EXAMEN DE ROBOTIQUE - SRI 2^{eme} ANNÉE

Décembre 2021–1h30 – Polycopiés autorisés.

I/Calcul du Modèle différentiel direct (MDD)

On considère le robot manipulateur représenté sur la Figure 1 pour lequel l'opérateur décrit la tâche à l'aide des coordonnées (cartésiennes) de position du point O_6 dans le repère \mathcal{R}_0 et de l'orientation de \mathcal{R}_5 par rapport à \mathcal{R}_0 (cosinus directeurs partiels).

FIGURE 1 – Robot manipulateur PRRRP

La modélisation du robot avec les repères de la figure 1 donne les résultats suivants :

	1	2	3	4	5
σ_i	1	0	0	0	1
a_{i-1}	0	0	0	b	0
α_{i-1}	0	0	$\Pi/2$	0	$\Pi/2$
r_i	q_1	-a	0	0	q_5
θ_i	0	q_2	q_3	q_4	0
$q_i(figure)$	< 0	$\Pi/2$	0	$\Pi/2$	0

$$T_{01} = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & q_1 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix} \qquad T_{12} = \begin{pmatrix} c2 & -s2 & 0 & | & 0 \\ s2 & c2 & 0 & | & 0 \\ 0 & 0 & 1 & | & -a \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix} \qquad T_{23} = \begin{pmatrix} c3 & -s3 & 0 & | & 0 \\ 0 & 0 & -1 & | & 0 \\ s3 & c3 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$$T_{34} = \begin{pmatrix} c4 & -s4 & 0 & | & b \\ s4 & c4 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix} \qquad T_{45} = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & -1 & | & -q_5 \\ \hline 0 & 1 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

- 1. Calculer la matrice jacobienne préférentielle $J_{3(2)}$.
- 2. Pour la configuration de la figure quel est le rang de cette matrice.
- 3. Donner les conditions pour avoir cette matrice de rang maximal.
- 4. Le calcul de la jacobienne (géométrique) pour la configuration de la figure est donné par :

$$\begin{pmatrix} \dot{\mathbf{p}} \\ \boldsymbol{\omega} \end{pmatrix} = J(\mathbf{q_{figure}}).\dot{\mathbf{q}} = \begin{pmatrix} 1 & -b & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & b & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}. \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \\ \dot{q}_5 \end{pmatrix}$$

(vitesse linéaire et angulaire du repère R_5 en fonction de $\dot{\mathbf{q}}$ pour $\mathbf{q} = \mathbf{q}_{figure}$)

Sans faire le calcul de $J(\mathbf{q})$ et en analysant $J(\mathbf{q}_{figure})$, pouvez-vous trouver les 2 termes $j_{i,j}$ qui sont faux et expliquer pourquoi.

II/Modèle différentiel Inverse (MDI)

On considère un robot avec quatre liaisons RPRR (3 rotoïdes et une prismatique).

Le modèle différentiel direct de ce robot est donné par :

$$\underline{dX} = \begin{pmatrix} dx \\ dy \\ dz \\ d\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -\sin(q_1) \\ 1 & 0 & 0 & \cos(q_1) \\ 0 & q_2 & 0 & 0 \\ 0 & \sin(q_1) & \cos(q_3) & 0 \end{pmatrix} \cdot \begin{pmatrix} dq_1 \\ dq_2 \\ dq_3 \\ dq_4 \end{pmatrix} = J(\underline{q}) \cdot \underline{dQ}$$

- Calculer le Modèle différentiel Inverse (ne pas inverser J(q)).
- Pour $q_2 = 0$, on suppose que le rang $(J(\mathbf{q}) = 3)$. Donner une condition de compatibilité sur le vecteur \underline{dX} pour pouvoir calculer le modèle différentiel inverse (ne pas calculer le MDI).

III/ Génération de trajectoire

Pour la commande d'un axe de robot entre deux configurations q_1 et q_2 , on impose les profils de vitesse $\dot{q}(t)$ et d'accélération $\ddot{q}(t)$ de la figure 2. La décomposition de l'accélération en morceaux permet d'avoir une sollicitation moins brutale au niveau de l'axe et d'imposer les vitesses V_M et V_1 .

Figure 2 – Profils de commande en vitesse et accélération

Sachant qu'on connait : q_1 , q_2 , A_1 et A_2 et que la durée des différentes phases des profils sont toutes égales à T :

- Calculer T, V_M et V_1 .
- calculer q(t) et $\dot{q}(t)$ pour $t \in [0, 3.T]$