KNN Instance-Based Learning

• Idea:

- Datapoints with similar attributes belong to same class.
- Classify new examples by comparing similar training examples.

Algorithm:

- Given some new case to predict its class y
- Find similar training examples
- Count how many similar examples are in each class and assign to max membership

Consequence:

- Memory based Learning
- No need for weight parameters' training!

Issues

- How to determine similarity?
- How many similar training examples to consider?
- How to avoid noisy classification, i.e. avoid overfitting?
- How to resolve clashes of classes?
- How to reduce complexity for large datasets?
- How to manage the curse of dimensionality too many features?

1-Nearest Neighbor

- One of the simplest of all machine learning classifiers
- May wrongly classify to a noisy example

k – Nearest Neighbor

- KNN (k>1) Generalizes 1-NN to smooth away noise in the labels
- Conduct majority voting among all K neighbors to select thee final class

Distance Metric

- Euclidean distance
- Two-dimensional: Dist(a,b) = $sqrt((a_1 b_1)^2 + (a_2 b_2)^2$
- Multivariate: Dist(a,b) = $sqrt(\sum (a_i b_i)^2)$
- Hamming distance
- When different units are used for each dimension
 normalize each attribute (j) by standard deviation

$$z_{ij}=x_{ij}-\mu_{j})/\sigma_{j}$$

Distance Metric

- For discrete data, can use hamming distance
 D(a,b) = number of features on which a and b differ
- Other distances normal, cosine, Manhatten
- Using centroid distances (Mahalanobis Distance) regularizes KNN

1-NN Voronoi tessalation

• Forms a Voronoi tessellation of the instance feature space

Distance Metrics

• Different metrics can change the decision surface

Dist(
$$\mathbf{a}$$
, \mathbf{b}) = sqrt($(a_1 - b_1)^2 + (a_2 - b_2)^2$)

Dist(
$$\mathbf{a}$$
, \mathbf{b}) = sqrt($(a_1 - b_1)^2 + (3a_2 - 3b_2)^2$)

KNN Example

	Food	Chat	Fast	Price	Bar	BigTip
	(3)	(2)	(2)	(3)	(2)	
1	great	yes	yes	normal	no	yes
2	great	no	yes	normal	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	normal	yes	yes

Similarity metric: Number of matching attributes (k=2)

- •New examples:
 - Example 1 (great, no, no, normal, no) Ye
 - ☐ most similar: number 2 (1 mismatch, 4 match) ☐ yes
 - \square Second most similar example: number 1 (2 mismatch, 3 match) \square yes
 - Example 2 (mediocre, yes, no, normal, no)

Yes/No

- \square Most similar: number 3 (1 mismatch, 4 match) \square no
- \square Second most similar example: number 1 (2 mismatch, 3 match) \square yes

Selecting K

Increase k:

 Makes KNN less sensitive to noise till a certain point where irrelevant classes interfere

Decrease k:

 Allows capturing finer structure of space till random noise dominates

• Pick k not too large, but not too small (depends on data)

K

Issues

- How to determine similarity? Euclidean distance/ Hamming distance
- How many similar training examples to consider?
 - Has to be odd for majority voting in classification.
 - Neither too small nor too big.
- How to avoid noisy classification, i.e. avoid overfitting?
- How to resolve clashes of classes?
- How to reduce complexity for large datasets? O(n*b)
- How to manage the curse of dimensionality?

Curse-of-Dimensionality

- Prediction accuracy can quickly degrade when number of attributes grows.
 - Irrelevant attributes easily "swamp" information from relevant attributes
 - When many irrelevant attributes, similarity/distance measure becomes less reliable

Remedy

- Try to remove irrelevant attributes in pre-processing step
- Weight attributes differently
- Increase k (but not too much)

Complexity

- For a given new test case, using brute force:
 O(n*d), n: no of training examples, d: no of attributes
- Parallelize distance calculations
- Space partitioning Structure the data points as a tree
- Approximate nearest neighbor search fuzzify attributes and defuzzify to target class
- Feature selection and elimination, dimension reduction
- Nearest prototypes
- Combination methods