

University of Iceland

Faculty of Industrial Eng., Mechanical Eng. and Computer Scienc

ALICI

IIILIOUUCLIOI

C. I.

Instances

Feature Space

Algorithn Space

Performanc Space

Footprints in Instance Space

Preference Se

Preference

onclusion

ALICE

Analysis & Learning Iterative Consecutive Executions

Helga Ingimundardóttir

University of Iceland

June 30, 2016

Introduction

ALIC

Helg

Introductio

Problem Space

Instances

Feature Space

Algorithr Space

Performanc Space

Footprints in Instance Space

Preference Se

Conclusion

Motivation:

* The general goal is to train optimisation algorithms using data.

Contribution

* The main contribution of this thesis is towards a better understanding of how this training data should be constructed.

Motivation:

* The general goal is to train optimisation algorithms using data.

Contribution:

* The main contribution of this thesis is towards a better understanding of how this training data should be constructed.

Framework for Algorithm Selection Overview of Rice (1976)

ALIC

Helg

Introduction

Problem Space

Subspace of

Feature Sna

Algorithm

Performance Space

Footprints in Instance Space

Preference

Preference

Conclusion

Framework for Algorithm Selection Overview of Rice (1976)

ALIC

Helg

Introduction

Problem Space

Subspace of

Feature Sna

Algorithm

Performance

Footprints in Instance Space

Preference :

Preference

Conclusion

Framework for Algorithm Selection Overview of Rice (1976)

ALIC

Helg

Introduction

Problem Space

Subspace of

Feature Sna

Algorithm

Performance Space

Footprints in Instance Space

T reference

Learning

Conclusion

ALIC

Helg

Introduction

Problem Sp.

Instances

Algorithm

Performance

Footprints in Instance Space

Preference Learning

Conclusions

ALIC

Helg

Introduction

Problem Sp

Instances

Feature Space
Algorithm

Performance Space

Footprints in Instance Space

Preferen Learning

onclusions

ALIC

Helg

Introduction

Problem Spa

Instances

Algorithm

Performance Space

Footprints in Instance Space Preference Set

Preferen Learning

onclusions

ALIC

Helga

Introduction

Problem Sn

Subspace of

Feature Space

Algorithm Space

Performance Space

Instance Spac
Preference Se

Preference Learning

Conclusions

ALIC

Helg

Problem Space Subspace of Instances

reature Spa Algorithm Space

Performance Space Footprints in

Instance Space Preference Set Preference Learning

ALIC

Helg

Introduction

Problem Spa

Subspace of nstances

Feature Space Algorithm Space Performance

Footprints in nstance Space
Preference Set

earning Conclusions The attending guests: They all have to:

 J_1) Alice M_1) have wine or pour tea

 J_2) March Hare M_2) spread butter

 J_3) Dormouse M_3) get a haircut

 J_4) Mad Hatter. M_4) check the time of the broken watch

 M_5) say what they mean.

This can be considered as a typical 4×5 job-shop, where

* our guests are the jobs

* their tasks are the machines

 \star objective is to minimise C_{max} (when Alice can leave).

TICIB

Problem Space

Subspace of Instances

Algorithm Space

Space
Footprints in
Instance Space

earning Conclusions The attending guests: They all have to:

 J_1) Alice M_1) have wine or pour tea

 J_2) March Hare M_2) spread butter

 J_3) Dormouse M_3) get a haircut

 J_4) Mad Hatter. M_4) check the time of the broken watch

 M_5) say what they mean.

This can be considered as a typical 4×5 job-shop, where:

- * our guests are the jobs
- * their tasks are the machine
- \star objective is to minimise C_{max} (when Alice can leave).

The attending guests: They all have to:

 J_1) Alice M_1) have wine or pour tea

 J_2) March Hare M_2) spread butter

 J_3) Dormouse M_3) get a haircut

 J_4) Mad Hatter. M_4) check the time of the broken watch

 M_5) say what they mean.

