§2. Topological Spaces

Math 4341 (Topology)

▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,
 - ▶ (T3): If $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap U_2 \cap \cdots \cap U_n \in \mathcal{T}$.

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,
 - ▶ (T3): If $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap U_2 \cap \cdots \cap U_n \in \mathcal{T}$.
- ▶ If \mathcal{T} is a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. A set $U \in \mathcal{T}$ is called *open*.

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,
 - ► (T3): If $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap U_2 \cap \cdots \cap U_n \in \mathcal{T}$.
- ▶ If \mathcal{T} is a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. A set $U \in \mathcal{T}$ is called *open*.
- ▶ **Remark**. By induction (T3) is equivalent to "If $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$."

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,
 - ► (T3): If $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap U_2 \cap \cdots \cap U_n \in \mathcal{T}$.
- ▶ If \mathcal{T} is a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. A set $U \in \mathcal{T}$ is called *open*.
- ▶ **Remark**. By induction (T3) is equivalent to "If $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$."
- ▶ Any set *X* can be given a topology in at least two ways:

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,
 - ► (T3): If $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap U_2 \cap \cdots \cap U_n \in \mathcal{T}$.
- ▶ If \mathcal{T} is a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. A set $U \in \mathcal{T}$ is called *open*.
- ▶ **Remark**. By induction (T3) is equivalent to "If $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$."
- ightharpoonup Any set X can be given a topology in at least two ways:
 - ▶ Let $\mathcal{T} = \{\emptyset, X\} \subset \mathcal{P}(X)$. Then \mathcal{T} is a topology called *the trivial topology*.

- ▶ **Definition**. Let X be a set, and let $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of X. Then \mathcal{T} is called a *topology* if
 - ▶ (T1): $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
 - ▶ (T2): If $U_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathcal{T}$,
 - ► (T3): If $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap U_2 \cap \cdots \cap U_n \in \mathcal{T}$.
- ▶ If \mathcal{T} is a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. A set $U \in \mathcal{T}$ is called *open*.
- ▶ **Remark**. By induction (T3) is equivalent to "If $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$."
- ► Any set X can be given a topology in at least two ways:
 - Let $\mathcal{T} = \{\emptyset, X\} \subset \mathcal{P}(X)$. Then \mathcal{T} is a topology called *the trivial topology*.
 - Let $\mathcal{T} = \mathcal{P}(X)$. Then \mathcal{T} is a topology called *the discrete topology*.

Example. Let $X = \{a, b\}$. There are 4 topologies on X:

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - $\qquad \qquad \mathcal{T}_1 = \{\emptyset, X\},$

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - $\blacktriangleright \ \mathcal{T}_1 = \{\emptyset, X\},\$
 - $\blacktriangleright \ \mathcal{T}_2 = \{\emptyset, \{a\}, X\},\$

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - $ightharpoonup \mathcal{T}_1 = \{\emptyset, X\},$
 - ▶ $\mathcal{T}_2 = \{\emptyset, \{a\}, X\},$

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - $ightharpoonup \mathcal{T}_1 = \{\emptyset, X\},$
 - $\mathcal{T}_2 = \{\emptyset, \{a\}, X\},$
 - ▶ $\mathcal{T}_3 = \{\emptyset, \{b\}, X\},$
 - $T_4 = \{\emptyset, \{a\}, \{b\}, X\}.$

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - ▶ $\mathcal{T}_1 = \{\emptyset, X\},\$
 - ▶ $\mathcal{T}_2 = \{\emptyset, \{a\}, X\},$
 - ▶ $\mathcal{T}_3 = \{\emptyset, \{b\}, X\},$
 - $ightharpoonup \mathcal{T}_4 = \{\emptyset, \{a\}, \{b\}, X\}.$
- **Definition**. Let \mathcal{T} and \mathcal{T}' be topologies on a set X.
 - ▶ If $\mathcal{T} \subset \mathcal{T}'$ then we say that \mathcal{T} is *coarser* than \mathcal{T}' , and that \mathcal{T}' is *finer* than \mathcal{T} .

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - ▶ $\mathcal{T}_1 = \{\emptyset, X\},\$
 - ▶ $\mathcal{T}_2 = \{\emptyset, \{a\}, X\},$
 - ▶ $\mathcal{T}_3 = \{\emptyset, \{b\}, X\},$
 - $ightharpoonup \mathcal{T}_4 = \{\emptyset, \{a\}, \{b\}, X\}.$
- **Definition**. Let \mathcal{T} and \mathcal{T}' be topologies on a set X.
 - ▶ If $\mathcal{T} \subset \mathcal{T}'$ then we say that \mathcal{T} is *coarser* than \mathcal{T}' , and that \mathcal{T}' is *finer* than \mathcal{T} .
 - If $\mathcal{T} \subsetneq \mathcal{T}'$, we say that \mathcal{T} is *strictly coarser* than \mathcal{T}' , and that \mathcal{T}' is *strictly finer* than \mathcal{T} .

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - ▶ $\mathcal{T}_1 = \{\emptyset, X\},\$
 - ▶ $\mathcal{T}_2 = \{\emptyset, \{a\}, X\},$
 - ▶ $\mathcal{T}_3 = \{\emptyset, \{b\}, X\},$
 - $ightharpoonup \mathcal{T}_4 = \{\emptyset, \{a\}, \{b\}, X\}.$
- **Definition**. Let \mathcal{T} and \mathcal{T}' be topologies on a set X.
 - ▶ If $\mathcal{T} \subset \mathcal{T}'$ then we say that \mathcal{T} is *coarser* than \mathcal{T}' , and that \mathcal{T}' is *finer* than \mathcal{T} .
 - ▶ If $\mathcal{T} \subsetneq \mathcal{T}'$, we say that \mathcal{T} is *strictly coarser* than \mathcal{T}' , and that \mathcal{T}' is *strictly finer* than \mathcal{T} .
 - ▶ If either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$, we say that \mathcal{T} and \mathcal{T}' are comparable.

