Exploratory Factor Analysis (EFA) A Course in MplusAutomation

Adam Garber

Load packages

```
library(MplusAutomation)
library(tidyverse)
library(haven)
library(here)
library(gt)
library(sjPlot)
```

Load data example

Data source. This tutorial utilizes the NCES public-use data called the Education Longitudinal Study of 2002 (Lauff & Ingels, 2014) This data can be found on the NCES website. Note that all examples used are for purposes of illustration only and are not intended to be interpreted substantively.

```
els_data <- read_spss("https://garberadamc.github.io/project-site/data/els_sub1_spss.sav")
```

Prepare data.frame for analysis (select, reorder, & rename columns)

```
schl_safe <- els_data %>%
select(
    'stu_tch' = "BYS20A", 'sc_spirt'= "BYS20B",
    'tch_good'= "BYS20E", 'tch_intr'= "BYS20F",
    'tch_prai'= "BYS20G", 'stu_dwn' = "BYS20I",
    'not_safe'= "BYS20J", 'disr_lrn'= "BYS20K",
    'gangs' = "BYS20M", 'rac_fght'= "BYS20N",
    'sch_rule'= "BYS21A", 'pun_same'= "BYS21C",
    'strict' = "BYS21D", 'pun_rule'= "BYS21E",
    'female' = "BYSEX", 'stu_race'= "BYRACE",
    'eng_natv'= "BYSTLANG"
)
```

View meta-data from labeled SPSS file

```
# This meta-data or codebook can be downloaded as a PDF using the "print" option
sjPlot::view_df(schl_safe)
```

Look at variables for EFA example

Applied Example: School Safety¹

Name	Variable Description
stu_tch	Students get along well with teachers
sc_spirt	There is real school spirit
tch_good	The teaching is good
tch_intr	Teachers are interested in students
tch_prai	Teachers praise effort
stu_dwn	In class often feels put down by students
not_safe	Does not feel safe at this school
$\operatorname{disr_lrn}$	Disruptions get in way of learning
gangs	There are gangs in school
rac_fght	Racial/ethnic groups often fight
sch_rule	Everyone knows what school rules are
pun_same	Punishment same no matter who you are
strict	School rules are strictly enforced
pun_rule	Students know punishment for broken rules
Covariates	
female	Student reported gender (male/female)
stu_race	Student reported race
eng_natv	Whether English is student's native language

¹Note. All scale indicators have 4-point Likert response options ranging from Strongly Agree (1) to Strongly Disagree (4).

Reverse code indicators for factor interpretation

Expected factors based on theory and item similarity:

- Factor 1: School climate, higher values indicate positive school climate
- Factor 2: safety, higher values indicate safe school conditions
- Factor 3: clear rules, higher values indicate clear communication of rules

Use formula: number of response categories + 1 (e.g., 4 + 1 = 5)

```
### The number `5` in syntax below will change with applied context ###
schl_safe[ ,cols] <- 5 - schl_safe[ ,cols]</pre>
```

Check correlations to see if coding was correct (i.e., correlation is consistent within factor)

Create sub-folders for project organization:

- 1. create folder named data
- 2. create folder named figures
- 3. create folder named efa_mplus
- 4. create folder named wls_efa

Prepare datasets

Prepare dataset for mplusObject() by removing SPSS labels

```
# write a CSV datafile (preferable format for reading into R, without labels)
write_csv(schl_safe, here("03-efa", "data", "els_efa_ready.csv"))
# read the unlabeled data back into R
efa_data <- read_csv(here("03-efa", "data", "els_efa_ready.csv"))</pre>
```

Estimate Exploratory Factor Analysis Model (EFA)

Model 1: Default rotation

```
efa_1 <- mplusObject(
 TITLE = "EFA",
 VARIABLE =
 "usevar =
 stu_tch sc_spirt tch_good tch_intr
 tch_prai stu_dwn not_safe disr_lrn
 gangs rac_fght sch_rule pun_same strict pun_rule;",
 ANALYSIS =
 "type = efa 1 5; ! run efa of 1 through 5 factor models
 estimator = MLR; ! using the ROBUST ML Estimator
                 ! run the parallel analysis for viewing elbow plot
  parallel=50;
 MODEL = "",
 PLOT = "type = plot3;",
 OUTPUT = "sampstat;",
 usevariables = colnames(efa data),
 rdata = efa_data)
efa_1_fit <- mplusModeler(efa_1,</pre>
             dataout=here("03-efa","efa_mplus","efa_els.dat"),
             modelout=here("03-efa","efa_mplus","efa_els.inp"),
             check=TRUE, run = TRUE, hashfilename = FALSE)
```