This can be considered as a typical 4×5 job-shop, where:

* our guests are the jobs

* their tasks are the machines

 \star objective is to minimise C_{max} (when Alice can leave).

onclusions

The attending guests:

They all have to:

 J_1) Alice

 M_1) have wine or pour tea

J₂) March Hare

 M_2) spread butter

 J_3) Dormouse

 M_3) get a haircut

 J_4) Mad Hatter.

 M_4) check the time of the broken watch

 M_5) say what they mean.

This can be considered as a typical 4×5 job-shop, where:

- * our guests are the jobs
- * their tasks are the machines
- \star objective is to minimise C_{max} (when Alice can leave).

Mad Hatter Tea-party k-solutions

ALIC

Introduction

Problem Spa

Instances

Feature Spa

Algorithm Space

Performance Space

Instance Space
Preference Se

Preference S

Conclusions

Start: k = 0

Figure: Gantt chart

Midway: k = 10

Figure: Disjunctive graph

Figure: Gantt chart

Finish: k = 20

Figure: Disjunctive graph

Figure: Gantt chart

	name	size $(n \times m)$	N_{train}	N_{test}	note
	$\mathcal{P}_{i.rnd}^{6 \times 5}$	6 × 5	500	500	random
	$\mathcal{P}_{j.rndn}^{6 \times 5}$	6×5	500	500	random-narrow
	$\mathcal{P}_{i.rnd,J_1}^{6\times5}$	6×5	500	500	random with job variation
•	$\mathcal{P}_{i.rnd,M_1}^{6\times 5}$	6×5	500	500	random with machine variation
JSP	$\mathcal{P}_{i,rnd}^{10\times10}$	10×10	300	200	random
	$\mathcal{P}_{j.rndn}^{10 \times 10}$	10×10	300	200	random-narrow
	$\mathcal{P}_{j.rnd,J_1}^{10\times10}$	10×10	300	200	random with job variation
	$\mathcal{P}_{i.rnd,M_1}^{10\times10}$	10×10	300	200	random with machine variation
	$\mathcal{P}_{\mathit{JSP.ORLIB}}$	various	-	82	various
	$\mathcal{P}_{f.rnd}^{6 \times 5}$	6 × 5	500	500	random
	$\mathcal{P}_{f.rndn}^{6 \times 5}$	6×5	500	500	random-narrow
•	$\mathcal{P}_{f,ic}^{6\times5}$	6×5	500	500	job-correlated
FSP	$\mathcal{P}_{f.mc}^{6\times5}$	6×5	500	500	machine-correlated
	$\mathcal{P}_{f.mxc}^{6\times5}$	6×5	500	500	mixed-correlation
	$\mathcal{P}_{f.rnd}^{10 imes 10}$	10×10	300	200	random
	$\mathcal{P}_{\textit{FPS.ORLIB}}$	various	-	31	various

qoí	$\phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \\ \phi_7 \\ \phi_8$	job processing time job start-time job end-time job arrival time time job had to wait total processing time for job total work remaining for job number of assigned operations for job
machine	ϕ_9 ϕ_{10} ϕ_{11} ϕ_{12} ϕ_{13} ϕ_{14} ϕ_{15} ϕ_{16}	when machine is next free total processing time for machine total work remaining for machine number of assigned operations for machine change in idle time by assignment total idle time for machine total idle time for all machines current makespan
final makespan	$\begin{matrix} \phi_{17} \\ \phi_{18} \\ \phi_{19} \\ \phi_{20} \\ \phi_{RND} \\ \phi_{21} \\ \phi_{22} \\ \phi_{23} \\ \phi_{24} \end{matrix}$	final makespan using SPT final makespan using LPT final makespan using LWR final makespan using MWR final makespans using 100 random rollouts mean for $\phi_{\rm RND}$ standard deviation for $\phi_{\rm RND}$ minimum value for $\phi_{\rm RND}$ maximum value for $\phi_{\rm RND}$