- **Example**. Let $X = \{a, b\}$. There are 4 topologies on X:
 - ▶ $\mathcal{T}_1 = \{\emptyset, X\},\$
 - ▶ $\mathcal{T}_2 = \{\emptyset, \{a\}, X\},$
 - ▶ $\mathcal{T}_3 = \{\emptyset, \{b\}, X\},$
 - $ightharpoonup \mathcal{T}_4 = \{\emptyset, \{a\}, \{b\}, X\}.$
- **Definition**. Let \mathcal{T} and \mathcal{T}' be topologies on a set X.
 - ▶ If $\mathcal{T} \subset \mathcal{T}'$ then we say that \mathcal{T} is *coarser* than \mathcal{T}' , and that \mathcal{T}' is *finer* than \mathcal{T} .
 - ▶ If $\mathcal{T} \subsetneq \mathcal{T}'$, we say that \mathcal{T} is *strictly coarser* than \mathcal{T}' , and that \mathcal{T}' is *strictly finer* than \mathcal{T} .
 - ▶ If either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$, we say that \mathcal{T} and \mathcal{T}' are comparable.
- ▶ In the example above, \mathcal{T}_2 is strictly coarser than \mathcal{T}_4 , but \mathcal{T}_2 and \mathcal{T}_3 are not comparable.

▶ **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.

- ▶ **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have

- ▶ **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have
 - ightharpoonup (T1'): \emptyset and X are closed,

- **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have
 - ightharpoonup (T1'): \emptyset and X are closed,
 - ▶ (T2'): If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is also closed,

- **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have
 - ightharpoonup (T1'): \emptyset and X are closed,
 - ▶ (T2'): If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is also closed,
 - ► (T3'): If $C_1, ..., C_n$ are closed, then $C_1 \cup C_2 \cup ... \cup C_n$ is also closed.

- ▶ **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have
 - \blacktriangleright (T1'): \emptyset and X are closed,
 - ▶ (T2'): If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is also closed,
 - ► (T3'): If $C_1, ..., C_n$ are closed, then $C_1 \cup C_2 \cup ... \cup C_n$ is also closed.
- The proof is based on De Morgan's laws

- ▶ **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have
 - ightharpoonup (T1'): \emptyset and X are closed,
 - ▶ (T2'): If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is also closed,
 - ► (T3'): If $C_1, ..., C_n$ are closed, then $C_1 \cup C_2 \cup ... \cup C_n$ is also closed.
- The proof is based on De Morgan's laws

- ▶ **Definition**. A subset $A \subset X$ of a topological space is called *closed* if $A^c := X \setminus A$ is open.
- **Proposition 2.1**. In a topological space X, we have
 - \blacktriangleright (T1'): \emptyset and X are closed,
 - ▶ (T2'): If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is also closed,
 - ► (T3'): If $C_1, ..., C_n$ are closed, then $C_1 \cup C_2 \cup ... \cup C_n$ is also closed.
- The proof is based on De Morgan's laws

▶ **Definition**. Let X be a set, and let $\mathcal{B} \subset \mathcal{P}(X)$ be any collection of subsets of X. Then \mathcal{B} is called a *basis* for a topology on X if

- ▶ **Definition**. Let X be a set, and let $\mathcal{B} \subset \mathcal{P}(X)$ be any collection of subsets of X. Then \mathcal{B} is called a *basis* for a topology on X if
 - ▶ (B1): For each $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$,

- ▶ **Definition**. Let X be a set, and let $\mathcal{B} \subset \mathcal{P}(X)$ be any collection of subsets of X. Then \mathcal{B} is called a *basis* for a topology on X if
 - ▶ (B1): For each $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$,
 - ▶ (B2): If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there is a $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

- ▶ **Definition**. Let X be a set, and let $\mathcal{B} \subset \mathcal{P}(X)$ be any collection of subsets of X. Then \mathcal{B} is called a *basis* for a topology on X if
 - ▶ (B1): For each $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$,
 - ▶ (B2): If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there is a $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.
- ▶ If \mathcal{B} is a basis, we define $\mathcal{T}_{\mathcal{B}}$, the topology generated by \mathcal{B} , by declaring that $U \in \mathcal{T}_{\mathcal{B}}$ if for every $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B \subset U$.

▶ Lemma 2.2. $\mathcal{T}_{\mathcal{B}} \subset \mathcal{P}(X)$ is a topology.

- ▶ **Lemma 2.2**. $\mathcal{T}_{\mathcal{B}} \subset \mathcal{P}(X)$ is a topology.
- ▶ *Proof.* We show that $\mathcal{T}_{\mathcal{B}}$ satisfies the properties (T1)–(T3).

- ▶ **Lemma 2.2**. $\mathcal{T}_{\mathcal{B}} \subset \mathcal{P}(X)$ is a topology.
- ▶ *Proof.* We show that $\mathcal{T}_{\mathcal{B}}$ satisfies the properties (T1)–(T3).
 - ► (T1) follows from (B1).

- ▶ **Lemma 2.2**. $\mathcal{T}_{\mathcal{B}} \subset \mathcal{P}(X)$ is a topology.
- ▶ *Proof.* We show that $\mathcal{T}_{\mathcal{B}}$ satisfies the properties (T1)–(T3).
 - ► (T1) follows from (B1).
 - ▶ (T2): Suppose $U_i \in \mathcal{T}_{\mathcal{B}}$ for all $i \in I$. Let $x \in \bigcup_{i \in I} U_i$. Then there exists an $i \in I$ so that $x \in U_i$, and since $U_i \in \mathcal{T}_{\mathcal{B}}$ we get a basis element $B \in \mathcal{B}$ so that $x \in B \subset U_i \subset \bigcup_{i \in I} U_i$.

- ▶ **Lemma 2.2**. $\mathcal{T}_{\mathcal{B}} \subset \mathcal{P}(X)$ is a topology.
- ▶ *Proof.* We show that $\mathcal{T}_{\mathcal{B}}$ satisfies the properties (T1)–(T3).
 - ► (T1) follows from (B1).
 - ▶ (T2): Suppose $U_i \in \mathcal{T}_{\mathcal{B}}$ for all $i \in I$. Let $x \in \bigcup_{i \in I} U_i$. Then there exists an $i \in I$ so that $x \in U_i$, and since $U_i \in \mathcal{T}_{\mathcal{B}}$ we get a basis element $B \in \mathcal{B}$ so that $x \in B \subset U_i \subset \bigcup_{i \in I} U_i$.
 - ▶ (T3): Suppose $U_1, U_2 \in \mathcal{T}_{\mathcal{B}}$. Let $x \in U_1 \cap U_2$. Then $x \in U_1$ and $x \in U_2$, so we get $B_1, B_2 \in \mathcal{B}$ so that $x \in B_1 \subset U_1$ and $x \in B_2 \subset U_2$. Now, by (B2) we get a $B_3 \in \mathcal{B}$ so that $x \in B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2$.

