Statistics 553: Asymptotic Tools

David R. Hunter, PSU

Summary Notes of the Course written by Jaeho, Chang

Contents

1	Mathematical and Statistical Preliminaries					
	1.1	Limit superior and inferior	3			
	1.2	Differentiability, Taylor's Theorem	3			
	1.3	Order Notation	4			
	1.4	Multivariate Extensions	6			
2	Weak Convergence					
	2.1	Modes of Convergence	8			
		2.1.1 Probabilistic Order Notation	8			
		2.1.2 Convergence in Distribuion (Law)	9			
		2.1.3 Convergence in Mean	9			
	2.2	Consistent Estimates of the Mean	11			
		2.2.1 Independent but not Identically Distributed Variables	11			
		2.2.2 Identically Distributed but not Independent Variables	11			
	2.3	Convergence of Transformed Sequences	13			
		2.3.1 Continuous Transformation: The Univariate Case	13			
		2.3.2 Multivariate Extensions	13			
3	Strong Convergence 17					
	3.1	Strong Consistency Defined	17			
		3.1.1 Strong Consistency vs. Consistency	17			
		3.1.2 Multivariate Extensions	18			
	3.2	The Strong Law of Large Numbers	19			
	3.3	The Dominated Convergence Theorem	22			
		3.3.1 Moments Do Not Always Converge	22			
		3.3.2 Quantile Functions and the Skorohod Representation Theorem	22			
4	Central Limit Theorems 26					
	4.1	Characteristic Functions and Normal Distributions	26			
		4.1.1 Inversion and the Uniqueness Theorem	26			
		4.1.2 The Continuity Theorem	27			
		4.1.3 Moments	28			
		4.1.4 The Multivariate Normal Distribution	29			
		4 1 5 Asymptotic Normality	29			

	4.1.6	The Cramér-Wold Theorem	29
4.2	The L	indeberg-Feller Central Limit Theorem	32
	4.2.1	The Lindeberg and Lyapunov Conditions	32
	4.2.2	Independent and Identically Distributed Variables	32
	4.2.3	Triangular Arrays	33

1 Mathematical and Statistical Preliminaries

1.1 Limit superior and inferior

Definition 1.1. Let S be a set of real-valued elements. We say α is a supremum of S if

$$\forall \varepsilon > 0 \ \exists x \in S \ such that \ \alpha - \varepsilon < x \le \alpha.$$

Note that $-\sup(-S) = \inf S$.

Definition 1.2. \liminf , \limsup

$$\lim_{n \to \infty} \inf a_n \stackrel{def}{=} \lim_{n \to \infty} \inf_{k \ge n} a_k$$

$$\lim_{n \to \infty} \sup a_n \stackrel{def}{=} \lim_{n \to \infty} \sup_{k > n} a_k$$

Lemma 1.1. Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ be real-valued sequences. Then,

- $\liminf_n a_n \le \limsup_n a_n$
- $\exists \lim_n a_n < \infty \quad iff \quad \liminf_n a_n = \limsup_n a_n$
- If $a_n \le b_n \ \forall n \ then \ \lim \inf_n a_n \le \lim \inf_n b_n \ and \ \lim \sup_n a_n \le \lim \sup_n b_n$.
- $\lim \inf_n a_n = -\lim \sup_n (-a_n)$

Exercise 1.8

Let $X \sim Bernoulli(0.5)$. Find examples.

- (a) If $a_n = 1 \frac{1}{n}$ and a = 1, then $a_n \xrightarrow[n \to \infty]{} a$, but $\limsup_n F(a_n) \neq F(a)$.
- (b) If $a_n = 1 + \left(-\frac{1}{n}\right)^n$ and a = 1, then $a_n \underset{n \to \infty}{\longrightarrow} a$ and $\limsup_n F(a_n) = F(a)$ but $\nexists \lim_n F(a_n)$.
- (c) Because F is right-continuous.

1.2 Differentiability, Taylor's Theorem

Theorem 1.1. If f has d derivatives at a, then

$$f(x) = \sum_{i=0}^{d} \frac{f^{(i)}(a)(x-a)^{i}}{i!} + r_d(x,a)$$

where $\frac{r_d(x,a)}{(x-a)^d} \to 0$ as $x \to a$. For example, if $f^{(d+1)}$ exists on the closed interval from x to a,

$$r_d(x,a) = \int_a^x \frac{f^{(d+1)}(t)(x-t)^d}{d!} dt$$

$$r_d(x,a) = \frac{f^{(d+1)}(c)(x-a)^{d+1}}{(d+1)!}$$
(1)

where c exists between x and a. (1) can also be expressed as

$$\frac{(x-a)^d}{(d-1)!} \int_0^1 [f^{(d)}\{xt+a(1-t)\} - f^{(d)}(a)](1-t)^{d-1}dt.$$

Theorem 1.2. l'Hôpital's rule

Let $\exists f', g' \text{ on } N(c, \delta) \setminus \{c\} \text{ for some } c \in \mathbb{R}, \delta > 0.$ If $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ or $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \infty$ then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

if RHS exists.

1.3 Order Notation

Definition 1.3. Asymtotic Equivalence

We say that the sequence of real numbers a_1, a_2, \cdots is asymptotically equivalent to the sequence b_1, b_2, \cdots , written $a_n \sim b_n$, if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$. That is,

$$\left|1 - \frac{a_n}{b_n}\right| \underset{n \to \infty}{\to} 0$$

Example 1.22

$$n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$$

Definition 1.4. We write $a_n = o(b_n)$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 0$ as $n \to \infty$.

Definition 1.5. We write $a_n = O(b_n)$ as $n \to \infty$ if there exist M > 0 and N > 0 such that $\left| \frac{a_n}{b_n} \right| < M$ for all n > N.

For example, (1) may be rewritten as

$$f(x) = \sum_{i=0}^{d} \frac{f^{(i)}(a)(x-a)^{i}}{i!} + \frac{\{f^{(d+1)}(a) + o(1)\}(x-a)^{d+1}}{(d+1)!}$$

as $x \to a$.

Lemma 1.2.

Let f, g be real-valued functions and $f_1 = O(g_1)$ and $f_2 = O(g_2)$. Then,

(a)
$$f_1 f_2 = O(g_1 g_2)$$

(b)
$$f_1 + f_2 = O(g_1 + g_2)$$

$$(c)\ fO(g)=O(fg)$$

If f = o(F) and g = o(G), then

(a)
$$fg = o(FG)$$

(b) if
$$f = o(g)$$
, then $f = o(G)$.

Theorem 1.3.

Let $a_n, b_n \to \infty$ as $n \to \infty$ and $a_n = o(b_n)$. If f is convex and $f(x) \to \infty$ as $x \to \infty$, then

$$f(a_n) = o[f(b_n)].$$

Proof. Pick a constant c from the domain of f. Since f is convex,

$$f\left(\frac{a_n - c}{b_n - c}b_n + \frac{b_n - a_n}{b_n - c}c\right) \le \frac{a_n - c}{b_n - c}f(b_n) + \frac{b_n - a_n}{b_n - c}f(c)$$

$$\Leftrightarrow \frac{f(a_n)}{f(b_n)} \le \frac{a_n - c}{b_n - c} + \frac{b_n - a_n}{b_n - c}\frac{f(c)}{f(b_n)}.$$
(2)

It is obvious that $\frac{a_n-c}{b_n-c} \to 0$, $\frac{b_n-a_n}{b_n-c} \to 1$ and $f(b_n) \to \infty$ as $n \to \infty$. Therefore taking \liminf_n and \limsup_n on (2) obtains

$$0 \le \liminf_{n \to \infty} \frac{f(a_n)}{f(b_n)} \le 0 \quad \& \quad 0 \le \limsup_{n \to \infty} \frac{f(a_n)}{f(b_n)} \le 0.$$

Therefore $f(a_n) = o[f(b_n)].$

Excercise 1.18

Suppose that $a_n \sim b_n$ and $c_n \sim d_n$. Then,

- (a) $a_n c_n \sim b_n d_n$
- (b) $|a_n| + |c_n| \sim |b_n| + |d_n|$

Proof of (b). By assumption,

$$\begin{split} \forall \varepsilon > 0 & \exists N_1, N_2 \text{ such that if } n > N_1 \text{ and } n > N_2 \text{ then} \\ \varepsilon > \left| \frac{a_n}{b_n} - 1 \right| \ge \left| \frac{a_n}{b_n} \right| - 1 & \& \varepsilon > \left| 1 - \frac{a_n}{b_n} \right| \ge 1 - \left| \frac{a_n}{b_n} \right| \\ which means & \left| \frac{a_n}{b_n} \right| \in N(1, \varepsilon) \text{ and similarly } \left| \frac{c_n}{d_n} \right| \in N(1, \varepsilon). \end{split}$$

Let $N = \max(N_1, N_2)$ then if n > N,

$$\frac{|a_n| + |c_n|}{|b_n| + |d_n|} = \frac{\left|\frac{a_n}{b_n}\right| |b_n| + \left|\frac{c_n}{d_n}\right| |d_n|}{|b_n| + |d_n|} \in N(1, \varepsilon)$$

$$(3)$$

because (3) is just an interpolation of $\left|\frac{a_n}{b_n}\right|$ and $\left|\frac{c_n}{d_n}\right|$. Therefore, the result follows.

1.4 Multivariate Extensions

Definition 1.6. Differentiability

Suppose that $\mathbf{f}: \mathbf{U} \to \mathbb{R}^l$, where $\mathbf{U} \in \mathbb{R}^k$ is open. For $\mathbf{a} \in \mathbf{U}$, suppose there exists an $l \times k$ matrix $\mathbf{J_f}(\mathbf{a})$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\mathbf{f}(\mathbf{a}+\mathbf{h}) - \mathbf{f}(\mathbf{a}) - \mathbf{J}_{\mathbf{f}}(\mathbf{a})\mathbf{h}}{||\mathbf{h}||} = \mathbf{0}.$$
 (4)

Then $J_f(a)$ is unique and we call it Jacobian matrix of f(x) at a. $J_f(x)$ may be called the derivative of f(x).

Definition 1.7. Let $g(\mathbf{x})$ be a real-valued function defined on a neighborhood of \mathbf{a} in \mathbf{R}^k . For $1 \leq i \leq k$, let \mathbf{e}_i denote the i^{th} standard basis vector in \mathbf{R}^k . We define the i^{th} partial derivative of $g(\mathbf{x})$ at \mathbf{a} to be:

$$\frac{\partial g(\mathbf{x})}{\partial x_i}\bigg|_{\mathbf{x}=\mathbf{a}} = g_{x_i}(\mathbf{a}) \stackrel{def}{=} \lim_{h \to 0} \frac{g(\mathbf{a} + h\mathbf{e}_i) - g(\mathbf{a})}{h}$$
 (5)

if RHS of (5) exists.

Theorem 1.4. Suppose $\mathbf{f}(\mathbf{x})$ is differentiable at \mathbf{a} in the sense of (4). Define the gradient matrix $\nabla \mathbf{f}(\mathbf{a})$ to be $\mathbf{J}_{\mathbf{f}}(\mathbf{a})^{\top}$. Then

$$\nabla \mathbf{f}(\mathbf{a}) = \begin{pmatrix} f_{1x_1}(\mathbf{x}) & \cdots & f_{lx_1}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ f_{1x_k}(\mathbf{x}) & \cdots & f_{lx_k}(\mathbf{x}) \end{pmatrix} \bigg|_{\mathbf{x}=\mathbf{a}} ; k \times l \ matrix.$$
 (6)

The converse of Theorem 1.4 is not true, in the sense that the existence of partial derivatives of a function does not guarantee the differentiability of that function.

Exercise 1.31

Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $f(x,y) = \frac{xy}{x^2+y^2} I(xy \neq 0)$. Then

- (a) since f(x,0) = 0, $f_x(0,0) = 0$.
- (b) Likewise, $f_y(0,0) = 0$.

But $f(x,x) = \frac{1}{2} \neq f(0,0)$ so f is not differentiable.

Excercise 1.41

Let $X_1, \dots, X_n \stackrel{ind}{\sim} (\mu_i, \sigma_i^2)$ where $\sigma_i^2 < \infty$ for $i = 1, \dots, n$. Let

$$S_k = \sum_{i=1}^k (X_i - \mu_i)$$
 (7)

for $k = 1, \dots, n$.

(a) *Proof.* Let

$$A_k = \{ \omega \in \Omega ; |S_k(\omega)| \ge a, |S_j(\omega)| < a \ \forall j < k \} = \{ \bigcap_{i=1}^{k-1} (|S_i| < a) \} \cap (|S_k| \ge a)$$
(8)
= $\{ \bigcap_{i=1}^{k-1} (\sim B_i) \} \cap B_k \text{ and } A_1 = (|S_1| \ge a) = B_1.$

It is trivial that $A_1 \cap A_2 = \emptyset$, and

$$A_k \cap A_{k+1} = \{ (B_k \sim \bigcup_{i=1}^{k-1} B_i) \cap B_{k+1} \} \cap \{ (B_k \sim \bigcup_{i=1}^{k-1} B_i) \sim (\bigcup_{i=1}^k B_i) \} = \emptyset$$
 (10) for any k , so $A_i \cap A_j = \emptyset$ for any $i \neq j$. This leads to

$$\sum_{i=1}^{n} EI(A_i) = EI(\bigcup_{i=1}^{n} A_i) = EI(\bigcup_{i=1}^{n} B_i) = EI[\sim \cap_{i=1}^{n} (\sim B_i)] = P\left(\max_{1 \le i \le n} |S_i| \ge a\right).$$
(11)

Now, $E\{I(A_k)S_k^2\} \ge a^2 EI(A_k)$ because

$$I(A_k) \le \frac{S_k^2}{a^2} I(A_k). \tag{12}$$

Finally we get the results:

$$a^{2}P\left(\max_{1\leq i\leq n}|S_{i}|\geq a\right)\leq \sum_{i=1}^{n}E\{I(A_{k})S_{k}^{2}\}.$$
 (13)

(b) *Proof.* Since A_i s are mutually disjoint, $\sum_{i=1}^n I(A_i) \leq 1$, which leads to ;

$$S_n^2 \ge \sum_{i=1}^n S_n^2 I(A_i), \quad therefore \quad E(S_n^2) \ge \sum_{i=1}^n E[I(A_i) \{ S_i^2 + 2S_i (S_n - S_i) + (S_n - S_i)^2 \}]$$

$$\ge \sum_{i=1}^n E[I(A_i) \{ S_i^2 + 2S_i (S_n - S_i) \}]$$
(14)

(c) Since $I(A_i)S_i$ and $S_n - S_i$ are independent for $n \neq i$ and $E(S_n - S_i) = 0$, combining (13) and (14) obtains $a^2P\left(\max_{1\leq i\leq n}|S_i|\geq a\right)\leq \sum_{i=1}^n E\{I(A_i)S_i^2\}\leq E(S_n^2)=V(S_n)$.

