(51) Int. Cl. 3:

C 04 B 41/30

C 04 B 43/00

E 04 C 2/02

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 3246604 A1

DEUTSCHES PATENTAMT

 21) Aktenzeichen:
 P 32 46 604.8

 22) Anmeldetag:
 16. 12. 82

 43) Offenlegungstag:
 20. 6. 84

(7) Anmelder:

Dynamit Nobel AG, 5210 Troisdorf, DE

(72) Erfinder:

Zoche, Günter, Dipl.-Chem. Dr., 5300 Bonn, DE

Sehördaneigentum

Prüfungsantrag gem. § 44 PatG ist gestellt

(A) Härtbare wasserhaltige Formmassen auf Basis von anorganischen Bestandteilen, daraus hergestellte Formkörper und Verfahren zur Herstellung der Formmasse

Formkörper von hoher Biegebruchfestigkeit auf der Basis von Alkalisilikaten können durch Gießen bzw. Pressen und Härtung durch Erwärmen aus wasserhaltigen Formniassen, welche aus aniorpher dispers pulverförmiger wasserhalti ger Kieselsäure, Alkalisilikat-Lösungen, gegebenenfalls Alkalihydroxid oder dessen wäßrigen Lösungen und gegebenenfalls Füllstoffen durch Vermischen unter Rühren entstehen, hergestellt werden.

ORIGINAL INSPECTED

- 1 - Troisdorf, den 20.10.1982 0Z:82073 (4200) Dr.La/Ce

1 Patentansprüche:

- Härtbare wasserhaltige Formmassen aus anorganischen Bestandteilen in fließfähiger oder pressbarer Verteilung mit gegebenenfalls enthaltenen Anteilen von Füllstoffen,
- 5 dadurch gekennzeichnet, daß die Formmasse
 - 1,3 bis 7,5 Gew.-Teile ungelöstes SiO₂ und 0,7 bis 2,5 Gew.-Teile K₂O bzw. 0,55 bis 1,5 Gew.-Teile Na₂O je Gew.-Teile gelöstes SiO₂,
- Wassergehalte bis zum Erreichen der Fließfähigkeit bzw. Preßbarkeit und gegebenenfalls
 - Füllstoffgehalte bis zur Grenze der Fließfähigkeit enthalten und
- ungelöstes SiO₂ aus einer amorphen dispers-pulverförmigen wasserhaltigen Kieselsäure, K₂O bzw. Na₂O aus Alkalihydroxid, dessen wässriger Lösung und/oder einer wässrigen Lösung von Alkalisilikaten und gelöstes SiO₂ aus einer wässrigen Lösung von Alkalisilikaten stammt.
- 202. Formmasse nach Anspruch 1, dadurch gekennzeichnet, daß im Falle der Verwendung von wässriger Lösung von Alkalisilikaten diese ganz oder teilweise durch Auflösen von amorpher dispers-pulverförmiger wasserhaltiger Kieselsäure in Alkalihydroxiden oder deren wässrigen Lösungen
- 25 hergestellt werden.
 - 3. Verfahren zur Herstellung von Formmassen nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß eine fließfähige oder pressbare Masse mit Gehalten von 1,3
- bis 7,5 Gew.-Teilen ungelöstem SiO₂ und O,7 bis 2,5 Gew.-Teilen K₂O bzw. O,55 bis 1,5 Gew.-Teilen Na₂O je 1 Gew.-Teil gelöstes SiO₂, sowie gegebenenfalls Füllstoffen, durch
- a) Einmischung von amorpher wasserhaltiger Kieselsäure in wässrige Alkalisilikat-Lösung, die gegebenenfalls