▶ **Lemma 2.3**. Let \mathcal{B} be the basis for a topology on a set X. Then $U \in \mathcal{T}_{\mathcal{B}}$ if and only if $U = \bigcup_{i \in I} B_i$ for some sets $B_i \in \mathcal{B}$. That is, $\mathcal{T}_{\mathcal{B}}$ consists of all unions of elements from \mathcal{B} .

- ▶ **Lemma 2.3**. Let \mathcal{B} be the basis for a topology on a set X. Then $U \in \mathcal{T}_{\mathcal{B}}$ if and only if $U = \bigcup_{i \in I} B_i$ for some sets $B_i \in \mathcal{B}$. That is, $\mathcal{T}_{\mathcal{B}}$ consists of all unions of elements from \mathcal{B} .
- Proof. There are two things to show.

- ▶ **Lemma 2.3**. Let \mathcal{B} be the basis for a topology on a set X. Then $U \in \mathcal{T}_{\mathcal{B}}$ if and only if $U = \bigcup_{i \in I} B_i$ for some sets $B_i \in \mathcal{B}$. That is, $\mathcal{T}_{\mathcal{B}}$ consists of all unions of elements from \mathcal{B} .
- Proof. There are two things to show.
 - ▶ Suppose $U = \bigcup_{i \in I} B_i$ for some $B_i \in \mathcal{B}$. Let $x \in U$. Then there is an $i \in I$ so that $x \in B_i \subset U$. This shows that $U \in \mathcal{T}_{\mathcal{B}}$.

- ▶ **Lemma 2.3**. Let \mathcal{B} be the basis for a topology on a set X. Then $U \in \mathcal{T}_{\mathcal{B}}$ if and only if $U = \bigcup_{i \in I} B_i$ for some sets $B_i \in \mathcal{B}$. That is, $\mathcal{T}_{\mathcal{B}}$ consists of all unions of elements from \mathcal{B} .
- Proof. There are two things to show.
 - ▶ Suppose $U = \bigcup_{i \in I} B_i$ for some $B_i \in \mathcal{B}$. Let $x \in U$. Then there is an $i \in I$ so that $x \in B_i \subset U$. This shows that $U \in \mathcal{T}_{\mathcal{B}}$.
 - ▶ Suppose $U \in \mathcal{T}_{\mathcal{B}}$. For every $x \in U$, choose a basis element B_x so that $x \in B_x \subset U$. We now claim that $U = \bigcup_{x \in U} B_x$.

- ▶ **Lemma 2.3**. Let \mathcal{B} be the basis for a topology on a set X. Then $U \in \mathcal{T}_{\mathcal{B}}$ if and only if $U = \bigcup_{i \in I} B_i$ for some sets $B_i \in \mathcal{B}$. That is, $\mathcal{T}_{\mathcal{B}}$ consists of all unions of elements from \mathcal{B} .
- Proof. There are two things to show.
 - ▶ Suppose $U = \bigcup_{i \in I} B_i$ for some $B_i \in \mathcal{B}$. Let $x \in U$. Then there is an $i \in I$ so that $x \in B_i \subset U$. This shows that $U \in \mathcal{T}_{\mathcal{B}}$.
 - ▶ Suppose $U \in \mathcal{T}_{\mathcal{B}}$. For every $x \in U$, choose a basis element B_x so that $x \in B_x \subset U$. We now claim that $U = \bigcup_{x \in U} B_x$.
 - ▶ Take any $y \in U$. Then $y \in B_y$ and $B_y \subset \bigcup_{x \in U} B_x$, so y is an element of the union.

- ▶ **Lemma 2.3**. Let \mathcal{B} be the basis for a topology on a set X. Then $U \in \mathcal{T}_{\mathcal{B}}$ if and only if $U = \bigcup_{i \in I} B_i$ for some sets $B_i \in \mathcal{B}$. That is, $\mathcal{T}_{\mathcal{B}}$ consists of all unions of elements from \mathcal{B} .
- Proof. There are two things to show.
 - ▶ Suppose $U = \bigcup_{i \in I} B_i$ for some $B_i \in \mathcal{B}$. Let $x \in U$. Then there is an $i \in I$ so that $x \in B_i \subset U$. This shows that $U \in \mathcal{T}_{\mathcal{B}}$.
 - ▶ Suppose $U \in \mathcal{T}_{\mathcal{B}}$. For every $x \in U$, choose a basis element B_x so that $x \in B_x \subset U$. We now claim that $U = \bigcup_{x \in U} B_x$.
 - ▶ Take any $y \in U$. Then $y \in B_y$ and $B_y \subset \bigcup_{x \in U} B_x$, so y is an element of the union.
 - ▶ Take any $y \in \bigcup_{x \in U} B_x$. Then there exists a $z \in U$ so that $y \in B_z$, but by our choices of the basis elements, we have that $B_z \subset U$, so $y \in B_z \subset U$.

▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.
 - $ightharpoonup \mathcal{C}$ is a basis for a topology.

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.
 - $ightharpoonup \mathcal{C}$ is a basis for a topology.

▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} is actually \mathcal{T} .

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.
 - C is a basis for a topology.
 - ▶ (B1): Let $x \in X$. Since $X \in \mathcal{T}$, by definition of \mathcal{C} we get a $C \in \mathcal{C}$ so that $x \in C \subset X$.

▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} is actually \mathcal{T} .

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.
 - $ightharpoonup \mathcal{C}$ is a basis for a topology.
 - ▶ (B1): Let $x \in X$. Since $X \in \mathcal{T}$, by definition of \mathcal{C} we get a $C \in \mathcal{C}$ so that $x \in C \subset X$.
 - ▶ (B2): Let $x \in C_1 \cap C_2$ for $C_1, C_2 \in C$. Since C_1 and C_2 are open sets, so is $C_1 \cap C_2$. Therefore we get a $C \in C$ so that $x \in C \subset C_1 \cap C_2$.
 - ▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} is actually \mathcal{T} .

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.
 - ightharpoonup C is a basis for a topology.
 - ▶ (B1): Let $x \in X$. Since $X \in \mathcal{T}$, by definition of \mathcal{C} we get a $C \in \mathcal{C}$ so that $x \in C \subset X$.
 - ▶ (B2): Let $x \in C_1 \cap C_2$ for C_1 , $C_2 \in C$. Since C_1 and C_2 are open sets, so is $C_1 \cap C_2$. Therefore we get a $C \in C$ so that $x \in C \subset C_1 \cap C_2$.
 - ▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} is actually \mathcal{T} .
 - Take any U ∈ T_C. By Lemma 2.3, U is a union of elements of C. Since C ⊂ T, it follows from (T2) that U ∈ T.

