Évaluation nº 7 Dérivation (2) calculs de fonctions dérivées durée $pprox 0 ext{h} \ 45 ext{min}$ janvier 2023

 \bigcirc 3C \bigcirc 2A \bigcirc 2B \bigcirc 2C \bigcirc 1B2 NOM:.... $\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3$ Prénom:.... $\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 8 \bigcirc 9$ email: (si changement).....

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé.

La clarté de la rédaction sera prise en compte dans la notation. Le total des points est 20.

Toute action volontaire rendant impossible ou difficile l'identification ou la correction de la copie engendre une dégradation de la note finale.

Exercice 1

Calculer dans chaque cas la fonction dérivée de la fonction proposée. Les domaines de définition et de dérivabilité sont données. Les résultats seront simplifiés le plus possible

- 1) f_1 définie et dérivable sur \mathbb{R} par $f_1(x) = -4x^2 + 8x 5$
- 2) f_2 définie et dérivable sur \mathbb{R} par $f_2(x) = 3x^4 5x^3 + 12x^2 7x \pi$
- 3) f_3 définie et dérivable sur]0; ∞ [par $f_3(x) = \frac{3}{4}x^2 + 2x 3\sqrt{x}$
- 4) f_4 définie et dérivable sur $]0;\infty[$ par $f_4(x)=\frac{2}{r^3}-\frac{x^4}{5}$
- 5) f_5 définie et dérivable sur \mathbb{R} par $f_5(x) = (3x+2)^4$

Exercice 2

Calculer dans chaque cas la fonction dérivée de la fonction proposée. Les domaines de définition et de dérivabilité sont données. Les résultats seront simplifiés le plus possible

- 1) f_6 définie et dérivable sur \mathbb{R} par $f_6(x) = (3x+1)(2x-3)$.
- 2) f_7 définie et dérivable sur \mathbb{R} par $f_7(x) = (-5x+3)(x^2-3x-1)$.
- 3) f_8 définie et dérivable sur $]-\infty$; $-3[\cup]-3$; $+\infty[$ par $f_8(x)=\frac{2x-3}{x+3}$ 4) f_9 définie et dérivable sur $]-\infty$; $\frac{2}{5}[\cup]\frac{2}{5}$; $+\infty[$ par $f_9(x)=\frac{-4}{5x-2}$.
- 5) f_{10} définie sur]1; $+\infty$ [, dérivable sur]1; $+\infty$ [par $f_{10}(x) = \frac{x(x+5)}{x^2-1}$