Agent-based modelling in social psychology

Dietmar Heinke

School of Psychology

Overview

- Definition of agent-based model
- Examples
 - Social psychology
 - Covid-19 model
 - Predator-prey-model

Workshop

Agent (Smith & Conrey, 2007)

Discrete:

An agent is a self-contained entity with identifiable boundaries.

Situated:

An agent exists in and interacts with an environment,
 e.g. other agents, resources, dangers, etc.

Active:

 An agent not only is affected by the environment but also affects the environment.

Agent

Limited information:

for example agents can see only their neighbouring agents and only their behaviours

Autonomous goals:

 An agent has its own goals and is self-directed in choosing behaviour to those goals.

Agent

Bounded rationality:

 Agents often use relatively simple rules rather than being capable of extensive computations.

Adaptation:

 In some models agents that can learn or adapt, changing their rules based on experience

Examples from social psychology

Date choice; Kalick & Hamilton (1986)

Social segregation; Schelling (1971)

Bible belt; lannaccone & Makowsky (2007)

Group Formation; (Jackson et al., 2017)

Date choice: Empirical evidence

 Attractive people tend to pair up with attractive people (r=0.5-0.6)

Explanation: preference for similar people

But no empirical evidence

Date choice: ABM

Agents:

- 500 male
 500 female
- Randomly assigned attractiveness between 1 and 10

Behavioural rules:

- In a randomly selected couple each agent decides independently whether they want to date
- If both want to date they are removed

Date choice: ABM

- Two versions:
 - Version 1:
 - Similarity matching
 - Results: unrealistic high correlation

- Version 2:
 - Attractiveness seeking rule
 - Results: realistic correlation

Date choice: ABM - Results

Most attractive agents tend to be paired up early

The average attractiveness of the pool decreases

Lessons

Simple (minimal) model

Own behavioural rules

Iteration over time

Schelling-model: Social segregation

 Why does social segregation exists if no one wanted to live in a segregated world?

Workshop

Schelling-model: Social segregation

- Agents:
 - Two groups of agents
- Environment:
 - Spatial grid
- Behavioural rule:
 - If in the minority move to another location
- Social segregation even under mild preference for being in the majority

Results

Initial state

Final state

Results

High tolerance

low tolerance

Lessons

Simple behavioural rule leads to segregation.

No need to postulate steering authority

Importance of space

Simple model

Bible belt

- Evidence:
 - Persistence of bible belt despite high levels of mobility

- Model:
 - Agents with one of two "religions"
 - Initially environment is split into two regions a majority religion
 - Types of agents: no-conformity or strong conformity

Bible belt: Results

- Type 1-agent:
 - Melting pot

- Type 2 agent:
 - Persistence of majority religion

Let's have a break

Group Formation (Jackson et al., 2017)

Does reciprocity and transitivity lead to group formation?

Transitivity

individuals share their friends' opinions of other people

 E.g., Agent A and Agent B are friends and A likes C then B should also like C.

 If there is disagreement, usually the one who has not a strong opinion is likely to change their opinion

•

Reciprocity

- If Agent A helps (or harms) Agent B then Agent B in turn helps (or harms) A.
 - Happens more often between close agents (e.g., friends)
 than distant agents (e.g. foreign pen pals)

Model implementation based on prisoner's dilemma

Prisoner's dilemma

		Agent A		
payoff		cooperates	defects	
Agent B	cooperates	1/1	-3/3	
	defects	3/-3	-1/-1	

Best strategy for individual: defect

Best strategy for group: cooperate

Agents

 Closeness of agents represented with a number between 0 and 1.

closeness	1	2	3	•	•	Number of agents
1		0.5	0.2			
2	0.5		0.6			
3	0.2	0.6				
		•	•		-	
Number of agents	•			•	•	

Behavioural rules

- Closeness ~ probability of interaction
- Prisoner's dilemma:
 - Closeness ~ cooperation

- Reciprocity:
 - If both agents cooperate their closeness increases
 - If both agents defect their closeness decreases
 - Otherwise: no change

Behavioural rules

- Transitivity:
 - Only if both agents cooperate
 - Compare their closeness to other agents
 - Whoever has a weaker opinion (closeness) changes their mind.

Stops until the closeness stops changing

Result: time course

Summary

Bridge between microscopic assumptions and macroscopic pattern

Importance of space

Iterations over time

Suitable for modelling social behaviour

Agent-based model of COVID-19

• Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., Núñez, R. C., Cohen, J. A., Selvaraj, P., Hagedorn, B., George, L., Jastrzębski, M., Izzo, A. S., Fowler, G., Palmer, A., Delport, D., Scott, N., Kelly, S. L., Bennette, C. S., ... Klein, D. J. (2021). Covasim: An agent-based model of COVID-19 dynamics and interventions. In M. Marz (Ed.), PLOS Computational Biology (Vol. 17, Issue 7, p. e1009149). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pcbi.1009149

Purpose:

- Projection of epidemic trends
- Exploration of interventions (social distancing, vaccinations, etc.)

State of an agent

- Yellow shading indicates that the individual infectious
- Dash board indicate symptomatic states.
- Examples of parameters:
 - Length of time after exposure before turning infectious
 - Time from infectiousness onset to recovery for asymptomatic cases
- Stochastic parameters

Contact

Predator-prey cycle

http://www.scholarpedia.org/article/Predator-prey_model

Predator-prey-model: Lotka-Volterra-model

Population-model

 http://www.scholarpedia.org/article/Predatorprey_model

 Non-linear dynamic system, e.g. Lotka-Volterramodel

Lotka-Volterra-model

$$\frac{dx}{dt} = x * (b - p * y)$$

$$\frac{dy}{dt} = y * (r * x - d)$$

x: population size of prey

y: population size of predator

b: growth rate of prey per individual

d: death rate of predator per individual

p * y: the effect of predation on prey per individual

r * x: growth rate of predator in response to prey population

Predator-prey-model: ABM

http://www.scholarpedia.org/article/Agent_based_modeling

- Two types of agent move randomly in the world
- Prey:
 - Check if it is time to reproduce
- Predator:
 - if lands on a prey, eats and increases energy
 - if not, energy decreases
 - if enough energy, reproduces
 - if out of energy, removed from world

CONCLUSION