Bestimmung des Phenolgehaltes einer Gewässerprobe

Die Bestimmung erfolgt, indem man zu 100 ml der Gewässerprobe 2 ml des Reagenzes (Gemisch aus $NaNO_2$, verd. H_2SO_4 und m-Nitroanilin) hinzufügt. Es entsteht ein gelber Farbkomplex, der bei 430 nm messbar ist.

mg Phenol /100 ml Kalibrierlösung	Extinktion
0,3	0, 453
0,6	0,910
0,9	1,329

Die gemessene Extinktion für die Probe (100 ml) ergab 0,523 bei einer Schichtdicke von 1 cm.

Aufgaben:

- a) Ermitteln Sie das Ergebnis der Probe in mg Phenol /100ml zeichnerisch.
- b) Ermitteln Sie den molaren Extinktionskoeffizienten **ε** für die drei Kalibrierungen und bilden Sie den Mittelwert.
- c) Berechnen Sie die Konzentration **c** für die Probe nach dem Lambert Beerschen Gesetz

$$E = c_{(Phenol)} \cdot d \cdot \epsilon$$

c = in mol/L V = des Meßkolbens in L d = in cm $M_{(Phenol)}$ = 94,113 g /mol m = für die eingewogene Menge im Meßkolben in g ϵ = l/mol·cm

$$\frac{E}{\varepsilon} = \frac{M_{(Phenol)} \cdot V}{m}$$

Bestimmung des Phosphorgehaltes in einer Probe als Molybdatovanadatophosphat [$PV_2Mo_{10}O_{40}$]

µg Phosphor /100 ml Kalibrierlösung	Extinktion
200	0,216
400	0,426
600	0,639
800	0,852

Die gemessene Extinktion für die Probe (100 ml) 0,492 bei einer Schichtdicke von 1 cm.

- a) Ermitteln Sie das Ergebnis der Probe in mg Phosphor /100ml zeichnerisch.
- b) Ermitteln Sie den molaren Extinktionskoeffizienten **ε** für die drei Kalibrierungen und bilden Sie den Mittelwert.
- c) Berechnen Sie die Konzentration **c** für die Probe nach dem Lambert Beerschen Gesetz

$$\mathsf{E=}\; c_{(\mathsf{P})} \cdot \mathsf{d} \cdot \epsilon$$

c = in mol/L V = des Meßkolbens in L d = in cm $M_{(P)}$ = 30,97 g /mol

m = für die eingewogene Menge im Meßkolben in g ϵ = $l/mol \cdot cm$

$$\varepsilon = \frac{E}{d} \cdot \frac{M_{(Phosphor)} \cdot V}{m}$$