Question 3

Part a:

Given a $m \times n$ matrix A,

• $\mathbf{P} = \mathbf{A}^T \mathbf{A}$ is a n x n matrix Consider a vector \mathbf{v} with n elements

$$\mathbf{y}^{t}\mathbf{P}\mathbf{y} = \mathbf{y}^{t}\mathbf{A}^{T}\mathbf{A}\mathbf{y} = (\mathbf{A}\mathbf{y})^{t}\mathbf{A}\mathbf{y} = ||\mathbf{A}\mathbf{y}||_{2}^{2} \geq 0$$

Note: $||\mathbf{x}||_2^2$ is the square of 2-norm of \mathbf{x}

• $\mathbf{Q} = \mathbf{A}\mathbf{A}^T$ is a m x m matrix Consider a vector \mathbf{z} with m elements

$$\mathbf{z}^{t}\mathbf{Q}\mathbf{z} = \mathbf{z}^{t}\mathbf{A}\mathbf{A}^{T}\mathbf{z} = (\mathbf{A}^{T}\mathbf{z})^{t}\mathbf{A}^{T}\mathbf{z} = ||\mathbf{A}^{T}\mathbf{z}||_{2}^{2} \geq 0$$

• Consider an eigenvector \mathbf{y} , with n elements and eigenvalue λ_P , of \mathbf{P}

$$\mathbf{P}\mathbf{y} = \lambda_P \mathbf{y}$$

Pre-multiplication of the above equation with \mathbf{y}^t

$$\mathbf{y}^t \mathbf{P} \mathbf{y} = \lambda_P \mathbf{y}^t \mathbf{y}$$

Replacing $\mathbf{y}^t \mathbf{P} \mathbf{y} = ||\mathbf{A} \mathbf{y}||_2^2$ from 1^{st} point

$$\lambda_P = \frac{||\mathbf{A}\mathbf{y}||_2^2}{||\mathbf{y}||_2^2} \ge 0$$

- ... The eigenvalues of P are non-negative
- \bullet Consider an eigenvector $\mathbf{z},$ with m elements and eigenvalue $\lambda_Q,$ of \mathbf{Q}

$$\mathbf{Q}\mathbf{z} = \lambda_Q \mathbf{z}$$

Pre-multiplication of the above equation with \mathbf{z}^t

$$\mathbf{z}^t \mathbf{Q} \mathbf{z} = \lambda_Q \mathbf{z}^t \mathbf{z}$$

Replacing $\mathbf{z}^t \mathbf{Q} \mathbf{z} = ||\mathbf{A}^T \mathbf{z}||_2^2$ from 2^{nd} point

$$\lambda_Q = \frac{||\mathbf{A}^T \mathbf{z}||_2^2}{||\mathbf{z}||_2^2} \ge 0$$

... The eigenvalues of Q are non-negative

Part b:

• Consider an eigenvector \mathbf{u} , with n elements and eigenvalue λ , of \mathbf{P}

$$\mathbf{P}\mathbf{u} = \lambda \mathbf{u}$$

$$\mathbf{A}^T \mathbf{A} \mathbf{u} = \lambda \mathbf{u}$$

Pre-multiplication of the above equation with A

$$\mathbf{A}\mathbf{A}^T(\mathbf{A}\mathbf{u}) = \lambda(\mathbf{A}\mathbf{u})$$

- \therefore **Au** is an eigenvector, with m elements and eigenvalue λ , of $\mathbf{A}\mathbf{A}^T$
- Consider an eigenvector \mathbf{v} , with m elements and eigenvalue μ , of \mathbf{Q}

$$\mathbf{Q}\mathbf{v} = \mu\mathbf{v}$$

$$\mathbf{A}\mathbf{A}^T\mathbf{v} = \mu\mathbf{v}$$

Pre-multiplication of the above equation with \mathbf{A}^T

$$\mathbf{A}^T \mathbf{A} (\mathbf{A}^T \mathbf{v}) = \mu (\mathbf{A}^T \mathbf{v})$$

 $\therefore \mathbf{A}^T \mathbf{v}$ is an eigenvector, with n elements and eigenvalue μ , of $\mathbf{A}^T \mathbf{A}$

Part c:

Consider an eigenvector \mathbf{v}_i , with m elements and eigenvalue λ_i , of \mathbf{Q}

$$\mathbf{Q}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

$$\mathbf{A}\mathbf{A}^T\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

Consider a vector $\mathbf{u}_i = \frac{\mathbf{A}^T \mathbf{v}_i}{||\mathbf{A}^T \mathbf{v}_i||_2}$

$$\mathbf{A}\mathbf{u}_i = \frac{\lambda_i}{||\mathbf{A}^T\mathbf{v}_i||_2}\mathbf{v}_i$$

Replacing $\gamma_i = \frac{\lambda_i}{||\mathbf{A}^T\mathbf{v}_i||_2}$ in the above equation

$$\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$$

 γ_i is non-negative because $\lambda_i \geq 0$ (proved in Part a 3^{rd} point)

 γ_i is real because **A** and \mathbf{v}_i are real-valued (given in question)

 \therefore There exist a real, non-negative γ_i such that $\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$

Part d:

Given in the question, $\mathbf{u}_i^t \mathbf{u}_j = 0$ for $i \neq j$ As defined in the previous part, $\mathbf{u}_i^t \mathbf{u}_i = \frac{(\mathbf{A}^T \mathbf{v}_i)^t \mathbf{A}^T \mathbf{v}_i}{||\mathbf{A}^T \mathbf{v}||_2^2} = 1$ $\mathbf{V} = [\mathbf{u}_1 | \mathbf{u}_2 | ... | \mathbf{u}_n]$ is a n x m matrix Columns of \mathbf{V} are orthonormal $\Rightarrow \mathbf{V}^T \mathbf{V} = \mathbf{I}_m$

Similarily we can say, $\mathbf{U} = [\mathbf{v}_1 | \mathbf{v}_2 | ... | \mathbf{v}_m]$ also has orthonormal columns. Here we are assuming \mathbf{v}_i to be a unit vector for consistency. $\mathbf{U}^T \mathbf{U} = \mathbf{I}_m$

$$\mathbf{A} = \mathbf{U}\mathbf{\Gamma}\mathbf{V}^T$$

Pre-multiply with \mathbf{U}^T and post-multiply with \mathbf{V}

$$\mathbf{U}^T \mathbf{A} \mathbf{V} = \mathbf{U}^T \mathbf{U} \mathbf{\Gamma} \mathbf{V}^T \mathbf{V} = \mathbf{\Gamma}$$

Thus, $\mathbf{A} = \mathbf{U} \mathbf{\Gamma} \mathbf{V}^T \Leftrightarrow \mathbf{U}^T \mathbf{A} \mathbf{V} = \mathbf{\Gamma}$

$$egin{aligned} \mathbf{U}^T \mathbf{A} \mathbf{V} &= egin{bmatrix} \mathbf{v}_1^t \ \mathbf{v}_2^t \ \dots \ \mathbf{v}_m^t \end{bmatrix} \mathbf{A} [\mathbf{u}_1 | \mathbf{u}_2 | ... | \mathbf{u}_m] \ &= egin{bmatrix} \mathbf{v}_1^t \ \mathbf{v}_2^t \ \dots \ \mathbf{v}_m^t \end{bmatrix} [\mathbf{A} \mathbf{u}_1 | \mathbf{A} \mathbf{u}_2 | ... | \mathbf{A} \mathbf{u}_m] \ &= egin{bmatrix} \mathbf{v}_1^t \ \mathbf{v}_2^t \ \dots \ \mathbf{v}_m^t \end{bmatrix} [\gamma_1 \mathbf{v}_1 | \gamma_2 \mathbf{v}_2 | ... | \gamma_m \mathbf{v}_m] \end{aligned}$$

Using result of part c: $\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$ above

$$(\mathbf{U}^T \mathbf{A} \mathbf{V})_{ij} = \gamma_j \mathbf{v}_i^t \mathbf{v}_j = \begin{cases} \gamma_j & i = j \\ 0 & i \neq j \end{cases}$$

As defined, Γ is a m x n diagonal matrix with i^{th} diagonal entry equal to γ_i

$$:: \mathbf{U}^T \mathbf{A} \mathbf{V} = \mathbf{\Gamma} \Rightarrow \mathbf{A} = \mathbf{U} \mathbf{\Gamma} \mathbf{V}^T$$

Hence proved.