Цель работы:

- Изучить корректирующие коды, в том числе коды Хэмминга
- Применить данные методы на практике

Задание №1. Построить код Хэмминга X' для заданного сообщения X. Внести одиночную ошибку замещения в і-й разряд и, произведя декодирование, подтвердить место ошибки:

```
1. a) X = 11001010 (i = 6)
```

2. 6)
$$X = 10110011$$
 ($i = 4$)

3. B)
$$X = 00110101$$
 ($i = 9$)

4.
$$\Gamma$$
) X = 11101001 ($i = 10$)

$$5. д) X = 1010011 (i = 5)$$

- 1. a) X = 11001010 (i = 6):
 - Исходный код Хэмминга:
 - о Проверочные биты:

```
 \mathbf{p_1:} \ 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}.
```

•
$$\mathbf{p_2}$$
: $1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = \mathbf{0}$.

•
$$p_4: 1 \oplus 0 \oplus 0 \oplus 0 = 1$$
.

•
$$p_8: 1 \oplus 0 \oplus 1 \oplus 0 = 0$$
.

- о **Код:** 0 0 1 1 1 <mark>0</mark> 0 0 1 0 1 0.
- **Внесение ошибки в 6-й бит**: 0 0 1 1 1 <mark>1</mark> 0 0 1 0 1 0.
- Синдром:

$$\circ$$
 $\mathbf{s_1}$: $0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}$.

$$\circ \quad \mathbf{s_2:} \ 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}.$$

o **s**₄:
$$1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$$
.

$$\circ$$
 s₈: $0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = \mathbf{0}$.

- \circ Синдром $s_8s_4s_2s_1 = 0110_2 = 6_{10} \rightarrow$ ошибка в 6-й позиции.
- 2. 6) X = 10110011 (i = 4):
 - Исходный код Хэмминга:
 - Проверочные биты:

•
$$\mathbf{p_1}$$
: $1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = \mathbf{1}$.

•
$$\mathbf{p_2}$$
: $1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = \mathbf{0}$.

•
$$p_4: 0 \oplus 1 \oplus 1 \oplus 1 = 1$$
.

•
$$p_8: 0 \oplus 0 \oplus 1 \oplus 1 = 0.$$

- **Внесение ошибки в 4-й бит**: 1 0 1 0 0 1 1 0 0 0 1 1.
- Синдром:

$$\circ$$
 $\mathbf{s_1}: 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}.$

$$\circ \quad \mathbf{s_2:} \ 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}.$$

$$\circ$$
 s₄: $1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$.

$$\circ$$
 s₈: $0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = \mathbf{0}$.

$$\circ$$
 Синдром $s_8s_4s_2s_1 = 0100_2 = 4_{10} \rightarrow$ ошибка в 4-й позиции.

- 3. B) X = 00110101 (i = 9):
 - Исходный код Хэмминга:
 - Проверочные биты:
 - $\mathbf{p_1}$: $0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = \mathbf{1}$.
 - $\mathbf{p_2}$: $0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = \mathbf{1}$.
 - $p_4: 0 \oplus 1 \oplus 1 \oplus 1 = 1$.
 - $p_8: 0 \oplus 1 \oplus 0 \oplus 1 = 0$.
 - о **Код:** 1 1 0 1 0 1 1 0 <mark>0</mark> 1 0 1.
 - Внесение ошибки в 9-й бит: 1 1 0 1 0 1 1 0 <mark>1</mark> 1 0 1.
 - Синдром:
 - \circ $\mathbf{s_1}$: $1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = \mathbf{1}$.
 - $\circ \quad \mathbf{s_2:} \ 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = \mathbf{0}.$
 - \circ **s**₄: $1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = \mathbf{0}$.
 - o $\mathbf{s_8}$: $0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = \mathbf{1}$.
 - \circ Синдром $s_8s_4s_2s_1 = 1001_2 = 9_{10} \rightarrow$ ошибка в 9-й позиции.
- 4. Γ) X = 11101001 (i = 10):
 - Исходный код Хэмминга:
 - о Проверочные биты:
 - $\mathbf{p_1}$: $1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = \mathbf{1}$.
 - $\mathbf{p_2:} \ 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = \mathbf{0}.$
 - $p_4: 1 \oplus 1 \oplus 0 \oplus 1 = 1$.
 - $p_8: 1 \oplus 0 \oplus 0 \oplus 1 = 0$.
 - Код: 1 0 1 1 1 1 0 0 1 0 0 1.
 - **Внесение ошибки в 10-й бит**: 1 0 1 1 1 1 0 0 1 <mark>1</mark> 0 1.
 - Синдром:
 - $\circ \quad \mathbf{s_1:} \ 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = \mathbf{0}.$
 - \circ $\mathbf{s_2}$: $0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = \mathbf{1}$.
 - o $\mathbf{s_4}$: $1 \oplus 1 \oplus 1 \oplus 1 = \mathbf{0}$.
 - o $\mathbf{s_8}$: $0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = \mathbf{1}$.
 - \circ Синдром = $1010_2 = 10_{10} \rightarrow$ ошибка в 10-й позиции.
- 5. д) X=1010011 (i = 5)
 - Исходный код Хэмминга:
 - о Проверочные биты:
 - $\mathbf{p_1}$: $1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}$.
 - p_2 : 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = **0**.
 - $p_4: 0 \oplus 1 \oplus 0 = 1$.
 - $p_8: 0 \oplus 1 \oplus 1 = 0$.
 - о **Код:** 0 0 1 1 <mark>0</mark> 1 0 0 0 1 1.
 - **Внесение ошибки в 5-й бит**: 0 0 1 1 1 1 0 0 0 1 1.
 - Синдром:
 - \circ $\mathbf{s_1}: 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}.$
 - \circ $\mathbf{s_2}: 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}.$
 - \circ **s₄:** $1 \oplus 1 \oplus 1 \oplus 0 = 1$.
 - \circ s₈: $0 \oplus 0 \oplus 1 \oplus 1 = 0$.
 - \circ Синдром $s_8s_4s_2s_1 = 0101_2 = 5_{10} \rightarrow$ ошибка в 5-й позиции.

