

Technical Reference TR-NWT-000332 Issue 3, September 1990

Reliability Prediction Procedure for Electronic Equipment

A Module of RQGR, TR-TSY-000796

Technical Reference TR-NWT-000332 Issue 3, September 1990

Reliability Prediction Procedure for Electronic Equipment

A Module of P.QGR, TR-TSY-000796

This document replaces:

Reliability Prediction Procedure For Electronic Equipment TR-TSY-000332, Issue 2, July 1988.

This document cannot be reproduced without the express permission of Bellcore, and any reproduction, without authorization, is an infringement of Bellcore's copyright.

Copyright ©1990, Bellcore All rights reserved.

TECHNICAL REFERENCE NOTICE OF DISCLAIMER

This Technical Reference is published by Beil Communications Research. Inc. (Bellcore) to inform the industry of Bellcore's view of the proposed generic requirements for Reliability Prediction Procedure for Electronic Equipment.

Bellcore reserves the right to revise this document for any reason, including but not limited to, conformity with standards promulgated by various agencies, utilization of advances in the state of the technical arts, or the reflection of changes in the design of any equipment, techniques, or procedures described or referred to herein.

BELLCORE MAKES NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO THE SUFFICIENCY, ACCURACY, OR UTILITY OF ANY INFORMATION OR OPINION CONTAINED HEREIN. BELLCORE EXPRESSLY ADVISES THAT ANY USE OF OR RELIANCE UPON SAID INFORMATION OR OPINION IS AT THE RISK OF THE USER AND THAT BELLCORE SHALL NOT BE LIABLE FOR ANY DAMAGE OR INJURY INCURRED BY ANY PERSON ARISING OUT OF THE SUFFICIENCY, ACCURACY, OR UTILITY OF ANY INFORMATION OR OPINION CONTAINED HEREIN.

This document is not to be construed as a suggestion to any manufacturer to modify or change any of its products, nor does this document represent any commitment by Bellcore or any Bellcore Client Company (BCC)* to purchase any product whether or not it provides the described characteristics.

Readers are specifically advised that each BCC may have requirements or specifications different from the generic descriptions herein. Therefore, any vendors or manufacturers of products should communicate directly with a BCC to ascertain that company's needs, specifications, and actual requirements.

Nothing contained herein shall be construed as conferring by implication, estoppel or otherwise, any license or right under any patent, whether or not the use of any information herein necessarily employs an invention of any existing or later issued patent.

Bellcore does not recommend products, and nothing contained herein is intended as a recommendation of any product to anyone.

If further information regarding technical content is required, please contact:

District Manager Reliability and Maintainability Methods Bellcore 331 Newman Springs Road, Room 2X-227 P.O. Box 7030 Red Bank, NJ 07701-7030

For general information, please contact:

Information Exchange Management Bellcore 445 South Street, Room 2J-125 P.O. Box 1910 Morristown, NJ 07962-1910 (201) 829-4785

Bellcore Client Company (BCC), as used in this document, means any divested Bell Operating Company, or its successor, or any regional affiliate thereof.

RQGR DATABASE NOTICE

The Reliability and Quality Generic Requirements (RQGR) and its components are published by Bellcore in printed versions that will be revised and reissued periodically.

As of December 1990, Bellcore will support the printed version of each RQGR module with a searchable, on-line database of RQGR text so that interim revisions will be made available. When revisions to the database remain unchanged as of the date of the reissuance of the printed version, they will be included in the new printed issue of that module. Some interim changes to the text in the database might not be carried through to the next printed issue because of superseding revisions.

The electronic database offers many useful advantages, but it cannot always render all of the graphics shown in the printed version. Therefore, although the database complements the printed text, it does not substitute for it in all respects.

Bellcore will offer access to the text in the database of an RQGR module only to the purchaser of the printed text of that module who enters an appropriate agreement with Bellcore. This agreement governs payment for the use, limitations on the use of the database, and the period of time that the purchaser is entitled to access the database. A purchaser of the complete, printed RQGR will be offered access to the complete database under such an agreement.

To obtain your login and password to the RQGR, call the database administrator (908) 699-3269.

RQGR Contents

Set	Volume	Section/Subset	Tab	- Module
	1 TR-TSY-000987	1.1 RQGR Introduction and Reliability Prediction Concepts and Modeling	1.1.1	An Introduction to Bellsore's Reliability and Quality Generic Requirements (RQGR) TR-TSY-000874
	RQGR Introduction and Reliability		1.1.2	
	Prediction Concepts and Modeling		1.1.3	Bell Communications Research Reliability Manual SR-TSY-000385
			1.1.4	
		2.1 R&Q Physical Design and Component Requirements	2.1.1	Generic Physical Design Requirements for Telecommunications Products and Equipment TR-TSY-000078
	2 TR-TSY-000988 R&Q		2.1.2	Component Reliability Assurance Requirements for Telecommunications Equipment TR-TSY-000357
	Physical Design and Component Requirements		2.1.3	Reliability Assurance Practices for Optoelectronic Devices TA-TSY-000468
			2.1.4	Electrostatic Discharge Control in the Manufacture of Telecommunications Equipment TA-TSY-000870
R-TSY-000796 Reliability and Quality Generic Requirements (RQGR)			2.1.5	Generic Requirements for Hybrid Microcircuits Used in Telecommunications Equipment TA-TSY-000930
		3.1 R&Q Program Requirements	3.1.1	Quality Program Analysis TR-TSY-000039
		TR-TSY-000991	3.1.2	Manufacturing Program Analysis for Quality and Reliability TR-TSY-000411
	3 TR-TSY-000989	3.2 R&Q Software Requirements TR-TSY-000992	3.2.1	Software Quality Program Requirements (SQPR) TR-TSY-000179
	Requirements for Reliability and Quality Assurance Programs	110-131-000332	3.2.2	Software Reliability and Quality Acceptance Criteria (SRQAC) TR-TSY-000282
		3.3 R&Q Product Specific Requirements TR-TSY-000993	3.3.1	Reliability and Quality Switching Systems Generic Requirements (RQSSGR) TR-TSY-000284
			3.3.2	Generic Reliability Assurance Requirements for Fiber Optic Transport Systems TR-TSY-000418
		3.4 R&Q Product Support Requirements TR-TSY-000994	3.4.1	System Equipment Engineering (SEE) Associated Services - Quality Program Analysis (QPA) TR-TSY-000785
			3.4.2	Telecommunications - Installation Services Quality Program Analysis (QPA) TR-TSY-000893
	TR-TSY-000990	4.1 R&Q Surveillance TR-TSY-000995	4.1.1	BELLCORE-STD-100 and BELLCORE-STD-200 Inspection Resource Allocation Plans TR-TSY-000016
	R&Q Surveillance and Field Reliability		4.1.2 The Quality Measurement Plan TR-TSY-000438	
	Monitoring Procedures		4.1.3	Supplier Data Program Analysis TR-TSY-000389
		4.2 R&Q Field Reliability Monitoring Procedures TR-TSY-000996	4.2.1	Field Reliability Performance Study Handbook SR-TSY-000821
		11.121.000330	4.2.2	Network Switching Element Outage Performance Monitoring Procedures SR-TSY-000963

Note:

This document is a module of Reliability and Quality Generic Requirements (RQGR). TR-TSY-000796. The RQGR can be ordered as a complete set, as volumes, or as individual modules.

- If you want to order the entire set, select TR-TSY-000796, Issue 2, August 1989, and Bellcore will send you all four volumes with their subordinate modules.
- If you want to order a specific volume, e.g., Volume 1, RQGR Introduction and Reliability Prediction Concepts and Modeling, select TR-TSY-000987 and Bellcore will send you all four modules of this volume.
- If you only want to order one module, e.g., An Introduction to Bellcore's Reliability and Quality Requirements (RQGR), select TR-TSY-000874 and Bellcore will send you this module.

To order the entire RQGR, volumes, or individual modules:

· Public should contact (for TAs*):

Bellcore Document Registrar 445 South Street, Room 2J-125 P.O. Box 1910 Morristown, NJ 07962-1910

• Public should contact (for all other documents):

Bellcore .
Customer Service
60 New England Avenue, DSC 1B-252
Piscataway, New Jersey 08854-4198
1-800-521-CORE
(908) 699-5800 (for foreign calls)

- · BCC personnel should contact their company document coordinator.
- Bellcore employees should call the Bellcore Document Hotline: (908) 699-5802.

^{*} Technical Advisories (TAs) are documents that describe Bellcore's preliminary view of proposed generic requirements.

Reliability Prediction Procedure for Electronic Equipment

CONTENTS

1.		RODUCTION							1 1 2
2.	PUR	POSES OF RELLABILITY PREDICTIONS							2
3.		DELINES FOR REQUESTING RELIABILITY							
		DICTIONS							3
	3.1	Needed Parameters							3
	3.2	Choice of Method							
	3.3	Operating Conditions and Environment							
	3.4	System Level Information		•	•	•			4
	3.5	Procedure Verification							5
4.	GUII	DELINES FOR THE PREDICTION METHODS							6
	4.1	Preferred Methods							6
	4.2	Inquiries							6
5	OVE	RVIEW OF METHOD I: PARTS COUNT MET	HOL)					7
٠.		General Description							7
	5.2	Case Selection							7
	-	Additional Information							9
	5.4	Operating Temperature Definition							9
^	13:00								10
6.		TRUCTIONS FOR METHOD I: PARTS COUNT							10
		Available Options							10
	6.2	Steady-State Failure Rate							10
		6.2.1 Device Steady-State Failure Rate							
	0.0	6.2.2 Unit Steady-State Failure Rate							11
	6.3	First Year Multipliers							11
		6.3.1 Device Effective Burn-in Time							11
		6.3.2 Device First Year Multipliers π_{FY_i}							12
		6.3.3 Unit First Year Multiplier (π_{FY})						•	14
	6 1	Worksheets							7.4

	6.5	Examples	14
		6.5.1 Example 1: Case 1 (Forms 2 and 3)	14
		6.5.2 Example 2: Case 2 (Forms 2 and 4)	15
		6.5.3 Example 3: Case 3, General Case (Forms 5 and 6)	20
	6.6	Instructions for Device Types/Technologies not in Table A	20
	6.7	Items Excluded From Unit Failure Rate Calculations	20
		6.7.1 Default Exclusions	20
		6.7.2 Approved Exclusions	23
		6.7.3 Example 4	23
7) (ET		
1.		THOD II: PREDICTIONS BASED ON COMBINING LABORATORY	0.0
		A WITH PARTS COUNT DATA	23
		Introduction	23
		Method II Criteria	
		Cases for Method II Predictions	26
	7.4	Case L1 - Devices Laboratory Tested (devices have had no previous	
		burn-in)	27
	7.5	Case L2 - Units Laboratory Tested (no previous unit/device burn-	
		in)	28
	7.6	Example 5	29
	7.7	Case L3 - Devices Laboratory Tested (devices have had previous burn-	
		in)	30
	7.8	Case L4 - Units Laboratory Tested (units/devices have had previous	
		burn-in)	31
		Example 6	
		Calculation of the Number of Units or Devices on Test	
			00
8.		DELINES FOR METHOD III: STATISTICAL PREDICTIONS FROM	
		D TRACKING	34
		Introduction	34
	8.2	Applicability	34
	8.3	Definitions and Symbols	35
		8.3.1 Definitions	35
		8.3.2 Symbols	35
	8.4	Method III Criteria and Procedure	36
		8.4.1 Source Data	36
		8.4.2 Study Length and Total Operating Hours	37
		8.4.3 Subject Unit or Device Selection	37
		8.4.4 Quality and Environmental Level	
			38
		Field Data and Information	38
		Method III Procedure	39
	8.7	Examples	41
		8.7.1 Example 1; Unit Level, Method III(a)	41
		8.7.2 Example 2; Unit Level, Method III(b)	41

DATA 9.1 S 9.2 I 9.3 A 9.4 A	AL SYSTEM RELIABILITY (SERVICE AFFECTING RELIABLE). Steady State Failure Rate			42 42 42 42 43 43
	M/WORKSHEET EXHIBITS AND PREPARATION RUCTIONS			12
II. REFE	RENCES	•	 •	44
	LIST OF FIGURES			
Figure 1.	Example 1, Case 1 (Worked Form 2)			16
Figure 2.	Example 1, Case 1 (Worked Form 3)			17
Figure 3.	Example 2, Case 2 (Worked Form 2)			18
Figure 4.	Example 2, Case 2 (Worked Form 4)			19
Figure 5.	Example 3, Case 3 (Worked Form 5)			21
Figure 6.	Example 3, Case 3 (Worked Form 6)			22
Figure 7.	Example 4 (Worked Form 7)			24
Figure 8.	Request for Reliability Prediction (Form 1)			45
Figure 9.	Device Reliability Prediction, Case 1 or 2 (Form 2)			47
Figure 10.	Unit Reliability Prediction, Case 1 (Form 3)			49
Figure 11.	Unit Reliability Prediction, Case 2 (Form 4)			51
Figure 12.	Device Reliability Prediction, General Case (Form 5)			54
	Unit Reliability Prediction, General Case (Form 6)			56
	Items Excluded from Unit Failure Rate Calculations (Form 7)			57

LIST OF FIGURES (CONTINUED)

Figure 15	. System Reliability Report (Form 8)					58
Figure 16	. Device Reliability Prediction, Case L-1 (Form 9)					60
Figure 17	. Unit Reliability Prediction, Case L-2 (Form 10)					62
Figure 18	. Device Reliability Prediction, Case L-3 (Form 11)					65
Figure 19	. Unit Reliability Prediction, Case L-4 (Form 12)					68
Figure 20	. Additional Reliability Data Report (Form 13)					69
Figure 21	List of Supporting Documents (Form 14)					70
	LIST OF TABLES					
Table A.	Device Failure Rates* (Sheet 1 of 8)					71
Table B.	Hybrid Microcircuit Failure Rate Determination* (Sheet 1 of	of 2)			79
Table C.	Device Quality Level Description (Sheet 1 of 2)					81
Table D.	Device Quality Factors $(\pi_Q)^{\dagger}$					83
Table E.	Guidelines for Determination of Stress Levels					84
Table F.	Stress Factors (π_S)					85
Table G.	Temperature Factors (π_T) (Sheet 1 of 2)					86
Table H.	Environmental Conditions and Multiplying Factors (π_E)					88
Table I.	First Year Multiplier (π_{FY})			- 4		89
Table J.	Reliability Conversion Factors	•				90
Table K.	Upper 90% Confidence Limit (<i>U</i>) for the Mean of a Poisson Distribution					91

1.1 Purpose and Scope

A prediction of reliability is an important element in the process of selecting equipment for use by the Bellcore Client Companies (BCCs). As used here, reliability is a measure of the frequency of equipment failures as a function of time. Reliability has a major impact on maintenance and repair costs and on the continuity of service.

The purpose of this procedure is to document the recommended methods for predicting device¹ and unit² hardware³ reliability. This procedure also documents the recommended method for predicting serial system⁴ hardware reliability.⁵ It contains instructions for suppliers to follow when providing predictions of their device, unit, or serial system reliability (hereafter called "product" reliability). It also can be used directly by the BCCs for product reliability evaluation.

Device and unit failure rate predictions generated using this procedure are applicable for commercial electronic products whose physical design, manufacture, installation, and reliability assurance practices meet the appropriate Bellcore (or equivalent) generic and product-specific requirements.

This procedure cannot be used directly to predict the reliability of a non-serial system. However, the unit reliability predictions resulting from application of this procedure can be input into system reliability models for prediction of system level hardware reliability parameters.

Currently, this procedure also includes some discussion of system level operating and configuration information that may affect overall system reliability. The procedure directs the requesting organization to compile this information in cases where the unit level reliability predictions are computed for input to a specific system reliability model. This system level information is not directly necessary for computation of the unit level

^{1. &}quot;Device" refers to a basic component (or part) listed in Table A of this document:

^{2. &}quot;Unit" is used herein to describe any customer replaceable assembly of devices. This may include, but is not limited to, circuit packs, modules, plug-in units, racks, power supplies, and ancillary equipment. Unless otherwise dictated by maintenance considerations, a unit will usually be the lowest level of replaceable assemblies/devices.

^{3.} The procedure is directed toward unit level failures caused by device hardware failures. Failures due to programming errors on firmware devices are not considered. However, the hardware failure rates of firmware devices are considered.

^{4. &}quot;Serial system" refers to any system for which the failure of any single unit will cause a failure of the system.

^{5.} Troubles caused by transient faults, software problems, procedural errors, or unexpected operating environments can have a significant impact on system level reliability. Therefore, system hardware failures represent only a portion of the total system trouble rate.

reliability predictions. but these information requirements are not currently addressed in any other Bellcore requirements document and are therefore included in this reference.

1.2 Changes

This issue of the Reliability Prediction Procedure (RPP) includes the following changes from previous issue:

- Change of the RPP Method III procedure, Statistical Predictions from Field Tracking.
- Addition of instructions in Table A for computing RPP reliability predictions for Program Array Logic (PAL) and Gate Array devices
- Addition of instructions in Section 6 for computing RPP reliability predictions for device types/technologies not included in Table A
- · Revision of device failure rates in Table A
- Revision of some quality factors in Table D for non-hermetic ICs and plastic discrete semiconductor devices
- Addition of an additional item (item "i") in the definition of Quality Level III in Table C
- · Adjustment of worked examples to be consistent with the Table A revisions
- · Minor changes to the text to improve clarity.

2. PURPOSES OF RELIABILITY PREDICTIONS

Unit level reliability predictions derived in accordance with this procedure serve the following purposes:

Reliability predictions can be used to assess the effect of product reliability on the
maintenance activity and on the quantity of spare units required for acceptable field
performance of any particular system. For example, predictions of the frequency of
unit level maintenance actions can be obtained. Reliability parameters of interest
include:

- Steady-state⁵ unit failure rate.
- First Year Multiplier. The average failure rate during the first year of operation (8760 hours) can be expressed as a multiple of the steady-state failure rate, called the first year multiplier. The steady-state failure rate provides the information needed for long-term product performance. The first year multiplier, together with the steady-state failure rate, provides a measure of the number of failures expected in the first year of operation.
- Reliability predictions provide necessary input to system level reliability models.⁸
- Reliability predictions provide necessary input to unit and system level Life Cycle Cost Analyses.
- Reliability predictions assist in deciding which product to purchase from a list of competing products. As a result, it is essential that reliability predictions be based on a common procedure.
- Reliability predictions are used to set standards for factory reliability tests.
- · Reliability predictions are used to set standards for field performance.

