1 Numerická integrace, metody řešení diferenciálních rovnic, vliv délky kroku (A4B01NUM)

1 Numerická integrace

Úloha: Odhadnout

$$I = \int_a^b f(t) \, \mathrm{d}t$$

na základě hodnot funkce f v konečně mnoha uzlových bodech x_0,\ldots,x_{n-1} . Pokud se aproximace φ na intervalu $\langle a,b\rangle$ liší od f nejvýše o ε , pak

$$\left| I - \int_{a}^{b} \varphi(t) \, dt \right| = \left| \int_{a}^{b} (f(t) - \varphi(t)) \, dt \right|$$

$$\leq \int_{a}^{b} |f(t) - \varphi(t)| \, dt \leq (b - a) \varepsilon.$$

Příklad:

$$\int_a^b \sin^{100} t \, \mathrm{d}t$$

je náročnou úlohou pro počítačové algebraické systémy, ale z numerického hlediska není nijak zvlášť obtížný.

Integrál závisí na integrandu lineárně, proto odhad integrálu závisí lineárně na $f(x_0), \ldots, f(x_{n-1})$:

$$A = \sum_{i < n} w_i f(x_i) \,,$$

Můžeme volit pouze uzlové body x_0, \ldots, x_{n-1} a jejich váhy w_0, \ldots, w_{n-1} .

Zjednodušení: funkci f aproximujeme interpolačním polynomem. $\langle a,b\rangle$ rozdělíme na k intervalů

$$\langle a_i, a_{i+1} \rangle, \qquad j = 0, \dots, k-1,$$

kde $a_0=a,\ a_k=b.$ V dílčích intervalech použijeme náhradu polynomem nízkého stupně, vedoucí na tzv. **jednoduchý vzorec**, tj. odhad A_j integrálu

$$I_j = \int_{a_i}^{a_{j+1}} f(t) \, \mathrm{d}t \,.$$

Sečtením dostaneme složený vzorec, tj. odhad

$$A = \sum_{j < k} A_j$$

integrálu

$$I = \sum_{j < k} I_j = \int_a^b f(t) \, \mathrm{d}t.$$

Zjednodušení: všechny dílčí intervaly mají stejnou délku

$$H = \frac{b-a}{k} = a_{j+1} - a_j$$
.

Každý dílčí interval lze lineární substitucí převést na jednotkový interval (0,1). Obecný případ dostaneme lineární substitucí

$$u = \frac{t - a_j}{H}, \qquad t = a_j + H u,$$

$$I_j = \int_{a_j}^{a_{j+1}} f(t) dt = \int_0^1 H f(a_j + H u) du = \int_0^1 g_j(u) du,$$

$$g_j(u) = H f(a_j + H u),$$

$$g_j^{(m)}(u) = H^{m+1} f^{(m)}(a_j + H u).$$

1.1 Newtonovy-Cotesovy vzorce

Uzlové body ekvidistantní

1.1.1 Metoda levého odhadu

Jediný uzlový bod v krajním bodě intervalu, $u_0 = 0$; g_j nahradíme konstantou $g_j(u_0) = g_j(0)$. Jednoduchý vzorec:

$$L_j = \int_0^1 g_j(0) dt = g_j(0) = H f(a_j)$$

Složený vzorec:

$$L = \sum_{j < k} L_j = H \sum_{j < k} f(a_j) = H \sum_{j < k} f(a + j H).$$

Rovnocenný je odhad pro volbu $u_0 = 1$, **metoda pravého odhadu**

1.1.2 Obdélníková metoda

Uzlový bod ve středu intervalu, $u_0=1/2$ Proložíme konstantu $g_j(u_0)=g_j(1/2)$. Jednoduchý vzorec:

$$R_j = \int_0^1 g_j(1/2) dt = g_j(1/2) = H f(a_j + H/2)$$

Složený vzorec:

$$R = \sum_{j < k} R_j = H \sum_{j < k} f(a_j + H/2) = H \sum_{j < k} f(a_{1/2} + j H),$$

kde $a_{1/2} = a + H/2$.

1.1.3 Lichoběžníková metoda

Dva uzlové body na krajích intervalu, $u_0 = 0$, $u_1 = 1$

Proložíme lineární funkci, výsledkem bude plocha pod přímkou, neboli obsah lichoběžníka. Jednoduchý vzorec:

$$T_j = \frac{g_j(u_0) + g_j(u_1)}{2} = \frac{g_j(0) + g_j(1)}{2} = H \frac{f(a_j) + f(a_{j+1})}{2}$$

Složený vzorec:

$$T = \sum_{j < k} T_j = H \sum_{j < k} \frac{f(a_j) + f(a_{j+1})}{2} = H \left(\frac{f(a) + f(b)}{2} + \sum_{j=1}^{k-1} f(a + j H) \right).$$

1.1.4 Simpsonova metoda

Tři uzlové body; dva na krajích intervalu, jeden uprostřed, $u_0=0,\ u_1=1/2,\ u_2=1.$ Proložíme kvadratický polynom a zintegrujeme. Jednoduchý vzorec:

$$S_j = w_0 g_j(u_0) + w_1 g_j(u_1) + w_2 g_j(u_2)$$

= $w_0 g_j(0) + w_1 g_j(1/2) + w_2 g_j(1)$.

