Recherche opérationnelle (I) Ordonnancement

bruno.colombel@univ-amu.fr

DUT Informatique IUT d'Aix-Marseille Site d'Arles

2019-2020

Sommaire

Introduction

Recherche Opérationnelle ou Science de la Décision

Rappels sur les graphes

Recherche d'une plus courte chaîne

Cas des graphes sans circuits

Ordonnacement

Sommaire

Introduction

Recherche Opérationnelle ou Science de la Décision

Rappels sur les graphes

Recherche d'une plus courte chaîne

Cas des graphes sans circuits

Ordonnacement

Définition

Recherche opérationnelle

Approche scientifique pour la résolution de problèmes de gestion de systèmes complexes

Définition

Recherche opérationnelle

Approche scientifique pour la résolution de problèmes de gestion de systèmes complexes

Wikipedia

Operations research, operational research, or simply OR, is the use of mathematical models, statistics and algorithms to aid in decision-making

Science du « comment mieux faire avec moins »

Des outils pour

- rationaliser
- simuler
- optimiser
- planifier

l'architecture et le fonctionnement des systèmes industriels et économiques.

Science du « comment mieux faire avec moins »

Des outils pour

- rationaliser
- simuler
- optimiser
- planifier

l'architecture et le fonctionnement des systèmes industriels et économiques.

Des modèles pour analyser des situations complexes

Science du « comment mieux faire avec moins »

Des outils pour

- rationaliser
- simuler
- optimiser
- planifier

l'architecture et le fonctionnement des systèmes industriels et économiques.

Des modèles pour analyser des situations complexes

Permet aux décideurs de faire des choix efficaces et robustes

Approche quantitative pour produire les meilleures décisions

► Une discipline à la croisée des mathématiques et de l'informatique

- Une discipline à la croisée des mathématiques et de l'informatique
 - prolongement de l'algorithmique

- Une discipline à la croisée des mathématiques et de l'informatique
 - prolongement de l'algorithmique
 - manipulant des structures plus élaborées : graphes, polyèdres...

- Une discipline à la croisée des mathématiques et de l'informatique
 - prolongement de l'algorithmique
 - manipulant des structures plus élaborées : graphes, polyèdres...
 - domaine d'application de la théorie de la complexité algorithmique

- Une discipline à la croisée des mathématiques et de l'informatique
 - prolongement de l'algorithmique
 - manipulant des structures plus élaborées : graphes, polyèdres...
 - domaine d'application de la théorie de la complexité algorithmique
- Une boite à outils de méthodes pour aborder sainement et sereinement les problèmes d'optimisation

Les outils de RO-AD

aident à trouver

- aident à trouver
 - ▶ une solution où l'homme n'en trouvait pas

- aident à trouver
 - une solution où l'homme n'en trouvait pas
 - une solution sur des problèmes nouveaux où l'homme n'a aucune expérience

- aident à trouver
 - une solution où l'homme n'en trouvait pas
 - une solution sur des problèmes nouveaux où l'homme n'a aucune expérience
 - plusieurs solutions là où l'homme n'en envisageait qu'une

- aident à trouver
 - une solution où l'homme n'en trouvait pas
 - une solution sur des problèmes nouveaux où l'homme n'a aucune expérience
 - plusieurs solutions là où l'homme n'en envisageait qu'une
- aident à juger de la qualité d'une solution

- aident à trouver
 - une solution où l'homme n'en trouvait pas
 - une solution sur des problèmes nouveaux où l'homme n'a aucune expérience
 - plusieurs solutions là où l'homme n'en envisageait qu'une
- aident à juger de la qualité d'une solution
- aident à confirmer / justifier des décisions

Problème du voyageur de commerce

- Un voyageur de commerce, basé à Toulon, doit visiter ses clients à travers la France.
- ► Il souhaite effectuer la tournée la plus courte possible.

Problème du voyageur de commerce

- ► Un voyageur de commerce, basé à Toulon, doit visiter ses clients à travers la France.
- ▶ Il souhaite effectuer la tournée la plus courte possible.

