Codificação de Fonte (Código de Huffman) AULA DE EXERCÍCIOS

Teoria da Informação - AULA 13 Prof^a. Verusca Severo

Universidade de Pernambuco Escola Politécnica de Pernambuco

13 de agosto de 2021

- Questão 1: Se você receber um conjunto de símbolos de entrada e suas probabilidades associadas, e codificar esses símbolos usando o código Huffman, é possível obter mais de um conjunto de palavras-código para as quais:
 - o comprimento esperado do código é o mesmo;
 - todos os códigos são o resultado da aplicação do código de Huffman;
 - os comprimentos das palavras código não são os mesmos de um conjunto para outro.

A tabela a seguir apresenta um exemplo de símbolos e probabilidades, e dois conjuntos diferentes de palavras-código para o código de Huffman:

Questão 1:(continuação)

Si	$P(s_i)$	Conj. de palavras código 1	Conj. de palavras código 2		
<i>s</i> ₀	0,2	01	10		
s_1	0,4	1	00		
<i>s</i> ₂	0,2	000	11		
<i>s</i> ₃	0,1	0010	010		
<i>S</i> ₄	0,1	0011	011		

Faça o que se pede:

- (a) Para ambos os conjuntos, siga o algoritmo do código de Huffman e desenhe a árvore para mostrar que ambos os conjuntos de palavras-código resultam de uma aplicação correta do algoritmo.
- **(b)** Mostre que os dois conjuntos de palavras-código têm o mesmo comprimento médio.

Solução (Questão 1):

 Questão 2: Qual dos códigos abaixo (pode haver nenhum, ou um, ou mais de um) não podem ser códigos de Huffman para qualquer distribuição de probabilidade?

- Código A: $= \{0, 10, 01, 11\}$
- Código B: $= \{00, 01, 10, 110\}$
- $\bullet \ \ \textbf{C\'odigo} \ \ \textbf{C:} = \{01, 10\}$
- Código D: $= \{0, 10, 11\}$

Solução (Questão 2):

- **Questão 3:** Uma fonte X, discreta e sem memória, emite os símbolos $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ com probabilidades $P(x_1) = 0, 1$, $P(x_2) = 0, 4$, $P(x_3) = 0, 06$, $P(x_4) = 0, 1$, $P(x_5) = 0, 04$ e $P(x_6) = 0, 3$.
 - a. Obtenha o código de Huffman binário para essa fonte.
 - b. Calcule a eficiência
 - **c.** Determine quantas reduções (ordenamentos) da fonte e atribuição de código são necessárias para determinação do código obtido na letra (a).

Solução (Questão 3):

• **Questão 4:** Seja $F = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7\}$ a fonte discreta sem memória com a seguinte distribuição de probabilidade:

F	f_1	f_2	f_3	f_4	f_5	f_6	f_7
$P(f_i)$	0,2	0,19	0,18	0,17	0,15	0,1	0,01

- a. Determine o código de Shannon para essa fonte e calcule a eficiência do código.
- **b.** Determine o código de Shannon-Fano para essa fonte e calcule a eficiência do código.
- **c.** Determine o código de Huffman para essa fonte e calcule a eficiência do código.
- **d.** Determine quantas reduções (ordenamentos) da fonte e atribuição de código são necessárias para determinação do código obtido na letra **(b)** e na letra **(c)**.

Solução (Questão 4):