Discussion 09

2022.5.12

Superviesd VS semi-supervised

Fully Supervised Learning

VS

 $S_l = \{(x_1, y_1), ..., (x_{m_l}, y_{m_l})\}$

Goal: h has small error over D.

 x_i drawn i.i.d from D, $y_i = c^*(x_i)$

 $err_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$

Semi-Supervised Learning

 $S_l = \{(x_1, y_1), ..., (x_{m_1}, y_{m_1})\}$

Goal: h has small error over D.

 x_i drawn i.i.d from D, $y_i = c^*(x_i)$

 $\operatorname{err}_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$

 $S_u = \{x_1, ..., x_{m_u}\}$ drawn i.i.d from D

Semi-supervised Learning

Transductive SVM

Co-training

Graph-based methods

Transductive SVM

Transductive SVM

Optimize for the separator with large margin wrt labeled and

unlabeled data. [Joachims '99]

Find a labeling of the unlabeled sample and w s.t. w separates both labeled and unlabeled data with maximum margin.

NP-hard

Convex after know the labels

Too many guess

Transductive SVM

Heuristic (Joachims) high level idea:

- First maximize margin over the labeled points
- Use this to give initial labels to unlabeled points based on this separator.
- Try flipping labels of unlabeled points to see if doing so can increase margin

Local optimal

Co training

$$\mathbf{x} = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$$

Add h1's confident predictions to L2

Add h2's confident predictions to L1

Remove these point from unlabeled data

Co-training

Use labeled data to learn $h_1^{\ 1}$ and $h_2^{\ 1}$

Use unlabeled data to bootstrap

Graph based methods

Idea: construct a graph with edges between very similar examples.

Unlabeled data can help "glue" the objects of the same class together.

Run a graph partitioning alg to separate the graph into pieces

$$\exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

Minimize
$$\sum_{e=(i,j)} w_e \|f_i - f_j\|^2$$

Semi-supervised vs Active

Semi-Supervised Learning

VS

Batch Active Learning

fewer labels request

More informative labels

For t = 1, ...,

- Find w_t the max-margin separator of all labeled points so far.
- Request the label of the example closest to the current separator: minimizing $|x_i \cdot w_t|$.

(highest uncertainty)

sampling bias

Definition (Mitchell'82) Assume realizable case: $c^* \in H$. Given a set of labeled examples $(x_1, y_1), ..., (x_{m_l}, y_{m_l}), y_i = c^*(x_i)$ Version space of H: part of H consistent with labels so far. I.e., $h \in VS(H)$ iff $h(x_i) = c^*(x_i) \ \forall i \in \{1, ..., m_l\}$.

The DHN Agnostic Active Learner [DHN'07]

```
S=\emptyset (points with inferred labels) T=\emptyset (points with queried labels) For t=1,2,\ldots:
Receive x_t
If (h_{+1}=\mathtt{learn}(S\cup\{(x_t,+1)\},T)) fails: Add (x_t,-1) to S and break If (h_{-1}=\mathtt{learn}(S\cup\{(x_t,-1)\},T)) fails: Add (x_t,+1) to S and break If \mathtt{err}(h_{-1},S\cup T)-\mathtt{err}(h_{+1},S\cup T)>\Delta_t: Add (x_t,+1) to S and break If \mathtt{err}(h_{+1},S\cup T)-\mathtt{err}(h_{-1},S\cup T)>\Delta_t: Add (x_t,+1) to S and break Request y_t and add (x_t,y_t) to T
```

Active learning with label propagation

(1) Build neighborhood graph (2) Query some random points

(3) Propagate labels (using soft-cuts)

(4) Make query and go to (3)

How to choose which node to query?

THANKS