GRADO EN MATEMÁTICAS - CURSO 2023-2024 ASIGNATURA: ESTADÍSTICA MULTIVARIANTE

RELACIÓN 2 - EJERCICIO COMPLEMENTARIO

EJEMPLO [Rencher y Christensen (2012), Tabla 3.1]

'Altura' (pulgadas) y 'Peso' (libras) para una muestra de N=20 individuos

Individuo	Altura (X_1)	Peso (X_2)	Individuo	Altura (X_1)	Peso (X_2)
1	69	153	11	72	140
2	74	175	12	79	265
3	68	155	13	74	185
4	70	135	14	67	112
5	72	172	15	66	140
6	67	150	16	71	150
7	66	115	17	74	165
8	70	137	18	75	185
9	76	200	19	75	210
10	68	130	20	76	220

Estadísticos muestrales básicos:

Vector de medias muestral:

$$\bar{\mathbf{x}} = \begin{pmatrix} 71,45\\164,7 \end{pmatrix}$$

• Matriz de cuasi-covarianzas muestral (n = N - 1 = 19)

$$S_n = \begin{pmatrix} 14,576 & 128,88 \\ 128,88 & 1441,2653 \end{pmatrix}$$

■ Coeficiente de correlación muestral:

$$r_{12} = 0.889$$

PLANTEAMIENTO:

Se quiere contrastar las hipótesis

$$H_0: \quad \boldsymbol{\mu} = \begin{pmatrix} 70 \\ 170 \end{pmatrix}$$

$$H_1: \quad \boldsymbol{\mu} \neq \begin{pmatrix} 70 \\ 170 \end{pmatrix}$$

Contraste sobre el vector de medias μ , con Σ conocida:

Supongamos que se conoce que, para la población de referencia, la matriz de covarianzas es

$$\Sigma = \begin{pmatrix} 20 & 100 \\ 100 & 1000 \end{pmatrix}$$

Valor del estadístico de contraste:

$$u = (20) \begin{pmatrix} 71,45 - 70 \\ 164,7 - 170 \end{pmatrix}' \begin{pmatrix} 20 & 100 \\ 100 & 1000 \end{pmatrix}^{-1} \begin{pmatrix} 71,45 - 70 \\ 164,7 - 170 \end{pmatrix} = 8,4026$$

■ Comparación con el valor teórico bajo H_0 a un nivel de significación $\alpha=0.05$, $\mathcal{X}^2_{2.0.05}=5.99$

$$u=8,4026>5,99=\mathcal{X}_{2,0,05}^2$$
 —— Se rechazaría H_0

■ Comparación con el valor teórico bajo H_0 a un nivel de significación $\alpha=0.01$, $\mathcal{X}^2_{2.0.01}=9.21$

$$u=8,4026<9,21=\mathcal{X}_{2,0,01}^2$$
 — No se rechazaría H_0

Contraste sobre el vector de medias μ , con Σ desconocida:

Valor del estadístico de contraste:

$$t = (20) \begin{pmatrix} 71,45-70 \\ 164,7-170 \end{pmatrix}' \begin{pmatrix} 14,576 & 128,88 \\ 128,88 & 1441,2653 \end{pmatrix}^{-1} \begin{pmatrix} 71,45-70 \\ 164,7-170 \end{pmatrix} = \dots$$

■ Valor de comparación teórico bajo H_0 a un nivel de significación α :

$$\frac{(19)(2)}{19-2+1}F_{2,19-2+1,\alpha} = \frac{38}{18}F_{2,18,\alpha} = \dots$$

■ COMPLETAR:

- Decisión sobre H_0 , con Σ desconocida, al nivel $\alpha=0.1, \alpha=0.05, \alpha=0.01$
- Gráficos de 'regiones de aceptación' en torno a μ_0 , con Σ conocida y desconocida, para distintos valores del 'nivel de significación' α
- Gráficos de 'regiones de confianza' en torno a $\bar{\mathbf{x}}$, con Σ conocida y desconocida, para distintos valores del 'nivel de confianza' $1-\alpha$