

Machine Learning System Design

TOTAL POINTS 5

You are working on a spam classification system using regularized logistic regression. "Spam" is a
positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and
there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class
is:

1 point

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.85

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true. 1 point

Which are the two?

When we are willing to include high $\mbox{ order polynomial features of } x \mbox{ (such as } x_1^2, x_2^2, \\$

 x_1x_2 , etc.).

Our learning algorithm is able to

represent fairly complex functions (for example, if we

train a neural network or other model with a large

number of parameters).

- The classes are not too skewed.
- A human expert on the application domain

can confidently predict \boldsymbol{y} when given only the features \boldsymbol{x}

(or more generally, if we have some way to be confident

that x contains sufficient information to predict y

accurately).

3.	Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x).$	1 point			
	Currently, you predict 1 if $h_{\theta}(x) \geq \mathrm{threshold}$, and predict 0 if $h_{\theta}(x) < \mathrm{threshold}$, where currently the threshold is set to 0.5.				
	Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply.				
	The classifier is likely to have unchanged precision and recall, but				
	higher accuracy.				
	The classifier is likely to now have lower recall.				
	✓ The classifier is likely to now have lower precision.				
	☐ The classifier is likely to have unchanged precision and recall, and				
	thus the same F_1 score.				
4.	Suppose you are working on a spam classifier, where spam	1 point			
	emails are positive examples ($y=1$) and non-spam emails are	() [
	negative examples ($y=0$). You have a training set of emails				
	in which 99% of the emails are non-spam and the other 1% is				
	spam. Which of the following statements are true? Check all				
	that apply.				
	If you always predict non-spam (output				
	y=0), your classifier will have 99% accuracy on the				
	training set, but it will do much worse on the cross				
	validation set because it has overfit the training				
	data.				
	lf you always predict non-spam (output				
	y=0), your classifier will have 99% accuracy on the				
	training set, and it will likely perform similarly on				
	the cross validation set.				
	If you always predict non-spam (output				
	y=0), your classifier will have an accuracy of				
	99%.				
	A good classifier should have both a				
	high precision and high recall on the cross validation				
	set.				
5.	Which of the following statements are true? Check all that apply.	1 point			
	If your model is underfitting the				
	training set, then obtaining more data is likely to				
	help.				
	On skewed datasets (e.g., when there are				

is not a good measure of performance and you should instead use F₁ score based on the precision and recall. After training a logistic regression classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. Using a very large training set makes it unlikely for model to overfit the training data. I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas Save Submit		more positive examples than negative examples), accuracy			
precision and recall. ☐ After training a logistic regression classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. ☑ It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. ☑ Using a very large training set makes it unlikely for model to overfit the training data. ☑ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera's Honor Code Lucas ☐ After training a logistic regression Live of the product of the positive or negative. ☐ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera's Honor Code		is not a good measure of performance and you should			
 After training a logistic regression classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. ✓ It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. ✓ Using a very large training set makes it unlikely for model to overfit the training data. ✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas 		instead use F_1 score based on the			
classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. ✓ It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. ✓ Using a very large training set makes it unlikely for model to overfit the training data. ✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		precision and recall.			
for predicting whether an example is positive or negative. It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. Using a very large training set makes it unlikely for model to overfit the training data. I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		After training a logistic regression			
negative. ✓ It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. ✓ Using a very large training set makes it unlikely for model to overfit the training data. ✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		classifier, you must use 0.5 as your threshold			
 ✓ It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. ✓ Using a very large training set makes it unlikely for model to overfit the training data. ✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas 		for predicting whether an example is positive or			
collecting a large amount of data before building your first version of a learning algorithm. Using a very large training set makes it unlikely for model to overfit the training data. I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		negative.			
your first version of a learning algorithm. Using a very large training set makes it unlikely for model to overfit the training data. I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas	✓	It is a good idea to spend a lot of time			
 ✓ Using a very large training set makes it unlikely for model to overfit the training data. ✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas 		collecting a large amount of data before building			
makes it unlikely for model to overfit the training data. I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		your first version of a learning algorithm.			
data. ✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas	✓	Using a very large training set			
✓ I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		makes it unlikely for model to overfit the training			
deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas		data.			
deactivation of my Coursera account. Learn more about Coursera's Honor Code Lucas					
Lucas Lucas				6 P	P
Save	ı	ucas			
Save					
			Save	Sub	mit