Exercise 1.43

(a) Since

$$\cos x - 1 = r_0(x, 0) = -\int_0^x \sin u du \ and \ \sin x = 0 + \int_0^x \cos u du, \tag{15}$$

$$|e^{it} - 1| = \left| \int_0^t (-\sin u + i\cos u) du \right| \le \int_0^t |-\sin u + i\cos u| du = t \le |t|.$$
 (16)

(b) Since

$$\cos x - 1 = \int_0^x (x - u) \cos u \, du \quad and \quad \sin x = x - \int_0^x (x - u) \sin u \, du, \tag{17}$$

$$|e^{it} - 1 - it| = \left| \int_0^t (t - u)(\cos u - i\sin u) du \right| \le \int_0^t (t - u) du = \frac{t^2}{2}.$$
 (18)

(c)

$$\left| e^{it} - 1 - it + \frac{t^2}{2} \right| = \left| \int_0^t \frac{-ie^{iu}(t-u)^2}{2} du \right| \le \int_0^t \frac{|t-u|^2}{2} du \le \frac{|t|^3}{6}$$
 (19)

(d) Since

$$i\sin t = it - i\int_0^t (t - u)\sin u du$$
 and $\cos t = 1 - \frac{t^2}{2} + \int_0^t \frac{(t - u)^2 \sin u}{2} du$ (20)

$$=1-\frac{t^2}{2}-\frac{(t-u)^2}{2}\cos u\bigg|_0^t-\int_0^t(t-u)\cos udu=1-\int_0^t(t-u)\cos udu,\qquad(21)$$

$$\left| e^{it} - 1 - it + \frac{t^2}{2} \right| = \left| \frac{t^2}{2} - \int_0^t (t - u)(\cos u - i\sin u) du \right| \le \frac{t^2}{2} + \int_0^t (t - u) du = t^2.$$
(22)

2 Weak Convergence

2.1 Modes of Convergence

2.1.1 Probabilistic Order Notation

Definition 2.1. We write $X_n = o_P(Y_n)$ if $\frac{X_n}{Y_n} \stackrel{P}{\to} 0$ as $n \to \infty$.

For example, if $X_n \stackrel{P}{\to} \theta$ then $X_n - \theta = o_P(1)$.

Definition 2.2. We write $X_n = O_P(Y_n)$ if for any $\varepsilon > 0$ there exist M and N such that

$$P\left(\left|\frac{X_n}{Y_n}\right| < M\right) > 1 - \varepsilon \quad \forall n > N. \tag{23}$$

If $X_n = O_P(1)$, we say that X_n is bounded in probability.

Theorem 2.1. Suppose that $X_n \stackrel{P}{\to} \theta_0$ for a sequence of random variables X_1, X_2, \cdots and a constant θ_0 . Furthermore, suppose that f has d derivatives at the point θ_0 . Then there is a random variable Y_n such that

$$f(X_n) = \sum_{i=0}^{d-1} \frac{f^{(i)}(\theta_0)(X_n - \theta_0)^i}{i!} + \frac{\{f^{(d)}(\theta_0) + Y_n\}(X_n - \theta_0)^d}{d!}$$
(24)

and $Y_n = o_P(1)$ as $n \to \infty$.

2.1.2 Convergence in Distribuion (Law)

Any distribution function F(x) is nondecreasing and right-continuous, and it has limits 0 and 1 for each cases $x \to -\infty$ and $x \to \infty$.

Definition 2.3. Suppose that X has distribution function F(x) and that X_n has distribution function $F_n(x)$. We say X_n converges in distribution to X, written $X_n \stackrel{d}{\to} X$ or $X_n \stackrel{\mathcal{L}}{\to} X$, if $F_n(x) \to F(x)$ as $n \to \infty$ for all x at which F(x) is continuous.

For example, for $X_1, \dots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$ with finite σ^2 we have $\bar{X}_n - \mu = O_P\left(\frac{1}{\sqrt{n}}\right)$. $(\because) \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(0, 1)$ as $n \to \infty$.

Theorem 2.2. If $X_n \stackrel{P}{\to} X$, then $X_n \stackrel{d}{\to} X$.

Theorem 2.3. $X_n \stackrel{d}{\to} c \text{ iff } X_n \stackrel{P}{\to} c.$

The reverse of Theorem 2.3 is true when X_n and X are defined on the same sample space for every n.

2.1.3 Convergence in Mean

Definition 2.4. Let a be a postive constant. We say that X_n converges in a^{th} mean to X, written $X_n \stackrel{a}{\to} X$, if

$$E|X_n - X|^a \to 0 \quad as \quad n \to \infty.$$
 (25)

Especially, we denote the case when a=2 in the above expression by $X_n \stackrel{qm}{\to} X$.

Theorem 2.4.

- (a) For a constant c, $X_n \stackrel{qm}{\to} c$ iff $E(X_n) \to c$ and $V(X_n) \to 0$.
- (b) For fixed a > 0, $X_n \stackrel{a}{\to} X$ implies $X_n \stackrel{P}{\to} X$.

Excercise 2.2

(a) If $X_n \stackrel{d}{\to} X$ then $X_n = O_P(1)$.

Proof. $\forall \varepsilon > 0$, $\exists a, b$ such that $F(a) < \frac{\varepsilon}{4}$ and $F(b) > 1 - \frac{\varepsilon}{4}$. Since $X_n \stackrel{d}{\to} X$, $\exists N_1, N_2$ such that if $n > \max(N_1, N_2)$ then

$$|F_n(a) - F(a)| < \varepsilon/4$$

 $|F_n(b) - F(b)| > 1 - \varepsilon/4$

which implies that $F_n(a) < \varepsilon/2$ and $F_n(b) > 1 - \varepsilon/2$. Let $M = \max(|a|, |b|)$ then $P(|X_n| \le M) \ge F_n(b) - F_n(a) > 1 - \varepsilon$.

(b) If $X_n = O_P(1)$ and $Y_n \stackrel{P}{\to} 0$, then $X_n Y_n \stackrel{P}{\to} 0$.

Proof. For any $\varepsilon > 0$, $\exists M > 0$ and $\exists N_1, N_2$ such that if $n > \max(N_1, N_2)$ then $P(|X_n| < M) > 1 - \varepsilon/2$ and $P(|Y_n| < \varepsilon/M) > 1 - \varepsilon/2$.

$$P(|X_nY_n| < \varepsilon) \ge P(|X_n| < M, |Y_n| < \varepsilon/M)$$

$$= P(|X_n| < M) + P(|Y_n| < \varepsilon/M) - P(|X_n| < M \text{ or } |Y_n| < \varepsilon/M) > 1 - \varepsilon$$

Exercise 2.3 (a)

Let $X_n \sim B(n, \lambda/n)$ and $X \sim Pois(\lambda)$ then $X_n \stackrel{d}{\to} X$.

Proof. It suffices to prove that $p_{X_n}(x) \to p_X(x)$ for any $x = 0, 1, 2, \cdots$.

$$p_{X_n}(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x} = \frac{\lambda^x (1 - \lambda/n)^n}{x!} \left(1 - \frac{\lambda}{n}\right)^{-x} \prod_{i=0}^{x-1} \left(1 - \frac{i}{n}\right)$$
(26)

Excercise 2.4 (c)

Let $X_1, \dots, X_n \stackrel{iid}{\sim} Exp(1)$ with $F(t) = 1 - e^{-t}$. Then $Y_n \stackrel{d}{\rightarrow} Y$ where $Y_n \sim Bin(n, F(c/n))$ and $Y \sim Pois(c)$ for c > 0.

Proof.

$$P_{Y_n}(y) = \frac{n!}{y!(n-y)!} \left(1 - e^{-c/n}\right)^y (e^{-c/n})^{n-y} = \frac{e^{-c}}{y!} \times \frac{n!(e^{c/n} - 1)^y}{(n-y)!} = \frac{e^{-c}}{y!} \prod_{i=0}^{y-1} \left\{ (n-i)(e^{c/n} - 1) \right\}$$
$$= \frac{e^{-c}}{y!} \prod_{i=0}^{y-1} \left[(n-i) \left\{ \frac{c}{n} + o\left(\frac{1}{n}\right) \right\} \right] = \frac{e^{-c}}{y!} \prod_{i=0}^{y-1} \left\{ c + o(1) \right\} \quad as \quad n \to \infty$$

because (n-i)o(1/n) = o(1) + o(1/n) = o(1) as n goes to ∞ .

Exercise 2.8

If there exists M such that $P(|X_n| < M) = 1$ for all n, then $X_n \xrightarrow{P} c$ implies $X_n \xrightarrow{qm} c$.

Proof. For any $\varepsilon > 0$ and M given in assumption, $\exists N$ such that if n > N then $P(|X_n - c| > \varepsilon) < \varepsilon$. Next,

$$(X_n - c)^2 = (X_n - c)^2 I(|X_n - c| > \varepsilon) + (X_n - c)^2 I(|X_n - c| \le \varepsilon)$$

$$\le (M + |c|)^2 I(|X_n - c| > \varepsilon) + \varepsilon^2 I(|X_n - c| \le \varepsilon)$$
(27)

because $EI(|X_n| < M) = 1 \Leftrightarrow I(|X_n| < M) = 1$, which leads to

$$|X_n - c|^2 \le (|X_n| + |c|)^2 I(|X_n| < M) < (M + |c|)^2.$$
(28)

Now, taking expectations on (27) obtains

$$E(X_n - c)^2 \le (M + |c|)^2 P(|X_n - c| > \varepsilon) + \varepsilon^2 P(|X_n - c| \le \varepsilon)$$

$$< (M + |c|)^2 \varepsilon + \varepsilon^2.$$
(29)

2.2 Consistent Estimates of the Mean

Theorem 2.5. WLLN

Suppose that $X_1, X_2, \cdots \stackrel{iid}{\sim} f(\cdot)$ with finite mean μ . Then $\bar{X}_n \stackrel{P}{\rightarrow} \mu$.

2.2.1 Independent but not Identically Distributed Variables

Let X_1, X_2, \cdots have the same mean but different variances. Since \bar{X}_n is unbiased, if $V(\bar{X}_n)$ tends to 0 as $n \to \infty$, it is consistent. That is,

$$\bar{X}_n \stackrel{P}{\to} \mu \quad \text{if} \quad Var(\bar{X}_n)n^2 = \sum_{i=1}^n \sigma_i^2 = o(n^2).$$
 (30)

Alternative for sample mean:

$$\hat{\mu}_n = \frac{\sum_{i=1}^n c_i X_i}{\sum_{i=1}^n c_i} \tag{31}$$

for some sequence of positive constants c_1, c_2, \dots . $\hat{\mu}_n$ is unbiased so we now investigate if its variance tends to zero as $n \to \infty$.

$$V(\hat{\mu}_n) = \frac{\sum_{i=1}^n c_i^2 \sigma_i^2}{(\sum_{i=1}^n c_i)^2} := \sum_{i=1}^n \gamma_i^2 \sigma_i^2$$
 (32)

The minimizer of $V(\hat{\mu}_n)$ with respect to $\gamma_1, \dots, \gamma_{n-1}, \gamma_n (= 1 - \sum_{i=1}^{n-1} \gamma_i)$ obtains the equations :

$$\gamma_i \sigma_i^2 = \gamma_n \sigma_n^2, \quad i \in \{1, \dots, n-1\}, \tag{33}$$

which means $c_i = \frac{c_n \sigma_n^2}{\sigma_i^2}$. Therefore

$$\hat{\mu}_n = \frac{\sum_{i=1}^n \frac{X_i}{\sigma_i^2}}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$$
 (34)

whose variance is

$$V(\hat{\mu}_n) = \frac{1}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$$
 (35)

2.2.2 Identically Distributed but not Independent Variables

Suppose that X_1, X_2, \cdots have the same mean and variance, say μ and σ^2 , but that they are not necessarily independent. We still have $E(\bar{X}_n) = \mu$ so it's consistent if its variance tends to zero.

$$V(\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n Var(X_i, X_j) = \frac{\sigma^2}{n} + \frac{2}{n^2} \sum_{i < j} Var(X_i, X_j)$$
(36)

Now if we add the 'exchangeable' assumption, $Var(X_i, X_j) = Var(X_1, X_2) \ \forall i \neq j$. Therefore (36) reduces to

$$V(\bar{X}_n) = \frac{\sigma^2}{n} + \frac{n-1}{n} Var(X_1, X_2)$$
 (37)

which implies that $Var(\bar{X}_n) \to Var(X_1, X_2)$ as $n \to \infty$.

Definition 2.5. The sequence X_1, X_2, \cdots is said to be stationary if, for a fixed $k \geq 0$, the joint distribution of (X_i, \cdots, X_{i+k}) is the same no matter what positive value of i is chosen.

