Algebra Homework #3

1. Let a and b be positive integers. Under what conditions do we have $(a) \supseteq (b)$? (This tells us what containment of ideals corresponds to in terms of integers.)

Although we are working with integers, note that in any ring R with $1 \neq 0$ we have $a = \sum_{i=1}^{a} 1 \in R$ and $b = \sum_{i=1}^{b} 1 \in R$ and so the following statements hold for any ring with $1 \neq 0$.

We have $(b) \subseteq (a)$ if and only if $b \in (a)$ or $b = c \cdot a$ for some $c \in R$. Now, since both a, b are positive multiples of 1 we have that $c \in \mathbb{Z}_+$. In other words, a divides b. This tells us that containment of such ideals is "relation reversing" compared with divisibility of integers.

- Consider the following true statements about positive integers. For each statement, write down the corresponding statement about ideals in a general ring, and determine whether it is true.
 - If a and b are coprime and if c divides b, then a and c are also coprime.
 - If a divides both b and c, then a divides gcd(b, c).
 - If a and b are coprime, then lcm(a, b) = ab.
 - For any a and b, we have $gcd(a, b) \cdot lcm(a, b) = ab$.
 - a,b coprime means gcd(a,b)=1. For the principal ideal domain $R=\mathbb{Z}$ we have that (a,b)=(gcd(a,b)). And so the corresponding statement for a general ring is: if (a,b)=(1)=R and if $(b)\subseteq(c)$ then (a,c)=(1). Note that a ring does not necessarily have a well-defined notion of a greatest common divisor of two elements, but it does if the ring also happens to be a UFD. Nevertheless, let us work with the statement above.

This statement is true. The condition (a,b)=(1) means that there exists elements $r_1,r_2 \in R$ such that $r_1a+r_2b=1$, by definition of ideal generated by a set. Moreover, $(b)\subseteq (c)$ means there exists some $r_3\in R$ such that $b=r_3c$. Combining these statements we have

$$1 = r_1 a + r_2 b = r_1 a + r_2 r_3 c \in (a, c).$$

In other words, indeed, (a, c) = 1.

• Recall the discussion in question 1. The corresponding general statement is: if $(b) \subseteq (a)$ and if $(c) \subseteq (a)$ then $(b,c) \subseteq (a)$.

This statement is again true. The hypothesis gives that there are elements $r_1, r_2 \in R$ such that $b = r_1 a$ and $c = r_2 a$. By definition, a general element of (b, c) is of the form $x_1b + x_2c$ for $x_1, x_2 \in R$. We have

$$x_1b + x_2c = x_1r_1a + x_2r_2a = (x_1r_1 + x_2r_2)a \in (a).$$

Hence, indeed, we have $(b, c) \subseteq (a)$.

• The corresponding general statement is: "if (a, b) = (1) then $(a) \cap (b) = (ab)$ ". This statement is again true.

The hypothesis means that there are elements $r_1, r_2 \in R$ such that $r_1a + r_2b = 1$. We show that $(a) \cap (b) = (ab)$. The reverse inclusion is generally true since $ab = a \cdot b = b \cdot a$ and so $ab \in (a) \cap (b)$, because our rings are commutative.

Now we show the forward inclusion $(a) \cap (b) \subseteq (ab)$. Let $ca \in (a) \cap (b)$. By definition, there exists some $d \in R$ such that db = ca. Consider the following

$$ca-db=0$$

$$r_2ca-d(r_2)b=0$$

$$r_2ca-d(1-r_1a)=0$$
 By our hypothesis
$$(r_2c+dr_1)a=d$$

$$(r_2c+dr_1)ab=db$$

$$(r_2c+dr_1)ab=ra,$$

That is we have found ra = Kab for some $K \in R$ and so $ra \in (ab)$. Hence we have $(a) \cap (b) \subseteq (ab)$ and moreso $(a) \cap (b) = (ab)$.

• Note to self: finish this part one day.

-

3. Let R be a finite ring. Prove that R is a field if and only if it is an integral domain.

In general we have that R a field implies R is an integral domain, even if R is not finite. We recount the proof here. Suppose R is a field, that is R is commutative with $1 \neq 0$ and every $a \in R$ is a two-sided unit. Now suppose we have ab = 0. If a = 0 then we are done, so suppose a is non-zero in R. Then, a has a two-sided inverse $a^{-1} \in R$, and so

$$0 = ab = a^{-1}ab = 1 \cdot b = b.$$

If we instead assume $b \neq 0$ then an extremely similar calculation will show that ab = 0 implies a = 0. (Or, perhaps it's enough that R is commutative at this point?) Thus, R is an integral domain.

