(e) hachage

$_{\rm QCM}^{\rm ALGO}$

1.	Le double hachage peut générer des collisions secondaires? (a) Oui (b) Non (c) quelquefois
2.	L'utilisation du hachage dynamique nécessite une mémoire paginée? (a) Oui (b) Non (c) Cela dépend
3.	L'utilisation des B-Arbres nécessite une mémoire paginée? (a) Non (b) Oui (c) Cela dépend
4.	Les B-Arbres sont? (a) des arbres dérivés des arbres 2.3.4. (b) des Arbres Binaires de Recherche (c) des Arbres de Recherche (d) des Arbres Binaires
5.	Le double hachage? (a) permet d'éviter les collisions primaires (b) demande une deuxième fonction de hachage (c) permet d'éviter les collisions secondaires (d) permet d'éviter les groupements d'éléments
6.	 Les B-Arbres d'ordre m ont? (a) des noeuds contenant de m + 1 à 2m + 1 éléments (b) des noeuds ayant de m + 1 à 2m + 1 fils (c) toutes les feuilles au même niveau (d) plusieurs noeuds racines (e) un noeud racine contenant de 2 à 2m éléments
7.	Quelles méthodes de recherche peuvent raisonnablement utiliser une structure statique? (a) séquentielle (b) dichotomique (c) Arbres Binaires de Recherche (d) Arbres équilibrés

- 8. Pour les ABRs, la complexité au pire de la recherche est?
 - (a) constante
 - (b) logarithmique
 - (c) linéaire
 - (d) quadratique
 - (e) exponentielle
- 9. Pour les méthodes de hachage, la complexité au pire de la recherche est?
 - (a) constante
 - (b) logarithmique
 - (c) linéaire
 - (d) quadratique
 - (e) exponentielle
- 10. Quelle méthode de recherche est totalement inadaptée à la recherche par intervalle?
 - (a) séquentielle
 - (b) dichotomique
 - (c) Arbres Binaires de Recherche
 - (d) Arbres équilibrés
 - (e) hachage

QCM N°3

lundi 19 novembre 2012

Question 11

Soient $E=\mathbb{R}^3,\, F=\mathbb{R}\times\{0\}\times\{0\}$ et $G=\{0\}\times\mathbb{R}\times\{0\}.$ Alors

- (a) F et G en somme directe
- b. F et G supplémentaires dans E
- c. rien de ce qui précède

Question 12

Soient E, F deux \mathbb{K} -ev avec E de dimension finie et $f \in \mathcal{L}(E, F)$. Alors

- (a) il existe G sev de E tel que $E = \operatorname{Ker}(f) \oplus G$
- b. $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$
- c. Ker(f) et Im(f) sont en somme directe
- (d) $\dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim(E)$
- e. rien de ce qui précède

Question 13

Soient E, F deux \mathbb{R} -ev de dimension finie et $f \in \mathcal{L}(E, F)$ bijective. Alors

- (a) $Ker(f) = \{0\}$
- \bigcirc dim(E) =dim(F)
- (d) $\dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim(E)$
- e. rien de ce qui précède

Question 14

Soient E un \mathbb{R} -ev de dimension finie, F et G deux sev supplémentaires de E.

Alors $\dim(F+G) = \dim(F) + \dim(G)$.

b. faux

Question 15

Soient E et F deux \mathbb{R} -ev de dimension finie et $f \in \mathcal{L}(E,F)$.

