Quine-McCluskey

Quine-McCluskey method is an algorithm that minimizes Boolean expressions without limiting the number of input variables unlike the Karnaugh map. The automation of the Quine-McCluskey algorithm is also quite easy to do.

[Term project] Implement the Quine-McCluskey algorithm in C/C++ for a Boolean function with any number of inputs larger than zero. The input and output file formats are shown below.

	Input format	Output format
File name: input_minterm.txt		File name: result.txt
4	// input bit length	01
d 0000	// don't care value	1-01
m 0100	// input having the result with true	1010
m 0101		
m 0110		Cost (# of transistors): 40
m 1001		
m 1010		
d 0111		
d 1101		
d 1111		

Cost of a SOP expression

Q-M algorithm computes a SOP expression of a function. A SOP expression can be implemented by a two-level logic circuit composed of inverters, AND gates, and an OR gate. Let the *cost* of a SOP expression be the *number* of transistors needed for the two-level logic circuit implementation of the SOP.

For example, A'BC' + C'DEF needs two inverters (4 transistors), one three-input AND gate (8 tr.), one four-input AND gate (10 tr.), and one two-input OR gate (6 tr.). The cost of A'BC' + C'DEF is 28.

What you need to submit:

- 1. Report
 - A. Problem statement (15%)
 - B. Your algorithm with pseudo code and flow chart (30%)
 - C. Verification strategy & corresponding examples with explanation (50%)
 - D. A testcase that you think it is very hard to solve (5%)
 - ✓ This might be used to verify the results of classmates.
- 2. Program source code with sufficient comments (No English comment allowed except any terminologies)
- 3. Project file except .vs folder (Visual studio version: above 2019)
- 4. Examples that you used to verify your program (The quantity as well as the quality of examples are very important).