qoí	φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8	job processing time job start-time job end-time job arrival time time job had to wait total processing time for job total work remaining for job number of assigned operations for job
machine	$\phi_9 \\ \phi_{10} \\ \phi_{11} \\ \phi_{12} \\ \phi_{13} \\ \phi_{14} \\ \phi_{15} \\ \phi_{16}$	when machine is next free total processing time for machine total work remaining for machine number of assigned operations for machine change in idle time by assignment total idle time for machine total idle time for all machines current makespan
final makespan	ϕ_{17} ϕ_{18} ϕ_{19} ϕ_{20} ϕ_{RND} ϕ_{21} ϕ_{22} ϕ_{23} ϕ_{24}	final makespan using SPT final makespan using LPT final makespan using LWR final makespan using MWR final makespans using 100 random rollouts mean for $\phi_{\rm RND}$ standard deviation for $\phi_{\rm RND}$ minimum value for $\phi_{\rm RND}$ maximum value for $\phi_{\rm RND}$

Feature Space for job-shop

ALICI Helga

Problem Space of instances

Algorithm

Performance Space

Footprints in Instance Space

Preference Set

earning conclusions

qoí	φ ₁ φ ₂ φ ₃ φ ₄ φ ₅ φ ₆ φ ₇ φ ₈	job processing time job start-time job end-time job arrival time time job had to wait total processing time for job total work remaining for job number of assigned operations for job
machine	ϕ_9 ϕ_{10} ϕ_{11} ϕ_{12} ϕ_{13} ϕ_{14} ϕ_{15} ϕ_{16}	when machine is next free total processing time for machine total work remaining for machine number of assigned operations for machine change in idle time by assignment total idle time for machine total idle time for all machines current makespan
final makespan	$\begin{array}{c} \phi_{17} \\ \phi_{18} \\ \phi_{19} \\ \phi_{20} \\ \phi_{RND} \\ \phi_{21} \\ \phi_{22} \\ \phi_{23} \\ \phi_{24} \end{array}$	final makespan using SPT final makespan using LPT final makespan using LWR final makespan using MWR final makespans using 100 random rollouts mean for $\phi_{\rm RND}$ standard deviation for $\phi_{\rm RND}$ minimum value for $\phi_{\rm RND}$ maximum value for $\phi_{\rm RND}$

Trajectory Strategies for \$\psi\$

ALIC

Introduction

Problem Space

Instances

Feature Spac

Algorithi Space

Performance Space

Footprints in Instance Spac

Preference Set

Preference Learning

Conclusion

Following the policy:

- \star (Φ^{OPT}) expert π_{\star} .
- * (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- \star ($\Phi^{\text{ES}.\rho}$) the policy obtained by optimising with CMA-ES.
- \star $\left(\Phi^{\text{ALL}}\right)$ union of all of the above.

Trajectory Strategies for \$\psi\$

ALIC

Introduction

Problem Space

Subspace of

Feature Spac

Algorithi Space

Performance Space

Footprints in Instance Spac

Preference Set

Learning

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ ^{SPT}) shortest processing time (SPT).
- * (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- \star ($\Phi^{\text{ES},\rho}$) the policy obtained by optimising with CMA-ES.
- \star (Φ^{ALL}) union of all of the above.

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- \star ($\Phi^{\text{ES},\rho}$) the policy obtained by optimising with CMA-ES.
- \star (Φ^{ALL}) union of all of the above.

Trajectory Strategies for \$\phi\$

ALIC

Heig

Introduction

Problem Space

Feature Spac

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Set

Conclusion

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- $\star~(\Phi^{\text{ES},\rho})$ the policy obtained by optimising with CMA-ES.
- \star (Φ^{ALL}) union of all of the above.

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- \star ($\Phi^{\text{ES},\rho}$) the policy obtained by optimising with CMA-ES.
- \star (Φ^{ALL}) union of all of the above.

