

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010

http://www.ltalab.com

Dates of Tests: Nov 30~ Dec 06, 2010 Test Report S/N: LR500111012E Test Site: LTA CO., LTD.

FCC ID

APPLICANT

V7DCM250D01

Public Wireless, Inc

TEST REPORT

FCC Part 22(H)/Part 24(E) Certification

Classification : PCS Licensed Transmitter

Manufacturing Description : Dual Optical DAS Repeater

Manufacturer : Kisan Telecom Co., Ltd.

Model name : CM250D01

Test Device Serial No.: : Identification

FCC Rule Part(s) : §22(H), §24(E), §2

Downlink : 869~894MHz (GSM 850 / WCDMA 850)

1930~1990MHz (GSM 1900 / WCDMA 1900)

Uplink : N/A (Optical)
Rated RF Output Power : 10W (40dBm)

Type Modulation GSM / WCDMA

Emission Designators: : GXW / F9W

Data of issue : December 6, 2010

This test report is issued under the authority of:

The test was supervised by:

Kyung-Taek LEE, Technical Manager

Hyun-Chae You, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	
3.1 SUMMARY OF TESTS	5
3.2 DESCRIPTION OF TESTS	6
3.2.1 RF Rower Output	7
3.2.2 Occupied Bandwidth, Input/Output Comparison	8
3.2.3 Out-of-Band Emissions at antenna terminal	13
3.2.4 Intermodultion Test	32
3.2.5 Transmitter Spurious Radiation	37
3.2.6 Out-of-Band Rejection	39
3.2.7 FREQUENCY STABILITY	41
3.3 CONCLUSION	44
APPENDIX	
APPENDIX 1 TEST FOLIPMENT LISED FOR TESTS	45

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2011-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2011-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2011-04-22	FCC filing
VCCI	JAPAN	R2133, C2307	2011-06-21	VCCI registration
IC	CANADA	IC5799	2012-05-14	IC filing

2. Information's about test item

2-1 Client

Company name : Public Wireless, Inc

Address : 1325A McCandless Dr. BLDG. A, Milpitas, CA 95035, USA

Telephone : +408-263-4600

2-2 Manufacturer

Company name : Kisan Telecom Co., Ltd.

Address : 2F, Segi Bldg., 66-2 Bangyi-Dong Songpa-Gu, Seoul, 138-828, Korea

Telephone : +82 2-3433-8341

2-3 Equipment Under Test (EUT)

Classification : PCS Licensed Transmitter
Trade name : Dual Optical DAS Repeater

Model name : CM250D01 Serial number : Identification

Date of receipt : November 29, 2010

EUT condition : Pre-production, not damaged

Downlink : 869~894MHz (GSM 850 / WCDMA 850)

1930~1990MHz (GSM 1900 / WCDMA 1900)

Uplink : N/A (Optical)

Max gain : 50dB

Frequency Tolerance : ± 0.08 ppm

Emission Designators : GSM(GXW), WCDMA(F9W)

Power Input : 60Vac(Square wave)

2-4 Tested frequency

Mode	Frequency (CH)	TX (MHz)
	Low (129)	869.4
GSM 850	Mid (190)	881.6
	High (250)	893.6
	Low (513)	1930.4
GSM 1900	Mid (661)	1960
	High (809)	1989.6
	Low (4357)	871.4
WCDMA 850	Mid (4408)	881.6
	High (4458)	891.6
	Low (9662)	1932.4
WCDMA 1900	Mid (9800)	1960
	High (9938)	1987.6

2.5 Mode of Operation

The EUT was powered by 60VAC. The EUT was configured for maximum gain, 50dB. Repeater simulators were used to provide the input signals to the EUT. Tests were performed with GSM and WCDMA modulations. The input power was the maximum declared by the manufacturer.

3. Test Report

3.1 Summary of tests

Parameter	Status			
Transmitter Requirements				
RF Power Output	С			
Occupied Bandwidth, Input/Output Comparison	С			
Out-of-Band Emissions at antenna terminal	С			
Intermodulation Test	С			
Transmitter Spurious Radiation	С			
Out of Band Rejection	-			
Frequency Stability	С			
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				
Note 2: The data in this test report are to be tested to the ANSI/TIA-603-C-2004 standard				

3.2 Results Of Tests

3.2.1 RF Power Output

1. Test Procedure

The EUT RF output was connected to Powermeter. The EUT was setup to transmit continuously with maximum power. A spectrum analyzer was setup to measure peak power. Measurements were performed at three frequencies (low, middle, and high channels) with all modulations.