Lemma 2.1. Under stationary sequence assumption,

$$(36) = \frac{\sigma^2}{n} + \frac{2}{n^2} \sum_{k=1}^{n-1} (n-k) Var(X_1, X_{1+k})$$
(38)

and this tends to 0 as $n \to \infty$ if $\sigma^2 < \infty$ and $Var(X_1, X_{1+k}) \to 0$ as $k \to \infty$.

Proof. $\forall \varepsilon > 0$ take K such that if k > K then $|Var(X_1, X_{1+k})| < \varepsilon$. Then

$$|(38)| \leq \frac{\sigma^{2}}{n} + \frac{2}{n^{2}} \sum_{k=1}^{n-1} (n-k) |Var(X_{1}, X_{1+k})|$$

$$= \frac{\sigma^{2}}{n} + \frac{2}{n} \sum_{k=1}^{K} |Var(X_{1}, X_{1+k})| + \frac{2}{n} \sum_{k=K+1}^{n-1} |Var(X_{1}, X_{1+k})|$$

$$< \frac{\sigma^{2}}{n} + \frac{2}{n} \sum_{k=1}^{K} |Var(X_{1}, X_{1+k})| + \frac{2\varepsilon}{n} (n - K - 1).$$
(39)

(39) tends to 2ε as $n \to \infty$ and obtains the result.

Definition 2.6. For $m \geq 0$, the sequence X_1, X_2, \cdots is called m-dependent if the random vectors (X_1, \cdots, X_i) and (X_j, X_{j+1}, \cdots) are independent whenever j - i > m.

Any stationary m-dependent sequence with finite variance is consistent. Also, any independent sequence is 0-dependent.

Exercise 2.11

Since $V(\bar{X}_n) = \sum_{i=1}^n \frac{\sigma_i^2}{n^2}$ and $V(\delta_n) = \frac{1}{\sum_{i=1}^n \sigma_i^{-2}}$,

$$\frac{V(\bar{X}_n)}{V(\delta_n)} = \frac{\sum_{i=1}^n \sigma_i^2 \sum_{j=1}^n \sigma_i^{-2}}{n^2} = \frac{\sum_{1 \le i, j \le n} \frac{\sigma_i^2}{\sigma_j^2}}{n^2} = \frac{n + \sum_{i \ne j} \frac{\sigma_i^2}{\sigma_j^2}}{n^2} > \frac{n + n(n-1)}{n^2}$$
(40)

so $\liminf_{n} V(\bar{X}_n)/V(\delta_n) > 1$.

Exercise 2.13

Let $Y_1, Y_2, \dots \stackrel{iid}{\sim} (\mu, \sigma^2)$ and $\sigma^2 < \infty$. Let δ_n be defined as (34). From the definition of X_k , $E(X_k) = \mu$ and $V(X_k) = \frac{\sigma^2}{k}$. Since Y_i 's are independent, so does X_i 's.

(a) Since $V(\bar{X}_n) = \frac{\sigma^2}{n^2} \sum_{k=1}^n \frac{1}{k}$ and $Var(\delta_n) = \frac{1}{\sum_{i=1}^n \frac{i^2}{\sigma^2}}$, both are consistent estimators for μ .

2.3 Convergence of Transformed Sequences

2.3.1 Continuous Transformation: The Univariate Case

Theorem 2.6. Let f be a continuous function. Then

- (a) If $X_n \stackrel{P}{\to} X$, then $f(X_n) \stackrel{P}{\to} f(X)$.
- (b) If $X_n \stackrel{d}{\to} X$, then $f(X_n) \stackrel{d}{\to} f(X)$.

Theorem 2.7. Helley-Bray theorem

 $X_n \stackrel{d}{\to} X$ iff $Eg(X_n) \to Eg(X)$ for **all** bounded continuous real-valued function g.

Proof. Theorem 2.6 (b)

It sufficies to show that $Eg\{f(X_n)\} \to E\{f(X)\}$. Since f is continuous, $g \circ f$ is also bounded and continuous. Therefore we get the result.

2.3.2 Multivariate Extensions

Definition 2.7. For a > 0 \mathbf{X}_n converges in a^{th} mean to \mathbf{X} if

$$E||\mathbf{X}_n - \mathbf{X}||^a \to 0 \tag{41}$$

as $n \to \infty$.

Exercise 2.15

If $X_n \stackrel{d}{\to} X$ and g is a bounded and continuous real-valued function, then

$$Eg(X_n) \to Eg(X).$$
 (42)

Proof. For any $\varepsilon > 0$, $\exists b < c$ such that $F(b) < \varepsilon$ and $F(c) > 1 - \varepsilon$. Since g is bounded and continuous, $\exists \delta$ such that $|g(x) - g(y)| < \varepsilon$ whenever $|x - y| < \delta$, and \exists finite set of real numbers $b = t_0 < t_1 < \cdots < t_m = c$ such that

- (1) Each t_i is a point of continuity of F.
- (2) $F(t_0) < \varepsilon$ and $F(t_m) > 1 \varepsilon$
- (3) For $i = 1, \dots, m, |g(x) g(t_i)| < \varepsilon$ for any $x \in [t_{i-1}, t_i]$.
 - (a) Define

$$h(x) = g(t_i)I_{(t_{i-1},t_i]}(x). (43)$$

Then,

$$|Eh(X_n) - Eh(X)| = \left| \sum_{i=1}^m g(t_i) \{ F_n(t_i) - F_n(t_{i-1}) - F(t_i) + F(t_{i-1}) \} \right|.$$
 (44)

If $n > N := \max(N_1, \dots, N_m)$ such that $n > N_i \rightarrow |F_n(t_i) - F(t_i)| < \frac{\varepsilon}{2m \sup_x |g(x)|}$,

$$(44) \le \sum_{i=1}^{m} |g(t_i)\{F_n(t_i) - F(t_i)\}| + \sum_{i=1}^{m} |g(t_i)\{F(t_{i-1}) - F_n(t_{i-1})\}| < \varepsilon.$$
 (45)

(b) Note that

$$|Eg(X_n) - Eg(X)| \le |Eg(X_n) - Eh(X_n)| + |Eh(X_n) - Eh(X)| + |Eh(X) - Eg(X)|.$$
(46)

Since $|g(x) - h(x)| < \varepsilon$ for any $x \in (t_{i-1}, t_i]$ and $i = 1, \dots, m$,

$$|Eg(X_n) - Eh(X_n)|I_{[b,c]}(X_n) \le \varepsilon \cdot 1. \tag{47}$$

Furthermore, since $F_n(b) \to F(b) < \varepsilon$ and $F_n(c) \to F(c) > 1 - \varepsilon$, $\exists N'$ such that if n > N', then $P(X_n \le b \text{ or } X_n > c) < 4\varepsilon$.

$$(:) \quad P(X_n \le b \text{ or } X_n > c) \le F_n(b) + 1 - F_n(c) < 4\varepsilon. \tag{48}$$

$$(:) |Eg(X_n) - Eh(X_n)|I(X_n \le b \text{ or } X_n > c) < 4\varepsilon \sup_{x} g(x) \text{ and}$$
(49)

$$|Eg(X) - Eh(X)|I(X \le b \text{ or } X > c) < 2\varepsilon \sup g(x)$$
(50)

$$(:) |Eg(X_n) - Eg(X)| < 6\varepsilon \sup_{x} g(x) + \varepsilon \text{ for } n > \max(N, N').$$
 (51)

Exercise 2.16

- (a) Since F is continuous on t, $\forall \varepsilon > 0 \ \exists \delta_0$ such that $|F(x) F(y)| < \varepsilon$ whenever $|x y| < \delta_0$ where x, y are points of continuity. If we take $0 < \delta < \delta_0$, then results follows.
- (b) Define $g_1, g_2; \mathbb{R} \to [0, 1]$ such that

$$g_{1}(x) = \begin{cases} 0 & if \ x > t + \delta \\ 1 & if \ x \le t \\ -\frac{1}{\delta}(x - t - \delta) & o.w. \end{cases}$$
 $g_{2}(x) = \begin{cases} 0 & if \ x > t \\ 1 & if \ x \le t - \delta \\ -\frac{1}{\delta}(x - t) & o.w. \end{cases}$ (52)

Then $g_1(x) = g_2(x - \delta) = 1$ for all $x \le t$ and $g_1(x + \delta) = g_2(x) = 0$ for all x > t. Since

$$I(x \le t - \delta) \le g_2(x) \le I(x \le t) \le g_1(x) \le I(x \le t + \delta),\tag{53}$$

$$Eg_2(X_n) \le F_n(t) \le Eg_1(X_n). \tag{54}$$

and $\exists \delta > 0$ so

$$F(t) - \varepsilon < F(t - \delta) \le Eg_2(X) \le F(t) \le Eg_1(X) \le F(t + \delta) < F(t) + \varepsilon$$
 (55)

14

 $\forall \varepsilon > 0$. Therefore,

$$Eg_2(X_n) - Eg_1(X) \le F_n(t) - F(t) \le Eg_1(X_n) - Eg_2(X).$$
 (56)

Since $Eg_j(X_n) \to Eg_j(X)$ for j = 1, 2,

$$-2\varepsilon < Eg_2(X) - Eg_1(X) \le \limsup_{n \to \infty} \{F_n(t) - F(t)\} \le Eg_1(X) - Eg_2(X) < 2\varepsilon. \quad (57)$$

Exercise 2.17

Let $Z \sim N(0,1)$ and

$$\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \sim N_2 \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 - \frac{1}{n} \\ 1 - \frac{1}{n} & 1 \end{pmatrix} \right]. \tag{58}$$

Then $(X_n, Y_n)^{\top} \stackrel{d}{\to} (Z, Z)^{\top}$ and for $S = \{(x, y) \in \mathbb{R}^2 | x = y\}$ every point is a continuity point of $(Z, Z)^{\top}$. But $P[(X_n, Y_n) \in S] (= 0) \neq P[(Z, Z) \in S] (= 1)$.

Exercise 2.21

Counter-example which argues that $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ and $\mathbf{Y}_n \stackrel{P}{\to} \mathbf{Y}$ but NOT $\begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix} \stackrel{d}{\to} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$.

Proof. Let $\mathbf{X}_n \sim N_2(\mathbf{0}_2, 1/n \times \mathbf{I}_2)$, $\mathbf{Y}_n := -\mathbf{X}_n$. Then $\mathbf{X}_n \stackrel{d}{\to} \mathbf{0}_2$ and $\mathbf{Y} \stackrel{P}{\to} \mathbf{0}_2$, however $(\mathbf{X}_n, \mathbf{Y}_n)^{\top}$ does not converge in law to $\mathbf{0}_4$ but $\mathbf{0}_2$ because $\mathbf{Y}_n \stackrel{d}{=} \mathbf{X}_n$.

Exercise 2.22

(a) Define B_{δ} as

$$B_{\delta} = \left\{ \mathbf{x} \in \mathbb{R}^{k} \mid \exists \mathbf{y} \in \mathbb{R}^{k} : ||\mathbf{x} - \mathbf{y}|| < \delta, ||\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})|| > \varepsilon \right\}$$
 (59)

for fixed arbitrary $\varepsilon > 0$ and any $\delta > 0$. Now, we can infer that

$$\Pr\left(\left|\left|\mathbf{f}(\mathbf{X}_n) - \mathbf{f}(\mathbf{X})\right|\right| > \varepsilon\right) \le \Pr\left(\left|\left|\mathbf{X}_n - \mathbf{X}\right|\right| \ge \delta\right) + \Pr(\mathbf{X} \in B_\delta)$$
 (60)

because the RHS of (60) is always true given the LHS of (60) in the view of sets. On the RHS, the first term converges to zero as $n \to \infty$ for any $\delta > 0$, by the definition of convergence in probability of \mathbf{X}_n . The second term converges to zero as $\delta \to 0$ since the set B_{δ} shrinks to \emptyset . Therefore, the conclusion is that

$$\lim_{n \to \infty} \Pr\left(\left| \left| \mathbf{f}(\mathbf{X}_n) - \mathbf{f}(\mathbf{X}) \right| \right| > \varepsilon \right) = 0.$$
 (61)

(b) Since $f(\mathbf{X}_n) = \mathbf{1}^{\top} \mathbf{X}_n$, if we take $\mathbf{X}_n = (X, X)^{\top}$ and $\mathbf{X} = (X, -X)^{\top}$ where $X \sim N(0, 1)$, it is trivial that $f(\mathbf{X}_n) \stackrel{d}{\to} 2X \sim N(0, 4)$ but $f(\mathbf{X}) = 0$.

Excercise 2.23

Proof. Put F_n , F, G_n , G as distribution functions of X_n , X, Y_n , Y.

$$\forall \varepsilon > 0 \ \exists N_1, N_2 \ such \ that \ if \ n > \max(N_1, N_2), \ then$$
 (62)

$$|F_n(x) - F(x)| < \sqrt{\varepsilon + 1} - 1 \quad and \quad |G_n(y) - G(y)| < \sqrt{\varepsilon + 1} - 1$$
 (63)

for x, y on which F, G are continuous each. Then,

$$|F_n(x)G_n(y) - F(x)G(y)| = |\{F_n(y) - F(y)\}\{G_n(y) - G(y)\} + F(x)\{G_n(y) - G(y)\}$$

$$+ G(y)\{F_n(x) - F(x)\}| \le (\sqrt{\varepsilon + 1} - 1)^2 + 2\sqrt{\varepsilon + 1} - 2 = \varepsilon$$
(65)

for
$$(x, y) \in \{(a, b) \in \mathbb{R}^2 : F(a) \text{ and } G(b) \text{ is continuous.}\}.$$

Since $F(x)G(y) = P(X \le x, Y \le y)$, the result follows.

Exercise 2.24 (Slutsky's Theorem)

For some $\mathbf{a}, \mathbf{b} \in \mathbb{R}^k$, denote $a_i < b_i$ for all $i = 1, \dots, k$ by $\mathbf{a} < \mathbf{b}$.

(a) Let V_n and W_n be k-dimensional random vectors on the same sample space.