Задание №2. Принят некоторый код с ошибкой замещения, подтвердить место ошибки:

- А) принят код 111100; исправлено 110100 ошибка по корректирующему числу в разряде 4;
- Б) принят код 111010; исправлено 101010 ошибка по корректирующему числу в разряде 5;
- В) принят код 100000; исправлено 000000 ошибка по корректирующему числу в разряде 6.
- 1. Принят код 11<mark>1</mark>100, исправлено 11<mark>0</mark>100 ошибка в разряде 4.
 - Вычисление проверочных битов:
 - o $p_1 = b_1 = 1$.
 - $p_2 = b_2 = 1$.
 - $p_4 = b_4 = 1$.
 - Вычисление синдрома:
 - $\circ \quad \mathbf{s_1} = \mathbf{p_1} \oplus \mathbf{b_3} \oplus \mathbf{b_5} = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{0} = \mathbf{0}.$
 - $\circ \quad \mathbf{s_2} = \mathbf{p}_2 \oplus \mathbf{b}_3 \oplus \mathbf{b}_6 = 1 \oplus 1 \oplus 0 = \mathbf{0}.$
 - \circ $\mathbf{s_4} = \mathbf{p_4} \oplus \mathbf{b_5} \oplus \mathbf{b_6} = 1 \oplus 0 \oplus 0 = \mathbf{1}.$
 - Синдром: $s_4s_2s_1 = 100_2 = 4_{10} \rightarrow$ ошибка в 4-м разряде, место ошибки подтверждено.
- 2. Принят код 1<mark>1</mark>1010, исправлено 1<mark>0</mark>1010 ошибка в разряде 5.
 - Вычисление проверочных битов:
 - o $p_1 = b_1 = 1$.
 - $p_2 = b_2 = 1$.
 - o $p_4 = b_4 = 0$.
 - Вычисление синдрома:
 - $\circ \quad \mathbf{s_1} = \mathbf{p_1} \oplus \mathbf{b_3} \oplus \mathbf{b_5} = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} = \mathbf{1}.$
 - $\circ \quad \mathbf{s_2} = \mathbf{p}_2 \oplus \mathbf{b}_3 \oplus \mathbf{b}_6 = 1 \oplus 1 \oplus 0 = \mathbf{0}.$
 - o $s_4 = p_4 \oplus b_5 \oplus b_6 = 0 \oplus 1 \oplus 0 = 1.$
 - Синдром: $s_4s_2s_1 = 101_2 = 5_{10} \rightarrow$ ошибка в 5-м разряде, место ошибки подтверждено.
- 3. Принят код <mark>1</mark>00000, исправлено <mark>0</mark>00000 ошибка в разряде 6.
 - Вычисление проверочных битов:
 - $p_1 = b_1 = 1$.
 - $p_2 = b_2 = 0$.
 - $p_4 = b_4 = 0$.
 - Вычисление синдрома:
 - $\circ \quad \mathbf{s_1} = \mathbf{p_1} \oplus \mathbf{b_3} \oplus \mathbf{b_5} = \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{0} = \mathbf{1}.$
 - $\circ \quad \mathbf{s_2} = \mathbf{p}_2 \oplus \mathbf{b}_3 \oplus \mathbf{b}_6 = \mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0} = \mathbf{0}.$
 - \circ $\mathbf{s_4} = \mathbf{p_4} \oplus \mathbf{b_5} \oplus \mathbf{b_6} = \mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0} = \mathbf{0}.$
 - **Синдром:** $s_4s_2s_1 = 001_2 = 1_{10} \rightarrow \text{ошибка в 1-м разряде, место ошибки не подтверждено.$

Вывод: в результате работы были изучены корректирующие коды, в том числе коды Хэмминга.