Abdullah Salah

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-101

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
	197,3				
	208,6				
	210,9				
	202,5				
	205,2				
	212,2				
-					
1. Abgabe	±	$5,558 \pm 0,070$	$84,19 \pm 0,79$	$3,348 \pm 0,037$	122,1 ± 1,3
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Aladi Hendrik

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-102

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	204,8 206,2 209,1 206,3 208,2 220,7				
1. Abgabe	±	$5,552 \pm 0,073$	$73,36 \pm 0,41$	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Amza Andrei-Alexandru

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. A-103

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	207,3				
	203,8				
	207,3				
	210,1				
	211,2				
	218,2				
_					
1. Abgabe	±	$5,546 \pm 0,076$	$84,49 \pm 0,77$	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1 1/2			
1. Korrektur			

Aschwanden Andreas

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-104

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	209,8				
	201,4				
	205,5				
	213,9				
	214,2				
	215,7				
1. Abgabe	±	$5,540 \pm 0,080$	$85,46 \pm 0,95$	$3,725 \pm 0,017$	$127,5 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

Awerjanow Alex

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-105

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	212,3				
	199,0				
	203,7				
	217,7				
	217,2				
	213,2				
1. Abgabe	±	$5,534 \pm 0,083$	$72,81 \pm 0,67$	$3,308 \pm 0,024$	$129,8 \pm 1,8$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Ayman Fatih

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-106

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
	214,8 196,6 201,9 221,5 220,2 210,7				
1. Abgabe	±	$5,528 \pm 0,087$	$82,89 \pm 0,69$	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

Bartenstein Jakob

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-107

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
	217,3				
	194,2				
	200,1				
	225,3				
	223,2				
	208,2				
1. Abgabe	±	$5,522 \pm 0,091$	$85,04 \pm 0,25$	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Beck Jannis

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-108

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l /cm	b/cm	m/g
	219,8 191,8 198,3 229,1 226,2 205,7				
1. Abgabe	±	$5,516 \pm 0,095$	$83,17 \pm 0,17$	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Bekemen De Sil Steve Ledoux

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-109

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	222,3 189,4 196,5 232,9 229,2 203,2				
1. Abgabe	±	$5,530 \pm 0,084$	$82,82 \pm 0,20$	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Bergmeister Celina

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-110

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	224,8 187,0 194,7 236,7 232,2 200,7				
1. Abgabe	±	$5,544 \pm 0,075$	$84,49 \pm 0,06$	$3,193 \pm 0,024$	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Beuscher Konstantin

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-111

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m/g
	197,2 208,5 210,7 202,1 205,5 212,5				
1. Abgabe	±	5,538 ± 0,079	86,10 ± 0,26	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Blien David

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-112

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	199,7 206,1 215,9 205,9 208,5 210,0				
1. Abgabe	±	$5,540 \pm 0,078$	$86,39 \pm 0,57$	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Bregulla Felix

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-113

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
	202,2 203,7				
	214,1				
	209,7 218,5 207,5				
4 43 3		5.146 + 0.069	72.02.10.02	2.545 + 0.025	120 () 1 2
1. Abgabe	±	$5,146 \pm 0,062$	$73,92 \pm 0,82$	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Büttner Maximilian

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**201**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,670 5,490 5,750 5,350			
1. Abgabe	$206,1 \pm 2,3$	±	$84,19 \pm 0,79$	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Büttner Nico

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**202**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
		5,530 5,680 5,480 5,740 5,330			
1. Abgabe	$209,2 \pm 2,4$	±	$73,36 \pm 0,41$	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			
1. Korrektur			

Busch
Jonathan

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**203**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,690 5,470 5,730 5,310			
1. Abgabe	$209,7 \pm 2,0$	±	84,49 ± 0,77	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
i		

Cimala Marko

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**204**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,700 5,460 5,720 5,290			
1. Abgabe	$210,1 \pm 2,3$	±	$85,46 \pm 0,95$	$3,725 \pm 0,017$	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Dausacker Marius

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**205**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,710 5,450 5,710 5,270			
1. Abgabe	$210,5 \pm 3,1$	±	$72,81 \pm 0,67$	$3,308 \pm 0,024$	$129,8 \pm 1,8$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Dietrich Tim

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**206**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
		5,530 5,720 5,440 5,700 5,250			
1. Abgabe	$211,0 \pm 4,1$	±	$82,89 \pm 0,69$	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Dill Julius

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**207**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,730 5,430 5,690 5,230			
1. Abgabe	$211,4 \pm 5,2$	±	$85,04 \pm 0,25$	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Dreist Julia

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**208**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,740 5,420 5,680 5,210			
1. Abgabe	$211,8 \pm 6,3$	+	$83,17 \pm 0,17$	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Dunschen Frederik

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**209**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,750 5,410 5,670 5,290			
1. Abgabe	$212,3 \pm 7,5$	±	$82,82 \pm 0,20$	$3,057 \pm 0,028$	$128,1 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Eberlein Philipp

