1. On Trilinear Oscillatory Integral Inequalities and Related Topics

After M. Christ [1]

A summary by Jacob Denson and Mukul Rai Choudhuri

ABSTRACT. We discuss decay estimates for trilinear oscillatory integrals on $L^2(\mathbb{R}) \times L^2(\mathbb{R}) \times L^2(\mathbb{R})$ which give power decay in the frequency parameter with exponent having magnitude larger than 1/2, under non-degeneracy conditions on the phase. The main consequence of these estimates, for the purpose of this summer school, are smoothing bounds for singular Brascamp-Lieb type multilinear forms, which in particular, include bounds on the $L^1(\mathbb{R}^2)$ norm of $f(x)g(x+y)h(x+y^2)$, in terms of negative index Sobolev estimates on the functions f,g, and h.

1.1. **Introduction.** Consider an oscillatory integral of the form

(1)
$$T_{\lambda}^{\phi}(f) = \int_{\mathbb{R}^J} e^{i\lambda\phi(x)} f(x) \ dx,$$

for a function $\phi: \mathbb{R}^J \to \mathbb{R}$ and $f: \mathbb{R}^J \to \mathbb{C}$. If $f: \mathbb{R}^J \to \mathbb{C}$ is appropriately smooth and ϕ is appropriately 'non-stationary' then, as $\lambda \to \infty$, the integrand in (1) begins to oscillate faster and faster, and so we expect greater and greater cancellation to occur in the integral. In particular, if $\operatorname{supp}(f)$ is contained in a fixed compact set $K \subset \mathbb{R}^J$, the principle of stationary phase can then guarantee a bound $|T_\lambda^\phi(f)| \lesssim_K \lambda^{-\gamma} \max_{|\alpha| \le n} \|\partial^\alpha f\|_{L^\infty(\mathbb{R}^J)}$ with power decay in λ , for appropriate exponents γ and n.

If we remove the smoothness assumptions on f, then for an arbitrary input it is impossible to obtain any bound on (1) with a power decay in λ . If we set $f_{\lambda}(x) = \chi_{K}(x)e^{-i\lambda\phi(x)}$, then $||f_{\lambda}||_{L^{p}(\mathbb{R}^{J})} \lesssim_{K} 1$ and $|T_{\lambda}^{\phi}(f_{\lambda})| = |K|$. Thus the only bound of the form

$$(2) |T_{\lambda}^{\phi}(f)| \lesssim_K \lambda^{-\gamma} ||f||_{L^p(\mathbb{R}^J)}$$

which can hold uniformly over all $\lambda > 0$ and all $f \in L^p(\mathbb{R}^J)$ supported on a compact set K is the trivial bound with $\gamma = 0$. The main result about oscillatory inegrals we wish to discuss from [1] establishes non-trivial decay estimates of the form (2) for p = 2, J = 3, and $K = [0,1]^3$, under a structural assumption on the functions f. Namely, we assume that f can be written as $f_1 \otimes \cdots \otimes f_J$ for some functions $f_1, \ldots, f_J : \mathbb{R} \to \mathbb{C}$, i.e. so that $f(x) = f_1(x_1) \cdots f_J(x_J)$. Equation (2) can then be written as a multilinear inequality of the form

$$(3) |T_{\lambda}^{\phi}(f_1 \otimes \cdots \otimes f_J)| \lesssim \lambda^{-\gamma} ||f_1||_{L^2(\mathbb{R})} \cdots ||f_J||_{L^2(\mathbb{R})}.$$

Unlike the generality of (2), the multilinearity in (3) allows for cancellation, since the functions f_{λ} are no longer counterexamples to (3) with $\gamma > 0$ unless the phase ϕ can be written as

(4)
$$\phi(x) = \phi_1(x_1) + \dots + \phi_J(x_J)$$

for some functions $\phi_1, \ldots, \phi_J : \mathbb{R} \to \mathbb{R}$. One might hope that the best possible decay in (3) is closely related to how 'far' a phase function ϕ is from being decomposed as in (4). Current research is far from an optimal quantitative understanding of this relation, but [1] obtains improved decay estimates by making assumptions naturally related to preventing a decomposition of the form (4), along with non-linear analogues, called rank one degeneracies.

1.2. **Degeneracies.** One can prevent a decomposition of the form (4) by assuming a mixed derivative, such as $\partial_1 \partial_2 \phi$, is non-vanishing on $[0,1]^3$. It is then a result of Hörmander [2] that the operator

(5)
$$S_z f(x) = \int_{[0,1]} e^{i\lambda\phi(x,y,z)} f(y) dy$$

satisfies, uniformly for $z \in [0, 1]$,

(6)
$$||S_z f||_{L^2[0,1] \to L^2[0,1]} \lesssim \lambda^{-1/2}$$
.

Using (6), Cauchy-Schwartz and Hölder's inequality then implies

$$(7) |T_{\lambda}^{\phi}(f)| \lesssim \lambda^{-1/2} ||f_1||_{L^2[0,1]} ||f_2||_{L^2[0,1]} ||f_3||_{L^1[0,1]} \leq \lambda^{-1/2} ||f||_{L^2[0,1]}.$$

Thus (3) holds with $\gamma = 1/2$. It will be enlightening to later discussion to briefly explain the proof of (6) via a microlocal decomposition. For any $\lambda > 0$, and $f \in L^2[0,1]$, we can consider a decomposition of f into wave packets, of the form