Vzorec bude přesný, bude-li g_j libovolný kvadratický polynom. Speciálně pro $g_j(u) \in \{1, u, u^2\}$:

$$w_0 + w_1 + w_2 = \int_0^1 1 \, du = 1,$$

$$\frac{1}{2} w_1 + w_2 = \int_0^1 u \, du = \frac{1}{2},$$

$$\frac{1}{4} w_1 + w_2 = \int_0^1 u^2 \, du = \frac{1}{3}.$$

To je soustava 3 lineárních rovnic pro 3 neznámé $w_0, w_1, w_2,$ řešení:

$$w_0 = \frac{1}{6}, \qquad w_1 = \frac{2}{3}, \qquad w_2 = \frac{1}{6}.$$

Jednoduchý vzorec:

$$S_j = \int_0^1 g_j(1/2) dt = \frac{1}{6} g_j(0) + \frac{2}{3} g_j(1/2) + \frac{1}{6} g_j(1)$$
$$= \frac{H}{6} (f(a_j) + 4 f(a_j + H/2) + f(a_{j+1}))$$

Složený vzorec:

$$S = \sum_{j < k} S_j$$

$$= \frac{H}{6} \left(f(a_0) + f(a_k) + 2 \sum_{j=1}^{k-1} f(a_j) + 4 \sum_{j=0}^{k-1} f(a_j + H/2) \right)$$

$$= \frac{H}{6} \left(f(a) + f(b) + 2 \sum_{j=1}^{k-1} f(a+jH) + 4 \sum_{j=0}^{k-1} f(a_{1/2} + jH) \right),$$

kde $a_{1/2} = a + H/2$ (pozor na meze sum!).

$$S = \frac{h}{3} \left(f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + \ldots + 4 f(x_{2k-1}) + f(x_{2k}) \right),$$

kde $x_i=a+i\,h$ jsou uzlové body (pro funkci f, nikoli g_j) a h=H/2 je vzdálenost mezi sousedními uzlovými body. Počet intervalů délky h musí být sudý!

1.1.5 Obecné Newtonovy-Cotesovy vzorce

- \bullet otevřené (obdélníková metoda)
- uzavřené (lichoběžníková a Simpsonova metoda)
- polootevřené (metoda levého odhadu)

1.2 Odhad chyby numerické integrace

Zjednodušení: pro lichoběžníkovou metodu

Předpokládejme, že g_j má na intervalu $\langle 0, 1 \rangle$ spojitou druhou derivaci. Funkci g_j nahrazujeme lineárním polynomem φ_i ; chyba interpolace v bodě u je

$$|g_{j}(u) - \varphi_{j}(u)| \leq \frac{\sup_{v \in \langle 0, 1 \rangle} |g_{j}''(v)|}{2} |(u - 0) (u - 1)|,$$

$$|T_{j} - I_{j}| = \left| \int_{0}^{1} \varphi_{j}(u) du - \int_{0}^{1} g_{j}(u) du \right| \leq \int_{0}^{1} |\varphi_{j}(u) - g_{j}(u)| du$$

$$\leq \frac{\sup_{v \in \langle 0, 1 \rangle} |g_{j}''(v)|}{2} \int_{0}^{1} (u - u^{2}) du = \frac{\sup_{v \in \langle 0, 1 \rangle} |g_{j}''(v)|}{2} \left(\frac{1}{2} - \frac{1}{3} \right)$$

$$= \frac{1}{12} \sup_{v \in \langle 0, 1 \rangle} |g_{j}''(v)| = \frac{1}{12} H^{3} \sup_{t \in \langle a_{j}, a_{j+1} \rangle} |f''(t)|.$$

Vyjádříme pomocí

$$M_2 \ge \sup_{t \in \langle a, b \rangle} |f''(t)|,$$

$$|T_j - I_j| \le \frac{1}{12} H^3 M_2,$$

$$|T - I| \le \frac{k}{12} H^3 M_2,$$

po náhradě konstantního součinu kH = b - a

$$|T - I| \le \frac{(b - a) M_2}{12} H^2$$
.

Řád metody integrace je exponent (u H) v nejnižším obecně nenulovém členu Taylorova rozvoje chyby metody podle H v okolí bodu 0.

metoda	horní odhad chyby	řád
levého odhadu	$\frac{(b-a)M_1}{2}H$	1
lichoběžníková	$\frac{(b-a)M_2}{12}H^2$	2
obdélníková	$\frac{(b-a)M_2}{24}H^2$	2
Simpsonova	$\frac{(b-a)M_4}{2880}H^4 = \frac{(b-a)M_4}{180}h^4$	4

Simpsonova metoda dává chybu nikoli třetího, ale čtvrtého řádu. Je-li f, a tedy i g_j , polynom stupně nejvýše 3, pak chyba interpolace kvadratickým polynomem je úměrná

$$W(u) = (u - 0) (u - 1/2) (u - 1).$$

Na hodnotě integrálu se to neprojeví, neboť

$$\int_0^1 W(u) \, \mathrm{d}u = 0.$$

Příklad 1:

$$I = \int_0^2 e^{-t^2} dt$$

s přesností $\varepsilon=10^{-6}$. Stanovte postačující počet kroků pro jednotlivé metody.

met.	M_p	horní odhad H	počet kroků
L	$\sqrt{\frac{2}{\mathrm{e}}} \doteq 0.86$	$\frac{2 \cdot 10^{-6}}{2 \cdot 0.86} \doteq 1.16 \cdot 10^{-6}$	1 720 000
T	2	$\sqrt{\frac{12 \cdot 10^{-6}}{2 \cdot 2}} \doteq 1.7 \cdot 10^{-3}$	1155
R	2	$\sqrt{\frac{24 \cdot 10^{-6}}{2 \cdot 2}} \doteq 2.45 \cdot 10^{-3}$	817
S	12	$\sqrt[4]{\frac{2880 \cdot 10^{-6}}{2 \cdot 12}} \doteq 0.1$	20

