

Chain Ming Shan @ Emily Chain (A0202306Y) Lim Yu Han (A0202230H) Chung Jun Yu Chester (A0201459J) Crystal Tan Li Yin (A0202531Y)

Professor: Kumar, A Senthil

Supervisor: Terence Toh

CONTENTS

01

PROJECT RECAP

02

PROBLEM STATEMENT

03

SEM 2 TIMELINE

04

DESIGN RECAP

05

COMPONENT DESIGNS

06

BRACKET SIMULATIONS

TESTING BOM

TESTING CRITERIA

TESTING OF CONCEPT

Electrical & Physical Assembly

TESTING OF CONCEPT

Translation of Angles & Program Flow

TABLE OF CONTENTS

CONTENTS

11

TROUBLESHOOTING

12

TESTING VIDEOS

13

RESULTS & DISCUSSION

14

CONCLUSION

HALLIBURTON

- One of largest energy product and services provider
- Provide services such as managing geological data, locating hydrocarbons, drill, and formation evaluation, and optimizing production throughout the life of asset
- Completion Technology and Manufacturing Centre (2013)

GRINDING

GRINDING

PROBLEM STATEMENT

With automation, the current practice of manual regrinding of carbide tips for gun drills can be further improved in terms of safety, dimensional accuracy and process efficiency.

SAFETY CONCERNS

Carbide particles released during the regrinding process are detrimental to health. Technicians might also hurt themselves in the process of regrinding, if they are not careful.

ACCURACY OF DIMENSIONS

The dimensions of the taper (¼ diameter) are estimated using the vernier caliper and micrometer screw gauge. Human error could affect accuracy.

EFFICIENCY

The regrinding process ranges from 10-15 minutes, depending on experience levels. Automation enables the duration of the regrinding process to be consistent and more efficient, hence reducing human resources and costs.

Hiwin

Assembly View

Isometric View

MOTOR BRACKET Initial Design + 2 Iterations Initial Design + 1 Iteration **GUNDRILL CLAMP SPINDLE** Initial Design + 1 Iteration

COMPONENTS

5mm thickness

INITIAL DESIGN

Yield Strength of Mild Steel = 250e+06 N/m^2

L-BRACKET

Supplier: Oriental Motor Quotation: \$802.50 Lead time: 6 Weeks

48V DC Power Supply

Supplier: Kaichin Computer Systems Pte Ltd Quotation: \$433.33 Lead time: -

Motor Bracket

Supplier: Fujitson Quotation: \$95 Lead time: 2-3 Weeks

Spindle

Supplier: Fabricated in NUS Quotation: -Lead time: -

Tachometer

Supplier: Loaned from NUS Quotation: -Lead time: -

Fume Extractor (Vacuum)

Supplier: Loaned from NUS Quotation: -Lead time: -

M14 Clamping Kit

Supplier: Loaned from NUS Quotation: -Lead time: -

CC05IF-USB Communication Cable

Supplier: Loaned from Oriental Motor Quotation: -Lead time: -

KUKA KR60 Robotic Arm

Supplier: Loaned from SimTech Quotation: - Lead time: -

Gundrill Clamp

Supplier: Loaned from SimTech Quotation: -Lead time: -

Gundrill (6.35mm)

Supplier: Loaned from Halliburton Quotation: Lead time: -

TBT No 851248

Supplier: Loaned from Halliburton Quotation: -Lead time: -

L TIME

Time taken (manual grinding process):
10 -15 minutes

Measurement of ¼ diameter

Comparison of theoretical, manual grinding & automated grinding

FULL ASSEMBLY

Motor

Driver

Power

Supply

Motor &

Gundrill

Extractor (Vacuum)

MOTOR ASSEMBLY

TABLETOP SET-UP

MOTOR ELECTRICAL CONNECTION

Grinding wheel **GUNDRILL** +20° tilt CLAMP 0° tilt Gundrill Clamp Grinding wheel o° tilt ANGLE +200 171 Gurdrill clamp

GUNDRILL CLAMP ANGLE (MANUAL)

GRINDING WHEEL ANGLE (AUTOMATED)

PROGRAM FLOW

PROGRAM FLOW

Reference Axis

Setting the reference axis at grinding wheel does not work well with the program.

Parallelism Of Wheel

Parallel wheel is essential for more accurate result.

Reference Point

Reference point is set at the tip of the gundrill.

