

Kontrollierte Experimente

Einordnung

Lernziele

- Gute Hypothesen aufstellen können
- Experiment mit hoher interner oder hoher externer Validität entwerfen können

Definition

- Systematische Studie
- Ein oder mehrere Faktoren werden variiert
- Alles andere konstant halten
- Ergebnis der systematischen Variation wird beobachtet

Experimentelle Phasen

Variablen

Unabhängige Variablen

- Absichtlich, systematisch variiert durch Versuchsleiter
- Faktor, Prädiktor (-variable)
- Alternativen, Level, Stufen, Treatment

- Beispiele:
 - Programmierparadigma
 - Sprache
 - Workload

Abhängige Variable

- Ergebnis eines Experiments
- Hängen ab von Variation der unabhängigen Variablen
- Beobachtet

- Beispiele:
 - Performance
 - Programmverständnis
 - Produktivität von Entwicklern

Latente Variablen

- Konstrukt
- Nicht direkt beobachtbar

- Beispiele
 - Programmverständnis
 - Intelligenz
 - Performance

Operationalisierung

- Operationen definieren, mit denen man Variablen messen kann
- Darf gesundem Menschenverstand nicht widersprechen

Aufgabe

- Operationale Definitionen f\u00fcr folgende Variablen
 - Performance
 - Programmverständnis
 - Intelligenz
 - Wartbarkeit

Hypothesen

- Erwartungen über Ergebnisse
- Erwartungen müssen begründet sein in Theorie oder Praxis
- Hypothesen müssen einfach und klar formuliert sein
- Hypothesen müssen überprüfbar sein
- Falsifizierbarkeit (Hausaufgabe: Logik der Forschung und Falsifizierbarkeit erklären)

Hypothese-Negativbeispiel

- Schlechte Kommentare sind schlecht für Programmverständnis
- Gute Kommentare sind gut für Programmverständnis

Besser

- Kommentare, die jedes Statement von Quelltext beschreiben, haben keinen Einfluss auf Antwortzeit beim Verstehen von Quelltext
- Kommentare, die falsche Informationen über Quelltext enthalten, verlangsamen Programmverständnis
- Kommentare, die den Zweck von Statements beschreiben, beschleunigen Programmverständnis

Aufgabe

- Stellen Sie je eine Hypothese zu folgenden Forschungsfragen auf:
 - Erhöht Objektorientierung die Produktivität von Entwicklern?
 - Ist Java besser als C++?
 - Ist MergeSort schneller als Quicksort?
- Die Hypothese muss überprüfbar sein, begründet sein; die Variablen müssen operationalisiert sein
- = Beispiel für Prüfungsfrage

Design

Validität

 Wird das gemessen was gemessen werden soll?

Interne Validität

 Maß, in dem Wert der abhängigen Variablen auf Variation der unabhängigen Variablen zurückgeführt werden kann

Externe Validität

- Maß, in dem Ergebnisse aus einem Experiment auf andere Umstände (Probanden, Material,...) übertragen werden kann
- = Verallgemeinerbarkeit

Hausaufgabe

Recherchieren Sie andere Validitätsarten

Gefahren/Bedrohungen

Störvariablen:

- Beeinflussen abhängige Variable zusätzlich zu unabhängiger Variablen
- Lerneffekte
- Hawthorne-Effekt
- Messinstrumente
- Selektion

— ...

Aufgabe

- Messen von Programmverständnis: Welche Störvariablen gibt es?
- Wie könnte man diese Störvariablen kontrollieren?

Störvariablen

- Es gibt viele Störvariablen
- Sorgfältig identifizieren und kontrollieren
 - Randomisierung
 - Matching/Parallelisierung/Balancing
 - Störvariable als unabhängige Variable definieren
 - Störvariable konstant halten
 - Nachträgliche Analyse

Randomisierung

- Zufallszahlengenerator
- Münze werfen
- Würfeln

• ...

• Probleme:

- Gruppen müssen groß genug sein
- 5 pro Gruppe zu wenig, 10 scheint akzeptabel

Matching/Parallelisierung/Balancing

Proband	Wert
P5	65
P9	56
Р3	42
P4	34
P10	24
P6	23
P7	21
P8	16
P2	12
P1	5

Gruppe A	Gruppe B
65	56
34	42
24	23
16	21
12	6

odd-even-even-odd/ ABBA

Matching/Parallelisierung/Balancing

- Nachteil gegenüber Randomisierung:
 - Störvariable muss gemessen werden
 - Programmiererfahrung?
 - Intelligenz?
- Vorteil gegenüber Randomisierung:
 - Genauere Kenntniss über Parameter

Parameter als unabhängige Variable definieren

- Wird systematisch vom Versuchsleiter variiert
- Störvariable wird operationalisiert
- Programmiererfahrung:
 - Statisch/wenig Erfahrung
 - Statisch/viel Erfahrung
 - Dynamisch/wenig Erfahrung
 - Dynamisch/viel Erfahrung