Pro k = 20

$$L \doteq 0.9311046$$
,

$$R \doteq 0.8821118$$

$$T = 0.8820204$$

$$S = 0.8820813$$
,

$$L = 0.9311046,$$

$$R \doteq 0.8821118,$$

$$T \doteq 0.8820204,$$

$$S \doteq 0.8820813,$$

$$\int_{0}^{2} \exp(-t^{2}) dt \doteq 0.882081390.$$

1.3 Gaussova metoda integrace

Na intervalu $\langle -1,1 \rangle$ volíme za uzlové body kořeny $z_0,\ldots,z_{r-1} \in \langle -1,1 \rangle$ tzv. Legendreových polynomů. Lineární transformací

$$u = \frac{z+1}{2}$$
, $z = 2u - 1$

dostaneme uzlové body $u_0,\ldots,u_{r-1}\in\langle 0,1\rangle$. Uzlové body a jejich váhy w_0,\ldots,w_{r-1} jsou tabelovány nebo raději počítány algoritmem. Volíme pouze jejich počet r a tím i řád metody.

r	uzlové body	váhy
1	0	2
2	$\pm \frac{1}{\sqrt{3}} \doteq \pm 0.577350$	1
3	$\pm\sqrt{\frac{3}{5}} \doteq \pm 0.774597$	$\frac{5}{9}$
	0	$\frac{8}{9}$
4	$\pm\sqrt{\frac{30+4\sqrt{30}}{70}} \doteq \pm 0.861136$	0.347855
	$\pm\sqrt{\frac{30-4\sqrt{30}}{70}} \doteq \pm 0.339981$	0.652145
5	$\pm\sqrt{\frac{70+4\sqrt{70}}{126}} \doteq \pm 0.906180$	0.236927
	$\pm\sqrt{\frac{70-4\sqrt{70}}{126}} \doteq \pm 0.538469$	0.478629
	0	0.568889

jednoduchý vzorec:

$$G_{r,j} = \sum_{i < r} w_i g_j(u_i) = H \sum_{i < r} w_i f(a_j + H u_i)$$

složený vzorec:

$$G_r = \sum_{j < k} G_{r,j} = H \sum_{j < k} \sum_{i < r} w_i f(a_j + H u_i) = H \sum_{i < r} \left(w_i \sum_{j < k} f(d_i + j H) \right),$$

kde $d_i = a + H u_i \in \langle a_0, a_1 \rangle$. Horní odhad chyby

$$|G_r - I| \le \frac{(b-a)(r!)^4 M_{2r}}{(2r+1)((2r)!)^3} H^{2r},$$

kde

$$M_{2r} \ge \sup_{v \in \langle a,b \rangle} |f^{(2r)}(v)|.$$

Chyba metody je řádu $2\,r$, díky volbě r uzlových bodů a r vah, tj. $2\,r$ parametrů. V Newtonových-Cotesových vzorcích jsme volbou r vah (při daných uzlových bodech) dostali metody řádu r nebo r+1.

počet uzlových bodů	horní odhad chyby	řád
1	$\frac{(b-a)M_2}{24}H^2$	2
2	$\frac{(b-a) M_4}{4320} H^4$	4
3	$\frac{(b-a)M_6}{2016000}H^6$	6
4	$\frac{(b-a) M_8}{1\ 778\ 112\ 000} H^8$	8
5	$\frac{(b-a) M_{10}}{2\ 534\ 876\ 467\ 200} H^{10}$	10

Příklad 1 (pokračování):

$$I = \int_0^2 e^{-t^2} dt$$

s přesností $\varepsilon = 10^{-6}$.

A	M_p	horní odhad H	p. kroků
L	$\sqrt{\frac{2}{\mathrm{e}}} \doteq 0.86$	$\frac{2 \cdot 10^{-6}}{2 \cdot 0.86} \doteq 1.16 \cdot 10^{-6}$	1 720 000
T	2	$\sqrt{\frac{12 \cdot 10^{-6}}{2 \cdot 2}} \doteq 1.7 \cdot 10^{-3}$	1155
R	2	$\sqrt{\frac{24 \cdot 10^{-6}}{2 \cdot 2}} \doteq 2.45 \cdot 10^{-3}$	817
S	12	$\sqrt[4]{\frac{2880 \cdot 10^{-6}}{2 \cdot 12}} \doteq 0.1$	20
G_2	12	$\sqrt[4]{\frac{4320 \cdot 10^{-6}}{2 \cdot 12}} \doteq 0.115$	18
G_4	1680	$\sqrt[8]{\frac{1\ 778\ 112\ 000\cdot 10^{-6}}{2\cdot 1680}} \doteq 0.92$	3

Richardsonova extrapolace při integraci

Předpokládejme metodu numerické integrace s výsledkem A(H) s chybou řádu p, tj. přibližně úměrnou H^p . Z odhadů, A(H), A(H/q), kde q>1, dostaneme Richardsonovou extrapolací nový odhad

$$B(H) = \frac{q^p A(\frac{H}{q}) - A(H)}{q^p - 1} = A(\frac{H}{q}) + \frac{A(\frac{H}{q}) - A(H)}{q^p - 1}.$$

Výraz

$$\frac{A(\frac{H}{q}) - A(H)}{q^p - 1} \doteq I - A(\frac{H}{q})$$

můžeme rovněž považovat za odhad chyby výsledku $A(\frac{H}{a})$.

