Estratégias Evolutivas EEs

Prof. Juan Moisés Mauricio Villanueva

jmauricio@cear.ufpb.br

www.cear.ufpb.br/juan

Estratégias Evolutivas

 Desenvolvidas por Rechenberg e Schwefel, e estendida por Herdy, Kursawe e outros autores, foram inicialmente propostas com o objeto de solucionar problemas de otimização de parâmetros, tanto discretos como contínuos.

Estrutura

```
Algoritmo EE's
Início

•t←0;
•Inicialize P(t);
•Avalie P(t);
Enquanto (não condição de parada) Faça
Início

• t←t+1;
• Selecione P(t) a partir de P(t-1);
• Cruzamento P(t);
• Mutação P(t);
• Avalie P(t);
Fim
•Retorna a melhor solução;
Fim
```

Codificação da População

- Em contraste com a representação binária dos indivíduos em algoritmos genéticos, as estratégias evolutivas são diretamente baseadas em representações com vetores de valores reais.
- Os algoritmos evolutivos com codificação real são geralmente aplicados para resolver problemas de otimização:
 - multi-variável
 - não lineares
 - com restrições
 - com máximos ou mínimos locais e/ou globais.

Codificação da População

- Em problemas de otimização restrita, a codificação adotada pode fazer com que indivíduos modificados pelos operadores de cruzamento e mutação sejam inválidos.
- Nestes casos, cuidados especiais devem ser tomados na definição da codificação e na aplicação dos operadores, observando-se as restrições no domínio das variáveis.

$$x \in [x_{\min}, x_{\max}]$$

$$x_{random} = x_{\min} + (x_{\max} - x_{\min}) \times rand$$

rand é um número aleatório entre [0, 1]

Seleção

- A seleção deve ser tal que produza um balanço adequado entre a pressão seletiva e a variação introduzida pelos operadores genéticos.
- Por exemplo, métodos de seleção com elevada pressão seletiva, tendem a gerar super-indivíduos, isto é, indivíduos com aptidão superiores aos demais, reduzindo a diversidade genética da população.
- A presença de um super-indivíduo pode gerar uma convergência prematura no processo de evolução.

Seleção

- Métodos de seleção com baixa pressão seletiva tendem a produzir progressos muito lentos no processo evolutivo.
- Métodos de Seleção:
 - Seleção Proporcional à Função de Aptidão (Fitness)
 - Seleção Baseada na Classificação (Rank)

Seleção Proporcional ao Fitness

- Também conhecido como roleta ou Roulette Wheel, atribui-se a cada indivíduo de uma população uma probabilidade de passar à próxima geração proporcional à sua aptidão ou fitness.
- Indivíduos com maior valor do fitness terão maior probabilidade de passar à próxima geração.
- Este método pode fazer com que indivíduos bem adaptados sejam perdidos, ou seja, não passem para a próxima geração, isto devido a que este método é probabilístico.

Seleção Proporcional ao Fitness

 Para uma população de n indivíduos, na qual o i-ésimo indivíduo tem associado a ele uma medida de aptidão positiva e não nula, a probabilidade deste indivíduo ser selecionado é dada por:

$$Prob_{xi} = \frac{fitness(x_i)}{\sum_{j=1}^{n} fitness(x_j)}$$

N^a	String	fitness	%Total
$F(h_1^f)$	01101	169	14.4
$F(h_2^t)$	11000	576	49.2
$F(h_3^T)$	01000	64	5.5
$F(h_4^I)$	10011	361	30.9
Total		1100	100

- A seleção proporcional considerando a aptidão dos indivíduos pode ser problemática se os indivíduos da população apresentarem desempenhos muito próximos entre si.
- Além disso, se o tamanho da população é pequeno, a perda de diversidade genética pode levar à convergência prematura, pois a busca fica reduzida a poucos pontos, causando uma diminuição no poder de exploração do algoritmo genético.

