Аннотация

Конспект конспекта лекций курса Теории Вероятностей онлайнмагистратуры МФТИ по современной комбинаторике. Лектор: Райгородский Андрей Михайлович, Жуковский Максим Евгеньевич.

Содержание

1	Kor	мбинаторика	2		
2	Классическая вероятность				
	2.1	Случайное событие, вероятность	2		
	2.2	2.2 Условная вероятность			
		2.2.1 Теорема умножения и независимость событий	3		
		2.2.2 Формула полной вероятности	3		
		2.2.3 Формула Байеса	4		
3	Схема испытаний Бернулли				
4	Слу	учайные величины	4		
	4.1	Вероятностные пространства в классическом случае и в схеме			
		испытаний Бернулли	4		
	4.2	Определение случайной величины			
	4.3	Распределение случайной величины	5		
	4.4	Функция распределения случайной величины	5		

1 Комбинаторика

2 Классическая вероятность

Для классической вероятности характерны следующие свойства:

- 1. исходы образуют полную группу событий, т.е. хотя бы один из возможных элементарных исходов произойдет;
- 2. события попарно несовместны может произойти только одно из них, например, может выпасть только 1 из граней кубика;
- 3. все исходы равновероятны.

2.1 Случайное событие, вероятность

Определение 1 - Вероятность.

Вероятность — отношение числа благоприятствующих исследуемому событию исходов к числу всех возможных исходов.

Определение 2 - Событие.

Событие ${\bf A}-$ подмножество множества элементарных исходов, из которых складывается искомое.

Определение 3 - Пространство элементарных исходов.

Пространство элементарных исходов Ω — пространство всех возможных исходов эксперимента.

Свойства вероятности:

- 1. $P(\Omega) = 1$ вероятность того, что произойдет любой из возможных исходов равна 1 по св-ву классической вероятности;
- 2. $P(\emptyset) = 0$, $P(A) = 0 \Leftrightarrow A = \emptyset$;
- 3. $P(A \sqcup B) = P(A) + P(B)$ сигма-аддитивность, распространяется и на случай конечного объединения событий;
- 4. $P(A \cup B) = P(A) + B(B) P(A \cup B)$;
- 5. $P(A_1 \cup A_2 \cup \dots A_n) = P(A_1) + P(A_2) + \dots + P(A_n) P(A_1 \cap A_2) \dots P(A_{n-1} \cap A_n) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$ формула включений-исключений;
- 6. $\bar{A} := \Omega \setminus A$; $P(\bar{A}) = 1 P(A)$ отрицание события;

- 7. $P(A_1 \cup A_2 \cup \dots A_n) \leq P(A_1) + \dots + P(A_n);$
- 8. для $A_{i+1}\subseteq A_i$ таких, что $\bigcap_{i=1}^\infty A_i=\emptyset$, то $\lim_{k\to\infty}P(A_i)=0$ свойство непрерывности.

2.2 Условная вероятность

Определение 4 - Условная вероятность.

Условная вероятность — это вероятность того, что событие A произойдет, при условии, что событие B уже произошло.

Обозначается P(A|B) — «вероятность A при условии В».

$$P(A|B) = \frac{|A \cup B|}{|B|} = \frac{P(A \cup B)}{P(B)} \tag{1}$$

2.2.1 Теорема умножения и независимость событий

Теорема умножения позволяет избавиться от нуля в знаменателе, в формуле условной вероятности.

$$P(A|B) \cdot P(B) = P(A \cup B) \tag{2}$$

Событие A не зависит от события B, если P(A|B) = P(A), т.е. наступление события B никак не влияет на вероятность наступления события A. Если событие A независимо от события B, то имеет место равенство:

$$P(A) \cdot P(B|A) = P(B) \cdot P(A) \tag{3}$$

Отсюда, при P(A) > 0 находим, что

$$P(A|B) = P(B) \tag{4}$$

т.е. событие B также независимо от A. T.о. свойство независимости событий взаимно.

События A_1,\ldots,A_n могут быть независимыми в совокупности и попарно.

2.2.2 Формула полной вероятности

Разделим множество Ω на непересекающиеся подмножества B_1, \ldots, B_k .

2.2.3 Формула Байеса

3 Схема испытаний Бернулли

4 Случайные величины

4.1 Вероятностные пространства в классическом случае и в схеме испытаний Бернулли

Обобщим вероятностные пространства для классической вероятности и схемы испытаний Бернулли.

Вероятность элементарного исхода ω_i будем обозначать через p_i .

Очевидно, что $p_i \in [0,1]$, и $p_1 + \ldots + p_n = 1$.

Остальные свойства вероятности так же выполнены для обобщенного понятия вероятности.

Понятие	Классическая вероятность	Сх. испытаний Бернулли	Обобщение
Пространство			
элементарных	$\Omega = \{\omega_1, \dots, \omega_n\}$	$\Omega = \{\omega_1, \dots, \omega_{2^n}\}$	$\Omega = \{\omega_1, \dots, \omega_n\}$
исходов			
Элементарный	$\omega_i - 1$ из возможных исходов	$\omega_i = (x_1, \dots, x_n)$, где $x_i = \{0, 1\}$	ω_i – элементарный исход
исход	ω_i — 1 из возможных исходов		
Вероятность			
элементарного	$P(\omega_i) = \frac{1}{n}$	$P(\omega_i) = p^{\sum_{i=1}^{n} x_i} \cdot (1-p)^{n-\sum_{i=1}^{n} x_i}$	$P(\omega_i) = p_i$, где $p_i \in [0,1]$
исхода			
Вероятность	$P(A) = \frac{ A }{n}$	$P(A) = \sum_{\omega: \in A} P(\omega_i)$	$P(A) = \sum_{\omega_i \in A} p_i$
события	$\Gamma(\Pi) = \frac{1}{n}$	$I(I) = \angle_{\omega_i \in A} I(\omega_i)$	$I(I) = \angle \omega_i \in A P_i$

4.2 Определение случайной величины

Пусть дано Пространство элементарных исходов Ω , и вероятностная мера P на нём.

Определение 5 - Случайная величина.

Случайной величиной называется любая функция $\xi:\Omega\to\mathbb{R}$. Например, для игральной кости $\Omega=\{1,2,3,4,5,6\}$, зададим ξ как $\xi(\omega)=\omega^2$.

Случайная величина ставит в соответствие каждому элементарному исходу какое-либо конкретное число из множества действительных чисел. Таким образом, "выпадение"какого-то из исходов случайно, но значение случайной величины уже конкретно.

Пример. $\xi = \#$ треугольников в случайном графе.

Количество событий, когда на имеющихся вершинах появился треугольник случайно, но, зная количество таких событий, мы можем получить конкретное ξ .

- 4.3 Распределение случайной величины
- 4.4 Функция распределения случайной величины