Front matter

title: "Отчет по Лабораторной работе №5 по предмету Математические основы защиты информации и кибер безопасности" author: "Лобов Михаил Сергеевич"

Generic otions

lang: ru-RU toc-title: "Содержание"

Bibliography

bibliography: bib/cite.bib csl: pandoc/csl/gost-r-7-0-5-2008-numeric.csl

Pdf output format

toc: true # Table of contents toc-depth: 2 lof: true # List of figures lot: true # List of tables fontsize: 12pt linestretch: 1.5 papersize: a4 documentclass: scrreprt ## I18n polyglossia polyglossia-lang: name: russian options: - spelling=modern - babelshorthands=true polyglossia-otherlangs: name: english ## I18n babel babel-lang: russian babel-otherlangs: english ## Fonts mainfont: IBM Plex Serif romanfont: IBM Plex Serif sansfont: IBM Plex Sans monofont: IBM Plex Mono mathfont: STIX Two Math mainfontoptions: Ligatures=Common,Ligatures=TeX,Scale=0.94 romanfontoptions: Ligatures=Common,Ligatures=TeX,Scale=0.94 sansfontoptions: Ligatures=Common,Ligatures=TeX,Scale=MatchLowercase,Scale=0.94 monofontoptions: Scale=MatchLowercase,Scale=0.94,FakeStretch=0.9 mathfontoptions: ## Biblatex biblatex: true biblio-style: "gost-numeric" biblatexoptions: - parentracker=true - backend=biber - hyperref=auto - language=auto - autolang=other* - citestyle=gost-numeric ## Pandoc-crossref LaTeX customization figureTitle: "Рис." tableTitle: "Таблица" listingTitle: "Листинг" lofTitle: "Список иллюстраций" lotTitle: "Список таблиц" lolTitle: "Листинги" ## Misc options indent: true header-includes: -

keep figures where there are in the text

keep figures where there are in the text

Цель работы

Изучить "Вероятностные алгоритмы проверки чисел на простоту".

Задание

Реализовать алгоритмы проверки чисел на простоту на языке Julia.

Теоретическое введение

Пусть a – целое число. Числа ± 1 , $\pm a$ называются тривиальными делителями числа a.

Целое число $p \in \mathbb{Z}/\{0\}$ называется простым, если оно не является делителем единицы и не имеет других делителей, кроме тривиальных. В противном случае число $p \in \mathbb{Z}/\{-1,0,1\}$ называется составным.

Например, числа $\pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \pm 13, \pm 17, \pm 19, \pm 23, \pm 29$ являются простыми.

Пусть $m \in N, m > 1$. Целые числа a и b называются сравнимыми по модулю m (обозначается $a \equiv b \pmod m$) если разность a-b делится на m. Также эта процедура называется нахождением остатка от целочисленного деления a на b.

Проверка чисел на простоту является составной частью алгоритмов генерации простых чисел, применяемых в криптографии с открытым ключом. Алгоритмы проверки на простоту можно разделить на вероятностные и детерминированные.

Детерминированный алгоритм всегда действует по одной и той же схеме и гарантированно решает поставленную задачу (или не дает никакого ответа). Вероятностный алгоритм использует генератор случайных чисел и дает не гарантированно точный ответ. Вероятностные алгоритмы в общем случае не менее эффективны, чем детерминированные (если используемый генератор случайных чисел всегда дает набор одних и тех же чисел, зависящих от входных данных, то вероятностный алгоритм становится детерминированным).

Для проверки на простоту числа n вероятностным алгоритмом выбирают случайное число a, такое что 1 < a < n, и проверяют условия алгоритма. Если число n не проходит тест по основанию a, то алгоритм выдает результат «Число n составное», и число n действительно является составным.

Если же n проходит тест по основанию a, ничего нельзя сказать о том, действительно ли число n является простым. Последовательно проведя ряд проверок таким тестом для разных a и получив для каждого из них ответ «Число n, вероятно, простое», можно утверждать, что число n является простым с вероятностью, близкой к 1. После t независимых выполнений теста вероятность того, что составное число n будет t раз объявлено простым (вероятность ошибки), не превосходит $\frac{1}{2^t}$.

Выполнение лабораторной работы

Написаны программы на языке Julia.

Тест Ферма

Тест Ферма основан на малой теореме Ферма: для простого числа p и произвольного числа a, такого что $1 \le a \le p-1$, выполняется сравнение

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Следовательно, если для нечетного n существует такое целое a, что $1 \le a < n, \gcd(a,n) = 1$ и $a^{n-1} \not\equiv 1 \pmod n$, то число n составное. Отсюда получаем следующий вероятностный алгоритм проверки числа на простоту.

```
using Random
n = 20
function is prime(n::Int,k::Int=5)
    if n < 5 || n%2 == 0
        return false
    end
    for in 1:k
        a = rand(2:n-2)
        r = powermod(a, n-1, n)
        if r != 1
            return false
        end
    end
    return true
end
if is_prime(n)
    println("Число $n скорее всего простое")
else
    println("Число $n составное")
end
```

1. Пояснение програмного кода

Вход: Нечетное целое число $n \ge 5$.

Число 20 составное

Выход: «Число n, вероятно, простое» или «Число n составное».

- 1. Выбрать случайное целое число a, такое что $2 \le a \le n-2$.
- 2. Вычислить $r \leftarrow a^{n-1} \pmod{n}$.
- 3. При r=1, результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

Вычисление символа Якоби

Необходим для теста Соловея-Штрассена

Вход: Нечетное целое число $n \ge 3$, целое число a, такое что $0 \le a < n$.

