Лабораторная работа № 3

Реализация очереди с приоритетами

1. ЦЕЛИ РАБОТЫ

Приобрести практические навыки реализации очереди с приоритетами на основе бинарной пирамиды.

2. ЗАДАНИЕ

В лабораторной работе необходимо реализовать заданную структуру данных (см. таблицу ниже) и исследовать вычислительную сложность основных операций с ней. Структура данных выбирается в соответствии с вариантом задания, полученным от преподавателя.

Вариант	Структура данных
1	Список вещественных чисел
	Операции: доступ по индексу, добавление элемента
	Реализация: вектор, коэффициент – 1,5
	Сравнить:
2	Список целых чисел
	Операции: доступ по индексу, добавление элемента, удаление элемента
	Реализация: вектор, коэффициент – 2
	Сравнить:
3	Невозрастающая очередь с приоритетами (приоритет – целое число, данные – строка)
	Onepaции: Enqueue, Dequeue, Peek
	Реализация: бинарная пирамида
4	Неубывающая очередь с приоритетами (приоритет – целое число, данные – строка)
	Onepaции: Enqueue, Dequeue, Peek
	Реализация: бинарная пирамида
5	Невозрастающая очередь с приоритетами (приоритет и данные – обобщенные типы)
	Onepaции: Enqueue, Dequeue, Peek
	Реализация: бинарная пирамида
6	Неубывающая очередь с приоритетами (приоритет и данные – обобщенные типы)
	Onepaции: Enqueue, Dequeue, Peek
	Реализация: бинарная пирамида
7	Невозрастающая очередь с приоритетами (приоритет – целое число, данные –
	обобщенный тип)
	Onepaции: Enqueue, Dequeue, Peek, IncreasePriority
	Реализация: бинарная пирамида
8	Неубывающая очередь с приоритетами (приоритет – целое число, данные –
	обобщенный тип)
	Onepaции: Enqueue, Dequeue, Peek, DescreasePriority
	Реализация: бинарная пирамида
9	Универсальная очередь с приоритетами (приоритет и данные – обобщенные типы)
	Onepaции: Enqueue, Dequeue, Peek, IncreasePriority, DescreasePriority
	Реализация: бинарная пирамида

Вариант	Структура данных
10	Неубывающая очередь с приоритетами
	Onepayuu: Enqueue, Dequeue, Peek, Merge
	Реализация: фибоначчиева куча
11	Неубывающая очередь с приоритетами
	Onepayuu: Enqueue, Dequeue, Merge
	Реализация: левосторонняя куча
12	Неубывающая очередь с приоритетами
	Onepayuu: Enqueue, Dequeue, Merge
	Реализация: биномиальная куча
13	Задача о поддержке медианы.
	Медиана множества чисел является его срединным элементом.
	В массиве с нечетной длиной 2k - 1 медиана является k-порядковой статистикой
	(то есть k-м наименьшим элементом). В массиве с четной длиной 2k, k-порядковая
	и (k + 1)-порядковая статистики считаются медианными элементами.
	Вход: последовательность чисел, одно за другим (для простоты предположим, что они не
	совпадают)
	Выход: медианный элемент

Порядок работы:

- 1. реализовать заданную структуру данных, убедиться в корректности: визуально проследить работу алгоритмов при выполнении требуемых словарных операций (например, добавление/извлечение элемента с максимальным/минимальным приоритетом, увеличить/уменьшить значение ключа элемента), при этом графически отображается состояние структуры данных.
- 2. исследовать производительность алгоритмов на реализованной структуре **№**1 **№**2 вариантов И сравнить производительность данных; ДЛЯ реализованного алгоритма и стандартных алгоритмов, сделать выводы. Указание: Исследование выполнять аналогично исследованию лабораторной работе № 1: для 10-20 разных значений размера входных данных провести несколько (4-7) измерений, отбросить максимальные результаты и усреднить.

3. ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Сформулируйте общую идею амортизационного анализа.
- 2. Назовите и опишите основные методы амортизационного анализа.
- 3. Опишите структуру данных «Динамический массив» и покажите, как выполняются операции добавления и удаления элементов.

- 4. Приведите анализ операций добавления и удаления элементов для структуры данных «Динамический массив».
- 5. Дайте определение абстрактного типа данных «Очередь с приоритетами (Priority Queue)».
- 6. На основе каких структур данных может быть реализован абстрактный тип данных «Очередь с приоритетами (Priority Queue)»?
- 7. Покажите, как устроена структура данных «Двоичная пирамида (Binary Heap)». Опишите порядок выполнения операций *SiftUp* и *SiftDown*. Приведите оценку времени их работы.
- 8. Опишите, как на основе массива построить двоичную пирамиду за время O(n).
- 9. Приведите псевдокод операций *Enqueue*, *Dequeue* и *Increase/DecreaseKey* для очереди с приоритетами, реализованной на основе двоичной пирамиды.

4. СОДЕРЖАНИЕ ОТЧЕТА

Отчет по лабораторной работе должен содержать:

- 1. титульный лист установленного образца с указанными ФИО студента и номером варианта;
- 2. постановку задачи;
- 3. описание реализуемой структуры данных, алгоритмов работы с ней и их характеристик;
- 4. порядок исследования реализованных алгоритмов, результаты (в табличном и графическом виде) и выводы;
- 5. в приложении исходный код реализованной структуры данных.