Matemática Discreta para Ciência da Computação

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.1 Introdução

- ♦ Álgebra, desde a sua origem até a sua forma atual
 - refere-se a cálculos
- ◆ Desenvolvida de forma informal ou formal
 - praticamente em todos os níveis de escolaridade
 - exemplo: operações aritméticas (adição, multiplicação...) sobre R
- ♦ Álgebras, em CC, destaca-se a partir de 1950
 - Teoria dos Autômatos e Linguagens Formais

♦ De certa forma, toda a CC é construída sobre álgebras

- Álgebra: denominação alternativa para a Matemática Discreta
 * Diretrizes Curriculares do MEC para Computação e Informática
- ♦ Conceito de Álgebra é introduzido adiante
 - informalmente: operações definidas sobre um conjunto
 - Álgebra de Conjuntos: operações definidas sobre todos os conjunto
- ♦ Desejável para o estudo da Álgebra de Conjuntos
 - Diagramas de Venn: representação diagramática
 - * auxilia o entendimento dos conceitos e raciocínios
 - Paradoxo de Russell: importante!

Operações sobre conjuntos

- Não-Reversíveis: mais usuais
 - * União
 - * Intersecção
- Reversíveis: especialmente importantes para CC
 - * Complemento
 - * Conjunto das Partes
 - * Produto Cartesiano
 - * União Disjunta

Obs: Lógica × Álgebra dos Conjuntos

Relação direta entre conetivos lógicos e operações sobre conjuntos

• facilita muito o estudo da Álgebra de Conjuntos

Conetivo Lógico	Operação sobre Conjuntos
negação	complemento
disjunção	união
conjunção	intersecção

Relação Lógica	Relação sobre Conjuntos
implicação	continência
equivalência	igualdade

Propriedades sobre os conetivos são válidas na Teoria dos Conjuntos

- substituindo cada conetivo
- pela correspondente operação sobre conjuntos
- exemplo
 - * idempotência do ∧ e do v (da ∩ e da U)
 - * comutatividade do ∧ e do v (da ∩ e da U)
 - * associatividade do ∧ e do v (da ∩ e da U)
 - * distributividade do ∧ sobre o v (da ∩ sobre a U) e vice-versa
 - * dupla negação (duplo complemento)
 - * DeMorgan

♦ Pode-se intuir que provas na Teoria dos Conjuntos

são, em grande parte, baseadas em resultados da lógica

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.5 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.2 Diagramas de Venn

Linguagem diagramática

- auxilia o entendimento de definições
- facilita o desenvolvimento de raciocínios
- permite identificação e compreensão fácil e rápida dos
 - * componentes e relacionamentos

◆ Diagramas de Venn

- universalmente conhecidos e largamente usados
- usam figuras geométricas, em geral representadas no plano

Exp: Diagramas de Venn

- um dado conjunto A
- um determinado elemento b∈B
- o conjunto C = { 1, 2, 3 }

Exp: Diagramas de Venn

- $\{a, b\} \subseteq \{a, b, c\}$
- A⊆B
- para um dado conjunto universo U, um conjunto C⊆U

Em geral

- U é representado por um retângulo
- demais conjuntos por círculos, elipses, etc
- emC⊆U, o conjunto C é destacado, para auxiliar visualmente

Exp: Aplicação dos Diagramas de Venn

Considere que

pode-se intuir que a noção de subconjunto é transitiva, ou seja

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$

Teorema: Transitividade da Continência

Suponha A, B e C conjuntos. Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$

Prova: (direta)

(X⊆Y sss todos os elementos de X também são de Y)

Suponha que A, B e C são conjuntos qq e que A⊆B e B⊆C

Seja a ∈ A. Então:

- a∈A ⇒
- a∈B ⇒
- a∈C

pela definição de subconjunto, dado que A⊆B

pela definição de subconjunto, dado que B⊆C

Portanto, para qq $a \in A$, $a \in C$

Logo, pela definição de subconjunto, A⊆C

- * como fica a demonstração se A for vazio?
- ∗ neste caso, não existe elemento a ∈ A...

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.6 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.3 Paradoxo de Russell

Conjunto

coleção de zero ou mais elementos distintos os quais não possuem qualquer ordem associada

Existem conjuntos de conjuntos. Então:

um conjunto pode ser elemento de si mesmo?

Def: Conjunto ordinário

• conjunto que *não* pertence a si mesmo

◆ A definição

S = { A | A é um conjunto ordinário }

conjunto de todos os conjuntos que não são elementos de si mesmos

- determina uma contradição
- Paradoxo de Russell

Teorema: Paradoxo de Russell

Não é conjunto

S = { A | A é um conjunto ordinário }

Prova: (por absurdo)

Negação da tese. Suponha que S é um conjunto

Construção da contradição. S é um elemento de si mesmo?

