Projet d'intégration d'IA

Optimisation d'affectations de bus sur un réseau

Mathias Dacosta Luc Dupuy Thomas Prak Cyril Py

Plan

- Présentation du projet
- ♦ Gestion de projet
- ♦ Les algorithmes
- ♦ Conclusion
- Ouverture

Présentation du projet

Présentation du projet

Affecter des bus sur un réseau de transport Point à optimiser :

- > Le nombre de bus
- > La distance totale parcourue par les bus
- > Le temps de trajet des bus

Gestion de projet

Gestion de projet

Membres du groupe:

Mathias
DA COSTA

Thomas PRAK

Cyril PY

Luc DUPUY

Gestion de projet

Organisation:

Algorithme d'attribution itératif

Algorithme génétique

Les algorithmes

Les algorithmes attribution itératif

POUR CHAQUE Lignes

POUR CHAQUE Voyage

SI des bus déployés sont admissibles pour ce voyage

Chercher le bus le plus proche

Affecter ce bus au trajet

Mémoriser la prochaine horaire de disponibilité et position du bus

SINON

Affecter un bus non déployé

Mémoriser la prochaine horaire de disponibilité et position du bus

Les algorithmes attribution itératif

- > Amélioration possible:
 - > Ajouter un algorithme d'optimisation
 - > Ce servir des résultats dans un autre algorithme

- Parties réalisées:
 - ♦ Population initiale
 - ♦ Évaluation
 - ♦ Choix meilleure solution

Modélisation – Algorithme Génétique

♦ Données d'entrée (Traitement CSV) -> Tab[ligne][sens][voyage][td,hd,ta,ha,d]*

ligne	sens	voyage	td, hd, ta, ha, d	
1	a	1	1 , 485* , 3 , 500, 10	
1	a	2	1,540,3,560,10	
•••				
1	r	1	3,570,1,590,10	
			•••	
13	r	9	13 , 1156 , 22 , 1176 , 5	

*td: terminus départ

*hd: heure départ -> ex: 8:05h -> 8x60 + 05 = 485

*ta: terminus arrivé *ha: heure arrivée

*d: distance

♦ Première modélisation d'un individu dans la population

N°Solution	N°Bus	N°I igne	Sens	N°Voyage	
1	2	3	« a »	4	
1	2	3	«a»	5	

Population

 Problème: un individu n'est pas un candidat solution mais seulement une partie d'un candidat solution

- Deuxième Modélisation
 - ♦ Format des données -> listVoyages[idVoyage][td,hd,ta,ha,d,nVoy, bus]

idVoyage	td, hd, ta, ha, sens, d, nVoy, bus *		
1	1, 487, 3, 500, a, 10, 1, null		
2	1,540,3,560,a,10,2,null		
538	13, 1021, 22 , 1046 , r , 7 , null		
539	13 1156, 22, 1176, r, 5, null		

*td: terminus départ

*hd: heure départ

*ta: terminus arrivé

*ha: heure arrivée

*d: distance

*nVoy: numéro du voyage de la ligne

*bus: bus « x » affecté au voyage

ex: 8:07 -> 8x60 + 07 = 487min

- Deuxième Modélisation
 - ♦ Modélisation d'un individu

♦ Population

- Génération de la population
 - ♦ **Tableau de référence :** listVoyages [idVoyage] [td,hd,ta,ha,d,nVoy, bus]

♦ Modèle d'un individu: modeleIndividu [x] avec x de 1 à 539

♦ Fonction php: *shuffle()*

tabPopulation[]

♦ Enregistrement des individus et référence : tabPopulation [] = modeleIndividu;

V500

V367

♦ Évaluation

♦ Reste à faire:

attribuer les bus aux voyages

♦ Réalisé:

- ♦ Compter le nombre total de bus
- ♦ Compter le nombre total de minutes
- ♦ Compter le nombre total de kilomètres
- ♦ Choix de la meilleure solution

Croisement

Croisement

- Mutation
 - Principe: échange de deux voyages d'un même enfant

Conclusion

Conclusion

Points négatif:

> Mauvaise modélisation du problème

Points positif:

- > Découverte de nouveaux algorithmes
- > L'importance d'avoir une bonne modélisation au départ

Ouverture

Ouverture

> Finir les algorithmes

> Travailler sur l'optimisation