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**210**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
		5,530 5,760 5,400 5,660 5,370			
1. Abgabe	$212,7 \pm 8,6$	±	$84,49 \pm 0,06$	$3,193 \pm 0,024$	$129,7 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Egner Jonathan

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**211**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,770 5,390 5,650 5,350			
1. Abgabe	$206,1 \pm 2,3$	±	$86,10 \pm 0,26$	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Eisfeld

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-212

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,780 5,380 5,640 5,370			
1. Abgabe	$207,7 \pm 2,2$	±	$86,39 \pm 0,57$	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Endres Niklas

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-213

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,030 5,170 5,370 5,030 5,130			
1. Abgabe	$209,3 \pm 2,5$	±	$73,92 \pm 0,82$	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Erz Julius

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**301**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			83,42 82,66 84,35 86,34		
1. Abgabe	$206,1 \pm 2,3$	$5,558 \pm 0,070$	±	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Esterl Paul

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**302**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			73,42 72,33 74,35 73,34		
1. Abgabe	$209,2 \pm 2,4$	$5,552 \pm 0,073$	±	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

. Korrektur			

Faulhaber

Hanna

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. C-303

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			84,42 82,66 84,45 86,44		
1. Abgabe	$209,7 \pm 2,0$	$5,546 \pm 0,076$	±	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Fechner Liz

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**304**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
			83,47 87,66 84,35 86,34		
1. Abgabe	$210,1 \pm 2,3$	$5,540 \pm 0,080$	±	$3,725 \pm 0,017$	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Fehse

Emilia-Sofie

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. C-305

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			73,42 72,11 74,35 71,34		
1. Abgabe	$210,5 \pm 3,1$	$5,534 \pm 0,083$	±	$3,308 \pm 0,024$	129,8 ± 1,8
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Fenu Juri

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**306**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			83,72 82,11 84,35 81,37		
1. Abgabe	$211,0 \pm 4,1$	$5,528 \pm 0,087$	±	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Finkelmann

Robin

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. C-307

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			85,42 84,66 84,55 85,54		
1. Abgabe	$211,4 \pm 5,2$	$5,522 \pm 0,091$	+	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Fischer

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**308**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Barbara

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
			83,32 82,66 83,35 83,33		
1. Abgabe	$211,8 \pm 6,3$	$5,516 \pm 0,095$	±	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Fleisch Falk

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**309**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			82,42 82,66 82,85 83,34		
1. Abgabe	$212,3 \pm 7,5$	$5,530 \pm 0,084$	±	$3,057 \pm 0,028$	$128,1 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Frank David

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**310**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
			84,42 84,66 84,45 84,44		
1. Abgabe	$212,7 \pm 8,6$	$5,544 \pm 0,075$	±	$3,193 \pm 0,024$	$129,7 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Frank Kira

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**311**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			86,45 85,66 85,65 86,64		
1. Abgabe	$206,1 \pm 2,3$	$5,538 \pm 0,079$	±	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Franssen

Liam

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. C-312

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			87,42 86,66 84,75 86,74		
1. Abgabe	$207,7 \pm 2,2$	$5,540 \pm 0,078$	+	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Friess

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-313

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			73,32 72,66 73,35 76,33		
1. Abgabe	$209,3 \pm 2,5$	$5,146 \pm 0,062$	±	$3,545 \pm 0,027$	129,6 ± 1,3
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

	_		
1. Korrektur			

Frohnhöfer NAME **Hannes** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-401

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
				3,408	
				3,422	
				3,456	
				3,321	
				3,378	
				3,173	
				3,281	
1. Abgabe	$206,1 \pm 2,3$	$5,558 \pm 0,070$	$84,19 \pm 0,79$	±	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Galmbacher NAME **Joshua** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. D-402

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,419	
				3,457	
				3,405	
				3,387	
				3,337	
				3,298	
				3,461	
1. Abgabe	$209,2 \pm 2,4$	$5,552 \pm 0,073$	$73,36 \pm 0,41$	±	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Ganter NAME

Viktor VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-403

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
				3,631	
				3,682	
				3,792	
				3,578	
				3,583	
				3,617	
				3,764	
1. Abgabe	$209,7 \pm 2,0$	$5,546 \pm 0,076$	$84,49 \pm 0,77$	±	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Gerhäußer

Theo VORNAME

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-404

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l /cm	<i>b / cm</i>	m /g
				3,712	
				3,724	
				3,737	
				3,698	
				3,765	
				3,651	
				3,788	
1. Abgabe	$210,1 \pm 2,3$	$5,540 \pm 0,080$	$85,46 \pm 0,95$	±	$127,5 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Göbel NAME **Daniel** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. D-405

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
				3,261	
				3,345	
				3,279	
				3,207	
				3,366	
				3,311	
				3,384	
1. Abgabe	$210,5 \pm 3,1$	$5,534 \pm 0,083$	$72,81 \pm 0,67$	±	$129,8 \pm 1,8$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

l. Korrektur			

Görlich NAME **Benedict** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-406

