Evaluation Metrics for sjSDM (JSDM)

Threshold- independent metrics	AUC, RMSE, Spearman rank correlation coefficient
Community dissimilarity indices	Bray-Curtis dissimilarity, Jaccard distance
Species richness metrics	Species richness difference
Likelihood metrics	Independent log-likelihood (Nagelkerke's R^2), joint log-likelihood (some sort of integral over community assemblage)

Spearman rank correlation coefficient	$\frac{\textit{COV}\left(r_{obs}, r_{\textit{pred}}\right)}{\sigma_{r_{obs}}\sigma_{r_{\textit{pred}}}}$ works better for QP data	-1-1>0 more correct predictions<0 more incorrect predictions
Bray-Curtis dissimilarity	$\frac{A+B-2J}{A+B}$ A: # obs presences, B: # pred, J: # correctly pred	0-1 0 = same composition 1 = opposite composition
Jaccard distance	$\frac{2D}{1+D}$ D: Bray-Curtis	Lower = more correct assemblage prediction
	pred richness — obs richness ted value, y = observed value	-∞ - ∞ >0 overpredicts species richness <0 underpredicts species richness
Nagelkerke's R^2	s or samples, and then average across species $L_p = \prod_i \big(p_i y_i + \big(1 - p_i\big) \big(1 - y_i\big)\big)$ $\frac{1 - \big(L_0/L_p\big)^{2/N}}{1 - L_0^{-2/N}} \text{N = number of samples or species}$	$R^2 = \frac{\log L_p - \log L_0}{1 - \log L_0}$