3. GUIDELINES FOR REQUESTING RELIABILITY PREDICTIONS

3.1 Needed Parameters

The requesting organization should determine the uses and purposes of the reliability predictions. Based on these purposes, the requesting organization can specify the desired reliability parameters. In most situations, the supplier will be asked to provide both the steady-state failure rates and the first year multipliers.

^{6. &}quot;Steady-state" is that phase of the product's operating life during which the failure rate is constant. Herein the steady-state phase is assumed preceded by an infant mortality phase characterized by a decreasing failure rate.

^{7.} Unless stated otherwise, all failure rates herein are expressed as failures per 10° operating hours, denoted as FITs.

^{8.} System level reliability models can subsequently be used to predict, for example, frequency of system outages in steady-state, frequency of system outages during early life, expected downtime per year, and system availability.

3.2 Choice of Method

This procedure includes three general methods, called Methods I, II, and III, for predicting product reliability. (See Sections 5 through 9 for a description of the methods.) The supplier must provide Method I predictions for all devices or units unless the requesting organization allows otherwise in accordance with Section 4.1.

In addition to the Method I predictions, the supplier may submit predictions calculated using Methods II or III. However, in cases where two or more predictions are submitted for the same device or unit, the requesting organization will determine which prediction is to be used.

3.3 Operating Conditions and Environment

Device failure rates vary as a function of operating conditions and environment. The requesting organization should describe the typical operating conditions and physical environment(s) in which the products will operate. This description should include:

- The ambient temperature— in cases where the ambient temperature varies significantly over time, the requesting organization should determine, according to its own needs, the temperature value(s) to provide.
- The environmental classification, as described in Table H— if the product will be exposed to more than one environment class, each should be specified. The environmental multiplying factor for each classification should be entered on the "Request for Reliability Prediction" form (Form 1, Figure 8).

3.4 System Level Information

If the reliability predictions are to provide input for predicting reliability parameters for a particular system, then the requesting organization:

- May request predictions for specific system level service-affecting parameters (e.g., frequency of system outage) concurrently with the unit or device reliability predictions. These should be specified on the "Request for Reliability Prediction" form (Form 1, Figure 8).
- Should clearly specify the definition of a failure. This is a crucial element in predicting system reliability parameters. For non-complex equipment, the definition of a failure is usually clear. Faults in complex equipment may distinguish between those affecting maintenance or repair and those affecting service. For example, it is often desirable for multichannel systems to define the maximum number of channels that can be out before the system is considered failed, that is, no longer providing acceptable service.

In addition to overall system reliability objectives, some complex, multi-function systems may have reliability objectives for individual functions or for various states of reduced service capability. For such systems, it may be necessary to develop reliability models to

address these additional objectives. Guidelines for developing these models are outside the scope of this document.

The requesting organization should describe any other system level operating conditions and requirements that may influence reliability. These are to be presented in sufficient detail to preclude significant variations in assumptions on the part of different suppliers. These conditions are likely to be unique for each equipment type. For example, some of the operating conditions affecting reliability predictions for subscriber loop carrier equipment are:

- · Temperature and humidity variations
- · Single or redundant T1 line facilities
- · Distance between terminals
- · Duration of commercial power outages
- · Lightning induction.

3.5 Procedure Verification

On receipt of a completed reliability prediction package, the requesting organization should verify the computations and correct use of the procedure. Any device procurement specifications, circuit design information, field tracking information, test/inspection information, and required worksheets provided in the package should be reviewed for completeness and accuracy.

If the requesting organization desires documentation or information beyond that specified in this procedure, the documentation or information should be requested on the "Request for Reliability Prediction" form (Form 1, Figure 8) or in subsequent correspondence.

This procedure allows a supplier to present additional reliability data, such as operational field data, details concerning maintenance features, design features, burn-in procedures, reliability-oriented design controls and standards, and any other factors important in assessing reliability. This information must be carefully considered by the requesting organization to ensure a meaningful analysis of the supplier's product.

It is the responsibility of the requesting organization to provide the supplier with all relevant details of proposed product use. This will enable the supplier to provide only such additional information as is appropriate to the specific case.

^{9. &}quot;Burn-in" is defined as any powered operation that fully simulates (with or without acceleration) normal use conditions.

4. GUIDELINES FOR THE PREDICTION METHODS

4.1 Preferred Methods

This procedure permits use of the best technically supportable evidence of product reliability based on field data, laboratory tests, MIL-HDBK-217, [1] device manufacturer's data, unit supplier's data, or engineering analysis. The methods for predicting reliability are:

Method I: Predictions are based solely on the 'Parts Count' procedure 10 in Sections 5 and 6. This method can be applied to individual devices or units. Unit level parts count predictions can be calculated using Method I, II, or III device level predictions.

Method II: Unit or device level statistical predictions are based on combining Method I predictions with data from a laboratory test performed in accordance with the criteria given in Section 7.

Method III: Statistical predictions of in-service reliability are based on field tracking data collected in accordance with the criteria given in Section 8.

Although the three methods specified here are preferred, calculation of additional predictions using other technically sound sources of data and/or technically sound engineering techniques is not precluded. Other sources or techniques could include device manufacturer's data, unit supplier's data, reliability physics considerations, extrapolation models, and engineering analysis. This approach may be particularly useful in adjusting Method I estimates for new technology devices where no substantial field data exists. A supplier must fully explain and document the technical basis for any such predictions. In such cases, the requesting organization will then determine whether the RPP or alternate prediction is to be used.

Subject to prior approval from the requesting organization, the supplier may submit Parts Count predictions for a specified subset, rather than for the entire set of devices or units.

4.2 Inquiries

Questions regarding the interpretation or use of these methods should be addressed in writing to the organization that requested the reliability prediction. The Switching Technology Analysis and Reliability Center in Bellcore can also provide assistance.

Sections 5 and 6 discuss Method I; Section 7 discusses Method II; and Section 8 discusses Method III.

^{10.} The "Parts Count" procedure used in this method is based on MIL-HDBK-217.

5. OVERVIEW OF METHOD I: PARTS COUNT METHOD

5.1 General Description

The prediction technique described in this section is commonly known as a 'Parts Count' method. That is, the unit failure rate is assumed to be equal to the sum of the device failure rates. Modifiers are included to account for variations in equipment operating environment, device quality requirements, and device application conditions (e.g., temperature and electrical stress). For application of this method, the possible combinations of burn-in treatment and device application conditions are separated into three cases, which are described below. Unless the requesting organization requires Case 3, the case to be used is at the supplier's discretion.

- Case 1: Black Box option with unit/system burn-in ≤ 1 hour and no device burn-in. Devices are assumed to be operating at 40 °C and 50 percent rated electrical stress.
- Case 2: Black Box option with unit/system burn-in > 1 hour but no device burn-in. Devices are assumed to be operating at 40 °C and 50 percent rated electrical stress.
- Case 3: General Case everything else. This case would be used when the supplier wants to take advantage of device burn-in. It would also apply when the supplier wants to use, or the requesting organization requires, reliability predictions that account for operating temperatures or electrical stresses at other than 40 °C and 50 percent, respectively. These predictions will henceforth be referred to as "limited stress" predictions.

5.2 Case Selection

This method is designed so that computation of first year multipliers and steady-state reliability predictions is simplest when there is no burn-in and when the temperature and electrical stress levels are assumed to be 40 °C and 50 percent, respectively. Thus, the cases are listed above in order of complexity— Case 1 being the simplest. The reason the supplier may opt to use Case 2 is that Case 2 allows for system or unit burn-in time to reduce the failure rate attributed in the infant mortality period. Case 3 (the General Case) allows the use of all types of burn-in to reduce the failure rate attributed in the infant mortality period. The limited stress option, which can only be handled under Case 3, should produce more accurate predictions when the operating temperature and electrical stress do not equal 40 °C and 50 percent, respectively.

Since it is considerably more time-consuming to perform and verify limited stress predictions, it is recommended that Case 3 be used as the sole prediction method only where ten or fewer unit designs are involved or where a more precise reliability prediction is necessary.

The requesting organization has the option to require the supplier to perform a (sampled) limited stress prediction. In cases where a large number of unit level predictions are to be computed, the following approach may be specified if agreement can be reached with the product supplier:

- 1. The requesting organization selects a sample of ten unit designs that are representative of the system. The following criteria are to be used in the sample selection process:
 - (a) If any devices are burned-in, select ten unit designs that, on the whole, contain a proportion of these devices consistent with the proportion of burned-in devices in the system.
 - (b) Do not select unit designs for units that are subjected to unit level burn-in. (Predictions for these designs should be computed using the limited stress option. Usually there will be few unit designs in this category.)
 - (c) Include unit designs that are used in large quantities in the system.
 - (d) Include unit designs that perform different functions, for example, power supplies and digital, analog, and memory units.
- 2. The product supplier performs a limited stress reliability prediction and calculates the first year multiplier (π_{FY}) for each selected unit design.
- 3. The product supplier performs a steady-state black box reliability prediction on all units (excluding those in item 1b above).
- 4. The average π_{FY} value determined from the sample in item 2 is applied to all non-sampled unit designs (excluding those in item 1b above).
- 5. The average ratio between the steady-state black box prediction and steady-state limited stress prediction of the sampled unit designs is applied to all non-sampled designs (excluding those in item 1b above).
- 6. If the sample adequately represents the total system, this approach will provide a more precise measure of first year and steady-state unit failure rates than is available by the black box option; yet, it will not be as complicated and time-consuming as a limited stress prediction done on every unit design.
- 7. A word of caution. Care must be used to avoid bias in the sample selection. This is particularly important when system level parameters computed in a system reliability model are to be compared with the system level parameters for a competing system.

When unit level reliability predictions are to be input into system reliability models, whichever case is used must normally be used for all units in the system. Currently, the only exceptions are when:

- . The requesting organization specifically requests a deviation.
- Limited stress predictions are required, but detailed device application information is not available for purchased sub-assemblies because of proprietary designs. In such instances, a black box prediction (Case 1 or 2) may be applied to these units.
- · A sampled limited stress prediction is required.

5.3 Additional Information

Information such as block diagrams, parts lists, procurement specifications, and test requirements may be requested to verify that results presented by the supplier are correct. Some items of this nature are specifically requested in this procedure; additional items may be requested in other documents or letters. If the supplier does not provide the requested information, the worst case assumptions must be used (e.g., if procurement specifications or test/inspection procedures are not provided, the worst quality level will be assumed).

Information required to perform the reliability predictions can be found in the following:

- Section 6 describes the detailed steps to be followed in predicting unit reliability.
- Tables A through J contain the information necessary to determine device and unit failure rates and modifying factors.
- Forms 2 through 12 contain worksheets to be used in reliability prediction.

5.4 Operating Temperature Definition

The following definitions apply for selecting temperature factors from Table G to perform Method I predictions. The unit operating temperature is determined by placing a temperature probe in the air ½ inch above (or between) the unit(s) while it is operating under normal conditions. The device operating temperature is the unit operating temperature of the unit in which the device resides.

^{11. &}quot;Normal conditions" refer to the operating conditions for which the reliability prediction is to apply. If the reliability predictions are used as input in a system level reliability model, this will be the operating conditions for the product in that particular system.

6. INSTRUCTIONS FOR METHOD I: PARTS COUNT METHOD

6.1 Available Options

As described in Section 5.1, there are three cases for the Parts Count Method:

- Case 1 black box option (assumed operating temperature and electrical stress of 40°C and 50 percent) with unit/system burn-in ≤ 1 hour, no device burn-in
- Case 2 black box option (assumed operating temperature and electrical stress of 40°C and 50 percent) with unit/system burn-in > 1 hour, no device burn-in
- · Case 3 General Case.

This section contains the complete formulae and equations for Case 3, and the simplified versions for Cases 1 and 2 for calculating λ_{SS} (the steady state failure rate) and π_{FY} (the first year multiplier).

6.2 Steady-State Failure Rate

6.2.1 Device Steady-State Failure Rate

For the general case (Case 3) the device steady-state failure rate, λ_{SS_i} , is given by:

$$\lambda_{SS_i} = \lambda_{G_i} \pi_{Q_i} \pi_{S_i} \pi_{T_i} \tag{1}$$

where

 λ_{G_i} = generic failure rate for the i^{th} device (Table A)

 π_{Q_i} = quality factor for the i^{th} device (Table D)

 π_{S_i} = stress factor for the *i*th device (Tables E and F)

 π_{T_i} = temperature factor for the i^{th} device (Table G) due to normal operating temperature during steady-state.

For Cases 1 and 2, since the temperature and electrical stress factors (Tables F and G) are $\pi_T = \pi_S = 1.0$ at 40 °C and 50 percent electrical stress for all device types, the formula can be simplified to:

$$\lambda_{SS_i} = \lambda_{G_i} \pi_{Q_i}. \tag{2}$$

6.2.2 Unit Steady-State Failure Rate

The unit steady-state failure rate prediction, λ_{SS} , is computed as the sum of the device failure rate predictions for all devices in the unit, multiplied by the unit environmental factor:

$$\lambda_{SS} = \pi_E \sum_{i=1}^n N_i \lambda_{SS_i}$$

where

n = number of different device types in the unit

 N_i = quantity of i^{th} device type

 π_E = unit environmental factor (Table H).

6.3 First Year Multipliers

6.3.1 Device Effective Burn-in Time

To compute the first year multiplier for the i^{th} device type, it is necessary to compute a quantity called the effective burn-in time, t_{ei} . For Case 3:

$$t_{e_i} = \frac{A_{b,d}t_{b,d} + A_{b,u}t_{b,u} + A_{b,s}t_{b,s}}{A_{op}\pi_{s_i}}$$

where

 $A_{b,d}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the device burn-in temperature

 $t_{b,d}$ = device burn-in time (hours)

 $A_{b,u}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the unit burn-in temperature

 $t_{b,u} = \text{unit burn-in time (hours)}$

 $A_{b,s}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the system burn-in temperature

 $t_{b,s}$ = system burn-in time (hours)

A_{op} = temperature acceleration factor (Table G, Curve 7) corresponding to normal operating temperature

 π_{S_i} = electrical stress factor (Tables E and F) due to normal operating conditions.

Case 2: Since there is no device level burn-in and the normal operating temperature and electrical stress are assumed to be 40 °C and 50 percent, $t_{b,d} = 0.0$, $A_{op} = \pi_{S_i} = 1.0$, and the formula for effective burn-in time reduces to:

$$t_e = A_{b,u}t_{b,u} + A_{b,s}t_{b,s}$$

Case 1: Since unit/system burn-in ≤ 1 hour and there is no device burn-in:

$$t_{e_i} = 1.0$$

8.3.2 Device First Year Multipliers π_{FY}

Case 3:

When device/unit/system burn-in > 1 hour,

• If
$$t_{e_i} \ge \frac{10,000}{\pi_{T_i}\pi_{S_i}}$$
, then $\pi_{FY_i} = 1$.

• If
$$\frac{10.000}{\pi_{T_i}\pi_{S_i}}$$
 - 8760 $< t_{e_i} < \frac{10.000}{\pi_{T_i}\pi_{S_i}}$, then

$$\pi_{FY_i} = \frac{1.14}{\pi_{T_i}\pi_{S_i}} \left[\frac{t_{e_i}\pi_{T_i}\pi_{S_i}}{10,000} - 4 \left(\frac{t_{e_i}\pi_{T_i}\pi_{S_i}}{10,000} \right)^{0.25} + 3 \right] + 1.$$

• If
$$t_{\epsilon_i} \leq \frac{10,000}{\pi_{T_i}\pi_{S_i}} - 8760$$
, then

$$\pi_{FY_i} = \frac{0.46}{(\pi_{T_i} \pi_{S_i})^{0.75}} \left[(t_{e_i} + 8760)^{0.25} - t_{e_i}^{0.25} \right]$$

When device/unit/system Burn-in \leq 1 hour,

• If 10,000
$$\geq$$
 8760 $\pi_{T_i}\pi_{S_i}$, then

$$\pi_{FY_i} = 4/(\pi_{T_i}\pi_{S_i})^{0.75}$$
.

· Otherwise,

$$\pi_{FY_i} = 1 + 3/(\pi_{T_i}\pi_{S_i}).$$

Case 2:

1

Since $\pi_{T_i} = \pi_{S_i} = 1.0$ for Case 2, use the following:

• If 0 $< t_{\rm e;} <$ 10,000, then use the π_{FY} value from Table I.

TR-NWT-000332 Issue 3, September 1990

• If $t_{e_i} > 10,000$, then $\pi_{FY_i} = 1$.

Case 1:

$$\pi_{FY_i} = 4.0$$

8.3.3 Unit First Year Multiplier (π_{FY})

To obtain the unit first year multiplier, use:

$$\pi_{FY} = \sum_{i=1}^{n} (N_i \lambda_{SS_i} \pi_{FY_i}) / \sum_{i=1}^{n} (N_i \lambda_{SS_i})$$

6.4 Worksheets

- Forms 2 and 3 are worksheets for calculating device and unit failure rates for Case 1.
- Forms 2 and 4 are worksheets for calculating device and unit failure rates for Case 2.
- Forms 5 and 6 are worksheets for calculating device and unit failure rates for the general case, Case 3.

Completed samples of these forms accompany the examples in the following section.

6.5 Examples

6.5.1 Example 1: Case 1 (Forms 2 and 3)

Assume the unit called EXAMPLE has the following devices:

Device Type	Quantity
IC, Digital, Bipolar, Non-hermetic, 30 gates	10
IC, Digital, NMOS, Non-hermetic, 200 gates	s 5
Transistor, Si, PNP, Plastic, ≤0.6 W	5
Capacitor, Discrete, Fixed, Ceramic	5
LED, Non-hermetic, 1300 nm	1

Device Quality Level I is assumed for the capacitors and the LED, and Device Quality Level II is assumed for all other devices on the unit. The requesting organization has specified the environmental factor $\pi_E=1.5$ (from Table H) on the 'Request For Reliability Prediction' form (Form 1, Figure 8).

