

B.TECH SECOND YEAR

ACADEMIC YEAR: 2022-2023

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO:

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. BHOOPENDRA PACHAURI

EMAIL-ID : Bhoopendra.pachauri@jaipur.manipal.edu

PROPOSED DATE OF DELIVERY:

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality, Team Work, Execution with Passion, Humane Touch

SESSION OUTCOME

"KNOWLEDGE OF DIFFERENT PROPERTIES OF GRAPHS"

ASSIGNMENT

OUIZ

MID TERM EXAMINATION -I & II

END TERM EXAMINATION

ASSESSMENT CRITERIA'S

Walk, Path, Circuit

A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending with vertices. No edge appears more than once. It is also called as an edge train or a chain.

An open walk in which no vertex appears more than once is called **path**. The number of edges in the path is called **length of a path**.

A closed walk in which no vertex (except initial and final vertex) appears more than once is called a **circuit**. That is, a circuit is a closed, nonintersecting walk.

Walk, Path, Circuit

Consider the following graph-

Decide which of the following sequences of vertices determine walks.

For those that are walks, decide whether it is a circuit, a path, a cycle or a trail.

- 1. a, b, g, f, c, b
- 2. b, g, f, c, b, g, a
- 3. c, e, f, c
- 4. c, e, f, c, e
- 5. a, b, f, a
- 6. f, d, e, c, b

Solution-

- 1. Trail
 - Walk
- 3. Cycle
 - 4. Walk
 - Not a walk
 - &. Path

Walk, Path, Circuit

Consider the following graph-

Observe the given sequences and predict the nature of walk in each case-

- v1e1v2e2v3e2v2 -
- v4e7v1e1v2e2v3e3v4e4v5
- 3. v1e1v2e2v3e3v4e4v5
- 4. v1e1v2e2v3e3v4e7v1
- 5. v6e5v5e4v4e3v3e2v2e1v1e7v4e6v6

Solution-

- 1. Open walk
- 2. Trail (Not a path because vertex v4 is repeated)
- 3. Path
- 4. Cycle
- 5. Circuit (Not a cycle because vertex v4 is repeated)

Subgraph, Walk, Path, Circuit