TROUBLESHOOTING - SETTING REFERENCE AXIS

Setting Reference Axis:

- A pointed tool is used.
- Grinding wheel is contact with the pointed tool from 4 position.
- Reference axis is set.

TROUBLESHOOTING - REFERENCE AXIS

CHALLENGES OF REFERENCE AXIS AT WHEEL

- <u>Constant change in</u> <u>reference axis</u> makes programming difficult.
 - Reference Axis rotates when the grinding wheel rotates.

• Re-calibrate reference axis to be located at the gun drill tip (stationary object).

TROUBLESHOOTING - SETTING REFERENCE AXIS

Setting Reference Axis At Gundrill

- Pointed tool (drill bit) is fixed.
- Grinding wheel move towards drill bit.
- Once the grinding wheel is contacted with drill bit.
- Reference point is set.

TROUBLESHOOTING - PARALLELISM OF GRINDING WHEEL

To ensure parallelism of grinding wheel:

- Both ends of the grinding wheel are measured.
- Measured values at both ends must be similar.

TROUBLESHOOTING - PARALLELISM OF GRINDING WHEEL

CHALLENGES

• Grinding wheel is found to be <u>unparallel</u> (surface is not <u>flat</u>).

- Re-calibrate to ensure:
 - Highest point of the wheel is used when setting reference point.
 - Highest point refers to the point where grinding wheel sticks out of its plane most.

TROUBLESHOOTING - SETTING REFERENCE POINT

Setting Reference Point

- Grinding wheel is set to a fixed point.
- Gundrill is inserted into the clamp
- Lock the gundrill once it touches the stationary grinding wheel.
- A paper is used as an indicator to ensure there is a contact.
- Reference point is set.

TROUBLESHOOTING - REFERENCE POINT

CHALLENGES

- As all steps are programmed based <u>one</u> reference point(starting):
 - Unable to cut 4th and 5th steps.

- Reference point for <u>each</u> <u>individual steps</u>.
 - Wheel is rotated to ensure it is in contact with the gundrill.

TROUBLESHOOTING - SETTING REFERENCE POINT (USING FRICTION)

TESTING CRITERIA

ACCURACY OF REGRIND

- Determined by the <u>closeness</u> of the experimental ¼ diameter value to the theoretical ¼ diameter of the gundrill.
- The <u>closer</u> the experimental ¼ diameter value is to the theoretical ¼ diameter, the <u>higher</u> the accuracy achieved.

EFFICIENCY OF PROCEDURE

- Measured by the <u>total time taken</u> for the automated regrinding procedure.
- The <u>lesser</u> the total time taken for the procedure, the <u>higher the</u> <u>efficiency</u> of the process.

TESTING RESULTS - ACCURACY

IMPORTANT POINTERS

- The ¼ diameter values were measured using the <u>Keyence</u> <u>Microscope</u> at NUS Advanced Manufacturing Lab (AML).
- The theoretical $\frac{1}{4}$ diameter of the gundrills used is 6.35mm/4 = 1.59mm.
- A total of three gundrills were borrowed from Halliburton and measured, to determine the <u>average inaccuracy of manual</u> <u>regrind</u>.

Measurements of the three gundrills manually re-grinded at Halliburton

Theoretical $\frac{1}{4}$ diameter of gundrill = 1.59mm.

	First Reading (mm)	Second Reading (mm)	Third Reading (mm)	Average Reading (mm)	Inaccuracy (Absolute Value)
Gundrill 1	1.62	1.64	1.62	1.63	0.04
Gundrill 2	1.64	1.65	1.65	1.65	0.06
Gundrill 3	1.65	1.64	1.66	1.65	0.06
Average Inaccuracy				0.05	

Measurements of the gundrill re-grinded by KR60

Theoretical $\frac{1}{4}$ diameter of gundrill = 1.59mm.

	First Reading (mm)	Second Reading (mm)	Third Reading (mm)	Average Reading (mm)	Inaccuracy (Absolute Value)
Trial Test 1	1.57	1.58	1.57	1.57	0.02
Trial Test 2	1.60	1.58	1.59	1.59	0.00
Trial Test 3	1.61	1.63	1.63	1.62	0.03
Average Inaccuracy				0.02	

More accurate compared to manual regrind, as the average inaccuracy is lower than 0.05mm.

TESTING RESULTS - EFFICIENCY

IMPORTANT POINTERS

 For the testing procedure, the time recorded includes the <u>time</u> required for manual rotation of the gundrill in the x-axis, using the qundrill clamp.

