Haowen Zhong, Ph.D. candidate

☑ zhong461@umn.edu

https://inspirehep.net/authors/2613804

Education Background

2021 - Now | Ph.D. in Physics, University of Minnesota

MN, US

Advisor: Vuk Mandic

2017 - 2021

B.Sc. in Physics, Huazhong University of Science and TechnologyThesis title: Gravitational waves from bubble collisions in FLRW spacetime.

Academia Internship

June 2023 – August 2023

Center of Computational Astrophysics, Flatiron Institute

June 2020 - August 2020

Shanghai Astronomical Observatory, Chinese Academy of Sciences

Teaching Experience

Teaching Assistant

PHYS 1301

Fall 2021

PHYS 1302

Spring 2022, Fall 2023, Spring 2024

PHYS 1101

Spring 2025

Selected Research Publications

Journal Articles

- H. Zhong, L. Reali, B. Zhou, E. Berti, and V. Mandic, "A two-step procedure to detect cosmological gravitational wave backgrounds with next-generation terrestrial gravitational-wave detectors," 2025. arXiv: 2501.17717 [gr-qc]. Ourl: https://arxiv.org/abs/2501.17717.
- **H. Zhong**, M. Isi, K. Chatziioannou, and W. M. Farr, "Multidimensional hierarchical tests of general relativity with gravitational waves," *Phys. Rev. D*, vol. 110, no. 4, p. 044 053, 2024. ODI: 10.1103/PhysRevD.110.044053. arXiv: 2405.19556 [gr-qc].
- **H. Zhong**, B. Zhou, L. Reali, E. Berti, and V. Mandic, "Searching for cosmological stochastic backgrounds by notching out resolvable compact binary foregrounds with next-generation gravitational-wave detectors," *Phys. Rev. D*, vol. 110, no. 6, p. 064 047, 2024. ODOI: 10.1103/PhysRevD.110.064047. arXiv: 2406.10757 [gr-qc].
- A. I. Renzini *et al.*, "pygwb: A Python-based Library for Gravitational-wave Background Searches," *Astrophys. J.*, vol. 952, no. 1, p. 25, 2023. O DOI: 10.3847/1538-4357/acd775. arXiv: 2303.15696 [gr-qc].
- **H. Zhong**, R. Ormiston, and V. Mandic, "Detecting cosmological gravitational wave background after removal of compact binary coalescences in future gravitational wave detectors," *Phys. Rev. D*, vol. 107, no. 6, p. 064 048, 2023, [Erratum: Phys.Rev.D 108, 089902 (2023)]. ODI: 10.1103/PhysRevD.107.064048. arXiv: 2209.11877 [gr-qc].
- **H. Zhong**, B. Gong, and T. Qiu, "Gravitational waves from bubble collisions in FLRW spacetime," *JHEP*, vol. 02, p. 077, 2022. ODI: 10.1007/JHEP02(2022)077. arXiv: 2107.01845 [gr-qc].

Talks

Seminars/Telecons

- Importance of Shot Noise in the Search for an Isotropic Stochastic Gravitational-Wave Background with Next Generation Detectors, August, LIGO stochastic subgroup telecon
- Searching for cosmological stochastic backgrounds by notching out resolvable compact binary foregrounds with next-generation gravitational-wave detectors, August, Sun Yat-Sen University
- Removing the Astrophysical Stochastic Gravitational Wave Foreground in Next-Generation Gravitational Wave Detectors & Arbitrary-Dimensional Hierarchical Test of GR with Gravitational Waves, November, Johns Hopkins University
- Detecting cosmological gravitational waves background after removal of compact binary coalescences in future gravitational wave detectors, October, CE telecon

Conferences/LVK Meetings

- Detecting a Cosmological Gravitational-Wave Background with Next-Generation Detectors, Fundamental Physics Across the Gravitational Wave Spectrum, August, Chicago (IL)
- Bypassing the Unresolvable Binary Neutron Star Foreground to Dig into Cosmological Background by Combining Notching Procedure and Joint Analysis, LVK Meeting, September, Online
 - Updates on Detecting Cosmological Gravitational Wave Background by Notching Astrophysical Foreground out in t-f space, LVK Meeting, March, Baton Rouge (LA)
- Detecting cosmological gravitational waves background after removal of compact binary coalescences in future gravitational wave detectors, APS Meeting, April, Minneapolis (MN)
 - Detecting cosmological gravitational waves background after removal of compact binary coalescences in future gravitational wave detectors, LVK Meeting, March, Online
- Dive into SGWB by Notching Out CBC Foreground For 3G Detector e.g (Cosmic Explorer), LVK Meeting, March, Evanston (IL)

Journal Referee

Physical Review D

Awards and Achievements

- National Scholarship (2 out of 170), HUST
 - Merit Student Scholarship (10 out of 170), HUST
 - National Astronomical Observatory Scholarship (2 out of 340), HUST
- National Astronomical Observatory Scholarship (2 out of 317), HUST
 - Scholarship of Academic Excellence in school of Physics (8 out of 170), HUST
- 2018 Scholarship of Self-Improvement for freshman (2 out of 22), HUST
 - Scholarship of Academic Excellence for freshman (11 out of 155), HUST.