SUPSI

Computer Graphics

Mathematics for Computer Graphics (2)

Achille Peternier, adjunct professor

Translation

$$\mathbf{v}_n = \mathbf{v}_p + \mathbf{t}$$

e.g.:
$$\begin{bmatrix} 0.5 \\ 1 \\ 1.5 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 5 \\ 7.5 \end{bmatrix}$$

Translation

Rotation

$$\mathbf{v}_n = \mathbf{R}\mathbf{v}_p$$

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \qquad \mathbf{R}_{y} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$\mathbf{R}_{z} = \begin{bmatrix} \cos & -\sin & 0 \\ \sin & \cos & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation

Scaling

$$\mathbf{v}_n = \mathbf{S}\mathbf{v}_p$$

$$\mathbf{S} = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$

When $x=y=z \rightarrow \text{uniform/isotropic}$ scaling Otherwise $\rightarrow \text{non-uniform/anisotropic}$ scaling

Scaling

$$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Homogeneous coordinates

- Without homogeneous coordinates:
 - Translation = vector by vector addition.
 - Rotation = matrix by vector multiplication.
 - Scaling = matrix by vector multiplication.

Goals:

- Reducing the number of operations required.
- Using one same method for implementing all the base transformations of the rendering pipeline (including projections).
- With homogeneous coordinates:
 - Translation, rotation, scaling = matrix by vector multiplication.

Homogeneous coordinates

2D:
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3D:
$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

(glVertex3f() implicitly sets w = 1)

Homogeneous coordinates

$$\mathbf{v}_n = \mathbf{T}\mathbf{v}_p$$

where **T** can be any transformation among translation, rotation, and scaling

Homogeneous coordinates - translation

$$\mathbf{v}_n = \mathbf{T}\mathbf{v}_p$$

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Homogeneous coordinates - translation

$$\mathbf{v}_n = \mathbf{T}\mathbf{v}_p$$

$$\begin{bmatrix} x_n \\ y_n \\ z_n \\ w_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \begin{aligned} x_n &= x + 2 \times 1 \\ y_n &= y + (-3) \times 1 \\ z_n &= z + 4 \times 1 \\ w_n &= 1 \times 1 \end{aligned}$$

Homogeneous coordinates - rotation

$$\mathbf{v}_n = \mathbf{R}\mathbf{v}_p$$

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R}_{y} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos & 0 & \sin & 0 \\ 0 & 1 & 0 & 0 \\ -\sin & 0 & \cos & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{z} = \begin{bmatrix} \cos & -\sin & 0 & 0\\ \sin & \cos & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Homogeneous coordinates - scaling

$$\mathbf{v}_n = \mathbf{S}\mathbf{v}_p$$

$$\mathbf{S} = \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Given three transformations T_1 , T_2 , and T_3 :

$$\mathbf{v}_n = \mathbf{T}_3 \mathbf{T}_2 \mathbf{T}_1 \mathbf{v}_p$$

using post-multiplication and column vectors

• Let: $T_1 = \text{rotation of } 60^\circ$

 $T_2 = translation(10, 0)$

$$T_2T_1 \neq T_1T_2$$

WATER AND

• Rotation of 45° about point **a**:

1) Subtract **a** to center the object at the origin

• Rotation of 45° about point **a**:

2) Rotate the object around the origin

SUPSI DTI / CG / Math for CG A. Peternier 22

Concatenation

• Rotation of 45° about point **a**:

3) Add **a** to translate the object back

Scene graph

- The scene is represented as a hierarchy (tree) of dependencies:
 - Each node has its own matrix.
 - Each node multiplies the previous node's matrix by its own matrix:
 - The cumulated resulting matrix is used by the next level.
 - Use push/pop to store/restore states as you go deeper in the tree.

Object positioning

- Let put objects A, B, and C somewhere in the 3D world coordinates:
 - At each frame, we start from scratch and reprocess the scene-graph.
 - Reset the current matrix (set to identity).
 - Apply required transformations to place object A.
 - If object B depends on A's position, apply the next transformations without resetting the current matrix:
 - New transformations stack on top of the previous ones.
 - If object C does not depend on previous objects' position, reset the current matrix and start again.

