MT404 - MÉTODOS COMPUTACIONAIS DE ÁLGEBRA LINEAR - 2º SEM/2012 PROVA 1

1. (a) Se x e y são vetores de \mathbb{R}^n , mostre que

$$|x^T y| \le ||x||_{\infty} ||y||_1.$$

Para que vetores $y \in \mathbb{R}^n$, $|x^Ty| = ||x||_{\infty}$?

- (b) Seja $A \in \mathbb{R}^{m \times n}$. Prove que $||A||_2 \leq ||A||_F$.
- 2. Seja $A \in \mathbb{R}^{n \times n}$ matriz banda, com banda inferior p e banda superior q. A pode ser armazenada, pelas suas diagonais, em uma matriz B, de dimensão $(p+q+1) \times n$ tal que: $a_{ij} = B(i-j+q+1,j)$, para todo i,j "dentro da banda". Usando este armazenamento,

(a) reescreva
$$A = \begin{bmatrix} 5 & 3 & 0 & 0 & 0 & 0 \\ -3 & 4 & 2.5 & 0 & 0 & 0 \\ 3 & -2 & -1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 3.5 & -4 & 0 \\ 0 & 0 & 3 & 0.5 & 1 & -1 \\ 0 & 0 & 0 & -5 & -0.5 & 1 \end{bmatrix};$$

- (b) escreva um algoritmo que implemente o produto Ax=y, onde $A,x\in I\!\!R^n,p$ e q são conhecidos.
- 3. Sejam $u, v \in \mathbb{R}^n$ e considere a matriz $A = I + uv^T$.
 - (a) Mostre que AB = BA = I, isto é $B = A^{-1}$, onde

$$B = I - \frac{uv^T}{1 + u^Tv}.$$

Se $u = (0\ 1000\ 100)^T$ e $v = (10\ 0.1\ -0.01)^T$:

- (b) calcule $cond_1(A)$;
- (c) na resolução do sistema linear Ax = b, onde $b = (1 \ 10.1 \ -1)^T$, obteve-se a norma do resíduo igual a $1.01*10^{-5}$. Qual o limitante superior para o erro relativo neste caso? A partir deste resultado, o que você pode esperar da precisão da solução obtida?
- 4. Seja $\alpha \in I\!\!R$ e considere a matriz $A = \begin{bmatrix} \alpha & 2 & 0 \\ 1 & \alpha & 1 \\ 0 & 1 & \alpha \end{bmatrix}$.

 (a) Exiba os fatores L e U de A e determine os valores de α para os quais a decomposição
 - LU de A não existe. Justifique sua resposta.
 - (b) Usando a fatoração LU de A, para que valores de α você pode garantir que esta fatoração é única?