Caso 1. Suponha que S∈S

- S∈S ⇒
- S não é um conj. ordinário ⇒
- S∉S

Caso 2. Suponha que S ∉ S

- S ∉ S ⇒
- S é um conj. ordinário ⇒
- S∈S

pela definição de conj. ordinário pela definição de S

pela definição de conj. ordinário pela definição de S

Contradição!!! Logo, é absurdo supor que S é conjunto

Portanto, S não é conjunto

♦ Portanto, a notação por compreensão

- permite definir algo que não é um conjunto
- S seria um *subconjunto* do conjunto de todos os conjuntos
- como S não é conjunto

não existe o conjunto de todos os conjuntos

ou seja:

nem toda coleção de elementos constitui um conjunto

- Como evitar o paradoxo (se desejado)
 - restringir que a, em { a | p(a) }, assuma valores em um dado A
 {a∈A | p(a) }

♦ Importante consequência do Paradoxo de Russell

 definição de uma estrutura matemática sobre uma coleção de elementos.

♦ Estrutura Matemática Pequena × Grande

- pequena, se a coleção de elementos é conjunto
- grande, se a coleção de elementos não é conjunto

♦ Álgebra de Conjuntos

- álgebra grande
- operações sobre a coleção (não-conjunto) de todos os conjuntos

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.7 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.4 Operações Não-Reversíveis

As mais comuns nos estudos da Álgebra de Conjuntos

3.4.1 **União**

Def: União, Reunião

A e B conjuntos

$$A \cup B$$

$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$

Relacionando com a Lógica

- união corresponde à disjunção
- símbolo ∪ lembra símbolo v

Exp: União

- Dígitos = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Vogais = { a, e, i, o, u }
- Pares = $\{0, 2, 4, 6, \dots\}$

Dígitos \cup Vogais = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, e, i, o, u }

Dígitos \cup Pares = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16,... }

Exp: União

• A =
$$\{x \in \mathbb{N} \mid x > 2\}$$
, B = $\{x \in \mathbb{N} \mid x^2 = x\}$
A \cup B = $\{0, 1, 3, 4, 5, 6,...\}$

• R (reais), Q (racionais) e I (irracionais)

$$\mathbf{R} \cup \mathbf{Q} = \mathbf{R}$$
 $\mathbf{R} \cup \mathbf{I} = \mathbf{R}$ $\mathbf{Q} \cup \mathbf{I} = \mathbf{R}$

Conjunto universo U e A⊆U

$$\emptyset \cup \emptyset = \emptyset$$
 $\mathbf{U} \cup \emptyset = \mathbf{U}$

$$U \cup A = U \quad U \cup U = U$$

♦ Propriedades da união

Elemento Neutro

(qual o elemento neutro da disjunção?)

$$A \cup \emptyset = \emptyset \cup A = A$$

(exercício)

Idempotência

$$A \cup A = A$$

(exercício)

Comutatividade

$$A \cup B = B \cup A$$

(exercício)

Associatividade

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Associatividade

$A \cup (B \cup C) = (A \cup B) \cup C$

Teorema: Associatividade da União

Suponha que A, B e C são conjuntos quaisquer. Então:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$(X = Y \Leftrightarrow X \subseteq Y e Y \subseteq X)$$

Suponha que A, B e C são conjuntos quaisquer. Dois casos:

- $A \cup (B \cup C) \subseteq (A \cup B) \cup C$
- (A∪B)∪C⊆A∪(B∪C)

caso 1

caso 2

Caso 1. Suponha $x \in A \cup (B \cup C)$

- $x \in A \cup (B \cup C) \Rightarrow$
- $x \in A \lor x \in (B \cup C) \Rightarrow$
- $x \in A \lor (x \in B \lor x \in C) \Rightarrow$
- $(x \in A \lor x \in B) \lor x \in C \Rightarrow$
- $x \in (A \cup B) \lor x \in C \Rightarrow$
- $x \in (A \cup B) \cup C$
- Portanto, $A \cup (B \cup C) \subseteq (A \cup B) \cup C$

pela definição união pela definição união pela associatividade do conetivo v pela definição união pela definição união pela definição união

Caso 2. Suponha $x \in (A \cup B) \cup C$

- $x \in (A \cup B) \cup C \Rightarrow$
- $x \in (A \cup B) \lor x \in C \Rightarrow$
- $(x \in A \lor x \in B) \lor x \in C \Rightarrow$
- $x \in A \lor (x \in B \lor x \in C) \Rightarrow$
- $x \in A \lor x \in (B \cup C) \Rightarrow$
- $x \in A \cup (B \cup C)$
- Portanto, $(A \cup B) \cup C \subseteq A \cup (B \cup C)$

Logo, $A \cup (B \cup C) = (A \cup B) \cup C$

pela definição união pela definição união pela associatividade do conetivo v pela definição união pela definição união pela definição união

♦ Significado da associatividade?

