Life-Span Example

Person ID	Weight	Height	ls_smoking	Life-span		_	\boldsymbol{A}	_	x ~	_ b _	
1	60kg	5.5ft	Yes (=1)	66		60	5.5	1	$\lceil x_1 \rceil$	[66]	
2	65kg	5.0ft	No (=0)	74		65 55	5.0 6.0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$ x_2 =$	74 78	
3	55kg	6.0ft	Yes (=1)	78	ŕ	55 50	5.0	1	$[x_3]$	/0 72	
4	50kg	5.0ft	Yes (=1)	72		Lou	5.0	ΤŢ		[/4]	

• The normal equation $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ is

$$\begin{bmatrix} 60 & 65 & 55 & 50 \\ 5.5 & 5.0 & 6.0 & 5.0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 60 & 65 & 55 & 50 \\ 5.5 & 5.0 & 6.0 & 5.0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix}$$

$$\begin{bmatrix} 13350 & 1235 & 165 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 16600 \end{bmatrix}$$

$$\begin{bmatrix} 13350 & 1235 & 165 \\ 1235 & 116.25 & 16.5 \\ 165 & 16.5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 16600 \\ 1561 \\ 216 \end{bmatrix}$$

What If $C = A^T A$ is NOT Invertible?

- Given $A^{T}A\mathbf{x} = A^{T}\mathbf{b}$, what if $C = A^{T}A$ is NOT invertible?
- Remember that in this case, the system has either no solution or infinitely many solutions.
- However, the solution always exist for this "normal" equation, and thus infinitely many solutions exist.
- When $C = A^T A$ is NOT invertible? If and only if the columns of A are linearly dependent. Why?
- However, $C = A^T A$ is usually invertible. Why?