

Determining the tau decay constant for a guitar sound wave

By: Andrew Krupien, Jeanne Gandon, Emilie Letourneau, and Tejes Gaertner

Damped Linear Oscillators

RLC Circuit:

Vibrating Spring:

Pendulum:

Mathematics of Damped Linear Oscillators

Guitar sound wave's behavior

Fundamental equations and assumptions:

- 1. $f = (\sqrt{(T/U)})/2L$
- 2. Amplitude decay = A0e^-t/tau
- 3. Tau=1/n*gamma
- 4. $A0 = (a^2 + b^2)^{1/2}$
 - a. a and b are constant found after Solving the characteristic equation

Hypothesis

- Measure the intensity of a sound wave produced by guitars of varying linear mass density
- the initial amplitude and frequency for a steel guitar string should be higher than a brass guitar string
- the decay constant tau should be higher for each nth increase in harmonic
- because steel has a lower linear mass density than brass and an increase in harmonic correlates to a greater number of oscillations per second.

Method

Acoustic/Brass

Electric/Steel

Equipment

- Arduino Uno R3 controller board
- Breadboard
- Jumper Wires
- Electret Microphone Amplifier
 MAX4466 Module Adjustable Gain
 Blue Breakout Board for Arduino
- Phone with audio recordings
- Phone stand
- Power source
- Laptop with Arduino software
- Acoustic and Electric guitars

Experimental Setup and Procedure

- Soldering
- Wiring
- Arduino Code
- Experimental Setup
- Data collecting
- Analysis


```
const int sampleWindow = 50; // Sample window width in mS (50 mS = 20Hz)
unsigned int sample;
void setup()
  Serial.begin (9600);
void loop()
  unsigned long startMillis= millis(); // Start of sample window
  unsigned int peakToPeak = 0; // peak-to-peak level
  unsigned int signalMax = 0;
  unsigned int signalMin = 1024;
  // collect data for 50 mS
  while (millis() - startMillis < sampleWindow)
      sample = analogRead(0);
     if (sample < 1024) // toss out spurious readings
        if (sample > signalMax)
           signalMax = sample; // save just the max levels
        else if (sample < signalMin)
           signalMin = sample; // save just the min levels
  peakToPeak = signalMax - signalMin; // max - min = peak-peak amplitude
  double volts = (peakToPeak * 5.0) / 1024; // convert to volts
  Serial.println(volts);
```


Plots with Normalized, and Fitted Curves for Acoustic and Electric Guitars, Intensity on Y-axis with respect to time on X-axis.

Analysis

Plots with Normalized, and Fitted Curves for Acoustic and Electric Guitars, Intensity on Y-axis with respect to time on X-axis.

Analysis of Amplitudes/Frequencies

Please Note Initial Amplitude Based on Amplitude Normalized to 1 Cm, intended frequencies from MTU.edu

	1			
Note	Electric Initial Amplitude (Cm)	Acoustic Initial Amplitude (Cm)	Electric Error from Intended Frequency (%)	Acoustic Error from Intended Frequency (%)
Low E	.877	.92	1.1%	.7%
Α	0.94	0.65	.9%	.9%
D	.99	0.74	1.9%	.1%
G	0.86	0.98	1.5%	.3%
В	0.92	0.94	1.2%	.4%
High E	0.92	0.96	.6%	.2%

Conclusion

The experimentally collected data supports our hypothesis that the linear mass density and harmonic number are proportional to a guitar sound waves decay constant and oscillation frequency.

Sources of error

Systematic errors:

- 1. Playing a pre recorded audio file
- 2. Modeling the string-guitar system without any internal resistance
- 3. Assuming gamma is a constant
- 4. Acoustic vs Electric Build (ie. Acoustic is Hollow-Bodied)

Random errors

- 1. The Arduino's connection to the computer
- 2. The position/strength of the guitar string player's finger
- 3. The efficacy of the Arduino microphone
- 4. Qualities of the medium (ie. temperature, humidity)

Implications and magnitude of results

Our results illustrate that a guitar sound wave can be accurately modeled as a damped linear oscillator (one variable), and has a tau decay constant proportional to intrinsic properties of the sound wave!

• There is a higher average Tau for the acoustic guitar

• Guitar/String design

Future research

- 1. Conduct the same experiment but vary the temperature in the environment by an integer number of kelvin
- 2. Conduct the experiment in fluids of varying viscosities-water, oil, etc..

Thank you for listening to our presentation!

Questions?

References?