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ ^{RND}) random policy (RND).
- \star ($\Phi^{ES,\rho}$) the policy obtained by optimising with CMA-ES.
- \star (Φ^{ALL}) union of all of the above.

Trajectory Strategies for Φ

ALIC

Hel

ntroduction Problem Spac Subspace of nstances

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference Se

Conclusion

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- * $(\Phi^{ES.\rho})$ the policy obtained by optimising with CMA-ES.
- \star (Φ^{ALL}) union of all of the above.

- \star (Φ^{OPT}) expert π_{\star} .
- \star (Φ^{SPT}) shortest processing time (SPT).
- \star (Φ^{LPT}) longest processing time (LPT).
- \star (Φ^{LWR}) least work remaining (LWR).
- \star (Φ^{MWR}) most work remaining (MWR).
- \star (Φ^{RND}) random policy (RND).
- \star ($\Phi^{ES.\rho}$) the policy obtained by optimising with CMA-ES.
- \star (Φ ^{ALL}) union of all of the above.

Sampled Size of $|\Phi(k)|$ 6 × 5, $N_{train} = 500$

ALIC

•

Introduction

Problem Space

Subspace of

Feature Spac

Algorithm Space

Performance Space

Footprints in Instance Spa

Preference Se

Preference

Conclusions

Various Methods for Solving JSP Based on Jain and Meeran (1999)

and Meeran (1999)

ALIC

Helg

Problem Space
Subspace of

Feature Space

Space

Space

Instance Space
Preference Set

Learning

Framework for Algorithm Learning

ALIC

Helg

ntroduction
Problem Space

Feature Space

Algorithm Space

Space Space

Instance Space

Learning

nclusions

Performance of policy π compared with its optimal makespan, found using an expert policy, π_{\star} , is the following loss function:

$$\rho = \frac{C_{\mathsf{max}}^{\pi} - C_{\mathsf{max}}^{\pi_{\star}}}{C_{\mathsf{max}}^{\pi_{\star}}} \cdot 100\%$$

The goal is to minimise this discrepancy between predicted value and true outcome.

Framework for Algorithm Learning

ALIC

Helga

Problem Space

Instances

Feature Spa

Algorithm Space

Space Space

Footprints in Instance Spac

Preference Set

Preference

Deviation from Optimality

ALIC

Helg

Introduction
Problem Spac
Subspace of

Feature Spa

Algorithm Space

Performance Space

Instance Space

Preference Se

Preference

Conclusions

Making Optimal Decision

ALIC

Helg

Introduction

Problem Space

- . .

reature Jpa

Space

Space

Instance Spac

Preference Se

Preterence Learning

onclusion

Problem ___j.rnd ___f.rnd

Making Optimal Decision

Helga

ntroduction
Problem Space
Subspace of
Instances
Seature Space
Algorithm
Ipace
Performance

Footprints in Instance Space Preference Set

Probability of SDR Being Optimal

ALIC

Helg

Introduction
Problem Space
Subspace of

Feature Spa

Algorithm Space

Performance Space

Footprints in Instance Space

Preference Se

Blended Dispatching Rule

ALIC

Helg

Introduction
Problem Space

Instances
Feature Spac

Algorithm Space

Performance Space

Footprints in Instance Space

Preference So

Conclusions

Dispatching rule

Shortest Processing Time

Most Work Remaining

SPT (first 10 %), MWR (last 90 %)

SPT (first 15 %), MWR (last 85 %)

SPT (first 20 %), MWR (last 80 %)

SPT (first 30 %), MWR (last 70 %)

SPT (first 40 %), MWR (last 60 %)

