

Ohjelmistotestauksen Teemapäivä, TTY, 8.6.2010

How Do Testers Do It? Exploratory and Experience Based Testing

Juha Itkonen
Software Business and Engineering Institute (SoberIT)
juha.itkonen@tkk.fi
+358 50 5771688

Contents

- Introduction to experience based and exploratory testing
 - Intelligent manual testing
- Overall strategies and detailed techniques

Selection of exploratory tester's pitfalls

Manual Testing

- Testing that is performed by human testers
- Stereotype of manual testing
 - Executing detailed pre-designed test cases
 - Mechanical step-by-step following the instructions
 - Treated as work that anybody can do

In practice, it's clear that some testers are better than others in manual testing and more effective at revealing defects...

Research has shown:

- 1. Individual differences in testing are high
- 2. Test case design techniques alone do not explain the results

My viewpoint: Experience Based – Intelligent – Manual Testing

- Manual testing that builds on the tester's experience
 - knowledge and skills
- Some aspects of testing rely on tester's skills
 - during testing
 - e.g., input values, expected results, or interactions
- Testers are assumed to know what they are doing
 - Testing does not mean executing detailed scripts
- Focus on the actual testing work in practice
 - What happens during testing activities?
 - How are defects actually found?
 - Experience-based and exploratory aspects of software testing

Exploratory Testing is creative testing without predefined test cases

Based on knowledge and skills of the tester

- 1. Tests are not defined in advance
 - Exploring with a general mission
 - without specific step-by-step instructions on how to accomplish the mission
- 2. Testing is guided by the results of previously performed tests and the gained knowledge from them
- 3. The focus is on finding defects by exploration
 - Instead of demonstrating systematic coverage
- **4. Simultaneous learning** of the system under test, test design, and test execution
- **5. Experience and skills of an individual tester** strongly affect effectiveness

Exploratory and scripted testing are the ends of a continuum

- ET is an approach
- Many testing techniques can be used in exploratory way

Scripted Model vs. Mental Model

Strengths of IMT – Testers' skills

- Utilizing the knowledge and skills of the tester
 - Testers know how the software is used and for what purpose
 - Testers know what functionality and features are critical
 - Testers know what issues are relevant
 - Testers know how the software was built
- Enables creative exploring
- Enables fast learning and improving testing

Strengths of IMT – Process

- Agility and flexibility
 - Easy and fast to focus on critical areas
 - Fast reaction to changes
 - Ability to work with missing or weak documentation
- Effectiveness
 - Reveals large number of relevant defects
- Efficiency
 - Low documentation overhead
 - Fast feedback when changes or new risks appear

Challenges of IMT

- Planning and tracking
 - How much testing is needed, how long does it take?
 - What is the status of testing?
 - How to share testing work between testers?
- Managing test coverage
 - What has been tested?
 - When are we done?
- Logging and reporting
 - Visibility outside testing team
 - or outside individual testing sessions
- Quality of testing
 - How to assure the quality of tester's work
 - Detailed test cases can be reviewed, at least

Some ways of exploring in practice

- 1. Session-based exploratory testing
- 2. Functional testing of individual features
- 3. Exploratory smoke testing
- 4. Freestyle exploratory testing
 - Unmanaged ET as part of other duties
 - Extending test cases
- 5. Outsourced exploratory testing
 - Advanced users, strong domain knowledge
- 6. Exploratory regression testing
 - by verifying fixes or changes

Intelligent Manual Testing Practices

- Empirically observed practices from industry
- Testing, not test case pre-design
- Practices work on different levels of abstraction
 - Many practices are similar to traditional test case design techniques
 - Many practices are similar to more general testing strategies, heuristics, or rules of thumb

IMT practices

Overall strategies

- Exploratory
- Documentation based

Detailed techniques

- Exploratory
- Input
- Comparison

Session Based Test Management (SBTM)

Bach, J. "Session-Based Test Management", STQE, vol. 2, no. 6, 2000.