Create table summarizing model fit

```
model_fit <- LatexSummaryTable(efa_1_fit,</pre>
  keepCols=c("Title","Parameters", "LL",
             "ChiSqM_Value", "ChiSqM_DF", "ChiSqM_PValue",
             "RMSEA_Estimate", "RMSEA_90CI_LB", "RMSEA_90CI_UB",
             "CFI", "TLI", "SRMR")) %>%
  mutate(Title = c("1-Factor","2-Factor","3-Factor","4-Factor","5-Factor")) %>%
  mutate_at(vars(contains("RMSEA")), ~format(., nsmall = 3)) %>%
  unite(CI, RMSEA_90CI_LB:RMSEA_90CI_UB, sep=", ", remove = TRUE) %>%
  mutate(CI = paste0("(", CI, ")")) %>%
  unite(RMSEA, RMSEA_Estimate:CI, sep=" ", remove = TRUE)
model_fit %>%
  gt() %>%
  tab header(
   title = md("**Table 1**"),
   subtitle = md("*Summary of Model Fit Indices*")) %>%
  cols_label(
   Title = "Model",
   Parameters = md("Par"),
   LL = md("*LL*"),
   ChiSqM_Value = md("Chi^2"),
   ChiSqM_PValue = md("*p-value*"),
   ChiSqM_DF = md("*df*"),
   RMSEA = "RMSEA (90% CI)" ) %>%
  tab_options(column_labels.font.weight = "bold") %>%
  fmt(c(6), fns = function(x) ifelse(x<0.001,"<.001",
                                      scales::number(x, accuracy = 0.01)))
```

Table 1
Summary of Model Fit Indices

Model	Par	LL	Chi^2	df	p-value	RMSEA (90% CI)	CFI	TLI	SRMR
1-Factor	42	-10460.82	483.023	77	<.001	0.086 (0.078, 0.093)	0.714	0.662	0.078
2-Factor	55	-10310.32	250.673	64	<.001	$0.064\ (0.055,\ 0.072)$	0.868	0.813	0.048
3-Factor	67	-10215.92	92.392	52	<.001	$0.033\ (0.022,\ 0.044)$	0.972	0.950	0.027
4-Factor	78	-10180.40	32.369	41	0.83	$0.000 \ (0.000, \ 0.016)$	1.000	1.000	0.014
5-Factor	88	-10172.91	21.900	31	0.89	$0.000 \ (0.000, \ 0.014)$	1.000	1.000	0.010

Plot Parallel Analysis & Eigenvalues

Extract relevant data & prepare data.frame for plot

```
mutate(Factor = fct_inorder(Factor))
```

Pivot the dataframe to "long" format

Plot using ggplot

Figure 1: Parallel Eigenvalue Plot

save figure to the designated folder

Create table of EFA loading estimates

```
loadings_stdyx <- efa_1_fit$results$parameters$efa$f3$loadings$estimates %>%
   as.data.frame() %>%
  rownames_to_column("Names") %>%
  mutate(Names = str_to_lower(Names))
loadings_stdyx %>%
  gt() %>%
  tab_header(
    title = md("**Table 2**"),
    subtitle = md("*Summary of Factor Loadings: 3-Factor EFA Model*")) %>%
  cols_label('1' = "F1", '2' = "F2", '3' = "F3") %>%
  tab_row_group(group = "Factor 1: School Climate", rows = 1:5) %>%
  tab_row_group(group = "Factor 2: Safety", rows = 6:10) %>%
  tab_row_group(group = "Factor 3: Clear Rules", rows = 11:14) %>%
  row_group_order(groups = c("Factor 1: School Climate", "Factor 2: Safety", "Factor 3: Clear Rules")) %>
  tab_style(style = list(cell_text(weight = "bold")),
            locations = cells_body(columns = "1",rows = 1:5)) %>%
  tab_style(style = list(cell_text(weight = "bold")),
            locations = cells_body(columns = "2",rows = 6:10)) %>%
  tab_style(style = list(cell_text(weight = "bold")),
            locations = cells_body(columns = "3",rows = 11:14)) %>%
  tab options(column labels.font.weight = "bold")
```

Table 2
Summary of Factor Loadings: 3-Factor EFA Model

Names	F1	F2	F3
Factor 1: School Climate			
stu_tch	0.476	0.142	-0.095
sc_spirt	0.358	0.083	0.103
tch_good	0.744	-0.004	-0.011
tch_intr	0.771	0.004	0.013
tch_prai	0.563	-0.045	0.125
Factor 2: Safety			
stu_dwn	0.012	0.256	0.132
not_safe	0.169	0.526	0.010
disr_lrn	-0.025	0.390	0.089
gangs	0.043	0.607	-0.004
rac_fght	-0.040	0.649	-0.012
Factor 3: Clear Rules			
sch_rule	0.098	0.099	0.460
pun_same	0.213	0.023	0.450
strict	0.179	-0.015	0.376
pun_rule	-0.011	-0.090	0.762