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,559	
				3,487	
				3,572	
				3,527	
				3,634	
				3,427	
				3,568	
1. Abgabe	$211,0 \pm 4,1$	$5,528 \pm 0,087$	$82,89 \pm 0,69$	±	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

I. Korrektur

Golze NAME **Julius** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-407

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
				3,483	
				3,426	
				3,472	
				3,412	
				3,468	
				3,472	
				3,401	
1. Abgabe	$211,4 \pm 5,2$	$5,522 \pm 0,091$	$85,04 \pm 0,25$	±	136,8 ± 1,6
2. Abgabe	Ŧ	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Gritsch NAME **Sebastian** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-408

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l /cm	<i>b / cm</i>	m /g
				3,559	
				3,483	
				3,527	
				3,634	
				3,472	
				3,455	
				3,457	
1. Abgabe	$211,8 \pm 6,3$	$5,516 \pm 0,095$	$83,17 \pm 0,17$	±	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Groß NAME **Mario** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-409

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,023	
				2,985	
				3,179	
				3,048	
				3,127	
				3,054	
				2,981	
1. Abgabe	$212,3 \pm 7,5$	$5,530 \pm 0,084$	$82,\!82 \pm 0,\!20$	±	$128,1 \pm 1,9$
2. Abgabe	Ŧ	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Günther NAME **Jonas** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-410

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
				3,164	
				3,124	
				3,199	
				3,236	
				3,109	
				3,257	
				3,261	
1. Abgabe	$212,7 \pm 8,6$	$5,544 \pm 0,075$	$84,49 \pm 0,06$	±	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

. Korrektur			

Hel	lbig
NA	MF

David VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-411

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		
benierkung.		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
				3,294	
				3,377	
				3,204	
				3,328	
				3,361	
				3,279	
				3,281	
1. Abgabe	$206,1 \pm 2,3$	$5,538 \pm 0,079$	$86,10 \pm 0,26$	±	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Held NAME

Leonhard VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-412

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
				3,629	
				3,569	
				3,698	
				3,582	
				3,689	
				3,651	
				3,506	
1. Abgabe	$207,7 \pm 2,2$	$5,540 \pm 0,078$	$86,39 \pm 0,57$	±	136,9 ± 1,7
2. Abgabe	±	±	Ŧ	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Henn NAME **Felix** Vorname

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-413

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
				3,558	
				3,498	
				3,623	
				3,472	
				3,655	
				3,476	
				3,534	
1. Abgabe	$209,3 \pm 2,5$	$5,146 \pm 0,062$	$73,92 \pm 0,82$	±	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

. Korrektur			

Heptner Florian

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**501**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,530 5,670 5,490 5,750 5,350	83,42 82,66 84,35 86,34		
1. Abgabe	$206,1 \pm 2,3$	±	±	$3,348 \pm 0,037$	122,1 ± 1,3
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			
1. Korrektur			

Herberger Leonie

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**502**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,530 5,680 5,480 5,740 5,330	73,42 72,33 74,35 73,34		
1. Abgabe	$209,2 \pm 2,4$	+	+	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Herzog Paul

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**503**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,530 5,690 5,470 5,730 5,310	84,42 82,66 84,45 86,44		
1. Abgabe	$209,7 \pm 2,0$	±	±	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
1. Korrektur		

Hohmann Jannik

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**504**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,530 5,700 5,460 5,720 5,290	83,47 87,66 84,35 86,34		
1. Abgabe	$210,1 \pm 2,3$	Ŧ	±	$3,725 \pm 0,017$	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Homm Tschaske

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**505**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,530 5,710 5,450 5,710 5,270	73,42 72,11 74,35 71,34		
1. Abgabe	$210,5 \pm 3,1$	Ŧ	±	$3,308 \pm 0,024$	129.8 ± 1.8
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
i. Korrektur		

Humenny Martin

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**506**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,530 5,720 5,440 5,700 5,250	83,72 82,11 84,35 81,37		
1. Abgabe	$211,0 \pm 4,1$	±	±	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

17 14		
1. Korrektur		

JansenTheodorNAMEVORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**507**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,730 5,430 5,690 5,230	85,42 84,66 84,55 85,54		
1. Abgabe	211,4 ± 5,2	±	±	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Kämpf Robert

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**508**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,740 5,420 5,680 5,210	83,32 82,66 83,35 83,33		
1. Abgabe	211.8 ± 6.3	±	±	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Keiderling

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**509**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,750 5,410 5,670 5,290	82,42 82,66 82,85 83,34		
1. Abgabe	$212,3 \pm 7,5$	±	±	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Kirchner Marie

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**510**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,760 5,400 5,660 5,370	84,42 84,66 84,45 84,44		
1. Abgabe	$212,7 \pm 8,6$	±	±	$3,193 \pm 0,024$	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			
1. Korrektur			

Klebes

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**511**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,530 5,770 5,390 5,650 5,350	86,45 85,66 85,65 86,64		
1. Abgabe	$206,1 \pm 2,3$	±	±	$3,303 \pm 0,022$	$132,1 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Kleinau Julius