(8)
$$f(y) = \sum_{(y_0, \eta_0) \in \Phi_{\lambda}} f_{y_0, \eta_0}(y),$$

where Φ_{λ} is the Cartesian product of $\lambda^{-1/2}\mathbb{Z} \cap [0,1]$ with $\lambda^{1/2}\mathbb{Z}$, where the function $f_{y_0,\eta}$ is supported on a sidelength $\lambda^{-1/2}$ interval centered at y_0 , and where it's Fourier transform rapidly decays away from a sidelength λ interval centered at η_0 . Our assumption on ϕ , roughly speaking, implies the existence of an injective map $(x_z, \xi_z) : \Phi_{\lambda} \to \Phi_{\lambda}$ such that the function $S_z f_{y_0,\eta_0}$ rapidly decays away from a sidelength $\lambda^{-1/2}$ interval centered at $x_z(y_0,\eta_0)$, it's Fourier transform rapidly decays away from a sidelength $\lambda^{1/2}$ interval centered at $\xi_z(y_0,\eta_0)$, and $\|S_z f_{y_0,\eta_0}\|_{L^2[0,1]}^2 \lesssim \lambda^{-1} \|f_{y_0,\eta_0}\|_{L^2[0,1]}^2$. Thus the functions $\{S_z f_{y_0,\eta_0}\}$ are also wave packets, which are essentially disjoint

from one another in phase space. They are therefore almost orthogonal, implying that

$$||S_z f||_{L^2[0,1]}^2 \lesssim \sum_{y_0,\eta_0} ||S_z f_{y_0,\eta_0}||_{L^2[0,1]}^2 \lesssim \lambda^{-1} \sum_{y_0,\eta_0} ||f_{y_0,\eta_0}||_{L^2[0,1]}^2 \lesssim \lambda^{-1} ||f||_{L^2[0,1]}^2.$$

Thus we have proved (6).

The main result of [1] related to oscillatory integrals is that one can improve Hörmander's estimate under a slightly stronger assumption on ϕ . Say ϕ is rank one degenerate if there exists ψ_1, \ldots, ψ_J , and a hypersurface H such that the function $x \mapsto \phi(x) + \psi_1(x_1) + \cdots + \psi_J(x_J)$ has gradient vanishing on H. Being rank one degenerate is a direct obstruction to proving (3) with $\gamma > 1/2$, since if we set $f_{\lambda}(x) = e^{i\lambda(\psi_1(x_1)+\cdots+\psi_J(x_J))}\chi(x)$ for a bump function $\chi = \chi_1 \otimes \cdots \otimes \chi_J$ supported on a small neighborhood $x_0 \in H$, then by fibering the neighborhood of x_0 into lines transverse to H and applying stationary phase on each line, we can conclude that $|T_{\lambda}^{\phi}f_{\lambda}| \gtrsim \lambda^{-1/2}$. Theorem 4.1 of [1] says that this is essentially the only obstruction.

Theorem 1 (Theorem 4.1 of [1]). Let $\phi : [0,1]^3 \to \mathbb{R}$ be real analytic, not rank one degenerate, and for each $i \neq j$ suppose $\partial_i \partial_j \phi$ is non-vanishing on $[0,1]^3$. Then (3) holds for some $\gamma > 1/2$.

The proof of Theorem 4.1 also involves a microlocal decomposition like that discussed in the proof of (6), but with an additional decomposition into a 'pseudorandom' part. We fix a small exponent $\sigma > 0$, to be optimized later. Then given $f \in L^2[0,1]$, we partition Φ_{λ} into $\Phi_{\lambda,0} + \Phi_{\lambda,1}$, where $(y_0,\eta_0) \in \Phi_{\lambda,0}$ if and only if $||f_{y_0,\eta_0}||_{L^2[0,1]} \gtrsim \lambda^{-\sigma}||f||_{L^2[0,1]}$. Almost orthogonality justifies that $||f||_{L^2[0,1]} \sim \sum ||f_{y_0,\eta_0}||_{L^2[0,1]}^2$, which means that $\#(\Phi_{\lambda,0}) \leq \lambda^{2\sigma}$. The wave packets corresponding to the elements of $\Phi_{\lambda,0}$ are then the sparse part, and the wave packets in $\Phi_{\lambda,1}$ are the pseudorandom part.

In the remainder of this summary, we discuss how this implies certain smoothing inequalities for trilinear forms of singular Brascamp-Lieb type.

1.3. Smoothing Inequalities. One potentially surprising application of Theorem 4.1 is to results in which no oscillation is immediately apparent. Consider analytic functions $\varphi_j : \mathbb{R}^2 \to \mathbb{R}$ for $1 \leq j \leq 3$ with nowhere vanishing gradient. If the vectors $\nabla \varphi_j(x_0)$ are linearly independent at x_0 , then for a bump function η supported near x_0 , it is simple to obtain an inequality of the form

$$\left\| \eta \prod_{j} f_{j}(\varphi_{j}) \right\|_{L^{1}(\mathbb{R}^{2})} \lesssim \prod_{j} \|f_{j}\|_{L^{3/2}(\mathbb{R})}.$$

Moreover, one cannot replace 3/2 with any smaller exponent. Nonetheless, other interesting inequalities might be obtained by

REFERENCES

- [1] Christ, M., On Trilinear Oscillatory Integral Inequalities and Related Topics. Preprint 2020 (Revised 2022), https://arxiv.org/pdf/2007.12753.
- [2] Hörmander, L., Oscillatory Integrals and Multipliers on FL^p . Ark. Mat. 11 (1973), 1–11.

JACOB DENSON, UNIVERSITY OF WISCONSIN, MADISON. jcdenson@math.wisc.edu

MUKUL RAI CHOUDHURI, UNIVERSITY OF BRITISH COLUMBIA. mukul@math.ubc.ca