Math172Ex11

Trustin Nguyen

November 17, 2023

Exercise 6: Let G = (V, E) be a simple connected graph with n vertices. Number its vertices using numbers from [n] and let x_1, \ldots, x_n be n real variables. Define the function $f_G(x_1, \ldots, x_n)$ as follows:

$$f_G(x_1,...,x_n) = \sum_{i=1}^n x_i^2 - \sum_{(i,j) \in E} x_i x_j$$

In other words, each vertex i contributes x_i^2 and each edge (i,j) contributes $-x_ix_j$ to this function $f_G(x_1,\ldots,x_n)$ is called *non-negative definite* if $f_G(x_1,\ldots,x_n) \geqslant 0$ for all real numbers x_1,\ldots,x_n , and it is called *positive definite* if in addition $f_G(x_1,\ldots,x_n) > 0$ for all choice of x_1,\ldots,x_n with the only exception $x_1=x_2=\cdots=x_n=0$.

- Classify, up to isomorphism, all connected graphs G such that f_G is positive definite.
- ullet Classify, up to isomorphism, all connected graphs G such that f_G is non-negative definite.

Proof. Using the formula:

$$(x_1 + x_2 + \dots + x_n)^2 \geqslant 0$$

we get

$$x_1^2 + \dots + x_n^2 \geqslant \sum_{1 \leqslant i < j \leqslant n} -2x_i x_j$$