Statistics

Luc Veldhuis

November 2016

Point estimates vs interval

Idea: not a point estimate, but an interval for θ . This interval quantifies the (un)certainty of the estimate.

Example 1

$$X_1,\ldots,X_n\sim N(\mu,\sigma^2)$$
 with σ^2 unknown. Define $T=\sqrt{n}rac{\overline{X}-\mu}{\sigma}\sim N(0,1)$ with $P(\xi_{rac{lpha}{2}}< T<\xi_{1-rac{lpha}{2}})=1-lpha$ or $P(\xi_{rac{lpha}{2}}<\sqrt{n}rac{\overline{X}+\mu}{\sigma}<\xi_{1-rac{lpha}{2}})=P(\overline{X}-rac{\sigma}{\sqrt{n}}\xi_{rac{lpha}{2}}<\mu<\overline{X}+rac{\sigma}{\sqrt{n}}\xi_{rac{lpha}{2}})$ A $(1-lpha)\%$ confidence interval for μ : $[\overline{X}-rac{\sigma}{\sqrt{n}}\xi_{rac{lpha}{2}};\overline{X}+rac{\sigma}{\sqrt{n}}\xi_{rac{lpha}{2}}]$

Definition

Let X be a random variable with probability distribution p_{θ} , $\theta \in \Theta$. The mapping $X \mapsto G_X \subset \Theta$ is the confidence interval/region for θ with uncertainty α if $P(\theta \in G_X) \geq 1 - \alpha$ for all $\theta \in \Theta$

Remark

for case at hand, θ is fixed and data is given. So is G_X then either θ is in G_X or it is not, but this is unknown. Interpretation: if we would repeat the experiment x times, and reconstruct the G_X , we expect on average at least $x(1-\alpha)$ of these G_X to contain our θ

Remark

A confidence interval for a parameter is generally not unique. E.g. $P(\xi_{\frac{\alpha}{2}} < T < \xi_{\frac{1-\alpha}{2}}) = 1-\alpha$. One needs to specify whether the interval is symmetric of minimum. (Not sure if I got the last sentence right)

It is often practical to use a pivot for confidence intervals

Definition

A pivot is a function $(X, \theta) \to T(X, \theta)$ such that $T(X, \theta)$ has, when θ is the true parameter, a known distribution that does <u>not</u> depend on θ .

E.g. $P_{\theta}(T(X, \theta) \in B)$ is known for all B. Effectively it cancels both θ 's in $P_{\theta}(T(X, \theta) \in B)$.

Constructing a confidence interval with a pivot

Use of a pivot for construction of exact confidence intervals

- Given a point $T(X, \theta)$ find c_1 and c_2 such that $P_{\theta}(c_1 < T(X, \theta) < c_2) = 1 \alpha$
- Solve inequalities (in the probabilistic) to arrive at the confidence interval.

$$\{\theta \in \Theta : c_1 < T(X,\theta) < c_2\}$$

Observe c_1 and c_2 do not depend on the <u>unknown</u> θ and the probability can be calculated.

Remark

'exact' and 'confidence' depends heavilly on the assumptions made.

Example

The pivot $T=\sqrt{n} \frac{\overline{X}-\mu}{\sigma} \sim \textit{N}(0,1)$ with known distribution independent of μ .

Choose $B=[\xi_{\frac{\alpha}{2}},\xi_{1-\frac{\alpha}{2}}]$ for any $\alpha\in(0,1)$

Example

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with σ^2 unknown.

Pivot: $T = \frac{\overline{X} - \mu}{S_x} \sim t_{n-1}$. Thus

$$P_{\mu}(-t_{n-1;1-\frac{\alpha}{2}} < T < t_{n-1;1-\frac{\alpha}{2}}) = 1 - \alpha$$

Rewrite:
$$P_{\mu}(\overline{X} - \frac{S_{x}}{\sqrt{n}}t_{n-1;1-\frac{\alpha}{2}} < \mu < \overline{X} + \frac{S_{x}}{\sqrt{n}}t_{n-1;1-\frac{\alpha}{2}}) = 1 - \alpha$$

Thus our confidence interval is: $\overline{X} \pm \frac{S_x}{\sqrt{n}} t_{n-1;1-\frac{\alpha}{2}}$

Compare with previous example: this confidence interval is wider, due to heavier tails of t compared to N(0,1).

Remark

Confidence interval is larger when:

- \bullet σ increases
- n decreases
- \bullet α decreases

Find a balance between precision and confidence

Example

 $X \sim Bin(n, p)$ with $p \in (0, 1)$ unknown.

 $\hat{p}_{ml} = \frac{x}{n}$ point estimate. Pivot does not exist here.