Recherche du plus court chemin

Transport — Logistique

Transport

- de marchandises
- des entrepôts vers les clients
- coûts de transport, distance sur les arcs
- trouver le meilleur plan de distribution

Face à un problème pratique de décision :

Aspects mathématiques (contraintes, objectifs, simplifications)

- Aspects mathématiques (contraintes, objectifs, simplifications)
- Modélisation

- Aspects mathématiques (contraintes, objectifs, simplifications)
- Modélisation
- Analyse des modèles et résolution

- Aspects mathématiques (contraintes, objectifs, simplifications)
- Modélisation
- Analyse des modèles et résolution
 - étude de complexité : que peut-on espérer pour le temps de résolution imparti ?

- Aspects mathématiques (contraintes, objectifs, simplifications)
- Modélisation
- Analyse des modèles et résolution
 - étude de complexité : que peut-on espérer pour le temps de résolution imparti ?
 - mise au point d'algorithmes

- Aspects mathématiques (contraintes, objectifs, simplifications)
- Modélisation
- Analyse des modèles et résolution
 - étude de complexité : que peut-on espérer pour le temps de résolution imparti ?
 - mise au point d'algorithmes
- Implémentation et analyse des résultats (valider par rapport à la demande)

- Aspects mathématiques (contraintes, objectifs, simplifications)
- Modélisation
- Analyse des modèles et résolution
 - étude de complexité : que peut-on espérer pour le temps de résolution imparti ?
 - mise au point d'algorithmes
- Implémentation et analyse des résultats (valider par rapport à la demande)
- Déploiement des solutions (Intégration logicielle)

Programmation linéaire coût min / profit max

$$\max / \min c_1 x_1 + c_2 x_2 \cdots c_n x_n$$

$$x_1, x_2, ..., x_n \geqslant 0$$

Programmation linéaire

coût min / profit max

satisfaire la demande

$$\max / \min \quad c_1 x_1 + c_2 x_2 \cdots c_n x_n$$

$$a_1x_1 + a_2x_2 \cdots a_ncx_n \geqslant b_1$$

$$x_1, x_2, ..., x_n \geqslant 0$$

Programmation linéaire

coût min / profit max

satisfaire la demande

avec des ressources limitées

quantités produites

$$\max / \min c_1 x_1 + c_2 x_2 \cdots c_n x_n$$

$$a_1x_1 + a_2x_2 \cdots a_ncx_n \geqslant b_1$$

$$a_1'x_1 + a_2'x_2 \cdots a_n'cx_n \leqslant b_1'$$

$$x_1, x_2, ..., x_n \geqslant 0$$

Optimisation Combinatoire

► Trouver la meilleure solution parmi un nombre fini mais très grand de choix

Optimisation Combinatoire

- ▶ Trouver la meilleure solution parmi un nombre fini mais très grand de choix
- Un problème d'OC se caractérise par :
 - La présence de choix, à faire parmi un ensemble fini d'alternatives

Optimisation Combinatoire

- ► Trouver la meilleure solution parmi un nombre fini mais très grand de choix
- ► Un problème d'OC se caractérise par :
 - La présence de choix, à faire parmi un ensemble fini d'alternatives
 - Une notion de coût, ou de gain, ou de perte

Optimisation Combinatoire

- ▶ Trouver la meilleure solution parmi un nombre fini mais très grand de choix
- ► Un problème d'OC se caractérise par :
 - ► La présence de choix, à faire parmi un ensemble fini d'alternatives
 - Une notion de coût, ou de gain, ou de perte
 - La nécessité de faire globalement les bons choix, de manière à optimiser la valeur objectif

Optimisation Combinatoire

- ► Trouver la meilleure solution parmi un nombre fini mais très grand de choix
- ► Un problème d'OC se caractérise par :
 - La présence de choix, à faire parmi un ensemble fini d'alternatives
 - Une notion de coût, ou de gain, ou de perte
 - La nécessité de faire globalement les bons choix, de manière à optimiser la valeur objectif
- Exemples : emplois du temps. . .

Graphes

► meilleur chemin de *i* à *j*

- ► meilleur chemin de *i* à *j*
- meilleurs parcours

- ► meilleur chemin de *i* à *j*
- meilleurs parcours
- Représentation de réseaux

- ► meilleur chemin de *i* à *j*
- meilleurs parcours
- Représentation de réseaux
- Ordonnancement

- ► meilleur chemin de *i* à *j*
- meilleurs parcours
- Représentation de réseaux
- Ordonnancement
- Compatibilité de produits

Et bien d'autres outils encore ...

