an embedding  $\mathcal{E} : V \to \mathbb{R}^k$  of its vertices we perform the five steps detailed next.

We obtain  $\Delta_{\mathcal{E}}(G)$ , a *divergence score* for the embedding.

We can apply this algorithm to compare several embeddings  $\mathcal{E}_1, \dots, \mathcal{E}_m$ , and select the best one.

Run some stable *graph* clustering algorithm on G to obtain a partition  $\mathbf{C}$  of the vertex set V into  $\ell$  communities  $C_1, \ldots, C_{\ell}$ .

We use ECG by default, but any good algorithm will do.

#### Let:

 $c_i$ : proportion of edges with both endpoints in  $C_i$   $c_{i,j}$ : proportion of edges with one endpoint in  $C_i$  and the other one in  $C_i$ 

#### Define:

$$ar{f c} = (c_{1,2},\ldots,c_{1,\ell},c_{2,3},\ldots,c_{2,\ell},\ldots,c_{\ell-1,\ell}), \ \hat{f c} = (c_1,\ldots,c_\ell)$$

These *graph vectors* characterize partition **C** from the perspective of *G*.

The embedding  $\mathcal{E}$  does *not* affect the vectors  $\bar{\mathbf{c}}$  and  $\hat{\mathbf{c}}$ .

We repeat steps 3-4 over a range of values for  $\alpha$ 

Given  $\alpha \in \mathbb{R}_+$ , consider  $\mathcal{G}(\mathbf{w}, \mathcal{E}, \alpha)$ , the GCL model.

From this model, we compute:

 $b_i$ : expected proportion of edges within  $C_i$ 

 $b_{i,j}$ : expected proportion of edges with one endpoint in  $C_i$  and the other one in  $C_i$ 

We get:

$$\mathbf{\bar{b}}_{\mathcal{E}}(\alpha) = (b_{1,2}, \dots, b_{1,\ell}, b_{2,3}, \dots, b_{2,\ell}, \dots, b_{\ell-1,\ell})$$

$$\hat{\mathbf{b}}_{\mathcal{E}}(\alpha) = (b_1, \dots, b_\ell)$$

These vectors characterizes partition  ${\bf C}$  from the perspective of the embedding  ${\cal E}$ .

We compute the distances between  $\bar{\mathbf{c}}$  and  $\bar{\mathbf{b}}_{\mathcal{E}}(\alpha)$ , and between  $\hat{\mathbf{c}}$  and  $\hat{\mathbf{b}}_{\mathcal{E}}(\alpha)$ .

We use the Jensen-Shannon divergence (JSD):

$$\Delta_{lpha} = rac{1}{2} \cdot \left( JSD(ar{\mathbf{c}}, ar{\mathbf{b}}(lpha)) + JSD(\hat{\mathbf{c}}, \hat{\mathbf{b}}(lpha)) 
ight).$$

This is the (divergence) score for a given  $\alpha$ .

# Algorithm Step 5

From repeated steps 3-4, we have a collection of scores  $\Delta_{\alpha}$ .

We select  $\hat{\alpha} = \operatorname{argmin}_{\alpha} \Delta_{\alpha}$ 

Define the *divergence score* for embedding  $\mathcal{E}$  on G as:

$$\Delta_{\mathcal{E}}(G) = \Delta_{\hat{\alpha}}$$

#### Algorithm

To compare several embeddings for the same graph *G*, we repeat steps 3-5 above and compare the divergence scores (lower score is better).

Steps 1-2 are done only once, so we use the same partition into  $\ell$  communities for each embedding.

#### Karate Club Dataset



Figure 1: The Karate Club Graph. We illustrate the divergence score as a function of  $\alpha$  (left) for the best embedding found by our framework (right). The colors represent the two ground-truth communities.

# Football Dataset - 630 embeddings



## Football Dataset - best



#### Football Dataset- worst



# Football Dataset- Other Graph Clustering Algrithms

We re-ran the whole experiment using respectively the Louvain and InfoMap algorithms for clustering the Football graph.

Ranked embeddings are well correlated.

| Algorithms | ECG  | Louvain |
|------------|------|---------|
| Louvain    | 0.81 |         |
| InfoMap    | 0.83 | 0.79    |

Table 1: Kendall-tau correlation between all ranked embeddings on the College Football graph using 3 different graph clustering algorithms.

#### LFR15 Dataset - 630 embeddings



## LFR15 - best



#### LFR15 - worst



## LFR35 - best



## LFR35 - worst



#### LFR55 - best



#### LFR55 - worst



# Graph Embedding

#### Notebook #7