Total No	o. of Que	estions: 8]		20	SEAT No. :				
P483		FC0021: 502		[Total No. of Pages : 2					
[6003]-702 T.E. (Information Technology)									
		•	O *		-				
OPERATING SYSTEMS (2019 Pattern) (Semester-I) (314442)									
		(201) [atter	beines	(C1-1) (C	/1 111 2)				
Time: 2½ Hours] Instructions to the candidates:			7			Max. Marks: 70			
1nstructi 1)		r Q.1 or Q.2, Q.3 or Q	0.4. O.5 or O.6.	0.7 or 0	.8.				
2)		iagrams must be draw			•0•				
3)	Figure	es to the right side ind	licate full mark	-					
<i>4</i>)	Assum	e suitable data, if nec	cessary.		90				
Q1) a)		nt conditions are gen	nerally associ	ated with	ı readers-wri	_			
	Writ	e its pseudo code.				[9]			
b)	Desc	eribe resource alloca	ation graph in	detail.	,90	[9]			
				7 3					
	X		OR	,0.					
Q2) a)	Enli	st different IPC tec	hniques. Diff	ferentiate	between na	med pipe and			
	unna	amed pipe with suita	able example.	Sv		[9]			
b)	Wha	at is Critical Section	Problem? Giv) ve seman	hore solution	for producer-			
- /		sumer problem.		r		[9]			
	• • • • • • • • • • • • • • • • • • • •	winer processin	900			٠.			
			3			· ·			
Q3) a)	Con	sider six memory	partitions o	f size 10	00 KB, 300	KB, 50 KB,			
	200	KB,150 KB and 2	00 KB. These	e partitio	ons need to b	e allocated to			
	proc	esses of sizes 200	KB, 100 KB	, 50 KB	in that order	: Perform the			
	alloc	cation of processes	using dynami	ic partitio	oning algorith	nms given be-			
	low	and comment on int	ernal and exte	ernal frag	gmentation-	[12]			
	i)	First Fit Algorithm			~ ~				
	1)	ThstritAlgorium			0,00				
	ii)	Best Fit Algorithm			, 66				
	iii)	Worst Fit Algorithm	m		38				
b)	Expl	lain Buddy system r	nemory alloca	ation wit	h suitable exa	ample. [5]			
			OR	3.70.	7				

P.T.O.

Q4)	a)	Find the number of page faults for the reference string						
		6,5,1,2,5,3,5,4,2,3,6,3,2,1,2 using FIFO, LRU and optimal page	•					
		replacement strategies. Consider frame size as 3. [12]						
	b)	Explain Belady's anomaly with suitable example. [5]						
05)	0)	Assume a disk with 200 tracks and the disk request group has random						
<i>Q5</i>)	a)	Assume a disk with 200 tracks and the disk request queue has rand requests in it as follows: 55,58,39,18,90,160,150,38,184. Find the n						
		tracks traversed and average seek length if						
		1) SSTF						
		2) SCAN						
		2) SCAN 3) CSCAN In Standard initially hand is at track no 100						
		To Original initially hand in at the plane 100	1					
		is used and initially head is at track no roo.	ı					
	b)	What are typical operations that may be performed on a directory? [6]	l					
		OR						
Q6)	a)	What is I/O buffering? Why I/O buffering is needed? State and explain	1					
		different approaches of I/O buffering. [9]	ı					
	b)	Explain with example any three disk scheduling criteria. [9]	l					
	- /		5					
		6.7	, ,					
Q 7)	a)	List down the phases of a compiler. Explain with suitable example [9]	l					
	b)	Explain macro call and macro expansion with suitable example. [8]	ı					
		OR STATE						
(0.0)	-)		1					
Q 8)	a)	Explain with example imperative statement, declarative statement, and assembly directive of assembly language programming? [9]						
		assembly directive of assembly language programming? [9]	ı					
	b)	What is system software explain any four system software in brief? [8]	ı					
[600	131_7	3						
LOOK	, J - /	V-						