	processing and the second	
Register Number		

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test = 1 / 11 / 111 Question Paper

Time: 8.30 AM to 10 AM		Answer All Q	uestions		Maximum	: 50 Marks
Academic Year	2021-2022	Batch	2019-2023	Date	05-04-2022	FN / AN
Subject Code & Name	UCS1623 - IMAG	UCS1623 - IMAGE PROCESSING AND ANALYSIS			Regulation:	2018
Degree & Branch	BE & CSE				Semester	6

$Part - A (6 \times 2 = 12 Marks)$

<kl2></kl2>	l. How do you represent the digital images?	<01>
<kl1></kl1>	2 What is dynamic range of an image?	<001>
<kl3></kl3>	3 Find the number of bits required to store a 256 x 256 image with 32 gray levels?	<co1></co1>
-KLI>	4. What do you meant by Zooming and shrinking of digital images?	<co1></co1>
KLD>	5. Define City-Block distance.	<c01></c01>
·KL3>	 Let I = {0,0,1,0,0} be an image. Using the mask K = {3,2,8}, Perform the convolution with Zero padding. 	<002>

$Part - B (3 \times 6 = 18 Marks)$

KL2	Discuss the relationship between pixels with neat diagrams for the following: i) Neighbours of a pixel ii) Connectivity iii) Distance measures iv) Path	-C01
	 Consider an image, and a set of filters of sizes 3x3. Construct the resultant images in terms of pixels. 	
(KL3>	1 3 5 4 4 3 i) Low Pass filter 5 2 2 ii) High Pass filter	<002>
	 Apply the distance methods city block, chessboard and m-path to compute the distance between the pixels 'p' and 'q' for the given image segment. 	
	distance between the pixels 'p' and 'q' for the given image segment.	
KL3>	distance between the pixels 'p' and 'q' for the given image segment.	<cov></cov>
KL3>	distance between the pixels 'p' and 'q' for the given image segment. 3 1 2 1(q)	<c02></c02>

 $Part - C (2 \times 10 = 20 Marks)$

	Part - C (2×10 = 20 Marks)			
	10. Apply the Zooming methods, Nearest Neighbor and Bi-linear interpolation to zoom the given image segment to the size 2x (2 times). Is the result same for both			
<kl3></kl3>	the methods? 69 50 80	<co1></co1>		
	(OR)			
<kl3></kl3>	11. Consider the following image and compute the threshold using automatic selection method to segment it into two segments. 1 8 4 3 6 2 5 0 3 8 3 6 5 4 3 9 4 7 6 2 8	<co1></co1>		
<kl2></kl2>	12. Explain smoothing spatial filters with suitable examples.	<co2></co2>		
	(OR)			
<kl2> . 13. Explain sampling and quantization with reference to digital image processing.</kl2>		<co1></co1>		