- 1 mit festem oder gelöstem Alkalihydroxid versehen wird oder
 - b) Auflösen von amorpher wasserhaltiger Kieselsäure in wässriger Alkalihydroxid-Lösung zu wässriger Alkali-
- 5 silikat-Lösung und Zugabe weiterer Mengen von amorpher wasserhaltiger Kieselsäure als ungelöste SiO₂ oder
 - c) Vermischen der gesamten Menge von amorpher wasserhaltiger Kieselsäure mit Alkalihydroxid oder dessen wässriger Lösung und Reaktion des zu lösenden Anteils der Kieselsäure zu Alkalisilikat-Lösung hergestellt wird.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß durch Auflösen von amorpher wasserhaltiger Kieselsäure
- in Alkalihydroxid oder dessen Lösungen eine Alkalisilikat-Lösung vor der Zufügung der weiteren Komponenten der Formmasse hergestellt wird.
- 5. Formkörper, herrestellt durch Gießen oder Pressen in 20. Formen aus Formmassen entsprechend einem der Ansprüche 1 bis 4 und Härten bei 50 bis 200 °C.
 - 6. Formkörper nach Anspruch 5, dadurch gekennzeichnet, daß eine Anhärtung bei 50 bis 150 °C, nach Erreichen der er-
- 25 forderlichen Festigkeit eine Ausformung und darauf eine Aushärtung bei 80 bis 200 °C erfolgt.

30

10

3.

- X - Troisdorf, den 20.10.1982 OZ:82073 (4200) Dr.La/Ce

DYNAMIT NOBEL AKTIENGESELLSCHAFT Troisdorf, Bez. Köln

Härtbare wasserhaltige Formmassen auf Basis von anorganischen Bestandteilen, daraus hergestellte Formkörper und Verfahren zur Herstellung der Formmasse

Die Erfindung betrifft fließfähige bzw. preßbare wasserhaltige Formmassen auf Basis von alkalihaltigen anorganischen Bestandteilen, welche durch Gießen oder Pressen in Formen und Erwärmen Formkörper bilden, sowie das Verfahren zur Hertstellung solcher Formmassen und die daraus herstellbaren Formkörper.

Es ist bekannt, fließfähige wasserhaltige Formmassen auf synthetischem Wege aus anorganischen Stoffen herzustellen 20und durch Härten in der Wärme hieraus Formkörper zu bilden, wobei als wesentliche Bestandteile Alkalilaugen, Alkaliwasserglas-Lösungen, Metakaolin sowie gegebenenfalls bestimmte Füllstoffe verwendet werden (französische Patentanmeldungen 79.22041 und 80.18970).

25

5

- 1 Hierbei müssen ganz bestimmte Molverhältnisse von SiO₂, von Al₂O₃, der Alkalihydroxide und des Wassers eingehalten werden, wobei Alkalilaugen und Alkaliwasserglas als Härter für eine Mischung aus Metakaolin, Alkaliwasserglas und
- 5 Füllstoffen dienen. Nach diesem Stand der Technik spielt der sogenannte Metakaolin d.h. ein reaktionsfähiges Aluminiumsilikat der ungefähren Summenformel Al₂O₃ 2 SiO₂, das durch Erhitzen von Kaolinit auf ca. 800 °C erhalten wird, eine besondere Rolle als aktive Komponente zur Bildung eines
- 10 "polymeren" Alumosilikat-Gerüstes. Metakaolin ist auch der einzige feste Bestandteil, abgesehen von ggf. anwesenden Füllstoffen, sowie die einzige Quelle für den Gehalt an Aluminiumoxid. Die entstandenen Formkörper nach dem Stand der Technik weisen eine besondere dreidimensionale Struktur 15 auf Basis von Alkali-Alumosilikaten auf.

Diese Formmassen nach dem Stand der Technik erfordern nach dem Vermischen der Ausgangsstoffe eine erhebliche Reifezeit d.h. eine Wartezeit, bis das Formgießen und die Bildung des Formkörpers durch Erwärmen vorgenommen werden kann. Erst

- 20 nach dem Reifen können diese Formmassen gegossen werden und bilden dann durch Erwärmen einen festen Formkörper aus. Diese Formkörper müssen im Regelfall als Füllstoff Glimmerpulver enthalten, um Rißbildung und Schwindung zu vermeiden. Nachteilig ist weiterhin, daß nur Metakaolin von ganz be-
- 25stimmter Herkunft, der offenbar einer ganz bestimmten Temperaturbehandlung ausgesetzt war, die Herstellung der fließfähigen Formmasse und eine solche Herstellung der Formkörper gestattet.

Zudem entstehen nur dann geeignete fließfähige Formmassen, 30wenn bei der Vermischung der Ausgangsstoffe eine bestimmte Reihenfolge der Zugabe eingehalten wird.

