年级	2018	班号	计科 1804	学号										
专业	计算机科学与技术	近与	117年1804	姓名										
实验	实验 设计型 综合型 创新型													
名称	实验三: 微程序控制器组成实验 类型													
	(1) 掌握并熟悉 MIPS 指令架构, MIPS 指令周期流程,及其微程序编写。													
实	(2)理解微程序控制器基本工作的一般原理。													
验	(3) 熟练理解单总线结构 MIPS CPU 结构及其工作原理。													
目	(4)熟悉并理解单总	总线结构	MIPS CPU 结构的	的微程序)	(口地址产	生逻辑。								
的	(5)熟悉并理解单总	总线结构	MIPS CPU 结构的	的微程序象	4件判断测	试产生逻	辑。							
	(6)熟练掌握 MIPS	指令连	E续和单步执行过程	呈。										
	(一) MIPS 指	令架核	」,MIPS 指令	周期流利	星,及其	微程序组	扁写							
	1、MIPS 指令架构图													
	32 个寄存器;按照字	节编址。	。32 个寄存器集成	以一个小容	量的高速	存储器,它	它们的命名							

标识、地址编码和基本用途如下表所示:

约定命名	用途
zero	总是为 0
at	留作汇编器生成一些合成指令
v0、v1	用来存放子程序返回值
a0~a3	调用子程序时,使用这 4 个寄存器传输前 4 个非
	浮点参数
t0~t7	临时寄存器,子程序使用时可以不用存储和恢复
s0~s7	子程序寄存器变量, 改变这些寄存器值的子程序
	必须存储旧的值并在退出前恢复,对调用程序来
	说值不变
t8、t9	临时寄存器,子程序使用时可以不用存储和恢复
\$k0、\$k1	由异常处理程序使用
gp	全局指针
sp	堆栈指针
s8/fp	子程序可以用来做堆栈帧指针
ra	存放子程序返回地址og. csdn. net/leishangwen
	zero at v0、v1 a0~a3 t0~t7 s0~s7 t8、t9 \$k0、\$k1 gp sp s8/fp

(图1)

实 验 原 理 及 电

路

#	MIPS指令	RTL功能描述
1	slt rd,rs,rt	R[rd]←R[rs] <r[rt] td="" 小于置1,有符号比较<=""></r[rt]>
2	addi rt,rs,imm	R[rt]←R[rs]+SignExt(imm) 不考虑溢出
3	lw rt,imm(rs)	R[rt]←M[R[rs]+SignExt(imm)]
4	sw rt,imm(rs)	M[R[rs]+SignExt(imm)]←R[rt]
5	beq rs,rt,imm	$if(R[rs] = R[rt]) PC \leftarrow PC + SignExt(imm) << 2$

(图2)

2、MIPS 指令周期流程图

(图3)

注意: M[PC++]—>IR (PC 加的是指令的字节长度, MIPS 指令是 32 位,4 个字节,所以加的是 4)。

如果程序在执行过程中发生了中断,则要进行中断响应,否则直接返回取指令周期进行取指。

指令的周期分为取指令周期,计算周期,执行周期和中断周期.

3、MIPS 指令微程序编写(结合 execl 表格完成)