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**512**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l /cm	b / cm	m /g
		5,530 5,780 5,380 5,640 5,370	87,42 86,66 84,75 86,74		
1. Abgabe	$207,7 \pm 2,2$	±	±	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Klein

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**513**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m/g
		5,030 5,170 5,370 5,030 5,130	73,32 72,66 73,35 76,33		
1. Abgabe	$209,3 \pm 2,5$	±	±	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1.]	Korrektur			

Klotz Christoph

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-101

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
	197,3				
	208,6				
	210,9				
	202,5				
	205,2				
	212,2				
1. Abgabe	±	$5,558 \pm 0,070$	$84,19 \pm 0,79$	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Koberitz Marcel

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-**102**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
	204,8 206,2 209,1 206,3 208,2 220,7				
1. Abgabe	±	$5,552 \pm 0,073$	$73,36 \pm 0,41$	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Nicolas

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-103

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
	207,3 203,8 207,3 210,1 211,2 218,2				
1. Abgabe	±	5,546 ± 0,076	$84,49 \pm 0,77$	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Kraus Sarah

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-104

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	209,8				
	201,4				
	205,5				
	213,9				
	214,2				
	215,7				
1. Abgabe	±	$5,540 \pm 0,080$	$85,46 \pm 0,95$	$3,725 \pm 0,017$	$127,5 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Kretschmer Luis

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-105

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	212,3				
	199,0				
	203,7				
	217,7				
	217,2				
	213,2				
-					
1. Abgabe	±	$5,534 \pm 0,083$	$72,81 \pm 0,67$	$3,308 \pm 0,024$	129,8 ± 1,8
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
1. IKOTTEKUT		

Kristen

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-106

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Ole

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m/g
	214,8				
	196,6				
	201,9				
	221,5				
	220,2				
	210,7				
1. Abgabe	±	$5,528 \pm 0,087$	$82,89 \pm 0,69$	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Krotsch Julius

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-107

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
	217,3 194,2 200,1 225,3 223,2 208,2				
1. Abgabe	±	$5,522 \pm 0,091$	$85,04 \pm 0,25$	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Kümmerling Lilly

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-108

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	219,8				
	191,8 198,3				
	229,1				
	226,2 205,7				
1. Abgabe	±	5,516 ± 0,095	$83,17 \pm 0,17$	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Lang Alexandra

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-109

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	222,3 189,4 196,5 232,9 229,2 203,2				
1. Abgabe	±	$5,530 \pm 0,084$	$82,82 \pm 0,20$	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

l. Korrektur			

Lang

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-110

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
	224,8				
	187,0				
	194,7				
	236,7				
	232,2				
	200,7				
1. Abgabe	±	$5,544 \pm 0,075$	$84,49 \pm 0,06$	$3,193 \pm 0,024$	$129,7 \pm 1,6$
2. Abgabe	Ŧ	Ŧ	Ŧ	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Lang

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-111

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	197,2 208,5 210,7 202,1 205,5 212,5				
1. Abgabe	±	5,538 ± 0,079	86,10 ± 0,26	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

LangDominikNAMEVORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-112

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	199,7 206,1 215,9 205,9 208,5 210,0				
1. Abgabe	±	$5,540 \pm 0,078$	$86,39 \pm 0,57$	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

Langer Moritz

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-113

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
	202,2 203,7 214,1 209,7 218,5 207,5				
1. Abgabe	±	$5,146 \pm 0,062$	$73,92 \pm 0,82$	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Leibold

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**201**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,670 5,490 5,750 5,350			
1. Abgabe	$206,1 \pm 2,3$	±	$84,19 \pm 0,79$	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Lenk Pirmin

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**202**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,680 5,480 5,740 5,330			
1. Abgabe	$209,2 \pm 2,4$	±	$73,36 \pm 0,41$	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Leppich Paul

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**203**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,690 5,470 5,730 5,310			
1. Abgabe	$209,7 \pm 2,0$	±	$84,49 \pm 0,77$	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Lloshi

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**204**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,700 5,460 5,720 5,290			
1. Abgabe	$210,1 \pm 2,3$	±	$85,46 \pm 0,95$	$3,725 \pm 0,017$	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Marbaise Sonja

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-205

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,710 5,450 5,710 5,270			
1. Abgabe	$210,5 \pm 3,1$	±	$72,81 \pm 0,67$	$3,308 \pm 0,024$	$129,8 \pm 1,8$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Markiewicz Lukas

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**206**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,530 5,720 5,440 5,700 5,250			
1. Abgabe	$211,0 \pm 4,1$	±	$82,89 \pm 0,69$	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Mass

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**207**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,730 5,430 5,690 5,230			
1. Abgabe	$211,4 \pm 5,2$	±	$85,04 \pm 0,25$	$3,448 \pm 0,013$	$136,8 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Meinzinger Anna

