Optimization in higher dimensions

- Theoretical aspects
- Gradient descent methods
- Newton's method
- Other methods

Beniamin Bogosel Computational Maths 2 48/67

Towards Newton's method

- \star the anti-gradient direction $d = -\nabla f(x)$: the best asymptotic descent direction
- \star that does not mean it is the best choice in all applications!
- \star other descent directions exist: any direction such that $d \cdot \nabla f(x) < 0$ is a descent direction.

Examples:

- $d = -\frac{\partial f}{\partial x_i}(x)e_i$
- $d = -D\nabla f(x)$, where D is a diagonal matrix with positive entries
- $d = -A\nabla f(x)$ (or $-A^{-1}\nabla f(x)$) where A is a positive-definite matrix

Why these work?

$$f(x+td) = f(x) + t\nabla f(x) \cdot d + o(t) = f(x) - t\underbrace{(\nabla f(x))^T A \nabla f(x)}_{\geq 0} + o(t)$$

Beniamin BOGOSEL Computational Maths 2 49/67

Recall Wolfe's condition

- \star $m_1, m_2 \in (0,1)$ are chosen constants
- \star d is a descent direction at x: $d \cdot \nabla f(x) < 0$, q(t) = f(x + td)
- \star recall that $q'(0) = \nabla f(x) \cdot d < 0$
 - a) $\frac{q(t)-q(0)}{t} \leq m_1 q'(0)$ and $q'(t) \geq m_2 q'(0)$ (then we have a good t)
 - b) $\frac{q(t)-q(0)}{t} > m_1 q'(0)$ (then t is too big)
 - c) $\frac{q(t)-q(0)}{t} \leq m_1 q'(0)$ and $q'(t) < m_2 q'(0)$ (then t is too small)
- \star Interpretation of $q'(t) \geq m_2 q'(0)$: the slope should be "less negative" at the next point
- \star If $x_{i+1} = x_i + t_i d_i$ with t_i verifying the above then:

$$\nabla f(x_{k+1}) \cdot d_k \geq m_2 \nabla f(x_k) \cdot d_k$$
.

 \star define θ_k as the angle between d_k and $-\nabla f(x_k)$:

$$\cos \theta_k = \frac{-\nabla f(x_k) \cdot d_k}{|\nabla f(x_k)||d_k|}.$$

Beniamin BOGOSEL Computational Maths 2 50/67

Zoutendijk condition

Theorem 19

Consider the iteration $x_{i+1} = x_i + t_i d_i$ where $d_i \cdot \nabla f(x_i) < 0$ and t_i verifies the Wolfe conditions. Suppose that f is of class C^1 on \mathbb{R}^n and is bounded from below. Assume also that ∇f is L-Lipschitz, i.e.

$$|\nabla f(x) - \nabla f(y)| \le L|x - y|$$
, for all $x, y \in \mathbb{R}^n$.

Then

$$\sum_{k>0}\cos^2\theta_k|\nabla f(x_k)|^2<\infty.$$

- * the proof is rather straightforward (in the Notes)
- \star Immediate consequence: if $d_i = -\nabla f(x_i)$ then $\theta_i = 0$ and $|\nabla f(x_i)| \to 0$.
- \star if the descent direction is chosen such that θ_k is bounded away from 90°, i.e. $\cos \theta_k \geq \delta > 0$ then $|\nabla f_k| \to 0$.

Beniamin BOGOSEL Computational Maths 2 51/67

The basic Newton Method

* as in the 1D case, look at the second order Taylor expansion

$$f(x+h) = f(x) + \nabla f(x) \cdot h + \frac{1}{2} h^{T} D^{2} f(x) h + o(|h|^{2})$$

Beniamin BOGOSEL Computational Maths 2 52/67

The basic Newton Method

 \star as in the 1D case, look at the second order Taylor expansion

$$f(x+h) \approx f(x) + \nabla f(x) \cdot h + \frac{1}{2} h^T D^2 f(x) h$$

 \star then minimize the quadratic function in order to find the new iterate

$$\min_{h} \left(f(x) + \nabla f(x) \cdot h + \frac{1}{2} h^{T} D^{2} f(x) h \right)$$

$$D^{2} f(x) h + \nabla f(x) = 0 \Longrightarrow h = -[D^{2} f(x)]^{-1} \nabla f(x)$$

