Google

Boosted learning on level imbalance data through hierarchical data augmentation

Authors: Weijie Shen, Steve Thomas

Presenter: Casey Lichtendahl

2023 IIF Workshop on Forecast Reconciliation, 2023-09-08

Big data in time series

Big data in time series

Big data in time series

Store	State	Item	department	category	2011-01-29	 2016-06-19
CA1	CA	1	Hobby 1	Hobby	xx	xx
TX3	TX	100	Food 2	Food	xx	xx

Store	State	Item	department	category	2011-01-29	 2016-06-19
xx	CA	1	Hobby 1	Hobby	xx	xx
TX3	TX	xx	xx	Food	xx	xx

Higher level series are more important because they are more

- Stable
- Inspiring
- Actionable

Store	State	Item	department	category	2011-01-29	 2016-06-19
xx	CA	1	Hobby 1	Hobby	xx	xx
TX3	TX	xx	xx	Food	xx	xx

Higher level series are more important because they are more

- Stable
- Inspiring
- Actionable

Higher level series are fewer in counts by orders of magnitude.

— Good for statistical models

Bad for ML models

ML on level imbalance data

Level id	Aggregation Level	Number of Series	Proportion
1	All	1	
2	State	3	
3	Store	10	
4	Category	3	
5	Department	7	0.36%
6	State × Category	9	
7	State × Department	21	
8	Store × Category	30	
9	Store × Department	70	
10	Item	3049	7.1%
11	Item × State	9147	21.4%
12	Item × Store	30490	71.2%

Most series in a batch will be item-specific.

Use metrics like raw RMSE doesn't solve sampling inefficiencies.

Typical time series augmentation:

- Bootstrap noise ([1] C. Bergmeir, R. J. Hyndman, J. M. Benitez 2016)
- Transformation ([2] Q. Wen et. al 2022)
- Frequency domain
- ...

E.g.

- Decomposing series and bootstrap residuals.
- Injecting white noises, spikes, steps, slopes.
- Cropping, slicing, warping, flipping.
- Amplitude and phase perturbations.
- Shuffling, averaging, masking time series features.

Typical time series augmentation:

Adding sibling's children, i.e. nibling?

Q: What state will that be?

CA1 + TX2 ?

A: It will be somewhere in between, say Arizona:)

CA + TX (no WI) Removing children

Typical time series augmentation:

CA₃

TX 1

- CA1 + CA3
- CA + TX (no WI) ← Removing children

CA₁

• CA1 + TX2 ? Adding sibling's children, i.e. nibling?

CA₁

Q: What state will that be?

A: It will be somewhere in between, say Arizona:)

Treats state features as continuous variables and creates weighted combinations.

CA₂

TX 3

TX 2

WI3

WI2

We think of three main ways, by levels:

```
    Removing Swapping
    Random sum
    Exploit (Generate similar series)
    Explore (Generate different series)
```


We think of three main ways, by levels:

- Removing `
- Swapping Exploit
- Random sum

(Generate similar series)

Explore (Generate different series)

$$Y'_{ij} = Y_i - \sum_{p \in S_{ij}} Y_p$$

Parameters to tune:

 Max / min % of children to remove

 C_i is the set of children for node i

$$Y_i = \sum_{c \in C_i} Y_c$$
, $S_{ij} \subseteq C_i$

 Y_i is the i-th series to augment.

 Y'_{ij} is the j-th augmented series for series i.

 S_{ij} is the set of series to remove for series i.

We think of three main ways, by levels:

- Removing **Exploit**
- Swapping J (Generate similar series)
- Random sum

$$Y'_{ij} = Y_i - \sum_{p \in S_{ij}} Y_p + \sum_{q \in A_{ij}} Y_q$$

$$A_{ij} \cap C_i = \emptyset, |S_{ij}| = |A_{ij}|$$

Parameters to tune:

- Max / min series to swap
- Min children size to swap

 C_{i} is the set of children for node i

$$Y_i = \sum_{c \in C_i} Y_c$$
, $S_{ij} \subseteq C_i$

Y_i is the i-th series to augment.

 Y'_{ii} is the j-th augmented series for series i.

 S_{ij} is the set of series to remove for series i. A_{ii} is the set of series to add for series i.