- não existe precedência entre operações de união
- parênteses podem ser omitidos
- A∪(B∪C) ou (A∪B)∪C pode ser denotado

AUBUC

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.8 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.4.2 Intersecção

Def: Intersecção

A e B conjuntos

$$A \cap B$$

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

Relacionando com a Lógica

- intersecção corresponde à conjunção
- símbolo ∩ lembra símbolo ∧

♦ Conjuntos disjuntos

- conjuntos independentes ou conjuntos mutuamente exclusivos
- conjuntos A e B sendo ambos não-vazios

$$A \cap B = \emptyset$$

Exp: Intersecção, Conjuntos Disjuntos

Dígitos ∩ Vogais = Ø conjuntos disjuntos

Dígitos \cap Pares = { 0, 2, 4, 6, 8 }

Exp: Intersecção, Conjuntos Disjuntos

$$A = \{x \in \mathbb{N} \mid x > 2\}, B = \{x \in \mathbb{N} \mid x^2 = x\}$$

$$A \cap B = \emptyset$$

conjuntos disjuntos

R (reais), Q (racionais) e I (irracionais)

$$\mathbf{R} \cap \mathbf{Q} = \mathbf{Q} \quad \mathbf{R} \cap \mathbf{I} = \mathbf{I}$$

$$\mathbf{Q} \cap \mathbf{I} = \emptyset$$

conjuntos disjuntos

Conjunto universo U e A⊆U

$$\emptyset \cap \emptyset = \emptyset$$
 $\mathbf{U} \cap \emptyset = \emptyset$

$$U \cap A = A$$
 $U \cap U = U$

♦ Propriedades da intersecção

Elemento Neutro

(qual o elemento neutro da conjunção?)

$$A \cap U = U \cap A = A$$

(exercício)

Idempotência

$$A \cap A = A$$

(exercício)

Comutatividade

$$A \cap B = B \cap A$$

(exercício)

Associatividade

$$A \cap (B \cap C) = (A \cap B) \cap C$$

(exercício)

◆ Propriedades da união e da intersecção

Distributividade da intersecção sobre a união

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Distributividade da união sobre a intersecção

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Teorema: Distributividade da intersecção sobre a união

Suponha que A, B e C são conjuntos quaisquer. Então:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Prova: (direta)

Suponha que A, B e C são conjuntos quaisquer. Então:

- $x \in A \cap (B \cup C) \Leftrightarrow$
- $x \in A \land x \in (B \cup C) \Leftrightarrow$
- $x \in A \land (x \in B \lor x \in C) \Leftrightarrow$
- $x \in (A \cap B) \lor x \in (A \cap C) \Leftrightarrow$
- $x \in (A \cap B) \cup (A \cap C)$

pela distributividade do A sobre o V (x∈A ∧ x∈B) v (x∈A ∧ x∈C) ⇔ pela definição de intersecção pela definição de união

pela definição de intersecção

pela definição de união

Logo, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5 Operações Reversíveis

♦ Operação reversível

- a partir do resultado, pode-se recuperar os operando originais
- Importante em muitas aplicações na Computação e Informática

Exp: Back Tracking (ilustrativo)

Operação de débito e crédito em um terminal bancário automático

• composição de diversas pequenas operações componentes

Queda de sistema (luz...) entre duas operações componentes

- sistema poderia ficar inconsistente
- exemplo: débito realizado, mas o crédito, não
- fundamental desfazer o que foi parcialmente feito
- recuperação facilitada quando a operação é reversível

Exp: Construção de Estruturas Complexas (ilustrativo)

Construção de Estruturas Complexas.

- compondo estruturas elementares já conhecidas
- em geral, é desejável que uma alteração realizada em uma estrutura elementar seja refletida na estrutura composta
- possível se conhecido os elementos originais da estrutura
- informação facilitada quando a operação é reversível

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5.1 Complemento

Def: Complemento

Complemento de um conjunto A⊆U

A' ou
$$\sim A$$

 $\sim A = \{ x \in \mathbb{U} \mid x \notin A \}$

Relacionando com a Lógica

- complemento corresponde à negação
- símbolo ~ é um dos usados para a negação

Exp: Complemento

Dígitos = $\{0, 1, 2, ..., 9\}$ conjunto universo e A = $\{0, 1, 2\}$

$$\bullet \sim A = \{3, 4, 5, 6, 7, 8, 9\}$$

Exp: ...Complemento

N conjunto universo e $A = \{0, 1, 2\}$

$$\bullet \sim A = \{x \in \mathbb{N} \mid x > 2\}$$

Para qualquer conjunto universo U

- $\sim \emptyset = \mathbf{U}$
- $\sim \mathbf{U} = \emptyset$

R conjunto universo

- $\sim \mathbf{Q} = \mathbf{I}$
- $\sim I = Q$

Exp: Complemento, União e Intersecção

U conjunto universo. Para qualquer A⊆U

- $A \cup \sim A = U$
- A ∩ ~A = Ø

p v ¬p é tautologia p ∧ ¬p é contradição

♦ Propriedade Duplo Complemento

para qualquer A⊆U

$$\sim \sim A = A$$

- relacionamento com lógica
 - * A: todos elementos x tais que $x \in A$
 - * ~A: todos elementos x tais que x ∉ A
 - * $\sim\sim$ A: todos elementos x tais que $\neg\neg(x\in A)$

