

Не забыть включить запись!

Правила вебинара

Активно участвуем

Задаем вопрос в чат или голосом

Off-topic обсуждаем в Slack #канал группы или #general

Вопросы вижу в чате, могу ответить не сразу

Викирюк Павел

Системный инженер

Маршрут вебинара

Статическая маршрутизация

Динамическая маршрутизация

Программные маршрутизаторы

Цели занятия вы сможете

Различать, что такое unicast, broadcast, multicast

Управлять трафиком с помощью loopbackинтерфейса

Настраивать программные маршрутизаторы Quagga, FRR и BIRD

Цели занятия После занятия вы сможете

4

Различать IGP и EGP протоколы

5

Понять, как работает протокол OSPF

Смысл Зачем вам это уметь

 Чтобы понимать, что происходит в сетях и уметь решать проблемы

Чтобы строить и эксплуатировать отказоустойчивые сети самых разных размеров

З чтобы масштабировать сети без больших затрат

Numbering & Renumbering

Серые сети

Так же известны как "приватные", "внутренние" или "локальные" Диапазоны описаны в RFC 1918: https://tools.ietf.org/html/rfc1918

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

Сети специального назначения

Диапазоны описаны в RFC 6890: https://tools.ietf.org/html/rfc6890

- 0.0.0.0/8 хост как источник
- 127.0.0.0/8 loopback
- 100.64.0.0/10 NAT
- 169.254.0.0/16 Link Local
- 240.0.0.0/4 Multicast

Numbering & Renumbering

Реальный ІР адрес

- также известен как "внешний" и "прямой" или "белый"
- работает в рамках автономной системы (AS)
- выдается вместе с номером AS **RIPE NCC**

Пример:

- 87.250.250.0/24
- 8.8.8.0/24

Aggregate & specific networks

Агрегированная сеть (aggregate network) или **префикс** - сеть с минимально возможной маской, включающая в себя несколько **specific** сетей, то есть сетей заданных с более точной маской

- 10.0.0.0/8 aggregate prefix
- 10.1.0.0/16 specific network
- 10.2.0.0/16 specific network
- 10.6.20.0/22 specific network

Особенности использования:

- трафик на несуществующие сети
- петли маршрутизации
- "дешевый" способ фильтрации трафика

Решение:

- null routing - маршрут в Null

Aggregate & specific networks

Примеры null роутинга:

- ip route add blackhole 10/8
- ip route add blackhole 172.16.10.0/24
- ip route add blackhole 10.10.0.0/29

Heoчевидные возможности loopback

Схема работы loopback интерфейса:

Heoчевидные возможности loopback

Назначение loopback интерфейса:

- использование сети независимо от наличия сетевых интерфейсов
- взаимодействие сетевых приложений на сервере
- безопасное тестирование сетевых приложений
- может использоваться для маршрутизации
- Зарезервированное доменное имя **localhost**, описано в https://tools.ietf.org/html/rfc2606

Heoчевидные возможности loopback

Схема с примером маршрутизации с помощью loopback

Типы передачи данных:

Unicast, Broadcast and Multicast IP Addressing

Отличия unicast от multicast:

Особенности multicast:

- работает по UDP
- 224.0.0.0/4 (224.0.0.1 239.255.255.255)
- группа в multicast это конкретный IP из данной подсети (например 224.0.2.1)
- для того чтобы принимать сообщения надо быть членом группы
- для того чтобы отсылать сообщения не обязательно быть членом группы

Группы назначений адресов:

- Reserved Link-Local Addresses
 - **224.0.0.0 224.0.0.255**
 - Transmitted with TTL = 1
 - Examples:

```
 224.0.0.1 All systems on this subnet
 224.0.0.2 All routers on this subnet
 224.0.0.5 OSPF routers
 224.0.0.13 PIMv2 Routers
 224.0.0.22 IGMPv3
```

- Other Reserved Addresses
 - **224.0.1.0 224.0.1.255**
 - Not local in scope (Transmitted with TTL > 1)
 - Examples:

