Nous innovons pour votre réussite!

École d'ingénierie

Contrôle en Hydraulique générale

Durée (2 h: 00 mn)

GC2

Prof.: A.Ramadane, Ph.D.

15-11-2016

Nous innovons pour votre réussite!

Exercice 1:

On considère le système de trois réservoirs schématisé par la figure 2.32

Les données sont :

$Z_1 = 60m$	$D_1 = 0.90 m$	$L_1 = 10000 m$	$C_{HW1} = 100$
$Z_2 = 40m$	$D_2 = 0,60 m$	L ₂ =10000m	C _{HW2} =100
$Z_3 = 20m$	$D_3 = 0.90 m$	$L_3 = 5000 m$	C _{HW3} =100
$Z_4 = 25m$	D ₄ =1,00m	$L_4 = 5000 m$	$C_{HW4} = 100$

Il faut trouver les débits dans toutes les conduites.

Nous innovons pour votre réussite!

Exercice 2

Fig. 2.33

Soit le système de drainage pluvial schématisé par la figure 2.33

L'exutoire du réseau (nœud 4) est situé dans un cours d'eau où le niveau en temps d'orage atteint 27,0m. Par ailleurs, le tableau ci-joint fournit les débits de pointe en temps d'orage, les diamètres, les longueurs et toutes les cotes pertinentes.

Le coefficient de Hazen-Williams est $C_{HW} = 100$ pour toutes les conduites.

	conduite	Débit	Diamètre	Cote	au sol	Cote d	lu radier	Longueur
		m³/s	(m)	(m)		(m)		(m)
				amont	aval	amont	aval	
ſ	1 – 3	6,0	1,37	30,5	29,0	26,15	26,00	100,0
	2 - 3	4,0	0,915	30,5	29,0	25,90	25,50	100,0
	3 - 4	15,0	2,44	29,0	28,5	25,50	24,25	500,0

Il faut tracer la ligne piézométrique selon les chemins 1-3-4 et 2-3-4. Il faut indiquer les endroits de mise en charge et les endroits d'inondation.

Problème:

Fig. 2.34

Le but de cet exercice est de déterminer les temps de vidange et de remplissage d'un réservoir en prenant en considération les pertes de charge (figure 2.34).

Nous innovons pour votre réussite!

Le réservoir est de section circulaire de diamètre D = 100,0m. La profondeur initiale de l'eau dans le réservoir est $h_0 = 7,0m$.

La conduite de vidange possède un diamètre d = 1,0m et une longueur totale $L_t = 500,0m$ (incluant la longueur équivalente).

La dénivelée entre le radier du réservoir et la sortie de la conduite est H_r = 9,0m.

On suppose que le coefficient de frottement f de l'équation de Darcy est constant et égal à une valeur moyenne f = 0,02.

- Écrire l'équation de continuité instantanée qui relie le volume du réservoir S aux débits d'entrée Q_e et de sortie Q₅.
- 2) Trouver l'expression littérale de la vitesse de sortie V₅ au point 2 en fonction des variables h, H_r, f, L_t, d et g.
- 3) Exprimer le débit de vidange Q₅ en fonction des variables h, H_r, f, L_t, d et g.
- 4) Réécrire l'équation de continuité trouvée en 1) avec Q_e = 0 et en remplaçant Q_s par sa valeur trouvée en 3).
- 5) Faire un changement de variable $H = h + H_r$ dans l'équation trouvée en 4) et trouver l'équation différentielle avec la nouvelle fonction H. On remarquera dans ce cas que $\frac{dh}{dt} = \frac{dH}{dt}$
- Intégrer l'équation trouvée en 5) pour trouver l'expression littérale du temps de vidange T_v en fonction de Lt, d, D, h0, Hε, f et g.
- Trouver la valeur numérique de ce temps de vidante T_v en utilisant les données numériques de l'exercice.
- 8) Sans reprendre toutes les étapes de calcul, calculer le temps de vidange T_v à partir de l'expression trouvée en 6) en négligeant cette fois les pertes de charge.
- 9) En supposant un débit de remplissage Q_e et d'alimentation des consommateurs Q_s constants, calculer le temps de remplissage T_r en fonction de D, Q_e, Q_s et Δh, où Δh est la variation du niveau dans le réservoir.
- 10) Calculer le temps de remplissage T_r si $Q_e = 5.0 \text{m}^3/\text{s}$, $Q_s = 1.0 \text{m}^3/\text{s}$ et $\Delta h = 7.0 \text{m}$.

Nous innovons pour votre réussite!

Nous innovons pour votre réussite!

Temp °C	Densité	ν m²/s
5	1,000	1,520 x 10 ⁻⁶
10	1,000	1,308 x 10-6
15	0,999	1,142 x 10 ⁻⁶
20	0,998	1,007 x 10 ⁻⁶
25	0,997	0,897 x 10-6
30	0,995	0,804 x 10 ⁻⁶
35	0,993	0,727 x 10 ⁻⁶
40	0,991	0,661 x 10-6
50	0,990	0,556 x 10 ⁻⁶
65	0,980	0,442 x 10 ⁻⁶

