ECONOMETRÍA-III. FEBRERO-2009.

- 1). Suponer una muestra aleatoria simple de tamaño T: x_1, x_2, x_T, obtenida a partir de una población con distribución N(μ, σ^2).
- a). Escribir el logaritmo de la función de verosimilitud, el gradiente y la matriz de información. Derivar el estimador máximo verosímil sin restricciones de μ y obtener su esperanza y varianza.
- b). Sea \overline{x} la media muestral. Obtener $E \left\lceil x_i \left(x_j \overline{x} \right) \right\rceil$ y

 $E\Big[\overline{x}\Big(x_j-\overline{x}\Big)\Big]$ siendo \mathcal{X}_i y \mathcal{X}_j elementos cualesquiera de la muestra.

- c) Suponer, ahora, que la media se estima con la restricción μ =0. Derivar el sesgo y varianza del estimador restringido. Derivar y escribir las regiones críticas correspondientes a los contrastes de la Razón de Verosimilitud y los Multiplicadores de Lagrange para contrastar la hipótesis nula de que μ es igual a cero.
- 2). Suponer el siguiente modelo:

$$y_{t} = \beta_{1}x_{1t} + \beta_{2}x_{2t} + u_{t}$$
 $u \sim N(0, \sigma^{2}I_{T})$

$$(X'X) = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix}$$
 $X'y = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $y'y = 10$ $\overline{y} = 0.5$ $T=10$

- a). Calcular los estimadores MCO, $\hat{\beta}$, y escribir su matriz de varianzas y covarianzas. Estimar esta matriz. Derivar las propiedades estadísticas de este estimador.
- b). Se estima el modelo con la restricción β_2 =0. Calcular los estimadores restringidos, su matriz de varianzas y covarianzas y la estimación de esta matriz. Derivar el sesgo de ambos estimadores.
- c). Utilizando los contrastes de la F, el coeficiente de determinación corregido y el AIC contrastar la hipótesis nula formulada en el apartado anterior. En cada caso, especificar la región crítica.

3). En el marco del modelo lineal general con k regresores

$$y = X \beta + u$$

se van a contrastar r restricciones lineales para β . Demostrar que los contrastes de la Razón de Verosimilitud (LR) y Multiplicadores de Lagrange (LM) pueden escribirse como:

$$LR = T \log \frac{\tilde{\sigma}_{R}^{2}}{\tilde{\sigma}^{2}}$$

$$LM = \frac{T(\tilde{\sigma}_{R}^{2} - \tilde{\sigma}^{2})}{\tilde{\sigma}_{R}^{2}}$$

en donde σ_R^2 y σ^2 son los estimadores de la varianza de u con y sin restricciones, respectivamente. T es el tamaño muestral. Demostrar también que el contraste LR puede escribirse como:

$$LR = T\log(1 + \frac{rF}{T - k})$$

en donde F es el contraste de la F.

4). Un investigador está interesado en la relación entre el consumo (y_t) y la renta (x_t) de un país. A partir de los datos disponibles, llega a la conclusión de que ambas variables solo tienen tendencia estocástica. Para estudiar la relación entre ambas variables, considera el modelo:

$$y_t = \beta x_t + u_t$$
 con $u_t = \rho u_{t-1} + \varepsilon_t$

siendo \mathcal{E}_t un ruido blanco. Se pide:

- a). Suponiendo que $|\rho| < 1$, obtener la media, varianza y los tres primeros valores de la función de autocorrelación de u_t . Dibujar el gráfico de esta serie. Derivar las propiedades del estimador MCO de y_t sobre x_t .
- b). Suponiendo que $|\rho|=1$, obtener la media, varianza y el gráfico de u_t . Derivar las propiedades del estimador MCO de y_t sobre x_t y las del estadístico t-ratio que se utiliza para contrastar la hipótesis nula de que $\beta=0$.
- c). Comparar los resultados obtenidos en los dos apartados anteriores.