

Diplomski studij

Informacijska i komunikacijska tehnologija:

Obradba informacija Telekomunikacije i informatika

## Višemedijske komunikacije

9.

Arhitektura višemedijskog komunikacijskog sustava

### Pregled predavanja do kraja semestra



- arhitektura višemedijskog komunikacijskog sustava
  - arhitektura klijent poslužitelj
  - višeodredišna arhitektura
- protokolna arhitektura
  - koncepcijski model
  - primjeri stvarnih arhitektura
- transportni podsustav
  - višeodredišna komunikacija
  - strujanje višemedijskog sadržaja
  - kvaliteta usluge
- aplikacijski podsustav
  - protokoli za podršku sjednice
  - kvaliteta usluge složene višemedijske usluge umreženih igara

# Arhitekture višemedijskih komunikacijskih sustava



- arhitektura klijent poslužitelj
  - "klasičan" pristup, primjena kod većine internetskih usluga
  - glavni problem: prilagodljivost veličini
    - količina podataka
    - broj istovremenih korisnika
  - jedno od rješenja: višeposlužiteljski sustavi

#### višeodredišna arhitektura

- primjene kod kojih više korisnika koristi isti sadržaj ili generira sadržaj koji se distribuira svima ostalima
- glavni problem: usklađivanje raspodijeljenih podataka
  - nužni posebni mehanizmi za održavanje konzistentnosti

### Arhitektura klijent – poslužitelj



- uglavnom višeposlužiteljske arhitekture (više)medijskog sadržaja
- tipična primjena: distribucijske usluge



#### Višeodredišna arhitektura



- višeodredišno razašiljanje (engl. multicast)
- komunikacija jedan-na-više

tipična primjena: interaktivne usluge (npr. audio/video-konferencija,



### Usporedba sa stajališta opterećenja



višestruko pojedinačno (unicast)

#### višeodredišno (multicast)





#### Ideja i izvedba višeodredišnog razašiljanja



#### (tema sljedećeg predavanja)



### Protokolna arhitektura (ideja)





#### Protokolna arhitektura: Internet (1)



*Izvor: http://www.cs.columbia.edu/~hgs/internet/* 



#### Oznake:

RTP - Real-time Transport Protocol RTCP - RTP Control Protocol

RTSP – Real Time Streaming Protocol

RSVP- Resource Reservation Protocol

SDP – Session Description Protocol

TCP - Transmission Control Protocol

UDP – User Datagram Protocol

IP - Internet Protocol

PPP - Point-to-Point Protocol

ATM – Asynchronous Transfer Mode

AAL – ATM Adaptation Layer

### Protokolna arhitektura: Internet (2)



primjer protokolne arhitekture za audio-video konferenciju i strujanje



#### Oznake:

RTP – Real-time Transport Protocol RTCP – RTP Control Protocol RTSP – Real Time Streaming Protocol SDP – Session Description Protocol SAP – Session Announcement Protocol SIP – Session Initiation Protocol

### Aplikacijski podsustav



- obuhvaća više slojeve (iznad sloja transporta) arhitekture višemedijskog komunikacijskog sustava
- zanimaju nas tri komponente:
  - podrška za suradničke aplikacije
    - skupni naziv za "računalno-podržani zajednički rad" (engl. Computer Supported Collaborative Work, CSCW)
    - npr. zajedničko uređivanje dokumenata, teksta, slike, dizajn
  - podrška za konferencijske aplikacije
    - npr. audio konferencija, video konferencija, distribuirane igre
  - podrška za upravljanje sjednicom

#### Dimenzije suradnje



#### parametri kategorizacije:

#### vrijeme

- sinkrono (svi sudionici istovremeno prisutni)
- asinkrono (svi sudionici nisu istovremeno prisutni)

#### sudionici

- broj sudionika: jedan, dva ili više
- dinamika skupine: statičke ili dinamičke skupine
- homogeno ili heterogeno članstvo
- uloge (osnivač sjednice, voditelj, član, promatrač)

#### način kontrole

- centralizirano (jedan član skupine djeluje kao predsjedavajući i nadzire rad skupine)
- distribuirano (svaki član skupine odgovoran za svoj dio posla, mora postojati protokol koji osigurava konzistentnost)

