Teorema de König

Enunciar y probar el teorema del matrimonio de König

El Teorema de König nos dice que todo grafo bipartito regular tiene un matching perfecto.

Para demostrarlo, vamos a definir, dado $W \subseteq V$, el conjunto $E_W = \{zw \in E : w \in W\}$ Ahora, veamos dos casos, suponiendo que G tiene partes X,Y:

• Si $W \subseteq X$, tenemos que

$$egin{aligned} |E_W| &= |\{zw \in E : w \in W\}| \ &= \sum_{w \in W} |z : zw \in E| ext{ ya que } z \in Y \ &= \sum_{w \in W} d(w) \ &= \sum_{w \in W} \Delta ext{ ya que G es regular} \ &= \Delta ext{ } ext{ } |W| \end{aligned}$$

• De forma análoga, llegamos a que si $W \subseteq Y$, entonces $|E_W| = \Delta \times |W|$

Dadas las propiedades anteriores, ahora veamos que:

- $|E_X| = \Delta \times |X| = |E|$ ya que G es bipartito
- $|E_Y| = \Delta \times |Y| = |E|$ ya que G es bipartito
- Luego, $\Delta \times |X| = |E| = \Delta \times |Y|$, por lo que |X| = |Y|

Por ello, como |X|=|Y|, basta con probar que existe un matching completo sobre X para demostrar que existe un matching perfecto. Aquí es donde vamos a usar el **Teorema de Hall**.

- Sea $S \subseteq X$ y $l \in E_S$, entonces $\exists x \in S, y \in Y : l = xy$.
- Luego, $y \in \Gamma(x) \subseteq \Gamma(S) \Rightarrow l \in E_{\Gamma(S)}$
- Como l era cualquier elemento de E_S , entonces $E_S \subseteq E_{\Gamma(S)}$, por lo que $|E_S| \le |E_{\Gamma(S)}|$
- En base a las propiedades anteriores, llegamos a que
 - $S \subseteq X \Rightarrow |E_S| = \Delta \times |S|$
 - $\Gamma(S) \subseteq Y \Rightarrow |E_{\Gamma(S)}| = \Delta \times |\Gamma(S)|$

• Luego, tenemos que

$$|E_S| \leq |E_{\Gamma(S)}| \ \Delta imes |S| \leq \Delta imes |\Gamma(S)| \ |S| \leq |\Gamma(S)|$$

Por ello, entonces, llegamos a que para cualquier $S\subseteq X$ se cumple que $|S|\leq |\Gamma(S)|$, entonces por el *Teorema de Hall*, G es completo sobre X.