

Algoritmi per la Bioinformatica 2019/2020 Progetto 8

Alignment-free and mapping-free frameworks to detect variants

Barisan Anna, Milia Mikele

Introduzione: il problema studiato

Problema: ricerca di mutazioni (SNP) all'interno del genoma, utilizzando metodi che non usano l'allineamento di sequenze (alignment-free/mapping-free).

Genotipizzazione: processo di definizione delle differenze nel corredo genetico o nel genotipo di un individuo tramite l'esame della sequenza individuale del suo DNA.

Introduzione: le mutazioni

Le differenze tra i genomi di diversi individui di una determinata specie sono note come **varianti genomiche**.

- SNP: Single Nucleotide Polymorphisms, variazione rispetto ad un unico nucleotide;
- SNV: Single Nucleotide Variant;
- Indel: inserzioni o eliminazioni di una o più basi consecutive;
- Varianti de novo: alterazioni presenti per la prima volta in un membro della famiglia (figlio) e non nei genitori.

Introduzione: le mutazioni

Un **allele** è una delle possibili versioni di una variante.

Il **genotipo** di una variante è dato dalla coppia di alleli della variante presenti nei due aplotipi (alleli ereditati dai due genitori):

- genotipo omozigote se i due alleli sono identici
- genotipo eterozigote se i due alleli differiscono.

Genotipizzare è il compito di calcolare il genotipo di tutte le varianti all'interno del campione in input.

INPUT: read brevi (sequenze di nucleotidi) prodotte da tecnologia NGS.

Introduzione: la genotipizzazione

La **pipeline standard** utilizzata per la chiamata delle varianti include l'**allineamento** delle read con una sequenza del genoma di riferimento: identifica la posizione più probabile lungo il genoma di riferimento da cui proviene ciascuna read e assegna i genotipi alle varianti nelle read.

I metodi **alignment-free** effettuano la genotipizzazione senza utilizzare l'allineamento.

5

Metodi *alignment-free*

I metodi **alignment-free** effettuano la genotipizzazione senza utilizzare l'allineamento: sfruttano diversi modelli, **algoritmi**, e **strutture dati efficienti**

- tempo di esecuzione ridotto
- accuratezza comparabile a tool alignment-based.

Possibile effettuare una distinzione all'interno dei tool alignment-free:

Reference-based

utilizzano genoma di riferimento e lista preassegnata di varianti note in input oltre alle read:

Reference-free o de novo

non utilizzano la reference.

Outline

- Introduzione del problema
- Pipeline standard (allineamento)
- Metodi alignment-free
 - VarGeno
 - MALVA
 - FastGT
 - COBASI
 - Kevlar
 - DiscoSNP++
- Benchmark
- Conclusioni

VarGeno (Sun & Medvedev, 2018)

Idea: la corrispondenza approssimativa di *k*-mer di medie dimensioni riesce a identificare univocamente i loci nel genoma senza allineamento completo delle read.

Traits:

- Alignment-free
- Reference-based (input: sample di read, genoma di riferimento, lista di SNP)
- k-mer count (k = 32)
- diretto miglioramento di LAVA (Shajii et al., 2016)

Goal: genotipizzare e rilevare principalmente SNP (no indel).

VarGeno: il Bloom Filter

Bloom Filter: struttura dati probabilistica efficiente in termini di spazio che rappresenta un insieme di elementi e consente di effettuare query di appartenenza approssimative, per determinare se un elemento appartiene o no all'insieme dei dati del Bloom filter.

- verificare se un elemento è "possibilmente nel set" (possono esserci falsi positivi, casi in cui si pensa erroneamente che l'elemento appartenga);
- verificare se un elemento è "sicuramente non nel set" (mai falsi negativi).

VarGeno: la struttura dati

Viene creato un **dizionario** contenenti tuple *<k-mer, puntatore-dati-associati>* ordinate in ordine crescente rispetto al valore intero dei *k*-mer codificati, con i *k*-mer della lista di SNP in input.

Hash table che mappa ogni numero intero senza segno di r bit u alla prima posizione in D in cui vi è un k-mer codificato i cui bit superiori sono maggiori o uguali a u.

Bloom filter B che contiene, per ogni i k-mer presente, un elemento corrispondente ai (2k - r) bit inferiori.

VarGeno: l'algoritmo

Vengono creati due indici, uno per tutti i *k*-mer presenti nella sequenza di riferimento e l'altro con *k*-mer da posizioni che si sovrappongono agli SNP della lista, con l'allele di riferimento sostituito da un allele alternato.

Partendo dagli indici, si **suddivide ciascuna read in** *k***-mer non sovrapposti** e si interrogano gli indici, controllando la presenza del *k*-mer e dei suoi vicini a distanza di Hamming 1.

Vengono esplorati solo i vicini che differiscono in una posizione il cui punteggio di qualità è inferiore a una soglia c.

VarGeno: le query dei *k*-mer

Step 1

Query vicinato superiore.

Step 2

Query vicinato inferiore.