- Soit $g: E \longrightarrow \text{Im}(f)$ définie pour tout $x \in E$ par g(x) = f(x). Alors g est surjective.
- Soient G un sev de E tel que $\operatorname{Ker}(f) \cap G = \{0\}$ et $h: G \longrightarrow F$ définie pour tout $x \in E$ par h(x) = f(x). Alors h est injective.
- c. rien de ce qui précède

Question 16

Soient E un \mathbb{R} -ev de dimension finie, F et G deux sev de E de dimension respective p et q. Alors la dimension de $F\times G$ est égale à

- a. pq
- b. p^q
- c. q^p

e. rien de ce qui précède

Question 17

Soit (u_n) une suite réelle positive telle que $nu_n \xrightarrow[n \to +\infty]{} +\infty$. Alors

- a. $\sum u_n$ converge
- $\sum u_n$ diverge
- c. on ne peut rien dire sur la nature de $\sum u_n$

Question 18

Soit (u_n) une suite réelle strictement positive telle que pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} > 1$. Alors

- a. $\sum u_n$ converge
- $b.\sum u_n$ diverge
- c. on ne peut rien dire sur la nature de $\sum u_n$

Question 19

Soit (u_n) une suite réelle quelconque vérifiant $u_n \underset{+\infty}{\sim} \frac{(-1)^n}{n}$. Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ converge absolument
- corien de ce qui précède

Question 20

Soit $\alpha \in \mathbb{R}$. Alors $\sum \frac{(-1)^n}{n^{\alpha}}$

- a. converge ssi $\alpha > 1$
- b. converge ssi $\alpha < 1$
- C. converge ssi $\alpha > 0$
- d. converge ssi $0 < \alpha < 1$
- e. rien de ce qui précède

QCM n°3

21- Soit un champ scalaire f, le Laplacien d'une fonction est défini comme

- (a-) la divergence du gradient de cette fonction
- b- le rotationnel du gradient de cette fonction
- c- le rotationnel de cette fonction

22- Le Laplacien vectoriel opère sur chaque composante du vecteur avec

- a- le Gradient de la composante
- (b-) le Laplacien de la composante
- c- la divergence de la composante

23- Si $\nabla \cdot (\vec{B}) = 0$ en tout point de l'espace, alors

- a- on dit que \vec{B} dérive d'un potentiel scalaire
- **(b)** on dit que \vec{B} dérive d'un potentiel vecteur
- c- on dit que \vec{B} dérive d'un gradient d'une fonction

24- Si $\vec{\nabla} \cdot (\vec{A}) = 0$ en tout point de l'espace, alors

- a- \vec{A} est irrotationnel
- **b-** \vec{A} est à circulation conservative
- \vec{c} \vec{A} est à flux conservatif

$$\mathbf{j}_{\mathbf{25-Si}} \oint_{C} \vec{A} \cdot d\vec{l} = 0$$

- \vec{a} ast un champ de gradient
- **b-** \vec{A} est à flux conservatif
- c- \vec{A} dérive d'un Laplacien

26- Le théorème de Stokes établi l'égalité suivante :

$$_{\text{b-}} \quad \oint_{C} \vec{A} \cdot d\vec{l} \, = \iint_{S} (\vec{\nabla} . \vec{A}) \cdot d\vec{S}$$

c.
$$\oint_{C} \vec{A} \cdot d\vec{l} = \iint_{S} \vec{\nabla}(A) \cdot d\vec{S}$$

27- Le théorème de Green-Ostrogradski établi l'égalité suivante :

$$\mathbf{a} - \iint_{S} \vec{A} \cdot d\vec{S} = \iiint_{T} (\vec{\nabla} \wedge \vec{A}) d\tau$$

6-
$$\iint_{S} \vec{A} \cdot d\vec{S} = \iiint_{S} (\vec{\nabla} \cdot \vec{A}) d\tau$$

c-
$$\iint_{S} \vec{A} \cdot d\vec{S} = \iiint_{T} \vec{\nabla}(\vec{A}) d\tau$$

28- Le gradient de $\vec{\nabla}(f.g)$ s'exprime :

$$g. \nabla f + f. \nabla g$$

b-
$$g \wedge \vec{\nabla} f + f \wedge \vec{\nabla} g$$

c-
$$\vec{\nabla}g.\vec{\nabla}f - \vec{\nabla}f.g$$

29- L'équation de continuité traduit la conservation de la charge totale dans un système. Elle s'écrit :

