Álgebra Relacional

Modelo Relacional - Manipulação

- Duas categorias de linguagens
 - formais
 - álgebra relacional e cálculo relacional
 - comerciais (baseadas nas linguagens formais)
 - SQL
- Linguagens formais Características
 - orientadas a conjuntos
 - linguagens de base
 - linguagens relacionais devem ter no mínimo um poder de expressão equivalente ao de uma linguagem formal
 - fechamento
 - resultados de consultas são relações

Álgebra Relacional

- Operadores para consulta e alteração de relações
- Linguagem procedural
 - uma expressão na álgebra define uma execução seqüencial de operadores
 - a execução de cada operador produz uma relação
- Classificação dos operadores
 - fundamentais
 - unários: seleção, projeção
 - binários: produto cartesiano, união e diferença
 - derivados
 - binários: intersecção, junção e divisão
 - especiais
 - renomeação (unário) e atribuição
 - operador de alteração (unário)

Esquema Relacional Exemplo

Ambulatórios(#nroa, andar, capacidade)

Médicos(#codm, CPF, nome, idade, cidade, especialidade,&nroa)

Pacientes(#codp, CPF, nome, idade, cidade, doença)

Consultas(#&codm, #&codp, #data, hora)

Funcionários(#codf, CPF, nome, idade, cidade, salário)

Seleção

- Retorna tuplas que satisfazem um predicado
- Resultado
 - subconjunto horizontal de uma relação
- Notação

Operadores de comparação

- Operadores lógicos: ∧ (and) ∨ (or) ¬ (not)
- Exemplo: $\sigma_z >= 2$ (R)

R	х	y	z
	1	1	1
	2	2	2
	2	2	3

resultado

x	y	z
2	2	2
2	2	3

- buscar os dados dos pacientes que estão com sarampo
- buscar os dados dos médicos ortopedistas com mais de 55 anos
- buscar os dados de todas as consultas, exceto aquelas marcadas para os médicos com código 46 e 79
- buscar os dados dos ambulatórios do quarto andar. Estes ambulatórios devem ter capacidade igual a 50 ou número superior a 10

Projeção

- Retorna um ou mais atributos de interesse
- Resultado
 - subconjunto vertical de uma relação
- Notação

```
\pi_{\text{lista nomes atributos}} (relação)
```

- Eliminação automática de duplicatas
- Exemplo: $\pi_{x,y}(R)$

R				
\boldsymbol{x}	v	z		
1	1	1		
2	2	2		
2	2	3		

resultado x y 1 1

- buscar o nome e a especialidade de todos os médicos
- buscar o número dos ambulatórios do terceiro andar
- buscar o código dos médicos e as datas das consultas para os pacientes com código 122 e 725
- buscar os números dos ambulatórios com capacidade superior a 50, exceto aqueles do segundo e quarto andares

Produto Cartesiano

- Retorna todas as combinações de tuplas de duas relações R₁ e R₂
- Grau do resultado
 - $grau(R_1) + grau(R_2)$
- Cardinalidade do resultado
 - cardinalidade(R₁) * cardinalidade(R₂)
- Notação

relação1 X relação2

Exemplo:

R_{j}	l		$R_{}$	2
\boldsymbol{x}	v	7	w	v
1	1	1	1	1
2	2	2	2	2
3	3	3		

R_I .	XI	\mathbf{R}_2
---------	----	----------------

x	$R_{1}y$	7	w	R_2 y
1	1	1	1	1
1	1	1	2	2
2	2	2	1	1
2	2	2	2	2
3	3	3	1	1
3	3	3	2	2

- buscar o nome dos médicos que têm consulta marcada e as datas das suas consultas
- buscar o número e a capacidade dos ambulatórios do quinto andar e o nome dos médicos ortopedistas que atendem neles
- buscar, para as consultas marcadas para o período da manhã (7hs-12hs) do dia 25/09/06, o nome do médico, o nome do paciente e a data da consulta
- 4) buscar o nome e o salário dos funcionários de Florianópolis e Palhoça que estão internados como pacientes e têm consulta marcada com psiguiatras