Es bestand daher die Aufgabe, teure und schwer beschaffbare Ausgangsstoffe zu vermeiden, die Beschränkung der Vermisch-35barkeit der Bestandteile zu beseitigen , nach Möglichkeit 1 den teuren Glimmer als Füllstoff zu ersetzen, sowie leichter verarbeitbare Formmassen und verbesserte Formkörper herzustellen.

Es wurde gefunden, daß diese Ziele durch Verwendung einer 5 vergleichsweise geringen Anzahl von einfach beschaffbaren Rohstoffen erreichbar sind.

Gegenstand der Erfindung ist eine

härtbare wasserhaltige Formmasse aus anorganischen Bestand-10 teilen in fließfähiger oder pressbarer Verteilung mit gegebenenfalls enthaltenen Anteilen von Füllstoffen, dadurch gekennzeichnet, daß die Formmasse

1,3 bis 7,5 Gew.-Teile ungelöstes SiO2 und

0,7 bis 2,5 Gew.-Teile K_2 0 bzw. 0,55 bis 1,5 Gew.-Teile

15 Na₂O je Gew.-Teile gelöstes SiO₂,

Wassergehalte bis zum Erreichen der Fließfähigkeit bzw.

Preßbarkeit und gegebenenfalls

Füllstoffgehalte bis zum Granen der Fließen der Fließfähigkeit bzw.

Füllstoffgehalte bis zur Grenze der Fließfähigkeit enthalten und

- 20 ungelöstes SiO₂ aus einer amorphen dispers-pulverförmigen wasserhaltigen Kieselsäure, K₂O bzw. Na₂O aus Alkalihydro-xid, dessen wässriger Lösung und/oder einer wässrigen Lösung von Alkalisilikaten und gelöstes SiO₂ aus einer wässrigen Lösung von Alkalisilikaten stammt.
- Erfindungsgemäß wird folglich in überraschender Weise die Verwendung von Metakaolin und der Gehalt von Alkali-Alumosilikat als strukturbildender Bestandteil des anorganischen Polymergerüstes vermieden.
- 30 Das besagt andererseits, daß nach der vorliegenden Erfindung Aluminiumoxid als inerter Stoff, beispielsweise als inerter Nebenbestandteil der Reaktionskomponenten enthalten sein kann.

Einziger fester Bestandteil der Formmasse ist erfindungs-35gemäß die amorphe dispers-pulverförmige wasserhaltige 1 Kieselsäure, abgesehen von im Regelfalle enthaltenen Füllstoffen.

Die steinbildenden Komponenten der erfindungsgemäßen Formmassen und der daraus hergestellten Formkörper haben als

- 5 strukturbildenden anorganischen Polymerbestandteil offensichtlich ein Gerüst aus ausschließlich Silikat, wobei ein gelöster Silikat-Anteil aus Alkaliwasserglas und ein ungelöster Silikat-Anteil aus amorpher Kieselsäure stammt und der Alkalioxid-Gehalt der Komponenten an der Bildung des
- 10 Silikats teilnimmt. Soweit die Füllstoffe Silikate, Quarz oder Sand sind oder enthalten, nehmen diese Bestandteile offensichtlich nicht an der Bildung des anorganischen polymeren Strukturgerüstes teil.
- Im gehärteten Formkörper wird ein wasserunlösliches Silikat, 15 offenbar ein Alkali-Polysilikat gebildet, das als strukturbildender Bestandteil die Füllstoffe umgibt, wobei der durch Erwärmen gehärtete steinartige Formkörper nach weiterem Trocknen praktisch frei von ungebundenem Wasser ist.

 Zwar war aus der US-PS 1 587 057 bekannt, geschmolzene
- 20Kieselsäure (silica) oder Quarz von stückiger Form zu mahlen und mit Lösungen von Alkalisilikat zu einer Paste anzurühren, die beim Stehenlassen oder Erwärmen zu Formkörpern erstarrt, worauf durch anschließende zeitraubende Behandlung mit konzentrierter Chlorwasserstoffsäure aus
- 25den gebildeten Silikaten Kieselsäure in Freiheit gesetzt wird und der Überschuß von Chlorwasserstoffsäure durch wiederum zeitraubende Behandlung mit fließendem Wasser beseitigt oder mit Ammoniumhydroxidlösung neutralisiert wird, worauf erneut getrocknet werden muß.
- 30Die vorliegende Erfindung hebt sich hiervon durch Verwendung von disperser und pulverförmiger wasserhaltiger Kieselsäure in amorpher Form ab sowie durch ein einfaches Herstellverfahren der Formkörper und ein Fehlen der zeitraubenden Nachbehandlung.