Assume that the requesting organization does not require a limited stress prediction (Case 3) for the unit EXAMPLE; that is, it is permissible to assume operating conditions of 40 °C temperature and 50 percent electrical stress. Furthermore, there is no device, unit, or system burn-in (or there is burn-in but the manufacturer is not claiming credit for it). Under these conditions, reliability predictions for the unit EXAMPLE are calculated using Forms 2 and 3. Figures 1 and 2 illustrate the completed forms for this example and are shown on the following pages.

6.5.2 Example 2: Case 2 (Forms 2 and 4)

Consider the unit EXAMPLE, from Example 1 (see Section 6.5.1). As in Example 1, assume the requesting organization did not require a limited stress (Case 3) reliability prediction for the unit. However, there is unit burn-in of 72 hours at 70°C, for which the manufacturer would like to receive credit. Reliability predictions for the unit EXAMPLE should then be calculated using Form 2, as in Example 1, and Form 4. Figures 3 and 4 illustrate completed forms for this example and are shown on the following pages.

Device Reliability Prediction

Worksheet

Case 1 Or 2 - Black Box Estimates (50% Stress, Temperature = 40° C, No Device Burn-in)

1438

			No	Device Burn-in)				
π_=	1.5		Date	8/1/88	Page 1	Ot 1		
E -			Unit EXA	MPLE 1	Manufacture	Manufacturer XYZ, Inc.		
Device Type*	Part Number	Circuit Ref. Symbol	City.	Failure** Rate (\(\lambda_{G_i}\))	Quality Factor (π_{O_i})	Total Device Failure Rate $(N_i \lambda_{G_i}, \pi_{O_i})$ (t)		
IC, Digital, Bipolar Non-herm, 30 gates	A65BC	U1-10	10	38	1.0	380		
IC, Digital, NMOS Non-herm, 200 gates	A73X4	U11-15	5	110	1.0	550		
Transistor, SI PNP Plastic, ≤0.6W	T16AB	Q1-5	5	25	1.0	125		
Capacitor, Discrete Fixed, Ceramic	C258V	C1-5	5	3	1.5	23		
1300 nm LED, Non-herm	L25X4	CR1	1	200	1.8	360		
				1				

TOTAL = $(\lambda_{SS}) = \pi_E \Sigma N_i \lambda_G \pi_Q = (1.5)(1438) = 2157$

Figure 1. Example 1, Case 1 (Worked Form 2)

SUBTOTAL

^{*} Similar parts having the same failure rate, base part number, and quality factor may be combined and entered on one line. Part descriptions should be sufficient to verify that correct failure rate assignment has been made.

^{••} Fallure rates come from Table A. If Method II is applied to devices, instead use failure rate (I) from Form 9 (λ_{GI}).

Unit Reliability Prediction

Worksheet

Case 1 - Black Box Estimates (50% Stress, Temperature = 40 °C, Unit/System Burn-in ≤1 Hour, No Device Burn-in)

				0/1/00		1	J•	
			P	roduct APPARATUS	Rev 1	1	nufacturer XYZ, Inc.	
Unit	Unit		Repair Cat		Steady Sta Failure Rat (From Figure (FITs)	te te = 2)	If Method II is applied to units, (From Figure 10) λ^*_{SS}	First Year Multiplier
Name	Number	Factory Repairable	Repairs	bie Other	(FiTs) λss		λ°ss	π_{FY}
EXAMPLE 1	11-24	x			2157			4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
							N. A. B.	4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0
								4.0

Device Reliability Prediction

Worksheet

Case 1 Or 2 - Black Box Estimates (50% Stress, Temperature = 40° C, No Device Burn-in)

π_=	1.5		Date	8/1/88	Page 1	_ Ot1_
_			Unit EXA	MPLE 2	Manufactur	er XYZ, Inc.
Device Type ^a	Part Number	Circuit Ref. Symbol	Qty. (N _I)	Failure™ Rate (λ _{Gi})	Quality Factor (π _{Qj})	Total Device Failure Rate $(N_j \lambda_{G_j}, \pi_{G_j})$ (f)
IC, Digital, Bipolar Non-herm, 30 gates	A65BC	U1-10	10	38	1.0	380
IC, Digital, NMOS Non-herm, 200 gates	A73X4	U11-15	5	110	1.0	550
Transistor, SI PNP Plastic, ≤0.6W	T16AB	Q1-5	5	25	1.0	125
Capacitor, Discrete Fixed, Caramic	C258V	C1-5	5	3	1.5	23
1300 nm LED, Non-herm	L25X4	CR1	1	200	1.8	360
SUBTOTAL					*	1438

TOTAL = $(\lambda_{SS}) = \pi_E \Sigma N_i \lambda_G \pi_Q = (1.5)(1438) = 2157$

Figure 3. Example 2, Case 2 (Worked Form 2)

^{*} Similar parts having the same failure rate, base part number, and quality factor may becombined and entered on one line. Part descriptions should be sufficient to verify that correct failure rate assignment has been made.

^{**} Failure rates come from Table A. If Method II is applied to devices, instead use failure:rate (j) from Form 9 (λ_{GI}).

Unit Reliability Prediction

Worksheet

Case 2 - Black Box Estimates (56% Stress, Temperature = 40°C, No Device Burn-In, UnitSystem Burn-In > 1 Hour)

		Date	8/1	Page 1 0	Page 1 01 1			
		Produ	CT APPARATUS	Rev 1	Manufacturer XYZ, Inc.			
Jnit name		Example 2						
Unit Number		11-24						
Repair category Factory repairable		x	a.A					
Field repairable .								
Other								
Unit burn-in Temperature T _{b,u}		70°						
Acceleration factor ‡ Ab,u		3.7						
Time t b.u		72						
System burn-in Temperature T _{b,s}		NA						
Acceleration factor ‡ Ab,s		NA						
Time t _{b,s}		NA						
Effective burn-in time t _e	(a)	266						
First year Muttiplier (Table I)	π_{FY}	2.6						
SS (from Figure 2)	λss	2157						
Method II is applied to inits, from Figure 12	λ'ss	NA NA		1				

¹ Obtain From Table G, Curve 7

6.5.3 Example 3: Case 3, General Case (Forms 5 and 6)

Consider again the unit EXAMPLE, from Example 1. Assume that reliability predictions for the unit EXAMPLE must be calculated using the "Limited Stress" option. The unit operating temperature is 45 °C. All the transistors are operated at 40 percent electrical stress, and all the capacitors are operated at 50 percent electrical stress. There is both device burn-in and unit burn-in, for which the manufacturer would like to receive credit. The unit burn-in consists of 72 hours at 70 °C. In addition, all the bipolar and MOS integrated circuits are burned in for 168 hours at 150 °C. Under these conditions, reliability predictions for the unit EXAMPLE must be calculated using Forms 5 and 6. Figures 5 and 6 illustrate completed forms for this example and are shown on the following pages.

6.6 Instructions for Device Types/Technologies not in Table A

Surface Mount Technology: RPP base failure rate predictions for surface mount devices are equal to the RPP predictions for the corresponding conventional versions. 12

New or Application Specific Device Types: There may be cases where failure rate predictions are needed for new or application-specific device types that are not included in Table A. In such cases, the supplier may use either of the following, subject to approval from the requesting organization:

- The RPP failure rate prediction for the Table A device type that is most similar
- · A prediction from another source.

The requesting organization may require the supplier to provide full supporting information, and has the option to accept or reject the proposed failure rate prediction.

6.7 Items Excluded From Unit Failure Rate Calculations

6.7.1 Default Exclusions

When unit failure rates are being predicted, wire, cable, solder connections, wire wrap connections, and printed wiring boards (but not attached devices and connector fingers) may be excluded.

^{12.} At this time, Bellcore has received no evidence indicating a significant difference in failure rates between conventional and surface mount devices. Separate failure rate predictions for surface mount devices may be included in future RPP issues if equipment suppliers or users contribute valid field reliability data or other evidence that indicates a significant difference.

Device Reliability Prediction

Worksheet

(GENERAL CASE - Including Limited Stress)

				8/1	Page			
				Unit EXAMP	PLE 3	Manufac	turer XYZ, Inc	
Device type			IC, bip	IC, NMOS	TRANS, SI	Capaci	LED	
Part number			A65BC	A73X4	T16AB	C258V	L25X4	
Circuit ref. symbol			U1-10	U11-15	01-5	C1-5	CR1	
Quantity	Ni	(a)	10	5	5	5	1	
Generic failure rate †	λ_{G_i}	(b)	3.8	110	25	3	200	Cumulative sum of (f)
Quality factor	π_{o_i}	(c)	1.2	1.2	1.2	1.5	1.8	W
Stress factor	π_{s_i}	(d)	1.0	1.0	0.8	1.0	1.0	
Temperature factor	π_{T_i}	(0)	1.2	1.3	1.1	1.0	1.5	
Device quantity x device failure (a)x(b)x(c)x(d)x(e)	ate	(f)	456	715	110	23	540	1844
Unit burn-in								
Temperature	$T_{b,u}$		70°	70°	70°	70°	70°	
Acceleration factor*	А _{Б, и}	(g)	3.7	3.7	3.7	3.7	3.7	
Time	t b,u	(h)	72	72	72	72	72	
System burn-in								
Temperature	T _{b,s}							
Acceleration factor	A _{b,s}	(i)						
Time	l b,s	(i)						
Device burn-in								
Temperature	T _{b,d}		150°	150°	NA	NA	NA	
Acceleration factor	A _{b,d}	(k)	48	48	NA	NA	, NA	
Time	t b,d	(m)	168	168	NA	NA	NA	
Early Life Temp. Factor*	Aop	(n)	1.3	1.3	1.3	1.3	1.3	
10000/[(d)x(e)]		(0)	8333	7692	11,363	10000	6667	Cumulative sum of
(g)x(h) + (l)x(j) + (k)x(m)		(p)	8330	8330	266	266	256	(u)
Eff. burn-in time: (p)/[(d)x(n)]		(p)	6408	6408	256	205	205	
(1) if (q)≥(o)	(r) = 1	(r)						
(2) If (q) ≤(o) - 8760 Look up (q) in Table I		(s)			2.6	2.7		
$(r) = (s)/[(d)x(e)]^{-0.75}$		(r)			2.6	2.7		
(3) Otherwise Look up (p) in Table I		(t)	1.0	1.0			2.6	
(r) = [(1)-1]/[(d)x(e)] + 1		(r)	1.0	1.0			2.1	
(r)x(t)		(u)	456	715	286	62	1134	2653

^{*}Obtain From Table G, Curve 7 †Failure rates come from Table A, If Method II is applied to devices, use (a) from Form 11.

Unit Reliability Prediction

Worksheet
(GENERAL CASE - Including Limited Stress)

		10	SENERAL CASE	- 111610	aning control	211 4331			
			Date	8/1/88		Page 1 Of 1			
			Product APPAR	ATUS	Rev 1	Manufact	ntet XX	Z, Inc.	
Unit name		EXAMPLE	3						
Unit number		11-24							
Repair category									
Factory repairable		x							
Field repairable									
Other									
From Figure 5: Sum of (u)	(u)	2653							
From Figure 5: Sum of (1)	(1)	1844		T					
Environmental Factor	πε	1.5		T					
T _E x(f)	λss	2766							
<u>(u)</u>	π_{FY}	1.4							
f Method II is applied to units, From Figure 12:	λ' 33	NA			İ				
Comments:									

Figure 6. Example 3, Case 3 (Worked Form 6)

6.7.2 Approved Exclusions

The supplier must provide unit failure rate predictions that include all devices within the unit. However, when unit failure rate predictions are to be used as input into system reliability models, the supplier may propose that the requesting organization approve exclusion of devices whose failure will not cause an immediate loss of service, necessitate an immediate maintenance visit, or result in additional service disruption during later system maintenance activities. This may include devices provided for monitoring, alarm, or maintenance purposes (for example, channel busy lamps or failure indicator lamps).

To propose exclusions, the supplier must use Form 7, entitled "Items Excluded From Unit Failure Rate Calculations," for each unit affected. The form should list all items that are proposed for exclusion in the unit failure rate calculation. The bottom portion of Form 7 contains a set of equations that describe the total unit failure rate and first year multiplier in terms of the contribution by "service affecting" and "non-service affecting" values. When exclusions are approved by the requesting organization, the supplier should use the "service affecting" values when completing Form 8.

6.7.3 Example 4

Consider the unit EXAMPLE, introduced in Example 1, Section 6.5.1. Assume that the LED is non-service affecting since it only indicates whether the unit is functioning. Form 7 must be completed. Figure 7 illustrates a completed form for this example and is shown on the following page.

7. METHOD II: PREDICTIONS BASED ON COMBINING LABORATORY DATA WITH PARTS COUNT DATA

7.1 Introduction

Method II is a method for predicting unit or device reliability using laboratory data. The purpose of the procedure is to provide a mechanism for suppliers to perform realistic and informative laboratory tests. Suppliers who submit reliability predictions based on laboratory data must obtain prior approval from the requesting organization.

^{13.} For example, failure of a particular device that does not immediately affect service, but will affect the system recovery time given a subsequent outage.

Items Excluded From Unit Failure Rate Calculations

			Date	8/1/88	Unit EXAMP	PLE 1	
			Manufactur	er XYZ, Inc.			
Device					From Figure 2 or 5		
Туре	Number	Reason		(f)	(u)°		
LED, 1300 nm non-herm	L25X4	LED used for status indication only			360	1440	
				TOTALS			
After completing this for	m, calculate the folio	owing failure ra	te data:				
	Non-service Affecting		ig .			Service Affecting	
$\pi_{E} \times \Sigma(f) = \lambda_{SS_{De}} =$			λss	$\lambda_{SS} - \lambda_{SS_{RR}} = \lambda_{SS_{RR}} = 2480 \cdot 540 = 1940$			
$\frac{\Sigma(u)}{\Sigma(f)} = \pi_{FY_{na}} =$	1440/360 = 4.0		πργ	$\frac{\pi_{FY} \lambda_{SS} - \pi_{FY_{nB}} \lambda_{SS_{nB}}}{\lambda_{SS_{a}}} = \pi_{FY_{a}} = 4.0$			
Where:			When				
π_E = environmental factor (from Form 1).			λss	λ _{SS} = total unit steady-state failure rate (from Form 3, 4, 6, 10, or 12)			
			T FY	when λ _{SS} come	r Muttiplier (from Form s from Form 3 or 10,	1 4 or 6). π _{FY} = 4.0.	
"When the value of (f) is							

For the above computations, note that in Example 1, π_{FY} = 4.0.

Decisions to implement lab tests need to be made on a case-by-case basis and must be carefully considered. The cost of a lab test must be weighed against the impact of Method I device failure rates on unit failure rates and/or system reliability parameter estimates (relative to reliability objectives). Life cycle costs should also be considered. The Method II base failure rate is calculated as a weighted average of the measured laboratory failure rate and the Parts Count generic failure rate, with the weights determined by the laboratory data. For devices, the value for the generic failure rate is obtained from Table A; for units, the value is $\lambda_{SS}/(\pi_E\pi_T)$. (These terms will be defined later.) When laboratory tests are very informative, the Method II base failure rate is determined primarily from the laboratory data. When laboratory tests are less informative, the Method II base failure rate will be heavily influenced by the Parts Count generic failure rate.

Using Method II yields device or unit base failure rates to take the place of Parts Count generic failure rates. These base failure rates can then be used to compute Method II steady-state failure rates. Method II device base failure rates can also be substituted for the Table A generic failure rates in the unit level Parts Count calculations.

When unit level failure rates are to be input into system level reliability models, Method II unit steady-state failure rates should be substituted for the Parts Count failure rates wherever they appear in the system reliability model.

7.2 Method II Criteria

- 1. The supplier must provide all supporting information and Parts Count (Method I) predictions.
- 2. Method II may be applied only to devices procured or manufactured per Quality Levels II and III, unless there is no generic failure rate prediction for the device listed in Table A. For a quality level I device not listed in Table A, the requesting organization has the option to use a failure rate prediction from another source.
- 3. Method II may be applied only to *units* that contain devices procured or manufactured only per Quality Levels II and III, unless no generic failure rate predictions are listed in Table A for some of the devices in the unit. In such a case, the requesting organization has the option to use a failure rate prediction from another source.
- 4. The quality levels of devices tested in the laboratory must be representative of the quality levels of the devices for which the prediction is to be used.
- 5. This section provides information on how many devices or units should be tested, how long the devices or units should be tested, how the devices should be tested, etc. In the criteria below, actual time is elapsed clock time, but effective time is actual time multiplied by an appropriate temperature acceleration factor. Criteria are:

(a) Test devices or units for an actual time of at least 500 hours. This ensures that each item is observed for a reasonable period of time -- even for highly accelerated tests.

(

1

- (b) Test devices or units for an effective time of at least 3000 hours.
- (c) Select the number of devices or units placed on test so that at least two failures can be expected. Refer to Section 7.10 for details. Also, at least 500 devices or 50 units are required.
- (d) Test devices to simulate typical field operations, e.g., humidity and stress.
- (e) Include product from a representative sample of lots to ensure representativeness of the test.

The supplier may be asked to provide additional information to demonstrate the consistency of failure rates over time.

- 6. Statistical predictions for devices based on Method II may be generalized to other devices that have:
 - The same type/technology
 - The same packaging (e.g., hermetic)
 - · The same or lower levels of complexity
 - · A construction and design similar in material and technology.

A supplier who wishes to use Method II predictions for other products must explain and justify those generalizations.

The supplier may also be asked to provide additional data supporting the assertion that the products have similar reliabilities.

7.3 Cases for Method II Predictions

There are four general cases where laboratory data can be used for computing Method II predictions. The four cases and the worksheets (forms) provided for the calculations are:

- Case L1 Devices are laboratory tested (devices have had no previous burn-in), Form 9.
- Case L2 Units are laboratory tested (no previous unit/device burn-in), Form 10.
- Case L3 Devices are laboratory tested (devices have had previous burn-in), Form 11.
- Case L4 Units are laboratory tested (units/devices have had previous burn-in), Form 12.

The Method II formulae and equations for each case are presented in the following paragraphs. The supplier must use the equations and formulas for the case that corresponds to the collected laboratory data.

