24-650 Applied Finite Element Analysis Assignment 1

submitted by

Letian Leng

Objective

The goal of this assignment is to explore the steady-state thermal conductivity and temperature variations under different material and heat insulation settings. The main object is a casted iron pipe with inside and outside diameters are 70 mm and 90 mm, accordingly.

Model and Geometry

The cast iron pipe (see in Fig.1) has inside and outside diameters are 70 mm and 90 mm, accordingly. Moreover, a heat insulation foam with 5mm thick will be applied to the outside surface of the pipe (see in Fig.2).

Figure 1. The curved pipe

Figure 2. The pipe with foam insulation (green)

Display		
Display Style	Display Style Use Geometry Setting	
Defaults		
Physics Preference	Mechanical	
Element Order	Program Controlled	
Element Size	1.e-002 m	
Sizing		
Quality		
Check Mesh Quality	Yes, Errors	
Error Limits	Aggressive Mechanical	
Target Element Quality	Default (5.e-002)	
Smoothing	Medium	
Mesh Metric	None	

Mesh Settings

Boundary Conditions (Part A)

The thermal conductivity of the pipe is 52 W/m-C, and the pipe is carrying steam at 155 °C, with an outside temperature of 20 °C.

We assume that the pipe ends are adiabatic.

The inside surface has a convention coefficient of 20 W/m^2 -C, with an outside surface convention coefficient of 3.8 W/m^2 -C.

Туре	Convection
Film Coefficient	3.8 W/m².°C (step applied)
Ambient Temperature	20. °C (ramped)

Results (Part A)

Scope		
Scoping Method	Geometry Selection	
Geometry	4 Faces	
Definition		
Type	Temperature	
Ву	Time	
Display Time	Last	
Separate Data by Entity	No	
Calculate Time History	Yes	
Identifier		
Suppressed	No	
Results		
Minimum	128.37 °C	
Maximum	128.49 °C	
Average	128.43 °C	
Minimum Occurs On	CurvedPipe\Solid	
Maximum Occurs On	CurvedPipe\Solid	

A1 – The maximum outside temperature is <u>128.5 °C</u>

A2 – The rate of heat loss off the outside surface of the pipe is 35.4 W.

Boundary Conditions (Part B)

The thermal conductivity of the pipe is 52 W/m-C, and the pipe is carrying steam at 155 °C, with an outside temperature of 20 °C.

We assume that the pipe ends are adiabatic.

The foam has a thermal conductivity of 0.20 W/m-C, and the inside surface has a convention coefficient of $20~\text{W/m}^2$ -C, with an combined surface convention coefficient of $3.4~\text{W/m}^2$ -C, calculated by:

$$h_{eq} = \frac{1}{R_{total}A} = 3.4 \text{ W/m}^2-\text{C}$$

Type	Convection
Film Coefficient	3.4 W/m².°C (step applied)
Ambient Temperature	20. °C (ramped)

Results (Part B)

Scope		
Scoping Method	Geometry Selection	
Geometry	4 Faces	
Definition		
Туре	pe Temperature	
Ву	Time	
Display Time	Last	
Separate Data by Entity	No	
Calculate Time History	Yes	
Identifier		
Suppressed	No	
Results		
Minimum	130.66 °C	
Maximum	130.78 °C	
Average	130.72 °C	
Minimum Occurs On	CurvedPipe\Solid	
Maximum Occurs On	CurvedPipe\Solid	

B1 − The maximum outside temperature is <u>130.8 °C</u>

Definition		
Туре	Reaction	
Location Method	Boundary Condition	
Boundary Condition	Convection 2	
Suppressed	No	
Options		
Display Time	End Time	
Results		
Maximum Value Over Time		
Heat -32.302 W		
Minimum Value Over Time		
Heat	-32.302 W	

- B2 The rate of heat loss off the outside surface of the pipe is 32.3 W.
- **B3** The heat loss is <u>smaller</u> than compared to A2, as the heat insulation material prevented some heat loss of that pipe.

Boundary Conditions (Part C)

The thermal conductivity of the pipe is 52 W/m-C, and the pipe is carrying steam at 155 °C, with an outside temperature of 20 °C.

We assume that the pipe ends are adiabatic.

The foam has a thermal conductivity of 0.20 W/m-C, and the inside surface has a convention coefficient of 20 W/m 2 -C, with an outside surface convention coefficient of 3.8 W/m 2 -C, calculated by:

Type	Convection
Film Coefficient	20. W/m².°C (step applied)
Ambient Temperature	155. °C (ramped)

Type	Convection
Film Coefficient	3.8 W/m ² .°C (step ap

Results (Part C)

Scope		
Scoping Method	Geometry Selection	
Geometry	4 Faces	
Definition		
Туре	Temperature	
Ву	Time	
Display Time	Last	
Separate Data by Entity	No	
Calculate Time History	Yes	
Identifier		
Suppressed	No	
Results		
Minimum	118.16 °C	
Maximum	118.68 °C	
Average	118.39 °C	
Minimum Occurs On	SYS\Solid	
Maximum Occurs On	SYS\Solid	

C1 – The maximum outside temperature is <u>118.7 °C</u>

Definition		
Type	Reaction	
Location Method	Boundary Condition	
Boundary Condition	Convection	
Suppressed	No	
Options		
Display Time End Time		
Results		
Maximum Value Over Time		
Heat -35.636 W		
Minimum Value Over Time		
Heat	-35.636 W	

- C2 The rate of heat loss off the outside surface of the pipe is 35.6 W.
- C3 The heat loss comparison is listed below:

A2	B2	C2
35.4W	32.3W	35.6W

As one can read from the table above that **Part B** has the **lowest** heat loss, and **Part C** has the **highest** heat loss, one possible reason is due to the increase of surface area (heat insulation material has thickness therefore enlarged the outside surface area), and the influence of surface area overrides the heat insulation effect. Under the situation of outside surface area remain unchanged (Part A and B), the heat insulation does reduce the heat loss.