2. Test Results

Modulation: GSM 850

	Freq. Tuned	Power Input	Power output	Power Output
	(MHz)	(dBm)	(dBm)	(W)
Low	869.4	-10.15	39.28	8.47
Middlw	881.6	-10.11	40.02	10.05
High	893.6	-9.96	39.58	9.08

Modulation: GSM 1900

	Freq. Tuned	Power Input	Power output	Power Output		
	(MHz)	(dBm)	(dBm)	(W)		
Low	1930.4	-10.33	40.02	10.05		
Middlw	1960.0	-10.16	40.42	11.02		
High	1989.6	-10.58	39.79	9.53		

Modulation: WCDMA 850

	Freq. Tuned	Power Input	Power output	Power Output
	(MHz)	(dBm)	(dBm)	(W)
Low	871.4	-10.11	39.54	8.99
Middlw	881.6	-10.13	40.01	10.12
High	891.6	-10.15	39.84	9.64

Modulation: WCDMA 1900

	Freq. Tuned	Power Input	Power output	Power Output
	(MHz)	(dBm)	(dBm)	(W)
Low	1932.4	-10.25	39.55	9.02
Middlw	1960.0	-10.24	39.95	9.89
High	1987.6	-10.68	39.82	9.59

3.2.2 Occupied Bandwidth, Input/Output Comparison

1. Test Procedure

The EUT RF ports were connected to Spectrum analyzer. The EUT was setup to transmit maximum power. The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at the input and output ports of the EUT at the middle channels for each type of modulation

2. Test Results : Complies

Refer to the following Graphs.

Input/Output Bandwidth Comparison - GSM 850

Input/Output Bandwidth Comparison - GSM 1900

Input/Output Bandwidth Comparison – WCDMA 850

Input/Output Bandwidth Comparison – WCDMA 1900

3.2.3 Out-of-Band Emissions at antenna terminal

1. Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $(43 + 10 \log P)$ dB. Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

2. Test Procedure

The EUT RF output was connected to spectrum analyzer. The EUT was setup to transmit the maximum power. The spectrum analyzer resolution bandwidth (RBW) was set to 1 MHz in the PCS band and 100 kHz in the Cell band. For measurements at the band edges, the resolution bandwidth (RBW) was set to 100 kHz. Measurements were performed at three frequencies at the low, middle, and high channels for all modulations types. Intermodulation was performed by injecting two modulated signals into the EUT. One signal was set at the bandedge of either the Up Link or Down Link band and the other signal was set 6 MHz away.

3. Test Results: Complies

Refer to the following Graphs.

GSM 850 (Spurious Emission : Out of Band)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	(W)
Low	869.4	-	-13.00	-
Middlw	881.6	-	-13.00	-
High	893.6	-	-13.00	-

^{*}note: No other emissions were detected at a level greater than 20dB below limit.

GSM 1900 (Spurious Emission : Out of Band)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	(W)
Low	1930.4	-	-13.00	-
Middlw	1960	-	-13.00	-
High	1989.6	-	-13.00	-

^{*}note: No other emissions were detected at a level greater than 20dB below limit.

WCDMA 850 (Spurious Emission : Out of Band)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	(W)
Low	871.4	-	-13.00	-
Middlw	881.6	-	-13.00	-
High	891.6	-	-13.00	-

^{*}note: No other emissions were detected at a level greater than 20dB below limit.

WCDMA 1900 (Spurious Emission : Out of Band)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	(W)
Low	1932.4	-	-13.00	-
Middlw	1960	1	-13.00	1
High	1987.4	-	-13.00	-

^{*}note: No other emissions were detected at a level greater than 20dB below limit.

