

Model Selection

Lecture 19

STA 371G

Texas Suffers From A Doctor Shortage

By JONATHAN BAKER . NOV 1, 2017

Email

When it comes to having a high ratio of doctors to citizens, the State of Texas ranks near the bottom. In fact, as The Dallas Morning News reports, 43 states have a higher proportion of primary care physicians to residents than Texas.

And West Texas suffers from a lack of doctors more than other parts of the state. There are 80 counties in Texas with five or fewer practicing doctors - many in West Texas. Thirty-five Texas counties have no doctors at all.

What might explain this?

- Small counties
- Poverty
- Health insurance

- Unemployment
- Large rural areas
- Something else?

What to do if there a lot of potential predictors

 Previously, we assumed that the explanatory variables were either from a small set or chosen in advance.

What to do if there a lot of potential predictors

- Previously, we assumed that the explanatory variables were either from a small set or chosen in advance.
- However, figuring out what variables to use to predict the number of physicians that a county has, is a critical portion of the analysis in this case.

What to do if there a lot of potential predictors

- Previously, we assumed that the explanatory variables were either from a small set or chosen in advance.
- However, figuring out what variables to use to predict the number of physicians that a county has, is a critical portion of the analysis in this case.
- This type of analysis is an exploratory study.

An exploratory study of the Texas physician shortage

• Exploratory studies are observational studies, in that the variables are observed rather than controlled.

An exploratory study of the Texas physician shortage

- Exploratory studies are observational studies, in that the variables are observed rather than controlled.
- Multicollinearity is much more likely in an exploratory study than in an experiment or a confirmatory study.

An exploratory study of the Texas physician shortage

- Exploratory studies are observational studies, in that the variables are observed rather than controlled.
- Multicollinearity is much more likely in an exploratory study than in an experiment or a confirmatory study.
- Exploratory studies require the most in terms of model selection. Automated tools are helpful, but judgement is still needed!

Population as a predictor of number of physicians

plot(counties\$Population, counties\$Physicians)
popmodel <- lm(counties\$Physicians ~ counties\$Population)
abline(popmodel)</pre>

Transform and Subset the data

```
# Create a variable for physicians per 10,000 people
counties$PhysiciansPer10000 <-
  counties$Physicians / counties$Population * 10000
# Remove the very small and very large counties
mcounties <- counties[counties$Population < 500000 &
                      counties$Population > 10000,]
# Which medium counties have no physicians?
mcounties[mcounties$Physicians == 0, c(1,5,12)]
      County Population Physicians
157 Live Oak
                  12091
                                 0
159
       Duval
                  11533
                                 0
```

Potential predictor variables

- LandArea: Area in square miles
- PctRural: Percentage rural land
- MedianIncome: Median household income
- Population: Population
- PctUnder18: Percent children
- PctOver65: Percent seniors
- PctPoverty: Percent below the poverty line
- PctUninsured: Percent without health insurance
- PctSomeCollege: Percent with some higher education
- PctUnemployed: Percent unemployed

 Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score). This is called backward stepwise regression.

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score). This is called backward stepwise regression.
- This method is not guaranteed to find to the best model!

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score). This is called backward stepwise regression.
- This method is not guaranteed to find to the best model!
- If there are n candidate predictor variables, there are $2^n 1$ possible models, and we would need to look at every one of them to be sure that we have found the best model.

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score). This is called backward stepwise regression.
- This method is not guaranteed to find to the best model!
- If there are n candidate predictor variables, there are 2ⁿ 1
 possible models, and we would need to look at every one of
 them to be sure that we have found the best model.
- This is where R's automated model building tools help.

How to decide which model is best

• We have used R² and Adjusted-R² to select the best models

How to decide which model is best

- We have used R² and Adjusted-R² to select the best models
- But R² is not good for comparing models with different numbers of variables because it tends to increase a little bit with each additional variable, just due to randomness.

