

B82

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
20 September 2001 (20.09.2001)

PCT

(10) International Publication Number
WO 01/68805 A2

(51) International Patent Classification ⁷ :	C12N	(74) Agents: TESKIN, Robin, L. et al.; Pillsbury Winthrop LLP, 1100 New York Avenue, NW, Washington, DC 20005 (US).
(21) International Application Number:	PCT/US01/07771	
(22) International Filing Date:	13 March 2001 (13.03.2001)	(81) Designated States (<i>national</i>): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(25) Filing Language:	English	
(26) Publication Language:	English	
(30) Priority Data:		(84) Designated States (<i>regional</i>): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
60/188,914	13 March 2000 (13.03.2000)	US
60/192,033	24 March 2000 (24.03.2000)	US
60/198,474	12 April 2000 (12.04.2000)	US
60/199,335	24 April 2000 (24.04.2000)	US
60/207,702	26 May 2000 (26.05.2000)	US
60/213,849	23 June 2000 (23.06.2000)	US
60/226,534	16 August 2000 (16.08.2000)	US
60/230,732	7 September 2000 (07.09.2000)	US
60/266,862	7 February 2001 (07.02.2001)	US

(71) Applicant: SENOMYX, INC. [US/US]; Suite 160, 11099 N. Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventor: ZOZULYA, Sergey; 3950 Mahalia Avenue #B22, San Diego, CA 92122 (US).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/68805 A2

(54) Title: HUMAN OLFACTORY RECEPTORS AND GENES ENCODING SAME

(57) Abstract: Newly identified Olfactory G protein-coupled receptors (ORs), and the genes and cDNA encoding said receptors are described. Specifically, G protein-coupled receptors active in olfactory signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing olfactory perception of a particular odorant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined odor perception in a mammal, and methods for simulating one or more odors. Further, methods for stimulating or blocking odor perception in a mammal are also disclosed.

HUMAN OLFACTORY RECEPTORS AND GENES ENCODING SAME**Cross Reference to Related Applications**

This application claims priority to the following provisional applications: U.S.

5 Ser. No. 60/188,914, filed March 13, 2000, entitled, "NOVEL OLFACTORY RECEPTEORS AND GENES ENCODING SAME," to Zozulya; U.S. Ser. No. 60/192,033, filed March 24, 2000, entitled, "NOVEL OLFACTORY RECEPTORS AND GENES ENCODING SAME," to Zozulya; U.S. Ser. No. 60/198,474, filed April 12, 2000, entitled, "NOVEL OLFACTORY RECEPTORS AND GENE

10 ENCODING THE SAME to Zozulya; U.S. Ser. No. 60/199,335, filed April 24, 2000, "HUMAN OLFACTORY RECEPTORS AND GENES ENCODING THE SAME", to Zozulya; U.S. Ser. No. 60/207,702, filed May 26, 2000, entitled, "HUMAN OLFACTORY RECEPTORS AND GENES ENCODING THE SAME", to Zozulya; U.S. Ser. No. 60/213,849, filed June 23, 2000, entitled, "HUMAN OLFACTORY

15 RECEPTEORS AND GENES ENCODING THE SAME", to Zozulya; U.S. Ser. No. 60/226,534, filed August 16, 2000, "HUMAN OLFACTORY RECEPTORS AND GENES ENCODING THE SAME", to Zozulya; U.S. Ser. No. 60/230,732, filed September 7, 2000, "HUMAN OLFACTORY RECEPTORS AND GENES ENCODING THE SAME", to Zozulya; and U.S. Ser. No. 60/266,862, filed February

20 7, 2001, "HUMAN OLFACTORY RECEPTORS AND GENES ENCODING THE SAME", to Zozulya. All of these applications are herein incorporated by reference in their entireties.

Field of the Invention

25 The invention relates to newly identified mammalian chemosensory G protein-coupled receptors, particularly olfactory receptors, fragments thereof, classes of such receptors, genes and cDNAs encoding said receptors, vectors including said receptors, and cells that express said receptors. The invention also relates to methods of using such receptors, fragments, genes, cDNAs, vectors, and cells to identify molecules

30 involved in olfactory perception. The invention therefore has application in the selection and design of odorant compositions, as well as malodor blockers (olfactory receptor antagonists), particularly perfumes and fragrance compositions and components of deodorants and other malodor blocking compositions.

Description of the Related Art

The olfactory system provides sensory information about the chemical composition of the external world. Olfactory sensation is thought to involve distinct
5 signaling pathways. These pathways are believed to be mediated by olfactory receptors (ORs). Cells which express olfactory receptors, when exposed to certain chemical stimuli, elicit olfactory sensation by depolarizing to generate an action potential, which is believed to trigger the sensation.

As such, olfactory receptors specifically recognize molecules that elicit
10 specific olfactory sensation. These molecules are also referred to herein as “odorants.” Olfactory receptors belong to the 7-transmembrane receptor superfamily (Buck *et al.*, *Cell* 65:175-87 (1991)), which are also known as G protein-coupled receptors (GPCRs). G protein-coupled receptors control many physiological functions, such as endocrine function, exocrine function, heart rate, lipolysis,
15 carbohydrate metabolism, and transmembrane signaling. The biochemical analysis and molecular cloning of a number of such receptors has revealed many basic principles regarding the function of these receptors.

For example, U. S. Patent No. 5,691,188 describes how upon a ligand binding to a GPCR, the receptor presumably undergoes a conformational change leading to
20 activation of the G protein. G proteins are comprised of three subunits: a guanyl nucleotide binding α subunit, a β subunit, and a γ subunit. G proteins cycle between two forms, depending on whether GDP or GTP is bound to the α subunit. When GDP is bound, the G protein exists as a heterotrimer: the $G\alpha\beta\gamma$ complex. When GTP is bound, the α subunit dissociates from the heterotrimer, leaving a $G\beta\gamma$ complex. When
25 a $G\alpha\beta\gamma$ complex operatively associates with an activated G protein-coupled receptor in a cell membrane, the rate of exchange of GTP for bound GDP is increased and the rate of dissociation of the bound $G\alpha$ subunit from the $G\alpha\beta\gamma$ complex increases. The free $G\alpha$ subunit and $G\beta\gamma$ complex are thus capable of transmitting a signal to downstream elements of a variety of signal transduction pathways. These events form
30 the basis for a multiplicity of different cell signaling phenomena, including for example the signaling phenomena that are identified as neurological sensory perceptions such as taste and/or smell.

Genes encoding the olfactory receptors are active primarily in olfactory neurons (Axel, *Sci. Amer.*, 273:154-59 (1995)). Individual olfactory receptor types are expressed in subsets of cells distributed in distinct zones of the olfactory epithelium (Breer, *Semin. Cell Biol.*, 5:25-32 (1994)). The human genome contains 5 approximately one thousand genes that encode a diverse repertoire of olfactory receptors (Rouquier, *Nat. Genet.*, 18:243-50 (1998); Trask, *Hum. Mol. Genet.*, 7:2007-20 (1998)). It has been demonstrated that members of the OR gene family are distributed on all but a few human chromosomes. Through fluorescence *in situ* hybridization analysis, Rouquier showed that OR sequences reside at more than 25 10 locations in the human genome. Rouquier also determined that the human genome has accumulated a striking number of dysfunctional OR copies: 72% of the analyzed sequences were found to be pseudogenes. An understanding of an animal's ability to detect and discriminate among the thousands of distinct odorants or tastants, and more particularly to distinguish, for example beneficial tastants or odorants from toxic 15 tastants or odorants, is complicated by the fact that chemosensory receptors belong to a multigene family with over a thousand members. For instance, there are up to 1,000 odorant receptors in mammals.

Moreover, each chemosensory receptor neuron may express only one or a few 20 of these receptors. With respect to odorant receptors, any given olfactory neuron can respond to a small set of odorant ligands. In addition, odorant discrimination for a given neuron may depend on the ligand specificity of the one or few receptors it expresses. To analyze odorant-receptor interactions and their effects on olfactory cells, specific ligands and the olfactory receptors to which they bind are identified. This analysis requires isolation and expression of olfactory polypeptides, followed by 25 binding assays.

Some studies suggest that OR genes can be expressed in tissues other than the olfactory epithelium, indicating potential alternative biological roles for this class of chemosensory receptors. Expression of various ORs has been reported in human and murine erythroid cells (Feingold 1999), developing rat heart (Drutel, *Receptor 30 Channels*, 3(1):33-40 (1995)), avian notochord (Nef, *PNAS*, 94(9):4766-71 (1997)) and lingual epithelium (Abe, *FES Lett.*, 316(3):253-56 (1993)). One experimentally documented case also established the existence of a large subset of mammalian ORs transcribed in testes and expressed on the surface of mature spermatozoa, thereby

suggesting a possible role of ORs in sperm chemotaxis (Parmentier, *Nature*, 355:453-55 (1992); Walensky, *Mol. Med.*, 1(2):130-41 (1998); Branscomb, *Genetics*, 156(2):785-97 (2000)). It was also hypothesized that olfactory receptors might provide molecular codes for highly specific cell-cell recognition functions in development and embryogenesis (Dreyer, *PNAS*, 95(11):9072-77 (1998)).

Complete or partial sequences of numerous human and other eukaryotic chemosensory receptors are currently known. See, e.g., Pilpel, Y. and Lancet, D., *Protein Science*, 8:969-77 (1999); Mombaerts, P., *Annu. Rev. Neurosci.*, 22:487-50 (1999); see also, EP0867508A2, US 5874243, WO 92/17585, WO 95/18140, WO 10 97/17444, WO 99/67282. Due to the complexity of ligand-receptor interactions, and more particularly odorant-receptor interactions, information about ligand-receptor recognition is lacking. In part, the present invention addresses the need for better understanding of these interactions. The present invention also provides, among other things, novel chemosensory receptors, and methods for utilizing such novel 15 chemosensory receptors and the genes and cDNAs encoding such receptors, especially for identifying compounds that can be used to modulate chemosensory transduction, such as olfaction.

Summary of the Invention

20 Toward that end, it is an object of the invention to provide a new family of G protein-coupled receptors comprising over two hundred fifty olfactory G protein-coupled receptors (OR) active in olfactory perception. It is another object of the invention to provide fragments and variants of such ORs which retain odorant-binding activity.

25 It is yet another object of the invention to provide nucleic acid sequences or molecules that encode such ORs, fragments, or allelic variants.

It is still another object of the invention to provide expression vectors which include nucleic acid sequences that encode such ORs, or fragments, or variants thereof, which are operably linked to at least one regulatory sequence such as a 30 promoter, enhancer, or other sequences involved in positive or negative gene transcription and/or translation.

It is still another object of the invention to provide human or non-human cells that functionally express at least one of such ORs, or fragments, or variants thereof.

It is still another object of the invention to provide OR fusion proteins or polypeptides which include at least a fragment of at least one of such ORs.

It is another object of the invention to provide an isolated nucleic acid molecule encoding an OR comprising a nucleic acid sequence that is at least 30%, 5 more preferably at least 50%, still more preferably at least 60-70%, and still more preferably 75%, preferably 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to a nucleic acid sequence selected from the group consisting of: SEQ. ID. NO. 2, SEQ. ID. NO. 4, SEQ. ID. NO. 6, SEQ. ID. NO. 8, SEQ. ID. NO. 10, SEQ. ID. NO. 12, SEQ. ID. NO. 14, SEQ. ID. NO. 16, SEQ. ID. NO. 18, SEQ. ID. NO. 20, SEQ. ID. 10 NO. 22, SEQ. ID. NO. 24, SEQ. ID. NO. 26, SEQ. ID. NO. 28, SEQ. ID. NO. 30, SEQ. ID. NO. 32, SEQ. ID. NO. 34, SEQ. ID. NO. 36, SEQ. ID. NO. 38, SEQ. ID. NO. 40, SEQ. ID. NO. 42, SEQ. ID. NO. 44, SEQ. ID. NO. 46, SEQ. ID. NO. 48, SEQ. ID. NO. 50, SEQ. ID. NO. 52, SEQ. ID. NO. 54, SEQ. ID. NO. 56, SEQ. ID. NO. 58, SEQ. ID. NO. 60, SEQ. ID. NO. 62, SEQ. ID. NO. 64, SEQ. ID. NO. 66, 15 SEQ. ID. NO. 68, SEQ. ID. NO. 70, SEQ. ID. NO. 72, SEQ. ID. NO. 74, SEQ. ID. NO. 76, SEQ. ID. NO. 78, SEQ. ID. NO. 80, SEQ. ID. NO. 82, SEQ. ID. NO. 84, SEQ. ID. NO. 86, SEQ. ID. NO. 88, SEQ. ID. NO. 90, SEQ. ID. NO. 92, SEQ. ID. NO. 94, SEQ. ID. NO. 96, SEQ. ID. NO. 98, SEQ. ID. NO. 100, SEQ. ID. NO. 102, SEQ. ID. NO. 104, SEQ. ID. NO. 106, SEQ. ID. NO. 108, SEQ. ID. NO. 110, SEQ. 20 ID. NO. 112, SEQ. ID. NO. 114, SEQ. ID. NO. 116, SEQ. ID. NO. 118, SEQ. ID. NO. 120, SEQ. ID. NO. 122, SEQ. ID. NO. 124, SEQ. ID. NO. 126, SEQ. ID. NO. 128, SEQ. ID. NO. 130, SEQ. ID. NO. 132, SEQ. ID. NO. 134, SEQ. ID. NO. 136, SEQ. ID. NO. 138, SEQ. ID. NO. 140, SEQ. ID. NO. 142, SEQ. ID. NO. 144, SEQ. ID. NO. 146, SEQ. ID. NO. 148, SEQ. ID. NO. 150, SEQ. ID. 25 NO. 152, SEQ. ID. NO. 154, SEQ. ID. NO. 156, SEQ. ID. NO. 158, SEQ. ID. NO. 160, SEQ. ID. NO. 162, SEQ. ID. NO. 164, SEQ. ID. NO. 166, SEQ. ID. NO. 168, SEQ. ID. NO. 170, SEQ. ID. NO. 172, SEQ. ID. NO. 174, SEQ. ID. NO. 176, SEQ. ID. NO. 178, SEQ. ID. NO. 180, SEQ. ID. NO. 182, SEQ. ID. NO. 184, SEQ. ID. NO. 186, SEQ. ID. NO. 188, SEQ. ID. NO. 190, SEQ. ID. 30 NO. 192, SEQ. ID. NO. 194, SEQ. ID. NO. 196, SEQ. ID. NO. 198, SEQ. ID. NO. 200, SEQ. ID. NO. 202, SEQ. ID. NO. 204, SEQ. ID. NO. 206, SEQ. ID. NO. 208, SEQ. ID. NO. 210, SEQ. ID. NO. 212, SEQ. ID. NO. 214, SEQ. ID. NO. 216, SEQ. ID. NO. 218, SEQ. ID. NO. 220, SEQ. ID. NO. 222, SEQ. ID.

NO. 224, SEQ. ID. NO. 226, SEQ. ID. NO. 228, SEQ. ID. NO. 230; SEQ. ID. NO. 232, SEQ. ID. NO. 234, SEQ. ID. NO. 236, SEQ. ID. NO. 238, SEQ. ID. NO. 240, SEQ. ID. NO. 242, SEQ. ID. NO. 244, SEQ. ID. NO. 246, SEQ. ID. NO. 248, SEQ. ID. NO. 250, SEQ. ID. NO. 252, SEQ. ID. NO. 254, SEQ. ID. NO. 256,
5 SEQ. ID. NO. 258, SEQ. ID. NO. 260, SEQ. ID. NO. 262, SEQ. ID. NO. 264, SEQ. ID. NO. 266, SEQ. ID. NO. 268, SEQ. ID. NO. 270, SEQ. ID. NO. 272, SEQ. ID. NO. 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300,
10 SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID
15 NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370 ,SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO: 390,
20 SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID
25 NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID NO: 480,
30 SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512.

It is a further object of the invention to provide an isolated nucleic acid molecule comprising a nucleic acid sequence that encodes a polypeptide having an amino acid sequence which is at least 40%, more preferably at least 50%, still more preferably at least 60-70%, and still more preferably 75%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence selected from the group consisting of: SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 13, SEQ. ID. NO. 15, SEQ. ID. NO. 17, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37, SEQ. ID. NO. 39, SEQ. ID. NO. 41, SEQ. ID. NO. 43, SEQ. ID. NO. 45, SEQ. ID. NO. 47, SEQ. ID. NO. 49, SEQ. ID. NO. 51, SEQ. ID. NO. 53, SEQ. ID. NO. 55, SEQ. ID. NO. 57, SEQ. ID. NO. 59, SEQ. ID. NO. 61, SEQ. ID. NO. 63, SEQ. ID. NO. 65, SEQ. ID. NO. 67, SEQ. ID. NO. 69, SEQ. ID. NO. 71, SEQ. ID. NO. 73, SEQ. ID. NO. 75, SEQ. ID. NO. 77, SEQ. ID. NO. 79, SEQ. ID. NO. 81, SEQ. ID. NO. 83, SEQ. ID. NO. 85, SEQ. ID. NO. 87, SEQ. ID. NO. 89, SEQ. ID. NO. 91, SEQ. ID. NO. 93, SEQ. ID. NO. 95, SEQ. ID. NO. 97, SEQ. ID. NO. 99, SEQ. ID. NO. 101, SEQ. ID. NO. 103, SEQ. ID. NO. 105, SEQ. ID. NO. 107, SEQ. ID. NO. 109, SEQ. ID. NO. 111, SEQ. ID. NO. 113, SEQ. ID. NO. 115, SEQ. ID. NO. 117, SEQ. ID. NO. 119, SEQ. ID. NO. 121, SEQ. ID. NO. 123, SEQ. ID. NO. 125, SEQ. ID. NO. 127, SEQ. ID. NO. 129, SEQ. ID. NO. 131, SEQ. ID. NO. 133, SEQ. ID. NO. 135, SEQ. ID. NO. 137, SEQ. ID. NO. 139, SEQ. ID. NO. 141, SEQ. ID. NO. 143, SEQ. ID. NO. 145, SEQ. ID. NO. 147, SEQ. ID. NO. 149, SEQ. ID. NO. 151, SEQ. ID. NO. 153, SEQ. ID. NO. 155, SEQ. ID. NO. 157, SEQ. ID. NO. 159, SEQ. ID. NO. 161, SEQ. ID. NO. 163, SEQ. ID. NO. 165, SEQ. ID. NO. 167, SEQ. ID. NO. 169, SEQ. ID. NO. 171, SEQ. ID. NO. 173, SEQ. ID. NO. 175, SEQ. ID. NO. 177, SEQ. ID. NO. 179, SEQ. ID. NO. 181, SEQ. ID. NO. 183, SEQ. ID. NO. 185, SEQ. ID. NO. 187, SEQ. ID. NO. 189, SEQ. ID. NO. 191, SEQ. ID. NO. 193, SEQ. ID. NO. 195, SEQ. ID. NO. 197, SEQ. ID. NO. 199, SEQ. ID. NO. 201, SEQ. ID. NO. 203, SEQ. ID. NO. 205, SEQ. ID. NO. 207, SEQ. ID. NO. 209, SEQ. ID. NO. 211, SEQ. ID. NO. 213, SEQ. ID. NO. 215, SEQ. ID. NO. 217, SEQ. ID. NO. 219, SEQ. ID. NO. 221, SEQ. ID. NO. 223, SEQ. ID. NO. 225, SEQ. ID. NO. 227, SEQ. ID. NO. 229, SEQ. ID. NO. 231, SEQ. ID. NO. 233, SEQ. ID.

NO. 235, SEQ. ID. NO. 237, SEQ. ID. NO. 239, SEQ. ID. NO. 241, SEQ. ID. NO. 243, SEQ. ID. NO. 245, SEQ. ID. NO. 247, SEQ. ID. NO. 249, SEQ. ID. NO. 251, SEQ. ID. NO. 253, SEQ. ID. NO. 255, SEQ. ID. NO. 257, SEQ. ID. NO. 259, SEQ. ID. NO. 261, SEQ. ID. NO. 263, SEQ. ID. NO. 265, SEQ. ID. NO. 267, SEQ. ID. 5 NO. 269, SEQ. ID. NO. 271, SEQ. ID. NO. 273, SEQ. ID. NO. 275, SEQ. ID. NO. 277, SEQ. ID. NO. 279, SEQ. ID. NO. 281, SEQ. ID. NO. 283, SEQ. ID. NO. 285, SEQ. ID. NO. 287, SEQ. ID. NO. 289, SEQ. ID. NO. 291, SEQ. ID. NO. 293, SEQ. ID. NO. 295, SEQ. ID. NO. 297, SEQ. ID. NO. 299, SEQ. ID. NO. 301, SEQ. ID. NO. 10 NO. 303, SEQ. ID. NO. 305, SEQ. ID. NO. 307, SEQ. ID. NO. 309, SEQ. ID. NO. 311, SEQ. ID. NO. 313, SEQ. ID. NO. 315, SEQ. ID. NO. 317, SEQ. ID. NO. 319, SEQ. ID. NO. 321, SEQ. ID. NO. 323, SEQ. ID. NO. 325, SEQ. ID. NO. 327, SEQ. ID. NO. 329, SEQ. ID. NO. 331, SEQ. ID. NO. 333, SEQ. ID. NO. 335, SEQ. ID. NO. 337, SEQ. ID. NO. 339, SEQ. ID. NO. 341, SEQ. ID. NO. 343, SEQ. ID. NO. 345, SEQ. ID. NO. 347, SEQ. ID. NO. 349, SEQ. ID. NO. 351, SEQ. ID. NO. 353, 15 SEQ. ID. NO. 355, SEQ. ID. NO. 357, SEQ. ID. NO. 359, SEQ. ID. NO. 361, SEQ. ID. NO. 363, SEQ. ID. NO. 365, SEQ. ID. NO. 367, SEQ. ID. NO. 369, SEQ. ID. NO. 371, SEQ. ID. NO. 373, SEQ. ID. NO. 375, SEQ. ID. NO. 377, SEQ. ID. NO. 379, SEQ. ID. NO. 381, SEQ. ID. NO. 383, SEQ. ID. NO. 385, SEQ. ID. NO. 387, SEQ. ID. NO. 389, SEQ. ID. NO. 391, SEQ. ID. NO. 393, SEQ. ID. NO. 395, SEQ. ID. 20 NO. 397, SEQ. ID. NO. 399, SEQ. ID. NO. 401, SEQ. ID. NO. 403, SEQ. ID. NO. 405, SEQ. ID. NO. 407, SEQ. ID. NO. 409, SEQ. ID. NO. 411, SEQ. ID. NO. 413, SEQ. ID. NO. 415, SEQ. ID. NO. 417, SEQ. ID. NO. 419, SEQ. ID. NO. 421, SEQ. ID. NO. 423, SEQ. ID. NO. 425, SEQ. ID. NO. 427, SEQ. ID. NO. 429, SEQ. ID. NO. 431, SEQ. ID. NO. 433, SEQ. ID. NO. 435, SEQ. ID. NO. 437, SEQ. ID. NO. 25 439, SEQ. ID. NO. 441, SEQ. ID. NO. 443, SEQ. ID. NO. 445, SEQ. ID. NO. 447, SEQ. ID. NO. 449, SEQ. ID. NO. 451, SEQ. ID. NO. 453, SEQ. ID. NO. 455, SEQ. ID. NO. 457, SEQ. ID. NO. 459, SEQ. ID. NO. 461, SEQ. ID. NO. 463, SEQ. ID. NO. 465, SEQ. ID. NO. 467, SEQ. ID. NO. 469, SEQ. ID. NO. 471, SEQ. ID. NO. 473, SEQ. ID. NO. 475, SEQ. ID. NO. 477, SEQ. ID. NO. 479, SEQ. ID. NO. 481, 30 SEQ. ID. NO. 483, SEQ. ID. NO. 485, SEQ. ID. NO. 487, SEQ. ID. NO. 489, SEQ. ID. NO. 491, SEQ. ID. NO. 493, SEQ. ID. NO. 495, SEQ. ID. NO. 497, SEQ. ID. NO. 499, SEQ. ID. NO. 501, SEQ. ID. NO. 503, SEQ. ID. NO. 505, SEQ. ID. NO. 507, SEQ. ID. NO. 509 and SEQ. ID. NO. 511.

It is still a further object of the invention to provide an isolated nucleic acid molecule comprising a nucleic acid sequence that encodes a fragment of a polypeptide having an amino acid sequence selected from the group consisting of: SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 13, SEQ. ID. NO. 15, SEQ. ID. NO. 17, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37, SEQ. ID. NO. 39, SEQ. ID. NO. 41, SEQ. ID. NO. 43, SEQ. ID. NO. 45, SEQ. ID. NO. 47, SEQ. ID. NO. 49, SEQ. ID. NO. 51, SEQ. ID. NO. 53, SEQ. ID. NO. 55, SEQ. ID. NO. 57, SEQ. ID. NO. 59, SEQ. ID. NO. 61, SEQ. ID. NO. 63, SEQ. ID. NO. 65, SEQ. ID. NO. 67, SEQ. ID. NO. 69, SEQ. ID. NO. 71, SEQ. ID. NO. 73, SEQ. ID. NO. 75, SEQ. ID. NO. 77, SEQ. ID. NO. 79, SEQ. ID. NO. 81, SEQ. ID. NO. 83, SEQ. ID. NO. 85, SEQ. ID. NO. 87, SEQ. ID. NO. 89, SEQ. ID. NO. 91, SEQ. ID. NO. 93, SEQ. ID. NO. 95, SEQ. ID. NO. 97, SEQ. ID. NO. 99, SEQ. ID. NO. 101, SEQ. ID. NO. 103, SEQ. ID. NO. 105, SEQ. ID. NO. 107, SEQ. ID. NO. 109, SEQ. ID. NO. 111, SEQ. ID. NO. 113, SEQ. ID. NO. 115, SEQ. ID. NO. 117, SEQ. ID. NO. 119, SEQ. ID. NO. 121, SEQ. ID. NO. 123, SEQ. ID. NO. 125, SEQ. ID. NO. 127, SEQ. ID. NO. 129, SEQ. ID. NO. 131, SEQ. ID. NO. 133, SEQ. ID. NO. 135, SEQ. ID. NO. 137, SEQ. ID. NO. 139, SEQ. ID. NO. 141, SEQ. ID. NO. 143, SEQ. ID. NO. 145, SEQ. ID. NO. 147, SEQ. ID. NO. 149, SEQ. ID. NO. 151, SEQ. ID. NO. 153, SEQ. ID. NO. 155, SEQ. ID. NO. 157, SEQ. ID. NO. 159, SEQ. ID. NO. 161, SEQ. ID. NO. 163, SEQ. ID. NO. 165, SEQ. ID. NO. 167, SEQ. ID. NO. 169, SEQ. ID. NO. 171, SEQ. ID. NO. 173, SEQ. ID. NO. 175, SEQ. ID. NO. 177, SEQ. ID. NO. 179, SEQ. ID. NO. 181, SEQ. ID. NO. 183, SEQ. ID. NO. 185, SEQ. ID. NO. 187, SEQ. ID. NO. 189, SEQ. ID. NO. 191, SEQ. ID. NO. 193, SEQ. ID. NO. 195, SEQ. ID. NO. 197, SEQ. ID. NO. 199, SEQ. ID. NO. 201, SEQ. ID. NO. 203, SEQ. ID. NO. 205, SEQ. ID. NO. 207, SEQ. ID. NO. 209, SEQ. ID. NO. 211, SEQ. ID. NO. 213, SEQ. ID. NO. 215, SEQ. ID. NO. 217, SEQ. ID. NO. 219, SEQ. ID. NO. 221, SEQ. ID. NO. 223, SEQ. ID. NO. 225, SEQ. ID. NO. 227, SEQ. ID. NO. 229, SEQ. ID. NO. 231, SEQ. ID. NO. 233, SEQ. ID. NO. 235, SEQ. ID. NO. 237, SEQ. ID. NO. 239, SEQ. ID. NO. 241, SEQ. ID. NO. 243, SEQ. ID. NO. 245, SEQ. ID. NO. 247, SEQ. ID. NO. 249, SEQ. ID. NO. 251, SEQ. ID. NO. 253,

SEQ. ID. NO. 255, SEQ. ID. NO. 257, SEQ. ID. NO. 259, SEQ. ID. NO. 261, SEQ. ID. NO., 263, SEQ. ID. NO., 265, SEQ. ID. NO. 267, SEQ. ID. NO. 269, SEQ. ID. NO. 271, SEQ. ID. NO. 273, SEQ. ID. NO. 275, SEQ. ID. NO. 277, SEQ. ID. NO. 279, SEQ. ID. NO. 281, SEQ. ID. NO. 283, SEQ. ID. NO. 285, SEQ. ID. NO. 287,
5 SEQ. ID. NO. 289, SEQ. ID. NO. 291, SEQ. ID. NO. 293, SEQ. ID. NO. 295, SEQ. ID. NO. 297, SEQ. ID. NO. 299, SEQ. ID. NO. 301, SEQ. ID. NO. 303, SEQ. ID. NO. 305, SEQ. ID. NO. 307, SEQ. ID. NO. 309, SEQ. ID. NO. 311, SEQ. ID. NO. 313, SEQ. ID. NO. 315, SEQ. ID. NO. 317, SEQ. ID. NO. 319, SEQ. ID. NO. 321, SEQ. ID. NO. 323, SEQ. ID. NO. 325, SEQ. ID. NO. 327, SEQ. ID. NO. 329, SEQ.
10 ID. NO. 331, SEQ. ID. NO. 333, SEQ. ID. NO. 335, SEQ. ID. NO. 337, SEQ. ID. NO. 339, SEQ. ID. NO. 341, SEQ. ID. NO. 343, SEQ. ID. NO. 345, SEQ. ID. NO. 347, SEQ. ID. NO. 349, SEQ. ID. NO. 351, SEQ. ID. NO. 353, SEQ. ID. NO. 355, SEQ. ID. NO. 357, SEQ. ID. NO. 359, SEQ. ID. NO. 361, SEQ. ID. NO. 363, SEQ. ID. NO. 365, SEQ. ID. NO. 367, SEQ. ID. NO. 369, SEQ. ID. NO. 371, SEQ. ID. NO.
15 373, SEQ. ID. NO. 375, SEQ. ID. NO. 377, SEQ. ID. NO. 379, SEQ. ID. NO. 381, SEQ. ID. NO. 383, SEQ. ID. NO. 385, SEQ. ID. NO. 387, SEQ. ID. NO. 389, SEQ. ID. NO. 391, SEQ. ID. NO. 393, SEQ. ID. NO. 395, SEQ. ID. NO. 397, SEQ. ID. NO. 399, SEQ. ID. NO. 401, SEQ. ID. NO. 403, SEQ. ID. NO. 405, SEQ. ID. NO. 407, SEQ. ID. NO. 409, SEQ. ID. NO. 411, SEQ. ID. NO. 413, SEQ. ID. NO. 415,
20 SEQ. ID. NO. 417, SEQ. ID. NO. 419, SEQ. ID. NO. 421, SEQ. ID. NO. 423, SEQ. ID. NO. 425, SEQ. ID. NO. 427, SEQ. ID. NO. 429, SEQ. ID. NO. 431, SEQ. ID. NO. 433, SEQ. ID. NO. 435, SEQ. ID. NO. 437, SEQ. ID. NO. 439, SEQ. ID. NO. 441, SEQ. ID. NO. 443, SEQ. ID. NO. 445, SEQ. ID. NO. 447, SEQ. ID. NO. 449, SEQ. ID. NO. 451, SEQ. ID. NO. 453, SEQ. ID. NO. 455, SEQ. ID. NO. 457, SEQ.
25 ID. NO. 459, SEQ. ID. NO. 461, SEQ. ID. NO. 463, SEQ. ID. NO. 465, SEQ. ID. NO. 467, SEQ. ID. NO. 469, SEQ. ID. NO. 471, SEQ. ID. NO. 473, SEQ. ID. NO. 475, SEQ. ID. NO. 477, SEQ. ID. NO. 479, SEQ. ID. NO. 481, SEQ. ID. NO. 483, SEQ. ID. NO. 485, SEQ. ID. NO. 487, SEQ. ID. NO. 489, SEQ. ID. NO. 491, SEQ. ID. NO. 493, SEQ. ID. NO. 495, SEQ. ID. NO. 497, SEQ. ID. NO. 499, SEQ. ID. NO.
30 501, SEQ. ID. NO. 503, SEQ. ID. NO. 505, SEQ. ID. NO. 507, SEQ. ID. NO. 509 and SEQ. ID. NO. 511, wherein the fragment is at least 10, preferably 20, 30, 50, 70, 100, or 150 amino acids in length.

It is still a further object of the invention to provide an isolated nucleic acid molecule comprising a nucleic acid sequence that encodes a variant of said fragment, wherein there is a variation in at most 10, preferably 5, 4, 3, 2, or 1 amino acid residues.

5 It is still another object of the invention to provide an isolated polypeptide comprising an amino acid sequence that is at least 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence selected from the group consisting of: SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 13, SEQ. ID. NO. 15, SEQ.
10 ID. NO. 17, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37, SEQ. ID. NO. 39, SEQ. ID. NO. 41, SEQ. ID. NO. 43, SEQ. ID. NO. 45, SEQ. ID. NO. 47, SEQ. ID. NO. 49, SEQ. ID. NO. 51, SEQ. ID. NO. 53, SEQ. ID. NO. 55, SEQ. ID. NO. 57, SEQ. ID. NO. 59, SEQ. ID. NO. 61,
15 SEQ. ID. NO. 63, SEQ. ID. NO. 65, SEQ. ID. NO. 67, SEQ. ID. NO. 69, SEQ. ID. NO. 71, SEQ. ID. NO. 73, SEQ. ID. NO. 75, SEQ. ID. NO. 77, SEQ. ID. NO. 79, SEQ. ID. NO. 81, SEQ. ID. NO. 83, SEQ. ID. NO. 85, SEQ. ID. NO. 87, SEQ. ID. NO. 89, SEQ. ID. NO. 91, SEQ. ID. NO. 93, SEQ. ID. NO. 95, SEQ. ID. NO. 97, SEQ. ID. NO. 99, SEQ. ID. NO. 101, SEQ. ID. NO. 103, SEQ. ID. NO. 105, SEQ. ID.
20 NO. 107, SEQ. ID. NO. 109, SEQ. ID. NO. 111, SEQ. ID. NO. 113, SEQ. ID. NO. 115, SEQ. ID. NO. 117, SEQ. ID. NO. 119, SEQ. ID. NO. 121, SEQ. ID. NO. 123, SEQ. ID. NO. 125, SEQ. ID. NO. 127, SEQ. ID. NO. 129, SEQ. ID. NO. 131, SEQ. ID. NO. 133, SEQ. ID. NO. 135, SEQ. ID. NO. 137, SEQ. ID. NO. 139, SEQ. ID. NO. 141, SEQ. ID. NO. 143, SEQ. ID. NO. 145, SEQ. ID.
25 NO. 147, SEQ. ID. NO. 149, SEQ. ID. NO. 151, SEQ. ID. NO. 153, SEQ. ID. NO. 155, SEQ. ID. NO. 157, SEQ. ID. NO. 159, SEQ. ID. NO. 161, SEQ. ID. NO. 163, SEQ. ID. NO. 165, SEQ. ID. NO. 167, SEQ. ID. NO. 169, SEQ. ID. NO. 171, SEQ. ID. NO. 173, SEQ. ID. NO. 175, SEQ. ID. NO. 177, SEQ. ID. NO. 179, SEQ. ID. NO. 181, SEQ. ID. NO. 183, SEQ. ID. NO. 185, SEQ. ID.
30 NO. 187, SEQ. ID. NO. 189, SEQ. ID. NO. 191, SEQ. ID. NO. 193, SEQ. ID. NO. 195, SEQ. ID. NO. 197, SEQ. ID. NO. 199, SEQ. ID. NO. 201, SEQ. ID. NO. 203, SEQ. ID. NO. 205, SEQ. ID. NO. 207, SEQ. ID. NO. 209, SEQ. ID. NO. 211, SEQ. ID. NO. 213, SEQ. ID. NO. 215, SEQ. ID. NO. 217, SEQ. ID.

NO. 219, SEQ. ID. NO. 221, SEQ. ID. NO. 223, SEQ. ID. NO. 225, SEQ. ID. NO. 227, SEQ. ID. NO. 229, SEQ. ID. NO. 231, SEQ. ID. NO. 233, SEQ. ID. NO. 235, SEQ. ID. NO. 237, SEQ. ID. NO. 239, SEQ. ID. NO. 241, SEQ. ID. NO. 243, SEQ. ID. NO. 245, SEQ. ID. NO. 247, SEQ. ID. NO. 249, SEQ. ID. NO. 251,
5 SEQ. ID. NO. 253, SEQ. ID. NO. 255, SEQ. ID. NO. 257, SEQ. ID. NO. 259, SEQ. ID. NO. 261, SEQ. ID. NO., 263, SEQ. ID. NO., 265, SEQ. ID. NO. 267, SEQ. ID. NO. 269, SEQ. ID. NO. 271, SEQ. ID. NO. 273, SEQ. ID. NO. 275, SEQ. ID. NO. 277, SEQ. ID. NO. 279, SEQ. ID. NO. 281, SEQ. ID. NO. 283, SEQ. ID. NO. 285, SEQ. ID. NO. 287, SEQ. ID. NO. 289, SEQ. ID. NO. 291, SEQ. ID. NO. 293, SEQ.
10 ID. NO. 295, SEQ. ID. NO. 297, SEQ. ID. NO. 299, SEQ. ID. NO. 301, SEQ. ID. NO. 303, SEQ. ID. NO. 305, SEQ. ID. NO. 307, SEQ. ID. NO. 309, SEQ. ID. NO. 311, SEQ. ID. NO. 313, SEQ. ID. NO. 315, SEQ. ID. NO. 317, SEQ. ID. NO. 319, SEQ. ID. NO. 321, SEQ. ID. NO. 323, SEQ. ID. NO. 325, SEQ. ID. NO. 327, SEQ. ID. NO. 329, SEQ. ID. NO. 331, SEQ. ID. NO. 333, SEQ. ID. NO. 335, SEQ. ID. NO. 337, SEQ. ID. NO. 339, SEQ. ID. NO. 341, SEQ. ID. NO. 343, SEQ. ID. NO. 345, SEQ. ID. NO. 347, SEQ. ID. NO. 349, SEQ. ID. NO. 351, SEQ. ID. NO. 353, SEQ. ID. NO. 355, SEQ. ID. NO. 357, SEQ. ID. NO. 359, SEQ. ID. NO. 361, SEQ. ID. NO. 363, SEQ. ID. NO. 365, SEQ. ID. NO. 367, SEQ. ID. NO. 369, SEQ ID NO:
15 371, SEQ. ID. NO. 373, SEQ. ID. NO. 375, SEQ. ID. NO. 377, SEQ. ID. NO. 379, SEQ. ID. NO. 381, SEQ. ID. NO. 383, SEQ. ID. NO. 385, SEQ. ID. NO. 387, SEQ. ID. NO. 389, SEQ. ID. NO. 391, SEQ. ID. NO. 393, SEQ. ID. NO. 395, SEQ. ID. NO. 397, SEQ. ID. NO. 399, SEQ. ID. NO. 401, SEQ. ID. NO. 403, SEQ. ID. NO. 405, SEQ. ID. NO. 407, SEQ. ID. NO. 409, SEQ. ID. NO. 411, SEQ. ID. NO. 413, SEQ. ID. NO. 415, SEQ. ID. NO. 417, SEQ. ID. NO. 419, SEQ. ID. NO. 421, SEQ.
20 ID. NO. 423, SEQ. ID. NO. 425, SEQ. ID. NO. 427, SEQ. ID. NO. 429, SEQ. ID. NO. 431, SEQ. ID. NO. 433, SEQ. ID. NO. 435, SEQ. ID. NO. 437, SEQ. ID. NO. 439, SEQ. ID. NO. 441, SEQ. ID. NO. 443, SEQ. ID. NO. 445, SEQ. ID. NO. 447, SEQ. ID. NO. 449, SEQ. ID. NO. 451, SEQ. ID. NO. 453, SEQ. ID. NO. 455, SEQ. ID. NO. 457, SEQ. ID. NO. 459, SEQ. ID. NO. 461, SEQ. ID. NO. 463, SEQ. ID.
25 30 NO. 465, SEQ. ID. NO. 467, SEQ. ID. NO. 469, SEQ. ID. NO. 471, SEQ. ID. NO. 473, SEQ. ID. NO. 475, SEQ. ID. NO. 477, SEQ. ID. NO. 479, SEQ. ID. NO. 481, SEQ. ID. NO. 483, SEQ. ID. NO. 485, SEQ. ID. NO. 487, SEQ. ID. NO. 489, SEQ. ID. NO. 491, SEQ. ID. NO. 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO:

499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511.

It is still a further object of the invention to provide an isolated polypeptide comprising a fragment of a polypeptide having an amino acid sequence selected from the group consisting of: SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 13, SEQ. ID. NO. 15, SEQ. ID. NO. 17, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37, SEQ. ID. NO. 39, SEQ. ID. NO. 41, SEQ. ID. NO. 43, SEQ. ID. NO. 45, SEQ. ID. NO. 47, SEQ. ID. NO. 49, SEQ. ID. NO. 51, SEQ. ID. NO. 53, SEQ. ID. NO. 55, SEQ. ID. NO. 57, SEQ. ID. NO. 59, SEQ. ID. NO. 61, SEQ. ID. NO. 63, SEQ. ID. NO. 65, SEQ. ID. NO. 67, SEQ. ID. NO. 69, SEQ. ID. NO. 71, SEQ. ID. NO. 73, SEQ. ID. NO. 75, SEQ. ID. NO. 77, SEQ. ID. NO. 79, SEQ. ID. NO. 81, SEQ. ID. NO. 83, SEQ. ID. NO. 85, SEQ. ID. NO. 87, SEQ. ID. NO. 89, SEQ. ID. NO. 91, SEQ. ID. NO. 93, SEQ. ID. NO. 95, SEQ. ID. NO. 97, SEQ. ID. NO. 99, SEQ. ID. NO. 101, SEQ. ID. NO. 103, SEQ. ID. NO. 105, SEQ. ID. NO. 107, SEQ. ID. NO. 109, SEQ. ID. NO. 111, SEQ. ID. NO. 113, SEQ. ID. NO. 115, SEQ. ID. NO. 117, SEQ. ID. NO. 119, SEQ. ID. NO. 121, SEQ. ID. NO. 123, SEQ. ID. NO. 125, SEQ. ID. NO. 127, SEQ. ID. NO. 129, SEQ. ID. NO. 131, SEQ. ID. NO. 133, SEQ. ID. NO. 135, SEQ. ID. NO. 137, SEQ. ID. NO. 139, SEQ. ID. NO. 141, SEQ. ID. NO. 143, SEQ. ID. NO. 145, SEQ. ID. NO. 147, SEQ. ID. NO. 149, SEQ. ID. NO. 151, SEQ. ID. NO. 153, SEQ. ID. NO. 155, SEQ. ID. NO. 157, SEQ. ID. NO. 159, SEQ. ID. NO. 161, SEQ. ID. NO. 163, SEQ. ID. NO. 165, SEQ. ID. NO. 167, SEQ. ID. NO. 169, SEQ. ID. NO. 171, SEQ. ID. NO. 173, SEQ. ID. NO. 175, SEQ. ID. NO. 177, SEQ. ID. NO. 179, SEQ. ID. NO. 181, SEQ. ID. NO. 183, SEQ. ID. NO. 185, SEQ. ID. NO. 187, SEQ. ID. NO. 189, SEQ. ID. NO. 191, SEQ. ID. NO. 193, SEQ. ID. NO. 195, SEQ. ID. NO. 197, SEQ. ID. NO. 199, SEQ. ID. NO. 201, SEQ. ID. NO. 203, SEQ. ID. NO. 205, SEQ. ID. NO. 207, SEQ. ID. NO. 209, SEQ. ID. NO. 211, SEQ. ID. NO. 213, SEQ. ID. NO. 215, SEQ. ID. NO. 217, SEQ. ID. NO. 219, SEQ. ID. NO. 221, SEQ. ID. NO. 223, SEQ. ID. NO. 225, SEQ. ID. NO. 227, SEQ. ID. NO. 229, SEQ. ID. NO. 231, SEQ. ID. NO. 233, SEQ. ID. NO. 235, SEQ. ID. NO. 237, SEQ. ID. NO. 239, SEQ. ID. NO. 241, SEQ. ID. NO.

243, SEQ. ID. NO. 245, SEQ. ID. NO. 247, SEQ. ID. NO. 249, SEQ. ID. NO. 251,
SEQ. ID. NO. 253, SEQ. ID. NO. 255, SEQ. ID. NO. 257, SEQ. ID. NO. 259, SEQ.
ID. NO. 261, SEQ. ID. NO., 263, SEQ. ID. NO., 265, SEQ. ID. NO. 267, SEQ. ID.
NO. 269, SEQ. ID. NO. 271, SEQ. ID. NO. 273, SEQ. ID. NO. 275, SEQ. ID. NO.
5 277, SEQ. ID. NO. 279, SEQ. ID. NO. 281, SEQ. ID. NO. 283, SEQ. ID. NO. 285,
SEQ. ID. NO. 287, SEQ. ID. NO. 289, SEQ. ID. NO. 291, SEQ. ID. NO. 293, SEQ.
ID. NO. 295, SEQ. ID. NO. 297, SEQ. ID. NO. 299, SEQ. ID. NO. 301, SEQ. ID.
NO. 303, SEQ. ID. NO. 305, SEQ. ID. NO. 307, SEQ. ID. NO. 309, SEQ. ID. NO.
311, SEQ. ID. NO. 313, SEQ. ID. NO. 315, SEQ. ID. NO. 317, SEQ. ID. NO. 319,
10 SEQ. ID. NO. 321, SEQ. ID. NO. 323, SEQ. ID. NO. 325, SEQ. ID. NO. 327, SEQ.
ID. NO. 329, SEQ. ID. NO. 331, SEQ. ID. NO. 333, SEQ. ID. NO. 335, SEQ. ID.
NO. 337, SEQ. ID. NO. 339, SEQ. ID. NO. 341, SEQ. ID. NO. 343, SEQ. ID. NO.
345, SEQ. ID. NO. 347, SEQ. ID. NO. 349, SEQ. ID. NO. 351, SEQ. ID. NO. 353,
SEQ. ID. NO. 355, SEQ. ID. NO. 357, SEQ. ID. NO. 359, SEQ. ID. NO. 361, SEQ.
15 ID. NO. 363, SEQ. ID. NO. 365, SEQ. ID. NO. 367, SEQ. ID. NO. 369, SEQ ID NO:
371, SEQ. ID. NO. 373, SEQ. ID. NO. 375, SEQ. ID. NO. 377, SEQ. ID. NO. 379,
SEQ. ID. NO. 381, SEQ. ID. NO. 383, SEQ. ID. NO. 385, SEQ. ID. NO. 387, SEQ.
ID. NO. 389, SEQ. ID. NO. 391, SEQ. ID. NO. 393, SEQ. ID. NO. 395, SEQ. ID.
NO. 397, SEQ. ID. NO. 399, SEQ. ID. NO. 401, SEQ. ID. NO. 403, SEQ. ID. NO.
20 405, SEQ. ID. NO. 407, SEQ. ID. NO. 409, SEQ. ID. NO. 411, SEQ. ID. NO. 413,
SEQ. ID. NO. 415, SEQ. ID. NO. 417, SEQ. ID. NO. 419, SEQ. ID. NO. 421, SEQ.
ID. NO. 423, SEQ. ID. NO. 425, SEQ. ID. NO. 427, SEQ. ID. NO. 429, SEQ. ID.
NO. 431, SEQ. ID. NO. 433, SEQ. ID. NO. 435, SEQ. ID. NO. 437, SEQ. ID. NO.
439, SEQ. ID. NO. 441, SEQ. ID. NO. 443, SEQ. ID. NO. 445, SEQ. ID. NO. 447,
25 SEQ. ID. NO. 449, SEQ. ID. NO. 451, SEQ. ID. NO. 453, SEQ. ID. NO. 455, SEQ.
ID. NO. 457, SEQ. ID. NO. 459, SEQ. ID. NO. 461, SEQ. ID. NO. 463, SEQ. ID.
NO. 465, SEQ. ID. NO. 467, SEQ. ID. NO. 469, SEQ. ID. NO. 471, SEQ. ID. NO.
473, SEQ. ID. NO. 475, SEQ. ID. NO. 477, SEQ. ID. NO. 479, SEQ. ID. NO. 481,
SEQ. ID. NO. 483, SEQ. ID. NO. 485, SEQ. ID. NO. 487, SEQ. ID. NO. 489, SEQ.
30 ID. NO. 491, SEQ. ID. NO. 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO:
499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ
ID NO: 509 and SEQ ID NO: 511, wherein the fragment is at least 40, preferably 60,
80, 100, 150, 200, or 250 amino acids in length.

It is still a further object of the invention to provide an isolated polypeptide comprising a variant of said fragment, especially naturally occurring allelic variants, the expression of which may be significant in the manner by which different persons in the human population perceive odors differently, both on a qualitative and 5 quantitative level, wherein there is a variation in at most 10, preferably 5, 4, 3, 2, or 1 amino acid residues.

It is still another object of the invention to provide agonists, including inverse agonists, or antagonists of such ORs, or fragments or variants thereof.

It is yet another object of the invention to provide methods for representing the 10 perception of odor and/or for predicting the perception of odor in a mammal, including in a human. Preferably, such methods may be performed by using the ORs, or fragments or variants thereof, and genes encoding such ORs, or fragments or variants thereof, disclosed herein.

It is yet another object of the invention to provide novel molecules or combinations of 15 molecules which elicit a predetermined olfactory perception in a mammal. Such molecules or compositions can be generated by determining a value of olfactory perception in a mammal for a known molecule or combinations of molecules; determining a value of olfactory perception in a mammal for one or more unknown molecules or combinations of molecules; comparing the value of olfactory perception 20 in a mammal for one or more unknown compositions to the value of olfactory perception in a mammal for one or more known compositions; selecting a molecule or combination of molecules that elicits a predetermined olfactory perception in a mammal; and combining two or more unknown molecules or combinations of molecules to form a molecule or combination of molecules that elicits a 25 predetermined olfactory perception in a mammal. The combining step yields a single molecule or a combination of molecules that elicits a predetermined olfactory perception in a mammal.

It is still a further object of the invention to provide a method of screening one or more compounds for the presence of an odor detectable by a mammal, comprising: 30 a step of contacting said one or more compounds with the disclosed ORs, fragments or variants thereof, preferably wherein the mammal is a human.

It is another object of the invention to provided a method for simulating a fragrance, comprising: for each of a plurality of ORs, or fragments of variants thereof

disclosed herein, preferably human ORs, ascertaining the extent to which the OR interacts with the fragrance; and combining a plurality of compounds, each having a previously ascertained interaction with one or more of the ORs, in amounts that together provide a receptor-stimulation profile that mimics the profile for the
5 fragrance. Interaction of a fragrance with an OR can be determined using any of the binding or reporter assays described herein. The plurality of compounds may then be combined to form a mixture. If desired, one or more of the plurality of the compounds can be combined covalently. The combined compounds substantially stimulate at least 50%, 60%, 70%, 75%, 80% or 90% or all of the receptors that are
10 substantially stimulated by the fragrance.

In yet another aspect of the invention, a method is provided wherein a plurality of standard compounds are tested against a plurality of ORs, or fragments or variants thereof, to ascertain the extent to which the ORs each interact with each standard compound, thereby generating a receptor stimulation profile for each standard compound.
15 These receptor stimulation profiles may then be stored in a relational database on a data storage medium. The method may further comprise providing a desired receptor-stimulation profile for a scent; comparing the desired receptor stimulation profile to the relational database; and ascertaining one or more combinations of standard compounds that most closely match the desired receptor-stimulation profile.
20 The method may further comprise combining standard compounds in one or more of the ascertained combinations to simulate the scent.

It is a further object of the invention to provide a method for representing olfactory perception of a particular smell in a mammal, comprising: providing values X_1 to X_n representative of the quantitative stimulation of each of n ORs of said
25 vertebrate, where n is greater than or equal to 4, n is greater than or equal to 12; n is greater than or equal to 24, n is greater than or equal to 48; n is greater than or equal to 72; n is greater than or equal to 96; n is greater than or equal to 120; n is greater than or equal to 144; n is greater than or equal to 168; n is greater than or equal to 192; n is greater than or equal to 216, or n is greater than or equal to 256; and generating from
30 said values a quantitative representation of olfactory perception. The ORs may be an olfactory receptor disclosed herein, or fragments or variants thereof, the representation may constitutes a point or a volume in n -dimensional space, may constitutes a graph or a spectrum, and may constitutes a matrix of quantitative representations. Also, the

providing step may comprise contacting a plurality of recombinantly produced ORs, or fragments or variants thereof, with a test composition and quantitatively measuring the interaction of said composition with said receptors.

It is yet another object of the invention to provide a method for predicting the
5 olfactory perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal, comprising: providing values X_1 to X_n representative of the quantitative stimulation of each of n ORs of said vertebrate, where n is greater than or equal to 4; n is greater than or equal to 12; n is greater than or equal to 24, n is greater than or equal to 48; n is
10 greater than or equal to 72; n is greater than or equal to 96; n is greater than or equal to 120; n is greater than or equal to 144; n is greater than or equal to 168; n is greater than or equal to 192; n is greater than or equal to 216, or n is greater than or equal to 256; for one or more molecules or combinations of molecules yielding known
15 olfactory perception in a mammal; and generating from said values a quantitative representation of olfactory perception in a mammal for the one or more molecules or combinations of molecules yielding known olfactory perception in a mammal, providing values X_1 to X_n representative of the quantitative stimulation of each of n ORs of said vertebrate, where n is greater than or equal to 4, n is greater than or equal to 12; n is greater than or equal to 24, n is greater than or equal to 48; n is greater than or equal to 72; n is greater than or equal to 96; n is greater than or equal to 120; n is greater than or equal to 144; n is greater than or equal to 168; n is greater than or equal to 192; n is greater than or equal to 216, or n is greater than or equal to 273; for one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal; and generating from said values a quantitative representation of
20 olfactory perception in a mammal for the one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal, and predicting the olfactory perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal by comparing the quantitative representation of olfactory perception in a mammal for the
25 one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal to the quantitative representation of olfactory perception in a mammal for the one or more molecules or combinations of molecules yielding known
30

olfactory perception in a mammal. The ORs used in this method may include an olfactory receptor, or fragment or variant thereof, disclosed herein.

Brief Description of the Drawings

5 Figure 1 illustrates the multiple sequence alignment derived for fifty novel ORs, indicating areas of homology and presence of sequence motifs characteristic for olfactory receptors. The fifty novel human olfactory receptors (hOR) proteins described herein are designated AOLFR1 through AOLFR52. The alignment protocol used the Clustal method with PAM250 residue weight table. Amino acid sequences
10 AOLFR2 through AOLFR52 were analyzed for alignment with the AOLFR1 amino acid sequence.

Figure 2 illustrates the multiple sequence alignment derived for fifty novel ORs, indicating areas of homology and presence of sequence motifs characteristic for olfactory receptors. The fifty novel human olfactory receptors (hOR) proteins described herein are designated AOLFR54 through AOLFR109. The alignment protocol used the Clustal method with PAM250 residue weight table. Amino acid sequences AOLFR55 through AOLFR109 were analyzed for alignment with the AOLFR54 amino acid sequence.
15

Figure 3 illustrates the multiple sequence alignment derived for fifty novel ORs, indicating areas of homology and presence of sequence motifs characteristic for olfactory receptors. The fifty novel human olfactory receptors (hOR) proteins described herein are designated AOLFR110 through AOLFR163. The alignment protocol used the Clustal method with PAM250 residue weight table. Amino acid sequences AOLFR111 through AOLFR163 were analyzed for alignment with the AOLFR110 amino acid sequence.
20

Figure 4 illustrates the multiple sequence alignment derived for fifty-four novel ORs, indicating areas of homology and presence of sequence motifs characteristic for olfactory receptors. The fifty-four novel human olfactory receptors (hOR) proteins described herein are designated AOLFR165 through AOLFR217. The alignment protocol used the Clustal method with PAM250 residue weight table. Amino acid sequences AOLFR166 through AOLFR217 were analyzed for alignment with the AOLFR165 amino acid sequence.
30

Figure 5 illustrates the multiple sequence alignment derived for fifty-two novel ORs, indicating areas of homology and presence of sequence motifs characteristic for olfactory receptors. The fifty-two novel human olfactory receptors (hOR) proteins described herein, which are designated AOLFR218 through AOLFR328. The 5 alignment protocol used the Clustal method with PAM250 residue weight table. Amino acid sequences AOLFR219 through AOLFR328 were analyzed for alignment with the AOLFR218 amino acid sequence.

Detailed Description of the Invention

10 The invention thus provides isolated nucleic acid molecules encoding olfactory-cell-specific G protein-coupled receptors ("GPCRs"), and the polypeptides they encode. These nucleic acid molecules and the polypeptides that they encode are members of the olfactory receptor family. Other members of the olfactory receptor family are disclosed in Krautwurst, *et al.*, *Cell*, 95:917-26 (1998), and WO 0035274, 15 the contents of which are herein incorporated by reference in their entireties.

According to one aspect of the invention, genes encoding over two hundred fifty distinct, novel human olfactory (odorant) receptors (also herein referred to ORs) have been identified in genome sequence databases. All of these receptor genes have been initially detected by computer DNA sequence analysis of genomic clones 20 (unfinished High Throughput Genomic Sequence database accession numbers AB045359, AP002532, AP002533, AL365440, AC073487, AL359636, AL359955, AP002535, AB045365, AL359218, AC002555, AB045361, AL359512, AC023255, AL358773, AL357767, AL358874, AC068380, AC025283, AP002407, AC018700, AC022289, AC006313, AC002556, AC011571, AL121944, AC007194, AP001112, 25 AC021660, AP000723, AC016856, AC018700, AP000818, AC00596, AP000916, AC011517, AP001112, AP000916, AC021427, AC021427, AC020884, AC019108, AL135841, AL133410, AF186996, AL138834, AC009237, AC025249, AC010930, AC009758, AC009642, AC009758, AC025249, AF101706, AC009642, AC025249, AC021660, AC011647, AC011711, AC09642, AC020597, AC011711, AC019088, 30 AC022882, AC011571, AL121944, AP000435, AC012616, AC010332, AC010766, AP000743, AC021809, AC011879, AC021304, AC023226, AL160314, AC021304, AC020380, AC011904, AC004977, AC021304, AP000868, AP000825, AC023080, AC022207, AC121986, AC010814, AC018700, AC021304, AC008620, AC011537,

AC010760, AC027641, AC017103, AC024729, AC024257, AC025115, AP001524,
AP000916, AC010814, AL162254, AC025234, AP001521, AC026090, AC019088,
AC016856, AC016787, AC009594, AC026038, AQ628489, AC025942, AL163152,
AC026975, AC024654, AP001803, AP001804, AL353767, AP001884, AC026083,
5 AC018793, AP000818, AL353894, AL049734, AL355366, AC011464, AC037472,
AC036111, AC019093, AC027239, AC027522, AC009545, AC021333, AC036216,
AC021935, AC022762, AL356019, AC055861, AC018375, AC072059, AC068339,
AC022891, AL357039, AP002345, AC044810, AC073113, AC024399, AC023564,
10 AL390860, AC074365, AP002826, AL359636, AL391534, AC055731, AC076959,
AP002826, AC019088, AC009779, AL445307, AP002512, AP000818, AC079190)
by virtue of their sequence homology to some of the known human and other
mammalian olfactory receptor genes.

Alternatively, nucleic acids encoding the olfactory receptors (ORs) and
polypeptides of the invention can be isolated from a variety of sources, genetically
15 engineered, amplified, synthesized, and/or expressed recombinantly according to the
methods disclosed in WO 0035374, which is herein incorporated by reference in its
entirety.

These nucleic acids provide valuable probes for the identification of olfactory
cells, as the nucleic acids are specifically expressed in olfactory cells. They can also
20 serve as tools for the generation of sensory topographical maps that elucidate the
relationship between olfactory cells and olfactory sensory neurons leading to olfactory
centers in the brain. Furthermore, the nucleic acids and the polypeptides they encode
can be used as probes to elucidate olfactory-induced behaviors.

The invention also provides methods of screening for modulators, e.g.,
25 activators, inhibitors, stimulators, enhancers, agonists, inverse agonists and
antagonists, of the ORs, or fragments or variants thereof, of the invention. Such
modulators of olfactory transduction are useful for pharmacological and genetic
modulation of olfactory signaling pathways. These methods of screening can be used
to identify high affinity agonists and antagonists of olfactory cell activity. These
30 modulator compounds can then be used in the food, pharmaceutical, and cosmetic
industries to customize odors and fragrances.

Thus, the invention provides assays for olfactory modulation, where the ORs,
or fragments or variants thereof, of the invention act as direct or indirect reporter

molecules for the effect of modulators on olfactory transduction. The ORs, or fragments or variants thereof, can be used in assays, e.g., to measure changes in ion concentration, membrane potential, current flow, ion flux, transcription, signal transduction, receptor-ligand interaction, second messenger concentrations, *in vitro*, *in vivo* and *ex vivo*. In one embodiment, the ORs, or fragments or variants thereof, can be used as an indirect reporters via attachment to second reporter molecules, such as green fluorescent protein (see, e.g., Mistili *et al.*, *Nature Biotech.*, 15:961-64 (1997)). In another embodiment, the ORs, or fragments or variants thereof, can be expressed in host cells, and modulation of olfactory transduction via OR activity can be assayed by measuring changes in Ca²⁺ levels.

Methods of assaying for modulators of olfactory transduction include *in vitro* ligand binding assays using the ORs of the invention, or fragments or variants thereof. More particularly, such assays can use the ORs; portions thereof such as the extracellular or transmembrane domains; chimeric proteins comprising one or more of such domains; oocyte receptor expression; tissue culture cell receptor expression; transcriptional activation of the receptor; G protein binding to the receptor; ligand binding assays; voltage, membrane potential and conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP and inositol triphosphate; changes in intracellular Ca²⁺ levels; and neurotransmitter release.

The invention also provides for methods of detecting olfactory nucleic acid and protein expression, allowing for the investigation of olfactory transduction regulation and specific identification of olfactory receptor cells. The ORs, fragments, and variants of the invention can also be used to generate monoclonal and polyclonal antibodies useful for identifying olfactory receptor cells. Olfactory receptor cells can be identified using techniques such as reverse transcription and amplification of mRNA, isolation of total RNA or poly A⁺ RNA, northern blotting, dot blotting, *in situ* hybridization, RNase protection, S1 digestion, probing DNA microchip arrays, western blots, and the like.

A. Identification and Characterization of Olfactory Receptors

The amino acid sequences of the ORs and polypeptides of the invention can be identified by putative translation of the coding nucleic acid sequences. These various

amino acid sequences and the coding nucleic acid sequences may be compared to one another or to other sequences according to a number of methods.

For example, in sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence 5 comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, as described below for the BLASTN and BLASTP programs, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent 10 sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window," as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of: from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in 15 which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment 20 algorithm of Needleman & Wunsch, *J Mol. Biol.* 48:443 (1970), by the search for similarity method of Pearson & Lipman, *PNAS*, 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., *Current 25 Protocols in Molecular Biology* (Ausubel *et al.*, eds. 1995 supplement)).

A preferred example of an algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul *et al.*, *J Mol. Biol.* 215:403-410 (1990), respectively. Software for 30 performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued

threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul *et al.*, Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul *et al.*, *J Mol. Biol.* 215:403-410 (1990)). These initial neighborhood word hits act as seeds for initiating 5 searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a 10 scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and 15 X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (*see* Henikoff & Henikoff, *PNAS*, 89:10915 (1989)) 20 alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

Another example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a so-called “tree” or “dendogram” showing the clustering relationships used to create the 25 alignment (*see, e.g.*, Figure 2). PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, *J Mol. Evol.* 35:351-60 (1987). The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151-153 (1989). The program can align up to 300 sequences, each of a maximum length of 30 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple

extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. Using 5 PILEUP, a reference sequence is compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps. PILEUP can be obtained from the GCG sequence analysis software package, e.g., version 7.0 (Devereaux *et al.*, *Nuc. Acids Res.* 12:387-395 (1984) encoded by the genes were 10 derived by conceptual translation of the corresponding open reading frames. Comparison of these protein sequences to all known proteins in the public sequence databases using BLASTP algorithm revealed their strong homology to the members of the mammalian olfactory receptor family, each of the odorant receptor sequences having at least 50%, and preferably at least 55%, at least 60%, at least 65%, and most 15 preferably at least 70%, amino acid identity to at least one known member of the family.

The nucleic acid molecules of the present invention are typically intronless and encode putative OR proteins generally having lengths of approximately 290 to approximately 400 amino acid residues that contain seven transmembrane domains, as 20 predicted by hydrophobicity plotting analysis, indicating that they belong to the G protein-coupled receptor 7-transmembrane (7TM) superfamily, which includes the subset of taste and olfactory receptors. In addition to the overall structural similarity, each of the ORs identified herein has a characteristic sequence signature of an olfactory receptor. In particular, all the identified sequences contain very close 25 matches to the following consensus amino acid motifs (Mombaerts, 1999, Pilpel 1999): EFILL (SEQ ID NO: 513) before transmembrane domain 1, LHTPMY (SEQ ID No: 514) in intracellular loop 1, MAYDRYVAIC (SEQ ID NO: 510) at the end of transmembrane domain 3 and the beginning of intracellular loop 2, SY at the end of transmembrane domain 5, FSTCSSH (SEQ ID NO: 516) in the beginning of 30 transmembrane domain 6, and PMLNPF (SEQ ID NO: 517) in transmembrane domain 7. Combination of all the above-mentioned structural features of the identified genes and encoded proteins strongly suggests that they represent novel members of the human olfactory receptor family.

As noted above, complete or partial sequences of numerous human and other eukaryotic olfactory receptors are currently known. The novel human receptors have amino acid sequences distinctly different from the previously known human olfactory receptors, which suggests their different specificity in odorant recognition. Therefore,
5 these novel receptors and their genes can be used, alone or in combination with known olfactory receptors, in developing detection systems and assays for chemically distinct types of odorants not recognized by the known receptors, as well as for diagnostic and research purposes.

B. Definitions

10 As used herein, the following terms have the meanings ascribed to them unless specified otherwise.

“OR” refers to one or more members of a family of G protein-coupled receptors that are expressed in olfactory cells. Olfactory receptor cells can also be identified on the basis of morphology (*see, e.g., Roper, supra*), or by the expression of
15 proteins specifically expressed in olfactory cells. OR family members may have the ability to act as receptors for olfactory transduction.