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**208**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,740 5,420 5,680 5,210			
1. Abgabe	$211,8 \pm 6,3$	±	$83,17 \pm 0,17$	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Meurer Nils

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**209**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,750 5,410 5,670 5,290			
1. Abgabe	$212,3 \pm 7,5$	±	$82,82 \pm 0,20$	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Finja

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-210

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,760 5,400 5,660 5,370			
1. Abgabe	$212,7 \pm 8,6$	÷	$84,49 \pm 0,06$	$3,193 \pm 0,024$	$129,7 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			
1. Korrektur			
1. Korrektur			
1. Korrektur			

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-211

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,770 5,390 5,650 5,350			
1. Abgabe	$206,1 \pm 2,3$	±	$86,10 \pm 0,26$	$3,303 \pm 0,022$	$132,1 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Müller	Louis

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-212

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,780 5,380 5,640 5,370			
1. Abgabe	$207,7 \pm 2,2$	±	$86,39 \pm 0,57$	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Müller	Simo	one
1,101101	~	

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-213

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,030 5,170 5,370 5,030 5,130			
1. Abgabe	$209,3 \pm 2,5$	±	$73,92 \pm 0,82$	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Nassar

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**301**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Ali

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			83,42 82,66 84,35 86,34		
1. Abgabe	$206,1 \pm 2,3$	$5,558 \pm 0,070$	±	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

. Korrektur			

Naun

Lukas

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. C-302

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
			73,42 72,33 74,35 73,34		
1. Abgabe	$209,2 \pm 2,4$	$5,552 \pm 0,073$	±	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Neumair

Korbinian

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. C-303

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
			84,42 82,66 84,45 86,44		
1. Abgabe	$209,7 \pm 2,0$	$5,546 \pm 0,076$	±	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Niehues

Lena Marie

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. C-304

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			83,47 87,66 84,35 86,34		
1. Abgabe	$210,1 \pm 2,3$	$5,540 \pm 0,080$	±	$3,725 \pm 0,017$	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Ödemis

Simge

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. C-305

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
			73,42 72,11 74,35 71,34		
1. Abgabe	$210,5 \pm 3,1$	$5,534 \pm 0,083$	±	$3,308 \pm 0,024$	129,8 ± 1,8
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Ortlauf

Andreas

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. C-306

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
			83,72 82,11 84,35 81,37		
1. Abgabe	$211,0 \pm 4,1$	$5,528 \pm 0,087$	+	$3,539 \pm 0,025$	131,4 ± 1,5
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Peci Bleron

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**307**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			85,42 84,66 84,55 85,54		
1. Abgabe	$211,4 \pm 5,2$	$5,522 \pm 0,091$	+	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		 	

Pfaff

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**308**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Jannik

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
			83,32 82,66 83,35 83,33		
1. Abgabe	$211,8 \pm 6,3$	$5,516 \pm 0,095$	±	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			
1. Korrektur			
1. Korrektur			
1. Korrektur	1 Korrektur		
	1. Korrektur		

Pfeifer Joel

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**309**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			82,42 82,66 82,85 83,34		
1. Abgabe	$212,3 \pm 7,5$	$5,530 \pm 0,084$	±	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

l. Korrektur			

Regele

Dominik VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

NAME

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			84,42 84,66 84,45 84,44		
1. Abgabe	$212,7 \pm 8,6$	$5,544 \pm 0,075$	±	$3,193 \pm 0,024$	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Reifschneider

Melanie

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. C-311

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			86,45 85,66 85,65 86,64		
1. Abgabe	$206,1 \pm 2,3$	$5,538 \pm 0,079$	±	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Reisert Luca

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**312**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m/g
			87,42 86,66 84,75 86,74		
1. Abgabe	$207,7 \pm 2,2$	$5,540 \pm 0,078$	÷	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Reis

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**313**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			73,32 72,66 73,35 76,33		
1. Abgabe	$209,3 \pm 2,5$	$5,146 \pm 0,062$	±	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Reuß NAME **Erik** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-401

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
				3,408	
				3,422	
				3,456	
				3,321	
				3,378	
				3,173	
				3,281	
1. Abgabe	$206,1 \pm 2,3$	$5,558 \pm 0,070$	$84,19 \pm 0,79$	±	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Riegel	
NAME	

Jakob VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-402

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,419	
				3,457	
				3,405	
				3,387	
				3,337	
				3,298	
				3,461	
1. Abgabe	$209,2 \pm 2,4$	$5,552 \pm 0,073$	$73,36 \pm 0,41$	±	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Rix NAME

Christoph VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-403

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l /cm	<i>b / cm</i>	m /g
				3,631	
				3,682	
				3,792	
				3,578	
				3,583	
				3,617	
				3,764	
1. Abgabe	$209,7 \pm 2,0$	$5,546 \pm 0,076$	$84,49 \pm 0,77$	±	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Rö]	pke
NA	MF