Sommaire

Introduction

Recherche Opérationnelle ou Science de la Décision

Rappels sur les graphes

Recherche d'une plus courte chaîne

Cas des graphes sans circuits

Ordonnacement

Exemple

Graphes orientés

Définition

Un graphe orienté $\mathscr G$ est constitué :

- \triangleright d'un ensemble fini \mathcal{S} (les sommets)
- ightharpoonup d'un ensemble fini \mathcal{A} (les arêtes)
- d'une application $\delta: \mathcal{A} \to \mathcal{S}^2$ qui à une arrête associe 2 sommets

Un graphe \mathscr{G} est désigné par le triplet :

$$\mathscr{G} = (\mathcal{S}; \mathcal{A}; \delta)$$

Graphes orientés

Graphes non-orientés

Définition

Un graphe non-orienté $\mathscr G$ est constitué :

- ightharpoonup d'un ensemble fini S (les sommets)
- ightharpoonup d'un ensemble fini \mathcal{A} (les arêtes)
- ▶ d'une application $\delta: \mathcal{A} \to \mathcal{S}_1 \cup \mathcal{S}_2$ où \mathcal{S}_i est l'ensemble des parties à k éléments de \mathcal{S} .

Graphes non-orientés

Définition

Soit *s* le sommet d'un graphe non-orienté. Le *degré* de *s* est égal au nombre d'arêtes dont *s* est une extrémité.

Définition

Soit *s* le sommet d'un graphe non-orienté. Le *degré* de *s* est égal au nombre d'arêtes dont *s* est une extrémité.

Attention, les boucles comptent double!

Définition

Soit *s* le sommet d'un graphe non-orienté. Le *degré* de *s* est égal au nombre d'arêtes dont *s* est une extrémité.

Attention, les boucles comptent double!

Exemple

$$d(1) = 1$$
$$d(2) = 4$$

$$d(4) = 4$$

Définition

Soit s le sommet d'un graphe orienté.

- ▶ le degré sortant $d^+(s)$ est le nombre d'arêtes dont s est le début
- le degré entrant $d^-(s)$ est le nombre d'arêtes dont s est la fin

Définition

Soit s le sommet d'un graphe orienté.

- ▶ le degré sortant d⁺(s) est le nombre d'arêtes dont s est le début
- ▶ le degré entrant $d^-(s)$ est le nombre d'arêtes dont s est la fin

En effaçant le sens de parcours des arêtes, on obtient un graphe non-orienté. On a alors :

$$d(s) = d^+(s) + d^-(s)$$

Exemple

$$d^{+}(4) = 2$$

 $d^{-}(4) = 2$
 $d(4) = 2 + 2 = 4$

Définition

1. Soient s et t de sommets d'un graphe orienté $\mathscr{G}=(\mathcal{S};\mathcal{A};\delta)$. La suite $(S_0=s,\varepsilon_1,S_1,\varepsilon_2,\cdots,\varepsilon_n,S_n=t)$ est un chemin de longueur n menant de s à t si :

$$\delta(\varepsilon_i) = S_{i-1}S_i$$

Définition

1. Soient s et t de sommets d'un graphe orienté $\mathscr{G}=(\mathcal{S};\mathcal{A};\delta)$. La suite $(S_0=s,\varepsilon_1,S_1,\varepsilon_2,\cdots,\varepsilon_n,S_n=t)$ est un chemin de longueur n menant de s à t si :

$$\delta(\varepsilon_i) = S_{i-1}S_i$$

Autrement dit, on peut aller du sommet s au sommet t en suivant les arêtes du graphe et leur sens de parcours en n étapes.

Définition

1. Soient s et t de sommets d'un graphe orienté $\mathscr{G}=(\mathcal{S};\mathcal{A};\delta)$. La suite $(S_0=s,\varepsilon_1,S_1,\varepsilon_2,\cdots,\varepsilon_n,S_n=t)$ est un chemin de longueur n menant de s à t si :

$$\delta(\varepsilon_i) = S_{i-1}S_i$$

Autrement dit, on peut aller du sommet s au sommet t en suivant les arêtes du graphe et leur sens de parcours en n étapes.

