Network Models Protocol Architectures Chapter 2

Objectives

- Layering in communication
- Protocols
- Standards
- Communication Layering
 - OSI Model
 - TCP/IP Model
- Addressing

Layering

 Task of communication broken up into layers

Layers involved in sending a letter

Layers involving calling a friend

Where is the Café? Content layer Conversation Protocol Suite 1. Use a Common Language Rules layer 2. Wait Your Turn 3. Signal When Finished Physical layer

Benefits of using a layered model

- To find out the fault easily.
- Changes in one layer do not affect other layers.
- Have defined information that they act upon.

Using a layered model helps in the design of complex, multi-use, multi-vendor networks.

Rules that govern communications

- A protocol is a set of predetermined rules.
- Defines:
 - What is communicated??
 - How it is communicated??
 - When it is communicated??

Protocols

Describe processes such as:

The format or structure of the message.

What?

The method by which networking devices share information about pathways with other network How?

How and when error and system messages are passed between devices.

How/When?

The setup and termination of data transfer sessions.

What/When/How?

Protocols and Standards

- Protocols
- Standards
- Standards Organizations
- Internet Standards

Standards

- Endorsed by the networking industry and approved by a standards organization.
- Benefits:
 - Create and maintain an open and competitive market.
 - Ensured greater compatibility and interoperability.
- Categories
- De facto: Standards that have not been approved by an organized body but have been adopted as standards through widespread use
- De jure: Those standards that have been legislated by an officially recognized body

Standards and Protocols

Standards are protocols and agreements that are widely used and accepted.

Standard Organizations

- International Organization for Standardization (ISO)
- Institute of Electrical and Electronic Engineers (IEEE)
- American National Standards Institute (ANSI)
- Telecommunications Industry Association (TIA)
- The Internet Engineering Task Force (IETF)
- International Telecommunications Union Telecommunication Standards Sector (ITU-T)

Internet Standards

- Formalized regulations and specifications for the Internet by IETF.
- Internet Draft
 - No official status
 - 6 month lifetime
- Request for comment (RFC)
 - Upon recommendation from Internet authorities
 - Different maturity levels
 - Example: Internet Protocol RFC: 791

Request For Comments RFC

Communication Process

Layered standards:

TCP/IP Protocol Model

- Open De Facto Standard
- Governed by IETF Working Groups

OSI Reference model

De Jure Standard

OSI Model

- Open Systems Interconnection (OSI)
- Developed by the International Organization for Standardization (ISO).

In 1984.

OSI

Seven layers

 A theoretical system delivered too late!

 TCP/IP is the de facto standard

OSI & TCP/IP Models

Note

ISO is the organization. OSI is the model.

OSI Model- 7 Layers

Primary concern:
Communications
between
applications

Primary concern:
Moving raw data
cross the network

Layers		<u>CISCO</u>
7	Application	All
6	Presentation	People
5	Session	Seem
4	Transport	To
3	Network	Need
2	Data Link	Data
1	Physical	Processing

An exchange using the OSI model

APPLICATION LAYER

Applications

- The Interface Between Human and Data Networks
- Responsible for providing services to the user.

Applications in Application layer

Application Layer

The Human Network Generates Data Application layer services initiate the " Software and hardware data transfer. convert communication to 7 Application People create the a digital format. communication. Software and 6 Presentation People hardware Session 4 **Transport** Network 3 2 Datalink The Application layer prepares human Physical communication for transmission over the data network.

Applications in Application layer

Application layer

Heade

Web Page

Instant messaging

Trillan View Window Help

dere

dere

fnk

tread

barg
brad
Jia
koksal
Mona
pals
rang
Sirish
sitar
steve

■ My Contacts

Recent Buddies (2/13)

- co-workers (26/56)

My Mail Accounts

Connected .

From Presentation Layer

Application Layer

PRESENTATION LAYER

Presentation layer

The presentation layer is responsible for translation, compression, and encryption.