#### Primjeri usluga u odnosu na dimenzije suradnje





### Model podrške grupne komunikacije



- grupna komunikacija: sinkrona ili asinkrona komunikacija više korisnika s centraliziranom ili distribuiranom kontrolom
- model uključuje:
  - agente grupne komunikacije (po jedan za svakog sudionika), koji obuhvaća podršku za sastanak, konferenciju, zajedničku aplikaciju i višeodredišnu komunikaciju
  - mrežu s višeodredišnom komunikacijom



### Model podrške grupne komunikacije





#### Podrška grupne komunikacije: sastanak



- mehanizmi sastanka obuhvaćaju razmjenu uputa i podataka o uspostavljanje sjednice i samom sastanku:
  - definicija sjednice
    - naziv
    - opis
    - kontaktni podaci pozivatelja ili organizatora
  - gdje
    - IP adresa, TCP/UDP port
  - tko
    - inicijator, višeodredišna adresa ili popis pozvanih
  - kako
    - vrste medija, način kodiranja, komunikacijski parametri
  - kada
    - UTC, GMT
  - oglašavanje

### Načini oglašavanja sjednice



- sinkroni načini oglašavanja
  - imenik sjednica (session directory) omogućuje pozivanje skupine zainteresiranih preko višeodredišnog adresiranja
    - mogućnost asinkronog načina preko sačuvanog popisa sastanaka, sudionika i sl. u on-line kalendaru sjednica
  - izravno pozivanje (adresa pozvanog mora biti poznata!)
  - primjer: Mbone session directory, sdr
- asinkroni načini oglašavanja
  - osobni e-mail, mailing liste
  - bulletin board
  - WWW sjedište

### Podrška grupne komunikacije: konferencija

- A Zavod za telekomunikacije
- konferencija je interaktivna konverzacijska usluga
- kontrola konferencije obuhvaća tri faze:
  - 1. uspostava konferencije
    - uloge korisnika (priključivanje skupini, npr. predsjedavajući, član, promatrač)
    - pravila ponašanja (izmjena prava riječi)
    - vrste podataka (audio, video, tekst, podaci ...) i način kodiranja
    - registracija, prijem
    - pregovaranje o medijima i formatima
  - 2. održavanje konferencije
    - razmjena podataka u stvarnom vremenu
    - dodavanje novih korisnika
    - odlazak postojećih
  - 3. zatvaranje konferencije

#### Kontrola konferencije



- provodi se kontrola nad podacima i nad sudionicima
- kontrola nad podacima
  - vrste medija (audio, video, podaci ...), formati
  - postavljanje parametara prijenosa
  - upravljanje prijenosom
    - npr. hoću primati audio, neću video
    - npr. hoću a/v od izvora x, a samo video od izvora y
- kontrola nad sudionicima
  - operacije vezane za ponašanje članova skupine
  - npr. priključivanje, pozivanje, odlazak
- kontrola može biti centralizirana i distribuirana

### Centralizirana kontrola konferencije (1/2)



- inicijator započinje konferenciju pozivanjem članova (mora znati adrese!)
- svaki pozvani član odgovara na poziv priključivanjem u konferenciju
- sudionici mogu imati razne uloge (predsjedavajući, govornik, slušatelj, ...)

### Centralizirana kontrola konferencije (2/2)



#### prednosti:

- jednostavna kontrola nad podacima (svi na jednom mjestu)
- garantirana konzistentnost
- pouzdani protokol za razmjenu poruka
- poznati su resursi po korisniku

#### nedostaci:

- kašnjenje zbog centraliziranog odlučivanja i obrade
- novi sudionik mora preuzeti cijelo stanje konferencije
- u slučaju ispada veze, teže obnavljanje stanja

### Distribuirana kontrola konferencije (1/2)



- naziva se i "slabo kontrolirani model"
- zasniva se na distribuiranom stanju konferencije
- inicijator konferencije započinje objavu postavljanjem višeodredišne adrese za konferenciju
- svi zainteresirani sudionici imaju uvid u podatke o načinu priključivanja i pridružuju se na postojeću konferenciju
- korisnici se priključuju kako tko hoće, nema ograničenja u odlascima niti dolascima ("radio kanal")
- nema evidencije o članstvu
- nema čuvanja stanja, odn. evidencije o podacima/ resursima po sudioniku