7.4 Case L1 - Devices Laboratory Tested (devices have had no previous burn-in)

To calculate the Method II base failure rate $(\lambda_{G_i}^*)$:

• If $T_1 \le 10,000$, then

$$\lambda_{G_i}^* = [2+n]/[(2/\lambda_{G_i}) + (4\times10^{-6})N_0(T_1)^{0.25}\pi_Q]$$
(3)

• If $T_1 > 10,000$, then

$$\lambda_{G_i}^* = [2+n]/[(2/\lambda_{G_i}) + ((3\times10^{-5}) + (T_1\times10^{-9}))N_0\pi_Q]$$

where

•

n = the number of failures in the laboratory test.

 λ_{G_i} = the device Table A generic failure rate in FITs. If no generic failure rate is listed in Table A, then a failure rate from another source may be used, subject to the approval of the requesting organization.

 N_0 = number of devices on test.

 T_1 = effective time on test in hours. The effective time on test is the product of the actual time on test (T_a) and the laboratory test temperature acceleration factor (A_L) from Table G, Curve 7. Form 9 is a worksheet used to calculate device base failure rates for this case.

 π_Q = device quality factor from Table D.

When devices are laboratory tested, calculate the Method II unit steady-state failure rate from the device steady-state failure rates by replacing λ_{G_i} by λ_{G_i} in the appropriate Section 6 equation [Equation (1) or (2)]. These calculations are made explicit in Forms 2 and 5.

7.5 Case L2 - Units Laboratory Tested (no previous unit/device burn-in)

When units are tested in the laboratory, the following formula describes how to calculate the Method II base failure rate (λ_G^*) :

• If $T_1 \le 10,000$, then

$$\lambda_G^* = [2+n]/[(2/\lambda_G) + (4\times10^{-6})N_0(T_1)^{0.25}]$$
(4)

• If $T_1 > 10,000$, then

$$\lambda_G^* = [2+n]/[(2/\lambda_G) + ((3\times10^{-5}) + (T_1\times10^{-9}))N_o]$$

where

n = the number of failures in the laboratory test.

the unit generic failure rate in FITs. It equals $\lambda_{SS}/(\pi_E\pi_T)$, where λ_{SS} is the Method I unit steady-state failure rate computed in Section 6.2.2, π_T is the unit temperature acceleration factor due to normal operating temperature (Table G, Curve 7), and π_E is the environmental factor used in the computation of λ_{SS} . If no Method I prediction can be computed for a unit, then a failure rate prediction from another source may be used, subject to the approval of the requesting organization.

 N_0 = number of units on test.

 T_1 = effective time on test in hours. The effective time on test is the product of the actual time on test (T_a) and the laboratory test temperature acceleration factor (A_L) from Table G, Curve 7.

When units are tested in the laboratory, the Method II unit steady-state failure rate is $\lambda G \pi_E \pi_T$. Form 10 is a worksheet used to calculate unit steady-state failure rates for this case.

7.6 Example 5

Consider the unit EXAMPLE from Example 1 (Section 6.5.1). Assume 500 units are tested at 65 °C for 1000 hours, resulting in 3 failures. Assume also that the unit will be normally operated at 40 °C. The Parts Count prediction was 2157 FITs.

Solution: For this example, the effective time on test is calculated:

$$T_1 = T_a \cdot A_L = 1000 \cdot 3 = 3000$$
 hours,

where the acceleration factor (A_L) comes from Table G, Curve 7. $(T_1)^{0.25}$ can be calculated by taking the square root of T_1 twice:

$$(3000)^{0.25} = \sqrt{\sqrt{3000}} = \sqrt{55} = 7.4.$$

Since $N_0 = 500$,

$$0.000004N_0(T_1)^{0.25} = 0.000004.500.7.4 = 0.0148$$

And since $\lambda_{SS} = 2157$, $\pi_T = 1.0$, and $\pi_E = 1.5$, it follows that $\lambda_G = 1438$. So, $2/\lambda_G = 2/1438 = 0.0014$.

Therefore, the denominator of Equation (4) is 0.0162. Since n=3, the numerator of Equation (4) is 2+3 or 5. So the laboratory method base failure rate is:

TR-NWT-000332 Issue 3, September 1990

$$\lambda_G' = 5/0.0162 = 309$$
 FITs.

The unit steady-state failure rate is 309·1.5 = 464 FITs.

7.7 Case L3 - Devices Laboratory Tested (devices have had previous burn-in)

When there is burn-in, calculation of the Method II estimators is more complicated. Define the total effective burn-in time for Method II for devices to be:

$$T_e = A_{b,d} t_{b,d}$$

where

 $A_{b,d}$ = temperature acceleration factor (from Table G, Curve 7) due to device burn-in

 $t_{b,d}$ = device burn-in time (hours).

The Method II base failure rate $(\lambda_{G_i}^*)$ is:

$$\lambda_{G_i}^* = [2+n]/[(2/\lambda_{G_i}) + (4\times10^{-6})N_0 W\pi_Q]$$

where n, λ_{G_i} , and N_0 are defined in Section 7.4, and W is calculated as follows:

• If
$$T_1+T_e \leq 10000$$
, then

$$W = (T_1 + T_e)^{0.25} - T_e^{0.25}$$

• If
$$T_1 + T_e > 10,000 \ge T_e$$
, then

$$W = ((T_1 + T_e)/4000) + 7.5 - T_e^{0.25}$$

• If $T_e > 10,000$, then

$$W = T_1/4000$$

where T_1 is the effective time on test.

Form 11 is a worksheet that can be used to calculate device base failure rates in this case.

When devices are laboratory tested, calculate the Method II unit steady-state failure rate from the device steady-state failure rates by simply replacing λ_{G_i} by $\lambda_{G_i}^*$ in the appropriate Section 6 equation [Equation (1) or (2)]. These calculations are made explicit in Form 11.

7.8 Case L4 - Units Laboratory Tested (units/devices have had previous burn-in)

For units tested in the laboratory, the total effective burn-in time for Method II is

$$T_e = T_{b,d}^* + A_{b,u} t_{b,u}$$

where

 $T_{b,d}^*$ = device average effective burn-in time.

 $A_{b,u}$ = temperature acceleration factor (from Table G, Curve 7) corresponding to the unit burn-in temperature.

 $t_{b,u}$ = unit burn-in time (hours).

TR-NWT-000332 Issue 3, September 1990

The following formula describes how to calculate the Method II base failure rate (λ_G) :

$$\lambda_G^* = [2+n]/[(2/\lambda_G) + (4\times10^{-6})N_0 W]$$

where n, λ_G , and N_0 are defined in Section 7.5 and W is calculated as follows:

• If $T_1 + T_e \le 10000$, then

$$W = (T_1 + T_e)^{0.25} - T_e^{0.25}$$

• If $T_1 + T_e > 10000 \ge T_e$, then

$$W = ((T_1 + T_e)/4000) + 7.5 - T_e^{0.25}$$

• If $T_e > 10000$, then

$$W = T_1/4000$$

where T_1 is the effective time on test.

Form 12 is a worksheet that can be used to calculate unit base failure rates in this case.

When units are tested in the laboratory, the Method II unit steady-state failure rate is $\lambda_G^*\pi_E\pi_T$.

7.9 Example 6

Consider the unit EXAMPLE from Example 1 (Section 6.5). Assume that there are 1000 hours of unit burn-in at 70°C, and that the unit will be operated at 40°C. Under these conditions, reliability predictions are calculated as shown below.

Solution: As before, n=3, $\lambda_G=1438$, and $N_0=500$. Only W must be calculated. To calculate W, first calculate T_ϵ .

$$T_e = T^*_{b,d} + A_{b,u} t_{b,u} = 0 + 3.7 \cdot (1000) = 3700$$

The factor 3.7 comes from Column 7 of Table G. Wis given by

$$W = (3000+3700)^{0.25} - (3700)^{0.25} = 1.25$$

Therefore,

$$\lambda_G^* = 5/(0.0014 + 0.0025) = 1282 \text{ FITs}$$

The unit steady-state failure rate is 1282·1.5 = 1923 FITs.

7.10 Calculation of the Number of Units or Devices on Test

The following formula gives the number (N_0) of units or devices to be placed on test so that at least two failures can be expected:

$$N_0 = (0.5 \times 10^6) / [R((T_1 + T_{\epsilon})^{0.25} - T_{\epsilon}^{0.25})]$$

where

- R = the Method I prediction, if one can be computed. If no Method I prediction can be computed, then a prediction from an alternate source may be used, subject to approval from the requesting organization.
- T_1 = effective time on test in hours (see Section 7.4 for devices and Section 7.5 for units).
- T_e = effective burn-in time, if any, in hours (see Section 7.7 for devices and Section 7.8 for units).

8. GUIDELINES FOR METHOD III: STATISTICAL PREDICTIONS FROM FIELD TRACKING

8.1 Introduction

Suppliers who submit device or unit level steady-state reliability predictions based on field tracking data must obtain prior approval from the requesting organization and be able to justify use of the selected approach. That is, the burden of proof is on the supplier.

Field tracking data and supporting information must meet the criteria listed later in this section. The field tracking process, system, and data must be available for review by the requesting organization to ensure that these criteria have been satisfied.

Field tracking data may be used for direct computation of field failure rates at the unit or device level, depending on the supporting information provided. The unit or device level field failure rates are then used to determine the Method III unit or device level steady-state¹⁴ failure rate predictions, which can then be applied in a system level reliability model for the supplier's system.

The Method III failure rate prediction is a weighted average of the observed field failure rate and the Parts Count prediction, with the weights determined by the field data. When there are a large number of total operating hours for a device or unit during a field tracking study, the Method III failure rate prediction is heavily influenced by the field data. When there are a small number of total operating hours, the Method III failure rate prediction is more heavily influenced by the parts count prediction.

8.2 Applicability

The Method III procedure and computations are intended for application to field data collected from a population of devices or units that are all in the steady-state phase of operation, but the procedure may be applied to field data collected from a population of devices or units that does not meet this condition. However, no infant mortality adjustment to the Method III prediction is permitted.

^{14.} Method III does not include procedures for predicting failure rates or other measures of reliability during the infant mortality phase of operation.

8.3 Definitions and Symbols

8.3.1 Definitions

Subject system— if unit level failure rate predictions are to be used for analysis of a particular system, subject system refers to that system.

Subject unit refers to a unit-type that belongs to the subject system.

Tracked systems refers to the particular sample of in-service systems from which field tracking data is collected. The tracked systems may be of a different type than the subject system [see Section 8.4, Methods III(b) and III(c)].

Tracked unit refers to a unit in the tracked systems for which reliability data is being collected. A tracked unit may be of a different type than the corresponding subject unit for which the reliability is being predicted [see Section 8.4, Method III(c)].

8.3.2 Symbols

t - Total Operating Hours of the device or unit in the tracked systems

number of failures observed in the tracked systems in time t (field failure count)

N_i - quantity of ith device

 λ_{SS1} - For a subject unit: the Method I steady-state failure rate prediction λ_{SS} .

For a subject device: the Method I steady-state failure rate prediction λ_{SS_i} , multiplied by the environmental factor, π_E , for the subject system.

That is:

 $\lambda_{SS1} = \lambda_{SS}$, for a subject unit, and

 $\lambda_{SS1} = \pi_E \lambda_{SS_i}$, for a subject device.

 λ_{SS} and λ_{SS} , may be either the Method I Case 1 (black box) or Case 3 (limited stress) predictions, as specified in Section 8.6.

λ_{SS2}	For a tracked unit (when different from the subject unit): the	
332	Method I Case 3 steady-state failure rate prediction. That is:	

$$\lambda_{SS2} = \lambda_{SS}$$
,

where λ_{SS} is the Method I, Case 3 steady-state failure rate prediction for the tracked unit.

$$\Theta_{SS_i}$$
 - the Method III failure rate prediction for the i^{th} device

$$\Theta_{SS}$$
 - the Method III unit failure rate prediction

$$\Theta_{SS3}$$
 - general symbol used for a Method III unit or device level failure rate prediction.

$$\pi_{T1}$$
, π_{T2} - the temperature factors from RPP Table G for the device or unit operating under normal temperatures in the subject (1) and tracked (2) system. For devices, use the temperature stress curve indicated in Table A. For units, use temperature stress curve 7.

8.4 Method III Criteria and Procedure

8.4.1 Source Data

When unit level reliability predictions are to be used as input to a system reliability model for evaluation of a supplier's system, three general categories of field data may be used to compute Method III predictions. Methods III(a), III(b), and III(c) are specified based on the source category of the field data.

Method III(a)

Statistical predictions of the failure rates of device types, unit types, or subsystems based on their in-service performance as part of the subject system.

Method III(b)

Statistical predictions of the failure rates of device types, unit types, or subsystems of the subject system based on their in-service performance as part of another system. Proper adjustments of those estimates, which take into account all differences between the operating conditions/environment of the equipment items in the two systems, are required in all cases.

Method III(c)

Statistical predictions of the failure rates of unit types or subsystems (excluding device types) of the subject system based on the in-service performance of similar equipment items from the same manufacturer that have a construction and design similar in material and technology and that are used in similar applications and environments. This does not imply that reliability parameters estimated for similar items can be directly applied to the unit types or subsystems of the subject system. Proper adjustments of those estimates, which take into account all design and operating condition differences between the tracked equipment items and those in the subject system for which the failure rates are being estimated, are required in all cases. A supplier who uses Method III(c) must explain and justify those adjustments.

8.4.2 Study Length and Total Operating Hours

This section specifies the length of the field tracking study and the total operating hours required when using Method III. The Criteria are:

- 1. The field tracking study must cover an elapsed clock time of at least 3000 hours.
- 2. The total operating hours t must satisfy the following:

For Methods IIIa and IIIb:

$$t \ge \frac{2 \cdot 10^9}{\lambda_{SS1}} ,$$

For Method IIIc:

$$t \ge \frac{2 \cdot 10^9}{\lambda_{SS2}} .$$

8.4.3 Subject Unit or Device Selection

Use of Method III failure rate predictions in system reliability models is permitted as follows:

- When Method III predictions are submitted for all unit ordevice types that make up the subject system
- When Method III predictions are submitted for a set of subject unit or device types that have been selected by the requesting organization
- When Method III predictions are submitted for a set of subject unit or device types that meet some criteria designated by the requesting organization— for example, unit types whose failure rates account for more than some designated percentage of the total individual line downtime.

8.4.4 Quality and Environmental Level

Method III failure rate predictions are permitted for devices of any quality level and for units containing devices of any quality level, subject to the following:

- The quality levels (see Table C) of devices used in the subject system must be equal to or better than the quality levels of the devices in the tracked systems.
- For a Quality Level I device type, the requesting organization has the option to use the Method III prediction, the Method I prediction or, if no generic failure rate is included in Table A, a failure rate prediction from another source.
- For a unit type that contains Quality Level I devices, the requesting organization has the option to use the Method III prediction, the Method I prediction or, if the unit contains devices for which no generic failure rate is included in Table A, a failure rate prediction from another source.

Method III failure rate predictions are permitted for devices or units deployed in a ground benign, ground fixed, or ground mobile environment (see Table H), subject to the following:

• The environmental level of the subject system must be the same or less severe than the environmental level of the tracked systems.

8.5 Field Data and Information

The supplier must provide the following field data and supporting information:

- The definition of "failure" for each unit type being tracked, and for each device type for which Method III predictions are to be computed.
- A general description of how a "no trouble found" (NTF) is determined for a returned unit, and a complete description of any failure mode that is not counted as a failure in the field tracking study (e.g., handling damage).
- Unit types and quantities (in-service and spare) for each tracked system. If field data is to be used for device-level reliability predictions, then the device types and quantities must also be provided for each unit type tracked during the field tracking study.
- The total operating hours during the field tracking study for each unit type being tracked, and for each device type for which Method III predictions are to be computed. The general formula used to compute the total operating hours must also be provided.

• The total number of failures for each unit type tracked during the study. If the data is to be used for device-level reliability predictions, then the total number of failures for each device type must also be included.

The supplier must maintain the following historical and accounting information and provide any part of it upon request:

- 1. For any unit (in-service or spare) deployed in the tracked systems during the study period
 - A unique identification number, serial number, or bar code— the number or bar code must be on the unit and clearly visible
 - · Date the unit was available for deployment
 - · Shipment date
 - Destination (site or system)
 - · Date returned to repair facility due to possible failure
 - Results of test (failure or "no trouble found")
 - The identity of devices that had failed and were replaced in the failed unit (for device level reliability predictions only)
 - Date repaired unit was available for re-deployment.
- 2. The results of weekly (or more frequent) repair/shipping activity audits that confirm all units are accounted for and all maintenance actions are properly recorded. The audits must cover all processing, testing, repair, and data entry activity for units returned or shipped out during the auditing period (for all company and external repair activities). Repair activities conducted at field locations (if any) must also be covered.

8.6 Method III Procedure

Step 1: Determine the number of field failures, f, and the total operating hours, t, for the unit or device in the tracked systems.

Step 2: If using Methods IIIb or IIIc, determine the operating temperature factors π_{T1} and π_{T2} as defined in Section 8.3.

Step 3: If Table A includes the generic failure rates necessary to compute a Method I prediction for the subject device or unit, then compute the value of λ_{SS1} , as defined in Section 8.3 and in accordance with the following:

For Methods Methods IIIa and IIIb: compute λ_{SS1} using either the Method I, Case 1 or Case 3 failure rate prediction, unless the choice is specified by the requesting organization.

For Method IIIc: compute λ_{SS1} using the Method I, Case 3 prediction.

Step 4: When the tracked unit is different than the subject unit (i.e., when using Method IIIc) and Table A includes the generic failure rates necessary to compute a Method I prediction for the tracked unit, then compute λ_{552} , as defined in Section 8.3.

Step 5: Compute the adjustment value, V, as follows:

	1.0	For Method IIIa
V =	$\frac{\pi_{T2}}{\pi_{T1}}$	For Method IIIb
	$\frac{\lambda_{SS2}}{\lambda_{SS1}}$	For Method IIIc

Method IIIc may not be used in cases where Table A does not include the necessary generic failure rates to compute both λ_{SS1} and λ_{SS2} as defined in Section 8.3 and in accordance with Step 3 above.