If
$$\mathbf{V}_n \stackrel{d}{\to} \mathbf{V}$$
 and $\mathbf{W}_n \stackrel{P}{\to} \mathbf{0}$, then $\mathbf{V}_n + \mathbf{W}_n \stackrel{d}{\to} \mathbf{V}$. (66)

Proof. Since $P(A \sim B) \geq P(A) - P(B)$ for any set A, B,

$$P(\mathbf{V}_n \le \mathbf{a} - \varepsilon) - P(||\mathbf{W}_n|| \ge \varepsilon) \le P(\mathbf{V}_n + \mathbf{W}_n \le \mathbf{a}) \le P(\mathbf{V}_n < \mathbf{a} + \varepsilon) + P(||\mathbf{W}_n|| > \varepsilon)$$
(67)

because

$$(\mathbf{V}_n \le \mathbf{a} - \boldsymbol{\varepsilon}) \sim (||\mathbf{W}_n|| \ge \epsilon) \subset (\mathbf{V}_n \le \mathbf{a} - \boldsymbol{\varepsilon}) \sim (\mathbf{W}_n \ge \epsilon) \subset (\mathbf{V}_n + \mathbf{W}_n \le \mathbf{a}).$$
 (68)

And $(\mathbf{V}_n + \mathbf{W}_n \leq \mathbf{a}) \subset (\mathbf{V}_n \leq \mathbf{a} + \boldsymbol{\varepsilon}) \cup (||\mathbf{W}_n|| \geq \varepsilon)$ since one of two statements in the RHS must be true given that $(\mathbf{V}_n + \mathbf{W}_n \leq \mathbf{a})$. Taking \liminf and \limsup on both sides of (67) obtains

$$F(\mathbf{a} - \boldsymbol{\varepsilon}) \le \liminf_{n \to \infty} P(\mathbf{V}_n + \mathbf{W}_n \le \mathbf{a}) \le \limsup_{n \to \infty} P(\mathbf{V}_n + \mathbf{W}_n \le \mathbf{a}) \le F(\mathbf{a} + \boldsymbol{\varepsilon}) \quad (69)$$

for any
$$\varepsilon > 0$$
.

(b) Use (a).

3 Strong Convergence

3.1 Strong Consistency Defined

If $X_n(\omega_0) \to X(\omega_0)$ as $n \to \infty$, $\omega_0 \in \{\omega \in \Omega ; X_n(\omega) \to X(\omega)\}$.

Definition 3.1. Let X and $\{X_i\}_{i=1}^{\infty}$ be defined on Ω . If $P(\{\omega \in \Omega; X_n(\omega) \to X(\omega)\}) = 1$, then X_n is said to converge almost surely to X, denoted $X_n \stackrel{a.s.}{\to} X$ or $X_n \to X$ w.p. 1.

3.1.1 Strong Consistency vs. Consistency

Let X and $\{X_i\}_{i=1}^{\infty}$ be defined on Ω . For given $\varepsilon > 0$ and n, define

$$A_n = \{ \omega \in \Omega ; |X_k(\omega) - X(\omega)| < \varepsilon \ \forall k \ge n \} \ and \tag{70}$$

$$B_n = \{ \omega \in \Omega ; |X_n(\omega) - X(\omega)| < \varepsilon \}. \tag{71}$$

Then

- (a) $A_n \subset B_n$ and $P(A_n) \leq P(B_n)$.
- (b) If $P(A_n) \to 1$, then $P(B_n) \to 1$.

Theorem 3.1. $P(A_n) \to 1 \ \forall \varepsilon > 0 \ iff \ X_n \stackrel{a.s.}{\to} X$.

Corollary 3.1. If $X_n \stackrel{a.s.}{\to} X$, then $X_n \stackrel{P}{\to} X$.

The converse of Corollary 3.1 is not true (see pg.72.).

Example 3.5

Take Ω to be (0,1] and for any interval $J=(a,b]\subset \Omega$, take P(J)=b-a. Let

$$J_{m^2+1} \ through \ J_{(m+1)^2} = \left(0, \frac{1}{2m+1}\right], \cdots, \left(\frac{2m}{2m+1}, 1\right]$$
 (72)

where $m = 0, 1, \cdots$. This implies that

$$P(J_n) = \frac{1}{2m+1} \quad where \quad m = \lfloor \sqrt{n-1} \rfloor. \tag{73}$$

Define $X_n = I(J_n)$ and take $\varepsilon \in (0,1)$, then $P(|X_n| < \varepsilon) = P\{I(J_n) < \varepsilon\} = 1 - P\{I(J_n) \ge \varepsilon\} = 1 - P\{I(J_n) = 1\} = 1 - P(J_n) = 2m/(2m+1)$. Since this probability tends to 1 as $n \to \infty$, $X_n \stackrel{P}{\to} 0$.

However, although $I(J_n) \stackrel{P}{\to} 0$, J_n s repeatedly cover the entire interval (0,1] so

$$\{\omega \in \Omega = (0,1]; X_n \to 0\} = \emptyset. \tag{74}$$

Therefore, it is not true that $X_n \stackrel{a.s.}{\to} 0$.

3.1.2 Multivariate Extensions

Definition 3.2. X_n is said to converge a.s. to X if

$$P(\omega \in \Omega; \mathbf{X}_n \to \mathbf{X}) = 1 \tag{75}$$

or $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} P(||\mathbf{X}_n - \mathbf{X}|| < \varepsilon \ \forall k > n) = P\left(\liminf_{n \to \infty} \{||\mathbf{X}_n - \mathbf{X}|| < \varepsilon\}\right) = 1.$$
 (76)

Theorem 3.2.

- (a) Let $\mathbf{f}: S \to \mathbb{R}^l$ is a continuous function defined on some subset $S \subset \mathbb{R}^k$, and the range of \mathbf{X} and of each \mathbf{X}_n is contained in S w.p. 1. If $\mathbf{X}_n \stackrel{a.s.}{\to} \mathbf{X}$, then $\mathbf{f}(\mathbf{X}_n) \stackrel{a.s.}{\to} \mathbf{f}(\mathbf{X})$.
- (b) $\mathbf{X}_n \stackrel{a.s.}{\to} \mathbf{X}$ iff $X_{n,j} \stackrel{a.s.}{\to} X_j \ \forall j$.

Summary Diagram

$$\mathbf{X}_{n} \overset{qm}{\to} \mathbf{X} \qquad \qquad \mathbf{X}_{n} \overset{qm}{\to} \mathbf{c}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

Excercise 3.1

Let $S = \{ \omega \in \Omega ; X_n(\omega) \to X(\omega) \}.$

(a) With A_n defined as in (70), show that

$$\omega_0 \in \bigcup_{n=1}^{\infty} A_n \ \forall \varepsilon > 0 \quad \Leftrightarrow \quad \omega_0 \in S.$$
 (78)

Proof. (\Leftarrow)

$$\omega_0 \in S \implies \forall \varepsilon > 0 \ \exists N \ such \ that \ |X_n(\omega_0) - X(\omega_0)| < \varepsilon \ \forall n \ge N$$

$$(:) \ \omega_0 \in A_N \subset \bigcup_{n=1}^{\infty} A_n.$$

 (\Rightarrow)

 $\forall n, \varepsilon > 0 \ if \ a \in A_n, \ then \ a \in A_{n+1}.$

(:.) if
$$\omega_0 \in \bigcup_{n=1}^{\infty} A_n \left(= \lim_{n \to \infty} A_n \right)$$
, then $\omega_0 \in S$.

(b) Prove Theorem 3.1.

Proof. (\Rightarrow)

By assumption, $\forall \varepsilon > 0$, $\lim_n P(A_n) = 1$. And this equals $P(\bigcup_{n=1}^{\infty} A_n) = P(S)$ by (78) and the continuity of probability measure.

 (\Leftarrow)

Since P(S) = 1 and by (78), $1 = P(S) \le P(\bigcup_{n=1}^{\infty} A_n) = \lim_n P(A_n)$ by the continuity of probability measure.

Exercise 3.2

- (a) $X_n \stackrel{a.s.}{\to} X$ but not $X_n \stackrel{qm}{\to} X$ Ex. Let $X_n = nI(U < 1/n^2)$ where $U \sim U(0,1)$. Then $\sum_{i=1}^{\infty} P(|X_i| > \varepsilon) \le \sum_{i=1}^{\infty} P(U < 1/i^2) = \sum_{i=1}^{\infty} 1/i^2 < \infty$, so $P(X_n \to 0) = 1$ but $EX_n^2 = 1$.
- (b) $X_n \stackrel{qm}{\to} X$ but not $X_n \stackrel{a.s.}{\to} X$ Ex. Consider the Example 3.5. It is clear that $X_n \stackrel{qm}{\to} 0$ because $EX_n^2 = P(J_n) \to 0$, but not $X_n \stackrel{a.s.}{\to} 0$.

3.2 The Strong Law of Large Numbers

Theorem 3.3. SLLN: Suppose that $\mathbf{X}_1, \mathbf{X}_2, \cdots$ are iid and have finite mean $\boldsymbol{\mu}$. Then $\bar{\mathbf{X}}_n \stackrel{a.s.}{\to} \boldsymbol{\mu}$.

Lemma 3.1. If $\sum_{i=1}^{\infty} P(||\mathbf{X}_i - \mathbf{X}|| > \varepsilon) < \infty$ for any $\varepsilon > 0$, then $\mathbf{X}_n \stackrel{a.s.}{\to} \mathbf{X}$.

Proof. By the countable subadditivity of probability measure,

$$\{P(||\mathbf{X}_k - \mathbf{X}|| > \varepsilon \quad \forall k \ge n) = \}P(\bigcup_{i=n}^{\infty} C_i) \le \sum_{i=n}^{\infty} P(C_i) \left\{ = \sum_{i=1}^{\infty} P(C_i) - \sum_{i=1}^{n-1} P(C_i) \right\}$$
(79)

where $C_i = \{\omega \in \Omega : ||\mathbf{X}_i - \mathbf{X}|| > \varepsilon\}$. The last term in (79) tends to 0 as $n \to \infty$.

Theorem 3.4. $\mathbf{X}_n \stackrel{P}{\to} \mathbf{X}$ iff each subsequence $\mathbf{X}_{n_1}, \mathbf{X}_{n_2}, \cdots$ contains a further subsequence that converges a.s. to \mathbf{X} .

Theorem 3.5. Kolmogorov's SLLN

Suppose that Y_1, Y_2, \cdots are independent with mean μ_i and

$$\sum_{i=1}^{\infty} \frac{V(Y_i)}{i^2} < \infty. \tag{80}$$

Then $\bar{Y}_n - \bar{\mu}_n \stackrel{a.s.}{\rightarrow} 0$.

Lemma 3.2. iid case

Suppose that X_1, X_2, \cdots are iid and have finite mean μ . Define $Y_i = X_i I(|X_i| \leq i)$. Then

$$\sum_{i=1}^{\infty} \frac{V(Y_i)}{i^2} < \infty \tag{81}$$

and $\bar{X}_n - \bar{Y}_n \stackrel{a.s.}{\to} 0$.

Proof. of Theorem 3.3

If we define $Y_i = X_i I(|X_i| \le i)$, then from above theorem and lemma, $\bar{Y}_n \stackrel{a.s.}{\to} \mu$. Also, we obtain $\bar{X}_n - \bar{Y}_n \stackrel{a.s.}{\to} 0$. So,

$$\bar{X}_n = \bar{Y}_n + (\bar{X}_n - \bar{Y}_n) \stackrel{a.s.}{\to} \mu. \tag{82}$$

Exercise 3.3 (Borel-Cantelli Lemma)

Let

$$B_n \ i.o. := \{ \omega \in \Omega ; \forall n \ \exists k \ such \ that \ \omega \in B_k \ whenever \ k \ge n. \}.$$
 (83)

If $\sum_{i=1}^{n} P(B_i) < \infty$, then $P(B_n i.o.) = 0$.

Proof. Since there exists N such that $\sum_{i=N}^{\infty} P(B_i) < \varepsilon$,

$$P(B_n \ i.o.) \le P(\bigcup_{i=N}^{\infty} B_i) < \varepsilon. \tag{84}$$

Exercise 3.4 (SLLN)

Let X_1, X_2, \cdots are iid and have $EX_1^4 < \infty$.

(a) Assume that $EX_1 = 0$.

$$E(X_1 + \dots + X_n)^4 = \sum_{k_1, \dots, k_n \ ; \ \sum_{i=1}^n k_i = 4} {4 \choose k_1 \dots k_n} E(X_1^{k_1} \dots X_n^{k_n})$$

$$=_n C_2 {}_4C_2E(X_1^2 X_2^2) + nE(X_1^4) = 3n(n-1)E(X_1^2)^2 + nE(X_1^4)$$
(86)

- (b) $P(|\bar{X}_n| > \varepsilon) < \frac{E(\bar{X}_n^4)}{\varepsilon^4} = \frac{E(X_1 + \dots + X_n)^4}{\varepsilon^4 n^4} \to 0 \text{ as } n \to \infty.$ Therefore, $\bar{X}_n \stackrel{P}{\to} 0$.
- (c) $\sum_{k=1}^{n} P(|\bar{X}_k| > \varepsilon) < \sum_{k=1}^{n} \frac{E(\bar{X}_k^4)}{\varepsilon^4} = \sum_{k=1}^{n} \frac{3k(k-1)(EX_1^2)^2 + kEX_1^4}{k^4 \varepsilon^4}$. Since $\sum_{i=1}^{\infty} i^{-2} < \infty$, $\limsup_n \sum_{k=1}^{n} P(|\bar{X}_k| > \varepsilon)$ is bounded, and by the Lemma 3.1, $\bar{X}_n \stackrel{a.s.}{\to} 0$.

