EPITA

Mathématiques

Examen S1B2-ASI

Suites et intégrales

durée : 2 heures

Janvier 2024

Nom:
Prénom:
Classe:
NOTE:
Le barème est sur 40 points. Les points seront divisés par 2 pour obtenir un note sur 20
Consignes: — Lire le sujet en entier avant de commencer. Il y a en tout 6 exercices. — La rigueur de votre rédaction sera prise en compte dans la note.

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

- Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1: intégrales (10 points)

1. Remplir le tableau ci-dessous (sans se soucier du domaine de définition des fonctions). f désigne la fonction et F est une primitive de f.

f(x) =	$\ln(2)$	$x^4 + 2x$	$\frac{e^{\sqrt{x}}}{\sqrt{x}}$	$\sin(x)$	$1 + \tan^2(x)$	$\frac{1}{x^2}$	\sqrt{x}	$\frac{x^5}{x^6+1}$
F(x) =								

2. Via une intégration par parties dont vous énoncerez la formule générale, calculer $J = \int_0^1 (3x+1)e^{2x} dx$. 3. Calculer $K = \int_0^{\ln(\sqrt{3})} \frac{1}{e^{-t} + e^t} \, \mathrm{d}t$ en posant $x = e^t$.

Exercice 2: suites adjacentes (6 points)

Soient (u_n) et (v_n) deux suites définies pour tout entier naturel $n \ge 2$ par : $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n!}$ 1. Après avoir rappelé la définition, montrer que les suites (u_n) et (v_n) sont adjacentes. 2. La suite (u_n) est-elle convergente? Justifiez votre réponse. 3. La suite (u_n) est-elle majorée? Justifier.

Exercice 3 : comparaison de suites (6 points)

Comparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide des comparateurs de Landau \sim , $= o(\cdot)$, $= O(\cdot)$ en citant toutes les comparaisons possibles et en justifiant vos réponses.

•	
. u	$v_n = e^{2n} - \sqrt{n}$ et $v_n = n + 1$.
u	$v_n = 4^n + 1$ et $v_n = 5^n$.
	cice 4 : cours (5 points)

•	 ٠.	٠.		٠.	٠.	 	 		٠.	٠.			 ٠.	٠.			٠.		 	 ٠.		٠.	٠.	٠.	 	 	 	٠.	٠.	٠.		 	٠.		٠.	 	 	 ٠.	٠.	 	 · • •
•	 ٠.	٠.	٠.	٠.		 	 	٠.	٠.	٠.	٠.	٠.	 ٠.	٠.	٠.	٠.	٠.	•	 	 ٠.	٠.	٠.	٠.	٠.	 	 ٠.	 	٠.	٠.	٠.	٠.	 	٠.	٠.	٠.	 • •	 . 	 ٠.	• •	 	
•	 ٠.					 • •	 		٠.	٠.			 ٠.	٠.			٠.	•	 	 ٠.	٠.	٠.	٠.	٠.	 	 	 	٠.	٠.	٠.		 	٠.		٠.	 	 . 	 ٠.	• •	 	
•	 ٠.	٠.	٠.	٠.		 • •	 		٠.	٠.			 ٠.	٠.	٠.		٠.		 	 ٠.	٠.	٠.	٠.	٠.	 	 	 	٠.	٠.	٠.		 	٠.	٠.	٠.	 • •	 	 ٠.	٠.	 	
•	 ٠.	٠.	٠.	٠.		 	 		٠.	٠.		٠.	 ٠.	٠.	٠.		٠.		 	 ٠.		٠.	٠.	٠.	 	 	 	٠.	٠.	٠.		 	٠.	٠.	٠.	 	 	 ٠.	٠.	 	
	 ٠.					 	 		٠.	٠.			 	٠.			٠.		 	 ٠.		٠.	٠.		 	 	 	٠.	٠.			 	٠.			 	 	 ٠.		 	
	 ٠.					 	 		٠.	٠.			 	٠.					 	 ٠.		٠.	٠.		 	 	 	٠.	٠.			 	٠.			 	 	 ٠.		 	
	 ٠.	٠.	٠.	٠.		 	 		٠.	٠.		٠.	 ٠.	٠.			٠.		 	 		٠.		٠.	 	 	 	٠.	٠.	٠.		 	٠.	٠.	٠.	 	 	 ٠.	٠.	 	

2. Démontrer le théorème des gendarmes.
Exercice 5 : Étude d'une suite (10 points)
Soit (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{u_n + 8}$.
N.B. : les questions 1. et 2. sont indépendantes 1. (a) Montrer (par récurrence) que pour tout $n \in \mathbb{N}, u_n > 0$.
(b) Supposons que la suite (u_n) converge vers un réel ℓ . Quelles sont les valeurs possibles de ℓ ?
(c) Étudier la monotonie de la suite (u_n) .

(d)	La suite (u_n) est-elle convergente? Si oui, préciser sa limite.
	7
2. So	it la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = 1 + \frac{\gamma}{u_n}$.
(a)	Montrer que la suite (v_n) est géométrique de raison 8. En déduire l'expression de v_n en fonction de n .
(b)	En déduire l'expression de u_n en fonction de n .
(5)	En deduire l'expression de u_{η} en fonction de m
(c)	En utilisant la question précédente, retrouvez vous le résultat obtenu dans la question $1.(d)$.
	ice 6 : suites extraites (3 points) $\int_{0}^{1} \sum_{k=1}^{n-1} (1)^{k}$
(u_n)	définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{n} \sum_{k=0}^{n-1} (-1)^k$.
1. Tr	ouver les expressions de u_{2n} et u_{2n+1} en fonction de n .
2. La	suite (u_n) est-elle convergente? Si oui, donner sa limite.