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\vec{j}) = 0$$

b-
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \wedge (\vec{j}) = 0$$

$$c- \frac{\partial \rho}{\partial t} + \vec{\nabla}(I) = 0$$

30- Laquelle de ces équations n'est pas une équation de Maxwell :

$$\mathbf{a-} \quad \vec{\nabla}.(\vec{E}) = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla}.(\vec{B}) = \mu_0 J$$

$$\text{c-} \quad \vec{\nabla} \wedge (\vec{B}) = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \, \frac{\partial (\vec{E})}{\partial t}$$

QCM Nov. 2012 n.3 (EGU 18,61) ANGLAIS

31. Lisa had to get used on the	left.
a. to drive	
b. to driving	
c. to having	
d. to drive	
32. Bill used a lot of beer. Nov	w he prefers iced tea.
a. drink	
b. drinking	
c. to have drunk	
d. to drink	
33. My legs hurt after that marathon.	I'm not used so far
	Till flot usedso fai.
a. To runb. To have run	
d. Running	
u. Kuming	
34 a café here but they tore it do	wn a few years ago.
a. There used to have	salahas valandarahan Pamaaraharah
b. There used to having	
C. There used to be	
d. I'm used to see	
35. I wouldn't like to share a compute	r.
a. I'm used to have my own lapto	pp.
 b. I used to own laptop. 	
(C) I'm used to having my own lap	top.
d. I didn't used to have my own l	aptop.
36. Children shouldn't talk to	
a. unknowns	
b. strange people	
c. foreigners	
d. strangers	
37. Choose the correct sentence.	
a. All the people are agree with t	he president.
b. Every people agree with the p	
© Everybody agrees with the pre	
d. Every people are agree with the	Martin of Private Private Control (1990)
and particles variety resources and particles	
38. Choose the correct sentence.	
 The politicians have done a go 	od job.
 The politics have done a good 	job.
 The politicians have done a go 	
d. The politic men have done a g	ood job.
	"D 's transille estrellement on Chine"
	"Denis travaille actuellement en Chine".
a. Denis actually works in China.	
b. Denis is actually working in Ch	
 Denis nowaday works in China Denis is currently working in C 	
Deliis is currently working in c	0.001.000 60
40. If I got along better with my cowo	rkers, I my job.
a. would not want to quit	
b. will quit	
(c.) would not quit	
d. will not have quit	

Méthodologie

QCM n° 3

- 41. Parmi ces Grecs illustres, lequel n'a joué aucun rôle dans le progrès des mathématiques ?
- A. Pythagore
- B. Euclide
- © Euripide
- D. Diophante
- 42. Quelle civilisation a initié le premier système numérique positionnel ?
- A Sumer
- B. L'Egypte
- C. Les Hébreux
- D. La Grèce
- 43. Où et quand furent introduits les nombres imaginaires ?
- A. En Inde au Ve siècle
- B. Dans le monde arabo-musulman au Xe siècle
- C. En Chine au XIIIe siècle
- D En Italie au XVIe siècle
- 44. Lequel de ces hommes célèbres de la Renaissance fut mathématicien ?
- A. Jérôme Savonarole
- B François Viète
- C. Albert Dürer
- D. Miguel de Cervantes
- 45. Lequel est l'un des fondateurs des géométries non-euclidiennes ?
- A. Pouchkine
- B. Lermontov
- (C) Lobatchevski
- D. Chostakovitch

- 46. Lequel ne fut pas mathématicien?
- A. Leonard Euler
- B) Daniel Defoe
- C. Gaspard Monge
- D. Carl Friedrich Gauss
- 47. Lequel ne fut pas mathématicien?
- A Jean Honoré Fragonard
- B. Evariste Galois
- C. Augustin Cauchy
- D. Georg Cantor
- 48. Lequel ne fut pas mathématicien?
- A. Joseph Fourier
- B Robert Schumann
- C. David Hilbert
- D. Andrew Wiles
- 49. Laquelle de ces personnalités est un mathématicien imaginaire ayant eu une grande influence sur l'enseignement des mathématiques en France ?
- A. Piotr Tchaïkovski
- B. Fédor Dostoïevski
- Nicolas Bourbaki
- D. Léon Trotski
- 50. Quel mathématicien publia, en 1931, deux célèbres « théorèmes d'incomplétude »?
- A. Albert Einstein
- B Kurt Gödel
- C. Werner Heisenberg
- D. Werner von Braun

QCM Electronique - InfoSPE Pensez à bien lire les questions ET les réponses proposées

Les Diodes

Soit le circuit suivant. Quelles sont les diodes passantes si v(t) est positif? On supposera les diodes idéales.