Session-Based Testing – Way to Manage ET

- Enables planning and tracking exploratory testing
 - Without detailed test (case) designs
 - Dividing testing work in small chunks
 - Tracking testing work in time-boxed sessions
- Efficient no unnecessary documentation
- Agile it's easy to focus testing to most important areas based on the test results and other information
 - Changes in requirements, increasing understanding, revealed problems, ...
- Can help getting testing done when resources are scarce

Exploring like a tourist

- The Tourist Metaphor

- Using different tours to guide testers' actions
 - Guidebook tour
 - Money tour
 - Landmark tour
 - Back alley tour
 - All-nighter tour
 - Coach potato tour
 - Lonely businessman tour
 - Saboteur tour
 - Antisocial tour

James A. Whittaker. *Exploratory Software Testing, Tips, Tricks, Tours, and Techniques to Guide Test Design.*Addison-Wesley, 2010.

Examples

SELECTED IMT PRACTICES

Purpose clusters

Exploring: guiding exploratory testing

Coverage: managing test coverage

Results: deciding if the results were correct

Defects: detecting specific types of defects

Prioritization: selecting what to test

<exploratory strategy>

Exploring weak areas

- Description: Exploring areas of the software that are weak or risky based on the experience and knowledge of the tester.
- Goal: Reveal defects in areas that are somehow known to be risky.
 Focus testing on risky areas.
 - complicated
 - coded in a hurry
 - lots of changes
 - coders' opinion
 - testers' opinion
 - based on who implemented
 - a hunch...

<exploratory strategy>

Top-down functional exploring

1

- Description: Proceeding in testing by first going through typical cases and simple checks. Proceed gradually deeper in the details of the tested functionality and applying more complicated tests.
- **Goal:** To get first high level understanding of the function and then deeper confidence on its quality set-by-step.
 - Is this function implemented?
 - Does it do the right thing?
 - Is there missing functionality?
 - Does it handle the exceptions and special cases?
 - Does is work together with the rest of the system?
 - **–** ...

<documentation based strategy>

Using data as test cases

- Testing is exploratory, but the pre-defined data set is used to achieve systematic coverage.
- Suitable for situations where data is complex, but operations simple. Or when creating the data requires much effort.
- Goal: To manage exploratory testing based on pre-defined test data.
 Achieve and measure coverage in exploratory testing.
- Example: Different types of customers in a CRM system.
 - User privileges
 - Situation, history, data, relationships
 - ...

<comparison technique>

Comparing within the software

- Description: Comparing similar features in different places of the same system and testing their consistency.
- Goal: Investigating and revealing problems in the consistency of functionality inside software; help decide if a feature works correctly or not.

<input technique>

Covering input combinations

- Description: Experience based identification of relevant combinations of inputs, outputs, data, etc. that affect the behaviour of the system.
- Goal: Systematic coverage of the combined effects of two or more related variables. Revealing defects related to the combined effects of variables.

Ways of utilizing IMT Practices

Training testers

Guiding test execution

Test documentation and tracking

Test patterns for different situations

Training Testers

- Testing heuristics and practices are good, experience based, knowledge for intelligent testers
- Named and documented
 - Give common terminology and names that can be used to discuss how the testing should be done
- By learning these practices a novice tester could do better job
 - Compared to just go and test around

Guiding Test Execution

- Practices together with a high level test documentation can be used as a checklist
- A tester can choose applicable practices when doing exploratory testing
 - More conscious decisions
 - Better idea what the tester is actually doing
 - Easier to maintain focus what am I going to achieve?

Test Documentation and Tracking

- Testing practices can be used to write test specifications
 - No need for detailed descriptions for the tester
 - Tester knows what to do
 - Other people know what has been done
- Test planning and design can focus on high level structure and coverage issues
 - Not to teaching experienced tester how to test ;-)
 - Example:
 - Use exploring high-level test cases to cover the functionality
 - Apply Testing input alternatives and Testing boundaries and restrictions practices for each function
 - In addition, use User interface exploring practice to cover the functionality of all new dialogs

Test patterns

- Testing practices could be further developed
- Testing pattern will provide set of good testing practices
 - For a certain testing problem and motivation
 - With a certain testing goal
 - Describing also the applicability (context) of the pattern

Questions and more discussion

Contact information

Juha Itkonen

juha.itkonen@tkk.fi

+358 50 577 1688

http://www.soberit.hut.fi/jitkonen

