Beta-Multiplier : A Step-by-Step Guide to Understanding

Dr. Anil Kumar Gundu

A Systematic and Simplified View of Beta-Multiplier

- One way to bias the devices M_{n1} and M_{n2} is to push the same current to both devices
- How can this be done? Use a matched current mirror (pmos in this case) as it will make sure that M_{n1} and M_{n2} carries same current
- We have two options to push same current to the devices M_{n1} and M_{n2} (shown below left and right):
 - Which option works without any problem

A Systematic and Simplified View of Beta-Multiplier – Option 1

- It's a positive feedback loop. The loop gain is larger than 1.
- The loop gain and related analysis is shown below.
- The open loop gain in this case is strictly greater than 1 for any K > 1

$$\Delta V_{out} = \frac{1 + (g_{m,Mn2})R}{g_{m,Mn2}} \frac{(g_{m,Mp2}*g_{m,Mn1})\Delta V_{in}}{g_{m,Mp1}}$$

$$g_{m,Mn2} = \sqrt{K*g_{m,Mn1}}$$
perfectly matched current mirror yield,
$$\Delta V_{out} = \frac{[1 + (g_{m,Mn2})R](g_{m,Mn1})\Delta V_{in}}{g_{m,Mn2}}$$

A Systematic and Simplified View of Beta-Multiplier – Option 2

- It's a positive feedback loop. But the loop gain is smaller than 1.
- The loop gain and related analysis is shown below.
- The open loop gain in this case is strictly less than 1 for any K > 1

$$\Delta V_{out} = \frac{g_{m,Mn2}\Delta V_{in}}{(1+R^*g_{m,Mn2})} \frac{1}{g_{m,Mn1}}$$

$$\Delta V_{out} = \frac{\sqrt{K\Delta V_{in}}}{(1+R^*g_{m,Mn2})}$$

This loop effectively helps in keeping loop gain less than 1

Beta-Multiplier at a Glance

	feedback	DC Loop Gain	stability	gm
W/L M _{n1} M _{n2} K(W/L)	positive	$\Delta V_{out} = \frac{2\sqrt{K-1}}{\sqrt{K}} \Delta V_{in}$ Loop gain is greater than 1 > 1	unstable	gm is not stabilized
W/L M _{n1} M _{p2} K(W/L)	positive	$\Delta V_{out} = \frac{\sqrt{K}}{2\sqrt{K} - 1} \Delta V_{in}$ Loop gain is less than 1 < 1	stable	$g_{m,Mn1}R = \frac{2(\sqrt{K} - 1)}{\sqrt{K}}$ (constant)