

Dual EIA-422/423 Transceivers

The MC34050/51 are dual transceivers which comply with EIA Standards EIA-422 (Balanced line) and EIA-423 (Unbalanced line). Each device contains two drivers and two receivers.

The MC34050 has a DRIVER ENABLE (for both drivers) and a RECEIVER ENABLE (for both receivers). Connecting the two ENABLES together provides Driver-to-Receiver switching from a single line.

The MC34051 has a DRIVER ENABLE for each driver. The two receivers are permanently enabled.

The Driver inputs, Receiver outputs, and Enable inputs are 74LS TTL compatible.

- Two Independent Drivers and Receivers Per Package
- 3-State Outputs
- Single 5.0 V Supply
- Internal Hysteresis (50 mV Typical) on Receivers
- Receivers Provide Fail—Safe Function. Output Stays High if Inputs are Open, Shorted (floating), or Terminated (floating)
- Receivers May Be Used in EIA-422 or 423 Systems
- Drivers Meet Full EIA-422 Standards

TRUTH TABLE

Driver				Receiver			
Data	EN	Inv. Out	Noninv. Out	Input El		Output	
L	Н	Н	L	> + 0.2 V Diff.	L	Н	
н	н	L	н	< - 0.2 V Diff.	L	L	
х	L	z	z	×	н	Z	

MC34050 MC34051

DUAL EIA-422/423 TRANSCEIVERS

SEMICONDUCTOR TECHNICAL DATA

D SUFFIX
PLASTIC PACKAGE
CASE 751B
(SO-16)

P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

ONDERMA IN COMMENCE							
Device	Operating Temperature Range	Package					
MC34050D		SO-16					
MC34050P	T _A = 0° to +70°C	Plastic DIP					
MC34051P	1A=0 (0+70°C	Plastic DIP					
MC34051D		SO16					

MAXIMUM RATINGS

Rating	Value	Units	
Power Supply Voltage (VCC)	7.0	Vdc	
Input Common Mode Voltage (Receivers)	± 25	Vdc	
Input Differential Voltage (Receivers)	± 25	Vdc	
Output Sink Current (Receivers)	50	mA	
Enable Input Voltage (Drivers and Receivers)	5.5	Vdc	
Input Voltage (Drivers)	5.5	Vdc	
Applied Output Voltage (3-State mode) - Receivers	-1.0 to + 7.0	Vdc	
Applied Output Voltage (3-State mode) - Drivers	-1.0 to + 7.0	Vdc	
Junction Temperature	- 65 to +150	°C	
Storage Temperature	- 65 to + 150	°C	

Devices should not be operated at these values. The "Recommended Operating Limits" provide for actual device operation.

RECOMMENDED OPERATING LIMITS

Characteristic	Min	Тур	Max	Unit
Power Supply Voltage	+4.75	+5.0	+5.25	Vdc
Input Common Mode Voltage (Receivers)	-7.0	-	+7.0	Vdc
Input Differential Voltage (Receivers)	-6.0	_	+6.0	Vdc
Enable Input Voltage (Drivers and Receivers)	0	_	+5.25	Vdc
Input Voltage (Drivers)	0	_	+5.25	Vdc
Ambient Temperature Range	0 ,	_	+70	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $4.75 < V_{CC} < 5.25$ V, and $0^{\circ} < T_{A} < 70^{\circ}$ C).

Characteristic	Symbol	Min	Тур	Max	Unit
DRIVERS	h	, , , , , , , , , , , , , , , , , , , ,			I
Input Voltage - Low	VILD	-	_	0.8	Vdc
Input Voltage – High	VIHD	2.0	-		Vdc
Input Current @ V _{IL} = 0.4 V	lILD	-360	_	-	μΑ
Input Current @ V _{IH} = 2.7 V VIH = 5.25 V	IHD	-	-	+20 +100	μА
Input Clamp Voltage (I _{IK} = -18 mA)	VIKD	-1.5	_	_	Vdc
Output Voltage – Low (I _{OL} = 20 mA)	VOLD	-	-	0.5	Vdc
Output Voltage – High (IOH = -20 mA)	VOHD	2.5	-	. –	Vdc
Output Offset Voltage Difference (Note 1)	Vosp	-0.4	-	+0.4	Vdc
Output Differential Voltage (Note 1)	VT	2.0	-	-	Vdc
Output Differential Voltage Difference (Note 1)	V _{TD}	-0.4	_	+0.4	Vdc
Short Circuit Current (V _{CC} = 5.25 V) (From High Output, Note 2)	losp	-150	-	-30	mA
Output Leakage Current – Hi–Z State (V _{Out} = 0.5 V, DR EN = 0.8 V) (V _{Out} = 2.7 V, DR EN = 0.8 V)	lozd	-100 -100	-	+100 +100	μА
Output Leakage - Power Off (V _{Out} = - 0.25 V, V _{CC} = 0 V) (V _{Out} = 6.0 V, V _{CC} = 0 V)	IO(off)	-100 -	<u>-</u>	+100	μА

NOTES: 1. See EIA Standard EIA-422 and Figure 1 for exact test conditions.

^{2.} Only one output in a package should be shorted at a time, for no longer than 1 second.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $4.75 < V_{CC} < 5.25$ V, and $0^{\circ} < T_A < 70^{\circ}$ C).

