Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_şt-nat*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

(30 de puncte)

Simulare pentru clasa a XI-a

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

(ev de puncte)		
1.	$(x+2)+2x=2\cdot 7$	2p
	x = 4	3 p
2.	$x_1 + x_2 = 2(m-1), \ x_1x_2 = 2m^2 - 2m \Rightarrow x_1^2 + x_2^2 = -4m + 4$	3 p
	$\frac{x_1}{x_2} + \frac{x_2}{x_1} = 4 \Leftrightarrow -\frac{2}{m} = 4$, deci $m = -\frac{1}{2}$	2p
3.	$5^{2x} = 5^{3-x} \Leftrightarrow 2x = 3-x$	3p
	x=1	2 p
4.	Numărul submulțimilor cu 2 elemente ale mulțimii M este egal cu C_{10}^2 , deci sunt 45 de cazuri posibile	2p
	Numărul submulțimilor cu 2 elemente ale mulțimii M , care conțin elementul 10, este egal cu 9, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{45} = \frac{1}{5}$	1p
5.	$m_{AB} = 2$, $m_{BC} = a - 3$	2p
	$m_{AB} = m_{BC} \Leftrightarrow a = 5$	3 p
6.	$\left(\frac{1}{3}\right)^2 + \cos^2 x = 1$ şi, cum $x \in \left(\frac{\pi}{2}, \pi\right)$, obţinem $\cos x = -\frac{2\sqrt{2}}{3}$	3p
	$\operatorname{tg} x = -\frac{1}{2\sqrt{2}}, \operatorname{deci} 2\sqrt{2} \operatorname{tg} x + 1 = 0$	2p

	$\begin{vmatrix} A(3) - (1 & 2) \end{vmatrix} \rightarrow \det(A(3)) - \begin{vmatrix} 1 & 2 \end{vmatrix}$	Эþ
	=4-1=3	2 p
b)	$\det(A(x)) = \begin{vmatrix} \frac{x+1}{2} & \frac{x-1}{2} \\ \frac{x-1}{2} & \frac{x+1}{2} \end{vmatrix} = \left(\frac{x+1}{2}\right)^2 - \left(\frac{x-1}{2}\right)^2 = x$	2p
	$\det(A(y)) = y$ şi $\det(A(xy)) = xy$, $\det(A(x)) \cdot \det(A(y)) = \det(A(xy))$, pentru orice numere reale x şi y	3p
c)	$A(1) + A(2) + \dots + A(n) = \begin{pmatrix} \frac{n(n+3)}{4} & \frac{n(n-1)}{4} \\ n(n-1) & n(n+3) \end{pmatrix} \Rightarrow \det(A(1) + A(2) + \dots + A(n)) = \frac{n^2(n+1)}{2} =$	3р

$\frac{n(n-1)}{4} \frac{n(n+3)}{4} \xrightarrow{A(2)++A(n)} = \frac{n(n+3)}{2}$	Sр	
$= n \cdot \frac{n(n+1)}{2} = n(1+2+\ldots+n) = n(\det(A(1)) + \det(A(2)) + \ldots + \det(A(n))), \text{ pentru orice}$	2p	
număr natural nenul <i>n</i>		

Probă scrisă la matematică M_şt-nat

Barem de evaluare și de notare

SUBIECTUL al II-lea

 $A(3) = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \rightarrow \det(A(3)) = \begin{vmatrix} 2 & 1 \\ -1 & -1 \end{vmatrix} =$

2.a)	$A - B = \begin{pmatrix} 1 - 1 & 3 - 0 \\ 0 - 2 & 8 - 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 3 \\ -2 & 7 \end{pmatrix}$	2p
b)	$ (A+I_2)\cdot (B-I_2) = \begin{pmatrix} 2 & 3 \\ 0 & 9 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} = $	2p
	$= \begin{pmatrix} 6 & 0 \\ 18 & 0 \end{pmatrix} = 6 \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$	3 p
c)	Pentru $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, cu a , b , c și d numere reale, $X \cdot A = A \cdot X \Rightarrow c = 0$ și $3a + 7b = 3d$	2p
	$X \cdot B = B \cdot X \Rightarrow b = 0$ și $a = d$, deci $X = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = aI_2$ și obținem $X \cdot Y = aY = Y \cdot X$, pentru	3 p
	orice $Y \in \mathcal{M}_2(\mathbb{R})$	

SUBJECTUL al III-lea (30 de nuncte)

SUBII	ECTUL al III-lea (30 de pu	ncte)
1.a)	$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 + 7x + 6}{x + 1} = \lim_{x \to -1} (x + 6) =$	3 p
	= 5	2 p
b)	$y = x + 2$ este asimptotă oblică spre $+\infty$ la graficul funcției $f \Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = 1$ și	2p
	$\lim_{x \to +\infty} (f(x) - x) = 2$	1
	$\lim_{x \to +\infty} \frac{(a-1)x+6}{x+1} = 2 \Leftrightarrow a = 3$	3 p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + ax + 6}{x + 1} = \lim_{x \to +\infty} \frac{x \left(1 + \frac{a}{x} + \frac{6}{x^2}\right)}{1 + \frac{1}{x}} =$	2 p
	$=+\infty$, deci, oricare ar fi numărul real a , funcția f nu admite asimptotă orizontală spre $+\infty$	3 p
2.a)	$\lim_{\substack{x \to -2 \\ x < -2}} f(x) = \lim_{\substack{x \to -2 \\ x < -2}} \frac{2mx}{2-x} = -m, \lim_{\substack{x \to -2 \\ x > -2}} f(x) = \lim_{\substack{x \to -2 \\ x > -2}} (2x+4-m) = -m \text{si} f(-2) = -m, \text{ deci}$	3p
	funcția f este continuă în $x = -2$, pentru orice număr real m	1
	Cum, pentru orice număr real m , funcția f este continuă pe $(-\infty, -2)$ și pe $(-2, +\infty)$, obținem că f este continuă pe \mathbb{R} , pentru orice număr real m	2p
b)	Pentru $x \in (-\infty, -2)$, $f(x) = 0 \Leftrightarrow \frac{2x}{2-x} = 0 \Leftrightarrow x = 0 \notin (-\infty, -2)$	3p
	Pentru $x \in [-2, +\infty)$, $f(x) = 0 \Leftrightarrow 2x + 3 = 0 \Leftrightarrow x = -\frac{3}{2} \in [-2, +\infty)$	2p
c)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2mx}{2 - x} = -2m$	2p
	Cum $\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} (2x + 4 - m - 2x) = 4 - m$, obţinem $m = -4$	3 p