

Social Topic Distributions

Hakan Akyürek Mürüvvet Hasanbaşoğlu

June 2, 2020

Overview

- 1. Cluster labeling
- 2. Some more GMM training
- 3. Jensen Shannon Distance
- **4. Next Tasks -** for the next 2 weeks

1. Cluster Labeling

- Gaussians in the model overlap... a lot.
- Some words are close to huge number of the gaussian centroids.
- Empty strings exist in the dataset.
 - It's embedding is really close to zero point.
- No meaningful labeling!

- <empty-string>, trumpster, illuminati
- <empty-string>, illuminati, malta
- <empty-string>, trumpster, blasting

1. Cluster Labeling

Cluster labeling done in two steps:

- 1. Predict a label for each of the words in the vocabulary.
- 2. For each gaussian check the closest words that were labeled that gaussian's centroid.
 - a. Do not check all data points in the space for each gaussian.

Some examples of labeled clusters:

- multicolored, peacock, adorn, jewels
- dimwits, simpletons, interlopers
- racoon, hedgehogs, squirrel
- haha, lol, lolol, anyhoo, ahaha

- In last sprint:
 - covariance types = 'spherical', 'full', 'diag', 'tied'
 - o n_components range: 30, 40, ..., 70

- Selected 'diag' covariance type but what is the right n_component actually?
- Same model fit with the same data but produced different distributions:

→ More automated method for finding the right n_components!

- n_components range: 2, 4, 6, ..., 18, 20, 30, ..., 70
- Fit models 10 times with same configuration per component
- Select the best 5 out of 10

→ GMMs distance check per cluster with random data °

```
or n component in n components range:
dist = []
for iteration in range (iterations):
  data 1, data 2 = train test split(X, test size=0.5
  gmm 1 = GaussianMixture(n components=n component)
                       covariance type='diag',
                       init params='kmeans',
                       verbose=1).fit(data 1)
  gmm 2 = GaussianMixture(n components=n component
                       covariance type='diag',
                       init params='kmeans',
                       verbose=1).fit(data 2)
  dist.append(gmm js(gmm 1, gmm 2))
select = SelBest(np.array(dist), int(iterations/2)
results.append(np.mean(select))
res sigs.append(np.std(select))
```


- n_components range: 2, 4, 6, ..., 18, 20, 30, ..., 70
- Fit models 10 times with same configuration per component
- Select the best 5 out of 10

for n component in n components range:

→ GMMs distance check per cluster with same data

- n_components range: 2, 4, 6, ..., 18, 20, 30, ..., 70
- Fit models 10 times with same configuration per component
- Select the best 5 out of 10

for n component in n components range:

→ BIC score

- n_components range: 2, 4, 6, ..., 18, 20, 30, ..., 70
- Fit models 10 times with same configuration per component
- Select the best 5 out of 10

for n component in n components range

→ BIC score

3. Jensen Shannon Distance

- Compute text probabilities from word probabilities
- JSDistance = sqrt(JSDivergence)

$$\mathrm{JSD}(P \parallel Q) = rac{1}{2}D(P \parallel M) + rac{1}{2}D(Q \parallel M)$$

Select:

- 1 article from Quora dataset
- 20 answering user comments
- 20 random user comments

		Diag - 20	Diag - 70
Answering User	mean	0.300	0.445
	stddev	0.075	0.079
Random User	mean	0.327	0.469
	stddev	0.056	0.057

4. Next Tasks

• Start experiments on different sets of datasets

References

- Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*. 2014.
- Sridhar, Vivek Kumar Rangarajan. "Unsupervised topic modeling for short texts using distributed representations of words." *Proceedings* of the 1st workshop on vector space modeling for natural language processing. 2015.
- Fine tune GloVe embeddings using Mittens
- roamanalytics/mittens: A fast implementation of GloVe, with optional retrofitting
- https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
- https://scikit-learn.org/stable/modules/mixture.html
- https://towardsdatascience.com/gaussian-mixture-model-clusterization-how-to-select-the-number-of-components-clusters-553bef45f6e4
- https://stackoverflow.com/questions/26079881/kl-divergence-of-two-gmms
- https://medium.com/@sourcedexter/how-to-find-the-similarity-between-two-probability-distributions-using-python-a7546e90a08d

Questions

- 1. Different word embeddings BERT?
- 2. Sentence embeddings?
- 3. Analysis based on single users or based on social medias?