dif_analysis

Kate Weaver

12/20/2021

```
library(limma)
library(SummarizedExperiment)
library(rtracklayer)
library(tidyverse)
library(data.table)
library(readxl)
library(janitor)
library(ggrepel)
library(ggthemes)
library(edgeR)
library(plotly)
library(survcomp)
library(cowplot)
library(AnnotationDbi)
library(EnsDb.Hsapiens.v86)
library(qqplot2)
```

```
qval <- 0.1
```

importing SummarizedExperiment Data and transforming to raw counts data

```
load("~/mccoyLab/collabs/doubleseq_2021/summarized_experiment/create_summarized_exper
iment_allNov2021.Rdata")
counts <- as.matrix(assays(seAll)$counts)
for (col in 1:ncol(counts)){
   colnames(counts)[col]<-strsplit(sub("Aligned.sortedByCoord.out.bam", "", colnames(counts)[col]), "_")[[1]][1]
}</pre>
```

```
#subset to just training data/samples
embryoID_by_set <- read.csv("~/mccoyLab/collabs/doubleseq_2021/data_split/embryo_bySe
t_full_kw_20211217.csv", col.names=c("embryoID", "set"))
train_embryoIDs = embryoID_by_set$embryoID[embryoID_by_set$set == "train"]
train_cols <- which(colnames(counts) %in% train_embryoIDs)

counts <- counts[,train_cols]

ggplot(data.frame(data=colSums(counts)), aes(x=data)) + geom_histogram() + theme_bw()
+ theme(panel.background = element_blank(), panel.grid = element_blank()) #library si
ze is right-skewed, normal distribution, but fairly variable</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

message(paste0("nearly ", max(colSums(counts))/min(colSums(counts)), " fold differenc e between largest and smallest library size for training samples before filtering"))

nearly 12.4328171619122 fold difference between largest and smallest library size for training samples before filtering

Therefore, we should probably use voom before limma-trend

```
#subset to genes with matchind gencode ensembl gene IDs on chr1-22
file_gencode <- "~/genomes/hg38_genome/gencode.v34.annotation.gtf"

gtf <- rtracklayer::import(file_gencode) %>%
    as.data.frame() %>%
    dplyr::filter(type == "gene") %>%
    dplyr::select(gene_id, seqnames, width) %>%
    dplyr::rename(ensembl_gene_id = gene_id) %>%
    dplyr::rename(chromosome_name = seqnames) %>%
    dplyr::rename(length = width)

gene_table <- gtf[match(rownames(counts), gtf$ensembl_gene_id),]
gene_table <- gene_table[gene_table$chromosome_name %in% paste0("chr", 1:22),]
counts <- counts[gene_table$ensembl_gene_id,]</pre>
```

```
#Importing metadata to differentiate between pregnant and not pregnant and other main
covariates
meta <- read.csv("~/mccoyLab/collabs/doubleseq_2021/tidied_meta/tidied_meta_CREATE_kw</pre>
_20211217.csv", row.names = 1) %>%
  as.data.frame() %>%
  mutate(across(c("AOD", "GC", "Infertility_type", "Previous_pregnancy", "Past_surgic
al_hist", "Pregnant", "Ongoing_pregnancy", "Final_outcome", "Embryo_grade_at_freezin
g", "Interpretation", "cDNA_RT_Date", "Library_Prep_Date", "Sequencing_Date", "Study_
Participant_ID"), as.factor)) %>%
  mutate(across(c("InfD_SSM_GC", "InfD_Egg_factor", "InfD_MF", "InfD_Uterine_factor",
"InfD_TF", "InfD_RPL", "InfD_RIF", "InfD_Unexplained", "PMdH_none", "PMdH_vasculiti
s", "PMdH_immune", "PMdH_stress_hormones"), as.factor))
#subsetting meta data to just the training rows
remove <- setdiff(rownames(meta), colnames(counts))</pre>
if (length(which(rownames(meta) %in% remove)) > 0){
  meta <- meta[-which(rownames(meta) %in% remove),]</pre>
}
#need to sort so name order is the same for setting up design for DESeq experiment
counts_order <- order(colnames(counts))</pre>
meta_order <- order(rownames(meta))</pre>
countdata <- counts[, counts_order]</pre>
coldata <- meta[meta_order, ]</pre>
```