2. Un chemin dont le départ et l'arrivée coïncident est un circuit

Exemple

▶ $(5; \gamma; 2; \sigma; 3; \tau; 4)$ est un chemin de longueur 3 entre les sommets 5 et 4

Exemple

- (5; γ ; 2; σ ; 3; τ ; 4) est un chemin de longueur 3 entre les sommets 5 et 4
- ▶ $(3; \tau; 4; \lambda; 5; \nu; 6; \beta; 2)$ est un chemin de longueur 4 entre les sommets 3 et 2

Exemple

- (5; γ ; 2; σ ; 3; τ ; 4) est un chemin de longueur 3 entre les sommets 5 et 4
- $(3; \tau; 4; \lambda; 5; \nu; 6; \beta; 2)$ est un chemin de longueur 4 entre les sommets 3 et 2

Remarque

La définition est analogue pour les graphes non-orientés

Définition

- 1. Un graphe non-orienté est dit *connexe* s'il existe un chemin entre deux sommets quelconque de ce graphe
- 2. Un graphe orienté est dit *fortement connexe* s'il existe un chemin entre deux sommets quelconque de ce graphe

Définition

- 1. Un graphe non-orienté est dit *connexe* s'il existe un chemin entre deux sommets quelconque de ce graphe
- 2. Un graphe orienté est dit *fortement connexe* s'il existe un chemin entre deux sommets quelconque de ce graphe

Pour les graphes orientés, le sens de parcours des arêtes doit être respecté

 \blacktriangleright \mathscr{G} n'est pas connexe : on ne peut pas *passer* du sommet 1 au sommet 5

- \blacktriangleright On dit que \mathscr{G} a deux composantes connexes

On ajoute l'arête $6 \rightarrow 1$

On ajoute l'arête $\mathbf{6} \to \mathbf{1}$

 \mathscr{G} est maintenant connexe

On ajoute l'arête $6 \rightarrow 1$

Graphe connexe

On ajoute l'arête $6 \rightarrow 1$

 ${\mathscr G}$ n'est pas fortement connexe : on ne peut (toujours) pas passer du sommet 1 au sommet 5

Soit \mathscr{G} un graphe orienté d'ordre n (n sommets). On suppose les sommets numérotés de 1 à n. On note S_1, S_2, \ldots, S_n ces sommets.

Définition

La matrice d'adjacence de $\mathscr G$ est la matrice $A\in\mathcal M_n(\mathbb R)$ où :

 $a_{i,j} = \text{nombre d'arête de début } S_i \text{et de fin } S_j$

Soit \mathcal{G} un graphe orienté d'ordre n (n sommets). On suppose les sommets numérotés de 1 à n. On note S_1, S_2, \ldots, S_n ces sommets.

Définition

La matrice d'adjacence de \mathscr{G} est la matrice $A \in \mathcal{M}_n(\mathbb{R})$ où :

 $a_{i,j} = \text{nombre d'arête de début } S_i \text{et de fin } S_j$

Remarque

La matrice A dépend de l'ordre dans le lequel on énumère les sommets

Exemple

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Soit \mathscr{G} un graphe non-orienté d'ordre n (n sommets). On suppose les sommets numérotés de 1 à n. On note S_1, S_2, \ldots, S_n ces sommets.

Définition

la matrice d'adjacence de $\mathscr G$ est la matrice $A\in\mathcal M_n(\mathbb R)$ définie par :

 $a_{i,j} = \text{nombres d'arêtes entre les sommets } S_i \text{ et } S_j$

Soit \mathscr{G} un graphe non-orienté d'ordre n (n sommets). On suppose les sommets numérotés de 1 à n. On note S_1, S_2, \ldots, S_n ces sommets.

