FINC 462/662 - Fixed Income Securities

FINC-462/662: Fixed Income Securities

Bond Pricing Fundamentals

Spring 2022

Prof. Matt Fleckenstein

University of Delaware, Lerner College of Business and Economics

Overview

Goals for today
☐ Calculate the present values of future cash flows, including bonds, annuities, perpetuities, and other arbitrary cash flows
\Box Price securities using the observed prices of other securities and the Law of One Price.
☐ Construct an arbitrage trade if the Law of One Price is violated.
☐ Calculate the price of a coupon bond.

Table of Contents

Overview

Coupon Bond Cash Flows

Bond Pricing Building Blocks

Time Value of Money and Interest Rates

Present Value

Future Value

Present value of multiple cash flows

Perpetuities

Present Value of Perpetuity

Growing Perpetuity

Present Value of Growing Perpetuity

Annuity

Compounding Frequencies

Continuous Compounding

Converting Compounding Frequencies

Wrap-Up

Reading

Coupon Bond Cash Flows

- How to get there on the Bloomberg terminal?
- Open a terminal and on the keyboard type 91282CCZ2.
- In the popup window, select the Treasury note.
- Next, type DES to get to the bond description page.
- Then, type CSHF and press enter.

Set Coupon Rate

Coupon Rate: 2.5%

Set Time to Maturity

Time to Maturity: 5.0 years

Bond Pricing Building Blocks

- Time Value of Money
- Present Value
- Future Value
- Perpetuity
- Annuity
- Law of One Price
- Short-Selling
- Pricing Treasury Bonds
- Continuous Compounding

Time Value of Money and Interest

Rates

- Suppose you won the lottery and you can choose to receive your prize of \$1000 today or one year from today.
- Clearly, you prefer to get the \$1,000 today instead (because you need to wait another year).
- However, suppose you were offered \$1,100 one year from today for waiting another year.
- Let's say this sounds like a fair deal to you, i.e. you are indifferent between having \$1,000 today or \$1,100 one year from today.
- How is your choice related to interest rates?
- Your choice reveals that each dollar today is worth 10% more one year from today.

$$\$1,000 \times (1+10\%) \stackrel{!}{=} \$1,100$$

$$1 \times (1 + 10\%) \stackrel{!}{=} 1.10$$

• In other words, you require to earn interest at an annual rate of r=10%

$$1 \times (1+r) \stackrel{!}{=} 1.10$$

$$r = \frac{\$1.10}{\$1.00} - 1 = 0.010 = 10\%$$

- The interest rate r in the example reflects your individual choice.
- When we observe an interest rate r in financial markets, we can think of this interest rate as an aggregate of all the individual choices investors make.
- How can we use the interest rate r that we observe in financial markets to tell us how "the market" decides in the lottery example.
- Suppose, we observe r=5%.
- This tells us that a value today of 1,000 is worth tomorrow an amount of

$$\$1,000 \times (1+r) = \$1,000 \times (1+5\%) = \$1,000 \times (1+0.05) = \$1,050$$

- Let's call the \$1,000 today **Present Value (PV)** and the \$1,050 to be received in one year the **Future Value (FV)**.
- Thus, in the example

$$\mathrm{PV} imes (1+r) = \mathrm{FV}$$

• Putting the PV on the left-hand side, we have the fundamental present-value relationship.

$$\mathrm{PV} = rac{\mathrm{FV}}{(1+r)}$$

- We just looked at a one year period.
- However, it is simple to to write down the same relation when the future cash flow occurs two years from today. Then,

$$\mathrm{PV} = \frac{\mathrm{FV}_2}{(1+r)^2}$$

• In general, for t years

$$ext{PV} = rac{ ext{FV}_t}{(1+r)^t}$$

• where FV_t means the future value (FV) in t years.

