Assignment 14

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment14

1 Problem

(hoffman/page208/1b) : Find an invertible matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal where A and B are real matrices.

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \tag{1.0.1}$$

$$\mathbf{B} = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \tag{1.0.2}$$

2 EXPLANATION

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $		
Theorem	According to theorem 8, if a 2×2 matrix has two characteristics values then the P that diagonalize A will necessarily also diagonalize any B that commutes with A .		
Basis	Let there exist a \mathbf{P} in basis $\beta = \{\mathbf{b}_1,, \mathbf{b}_n\}$ of \mathbb{V} consisting of eigen vector which are common to both \mathbf{A} and \mathbf{B} such that $\mathbf{A}\mathbf{b}_i = \lambda_i \mathbf{b}_i \qquad \mathbf{B}\mathbf{b}_i = \mu_i \mathbf{b}_i$ $\Lambda_A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad \Lambda_B = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}$ $\Lambda_A = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} \qquad \Lambda_B = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$		

TABLE 1: Definitions and theorem used

3 Solution

Operations	Matrix A	Matrix B
Characteristic Polynomial	$p(x) = x\mathbf{I} - \mathbf{A} $ $= \begin{vmatrix} x - 1 & -1 \\ -1 & x - 1 \end{vmatrix}$ $= (x - 1)(x - 1) - 1$	$p(x) = x\mathbf{I} - \mathbf{B} $ $= \begin{vmatrix} x - 1 & -a \\ -a & x - 1 \end{vmatrix}$ $= (x - 1)(x - 1) - a^2$
Characteristic values	$p(x) = 0$ $x(x-1) = 0$ $\lambda_1 = 0 , \lambda_2 = 2$	$p(x) = 0$ $(x-1)^2 - a^2 = 0$ $\mu_1 = (1-a), \ \mu_2 = (1+a)$
Basis for Characteristics Values	$(\mathbf{A} - \lambda \mathbf{I})\mathbf{b} = 0$	$(\mathbf{B} - \mu \mathbf{I})\mathbf{b} = 0$
	For $\lambda_1 = 0$	For $\mu_1 = (1 - a)$
	$\mathbf{b_1} = \begin{pmatrix} -1\\1 \end{pmatrix}$	$\mathbf{b_1} = \begin{pmatrix} -1\\1 \end{pmatrix}$
	For $\lambda_2 = 2$	For $\mu_2 = (1 + a)$
	$\mathbf{b_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\mathbf{b_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
Invertible matrix	$\implies \mathbf{P} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$\implies \mathbf{P} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$
Verification	$\Lambda_A = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ $\Lambda_A = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$	$\Lambda_B = \begin{pmatrix} 1 - a & 0 \\ 0 & 1 + a \end{pmatrix}$
	$\Lambda_A = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$	$\Lambda_B = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$
	$\Lambda_A = \begin{pmatrix} \frac{-1}{2} & \frac{1}{2} \\ \frac{7}{2} & \frac{7}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$\Lambda_B = \begin{pmatrix} \frac{-1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 - a & 0 \\ 0 & 1 + a \end{pmatrix} = \Lambda_B$
	$= \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} = \Lambda_A$	$= \begin{pmatrix} 1 - a & 0 \\ 0 & 1 + a \end{pmatrix} = \Lambda_B$
Conclusion	$\mathbf{P} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$\mathbf{P} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$

TABLE 2: Solution Summary