“OR” nucleic acids encode a family of GPCRs with seven transmembrane regions that have “G protein-coupled receptor activity,” *e.g.*, they may bind to G proteins in response to extracellular stimuli and promote production of second
20 messengers such as IP₃, cAMP, cGMP, and Ca²⁺ via stimulation of enzymes such as phospholipase C and adenylate cyclase (for a description of the structure and function of GPCRs, *see, e.g., Fong, supra, and Baldwin, supra*). A single olfactory cell may contain many distinct OR polypeptides.

Topologically, certain chemosensory GPCRs have an “N-terminal domain;”
25 “extracellular domains;” “transmembrane domains” comprising seven transmembrane regions, and corresponding cytoplasmic, and extracellular loops; “cytoplasmic domains,” and a “C-terminal domain” (*see, e.g., Hoon et al., Cell, 96:541-51 (1999); Buck & Axel, Cell, 65:175-87 (1991)*). These domains can be structurally identified using methods known to those of skill in the art, such as sequence analysis programs
30 that identify hydrophobic and hydrophilic domains (*see, e.g., Stryer, Biochemistry, (3rd ed. 1988); see also any of a number of Internet based sequence analysis programs, such as those found at dot.imgen.bcm.tmc.edu*). Such domains are useful

for making chimeric proteins and for *in vitro* assays of the invention, *e.g.*, ligand binding assays.

“Extracellular domains” therefore refers to the domains of OR polypeptides that protrude from the cellular membrane and are exposed to the extracellular face of the cell. Such domains generally include the “N terminal domain” that is exposed to the extracellular face of the cell, and optionally can include portions of the extracellular loops of the transmembrane domain that are exposed to the extracellular face of the cell, *i.e.*, the loops between transmembrane regions 2 and 3, between transmembrane regions 4 and 5, and between transmembrane regions 6 and 7.

The “N terminal domain” region starts at the N-terminus and extends to a region close to the start of the transmembrane domain. “Transmembrane domain,” which comprises the seven “transmembrane regions,” refers to the domain of OR polypeptides that lies within the plasma membrane, and may also include the corresponding cytoplasmic (intracellular) and extracellular loops. The seven transmembrane regions and extracellular and cytoplasmic loops can be identified using standard methods, as described in Kyte & Doolittle, *J. Mol. Biol.*, 157:105-32 (1982)), or in Stryer, *supra*. The general secondary and tertiary structure of transmembrane domains, in particular the seven transmembrane domains of 7-transmembrane receptors such as olfactory receptors, are well known in the art. Thus, primary structure sequence can be designed or predicted based on known transmembrane domain sequences, as described in detail below. These transmembrane domains are useful for *in vitro* ligand-binding assays, both soluble and solid phase.

“Cytoplasmic domains” refers to the domains of OR polypeptides that face the inside of the cell, *e.g.*, the “C terminal domain” and the intracellular loops of the transmembrane domain, *e.g.*, the intracellular loop between transmembrane regions 1 and 2, the intracellular loop between transmembrane regions 3 and 4, and the intracellular loop between transmembrane regions 5 and 6. “C terminal domain” refers to the region that spans the end of the last transmembrane domain and the C-terminus of the protein, and which is normally located within the cytoplasm.

The term “ligand-binding region” or “ligand-binding domain” refers to sequences derived from a chemosensory receptor, particularly an olfactory receptor,

that substantially incorporates at least transmembrane domains II to VII. The ligand-binding region may be capable of binding a ligand, and more particularly, an odorant.

The phrase "functional effects" in the context of assays for testing compounds that modulate OR family member mediated olfactory transduction includes the
5 determination of any parameter that is indirectly or directly under the influence of the receptor, *e.g.*, functional, physical and chemical effects. It includes ligand binding, changes in ion flux, membrane potential, current flow, transcription, G protein binding, GPCR phosphorylation or dephosphorylation, signal transduction, receptor-ligand interactions, second messenger concentrations (*e.g.*, cAMP, cGMP,
10 IP3, or intracellular Ca^{2+}), *in vitro*, *in vivo*, and *ex vivo* and also includes other physiologic effects such increases or decreases of neurotransmitter or hormone release.

By "determining the functional effect" in the context of assays is meant assays for a compound that increases or decreases a parameter that is indirectly or directly
15 under the influence of an OR family member, *e.g.*, functional, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, *e.g.*, changes in spectroscopic characteristics (*e.g.*, fluorescence, absorbance, refractive index), hydrodynamic (*e.g.*, shape), chromatographic, or solubility properties, patch clamping, voltage-sensitive dyes, whole cell currents,
20 radioisotope efflux, inducible markers, oocyte OR gene expression; tissue culture cell OR expression; transcriptional activation of OR genes; ligand-binding assays; voltage, membrane potential and conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP, cGMP, and inositol triphosphate (IP3); changes in intracellular calcium levels; neurotransmitter release, and the like.

25 "Inhibitors," "activators," and "modulators" of OR genes or proteins are used interchangeably to refer to inhibitory, activating, or modulating molecules identified using *in vitro* and *in vivo* assays for olfactory transduction, *e.g.*, ligands, agonists, antagonists, and their homologs and mimetics. Inhibitors are compounds that, *e.g.*, bind to, partially or totally block stimulation, decrease, prevent, delay activation,
30 inactivate, desensitize, or down regulate olfactory transduction, *e.g.*, antagonists. Activators are compounds that, *e.g.*, bind to, stimulate, increase, open, activate, facilitate, enhance activation, sensitize, or up regulate olfactory transduction, *e.g.*, agonists. Modulators include compounds that, *e.g.*, alter the interaction of a receptor

with: extracellular proteins that bind activators or inhibitor (*e.g.*, ebnerin and other members of the hydrophobic carrier family); G proteins; kinases (*e.g.*, homologs of rhodopsin kinase and beta adrenergic receptor kinases that are involved in deactivation and desensitization of a receptor); and arrestins, which also deactivate and desensitize receptors. Modulators can include genetically modified versions of OR family members, *e.g.*, with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, small chemical molecules and the like. Such assays for inhibitors and activators include, *e.g.*, expressing OR family members in cells or cell membranes, applying putative modulator compounds, in the presence or absence of tastants, *e.g.*, sweet tastants, and then determining the functional effects on olfactory transduction, as described above. Samples or assays comprising OR family members that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of modulation. Control samples (untreated with modulators) are assigned a relative OR activity value of 100%. Inhibition of a OR is achieved when the OR activity value relative to the control is about 80%, optionally 50% or 25-0%. Activation of an OR is achieved when the OR activity value relative to the control is 110%, optionally 150%, optionally 200-500%, or 1000-3000% higher.

The terms “purified,” “substantially purified,” and “isolated” as used herein refer to the state of being free of other, dissimilar compounds with which the compound of the invention is normally associated in its natural state, so that the “purified,” “substantially purified,” and “isolated” subject comprises at least 0.5%, 1%, 5%, 10%, or 20%, and most preferably at least 50% or 75% of the mass, by weight, of a given sample. In one preferred embodiment, these terms refer to the compound of the invention comprising at least 95% of the mass, by weight, of a given sample. As used herein, the terms “purified,” “substantially purified,” and “isolated” “isolated,” when referring to a nucleic acid or protein, of nucleic acids or proteins, also refers to a state of purification or concentration different than that which occurs naturally in the mammalian, especially human, body. Any degree of purification or concentration greater than that which occurs naturally in the mammalian, especially human, body, including (1) the purification from other associated structures or compounds or (2) the association with structures or compounds to which it is not normally associated in the mammalian, especially human, body, are within the

meaning of "isolated." The nucleic acid or protein or classes of nucleic acids or proteins, described herein, may be isolated, or otherwise associated with structures or compounds to which they are not normally associated in nature, according to a variety of methods and processes known to those of skill in the art.

5 As used herein, the term "isolated," when referring to a nucleic acid or polypeptide refers to a state of purification or concentration different than that which occurs naturally in the mammalian, especially human, body. Any degree of purification or concentration greater than that which occurs naturally in the body, including (1) the purification from other naturally-occurring associated structures or
10 compounds, or (2) the association with structures or compounds to which it is not normally associated in the body are within the meaning of "isolated" as used herein. The nucleic acids or polypeptides described herein may be isolated or otherwise associated with structures or compounds to which they are not normally associated in nature, according to a variety of methods and processes known to those of skill in the
15 art.

As used herein, the terms "amplifying" and "amplification" refer to the use of any suitable amplification methodology for generating or detecting recombinant or naturally expressed nucleic acid, as described in detail, below. For example, the invention provides methods and reagents (e.g., specific degenerate oligonucleotide primer pairs) for amplifying (e.g., by polymerase chain reaction, PCR) naturally expressed (e.g., genomic or mRNA) or recombinant (e.g., cDNA) nucleic acids of the invention (e.g., tastant-binding sequences of the invention) *in vivo* or *in vitro*.

The term "7-transmembrane receptor" means a polypeptide belonging to a superfamily of transmembrane proteins that have seven domains that span the plasma membrane seven times (thus, the seven domains are called "transmembrane" or "TM" domains TM I to TM VII). The families of olfactory and certain taste receptors each belong to this super-family. 7-transmembrane receptor polypeptides have similar and characteristic primary, secondary and tertiary structures, as discussed in further detail below.

30 The term "library" means a preparation that is a mixture of different nucleic acid or polypeptide molecules, such as the library of recombinantly generated chemosensory, particularly olfactory receptor ligand-binding domains generated by amplification of nucleic acid with degenerate primer pairs, or an isolated collection of

vectors that incorporate the amplified ligand-binding domains, or a mixture of cells each randomly transfected with at least one vector encoding an olfactory receptor.

The term "nucleic acid" or "nucleic acid sequence" refers to a deoxyribonucleotide or ribonucleotide oligonucleotide in either single- or double-stranded form. The term encompasses nucleic acids, i.e., oligonucleotides, containing known analogs of natural nucleotides. The term also encompasses nucleic-acid-like structures with synthetic backbones (see e.g., *Oligonucleotides and Analogues, a Practical Approach*, ed. F. Eckstein, Oxford Univ. Press (1991); *Antisense Strategies, Annals of the N.Y. Acad. of Sci.*, Vol. 600, Eds. Baserga et al. (NYAS 1992); Milligan 5 J. Med. Chem. 36:1923-1937 (1993); *Antisense Research and Applications* (1993, CRC Press), WO 97/03211; WO 96/39154; Mata, *Toxicol. Appl. Pharmacol.* 10 144:189-197 (1997); Strauss-Soukup, *Biochemistry* 36:8692-8698 (1997); Samstag, *Antisense Nucleic Acid Drug Dev.* 6:153-156 (1996)).

Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating, e.g., sequences in which the third position of one or more selected codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., *Nucleic Acid Res.*, 19:5081 (1991); Ohtsuka et al., *J. Biol. Chem.*, 260:2605-08 (1985); Rossolini et al., *Mol. Cell. Probes*, 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid 25 polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term "plasma membrane translocation domain" or simply "translocation domain" means a polypeptide domain that, when incorporated into the amino terminus 30 of a polypeptide coding sequence, can with great efficiency "chaperone" or "translocate" the hybrid ("fusion") protein to the cell plasma membrane. For instance, a "translocation domain" may be derived from the amino terminus of the bovine rhodopsin receptor polypeptide. In one embodiment, the translocation domain may be

functionally equivalent to an exemplary translocation domain (5'-MNGTEGPNFYVPPFSNKTGVV; SEQ ID NO: 518). However, rhodopsin from any mammal may be used, as can other translocation facilitating sequences. Thus, the translocation domain is particularly efficient in translocating 7-transmembrane fusion proteins to the plasma membrane, and a protein (e.g., an olfactory receptor polypeptide) comprising an amino terminal translocating domain will be transported to the plasma membrane more efficiently than without the domain. However, if the N-terminal domain of the polypeptide is active in binding, the use of other translocation domains may be preferred.

“Functional equivalency” means the domain’s ability and efficiency in translocating newly translated proteins to the plasma membrane as efficiently as exemplary SEQ ID NO: 518 under similar conditions; relatively efficiencies can be measured (in quantitative terms) and compared, as described herein. Domains falling within the scope of the invention can be determined by routine screening for their efficiency in translocating newly synthesized polypeptides to the plasma membrane in a cell (mammalian, Xenopus, and the like) with the same efficiency as the twenty amino acid long translocation domain SEQ ID NO: 518, as described in detail below.

The “translocation domain,” “ligand-binding domain”, and chimeric receptors compositions described herein also include “analogs,” or “conservative variants” and “mimetics” (“peptidomimetics”) with structures and activity that substantially correspond to the exemplary sequences. Thus, the terms “conservative variant” or “analog” or “mimetic” refer to a polypeptide which has a modified amino acid sequence, such that the change(s) do not substantially alter the polypeptide’s (the conservative variant’s) structure and/or activity, as defined herein. These include conservatively modified variations of an amino acid sequence, *i.e.*, amino acid substitutions, additions or deletions of those residues that are not critical for protein activity, or substitution of amino acids with residues having similar properties (*e.g.*, acidic, basic, positively or negatively charged, polar or non-polar, *etc.*) such that the substitutions of even critical amino acids does not substantially alter structure and/or activity. Conservative substitution tables providing functionally similar amino acids are well known in the art.

More particularly, “conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences,

conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids
5 encode any given protein.

For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide.

10 Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only
15 codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.

Conservative substitution tables providing functionally similar amino acids are well known in the art. For example, one exemplary guideline to select conservative
20 substitutions includes (original residue followed by exemplary substitution): ala/gly or ser; arg/lys; asn/gln or his; asp/glu; cys/ser; gln/asn; gly/asp; gly/ala or pro; his/asn or gln; ile/leu or val; leu/ile or val; lys/arg or gln or glu; met/leu or tyr or ile; phe/met or leu or tyr; ser/thr; thr/ser; trp/tyr; tyr/trp or phe; val/ile or leu. An alternative exemplary guideline uses the following six groups, each containing amino acids that
25 are conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (I); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); (*see also, e.g., Creighton, Proteins, W.H. Freeman and Company (1984); Schultz and Schimer, Principles of Protein Structure, Springer-Verlag (1979)*). One of skill in the art will appreciate that the above-identified substitutions are not the only possible conservative substitutions. For example, for some purposes, one may regard all charged amino acids as conservative substitutions for each other whether they are positive or negative. In

addition, individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence can also be considered "conservatively modified variations."

The terms "mimetic" and "peptidomimetic" refer to a synthetic chemical
5 compound that has substantially the same structural and/or functional characteristics
of the polypeptides, *e.g.*, translocation domains, ligand-binding domains, or chimeric
receptors of the invention. The mimetic can be either entirely composed of synthetic,
non-natural analogs of amino acids, or may be a chimeric molecule of partly natural
peptide amino acids and partly non-natural analogs of amino acids. The mimetic can
10 also incorporate any amount of natural amino acid conservative substitutions as long
as such substitutions also do not substantially alter the mimetic's structure and/or
activity.

As with polypeptides of the invention which are conservative variants, routine
experimentation will determine whether a mimetic is within the scope of the
15 invention, *i.e.*, that its structure and/or function is not substantially altered.
Polypeptide mimetic compositions can contain any combination of non-natural
structural components, which are typically from three structural groups: a) residue
linkage groups other than the natural amide bond ("peptide bond") linkages; b) non-
natural residues in place of naturally occurring amino acid residues; or c) residues
20 which induce secondary structural mimicry, *i.e.*, to induce or stabilize a secondary
structure, *e.g.*, a beta turn, gamma turn, beta sheet, alpha helix conformation, and the
like. A polypeptide can be characterized as a mimetic when all or some of its residues
are joined by chemical means other than natural peptide bonds. Individual
peptidomimetic residues can be joined by peptide bonds, other chemical bonds or
25 coupling means, such as, *e.g.*, glutaraldehyde, N-hydroxysuccinimide esters,
bifunctional maleimides, N,N'-dicyclohexylcarbodiimide (DCC) or N,N'-
diisopropylcarbodiimide (DIC). Linking groups that can be an alternative to the
traditional amide bond ("peptide bond") linkages include, *e.g.*, ketomethylene (*e.g.*,
-C(=O)-CH₂- for -C(=O)-NH-), aminomethylene (CH₂-NH), ethylene, olefin
30 (CH=CH), ether (CH₂-O), thioether (CH₂-S), tetrazole (CN₄), thiazole, retroamide,
thioamide, or ester (*see, e.g.*, Spatola, *Chemistry and Biochemistry of Amino Acids,*
Peptides and Proteins, 7:267-357, "Peptide Backbone Modifications," Marcell
Dekker, NY (1983)). A polypeptide can also be characterized as a mimetic by

containing all or some non-natural residues in place of naturally occurring amino acid residues; non-natural residues are well described in the scientific and patent literature.

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For 5 example, useful labels include ^{32}P , fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either 10 covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence 15 through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, for 20 example, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are optionally directly labeled as with isotopes, 25 chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence.

The term "heterologous" when used with reference to portions of a nucleic 30 acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one

source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid sequences that direct
5 transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter
10 that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the
15 expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

As used herein, "recombinant" refers to a polynucleotide synthesized or otherwise manipulated *in vitro* (e.g., "recombinant polynucleotide"), to methods of using recombinant polynucleotides to produce gene products in cells or other
20 biological systems, or to a polypeptide ("recombinant protein") encoded by a recombinant polynucleotide. "Recombinant means" also encompass the ligation of nucleic acids having various coding regions or domains or promoter sequences from different sources into an expression cassette or vector for expression of, e.g., inducible or constitutive expression of a fusion protein comprising a translocation domain of the
25 invention and a nucleic acid sequence amplified using a primer of the invention.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

30 The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer

sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, *Techniques in Biochemistry and Molecular Biology - Hybridisation with Nucleic Probes*, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent 5 conditions are selected to be about 5-10° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at 10 equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the 15 addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, optionally 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1 % SDS at 65°C. Such 20 hybridizations and wash steps can be carried out for, e.g., 1, 2, 5, 10, 15, 30, 60; or more minutes.

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially related if the polypeptides that they encode are substantially related. This occurs, for example, when a copy of a nucleic acid is created using the maximum 25 codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1x SSC at 45°C. Such hybridizations and wash steps can be carried out for, e.g., 1, 2, 5, 10, 15, 30, 60, or 30 more minutes. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

“Antibody” refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad 5 immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair 10 having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.

A “chimeric antibody” is an antibody molecule in which (a) the constant 15 region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, *e.g.*, an enzyme, toxin, hormone, growth factor, drug, *etc.*; or (b) the variable region, or a portion thereof, is altered, replaced or 20 exchanged with a variable region having a different or altered antigen specificity.

An “anti-OR” antibody is an antibody or antibody fragment that specifically binds a polypeptide encoded by a OR gene, cDNA, or a subsequence thereof.

The term “immunoassay” is an assay that uses an antibody to specifically bind 25 an antigen. The immunoassay is characterized by the use of specific binding properties of a particular antibody to isolate, target, and/or quantify the antigen.

The phrase “specifically (or selectively) binds” to an antibody or, “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated 30 immunoassay conditions, the specified antibodies bind to a particular protein at least two times the background and do not substantially bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular

protein. For example, polyclonal antibodies raised to an OR family member from specific species such as rat, mouse, or human can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the OR polypeptide or an immunogenic portion thereof and not with other proteins, except for orthologs or 5 polymorphic variants and alleles of the OR polypeptide. This selection may be achieved by subtracting out antibodies that cross-react with OR molecules from other species or other OR molecules. Antibodies can also be selected that recognize only OR GPCR family members but not GPCRs from other families. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive 10 with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, *Antibodies, A Laboratory Manual*, (1988), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity). Typically a specific or selective reaction will be at least twice 15 background signal or noise and more typically more than 10 to 100 times background.

The phrase "selectively associates with" refers to the ability of a nucleic acid to "selectively hybridize" with another as defined above, or the ability of an antibody to "selectively (or specifically) bind to a protein, as defined above.

The term "expression vector" refers to any recombinant expression system for 20 the purpose of expressing a nucleic acid sequence of the invention *in vitro* or *in vivo*, constitutively or inducibly, in any cell, including prokaryotic, yeast, fungal, plant, insect or mammalian cell. The term includes linear or circular expression systems. The term includes expression systems that remain episomal or integrate into the host cell genome. The expression systems can have the ability to self-replicate or not, i.e., 25 drive only transient expression in a cell. The term includes recombinant expression "cassettes which contain only the minimum elements needed for transcription of the recombinant nucleic acid.

By "host cell" is meant a cell that contains an expression vector and supports 30 the replication or expression of the expression vector. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, HEK-293, and the like, e.g., cultured cells, explants, and cells *in vivo*.

C. **Isolation and Expression of Olfactory Receptors**

Isolation and expression of the ORs, or fragments or variants thereof, of the invention can be performed as described below. PCR primers can be used for the amplification of nucleic acids encoding olfactory receptor ligand-binding regions and 5 libraries of these nucleic acids can thereby be generated. Libraries of expression vectors can then be used to infect or transfect host cells for the functional expression of these libraries. These genes and vectors can be made and expressed *in vitro* or *in vivo*. One of skill will recognize that desired phenotypes for altering and controlling nucleic acid expression can be obtained by modulating the expression or activity of 10 the genes and nucleic acids (e.g., promoters, enhancers and the like) within the vectors of the invention. Any of the known methods described for increasing or decreasing expression or activity can be used. The invention can be practiced in conjunction with any method or protocol known in the art, which are well described in the scientific and patent literature.

15 The nucleic acid sequences of the invention and other nucleic acids used to practice this invention, whether RNA, cDNA, genomic DNA, vectors, viruses or hybrids thereof, may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed recombinantly. Any recombinant expression system can be used, including, in addition to mammalian cells, e.g., bacterial, yeast, insect or 20 plant systems.

Alternatively, these nucleic acids can be synthesized *in vitro* by well-known chemical synthesis techniques, as described in, e.g., Carruthers, *Cold Spring Harbor Symp. Quant. Biol.* 47:411-418 (1982); Adams, *Am. Chem. Soc.* 105:661 (1983); Belousov, *Nucleic Acids Res.* 25:3440-3444 (1997); Frenkel, *Free Radic. Biol. Med.* 25:19:373-380 (1995); Blommers, *Biochemistry* 33:7886-7896 (1994); Narang, *Meth. Enzymol.* 68:90 (1979); Brown, *Meth. Enzymol.* 68:109 (1979); Beaucage, *Tetra. Lett.* 22:1859 (1981); U.S. Patent No. 4,458,066. Double-stranded DNA fragments may 25 then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand 30 using DNA polymerase with an appropriate primer sequence..

Techniques for the manipulation of nucleic acids, such as, for example, for generating mutations in sequences, subcloning, labeling probes, sequencing, hybridization and the like are well described in the scientific and patent literature.

See, e.g., Sambrook, ed., Molecular Cloning: a Laboratory manual (2nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory (1989); Current Protocols in Molecular Biology, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part I, 5 Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993).

Nucleic acids, vectors, capsids, polypeptides, and the like can be analyzed and quantified by any of a number of general means well known to those of skill in the art. These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid 10 chromatography (HPLC), thin layer chromatography (TLC), and hyperdiffusion chromatography, various immunological methods, e.g., fluid or gel precipitin reactions, immunodiffusion, immuno-electrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), immuno-fluorescent assays, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g., SDS-PAGE), RT-PCR, quantitative PCR, other nucleic acid or target or signal 15 amplification methods, radiolabeling, scintillation counting, and affinity chromatography.

Oligonucleotide primers are used to amplify nucleic acid encoding an olfactory receptor ligand-binding region. The nucleic acids described herein can also be cloned 20 or measured quantitatively using amplification techniques. Using exemplary degenerate primer pair sequences, (see below), the skilled artisan can select and design suitable oligonucleotide amplification primers. Amplification methods are also well known in the art, and include, e.g., polymerase chain reaction, PCR (PCR Protocols, a Guide to Methods and Applications, ed. Innis. Academic Press, N.Y. 25 (1990) and PCR Strategies, ed. Innis, Academic Press, Inc., N.Y. (1995), ligase chain reaction (LCR) (see, e.g., Wu, *Genomics* 4:560 (1989); Landegren, *Science* 241:1077,(1988); Barringer, *Gene* 89:117 (1990)); transcription amplification (see, e.g., Kwoh, *PNAS*, 86:1173 (1989)); and, self-sustained sequence replication (see, e.g., Guatelli, *PNAS*, 87:1874 (1990)); Q Beta replicase amplification (see, e.g., 30 Smith, *J. Clin. Microbiol.* 35:1477-1491 (1997)); automated Q-beta replicase amplification assay (see, e.g., Burg, *Mol. Cell. Probes* 10:257-271 (1996)) and other RNA polymerase mediated techniques (e.g., NASBA, Cangene, Mississauga, Ontario); see also Berger, *Methods Enzymol.* 152:307-316 (1987); Sambrook;

Ausubel; U.S. Patent Nos. 4,683,195 and 4,683,202; Sooknanan, *Biotechnology* 13:563-564 (1995).

Once amplified, the nucleic acids, either individually or as libraries, may be cloned according to methods known in the art, if desired, into any of a variety of vectors using routine molecular biological methods; methods for cloning *in vitro* amplified nucleic acids are described, e.g., U.S. Pat. No. 5,426,039. To facilitate cloning of amplified sequences, restriction enzyme sites can be "built into" the PCR primer pair. For example, Pst I and Bsp E1 sites were designed into the exemplary primer pairs of the invention. These particular restriction sites have a sequence that, when ligated, are "in-frame" with respect to the 7-membrane receptor "donor" coding sequence into which they are spliced (the ligand-binding region coding sequence is internal to the 7-membrane polypeptide, thus, if it is desired that the construct be translated downstream of a restriction enzyme splice site, out of frame results should be avoided; this may not be necessary if the inserted ligand-binding domain comprises substantially most of the transmembrane VII region). The primers can be designed to retain the original sequence of the "donor" 7-membrane receptor (the Pst I and Bsp E1 sequence in the primers of the invention generate an insert that, when ligated into the Pst I/Bsp E1 cut vector, encode residues found in the "donor" mouse olfactory receptor M4 sequence). Alternatively, the primers can encode amino acid residues that are conservative substitutions (e.g., hydrophobic for hydrophobic residue, see above discussion) or functionally benign substitutions (e.g., do not prevent plasma membrane insertion, cause cleavage by peptidase, cause abnormal folding of receptor, and the like).

The primer pairs are designed to selectively amplify ligand-binding regions of olfactory receptor proteins. These domain regions may vary for different ligands, and more particularly odorants; thus, what may be a minimal binding region for one ligand, and more particularly odorants, may be too limiting for a second potential ligand. Thus, domain regions of different sizes comprising different domain structures may be amplified; for example, transmembrane (TM) domains II through VII, III through VII, III through VI or II through VI, or variations thereof (e.g., only a subsequence of a particular domain, mixing the order of the domains, and the like), of a 7-transmembrane OR.

As domain structures and sequence of many 7-membrane proteins, particularly olfactory receptors, are known, the skilled artisan can readily select domain-flanking and internal domain sequences as model sequences to design degenerate amplification primer pairs. For example, a nucleic acid sequence encoding domain regions II through VII can be generated by PCR amplification using a primer pair. To amplify a nucleic acid comprising transmembrane domain I (TM I) sequence, a degenerate primer can be designed from a nucleic acid that encodes the amino acid sequence LFLLYL3' (SEQ ID NO: 519). Such a degenerate primer can be used to generate a binding domain incorporating TM I through TM III, TM I through TM IV, TM I through TM V, TM I through TM VI or TM I through TM VII.

To amplify a nucleic acid comprising a transmembrane domain III (TM III) sequence, a degenerate primer (of at least about 17 residues) can be designed from a nucleic acid that encodes the amino acid sequence M(A/G)(Y/F)DRYVAI 3' (SEQ ID NO: 520) (encoded by a nucleic acid sequence such as 15 5'-ATGG(G/C)CT(A/T)TGACCG(C/A/T)T(AT)(C/T)GT-3' (SEQ ID NO: 521)). Such a degenerate primer can be used to generate a binding domain incorporating TM III through TM IV, TM III through TM V, TM III through TM VI or TM III through TM VII.

To amplify transmembrane domain VI (TM VI) sequence, a degenerate primer (of at least about 17 residues) can be designed from nucleic acid encoding an amino acid sequence TC(G/A)SHL (SEQ ID NO: 522), encoded by a sequence such as 20 5'-AG(G/A)TGN(G/C)(T/A)N(G/C)C(G/A)CANGT-3' 3' (SEQ ID NO: 522). Such a degenerate primer can be used to generate a binding domain incorporating TM I through TM VI, TM II through TM VI, TM III through TM VI or TM IV through TM VI).

Paradigms to design degenerate primer pairs are well known in the art. For example, a COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) (SEQ ID NO: 523) strategy computer program is accessible as 30 <http://blocks.fhcrc.org/codehop.html>, and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences, as known olfactory receptor ligand-binding regions (see, e.g., Rose, *Nucleic Acids Res.* 26:1628-1635 (1998); Singh, *Biotechniques*, 24:318-19 (1998)).

Means to synthesize oligonucleotide primer pairs are well known in the art. "Natural" base pairs or synthetic base pairs can be used. For example, use of artificial nucleobases offers a versatile approach to manipulate primer sequence and generate a more complex mixture of amplification products. Various families of artificial nucleobases are capable of assuming multiple hydrogen bonding orientations through internal bond rotations to provide a means for degenerate molecular recognition. Incorporation of these analogs into a single position of a PCR primer allows for generation of a complex library of amplification products. *See, e.g., Hoops, Nucleic Acids Res.* 25:4866-4871 (1997). Nonpolar molecules can also be used to mimic the shape of natural DNA bases. A non-hydrogen-bonding shape mimic for adenine can replicate efficiently and selectively against a nonpolar shape mimic for thymine (*see, e.g., Morales, Nat. Struct. Biol.* 5:950-954 (1998)). For example, two degenerate bases can be the pyrimidine base 6H, 8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin-7-one or the purine base N6-methoxy-2,6-diaminopurine (*see, e.g., Hill, PNAS*, 95:4258-63 (1998)). Exemplary degenerate primers of the invention incorporate the nucleobase analog 5'-Dimethoxytrityl-N-benzoyl-2'-deoxy-Cytidine,3'-(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (the term "P" in the sequences, see above). This pyrimidine analog hydrogen bonds with purines, including A and G residues.

Exemplary primer pairs for amplification of olfactory receptor transmembrane domains II through VII include:

- (a) 5'-GGGGTCCGGAG(A/G)(C/G)(A/G)TA(A/G/T)AT(A/G/P)A(A/G/P)(A/G/P)GG-
3' (SEQ ID NO: 524) and
5'-GGGGCTGCAGACACC(A/C/G/T)ATGTA(C/T)(C/T)T(A/C/G/T)TT(C/T)
(C/T)T-3' (SEQ ID NO: 525).
- (b) 5'-GGGGTCCGGAG(A/G)(C/G)T(A/G)A(A/G/T)AT(A/G/P)A(A/G/P)(A/G/P)GG-
3' (SEQ ID NO: 526); and
5'-GGGGCTGCAGACACC(AC/G/T)ATGTA(C/T)(C/T)T(A/C/G/T)TT(C/T)
(C/T)T-3' (SEQ ID NO: 527)
- (c) 5'-GGGGTCCGGAG(A/G)(C/G)T(A/G)A(A/G/T)AT(A/G/C/T)A(A/G/C/T)
(A/G/C/T)GG-3' (SEQ ID NO: 528) and
5'-GGGGCTGCAGACACC(A/C/G/T)ATGTA(C/T)(C/T)T(A/C/G/T)TT(C/T)
(C/T)T-3' (SEQ ID NO: 558)

Nucleic acids that encode ligand-binding regions of olfactory receptors may be generated by amplification (*e.g., PCR*) of appropriate nucleic acid sequences using

degenerate primer pairs. The amplified nucleic acid can be genomic DNA from any cell or tissue or mRNA or cDNA derived from olfactory receptor-expressing cells, e.g., olfactory neurons or olfactory epithelium.

Isolation from olfactory receptor-expressing cells is well known in the art
5 (cells expressing naturally or inducibly expressing olfactory receptors can be used to express the hybrid olfactory receptors of the invention to screen for potential odorants and odorant effect on cell physiology, as described below). For example, cells can be identified by olfactory marker protein (OMP), an abundant cytoplasmic protein expressed almost exclusively in mature olfactory sensory neurons (see, e.g., Buiakova,
10 *PNAS*, 93:9858-63 (1996)). Shirley, *Eur. J. Biochem.* 32:485-494 (1983), describes a rat olfactory preparation suitable for biochemical studies *in vitro* on olfactory mechanisms. Cultures of adult rat olfactory receptor neurons are described by Vargas,
Chem. Senses 24:211-216 (1999). Because these cultured neurons exhibit typical voltage-gated currents and are responsive to application of odorants, they can also be
15 used to express the hybrid olfactory receptors of the invention for odorant screening (endogenous olfactory receptor can be initially blocked, if desired, by, e.g., antisense, knockout, and the like). U.S. Patent No. 5,869,266 describes culturing human olfactory neurons for neurotoxicity tests and screening. Murrell, *J. Neurosci.* 19:8260-8270 (1999), describes differentiated olfactory receptor-expressing cells in
20 culture that respond to odorants, as measured by an influx of calcium.

In one embodiment, hybrid protein-coding sequences comprising nucleic acids ORs fused to the translocation sequences described herein may be constructed. Also provided are hybrid ORs comprising the translocation motifs and ligand-binding domains of olfactory receptors. These nucleic acid sequences can be operably linked
25 to transcriptional or translational control elements, e.g., transcription and translation initiation sequences, promoters and enhancers, transcription and translation terminators, polyadenylation sequences, and other sequences useful for transcribing DNA into RNA. In construction of recombinant expression cassettes, vectors, transgenics, and a promoter fragment can be employed to direct expression of the
30 desired nucleic acid in all tissues. Olfactory cell-specific transcriptional elements can also be used to express the fusion polypeptide receptor, including, e.g., a 6.7 kb region upstream of the M4 olfactory receptor coding region. This region was sufficient to direct expression in olfactory epithelium with wild type zonal restriction and

distributed neuronal expression for endogenous olfactory receptors (Qasba, *J. Neurosci.* 18:227-236 (1998)). Receptor genes are normally expressed in a small subset of neurons throughout a zonally restricted region of the sensory epithelium. The transcriptional or translational control elements can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods.

In another embodiment, fusion proteins, either having C-terminal or, more preferably, N-terminal translocation sequences, may also comprise the translocation motif described herein. However, these fusion proteins can also comprise additional elements for, e.g., protein detection, purification, or other applications. Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts or histidine-tryptophan modules or other domains that allow purification on immobilized metals; maltose binding protein; protein A domains that allow purification on immobilized immunoglobulin; or the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle WA).

The inclusion of a cleavable linker sequences such as Factor Xa (see, e.g., Ottavi, *Biochimie* 80:289-293 (1998)), subtilisin protease recognition motif (see, e.g., Polyak, *Protein Eng.* 10:615-619 (1997)); enterokinase (Invitrogen, San Diego, CA), and the like, between the translocation domain (for efficient plasma membrane expression) and the rest of the newly translated polypeptide may be useful to facilitate purification. For example, one construct can include a polypeptide-encoding nucleic acid sequence linked to six histidine residues followed by a thioredoxin, an enterokinase cleavage site (see, e.g., Williams, *Biochemistry* 34:1787-1797 (1995)), and an amino terminal translocation domain. The histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the desired protein(s) from the remainder of the fusion protein. Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well described in the scientific and patent literature (see, e.g., Kroll, *DNA Cell. Biol.* 12:441-53 (1993)).

Expression vectors, either as individual expression vectors or as libraries of expression vectors, comprising the olfactory binding domain-encoding sequences may be introduced into a genome or into the cytoplasm or a nucleus of a cell and expressed by a variety of conventional techniques, well described in the scientific and patent

literature (see, e.g., Roberts, *Nature* 328:731 (1987); Berger *supra*; Schneider, *Protein Expr. Purif.* 6435:10 (1995); Sambrook; Tijssen; Ausubel). Product information from manufacturers of biological reagents and experimental equipment also provide information regarding known biological methods. The vectors can be isolated from
5 natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods.

The nucleic acids can be expressed in expression cassettes, vectors or viruses which are stably or transiently expressed in cells (e.g., episomal expression systems). Selection markers can be incorporated into expression cassettes and vectors to confer
10 a selectable phenotype on transformed cells and sequences. For example, selection markers can code for episomal maintenance and replication such that integration into the host genome is not required. For example, the marker may encode antibiotic resistance (e.g., chloramphenicol, kanamycin, G418, bleomycin, hygromycin) or herbicide resistance (e.g., chlorosulfuron or Basta) to permit selection of those cells
15 transformed with the desired DNA sequences (see, e.g., Blondelet-Rouault, *Gene* 190:315-17 (1997); Aubrecht, *J. Pharmacol. Exp. Ther.*, 281:992-97 (1997)). Because selectable marker genes conferring resistance to substrates like neomycin or hygromycin can only be utilized in tissue culture, chemoresistance genes are also used as selectable markers *in vitro* and *in vivo*.

20 A chimeric nucleic acid sequence may encode a ligand-binding domain within any 7-transmembrane polypeptide. 7-transmembrane receptors belong to a superfamily of transmembrane (TM) proteins having seven domains that traverse a plasma membrane seven times. Each of the seven domains spans the plasma membrane (TM I to TM VII). Because 7-transmembrane receptor polypeptides have
25 similar primary sequences and secondary and tertiary structures, structural domains (e.g., TM domains) can be readily identified by sequence analysis. For example, homology modeling, Fourier analysis and helical periodicity detection can identify and characterize the seven domains with a 7-transmembrane receptor sequence. Fast Fourier Transform (FFT) algorithms can be used to assess the dominant periods that
30 characterize profiles of the hydrophobicity and variability of analyzed sequences. To predict TM domains and their boundaries and topology, a "neural network algorithm" by "PHD server" can be used, as done by Pilpel, *Protein Science* 8:969-977 (1999); Rost, *Protein Sci.* 4:521-533 (1995). Periodicity detection enhancement and alpha

helical periodicity index can be done as by, e.g., Donnelly, *Protein Sci.* 2:55-70 (1993). Other alignment and modeling algorithms are well known in the art, see, e.g., Peitsch, *Receptors Channels* 4:161-164 (1996); Cronet, *Protein Eng.* 6:59-64 (1993) (homology and "discover modeling"); <http://bioinfo.weizmann.ac.il/>.

5 The library sequences include receptor sequences that correspond to TM ligand-binding domains, including, e.g., TM II to VII, TM II to VI, TM III to VII, and TM III to VII, that have been amplified (e.g., PCR) from mRNA or cDNA derived from, e.g., olfactory receptor-expressing neurons or genomic DNA.

10 Libraries of olfactory receptor ligand-binding TM domain sequences can include a various TM domains or variations thereof, as described above. These sequences can be derived from any 7-transmembrane receptor. Because these polypeptides have similar primary sequences and secondary and tertiary structures, the seven domains can be identified by various analyses well known in the art, including, e.g., homology modeling, Fourier analysis and helical periodicity (see, e.g., Pilpel 15 *supra*), as described above. Using this information sequences flanking the seven domains can be identified and used to design degenerate primers for amplification of various combinations of TM regions and subsequences.

20 The present invention also includes not only the DNA and proteins having the specified amino acid sequences, but also DNA fragments, particularly fragments of, for example, 40, 60, 80, 100, 150, 200, or 250 nucleotides, or more, as well as protein fragments of, for example, 10, 20, 30, 50, 70, 100, or 150 amino acids, or more.

25 Also contemplated are chimeric proteins, comprising at least 10, 20, 30, 50, 70, 100, or 150 amino acids, or more, of one of at least one of the olfactory receptors described herein, coupled to additional amino acids representing all or part of another G protein receptor, preferably a member of the 7TM superfamily. These chimeras can be made from the instant receptors and a G protein receptor described herein, or they can be made by combining two or more of the present proteins. In one preferred embodiment, one portion of the chimera corresponds to and is derived from one or more of the domains of the seven transmembrane protein described herein, and the remaining portion or portions come from another G protein-coupled receptor. Chimeric receptors are well known in the art, and the techniques for creating them and the selection and boundaries of domains or fragments of G protein-coupled receptors for incorporation therein are also well known. Thus, this knowledge of those skilled

in the art can readily be used to create such chimeric receptors. The use of such chimeric receptors can provide, for example, an olfactory selectivity characteristic of one of the receptors specifically disclosed herein, coupled with the signal transduction characteristics of another receptor, such as a well known receptor used in prior art
5 assay systems.

For example, a domain such as a ligand-binding domain, an extracellular domain, a transmembrane domain (e.g., one comprising seven transmembrane regions and corresponding extracellular and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc., can be
10 covalently linked to a heterologous protein. For instance, an extracellular domain can be linked to a heterologous GPCR transmembrane domain, or a heterologous GPCR extracellular domain can be linked to a transmembrane domain. Other heterologous proteins of choice can include, e.g., green fluorescent protein, β -gal, glutamtate receptor, and the rhodopsin presequence.

15 Polymorphic variants, alleles, and interspecies homologs that are substantially identical to an olfactory receptor disclosed herein can be isolated using the nucleic acid probes described above. It is hypothesized that allelic differences in receptors may explain why there is a difference in olfactory sensation in different human subjects. Accordingly, the identification of such alleles may be significant, especially
20 with respect to producing receptor libraries that adequately represent the olfactory capability of the human population, i.e., which take into account allelic differences in different individuals. Alternatively, expression libraries can be used to clone olfactory receptors and polymorphic variants, alleles, and interspecies homologs thereof, by detecting expressed homologs immunologically with antisera or purified antibodies
25 made against an olfactory polypeptide, which also recognize and selectively bind to the olfactory receptor homolog.

Also within the scope of the invention are host cells for expressing the ORs, fragments, or variants of the invention. To obtain high levels of expression of a cloned gene or nucleic acid, such as cDNAs encoding the olfactory receptors,
30 fragments, or variants of the invention, one of skill typically subclones the nucleic acid sequence of interest into an expression vector that contains a strong promoter to direct transcription, a transcription/translation terminator, and if for a nucleic acid encoding a protein, a ribosome binding site for translational initiation. Suitable

bacterial promoters are well known in the art and described, e.g., in Sambrook *et al.* However, bacterial or eukaryotic expression systems can be used.

Any of the well-known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (*see, e.g.*, Sambrook *et al.*) It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the olfactory receptor, fragment, or variant of interest.

After the expression vector is introduced into the cells, the transfected cells are cultured under conditions favoring expression of the receptor, fragment, or variant of interest, which is then recovered from the culture using standard techniques. Examples of such techniques are well known in the art. *See, e.g.*, WO 00/06593, which is incorporated by reference in a manner consistent with this disclosure.

D. Immunological Detection of OR Polypeptides

In addition to the detection of OR genes and gene expression using nucleic acid hybridization technology, one can also use immunoassays to detect ORs, *e.g.*, to identify olfactory receptor cells, and variants of OR family members. Immunoassays can be used to qualitatively or quantitatively analyze the ORs. A general overview of the applicable technology can be found in Harlow & Lane, *Antibodies: A Laboratory Manual* (1988).

1. Antibodies to OR family members

Methods of producing polyclonal and monoclonal antibodies that react specifically with a OR family member are known to those of skill in the art (*see, e.g.*, Coligan, *Current Protocols in Immunology* (1991); Harlow & Lane, *supra*; Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed. 1986); and Kohler & Milstein, *Nature*, 256:495-97 (1975)). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by

immunizing rabbits or mice (*see, e.g.*, Huse *et al.*, *Science*, 246:1275-81 (1989); Ward *et al.*, *Nature*, 341:544-46 (1989)).

A number of OR-comprising immunogens may be used to produce antibodies specifically reactive with a OR family member. For example, a recombinant OR 5 protein, or an antigenic fragment thereof, can be isolated as described herein. Suitable antigenic regions include, *e.g.*, the conserved motifs that are used to identify members of the OR family. Recombinant proteins can be expressed in eukaryotic or prokaryotic cells as described above, and purified as generally described above. Recombinant protein is the preferred immunogen for the production of monoclonal or 10 polyclonal antibodies. Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Naturally occurring protein may also be used either in pure or impure form. The product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated, for subsequent use in 15 immunoassays to measure the protein.

Methods of production of polyclonal antibodies are known to those of skill in the art. For example, an inbred strain of mice (*e.g.*, BALB/C mice) or rabbits may be immunized with the protein using a standard adjuvant, such as Freund's adjuvant, and a standard immunization protocol. The animal's immune response to the immunogen 20 preparation is monitored by taking test bleeds and determining the titer of reactivity to the OR. When appropriately high titers of antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (*see* Harlow & Lane, *supra*).

Monoclonal antibodies may be obtained by various techniques familiar to 25 those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen may be immortalized, commonly by fusion with a myeloma cell (*see* Kohler & Milstein, *Eur. J. Immunol.*, 6:511-19 (1976)). Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other 30 methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a

vertebrate host. Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse *et al.*, *Science*, 246:1275-1281 (1989).

5 Monoclonal antibodies and polyclonal sera are collected and titered against the immunogen protein in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Typically, polyclonal antisera with a titer of 10⁹ or greater are selected and tested for their cross reactivity against non-OR proteins, or even other OR family members or other related proteins from other
10 organisms, using a competitive binding immunoassay. Specific polyclonal antisera and monoclonal antibodies will usually bind with a Kd of at least about 0.1 mM, more usually at least about 1 pM, optionally at least about 0.1 pM or better, and optionally 0.01 pM or better.

Once OR family member specific antibodies are available, individual OR
15 proteins can be detected by a variety of immunoassay methods. For a review of immunological and immunoassay procedures, *see Basic and Clinical Immunology* (Stites & Terr eds., 7th ed. 1991). Moreover, the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in Enzyme Immunoassay (Maggio, ed., 1980); and Harlow & Lane, *supra*.

20 2. Immunological binding assays

OR proteins can be detected and/or quantified using any of a number of well recognized immunological binding assays (*see, e.g.*, U.S. Patents 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, *see also Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993);
25 *Basic and Clinical Immunology* (Stites & Terr, eds., 7th ed. 1991). Immunological binding assays (or immunoassays) typically use an antibody that specifically binds to a protein or antigen of choice (in this case an OR family member or an antigenic subsequence thereof). The antibody (*e.g.*, anti-OR) may be produced by any of a number of means well known to those of skill in the art and as described above.

30 Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen. The labeling agent may itself be one of the moieties comprising the antibody/antigen complex. Thus, the labeling agent may be a labeled OR polypeptide or a labeled anti-OR antibody. Alternatively, the

labeling agent may be a third moiety, such a secondary antibody that specifically binds to the antibody/OR complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived). Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G
5 may also be used as the label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (*see, e.g.,*, Kronval *et al.*, *J. Immunol.*, 111:1401-1406 (1973); Akerstrom *et al.*, *J. Immunol.*, 135:2589-2542 (1985)). The labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically bind, such as streptavidin.
10 A variety of detectable moieties are well known to those skilled in the art.

Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, optionally from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, antigen, volume of solution,
15 concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C.

a. Non-competitive assay formats

Immunoassays for detecting an OR protein in a sample may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of antigen is directly measured. In one preferred "sandwich" assay, for example, the anti-OR antibodies can be bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture the OR protein present in the test sample. The OR protein is thus immobilized is then bound by a labeling agent, such as a second OR antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, *e.g.*, streptavidin, to provide a detectable moiety.
30

b. Competitive assay formats

In competitive assays, the amount of OR protein present in the sample is measured indirectly by measuring the amount of a known, added (exogenous) OR

protein displaced (competed away) from an anti-OR antibody by the unknown OR protein present in a sample. In one competitive assay, a known amount of OR protein is added to a sample and the sample is then contacted with an antibody that specifically binds to the OR. The amount of exogenous OR protein bound to the antibody is inversely proportional to the concentration of OR protein present in the sample. In a particularly preferred embodiment, the antibody is immobilized on a solid substrate. The amount of OR protein bound to the antibody may be determined either by measuring the amount of OR protein present in a OR/antibody complex, or alternatively by measuring the amount of remaining uncomplexed protein. The amount of OR protein may be detected by providing a labeled OR molecule.

A hapten inhibition assay is another preferred competitive assay. In this assay the known OR protein is immobilized on a solid substrate. A known amount of anti-OR antibody is added to the sample, and the sample is then contacted with the immobilized OR. The amount of anti-OR antibody bound to the known immobilized OR protein is inversely proportional to the amount of OR protein present in the sample. Again, the amount of immobilized antibody may be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection may be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above.

c. Cross-reactivity determinations

Immunoassays in the competitive binding format can also be used for cross-reactivity determinations. For example, a protein at least partially encoded by the nucleic acid sequences disclosed herein can be immobilized to a solid support. Proteins (e.g., OR proteins and homologs) are added to the assay that compete for binding of the antisera to the immobilized antigen. The ability of the added proteins to compete for binding of the antisera to the immobilized protein is compared to the ability of the OR polypeptide encoded by the nucleic acid sequences disclosed herein to compete with itself. The percent cross-reactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% cross-reactivity with each of the added proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, e.g., distantly related

homologs. In addition, peptides comprising amino acid sequences representing conserved motifs that are used to identify members of the OR family can be used in cross-reactivity determinations.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps an allele or polymorphic variant of a OR family member, to the immunogen protein (*i.e.*, OR protein encoded by the nucleic acid sequences disclosed herein). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the protein encoded by nucleic acid sequences disclosed herein required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to a OR immunogen.

Antibodies raised against OR conserved motifs can also be used to prepare antibodies that specifically bind only to GPCRs of the OR family, but not to GPCRs from other families.

Polyclonal antibodies that specifically bind to a particular member of the OR family, *e.g.*, AOLFR1, can be make by subtracting out cross-reactive antibodies using other OR family members. Species-specific polyclonal antibodies can be made in a similar way. For example, antibodies specific to human AOLFR1 can be made by, subtracting out antibodies that are cross-reactive with orthologous sequences, *e.g.*, rat OR1 or mouse OR1.

d. Other assay formats

Western blot (immunoblot) analysis is used to detect and quantify the presence of OR protein in the sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind the OR protein. The anti-OR polypeptide antibodies specifically bind to the OR polypeptide on the solid support. These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (*e.g.*, labeled sheep anti-mouse antibodies) that specifically bind to the anti-OR antibodies.

Other, assay formats include liposome immunoassays (LIA), which use liposomes designed to bind specific molecules (e.g., antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard techniques (*see Monroe et al., Amer. Clin. Prod. Rev.*, 5:34-41 (1986)).

5 e. Reduction of non-specific binding

One of skill in the art will appreciate that it is often desirable to minimize non-specific binding in immunoassays. Particularly, where the assay involves an antigen or antibody immobilized on a solid substrate it is desirable to minimize the amount of non-specific binding to the substrate. Means of reducing such non-specific
10 binding are well known to those of skill in the art. Typically, this technique involves coating the substrate with a proteinaceous composition. In particular, protein compositions such as bovine serum albumin (BSA), nonfat powdered milk, and gelatin are widely used with powdered milk being most preferred.

f. Labels

15 The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay. The detectable group can be any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of immunoassays and, in general, most any label useful in such
20 methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include magnetic beads (e.g., DYNABEADSTM) (SEQ ID NO: 529), fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., ³H, ¹²⁵I, ³⁵S, ¹⁴C,
25 or ³²P), enzymes (e.g., horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic beads (e.g., polystyrene, polypropylene, latex, etc.).

The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety
30 of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.

Non-radioactive labels are often attached by indirect means. Generally, a ligand molecule (*e.g.*, biotin) is covalently bound to the molecule. The ligand then binds to another molecules (*e.g.*, streptavidin) molecule, which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a 5 fluorescent compound, or a chemiluminescent compound. The ligands and their targets can be used in any suitable combination with antibodies that recognize a OR protein, or secondary antibodies that recognize anti-OR.

The molecules can also be conjugated directly to signal generating compounds, *e.g.*, by conjugation with an enzyme or fluorophore. Enzymes of interest 10 as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidotases, particularly peroxidases. Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, etc. Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, *e.g.*, luminol. For a review of various labeling or 15 signal producing systems that may be used, see U.S. Patent No. 4,391,904.

Means of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate 20 wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, by means of photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. Finally simple colorimetric 25 labels may be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.

Some assay formats do not require the use of labeled components. For instance, agglutination assays can be used to detect the presence of the target 30 antibodies. In this case, antigen-coated particles are agglutinated by samples comprising the target antibodies. In this format, none of the components need be labeled and the presence of the target antibody is detected by simple visual inspection.

E. **Detection of Olfactory Modulators**

Methods and compositions for determining whether a test compound specifically binds to a mammalian chemosensory, and more particularly, an olfactory receptor of the invention, both *in vitro* and *in vivo* are described below. Many aspects 5 of cell physiology can be monitored to assess the effect of ligand-binding to a naturally-occurring or chimeric olfactory receptor. These assays may be performed on intact cells expressing an olfactory receptor, on permeabilized cells or on membrane fractions produced by standard methods.

Olfactory receptors are normally located on the specialized cilia of olfactory 10 neurons. These receptors bind odorants and initiate the transduction of chemical stimuli into electrical signals. An activated or inhibited G protein will in turn alter the properties of target enzymes, channels, and other effector proteins. Some examples include the activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G protein, phospholipase C by Gq and other 15 cognate G proteins, and modulation of diverse channels by Gi and other G proteins. Downstream consequences can also be examined such as generation of diacyl glycerol and IP3 by phospholipase C, and in turn, for calcium mobilization by IP3.

The OR protein of the assay will typically be selected from a polypeptide having a sequence selected from SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, 20 SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 13, SEQ. ID. NO. 15, SEQ. ID. NO. 17, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37, SEQ. ID. NO. 39, SEQ. ID. NO. 41, SEQ. ID. NO. 43, SEQ. ID. NO. 45, SEQ. ID. NO. 47, SEQ. ID. NO. 49, SEQ. ID. 25 NO. 51, SEQ. ID. NO. 53, SEQ. ID. NO. 55, SEQ. ID. NO. 57, SEQ. ID. NO. 59, SEQ. ID. NO. 61, SEQ. ID. NO. 63, SEQ. ID. NO. 65, SEQ. ID. NO. 67, SEQ. ID. NO. 69, SEQ. ID. NO. 71, SEQ. ID. NO. 73, SEQ. ID. NO. 75, SEQ. ID. NO. 77, SEQ. ID. NO. 79, SEQ. ID. NO. 81, SEQ. ID. NO. 83, SEQ. ID. NO. 85, SEQ. ID. NO. 87, SEQ. ID. NO. 89, SEQ. ID. NO. 91, SEQ. ID. NO. 93, SEQ. ID. NO. 95, 30 SEQ. ID. NO. 97, SEQ. ID. NO. 99, SEQ. ID. NO. 101, SEQ. ID. NO. 103, SEQ. ID. NO. 105, SEQ. ID. NO. 107, SEQ. ID. NO. 109, SEQ. ID. NO. 111, SEQ. ID. NO. 113, SEQ. ID. NO. 115, SEQ. ID. NO. 117, SEQ. ID. NO. 119, SEQ. ID. NO. 121, SEQ. ID. NO. 123, SEQ. ID. NO. 125, SEQ. ID. NO. 127, SEQ. ID.

NO. 129, SEQ. ID. NO. 131, SEQ. ID. NO. 133, SEQ. ID. NO. 135, SEQ. ID.
NO. 137, SEQ. ID. NO. 139, SEQ. ID. NO. 141, SEQ. ID. NO. 143, SEQ. ID.
NO. 145, SEQ. ID. NO. 147, SEQ. ID. NO. 149, SEQ. ID. NO. 151, SEQ. ID.
NO. 153, SEQ. ID. NO. 155, SEQ. ID. NO. 157, SEQ. ID. NO. 159, SEQ. ID.
5 NO. 161, SEQ. ID. NO. 163, SEQ. ID. NO. 165, SEQ. ID. NO. 167, SEQ. ID.
NO. 169, SEQ. ID. NO. 171, SEQ. ID. NO. 173, SEQ. ID. NO. 175, SEQ. ID.
NO. 177, SEQ. ID. NO. 179, SEQ. ID. NO. 181, SEQ. ID. NO. 183, SEQ. ID.
NO. 185, SEQ. ID. NO. 187, SEQ. ID. NO. 189, SEQ. ID. NO. 191, SEQ. ID.
10 NO. 193, SEQ. ID. NO. 195, SEQ. ID. NO. 197, SEQ. ID. NO. 199, SEQ. ID.
NO. 201, SEQ. ID. NO. 203, SEQ. ID. NO. 205, SEQ. ID. NO. 207, SEQ. ID.
NO. 209, SEQ. ID. NO. 211, SEQ. ID. NO. 213, SEQ. ID. NO. 215, SEQ. ID.
NO. 217, SEQ. ID. NO. 219, SEQ. ID. NO. 221, SEQ. ID. NO. 223, SEQ. ID.
NO. 225, SEQ. ID. NO. 227, SEQ. ID. NO. 229, SEQ. ID. NO. 231, SEQ. ID.
NO. 233, SEQ. ID. NO. 235, SEQ. ID. NO. 237, SEQ. ID. NO. 239, SEQ. ID. NO.
15 NO. 241, SEQ. ID. NO. 243, SEQ. ID. NO. 245, SEQ. ID. NO. 247, SEQ. ID. NO. 249,
SEQ. ID. NO. 251, SEQ. ID. NO. 253, SEQ. ID. NO. 255, SEQ. ID. NO. 257, SEQ.
ID. NO. 259, SEQ. ID. NO. 261, SEQ. ID. NO. 263, SEQ. ID. NO. 265, SEQ. ID.
NO. 267, SEQ. ID. NO. 269, SEQ. ID. NO. 271, SEQ. ID. NO. 273, SEQ. ID. NO.
275, SEQ. ID. NO. 277, SEQ. ID. NO. 279, SEQ. ID. NO. 281, SEQ. ID. NO. 283,
20 SEQ. ID. NO. 285, SEQ. ID. NO. 287, SEQ. ID. NO. 289, SEQ. ID. NO. 291, SEQ.
ID. NO. 293, SEQ. ID. NO. 295, SEQ. ID. NO. 297, SEQ. ID. NO. 299, SEQ. ID.
NO. 301, SEQ. ID. NO. 303, SEQ. ID. NO. 305, SEQ. ID. NO. 307, SEQ. ID. NO.
309, SEQ. ID. NO. 311, SEQ. ID. NO. 313, SEQ. ID. NO. 315, SEQ. ID. NO. 317,
SEQ. ID. NO. 319, SEQ. ID. NO. 321, SEQ. ID. NO. 323, SEQ. ID. NO. 325, SEQ.
25 ID. NO. 327, SEQ. ID. NO. 329, SEQ. ID. NO. 331, SEQ. ID. NO. 333, SEQ. ID.
NO. 335, SEQ. ID. NO. 337, SEQ. ID. NO. 339, SEQ. ID. NO. 341, SEQ. ID. NO.
343, SEQ. ID. NO. 345, SEQ. ID. NO. 347, SEQ. ID. NO. 349, SEQ. ID. NO. 351,
SEQ. ID. NO. 353, SEQ. ID. NO. 355, SEQ. ID. NO. 357, SEQ. ID. NO. 359, SEQ.
ID. NO. 361, SEQ. ID. NO. 363, SEQ. ID. NO. 365, SEQ. ID. NO. 367, SEQ. ID.
30 NO. 369, SEQ. ID. NO. 371, SEQ. ID. NO. 373, SEQ. ID. NO. 375, SEQ. ID. NO.
377, SEQ. ID. NO. 379, SEQ. ID. NO. 381, SEQ. ID. NO. 383, SEQ. ID. NO. 385,
SEQ. ID. NO. 387, SEQ. ID. NO. 389, SEQ. ID. NO. 391, SEQ. ID. NO. 393, SEQ.
ID. NO. 395, SEQ. ID. NO. 397, SEQ. ID. NO. 399, SEQ. ID. NO. 401, SEQ. ID.

NO. 403, SEQ. ID. NO. 405, SEQ. ID. NO. 407, SEQ. ID. NO. 409, SEQ. ID. NO. 411, SEQ. ID. NO. 413, SEQ. ID. NO. 415, SEQ. ID. NO. 417, SEQ. ID. NO. 419, SEQ. ID. NO. 421, SEQ. ID. NO. 423, SEQ. ID. NO. 425, SEQ. ID. NO. 427, SEQ. ID. NO. 429, SEQ. ID. NO. 431, SEQ. ID. NO. 433, SEQ. ID. NO. 435, SEQ. ID. 5 NO. 437, SEQ. ID. NO. 439, SEQ. ID. NO. 441, SEQ. ID. NO. 443, SEQ. ID. NO. 445, SEQ. ID. NO. 447, SEQ. ID. NO. 449, SEQ. ID. NO. 451, SEQ. ID. NO. 453, SEQ. ID. NO. 455, SEQ. ID. NO. 457, SEQ. ID. NO. 459, SEQ. ID. NO. 461, SEQ. ID. NO. 463, SEQ. ID. NO. 465, SEQ. ID. NO. 467, SEQ. ID. NO. 469, SEQ. ID. NO. 471, SEQ. ID. NO. 473, SEQ. ID. NO. 475, SEQ. ID. NO. 477, SEQ. ID. NO. 10 479, SEQ. ID. NO. 481, SEQ. ID. NO. 483, SEQ. ID. NO. 485, SEQ. ID. NO. 487, SEQ. ID. NO. 489, SEQ. ID. NO. 491, SEQ. ID. NO. 493, SEQ. ID. NO. 495, SEQ. ID. NO. 497, SEQ. ID. NO. 499, SEQ. ID. NO. 501, SEQ. ID. NO. 503, SEQ. ID. NO. 505, SEQ. ID. NO. 507, SEQ. ID. NO. 509 and SEQ. ID. NO. 511, or conservatively modified variant thereof.

15 Alternatively, the OR protein of the assay can be derived from a eukaryote host cell and can include an amino acid subsequence having at least about 30-40% amino acid sequence identity to SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 13, SEQ. ID. NO. 15, SEQ. ID. NO. 17, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, 20 SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37, SEQ. ID. NO. 39, SEQ. ID. NO. 41, SEQ. ID. NO. 43, SEQ. ID. NO. 45, SEQ. ID. NO. 47, SEQ. ID. NO. 49, SEQ. ID. NO. 51, SEQ. ID. NO. 53, SEQ. ID. NO. 55, SEQ. ID. NO. 57, SEQ. ID. NO. 59, SEQ. ID. NO. 61, SEQ. ID. NO. 63, SEQ. ID. NO. 65, SEQ. ID. NO. 67, SEQ. ID. NO. 69, SEQ. ID. 25 NO. 71, SEQ. ID. NO. 73, SEQ. ID. NO. 75, SEQ. ID. NO. 77, SEQ. ID. NO. 79, SEQ. ID. NO. 81, SEQ. ID. NO. 83, SEQ. ID. NO. 85, SEQ. ID. NO. 87, SEQ. ID. NO. 89, SEQ. ID. NO. 91, SEQ. ID. NO. 93, SEQ. ID. NO. 95, SEQ. ID. NO. 97, SEQ. ID. NO. 99, SEQ. ID. NO. 101, SEQ. ID. NO. 103, SEQ. ID. NO. 105, SEQ. ID. NO. 107, SEQ. ID. NO. 109, SEQ. ID. NO. 111, SEQ. ID. NO. 113, SEQ. ID. 30 NO. 115, SEQ. ID. NO. 117, SEQ. ID. NO. 119, SEQ. ID. NO. 121, SEQ. ID. NO. 123, SEQ. ID. NO. 125, SEQ. ID. NO. 127, SEQ. ID. NO. 129, SEQ. ID. NO. 131, SEQ. ID. NO. 133, SEQ. ID. NO. 135, SEQ. ID. NO. 137, SEQ. ID. NO. 139, SEQ. ID. NO. 141, SEQ. ID. NO. 143, SEQ. ID. NO. 145, SEQ. ID.

NO. 147, SEQ. ID. NO. 149, SEQ. ID. NO. 151, SEQ. ID. NO. 153, SEQ. ID. NO. 155, SEQ. ID. NO. 157, SEQ. ID. NO. 159, SEQ. ID. NO. 161, SEQ. ID. NO. 163, SEQ. ID. NO. 165, SEQ. ID. NO. 167, SEQ. ID. NO. 169, SEQ. ID. NO. 171, SEQ. ID. NO. 173, SEQ. ID. NO. 175, SEQ. ID. NO. 177, SEQ. ID. 5 NO. 179, SEQ. ID. NO. 181, SEQ. ID. NO. 183, SEQ. ID. NO. 185, SEQ. ID. NO. 187, SEQ. ID. NO. 189, SEQ. ID. NO. 191, SEQ. ID. NO. 193, SEQ. ID. NO. 195, SEQ. ID. NO. 197, SEQ. ID. NO. 199, SEQ. ID. NO. 201, SEQ. ID. NO. 203, SEQ. ID. NO. 205, SEQ. ID. NO. 207, SEQ. ID. NO. 209, SEQ. ID. NO. 211, SEQ. ID. NO. 213, SEQ. ID. NO. 215, SEQ. ID. NO. 217, SEQ. ID. 10 NO. 219, SEQ. ID. NO. 221, SEQ. ID. NO. 223, SEQ. ID. NO. 225, SEQ. ID. NO. 227, SEQ. ID. NO. 229, SEQ. ID. NO. 231, SEQ. ID. NO. 233, SEQ. ID. NO. 235, SEQ. ID. NO. 237, SEQ. ID. NO. 239, SEQ. ID. NO. 241, SEQ. ID. NO. 243, SEQ. ID. NO. 245, SEQ. ID. NO. 247, SEQ. ID. NO. 249, SEQ. ID. NO. 251, SEQ. ID. NO. 253, SEQ. ID. NO. 255, SEQ. ID. NO. 257, SEQ. ID. NO. 259, SEQ. 15 ID. NO. 261, SEQ. ID. NO. 263, SEQ. ID. NO. 265, SEQ. ID. NO. 267, SEQ. ID. NO. 269, SEQ. ID. NO. 271, SEQ. ID. NO. 273, SEQ. ID. NO. 275, SEQ. ID. NO. 277, SEQ. ID. NO. 279, SEQ. ID. NO. 281, SEQ. ID. NO. 283, SEQ. ID. NO. 285, SEQ. ID. NO. 287, SEQ. ID. NO. 289, SEQ. ID. NO. 291, SEQ. ID. NO. 293, SEQ. ID. NO. 295, SEQ. ID. NO. 297, SEQ. ID. NO. 299, SEQ. ID. NO. 301, SEQ. ID. 20 NO. 303, SEQ. ID. NO. 305, SEQ. ID. NO. 307, SEQ. ID. NO. 309, SEQ. ID. NO. 311, SEQ. ID. NO. 313, SEQ. ID. NO. 315, SEQ. ID. NO. 317, SEQ. ID. NO. 319, SEQ. ID. NO. 321, SEQ. ID. NO. 323, SEQ. ID. NO. 325, SEQ. ID. NO. 327, SEQ. ID. NO. 329, SEQ. ID. NO. 331, SEQ. ID. NO. 333, SEQ. ID. NO. 335, SEQ. ID. NO. 337, SEQ. ID. NO. 339, SEQ. ID. NO. 341, SEQ. ID. NO. 343, SEQ. ID. NO. 345, SEQ. ID. NO. 347, SEQ. ID. NO. 349, SEQ. ID. NO. 351, SEQ. ID. NO. 353, SEQ. ID. NO. 355, SEQ. ID. NO. 357, SEQ. ID. NO. 359, SEQ. ID. NO. 361, SEQ. ID. NO. 363, SEQ. ID. NO. 365, SEQ. ID. NO. 367, SEQ. ID. NO. 369, SEQ. ID. NO. 371, SEQ. ID. NO. 373, SEQ. ID. NO. 375, SEQ. ID. NO. 377, SEQ. ID. NO. 379, SEQ. ID. NO. 381, SEQ. ID. NO. 383, SEQ. ID. NO. 385, SEQ. ID. NO. 387, SEQ. 25 ID. NO. 389, SEQ. ID. NO. 391, SEQ. ID. NO. 393, SEQ. ID. NO. 395, SEQ. ID. NO. 397, SEQ. ID. NO. 399, SEQ. ID. NO. 401, SEQ. ID. NO. 403, SEQ. ID. NO. 405, SEQ. ID. NO. 407, SEQ. ID. NO. 409, SEQ. ID. NO. 411, SEQ. ID. NO. 413, SEQ. ID. NO. 415, SEQ. ID. NO. 417, SEQ. ID. NO. 419, SEQ. ID. NO. 421, SEQ.