Now suppose R is finite and is an integral domain. That is, R is a commutative ring with $1 \neq 0$ and for all $a, b \in R$ we have ab = 0 implies a = 0 or b = 0. We show that every non-zero element in R has a two-sided inverse. Let $a \in R$ be some non-zero element and let $\phi_a : R \to R$ be the map defined by $\phi(r) = a \cdot r$.

We claim that ϕ_a is injective. Suppose we have $\phi(b) = \phi(c)$ for some $b, c \in R$. That is, ab = ac, equivalently a(b - c) = 0. But recall that a is a non-zero element in the integral domain R, and so we must have b - c = 0. In other words b = c and ϕ_a is injective by definition.

In addition, since R is finite and #R = #R, we have that ϕ_a is actually a bijection. And so there must exist some $c \in R$ such that $\phi(c) = 1$. That is, we have $c \in R$ such that ac = 1. Since R is commutative, a is actually a two-sided unit with inverse c. Thus, R is a field.

Note to self: Aluffi claims that finite division rings turn out to always be commutative. Have a read of this later if we get time

- 4. Let \mathbb{F} be a finite field of order q. We are going to prove that the multiplicative group \mathbb{F}^{\times} is cyclic of order q-1.
 - (a) Show that for all $d \geq 1$, the number of d-torsion elements of the group \mathbb{F}^{\times} is at most d.
 - (b) Suppose that G is a finite abelian group such that the number of d-torsion elements of G is at most d for all $d \geq 1$. Prove that G is cyclic. (Hint: the structure theorem for finite abelian groups may be helpful.)
- (a) Consider the polynomial $f(x) = x^n 1 \in \mathbb{F}[x]$. Recall that $\mathbb{F}[x]$ is a unique factorization domain we should probably understand this better, and so f has at most n roots in \mathbb{F} . That is, there are at most n elements in \mathbb{F} such that $a^n = 1$. And, in particular, the zero element in the ring \mathbb{F} does not satisfy the above equation. And so, by the pigeonhole principle, all roots of f must in fact lie in \mathbb{F}^\times . Then, recalling that an element in a group $g \in G$ is a d-torsion element of G if |g| | d, the above shows that \mathbb{F}^\times has at most d elements with d-torsion, for each $d \ge 1$. question: does d-torsion mean that |g| = d or that |g| | d?
- (b) I'm not sure we've super talked about the structure theorem of finite abelian groups much, so I will recall the theorem in detail here. *Theorem:* If *G* is a finite abelian group then we have that *G* is a product of cyclic groups, in particular

$$G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$$
,

for $d_i > 0$ integers and where $d_1 | d_2 | \cdots | d_n$ ew, i hate the spacing on this. Moreover, $|G| = d_1 \cdots d_s$. Here, we are treating G as a group under addition.

Now suppose G is a finite abelian group such that the number of d-torsion elements is at most d for all $d \ge 1$. We show that s = 1 and so G is cyclic. Suppose, for contradiction, that s > 1 and let $g \in G$. We have that $\langle g \rangle \le G$ and so, by Lagrange's theorem, we have that $|g| \mid |G| = d_1 \cdots d_s$. And so |g| divides one of d_i . If $\langle g \rangle$ divides d_i then, since in particular $d_i \mid d_s$, we also have $\langle g \rangle \mid d_s$. Indeed, we have $m_1 \mid g \mid = d_i$ and $m_2 d_i = d_s$ then $m_1 m_2 \mid g \mid = d_s$, i.e., $|g| \mid d_s$. That is g is a d_s -torsion element.

We have shown that all elements $g \in G$ have d_s -torsion. However, we have |G| =

 $d_1 \cdots d_s > d_s$. And so we have found more than d_s elements of G which have d_s -torsion, a contradiction. That is, we must in fact have s=1 and $G \cong \mathbb{Z}/d\mathbb{Z}$ for some $d \in \mathbb{N}$. In other words, G is a cyclic group.

5. Let R be a ring and $f \in R$ an element. Prove that the localisation of R at the set $S = \{1, f, f^2, \dots\}$ is isomorphic to R[x]/(1-xf).

Let us first define a map into R[x]: $\phi: S^{-1}R \to R[x]/(1-fx)$ by $\varphi(1/f) = x$ and $\varphi(a/1) = a$, and then we extend this definition so that the map distributes over products and addition in $S^{-1}R$. That is $\varphi(a/f^k) = ax^k$ and $\varphi(a/f^k + b/f^\ell) = \varphi((af^\ell + b^k)/f^{k+\ell}) = (af^k + bf^\ell)x^{k+\ell}$. Is this sufficient reasoning to allow us to "extend the map".