Step 6: Calculate the Method III failure rate prediction, Θ_{SS3} , as follows:

$$\Theta_{SS3} = \frac{2 + f}{\frac{2}{\lambda_{SS1}} + (V \cdot t \cdot 10^{-9})}.$$

The adjustment value, V, is computed in Step 5 above.

If λ_{SS1} is not available: the Method IIIa and Method IIIb failure rate prediction, Θ_{SS3} , is computed as follows:

$$\Theta_{SS3} = \frac{10^9 \cdot U}{t \cdot V}$$

where V is computed in Step 5 above, and U is the upper 90 percent confidence limit on the failure rate, given that f field failures were observed. The values of U are provided in Table K for f ranging from 0 to 160.

8.7 Examples

8.7.1 Example 1; Unit Level, Method III(a)

A supplier has field tracking data on a remote switching terminal that meets all Method III criteria. The total operating hours for circuit pack #xyz during the study period is 10^8 hours, with field failure count f = 70 and an operating temperature of 50 °C. For circuit pack #xyz (ground fixed environment) $\lambda_{SS1} = 600$ FITs, and is computed using the Method I, Case 1 prediction.

From Step 5, V = 1.0, and from Step 6:

$$\Theta_{SS} = \frac{2 + 70}{\frac{2}{600} + (1.0 \cdot 10^8 \cdot 10^{-9})} = 697 \text{ FITs.}$$

8.7.2 Example 2; Unit Level, Method III(b)

A supplier has unit level field tracking data for circuit pack #xyz from the operation of System 2 remote switching terminals and wants to use that data to predict the failure rate of circuit pack #xyz operating in System 1 remote switching terminals. Both systems operate in a ground fixed environment. The field failure count for the pack in System 2 is f = 70 with total operating time $t = 10^8$ hours. The operating temperature of the pack is 55 °C in System 1 and 50 °C in System 2. $\lambda_{SS1} = 600$ FITs, and is computed using the Method I, Case 1 prediction.

From Table G, Curve 7, $\pi_{T1} = 2.0$ and from Step 5,

$$V = \frac{\pi_{T2}}{\pi_{T1}} = \frac{1.6}{2.0} = 0.8.$$

Then from Step 6:

$$\Theta_{SS} = \frac{2 + 70}{\frac{2}{600} + (0.8 \cdot 10^8 \cdot 10^{-9})} = 864 \text{ FITs.}$$

9. SERIAL SYSTEM RELIABILITY (SERVICE AFFECTING RELIABILITY DATA)

9.1 Steady State Failure Rate

If the specified reliability parameters, failure criteria, equipment configuration, and operating conditions indicate that a serial reliability model is appropriate, the total system failure rate, λ_{SYS} , will be the sum of all the unit steady-state failure rates, λ_{SS} . That is,

$$\lambda_{SYS} = \sum_{j=1}^{M} \lambda_{SS(j)}$$

where $\lambda_{SS(j)}$ is the unit steady-state failure rate for unit j and M is the number of units. The discussion in early subsections of Section 6 omitted the subscript j for simplicity since there was only one unit. Note that unit steady-state failure rates are assumed to reflect only service affecting failures. The unit failure rates come from Form 3, 4, or 6, depending on whether Case 1, 2, or 3, respectively, was used (see Sections 6.2 and 6.4). It is assumed that these unit failure rates have been modified to remove non-service affecting failures (see Form 7 and Section 6.6). However, before doing so, the service impact of repairing faults in non-service affecting components should be considered.

9.2 First Year Multiplier

The system first year multiplier π_{FYSYS} for a serial system is given by:

$$\pi_{FYSYS} = \frac{\sum\limits_{j=1}^{M} \lambda_{SS(j)} \pi_{FY(j)}}{\lambda_{SYS}}$$

where $\pi_{FY(j)}$ is the unit first year multiplier for the jth unit.

9.3 Applicability

Many communications systems do not conform to a serial reliability model. If the requesting organization concludes that the serial model is inappropriate, a suitable reliability model must be developed. Complex systems will require the application of techniques described in various reliability engineering references (for example,

Probabilistic Reliability: An Engineering Approach. Practical Markov Modeling for Reliability Analysis, and Methods and Procedures for System Reliability. Specification of reliability modeling techniques for complex systems is beyond the scope of this procedure. The supplier must submit drawings, diagrams, or specifications necessary to substantiate the reliability model.

9.4 Assumptions and Supporting Information

In developing repair rates or expected times to restore service, it may be assumed that all necessary test equipment and replacement units are present and operational. The supplier must state assumptions concerning the numbers of maintenance craftspersons, particularly for the case of multiple failures. Supporting information for the estimated repair rates or expected times to restore service must also be provided. Evidence should include descriptions of alarms or other failure detection and reporting capabilities, as well as travel time assumptions, and manual or automatic diagnostic aids.

9.5 Reporting

)

Enter the reliability determinations on Form 8, the "System Reliability Report" (Figure 15).

The supplier should present any additional reliability information or factors that enhance or detract from the equipment reliability by completing Form 13, the "Additional Reliability Data Report" (Figure 20). Quantitative effects on equipment reliability must be described.

The supplier must provide nonproprietary design information, such as functional block diagrams, parts lists, procurement specifications, and test requirements, as requested in preceding paragraphs or required by the requesting organization. Each submitted document should be included on Form 14, the "List of Supporting Documents" (Figure 21).

10. FORM/WORKSHEET EXHIBITS AND PREPARATION INSTRUCTIONS

The following pages include form/worksheet exhibits and associated preparation instructions for the reliability prediction procedure. These worksheets and instructions may be copied and used as needed.

11. REFERENCES

- [1] Reliability Prediction of Electronic Equipment, MIL-HDBK-217, RADC, Griffis Air Force Base, New York, October 27, 1986.
- [2] Shooman, M. L., Probabilistic Reliability: An Engineering Approach (McGraw-Hill, 1968).
- [3] Kitchin, J. F., "Practical Markov Modeling for Reliability Analysis," 1988

 Proceedings of the Annual Reliability and Maintainability Symposium, pp. 290296.
- [4] Methods and Procedures for System Reliability Analysis, SR-TSY-001171, Bellcore, Issue 1, January 1989.
- [5] Component Reliability Assurance Requirements for Telecommunications Equipment, TR-TSY-000357, Bellcore, Issue 1, December 1987.

NOTE

All Bellcore documents are subject to change and their citation in this document reflects the most current information available at the time of printing. Readers are advised to check current status and availability of all documents.

Technical Advisories (TAs) are documents describing Bellcore's preliminary view of proposed generic requirements. To obtain TAs, write to:

Bellcore Document Registrar 445 South Street, Room 2J-125 P.O. Box 1910 Morristown, NJ 07962-1910

To obtain other Bellcore documents, contact:

Bellcore Customer Service 60 New England Avenue, Room 1B-252 Piscataway, NJ 08854-4196 1-800-521-CORE (908) 699-5800 (for foreign calls)

BCC personnel should contact their company document coordinator and Bellcore personnel should call (908) 699-5802 to obtain documents.

REQUEST FOR RELIABILITY PREDICTION

Product.	Request Date					
Manufacturer	Estimate Due					
LIFE CYCLE COST DATA REQUESTED: Steady-state failure rate for each unit (λ _{SS}) Time averaged first year failure rate multiple						
SERVICE AFFECTING SYSTEM RELIABIL	ITY PARAMETERS REQUESTED:					
DEFINITION OF A SYSTEM FAILURE:						
OPTIONS PER PARTS COUNT METHOD:						
_ Juppher Way Ose Any Oase	Limited Stress only - Supplier Must Use Case 3					
Sampled Limited Stress - Supplier Must Use Case 3 on a Sample of Units						
RELIABILITY PREDICTION METHOD:						
Method I: Parts Count Method II: Combination of Laboratory Data Method III: Field Tracking Data - Also inclu						
OPERATING CONDITIONS:						
	•					
STEADY-STATE RELIABILITY OBJECTIV	ES:					
ENVIRONMENT(S): π_E =						
ADDITIONAL INFORMATION REQUESTE	D FROM SUPPLIER:					
SEND RESPONSE TO:						

Figure 8. Request for Reliability Prediction (Form 1)

Instructions for Form 2:

Worksheet for Device Reliability Prediction

Case 1 or 2: Black Box Estimates (50% Stress, Temperature = 40 °C, No Device Burn-In)

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one row of the form for each device used in the unit. If more than one device will have the same value in each of the columns, the devices may be combined on one row.
- [3] Enter the device type. The description should be sufficient to verify that the correct failure rate was selected.
- [4] Enter the device part number. If multiple devices are listed in a row, the base part number is sufficient.
- [5] Enter the circuit reference symbol(s).
- [6] Record the quantity (N_i) of devices covered in the row.
- [7] Record the base failure rate (λ_{G_i}) . For Method I, this value may be obtained from Table A. If a device is not listed in Table A, select a failure rate for a device that is most like the unlisted device. If no reasonable matrican be made, use available field data, test data, or the device manufacturer's reliability estimate. Document and submit the rationale used in determining the failure rate. When using failure rates calculated according to Method II, enter λ_{G_i} from Form 9 or 11.
- [8] Record the quality factor (π_{Q_i}) . Use the guidelines in Table C to evaluate the device procurement and test requirements and to determine the appropriate quality level for the device. Submit representative examples of procurement specifications and quality/test requirements to justify use of quality levels other than Level I. Select a Quality Factor (π_{Q_i}) in Table D that corresponds to the quality level that was determined for each device.
- [9] Determine the total device failure rate by performing the calculation indicated in the last column.
- [10] When all devices in a unit have been accounted for, sam the last column.
- [11] Use the equation on the bottom of Form 2 to calculate the unit λ_{SS} . Be sure to include the π_E term obtained from Form 1.

Device Reliability Prediction

Worksheet

Case 1 Or 2 - Black Box Estimates (50% Stress, Temperature = 40° C, No Oevice Burn-in)

π_=			Date		Page Of			
E			Unit			Manufacturer		
Device Type*	Part Number	Circuit Ref. Symbol	City.	Failure Rate (\(\lambda G_i\))	Quality Factor (π_{Q_j})	Total Device Fallure Rate (N ₁ \(\mathcal{L}\G_{\rho}\pi_{O_1}\) (f)		
			L Zara					
					•			
SUBTOTAL								

TOTAL = $(\lambda_{SS}) = \pi_E \Sigma N_i \lambda_G \pi_Q = ()() =$

Figure 9. Device Reliability Prediction, Case 1 or 2 (Form 2)

^{*} Similar parts having the same failure rate, base part number, and quality factor may be combined and entered on one line. Part descriptions should be sufficient to verify that correct failure rate assignment has been made.

^{**} Failure rates come from Table A, If Method II is applied to devices, instead use failure rate (j) from Form 9 (λ_{G_I}).

Instructions for Form 3

Worksheet for Unit Reliability Prediction

Case 1: Black Box Estimates (50 % Stress, Temperature = 40 ° C, Unit/System Burn-In ≤ 1 Hour, No Device Burn-In)

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one row of the form for each unit-type comprising the product.
- [3] Indicate the repair category by placing an (X) in the appropriate column.
- [4] Enter the unit steady-state failure rate (λ_{SS}) obtained from the bottom of Form 2.
- [5] If units are lab tested and Method II is being applied, enter λ_{ss}^* from Form 10.

Unit Reliability Prediction

Worksheet

Case 1 - Black Box Estimates (50% Stress, Temperature = 40 °C, Unit/System Burn-in ≤1 Hour, No Device Burn-in)

Date		Page Of			
Product	Rev	Manufacturer			

Unit Name	Unit Number		Repair Category		SteadyState FailureRate (From Figure 2) (Fils)	If Method II is applied to units,	First Year
		Factory Repairable	Field Repairable	Other	(Fils)	If Method II is applied to units, (From Figure 10) $\lambda^s SS$	Multiplie π _{FY}
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
						2	4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0
							4.0

Instructions for Form 4

Worksheet for Unit Reliability Prediction

Case 2: Black Box Estimates (50% Stress, Temperature = 40°C, No Device Burn-In, Unit/System Burn-In ≥ 1 Hour)

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one column of the form for each unit comprising the product.
- [3] Indicate the repair category by placing an (X) in the appropriate row.
- [4] If more than one hour of equivalent operating time at 40°C is accumulated on the unit prior to final acceptance of the product, provide the operating data as follows:
 - $T_{b,u} = \text{Unit burn-in temperature (°C)}$
 - $A_{b,u}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the unit burn-in temperature
 - $t_{b,u} = \text{Unit burn-in time (hours)}$
 - $T_{b,s} = \text{System burn-in temperature (°C)}$
 - $A_{b,s}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the system burn-in temperature
 - $t_{b,s}$ = System burn-in time (hours). If more than one burn-in temperature is involved in unit or system burn-in, record the additional T_b , A_b , and t_b values in the appropriate row. The same column may be used to record multiple sets of T_b , A_b , and t_b data.
- [5] Determine the effective burn-in time (t_e) accumulated as a result of unit and system burn-in. Be sure to include all T_b , A_b , and t_b values.
- [6] Take the unit first year failure rate multiplier (π_{FY}) from Table I.
- [7] Record the unit steady state failure rate λ_{SS} (obtained from the bottom of Form 2, or, when using results from Method II, use λ_{SS} from the bottom of Form 12).
- [8] When Method II is applied to units, enter λ_{ss}^* from the bottom of Form 12.

Unit Reliability Prediction

Worksheet

Case 2 - Black Box Estimates (50% Stress, Temperature = 40 °C,
No Device Burn-in, Unit/System Burn-in > 1 Hour)

	Date		Page Of		
		Product	Rev	Manufacturer	
Jnit name					
Unit Number					
Repair category Factory repairable					
Field repairable					
Other					
Unit burn-in Temperature Tb,u					
Acceleration factor ‡ Ab,u					
Time t b.u					
System burn-in Temperature T _{b,s}					
Acceleration factor ‡ Ab,s					
Time t _{b.s}					
Effective burn-in time t _e	(a)				
First year Multiplier (Table I)	π_{FY}				
λ _{SS} (from Figure 2)	λss				
f Method II is applied to units, from Figure 12	λ'ss				

Cobtain From Table G, Curve 7

Instructions for Form 5

Worksheet for Device Reliability Prediction

Case 3: General Case

- [1] Provide the items of information requested at the top of the form.
- [2] Fill in one column of the form for each device in the unit. If more than one device will have the same value in each of the rows, they may be combined.
- [3] Enter the device type. The description should be sufficient to verify that the correct failure rate was selected.
- [4] Enter the device part number. If multiple devices are listed in a column, the base part number is sufficient.
- [5] Enter the circuit reference symbol(s).
- [6] Record the quantity (N_i) of devices covered in the column.
- [7] Record the base failure rate (λ_{G_i}) . For Method I, this value is obtained from Table A. If a device is not listed in Table A, select the failure rate for the device most like the unlisted device. If no reasonable match can be made, use field data, test data, or the device manufacturer's reliability estimate. Document and submit the rationale used to determine the failure rate. When using failure rates calculated according to Method II, enter $\lambda_{G_i}^{\sigma}$ from Form 9 or 11.
- [8] Record the quality factor (π_{Q_i}) . Use the guidelines in Table C to evaluate the device procurement and test requirements and to determine the appropriate quality level for the device. Submit representative examples of procurement specifications and quality/test requirements to justify use of quality levels other than Level I. Select a quality factor (π_{Q_i}) in Table D that corresponds to the quality level that was determined for each device.
- [9] Record the stress factor (π_{S_i}) . Use Table A to find the applicable stress curve for the device. If no curve number is listed, $\pi_S = 1.0$. If a curve number is listed, evaluate the application of the device and determine the average ratio of actual to rated stress using the guidelines of Table E. Use Table F to find π_S based on the appropriate stress ratio and stress curve. Round off the percent stress to the nearest 10 percent prior to entering from Table F. However, percent stress may not be less than 10 percent.
- [10] Use Table A to find the applicable temperature curve for the device. Use Table G to determine the device steady-state temperature factor (π_T) .
- [11] Determine the product of the device quantity and the device steady-state failure rate by (f) = $(a)\times(b)\times(c)\times(d)\times(e)$.

12; Record the following burn-in data:

 T_{bd} = device burn-in temperature (°C)

 $A_{b,d}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the device burn-in temperature.

 $t_{b,d}$ = device burn-in time (hours)

 $T_{b,u}$ = unit burn-in temperature (°C)

 $A_{b,u}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the unit burn-in temperature

 $t_{b,u} = \text{unit burn-in time (hours)}$

 $T_{b,s}$ = system burn-in temperature (°C)

 $A_{b,s}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the system burn-in temperature

 $t_{b,s}$ = system burn-in time (hours). If more than one burn-in temperature is involved in unit or system burn-in, record the additional T_b , A_b , and t_b values in the appropriate row. The same column may be used to record multiple sets of T_b , A_b , and t_b data.

- [13] Calculate device first year multiplier by completing operations shown in remaining rows. To calculate (n), use the operating temperature and look up the answer in Table G, Curve 7.
- [14] Sum rows (f) and (u). Transcribe totals onto Form 6.

Device Reliability Prediction

Worksheet

(GENERAL CASE - Including Limited Stress)

			Date			Page Of		
			T.	Jnit		Manufacturer		
Device type								
Part number								
Circuit ref. symbol								
Quantity	N	(a)						
Generic failure rate †	λ_{G_i}	(b)					Cumulative sum of (f)	
Quality factor	ποι	(c)					(1)	
Stress factor	π_{s_i}	(d)						
Temperature factor	π_{T_i}	(0)						
Device quantity x device failure (a)x(b)x(c)x(d)x(e)	rate	(1)						
Unit burn-in								
Temperature	T _{b,u}							
Acceleration factor	A _{b,u}	(g)						
Time	t b,u	(h)						
System burn-in								
Temperature	T _{b,s}							
Acceleration factor	Ab,s	(1)						
Time	t b,s	(D)						
Device burn-in								
Temperature	T _{b,d}							
Acceleration factor	A _{b,d}	(k)						
Time	t b,d	(m)						
Early Life Temp. Factor*	Aop	(n)				*		
[(e)x(b)]\00001		(0)					Cumulative sum of	
g(x(h) + (l)x(j) + (k)x(m)		(p)					(u)	
Eff. burn-in time: (p)/[(d)x(n)]		(q)						
(1) If (q)≥(o)	(r) = 1	(r)						
(2) If (q) ≤(o) - 8750 Look up (q) in Table i		(3)						
$(r) = (s)^r[(d)x(e)]^{a.7s}$		(r)						
(3) Otherwise Look up (p) in Table I		(1)						
(r) = [(t)-1]/[(d)x(e)] + 1		(r)						
רו×(וו)		(u)						

Obtain From Table G, Curve 7 †Failure rates come from Table A. If Method II is applied to devices, use (p) from Form 11.

