2024 The 31st Ergonomics Society of Taiwan Annual Meeting and International Conference

Outline

- 01 Background
- 02 Literature Review
- 03 Method
- 04 Case Study
- 05 Conclusion and future work

Background - User Journey Map

Describe and visualize the various steps, touchpoints, and emotions a user experiences throughout their entire interaction with a brand, product, or service.

Questions

Traditional user journey maps rely on users' subjective feedback and designers' assumptions, lacking quantitative information for reference.

Determine users' emotions at different stages through physiological information and artificial intelligence.

Evaluate emotional user experiences at different stages and propose improvement plans

Literature Review - Emotional UX model

Author	Content
Saariluoma et al. (2014)	The relationship between emotional user experience and interactive events can be analyzed using the bipolar competence-frustration model, where the sense of competence stems from successfully completing tasks and users positively perceiving their own skills, while frustration represents the opposite.
Jokinen (2015)	The competence-frustration model is constructed for the field of human-technology interaction. Additionally, both competence and frustration are very suitable for primary and secondary assessment surveys.
Georges (2016)	Propose an emotional heatmap that can effectively highlight areas on the interface where users experience varying degrees of cognitive load.

Literature Review - Emotion Recognition

作者	內容
Watson et al. (1988)	Introduce the Positive and Negative Affect Schedule (PANAS) to obtain the emotional tendencies of the respondents in 20 items.
Veilleux et al. (2020)	Utilize data from eye trackers, EDA and facial recognition for conditional emotion Recognition, and create a web interface emotion journey map.
Vazquez- Rodriguez et al. (2022)	Use ECG data to train a transformer model to output arousal and valence, determine the subjects' emotions with an impact matrix.

Literature Review: Competence-Frustration Model

Competence – Frustration Model

- Valence (positive vs negative): Indicates whether the emotion is positive or negative.
- The two emotional dimensions of user experience (competence, frustration) can be distinguished by their valence.

Saariluoma, & Jokinen (2014)

Use valence to classify emotions into two categories: competence (+) and frustration (-), and analyze the relationship between emotional user experience and interactive events.

EMOTIONAL

VALENCE

Literature Review -LSTM model

LSTM is particularly suited for predicting emotion from electrocardiogram (ECG) data due to its strong capability in handling time series data.

Research Question

Research Gap

there are few research that utilize physiological information combined with artificial intelligence models to determine emotions and apply them in the evaluation of app user experience.

Research Goal

Propose a methodology that involves an artificial intelligence model based on physiological information, used to recognize user emotional experiences at different stages and propose corresponding solutions.

Research Question

Research Framework

1

Model Training and Evaluation

evaluation

Accuracy

F1 score

2 user journey map

3 KANO model analysis

Satisfaction • Problems encountered by users. Attractive Pain point One-dimensional • The corresponding need Need Indifferent **Fully** fulfilled • The solution that can satisfy the need Feasible Must-Be solution Attractive One-dimensional Reverse Need • Must-Be... category

4 Emotional User Experience Score

$$emo~UX~Score = \frac{Competence~time}{Total~time} * 100, emo~UX~score \in \{0, 100\}$$

Scores will range between 0 and 100, addressing negative values and scale issues.

Good Experience : emo UX score ∈ $\{70, 100\}$ Normal Experience : emo UX score ∈ $\{30, 70\}$

 $Bad\ Experience: emo\ UX\ score \in \{0,30\}$

Evaluation

Evaluation item	Questionnaire	Reference
System Usability	SUS	Brook · 1996
Mental Workload	NASA-TLX	Hart et al · 1988
Subjective emotional feedback	PANAS	Watson · 1988

Case Study-- Dataset

- Dataset : AMIGOS
- Participants: 40
- Data type : ECG
- Data: 227,800s
- Label: Valence

Case Study

Taguchi method — 4 factors at 3 levels

After weight transfer, the model's accuracy reached 0.762

Y1	Learning Rate	Hidden Size	Batch Size	Dropout prop	y1
1	0.001	50	16	0.3	0.64
2	0.001	100	32	0.5	0.66
3	0.001	150	64	0.7	0.65
4	0.005	50	32	0.7	0.60
5	0.005	100	64	0.3	0.62
6	0.005	150	16	0.5	0.62
7	0.01	50	64	0.5	0.60
8	0.01	100	16	0.7	0.60
9	0.01	150	32	0.3	0.62

Case Study

1

Model Training and Evaluation

Case Study--Validation

Experiment setting:

Participants

• People: 10

• Age: 23.6

ECG sensor

Polar h10

- APP
 - Happy Color
 - 數字填色

- Questionnaires
 - SUS
 - NASA-TLX
 - PANAS

Case Study--Experiments Design

Case Study--Experiments Result

Analysis

26

Case Study--Experiments Result

SUS

55.7

Downloaders

1k↓

Case Study--Experiments Result

Satisfaction

	Mean 1~10	Std
Your satisfaction level with the user journey map.	8.8	0.84
Your satisfaction level with the electrocardiogram (ECG) assisted recognize feature.	8.8	1.30
Your satisfaction level with the KANO model assisted analysis feature of this system.	7.2	1.30
Your overall satisfaction level with the 3E Smart User Journey Map .	9	0.71
How do you feel after using the 3E Smart User Journey Map?	9.4	0.90

Conclusion

Propose a methodology based on ECG data and LSTM model to evaluate the user experience of mobile app users.

Quantify emotional user experience.

Quickly and easily applied to product testing and evaluation.

Enhance product emotional user experience based on demand analysis.

Thank You for Your Listening