• 224.0.1.1	NTP Network Time Protocol
224.0.1.32	Mtrace routers
224.0.1.78	Tibco Multicast1

Преимущества и недостатки статической маршрутизации

Преимущества:

- можно быстро и просто развернуть небольшую сеть
- статические маршруты неизменны можно быстро устранить неполадки
- нет обмена сообщениями между маршрутизаторами
- безопасность
- не требуется вычислительных ресурсов маршрутизаторов

Недостатки:

- сложная конфигурация в больших сетях (прямая зависимость от роста сети)
- в случае сбоя канала маршрут работает некорректно
- все изменения выполняются вручную

Маршрут вебинара

Статическая маршрутизация

Динамическая маршрутизация

Программные маршрутизаторы

Преимущества:

- автоматическое построение топологии и таблиц маршрутизации
- отказоустойчивость
- балансировка и управление трафиком
- удобное масштабирование сети

Недостатки:

- более высокая сложность реализации
- менее безопасна (обмен сообщениями)
- зависимость маршрута от топологии сети
- протоколы более требовательны к производительности оборудования и каналам

IGP (interior gateway protocol)

Дистанционно-векторные протоколы:

Особенности:

- дистанция показывает расстояние до точки назначения
- дальностью оперирует такой показатель, как метрика
- вектор показывает направление до точки назначения
- вектором может быть выходной интерфейс, IP-адрес соседа

Протоколы:

- RIP
- IGRP

IGP (interior gateway protocol)

Link-state протоколы:

Особенности:

- Link интерфейс маршрутизатора
- State его состояние и как он подключен к соседям

Протоколы:

- OSPF
- ISIS

EGP (exterior gateway protocol)

- BGP

OSPF

OSPF (Open Shortest Path First) — протокол динамической маршрутизации

- основан на технологии отслеживания состояния канала (link-state)
- использует для нахождения кратчайшего пути Алгоритм Дейкстры (Dijkstra's algorithm)
- использует для работы multicast

OSPF: Типы пакетов

1	HELLO	Обнаружение соседей
2	Database Description (DBD)	Синхронизация базы данных между роутерами
3	Link-State Request (LSR)	Запрос link-state записей
4	Link-State Update (LSU)	Посылка link-state записей
5	Link-State Acknowledgement (LSAck)	Подтверждение о получении

OSPF: Таймеры

- 1. HelloInterval значение по-умолчанию 10 сек.
- 2. RouterDeadInterval должен быть кратным значению HelloInterval, по-умолчанию 40 сек.
- 3. Wait Timer значение равно значению интервала RouterDeadInterval.
- 4. RxmtInterval называется также Retransmit interval. Значение интервала 5 сек.

OSPF: Состояния

- 1. Down: Соседские отношения не установлены.
- 2. Init: Получен Hello-пакет.
- 3. Two-Way: Роутер увидел свой ID в полученном Hello-пакете.
- 4. Exstart: Определение ролей: Master и Slave.
- 5. Exchange: DBD отправлена.
- 6. Loading: Обмен LSR и LSU.
- 7. Full: Отношения установлены.

OSPF: Терминология

- Link state database (LSDB) структура (база) данных для хранения данных топологии OSPF
- Shortest Path First (SPF) название алгоритма OSPF для анализа LSDB и определения лучшего маршрута (с наименьшей стоимостью) для каждого префикса
- Link State Update (LSU) пакет OSPF, в котором передается детальная информация о топологии, в частности LSA
- Link State Advertisement (LSA) класс структуры данных OSPF, которых содержит информацию о топологии. LSA хранятся в LSDB и передаются по сети внутри LSU

OSPF: Терминология

- **Area** группа маршрутизаторов и их интерфейсов
- Area Border Router (ABR) маршрутизатор, у которого интерфейсы подключены как минимум к двум разным OSPF Area, включая Backbone Area (area 0)
- Autonomous System Border Router (ASBR) маршрутизатор, который соединяет 2 или более автономные системы и используется в основном для анонсирования маршрутов из одной автономной системы в другую(-ие)
- **Автономная система** группа маршрутизаторов, обменивающаяся маршрутизирующей информацией с помощью одного протокола маршрутизации

