EE 230 Experiment - 1

NGSpice Familiarization

30th July, 2021

Vinamra Baghel 190010070

1 RC Integrator

PartB1.cir:

```
B1. RC Integrator Vinamra Baghel 190010070

* <element-name> <nodes> <value/model>
r 1 2 10k

c 2 0 0.1u

v 1 0 pulse(0 5 0.25m 0 0 0.05m 0.1m)

*analysis command
.tran 10u 7m

.control
run
plot v(2) v(1)
.endc
.end
```


Figure 1: RC Integrator

2 RC Differentiator

PartB2.cir:

```
B2. RC Differentiator Vinamra Baghel 190010070

* <element-name> <nodes> <value/model>
r 2 0 10k

c 1 2 0.1u

v 1 0 pulse(0 5 4m 0 0 10m 20m)

*analysis command

.tran 10u 40m

.control

run

plot v(2) v(1)

.endc

.end
```


Figure 2: RC Differentiator

3 RC Lowpass Filter

PartB3.cir:

```
_{\scriptscriptstyle 1} B3. RC Lowpass Filter Vinamra Baghel 190010070
 * <element-name> <nodes> <value/model>
 r 1 2 10k
4 c 2 0 0.1u
_{5} vin 1 0 dc 0 ac 1
*analysis command
  .ac dec 10 1 1Meg
8 .control
9 run
set color0 = white
set color1 = black
set color2 = red
set color3 = blue
_{14} set xbrushwidth = 2
plot vdb(2) vdb(1)
16 .endc
17 .end
```


Figure 3: RC Lowpass

4 RC Highpass Filter

PartB4.cir:

```
B4. RC Highpass Filter Vinamra Baghel 190010070
 * <element-name> <nodes> <value/model>
 r 2 0 10k
 c 1 2 0.1u
5 vin 1 0 dc 0 ac 1
*analysis command
  .ac dec 10 1 1Meg
 .control
9 run
set color0 = white
set color1 = black
set color2 = red
set color3 = blue
_{14} set xbrushwidth = 2
plot vdb(2) vdb(1)
16 .endc
17 .end
```


Figure 4: RC Highpass

5 RC Bandpass Filter

PartB5.cir:

```
B5. RC Bandpass Filter Vinamra Baghel 190010070
 * <element-name> <nodes> <value/model>
   1 2 10k
   2 3 0.1u
   3 0 10k
 c 3 0 0.1u
 vin 1 0 dc 0 ac 1
 *analysis command
 .ac dec 10 1 1Meg
10 .control
11 run
plot vdb(3) vdb(1)
meas ac peak MAX vmag(3)
meas ac fpeak WHEN vmag(3) = peak
15 let f3db = peak/sqrt(2)
meas ac f1 WHEN vmag(3)=f3db RISE=1
meas ac f2 WHEN vmag(3)=f3db FALL=1
18 .endc
19 .end
```


Transfer function = $\frac{1000s}{s^2+3000s+10^6}.$ Comparing with $\frac{a_1s}{s^2+\frac{\omega}{Q}s+\omega},$

upper and lower -3dB frequencies: ω_1 , $\omega_2 = \omega_0 \sqrt{1 + \frac{1}{4Q^2}} \pm \frac{\omega_0}{2Q}$, and center-frequency gain $= \frac{a_1 Q}{\omega_0}$

Theoretically: Center frequency, $f_0 = 159.16$ Hz; Lower frequency, $f_L = 47.74$ Hz; and Upper frequency, $f_H = 525.51$ Hz

From Simulation: Center frequency, $f_0=1.584891\mathrm{e}+02$ Hz; Lower frequency, $f_L=4.838534\mathrm{e}+01$ Hz; and Upper frequency, $f_H=5.276607\mathrm{e}+02$ Hz

Figure 5: RC Bandpass

6 RLC Bandpass Filter

PartB6.cir:

```
B6. RLC Bandpass Filter Vinamra Baghel 190010070
 * <element-name> <nodes> <value/model>
 1 1 2 10m
 c 2 3 0.1u
 r 3 0 1k
 vin 1 0 dc 0 ac 1
 *analysis command
  .ac dec 10 1 10Meg
 .control
10 run
plot vdb(3) vdb(1)
meas ac peak MAX vmag(3)
meas ac fpeak WHEN vmag(3) = peak
 let f3db = peak/sqrt(2)
meas ac f1 WHEN vmag(3)=f3db RISE=1
meas ac f2 WHEN vmag(3)=f3db FALL=1
 .endc
18 .end
```


Transfer function = $\frac{1000s}{s^2+3000s+10^6}.$ Comparing with $\frac{a_1s}{s^2+\frac{\omega}{Q}s+\omega},$

upper and lower -3dB frequencies: ω_1 , $\omega_2 = \omega_0 \sqrt{1 + \frac{1}{4Q^2}} \pm \frac{\omega_0}{2Q}$, and center-frequency gain $= \frac{a_1 Q}{\omega_0}$

Theoretically: Center frequency, $f_0 = 174605.15$ Hz; Lower frequency, $f_L = 1475.98$ Hz; and Upper frequency, $f_H = 17460.64$ Hz

From Simulation: Center frequency, $f_0 = 1.74611e + 05$ Hz; Lower frequency, $f_L = 1.468642e + 03$ Hz; and Upper frequency, $f_H = 1.745991e + 04$ Hz

Figure 6: RLC Bandpass

Learnings from the experiment

- Circuit simulations using NGSpice Software
- Introduction of Lab Equipments
- XCircuit Software for Circuit Drawing
- Various RC and RLC Filter Circuits

Challenges faced

- $\bullet\,$ Unfamilarities with NGS pice Syntax
- Calculation of Center, Upper and Lower -3dB Frequencies

Questions or clarifications: None

Files associated: https://github.com/VNMR-35/EE-230-Lab