Quantum Mechanics PHYS1501Fall, 2020

Assignment 1

Due date: 2020. 09. 08 (Tuesday)

Name: Multipluz Student ID : 45875852

Grade:

Problem 1 Score: _____. Show that this LATEX template support following functions:

- (1) Mathematical formulas;
- (2) Chemistry formulas.

Proof: (1) In three-dimensional space, the Schrödinger equation of a particle in a potential $V(\mathbf{r},t)$ is

$$i\hbar \frac{\partial}{\partial t} |\psi(\mathbf{r}, t)\rangle = -\frac{\hbar^2}{2m} \nabla^2 |\psi(\mathbf{r}, t)\rangle + V(\mathbf{r}, t) |\psi(\mathbf{r}, t)\rangle. \tag{1}$$

(2) Heating and using concentrated sulfuric acid as catalyst, benzene can react with nitric acid to produce nitrobenzene:

$$+ HO - NO_2 \xrightarrow{\text{concentrated } H_2SO_4} + H_2O$$
 (2)

Problem 2 Score: _____. Conduct following operation:

- (1) Insert figures:
 - (a) single figure, setting its position mandatorily;
 - (b) two subfigures;
- (2) Insert such a table:
 - ▶ with merged multi-row and multi-column cells;
 - b three-line table;
 - ▷ cross-page;
- (3) Insert code;
- (4) Cite a reference.

Solution: (1) (a) As figure 1.

Figure 1: Lenna

(b) As the subfigures 2(a) and 2(b) in 2.

Figure 2: Lenna2

(2) As table 1.

Table 1: Exemplary table

merged multi-row	merged muti-column cell		merged muti-column cell	
cell	Column 1	Column 2	Column a	Column b
If	you	shed	tears	when
you	missed	$_{ m the}$	sun	
you	also	$_{ m miss}$	$_{ m the}$	stars

(3) Code are shown as following:

```
program_main

uuuuimplicit_none

uuuwrite(*,*)u'hellouworld'
enduprogram_main
```

(4) This book [1] provides a good introduction to quantum mechanics.

References

[1] Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe, and Bernard Dui. Quantum mechanics (2 vol. set), 2006.