Notes 230

Esteban Morales

September 5, 2024

Section Strong induction⇒ standard inducion.

Proof. Suppose strong induction holds, then for any predicate P on \mathbb{N} .

If P(n) holds and $\forall kP(0) \land P(1) \land ...P(k) \Rightarrow P(k+1)$

Then $\forall n \geq 0, P(n) holds$

Suppose P(0) holds, and $\forall k \geq 0 P(K) \Rightarrow P(K+1)$

If P(K) is true, then P(K + 1) is true. Assume P(0) and P(1) and ... P(K)

holds true. So, so does P(K + 1). Hence, strong induction lets us calculate $\forall n \geq 0, P(N)$

Section Standard induction implies well ordering principle. Proof. Let P(n) be a predication on \mathbb{N}

If $\exists i < n \in S \subseteq \mathbb{N}$

Then S has a least element. If S is non empty, then there exists an n in S so $P(N) \Rightarrow$ well ordering principles holds for S.

Now we will prove by induction that $\forall n \geq 0 P(N)$ is true.

Base Case: P(O) states if $0 \in S$, S has a least element, namely 0

Inductive Step: Assume P(K) If $\exists j \leq k \in S$ then $\exists l \in S$ such that $m \in S \Rightarrow l \leq m$

Section Well Ordering Principle implies Strong Induction. *Proof.* Assume Well ordering principle P(0)

Assume by contradiction $\exists n$ such that P(n) is false.

Let S be the set of all the Positive integers,n, such that P(n) is false. Then S is nonempty, let l be the elast element. $l \neq 0$ because P(0) is true. As l is the least element of S, P(0), P(1) ... are all true.

Hence $P(0) \wedge P(1) \wedge ... P(l-1)$ is true, a contradiction!

Section standard induction implies strong induction. Proof. Given a predicate P(n) let Q(n) be if $0 \le i \le n$ then P(i) is true Suppose t