ID. NO. 423, SEQ. ID. NO. 425, SEQ. ID. NO. 427, SEQ. ID. NO. 429, SEQ. ID. NO. 431, SEQ. ID. NO. 433, SEQ. ID. NO. 435, SEQ. ID. NO. 437, SEQ. ID. NO. 439, SEQ. ID. NO. 441, SEQ. ID. NO. 443, SEQ. ID. NO. 445, SEQ. ID. NO. 447, SEQ. ID. NO. 449, SEQ. ID. NO. 451, SEQ. ID. NO. 453, SEQ. ID. NO. 455, SEQ.
5 ID. NO. 457, SEQ. ID. NO. 459, SEQ. ID. NO. 461, SEQ. ID. NO. 463, SEQ. ID. NO. 465, SEQ. ID. NO. 467, SEQ. ID. NO. 469, SEQ. ID. NO. 471, SEQ. ID. NO. 473, SEQ. ID. NO. 475, SEQ. ID. NO. 477, SEQ. ID. NO. 479, SEQ. ID. NO. 481, SEQ. ID. NO. 483, SEQ. ID. NO. 485, SEQ. ID. NO. 487, SEQ. ID. NO. 489, SEQ.
10 ID. NO. 491, SEQ. ID. NO. 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511.

Preferably, the amino acid sequence identity will be at least 50-75% preferably 85%, 90%, 95%, 96%, 97%, 98%, or 99%. Optionally, the polypeptide of the assays can comprise a domain of an OR protein, such as an extracellular domain,
15 transmembrane region, transmembrane domain, cytoplasmic domain, ligand-binding domain, subunit association domain, active site, and the like. Either the OR protein or a domain thereof can be covalently linked to a heterologous protein to create a chimeric protein used in the assays described herein. As discussed *infra*, the family of ORs provided herein exhibits substantial sequence similarity at both the DNA and
20 protein level, but also significant dissimilarity. In particular, the members possess an average percentage sequence identity to other members of the family when determined over the full length of the gene by about 30%. Moreover, different members of the genes at the protein level exhibit an average on the order of about 40% sequence identity to other members of the family when the full length protein sequences are
25 compared. However, while there exist differences, there are characteristic similarities, e.g. the consensus sequence already mentioned, which further define members of this novel genus of receptors.

Modulators of OR activity can be tested using OR polypeptides as described above, either recombinant or naturally occurring. The protein can be isolated,
30 expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal, either recombinant or naturally occurring. Modulation can be tested using one of the *in vitro* or *in vivo* assays described herein.

1. In vitro binding assays

Olfactory transduction can also be examined *in vitro* with soluble or solid state reactions, using a full-length OR or a chimeric molecule such as an extracellular domain or transmembrane region, or combination thereof, of a OR covalently linked
5 to a heterologous signal transduction domain, or a heterologous extracellular domain and/or transmembrane region covalently linked to the transmembrane and/or cytoplasmic domain of an OR. Furthermore, ligand-binding domains of the protein of interest can be used *in vitro* in soluble or solid state reactions to assay for ligand binding. In numerous embodiments, a chimeric receptor will be made that comprises
10 all or part of a OR polypeptide, as well an additional sequence that facilitates the localization of the OR to the membrane, such as a rhodopsin, *e.g.*, an N-terminal fragment of a rhodopsin protein, *e.g.* bovine or another mammalian rhodopsin.

Ligand binding to a OR protein, a domain, or chimeric protein can be tested in solution, in a bilayer membrane, attached to a solid phase, in a lipid monolayer, or in
15 vesicles. Binding of a modulator can be tested using, *e.g.*, changes in spectroscopic characteristics (*e.g.*, fluorescence, absorbence, refractive index) hydrodynamic (*e.g.*, shape), chromatographic, or solubility properties.

Receptor-G protein interactions can also be examined. For example, binding of the G protein to the receptor or its release from the receptor can be examined. For
20 example, in the absence of GTP, an activator will lead to the formation of a tight complex of a G protein (all three subunits) with the receptor. This complex can be detected in a variety of ways, as noted above. Such an assay can be modified to search for inhibitors, *e.g.*, by adding an activator to the receptor and G protein in the absence of GTP, which form a tight complex, and then screen for inhibitors by
25 looking at dissociation of the receptor-G protein complex. In the presence of GTP, release of the alpha subunit of the G protein from the other two G protein subunits serves as a criterion of activation.

An activated or inhibited G protein will in turn alter the properties of target enzymes, channels, and other effector proteins. The classic examples are the
30 activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G protein, phospholipase C by Gq and other cognate G proteins, and modulation of diverse channels by Gi and other G proteins.

Downstream consequences can also be examined such as generation of diacyl glycerol and IP₃ by phospholipase C, and in turn, for calcium mobilization by IP₃.

In another embodiment of the invention, a GTP γ S assay may be used. As described above, upon activation of a GPCR, the G α subunit of the G protein complex 5 is stimulated to exchange bound GDP for GTP. Ligand-mediated stimulation of G protein exchange activity can be measured in a biochemical assay measuring the binding of added radioactively-labeled GTP γ ³⁵S to the G protein in the presence of a putative ligand. Typically, membranes containing the chemosensory receptor of interest are mixed with a complex of G proteins. Potential inhibitors and/or activators 10 and GTP γ S are added to the assay, and binding of GTP γ S to the G protein is measured. Binding can be measured by liquid scintillation counting or by any other means known in the art, including scintillation proximity assays (SPA). In other assays formats, fluorescently-labeled GTP γ S can be utilized.

2. Fluorescence Polarization Assays

15 In another embodiment, Fluorescence Polarization (“FP”) based assays may be used to detect and monitor odorant binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, 20 chromatography, precipitation or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to 25 micromolar levels. This section describes how fluorescence polarization can be used in a simple and quantitative way to measure the binding of odorants to the olfactory receptors of the invention.

When a fluorescently labeled molecule is excited with plane polarized light, it emits light that has a degree of polarization that is inversely proportional to its 30 molecular rotation. Large fluorescently labeled molecules remain relatively stationary during the excited state (4 nanoseconds in the case of fluorescein) and the polarization of the light remains relatively constant between excitation and emission. Small fluorescently labeled molecules rotate rapidly during the excited state and the

polarization changes significantly between excitation and emission. Therefore, small molecules have low polarization values and large molecules have high polarization values. For example, a single-stranded fluorescein-labeled oligonucleotide has a relatively low polarization value but when it is hybridized to a complementary strand, 5 it has a higher polarization value. When using FP to detect and monitor odorant-binding which may activate or inhibit the olfactory receptors of the invention, fluorescence-labeled odorants or auto-fluorescent odorants may be used.

Fluorescence polarization (P) is defined as:

$$P = \frac{Int_{\parallel} - Int_{\perp}}{Int_{\parallel} + Int_{\perp}}$$

10 Where Π is the intensity of the emission light parallel to the excitation light plane and $Int \perp$ is the intensity of the emission light perpendicular to the excitation light plane. P, being a ratio of light intensities, is a dimensionless number. For example, the Beacon ® and Beacon 2000™ System may be used in connection with these assays. Such systems typically express polarization in millipolarization units (1
15 Polarization Unit = 1000 mP Units).

The relationship between molecular rotation and size is described by the Perrin equation and the reader is referred to Jolley, M. E. (1991) in Journal of Analytical Toxicology, pp. 236-240, which gives a thorough explanation of this equation. Summarily, the Perrin equation states that polarization is directly proportional to the 20 rotational relaxation time, the time that it takes a molecule to rotate through an angle of approximately 68.5°. Rotational relaxation time is related to viscosity (η), absolute temperature (T), molecular volume (V), and the gas constant (R) by the following equation:

$$Rotational\ Relaxation\ Time = \frac{3\eta V}{RT}$$

25 The rotational relaxation time is small (\approx 1 nanosecond) for small molecules (e.g. fluorescein) and large (\approx 100 nanoseconds) for large molecules (e.g. immunoglobulins). If viscosity and temperature are held constant, rotational relaxation time, and therefore polarization, is directly related to the molecular volume. Changes in molecular volume may be due to interactions with other molecules, 30 dissociation, polymerization, degradation, hybridization, or conformational changes of the fluorescently labeled molecule. For example, fluorescence polarization has been

used to measure enzymatic cleavage of large fluorescein labeled polymers by proteases, DNases, and RNases. It also has been used to measure equilibrium binding for protein/protein interactions, antibody/antigen binding, and protein/DNA binding.

3. Solid state and soluble high throughput assays

5 In yet another embodiment, the invention provides soluble assays using molecules such as a domain such as ligand-binding domain, an extracellular domain, a transmembrane domain (*e.g.*, one comprising seven transmembrane regions and cytosolic loops), the transmembrane domain and a cytoplasmic domain, an active site, a subunit association region, etc.; a domain that is covalently linked to a heterologous
10 protein to create a chimeric molecule; an OR protein; or a cell or tissue expressing an OR protein, either naturally occurring or recombinant. In another embodiment, the invention provides solid phase based *in vitro* assays in a high throughput format, where the domain, chimeric molecule, OR protein, or cell or tissue expressing the OR is attached to a solid phase substrate.

15 In the high throughput assays of the invention, it is possible to screen up to several thousand different modulators or ligands in a single day. In particular, each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, if concentration or incubation time effects are to be observed, every 5-10 wells can test a single modulator. Thus, a single standard microtiter plate
20 can assay about 100 (*e.g.*, 96) modulators. If 1536 well plates are used, then a single plate can easily assay from about 1000 to about 1500 different compounds. It is also possible to assay multiple compounds in each plate well. Further, it is possible to assay several different plates per day; assay screens for up to about 6,000-20,000 different compounds is possible using the integrated systems of the invention. More
25 recently, microfluidic approaches to reagent manipulation have been developed.

The molecule of interest can be bound to the solid state component, directly or indirectly, via covalent or non covalent linkage, *e.g.*, via a tag. The tag can be any of a variety of components. In general, a molecule which binds the tag (a tag binder) is fixed to a solid support, and the tagged molecule of interest (*e.g.*, the olfactory
30 transduction molecule of interest) is attached to the solid support by interaction of the tag and the tag binder.

A number of tags and tag binders can be used, based upon known molecular interactions well described in the literature. For example, where a tag has a natural

binder, for example, biotin, protein A, or protein G, it can be used in conjunction with appropriate tag binders (avidin, streptavidin, neutravidin, the Fc region of an immunoglobulin, *etc.*). Antibodies to molecules with natural binders such as biotin are also widely available and appropriate tag binders (*see*, SIGMA Immunochemicals 5 1998 catalogue SIGMA, St. Louis MO).

Similarly, any haptic or antigenic compound can be used in combination with an appropriate antibody to form a tag/tag binder pair. Thousands of specific antibodies are commercially available and many additional antibodies are described in the literature. For example, in one common configuration, the tag is a first antibody 10 and the tag binder is a second antibody which recognizes the first antibody. In addition to antibody-antigen interactions, receptor-ligand interactions are also appropriate as tag and tag-binder pairs. For example, agonists and antagonists of cell membrane receptors (*e.g.*, cell receptor-ligand interactions such as transferrin, c-kit, viral receptor ligands, cytokine receptors, chemokine receptors, interleukin receptors, 15 immunoglobulin receptors and antibodies, the cadherein family, the integrin family, the selectin family, and the like; *see, e.g.*, Pigott & Power, *The Adhesion Molecule Facts Book I* (1993)). Similarly, toxins and venoms, viral epitopes, hormones (*e.g.*, opiates, steroids, *etc.*), intracellular receptors (*e.g.*, which mediate the effects of various small ligands, including steroids, thyroid hormone, retinoids and vitamin D; 20 peptides), drugs, lectins, sugars, nucleic acids (both linear and cyclic polymer configurations), oligosaccharides, proteins, phospholipids and antibodies can all interact with various cell receptors.

Synthetic polymers, such as polyurethanes, polyesters, polycarbonates, . polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, 25 polyimides, and polyacetates can also form an appropriate tag or tag binder. Many other tag/tag binder pairs are also useful in assay systems described herein, as would be apparent to one of skill upon review of this disclosure.

Common linkers such as peptides, polyethers, and the like can also serve as tags, and include polypeptide sequences, such as poly gly sequences of between about 30 5 and 200 amino acids. Such flexible linkers are known to persons of skill in the art. For example, poly(ethelyne glycol) linkers are available from Shearwater Polymers, Inc. Huntsville, Alabama. These linkers optionally have amide linkages, sulfhydryl linkages, or heterofunctional linkages.

Tag binders are fixed to solid substrates using any of a variety of methods currently available. Solid substrates are commonly derivatized or functionalized by exposing all or a portion of the substrate to a chemical reagent that fixes a chemical group to the surface which is reactive with a portion of the tag binder. For example, 5 groups that are suitable for attachment to a longer chain portion would include amines, hydroxyl, thiol, and carboxyl groups. Aminoalkylsilanes and hydroxyalkylsilanes can be used to functionalize a variety of surfaces, such as glass surfaces. The construction of such solid phase biopolymer arrays is well described in the literature. See, e.g., Merrifield, *J. Am. Chem. Soc.*, 85:2149-54 (1963) (describing 10 solid phase synthesis of, e.g., peptides); Geysen *et al.*, *J. Immun. Meth.*, 102:259-74 (1987) (describing synthesis of solid phase components on pins); Frank & Doring, *Tetrahedron*, 44:60316040 (1988) (describing synthesis of various peptide sequences on cellulose disks); Fodor *et al.*, *Science*, 251:767-77 (1991); Sheldon *et al.*, *Clinical Chemistry*, 39(4):718-19 (1993); and Kozal *et al.*, *Nature Medicine*, 2(7):753759 15 (1996) (all describing arrays of biopolymers fixed to solid substrates). Non-chemical approaches for fixing tag binders to substrates include other common methods, such as heat, cross-linking by UV radiation, and the like.

4. Computer-based assays

Yet another assay for compounds that modulate OR protein activity involves 20 computer assisted compound design, in which a computer system is used to generate a three-dimensional structure of an OR protein based on the structural information encoded by its amino acid sequence. The input amino acid sequence interacts directly and actively with a preestablished algorithm in a computer program to yield secondary, tertiary, and quaternary structural models of the protein. The models of the 25 protein structure are then examined to identify regions of the structure that have the ability to bind, e.g., ligands. These regions are then used to identify ligands that bind to the protein.

The three-dimensional structural model of the protein is generated by entering 30 protein amino acid sequences of at least 10 amino acid residues or corresponding nucleic acid sequences encoding a OR polypeptide into the computer system. The nucleotide sequence encoding the polypeptide, or the amino acid sequence thereof, can be any of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID

NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID
NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID
NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID
NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID
5 NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID
NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID
NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID
NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID
NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107,
10 SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID
NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125,
SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID
NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143,
SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID
15 NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID
NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179,
SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID
NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
20 SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
25 NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
30 SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,

SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
5 SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449,
10 SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503,
15 SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511, and conservatively modified versions thereof.

The amino acid sequence represents the primary sequence or subsequence of the protein, which encodes the structural information of the protein. At least 10 residues of the amino acid sequence (or a nucleotide sequence encoding 10 amino acids) are entered into the computer system from computer keyboards, computer readable substrates that include, but are not limited to, electronic storage media (e.g., magnetic diskettes, tapes, cartridges, and chips), optical media (e.g., CD ROM), information distributed by internet sites, and by RAM. The three-dimensional structural model of the protein is then generated by the interaction of the amino acid sequence and the computer system, using software known to those of skill in the art. .

The amino acid sequence represents a primary structure that encodes the information necessary to form the secondary, tertiary and quaternary structure of the

protein of interest. The software looks at certain parameters encoded by the primary sequence to generate the structural model. These parameters are referred to as "energy terms," and primarily include electrostatic potentials, hydrophobic potentials, solvent accessible surfaces, and hydrogen bonding. Secondary energy terms include van der Waals potentials. Biological molecules form the structures that minimize the energy terms in a cumulative fashion. The computer program is therefore using these terms encoded by the primary structure or amino acid sequence to create the secondary structural model.

The tertiary structure of the protein encoded by the secondary structure is then formed on the basis of the energy terms of the secondary structure. The user at this point can enter additional variables such as whether the protein is membrane bound or soluble, its location in the body, and its cellular location, *e.g.*, cytoplasmic, surface, or nuclear. These variables along with the energy terms of the secondary structure are used to form the model of the tertiary structure. In modeling the tertiary structure, the computer program matches hydrophobic faces of secondary structure with like, and hydrophilic faces of secondary structure with like.

Once the structure has been generated, potential ligand-binding regions are identified by the computer system. Three-dimensional structures for potential ligands are generated by entering amino acid or nucleotide sequences or chemical formulas of compounds, as described above. The three-dimensional structure of the potential ligand is then compared to that of the OR protein to identify ligands that bind to the protein. Binding affinity between the protein and ligands is determined using energy terms to determine which ligands have an enhanced probability of binding to the protein.

Computer systems are also used to screen for mutations, polymorphic variants, alleles and interspecies homologs of OR genes. Such mutations can be associated with disease states or genetic traits. As described above, GeneChip™ and related technology can also be used to screen for mutations, polymorphic variants, alleles and interspecies homologs. Once the variants are identified, diagnostic assays can be used to identify patients having such mutated genes. Identification of the mutated OR genes involves receiving input of a first nucleic acid or amino acid sequence of a OR gene, or conservatively modified versions thereof. The sequence is entered into the computer system as described above. The first nucleic acid or amino acid sequence is

then compared to a second nucleic acid or amino acid sequence that has substantial identity to the first sequence. The second sequence is entered into the computer system in the manner described above. Once the first and second sequences are compared, nucleotide or amino acid differences between the sequences are identified.

5 Such sequences can represent allelic differences in various OR genes, and mutations associated with disease states and genetic traits.

5. **Cell-based binding assays**

In a preferred embodiment, an OR polypeptide is expressed in a eukaryotic cell as a chimeric receptor with a heterologous, chaperone sequence that facilitates its 10 maturation and targeting through the secretory pathway. In a preferred embodiment, the heterologous sequence is a rhodopsin sequence, such as an N-terminal fragment of a rhodopsin. Such chimeric OR receptors can be expressed in any eukaryotic cell, such as HEK-293 cells. Preferably, the cells comprise a functional G protein, e.g., G α 15, that is capable of coupling the chimeric receptor to an intracellular signaling 15 pathway or to a signaling protein such as phospholipase C. Activation of such chimeric receptors in such cells can be detected using any standard method, such as by detecting changes in intracellular calcium by detecting FURA-2 dependent fluorescence in the cell.

Activated GPCR receptors become substrates for kinases that phosphorylate 20 the C-terminal tail of the receptor (and possibly other sites as well). Thus, activators will promote the transfer of 32 P from gamma-labeled GTP to the receptor, which can be assayed with a scintillation counter. The phosphorylation of the C-terminal tail will promote the binding of arrestin-like proteins and will interfere with the binding of 25 G proteins. The kinase/arrestin pathway plays a key role in the desensitization of many GPCR receptors. For example, compounds that modulate the duration an olfactory receptor stays active would be useful as a means of prolonging a desired odor or cutting off an unpleasant one. For a general review of GPCR signal transduction and methods of assaying signal transduction, see, e.g., *Methods in Enzymology*, vols. 237 and 238 (1994) and volume 96 (1983); Bourne *et al.*, *Nature*, 30 10:349:117-27 (1991); Bourne *et al.*, *Nature*, 348:125-32 (1990); Pitcher *et al.*, *Annu. Rev. Biochem.*, 67:653-92 (1998).

OR modulation may be assayed by comparing the response of an OR polypeptide treated with a putative OR modulator to the response of an untreated

control sample. Such putative OR modulators can include odorants that either inhibit or activate OR polypeptide activity. In one embodiment, control samples (untreated with activators or inhibitors) are assigned a relative OR activity value of 100. Inhibition of an OR polypeptide is achieved when the OR activity value relative to the 5 control is about 90%, optionally 50%, optionally 25-0%. Activation of an OR polypeptide is achieved when the OR activity value relative to the control is 110%, optionally 150%, 200-500%, or 1000-2000%.

Changes in ion flux may be assessed by determining changes in polarization (i.e., electrical potential) of the cell or membrane expressing a OR protein. One 10 means to determine changes in cellular polarization is by measuring changes in current (thereby measuring changes in polarization) with voltage-clamp and patch-clamp techniques, e.g., the "cell-attached" mode, the "inside-out" mode, and the "whole cell" mode (see, e.g., Ackerman *et al.*, *New Engl. J Med.*, 336:1575-1595 15 (1997)). Whole cell currents are conveniently determined using the standard. Other known assays include: radiolabeled ion flux assays and fluorescence assays using voltage-sensitive dyes (see, e.g., Vestergaard-Bogind *et al.*, *J. Membrane Biol.*, 88:67-75 (1988); Gonzales & Tsien, *Chem. Biol.*, 4:269-277 (1997); Daniel *et al.*, *J. Pharmacol. Meth.*, 25:185-193 (1991); Holevinsky *et al.*, *J. Membrane Biology*, 137:59-70 (1994)). Generally, the compounds to be tested are present in the range 20 from 1 pM to 100 mM.

The effects of the test compounds upon the function of the polypeptides can be measured by examining any of the parameters described above. Any suitable physiological change that affects GPCR activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional 25 consequences are determined using intact cells or animals, one can also measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca²⁺, IP3, cGMP, or cAMP.

Preferred assays for GPCRs include cells that are loaded with ion or voltage 30 sensitive dyes to report receptor activity. Assays for determining activity of such receptors can also use known agonists and antagonists for other G protein coupled receptors as negative or positive controls to assess activity of tested compounds. In

assays for identifying modulatory compounds (*e.g.*, agonists, antagonists), changes in the level of ions in the cytoplasm or membrane voltage will be monitored using an ion sensitive or membrane voltage fluorescent indicator, respectively. Among the ion-sensitive indicators and voltage probes that may be employed are those disclosed
5 in the Molecular Probes 1997 Catalog. For G protein coupled receptors, promiscuous G proteins such as G α 15 and G α 16 can be used in the assay of choice (Wilkie *et al.*, *PNAS*, 88:10049-53 (1991)). Such promiscuous G proteins allow coupling of a wide range of receptors.

Receptor activation typically initiates subsequent intracellular events, *e.g.*,
10 increases in second messengers such as IP3, which releases intracellular stores of calcium ions. Activation of some G protein coupled receptors stimulates the formation of inositol triphosphate (IP3) through phospholipase C-mediated hydrolysis of phosphatidylinositol (Berridge & Irvine, *Nature*, 312:315-21 (1984)). IP3 in turn stimulates the release of intracellular calcium ion stores. Thus, a change in
15 cytoplasmic calcium ion levels, or a change in second messenger levels such as IP3 can be used to assess G protein coupled receptor function. Cells expressing such G protein coupled receptors may exhibit increased cytoplasmic calcium levels as a result of contribution from both intracellular stores and via activation of ion channels, in which case it may be desirable although not necessary to conduct such assays in
20 calcium-free buffer, optionally supplemented with a chelating agent such as EGTA, to distinguish fluorescence response resulting from calcium release from internal stores.

Other assays can involve determining the activity of receptors which, when activated, result in a change in the level of intracellular cyclic nucleotides, *e.g.*, cAMP or cGMP, by activating or inhibiting enzymes such as adenylate cyclase. There are
25 cyclic nucleotide-gated ion channels, *e.g.*, rod photoreceptor cell channels and olfactory neuron channels that are permeable to cations upon activation by binding of cAMP or cGMP (*see, e.g.*, Altenhofen *et al.*, *PNAS*, 88:9868-72 (1991) and Dhallan *et al.*, *Nature*, 347:184-187 (1990)). In cases where activation of the receptor results in a decrease in cyclic nucleotide levels, it may be preferable to expose the cells to agents
30 that increase intracellular cyclic nucleotide levels, *e.g.*, forskolin, prior to adding a receptor-activating compound to the cells in the assay. Cells for this type of assay can be made by co-transfection of a host cell with DNA encoding a cyclic nucleotide-crated ion channel, GPCR phosphatase and DNA encoding a receptor (*e.g.*,

certain glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, serotonin receptors, and the like), which, when activated, causes a change in cyclic nucleotide levels in the cytoplasm.

In a preferred embodiment, OR protein activity is measured by expressing a 5 OR gene in a heterologous cell with a promiscuous G protein that links the receptor to a phospholipase C signal transduction pathway (see Offermanns & Simon, *J. Biol. Chem.*, 270:15175-15180 (1995)). Optionally the cell line is HEK-293 (which does not naturally express OR genes) and the promiscuous G protein is G α 15/G α 16 (Offermanns & Simon, *supra*). Modulation of olfactory transduction is assayed by 10 measuring changes in intracellular Ca²⁺ levels, which change in response to modulation of the OR signal transduction pathway via administration of a molecule that associates with a OR protein. Changes in Ca²⁺ levels are optionally measured using fluorescent Ca²⁺ indicator dyes and fluorometric imaging.

In one embodiment, the changes in intracellular cAMP or cGMP can be 15 measured using immunoassays. The method described in Offermanns & Simon, *J. Bio. Chem.*, 270:15175-15180 (1995), may be used to determine the level of cAMP. Also, the method described in Felley-Bosco *et al.*, *Am. J. Resp. Cell and Mol. Biol.*, 11:159-164 (1994), may be used to determine the level of cGMP. Further, an assay 20 kit for measuring cAMP and/or cGMP is described in U.S. Patent 4,115,538, herein incorporated by reference.

In another embodiment, phosphatidyl inositol (PI) hydrolysis can be analyzed according to U.S. Patent 5,436,128, herein incorporated by reference. Briefly, the assay involves labeling of cells with 3H-myoinositol for 48 or more hrs. The labeled 25 cells are treated with a test compound for one hour. The treated cells are lysed and extracted in chloroform-methanol-water after which the inositol phosphates were separated by ion exchange chromatography and quantified by scintillation counting. Fold stimulation is determined by calculating the ratio of cpm in the presence of agonist, to cpm in the presence of buffer control. Likewise, fold inhibition is determined by calculating the ratio of cpm in the presence of antagonist, to cpm in the 30 presence of buffer control (which may or may not contain an agonist).

In another embodiment, transcription levels can be measured to assess the effects of a test compound on signal transduction. A host cell containing an OR protein of interest is contacted with a test compound for a sufficient time to effect any

interactions, and then the level of gene expression is measured. The amount of time to effect such interactions may be empirically determined, such as by running a time course and measuring the level of transcription as a function of time. The amount of transcription may be measured by using any method known to those of skill in the art

5 to be suitable. For example, mRNA expression of the protein of interest may be detected using northern blots or their polypeptide products may be identified using immunoassays. Alternatively, transcription based assays using reporter gene may be used as described in U.S. Patent 5,436,128, herein incorporated by reference. The reporter genes can be, e.g., chloramphenicol acetyltransferase, luciferase,

10 '3-galactosidase and alkaline phosphatase. Furthermore, the protein of interest can be used as an indirect reporter via attachment to a second reporter such as green fluorescent protein (*see, e.g.*, Mistili & Spector, *Nature Biotechnology*, 15:961-64 (1997)).

The amount of transcription is then compared to the amount of transcription in

15 either the same cell in the absence of the test compound, or it may be compared with the amount of transcription in a substantially identical cell that lacks the OR protein of interest. A substantially identical cell may be derived from the same cells from which the recombinant cell was prepared but which had not been modified by introduction of heterologous DNA. Any difference in the amount of transcription indicates that the

20 test compound has in some manner altered the activity of the OR protein of interest.

6. Transgenic non-human animals expressing olfactory receptors

Non-human animals expressing one or more olfactory receptor sequences of the invention, particularly human olfactory receptor sequences, can also be used for receptor assays. Such expression can be used to determine whether a test compound

25 specifically binds to a mammalian olfactory transmembrane receptor polypeptide *in vivo* by contacting a non-human animal stably or transiently transfected with a nucleic acid encoding an olfactory receptor or ligand-binding region thereof with a test compound and determining whether the animal reacts to the test compound by specifically binding to the receptor polypeptide.

30 Use of the translocation domains of the invention in the fusion polypeptides generates a cell expressing high levels of olfactory receptor. Animals transfected or infected with the vectors of the invention are particularly useful for assays to identify and characterize odorants/ligands that can bind to a specific or sets of receptors. Such

vector-infected animals expressing libraries of human olfactory sequences can be used for *in vivo* screening of odorants and their effect on, *e.g.*, cell physiology (*e.g.*, on olfactory neurons), on the CNS (*e.g.*, olfactory bulb activity), or behavior.

Means to infect/express the nucleic acids and vectors, either individually or as 5 libraries, are well known in the art. A variety of individual cell, organ or whole animal parameters can be measured by a variety of means. For example, recording of stimulant-induced waves (bulbar responses) from the main olfactory bulb or accessory olfactory bulb is a useful tool for measuring quantitative stable olfactory responses. When electrodes are located on the olfactory bulb surface it is possible to record stable 10 responses over a period of several days (*see, e.g.*, Kashiwayanagi, *Brain Res. Protoc.* 1:287-291 (1997)). In this study, electroolfactogram recordings were made with a four-electrode assembly from the olfactory epithelium overlying the endoturbinate bones facing the nasal septum. Four electrodes were fixed along the dorsal-to-ventral axis of one turbinate bone or were placed in corresponding positions on four turbinate 15 bones and moved together up toward the top of the bone. *See also*, Scott, *J. Neurophysiol.* 77:1950-1962 (1997); Scott, *J. Neurophysiol.* 75:2036-2049 (1996); Ezeh, *J. Neurophysiol.* 73:2207-2220 (1995). In other systems, fluorescence changes in nasal epithelium can be measured using the dye di-4-ANEPPS, which is applied on the rat's nasal septum and medial surface of the turbinates (*see, e.g.*, Youngentob, *J. 20 Neurophysiol.* 73:387-398 (1995)). Extracellular potassium activity (aK) measurements can also be carried out in *in vivo*. An increase in aK can be measured in the mucus and the proximal part of the nasal epithelium (*see, e.g.*, Khayari, *Brain Res.* 539:1-5 (1991)).

The OR sequences of the invention can be for example expressed in animal 25 nasal epithelium by delivery with an infecting agent, *e.g.*, adenovirus expression vector. Recombinant adenovirus-mediated expression of a recombinant gene in olfactory epithelium using green fluorescent protein as a marker is described by, *e.g.*, Touhara, *PNAS*, 96:4040-45 (1999).

The endogenous olfactory receptor genes can remain functional and wild-type 30 (*native*) activity can still be present. In other situations, where it is desirable that all olfactory receptor activity is by the introduced exogenous hybrid receptor, use of a knockout line is preferred. Methods for the construction of non-human transgenic

animals, particularly transgenic mice, and the selection and preparation of recombinant constructs for generating transformed cells are well known in the art.

Construction of a "knockout" cell and animal is based on the premise that the level of expression of a particular gene in a mammalian cell can be decreased or 5 completely abrogated by introducing into the genome a new DNA sequence that serves to interrupt some portion of the DNA sequence of the gene to be suppressed. Also, "gene trap insertion" can be used to disrupt a host gene, and mouse embryonic stem (ES) cells can be used to produce knockout transgenic animals (*see, e.g.,* Holzschu, *Transgenic Res.* 6:97-106 (1997)). The insertion of the exogenous is 10 typically by homologous recombination between complementary nucleic acid sequences. The exogenous sequence is some portion of the target gene to be modified, such as exonic, intronic or transcriptional regulatory sequences, or any genomic sequence which is able to affect the level of the target gene's expression; or a combination thereof. Gene targeting via homologous recombination in pluripotential 15 embryonic stem cells allows one to modify precisely the genomic sequence of interest. Any technique can be used to create, screen for, propagate, a knockout animal, *e.g.,* see Bijvoet, *Hum. Mol. Genet.* 7:53-62 (1998); Moreadith, *J. Mol. Med.* 75:208-216 (1997); Tojo, *Cytotechnology* 19:161-165 (1995); Mudgett, *Methods Mol. Biol.* 48:167-184 (1995); Longo, *Transgenic Res.* 6:321-328 (1997); U.S. Patents Nos. 20 5,616,491; 5,464,764; 5,631,153; 5,487,992; 5,627,059; 5,272,071; WO 91/09955; WO 93/09222; WO 96/29411; WO 95/31560; WO 91/12650.

The nucleic acid libraries of the invention can also be used as reagents to produce "knockout" human cells and their progeny. Likewise, the nucleic acids of the invention can also be used as reagents to produce "knock-ins" in mice. The human or 25 rat OR gene sequences can replace the orthologous ORs in the mouse genome. In this way, a mouse expressing a human or rat OR can be produced. This mouse can then be used to analyze the function of human or rat ORs, and to identify ligands for such ORs.

F. Modulators

30 The compounds tested as modulators of an OR family member can be any small chemical compound, or a biological entity, such as a protein, sugar, nucleic acid or lipid. Alternatively, modulators can be genetically altered versions of an OR gene.

Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to

5 screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma-Aldrich (St. Louis, MO), Fluka

10 Chemika-Biochemica Analytika (Buchs, Switzerland) and the like.

The OR modulating compounds can be used in any number of consumer products, including, but not limited to, perfumes, fragrance compositions, deodorants, air fresheners, foods, drugs, etc., or ingredients thereof, to thereby modulate the odor of the product, composition, or ingredient in a desired manner. As

15 one of skill in the art will recognize, OR modulating compounds can be used to enhance desirable odors, to block malodors, or a combination thereof.

In one preferred embodiment, high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator or ligand compounds). Such

20 "combinatorial chemical libraries" or "ligand libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual odorant compositions.

25 A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a

30 given compound length (*i.e.*, the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (*see, e.g.*, U.S. Patent 5,010,175, Furka, *Int. J. Pept. Prot. Res.*, 37:487-93 (1991) and Houghton *et al.*, *Nature*, 354:84-88 (1991)). Other 5 chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (*e.g.*, PCT Publication No. WO 91/19735), encoded peptides (*e.g.*, PCT Publication WO 93/20242), random bio-oligomers (*e.g.*, PCT Publication No. WO 92/00091), benzodiazepines (*e.g.*, U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides 10 (Hobbs *et al.*, *PNAS*, 90:6909-13 (1993)), vinylogous polypeptides (Hagihara *et al.*, *J. Amer. Chem. Soc.*, 114:6568 (1992)), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann *et al.*, *J. Amer. Chem. Soc.*, 114:9217-18 (1992)), analogous organic syntheses of small compound libraries (Chen *et al.*, *J. Amer. Chem. Soc.*, 116:2661 (1994)), oligocarbamates (Cho *et al.*, *Science*, 261:1303 (1993)), peptidyl 15 phosphonates (Campbell *et al.*, *J. Org. Chem.*, 59:658 (1994)), nucleic acid libraries (Ausubel, Berger and Sambrook, all *supra*), peptide nucleic acid libraries (U.S. Patent 5,539,083), antibody libraries (Vaughn *et al.*, *Nature Biotechnology*, 14(3):309-14 (1996) and PCT/US96/10287), carbohydrate libraries (Liang *et al.*, *Science*, 274:1520- 22 (1996) and U.S. Patent 5,593,853), small organic molecule libraries 20 (benzodiazepines, Baum, *C&EN*, Jan 18, page 33 (1993); thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pynrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337; benzodiazepines, 5,288,514, and the like).

Devices for the preparation of combinatorial libraries are commercially 25 available (*see, e.g.*, 357 MPS, 390 MPS (Advanced Chem Tech, Louisville KY), Symphony (Rainin, Woburn, MA), 433A (Applied Biosystems, Foster City, CA), 9050 Plus (Millipore, Bedford, MA)). In addition, numerous combinatorial libraries are themselves commercially available (*see, e.g.*, ComGenex, Princeton, NJ; Tripos, Inc., St. Louis, MO; 3D Pharmaceuticals, Exton, PA; Martek Biosciences; Columbia, 30 MD; *etc.*).

G. Methods for Representing and Predicting the Perception of Odor

The invention also preferably provides methods for representing the perception of odor (or taste) and/or for predicting the perception of odor (or taste) in a mammal, including in a human. Preferably, such methods may be performed by using the
5 receptors and genes encoding said olfactory receptors disclosed herein.

Also contemplated as within the invention, is a method of screening one or more compounds for the presence of an odor detectable by a mammal, comprising: contacting said one or more compounds with the disclosed receptors, preferably wherein the mammal is a human. Also contemplated as within the invention is a
10 method for representing olfactory perception of a particular smell in a mammal, comprising: providing values X_1 to X_n representative of the quantitative stimulation of each of n olfactory receptors of said vertebrate, where n is greater than or equal to 4; and generating from said values a quantitative representation of olfactory perception. The olfactory receptors may be an olfactory receptor disclosed herein, the
15 representation may constitutes a point or a volume in n -dimensional space, may constitutes a graph or a spectrum, and may constitutes a matrix of quantitative representations. Also, the providing step may comprise contacting a plurality of recombinantly-produced olfactory receptors with a test composition and quantitatively measuring the interaction of said composition with said receptors.

20 Also contemplated as within the invention, is a method for predicting the olfactory perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal, comprising: providing values X_1 to X_n representative of the quantitative stimulation of each of n olfactory receptors of said vertebrate, where n is greater than or equal to 4,
25 for one or more molecules or combinations of molecules yielding known olfactory perception in a mammal; and generating from said values a quantitative representation of olfactory perception in a mammal for the one or more molecules or combinations of molecules yielding known olfactory perception in a mammal, providing values X_1 to X_n representative of the quantitative stimulation of each of n olfactory receptors of
30 said vertebrate, where n is greater than or equal to 4, for one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal; and generating from said values a quantitative representation of olfactory perception in a mammal for the one or more molecules or combinations of molecules yielding

unknown olfactory perception in a mammal, and predicting the olfactory perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown olfactory perception in a mammal by comparing the quantitative representation of olfactory perception in a mammal for the one or more molecules or
5 combinations of molecules yielding unknown olfactory perception in a mammal to the quantitative representation of olfactory perception in a mammal for the one or more molecules or combinations of molecules yielding known olfactory perception in a mammal. The olfactory receptors used in this method may include an olfactory receptor disclosed herein.

10 In another embodiment, novel molecules or combinations of molecules are generated which elicit a predetermined olfactory perception in a mammal by determining a value of olfactory perception in a mammal for a known molecule or combinations of molecules as described above; determining a value of olfactory perception in a mammal for one or more unknown molecules or combinations of
15 molecules as described above; comparing the value of olfactory perception in a mammal for one or more unknown compositions to the value of olfactory perception in a mammal for one or more known compositions; selecting a molecule or combination of molecules that elicits a predetermined olfactory perception in a mammal; and combining two or more unknown molecules or combinations of
20 molecules to form a molecule or combination of molecules that elicits a predetermined olfactory perception in a mammal. The combining step yields a single molecule or a combination of molecules that elicits a predetermined olfactory perception in a mammal.

In another embodiment of the invention, there is provided a method for
25 simulating a fragrance, comprising: for each of a plurality of cloned olfactory receptors, preferably human receptors, ascertaining the extent to which the receptor interacts with the fragrance; and combining a plurality of compounds, each having a previously-ascertained interaction with one or more of the receptors, in amounts that together provide a receptor-stimulation profile that mimics the profile for the
30 fragrance. Interaction of a fragrance with an olfactory receptor can be determined using any of the binding or reporter assays described herein. The plurality of compounds may then be combined to form a mixture. If desired, one or more of the plurality of the compounds can be combined covalently. The combined compounds

substantially stimulate at least 75%, 80% or 90% of the receptors that are substantially stimulated by the fragrance.

In another preferred embodiment of the invention, a plurality of standard compounds are tested against a plurality of olfactory receptors to ascertain the extent 5 to which the receptors each interact with each standard compound, thereby generating a receptor stimulation profile for each standard compound. These receptor stimulation profiles may then be stored in a relational database on a data storage medium. The method may further comprise providing a desired receptor-stimulation profile for a scent; comparing the desired receptor stimulation profile to the relational database; 10 and ascertaining one or more combinations of standard compounds that most closely match the desired receptor-stimulation profile. The method may further comprise combining standard compounds in one or more of the ascertained combinations to simulate the scent.

H. Kits

15 OR genes and their homologs are useful tools for identifying olfactory receptor cells, for forensics and paternity determinations, and for examining olfactory transduction. OR family member-specific reagents that specifically hybridize to OR nucleic acids, such as AOLFR1 probes and primers, and OR family member-specific reagents that specifically bind to an OR protein, e.g., OR antibodies are used to 20 examine olfactory cell expression and olfactory transduction regulation.

Nucleic acid assays for the presence of DNA and RNA for an OR family member in a sample include numerous techniques known to those skilled in the art, such as southern analysis, northern analysis, dot blots, RNase protection, S1 analysis, amplification techniques such as PCR, and *in situ* hybridization. In *in situ* 25 hybridization, for example, the target nucleic acid is liberated from its cellular surroundings in such a form so as to be available for hybridization within the cell, while preserving the cellular morphology for subsequent interpretation and analysis. The following articles provide an overview of the art of *in situ* hybridization: Singer *et al.*, *Biotechniques*, 4:230-50 (1986); Haase *et al.*, *Methods in Virology*, vol. VII, pp. 30 189-226 (1984); and *Nucleic Acid Hybridization: A Practical Approach* (Names *et al.*, eds. 1987). In addition, an OR protein can be detected with the various immunoassay

techniques described above. The test sample is typically compared to both a positive control (*e.g.*, a sample expressing a recombinant OR protein) and a negative control.

The present invention also provides for kits for screening for modulators of OR family members. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise any one or more of the following materials: OR nucleic acids or proteins, reaction tubes, and instructions for testing OR activity. Optionally, the kit contains a biologically active OR receptor. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user.

10

EXAMPLES

Genomic, predicted amino acid sequence, and predicted coding sequences (cds), of novel G protein-coupled human odorant receptors, and classes of such receptors, are described. Each example describes a discrete protein and nucleic acid pair. Accordingly, Example 1 describes SEQ. ID. NOS. 1 and 2, for the human olfactory receptor protein designated AOLFR1, and the human DNA encoding AOLFR1, respectively; Example 2 describes SEQ. ID. NOS. 3 and 4, for the human olfactory receptor protein designated AOLFR2, and the human DNA encoding AOLFR2, respectively; and so on in the manner described, through the final Example sequence.

20

In the protein sequences presented herein, the one-letter code X or Xaa refers to any of the twenty common amino acid residues. In the DNA sequences presented herein, the one letter codes N or n refers to any of the four common nucleotide bases, A, T, C, or G.

25

EXAMPLES

AOLFR1 sequences:

MKTFSSFLQIGRNMHQGNQTITTEFILLGFFKQDEHQNLFLVFLGMYLVTVIGNGLIIVAIISLD
TYLHTPMYFLANLSFAIDISSIINSVPKMLVNIQTKSQSISYESCITQMYFSIVVVIDNLLGTM
AYDHFVAICHPLNYTILMRPRFGILLTVISWFLSNIIALTHTLIQLLFCNHNTLPHFFCDLAPLL
30 KLSCSDTLINEVLVLFIVGLSVIIFPTLSFFSYVCIRRAVLRVSSTQGKWKAFSTCGSHLTVVLLFY
GTIVGVYFFPSSTHPETDKIGAVLFTVVTPMINPFIYSLRNKDMKGALRKLINRKISSL (SEQ ID
NO: 1)

35

ATGAAGACTTTAGTTCCCTTCTTCAGATCGGCAGAAATATGCATCAAGGAAACCAAACCA
CCATCACTGAATTCAATTCTCCTGGGATTTCAGCAGGATGAGCATCAAAACCTCCTCTT
GTGCTTTCTGGGTATGTACCTGGTCAGTGTGATTGGAACGGGCTCATCATTGTGGCTA
TCAGCTGGATACGTACCTCATACCCCCATGTATCTCTTCCCTGCCAATCTATCCTTGCT
GATATTCCCTCCATTCCAACTCAGTCCCCAAATGCTGGTGAATATTCAAACCAAGAGTC

AATCCATCTCTTATGAGAGCTGCATCACACAGATGTACTTTCTATTGTGTTGTCGTCA
 GACAATTGCTCTGGGGACCATGGCCTATGACCACTTGTGGCGATCTGCCACCCCTCTGA
 ATTATAACAATTCTCATGCGGCCAGGTCGGCATTGCTCACAGTCATCTCATGGTCTC
 5 AGTAATATTATTGCTCTGACACACACCCCTCTGCTCATTCAATTGCTCTCTGTAACCACAA
 CACTCTCCCACACTCTCTGTGACTTGGCCCCCTGCTCAAACAGTCCTGTCAGATA
 TGATCAATGAGCTTGTTATTGTGGGTTATCAGTTATCATCTTCCCTTACACTC
 AGCTTCTTCCATGTGTCATCATCAGAGCTGTCAGAGATCTTCCACACAGGGAA
 AGTGGAAAGCCTTCCACTTGTGGCTCACCTGACAGTTGATTACTGTTACGGAAC
 10 CATTGTAAGGCGTGTACTTTCCCTCCACTCACCCCTGAGGACACTGATAAGATTGGT
 GCTGTCCTATTCACTGTGGTACACCCATGATAAACCCTTCATCTACAGCTGAGGAATA
 AGGATATGAAAGGTGCCCTGAGAAAGCTCATCAATAGAAAAATTCTCCCTTGA (SEQ
 ID NO: 2)

AOLFR2 sequences:

15 MMMVLRNLSMEPTFALLGFTDYPKLQIPLFLVFLMLYVITVVGNLGMIIKINPKFHTPMYFFL
 SHLSFVDFCYSSIVTPKLLNLMADKSIFYFSCMMQYFLSCTAVVTEFLAVMAYDRFVAIC
 NPLLYTVAMSQRLLCALLVAGSYLWGMGPLVLLCYARLNFSGPNVINHFFCEYTLISVGS
 DILIPHLLLFSFATFNEMCTLLIILTSYVFVTVLKIRSVSGRHKAFSTWASHLTAITIFHGTLFL
 20 YCVPSNSKNSRQTVKVASVFYTVVNPMLNPPISLRNVDVKDAFWKLIHTQVPFH (SEQ ID NO:
 3)

ATGATGATGGTTTAAGGAATCTGAGCATGGAGCCACCTTGCCTTTAGGTTCACAG
 ATTACCCAAGCTTCAGATTCCCTCTTCCCTGTGTTCTGCTCATGTATGTTACAGTG
 GTAGGAAACCTTGGGATGATCATAATAATCAAGATAACCCAAATTCAACTCCTATGT
 25 ACTTTTCCTTAGTCACCTCTTTGTGTTACTCTTCATTGTCACCTCCAG
 TGCTTGAGAACCTGGTAATGGCAGATAAAAGCATCTTCACTTTAGCTGCATGAG
 CTTCTGCTCTGCACTGCTGGTGACAGAGCTTCTGCTGCAGTGATGGCTATGAC
 CGCTTTGTGCCATCTGCACTCTGCTTATACAGTGGCATGTCACAGAGGCTCTGTG
 CCCTGCTGGTGGCTGGGTCATATCTCTGGGCATGTTGGCCCTGGTACTCCTTGTAT
 30 GCTCTCCGGTTAACACTCTGGACCTAATGAACTCAACCACTCTTGTGAGTAACTGC
 TCTCATCTCTGTCTGGCTCTGATATAACTCATCCCCACCTGCTGCTTTCACTCC
 CCTCAATGAGATGTGACTACTGATCATCCTCACTCCTATGTTTCACTTTGTGACT
 GTACTAAAATCCGTTCTGTTAGTGGGCCACAAGCCTCTCCACCTGGCCCTCCACC
 35 TGACTGCTACCATCTCATGGACCATCCTTCTGTTACTGTGACCAACTCCAAA
 AACTCTCGCAAACAGTCAAAGTGGCTCTGTTACACAGTTGTCACCCACTGCA
 ACCCTCCGATCTACAGCCTAAAGGAATAAGACGTGAAGGATGTTCTGGAAGTTA
 TACACAAGTTCACTGA (SEQ ID NO: 4)

AOLFR3 sequences:

40 MLLTDRNTSGTFILLGFSDYPELQVPLFLVFLAIYNVTVLGNIGLIVI
 KINPKLHTPMYFFLSQ
 LSFVDFCYSSIAPKMLVNLVVKDRTISFLGCVVQFFFCTFVVTEFLAVMAYDRFVAICNPL
 LYTVDMMSQKLCVLLVVGSAWGVSCSLELTCSALKLCFHGFNTIHFFCEFSLLS
 LSCSDTYINQWLLFLATFNEISTLLIVLTSYAFIVVTLKMRSVSGRRKA
 FSTCASHLTAITIFHGTLFLYCV
 PNSKNSRHTVKA
 SVFYTVVIPMLNPLIYSLRNKDVKDTVTEILDKVFSY (SEQ ID NO: 5)

45 ATGCTGCTGACAGATAGAAATACAAGTGGGACCACGTCACCCCTTGGCTTCAGATT
 ACCCAGAACTGCAAGTCCCACCTTCCCTGGTTTCTGGCATCTACAATGTC
 ACTGTGCTA
 GGGAAATATTGGGTTGATTGTGATCATAAAATCAACCCAAACTGC
 ATACCCCATGTACT
 TTTCCCTGCCAACCTCTCTTGTGGATTCTGCTATTCCCTCATCTGCT
 50 TTGGTGAACCTTGTGTC
 AAAGACAGAACCATTCATTTAGGATGCGTAGTACAATTCT
 TTTCTCTGTACCTTGTGGTCACTGAATCTTATTAGCTGTGATGGCTATGACCGC
 TTCGTTGCCATTGCAACCCCTGCTCACACAGTTGACATG
 TCCAGAAACTCTGCGTGC
 TGCTGGTGTGGGATCCTATGCCCTGGGAGTC
 CATGTTCTGGAACTGACGTGCTCTGC
 TTTAAAGTTATGTTTCAACACAATCAAC
 ACTTCTCTGTGAGTTCTC
 55 TACTCTCCCTTCTGCTCTGATACTTACATCAACCA
 GAGTGGCTGCTATTCTTCTGCC
 ACC
 TTAATGAAATCAGCACACTACTCATCGTTCTCACATCTATGCG
 ITCATGTTGAACCAT

CCTCAAGATGCGTTAGTCAGTGGCGCCGCAAAGCCTCTCCACCTGTGCCTCCACCTG
 ACTGCCATCACCATCTCCATGGCACCATCCTCTTACTGTGTGCCAACTCCAAAAA
 CTCCAGGCACACAGTCAAAGTGGCCTCTGTGTTACACCCTGGTGTACCCCCATGTTGAAT
 CCCCTGATCTACAGTCTGAGAAATAAGATGTCAAGGATACAGTCACCGAGATACTGGAC
 5 ACCAAAGTCTCTTACTGA (SEQ ID NO: 6)

AOLFR4 sequences:

MENQNNVTEFILLGLTENLELWKIFSAVFVLMYVATVLENLLIVVTIITSQSLRSPMYFFLTFLS
 LLDVMFSSVVAPKIVDLSKSTTISLKGCQLTQLFVEHFGGVGIIILTVMAYDRYVAICKPLHY
 10 TIIMSPRVCCLMVGAWVGGFMHAMIQLLFMYQIPFCGPNIIDHFICDLFQLLTLACTDTHILGL
 LVTLNSGMMCVAIFLILIASYTVLCSLKSYSKGRHKALSTCSSHLTVVVLFFVPCIFLYMRPV
 VTHPIDKAMAVSDSIITPMLNPLIYTLRNAEVKSAMKKLWMKWEALAGK (SEQ ID NO: 7)

15 ATGGAAAATCAAACAATGTGACTGAATTCTTCTGGGCTCACAGAGAACCTGGAGC
 TGTGGAAAATATTCTGCTGTGTTCTGTATGTATGTAGCCACAGTGCTGGAAAATCT
 ACITATTGTGGAACTATTATACAAGTCAGAGTCTGAGGTACACCTATGTATTCTTCTTA
 CCTTCTTGTCCCTTTGGATGTATGTCATGTTCTCATCTGCGTTGCCCAAGGTGATTGTAGAC
 ACCCTCTCCAAGAGCACTACCATCTCTCAAAGGCTGCCCTACCCAGCTGTTGTGAGC
 ATTTCTTGGTGGTGTGGGGATCATCCTCTCACTGTGATGGCTATGACCGCTACGTGGC
 20 CATCTGTAAGCCCCGCACATACAGATCATCATGAGTCCACGGGTGTGCTGCCTAATGGTA
 GGAGGGCTTGGTGGGGGATTATGCACGCAATGATAACAATTCTCTCATGTATCAAA
 TACCCCTCTGTTGCTTAATATCATAGATCACTTATATGTGATTGTTCAAGTTGACA
 CTTGCCTGCACGGACACCCACATCCTGGCCTCTTAGTACCCCAACAGTGGGATGATGT
 GTGTGGCCATCTTCTTATCTAATTGCGCCTACACGGTCACTCTATGCTCCCTGAAGTCT
 25 TACAGCTCTAAAGGGCGGACAAAGCCCTCTCACCTGCAGCTCCCACCTCACGGTGGTTG
 TATTGTTCTTGTCCCCTGTTCTGTACATGAGGGCTGTGGTCACTCACCCCATAGAC
 AAGGCAATGGCTGTGTCAGACTCAATCATCACACCCATGTTAAATCCCTGATCTACAC
 TGAGGAATGCAGAGGTGAAAAGTGCATGAAGAAACTCTGGATGAAATGGGAGGCTTGG
 CTGGGAAATAA (SEQ ID NO: 8)

30 **AOLFR5 sequences:**
 MGKENCTTVAEFLGLSDVPRLVCLFLFLLIYGVTLANLGMAILIQVSSRLHTPMYFFLHS
 LSSVDFCYSSIIPKMLANIFNDKAISFLGCMVQFYLFCTCVVTEVFLAVMAYDRVAICNPL
 LYTVTMSWKRVRVELASCCYFCGTVCSLIHLCLALRIPFYRSNVINHFFCDLPPVLSACSDITVN
 35 ETLLFLVATLNESVTIMILTSYLLTILKMGSAEGRHKAFSTCASHLTATVFGTVLSIYCRP
 SSGNSGDADKVATVFYTVVIPMLNSVIYSLRNKDVKEARLRKVMGSKIHS (SEQ ID NO: 9)

40 ATGGGCAAGGAAAATGCACCACTGTGGCTGAGTCATTCTCTGGACTATCAGATGTCC
 CTGAGTTGAGAGTCTGCCTCTCCTGCTGTTCTCATCTATGGAGTCACGTTAGCC
 AACCTGGGCATGTTGCACTGATTCAAGGTCACTCTGGCTCACACCCCCATGTACTTT
 TCCTCAGCCACTTGTCTCTGTAGATTCTGCTACTCTCAATAATTGTGCCAAAATGTTG
 GCTAATATCTTAAACAAGGACAAGCCATCTCTCTAGGGTGCATGGTCAATTCTACT
 TGTGTTGCACTTGTGTTGTCAGGGCTTCTCTGCTGGCGTGATGGCTATGACCGCTT
 GTGGCCATCTGTAACCCCTTGTCTACACAGTCACCATGTCTTGGAAAGGTGCGTGTGGAGC
 45 TGGCTTCTGCTGCACTTGTGGACGGTGTGTTCTGATTCAATTGTGCTTAGCTCTT
 AGGATCCCCCTCTATAGATCTAATGTGATTAACCACTTTCTGTGATCTACCTCTGTCTT
 AAGTCTTGCTGCTGATATCACTGTGATGAGACACTGCTGTTCTGGCCACTTGT
 AATGAGAGTGTACCATCATGATCATCTCACCTCTACCTGCTAATTCTACCAACCATCCT
 GAAGATGGCTCTGCAGAGGGCAGGCACAAAGCCTCTCCACCTGTGCTCCCACCTCACA
 50 GCTATCACTGTCCTCCATGGAACAGTCCTTCCATTATTGCAAGGCCAGTCAGGCAATA
 GTGGAGATGCTGACAAGTGGCCACCGTGTCTACACAGTCGTGATTCTATGCTGAACTC
 TGTGATCTACAGCCTGAGAAATAAGATGTGAAAGAAGCTCTCAGAAAAGTGTATGGGCTC
 CAAAATTCACTCTAG (SEQ ID NO: 10)

AOLFR6 sequences:

MMASERNQSSTPTFILLGFSEYYPEIQVPLFLVFLFVYTIVVGNLGMIIIRLN SKLHTIMYFFLS
 HLSLTDFCFSTVTPKLL ENLVVEYRTISFGCIMQFCACIFGVTETFMLAAMAYDRFVA VCK
 PLYTTIMSQKLCA LLVAGSYTWGIVCSLILTYFLLDLSFCESTFINNFICDH SIVSAS YSDPYIS
 5 QRLCFIIAIFNEVSSLIILTSYMLIFTITMKMRSASGRQKTFCASHLTAITFHGTILFLYCVPNP
 KTSSLIVTVASVFYTV AIPMLNPLIYSLRNKDINNMFEKLVVTKL IYH (SEQ ID NO: 11)

ATGATGGCATCTGAAAGAAAATCAAAGCAGCACACCCACTTTTATTCTCTGGGTTTCAG
 10 AATA CCCAGAAATCCAGGTTCCACTCTTCTGGTTCTGTCGCTACACAGTCACTGTA
 GTGGGGAACTTGGCATGATAATAATCATCAGACTCAATTCAAACACTCCATACAATCATGT
 ACTTTTCTTAGTCACTTGCTCTTGACAGACCTCTGTTTCCACTGTAGTTACACCTAAA
 CTGTTGGAGAAC TTGGTTGTGGAATACAGAACCATCTCTTCTGGTTGCATCATGCAAT
 TTTGTTTGCTGCATTTGGAGTGACAGAGAACCTTCA TGTAGCAGCGATGGCTATGAC
 CGTTTGTGGCAGTTGTAAACCCCTGCTGTATA CCACTATTATGCTCAGAACGCTCTGTGC
 15 TCTCTGGCTGGCTGGTCTATACATGGGGATAGTGTGCTCCCTGATACTCACATATTCT
 CTCTGACTTATCGTTTGTGAATCTACCTCATAAAATAATTCTATGTA GACCCTGT
 AATGTTCTGCCTCCTACTCAGACCCCTATATCAGCCAGAGGCTATGCTTATTATTGCCA
 TATTCAATGAGGTGAGCAGCCTAATTATCATTCTGACATCATATATGCTTATTCTCACTACC
 20 ATTATGAAGATGCGATCTGCAAGTGGCGCCAGAAAACCTTCTCCACCTGTGCCTCCCACC
 TGACAGCCATCACTATCTTCCATGGAACTATCCTTCTACTGTGTTCTAATCCTAAA
 ACTTCTAGCCTCATAGTACAGTGGCTCTGTGTTTACACAGTGGCGATTCCAATGCTGA
 ACCCATTGATCTACAGCCTTAGGAACAAAGATATCAATAACATGTTGAAAAATTAGTTGT
 CACCAAATTGATTACCACTGA (SEQ ID NO: 12)

AOLFR7 sequences:

MSFYRLKLMKEAVLVKLPFTSLPLLLQTLRSRSDMEIKNYSSSTSGFILLGLSSNPQLQKPLF
 AIFLIMYLLA AVGNVLIIPAIYSDPRLHTPMYFFLSNL SFMDICFTTVIPKMLVN FLSETKV ISY
 VGCLAQMYFFMAFGNTDSYLLASMAIDRLVAICNPLHYDV VMKPRHCLLMLLGSCSISHLHS
 FRVLLMSRLSFCASHIIKHFFCDTQPVLKLSCTS DTSSSQMVMTETLAIVTPFLCIIFS YLRIMV
 30 TVLRIPSAAGKWKAFSTCGSHLT AVALFYGSIYVYFRPLSMSYVVRDRVATVMYTVVTPMLN
 PFIYSLRNKDMKRGLKKLQDRIYR (SEQ ID NO: 13)

ATGAGCTATTTTACAGGCTTAAGCTTATGAAAGAACGCTGTCTGGTCAAAC TGCCCTTA
 CATCTCTCCACTGCTTCTCAAACCCATCCAGGAAGTCCAGAGACATGGAGATAAGAA
 35 CTACAGCAGCAGCACCTCAGGCTTCA TCCCTCTGGCCTCTCTCCAACCCCTCAGCTGCAG
 AACCTCTCTTGCATCTCCTCATCATGTACCTGCTCGCTGCCGTGGGAATGTGCTCAT
 CATCCCCGCATCTACTCTGACCCAGGCTCCACACCCCTATGTA CTTTCTCAGCAACT
 TGTCTTCTGGATATCTGCTTACAACAGTCATAGTGCCTAAGATGCTGGTGAATTCTA
 TCAGAGACAAAGGTATCTCTATGTGGGCTGCCCTGGCCAGATGTACTCTTATGGCAT
 40 TTGGGAACACTGACAGCTACCTGCTGGCCTCTATGCCATGACCCGGCTGGCCTATG
 CAACCCCTACACTATGATGTGGTTATGAAACCACGGCATTGCCCTGCTCATGCTATTGGGT
 TCTTGCA GCTCTCCCACCTACATCCCTGTTCCCGCTGCTACTTATGTCGCTTGTCTT
 CTGTGCCTCTCACATCATTAAGCACTTTCTGTGACACCCAGCCTGTGCTAAAGCTCCT
 GCTCTGACACATCCTCAGCCAGATGGGGTGTAGACTGAGACCTTAGCTGTCATTGTGAC
 45 CCCCTCCTGTGATCATCTCTCTACCTGCGAATCATGGTCACTGTGCTCAGAACCCCT
 CTGCAGCCGGAAAGTGGAGGGCTCTACCTGCTGGCTCCACCTCACTGCAGTAGCCCT
 TTTCTATGGGAGTATTATTTATGTC TATT TAGGCCCTGTCCATGTACTCAGTGGTAGGG
 ACCGGGTAGCCACAGTATGTACACAGTAGTGA CACCCATGCTGAACCCCTCATCTACAG
 CCTGAGGAACAAAGATATGAAGAGGGGTTGAAGAAATTACAGGACAGAACATTACCGGTA
 50 A (SEQ ID NO: 14)

AOLFR8 sequences:

MATSNHSSGAEFILAGLTQRPELQLPLFLFLGIYVVTVVGNLGMIFLIALSSQLYPPVYYFLSH
 LSFIDL CYSSVITPKMLVN FVPEENIISFLECITQLYFFLIVIAEGYLLTAMEYDRYVAICRPLLY
 55 NIVMSHRVC SIMMAV VYSLGFLWATVHTTRMSVLSFCRSHTVSHYFCDILPLTLSCSSTHINEI

LLFIIGGVNTLATTAVLISYAFIFSSILGIHSTEGQSKAFGTCSHLLAVGIFFGSITFMYFKPPSS
TTMEKEKVSSVFYIIPMLNPLIYSLRNKDVKNALKKMTRGRQSS (SEQ ID NO: 15)

5 ATGGCTACTTCAAACCAATTCTCAGGGGCTGAGTTATCCTGGCAGGCTTGACACAACGCC
CAGAACTTCAACTGCCACTCTCCTCTGAATATATGTGGTCACAGTGGTGGG
GAACCTGGCATGATCTCTTAATTGCTCTCAGTTCTCAACTTACCCCTCCAGTGTATTATT
TTCTCAGTCATTGCTTTCATTGATCTGCTACTCCTCTGTCAATTACCCCTAAGATGCTG
GTGAACTTGTTCCAGAGGAGAACATTATCCTCTGGAATGCATTACTCAACTTATT
CTTCCTTATTTGTAAATTGAGAGGCTACCTCTGACAGCCATGGAATATGACCGTAT
10 GTTGTATCTGCCCCACTGCTTACAATATTGTATGTCCCACAGGGCTGTTCCATAAT
GATGGCTGTGGTATACTCACTGGGTTCTGTGGGCCACAGTCCACTACCCGATGTCA
GTGTTGTCAATTCTGTAGGTCTCACGGTCAGTCATTATTTGTGATATTCTCCCCCTATT
GACTCTGCTTGCTCCAGCACCCACATCAATGAGATTCTGCTGTTCAATTGGAGGAGTT
15 AATACCTTAGCAACTACACTGGCGTCCTTATCTCTTATGCTTCACTTCTAGTATCCT
TGGTATTCACTCCACTGAGGGCAATCCAAAGCCTTGGCACTGTAGCTCCATCTTG
GCTGTGGGCATCTTTGGGTCTATAACATTGATATTCAAGCCCCCTCCAGCACTAC
TATGGAAAAAGAGAAGGGTCTCTGTGTTCTACATCACAATAATCCCCATGCTGAATCCT
CTAATCTATAGCCTGAGGAACAAGGATGTGAAAATGCACTGAAGAAGATGACTAGGGGA
AGGCAGTCATCCTGA (SEQ ID NO: 16)

