七八)

2. TRT Longwave (LW) radio transmitter in Ankara broadcasts globally. Let the transmitted power of this LW radio at any instant be a uniform random variable, X, non-zero between 2 < X < 10 units. Due to the atmospheric conditions at some particular point in the world, the received power by a LW radio receiver becomes uncertain, represented by the random variable Y. The uncertainity between transmitted and received power is modeled by the conditional pdf $f_{Y|X}(y|x) = \frac{2}{x^2}y$ (Note that the received power must be non-negative and smaller than the transmitted power).

(a) (5 points) Determine the joint pdf between X and Y, $f_{X,Y}(x,y)$. Show the non-zero

region for $f_{X,Y}(x,y)$ on the xy-plane.

(b) (7 points) Determine and plot the marginal pdf of Y, $f_Y(y)$.

(c) (8 points) Determine and plot the conditional pdf(s) of X, given Y, $f_{X|Y}(x|y)$ by indicating the range of values of y for which $f_{X|Y}(x|y)$ is valid.

(d) (5 points) Assume 12 similar LW radio transmitters are built in Ankara with identical power characteristics whose power distributions are uniform between $2 < X_i < 10$ units and they operate independently. If the total transmitter power is defined as $Z = X_1 + ... + X_{12}$, what is the probability of measuring Z > 74 units of total power at the output of these transmitters at any instant? [Hint1: Use Central Limit Theorem] [Hint2: For $X \sim uniform[a, b], var(X) = \frac{(b-a)^2}{12}$]

A part of the standard normal table:

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5350
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5553
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6870
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224

$$\frac{Q}{f_{Y|X}(y|X)} = \frac{f_{X|Y}(x|y)}{f_{X}(x)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$
The lenen that 4>0, also y is X depodent since the recented power cornect be greater than X (intintively). Also, the will inexmitter of brodeout 2 to 10 units of power.

$$\frac{f_{Y|X}(y|X)}{f_{Y|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{Y|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{Y|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{Y|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{Y|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{Y|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{X|Y}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{X|Y}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|Y}(x|y) = \left(\frac{2y}{x^{2}}\right)f_{X|Y}(x) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{X|Y}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|X}(x|Y) = \frac{4}{4x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{X|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|X}(x|Y) = \frac{4}{x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(y|X)}{f_{X|X}(y|X)} = \frac{2}{x^{2}}y \rightarrow f_{X|X}(x|X) = \frac{4}{x^{2}}, \text{ valid regin?}$$

$$\frac{f_{Y|X}(x|Y)}{f_{X|X}(x|Y)} = \frac{4}{x^{2}}, \text{ valid regin?}$$

$$\frac{f_{X|X}(x|Y)}{f_{X|X}(x|Y)} = \frac{4}{x^$$

yo(x)2=x2 → |yo(x)|=1x1-> yo(x)=X

 $f_{y}(y) = \int_{32}^{4} f_{x,y}(x_{1}y) dx = \begin{cases} \frac{3}{4} + \frac{1}{4}x \\ \frac{1}{4}x^{2} dx \end{cases}, y \in (0,2] \end{cases} f_{y}(y) = \begin{cases} \frac{3}{32} + \frac{1}{4}x^{2} - \frac{1}{4}x \\ \frac{3}{32} + \frac{1}{4}x \\ \frac{3}{32} - \frac{1}{4}x \end{cases}$ $(y) dy = \begin{pmatrix} \frac{1}{32} - \frac{1}{4}x \\ \frac{1}{32} - \frac{1}{4}x \end{pmatrix}$ (-4) (-4) (-4) (-4) (-4) (-4)

CamScanner ile tarandı