Otimização Algébrica

- Antecipação de seleções
 - filtragens horizontais o mais cedo possível
- Definição de projeções
 - filtragens verticais o mais cedo possível
 - desde que não prejudiquem operações algébricas futuras que necessitem de atributos eliminados
- Identificação de sub-expressões comuns
 - processá-la uma única vez, mantendo-a em uma variável de relação
 - esta variável de relação é usada várias vezes no processamento da consulta

Exemplo de Otimização

 Buscar o nome dos médicos que estão internados como pacientes, sofrendo de hepatite

```
π Médicos.nome (σ Pacientes.CPF = Médicos.CPF (Pacientes X Médicos))

^ doença = 'hepatite'
```

antecipando seleções e definindo projeções

```
\pi_{\text{nome}} \left( \sigma_{\text{Pacientes.CPF}} = \text{Médicos.CPF} \left( \pi_{\text{CPF}} \left( \sigma_{\text{doença = 'hepatite'}} \right) \right) \times \left( \pi_{\text{CPF, nome}} \left( \text{Médicos} \right) \right) \right)
```

Renomeação

- Altera o nome de uma relação e/ou dos seus atributos
- Notação

 $\rho_{\text{(nome_atributo1, ..., nome_atributoN)}}$ E/OU nome_relação (relação)

Exemplos

R

$$R \times \rho_{R1}(R)$$

x	v	7
1	1	1
2	1	3

R.x	R.y	R.z	<i>R1.x</i>	<i>R1.y</i>	R1.z
1	1	1	1	1	1
1	1	1	2	1	3
2	1	3	1	1	1
2	1	3	2	1	3

$$\rho_{(a, b, c)}(R)$$
 $\begin{array}{c|cccc}
a & b & c \\
\hline
1 & 1 & 1 \\
\hline
2 & 1 & 3
\end{array}$

- buscar o número dos ambulatórios com capacidade superior à capacidade do ambulatório de número 100
- buscar o nome e o CPF dos funcionários que recebem salários iguais ou inferiores ao salário do funcionário com CPF 1001
- buscar pares de nomes de médicos diferentes que têm consultas marcadas nas mesmas datas

Exemplo de Otimização

 Buscar o número dos ambulatórios onde pelo menos dois médicos de Florianópolis dão atendimento

```
\pi_{\text{M.nroa}} (\sigma_{\text{M\'edicos.nroa} = \text{M.nroa}} ((\sigma_{\text{cidade} = \text{`Fpolis'}}, (\text{M\'edicos})) \times (\rho_{\text{M}}) 
\uparrow^{\text{M\'edicos.codm} \neq \text{M.codm}} (\sigma_{\text{cidade} = \text{`Fpolis'}}, (\text{M\'edicos})))))
definindo \ projeç\~oes \ e \ identificando \ sub-express\~oes \ em \ comum
```

R1
$$\leftarrow \pi_{\text{codm, nroa}} (\sigma_{\text{cidade = 'Fpolis'}} (\text{Médicos}))$$

Resposta $\leftarrow \pi_{\text{R1.nroa}} (\sigma_{\text{R1.nroa = R2.nroa}} (\text{R1 X } \rho_{\text{R2}} (\text{R1})))$

União, Diferença e Intersecção

- Operam somente sobre duas relações R₁ e R₂ ditas compatíveis
 - $-\operatorname{grau}(R_1) = \operatorname{grau}(R_2)$
 - para i de 1 até grau(R_1): domínio(atributo a_i de R_1) = domínio(atributo a_i de R_2)
- Grau do resultado
 - $-\operatorname{grau}(R_1)$ (ou $\operatorname{grau}(R_2)$)
- Nomes dos atributos do resultado
 - nomes dos atributos da primeira relação (R₁ relação à esquerda)

União

- Retorna a união das tuplas de de duas relações R₁ e R₂
- Eliminação automática de duplicatas
- Notação

Exemplo:

R	1		R_2		
\boldsymbol{x}	y	Z	\boldsymbol{x}	y	Z
1	1	1	1	1	1
1	2	2	1	2	1
2	2	3	1	2	3
3	1	1			

R_{I}	\cup	R_2
x	y	Z
1	1	1
1	2	1
1	2	2
1	2	3
2	2	3
3	1	1

Diferença

- Retorna as tuplas presentes em R₁ e ausentes em R₂
- Notação

Exemplo:

R_{\perp}	1		R_2	ı	
x	y	z	x	y	Z
1	1	1	1	1	1
1	2	2	1	2	1
2	2	3	3	1	1
3	1	1			

1		2
x	y	Z
1	2	2
2	2	3

 $R_1 - R_2$

Intersecção

- Retorna as tuplas comuns a R₁ e R₂
- Notação

 R_{2}

Exemplo:

R	1		R_2						R	$_{l}$ \cap
\boldsymbol{x}	y	z	x	y	z				X	y
1	1	1	1	1	1				1	1
1	2	2	1	2	1				3	1
2	2	3	3	1	1					
2	7	1				_				

Para resolver (usando \cup , — ou \cap)

- buscar o nome e CPF dos médicos e dos pacientes cadastrados no hospital
- buscar o nome, CPF e idade dos médicos, pacientes e funcionários que residem em Florianópolis
- buscar o nome e CPF dos funcionários que recebem salários abaixo de R\$ 500,00 e não estão internados como pacientes
- buscar o número dos ambulatórios onde nenhum médico dá atendimento
- 5) buscar o nome e CPF dos funcionários de Florianópolis que estão internados como pacientes
- 6) buscar o nome e CPF dos médicos pediatras que não atendem nos ambulatórios 101 e 102, e estão internados como pacientes sofrendo de gastrite

Junção (Join)

- Retorna a combinação de tuplas de duas relações R₁ e R₂ que satisfazem um predicado
- Notação

relação1 θ X relação2

Exemplo:

1	1		 <i>I</i> \(\frac{1}{2}\)	?
\boldsymbol{x}	y	z	w	y
1	1	1	1	1
2	2	2	2	2
3	3	3		

R_{1}	$\theta X I$	R_2	θ=	$\sigma_{RI,y}$	> R2.y
x	$R_{1}y$	Z	w	R_2y	
2	2	2	1	1	
3	3	3	1	1	
3	3	3	2	2	

Junção Natural (natural join)

- Junção na qual θ é uma igualdade predefinida entre todos os atributos de mesmo nome presentes em duas relações R₁ e R₂ (atributos de junção). Estes atributos só aparecem uma vez no resultado
- Notação

Derivação

$$R_1 \bowtie R_2 = \pi_{A1, ..., An, B1, ..., Bm, C1, ..., Cx} (R_1 \theta X R_2)$$

 $\theta = \sigma_{R1.C1} = R2.C1^{...} R1.Cx = R2.Cx$

atributos de junção

Junção Natural

Exemplos

R_1		
x	y	z
1	1	1
1	1	2
2	2	3

$$R_1 > R_2$$
 $|x| |y| |z| |w|$
 $|1| |1| |1|$
 $|1| |1| |2| |1|$
 $|2| |2| |3| |2|$

Λ_{I}	!	
\boldsymbol{x}	y	z
1	1	1
1	1	2
2	2	3

D

$$\begin{array}{c|ccc} R_2 & w \\ \hline 1 & 1 & 3 \\ 2 & 2 & 2 \\ \end{array}$$

	-	_	
\boldsymbol{x}	y	z	W
1	1	1	3
1	1	2	3
2	2	3	2

Junção Natural

Exemplos

R_1		
x	y	

\boldsymbol{x}	y	Z
1	1	1
1	1	2

$$R_2$$

w	t
1	1
2	2

$$R_1 \bowtie R_2$$

\boldsymbol{x}	y	z	w	t
1	1	1	1	1
1	1	1	2	2
1	1	2	1	1
1	1	2	2	2

- buscar o número e a capacidade dos ambulatórios do quinto andar e o nome dos médicos que atendem neles
- buscar o nome e o salário dos funcionários de Florianópolis e Palhoça que estão internados como pacientes e têm consulta marcada em 20/10/2006
- buscar o número e o andar dos ambulatórios onde nenhum médico dá atendimento
- buscar o número dos ambulatórios que estão no mesmo andar do ambulatório 101 e possuem capacidade superior à capacidade dele

Junções Externas (outer joins)

