MATH 302 HW2

Hubert King January 2025

Problem 1

Problem 2

Problem 3

Problems 4-10

4. If $A \subseteq B$ then $A \cup B = B$

Proof 1 First, we show that $B \subseteq A \cup B$. Let $x \in B$. By definition of union, $x \in A \cup B$.

Next, we show that $A \cup B \subseteq B$. *Let* $x \in A \cup B$. *Then either:*

- $x \in A$: Since $A \subseteq B$, we have $x \in B$.
- $x \in B$: Then $x \in B$ directly.

Thus, $A \cup B = B$.

5. If $A \subseteq B$ then $B^c \subseteq A^c$

Proof 2 Let $x \in B^c$. This means $x \notin B$. Since $A \subseteq B$, any element in A must be in B. Thus, $x \notin A$. Therefore, $x \in A^c$, proving that $B^c \subseteq A^c$.

6. If $A \subseteq B$ then $B \setminus (B \setminus A) = A$

Proof 3 First, we show $A \subseteq B \setminus (B \setminus A)$. Let $x \in A$. Since $A \subseteq B$, we have $x \in B$. Moreover, $x \notin B \setminus A$ since $x \in A$. Thus, $x \in B \setminus (B \setminus A)$.

Next, we show $B \setminus (B \setminus A) \subseteq A$. Let $x \in B \setminus (B \setminus A)$. Then $x \in B$ and $x \notin B \setminus A$, implying $x \in A$. Thus, $B \setminus (B \setminus A) = A$.

7. $A \subseteq B \cap C$ if and only if $A \subseteq B$ and $A \subseteq C$

Proof 4 (\Rightarrow) Assume $A \subseteq B \cap C$. Let $x \in A$. Then $x \in B \cap C$, meaning $x \in B$ and $x \in C$. Thus, $A \subseteq B$ and $A \subseteq C$.

 (\Leftarrow) Assume $A \subseteq B$ and $A \subseteq C$. Let $x \in A$. Since $A \subseteq B$, we have $x \in B$, and since $A \subseteq C$, we have $x \in C$. Thus, $x \in B \cap C$, so $A \subseteq B \cap C$.

8. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof 5 (\subseteq) Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Since $x \in B \cup C$, we have $x \in B$ or $x \in C$. Thus, $x \in (A \cap B)$ or $x \in (A \cap C)$. Therefore, $x \in (A \cap B) \cup (A \cap C)$.

 (\supseteq) Let $x \in (A \cap B) \cup (A \cap C)$. Then $x \in A \cap B$ or $x \in A \cap C$. In either case, $x \in A$ and $x \in B \cup C$. Thus, $x \in A \cap (B \cup C)$.

9. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof 6 (\subseteq) Let $x \in A \cup (B \cap C)$. Then $x \in A$ or $x \in B \cap C$. If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$. If $x \in B \cap C$, then $x \in B$ and $x \in C$, implying $x \in A \cup B$ and $x \in A \cup C$. Thus, $x \in (A \cup B) \cap (A \cup C)$.

 (\supseteq) Let $x \in (A \cup B) \cap (A \cup C)$. Then $x \in A \cup B$ and $x \in A \cup C$. If $x \in A$, then clearly $x \in A \cup (B \cap C)$. Otherwise, $x \in B$ and $x \in C$, implying $x \in B \cap C$. Thus, $x \in A \cup (B \cap C)$.

10. $A = (A \cap B) \cup (A \setminus B)$

Proof 7 (\subseteq) Let $x \in A$. Then either $x \in B$ or $x \notin B$. If $x \in B$, then $x \in A \cap B$. If $x \notin B$, then $x \in A \setminus B$. Thus, $x \in (A \cap B) \cup (A \setminus B)$.

 (\supseteq) Let $x \in (A \cap B) \cup (A \setminus B)$. If $x \in A \cap B$, then $x \in A$. If $x \in A \setminus B$, then $x \in A$. Thus, $x \in A$.