Universidad Nacional de San Agustín de Arequipa **Escuela Profesional de Ciencia de la Computación** Curso: Teoría de la Computación

GUÍA DE LABORATORIO 09

Docentes: Mg. Wilber Ramos Lovón - Mg. Franci Suni Lopez

1. COMPETENCIA DE LA PRÁCTICA

Conoce, comprende e implementa los conceptos básicos de un autómata finito determinista.

2. EJERCICIOS PROPUESTOS

Para cada ejercicio diseñar la Máquina de Turing. Además definir sus estados y transiciones. Finalmente explicar cómo aplica la MT para resolver el problema.

1) [6 pts] Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "bAABCAb" devuelve en la cinta "bAABCAAABCAb", donde 'b' representa el blanco.

 $M = (S; \Sigma; \Gamma; \Delta; q0; \delta)$ Donde:

 Γ : es el alfabeto de símbolos de la cinta Σ : es el alfabeto de símbolos de entrada

Δ : es el símbolo en blanco

S: es un conjunto finito de estados

q0 : es el estado inicial

δ : es una funcion de transicion parcial

Se utiliza cadenas y luego las copias de estas y luego se podrían eliminar para que la cinta sólo retenga elementos de entrada, se copiara todos los caracteres utilizando una rama diferente (imagen número 2) y está a la vez se pueda guardar en memoria, la marca X que se tiene es parte de la palabra original para poder recorrer y llegar al final por consiguiente sustituir por un blanco, luego se retrocede hasta el símbolo X y de la misma manera podemos volver a sustituir por un blanco.

Si no hay marca entre esas dos cadenas osea que no haya X a los costados lo que sea hace es recorrer la palabra hasta el final y luego poner un símbolo Y esto nos representa donde para la cadena luego se copia todos los elementos, al inicio tendrá que saltarse el primer símbolo y marcar con X y recorrer hasta llegar al blanco y se copia el siguiente valor de la Y

(Por motivos de espacio en el diseñador gráfico de autómatas , los autómatas están por partes)

$\delta(q0, A;A,R) \rightarrow q1$	$\delta(q1, \Delta; Y,L) \rightarrow q2$	δ(q3, B;B,R) ->q4	δ(q5, B;B,R) ->q5
δ(q0 , B;B,R) ->q1	δ(q2 , A;A,L) ->q2	δ(q3, C;C,R) ->q4	δ(q5, C;C,R) ->q5
δ(q0 , C;C,R) ->q1	δ(q2 , B;B,L) ->q2	δ(q4, A;X,R) ->q5	δ(q5, Y;Y,R) ->q5
δ(q1, A;A,R) ->q1	δ(q2 , C;C,L) ->q2	$\delta(q5, \Delta; A, L) \rightarrow q8$	δ(q8, Y;Y,L) ->q8
δ(q1 , B;B,R) ->q1	$\delta(q2, \Delta; \Delta, R) \rightarrow q2$	δ(q8, X;A,R) ->q4	δ(q8, A;A,L) ->q8
δ(q1 , C;C,R) ->q1	δ(q3, A;A,R) ->q4	δ(q5, A;A,R) ->q5	δ(q8, B;B,L) ->q8
δ(q8, C;C,L) ->q8	δ(q4, B;X,R) ->q6	$\delta(q6, \Delta; B, L) \rightarrow q9$	δ(q9, X;B,R) ->q4
δ(q9, Y;Y,L) ->q9	δ(q9, A;A,L) ->q9	δ(q9, B;B,L) ->q9	δ(q9, C;C,L) ->q9
δ(q6, A;A,R) ->q6	δ(q6, B;B,R) ->q6	δ(q6, C;C,R) ->q6	δ(q6, Y;Y,R) ->q6
δ(q4, C;X,R) ->q7	δ(q7, Δ;C,L) ->q10	δ(q10, X;C,R) ->q4	δ(q7, A;A,R) ->q7
δ(q7, B;B,R) ->q7	δ(q7, C;C,R) ->q7	δ(q7, Y;Y,R) ->q7	δ(q10, A;A,L) ->q10
δ(q10, B;B,L) ->q10	δ(q10, C;C,L) ->q10	δ(q10, Y;Y,L) ->q10	δ(q4, Y;Y,L) ->q11