Выход: Символ Якоби $\left(\frac{a}{n}\right)$.

- 1. Положить g ← 1.
- 2. Если a = 0, результат: 0.
- 3. Если a = 1, результат: g.
- 4. Представить a в виде $a = 2^k a_1$, где число a_1 нечетное.
- 5. При четном k, положить $s \leftarrow 1$; при нечетном k, положить $s \leftarrow 1$, если $n \equiv \pm 1 \pmod 8$; положить $s \leftarrow -1$, если $n \equiv \pm 3 \pmod 8$.
- 6. Если $a_1 = 1$, результат: $g \cdot s$.
- 7. Если $n \equiv 3 \pmod{4}$ и $a_1 \equiv 3 \pmod{4}$, то $s \leftarrow -s$.
- 8. Положить $a \leftarrow n \pmod{a_1}, n \leftarrow a_1, g \leftarrow g \cdot s$ и вернуться на шаг 2.

```
function jacobi_symbol(a::Int, n::Int)
    g = 1
    if a == 0
        return 0
    end
    if a == 1
        return g
    end
    while a != 0
        k = 0
        while a % 2 == 0
            a ÷= 2
            k += 1
        end
        a1 = a
        if k % 2 == 0
            s = 1
        else
            if n % 8 == 1 || n % 8 == 7
                s = 1
            elseif n % 8 == 3 || n % 8 == 5
                s = -1
            end
        end
        g *= s
        if a1 == 1
```

```
return g
end
if n % 4 == 3 && a1 % 4 == 3
g = -g
end
a, n = n % a1, a1
end
return g
end

n = 19
a = rand(0:n-2)
result = jacobi_symbol(a, n)
println("Символ Якоби ($a/$n) = $result")

Символ Якоби (16/19) = 1
```

Тест Соловея-Штрассена

Тест Соловея–Штрассена основан на критерии Эйлера: нечетное число n является простым тогда и только тогда, когда для любого целого числа a, такого что $1 \le a \le n-1$ и взаимно простого с n, выполняется сравнение:

$$a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) \pmod{n},$$

где $\left(\frac{a}{n}\right)$ – символ Якоби.

return false

Пусть $t,n\in\mathbb{Z}$, где $n=p_1p_2\dots p_r$ и числа $p_i\neq 2$ простые (не обязательно различные). Символ Якоби $\left(\frac{m}{n}\right)$ определяется равенством

$$\left(\frac{m}{n}\right) = \left(\frac{m}{p_1}\right) \left(\frac{m}{p_2}\right) \dots \left(\frac{m}{p_r}\right).$$

```
function test_solovei_strassen(n::Int)
    a = rand(2:n-2)
    n_1 = (n-1)/2
    r = powermod(a, n_1, n) # power(a, (n-1)/2, n)
    if r != 1 && r !=(n-1)
        return false
    end
    s = jacobi_symbol(a,n)
    if r == s%n
        return true
    else
```

end

end

n = 27

```
if is_prime(n)
    println("Число $n скорее всего простое")
else
    println("Число $n не является простым")
end
```

Число 19 скорее всего простое

Алгоритм, реализующий тест Миллера—Рабина Описание алгоритма:

Вход: Нечетное целое число $n \ge 5$.

Выход: «Число n, вероятно, простое» или «Число n составное».

- 1. Представить n-1 в виде $n-1=2^{s}r$, где число r нечетное.
- 2. Выбрать случайное целое число a, такое что $2 \le a < n-2$.
- 3. Вычислить $y \leftarrow a^r \pmod{n}$.
- 4. При $y \neq 1$ и $y \neq n-1$, выполнить следующие действия:
 - 1. Положить j ← 1.
 - 2. Если $j \le s 1$ и $y \ne n 1$, то
 - 1. Положить $y \leftarrow y^2 \pmod{n}$.
 - 2. Если y = 1, результат: «Число n составное».
 - 3. Положить $j \leftarrow j + 1$.
 - 3. При $y \neq n 1$, результат: «Число n составное».
- 5. Результат: «Число n, вероятно, простое».

```
function test_miller_rabin(n::Int, k::Int=5)
    s = 0
    r = n - 1
    while r % 2 == 0
        r ÷= 2
        s += 1
    end

for _ in 1:k
        a = rand(2:n-2)
        y = powermod(a, r, n)
```

```
if y == 1 | | y == n - 1
            continue
        end
        for j in 1:s-1
            y = powermod(y, 2, n)
            if y == 1
                return false
            end
            if y == n - 1
                break
            end
        end
        if y != n - 1
            return false
        end
    end
    return true
end
if test miller rabin(n)
    println("Число $n вероятно простое")
else
    println("Число $n составное")
end
Число 19 вероятно простое
```

Выводы

В ходе выполнения лабораторной работы №5 были изучены и реализованы на языке Julia вероятностные алгоритмы проверки чисел на простоту, такие как тест Ферма, тест Соловея — Штрассена и тест Миллера — Рабина. Эти алгоритмы играют важную роль в криптографии и других областях, где необходимо быстро определять простоту чисел. Вероятностные алгоритмы позволяют получать ответ с высокой степенью вероятности, однако, в отличие от детерминированных методов, не гарантируют абсолютной точности. Такой подход позволяет находить простые числа более эффективно, что особенно актуально при работе с большими числами. Алгоритм Миллера-Рабина является наиболее используемым в современных системах, потому что дает наибольшую точность.

Список литературы