20 **AOLFR9 sequences:**

MLARNNSLVTEFILA GLTDRPEFWQPFFFLFLVIYIVTMVGNLGLIIFGLNSHLHTPMYYFLFN
LSFIDLCYSSVFTPKMLMNFSKKNIISNVGCMTRLFFFVISSECYMLTSMAYDRYVAICNPL
LYKVTMSHQVCMSMLTFAAYIMGLAGATAHTGCMRLTFCSANINHYLCDILPLLQLSCTSTYV
25 NEVVVLIVVGTNITVPSCTILISYVFIVTSILHIKSTQGRSKAFSTCSSHVIALSLFFGSAAFMYIKY
SSGSMEQGVFSVFTNVVPMLNPLIYSLRNKDVKVALRKALIKIQRRNIF (SEQ ID NO: 17)

30 ATGCTGGCTAGAAACAACCTCCITAGTGAATTATTCTTGTGGATTAACAGATCGTC
CAGAGTCTGGCAACCCCTCTTTCTGCTAAATTCTCACCTCCACACACCAATGTACTATT
CCTCTTCAATCTCTCTTCGTTGATCTGTGTTACTCCTCTGTTTCACTCCCCAAATGCTAAT
GAACCTTGTGCAAAAAAGAATATTATCTCCAATGTTGGGTGCATGACTCGGCTGTTTC
TTTCCTCTCGTCACTCTGAAATGTTGACATGTTGGCATATGGCATATGATCGCTATGT
GGCCATCTGTAATCCATTGCTGTATAAGGTACCATGTCCTCATGGCTGTTCTATGCTCA
35 CTTTGCTGCTTACATAATGGGATTGGCTGGAGGCCACGGCCACACCGGGTGATGTTAG
ACTCACCTCTGAGTGCTAATATCATTAAACCATTACTGTGACATACTCCCCCTCTCC
AGCTTCTGACCAGCACCTATGCAACGAGGTGGTCTCATGGTGTGGGTACTAA
TATCACGGTACCCAGTTGTAACCATCCTCATTTCTATGTTCTATTGTCACTAGCATTCTC
40 ATATCAAAATCCACTCAAGGAAGATCAAAGCCTTCAGTACTTGTAGCTCATGTCATTGC
TCTGTCTGTGTTGGTCAGGGCATTGATGTATATTAAATATTCTTGTGGATCTATGG
AGCAGGGAAAAGTTCTGTTCTACACTAATGIGGTGCCATGCTCAATCCCCATC
TACAGTTGAGGAACAAGGATGTCAAAGTGTGACTGAGGAAAGCTGATTAAAATTCAG
AGGAGAAATATATTCTAA (SEQ ID NO: 18)

45 **AOLFR10 sequences:**

MLARNNSLVTEFILA GLTDRPEFRQPLFFFLFLVIYIVTMVGNLGLIIFGLNSHLHTPMYYFLFN
SFIDLCYSSVFTPKMLMNFSKKNIISNVGCMTQLFFFVISSECYILTSMAYDRYVAICNPLLY
KVTMSHQVCMSMLTFAAYIMGLAGATAHTGCMRLTFCSANINHYLCDILPLLQLSCTSTYVN
EVVVLIVVGINIMVPSCTILISYVFIVTSILHIKSTQGRSKAFSTCSSHVIALSLFFGSAAFMYIKYS
50 SGSMEQGVFSVFTNVVPMLNPLIYSLRNKDVKVALRKALIKIQRRNIF (SEQ ID NO: 19)

55 ATGCTGGCTAGAAACAACCTCCITAGTGAATTATTCTTGTGGATTAACAGATCGTC
CAGAGTCCGGCAACCCCTCTTTCTGTTCTAGTGAATCTACATTGTCACCATGGTAGGC
AACCTTGGCTGATCATTCTCTGCTAAATTCTCACCTCCACACACCAATGTACTATT
CCTCTTCAATCTCTCTTCATTGATCTGTGTTACTCCTCTGTTTCACTCCCCAAATGCTAAT
GAACCTTGTATCAAAAAAGAATATTATCTCTATGTTGGGTGCATGACTCAGCTGTTCT

TTCTCTTTTGTCACTCTGAATGCTACATATTGACCTCAATGGCATATGATCGCTATGTG
 GCCATCTGTAATCATTGCTGTATAAGGCACCATGCCCCATCAGGTCTGTCTATGCTCAC
 TTTIGCTGCTTACATAATGGGATTGGCTGGAGGCCACGGCCCACACCAGGTGCATGCTTAGA
 CTCACCCCTCTGCAGTGCTAATATCATCAACCATTACTTGTGTGACATACTCCCCCTCCTCCA
 5 GCTTTCTGCACCAGCACCTATGTCAACGAGGTGGTGTCTCATTGTTGGGTATTAAAT
 ATCATGGTACCCAGTTGTACCATCCTCATTTCTTATGTTTCATTGTCACTAGCATTCTCA
 TATCAAATCCACTCAAGGAAGATCAAAGCCTCAGTACTTGTAGCTCTCATGTCTATTGCT
 CTGTCCTGTTTTGGGTCAAGCGGCATTCTCATGTATTTAAATTCTCTGGATCTATGGA
 10 GCAGGGAAAAGTTCTCTGTTCTACACTAATGTGGTGCCATGCTCAATCCTCATCT
 ACAGTTGAGGAACAAGGATGTCAAAGGTTGCACTGAGGAAGCTCTGATTAAGATCAGA
 GAAGAAATATATTCTAA (SEQ ID NO: 20)

AOLFR11 sequences:

MTLRNSSVTEFIVGLSEQPELQLPLFLLELGIVYVFTVVGNLGLITLGINPSLHTPMYFFLFNLS
 15 FIDLCYSCVFTPCKMLNDFVSESIISYVGCMQLFFFVFVNSECYVLVSMAYDRYVAICNPLLY
 MVTMSPRVCFLMFGSYVVGFAGAMAHTGSMRLTFCDSNVIDHYLCDVPLLLQLSCTSTHV
 SELVFFIVVGVTMLSSISIVISYALILSNIICPSAEGRSKAFSTWGSIIAVALFFSGTFTYLTT
 FPGSMNHGRFASVFTNVPMILNPsiYSLRKDDKLALGKTLKRVLF (SEQ ID NO: 21)

20 ATGACTCTGAGAACAGCTCCCTAGTGACTGAGTTATCCTGTGGGATTATCAGAACAGC
 CAGAGCTCCAGCTCCCTTTCTTCTATTCTTAGGGATCTATGTGTTACTGTGGTGGGC
 AACTTGGGCTTGATCACCTTAATTGGGATAATCCTAGCCTCACACCCCCATGTACTTTT
 CCTCTCAACTTGTCTTATAGATCTGTGTTACTCTGTGGGATGTATGACTCAGCTATTTCTTC
 25 ATGACTTTGTTTCAAGAAAGTATCATCTTATGTGGGATGTATGACTCAGCTATTTCTTC
 TGTTTCTTGTCAATTCTGAGTGCTATGTGTTGATCAATGGCCTATGATCGCTATGTGGC
 CATCTGCAACCCCTGCTCTACATGGTCAACCAGTCCCCAAGGGCTGCTTCTGCTGATGT
 TTGGTTCTATGTGGTAGGGTTGCTGGGCCATGGCCACACTGGAAGCATGCTGCGACT
 GACCTCTGTGATTCAACGTCATTGACCAATTATCTGTGACGTTCTCCCCCTCTGCAGC
 TCTCTGCAACAGCACCCATGTCAGTGAGCTGGTATTTTCACTGTTGTGGAGTAATCACC
 30 ATGCTATCCAGCATAAGCATCGTCATCTTACGCTTGTGATACTCTCAAACATCCTCTGTAT
 TCCTCTGCAGAGGGCAGATCCAAGCCTTACGACATGGGCTCCCACATAATTGCTGTT
 GCTCTGTTTTGGTCAGGGACATTCACTACTAACACATCTTCTGGCTCTATGAA
 CCATGGCAGATTGCTCTAGTCTTACACCAATGTGGTCCCAGTCTAACCCCTCGATCT
 35 ACAGTTGAGGAATAAGGATGATAAAACTGCCCTGGCAAAACCCCTGAAGAGAGTGCTCT
 TCTAA (SEQ ID NO: 22)

AOLFR12 sequences:

MERNHNPDCNVLNFFFADKKNKRRNFGQIVSDVGRJCYSVSLSLGEPTTMGRNNLTRPSEFIL
 LGLSSRPEDQKPLFAVFLPIYLITVIGNLLIILAIRDSTRQTPMYFFLSFVDICYVTVIIPKMLV
 40 NFLSETKTISYGECLTQMYFFLAFLGNTDSYLLAAMAIIDRYVAICNPFHYITIMSHRCCVLLVLS
 FCIPHFHSLLHILLTNQLIFCASNVIHFFCDDQPVLKLSSSHFVKEITVMTEGLAVIMTPFSCIII
 SYLRILITVLKIPSAAGKRKAFTCGSHLTVTLFYGSISYVYFQPLSNYTVDQIATIYTVLTP
 MLNPFIYSLRKDMKQGLAKLMHRMKCQ (SEQ ID NO: 23)

45 ATGGAAAGAACACAACTCCAGATAATTGTAATGTTTAAATTCTTCTTGCTGATAAGA
 AGAATAAAAGGAGAAATTGGACAGATTGATCAGATGTTGAAGAACATGTTACAGTG
 TTAGTTTATCTTCTAGGTGAACCCACAACATGGGAAGAACATAACCTAACAGACCCCTCTGA
 ATTCACTCTCTGGACTCTCTCGACCTGAGGATCAGAACGCCCTCTGCTGTGTTCC
 TCCCCATCTACCTTATCACAGTGATAGGAAACCTGCTTATCATCTGGCCATCCGCTCAGA
 50 CACTCGTCTCCAGACGCCATGACTCTTCTAAGCATCTGCTTGTGACATTGCT
 ATGTGACAGTCATTATCCCTAAGATGCTGGTAACCTTCTATCAGAGACAAAGACCATCTC
 TTACGGTGAGTGTCTGACCCAGATGTACTTTCTTCTAGCCTTGGAAACACAGACAGITAC
 CTGCTAGCAGCCATGCCATTGACCGCTATGTGGCCATATGTAATCCCTCCACTACATCA
 CCATTATGAGTCACAGATGCTGTGCTGCTTCTGGTCTCTCCTCTGCTTCTGCTTCTG
 55 CACTCCCTCTGCACTTCTGACTAATCAGCTCATCTCTGTCGCTCCATGTCATCCA
 TCACTTTCTGCGATGATCAACCAGTGCTAAATTGTCCTGTCCTCCCTTGTCAAAG

AAATCACAGTAATGACAGAAGGCTGGCTGTATAATGACCCGTTTCATGCATCATCAT
 CTCTTATTAAAGAACCTCATCACTGTTCTGAAGATCCTCAGCTGGAAAGCGTAAA
 GCATTTCTACCTGTGGCTCTCATCTCACAGTGGTGAACCTGTATTATGGAAGCATTAGCTA
 TGTCTATTTCAAGCCCCGTCCAACACTATACTGTCAAGGATCAAATAGCAACAATTATCTAC
 5 ACCGTACTGACTCCTATGCTAAATCCATTATCTATAGTCTGAGGAACAAAGACATGAAGC
 AGGGTTGGCAAAGTTGATGCACAGGATGAAATGTCAGTAA (SEQ ID NO: 24)

AOLFR13 sequences:

MDQKNGSSFTGFILLGSFDRPQEELVLFVLLIFYIFTLLGNKTIVLSHLDPHLHNPMYFFFSNL
 10 SFLDLCYTTGIVPQLLVNLRGADKSISYGGCVVQLYISLGLGSTEVLGVMAFDRYAAVCRPL
 HYTVVMHPCLYVLMASTSWVIGFANSLLQTVLILLTLGRNKLEHFLCEVPLLKLACVDTT
 MNESELFFVSVIILVPVALIIFSYSQIVRAVVRKSATGQRKVFGTCGSHLTVSLFYGTAIYAY
 LQPGNNYSQDQGKXISLFYTIIITPMINPLIYTLRNKDVKGALKKVLWKNYDSR (SEQ ID NO:
 25)
 15 ATGGATCAGAAAAATGGAAGTTCTTCACTGGATTATCCTACTGGTTCTGACAGGC
 CTCAGCTGGAGCTAGTCCTCTTGTTACACAACCGGCATTGTCACAGCTCTGG
 AACAAAACCATCATTGATTATCTCACITGGACCCACATCTCACAACTCTATGTATT
 CTTCTCCAACCTAACGCTTGTGGATCTGTGTTACACAACCGGCATTGTCACAGCTCTGG
 20 TTAATCTCAGGGAGCAGACAAATCAATCTCCTATGGTGGTTGTAGTCAGCTGTACAT
 CTCTCTAGGCTTGGGATCTACAGAACATGGCTCTCTTAGGAGTGTGGCATTGACCGCTAT
 GCAGCTGTTGCAGGCCCTCCACTACACAGTAGTCATGCACCCCTGTCTGTATGTGCTGA
 TGGCTCTACTTCATGGGTATTGGTTTGCAACTCCCTATTGCAAGACGGTGTCTACCTTG
 25 CTTTAAACACTTTGTTGAAGAAATAAATTAGAACACTTCTTGTGAGGTCTCCATTGCT
 CAAGCTTGCCTGTGTTGACACTATGAATGAATCTGAACCTCTCTTGTCAGTGTCTTA
 TTCTCTGTACCTGTCATTAAATCATATTCTCCTATAGTCAGATTGTCAGGGCAGTCGTG
 AGGATAAAAGTCAGAACAGGGCAGAGAAAAGTGTGGGACATGTGGCTCCCACCTCACA
 GTGGTTCCCTGTCTACGGCACAGCTATCTATGCTAACCTCCAGCCGGAACAAACTACTC
 TCAGGATCAGGGCAAGKTCATCTCTCTACACCATCATACACCCATGATCAACCCC
 30 CTCATATATACACTGAGGAACAAGGATGTGAAAGGAGCACTTAAGAAGGTGCTCTGGAAG
 AACTACGACTCCAGATGA(SEQ ID NO: 26)

AOLFR14 sequences:

MALPLLIPLSPCFASSQSLSSRMNSENLTRAAVAPAEFVLLGITNRWDLRVALFLTCLPVYLVSL
 35 LGNMGMALLIRMDARLHTPMYFFLANLSLDACYSSAIGPKMLVDLLPRATIPYTACALQMF
 VFAGLADTECCLLAAMAYDRYVAIRNPLLYTTAMSQRCLALLGASGLGGAVSAFVHTLTF
 RLSFCRSRKINSFFCDIPPLAISCDTSNLNELLFAICGFIQTATVLAITVSYGFIAGAVIHMRSE
 GSRRRASTGGSHLTAVAMMYGTLIFMYL RPSSYALTDKMASVFYTLVIPS LNPLIYSLRNKE
 VKEALRQTWSRFHCPGQGSQ (SEQ ID NO: 27)
 40 ATGGCTTGCCTTGCTCTTATCTCCCTCTGCTTGCTCTCTCAGTCTCTGTCCAGTAG
 GATGAACCTCAGAGAACCTCACCCGGCGCGTTGCCCCCTGCTGAATTGTCCTCTGGGC
 ATCACAAATCGCTGGACCTCGTGTGGCCCTCTCCTGACCTGCTGCTGTACTCTGG
 TGAGCCTGCTGGGAAACATGGCATGGCGCTGCTGATCCGATGGATGCCGGCTCACA
 45 CACCTATGTACTCTCTGGCAACCTCTCCCTGCTGGATGCCCTGCTATTCCCTGCCATC
 GGCCCCAAGATGCTAGTGGACCTGCTGCTGCCCCGAGCCACCATCCCTACACAGCCTGTG
 CCCTCCAGATGTTGCTTGTGAGGTCTGGCTGATACTGAGTGTGCTTGTGGCAGCCAT
 GGCCTATGACCGCTACGTGGGCATCAGAAAACCCACTCTCTATACAACAGCTATGTCGAG
 CGTCTATGCCCTGGCTTGCTGGGAGCATCAGGCCCTGGGTGGGCAGTGAGTGCTTGTTC
 50 ACACAAACCTCACCTCCGCTGAGCTTCTGCCCTCCGGAAAGATCAATAGCTTCTCTG
 CGATATCCCTCCACTGCTGGCCATCTCGTCAGTGACACCAAGTCTCAATGAACCTCTCT
 TCGCCATCTGTGGCTTCATCCAGACAGCCACGGTGTAGCTATCACGGTGTCTTATGGCTT
 CATCGCTGGGCTGTGATCCACATGCCGCTGGTCGAGGGCAGTCGGCAGCAGCCTCCAC
 CGGTGGTTCCCACCTCACAGCCGTGGCCATGATGTACGGGACACTCATTTCATGTACCTG
 55 CGCCCCAGCTCCAGCTATGCCCTGGACACTGACAAGATGCCCTGTGTTCTACCCCTGG

TCATCCCGTCTCTCAACCCACTCATCTACAGCCTCGCAATAAGGAGGTCAAGGAGGCCCT
CAGGCAGACCTGGAGCCGATTCCACTGTCCAGGGCAGGGTCCCAGTGA (SEQ ID NO: 28)

AOLFR15 sequences:

5 MRENNQSSTLEFILLGVTQQEQEDFFYILFLFTYPITLIGNLLIVLAICSDVRLHNPMLYFLLANLS
LVDIFFFSVTIPKMLANHLLGSKSISFGGCLTQMYFMIALGNTDSYILAAMAYDRAVAJSHPLH
YTTIMSPRSCIWLIAGSWVIGNANALPHTLLTASLSFCGNQEAVANFYCDITPLLKLSCSDIHFH
KMMYLGVGIFSVPLLCTIVSYIRVFSTVFQVPSTKGVLKAFSTCGSHLTVVSLYYGTVMGTYFR
PLTNYSLKDAVITVMYTAVTPMLNPFIYSLRNNDMKAALRKLFNKRISS (SEQ ID NO: 29)

10 ATGAGGGAAAATAACCAGTCCTCTACACTGGAATTCACTCCTCTGGGAGTTACTGGTCAGC
AGGAACAGGAAGATTTCTTCTACATCCTCTCCTGTCATTTACCCATCACATTGATTGGA
AACCTGCTCATTGCTCTAGCCATTGCTCTGATGTTGCCCTACAACCCATGTATTCT
CCTTGCCAACCTCTCCTGGTGCACATCTCTCATCGGTAAACCATCCCTAACAGATGCTGG
15 CCAACCACATCTCTGGGCAGCAAATCCATCTCTTGGGGATGCCAACGCAGATGTATT
CATGATAGCCTTGGTAACACAGACAGCTATATTGGCTGCAATGGCATATGATCGAGCT
GTGGCCATCAGCCACCCACTCACTACACAACATTATGAGTCCACGGTCTGTATCTGGC
TTATTGCTGGGCTTGGTGAATTGGAAATGCCAATGCCCTCCCCAACACTCTGTCACAGC
TAGTCTGCTCTGTGGCAACCAGGAAGTGGCCAACCTCTACTGTGACATTACCCCTTG
20 CTGAAGTATCCTGTTCTGACATCCACTTCTATGTGAAGATGATGTACCTAGGGTTGGCA
TTTTCTCTGTGCCATTACTATGCATCATGTCCTATATTGAGTCCTCTCCACAGTCTTCC
AGGTTCTTCCACCAAGGGCGTGTCAAGGCCCTCCACCTGTTGTTCCACCTCACGGT
TGTCTCTTGATTATGGTACAGTCATGGCACGTATTCCGCCCTTGACCAATTATAGCC
25 TAAAAGACGCAGTGTACACTGTAATGTACACGGCAGTGACCCAACTGTTAAATCCTTCT
CTACAGTCTGAGAAAATCGGGACATGAAGGCTGCCCTGCGGAAACTCTAACACAAGAGAAT
CTCCTCGTAA (SEQ ID NO: 30)

AOLFR16 sequences:

30 MRRNCLTVTEFILLGLTSRRELQILLFTLFLAIYMTVAGNLGMIVLIQANAWLHMPMYFFLSH
LSFVDLCFSNVTPKMLEIFLSEKKSIYPACLVQCYLFIALVHVEIYILAVMAFDYMAICNPLL
YGSRMSKSVCASFITVPYVYGALTGLMETMWTYNLAFCGPNEINHFYCADPPLIKLACSDTYN
KELSMFTIVAGWNLSFLIICISLYIIFPAILKIRSTEGRQKAFSTCGSHLTAVTIFYATLFFMYLR
PPSKESVEQGKVMAVFYTTVIPMLNLIYSLRNKNVKEALIKELSMKIYFS (SEQ ID NO: 31)

35 ATGAGAAGAAAATGCACGTTGGTACTGAGTTCACTCCTCTGGACTGACCAAGTCGCCGG
GAATTACAATTCTCTCTCACGCTTTCTGGCCATTACATGGTCACGGTGGCAGGGAA
ACCTTGGCATGATTGCTCTCATCCAGGCCAACGCCCTGGCTCCACATGCCCATGTTACTTTTC
CTGAGCCACTTATCCTCTGTGGATCTGTCTCTTCAATGTGACTCCAAAGATGCTGG
AGATTTCCTTCAGAGAAGAAAAGCATTCCTATCCTGCTGTCTGTGAGTGTACCTT
40 TTTATGCCCTGGTCCATGTTGAGATCTACATCCTGGCTGTGATGCCCTTGACCGGTACAT
GGCCATCTGCAACCTCTGCTTATGGCAGCAGAATGTCACAGAGTGTGCTCTTCC
ATCACGGTGCCTTATGTGATGGAGCGCTCACTGGCTGATGGAGACCATGTGGACCTACA
ACCTAGCCCTCTGTGGCCCCAATGAAATTAAATCACTTCACTGTGCGGACCCACCACTGAT
TAAGCTGGCTGTCTGACACCTACAACAAAGGAGTGTCAATGTTATTGTGGCTGGCTGG
45 AACCTTCTTTCTCTTCATCATATGTATTCCACCTTACATTTCCCTGCTATTAA
AAGATTGCTCTACAGAGGGCAGGCCAAAAGCTTTCTACCTGTGGCTCCCATCTGACAG
CTGTCACTATATTCTATGCAACCCCTTCTCATGTATCTCAGACCCCCCTCAAAGGAATCT
GTTGAACAGGGTAAAATGGTAGCTGTATTATACACAGTAATCCCTATGCTGAACCTTA
TAATTATAGCTTAGAAATAAAATGTAAGCATTAAATCAAAGAGCTGTCAATGA
50 AGATATACTTTCTTAA (SEQ ID NO: 32)

AOLFR17 sequences:

55 MLNFTDVTEFILLGLTSRREWQLFFIIFLVVYIITMVGNIGMMVLKVSPQLNNPMYFFLSHLS
FVDVWFSSNVTPKMLENLFSDDKKTITYAGCLVQCFFFIALVHVEIILAAMAFDRYMAIGNPLL
YGSKMSRVVCIRLITFPYIYGFLSLAATLWTYGLYFCGKIEINHFYCADPPLIKMACAGTFVKE

YTMIILAGINFTYSLTVIISYLFILIAIRMRSAEGRQKAFSTCGSHLTAVIIFYGTLIFMYLRRPE
ESVEQGMVAVFYTTVIPMLNPMTYSLRNKDVKAMMKVISRSC (SEQ ID NO: 33)

5 ATGCTCAATTTCACCGATGTGACAGAGTCATTCTTGGGGCTAACGAGGCCGTCGAGAAT
GGCAAGTTCTCTTCATCATCTTCTTGTGGTCTACATCATCACCATGGTGGCAATATC
GGCATGATGGTGTAAATCAAGGTCAAGTCAGTCCTCAGCTAACACCCCATGTACTTTCTCA
GTCACTTGTCAATTGTTATGTGTTGGTTCTCCAATGTCAACCCCTAAATGTTGGAAAAC
CTGTTTCAGATAAAAAAAACAATTACTTATGTGGTTAGTAGTACAGTGTCTCTTCAT
TGCTCTGTCCATGTGGAATTTCATTCTGCTGCATGGCCTTGATAGATACTGGCAA
10 TTGGGAATCCTCTGCTTATGGCAGTAAATGTCAAGGGTTGTCTGTATTGACTGATTAC
TTTCCCTTACATTATGGTTCTGACGAGTCTGGCAGCAACATTATGGACTTACGGCTTGT
ACTTCTGTGAAAATTGAGATCAACCATTCTACTGTGAGATCCACCTCTCATCAAAT
GGCCTGTGCCGGGACCTTGTAAAAGAATATAACATGATCATACTTGGCCGATTAACCTC
ACATATTCCCTGACTGTAATTATCATCTTACTTATTCTACCTCATGCCATTCTGCGAAT
15 GCGCTCAGCAGAAGGAAGGCAGAAGGCCATTCTCACATGTGGTCCCATGTACAGCTGT
CATTATATTCTATGGTACTCTGATCTTCTATGTATCTCAGACGTCACAGAGGAGTCTGTG
GAGCAGGGGAAGATGGTGGCTGTGTTCTACACACAGTGTACCCCCATGTTGAATCCCATGA
TCTACAGTCTGAGGAACAAGGATGTGAAAAGGCCATGATGAAAGTGTACAGCAGATCAT
GTTAA (SEQ ID NO: 34)

20 **AOLFR18 sequences:**

MSNTNGSAITEFILLGLTDCPELQSLLFVLFLVVYLVTLLGNLMIMLRLDSRLHTPMYFFLT
NLAFVDLCYTSNATPMSTNIVSEKTISFAGCFTQCYFIALLTEFYMLAAMAIDRYVAIYDP
25 LRYSVKTSRRVCICLATFPYVYGFSDGLFQAILTFRLTFCRSNVINHFYCADCPLIKLSCSDTYVK
EHAMFISAGFNLSSSLTIVLVSYAFILAALRIKSAEGRKAFTCGSHIMMAVTLFYGTLFCMYI
RPPTDKTVEESKIIAVFYTFVSPVNLNPLIYSLRNKDVKQALKNVLR (SEQ ID NO: 35)

30 ATGTCCAACACAAATGGCAGTGCAATCACAGAATTCACTTACTGGGCTCACAGATTGCC
CGGAACCTCCAGTCCTGCTTGTGCTGTTCTGGTTTACCTCGTACCCCTGCTAGGC
AACCTGGGCATGATAATGTTAATGAGACTGGACTCTCGCCTCACACGCCATGTACTTCT
TCCTCACTAACTTAGCCTTGTGGATTGTGCTATACATCAAATGCAACCCCGCAGATGTC
GACTAATATCGTATCTGAGAAAGACCATTCCCTTGCTGGTTGCTTACACAGTGTACATT
TCATTGCCCTACTCACTGAGTTTACATGCTGGCAGCAATGGCTATGACCGCTATGT
GGCCATATATGACCCCTGCGCTACAGTGTGAAAACGTCAGGAGAGTTGATCTGCTTGT
35 GCCACATTTCCCTATGTCTATGGCTCTCAGATGGACTCTCCAGGCCATCTGACCTCCG
CCTGACCTCTGTAGATCCAATGTCATCAACCCTACTGTGCTGACCCGCCGCTCATTA
AGCTTCTGCTGATACTTATGTCAAAGAGCATGCCATGTCATATCTGCTGGCTCAAC
CTCTCCAGCTCCCTCACCATCGCTTGGTCCATGCTTCACTCTGCTGCCATCTCCG
GATCAAATCAGCAGAGGGAAAGGCACAAGGCATTCTCACCTGTGGTCCCATATGATGGC
40 TGTCACCCCTGTTTATGGACTCTCTTGCATGTATATAAGACCAACAGATAAGACT
GTGAGGAATCTAAAATAATAGCTGTTTACACCTTGTGAGTCCGGTACTTAATCCAT
TGATCTACAGTCTGAGGAATAAGATGTGAGCAGGCCCTGAAGAATGTCTGAGATGA
(SEQ ID NO: 36)

45 **AOLFR19 sequences:**

METKNYSSSTSGFILLGLSSNPKLQKPLFAIFLIMYLLTAVGNVLILAIYSDPRLHTPMYFFLSNL
SFMDICFTTIVPKMLVNFLSETKJISYVGCLIQMYFFMAFGNTDSYLLASMAIDRLVAICNPLH
YDVVMKPWHCLLMLLGSCSISHLHSFLRVLLMSRLSFCAASHIHKFFCDTQPVLKLSCSDTSSSQ
50 MVVMTETLAVITVTPFLTIFSYLQIVTVLRIPSAAGKWKAFTCGSHLTVVVFYGSVIYVYFR
PLSMYSVMKGRVATVMYTvvTPMLNPFIYSLRNKDMKRGLKKLRHRIYS (SEQ ID NO: 37)

55 ATGGAGACAAAGAATTATAGCAGCAGCACCTCAGGCTTCATCCTCCTGGGCTCTCTCCA
ACCTAACGCTGAGAAACCTCTTGTGCCATCTTCCATCATGTACCTACTCACTGCCGTG
GGGAATGTGCTCATCATCCTGCCATCTACTCTGACCCAGGCTCCACACCCCTATGTACT
TTTTCTCAGCAACTGTCTTCATGGATATCTGCTTCACAAACAGTCATAGTGCCTAAAGATG
CTGGTGAATTCTATCAGAGACAAAGATTATCTCTTATGTGGCTGCCTGATCCAGATGT

ACTTCTTCATGGCATTGGGAACACTGACAGCTACCTGCTGGCTCTATGGCCATCGACCG
 GCTGGTGGCCATCTGCAACCCTTACACTATGATGTGGTTATGAAACCATGGCATTGCCA
 CTCATGCTATTGGTCTTGACATCTCCACCTACATTCCCTGTTCCCGTGTACTTAT
 GTCTCGCTTGTCTTCTGCTCACATCATTAAAGCACTTTCTGTGACACCCCAGCCTG
 5 TGCTAAAGCTCTCTGCTCTGACACATCCTCCAGCCAGATGGTGGTGTACTGAGACCTT
 AGCTGTCAATTGTGACCCCCCTCTCTGTGACATCTTCTCCTACCTGCAAATCATGTCAC
 TGCTCAGAACATCCCCTCTGCAGCCGGAAAGTGGAAAGGCCCTCTCACCTGTGGCTCCAC
 CACTGTAGTGGTCTGTTCTATGGGAGTGTCACTATGTCTATTAGGCCCTGTCCATGT
 10 ACTCAGTGTGATGAAGGGCGGGTAGCCACAGTTATGTACACAGTAGTGACACCCATGCTGA
 ACCCTTCATCTACAGCCTGAGGAACAAAGATATGAAAAGGGTTGAAAGAAATTAAGAC
 ACAGAATTACTCATAG (SEQ ID NO: 38)

AOLFR20 sequences:

MVEENHTMKNEFILTGFDTDHPKTLFVVFAYLITVGNISLVALIFTHCRLHTPMYFLGN
 15 LALVDSCCACAITPKMLENFFSEGKRISLYECAVQFYFLCTVETADCFLAAVAYDRYVAICNP
 LQYHIMMSKKLCIQCMTTGAFLAGNLHSMIHVGVLVFRLLVFCGLNHINHFYCDTLPLYRLSCVDPF
 INELVLFIFSGSVQVFTIGSVLISYLYLLTIFRMKSKEGRAKAFSTCASHFSSVLFYGSIFFLYIRP
 NLLEEGGNDIPAAILFTIVVPLNPFYSLRNKEVISVLRKILLKIKSQGSVNK (SEQ ID NO: 39)

20 ATGGTTGAAGAAAATCATAACCATGAAAAATGAGTTTATCCTCACAGGATTACAGATCACC
 CTGAGCTGAAGACTCTGCTGTTGTGGTGTCTTGCCATCTATCTGATCACCGTGGTGG
 GAATATTAGTTGGTGGCACTGATATTACACACTGTCGGCTCACACACCAATGTACATC
 TTTCTGGAAATCTGGCTCTGTGGATTCTGCTGTGCTGTGCTATTACCCCCAAAATGTT
 AGAGAACITCTTCTGAGGGCAAAGGATTCCCTCTATGAATGTGCACTGAGTTTAT
 25 TTTCTTGCACTGTGGAAACTGCAGACTGCTTCTCTGGCAGCAGTGGCCTATGACCGCT
 ATGTGGCCATCTGCAACCCACTGCAGTACCAACATCATGATGTCAGAAACTCTGCATTCA
 GATGACCAACAGGCCCTCATAGCTGGAAATCTGCATTCCATGATTCACTGTAGGGCTTGTA
 TTTAGGTTAGTTCTGTGGATTGAATCACATCAACCAACTTTACTGTGATACTCTCCCTT
 GTATAGACTCTCTGTGTTGACCCCTTCATCAATGAACCTGGTCTATTCACTCTCAGGTT
 30 CAGTTCAAGTCCTTACCATAGGTAGTGTCTTAATATCTTATCTTATATTCTTACTATT
 TTCAGAAATGAAATCCAAGGAGGGAAAGGCCAAAGCCTTTCTACTGTGCACTCCACTTT
 CATCAGTTCAATTCTATGGATCTATTCTTCTACATTAGACCAAATTGCTTGAA
 GAAGGAGGTAATGATATACCAAGCTGCTATTACATTACAATAGTAGTCCCTACTAAATC
 CTTTCATTATAGTCTGAGAACACAAGGAAGTAATAAGTGTCTAAGAAAATTCTGCTGAA
 35 AATAAAATCTCAAGGAAGTGTGAACAAATGA (SEQ ID NO: 40)

AOLFR21 sequences:

MEPRKNVTDFVLLGFTQNPKEQKVLFVMFLLFYILTMVGNLLIVVTVTVSETLGSPMSFFLAGL
 TFIDITYSSSISPRLISDLFFGNNSISFQSFMAQLFIEHLFGGSEVFLLVMAYDRYVAICKPLHYLV
 40 IMRQWVCVLLVVSVWVGGFLQSVFQLSIYGLPFCGPVIDHFFCDMYPLLKACTDTHVIGLL
 VVANGGLSCTIAFLLLISYGVILHSLKKLSQKGRQKAHSTCSSHITVVVFFFVPCIFMCARPAR
 TFSIDKSVSVFYTVPMLNPLIYTLRNSEMTSAMKKL (SEQ ID NO: 41)

45 ATGGAGCCAAGGAAAATGTGACTGACTTTGTCCCTTGGGCTCACACAGAACTCAAAG
 GAGCAGAAAGTACTTTGTTATGTTCTGCTCTTACATTTGACCATGGTGGGCAACCT
 GCTCATTGTAGTGACCGTAACTGTCAGTGAGACCCCTGGGCTACCAATGTCCTTCTT
 GCTGGCTTAACATTATAGATATCATTTATTCTCATCCATTCCCCCAGATTGATTTCA
 CTTGTTCTTGGGATAATTCCATATCCTCCAATCTTICATGGCCCAGCTCTTATCGAGC
 ACCTTTTGGTGGTCAGAGGCTTCTCTGTGGTGTGGCTATGACCGCTATGTGGC
 50 CATCTGTAAGCCCTGCAATTGGTTATCATGAGACAATGGGTGTGTGTTTGCTGCTG
 GTAGTGTCTGGGGTGGAGGATTCTGCAATCAGTATTCAACTTAGCATTATTATGGGC
 TCCCATTCTGTGGCCCCAATGTCATTGATCATTTCTGACATGTATCCCTATTGAAA
 CTGGCCTGCACTGACACCCATGTTATTGGCCTTGTGGTGGCCAATGGAGGACTGTCTT
 GCACTATTGCGTTCTGCTTACTCATCTCTTATGGTGTACCTGCACTCTAAAGAAA
 55 CTTAGTCAGAAAGGGAGGCAAAAGCCACTCAACCTGCACTGAGTCCCACATCACTGTGGTTG
 TCTTCTTCTTGTCTTGTATTGTTATGTGTGCTAGACCTGCTAGGACCTCTCCATTGAC

AAATCAGTGAGTGTGTTTATACAGTCATAACCCCAATGCTGAACCCCTTAATCTACACTC
TGAGAAATTCTGAGATGACAAGTGCTATGAAGAAGCTTAG (SEQ ID NO: 42)

AOLFR22 sequences:

5 MRXXNNXTEFVLLGFSQDPGVXKALFVMFLTYXTVVGNLIVVDIIASPXLGSPMYFFLAC
LSFIDAAYSTTISPKLIVGLFCDKKTISFQGCMQLFIDHFFGGAEVFLLVVMACDRYVAICKPL
HYLTIMNRQVCFLLVXXMIGGFVHSASFQIVVYSLPFCGPXIVHFSCDMHPLEACTDTYFI
GLTVVVNSGAICMVIFNLLISYGVILSSLKTYSQEKRKGKALSTCSSGTVVVLFFVPCIFIYVRP
VSNFPTDKFMTVFTYTIITHMLSLIYTLRNSEMRNAIEKLLGKKLTIFIIGGVSVLM (SEQ ID NO:
10 43)

ATGAGACANNNAACAATATNACAGAATTGTCCCTCTGGGCTTTCTCAGGATCCTGGTG
TGNNNAAAGCATTATITGTATGTTTACTCACATACNNNNNNACAGTGGTGGGGAACCT
GCTCATTGTNGTGGATATTATGCCAGCCTNNNTGGGTTCCCAATGTATTCTCCTTG
15 CTCGCCTGTCAATTAGATGCTGCATATTCACTACCATTCTCCCAAGGTTAATTGAGGC
TTATTCTGTGATAAAAAGACTATTCTCCAAGGTTGCTATGGCCAGCTATTATAGACC
ATTCTTGTGGTGGGGCTGAGGTCTTCTCTGGTGGTATGGCCTGTGATCGCTATGTGGC
CATCTGTAAGCCACTGCACTATTGACCATCATGAATCGACAGGTTGCTCCTCTGTTGG
20 TNNTNNCCATGATTGGAGGTGGTACATTCTGCCTTCAAATTGTTGTGATAGCTCCCT
TTCTGTGGTCCCNATGTCATTGTCATTTCAGITGTGACATGCACCCATTACTGGAACCTGGC
ATGCACTGACACCTACTTTAGGCCTCACTGTGTTGTCATAGTGGAGCAATCTGTATG
GTCATTTCACCTCTGTTAATCTCTATGGAGTCATCTAAAGCTCCCTAAACACTTACAG
TCAGGAAAAGAGGGGTAAGCCTTGTCTACCTGCAGCTCCGGAGTACCGTTGTTGCTCT
25 TTTTTGTACCCCTGTATTTCATATATGTTAGACCTGTTCAAACCTTCTACTGATAAGTT
CATGACTGTGTTTATACCATTATCACACACATGCTGAGTCCTTAATATATACGTTGAGA
AATTCAAGAGATGAGAAATGCTATAGAAAAACTCTGGTAAAAAGTTAACTATATTATTA
TAGGAGGAGTGTCCGTCCATGTAG (SEQ ID NO: 44)

AOLFR23 sequences:

30 MAKNNLRTVTEFILMGFMJDHPKLEIPLFLVFLSFYLVTLLGNVGMIMLIQVDVKLYTPMYFFLS
HLSLLDACYTSVTPQILATLATGKTVISYGHCAAQFFLFTICAGTECFLLAVMAYDRYAIRNP
LLYTVAMNPRLCWSLVVGAYVCGVSGALRTTCTFTLSFCKDNQINFFFCDLPLLKLACSDTA
NIEIVIFFGNFVILANASVILISYLLIKTILVKVSSGRAKTFSTCASHITAVALFFGALIFMYLQS
GSGKSLEEDKVSVFYTVPMLNPLIYSLRNKDVKDAFRKVARRLQVSLSM (SEQ ID NO: 45)

35 ATGGCCAAGAATAATCTCACCAAGAGTAACCGAACATTCTCATGGGTTATGGACCACC
CCAAATTGGAGATTCCCCTTTCTGGTGGTACCTAGTCACCCCTTCTGGG
AATGTGGGGATGATTATGTTAATCCAAGTAGATGTCAAACTCTACACCCCAATGTACTTCT
TCCGTAGCCACCTCTCCCTGCTGGATGCTTACACCTCAGTCATCACCCCTCAGATCCTA
40 GCCACATTGGCCACAGGCAAAACGGTCATCTCTACGGCCACTGTGCTGCCAGTTCTTT
TATTCAACATCTGTGCAAGGACAGAGTGCTTCTGCTGGCAGTGATGCCATGATCGCTA
TGCTGCCATTGCAACCCACTGCTCTACCGTGGCCATGAATCCCAGGCTCTGCTGGAGC
CTGGTGGTAGGAGCCTATGCTGTGGGTGTAGGAGCCATCTGCGTACCAACTTGCACCT
TCACCCCTCTCTGTAAAGGACAATCAAATAAAACTCTCTCTGTGACCTCCCACCCCTG
45 CTGAAGCTTGCCTGCACTGACACAGCAAACATCGAGATTGTCATCATCTCTGGCAATT
TTGTGATTTGGCCAATGCCCTCGTCATCTGATTCTATGTCATCATCAAGACCATT
TTGAAAGTGAAGTCTCAGGTGGCAGGGCCAAGACTTCTCACATGTGCTCTCACATCA
CTGCTGTGGCCCTTTCTTGAGGCCATTCTCATGTATCTGCAAAGTGGCTCAGGCAAA
50 TCTCTGGAGGAAGACAAAGTCGTGTCTGCTTACAGTGGTCATCCCCATGCTGAACC
CTCTGATCTACAGCTTAAGAAACAAAGATGTAAGAACAGCCTCAGAAAGGTCGCTAGGA
GACTCCAGGTGTCCCTGAGCATGTAG (SEQ ID NO: 46)

AOLFR25 sequences:

METGNLTWVSDFVFLGLSQTRELQRFLFLMFLFYITTVGNILIIITVTSQLHTPMYFLLRN
55 LAVLIDLCSVSVTAPKMLV DLLSEKKTISYQGCMGQIFFHFLGGAMVFFLSVMAFDRLIAISRPL
RYVTVMNTQLWVGLVVATWVGGFVHSIVQLALMLPLPFCGPNI LDNFYCDVPQVRLACTDT

SLLEFLKISNSGLLDVVFLLMSYLFILVMLRSHPGEARRKAASTCTTHIIVSMLFVPSIYL
ARPFTPMDKLVSIHTVMTPMLNPMITYLRNQDMQAARRLGRHRLV (SEQ ID NO: 47)

5 ATGGAAACAGGAAACCTCACGTGGTATCAGACTTGTCTTCTGGGCTCTCGCAGACTC
GGGAGCTCCAGCTTCTGTTCTAATGTCCTGTTGTCTACATCACCACTGTTATGGGA
AACATCCTATCATCACAGTGACCTCTGATTCCCAGCTCCACACACCCATGTACTTCT
GCTCCGAAACCTGCTGCTTAGACCTCTGTTCTCTCAGTCAGTCACTGCTCCAAAATGCTAG
TGGACCTCTCTGAGAAGAAAACCATCTTACCAAGGGCTGCATGGTCAGATCTTCT
CTTCCACTTTGGAGGTGCCATGGTCTCTTCTCAGTGATGGCCTTGACCGCTCA
10 TTGCGCATCTCCCAGGCCCCCTCCGCTATGTCACCGTCATGAACACTCAGCTCTGGTGGGCT
GGTGGTAGCCACCTGGGTGGGAGGCTTGTCCACTCTATTGTCAGCTGGCTCTGATGCTC
CCACTGCCCTCTGTCGGCCCAACATTGATAACTTCTACTGATGATGCCCCAAGTACT
GAGACTTGCTGCACTGACACCTCACTGCTGGAGTCCCTCAAGATCTCAACAGTGGGCTG
CTGGATGTCGCTGGTCTCTCTCTGATGTCCTACTTATTCATCTGGTATGCTGAG
15 GTCACATCCAGGGAGGCAAGAAGGAAGGCAGCTCCACCTGCACCAACCATCATCGT
GGTTTCATGATCTCGTCCAAAGCATTCCTATGCCCAGGCTTCACTCCATTCCCTA
TGGACAAGCTGTGTCATCGGCCACACAGTCATGACCCCCATGCTCAACCCATGATCTA
TACCTGAGGAACCAGGACATGCAGGCAGCAGTGAGAAGATTAGGGAGACACCGGCTGGT
TTGA (SEQ ID NO: 48)

20

AOLFR26 sequences:

MAAKNSSVTEFILEGLTHQPGLRIPPLFLFLGFYTWTWGNLGLITLIGLNHLHPTMYFFLFNLS
LIDFCFTTIPKMLMSFVSRKNIISFTGCMQLFFFCCVVSESFILSAMAYDRYVAICNPPLYT
25 VTMSCQVCLLNGAYGMGFAGAMAHTGSIMNLFCADNLVNHFMCIDLPLLELSQNSSYMN
ELVVFIVVAVDVGMPIVTVFISYALILSSILHNSTEGRSKAFSTCSSHTVVSLEFGSGAFMYLK
LSILPLEQGVSSLFYTIIVPVLNPLIYSLRNKDVKVALRRTLGRKIFS (SEQ ID NO: 49)

30 ATGGCAGCCAAAAACTCTCTGTGACAGAGTTATCCTCGAAGGCTAACCCACCAGCCGG
GAECTGGGATCCCCCTCTTCTCTGTTCTGGGTTCTACACGGTACCGTGGTGGGAA
CCTGGGCTTGATAACCCCTGATTGGGCTGAACCTCACCTGCACACTCCCATGTA
TTTAAACCTCTTTAATAGATTCTGTTCTCCACTACCATCACTCCAAAATGCTGATG
AGTTTGCTCTCAAGGAAGAACATCATTCTTCACAGGTGTATGACTCAGCTCTTCT
CTGCTTCTTGCGTCTGAGTCCTCATCCTGTCAGCGATGGCTATGACCGCTACGTGG
35 CCATCTGAACCCACTGTTGACACAGTCACCATGTCCTGCCAGGTGTGTTGCTCCTTTG
TTGGGTGCTATGGATGGGTTTGTGGGCCATGGCCCACACAGGAAGCATAATGAAC
CTGACCTCTGTGTCACAACCTGTCAATCATTCATGTCACATCCTCTCCTCTGA
GCTCTCTGCAACAGCTTACATGAATGAGCTGGGTCTTATTGTTGCTGTTGAC
GTTGGAATGCCATTGTCACTGTTTATTCTTATGCCCTCATCCTCTCAGCATTCTACA
40 CAACAGTTCTACAGAAGGCAGGTCAAAGCCTTACTGCACTGAGTCCACATAATTGA
GTTTCTCTTCTTGGTCTGGTCTTCATGATCTCAAAACCCCTTCCATCCTGCCCTC
GAGCAAGGAAAGTGTCTCCCTGTTCTATACCATAATAGTCCCCTGTTAAACCCATTAA
TCTATAGCTTGAGGAACAAGGATGTCAAAGTTGCCCTGAGGAGAACCTTGGCAGAAAAA
TCTTTCTTAA (SEQ ID NO: 50)

45

AOLFR27 sequences:

MPSQNYIISEFNLGFSAFPQHLLPILFLYLLMFLFTLLGNLLIMATIWEHRLHPTMYLFLCTL
SVSEILFTVAITPRMLADLLSTHHSITFVACANQMFFSMFGFTHSFLLVMGYDRYVAICHPLR
YNVLMSPRDCAHVACTWAGGSVMGMMVTIVFHLCFCGSNVIIHFFCHVLSLLKLACENKT
50 SSVIMGVMLVCVTALIGCLFLIIISYVFIVAAIRIPSAGRHKTFCSTCVSHLTVVVTHYSFASFIY
LKPKGHLHSMYSDALMATTYTVFTPFLSPILFSLRNKEKNAINKNFYRKFCPPSS (SEQ ID NO:
51)

55 ATGCCTAGTCAGAACTATAGCATATCTGAATTAAACCTCTGGCTCTCAGCCTCCC
CCAGCACCTCTGCCATCTGTTCTGCTGTACCTCTGATGTTCTGTCACATTGCTGG
GCAACCTCTCATCATGGCCAACATCTGGATTGAACACAGACTCCACACACCCATGTACCT
CTTCTGTGCACCCCTCCGTCAGAGATTCTGTCAGTGTGCCATCACCCCTCGCATGC

TGGCTGATCTGCTTCCACCCATCATTCCATCACCTTGCGCTGTGCCAACAGATGTC
 TTCTCCTCATGTTGGCTTCACTCACTCCTCCTCTGGTATGGCTATGATCGCTA
 TGTGGCCATCTGCCACCCACTGCCTACAATGTGCTCATGAGCCCCGTGACTGTGCCAT
 CTTGTGGCCTGTACCTGGGCTGGCTAGTCATGGGGATGATGGTACAGATAGTTT
 5 TCCACCTCACTTCTGTGGGCTAAATGTGATCCACCATTTCCTGTATGTGCTTCCCTCT
 TGAAGTGGCCTGTGAAAACAAGACATCATCTGTATCATGGGTGTATGGTGTGT
 CACAGCCCTGATAGGCTTTATTCCCTCATCATCCTCTCTATGTCTCATGGGCTGCCA
 TCTTGAGGATTCCCTGCCGAGGCCGACAAGACATTTCTACGTGTATCCCACCT
 CACTGTGGTGGTCACGCACTATAGTTGCCTCTTACTACCTCAAGCCAAGGGCTCC
 10 ATTCTATGTACAGTGACGCCCTGATGCCACCACCTATACTGTCTCACCCCTCCTAGC
 CCAATCATTTCAGCTAAGGAACAAGGAGCTGAAGAATGCCATAAATAAAACTTTACA
 GAAAATTCTGTCCCTCCAAGTCCCTGA (SEQ ID NO: 52)

AOLFR28 sequences:

15 MPNFTDVTEFILLGLTCRQELQLVLFVVFLAVYMITLLGNIGMILISIISPQLQSPMYFFLSHLSF
 ADVCFSSNVTPKMLENLLSETKTISYVGCLVQCYFFIAVVHVEVYILAVMAFDRYMACGXPLL
 YGSKMSRTVCVRlisVXYXYGSVSVSICLTLWTYGLYFCGNFEINHYCADPPLIQACGRVHKE
 ITMVIAGINFYSLSVVLISYTLIVVAVLRMRSADGRRAFSTCGSHLTAVSMFYGTPIMYL
 RPTEESVEQGKMOVAFYTTVIPMLNPMTYSLRNKDVKAEVNKAITKTYVRQ (SEQ ID NO: 53)
 20 ATGCCTAATTTCACGGATGTGACAGAATTACTCTCCTGGGCTGACCTGTCGTAGGAGC
 TACAGGTCTCTTTGTGGTGTCTAGCGGTTACATGATCACTGTGTGGAAATATT
 GGTATGATCATTTGATTAGCATCGTCTCAGCTTCAGAGTCCCAGTACTTTCTGAG
 TCATCTGCTTTGCCGACGTGTGCTTCTCCTCAACGTTACCCCCAAATGCTGGAAACT
 25 TATTATCAGAGACAAAAACCATTCCTATGTGGGATGCTGGTGCAGTGTACTTTCTCAT
 TGCCGTGTCCACGTGGAGGTCTATATCCTGGCTGTGATGCCCTTGACAGGTACATGCC
 GGCTGCAANCCTCTGCTTATGGCAGTAAAATGTCAGGACTGTGTGTTGGCCTCATCT
 CTGTGNNNATGNNTATGGATTCTCTGTCAAGCTAATATGACACATATGGACTATGGCTT
 ATACTCTGTGGAAACTTGAATCAATCACTCTATTGTGCAGATCCCCCTCATCCAGA
 30 TTGCCTGTGGGAGAGTGACATCAAAGAAATCAAATGATTGTTATTGCTGGAATTAACTT
 CACATATTCCCTCTGGTGTCTCATCTCTACACTCTCATTGTAGTAGCTGTGCTACGCA
 TGCCTCTGCCGATGGCAGGAGGAAGGCGTCTCCACCTGTGGTCCCACCTGACGGCTGT
 TTCTATGTTTATGGGACCCCCATCTCATGTATCTCAGGAGACCCACTGAGGAATCCGTA
 GAGCAGGGCAAAATGGTGGCTGTGTTTACACCACAGTAATTCTATGTGAATCCCATGA
 35 TCTACAGTCTGAGAAATAAGGATGTAAAAGAAGCAGTCAACAAAGCAATACCAAGACAT
 ATGTGAGGCAGTAA (SEQ ID NO: 54)

AOLFR29 sequences:

40 MMSFAPNASHSPVFLLLGSRANISYTLFLAIYLTTILGNVTLVLLISWDSRLHSPMYYLLR
 GLSVIDMGLSTVLPQLLAHLVSHYPTIPAARCLAQFFFFYAFGVTDLVIAVMALDRYVAICD
 PLHYALVMNHQRCACLLALSWWVSILHTMLRVGLVPLCWTGDAGGNVNLPHFFCDHRPLLR
 ASCSDIHSNELAIFFEGGFLMLGPCALIVSRYRIGAAILRLPSAAGRRAVSTCGSHLTMVGFL
 YGTIICVYFQPPFQNSQYQDMVASVMTAITPLANPFVYSLHNKDVKGALCRLEWVKVDP
 (SEQ ID NO: 55)
 45 ATGATGAGCTTGCCCCTAATGCTCACACTCTCCGGTTTTGCTCCTGGGTCAGAG
 AGCTAACATCTCCTACACTCTCCTCTGGCTATTCACCTGACCACCATAC
 TGGGAATGTGACACTGGTGTCTCATCTCTGGACTCCAGACTGCACTACCCATGTA
 TTATCTGCTTCGTGCCCTCTGTGATAGACATGGGCTATCCACAGTACACTGCCCCAG
 50 TTGCTGGCCCATTGGTCTCTATTACCAACCATCTGCTGCCGCTGCTGGCTCAGTT
 CTTTCTCTATGATTTGGGTTACAGATACACTGTGTCATTGCTGTATGGCTCTGGATC
 GCTATGTGCCATCTGTGACCCCCCTGCACTATGCTTGGTAATGAATCACAACGGTGTGC
 CTGCTTACTAGCCTGAGCTGGGTGTCATCTGACACCATGTTGCGTGTGGACTC
 GTCCCTGCCCTTGTGGACTGGGATGCTGGGGCAACGTTAACCTCCTCACTTCTTTG
 55 TGACCAACGGCCACTCTGCGAGCCTTGTGTCACATACATTCTAATGAGCTGGCCATA
 TTCTTGTAGGGTGGCTCCATGCTGGCCCTGTGCCCTCATTGTAACCTCTCATGTCCG

5 AATTGGGGCCGCTATTCTACGTTGCCITCAGCTGGTCGCCGCCAGCAGTCTCCACC
 TGTGGATCCCACCTCACCATGGTTGGCTCTACGGCACCATCATTGTGTACTTCCA
 GCCTCCCTCCAGAACACTCTCACGTATCAGGACATGGGGCTCAGTAATGTATACTGCCATT
 ACACCTTGGCCAACCCATTGTGTATAGCCTCCACAATAAGGATGTCAAGGGTGCACCTCT
 5 GCAGGCTGCTGAATGGGTGAAGGTAGACCCCTGA (SEQ ID NO: 56)

AOLFR30 sequences:

10 MGFLSPMHPCRPTQRRMAAGNHSTVTEFILKGLTKRADLQLPLFLFLGIYLVTIVGNLGMIT
 LICLNSQLHPTPMYFLSNLSLMDLCYSSVTPKMLVNFSKNIISYAGCMYSQLFFLVFVIAEC
 YMLTVMAYDRYVXXCHPLLNYIIMSHHTCLLLVAVVYAIGLIGSTIETGLMLKLPYCEHLISHY
 FCDILPLMKLSCSSTYDVEMTVFFSAGFNIIVTSVLVSYTFLSSILGISTTEGRSKAFSTCSSHL
 AAVGMFYGSTAFMYLKPSLTQENVASVFYTTVIPMLNPLIYSLRNKEVKAQKTLRGK
 LF (SEQ ID NO: 57)

15 ATGGGGTTCTGTCTCCATGCATCCCTGCAGGCCTCCCACCCAGAGGGAGAATGGCTGCAG
 GAAATCACTCTACAGTGCAGAGAGTTCAAGGGTTAACGAAGAGAGCAGACCTCC
 AGCTCCCCCTCTTCTCCTCTCCCTGGGATCTACTTGGTCACCATCGTGGGAACCTGGC
 ATGATCACTCTAAATTGTCTGAACCTCTCAGCTGCACACCCCCATGTACTACTTCTCAGCAA
 TCTGTCACTCATGGATCTCTGCTACTCCTCCGTCTTACCCCTAAAGATGCTGGTAACITTG
 20 TGTCAAGAGAAAAACATCATCTCCTACGCAGGGTGCATGTCACAGCTCTACTTCTCCTTGT
 TTTTGTCAATTGCTGAGTGTACATGCTGACAGTGTGATGGCCTACGACCGCTATGTTGNNT
 TGCCACCCCTTGCTTACAACATCATTTATGTCTCATCACACCTGCTGCTGGTGGCTGT
 GGTCTACGCCATCGGACTCATGGCTCCACAATAGAAACTGGCCTCATGTTAAAAGTCCC
 TATTGTGAGCACCTCATCAGTCACACTCTGTGACATCCTCCCTCATGAAGCTGCTG
 25 CTCTAGCACCTATGATGTTGAGATGACAGTCCTTTCGGCTGGATTCAACATCATAGTC
 ACGAGCTTAACAGTTCTGTTTACACCTTCATTCCTCCAGCATCTCGGCATCAGCAC
 CACAGAGGGGAGATCCAAGCCTTCAGCACCTGCAGCTCCCACCTGAGCCGTGGAAAT
 GTTCTATGGATCAACTGCATTCATGTTACTTAAACCCCTCCACAATCAGTTCCTGACCCAG
 GAGAATGTGGCCTCTGTGTTCTACACCACGGTAATCCCCATGTTGAATCCCCAATCTACA
 30 GCCTGAGGAACAAGGAAGTAAAGGCTGCCGTGCAGAAACGCTGAGGGTAAACTGTTT
 GA (SEQ ID NO: 58)

AOLFR31 sequences:

35 MGTGNDTTVVEFTLGLSEDTTVCAILFLVFLGIYVVTLMGNISIIVLIRRSHHLHTPMYIFLCHL
 AFVDIGYSSSVTPVMLSFLRKETSLPVAGCVAQLCSVTFGTAECFLAAMAYDRYVAICSP
 LLYSTCMSPGVCIILVGMSYLGCVNAWTFIGCLRLSFCGPNKVNHFFCDYSPLLKLACSHDF
 TFEIIPAISSGSIVATVCVIAISYIYLITLKMHSTKGRHKAFSTCTSHTAVTFYGTITFIYVMP
 KSSYSTDQNKVSVFYTIVIPMLNPLIYSLRNKEIKGALKRELRIKIFS (SEQ ID NO: 59)

40 ATGGGGACTGAAATGACACCACGTGGTAGAGTTACTCTTTGGGTTATCTGAGGATA
 CTACAGTTGTGCTATTATCTGTGTTCTAGGAATTATGTTGTCACCTTAATGGGT
 AATATCAGCATAATTGTATTGATCAGAACAGTCATCATCTCATACACCCATGTACATT
 TCCCTGCCATTGGCTTTGTAGACATTGGTACTCCTCATCAGTCACACCTGTCATGCTC
 ATGAGCTTCTAAAGGAAAGAACCTCTCCCTGTGCTGGTTGTGGCCAGCTCTGTT
 45 CTGTAGTGACGTTGGTACGCCAGTGCTTCTGCTGGCTGCCATGGCTATGATCGCTA
 TGTGGCCTCTGCTCACCCCTGCTACTCTACCTGCACTGCTGGAGTGTGCACTCATCT
 TAGTGGCAGTGTCTACCTGGGTGGATGTGTAATGCTGGACATTCACTGGCTGCTTATT
 AAGACTGTCTCTGTGGGCAAATAAAAGTCATCACTTCTGTGACTATTACCACTTT
 TGAAGCTTGCTGTGCTCCATGATTTACTTTGAAATAATTCCAGTATCTCTCTGGATCT
 50 ATCATTGTGGCCACTGTGTGTCATAGCCATATCCTACATCTATATCCTCATACCATCCT
 GAAGATGCACTCCACCAAGGGCCGCCACAAGGCCTCTCCACCTGCACCTCCCACCTCACT
 GCAGTCACCTGTTCTATGGGACCATTACCTTCATTATGTGATGCCAAGTCCAGCTACTC
 AACTGACCAGAACAAAGGTGGTCTGTGTTCTACACCGTGGTATTCCATGTTGAACCCC
 CTGATCTACAGCCTCAGGAACAAGGAGATTAAGGGGCTCTGAAGAGAGAGCTTAGAATA
 55 AAAATATTTCTTGA (SEQ ID NO: 60)

AOLFR32 sequences:

MNSLKDGNHTALTGFILLGLTDDPILRVILFMIILSGNLSIIILIRISQLHHPMYFFLSHLAADM
 AYSSSVTPNMLVNFLVERNTSYLGCAJQLGSAAFFATVECVLLAAMAYDRFVAICSPLLYSTK
 MSTQVSQLLLVYYIAGFLIAVSYTTSFYFLLFCGPQNQVNHFFCDFAPLLELSCSDISVSTVLSF
 5 SSGSIIVVTVCVIAVCYTILITILKMRSTEHHKAFSTCTSHTVVTLYGTITFIYVMPNFSYST
 DQNKVSVSLLTVVPIPMLNPLIYSLRNKEIKGALKRELVRKILSHDACYFSRTSNNDT (SEQ ID NO: 61)

10 ATGAATTCCCTGAAGGACGGGAATCACACCGCTCTGACGGGGTTCATCCTATTGGGCTAA
 CAGATGATCCAATCCTTCGAGTCATCCTCTTCATGATCATCCTATCTGGTAATCTCAGCATA
 ATTATTCTTATCAGAATTCTCTCAGCTCCATCATCCTATGTATTCTCTGAGCCACTT
 GGCTTTGCTGACATGGCTATTCTCATCTCTGTCACACCCAAACATGCTTGAAACTTCCCTGG
 TGGAGAGAAAATACAGTCTCTACCTTGGATGTGCCATCCAGCTTGGITCAGCGGCTTCTT
 TGCAACAGTCGAATGGCTCTCTGGCTGCCATGGCTATGACCGCTTGTGGCAATTG
 15 AGTCCACTGCTTATTCAACAAAATGTCACACAAGTCAGTGTCCAGCTACTCTTAGTAG
 TTTACATAGCTGGTTCTCATGCTGTCCTATACTACTTCTCTATTCTTACTCTTCT
 GTGGACCAAATCAAGTCATCATTCTGTGATTCTGCTCCCTACTTGAACTCTCTGT
 TCTGTGATCATGTCCTCACAGTTGTTCTCATTTCTGATCCATCATGTGGTCAC
 20 CTGAGGGGACCCACAAGGCTCTCCACCTGCACTCCCACCTCACTGTGGITACCCGT
 CTATGGGACCATTCACCTTCATTTATGTGATGCCAATTAGTACTCAACTGACCAAGAAC
 AAGGTGGTCTGTGTTACACAGTGGTATTCCATGTTGAACCCCCGATCTACAGCC
 TCAGGAACAAGGAGATTAAGGGGCTCTGAAGAGAGAGCTGTTAGAAAAAATCTTCTC
 ATGATGCTTGTATTCTAGTAGAACTTCAAATAATGATATTACATAG (SEQ ID NO: 62)

25

AOLFR34 sequences:

MLEGVHELLLLLTDVNSKELQSGNQTSVSHFILVGLHHPPQLGAPLFLAFLVIYLTVSGNG
 LIITLVLDIHLHRPMCLFLCHLSFLDMTISCAIVPKMLAGFLLGSRIISFGGCIVQLFSFHFLGCT
 ECFLYTLIMAYDRFLAIICKPLHYATIMTHRVCNSLALGTWLGGTHSLFQTSFVRLPFCGPNRV
 30 DYIFCDIPAMLRLACADTAINELVTFADIGFLALTCFMLLTSYGYIVAILRIPSADGRNAFST
 CAAHLLTVVIVYYVPCFTIYLRPCSQEPLDGVVAVFYTITPLNSIITYTLCNKEMKAALQRLGG
 HKEVQPH (SEQ ID NO: 63)

35 ATGTTAGAGGGTGTGAGCATCTCCTCTGCTACTCTTTGACAGATGTAAACAGCAAGG
 AACTGCAAAGTGGAAACCAGACTCTGTGTCACCTCATTTGGTGGCCTGCACCACCC
 ACCACAGCTGGGAGCGCCACTCTCTAGCTTGTCTAGTGGACATCCGGCTCCATGTCCATGTTCTG
 GAAATGGGCTCATCATCCTCACTGTCTAGTGGACATCCGGCTCCATGTCCATGTTCTG
 GTTCTGTGTCACCTCTCTGGACATGACCATTCTGTGCTATTGTCCCCAAGATGC
 TGGCTGGCTTCTGGTAGTAGGATTATCTCCTTGGGGCTGTGTAATCCAACATT
 40 TCTTCCATTCTGGCTGTACTGAGTGCTTCTTACACACTCATGGCTTATGACCGTT
 CCTGCCATTGTAAGCCCTACACTATGCTACCATGACCCACAGAGTGTAACTCCC
 TGGCTTAGGCACCTGGCTGGAGGGACTATCCATTCACTTCTCAAACAAGTTTGATT
 CGGGCTGCCCTCTGTGGCCCCAATCGGGTCGACTACATCTGTGACATTCTGCCATGC
 TCGCTCTAGCCTGCGCCGATACGGCATCAACGAGCTGGTACCTTGACAGACATTGGCTT
 45 CCTGGCCCTCACCTGCTCATGCTCATCCTCACTCTATGGCTATATTGTAGCTGCCATCC
 TCGAATTCCGTCACTGGCGCCCAATGCCCTCTCCACTGTGCTGCCACCTCAC
 TGTGTGTCATTGTTACTATGTGCCCTGCACTTCACTTGCGGCCCTGTCACAGGAGC
 CCCTGGATGGGGTGTAGCTGTTACACTGTGTCATCACTCCCTGCTTAACCTCATC
 50 TACACACTGTGCAACAAAGAAATGAAGGCAGCATTACAGAGGCTAGGGGCCACAAGGAA
 GTGCAGCCTCACTGA (SEQ ID NO: 64)

AOLFR35 sequences:

MEPLNRTEVSEFFLKGFGSGYPALEHLLFPLCSAMYLVTLGNTAIMAVSVLDIHLHPTVYFFLG
 NLSTLDICYPTFVPLMVHLLSSRKTSFAVCIAQMCLSLSTGSTECLLLAITAYDRYLAICQPL
 55 RYHVLMSHRLCVLLMGAAWVLCLLKSVTMVISMRLPFCGHVVSHFTCKILAVLKACGNT
 SVSEDFLAGSILLPVPLAFICLISYLLILATILRVPASAARCKAFSTCLAHLAVVLLFYGTIIFMY

LKPKSKEAHISDEVFTVLYAMVTTMLNPTIYSLRNKEAARKVWGRSRASR (SEQ ID NO: 65)

5 ATGGAGCCGCTAACAGAACAGAGGTGTCGAGTTCTTCTGAAAGGATTTCTGGCTACC
 CAGCCCTGGAGCATCTGCTCTCCCTCTGCTCAGCCATGTACCTGGTGACCCCTCTGGG
 GAACACAGCCATCATGGCGGTGAGCGTCTAGATATCCACCTGCACACGCCGTGTACTTC
 TTCCCTGGCAACCTCTACCCCTGGACATCTGCTACACGCCACCTTGTGCCTCTGATGCT
 GGTCCACCTCCTGTCATCCCGAAGACCATCTCCTTGTCTGTGCCATCCAGATGTGTC
 TGAGCCTGTCACGGGCTCCACGGAGTGCTACTGCCATCACGGCTATGACCGCTA
 10 CCTGGCCATCTGCCAGCCACTCAGGTACCACTGCTCATGAGCCACCGGCTCGCGTGC
 CTGATGGGAGCTGCCCTGGGCTCTGCCTCAAGTCGGTGAUTGAGATGGTCATCTCCA
 TGAGGCTGCCCTCTGTGGCCACCACTGGTCACTCACCTGCAAGATCTGGCAGT
 GCTGAAGCTGGCATGCCAACACGTGGTCAGCGAAGACTTCTGCTGGGGCTCCAT
 CCTGCTGCTGCCGTACCCCTGGCATTCATCTGCCTGCTACTTGCTCATCTGGCCACCA
 15 TCCTGAGGGTGCCCTGGCCAGGTGCTGCAAAGCCTCTCCACCTGCTGGCACACCT
 GGCTGTAGTGCTGCTTTCTACGGCACCATCATCTCATGTAAGTACTTGAAGCCAAGAGTAAG
 GAAGCCACATCTGTATGAGGTCTCACAGTCCTATGCCATGGTCACGACCATGCTGA
 ACCCCACCATCTACAGCCTGAGGAACAAGGAGGTGAAGGAGGCCAGGAAGGTGTGGG
 GCAGGAGTCGGGCTCCAGGTGA (SEQ ID NO: 66)

20 **AOLFR36 sequences:**

MYLVTVLRNLISILAVSSDSHPHTPMYFFLSNLWADIGFTLATVPKMIVDMGSHSKVISYGG
 CLTQMSFLVLFACIVDMFLTVMAYDCFVAICRPLHYPVIVNPHLCVFFVLVSFFLSQLHS
 WIVLQFTFFKNVEISNFVCEPSQLLKLASYDSVINSIFYFDNTMFGFLPISGILLSYYKIVPSILRIS
 25 SSDGKYKAFAFSACGCHLAVVCLFYGTGIGVYLTSAVAPPLRNGMVASVMYAVVTPMLNPFIYS
 LRNRDIQSAWRVCNKTVESHDLFHPFSCVVEKGQPHSIPTSANPAP (SEQ ID NO: 67)

ATGTATCTGGTCACGGTGTGAGGAACCTGCTCAGCATCCTGGCTGTCAGCTCTGACTCCC
 30 ACCCCCCACACACCCATGTAICTCTTCTCTCAACCTGTGCTGGGCTGACATCGGTTTCA
 TTGGCCACGGTCCAAAATGATTGGACATGGGGTCGATAGCAAAGTCATCTCTTATG
 GGGGCTGCTGACACAGATGCTTTCTGGTACTTTTGATGTATAGTAGACATGTTCT
 GACTGTGATGGCTTATGACTGCTTGAGCCATCTGCGCCCTCTGCACTACCCAGTCATC
 GTGAATCTCACCTCTGCTCTTCAGCTTGTGCTTACAATTCAACCTCTCAAGAATGTG
 35 GAAATCTCTAATT CAGCTGACAGTTGGATTGTGTTACAATTCAACCTCTCAAGAATGTG
 GAAATCTCTAATT CAGCTGAGCCATCTCAACTCTCAAGCTGCTCTTATGACAGCGT
 CATCAATAGCATA TTCAATT TATTTGATAAACTATGTTGGTTTCTCCCATTCA
 TTCAAGGATTTCATCATCAGATGGAAGTACAAGCCTCT
 TATAAAATTGTCCTCCATTCAAGGATTTCATCATCAGATGGAACAGGCATTGGCGTGTA
 CAGCCTGTTGCTGTACCTGGCAGTTGTTGCTTATTTATGGAACAGGCATTGGCGTGTA
 40 CCTGACTTCAGCTGTTGACCCCTCAGGAATGGTATGGTGGCGTGACTGATGTACGCT
 GTGGTCACCCCATGCTGAACCTTTCATCTACAGCCTGAGAAACAGGGACATTCAAAGTG
 CCCTGTTGAGAAAGGGCAACCACATTCAATCCCTACATCTGCAAATCCTGCCCTTAG
 (SEQ ID NO: 68)

45 **AOLFR37 sequences:**

MEKANETSPVMGFVLLRLSAHPELEKTFFVLILLMLVILLGNGLVILVTILDRLHTPMYFFLG
 NLSFLDICFTTSSVPLVLDLSFLTPQETISFSAVQMALSFAMAGTECLLSSMMAFDRYVAICNP
 LRYSVIMSKAAYMPMAASSWAIGGAASVVIHSLAIQLPFCGDNVINHFTCEILAVLKLACADIS
 INVISMEVTNVIFLGPVLFISFSYVIITTLIRPSAEGRKKVFSTCSAHLTVVIVFYGTLFFMYG
 50 KPKSKDSMGADKEDLSDKLIPFYGVVTPMLNPIYSLRNKDVKAAVRRLRPKGFTQ (SEQ ID
 NO: 69)

ATGGAAAAAGCCAATGAGACCTCCCTGTGATGGGGTCGTTCTCCTGAGGCTCTGCC
 55 ACCCAGAGCTGGAAAAGACATTCTCTGCTCATCTGCTGATGTACCTCGTGTACCTGCT
 GGGCAATGGGGTCTCTCATCTGGTACCATCTTGAUTCCCGCTGCACACGCCATGTAC
 TTCTCCTAGGAAACCTCTCCTCTGGACATCTGCTTCACTACCTCCTCAGTCCCACGGT

CCTGGACAGCTTTGACTCCCCAGGAAACCATCTCCCTCTCAGCCTGTGCTGTGCAGATG
 GCACTCTCCTTGCATGGCAGGAACAGAGTGCTTGTCTCTGAGCATGATGGCATTGATC
 GCTATGTGGCCATCTGCAACCCCCCTAGGTACTCCGTATGAGCAAGGCTGCCTACAT
 GCCCATGGCTGCCAGCTCCTGGGCTATTGGTGGTGTGCTTCCGTGGTACACACATCTG
 5 GCAATTCACTGCCCCTCTGGAGACAATGTCATCAACCACTCACCTGTGAGATTCTGG
 CTGTTCTAAAGTGGCCTGTGCTGACATTCCATCAATGTGATCAGCATGGAGGTGACGAA
 TGTGATCTCCTAGGAGTCCCCTCAGCTGAGGGGAGGAAAAAGGTCTCTCCACCTGCTCTGCCA
 CCATCCTGAGGATCCCCTCAGCTGAGGGGAGGAAAAAGGTCTCTCCACCTGCTCTGCCA
 10 CCTCACCGTGGTGTACGTTCTACGGGACCTTATTCTCATGTATGGGAAGCCTAACGTCT
 AAGGACTCCATGGGAGCAGACAAAGAGGATCTTCAGACAAACTCATCCCCCTTTCTATG
 GGGTGGTGACCCGATGCTCAACCCCCTCATCTATAGCCTGAGGAACAAGGATGTGAAGG
 CTGCTGTGAGGAGACTGCTGAGACAAAAGGCTCACTCAGTGA (SEQ ID NO: 70)

AOLFR38 sequences:

15 MYLVTVLRLNLLIILAVSSDSHLHPTMCFFLSNLCWADIGFTSAMVPKIVDMQSHRVISYAGC
 LTQMSFFVLFACIEDMLLTVMAYDRFVAICHPLHYPVIMNPFLGVFLVLSFFLSQLHSW
 IVLQFTFKVNVEISNFVCDPSQLLNACSDSVINSIFIYLDSIMFGFLPISGILLSYANNVPSILRISS
 SDRKSKAFTCGSHLAVVCLFYGTGIVYLTSAVSPPRNGVVASVMYAVVTPMLNPFIYSLR
 NRDIQSLAWRLRSRTVESHDLLSQDLLHPFSCVGKEKGQPH (SEQ ID NO: 71)
 20 ATGTACCTGGTCACGGTGTGAGGAACCTGTCATCATCCTGGCTGTCAGCTCTGACTCCC
 ACCTCCACACCCCCATGTGCTCTCCTCTCCAACCTGTGCTGGGCTGACATCGGTTCA
 TCGGCCATGGTCTCCAAGATGATTGTGGACATGCACTCGCATAGCAGAGTCATCTTATG
 CGGGCTGCTGACACAGATGTCCTTCTTGTCTTGTGATGTATAGAAGACATGCTCCTG
 25 ACAGTGATGGCCTATGACCGATTGTGGCCATCTGTCACCCCCCTGCACTACCCAGTCATCA
 TGAATCCTCACCTGGTGTCTTAGTTGGTGTCTTTCTCAGCCTGTTGGATTCC
 CAGCTGCACAGTTGGATTGTGTTACAATTCAACCTTCTCAAGAATGTGGAAATCTCCAATT
 TTGTCTGTGACCCATCTCAACTCTCAACCTTGCCTGTCAGTGTCATCAATAGCATA
 TTCATATATTAGATAGTATTATGTTGGTTCTTCCATTCAAGGGATCCCTTTGTCTTAC
 30 GCTAACAAATGTCCCCCTCCATTCAAGAATTTCATCATCAGATAGGAAGTCTAAAGCCTCT
 CCACCTGTGGCTCTCACCTGGCAGTTGGTCTTATTTATGAAACAGGCATTGGCGTGT
 CCTGACTTCAGCTGTGTCACCACCCCCCAGGAATGGTGTGGCATCAGTGATGTACGCT
 GTGGTCACCCCCATGCTGAACCTTCTACAGCCTGAGAAATAGGGACATTCAAAGTG
 CCCTGTGGAGGCTGCGCAGCAGAACAGTCGAATCTCATGATGTTATCTCAAGATCTGCT
 35 CCATCCTTTTCTTGTGAGAAAGGTCAACCACATTAA (SEQ ID NO: 72)

AOLFR39 sequences:

MGVKNHSTVTEFLISGLTEQAEQLPLFCLFLGIYTVTVGNLSMISIIRLNRLHPTMYYFLSS
 LSFLDFCYSSVITPKMLSGFLCRDRSISYSGCMIQLFFCVVISCEYMLAAMACDRYVAICSP
 40 LYRVIMSPRVCSSLVAAVFSVGFTDAVIHGGCILRLSFCGSNIKHYFCDIVPLIKLSCSSTYIDEL
 LIFVIGGFNMVATSLIISYAFILTSILRIHSKKGRCKAFSTCSSHLAVLMFYGSLMSMYLK
 SSSLTQEKVSSVFYTTVILMLNPLIYSLRNNEVRNALMKLLRKISLSPG (SEQ ID NO: 73)

45 ATGGGTGTAAAAAACATTCCACAGTGACTGAGTTCTTCTTCAGGATTAAC TGAAACAAG
 CAGAGCTTCAGCTGCCCCCTCTCGCTCTTCTAGGAATTACACAGTACTGTGGTGGG
 AACCTCAGCATGATCTCAATTATTAGGCTGAATCGTCAACTTCATACCCCCATGACTAT
 TTCCCTGAGTAGTTGTCTTTAGATTCTGCTATTCTCTGCTATTACCCCTAAATGCT
 ATCAGGGTTTATGAGAGATGACATCTCTTCTGGATGTCATGATTCACTGCTGTTT
 TTTCTGTGTTGTGTTATCTGAATGTCACATGTCAGCCATGGCCTGCGATCGCTAC
 50 GTGGCATCTGCAGCCCCACTGCTACAGGGTCATCATGTCCTTCTAGGGTCTGTTCTGC
 TGGTGGCTGCTGCTCTCAGTAGGTTCACTGATGTCGTGATCCATGGAGGTTGTATACT
 CAGGTTGTCTTCTGTTGATCAAACATCATTAAACATTATTCTGTCATGACATTGCTCCTTA
 TTAAACTCTCTGCTCCAGCACTTATATTGATGAGCTTTGATTTGTCATTGGTGGATT
 AACATGGTGGCCACAAGCTAACATCATTATTCTCATATGCTTTATCCTCACCAGCATCCT
 55 GCGCATCCACTCTAAAAGGGCAGGTGCAAAGCGTTAGCACCTGAGCTCCCACCTGACA
 GCTGTTCTATGTTATGGGTCTCTGATGTCCATGATCTAACCTGCTCTAGCAGTT

ACTCACCCAGGAGAAAGTATCCTCAGTATTTATACCACTGTGATTCTCATGTTGAATCCC
TTGATATATAGTCTGAGGAACAATGAAGTAAGAAATGCTCTGATGAAACTTTAAGAAGA
AAAATATCTTATCTCCAGGATAA (SEQ ID NO: 74)

5 **AOLFR40 sequences:**

MSNATLITAFLTGPHAPGLDAPLFGIFLVVYVLTVLGNLLILLVIRVDSHLHTPMYYFLTNLS
FIDMWFSVTVPKMLMFLVSPSGRTISFHSCVAQLYFFHFLGSTECFLYTVMSYDRYLAISYPL
RYTNMMTGRSCALLLATGTWLSGSLSAVQTLTFHLPPCGPNQIQHYFCDAAPPILKLACADTS
ANEMVIFVNIGLVASGCFVLIVLSYVSIVCSILRIRTSEGRHRAFQTCAHCIVLCFFGPGLFIYL
10 RPGSRDALHGVVAVFYTTLTPLFNPVYVTLRNKEVKALLKLKNGSVFAQGE (SEQ ID NO:
75)

ATGTCCAACGCCACCCACTGACAGCGTTCATCCTCACGGGCCCTCCCCATGCCCAAGGGC
15 TGGACGGCCCCCTCTTGGAAATCTTCCCTGGTTTACGTGCTACTGTGCTGGGGAACCT
CCTCATCCTGCTGGTATCAGGGTGGATTCTCACCTCCACACCCCCATGTACTACTTCCTCA
CCAACCTGTCTTCATTGACATGTGGTTCTCACTGTACGGTGCCTAAATGCTGATGAC
CTTGGTGTCCCCAACCGGGCAGGACTATCCTTCCACAGCTGCGTGGCTCAGCTCTATTTT
TCCACTTCTGGGGAGCACCAGTGTTTCTCTACACAGTCATGTCTATGATCGTACCT
GGCCATCAGTTACCCGCTCAGGTACACCAACATGATGACTGGCGCTCGTGTGCCCTCTG
20 GCCACGGGCACTTGGCTCAGTGGCTCTCTGCACTCTGCTGTCCAGACCATATTGACTTTCC
ATTTCGCTACTGTGGACCCAACCAGATCCAGCACTACTTCTGTGACGCACCGCCCATCCT
GAAACTGGCCTGTGCAGACACCTCAGCCAACGAGATGGTCATTTGTGAATATTGGGCTA
GTGGCCTGGGCTGCTTGTCTGATAGTGTCTCATGTGTCATCGTCTGTCCATCCT
25 GCGGATCCGCACCTCAGAGGGGAGGCACAGAGCCTTCAGACCTGTGCCTCCACTGTATC
GTGGTCTTTGCTTCTTGGCCTGGCTTTCACTACACCACGCTGACTCCTTTCAACCCGTGTTG
CTTGCATGGGGTTGTGGCGTTTCTACACCACGCTGACTCCTTTCAACCCGTGTTG
ACACCCCTGAGAAACAAGGAGGTAAGAAAGCTCTGTGAAGCTGAAAAATGGTCAGTAT
TTGCTCAGGGTGAATAG(SEQ ID NO: 76)

30 **AOLFR41 sequences:**

MNPENWTQVTSFVLLGFPSHLIQFLVFLGLMVTYIVTATGKLLIVLSWIDQLHIQMYFFLRN
FSFLELLLVTVVVPKMLVILTDHTISFVSCIIQSLYFFLGTTDFLAVMSLDRLYLAICRPLR
YETLMNGHVCSQLVLASWLAGFLWVLCPTVLMASLPFCGPNIDHFFRDSPLLRLSCGDTH
35 LLKLVAFMLSTLVLLGSLALTSVSYACILATVLRAPTAERRKAFSTCASHLTVVVITYGSSIFLY
IRMSEAQSQKLLNKGSVLSCLITPLNPFIITLRNDKVQQALREALGWPRLTAVMKLRVTSQRK
(SEQ ID NO: 77)

ATGAACCCCTGAAAATGGACTCAGGTAAACAAGCTTGTCTTCTGGTTTCCCCAGTAGCC
40 ACCTCATACAGTTCTGGTCTCTGGGTTAATGGTACCTACATTGTAACAGCCACAGG
CAAGCTGCTAATTATTGTGCTCAGCTGGATAGACCAACGCCCTGCACATACAGATGTACTTC
TTCCCTGCGGAATTCTCTCTGGAGCTGTTGCTGTAACTGTTGTTCCCAAGATGCT
TGTGTCATCCTCACGGGGATCACACCATCTCATTTGTCAGCTGCATCATCCAGCTCTACC
TCTACTTCTTAGGCACCACTGACTCTCTCTGGCGTCATGTCTGGATCGTTAC
CTGGCAATCTGCCGACCACTCCGCTATGAGACCCGTATGAATGGCCATGTCTGTCCCAAC
45 TAGTGTGGCCTCTGGCTAGCTGGATTCTCTGGGCTTGTGCCCCACTGTCTCATGGCC
AGCCTGCCCTCTGTGGCCCAATGGTATTGACCACCTCTTGTGACAGTTGGCCCTTGCT
CAGGCTTCTGTGGGACACCCACCTGCTGAAACTGGTGGCTTCTATGCTCTACGTTG
GTGTTACTGGGCTCACTGGCTCTGACCTCAGTTCTATGCTGCATTCTGCCACTGTTCT
CAGGGCCCTACAGCTGCTGAGCGAAGGAAAGCGTTTCACTTGCCTCGCATCTTACA
50 GTGGTGGTCATCATCTATGGCAGTTCCATCTTCTACATTGCTATGTCAGAGGCTCAGTC
CAAACGTCTAACAAAAGGTGCCCTCCGTCTGAGCTGCATCATCACACCCCTCTGAACCCA
TTCATCTTCACTCTCGCAATGACAAGGTGAGCAAGCACTGAGAGAAGCCTTGGGTGGC
CCAGGCTCACTGCTGTGATGAAACTGAGGGTCACAAGTCAAAGGAAATGA (SEQ ID NO:
78)

AOLFR42 sequences:

MNPANHSQVAGFVLLGLSQVWELRFVFFTVPFSAVYFMTVVGNLIVVIVTSDPHLHTTMYFL
 GNLSFLDFCYSSITAPRMLVDLSSGNPTISFGGCLTQLFFFHFIGGIKIFLLTVMAYDRYIAISQPL
 HYTLIMNQTVCALLMAASWVGGFIHSIVQIALTIQLPFCGPDKLDNFYCDVPQLIKLACTDTFV
 5 LLELMVSNNGLVTLMCFLVLLGSYTALLVMLRSHSREGRSKALSTCASHIAVVTLIFVPCYVY
 TRPFRTFPMDKAVSVLYTIVTPMLNPNAIYTLRNKEVIMAMKKLWRRKKDPIGPLERPLH
 (SEQ ID NO: 79)

ATGAATCCAGCAAATCATTCAGGTGGCAGGATTGTTCTACTGGGGCTCTCTCAGGTT
 10 GGGAGCTCGGTTGTTCTCACTGTTCTCTGCTGTATTTATGACTGTAGTGGGA
 AACCTCTTATTGTTGGTCATAGTGACCTCCGACCCACACCTGCACACAACCATGTATTTCT
 CTTGGGCAATCTTCTTGGACTTTGCTACTCTCCATCACAGCACCTAGGATGCTGG
 TTGACTTGCTCTCAGGCAACCCCTACCATTCCTTGGGATGCTGACTCAACTCTTCTC
 TTCCACTTCATTGGAGGCATCAAGATCTCTGCTGACTGTGATGGCGTATGACCGCTACA
 15 TTGCCATTCCCAGCCCTGCACTACACGCTCATTATGAATCAGACTGTCTGCACTCTT
 ATGGCAGCCTCCTGGTGGGGGCTTCATCCACTCCATAGTACAGATTGCATTGACTATCC
 AGCTGCCATTCTGTGGGCTGACAAGCTGGACAACCTTATTGTGATGTGCCTCAGCTGAT
 CAAATTGGCCTGCACAGAACCTTGTCTAGAGCTTTAATGGTGTCTAACAAATGGCCTG
 GTGACCCCTGATGTGTTCTGGTCTTGGGATCGTACACAGACTGCTAGTCATGCTCC
 20 GAAGCCACTCACGGGAGGGCCGAGCAAGGCCCTGCTACCTGTGCCTCACATTGCTGT
 GGTGACCTTAATCTTGTGCCTTGCATCTACGTCTATAACAGGCTTTGGGACATTCCCCA
 TGGACAAGGCCGTCCTGTCTAGTACACAAATTGTCAACCCCATGCTGAATCCTGCCATCTA
 TACCCCTGAGAAACAAGGAAGTGTACATGCCATGAAGAAGCTGTGGAGGAGGAAAAGG
 ACCCTATTGGTCCCCGGAGCACAGACCCCTACATTAG (SEQ ID NO: 80)

25

AOLFR43 sequences:

MQKPQLLVPILATSNGNLVHAAYFLLVGIPGLGPTIHFWLAFLCFMYALATLGNLTIVLIIRVE
 RRLHEPMYLFLAMLSTDVLVLSITMPKMASLFLMGIQEIEFNICLAQMFLIHALSAVESAVLLA
 MAFDRFVAICHPLRHASVLTGCTVAKIGLSALTRGFVFFFLPFLKWLSSYQCQHTVTHSFCLHQ
 30 DIMKLSCTDTRVNVYGLFIILSVMGVDSLFIGFSYIILWAVLELSSRRAALKAFNTCISHLC
 LVFYVPLIGLSVVHRLGGPTSLLHVVMANTYLLLPPVNPVLVYGAKTKEICSRVLCMFSQLGGK
 (SEQ ID NO: 81)

ATGCAGAACGCCCCAGCTTGGTCCCTATCATAGCCACCTCAAAATGGAAATCTGGTCACG
 35 CAGCATACTTCCCTTTGGGGTATCCCTGGCCTGGGCTACCATACACTTTGGCTGGCT
 TTCCCACTGTGTTTATGTATGCCCTGGCACCCTGGTAACCTGACCATTGTCTCATCAT
 TCGTGTGAGAGGGCACTGCATGAGCCCATGTACCTCTTCCATGCCATGCTTCCACTATT
 GACCTAGTCCCTCTCTATCACCATGCCAAGATGCCAGTCTTCCATGCCATGGGATCCA
 GGAGATCGAGTTAACATTGCCCTGGCCAGATGTCTTATCCATGCTCTGTCAGCCGTG
 40 GAGTCAGCTGCTGGCATGGCTTGTACCGCTTGTGGCCATTGCCACCCATTGC
 GCCATGCTCTGTGCTGACAGGGTGTACTGTGGCCAAGATTGGACTATCTGCCCTGACCAAG
 GGGGTTTGTATTCTCTTCCACTGCCCTCATCTCAAGTGGTTGCTACTGCCAACAC
 ATACTGTACACACTCCTCTGTCTGCACCAAGATATTGAAGGCTGTCTGTACTGACAC
 CAGGGTCAATGTGGTTATGGACTCTCATCATCCCTCAGTCATGGGTGTTGACTCTCT
 45 TCATTGGCTCTCATATATCCICATCCCTGTGGGCTGTTGGAGCTGTCCCTCGGAGGGCA
 GCACTCAAGGCTTCAACACCTGCATCTCCACCTCTGTGCTGTTCTGGCTCTATGTACC
 CCTCATGGGCTCTGGTGTGCATAGGCTGGTGGTCCCACCTCCCTCCATGTGGTT
 ATGGCTAATACCTACTGTGCTGCTACCAACCTGTAGTCACACCCCTGTCTATGGAGCCAAGA
 CCAAAGAGAGATCTGTICAAGGGCTCTGTATGTCTCACAGGTGGCAAGTGA (SEQ ID
 50 NO: 82)

AOLFR44 sequences:

MSSCNFTATHFVLLGIPGLEKAHFVVGFLPLSMYVVAMFGNCIVVFIVRTERSLHAPMYLFLC
 MLAIDLALSTSTMPKILALFWFDSREISFEACLTQMFHIALSAIESTILLAMAFDRYVAICHPL
 55 RHAAVLNNTVTAQIGIVAVVRGSLFFFPLPLLKRLAFCHSNVLSHSYCVHQDMKLAYADTLP
 NVVYGLTAILLVMGVDVMFISLSYFLIRTVLQLPSKSERAKAGTCVSHIGVVLAFYVPLIGLS

VVHRFGNSLHPIVRVVMGDIYLLPPVINPIITYGAKTKQIRTRVLAMFKISCDKDLQAVGGK
(SEQ ID NO: 83)

5 ATGAGTTCCCTGCAACTTCACACATGCCACCTTGTGCTTATTGGTATCCCAGGATTAGAGA
AAGCCCATTCTGGGTTGGCTTCCCCCTCCTTCCATGTATGTAGTGGCAATGTTGGAAAC
TGCATCGTGGTCTCATCGTAAGGACGGAACGCAGCCTGCACGCTCCGATGTACCTCTTC
10 TCTGCATGCTTGAGCCATTGACCTGGCCTTATCCACATCCACCATGCCTAACATCCTTGCC
CTTTCTGGTTTATTCCCGAGAGATTAGCTTGTAGGCTGTCTACCCAGATGTTCTTAT
TCATGCCCTCTCAGCCATTGAATCCACCATCCTGCTGGCCATGGCCTTGACCCTATGTGG
15 CCATCTGCCACCCACTGCGCCATGCTGCAGTGCACAAACATACAGTAACAGCCCAGATTGG
CATCGTGGCTGTGGTCCCGGGATCCCTCTTTTCCACTGCCTCTGCTGATCAAGCGGC
TGGCCTCTGCCACTCCAATGCTCTCGCACTCCTATTGTGTCACCAGGGATGTAATGAA
GTTGGCCTATGCAGACACTTGTCCAAATGTGGTATATGGCTTACTGCCATTCTGCTGGTC
ATGGGCGTGGACGTAATGTTCATCTCCTGTCTTATTTCTGATAATACGAACGGTTCTGC
20 15 AACTGCCTCCAAGTCAGAGCGGGCAAGGCCATTGGAACCTGTGTGACACACATTGGTGT
GGTACTCGCTTCTATGTGCCACTTATTGGCCTCTCAGTGGTACACCGCTTGGAAACAGC
CTTCATCCCATTGTGCGTGTGTCATGGGTGACATCTACCTGCTGCTGOCTCCTGTCATCAA
TCCCACATCTATGGTGCCAAAACAAACAGATCAGAACACGGGTGCTGGCTATGTCAG
ATCAGCTGTGACAAGGACTTGCAGGCTGTGGGAGGCAAGTGA (SEQ ID NO: 84)

20

AOLFR45 sequences:

MLPSNITSTHPAVFLLVGIPGLEHLHAWISIPFCFAYTLALLGNCTLLFIQADAALHEPMYLFLA
MLATIDLVSSTTLPKMLAIFWFRDQEINFFACLVQMFFLHSFSIMESAVLLAMAFDRYVAICKP
25 LHYTTVLTGSLLTIGMAAVARAVTLMTPFLRRHYCRGPVIAHCYCEHMAVVRLACGDT
SFNNIYGIAVAMFSVLDLLFVILSYVFILQAVLQLASQEARYKAFTCVSHIGAILSTYTPVVIS
SVMHRVARHAAPRVHILLAIFYLLFPPMVNPITYGVKTKQIREYVLSFQRKNM (SEQ ID NO:
85)

30 TGGAAACAAAGAGGTAATCITTGCAGGTGGGATAGCACAGGGTGAACCTCTAATCATATATA
CTGTAGAAGGTATATAGAAGGTGAAGAAGGCCCTGTAAAAATTGACAAGGGAGATTCCA
GGAGCCATGCTCCCTCTAATATCACCTCAACACATCCAGCTGCTTTTGTGGTAGGAAT
TCCGGGTTGGAACACCTGCATGCCATCTCCATCCCCTTGCTTGTACTCTGG
CCCTGCTAGGCAACTGTACCCCTCTCCTCATTATCCAGGCTATGCAAGCCCTCCATGAACCC
35 ATGTACCTCTTCTGGCATGGTGGCAACCATTGACTTGGCTTTCTCTACAACGCTGCC
CAAATGCTTGCATATTCTGGTTCAGGGATCAGGAGATCAACCTCTTGCCTGTGGC
CAGATGTTCTCCCTACTCCTCTCCATCATGGAGTCAGCAGTGCCTGGCCATGCCCT
TGACCGCTATGTGCCATCTGCAAGCCATTGCACTACAGCACGGCTCTGACTGGGTCCTC
ATCACCAAGATTGCCATGGCTGCTGTGCCCCGGCTGTGACAATGACTCCACTCCCT
40 TCCGTCTAGACGCTTCAACTACTGCCAGGGCCAGTGAATTGCCATTGCTACTGTGAACA
CATGGCTGTGTAAGGCTGGCTGTGGGACACTAGCTCAACAAATATCTATGGCATTGCT
GTGGCCATGTTAGTGTGGTGTGGACCTGCTTTGTATCTGCTTATGTCTTCACTCT
TCAGGCAGTTCTCAGCTTGCCTCTCAGGAGGCCGCTACAAAGCATTTGGGACATGTGTG
TCTCACATAGGTGCCATCTGTCCACCTACACTCCAGTAGTCATCTCAGTCATGCAACCG
TGTAGCCGCCATGCTGCCCTCGTGTCCACATACTCTTGCTATTCTATCTCCTTCTC
45 CACCCATGGTCAATCTATCATATGGAGTCAGACCAAGCAGATTGTGAGTATGTGCT
CAGTCTATTCCAGAGAAAGAACATGTAGATGGATAGTCTCTTTTATCCCACCTGCCA
AGTAATGAGAATGCTGGATTGGGGTGAGGGAAAAATCTAAATAGGAAAATTGCAAGAGT
ATCTTGACAATTCTCTAGTATGATAAGGAAAATGAGGTTCTACCTCAGATCTACGA
GTCAGGTCAAACCAAGGAGTGCACCTATAGTCTGGCTGATAGTAGAGGTTGACCTCCCA
50 TTGTCTAGACTCATCACATGGCTAAGGAAGACAAACCTCTCAAAGTGGTATTGTAATCTG
GGTGAAGACAGTAGGACCTTATTGGCTGAGATTGGCCCAAACAGCTGAGTC (SEQ ID
NO: 86)

AOLFR46 sequences:

55 MNKHCGWMIHTWLNRREDDDSDFKNFIGQIQLSGNPHSTTSRMYFLCFCTSLLGFKVHWV
SRLIXKLYMASPNNDSTAPVSEFLICFPNFQSWQHWLSPLSLLFLLAMGANTLLITIQLAES

LHQPLYYLLSLLDILVCLTVIPKVLAIWFDFLRSISFPACFLQMFIMNSFLTMESCTFMVMA
 YDRYVAICHPLRYPSTTDQFVARAVVFVIARNAFVSLPVMILSARLRYCAGNIKNCICSNLSVS
 KLSCDFITFNQLYQFVAGWTLGSDLILIVISYSFILKVVLRKAEGAVAKALSTCGSHFILILFFS
 TVLLVLVITNLARKRIPPDVPIILLNILHHLIPPAALNPIVYGVRTKEIKQGIQNLLKRL (SEQ ID NO:
 5 87)

ATGAATATAAAACATTGTGGCTGGCATATGATACATACTGGTTAAATATAAGGGAGGAT
 GATGACAGTGATTTAAAAACITTATTGGACAGATACAGGGCCTCAGTGAAACCCACACT
 CTACTACGTCTAGAATGTACTTTATGTTCTGTACTCTCTACTAGGTTTAAGGTACAC
 10 TGGGTCTCCAGATTGATCANGAACITTCATGGCATCTCCCACAAATGACTCCACTGCC
 CAGTCTCTGAATTCCCTCCTCATCTGCTTCCCAACTCCAGAGCTGGCAGCACTGGTTGTCT
 CTGCCCTCAGCCTCTCTCTCTGGCCATGGGAGCTAACACCACCCCTCTGATCACCAT
 CCAGCTGGAGGCCTCTCTGACACCAGCCCCGTACTACCTGCTCAGCCTCTCCCTGCTGG
 ACATCGTCTCTGCCACCGTCATCCCCAAGGTCTGGCCATCTCTGGTTGACCTCAGG
 15 TCGATCAGCTTCCAGCCTGCTTCCAGATGTTACATCATGAACAGTTTGACCATGGA
 GTCCCTGACGTTCATGGTCATGGCCTATGACCGTTATGTGGCCATCTGCCATCCATTGAGA
 TACCCGCTATCATCACTGACCAAGTTGTGGCTAGGGCCGTGGCTTGTATAGCCCGA
 ATGCCTTGTCTCTCTGTTCCATGCTTCTGCCAGGCTCAGATACTGTGAGGAAAC
 ATAATCAAGAACTGCATCTGAGTAACCTGCTGTGTCACACTCTCTGTGATGACATCA
 20 CTTCAATCAGCTTACCAAGTTGTGGCAGGCTGGACTCTGTTGGCTCTGATCTATCCTT
 ATTGTTATCTCTTATCTTATATTGAAAGTTGTGCTTAGGATCAAGGCCAGGGTGCTGT
 GGCAAGGCCCTGAGCACGTTGGCTTCCACTTCATCCTCATCTCTCTCAGCACAGTCC
 TGCTGGTCTGGTCATCACTAACCTGGCAGGAAGAGAATTCTCCAGATGTCCCCATCCT
 GCTCAACATCCTGACCAACCTCATTCCCCCAGCTGAAACCCATTGTTATGGTGTGAGA
 25 ACCAAGGAGATCAAGCAGGGAAATCCAAAACCTGCTGAAGAGGTTGAA (SEQ ID NO: 88)

AOLFR47 sequences:

MSASNITLTHPTAFLLVGIPGLEHLHIWISIPFCLAYTLALLGNCTLLLIIQADAALHEPMYLFLA
 MLAIDLVSSSLPKMLAIFWFRDREINFFACLAQMFFLHSFSIMESAVLLAMAFDRYVAICK
 30 PLHYTKVLTGSЛИTIGMAA VARAVTLMTPFLRCFHCRGPVIAHCYCEHMAVVRLACGD
 TSFNNTYGIAVAMFVVL DLLL VILSYIFILQAVILLASQEARYKAFTCVSHIGAILAFYTTVVIS
 SVMHRVARHAAPHVHILLANFYLLFPPMVNP IIYGVKTKQIRESILGVFPRKDM (SEQ ID NO:
 89)

35 ATGTCAGCCTCCAATATCACCTTAACACATCCAATGCTTCTGTTGGTGGGGATTCCAG
 GCCTGGAACACCTGCACATCTGGATCTCCATCCCTTCTGCTTAGCATATAACTGGCCCTG
 CTTGGAAACTGCACCTCTCCCTCTCATCATCCAGGCTGATGCAGCCCTCCATGAACCCATGT
 ACCTCTTCTGGCCATGTTGGCAGGCCATCGACCTGGTCTTCTCCTCAGCACTGCCAAA
 ATGCTTGCCATATTCTGGTTCAGGGATCGGGAGATAAAACTCTTCTGCTGCTGGCCAGA
 40 TGTTCTCTTCACTCCCTCTCATCATGGAGTCAGCAGTGTGCTGGCCATGGCTTGTGAC
 CGCTATGTGGCTATCTGCAAGCCACTGCACACTACCCAAGGTCTGACTGGGTCCCTCATCA
 CCAAGATTGGCATGGCTGCTGTGGCCCGGGCTGTGACACTAATGACTCCACTCCCCCTCCT
 GCTGAGATGTTCAACTACTGCCAGGCCAGTGTGCTACTGCTACTGTGAACACATG
 GCTGTGGTGAAGGCTGGCTGTGGGGACACTAGCTTCAACAATATCTATGGCATCGCTGTGG
 45 CCATGTTTATTGTGGTGTGGACCTGCTCTTGTATCTCTGCTTATCTCTTCTCAG
 GCAGTTCTACTGCTTGCCTCTCAGGAGGCCGCTACAAGGCATTGGGACATGTGTCTCTC
 ATATAGGTGCCATCTAGCCTCTACACAACACTGTGGTCATCTCTCAGTCATGCACCCGTGA
 GCCGCCATGCTGCCACATCTCCCTGCCAATTCTATCTGCTCTCCACC
 CATGGTCAATCCCATAATCTATGGTGTCAAGACCAAGCAAATCCGTGAGAGCATCTGGGA
 50 GTATTCCAAGAAAGGATATGTAG (SEQ ID NO: 90)

AOLFR48 sequences:

MMVDPNGNESSATYFILIGLPGLEEAQFWLAFPLCSLYLIAVLGNLTIIYIVRTEHSLHEPMYIFL
 CMLSGIDILISTSSMPKMLAIFWFNSTTIQFDACLLQMFIAHSLGMESTVLLAMAFDRYVAICH
 55 PLRHATVLTLPRTVKIGVAAVVRAALMAPLPVFIKQLPFCSRNLHSYCLHQDVMKLA CDDI
 RVNVVYGLIVIISAIGLDSLLISFSYLLILKTVLGLTREAQAKAFGTCVSHVCAPFIFYVPFIGLSM

VHRFSKRRDSPLPVILANIYLLVPPVLNPIVYGVKTKEIRQRILRLFHVATHASEP (SEQ ID NO: 91)

5 ATGATGGTGGATCCAATGGCAATGAATCCAGTGCTACATACTTCATCCTAATAGGCCTCC
 CTGGTTAGAACAGAGGCTCAGTTCTGGTGGCCTTCCCATTGTGCTCCCTCACCTTATTGCT
 GTGCTAGGTAACTTGACAATCATCTACATTGTGCGACTGAGCACAGCCTGCATGAGCCCA
 TGTATATATTCTTGATGCTTCAGGCATTGACATCCTCATCTCCACCTCATCCATGCC
 AAAATGCTGGCCATCTCTGGTCAATTCCACTACCACATCCAGTTGATGCTTGTCTGCTACA
 GATGTTGCCATCCACTCCTTATCTGGCATGGAATCCACAGTGCTGCTGGCATGGCTTT
 10 GACCGCTATGTGGCCATCTGTCACCCACTGCGCATGCCACAGTACTTACAGTGTGCCTCGTG
 TCACCAAAATTGGTGTGGCTGCTGTGGTGCAGGGGGGCTGCACTGATGGCACCCCTTCTGT
 CTTCATCAAGCAGCTGCCCTCTGCCGCTCCAATATCCTTCCATTCTACTGCCTACACC
 AAGATGTCACTGAAGCTGGCTGTGATGATATCGGGTCAATGTCGCTATGGCCTATCGT
 CATCATCTCCGCCATTGGCCTGGACTCACTCTCATCTCTCATATCTGTTATTCTTA
 15 AGACTGTGTGGGCTTGACACGTGAAGCCCAGGCCAAGGCATTGGCACTTGCCTCTCA
 TGTGTGTGCTGTGTCATATTCTATGACCTTCAATTGGATTGTCATGGTCATGCCCTTA
 GCAAGCGGCGTGACTCTCGCTGCCGTCATCTTGCCAAATATCTATCTGCTGGTCTCCT
 GTGCTCAACCCAATTGTCATGGAGTGAAGACAAAGGAGATTGACAGCGCATCCCTCGA
 CTTTCCATGTGGCCACACACGCTTCAGAGCCCTAG (SEQ ID NO: 92)

20

AOLFR49 sequences:

MLTFHNVCVPSSFWLTGIPGLESILHVWLSIPFGSMYLVAVVGNVTILAVVKIERSLHQPMYFF
 LCMLAAIDLVLSTSTPKLLGIFWFGACDIGLDACLGQMFHCFATVESGIFLAMAFDRYVAIC
 NPLRHSMVLTYTIVGRGLVLSLLRGVLYIGPLPLMIRRLPLYKTHVISHSYCEHMAVVALTC
 25 GDSRVNNVYGLSIGFLVLILDVAIAASYVMIFRAVMGLATPEARLKTLGTCASHLCAILIFYVP
 IAVSSLIHRFGQCVPVPPVHTLLANFYLLIPILNPIVYAVRTKQIRESLLQIPRIEMKIR (SEQ ID
 NO: 93)

30 ATGCTCACTTTCATATGTCGCTCAGTACCCAGCTCCTTGGCTCACTGGCATCCAGG
 GCTGGAGTCCCTACACGTCTGGCTCTCCATCCCCTTGGCTCCATGTACCTGGTGGCTGTG
 GTGGGGAAATGTGACCATCTGGCTGTGGTAAAGATAGAACGCAGCCTGCACCGCCATG
 TACTTTTCTGTGATGTTGGCTGCCATTGACCTGGTCTGACTTCCACTATACCAA
 ACTTCTGGGAATCTCTGGTCGGTCTGTGACATTGGCTGGACGCCCTGGCTTGGCCAA
 ATGTTCCATTACCACTGCTTGCCACTGTTGAGTCAGGCATCTCCATTGGCTTGA
 35 TCGCTACGTGGCCATCTGCAACCAACTACGTCACTAGCATGGTGTCACTTATAACAGTGGTG
 GGTGCTTGGGCTTGTCTCTCCCTGGGTTCTACATTGGACCTCTGCCTCTGAT
 GATCCGCTGCGGTGCCCCCTTATAAAACCCATGTTATCTCCACTCCTACTGTGAGCAC
 ATGGCTGTAGTTGCCATTGACATGTGGCAGCAGGGTCAATAATGTCATGGCTGAGC
 ATCGGCTTCTGGTGTGATCTGGACTCAGTGGCTATTGTCATCCTATGTGATGATT
 40 CAGGGCCGTGATGGGTTAGGCACTCCTGAGGCTAGGCTTAAACCCCTGGGACATGCGC
 TTCTCACCTCTGTGCCATTGCTGATCTTATGTCCTATTGCTGCTTCTCCCTGATTACCG
 ATTGGTCAGTGTGTCCTCCAGTCACACTGCTGGCAACTCTATCTCTCATT
 CTCCAATCCTCAATCCCATTGTCATGCTGTTGCAACCAAGCAGATCCGAGAGAGCCTCT
 CCAAATACCAAGGATAGAAATGAAGATTAGATGA (SEQ ID NO: 94)

45

AOLFR50 sequences:

MNLDASFSLKLKSIMALNSSWRLPQPSFLVGIPGLEESQHWIALPLGILYLLALVGNVTILFII
 WMDPSLHQSMYLFMSMLAAIDLVVASSTAPKALAVLLVRAQEIGYTVCLIQMFFTHAFSSMES
 GVLVAMALDRYVAICHPLHHSTILHPGVIGHGMVVLVRGLLLIPFLLLRKLIFCQATIIGHAY
 50 CEHMAVVKLACSETTVNRAYGLTVALLVVGLDVLAIGVSAYHLQAVLKVPGEARLKFST
 CGSHVCVILVFYIPGMFSFLTHRFGHHVPHVHVLAILYRLVPPALNPLVYRVTQKIHQ
 (SEQ ID NO: 95)

55 ATGAATTGGATTCTTTCTCTTCCCTCAAGTCATTGATAATGGCACTTAGCAATT
 CAGCTGGAGGCTACCCAGCCTCTTTCTGGTAGGAATTCCGGGTTAGAGGAAAGC
 CAGCACTGGATCGCACTGCCCTGGGATCCCTTACCTCCTGCTAGTGGCAATGTTA

CCATTCTCTCATCTGGATGGACCCATCCCTGCACCAATCTATGTACCTTCTCTGTCC
ATGCTAGCTGCCATCGACCTGGTTGCGCTCTCCACTGCACCCAAAGCCCTGAGTC
TCCGGGTCGCCCCAAGAGATTGGTTACACTGTCTGCATCCAGATGTTCTCACCCAT
GCATTCTCCATGGAGTCAGGGGACTTGTGGCATGGCTCTGGATCGCTATGTAGCCA
5 TTTGTCAACCCCTTGACCATTCCACAATCTGCATCCAGGGTCATAGGCACATCGGAAT
GGTGGTGTGGTGCAGGGGATTACTACTCCTCATCCCCCTCCTATTCTGTGCAAAACCT
ATCTTCTGCCAACGCCACCATCATAGGCCATGCCATTGTGAACATATGGCTTGTGAAAC
TTGCCTGTCAGAAACACAGTCAATCGAGCTATGGGTCAGTGTGGCCTGCTGTGGT
10 TGGGCTGGATGTCTGGCCATTGGTGTTCCTATGCCACATTCTCAGGCAGTGTGAAG
GTACCAAGGAAATGAGGGCCGACTTAAGGCCTTAGCACATGTGGCTCTATGTTGTGTC
TCCGGTCTCTATATCCCGGAAATGTTCTCCCTCCTACTCACCGCTTGGTCATCATGTA
CCCCATCACGTCCATGTTCTGCCATACTGTATGCCTGTGCCACCTGCACTCAATCC
TCTTGTCTATAGGGTGAAGACCCAGAAGATCCACCAAGTGA (SEQ ID NO: 96)

15 AOLFR51 sequences:

MCQQILRDCILLIHLICNRKKVSLVMLGPAYNHTMETPASFLLVGIPGLQSSHLWLAISLSAM
YIALLGNTIIVTAIWMDSTRHEPMYCFLCVLAAVDIVMASSVVPKMSIFCSGDSISFSACFTQ
MFVFVLATAVETGLLLTMAFDRYVAICKPLHYKRILTQVMLGMSMAITRAIIAITLEPLSWMVS
HLPFCGSNVVVHSYCEHIALARLACADPVPSSLYSLIGSSLMVGSVDVAFIAASYLILKAVFGLSS
20 KTAQLKALSTCGSHVGVMALYYLPGMASTYAAWLQDQVPLHTQVLLADLYVIIPATLNPIY
GMRTKQLRERIWSYLMHVLFDHSNLGS (SEQ ID NO: 97)

25 ATGTGTCAACAAATCTTACGGGATTGCATTCTCTCATACATCATTGTGCATTAACAGGA
AAAAAGTCTCACTTGTGATGCTGGGTCCAGCTTATAACCACACAATGGAAACCCCTGCCTC
CTTCCTCCTTGTGGGTATCCCAGGACTGCAATCTTCACATCTTGGTGGCTATCTCACTGGA
GTGCCATGTACATCATAGCCCTGTAGGAAACACCATCATCGTACTGCAATCTGGATGGGA
TTCCACTCGGCATGAGCCCAGTATTGCTTCTGTGTCTGGCTGCTGTGGACATTGTTA
TGGCCTCCTCGGTGGTACCCAAGATGGTGAGCATCTTCTGCTCAGGAGACAGCTCAATCAG
CTTAGTGTCTTCACTCAGATTTTTGTCCACTTAGCCACAGCTGTGGAGACGGGG
30 CTGCTGCTGACCATGGCTTGTGACCGCTATGTAGCCATCTGCAAGCCTACACTACAAGA
GAATTCTCACGCCCTCAAGTGTGATGCTGGGAATGAGTATGCCATCACCACAGAGCTATCAT
AGCCATAACTCCACTGAGTTGGATGGTGAGTCATCACCTTCTGTGGCTCCAATGTGGTT
GTCCACTCCTACTGTGAGCACATAGCTTGGCAGGTAGCATGTGCTGACCCCGTCCCCA
GCAGTCTCACAGTGTGATTGGTCTCTCTATGGTGGGCTCTGTGTGGCCTTCATTGCT
35 GCCTCTATATCTTAATTCTCAAGGAGTATTGGTCTCTCTCAAAGACTGCTCAGTTGAA
AGCATTAAAGCACATGTGGCTCCCATGTGGGGTTATGGCTTGTACTATCACCTGGGATG
GCATCCATCTATGCGGCTGGTTGGGCAGGATGTAGTGCCTTGTACACCCAAAGTCTGC
TAGCTGACCTGTACGTGATCATCCCAGCCACCTAAATCCCACATCTATGGCATGAGGAC
CAAACAACTGCGGGAGAGAATATGGAGTTATCTGATGCATGTCCTTGTGACCATTCAC
40 CTGGGTTCATGA (SEQ ID NO: 98)

AOLFR52 sequences:

MLGPAYNHTM**E**PASFLVGPGLQSSHLWLAISLAMYTALLGNTLIVTAIWMDSTRHEPMY
CFLCVLAAVDIVMASSVVPKMSAFCFGDSSISFSACFTQMFFVHLATAVETGLLLTMAFDRYV
AICKPLHYKRILTPQVMLGMSMAVTIRAVTFMTPLSWMMNHLPFCGSNVVVHSYCKHIALAR
LACADPVPSLSSLYSLIGSSLMVGSVDVAFIAASYIILRAVFDLSSKTAQLKALSTCGSHVGVMALY
YLPGMASIYAAWLQDIPVPLHTQVLLADLYVIPIATLNPIYGMR~~T~~KQLLEGIWSYLMHFLFDH
SNLGS (SEQ ID NO: 99)

50 ATGCTGGGCCAGCTTACAACCAACACAATGGAAACCCCTGCCCTCCTCCCTGTGGGTA
TCCCAGGACTGCAATCTCACATCTTGGCTGGCTATCTCACTGAGTGCCATGTACATCAC
AGCCCTGTAGAAAACACCCTCATCGTACTGCAATCTGGATGGATTCCACTCGGCATGAG
CCCATGTATTGCTTCTGTGTGTTCTGGCTGCTGTGGACATTGTTATGGCCTCCCGTGGT
ACCCAAGATGGTGAGCATCTTCTGCTCGGGAGACAGCTCCATCAGCTTACTGCTTGTTC
55 ACTCAGATGTTTTGTCCACTTAGCCACAGCTGTGGAGACGGGGCTGCTGCTGACCAGGG
CTTGTGACCGCTATGTAGCCATCTGCAAGCTCTACACTACAAGAGAATTCTCACGCCTCA

AGTGATGCTGGGAATGAGTATGCCGTACCATCAGAGCTGTCACATTGACTCCACTG
 AGTTGGATGATGAATCATCACCTTCTGGCTCCAATGTGGTGTCCACTCCTACTGTAA
 GCACATAGCTTGCCAGGTAGCATGTGCTGACCCGTGCCAGCAGTCTACAGCTG
 ATTGGTCTCTCTTATGGTGGCTCTGATGTGGCTTCAATTGCTGCCTCTATCTTAAT
 5 TCTCAGGGCAGTATTTGATCTCCCAAAGACTGTCAGTTGAAAGCATTAAGCACATGT
 GGCTCCATGTGGGGTTATGGCTTGACTATCACCTGGATGGCATCCATCTATGCCG
 CCTGGTGGGCAGGGATATAAGTGCCTTGACACCCAAGTGTGCTAGCTGACCTGTACGT
 GATCATCCCAGCCACTTAAATCCCATCATCTATGGCATGAGGACCAAAACAATTGCTGGAG
 10 GGAATATGGAGTTATCTGATGCACTCCTCTTGACCCTCCAACCTGGGTCATGA (SEQ
 ID NO: 100)

AOLFR54 sequences:

MSDSNLSDNHLPDFLTLGIPGLEAAHFWIAIPFCAMYLVALVGNAAALILVIAMDNALHAPMY
 LFLCLLSLTDLALSSTTVPKMLAILWLHAGEISFGGCLAQMFCVHSIYALESSILLAMAFLDRYVA
 15 ICNPLRYTTILNHAVIGRIGFVGFLRSVAIVSPFIFLLRLPYCGHRVMHTYCEHMGIAIRLACA
 NITVNIVYGLTVALLAMGLDSILIAISYGFILHAVFHLPSSHDAQHKALSTCGSHIGIILVFYIPAFF
 SFLTHRFGHHEVPKHVHIFLANLYLVLPVLPNPLYGARTKEIRSRLKLHLGKTSI (SEQ ID
 NO: 101)

20 ATGTCAGATTCCAACCTCAGTGATAACCCTTCCAGACACCTTCTTAACAGGGATCC
 CAGGGCTGGAGGCTGCCACTCTGGATTGCCATCCCTCTGTGCATGTCATGCACCT
 ACTGGTGGAAATGCTGCCCTCATCTGGTCAATTGCCATGGACAATGCTCTCATGCACCT
 ATGTACCTCTCCCTGCCTCTCACTCACAGACCTGGCTCTCAGTTCTACCAACTGTGCC
 CAAGATGCTGCCATTGGCTCATGCTGGTGAAGATTCTTGGTGGATGCCCTGGCC
 25 CAGATTTTGTGCCATTCTATCTATGCTCTGGACTCCTCGATTCTACTTGCCATGCCCT
 TGATAGGTATGTGGCTATCTGTAACCCATTAGGTATACAACCATTCTAACCATGCTGTC
 ATAGGCAGAATTGGCTTGTGGCTATTCCGTAGTGTGGCTATTGTCCTCCCCCTCATCTT
 CTTGCTAGGGCAGTCCCTACTGTGGTCAACCGTGTCAATGACACACACATACTGTGAGCAT
 ATGGGCATGCCCGACTGGCTGTGCCAACATCACTGTCATATTGCTATGGCTAACTG
 30 TGGCTCTGCTGGCCATGGGACTGGATTCCATTCTCATTGCCATTCTATGGCTTATCCTC
 CATGCAGTCTTCACCTCCATCTCATGATGCCAGCACAAAGCTCTGAGTACCTGTGGCT
 CCCACATTGGCATCATCTGGTTTCTACATCCCTGCCCTCTCTCCCTCACCCACCGC
 TTTGGTCACCACGAAGTCCCCAAGCATGTCACATCTTGCTAATCTCTATGTGCTGG
 TGCCCTCTGACTCAATCTATTCTATGGAGCTAGAACCAAGGAGATTGGAGTCGACT
 35 TCTAAAATGCTTCACCTGGGAAGACTCAATATGA (SEQ ID NO: 102)

AOLFR57 sequences:

MSFQVTYMFYLHWMEKSNNSTLFILLGFSQNKNIEVLCFLFCYIAJWMGNLLIMISITCTQ
 LIHQPMYFFLNYLSLSDLCYTSTVTPKLMVDLLAERKTISYNNCMQLFTTHFFGIEIFILTGM
 40 AYDRYVAICKPLHYTIIMSRQKCNTTIVCCTGGFIHSASQFLTIFVFCGPNEIDHYFCDVYPLL
 KLAESNIHMIGLLVIANSGLIALVTFVVLLSYVFLYTIAYSAERRSKALATCSSHVIVVVLFF
 APALFIYIRPVTFSEDKVFAFYTIAPMFNPLIYTLRNTEMKNAMRKVWCCQILLKRNQLF
 (SEQ ID NO: 103)

45 ATGTCATTTCAAGGTGACTTATATGTTCTATCTACACTGGACCATGGAAAAAAAGCAATAATA
 GCACTTTGTTTATTCTCTGGGTTTCCAAAATAAGAACATTGAAGTCTCTGCTTGTAA
 TTATTTTGTGCTACATTGCTATTGGATGGAAACTTACTCATAATGATTCTATCAC
 GTGCACCCAGCTCATCACCAACCCATGTAATTCTCTCAATTACCTCACTCTCCGACC
 TTTGCTACACATCCACAGTGACCCCAAATTAAATGGTGTACTACTGGCAGAAAGAAAGAC
 50 CATTCTCTATAATAACTGTATGATACAACCTTACCAACCCATTTTTGAGGCTAGAGA
 TCTTCATTCTCACAGGGATGCCCTATGACCGCTATGTGGCCATTGCAAGCCCTGCACTA
 CACCAATTATGAGCAGGCAAAGTGTAAACAAATCATCATAGTTGTGTACTGGGGGA
 TTTATACATTCTGCCAGTCAGTTCTCACCATTTGTACCATTTGTGGCCAAATGA
 GATAGATCACTACTCTGTGATGTATCCATTGCTGAAATTGGCTGTTCAATATACACA
 55 TGATAGGTCTCTAGTCATTGCTAATTGCTTAATTGCTTGGTGCACATTGTTGTCTTG
 TTGTTGCTTATGTTTATATTGTATACCATCAGAGCATACTGAGAGAGACGCAGCA

AAGCTCTGCCACTGTAGTTCTCATGTAATTGTTGGTCTGTTTGTCTGCATTG
 TTCAATTACATTAGACCAGGTACAACATTCTCAGAAAGATAAAGTGTGTTGCCCTTTTATAC
 CATCATTGCTCCATGTTCAACCCCTCATATACACGCTGAGAAACACAGAGATGAAGAAC
 GCCATGAGGAAAGTGTGGTGTCAAATACTCCTGAAAAGAAATCAACTTTCTGA (SEQ
 5 ID NO: 104)

AOLFR58 sequences:

MFSMTTEALNNFALGCTNLLMTMIPQIDLKQIFLCPNCRLYMIPVGAFIFSLGNMQNSFVTEF
 VLLGLSQNPNVQEIVVVFLFYIATVGGNMLIVVTILSSPALLSPMYFFLGFLSFLDACFSSVI
 10 TPKMIVDLSYVTKTISFEGCMMQLFAEHFFAGVEVIVLTAMAYDRYVAICKPLHYSSIMNRRL
 CGILMGVAWTGGLLHSMIQILFTQLPFCGPVNINHFMCDLYPLLELACTDTHIFGLMVINS
 FICIINFSLLLVSYAVILSLRTHSSEGRWKALSTCGSHIAVVILFFVPCIFVYTRPPSAFSLDKMA
 AIFYIILNPPLLNPYIYFTRNKEVKQAMRRIWNRMLMVSDEKENIKL (SEQ ID NO: 105)

15 ATGTTCTCAATGACAACAGAACGACTCAATAATTGCACTTGGATGTACCAACTTGTAA
 TGACTATGATACCACAAATTGATCTGAAGCAAATTTCCTTGTCCAATTGCAAGACTATA
 CATGATCCCTGTTGGAGCTTCATCTTCCCTGGGAAACATGCAAACACCAAAGCTTGTAA
 ACTGAGTTGCTCTCTGGGACTTCACAGAAATCCAATGTCAGGAAATAGTATTGTTG
 TATTTTGTTGTCACATTGCAACTGTTGGGGCACATGCTAATTGAGTAACCATTCTC
 20 AGCAGCCCTGCTCTCTGGTGTCTCATGACTTCTCTGGCTTCTGCTCTTCTGGGA
 TCGTGTCTCTCATCTGTATACCCCCAAAGATGATGAGACTCCCTCATGTCACAAAAA
 ACCATCTCTTGAAGGCTGCATGATGAGCTTCTGGTAACACACTCTCTGGTGGGTGG
 AGGTGATTGTCCTCACAGCCATGGCTATGATCGTTATGTCAGGCAATTGCAAGCCCTGCA
 TTACTCTCTATCATGAACAGGAGGCTCTGTCATCTGATGGGGTAGCCTGGACAGGG
 25 GGCCTCTGCATTCCATGATACAATTCTTACTTCCAGCTTCCCTTGTGGCCCCAA
 TGTATCAATCACTTATGTCATGACTTGTACCTGGAGCTTGTGCTGCACTGATAACTC
 ACATCTTGGCTCATGGTGTATCAACAGTGGGTTATCTGATCATAAACTCTCCTTG
 TTGCTTGTCCTATGTCATCTGCTCTGAGAACACACAGTTCTGAAGGGCGCTG
 GAAAGCTCTCCACCTGTGGATCTCACATTGCTGTGATTITGTCCTTGTCCCATGCA
 30 TATTGATATACACGACCTCCATGCTCTTCCCTGACAAAATGGCGCAATATTITAT
 ATCATCTAAATCCCTGCTCAATCTTGATTTACACTTCAAGGAATAAGGAAGTAAAAC
 AGGCCATGAGGAGAATATGAAACAGACTGATGGTGGTTCTGATGAGAAAGAAAATATTA
 AACCTTAA (SEQ ID NO: 106)

AOLFR59 sequences:

MGDWNSDAVEPIFILRGFPLEYVHSWLSILFCLAYLVAFMGNVTILSVIWISSLHQPMYYFI
 SILAVNDLGMSSLTILPTMLAVIWLDAPEIQASACYAQQLFFIHTFTLESSVLLAMA
 PLHYPTILTNSVIGKIGLAICLRLSGVVLPTPLLRHYCHGNALSHAFCLHQDVRLSCTDA
 RTNSIYGLCVVIATLGVDASFILSYVLILNTVLDIASREEQLKALNTCVSHICVVL
 IFFVPVIGVS
 40 MVHRFGKHLSPIVHILMADIYLLLPPVLPNIVYSVRTKQIRLGILHKFVLRRRF (SEQ ID NO:
 107)

ATGGGAGACTGGAATAACAGTGATGCTGTGGAGCCATATTATCCTGAGGGGTTTCTG
 GACTGGAGTATGTCATTCTGGCTCTCCATCCTCTGTCTGCAATTGGTAGCATT
 45 ATGGGTAATGTTACCATCTGTCTGCTATTGGATAGAATCCTCTCCATCAGCCCAGTGA
 TTACTTATTCCATCTAGCAGTGAAATGACCTGGGATGTCCTGTCTACACTTCCACCA
 TGCTTGCTGTGTTATGGTGGATGCTCCAGAGATCCAGGCAAGTGTGCTATGCTCAGCT
 GTTCTCATCCACACATTACACATTCTGGAGTCTCAGTGTTGCTGCCATGGCTTGTACC
 GTTITGGCTATCTGCCATCCACTGCACTACCCACCATCCTCACCAACAGTGAATTGGC
 50 AAAATTGGTTGGCTGTTGCTACGAAGCTGGAGTTGTAATTCCCACACCTTGTACT
 GAGACACTATCACTACTGCCATGGCAATGCCCTCTCAGCCTCTGTTGCAACAGGAT
 GTTCTAAAGATTATCCTGTAACAGATGCCAGGACCAACAGTATTATGGGCTTGTGAGTCA
 TTGCCACACTAGGTGTGGATTCAATCTCATACTCTTCTATGTTCTGATTCTAAACT
 GTGCTGGATATTGCACTCGTGAAGAGAGCAGCTAAAGGCACTAACACATGTGATCCCATA
 55 TCTGTGGTGCTATCTCTTGCCAGTTATGGGGTGTCAATGGTCCATCGCTTGGG
 AAGCATCTGCTCCCATAGTCCACATCCTCATGGCAGACATCACCTCTTCCCCAGT

CCTTAACCTATTGTCTATAGTCAGAACAAAGCAGATTGCTAGGAATTCTCCACAAG
TTTGTCTAAGGAGGGAGTTAA (SEQ ID NO: 108)

AOLFR60 sequences:

5 MFLPNQDFHPSSFLLGPGLETLHTWIGFPFCAVYMIALIGNFTILLVIKTDSSLHQPMFYFLA
MLATTDVGLSTATIPKMLGIFWINLRGILFEACLTQMFHINFTLMEASLVAMAYDSYVAICN
PLQYSAILTNKVVSVIGLVFVRALIFVIPSILLRLPFCGNHVPHTYCEHMLAHLSCASIKINI
IYGLCAICNLVFDITVIALSYVHILCAVFRLPTHEPRLSLSTCGSHVCVILAFYTPALFSFMTHC
FGRNVPRYIHILLANLYVVVPPMLNPVIYGVRTKQIYKCVKKILLQEQQMEEYLIHTRF
10 (SEQ ID NO: 109)

ATGTTCCCTCCAATGACACCCAGTTCACCCCTCCCTCCGTGCTGGGATCCCAGG
ACTAGAAACACTTCACATCTGGATCGGCTTCCCTCTGTGCTGTACATGATCGCACTC
15 ATAGGGAACCTCACTATTCTACTTGTGATCAAGACTGACAGCAGCCTACACCAGCCCATGT
TCTACTTCCGCCATGTTGCCACCACTGATGTGGGTCTCTCAACAGCTACCATCCCTAA
GATGCTTGAATCTCTGGATCAACCTCAGAGGGATCATTTGAAGCCTGCCTCACCCAG
ATGTTTTTATCCACAACCTCACACTTATGGAGTCAGCAGTCCTGTGGCAATGGCTTATG
ACAGCTATGTGGCCATCTGCAATCCACTCAATATAGGCCATCCTCACCAACAAGGTTGT
20 TTCTGTGATTGGCTTGGTGTGTTGTGAGGGCTTAATTTCGTATTCCCTCTATACTTC
TTATATTGCGGTGCCCTCTGTGGGAATCATGTAATTCCCCACACCTACTGTGAGCACAT
GGGTCTGCTCATCTATCTGTGCCAGCATCAAATCAATATTATTATGTTTATGTGCCA
TTTGTAACTGGTGTGTTGACATCACAGTCATTGCCCTCTTATGTGCATATTCTTGCT
25 GTTTCCGTCTTCTACTCATGAGCCCCACTCAAGTCCCTCAGCACATGTGGTTACATGT
GTGTGTAATCTTGCCTCTATACACCAGCCCTCTTCTTATGACTCATTGCTTGGCC
GAAATGTGCCCGCTATATCCATATACTCCTAGCCAATCTCTATGTTGTGGCCACCAAT
GCTCAATCCTGTATATATGGAGTCAGAACCAAGCAGATCTATAATGTGAAAGAAAAT
ATTATTGCAGGAACAAGGAATGGAAAAGGAAGAGTACCTAATACATACGAGGTTCTGA
(SEQ ID NO: 110)

AOLFR61 sequences:

MSIINTSYVEITFFLVMPGLEYAHWISIPCSMYLIALGNGTILFIKTEPSLHGPMYYFLSML
AMSDLGLSLSSLPTVLSIFLNAPETSSSACFAQEFFFHGSVLESSVLLIMSFDRFLAIHNPLRYT
35 SILTTVRVAQIGIVFSFKSMLLVLPPFTLRSRLRYCKKNQLSHSYCLHQDVMKLACSDNRIDVY
GFFGALCLMVDFILIAVSYTLILKTVPGIASKKEELKALNTCVSHICAVIIFYLPINLA
HVSPLINVLMANVLLVPPPLMKPIVYCVTKQIRVRVVAKLCQWKI (SEQ ID NO: 111)

ATGCCATTATCAACACATCATATGTTGAAATCACCACTTCTTGGTTGGGATGCCAG
GGCTAGAATATGCACACATCTGGATCTCTATCCCCATCTGCAGCATGTATCTTATTGCTATT
CTAGGAATGGCACCATTCTTTATCATCAAGACAGAGCCCTCTGCATGGGCCATGT
40 ACTATTCTTCCATGTTGGCTATGTCAGACTTGGGTTGTCTTATCATCTCTGCCACT
GTGITAAGCATCTCTGTTCAATGCCCTGAAACTCTCTAGTGCCTGTTGCCAGGA
ATTCTTCATTATGGATTCTCAGTACTGGAGTCCTCAGTCCTCTGATCATGTCAATTGATA
GATTCTTAGCCATCCACAATCCTCTGAGATAACACCTCAATCCTGACAACACTGTCAAGAGTTGC
CCAAATAGGGATAGTATTCTCTTAAAGAGCATGCTCTGGTTCTTCCCTTCCCTTCACTT
45 TAAGAAGCTTGAGATAATGCAAGAAAAACCAATTATCCATTCTACTGTCTCCACCAAGGA
TGTCAATGAGTTGCCCTGTTGACAACAGAATTGATGTTATGCTTGGCTTTGGAGCA
CTCTGCCTTATGGTAGACTTATTCTCATGCTGTGCTTACACCCCTGATCCTCAAGACTGT
ACCGGGATTGATCCAAGGAGGAGCTTAAGGCTCTCAAACTTGTGTTTACACATC
50 TGTGAGTGTATCTTCTACCTGCCATCATCAACCTGCCGTTGTCACCTCCGCTGA
GCATGCTCTCCCTCATTAATGTTCTCATGGCAATGTTCTACTGTACCTCCGCTGA
TGAAACCAATTGTTATTGTGAAAACAAACAGATTAGAGTGAGAGTTGAGCAAATT
GTGCAATGGAAGATTAA (SEQ ID NO: 112)

AOLFR62 sequences:

55 MFYHNKSIFHPVTFLIGIPGLEDFHMWISGPFCCSVYLALLNATILLVIKVEQTLREPMFYFL
AILSTIDLALSATSPRMLGIFWFDAHEINYGACVAQMFLIHAFTGMEAEVLLAMAFDRYVAIC

APLHYATILTSVLVGLSICIVRPVLLPMVYLIYRLPFCQAHIAHSYCEHMGIAKLSGNIRI
NGIYGLFVVSFFVLNLVLIGISYVYILRAVFRLPSHDAQLKALSTCGAHGVVICVFYIPSVFSFLT
HRFGHQIPGYIHILVANLYLIIPPSLNPIIYGVRTKQIRERVLYVFTKK (SEQ ID NO: 113)

5 ATGTTTATCACACAAGAGCATATTCACCCAGTCACATTTCCTCATTGGAATCCCAGG
TCTGGAAAGACTTCACATGTGGATCTCGGGCTTCTGCTCTGTTACCTGTGGCTTGC
TGGGCAATGCCACCATTCTGCTAGTCATCAAGGTAGAACAGACTCTCCGGAGCCCAGTGT
CTACTTCCTGGCCATTCTTCCACTATTGATTGGCCCTTCTGCAACCTCTGTGCCCTCGCA
TGCTGGGTATCTCTGGTTGATGCTCACGAGATAACTATGGAGCTTGTGGCCAGAT
10 GTTTCTGATCCATGCCCTCACTGGCATGGAGGCTGAGGTCTACTGGCTATGGCTTTGAC
CGTTATGTGCCATCTGTGCTCCACTACATTACGCAACCATTGACATCCCTAGTGTGGT
GGGCATTAGCATGTGATTGTAATTGTCAGGCTCACATAATAGCCCATTCTACTGTGAGCACATGGG
TCTACCGCCTACCCCTTGTCAAGGCTCACATAATAGCCCATTCTACTGTGAGCACATGGG
CATTGCAAAAATTGCTCTGTGAAACATTGTATCAATGGTATCTATGGGCTTTGTAGTTT
15 CTTTCTTGTCTGAACCTGGTCTCATGGCATCTCGTATGTTACATTCTCCGTGCTGTC
TTCCGCTCCCATCACATGATGCTCAGCTAAAAGCCCTAAGCACGTGCGCTCATGTTG
GAGTCATCTGTGTTTCTATATCCCTTCAGTCCTCTTCCCTACTCATCGATTGGACAC
CAAATACCAGGTTACATTCAATTCTGTTGCCATTCTATTGATTATCCCACCCCTCT
CAACCCCATATTATGGGGTAGGACAAACAGATTGAGAGCGAGTGTCTATGTTT
20 ACTAAAAAAATAA (SEQ ID NO: 114)

AOLFR63 sequences:

MSIINTSYVEITFFLVGMPGLEYAHIWISIPCSMYLIALGNGTILFIKTEPSLHEPMYYFLSMI
AMSDLGLSLSLPTVLSIFLFNAPEISSNACFAQEFFFHGSVLESSVLLIMSFDRFLAIHNPLRYTS
25 ILTVRVAQIGIVFSFKSMLLVLPPFTLRLRYCKKNQLSHSYCLHQDVMKLAACSDNRIDVIY
GFFGALCLMVDFILIAVSYTLLIKTVLGIASKKEQLKALNTCVSHICAVIIFYLPINLAVVHFRAR
HVSPLINVLMANVLLVPPLTNPIVYCVKTKQIRRVVAKLCQRKI (SEQ ID NO: 115)

30 ATGTCCATTATCACACATCATATGTGAAATCACCACTCTCTGGITGGATGCCAG
GGCTAGAAATATGCACACATCTGGATCTCTATCCCCATCTGCAGCATGATCTATTGTATT
CTAGGAAATGGCACCATCTTCTTATCATCAAGACAGAGGCCCTTGTGATGAGGCCATGT
ACTATTCTTCTCATGTTGGCTATGTCAGACTTGGGTTGTCTTATCATCTGCCACT
GTGTTAACGATCTCTGTCAATGCTCTGAAATTCTCATCCAATGCCCTGCTTGTGCCAGGA
ATTCTCATGGATTCTCAGTACTGGAGTCCTCAGTCCTCTGATCATGTCATTGATA
35 GATTCTCTAGCCATCCACAACCCCTTGAGATAACACCTCAATCCCTGACAACGAGTTGC
CCAAATAGGGATAAGTATTCTCTTAAAGAGCATGTCCTGGTTCTCCCTTCCCTACT
TAAGAAACTTGAGATAATTGCAAGAAAAACCAATTATCCCATCCCTACTGTCTCCACCAAGGA
TGTCTGAGGTGCGCTGTTGACAACAGAATTGATGTTATCTATGGCTTTGGAGCA
40 CTCTGCCCTATGGTAGACTTATTCTCATGCTGTGCTTACACCCCTGATCCCTCAAGACTGT
ACTGGGAATTGCACTCCAAAAGGAGCAGCTTAAGGCTCTCAAACTTGTGTTTACACATC
TGTGCAAGTGTGATCATCTCTACCTGCCATCATCAACCTGGCCCTGTCACCGCTTGTGCCCG
GCATGTCCTCTCCCTCATTAATGTTCTCATGGAAATGTTCTCTACTTGACCTCCACTGA
CGAACCCAATTGTTATTGTTAAAACAGATTAGAGTGAGAGTTGTAGCAAAATT
GTGTCAACGGAAGATTAA (SEQ ID NO: 116)

45

AOLFR64 sequences:

MTILLNSSLQRATFFLTGFQGLEGLHGWIIPFCFIYLTVLGNLTLHVICTDATLHGPMYYFLG
MLAVTDLGLCLSTLPTVLGIFWFDTREIGIPACFTQLFIFIHTLSSMESSVLLSMSIDRSVAVCNPL
50 HDSTVLTTPACIVKMGLSSVLRSLALLPLPFLKRFQYCHSHVLAHYCLHLEIMKLACSSIIVN
HIYGLFVVACTVGVDSSLIFLSYALILRTVLSIASHQERLRALNTCVSHICAVLLFYIPMIGLSLV
HRFGEHLPRVVHLMPSVYLLVPPLMNPIIYSIKTKQIRQRIKKFQFIKSLRCFWKD (SEQ ID
NO: 117)

55 ATGACAATTCTCTTAATAGCAGCCTCCAAAGAGCCACTTCTCCTGACGGGCTTCCAAG
GTCTAGAAGGTCTCATGGCTGGATCTCTATTCCCTCTGCTTCTACCTGACAGTTATC
TTGGGGAACCTCACCATCTCCACGTCAATTGTACTGATGCCACTCTCCATGGACCCATGT

ACTATTTCTGGGCATGCTAGCTGTACAGACTTAGGCCTTGCCTTCCACACTGCCACT
 GTGCTGGCATTCTGGTTGATACCAGAGAGATTGGCATCCCTGCCTGTTCACTCAGC
 TCTTCATCCACACCTTGTCTCAATGGAGTCAGTCTGTTATCCATGTCCATTGAC
 CGCTCCGTGGCGTCTGCAACCACTGCATGACTCCACCGTCCTGACACCTGCATGTATTG
 5 TCAAGATGGGGCTAAGCTCAGTGCTAGAACAGTGCTCTCTCATCCTCCCCITGCCATTCTC
 CTGAAGCGCTTCCAATACTGCACACTCCATGTGCTGGCTCATGCTATTGCTCTCACCTGGA
 GATCATGAAGCTGGCTGCTAGCATCATTGCAATCACATCTATGGGCTTTGTGTG
 GCCTGCACCGTGGGTGGACTCCCTGCTCATCTTCTCATACGCCCTCATCCCTCGCAC
 CGTGCTCAGCATTGCCCTCCACCAGGAGCGACTCCGAGCCCTCAACACCTGTCTCAT
 10 ATCTGTGCTGACTGCTCTTACATCCCCATGATTGGCTTGTCTTGTGCATCGCTTGG
 TGAACATCTGCCCGCGTTGACACCTCTCATGTCTATGTGTATCTGCTGGTACCAACCCC
 TTATGAACCCCCATCATCACAGCATCAAGACCAAGCAAATTGCCAGCGCATCATTAAGAA
 GTTTCAGTTATAAAGTCACTAGGTGTTTGAGGATTAA (SEQ ID NO: 118)

15 AOLFR65 sequences:

MAGRMSNTSNHTQFPSSFLLLGIPGLEVDVHIWIGVPFFVYLVALGNLTALLFVIQTEQSLHEPM
 YYFLAMLDSIDLGLSTATIPKMLGIFWFNTKEISFGGCLSHMFFIHFPTAMESIVLVAMAFDRYI
 AICKPLRYTMLTSKIIISLIAGIAVRLSLYMVVPLVFLLRLPFCGHRIPHTYCEHMGIAIRLACAS
 IKVNIRFLGNISLLLLDVILILSYVRILYAVFCLPSWEARLKALNTCGSHIGVILAFFTPAFFSFL
 20 THRGHNIPQYIHILANLYVVVPPALNPVIYGVRTKQIRERVLRIFLKTNH (SEQ ID NO: 119)

ATGGCAGGAAGAATGTCTACGTCTAACACACCCAGTTCCATCCTTCTCATTCTACTGCT
 GGGTATCCCAGGGCTAGAAGATGTGCACATTGGATTGGAGTCCCTTTTCTTGTAT
 CTTGTGCACTCCTGGAAACACTGCTCTTGTGATCCAGACTGAGCAGAGTCTCC
 25 ATGAGCCTATGTACTACTCCTGGCCATGTTGGATTCCATTGACCTGGCTTGTCTACAGC
 CACCATCCCCAAATGTTGGGCATCTCTGGTTCAATACCAAAAGAAATATCTTGGAGGC
 TGCCCTTCTCACATGTTCTCATCCATTCTCACTGCTATGGAGAGCATTGTTGGTGGC
 CATGGCCTTGGCCATACATGCCATTGCAAACCTCTCGGTACACCATGATCCTCACCA
 GAAAATCATCAGCCTCATTGCGAGGATGCTGCTGGAGGAGCCTGTACATGGTTGTCC
 30 ACTGGTGTCTCCTCTGAGGCTGCCCTCTGTTGGCATCGTATCATCCCTCATACTTATT
 GTGAGCACATGGGCATTGCCGCTGGCCTGTGCCAGCATCAAAGTCACATTAGGTTGG
 CCTTGGCAACATATCTCTTGTACTGGATGTTATCCATTATTCTCTCATGTCAGGA
 TCCTGTATGCTGTTCTGCCTGCCCTCTGGGAAGCTGACTCAAAGCTCTAACACCTGT
 GGTTCTCATATTGGTGTATCTAGCTTACACCAGCATTTTCTCATCTGACACA
 35 TCGTTTGGCCATAATATCCCACAGTATATACATATTATATTAGCCAACCTGTATGTGGTG
 TCCCACAGGCCCTCAATCCTGTAATCTATGGAGTCAGGACAAAGCAGATTGAGAGAG
 TGCTGAGGATTCTCAAGACCAACTAA (SEQ ID NO: 120)

AOLFR66 sequences:

40 MSFLNGTSLTPASFLNPGIPGLEDVHLWISPLCTMYSIAITGNFGLMYLIYCDEALHRPMYVFL
 ALLSFTDVLMLCTSLPNTLFILWFNLKEIDFKACLAQMFFVHTFTGMESGVLMALDHCVAI
 CFPLRYATILTNSVIAKAGFLTLRGVMLVIPSTFLTKRLPYCKGNVIPHTECDHMSVAKISCGN
 VRVNAIYGLIVALLIGGFIDLCITISYTMILQAVVLSSSADARQAFSTCTAHPCAVLTYVPAFF
 TFFTHHFGGHTIPLHHIMANLYLLMPPTMNPIVYGVKTRQVRESVIRFFLGKDNSHNF (SEQ
 45 ID NO: 121)

ATGTCATTTCTAAATGGCACCAAGCCTAACCTCAGCTTCAATTCTAACGGCATCCCTG
 GTTGGAAAGATGTGCATTGGATCTCTTCCCACGTGACCATGTACAGCATTGCTATT
 ACAGGGAACTTCGGCTTATGTACCTCATCTACTGTGATGAGGCCATTACACAGACCTATGT
 50 ATGTCATTTCTGCCTTCTTCTTCAACAGATGTGCTCATGTGACCCAGCACCCTCCAAAC
 ACTCTCTCATATTGTGGTTAATCTCAAGGAGATTGATTAAAGCCTGCCCTGGACAG
 GTTCTTGTGCACACCTCACAGGGATGGAGTCTGGGTGCTCATGCTCATGCCCTGGAC
 CACTGTGTTGGCATCTGCTTCCCTGCCTTATGCCACCATCTCACTAATTCACTGCTATTGC
 TAAAGCTGGTTCTCACTTCTAGGGGTGATGCTTGTATCCCTCCACTTCTCA
 55 CCAAGGCCCTCCATACTGCAAGGGCAACGTCAACCCACACCTACTGTGACCACATGTC
 TGTCAGGTTAACGCCATTATGGTTAGTGTGAA (SEQ ID NO: 122)

5 CTGCTGATTGGGGCTTGATATCCTGTGCATTACAATCTCTACACTATGATTCTCAAGC
 AGTTGTAGTCTATCATCAGCAGATGCTGACAGAAGGCCCTCAGCACCTGCACTGCCAC
 TTCTGTGCCATAGCTCTACCTATGTTCCAGCCTTACCTCTTACACACCATTGG
 GGGACACACCATTCTCTACACATACATATTATGGCTAACACACTAAATGCCTC
 5 CCACAATGAACCCATTGTGATGGGGAAAACCAGGCAGGTACGAGAAAGTGTCTTA
 GGTTCTTCTTAAGGGAAAGGACAATTCTCATACTTTAA (SEQ ID NO: 122)

AOLFR67 sequences:

10 MSGDNSSSLTPGFFILNGVPGLEATHIWISLPFCFMYIIAVGNCGLICLISHEALHRPMYYFLA
 LLSFTDVTLCTTMVNPMLCIFWFNLKEIDNACLAQMFFVHMLTGMESGVLMALDRYVAI
 CYPLRYATILTNPVIKAGLATFLRNVMILLPKRLPYCRGNFIPHTYCDHMSVAKVSCGN
 FKVNAYIGLMVALLIGVFDICCISVSYTMLQAVMSLSSADARHKAFSTCTSHMCIVITYVAAF
 FFFFTHRFGVGHNPNIHIVANLYLLLPPTMNPIVYGVTKQIQEGVVKFLGDKVSVFTYDK
 15 (SEQ ID NO: 123)

15 ATGTCTGGGACAACAGCTCCAGCCTGACCCCAGGATTCTTATCTGAATGGCGTCTG
 GGCTGGAAGCCACACACATCTGGATCTCCCTGCCATTCTGCTTATGTACATCATTGCTGTC
 GTGGGGAACTGTGGGCTCATCTGCTCATCAGCCATGAGGAGGCCCTGCACCGGCCATGT
 ACTACTCTGGCCCTGCTCTCTTCACTGATGTCACCTTGTGACCAACCATGGTACCTAAT
 20 ATGCTGTGCATATTCTGGTTCAACCTCAAGGAGATTGACTTTAACGCCCTGCCCTGCCAGA
 TGTGTTTGTCCATATGCTGACAGGGATGGAGTCTGGGTGCTCATGCTCATGCCCTGGA
 CCGCTATGTGGCCATCTGCTACCCCTACGCTATGCCACCATCCTACCAACCCGTCTCATCG
 CCAAGGCTGGCTTGCACCTCTTGAGGAATGTGATGTCATCATCCCATTCACTCTCCTC
 ACCAAGGCCCTGCCCTATTGCCGGGGAACTCATCCCCACACCTACTGTGACCATATGT
 25 CTGTGGCCAAGGTATCCTGTGGCAATTCAAGGTCAATGCTATTATGGTCTGATGGTTGC
 TCTCTGATTGGTGTGTTGATATCTGCTGTATCTGTATCTACACTATGATTTCAGG
 CTGTTATGAGCCTGTCTCAGCAGATGCTGTCACAAAGCCTCAGCACCTGCACATCTCA
 CATGTTCCATTGTGATCACCTATGTTGCTGTTTTCACTTTTCACTCATGTTTGT
 AGGACACAATATCCAAACACATACACATCATGTCGGCAACCTTATCTGCTACTGCC
 30 OCTACCATGAACCCAATTGTTATGGAGTCAGAGCAAGCAGATTAGGAAGGTGTAATTA
 AATTTTACTGGAGACAAGGTTAGTTACCTATGACAAATGA (SEQ ID NO: 124)

AOLFR68 sequences:

35 MTTHRNDLSTEASDFLLNCVRSPSWQHWLSPLSLLFLAVGANITLLMTIWLEASLHQPL
 YYLLSLLSLLDIVLCVTPKVLTFWFDLRPISFACFLQMYIMNCFLAMESCTFMVMAHYDRY
 VAICHPLRYPSTTDHFVVKAAMFILTRNVLMTLPILSAQLRYCGRNVIENICANMSVRLSC
 DDVTINHLYQFAGGWTLGSIDLILFLSYTFILRAVRLKAEGAVALSTCGSHFMLLFFSTIL
 LVFVLTHVAKKKVSPDVPVLLNVLHHVIPAALNPIIYGVRTQEIKQGMQRLLKKGC (SEQ ID
 NO: 125)

40 ATGACAACACACCGAAATGACACCCCTCTCCACTGAAGCTTCAGACTTCTCTGAATTGTT
 TTGTCAGATCCCCCAGCTGGCAGCACTGGCTGCTCCCTGCCCTCAGCCTCTTCTCTTG
 GCCGTAGGGGCCAACACCAACCCCTCTGATGACCATCTGGCTGGAGGCCCTCTGCACCGC
 CCCTGTACTACCTGTCAGCCTCTCTCCCTGCTGGACATCGTGTCTGCCTCACTGTCATC
 45 CCCAAGGTCTGACCATCTCTGGTTGACCTCAGGCCATCAGCTTCCCTGCCCTGCTTCC
 CCAGATGTACATCATGAATTGTTCTAGCCATGGAGTCTGACCATGGTCATGGCC
 TATGATGTTATGTAGCCATCTGCCACCAACTGAGATATCCATCAATCATCACTGATCACTT
 TGTAGTCAGGCTGCCATGTTATTGAGGAAATGTGCTTATGACTCTGCCATCCCC
 ATCCTTCAAGCACAACCTCCGTATTGTGAGGAAATGTGCTTATGAGAAGTGCATCTGTGCCA
 50 ATATGTCGTTCCAGACTCTCTGCGATGATGTCACCATCAATCACCTTACCAATTGCT
 GGAGGCTGGACTCTGCTAGGATCTGACCTCATCCTTATCTCCCTCTCCTACACCTTACCT
 GCGAGCTGTGCTGAGACTCAAGGCAGAGGGTGGCAAAGGCCCTAACGACATGTGG
 CTCCCACCTCATGCTCATCTCTCTGACACCACCTCTGCTGTTTGTCTCCTCACACATGT
 GGCTAAGAAGAAAGTCTCCCTGATGTGCCAGTCTGCTCAATGTTCTCCACCATGTCTT
 55 CCTGCAGCCCTTAACCCCATCATTTACGGGTGAGAACCCAAGAAATTAAAGCAGGGAAATG
 CAGAGGTTGTTGAAGAAGAAAGGGTGTCAA (SEQ ID NO: 126)

AOLFR69 sequences:

MSYSIYKSTVNIPLSHGVVHSFCHNMNCNFMHFKFVLDFNMKNVTEVTLFLKGFTDNLELQ
 5 TIFFFLFLAIYLFTLMGNLGLILVVIRDSQLHKPMYYFLSMLSSVDACYSSVTPNMLVDFTTKN
 KVISFLGCVAQVFLACSGTTECFLLAAMAYDRYVAIYNPLLYSVSMSPRVYMPLINASYVAGI
 LHAIIHTVATFSLSFCGANEIRRVCFCIPPLAISYSDHTNQLLLFFYFVGSIELVTILIVLISYGLL
 LAILKMYSAEGRRKVFSTCGAHLTGVIYGTILFMYVRPSSYASDHDMIVSIFYTIVIPLLNPV
 IYSLRNKDVKDSMKKMFGKNQVINKVYFHTKK (SEQ ID NO: 127)

10 ATGTCGTACAGTATAACAAGAGCACAGTTAACATCCCCTTGAGTCATGGTGTGTTCAATT
 CTTTTGTCATAATATGAACGTAACTTATGCATATCTTCAAGTTGTTCTAGATTTCAAC
 ATGAAGAAATGTCACTGAAGTTACCTTATTGTAAGGGCTTCACAGACAATCTTGAAC
 TGCAAGACTATCTTCTTCCCTGTTCTAGCAATCTACCTTCACTCTCATGGGAAATTAA
 GGACTGATTTAGTGGTCATTAGGGATTCCCAGCTCCACAAACCCATGTACTATTTCTGA
 15 GTATGTTGCTTCTGGAATGCCGCTGCTATTCTCAGTTATTACCCCAAATATGTTAGTAGAT
 TTACGACAAAGAATAAAGTCATTCATCCTGGATGTGAGCACAGGTGTTCTGCTT
 GTAGTTTGGAACACAGAACATGCTTCTTGGCTGCAATGGCTATGATCGCTATGTAGC
 CATCTACAACCCCTCCTGTATTCAGTGAGCATGTCACCCAGAGCTACATGCCACTCATC
 AATGCTTCTATGTTGCTGGCATTACATGCTACTATACATACAGTGGCTACATTAGCCT
 20 ATCCCTCTGAGCCAATGAAATTAGGGCTGCTTTGTGATATCCCTCTCCTCTGCTA
 TTCTTATTCTGACACTCACACAAACAGCTTCACTCTTCACTTTGTGGGCTATCGAG
 CTGGTCACTATCCTGATTGTTCTGATCTCTATGGTTGATTCTGTTGGCATTCTGAAGAT
 GTATTCTGCTGAAGGGAGGGAAAAAGTCCTCTCCACATGTGGAGCTCACCTAACTGGAGT
 GTCAATTATTATGGGACAATCCTCTCATGTATGTGAGACCAAGTCCAGCTATGCTCG
 25 GACCATGACATGATAGTGTCAATATTACACCATTGTGATTCCCTGCTGAATCCGTCAT
 CTACAGTTGAGGAACAAAGATGTAAGACTCAATGAAAAAAATGTTGGAAAAATCA
 GGTTATCAATAAAGTATATTCTACTAAAAATAA (SEQ ID NO: 128)

AOLFR70 sequences:

30 MDSTFTGYNLNQLVKTEMDKLSSGLDIYRNPLKNKTEVTMFILTGFDDFELQVFLFLFFAI
 YLFTLIGNLGLVVLVIEDSWLHNPMYYFLSVLSFLDACYSTVTPKMLVNFLAKNKSISFIGCA
 TQMLLFVTGTTCTCFLAAMAYDHVVAIYNPLLYSVSMSPRVYVPLITASYVAGILHATIHIVA
 TFSLSFCGSNEIRHVFCDMPPLLAISCSDHTNQLLLFFYFVGSIELVTILIVLISCDFILLSILKMHS
 35 KGRQKAFSTCGSHLTGVTIYHGTLVSYMRPSSYASDHDIIVSIFYTIVPKLNPIYSLRNKEVK
 KAVKKMLKLVYK (SEQ ID NO: 129)

ATGGACTCCACTTCACAGGCATAACCTTATAACCTGCAAGTAAAAGTGAATGGACA
 AGTTGTCATCAGGTTGGATATATACAGGAATCCACTGAAGAACAGACTGAAGTCACCA
 TGTTTATATTGACAGGCTTCACAGATGATTGAGCTGCAAGTCCTTCTATTACTATT
 40 TTGCAATCTATCTTACCTTGTAGGCAATTAGGGCTGGTGTGTTGGTCATTGAGG
 ATTCTGGCTCCACAACCCATGTATTATTCTTAGTGTGTTTATCATTCTGGATGCTGC
 TATTCTACAGTTGTCACTCCAAAATGTGGTCATTCTGGCAAAAAATAATCCATT
 CATTATCGGATGTGCAACACAGATGCTTCTTTGTACTTTGAACTACAGAATGTTT
 CTCTGGCTGCAATGGCTTATGATCACTATGTAGCCATCTACAACCCCTCTCTGTT
 45 GAGCATGTCACCCAGAGTCATGTGCCACTCATCACTGCTTCTACGTTGCTGGCATTTAC
 ATGCTACTATACATATAGTGGCTACATTAGCCTGCTTCTGGATCCAATGAAATTAG
 GCATGCTTTGTGATATGCCTCTCTGCTATTCTGTTGACACTCACACAAACC
 AGCTTCTACTCTTCACTTTGTGGGTTCTATTGAGATAGTCACTATCTGATTGCTCATT
 TCTGTGATTCTATTCTGTTGCTCATTCTGAAGATGCAATTCTGCTAAGGGAGGCAAAAGG
 50 CCTCTCTACATGTGGCTCTCACCTAACCTGGAGTGACAATTATCATGGAACAATTCTGTC
 AGTTATATGAGACCAAGTCCAGCTATGCTTCACTGACATCATAGTGTCAATATT
 ACACAATTGTGATTCCAAGTTGAATCCCATCATCTAGTTGAGGAACAAAGAAGTAAA
 AAAGGCAGTGAAGAAAATGTTGAAATTGGTTACAAATGA (SEQ ID NO: 130)

AOLFR71 sequences:

5 MGRRNNNTNPDFILTGLSDSEEVQMALFILELLIYLJITMLGNVGMIUURLDLQLHTPMYFFLTH
 LSFIDLSYSTVTPKTLANLLTSNYISFMGCF AQMFFFVFLGAECFLSSMAYDRYVAICSPRLY
 PVIMSKRLCCALVTGPYVISFINSFVN VVWMSRLHFCDSNVVRHFFCDTSPILALSCMDTYDIEI
 MIHILAGSTLMVLISAS YVSILSTILKINSTSGKQKALSTCASHLLGVTFYGT MIFTYLKPRK
 SYSLGRDQVASVFTIVIPMLNPLIYSLRNKEVKNALIRVMQRQDSR (SEQ ID NO: 131)

10 ATGGGTAGAAGAAATAACACAAATGTGCCTGACTTCATCCTTACGGGACTGTCAGATTCTG
 AAGAGGTCCAGATGCCCTCTTATACATTCTCTGATATA CCTAA TACTATGCTGGC
 15 AATGTGGGGATGATA TTGATAATCCGCCTGGACCTCCAGCTTACACTCCATGTATTTT
 TCCTTACTCACTGTCAATTGACCTCAGTTACTCAACTGTCACTCACACCTAAAACCTTA
 GCGAACCTACTGACTCCA ACTATATTCCTCATGGGCTGCTTGCCCAGATGTTCTTTT
 TGTCTTCTGGGAGCTGCTGAATGTTCTCTCATCAATGCCATGATCGCTACGTAG
 CTATCTGCA GTCCCTACGTTACCCAGTTATTATG CCAAAGGCTGTGCGCTCTGTC
 20 ACTGGGCCATGTGATTAGCTTATCAACTCCTTGTCAATGTGGTTGGATGAGCAGAC
 TGCATTCTGCGACTCAAATGTAGTTCGTCACTTTCTGCACAGTCTCAATTTAGCT
 CTGTCCTGCA TGGAACACATA CGACATTGAAATCATGATA ACACATTTAGCTGGTCCACCC
 TGATGGGTCCCTTATCACAATATCTGCATCCTATGTGTCCTACTGTGCTCTCATCTCTGGAG
 25 ATTAATTCACCTCAGGAAAGCAGAAAGCTTGTCACTGTGCTCTCATCTCTGGAG
 TCACCAC TTTTATGGAACATGATTTTACTTATTTAAACCAAGAAAGCTTATCTTGG
 GGAAGGGATCAAGTGGCTCTGTTTTACTATTGTGATTCCATGCTGAATCCACTCAT
 TTATAGCTTAGAAACAAAGAAGTTAAAATGCTCTCATTAGAGTCATGCAGAGAAAGACA
 GGACTCCAGGTAA (SEQ ID NO: 132)

AOLFR72 sequences:

30 MAPENFTRVTEFILTGVSSCP ELQIPLFLVFLVLYGLTMAGNLGIITLTSVDSRLQTPMYFFLQHL
 ALINLGNSTVIAPKMLINFLVKKKTTSFYECATQLGGFLFFFIVSEVIMLALMACDRYVAICNPLL
 YMVVVSRRLLCLLVLSLTYLYGFSTAIVSSYVFSVSYCSSNIINHFYCDNVPLLALSCSDTLYPE
 TVVFISAATNVVGSLIIVLVSYFNIVLSILKICSEGRKKA FSTCASHMMAVTFYGTLLFMYVQP
 RSNHSLDKMASVFTLIPMLNPLIYSLRNKDVKTALQRFMTNLCSFKTM (SEQ ID NO:
 133)

35 ATGGCTCTGAAAATTCACCA CAGGGTCACTGAGTTATTCTACAGGTGCTCTAGCTGTC
 CAGAGCTCCAGATCCCCCTCTCCTGGCTTTCTGGTCTATGGGCTGACCATGGCAGG
 GAACCTGGCATCATCACCCCTCACCACTGGTCAACTCTGTCATTGCCCTAAAATGCTG
 40 TCC TGCAACATCTGGCTCTCATTAATCTGGTAACCTACTGTCACTTGCCACCCAACTGGGAG
 ATTAACCTTTAGTAAAGAAGAAA ACTACCTCATCTATGAATGTGCCACCCAACTGGGAG
 GGTCTTGTCTTATTGTATCGGAGGTAATCATGCTGGCTTGATGGCTGTGACCGCTAT
 GTGGCTATTGTAAACCTCTGCTGTACATGGTGGGGTGTCTCGCGGGCTCTGCCTCTGCT
 45 GGTCTCCCTCACATACCTCATGGCTTCTACAGCTATTGTGGTTCATCTATGTATCT
 CTGTGCTTATTGTCTCTAATATAATCAATCATTACTGTGATAATGTCTCTGTGTA
 GCATTATCTGCTCTGATAACTTACCTACAGAAACAGTTGTCTTATATCTGAGCAACAA
 ATGTGGTTGGTCTTGATTATAGTTCTAGTATCTTATTTCAATATTGTGTTGTCTATT
 AAAATATGTCTCATCAGAAGGAAGGAAAAAGCCTTCTACCTGTGCTCACATATGATGG
 50 CAGTCACAATTTTATGGGACATTGCTATTCACTGTATGTGCA GCCCCGAAGTAACCATTC
 ATTGGGATACTGATGATAAGATGGCTTCTGTGTTTACACGTTGGTAATT CCTATGCTGAAT
 CCCTTGATCTACAGCCTGAGGAATAAGGATGTGAAGACTGCTCTACAGAGATTGACA
 AATCTGTGCTATTCTTAAAACAATGTA (SEQ ID NO: 134)

AOLFR73 sequences:

MNHVVKHNTAVTKVTEFILMGITDNPGLQAPLFLLIYLVTVIGNLGMVITYLDSLKLHTP
 MYFFLRHLSITDGYSTVIAPKMLVN FIVHKNTIS NYATQLAFFEIFIISelfilsAMAYDRYV
 AICKPLLYVII MAEKVLWVLVIVPYLYSTFVSLFTIKLFKLSFCGSNIISYFYCDCIPLMSILCSDT
 NELELJLJFSGCNLLSLSLISVLYMFILVAILRMNSRKGRYKA FSTCSSH LTVVIMFYGTLLFIYL
 55 QPKSSHTLAIDKMASVFTLIPMLNPLIYSLRNKEVKDALKRTLNRFKIP (SEQ ID NO: 135)

ATGAATCATGTGGTAAAACACAATCACCGCAGTGACCAAGGTGACTGAATTATTCTCA
 TGGGGATTACAGACAACCTGGGCTGCAGGCTCCACTGTTGACTCTCCTCATCATATA
 TCTGGTCACAGTGTAGGCAATCTGGCATGGTTATCTGACCTACTTGGACTCCAAGCTA
 CACACCCCCATGTACTTTCTTAGACATTGTCAATCACTGATCTGGTTACTCCACTGT
 5 CATTGCCCGAAGATGTTAGTAAACTCATAGTCACAAAAACACAATTCTTACAATTGG
 TATGCCACTCAGCTAGCATTCTTGAGATTTCATCATCTGTAGCTCTTATTCTATCAGC
 AATGGCCTATGATCGCTACGTAGCCATCTGAAACCTCTCTGTACGTGATCATGGCA
 GAGAAAGTACTTGGGTGCTGGTAATTGTCCTATCTCTATAGCACGTTGTGTCACTATT
 TCTCACAATTAAAGTTATTAAACTGTCCTCTGGCTCAAACATAATCAGCTATTAACT
 10 GTGACTGTATCCCTCTGATGTCCATACTCTGTTCTGACACAAATGAATTAGAATTAAAT
 TTGATCTCTCAGGCTGTAATTGCTCTCTCAATTGTCATATCCTACATGTT
 TATTCTAGGGCATTCTCAGAATGAACCAAGGAAAGGGAGGTACAAAGCCCTCCACC
 TGTAGCTCTCATCTGACAGTGGTGTACATGTTCTATGGGACATTGTTATTAACTTGCA
 ACCCAAGTCCAGTCATACTTGGCTATTGATAAAATGGCCTCAGTGTAAATACCGTGTG
 15 ATTCCATGCTGAATCCGTTGATCTACAGCCTAAGAACAAAGAAGTAAAGATGCTCTAA
 AGAGAACCTAACCAATCGATTCAAATTCCCATTAA (SEQ ID NO: 136)

AOLFR74 sequences:

MEQHNLTIVNEFILTGTDIAELQAPLFALFLMIYVISVMGNLGMIVLTKLDSRLQTPMYFFLRH
 20 LAFMDLGYSTTVGPKMLVNFFVVDKNIISYYFCATQLAFLVFIGSELFILSAMSYDLYVAICNPL
 LYTVIMSRRVCQVLVAIPYLCTFISLLVTIKIFTLSFCGVNVISHFYCDSLPLPLLCNSNTHEIELI
 ILIFAAIDLISSLIVLILSYLLILVAILRMNSAGRQKAFSTCGAHLTVVIVFYGTLLFMYVQPKSSH
 SFDTDKVASIFYTLVPMLNPLIYSLRNKDVKYALRRTWNNLNCNIV (SEQ ID NO: 137)

25 ATGGAACAAACACAATCTAACACCGGTGAATGAATTCTACGGGAATCACAGATATC
 GCTGAGCTGCAGGCACCAATTATTCATGTTCTCATGATCTATGTGATCTCAGTGATGG
 GCAATTGGCATGATTGCTTACCAAGTTGGACTCCAGGGTGAAACCCCTATGTACTT
 TTTCTCAGACATCTGGCTTCATGGATCTGGTTATTCAACAATGTGGGACCCAAAATG
 TTAGTAAATTGTTGTGATAAGAATATAATTCTTATTATTGTTGTGCAACACAGCTAGC
 30 TTTCTTCTGTGTCATTGGTAGTGAACCTTTATTCTCTCAGCCATGTCTACGACCTCT
 ATGTGGCCATCTGTAACCCCTGCTATACACAGTAATCATGTCACGAAGGGTATGTCAGGT
 GCTGGTAGCAATCCCTACCTCTATTGACACATTCTATTCTCTAGTCACCATAAGATT
 TTACTTATCCTCTGTGGCTACAACGTCTTACTGTGACAGTCTCCCTTIG
 TTACCTTGTCTTGTCAAATACACATGAAATTGATAATTCTGATCTTGTGAGCTAT
 35 TGATTGATTCACTCTGATAGTTCTTATCTTACCTGCTCATCCTGTAGCCATTCT
 CAGGATGAATTGCTGGCAGACAAAAGGCTTTCTACCTGTGGAGCCACCTGACAGTG
 GTCATAGTGTCTATGGGACTTGCTTCTATGTACGTGACGCCAAGTCCAGTCATTCTT
 TGACACTGATAAAAGTGGCTCCATATTACACCTGGTTATCCCATGTGAATCCCTGA
 TCTATAGTTACGAAACAAAGATGTAACATGCCCTACGAAGGACATGGAATAACTATG
 40 TAATATTGTTAA (SEQ ID NO: 138)

AOLFR75 sequences:

MEGKNQTNISEFLLGFSSWQQQQVLLFALFLCLYLTLGLFGNLLILLAIGSDHCLHTPMYFFLA
 NLSLVDLCLPSATVPKMLNLIQTQQTISYPGCLAQMYFCMMFANMDNFLLTVMAHYDRYVAI
 45 CHPLHYSTIMALRLCASLVAAPWVIAILNPLLHTLMMAHLHFCSNDVIHHFFCDINSLLPLSCSD
 TSQNQLSVLATVGLIFVVPSPVCILVSYILIVSAVMKVPSAQGKLKAFSTCGSHLALVLFYANT
 GVYMSPLSNHSTEKDSAASVIFMVVAPVLPFIYSLRNNELKTLKKTLSRPGAVAHCNPSTL
 GGRGGWIMRSGDRDHG (SEQ ID NO: 139)

50 ATGGAAGGGAAAAATCAAACCAATATCTCTGAATTCTCCTCTGGCTTCTCAAGTTGGC
 AACAAACAGCAGGTGCTACTCTTGCACCTTCTGTGCTCTATTAAACAGGGCTTTGGA
 AACTTACTCATCTGCTGGCATTGGCTCGGATCACTGCCCTCACACACCCATGTATTCTT
 CCTTGCCAATCTGCTGGTAGACCTCTGCCCTCAGCCACAGTCCCCAAGATGCTAC
 TGAACATCCAACCCAAACCCAAACCATCTCCTATCCGGCTGCCCTGGCTCAGATGTATT
 55 CTGTATGATGTTGCCAATATGGACAATTCTCTCACAGTGATGGCATATGACCGTTAC
 GTGGCCATCTGTACCCTTACATTACTCCACCATTATGGCCCTGCGCCTGTGCTCT

GGTAGCTGCACCTGGGTCAATTGCCATTGAAACCCCTCTTGACACTCTATGATGGCCC
 ATCTGCACTTCTGCTCTGATAATGTTATCCACCATTCCTCTGTGATATCAACTCTCCTC
 CCTCTGCTCTGTTCCGACACCAGCTTAATCAGTTGAGTGTCTGGCTACGGTGGGGCTGA
 TCTTTGTTGACCTTCAGTGTATCCTGGTATCCTATATCCTATTGTTCTGCTGTGATG
 5 AAAGTCCCTCTGCCAAGGAAAACCTCAAGGCTTCTCACCTGTGGATCTCACCTGCCTT
 GGTCAATTCTTCTATGGAGCAAACACAGGGGTCTATATGAGCCCCCTATCCAATCCT
 ACTGAAAAAGACTCAGCCGATCAGTCATTATGGTTGAGCACCTGTGTTGAATCCAT
 TCATTACAGTTAAGAACAAATGAACTGAAGGGGACTTAAAAAAAGACCTAAGCCGC
 CGGGCGCGGTGGCTACGCCGTAACTCCAGCACTTGGGAGGCCGAGGCGGGTGGATCA
 10 TGAGGTCAAGGAGATCGAGACCATCCTGGCTAA (SEQ ID NO: 140)

AOLFR76 sequences:

MENNTEVSEFILLGLTNAPELQVPLFIMFTIYLITLTGNLGMILILLDSHLHTPMYFFLSNLSLA
 GIGYSSAVTPKVLTLGLIEDKAISYSACAAQMFFCAVFATVENYLSSMAYDRYAAVCNPLHY
 15 TTTMTTRVCACLAIGCYVIGFLNASIQIGDTFRLSFMCMSNVIHFFCDKPAVITLTCSEKHISELIL
 VLISSFNVFFALLVTLISYLFILITILRKHTGKYQKPLSTCGSHLIAIFLFYITVIMYIRPSSSHSM
 DTDKIASVFYTMIPMLSPIVYTLRNKDVKNAFMKVVEKAKYSLDSVF (SEQ ID NO: 141)

ATGGAGAATAATACAGAGGTGAGTGAATTACATCCTGCTGGCTAACCAATGCCAGAA
 20 CTACAGGTTCCCTCTTATCATGTTACCTCATCTACCTCATCACTCTGACTGGGAACCT
 GGGGATGATCATATTAATCCTGCTGGACTCTCATCTCCACACTCCATGACTTTTCTCA
 GTAACCTGTCCTGCAGGCATTGGTACTCCTCAGCTGTCACTCCAAAGGTTTAACGG
 GTGCTTATAGAACAGAACATCCTCACAGTGCCTGTGCTCAGATGTTCTTTGT
 GCAGTCTTGCCACTGTGGAAAATACCTCTTGTCTCAATGCCATGACCGCTACGCAG
 25 CAGTGTAAACCCCTACATTATACCACCCATGACAACACGGTGTGCTTGTCTGGC
 TATAGGCTTATGTCATTGGTTCTGAATGCTTCTATCCAATTGGAGATACTTCGCC
 TCTCTTCTGCATGCCAATGTGATTCACTTTCTGTGACAAACCAGCAGTCATTACT
 CTGACCTGCTCTGAGAACACATTAGTGAGTTGATTCTGTTCTATATCAAGTTTAATGT
 30 CTTTTTGCACTTCTGTTACCTTGATTCCTATCTGTCATATTGATCACCAATTCTAAGAG
 GCACACAGGTAAGGGATACCAAGAGCCTTATCTACCTGTGGTCTCACCTCATTGCCATT
 TTCTTATTTATATAACTGTCATCATCATGACATACGACCAAGTCCAGTCATTCCATGG
 CACAGACAAAATTGCACTGTGTTCTACACTATGATCATCCCCATGTCAGTCCTATAGTCT
 ATACCTGAGGAACAAAGACGTGAAGAATGCATTGATGAAGGTTGTTGAGAAGGAAAAT
 ATTCTCTAGATTCACTTAA (SEQ ID NO: 142)

35

AOLFR77 sequences:

MGDVNQSVASDFLVLGFLSHSGSRQLLFSLVAVMFVIGLLGNTVLLFLIRVDSRLHTPMYFLLS
 QLSLFIDIGCPMVTPKMASDFLRLGEAGATSYGGQAQIFFLTLMGVAEGVLLVLMSSYDRYVAVC
 40 QPLQYPVLMRRQVCLLMMGSSWVVGVLNASIQTTSITLHFPCASRIVDHFFCEVPALLKLSCA
 DTCAYEMALSTSGVLMLPLSLIATSYGHVLQAVLSMRSEEARHKAVTTCSHITVVGLFYGA
 AVFMYMVPACYHSPQDNVVSFYSLVPTLNPLIYSLRNPEVWMALVKVLSRAGLRQMC
 (SEQ ID NO: 143)

ATGGGGGATGTGAATCAGTCGGTGGCTCAGACTTCATTCTGGTGGCCTTCAGTCAC
 45 CAGGATCACGCCAGCTCCTCTCCCTGGCTGTCATGTTGTCAAGGCCCTCTGGC
 AACACCGTTCTCTCTTGTATCCGTGTTGACTCCGGCTCCACACACCCATGACTCCT
 GTCAGCCAGCTCCCTGTTGACATTGGCTGTCCATGGTACCATCCCCAAGATGGCA
 TCAGACTTCTGCGGGGAGAACGGTGCACCTCTATGGAGGTGGTGCAGCTCAAATATTCT
 TCCACACTGATGGGTGTGCTGAGGGCGTCTGGTGTCTCATGTCATGACCGTTA
 50 TGTGCTGTGTCAGCCCCCTGCACTATCTGTACTTATGAGACGCCAGGTATGTCTGCTG
 ATGATGGGCTCCTCTGGGTGGTAGGTGTGCTCAACGCCCTCCACAGACCTCCATACCC
 TGCACTTCTCTGTCAGATACCTGTGCCACGAGATGGCGTGTCCACCTCAGGGTGC
 CTGAAGCTCTCTGTCAGATACCTGTGCCACGAGATGGCGTGTCCACCTCAGGGTGC
 TGATCCTAATGCTCCCTCTTCCCTCATGCCACCTCTACGGCCACGTGTTGCAGGCTGTT
 55 CTAAGCATGCGCTCAGAGGAGGCCAGACACAAGGTGTCACCAACCTGCTCTCGCACATCA
 CGGTAGGGCTCTTATGGTGCCTCGTGTCTGATGTCATGTCATGGTGCCTGCGCCTACCA

CAGTCCACAGCAGGATAACGTGGTTCCCTCTCTATAGCCTGTCACCCCTACACTCAAC .
 CCCCTTATCTACAGTCTGAGGAATCCGGAGGTGTGGATGGCTTGGTCAAAGTGCTTAGCA
 GAGCTGGACTCAGGCAAATGTGCTGA (SEQ ID NO: 144)

5 AOLFR78 sequences:

MSPDGNHSSDPTEFVLAGPNLNSARVELESVFLLVYLLNLGNVLIVGVVRADTRLQTPMYF
 FLGNLSCLEILLTSVIPKMLSNFLSRQHTISFAACITQFYFYFFLGASEFLLLAVMSADRYLAICH
 PLRYPLMSGAVCFRVALACWVGLVPVLPVTAVALLPFCQGAVVQHFCDSGPLLRLAC
 10 TNTKKLEETDFVLASLVIVSSLITAVSYGLIVLAVLSIPSASGRQKAFSTCTSHTLIVVTLFYGSAI
 KCLSEKAVK (SEQ ID NO: 145)

ATGAGTCCTGATGGAAACCACAGTAGTGTCCAACAGAGITCGTCTGGCAGGGCTCCCA
 15 AATCTCACACAGCGCAAGAGTGGATTATTCCTGTGTTCTCTGTCTATCTCTGAATCT
 GACAGGCAATGTGTGATTGTGGGGGTGGTAAGGGCTGATACTCGACTACAGACCCCTAT
 GTACTTCTTCTGGTAACCTGTCTGCCTAGAGATACTGCTCACTTCTGTCTCATATTCAA
 AGATGCTGAGCAATTCTCTCAAGGCAACACACTATTCTCTTGCTGCATGTATCACCA
 ATTCTATTCTACTTCTTCGGGGCCTCGAGITCTACTGTGCTGTCTCATGTCTCGGG
 20 ATCGCTACCTGGCCATCTGTCTCATCTGCCTGCCTGCTACGGCCCTGCTCATGAGTGGGCTGTGTG
 CTTCGTGTGGCCTGGCTGCTGGTGGGGACTCGTCCCTGTGCTTGGTCCCACAGTG
 GCTGTGGCCTGCTTCTGTAAAGCAGGGTGCTGTGGTACAGCACTTCTCTGCCACA
 GTGGCCCCTGCTCCGCTGGCTTGCAACACACCAAGAAGCTGGAGGAGACTGACTTTGT
 CCTGGCCCTCCCTCGCATTGTATCTTCTGCTGATCACTGCTGTCTCATGGCCTCATG
 25 TGCTGGCAGTCTGAGCATCCCCCTGCTTCAAGGCCCTCTACCTGTAC
 CTCCCACITGATAGGGTACCCCTTCTATGGAAGTGCCTTCTCATGTGCGGCCAT
 CGCAGAGTGGTCTGTGGACACTAACTGGCAGTGACAGTAATAACGACATTGTGACAC
 CACTGTTGAATCCATTCACTATGCCAACGTAATGAGCAAGTCAAGGAAGCTTGAAGGA
 CATGTTAGGAAGGTAGTGGCAGGCGTTAGGAAATCTTACTTGATAAAATGTCTCAGT
 GAGAAAGCAGTAAAGTAA (SEQ ID NO: 146)

30

AOLFR79 sequences:

MTPGELALASNHNTPVTKFILQGFSNYPDLQELLFGAILLIYAITVVGNLGMMALIFTDSHLQSP
 MYFFLNVLNSFLDICYSVVTPKLLVNFLVSDKSISFEGCVVQLAFFVVHVTAESFLLASMAYDR
 FLAJCQPLHYGSIMTRGTCLQLVAWSYAFGGANSAIQTGNVFALPFCGPQLTHYYCDIPLLH
 35 LACANTATARVVLVYVFSALVTLPAAVILTSYCLVLAIGRMRSVAGREKDLSTCASHFLAIAI
 FYGTVVFTYVQPHGSTNNNTNGQVSVFYTIIPMLNPFIYSLRNKEVKGALQRKLQVNIPPG
 (SEQ ID NO: 147)

ATGACACCTGGAGAACTAGCCCTGGCAACCACACCCCAAGTCACCAAGITCATCT
 40 TGCAAGGGATTCTCCAATTATCCAGACCTCCAGGAGCTCTCTGGAGCCATCTGCTCAT
 CTATGCCATAACAGTGGTGGCAACTTGGGAATGATGGCACTCATCTCACAGACTCCCAT
 CTCCAAAGCCAAATGTATTCTCTCAATGTCTCTCGTTCTGTATATTGTTACTCTCT
 GTGGTCACACCTAACGCTCTGGTCAACTTCTGGTCTCTGACAAGTCCATCTCTTGTAGG
 GCTGTGTGGTCCAGCTGGCTTCTTGTAAGTGCATGTGACAGCTGAGAGCTTCTGCTGGC
 45 CTCCATGGCCTATGACCGCTCTAGCCATCTGTCAACCCCTCCATTATGTTCTATCATGA
 CCAGGGGGACCTGCTCCAGCTGGTAGCTGTGCTCTATGCAATTGGTGGAGCCAACCTCCGC
 TATCCAGACTGGAAATGTCTTGCCTGCTTCTGTGGGCCAACAGCTAACACACTAC
 TACTGTGACATACCAACCCCTCTCCACCTGGCTGTGCCAACACAGCCACAGCAAGAGTGG
 TCCTCTATGTTCTGCTCTGGTCAACCTCTGCCCTGCTGCTGCAGTCATTCTCACCTCTACT
 50 GCTTGGTCTGGTGGCAATTGGGAGGATGCGCTCAGTAGCAGGGAGGGAGAAGGACCTCT
 CCACTTGTGCTCCCACCTCTGGCATTGCCATTCTATGGCACTGTGTTTACCTAT
 GTTCAGCCCCATGGATCTACTAACAAATACCAATGGCCAAGTAGTGTCCGCTTCTACACCA
 TCATAATTCCCATGCTCAATCCCTCATCTAGCCTCGCAACAAAGGAGGTGAAGGGCGC
 TCTGCAGAGGAAGCTCAGGTCAACATCTTCCGGCTGA (SEQ ID NO: 148)

55

AOLFR80 sequences:

MEGINKTAKMQFFFRRPFSPDPEVQMLIFVVFLMMYLTSLGGNATIAVIVQINHSLHTPMYFFLA
 NLAVLEIFYTSSITPLALANLLSMGKTPVSITCGQTQMFFFVFLGGADCVLLVVMAYDRFLAICH
 PLRYRLIMSWSLCVELVGSLVIGFLLSLPLTLIFHLPFCHNDEIYHFYCDMPAVMRLACADTR
 5 VHKTALYIISFIVLSIPLSISIYVFIVVAILRIRSAEGRQAYSTCSSHILVULLQYGCTSFIYLSPS
 SSYSPEMGRVSVAYTFITPILNPIYSLRNKELKDALRKALRKF (SEQ ID NO: 149)

ATGGAAGGAATAAAATAAAACTGCAAAGATGCAGTTTTCTTCGTCCATTCTCACCTGACC
 CTGAGGTCAGATGCTGATTITGTGGTCTTCCTGATGATGTATCTGACCAGCCTCGTGG
 10 AAATGCTACAATTGCACTGTCAGATCAATCATCCCTCACACCCCCATGTAATT
 TCCTGGCTAATCTGGCAGITCTAGAAATCTCTATACATCTTCCATCACCCCCATGGCTTG
 GCAAACTCCTTCAATGGGAAAACCTCTGTTCCATCACGGATGTGGCACCCAGATGT
 TTTCTTGTCTTCTGGGTGGGCTGATTGTCCTGCTGGTAGTCATGGCTATGACCGG
 TTTATAGCGATCTGTCACCCCTGCGATAACAGGCTCATCATGAGCTGGTCTTGTGTGG
 15 AGCTGCTGGTAGGCTCTGGTCTGGGTTCTGTGACTGCCACTCACCATTTAAC
 TTCCATCTCCCATTCTGCCACAATGATGAGATCTACCACTCTACTGTGACATGCCCTGAGT
 CATGCCCTGGCTTGTGAGACACACGCCCTACAAGACTGCTCTGTATATCATCAGCTC
 ATCGTCTTAGCATCCCCCTCATTGATCTCCATCTCCTATGTCATCGTGTAGCCAT
 TTTACGGATCCGGTCAGCAGAAGGGGCCAGCAAGCTACTCTACCTGCTCTCACATC
 20 TTAGTGGCCTCCTGAGTATGGCTGCACCAGCTTATATACTGTCCCCAGTTCCAGCTA
 CTCTCCTGAGATGGCCGGGTGGTATCTGTCCTACACATTATCACTCCCATTAAAC
 CCCTTGATCTATAGTTGAGGAACAAGGAACGTAAAGATGCCCTAAGGAAAGCATTGAGA
 AAATTCTAG (SEQ ID NO: 150)

AOLFR81 sequences:

MGVKNHSTVTTEFLSGLTEQAEQLQLPLFCLFLGIYTVVGNLSMISIIRLNRQLHTPMYFLSS
 LSFLDFCYSSVITPKMMKLWMESHIVPETRSPRMMNSQTLVTEFILQGPSEHPEYRVFLFSCF
 LFLYSGALTGNVLITLAITFNPGHLAPMYFLLNLATMDIICLSSIMPKALASLVSEESSISYGGC
 30 MAQLYFLTWAASSELLLLTVMAHYDRYAAICHPLHYSSSMSKVFCSGLATAVWLCAVNTAIH
 TGLMLRLDFCGPNVIHFFCEVPPLLLSCSSTYNGVMIVLADAFYGVNFLMTIASYGFIVSSI
 LKVKTAWGRQKAFSTCSSHLTVVCMYTAVFYAYISPVSGYSAGSKLAGLLYTVLSPTLNPL
 IYTLRNKEVKAALRKLFPFFRM (SEQ ID NO: 151)

ATGAAGCTGTGGATGGAGAGTCACCTGATAGTCCCAGAAACCCGTCCCAGCCCAAGGATG
 35 ATGAGTAACCAAGACGGTGGTAACCGAGTTCATCTGCAGGGCTTTCGGAGCACCCAGAA
 ACCGGGTGTTCTTATTCTAGCTGTTCTCTTCTACTCTGGGGCCCTCACAGGTAATGTC
 CTCATCACCTTGGCCATCACGTTCAACCTGGCTCCACGCTCTATGTAATTCTTACT
 CAACCTGGCTACTATGGACATTATCTGACCTCTTCCATCATGCCCAAGGGCTGGCCAGT
 CTGGTGTGCGGAAGAGAGCTCATCTCTACGGGGCTGCATGGCCAGCTATTTCTCA
 40 CGTGGGCTGCATCTCAGAGCTGCTGCTCTCACGGTCATGCCATGACGGTACGCCAGC
 CATCTGCCACCGCTGCATTACAGCAGCATGATGAGCAAGGTGTCAGCAGGGCTGGCC
 ACAGCCGTGCTGCTCTGCGCCGTCAACACGCCATCCACAGGGGCTGATGCTGCGCT
 TGGATTCTGCGCCAATGTCATTATCCATTCTCTGCGAGGTCCTCCCCTGCTGCTT
 CTCTCTGCACTCCACCTACGTCAACGGTGTATGATTGTCCTGGCGGATGCTTCTACG
 45 GCATAGTGAACCTCTGATGACCATCGCTCTATGGCTTCATCGTCTCCAGCATCTGAA
 GGTGAAGACTGCTGGGGAGGCAGAAAGCCTCTCCACCTGCTTCCACCTCACCGTG
 GTGTGCATGATTACACCGCTGTCCTACGCTACATAAGGCCGGTCTGGCTACAGCG
 CAGGGAGAGCAAGTGGCTGGCTGCTGTACACTGTGCTGAGTCCTACCCCTCAACCCCT
 CATCTATACTTGTAGAAACAAGGAGGTCAAAGCAGCCCTAGGAAGCTTCCCTTC
 50 AGAAATTAA (SEQ ID NO: 152)

AOLFR82 sequences:

MQLNNNVTEFILLGLTQDPFWKKIVFVFLRLYLGTLLGNLLIIISVKASQALKNPMLFYLSL
 SDTCLSTSIAPRMVDALLKKTTISFSECMIQVFSHVFGCLEIFILILTAVDRVDICKPLHYMTII
 55 SQWVCGVLMAVA WVGSCHSLVQIFLALSPLFCGPVNHCFCDLQPLLKQACSETYVVNLL

VSNSGAICAVSYVMLIFSYVIFLHSLRNHSAEVKKALSTCVSHIVVILFFGPCIFMYTCPATVFP
MDKMIAVFYTVGTSFLNPVIYTLKNTEVKSAMRKLWSKKLITDDKR (SEQ ID NO: 153)

5 ATGCAACTGAATAATAATGTGACTGAGTTCATTCGCTTGGATTGACACAGGATCCTTTT
GGAAGAAAATAGTGTGTTATTTTTGCGTCTCTACTTGGGAACACTGTTGGGTAAATT
GCTAACATTATTAGTGTCAAGGCCAGGCAGCACTTAAGAACCCAAATGTTCTTCTCC
TTCTACTTATCTTATCTGATACTTGCCCTCTACTCCATAGCCCCTAGAATGATTGTGGA
10 TGCCCTTTGAAGAACAGAACATATCTCCTCAGCGAGTGCATGATCCAAGTCTTCTACCC
CATGTCCTGGCTGCGTGGAGATCTTCATCCTCATCCTCACGGCTGTTGACCGCTATGTGGA
CATCTGTAAGCCCCCTGCACTACATGACCATCATAAGCCAGTGGGCTGTTGAGTTGATG
GCTGTGCGCTGGGATCTGTGTCATTCTTAGTTAGTCAGATTTCCTGCGCTGAGTT
GCCATTCTGTGGCCCCAATGTGATCAATCACTGTTCTGTGACTTGCAAGCCCTGTTGAAA
15 CAAGCCTGTTCAAGAACCTATGTGGTTAACCTACTCCTGGTTCCAATAGGGGCCATT
GTGCAGTGAAGTTATGTCATGCTAAATTCTCTATGTCATCTTCTGCAATTCTGAGAAC
CACAGTGCAGTGAAGTGATAAAAGAACCTTCCACATGTGTCCTCCACATCATTGCGTCA
TCTGTTCTGGACCTTGATATTATGACACATGCCCTGCAACCGTATTCCCATGGAT
AAGATGATAGCTGTATTATACAGTTGGAACATCTTCTCAACCCTGTGATTACACGCT
GAAGAACATAGAACAGTGAAGATGCCATGAGGAAGCTTGGAGCAAGAAATTGATCACAGA
TGACAAAAGATAA (SEQ ID NO: 154)

20

AOLFR83 sequences:

MGNWTAAVTEFVLGLFSLSREVELLLLVLPTFLTLGNLLIISTVLSCSRHTPMYFFLCNL
SILDILFTSVISPKVLANLGSRDKTISFAGCITQCYFYFFLGTVFLLLTVMSYDRYATICPLRYT
25 TIMRPSVCIGTVVFSWVGFLSVPFTLISQLPFCGSNIINHFFCDSGPPLLACADTTAELMDF
MLSSMVILCCIVLVAYSYTIVLTVRIPSASGRKKAFNTCASHLTIVIPSGITVFIYVTPSQKEYL
EINKIPLVLSVVTPFLNPFYTLRNDTVQGVLRDVWVRVGVFEKRMRAVLSRLSSNKDHQ
GRACSSPPCVYSVKLQC (SEQ ID NO: 155)

30 ATGGGTAACTGGACTGCAGCGGTGACTGAGTTGTTCTGCTGGGGTTTCCCTGAGCAGGG
AGGTGGAGCTGCTGCTCTGGTCTCCGCTCTGCTGCCACGTTCTGCTGACTCTCTGGGAA
CCTGCTCATCATCTCCACTGTGCTGCTCTGCTCCGCCACACCCCATGTACTCTCT
TGTGCAACCTCTCATCCTGGACATCCTCTCACCTCAGTCATCTCTCAAAGTGTGGCC
AACTTAGGATCTAGGGATAAAACCATCTCTTGCAGGATGTATCACCCAGTGCTATTCT
ACTTTTCTGGGACAGTTGAGTTCTCTGTGCTGACGGTCACTGCTATGACCGTTATGCC
35 ACCATCTGCTGCCCTGCGGTACACCACATCATGAGACCTCTGTCTGCATTGGGACCG
TTGTATTCTCTGGGAGGCTCTGTGCTGCTGCTCTTCAACCACATCCTCATCTCCAG
CTGCCCTCTGTGCTCCAATATCATTAACCACTCTCTGTGACAGTGGACCCCTGCTGGC
CCTGGCTGTGCAAGACACCACTGCCATCGAGCTGATGGATTATGCTTCTCCATGGTC
ATCCTCTGCTGCATAGTCCCTGTGGCTTACGTACATCATCTGACCATAGTGCG
40 CATTCTCTGCAAGTGGAGGAAGAAGGCTTAATACCTGTGCTCCACCTGACCAT
GTCATCATTCTAGTGGCATCACTGTGTTATCTATGTGACTCCCTCCAGAAAGAATATCT
GGAGATCAACAAGATCCCTGGTTCTGAGCAGTGGTGACTCCATTCTCAACCCCTT
ATATATACTCTGAGGAATGACACAGTGCAGGGAGTCCTCAGGGATGTGGTCAGGGTT
CGAGGAGTTTGTAAAGAGGATGAGGGCAGTGCTGAGAAGCAGATTATCCTCCAACAAA
45 GACCACCAAGGAAGGGCTTGTCTTCCACCATGTGCTATTCTGAAAGCTCCAGTGT
AG (SEQ ID NO: 156)

AOLFR85 sequences:

MGAKNNVTEFVLGLFESREMQHTCFVVFLLHVLTVLGNLLVITINARKTLKSPMYFFLSQL
50 SFADICYPSTTIPKMIADTFVEHKIISFNGCMQLQFLSAFFGGTEIFLLTAMAYDRYVAICPLHY
TAIMDCRKCGLLAGASWLAGFLHSILQTLTVQLPFCGPNEIDNFFCDVHPLKLACADTYMV
GLIVVANSGMISLASFFLISYVILLNRSQSSEDRRKAVSTCGSHVTVLLVLMPPMFMYIRPS
TTLAADKLIIFNTVMPPLLNPYIYTLRNNNDVKNAWRKLFRVKRSLGEK (SEQ ID NO: 157)

55 ATGGGTGCCAAGAACAAATGTGACTGAGTTGTTTATTGGCCTTTGAGAGCAGAGAGA
TGCAGCATACTGCTTGTGGTATTCTCCTCTTCATGTGCTACTGCTCTGGGAACCTT

CTGGTCATCATCACCATCAATGCTAGAAAGACCCCTGAAGTCTCCCATGTATTTCTTCTGA
 GCCAGTGTCTTTGCTGACATATGTTATCCATCCACTACCCAAAGATGATTGCTGAC
 ACTTTTGAGGAGCATAAGATCATCTCCTCAATGGCTGCATGCCAGCTCTTCTGCCCCA
 CTTCTTGGTGGCACTGAGATCTTCCCTTACAGCCATGGCTATGCCAGCTGCTGAGCGG
 5 ATCTGTAGGCCCCCTGCACTACACAGCCATCATGGATTGCCAGCTGCTAGCGG
 GGGCCCTCTGGTAGCTGGCTCTGCATTCCATCTGCAGACCCCTCACGGCTAGCTG
 CCTTTTGAGGAGCATAAGATGAGATAGACAACCTCTCTGTGATGTTCATCCCTGCTCAAGTT
 GGCTGTGCAGACACCTACATGGTAGGTCTCATGTGGTGGCCAACAGCGGTATGATTCT
 10 TTAGCATCCTTTTATCCTTATCATTTCTATGTTATCATCTTAAGAACCTAAGAACCA
 GTCATCTGAGGACCAGCGTAAGGCTGTCCTCACATGTGGCTCACACGTAATCACTGTCCTT
 TTGGITCTCATGCCCTCATGTTATGTCATGTCACATCGTCCCTCACCCCTGGCTGCTGACAA
 ACITATCATCCTCTTAAACATTGTGATGCCACCTTGCTGAACCCCTTGATCTATAACTAA
 GGAACAAACGATGTGAAAAATGCCATGAGGAAGCTGTTAGGGTCAAGAGGGAGCTAGGGG
 AGAAGTGA (SEQ ID NO: 158)

