분류	질 문	답변	중요도	盡知
스틱과 큐	질문 스택에 대해 설명해주세요	스택은 한쪽 끝에서만 넣고 뺄 수 있는 LIFO형식의 입니다. 여기서 LIFO란 Last In First Out의 졸임말로 가장 최근에 추가된 (push) 자료가 가장 먼저 제거될 (pop)될 항목이 됩니다. 쉽게 설명하자면, 스택은 일종의 바닥이 막힌 상자라고 보면 됩니다. 나중에 넣은 물건이 위에 있으므로 먼저 꺼낼 수 밖에 없습니다. 책상 위에 접시를 쌓는 경우를 예를 들어보자면 스택에 자료를 넣는다는 것은 1번 접시부터 차례로 2번 접시, 3번 접시를 각각 의 접시 위에 울리는 것과 같습니다. 스택에서 자료를 가져온다는 것은 이렇게 쌓아올린 접시의 가장 위에 있는, 이 경우 3번 접시부터 차례로 한 개씩 점시를 빼내는 것과 같습니다. 스택은 두 가지 행동을 할 수 있어야 합니다. - 낼는다: 자료구조는 자료를 관리하는 방법이다. 자료를 넣을 수 없다면 자료구조로 기능할 수 없습니다. - 깨낸다: 스택은 넣은 자료를 반드시 제거할 수 있어야 합니다. - 그 나면: 스택은 넣은 자료를 반드시 제거할 수 있어야 합니다. - 나이는 : 스택은 되는 메서드로는 다음과 같은 것이 있습니다. - bool is.empty(); // 스택에서 가장 최근에 추가된 자료를 확인한다 - Data top(); // 스택에 저장된 자료의 수를 가져온다 스택은 일반적으로 두 가지 방법으로 구현할 수 있습니다. 하나는 배열을 이용하는 것이고, 다른 하나는 리스트 자료구조를 이	중요도	https://opentutorials.org/course/1717/9699 https://github.com/TheAlgorithms/Algorithms- Explanation/blob/1dc534eddb4afd371773c48eca7ddd1be053ee c9lxo/%EC%9E%990%EB%A3%8C%EA%B5%AC%EC%A1% B0/%EC%8A%A4%ED%83%9D/%EC%8A%A4%ED%83% 9D.md
		용하는 것입니다.		
	큐에 대해 설명해주세요	스택은 가장 위에 있는 요소를 가리키는 "top 포인터" 하나만 가집니다. 삼입과 삭제는 스택의 한쪽 끝에서만 발생합니다. 큐는 리스트의 한쪽 끝에서는 원소들이 삭제되고, 반대쪽 끝에서는 삼입만 가능하게 만든 순서화된 자료구조입니다. 선입선출, FIFO 방식을 따릅니다. 원소 값 삭제가 발생하면 리스트 내의 모든 원소가 한칸씩 앞으로 이동하여야 하므로 연산이 오래 걸린다는 특징이 있습니다.	상	
	스택과 큐의 차이점에 대해 설명해주세요	스택과 큐는 둘 다 선형구조를 가진 자료구조입니다. 하지만 스택은 '하나의 입출구'를 가지고 있어, '후입선출', 마지막에 들어온 데이터가 가장 먼저나가는 구조를 가지는 반면 큐 는 '입구와 출구를 양 끝'에 가지고 있어, '선입선출', 먼저 들어온 데이터가 가장 먼저나가는 특징을 가지고 있습니다.	상	
	스택과 큐의 활용 사례에 대해 알고계신가요?	스택은 쌓아 올리는 자료구조로 대표적으로 자바스크립트의 '함수호출(콜스택)'과 '재귀함수' 방식이 있으며, 'DFS 탐색'과 브라우저에서는 '뒤로가기와 실행취소 작업'에 활용될 수 있습니다. 큐는 줄을 세우는 자료구조로 대표적으로 '이벤트루프의 TaskQueue'를 생각해볼 수 있으며, 'BFS 탐색'과 '프린트에서의 작업처리 방식, 버퍼링 현상'에 활용할 수 있습니다.	ਨੰ	https://github.com/prgrms-web-devcourse/FE-Speak-And-Learn: Study/blob/aceafade686dd45c7f3115a0b43535bcfff75d64/CS/ %EC%8A%A4%ED%83%9D%EA%B3%BC%ED%81%90/% EC%8A9%A4%ED%83%9D%EA%B3%BC%ED%81%90.md? plain=1#L3
