Sigma Internship Coding Challenge

Algorithmic Trading Model for Portfolio Optimization

PADHMA PRAKASH A (21PT17)
PSG COLLEGE OF TECHNOLOGY, COIMBATORE

Goal:

To build a minimalist trading workflow and involves pulling daily close price data for Apple stock for the year 2023 and implementing a simple model to make buy orders

Overview:

Installation of QuantRocket:

- Since QuantRocket runs on Docker, I installed Docker desktop with WSL 2 backend.
- Start > Docker by running "docker run hello-world" on windows powershell for installation verification.
- Then downloaded necessary compose files required for QunatRocket which will run the following containers.

```
Windows Powershell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\padhm> cd ~/quantrocket

PS C:\Users\padhm\quantrocket> docker compose -p quantrocket up -d

Container quantrocket-ibgrouter-1 Running
Container quantrocket-jupyter-1 Running
Container quantrocket-jupyter-1 Running
Container quantrocket-jupyter-1 Running
Container quantrocket-satellite-1 Running
Container quantrocket-satellite-1 Running
Container quantrocket-satellite-1 Running
Container quantrocket-moonshot-1 Running
Container quantrocket-bild-1 Running
Container quantrocket-db-1 Running
Container quantrocket-tipg-1 Running
Container quantrocket-countdown-1 Running
Container quantrocket-dest-fully for the property of the property of
```

Then started the docker engine and accessed Jupyter environment in browser at,

http://localhost:1969

<u>Data Collection (Pulling daily close prices for Apple Stock) process of fetching historical stock price data for Apple (AAPL) using</u> QuantRocket:

(Check "Fetch_DataQR.ipynb" in the repository.)

Setting License:

Received my license key which is a unique identifier that authorizes the usage of QuantRocket services.

licenseKey = "f785a9ee-dfa4-11ee-948d-5d738746c51e"

set_license(licenseKey)

Getting license Profile:

get_license_profile()

retrieves and prints information about the currently set license profile

Creating a US Stock Database:

create_usstock_db("usstock-1d")

creates a QuantRocket database named "usstock-1d" specifically for storing historical daily stock price data for U.S. stocks.

Collecting Historical data:

collect_history("usstock-1d")

#collects historical data for all U.S. stocks and stores it in the "usstock-1d" database.

Downloading Historical data for Apple Stock (AAPL)

prices = get_prices("usstock-free-1d", universes="usstock-free-active",
start_date="2023-01-01",end_date="2023-12-31",fields=["Close"])

#downloads historical daily close prices for Apple stock (AAPL) from the "usstock-1d" database for the specified date range (from January 1, 2023, to December 31, 2023). The data is filtered to include only the "Close" field. The resulting data is saved to a CSV file named "AppleStock.csv".

A	В	С
Field	Date	FIBBG000B9XRY4
Close	2023-01-03	124.2163
Close	2023-01-04	125.4975
Close	2023-01-05	124.1666
Close	2023-01-06	128.7352
Close	2023-01-09	129.2616
Close	2023-01-10	129.8377
Close	2023-01-11	132.5788
Close	2023-01-12	132.4994
Close	2023-01-13	133.8402
Close	2023-01-17	135.0121
Close	2023-01-18	134.2871
Close	2023-01-19	134.3467
Close	2023-01-20	136.9289
Close	2023-01-23	140.1468
Close	2023-01-24	141.5571
Close	2023-01-25	140.8917
Close	2023-01-26	142.9774
Close	2023-01-27	144.9339
Class	2022 04 20	142 0220

Model Logic for state classifications and % returns:

(Check "Model_main.ipynb" in the repository.)

Uses daily close prices (p(d)) and calculates percentage returns (r(d))

Returns: r(d) = [p(d) - p(d-1)] / [p(d-1)]

Classified the state (s(d)) based on percentage returns.

If
$$r(d) >= 0.1$$
, $s(d) = +1$ (Bull state)

Else if
$$-0.1 < r(d) < 0.1$$
, $s(d) = 0$ (Flat state)

Else
$$s(d) = -1$$
 (Bear state)

Obtained V(N) based on the states classified.

If
$$s(d+1) = 1 & s(d) = 0$$
 ---> $V(d+1) = V(d) + 1$

Else if
$$s(d+1) = -1 & s(d) = 0 \longrightarrow V(d+1) = V(d) - 1$$

Else (in all other cases)
$$---> V(d+1) = V(d)$$

DATA ANALYSIS AND VISUALIZATION:

Compelling plots for better understanding about the data fetched.

Implementation of value function V(N):

PORTFOLIO VALUE OBTAINED (PERFORMING BUY TRADES ON ALL DAYS)

Placing buy order:

Note: This is not an optimal solution. Our objective is to **maximize** the Portfolio value

18
18
17
17
17
17
17
17
17

Portfolio Value obtained: 17

OPTIMUM SOLUTION OBTAINED (FINDING IN STREAMING MANNER)

Performing Buy order trade when the current day is "**FLAT**" and followed by a "**BULL**"

if curr_state == 1 and prev_state == 0:
 pfVAL += 1
 n_ord += 1

buy_indices.append(i)

FINAL PORTFOLIO VALUE = 40

OPTIMAL BUY INDICES = [6, 8, 12, 16, 21, 28, 30, 41, 50, 52, 59, 61, 69, 79, 85, 88, 94, 100, 103, 108, 110, 113, 117, 120, 123, 133, 142, 160, 164, 177, 187, 191, 207, 209, 212, 216, 218, 232, 234, 238]

FINDING TRANSITION DISTRIBUTIONS IN STREAMED MANNER:

- Used generator function to yield intermediate results.
- Updated transition counts and probabilities as new data points arrive.
- Continuously calculated probabilities based on streaming data.

ı				
	Bull	0.333333	0.333333	0.333333

Transition Distribution(5):

	Bear	Flat	Bull
Bear	0	0	1
Flat	0	1	0
Bull	0.333333	0.333333	0.333333

..... Intermediate results

FINAL TRANSITION DISTRIBUTION:

	Bear	Flat	Bull
Bear	0.142857	0.742857	0.114286
Flat	0.146497	0.598726	0.254777
Bull	0.122807	0.666667	0.210526