Calcolo Numerico TEST del 21 febbraio 2018

Cognome e nome	Matricola
Informatica	
Postazione	
FIRMA PER CONSEGNARE	
FIRMA PER RITIRARSI	

SI RACCOMANDA AGLI STUDENTI DI commentare adeguatamente SCRIPT E FUNCTION MATLAB.

• Si scriva una function jacobi.m che implementi il metodo di Jacobi per la risoluzione di un sistema lineare Ax = b. La function dovrà avere la seguente intestazione:

```
function [x,k,steps,flag] = jacobi (A,b,x0,toll,kmax)
% JACOBI Metodo di Jacobi per la risoluzione di un sistema lineare
%
         con test di arresto sulla norma della differenza di due
%
         iterate successive
% Uso:
%
    [x,k,flag] = jacobi (A,b,x0,toll,kmax)
% Dati di ingresso:
%
         matrice dei coefficienti
%
   b
         vettore colonna dei termini noti
%
   x0
         vettore colonna iniziale
    toll tolleranza per il test di arresto
%
   kmax numero massimo di iterazioni
% Dati di uscita:
%
         array che contiene per colonne le iterate (vettori) del metodo
%
         numero delle iterazioni effettuate
% steps vettore di lunghezza k avente quale j-sima componente |x(:,j+1) - x(:,j)|_2,j=1,\ldots,k
    flag vale 1 se per qualche indice "i" si abbia a(i,i)=0 ed in tal caso si ponga k=0,
%
%.
                      x=[], steps=[],
%
           vale 2 se il numero di iterazioni \'e strettamente maggiore di kmax.
%
           vale 0 altrimenti.
```

In uscita, la variabile x sarà una matrice le cui colonne corrispondono alle iterate del metodo. Pertanto x(:,1) conterrà x_0 , x(:,2) conterrà x_1 , e così via. In caso di convergenza, l'ultima colonna di x, ovvero la k+1-sima, estraibile con x(:,end), conterrà la soluzione approssimata. Il test di arresto del ciclo while relativo alle iterate deve essere basato sulla norma 2 della differenza tra due iterate successive $||x(:,j+1)-x(:,j)||_2$. Se vengono effettuate k iterazioni, si determini il vettore colonna steps di lunghezza k avente quale j-sima componente $||x(:,j+1)-x(:,j)||_2$, $j=1,\ldots,k$.

Il parametro di uscita flag risulti essere uguale ad

- 1 se per qualche indice i si abbia $a_{i,i} = 0$ ed in tal caso si ponga k=0, x=[], steps=[],
- $2\,$ se il numero di iterazioni é strettamente maggiore di ${\tt kmax},$
- 0 altrimenti.
- Si scriva una function jacobi_script.m in cui dopo aver definito la matrice quadrata $A = (a_{i,j})_{i,j=1,...,3}$ di ordine 3

$$\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
1 & 2 & -3
\end{array}\right)$$

e il vettore colonna $b=(2,0,0)^T\in\mathbb{R}^3$, risolva il sistema Ax=b mediante il metodo di Jacobi, ponendo quale vettore colonna iniziale $x0=(0,\ldots,0)^T\in\mathbb{R}^1$, toll= 10^{-8} , kmax=1000.

Per la soluzione numerica $x^* = \mathbf{x}(:, \mathbf{end})$, si valuti la norma 2 del residuo $b - A * x^*$ e ne se stampi il risultato mediante fprintf, con 1 cifra prima della virgola e 4 dopo la virgola, in notazione esponenziale.

Se il metodo effettua k iterazioni, si determini il grafico in scala semilogaritmica delle coppie (j, steps(j)), per j = 1, ..., k e lo si salvi come grafico.jpg.

Infine si salvi nel file soluzione.txt, la matrice 3×2 , avente quale prima colonna gli indici delle componenti da 1 a 3 del vettore $x(:,end) \in \mathbb{R}^3$ descritte in notazione esponenziale con 1 cifra prima della virgola e 15 dopo la virgola.