Институт № 8 "Компьютерные науки и прикладная математика" Кафедра 806 "Вычислительная математика и программирование"

Проектирование платформы анализа и оценки производительности в распределённых вычислительных системах

Студент: Трофимов Максим Андреевич

Группа: М80-408Б-18

Научный руководитель: Миронов Евгений Сергеевич, ст. преподаватель

Консультант: Ухов Пётр Александрович, доцент, к.т.н., доцент

Актуальность

- В настоящее время распределённые вычислительные системы приобрели широкое распространение в отрасли;
- При разработке распределённых вычислительных систем процессы отладки и сопровождения является более трудоёмким, чем при разработке обычных систем:
 - диагностическая информация распределена;
 - количество вычислительных узлов может формироваться динамически;
 - о вычисления происходят в разных вычислительных узлах;
 - усложняется процесс развёртывания систем.

Цель

Для упрощения и ускорения процессов разработки и сопровождения распределённых вычислительных систем, в частности, для упрощения работы архитектора, было принято решение разработать платформу по сбору и анализу метрик, характеризующих данные системы.

Задачи

- 1) определить требования к платформе анализа и оценки производительности;
- 2) определить метрики, необходимые для анализа и отладки распределённых вычислительных систем, и методы их анализа;
- 3) спроектировать архитектуры платформы анализа и оценки производительности;
- 4) разработать:
 - а) прототип платформы;
 - b) тестовый программный продукт на базе микросервисной архитектуры;
- 5) протестировать прототип платформы на тестовом программном продукте.

Постановка задачи

Разработать прототип платформы, собирающую информацию о синхронном взаимодействии сервисов между собой, с помощью которой будет возможно:

- давать оценку эффективности системы,
- строить её архитектурный ландшафт;
- производить анализ изменений в системе.

Пусть тестовый микросервисный продукт развёрнут с помощью Docker.

Результаты и личный вклад

Требования

- возможность собирать метрики с распределённых сервисов и систем;
- возможность построения архитектурного ландшафта;
- отслеживание зависимостей между компонентами распределённой вычислительной системы;
- фиксирование состояния системы за определённые промежутки времени, или по определённым признакам (например, версии конкретных сервисов);
- установка правил сигнализаций;
- возможность написания расширений сторонними лицами, для увеличения возможностей платформы.

Метрики

- частота запросов к сервису/конкретных запросов;
- время, потраченное на обработку запроса и сетевые издержки;
- интенсивности отказов и восстановлений сервисов;
- коэффициент готовности сервиса;
- количество и частота отказов конкретных сервисов или при обработке запросов к ним;
- время недоступности сервисов.

Методы анализа

- Поиск аномалий;
- Обнаружение зависимостей между цепочками запросов сервисов.

Архитектура платформы

Какие компоненты были разработаны?

- библиотека grpc_tracer для отслеживания gRPC вызовов на языке программирования python;
- инструментарий для встраивания библиотечных перехватчиков в существующий код;
- сервисы по получению и обработки сообщений о событиях, таких как gRPC вызовы;
- сервис для визуализации полученной информации.

Схема работы библиотеки grpc_tracer

Сбор информации

 $\Delta t_{_{1}}$, $\Delta t_{_{3}}$ - сетевые задержки.

 Δt_2 - время обработки запроса.

 Δt_4 - полное время выполнения запроса.

На чём тестируем?

Влияние на производительность приложения

Сервис	Метод	Среднее время выполнения запроса без интеграции, миллисек.	Среднее время выполнения запроса после интеграции, миллисек.
buyer dashboard	GetUser	1.857	4.445
	GetProduct	2.762	4.199
	GetOrder	4.887	16.922
admin dashboard	GetUser	1.591	4.175
	GetReport	8.204	23.234
market connector	GetProduct	3.676	4.584

Пример визуализации собранных данных

Заключение

Таким образом была спроектирована платформа анализа и оценки производительности в распределённых вычислительных системах, и разработан и протестирован прототип.

Во время тестирования обнаружилось, что она оказывает влияние на производительность приложения. Однако благодаря уже имеющимся наработкам, возможно сократить время ввода в курс дела новых работников таких, как архитектор, при присоединении к новому проекту без документации.

Спасибо за внимание!