Exercise 3.5

(a) Proof.

$$c^{2} \sum_{i=1}^{\infty} \frac{1}{i^{2}} I(|c| \le i) = |c|^{2} I(|c| \le 1) + \sum_{i=2}^{\infty} \frac{c^{2}}{i^{2}} I(|c| \le i) \le 1 + \int_{1}^{\infty} \frac{c^{2}}{x^{2}} I(|c| \le x) dx \quad (87)$$

For the last term in (87),

$$1 + \int_{1}^{\infty} \frac{c^{2}}{x^{2}} I(|c| \le x) dx = 1 + \int_{\max(1,|c|)}^{\infty} \frac{c^{2}}{x^{2}} dx = 1 + \frac{c^{2}}{\max(1,|c|)} \le 1 + |c|$$
 (88)

(b) Proof. Let Y_i be defined as Lemma 3.2. Since $V(Y_i)/i^2 \leq E(Y_i)^2/i^2 = E\frac{X_1^2}{i^2}I(|X_1| \leq i)$ and from (a) we know that

$$\sum_{i=1}^{\infty} \frac{X_1^2}{i^2} I(|X_1| \le i) \le 1 + |X_1|, \tag{89}$$

taking the expectaion on both sides obtains the result.

Exercise 3.6

(a) *Proof.* $|X_n - Y_n| = |X_n - X_n I(|X_n| \le n)| = |X_n |I(|X_n| > n)$, so for $\varepsilon > 0$

$$\sum_{n=1}^{\infty} P(|X_n - Y_n - 0| > \varepsilon) = \sum_{n=1}^{\infty} P(|X_1|I(|X_1| > n) > \varepsilon) \le \sum_{n=1}^{\infty} P(|X_1| > n) < E|X_1| < \infty$$
(90)

(b) Proof. If $a_n \to c$ as $n \to \infty$, then $\bar{a}_n \to c$. Since $X_n - Y_n \stackrel{a.s.}{\to} 0$,

$$1 = P(\omega; X_n - Y_n \to 0) \le P(\omega; \bar{X}_n - \bar{Y}_n \to 0). \tag{91}$$

Exercise 3.7 (Proof of Theorem 3.5)

(a) Proof. Let $S_n = \sum_{i=1}^n (X_i - EX_i)$, then $Y_k = \max_{2^{k-1} \le n < 2^k} \frac{|S_n|}{n} \le \max_{2^{k-1} \le n < 2^k} \frac{|S_n|}{2^{k-1}} \le \max_{1 \le n \le 2^k} \frac{|S_n|}{2^{k-1}}$. By the Kolmogorov's inequality,

$$P(Y_k \ge \varepsilon) \le P\left(\max_{1 \le n \le 2^k} |S_n| \ge 2^{k-1}\varepsilon\right) \le \frac{V(\bar{X}_{2^k} - \mu)}{4^{k-1}\varepsilon^2} = \frac{\sum_{i=1}^{2^k} V(X_i)}{4^{k-1}\varepsilon^2} \tag{92}$$

(b) *Proof.* Since

$$\sum_{k=1}^{\infty} P(|Y_k| \ge \varepsilon) \le \sum_{k=1}^{\infty} \sum_{i=1}^{2^k} \frac{V(X_i)}{4^{k-1} \varepsilon^2} = \sum_{i=1}^{\infty} \sum_{k=\lceil \log_2 i \rceil}^{\infty} \frac{V(X_i)}{4^{k-1} \varepsilon^2}$$
(93)

and

$$\sum_{i=1}^{\infty} \frac{V(X_i)}{i^2} < \infty \quad \& \quad \sum_{k=\lceil \log_2 i \rceil}^{\infty} \frac{1}{4^k} = \frac{4^{-\lceil \log_2 i \rceil}}{1-1/4} = \frac{4^{-\lceil \log_2 i \rceil + 1}}{3} \le \frac{4}{3i^2}, \tag{94}$$

$$\sum_{i=1}^{\infty} \sum_{k=\lceil \log_2 i \rceil}^{\infty} \frac{V(X_i)}{4^{k-1} \varepsilon^2} \le \sum_{i=1}^{\infty} \frac{16V(X_i)}{3i^2 \varepsilon^2} < \infty.$$
 (95)

Therefore $Y_k \stackrel{a.s.}{\to} 0$, which implies that $|\bar{X}_n - \mu| \stackrel{a.s.}{\to} 0$

3.3 The Dominated Convergence Theorem

3.3.1 Moments Do Not Always Converge

Example 3.14

Let $U \sim U(0,1)$ and define

$$X_n = nI\left(U < \frac{1}{n}\right), \quad \frac{X_n}{n} \sim Bern(n^{-1}).$$
 (96)

Then $P(X_n > \varepsilon) \le P[I(U < 1/n) > \varepsilon] < P(U < 1/n)/\varepsilon = \frac{1}{n\varepsilon} \text{ so } X_n \xrightarrow{P} 0$. However, $E(X_n) = 1$ for all n, so $EX_n \nrightarrow 0$.

Example 3.15

Let X_n be a contaminated standard normal distribution with mixture cdf

$$F_n(x) = \left(1 - \frac{1}{n}\right)\Phi(x) + \frac{1}{n}G_n(x).$$
 (97)

Here, $X_n \stackrel{d}{\to} N(0,1)$ but can choose G_n such that $EX_n \to 0$.

Corollary 3.2. If X_1, X_2, \cdots are uniformly bounded (i.e. there exists M such that $|X_n| < M$ for all n) and $X_n \stackrel{d}{\to} X$, then $EX_n \to EX$.

3.3.2 Quantile Functions and the Skorohod Representation Theorem

Definition 3.3. If F(x) is a cdf, then we define the quantile function

$$F^-: (0,1) \to \mathbb{R}, \quad F^-(q) := \inf\{x \in \mathbb{R} : F(x) \ge q\}$$
 (98)

Lemma 3.3. $q \le F(x)$ iff $F^{-}(q) \le x$.

Proof.

- (\Rightarrow) Suppose that there exists x_0 such that $q \leq F(x_0)$. By definition, $F^-(q) \leq x_0$.
- (\Leftarrow) Suppose that there exists x_0 such that $\inf\{x \, ; \, q \leq F(x)\} \leq x_0$ and since F is a non-decreasing function, $q \leq F(x_0)$.

Corollary 3.3. If X is a random variable with F and $U \sim U(0,1)$, then X and $F^-(U)$ have the same distribution.

Proof. By the lemma above,

$$P(U < F(x)) = P(F^{-}(U) < x) = F(x). \tag{99}$$

Theorem 3.6. (Skorohod Representation Theorem)

Assume F, F_1, F_2, \cdots are cdfs and $F_n(x) \to F(x)$ as $n \to \infty$ for the points of continuity x. Then there exists Y_1, Y_2, \cdots such that

- 1. $P(Y_n \le t) = F_n(t)$ for all n and $P(Y \le t) = F(t)$.
- 2. $Y_n \stackrel{a.s.}{\to} Y$.

Theorem 3.7. (Dominated Convergence Theorem)

If for a nonnegative Z, $|X_n| \leq Z$ for all n and $EZ < \infty$, then $X_n \stackrel{d}{\to} X$ implies that $EX_n \to EX$.

Proof. Use the Skorohod Representation Theorem and contruct a sequence $\{Y_i\}_{i=1}^{\infty}$ such that $Y_n \stackrel{d}{=} X_n$, $Y \stackrel{d}{=} X$ and $Y_n \stackrel{a.s.}{\to} Y$. Let $Z' = \sup_n |Y_n| + W$ such that $Z' \stackrel{d}{=} Z$ where $W := Z - \sup_n |X_n|$. Then, we have $|Y_n| \le Z'$, $EZ' < \infty$. Since $EX_n = EY_n$ for all n and EX = EY, it suffices to prove that $EY_n \to EY$. By Fatou's Lemma,

$$E \liminf_{n} |Y_n| \le \liminf_{n} E|Y_n| \quad and \quad EZ' - E \limsup_{n} |Y_n| \le EZ' - \limsup_{n} E|Y_n| \qquad (100)$$

$$(:.) \quad E \liminf_{n} |Y_n| \le \liminf_{n} E|Y_n| \le \limsup_{n} E|Y_n| \le E \limsup_{n} |Y_n|. \tag{101}$$

Since
$$Y_n \stackrel{a.s.}{\to} Y$$
, $P(\lim_n Y_n = Y) = 1$, which leads to $\lim_n E|Y_n| = E|Y|$.

Exercise 3.9

Proof. Since f is a non-decreasing function, for any point of discontinuity x,

$$f(x^{-}) < f(x^{+}) \tag{102}$$

where $x^- = x - \varepsilon$ and $x^+ = x + \varepsilon$ for $\varepsilon > 0$. If we define $D = \{x \in \mathbb{R}; f(x) \text{ is discontinuous}\}$, for each $x \in D$ there exists a rational number r(x) such that

$$f(x^{-}) < r(x) < f(x^{+}).$$
 (103)

On the other hand, since $f(x_1^+) \leq f(x_2^-)$ for $x_1 < x_2$, we can say that

$$x_1 \neq x_2 \text{ for } x_1, x_2 \in D \implies r(x_1) \neq r(x_2)$$
 (104)

so if we define $g: D \to \mathbb{Q}$ as g(x) = r(x), g is an 1-1 function. Therefore, D is equivalent with the subset of \mathbb{Q} .

Exercise 3.10 (Skorohod Representation Theorem)

(a) Proof. Let $Y_n(\omega) := F_n^-(\omega)$ and $Y(\omega) := F^-(\omega)$. Note that $U(\omega) \sim U(0,1)$. Since a point of continuity x_0 for F exists, there exists δ such that

$$Y(\omega) - \delta < x_0 < Y(\omega) \quad and \quad 0 < \omega - F(x_0). \tag{105}$$

Since $F_n(x_0) \to F(x_0)$, there exists N_1 such that if $n > N_1$, then $0 < |F_n(x_0) - F(x_0)| < \omega - F(x_0)$ (= ε_1), which leads to

$$F_n(x_0) < \omega, \quad therefore \quad Y(\omega) - \delta < x_0 < Y_n(\omega).$$
 (106)

(b) Proof. There exists a point of continuity of F(x), say x_1 , such that

$$Y(\omega + \varepsilon) < x_1 < Y(\omega + \varepsilon) + \delta \quad and \quad 0 < F(x_1) - \omega.$$
 (107)

Since there is N_2 such that if $n > N_2$, then $|F_n(x_1) - F(x_1)| < F(x_1) - \omega$ (= ε_1). These lead to

$$F_n(x_1) > \omega$$
, therefore $Y(\omega + \varepsilon) + \delta > x_1 > Y_n(\omega)$. (108)

(c) Proof. Let $n > \max(N_1, N_2)$, then

$$Y(\omega) - \delta < Y_n(\omega) < Y(\omega + \varepsilon) + \delta. \tag{109}$$

Therefore, $Y(\omega) - \delta < \liminf_n Y_n(\omega) \le \limsup_n Y_n(\omega) < Y(\omega + \varepsilon) + \delta$ and obtains the result as $\delta, \varepsilon \to 0$.

(d) *Proof.* Since the P-measure of the points of discontinuity for F(x) is zero, and by (c),

$$P(\omega \in (0,1); Y_n(\omega) \to Y(\omega)) = P(\omega \in (0,1); F(\omega) \text{ is discontinuous}, Y_n(\omega) \to Y(\omega)) + P(\omega \in (0,1); F(\omega) \text{ is continuous}, Y_n(\omega) \to Y(\omega)) = 0 + 1.$$
 (110)

Therefore, $Y_n \stackrel{a.s.}{\to} Y$.

Exercise 3.11 (Fatou's Lemma)

Proof. First, $\inf_{k\geq n} |X_k|$ is a non-decreasing sequence and $|X_n| \geq \inf_{k\geq n} |X_k|$ for any n so $E|X_n| \geq E\inf_{k\geq n} |X_k|$. Also, by definition,

$$\lim_{n \to \infty} \inf_{k \ge n} |X_k| = \liminf_{n \to \infty} |X_n| \quad for \quad any \quad \omega \in \Omega,$$
(111)

$$(:) \quad \lim_{n \to \infty} E \inf_{k \ge n} |X_k| = E \liminf_{n \to \infty} |X_k| \tag{112}$$

by the monotone convergence property of the expectation. Therefore,

$$\liminf_{n} E|X_n| \ge \liminf_{n} E \inf_{k \ge n} |X_k| = E \liminf_{n} |X_n|. \tag{113}$$

Exercise 3.12 (Uniform Integrability)

(a) Proof.

$$|A_n + B_n|I(|A_n + B_n| \ge \alpha) \le (|A_n| + |B_n|)I(|A_n| \ge \alpha/2) + (|A_n| + |B_n|)I(|B_n| \ge \alpha/2)$$
(114)

$$\leq 2|A_n|I(|A_n| \geq \alpha/2) + 2|B_n|I(|B_n| \geq \alpha/2).$$
 (115)

Therefore,

Figure 1: Exercise 3.12 (a); yellow-colored surface is always above the other.

$$0 \le \sup_{n} E[|A_n + B_n|I(|A_n + B_n| \ge \alpha)] \le o(1) \quad as \quad \alpha \to \infty$$
 (116)

by the uniform integrability of A_n and B_n .

(b) *Proof.* By the Skorohod Representation Theorem, there exist $Z_n \stackrel{d}{=} Y_n$, $Z \stackrel{d}{=} Y$ and $Z_n \stackrel{a.s.}{\to} Z$. By the Fatou's Lemma, $E|Z| \leq \liminf_n E|Z_n|$. Since $\sup_n E|Z_n|I(|Z_n| \geq \alpha) \to 0$, if α is large enough that the supremum is less than 1, then

$$E|Z_n| \le \alpha P(\Omega) + 1 = \alpha + 1 < \infty. \tag{117}$$

So $E|Z| < \infty$, therefore $E|Z|I(|Z| \ge \alpha) \stackrel{\alpha \to \infty}{\to} 0$. Also, (a) implies that since $X_n = |Z_n - Z| \le |Z_n| + |Z|$, X_1, X_2, \cdots is an uniformly integrable sequence.