15

AOLFR86 sequences:

MQLVLLMFLVFIGNTAPAFSVTLESMDIPQNITEFFMLGLSQNSEVQRVLVVFLLIYVVTV
 GNMLIVVTITSSPTLASPVYFFLANLSFDTFYSSSMAPKLIADSLYEGRTISYECCMAQLFGAHF
 LGGVEILLTVMAHYDRVAICKPLHNTTIMTRHLCAMLVGVAWLGGFLHSLVQLLVLWLPFC
 20 GPNVINHFACDLYPLLEVACTNTYVIGLTVVANSGLICLLNFLMLAASYIVILYSLRSHSADGRC
 KALSTCGAHAHVVALFFVPCIFTYVHPFSTLPIDKNMALFYGILTPTMLNPLIYTLRNEEVKNAMR
 KLFTW (SEQ ID NO: 159)

25 ATGCAATTAGTTCTATTACTTATGTTCTCCTTGTCTTATAGGCAAACTGCACCTGCATT
 CTCAGTGACCTTGAATCTATGGACATACCACAAAATATCACAGAAATTTCATGCTGGGG
 CTCTCACAGAACTCAGAGGTACAGAGAGTTCTCTTGTGGTCTTTGCTGATCTATGTGG
 TCACGGTTGTGCAACATGTCATTGTGGTCACTATCACCTCCAGCCCCACGCTGGCTTC
 CCCTGTGATTTCTGGCCAACCTATCCTTATTGACACCTTTATTCTCTCTATGGC
 30 TCCTAAACTCATTGCTGACTCATTGTATGAGGGGAGAACCATCTTATGAGTGCTGCATG
 GCTCAGCTTTGGAGCTCATTGGAGGTGTTGAGATCATTGCTCACAGTGATGG
 CTTATGACCGCTATGTGGCCATCTGTAAGCCCCTGCACAATACTACCATCATGACCAGGCA
 TCTCTGTGCCATGCTGTAGGGGGCTGGCTTGGGGCTTCTGCATTGCTGAGGTTCA
 35 CTCCCTCTGGCTTGGTGTGCCCTCTGTGGGCCAACATGTGATCAATCACTTGCCTGTGA
 CTTGTACCCCTTGTGGAAGTTGCTGCACCAATACGTATGTCATTGGTCTGCTGGGGTT
 GCCAACAGTGGTTAATCTGCTGTGAACTTCTCATGCTGGCTGCCTCCTACATTGTCAT
 CCTGTACTCCTTGAGGTCCCACAGTGCAGATGGGAGATGCAAAGCCCTCCACCTGTGGA
 40 GCCCACTTCATTGTGTTGCCTGTTCTGTGGGCCAACATGTGATCAATCACTTGCATCCATT
 TCTACTTACCTATAGACAAAAATGGCATTATTITATGGTATTCTGACACCTATGTGAA
 TCCACTCATTATACCCCTGAGAAATGAAGAGGTAAGAACCTGAGAAAGCTCTTACA
 TGGTAA (SEQ ID NO: 160)

AOLFR87 sequences:

MNNIAQLSLGFIDLGPSPVQKIIILTKIILFKMYVSNCNPかいRKINYPNTKLDFEQVN
 NITEFI
 LLGLTQNAEAQKLLFAVFTLIVFLTMVDNLIVVTTSPALDSPVYFFLSFFSFDGCS
 SSTM
 45 MAP
 KMIFDLLTEKKTISRGCMQLFV
 EHFV
 GVEIILVVMAYDCYVAICKPLYYLITMN
 RQVCGL
 LVAMAWVGGFLHALIQMLLIVWLPFCGP
 NVIDHFICDFPLLKL
 SCDTHV
 FGLFVA
 ANSGLM
 CMLIFSILITSYV
 LILCSQRK
 ALSTCAF
 HITVV
 VLFVPCILV
 YLRPM
 ITFP
 PIDKAV
 SVFYT
 VTPM
 LNPLIYTLRNTEV
 KNAM
 KQLWSQI
 WGNNLCD (SEQ ID NO: 161)

50 ATGAATAACATAGCTCAACTTAGTCTGGGTTATAGATTAGGGATTCCATCAGTGTAC
 AGAAAATAATCCTGACCAAAATTATTTATTGTTCAAAATGTATGTC
 AAATTGCAATCC
 TTGTGCTATTACAGAAAATCAATTATCAAATACCAAACTGGATT
 CGAGCAAGTGAA
 AACATAACGGAATC
 ATCTGCTTGGCTGACACAGAACGCAAGG
 CAGAGG
 AACAGAAACTCTTGT
 TTGCTGTGTTACACTCATCTACTTCTCACCATGGTAGACA
 AACCTAATCATTG
 GGGTGACA
 55 ATCACCACCAGCCCCAGGCCCTGGACT
 CCCCGTGTATT
 TTCTGCTTCTTCC
 CATAGATGGCTG
 CTCTTCTACCATGGCCCCAAAATGATATTGACTTACTCACTGAAAAG

AAAACTATTCCTCAGTGGGTGATGACCCAGCTTGTAGAACATTCTTGAGGGAG
 TTGAGATCATTGCTCGTGGTATGGCCTATGACTGCTATGTCATGGCCATGCAAGCCCCT
 GTACTACCTGATCACAAATGAACAGGCAGGTATGTCATGGCCTGGCATGGCATGGTC
 GGGGGATTCTTCACGCTCTGATTCAAATGCTTTAATAGTCGGCTGCCCTCTGGGCC
 5 CAATGTCATTGACCATTCATCTGTGACCTTCCCTGCTAAAACCTCCTGACTGACA
 CTCACGCTTGGACTCTTGTGCGCCAACAGTGGCTGATGTATGCTCATTTTCT
 ATTCTTATTACCTCTACGTCTAATCCTCTGCTCACAGCGAAGGCTCTACCTGCGC
 CTTCCATATCACTGTAGTCGCTATTCTTGTCCCTGATATTGGTGTACCTCGACCCA
 TGATCACCTCCATTGATAAAAGCTGTCTGTGTTTACTGTGTAACACCCATGTTA
 10 AACCTTAAATCACCCCTAGAAACACAGAGGTAAAAATGCCATGAAGCAGCTGG
 AGCCAAATAATCTGGGTAACAATTGTGTGATTAG (SEQ ID NO: 162)

AOLFR88 sequences:

MWQKNQTSLADFILEGLFDDSLTHLFLFSLTMVFLIAVSGNTLTILLICIDPQLHTPMVFLLSQ
 15 LSLMDLMHVSTILKMATNYLSGKKSISFVGCAHQFLYLCGLGAECFLAVMSYDRYVAICH
 PLRYAVLMNKKVGLMMAVMSWLGASVNSLIHMAILMHFPFCGPRKVYHFYCEFPVVKLVC
 GDITVYETTVYISSLLLPIFLISTSYVFLQSVIQMRSSGSKRNAFATCGSHLTVVSLWFGACIFS
 YMRPRSQCTLLQNKGVSFVSIITPTLNSLIYTLRNKDVAKALRRLRRDVITQCIQRLQLWLP
 RV (SEQ ID NO: 163)

20 ATGTGGCAGAAGAACATCAGACCTCTCTGGCAGACTTCATCCTGAGGGCTCTCGATGACT
 CCCTTACCCACCTTCTCCTGACCATGGTGGCTCTCTTATTGCGGTGAGTGGC
 AACACCCCTCACCAATTCTCCTCATCTGCATTGATCCCCAGCTTACACACCAATGTATTCCT
 GCTCAGCCAGCTCCCTCATGGATCTGATGCATGTCCTACATCCTGAAGATGGCT
 25 ACCAACTACCTATCTGGCAAGAACATCTATCCTTGTGGGCTGTGCAACCCAGCATTCC
 TCTATTGTGCTAGGTGGCTGAATGTTTCTCTAGTCATGTCCTATGACCGCTAT
 GTGCCATCTGTCATCCACTCGCCTATGCTGTGCTCATGAACAAAGAAGGTGGGACTGATGA
 TGGCTGTCATGTCATGGTGGGGCATCGTGAACCTCCCTAACATGGCGATCTGAT
 GCACTTCCCTTCTGTGGGCTCGGAAAGTCTACCAACTCTACTGTGAGITCCCAGCTGTG
 30 TGAAGTGGTATGTGGCGACATCACTGTGATGAGACCACAGTGTACATCAGCAGCATTCT
 CCTCCTCCCTCCCATCTCCTGATTTCTACATCCTATGTCCTCATCCTAACAGTGTCTTC
 GATGCGCTCATCTGGAGCAAGAGAAATGCCCTTGCCACTGTGGCTCCACCTCACGGTG
 GTTCTCTTGGTTGGCTGCATCTCCTACATGAGACCCAGGTCCAGTGCACCT
 ATTGAGAACAAAGTGGTCTGTGTTACAGCATCATTAGCCCACATTGAATTCTG
 35 ATTATACTCTCCGAATAAAGATGTAGCTAAGGCTCTGAGAAGAGTGTGAGGAGAGAT
 GITATCACCCAGTGCATTCAACGACTGCAATTGTGGTGCCTGGAGTGTAG (SEQ ID NO:
 164)

AOLFR89 sequences:

40 MLDPSIISHTLYLHSLFQGLRKGTMWQKNQTSLADFILEGLFDDSLTHLFLFSLTMVFLIAVS
 GNTLTILLICIDPQLHTPMVFLLSQLSLMDLMHVSTILKMATNYLSGKKSISFVGCAHQFLY
 CLGGAECFLAVMSYDRYVAICHPLRYAVLMNKKVGLMMAVMSWLGASVNSLIHMAILMH
 PFCGPRKVYHFYCEFPVVKLVCGDITVYETTVYISSLLLPIFLISTSYVFLQSVIQMRSSGSK
 RNAFATCGSHLTVVSLWFGACIFS YMRPRSQCTLLQNKGVSFVSIITPTLNSLIYTLRNKDVA
 45 KALRRLRRDVITQCIQRLQLWLP (SEQ ID NO: 165)

ATGCTGGACCCAGTATTCAGTCACACTCTTATCTCCACTCTCTGTTCTCAGGGATT
 GAGAAAGGGACAATGTGGCAGAAGAACATCAGACCTCTCTGGCAGACTTCATCCTGAGGG
 GCTCTCGATGACTCCCTAACCCACCTTCTCTCTGACCATGGTGGCTCTCCTTAT
 50 TGCGGTGAGTGGCAACACCCCTACCATTCCTCATCTGCATTGATCCCCAGCTTCATACA
 CCAATGTATTCTGCTCAGCCAGCTCCCTCATGGATCTGATGCATGTCCTACACCAT
 CCTGAAGATGGCTACCAACTACCTATCTGGCAAGAAATCTATCTCTTGTGGCTGTGCA
 ACCCAGCACTTCCTCTATTGTGCTAGGTGGTGTGAATGTTCTCTAGCTGTGTCATGTC
 CTATGACCGCTATGTGCCATCTGTCATCCACTCGCCTATGCTGTGTCATGAACAAGAAG
 55 GTGGGACTGATGATGGCTGTATGTGATGGTGGGGCATCCGTGAACCTCCCTAACATTACA
 TGGCGATCTGATGCACTTCCTTCTGTGGCCTCGGAAAGTCTACCAACTCTACTGTGA

5 GTTCCCAGCTGGTGAAGTGGTATGGCGACATCACTGTGTATGAGACCACAGTGTAC
 ATCAGCAGCATTCTCCTCCTCCCCATCTTCCTGATTCTACATCCTATGTCATCCT
 CAAAGTGTCAATTCAAGATGCGCTCATCTGGGAGCAAGAGAAATGCCACTTGTGGCT
 CCCACCTCACGGTGGTTCTCTTGGTGCCTGCATCTTCCTACATGAGACCCAGG
 TCCCAGTGCACCTATTGCAGAACAAAGTTGGTCTGTGTTCTACAGCATCATTACGCCA
 CATTGAATTCTCTGATTTATACTCTCGAATAAAGATGTAGCTAAGGCTCTGAGAAGAGT
 GCTGAGGAGAGATGTTATCACCCAGTGCATTCAACGACTGCAATTGTGGTCCCCGAGTG
 TAG (SEQ ID NO: 166)

10 AOLFR90 sequences:

MFSMTTEALNNFALGCTNLLMTMPQIDLKQIFLCPNCRLYMIPVGAFIFSLGNMQNQSFVTEF
 VLLGLSQNPNVQEIVFVVFLFVYIATVGNMLIVVILSSPALLVSPMFPLGFLSFLDACPSSVI
 TPKMIVDSLVTKTISFEGCMMQLFAEHFFAGVEVIVLTAMAYDRYVAICKPLHYSSIMRRL
 CGILMGVAWTGGLLHSMIQILFTFQLPFCGPNVINHFMCDLYPLLEACTDTHFGLMVINS
 GCFICIINFSLLVSYAVILLSLRTHSSEGRWKALSTCGSHIAVVLFFVPCIFVYTRPPSAFSLDKMA
 AIFYIILNPLNPLIYTFRNKEVKQAMRIWNRLMVVSDEKENIKL (SEQ ID NO: 167)

20 ATGTTCTCAATGACAACAGAACGACTCAATAATTTCACGGATGTACCAACTTGTAA
 TGACTATGATACCACAAATTGATCTGAAGCAAATTTCCTGGAAACATGCAAACCAAGCTTGTAA
 CATGATCCCTGTTGGAGCTTCATCTTCCTGGAAACATGCAAACCAAGCTTGTAA
 ACTGAGTTGTCTCCTGGACTTCACAGAACATGCTAGGAAATAGTATTGTG
 TATTTTGTGTCACATTGCAACTGTTGGGGCAACATGCTAATTGTAGTAACCATTCTC
 AGCAGCCCTGCTCTCTGGTCTCTATGTACTCTTCTGGCTCTGCTCTGG
 TGCGTCTCTCATCTGTACACCCAAAGATGATGTAGACTCCCTATGTGACAAAA
 25 ACCATCTCTTGAAAGGCTGCATGATGCAGCTTGTGAACACTTCTGGTGGGG
 AGGTGATTGTCCTCACAGCCATGGCCTATGATCGTTATGTGCCATTGCAAGCCCTGCA
 TTACTCTCTATCATGAACAGGAGGCTGTGGCATTCTGATGGGGTAGCCTGGACAGGG
 GGCCTTGCATTCCATGATAACAAATTCTTTACTTCCAGCTCCCTTGTGGCCCCAA
 TGTCAATCACTTATGTGTACTGTACCCTTACTGGAGCTTGCCTGACTGATACTC
 30 ACATCTTGGCCTCATGGTGGCATCAACAGTGGTTATCTGCATCATAAAACTCTCTG
 TTGCTTGTCTCTATGCTGTCATCTTGCTCTCTGAGAACACACAGTCTGAAGGGCGCTG
 GAAAGCTCTCTCACCTGTGGATCTCACATTGCTGTGTGATTGTTCTTGTCCATGCA
 TATTTGTATATACACGACCTCCATCTGCTTCCCTGACAAAATGGCGGAATATT
 35 ATCATCTAAATCCCTGCTCAATCTTGTGATTACACTTCAGGAATAAGGAAGTAAAC
 AGGCCATGAGGAGAATATGAAACAGACTGATGGTGGTTCTGATGAGAAAGAAAATATTA
 AACTTAA (SEQ ID NO: 168)

AOLFR91 sequences:

40 MGNWSTVTEITLIAFPALLEIRISLFVVLVVTYTLATGNITIISLIWIDHRLQTPMYFFLSNLSFL
 DILYTTVTPKLLACLLGEEKTIISFAGCMQTYFYFFLGTVFILLAUMSFDRYMAICDPLHYTVI
 MNSRACLLVLGCWVGAFLSVLFPITVTRLPYCRKEINHFFCDIAPLLQVACINTHLIEKINFL
 SALVILSSLAFTTGSYVYIISTLRIPTQGRQKAFSTCASHITVVSIAHSNIFVYVRPNQNSSLD
 YDKVAAVLITVVTPLNPFYSLRNEKVQEVLRETVNRIMTLIQRKT (SEQ ID NO: 169)

45 ATGGGAAACTGGAGCACTGTGACTGAAATCACCTAATTGCTTCCCAGCTCTGGAGA
 TTCGAATATCTCTCGTGTCTGGTAACCTACACATTAAACAGCAACAGGAAACAT
 CACCATCATCTCCCTGATATGGATTGATCATCGCCTGCAAACCTCAATGTA
 CTCTGTAATTGCTCTGGATATCTTACACCACTGTCAATTACCCAAAGTTGTGGCCTGC
 CTCCTAGGAGAAGAGAAAACATATCTTGTGGTGCATGATCCAACATATTCTACT
 50 TCTTCTGGGACGGTGGAGTTATCCTCTGGCGGTGATGTCCTTGACCGCTACATGGC
 TATCTGCGACCCACTGCACTACACGGTCATCATGAACAGCAGGGCCTGCCCTGCTGGT
 CTGGGATGCTGGTGGGAGGCCCTCTGCTGTGTGTTCCAACCATGAGTGCAGGCG
 TACCTTACTGTAGGAAAGAAAATTAATCATTTCTCTGTGACATTGCCCTCTCAGGTG
 GCCTGTATAAAATACTCACCTCATTGAGAAGATAAAACATTCTCTCTGCCCTGT
 55 GAGCTCCCTGGCATTCACTACTGGGTCTACGTGACATAATTCTACCATCCTGCGTATCC
 CCTCCACCCAGGGCGTCAGAAAGCTTCTACCTGTGCTCTCACATCACTGTGTCTCC

ATTGCCACGGGAGCAACATTTGTATGTGAGACCCAATCAGAACTCCTCACTGGATT
 ATGACAAGGTGGCGCTGTCTCATCACAGTGGGACCCCTCTCCTGAACCTTTATCTA
 CAGCTTGAGGAATGAGAAGGTACAGGAAGTGTGAGAGAGACAGTGAACAGAACATGAC
 CTTGATACAAAGGAAAACCTGA (SEQ ID NO: 170)

5

AOLFR92 sequences:

MRNGTVITEFILLGPVPIQGLQTPLFIAIFLTYILTLAGNGLIATVVAEPRLQIPMYFFLCNLNFLE
 IWYTTTVPKLLGTFVVARTVICMSCLLQAFFHFFVGTTFLITIMSFDRYLTICNPLHEPTIM
 10 TSKLCQLALSSWVVGFTIVFCQTMLLIQLPCGNNVISHFYCDVGPLSLKAACIDTSILELLGVIA
 TILVIPGSLLFNMSYYIYLAILRIPSATGHQKTFSTCASHLTVVSLLYGAVLFMYLRPTAHSSFK
 INKVVSVLNTILTPLLNPFIYTIRNKEVKGALRKAMTCPKTGHAK (SEQ ID NO: 171)

ATGAGAAATGGCACAGTAATCACAGAACATCCTGCTAGGCTTCCTGTTATCCAAGGCC
 15 TACAAACACCTCTTTATTGCAATCTTCTCACCTACATATTAAACCCCTGCAGGCAATGGG
 CTTATTATTGCCACTGTGTGGCTGAGGCCAGGTACAAATTCAATGTACTTCTTCCTTG
 TAACITGTCTTCTTAGAAATCTGGTACACCACAGTCATCCCCAAACTGCTAGGAACC
 20 TTTGAGTGGCAAGAACAGTAATCTGCATGTCCTGCTGCCTGTCAGGGCTTCTCCACT
 TCTCGTGGGCAACCCAGGAGTTCTGATCCTCACTATCATGTCTTGACCGCTACCTCACC
 ATCTGCAATCCCCTCACCAACCCACCATCATGACAGCAAACCTGCCTGAGCTGCC
 25 TGAGCTCTGGGTGGCTTACCATTTGCTTTGTCAGACGATGCTGTCATCCAGTT
 GCCATTCTGTGGCAATAATGTTATCAGTCATTCTACTGTGATGTTGGGCCAGTTGAAA
 GCCGCTGCATAGACACCAGATTTGGAACCTCCTGGCGTCATAGCAACCATCCTIGTA
 TCCCAGGGTCACTTCTCTTAATATGATTCTTATATCTACATTCTGTCCGCAATCCTACGA
 ATTCCCTCAGCCACTGGCCACCAAAAGACTTCTCACCTGTGCCTCGCACCTGACAGTTG
 30 CTCCCTGCTCTACGGGGCTGTTCTGATGACCTAACAGACCCACAGCACACTCCTCTTA
 AGATTAATAAGGTGGTGTGTCTAAATACTATCCTCACCCCCCTCTGAATCCCTTATT
 TATACTATTAGAAACAAGGAGGTGAAGGGAGCCTAAGAAAGGCAATGACTTGCCCAAAG
 ACTGGTCATGCAAAGTAA (SEQ ID NO: 172)

30

AOLFR93 sequences:

MLMNYSSATEFYLLGPVSEELHHILFAIFFFYLVTLMGNTVIIMIVCVDKRLQSPMYFFLGHL
 SALEILVTTIIVPVMLWGLLPGMQTIYLSACVVLFLYLAvgTTEFALLGAMAVDRYVAVCN
 PLRYNIMMRHTCNFVVLVSWVFGFLFQIWPVYVMFQLTYCKSNVNNFFCDRGQLKLSCN
 35 NTLFTEFLMAVFVLFGLSPLITVSAYIIStLKIPLSSGRRKSFTCASHFTCVVIGYGSCFLY
 VKPKQTQAADYNWVVSMLMVSVTPFLNPFIETLRNDKVIEALRDGVKRCCQLFRN (SEQ ID
 NO: 173)

ATGTTGATGAATTACTCTAGTGCACGTAAATTATCTCCITGGCTTCCCTGGCTCTGAAGA
 40 ACTACATCATATCCCTTTGCTATATTCTCTTTCTACTTGGTGAACATTAATGGGAAACA
 CAGTCATCATCATGATTGTCCTGTTGGATAAACGTCCTGCAGTCCCCCATGTATTTCTTC
 GGCCACCTCTGCCCTGGAGATCTGGTCACAACCATAATCGTCCCCGTGATGCTTTGGG
 GATTGCTGCTCCCTGGGATGCAGACAATATAATTGCTGCTGTTGTCAGCTCTCTTG
 TACCTGCTGTTGGGACAACAGAGTCGCATTACTTGGAGCAATGGCTGTTGGACCGTTATG
 TGGCTGCTGTAACCTCTGAGGTACAACATCATTATGAACAGACACACCTGCAACTTGT
 45 GGTCTTGTGTCATGGGTGTTGGGTTCTTTCAATCTGGCGGTCTATGTCATGTTTC
 AGCTTACTTACTGCAAATCAAATGTGGTGAACAATTTTTGTCAGCGAGGGCAATTGCT
 CAAACTATCCTGCAATAATACTCTTCACTGGAGTTTATCCTCTCTTAATGGCTGTTTG
 TTCTCTTGGTCTTGTATCCCTACAATTGTCCTAACATCATCTCCACCATCTC
 50 AAGATCCCGTCATCCTCTGGCCGGAGGAATCCTCTCCACTTGTGCCTCCACTTCACCTG
 TGTTGTGATTGGCTACGGCAGCTGCTGTTCTACGTGAAACCCAAGCAAACGCAAGGCA
 GCTGATTACAATTGGTAGTTCCCTGATGGTTCACTGAGTAGTAACCTCTTCTCAATCCTT
 CATCTCACCCCTCCGGAAATGATAAAGTCATAGAGGCCCTCAGGGATGGGGTGAAACGCTGC
 TGTCACACTATTAGGAATTAG (SEQ ID NO: 174)

AOLFR94 sequences:

METWVNQSYTDGFLLGIFSHSTADLVLFSVVMADVFTVALCGNVLLFLIYMDPHLHTPMYFF
 LSQLSLMDMLLVCTNVPKMAANFLSGRKSISFVGCGIQIGLFVCLVGSEGLLLGLMAYDRYVA
 ISHPLHYPILMNQRVCLQITGSSWAFGIIDGLIQMVVVMNFPYCGLRKVNHFCEMLSLLKLAC
 5 VDTSLFEKVIFACCVFMLLPFSIVASYAHILGTVLQMHSQAQAWKKALATCSSHLTAVTLFYG
 AAMFTIYLPRPRHYRAPSHDKVASIFYTVLTPMLNPLIYSLRNREVMGALRKGLDRCRIGSQH
 (SEQ ID NO: 175)

10 ATGGAGACGTGGGTGAACCAGTCCTACACAGATGGCTTCTCCTCTTAGGCATCTCTCCC
 ACAGTACTGCTGACCTTGTCCTCTCCGTGGTTATGGCGGTCTTCACAGTGGCCCTCTGT
 GGGAAATGTCCTCCTCATCTCCTCATCTACATGGACCCCTCACCTTCACACCCCCATGTACTT
 CTTCTCAGCCAGCTCTCCCTCATGGACCTCATGTTGGTCTGTACCAATGTGCCAAAGATG
 GCAGCCAACCTCCGTCTGGCAGGAAGTCCATCTCTTGTGGGCTGTGGCATAACAAATTG
 GCCTCTTGTCTGTCTGGGATCTGAGGGGCTCTGCTGGGACTCATGGCTTATGACCG
 15 CTATGTCGCCATTAGCCACCCACTTCACTATCCCATCCTCATGAATCAGAGGGTCTGCTCC
 AGATTACTGGGAGCTCCTGGGCTTGGGATAATCGATGGCTGATCCAGATGGTAGT
 AATGAATTTCCTACTGTGGCTTGAGGAAGGTGAACCATTTCTCTGTGAGATGCTATCC
 TTGTTGAAGCTGGGCTGTGTAGACACATCCCTGTTGAGAAGGTGATATTGCTTGTG
 TCTTCATGCTCTCTCCATTCTCCATCAGTGGCTGCAAGGCTGGCCACCTGCTCCCTCCACC
 20 GTGCTGCAAATGCACTCTGCTCAGGCCTGGAAAAAGGCCATGGCATCTACCTGAGGCCTAGGCACCA
 TGACAGCTGTCAACCTCTTCTATGGGGCAGCATGGTCTACCTGAGGCCTAGGCACCA
 CCGGGCCCCCAGCCATGACAAGGTGGCCTATCTTACACGGTCCTIACCCATGCTC
 AACCCCCCTATTACAGCTTGAGGAACAGGGAGGTGATGGGGCACTGAGGAAGGGCTG
 GACCGCTGCAGGATCGGCAGCCAGCACTGA (SEQ ID NO: 176)

25

AOLFR95 sequences:

MLGSKPRVHLYILPCASQQVSTMGRGTSNHSEMTDFILAGFRVRPELHILLFLFLFVYAMILL
 GNVGMMTIIMTDPLRNLTPMYFLGNLSFIDLFYSSVIEPKAMINFWSENKSISFAGCVAQLFLFA
 LLIVTEGFLAAMA YDRFIAICNPPLLYSVQMSTRLCQLVAGSYFCGCISSVIQTSMTFTLSFCAS
 30 RAVDHFYCDSRPLQLRLSCSDLFIHRMISFSLSCIIIPLTIIVSYMYTVSTVLKIHSTEGHKKAFST
 CSSHLGVSVLYGAFFMYLTPDRFPELSKVASLCYSLVTPMLNPLIYSLRNKDQEAALKFLE
 KKNIL (SEQ ID NO: 177)

35

ATGCTAGGATCCAAACCAAGAGITCATTGTATATTTGCCGTGCGCTCTAACAGGTTTC
 TACCATGGGTGACAGGGAAACAAGCAATCACTCAGAAATGACTGACTTCATTCTGCAGG
 CTTCAGGGTACGCCAGAGCTCCACATTCTCCTCTTGTCTATTGTTGTTATGCCA
 TGATCCCTCTAGGGATGTTGGATGATGACCATTATTGACTGATCCTCGGCTGAACAC
 ACCAATGTATTCTCTAGGAATCTCTCCTATTGATCTTCTATTGATCTGTTATTGA
 ACCCAAGGCTATGATCAACTCTGGTCTGAAAACAAGTCTATCTCCTTGAGGCTGTG
 40 GCCCAGCTCTCTCTTGCCTCCTCATTGTACTGAGGGATTCTCCTGGCGGCCATGGC
 TTATGACCGCTTATTGCCATCTGCAACCCCTGTCTACTCTGTCATGTCACACCGTC
 TGTGTAATCAGTTGGCTGGCTGTTCTATTGTCGCTGCATTAGCTCAGITATTCA
 AGCATGACATTACTTATCTTGTGCGCTCTCGGGCTGTTGACCACTTACTGTGATT
 TCGCCCACTCAGAGACTGTCTGATCTCTTATCCATAGAATGATATCTTCTCCT
 45 TATCATGTTATTATCTGCCTACTATCATAGTCATTAGTATCTACATGTATATTGTG
 TCCACAGTTCTAAAGATACATTCACTGAGGGACATAAGAAGGCCTCTCCACCTGCAGCT
 CTCACCTGGGAGTTGTGAGTGTGCTGTATGGTGTCTTATGTATCTCACTCCTGAC
 AGATTTCTGAGCTGAGTAAAGTGGCATCTTATGTACTCCCTAGTCACCTCCATGTGA
 ATCCCTTGATTTACTCTTGAGGAACAAAGATGTCCAAGAGGCTCTAAAAAAATTCTAGA
 50 GAAGAAAAATATTATTCTTG (SEQ ID NO: 178)

AOLFR96 sequences:

MICENHTRVTEFILLGFTNNPEMQVSLFIFFLAIYTVTLLGNFLIVTVTSVDLALQTPMYFFLQN
 LSLLEVCFILVMVPKMLVDLVSPrKIIISFVGCGTQMYFFFFFGSSECFLLSMMA YDRFVAICNP
 55 LHYSVIMRSLCLWMAIGSWMSGVPVSMLQTAWMMALPFCGPNAVDHFFCDGPPVLLVTV
 DTTMYEMQALASTIILFIMFPFCILILVSYTRIITILRMSSATGRQKAFSTCSSHLIVVSLFYGTASL

TYLRPKSNQSPESKKLVLSYTVITPMNLNPITYGLRNNEVKAVKRTITQKVLQKLDVF (SEQ ID NO: 179)

5 ATGATCTGTGAAAATCACACCAGACTGAATTATTCTTCTGGTTTACAAACAACC
 CCGAGATGCAAGTTCCCTCTTATTTTTCTGGCCATTATACAGTCACTTGTTGGC
 AACTTTCTATTGTACAGTACCACTGGATCTGCACCTCAAACACCCATGTACTTCTT
 TCTTCAAAATCTGCACTTCTGAAGTATGTTACCTGGTATGGTCAAAATGCTTG
 TAGATCTAGTGTCCCCAAGGAAAATTATCTCTTTGTGGCTGTTACCCAGATGTACTT
 10 CTTCCTCTCTGGCAGTTCTGAATGTTCTCTCATGATGGTTATGATCGCTTGT
 GCCCATCTGTAACCCCTCCATTATTCACTGATAATGAACAGGTCCTATGCTTGTGGATG
 GCCATAGGCTCTGGATGTCCGGTGTCTCTGTCTATGCTACAGACAGCTTGGATGATGG
 CCCTTCCTTCTGTGGACCAAATGCCGTGGACCACTTTCTGTGATGGTCCCCAGTGTIA
 AACTAGTCACAGTGGATACAACCATGTATGAAATGCAAGCACTTGCCTCACACTCCTGT
 TTATCATGTTCCCTTTGTCTCATTTGGTTCTACACCCGATTATCATAACAATTCTG
 15 AGGATGTCCTCTGCCACTGGCCGAGAAGGCATTTCTACTTGTCTCACACCTCATTGT
 GGTGTCCCTCTCTACGGAACAGCCAGTCTGACCTACCTGCGCCAACATCAAACAGTCC
 CCTGAGAGCAAGAAGCTAGTGTCAATTGCTTACACTGTCTACACCTATGCTAAACCCA
 TCATCTACGGCTGAGGAACAATGAAGTGAAGGGCTGTCAAGAGGACAATCACTCAA
 AAGTCTTACAGAAGTTAGATGTGTTGA (SEQ ID NO: 180)

20

AOLFR97 sequences:

MTEFHLSQMPMSIRLIFRRSLGRIKPSQSPRCSTSFMVVPFSIAEHWRRMKGANLSQGMFEL
 LGLTTDPLQLRLLFVVFLGMYATLLGNLVMFLLIHVSATLHTPMYSLKSLSLDFCYSSTVV
 25 PQTIVNFLAKRKVISYFGCMQMFFYAGFATSECYLIAAMAYDRYAAICNPLLYSTIMSPPEVC
 ASLIVGYSAGFLNSLIHTGCIPLKFCGAHVVTFFCDGPPILSLSVDTSLCEILLFIFAGFNLLS
 CTLTILISYFLILNTILKMSAQGRFKAFSTCASHLTACIcffgttlfmylprssysltqdrta
 VIYTVVIPVLNPLMYSLRNKDVKKALIKVWGRKTME (SEQ ID NO: 181)

30 ATGACAGAGTTCATCTGCAAAGCCAAATGCCCTCAATAAGACTCATCTCAGAAGGCTGT
 CCTTAGGCAGAATTAACCCAGTCAGAGCCCCAGGTGTTCAACCTCATTTATGGTGGTGC
 TTCTTCTCCATCGCAGAGCACTGGAGAAGGATGAAAGGGCAAACCTGAGCCAAGGGAT
 GGAGTTGAGCTCTGGGCTCACCACGTGACCCCCAGCTCCAGGGCTGCTTGTGGTGC
 TTCTGGGCAATGTAACACAGCACTCTGCTGGGAACCTGGTCAATGTTCTCTGATCCATG
 TGAGTGCCACCTGCACACACCCATGTACTCCCTCTGAAGAGCCTCTCTCTGGATTTC
 35 TGCTACTCCTCCACGGTTGTGCCCCAGACCCCTGGTGAACCTCTGCAAGAGCCTCTCTGCT
 TCTCTTATTTGGCTGCACTGACTCAGATGTTCTATGCGGGTTTGCCACAGTGAGTGC
 TATCTCATCGCTGCCATGGCTTATGACCGCTATGCCGCTATTGTAACCCCTGCTCTACTC
 AACCATCATGTCCTGAGGTCTGTGCTCGTGAATTGTTGGCTCTACAGTGAGGATTG
 CTCATTCTCTTATCCACACTGGCTGTACTTTAGTCTGAATTCTGCGGTGCTCATGTCGT
 40 CACTCACTCTCTGTGATGGCCACCCATCTGCTCTGTCTGTGAGACACCTCACTGT
 GTGAGATCCTGCTCTCATTTGCTGGTTCAACCTTGTGAGCTGACCCCTACCATCTG
 ATCTCTACTCTTAATTCTAACACCCATCTGAAATGAGCTGGCCAGGGCAGGTTA
 AGGCATTTCACCTGTGACCCACCTCACTGCCATCTGCCCTCTTGGCACAAACACTT
 TTTATGTACCTGCCACGGTCCAGCTACTCTGACCCAGGACCGCACAGTTGCTGTCA
 45 TCTACACAGTGGTATCCCAGTGTGAACCCCTCATGACTCTTGAGAAAACAAGGATGT
 GAAGAAAGCTTAATAAAGGTTGGGTAGGAAAACAATGGAATGA (SEQ ID NO: 182)

AOLFR98 sequences:

MRGFNKTTVVTQFILVGFSSLGELQLLLFVFLLLYLTLIVANVTIMAVIRFSWTLHTPMYGLFI
 50 LSFSESCYTFVIIIPQLLVHLLSDTKTISFMACATQLFFLGFACTNCLIAVMGYDRYVAICHPLR
 YTLIINKRLGLELISLSGATGFFIALVATNLICDMRFGCPNRVNHYFCDMAPIVILACTDTHVKE
 LALFSLSLVIMVPFLLILISYGFIVNTILKIPSAEGKKAFVTCASHLTVVVFHYGCASITYLRPKSK
 SASDKDQLVAVTYTVTPLLNPVYSLRNKEVKTALKRVLGMPVATKMS (SEQ ID NO: 183)

55 ATGCGAGGTTCAACAAAACCACTGTGGTTACACAGTTCATCTGGTGGGTTCTCCAGCC
 TGGGGGAGCTCCAGCTGCTGCTTGTCACTTCTCTCCTATACTTGACAATCCTGGT

5 GCCAATGTGACCATCATGGCCGTTATCGCTTCAGCTGGACTCTCCACACTCCCATGTATG
 GCTTCTATTCACTCCTTCATTTCTGAGTCCTGCTACACTTTGTCACTCATCCCTCAGCTGC
 TGGTCCACCTGCTCTCAGACACCAAGACCATCTCCCTCATGGCCCTGTGCCACCCAGCTGTT
 CTTTTCTCTGGCTTGCTGCACCAACTGCCTCCTCATGGCTGTATGGGATATGATCGCT
 10 5 ATGTAGCAATTGTCAACCCTCTGAGGTACACACTCATAAACAAAAGGCTGGGGITGGA
 GTTGATTTCTCTCTCAGGAGCCACAGGTTCTTATGCTTGGTGGCCACCAACCTCATTT
 GTGACATGCGTTTGTGGCCCCAACAGGTTAACCAACTATTCTGTGACATGGCACCTGT
 TATCAAGTAGCCTGCACTGACACCCATGTGAAAGAGCTGGCTTATTAAGCCTCAGCATIC
 15 10 CTGGTAATTATGGTGCCTTCTGTAACTCTCATATCCTATGGCTTCATAGTTAACACCAT
 CCTGAAGATCCCCTCAGCTGAGGGCAAGAAGGCCCTGTACCTGTGCCACATCTCACT
 GTGGCTTGTCCACTATGGCTGTGCCCTCATCTATCTGCCCCAACGCCAGTCAAGCTGC
 CTCAGACAAGGATCAGTTGGTGGCAGTGAACCTACACAGTGGTACTCCCTACTTAACCT
 CTTGTACAGTCTGAGGAACAAAGAGGTAAGACTGCATTGAAAAGAGGTTCTGGAATG
 CCTGTGGCAACCAAGATGAGCTAA (SEQ ID NO: 184)

15

AOLFR99 sequences:

20 MERVNETVVREVIFLGSSLARLQQLLFVIFLLYLFTLGTNAIIISTIVLDRALHIPMYFFLAILSC
 SEICYTFIVPKMLVDLLSQKKKTISFLGCAIQMFSFLFLGCSHSFLAVMGYDRYIAICNPLRYSV
 LMHGVCMLVAAACACGFTVAQIITSVFHLPFYSSNQLHHFFCDIAPVLKLA SHHNHFSQIV
 IFMLCTLVLAIPLLLILVSYVHLSAILQFPSTLGRCKAFSTCVSHLIIVTVHYGCASFIYLRPQSNY
 SSSQDALISVSYTIITPLFNPMIYSLRNKEFKSALCKIVRRTISLL (SEQ ID NO: 185)

25 ATGGAGCGGGTCAATGAGACTGTGGTAGAGAGAGGTCACTTCCCTCGGCTCTCATCCCTGG
 CCAGGCTGCAGCAGCTGCTCTTGTATCTCCCTGCTCTACCTGTTCACTCTGGCACC
 AATGCAATCATCATTCACCATTGTCTGGACAGGGCCCTCATATCCCCATGTACTTCTT
 CCTGCCATCCTCTTGCTCTGAGATTGCTACACCTTCATCATTGTACCCAAGATGCTGG
 TTGACCTGCTGTCCCAGAAGAACCTTCTTCTGGCTGTGCCATCCAATGTTTCC
 TTCCCTCCCTGGCTGCTCTACTCTTCTGCTGGCAGTCATGGTTATGATCGTTACAT
 AGCCATCTGAACTGCCTACTCACTGCTAATGGACATGGGGTGTATGGACTA
 30 GTGGCTGCTGCCTGTGCTGCTGCTGACAGATCATCACATCCTGGTATTCA
 CCTGCCTTTTATTCTCCAATCAACTACATCACTTCTCTGTGACATTGCTCTGTCTCA
 AGCTGGCATCTACCATAACCAACTTAGCAGATTGTCTTCATGCTCTGTACATTGGTC
 CTGGCTATCCCTTATTGTTGATCTGGTGCCTATGTTACATCCTCTGCTGCCACTTCA
 GTTTCCTCCACACTGGTAGGTGCAAAGCTTTCTACCTGTATCTCACCTCATTATTG
 35 35 TCACTGTCCACTATGGCTGTGCCCTTATCTACTTAAGGCCAGTCAACTACTCCTCA
 AGCCAGGATGCTCTAATATCAGTATCCTACACTATTAACTCCATTGTTCAACCCAATGA
 TTTATAGCTTGAGAAATAAAGAGTTCAAATCAGCTTTGAAAATTGTGAGAAGAACAT
 TTCCCTGTTGTAA (SEQ ID NO: 186)

40

AOLFR101 sequences:

MDTGNWSQVAEFILEGFPHLQGVQIYLFLLLIYLMTVLGNLLIFLVVCLDSRLHTPMYHFVSI
 LSFSELGYTAATIPKMLANLLSEKKKTISFGCQLQIYFFHSLGATECYLLTAMAYDRYLAICRPL
 HYPTLMPTLCAELAIGCWLGGLAGPVVEISLISRLPFCGPNRIQHVFCDFPPVLSACTDTSINV
 LVDFVINSCKILATFLLILCSYVQIICVLRIPSAAGKRAISTCASHFTVVLFYGSILSMYVQLK
 45 45 KSYSLDYDQALAVVYSVLTPLNPFIYSLRNKEIKEAVRRLKRIGILA (SEQ ID NO: 187)

50 ATGGACACAGGAACTGGAGCCAGGTAGCAGAATTCACTCATCTTGGCTCCCCCATCTCC
 AGGGTGTCCAGATTATCTCTCCCTCTGAGCTGGCTACACACCCATGTACCACT
 AACCTGCTGATATTCTGGTGGCTGCCCTGGACTCCCGCTTACACACCCATGTACCACT
 TTGTCAGCATTCTCTCCCTCTCAGAGCTGGCTATACAGCTGCCACCATCCCTAAGATGCTG
 GCAAACCTGCTCAGTGAAGAAAAAGACCAATTCTCTGGGTGTCTCCCTGAGATCTATT
 TCTTCACTCCCTGGAGCGACTGAGTGTATCTCTGACAGCTATGGCTACGATAGGTA
 TTAGCCATTGGCTGTGGTGGGAGGCTGGCTGGCCAGTAGTTGAAATTCTTGTGAGAG
 ATTGCCATTGGCTGTGGCCTCCACTACCCAACCCCTCATGACCCCAACACTTTGTGAGAG
 55 55 CACGCCCTCCATTCTGTGGCCCCATCGCATTCAAGCACGTCAGTCTTGTGACTTCCCTCTGTG
 CTGAGTTGGCTGCACTGATACGTCTATAATGTCTAGTAGATTGTTATAAATTCTG

CAAGATCCTAGCCACCTTCCCTGCTGATCCTCTGCTCCTATGTGCAGATCATCTGCACAGTGC
 TCAGAATTCCCTCAGCTGCCGGCAAGAGGAAGGCCATCTCCACGTGTGCTCCCACTTCAC
 TGTGGTTCTCATCTCTATGGGAGCATCTTCCATGTATGTGCAGCTGAAGAAGAGCTAC
 5 TCAC TG GACT ATG ACC AGG C C TGG CAG TGG TCA CT CAG T GCT CAC ACC C TT C C T C A ACC
 CCT CAT CT ACAG C TT GCG CA A C A A G G A G A T C A A G G A G G C T G A G G A G G C A G C T A A A G A
 GA ATT GGG A T A T G G C A T G A (SEQ ID NO: 188)

AOLFR102 sequences:

MPVGKLVFNQSEPTEFVRAFTTATEFQVLLFLFLLYLMILCGNTAIWVVVCTHSTLRTPMYF
 10 FLSNLSFLELCYTTVVVPLMLSNILGAQKPISLAGCGAQMFVTLGSTDCLLAIMAYDRYVAI
 CHPLHYTLIMTRELCTQMLGGALGLALFPLSQLTALIFLPLFCGHHQEINHFLCDVPPVRLACA
 DIRVHQAVLYVVSILVLTIPFLICVSYVFITCAILSIRSAEGRRRAFSTCSFH TVVLLQYGCCSL
 VYLRPRSSSTSEDEDSQIALVYTFVTPLLNPLLYSLRNKDVKGALRSAIIRKAASDAN (SEQ ID
 NO: 189)

15 ATGCCTGTGGGGAAACTGTCTCAACCAGTCTGAGCCCACGTAGTTGTGTCCTGCGT
 TCACCACAGCCACTGAATTCCAGGTTCTCTCTTCCCTCTCTCCCTACTTGATG
 ATCCTCTGTGGCAACACAGCCATCATCTGGTGGTGTGCACACAGCACCCCTCCGACCC
 CGATGTATTCTCTGTCCAACCTGTCTTCCCTGGAACCTGTACACACCACCGTGGTAGTA
 20 CCCCTGATGCTTCCAACATTGGGGCCCCAGAACGCCATTCTGTTGGCTGGATGTGGGG
 CCCAAATGTTCTCTTGTCACTCTGGCAGCACGGACTGTTCTCTTGGCGATCATGGCC
 TATGACCGCTATGTGGCTATCTGCCACCCGCTGCACTACACCCCTCATCATGACCCGGAGC
 TGTGACCGAGATGCTGGGGGGCCCTGGGCTGGCCCTCTCCCTCCCTGCAGCTCAC
 CGCCTTAATCTTCAACCTGCCCTTTGCCGACCCACCAAGGAAATCAACCAACTTCTCTGCG
 25 ATGTGCTCTCCGCTCTGCGCTGGCCTGCGCTGACATCCGCGTGCACAGGCTGTCCTCTA
 TGTGCGTGGCATCTCTGCTGACCATCCCCTCTGCTCATCTGCGTCTCTACGTGTTCA
 TCACCTGTGCCATCTGAGCATCCGTTCTGCCAGGGCCGCCGGCCCTCTCCACCTG
 CTCCCTCCACCTCACCGTGGCTCTGCTGCACTATGGCTGCTGAGCCTCGTGTACCTGCGTC
 CTCGGTCCAGCACCTCAGAGGATGAGGAACAGCAAATCGCGTGGCTACACCTTGTAC
 30 CCCCTTACTCAACCCCTTGCTTACAGCCTAGGAACAAGGATGTCAAAGGTGCTCTGAGG
 AGTGCCTTACCGTAAAGCAGCCTCTGACGCCACTGA (SEQ ID NO: 190)

AOLFR103 sequences:

MAEMNLTVTEFLLIAFTEYPEWALPLFLFLLFMYLITVLGNLEMILILMDHQHQLHAPMYFLLSH
 35 LAFMDVCYSSITVPQMLAVLLEHGAALSYTRCAAQFFLTFFGSIDCYLLALMAYDRYLAVCQ
 PLLYVTILTQQARLSLVAGAYVAGLISALVRTVSAFTLSFCGTSEDFIFCDLPLLKLTCGESYT
 QEVLIUMFAIFVIPASMVVLVSYLFIIVAIMGIPAGSQAKTFSTCTSHTAVSLFFGTLIFMYLRG
 NSDQSSEKNRVSVLYTEVIPMLNPLIYSLRNKEVKEALRKILNRAKLS (SEQ ID NO: 191)

40 ATGGCAGAGATGAACCTCACCTGGTACCGAGTTCTCCTATTGCAATTCACTGAATATC
 CTGAATGGCACTCCCTCTTCTGTTATTATTATGTATCTCATCACCGTATTGGGG
 AACTTAGAGATGATTATTCTGATCCTCATGGATCACCAGCTCCACGCTCAATGTATTCT
 TCTGAGTCACCTCGCTTCATGGACGTCTGCACTCATCTACTGTCCCCAGATGCTGG
 CAGTGCTGGAGCATGGGCAGTTATCTTACACAGCCTGCTGCTCAGTTCTTCT
 45 GTTCACCTCTTGTTCCATCGACTGCTACCTCTGGCCCTATGGCCTATGACCGCTACT
 TGGCTGTGCCAGCCCTGCTTTATGTCAACCATCTGACACAGCAGGCCGCTTGAGTCT
 TGTGGCTGGGGCTTACGTTGCTGGCTCATCAGTGCTTGGTGCAGCTCAGCCTTC
 ACTCTCTCTCTGTGGAACCAAGTGAAGATTGACTTATTCTGTGACCTCCCTCTGTT
 AAAGTTGACCTGTGGGGAGAGCTACACTCAAGAAGTGTGATTATTATGTTGCCATT
 50 GTCATCCCTGCTTCCATGGTGGTATCTGGTGCCTACCTGTTATCATCGTGGCCATCAT
 GGGGATCCCTGCTGGAAGCCAGGCCAACCTCTCCACCTGCACCTCCCACCTCACTGCT
 GTGTCACTCTCTTGGTACCCCTCATCTCATGTACTGAGAGGTAACTCAGATCAGTCTC
 GGAGAAGAATCGGGTAGTGTGCTGCTTACACAGAGGTACCCCATGTTGAATCCCTC
 ATCTACAGCCTGAGGAACAAGGAAGTGAAGGAGGCCCTGAGAAAAATTCTCAATAGAGCC
 55 AAGTTGTCCTAA (SEQ ID NO: 192)

AOLFR105 sequences:

5 MQGLNHTSVSEFILVGPASFPHIQLMLFLFLMYLFTLLGNLLIMATVWSERSLHMPMYLF
 ALSITEILYTVAIIPRMLADLLSTQRSLAFLACASQMFFSFGFTHSFLLTVMGYDRYVAICHPL
 RYNVLMSLRGCTCRVGCSWAGGLVMGMVVTSAIFHLAFCGHKEIHFFCHVPLLKACGDD
 VLVVAKVGLVCITALLGCFLILLSYAFIVAAILKIPSAEGRNKAFTCASHLTVVVHYGFAS
 VIYLKPKGPQSPEGDTLMGITYVLTTPFLSPIFSLRNKELVAMKKCTFKLFPQNC (SEQ ID
 NO: 193)

10 ATGCAGGGCTAAACCACACTCCGTGCTGAATTCACTCCGTTGGCTCTCTGCCTTCCC
 CCACCTCCAGCTGATGCTCTTCTGCTGTTCTGCTGATGTACCTGTTACGCTGCTGGCA
 ACCTGCTCATATGCCACTGTCGGAGCGAGCGCAGCCTCACATGCCATGTACCTCTT
 CCTGTGTGCCCTCTCCATCACCGAGATCTACACCGTGGCCATCATCCCGCGATGCTG
 GCCGACCTGCTGTCACCCAGCGCTCCATCGCCTCCATGGCCATGTGCCAGTCAGATGTTCTT
 CTCCCTCAGCTTCGGCTCACCCACTCCTCCTGCTCACTGTCACTGGGCTACGACCGCTACG
 15 TGGCCATCTGCCACCCCTCGGTTACAACGTGCTCATGAGCTGCGGGCTGCACCTGCCG
 GGTGGGCTGCTCTGGCTGGTGGCTGGTCAATGGGGATGGTGGTACCTCGGCCATTTC
 CACCTCGCCTCTGTGGACACAAGGAGATCCACCATTTCTCTGCCACGTGCCACCTCTGTT
 GAAGTTGGCCTGGAGATGATGTGCTGGTGGCCAAGGCGTGGGCTGGTGTAT
 CACGGCCCTGCTGGCTGTTCTCTCATCCTCTCCATGCCCTCATGCTGGCCCA
 20 TCTTGAAGATCCCTCTGCTGAAGGTCGAAACAAGGCCCTCTCACCTGTGCTCTCACCT
 CACTGTGGTGGCTGCACTATGGCTTGCCCTGCACTTACCTGAAGGCCAAAGGTCCC
 CAGTCTCCGGAAGGAGACACCTTGATGGCATCACCTACACGGCTCTCACCCCTCTCA
 GCCCCATCATCTCAGCCTCAGGAACAAGGAGCTGAAGGTCGCCATGAAGAAGACTGCTT
 CACCAAACCTTTCCACAGAACTGCTGA (SEQ ID NO: 194)

25

AOLFR106 sequences:

METANYTKVTEFVLTGLSQTPEVQLVLFVIFLSFYLFILPGNILIICLISLDPHLTSPMYFLLANLA
 FLDIWYSSITAPEMLIDFFVERKIIISFDGIAQLFLFHAGASEMFLTVMAFDLYTAICRPLHYA
 TIMNQLRCCILVALSWRGFIHSIIQVALIVRLPFCGPNELDYSFCDITQVVRIACANTFPEELVM
 30 ICSSGLISVVCLIALLMSYAFLLALFKKLSGSGENTNRAMSTCYSHITIVVLMFGPSIYTARPF
 FSFLDKVVSVFNTLIFPLRNPIIYTLRNKEVKAAMRKLVTKYILCKEK (SEQ ID NO: 195)

35 ATGGAAACTGCAAATTACACCAAGGTGACAGAAATTGTTCTACTGGCTATCCCAGACTC
 CAGAGGTCCAACTAGCTCTATTGTTATTTCTATCCTCTATTGTTCATCCTACCAAGGA
 AATATCCTTATCTGACCATCAGTCTAGACCCCTCATCTGACCTCTCCATGTATTCT
 GTGGCTAATCTGCGCTCTCTGATATTGGTACTCTCCATTACAGCCCCGAAATGCTCA
 TAGACTCTTGTGGAGAGGAAGATAATTCTTGTGGATGCTCTGCTCACAGTGATGGCTTGCACAGCTCT
 CTTACACTTTGTGGGGCTTGGAGATGTTCTGCTCACAGTGATGGCTTGCACAGCTCT
 40 CTGCTATCTGCCGACCCCTCACTATGCTACCATCATGAATCAACGTCTGCTGTATCCTG
 GTGGCTCTCTCTGGAGGGGGCTTCATTCTATCATACAGGTGGCTCTATTGTT
 GACTTCTTCTGTGGGGCCAATGAGTTAGACAGTTACTCTGTGACATCACACAGGTGT
 CGGGATTGCGCTGCCAACACCTTCCCAGAGGAGTTAGTGATGATCTGTAGTAGTGGCTG
 ATCTCTGTGGTGTGTTGATGCTCTGTAATGTCCTATGCCCTCTGGCTTGTCAA
 45 GAAACTTCAGGCTCAGGTGAGAAATACCAACAGGCCATGTCACCTGCTATTCCACATT
 ACCATTGTGGTGTCAATGTTGGGCCATCCATCTACATTATGCTGCCCATTTGACTCGIT
 TTCCCTAGATAAAAGTGGTGTGTTCAATACCTTAATATTCCCTTACGTAATCCCATTA
 TTTACACATTGAGAAAACAAGGAAGTAAAGGCAGCCATGAGGAAGTTGGTCACCAAATATA
 TTTGTGTAAGAGAGAAGTGA (SEQ ID NO: 196)

50

AOLFR107 sequences:

MELWNFTLGSFILVGLNDGSPELLCATITILYLLALISNGLLLAIITMEARLHMPMYLLLQ
 LSLMDLILFTSVVTPKALADFLRENTISFGGCALQMFALTMGGAEDLLLAFMAYDRYVAICH
 PLTYMTLMSSRACWLMVATSWILASLSALIYTVYTMHYPFCRAQEIRHLLCEIPHLLKVACAD
 TSRYELMVYVMGVTFLIPSLAAILASYTQILLTVLHMPNSNEGRKKALVTCSSHLTVVGMFYGA
 55 ATFMYVLPSSFHSTRQDNIISVFYTIVTPALNPLIYSLRNRKEVMRALRRVLGKYMPLAHSTL
 (SEQ ID NO: 197)

ATGGAGCTCTGGAACCTCACCTGGAAAGTGGCTCATTTGGTGGGGATTCTGAATGACA
 GTGGGTCTCCTGAACTGCTCTGTGCTACAATTACAATCCTATACTTGTGGCCCTGATCAG
 CAATGCCACTGCTCTGGCTATCACCATGGAAGCCCCGGCTCCACATGCCATGTACCTC
 5 CTGCTTGGGCAGCTCTCTCATGGACCTCCTGTCACATCTGTGACTCCCAAGGCCCT
 TGCGGACTTTCTGCGCAGAGAAAACACCATCTCCITTGGAGGCTGTGCCCTCAGATGTTC
 CTGGCACTGACAATGGGTGGTGTGAGGACCTCTACTGGCCCTCATGGCCTATGACAGGT
 ATGTGCCATTGTCATCCTCTGACATACATGACCCCTCATGAGCTCAAGAGGCCGTGGCT
 10 CATGGTGGCACGCTGGATCCCTGACATCCCTAAGTGCCTAATATATACCGTGTATACC
 ATGCACTATCCCTCTGCAGGGCCCAGGAGATCAGGCATCTCTGTGAGATCCCACACT
 TGCTGAAGGTGGCCTGTGCTGATACCTCCAGATATGAGCTCATGGTATAATGTGATGGGTGT
 GACCTCCTGATTCCCTCTCTGCTGCTATACTGGCCCTCATACACAAATTCTACTCACTG
 15 TGCTCCATATGCCATCAAATGAGGGGAGGAAGAAAGGCCCTGTCACCTGCTCTCCACCT
 GACTGTGGTTGGGATGTTATGGAGCTGCCACATTGATGTCTTGCCTGAGGAGGGTCTGG
 ACAGCACCAGACAAGACAACATCATCTGTTTACACAATTGTCACTCCAGGCCCTGAA
 TCCACTCATCTACAGCCTGAGGAATAAGGAGGTATGCCGGCCTTGAGGAGGGTCTGGG
 AAAATACATGCTGCCAGCACACTCCACGCTCTAG (SEQ ID NO: 198)

AOLFR108 sequences:

20 MCSFFLCQTGKQAKISMGEENQTFVSKFIFLGLSQDLQTQILLFILFLIIYLLTVLG
 NQLIILIFLD SRLHTPMYFFLRLNLSFADLCFTSIVPQVLVHFLVKRKTISFYGCMTQIIVFL
 LVGCTECALLAV MSYDRYVAVCKPLYYSTIMTQRVCLWLSFRSWASGALVSLVDT
 SFTFHLPYWQNIINHYFCE PPALLKLASIDTYSTE
 MAIFSMGVVILLAPSLILGSYWNII
 STVIQMQS
 GEGRLKAFSTCGSHLI VVVLFYGSGIFTYMRPNSKTT
 KELDKMISVFYTA
 VTPMLNP
 IIYSLRNKDVKGALRKLVGRKC FSHRQ (SEQ ID NO: 199)

ATGTGTTCTTTCTTGTGCCAACAGGTAACAGGCAAAATATCAATGGGAGAAGAAA
 ACCAAACCTTTGTGCTCAAGTTATCTTCTGGGTCTTCACAGGACTTGCA
 GACCCAGAT
 CCTGCTATTATCCTTCTCATCATTATCTGCTGACCGTGTGGAAACCAGCTCATCA
 30 TCATTCTCATCTTCTGGATTCTGCCCTCACACTCCCAGTATTTCTTAGAA
 ACTCT
 CCTTTCAGATCTGTTCTACTAGCATTGCTCAAGTGTGGTCACTCTGGTA
 AAGAGGAAAACCAATTCTTTATGGGTGTATGACACAGATAATTGCT
 TTCTGGTGG
 GGTGTACAGAGTGTGCGCTGCTGGCAGTGATGCTCATGACCGGTATGTGGCTGTGCAA
 GCCCTGTACTACTTACCATCATGACACAACGGGTGTCTGGCTGCTTCAGGTCT
 35 GGGCCAGTGGGGCACTAGTGTCTTAGATGACAGCTTACTTCCATCTCC
 ACTG GGGACAGAAATAATCAATCAACTACTTGTGAACCTCTGCCCTCCTGAAGCTGGCTCC
 ATAGACACTTACAGCACAGAAATGGCATCTTCAATGGCGTGGTAATCCTCTGGCC
 CTGTCTCCCTGATTCTGGTCTTATTGAAATTATCTCACTGTTATCCAGATGCAGTCT
 40 GGGGAAGGGAGACTCAAGGCTTCCACCTGTGGCTCCACTTATTGTTGCTCT
 CTATGGTCAGGAATATTCACTACATGCGACCAACTCCAAGACTACAAAAGAA
 ACTGGATAAAATGATATCTGTTCTATACAGCGGTGACTCCAATGTA
 ACCCCCATAATTATAGCTTGAGGAACAAAGATGTCAAAGGGCTCTCAG
 GAAACTAGTTGGAGAAAGTGTCTCATAGGCAGTG (SEQ ID NO: 200)

AOLFR109 sequences:

MLRNGSIVTEFILVGQQSSSTRALLFALFLALYSLT
 MAMNGLIIFITSWTDPKLN
 SPMYFFLG
 HLSLLDVC
 FITTIPQMLIHLVVRDHIVSFV
 CCMQYFVFCVGA
 ECILLAFMAYDRYVAICY
 PLNYVP
 IISQKV
 CVRLVGTAWFFGLINGIFLEYIS
 FREP
 FRRDNHIESFFCE
 CAPIVIGLSCGD
 PQFSL
 WAIFADA
 IVVILSPM
 VLT
 VTSYV
 HILATILSKASSSGR
 GKTF
 STCASHLT
 VVIFLY
 TSAMFSYM
 50 PHSTHGPD
 DKDPF
 SLLYTI
 TPCMCN
 PIY
 SFRN
 KEIKEAM
 VRAL
 GRTRLA
 QPQSV (SEQ ID NO:
 201)

ATGCTAAGGAATGGCAGCATAGTGACGGAATTATCCTCGTGGCTT
 CAGCAGAGCTCCA
 CTTCCACACGAGCATTGCTCTTGCCTCTCTGGCCCTCTACAGCCT
 CACCATGGCCATG
 55 AATGGCCTCATCATCTTATCACCTCTGGACAGACCCCAAGCT
 CAACAGCCCCATGTACT
 TCTCCTCGGCCATCTGCTCTCTGGATGTCTGCTCATC
 ACCACTACCATCCCACAGATG

TTGATCCACCTCGTGGTCAGGGACCACATTGTCTCCTTGATGTTGCATGACCCAGATGT
 ACTTTGTCTTCTGTGTTGGTGGCCAGTGCATCCTCTGGCTTATGCCCTATGACCGT
 TATGTTGCTATCTGCTACCCACTTAACATATGTCGGCATATAAGCCAGAAGGTCTGTGCA
 GGCTTGTGGGAACTGCCTGGTCTTGGGCTGATCAATGGCATCTTCTGAGTATATTTC
 5 ATTCCGAGAGGCCCTCCGCAGAGACAACCACATAGAAAGCTTCTCTGAGGCCCCATA
 GTGATTGGCCTCTTGTGGGGACCCCTCAGTTAGTCTGTGGCAATCTTGGCGATGCCA
 TCGTGGTAATTCTCAGCCCATGGTGCTACTGTCACTCCTATGTGCACATCCTGGCCACC
 ATCCTCAGCAAAGCCTCCTCAGGTGGGGAGACTTCTACTTGTGCGCTCTCAC
 10 TGACTGTGGTCATCTCTACACTTCAGCTATGTTCTTACATGAACCCCCACAGCACA
 CATGGGCTGACAAAGACAACCTTCTCCCTCTGACACCATCATTACCCCCATGTGCA
 ACCCCATCATTATAGTTCCGAAACAAGGAAATTAGGAGGCCATGGTGAGGGCACTTG
 GAAGAACCAAGGCTGGCCAGCCACAGTCTGTCTAG (SEQ ID NO: 202)

AOLFR110 sequences:

15 MKIANNTVVTETILLGLTQSQDIQLLVFLILIFYLILPGNFLIIFTRSDPGLTAPLYLFLGNLAFL
 DASYSFIVAPRMLVDLSEKKVISYRGCTIQLFFLHFLGGEGLLLVMMAFDRYIAICRPLHCST
 VMNPRACYAMMLALWLGGFVHSIIQVVLILRLPFCGPQLDNFFCDVRQVIKLAETDMFVVEL
 LMVFNSGLMLLCFLGLLASYAVILCHVRAASEGKNAKAMSTCTTRVIIIILMF GPAIFTYMCFF
 RALPADKMOVSLFHTVIFPLMNPIMYTLRNQEVTSMKRLLSRHVVVCQVDFIIRN (SEQ ID NO:
 20 203)

ATGAAGATAGCAAACAACACAGTAGTGACAGAAATTATCCTCCTGGCTGACTCAGCTC
 AAGATATTCACTCTGGCTTGTGCTGATCTTAATTCTACCTTATCATCCTCCCTGGA
 AATTCTCATTATTCACCATAAAGGTCAAGACCTGGCTCACAGCCCCCTCTATTATT
 25 TCTGGCAACTTGGCCTCTGGATGCACTCCTACTCCTCATTGTGGCTCCAGGATTTGG
 TGGACTTCTCTGAGAAAAGGTAATCCTACAGAGGCTGCATCACTCAGCTCTTTT
 CTTGCACTTCTGGAGGGAGGGAGGGATTACTCCTTGTGATGGCCTTGACCGCTAC
 ATGCCCATCTGCCGCTCTGCACTGTCAACTGTCACTGAACCCTAGAGCCTGCTATGCAA
 TGATGTGGCTCTGTGGCTGGGGTTTGTCCACTCATTATCCAGGTGGCTCTCATCCTC
 30 CGCTTGGCTTTGTGGCCAAACCAGCTGGACAACCTCTGTGATGTCGACAGGTCA
 TCAAGCTGGCTTGACCGACATGTTGTGGAGCTCTAATGGCTTCAACAGTGGCCT
 GATGACACTCTGTGCTTCTGGGCTCTGGCTCTATGCAGTCATCCTCTGCCATGTC
 GTAGGGCAGCTCTGAAGGGAAAGAACAGGCCATGTCACGTGACCAACTCGTGTCTT
 35 TTATACCTCTATGTTGGACCTGCTATCTCATCACATGTGCCCTTCAGGGCCTTACCA
 GCTGACAAGATGGTTCTCTCTTACACAGTGATCTTCAATTGATGAATCCTATGATT
 TACCTTCGCAACCAGGAAGTGAAAACTCCATGAAGAGGTATTGAGTCGACATGTAGTC
 TGTCAAGTGGATTATAATAAGAAACTGA (SEQ ID NO: 204)

AOLFR111 sequences:

