Day 7: The Modeling Problem and More

The Modeling Problem

At a baseline level, we fed observed data into a mathematical model to yeild predictions and/or decisions. Ultimately, we want some function F that is designed to take in some input and give an "intelligent" output.

- Traditionally requires domain expertise
- Often unclear how to improve on a baseline model
- Deep learning takes simple building blocks that allow us to learn a model through an optimization procedure
 - Doesn't require nearly as much domain expertise to develop a model
 - Need data—usually lots of it
 - key ~ neural networks are a way of solving the modeling problem using a common set of building blocks

The Neuron

- A mathematical function "activation function"
 - Nonlinear
 - Monotonic ~ the output of a monotonic function either never increases or never decreases as input
 - Can be thought of as having "no" or "off" states
 - Example: sigmoid

$$\sigma(x)=rac{1}{1+e^{-x}}$$

• Example #2: relu (rectified linear unit)

$$relu(x) = egin{cases} 0 & x < 0 \ x & x \geq 0 \end{cases}$$

- Parameterization
 - \circ Adding "knobs" to control the shape of the activations (e.g. $F(w,b;x)=\phi(wx+b)$ where ϕ is a generic activation function, w are the weights, b is the bias, and x are/is the inputs)
 - Can be converted into $v\phi(wx+b)$, where v determines a component of steepness to the activation function.

Universal Function Approximation Theorem

(one of them)

• Suppose we want to approximate a potentially unknown/complex function f(x) on the domain $x \in [x_{min}, x_{max}]$ such that the approximating function F(x) is within some error ϵ of f(x) in the same domain.

$$|f(x) - F(x)| < \epsilon$$

- UFA: using $F((u_i)_{i=0}^{N-1},(w_i)_{i=0}^{N-1},(b_i)_{i=0}^{N-1};x)=\sum_{i=0}^{N-1}v_i\phi(w;x+b;)$ with sufficiently large N, we can always find parameters such that $|f(x)-F(x)|<\epsilon$.
 - Why does ϕ have to be nonlinear?
 - If ϕ was linear, then UFA could not be reached because the summation of multiple linear components is another linear function, which would not fulfill the criteria.
 - \circ Why v?
 - $\ \ \,$ If ϕ is bounded, then v "unbounds" the function by letting it scale beyond it normal range
 - Final weighting of the neuron in the final outcome (prediction function)
- Single Layer Neural Network (Perceptron) ~ a summation of several (scaled)
 activation function to reach an approximating function to as closely match the data
 as possible

- Hyperparameters for layers of a Perceptron (or any neural network)
 - N ~ number of neurons in the layer
 - ullet ϕ the choice of the activation function
- Example: approximate $f(x) = cos(x); x \in [-2\pi, 2\pi]$

- Procedure
 - 1. Pick M numbers from $[-2\pi, 2\pi] o x_{batch}$

2.
$$F(x_{batch}) o y^{(pred)}$$
 or $L(F,f) = rac{1}{M} \sum_{i=0}^{M-1} ((y_i^{(pred)}) - cos(x_i))^2$

3. Gradient descent on L to find w_i, b_i, v_i such that L is minimized

$$x:(M,1) \ w:(1,N) \ v:(N,1); v=egin{pmatrix} v_0 \ v_1 \ ... \ v_{N-1} \end{pmatrix} \ b:(N,1); b=[b_0,b_1,b_2,...,b_{N_1}]$$

Linear Algebra Review

Dot Product

- What is the dot product actually doing?
 - \circ It is a measure of similarity between 2 vectors, x and y.
 - Parallel vectors maximize similarity
 - Antiparallel vectors
 - Perpendicular Vectors

$$ec{x} \cdot ec{y} = x_o y_o + x_1 y_1 + ... + x_{n-1} y_{n-1} = \sum_{i=0}^{N-1} x_i y_i = ||ec{x}|| imes ||ec{y}|| cos(heta)$$

Dot Products as Projection

 Dot products can be seen visually as the horizontal distance that two vector components share:

• Due to dot products being used as a measure of similarity, the adjusted weights of a neural network are inherently determining how similar the input is to the weight and, therefore, outputting values based on that similarity

$$y = \sum_{i=0}^{N-1} ec{v}_i \phi(ec{x}_i \cdot ec{w}_i + b_i)$$

 \circ Where $ec{x}_i \cdot ec{w}_i$ determines the similarity between the input and the (constantly adjusted) weights, b_i determines a similarity threshold (due to this factor shifting the function horizontally) required to activate a neuron using ϕ , and v_i scales the output