שאלה 1 (25 נקודות)

.6 יהיX משתנה מקרי מעריכי עם הפרמטר

 $Y = 1 - e^{-X}$: נגדיר את המשתנה המקרי Y על-ידי

- $.P\{X \le 0.5 \mid X > 0.25\}$ א. חשב את א. (6 נקי)
 - (Y ב. חשב את התוחלת של (Y)
- (7 נקי) ג. מצא את פונקציית ההתפלגות המצטברת של Y. **רשום את ערכיה לכל מספר ממשי**.
 - Y ביפות של את פונקציית הצפיפות של Y בקי) ד. מצא את פונקציית

שאלה 2 (25 נקודות)

בוחרים באקראי ובזה אחר זה 10 קלפים מתוך חפיסת קלפים רגילה, הכוללת 52 קלפים: 13 בצורת לב, 13 בצורת לב, 13 בצורת יהלום, 13 בצורת עלה ו-13 בצורת תלתן.

(8 נקי) א. מהי ההסתברות שייבחרו קלפים רק מהצורות לב ויהלום, כך שיהיה לפחות קלף אחד מכל צורה?

יהי X משתנה מקרי, המוגדר על-ידי מספר הקלפים שנבחרים, שמייד אחריהם נבחר קלף בדיוק מאותה הצורה.

- X ב. מצא את התוחלת של (8 נקי) ב. מצא את
- X ג. מצא את השונות של (9 נקי) ג. מצא את

שאלה 3 (25 נקודות)

לצמח מסוים יש בסך-הכל 60 עלים.

בשעות האור, מספר החרקים שמגיעים לכל עלה מקיים את שלושת ההנחות של תהליך פואסון עם קצב של 9 לשעה.

נניח שאין תלות בין החרקים שמגיעים לצמח, ובין מספרי החרקים שמגיעים לעלים שונים (באותו הזמן ובזמנים שונים).

- (6 נקי) א. מהי ההסתברות שמשעה 12:00 עד השעה 12:10 יגיעו לחמשת העלים העליונים ביותר של הפקים: (בדיוק 8, לא פחות ולא יותר.)
 - (6 נקי) ב. נניח שבעשר דקות מסוימות הגיע לכל עלה של הצמח חרק אחד לפחות. מהי ההסתברות שבדיוק ל-20 עלים של הצמח (מתוך 60 עליו) הגיע חרק אחד בדיוק!
 - (7 נקי) ג. ב<u>דקה מסוימת</u> הגיעו לצמח 10 חרקים בסך-הכל. מהי ההסתברות שאף לא אחד מהם הגיע ל-10 העלים העליונים ביותר של צמח!
- (6 נקי) ד. נניח שהאורך של כל חרק שמגיע לצמח עולה על 3 מיימ בהסתברות 0.3. מהי שונות מספר החרקים הייארוכיםיי (שאורכם עולה על 3 מיימ) שמגיעים לצמח במשך שעה אחת?

שאלה 4 (25 נקודות)

מסובבים שלוש פעמים סביבון תקין, שעל ארבע פאותיו רשומים המספרים 1, 2, 3 ו- 4.

יהי Y המספר הגבוה ביותר שהתקבל בשלושת הסיבובים של הסביבון.

- משי. מצא את פונקציית ההתפלגות המצטברת של Y. רשום את ערכיה לכל מספר ממשי. מקן ההנחות שיש להניח לצורך החישוב?
 - Y ב. מצא את פונקציית ההסתברות של 6.
- התפלגות המשתנים וכי לכל אחד בזה וכי לתי-תלויים בלתי-תלויים המקריים המקריים המקריים המקריים אוג בלתי-תלויים המקריים המקריים אוג בתחילת השאלה. Y_{50} הנתון בתחילת השאלה.

. נסמן ב- \overline{Y} את הממוצע של 50 המשתנים המקריים הנתונים.

 $3.4 \le \overline{Y} \le 3.5$ -חשב **קירוב** להסתברות ש

ערוך אינטרפולציה לינארית היכן שהיא נדרשת.

שאלה 5 (25 נקודות)

משיים. a ו- a קבועים ממשיים. א. יהי A משתנה מקרי בדיד, שתוחלתו ושונותו סופיות, ויהיו

$$E[aX+b] = aE[X]+b \qquad .1 \qquad :$$
יברת כי

$$Var(aX + b) = a^{2}Var(X)$$
 .2

(12 נקי) ב. מטפס-הרים מטפס על הר במשך 10 ימים.