First we check that this is a well defined map out of $S^{-1}R$. Suppose $a/f^k \equiv b/f^\ell$ and consider

$$\phi(a/f^k - b/f^\ell) = \phi(\frac{af^\ell - bf^k}{f^{\ell+k}}) = (af^\ell - bf^k)x^{\ell+k}.$$

Now, the condition $a/f^k \equiv b/f^\ell$ means that there exists some $c \in S$ such that $c(af^\ell - bf^k) = 0$, in particular $c = f^m$ for some integer $m \ge 0$. That is, we have $f^m(af^\ell - bf^k) = 0$. Applying ϕ to both sides of this expression gives $x^m(af^\ell - bf^k) = 0$ in R[x]/(1-fx). If we somehow knew that $\ell + k \ge m$ we'd be done, but it's not super clear to me how we can finish this reasoning. This might also perhaps be the wrong approach. NOTE: Chase suggested using a universal property instead

Also, note that $\phi: S^{-1}R \to R[x]$ is not a well-defined map, consider the image of $(af^2)/f^3$

Next we check that ϕ is in fact a well-defined map into the quotient R[x]/(1-fx). Namely, we will check that $\phi^{-1}((1-fx)) = \{0\}$. We have

$$\phi^{-1}(1-fx) = \frac{1}{1} - \frac{f}{f} = 0 \in S^{-1}R.$$

And so, ϕ is a well-defined map into the quotient R[x]/(1-fx). From now, we will treat ϕ as a map $\phi: S^{-1} \to R[x]/(1-fx)$.

Nex we will show that ϕ is a bijection. First we check injectivity. Notice that every element of $S^{-1}R$ can be reduced to the form a/f^k for some $a \in R$ and some natural k. Now suppose $\phi(a/f^k) = \phi(b/f^\ell)$, i.e. $ax^k = bx^\ell$. The only way for this to be true is if $k = \ell$ and only if a = b a part of me wants to unpack this, I believe this is true because intuitively "the constants in R[x] are independent of the variable x." is there a more precise way of saying this?. That is, $a/f^k = b/f^\ell$ and so ϕ is injective.

Next we show that ϕ is surjective. Suppose $a_0 + a_1x + \cdots + a_nx^n \in R[x]/(1-fx)$, since this is an element of the quotient suppose we have reduced away all existing factors of f in each coefficient a_i using the relation 1 = fx in the quotient. Then notice $a_0/1 + a_1/f + \cdots + a_n/f^n$ maps to the given polynomial under ϕ .

In the end, we have found a bijective homomorphism from $S^{-1}R$ to R[x]/(1-fx), and so these rings are isomorphic.

6. Let p be a prime number, and let $\Phi_p(x)$ be the polynomial

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1.$$

By considering the polynomial $\Phi_p(x+1)$, or otherwise, show that $\Phi_p(x)$ is irreducible in $\mathbb{Q}[x]$.

We show that $\Phi(x)$ is irreducible using Eisenstein's criterion.

First we note that $\Phi(x+1)$ is irreducible over $\mathbb{Q}[x]$ if and only if $\Phi(x)$ is irreducible over $\mathbb{Q}[x]$. Suppose $\Phi(x+1)$ were reducible then write $\Phi(x+1) = f(x)g(x)$ for non-constant $f,g \in \mathbb{Q}[x]$. Now notice $\Phi(x) = f(x-1)g(x-1)$. The substitution $x \mapsto x-1$ cannot make either f,g constant polynomials. And so we have have found a reduction of $\Phi(x)$. That is, $\Phi(x+1)$ reducible implies $\Phi(x)$ is reducible. A similar argument will give that $\Phi(x)$ reducible implies that $\Phi(x+1)$ is reducible. And so $\Phi(x)$ is reducible if and only if $\Phi(x+1)$ is reducible, all over $\mathbb{Q}[x]$. And so, we proceed by showing that $\Phi(x+1)$ is irreducible over $\mathbb{Q}[x]$.

Next, notice that $\Phi(x) = \frac{x^p - 1}{x - 1}$. This can be shown by multiplying out $\Phi(x)(x - 1)$, we end up with telescoping terms and the result is $x^p - 1$.

