Dimensionality Reduction: CUR Decomposition

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

CUR Decomposition

- Goal: Express A as a product of matrices C,U,R
 Make ||A C·U·R||_F small
- "Constraints" on C and R:

CUR Decomposition

Frobenius norm:
$$\|X\|_F = \sqrt{\sum_{ij} X_{ij}^2}$$

- Goal: Express A as a product of matrices C,U,R
 Make ||A C·U·R||_F small
- "Constraints" on C and R:

CUR: Provably good approx. to SVD

Let:

 A_k be the "best" rank k approximation to A (that is, A_k is SVD of A)

Theorem [Mahoney & Drineas] CUR in O(m·n) time achieves

- $\|\mathbf{A}\text{-}\mathbf{CUR}\|_{F} \leq \|\mathbf{A}\text{-}\mathbf{A}_{k}\|_{F} + \epsilon \|\mathbf{A}\|_{F}$ with probability at least **1**- δ , by picking
- O(k log(1/ δ)/ ϵ^2) columns, and
- $O(k^2 \log^3(1/\delta)/\epsilon^6)$ rows

In practice:
Pick 4k cols/rows

CUR: How it Works

- Sampling columns (similarly for rows):
- ColumnSelect algorithm:

Input: matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample size c

Output: $\mathbf{C}_d \in \mathbb{R}^{m \times c}$

- 1. for x = 1 : n [column distribution]
- 2. $P(x) = \sum_{i} \mathbf{A}(i, x)^{2} / \sum_{i,j} \mathbf{A}(i, j)^{2}$
- 3. for i = 1 : c [sample columns]
- 4. Pick $j \in 1 : n$ based on distribution P(x)
- 5. Compute $\mathbf{C}_d(:,i) = \mathbf{A}(:,j)/\sqrt{cP(j)}$

Note this is a randomized algorithm, same column can be sampled more than once

Computing U

- Let W be the "intersection" of sampled columns C and rows R
 - Let SVD of W = X Z Y^T
- Then: U = W⁺ = Y Z⁺ X^T
 - Z^+ : reciprocals of non-zero singular values: $Z^+_{ii} = 1/Z_{ii}$
 - W⁺ is the "pseudoinverse"

Why pseudoinverse works?

W = X Z Y then W⁻¹ = X⁻¹ Z⁻¹ Y⁻¹
Due to orthonomality $X^{-1}=X^{T}$ and $Y^{-1}=Y^{T}$ Since Z is diagonal $Z^{-1}=1/Z_{ii}$ Thus, if W is non-singular, pseudoinverse is the true inverse

CUR: Provably good approx. to SVD

For example:

- Select $c = O\left(\frac{k \log k}{\varepsilon^2}\right)$ columns of A using ColumnSelect algorithm
- Select $r = O\left(\frac{k \log k}{\varepsilon^2}\right)$ rows of A using ColumnSelect algorithm
- Set $U = W^+$
- Then: $||A CUR||_F \le (2 + \epsilon) ||A A_k||_F$ with probability 98%