VarGeno: l'algoritmo

Effettuate le ricerche dei *k*-mer da una read, si **determina la singola posizione di mappatura per la read**: la posizione deve avere il maggior numero di corrispondenze, almeno due *k*-mer che corrispondono devono provenire da posizioni diverse e almeno un *k*-mer deve essere non modificato.

Decisa la posizione di corrispondenza migliore della read sul genoma di riferimento, la read viene utilizzata per **conteggiare** l'**allele** di riferimento o l'allele alternato degli SNP all'interno della posizione corrispondente.

Un **modello probabilistico**, basato sul teorema di Bayes, utilizza i conteggi per determinare il genotipo più probabile per ciascun SNP.

MALVA (Bernardini et al., 2019)

Idea: la signature (insieme di *k*-mer) di un allele modella con efficienza e permette di rilevare indel e varianti.

Traits:

- Alignment-free
- Reference-based
- k-mer count (signature)

Goal: genotipizzare e individuare, oltre a SNP bi-allelici, anche SNP multi-allelici e indel, sia brevi che lunghi.

MALVA: le signature e la struttura dati

La firma dell'allele a di una variante v è il k-mer centrato in a in qualche genoma g che include a. Se sono note altre varianti a meno di k basi di distanza dall'allele, esso potrebbe avere **più** firme.

Se la stringa di basi che rappresenta a è più lunga di k la sua firma è l'insieme delle sue sottostringhe di lunghezza k.

Malva sfrutta 3 set per memorizzare le signature:

- REFSIG (contiene le firme di alleli di riferimento)
- ALTSIG (contiene firme di alleli alternati)
- REPCTX (contesto attorno a firme di alleli alternati che compaiono anche in altre regioni del genoma)

MALVA: l'algoritmo

4 Step

- 1. Calcolo delle firme.
- 2. Rilevamento delle firme ripetute.
- 3. Calcolo dei pesi delle firme degli alleli.
- 4. Chiamata dei genotipi.

MALVA: l'algoritmo

1. Calcolo delle firme.

Calcolo dei set REFSIG e ALTSIG che contengono le firme (k-mer) degli alleli di riferimento e alternati (controllo alleli distanti meno di k/2).

2. Rilevamento delle firme ripetute.

Controllo che le firme di alleli alternati non appaiano anche in altre posizioni nel genoma di riferimento: se si, tali firme vengono "ampliate", comprendendo il contesto intorno e inserite nel terzo set REPCTX.

MALVA: l'algoritmo

3. Calcolo dei pesi delle firme degli alleli.

Vengono estratti i *k*-mer delle read ed effettuato il conteggio delle loro occorrenze. Viene aumentato il peso dell'allele di riferimento ogni volta che un *k*-mer apparte nel set REFSIG e quello dell'allele alternato quando il *k*-mer appare in ALTSIG ma non in REPCTX.

4. Chiamata dei genotipi.

Dati i pesi calcolati, viene calcolata la probabilità a priori di tutti i possibili genotipi (per i possibili alleli): teorema di Bayes.

Output: il genotipo predetto è quello che ha la maggiore probabilità.

Kevlar (Standage et al., 2019)

Idea: una mutazione cellulare all'interno di un trio genitore-figlio, dovrebbe comportare una nuova sequenza nel figlio rispetto ai genitori.

Traits:

- mapping-free
- trio genitore-figlio
- k-mer count

Goal: rilevare simultaneamente SNV de novo e indels

5 step

- calcolo della frequenza dei k-mer
- 2. identificazione k-mer interessanti
- 3. assemblaggio dei k-mer interessanti

- 4. allineamento contig
- 5. chiamata delle varianti

1. Calcolo della frequenza dei k-mer

Un **conteggio approssimativo** dei *k*-mer viene memorizzato all'interno di Count-Min sketch, struttura dati che favorisce l'efficienza alla precisione.

La precisione di CM sketch, dipende dalla dimensione e dal numero degli elementi distinti che vengono tracciati.

Se i k-mer sono presenti nei genomi di riferimento (genitori) e/o in un genoma di contaminanti (batteri, virus, ...) sono ignorati.

2. Identificazione k-mer interessanti

Ogni read del figlio è scansionata e per ciascun k-mer viene richiesta la sua frequenza alle CM sketch generate.

Se un *k*-mer è frequente nel genoma figlio ed è assente dai genomi genitori è identificato come "interessante".

3. Assemblaggio dei k-mer interessanti

Ogni read che contiene k-mer interessanti viene filtrata prima di qualunque altra analisi. Per i seguenti motivi:

- permettere il ricalcolo esatto delle frequenze di ogni k-mer interessante (scartandolo se non soddisfa più la frequenza di soglia).
- opportunità di scartare *k*-mer presenti nel genoma di riferimento e contaminanti che non sono stati ignorati.

3. Assemblaggio dei k-mer interessanti

Read interessanti che condividono numerosi k-mer sono raggruppate in insiemi disgiunti, ognuno rappresentante una mutazione.

