Servidores web de altas prestaciones en entornos virtualizados

Ángel Gómez Martín agomezm@correo.ugr.es SWAP - ETSIIT 2017-18

Virtualización

- Es la creación a través de software de una versión virtual de algún recurso tecnológico, como puede ser una plataforma de hardware, un sistema operativo, un dispositivo de almacenamiento u otros recursos de red.
- Se refiere a la abstracción de los recursos de una máquina mediante un hypervisor o VMM (Virtual Machine Monitor) que crea una capa de abstracción entre el hardware de la máquina física (host) y el SO de la VM (virtual machine, guest), dividiéndose el recurso en uno o más entornos de ejecución.

Hypervisor

 Un hipervisor una plataforma que permite aplicar diversas técnicas de control de virtualización para utilizar, al mismo tiempo, diferentes sistemas operativos en una misma máquina. Presentan a los sistemas operativos virtualizados una plataforma operativa virtual, a la vez que ocultan a dicho sistema operativo virtualizado las características físicas reales del equipo sobre el que operan.

Tipos de hipervisores

Tipo 1

Aplicaciones

Sistema operativo

Hardware

Aplicaciones

Sistema operativo

Hardware

Hipervisor

Hardware real

Tipo 2

Aplicaciones

Sistema operativo

Hardware virtual

Aplicaciones

Sistema operativo

Hardware virtual

Software de virtualización

Sistema Operativo

Hardware real

Ventajas

- Seguridad: cada máquina tiene un acceso privilegiado independiente.
- Aislamiento: las máquinas virtuales son totalmente independientes, entre sí y con el hypervisor.
- Portabilidad y recuperación: gracias a las snapshots.
- Flexibilidad: podemos crear las máquinas virtuales con las características de CPU, memoria, disco y red que necesitemos.
- Agilidad: la creación de una máquina virtual es un proceso muy rápido.
- Reducción de costes: hardware, mantenimiento, energía, ...
- Eficiencia: reduciendo el tiempo de inactividad de los servidores.
- Administración más sencilla.

Inconvenientes

- Aumento de los costos iniciales: software, estudios previos, ...
- Entorno virtual: necesidad de aprender a manejarlo. Nuevas herramientas.
- Menor rendimiento: Debido a que las máquinas no corren directamente sobre el hardware.
- Saturamiento: Un elevado número de VM puede llegar a saturar un servidor.
- Degradación: en las máquinas virtuales y en el almacenamiento.

Algunos hipervisores

XenServer

 Xen es un hipervisor de código abierto y gratuito desarrollado por la Universidad de Cambridge.

XenCenter

XenCenter

DEMO – Servidor Web de «altas prestaciones»

- Balanceador de carga (HAProxy)
- Firewall
- Certificado SSL
- Bases de datos replicadas
- Persistencia en sesiones
- Red interna

jugger.sytes.net

Specs

PC (x1)

- 4C/4T @ 4,3GHz Intel Core I5-4430
- 8GB RAM
- 240GB SSD
- 2x Gigabit NIC
- 1x 10/100 NIC

- 1x XenServer
- 2x Nodo web

Raspberry PI 3B (x2)

- 4C/4T @ 1,2GHz Broadcom BCM2837
- 1GB RAM
- 16GB Flash
- 1x 10/100 NIC

- 1x LoadBalancer (HAProxy)
- 1x Firewall

Networking

Firewall

```
iptables -F
iptables -X
iptables -Z
iptables -t nat -F
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP
# Permitir forwarding
iptables -P FORWARD ACCEPT
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT
# Permitir puerto 80 (http)
iptables -A INPUT -p tcp --dport 80 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -p tcp --sport 80 -m state --state ESTABLISHED -j ACCEPT
# Permitir puerto 443 (https)
iptables -A INPUT -p tcp --dport 443 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -p tcp --sport 443 -m state --state ESTABLISHED -j ACCEPT
iptables -A OUTPUT -p udp --dport 53 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A INPUT -p udp --sport 53 -m state --state ESTABLISHED -j ACCEPT
iptables -A OUTPUT -p tcp --dport 53 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A INPUT -p tcp --sport 53 -m state --state ESTABLISHED -j ACCEPT
iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to 10.10.10.3:80
iptables -A FORWARD -d 10.10.10.3 -p tcp --dport 80 -j ACCEPT
iptables -t nat -A PREROUTING -p tcp --dport 443 -j DNAT --to 10.10.10.3:443
iptables -A FORWARD -d 10.10.10.3 -p tcp --dport 443 -j ACCEPT
iptables -t nat -A POSTROUTING -j MASQUERADE
```

HAProxy

```
global
        daemon
        maxconn 1024
defaults
       mode http
        timeout connect 4000
        timeout client 42000
        timeout server 43000
frontend http-in
       bind *:443 ssl crt /etc/haproxy/ssl/jugger.sytes.net.pem
        bind *:80
        default backend servers
backend servers
       cookie WEB insert
        server web01 10.10.10.4:80 weight 1 maxconn 512 cookie 1 check
        server web02 10.10.10.5:80 weight 1 maxconn 512 cookie 2 check
```


Benchmarks (AB)

Benchmarks (AB)

