Name:	Exam 2 - MAT345

Part III: Theory and Proofs (30 points; 10 points each)

Choose three of the five options. If you try all five, I will grade the first three, not the best three. You must decide what should be graded.

This part is take-home. You should complete this work on your own without consulting websites, friends, the Math Center, etc.

Problem 6 (10 points). Suppose S is an independent set of vectors from a vector space V, then

 $S \cup \{v\}$ is dependent $\iff v \in \text{span}(S)$.

Problem 7 (10 points). Show that if $L: V \to W$ is linear and $\{L(\mathbf{v}_1), L(\mathbf{v}_2), L(\mathbf{v}_3)\}$ is linearly independent, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

Problem 8 (10 points). Suppose $A = [a_1 a_2 a_3 a_4 a_5]$ is a 4×5 matrix and $NS(A) = span\{(-2, 1, 0, 0, 0), (5, 0, 2, 1, 0)\}$

Find rref(A) and explain how you know that what you have found is rref(A).

Problem 9 (10 points). Suppose A is a 5×5 matrix and $A^n = O$ for some n, then $A^5 = O$.

Problem 10 (10 points). For A and B are $n \times n$ matrices. Show that AB is invertible \iff both A and B are invertible