Instructions for Form 6

Worksheet for Unit Reliability Prediction

Case 3: General Case

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one column of the form for each unit comprising the product.
- [3] Indicate the repair category by placing an (X) in the appropriate row.
- [4] Complete Form 5 for the devices in each unit.
- [5] After completing Form 5, sum rows (f) and (u) and transcribe the total onto Form 6.
- [6] Record the environmental factor (from Form 1)
- [7] Calculate the unit steady state failure rate (λ_{ss}) by multiplying π_E and (f).
- [8] Calculate and record the first year multiplier (π_{FY}) .
- [9] If Method II is applied to this unit, record the Method II steady state failure rate taken from the bottom of Form 12.

Unit Reliability Prediction

Worksheet
(GENERAL CASE - Including Limited Stress)

		10	GENERAL GASE TREBUNG EMINES ON SEA						
		0	Date				Page Of		
		P	roduct		Rev	Manu	ufacturer		
Unit name									
Unit number									
Repair category				T					
Factory repairable									
Field repairable									
Other									
From Figure 5: Sum of (u)	(u)								
From Figure 5: Sum of (f)	(f)								
Environmental Factor	$\pi_{\mathcal{E}}$			T					
T _E x(f)	λ _{SS}								
<u>(u)</u> (f)	πεγ								
f Method II is applied to units, From Figure 12:	λ°ss								
Comments:				T					

Figure 13. Unit Reliability Prediction, General Case (Form 6)

Items Excluded From Unit Failure Rate Calculations

	Dat		Unit				
	Ma	nufacturer					
ice			From	Figure 2 or 5			
Type Number		Reason	(f)	(u)°			
		TOTALS					
rm, calculate the follo	owing failure rate di						
Non-	service Affecting			Service Affecting			
		λss-λss _{na} =λss _a =					
		π _{FY} λ _{SS} -π _{FY_{na}} λ _{SS}	18 = π _{FY} =				
E = environmental factor (from Form 1).			λ _{SS} = total unit steady-state failure rate (from Form 3, 4, 8, 10, or 12)				
		T FY = total unit First Yea When λ SS come:	r Multiplier (from Form 3 or 10	orm 4 or 6). ο, π _{FY} = 4.0.			
	rm, calculate the folio	Number Number Number Number Number	Number TOTALS Number Reason (f) TOTALS TOTALS TOTALS TOTALS TOTALS $\lambda_{SS} = \lambda_{SS_{na}} = \lambda_{SS_{na}} = \pi_{FY_{na}} = \pi_$				

SYSTEM RELIABILITY REPORT (Service Affecting Reliability Data)

Syste	em Date
Man	ufacturer
A.	Does the serial reliability model give usable results? YES (Complete A only) NO (Complete B, C, and D) If the answer is "YES", the estimated steady-state system reliability is:
В.	The serial model for system reliability is inappropriate because: (Give specific reasons. List unit failure rates to be excluded or modified.)
C.	The following reliability model is needed to give usable results. (Add additional pages if required.)
D.	If a reliability model is included in Step (C), use it to combine the unit failure rates and repair rates or mean time to repair to obtain the appropriate reliability measure(s) of system reliability. Please show details of all calculations.
	The estimated steady-state system reliability measures are:

Figure 15. System Reliability Report (Form 8)

Instructions for Form 9:

Worksheet for Device Reliability Prediction, Laboratory Data

Case L1: Devices Laboratory Tested, No Burn-In

- [1] Provide the information requested on the top portion of the form.
- [2] Fill in one column of the form for each device used in the unit.
- [3] Enter the device type. The description should be sufficient to verify that the correct base failure rate was selected.
- [4] Enter the device part number.
- [5] Enter the circuit reference symbol(s).
- [6] Record the actual time spent on test (T_a) in hours.
- [7] Record the laboratory test temperature.
- [8] Determine the laboratory test temperature acceleration factor (A_L) from Table G.
- [9] Calculate the effective time on test (T_1) by $(c)=(a)\times(b)$.
- [10] Enter the total number of laboratory failures, n.
- [11] Record the device generic failure rate (λ_{G_i}) . This value may be obtained from Table A. If a device is not listed in Table A, select a failure rate for a device that is most like the unlisted device. If no reasonable match can be made, use available field data, test data, or the device manufacturer's reliability estimate. Document and submit the rationale used in determining the failure rate.
- [12] Record the number of devices on test (N_o) .
- [13] Record the device quality factor π_Q . Obtain from Table D.
- [14] Calculate the device base failure rate $(\lambda_{G_i}^*)$ by performing the operations shown in the remaining rows.
- [15] To calculate the unit steady-state failure rate from these failure rates, transcribe the device base failure rate ($\lambda_{G_i}^*$) onto Form 2 or 5.

Device Reliability Prediction Laboratory Data Worksheet Case L3-Devices Laboratory Tested (No Previous Burn-in)

			Case L3-Devices	Laboratory Tested (ory Tested (No Previous Burn-in)			
		Date		Page Ot				
			Unit		Manufacturer			
Device name								
Part number								
Circuit ref. symbol								
Time on test	T _a	(a)						
Laboratory test								
Temperature								
Acceleration factor ‡	4	(b)						
Effective time on test (a)x(b)	<i>T</i> ₇	(c)						
Number of lab failures	n	(d)						
Failure rate**	λ_{G_i}	(0)						
Number of devices on test	No	(f)						
Quality Factor	πο	(g)						
(1) if (e) $\leq 10,000$ (h) = 4×10^{-4} x(e) $^{0.25}$ (2) if (e) $> 10,000$ (h) = 3×10^{-5} + (e) $\times10^{-6}$		(h)						
[2/(e)] + (f)x(g)x(h)		(1)						
Base failure rate [2 + (d)]/(l)	λ°G	ω						

Figure 16. Device Reliability Prediction, Case L-1 (Form 9)

Obtain From Table G, Curve 7
 Obtain From Table A

Instructions for Form 10:

Worksheet for Unit Reliability Prediction, Laboratory Data

Case L2: Units Laboratory Tested, No Burn-In

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one column of the form for each unit comprising the product.
- [3] Indicate the repair category by placing an (X) in the appropriate row.
- [4] Record the actual time spent on test (T_a) in hours.
- [5] Record the laboratory test temperature.
- [6] Determine the laboratory test temperature acceleration factor from Table G.
- [7] Record the unit operating temperature.
- [8] Determine the operating temperature acceleration factor from Table G.
- [9] Calculate the effective time on test (T_1) by $(e) = (a) \times (b)$.
- [10] Record the number of laboratory failures, n.
- [11] Transcribe the unit steady-state failure rate (λ_{SS}) from Form 3.
- [12] Enter the unit environmental factor π_E from Form 1.
- [13] Determine the failure rate (λ_G) by (i) = (g)/ $\{(h)\times(c)\}$.
- [14] Record the number of units on test (N_o) .
- [15] Determine the unit base failure rate (λ_G) and Method II steady-state failure rate (λ_{SS}) by performing the operations shown in the remaining rows.

Unit Reliability Prediction Laboratory Data Worksheet Case L2-Units Laboratory Tested, No Previous Unit/Device Burn-in

		Date		Page Of		
		Product	Rev	Manufacturer		
Unit name						
Unit number						
Repair category Factory repairable						
Field repairable						
Other						
Time on test T _g	(a)					
Laboratory test						
Temperature						
Acceleration factor ‡	(b)					
Operation						
Temperature						
Acceleration factor ‡	(c)					
Effective time on test (a)x(b) T ₁	(0)					
Number of lab failures n	(f)					
Steady-state failure rate † λ_{SS}	(g)					
Environmental factor π_E	(h)					
Failure rate (g)/[(h)(c)] \(\lambda G	(1)					
Number of units on test N ₀	w					
(1) If (e)<10,000 Enter 4x10 ⁻⁶ x(e) ^{0.25}						
(2) If (e)>10,000 Enter 3x10 ⁻⁵ + (e)x10 ⁻⁶	(k)					
(2/(l)] + (j)x(k)	(m)					
Base failure rate $[2+(f)]/(m)$ λ_G^*	(n)					
Method II steady-state failure rate λ ss (h)x(n)x(c)	(p)					

Obtain From Table G, Curve 7
 Obtain From Form 2

Figure 17. Unit Reliability Prediction, Case L-2 (Form 10)

Instructions for Form 11:

Worksheet for Device Reliability Prediction, Laboratory Data

Case L3: Devices Laboratory Tested with Burn-In

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one column of the form for each device used in the unit.
- [3] Enter the device type. The description should be sufficient to verify that the correct base failure rate was selected.
- [4] Enter the device part number.
- [5] Enter the circuit reference symbol(s).
- [6] Record the device generic failure rate (λ_{Gi}). This value may be obtained from Table A. If a device is not listed in Table A, select a failure rate for a device that is most like the unlisted device. If no reasonable match can be made, use available field data, test data, or the device manufacturer's reliability estimate. Document and submit the rationale used in determining the failure rate.
- [7] Record the device quality factor π_Q . Obtain it from Table D.
- [8] Record the following device burn-in data:

 $T_{b,d} = \text{device burn-in temperature (°C)}$

 $A_{b,d}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the device burn-in temperature.

 $t_{b,d}$ = device burn-in time (hours).

- [9] Calculate the effective burn-in time by (e) = (c) \times (d).
- [10] Record the following laboratory test data:
 - 1. Laboratory test temperature (°C)
 - 2. Arrhenius acceleration factor (Table G, Curve 7) corresponding to the laboratory test temperature
 - 3. Actual time on test (hours).
- [11] Record the number of devices on test (N_o) .
- [12] Enter the total number of laboratory failures, n.
- [13] Calculate the effective time on test, in hours, by (j) = $(f)\times(g)$.

- [14] Calculate the Method II device base failure rate (λ_{G_i}) by performing the operations shown in the remaining rows.
- [15] To calculate unit steady-state failure rates from these failure rates, transcribe the device base failure rate ($\lambda \tilde{G}_i$) onto Form 2 or 5.

Device Reliability Prediction Laboratory Data Worksheet

Case L3-Devices Laboratory Tested (Devices Have Had Burn-in) Page __ _ 01. Manufacturer Unit Device name Part number Circuit ref. symbol À GI Failure rate" (2) πο Quality factor (b) Device Burn-in Tb,d Temperature Ab,d Acceleration factor : t b,d (d) Time Effective burn-in time t, (0) (c)x(d) Laboratory test Laboratory test temperature (1) Test acceleration factor \$ (g) Time on test No Number of devices on test (h) Number of lab failures (1) n Effective time on test (f)x(g) Ty (1) (k) (e) + (j) W Weighing factor (1) If (k) ≤10,000 (m) = (k) 0.25 (e) 0.25 (2) If (k) >10,000 and (e) \leq 10,000 (m) = (k)/4000 + 7.5 - (e) 0.28 (3) Otherwise, if (e) >10,000 (m) = (j)/4(m) $[2/(a)] + 4x10^{-6} x(b)x(h)x(m)$ (n) Method Il Base failure rate l'GI (p) [2 + (i)]/(n)

Figure 18. Device Reliability Prediction, Case L-3 (Form 11)

Comments:

Contain From Table G
Obtain From Table A

Instructions for Form 12:

Worksheet for Unit Reliability Prediction, Laboratory Data

Case L4: Units Laboratory Tested with Burn-In (Unit/device burn-in)

- [1] Provide the items of information requested on the top portion of the form.
- [2] Fill in one column of the form for each unit comprising the product.
- [3] Indicate the repair category by placing an (X) in the appropriate row.
- [4] Record the following device burn-in data.

 $T_{b,u} = \text{unit burn-in temperature (°C)}$

- $A_{b,u}$ = Arrhenius acceleration factor (Table G, Curve 7) corresponding to the unit burn-in temperature
- $t_{b,u}$ = unit burn-in time (hours). If more than one burn-in temperature is involved in unit burn-in, record the additional T_b , A_b , and t_b values in the appropriate row. The same column may be used to record multiple sets of T_b , A_b , and t_b data.
- [5] Calculate $T_{b,d}^*$, the average accelerated burn-in time of the devices in the unit, or give a close approximation. $T_{b,d}^*$ is calculated as follows:

$$T_{b,d}^* = \left(\sum_{i=1}^{N^*} A_{b,i} t_{b,i} N_i \lambda_{G_i}\right) / \left(\sum_{i=1}^{N^*} N_i \lambda_{G_i}\right)$$

where

 $A_{b,i}$ = temperature acceleration factor (from Table G, Curve 7) for the ith device.

 $t_{b,i}$ = burn-in time for the ith device (in hours)

 N_i = number of devices of this type in the unit

 N^* = number of device types in the unit

Document and submit calculations used to determine $T_{b,d}$.

- [6] Calculate the effective burn-in time $T_e = A_{b,u}t_{b,u} + T_{b,d}^*$.
- [7] Record the following laboratory test data:
 - 1. Laboratory test temperature (°C)
 - 2. Arrhenius acceleration factor (Table G, Curve 7) corresponding to the laboratory test temperature
 - 3. Actual time on test (hours).
- [8] Calculate the effective time on test (T_1) , in hours, by $(d) = (b) \times (c)$.
- [9] Record the number of laboratory failures, n.
- [10] Transcribe the steady-state failure rate (λ_{SS}) from Form 4 or 6.
- [11] Determine the temperature acceleration factor at normal operating temperature from Table G.
- [12] Enter the environmental factor π_E from Form 1.
- [13] Determine the failure rate λ_G by (f)/{(g)×(h)}.
- [14] Record the number of units on test (N_o) .
- [15] Perform the calculations indicated in the remaining rows to determine the Method II steady-state failure rate (λ_{SS}). To calculate Method II predictions on unit failure rates, substitute λ_{SS} onto Form 3, 4, or 6, whichever is preferred.

Unit Reliability Prediction

Laboratory Data Worksheet Case L4-Units Laboratory Tested (Units/Devices Have Had Burn-in)

		Da	Date		Page Of			
		Pro	oduct	Rev		Manufact		
Unit name								
Unit number .								
Repair category								
Factory repairable								
Field repairable								
Other								
Unit Burn-in								
Temperature T _{b,u}								
Acceleration factor ‡ A b,u								
Time t _{b.u}								
Device burn-in Tb,d					T			
Effective burn-in time A b,u t b,u + T* b,u	(a)							
Laboratory test					T			
Temperature								
Acceleration factor ‡ A L	(b)							
Time on test T ₂	(c)							
Effective time on test (b)x(c)	(d)							
Number of lab failures n	(e)							
Steady-state failure rate \(\lambda_{SS}\)	(f)							
Temperature factor ‡	(g)							
Environmental factor π_E	(h)							
Failure rate $(\eta/(g)x(h))$ λ_G	(1)							
Number of units on test N ₀	0							
Enter 4x10 4	(k)							
(a) + (d)	(1)				1			
(1) if (i) < 10,000 Enter (i) ^{0.25} -(a) ^{0.25} (2) if (i) > 10,000 and (a) ≤ 10,000 Enter (i)/4000 + 7.5 - (a) ^{0.25} (3) Otherwise, if (a) > 10,000 Enter (d)/4	(m)							
2/(1) + (j)x(k)x(m)	(n)							
Base failure rate [2 + (e)]/(a) Method II steady-state failure rate	(p)							
(h)x(p)x(q) \(\lambda \cdot SS\)								

Cobtain From Table G, Curve 7

ADDITIONAL RELIABILITY DATA REPORT

Syste	em Date
Man	ufacturer
A.	Describe design controls and standards imposed on this system that enhance its reliability.
	15 (1922년 1일
	[2] 10.2. 10.1 12. 10.1 12. 10.1 12. 12. 12. 12. 12. 12. 12. 12. 12. 1
	[2] [18] 리션이니다 12 [19] 리스타스라스라스라스라스 (19] 12 [18] 12 [19] 12 [1
В.	Present results of operational reliability studies, describe burn-in procedures, etc.
C.	Describe maintenance aspects of system design as they relate to reliability.
	[1] : [2] 4 : [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
	등하면 그는 내가 하면 하면 가는 사람들은 사람들이 되었다. 그는 사람들은 사람들은 사람들이 되었다. 그는 사람들은 사람들은 사람들이 되었다.

Figure 20. Additional Reliability Data Report (Form 13)

LIST OF SUPPORTING DOCUMENTS

System	Date
Manufacturer	
	*

Figure 21. List of Supporting Documents (Form 14)

Table A. Device Failure Rates* (Sheet 1 of 8)

DEVICE TYPE	BIPO	LAR	NM	os	CM	os
	FAILURE RATE†	TEMP STRESS CURVE	FAILURE RATE†	TEMP STRESS CURVE	FAILURE RATE†	TEMP STRESS CURVE
INTEGRATED CIRCUITS DIGITAL 1-20 GATES** 21-50 51-100 101-500 501-1000 1001-2000 2001-3000 3001-5000 5001-7500 7501-10000 10001-15000 15001-20000	36 38 40 51 63 75 85 97 110 120 130	5666666666	69 74 82 110 150 190 230 270 320 360 420 470	80 80 80 80 80 80 80 80 80 80	40 42 44 52 61 70 77 84 92 99 110	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MICROPROCESSORS 1-20 GATES 21-50 51-100 101-500 501-1000 1001-2000 2001-3000 3001-5000 5001-7500 7501-10000 10001-15000 15001-20000 20000-30000	16 17 18 22 27 36 40 45 45 58 64	56666666666666	60 65 71 98 130 160 190 230 270 310 350 400 450	888888888888888888888888888888888888888	32 33 35 40 45 50 55 59 64 67 71 75 80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

DEVICE TYPE	FAILURE RATE†	TEMP STRESS CURVE	
LINEAR			
1-32 TRANSISTORS	27	9	
33-90	54	9	
91-170	80	9	
171-260	100	9	
261-360	130	9	
361-470	150	9	
471-590	170	9	
591-720	190	9	
721-860	210	9	
HYBRID MICROCIRCUIT	See Table B		

Table values that are changed for this issue are in boldfacs. Note that all Integrated Circuit failure rates in Table A are reported at Quality Level II and separate Quality Factors are to be applied to distinguish hermetic and non-hermetic. (See Table D.)