-5-7.

1Es soll verstanden werden, daß erfindungsgemäß die Mengen der reaktiven d.h. steinbildenden Bestandteile mit ihren Gehalten von gelöstem SiO2, ungelöstem SiO2 sowie Alkalioxid und andererseits die Menge der nicht reaktiven Füll-5 stoffe nur durch die Fähigkeit begrenzt ist, aus der wasserhaltigen gießbaren oder preßbaren Formmasse durch Erwärmen zu einem steinartigen Formkörper zu härten. Im Regelfalle sollen jedoch in den erfindungsgemäßen Formmassen 1,3 bis 75 Gew.-Teile, vorzugsweise 2 bis 5 Gew.-Teile Sio, in unge-10 löster Form und 0,7 bis 2,5 Gew.-Teile, vorzugsweise 1 bis 2 Gew.-Teile Koo oder die hierzu äquivalenten Mengen 0,55 bis 1,5, vorzugsweise 0,65 bis 1,3 Gew.-Teile Na₂0 oder sowohl K_2^0 als auch Na_2^0 in entsprechenden äquivalenten Anteilen je Gewichtsteil gelöstes SiO2 aus Alkalisilikat-15 Lösungen bzw. aus Alkalihydroxid oder dessen Lösungen enthalten sein. Soweit neben KoO auch NapO vorhanden ist, soll die Gesamtmenge der Alkalien entsprechend ihren Äquivalentmengen den für K₂O genannten Gewichtsteilen entsprechen. Das ungelöste SiO, stammt aus amorpher, dispers-pulverför-20miger wasserhaltiger Kieselsäure, welche beispielsweise durch Fällung erhältlich ist. Der Anteil von K20 und/oder Na20 kann aus Alkalisilikat-Lösungen, welche gewöhnlich als Alkaliwasserglas bezeichnet werden, oder ganz bzw. teilweise aus festem Kaliumhydroxid 25und/oder Natriumhydroxid oder deren Lösungen stammen. Nach einem weiteren erfindungsgemäßen Verfahrensweg des Herstellverfahrens kann das Alkaliwasserglas durch Auflösen der amorphen dispers-pulverförmigen wasserhaltigen Kieselsäure in oder mit Alkalihydroxid oder dessen wässrigen 30Lösungen ganz oder teilweise erhalten werden, wobei der ungelöste Anteil an SiO, jedenfalls als amorphe disperspulverförmige wasserhaltige Kieselsäure zuzusetzen ist. Der Wassergehalt der Formmassen, welcher aus dem Wassergehalt bzw. der Feuchte der amorphen dispers-pulverförmigen 35wasserhaltigen Kieselsäure, dem Wassergehalt der Alkali-

-8-8-

1silikat-Lösung sowie gegebenenfalls bei Verwendung von Alkalihydroxid-Lösungen aus diesem stammt, wird empirisch bestimmt und soll nicht höher sein als die Fließfähigkeit der Formmasse bzw. die unter Druck erfolgende Verpressung 5von preßfähigen Formmassen erfordert, wobei auch gegebenenfalls vorhandene inerte Füllstoffe bezüglich der Fließfähigkeit zu berücksichtigen sind. Im allgemeinen wird der Wassergehalt 20 bis 65 Gew.-% Wasser, bezogen auf die aktiven d.h. steinbildenden Bestandteile, d.h. ohne Berück-10sichtigung der Füllstoffe betragen, wobei Wassergehalte von 26 bis 58 Gew.-% bevorzugt sind. Die Untergrenze und die Obergrenze des Wassergehalts ist durch die Härtbarkeit zu steinartigen Formkörpern sowie die Verpreßbarkeit gegeben. Größere als notwendige Wassergehalte vermindern die Wirt-15schaftlichkeit.