Speciálně pro q = 2 (metoda polovičního kroku):

$$B(H) = \frac{2^{p} A(\frac{H}{2}) - A(H)}{2^{p} - 1} = A(\frac{H}{2}) + \frac{A(\frac{H}{2}) - A(H)}{2^{p} - 1}$$
$$I - A(\frac{H}{2}) \doteq \frac{A(\frac{H}{2}) - A(H)}{2^{p} - 1}$$

Pro lichoběžníkovou metodu lze doporučit $q=2\,$

Polovina nových uzlových bodů (pro krok H/2) se kryje se starými (pro krok H); dostaneme odhad

$$T(\tfrac{H}{2}) + \frac{T(\tfrac{H}{2}) - T(H)}{3} = \frac{2\,R(H) + T(H)}{3}\,,$$

shodný se Simpsonovou metodou.

Richardsonovou extrapolací lze zpřesnit i Simpsonovu metodu, dostaneme odhad 6. řádu

$$S(\tfrac{H}{2}) + \frac{S(\tfrac{H}{2}) - S(H)}{15}$$

Richardsonovou extrapolací pro obdélníkovou metodu s polovičním krokem dostaneme odhad

$$R(\tfrac{H}{2}) + \frac{R(\tfrac{H}{2}) - R(H)}{3} \,,$$

který se však nehodí:

Vhodnější je třetinový krok, q=3,

1.5 Rombergova metoda

Vychází z více odhadů získaných lichoběžníkovou metodou pro kroky $H, H/2, H/4, \ldots$ Taylorův rozvoj chyby lichoběžníkové metody má nenulové pouze členy sudého řádu. Proto se každou Richardsonovou extrapolací zvýší řád o dvě.

řád	2		4		6		8	
k	$T(\frac{H}{k})$		$S(\frac{2H}{k})$					
k_0	$T(H) = T_{0,0}$							
		/						
$2 k_0$	$T(\frac{H}{2}) = T_{1,0}$	\longrightarrow	$T_{1,1}$					
				/				
$4 k_0$	$T(\frac{H}{4}) = T_{2,0}$	\longrightarrow	$T_{2,1}$	\longrightarrow	$T_{2,2}$			
				/		>		
$8 k_0$	$T(\frac{H}{8}) = T_{3,0}$	\longrightarrow	$T_{3,1}$	\longrightarrow	$T_{3,2}$	\longrightarrow	$T_{3,3}$	
								• •
	• • • •		• • •		• • •		• • • •	•

Obecně ve sloupci j + 1:

$$T_{i,j} = T_{i,j-1} + \frac{T_{i,j-1} - T_{i-1,j-1}}{4^j - 1}$$
.

Za výsledek bereme $T_{i,i}$, chyba je řádu 2 i a odhadujeme ji zhruba výrazem $|T_{i,i-1}-T_{i-1,i-1}|$ nebo $|T_{i,i}-T_{i-1,i-1}|$.

Příklad 1 (pokračování): Výsledky Rombergovy metody pro $\int_0^2 e^{-t^2} dt$ s počáteční volbou 4 intervalů dělení:

řád	2	4	6	8	
k	$T(\frac{H}{k})$	$S(\frac{2H}{k})$			
4	0.88061				
8	0.88170	0.8820655			
16	0.88170	0.8820803	0.88208139		
32	0.88205	0.8820813	0.88208138	0.88208138	

S platnými ciframi 0.882081 se shodují výsledky vyznačené kurzívou.

Příklad 2: Výsledky Rombergovy metody pro $\int_0^{\pi} \sin^4 t \, dt$, s počáteční volbou

1 intervalu dělení:

	u delem.				
řád	2	4	6	8	10
k	$T(\frac{H}{k})$	$S(\frac{2H}{k})$			
1	0				
2	1.57080	2.09440			
4	1.17810	1.0472	0.97738		
8	1.17810	1.17810	1.18683	1.19015	
16	1.17809	1.17809	1.17809	1.17795	1.17790

S platnými ciframi 1.178 se shodují výsledky vyznačené kurzívou.

1.6 Praktické stanovení počtu intervalů

- z horního odhadu chyby
- metoda dvojího (nejčastěji polovičního) kroku

Příklad 1 (pokračování):

$$I = \int_0^2 e^{-t^2} dt$$

s přesností $\varepsilon=10^{-6}$. Simpsonova metoda s krokem 2 a 1:

$$S(2) \doteq 0.8299444,$$

 $S(1) \doteq 0.8818124.$

Odhad chyby medotou polovičního kroku je

$$\frac{|S(1) - S(2)|}{15} \doteq 0.0034578 \,,$$

požadovaná chyba je zhruba $3458\times$ menší, což vyžaduje zvýšit počet kroků v poměru alespoň $\sqrt[4]{3458} \doteq 7.7$. Pro $4\times$ a $8\times$ menší krok, tj. pro 8 a 16 intervalů dělení:

$$S(\frac{2}{8}) \doteq 0.882080396576,$$

 $S(\frac{2}{16}) \doteq 0.882081328646.$

Odhad chyby posledního výsledku je

$$\frac{|S(\frac{2}{16}) - S(\frac{2}{8})|}{15} \doteq 6.3 \cdot 10^{-8} \,.$$

(Již víme, že postačuje 20 intervalů dělení.) Richardsonova extrapolace:

$$S(\frac{2}{16}) + \frac{S(\frac{2}{16}) - S(\frac{2}{8})}{15} \doteq 0.882081390784,$$

Přesnější výsledek je

0.8820813907624216800.

