# §8.5 多元复合函数与隐函数的求导法

2016-2017 **学年** II



# 教学要求









### Outline of §8.5

1. 多元复合函数的求导法

2. 隐函数的求导法

We are here now...

1. 多元复合函数的求导法

2. 隐函数的求导法

设有二元函数 z = f(u, v)

设有二元函数 
$$z = f(u, v)$$

• 
$$\psi u = \varphi(t)$$
,  $v = \psi(t)$ ,  $\psi(t)$ 

问 
$$\frac{dz}{dt}$$
 =?



设有二元函数 z = f(u, v)

•  $\psi u = \varphi(t), \ v = \psi(t), \ \bigcup z = f(\varphi(t), \psi(t))$ 



问 
$$\frac{dz}{dt}$$
 =?

设有二元函数 z = f(u, v)

•  $\psi u = \varphi(t), \ v = \psi(t), \ \mathbb{M} \ z = f(\varphi(t), \psi(t))$ 



问 
$$\frac{dz}{dt} =$$
?

问 
$$\frac{\partial z}{\partial x}$$
,  $\frac{\partial z}{\partial y}$  =?



设有二元函数 z = f(u, v)

•  $\psi u = \varphi(t), \ v = \psi(t), \ \bigcup z = f(\varphi(t), \psi(t))$ 

$$z = v$$

问 
$$\frac{dz}{dt}$$
 =?



问 
$$\frac{\partial z}{\partial x}$$
,  $\frac{\partial z}{\partial y}$  =?



设有二元函数 z = f(u, v)

•  $\psi$   $u = \varphi(t)$ ,  $v = \psi(t)$ ,  $\psi(t)$ 

$$z = v$$

问 
$$\frac{dz}{dt}$$
 =?



问 
$$\frac{\partial z}{\partial x}$$
,  $\frac{\partial z}{\partial y}$  =?



设有二元函数 z = f(u, v)

•  $\psi u = \varphi(t), \ v = \psi(t), \ \mathbb{M} \ z = f(\varphi(t), \psi(t))$ 

$$z = v$$

问 
$$\frac{dz}{dt}$$
 =?



问 
$$\frac{\partial z}{\partial x}$$
,  $\frac{\partial z}{\partial y}$  =?



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$  的全导数

$$\frac{dz}{dt} =$$

公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$  的全导数

$$\frac{dz}{dt} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$  的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt}$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ , 则  $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
=

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u}.$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_u \cdot (e^{-t})'_t +$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$
$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$
$$= v \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$
$$= v \cdot (-e^{-t}) +$$

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \\ &= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t \\ &= v \cdot (-e^{-t}) + u \cdot \end{aligned}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

#### 解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv =$$

#### 解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

#### 解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) =$$

#### 解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t +$$

#### 解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$

#### 解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$
$$= (-e^{-t}) \cdot \sin t + e^{-t} \cdot \cos t$$

例 设 z = uv,而  $u = e^{-t}$ ,  $v = \sin t$ ,求全导数  $\frac{dz}{dt}$ 

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

解法二

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$
$$= (-e^{-t}) \cdot \sin t + e^{-t} \cdot \cos t = e^{-t}(\cos t - \sin t)$$

$$\frac{dz}{dt} =$$

解 dz

$$\frac{dz}{dt} =$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} =$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_{x}'$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t +$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot$$



例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$
$$= -\frac{y}{x^2}.$$



例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{y}{x^2} \cdot$$



例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot$$



例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot (-2e^{2t}) =$$



例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^t +$$



例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = \left(\frac{y}{x}\right)_x' \cdot \left(e^t\right)_t' + \left(\frac{y}{x}\right)_y' \cdot \left(1 - e^{2t}\right)_t'$$

$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot \left(-2e^{2t}\right) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^t + \frac{1}{e^t} \cdot \left(-2e^{2t}\right)$$

$$z \xrightarrow{\frac{\partial z}{\partial x}} x \xrightarrow{\frac{\partial x}{\partial t}} z$$