Das in der Formmasse und den Formkörpern enthaltene Alkalikann auf einen Gehalt an K₂O oder Na₂O oder beiden Alkalioxiden basieren. K₂O ist als alleiniger oder überwiegender Bestandteil bevorzugt, obgleich auch der Alkaligehalt vollzoständig aus Na₂O bestehen kann, wobei jedoch eine längere Härtezeit und schlechtere physikalische Eigenschaften der hergestellten Formkörper auftreten können.

Als wässrige Lösungen von Alkalisilikaten sind bevorzugt die bekannten stark alkalischen wässrigen Lösungen von 25Alkaliwasserglas d.h. von im Schmelzfluß erstarrten glasigen wasserlöslichen Alkalisilikaten, welche durch Zusammen-

schmelzen von Quarzsand und Alkalicarbonaten bzw. -hydroxiden in stark wechselnden Mengen von SiO₂ und Alkalioxid erhalten werden. Bei Molverhältnissen von 1,5 bis 5 Mol

30SiO₂, vorzugsweise 2 bis 4 Mol SiO₂, je Mol Alkalioxid sind bei Wasserglaslösungen 28 bis 43 Gew.-%ige, bei Natronwasserglaslösungen bis 60 Gew.-%ige wässrige Lösungen üblich, wobei die wasserärmeren Lösungen bevorzugt sind. Im Sinne der vorliegenden Erfindung kann eine wässrige 35Lösung von Alkalisilikat auch durch Auflösen der amorphen,

- 7-9.

1dispers-pulverförmigen wasserhaltigen Kieselsäure in Alkalihydroxid-Lösungen oder gegebenenfalls durch Zugabe von festem Alkalihydroxid unter Verflüssigung beim Rühren erhalten werden. Die amorphe Kieselsäure geht häufig in exo-5thermer Reaktion in Lösung, so daß während der Herstellung einer solchen Alkalisilikat-Lösung erforderlichenfalls zu kühlen ist. Eine Filtration oder Reinigung ist trotz der häufig erheblichen Gehalte von Verunreinigungen der amorphen wasserhaltigen Kieselsäure für die Verwendung im 10 Rahmen der vorliegenden Erfindung nicht erforderlich. So hergestellte Alkalisilikat-Lösungen weisen bei gleichem Alkali/SiO2-Verhältnis vielfach nicht gleiche Fließfähigkeit bzw. Viskosität wie handelsmäßige Alkalisilikat-Lösungen von der Art des Wasserglases auf, vermutlich weil das 15SiO, nicht als die gleiche Art oder Verteilung von Oligosilikaten vorliegt. In überraschender und vorteilhafter Weise hat die so hergestellte Alkalisilikat-Lösung trotz des Vorhandenseins von Verunreinigungen gute Eigenschaften als Bestandteil der steinbildenden Formmassen. 20Die amorphe dispers-pulverförmige wasserhaltige Kieselsäure liegt als lagerfähiges und rieselfähiges Pulver oder weniger bevorzugt filterfeucht oder als breiiges Gel vor. Der Wassergehalt kann 20 bis 60 Gew.-% oder gegebenenfalls mehr betragen, wobei die Trockensubstanz zu 85 bis etwa 25100 Gew.-% analytisch als SiO, bestimmt wird, neben insbesondere kleineren Anteilen von Aluminiumoxid, Eisenoxid, Metallfluoriden, ggf. Ammoniumfluorid sowie Glühverlust. Solche amorphen dispers-pulverförmigen wasserhaltigen Kieselsäuren werden im allgemeinen durch Fällung aus wässri-30gen Lösungen erhalten, beispielsweise bei der Gewinnung und Reinigung mineralischer Ausgangsstoffe der Aluminiumindustrie beispielsweise bei der Umsetzung von H2SiF6 zu Alkalifluoriden oder Kryolith oder auch aus anderweitig erhaltenen wässrigen Silikatlösungen. Bei diesen in zahlreichen 35 industriellen Prozessen abzutrennenden amorphen wasserhaltigen

1 Kieselsäuren kommt es nur darauf an, daß wasserhaltige Kieselsäure d.h. hydratisierte nichtoxidische Kieselsäure in amorpher, feinverteilter und zur Steinbildungsreaktior fähiger Form vorliegt.