Ludwig VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-404

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l /cm	b / cm	m /g
				3,712	
				3,724	
				3,737	
				3,698	
				3,765	
				3,651	
				3,788	
1. Abgabe	$210,1 \pm 2,3$	$5,540 \pm 0,080$	$85,46 \pm 0,95$	±	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Rösner NAME **Kai** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. D-405

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,261	
				3,345	
				3,279	
				3,207	
				3,366	
				3,311	
				3,384	
1. Abgabe	$210,5 \pm 3,1$	$5,534 \pm 0,083$	$72,81 \pm 0,67$	±	$129,8 \pm 1,8$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Rößner NAME **Giulia** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. D-406

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,559	
				3,487	
				3,572	
				3,527	
				3,634	
				3,427	
				3,568	
1. Abgabe	$211,0 \pm 4,1$	$5,528 \pm 0,087$	$82,89 \pm 0,69$	±	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

. Korrektur			

Rohde NAME **Johannes** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. D-407

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
				3,483	
				3,426	
				3,472	
				3,412	
				3,468	
				3,472	
				3,401	
1. Abgabe	$211,4 \pm 5,2$	$5,522 \pm 0,091$	$85,04 \pm 0,25$	±	$136,8 \pm 1,6$
2. Abgabe	Ŧ	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Rothbauer NAME **Jasmin** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-408

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l /cm	<i>b / cm</i>	m /g
				3,559	
				3,483	
				3,527	
				3,634	
				3,472	
				3,455	
				3,457	
1. Abgabe	$211,8 \pm 6,3$	$5,516 \pm 0,095$	$83,17 \pm 0,17$	±	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

. Korrektur			

Rott NAME

Paul VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-409

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,023	
				2,985	
				3,179	
				3,048	
				3,127	
				3,054	
				2,981	
1. Abgabe	$212,3 \pm 7,5$	$5,530 \pm 0,084$	$82,\!82 \pm 0,\!20$	±	$128,1 \pm 1,9$
2. Abgabe	Ŧ	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Rühr NAME **Sophie** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-410

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l /cm	<i>b / cm</i>	m /g
				3,164	
				3,124	
				3,199	
				3,236	
				3,109	
				3,257	
				3,261	
1. Abgabe	$212,7 \pm 8,6$	$5,544 \pm 0,075$	$84,49 \pm 0,06$	±	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Ryzhykh NAME **Daria** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. D-411

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l /cm	<i>b / cm</i>	m /g
				3,294	
				3,377	
				3,204	
				3,328	
				3,361	
				3,279	
				3,281	
1. Abgabe	$206,1 \pm 2,3$	$5,538 \pm 0,079$	$86,10 \pm 0,26$	±	$132,1 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur		

Salm NAME **Nicole** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-412

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
				3,629	
				3,569	
				3,698	
				3,582	
				3,689	
				3,651	
				3,506	
1. Abgabe	$207,7 \pm 2,2$	$5,540 \pm 0,078$	$86,39 \pm 0,57$	±	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			
i, iviivatui			

Scherbantin NAME **Adrian** VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. D-413

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
				3,558	
				3,498	
				3,623	
				3,472	
				3,655	
				3,476	
				3,534	
1. Abgabe	$209,3 \pm 2,5$	$5,146 \pm 0,062$	$73,92 \pm 0,82$	±	129,6 ± 1,3
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

l. Korrektur		
i. Korrektur		

Schillinger Sebastian

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**501**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,670 5,490 5,750 5,350	83,42 82,66 84,35 86,34		
1. Abgabe	$206,1 \pm 2,3$	±	±	$3,348 \pm 0,037$	122,1 ± 1,3
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Schlensok David

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**502**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,680 5,480 5,740 5,330	73,42 72,33 74,35 73,34		
1. Abgabe	$209,2 \pm 2,4$	±	±	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Schreyer

Jonas-Dominik

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. E-503

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,530 5,690 5,470 5,730 5,310	84,42 82,66 84,45 86,44		
1. Abgabe	$209,7 \pm 2,0$	±	±	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur

Schubert

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**504**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,700 5,460 5,720 5,290	83,47 87,66 84,35 86,34		
1. Abgabe	$210,1 \pm 2,3$	±	±	$3,725 \pm 0,017$	127,5 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

ormeiapparat:		

1. Korrektur	

Schütte

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**505**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Ole

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,530 5,710 5,450 5,710 5,270	73,42 72,11 74,35 71,34		
1. Abgabe	$210,5 \pm 3,1$	±	±	$3,308 \pm 0,024$	129.8 ± 1.8
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			
1. Korrektur			

Schuhmann Vera

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**506**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,720 5,440 5,700 5,250	83,72 82,11 84,35 81,37		
1. Abgabe	$211,0 \pm 4,1$	±	±	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
T. IKOTTEKKUI		

Schultheiß Mika

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**507**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,730 5,430 5,690 5,230	85,42 84,66 84,55 85,54		
1. Abgabe	211,4 ± 5,2	±	±	$3,448 \pm 0,013$	$136,8 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Schulze Leo