 $\neg(x \in A)$ $x \in A$

complemento é reversível: ~(~A) = A

◆ Propriedade DeMorgan

- relacionada com o complemento
- envolve a união e a intersecção

$$\sim (A \cup B) = \sim A \cap \sim B \qquad \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$
$$\sim (A \cap B) = \sim A \cup \sim B \qquad \neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

♦ Essa propriedade permite concluir

intersecção pode ser calculada em termos do complemento e união

$$A \cap B = \sim (\sim A \cup \sim B)$$

• união pode ser calculada em termos do complemento e intersecção

$$A \cup B = \sim (\sim A \cap \sim B)$$

♦ Diferença: derivada da intersecção e complemento

Def: Diferença

A e B conjuntos

$$A - B$$

$$A - B = A \cap \sim B = \{ x \mid x \in A \land x \notin B \}$$

Exp: Diferença

```
Dígitos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Vogais = { a, e, i, o, u }

Pares = { 0, 2, 4, 6,... }
```

- Dígitos Vogais = Dígitos
- Dígitos Pares = { 1, 3, 5, 7,9 }

Exp: ...Diferença

A =
$$\{x \in \mathbb{N} \mid x > 2\} \in \mathbb{B} = \{x \in \mathbb{N} \mid x^2 = x\}$$

• A - B = $\{3, 4, 5, 6, ...\}$

•
$$B - A = \{0, 1\}$$

R (reais), Q (racionais) e I (irracionais)

•
$$\mathbf{R} - \mathbf{Q} = \mathbf{I}$$

•
$$R - I = 0$$

$$\bullet \mathbf{Q} - \mathbf{I} = \mathbf{Q}$$

Universo U e A C U

$$\bullet \varnothing - \varnothing = \varnothing$$

•
$$\mathbf{U} - \emptyset = \mathbf{U}$$

•
$$\mathbf{U} - \mathbf{A} = \sim \mathbf{A}$$

•
$$\mathbf{U} - \mathbf{U} = \emptyset$$

♦ Por que a operação de diferença é não-reversível?	

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5.2 Conjunto das Partes

- Para um conjunto A
 - A⊆A
 - Ø⊆A
- ◆ Para qualquer elemento a ∈ A
 - {a}⊆A
- Seguindo o racionínio
 - definição de uma operação unária
 - Conjunto das Partes
 - aplicada a um conjunto A
 - * resulta no conjunto de todos os subconjuntos de A

Def: Conjunto das Partes, Conjunto Potência

A conjunto

$$P(A)$$
 ou 2^A
 $P(A) = \{X \mid X \subseteq A\}$

Exp: Conjunto das Partes

$$A = \{a\}, B = \{a, b\} e C = \{a, b, c\}$$

- $\mathbf{P}(\emptyset) = \{\emptyset\}$
- $P(A) = {\emptyset, {a}}$
- $P(B) = {\emptyset, {a}, {b}, {a, b}}$
- $P(C) = {\emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}$

Quantos elementos tem P(X)?

Exp: ...Conjunto das Partes

$$D = \{ a, \emptyset, \{ a, b \} \}$$

• **P**(D) = {Ø, {a}, {Ø}, {a, b}}, {a, Ø}, {a, b}}, {a, b}}, {a, b}}, {Ø, {a, b}}

Quantos elementos tem P(X)?

- ♦ Número de elementos de P(X)
 - número de elementos de
 - * X é n * **P**(X) é 2ⁿ
 - justifica a notação 2^X
 - * prova por indução introduzida adiante

♦ Reversabilidade de P(X)?

- uma solução: união de todos os conjuntos de P(X)
- como fica o cálculo da união se o número de elementos do conjunto das partes for infinito?
 - * não será discutido

Exp: Reversabilidade do Conjunto das Partes

Resultante: { Ø, { a } }

Operando: Ø∪{a} = {a}

Resultante: { Ø, { a }, { b }, { a, b } }

• Operando: $\emptyset \cup \{a\} \cup \{b\} \cup \{a,b\} = \{a,b\}$

Resultante: {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Operando: ØU{a}U{b}U {c}U{a, b}U {a, c}U{b, c}U
 {a, b, c} = {a, b, c}

Obs: Álgebra de Conjuntos Pequena

Álgebra de Conjuntos é uma álgebra grande

operações sobre a coleção (não-conjunto) de todos os conjuntos

Se for desejado uma Álgebra de Conjuntos pequena??