Antenna Terminal Spurious Emissions, GSM 850, Low

Antenna Terminal Spurious Emissions, GSM 850, Middle

Antenna Terminal Spurious Emissions, GSM 850, High

Antenna Terminal Spurious Emissions, GSM 1900, Low

Antenna Terminal Spurious Emissions, GSM 1900, Middle

Antenna Terminal Spurious Emissions, GSM 1900, High

Antenna Terminal Spurious Emissions, WCDMA 850, Low

Antenna Terminal Spurious Emissions, WCDMA 850, Middle

Antenna Terminal Spurious Emissions, WCDMA 850, High

Antenna Terminal Spurious Emissions, WCDMA 1900, Low

Antenna Terminal Spurious Emissions, WCDMA 1900, Middle

Antenna Terminal Spurious Emissions, WCDMA 1900, High

GSM 850 (Spurious Emission : Band Edge)

	Freq. Tuned	Freq. Tuned Result Lin		Magin
	(MHz)	(dBm)	(dBm)	
Low	869.4	-34.77	-13.00	21.77
High	893.6	-34.97	-13.00	21.97

GSM 1900 (Spurious Emission : Band Edge)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	
Low	1930.4	-33.65	-13.00	20.65
High	1989.6	-29.92	-13.00	16.92

WCDMA 850 (Spurious Emission : Band Edge)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	
Low	871.4	-16.48	-13.00	3.48
High	891.6	-20.99	-13.00	7.99

WCDMA 1900 (Spurious Emission: Band Edge)

	Freq. Tuned	Result	Limit	Magin
	(MHz)	(dBm)	(dBm)	
Low	1932.4	-19.32	-13.00	6.32
High	1987.6	-17.07	-13.00	4.07

Band Edge Emissions, GSM 850, Low

Band Edge Emissions, GSM 850, High

Band Edge Emissions, GSM 1900, Low

Band Edge Emissions, GSM 1900, High

Band Edge Emissions, WCDMA 850, Low

Band Edge Emissions, WCDMA 850, High

Band Edge Emissions, WCDMA 1900, Low

Band Edge Emissions, WCDMA 1900, High

3.2.4 Intermodulation

1. Requirement

the power of any emission shall be attenuated below the transmitter power (P) by at least 43 $+10 \log (P) dB$. The limit of emission equal to -13dBm..

2. Test Procedure

Two RF signals set as inputs. The frequencies of both RF signals shall be within the repeater's operating band. The spacing between both RF signals shall be the minimum possible spacing applied in a network. The level of both RF input signals shall be increased, until the maximum rated output power per channel, as declared by the manufacturer, is reached.

3. Test Results: Complies

Refer to the following Graphs.

GSM 850 Low

GSM 850 High

GSM 1900 Low

GSM 1900 High

WCDMA 850 Low

WCDMA 850 High

WCDMA 1900 Low

WCDMA 1900 High

3.2.5 Transmitter Spurious Radiation

4. Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $(43 + 10 \log P) dB$. Note: That corresponds to the level of -13 dBm for any radiated out-of-band and spurious emissions.

5. Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The frequency range up to 10-th harmonic of each of the three fundamental frequencies (low, middle, and high channels) was investigated. The worst case of emissions are reported. For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level (Vg in dBm) was adjusted to obtain the same reading as from EUT. The EIRP at the spurious emissions frequency was calculated as follows.

EIRP(dBm) = Vg + G(dBi)

The EUT output port was connected to a 50 Ω termination load.

6. Test Results : Complies

* EIRP is calculated as: EIRP(dBm)= Vg(dBm) + G(dBi)

All other emissions not reported are more than 20 dB below the limit.

Transmitter Spurious Radiated Emissions – GSM 850

Frequency [MHz]	SA Reading [dBuV/m]	Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	All othe	er emissions not reported are more than	20 dB below th	ne limit.	

Transmitter Spurious Radiated Emissions – GSM 1900

Frequency [MHz]	SA Reading [dBuV/m]	Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
All other emissions not reported are more than 20 dB below the limit.					

Transmitter Spurious Radiated Emissions – WCDMA 850

Frequency [MHz]	SA Reading [dBuV/m]	Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	All othe	er emissions not reported are more than	n 20 dB below tl	ne limit.	

Transmitter Spurious Radiated Emissions – WCDMA 1900

Frequency [MHz]	SA Reading [dBuV/m]	Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]	
	All other emissions not reported are more than 20 dB below the limit.					