Present Value

Important

Annual Compounding

The present value of a cash flow FV_t to be received in t years given the interest rate r (also called discount rate) is

$$ext{PV} = rac{ ext{FV}_t}{(1+r)^t}$$

Future Value

Annual Compounding

The future value FV_t in t years of a cash flow with present value (PV) given the interest rate r is

$$\mathrm{FV}_t = \mathrm{PV} \times (1+r)^t$$

Present Value Example

- Future Value (FV):
- Interest rate *r* [% p.a.]: _______2.0
- Time t [years]:

Reset

$$ext{PV} = rac{ ext{FV}_t}{(1+r)^t} = rac{\$100.0}{(1+0.02)^2} = \$96.116878$$

Future Value Example

- Present Value (FV):
- Interest rate r [% p.a.]: \bigcirc 2.0
- Time *t* [years]: 2

Reset

$$\mathrm{FV}_t = \mathrm{PV} \times (1+r)^t = \$100.0 \times (1+0.02)^2 = \$104.04$$

Present value of multiple cash flows

- If there are multiple cash flows in the future in t=1, 2, 3, ... T years from today, then we calculate the present value of these cash flows as follows.
 - 1. calculate the individual present values of each future cash flow: PV_t for $t=1,\ldots,T$
 - 2. sum up the individual present values: $PV_1 + PV_2 + \ldots + PV_T$

- Future Value (FV): 100.0 Interest rate r [% p.a.]: 2.0
- Time *t* [years]: 5

Reset

	Time	FutureValue	PresentValue	Calculation
1	1	100.0	98.0392	"100.0 * 1/(1+2.0%)^1=98.0392"
2	2	100.0	96.1169	"100.0 * 1/(1+2.0%)^2=96.1169"
3	3	100.0	94.2322	"100.0 * 1/(1+2.0%)^3=94.2322"
4	4	100.0	92.3845	"100.0 * 1/(1+2.0%)^4=92.3845"
5	5	100.0	90.5731	"100.0 * 1/(1+2.0%)^5=90.5731"

Present Value = 98.0392 + 96.1169 + 94.2322 + 92.3845 + 90.5731 = 471.345951

Perpetuities

- In the previous example, we calculated the present value of multiple future cash flows that were all equal to \$100.0 by calculating the present value of each individual future cash flow.
- Suppose now that we are paid \$100.0 each year forever.
- Calculating all individual cash flows is not feasible, of course.

Types of perpetuities exist in reality

- Future Value (FV): 100.0 • Interest rate r [% p.a.]: 2.0
- Time *t* [years]:

Reset

	Time	FutureValue	PresentValue
1	1	100.0	98.0392
2	2	100.0	96.1169
3	3	100.0	94.2322
4	4	100.0	92.3845
5	5	100.0	90.5731

Present Value = \$ 471.346

• Compare the present value to

$$\frac{FV_5}{r} = \frac{100.0}{0.02} = 5000.0$$

Present Value of Perpetuity

The present value today (time t=0) of a perpetuity paying a dollar cash flow of C forever is

$$\mathrm{PV} = rac{\mathrm{C}}{r}$$
 Time t O 1 2 3 ... Cash Flow 0 C C C

Growing Perpetuity

Example

- In the case of a perpetuity the cash flows are always the same.
- In a "growing perpetuity" the cash flows grow at a constant percentage rate g after the first cash flow.

Reset

	Time	FutureValue	PresentValue
1	1	100.0	98.0392
2	2	101.0	97.078
3	3	102.01	96.1263
4	4	103.03	95.1839
5	5	104.06	94.2507

· Compare the present value to

$$\frac{FV_5}{r-q} = \frac{100.0}{0.02 - 0.01} = 10000.0$$

Present Value of Growing Perpetuity

Important

The present value today (time t=0) of a perpetuity paying a dollar cash flow of C forever that grows at a constant percentage rate g each period **after** the first cash flow is

$$\mathrm{PV} = rac{\mathrm{FV}}{r-g}$$

Time
$$t$$
 0 1 2 3 4 ... Cash Flow 0 C $C \times (1+g)$ $C \times (1+g)^2$ $C \times (1+g)^3$...

ullet Note: We only consider cases where g is less than r

Annuity

- ullet An annuity pays a constant cash flow of FV at the end of each period for a specific number of periods.
- It is similar to a perpetuity, except that the cash flows stop after a certain number of periods.

• BlackRock Is Adding Annuities to 401(k)s

- Assume that the interest rate is r=5% and we want to calculate the present value of a 30-year annuity with annual cash flows of \$1.
 - A thiry-year annuity paying \$1, has the first cash flow at the end of the first year t=1, the next at the end of the second year t=2, ..., and on final cash flow at the end of year 30 (t=30).
- An annuity is the differentce between two perpetuities. Why?