例 设 
$$z = \frac{y}{x}$$
,而  $x = e^t$ ,  $y = 1 - e^{2t}$ ,求全导数  $\frac{dz}{dt}$ 

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_{x}' \cdot (e^{t})_{t}' + (\frac{y}{x})_{y}' \cdot (1 - e^{2t})_{t}'$$

$$= -\frac{y}{x^{2}} \cdot e^{t} + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^{t} + \frac{1}{e^{t}} \cdot (-2e^{2t})$$

$$= -e^{-t} - e^{t}$$

$$Z \xrightarrow{\frac{\partial Z}{\partial x}} X \xrightarrow{\frac{dX}{dt}} Z$$

公式 设 
$$z = f(u, v, w)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ ,  $w = \omega(t)$ , 则  $z = f(\varphi(t), \psi(t), \omega(t))$  的全导数 
$$\frac{dz}{dt} =$$

公式 设 
$$z = f(u, v, w)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ ,  $w = \omega(t)$ , 则  $z = f(\varphi(t), \psi(t), \omega(t))$  的全导数

$$\frac{dz}{dt} =$$



公式 设 
$$z = f(u, v, w)$$
,  $u = \varphi(t)$ ,  $v = \psi(t)$ ,  $w = \omega(t)$ , 则  $z = f(\varphi(t), \psi(t), \omega(t))$  的全导数 
$$\frac{dz}{dt} =$$



$$\frac{dz}{dt} =$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt}$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \quad \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$$



$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} + \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ ,

公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

#### 的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$\frac{\partial Z}{\partial y} =$$

公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \quad \frac{\partial Z}{\partial y} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \quad \frac{\partial Z}{\partial y} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \frac{\partial Z}{\partial y} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \qquad , \quad \frac{\partial z}{\partial y} =$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

#### 的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数 
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} +$$



公式 设 
$$z = f(u, v)$$
,  $u = \varphi(x, y)$ ,  $v = \psi(x, y)$ , 则复合函数  $z = f(\varphi(x, y), \psi(x, y))$ 

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$





例设 $z = e^{2u} \sin v$ ,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$ , $v = x^2 + y^2$ ,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

例设  $z = e^{2u} \sin v$ ,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_{u} \cdot$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} +$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$=$$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$ , $v = x^2 + y^2$ ,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_x$$

$$= 2e^{2u} \sin v \cdot 3x^2 y +$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + v^{2}) \cdot 3x^{2}v + \frac{\partial V}{\partial x}$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}).$$

例设
$$z = e^{2u}\sin v$$
,  $u = x^3y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + v^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + v^{2}) \cdot 2x$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{v} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y}$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{v} + (e^{2u} \sin v)'_{v} \cdot$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \sin v \cdot x^{3} +$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_y$$

$$= 2e^{2u} \sin v \cdot x^3 + e^{2u} \cos v \cdot$$

例设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$



例设
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + v^{2}) \cdot$$



例设
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

 $=2e^{2x^3y}\sin(x^2+v^2)\cdot x^3+$ 



例 设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_y + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_y$$

$$= 2e^{2u} \sin v \cdot x^3 + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^3 y} \sin(x^2 + y^2) \cdot x^3 + e^{2x^3 y} \cos(x^2 + y^2) \cdot x^3 + e^{2x^3$$



例 设 
$$z = e^{2u} \sin v$$
,  $u = x^3 y$ ,  $v = x^2 + y^2$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

 $=2e^{2x^3y}\sin(x^2+y^2)\cdot x^3+e^{2x^3y}\cos(x^2+y^2)\cdot 2y$ 



We are here now...

