

CS671 Deep Learning

Even Sem 2018-19 March 31^{th} , 2019

Layer API

Assignment - 2

Submitted By

Roll No	Name
B16066	Nikhil T R
B16021	Kaustubh Verma
B16004	Aj R Laddha

Contents

	INIST Dataset	1
	1 Variation 1	
	2 Variation 2	. 4
	3 Variation 3	
2	ine Dataset	Ę
	1 Variation 1	
	2 Variation 2	. (
	3 Variation 3	. (
3	nference	8

Chapter 1

MNIST Dataset

1.1 Variation 1

Architecture	300-100-10	Testing Accuracy	0.9748	S. Deviation	0.01
Epochs	35	Batch Size	200	Learning Rate (SGD)	0.3

Table 1.1: Details

Figure 1.1: Training

968	0	1	0	0	3	3	2	2	1
1	1126	2	1	0	2	0	0	3	0
2	1	1008	3	3	0	2	9	4	0
2	0	2	993	0	2	0	3	5	3
0	0	3	1	957	1	4	2	1	13
2	0	0	8	1	870	4	1	4	2
4	3	1	1	1	7	940	0	1	0
0	2	5	3	0	0	0	1006	4	8
2	0	2	5	3	3	3	3	949	4
3	2	0	4	8	1	0	3	2	986

Table 1.2: Confusion Matrix

Figure 1.2: Scores

1.2 Variation 2

Architecture	300-100-10	Testing Accuracy	0.9487	S. Deviation	0.08
Epochs	20	Batch Size	500	Learning Rate (SGD)	0.01

Table 1.3: Details

Figure 1.3: Training

Figure 1.4: Scores

962	0	5	0	0	4	3	2	3	1
0	1110	3	3	0	1	3	1	13	1
4	2	984	12	6	0	3	11	9	1
0	0	10	962	0	12	0	9	11	6
1	0	7	0	949	0	5	4	5	11
5	0	1	19	3	841	11	1	8	3
6	3	6	1	10	10	915	0	7	0
0	8	12	8	6	3	0	975	5	11
2	2	5	7	5	10	5	5	927	6
3	6	0	7	27	8	1	13	17	927

Table 1.4: Confusion Matrix

1.3 Variation 3

Architecture	300-100-10	Testing Accuracy	0.9487	S. Deviation	1.0
Epochs	120	Batch Size	50	Learning Rate (SGD)	0.005

Table 1.5: Details

Figure 1.5: Training

Figure 1.6: Scores

0	0	161	24	6	399	0	314	55	21
0	1120	5	5	0	2	0	1	2	0
0	0	964	22	4	1	0	20	18	3
0	0	8	977	2	5	0	5	9	4
0	1	8	0	944	0	0	2	5	22
0	1	4	26	1	829	0	5	16	10
0	7	430	9	145	111	0	8	230	18
0	6	10	7	6	2	0	976	6	15
0	0	4	17	3	4	0	10	929	7
0	6	1	10	15	4	0	16	10	947

Table 1.6: Confusion Matrix

Chapter 2

Line Dataset

2.1 Variation 1

Architecture	192-96	Testing Accuracy	0.9741	S. Deviation	0.03
Epochs	30	Batch Size	25	Learning Rate (SGD)	0.3

Table 2.1: Details

Figure 2.1: Training

Figure 2.2: Scores

2.2 Variation 2

Details

Architecture	128-96	Testing Accuracy	0.7334	S. Deviation	0.1
Epochs	50	Batch Size	800	Learning Rate (SGD)	0.3

Table 2.2: Details

Figure 2.3: Training

Figure 2.4: Scores

2.3 Variation 3

Architecture	256-128-96	Testing Accuracy	0.6536	S. Deviation	1.0
Epochs	50	Batch Size	50	Learning Rate (SGD)	0.1

Table 2.3: Details

30 - 25 - 20 - 15 - 5 - 0 -		0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 -	
- [0 10 20 30 40 50 Epoch	0 10 20 30 40 Epoch	50
	(a) Train Loss	(b) Validation Accuracy	

Figure 2.5: Training

Figure 2.6: Scores

Chapter 3

Inference

- The default parameters of the random normal initializer are 0.0 for mean and 1.0 for the standard deviation. Decreasing the standard deviation to 0.1-0.01 range increased the performance.
- If the model is taking too long to train, then we can try and decrease the batch size to make the updates to weight and bias more frequent. Additionally we can reduce the learning rate as well.
- In the line dataset models, the models are able to identify long lines better than short ones.