Linear regression

i:	y:	x:
1	12.02	8.15
2	7.08	12.73
3	14.59	15.64
4	16.19	17.08
5	21.23	18.34
n	43.02	29.73

i:	y:	x:
1	12.02	8.15
2	7.08	12.73
3	14.59	15.64
4	16.19	17.08
5	21.23	18.34
n	43.02	29.73

i:	y:	x:
1	12.02	8.15
2	7.08	12.73
3	14.59	15.64
4	16.19	17.08
5	21.23	18.34
n	43.02	29.73

i:	y:	x:	y = f(x) = A * x + B	
1	12.02	8.15	O(A D) = (5())2	
2	7.08	12.73	$S(A, B) = \sum_{i} (f(x_i) - y_i)^2$	
3	14.59	15.64	$S(A, B) = \sum_{i} (A^*x_i + B - y_i)^2$	
4	16.19	17.08		
5	21.23	18.34	S(A, B) is the smallest, for A i I	

dS/dA = 0

dS/dB = 0

. . .

29.73

43.02

n

$$A = \frac{n \cdot \sum_{i=1}^{n} (x_{i} \cdot y_{i}) - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$\sum_{i=1}^{n} y_{i} - A \cdot \sum_{i=1}^{n} x_{i}$$

n

$$f(x) = A * x + B$$

$$f(x, y) = A * x + B * y + C$$

$$f(x, y, z) = A * x + B * y + C * z + D$$