Příklad 3:

$$I = \int_0^1 \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t$$

s přesností $\varepsilon=10^{-8}.$ Zkusíme 5-bodovou Gaussovu metodu (10. řádu) s krokem 1 a $\frac{1}{2}$:

$$G_5(1) \doteq 0.621166517,$$

 $G_5(\frac{1}{2}) \doteq 0.620759367.$

Odhad chyby medotou polovičního kroku je

$$\frac{|G_5(\frac{1}{2}) - G_5(1)|}{2^{10} - 1} \doteq 4 \cdot 10^{-7} \,,$$

požadovaná chyba je zhruba 40× menší, což vyžaduje zvýšit počet kroků v poměru alespoň $\sqrt[10]{40} \doteq 1.5$. Měl by tedy stačit 2× menší krok, tj. 4 intervaly dělení:

$$G_5(\frac{1}{2}) \doteq 0.620759367$$

 $G_5(\frac{1}{4}) \doteq 0.620615367$

Odhad chyby posledního výsledku je

$$\frac{|G_5(\frac{1}{4}) - G_5(\frac{1}{2})|}{2^{10} - 1} \doteq 1.4 \cdot 10^{-7} \,,$$

tedy jen asi třikrát menší, ač se měl zmenšit v poměru $2^{10}-1=1023$. Přesnější výsledek je

0.62053660344676220362.

1.7 Řešení obtížnějších úloh úpravou zadání

1.7.1 Integrace přes nekonečný interval

Příklad 4:

$$I = \int_{2}^{\infty} e^{-t^2} dt$$

s přesností $\varepsilon=10^{-6}$.

I nekonečný obor integrace lze (nelineární) substitucí převést na konečný $\langle 0,1 \rangle$, zde např. t=1/u:

$$I = \int_0^{\frac{1}{2}} \frac{e^{-\frac{1}{u^2}}}{u^2} \, \mathrm{d}u.$$

Můžeme využít známé určité integrály, např.

$$I = \int_{2}^{\infty} e^{-t^{2}} dt = \underbrace{\int_{0}^{\infty} e^{-t^{2}} dt}_{\sqrt{\pi}/2} - \int_{0}^{2} e^{-t^{2}} dt,$$

Můžeme se omezit na konečný interval a zbytek zanedbat. V našem případě lze použít odhad (se substitucí t-x=u)

$$\int_{x}^{\infty} e^{-t^{2}} dt = e^{-x^{2}} \int_{0}^{\infty} e^{-2xu - u^{2}} du$$

$$\leq e^{-x^{2}} \int_{0}^{\infty} e^{-2xu} du = \frac{e^{-x^{2}}}{2x}.$$

Pro $x \geq 3.85$ je tento výraz menší než $\frac{\varepsilon}{2},$ takže stačí vypočítat

$$\int_{2}^{3.85} e^{-t^2} dt$$

s přesností $\frac{\varepsilon}{2}.$

1.7.2 Omezení intervalu

se může hodit, i když obor integrace je konečný:

Příklad 5:

$$\int_{2}^{1000} e^{-t^2} dt$$

Simpsonovou metodou s 1000 kroky:

0.0043821,

4-bodovou Gaussovou metodou se 100 kroky:

0.0012304,

Dopustíme se chyby menší než $\frac{\varepsilon}{2}=5\cdot 10^{-7},$ snížíme-li horní mez na 3.85. Pak stačí Simpsonova metoda s 23 kroky

0.00414549.

Přesnější výsledek je

0.00414553469.

1.7.3 Pomalu konvergentní integrály

Přičtení známého určitého integrálu může zásadně změnit obtížnost numerického výpočtu:

Příklad 3 (pokračování):

$$\int_0^1 \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t$$

Integrand má v okolí nuly neomezenou derivaci. V okolí nuly je sin $t\approx t,$ $\frac{\sin t}{\sqrt{t}}\approx \sqrt{t}$. Derivace je sice nadále neomezená, ale známe

$$\int_0^1 \sqrt{t} \, \mathrm{d}t = \frac{2}{3} \, t^{\frac{3}{2}}.$$

Rozdíl $\frac{\sin t}{\sqrt{t}} - \sqrt{t}$ má derivace omezené a jeho integrace nečiní zvláštní potíže. Výpočet 5-bodovou Gaussovu metodu (10. řádu) se dvěma a čtyřmi intervaly dělení dává

$$\int_0^1 \left(\frac{\sin t}{\sqrt{t}} - \sqrt{t} \right) dt \quad \doteq$$

$$G_5(\frac{1}{2}) \quad \doteq \quad -0.046130081752 \,,$$

$$G_5(\frac{1}{4}) \quad \doteq \quad -0.046130064858 \,.$$

Odhad chyby metodou polovičního kroku:

$$\frac{|G_5(\frac{1}{4}) - G_5(\frac{1}{2})|}{2^{10} - 1} \doteq 1.7 \cdot 10^{-11}.$$

Přesnější výsledek je

-0.04613006321990446305

Výsledek původního zadání je

$$\int_0^1 \frac{\sin t}{\sqrt{t}} dt = \int_0^1 \sqrt{t} dt + \int_0^1 \left(\frac{\sin t}{\sqrt{t}} - \sqrt{t} \right) dt$$
$$\doteq \frac{2}{3} - 0.04613006486$$
$$= 0.62053660181$$

(přesněji 0.6205366034467622036).

Substituce funkcí, která má v odpovídajícím bodě c nulové derivace dostatečně mnoha řádů, např. $t=c+u^s$, kde exponent s volíme raději vyšší než nižší

Příklad 3 (pokračování):

$$\int_0^1 \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t$$

Substitucí $t = u^2$ dostaneme

$$\int_0^1 \frac{\sin t}{\sqrt{t}} dt = \int_0^1 2 \sin u^2 du.$$

5-bodová Gaussova metoda (10. řádu) s jedním a dvěma intervaly dělení:

$$G_5(1) \doteq 0.620536620796,$$

 $G_5(\frac{1}{2}) \doteq 0.620536603496,$

odhad chyby metodou polovičního kroku

$$\frac{|G_5(\frac{1}{2}) - G_5(1)|}{2^{10} - 1} \doteq 1.7 \cdot 10^{-11} .$$

Chtěli bychom, aby se integrand v okolí problémového bodu blížil konstantě; mohli jsme použít též substituci $\frac{2}{3}t^{\frac{3}{2}}=u$ s dobrým výsledkem.