- a- D₁ et D₄
- b- D_1 et D_3
- c- D₂ et D₄
- (d) D_2 et D_3

Q2. Que se passe-t-il quand la tension appliquée aux bornes d'une diode devient très fortement négative (inférieure à une valeur spécifiée par le fabricant)

- a- Il ne se passe rien
- b- Le courant croît rapidement
- C-) Le courant décroît rapidement et il peut y avoir destruction de la diode.
- d- Le courant croît puis devient nul.

Pour construire une diode Zéner, il faut doper le silicium de façon à privilégier l'effet d'avalanche en polarisation inverse.

a- VRAI

B FAUX

Par quoi remplace-t-on la diode Zéner lorsqu'elle est passante en inverse si on utilise Q4. le modèle réel?

a-

b-

d-

Le transistor bipolaire

- Q5. Le transistor bipolaire
 - Est un composant à 3 électrodes comportant 2 jonctions PN
 - b- Peut se modéliser à l'aide de 3 diodes
 - c- Comporte trois segments dopés de manière identique
 - d- Est un composant à 2 électrodes comportant 3 jonctions PN
- Q6. Dans un transistor PNP, les porteurs majoritaires de la base sont :
 - les électrons libres

c- ni les uns, ni les autres

b- les trous

d- les deux

Q7. Les modes bloqué et saturé du transistor bipolaire sont utilisés pour concevoir des amplificateurs

a- VRAI

b-) FAUX

- Le coefficient de transfert du courant de base (β) d'un transistor bipolaire est défini par le rapport :
 - a- Du courant de collecteur sur le courant d'émetteur.
 - (b-) Du courant de collecteur sur le courant de base.
 - c- Du courant de base sur le courant de collecteur
 - d- Du courant d'émetteur sur le courant de base.
- Q9. Caractéristiques internes du transistor NPN. (On utilise les sens et notations conventionnels des courants).

a- $I_B = \beta . I_C$

Q10. Un amplificateur doit être un circuit linéaire pour ne pas modifier la fréquence du signal amplifié.

(a-) VRAI

b- FAUX

QCM Architecture

Pensez à bien lire les questions ET les réponses proposées

Mémoires:

Q11.	Le signal DTACK permet d'indiquer un processeur si la donnée a été stockée par la
mér	moire (accès à la mémoire en écriture) ou si elle est disponible sur le bus d'adresse
(acc	ès à la mémoire en lecture).

a- VRAI

(b-) FAUX

Q12. La largeur d'une mémoire correspond au nombre de mots que peut stocker cette mémoire

a- VRAI

b- FAUX

Q13. La profondeur d'une mémoire correspond au nombre de fils du bus d'adresse.

a- VRAI

(b) FAUX

Q14. La capacité d'une mémoire est égale à :

(a) Largeur x profondeur

c- Profondeur / largeur

b- Largeur / profondeur

d- Aucune de ces réponses

Soit une mémoire capable de stocker 32Kibimots de 2 octets. On note L, sa largeur et P, sa profondeur.

Q15. Choisir l'affirmation correcte :

a- L = 2 et P = 32Kibi

b- L = 16 et P = 15

P = 16 et L = 32Kibi

d- P = 2 et L = 15

Q16. Choisir l'affirmation correcte:

a- Le bus d'adresse de la mémoire compte 16 fils et le bus de données, 215 fils.

b- Le bus d'adresse de la mémoire compte 16 fils et le bus de données, 15 fils.

c- Le bus d'adresse de la mémoire compte 215 fils et le bus de données, 16 fils.

d-) Le bus d'adresse de la mémoire compte 15 fils et le bus de données, 16 fils.

