S-gráf alapú ütemező algoritmus párhuzamos hozzárendelést megengedő feladatokhoz

Molnár Gergő Mérnökinformatikus Bsc.

Témavezető:

dr. Hegyháti Máté, tudományos főmunkatárs

Tudományos és Művészeti Diákkör 2019. Széchenyi István Egyetem 2019.11.21.

Tartalom

- Ütemezési feladatok
- Megoldó módszerek
- S-gráf keretrendszer
- Problémadefiníció
- A megoldó módszer
- Teszteredmények

Ütemezés

- Általánosan
 - Erőforrások, feladatok, korlátok
- Gyártórendszerek ütemezése
 - > Termékek, berendezések
 - Végrehajtási-, tisztítási-, átállási idők
 - Tárolási irányelvek

Megoldó módszerek

- MILP (Mixed-Integer Linear Programming) modellek
 - Időfelosztásos (Time discretization based)
 - Precedencia alapú (Precedence based)
- Analízis alapú eszközök
 - Időzített automaták
 - Időzített Petri hálók
- S-gráf keretrendszer

C. A. Floudas and X. Lin, "Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review" In: Computers & Chemical Engineering (2004)

C. A. Mendez, J. Cerda, I. E. Grossmann, I. Harjunkoski, and M. Fahl, "State-of-the-art review of optimization methods for short-term scheduling of batch processes" In: Computers & Chemical Engineering (2006)

C. Cassandras and S. Lafortune "Introduction to Discrete Event Systems" SpringerLink Engineering, Springer (2008)

Az S-gráf keretrendszer

- Irányított gráfon alapuló modell
- Receptek és ütemtervek vizualizációja
- Recept gráf:

E. Sanmarti, F. Friedler and L. Puigjaner "Combinatorial Technique for Short Term Scheduling of Multipurpose Batch Plants Based on Schedule-Graph Representation" In: Computer Aided Chemical Engineering (1998).

Az S-gráf keretrendszer

- Ütemezési döntések -> ütemezési élek
- Ütemezési gráf:

Termékek batch darabszámai alapján konfigurációk

T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler, "An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: S-graph approach," In: Computer Aided Chemical Engineering (2007).

Termékek batch darabszámai alapján konfigurációk

T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler, "An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: S-graph approach," In: Computer Aided Chemical Engineering (2007).

Termékek batch darabszámai alapján konfigurációk

T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler, "An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: S-graph approach," In: Computer Aided Chemical Engineering (2007).

Termékek batch darabszámai alapján konfigurációk

T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler, "An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: S-graph approach," In: Computer Aided Chemical Engineering (2007).

Fűtő: 100 kg Szétválasztó: 100 kg Product 1 Product 2 Reaktor 1: 80 kg Reaktor 2: 50 kg Heating Reacton 2 Separation Int ABFeed A Hot A 100% Int BC Impure E80% 100% 100% Reaction 1 Reaction 3 Feed B 50% 20%

Feed C

Fűtő: 100 kg

Szétválasztó: 100 kg

Reaktor 1: 80 kg

Reaktor 2: 50 kg

Feed C

Product 1

Változó batch méret

> Több berendezés ugyanahhoz a feladathoz

- Összes különböző hozzárendelés rögzítése
- Külön termékként kezelve

Product 2

- $3^3 = 27$ rögzített recept
- Összevont esetek a dominált hozzárendelések eltávolítása után

- $3^3 = 27$ rögzített recept
- Összevont esetek a dominált hozzárendelések eltávolítása után

Eset	Reakció 1	Reakció 2	Reakció 3	Max bevétel
4,5,13,14	$R1 \lor R2$	R2	$R1 \lor R2$	53,75
2,11	$R1 \lor R2$	R1	R2	71,67
1,10	$R1 \lor R2$	R1	R1	86,00
16	R2	R1&R2	R1	86,00 89,58
7	R1	R1&R2	R1	114,67
9	R1	R1&R2	R1&R2	139,75

6 recept → 6 termék → 6 dimenziós tér

Az új megoldó módszer

Vezérlő

Profitmaximalizáló metódus

- Bemenet: batch szám, időkorlát
- Megvalósíthatóság vizsgálat
- Összes lehetséges megoldás megkeresése
- Párhuzamos berendezés hozzárendelés
- Profit nem skaláris szorzat, függ a kapacitástól
- Kimenet: profit értéke

```
    procedure Maxprofit(TH,batch_number)

         profit^{cb} := -\infty
         SOAA := \emptyset
         S := (recipe(), I, J, \emptyset)
         while S \neq \emptyset do
              (G(N, A_1, A_2, w), I, J', A) := select\_remove(S)
              if Feasible((G(N, A_1, A_2, w), I, J', A)) then
                  if ProfitBound((G(N, A_1, A_2, w), I, J', A)) > profit^{cb} then
                       if J' == \emptyset then
10:
                           profit^{cb} := ProfitBound((G(N, A_1, A_2, w), I, J', A))
11:
                       else
12:
                           j := select(J')
                            for all i \in I_i \setminus SOAA_i do
                                SOAA_i := SOAA_i \cup i
14:
                                G^{i}(N, A_{1}^{i}, A_{2}^{i}, w^{i}) := G(N, A_{1}, A_{2}, w)
15:
                                for all i' \in \bigcup_{(i',j) \in \mathcal{A}} I^+_{i^i} \setminus \{i\}do
16:
                                     A_2^i := A_2^i \cup \{(i', i)\}
18:
                                end for
                                for all i' \in I_i^+ do
19:
                                    if t_{i,i}^{pr} > w_{i,i}^i, then
                                         w_{i,i'}^i := t_{i,j}^{pr}
                                    end if
                                end for
                                S := S \cup (G^{i}(N, A_{1}, A_{2}^{i}, w^{i}), I, J', A \cup \{(i, j)\})
                           end for
                           if I_i \setminus \bigcup_{i \in I} SOAA_j \subseteq \bigcup_{i!=i',j' \in J'} I_{j'} then
                                S := S \cup (G(N, A_1, A_2), I, J' \setminus \{j\}, A)
                           end if
                       end if
                  end if
              end if
31:
         end while
         return profitcb
34: end procedure
```

Teszteredmények

- Implementálás, C++ solver
- Kevesebb konfiguráció vizsgálat

Teszteredmények

Kisebb feladatokra jobb futási idő

Teszteredmények

Nagyobb feladatokra rosszabb futási idő

Összefoglalás

- S-gráf keretrendszer és korábbi megoldó módszer bemutatása
- Az új, párhuzamos hozzárendelést megengedő módszer kidolgozása, a keretrendszerbe történő implementálása
- Új módszer tesztelése, majd a régi megoldóval történő összehasonlítása

Köszönöm a figyelmet!