微指令功能	Revenue	PCout	DRout	Zout																		READ		PO	P1	P2	下址DEC	微指令	微指令十六进制
取指令	0	1								1			1								_						1	1000000010010000000000000000000	20240001
取指令	1																			1							2	200000000000000000100000000000000000000	802
取指令	2			1					1		1											1					3	991000010100000000001000000011	8500203
取指令	3		1												1									1			0	2100000000000010000000010000000	10010080
LW	4				1								1														5	2001000000010000000000000000101	4040005
	5					1													1								6	2000100000000000010000000000110	2001006
	6			1						1																	7	0010000010000000000000000000111	8200007
	7										1											1					8	200000000100000000001000001000	100208
	8		1											1													0	210000000000010000000000000000000	10020000
SW	9				1								1														10	9001000000010000000000000001010	404000A
	10					1													1								11	200010000000000001000000001011	200100B
	11			1						1																	12	9010000010000000000000000001100	820000C
	12				1							1					1										13	2001000000100001000000000001101	408400D
	13							1															1				0	200000100000000000000100000000	800100
BEQ	14				1								1														15	9001000000010000000000000001111	404000F
	15				1											1	1								1		0	200100000000001100000001000000	4000040
	16	1											1														17	1000000000010000000000000010001	20040011
	17						1												1								18	200001000000000001000000010010	1001012
	18			1					1																		0	2010000100000000000000000000000	8400000
SLT	19				1								1														20	2001000000010000000000000010100	4040014
	20				1												1				1						21	2001000000000000100010000010101	4004415
	21			1										1				1									0	001000000000100010000000000000000000000	8022000
ADDI	22				1								1														23	9001000000010000000000000010111	4040017
	23					1													1								24	200010000000000001000000011000	2001018
	24			1										1													0	001000000000100000000000000000000000000	8020000

(图4)

将生成的十六进制微指令复制到控制存储器中。

(二) 单总线结构 MIPS CPU 结构及其工作原理

1、阐述微程序控制器基本工作的一般原理

根据 IR (指令寄存器)中的操作码,找到与之对应的控存中的一段微程序的入口地址,并按指令功能所确定的次序,逐条从控制存储器中读出微指令,以驱动计算机各部件正确运行。

2、单总线结构 MIPS CPU 结构及其工作原理

单总线结构 MIPS CPU 结构图:

(图5)

(图6)

主要部件都连接在总线上,各部件间通过总线进行传输。

黑色箭头为数据流,蓝色箭头为控制流。

各个部件:

1. ALU:

设置暂存器 X 和 Z,分别用于暂存内部总线输入的值和输出结果,其中 Z 仅受时钟信号的控制,ALU 上的控制信号+4、ADD、SUB 不能同时有效,只能给出一种运算。ALU 还包括一个状态寄存器,PSW 保存运算标志。

2. Regs:

通用寄存器堆,用于控制输入和输出,有一个读端口和一个写端口,读写控制信号分别为 Rin 和 Rout。

3. 其他寄存器:

PC、AR(地址寄存器)、DR(缓冲寄存器), IR(指令寄存器)

4. 控制器

产生操作控制信号,控制流的产生会引起数据的流动,从而形成相应的数据通路,完成指令的功能。

(三) 单总线结构 MIPS CPU 结构的微程序入口地址产生逻辑

1、单总线结构 MIPS CPU 结构的微程序入口地址产生逻辑图

● (图7)

2、单总线结构 MIPS CPU 结构的微程序入口地址产生逻辑一般介绍 通过填写以下表格:

LW SW BEQ SLT ADDI 入口地址 10进制 S4 S3 S2 S1 1 4 0 0 1 0 9 0 1 0 0 1 14 0 1 1		机器排	。 旨令译码	微和	微程序入口地址							
1 9 0 1 0 0 1 14 0 1 1 1	LW	SW	BEQ	SLT	T ADDI 入口地址 10进制			S3	S2	S1	S0	
1 14 0 1 1 1	1					4	0	0	1	0	0	
		1				9	0	1	0	0	1	
			1			14	0	1	1	1	0	
1 19 1 0 0 1				1		19	1	0	0	1	1	
1 22 1 0 1 1					1	22	1	0	1	1	0	

(图8)

LW	CIAL	DEO	CLT	ADDI	最小项表达式	S4	S3	S2	S1	co.
LVV	200	BEQ	2L1	ADDI	取小坝衣込玌	54	33	52	31	S0
LW&					LW			LW+		
	SW&				SW		SW+			SW+
		BEQ&			BEQ		BEQ+	BEQ+	BEQ+	
			SLT&		SLT	SLT+			SLT+	SLT+
				ADDI&	ADDI	ADDI+		ADDI+	ADDI+	
·	_	_		_		SLT+ADDI	SW+BEQ	LV+BEQ+ADDI	BEQ+SLT+ADDI	SW+SLT