1. 多元复合函数的求导法

2. 隐函数的求导法

公式 设 y = f(x) 满足 F(x, y) = 0,

公式 设 y = f(x) 满足 F(x, y) = 0, 即 F(x, y(x)) = 0,

公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} =$$

公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

证明 
$$: F(x, y(x)) = 0$$

公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$



公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$



公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$



公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) = F_x +$$



公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore 0 = \frac{d}{dx}F(x, y(x)) = F_x + F_y \cdot \frac{dy}{dx}$$



公式 设 
$$y = f(x)$$
 满足  $F(x, y) = 0$ ,即  $F(x, y(x)) = 0$ ,则 
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) = F_x + F_y \cdot \frac{dy}{dx}$$

$$\therefore \quad \frac{dy}{dx} = -\frac{F_x}{F_y}$$





例设 y = f(x) 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
, 令  $F(x, y) = xy + e^{x+y} - 1$ ,  $F(x, y) = 0$ 

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} =$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + y}{(xy + e^{x+y} - 1)_y'}$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{(xy + e^{x+y} - 1)_y'}$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + x}$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

例设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
, 令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ , 所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
, 令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以 
$$0 = (xy(x) + e^{x+y(x)} - 1)'_x$$

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以
$$0 = (xy(x) + e^{x+y(x)} - 1)'_{x}$$

$$= (xy(x))'_{x} + (e^{x+y(x)})'_{x}$$

$$=$$

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以 
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以
$$0 = (xy(x) + e^{x+y(x)} - 1)'_{x}$$

$$= (xy(x))'_{x} + (e^{x+y(x)})'_{x}$$

$$= y + xy' +$$

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以 
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以
$$0 = (xy(x) + e^{x+y(x)} - 1)'_{x}$$

$$= (xy(x))'_{x} + (e^{x+y(x)})'_{x}$$

$$= y + xy' + e^{x+y(x)} \cdot (1 + y')$$

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以 
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以
$$0 = (xy(x) + e^{x+y(x)} - 1)'_{x}$$

$$= (xy(x))'_{x} + (e^{x+y(x)})'_{x}$$

$$= y + xy' + e^{x+y(x)} \cdot (1 + y')$$

$$= (y + e^{x+y}) +$$

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以
$$0 = (xy(x) + e^{x+y(x)} - 1)'_{x}$$

$$= (xy(x))'_{x} + (e^{x+y(x)})'_{x}$$

$$= y + xy' + e^{x+y(x)} \cdot (1 + y')$$

$$= (y + e^{x+y}) + y'(x + e^{x+y})$$

例 设 
$$y = f(x)$$
 满足  $xy = 1 - e^{x+y}$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + e^{x+y} - 1 = 0$$
,令  $F(x, y) = xy + e^{x+y} - 1$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + e^{x+y} - 1)_x'}{(xy + e^{x+y} - 1)_y'} = -\frac{y + e^{x+y}}{x + e^{x+y}}$$

方法二 注意 
$$xy(x) + e^{x+y(x)} - 1 = 0$$
,所以
$$0 = (xy(x) + e^{x+y(x)} - 1)'_{x}$$

$$= (xy(x))'_{x} + (e^{x+y(x)})'_{x}$$

$$= y + xy' + e^{x+y(x)} \cdot (1 + y')$$

$$= (y + e^{x+y}) + y'(x + e^{x+y})$$

所以  $y' = -\frac{y + e^{x+y}}{x + e^{x+y}}$ 

例 设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ , 求  $\frac{dy}{dx}$ 

## 方法一

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ , 求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + \ln y - \ln x = 0$$

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{r_x}{F_y} =$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
, 令  $F(x, y) = xy + \ln y - \ln x$ ,

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
, 令  $F(x, y) = xy + \ln y - \ln x$ , 则  $F(x, y) = 0$ , 所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)'_x}{(xy + \ln y - \ln x)'_y} =$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
,令  $F(x, y) = xy + \ln y - \ln x$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)'_x}{(xy + \ln y - \ln x)'_y} = -$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
,令  $F(x, y) = xy + \ln y - \ln x$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y}{}$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
,令  $F(x, y) = xy + \ln y - \ln x$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x}$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
,令  $F(x, y) = xy + \ln y - \ln x$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x}$$

方法一 注意 
$$xy + \ln y - \ln x = 0$$
,令  $F(x, y) = xy + \ln y - \ln x$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

例设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ , 求  $\frac{dy}{dx}$ 

方法一 注意  $xy + \ln y - \ln x = 0$ ,令  $F(x, y) = xy + \ln y - \ln x$ ,则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意  $xy(x) + \ln y(x) - \ln x = 0$ ,