(c) Proof. Since

$$EX_n = EX_n I(|X_n| \ge \alpha) + EX_n I(|X_n| < \alpha), \tag{118}$$

the LHS tends to zero as $\alpha \to \infty$ and $X_n I(|X_n| < \alpha)$ is always bounded above by fixed α and $X_n \stackrel{d}{\to} 0$, $EX_n \to 0$ by the DCT.

Exercise 3.13

Proof. Since

$$|Y_n|I(|Y_n| \ge \alpha) \le |Y_n| \frac{|Y_n|^{\varepsilon}}{\alpha^{\varepsilon}} = \frac{|Y_n|^{\varepsilon+1}}{\alpha^{\varepsilon}},$$
 (119)

$$(:) \quad 0 \le \sup_{n} |Y_n| I(|Y_n| \ge \alpha) \le \sup_{n} \frac{|Y_n|^{\varepsilon + 1}}{\alpha^{\varepsilon}} < \infty.$$
(120)

Taking \liminf_{α} and \limsup_{α} on both sides obtains the results.

Exercise 3.14

Let $g(X, \alpha) := XI(X < \alpha)$. Then

$$Eg(|Z|, \lceil \alpha \rceil - 1) \le Eg(|Z|, \alpha) \le Eg(|Z|, \lceil \alpha \rceil) = E|Z| - \sum_{i=\lceil \alpha \rceil}^{\infty} E|Z|I_{[i-1,i)}(|Z|)$$
 (121)

where both bounds tends to E|Z| as $\alpha \to \infty$ because $E|Z| < \infty$. Therefore, $Eg(|Z|, \alpha) \to E|Z|$, that is, $E|Z|I(|Z| \ge \alpha) = E|Z| - Eg(|Z|, \alpha)$ tends to zero. Since $E|Z| \ge E|Y_n|$, ???

4 Central Limit Theorems

4.1 Characteristic Functions and Normal Distributions

4.1.1 Inversion and the Uniqueness Theorem

A characteristic function φ uniquely determines the measure μ it comes from. This fundamental fact will be derived by means of an inversion formula through which μ can in principle be recovered from φ . Define

$$S(T) = \int_0^T \frac{\sin x}{x} dx, \quad T \ge 0.$$

Theorem 4.1. $S(T) \stackrel{T \to \infty}{\to} \frac{\pi}{2}$.

Proof. Since

$$\int_{0}^{T} \frac{\sin x}{x} dx = \int_{0}^{T} \sin x \int_{0}^{\infty} e^{-ux} du dx = \int_{0}^{\infty} \int_{0}^{T} e^{-ux} \sin x dx du$$

$$= \int_{0}^{\infty} \frac{1 - e^{-uT} (u \sin T + \cos T)}{1 + u^{2}} du = \frac{\pi}{2} - \int_{0}^{\infty} \frac{e^{-uT} (u \sin T + \cos T)}{1 + u^{2}} du$$

$$= \frac{\pi}{2} - \int_{0}^{\infty} \frac{e^{-z} (z/T \sin T + \cos T)}{1 + z^{2}/T^{2}} dz \to \frac{\pi}{2}$$

as $T \to \infty$ by LDCT.

Also,

$$\int_0^T \frac{\sin t\theta}{t} dt = sgn(\theta) \cdot S(T|\theta|), \quad T \ge 0.$$
 (122)

Theorem 4.2. If the probability measure μ has characteristic function φ , and if $\mu\{a\} = \mu\{b\} = 0$, then

$$\mu(a,b] = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt.$$
 (123)

Distinct measures cannot have the same φ .

Proof. Define $I_T = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t)$ then by Fubini,

$$I_{T} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-T}^{T} \frac{e^{-it(x-a)} - e^{-it(x-b)}}{it} dt \mu(dx)$$

and by (122), this equals

$$I_T = \int_{-\infty}^{\infty} \left[\frac{sgn(x-a)}{\pi} S(T|x-a|) - \frac{sgn(x-b)}{\pi} S(T|x-b|) \right] \mu(dx)$$

whose integrand is bounded and converges as $T \to \infty$ to the function

$$\psi_{a,b}(x) = \frac{I_{\{a,b\}}(x)}{2} + I_{(a,b)}(x).$$

Thus, $I_T \to \int \psi_{a,b} d\mu$ which implies the conclusion when $\mu\{a\} = \mu\{b\} = 0$.

Lemma 4.1. Suppose that $\varphi \in L^1$. Then F has derivative

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt.$$

Proof. Since

$$\frac{|e^{-itb} - e^{-ita}|}{|it|} = \frac{|e^{it(b-a)} - 1|}{|t|} \le |b - a|,$$
$$\mu(a, b) \le (b - a) \int_{-\infty}^{\infty} |\varphi(t)| dt.$$

By (123),

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx} - e^{-it(x+h)}}{ith} \varphi(t)dt \tag{124}$$

and the integrand of (124) is bounded by $|\varphi|$ and goes to $e^{itx}\varphi(t)$ as $h\to 0$. Therefore, the result follows.

4.1.2 The Continuity Theorem

Remark

- A complex number c is given by c = a + ib where $a, b \in \mathbb{R}$.
- $c\bar{c} = a^2 + b^2$ and $\Re(c) = \frac{1}{2}(c + \bar{c}) \& \Im(c) = \frac{1}{2i}(c \bar{c}).$
- $d/c = d \times \frac{\bar{c}}{c\bar{c}} = d\frac{a-ib}{a^2+b^2}$
- Points on the unit circle are now given by the complex numbers $\cos \theta + i \sin \theta$.

• Since

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots$$

$$= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots$$

$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right)$$
(125)

 $=\cos x + i\sin x,$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 and $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$. (126)

Definition 4.1. For **X**, we define the characteristic function $\varphi_{\mathbf{X}}: \mathbb{R}^k \to \mathbb{C}$ by

$$\varphi_{\mathbf{X}}(\mathbf{t}) = E \exp(i\mathbf{t}^{\mathsf{T}}\mathbf{X}) = E \cos(\mathbf{t}^{\mathsf{T}}\mathbf{X}) + iE \sin(\mathbf{t}^{\mathsf{T}}\mathbf{X}), \tag{127}$$

and the characteristic functions have properties of mgf.

Theorem 4.3. $\mathbf{X}_1 \stackrel{d}{=} \mathbf{X}_2$ iff $\varphi_{\mathbf{X}_1}(\mathbf{t}) = \varphi_{\mathbf{X}_2}(\mathbf{t})$ for all \mathbf{t} .

Theorem 4.4. $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ iff $\varphi_{\mathbf{X}_n}(\mathbf{t}) \to \varphi_{\mathbf{X}}(\mathbf{t})$ for all \mathbf{t} .

4.1.3 Moments

Lemma 4.2. If $E||\mathbf{X}|| < \infty$, then $\nabla \varphi_{\mathbf{X}}(\mathbf{0}) = iE(\mathbf{X})$.

Proof. Let $\mathbf{e}_j = \{I(i=j)\}_{i=1}^k$ then

$$\frac{\varphi_{\mathbf{X}}(\mathbf{t} + h\mathbf{e}_j) - \varphi_{\mathbf{X}}(\mathbf{t})}{h} = E\left[\exp(i\mathbf{t}^{\top}\mathbf{X})\frac{\exp(ihX_j) - 1}{h}\right].$$
 (128)

Note that

$$\left| \exp(i\mathbf{t}^{\top}\mathbf{X}) \frac{\exp(ihX_j) - 1}{h} \right| = \left| \int_0^{X_j} \exp(iht)dt \right| \le |X_j|$$
 (129)

so if $E|X_j| < \infty$, then the DCT implies that

$$\frac{\partial}{\partial t_j} \varphi_{\mathbf{X}}(\mathbf{t}) = E \lim_{h \to 0} \left[\exp(i\mathbf{t}^{\top}\mathbf{X}) \frac{\exp(ihX_j) - 1}{h} \right] = iE[X_j \exp(i\mathbf{t}^{\top}\mathbf{X})]. \tag{130}$$

Lemma 4.3. If $E||\mathbf{X}|| < \infty$, then $\nabla \varphi_{\mathbf{X}}(\mathbf{0}) = iE\mathbf{X}$.

Lemma 4.4. If $E\mathbf{X}^{\top}\mathbf{X} < \infty$, then $\nabla^2 \varphi_{\mathbf{X}}(\mathbf{0}) = -E\mathbf{X}\mathbf{X}^{\top}$.

4.1.4 The Multivariate Normal Distribution

Definition 4.2. Let Σ be any symmetric, nonnegative definite, $k \times k$ matrix and let μ be any vector in \mathbb{R}^k . Then the normal distribution with mean μ and covariance matrix Σ is defined to be the distribution with characteristic function

$$\varphi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}}{2}\right). \tag{131}$$

Definition 4.3. A square matrix Q is orthogonal if Q^{-1} exists and is equal to Q^{\top} .

Lemma 4.5. If A is a symmetric $k \times k$ matrix, then there exists an orthogonal matrix Q such that QAQ^{\top} is diagonal.

4.1.5 Asymptotic Normality

Theorem 4.5. CLT

If $\mathbf{X}_1, \mathbf{X}_2, \cdots$ are iid with mean $\boldsymbol{\mu} \in \mathbb{R}^k$ and covariance Σ , where Σ has finite entries, then

$$\sqrt{n}(\bar{\mathbf{X}}_n - \boldsymbol{\mu}) \stackrel{d}{\to} N_k(\mathbf{0}, \Sigma).$$
 (132)

Example 4.11

Suppose that X_1, X_2, \cdots are iid with mean μ and $V(X_1) = \sigma^2$ and $V[(X_1 - \mu)^2] = \tau^2 < \infty$. Define

$$S_n^2 = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{n}.$$
 (133)

Without loss of generality, we assume that $\mu = 0$. By the CLT,

$$\sqrt{n} \left(\frac{\sum_{i=1}^{n} X_i^2}{n} - \sigma^2 \right) \stackrel{d}{\to} N(0, \tau^2). \tag{134}$$

Furthermore, the CLT and the WLLN imply $\sqrt{n}\bar{X}_n \stackrel{d}{\to} N(0,\sigma^2)$ and $\bar{X}_n \stackrel{P}{\to} 0$, so Slutsky's theorem implies that $\sqrt{n}\bar{X}_n^2 \stackrel{P}{\to} 0$. Therefore, since

$$\sqrt{n}(S_n^2 - \sigma^2) = \sqrt{n} \left(\frac{\sum_{i=1}^n X_i^2}{n} - \sigma^2 \right) - \sqrt{n} \bar{X}_n^2, \tag{135}$$

$$\sqrt{n}(S_n^2 - \sigma^2) \stackrel{d}{\to} N(0, \tau^2).$$

4.1.6 The Cramér-Wold Theorem

Theorem 4.6. $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ iff $\mathbf{a}^{\top} \mathbf{X}_n \stackrel{d}{\to} \mathbf{a}^{\top} \mathbf{X}$ for all $\mathbf{a} \in \mathbb{R}^k$.

Exercise 4.1

(a) *Proof.* Consider the DE

$$\frac{d}{dt}\varphi_Y(t) = -t\sigma^2\varphi_Y(t). \quad Then \quad \frac{y'(t)}{y(t)} = -t\sigma^2 \quad given \quad that \quad y(t) \neq 0. \tag{136}$$

$$(:)$$
 $y(t) = \exp(-t^2\sigma^2/2).$ (137)

(b) Proof. Let $\mathbf{X} := \boldsymbol{\mu} + Q^{\top} \mathbf{Y}$ where $\mathbf{Y} \sim N(\mathbf{0}, Q \Sigma Q^{\top})$. Then

$$\varphi_{\mathbf{X}}(\mathbf{t}) = E \exp\{i\mathbf{t}^{\top}(\boldsymbol{\mu} + Q^{\top}\mathbf{Y})\} = \exp\left(i\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{\mathbf{t}^{\top}\Sigma\mathbf{t}}{2}\right).$$
 (138)

Exercise 4.2

(a) Proof.

$$E \exp\{i(\mathbf{X} - \mathbf{a})^{\mathsf{T}}\mathbf{Y}\} = EE[\exp\{i\mathbf{Y}^{\mathsf{T}}(\mathbf{X} - \mathbf{a})\}|\mathbf{Y}] = E\exp(-i\mathbf{a}^{\mathsf{T}}\mathbf{Y})\varphi_{\mathbf{X}}(\mathbf{Y})$$
 (139)

(b) Proof.

$$Ef_{\mathbf{Y}}(\mathbf{s} - \mathbf{X}) = \int_{\mathbf{X}} f(\mathbf{X}) f_{\mathbf{Y}}(\mathbf{s} - \mathbf{X}) d\mathbf{X} = f * f(\mathbf{s}) = f_{\mathbf{X} + \mathbf{Y}}(\mathbf{s}).$$
(140)

(c) Proof.

$$f_{\mathbf{X}+\mathbf{Y}}(\mathbf{s}) = E f_{\mathbf{Y}}(\mathbf{s} - \mathbf{X}) = (2\pi\sigma^2)^{-\frac{k}{2}} E \exp\{-(\mathbf{s} - \mathbf{X})^{\top}(\mathbf{s} - \mathbf{X})/2\sigma^2\}$$
 (141)

$$= (2\pi\sigma^2)^{-\frac{k}{2}} E\varphi_{\mathbf{Y}} \left(\frac{\mathbf{X}}{\sigma^2} - \frac{\mathbf{s}}{\sigma^2} \right)$$
 (142)

because
$$\mathbf{Y} \sim N_k(\mathbf{0}, \sigma^2 I)$$
.