EFA with non-correlated factors

Model 2: Varimax orthoginal rotation

```
efa_2 <- mplusObject(
 TITLE = "EFA",
 VARIABLE =
 "usevar =
 stu_tch sc_spirt tch_good tch_intr
 tch_prai stu_dwn not_safe disr_lrn
  gangs rac_fght sch_rule pun_same strict pun_rule;",
 ANALYSIS =
 "type = efa 1 5;
 estimator = MLR;
 rotation = varimax; !!! orthogonal (no factor correlations) !!!
 MODEL = ""
 PLOT = "type = plot3;",
  OUTPUT = "sampstat;",
  usevariables = colnames(efa_data),
 rdata = efa_data)
efa_2_fit <- mplusModeler(efa_2,</pre>
             dataout=here("03-efa","efa_mplus","m2_efa_els.dat"),
             modelout=here("03-efa", "efa_mplus", "m2_efa_els.inp"),
             check=TRUE, run = TRUE, hashfilename = FALSE)
```

Alternate syntax: use update() to alter the mplusObject() named efa_1

- tilde (~) will replace everything in that section of the input.
- tilde-dot-plus (~.+) will update the section by adding the specified code into that section

Applied example 2: EFA with Categorical indicators

Weighted Least Spuares Estimator (WLS)

DATA SOURCE: This lab exercise utilizes a subset of the HSLS public-use dataset: High School Longitudinal Study of 2009 (Ingels et al., 2011) See website: nces.ed.gov

```
data_raw <- read_csv("https://garberadamc.github.io/project-site/data/hsls_fa_data_subset.csv")</pre>
```

Reverse code for factor interpretation

Prepare data.frame for analysis (select & rename columns)

```
hsls_data <- data_raw1 %>%
select(
    'mth_pers'="S1MPERS1", 'mth_othr'="S1MPERS2", 'mth_life'="S1MUSELI",
    'mth_cllg'="S1MUSECL", 'mth_futr'="S1MUSEJO", 'mth_tsts'="S1MTESTS",
    'mth_text'="S1MTEXTB", 'mth_mstr'="S1MSKILL", 'mth_asgn'="S1MASSEX",
    'mth_enjy'="S1MENJNG", 'sci_pers'="S1SPERS1", 'sci_othr'="S1SPERS2",
    'sci_life'="S1SUSELI", 'sci_cllg'="S1SUSECL", 'sci_futr'="S1SUSEJO",
    'sci_tsts'="S1STESTS", 'sci_text'="S1STEXTB", 'sci_mstr'="S1SSKILL",
    'sci_asgn'="S1SASSEX", 'sci_enjy'="S1SENJNG")
```

Look at variables for EFA example with categorical indicators

Applied Example: Math & Science Utility¹

Name	Variable Description
Math Indicators	
mth_pers	9th grader sees himself/herself as a math person
$\operatorname{mth_othr}$	Others see 9th grader as a math person
mth_life	9th grader thinks fall 2009 math course is useful for everyday life
mth_cllg	9th grader thinks fall 2009 math course will be useful for college
mth _futr	9th grader thinks fall 2009 math course is useful for future career
mth_tsts	9th grader confident can do excellent job on fall 2009 math tests
mth_text	9th grader certain can understand fall 2009 math textbook

mth_mstr mth_asgn mth_enjy	9th grader certain can master skills in fall 2009 math course 9th grader confident can do excellent job on fall 2009 math assignments 9th grader is enjoying fall 2009 math course very much
Science Indicators	
sci_pers	9th grader sees himself/herself as a science person
sci_othr	Others see 9th grader as a science person
sci_life	9th grader thinks fall 2009 science course is useful for everyday life
sci_cllg	9th grader thinks fall 2009 science course will be useful for college
sci_futr	9th grader thinks fall 2009 science course is useful for future career
sci_tsts	9th grader confident can do excellent job on fall 2009 science tests
sci_text	9th grader certain can understand fall 2009 science textbook
sci_mstr	9th grader certain can master skills in fall 2009 science course
sci_asgn	9th grader confident can do excellent job on fall 2009 science assignments
sci_enjy	9th grader is enjoying fall 2009 science course very much

¹Note. All scale indicators have 4-point Likert response options ranging from Strongly Agree (1) to Strongly Disagree (4).