Data set

train test

Impact of Sub-optimal Decision

ALIC

riciga

Problem Spa

Subspace of

Feature Spa

Algorithm

Performance

Footprints in Instance Space

Preference Se

Learning

Probability of SDR Being Optimal

ALIC

_

Introduction

Problem Space

Instances

Feature Space

Algorithr Space

Performance Space

Footprints in Instance Space

Preference Se

Preference Learning

Impact of Sub-optimal Decision {Clim, Clims}

ALIC

Helg

Introduction
Problem Space

Subspace of Instances

Feature Space

Algorithm

Performance Space

Footprints in Instance Space

Preference Set

Prefere

Generating Training Data

ALICI

Helg

Problem Space

Enatura Spac

Algorithn Space

Performance Space

Instance Spa

Preference Se

Preference Learning

Conclusion

ALICE framework for creating dispatching rules:

- * Linear classification to identify good dispatches, from worse ones.
- \star Generate feature set, $\Phi \subset \mathcal{F}$, both from
 - \star optimal solutions, ϕ^o
 - \star suboptimal solutions, ϕ^s

by exploring various trajectories within the feature-space (where $\phi^o, \phi^s \in \mathcal{F}$).

- \star Sample Φ to create training set Ψ with rank pairs:
 - \star optimal decision, $(z^{o}, y_{o}) = (\phi^{o} \phi^{s}, +1)$
 - \star suboptimal decision, $(z^s, y_s) = (\phi^s \phi^o, -1)$

using different ranking schemes (where $\mathbf{z}^o, \mathbf{z}^s \in \Psi$)

 \star Sample Ψ using stepwise bias for time independent policy.

ALICE framework for creating dispatching rules:

- * Linear classification to identify good dispatches, from worse ones.
- * Generate feature set, $\Phi \subset \mathcal{F}$, both from
 - \star optimal solutions, ϕ°
 - * suboptimal solutions, ϕ^s

by exploring various trajectories within the feature-space (where $\phi^o, \phi^s \in \mathcal{F}$).

- - * suboptimal decision, $(z^s, y_s) = (\phi^s \phi^o, -1)$

 \star Sample Ψ using stepwise bias for time independent policy.

Generating Training Data

ALICE framework for creating dispatching rules:

- * Linear classification to identify good dispatches, from worse ones.
- \star Generate feature set, $\Phi \subset \mathcal{F}$, both from
 - \star optimal solutions, ϕ^o
 - \star suboptimal solutions, ϕ^s

by exploring various trajectories within the feature-space (where $\phi^o, \phi^s \in \mathcal{F}$).

- \star Sample Φ to create training set Ψ with rank pairs:
 - \star optimal decision, $(\mathbf{z}^o, y_o) = (\phi^o \phi^s, +1)$
 - \star suboptimal decision, $(\mathbf{z}^s, y_s) = (\phi^s \phi^o, -1)$

using different ranking schemes (where $z^o, z^s \in \Psi$)

 \star Sample Ψ using stepwise bias for time independent policy.

ALIC

ntroduction Problem Space ubspace of

Feature Spac Algorithm Space

Space Footprints in Instance Spac

Preference Set

Learning
Conclusions

ALICE framework for creating dispatching rules:

- * Linear classification to identify good dispatches, from worse ones.
- * Generate feature set, $\Phi \subset \mathcal{F}$, both from
 - \star optimal solutions, ϕ°
 - \star suboptimal solutions, ϕ^s

by exploring various trajectories within the feature-space (where $\phi^o, \phi^s \in \mathcal{F}$).

- \star Sample Φ to create training set Ψ with rank pairs:
 - \star optimal decision, $(\mathbf{z}^o, y_o) = (\phi^o \phi^s, +1)$
 - * suboptimal decision, $(z^s, y_s) = (\phi^s \phi^o, -1)$
 - using different ranking schemes (where $z^o, z^s \in \Psi$)
- \star Sample Ψ using stepwise bias for time independent policy.

