Homework 04

Due Date: 111/03/16

Instruction. Do not submit part B.

A Homework Problems

- 1. Let V be the space \mathbb{C}^2 with the standard inner product $\langle (a_1,a_2),(b_1,b_2)\rangle=a_1\overline{b_1}+a_2\overline{b_2}$. Let $T:\mathbb{C}^2\to\mathbb{C}^2$ be the linear transformation defined by T(1,0)=(1,-2) and T(1,1)=(i,-1). Let T^* be the adjoint of T. Find $T^*(x_1,x_2)$ for any $(x_1,x_2)\in\mathbb{C}^2$.
- 2. Let V be an inner product space, and let $y, z \in V$. Define $T : V \to V$ by $T(x) = \langle x, y \rangle z$ for all $x \in V$. Prove that T is linear, show that T^* exists, and find an explicit expression for T^* .

Remark. Using Dirac's bra-ket notation, T could be written as $|z\rangle \langle y|$.

- 3. Let V be an inner product space and $T:V\to V$ be a linear transformation such that T^* exists. Prove that:
 - (a) $T^*T = 0$ implies T = 0.
 - (b) $R(T^*)^{\perp} = N(T)$.
 - (c) If W is a T-invariant subspace of V, then W^{\perp} is a T^* -invariant subspace of V.

B Supplementary Problems

4. Let $(V, \langle -, - \rangle)$ be a Hilbert space over **F** and V' the space of bounded linear functionals on V equipped with the valued-wise addition and scalar multiplication. By Riesz representation theorem, every element in V' is of the form $f_v: V \to \mathbb{F}$ where $v \in V$ and $f_v(x) = \langle x, v \rangle$ for all $x \in V$. Define

$$\langle -, - \rangle_{\text{op}} : V' \times V' \to \mathbb{F}, \quad \langle f_v, f_w \rangle_{\text{op}} = \langle v, w \rangle.$$

Prove that $(V', \langle -, - \rangle_{op})$ is a Hilbert space.

5. Let $(V,\langle -,-\rangle)$ be a non-zero inner product space over $\mathbb F$ and $L:V\to \mathbb F$ a linear functional. Prove that

$$\begin{split} \sup\{|L(h)|: \|h\| \leqslant 1\} \\ &= \sup\{|L(h)|: \|h\| = 1\} \\ &= \sup\{|L(h)|/\|h\|: h \in V, h \neq 0\} \\ &= \inf\{c > 0: |L(h)| \leqslant c\|h\|, h \text{ in } V\}. \end{split}$$

Denote this number by $||L||_{op}$, called the *operator norm* of L. Prove $|L(x)| \leq ||L||_{op} ||x||$ for all $x \in V$.

Remark. The operator norm defines a norm on the space of bounded linear functional V'. In fact, it is easy to see that $\langle V', \|\cdot\|_{\text{op}} \rangle$ is the normed space induced by the Hilbert space $(V', \langle -, - \rangle_{\text{op}})$ defined in (4).

6. Let $(V, \langle -, - \rangle)$ be a non-zero inner product space. Fix $y \in V$ and define $L: V \to \mathbb{F}$ by $L(x) = \langle x, y \rangle$. Prove that L is a bounded linear functional and $\|L\|_{\text{op}} = \|y\|$. Deduce for any $v \in V$, there is a bounded linear functional $L: V \to \mathbb{F}$ such that $\|L\|_{\text{op}} = 1$ and $L(v) = \|v\|$. (the norm of a functional L is defined in (5).)

Remark. This result holds as well if V is just a normed space, but the proof uses the Hahn-Banach theorem. In fact, even the existence of a non-zero bounded linear map on a normed space requires Hahn-Banach theorem in general; see [Karagila, 2020].