	스택과 큐를 구현할 때 가지고 있어야 하는 메소드들과 시간복잡도에 대해 서 설명해주세요.	스택은 자료의 입출구인 'top'을 통해서만 접근이 가능하며, 스택의 'top'에 데이터를 넣는 'push'와 'pop' 메소드를 가집니다. 스택의 모든 삽입과 삭제면산은 top에서만 일어나므로 '시간복접도는 O(1)'로 고정됩니다. 추가로 스택이 비었는지 검사하는 isEmpty, 스택의 크기를 리턴하는 size등의 메소드들을 구현할 수 있습니다. 큐는 큐의 맨 앞으로 데이터가 빠져나가는 공간인 'front'와 큐의 맨 뒤로 데이터가 들어오는 공간인 'rear'를 가집니다. 데이터 를 추가하는 'EnQueue'와 데이터를 제거하는 'DeQueue' 메서드 모두 양끝에서 데이터를 추가,삭제 해주면 되기 때문에 시간 복잡도는 'O(1)'로 고정됩니다.	ਣ	
	자바스크립트를 멀티 쓰레드처럼 사용하는 방법이 뭔가요? / 자바스크립트에서 비동기 로직이 어떻게 동작하는지 설명해주세요. (이벤트 루프) 태스크 큐와 마이크로 태스트 큐에는 어떤 함수가 들어가나요? requestAnimationFrame에 대해 설명해주세요.	2개의 큐 모두 콜백항수가 들어간다는 점에서 동일하지만 어떤 항수를 실행하느냐에 따라 어디로 들어가는지가 달라집니다. 또한 명칭은 큐 (Queue) 이지만 실제 우리가 아는 자료구조의 큐와는 다릅니다. 엉밀히 말하자면 우선순위 큐 (Priority Queue) 라고 할 수 있는데, 이벤트 루프가 2개의 큐에서 태스크를 꺼내는 조건이 "제일 오래된 대스크" 이기 때문입니다. (동작방식을 확인하고 싶다면 HTML 스펙을 확인) 콜백함수를 태스크 큐에 넣는 항수들 setTimeout, setInterval, setImmediate, requestAnimationFrame, I/O, UI 렌더링 콜백함수를 마이크로테스크 큐에 넣는 항수들 process.nextTick, Promise, Object.observe, MutationObserver 익숙한 함수인 Web API의 setTimeout() 의 콜백함수가 태스크 큐에 들어가고 Promise 의 콜백함수가 마이크로테스크 큐에 들	하	https://baeharam.nettifv.app/posts/lavascript/JS-Task%EC%99%80-Microtask%EC%90%98-%EB%8F%99%EC%9E%91%EB%B0%A9%EC%8B%9D
	우선순위 큐의 동작원리가 어떻게 되나요?	우선순위 큐는 일반적인 큐와 달리 들어간 순서에 상관없이 '우선순위가 높은 데이터가 가장 먼저 출력되는 구조'를 말합니다. 우선순위 큐는 연건리스트로 치하는 트리구조입니다. '데이터 삽입 시'에는, 가장 마지막 노드에 새로운 데이터가 삽입되고, 이후 부모노드와 우선순위를 비교하여 노드의 구조를 변 경하는 작업을 반복합니다. '데이터 서'에 경우, 우선순위가 가장 높은 루트노드가 바로 삭제됩니다. 삭제 이후, 가장 아래의 노드가 루트노드로 위치하 고, 루트노드 부터 자식노드들과의 우선순위를 비교하여 노드의 구조를 변경합니다.	ર્સ	
	이벤트 루프란 무엇인가요? 콜 스택과 태스크 큐의 차이점은 무엇인가요?	이벤트 루프는 콜 스택을 모니터하고 태스크 큐에서 수행할 작업이 있는지 확인하는 단일 스레드 루프입니다. 콜 스택이 비어 있고 태스크 큐에 콜백 함수가 있는 경우, 함수는 큐에서 제거되고 실행될 콜 스택으로 푸시됩니다.	상	