- ▶ **Lemma 2.4**. Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ so that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- Proof. There are two things to show.
 - $ightharpoonup \mathcal{C}$ is a basis for a topology.
 - ▶ (B1): Let $x \in X$. Since $X \in \mathcal{T}$, by definition of \mathcal{C} we get a $C \in \mathcal{C}$ so that $x \in C \subset X$.
 - ▶ (B2): Let $x \in C_1 \cap C_2$ for C_1 , $C_2 \in C$. Since C_1 and C_2 are open sets, so is $C_1 \cap C_2$. Therefore we get a $C \in C$ so that $x \in C \subset C_1 \cap C_2$.
 - ▶ The topology $\mathcal{T}_{\mathcal{C}}$ generated by \mathcal{C} is actually \mathcal{T} .
 - ▶ Take any $U \in \mathcal{T}_{\mathcal{C}}$. By Lemma 2.3, U is a union of elements of \mathcal{C} . Since $\mathcal{C} \subset \mathcal{T}$, it follows from (T2) that $U \in \mathcal{T}$.
 - ▶ Take any $U \in \mathcal{T}$. By definition of \mathcal{C} , for any $x \in U$ we can find a $C \in \mathcal{C}$ so that $x \in C \subset U$. Hence $U \in \mathcal{T}_{\mathcal{C}}$.

For $x \in \mathbb{R}^n$ and r > 0, let

$$B(x,r) = \{ y \in \mathbb{R}^n : ||x - y|| < r \}$$

be the open ball centered in x with radius r.

For $x \in \mathbb{R}^n$ and r > 0, let

$$B(x,r) = \{ y \in \mathbb{R}^n : ||x - y|| < r \}$$

be the open ball centered in x with radius r.

Proposition 2.5. The collection

$$\mathcal{B} = \{B(x,r) \mid x \in \mathbb{R}^n, r > 0\}$$

is the basis for a topology on \mathbb{R}^n . The resulting topology $\mathcal{T}_{\mathcal{B}}$ is called the standard topology and its open sets are exactly the open sets in analysis/calculus.

▶ **Lemma 2.6**. Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. TFAE:

- ▶ **Lemma 2.6**. Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. TFAE:
 - ▶ (1) The topology \mathcal{T}' is finer than \mathcal{T} .

- ▶ **Lemma 2.6**. Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. TFAE:
 - ightharpoonup (1) The topology \mathcal{T}' is finer than \mathcal{T} .
 - (2) For every $x \in X$ and each basis element $B \in \mathcal{B}$ satisfying $x \in B$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.

- ▶ **Lemma 2.6**. Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. TFAE:
 - ▶ (1) The topology \mathcal{T}' is finer than \mathcal{T} .
 - (2) For every $x \in X$ and each basis element $B \in \mathcal{B}$ satisfying $x \in B$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.
- Proof. There are two things to prove.

- ▶ **Lemma 2.6**. Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. TFAE:
 - ▶ (1) The topology \mathcal{T}' is finer than \mathcal{T} .
 - (2) For every $x \in X$ and each basis element $B \in \mathcal{B}$ satisfying $x \in B$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.
- Proof. There are two things to prove.
 - ▶ Suppose $\mathcal{T} \subset \mathcal{T}'$. Let x in X, and let $B \in \mathcal{B}$ satisfy $x \in B$. Then since $B \in \mathcal{T}$, we have $B \in \mathcal{T}'$. Since $\mathcal{T}' = \mathcal{T}_{\mathcal{B}'}$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.

- ▶ **Lemma 2.6**. Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. TFAE:
 - ▶ (1) The topology \mathcal{T}' is finer than \mathcal{T} .
 - (2) For every $x \in X$ and each basis element $B \in \mathcal{B}$ satisfying $x \in B$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.
- Proof. There are two things to prove.
 - ▶ Suppose $\mathcal{T} \subset \mathcal{T}'$. Let x in X, and let $B \in \mathcal{B}$ satisfy $x \in B$. Then since $B \in \mathcal{T}$, we have $B \in \mathcal{T}'$. Since $\mathcal{T}' = \mathcal{T}_{\mathcal{B}'}$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.
 - Suppose (2) holds. Let $U \in \mathcal{T}$, and let $x \in U$ be any element. Then there is a $B \in \mathcal{B}$ with $x \in B \subset U$, and by (2) we get $B' \in \mathcal{B}'$ with $x \in B' \subset B \subset U$. This implies that $U \in \mathcal{T}'$.

▶ **Example**. We can define a basis for a topology on \mathbb{R} by letting \mathcal{B}_{ℓ} consist of all sets of the form

$$\{x \in \mathbb{R} \mid a \le x < b\},\$$

where $a, b \in \mathbb{R}$ vary. The topology \mathcal{T}_{ℓ} generated by \mathcal{B}_{ℓ} is called the *lower limit topology* on \mathbb{R} , and we write $\mathbb{R}_{\ell} = (\mathbb{R}, \mathcal{T}_{\ell})$.

▶ **Example**. We can define a basis for a topology on \mathbb{R} by letting \mathcal{B}_{ℓ} consist of all sets of the form

$$\{x \in \mathbb{R} \mid a \le x < b\},\$$

where $a, b \in \mathbb{R}$ vary. The topology \mathcal{T}_{ℓ} generated by \mathcal{B}_{ℓ} is called the *lower limit topology* on \mathbb{R} , and we write $\mathbb{R}_{\ell} = (\mathbb{R}, \mathcal{T}_{\ell})$.

▶ **Example**. Let $K = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ and let \mathcal{B}_K consist of all open intervals as well as all sets of the form $(a,b) \setminus K$. Then \mathcal{B}_K is a basis and the topology \mathcal{T}_K that it generates is called the K-topology on \mathbb{R} . We write $\mathbb{R}_K = (\mathbb{R}, \mathcal{T}_K)$.

▶ **Lemma 2.7**. The topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are both strictly finer than the std topology but are not comparable with each other.

- ▶ **Lemma 2.7**. The topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are both strictly finer than the std topology but are not comparable with each other.
- Proof. There are three things to prove.