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**508**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,530 5,740 5,420 5,680 5,210	83,32 82,66 83,35 83,33		
1. Abgabe	$211,8 \pm 6,3$	±	±	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Formelapparat:			

1. Korrektur		

Secgin Mirac

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**509**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
		5,530 5,750 5,410 5,670 5,290	82,42 82,66 82,85 83,34		
1. Abgabe	$212,3 \pm 7,5$	±	±	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur	

Sparwasser Richard

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**510**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,760 5,400 5,660 5,370	84,42 84,66 84,45 84,44		
1. Abgabe	$212,7 \pm 8,6$	±	±	$3,193 \pm 0,024$	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
1. Korrektur		

Stang Carolin

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**511**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,770 5,390 5,650 5,350	86,45 85,66 85,65 86,64		
1. Abgabe	$206,1 \pm 2,3$	±	±	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

Stankovic Mirco

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**512**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
		5,530 5,780 5,380 5,640 5,370	87,42 86,66 84,75 86,74		
1. Abgabe	$207,7 \pm 2,2$	±	+	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Steinecke Jon

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. E-**513**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
		5,030 5,170 5,370 5,030 5,130	73,32 72,66 73,35 76,33		
1. Abgabe	$209,3 \pm 2,5$	±	±	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler der gesuchten Mittelwerte auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Stöhr Sarah

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-101

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
	197,3 208,6 210,9 202,5 205,2 212,2				
1. Abgabe	±	$5,558 \pm 0,070$	$84,19 \pm 0,79$	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Strugies Jan Philipp

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-**102**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	204,8				
	206,2				
	209,1				
	206,3				
	208,2				
	220,7				
Г					
1. Abgabe	±	$5,552 \pm 0,073$	$73,36 \pm 0,41$	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Stüwe Jan

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-103

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
	207,3 203,8 207,3 210,1 211,2 218,2				
1. Abgabe	±	5,546 ± 0,076	$84,49 \pm 0,77$	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

Sturm

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-104

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	209,8				
	201,4				
	205,5				
	213,9				
	214,2				
	215,7				
1. Abgabe	±	$5,540 \pm 0,080$	$85,46 \pm 0,95$	$3,725 \pm 0,017$	$127,5 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Suppes Maxim

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-**105**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	212,3 199,0				
	203,7 217,7				
	217,2 213,2				
1. Abgabe	±	$5,534 \pm 0,083$	$72,81 \pm 0,67$	$3,308 \pm 0,024$	129,8 ± 1,8
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Tan Jun Wei

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-106

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
	214,8 196,6 201,9 221,5 220,2 210,7				
1. Abgabe	±	$5,528 \pm 0,087$	$82,89 \pm 0,69$	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Thomas Maximilian

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-107

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	217,3 194,2 200,1 225,3 223,2 208,2				
1. Abgabe	±	$5,522 \pm 0,091$	$85,04 \pm 0,25$	$3,448 \pm 0,013$	136,8 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Thullner Leander

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-108

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l /cm	b/cm	m/g
	219,8 191,8 198,3 229,1 226,2 205,7				
1. Abgabe	±	$5,516 \pm 0,095$	$83,17 \pm 0,17$	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Formelapparat:			

1. Korrektur		

Tober Andreas

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-109

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz f\u00fcr das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Gr\u00f6\u00dfen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m/g
	222,3				
	189,4				
	196,5				
	232,9				
	229,2				
	203,2				
1. Abgabe	±	$5,530 \pm 0,084$	$82,82 \pm 0,20$	$3,057 \pm 0,028$	128,1 ± 1,9
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Trabert Marius

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-110

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	224,8 187,0 194,7 236,7 232,2 200,7				
1. Abgabe	±	$5,544 \pm 0,075$	$84,49 \pm 0,06$	$3,193 \pm 0,024$	129,7 ± 1,6
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
1. Korrektur		

Troidl Clarissa

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-111

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
	197,2 208,5 210,7 202,1 205,5 212,5				
1. Abgabe	±	$5,538 \pm 0,079$	$86,10 \pm 0,26$	$3,303 \pm 0,022$	132,1 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

. Korrektur		

Vialle

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024

Datensatz Nr. A-112

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Noé

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
	199,7				
	206,1				
	215,9				
	205,9				
	208,5				
	210,0				
1. Abgabe	±	$5,540 \pm 0,078$	$86,39 \pm 0,57$	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

1. Korrektur			

Völker Waldemar

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. A-113

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m/g
	202,2 203,7 214,1 209,7 218,5 207,5				
1. Abgabe	±	$5,146 \pm 0,062$	$73,92 \pm 0,82$	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1 Korrektur		
1. Korrektur		

Vörg

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**201**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,670 5,490 5,750 5,350			
1. Abgabe	$206,1 \pm 2,3$	±	$84,19 \pm 0,79$	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Vorbrugg

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**202**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,680 5,480 5,740 5,330			
1. Abgabe	$209,2 \pm 2,4$	±	$73,36 \pm 0,41$	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Voß