Příklad 6:

$$\int_{1}^{\infty} \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t$$

s přesností 10^{-8} . Omezení na konečný obor nepomůže, neboť např.

$$\int_{999997}^{1000000} \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t \doteq 0.0019 \,.$$

Hledaný integrál není absolutně konvergentní.

$$\int_0^\infty \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t = \sqrt{\frac{\pi}{2}} \, .$$

Potřebujeme

$$\int_{1}^{\infty} \frac{\sin t}{\sqrt{t}} dt = \int_{0}^{\infty} \frac{\sin t}{\sqrt{t}} dt - \int_{0}^{1} \frac{\sin t}{\sqrt{t}} dt$$
$$\doteq \sqrt{\frac{\pi}{2}} - 0.620536601808 \doteq 0.632777535507,$$

kde ovšem integrál $\int_0^1 \frac{\sin t}{\sqrt{t}} \, \mathrm{d}t$ byl rovněž problémový; využili jsme řešení příkladu 3. Přesnější výsledek je 0.6327775338746013102.

Numerické řešení diferenciálních rovnic

Mirko Navara

http://cmp.felk.cvut.cz/~navara/

Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a

http://math.feld.cvut.cz/nemecek/nummet.html

15. prosince 2010

Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu

Úloha: Na intervalu $\langle x_0, x_n \rangle$ máme řešit diferenciální rovnici

$$y'(x) = f(x, y(x))$$

s počáteční podmínkou

$$y(x_0) = y_0,$$

kde f je funkce dvou reálných proměnných a $y_0 \in \mathbb{R}$.

Poznámka: Pokud f nezávisí na y, tj. f(x,y) = g(x), dostáváme numerickou integraci jako speciální případ řešení diferenciální rovnice

$$y'(x) = g(x)$$

Existence a jednoznačnost řešení

Není obecně zaručena:

Příklad: Uvažujme diferenciální rovnici s počáteční podmínkou:

$$y'(x) = \sqrt[3]{y(x)}, y(0) = 0,$$

kde třetí odmocninu považujeme za reálnou funkci definovanou i pro záporný argument. Má řešení např. y(x) = 0 a $y(x) = \pm \left(\frac{2}{3}x\right)^{\frac{3}{2}}$.

Věta: Nechť funkce f je definovaná a spojitá na $\langle x_0, x_n \rangle \times \mathbb{R}$ (tj. pro všechna $x \in \langle x_0, x_n \rangle, y \in \mathbb{R}$). Nechť je splněna Lipschitzova podmínka

$$\exists L \in \mathbb{R} \ \forall x \in \langle x_0, x_n \rangle \ \forall y_1, y_2 \in \mathbb{R} : |f(x, y_1) - f(x, y_2)| \le L |y_1 - y_2|.$$

Pak řešení naší úlohy na intervalu $\langle x_0, x_n \rangle$ existuje a je jednoznačné. Postačující podmínka: $\frac{\partial f}{\partial y}$ spojitá a omezená na $\langle x_0, x_n \rangle \times \mathbb{R}$.

Interpretace úlohy a princip řešení

Poznámka: Ekvivalentní formulace úlohy: řešení

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$$

lze chápat jako integrál (neznámé) funkce g(t) = f(t, y(t)) jedné proměnné nebo křivkový integrál známé funkce f přes (neznámou) křivku s parametrizací $(t, y(t)), t \in \langle x_0, x_n \rangle$.

Interval $\langle x_0, x_n \rangle$ rozdělíme na n dílčích intervalů délky $h = (x_n - x_0)/n$. Získáme **uzlové body** $x_i = x_0 + i h$, $i = 0, \dots, n$.

Správné hodnoty řešení v uzlových bodech, $y(x_i)$, nahradíme odhady y_i .

Hodnoty derivace: $f_i = f(x_i, y_i)$.

Obecný postup řešení

Generujeme posloupnost y_i , $i=0,\ldots,n$. V kroku i+1 počítáme z odhadů y_0,\ldots,y_i odhad y_{i+1} . Přesné řešení:

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(t, y(t)) dt$$

odhadujeme pomocí

$$\Delta y_i = y_{i+1} - y_i \approx \int_{x_i}^{x_{i+1}} f(t, y(t)) dt$$
.
 $y_{i+1} = y_i + \Delta y_i$.

Jednotlivé metody se liší pouze odhadem Δy_i .

Rungovy-Kuttovy metody 1: Eulerova metoda

Je zobecněním metody levého odhadu; funkci f(t, y(t)) nahrazujeme její hodnotou $f(x_i, y_i)$ v bodě x_i

$$\Delta y_i = \int_{x_i}^{x_{i+1}} f(x_i, y_i) dt = h f(x_i, y_i),$$

$$y_{i+1} = y_i + h f(x_i, y_i) = y_i + h f_i$$
.

Geometrický význam: $f_i = f(x_i, y_i)$ je směrnice úsečky vedené body (x_i, y_i) , (x_{i+1}, y_{i+1}) .