```
#OLDFiltering out counts 0 and 1
#keep <- rowSums(countdata) > 1
#countdata <- countdata[keep, ]</pre>
#Use more stringent filtering
dgeFullData <- DGEList(countdata, group=as.factor(coldata$Study_Participant_ID))</pre>
#normalize counts by TMM
TMMFullData <- calcNormFactors(dgeFullData, method="TMM")</pre>
TMMCounts <- as.matrix(TMMFullData$counts)</pre>
countsCleaned <- TMMCounts[rowSums(TMMCounts >= 6) > (ncol(TMMCounts)* .2),]
#TPM Calculation
calc_tpm <- function(x, gene.length) {</pre>
  x <- as.matrix(x)</pre>
  len.norm.lib.size <- colSums(x / gene.length)</pre>
  return((t(t(x) / len.norm.lib.size) * 1e06)/ gene.length)
}
#sum(rownames(dgeFullData$counts) == gene_table$ensembl_gene_id) == length(rownames(d
geFullData$counts)) --> TRUE
#creates a matrix with calculated TPM values for each sample from TMM normalized coun
ts and the gene lengths
rawTPMvals <- calc_tpm(TMMFullData, gene.length = gene_table$length)</pre>
cleanedTPMVals <- rawTPMvals[rowSums(rawTPMvals > 0.1) > (ncol(rawTPMvals)*.2),]
cleanCountsDf <- as.data.frame(countsCleaned)</pre>
cleanTPMdf <- as.data.frame(cleanedTPMVals)</pre>
countdata <- cbind(countdata[intersect(rownames(cleanCountsDf), rownames(cleanTPMd</pre>
f)),])
```

```
\label{eq:control_gamma} \begin{split} & \text{ggplot(data.frame(data=colSums(countdata)), aes(x=data)) + geom\_histogram() + theme\_b} \\ & \text{w() + theme(panel.grid = element\_blank(), panel.background = element\_blank())} \ \#librar \\ & \text{y size is right-skewed, normal distribution, but fairly variable} \end{split}
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


message(paste0("nearly ", max(colSums(countdata))/min(colSums(countdata)), " fold dif
ference between largest and smallest library size for training samples before filteri
ng"))

nearly 16.8899467648348 fold difference between largest and smallest library size for training samples before filtering

Should definitely use voom before limma-trend

```
#set up design matrix for edgeR, limma, & voom
#Response variable / outcome of interest later
Pregnant <- factor(coldata$Pregnant)</pre>
# main covariates to consider
Batch <- factor(coldata$Sequencing_Date)</pre>
# participant age
Age_0 <- as.numeric(coldata$0ocyte_Age)</pre>
#lining thickness
lthick <- as.numeric(coldata$lining_thickness_mm)</pre>
#embryo grade at freezing
egaf <- factor(coldata$Embryo_grade_at_freezing)</pre>
#design0 <- model.matrix( ~ Pregnant + Batch)</pre>
#design1 <- model.matrix( ~ Pregnant + Batch + Age_0)
#design2 <- model.matrix( ~ Pregnant + Batch + Age_0 + lthick)</pre>
design3 <- model.matrix( ~ Pregnant + Batch + Age_0 + lthick + egaf)</pre>
dge <- edgeR::DGEList(counts = countdata, samples = coldata)</pre>
#log counts per million and use of prior.count to damp down the variance of logs of l
ow counts
logCPM <- edgeR::cpm(dge, log=TRUE, prior.count=3)</pre>
#requires statmod package
corfit <- duplicateCorrelation(logCPM, design=design3, ndups=1, block=coldata$Study_P</pre>
articipant_ID) # A slow computation
message(corfit$consensus.correlation)
```