Example

Perpetuity starting in year 10 PV at year $10 = \frac{FV}{r} = \frac{-50}{0.05}$ PV = $\frac{1}{(1+r)^{10}} \times \frac{FV}{r} = \frac{1}{(1+0.05)^{10}} \times \frac{-50}{0.05}$ PV = $\frac{1}{(1+r)^{10}} \times \frac{FV}{r} = \frac{1}{(1+0.05)^{10}} \times \frac{-50}{0.05}$ Year

• Thus, the value of the 10-year annuity is the difference between the present values of the perpetuity starting today and the perpetuity starting in year 10.

PV Annuity = PV of Perpetuity starting today - Perpetuity starting in year 10

$$\left(\frac{50}{r}\right) - \left(\frac{50}{(1+r)^{10}} \times \frac{1}{r}\right)$$

$$\rightarrow \text{PV} = \left(\frac{50}{r}\right) \left(1 - \frac{1}{(1+r)^{10}}\right)$$

Present Value of Annuity

Important

The present value today (time t=0) of an annuity paying a dollar cash flow of C for T years is

$$\mathrm{PV} = \left(\frac{C}{r}\right) \left(1 - \frac{1}{(1+r)^T}\right)$$
 Time t O 1 2 3 4 ... T T+1 ... Cash Flow 0 C C C C C 0 0

Compounding Frequencies

• Consider again the Future Value formula and suppose t=1 year and assume that we compute the future value of \$100 after one year. In this example, we receive interest on the \$100 once after 1 year.

$$FV_1 = \$100 \times (1+r)^1$$

- Suppose now that we earn interest once after six months and again after another six months have passed.
- First, the future value after six months is

$$\mathrm{FV}_{0.5} = \$100 imes \left(1 + rac{r}{2}
ight)$$

• Next, the future value after another six months have passed is

$$\mathrm{FV}_1 = \mathrm{FV}_{0.5} imes \left(1 + rac{r}{2}
ight) = \$100 imes \left(1 + rac{r}{2}
ight)^2$$

- When interest is computed twice per year, this is referred to semi-annual compounding.
- Next, compute the future value of \$100 after 2 years with semi-annual compounding.

$$\mathrm{FV}_2 = \$100 \times \left(1 + \frac{r}{2}\right) \times \left(1 + \frac{r}{2}\right) \times \left(1 + \frac{r}{2}\right) \times \left(1 + \frac{r}{2}\right)$$

 $\bullet\,$ In general after T years and with semi-annual compounding, the future value of a dollar investment PV is

$$FV_T = PV imes \left(1 + rac{r}{2}
ight)^{2 imes T}$$

- Consider now the **present** value of \$100 to be received in two years from now with semi-annual compounding
- ullet Since we now know the Future value after T=2 years (FV_2) , we rearrange the previous equation and solve for PV

$$PV = rac{FV_2}{\left(1 + rac{r}{2}
ight)^{2 imes T}}$$

- What if interest is compounded quarterly? Monthly? Daily?
- We can apply the same reasoning.

Present and Future Values with different compounding frequencies

Important

- Let r be the **annual** interest rate and let T be the number of years.
- Let PV be the the value today and FV_T be the future value after T years.
- Let m be the compounding frequency
 - o m=1: Annual compounding
 - o m=2: Semi-annual compounding
 - o m=4: Quarterly compounding
 - o m=12: Monthly compounding

Future Value

Present Value

$$FV_T = PV imes \left(1 + rac{r}{m}
ight)^{m imes T}$$

$$PV = FV_T imes rac{1}{\left(1 + rac{r}{m}
ight)^{m imes T}}$$

Future Value Example

- Present Value (PV):
- Interest rate r [% p.a.]: \bigcirc 2.0
- Compounding frequency m: 2 \checkmark
- Time T [years]:

Reset

$$ext{FV}_5 = ext{PV} imes \left(1 + rac{r}{m}
ight)^{m imes T} = \$100.0 imes \left(1 + rac{2.0\%}{2}
ight)^{2 imes 5} = \$110.462213$$

Present Value Example

- Future Value (FV):
- Interest rate *r* [% p.a.]: _______2.0
- Compounding frequency m: 2 \checkmark
- Time T [years]:

Reset

$$ext{PV} = rac{ ext{FV}_5}{\left(1 + rac{r}{m}
ight)^{m imes T}} = rac{\$100.0}{\left(1 + rac{2.0\%}{2}
ight)^{2 imes 5}} = \$90.528695$$

