COL 759

Tutorial Sheet 4

Due Date: 28th Jun 2020

- 1. A binary sequence which satisfies Golomb's randomness postulates is called a pseudonoise sequence or a pn-sequence. Consider the periodic sequence s = 011001000111101 of period n = 15. Is this sequence pn-sequence? Justify your answer.
- 2. The so called S-box (Substitution box) is widely used cryptographic primitive in symmetric-key cryptosystems. In AES (Advanced Encryption Standard) the 16 S-boxes in each round are identical. All these S-boxes implement the inverse function in the Galois Field GF(2^8), which can also be seen as a mapping, $S: \{0, 1\}^8 \to \{0, 1\}^8$, so that $x \in GF(2^8) \to x^{-1} \in GF(2^8)$

i.e. that is 8 input bits are mapped to 8 output bits. What is the total number of possible mappings one can specify for function S?

- 3. In cryptography and computer security, man-in-the-middle attack (MITM), is an attack where the attacker secretly relays and possibly alters the communications between two parties who believe that they are directly communicating with each other.
 - (i) Describe how a man-in-the-middle attack may be performed on a Wi-Fi network and the consequences of such an attack.
 - (ii) Explain how a man-in-the-middle attack on a Wi-Fi network can be defeated.
- 4. Consider a plaintext of size 1024 bits, has a probability of 0.7 for producing a 0 and the LFSR sequence has about 60% 0's. Find the approximate number of 0's in the resulting cipher.
- 5. Show that any *m*-sequence is G-random.
- 6. Prove that out-of- phase autocorrelation function of an *m*-sequence with period $2^n 1$ is $\frac{-1}{2^n 1}$.
- 7. Suppose we wish to construct an m-sequence of length 31. Using polynomial 45 (in octal). Write the resulting m-sequence by LFSR with initial sequence (1, 0, 0, 0, 0).
- 8. Let *s* be a periodic binary sequence with period *p*. Let *k* be the number of entries 1 in one period of *s* and μ is the number of pairs $(s_i, s_{i+\tau}) = (1, 1)$ for a fixed $\tau < p$, $0 \le i \le p$. Then prove that the autocorrelation coefficients $C(\tau)$ is

$$C(\tau) = 1 - \frac{4(k-\mu)}{p}$$

- 9. An affine block cipher is one where the key specifies a non-singular 3 by 3 matrix A and an 3-tuple \mathbf{t} to define the affine transformation $\mathbf{c} = \mathbf{Am} + \mathbf{t}$ where, \mathbf{m} is a block of plaintext (size s) and \mathbf{c} is the corresponding ciphertext. \mathbf{c} , \mathbf{A} and \mathbf{m} all are over GF(2). Find the number of affine block ciphers.
- 10. Each of the following points has finite order on the given elliptic curve over Q. In each case, find the order of P.
 - P = (0, 16) on $y^2 = x^3 + 256$ (a)
 - (b)
 - $P = (1/2, 1/2) \text{ on } y^2 = x^3 + (1/4)x$ $P = (3, 8) \text{ on } y^2 = x^3 43x + 166$ $P = (0, 0) \text{ on } y^2 + y = x^3 x^2$ (c)
- 11. Consider elliptic curve over F_{2^4} (field of characteristic 2) is

E:
$$y^2 + xy = x^3 + g^4x^2 + 1$$
,

where g = (0010) is generator of F_{24} . F_{24} is constructed using primitive polynomial $f(x) = x^4 + x + 1$. List all the elements in $E(F_{2^4})$.