0.0825105560731058

g4 <- boxplot(tanh(corfit\$atanh.correlations))</pre>

g4

```
## $stats
##
             [,1]
## [1,] -0.38159651
## [2,] -0.04354100
## [3,] 0.07787973
## [4,] 0.20847693
## [5,] 0.58628051
##
## $n
## [1] 22601
##
## $conf
##
            [,1]
## [1,] 0.07523108
## [2,] 0.08052838
##
## $out
    [1] 0.6112359 0.6446197 0.5867888 0.6161717 0.6601489 0.5948071 0.6072769
##
##
    [8] 0.6384512 0.6592120 0.6399844 0.5876341 0.8884607 0.6056894 0.5925431
   [15] 0.6519914 0.6598277 0.6038710 0.6319103 0.6234811 0.6051692 0.6969287
##
   [22] 0.6062153 0.5899089 0.5975795 0.6049420 0.6153552 0.6320571 0.5990499
##
##
   [29] 0.5920309 0.6060627 0.6041030 0.6206476 0.6725248 0.7241776 0.5988283
##
   [36] 0.5888514 0.5875110 0.7033344 0.6195734 0.6235942 0.6277653 0.6029558
   [43] 0.6313106 0.6356459 0.6722642 0.7340924 0.6793613 0.6244466 0.6288418
##
   [50] 0.6175924 0.6616796 0.6129824 0.5965946 0.6208838 0.6981250 0.6414248
##
   [57] 0.6402290 0.6421618 0.6099647 0.6045395 0.6256691 0.5879901 0.6734688
##
   [64] 0.6000244 0.6226704 0.6051352 0.6885483 0.6501034 0.5908466 0.6369326
##
##
   [71] 0.6444619 0.5929097 0.7894076 0.6397800 0.6118927 0.6396437 0.6500173
   [78] 0.5971489 0.6602478 0.6910881 0.5945160 0.5966649 0.6328221 0.6658316
##
   [85] 0.5873314 0.5998353 0.5875379 0.6221664 0.6228958 0.6020593 0.6129997
##
##
   [92] 0.6095366 0.6272825 0.5934938 0.8107765 0.5950699 0.6321683 0.6796551
##
   [99] 0.6116479 0.6182190 0.7654541 0.5869769 0.6827029 0.6101261 0.6229803
## [106] 0.7637836 0.6514624 0.7044587 0.6082900 0.5875352 0.8261413 0.5923178
## [113] 0.5895519 0.6632305 0.5929197 0.6644561 0.6670204 0.7226311 0.6148179
## [120] 0.7213392 0.6075156 0.6377610 0.6159585 0.6238620
##
## $group
##
    ##
##
   ## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## $names
## [1] "1"
```

```
v <- limma::voom(dge, design3, plot=TRUE, save.plot = TRUE)</pre>
```

voom: Mean-variance trend

 $save (v, file="\sim/mccoyLab/collabs/doubleseq_2021/dif_expression_results/voom0ut_trainSPA_withBatch.Rdata")$