Sampled Size of $|\Phi(k)|$ 6 × 5, $N_{train} = 500$

ALIC

Introduction

Problem Space

Instances

Feature Space

Algorithm Space

Performance Space

Instance Spa

Preference S

Prefere Learnin

Sampled Size of $|\Psi(k)|$ 6 × 5, $N_{train} = 500$

ALIC

Helga

Introduction
Problem Spac
Subspace of

Feature Space

Algorithm Space

Space

Instance Spa

Preference So

Preference Learning

Stepwise Bias Strategies

 6×5 , $N_{train} = 50$

ALIC

Introduction

Problem Space

mounces

Feature Spa

Algorithm Space

Performance Space

Instance Space

Preference Se

Preference

Framework for Algorithm Learning

ALIC

Helg

ntroduction Problem Space

Feature Spac

Algorithm Space

Space Space

Instance Spac

Prefere Learnin

Ordinal Regression

ALIC

Droblom Snov

Trobletti Spac

Feature Sna

Algorithr Space

Performance Space

Footprints in Instance Space

Preterence Se

Preference Learning

Conclusion

Preference learning:

★ Mapping of points to ranks: $\{h(\cdot): \Phi \mapsto Y\}$ where

$$\phi_o \succ \phi_s \quad \Longleftrightarrow \quad h(\phi_o) > h(\phi_s)$$

* The preference is defined by a linear function:

$$h(\phi) = \langle \mathsf{w} \cdot \phi \rangle$$

optimised w.r.t. w based on training data Ψ

 Note: Limitations in approximation function to capture the complex dynamics incorporated in optimal trajectorie

Preference learning:

* Mapping of points to ranks: $\{h(\cdot): \Phi \mapsto Y\}$ where

$$\phi_o \succ \phi_s \quad \Longleftrightarrow \quad h(\phi_o) > h(\phi_s)$$

* The preference is defined by a linear function:

$$h(\phi) = \langle \mathbf{w} \cdot \phi \rangle$$

optimised w.r.t. w based on training data Ψ

Ordinal Regression

ALICE

Helg

ntroduction Problem Space Subspace of Instances

Feature Space

Space Performance

Footprints in Instance Space

Preference Learning

Conclusions

Preference learning:

* Mapping of points to ranks: $\{h(\cdot): \Phi \mapsto Y\}$ where

$$\phi_o \succ \phi_s \quad \Longleftrightarrow \quad h(\phi_o) > h(\phi_s)$$

* The preference is defined by a linear function:

$$h(\phi) = \langle \mathbf{w} \cdot \phi \rangle$$

optimised w.r.t. w based on training data Ψ

 Note: Limitations in approximation function to capture the complex dynamics incorporated in optimal trajectories.

Various Methods for Solving JSP Based on Jain and Meeran (1999)

ALIC

Helg

Introduction Problem Spac Subspace of

Feature Space

Algorithm Space

Space Space

Footprints in Instance Space

Learnin

Conclusions

ALIC

Heig

Introduction

Problem Spac

.....

reature Space

Algorithi Space

Performanc Space

Footprints in Instance Space

Preference Se

Preference Learning

Conclusion

- * Prediction with expert advice, π_*
- \star Follow the perturbed leader (OPT ϵ)
- * Follow a heuristic (e.g. SDRs).

ALIC

Heig

Introduction

Problem Spac

mstances

Feature Space

Algorithi Space

Performanc Space

Footprints in Instance Space

Preference Se

Preferenc Learning

Learning

- \star Prediction with expert advice, π_{\star}
- \star Follow the perturbed leader (OPT ϵ)
- * Follow a heuristic (e.g. SDRs).

ALICI

Helg

Introduction

Problem Space

Instances

Feature Space

Algorithic Space

Performance Space

Footprints in Instance Space

Preference 5

Learning

- \star Prediction with expert advice, π_{\star}
- \star Follow the perturbed leader (OPT ϵ)
- * Follow a heuristic (e.g. SDRs).

- * Prediction with expert advice, π_*
- \star Follow the perturbed leader (OPT ϵ)
- * Follow a heuristic (e.g. SDRs).

ALICI

Helg

ntroduction Problem Space Subspace of Instances

Feature Space Algorithm Space

Space Footprints in Instance Space

Preference Learning

Conclusions

- \star Prediction with expert advice, π_{\star}
- * Follow the perturbed leader (OPT ϵ)
- * Follow a heuristic (e.g. SDRs).