SUPSI DTI / CG / Math for CG A. Peternier 25

Coordinate spaces

Object/model coordinates:

 The object's 3D vertices are defined as relative to the origin, i.e., the object is centered at (0, 0, 0).

World coordinates:

- 3D vertices with absolute position:
 - World center is the origin (0, 0, 0).
 - Object matrix * object coordinates = world coordinates.

Eye/view/camera coordinates:

- 3D vertices relative to the viewer's position:
 - Center is the viewer's position (0, 0, 0).
 - Camera matrix⁻¹ * world coordinates = eye coordinates.

Object/model coordinates

- The vertices of each 3D object are defined as relative to its origin.
- The origin usually refers to the object's pivot point (center, barycenter or basement).
- Single 3D models are designed in object coordinates, then are moved around and their vertices become world coordinates.

$$a = (0, 2, 0)$$

$$b = (1, 0, 0)$$

$$c = (-1, 0, 0)$$

World coordinates

- Coordinates are relative to the world's origin.
- One same object can be put at different locations in the same scene:
 - Each instance will have its own absolute coordinates.
 - Vertices are relative to the object's center in object coordinates →
 objects are relative to the world's center in world coordinates.

$$a = (5, 2, 0)$$

$$b = (6, 0, 0)$$

$$c = (4, 0, 0)$$

$$eye = (5, 1, 3)$$

Eye/view/camera coordinates

- The eye is now at the origin (0, 0, 0).
- Coordinates are relative to the eye's position.

$$a = (0, 1, -3)$$

 $b = (1, -1, -3)$
 $c = (-1, -1, -3)$

$$eye^{-1} = (-5, -1, -3)$$

Batch transformations

- Given the same three transformations T_1 , T_2 , and T_3 and a list of points $\mathbf{v}_{p(1-1000)}$ it is more efficient to:
 - 1) compute the final matrix $\mathbf{T}_f = \mathbf{T}_3 \mathbf{T}_2 \mathbf{T}_1$ just once, then
 - 2) multiply the 1000 points using:

for p=1 to 1000
$$\mathbf{v}_n = \mathbf{T}_f \mathbf{v}_p$$

Point cloud

Matrix interpolation

- There's no easy way to smoothly interpolate between two matrices:
 - Such interpolation is very useful in animation.
- Two options:
 - 1) Use **matrix decomposition** on any arbitrary transformation matrix to obtain its scale, rotation, and translation parameters, which you can linearly interpolate and concatenate back into a matrix.
 - 2) Use quaternions (but they only work for rotations).

Quaternions (1843)

- Generalization of complex numbers.
- A quaternion is a four-tuple:

$$\mathbf{q} = (x, y, z, w) = w + xi + yj + zk$$

where:

$$i^2 = j^2 = k^2 = ijk = -1$$

 $ij = k$ Not commutative
 $ii = -k$ (in general)

William Rowan Hamilton 1805 - 1865

Quaternions

 Quaternions are useful for interpolating rotations between two matrices during animation.

- To do so:
 - Convert the two matrices into quaternions.
 - Use spherical linear interpolation (slerp) to interpolate between the two quaternions.
 - Convert the resulting quaternion back to a matrix.

Coordinate spaces

Clip coordinates:

- Intermediate step before the divide step:
 - Projection matrix * eye coordinates = clip coordinates.
- The goal of the projection matrix is to setup the w component...
 - ...for the following division of x, y, z by w.
 - ...for the normalization of x, y, z.

Projections

- Two main types of projection (matrices):
 - Orthographic.
 - Perspective.
- Other kinds of projection are difficult to implement (e.g., fish-eye).

Orthographic projection

- Distant objects appear with the same size, no perspective:
 - The clipping space is a cube (and not a truncated pyramid).
 - Useful for drawing 2D graphics, diagrams, blueprints, CAD tools, etc.