fit <- lmFit(v, design3, correlation = corfit\$consensus)
fit</pre>

```
## An object of class "MArrayLM"
##
  $coefficients
##
                      (Intercept)
                                     Pregnant1
                                                    Batch1
                                                               Batch2
                        8.6311051 0.008254271 -1.39483510 -1.2284238 -0.13029281
## ENSG00000000419.12
                        3.8947377 -1.676818764 -1.61528319 -0.9311951 -0.04289475
## ENSG00000000457.14
                        4.3780885 -0.811935783 -0.68355242 0.7421455 -0.03387664
  ENSG00000000460.17
##
  ENSG00000000938.13
                        0.1631185
                                  0.434141172 -0.30779717 0.5203889
                                                                      0.07291627
                        5.8760514 -0.151324315 0.09613538 -0.1898835 -0.10597728
##
  ENSG00000000971.16
##
                            lthick
                                         egaf2
                                                    egaf3
                                                               egaf4
## ENSG00000000419.12 -0.154256303 0.002148364 0.5018600 0.8020383 4.3015116
##
  ENSG00000000457.14 -0.001652822 1.719739776 0.5299222 0.3873885 0.0757614
  ENSG00000000460.17 0.031441902 1.542830411 -0.3975013 -0.4580717 0.2292071
  ENSG00000000938.13 -0.163809553 0.076591805 -1.8837309 -1.1029650 -3.5551158
##
  ENSG00000000971.16 -0.123587523 3.266275902 -0.5904614 0.5147126 0.7389159
##
                           egaf6
                                       egaf7
                                                   egaf8
                                                              egaf9
                                                                        egaf10
## ENSG00000000419.12 0.9897865 0.04016172 -0.01086929 -0.6984611 -0.4709502
  ENSG00000000457.14 0.5205278 -2.04048280 0.40620437 0.6203677 -3.4281351
##
  ENSG00000000460.17 0.4563336 -2.77235332 3.67750247 -0.7427119 -1.6051898
  ENSG00000000938.13 -2.6480132 -1.62125057 3.94539489 -0.6408281 3.7104288
  ENSG00000000971.16 -2.8617688 -2.07854813
                                              0.53641280 1.6791194 2.6585347
##
##
                          egaf11
## ENSG00000000419.12 -0.7871771 0.94500565
## ENSG00000000457.14 3.6481867 0.52109505
## ENSG00000000460.17 -6.1410616 -0.07898724
  ENSG00000000938.13 -2.8739169 -3.07519924
  ENSG00000000971.16 -3.0605034 3.86783259
  22596 more rows ...
##
##
## $stdev.unscaled
##
                      (Intercept) Pregnant1
                                               Batch1
                                                         Batch2
                                                                     Age_0
## ENSG00000000419.12
                         3.550931 0.6886322 0.8266728 0.7729604 0.08921811
  ENSG00000000457.14
                        3.448963 0.6724390 0.7814184 0.7482368 0.08699972
                        3.550856 0.6768345 0.8238515 0.7535519 0.08955509
## ENSG00000000460.17
                        3.348842 0.6673634 0.7985575 0.7372030 0.08420000
  ENSG00000000938.13
## ENSG00000000971.16
                         3.432902 0.6744289 0.8221301 0.7341357 0.08534739
##
                         lthick
                                   egaf2
                                            egaf3
                                                      egaf4
                                                               egaf5
## ENSG00000000419.12 0.1779428 1.536258 1.309991 0.9911118 1.883718 1.607650
## ENSG00000000457.14 0.1747133 1.500071 1.266831 0.9605443 1.969307 1.585864
  ENSG00000000460.17 0.1785683 1.378922 1.287004 0.9816908 2.125904 1.550283
  ENSG00000000938.13 0.1673022 1.539980 1.257397 0.9953175 1.801031 1.469052
  ENSG00000000971.16 0.1738277 1.430044 1.245167 0.9868146 2.142343 1.424458
##
##
                         egaf7
                                  egaf8
                                           egaf9
                                                   egaf10
                                                            egaf11
## ENSG00000000419.12 1.274674 2.555970 1.121305 3.304065 3.528097 2.114631
## ENSG00000000457.14 1.152537 2.554701 1.103764 2.697298 2.732678 2.131287
## ENSG00000000460.17 1.241499 1.966441 1.151566 3.435910 2.809692 2.053548
  ENSG00000000938.13 1.268344 2.081146 1.152139 2.714899 2.981825 1.761367
  ENSG00000000971.16 1.175438 2.529336 1.151741 3.050489 2.797278 2.001074
##
  22596 more rows ...
##
## $sigma
  [1] 0.9487968 1.0615387 0.9795905 1.1025547 1.1160472
```

```
## 22596 more elements ...
##
## $df.residual
## [1] 90 90 90 90 90
## 22596 more elements ...
##
## $cov.coefficients
##
              (Intercept)
                           Pregnant1
                                          Batch1
                                                       Batch2
                                                                    Age 0
## (Intercept) 1.316450744 -0.037883784 -0.0397780419 -0.0065617172 -0.0279186291
## Pregnant1 -0.037883784 0.048528744 0.0061837230 0.0089474091 0.0005205790
## Batch1
             -0.039778042 0.006183723 0.0682048597 0.0255006851 0.0002482662
## Batch2
             -0.006561717 0.008947409 0.0255006851 0.0596221271 -0.0008260296
## Age 0
             -0.027918629 0.000520579 0.0002482662 -0.0008260296 0.0008176764
##
                   lthick
                                 egaf2
                                            egaf3
                                                         egaf4
## (Intercept) -2.736124e-02 -1.105305e-01 -0.020541746 -0.0002357444 0.079781787
## Pregnant1 -2.323062e-03 7.055642e-03 0.021725582 0.0153912441 0.018798900
## Batch1
             -1.134501e-04 8.815889e-03 0.001865631 0.0045789616 -0.038870427
## Batch2
              3.344692e-04 8.538123e-05 0.005181515 0.0002305227 0.006398339
## Age 0
             -4.811847e-05 1.696204e-03 -0.001293556 -0.0012467435 -0.003366241
##
                   egaf6
                                egaf7
                                           egaf8