Exercise 4.3

Proof. (\Rightarrow)

Since $\varphi_{\mathbf{a}^{\top}\mathbf{X}_n}(1) \to \varphi_{\mathbf{a}^{\top}\mathbf{X}}(1)$ for all $\mathbf{a}, \mathbf{a}^{\top}\mathbf{X}_n \stackrel{d}{\to} \mathbf{a}^{\top}\mathbf{X}$. (\Leftarrow)

Take
$$\mathbf{a} = \mathbf{e}_j$$
 for each $j = 1, \dots, k$. Then $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$.

Exercise 4.4

Since Σ is symmetric and nonnegative definite, there exists an orthogonal Q such that $Q\Sigma Q^{\top} = \Lambda$ is diagonal. Since there exists $\Lambda^{\frac{1}{2}}$ such that $\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}} = \Lambda$, $\Sigma = Q^{\top}\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q = A^{\top}A$. Since $\mathbf{X} \sim N_k(\boldsymbol{\mu}, \Sigma)$, we can say that

$$\Lambda^{-\frac{1}{2}}Q(\mathbf{X} - \boldsymbol{\mu}) \sim N(\mathbf{0}, I). \tag{143}$$

Therefore, the result follows.

Exercise 4.5

(a) Since $EY_n = 0$ and $Y_n \stackrel{d}{=} Y_n^+ - Y_n^-$ where $Y_n^- = -Y_n I(Y_n \le 0), EY_n^+ = EY_n^-$. Also, since $Y_n^- = -\sqrt{n}(\bar{X}_n - 1)I(\bar{X}_n \le 1) = \sqrt{n}(n - \sum_{i=1}^n X_i)I(\sum_{i=1}^n X_i \le n)/n$,

$$EY_n^- = \frac{e^{-n}\sqrt{n}}{n} \sum_{0 \le y \le n} \left(n \frac{n^y}{y!} - y \frac{n^y}{y!} \right) = \frac{e^{-n}n^{n+.5}}{n!} = EY_n^+.$$
 (144)

(b) Since $Y_n \stackrel{d}{\to} N(0,1)$ and $E|Y_n|^{1+\varepsilon} < \infty$ for $\varepsilon = 1$ and any n, $EY_n \to 0$. Likewise, since $|\cdot|$ is a continuous function, $|Y_n| \stackrel{d}{\to} |N(0,1)|$ and $E|Y_n| \to E|N(0,1)| = 2/\sqrt{2\pi}$.

$$|Y_n| = Y_n^+ + Y_n^- \Rightarrow E|Y_n| = 2EY_n^+ \Rightarrow EY_n^+ \to \frac{1}{\sqrt{2\pi}}$$
 (145)

$$(:)$$
 $\frac{\sqrt{2\pi}n^{n+.5}e^{-n}}{n!} \to 1.$ (146)

Exercise 4.6

Suppose that X_1, X_2, \cdots are independent and identically distributed and have finite mean μ . Then $\bar{X}_n \stackrel{P}{\to} \mu$.

Proof. Since

$$\varphi_{\bar{X}_n}(t) = \left\{ \varphi_{X_1} \left(\frac{t}{n} \right) \right\}^n = \left(\int_{\mathbb{R}} e^{\frac{itx}{n}} dF(x) \right)^n$$

$$= \left(1 + \frac{it\mu}{n} - \int_{\mathbb{R}} \int_0^x \frac{t^2 u^2(x-u)}{n^2} du dF(x) \right)^n = \left\{ 1 + \frac{it\mu}{n} + o\left(\frac{1}{n}\right) \right\}^n$$

as $n \to \infty$ by DCT, $\varphi_{\bar{X}_n}(t) \to e^{it\mu}$.

Exercise 4.7

First, the Cramér-Wold Theorem states that

$$\mathbf{X}_n \stackrel{d}{\to} \mathbf{X} \iff \mathbf{a}^\top \mathbf{X}_n \stackrel{d}{\to} \mathbf{a}^\top \mathbf{X} \quad for \quad all \quad \mathbf{a} \in \mathbb{R}^k.$$
 (147)

And the CLT states that $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$. Since $Y_i := \mathbf{a}^\top \mathbf{X}_i$ is an univariate sequence of iid random variables with the expectation $\mathbf{a}^\top \boldsymbol{\mu}$ and the covariance matrix $\mathbf{a}^\top \Sigma \mathbf{a}$ for any $\mathbf{a} \in \mathbb{R}^k$, $\sqrt{n}(\bar{Y}_n - \mathbf{a}^\top \boldsymbol{\mu}) \stackrel{d}{\to} N(0, \mathbf{a}^\top \Sigma \mathbf{a})$. Therefore, $\mathbf{a}^\top \sqrt{n}(\bar{\mathbf{X}}_n - \boldsymbol{\mu}) \stackrel{d}{\to} \mathbf{a}^\top N(\mathbf{0}, \Sigma)$.

4.2 The Lindeberg-Feller Central Limit Theorem

4.2.1 The Lindeberg and Lyapunov Conditions

Theorem 4.7. For X_1, X_2, \dots such that $EX_n = \mu_n$ and $VX_n = \sigma_n^2 < \infty$, define $Y_n = X_n - \mu_n$, $T_n = \sum_{i=1}^n Y_i$, $s_n^2 = V(T_n) = \sum_{i=1}^n \sigma_i^2$. If

$$\exists \delta > 0 \quad such \quad that \quad \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E|Y_i|^{2+\delta} \to 0 \quad as \quad n \to \infty, \tag{148}$$

then

for each
$$\varepsilon > 0$$
, $\frac{1}{s_n^2} \sum_{i=1}^n E[Y_i^2 I(|Y_i| \ge \varepsilon s_n)] \to 0$ as $n \to \infty$. (149)

That is, the Lyapunov condition implies the Lindeberg condition.

Proof. Fix $\varepsilon > 0$, since

$$\frac{Y_i^2}{s_n^2}I(|Y_i| \ge \varepsilon s_n) \le \frac{|Y_i|^{2+\delta}}{\varepsilon^\delta s_n^{2+\delta}}, \quad \frac{1}{s_n^2} \sum_{i=1}^n E[Y_i^2 I(|Y_i| \ge \varepsilon s_n)] \le \frac{1}{\varepsilon^\delta s_n^{2+\delta}} \sum_{i=1}^n E|Y_i|^{2+\delta}. \tag{150}$$

It is clear that the RHS of the inequality tends to 0 as $n \to \infty$, which proves the conclusion.

Example 4.14

Let $X_n \sim Bern(p_n)$, so that $Y_n = X_n - p_n$ and $\sigma_n^2 = p_n(1 - p_n)$. First, take $\delta = 1$ then

$$\frac{1}{s_n^3} \sum_{i=1}^n E|Y_i|^3 = \frac{1}{s_n^3} \sum_{i=1}^n \{p_i^3 (1-p_i) + p_i (1-p_i)^3\} = \frac{1}{s_n^3} \sum_{i=1}^n \sigma_i^2 \{p_i^2 + (1-p_i)^2\} \le \frac{1}{s_n^3} \sum_{i=1}^n \sigma_i^2.$$
(151)

Therefore, if $\frac{s_n^2}{s_n^3} \to 0$ as $n \to \infty$, that is, if $s_n \to \infty$, then the Lyapunov condition is satisfied.

4.2.2 Independent and Identically Distributed Variables

Example 4.15

Suppose that X_1, X_2, \cdots are iid with mean μ and variance $0 < \sigma^2 < \infty$. Then $s_n^2 = n\sigma^2$. Fix $\varepsilon > 0$, then the Lindeberg condition is satisfied that for each $\varepsilon > 0$,

$$\frac{1}{\sigma^2} E[Y_1^2 I(|Y_1| \ge \varepsilon \sigma \sqrt{n})] \to 0 \quad as \quad n \to \infty.$$
 (152)

Proof. Since $P(|Y_1| \ge \varepsilon \sigma \sqrt{n}) \le \frac{EY_1^2}{\varepsilon^2 \sigma^2 n} \to 0$ as $n \to \infty$, $Z_n \overset{P}{\to} 0$ as $n \to \infty$ where $Z_n := Y_1^2 I(|Y_1| \ge \varepsilon \sigma \sqrt{n})$. Also, since $|Z_n| \le Y_1^2$ and $EY_1^2 < \infty$, $EZ_n \to 0$ by DCT.

4.2.3 Triangular Arrays

We assume that for each n, X_{n1}, \dots, X_{nn} are independent and $EX_{ni} = \mu_{ni}, V(X_{ni}) = \sigma_{ni}^2 < \infty$. Let

$$Y_{ni} = X_{ni} - \mu_{ni} \tag{153}$$

$$T_n = \sum_{i=1}^n Y_{ni} \tag{154}$$

$$s_n^2 = V(T_n) = \sum_{i=1}^n \sigma_{ni}^2.$$
 (155)

Theorem 4.8. Lindeberg-Feller CLT

for each
$$\varepsilon > 0$$
, $\frac{1}{s_n^2} \sum_{i=1}^n E[Y_{ni}^2 I(|Y_{ni}| \ge \varepsilon s_n)] \to 0$ as $n \to \infty$ (156)

if and only if

(a)

$$\frac{T_n}{s_n} \xrightarrow{d} N(0,1) \tag{157}$$

and

(b)

$$\frac{1}{s_n^2} \max_{i \le n} \sigma_{ni}^2 \to 0 \tag{158}$$

as $n \to \infty$.

Example 4.17

Suppose $X_n \sim Bin(n, p_n)$. We claim that

$$\frac{X_n - np_n}{\sqrt{np_n(1 - p_n)}} \stackrel{d}{\to} N(0, 1)$$

whenever $np_n(1-p_n) \to \infty$ as $n \to \infty$.

Proof. Let Y_{n1}, \dots, Y_{nn} be iid and defined as

$$Y_{ni} = B_n - EB_n (= B_n - p_n)$$
 where $B_n \sim Bernoulli(p_n)$

then
$$X_n \stackrel{d}{=} np_n + \sum_{i=1}^n Y_{ni}$$
. Note that $V(Y_{ni}) = np_n(1-p_n) = s_n^2$.

So the Lindeberg condition says that for any $\varepsilon > 0$,

$$\frac{1}{s_n^2} \sum_{i=1}^n E\left[Y_{ni}^2 I\{|Y_{ni}| \ge \varepsilon s_n\}\right] \to 0.$$
 (159)

Since $|Y_{ni}| \le 1$, if $\varepsilon s_n > 1$, then the LHS of (159) is always zero. Thus, since $np_n(1 - p_n) = s_n^2 \to \infty$ as $n \to \infty$, the asymptotic normality follows.

Corollary 4.1. (157) holds if the triangular array satisfies the Lyapunov condition.

Exercise 4.8

(a) *Proof.* Note that

$$|a_1a_2 - b_1b_2| = |a_1a_2 - a_1b_2 + a_1b_2 - b_1b_2| \le |a_1||a_2 - b_2| + |b_2||a_1 - b_1|$$

and since $|a_i| \leq 1$ and $|b_i| \leq 1$, the case when n=2 follows. Now, let us show that

$$|a_1 \cdots a_{n-1} - b_1 \cdots b_{n-1}| \le \sum_{i=1}^{n-1} |a_i - b_i| \implies |a_1 \cdots a_n - b_1 \cdots b_n| \le \sum_{i=1}^n |a_i - b_i|.$$

Let $\alpha_n = a_1 \cdots a_n$ and $\beta_n = b_1 \cdots b_n$. Then

$$|\alpha_{n-1}a_n - \beta_{n-1}b_n| = |\alpha_{n-1}a_n - \alpha_{n-1}b_n + \alpha_{n-1}b_n - \beta_{n-1}b_n|$$

$$\leq |\alpha_{n-1}||a_n - b_n| + |b_n||\alpha_{n-1} - \beta_{n-1}| \leq |a_n - b_n| + |\alpha_{n-1} - \beta_{n-1}| \leq \sum_{i=1}^n |a_i - b_i|.$$

So by the mathematical induction, the result follows.

(b) Proof. Since we know the results in parts (b) and (c) in Exercise 1.43;

$$\begin{split} \left| e^{ity/s} - 1 - \frac{ity}{s} + \frac{t^2 y^2}{2s^2} \right| \left\{ I(|y/s| < \varepsilon) + I(|y/s| \ge \varepsilon) \right\} \\ & \leq \frac{|ty|^3}{s^3} I(|y/s| < \varepsilon) + \frac{t^2 y^2}{s^2} I(|y/s| \ge \varepsilon) < \frac{\varepsilon |t|^3 y^2}{s^2} + \frac{t^2 y^2}{s^2} I(|y/s| \ge \varepsilon), \end{split}$$

for s > 0,

$$\left| \varphi_{Y_{ni}}(t/s_n) - 1 + \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right| = \left| E\left[\exp(itY_{ni}/s_n) - 1 - \frac{itY_{ni}}{s_n} + \frac{t^2 Y_{ni}^2}{2s_n^2} \right] \right|$$

$$\leq E|\cdot| \leq \frac{\varepsilon |t|^3 \sigma_{ni}^2}{s_n^2} + \frac{t^2}{s_n^2} E\left[Y_{ni}^2 I(|Y_{ni}| \geq \varepsilon s_n) \right].$$

(c) Proof. Let's show that (156) implies (158). Since

$$\frac{\sigma_{ni}^2}{s_n^2} = \frac{EY_{ni}^2}{s_n^2} \{ I(|Y_{ni}| \ge \varepsilon s_n) + I(|Y_{ni}| < \varepsilon s_n) \} < \varepsilon^2 + \frac{E\left[Y_{ni}^2 I(|Y_{ni}| \ge \varepsilon s_n)\right]}{s_n^2},$$

$$\frac{\sigma_{ni}^2}{s_n^2} < \varepsilon^2 \text{ as } n \to \infty \text{ for any } \varepsilon > 0.$$

(d) Proof. To use (a), first we check that $|\varphi_{Y_{ni}}(t/s_n)| \leq E|\exp(itY_{ni}/s_n)| = 1$ and take n large enough so $t^2 \max_i \frac{\sigma_{ni}^2}{s_n^2} \leq 1$, then

$$\left| \prod_{i=1}^{n} \varphi_{Y_{ni}}(t/s_n) - \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right| \le \sum_{i=1}^{n} \left| \varphi_{Y_{ni}}(t/s_n) - 1 + \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right|,$$

which obtains the result through (b).