How to decide which model is best

- We have used R² and Adjusted-R² to select the best models
- But R² is not good for comparing models with different numbers of variables because it tends to increase a little bit with each additional variable, just due to randomness.
- Adjusted-R² is better because it multiplies R² by a penalty that depends on the number of variables, but the penalty is somewhat arbitrary and increases as the number of variables increases.

 All model selection criteria try to find a balance between the predictive power of the model and the complexity of the model (number of variables).

- All model selection criteria try to find a balance between the predictive power of the model and the complexity of the model (number of variables).
- No method is ideal in all situations, so it is generally best to use multiple methods and look at the results.

- All model selection criteria try to find a balance between the predictive power of the model and the complexity of the model (number of variables).
- No method is ideal in all situations, so it is generally best to use multiple methods and look at the results.
- AIC (Akaike's Information Criterion) and the very similar BIC (the reading calls it SBC) are other widely used criterion that have a similar intent as Adjusted-R² but may give different results.

- All model selection criteria try to find a balance between the predictive power of the model and the complexity of the model (number of variables).
- No method is ideal in all situations, so it is generally best to use multiple methods and look at the results.
- AIC (Akaike's Information Criterion) and the very similar BIC (the reading calls it SBC) are other widely used criterion that have a similar intent as Adjusted-R² but may give different results.
- There are other selection criteria too (but we won't get into them in this course).

Stepping forwards

The step function uses the AIC criterion to compare models. First we'll build a "null model" with no variables, and a "full model" with all variables:

Stepping backwards and both ways

You can also step backwards (similar to what we have been doing manually), or in both directions:

Check assumptions

Check for multicollinearity

vif(backward.mod	lel)			
PctRural 1.911623 PctUnemployed 1.125032	Population 1.843085	Pct0ver65 1.776352	PctUninsured 1.029993	PctSomeCollege 1.541539

We can't be sure this is the best possible model.

Sometimes, stepwise regression leads you down a suboptimal path and you end up discarding a valuable variable (or keeping a variable that is only marginally useful), because of the order in which the variables are considered.

Best-subsets regression

• **Best-subsets regression** compares every possible model containing some subset of the predictor variables!

Best-subsets regression

- Best-subsets regression compares every possible model containing some subset of the predictor variables!
- Then we can compare the models using different model selection criteria and select the most parsimonious one

Best-subsets regression

Let's compare models using Adjusted R^2 . Each row is a candidate model; filled-in squares indicate the variable is included in that model:

plot(regsubsets.output, scale="adjr2")

plot(regsubsets.output, scale="bic")

• Look at multiple statistics. They generally say similar things.

- Look at multiple statistics. They generally say similar things.
- Find the parsimonious middle ground between an underspecified model and extraneous variables.

- Look at multiple statistics. They generally say similar things.
- Find the **parsimonious** middle ground between an underspecified model and extraneous variables.
- Fine-tune the model to ensure the model meets assumptions and captures key relationships: you may need to transform predictors and/or add interactions.

- Look at multiple statistics. They generally say similar things.
- Find the parsimonious middle ground between an underspecified model and extraneous variables.
- Fine-tune the model to ensure the model meets assumptions and captures key relationships: you may need to transform predictors and/or add interactions.
- Think about logical reasons why certain predictors might be useful; don't just focus on p-values.

Be careful of getting too crazy!

• A general guideline is that you should not even consider more than one variable for every 10 to 15 cases in your dataset.

Be careful of getting too crazy!

- A general guideline is that you should not even consider more than one variable for every 10 to 15 cases in your dataset.
- Otherwise, you can select the ones that happen to fit the data the best and essentially create a spurious correlation!

Be careful of getting too crazy!

- A general guideline is that you should not even consider more than one variable for every 10 to 15 cases in your dataset.
- Otherwise, you can select the ones that happen to fit the data the best and essentially create a spurious correlation!
- Remember to check for multicolliearity and the model assumptions!