Annuity formula with difference compounding frequencies

• The annuity formula with different compounding frequencies becomes

Present Value of Annuity

The present value today (time t=0) of an annuity paying a dollar cash flow of C for T years when interest is compounded m times per year is

$$ext{PV} = \left(rac{C}{r/m}
ight) \left(1 - rac{1}{\left(1 + rac{r}{m}
ight)^{m imes T}}
ight)$$

Example

- Cash Flow (C): 50.0
- Interest rate r [% p.a.]: \bigcirc 2.0
- Compounding frequency $m: \boxed{2}$
- Time T [years]:

Reset

$$\text{PV} = \left(\frac{C}{r/m}\right) \left(1 - \frac{1}{\left(1 + \frac{r}{m}\right)^{m \times T}}\right) = \left(\frac{\$50.0}{0.02/2}\right) \left(1 - \frac{1}{\left(1 + \frac{0.02}{2}\right)^{2 \times 5}}\right) = 473.565227$$

Continuous Compounding

Future Value and Present Value with continuous compounding

- With continuous compounding, interest is compounded every instant.
- Mathematically, with continuous compounding the number of times that interest is compounded goes to infinity.
- Many of the models in Finance such as the Black-Scholes model use continuous compounding.
 This is done for tractability of the models.

Present and Future Values with continuous compounding

Important

- Let r be the **annual** interest rate (continuously compounded) and let T be the number of years.
- Let PV be the the value today and FV_T be the future value after T years.

Future Value

Present Value

$$FV_T = PV \times \exp(r \times T)$$
 $PV = FV_T \times \exp(-r \times T)$

Example

- Future Value (FV): 50.0
- Interest rate *r* [% p.a.]: _______2.0

Reset

$$PV = FV_T \times \exp(-r \times T) = \$50.0 \times \exp(-0.02 \times 5.0) = \$45.241871$$

Annuity formula with continuous compounding

Present Value of Annuity with continuous compounding

The present value today (time t=0) of an annuity paying a (continuous) dollar cash flow of C for T years when interest is continuously compounded is

$$ext{PV} = rac{C}{\exp(r) - 1} imes (1 - \exp(-r imes T))$$

Example

- Cash Flow (C): 50.0
- Interest rate *r* [% p.a.]: _______2.0
- Time T [years]: 5.0

Reset

$$PV = \frac{C}{\exp(-rT)} \times (1 - \exp(-rT)) = \frac{50.0}{\exp(-0.02 \times 5.0)} \times (1 - \exp(-0.02 \times 5.0))) = \$235$$

Converting Compounding Frequencies

- Suppose we are given an interest rate r that is compounded m times per year.
- We want to know what the equivalent interest rate is when interest is compounded n times per year.
- To do this, we first find what an investment of \$1 is worth after one year given that the interest rate is r and interest is compounded m times per year.
- Then, to find the equivalent rate when interest rate is compounded n times per year, we set the amount from the previous step equal to the amount we would have when interest is compounded n times per year.

- Suppose, the semi-annually compounded interest rate is 4%.
- We want to find the equivalent continuously-compounded interest rate.
- Step 1:
 - A one dollar investment after one year has grown to:

$$FV_1 = \$1 \times (1 + \frac{r}{2})^{2 \times 1} = \$1 \times (1 + \frac{4\%}{2})^2 = 1.0816$$

- Step 2:
 - After one year, a one dollar investment with continuous-compounding at the interest rate r_c has grown to: $FV_1 = \$1 \times \exp(r_c \times 1) = \exp(r_c)$
- Step 3:
 - Setting both equal, we can find r_c :

$$\exp(r_c) = 1.0816 \rightarrow r_c = \ln(1.0816) \rightarrow r_c = 7.8441\%$$

Wrap-Up

-Our goals for today-

- ✓ Calculate the present values of future cash flows, including bonds, annuities, perpetuities, and other arbitrary cash flows.
- Price securities using the observed prices of other securities and the Law of One Price.
- Construct an arbitrage trade if the Law of One Price is violated.
- ☑ Calculate the price of a coupon bond.

Reading

Fabozzi, Fabozzi, 2021, Bond Markets, Analysis, and Strategies, 10th Edition Chapter 2