Model 0 - Exploratory Factor Analysis (EFA) with WLS Estimator

```
efa_wls <- mplusObject(</pre>
 TITLE =
    "EFA with Categorical Indicators - HSLS",
 VARIABLE =
    "usevar = mth_pers-sci_enjy;
    categorical = mth_pers-sci_enjy;",
  ANALYSIS =
    "type = efa 1 7;
    estimator=wlsmv;",
 MODEL = "",
 PLOT = "type = plot3;",
 OUTPUT = "sampstat;",
 usevariables = colnames(hsls_data),
 rdata = hsls_data)
efa_wls_fit <- mplusModeler(efa_wls,</pre>
                 dataout=here("03-efa", "wls_efa", "efa_sci_HSLS_wls.dat"),
                 modelout=here("03-efa", "wls_efa", "efa_sci_HSLS_wls.inp"),
                 check=TRUE, run = TRUE, hashfilename = FALSE)
```

Create table summarizing model fit

```
model_fit <- LatexSummaryTable(efa_wls_fit,</pre>
  keepCols=c("Title","Parameters", "LL",
             "ChiSqM_Value", "ChiSqM_DF", "ChiSqM_PValue",
             "RMSEA_Estimate", "RMSEA_90CI_LB", "RMSEA_90CI_UB",
             "CFI", "TLI", "SRMR")) %>%
  mutate(Title = c("1-Factor","2-Factor","3-Factor",
                   "4-Factor", "5-Factor", "6-Factor", "7-Factor")) %>%
  mutate_at(vars(contains("RMSEA")), ~format(., nsmall = 3)) %>%
  unite(CI, RMSEA 90CI LB:RMSEA 90CI UB, sep=", ", remove = TRUE) %%
  mutate(CI = paste0("(", CI, ")")) %>%
  unite(RMSEA, RMSEA_Estimate:CI, sep=" ", remove = TRUE)
model_fit %>%
  gt() %>%
  tab_header(
   title = md("**Table 1**"),
    subtitle = md("*Summary of Model Fit Indices*")) %>%
  cols_label(
   Title = "Model",
   Parameters = md("Par"),
    \#LL = md("*LL*"),
   ChiSqM_Value = md("Chi^2"),
   ChiSqM_PValue = md("*p-value*"),
   ChiSqM_DF = md("*df*"),
   RMSEA = "RMSEA (90% CI)" ) %>%
  tab options(column labels.font.weight = "bold") %>%
  fmt(c(5), fns = function(x) ifelse(x<0.001,"<.001",
                                      scales::number(x, accuracy = 0.01)))
```

Table 1
Summary of Model Fit Indices

Model	Par	Chi^2	df	$p ext{-}value$	RMSEA (90% CI)	CFI	TLI	SRMR
1-Factor	20	17511.054	170	<.001	0.193 (0.190, 0.195)	0.714	0.681	0.201
2-Factor	39	11510.679	151	<.001	$0.166 \ (0.163, \ 0.168)$	0.813	0.764	0.118
3-Factor	57	6878.199	133	<.001	$0.136 \ (0.133, \ 0.139)$	0.889	0.841	0.077
4-Factor	74	2858.925	116	<.001	$0.093\ (0.090,\ 0.096)$	0.955	0.926	0.046
5-Factor	90	2014.418	100	<.001	$0.084\ (0.080,\ 0.087)$	0.968	0.940	0.035
6-Factor	105	1282.979	85	<.001	$0.072\ (0.068,\ 0.075)$	0.980	0.956	0.025
7-Factor	119	875.376	71	<.001	$0.064 \ (0.060, \ 0.068)$	0.987	0.965	0.019

Create table of EFA loading estimates

```
loadings_stdyx <- efa_wls_fit$results$parameters$efa$f2$loadings$estimates %>%
   as.data.frame() %>%
   rownames_to_column("Names") %>%
   mutate(Names = str_to_lower(Names))
```

 Table 2

 Summary of Factor Loadings: 2-Factor EFA Model

Names	F1	F2
Factor 1: Math Indicators		
mth_pers	0.806	-0.011
mth_othr	0.739	0.079
mth_life	0.502	0.041
mth_cllg	0.548	0.145
mth_futr	0.551	0.141
mth_tsts	0.888	-0.045
mth_text	0.793	0.003
mth_mstr	0.847	0.038
mth_asgn	0.878	-0.008
mth_enjy	0.635	-0.004
Factor 2: Science Indicators		
sci_pers	-0.204	0.895
sci_othr	-0.134	0.823
sci_life	0.081	0.479
sci_cllg	0.146	0.535
sci_futr	0.072	0.557
sci_tsts	-0.032	0.854
sci_text	0.025	0.764
sci_mstr	0.040	0.837
sci_asgn	0.003	0.859
sci_enjy	0.009	0.617

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Muthén, L.K. and Muthén, B.O. (1998-2017). M
plus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

Further resources & examples here:

 ${\rm https://garberadamc.github.io/project-site/}$

https://www.adam-garber.com/