OSPF: Терминология

- Backbone router маршрутизатор, у которого как минимум один интерфейс находится в Backbone Area (area 0).
- Internal router маршрутизатор, интерфейсы которого находятся только в одной
 Area
- **Designated Router (DR)** в multiaccess-сетях (в одной подсети может находиться более 2-х маршрутизаторов) маршрутизатор, который выбирается среди других маршрутизаторов для генерации LSA, обмена топологиями и т.д.
- Backup Designated Router (BDR) маршрутизатор в multiaccess-сетях, который «наблюдает» за Designated Router ом (DR) и занимает его место в случае, если Designated Router (DR) становится недоступным

OSPF: Зоны

Основное назначение зон в OSPF:

- снизить нагрузку на ЦПУ маршрутизаторов за счет уменьшения количества перерасчетов по алгоритму SPF
- уменьшить размер таблиц маршрутизации (за счет суммирования маршрутов на границах зон)
- уменьшить количество пакетов обновлений состояния канала

OSPF: Типы LSA

LSA Type 1 – Router LSA

- вещается каждым маршрутизатором только в пределах своей зоны (area)
- содержит список напрямую подключенных к роутеру линков
- линк описывается двумя параметрами: ІР-префикс на интерфейсе и тип линка

OSPF: Типы LSA

LSA Type 2 – Network LSA

- создана для много-доступных (multi-access) сетей
- генерируется DR. Содержит список всех подключенных к сети маршрутизаторов, идентификатор DR, а также адрес и маску сети
- не выходит за пределы зоны, в которой была сгенерирована.

OSPF: Типы LSA

- Type 3 Summary LSA
- Type 4 Summary ASBR LSA
- Type 5 Autonomous system external LSA

OSPF: Типы зон

OSPF: Типы зон

- Backbone Area 0
- Standart
- Stub area Запрещен ASBR и блокируются все External LSA Type5. Network LSA Type3 разрешены.
- Not-so-stubby area Разрешен ASBR и Network LSA Type3. Блокируются все External LSA Type5
- Total Stub area Запрещен ASBR и блокируются все External LSA Type5 и Network LSA Type3
- Total Not-so-stubby area Разрешен ASBR и блокируются все External LSA Type5 и Network LSA Type3

Некоторые правила, которые нужно знать при работе со stub и totaly stub зонами:

- Из stub area в другие зоны можно попасть по дефолтному маршруту
- В зоне должен быть хотя бы один ABR
- Каждый маршрутизатор должен быть настроен как stub
- В этих зонах не может быть ASBR
- Backbone area не может быть stub или totaly stub

1. Обмен HELLO-пакетами

2. Формируется таблица состояний связей с соседями (link-state)

3. Формируют LSA - (router id, neighbor id, net/mask, net type, cost)

4. Маршрутизатор рассылает LSA своим соседям, те распространяют LSA дальше.

5. Каждый маршрутизатор, получивший LSA добавляет его в свою локальную табличку LSDB (Link State Database)

6. В LSDB скапливается информация, обо всех парах соединённых в сети маршрутизаторов

7. После обмена LSA, каждый маршрутизатор знает про все линки, на основании пар строится полная карта сети

OSPF: Алгоритм работы

8. На основании этой карты каждый маршрутизатор индивидуально ищет кратчайшие с точки зрения метрики маршруты во все сети и добавляет их в таблицу маршрутизации.

OSPF: Выбор лучшего маршрута

Если маршрутизатору известны маршруты к одной и той же сети, но эти маршруты разных типов, то маршрутизатор выбирает наиболее приоритетный тип маршрута и не учитывает стоимость маршрута.