Rechenbeispiel

- 23 Störvariablen, jede mit 2 Stufen
 - = 8 388 608 mögliche Kombinationen
- Wie viele Probanden sind nötig, um jede Kombination abzudecken?
 - min. 10 Probanden pro Gruppe
 - 83 886 080 (ganz Deutschland)

Konstant halten

- Nur ein Level einer Störvariable
- Programmierfahrung
 - Nur Bachelor-Studenten
 - Nur Programmierexperten
- Intelligenz
 - Nur Studenten mit bestimmter Note

Nachträgliche Analyse

- Variable wird während des Experiments gemessen
- Einfluss einer Variablen wird nach dem Experiment analysiert
- Probleme:
 - Kann zeigen, dass Ergebnisse unbrauchbar sind

Verhältnis von Interner und Externer Validität

- Beide verlangen verschiedene Dinge
 - Intern: alles kontrollieren
 - Extern: allgemeines Setting

- Und jetzt?
 - Erst interne Validität maximieren
 - Dann schrittweise externe Validität erhöhen

Qualitätskriterien Empirischer Studien

- Validität
- Reliabilität
- Objektivität

Qualitätskriterien Empirischer Studien

• Reliabilität:

Genauigkeit der Messinstrumente

Objektivität:

- Durchführung eines Experiments darf nicht von Person der Versuchsleiter abhängen
- Dasselbe Experiment, durchgeführt von anderen Versuchsleitern, soll dasselbe Ergebnis liefern

Beispiel

- Waage zum Messen des Gewichts:
 - Valide
 - Reliabel je nach Qualität
 - Digitale Waage ist objektiver, da jeder die selbe
 Zahl sieht (analog lässt etwas Spielraum)
- Die selbe Waage zum Messen der Köpergröße:
 - Weniger valide
 - Reliabel je nach Qualität

Experimentelle Versuchspläne

Pläne

- Between vs. Within Subject
- = Mit vs. ohne Messwiederholung
- Einfaktoriell vs. Mehrfaktoriell
- = Eine vs. mehrere unabhängige Variablen
- Univariat vs. Multivariat
- = Eine vs. mehrere abhängige Variablen

Warum Pläne?

- Handlungsanweisung
- Kommunikationserleichterung
- Entscheidungsgrundlage für statistische Auswertung

Wahl eines Plans

- Abhängig von:
 - Effektstärke
 - Stichprobengröße
 - Je größer beides ist, desto weniger kommen ungewollte Einflüsse zum Tragen; desto weniger ist ein geeignetes Design wichtig
- Da meistens kleine Stichprobe und unbekannte Effektgröße in Softwareengineering, ist richtiges Design sehr wichtig

Einfaktoriell

Between-Subjects

- Probanden werden in Gruppen aufgeteilt
- So viele Gruppen wie Stufen der unabhängigen Variablen
- Ergebnisse werden zwischen Gruppen verglichen

```
Gruppe Stufen

A Textuelle Annotationen

B Hintergrundfarben
```

```
//Add the core application commands always
     public static final Command viewCommand = new
     public static final Command addCommand = new
     public static final Command deleteCommand = 1
27
     public static final Command backCommand = ne
     public static final Command editLabelCommand
30
31
33
     public static final Command favoriteCommand
34
     nublic static final Command viewFavoritesCom
35
36
37
        * Constructor
38
39
     public PhotoListScreen() {
       super("Choose Items", Choice.IMPLICIT);
```


Probleme

- Varianzen zwischen Probanden (=interindividuelle Unterschiede) sind groß
- 10x (What does 10x Mean? Measuring Variations in Programmer Productivity. Steve McConnell.)
- Ausreichend Probanden
- Balancierung der Gruppen

Within-Subjects

- Interindividuelle Differenzen sollen berücksichtigt werden
- Jeder Proband erfährt alle Stufen der unabhängigen Variablen

Eine	Session 1	Session 2
Gruppe	Hintergrund-	Textuelle
	farben	Annotationen

Probleme

- Lerneffekte
 - Besonders bei kreativen Aufgaben problematisch
 - Möglichst unterschiedliche, gleichzeitig ähnliche Aufgaben notwendig
- Reihenfolge-Effekte
- Intraindividuelle Unterschiede:
 - Müdigkeit
 - Motivation
- Mortality

Crossover

- Jeder Proband erfährt alle Stufen
- Vergleich zwischen Gruppen und innerhalb von Gruppen möglich

Gruppe	Session 1	Session 2
A	Hintergrund- farben	Textuelle Annotationen
В	Textuelle Annotationen	Hintergrund- farben

Probleme

- Intraindividuelle Unterschiede
- Interindividuelle Unterschiede
- Mortality

Vorteile

- Lerneffekte überprüfen:
 - Unterschied zwischen beiden Sessions für beide Stufen
- Reihenfolge-Effekte überprüfen:

- Unterschied zwischen beiden Sessions für eine

Stufe

Gruppe	Session 1	Session 2
A	Hintergrund- farben	Textuelle Annotationen
В	Textuelle Annotationen	farben

Vergleich

Eigenschaft	Between-Subjects	Within-Subjects	Cross-Over
Probandenzahl	2	1	2
Gruppenbalancierung	2	1	2
Lerneffekte	2	3	1
Reihenfolge-Effekte	2	3	1
Mortality	1	2	2
Motivation, Müdigkeit	1	2	2
Experimentdauer	1	2	2
Interne Validität	2	2	1
Externe Validit	2	2	1

Mehrfaktorielle Pläne

Latin Square

Group	Aufgabe 1	Aufgabe 2
A	Hintergrund- farben	Textuelle Annotationen
В	Textuelle Annotationen	Hintergrund- farben

- Ähnlich zu/Spezialform von Cross-Over
- Aber unterschiedliche Aufgaben in Sessions
- Aufgabe ist hier 2. Faktor

Zweifaktoriell, Between-Subjects

Programmiererfahrung, Intelligenz

Variablen	Gruppen
Hintergrundfarbe/ Anfänger	Group A
Hintergrundfarbe/ Experte	Group B
Textuell/ Anfänger	Group C
Textuell/ Experte	Group D

Zweifaktoriell, Within-Subjects

Group	Session 1	Session 2	Session 3	Session 4
Hintergrundfarbe/ Anfänger	Group A	Group D	Group C	Group B
Hintergrundfarbe/ Experte	Group B	Group A	Group D	Group C
Textuell/ Anfänger	Group C	Group B	Group A	Group D
Textuell/ Experte	Group D	Group C	Group B	Group A

Haupt- und Interaktionseffekte

Mehrfaktorielle Versuchspläne

- Wenn die bisher gezeigten Pläne nicht ausreichen...
- 4-faktorieller Plan (2x2x3x2)
- Interaktionen h\u00f6herer Ordnung

		C ₁		C ₂		C ₃	
		B ₁	B ₂	B ₁	B ₂	B ₁	B ₂
A_1	D ₁						
	D ₂						
A ₂	D ₁						
	D ₂						

Wahl eines Plans

- Möglichst einfachen Plan auswählen
- Vor-und Nachteile sorgfältig abwägen
- Resourcenbeschränkung beachten

Ausführung

Was kann jetzt noch schief gehen?

- Alles!
- Pilottests:
 - Material und Werkzeuge testen
 - Datenspeicherung testen
 - Instruktionen für Probanden testen
 - **—** ...
- Probanden genau sagen, was sie machen sollen
- Beobachten, dass Probanden genau das machen, was sie machen sollen
- Aufwärmaufgabe, in der Probanden Ablauf lernen

Ethik

- Aufwand der Probanden muss Erkenntnisgewinn gerecht werden
 - Evaluierung von Lehrmethoden
 - Evaluierung von Medikamenten
- Anonymität der Probanden sicherstellen
- Seid nett zu euren Probanden, denn sie investieren freiwillig ihre Zeit

Lernziele

- Gute Hypothesen aufstellen können
- Experiment mit hoher interner oder hoher externer Validität entwerfen können

Aufgabe

- Folgende Aussagen:
 - Programme in Java lassen sich leicht debuggen
 - Programmieren lernen geht am besten mit Haskell
 - Anfänger beginnen am besten mit Objektorientierung
- Legen Sie fest:
 - Hypothese
 - Abhängige und unabhängige Variablen und deren Operationalisierung
 - Störvariablen und deren Kontrolle
 - Experimentelles Design

Hausaufgaben

- Warum brauchen wir Hypothesen?
- Was bedeutet Falsifizierbarkeit von Hypothesen und warum ist das wichtig?
- Recherchieren Sie andere Validitätsarten

Literatur

- Jutta Markgraf, Hans-Peter Musahl, Friedrich Wilkening, Karin Wilkening, and Viktor Sarris. Studieneinheit Versuchsplanung, 2001. FIM-Psychologie Modellversuch, Universität Erlangen-Nürnberg.
- Natalia Juristo and Ana Moreno. *Basics of Software Engineering Experimentation*. Kluwer, 2001.
- Claes Wohlin. Experimentation in Software Engineering. Springer, 2000.
- William Shadish, Thomas Cook, and Donald Campbell. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin Company, 2002.
- James Goodwin. *Research in Psychology: Methods and Design*. Wiley Publishing, Inc., 1999.
- Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Selecting Empirical Methods for Software Engineering Research. In Guide to Advanced Empirical Software Engineering, pages 285–311. Springer, 2008.
- Steve McConnell. What does 10x Mean? In Making Software, O'Reilly, 2010.
- Urban Wiesing. Die Ethik-Kommissionen Neuere Entwicklungen und Richtlinien. Deutscher Ärzte-Verlag, 2003.

