Лабораторная работа №1

«Дискретизация аналоговых сигналов»

Радиофизическая лаборатория

Модуль 2. Спектры импульсных и периодических сигналов.

- Преобразование Фурье
- Свойства преобразования Фурье
- Спектры гармонических сигналов
- Спектры импульсных сигналов
- Спектр пачки равноотстоящих импульсов
- Частотные характеристики сигнала
- Свойства симметрии спектра реального сигнала

Задачи на компьютерное моделирование

Задача 2.1. Спектры симметричных оконных функций

Задача 2.2. Теорема запаздывания для преобразования Фурье

Задача 2.3. Спектр отрезка синусоиды

Задача 2.4. Спектр пачки равноотстоящих импульсов

В этих задачах реализуется вычисление преобразования Фурье с помощью численного интегрирования.

Преобразование Фурье

Все реальные сигналы имеют конечную удельную энергию:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty.$$

Например, если x(t) — напряжение (или ток), действующее на единичном сопротивлении, то интеграл представляет собой энергию, выделяемую на единичном сопротивлении, и эта энергия конечна. В этом случае x(t) — функция с интегрируемым квадратом на всей оси. По теореме Планшереля для функции x(t) существует функция X(t) также с интегрируемым квадратом на всей оси, связанна с x(t) соотношением:

$$\lim_{T\to\infty}\int_{-T}^{T}\left|X\left(f\right)-\int_{-T}^{T}x\left(t\right)e^{-j2\pi ft}dt\right|^{2}df=0.$$

Причем, если функции x(t) и X(f) абсолютно интегрируемы, то

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt,$$

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df.$$

Эти формулы представляют собой пару преобразования Фурье (FT), где частота f измеряется в Герцах (Гц).

Для частоты циклической частоты $\omega = 2\pi f$, измеряемой в рад/с (радианы в секунду), пара преобразования Фурье имеет вид:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt,$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega.$$

Первый интеграл называется спектральной плотностью, а второй - интегралом Фурье.

Далее будем использовать запись вида $x(t) \stackrel{FT}{\longleftrightarrow} X(f)$, что означает, что для сигнала x(t) преобразование Фурье будет X(f).

Свойства преобразования Фурье

Предположим, что $x(t) \overset{FT}{\longleftrightarrow} X(f)$ и $y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда справедливы следующие свойства преобразования Фурье.

1. Свойство линейности.

Для заданных чисел $\alpha \in \mathbb{C}$ и $\beta \in \mathbb{C}$ $\alpha x(t) + \beta y(t) \overset{FI}{\longleftrightarrow} \alpha X(f) + \beta Y(f)$.

2. Теорема запаздывания.

Для заданной задержки по времени τ (или опережения в случае $\tau < 0$)

$$x(t-\tau) \stackrel{FT}{\longleftrightarrow} \exp(-j2\pi f \tau) X(f).$$

3. Теорема смещения.

$$x(t)\exp(-j2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} X(f+f_0);$$

4. Теорема Парсеваля-Релея.

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df.$$

5. Теорема о спектре произведения.

$$x(t)y(t) \overset{FT}{\longleftrightarrow} X(f) \otimes Y(f),$$
$$x(t)y(t) \overset{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} X(\tilde{f})Y(f-\tilde{f})d\tilde{f}.$$

6. Теорема о спектре свертки.

$$x(t) \otimes y(t) \overset{FT}{\longleftrightarrow} X(f)Y(f).$$

$$\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau \overset{FT}{\longleftrightarrow} X(f)Y(f);$$

7. Теорема об изменении масштаба.

$$x(at) \stackrel{FT}{\longleftrightarrow} \frac{1}{a} X\left(\frac{f}{a}\right).$$

8. Теорема о спектре производной.

$$\frac{dx(t)}{dt} \stackrel{FT}{\longleftrightarrow} j2\pi f X(f)$$

9. Теорема о производной спектра:

$$t \cdot x(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{j2\pi} \frac{dX(f)}{df}.$$

Спектры гармонических сигналов

Вычислим обратное преобразование Фурье для $X(f) = \delta(f-f_0)$, т.е. от дельта-функции в точке f_0 оси частот.