3.2.6 Out-of-Band Rejection

<u>Downlink Band Pass – GSM 850 mode</u>

Downlink Band Pass - WCDMA 850 mode

<u>Downlink Band Pass – GSM 1900 mode</u>

Downlink Band Pass – WCDMA 1900 mode

3.2.7 Frequency Stability

1. Requirement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

2. Test Procedure

The EUT was placed inside the temperature chamber. The RF output port was connected to a spectrum analyzer. The EUT was setup to transmit the maximum power. After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the spectrum analyzer and recorded. At room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

3. Test Results : Complies

-refer to the next page

OPERATING FREQUENCY: 881600025 Hz

CHANNEL: 190(Mid)

REFERENCE VOLTAGE : $\underline{60}$ VAC DEVIATION LIMIT : $\underline{\pm 0.00010}$ % or $\underline{1}$ ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	60	+20(Ref)	881,600,025	Ref
100%		-30	881,600,056	0.000004
100%		-20	881,600,098	0.000008
100%		-10	881,600,087	0.000007
100%		0	881,600,095	0.000008
100%		+10	881,600,054	0.000003
100%		+20	881,600,018	-0.000001
100%		+25	881,599,985	-0.000005
100%		+30	881,599,981	-0.000005
100%		+40	881,599,997	-0.000003
100%		+50	881,599,986	-0.000004
100%		+60	881,599,964	-0.000007
85%	51	+20	881,600,056	0.000004
115%	69	+20	881,600,049	0.000003

OPERATING FREQUENCY : 1,960,000,925 Hz

CHANNEL: 661(Mid)

REFERENCE VOLTAGE : $\underline{60}$ VAC DEVIATION LIMIT : $\underline{\pm 0.00010}$ % or $\underline{1}$ ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	60	+20(Ref)	1,960,000,925	Ref
100%		-30	1,960,000,796	-0.000007
100%		-20	1,960,000,805	-0.000006
100%		-10	1,960,000,855	-0.000004
100%		0	1,960,000,864	-0.000003
100%		+10	1,960,000,882	-0.000002
100%		+20	1,960,000,934	0.000000
100%		+25	1,960,001,005	0.000004
100%		+30	1,960,001,015	0.000005
100%		+40	1,960,001,023	0.000005
100%		+50	1,960,001,048	0.000006
100%		+60	1,960,001,055	0.000007
85%	51	+20	1,960,000,999	0.000004
115%	69	+20	1,960,000,934	0.000000

3.3 CONCLUSION

The data collected shows that the **Public Wireless, Inc Dual Band Optical DAS Repeater FCC ID: V7DCM250D01** complies with all the requirements of Parts 2,22, 24 of the FCC Rules.

--- Blank ---

APPENDIX 1

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	FSV-30	100757	R&S	Feb-11
2	Spectrum Analyzer	8563E	3425A02505	НР	Mar-11
3	Spectrum Analyzer	8594E	3710A04074	НР	Oct-11
4	Signal Generator	8648C	3623A02597	НР	Mar-11
5	Signal Generator	83711B	US34490456	НР	Mar-11
6	Attenuator (3dB)	8491A	37822	НР	Oct-11
7	Attenuator (10dB)	8491A	63196	НР	Oct-11
8	EMI Test Receiver	ESCI7	100722	R&S	Jun-11
9	Horn Antenna(18 ~ 40GHz)	SAS-574	154	Schwarzbeck	Nov-12
10	Horn Antenna(18 ~ 40GHz)	SAS-574	155	Schwarzbeck	Nov-12
11	RF Amplifier	8447D	2949A02670	НР	Oct-11
12	RF Amplifier	8449B	3008A02126	НР	Mar-11
13	Test Receiver	ESHS10	828404/009	R&S	Mar-11
14	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Apr-11
15	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-11
16	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-11
17	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-11
18	Horn Antenna	BBHA 9120D	9120D122	SCHWARZBECK	Dec-10
19	Dipole Antenna	VHA9103	2116	SCHWARZBECK	Nov-12
20	Dipole Antenna	VHA9103	2117	SCHWARZBECK	Nov-12
21	Dipole Antenna	VHA9105	2261	SCHWARZBECK	Nov-12
22	Dipole Antenna	VHA9105	2262	SCHWARZBECK	Nov-12
23	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Mar-11
24	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
25	RF Switch	MP59B	6200414971	ANRITSU	-
26	Power Divider	11636A	6243	НР	Oct-11
27	DC Power Supply	6622A	3448A03079	НР	Oct-11
28	Frequency Counter	5342A	2826A12411	НР	Mar-11
29	Power Meter	EPM-441A	GB32481702	НР	Mar-11
30	Power Sensor	8481A	US41030291	НР	Oct-11
31	Audio Analyzer	8903B	3729A18901	НР	Oct-11
32	Modulation Analyzer	8901B	3749A05878	НР	Oct-11
33	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	Oct-11
34	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-11
36	Stop Watch	HS-3	601Q09R	CASIO	Mar-11
37	LISN	ENV216	100408	R&S	Oct-11