- Junção na qual as tuplas de uma ou ambas as relações que não são combinadas são mesmo assim preservadas no resultado
- Três tipos (exemplos com junção natural)
 - junção externa à esquerda (left [outer] join)
 - tuplas da relação à esquerda são preservadas
 - notação: relação1 ⊃ relação2
 - junção externa à direita (right [outer] join)
 - tuplas da relação à direita são preservadas
 - notação: relação1 🔀 relação2
 - junção externa completa (full [outer] join)
 - tuplas de ambas as relações são preservadas
 - notação: relação1 🔍 relação2

Junções Externas (outer joins)

Exemplos

R_{I}	ı	
\boldsymbol{x}	y	z
1	1	1
2	1	2
3	3	3
5	5	5

κ_2				
\boldsymbol{x}	a	b		
1	1	1		
2	1	2		
4	4	4		
<i>2 4</i>	4	4		

$R_1 \bowtie R_2$					
x	y	z	a	b	
1	1	1	1	1	
2	1	2	1	2	
4			4	4	

$R_1 \supset R_2$					
\boldsymbol{x}	y	z	a	b	
1	1	1	1	1	
2	1	2	1	2	
3	3	3			
5	5	5			

R_1					
\boldsymbol{x}	y	z	а	b	
1	1	1	1	1	
2	1	2	1	2	
3	3	3			
5	5	5			
4			4	4	

- buscar os dados de todos os médicos e, para aqueles que têm consultas marcadas, mostrar os dados de suas consultas
- buscar os números de todos os ambulatórios e, para aqueles ambulatórios nos quais médicos dão atendimento, exibir o código e o nome dos médicos associados
- mostrar em uma relação o CPF e nome de todos os pacientes e de todos os médicos, apresentando estes dados de forma relacionada para aqueles que possuem consultas marcadas

Divisão

- Considera duas relações
 - dividendo (grau m + n)
 - divisor (grau n)
- Grau "n"
 - atributos de mesmo nome em ambas as relações
- Quociente
 - grau "m"
 - atributos da relação dividendo cujos valores associam-se com todos os valores da relação divisor
- Notação

```
relação1 ÷ relação2
```

Divisão

Exemplos

R_{I}	!	
\boldsymbol{x}	y	Z
1	1	1
1	2	1
2	1	1
2	2	2
3	1	3

- buscar o código dos pacientes que têm consultas marcadas com todos os médicos
- buscar o nome e o CPF dos médicos que têm consultas marcadas com todos os pacientes
- buscar o nome e o CPF dos pacientes que têm consultas marcadas com todos os médicos ortopedistas que atendem nos ambulatórios do primeiro andar
- 4) todos os médicos ortopedistas dão atendimento no mesmo ambulatório? Em caso afirmativo, buscar o número e o andar deste ambulatório

Atualização de Relações

- Exclusão
 - notação
 - relação ← relação expressãoConsulta
 - relação ← expressãoConsulta
 - expressãoConsulta envolve relação
- Inclusão
 - notação
 - relação ← relação ∪ *Expr*
 - Expr: conjunto de tuplas
- Alteração
 - notação
 - $\delta_{\text{\{nome_atributo}} \leftarrow Expr\}$ (relação)
 - Expr : expressão aritmética ou valor constante

Atualização de Relações

Exemplos

R_1			_		R_2	
\boldsymbol{x}	y	Z		w	t	v
1	1	1		1	3	1
2	1	3		2	2	2
				3	2	3

1) a)
$$R_1 \leftarrow R_1 - \sigma_{x=1}(R_1)$$

b) $R_2 \leftarrow \sigma_{t=2}(R_2)$
2)
a) $R_1 \leftarrow R_1 \cup \{(1,2,2), (1,2,3)\}$
b) $temp \leftarrow \pi_w (\sigma_{t=2}(R_2))$
 $R_1 \leftarrow R_1 \cup (temp \ X \ \{(3,3)\})$
3)
a) $\delta_{x \leftarrow x+1}(R_1)$
b) $temp \leftarrow \sigma_{t=2}(R_2)$
 $R_2 \leftarrow R_2 - temp$
 $\delta_{w \leftarrow w-1}(temp)$
 $R_2 \leftarrow R_2 \cup temp$