Probability Exercises

James Tait - 16321184

Q1

i)

 $P(A \in B) = P(A) \times P(B)$

 $\Lambda(P(A \setminus B)) = P(A)$

 $\frac{P(A \neq B)}{P(B)} = P(A|B) = P(A)$

ii)

P(A|B) = P(A)

 $P(A|B) = \frac{P(A \land B)}{P(B)} = P(A)$

 $P(A \setminus B) = P(A) \setminus B$

Q2

	gw	¬gw
ps	28	2
¬ps	140	30

a)

\$28+2+140+30 = 200\$

 $P(gw|ps) = \frac{P(gw \neq ps)}{P(ps)}$

 $P(gw \neq ps) = \frac{28}{200} = 0.14$

 $P(ps) = \frac{30}{200} = 0.15$

 $P(gw|ps) = \frac{0.14}{0.15} = 0.93$

The counts where Potter did not catch the Golden Snitch (ie the bottom row) are irrelevant to this calculation.

b)

 $P(ps|gw) = \frac{P(ps \wedge gw)}{P(gw)}$

 $P(ps \neq gw) = 0.14$

```
P(gw) = \frac{168}{200} = 0.84
```

$$P(ps|gw) = \frac{0.14}{0.84} = 0.01$$

The count where Gryffindor did not win (ie the right column) are not relevant to this calculation.

Q3

a)

p(vmel) = 0.01, p(dbi|vmel) = 0.95, p(dbi|vmel) = 0.01

\$p(vmel|dbi) = \frac{p(vmel \wedge dbi)}{p(dbi)}\$

\$p(vmel \wedge dbi) = p(dbi|vmel) \times p(vmel)\$

 $p(vmel \wedge dbi) = 0.95 \times 0.01 = 0.0095$

 $p(dbi) = p(dbi|vmel) \neq p(dbi|vmel)$

p(dbi) = 0.95 + 0.01 = 0.96

 $p(vmel|dbi) = \frac{0.0095}{0.96} = 0.0099$

$p(\neg vmel|dbi) = \frac{p(\neg vmel \wedge dbi)}{p(dbi)}$

 $p(\neg vmel \rightarrow b) = p(dbi|\neg vmel) \times p(\neg vmel)$

 $p(\neg vmel \ wedge \ dbi) = 0.01 \ times 0.99 = 0.0099$

 $p(\neg vmel|dbi) = \frac{0.0099}{0.96} = 0.0103$

¬vmel is likelier.

b)

p(vmel) = 0.15, p(dbi|vmel) = 0.95, p(dbi|vmel) = 0.01

\$p(vmel|dbi) = \frac{p(vmel \wedge dbi)}{p(dbi)}\$

\$p(vmel \wedge dbi) = p(dbi|vmel) \times p(vmel)\$

 $p(vmel \wedge dbi) = 0.95 \times 0.15 = 0.1425$

 $p(dbi) = p(dbi|vmel) \neq p(dbi|vmel)$

p(dbi) = 0.95 + 0.01 = 0.96

 $p(vmel|dbi) = \frac{0.1425}{0.96} = 0.1484$

$p(\neg vmel|dbi) = \frac{p(\neg vmel \wedge gedbi)}{p(dbi)}$

 $p(\neg vmel \wedge p(dbi|\neg vmel) \times p(\neg vmel)$

 $p(\neg vmel \ b) = 0.01 \ b = 0.085$

 $p(\neg vmel|dbi) = \frac{0.0085}{0.96} = 0.0089$

vmel is likelier.

c)

p(vmel) = 0.01, p(dbi|vmel) = 0.95, p(dbi|vmel) = 0.001

$p(v) = \frac{p(v)}{p(dbi)}$

\$p(vmel \wedge dbi) = p(dbi|vmel) \times p(vmel)\$

 $p(vmel \wedge dbi) = 0.95 \times 0.01 = 0.0095$

 $p(dbi) = p(dbi|vmel) \neq p(dbi|vmel)$

p(dbi) = 0.95 + 0.001 = 0.951

 $p(vmel|dbi) = \frac{0.0095}{0.951} = 0.01$

$p(\neg vmel|dbi) = \frac{p(\neg vmel \wedge dbi)}{p(dbi)}$

 $p(\neg vmel \rightarrow p(dbi|\neg vmel) \times p(\neg vmel)$

 $p(\neg vmel \ bi) = 0.001 \ bins 0.99 = 0.00099$

 $p(\neg vmel|dbi) = \frac{0.00099}{0.951} = 0.001$

vmel is likelier.

Q4

	noisy: +	noisy: -
cool: +	62	108
cool: -	38	292

 $p(cool: +) = \frac{170}{500} = 0.34$

 $p(cool: +|noisy: +) = \frac{p(cool: + wedge noisy: +)}{p(noisy: +)}$

 $p(cool: + wedge noisy: +) = \frac{62}{500} = 0.124$

 $p(noisy: +) = \frac{100}{500} = 0.2$

 $p(cool: +|noisy: +) = \frac{0.124}{0.2} = 0.62$

\$0.34 \ne 0.62\$

cool: + is not independent of noisy: +.

Q5

open: +	noisy: +	noisy: -
cool: +	54	36
cool: -	6	4
open: -	noisy: +	noisy: -
	,	noicy.
cool: +	8	72

 $p(cool: +|open: +) = \frac{54 + 36}{100} = 0.9$

 $p(cool: +|open: +, noisy: +) = \frac{54}{60} = 0.9$

cool: + is conditionally independent of noisy: + given open: +.

 $p(cool: +|open: -) = \frac{8 + 72}{400} = 0.2$

 $p(cool: +|open: -, noisy: +) = \frac{8}{40} = 0.2$

cool: + is conditionally independent of noisy: + given open: -.