5

Füllstoffe können in Mengen von bis zu 1000 g je 100 g der steinbildenden Komponenten in der Formmasse enthalten sein. In sehr vorteilhafter Weise sind erfindungsgemäß sehr vielfältige Füllstoffe, vorzugsweise anorganische Stoffe

- 10 in gemahlener oder verteilter Form möglich, beispielsweise Gesteinsmehle, Basalte, Tone, Feldspäte, Glimmermehl, Glasmehl, Quarzsand oder Quarzmehl, Bauxitmehl, Tonerdehydrat, Abfälle der Tonerde-, Bauxit- oder Korundindustrie, Aschen, Schlacken, Fasermaterialien sowie weitere inerte nicht
- 15 wasserlösliche mineralische sowie gegebenenfalls organische Materialien. Die Füllstoffe bilden mit den reaktionsfähigen steinbildenden Anteilen der Masse einen guten Verbund, sind aber im eigentlichen Sinne keine Reaktionspartner.
- 20 Überraschenderweise benötigen die Formmassen gemäß der Erfindung nach der Herstellung keine Reifezeit.

Durch Fehlen der Reifezeit ist unmittelbar nach der Herstellung der Formmasse und der Formgebung die Härtung zu 25Formkörpern durch Erwärmen möglich.

Die Formmassen sind bei genügenden Wassergehalten fließfähig und gießbar oder bei geringeren Wassergehalten unter Anwendung von Preßdruck formbar.

Bei fließfähigen Formmassen kann eine Anhärtung durch Er30wärmen in der Form erfolgen, bis eine genügende "Grünfestigkeit" erreicht ist, die das Entformen gestattet. Die Formmassen der Erfindung erlauben somit in vorteilhafter Weise
eine Kostenersparnis durch frühzeitige Entformbarkeit, wobei
sich eine Aushärtung in der Wärme bis zum Erreichen der
35jeweils besten

-8-11.

1 physikalischen Eigenschaften anschließen kann. Die Aushärtung fließfähiger Formmassen in der Form ist ebenfalls möglich. Bei aus Preßmassen unter Druck hergestellten Preßkörpern kann stets die Härtung in wirtschaftlicher Weise nach der 5 Entformung erfolgen.

Die Temperatur der Härtungsvorgänge und die Härtungszeiten sind erheblich von der Zusammensetzung der Formmasse und gegebenenfalls von Art und Menge der Füllstoffe abhängig. Die Härtungstemperaturen liegen jedoch höchstens bei 200 °C

10 und ermöglichen damit den Vorteil der Energieersparnis gegenüber zahlreichen traditionellen Erzeugnissen z.B. der Baukeramik.

Die Temperaturen der Härtung liegen allgemein bei 50 bis 200 °C. Soweit die Anhärtung in der Form erfolgt, sind

15 Temperaturen von 50 bis 150 °C, vorzugsweise 60 bis 90 °C erforderlich. Nach der Entformung kann sich gegebenenfalls eine weitere Härtung bei 80 bis 200 °C anschließen. Übliche Härtungszeiten liegen zwischen 0,3 und 5 Stunden.

Der erforderliche Preßdruck liegt bei der Verpressung je 20 nach Konsistenz der Formmassen im Bereich von 10 bis 500 bar.

Bei der Härtung erfolgt im Regelfalle kein Wasserverlust. Die Trocknung erfolgt ohne Hilfe technischer Maßnahmen von 25selbst bei der Lagerung an Luft.

Eine Einfärbung ist möglich und unterliegt wegen der geringen Temperatur bei der Härtung keinen Einschränkungen.

Weiterer Gegenstand der Erfindung ist daher ein Verfahren 30 zur Herstellung der erfindungsgemäßen Formmassen nach dem Patentanspruch 3 sowie das Verfahren zur Herstellung von Formkörpern aus den erfindungsgemäßen Formmassen gemäß den

- 19/- 12.