- definir sobre **P**(**U**)
- para cada **U**, uma álgebra *diferente*
- qq operando A é tal que $A \in P(U)$

União, intersecção, diferença e complemento

• fechadas sobre P(U)

Conjunto das partes

• não necessariamente é fechada sobre P(U)

por quê?

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5.3 Produto Cartesiano

- ♦ Noção de seqüência finita
 - necessária para definir produto cartesiano
 - * em particular, seqüência de dois elementos
- ♦ Seqüência de n componentes: n-upla ordenada
 - n objetos (não necessariamente distintos) em uma ordem fixa
- ♦ 2-upla ordenada ou par ordenado

$$\langle x, y \rangle$$
 ou (x, y)

♦ n-upla ordenada

$$\langle x_1, x_2, x_3,...,x_n \rangle$$
 ou $(x_1, x_2, x_3,...,x_n)$

♦ Não confundir

$$\langle x_1, x_2, x_3,...,x_n \rangle$$
 com $\{x_1, x_2, x_3,...,x_n\}$

♦ A ordem é importante

$$\langle x, y \rangle \neq \langle y, x \rangle$$

Def: Produto Cartesiano

A e B conjuntos

$$A \times B$$

$$A \times B = \{ \langle a, b \rangle \mid a \in A \in b \in B \}$$

♦ Produto cartesiano de A com ele mesmo

$$A \times A = A^2$$

Exp: Produto Cartesiano

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

$$A \times B = \{\langle a, a \rangle, \langle a, b \rangle\}$$

$$B \times C = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle\}$$

$$C \times B = \{\langle 0, a \rangle, \langle 0, b \rangle, \langle 1, a \rangle, \langle 1, b \rangle, \langle 2, a \rangle, \langle 2, b \rangle\}$$

$$A^2 = \{\langle a, a \rangle\}$$

$$B^2 = \{\langle a, a \rangle\}$$

$$B^2 = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle\}$$

$$A \times N = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, ...\}$$

$$(A \times B) \times C =$$

$$\{\langle a, a \rangle, 0 \rangle, \langle \langle a, a \rangle, 1 \rangle, \langle \langle a, a \rangle, 2 \rangle, \langle \langle a, b \rangle, 0 \rangle, \langle \langle a, b \rangle, 1 \rangle, \langle \langle a, b \rangle, 2 \rangle\}$$

$$A \times (B \times C) =$$

$$\{\langle a, \langle a, 0 \rangle \rangle, \langle a, \langle a, 1 \rangle \rangle, \langle a, \langle a, 2 \rangle \rangle, \langle a, \langle b, 0 \rangle \rangle, \langle a, \langle b, 1 \rangle \rangle, \langle a, \langle b, 2 \rangle \rangle\}$$

♦ Conclusões

- Não-Comutatividade
 - * B × C e C × B são diferentes

$$* (B \times C) \cap (C \times B) = \emptyset$$

disjuntos

- Não-Associatividade
 - * $(A \times B) \times C$ e $A \times (B \times C)$ são diferentes

por quê?

Exp: Produto Cartesiano

$$A = \{ 0, 1, 2 \}$$

•
$$A \times \emptyset = \emptyset$$

$$\bullet \varnothing \times A = \varnothing$$

•
$$\emptyset^2 = \emptyset$$

por quê?

por quê?

♦ Distributividade do produto cartesiano sobre a união

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

exercício

◆Distributividade do produto cartesiano sobre a intersecção

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

exercício

- ♦ Reversabilidade do produto cartesiano ?
 - como fazer?
 - nem sempre é válida
 - * quando o produto cartesiano resulta no vazio

por quê?

Exp: Reversabilidade do Produto Cartesiano

```
\{\langle a, a \rangle, \langle a, b \rangle\}
```

• Operandos: { a } e { a, b }

$$\{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle\}$$

• Operandos: { a, b } e { a, b }

$$\{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \dots \}$$

Operandos: { a } e N

$$\{ \langle \langle a, a \rangle, 0 \rangle, \langle \langle a, a \rangle, 1 \rangle, \langle \langle a, a \rangle, 2 \rangle, \langle \langle a, b \rangle, 0 \rangle, \langle \langle a, b \rangle, 1 \rangle, \langle \langle a, b \rangle, 2 \rangle \}$$

• Operandos: { (a, a), (a, b) } e { 0, 1, 2 }

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5.4 União Disjunta

♦ Pessoas da família Silva e Souza

```
Silva = { João, Maria, José }
```

Souza = { Pedro, Ana, José }

♦ Conjunto resultante da união

```
Silva ∪ Souza = { João, Maria, Pedro, Ana, José }
```

