ChumakovNV 15022025-091804

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 4? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{13;1\} \quad 2) \ \{13;67\} \quad 3) \ \{18;23\} \quad 4) \ \{18;-109\} \quad 5) \ \{23;-21\} \quad 6) \ \{28;-131\} \quad 7) \ \{8;67\}$$

8) {8; 45} 9) {8; -21}

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 207 МГц, частота ПЧ 37 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 658 MΓ_{II}
- 2) 37 МГц
- 3) 244 MΓ_{II}
- 4) 1242 MΓ_{II}.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 616 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 13 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 113 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 1390 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 730 МГц до 772 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -88 дБм 2) -91 дБм 3) -94 дБм 4) -97 дБм 5) -100 дБм 6) -103 дБм 7) -106 дБм 8) -109 дБм 9) -112 дБм

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 19 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 213 М $\Gamma_{\rm H}$?

Варианты ОТВЕТА:

1) 26.6 нГн 2) 35.3 нГн 3) 53.9 нГн 4) 39.5 нГн

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.32749 - 0.42567i, s_{31} = -0.46097 - 0.35464i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -24 дБн 2) -26 дБн 3) -28 дБн 4) -30 дБн 5) -32 дБн 6) -34 дБн 7) -36 дБн 8) -38 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 31 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 7.2 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

 $1)\ 5\ \mathsf{д} \mathsf{E}\ 2)\ 5.6\ \mathsf{д} \mathsf{E}\ 3)\ 6.2\ \mathsf{д} \mathsf{E}\ 4)\ 6.8\ \mathsf{z} \mathsf{E}\ 5)\ 7.4\ \mathsf{z} \mathsf{E}\ 6)\ 8\ \mathsf{z} \mathsf{E}\ 7)\ 8.6\ \mathsf{z} \mathsf{E}\ 8)\ 9.2\ \mathsf{z} \mathsf{E}\ 9)\ 9.8\ \mathsf{z} \mathsf{E}$