- 7. Let $(V, \langle -, \rangle)$ be a non-zero inner product space over $\mathbb C$ and $L: V \to \mathbb C$ be a bounded linear map. Prove that the real part $\operatorname{Re} L: V \to \mathbb R$ and the imaginary part $\operatorname{Im} L: V \to \mathbb R$ of L are bounded $\mathbb R$ -linear functionals with $\|\operatorname{Re} L\|_{\operatorname{op}} = \|\operatorname{Im} L\|_{\operatorname{op}} = \|L\|_{\operatorname{op}}$.
- 8. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Suppose that $T: V \to V$ is a linear operator satisfying properties:
 - (a) T is an abstract projection, i.e. $T^2 = T$.
 - (b) $||T(x)|| \le ||x||$ for all $x \in V$.

Show that T is an orthogonal projection from V to some subspace W.

9. (**Hodge decomposition**) Let U, V, W be three finite-dimensional inner product spaces. Let

$$U \overset{S}{\underset{S^*}{\longleftarrow}} V \overset{T}{\underset{T^*}{\longleftarrow}} W$$

be a sequence of linear transformations such that TS=0 and T^* , S^* are adjoint of T, S, respectively. Let $\Delta: V \to V$ equal $SS^* + T^*T$ and let $H = \ker(\Delta)$. Show that

$$H = \ker(T) \cap \ker(S^*)$$

and V has a natural orthogonal decomposition as

$$V = H \oplus \operatorname{Im}(S) \oplus \operatorname{Im}(T^*)$$

with orthogonal decompositions

$$\ker\left(T\right)=H\oplus\operatorname{Im}\left(S\right)$$

and

$$\ker\left(S^{*}\right)=H\oplus\operatorname{Im}\left(T^{*}\right).$$

10. Let $(V, \langle -, - \rangle)$ be a non-complete inner product space over \mathbb{F} . Prove that there is a bounded linear functional $L: V \to \mathbb{F}$ such that there are no $v \in V$ satisfy $L(x) = \langle x, v \rangle$ for all $x \in V$.

Definition B.1. Let $(V, \langle -, - \rangle)$ be an inner product space and $\{v_n\}$ a sequence in V. We say

- 1. $\sum_{n=1}^{\infty} v_n$ converges absolutely if $\sum_{n=1}^{\infty} \|v_n\|$ converges in \mathbb{R} .
- 2. $\sum_{n=1}^{\infty} v_n$ converges unconditionally if $\sum_{n=1}^{\infty} v_{\sigma(n)}$ converges for every bijection σ :

- 11. Let $(V, \langle -, \rangle)$ be an inner product space and $\{v_n\}$ a sequence in V such that $\sum_{n=1}^{\infty} v_n$ converges unconditionally. Prove that $\sum_{n=1}^{\infty} v_{\sigma(n)}$ converges to the same element in V for every bijection $\sigma: \mathbb{N} \to \mathbb{N}$. (*Hint*: Prove that $\sum_{n=1}^{\infty} v_n$ converges unordered to some element $v \in V$, that is, for any $\varepsilon > 0$, there is a finite set $I \subseteq \mathbb{N}$ such that for every finite set $J \subseteq \mathbb{N}$ containing I, we have $\|v \sum_{n \in J} v_n\| < \varepsilon$.)
- 12. Let $(V, \langle -, \rangle)$ be a Hilbert space and $\{v_n\}$ a sequence in V such that $\sum_{n=1}^{\infty} v_n$ converges absolutely. Prove that $\sum_{n=1}^{\infty} \|v_n\|$ converges unconditionally.
- 13. For every $n \in \mathbb{N}$, let $e_n : \mathbb{N} \to \mathbb{F}$ be the element in $l^2(\mathbb{N})$ defined by $e_n(m) = \delta_{mn}$ for all $m \in \mathbb{N}$. Prove that $\sum_{n=1}^{\infty} n^{-1}e_n$ converges unconditionally in $l^2(\mathbb{N})$, but $\sum_{n=1}^{\infty} \|n^{-1}e_n\|$ diverges. Deduce that if $(V, \langle -, \rangle)$ is a Hilbert space, then the following statements are equivalent:
 - (a) Absolute convergence is equivalent to unconditional convergence in V.
 - (b) V is finite-dimensional.

References

[Karagila, 2020] Karagila, A. (2020). Zornian functional analysis or: How i learned to stop worrying and love the axiom of choice.