- José ocorre uma única vez
- não reflete uma "reunião familiar"
 - José Silva não é o mesmo José Souza

União disjunta

- distingue elementos com mesma identificação
- garante que *não* existem elementos em comum
 - * associa uma identificação do conjunto origem
 - * um tipo de "sobrenome"

(elemento, identificação do conjunto origem)

Def: União Disjunta

A+B ou A
$$\bullet$$
 B

A+B = {\langle a, A \rangle | a \in A \rangle U \{\langle b, B \rangle | b \in B \}

A+B = {\langle a, O \rangle | a \in A \rangle U \{\langle b, 1 \rangle | b \in B \}

A+B = {\langle a_A | a \in A \rangle U \{\langle b_B | b \in B \}

◆ Diversas formas de denotar elementos de A + B

• importante é distinguir o conjunto originário

Exp: União Disjunta

```
Silva = { João, Maria, José } e Souza = { Pedro, Ana, José }

Silva + Souza = { ⟨João, Silva⟩, ⟨Maria, Silva⟩, ⟨José, Silva⟩,

⟨Pedro, Souza⟩, ⟨Ana, Souza⟩, ⟨José, Souza⟩ }

D = { 0, 1, 2,..., 9 }, V = { a, e, i, o, u } e P = { 0, 2, 4, 6,... }

D + V = { 0<sub>D</sub>, 1<sub>D</sub>, 2<sub>D</sub>,..., 9<sub>D</sub>, a<sub>V</sub>, e<sub>V</sub>, i<sub>V</sub>, o<sub>V</sub>, u<sub>V</sub> }

D + P = { 0<sub>D</sub>, 1<sub>D</sub>, 2<sub>D</sub>,..., 9<sub>D</sub>, 0<sub>P</sub>, 2<sub>P</sub>, 4<sub>P</sub>, 6<sub>P</sub>,... }
```

Exp: ...União Disjunta

$$A = \{ x \in \mathbb{N} \mid x > 2 \} e B = \{ x \in \mathbb{N} \mid x^2 = x \}$$

•
$$A + B = \{ 0_B, 1_B, 3_A, 4_A, 5_A, 6_A, \dots \}$$

$$A = \{ a, b, c \}$$

- $\bullet \varnothing + \varnothing = \varnothing$
- $A + \emptyset = \{ \langle a, A \rangle, \langle b, A \rangle, \langle c, A \rangle \}$
- A + A = { $\langle a, 0 \rangle$, $\langle b, 0 \rangle$, $\langle c, 0 \rangle$, $\langle a, 1 \rangle$, $\langle b, 1 \rangle$, $\langle c, 1 \rangle$ }

♦ Reversabilidade da união disjunta?

Exp: Reversabilidade da União Disjunta

```
\{0_{D}, 1_{D}, 2_{D}, ..., 9_{D}, a_{V}, e_{V}, i_{V}, o_{V}, u_{V}\}

    Operandos: { 0, 1, 2,..., 9 } e { a, e, i, o, u }

\{0_D, 1_D, 2_D, \dots, 9_D, 0_N, 1_N, 2_N, 3_N \dots\}
    • Operandos: { 0, 1, 2,..., 9 } e N
Ø

    Operandos: Ø e Ø

\{\langle a, 0 \rangle, \langle b, 0 \rangle\}

    Operandos: { a, b } e Ø

\{\langle a, 0 \rangle, \langle b, 0 \rangle, \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle\}
    Operandos: { a, b } e { a, b, c }
```

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.6 Relação entre Lógica e Álgebra de Conjuntos

Propriedade	Lógica	Teoria dos Conjuntos
Idemp	$p \wedge p \Leftrightarrow p$	$A \cap A = A$
	$p \vee p \Leftrightarrow p$	$A \cup A = A$
Comut	$p \wedge q \Leftrightarrow q \wedge p$	$A \cap B = B \cap A$
	$p \vee q \Leftrightarrow q \vee p$	$A \cup B = B \cup A$
Associat	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$	$A \cap (B \cap C) = (A \cap B) \cap C$
	$p v (q v r) \Leftrightarrow (p v q) v r$	$A \cup (B \cup C) = (A \cup B) \cup C$

Propriedade	Lógica	Teoria dos Conjuntos
Distrib	p ∧ (q ∨ r) ⇔	$A \cap (B \cup C) =$
	$(p \wedge q) \vee (p \wedge r)$	$(A \cap B) \cup (A \cap C)$
	p v (q ∧ r) ⇔	$A \cup (B \cap C) =$
	(p v q) \wedge (p v r)	$(A \cup B) \cap (A \cup C)$
Negação/	¬¬p ⇔ p	~~A = A
Compl	$p \land \neg p \Leftrightarrow F$	$A \cap \sim A = \emptyset$
	$p \vee \neg p \Leftrightarrow V$	$A \cup \sim A = \mathbb{U}$
DeMorgan	$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$	\sim (A \cup B) = \sim A \cap \sim B
	$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	\sim (A \cap B) = \sim A \cup \sim B

