Name:

Show complete work—that is, all the steps needed to completely justify your answer. Simplify your answers as much as possible. You may refer to theorems that we proved in class.

- (1) (a) Define a zero z_0 of f(z) of order m.
 - (b) Find a Laurent series for $f(z) = \frac{1}{z(z-2)^2}$ centered at z=2 and specify the region in which it converges. (*Hint:* start by computing a *power* series for $\frac{1}{z}$ centered at 2.)
- (2) (a) Define a pole z_0 of f(z) of order m.
 - (b) Compute $\int_{\gamma} \frac{\exp z}{\sin z} dz$ where γ is the circle |z| = 2, oriented counterclockwise.
- (3) (a) Define the residue of f(z) at (the isolated singularity) z_0 .
 - (b) Compute $\int_{\gamma} z^3 \cos\left(\frac{3}{z}\right) dz$ where γ is the circle |z|=2, oriented counterclockwise.