† FAILURES IN 109 HOURS

^{**} The number of gates is equal to the number of logical gates on the device schematic.

Table A. Device Failure Rates* (Sheet 2 of 8)

DEVICE TY	PE .	BIPO	LAR	NM.	os	CM	os
		FAILURE RATE†	TEMP STRESS CURVE	FAILURE RATE†	TEMP STRESS CURVE	FAILURE RATE†	TEMP STRESS CURVE
RANDOM ACCESS	MEMORY	STA	TIC			STA	TIC
Range 1-320 BITS 421-576 577-1120 1121-2240 2241-5000 5001-11000 11001-17000 17001-38000 38001-74000 74001-150,000 150,001-300,000	Nominal 256 BITS 512 1K [‡] 2K 4K 8K 16K 32K 64K 128K 256K	22 27 34 45 61 83 110 160 220 300 420	7 7 7 6 6 6 6 6 6 6 6 6	21 25 31 40 52 70 93 120 170 220 300	9999999888	22 26 33 42 54 72 95 130 170 220 300	99999999888
1-320 BITS 321-576 577-1120 1121-2240 2241-5000 5001-11000 11001-17000 17001-38000 38001-74000 74001-150,000 150,001-300,000 300,001-600,000 600,001-1,200,000	256 BITS 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K			DYNA 26 30 35 42 51 62 76 94 120 140 180 220 270	MIC 9 9 9 9 9 9 9 9 8 8 8 8 8		

GATE ARRAYS, PROGRAM ARRAY LOGIC (PAL)

- 1. Determine the number of gates being used for the digital portion of the circuit.
- 2. Determine the number of transistors being used for the analog portion of the circuit (if any).
- 3. Look up the base failure rates for a digital IC and linear device using the number of gates and transistors determined in Steps 1 and 2.
- 4. Sum the failure rates determined in Step 3.

Temperature stress curve: the curve listed for a digital IC with the number of gates determined in Step 1.

Table values that are changed for this issue are in boldfacs. Note that all Integrated Circuit sailure rates in Table A are reported at Quality Level II and separate Quality Factors are to be applied to distinguish hermetic and non-hermetic. (See Table D.)

[†] FAILURES IN 109 HOURS

t K equals 1024 BITS.

Table A. Device Failure Rates* (Sheet 3 of 8)

DEVICE T	YPE	BIPO	LAR	. NM	OS	CM	os
		FAILURE RATE†	TEMP STRESS CURVE	FAILURE RATE†	TEMP STRESS CURVE	FAILURE RATE†	TEMP STRESS CURVE
ROMS, PROMS,	EPROMS						
Range	Nominal						
1-320 BITS	256 BITS	6	6	13	9	15	9
321-576	512 +	7	6	14 16 19	9	17	9
577-1120	1K ⁺	9	5	16	9	19 22	9
1121-2240	2K	13	5	19	9	22	9
2241-5000	4K	20	6	22	9	27	9
5001-11000	8K	32	5	26	9	32	9
11001-17000	16K	54	6	30	9	38	9
17001-38000	32K	93	6	35	9	46	9
38001-74000	64K	160	5	42	10	55	10
74001-150,000	128K	290	6	49	10	67	10
150,001-300,000	256K	500	6	58	10	81	10
300,001-600,000	512K	860	6	68	10	97	10
600,001-1,200,000	1024K	1500	5	81	10	120	10

Table values that are changed for this issue are in boldface. Note that all Integrated Circuit failure rates in Table A are reported at Quality Level II and separate Quality Factors are to be applied to distinguish hermetic and non-hermetic. (See Table D.)

[†] FAILURES IN 109 HOURS

[‡] K equals 1024 BITS.

Table A. Device Failure Rates* (Sheet 4 of 8)

DEVICE TYPE	FAILURE RATE†	TEMP STRESS CURVE	NOTES
OPTO-ELECTRONIC DEVICES FIBER OPTIC TRANSMITTERS			
Laser Diode			
850 nm‡	15000	10	See Note A below
1300 nm	5000	10	See Note A below
1550 nm LED	5000	10	See Note A Bebw
850 nm	2000	10	See Note A below
1300 nm	200	10	See Note A below
1550 nm	200	10	See Note A below
FIBER OPTIC DETECTORS			
Si PIN PD	2	10	See Note A below
Si APD	20	10	See Note A below
Ge PIN PD Ge APD	20	10	See Note A below
Other PIN** PDs	400	10	See Note A below
Other APDs	800	10	See Note A below
GENERAL PURPOSE			
Single LED	15	10	
Phototransistor	65	10	
Photodiode	15	10	
SINGLE ISOLATORS			
PHOTODIODE DETECTOR	15	10	
PHOTOTRANSISTOR DETECTOR	115	10	
LIGHT SENSITIVE RESISTOR	50	10	
DUAL ISOLATORS			
PHOTODIODE DETECTOR PHOTOTRANSISTOR DETECTOR	30 320	10	
LIGHT SENSITIVE RESISTOR	170	10	
ALPHA-NUMERIC DISPLAYS			
1 CHARACTER	20	10	
1 CHARACTER W/LOGIC CHIP	30	10	
2 CHARACTER	30	10	
2 CHARACTER W/LOGIC CHIP	40	10	
3 CHARACTER 3 CHARACTER W/LOGIC CHIP	40 50	10	
4 CHARACTER W/LOGIC CHIP	45	10	
5 CHARACTER	50 .	10	
6 CHARACTER	50	10	
7 CHARACTER	55	10	
8 CHARACTER 9 CHARACTER	60	10	
10 CHARACTER	65 70	10	

Note A: Only hermetic, Quality Level III fiber-optic devices should be used for major network products. Non-hermetic or lower quality parts are expected to have much higher failure rates than would be predicted by using Table D device quality factors. Also, significant differences in failure rates of these devices are expected among different suppliers. Bellcore recommends that field data and/or laboratory data be used to support reliability predictions for these devices, and that additional questions be directed to the Bellcore Component Reliability District.

^{*} Table values in boldface are new or revised in this issue of the RPP.

[†] FAILURES IN 109 HOURS.

t nanometers

^{** &}quot;Other" refers to III-V or quaternary hetereostructure types of photodetectors.

Table A. Device Failure Rates* (Sheet 5 of 8)

DEVICE TYPE	FAILURE RATE	TEMP STRESS CURVE	ELEC STRESS CURVE(S)	NOTES
TRANSISTORS				
SILICON				
NPN <0.6 W	18	4	E E**	
0.6-6 0 W	25	4	E,E** E,E** E,E**	
>60 W	45	4	E,E**	
PNP <0.6 W	25	4	E E**	
0.6-6 0 W	40	4	E,E** E,E** E,E**	
>6.0 W	70	4	E,E**	
GERMANIUM NPN				
<0.6 W	60	4	E.E**	
0.6-6 0 W	90	4	E,E** E,E** E,E**	
>6.0 W	150	4	E,E**	
PNP <0.5 W	20	4	E	
0.5-5 0 W	30	4	ене	- 1
>60 W	55	4	E	
FIELD EFFECT TRANSISTOR (FET) SILICON				
LINEAR	50	4	E	
SWITCH	25	4	EEE	
HIGH FREQUENCY GaAs	175	4	E	
LOW NOISE (≤100 mW)	100	4	E	
DRIVER (<100 mW)	720	4	E	
UNIJUNCTION MICROWAVE	180	4	E	
PULSE AMPLIFIER	1200			
CONTINUOUS WAVE	2400			
IODES				
SILICON GENERAL PURPOSE				
<1 AMP	10	4	F.Kt	
1 - 20 AMP	10	4	F,K	
>20 AMP MICROWAVE DETECTOR	100	4 3	F,K‡	
MICROWAVE MIXER	150	3	F,K‡ F,K‡ F,K‡ F	
GERMANIUM				
GENERAL PURPOSE <1 AMP	12	0	E V+	
1 - 20 AMP	30	8	F,Kt F,Kt	
>20 AMP	120	8	F,K‡	
MICROWAVE DETECTOR MICROWAVE MIXER	280 500	8		
VOLTAGE REGULATOR	3	8	FEE	
ZENER AND AVALANCHE	4.5	3	Ē	
THYRISTOR	10		-	
≤1 AMP >1 AMP	19	4	F	
VARACTOR, STEP RECOVERY, TUNNEL	57	3	•	
VARISTOR, SILICON CARBIDE	10			

Table values in boldface are new or revised in this issue of the RPP.

[†] FAILURES IN 109 HOURS

^{**} First curve is (P operate/P rated). Second curve is (Yccoperate/Ycco rated).

[‡] First curve is (I operate/I rated). Second curve is (V,operate/V, rated).

Table A. Device Failure Rates* (Sheet 6 of 8)

	1		DIEG	
DEVICE TYPE	FAILURE RATE†	TEMP STRESS CURVE	ELEC STRESS CURVE	NOTES
THERMISTOR				
BEAD	4			
DISK	13 20			
ROD RESISTORS, DISCRETE	20			
FIXED				
CHIP	0.4			
COMPOSITION				
≤1 MEGOHM	4	6	D	
>1 MEGOHM	8	6	D	
FILM <1 MEGOHM	2	2	С	
>1 MEGOHM >1 MEGOHM	2 3	3 3	CC	
FILM, POWER	3	3		
<1 MEGOHM	5	1	A	
>1 MEGOHM	14	1	A	
NETWORKS (PER RESISTOR)	1.3	6		
WIREWOUND, ACCURATE			-	
≤1 MEGOHM	33 86	2	CC	
> 1 MEGOHM WIREWOUND, POWER, LEAD MOUNTED	56	2 3	000	
WIREWOUND, POWER, CHASSIS MOUNTED	30	3	D	
VARIABLE				
NON-WIREWOUND				
FILM				
≤200K OHM > 200K OHM	50	3	В	
>200K OHM	80	3	В	
LOW PRECISION, CARBON	70	4	В	
<200K OHM >200K OHM	100	4	B	
PRECISION			-	
<200K OHM	50	4	A	
>200K OHM	75	4	A	
TRIMMER				
≤200K OHM >200K OHM	50 75	2	A	
WIREWOUND	/5	2 .	A	
HIGH POWER, ENCLOSED				
<5K OHM	340	3	В	
>5K OHM	480	3	В	
HIGH POWER, UNENCLOSED			*	
≤5K OHM	160	3	В.	
>5K OHM LEADSCREW	240	3	BC	
PRECISION	50	3	C	
<100K OHM	420	3	A	
>100K OHM	740	3	A	
SEMIPRECISION				
≤5K OHM	180	4	. C	
>5K OHM	260	4	C	DED DEGLETOR
THICK OR THIN FILM RESISTOR NETWORK	0.5			PER RESISTOR

Table values in bodface are new or revised in this issue of the RPP.
† FAILURES IN 109 HOURS

Table A. Device Failure Rates* (Sheet 7 of 8)

DEVICE TYPE	FAILURE RATE;	TEMP STRESS CURVE	ELEC STRESS CURVE(S)	NOTES
CAPACITORS, DISCRETE	101151			
FIXED MOS OR CHIP PAPER PAPER/PLASTIC PLASTIC MICA GLASS CERAMIC TANTALUM, SOLID, SEALED TANTALUM, NONSOLID ALUMINUM, AXIAL LEAD < 400 µf	3 15 25 5 3 2 3 6 14	2 2 3 7 7 1 3 3	111GGHGG E	
400 μf-12000 μf >12000 μf	54 83	7 7	EEE	
ALUMINUM, CHASSIS MOUNTED < 400 \(\mu i \) 400-12000 \(\mu i \) > 12000 \(\mu i \)	41 76 110	7 7 7	EEE	
VARIABLE AIR, TRIMMER CERAMIC PISTON, GLASS VACUUM CAPACITOR NETWORK	20 15 5 50	5 3 5 2	H J H I	SUM INDIVIDUAL CAPACITOR FAILURE RATES
INDUCTIVE DEVICES TRANSFORMER PULSE LOW LEVEL PULSE HIGH LEVEL AUDIO POWER RADIO FREQUENCY	4 19 7 19 30	3 3 3 3 3		PALORE RATES
COIL LOAD COIL POWER FILTER RADIO FREQUENCY, FIXED RADIO FREQUENCY, VARIABLE CONNECTORS	7 19 0.5	3 3 3 3		
GENERAL PRINTED WIRING BOARD EDGE IC SOCKET SWITCHES:	5 0.4 0.2			PER PIN PER PIN PER PIN
TOGGLE PÜSHBUTTON, ROCKER, SLIDE SENSITIVE ROTARY SCREW	10 20 30 5		000	BODY PLUS & PER CONTACT PAIR BODY PLUS & PER CONTACT PAIR BODY PLUS & PER CONTACT PAIR PER SCREW
RELAYS GENERAL PURPOSE CONTACTOR LATCHING REED THERMAL, BIMETAL METER, MOVEMENT MERCURY	140 560 140 160 280 930 280	3 3 3 3 3 3 3	0000000	
ROTATING DEVICES** BLOWERS, FAN MOTORS	2000 500			

^{*} Table values in boldface are new or revised in this issue of the RPP.

^{**} Derived from MIL-HDBK-217B.

[†] FAILURES IN 109 HOURS

[†] The number of contact pairs equals $n \times 2^{m-1}$, where n equals the number of poles and m equals the number of throws. For example, a single pole double throw (SPDT) switch has $1 \times 2^1 = 2$ contact pairs.

Table A. Device Failure Rates* (Sheet 8 of 8)

DEVICE TYPE	FAILURE RATE†	NOTES
MISCELLANEOUS DEVICES		
GYROSCOPE** VIBRATOR	50,000	
60 HERTZ	15,000	
120 HERTZ	20,000	
400 HERTZ QUARTZ CRYSTAL	40,000	
CIRCUIT BREAKER		
Protection-Only Application	170 1700	per pole
Power On/Off Application FUSE	100	per pole
LAMP		
NEON INCANDESCENT	200	
SV DC	1400	
12V DC	4300	
METER HEATER (CRYSTAL OVEN)**	300 1,000	
MICROWAVE ELEMENTS	1,000	
COAXIAL AND WAVEGUIDE	15	
ATTENUATOR	15	
FIXED	10	
VARIABLE FIXED ELEMENTS	10	
DIRECTIONAL COUPLERS	10	
FIXED STUBS	10	
CAVITIES VARIABLE ELEMENTS	10	
TUNED STUBS	100	
TUNED CAVITIES	100	
FERRITE DEVICES (TRANSMIT) FERRITE DEVICES (RECEIVE)	200 100	
COOLER (TEC) <2 W	1300	

^{*} DERIVED FROM MIL-HDBK-217D AND 217E.

[†] FAILURES IN 109 HOURS

^{**} DERIVED FROM MIL-HDBK-217B, TABLE 2.13-1, REVISED SEPTEMBER 1976.

Table B. Hybrid Microcircuit Failure Rate Determination* (Sheet 1 of 2)

Hybrid microcircuits are nonstandard and their complexity cannot be determined from their names or functions. To predict failure rates for these devices, use the procedure described in this table.

The Hybrid Failure rate model is:

$$\lambda_{HIC} = \sum \left(\lambda_G \pi_Q \pi_S \pi_T \right) + \left(N_I \lambda_I + N_C \lambda_C + N_R \lambda_R \right) \left(\pi_F \right).$$

where:

 λ_G = device failure rate for each chip or packaged device used†

 $\pi_Q = \text{quality factor}$

 $\pi_S = \text{stress factor}$

 π_T = temperature factor

 N_I = number of internal interconnects (i.e., crossovers, excluding any device leads or external HIC package leads)**

 $\lambda_I = 0.8$

 N_C = number of thin or thick film capacitors

 $\lambda_C = 0.5$

 N_R = number of thin or thick film resistors

 $\lambda_R = 0.2$

 π_F = circuit function factor - 1.0 for digital HICs, 1.25 for linear or linear-digital HICs

When Forms 2 and 3, or 2 and 4 are used to record reliability data for the unit in which the HIC is located:

- 1. Calculate the HIC failure rate on a separate sheet of paper. Show all details.
- 2. On Form 2, record the HIC identifying data and enter the HIC failure rate in column (f).

When Forms 5 and 6 are used to record reliability data for the unit in which the HIC is located:

- 1. Calculate the HIC failure rate on a separate sheet of paper. Show all details.
- 2. On Form 5, record the HIC identifying data and enter the quantity of the particular HIC times the HIC failure rate in row (f).

^{*} This is a modified version of the procedure specified in MIL-HDBK-217.

[†] In Table A, no distinction is made between semiconductor chips and packaged devices. For semiconductors: when chips are used - if HIC is Hermetic, use Hermetic device failure rate and quality level. If HIC is non-Hermetic, use non-Hermetic device failure rate and quality level. When packaged devices are used - ignore HIC packaging and use appropriate Hermetic (non-Hermetic) device failure rate and quality level.

^{**} If HIC includes any type of connector, the connector should be considered as an attached component.

Table B. Hybrid Microcircuit Failure Rate Detection (Sheet 2 of 2)

3. To get credit for HIC and/or unit burn-in as it affects Infant Mortality of the HIC, complete the operations as shown in Form 5. The product of π_S π_T shall be determined by $\lambda_{HIC/\lambda_{HIC_{BB}}}$

where:

 $\lambda_{HIC_{BB}}$ = HIC failure rate when π_S and π_T are set equal to 1.0 for all devices in the HIC.

If devices comprising a HIC are burned in on a device level, the reliability calculations become more complicated. Since this condition is seldom expected to occur, no provision has been made for it in these instructions. For further assistance in this regard, contact the requesting organization.