It then follows that $\Phi(x+1) = \frac{(x+1)^p - 1}{x}$. Now, using the binomial theorem, we have

$$(x+1)^p = x^p + \binom{p}{p-1}x^{p-1} + \dots + \binom{p}{3}x^3 + \binom{p}{2}x^2 + \binom{p}{1}x + 1.$$

And so

$$\frac{(x+1)^p - 1}{x} = x^{p-1} + \binom{p}{p-1} x^{p-2} + \dots + \binom{p}{1}.$$

We claim that this form allows us to deduce that the Eisenstein criterion is fulfilled. First, we have $a_n = 1$ and so a_n is not in any prime ideal. Moreover, we have that $\binom{p}{1} = p \notin (p)^2 = (p^2)$ in $\mathbb{Z}[x]$, but $p \in (p)$.

Then lastly, we need to show that $\binom{p}{k} \in (p)$ for each 1 < k < p. Considering the algebraic formulation of the binomial coefficient, we have, for each k < n

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

Notice that p divides the numerator, but not the denominator. Indeed, k < n implies each factor of k! is less than p, and so p does not divide k!. Similar reasoning gives that p does not divide (p - k)!. Moreover, the right hand side of the above equation is an integer. There is no common factors of p between the numerator and denominator, and p is prime, so by considering the prime factorization of the right hand side, we have that p divides $\binom{p}{k}$. Eisenstein's irreducibility criterion is fulfilled and so $\Phi(x)$ is irreducible over $\mathbb{Q}[x]$.

7. (Introduction to Newton polygons) There is a far-reaching generalisation of the Eisenstein irreducibility criterion, called the theory of Newton polygons. Let R be a unique factorisation domain and $p \in R$ a prime element. The p-adic valuation $v_p(a)$ of an element $a \in R$ is defined to be the number of times that p appears in the prime factorisation of a (or $v_p(a) = \infty$ if a = 0). The (p-adic) Newton polygon of a non-zero polynomial

$$f(x) = \sum_{i=0}^{d} a_i x^i \in R[x]$$

is defined to be the lower convex hull of the set

$$\{(i, v_p(a_i)) : 0 \le i \le d\}$$

in \mathbb{R}^2 . This lower convex hull is a finite union of line segments. The slopes of the Newton polygon are defined to be the slopes of these line segments, and the multiplicity of a slope is the length of the projection of the corresponding line segment to the x-axis. We also adopt the convention that $-\infty$ is a slope of the Newton polygon if $a_0 = 0$, and the multiplicity of $-\infty$ is the smallest i such that $a_i \neq 0$.

The main theorem of Newton polygons states that if s is a slope of f(x) and g(x) of multiplicity m and n, respectively, then s is also a slope of f(x)g(x) with multiplicity m+n. (If s is not a slope of f or g, count it with multiplicity 0.)

• When $R = \mathbb{Z}$, compute the 3-adic Newton polygons of

$$f(x) = x^2 + 3x + 3$$
 and $g(x) = x^3 + 3x - 1$.

What are their slopes (with multiplicity)? Compute the slopes (with multiplicity) of the 3-adic Newton polygon of the product f(x)g(x), and check that your answer accords with the main theorem of Newton polygons.

- Use the main theorem of Newton polygons to give another proof of the Eisenstein irreducibility criterion.
- Use the main theorem of Newton polygons to show that the polynomial

$$x^5 + 15x^3 + 50x^2 + 100$$

is irreducible in $\mathbb{Z}[x]$.

- Is the polynomial $x^4 + 4$ irreducible in $\mathbb{Z}[x]$?
- See Figure (1).
- Recall the statement for Eisenstein's irreducibility criterion: suppose $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ with, for some prime p, $a_i \in (p)$ for $0 \ge i < n$, $a_0 \notin (p^2)$, and $a_n \notin (p)$, then we

Figure 1: 3-adic newton polytopes for f, g with slope data. The points are labelled with their 3-adic valuation.

have that f is irreducible over $\mathbb{Q}[x]$. If we additionally suppose that f is primitive, then in fact f is irreducible over $\mathbb{Z}[x]$.

We use the main theorem of p-adic newton polygons to prove this statment. Considering the p-adic newton polygon of the above conditions gives us that $v_p(a_0) = 1$, $v_p(a_i) \ge 1$ for each i < n, and $v_p(a_n) = 0$. This means we have slope data (-1/n, n) for f. Suppose, for contradiction, that f is primitive and reducible. That is we have some non-constant $g, h \in \mathbb{Z}[x]$ such that h = fg.

Note that since $v_p(a_0(f)) = 1$ we must have that either h or g has exactly one factor of p in its constant term. Suppose, without loss of generality, that $v_p(a_0(h)) = 1$. Then the only way for the p-adic newton polytope of f to have a slope of -1/n is for deg(f) = n and for $v_p(a_i(h)) \ge 1$ for each i < n and for $v_p(a_n(h)) = 0$. Then, by the main theorem of newton polytopes, we must have deg(g) = 0, a contradiction.