Odhad chyby

Taylorův rozvoj funkce y se středem v x_0 vyhodnotíme v bodě x_1 :

$$y(x_1) = y(x_0) + h y'(x_0) + \frac{h^2}{2} y''(\xi),$$

kde $\xi \in \langle x_0, x_1 \rangle$.

$$y(x_1) = \underbrace{y(x_0) + h f(x_0, y_0)}_{y_1} + \frac{h^2}{2} y''(\xi),$$

$$y(x_1) - y_1 = \frac{h^2}{2} y''(\xi).$$

Chyba na konci prvního kroku je úměrná h^2 .

V dalších krocích vycházíme z počáteční podmínky, která není přesná. Přesto lze za jistých podmínek odvodit, že chyba je zhruba úměrná h^2 a počtu kroků $n=\frac{x_n-x_0}{h}$. Chyba na konci daného intervalu je úměrná $\frac{1}{h}\,h^2=h^{}\Rightarrow$ metoda 1. řádu.

Rungovy-Kuttovy metody 2: První modifikace Eulerovy metody

Je zobecněním obdélníkové metody; funkci f(t, y(t)) v ní nahradíme opět hodnotou v bodě $\frac{x_i + x_{i+1}}{2} = x_i + \frac{h}{2}$ Jako druhý argument funkce f použijeme výsledek pomocného kroku poloviční délky (Eulerovou metodou):

$$\begin{split} \eta_i &= y_i + \frac{h}{2} \, f_i \,. \\ f(t,y(t)) &\approx f(x_i + \frac{h}{2}, \eta_i) \\ \Delta y_i &= \int_{x_i}^{x_{i+1}} f\left(x_i + \frac{h}{2}, \eta_i\right) \, dt = h \, f\left(x_i + \frac{h}{2}, \eta_i\right) \,. \end{split}$$

Metoda 2. řádu.

Druhá modifikace Eulerovy metody (Heunova metoda)

Je zobecněním lichoběžníkové metody integrace; funkci f(t,y(t)) nahradíme lineární funkcí, proloženou hodnotami v krajních bodech intervalu:

 $v x_i$: $f_i = f(x_i, y_i),$

v x_{i+1} : neznalost y-ové souřadnice řešíme pomocným krokem (délky h Eulerovou metodou):

$$\theta_i = y_i + h f_i$$
.

Funkci f(t, y(t)) nahradíme lineární funkcí, jejíž graf prochází body $(x_i, f(x_i, y_i)), (x_{i+1}, f(x_{i+1}, \theta_i)).$

$$\Delta y_i = \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, \theta_i) \right).$$

Metoda 2. řádu.

Rungovy-Kuttovy metody 4: Rungova-Kuttova metoda 4. řádu

Je zobecněním Simpsonovy metody; nejprve vypočteme pomocné body a hodnoty derivace v nich,

$$\begin{array}{rcl} k_{i,1} & = & f(x_i, y_i) \,, \\ k_{i,2} & = & f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2} \, k_{i,1}\right) \,, \\ k_{i,3} & = & f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2} \, k_{i,2}\right) \,, \\ k_{i,4} & = & f(x_i + h, y_i + h \, k_{i,3}) \,. \end{array}$$

Integrál nahradíme lineární kombinací těchto hodnot:

$$\Delta y_i = \frac{h}{6} \left(k_{i,1} + 2k_{i,2} + 2k_{i,3} + k_{i,4} \right).$$

Rungovy-Kuttovy metody 5: Obecné Rungovy-Kuttovy metody

Odhadují integrál $\int_{x_i}^{x_{i+1}} f(t, y(t)) dt$ z několika hodnot funkce f v bodech, získaných z výchozích hodnot x_i, y_i a pomocných kroků. Tyto hodnoty jsou zkombinovány tak, aby se vykompenzovaly chyby nejnižších řádů.

Vícekrokové metody

Metody

- jednokrokové: využívají x_i, y_i a $f_i = f(x_i, y_i)$ (např. Rungeovy-Kuttovy),
- vícekrokové: využívají i výsledky předcházejících kroků, tj. x_j, y_j a $f_j = f(x_j, y_j), j = i, i 1, \dots, i s + 1$ (pro s-krokovou metodu).

Vícekrokové metody dovolují zvýšit řád metody bez pomocných kroků.

Nicméně k nastartování s-krokové metody potřebujeme s hodnot $y_0, y_1, \ldots, y_{s-1}$. Ty získáváme startovací metodou (některou z jednokrokových metod).

Adamsovy-Bashforthovy metody (explicitní)

s hodnotami derivace $f_i, f_{i-1}, \ldots, f_{i-s+1}$

v uzlových bodech $x_i, x_{i-1}, \dots, x_{i-s+1}$

proložíme interpolační polynom φ_i a ten integrujeme místo f(t, y(t)):

$$\Delta y_i = \int_{x_i}^{x_{i+1}} \varphi_i(t) \, dt \, .$$

Není potřeba počítat φ_i , neboť

$$\Delta y_i = h \sum_{j=0}^{s-1} w_j f_{i-j},$$

kde w_i jsou předem známé koeficienty.

Polynomem aproximujeme derivaci y'(t) = f(t, y(t)), nikoli řešení, y(t)!

Pro s = 1:

 $\varphi_i = f_i$ je konstantní \Rightarrow Eulerova metoda.

