Tarea 2 Física computacional

Resuelva los siguientes ejercicios, explicando claramente su razonamiento.

- 1. Realice un programa que encuentre todas las raíces de una función en un intervalo cerrado bajo la suposición de que la función realiza oscilaciones y entre cada oscilación hay al menos una raíz. Ponga en práctica esta función y encuentre todas las raíces de la siguiente función $y(x) = \cos x + \frac{6}{5}\sin x^2$ en el intervalo $(0, 2\pi)$.
- 2. Se tiene la siguiente función:

$$f(x,y) = 2e^{-(x+1)^2} \left(e^{-(y+2)^2} + e^{-(y-2)^2} \right) + 6x(x^2 + y^2)e^{-(x^2 + y^2)} - 1$$
 (1)

Encuentre los puntos (\tilde{x}, \tilde{y}) tales que $f(\tilde{x}, \tilde{y}) = 0$ y dibuje estos puntos en el plano xy.

Hint: Como podrá notar los puntos a buscar se encuentran en la región $x, y \in (-4, 4) \times (-4, 4)$. Una forma de obtener los puntos es haciendo un barrido para x fija y encontrando todas las raíces de la ecuación en términos de y. Entre más fino haga el barrido, la curva de nivel que se encuentre será mejor.

- 3. Se tiene una pelota de masa m sobre un plano inclinado a un ángulo $\alpha = 15^{\circ}$, 30° y 45°.
 - (a) Dibuje la trayectoria de la pelota si es lanzada desde el plano inclinado con una velocidad $v_{0x}, v_{0y} > 0$ considerando que hay fricción con el aire proporcional a la velocidad.
 - (b) Realice la misma simulación si ahora la fracción es proporcional al cuadrado de la velocidad
 - (c) ¿Qué sucede si ahora la pelota es lanzada con velocidad inicial $v_{0x} < 0$ tal que $\tan^{-1}\left(\frac{v_{0y}}{v_{0x}}\right) > \alpha$

Realice las gráficas que representen las simulaciones. Puede suponer que m=1 y valores adecuados para los coeficientes de fricción.