拉格朗日乘數

沈威宇

2024年8月13日

拉格朗日乘數 (Lagrange multiplier)

拉格朗日乘數法是一種在有約束條件下尋找函數極值的方法。拉格朗日乘數法所得的解會包含原問題的所有極點,但並不保證每個拉格朗日乘數法所得的臨界點都是原問題的臨界點。

Statement.

令 $\mathbf{x}=(x_1,\,x_2,\,\dots,\,x_n)$ 是自變數向量, $\mathbf{0}$ 是零向量。今有 $f:\mathbb{R}^n\to\mathbb{R}$ 和 $g:\mathbb{R}^n\to\mathbb{R}^c$ 。在約束條件 $g(\mathbf{x})=\mathbf{0}$ 下尋找 $f(\mathbf{x})$ 的極點。

首先,構造拉格朗日函數 $\mathcal{L}(\mathbf{x}, \lambda)$:

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda \cdot g(\mathbf{x})$$

其中, λ 是拉格朗日乘數向量。

對 \mathcal{L} 求散度, 並將其設為零:

$$\nabla \mathcal{L} = \mathbf{0}$$

解這個方程組來找到 x 和 λ 。

欲證:拉格朗日乘數法所得的 x 的解,會包含原問題的所有極點。

Proof. 考慮原問題中的一個極點 \mathbf{x}^* 。由於它是約束條件下的極點,它必須滿足約束條件:

$$q(\mathbf{x}^*) = \mathbf{0}$$

在 x^* 附近的任何可行點 x 都必須滿足約束條件。我們可以將 x 表示為:

$$\mathbf{x} = \mathbf{x}^* + \delta \mathbf{x}$$

其中 $\delta \mathbf{x}$ 是一個微小的變化,垂直於 $q(\mathbf{x})$ 定義的流形,且屬於 $\nabla q(\mathbf{x}^*)$ 的零空間,即滿足:

$$q(\mathbf{x}^* + \delta \mathbf{x}) = \mathbf{0}$$

將 f 在 \mathbf{x}^* 求泰勒展開一階近似:

$$f(\mathbf{x}^* + \delta \mathbf{x}) \approx f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*) \cdot \delta \mathbf{x} + O(\|\delta \mathbf{x}\|^2)$$

將 g 在 \mathbf{x}^* 求泰勒展開一階近似:

$$g(\mathbf{x}^* + \delta \mathbf{x}) \approx g(\mathbf{x}^*) + \nabla g(\mathbf{x}^*) \cdot \delta \mathbf{x} + O(\|\delta \mathbf{x}\|^2)$$

由於 \mathbf{x}^* 是極點,對於任何可行的 $\delta \mathbf{x}$,我們必須有:

$$\nabla f(\mathbf{x}^*) \cdot \delta \mathbf{x} = 0$$

由於 $g(\mathbf{x}^*) = \mathbf{0}$,我們得到:

$$\nabla g(\mathbf{x}^*) \cdot \delta \mathbf{x} = O(\|\delta \mathbf{x}\|^2)$$

因為 δx 是 $\nabla g(\mathbf{x})$ 零空間中的任意微分變化向量,所以 $\nabla f(\mathbf{x})$ 必須可以表示為 $\nabla g(\mathbf{x})$ 的線性組合。 這意味著存在一個向 λ 使得:

$$\nabla \mathcal{L} = \nabla (f(\mathbf{x}) - \lambda \cdot g(\mathbf{x})) = \mathbf{0}$$