QU)
$$\int_{x=0}^{6} f(x) = 1$$

 $0.9 + \int_{x=1}^{6} (\frac{1}{x})^{2} = 1$
 $0.9 + \frac{49c}{20} = 0.1$
 $c = \frac{2}{49}$
 $f(x) = \int_{x=1}^{6} (f(x) \times (x-1))^{2} dx = \int_{x=1}^{6} (f(x) \times$

Q5) a)
$$f(x) = \frac{4-x}{6}$$
, $x = 1, 2, 3$

$$Z = u(X) = X^3$$

$$z = 1^3, 2^3, 3^3$$

$$h(z) = \frac{4-z^{\frac{1}{3}}}{6}$$
, $z=1,8,27$

b)
$$E(Z) = \sum z h(z)$$

 $= 1 \times \frac{4 - 1^{\frac{1}{5}}}{6} + 8 \times \frac{4 - 8^{\frac{1}{5}}}{6} + 27 \times \frac{4 - 27^{\frac{1}{5}}}{6}$
 $= \frac{3}{6} + \frac{16}{6} + \frac{27}{6}$
 $= \frac{46}{6}$
 $E(Z) = \frac{23}{3}$ C) $[0 - E(Z)]$

c)
$$(0-E(Z)=10-\frac{23}{3}$$

= $\frac{7}{3}$

$$P(X=1) = \frac{18}{38}$$

 $P(X=-1) = \frac{20}{38}$

$$E(X) = \sum x P(X=x)$$

$$= \left(\frac{18}{38} \right) + (-1) \left(\frac{20}{38} \right)$$

$$=-\frac{2}{38}$$

 $=-\frac{1}{19}$

b) let Y be the money won in France Casion Casinos

$$P(Y=1) = \frac{18}{37}$$

 $P(Y=-1) = \frac{19}{37}$

$$E(Y) = Zy P(yY=y)$$

= $\frac{18}{33} - \frac{19}{33}$