Définition

la matrice d'adjacence de $\mathscr G$ est la matrice $A\in\mathcal M_n(\mathbb R)$ définie par :

 $a_{i,j} =$ nombres d'arêtes entre les sommets S_i et S_j

la matrice d'adjacence d'un graphe non-orienté est donc symétrique

Exemple

En choisissant comme ordre des sommets l'ordre alphabétique :

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Exemple

En choisissant comme ordre des sommets l'ordre alphabétique :

$$A = egin{pmatrix} 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

La matrice est bien symétrique

Graphes pondérés

C'est un graphe dont les arêtes sont affectées d'un « poids ».

Graphes pondérés

Définition

On appelle matrice de pondération d'un graphe $\mathscr G$ la matrice dont les coefficients correspondant aux sommets s et t valent :

$$A = \begin{cases} 0 & \text{si } t = s \\ \infty & \text{si } \{s, t\} \text{ n'est pas une arête} \\ p & \text{si } \{s, t\} \text{ est une arête de poids } p \end{cases}$$

Graphe pondéré

Exemple

$$\begin{pmatrix} 0 & 4 & 2 & \infty & \infty & \infty \\ 4 & 0 & 1 & 5 & \infty & \infty \\ 2 & 1 & 0 & 8 & 10 & \infty \\ \infty & 5 & 8 & 0 & 2 & 6 \\ \infty & \infty & 10 & 2 & 0 & 3 \\ \infty & \infty & \infty & 6 & 3 & 0 \end{pmatrix}$$

Sommaire

Introduction

Recherche Opérationnelle ou Science de la Décision

Rappels sur les graphes

Recherche d'une plus courte chaîne

Cas des graphes sans circuits

Ordonnacement

L'algorithme de Dijkstra répond au problème du plus court chemin dans la cas où les poids sont positifs.

On cherche à déterminer la plus courte chaîne entre les sommets D et G.

D	Α	В	С	Е	F	G
0	3, D	12, D	∞	∞	∞	∞
		•				

			C		F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞

D	Α	В	С	E	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞

D	Α	В	С	E	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞
		12, D		18, C	16, C	∞

D	Α	В	С	E	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞
		12, D		18, C	16, C	∞
				18, C	16, C	29, F

D	Α	В	С	E	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞
		12, D		18, C	16, C	∞
				18, C	16, C	29, F
				18,C		29, F

D	Α	В	С	E	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞
		12, D		18, C	16, C	∞
				18, C	16, C	29, F
				18,C		29, F

D	Α	В	С	E	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞
		12, D		18, C	16, C	∞
				18, C	16, C	29, F
				18,C		29, F

Pour lire la chaîne la plus courte, on part de la fin de parcours et on « remonte » la chaîne suivant les sommets de provenance

D	Α	В	С	Е	F	G
0	3, D	12, D	∞	∞	∞	∞
	3,D	12, D	8, A	∞	38, A	∞
		12, D	8, A	18, C	16, C	∞
		12, D		18, C	16, C	∞
				18, C	16, C	29, F
				18,C		29, F

Pour lire la chaîne la plus courte, on part de la fin de parcours et on « remonte » la chaîne suivant les sommets de provenance

$$D-A-C-F-G$$
 de poids 29

Algorithme de Dijkstra : limites

Et si les poids sont négatifs?

Le circuit $A \rightarrow B \rightarrow C \rightarrow A$ a un poids négatif : c'est un circuit négatif

Algorithme de Dijkstra : limites

Et si les poids sont négatifs?

▶ Le circuit $A \rightarrow B \rightarrow C \rightarrow A$ a un poids négatif : c'est un circuit négatif

Le problème de la plus courte chaîne n'a pas de solution ici! Il est possible de diminuer indéfiniment le poids d'une chaîne en utilisant ce circuit

L 'algorithme de **Bellman-Ford** :

- recherche les plus courtes chaîne entre deux sommets . . .
- ... mais qui permet l'utilisation de poids négatifs
- détecte les circuits négatifs

Principe:

- Le principe est le même que pour l'algorithme de Dijkstra
- mais les sommets ne sont plus marqués
 - il est possible de revenir sur certains sommets jusqu'à la fin de l'algorithme
 - avec des poids positifs, le poids total ne peut qu'augmenter. Ce n'est pas le cas ici

Arrêt:

- 1. Nombre d'itérations maximal : ordre du graphe
- 2. aucune valeur n'est modifiée entre deux itérations