Time taken for testing			
Trial Test 1	6 min 20 sec		
Trial Test 2	6 min 08 sec		
Trial Test 3	6 min 11 sec		
Average Time Taken	6 min 13 sec		

Average Inaccuracy of Manual Regrind (mm)	0.05
Average Inaccuracy of KR60 Regrind (mm)	0.02

OBSERVATIONS

	First Reading (mm)	Second Reading (mm)	Third Reading (mm)	Average Reading (mm)
Trial Test 1	1.57	1.58	1.57	1.57
Trial Test 2	1.60	1.58	1.59	1.59
Trial Test 3	1.61	1.63	1.63	1.62

- The average inaccuracy for the gundrill re-grinded on the KR60 (0.02mm) is significantly lower than that of the manually regrinded gundrills (0.05mm).
- As more trials were performed, the inaccuracy of gundrills increased.
- This could be due to <u>calibration</u> and the <u>condition of the</u> <u>reference gundrill</u> used.
- Initial inaccuracy in the reference gundrill causes <u>deviation</u> in the final results of the re-grinding. The <u>inaccuracy worsens</u> as more trials are performed.

EVALUATION - EFFICIENCY

Average Time taken for Manual Regrind	10 - 15 minutes	
Average Time taken for KR60 Regrind	6 minutes 13 seconds	

OBSERVATIONS

- The average time taken for the KR60 automated regrind (6 mins 13 sec) is significantly lower than that for the manual regrind (10-15 minutes depending on experience level).
- The time taken for the KR60 regrind includes the time needed for manual rotation of the x-axis (torsion angle on the gundrill clamp), as system is not fully automated.
- With the implementation of the torque motor, the time taken for the automated process is expected to reduce further.
- During testing, the robotic arm movements were <u>slowed down</u> for safety purposes. These can be sped up during actual implementation.

DIAMOND BAND ON GRINDING WHEEL

- The automated design is applicable only to gundrills with diameters smaller than the width of the diamond band on the grinding wheel.
- For gundrills with diameters larger than the diamond band width, some edges on the gundrill will not be grinded off.
- <u>Dimensional accuracy</u> will be compromised.

Width of Diamond Band = 15.06mm

INITIAL CALIBRATION REQUIRED

- <u>Initial calibration</u> is required for gundrills of each diameter (e.g., calibration for 6mm gundrill cannot be used for 8mm gundrill).
- Reference points where the gundrill contacts the grinding wheel are <u>slightly different</u>.
- <u>Time-consuming</u> for Halliburton due to the wide range of gundrill sizes owned by the company.

SOFTWARE NOT USER-FRIENDLY

- Programming software for the KR60 <u>may not be flexible</u> for making minor changes to the program.
- Software does not allow for certain steps in the program to be executed separately.

RECOMMENDATIONS

Design not suitable for gundrills with diameters larger than grinding wheel diamond band width.

Change the grinding wheel design by increasing its diamond band width, to accommodate a wider range of gundrill sizes. Original band width Increased band width

Program the robotic arm to translate along z-axis, so that the qundrill surface can be evenly grinded even if its diameter is exceeds diamond band width.

Calibration process of robotic arm might be inaccurate and too time-consuming.

- Install <u>force sensors</u> on the robotic arm to improve accuracy and speed of calibration process.
- <u>Closed-loop feedback system</u> can significantly improve accuracy of regrind, but costs will increase accordingly.

- For calibration, a <u>'Golden</u>
 <u>Standard'</u> gundrill should be used as a reference gundrill.
- A 'Golden Standard' gundrill is one with the <u>ideal dimensions and</u> <u>angles</u> grinded off its tip.
- Calibration process will increase in accuracy and subsequent regrinding of gundrills will be optimal.

OBJECTIVES

- The automated regrinding system can perform regrinding of gundrills safely, efficiently and accurately.
- The system can withstand the grinding loads and high stress conditions.

DESIGN COSTS

- Estimated costs of design stands at approximately SGD\$50,000 (including robotic arm).
- Cost is reasonable, based on the experimental results.

EXPERIMENTAL RESULTS

 Results have shown an <u>improvement</u> <u>in accuracy</u> of 0.03mm (60%) and a <u>decrease in regrinding time</u> by 8 minutes 47 seconds (59%).

POSSIBLE IMPROVEMENTS

- <u>Force sensors</u> can be installed to aid with the calibration process.
- Grinding wheel design should be modified to suit a wider range of qundrill diameters.

THANK YOU

We have come to the end of the presentation.