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df = \int_{-\infty}^{\infty} \delta(f - f_0) \exp(j2\pi f t) df = \exp(j2\pi f_0 t).$$

Тогда с учетом того, что $\cos(2\pi f_0 t) = \left(\exp(j2\pi f_0 t) + \exp(-j2\pi f_0 t)\right)/2$ и $\sin(2\pi f_0 t) = \left(\exp(j2\pi f_0 t) - \exp(-j2\pi f_0 t)\right)/2 \ j \ ,$ получаем

$$1 \stackrel{FT}{\longleftrightarrow} \delta(f),$$

$$\exp(j2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \delta(f - f_0),$$

$$\cos(2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0),$$

$$\sin(2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2j} \delta(f - f_0) - \frac{1}{2j} \delta(f + f_0).$$

Задача 1.

Определить спектр X(f) гармонического сигнала

$$x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$$

где
$$f_1 = 100$$
 Гц, $f_2 = 200$ Гц.

Решение. По свойствам преобразования Фурье

$$\cos(2\pi f_0 t) \overset{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0).$$

Тогда по свойству линейности преобразования Фурье

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2)$$

Спектры импульсных сигналов

Симметричный прямоугольный импульс длительностью т

$$x_1(t) = \begin{cases} E, & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \ge \tau/2. \end{cases}$$

Спектр находим с помощью формулы преобразования Фурье:

$$\begin{split} X_1 \Big(f \Big) &= \int_{-\infty}^{\infty} x_1(t) \exp(-j2\pi f \, t) dt = \int_{-\tau/2}^{\tau/2} E \exp(-j2\pi f \, t) dt = \\ &= \frac{E}{-j2\pi f} \exp(-j2\pi f \, t) \Bigg|_{-\tau/2}^{\tau/2} = E \frac{\sin(\pi f \, \tau)}{\pi f} = E \tau \frac{\sin(\pi f \, \tau)}{\pi f \, \tau}. \end{split}$$

Ограничение сигнала по длительности эквивалентно умножению на прямоугольную оконную функцию: y(t) = w(t)x(t).

Пусть
$$x(t) \overset{FT}{\longleftrightarrow} X(f), \ w(t) \overset{FT}{\longleftrightarrow} W(f), \ y(t) \overset{FT}{\longleftrightarrow} Y(f)$$
 . Тогда
$$w(t) x(t) \overset{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f}) X(f-\tilde{f}) d\tilde{f}.$$

Задача 2 (Spectral leakage – растекание спектральных компонент).

Гармонический сигнал x(t) имеет вид

$$x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$$

где $f_1=100\,$ Гц, $f_2=200\,$ Гц. Определить, какой вид будет иметь спектр для x(t)w(t) , где w(t) — некоторая оконная функция.

Решение. Пусть $x(t) \overset{FT}{\longleftrightarrow} X(f), \ w(t) \overset{FT}{\longleftrightarrow} W(f), \ y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2).$$

$$w(t)x(t) \stackrel{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f})X(f-\tilde{f})d\tilde{f}.$$

$$Y(f) = \frac{1}{2}W(f - f_1) + \frac{1}{2}W(f + f_1) + \frac{3}{2}W(f - f_2) + \frac{3}{2}W(f + f_2).$$

Спектр прямоугольного окна длиной τ соответствует спектру прямоугольного импульса длиной τ с высотой E=1

$$W(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{1}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} = \frac{\sin(\pi f \tau)}{\pi f} = \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Окно Ханна.

Определим спектр $W_{\!\scriptscriptstyle H}(f)$ аналогового окна Ханна длительностью $\, au \, . \,$

$$w_H(t) = egin{cases} rac{1}{2}igg(1+\cosigg(rac{2\pi t}{ au}igg)igg), & ext{если } |t| < rac{ au}{2}, \ 0, & ext{если } |t| \geq rac{ au}{2}. \end{cases}$$

Приведем два способа решения, отличные от непосредственного вычисления преобразования Фурье по формуле.

Решение 1.