1 Anspruch 5 und gegebenenfalls Anspruch 6.

Die Herstellung der Formmassen erfolgt durch Einrühren der festen Bestandteile in die flüssigen Bestandteile, wobei

- 5 für gute Durchmischung mit Hilfe eines Rührers gegebenenfalls durch Kneten Sorge zu tragen ist. Erforderlichenfalls werden die festen Bestandteile in Pulverform in Portionen oder über längere Zeit zugegeben und homogen verteilt. Die Komponenten können in beliebiger Reihenfolge miteinander
- 10 vermischt werden.

Die Formkörper erreichen durch die Härtung Biegebruchfestigkeiten im Bereich von 250 bis 350 kg/cm² oder gegebenenfalls mehr, d.h. Werte wie bisher nur durch

- 15 die aufwendigen Prozesse bei der Herstellung keramischer Platten oder Klinker bzw. bei Schieferplatten erhältlich. Die Druckfestigkeit der Formkörper ist hoch.
 - Die Formkörper ermöglichen eine sehr gute Formtreue und geben jede Einzelheit der Form genau wieder, so daß auch
- 20 sehr dünne Formkörper, vorgegebene Oberflächenstrukturen, Aussparungen und Hinterschneidungen maßgenau wiedergegeben werden.

Die Neigung zur Rißbildung und Formschwindung ist sehr gering, so daß besonders auch Formkörper von großen Dimen-

25 sionen und großflächige flache Formkörper herstellbar sind.

Die Formkörper sind bohrbar und ermöglichen, soweit gewollt, eine nachträgliche Bearbeitung der Oberfläche durch z.B. Schleifen, Fräsen oder Polieren.

30 Diese Eigenschaften ermöglichen die Verwendung der Formkörper für zahlreiche technische Verwendungszwecke die bisher hocherhitzten z.B. keramischen Formkörpern vorbehalten sind. Eine weitere Verwendung ist als hochwertige Formkörper im Bereich des Hochbaus vorgesehen, beispiels-35 weise als Platten für die Verkleidung und/oder den Aufbau

- 17-13.

1 von Wänden oder für die Deckung von Dächern, z.B. in der Art von Platten, Klinkern, Bekleidungen o.ä., wobei im Gegensatz zu bekannten Materialien besonders durch die hohe Biegebruchfestigkeit auch dünne Formkörper von 5 größeren Abmessungen als bisher verwendbar sind, beispielsweise Verkleidungselemente von der Größe mehrerer Platten, Klinkern od. dgl.

In den Beispielen ist die Erfindung in Ausführungsbeispie-10 len gezeigt und anhand dieser noch näher erläutert.

Beispiele:

In den folgenden Beispielen wurden für Gießmassen und Preßmassen die folgenden Ausgangsstoffe verwendet:

15

Kaliumsilikatlösung I (Kaliwasserglas): 26,6 Gew.-% SiO₂ 14,5 Gew.-% K₂O und 58,9 Gew.-% H₂O

Kaliumsilikatlösung II (Kaliwasserglas): 2025,0 Gew.-% SiO₂ 13,6 Gew.-% K₂O und 61,4 Gew.-% H₂O

Natriumsilikatlösung (Natronwasserglas): 29,2 Gew.-% SiO₂ 8,8 Gew.-% Na₂O und 62,0 Gew.-% H₂O

25wasserhaltige disperse Kieselsäuren:

		I	II	III	IV
sio_2	Gew%	40,5	45,0	39,3	49,7
H ² 0	n	54,1	50,1	56,5	45,0
NH ₃	n	4,0	4,2	_	_
30F-	Ħ	1,0	0,6	1,7	2,7
Al ₂ 03		-	-	2,4	2,4
andere	11	0,4	0,1	0,1	0,2

- 12-14,

1 Beispiele 1 bis 3 (Gießmassen)

Aus den folgenden Komponenten wurden gießfähige Formmassen hergestellt, indem das KOH im Alkaliwasserglas unter Rühren gelöst wurde, die Mischung auf Raumtemperatur abgekühlt

- 5 wurde und mit einer trockenen Vormischung aus wasserhaltiger disperser Kieselsäure und den Füllstoffen intensiv mit einem Vibrationsrührer vermischt wurden. Die erhaltene krümelige Formmasse bildet unter Vibration eine gießfähige Masse, die unter Vibration in Formen gefüllt wurde.
- 10 Die mit der Gießmasse gefüllten Formen wurden bei 80 °C 2 Stunden durch Erwärmen angehärtet, wodurch eine "Grünfestigkeit" erreicht war, die die Entformung erlaubte.