Pro s=2:

 φ_i je lineární polynom proložený body $(x_i, f_i), (x_{i-1}, f_{i-1}),$

$$\varphi_i(t) = f_i + \frac{f_i - f_{i-1}}{h} (t - x_i)$$

$$\Delta y_i = \int_{x_i}^{x_{i+1}} \varphi_i(t) dt = h f_i + \frac{h}{2} (f_i - f_{i-1}) = \frac{h}{2} (3f_i - f_{i-1}).$$

Pro s = 3:

$$\Delta y_i = \frac{h}{12} \left(23f_i - 16f_{i-1} + 5f_{i-2} \right),\,$$

Pro s = 4:

$$\Delta y_i = \frac{h}{24} \left(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right).$$

Řád metody je s=počet bodů použitých v aproximaci. Výhoda:

• jednoduchost

Nevýhody:

- různá znaménka koeficientů (\Rightarrow zaokrouhlovací chyby)
- chyba metody způsobená extrapolací polynomem

 \Rightarrow snaha vyhnout se extrapolaci

Adamsovy-Moultonovy metody (implicitní)

Pravou stranu f(t, y(t)) aproximujeme interpolačním polynomem φ_i proloženým hodnotami $f_i, f_{i-1}, \ldots, f_{i-s+1}$ a hodnotou v bodě x_{i+1} , tj. $f_{i+1} = f(x_{i+1}, y_{i+1})$.

Opět se redukuje na tvar

$$y_{i+1} - y_i = \Delta y_i = h \sum_{i=-1}^{s-1} w_j f_{i-j},$$

kde w_j jsou předem vypočtené koeficienty (zde jiné).

Dostáváme rovnici

$$y_{i+1} = y_i + h w_{-1} f(x_{i+1}, y_{i+1}) + h \sum_{j=0}^{s-1} w_j f_{i-j}$$

pro neznámou hodnotu y_{i+1} , která je tímto určena **implicitně**.

Pro s = 1: φ_i je lineární polynom proložený body (x_i, f_i) , (x_{i+1}, f_{i+1}) , tj.

$$\varphi_i(t) = f_i + \frac{f_{i+1} - f_i}{h} (t - x_i).$$

$$\Delta y_i = \int_{x_i}^{x_{i+1}} \varphi_i(t) dt = \frac{h}{2} \left(f_{i+1} + f_i \right),$$

po dosazení $f_{i+1} = f(x_{i+1}, y_{i+1})$

$$y_{i+1} - y_i = \frac{h}{2} (f(x_{i+1}, y_{i+1}) + f_i).$$

Pro s = 2:

$$\Delta y_i = \frac{h}{12} \left(5f(x_{i+1}, y_{i+1}) + 8f_i - f_{i-1} \right),\,$$

Pro s = 3:

$$\Delta y_i = \frac{h}{24} \left(9f(x_{i+1}, y_{i+1}) + 19f_i - 5f_{i-1} + f_{i-2} \right).$$

Řád metody je s+1=počet bodů použitých v aproximaci. Výhoda:

vyšší přesnost

Nevýhody:

- obtížné řešení implicitní rovnice (zřídka možné exaktně, numerické řešení zvyšuje složitost)
- i chyba metody způsobená interpolací polynomem může být značná

Metody prediktor-korektor

Základem je **korektor**, což je některá z implicitních metod, v níž se příslušná rovnice řeší numericky. V j-té iteraci z ní vypočítáme odhad $y_{i+1,j}$ hodnoty y_{i+1} , přičemž na pravé straně použijeme odhad $y_{i+1,j-1}$ získaný v předchozí iteraci:

$$y_{i+1,j} = y_i + h \sum_{i=0}^{s-1} w_j f_{i-j} + h w_{-1} f(x_{i+1}, y_{i+1,j-1}).$$

Počáteční odhad $y_{i+1,0}$ najdeme z výsledků předchozích kroků (event. z počátečních podmínek) jinou metodou, zvanou **prediktor**, např. některou z explicitních metod.

Řídicí mechanismus

P = prediktor (**Predictor**) C = korektor (**Corrector**)

E = vyhodnocení derivace (Evaluation)

Nejčastější možnosti:

- cyklus korektoru provádět tak dlouho, dokud není rozdíl $y_{i+1,j} y_{i+1,j-1}$ dostatečně malý,
- konstantní počet k opakování korektoru, $P(EC)^kE$,
- jediný průchod korektorem, PECE.

Adamsovy metody

Prediktor: Adamsova-Bashforthova metoda Korektor: Adamsova-Moultonova metoda

Příklad: Nejjednodušší varianta Adamsovy metody, s = 1:

Prediktor: Eulerova metoda (1. řádu)

$$y_{i+1,0} = y_i + h f_i$$
.

Korektor: Adamsova-Moultonova metoda 2. řádu

$$y_{i+1,j+1} = y_i + \frac{h}{2} \left(f_i + f(x_{i+1}, y_{i+1,j}) \right).$$

Volba startovací metody (jejího řádu) Volba kroku

Richardsonova extrapolace při řešení diferenciálních rovnic

 $\tilde{y}(x,h)$... numerické řešení v bodě x, získané s krokem h $\tilde{y}(x,2h)$... numerické řešení v bodě x, získané s krokem 2h (zde q=2)

Chyba odhadu $\tilde{y}(x,h)$ bude zhruba $2^p \times$ menší než chyba odhadu $\tilde{y}(x,2h)$ \Rightarrow odhad chyby výsledku $\tilde{y}(x,h)$ metodou polovičního kroku:

$$\tilde{y}(x,h) - y(x) \approx \frac{1}{2^p - 1} (\tilde{y}(x,2h) - \tilde{y}(x,h)).$$

Odhad výsledku zpřesněný Richardsonovou extrapolací:

$$y(x) \approx \tilde{y}(x,h) + \frac{1}{2^p - 1} (\tilde{y}(x,h) - \tilde{y}(x,2h)).$$

 ${\bf Richard sonova\ extrapolace}$

- pasivní
- \bullet aktivní