Propriedade	Lógica	Teoria dos Conjuntos
Elemento Neutro	p∧V⇔p	$A \cap U = A$
	pvF⇔p	$A \cup \emptyset = A$
Elemento Absorvente	p∧F⇔F	$A \cap \emptyset = \emptyset$
	pvV⇔V	$A \cup U = U$

♦ Importante exercício proposto no Capítulo 2

- qq dos conetivos ¬, ∧, ∨, → e ↔
 * pode ser expresso usando somente ¬ e ∧
- importante em diversas aplicações da Computação e Informática
 * exemplo: Técnicas Digitais
- mesmo resultado vale para a Álgebra de Conjuntos
 - * usando somente ~ e ∩
- exercício:
 - * como → e ↔ podem ser expressos na Álgebra de Conjuntos?

♦ Relações Lógicas × Relações sobre Conjuntos

Relação	Lógica	Teoria dos Conjuntos
Implicação/Continência	$p \Rightarrow p$	A⊆B
Equivalência/Igualdade	p⇔q	A = B

♦ Como visto no Capítulo 2

p(x) é uma proposição p tq descreve alguma propriedade de x∈U

♦ Lógica × Teoria dos Conjuntos

```
A = {x | p(x)} e B = {x | q(x)}
* A ⊆ B se e somente se (∀x ∈ U) (p(x) ⇒ q(x)) continência
* A = B se e somente se (∀x ∈ U) (p(x) ⇔ q(x)) igualdade
```

exemplo

```
* A = U se e somente se (\forall x \in U) (p(x) \Leftrightarrow V) universo

* A = \emptyset se e somente se (\forall x \in U) (p(x) \Leftrightarrow F) vazio
```

- Justifica o fato de que qq continência ou igualdade
 - * decorrência de alguma implicação ou igualdade

♦ Correlação entre Lógica e Álgebra de Conjuntos

- não é casual
- ambas são um caso particular de uma álgebra abstrata
 - * denominada Álgebra de Boole
 - * vista adiante

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.7 Álgebra de Conjuntos nas Linguagens de Programação

- ♦ Já discutido: *nem* toda linguagem de programação
 - possui boas facilidades para tratar conjuntos
- **♦** Pascal (lembrando)
 - tipos de dados baseados em conjuntos finitos
 - variáveis conjuntos sobre estes tipos de dados
 - constantes conjuntos (também finitos)
- ◆ Pascal: operações não-reversíveis sobre conjuntos:
 - união: +
 - intersecção: *
 - diferença:

Exp: Trechos de Programas em Pascal

Suponha o tipo de dados

```
dias_semana = set of (seg, ter, qua, qui,
    sex, sab, dom)
```

variáveis

```
feriado, trabalho, feriado_trabalho,
  úteis, parados: dias_semana
```

trechos de programas

```
feriado := [qua, sab]
trabalho := [seg,..., sex]
```

Os trechos de programas em Pascal

```
feriado_trabalho := trabalho * feriado
úteis := trabalho - feriado
parado := [sab, dom] + feriado
```

correspondem, na Teoria dos Conjuntos

```
    feriado_trabalho = trabalho ∩ feriado { qua }
    úteis = trabalho - feriado { seg, ter, qui, sex }
    parado = { sab, dom } ∪ feriado { qua, sab, dom }
```

Exp: Programa Completo em Pascal

Programa capaz de ler uma linha de texto e determinar o número de

- vogais
- consoantes
- outros símbolos
- total de caracteres lidos

```
program numero caracteres(input, output);
type
  alfabeto = set of 'a'..'z';
var
  n vogais, n consoantes, n outros,
     total: integer;
  vogais, consoantes: alfabeto;
  caractere: char;
begin
  vogais := ['a', 'e', 'i', 'o', 'u'];
  consoantes := ['a'..'z'] - vogais;
  n vogais := 0;
  n consoantes := 0;
  n outros := 0;
  read(caractere);
```

```
while not eoln
do begin
  if caractere in vogais
  then n vogais := n vogais + 1
  else if caractere in consoantes
        then n consoantes:= n consoantes + 1
        else n outros := n outros + 1;
  read(caractere)
  end;
total := n vogais + n consoantes + n outros;
writeln('vogais = ', n vogais);
writeln('consoantes: ', n consoantes);
writeln('outros símbolos: ', n outros);
writeln('total de símbolos: ', total)
end.
```

♦ Construções similares a do produto cartesiano

- reversíveis
 - * arranjos (arrays)
 - * registros (records)
- abordagem mais adequada
 - * quando do estudo do conceito de função