ביום-טיפוס מוצלח הוא עושה דרך של 200 מטר וביום לא-מוצלח דרך של 100 מטר בלבד. נניח שאין תלות בין ימי-הטיפוס, ושכל יום-טיפוס הוא יום מוצלח בהסתברות 0.4.

- 1. מהי ההסתברות שהמטפס יעבור ב-10 הימים דרך כוללת של 1,200 מטר לפחות?
 - 2. מהן התוחלת והשונות של הדרך הכוללת שהמטפס יעבור ב-10 ימי הטיפוס!

בהצלחה!

 $\Phi(x)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	0.0550		0.0500				0.0002		0.0012	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.1	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
J. T	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7771	0.7770

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

4

20425 / 83 - ⊐2010

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^{i} \cdot (1-p)^{n-i} , i=0,1,,n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/p	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \left(pe^t / (1 - (1-p)e^t) \right)^r $ $ t < -\ln(1-p) $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \begin{pmatrix} m \\ i \end{pmatrix} \begin{pmatrix} N-m \\ n-i \end{pmatrix} / \begin{pmatrix} N \\ n \end{pmatrix} , i = 0,1,,m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\left\{\mu t + \sigma^2 t^2 / 2\right\}$	σ^2	μ	$\left (1/\sqrt{2\pi}\sigma) \cdot e^{-(x-\mu)^2/(2\sigma^2)} \right , -\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/2	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוסחת הבינום
$$P(A) = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 נוסחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוסחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S$$
 זרים ואיחודם הוא
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת בייט
$$E[X] = \sum_x x p_X(x) = \int x f(x) dx$$
 מוחלת של פונקציה של מ"מ
$$E[g(X)] = \sum_x g(x) p_X(x) = \int g(x) f(x) dx$$
 שונות
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

תוחלת ושונות של פונקציה לינארית

$$P\{X>s+tig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

5

E[aX + b] = aE[X] + b

 $Var(aX + b) = a^2 Var(X)$

$$\begin{array}{llll} \mbox{Var}(X\,|\,Y=y) = E[X^2\,|\,Y=y] - (E[X\,|\,Y=y])^2 & \mbox{viour adintive} \\ E[X] = E[E[X\,|\,Y]] = \sum_y E[X\,|\,Y=y] p_Y(y) & \mbox{viour adintive} \\ \mbox{var}(X) = E[\mbox{Var}(X\,|\,Y)] + \mbox{Var}(E[X\,|\,Y]) & \mbox{viour adintive} \\ E\Big[\sum_{i=1}^n X_i\Big] = \sum_{i=1}^n E[X_i] & \mbox{viour adintive} \\ E\Big[\sum_{i=1}^n X_i\Big] = \sum_{i=1}^n E[X_i] & \mbox{viour adintive} \\ \mbox{Cov}(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY] - E[X]E[Y] & \mbox{viour adintive} \\ \mbox{Cov}\Big(\sum_{i=1}^n X_i, \sum_{j=1}^m Y_j\Big) = \sum_{i=1}^n \sum_{j=1}^m {\rm Cov}(X_i, Y_j) & \mbox{viour adintive} \\ \mbox{Var}\Big(\sum_{i=1}^n X_i\Big) = \sum_{i=1}^n {\rm Var}(X_i) + 2\sum_{i < j} {\rm Cov}(X_i, X_j) & \mbox{viour adintive} \\ \mbox{viour adintive} & \mbox{viour adintive} \\ \mbox{M}_X(t) = E[e^{tX}] & ; & \mbox{M}_{aX+b}(t) = e^{bt} M_X(at) & \mbox{viour adintive} \\ \mbox{E}(\sum_{i=1}^n X_i\Big) = E[N]E[X] & \mbox{viour adintive} \\ \mbox{viour adintive} & \mbox{viour adintive} \\ \mbox{Var}\Big(\sum_{i=1}^n X_i\Big) = E[N]Var(X) + (E[X])^2 Var(N) & \mbox{viour adintive} \\ \mbox{viour adintive} & \mbox{viour adintive} \\ \mbox{Var}(E[X]) = E[X]/a & , & \mbox{a > 0} & , & \mbox{un'a diverse of } \\ \mbox{viour adintive} & \mbox{viour adintive} \\ \mbox{viour adintive} & \mbox{viour adintive}$$

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] המאורע A יתרחש לפני המאורע
- ullet סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו עם אותו (בינומיים פואסוניים Y ו-Y מיימ פואסוניים (בינומיים עם אותו אותו X+Y=n ביית היא בינומית (היפרגיאומטרית).

6