But there is an approximate pivot.

$$T = \frac{x - np}{\sqrt{np(1-p)}} \approx N(0,1)$$
 as $Bin(n,p) \approx N(np, np(p-1))$ for

large n

Find a $1 - \alpha$ confidence interval for p. Derive from

$$P_p(-\xi_{1-\frac{\alpha}{2}} < \frac{x-np}{\sqrt{np(1-p)}} < \xi_{1-\frac{\alpha}{2}}) = 1-\alpha \text{ for } x=102, \ n=500, \ \alpha=0.10.$$

Then using the ABC-formula: $(102-500)^2 \le 500p(1-p)(1,96)^2$ solves for $p=0.187 \lor p=0.223$. They approximate a 90% confidence interval for $p \in [0.187; 0.223]$

Example

Let $X_1, \ldots, X_n \sim U[0, \theta]$ then all $\frac{X_1}{\theta}, \ldots, \frac{X_n}{\theta} \in U[0, 1]$. Thus any function of any of these variables is a pivot. In particular $\frac{X_{(n)}}{\theta}$ as $X_{(n)}$ is the ML estimator of θ .

When T_n is an estimator of $g(\theta)$, then often T_n is asymptotically normally distributed (by the Central Limit Theorem):

$$\frac{T_n - g(\theta)}{\sigma_{n,\theta}} \tag{1}$$

if $n \to \infty$ and $\sigma_{n,\theta}$ is the standard deviation of T_n .

Then (1) is an approximate pivot.

In the third example, $T_n = \frac{X}{n}$, $g(\theta) = p$ and $\theta_{n,p} = \sqrt{\frac{1}{n}}p(1-p)$.

Then an approximate $(1-\alpha)\%$ confidence interval for

$$g(\theta): T_n \pm \sigma_{n,\theta} \xi_{1-\frac{\alpha}{2}}$$

Often $\sigma_{n,\theta}$ needs to be estimated. E.g. a ML estimator.

Definition

Score function is defined as:

$$heta \mapsto rac{\delta}{\delta heta} log(p_{ heta}(X)) = l_{ heta}(X)$$

Definition

Fisher information is defined as:

$$i_{\theta} = \mathbb{V}(I_{\theta}(X))$$

Lemma

Under some regularly conditions:

$$i_{\theta} = -\mathbb{E}(\ddot{l}_{\theta}(X))$$

where
$$\ddot{l}_{\theta} = \frac{\delta^2}{\delta^2 \theta} log(p_{\theta}(X))$$

Fisher-information \approx curvature of log-likelihood

 ${\sf High\ curvature} = {\sf low\ variance} = {\sf good}$

 $Low\ curvature = high\ variance = bad$

Example

Let $X_1, \ldots, X_n \sim Geo(\theta)$ with $\theta \in (0,1)$ unknown.

$$P_{\theta}(X) = (1 - \theta)^{x - 1}\theta \quad \mathbb{E}(X_1) = \frac{1}{\theta}$$

$$\mathbb{V}(X_1) = \frac{1 - \theta}{\theta^2}$$

$$\dot{l}_{\theta}(X) = \frac{\delta}{\delta \theta} (\log((1 - \theta)^{x - 1}\theta))$$

$$= \frac{\delta}{\delta \theta} ((x - 1)\log(1 - \theta) + \log(\theta))$$

$$= -\frac{x - 1}{1 - \theta} + \frac{1}{\theta}$$

$$\ddot{l}_{\theta}(X) = \frac{x - 1}{(1 - \theta)^2} - \frac{1}{\theta^2}$$

Example (continued)

$$i_{\theta} = \mathbb{V}\left(-\frac{x-1}{1-\theta} + \frac{1}{\theta}\right)$$

$$= \mathbb{V}\left(-\frac{x-1}{1-\theta}\right)$$

$$= \frac{1}{(1-\theta)^2} \left(\frac{1-\theta}{\theta^2}\right)$$

$$= \frac{1}{\theta^2 (1-\theta)}$$

$\mathsf{Theorem}$

Let $X_1, \ldots, X_n \sim P_{\theta}(X)$ and $i_{\theta} < \infty$.

Define $\hat{\theta}_n$ as the maximum likelihood estimator based on X_1, \dots, X_n , then (under conditions):

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow N(0, i_{\theta}^{-1})$$

if $n \to \infty$

In words, the ML estimator is unbiased asymptotically and normally distributed for large n, thus:

$$\hat{\theta}_n \approx \sim N(\theta, n^{-1}i_\theta^{-1})$$

From this note that variance of the ML estimator decrease as n increases.

Theorem (continued)

Approximage pivot:

$$\frac{\hat{\theta}_n - \theta}{\sqrt{\frac{1}{n}i_{\theta}^{-1}}} = \sqrt{ni\theta}(\hat{\theta}_n - \theta) \approx \sim N(0, 1)$$

Approximate $(1 - \alpha)$ confidence interval for θ is:

$$\theta = \hat{\theta}_n \pm \frac{1}{ni_{\theta}} \xi_{1-\frac{\alpha}{2}}$$