### PhD Proposal Writeup

A realtime and parallel look-ahead control and feedrate compensation strategy for CNC reference-pulse interpolation.

### Faculty of Mechanical Engineering,

Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang Darul Makmur, Malaysia.

| PhD Program Registration Details |                   |                                            |  |
|----------------------------------|-------------------|--------------------------------------------|--|
| 1                                | Name of Student   | Wan Ruslan bin W Yusoff                    |  |
| 2                                | Student ID        | PFD18001                                   |  |
| 3                                | National Reg. ID  | 560911-03-5067                             |  |
| 4                                | Faculty           | Faculty of Mechanical Engineering          |  |
| 5                                | Program           | Doctor of Philosophy (PhD)                 |  |
| 6                                | Field of Research | Mechatronics and System Design             |  |
| 7                                | Type of Study     | Research                                   |  |
| 8                                | Mode of Study     | Full Time                                  |  |
| 9                                | Registration Date | Tue, 03 April 2018                         |  |
| 10                               | Supervisor        | Dr. Fadhlur Rahman bin Mohd Romlay         |  |
| 12                               | External Advisor  | Prof. Yashwant Prasad Singh                |  |
| 13                               | Document Date     | June 15, 2023                              |  |
| 14                               | Research Title    | A realtime and parallel look-ahead control |  |
|                                  |                   | and feedrate compensation strategy for CNC |  |
|                                  |                   | reference-pulse interpolation              |  |
| 15                               | Contact EMail     | wruslandr@gmail.com                        |  |
| 16                               | Contact Mobile    | 6012-3218120                               |  |

Reference: Draft-44-Report-Latex-PhD-Proposal-WRY.tex

Date: **June 15, 2023** Version: **Draft-44**  CONTENTS Page 1 of 9

## Contents

| $\mathbf{C}$   | over Page                                       | 1        |
|----------------|-------------------------------------------------|----------|
| $\mathbf{C}$   | ontents                                         | 1        |
| Li             | ist of Figures                                  | 2        |
| List of Tables |                                                 | 3        |
| Listings       |                                                 | 4        |
| 1              | Simulation Results 1.1 The Parametric Equations | <b>5</b> |

LIST OF FIGURES Page 2 of 9

# List of Figures

LIST OF TABLES Page 3 of 9

## List of Tables

LISTINGS Page 4 of 9

# Listings

## 1 Simulation Results

#### 1.1 The Parametric Equations

The images of the UMP 3-axis CNC research machine for our previous work are provided in next three figures. It is an experimental CNC router-type, that instead of a tool cutter, uses a pen to create drawings on paper in the X-Y plane. The Z-axis motion is used to raise and lower the pen. As a consequence, circular arc (G02, G03 G-Code) moves are applicable to the X and Y axes only, while linear (G01 G-Code) moves are applicable to all three X, Y and Z axes.

Electrical signal pulses sent to the servo-driver provide information like rotate clockwise (CW), rotate counter-clockwise(CCW), travel distance to rotate, speed to rotate, and so on. The actuation using electrical pulses makes the physical CNC machine instantaneously active.

#### Part 1/5 Teardrop and Butterfly parametric curves

#### Teardrop parametric curve

$$x(u) = -150u + 450u^{2} - 300u^{3}$$

$$y(u) = -150u + 150u^{2}$$

$$u \in [0.0, 1.0]$$

Closed loop

Overall Single loop

Reflection x-axis: non-symmetrical Reflection y-axis: symmetrical





#### Butterfly parametric curve

$$x(u) = \sin(2\pi u) \left[ e^{\cos(2\pi u)} - 2\cos(8\pi u) - (\sin(2\pi u/12))^5 \right]$$
  

$$y(u) = \cos(2\pi u) \left[ e^{\cos(2\pi u)} - 2\cos(8\pi u) - (\sin(2\pi u/12))^5 \right]$$
  

$$u \in [0.0, 1.0]$$

Closed loop

Overall Multiple loops

Reflection x-axis: non-symmetrical Reflection y-axis: symmetrical





#### Part 2/5 Ellipse and Skewed-Astroid parametric curves

#### Ellipse parametric curve

$$x(u) = 11\sin(2\pi u)$$
  

$$y(u) = 51\cos(2\pi u)$$
  

$$u \in [0.0, 1.0]$$

#### Closed loop

Overall Single loop, smooth convex curves

Reflection x-axis: symmetrical Reflection y-axis: symmetrical





#### Skewed-Astroid parametric curve

$$x(u) = 40[\sin(2\pi u)]^3$$
  
 $y(u) = 100[\cos(2\pi u)]^3$   
 $u \in [0.0, 1.0]$ 

#### Closed loop

Overall Single loop, 4 cusps and 4 concave curves

Reflection x-axis: symmetrical Reflection y-axis: symmetrical





#### Part 3/5 Circle and AstEpi parametric curves

#### Circle parametric curve

$$x(u) = 79\sin(2\pi u)$$
  

$$y(u) = 79\cos(2\pi u)$$
  

$$u \in [0.0, 1.0]$$

#### Closed loop

Overall Single loop, smooth convex curves

Reflection x-axis: symmetrical Reflection y-axis: symmetrical



AstEpi = Sum of (Astroid + Epicycloid) parametric curves

$$tiny = 1.0 \times 10^{-10}$$

$$x(u) = 40[\sin(2\pi u)]^3 + 50\cos(2\pi u + tiny) - 10\cos(10\pi u - tiny)$$

$$y(u) = 40[\cos(2\pi u)]^3 + 50\sin(2\pi u + tiny) - 10\sin(10\pi u - tiny)$$

$$u \in [0.0, 1.0]$$

#### Closed loop

Overall Three loops, all convex curves Reflection x-axis: non-symmetrical