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**203**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,690 5,470 5,730 5,310			
1. Abgabe	$209,7 \pm 2,0$	±	$84,49 \pm 0,77$	$3,664 \pm 0,032$	$126,9 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wagner Madelaine

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**204**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,700 5,460 5,720 5,290			
1. Abgabe	$210,1 \pm 2,3$	±	$85,46 \pm 0,95$	$3,725 \pm 0,017$	$127,5 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wandersee Malte

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**205**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,710 5,450 5,710 5,270			
1. Abgabe	$210,5 \pm 3,1$	±	$72,81 \pm 0,67$	$3,308 \pm 0,024$	$129,8 \pm 1,8$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Winkler Hannes

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**206**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,720 5,440 5,700 5,250			
1. Abgabe	$211,0 \pm 4,1$	±	$82,89 \pm 0,69$	$3,539 \pm 0,025$	$131,4 \pm 1,5$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wojtyniak Raphael

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**207**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b / cm	m /g
		5,530 5,730 5,430 5,690 5,230			
1. Abgabe	$211,4 \pm 5,2$	±	$85,04 \pm 0,25$	$3,448 \pm 0,013$	$136,8 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wolf Benedict

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**208**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,740 5,420 5,680 5,210			
1. Abgabe	$211,8 \pm 6,3$	±	$83,17 \pm 0,17$	$3,512 \pm 0,025$	127,4 ± 1,4
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		
1. Korrektur		
1. Korrektur		
1. Korrektur		

Wolf

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**209**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m/g
		5,530 5,750 5,410 5,670 5,290			
1. Abgabe	$212,3 \pm 7,5$	±	$82,82 \pm 0,20$	$3,057 \pm 0,028$	$128,1 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur	

Wolff Valentin

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**210**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,760 5,400 5,660 5,370			
1. Abgabe	$212,7 \pm 8,6$	±	$84,49 \pm 0,06$	$3,193 \pm 0,024$	$129,7 \pm 1,6$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wozny Paulina

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-**211**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,530 5,770 5,390 5,650 5,350			
1. Abgabe	$206,1 \pm 2,3$	±	$86,10 \pm 0,26$	$3,303 \pm 0,022$	$132,1 \pm 1,4$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wundling Sandra

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-212

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h / mm	l/cm	b/cm	m /g
		5,530 5,780 5,380 5,640 5,370			
1. Abgabe	$207,7 \pm 2,2$	±	$86,39 \pm 0,57$	$3,618 \pm 0,026$	$136,9 \pm 1,7$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur		

Wurster

NAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. B-213

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	<i>b / cm</i>	m /g
		5,030 5,170 5,370 5,030 5,130			
1. Abgabe	$209,3 \pm 2,5$	±	$73,92 \pm 0,82$	$3,545 \pm 0,027$	$129,6 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

Zeiser

NAME VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1- WS 2023/2024 Datensatz Nr. C-**301**

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

Formelapparat:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von E mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m/g
			83,42 82,66 84,35 86,34		
1. Abgabe	$206,1 \pm 2,3$	$5,558 \pm 0,070$	+	$3,348 \pm 0,037$	$122,1 \pm 1,3$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur			

Ziegler

Moritz

NAME

VORNAME

Übungen zu: Auswertung Von Messungen Und Fehlerrechnung

Blatt Nr. 5/1-

WS 2023/2024

Datensatz Nr. C-302

Formelapparat:

	1. Abgabe (20.11.2023 14:00 Uhr)	2. Abgabe (24.11.2023 16:00 Uhr)
Bewertung:		
Bemerkung:		

Fehlerfortpflanzungsgesetz zu: Bestimmung des Elastizitätsmoduls (Balken mit rechteckigem Querschnitt)

Schreiben Sie auf die rechte Seite dieses Blattes folgendes:

- die Gleichung nach der E ausgewertet wird
- alle fehlerbehafteten Messgrößen
- die Auswertegleichung für *E* mit zahlenmäßig eingesetzten Messgrößen
- den Ansatz für das Fehlerfortpflanzungsgesetz allgemein bezogen auf die Größen dieser Aufgabe
- evtl. notwendige partielle Ableitungen
- die Gleichung zur Berechnung des Fehlers von *E* mit eingesetzten Zahlenwerten

	Durchbiegung des Balkens	Höhe des Balkens	Länge des Balkens	Breite des Balkens	Aufgelegte Masse
	s / µm	h/mm	l/cm	b/cm	m /g
			73,42 72,33 74,35 73,34		
1. Abgabe	$209,2 \pm 2,4$	$5,552 \pm 0,073$	±	$3,395 \pm 0,023$	$133,7 \pm 1,9$
2. Abgabe	±	±	±	±	±

Geben Sie den Standardfehler des gesuchten Mittelwertes auf zwei signifikante Stellen an. Achten Sie auf SI-Einheiten.

Mit diesen Werten wird der Elastizitätsmodul E mit seinem absoluten Fehler berechnet.

Elastizitätsmodul: $E = \pm$

1. Korrektur