- Uma opção para se evitar o surgimento de superindivíduos (relativos aos demais existentes na população atual) e a ocorrência de convergência prematura é reduzir as diferenças entre estes, a través de um mecanismo de seleção baseado em rank.
- Esta estratégia utiliza as posições dos indivíduos quando são ordenados de acordo com o fitness para determinar a probabilidade de seleção. Podem ser usados mapeamentos lineares ou não-lineares para determinar a probabilidade de seleção.

- Para uma população de n indivíduos $P=\{x_1,x_2,...,x_n\}$, são arranjados em ordem crescente de aptidão ou fitness, tal que $fitness(x_i) < fitness(x_j)$, para todo $1 \le i \le j \le n$.
- Define-se SP como a pressão de seleção do ambiente sobre os indivíduos. Neste caso, o valor da função de aptidão pode ser calculado por:
- Ranking Linear: O ranking linear permite valores de pressão de seleção SP entre [1; 2].

$$F(i) = 2 - SP + \frac{2 \cdot (SP - 1) \cdot (i - 1)}{n - 1}$$

• Ranking Não Linear: O ranking não linear permite valores de pressão de seleção entre SP∈[1; n-2].

$$F(i) = \frac{n \cdot v^{n-1}}{\sum_{j=1}^{n} v^{j-1}}$$
 Para: $i = 1,...,n$

sendo que *v* é calculado como a raiz do polinômio:

$$(SP-n)v^{n-1} + SP.v^{n-2} + ... + SP = 0$$

 A seleção por Rank tem a desvantagem de exigir a ordenação de toda a população, o que pode representar um custo computacional em algumas aplicações.

Elitismo

- O termo elitismo está associado à adoção de uma operação adicional junto aos métodos de seleção, que força o algoritmo evolutivo a reter o melhor indivíduo ou um número de melhores indivíduos, a cada geração.
- Estes indivíduos poderiam ser perdidos se não fossem selecionados de forma determinística para compor a próxima geração, ou então fossem modificados por operadores de cruzamento ou mutação.
- Em grande parte dos casos, estratégias elitistas associadas aos métodos de seleção melhoram o desempenho do algoritmo evolutivo.

Operador de Cruzamento

- É responsável pelo intercâmbio de informação genética entre os indivíduos de uma população, produzindo novas soluções candidatas ou potencias com algumas características já existentes dos pais.
- O processo de cruzamento depende da escolha dos pares (ou grupos) de indivíduos. A probabilidade de ocorrência de recombinação entre dois indivíduos de uma população é denominada taxa de cruzamento que varia entre 0,5 e 1,0.

Operador de Cruzamento

- No entanto, uma alta probabilidade de cruzamento faz com que indivíduos com uma maior aptidão, sejam eliminados antes que o processo de seleção possa produzir aperfeiçoamento.
- Por outro lado, uma baixa probabilidade de cruzamento pode convergir lentamente devido à baixa taxa de exploração das características genéticas.

Operador de Cruzamento Aritmético

- Operador de cruzamento desenvolvidos para uso com codificação em ponto flutuante.
- Este operador esta definido como uma combinação linear de dois vetores (cromossomos): sejam x₁ e x₂ dois indivíduos selecionados para cruzamento, então os dois filhos resultantes serão:

$$x'_1 = a.x_1 + (1-a).x_2$$

 $x'_2 = (1-a).x_1 + a.x_2$

sendo a uma variável aleatória definida no intervalo $a \in [0, 1]$.

Operador de Cruzamento Aritmético

- Este operador é particularmente apropriado para problemas de otimização numérica com restrições, onde a região factível é convexa.
- Isto porque, se x_1 e x_2 pertencem à região factível, combinações convexas de x_1 e x_2 serão também factíveis. Assim, garante-se que o operador de cruzamento não gera indivíduos inválidos.

Operador de Mutação

- O operador de mutação modifica aleatoriamente um ou mais genes de um cromossomo.
- A probabilidade de ocorrência de mutação em um gene é denominada taxa de mutação. Usualmente, são atribuídos valores pequenos para a taxa de mutação.
- A principal contribuição do operador de mutação é criar uma variabilidade extra na população, mas sem destruir o progresso já obtido com a busca.