Come? Viene definito un grafo di G nel seguente modo:

- ogni **nodo** identifica una **read** contenente uno o più *k*-mer interessanti
- una coppia di nodi è connessa da un arco se le rispettive read hanno uno o più k-mer interessanti in comune

Se due read condividono un k-mer interessante, allora sono parte della stessa componente connessa p di G.

3. Assemblaggio dei *k*-mer interessanti

Per ogni $p \in G$ vengono assemblate la read corrispondenti tramite un algoritmo basato su **overlap** e viene prodotto il contig adatto per effettuare chiamate delle varianti.

4. Allineamento contig

Dai genomi dei genitori vengono selezionate delle sequenze obiettivo di riferimento per i contig.

Ogni contig viene allineato a ciascuna sequenza, e vengono mantenuti solo gli allineamenti con il punteggio più alto, classificandoli SNV o indel tramite due pattern.

Qualsiasi allineamento che non corrisponde ai pattern, è identificato come **no-call**.

5. Chiamata delle varianti

Per assegnare un punteggio alle mutazioni *de novo*, Kevlar usa un modello probabilistico che considera la frequenza dei *k*-mer interessanti per calcolare la probabilità che siano *de novo*, ereditati o semplicemente dei falsi positivi.

La classificazione delle varianti predette è basata su un'euristica.

DiscoSNP++ (Peterlongo et al., 2017)

Idea: utilizzare grafi di *de Bruijn* probabilistici per migliorare l'identificazione e la categorizzazione delle varianti

Traits:

- hybrid
- grafi di de Bruijn

Goal: individuare e classificare, tutte le tipologie di SNP, indel compresi

DiscoSNP++: la struttura dati

Minia (Chikhi & Rizk, 2013) permette di costruire grafi di de Bruijn probabilistici, inserendo i nodi all'interno di Bloom Filter posti in cascata e deducendo implicitamente gli archi dalle interrogazione senza la necessità di memorizzarli.

Problema: Un grafo di de Bruijn probabilistico è un'approssimazione eccessiva del grafo originale. Interrogando il Bloom Filter sull'esistenza o meno di un arbitrario nodo del grafo, si può ottenere un elemento falso positivo.

DiscoSNP++: la struttura dati

Soluzione: individuare e memorizzare i k-mer falsi positivi per evitare false diramazioni all'interno di una struttura separata, cFP (critical False Positive)

Modificare ogni interrogazione fatta al Bloom Filter in modo tale che produca **true** se e solo se il Bloom Filter risponde **true** e l'elemento su cui si sta interrogando non è presente all'interno dell'insieme cFP.

4 Step

- 1. Creazione del grafo di *de Bruijn* probabilistico
- 2. Individuazione delle bolle
- 3. Chiamata dei genotipi
- 4. Mapping su genoma di riferimento

1. Creazione del grafo di de Bruijn probabilistico

Tramite Minia viene costruito il grafo di de Bruijn probabilistico.

A causa degli errori di sequenziamento prodotti dagli NGS, tutti i k-mer che hanno un numero di occorrenze non superiore ad una threshold vengono scartati.

2. Individuazione delle bolle

Individua e classifica le bolle generate dalla presenza di SNP (vicini o meno) e/o indel all'interno del grafo tramite due sottomoduli:

- il primo attraversa tutti i k-mer con nodi di diramazione destri e li propone come potenziali nodi di partenza per bolle che identificano SNP o indel.
- il secondo ricorsivamente espande congiuntamente due cammini e controlla che i vincoli imposti sui parametri di diramazione siano rispettati

3. Chiamata dei genotipi

Le read iniziali vengono mappate sulle sequenze delle mutazioni trovate, e il rank viene calcolato basandosi sulla loro frequenza.

I genotipi sono individuati in modo indipendente per ogni organismo, tramite un modello binomiale basato sulla probabilità che una read venga mappata erroneamente su un allele.

4. Mapping su genoma di riferimento

Se viene fornito un genoma di riferimento, utilizzando BWA-mem le mutazioni predette vengono mappate sul genoma di riferimento.

Se una variante ha più di una posizione ottima di mappatura, ne viene scelta una una random.

Benchmark

Confronti:

- Kevlar vs DiscoSNP++
- Malva vs VarGeno vs DiscoSNP++

Benchmark: Kevlar vs DiscoSNP++

Benchmark: MALVA vs VarGeno vs DiscoSNP++

Conclusioni

I metodi **alignment-free** effettuano la genotipizzazione propongono:

- una soluzione efficiente a problemi dei tool alignment-based
- tempo di esecuzione ridotto
- accuratezza comparabile ai tool alignment-based
- modelli e strutture dati efficienti
- modello probabilistico per la chiamata delle varianti

Sviluppi futuri

Considerazione: allo stato attuale delle cose non c'è un tool alignment-free che prevale sull'altro.

Chiaramente ognuno dei tool analizzati risolve un determinato task e ognuno può essere migliorato per coprire task più generali e/o essere più performante.

Come?

- ottimizzando le strutture dati utilizzate
- variando il modello probabilistico utilizzato durante la fase di genotipizzazione

Grazie per l'attenzione.