- ▶ **Lemma 2.7**. The topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are both strictly finer than the std topology but are not comparable with each other.
- Proof. There are three things to prove.
 - ▶ $\mathbb{R}_\ell \supseteq \mathbb{R}$: Let $x \in \mathbb{R}$ and let (a,b) contain x. Since $[x,b) \subset (a,b)$, Lemma 2.6 implies that $\mathbb{R}_\ell \supset \mathbb{R}$. It is strictly finer because [x,b) is open in \mathbb{R}_ℓ but not in the std topology: There is no open interval B so that $x \in B \subset [x,b)$.

- ▶ **Lemma 2.7**. The topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are both strictly finer than the std topology but are not comparable with each other.
- Proof. There are three things to prove.
 - ▶ $\mathbb{R}_\ell \supseteq \mathbb{R}$: Let $x \in \mathbb{R}$ and let (a,b) contain x. Since $[x,b) \subset (a,b)$, Lemma 2.6 implies that $\mathbb{R}_\ell \supset \mathbb{R}$. It is strictly finer because [x,b) is open in \mathbb{R}_ℓ but not in the std topology: There is no open interval B so that $x \in B \subset [x,b)$.
 - ▶ $\mathbb{R}_K \supseteq \mathbb{R}$: Let $x \in \mathbb{R}$ and let (a,b) contain x. This interval belongs to \mathcal{B}_K so by Lemma 2.6 we have $\mathbb{R}_K \supset \mathbb{R}$. To see that it is strictly finer, consider the set $U = (-1,1) \setminus K \in \mathcal{T}_K$. Then $0 \in U$ but there is no open interval B so that $0 \in B \subset U$.

- ▶ **Lemma 2.7**. The topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are both strictly finer than the std topology but are not comparable with each other.
- Proof. There are three things to prove.
 - ▶ $\mathbb{R}_\ell \supseteq \mathbb{R}$: Let $x \in \mathbb{R}$ and let (a,b) contain x. Since $[x,b) \subset (a,b)$, Lemma 2.6 implies that $\mathbb{R}_\ell \supset \mathbb{R}$. It is strictly finer because [x,b) is open in \mathbb{R}_ℓ but not in the std topology: There is no open interval B so that $x \in B \subset [x,b)$.
 - ▶ $\mathbb{R}_K \supseteq \mathbb{R}$: Let $x \in \mathbb{R}$ and let (a,b) contain x. This interval belongs to \mathcal{B}_K so by Lemma 2.6 we have $\mathbb{R}_K \supset \mathbb{R}$. To see that it is strictly finer, consider the set $U = (-1,1) \setminus K \in \mathcal{T}_K$. Then $0 \in U$ but there is no open interval B so that $0 \in B \subset U$.
 - ▶ \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable with each other: Note that $U \in \mathcal{T}_{K}$ but $U \notin \mathcal{T}_{\ell}$, and that $[1,2) \in \mathcal{T}_{\ell}$ but $[1,2) \notin \mathcal{T}_{K}$.

Definition. A *metric space* (X, d) is a set X together with a non-negative function $d: X \times X \to \mathbb{R}_{>0}$ satisfying

- **Definition**. A *metric space* (X, d) is a set X together with a non-negative function $d: X \times X \to \mathbb{R}_{>0}$ satisfying
 - (M1): d(x,y) = 0 if and only if x = y,

- **Definition**. A *metric space* (X, d) is a set X together with a non-negative function $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying
 - (M1): d(x,y) = 0 if and only if x = y,
 - (M2): d(x,y) = d(y,x),

- ▶ **Definition**. A metric space (X, d) is a set X together with a non-negative function $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying
 - \blacktriangleright (M1): d(x,y) = 0 if and only if x = y,
 - ightharpoonup (M2): d(x,y) = d(y,x),
 - ► (M3): the triangle inequality $d(x,z) \le d(x,y) + d(y,z)$.

- **Definition**. A metric space (X, d) is a set X together with a non-negative function $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying
 - \blacktriangleright (M1): d(x,y) = 0 if and only if x = y,
 - (M2): d(x,y) = d(y,x),
 - ► (M3): the triangle inequality $d(x, z) \le d(x, y) + d(y, z)$.
- ▶ The function d is called a *metric*, and d(x, y) is called the *distance* from x to y.

- ▶ **Definition**. A *metric space* (X, d) is a set X together with a non-negative function $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying
 - \blacktriangleright (M1): d(x,y) = 0 if and only if x = y,
 - ightharpoonup (M2): d(x,y) = d(y,x),
 - ► (M3): the triangle inequality $d(x, z) \le d(x, y) + d(y, z)$.
- ▶ The function d is called a *metric*, and d(x, y) is called the *distance* from x to y.
- For a metric space (X, d) the open ball $B_d(x, r)$ centered at x, with radius r > 0, with respect to the metric d is defined as

$$B_d(x,r) = \{ y \in X \mid d(x,y) < r \}.$$

We will use the open balls to define a topology, called *the metric topology* on any metric space.

Proposition 2.8. If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{B_d(x,r) \mid x \in X, r > 0\}$$

Proposition 2.8. If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{B_d(x,r) \mid x \in X, r > 0\}$$

is a basis for a topology.

▶ *Proof.* We need to show that \mathcal{B} satisfies (B1) and (B2).

Proposition 2.8. If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{B_d(x,r) \mid x \in X, r > 0\}$$

- ▶ *Proof.* We need to show that \mathcal{B} satisfies (B1) and (B2).
 - ▶ (B1) follows since $x \in B_d(x, r)$ for any r > 0.

Proposition 2.8. If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{B_d(x,r) \mid x \in X, r > 0\}$$

- ▶ *Proof.* We need to show that \mathcal{B} satisfies (B1) and (B2).
 - ▶ (B1) follows since $x \in B_d(x, r)$ for any r > 0.
 - ► To see (B2), let $x \in B_d(y_1, r_1) \cap B_d(y_2, r_2)$.

Proposition 2.8. If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{B_d(x,r) \mid x \in X, r > 0\}$$

- ▶ *Proof.* We need to show that \mathcal{B} satisfies (B1) and (B2).
 - ▶ (B1) follows since $x \in B_d(x, r)$ for any r > 0.
 - ► To see (B2), let $x \in B_d(y_1, r_1) \cap B_d(y_2, r_2)$.
 - We need to show that there is a r > 0 so that

$$B_d(x,r) \subset B_d(y_1,r_1) \cap B_d(y_2,r_2).$$

Proposition 2.8. If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{B_d(x,r) \mid x \in X, r > 0\}$$

is a basis for a topology.