We also cannot have the case where g is a constant, since we assumed f is primitive.

It follows then that f is irreducible over $\mathbb{Z}[x]$. If f were not primitive, we could divide its coefficients by their greatest common divisor, and then the same argument would give that f is irreducible over $\mathbb{Q}[x]$.

Figure 2: The *p*-adic newton polytope given by the condition of Eisenstein's criterion.

• We show that $h(x) = x^5 + 15x^3 + 50x^2 + 100$ is irreducible over $\mathbb{Z}[x]$. Consider the slope data for the 5-adic newton polytope for h, we have (-1/2,5)

Figure 3: The 5-adic newton polytope with valuations of $h(x) = x^5 + 15x^3 + 50x^2 + 100$

Now suppose h = fg for non-constant $f, g \in \mathbb{Z}[x]$. Without loss of generality, we have two cases: either def(f) = 1 and deg(g) = 4 or deg(f) = 2 and deg(g) = 3.

First consider deg(f) = 1 and deg(g) = 4. Consider the 5-adic newton polytope for f. Since f is degree 1 we can only have integer slopes in the p-adic newton polytope for f, for any p. And so, by the main theorem for p-adic newton polytopes, it's impossible to choose coefficients for f which is consistent with the slope data for h.

Likewise, if we instead have deg(f) = 2, deg(g) = 3 then we have a similar parity issue for the slopes of the 5-adic newton polytope for g. We know that $a_n(f) = a_n(g) = 1$ and so in particular $v_5(a_n(g)) = 0$. Hence to have a slope of -1/2 we must have $v_5(a_1(g)) = 1$ and $v_5(a_1(g)) \ge 1$. However, from here it is impossible to choose coefficients for a_0 which gives us another slope of length -1/2. Intuitively, there is "not enough room" for all the slopes to be -1/2 in the 5-adic newton polytope for g.

Lastly, since h is monic there is no constant term which divides all the coefficients of h, f, g. And so we cannot decompose h into a product of a non-unit constant and a degree 5 polynomial.

All cases lead us to contradiction, and so it must be that one of f, g is a unit, and so h is irreducible.

• Let $h(x) = x^4 + 4$ and consider the 2-adic Newton Polytope of h. We claim that h is

Figure 4: Yet another 2-adic newton polytope. NOTE: the slope, length data is incorrect in the image, we actually have (-1/2,4).

reducible over $\mathbb{Z}[x]$. I already did all the work reasoning about the newton polytope data of the factors, and so I will reproduce that here. Write h = fg where $f, g \in \mathbb{Z}[x]$. Notice that h is primitive (since it is monic), so we can consider f, g non-constant. We have two cases: either deg(f) = 1, deg(g) = 3 or deg(f) = deg(g) = 2. In either

case we must have the leading terms for f, g are 1 and so $v_2(a_n) = 0$ for both f, g. Moreover, the constant terms for f, g are either ± 1 , ± 4 or ± 2 , ± 2 .

Suppose first that deg(f) = 1, deg(g) = 3. Since $v_2(a_n(f)) = 0$, there is no possible valuation $v_2(a_0(f))$ which will give us a slope of -1/2 for the 2-adic newton polytope of f. And so, by the main theorem of newton polytopes, this case is not possible.

Suppose instead then that we have $\deg(f) = \deg(g) = 2$. We have $v_2(a_n(f)) = v_2(a_n(g)) = 2$ and so, to have 2-adic newton polytopes for f,g which are consistent with h, we must have $v_2(a_0(f)) = v_2(a_0(g)) = 2$. That is we have $a_0(f) = a_0(g) = \pm 2$. And we must also have the degree 1 terms for f,g are even, more precisely, $v_2(a_1(f)), v_2(a_1(g)) \ge 1$. Let us write $f(x) = 2 + ax + x^2$ and $g(x) = 2 + bx + x^2$. Considering the coefficients of $f \cdot g$ gives us the following system of equations

$$a = -b$$
$$b^2 = 4.$$

which has solutions in \mathbb{Z} : a = 2 and b = -2. Then, indeed

$$(2+2x+x^2)(2-x+x^2) = 4+x^4.$$

Notice that these polynomials are primitive, and so are irreducible over $\mathbb{Z}[x]$.

Note to self: This question was a saga for me, and despite the embaressedment of getting the newton polytope wrong initially, and spending so long on this question I feel like I learned so much and have truly ascended. What a delightful experience.