 Darauf wurde bei 200 °C 1 Stunde ausgehärtet.

15Beispiel			1	2	3
Qı Be	Kaliumsilikatlösung I	GewTeile	31	3 1	_
	Kaliumsilikatlösung II	11	-	-	33,5
	KOH fest (84,8 Gew% g)	tt ·	10	10	. 10
	wasserhaltige disperse Kieselsäure TII	11	61	6 1	61
	Quarzsand Korngröße Ø 0,2 mm	n	301	_ `	-
	Quarzmehl Korngröße unter 40 µm	IT	91	125	1 50
	Bauxit gemahlen	ŧŧ	-	5	-
	Biegebruchfestigkeit (kg/cm ²)		271	320	268
25					

Die Biegebruchfestigkeit wurde nach der Aushärtung gemessen und steigt noch nach der Trocknung an der Luft.

Die Formkörper waren reißfrei, wiesen keine Schwindung auf und zeigten eine genaue Abbildung auch kleiner Einzelhei-30ten der verwendeten Formen.

Beispiele 4 bis 6 (Preßmassen) Beispiel 4 5 6 Kaliumsilikatlösung I Gew.-Teile 93 93 93 55 KOH fest (84,5 Gew.-% g) " 30 30

AAN AAA								
- 15 - 15.								
	·		4	5	6			
1	wasserhaltige disperse Kieselsäure I	GewTeile	-	130				
	wasserhaltige disperse Kieselsäure II	u ·	e-		150	:		
5	wasserhaltige disperse Kieselsäure III	tt .	91					
	Glasmehl (Natronglas) 80 bis 150 jum	n	174	-	100			
	Glimmermehl Korngröße 0,2 mm	ti .	300	400	50			
	Tonerdehydrat	et .	92	-	-			
10	Biegebruchfestigkeit (kg/cm ²)		311	301	280			

Die Herstellung der Preßmasse erfolgte entsprechend den Angaben in den Beispielen 1 bis 3, wobei jedoch ein feuchtes Pulver entsteht, das nicht durch Vibration gießfähig wird.

Das Pulver wird in Formen gefüllt und unter 240 bar Druck zu 10 mm dicken Platten verpreßt. Die so gepreßten Platten werden ohne Härtung entformt und bei 100°C 10 Stunden gehärtet. Die Formkörper sind rißfrei und formtreu und können, gebohrt und mittels einer Trennscheibe ohne Splittern der Ränder geschnitten werden.

Beispiel 7

Herstellung von Kaliwasserglas

- Aus 567 g KOH (89,6 Gew.-% g), 346 g Wasser und 920 g einer amorphen dispers-pulverförmigen wasserhaltigen Kieselsäure der genannten Zusammensetzung II wird durch Lösen der KOH in der angeführten Menge Wasser unter Selbsterwärmen und Zugabe der genannten Menge der Kieselsäure in Portionen in einer Stunde unter Rühren und Erwärmen auf 110 °C die
- Kieselsäure zu 1,8 kg Kaliumsilikat-Lösung der Zusammensetzung 23,7Gew.-% K₂0, 23,2 Gew.-% SiO₂ und 52,8 Gew.-% H₂O gelöst.

Es entsteht eine etwas bräunliche, leicht getrübte Lösung.
Das so hergestellte Kaliwasserglas wird anstelle von handelsmäßigem Kaliwasserglas der Beispiele 1 bis 6 in den
Beispielen der steinbildenden Komponente eingesetzt:

- 14-16.

1 Beispiel 8

Analog Beispiel 1 mit dem Unterschied, daß die Kaliumsilikatlösung I und das KOH fest durch 40 Gew.-Teile der Kaliumsilikatlösung aus Beispiel 7 ersetzt wurden.

5

Beispiel 9

Analog Beispiel 4 mit dem Unterschied, daß die Kaliumsilikatlösung I durch 100 Gew.-Teile des oben genannten Natronwasserglases ersetzt wurden und die Härtung bei 10 200 °C 7 Stunden erfolgte.

15

20

25

30