

Topical Meeting

Machine Learning Simulating Stochastic Processes with Quantum Devices

+

Robust Quantum Algorithms

October 5th, 2022

Daniel Fink

Agenda

- Stochastic Processes
 - Quick repetition
 - Obstacles
 - Solutions
 - Results
- Robust Algorithms
 - Idea

Simulating Stochastic Processes

Repetition

Stochastic Processes

Stock Price Trend

Stochastic Processes

- Simulating = sampling trajectories
- Trajectory is governed by $P(\vec{X}|\vec{X})$

Stochastic Processes

Theoretical statement: Quantum Models are "better"

→ Use less memory, can be more accurate, ...

2) Lower bound for the KL divergence

Yang et al., arXiv:2105.14434

Missing:

- more complex processes
- experiments

Problem

The models are hard to find / learn

Variational Quantum Algorithm

Cost Function

Cost Function

memory states

Cost Function

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta})$$

Simulating Stochastic Processes

only simple processes

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta})$$

only simple processes

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta}) \quad \text{gradient is complicated}$$

$$C(\boldsymbol{\theta}) = \sum_{\hat{x}} w_{\hat{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \hat{x}] + R_{\hat{x}}(\boldsymbol{\theta}) \quad \text{gradient is complicated}$$

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta}) \quad \text{gradient is complicated}$$

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta}) \quad \text{gradient is complicated}$$

Simulating Stochastic Processes

Solutions

Simulating Stochastic Processes

Results of the Refactoring

Metrics

Maximum Mean Discrepancy: (MMD)

$$MMD(P, \hat{P}) = \sup_{f \in F} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{y \sim \hat{P}} f(y) \right]$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

 $D_{TV}(P,\hat{P}) = \frac{1}{2} \sum |P(x) - \hat{P}(x)|$

Results – 1 Validation Step

Without Regularization

Results – 2 Validation Steps

Without Regularization

Results – 5 Validation Steps

Without Regularization

Simulating Stochastic Processes

A more complicated process

Another Process

Use a slightly more complicated stochastic process

Another Process

Use a slightly more complicated stochastic process

Results – Training

Without Regularization

Results – Training

Without Regularization

Make the unitary U more expressive

Results – Training

Without Regularization

With Regularization

Results – Training

Without Regularization

With Regularization

Create a more sophisticated encoding technique

Use a universal 2 qubit operator

Robust
Quantum
Algorithms

A function $f: X \to Y$ is Lipschitz iff

$$\forall x, x' \colon \|f(x) - f(x')\| \le C\|x - x'\|$$

A function $f: X \to Y$ is Lipschitz iff $\forall x, x' \colon \|f(x) - f(x')\| \le C\|x - x'\|$

max output disturbance

max input disturbance

A quantum algo. can be written as

$$f_{\theta}(x) = \langle \psi(\theta, x) | M_{\theta} | \psi(\theta, x) \rangle$$

A function $f: X \to Y$ is Lipschitz iff

$$\forall x, x' : \|f(x) - f(x')\| \le C\|x - x'\|$$

max output disturbance

A quantum algo. can be written as

$$f_{\theta}(x) = \langle \psi(\theta, x) | M_{\theta} | \psi(\theta, x) \rangle$$

The Lipschitz constant of f_{θ} defines a robustness measure for the quantum algorithm.

A function $f: X \to Y$ is Lipschitz iff

$$\forall x, x' : \|f(x) - f(x')\| \le C\|x - x'\|$$

max output disturbance

max input disturbance

A quantum algo. can be written as

$$f_{\theta}(x) = \langle \psi(\theta, x) | M_{\theta} | \psi(\theta, x) \rangle$$

The Lipschitz constant of f_{θ} defines a robustness measure for the quantum algorithm.

The constant can be adjusted via suitable regularizations.

- Create a simple QNN
- Train on noise-free circuits vs. with noise (with/without regularization)
- We expect a better accuracy for noisy models with regularization