Orthographic projection limitations

41

Orthographic projection

z is inverted!

(as defined in *glOrtho* and *gluOrtho2D*)

 The orthographic projection is basically a scaling of the scene into the clipping space.

Perspective (~1413)

Filippo Brunelleschi 1377 - 1446

Città ideale, anon., ~1480-90

Perspective projection

- The w component of each vertex increases with its distance from the near plane:
 - Division of x, y, z by w is done just after.
- Points converge to the center according to their distance.
- The clipping space is a truncated pyramid.

Perspective projection


```
fieldOfView vertical (y) view angle
f cotangent(fieldOfView/2)
aspect aspect ratio (4:3, 16:9, etc.)
```

(as defined in *gluPerspective*)

So far...

Coordinate spaces

Normalized device coordinates:

- $-4D \rightarrow 3D$:
 - Clip coordinates x, y, z divided by w.
- In the range (-1, -1, -1) to (1, 1, 1): vertices not within this range are clipped.
- z coordinate is still present.

SUPSI

Screen/window coordinates:

- Final XY(Z) pixel coordinates:
 - Viewport transformation * normalized device coordinates = screen pixels
 - Z used for z-buffer and perspective-correct texture mapping.

$$x_{sc} = (x_{ndc} + 1) \times \frac{screenWidth}{2}$$

$$y_{sc} = (y_{ndc} + 1) \times \frac{screenHeight}{2}$$

$$z_{sc} = \frac{z_{ndc} + 1}{2}$$

Full pipeline

$$\begin{bmatrix} clip_x \\ clip_y \\ clip_z \\ clip_w \end{bmatrix} = \text{projMat * cameraMat}^{-1} * \text{transMat * rotMat * scaleMat *}$$

$$x_{sc} = (x_{ndc} + 1) \times \frac{screenWidth}{2}$$

$$y_{sc} = (y_{ndc} + 1) \times \frac{screenHeight}{2}$$

$$z_{sc} = \frac{z_{ndc} + 1}{2}$$

Coordinate spaces (summary)

An in-depth summary on OpenGL coordinate spaces:
http://unspecified.wordpress.com/2012/06/21/calculating-the-gluperspective-matrix-and-other-opengl-matrix-maths/

55

GLM

Transformations:

```
#include <glm/glm.hpp>
#include <glm/gtc/matrix transform.hpp>
int foo()
  glm::vec4 \ v_obj = glm::vec4(glm::vec3(0.0f), 1.0f);
  glm::mat4 M rot = glm::rotate(glm::mat4(1.0f),
                                glm::radians(90.0f),
                                glm::vec3(0.0f, 1.0f, 0.0f));
  glm::mat4 M trans = glm::translate(glm::mat4(1.0f),
                                      glm::vec3(10.0f, 0.0f, 0.0f));
  glm::vec4 v world = M trans * M rot * v obj;
  return 0;
```

GLM

Constants:

```
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>

double squarePi()
{
    return glm::pi<double>() * glm::pi<double>();
}
```


SUPSI DTI / CG / Math for CG A. Peternier 57

GLM

Quaternions:

```
#include <glm/glm.hpp>
int foo2()
   glm::mat4 M1 = ...
   glm::mat4 M2 = ...
   glm::quat qM1 = glm::quat(M1);
   glm::quat qM2 = glm::quat(M2);
   glm::quat qR = glm::slerp(qM1, qM2, 0.5f);
   glm::mat4 R = glm::mat4(quat R);
   return 0;
```

SUPSI

GLM

OpenGL (thus GLM) accesses matrices in column-major order, e.g.:

$$\begin{bmatrix} a & e & i & m \\ b & f & j & n \\ c & g & k & o \\ d & h & l & p \end{bmatrix} \leftarrow \text{in the documentation}$$

But C arrays are stored in row-major order:

```
glm::mat4 mat( a, b, c, d,
               e, f, g, h,
                               ← in the code
               i, j, k, l,
               m, n, o, p);
```