Active Imitation Learning

ALIC

Introductio

Problem Spa

Instances

Feature Space

Algorithi Space

Performano Space

Footprints in Instance Space

Preference Se

Preference Learning

Conclusion

Active imitation learning (iterative):

* Dataset Aggregation (DAgger)

$$\pi_i = \beta_i \pi_* + (1 - \beta_i) \hat{\pi}_{i-1}$$

where $\hat{\pi}_{i-1}$ is the previous learned model, and $\hat{\pi}_i$ learns on aggregated dataset of all previous iterations.

Active imitation learning (iterative):

⋆ Dataset Aggregation (DAgger)

$$\pi_i = \beta_i \pi_\star + (1 - \beta_i) \hat{\pi}_{i-1}$$

where $\hat{\pi}_{i-1}$ is the previous learned model, and $\hat{\pi}_i$ learns

Active imitation learning (iterative):

⋆ Dataset Aggregation (DAgger)

$$\pi_i = \beta_i \pi_\star + (1 - \beta_i) \hat{\pi}_{i-1}$$

where $\hat{\pi}_{i-1}$ is the previous learned model, and $\hat{\pi}_i$ learns on aggregated dataset of all previous iterations.

Active imitation learning (iterative):

⋆ Dataset Aggregation (DAgger)

$$\pi_i = \beta_i \pi_\star + (1 - \beta_i) \hat{\pi}_{i-1}$$

where $\hat{\pi}_{i-1}$ is the previous learned model, and $\hat{\pi}_i$ learns on aggregated dataset of all previous iterations.

Deviation from Optimality

ALIC

Helg

Introduction Problem Space Subspace of Instances

Feature Spa

Performance Space

Footprints in Instance Space

Prefero Learnin

Conclusion

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study - with the following guidelines:

- * For a given problem domain, use a suitable problem
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs
 - $\star \Psi_n$ reduces the preference set without loss of
 - * Stepwise bias is needed to balance time dependent

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- * For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs
 - $\star \Psi_n$ reduces the preference set without loss of
 - * Stepwise bias is needed to balance time dependent

ALICE

ntroduction
Problem Spac
Subspace of
nstances

Feature Spac

Performance

Footprints in Instance Space

Preference Se Preference Learning

Conclusion

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- * For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs introduced to the system:
 - \star Ψ_p reduces the preference set without loss of performance.
 - \star Stepwise bias is needed to balance time dependent Ψ_p in order to create time independent models.

It is non intuitive how to go about collecting training data.

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- ★ For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs introduced to the system:
 - \star Ψ_p reduces the preference set without loss of performance.
 - \star Stepwise bias is needed to balance time dependent Ψ_p in order to create time independent models.

It is non intuitive how to go about collecting training data

ALICI

ntroduction Problem Spac Subspace of

Feature Spac Algorithm Space

Performance Space

Instance Spac Preference Se Preference Learning

Conclusion

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- ★ For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs introduced to the system:
 - $\star \Psi_p$ reduces the preference set without loss of performance.
 - * Stepwise bias is needed to balance time dependent Ψ_p in order to create time independent models.

It is non intuitive how to go about collecting training data

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- * For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- * Success is highly dependent on the preference pairs introduced to the system:
 - $\star \Psi_p$ reduces the preference set without loss of performance.
 - * Stepwise bias is needed to balance time dependent Ψ_p in order to create time independent models.

It is non intuitive how to go about collecting training data.

ALICE

Problem Space of instances

Space
Performance
Space

Footprints in
nstance Spac

Preference Learning

The thesis introduces a framework for learning (linear) composite priority dispatching rule – using job-shop as a case-study – with the following guidelines:

- ★ For a given problem domain, use a suitable problem generator to train and test on.
- \star Define features to grasp the essence of visited k-solutions
- ★ Success is highly dependent on the preference pairs introduced to the system:
 - $\star \Psi_p$ reduces the preference set without loss of performance.
 - \star Stepwise bias is needed to balance time dependent Ψ_p in order to create time independent models.