Propriété

Si $\mathcal G$ est d'ordre n, et si les valeurs sont encore modifiées après n étapes, alors :

il existe un cycle négatif et il est inutile de continuer

La procédure d'initialisation est la même que dans l'algorithme de Dijkstra :

Α	В	С	D	Ε	F
(0,A)	(7, A)	(6, A)	∞	∞	∞

Aucun sommet n'est marqué : on regarde où on peut aller à partir de A et de B :

Α	В	С	D	Ε	F
(0,A)	(7, A)	(6, A)	∞	∞	∞

Aucun sommet n'est marqué : on regarde où on peut aller à partir de A et de B :

Α	В	С	D	Ε	F
(0,A)	(7,A)	(6,A)	∞	∞	∞
(0,A)	(7,A)	(6,A)	(8, B)	(8, C)	∞

Α	В	С	D	Ε	F
(0,A)	(7,A)	(6,A)	∞	∞	∞
(0,A)	(7,A)	(6, A)	(8,B)	(8, C)	∞
(0,A)	(7,A)	(2,D)	(8,B)	(8, C)	(10, E)
(0,A)	(7,A)	(2,D)	(8,B)	(4, C)	(10, E)
(0,A)	(7,A)	(2,D)	(8, B)	(4, C)	(6, <i>E</i>)
(0,A)	(7,A)	(2,D)	(8, B)	(4, C)	(6, <i>E</i>)

- L'algorithme s'est terminé en 5 étapes
- ▶ il n'y a donc pas de circuit négatif

Remarque:

▶ Avec Dijkstra, le sommet *C* aurait été marqué à la 1^{re} étape

Remarque:

- ▶ Avec Dijkstra, le sommet *C* aurait été marqué à la 1^{re} étape
- On aurait obtenu le résultat (faux) :

Α	В	С	D	Ε	F
(0,A)	(7,A)	(6, A)	(8, B)	(8, C)	(10, E)

Le chemin le plus court est déduit comme dans l'algorithme de Dijkstra :

Α	В	С	D	Ε	F
(0,A)	(7, A)	(2,D)	(8, B)	(4, C)	(6, <i>E</i>)

Le chemin le plus court est déduit comme dans l'algorithme de Dijkstra :

	Α	В	С	D	Ε	F
ĺ	(0, A)	(7,A)	(2, D)	(8, B)	(4, C)	(6, E)

Sommaire

Introduction

Recherche Opérationnelle ou Science de la Décision

Rappels sur les graphes

Recherche d'une plus courte chaîne

Cas des graphes sans circuits

Ordonnacement

Décomposition en niveau

Les graphes orientés sans circuit possèdent des propriétés spécifiques : en particulier il existe dans un graphe sans circuit une notion de hiérarchie entre les sommets. C'est ce qu'on appelle la décomposition en niveaux ou aussi un « tri topologique »

Théorème (Décomposition en niveaux d'un graphe sans circuit)

Si G est un graphe sans circuit, alors on peut définir pour chaque sommet un niveau de la manière suivante :

- les sommets sans prédécesseurs sont de rang 0;
- ► tout sommet x a un rang supérieur aux rangs de ses prédécesseurs :

$$rang(x) = \max_{y \in N^-(x)} rang(y) + 1.$$

Décomposition en niveau

Considérons le graphe orienté suivant :

Décomposition en niveau

On peut redessiner le graphe en utilisant la numérotation topologique :

Algorithme de Bellman

2

3

4

5

```
Variables : d(i) distance de 1 à i;
  P(i) prédecesseur de i
  Initialisation : d(1) = 0;
  P(1) = \emptyset;
  pour i = 2, \dots, n faire
      d(i) = +\infty;
      P(i) = \emptyset:
  fin
1 début
      pour i = 2, \dots, n faire
          d(i) = \min_{j,N-(i)} (d(j) + f(i,j));
          j_0 = prédécesseur de i fournissant la valeur de d(i)
           ci-desssous:
          P(i) = i_0;
      fin
```

Algorithme de Bellman

Sommaire

Introduction

Recherche Opérationnelle ou Science de la Décision

Rappels sur les graphes

Recherche d'une plus courte chaîne

Cas des graphes sans circuits

Ordonnacement