Kapittel 6: Produsentteori: Produsentens økonomiske adferd i gode- og arbeidsmarkedet

Oppdatert: 2023-02-13

Fortjenestemaksimering som mål for bedriften

- Vi skal nå legge til grunn at bedriften har som mål å maksimere fortjenesten eller profitten.
- Vi skal også legge til grunn av bedriften betrakter alle priser som gitte (gode- og faktorpriser).
- Bedriften tilpasser seg på to markeder:
 - godemarkedet
 - faktormarkedet (arbeidskraft og kapital)
- På faktormarkedet kjøper bedriften innsatsfaktorer og må velge de kvantum av faktorene som maksimerer fortjenesten.
- På godemarkedet må bedriften velge den produksjonsmengden som maksimerer fortjenesten. Altså: to valg!!

Hvor stor skal produksjonen være på kort sikt?

- For å finne svar på dette, lar vi produksjonsmengden være variabel.
- Hensikten med denne tilnærmingen er å analysere hvordan bedriften varierer produsert kvantum/ antall enheter den produserer, for å oppnå høyest mulig fortjeneste.
- Produsentens valgvariabel er dermed kvantumet x.
- En fordel med denne tilnærmingen er at den gir sammenhengen mellom pris og produsert kvantum på en enkel måte. Dette kan så brukes til å utlede bedriftens tilbudskurve, og i neste omgang markedets tilbudskurve.

Fortjenestemaksimering (kort sikt) med variabel produksjonsmengde

- Produksjon: x = f(N) Kostnader: C(x) = CV(x) + CF
- Salgsinntekt: R=px Maks profitt: F=R-C som gir F=px-CV(x)-CF
- Bedriften ønsker å maksimere dette uttrykket mhp. bruken av arbeidskraften. Formelt kan vi uttrykke dette som:

$$\operatorname*{Maks}_{x}F=px-C(x)$$

Løsning og tolkning

1.ordensbetingelsen er gitt ved

$$p = C'(x)$$

Produksjonen tilpasser seg der hvor produktprisen er lik grensekostnaden.

2.ordensbetingelsen (som sikrer maksimum)

$$F''(x) = -C''(x) < 0 \Leftrightarrow C''(x) > 0$$

Kostnadsfunksjonen må være konveks (som vi tidligere har sett at kan komme som et resultat av avtagende grenseproduktivitet mhp. bruken av arbeidskraft)

Uten faste kostnader

Med faste kostnader

Øvelse om produksjonen

Anta at produktprisen er gitt ved 100 og kostnadsfunksjonen som $C(x) = x^2$. Hva blir den optimale produksjon?

Løsning

Uttrykket for fortjeneste kan formuleres som

$$F = 100 \cdot x - x^2$$

Vi ønsker å finne maksimal produksjon. Førsteordensbetingelsen vil hær være gitt ved

$$F'(x) = 100 - 2x = 0 \ 2x = 100x = 100/2 = 50$$

Andreordensbetingelsen for maksimum er oppfylt siden

$$F'(x)=-2<0$$

Hvor stor skal produksjonen være på lang sikt?

- Dersom vi antar avtagende skalautbytte, vil denne løsningen også gjelde på lang sikt.
- For konstant eller økende skalautbytte, vil **ikke** maksimeringen av fortjenesten gjør det mulig å bestemme det optimale nivået på x (2. ordensbetingelsen er ikke oppfylt).
- Senere i kurset, skal vi se at for dette tilfelle vil det være etterspørselskurven som bestemmer hvor mye som bli produsert i markedet.

Bedriftens tilbud på kort og lang sikt

- Tilbudet til bedriften må bestemmes gjennom profittmaksimering eller kostnadsminimering.
- Ettersom dette krever at bedriften er på grensekostnadskurven, vil tilbudskurven være "den samme" som grensekostnadskurven.
- På kort vil bedriftens tilbud være stigende i et (x,p)-diagram.
- Reservasjonsprisen (minsteprisen) vil være der hvor $p_r=\overline{C}$
 - \circ Dersom de faste kostnadene er irrreversible (har en alternativ anvendelse), vil $\overline{C} = \overline{C}_V$
 - \circ Dersom de faste kostnadene er reversible (har en alternativ anvendelse), vil $\overline{C} = \overline{C}_V + \overline{C}_F$
- På lang sikt vil bedriftens tilbudskurve kunne være horisontal (ved konstant skalautbytte) i et (x,p)-diagram på

Uten faste kostnader

Med faste (reversible) kostnader

Hvor stor skal faktorbruken være på kort sikt?

- For å finne svar på dette spørsmålet betrakter vi innsatsfaktoren arbeidskraft som variable, og at disse utgjør beslutningsvariablene til bedriften.
- Bedriften ønsker størst mulig overskudd.
- Produksjon: x = f(N)
- Kostnader: C = wN
- Salgsinntekt: R = px
- Profitten er gitt som inntekter (R) minus kostnader (C): F = R C
- Bedriften ønsker å maksimere dette uttrykket mhp. bruken av arbeidskraften. Formelt kan vi uttrykke dette som:

$$\operatorname*{Maks}_{N}F=pf(N,K)-wN$$

Løsning og tolkning

1.ordensbetingelsen er gitt ved

$$pf'(N)=W$$

Bruken av arbeidskraften bestemmes der hvor verdien av grenseproduktiviteten er lik det nominelle lønnsnivået.

2.ordensbetingelsen (som sikrer optimum)

Øvelse om bruk av arbeidskraft

Anta at produktprisen er gitt ved 10, lønnskostnadene gitt ved 1, og produktfunsjonen $x=\sqrt{N}$

Løsning

Uttrykket for fortjeneste kan formuleres som

$$F = 10N^{0.5} - N$$

Vi ønsker å finne maksimal bruk av arbeidskraft. Førsteordensbetingelsen vil være gitt ved

$$F = 1/2 \cdot 10 N^{0.5-1} - 1 = 0 \ 5 \cdot N^{(-0.5)} = 1 \ N^{-0.5} = 1/5 \ N^{0.5} = 5 \ N = 5^2 = 25$$

Hvor stor skal faktorbruken være på lang sikt?

- Dersom vi antar avtagende skalautbytte, vil løsningen på forrige side inneholde en ny førsteordensbetingelse som krever at pf'(K, N) = r (dvs. optimalt nivå på kapital tilpasses der hvor verdien av grenseproduktiveteten er lik kapitalkostnaden)
- For konstant eller økende skalautbytte, har vi antydet at nivået på x vil være bestemt fra etterspørselssiden For å finne optimal faktorbruk i dette tilfelle kan vi for en gitt produksjons minimere faktorutlegget.
- Formelt kan vi skrive dette som

$$\operatorname{Min} C = wN + rK \operatorname{gitt} x^0 = f(K,N)$$

Vi kan løse dette ved bruk av Lagrange metode. Lagrangefunksjonen er her gitt ved:

$$L = f(K, N) - \lambda(wN + rK - C^0) \tag{7}$$

De to første ordens betingelsen er gitt ved

$$\partial L/\partial N = f_{N,K}' - \lambda w = 0$$
 $\partial K/\partial K = f_{N,K}' - \lambda w = 0$

Kombinerer de to første ordens betingelsene gir oss løsningen

$$\lambda w/\lambda r = w/r = rac{f_N'}{f_K'} = MTSB$$

Optimal løsning er også her karakterisert ved tangeringspunktet mellom isokvant og isokostlinjen.

Appendiks (alle figurene samlet)