Algorithm 7 (Newton's method)

Given a starting point x_0 run the recurrence

$$x_{i+1} = x_i - [D^2 f(x_i)]^{-1} \nabla f(x_i).$$

Beniamin BOGOSEL Computational Maths 2 52/67

Inconvenients:

- the method is not necessarily well-defined: is $D^2 f(x_i)$ invertible at x_i ?
- the Taylor expansion is local: are we sure that $[D^2f(x_i)]^{-1}\nabla f(x_i)$ is small?
- is the value of the function decreasing: $f(x_{i+1}) < f(x_i)$?
- is $d = [D^2 f(x_i)]^{-1} \nabla f(x_i)$ a descent direction? Yes, if $D^2 f(x_i)$ is positive-definite!
- note that $[D^2f(x_i)]^{-1}\nabla f(x_i)$ implies the resolution of a linear system (recall that for large matrices we NEVER compute inverses!) this might be costly if the number of variables is large

Advantage: when the method converges, the convergence is quadratic!

Theorem 20 (Quadratic convergence: Newton method)

If x^* is a non-degenerate minimizer for the function $f: \mathbb{R}^n \to \mathbb{R}$, i.e. $D^2 f(x^*)$ is positive definite, and the starting point x_0 is close enough to the optimum x^* then Newton's algorithm converges quadratically to x^* .

Beniamin BOGOSEL Computational Maths 2 53/67

* another point of view: solve nonlinear systems

$$\begin{cases} g_1(x_1,...,x_n) & = & 0 \\ \vdots & \ddots & \vdots \\ g_n(x_1,...,x_n) & = & 0 \end{cases}$$

- \star denote $g(x)=(g_1(x),...,g_n(x))$ and $Dg(x)=(\frac{\partial g_i}{\partial x_i})$ (the Jacobian matrix)
- * the Newton iteration

$$x_{n+1} = x_n - (Dg(x_n))^{-1}g(x)$$

converges to a zero x^* of g quadratically provided that x_0 is close to x^* and $Dg(x^*)$ is non-degenerate.

 \star note that the Newton method corresponds to the Newton-Rhapson method applied for finding the zeros of $g=\nabla f$

Beniamin BOGOSEL Computational Maths 2 54/67

Fixing Newton's method

1. Use a line-search procedure. If $D^2f(x)$ is positive definite then the Newton direction $d = -(D^2f(x))^{-1}\nabla f(x)$ is a descent direction.

Proposition 21 (Newton with line-search)

Let f be a C^2 function and α -convex function. Let x_0 be such that the level set $S = \{x : f(x) \le f(x_0)\}$ is bounded. Then the Newton method with Wolfe line-search converges to the unique global minimizer of f.

Proof: A lower bound for $\cos \theta_k$ can be found in terms of the eigenvalues of $D^2 f(x)$. The sequence of iterates converges to a critical point. Convergence is not quadratic if the step t is smaller than 1!

2. Variable metric methods. Any positive definite matrix A defines a new metric. There are choices of A for which convergence towards the minimum may be faster.

Beniamin BOGOSEL Computational Maths 2 55/0

$$f(x+d) \approx f(x) + \nabla f(x) \cdot d = f(x) + d^T \nabla f(x)$$

Minimize the first order approx. in the unit ball $B = \{d: d^T d \leq 1\}$ or equivalently, minimize

$$d \mapsto d^T \nabla f(x) + \frac{1}{2} d^T d$$

in order to get the optimal, anti-gradient direction

$$d^* = -\nabla f(x)$$

Remark: Note that the gradient method is the same as the Newton method when the Hessian $D^2 f(x)$ is the identity matrix.

Beniamin Bogosel Computational Maths 2 56/67

Discussion: change the metric

let A be a symmetric positive-definite matrix

$$f(x+d) \approx f(x) + \nabla f(x) \cdot d = f(x) + d^T \nabla f(x)$$

Minimize the first order approx. in the unit ball $B = \{d: d^T A d \leq 1\}$ or equivalently, minimize

$$d \mapsto d^T \nabla f(x) + \frac{1}{2} d^T A d$$

in order to get the optimal direction

$$d = -A^{-1}\nabla f(x)$$

Beniamin BOGOSEL Computational Maths 2 57/67

What metric to choose?

