2.13 à Cual es la longitud de la barra más large que puede hacerse pasar horizontalmente a través de la esquina en anegulo rento, que forman dos carredas de anchuras respectivas a y 6?

$$\cos \alpha = \frac{b}{\overline{Ac}} = \frac{b}{\cos \alpha}$$

$$LM = \frac{b}{\cos \alpha} + \frac{c}{\sin \alpha} \quad (0 \in \alpha \in NZ)$$

$$L'(\alpha) = \frac{-b(-\sin\alpha)}{\cos^2\alpha} + \frac{-a\cos\alpha}{\sin^2\alpha} = 0$$

$$t_{g}^{3} = \frac{a}{b}$$
 $t_{g} = 3\sqrt{\frac{a}{b}}$

-Obtenemos así que $L'(\alpha)$ se anula en un único punto $\alpha \in]0, \Pi/2[$ que viene dado por la condición $toy(\alpha) = 3 \int \frac{\alpha}{b}$

- Como L'(x) es continua y no se anula en los intervalos]U, x[y]x, 712[
yeomo lin L'(x) = -00 y lin L'(x) = +00 salemos que L debe tener un
x > 0

mínimo absoluto.

 $\alpha \in]0, \alpha_0[\rightarrow L'(\alpha)<0$ $\alpha \in]\alpha_0, \text{Ni2}[\rightarrow L'(\alpha)>0)$ por tauto,

L es estrictamente decreciente en JO, cxo[y estrictamente

creciente en Jacinisc la que implicar que $L(\alpha_0) \in L(\alpha)$ para todo $\alpha \in J0, \pi/2[$.

- Calcularemos la longitud múnimo L(a)

$$\frac{1 + \log^{2}(\alpha_{0})}{\cos^{2}(\alpha_{0})} = \frac{1}{1 + 3} \sqrt{\frac{\alpha_{0}}{b}^{2}} \Rightarrow \frac{1}{\cos^{2}(\alpha_{0})} = \frac{1}{1 + 3} \sqrt{\frac{\alpha_{0}}{b}^{2}} \Rightarrow \frac{1}{\cos^{2}(\alpha_{0})} = \frac{1}{\cos^{2}(\alpha_{0})} = \frac{1}{\cos^{2}(\alpha_{0})^{2}} = \frac{1}{\cos^{2}(\alpha_{0})^{2}} = \frac{1}{\cos^{2}(\alpha_{0})^{2}} = \frac{1}{\cos^{2}(\alpha_{0})^{2}} = \frac{1}{\cos^{2}(\alpha_{0})^{2}} = \frac{1}{\cos^{2}(\alpha_{0})^{2}} = \frac{1}{\cos^{2}(\alpha_{0})} = \frac{1}{\cos$$

se obtiene iqual:

$$\frac{\alpha}{\text{sen(a0)}} = \alpha^{213} (\alpha^{213} + b^{213})^{117}$$

con lo que le longitud maxima viene dada por $L(\alpha,) = (\alpha^{213} + b^{213})^{312}$