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - **3.4.1 União**
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.8 Álgebra de Conjuntos e Teoria da Computação

♦ Álgebra de Conjuntos

fundamental no estudo da Teoria da Computação

◆ Teoria da Computação

- meios para correta aplicação e entendimento dos conceitos de
 - * algoritmo
 - * computabilidade
 - * consequentemente, do que é solucionável em um computador
- conceitos mínimos que qq estudante necessita saber

◆ Lembre-se: linguagem (formal) L sobre alfabeto ∑

$$L\subseteq \Sigma^*$$

◆ Complemento da linguagem L

$$\sim L = \{ x \in \Sigma^* \mid x \notin L \}$$

Exp: Complemento de Linguagens

Linguagens sobre $\Sigma = \{a, b\}$

- $L_1 = \{ \epsilon \}$
- $L_2 = \{a\}^* = \{\epsilon, a, aa, aaa,...\}$
- Palíndromos = $\{\varepsilon, a, b, aa, bb, aaa, aba, bab, bbb, aaaa,...\}$

Complementos das linguagens

- $\sim L_1 = \{ a, b, aa, ab, ba, bb, aaa, ... \}$
- \sim L₂ = { b, ab, ba, bb, aab, aba, baa, abb, bab, bba, bbb,... }
- ~Palíndromos = $\{x \in \Sigma^* \mid x \notin Palíndromos \}$

Obs: Reconhecimento de Linguagens × Complemento

Lembre-se: compilador é um software

- traduz um programa escrito na linguagem de programação
- para um código executável no sistema computador.
- estruturado em análise e síntese
 - * análise é responsável pelo reconhecimento da linguagem
 - * verifica se um programa p válido para a linguagem L

$$p \in L$$

- se p ∈ L, passa para a síntese
- se p ∉ L, alertar o programador (correção do programa!)
- portanto, a análise de um compilador verifica se

$$p \in L$$
 ou $p \in \sim L$

Obs: Hierarquia de Linguagens e Problema da Parada

Importante assunto da Teoria da Computação

limites do que é possível computar em um computador

Capítulo 2 – Lógica e Técnicas de Demonstração

Máquina de Turing: formalização do conceito de algoritmo

Limite do que é possível reconhecer

existe uma Máquina de Turing que reconhece

Nesse contexto: linguagens são agrupadas em classes

• hierarquia (continência própria)

-Universo de Todas as Linguagens-

Linguagens Enumeráveis Recursivamente (existe um algoritmo capaz de responder "pertence")

Linguagens
Recursivas
(existe um algoritmo
capaz de responder
"pertence" ou "não pertence")

♦ Linguagens Recursivas

- existe um algoritmo (Máquina de Turing) que sempre pára
- capaz de determinar se

$$p \in L \text{ ou } p \in \sim L$$

♦ Linguagens Enumeráveis Recursivamente

- existe um algoritmo (Máquina de Turing)
- capaz de determinar se p ∈ L
- *entretanto*, se p ∈ ~L, o algoritmo pode
 - * parar identificando que p ∈ ~L
 - * ficar em loop infinito

♦ Contradiz a intuição pois estabelece que

reconhecer o complemento de uma linguagem pode ser impossível, mesmo que seja possível reconhecer a linguagem

♦ Linguagens Não-Computáveis

• não existe algoritmo (Máquina de Turing) capaz de determinar se

$$p \in L$$
 ou $p \in \sim L$

Problema da Parada

- se qq Máquina de Turing pára determinando se p∈L ou p∈~L
 * não tem solução computacional
- baseado nesse resultado prova-se
 - * inúmeros problemas não possuem solução computacional
 - * inclui muitos problemas interessantes e importantes para CC

Teorema: Complemento de Ling. Recursiva é Recursiva

Se L sobre ∑ é recursiva, então ~L também é recursiva

Prova: (direta)

Suponha L linguagem recursiva sobre >

Então existe Máquina de Turing MT(L) que aceita L e sempre pára

Portanto, o complemento de uma linguagem recursiva é recursiva

Teorema: Intersecção de Ling. Recursivas é Recursiva

Se L₁ e L₂ sobre ∑ são recursivas, então L₁ ∩ L₂ também é recursiva

Prova: (direta)

Suponha L₁ e L₂ linguagens recursivas sobre ∑

Então existem Máquinas de Turing MT(L₁) e MT(L₂) tq aceitam L₁ e L₂ e sempre param

Portanto, a intersecção de duas linguagens recursivas é recursiva

Outros resultados (exercícios)

- união de duas linguagens recursivas é recursiva
- complemento de uma linguagem enumerável recursivamente não necessariamente é enumerável recursivamente
- uma linguagem é recursiva sss a linguagem e seu complemento são enumeráveis recursivamente

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