- * For $f(x) = \frac{1}{2}x^T Ax b^T x$ change the variable to $\xi = A^{1/2}x$
- * Recall that $A^{1/2} = P^{-1}\sqrt{D}P$ where $A = P^{-1}DP$ is a diagonalization of A.
- * Then denote $g(\xi) = f(x) = f(A^{-1/2}\xi) = \frac{1}{2}\xi^T\xi b^TA^{-1/2}\xi$ and note that this function is well conditioned
- * Write the GD algorithm for $\xi \mapsto f(A^{-1/2}\xi)$:

$$\xi_{n+1} = \xi_n - t \nabla g(\xi_n)$$

$$\xi_{n+1} = \xi_n - t A^{-1/2} \nabla f(A^{-1/2} \xi_n)$$

Then multiplying by $A^{-1/2}$ we get

$$x_{n+1} = x_n - tA^{-1}\nabla f(x_n).$$

Choosing the descent direction $-A^{-1}\nabla f(x)$ is equivalent to performing a GD step in the new metric!

Beniamin BOGOSEL Computational Maths 2 58/67

General algorithm

incorporating all previous algorithms...

Algorithm 8 (Generic Variable Metric method)

Choose the starting point x_0

Iteration *i*:

- compute $f(x_i)$, $\nabla f(x_i)$ and eventually $D^2 f(x_i)$
- choose a symmetric positive-definite matrix A_i : compute the new direction $d_i = -A_i^{-1} \nabla f(x_i)$
- perform a line-search from x_i in the direction d_i giving a new iterate $x_{i+1} = x_i + t_i d_i = x_i t_i A_i^{-1} \nabla f(x_i)$.
- $\star A_i = \text{Id gives the Gradient Descent method}$
- $\star A_i = D^2 f(x_i)$ gives the Newton method with line search (only when $D^2 f(x_i)$ is positive-definite)
- \star such an algorithm will converge to a critical point provided the set $\{f(x) \leq f(x_0)\}$ is bounded. The key point is that line-search guarantees descent: $f(x_{i+1}) < f(x_i)$ when not at a critical point

Beniamin Bogosel Computational Maths 2 59/67

Modified Newton method

Idea: Choose A_i based on $D^2 f(x_i)$ by eventually changing the Hessian matrix to make it positive definite

 \blacksquare Choose a threshold $\delta>0$ and compute the spectral decomposition

$$D^2 f(x_i) = U_i D_i U_i^T.$$

If a diagonal value of D_i is smaller than δ then replace it with δ .

- \longrightarrow Large arithmetic cost: $2n^3$ to $4n^3$ arithmetic operations
- **2** Levenberg-Marquardt modification: $A_i = D^2 f(x_i) + \varepsilon Id$. Choose ε such that A_i is positive definite by using a bisection scheme.

Test the positive-definiteness using the Cholesky Factorization: $A_i = LDL^T$

- arithmetic cost: $n^3/6$
- Use a modified Cholesky factorization so that the resulting diagonal matrix has entries bigger than $\delta>0$.
- \star all these techniques are too costly for large n
- * we lose quadratic convergence as soon as $A_i \neq D^2 f(x_i)$ or the corresponding line-search step is smaller than 1

Beniamin Bogosel Computational Maths 2 60/67

Conclusion: Newton's method

- quadratic convergence when we start close to a non-degenerate minimizer
- in order to guarantee convergence in general a line-search procedure should be used
- if $D^2 f(x_i)$ is not positive-definite then multiple ways exist to "correct the algorithm" but they are all costly: $O(n^3)$
- a linear system should be solved at each iteration
- the cost becomes too big if *n* is very large

Beniamin BOGOSEL Computational Maths 2 61/67

Optimization in higher dimensions

- Theoretical aspects
- Gradient descent methods
- Newton's method
- Other methods

Beniamin BOGOSEL Computational Maths 2 62/67

Gauss-Newton Method

 \star non-linear least squares: assume $m \ge n$

$$f(x) = \sum_{j=1}^{m} r_j(x)^2$$

* define the Jacobian matrix

$$J(x) = \begin{pmatrix} \frac{\partial r_1}{\partial x_1} & \cdots & \frac{\partial r_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial r_m}{\partial x_1} & \cdots & \frac{\partial r_m}{\partial x_n} \end{pmatrix}$$