例设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ ,求  $\frac{dy}{dx}$ 

方法一 注意 
$$xy + \ln y - \ln x = 0$$
,令  $F(x, y) = xy + \ln y - \ln x$ ,则  $F(x, y) = 0$ ,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以  $0 = (xy(x) + \ln y(x) - \ln x)'_x$ 

例设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ ,求  $\frac{dy}{dx}$ 

方法一 注意  $xy + \ln y - \ln x = 0$ ,令  $F(x, y) = xy + \ln y - \ln x$ ,则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以
$$0 = (xy(x) + \ln y(x) - \ln x)'_x = (xy(x))'_x + (\ln y(x))'_x - (\ln x)'_x$$

=

例设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ , 求  $\frac{dy}{dx}$ 

方法一 注意  $xy + \ln y - \ln x = 0$ , 令  $F(x, y) = xy + \ln y - \ln x$ , 则 F(x, y) = 0, 所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以
$$0 = (xy(x) + \ln y(x) - \ln x)'_{x} = (xy(x))'_{x} + (\ln y(x))'_{x} - (\ln x)'_{x}$$

$$= y + xy'$$

例设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ ,求  $\frac{dy}{dx}$ 

方法一 注意  $xy + \ln y - \ln x = 0$ , 令  $F(x, y) = xy + \ln y - \ln x$ , 则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以 
$$0 = (xy(x) + \ln y(x) - \ln x)'_x = (xy(x))'_x + (\ln y(x))'_x - (\ln x)'_x$$
$$= y + xy' + \frac{y'}{v}$$

例 设 
$$y = f(x)$$
 满足  $xy + \ln y = \ln x$ ,求  $\frac{dy}{dx}$ 

方法一 注意  $xy + \ln y - \ln x = 0$ , 令  $F(x, y) = xy + \ln y - \ln x$ , 则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以
$$0 = (xy(x) + \ln y(x) - \ln x)'_x = (xy(x))'_x + (\ln y(x))'_x - (\ln x)'_x$$

$$= y + xy' + \frac{y'}{x} - \frac{1}{x}$$

$$= y + xy' + \frac{y'}{y} - \frac{1}{x}$$

方法一 注意  $xy + \ln y - \ln x = 0$ ,令  $F(x, y) = xy + \ln y - \ln x$ ,则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以
$$0 = (xy(x) + \ln y(x) - \ln x)_x' = (xy(x))_x' + (\ln y(x))_x' - (\ln x)_x'$$

$$= y + xy' + \frac{y'}{y} - \frac{1}{x}$$

$$= (y - \frac{1}{x}) + \frac{1}{x}$$

方法一 注意  $xy + \ln y - \ln x = 0$ ,令  $F(x, y) = xy + \ln y - \ln x$ ,则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以
$$0 = (xy(x) + \ln y(x) - \ln x)_x' = (xy(x))_x' + (\ln y(x))_x' - (\ln x)_x'$$

$$= y + xy' + \frac{y'}{y} - \frac{1}{x}$$

$$= (y - \frac{1}{x}) + y'(x + \frac{1}{y})$$

例设 y = f(x) 满足  $xy + \ln y = \ln x$ ,求  $\frac{dy}{dx}$ 

方法一 注意  $xy + \ln y - \ln x = 0$ ,令  $F(x, y) = xy + \ln y - \ln x$ ,则 F(x, y) = 0,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(xy + \ln y - \ln x)_x'}{(xy + \ln y - \ln x)_y'} = -\frac{y - \frac{1}{x}}{x + \frac{1}{y}}$$

方法二 注意 
$$xy(x) + \ln y(x) - \ln x = 0$$
,所以
$$0 = (xy(x) + \ln y(x) - \ln x)_{x}' = (xy(x))_{x}' + (\ln y(x))_{x}' - (\ln x)_{x}'$$

$$= y + xy' + \frac{y'}{y} - \frac{1}{x}$$
$$= (y - \frac{1}{x}) + y'(x + \frac{1}{y})$$