(图9)

用 excel 的公式计算出微程序入口地址产生逻辑的公式为:

s0=SLT + SW

s1=ADDI + SLT + BEQ

s2=ADDI + SLT + BEQ

s3=BEQ + SW

s4=ADDI + SLT

将公式复制到 logsim 中,可自动生成电路。

(四)单总线结构 MIPS CPU 结构的微程序条件判断测试产生逻辑

1、单总线结构 MIPS CPU 结构的微程序条件判断测试产生逻辑图

(图10)

2、单总线结构 MIPS CPU 结构的微程序条件判断测试产生逻辑一般介绍 通过填写以下表格:

VIII V.		30	1 1	IX TO	•			_								~					
	输入 (填1或0, 不填为无关项x)														输出	输出 (只填写			写为1的情况)		
P	0	0 P1		P2		equa	l I	IntR		S2		S1		S0	Out4	Out5	C	Out6	Out7		Ou
(D	0								0		0		0			T				
	1	0								0		0		1							
	0					0						0	0								
	0	1				1						1		0							
P0	P1	P2	equal	IntR	In6	In7	In8	In9	In10	In11	In12	最小项表达	式	S2	S1	:	50	Out	t4 Ou		5
~P0&	~P1&											~P0&~P	1								
P0&	~P1&											P0&~P1				P0&	~P1+				
~P0&	P1&		~equal&									`P0&P1&`equ	al								
~P0&	P1&		equal&									P0&P1&equa	1		~PO&P1&equ	al+					

(图11)

用 excel 的公式计算出微程序条件判断测试产生逻辑的公式为:

s0= P0 ~P1

s1=~P0 P1 equal

将公式复制到 logsim中,可自动生成电路。

1、连续运行指令的操作:运行冒泡程序的实验操作过程及其数据记载与分析

(1) 冒泡程序的导入过程及其注意事项

① 先将电路复位

实验验证过程及结

果

① 程序完成赋值时,内存中的数据:

(图 19) ②程序运行结束时,打开外部存储器,可以看到降序排列的结果,另外可以观察到时钟

结果分析:

已经写好的冒泡排序是从-1 到 6 递增添加到外部存储器中,所以开始是在外部存储器中升序排列的,而冒泡排序程序的任务是将外部存储器中的数据降序排列,因此实验结果和理论结果相同。

2、单步运行指令的操作,其过程数据记载与分析

运行:

点击 ctrl+t 单步执行,观察各个寄存器和暂存器中值的变化。

数据记载:

取指和译码:

① PCout 打开, PC 中的值进入地址寄存器 AR 中。

(图21)

②根据 AR 的值,选中外部寄存器 MEM 中指定地址的值,DRE in 打开,MEM 中选中的值进入缓冲寄存器 DR 中。

(图 22)

③DRout 打开,DR中的值进入指令寄存器中,指令在控制器中完成译码,再由操作控制器产生操作控制信号,控制流的产生会引起数据的流动,从而形成相应的数据通路,完成指令的功能。

这里的译码结果是 lw \$s3,512(\$s0)(\$s3=MEM[512+\$s0],将内存[512+\$s0]中的值取出

来,放到\$s3中),以这条指令为例描述指令执行的过程。

①先计算内存地址, \$0+512, Rout 打开, \$0 中的值进入暂存器 X 中, 512 经过位扩展 后到达 ALU 的 B 中, 在 ALU 中完成加法运算,将结果放在暂存器 Z 中。

② Zout 打开,运算结果进入 AR中,根据 AR的值选中 MEM 中指定地址的值。