- \star note that $\nabla f(x) = 2(J(x))^T r$ where $r = (r_1, ..., r_m)$
- * Hessian computation: $D^2 f(x) = 2J(x)^T J(x) + \text{ something small...}$
- \star choose to approximate the Hessian by $2J(x)^TJ(x)$ which is positive definite when J is of maximal rank
- * Therefore we get the Gauss-Newton method

$$x_{i+1} = x_i - \gamma_i (J(x_i)^T J(x_i))^{-1} J^T(x_i) r(x_i)$$

where either $\gamma_i = 1$ or a line-search is performed

 \star as before, if $-(J(x_i)^T J(x_i))^{-1} J^T(x_i) r(x_i)$ is not a descent direction, one may try to "fix the method"

Beniamin Bogosel Computational Maths 2 63/67

* the Rosenbrock function:
$$f(x) = 100(y - x^2)^2 + (1 - x)^2 \Longrightarrow r_1 = 10(y - x)^2$$
, $r_2 = (1 - x)$
* $J(x) = \begin{pmatrix} -20x & 10 \\ -1 & 0 \end{pmatrix}$
* true Hessian vs Gauss-Newton approx:

$$H(x) = \begin{pmatrix} 1200x^2 - 400y + 2 & -400x \\ -400x & 200 \end{pmatrix}$$
$$2J^T J = \begin{pmatrix} 800x^2 + 2 & -400x \\ -400x & 200 \end{pmatrix}$$

* Numerically this converges very fast, using only gradient information

Beniamin Bogosel Computational Maths 2 64/67

Example 2: Triangulations

Suppose you know the coordinates (x_i, y_i) of three antennas and the distances d_i of a cellphone to these antennas, find the coordinates (x_0, y_0) of the cellphone.

★ least squares formulation:

$$f(x,y) = \sum_{i=1}^{3} r_i^2$$
, $r_i(x,y) = d_i - \sqrt{(x-x_i)^2 + (y-y_i)^2}$.

* Gauss-Newton generally converges faster than GD here

Beniamin BOGOSEL Computational Maths 2 65/67

Further examples

 \star Other important applications: least squares are often used when fitting models to data

$$f(x) = \sum_{i=1}^{m} r_i(x)^2 = \sum_{i=1}^{m} (y(s_i, x) - y_i)^2$$

where y(s, x) is a non-linear function

- * find parameters of a population model: exponential model, logistic model
- \star find parameters for a temperature model: $T(t) = A\sin(wt + \phi) + C$

Beniamin BOGOSEL Computational Maths 2 66/67

 \star simplex algorithm, gradient free

Algorithm 9 (Nelder-Mead method)

Current test points $x_1, ..., x_{n+1} \in \mathbb{R}^n$

- **1 Order**: relabel points such that $f(x_1) \leq ... \leq f(x_{n+1})$
- **2** Compute centroid x_0 of points $x_1, ..., x_n$
- **3 Reflection**: compute $x_r = x_0 + \alpha(x_0 x_{n+1})$ with $\alpha > 0$. If $f(x_1) \le f(x_r) < f(x_n)$ then replace x_{n+1} by x_r and go to Step 1
- **4 Expansion**: if $f(x_r) < f(x_1)$ compute $x_e = x_0 + \gamma(x_r x_0)$ with $\gamma > 1$. If $f(x_e) < f(x_r)$ replace x_{n+1} by x_e and go to Step 1 Else replace x_{n+1} by x_r and go to Step 1
- **Contraction**: If $f(x_r) \ge f(x_n)$ then compute $x_c = x_0 + \rho(x_{n+1} x_0)$ with $\rho \in (0, 0.5]$. If $f(x_c) < f(x_{n+1})$ then replace x_{n+1} by x_c and go to Step 1
- **Shrink:** Replace all points except x_1 by $x_i = x_1 + \sigma(x_i x_1)$. Go to Step 1
- * Standard parameters: $\alpha = 1, \gamma = 2, \rho = 1/2, \sigma = 1/2$.
- \star Termination criterion: Simplex too small, variation of f small, etc.

Beniamin Bogosel Computational Maths 2 67/67