Пусть w(t) — прямоугольное окно той же длительности.

$$W_H(t) = \frac{1}{2}w(t) + \frac{1}{4}w(t)\exp\left(j2\pi t \frac{1}{\tau}\right) + \frac{1}{4}w(t)\exp\left(-j2\pi t \frac{1}{\tau}\right).$$

Тогда по теореме смещения для преобразования Фурье

$$W_H(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

Далее остается подставить W(f).

Решение 2.

Рассмотрим сигнал
$$x(t) = \frac{1}{2} \left(1 + \cos \left(\frac{2\pi t}{\tau} \right) \right)$$
.

Его спектр
$$X(f) = \frac{1}{2}\delta(f) + \frac{1}{4}\delta\bigg(f - \frac{1}{\tau}\bigg) + \frac{1}{4}\delta\bigg(f + \frac{1}{\tau}\bigg).$$

При этом
$$W_H(t) = W(t)x(t)$$
 и $W_H(f) = W(f) \otimes X(f)$.

Использую фильтрующее свойство δ -функции, получаем

$$W_H(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

$$W_H(f) = \frac{\sin(\pi f \tau)}{2\pi f (1 - \tau^2 f^2)}.$$

Задача 2 (продолжение)

Сравним спектры после взвешивания гармонического сигнала $x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$ прямоугольным окном и окном Ханна.

$$Y(f) = \frac{1}{2}W(f - f_1) + \frac{1}{2}W(f + f_1) + \frac{3}{2}W(f - f_2) + \frac{3}{2}W(f + f_2).$$

После взвешивания прямоугольным окном спектральные максимумы уже, чем после взвешивания окном Ханна. Однако уровень боковых лепестков («ложных периодичностей») для случая окна Ханна заметно ниже.

Для прямоугольного окна

$$W(f) = \tau \frac{\sin(\pi f \tau)}{\pi f \tau}$$

$$W_{H}(f) = \frac{\sin(\pi f \tau)}{2\pi f (1 - \tau^{2} f^{2})}.$$

Симметричный треугольный импульс длительностью τ .

$$x_2(t) = \begin{cases} E\bigg(1 - \frac{2\mid t\mid}{\tau}\bigg), & \text{если } \mid t\mid <\tau/2,\\ 0, & \text{если } \mid t\mid \geq\tau/2. \end{cases}$$

Воспользуемся теоремой о спектре производной: если $x_2(t) \overset{r_1}{\longleftrightarrow} X_2(f)$, то

 $\frac{dx_2(t)}{dt} \overset{\mathit{FT}}{\longleftrightarrow} j2\pi \mathit{f}X_2(f)$. Далее, используя теорему запаздывания 1 по

отношению к прямоугольному импульсу, получаем

$$X_{2}(f) = \frac{1}{j2\pi f} \left(e^{j\pi f \tau/2} - e^{-j\pi f \tau/2} \right) \frac{2E}{\tau} \frac{\tau}{2} \frac{\sin(\pi f \tau/2)}{\pi f \tau/2} = \frac{E\tau}{2} \frac{\sin^{2}(\pi f \tau/2)}{(\pi f \tau/2)^{2}}$$

Тот же результат можно получить, используя теорему о свертке:

Если
$$x(t) \overset{FT}{\longleftrightarrow} X(f)$$
 и $y(t) \overset{FT}{\longleftrightarrow} Y(f)$, то $\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d\tau \overset{FT}{\longleftrightarrow} X(f) Y(f)$.

Треугольный импульс можно рассматривать как сверку двух прямоугольных соответствующей высоты с длительностью au/2

 $^{^1}$ Если $x(t) \overset{FT}{\longleftrightarrow} X(f)$, то $x(t- au) \overset{FT}{\longleftrightarrow} \exp(-j2\pi f\, au) X(f)$.