We think of three main ways, by levels:

- Removing Exploit
- Swapping J (Generate similar series)
- Random sum

Explore (Generate different series)

$$Y'_{ij} = \sum_{c \in R_i} Y_c$$

$$R_{j} \subseteq \bigcup_{i} C_{i}$$

Parameters to tune:

Max / min series to sum

 C_{i} is the set of children for node i

$$Y_i = \sum_{c \in C_i} Y_c$$
, $S_{ij} \subseteq C_i$

Y_i is the i-th series to augment.

Y' is the j-th augmented series for series i.

 R_i is the set of series to sum.

M5 Experiment Setup

- Data from 2011-01-29 to 2016-05-22
- Daily backtests from 2015-05-24 to 2016-04-24
- Forecast length of 28 days
- Metrics are weighted root mean squared scaled error for P50 (WRMSSE) and weighted scaled pinball loss for P95 (WSPL)
- Backtests are aggregated the same way as horizons.
- Use a StarryNet[1] model that has comparable performance to top M5 models.
- Prediction intervals are trained and generated on top of fixed point forecasts

[1] StarryNet is a ML based forecasting algorithm developed by Google. See previous presentation at ISF.

M5 Experiment Results: point forecasts (WRMSSE)

1V10 L7	, pc		. IXCOUIT	is. point	TOTCOG	010 (1111)	VIOUL)	
Fraction of series that are augmented	id	Sum prob	Swap prob	Remove prob	All levels (L1-L12)	Bottom (L12)	Non-Bottom (L1-L11)	Dept up (L1-L9)
	1	0	0	0	0.71993	0.87562	0.70578	0.65973
	2	0.3			0.73335	0.88582	0.71949	0.67394
	3		0.3		0.72168	0.85878	0.70922	0.66623
Fastavial	4			0.3	0.70359	0.86205	0.68919	0.64151
Factorial <	5	0.15	0.15		0.71790	0.86118	0.70488	0.66052
	6		0.15	0.15	0.70470	0.85880	0.69070	0.64393
	7	0.15		0.15	0.72802	0.86535	0.71554	0.67250
	8	0.1	0.1	0.1	0.71813	0.86455	0.70482	0.65980
	9		0.1	0.1	0.70664	0.87464	0.69137	0.64233
	10		0.2	0.2	0.70697	0.85895	0.69316	0.64701
Google	11		0.1	0.2	0.72010	0.86925	0.70654	0.66127

Relative WRMSSE to no augmentation

M5 Experiment Results: prediction interval forecasts (WSPL)

	_			<u> </u>	1			
	id	Sum prob	Swap prob	Remove prob	All levels (L1-L12)	Bottom (L12)	Non-Bottom (L1-L11)	Dept up (L1-L9)
	1	0	0	0	0.14286	0.31305	0.12738	0.10706
	2	0.3			0.13925	0.30953	0.12377	0.10273
	3		0.3		0.13934	0.30556	0.12423	0.10260
	4			0.3	0.14041	0.30393	0.12555	0.10405
actorial	5	0.15	0.15		0.13654	0.30365	0.12135	0.10030
	6		0.15	0.15	0.14031	0.30616	0.12524	0.10477
	7	0.15		0.15	0.13921	0.30025	0.12457	0.10387
	8	0.1	0.1	0.1	0.13896	0.30338	0.12401	0.10333
	9	0.1	0.1		0.14137	0.30518	0.12648	0.10589
	10	0.2	0.2		0.13780	0.30280	0.12280	0.10187
Google	11	0.1	0.2		0.13840	0.29986	0.12373	0.10281

Why does data augmentation improve intervals more?

Training loss for point forecasts: without augmentation

Training loss for interval forecasts: without augmentation

Why does data augmentation improve intervals more?

Training loss for point forecasts: with augmentation

Key Takeaways

- We introduces a hierarchical data augmentation strategy with three variations for level imbalance data.
- On M5, we improve all level (L1-L12) point forecasts by 2.3% and interval forecasts by 4.4%.
- Improvements are not only for upper levels, but also for bottom levels.
- Hierarchical data augmentation helps, especially when training loss is unstable because of sampling issue.
- Interval forecasts likely benefit more from hierarchical data augmentation because of the reduced effective sample size and increased volatility of loss.
- The ideal configuration and intensity of augmentation depends on the data.