Key ID: 002

Name:

1. Problem

An experiment has $n_1 = 7$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	128	130	157	122	100	160	112
sample 2:	100	91	111	95			

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 96% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.04? (yes or no)

1.	(a)					3		0	0	0			
	(b)					3	- [4	8	0			
	(c)					9	.[4	0	9			
	(d)			-	6	3		5	4	3			
	(e)					1	.[9	4	3			
	(f)					3	.[2	7	4			
	(g)					0	.[0	4	0			
	(h)					0	.[0	5	0			
	(i)	no											

Key ID: 002

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 130$$

$$\overline{X_2} = 99.2$$

$$s_1 = 22.1$$

$$s_2 = 8.66$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(7, 4) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.96$

$$t^* = 3.48$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(22.1)^2}{7} + \frac{(8.66)^2}{4}} = 9.409$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-63.543, 1.943)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(99.2 - 130) - 0}{9.409} = -3.27$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 3.27$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.04 < p$$
-value < 0.05

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

- (a) 3
- (b) 3.48
- (c) 9.409
- (d) -63.543
- (e) 1.943
- (f) 3.274
- (g) 0.04
- (h) 0.05
- (i) no