所以 
$$y' = -\frac{y-\frac{1}{x}}{x+\frac{1}{x}}$$



公式 设 z = f(x, y) 满足 F(x, y, z) = 0,

公式 设 z = f(x, y) 满足 F(x, y, z) = 0, 即 F(x, y, z(x, y)) = 0,

公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ ,即  $F(x, y, z(x, y)) = 0$ ,则 
$$\frac{\partial z}{\partial x} = , \frac{\partial z}{\partial y} =$$

公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ ,即  $F(x, y, z(x, y)) = 0$ ,则 
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F}$$

公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ ,即  $F(x, y, z(x, y)) = 0$ ,则 
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F}$$

证明 
$$: F(x, y, z(x, y)) = 0$$

公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$



公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$



公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$



公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$



公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$: F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

$$\therefore \quad \frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z}$$



公式 设 
$$z = f(x, y)$$
 满足  $F(x, y, z) = 0$ , 即  $F(x, y, z(x, y)) = 0$ ,

则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

∴ 
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
,  $\Box = \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$ 



例 设 z = f(x, y) 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$  解

$$\frac{\partial Z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\mathbf{H} \Leftrightarrow F(x, y, z) = x + y + xz - e^z + 1, \quad F(x, y, z) = 0$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令 
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则  $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+1)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)'_y}{(x+y+xz-e^z+1)'_z}$$
= -

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0}{0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)'_y}{(x+y+xz-e^z+1)'_z}$$
= -

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+1)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)'_y}{(x+y+xz-e^z+1)'_z}$$
= -

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令 
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则  $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0-0}{0+0+x-e^z+0}$$



例 设 
$$z = f(x, y)$$
 满足  $x + y + xz = e^z - 1$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0-0+0}{0+0+x-e^z+0} = -\frac{1}{x-e^z}$$



例 设 z = f(x, y) 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial Z}{\partial V} = -\frac{F_y}{F_z} =$$

例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$  解 令  $F(x, y, z) = x^2 + y^2 - 2z - e^z$ ,  $F(x, y, z) = 0$ 

$$\frac{\partial Z}{\partial X} = -\frac{F_X}{F_Z} =$$

$$\frac{\partial Z}{\partial y} = -\frac{F_y}{F_Z} =$$

例设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$

例设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{(x^2 + y^2 - 2z - e^z)_z'}{(x^2 + y^2 - 2z - e^z)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$

例设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$

例设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$

例设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0 + 0 - 2}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$

例设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$

例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0 + 0 - 2z - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$

例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x}{0 + 0 - 2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$



例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0}{0 + 0 - 2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$

例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0}{0 + 0 - 2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$

例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$

例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_X}{F_Z} = -\frac{(x^2 + y^2 - 2z - e^z)_X'}{(x^2 + y^2 - 2z - e^z)_Z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2x}{-2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{1}{0 + 0 - 2 - e^z}$$



例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2x}{-2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{0}{0 + 0 - 2 - e^z}$$



例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2x}{-2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{0 + 2y}{0 + 0 - 2 - e^z}$$



例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2x}{-2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{0 + 2y + 0}{0 + 0 - 2 - e^z}$$



例 设 
$$z = f(x, y)$$
 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2x}{-2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)'_y}{(x^2 + y^2 - 2z - e^z)'_z}$$
$$= -\frac{0 + 2y + 0 - 0}{0 + 0 - 2 - e^z}$$



例 设 z = f(x, y) 满足  $x^2 + y^2 - 2z = e^z$ , 求  $\frac{\partial z}{\partial x}$  和  $\frac{\partial z}{\partial y}$ 

解令
$$F(x, y, z) = x^2 + y^2 - 2z - e^z$$
,则 $F(x, y, z) = 0$ ,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_x'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{2x + 0 + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2x}{-2 - e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x^2 + y^2 - 2z - e^z)_y'}{(x^2 + y^2 - 2z - e^z)_z'}$$
$$= -\frac{0 + 2y + 0 - 0}{0 + 0 - 2 - e^z} = -\frac{2y}{-2 - e^z}$$