Table C. Device Quality Level Description (Sheet 1 of 2)

The device failure rates contained in this document reflect the expected reliability performance of generic device types. The actual reliability of a specific device will vary as a function of the degree of effort and attention paid by an equipment manufacturer to factors such as device selection/application, supplier selection/control, electrical/mechanical design margins, equipment manufacture process control, and quality program requirements.

The quality levels described below are not intended to characterize or quantify all of the factors that may influence device reliability. They provide an indication of the total effort an equipment manufacturer considers reasonable to expend to control these factors.

QUALITY LEVEL I .

This level shall be assigned to commercial-grade devices that are procured and used without thorough device qualification or lot-to-lot controls by the equipment supplier. However, (a) steps must have been taken to ensure that the components are compatible with the design application and manufacturing process; and (b) an effective feedback and corrective action program must be in place to identify and resolve problems quickly in manufacture and in the field.

QUALITY LEVEL II

This level shall be assigned to devices that meet requirements (a) and (b) of Quality Level I, plus the following: (c) purchase specifications must explicitly identify important characteristics (electrical, mechanical, and optical) and acceptable quality (AQL) for lot control; (d) devices and vendors must be qualified and identified on approved parts/vendor lists (device qualification must include appropriate life and endurance tests); (e) lot-to-lot controls must be in place at adequate AQLs to ensure consistent quality.

QUALITY LEVEL III

This level shall be assigned to devices that meet requirements (a) through (e) of Quality Levels I and II, plus the following: (f) devices must be requalified periodically; (g) lot-to-lot controls must include 100 percent screening (temperature cycling and burn-in) which, if the results warrant it, may be reduced to a "reliability audit" (i.e., on a sample basis); (h) where screening is used, the percent defective allowed (PDA) should be specified; and (i) an ongoing, continuous reliability improvement program must be implemented.

Table C. Device Quality Level Description (Sheet 2 of 2)

Level III Test/Inspection References

In case of any question regarding the proper assignment of Level III, the following practices should serve as guidelines for the types of test requirements that are to be satisfied.

Device	Screen	Acceptance/Incoming Test
Integrated Circuit	MIL-STD-883, Method 5004 Class B	MIL-STD-883, Method 5005, Class B
Transistor, Diode	MIL-S-19500, (JANTX) (except power burn-in)	MIL-S-19500 (JAN)
Capacitor (typical)	MIL-C-39014	MIL-C-39014
Resistor (typical)	MIL-R-55182	MIL-R-55182
Relay (typical)	MIL-R-39016	MIL-R-39016
Connector (typical)	MIL-C-21097	MIL-C-21097

NOTE: It is the manufacturer's responsibility to provide justification for all levels other than Level I. For more on reliability assurance practices, see Component Reliability Assurance Requirements for Telecommunications Equipment, TR-TSY-000357. [5]

TR-TSY-000357 also includes discussion of alternative types of reliability assurance practices, such as ship-to-stock verses incoming inspection.

Table D. Device Quality Factors $(\pi_Q)\dagger$

	QUALITY LEVEL*			DISCR SEMICONI DEVIC	ALL OTHER DEVICES	
		HERMETIC	NON-HERMETIC	HERMETIC	PLASTIC	
-	I	1.5	1.8	1.5	1.8	1.5
	II	1.0	1.0	1.0	1.0	1.0
	Ш	0.5 0.5		0.5	0.5	0.5
-	1	2	3	4	5	6

[†] To be used only in conjunction with failure rates contained in this document.

^{*} See Table C for definition of quality levels.

Table E. Guidelines for Determination of Stress Levels

The stress factors shown in Table F vary as a function of the effect of electrical stress on the various types of devices and on the amount of stress encountered in any particular application. If, during normal operation of the end product in which the device is used, the amount of stress varies, determine the average stress.

Table A describes the appropriate curve to use for each type of device. If no curve number is shown, the π_S factor may be considered to be 1.0.

These stress curves apply to the following rating characteristics:

Capacitor - Sum of applied dc voltage plus ac peak

voltage/rated voltage

Resistor, fixed - applied power/rated power

Resistor, variable - $(V_{in}^2/\text{total resistance})/\text{rated power}$

Relay, Switch - Contact current/rated current (rating appropriate for type of load, e.g., resistive,

inductive, lamp)

Diode, general - average forward current/rated forward current purpose, Thyristor

Diode, zener - zener current or power/rated zener current or

power

Varactor, Step - Power dissipated/rated power

recovery, Tunnel diode

Transistor

Power dissipated/rated power.

Note: "Rated" as used here refers to the maximum or minimum value specified by the manufacturer (after any derating for temperature, etc.)

Table F. Stress Factors (π_S)

	Electrical Stress Curve:										
% STRESS	A	В	C	D	E	F	G	H	I	J	K
10	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.2	0.2	0.1	1.0
20	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.3	0.3	0.2	1.0
30	0.9	0.8	0.8	0.7	0.6	0.6	0.5	0.4	0.4	0.3	1.0
40	0.9	0.9	0.9	0.8	0.8	0.7	0.7	0.7	0.6	0.6	1.0
50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
60	1.1	1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.8	1.1
70	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.3	2.5	3.3	1.1
80	1.2	1.3	1.5	1.8	2.1	2.4	2.9	3.4	4.0	5.9	1.2
90	1.3	1.4	1.7	2.1	2.6	3.2	4.1	5.2	6.3	10.6	1.3
	2	3	4	(Ĺ	7	V	9	10	(1	11

Table G. Temperature Factors (π_T) (Sheet 1 of 2)

For long-term failure rates, refer to Table A to determine the appropriate temperature stress curve.

	TE	MPE	RATU	JRE F	ACT	ORS ($\pi_{\mathtt{T}})$			
Operating Temperature			T	emper	ature	Stres	s Cur	ve		
, C	1	2	3	4	5	6	7	8	9	10
30	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.4
31	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5
32	1.0	0.9	0.9	0.8	0.8	0.7	0.6	0.6	0.6	0.5
33	1.0	0.9	0.9	0.9	0.8	0.7	0.7	0.7	0.6	0.6
34	1.0	0.9	0.9	0.9	0.8	0.8	0.7	0.7	0.7	0.6
35	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.8	0.7	0.7
36	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.8	0.8	0.7
37	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.8	0.8
38	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.8
39	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9
40	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
41	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.1
42	1.0	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.2
43	1.0	1.0	1.0	1.1	1.1	1.1	1.2	1.2	1.2	1.3
44	1.0	1.0	1.1	1.1	1.1	1.2	1.2	1.2	1.3	1.4
45	1.0	1.0	1.1	1.1	1.2	1.2	1.3	1.3	1.4	1.5
46	1.0	1.1	1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.6
47	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.4	1.6	1.8
48	1.0	1.1	1.1	1.2	1.3	1.4	1.4	1.5	1.7	1.9
49	1.0	1.1	1.1	1.2	1.3	1.4	1.5	1.6	1.8	2.1
50	1.0	1.1	1.1	1.2	1.4	1.5	1.6	1.7	1.9	2.2
51	1.0	1.1	1.2	1.3	1.4	1.6	1.7	1.8	2.0	2.4
52	1.0	1.1	1.2	1.3	1.5	1.6	1.7	1.9	2.2	2.6
53	1.0	1.1	1.2	1.3	1.5	1.7	1.8	1.9	2.3	2.8
54	1.0	1.1	1.2	1.4	1.6	1.7	1.9	2.0	2.4	3.0
55	1.0	1.1	1.2	1.4	1.6	1.8	2.0	2.1	2:6	3.3
56	1.0	1.2	1.2	1.4	1.7	1.9	2.1	2.3	2.8	3.5
57	1.0	1.2	1.3	1.4	1.7	2.0	2.2	2.4	2.9	3.8
58	1.1	1.2	1.3	1.5	1.8	2.0	2.2	2.5	3.1	4.1
59	1.1	1.2	1.3	1.5	1.8	2.1	2.3	2.6	3.3	4.4

[†] The unit operating temperature is determined by placing a temperature probe in the air 4 inch above (or between) the unit(s) while they are operating under normal conditions. The device operating temperature is the unit operating temperature of the unit in which the device resides.

Table G. Temperature Factors (π_T) (Sheet 2 of 2)

	T	EMP	ERAT	URE	FACT	rors	(π_{T})			
Operating Temperature	Temperature Stress Curve									
· C	1	2	3	4	5	6	7	8	9	10
60	1.1	1.2	1.3	1.5	1.9	2.2	2.4	2.7	3.5	4.8
61	1.1	1.2	1.3	1.6	1.9	2.3	2.5	2.9	3.7	5.1
62	1.1	1.2	1.3	1.6	2.0	2.3	2.7	3.0	3.9	5.5
63	1.1	1.2	1.4	1.6	2.0	2.4	2.8	3.1	4.2	5.9
64	1.1	1.2	1.4	1.7	2.1	2.5	2.9	3.3	4.4	6.4
65	1.1	1.2	1.4	1.7	2.2	2.6	3.0	3.4	4.7	6.8
70							3.7			
75							4.5			
80							5.4			
85							6.5			
90							7.7			
95							9.2			
100							11			
105							13			
110							15			
115							18			
120							21			
125							24			
130							28			
135							32			
140							37			
145							42			
150							48			

[†] The unit operating temperature is determined by placing a temperature probe in the air 4 inch above (or between) the unit(s) while they are operating under normal conditions. The device operating temperature is the unit operating temperature of the unit in which the device resides.

Table H. Environmental Conditions and Multiplying Factors (π_E)

ENVIRONMENT	E SYMBOL	$\pi_{ m E}$	NOMINAL ENVIRONMENTAL CONDITIONS
Ground, Benign	G _B	1.0	Nearly zero environmental stress with optimum engineering operation and maintenance. Typical applications are central office, environmentally controlled remote shelters, and environmentally controlled customer premise areas.
Ground, Fixed	${ t G}_{ t F}$	1.5	Conditions less than ideal, some environmental stress, maintenance limited. Typical applications are manholes, poles, remote terminals, customer premise areas subject to shock and vibration, or temperature and atmospheric variations.
Ground, Mobile (and Portable)	G_{M}	5.0	Conditions more severe than G_F , mostly for shock and vibration. More maintenance limited and susceptible to operator abuse. Typical applications are mobile telephone, portable operating equipment, and test equipment.

Table I. First Year Multiplier (π_{FY})

Time (hours)	Multiplier	Time (hours)	Multiplier
0-1	4.0	600-799	2.2
2	3.9	800-999	2.1
3-4	3.8	1000-1199	2.0
5-9	3.7	1200-1399	1.9
10-14	3.6	1400-1599	1.8
15-24	3.5	1600-1999	1.7
. 25-34	3.4	2000-2499	1.6
35-49	3.3	2500-2999	1.5
50-69	3.2	3000-3499	1.4
70-99	3.1	3500-3999	1.3
100-149	3.0	4000-4900	1.2
150-199	2.8	5000-5999	1.2
200-249	2.7	6000-6999	1.1
250-349	2.6	7000-10000	1.0
350-399	2.5		
400-499	2.4		
500-599	2.3		

For Case 2: Black Box option with unit/system burn-in > 1 hour, no device burn-in

Use line (a) on Form 4 as the Time in selecting the first year multiplier from Table I.

For Case 3: General Case

When operating temperature and electrical stress are 40 °C and 50 percent:

Use line (p), Form 5, as the Time in selecting the first year Multiplier from Table I.

- If (p) ≤ 2240, then record the Multiplier on Form 5, line (s).
- If (p) > 2240, then record the Multiplier on Form 5, line (t).

When operating temperature and electrical stress are not 40 °C and 50 percent (limited stress option):

Table I cannot be used directly for calculation of the first year Multiplier. However, the first year Multiplier can be calculated from Table I multiplier values using Form 5, as follows:

- If (q) ≤ (o) 8760 from Form 5, then select the multiplier value from Table I that
 corresponds to the time value in line (q). Record that multiplier value on Form 5, line
 (s), and compute the first year Multiplier using the formula on the following line.
- If (q) > (o) 8760 from Form 5, then select the multiplier value from Table I that corresponds to the time value in line (p). Record that multiplier value on Form 5, line (t), and compute the first year Multiplier using the formula on the following line.

Table J. Reliability Conversion Factors

FROM	то	OPERATION
FITs*	Failures/10 ⁶ hrs.	FITs x 10 ⁻³
FITs	% Failures/1000 hrs.	FITs x 10 ⁻⁴
FITs	% Failures/yr. or Failures/100 units/yr.	FITs/1142
FITs	% Failures/mo. or Failures/100 units/mo.	FITs/13700
FITs	MTBF†	10° hours FITs
Failures/10 ⁶	FITs	Failures/10 ⁶ hrs. x 10 ³
% Failures/1000 hrs.	FITs	% Failures/1000 hrs. x 10 ⁴
% Failures/yr. or Failures/100 units/yr.	FITs	% Failures/yr. x 1142
% Failures/mo. or Failures/100 units/mo.	FITs	% Failures/mo. x 13,700
MTBF	FITs	10° MTBF

^{*} Failures in 109 hours.

[†] Mean time (hours) between failures.

Table K. Upper 90% Confidence Limit (U) for the Mean of a Poisson Distribution

Failure Count	Upper Confidence Limit	Failure Count	Upper Confidence Limit	Failure Count	Upper Confidence Limit	Failure Count	Upper Confidence Limit
f	U	1	U	1	U	f	U
0	3.0						
	4.7	41	53.2	81	97.4	121	140.7
1 2	6.3	42	54.3	82	98.5	122	141.8
3	7.8	43	55.5	83	99.6	123	142.9
4	9.2	44	56.6	84	100.7	124	143.9
5	10.5	45	57.7	85	101.8	125	145.0
6	11.8	46	58.8	86	102.9	126	146.1
7	13.1	47	59.9	87	104.0	127	147.2
8	14.4	48	61.1	88	105.1	128	148.2
9	15.7	49	62.2	89	106.2	129	149.3
10	17.0	50	63.3	90	107.2	130	150.4
11	18.2	51	64.4	91	108.3	131	151.5
12	19.4	52	65.5	92	109.4	132	152.5
13	20.7	53	66.6	93	110.5	133	153.6
14	21.9	54	67.7	94	111.6	134	154.7
15	23.1	55	68.9	95	112.7	135	155.7
16	24.3	56	70.0	96	113.8	136	156.8
17	25.5	57	71.1	97	114.8	137	157.9
18	26.7	58	72.2	98	115.9	138	158.9
19	27.9	59	73.3	99	117.0	139	160.0
20	29.1	60	74.4	100	118.1	140	161.1
21	30.2	61	75.5	101	119.2	141	162.2
22	31.4	62	76.6	102	120.2	142	163.2
23	32.6	63	77.7	103	121.3	143	164.3
24	33.8	64	78.8	104	122.4	144	165.4
25	34.9	65	79.9	105	123.5	145	166.4
26	36.1	66	81.0	106	124.6	146	167.5
27	37.2	67	82.1	107	125.6	147	168.6
28	38.4	68	83.2	108	126.7	148	169.6
29	39.5	69	84.3	109	127.8	149	170.7
30	40.7	70	85.4	110	128.9	150	171.8
31	41.8	71	86.5	111	130.0	151	172.8
32	43.0	72	87.6	112	131.0	152	173.9
33	44.1	73	88.7	113	132.1	153	175.0
34	45.3	74	89.8	114	133.2	154	176.0
35	46.4	75	90.9	115	134.3	155	177.1
36	47.5	76	92.0	116	135.3	156	178.2
37	48.7	77	93.1	117	136.4	157	179.2
38	49.8	78	94.2	118	137.5	158	180.3
39	50.9	79	95.3	119	138.6	159	181.4
40	52.1	80	96.4	120	139.6	160	182.4

RELIABILITY PREDICTION FAILURE RATES

TECHNICAL GROUP

UAT-0387 sheet 10 /10 10

07

February 1989

10. MISCELLANEOUS

 $= \dots \times 10^{-9}/h$

Types	Basic : early < 300h	failure rate constant > 300h
	Ne	1.0
SOLDER CONNECTIONS: machine manual PRINTED BOARDS/dm ²	0,5 5 50	0,5 5 50
WIRE WRAP CONNECTIONS CLAMP CONNECTIONS SCART PLUGS	0,2	0,2 3,5
COAX PLUGS/CONNECTORS PIN CONNECTORS PER CONTACT	400 75	40 10
HIGH TENSION CABLE ASSIES MAINS CORDS BATTERIES rechargable	25 10 10	25 10 100
RELAYS REED RELAIS PUSH BUTTON SWITCHES ROTARY SWITCHES MAINS SWITCHES TEST SWITCHES	1000 15 800 1000 1000 50	500 5 200 250 1000 25
CRYSTALS CERAMIC FILTERS SAW FILTERS PICTURE TUBES:	100 100 125	20 20 25
colour black/white FUSES LOUDSPEAKERS DELAY LINES	5000 1000 100 2000 50	1000 200 50 500 50
MOTORS	3000	500
LAMPS	1500	750
TUNERS	6500	2000

0

Z

0

U S E

ERNA

Z

F O R

All rights are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

RELIABILITY PREDICTION FAILURE RATES

TECHNICAL GROUP

UAT-0387 sheet 9 /10 10

07

February 1989

PHILIPS

> _ z All rights are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner. ш တ -4 z H ш z

> H 0 L

COILS & TRANSFORME	RS		
Types		Basic facearly <300h	constar constar >300h
		λe	λc
FIXED AND VARIABLE			

 $A = ... \times 10^{-9}/h$

	<300h	>300h
	λe	λc
FIXED AND VARIABLE INDUCTORS FOR IF AND HF CIRCUITS (supplier: TDK, TOKO etc.)	10	10
ROD EARIALS	300	100
COAX AERIAL INPUT DEVICES	100	100
DELAY COILS	100	100
LINEARITY CONTROL UNITS	100	100
SUPPRESSION COILS	100	100
CONVERGENCE COILS	100	100
DEGAUSSING COIL	25	25
SWITCH MODE TRANSFORMERS	1000	350
DEFLECTION UNITS: colour black/white	300 150	150 75
LINE OUTPUT TRANSFORMERS: <15kV >15kV	1000 2000	200 500
FERROXDURE TRANSFORMERS	150	50
IRON-CORE TRANSFORMERS	1000	400
VARIOUS TRANSFORMERS	300	100
LINE DRIVE TRANSFORMERS	under i	nvestigation