(e) Proof. Since

$$|1 + x - e^x| = \left| \int_x^0 e^u(x - u) du \right| \le \int_x^0 |x - u| du = \frac{x^2}{2} \le x^2$$

for $x \leq 0$,

$$\left| \prod_{i=1}^{n} \left(1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) - \prod_{i=1}^{n} \exp\left(-\frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right| \le \sum_{i=1}^{n} \left| 1 - \frac{t^2 \sigma_{ni}^2}{2s_n^2} - \exp\left(-\frac{t^2 \sigma_{ni}^2}{2s_n^2} \right) \right|$$

$$\le \frac{t^4}{4s_n^4} \sum_{i=1}^{n} \sigma_{ni}^4 \le \frac{t^4}{4s_n^4} \max_{1 \le i \le n} \sigma_{ni}^2 \sum_{i=1}^{n} \sigma_{ni}^2 = \frac{t^4}{4s_n^2} \max_{1 \le i \le n} \sigma_{ni}^2$$

for *n* large enough so $t^2 \max_i \frac{\sigma_{ni}^2}{s_n^2} \leq 1$.

(f) *Proof.* Using triangular inequalities with (d) and (e), we obtain

$$\left| \prod_{i=1}^{n} \varphi_{Y_{ni}}(t/s_n) - \prod_{i=1}^{n} \exp\left(-\frac{t^2 \sigma_{ni}^2}{2s_n^2}\right) \right| \le \varepsilon |t|^3 + \frac{t^2}{s_n^2} \sum_{i=1}^{n} EY_{ni}^2 I(|Y_{ni}| \ge \varepsilon s_n) + \frac{t^4}{4s_n^2} \max_{1 \le i \le n} \sigma_{ni}^2$$
(160)

and composing LF condition and (c) gets the conclusion. This leads to

$$\frac{\sum_{i=1}^{n} Y_{ni}}{s_n} \stackrel{d}{\to} N(0,1). \tag{161}$$

Exercise 4.9

(a) *Proof.* First, $|e^{it} - 1| \le |t|$ and $|e^{it} - 1| \le 2$ so $|e^{it} - 1| \le 2 \min(|t|, 1)$. Therefore,

$$|\varphi_{Y_{ni}}(t/s_n) - 1| \le E|\exp(itY_{ni}/s_n) - 1| \le 2E\min(1, |tY_{ni}/s_n|) \le 2|t|E\left|\frac{Y_{ni}}{s_n}\right|$$

$$\le 2|t|\varepsilon P(|Y_{ni}| < \varepsilon s_n) = 2|t|\varepsilon - 2|t|\varepsilon P(|Y_{ni}| \ge \varepsilon s_n) \le 2|t|\varepsilon + 2P(|Y_{ni}| \ge \varepsilon s_n). \quad (162)$$

Taking the maximum on both sides obtains the upper bound:

$$\max_{1 \le i \le n} |\alpha_{ni}| \le 2|t|\varepsilon + 2\max_{1 \le i \le n} P(|Y_{ni}| \ge \varepsilon s_n) \le 2|t|\varepsilon + 2\max_{1 \le i \le n} \frac{\sigma_{ni}^2}{\varepsilon^2 s_n^2}$$
(163)

for any $\varepsilon > 0$, which tends to zero as $n \to \infty$.

(b) *Proof.* Since

$$|\varphi_{Y_{ni}}(t/s_n) - 1| = |E\exp(itY_{ni}/s_n) - itEY_{ni}/s_n - 1| \le \frac{t^2\sigma_{ni}^2}{2s_n^2} \le \frac{t^2}{2}$$
(164)

and $|\alpha_{ni}|^2 \leq |\alpha_{ni}| \max_i |\alpha_{ni}|$, of which upper bound tends to zero as $n \to \infty$, we can obtain the conclusion.

(c) Proof. For $|z| \le 1$, $\Re(z) \le 1$ so

$$|e^{z-1}| = |\exp{\Re(z) - 1}| |\exp{i\Im(z)}| = |\exp{\Re(z) - 1}| \le 1.$$
(165)

Therefore, since $|1+\alpha_{ni}|=|\varphi_{Y_{ni}}(t/s_n)|\leq 1$ and $|\exp(\alpha_{ni})|=|\exp\{\varphi_{Y_{ni}}(t/s_n)-1\}|\leq 1$,

$$\left| \prod_{i=1}^{n} \exp(\alpha_{ni}) - \prod_{i=1}^{n} (1 + \alpha_{ni}) \right| \le \sum_{i=1}^{n} |\exp(\alpha_{ni}) - 1 - \alpha_{ni}|.$$
 (166)

Next, since $|e^z - 1 - z| = \left| \frac{e^c z^2}{2} \right| \le \frac{e^{0.5} |z|^2}{2} \le |z|^2$ for some c and any z such that $|c| \le |z| \le 1/2$, the conclusion follows.

(d) Proof. Since $\sum_{i=1}^{n} Y_{ni}/s_n \stackrel{d}{\to} N(0,1)$,

$$\left| \prod_{i=1}^{n} (1 + \alpha_{ni}) - \exp\left(-\frac{t^2}{2}\right) \right| \to 0 \quad as \quad n \to \infty.$$
 (167)

Combining this with (c) obtains

$$\lim \sup_{n \to \infty} \left| \prod_{i=1}^{n} e^{\alpha_{ni}} - e^{-\frac{t^2}{2}} \right| \le \lim \sup_{n \to \infty} \sum_{i=1}^{n} |\alpha_{ni}|^2 = 0$$
 (168)

which means that $|\exp(\sum_{i=1}^n \alpha_{ni})| = \exp\{\sum_{i=1}^n \Re(\alpha_{ni})\} \to \exp(-t^2/2)$ and since $\exp(\cdot)$ is a continuous function, the result follows.

(e) **

Proof. Since for some real X such that E(X) = 0 and $V(X) = \sigma^2 < \infty$,

$$E(\cos X - 1) = E\left\{\frac{(Y_n - 1)X^2}{2}\right\} = o_P(1) - \frac{\sigma^2}{2}$$

$$E(\cos X - 1 + X^2/2) = E(\cos X - 1) + \frac{\sigma^2}{2} = o_P(1)$$

where $Y_n = o_P(1)$ as $n \to \infty$. Therefore, the result follows.

(f) Proof. Take t large enough so $\frac{t^2}{2} > \frac{2}{\varepsilon^2}$ for $\varepsilon > 0$. Since

$$\frac{-2Y_{ni}^2}{\varepsilon^2 s_n^2} I(|Y_{ni}| \ge \varepsilon s_n) \le -2 \le \cos \frac{tY_{ni}}{s_n} - 1 \tag{169}$$

$$\frac{t^2 Y_{ni}^2}{2s_n^2} I(|Y_{ni}| \ge \varepsilon s_n) \le \frac{t^2 Y_{ni}^2}{2s_n^2}$$
 (170)

and by (e), the proof ends.

Exercise 4.10

Consider iid X_1, \dots, X_n with a pdf $f_X(x) = (2 + \delta)x^{-3-\delta}, x > 1$ and $\delta > 0$. Then

$$E(X_1) = \int_1^{\infty} (2+\delta)x^{-2-\delta} dx = \frac{2+\delta}{1+\delta}$$
$$E(X_1^2) = \int_1^{\infty} (2+\delta)x^{-1-\delta} dx = \frac{2+\delta}{\delta}$$

but all of its higher moments does not exists. So, for any $\delta > 0$, $E|Y_{ni}|^{2+\delta} = \infty$.

Exercise 4.11

Proof. Now since $\frac{X_n - np_n}{\sqrt{np_n(1-p_n)}} \stackrel{d}{\to} N(0,1)$ and $\frac{\max_{i \le n} \sigma_{ni}^2}{s_n^2} = \frac{p_n(1-p_n)}{np_n(1-p_n)} = \frac{1}{n} \to 0$ for $n \to \infty$, we need to show that if $np_n(1-p_n) \to \infty$,

$$\frac{1}{np_n(1-p_n)} \sum_{i=1}^n E|Y_{ni}|^2 I\{|Y_{ni}| \ge \varepsilon \sqrt{np_n(1-p_n)}\} \to 0$$

$$\Leftrightarrow \frac{1}{p_n(1-p_n)} E|Y_{n1}|^2 I\{|Y_{n1}| \ge \varepsilon \sqrt{np_n(1-p_n)}\} \to 0$$

as $n \to \infty$ for any $\varepsilon > 0$. If $np_n(1-p_n) \to \infty$, there exists N such that $\varepsilon \sqrt{np_n(1-p_n)} < \frac{1}{2}$ whenever n > N. This means that

$$|Y_{n1}|^2 I\{|Y_{n1}| \ge \varepsilon \sqrt{np_n(1-p_n)}\} \ge |Y_{n1}|^2 I(|Y_{n1}| \ge 1/2) \ge \frac{|Y_{n1}|}{2} I(|Y_{n1}| \ge 1/2)$$

whose expectation obtains the lower bound $\frac{p_n(1-p_n)}{2}$. So,

$$\frac{E|Y_{n1}|^2 I\{|Y_{n1}| \ge \varepsilon \sqrt{np_n(1-p_n)}\}}{p_n(1-p_n)} \ge \frac{1}{2}$$

and it is clear that $np_n(1-p_n)$ must not be bounded w.r.t. n.

Exercise 4.12

(a) Proof. Let $A_n := \max_{1 \le i \le n} a_{ni}^2$ and for any $\varepsilon > 0$,

$$I\{a_{ni}(X_i - \mu) \ge \varepsilon s_n\} \le I\{A_n(X_i - \mu)^2 \ge \varepsilon^2 s_n^2\}$$

$$\tag{171}$$

where $s_n^2 := V(T_n) = \sigma^2 \sum_{i=1}^n a_{ni}^2$. Then,

$$Y_i := (X_i - \mu)^2 I\{A_n(X_i - \mu)^2 \ge \varepsilon^2 s_n^2\}$$
(172)

which is an i.i.d. sequence. Thus,

$$\frac{1}{s_n^2} \sum_{i=1}^n E a_{ni}^2 (X_i - \mu)^2 I\{a_{ni}(X_i - \mu) \ge \varepsilon s_n\} \le \frac{1}{s_n^2} \sum_{i=1}^n a_{ni}^2 E Y_i = \frac{E Y_1}{\sigma^2}.$$
 (173)

Since $|Y_1| \leq (X_1 - \mu)^2$, $\frac{E|Y_1|}{\sigma^2} \leq 1$ and $Y_1 \stackrel{P}{\to} 0$ as $n \to \infty$, the LF condition was satisfied.

Exercise 4.15

(a)

$$P(X_1 + X_2 + X_3 \le 1) = \int_{\{\mathbf{x}; \mathbf{1}^\top \mathbf{x} \le 1\}} 8x_1 x_2 x_3 dx_1 dx_2 dx_3$$

$$= \int_0^1 \int_0^{1-x_1} \int_0^{1-x_1-x_2} 8x_1 x_2 x_3 dx_3 dx_2 dx_1 = \int_0^1 \int_0^{1-x_1} 4x_1 x_2 (1-x_1-x_2)^2 dx_2 dx_1$$

$$= \frac{1}{3} \int_0^1 (x_1 - 4x_1^2 + 6x_1^3 - 4x_1^4 + x_1^5) dx_1 = \frac{1}{90} \approx 0.0111.$$

(b) By CLT, $\sqrt{3}(\bar{X}_3 - 2/3) \sim N(0, 1/18)$.

$$(\therefore) \ P(X_1 + X_2 + X_3 \le 1) = P(\sqrt{3}) = P\left[\sqrt{3} \frac{\bar{X}_3 - 2/3}{\sqrt{1/18}} \le -\sqrt{3} \frac{\sqrt{18}}{3}\right] \asymp \Phi(-\sqrt{6}) \approx 0.00715.$$

(c) $\bar{Z}_n \approx 0.12$, $\hat{V}(Z) \approx 0.011$. Theoretically,

$$V(Z) = P(X_1 + X_2 + X_3 \le 1) - P(X_1 + X_2 + X_3 \le 1)^2 = 0.01098765.$$

(d) $\bar{Z}_n = 0.139, \hat{V}(Z) \approx 0.12.$

Exercise 4.16

(a)

$$X_n = \begin{cases} 1 & w.p. & \frac{1-2^{-n}}{2} \\ -1 & w.p. & \frac{1-2^{-n}}{2} \\ 2^k & w.p. & 2^{-k} \ \forall k > n \end{cases}$$

Therefore, $E(X_n^j) = \frac{1-2^{-n}}{2} \{1 + (-1)^j\} + \sum_{k>n} 2^{k(j-1)} = \infty$ for any positive integers j, n.

(b) ***

Exercise 4.17

(a) Let X_{nk} be the count of drawings until the k^{th} distinct one appears given k-1 distinct coupons. Then,

$$P(X_{nk} = x) = \left(\frac{k-1}{n}\right)^{x-1} \left(1 - \frac{k-1}{n}\right), \quad x = 1, 2, \dots$$

Therefore, $EX_{nk} = \frac{n}{n-k+1}$ and $V(X_{nk}) = \frac{n(k-1)}{(n-k+1)^2}$.

(b) First, $m_n = \sum_{k=1}^n \frac{n}{n-k+1}$ and $\tau_n^2 = \sum_{k=1}^n \frac{n(k-1)}{(n-k+1)^2}$. Now, let's check Lyapunov's condition with $\delta = 2$. Then,

$$\frac{\sum_{k=1}^{n} E|X_{nk} - E(X_{nk})|^4}{\tau_n^4} =$$