Различные типы маршрутов, в порядке убывания приоритета:

- Внутренние маршруты зоны (intra-area)
- Маршруты между зонами (interarea)
- Внешние маршруты типа 1 (E1)
- Внешние маршруты типа 2 (E2)

OSPF: Стоимость интерфейса

Interface type	Bandwidth	Cost value
Serial	56 Kbps	1562
T1	1.544 Mbps	64
Token Ring	4 Mbps	25
Token Ring	16 Mbps	6
Fast Ethernet	100 Mbps	1
Gigabit Ethernet	1 Gbps	1
Ten Gigabit Ethernet	10 Gbps	1

Маршрут вебинара

Статическая маршрутизация

Динамическая маршрутизация

Программные маршрутизаторы

Программные маршрутизаторы

Quagga: https://www.quagga.net

- разрабатывается с 1999 года
- умеет: OSPF, IS-IS, RIP, BGP
- Cisco-like синтаксис конфигов
- модульный, состоит из нескольких демонов
- умеет IPv6
- начиная с CentOS 8.1 отсутствует в базовых репозиториях

FRR: https://frrouting.org

- форк Quagga
- разрабатывается с 2017 года
- умеет: BGP, IS-IS, LDP, OSPF, PIM, RIP, MPLS, VRRP и поддержку IPv6
- присутствует в репозитории AppStream начиная с CentOS 8.1

Программные маршрутизаторы

BIRD: https://bird.network.cz

- разрабатывается с 2005 года
- умеет: OSPF, IS-IS, RIP, BGP, BFD
- умеет IPv6
- свой язык описания конфигов и фильтров
- поддерживает множественные таблицы маршрутизации
- используется: DE-CIX, LINX, PAIX, MSK-IX

Программные маршрутизаторы

Quagga (ex-Zebra)

Набор демонов, реализующий управление сетью в linux

Возможно так же управление интерфейсами и разнообразными сетевыми настройками

Полностью копирует управление и функциональность Cisco IOS

Параметры ядра в Linux

net.ipv4.ip_forward - пропуск пакетов в ядре Linux

- по-умолчанию отключен, пакеты между разными интерфейсами пропускаться не будут
- проверить статус: sysctl net.ipv4.ip_forward
- включить прямо сейчас: sysctl -w net.ipv4.ip_forward=1
- включить насовсем: echo net.ipv4.ip_forward = 1 >> /etc/sysctl.conf

$net.ipv4.conf.eth*.rp_filter = 0$ - проверка маршрута источника

- по-умолчанию включена "строгая" проверка на всех интерфейсах
- проверить статус например eth2: sysctl net.ipv4.conf.eth2.rp_filter
- для реализации асимметричного роутинга нужно включить "нестрогую" проверку (2) или выключить проверку совсем (0)
- пример выключения: sysctl -w net.ipv4.conf.eth2.rp_filter = 0
- выключить насовсем: echo net.ipv4.conf.eth2.rp_filter = 0 >> /etc/sysctl.conf

Тестовый стенд

Домашнее задание

- Поднять три виртуалки Объединить их разными private network
- Поднять OSPF между машинами средствами программных маршрутизаторов на выбор: Quagga, FRR или BIRD
- 3 Изобразить ассиметричный роутинг
- 4 ЧТОБЫ ПРИ ЭТОМ РОУТИНГ БЫЛ СИММЕТРИЧНЫМ
- **5** Формат сдачи: Vagrantfile + ansible

Рефлексия

Назовите 3 момента, которые вам запомнились в процессе занятия

Что вы будете применять в работе из сегодняшнего вебинара?

Список материалов для изучения

- Книга "Компьютерные сети", авторы: Таненбаум Э., Уэзеролл Д.
- Книга "TCP/IP **учебный курс**", авторы: Лора А. Чеппел, Эд Титтел
- Книга "Структура и реализация сетей на основе протокола OSPF. Руководство Cisco"Том М. Томас
- Сайт и подкасты: https://linkmeup.ru
- Видео про LSA в OSPFv2: https://www.youtube.com/watch?v=wQX88Kw7qxQ
- Best practice по дизайну OSPF от Cisco:
 https://community.cisco.com/t5/networking-documents/ospf-design-best-practices/
 https://community.cisco.com/t5/networking-documents/ospf-design-best-practices/

Викирюк Павел

Системный инженер