Presentation Layer

- 3 primary functions:
 - Coding and conversion
 - Compression of the data
 - Encryption of the data
- Presentation layer implementations are not typically associated with a particular protocol stack.

SESSION LAYER

Session layer

The session layer is responsible for dialog control and synchronization.

Session Layer

- It handles the exchange of information
 - to initiate dialogs,
 - keep them active, and
 - to restart sessions that are disrupted or idle for a long period of time
- Most applications, like web browsers or e-mail clients, incorporate functionality of the OSI layers 5, 6 and 7.

TRANSPORT LAYER

Transport layer

The transport layer is responsible for the delivery of a message from one process to another.

Functions— Transport Layer

- Segmentation and Reassembly
- Adds Port Address and Sequence Number.
- Connection Control
- Flow and Error Control
- Multiplexing

Transport Layer PDU is called **Segments**.

Common Protocol used in Transport Layer is TCP

Transport layer

- Segments data received from application layer into small parts.
- Transport Layer Protocol Data Unit is called Segments.

Function: Seamentation

Received by Transport Layer

1

Segments into small parts

2

Add a number to identify the application.

3

Add a number sequence the segmented parts.

Identifying Different Applications

Port Numbers

Port Address

- To define multiple processes running in a computer.
- 16-bit in length

80

A 16-bit port address represented as one single number.

Function: Connection Control

Function: Flow Control packets to process.

- •Host B has too many
- Buffer to store incoming packets overflows

Transport layer Process-to-process delivery

Function: Error Control

Functions- Multiplexing

NETWORK LAYER

Network layer

The network layer is responsible for the delivery of individual packets from the source host to the destination host.

Example

Source-to-destination delivery

Functions:

 Adds an address to identify sender and receiver hosts. Adds Logical Addressing

Decides which path to take. Routing

Source-to-destination delivery

- Network Layer
 PDU is called
 Packets.
- Common Network layer Protocol is called Internet Protocol (IP)

Logical Addresses :: IP Address

- Universal address, each host uniquely defined.
- 32-bit address also known as IP Address.
- Independent of underlying physical networks.

192,168,10,1

32 bits written in dotted decimal notation. Each decimal represented by 8 bits.

DATALINK LAYER

Data link layer

The data link layer is responsible for moving frames from one hop (node) to the next.

Functions-Data Link Layer

- Framing.
- Physical Addressing
- Flow Control
- Error Control
- Access Control

Data Link Layer PDU is called **Frames**.

Data Link Layer Protocol varies.

Functions: Framing

Hop-to-hop delivery

Physical Address: MAC Address

- Every interface/port has an unique identifying number.
- Given by manufacturer.
- 48 bits long, represented by 12 hexadecimal digits.

07:01:02:01:2C:4B

Also known as MAC (Media Access Control) Address.

Addressing

Addressing

Addressing-Within the same network

- Assume:
- IP Addresses– Alphabets
- MAC Addresses -Numbers

PHYSICAL LAYER

Physical layer

The physical layer is responsible for movements of individual bits from one hop (node) to the next.

Functions-Physical Layer

- Physical Characteristics of interfaces and medium.
- Representation of bits
- Data Rate
- Synchronization of bits

Functions-Physical Layer

- Physical Topology
 - Bus
 - Ring etc

- Transmission Modes
 - Simplex
 - Half Duplex
 - Full Duplex

Summary of OSI Layers

Summary

- PDUs
- Encapsulation
- Headers and trailers

TCP/IP

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet.
- De Facto Standard

TCP/IP Encapsulation

TCP/IP and OSI model

Addressing Summary

 Four levels of addresses are used in an internet employing the TCP/IP protocols

Relationship of layers and addresses in TCP/IP

Specific Addresses

- Applications having user friendly addresses.
- Email addresses or URLs.
 - john@gmail.com
 john@gmail.com
 john@gmail.com
 or
 www.bracu.ac.bd
- These are converted into corresponding port and logical addresses by the sending computer.

Addressing Review

Addressing Review

Although physical addresses change from hop to hop, logical and port addresses remain the same from the source to destination.

74

END