L07

Optimizers

Intro

Loss Functions

They help model to "understand" to which direction it should move to.

Optimizers are for making movement to the chosen direction.

Gradient Descent. Drawings.

Gradient Descent

Pros:

- Can find minima

Cons:

- We have to calculate gradient on the whole data set
- Can stuck on plateau or shallow local minima

Batch Training

- Batch Gradient Descent.
 Batch Size = Size of Training Set
- Stochastic Gradient Descent.
 Batch Size = 1
- Mini-Batch Gradient Descent.
 1 << Batch Size << Size of Training Set

Gradient Descent Modifications

SGD

Ref: https://mathformachines.com/posts/visualizing-the-loss-landscape/

SGD with Momentum. Rolling Ball

SGD with Momentum. Rolling Ball. Newton Law.

Solving Equations. Finite difference method

$$\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x} \Rightarrow \frac{\partial v}{\partial t} = \frac{v_{t+1} - v_t}{\Delta t}$$

$$\frac{\partial f}{\partial x} = \frac{x_{t+1} - x_t}{\Delta t}$$

Reference: https://en.wikipedia.org/wiki/Finite_difference_method

Solving Equations. Finite difference method

$$\begin{cases} v_{t+1} = v_t - \frac{\Delta t}{m} \nabla f - \frac{\Delta t}{m} \eta v_t \\ x_{t+1} = x_t + \Delta t v_t \end{cases}$$

$$\frac{\Delta t}{m} = 1$$

$$\Delta t = \alpha$$

$$v_t (1 - \frac{\Delta t}{m} \eta) = \beta$$

Solving Equations. Finite difference method. Solution

Stochastic Gradient Descent with Momentum

$$\begin{cases} x_{t+1} = x_t + \alpha v_t \\ v_{t+1} = \beta v_t - \nabla f \end{cases}$$
$$x_{t+1} = x_t + \alpha(\beta v_{t-1} + \nabla f) = x_t - \alpha \nabla f + \alpha \beta v_{t-1}$$

alpha - learning rate

beta - momentum factor

We want some kind of 'moving' average which would 'denoise' the data and bring it closer to the original function. Exponentially weighted averages can do the trick.

SGD with Momentum

- Gradient descent with momentum converges faster than standard gradient descent
- Momentum reduces oscillation
- We can set a higher learning rate

Local minima can be an escape and reach global minima due to the

momentum involved

SGD with Momentum

Reference: https://paperswithcode.com/method/sgd-with-momentum

SGD with Exponential Moving Average

Almost the same as SGD with momentum

$$w_{t+1} = w_t - \alpha \text{EMA}(\nabla f)_t$$
$$\text{EMA}(f)_t = (1 - \beta)f_t + \text{EMA}(f)_{t-1}$$

Nesterov's Accelerated Gradient (Look Ahead)

The idea behind Nesterov's momentum is that instead of calculating the gradient at the current position, we calculate the gradient at a position that we know our momentum is about to take us, called as "look ahead" position. From physical perspective, it makes sense to make judgements about our final position based on the position that we know we are going to be in a short while.

- First make a big jump in the direction of the previous accumulated gradient.
- Then measure the gradient where you end up and make a correction.

brown vector = jump, red vector = correction, green vector = accumulated gradient blue vectors = standard momentum

Rprop

Takes into account not a gradient, but sign of gradient **sign**(∇f).

Learning rates are individual for each parameter.

$$w_{t+1}^{i} = w_{t}^{i} - \alpha_{t}^{i} \operatorname{sign}(\nabla f^{i}(w_{t})))$$

$$\alpha_{t+}^{i} = \begin{cases} 1.2\alpha_{t} & \text{if } \operatorname{sign}(\nabla f^{i}(w_{t}) \cdot \nabla f^{i}(w_{t-1})) > 0\\ 0.6\alpha_{t} & \text{if } \operatorname{sign}(\nabla f^{i}(w_{t}) \cdot \nabla f^{i}(w_{t-1})) \leq 0 \end{cases}$$

Works bad with batches

RMSProp

Intuition:

- If for some direction derivative is high, we want to slow down in this direction
- If for some direction derivative is low, we want to speed up in this direction

$$w_{t+1} = w_t - \alpha \frac{\nabla f(w_t)}{\sqrt{\text{EMA}(\nabla f^2)_t}}$$

$$\nabla f^2 = \left[\left(\frac{\partial f}{\partial w_0} \right)^2 \left(\frac{\partial f}{\partial w_1} \right)^2 \dots \left(\frac{\partial f}{\partial w_n} \right)^2 \right]$$

RMSProp + SGD with Momentum = Adam

$$w_{t+1} = w_t - \alpha \frac{\text{EMA}_{\beta_1}(\nabla f(w_t))}{\sqrt{\text{EMA}_{\beta_2}(\nabla f^2)_t + \epsilon}}$$

$$\nabla f^2 = \left[\left(\frac{\partial f}{\partial w_0} \right)^2 \left(\frac{\partial f}{\partial w_1} \right)^2 \dots \left(\frac{\partial f}{\partial w_n} \right)^2 \right]$$

$$\alpha = 3 \cdot 10^{-4}$$

$$\beta_1 = 0.9$$

$$\beta_2 = 0.999$$

Summary

https://pytorch.org/docs/stable/optim.html

https://pytorch-optimizer.readthedocs.io/en/latest/index.html

Optimiser	Year	Learning Rate	Gradient
Momentum	1964		✓
AdaGrad	2011	√	
RMSprop	2012	✓	
Adadelta	2012	√	
Nesterov	2013		√
Adam	2014	√	√
AdaMax	2015	√	√
Nadam	2015	✓	✓
AMSGrad	2018	✓	√

HW

Dataset collection for multiclass classification, 1000 images per class. Options:

- Dogs, wolves, hienas
- Jaguar, pantera, lion
- Chihuahua, golden retriever, borzoi
- Coca-Cola, fanta, sprite
- Cars of 1930's, cars of 1960's, cars of 2020's

Addons (**not tested**):

- Firefox: link
- Google Chrome: <u>link</u>