6.3 Volume by Cylindrical Shells

Solutions to the Selected Problems

5–12. Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about the y-axis.

5.
$$y = x^3$$
, $x = 1$, $y = 0$.

Solution

$$V = \int_0^1 2\pi x \times x^3 dx$$
$$= 2\pi \int_0^1 x^4 dx$$
$$= \frac{2\pi}{5}$$

6.
$$y = \sqrt{x}$$
, $x = 4$, $x = 9$, $y = 0$.

Solution

$$V = \int_{4}^{9} 2\pi x \sqrt{x} \, dx$$
$$= 2\pi \int_{4}^{9} x^{\frac{3}{2}} \, dx$$
$$= 2\pi \frac{2}{5} \left(9^{\frac{5}{2}} - 4^{\frac{5}{2}}\right)$$
$$= \frac{844\pi}{5}$$

7.
$$y = 1/x$$
, $y = 0$, $x = 1$, $x = 3$.

$$V = \int_{1}^{3} 2\pi x \times \frac{1}{x} dx$$
$$= 2\pi \int_{1}^{3} 1 dx$$
$$= 4\pi$$

6.3 Volume by Cylindrical Shells Solutions to the Selected Problems

8.
$$y = \cos(x^2)$$
, $x = 0$, $x = \sqrt{\pi}/2$, $y = 0$.

Solution

$$V = \int_0^{\sqrt{\pi}/2} 2\pi x \cos(x^2) \, dx$$

$$=\frac{\pi\sqrt{2}}{2}$$

9.
$$y = 2x - 1$$
, $y = -2x + 3$, $x = 2$.

Solution

$$V = \int_{1}^{2} 2\pi x [(2x - 1) - (-2x + 3)] dx$$

$$=\frac{20}{3}\pi$$

10.
$$y = 2x - x^2$$
, $y = 0$.

Solution

$$V = \int_0^2 2\pi x (2x - x^2) \, dx$$

$$=\frac{8\pi}{3}$$

11.
$$y = \frac{1}{1+x^2}$$
, $x = 0$, $x = 1$, $y = 0$.

$$V = \int_0^1 2\pi x \left(\frac{1}{1+x^2}\right) dx$$

6.3 Volume by Cylindrical Shells

Solutions to the Selected Problems

$$= 2\pi \int_0^1 \frac{x}{1+x^2} dx$$
$$= \pi \ln 2$$

12.
$$y = e^{x^2}$$
, $x = 1$, $x = \sqrt{3}$, $y = 0$.

Solution

13–16. Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about the x-axis.

13.
$$y^2 = x$$
, $y = 1$, $x = 0$.

Solution

$$V = \int_0^1 2\pi y \times y^2 \, dy$$

$$=\frac{\pi}{2}$$

14.
$$x = 2y, y = 2, y = 3, x = 0.$$

$$V = \int_0^1 2\pi y \times 2y \, dy$$

6.3 Volume by Cylindrical Shells Solutions to the Selected Problems

$$=\frac{4\pi}{5}$$

15.
$$y = x^2$$
, $x = 1$, $y = 0$.

Solution

$$V = \int_0^1 2\pi y \times (1 - x) \, dy$$
$$= \int_0^1 2\pi y \times (1 - \sqrt{y}) \, dy$$

$$=\frac{\pi}{5}$$

16.
$$xy = 4$$
, $x + y = 5$.

$$V = \int_{1}^{4} 2\pi y \times \left(5 - y - \frac{4}{y}\right) dy = 9\pi$$