Ruth Sablich WGU C170 VHT2 — VHT2 Task 1: Normalization and Database Design

Part A

A. 1. Nora's Bagel Bin Database Blueprints

Second Normal Form (2NF)

BAGEL ORDER			BAGEL ORDER LINE ITEM			BAGE	L
PK	Bagel Order ID		PK / FK	Bagel Order ID		PK	Bagel ID
	Order Date	1:M	PK / FK	Bagel ID	M:1		Bagel Name
	First Name			Bagel Quantity			Bagel Description
	Last Name						Bagel Price
	Address 1						
	Address 2						
	City						
	State						
	Zip Code						
	Mobile Phone						
	Delivery Fee						
	Special Notes						

A. 1. c.

I assigned the attributes to the 2NF table according to their relationships with the composite keys in BAGEL ORDER LINE ITEM. If they depend on only one part of the primary key, they are assigned to their appropriate new table, named correspondingly with BAGEL ORDER or BAGEL. If they depend on both, I assigned them (Bagel Quantity) to the one "original" table, BAGEL ORDER LINE ITEM table which contains foreign keys of both new tables' primary keys (Bagel Order ID and Bagel ID). For cardinality, a single BAGEL ORDER can contain many BAGEL ORDER LINE ITEMs, as in one order must have at least one, but can have many, line item(s). Furthermore, at least one BAGEL ORDER LINE ITEM can have many BAGELs, as in there can be many line items, each allowing only one bagel per item.

A. 2.
Third Normal Form (3NF)

BAGEL ORDER				BAGEL O		BAGEL		
PK	Bagel (Order ID		PK / FK	Bagel Order ID		PK	Bagel ID
FK	Customer ID		1:M	PK / FK	Bagel ID	M:1		Bagel Name
	Special Notes Delivery Fee Order Date				Bagel Quantity			Bagel Description
								Bagel Price
	M:1	ļ						
CUST	OMER	-						
PK	Customer ID							
	First Name							
	Last Name							
	Address 1							
	Address 2							
	City							
	State							
	Zip Co	de						
	Mobile	Phone Phone						

<u>A. 2. e.</u>

I assigned the attributes to the 3NF table by further eliminating redundancy within the tables and creating a fourth table, CUSTOMER, that holds all previously redundant information regarding the customer (first and last names, addresses, city, state, zip, and mobile phone). A new foreign key in BAGEL ORDER table named Customer ID became the new primary key in the CUSTOMER table as a result of this, as well as the fact that a bagel order must have a relationship with the customer ordering. All other attributes remained the same. The cardinalities also remained the same, except for establishing a cardinality between BAGEL ORDER table and CUSTOMER table. This new cardinality is M:1 because a single customer must order at least one, but overall can have, many orders.

<u>A. 3.</u>

city state

zip_code

mobile_phone

Final Physical Database Model

CHAR(2)

INTEGER

VARCHAR(20)

BAGEL ORDER				BAGEL ORDER LINE ITEM				BAGEL		
PK	bagel_order_id	INTEGER		PK / FK	bagel_order_id	INTEGER		PK	bagel_id	CHAR(2)
FK	customer_id	INTEGER	1:M	PK / FK	bagel_id	CHAR(2)	M:1		bagel_name	VARCHAR(30)
	special_notes	VARCHAR(40)			bagel_quantity	INTEGER			bagel_description	VARCHAR(30)
	delivery_fee	INTEGER					_		bagel_price	NUMERIC(3,2)
	order_date	TIMESTAMP								
	M:1									
CUSTOMER										
PK	customer_id	INTEGER								
	first_name	VARCHAR(40)								
	last_name	VARCHAR(40)								
	address_1	VARCHAR(30)								
	address_2	VARCHAR(30)								
	city	VARCHAR(30)								
			ı							

PART B

<u>B. 1. a.</u>

```
CREATE TABLE coffee shop (
       shop id INTEGER PRIMARY KEY,
       shop name VARCHAR(50),
       city VARCHAR(50),
       state CHAR(2)
);
CREATE TABLE employee (
       employee_id INTEGER PRIMARY KEY,
       shop id INTEGER,
       first_name VARCHAR(30),
       last name VARCHAR(30),
       hire date DATE,
       job_title VARCHAR(30),
       FOREIGN KEY (shop_id) REFERENCES coffee_shop(shop_id)
);
CREATE TABLE supplier (
       supplier_id INTEGER PRIMARY KEY,
       company_name VARCHAR(50),
       country VARCHAR(30),
       sales_contact_name VARCHAR(60),
       email VARCHAR(50) NOT NULL
);
CREATE TABLE coffee (
       coffee_id INTEGER PRIMARY KEY,
       shop id INTEGER,
       supplier_id INTEGER,
       coffee_name VARCHAR(30),
       price_per_pound NUMERIC(5,2),
       FOREIGN KEY (shop_id) REFERENCES coffee_shop(shop_id),
       FOREIGN KEY (supplier_id) REFERENCES supplier(supplier_id)
);
```

B. 1. b.

B. 2. a.

```
INSERT INTO coffee shop VALUES
        (10, 'Good Mornings', 'Asheville', 'TN'),
        (11, 'Juggheads', 'Boone', 'NC'),
        (12, 'Pepper Oak Brews', 'Turnersville', 'NJ');
INSERT INTO employee VALUES
        (100, 10, 'First', 'Last', '2022-01-01', 'Barista'),
        (101, 11, 'First1', 'Last1', '2021-09-27', 'Bartender'),
        (102, 12, 'First2', 'Last2', '2023-12-21', 'Hostess');
INSERT INTO supplier VALUES
        (1000, 'Great Grounds', 'United States', 'Meredith Way', 'merway@greatgrounds.com'),
        (1001, 'Arabic Industries', 'UAE', 'Nassir Khalil', 'nkhalil133@arabind.uae.com'),
        (1002, 'Jamaican Express Coffee', 'Jamaica', 'Rosalie Clarke', 'rosalieclarke@jec.com');
INSERT INTO coffee VALUES
        (01, 50, 1000, 'Rise n Shine', 98.00),
        (02, 51, 1001, 'Desert Dessert', 120.54),
        (03, 52, 1002, 'Sun Roast', 116.76);
```

B. 2. b.

B. 3. a.

```
CREATE VIEW employee_table

AS SELECT "employee_Id",

CONCAT(employee.first_name,' ',employee.last_name) employee_full_name,

hire_date,

job_title,

shop_id

FROM employee;
```

B. 3. b.

B. 4. a.

CREATE INDEX coffee_index

ON coffee(coffee_name);

B. 4. b.

B. 5. a.

SELECT *

FROM supplier

WHERE company name = 'Great Grounds';

B. 5. b.

B. 6. a.

SELECT *

FROM coffee_shop A LEFT JOIN employee B

ON A.shop_id = B.shop_id

LEFT JOIN coffee c

ON C.shop_id = B.shop_id

LEFT JOIN supplier d

ON D.supplier id = C.supplier id;

B. 6. b.