Спектр пачки равноотстоящих импульсов

Найдём спектр пачки равноотстоящих импульсов. Для определённости возьмём пачку из $\,N\,$ прямоугольных импульсов

Обозначим через $X_1(\omega)$ ($\omega = 2\pi f$) спектральную плотность первого импульса. Тогда для группы из N равноотстоящих импульсов в соответствии с теоремой запаздывания

$$X(\omega) = X_1(\omega)[1 + e^{-j\omega T} + e^{-j\omega 2T} + \dots + e^{-j\omega(N-1)T}] = X_1(\omega)\sum_{k=0}^{N-1} e^{-j\omega kT}.$$

Суммируя N членов геометрической прогрессии, получаем

$$\begin{split} X(\omega) &= X_{1}(\omega) \frac{1 - e^{-j\omega NT}}{1 - e^{-j\omega T}} = X_{1}(\omega) \frac{e^{-j\omega NT/2} \left(e^{j\omega NT/2} - e^{-j\omega NT/2} \right)}{e^{-j\omega T/2} \left(e^{j\omega T/2} - e^{-j\omega T/2} \right)} = \\ &= X_{1}(\omega) \frac{\sin \omega NT/2}{\sin \omega T/2} \exp \left(-j\omega \left(\frac{T}{2} (N-1) \right) \right). \end{split}$$

Видно, что на частотах $\omega = m2\pi / NT$, где m – целое, $X(\omega) = 0$. Подставляя сюда значение

$$X_1(\omega) = E\tau \frac{\sin \omega \tau / 2}{\omega \tau / 2} \exp\left(-j\omega \frac{\tau}{2}\right),$$

где τ – длительность отдельного импульса, получаем окончательно для спектра пачки из N равноотстоящих прямоугольных импульсов:

$$X(\omega) = \exp\left(-j\omega\left(\frac{T}{2}(N-1) + \frac{\tau}{2}\right)\right)E\tau\frac{\sin\omega\tau/2}{\omega\tau/2}\frac{\sin\omega NT/2}{\sin\omega T/2}.$$

Модуль спектра пачки прямоугольных импульсов: а — три импульса в пачке, б — четыре импульса в пачке. интервал между соседними импульсами $T=3\tau$. Пунктиром изображён модуль спектра одиночного импульса

$$X(f) = \exp\left(-j\omega\left(\frac{T}{2}(N-1) + \frac{\tau}{2}\right)\right)E\tau\frac{\sin\left(\pi\tau f\right)}{\pi\tau f}\frac{\sin\left(\pi NTf\right)}{\sin\left(\pi NTf\right)}, \ T = 400 \ \text{mkc}, \ \tau = 100 \ \text{mkc}, \ N = 3. \quad \frac{1}{\tau} = 10 \ \text{kGu}, \ \frac{1}{T} = 2,5 \ \text{kGu}.$$

Частотные характеристики сигнала

В общем случае спектральная плотность X(f) – комплексная функция частоты:

$$X\left(f\right)=\int_{-\infty}^{\infty}x(t)\exp(-j2\pi f\,\tau)dt,$$

$$X(f)=\operatorname{Re}X(f)+j\operatorname{Im}X(f)=A(f)-jB(f)=\left|X(f)\right|\exp\left(j\varphi(f)\right),$$
 где

Re
$$X(f) = A(f) = \int_{-\infty}^{\infty} x(t) \cos 2\pi f t dt$$
,

$$\operatorname{Im} X(f) = -B(f) = -\int_{-\infty}^{\infty} x(t) \sin 2\pi f t \, dt,$$

 $\left|X(f)\right| = \sqrt{A^2(f) + B^2(f)}$ — амплитудно-частотная характеристика (AЧX),

$$\phi(f)=rctg\,rac{{
m Im}\,X(f)}{{
m Re}\,X(f)}=-rctg\,rac{B(f)}{A(f)}$$
 — фазочастотная характеристика (ФЧХ) сигнала.

АЧХ в децибелах (дБ) измеряется относительно некоторого значения.

Например, для окон обычно требуется определить уровень на частоте f относительно главного лепестка:

$$20\lg \left| \frac{W(f)}{W(0)} \right| = 10\lg \frac{\left| W(f) \right|^2}{\left| W(0) \right|^2}.$$

Свойства симметрии спектра реального сигнала

Для действительного сигнала (физические сигналы всегда действительные функции) имеет место

$$X(f) = X * (-f).$$

Это означает, что для действительного сигнала A(f) и $\left|X(f)\right|$ – чётные функции, а B(f) и $\phi(f)$ – нечётные функции частоты. Если в дополнение к этому x(t) – чётная функция, то

$$X(f) = X(-f) = A(f),$$

т. е. спектральная плотность является действительной и чётной функцией частоты f.