- ▶ *Proof.* We need to show that \mathcal{B} satisfies (B1) and (B2).
 - ▶ (B1) follows since $x \in B_d(x, r)$ for any r > 0.
 - ► To see (B2), let $x \in B_d(y_1, r_1) \cap B_d(y_2, r_2)$.
 - We need to show that there is a r > 0 so that

$$B_d(x,r) \subset B_d(y_1,r_1) \cap B_d(y_2,r_2).$$

▶ Choose $r = \min (r_1 - d(x, y_1), r_2 - d(x, y_2))$. For any $z \in B_d(x, r)$, by the triangle inequality we have

$$d(z,y_i) \leq d(z,x) + d(x,y_i) < r + d(x,y_i) \leq r_i$$

for i = 1, 2. This implies that $z \in B_d(y_1, r_1) \cap B_d(y_2, r_2)$.

▶ **Proposition 2.9**. A set U is open in the metric topology iff for every point $x \in U$ there is an r > 0 so that $B_d(x, r) \subset U$.

- ▶ **Proposition 2.9**. A set U is open in the metric topology iff for every point $x \in U$ there is an r > 0 so that $B_d(x, r) \subset U$.
- ▶ *Proof.* The direction (\Leftarrow) follows from the definition of the topology as induced by the basis of open balls. Suppose now U is open in the metric topology. Let $x \in U$.

- ▶ **Proposition 2.9**. A set U is open in the metric topology iff for every point $x \in U$ there is an r > 0 so that $B_d(x, r) \subset U$.
- ▶ *Proof.* The direction (\Leftarrow) follows from the definition of the topology as induced by the basis of open balls. Suppose now U is open in the metric topology. Let $x \in U$.
 - Since the topology is generated by the basis of open balls, there exists an open ball $B_d(y,\epsilon)$ so that $x \in B_d(y,\epsilon) \subset U$.

- ▶ **Proposition 2.9**. A set U is open in the metric topology iff for every point $x \in U$ there is an r > 0 so that $B_d(x, r) \subset U$.
- ▶ *Proof.* The direction (\Leftarrow) follows from the definition of the topology as induced by the basis of open balls. Suppose now U is open in the metric topology. Let $x \in U$.
 - Since the topology is generated by the basis of open balls, there exists an open ball $B_d(y,\epsilon)$ so that $x \in B_d(y,\epsilon) \subset U$.
 - ▶ By setting $r = \epsilon d(x, y) > 0$ we see that

$$x \in B_d(x,r) \subset B_d(y,\epsilon) \subset U.$$

- ▶ **Proposition 2.9**. A set U is open in the metric topology iff for every point $x \in U$ there is an r > 0 so that $B_d(x, r) \subset U$.
- ▶ *Proof.* The direction (\Leftarrow) follows from the definition of the topology as induced by the basis of open balls. Suppose now U is open in the metric topology. Let $x \in U$.
 - Since the topology is generated by the basis of open balls, there exists an open ball $B_d(y,\epsilon)$ so that $x \in B_d(y,\epsilon) \subset U$.
 - ▶ By setting $r = \epsilon d(x, y) > 0$ we see that

$$x \in B_d(x,r) \subset B_d(y,\epsilon) \subset U.$$

Remark. For the case of \mathbb{R}^n , we recover the usual condition for a set to be open.

Example. The Euclidean space \mathbb{R}^n is a metric space with metric d(x,y) = ||x-y||.

- **Example**. The Euclidean space \mathbb{R}^n is a metric space with metric d(x,y) = ||x-y||.
- **Example**. Let X be any set. We can define a metric on X by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

- **Example**. The Euclidean space \mathbb{R}^n is a metric space with metric d(x,y) = ||x-y||.
- **Example**. Let X be any set. We can define a metric on X by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

► The metric *d* is often called the *discrete metric*. Let's describe the collection of open balls.

- **Example**. The Euclidean space \mathbb{R}^n is a metric space with metric d(x,y) = ||x-y||.
- **Example**. Let X be any set. We can define a metric on X by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

- ► The metric *d* is often called the *discrete metric*. Let's describe the collection of open balls.
- Let $x \in X$ be arbitrary. If $r \le 1$, then $B_d(x,r) = \{x\}$ while if r > 1 then $B_d(x,r) = X$.

- **Example**. The Euclidean space \mathbb{R}^n is a metric space with metric d(x,y) = ||x-y||.
- **Example**. Let X be any set. We can define a metric on X by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

- ► The metric *d* is often called the *discrete metric*. Let's describe the collection of open balls.
- Let $x \in X$ be arbitrary. If $r \le 1$, then $B_d(x, r) = \{x\}$ while if r > 1 then $B_d(x, r) = X$.
- ► Thus the basis of open balls is

$$\mathcal{B} = \{ \{ x \} \mid x \in X \} \cup \{ X \}.$$

Hence the topology induced by d is the discrete topology.

► Having the data of open sets turns out to be sufficient to define continuous functions.

- ► Having the data of open sets turns out to be sufficient to define continuous functions.
- ▶ If $f: X \to Y$ is a function between two sets, and $A \subset Y$ is a subset, then we define the *preimage* of A to be

$$f^{-1}(A) = \{x \in X \mid f(x) \in A\}.$$

- ► Having the data of open sets turns out to be sufficient to define continuous functions.
- ▶ If $f: X \to Y$ is a function between two sets, and $A \subset Y$ is a subset, then we define the *preimage* of A to be

$$f^{-1}(A) = \{ x \in X \mid f(x) \in A \}.$$

▶ **Proposition 2.10**. The preimage behaves nicely with respect to various operations of sets.

- ► Having the data of open sets turns out to be sufficient to define continuous functions.
- ▶ If $f: X \to Y$ is a function between two sets, and $A \subset Y$ is a subset, then we define the *preimage* of A to be

$$f^{-1}(A) = \{x \in X \mid f(x) \in A\}.$$

- ▶ **Proposition 2.10**. The preimage behaves nicely with respect to various operations of sets.
 - ▶ If $f: X \to Y$ and $\{B_i\}_{i \in I}$ is a family of subsets of Y, then

$$f^{-1}\Big(\bigcup_{i\in I}B_i\Big)=\bigcup_{i\in I}f^{-1}(B_i),\quad f^{-1}\Big(\bigcap_{i\in I}B_i\Big)=\bigcap_{i\in I}f^{-1}(B_i).$$

- ► Having the data of open sets turns out to be sufficient to define continuous functions.
- ▶ If $f: X \to Y$ is a function between two sets, and $A \subset Y$ is a subset, then we define the *preimage* of A to be

$$f^{-1}(A) = \{x \in X \mid f(x) \in A\}.$$

- ▶ **Proposition 2.10**. The preimage behaves nicely with respect to various operations of sets.
 - ▶ If $f: X \to Y$ and $\{B_i\}_{i \in I}$ is a family of subsets of Y, then

$$f^{-1}\Big(\bigcup_{i\in I}B_i\Big)=\bigcup_{i\in I}f^{-1}(B_i),\quad f^{-1}\Big(\bigcap_{i\in I}B_i\Big)=\bigcap_{i\in I}f^{-1}(B_i).$$

▶ If $B \subset Y$, then $f^{-1}(B^c) = f^{-1}(B)^c$.