It is non intuitive how to go about collecting training data.

ALICE

Problem Space of instances

Space
Performance
Space
Footprints in

rstance Space reference Set reference earning

ALICE

Helg

Introduction

Problem Space

Subspace of

Feature Space

Algorithm Space

Performance Space

Instance Space

Preference

Conclusion

Continued from prev. slide:

- \star Learning optimal trajectories predominant in literature. Study showed Φ^{OPT} can result in insufficient knowledge.
- * Following sub-optimal deterministic policies, yet labelling with an optimal solver, improves the guiding policy.
- * Active update procedure using DAgger ensures sample states the learned model is likely to encounter is integrated to Ψ_{n}^{DAi} .
- * Instead of reusing the same problem instances, extend the training set with new instances for quicker convergence of DAgger.
- * In sequential decision making, all future observations are dependent on previous operations.

ALICE

Helg

ntroduction Problem Spac Subspace of nstances

Feature Space Algorithm

Performance Space

Instance Space
Preference Set
Preference

Conclusion

Continued from prev. slide:

- \star Learning optimal trajectories predominant in literature. Study showed Φ^{OPT} can result in insufficient knowledge.
- * Following sub-optimal deterministic policies, yet labelling with an optimal solver, improves the guiding policy.
- * Active update procedure using DAgger ensures sample states the learned model is likely to encounter is integrated to Ψ_p^{DAi} .
- * Instead of reusing the same problem instances, extend the training set with new instances for quicker convergence of DAgger.
- * In sequential decision making, all future observations are dependent on previous operations.

Continued from prev. slide:

- \star Learning optimal trajectories predominant in literature. Study showed Φ^{OPT} can result in insufficient knowledge.
- * Following sub-optimal deterministic policies, yet labelling with an optimal solver, improves the guiding policy.
- * Active update procedure using DAgger ensures sample states the learned model is likely to encounter is integrated to Ψ_p^{DAi} .
- * Instead of reusing the same problem instances, extend the training set with new instances for quicker convergence of DAgger.
- * In sequential decision making, all future observations are dependent on previous operations.

ALICE

ntroduction Troblem Space ubspace of Instances

Algorithm Space Performance Space Footprints in nstance Spac

Preference earning

Conclusions

ALICE

Continued from prev. slide:

- \star Learning optimal trajectories predominant in literature. Study showed Φ^{OPT} can result in insufficient knowledge.
- * Following sub-optimal deterministic policies, yet labelling with an optimal solver, improves the guiding policy.
- * Active update procedure using DAgger ensures sample states the learned model is likely to encounter is integrated to Ψ_p^{DAi} .
- * Instead of reusing the same problem instances, extend the training set with new instances for quicker convergence of DAgger.
- * In sequential decision making, all future observations are dependent on previous operations.

ALICI

Continued from prev. slide:

- \star Learning optimal trajectories predominant in literature. Study showed Φ^{OPT} can result in insufficient knowledge.
- * Following sub-optimal deterministic policies, yet labelling with an optimal solver, improves the guiding policy.
- * Active update procedure using DAgger ensures sample states the learned model is likely to encounter is integrated to Ψ_p^{DAi} .
- * Instead of reusing the same problem instances, extend the training set with new instances for quicker convergence of DAgger.
- * In sequential decision making, all future observations are dependent on previous operations.

Acknowledgements

Funding: University of Iceland's Research Fund.

Doctoral committee:

- Prof. Tómas Philip Rúnarsson, University of Iceland (advisor).
- * Prof. Gunnar Stefánsson, University of Iceland.
- * Prof. Michèle Sebag, Université Paris-Sud.

Illustrations: Sir John Tenniel (1820-1914)

ALIC

Questions?

Helga Ingimundardóttir hei2@hi.is

Supplementary material:

- * Shiny application
- * Github.