### Distribuirana kontrola konferencije (2/2)



#### prednosti:

- jednostavan model, objava se može obaviti drugim putem, npr. preko podrške za sastanak
- nema dodatnog procesiranja; brže
- potencijalno veći broj sudionika
- jednostavno obnavljanje stanja u slučaju prekida veze

#### nedostaci:

- moguća (privremena i/ili povremena) nekonzistentnost zbog nepouzdanog protokola za razmjenu poruka i kašnjenja u mreži
- nema garancije kvalitete (jer se ne kontrolira broj i aktivnost sudionika)

#### Podrška grupne komunikacije: zajednička aplikacija



- zajednička aplikacija: obrada zajedničkog sadržaja uz istovremeni prikaz svim sudionicima
- sudionici unose promjene u zajednički sadržaj preko kontrole pristupa i <u>ne</u> mogu direktno mijenjati sadržaj
- unutar kontrole pristupa vrši se provjera prava, prioriteta i međusobna isključivost pristupa, čuva se vremenski slijed promjena



osnovne arhitekture zajedničke aplikacije: centralizirana i replicirana

#### Zajednička aplikacija s centraliziranom arhitekturom

- Zavod za telekomunikacije
- postoji samo jedna kopija zajedničke aplikacije na jednom mjestu;
   samo nositelj prava riječi može vršiti promjene
- svi ulazi se obrađuju lokalno, na jednom "centralnom" mjestu
- novo stanje se distribuira i prikazuje ostalim sudionicima



#### Zajednička aplikacija s repliciranom arhitekturom



- postoji po jedna kopija ("replika") zajedničke aplikacije za svakog sudionika
- svi ulazi se razašilju svim ostalim sudionicima
- obrada svih ulaza i prikaz vrše se lokalno, kod svakog sudionika



### Usporedba



| replicirana kontrola pristupa                                                                          |
|--------------------------------------------------------------------------------------------------------|
| • prednosti:                                                                                           |
| <ul> <li>manji promet, jer se šalju<br/>samo ulazi (promjene), a ne<br/>cjelokupno stanje</li> </ul>   |
| <ul> <li>manje kašnjenje u prikazu</li> </ul>                                                          |
| <ul><li>nedostaci:</li></ul>                                                                           |
| <ul> <li>složeno održavanje<br/>konzistencije</li> </ul>                                               |
| <ul><li>rješava se posebnim</li></ul>                                                                  |
| protokolima, zaključavanjem,<br>kontrolom vlasništva,<br>otkrivanjem međuzavisnosti<br>podataka i sl.) |
|                                                                                                        |

### Sustav upravljanja sjednicom



dio sustava koji odvaja kontrolu nad transportom od samog transporta



### Komponente kontrole nad transportom



- kontrola konfiguracije
  - parametri zajednički za cijelu sjednicu, kvaliteta usluge (QoS)
- kontrola konferencije
  - otvaranje, modifikacije u tijeku, zatvaranje konferencije
- kontrola prava riječi
  - pristup zajedničkom sadržaju, pravo riječi u a/v konferenciji, predaja prava riječi ili prava pristupa
- kontrola članstva
  - pozivanje, prijava, odjava, postavljanje parametara
- kontrola usklađivanja medija (sinkronizacija)
  - parametri za usklađivanje svakog medija zasebno
- komunikacija lokalnog i udaljenog dijela se odvija putem protokola upravljanja sjednicom (npr. SIP, SAP, SDP)

#### Komponente samog transporta



- agent zajedničke aplikacije
  - mijenjanje i distribucija zajedničkog sadržaja
  - koristi pouzdani transportni protokol (npr. TCP)
- agent pojedinog medija
  - npr. agent za audio, agent za video, agent za podatke
  - vrši kontrolu nad jednim medijem (pokretni, zaustavi, privremeno zaustavi,...)
  - koristi stvarnovremenski transportni protokol (npr. RTP)