- Having the data of open sets turns out to be sufficient to define continuous functions.
- ▶ If $f: X \to Y$ is a function between two sets, and $A \subset Y$ is a subset, then we define the *preimage* of A to be

$$f^{-1}(A) = \{ x \in X \mid f(x) \in A \}.$$

- ▶ **Proposition 2.10**. The preimage behaves nicely with respect to various operations of sets.
 - ▶ If $f: X \to Y$ and $\{B_i\}_{i \in I}$ is a family of subsets of Y, then

$$f^{-1}\Big(\bigcup_{i\in I}B_i\Big)=\bigcup_{i\in I}f^{-1}(B_i),\quad f^{-1}\Big(\bigcap_{i\in I}B_i\Big)=\bigcap_{i\in I}f^{-1}(B_i).$$

- ▶ If $B \subset Y$, then $f^{-1}(B^c) = f^{-1}(B)^c$.
- ▶ If $g: Y \to Z$ is another map and $C \subset Z$, then

$$(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C)).$$

▶ **Definition**. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \to Y$ is called *continuous* if $f^{-1}(U) \in \mathcal{T}_X$ for all $U \in \mathcal{T}_Y$, or in words, if the preimages of open sets are open.

- ▶ **Definition**. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \to Y$ is called *continuous* if $f^{-1}(U) \in \mathcal{T}_X$ for all $U \in \mathcal{T}_Y$, or in words, if the preimages of open sets are open.
- ▶ A function $f: X \to Y$ is called *continuous at a point* $x \in X$ if for every $U \in \mathcal{T}_Y$ with $f(x) \in U$ there is a $V \in \mathcal{T}_X$ so that $x \in V$ and $f(V) \subset U$.

- ▶ **Definition**. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \to Y$ is called *continuous* if $f^{-1}(U) \in \mathcal{T}_X$ for all $U \in \mathcal{T}_Y$, or in words, if the preimages of open sets are open.
- ▶ A function $f: X \to Y$ is called *continuous at a point* $x \in X$ if for every $U \in \mathcal{T}_Y$ with $f(x) \in U$ there is a $V \in \mathcal{T}_X$ so that $x \in V$ and $f(V) \subset U$.
- ▶ **Remark**. The notion of "continuity" depends heavily on the topologies on the spaces under consideration.

Example. Let X be a topological space. Then the identity map $id: X \to X$ is continuous since $id^{-1}(U) = U$ for every subset $U \subset X$.

- ▶ **Example**. Let X be a topological space. Then the identity map $id: X \to X$ is continuous since $id^{-1}(U) = U$ for every subset $U \subset X$.
- ▶ **Example**. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $y_0 \in Y$. Then the constant map $f: X \to Y$, $f(x) = y_0$ for all x, is continuous.

- ▶ **Example**. Let X be a topological space. Then the identity map $id: X \to X$ is continuous since $id^{-1}(U) = U$ for every subset $U \subset X$.
- **Example**. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $y_0 \in Y$. Then the constant map $f : X \to Y$, $f(x) = y_0$ for all x, is continuous.
- **Example**. Let *X* have the discrete topology, and let *Y* be any topological space. Then any map $f: X \to Y$ is continuous, since $f^{-1}(U) \in \mathcal{P}(X)$ for all $U \subset Y$.

- ▶ **Example**. Let X be a topological space. Then the identity map $id: X \to X$ is continuous since $id^{-1}(U) = U$ for every subset $U \subset X$.
- **Example**. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $y_0 \in Y$. Then the constant map $f : X \to Y$, $f(x) = y_0$ for all x, is continuous.
- **Example**. Let *X* have the discrete topology, and let *Y* be any topological space. Then any map $f: X \to Y$ is continuous, since $f^{-1}(U) \in \mathcal{P}(X)$ for all $U \subset Y$.
- ▶ **Example**. Let X be any topological space, and let Y have the trivial topology. Then any map $f: X \to Y$ is continuous, since $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(Y) = X$ which are both open.

▶ **Theorem 2.11**. The following properties hold:

- ▶ **Theorem 2.11**. The following properties hold:
 - ▶ (i) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.

- ▶ **Theorem 2.11**. The following properties hold:
 - ▶ (i) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.
 - (ii) A function $f: X \to Y$ is continuous if and only if the preimage of any closed set is closed.

- ▶ **Theorem 2.11**. The following properties hold:
 - ▶ (i) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.
 - (ii) A function $f: X \to Y$ is continuous if and only if the preimage of any closed set is closed.
 - (iii) A function f: X → Y is continuous if and only if it is continuous at x for all x ∈ X.

- ▶ **Theorem 2.11**. The following properties hold:
 - ▶ (i) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.
 - (ii) A function $f: X \to Y$ is continuous if and only if the preimage of any closed set is closed.
 - (iii) A function $f: X \to Y$ is continuous if and only if it is continuous at x for all $x \in X$.
- ▶ *Proof.* (i) follows from $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. (ii) follows from $f^{-1}(C)^c = f^{-1}(C^c)$. We now show (iii).

- ▶ **Theorem 2.11**. The following properties hold:
 - ▶ (i) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.
 - (ii) A function $f: X \to Y$ is continuous if and only if the preimage of any closed set is closed.
 - (iii) A function $f: X \to Y$ is continuous if and only if it is continuous at x for all $x \in X$.
- ▶ *Proof.* (i) follows from $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. (ii) follows from $f^{-1}(C)^c = f^{-1}(C^c)$. We now show (iii).
 - Suppose f is continuous. Let $x \in X$ and let $U \in \mathcal{T}_Y$ with $f(x) \in U$. Then $V = f^{-1}(U)$ is open in X and f(V) = U, so f is continuous at x.

