

Photonics Curriculum Version 7.0

Lecture Series

Introduction to Fiber-Optic Communications I FOC1

Course Prerequisites

- Basic Theory of Communications
- Statistics and Stochastic Processes
- 2nd Year Physics, Mathematics, Electric/Electronic/Communications Engineering
- Should have worked through the *User's Manual* of *VPItransmissionMaker/VPIcomponentMaker* before starting this unit (to understand how to handle the software).

Course Objectives

By the end of this course, you should:

Understand how fiber-optic communication systems work

Understand how key devices in those systems work

Be able to analyze the operation of those systems

Course Objectives (continued)

By the end of this course, you should:

 Understand how fiber-optic systems and devices are modeled

 Be able to use a professional Photonic Design Automation tool to model and analyze fiber-optic systems

Module Objectives

Introduction to Fiber-Optic Communication Systems I

- Why fiber-optic communication systems?
- Advantages over other systems
- Basic system concepts

Key elements of a basic system

System performance and key issues

Telecommunications

Transport information, over a long distance, with as few errors as possible.

Considerations:

- Cost
- Reliability
- Compatibility with existing methods
- Upgradability
- Security

Which Communication Media?

Atmosphere

- Radio transmission
- Microwave line-of-sight links(100 Mbit/s, 50 km)
- Satellite (100 Mbit/s, around the world)

Cables

- Twisted-pair cable (1 Gbit/s, 100 m)
- Local loop Twisted-pair (20 Mbit/s, 2 km)
- Coaxial cable (>500 Mbit/s, few km)
- Undersea cable (50 Mbit/s)

Optical Fiber

Why Optical Fibers?

- High transmission bandwidth and low loss
 - 10 Gbit/s over 100 km (single fiber, single transmission wavelength without amplifier)
 - > 200 Gbit/s using multiple wavelength carriers
 - > 20,000 km at 10 Gbit/s using amplifiers
- Free of electromagnetic interference
- Small size and low weight
- Increased data security

An Optical Communication System

Types of Optical Communication Systems

Analog Optical Communications

information represented by analog waveforms

Types of Optical Communication Systems

Digital Optical Communications

information represented by digital (binary) bits

Transmitter

A Typical Transmitter

Intensity modulation (laser directly modulated)

Channel

Channel Effects

Loss and distortion act simultaneously

Optical Amplifier

A Typical Optical Amplifier

A Typical Receiver

Receiver

- optical signal is directly detected by photodetector
- noise is added, requires filter to reduce it

System Performance

Signal waveform in time domain

Equipment Resolution

Oscilloscope: ~ 100 ps

Sampling Scope ~ 20 ps

Streak Camera ~ 2 ps

Auto-correlator ~ 10 - 100 fs

Typical Result of
SignalAnalyzer
(Scope view)

Evaluating System Performance

Optical spectrum

(OSA view)

Evaluating System Performance

RF Spectrum

RF components at f_o, 2f_o, 3f_o...

Evaluating System Performance

Eye diagram

Detected bit stream waveform

Bits overlaid to form Eye diagram

Evaluating System Performance

Bit Error Ratio (BER)

How is the BER of a system obtained?

Directly detect the bits and compare against original

Transmitted: ...0010011001011101001100010101010011...

Detected: ...001000100101100100110101010111...

- Estimate from Eye diagrams (statistical)
- Other methods (to be discussed in another module)

Summary

So far, the following have been introduced:

- Basic fiber-optic communication system concepts
- A basic system overview
- Key devices/components in a basic system
- How the performance of a system is evaluated

Proceed with the Interactive Learning Module