 $\delta(q11, A;A,L)$ ->q11 $\delta(q11, B;B,L)$ ->q11 $\delta(q11, C;C,L)$ ->q11 $\delta(q11, \Delta;\Delta,R)$ ->q12 $\delta(q12, B;B,R)$ ->q14 $\delta(q14, Y;B,R)$ ->q16 $\delta(q16, \Delta;\Delta,S)$ ->q16 $\delta(q12, C;C,R)$ ->q15 $\delta(q15, Y;C,R)$ ->q16 $\delta(q12, A;A,R)$ ->q13 $\delta(q13, Y;A,R)$ ->q16 $\delta(q13, A;A,R)$ ->q13 $\delta(q13, B;B,R)$ ->q13 $\delta(q13, C;C,R)$ ->q14 $\delta(q14, B;B,R)$ ->q14 $\delta(q14, B;B,R)$ ->q15 $\delta(q14, C;C,R)$ ->q16 $\delta(q15, A;A,R)$ ->q17 $\delta(q14, C;C,R)$ ->q18 $\delta(q16, A;A,R)$ ->q19 $\delta(q16, A;A,R)$ ->q19 $\delta(q16, A;A,R)$ ->q19 $\delta(q16, A;A,R)$ ->q19 $\delta(q16, B;B,R)$ ->q19 $\delta(q16, C;C,R)$ ->q19 $\delta(q16, C;C,R)$ ->q16

2) [7 pts] Diseñar una Máquina de Turing que obtenga el sucesor de un número binario.10.

$$M = (S; \Sigma; \Gamma; \Delta; q0; \delta)$$

Donde:

 Γ : es el alfabeto de símbolos de la cinta

 Σ : es el alfabeto de símbolos de entrada

Δ : es el símbolo en blanco

S: es un conjunto finito de estados

q0 : es el estado inicial

 δ : es una funcion de transicion parcial

Entrada

Decimal	Binario
0	0
1	1
2	10
3	11

Salida

Decimal(Sucesor)	Binario
1	1
2	10
3	11
4	100

Tenemos 2 casos por observar:

- Si el último elemento de la entrada acaba en 0 entonces solo se cambia por un uno
- Si el último elemento de la entrada acaba en 1 entonces se intercambia todos los 0 por 1 hasta que se llegue a un blanco donde allí es el sitio donde se pone un 1

3) [7 pts] Diseñar una Máquina de Turing que obtenga el antecesor de un número binario.

$$\mathsf{M} = (\mathsf{S}; \Sigma; \Gamma; \Delta; \mathsf{q} 0; \delta)$$

Donde:

☐: es el alfabeto de símbolos de la cinta

 $\boldsymbol{\Sigma}$: es el alfabeto de símbolos de entrada

 Δ : es el símbolo en blanco

S: es un conjunto finito de estados

q0 : es el estado inicial

 $\boldsymbol{\delta}$: es una funcion de transicion parcial

Entrada Decimal Binario 1 1 2 10 3 11 4 100

Salida

Decimal(antecesor) Binario

0	0
1	1
2	10
3	11

Recorremos la cadena y se cambia 0 por 1

Luego encontramos el 1 menos significativo y lo cambiamos por 0

$$\delta(q0,\,1;1,R\,\,)\,\,{->}q0\qquad \delta(q0,\,\Delta;\Delta,L\,\,)\,\,{->}q1\qquad \delta(q1,\,0;1,L\,\,)\,\,{->}q1\qquad \delta(q1,\,1;0,L\,\,)\,\,{->}q2$$

$$\delta(q0, 0; 0, R) - q0$$
 $\delta(q2, 1; 1, L) - q2$ $\delta(q2, 0; 0, L) - q2$ $\delta(q2, \Delta; \Delta, R) - q3$

$$\delta(q3, 0; \Delta, R) - q4 \qquad \delta(q3, 1; 1, S) - q4$$

3. RÚBRICA DE EVALUACIÓN

Criterios	Muy Bueno	Bueno	Regular	Malo
Criterios Resolución del Laboratorio	Muy Bueno Resuelve todos los ejercicios sin errores mostrando cada uno de los puntos solicitados. Puntaje: 16 puntos	Bueno Resuelve todos los ejercicios con pocos errores mostrando casi o todos todos los puntos solicitados. Puntaje: 14	Regular Resuelve todos los ejercicios con varios errores y mostrando todos o pocos de los puntos solicitados. Puntaje: 8 puntos	Malo No resuelve todos los ejercicios o no entrega el laboratorio. Puntaje: 0 puntos
	1	puntos		

Presentación y Resolución de Preguntas	La presentación es clara y entendible, sin errores y respondiendo todas las preguntas. Puntaje: 4 puntos	La presentación es clara y entendible, con algunos errores; y respondiendo la mayor cantidad de preguntas. Puntaje: 2 puntos	La presentación no es entendible y/o comete muchos errores. Puntaje: 1 punto	No presenta todos los ejercicios o no entrega el laboratorio. Puntaje: 0 puntos
--	--	---	--	---