Nom et prénom:

Algèbre Linéaire

Contrôle continu 6 13/04/2017

Questions de cours

Soient E et F deux espaces vectoriels réels de dimension finie avec bases respectivement $\mathcal{B} = \{v_1, \dots, v_n\}$ et $\mathcal{B}' = \{w_1, \dots, w_p\}$, et soit $f: E \to F$ une application linéaire.

- a) Définir la matrice $M_{\mathcal{B}',\mathcal{B}}(f)$ associée à f dans les bases \mathcal{B} et \mathcal{B}' .
- b) Si $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$, que représente le produit

$$M_{\mathcal{B}',\mathcal{B}}(f) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
?

Exercice (Toutes les réponses doivent être justifiées)

Considérons l'application linéaire suivante

$$f: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3 (x, y, z) \quad \longmapsto \quad (x - z, \ x, 2y + z) \ .$$

Soit \mathcal{B} la base canonique de \mathbb{R}^3 et $\mathcal{B}' = ((1,2,0),(0,-1,2),(1,1,1)).$

- a) Écrire la matrice $M_{\mathcal{B}}(f)$ de f dans la base \mathcal{B} .
- b) Montrer que \mathcal{B}' est une base de \mathbb{R}^3 .
- c) Écrire la matrice de passage P de la base \mathcal{B}' à la base \mathcal{B} .
- d) Calculer P^{-1} .
- e) En déduire la matrice $M_{\mathcal{B}'}(f)$ de f dans la base \mathcal{B}' .
- f) Déterminer $M_{\mathcal{B}',\mathcal{B}}(f)$.