                                                       egaf9
                                                                   egaf10
## (Intercept) -0.014386465 -0.0298661515 0.107086764 0.009455159 -0.1657234882
## Batch1
              ## Batch2
              ## Age_0
             -0.001712637 -0.0008412626 -0.005409268 -0.001453557 0.0007515577
                  egaf11
##
                               egaf12
## (Intercept) 0.129744124 -0.0426993823
## Pregnant1
              0.039250081 0.0365821422
## Batch1
              0.030485364 0.0150572597
## Batch2
              0.037910269 -0.0070693368
## Age 0
             -0.005942596 -0.0002132919
## 12 more rows ...
##
## $pivot
          2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
##
   [1]
       1
##
## $rank
## [1] 17
##
## $Amean
  ENSG00000000419.12 ENSG00000000457.14 ENSG00000000460.17 ENSG00000000938.13
##
##
          2.0561139
                           0.9538320
                                            2.6394283
                                                             0.4770247
## ENSG00000000971.16
##
          1.0267008
## 22596 more elements ...
##
## $method
## [1] "ls"
##
## $design
    (Intercept) Pregnant1 Batch1 Batch2 Age_0 lthick egaf2 egaf3 egaf4 egaf5
##
```

```
## 1
                  1
                              1
                                       1
                                               0
                                                      34
                                                              10
                                                                       0
                                                                              0
                                                                                      1
                                                                                             0
                  1
                              0
                                                      36
                                                                                             0
## 2
                                       0
                                                1
                                                                8
                                                                       0
                                                                              0
                                                                                      1
## 3
                  1
                              1
                                                0
                                                      31
                                                              10
                                                                              0
                                                                                      1
                                                                                             0
                  1
## 4
                              0
                                       0
                                               0
                                                      31
                                                                8
                                                                       0
                                                                               1
                                                                                      0
                                                                                             0
                              1
                                               0
                                                                              0
                                                                                             0
## 5
                  1
                                       0
                                                      34
                                                              13
                                                                       0
                                                                                      0
      egaf6 egaf7 egaf8 egaf9 egaf10 egaf11 egaf12
##
## 1
           0
                  0
                         0
                                 0
                                         0
                                                  0
## 2
                  0
                         0
                                                  0
                                                           0
           0
                                 0
                                          0
                         0
                                                           0
## 3
                  0
                                 0
                                          0
                                                  0
           0
## 4
                  0
                         0
                                 0
                                          0
                                                  0
                                                           0
## 5
           0
                  1
                                 0
                                                  0
                                                           0
## 102 more rows ...
```

```
fit <- eBayes(fit)
res = topTable(fit, n=Inf, sort="p", coef=2)

ggplot(res, aes(x=1, y=adj.P.Val)) + geom_boxplot() + theme_bw() + theme(panel.grid = element_blank(), panel.background = element_blank()) + xlab("") + theme(axis.text.x=e lement_blank(), axis.ticks.x=element_blank())</pre>
```



```
ggplot(res, aes(x=1, y=adj.P.Val)) + geom_jitter(width=0.3, height=0) + theme_bw() +
theme(panel.grid = element_blank(), panel.background = element_blank()) + xlab("") +
theme(axis.text.x=element_blank(), axis.ticks.x=element_blank())
```



```
#mapping from ENSEMBL Gene ID to SYMBOL and ENTREZ
ens.str <- substr(rownames(res), 1, 15)
edb <- EnsDb.Hsapiens.v86
res$symbol <- mapIds(edb, keys=ens.str, column="SYMBOL", keytype="GENEID", multiVals
="first")</pre>
```