Associations de mémoires :

Soit un processeur de 16 bits, capable de gérer 16Kmots

- Q17. On dispose de boîtiers mémoire de largeur 8 bits et de profondeur 16Kmots.
 - a- Les boîtiers mémoire sont compatibles en largeur et en profondeur avec le processeur.
 - b- Il faut associer les boîtiers mémoire en série pour augmenter le nombre de mots (mémoires non compatibles en profondeur)
 - (c) Il faut associer les boîtiers mémoire en parallèle pour augmenter la taille des mots (mémoires non compatibles en largeur)
 - d- Il faut associer les boîtiers mémoire pour augmenter la taille des mots et nombre de mots (mémoires non compatibles en largeur et en profondeur)
- Q18. On dispose de boîtiers mémoire dont le bus de données comprend 16 fils et le bus d'adresse, 13 fils.
 - a- Les boîtiers mémoire sont compatibles en largeur et en profondeur avec le processeur.
 - (b) Il faut associer les boîtiers mémoire en série pour augmenter le nombre de mots (mémoires non compatibles en profondeur)
 - c- Il faut associer les boîtiers mémoire en parallèle pour augmenter la taille des mots (mémoires non compatibles en largeur)
 - d- Il faut associer les boîtiers mémoire pour augmenter la taille des mots et nombre de mots (mémoires non compatibles en largeur et en profondeur)

Adressage des mémoires et des périphériques

- Q19. Dans un système à microprocesseur, l'espace mémoire adressable est partagé en plusieurs zones et les recouvrements de zones sont indispensables.
 - a- VRAI

6- FAUX

Q20. Choisir l'affirmation correcte:

- a- La sélection des adresses physiques concerne la sélection d'un circuit mémoire ou périphérique
- (b) La sélection des adresses physiques concerne la sélection d'un mot de la mémoire ou un registre du périphérique sélectionné
- c- La sélection des adresses de base concerne la sélection d'un mot de la mémoire ou un registre du périphérique sélectionné
- d- La sélection des adresses physiques s'opère en utilisant les bits de poids fort du bus d'adresse

- 21 A long-term goal is ...
 - a. Can be easily achieved in a couple of weeks.
 - b. Between now and retirement.
 - C.) From 5 10 years.
 - d. Requires at least 10 years of planning and preparation.
- 22. A mid-term goal...
 - (a) Is between 1-5 years
 - b. Is the grade you want to receive on your mid-term test.
 - c. Is the point when you are half way through completing your goal.
 - d. All of the above.
- 23. A short term goal is...
 - (a.) From today up to 1 year.
 - b. Only requires one step.
 - c. Always very easy to achieve.
 - d. Never really important.
- 24. Which is an example of a short term goal:
 - a. Celebrating your ten year anniversary.
 - b. Graduating from EPITA
 - c. Wining the Noble Prize.
 - Completing this test.
- 25. Which is an example of a mid-term goal ...
 - Graduating from EPITA
 - b. Completing this test.
 - c. Getting good grades on your mid-terms.
 - d. Deciding whether or not to get married.
- 26. Which is an example of a long-term goal...
 - a. Graduating from EPITA
 - Selling your IT company to Google.
 - Completing this test.
 - d. A and C
- 27. The benefits of written goals are...
 - a. Clarified thinking.
 - b. You know what you are trying to accomplish.
 - c. Your personal life is made public.
 - d A and B.
- 28. Having a specific date to accomplish your goal is important because...
 - a. You can put it on the calendar and realistically think through what has to happen to accomplish it.
 - b. A month or a year is too vague.
 - c. It creates a concrete commitment and a positive sense of pressure.
 - All of the above
- 29. Writing down your goals is a one-time process and you must never change them...
 - False
 - b. True
- 30. You will achieve every one of your goals...
 - a. No
 - b. Ye
 - Only the ones which are long-term.
 - d. Only the ones which are short-term.