- ▶ **Theorem 2.11**. The following properties hold:
 - ▶ (i) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.
 - (ii) A function $f: X \to Y$ is continuous if and only if the preimage of any closed set is closed.
 - (iii) A function $f: X \to Y$ is continuous if and only if it is continuous at x for all $x \in X$.
- ▶ *Proof.* (i) follows from $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. (ii) follows from $f^{-1}(C)^c = f^{-1}(C^c)$. We now show (iii).
 - Suppose f is continuous. Let $x \in X$ and let $U \in \mathcal{T}_Y$ with $f(x) \in U$. Then $V = f^{-1}(U)$ is open in X and f(V) = U, so f is continuous at x.
 - ▶ Suppose f is continuous at x for all $x \in X$. Let $U \in \mathcal{T}_Y$. We need to show that $f^{-1}(U) \in \mathcal{T}_X$. For each $x \in f^{-1}(U)$, there exists $V_x \in \mathcal{T}_X$ so that $x \in V_x$ and $f(V_x) \subset U$. Now $f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} V_x$ and thus open since each V_x is.

▶ Recall from analysis that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called continuous at a point $x \in \mathbb{R}^n$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $\|x - y\| < \delta \Rightarrow \|f(x) - f(y)\| < \epsilon$. A function is called *continuous* if it is cont. at every point.

- ▶ Recall from analysis that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called continuous at a point $x \in \mathbb{R}^n$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $\|x y\| < \delta \Rightarrow \|f(x) f(y)\| < \epsilon$. A function is called continuous if it is cont. at every point.
- ▶ Theorem 2.12. Let (X, d_X) and (Y, d_Y) be metric spaces with their induced metric topologies. Then a function $f: X \to Y$ is continuous if and only if

$$\forall x \in X, \forall \epsilon > 0, \exists \delta > 0 : d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \epsilon.$$

- ▶ Recall from analysis that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called continuous at a point $x \in \mathbb{R}^n$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $\|x y\| < \delta \Rightarrow \|f(x) f(y)\| < \epsilon$. A function is called continuous if it is cont. at every point.
- ▶ Theorem 2.12. Let (X, d_X) and (Y, d_Y) be metric spaces with their induced metric topologies. Then a function $f: X \to Y$ is continuous if and only if

$$\forall x \in X, \forall \epsilon > 0, \exists \delta > 0 : d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \epsilon.$$

▶ *Proof.* Theorem 2.12 follows from Theorem 2.11(iii) and Lemma 2.13.

- ▶ Recall from analysis that a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called continuous at a point $x \in \mathbb{R}^n$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $\|x y\| < \delta \Rightarrow \|f(x) f(y)\| < \epsilon$. A function is called continuous if it is cont. at every point.
- ▶ Theorem 2.12. Let (X, d_X) and (Y, d_Y) be metric spaces with their induced metric topologies. Then a function $f: X \to Y$ is continuous if and only if

$$\forall x \in X, \forall \epsilon > 0, \exists \delta > 0 : d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \epsilon.$$

- ▶ Proof. Theorem 2.12 follows from Theorem 2.11(iii) and Lemma 2.13.
- ▶ **Lemma 2.13**. Let (X, d_X) and (Y, d_Y) be metric spaces with the metric topologies. Then a function $f: X \to Y$ is continuous at a point $x \in X$ if and only if

$$\forall \epsilon > 0, \exists \delta > 0 : f(B_{d_X}(x, \delta)) \subset B_{d_Y}(f(x), \epsilon). \tag{1}$$

▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - ▶ There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.
 - By Proposition 2.9, the openness of V implies that there is a $\delta > 0$ so that $B_{d_X}(x, \delta) \subset V$.

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.
 - By Proposition 2.9, the openness of V implies that there is a $\delta > 0$ so that $B_{d_X}(x, \delta) \subset V$.
 - ▶ Hence $f(B_{d_X}(x,\delta)) \subset f(V) \subset B_{d_Y}(f(x),\epsilon)$.

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.
 - ▶ By Proposition 2.9, the openness of V implies that there is a $\delta > 0$ so that $B_{d_X}(x, \delta) \subset V$.
 - ▶ Hence $f(B_{d_X}(x,\delta)) \subset f(V) \subset B_{d_Y}(f(x),\epsilon)$.
- Suppose (1) holds for f. Let U be an open set in Y containing f(x).

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - ▶ There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.
 - By Proposition 2.9, the openness of V implies that there is a $\delta > 0$ so that $B_{d_X}(x, \delta) \subset V$.
 - ▶ Hence $f(B_{d_X}(x,\delta)) \subset f(V) \subset B_{d_Y}(f(x),\epsilon)$.
- Suppose (1) holds for f. Let U be an open set in Y containing f(x).
 - By Proposition 2.9, the openness of U implies that there exists $\epsilon > 0$ so that $B_{d_Y}(f(x), \epsilon) \subset U$.

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - ▶ There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.
 - By Proposition 2.9, the openness of V implies that there is a $\delta > 0$ so that $B_{d_X}(x, \delta) \subset V$.
 - ▶ Hence $f(B_{d_X}(x,\delta)) \subset f(V) \subset B_{d_Y}(f(x),\epsilon)$.
- Suppose (1) holds for f. Let U be an open set in Y containing f(x).
 - ▶ By Proposition 2.9, the openness of U implies that there exists $\epsilon > 0$ so that $B_{d_Y}(f(x), \epsilon) \subset U$.
 - ▶ By (1) we then get a $\delta > 0$ with $f(B_{d_X}(x,\delta)) \subset B_{d_Y}(f(x),\epsilon)$.

- ▶ Suppose f is continuous at $x \in X$. Let $\epsilon > 0$.
 - There is an open set V in X such that $x \in V$ and $f(V) \subset B_{d_Y}(f(x), \epsilon)$.
 - By Proposition 2.9, the openness of V implies that there is a $\delta > 0$ so that $B_{d_X}(x, \delta) \subset V$.
 - ▶ Hence $f(B_{d_X}(x,\delta)) \subset f(V) \subset B_{d_Y}(f(x),\epsilon)$.
- Suppose (1) holds for f. Let U be an open set in Y containing f(x).
 - By Proposition 2.9, the openness of U implies that there exists $\epsilon > 0$ so that $B_{d_Y}(f(x), \epsilon) \subset U$.
 - ▶ By (1) we then get a $\delta > 0$ with $f(B_{d_X}(x, \delta)) \subset B_{d_Y}(f(x), \epsilon)$.
 - ▶ Hence $f(B_{d_X}(x,\delta)) \subset U$. Since $B_{d_X}(x,\delta)$ is open in X and contains x we are done.