Warning: Unable to map 897 of 22601 requested IDs.

res\$entrez <- mapIds(edb, keys=ens.str, column="ENTREZID", keytype="GENEID", multiVal
s="first")</pre>

Warning: Unable to map 6666 of 22601 requested IDs.

```
res.qval <- subset(res, adj.P.Val<qval) %>%
    as.data.frame()
write.csv(res.qval, file = "~/mccoyLab/collabs/doubleseq_2021/dif_expression_results/
results_trainSPA_dupCor_withBatch.qval.csv")

ggplot(res.qval, aes(x=1, y=adj.P.Val)) + geom_jitter(width=0.1, height=0) + theme_bw
() + theme(panel.grid = element_blank(), panel.background = element_blank()) + xlab
("") + theme(axis.text.x=element_blank(), axis.ticks.x=element_blank())
```



```
#exporting all genes
write.csv(as.data.frame(res), file="~/mccoyLab/collabs/doubleseq_2021/dif_expression_
results/results_trainSPA_dupCor_withBatch.all.csv")
```

```
#plotting volcano plot
res.qval$diffexpressed <- "NO"
res.qval$diffexpressed[res.qval$logFC > 2 & res.qval$adj.P.Val < qval] <- "UP"
res.qval$diffexpressed[res.qval$logFC < -2 & res.qval$adj.P.Val < qval] <- "DOWN"

g0 <- ggplot(data = res, aes(x=logFC, y=-log10(adj.P.Val))) + geom_point(size=0.5) +
theme_classic()
g0 <- g0 + theme(panel.grid.major = element_line(color="gray70", size=0.3, linetype=
3)) + geom_vline(xintercept=c(-2,2), col="green4") + geom_hline(yintercept=-log10(qval), col="green4")
g0</pre>
```



```
g <- ggplot(data=res.qval, aes(x=logFC, y=-log10(adj.P.Val), col=diffexpressed)) + ge
om_point(size=0.5) + theme_classic()
g <- g + theme(panel.grid.major = element_line(color="gray70", size=0.3, linetype=3))
+ geom_vline(xintercept=c(-2,2), col="green4") + geom_hline(yintercept=-log10(qval),
col="green4")
g</pre>
```



```
g1 <- g + scale_color_manual(values=c("blue", "gray", "red"))

res.qval$delabel <- NA
res.qval$delabel[res.qval$diffexpressed != "NO"] <- res.qval$symbol[res.qval$diffexpressed != "NO"]

g1 <- ggplot(data = res.qval, aes(x=logFC, y=-log10(adj.P.Val), col=diffexpressed, la bel=delabel)) +
    geom_point() +
    theme_minimal() +
    geom_text_repel() +
    scale_color_manual(values=c("blue", "black", "red")) +
    geom_vline(xintercept=c(-0.6, 0.6), col="red") +
    geom_hline(yintercept=-log10(qval), col="red")
g1</pre>
```



```
g1 <- ggplot(data = res, aes(x=logFC, y=-log10(adj.P.Val))) +
    geom_point() +
    theme_minimal() +
    geom_text_repel(data = res[(res$adj.P.Val < 0.4),], aes(x=logFC, y=-log10(adj.P.Val), label = symbol)) +
    scale_color_manual(values=c("blue", "black", "red")) +
    geom_vline(xintercept=c(-0.6, 0.6), col="red") +
    geom_hline(yintercept=-log10(qval), col="red")
g1</pre>
```

Warning: Removed 10 rows containing missing values (geom_text_repel).

```
## Warning: ggrepel: 1452 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
```


Down-expressed genes are those that are down-expressed in outcomes that lead to implantation Up-expressed genes are those that are up-expressed in outcomes that lead to implantation