Operador de Mutação

- No caso de problemas com codificação em ponto flutuante, os operadores de mutação mais populares são:
 - > mutação uniforme
 - > mutação não uniforme
 - > mutação gaussiana

Operador de Mutação Uniforme

 O operador mutação uniforme seleciona aleatoriamente um componente $k \in \{1, 2, ..., n\}$ do cromossomo

$$x = [x_1 \dots x_k \dots x_n]$$
 e gera um indivíduo :

$$x' = [x_1 ... x'_k ... x_n],$$

sendo x'_k é um número aleatório (com distribuição de probabilidade uniforme) amostrado no intervalo:

$$x_k \in [x_{kmin}, x_{kmax}]$$

Operador de Mutação Não Uniforme

 O operador mutação não uniforme foi especialmente desenvolvido para problemas de otimização com restrições e codificação em ponto flutuante, destinada a realizar a sintonia fina aos indivíduos da população.

$$x = [x_1 \dots x_k \dots x_n]$$
 e gera um indivíduo : $x' = [x_1 \dots x_k' \dots x_n],$

Neste caso, x_k sofrerá uma variação para gerar um novo valor. Esta variação dependerá do problema.

Operador de Mutação Gaussiana

• No caso do operador de mutação gaussiana, todos os componentes de um cromossomo $\mathbf{x} = [x_1, ..., x_n]$ são modificados na forma.

$$\mathbf{x}' = \mathbf{x} + N(0,\sigma)$$

sendo $N(0,\sigma)$ um vetor de variáveis aleatórias gaussianas independentes, com média zero e desvio padrão σ .

Exemplo: Projeto de um Filtro Passa-Faixa

- Filtro Passa-Faixa
- Largura de banca [100 Hz, 10 kHz]
- Ganho no estágio *k*=2
- Fator de Qualidade $Q = \frac{\sqrt{f_{corteLOW} \times f_{corteHIGH}}}{f_{corteHIGH} f_{corteLOW}} = 0,101$

Exemplo: Projeto de um Filtro Passa-Faixa

• Estrutura do Filtro Passa-Faixa com frequencia de corte em [100 Hz , 10 kHz].

Solução=
$$[R_A \ R_B \ R_f \ R_i \ C_A \ C_B]$$

26

Restrições dos valores dos componentes eletrônicos:

```
R_{min} = 10 \text{ ohm}

R_{max} = 10 \text{ ohm}

C_{min} = 10 \text{ nF}

C_{max} = 500 \text{ uF}
```

Função de Fitness

- Pode ser definida uma função de aptidão minimizando os erros quadráticos entre o valor especificado e o valor obtido, para cada conjunto de soluções:
 - ➢ e²_{fL} = Erro Quadrático da Frequência de corte inferior
 - ➢ e²_{fH} = Erro Quadrático da Frequência de corte superior
 - \triangleright e²_O = Erro Quadrático do Fator de qualidade
 - → e²_k = Erro Quadrático do Ganho

$$fitness = \frac{1}{4} \left(e_{fL}^2 + e_{fH}^2 + e_Q^2 + e_k^2 \right)$$

População Inicial

- Geração de números aleatórios dos componentes eletrônicos de acordo às restrições do problema.
- Determinar um tamanho da população, por exemplo 100

$$P_{0} = \begin{bmatrix} R_{A1} & R_{B1} & R_{f1} & R_{i1} & C_{A1} & C_{B1} \\ R_{A2} & R_{B2} & R_{f2} & R_{i2} & C_{A2} & C_{B2} \\ \dots & & & & & \\ R_{A100} & R_{B100} & R_{f100} & R_{i100} & C_{A100} & C_{B100} \end{bmatrix}_{100 \times 6}$$

Seleção e Reprodução

- Seleção por Roleta
- Cruzamento Aritmético
- Mutação Gaussiana com valor médio zero e:
 - Desvio padrão para resistores 1k ohm
 - Desvio padrão para capacitores de 1μF
- Elitismo:
 - Os 5 melhores descendentes substituirão aos 5 piores pais
- Parâmetros:
 - Pc = 0,85 Pm = 0,01 #Gerações = 10000