Characteristic	Symbol	Min	Тур	Max	Unit
RECEIVERS					-
Differential Input Threshold Voltage (Note 3) ($-7.0 \text{ V} < \text{V}_{\text{ICM}} < 7.0, \text{V}_{\text{out}} \ge 2.7 \text{ V}$) ($-7.0 \text{ V} < \text{V}_{\text{ICM}} < 7.0, \text{V}_{\text{out}} \le 0.45 \text{ V}$)	VTHR	_ -0.2	<u>-</u>	+0.2	Vdc
Input Bias Current (0 \leq V _{CC} \leq 5.25 V, V _{in} = 15 V) (0 \leq V _{CC} \leq 5.25 V, V _{in} = -15 V)	IBR	- -2.8	<u>-</u>	+2.3	mA
Input Balance and Output Level $(-7.0 \le V_{ICM} \le 7.0 \text{ V})$ $(V_{ID} = 0.4 \text{ V}, I_{O} = -400 \mu\text{A})$ $(V_{ID} = -0.4 \text{ V}, I_{O} = 8.0 \text{ mA})$	V _{OHR} Volr	2.7		_ 0.45	Vdc
Output Leakage Current – 3–State (Pin 4 = 2.0 V, MC34050 only) (V_{ID} = 3.0 V, V_{O} = 0.4 V) (V_{ID} = -3.0 V, V_{O} = 2.4 V)	IOZR	-100 -100	<u>-</u>	+100 +100	μА
Output Short Circuit Current (Note 2, V_{CC} = 5.25 V) (V_{ID} = 3.0 V, MC34050 Pin 4 = 0.4 V, V_{O} = 0 V)	IOSR	-85	_	-15	mA
ENABLES					
Input Voltage – Low	VILE	-	-	0.8	Vdc
Input Voltage - High	VIHE	2.0	-	-	Vdc
Input Current @ V _{IL} = 0.4 V (Receiver EN) (Driver EN)	liler liled	-100 -360	-	-	μΑ
Input Current @ V _{IH} = 2.7 V V _{IH} = 5.25 V	IHE	-	-	+20 +100	μА
Input Clamp Voltage (I _{IK} = -18 mA)	VIKE	-1.5	_	_	Vdc
POWER SUPPLY		<u> </u>			
	1	1	T	T	

Power Supply Current @ V_{CC} = 5.25 V

DRIVER SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, see Figure 2).

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay					ns
Data Input to Output High-to-Low	tPHLD	_	_	20	
Data Input to Output Low-to-High	tPLHD	-	- ·	20	
Output Skew (tpHL - tpLH each driver)	tskd	_	-	8	1
Enable Input to Output					1
$C_L = 10 \text{ pF}, R_L = 75 \Omega \text{ to Gnd}$	t _{PHZD}	_	-	30	
$C_L = 10 \text{ pF, } R_L = 180 \Omega \text{ to V}_{CC}$	tPLZD	_	-	35	
$C_L = 30 \text{ pF}, R_L = 75 \Omega \text{ to Gnd}$	^t PZHD	-	-	40	
$C_L = 30 \text{ pF}, R_L = 180 \Omega \text{ to V}_{CC}$	^t PZLD	-	_	45	
Maximum Data Input Transition Time (10% to 90%)	tTRD	-	50	_	ns

Icc

55

80

mΑ

RECEIVER SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, see Figure 3).

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay					ns
Differential Input to Output - High-to-Low	tPHLR	-	_	30	
Differential Input to Output - Low-to-High	tPLHR	_	-	30	
Enable Input - Output Low to 3-State	[†] PLZR	-	-	35	
Enable Input - Output High to 3-State	tPHZR	_	_	35	
Enable Input – Output 3–State to High MC34050 Only	tPZHR	_	-	30]
Enable Input - Output 3-State to Low	^t PZLR	-	_	30	

6367253 0097849 8T3 **=**

NOTES: 2. Only one output in a package should be shorted at a time, for no longer than 1 second.

3. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.

Figure 1. Driver Output Test Circuit

$$V_{OSD} = |V_{OS} - V_{OS}'|;$$

$$V_{ODD} = |V_{T}| - |V_{T}'|$$

Circuit per EIA-422-A, Dec. 1978

SG: 1.0 MHz, 50% duty cycle, tp, tp = 6.0 ns (10% to 90%) R_L = 75 Ω to GND for tp_{ZHD} and tp_{HZD}, 180 Ω to V_{CC} for tp_{ZLD} and tp_{LZD}; C_L = 10 pF for tp_{HZD} and tp_{LZD}, 30 pF for tp_{ZHD} and tp_{LZD}.

Figure 3. Receiver Switching Test Circuits

SG: 1.0 MHz, 50% duty cycle, tp, t $_F$ = 6.0 ns (10% to 90%) Va = +1.5 V for t $_{PHZ}$, t $_{PZH}$, Va = -1.5 V for t $_{PLZ}$, t $_{PZL}$. S1, S2 closed for t $_{PHZ}$, t $_{PLZ}$; S1 open, S2 closed for t $_{PZH}$, S1 closed, S2 open for t $_{PZL}$.

6367253 0097850 515

Figure 16. EIA-422 Application

Figure 17. EIA-423 Application

