

Bangladesh Army International University Of Science And Technology

Title: ArNet A Deep Learning Architecture For Pixelwise Semantic Segmentation Of Images

Presented By:

Arik Md. Isthiaque ID – 1103096 Section – B Department of CSE, BAIUST

Supervised By:

Arifa Islam Champa Lecturer Department of CSE, BAIUST

Introduction

Segmentation - Process that classify object in image

segmented

- 1: Person
- 2: Purse
- 3: Plants/Grass
- 4: Sidewalk
- 5: Building/Structures

Challenges

- Building the DCNN
- Layer reduction
- **■** Time reduction
- Add more classes
- Calculate the class weights

Motivation for Research

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [2]

- **Build to understand road scenes**
- Model appearances and shapes
- Understand the spatial resolution between classes
- Used mostly for autonomous driving

Literature Review

- In "Feedforward semantic segmentation with zoom-out features" Mohammadreza Mostajabi, Payman Yadollahpour, and Gregory Shakhnarovich represented the statistical structure of a image by a purely feed forward network by mapping Superpixels using zoom-out features [3]
- In "Convolutional Feature Masking for Joint Object and Stuff Segmentation" Jifeng Dai, Kaiming He, and Jian Sun image shape information was exploited by Convolutional Neural Network for object that are connected [4]

Methodology

Figure 2: Overview of ArNet architecture.

Encoder Layer

7

2D Convolution

Batch Normalization

ReLU

2D MaxPooling

2D Convolution

Batch Normalization

ReLU

2D MaxPooling

2D Convolution

Batch Normalization

ReLU

2D MaxPooling

2D Convolution

Batch Normalization

ReLU

Figure 3: The Encoder layer.

8

Encoder Layer

Encoder Layer

2D Convolution

Figure 6: A 2D convolution operation [5].

11

2D MaxPooling

Figure 7: 2D MaxPooling [6].

12

2D Deconvolution

Batch Normalization

2D UnPooling

→ 2D Deconvolution

Batch Normalization

2D UnPooling

2D Deconvolution

Batch Normalization

2D UnPooling

2D Deconvolution

Batch Normalization

SoftMax

Figure 8: The Decoder layer.

13

Figure 9: The Decoder layer.

14

Figure 10: The Decoder layer.

15

2D Deconvolution
Batch Normalization
2D UnPooling

2D DeconvolutionBatch Normalization2D UnPooling

Scale the output in the form of 0 to 1

2D Deconvolution

Batch Normalization

2D UnPooling

2D Deconvolution Batch Normalization

SoftMax

Figure 11: The Decoder layer.

Dataset

Figure 12: Some random image from the CamVid Dataset [2].

Result

Figure 13: Categorical accuracy per epoch of the training and validation data.

Result

(a) Input Image

(b) Visualization of feature map

Figure 14: Visualizing the results of ArNet architecture.

Comparison

Table 1: Validation accuracy comparison between some the state-ofthe-art architecture and ArNet.

Architecture	Validation Accuracy	Time Per Epoch (avg)
FCN8 [13]	62.5%	12 minutes
SegNet [18]	88.0%	1.6 hours
FC-DenseNet100 [19]	91.2%	13 hours (only one epoch was done completely)
ArNet	88.7%	32 minutes

Limitations

- Machine oriented architecture
- Very time consuming
 - 32 minutes per epoch on average
- Low number of dataset

Conclusion

- Improve machine visions
- Improve robotics
- Improve autonomous driving technology

Future Work

- Lower number of blocks
- Lower processing time
- More dataset
- Interface canny edge detector

References

- 1. A. A. Novikov, D. Lenis, D. Major, J. Hladůvka, M. Wimmer, K. Bühler, "Fully Convolutional Architectures for Multi-Class Segmentation in Chest Radiographs", Computer Vision and Pattern Recognition, (Submitted on 30 Jan 2017 (v1), last revised 13 Feb 2018 (this version, v4)).
- 2. V. Badrinarayanan, A. Kendall, R. Cipolla, Senior Member, IEEE, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation" [2017 TPAMI] https://arxiv.org/abs/1511.00561.
- 3. M. Mostajabi, P. Yadollahpour, G. Shakhnarovich, "Feedforward semantic segmentation with zoom-out features", Computer Vision and Pattern Recognition, (Submitted on 2 Dec 2014). arXiv:1412.0774.
- 4. J. Dai, K. He, J. Sun, "Convolutional Feature Masking for Joint Object and Stuff Segmentation" The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3992-4000

References

- 5. D. Torres, Alejandro (Nov 2, 2010). "Origin and history of convolution". 41 pgs. http://www.slideshare.net/Alexdfar/origin-adn-history-of-convolution. Cranfield, Bedford MK43 OAL, UK. Retrieved March 13, 2013.
- 6. Q. Zhao, S. Lyu, B. Zhang, and W. Feng, "Multiactivation Pooling Method in Convolutional Neural Networks for Image Recognition", Big IoT Data Analytics in Fog Computing, Volume- 2018, Article ID-8196906, https://doi.org/10.1155/2018/8196906.

Thank you.....