40 MCYTYLIFKEWTILIFYFSLLLFLQITPAIMANLTIVTEFILMGFSTNKNMCILHSILFLIYL CALM
 GNVLIMMTTLDHHLHTPVYFFLKNLSFLDLCLISVTAPKSIAINSLIHNNISFLGCVSQVFLSS
 ASAELLLLTVMMSFDRYTAICHPLHYDVMDRSTCVQRATVSWLYGGIAVMHTAGTFSLSYCG
 SNMVHQFFCDIPQLLAISCSENLIREIALILINVLD FCCFIVIITYVHFSTVKKIPSTEQSKAY
 SICLPHLLVVLFLSTGFIAYLKPASESPSILDAVISVFYTMPLPTFNPIYSLRNKAIKVALGMLIKG
 45 KLTKK (SEQ ID NO: 205)

ATGTGTTATATATATTAATATTAAGAGTGGACATTGATATTTACTTCAGTCAGTCTTCCT
 TTTCTGCAGATTACTCCTGCATAATGCCAAATCTCACAACTCGTACTGAATTATCCTTA
 TGGGGTTTCTACCAATAAAATATGTGCATTTGCATTCGATTCTCTTCTGTTGATTTAT
 50 TTGTGTGCCCTGATGGGAATGTCTCATTATCATGATCACAACCTTGACCATCATCTCC
 ACACCCCCCGTGATTCTCTGAAAGAATCTATCTTCTGGATCTCTGCCCTATTTCAGTC
 ACGGCTCCCAAATCTATGCCAATTCTTGATACACAACACTCCATTCTCATGGCTG
 TGTTTCCCAGGTCTTTGTGCTTCTCAGCATCTGCAGAGCTGCTCCTCTCACGGTGA
 55 TGTCTTGTGACCGCTATACTGCTATATGTCAACCTCTGCACTATGATGTCTCATGGACAGG
 AGCACCTGTGTCCTAAAGAGCCACTGTGCTTGGCTGATGGGGCTGATGCTGTGATGC
 ACACAGCTGGCACCTCTCCTTATCCTACTGTGGTCCAACATGGTCCATCAGTTCTCTGT

GACATTCCCCAGTTATTAGCTATTCCTGCTCAGAAAATTAAAGAGAAATTGCACTCA
 TCCITATTAATGTAGTTGGATTTCTGCTTATTGTCATCATCATTACCTATGTCAC
 GTCTCTCTACAGTCAAGAAGATCCCTCCACAGAAGGCCAGTCAAAAGCTACTCTATT
 5 GCCTTCCACACITGCTGGTGTGTATTCTTCCACTGGATTCTGCTTATCTGAAGCCA
 GCTTCAGAGTCTCCTCTATTGGATGCTGAATTCTGTTCTACACTATGCTGCC
 AACCTTAATCCCATTATATAACAGTTGAGAAACAAGGCCATAAAGGTGGCTGGGGATG
 TTGATAAAAGGGAAAGCTCACCAAAAGTAA (SEQ ID NO: 206)

AOLFR113 sequences:

10 MKFWHGFSHLNPMSFLLYLSPWINTTIQAWLNLCSSLALPVWAMSGAGFLSCCYWHTCSP
 SVVTCSSQSSDWMQLCTHLCCTLSVFPWSWCIGIQLPLSRCLIFSVRRKPFLQDASFRPTSS
 TPWGACECYLLTAMAYDRYLAICRPLHYPIIMTTLCAKMAAACWTCGFLCPISEVILASQLPF
 CAYNEIQHIFCDFPPLSLACKDTSANILVDFAINAFILITFFFIMISYARIIGAVLKIKTASGRKK
 AFSTCASHLAVVLIFFGSIIFMVYRLKKSYSLTLDRTLAIVYSLTPMVNPITYSLRNKEIIKAIR
 15 TIFQKGDKASLAHL (SEQ ID NO: 207)

ATGTGTCAACAAATCTTACGGGATTGCATTCTCTCATACATCATTTGTGCTTAACAGGA
 AAAAAGTCTCACTGTGATGCTGGTCCAGCTATAACCACACAATGAAACCCCTGCCTC
 20 CTTCCCTCTGTGGGTATCCCAGGACTGCAATCTCACATCTTGGCTGGCTATCTCACTGA
 GTGCCATGTACATCATAGCCCTGTTAGGAAACACCATCATCGTGAATCTGGATGGA
 TTCCACTCGGCATGAGCCCAGTGTATTGCTTCTGTGTTCTGGCTGCTGTGGACATTGTA
 TGGCCTCTCGGTGGTACCCAAGATGGTAGGCATCTCTGCTCAGGAGACAGCTCAATCAG
 CTTAGTGCTTGTTCACTCAGATGTTTTGTCACCTAGCCACAGCTGTGGAGACGGGG
 25 CTGCTGCTGACCATGGCTTGTACCGCTATGTAGCCATCTGCAAGCCTCTACACTACAAGA
 GAATTCTCACGCCCAAGTGTGCTGGGAATGAGTATGGCCATCACCATCAGAGCTATCAT
 AGCCATAACTCCACTGAGTTGGATGGTAGTCATCTACCTTCTGTGGCTCCAATGTGGIT
 GTCCACTCTACTGTGAGCACATAGCTTGGCAGGTTAGCATGTGCTGACCCCGTGC
 30 GCAGTCTCTACAGTCTGATTTGGCTCTCTTATGGGGCTCTGATGTGGCCTCATGCT
 GCCTCTATATCTTAATTCTCAAGGAGTATTGGCTCTCTCAAAGACTGCTCAGTTGAA
 AGCATTAAAGCACATGTGGCTCCCATGTGGGGTTATGGCTTGTACTATCTACCTGGATG
 GCATCCATCTATGCGGCCTGGTGGGGCAGGATGTAGTGCCTGACACCCAAGTCTGC
 TAGCTGACCTGTACGTGATCATCCCAGCCACCTAAATCCCACATCTATGGCATGAGGAC
 35 CAAACAACTGCGGGAGAGAATATGGAGTTATCTGATGCTGCTCTTGACCATTCCAAC
 CTGGGTTCATGA (SEQ ID NO: 208)

35

AOLFR114 sequences:

MERINHTSSVSEFILLGLSSRPEDQKTLFVLFLIVYLVTITGNLLILIAIRNPHIQTPMYFFLSFLS
 LTDICFTSVVPKMLMFLSEKKTISYAGCLTQMYFLYALGNSDSCLLAVMAFDRYVAVCDPF
 40 HYVTTMSHHHCVLLVAFSCSFPHLHSLLHLLLNLRTCDNSVIIHFLCDLSPVLKLSCSSIFVN
 EIVQMTEAPIVLVTRFLCIAFSYIRLTVLKIPISTSGRKAFSTCGFYLTVTLYGSIFCVYLQP
 PSTYAVKDHVATIVYTVLSSMLNPFIYSLRNKDLKQGLRKLMSKRS (SEQ ID NO: 209)

ATGGAAAGAATCAACCACACCAGCAGTGTCTCCGAGTTATCCTCCTGGACTCTCCTCCC
 45 GGCTGAGGACCAAAAGACACTCTTGTCTCTCATCGTGTACCTGGTCACCATAAC
 AGGGAACTGCTCATCATCTGGCATTGCTCAACCCCATCTCAGACCCCTATGTATT
 TCTTCTGAGTTCTGTCTCTCACTGATATTGCTTACAACAAGCGTTGCCCCAAGATG
 CTGATGAACCTCTGTCAGAAAAGAAGACCATCTCTATGCTGGGTGCTGACACAGATGT
 ATTTCTCTATGCCCTGGCAACAGTGACAGCTGCCCTCTGGCAGTCATGCCCTTGACCG
 50 CTATGTTGGCGCTGTGACCCCTTCCACTATGTCAACCACCATGAGCCACCAACTGTGTCC
 TGCTGGTGGCCTCTCTGCTCATTCCTCACCTCCACTCCTGACACACACTCTGCTG
 AATCGTCTCACCTCTGTGACTCCAATGTATCCACCACTTCTCTGTGACCTCAGCCCTGT
 GCTGAAATTGTCCTGCTTCCATATTGTCAATGAAATTGTGAGATGACAGAAGCACCT
 ATTGTTGGTGACTCGTCTCTGCTTGTGCTTCTTATATACGAATCTCACTACAGT
 55 TCTCAAGATTCCCTCTACTCTGGAAACGCAAAGCCTCTCCACCTGTGGTTTACCTCA
 CGTGGTGACGCTCTTATGGAAGCATCTCTGTGCTATTACAGCCCCATCCACCTAC
 GCTGTCAAGGACCACTGGCAACAATTGTTACACAGTTGTGATCCATGCTCAATCCTT

TTATCTACAGCCTGAGAAACAAAGACCTGAAACAGGGCCTGAGGAAGCTTATGAGCAAGA
GATCCTAG (SEQ ID NO: 210)

AOLFR115 sequences:

5 MEGFYLRRSHELQGMGKPGRVNQTTVSDFLLLGLSEWPEEQPLLFGIFLGMYLVTMVGNLII
LAISDPHLHTPMYFFLANLSLTDACFTSASIPKMLANIHTSQIISYSGCLAQLYFLLMFGGLD
NCLLAVMAYDRYVAICQPLHYSTSMSPQLCALMLGVCWVLNCPALMHTLLTRVAFCAQK
AIPHFYCDPSALLKLACSDTHVNELMIITMGLLFLTVPLLLIVFSYVRIFWAFFVISSPGGRWKA
10 FSTCGSHLTVVLLFYGSLMGVYLLPPSTYSTERESRAAVLYMVIPI TLNPFIYSLRNRDMDKEALG
KLFVSGKTFFL (SEQ ID NO: 211)

15 ATGGAAGGTTTTATCTGCGCAGATCACAGAACATACAAGGGATGGGAAAACCAGGCAGA
GTGAACCAAACCACTGTTCAAGACTTCCTCCCTAGGACTCTGAGTGGCCAGAGGAGC
AGCCTCTCTGTTGGCATCTCCTTGGCATGTACCTGGTACCCATGGTGGGAAACCTGCTC
ATTATCCTGGCCATCAGCTGACCCACACCTCCATACTCCCAGTGTACTCTCTGGCCAA
CCTGTCATTAACTGATGCTGTTCACTCTGCTCCATCCCCAAATGCTGGCCAACATTC
ATACCCAGAGTCAGATCATCTCGTATTCTGGGTGTCAGCAGCTATAATTCTCCCTATAG
TTTGGTGGCCATTGACAACCTGCGCTGGCTGTGATGGCATATGACCGCTATGTGGCCATCT
GCCAACCACTCCATTACAGCACATCTATGAGTCCCCAGCTGTGCACTAATGCTGGGTGT
20 GTGCTGGGTGCTAACCAACTGTCCTGCCCTGATGACACACACTGTTGCTGACCCCGCTGGC
CTGCTGCCCCAGAAAGCCATCCCTCATTTCTATTGTGATCCTAGTGTCTCCTGAAGCTTGC
CTGTCAGATACCCATGTAACAGAGCTGATGATCATCACCATGGCTGTGTTCTCACT
GTTCCCCCTCTGTCATGTCCTCTATGTCGCCATTCTCTGGGTGTTGTGATCTC
ATCTCCTGGAGGGAGATGGAAGGGCTTCTACCTGTGGTTCTACACGGTGGGTTCTG
25 CTCTCTATGGGTCTTATGGGTGTGATTACTCTCCATCAACTTACTACAGAGAG
GGAAAGTAGGGCTGCTGTTCTATATGGTGATTATCCTCACGCTAAACCCATTCAATTAT
AGCTTGAGGAACAGAGACATGAAGGAGGTTGGTAAACTTTGTCACTGGAAAAACA
TTCTTTATGA (SEQ ID NO: 212)

30 **AOLFR116 sequences:**

MDEANHSVVSEFVFLGLSDSRKIQLLFLFFSVFYVSSLGNLLIVLTVTSRPLQSPMYFLAN
LSIINLVFCSSAPKMTYDLFRKHKTISFGCVVQIFFIAVGGETMVLIIAMAFDRYVAICKPLH
YLTIMNPQRCLFLVISWIIGIHSVIQLAFVVDLLFCGPNELDFFCDLPRFIKLACIETYTLGFMV
35 TANSGFISLASFLILISYIFILVTVQKKSSGGIFKAFSMSAHLVIVVVLVFGPLIFFYIFPFPTSHLD
KFLAIFDAVITPVLPNVITYTFRNKEMMVAMRRRCSQFVNYSKIF (SEQ ID NO: 213)

40 ATGGATGAAGCCAATCACTCTGTGGCTCTGAGTTGTGTTCTGGACTCTCTGACTCGC
GGAAGATCCAGCTCTCCCTTCTCTTCAGTGTCTATGTATCAAGCCTGATGGGA
AATCTCCTCATTTGCTAACTGTGACCTCTGACCCCTGTTACAGTCCCCATGTACTCCT
GCTGCCAACCTTCCATCATCAATTGGTATTTGTTCTCCACAGCTCCAAGATGATT
ATGACCTTTTCAAGAACAGACATCTCTGGGGCTGTGAGTCAGATCTCTT
TATCCATGCACTGGGGAACTGAGATGGTGTGTCATAGCCATGGCTTGACCGATAT
GTGCCATATGTAAGCTCTCCACTACCTGACCACATGAACCCACAAAGGTGCATTGTT
TTTAGTCATTCTGGATTATAGGTATTACTCACTCAGTGATTCACTGAGTTGGCTTTGTGTA
45 GACCTGCTGTTCTGGCCCTAATGAATTAGATAGTTCTTGTGATCTCTCGATTAT
CAAACGGCTTGCATAGAGACCTACACATTGGGATTATGGTTACTGCCAATAGTGATT
ATTCTCTGGCTCTTTTAATTCTCATATCTTACATCTTATTGGTGTGACTGTCAG
AAAAATCTCAGGTGGTATATTCAAGGCTTCTCATGCTGTCAGCTCATGTGATTG
50 TGGTTTGGCTTGGCCATTAATCTTCTATATTCCATTTCCACATCACATCTG
ATAAATTCTGCCATCTTGATGCACTTCACTCCGTTGAATCCAGTCATCTAATCT
TTTAGAAATAAAGAGATGATGGTGGCAATGAGAAGACGATGCTCTCAGTTGTGAATTAC
AGTAAAATCTTTAA (SEQ ID NO: 214)

AOLFR117 sequences:

55 MNNTIVFVIKIQIEKSDLKYRAISLQEISKISLLFWVLLLISRLLLAMTLGNSTEVEFYLLGFGA
QHEFWCILFIVFLLIVTSIMGNNSGIILLINTDSRFQTLTYFFLQHLAFVDICYTSAITPKMLQSFT

EENLILFQGCVIQFLVYATFATSDCYLLAMMAVDPYVAICKPLHYTVIMSRTVCIRLVAGSYI
 MGSINASVQTGFTCSLSFCKSNSINHFFCDVPPIALSCSNVDINIMLLVVFGSNLIFTGLVVIFS
 YIYIMATILKMSSSAGRKKSFSTCASHLTAVTIFYGTLSYMQLQSHSNNSQENMKVAFIFYGTVI
 PMLNPLIYSLRNKEVKEALKVIGKKLF (SEQ ID NO: 215).

5 ATGAATAACACTATTGTATTGTCAAAAAATACAAATAGAAAAAAGTGACITGAATATA
 GAGCCATTCAATTGCAAGAAATCTCAAAGAATTCCCTCTTCTGGGTCTTCTCTGGTC
 ATTCTAGACTTTACTAGCCATGACACTAGGAAACAGCACTGAAGTCATGAATTCTATC
 TTCTGGGATTGGTCCCCAGCATGAGTTGGTGTATCCTCTCATTGTATTCCCTCTCATC
 10 TATGTGACCTCCAATGGTAATAGTCCAATACTTACTCATCAACACAGATTCCAGAT
 TTCAAAACACTCACCGTACTTTCTACAACATTGGCTTTGTGATATCTGTTACACTCT
 GCTATCACTCCCAAGATGCTCCAAGCTCACAGAAGAAAAGAATTGATATTTCAGG
 GCTGTGTGATACAATTCTTAGTTATGCAACACATTGCAACCAGTGACTGTTATCCCTGGCT
 ATGATGGCAGTGGATCCTTATGTTGCCATCTGTAAGCCCCCTCACTATACTGTAATCATGT
 15 CCCGAACAGCTGCATCCGTTGGTAGCTGGTACATCATGGGCTCAATAATGCCCTC
 TGTACAAACAGGTTTACATGTTCACTGCTCTGCAAGTCCAATAGCATCAATCACTTT
 TCTGTGATGTTCCCCCTATTCTGCTCTTACATGCTCAATGTTGACATCAACATCATGCTA
 CTGTTGTCTTGTTGGGATCTAACATTGATATTCACTGGGTTGGTGTCACTTTCCCTACAT
 20 CTACATCATGGCCACCATCCTGAAAATGCTTCTAGTGCAGGAAGGAAAAATCCTCTCA
 ACATGTCCTCCCACCTGACCCGAGTCACCAATTCTATGGGACACTCTTACATGTT
 GCAGTCTCATTCTAATAATTCCCAGGAAAATATGAAAGTGGCTTATATTATGGCACA
 GTTATTCCCAGTTAAATCCTTAATCTATAGCTTGAGAAAAGAAGTAAAGAAGCTT
 TAAAAGTGTAGGGAAAAGTTATTAA (SEQ ID NO: 216)

25 AOLFR118 sequences:

MNHMSASLKISNSSKFQVSEFILLGFPGIHSWQHWLSPLALLYLSALAANTLILWWQNPSLQQ
 PMYIFLGLCMVDMGLATTIPKILAIFWFDKVIISLPECFAQIYAIHFFVGMEGILLCMADFDRY
 VAICHPLRYPSPIVTSSLILKATLFLMVLRNGLFVTPVPVLAQRDYCSKNEIEHCLCSNLGVTSIA
 30 CDDRRPNSICQLVLAWLGMSGDLSLIILSYILYSVRLNSAEAAAKALSTCSSHLTLILFFYTIV
 VVISVTHLTEMKATLIPVLLNVLHNIIPPSLNPTVYALQTKEAFAQKVLFALTKEIRS (SEQ ID
 NO: 217)

ATGAATCATATGTCATCTCTCAAAATCTCAAATAGCTCCAAATTCCAGGTCTGAGTT
 CATCTGCTGGGATTCCCGGCATTACAGCTGGCAACACTGGCTATCTGCCCCCTGGCA
 35 CTACTGTATCTCTCAGCACTTGTGCAAAACACCCATCCTCATCATCTGGCAGAACCC
 TTCTTACAGCAGCCCATGTATAATTCTTGGCATCCTCTGTATGGTAGACATGGGCTGG
 CCACTACTATCATCCCTAACATCCTGGCCATCTCTGGTTGATGCCAAGGTTATTAGCCTC
 CCTGAGTGCTTGCTCAGATTATGCCATTCACTCTTGTGGCATGGAGCTGGTATCCT
 ACTCTGCATGGCTTGATAGATATGTGGCTATTGTCACCCCTTCGCTATCCATCAATTG
 40 TCACCAAGTTCTTAATCTTAAAGCTACCCCTGTCATGGTGTGAGAAATGGCTTATTGTC
 ACTCCAGTGCCTGTGCTGAGCACAGCGTGATTATTGTCACCAAGAATGAAATTGAACACT
 GCCTGTGCTCTAACCTGGGTACAAGCCTGGTTGTGATGACAGGAGGCCAACACAGCAT
 TTGCCAGTTGGTTCTGGCATGGCTGGAAATGGGAGTGTCTAAAGCTTATTACTGTCA
 TATATTGATTCTGACTCTGACTTAGACTGAACCTCAGCTGAAGCTGCAGCCAAGGCC
 45 TGAGCACTGTAGTTACATCTCACCCCTCATCCTTCTTACACTATTGTTGAGTGATT
 TCAGTGAATCTGACAGAGATGAAGGCTACTTGATTCCAGTTCTACTTAATGTGTG
 ACAACATCATCCCCCTCCCAACCCACAGTTATGCACTCAGACACCAAGAAACTAG
 GGCAGCCTCCAAAAGGTGCTGTTGCCCTACAAAAGAAATAAGATCTAG (SEQ ID NO:
 218)

50

AOLFR119 sequences:

MPLFNSLCWFPTIHVTSSFILNGIPGLERVHVWISLPLCTMYIIFLVGNLGLVYLIYYEESLHHP
 MYFFFGHALSIDLLTCTTLPNALCIFWFSLKEINFNACLAQMFFVHGFTGVESGVLMALD
 RYIAICYPLRYATTLNPIIAKELATFLRGVLLMIPFFFLVKRLPFCQSNIIISHTYCDHMSVVKL
 55 SCASIKVNVIYGLMALLIGVFDICCISLSYTLKAAISLSSDARQKAFSTCAHISAIITYVPA

FFTFFAHRFGGHTIPPSLHIVANLYLLLPTLNPIVYGVTKQIRKSVIKFFQGDKGAG (SEQ ID NO: 219)

5 ATGCCTCTATTAATTCAATTGCTGGTTCCAACAATTGACTGACTCCTCCATCTTTAT
 TCTTAATGGAATAACCTGGTCTGAAAGAGTACATGTATGGATCTCCCTCCACTCTGCACA
 ATGTACATCATCTCCCTGTGGGAATCTTGGTCTTGTGTACCTCATTATTATGAGGAGTC
 CTTACATCATCCGATGTATTCTGGCATGCTCTCCCTCATTGACCTCCCTACCTG
 CACCACCACTCTACCCAAATGCACTCTGCATCTCTGGTCAGTCTCAAAGAAATTAACTTCA
 ATGCTGCTTGGCCCAGATGTCATTGTCATGGGTACAGGTGTGGAGTCTGGGTGCT
 10 CATGTCATGGCTAGACCGCTATAGCCATTGCTACCCCTTGCCTATGCTACACAC
 TCACCAACCCATATTGCCAAGGCTGAGCTTGCCACCTTGCAGGGGTGATTGCTGAT
 GATTCTTCCCATTCTGGTAAGCGTTGCCTTGCCTAACAGCAATTATCTCCATA
 CGTACTGCGACCACATGTCAGTAAAGCTATCTGTGCCAGCATCAAGGTCAATGTAAT
 CTATGGTCTAATGGTTGCTCTGTATTGGAGTGTGACATTGTTGATATCTTGTCTT
 15 ACACITTGATCCTCAAGGCAGCGATCAGCCTCTTCATCAGATGCTCGGCAGAAGGCTT
 CAGCACCTGCACTGCCATATATCTGCCATCATCACCTATGTCAGCATTCTTCACTT
 TCTTGGCCACCGTTGGGGACACACAATTCCCCCTCTTCACATCATTGTGGCTAAT
 CTTATCTCTTCTCCCCACTCTAAACCCATTGTTATGGAGTAAAGACAAAACAGAT
 ACGCAAGAGTGTCAAAAGTCTCCAGGGTATAAGGGTGCAGGTGA (SEQ ID NO: 220)

20

AOLFR120 sequences:

MQPYTKNWTQVTEFVMMGFAGIHEAHLLFFILFLTMYLFTLVENLAILVVGLDHRLRPMYF
 FLTHLSCLIEWTYSVTPKMLAGFIGVDGGKNISYAGCLSQLFIFTFLGATECFLLAAMAYDRY
 VAICMPLHYGAFVSWGTCIRLAAACWLVGFILPILPIYLLSQLTCFCGPVIDHFSIASPLLALS
 25 CSDVTWKETVDFLVSALVLAASSMVIAVSYGNIVWTLHIRSAERWKAFTCAAHLTVVSLF
 YGTLFFMYVQTKVTSSINFNKVVSVFYSVVTPLNPLIYSLRNKEVKGALGRVFSLNFWKGQ
 (SEQ ID NO: 221)

30

ATGCAACCATAACCAAAACTGGACCCAGGTAACTGAATTGTCATGATGGGCTTGCTG
 GCATCCATGAAGCACACCTCCCTTCATACTCTCCTCACCAGTACCTGTTCACCTG
 GTGGAGAATTGGCCATCATTTAGTGGTGGTTGGACCACCGACTACGGAGACCCATGT
 ATTTCTCCTGACACACTTGTCTGCCCTGAATCTGGTACACTCTGTTACAGTGCCAAG
 ATGCTGGCTGGTTTATGGGGTGGATGGCAAGAATATCTCTTATGCTGGTGCCTAT
 CCCAGCTTTCATCTCACCTTCTGGGCAACTGAGTGTCTTCTACTGGCTGCCATGGCC
 35 TATGATCGTTATGTGGCCATTGATGCCCTCCACTATGGGCTTTGTGTCCTGGGCAC
 CTGCATCCGCTGGCAGCTGCCGTGGTAGGTTCTCACACCCATCTGCCAATCT
 ACCTCTGTCTCAGCTAACATTGTGGCCAAATGTCATTGACCATTCTCTGTGATGCC
 TCACCCCTGCTAGCCITGTCGTGCTCAGATGTCACTTGGAAAGGAGACTGTGGATTCTGG
 TGTCTCTGGCTGTGCTACTGGCTCCCTATGGTATTGCTGTGCTATGGCAACATCGTC
 40 TGGACACTGTCGACATCCGCTCAGCTGCTGAGCGCTTCTATGGCACTCTTCTTATGTATGTCAG
 CTCACCTGACTGTGGTGAGCCCTTCTATGGCACTCTTCTTATGTATGTCAG
 GTGACCTCCATCAACTCAACAAGGTGGATCTGCTTACTCTGTTGTCACGCCAT
 GCTCAATCCTCTCATCACAGTCTAGGAACAAGGAAGTGAAGGGAGCTGGTCCAGTC
 TTTCTCAACTTTGGAAGGGACAGTGA (SEQ ID NO: 222)

45

AOLFR121 sequences:

MKRKNFTEVSEFIFLGFSFGKHQITLFVVFLTVYILTLVANIIIVTICIDHHLHTPMYFFLSMLA
 SSETVYTLTVPRMILSLLFHNPQISLAGCATQMFFFVILATNNCFLLTAMGYDRYVAICRPLRY
 TVIMSKGLCAQLVCGSGIGLTMVLHVTAMFNLPFCGTVVDHFFCDIYPVMKLSIDTTINEII
 50 NYGVSSFVIFVPIGLFISYVLVISSILQIASAEGRKKTFATCVSHLTIVHCGASIAYLKPSES
 SIEKDLVLSVTYIITPLNPVVYSLRNKEVKDALCRVVGRNIS (SEQ ID NO: 223)

55

ATGAAGAGAAAGAACCTCACAGAAGTGTCAAATTCAATTCTGGGATTCTAGCTTG
 GAAAGCATCAGATAACCCCTTGTGGTTTCTTAACCTGTCACATTAACTCTGGTTGCT
 AACATCATCATTGTGACTATCATCTGCATTGACCATCATCTCCACACTCCCATGTATTCTT
 CCTAAGCATGCTGGTAGTCAGAGACGGTGTACACACTGGTCATTGTGCCACGAATGCTT

TTGAGCCTCATTTTCAAAACCTATCTCCCTGGCAGGCTGTGCTACACAAATGTTCTT
 TTTGTATCTGGCCACTAATAATTGCTTCCTGCTTACTGCAATGGGGTATGACCGCTATG
 TGGCCATCTGCAGACCCCTGAGATACTGTCATCATGAGCAAGGGACTATGTGCCAGCT
 GGTGTGTGGGTCTTGGCATGGTCTGACTATGGCAGITCTCCATGTGACAGCCATGTT
 5 AATTGCGGTTCTGGCACAGTGGTAGACCCTTCTTGTGACATTACCCAGTCATGA
 AACTTCTTGCAATTGATACCACTATCAATGAGATAATAAAATTATGGTGTAAAGTTCA
 GATTITGTGCCATAGGCCTGATATTATCTCCTATGTCTTGTATCTCTCCATCCTC
 AAATTGCCCTAGCTGAGGGCCGGAAGAAGACCTTGCCACCTGTGTCTCCCACCTCACTGT
 GGTTATGTCCACTGTGGCTGTGCCCTCATTGCCAACCTCAAGCCGAAGTCAGAAAGTTCA
 10 ATAGAAAAAGACCTTGTCTCTCAGTGAACGTACACCATCATCACTCCCTGCTGAACCTG
 TTGTTTACAGTCTGAGAAACAAGGAGGTAAAGGATGCCCTATGCAGAGTTGTGGCAGAA
 ATATTCTTAA (SEQ ID NO: 224)

AOLFR122 sequences:

15 MEWENQTLVEFFLKGHSVHPRLELLFFVLIFIMYVILLGNGLILISILDPHLHTPMYFFLGNL
 SFLDICYYTSIPSTLVSFLSERKTISFSGCAVQMFLGLAMGTTECVLLGMMAFDRYVAICNPLR
 YPIIIMSKNAVPMAVGWSWFAGIVNSAVQTTFVVQLPFCRKNVINHSCEILAVMKLACADISGN
 EFLMLVATILFTLMPLLLIVISYSLISSLKIHSEGRSKAFSTCSAHLTVVIIFYGTILFMYMKPKS
 KETLNSDDLDATDKIISMFYGVMTPMNNPLIYSLRNKDVKEAVKHLPNRFFSK (SEQ ID NO:
 20 225)

ATGGAATGGGAAAACCAAACCTCTGGGAATTCTGAAGGGACATTGTTCA
 CAAGGCTTGAGTTACTCTTGTGCTAATCTCATAATGTATGTGGTCATCCTCTGGGG
 AATGGTACTCTCATTTAATCAGCATCTGGACCTCACCTCACACCCCTATGTA
 25 TCTGGGAACCTCTCCTCTGGACATCTGCTACACCAACCCACTTATTCCTCCACACTAG
 TGAGCTTCCCTTCAGAAAGAAAGACCATCTGGCTGTGCAGTGCAGATGTCTT
 GGCTTGGCATGGGACAACAGAGTGTGCTTGGCATGATGGCCTTGACCGCTATG
 TGGCTATCTGCAACCCCTGAGATATCCATCATGAGCAAGAATGCCATGTACCCAT
 GGCTTGGGCTGGTTGAGGGATTGCAACTCTGCACTACAAACTACATTGAGTA
 30 CAATTGCCCTTCTGCAAGGAAGATGTCAATCATCTCATGTGAAATCTAGCTGT
 GAAGTTGGCCTGTGCTGACATCTCAGGAATGAGTCTCTCATGCTTGTGCCACAATATTG
 TTCACATTGATGCCACTGCTCTGATAGTTATCTTACTCATTAATCATTCAGCATT
 CAAGATTCACTCCTGAGGGAGAACGAAAGCTTCTCACCTGCTCAGCCCATGTACT
 GTGGTCATAATATTCTATGGGACCATCTCTCATGATATGAAGCCAAAGCTAAAGAGA
 35 CACTTAATTCAAGATGACTTGGATGCTACCGACAAATTATATCCATGTTCTATGGGGTGT
 GACTCCCATGATGAATCTTAACTACAGTCTTAGAAACAAGGATGTGAAAGAGGAGT
 AAAACACCTACCGAACAGAACAGGTTCTTAGCAAGTGA (SEQ ID NO: 226)

AOLFR123 sequences:

40 MYRFTDFDVSNISIYLNHVLFYTTQQAGDLEHMETRNSAMTEFLVGLSQYPELQLFLFLCL
 IMYMIILGNSLIIITLDSRLHTPMYFFLGNLNSFLDICYTSSIPPMLIIFMSERKSISFIGCALQM
 VVSLGLGSTEVCVLLAVMAYDHVAICNPLRYSIIMNGVLYVQMAAWSWIIGCLTSLLQTVLT
 MMLPFCGNVIDHITCEILALLKLVCSDITINVLMVTNIVSLVILLLIFISYVFILSSILRNCAE
 GRKKAFSTCSAHSIVVLFYGSALFMYMKPKSKNTNTSDEIIGLSYGVSPMLNPYSLRNKEV
 45 KEAVKKVLSRHLHLLKM (SEQ ID NO: 227)

ATGTACAGATTACAGATTGTATCAAACATTCAATTACCTGAATCATGTCTT
 CTATACTACCCAGCAGGCAGGTGACCTAGAACACATGGAGACAAGAAATTACTCTGCCAT
 GACTGAATTCTTCTGGTGGGGCTTCCAATATCCAGAGCTCCAGCTTCTGTTCTGC
 50 TCTGCCCTCATCATGTACATGATAATCTCCTGGAAATAGCCTCTCATTATCATCACCAC
 TTGGATCTCGCCTCCATACTCCCATGTATTCTTCTGGAAACCTCTCATTCTGGACAT
 CTGTTACACATCCTCATCCATTCCCAATGCTTATTATATTATGTCTGAGAGAAAATCCA
 TCTCCTTCATTGGCTGTGCTGAGATGGTTGTGCTTGGCTGGCTCCACTGAGTGT
 GTCCCTCTGGCTGTGATGGCCTATGACCACTATGTGGCCATCTGCAACCCACTGAGGTACT
 55 CCATCATCATGAACGGAGTGTGTATGTCAAATGGCTGCATGGCTCTGGATCATAGGCTG
 TCTGACCTCCATTGCAAACAGTCTGACAATGATGTGCCTTCTGTGGAAATAATGTC

ATTGATCATATTACCTGTGAAATTGGCCCTCTAAAATGTTGTCAGATATCACCAT
 CAATGTGCTATCATGACAGTGACAAATATTGTTCACTGGTATTCTCTACTGTTAATT
 TCATCTCCTATGTGTTATTCTCTTCCATCCTGAGAAATTAAATGTGCTGAGGGAAAGAAAG
 AAAGCCTCTACCTGTTAGCGCACTCGATTGTTGTCATCTTATTCTACGGTCAGCCCT
 5 TTATGTACATGAAACCCAAGTCAAAGAACACTAATACATCTGATGAGATTATTGGGCTG
 TCTTATGGAGTGGTAAGCCCAATGTTAAATCCCATCATCTATAGCTCAGGAATAAAGAGG
 TCAAAGAGGCTGTAAGAAAAGCCTGAGCAGACATCTGCATTATTGAAAATGTGA (SEQ
 ID NO: 228)

10 AOLFR124 sequences:

MNHSVVTEFIILGLTKKPELQGIIFLFLIVYLVAFLGNMLIAKIYNNTLHTPMYVFLLTLAVV
 DIICTSIIPKMLGTMLTSENTISYAGCMSQLFLFTWSLGAEMLFTIMAYDRYVAICPLHYST
 VMNHHMCVALLSMVMAIAVTNSWVHTALIMRLTFCGPNRIDHFFCEIPPLLALSCLSPVRINEV
 15 MVYVADITLAIGDFILTCSISYGFIVAILRIRTVEGKRKAFSTCSSHLTVVLYSPVIYTYIRPASS
 YTFERDKVVAALYTLVTPTLNPMVSYFQNREMQAGIRKVFAFLKH (SEQ ID NO: 229)

ATGAATCACAGCGTTGTAAGTTCATTATTCTGGGCCTCACCAAAAAGCCTGAACCTCC
 AGGGAAATTATCTCCTCTTTCTCATTTGCTATCTGTCATCTGTTCTGGCAACATGCTC
 ATCATCATTGCCAAAATCTATAACAACACCTTGACATACGCCATGTATGTTCTCTGAC
 20 ACTGGCTGTTGAGACATCATCTGCACAACAAGCATCATACCGAAGATGCTGGGACCAT
 GCTAACATCAGAAAATACCATTTCATATGCAGGCTGCATGTCCCAGCTCTTGTAC
 TGGCTCTGGGAGCTGAGATGGTCTCITCACCACATGGCCTATGACCCTATGTGGCCA
 TTGTTTCCCTCTTCAATTACAGTACTGTTATGAACCACCATATGTGTGAGCCTTGCTCAGC
 ATGGTCACTGGCTATTGCACTGACCAATTCTCTGGGTGCACACAGCTCTTATCATGAGGTTGA
 25 CTTTCTGTGGGCAAACACCATTGACCACTCTCTGTGAGATACCCCCATTGCTGGCTTG
 TCCGTAGCCCTGTAAGAACATCAATGAGGTGATGGTGTATGTTGCTGATATTACCCGGCCA
 TAGGGGACTTTATTCTACCTGCATCTCTATGGTTTATCATGTTGCTATTCTCCGTATC
 CGCACAGTAGAAGGCAAGAGGAAGGCCCTCTCAACATGCTCATCTCACAGTGGTG
 ACCCTTACTATTCTCCTGTAATCTACACCTATATCCGCCCTGCTCCAGCTACATATTGA
 30 AAGAGACAAGGTGGTAGCTGCACTCTATACTCTTGACTCCACATTAACCGATGGTG
 TACAGCTTCCAGAATAGGGAGATGCGAGGAATTAGGAAGGTGTTGCAATTCTGAAA
 CACTAG (SEQ ID NO: 230).

AOLFR125 sequences:

35 MTNQTQMMEFLVRFTEFWVLLRLHALLFSIYLTAVLMLNLVILLMILDHRLHMAMYFFLRH
 LSFLDLCLISATVPKSILNSVASTDSISFLGCVLQLFLVVLLAGSEIGLTAMSYDRYAAICPLHC
 EA VMSRGLCVQLMALSWLNRGALGLLYTAGTFSLNFGSDELHQFFCDVPA LLKLTCSEHAI
 ISVSAIGVCYAFSCLCVCIIVSYVYIFSAVLRISQRQRSKAFSNCVPHLIVVTVFLVTGAVAYL
 KPGSDAPSILLLVSFVSYVAPP TLNPVIYCLKNKDiksalskVlwNVRSSGMKDD (SEQ ID
 40 NO: 231)

ATGACCAATCAGACACAGATGATGGAATTCTTGCTGTGAGATTACTGAGAATTGGGTGC
 TCCTGAGGCTGCATGCTTCTCTACTGATCACCTCACGGCTGTGCTGATGAATTAA
 GTCATCATTCTCCATGATTCTGGACCATCGTCTCCACATGGCAATGTACTTTCTCCG
 45 ACATTGCTCTCTAGACCTGTGCTCATCTGCCACAGTCCCCAAATCCATCCTCAACT
 CTGTCGCTCCACTGACTCCATCTCTCTGGGGTGTGTTGCTGAGCTCTCTGGGTA
 CTGCTGGCTGGATCAGAGATTGGCATCCACTGCCATGTCTATGACCCTATGCTGCCA
 TCTGCTGCCCTACACTGTGAGGCTGTATGAGCAGAGGGCTGTGTCAGTTGATGGC
 TCTGCTGGCTCAACAGAGGGCTTGGGACTCTGTACACAGCTGGAACATTCTCTG
 50 AATTTTATGGCTGTGAGCTACATCAGTCTCTGCGATGTCCTGCCCTACTAAAGCT
 CACTTGTCTAAAGAACATGCCATCATTAGTGTGAGTGTGGCATTGGGTCTGTTATGCA
 TTTCATGTTAGTTGCTTGTAGTTCTATGTGACATTCTCTGCTGTGTTAAGGAT
 ATCACAGAGACAGAGACAATCCAAAGCCTTCCAACGTGTGCTCACCTCATTGTC
 ACTGTGTTCTGTAACAGGTGCTGTGTTATTAAAGCCAGGGCTGTGATGCACCTCTAT
 55 TCTAGACTTGCTGGTGTGTTCTATTCTGTCGACCTCCAACCTGAACCTGTTATCT

ACTGTCGAAGAACAGGACATTAAATCCGCTCTGAGTAAAGTCCTGTGGAATGTTAGAA
GCAGTGGGTAATGAAAGATGACTAA (SEQ ID NO: 232)

AOLFR126 sequences:

5 MFLYLCFIFQRTCSEEMEEENATLLTEFVLTGFLHQPDCKIPLFLAFLVIYLITIMGNLGLIVLIW
KDPHLHPIPMYLFGLSALFVDASLSSTVTPKMLINFLAKSKMISLSECMVQFFSLVTVTTECFLL
ATMAYDRYVAICKALLYPVIMTNELCIQLLVLFIGGLHALIHEAFSFRLTFCNSNIIQHFYCDII
PLLKISCIDSSINFMLVFIFAGSVQVFTGILISYTIILFILEKKSIKGIRKAVENTCGAHLLSVSLY
YGPLTFKYLGSASPQADDQDMMESLFYTIVPLLNPMTYSLRNKQVIASFTRKMFKNV (SEQ ID
10 NO: 233)

ATGTTCTTACCTTGCTTCATTTTCAGAGGACATGCAGTGAGGAGATGGAAGAGGAAA
ATGCAACATTGCTGACAGAGTTGTTCTCACAGGATTTACATCAACCTGACTGTAAAAT
ACCGCTCTCCTGGCATTCTGGTAATATATCTCATCACCACATGGGGAACTCTGGICTAA
15 TTGTTCTCATCTGGAAAGACCTCACCTCATATCCAATGTACTTATTCTTGGGAGTTA
GCCTTGTGGATGTTCTCGTATCATCACAGTGACTCCGAAGATGCTGATCAACTTCTTAG
CTAAGAGTAAGATGATACTCTCTCTGAATGCATGGTACAATTTCCTTGTAAACCACT
GTAACCCACAGAATTTCTTCTGGCAACAATGGCATATGATCGTATGTAGCCATTGCA
AAGCTTACTTATCCAGTCATTATGACCAATGAACATGCAATTCTCAGATTAACCTCTG
20 TTATAGGTGGCCTCTTCATGCTTAATCCATGAAGCTTCTCATTCTCAGATTAACCTCTG
TAATTCCAACATAATACAACACTTTACTGTGACATTATCCCATTGITAAGATTTCTGT
CTGATTCCTCTATTAACTTCTAATGGTTTATTTTCGCAGGTTCTGTTCAAGTTTACCA
TTGGAACATGAAAAGCTGTCCTCACCTGTGGGGCTATCTCTATCTGTATCTTAACT
25 AAAGGGATACGAAAAGCTGTCCTCACCTGTGGGGCTATCTCTATCTGTATCTTAACT
ATGGCCCCCTCACCTCAAATATCTGGCTCTGCATCTCCGCAAGCAGATGACCAAGATAT
GATGGAGTCTTATTTACACTGTCAAGTTCCTTATTAACATCCCAGTACAGCCTGA
GAAACAAGCAAGTAATAGCTCATTCAACAAATGTTCAAAAGCAATGTTAG (SEQ ID
NO: 234)

AOLFR127 sequences:

MSNEDMEQDNNTLLTEFVLTGLTYQPEWKMPFLVFLVIYLITIVWNGLIALIWNDPQLHIPM
YFFLGSLAFVDAWISSTVTPKMLVNFLAKNRMISLSECMIQFFSFAGGTTECFLLATMAYDRY
VAICKPLYPVIMNNSLCIRLLAFSLGGFLHALIHEVLFRLTFCNSNIIHHFYCDIPLFMISCTD
PSINFLMVFILSGSIQVFTIVTIVLNSYTFALFTILKKSVRGVRKAFSTCGAHLLSVSLYYGPLIF
35 MYLRPASPQADDQDMIDSVFYIIPLLNPMTYSLRNKQVIDSFTKMFVN (SEQ ID NO: 235)

ATGTCGAATGAGGACATGGAACAGGATAATACAACATTGCTGACAGAGTTGTTCTCACA
GGACTTACATATCAGCCAGAGTGGAAATGCCCTGTTCTGGTCTTGGTATCTAC
40 TCATCACTATTGTGGAACCTGGTCTGATTGCTCTATCTGAATGACCCACAACCTCAC
ATCCCCATGTACTTTCTGGAGTTAGCCTTGTGATGCTGGATATCTTCCACAGT
AACTCCAAAATGTTGGTAAATTCTGCCAAAACAGGATGATATCTCTGCTGAATGC
ATGATTCAATTCTCTGCAATTGGGAACTACAGAATGTTCTCTGGCAACAAAT
GGCATATGATCGTATGTAGCCATATGCAAACCTTACTATATCCAGTATTGAACAAAT
45 TCACTATGCATACGGCTGTTAGCCTCTCATTTAGGTGGCTCCTCATGCCCTAAATTCA
TGAAGTCCTTATTCAGATTAACCTCTGCAATTCTAACATAACATCATTACTGTG
ATATTATACCACTGTTATGATTCTCTGACTGACCCCTCTATTAAATTCTAATGGTTTTA
TTTGTCTGGCTCAATTCAAGGTATTCCACATTGTGACAGTTCTAATTCTACACATTGCT
50 CTTTCACAATCTAAAAAGAAGTCTGTTAGAGGCGTAAGGAAAGCCTTCCACCTGTG
GAGCCCATCTTATCTGTCTTATATTAGGCCACTTATCTCATGTATTGCGCCCT
GCATCTCCACAAGCAGATGACCAAGATATGATAGACTCTGCTTTATACAATCATAATT
CTTGTAAATCCCATTATCTACAGTCTGAGAAATAACAAGTAATAGATTCAACAAA
AATGGTAAAAGAATGTTAG (SEQ ID NO: 236)

AOLFR128 sequences:

55 METQNLTIVTEFILLGLTQSQDAQLLVFVLVLIFYLILPGLNFIIFTIKSDPGLTAPLYFFLGNL
LLDASYSFIVVPRMLVDFLSEKVKVISYRSCITQLFFLHFLGAGEMFLLVVMAFDYIAICRPLHY

STIMNPRACYALSLVLWLGGFIHSIVQVALILHLPFCGPQNQLDNFFCDVPQVIKLACTNTFVEL
LMVSNSGLLSLLCFLGLLASYAVILCRIREHSSEGKSKAISTCTTHIIFLMFGPAIFIYTCPFQAFP
ADKVVSFLHTVIFPLMNPVIYTLRNQEVKASMRKLLSQHMFC (SEQ ID NO: 237)

- 5 ATGGAAACACAGAACCTCACAGTGGTACAGAACATTCACTTCTGGTCTGACCCAGTC
AAGATGCTCAACTCTGGTCTTGCTAGTCTTAATTCTACCTTATCATCCTCCCTGGA
AATTCTCATCATTACCCATAAGTCAGACCCCTGGCTCACAGCCCCCTATTTCT
TCTGGCAACTTGCCCTACTGGATGCATCCTACTCCTTATTGTGGTCCAGGATTTG
GTGGACTCCTCTGAGAAGAAGGTAATCTCTATAGAAGCTGCATCACTCAGCTTT
10 TCTGCAATTCTGGAGCGGGAGAGATGTCCTCTCGTGTGATGGCTTGAACCGCTAC
ATCGCCATCTGCCGCCCTTACACTATTCAACCATATGAACCCTAGAGCCTGCTATGCAT
TATCGTGGTCTGTGGCTGGGCTTATCCATTGTACAAGTAGCCCTATCCTG
CACTTGCCTTCTGTGGCCCA'ACCAGCTCGATAACTCTCTGTGATGTTCCACAGGT
15 CAAGCTGGCCTGCACCAATACCTTGTGGTGGAGCTCTGATGGTCTCCAACAGTGGCTG
CTCAGCTCCTGTGCTTCTGGCCTCTGGCCTCTATGCAGTCATCCTCTGCTGATAAG
GGAGCACTCCTGAGGAAAGAGCAAGGCTATTCCACATGCACCACCCATATTATCATT
ATATTCTCATGTTGGACCTGCTATTCTACACTTGCCTTCCAGGCTTCCAGC
TGACAAGGTAGTTCTCTTCCATACTGTCATCTTCCATTGATGAACCTGTTATTATA
20 CGCTTCGCAACCAGGAGGTGAAAGCTCCATGAGGAAGTTGTTAAGTCAACATATGTTG
CTGA (SEQ ID NO: 238)

AOLFR129 sequences:

- 25 MALYFSLILHGMSDFFLSTGHPRASCRMEAMKLLNQSQVFILLGLTSSQDVFLLFALFSVI
YVVTVLGNLLIIVTVFNTPNLNTPMYFLLGNLSFVDMTLASFATPKVILNLLKKQKVISFAGCFT
QIFLLHLLGGVEMVLLVSMADRYVAICKPLHYMTIMNKVKCVLUVTSWLLGLLHSGFQIPF
AVNLPFCGPNVVDSIFCDLPLVTKLACIDYFVQVVIVANSGIISLCFILLISYSLLITIKNHSPT
GQSKARSTLTAHITVVLFFGPCIFIYTWPFGNHSVDKFLAVFYTIITPILNPITYTLRNKEMKISMK
KLWRAFVNSREDT (SEQ ID NO: 239)

- 30 ATGGCTCTTATTTCACTCATACTCCATGGTATGAGTGTCTTCTCTCTACAGG
TCATCCAAGAGCGAGCTGAGGATGGAGGCCATGAAACTATTAAATCAATCTCAAGTGTC
AGAATTCAATTGCTGGACTGACCAGCTCCAGGATGTAGAGTTCTCTCTTGCCTCT
TCTCGTTATCTATGTGGTACAGTTGGTAACCTTCTTATTATAGTCACAGTGTAAAC
ACCCCTAACCTGAATACTCCATGTATTCTCTGGTAATCTCTCTTGTAGATATGAC
35 CTTGCTTCTTGGCACCCCTAACGGTGAATTGAACTTGTAAAAAAGCAGAACGGTAATT
TCTTTGCTGGGTGCTTCACTCAGATATTCTCTTCACTACTGGTGGGGTGAATGGT
ACTGTTGGTCTCCATGGTTTGACAGATATGTGGCATTTGTAAGCCCTACACTACATG
ACCATCATGAACAAGAACGGTATGTGTTGCTGTAGTGACCTCATGGCTTGGGTCTCC
40 TTCACTCAGGGTTTCAGATACCAATTGCTGTGAACTTGCCCTTGTGGTCCAAATGTGGTA
GACAGCATTGACCTCCCTGGTTACTAAGCTGCTGTATAGACATATATTGT
ACAGGTAGTCATTGTCACACAGTGGCATAATCTCCCTGAGCTGTTCAATTGCTTA
TCTCTACAGTCTGATCCTCATAACCATTAAGAACCACTCTCTACTGGCAATCTAAAGC
CCGTTCCACTTGAATGCTCACATCACAGTGGTATTCTCTTGTGGCCATGCATCTTA
45 TCTACATTGGCCCTCGGCAACCACTCTGTAGATAAGTCTCTGCTGTGTTTATACCAC
ATCACTCCTATCTGAATCCAATTATCTATACCTGAGAAACAAAGAAATGAAGATATCCA
TGAAAAAAACTCTGGAGAGCTTGTGAATTCTAGAGAAGATACTTAG (SEQ ID NO: 240)

AOLFR131 sequences:

- 50 MASTSNVTELIFTGLFQDPAVQSVCFVVFLPVYLATVVGNGLIVLTVSISKSLDPMYFFLSCLS
LVEISYSSTIAPKFIIIDLLAKIKTISLEGCLTQIFFHFFGVAEILLIVVMAYDCYVAICKPLHYMNI
ISRQLCHLLVAGSWLGGFCHSIQLVIQLPFCGPVIDHYFCDLQLFKLACTDTFMEGVIVLA
NSGLFSVFSFLILVSSYIVILVNLNRHSAEGRHKALSTCASHITVVLFFGPAIFLYMRPSSTFTED
KLVAVFYTVITPMLNPITYTLRNAEVKIAIRRLWSKKENPGRE (SEQ ID NO: 241)
- 55 ATGGCCAGTACAAGTAATGTGACTGAGTTGATTTCACTGGCCTTCCAGGAATCCAGCTG
TGCAGAGTGTATGCTTGTGGTGTCTCCCGTGTACCTTGCCACGGTGGCAATGG

CCTCATCGTCTGACGGTCAGTATCAGCAAGAGTCTGGATTCTCCCATGTACTTCTTCTTA
 GCTGCCCTGCCTGGTGGAGATCAGTTATCCTCCACTATCGCCCTAAATTCACTCATAGAC
 TTACTTGCCAAGATTAACCATCTCTGGAAAGGCTGTCTGACTCAGATATTCTTCTCCA
 5 CTTCTTGGGTGCTGAGATCCTTGTATTGTGGTATGGCTATGATTGCTACGTGGCC
 ATTTGAAGCCTCTTCAATTATGAACATTATCAGTCGTAACGTGTACCTCTGGTGGC
 TGGTTCTGGCTGGGGCTTTGTCACTCCATAATTCAAGATTCTGTTATCATCCAATTGC
 CCTCTGTGGTCCCCTGACACTTGTGATTGACCACTATTCTGTGACCTCCAGCCTTATTCAAGCTT
 GCCTGCACTGACACCTTGTGAGGGGTTATTGTGGCAACAGTGGATTATTCTGTG
 TCTTCTCTTCTCATCTGGTCTCTTATATTGTCAATTCTGGTCAACTTGAGGAACCAT
 10 TCTGCAGAGGGAGGCACAAAGCCCTCCACCTGTGCTTCTCACATCACAGTGGTCATCT
 TGTTTTGGACCTGCTATCTCCTCTACATGCGACCTCTCCACATTCACTGAAGATAAA
 CTTGTGGCTGTATTCTACACGGTCATCCCCATGCTGAACCCCATCATTACACACTCAG
 GAATGCAGAGGTGAAAATGCCATAAGAAGATTGTGGAGCAAAAGGAGAATCCAGGGA
 GGGAGTG (SEQ ID NO: 242)

15

AOLFR132 sequences:

MVATNNVTEIFVGFSQLNQSEQRVISVMFLMLYTAVVLGNGLIVVTILASKVLTSPMYFFLSYL
 SFVEICYCSVMAPKLIFDSFIKRKVISLKGCLTQMFSLHFFGGTEAFLMVMAYDRYVAICKPL
 20 HYMAIMNQRCMCGLLVRIAWGGGLLHSVGQTFLIFQLPFCGPNIIDHYFCDVHPVLEACADT
 FFISLLITNGGSISVVSFFVLMASYLILHFLRSHNLEQHQHKALSTCASHVTVDLFFIPCSLVYIR
 PCVTLPADKIVAVFYTVVTPLLNPVIYSFRNAEVKNAMRRFIGGKVI (SEQ ID NO: 243)

25

ATGGTTGCTACAAACAATGTGACTGAAATAATTCTGGGGATTTCAGAATTGGAGTG
 AGCAGAGGGTCATTCTGTGATGTTCTCTCATGTACACAGCTGTGTGCTGGCAATGG
 CCTCATTGGTGGTACCATCTGGCCAGCAAAGTGTACCTCCCCATGTATTCTTCTCA
 GCTACTTATCCTTGTGGAGACTGCTACTGTTCTGTACAGGGCTGCCTCACACAGATGTTTCCCTCC
 TCCCTTATCAAGAGGAAAGTCATTCTCAAGGGCTGCCTCACACAGATGTTTCCCTCC
 ATTCTTGTGGCACTGAGGCCCTTCTCTGTGATGGTATGGCCTATGACCGCTATGTGGC
 CATCTGCAAGCCCTGCACATGGCCATCATGAACCAGCGAACATGTGTGGTCTCCTCGTG
 30 AGGATAGCATGGGGGGGGGGCTGCTGCATTCTGTTGGCAAACCTCTGATTTCAGC
 TCCCGTTCTGTGGCCCCAACATCATGGACCAACTACTCTGTGATGTCACCCAGTGCTGGA
 GCTGGCCTGCGCAGACACCTTCTTCATTAGCCTGCTGATCATCACCAATGGCGGCTCCATC
 TCCGTAGTCAGTTCTCTGTGCTGATGGCTTCTCACCTGATCATCCTGCACITCTGAGAAG
 CCACAACTGGAGGGCAGCACAAGGCCCTCTCCACCTGTGCTCTCATGTCACAGTTGTC
 35 GACCTGTTCTCATACCTTGTCTCTGGCTATATTAGGCCCTGTGTCACCCCTCCCTGCAGA
 CAAGATAGTTGCTGTATTATACAGTGGTCACACCTCTTAAACCCCTGTGATTACTCCT
 TCAGGAATGCTGAAGTGAAAATGCCATGAGGAGATTATTGGGGAAAAGTAATTGA
 (SEQ ID NO: 244)

40

AOLFR133 sequences:

MTEFIFLVLSPNQEVRVCVFIFLYTAIVLGNFLIVLTVMTSRSLGSPMYFFLSYLSFMEICYS
 SATAPKLISDLAERKVISWWGCMQLFLHFFGGTEIFLLTVMAYDHYVAICKPLSYTTIMN
 WQVCTVLVGLIAWVGGFMHSFAQILLIFHLLFCGPNVINHYFCDLVPLLKLACSDTFLIGLLIVAN
 45 GGTLTSVISFGVLLASYMVILLHLRTWSSEGWCALSTCGSHFAVVLFFGPCVFNSLRPSTTLPI
 DKMVAVFYTVITALNPVIYSRNAMEMRKAMKRLWIRTLRLNEK (SEQ ID NO: 245)

50

ATGACTGAATTCATTTCTGGTACTTCTCCAACCAGGAGGTGCAGAGGGTTGCTTGT
 TGATATTCTGTTCTGTACACAGCAATTGTGCTGGGAATTCTCTCATGTGCTACTGTC
 ATGACCAAGCAGAAGCCTGGTCCCCATGTACTCTCTCAGCTACCTCTCCTCATGG
 GATCTGCTACTCCTCCGCTACAGCCCCAAACTCATCTCAGATCTGCTGGCTGAAAGAAA
 GTCATATCTGGTGGGCTGCATGGCACAGCTTCTCTGTGACTCTCTGGTGGCACTGA
 GATTTCTGCTCACTGTGATGGCTATGACCACTATGTGGCATCTGCAAGCCCTCAGC
 TACACCACCATCATGAACCTGGCAGGTGTACTGTCTGTAGGAATAGCATGGTGGGA
 GGCTTCATGCATTCTTGCACAAATCCTCTCATCTCCACCTGCTTCTGTGGCCCAA
 55 TGTGATCAATCACTATTCTGTGACCTAGTCCCTCTCAAACCTGCTGCTGACACCT
 TCCTCATGGTCTGCTGATTGTGCCAATGGAGGCACCCGTCTGTGATCAGTTGGGGT

CCTCTTAGCATCCTATATGGTCATCTGCTCCATCTGAGAACCTGGAGCTCTGAAGGGTGG
 TGAAAGCCCTCCACCTGTGGGCCCATTGCTGTGGTTATCTGTTCTTGGGCCCTG
 CGTCTCAACTCTGAGGCCCTCACCACTCTGCCCATAGACAAGATGGTGGCTGTCT
 ACACAGTGATAACCGCGATCTGAACCCGTATCTGAGAAATGCTGAAATGAG
 5 GAAGGCCATGAAGAGGCTGTGGATTAGGACATTGAGACTAAATGAGAAATAG (SEQ ID
 NO: 246)

AOLFR134 sequences:

MTHILEVDNHTVTRFILLGFPTRPAFQLLFSIFLATYLLTLLENLLIILAIHSDGQLHKPMYFFL
 10 SHLSFLEMWYVTISPKMLVDFLSDKSISFNGCMQLYFFVTVCYILLAIMAFDRYVAIC
 NPLRPVIMTNQLCGTLAGGCWFCGLMTAMIKMVFIQLHYCGMPQINHYFCDISPLNVSC
 DASQAEMVDFFLALMVIAPLCVVVASYAAILATILRIPSAQGRQKAFSTCASHLTVVILFYSMT
 LFTYARPKLMYAYNSNKVVSVLYTVIVPLLNPPIYCLRNHEVKAALRKTIHCRGSGPQGNGAFS
 S (SEQ ID NO: 247)

15 ATGACCACCATATTCTGGAAGTAGATAATCATACTAGTGACAACACGTTCATCTCTGG
 GGTTCCAACACGACCAGCCTCCAGCTCTCTTCTCCATTCTGGCACACCTATCTG
 CTGACACTGCTGGAGAATCTCTTATCATCTTAGCTATCCACAGTGATGGCAGCTGCATA
 AGCCCCATGTACTCTCTGAGGCCACCTCTCCCTGGAGATGTGGTATGTCACAGTCATC
 20 AGCCCCAAGATGCTTGTGACTTCCCTAGTCATGACAAGAGTATTCTCAATGGCTGCA
 TGACTCAACTTACTTTTGACCTTGACTGACTGACTGAGTACATCTCTGCTATCATG
 GCCTTGACCGCTATGTAGCCATTGTAATCCACTACGCTACCCAGTCATCATGACCAACC
 AGCTCTGTGGCACACTGGCTGGAGGATGCTGGTCTGTGGACTCATGACTGCCATGATTAA
 25 GATGGTTTATAGCACAACITCACTACTGTGGCATGCCAGATCAATCAACTACTTTGTG
 ATATCTCTCCACTCTTAACGTCTCTGTGAGGATGCCACAGGCTGAGATGGTGGACTT
 CTCTTGCCCTCATGGCTATTGCTATTCTCTTGTGTTGTGGCATCTACGCTGCTA
 TCCTTGCCACCACCTCTCAGGATCCCTCTGCTCAGGGCCAAAAGGCATTCTCACCTG
 TGCCCTCCCACCTGACCGCTGTAATTCTCTTATTCATGACACTTTCACCTATGCCGTC
 CCAAACATGTATGCCATCAATTCAAACAAAGTGGTATCTGTTCTACACTGTCATTGTT
 30 CCACTCTCAACCCCATCTTACTGTCTGAGGAACCATGAAGTAAAGGCAGCCCTCAGAA
 AGACCATACTTGAGAGGAAGTGGCCCAAGGGAAATGGGCTTCAGTAGTTAA (SEQ
 ID NO: 248)

AOLFR135 sequences:

35 MIFPSHDSQAFSVDMEVGNCILTEFILLGFSADSQWQPILFGVFLMLYLITLSGNMTLVILIRT
 DSHLHTPMYFFIGNLNSFLDFWYTSVYTPKILASCVSEDKRISLAGCGAQLFFSCVVAYTECYLL
 AAMAYDRHAAICNPLLYSGTMSTAALCTGLVAGSYIGGFLNIAIHTANTFRLHFCGKNIDHFFC
 DAPPLVKMSCTNTRVYEKVLGVVGFTVLSSILAILISYVNILLALRIHSASGRHKAFSTCASHL
 ISVMLFYGSLLFMYSRPSSTYSLERDKVAALFYTVINPLLNPILYSLRNKDIKEAFRKATQTIQPQ
 40 T (SEQ ID NO: 249)

ATGATTTCCCTCTCATGATAGTCAGGCTTCACCTCCGTGGACATGGAAGTGGAAATT
 GCACCATCCTGACTGAATTCATCTGTTGGTTCTCAGCAGATTCCAGTGGCAGCCGAT
 TCTATTGGAGTGTCTGATGCTCTATTGATAACCTGTGAGCTTGTGTTGGCAATCTGTCT
 45 TCTTAATCCGAACTGATTCCACCTGCATACACCTATGTACTTTCTATTGGCAATCTGTCT
 TTTTGGAATTCTGGTATACCTCTGTGTATACCCCCAAAATCTGGCCAGTTGTGTCAGA
 AGATAAGCGCATTCCTGGCTGGATGTGGGCTCAGCTGTTTCTGTGTTGAGCCT
 AACACTGAATGCTATCTCCTGGCAGCCATGGCATATGACCGCCATGCAGCAATTGTAACCC
 ATTGCTTATTCAAGGTACCATGTCACCGCCCTCTGTACTGGGCTTGTGCTGGCTCTACA
 50 TAGGAGGATTTGAATGCCATAGCCATACTGCCAATACATTCCGCTGCATTGGTGG
 TAAAAATATCATTGACCACTTTCTGTGATGCACCAACATTGGTAAAAATGCTCTGTACA
 AACACCAGGGCTACAAAAAGTCCCTGCTGGTGTGGTGGCTCACAGTACTCTCAGCA
 TTCTGCTATCTGATTCTCATGTCAACATCTCCTGGCTATCTGAGAAATCCACTCAGCT
 TCAGGAAGACACAAGGCATTCTCACCTGTGCTTCCACCTCATCTCAGTCATGCTCTCTA
 55 TGGATCATTGTTGTTATGTATTCAAGGCCAGTTCACCTACTCCCTAGAGAGGGACAAA
 GTAGCTGCTCTGTTACACCGTGTCAACCCACTGCTCAACCTCTCATCTATAGCCTGAG

AAACAAAGATATCAAAGAGGCCTTCAGGAAAGCAACACAGACTATAACCACAAACATG
A (SEQ ID NO: 250)

AOLFR136 sequences:

5 MTMENYSMAAQFVLDGLTQQAEQLPLFLFLGIYVVTVVGNLGMILLIAVSPLLHTPMYYFL
SSLSFVDFCYSSVTPKMLVNFLGKKNTILYSECMVQLFFFVFVAEGYLLTAMAYDRYVAIC
SPLLYNAIMSSWVCSLLVLAFFLGLSALTHTSAMMKLSFCKSHIINHYFCDVLPNLSCSNT
HLNELLFLIIAGFNTLVPTLAVA VSYAFILYSILHRSSEGRSKAFTCSSHLMMAVVIFFGSITFMY
FKPPSSNSLDQEKVSSVFYTTVPMNLNPILYSLRNKDVKKALRKVLVGK (SEQ ID NO: 251)

10 ATGACCATGGAAAATTATTCTATGGCAGCTCAGTTGTCTTAGATGGTTAACACAGCAAG
CAGAGCTCCAGCTGCCCTCTCCTCTGGGAATCTATGTGGTCACAGTAGTGGG
CACCTGGCATGATTCTCTGATTGCACTCAGCCCTACTTCACACCCCCATGTACTATT
TCCTCAGCAGCTTGCTCTCGCATTCTGCTATTCTCTGCTATTACTCCAAAATGCTG
15 GTGAACCTCTAGAAAAGAACATACAACCTTACTCTGAGTGCATGGTCCAGCTCTTT
TCTTGTTGGCTTTGGTGGCTGAGGGTACCTCTGACTGCCATGGCATATGATCGCTA
TGTTGCCATCTGTAGCCCCTGCTTATAATGCGATCATGCTCTCATGGTCTGCTACTGC
TAGTGTGGCTGCCCTCTGGGCTTCTCTGCTTGA CTCATACAAGTGCCATGATG
AAACTGTCTTTGCAAATCCCACATTATCAACCATTACTCTGTGATGTTCTCCCCCTCCT
20 CAATCTCCTGCTCCAACACACACACTCAATGAGCTCTACTTTTATCATTGCGGGGTTA
ACACCTGGTGCCACCCCTAGCTGTTGCTGCTCCATGCCCTCATCCTCACAGCATCCTT
CACATCCGCTCTCAGAGGGCCGGTCCAAGCTTGGAACATGCAGCTCATCTCATGG
CTGTGGTGATCTCTGGTCCATTACCTCATGTATTCAAGCCCCCTCAAGTAACCTC
CTGGACCAGGAGAAGGTGTCTCTGTGTTACACCACGGT GATCCCCATGCTGAACCCCT
25 TAATATACAGTCTGAGGAATAAGGATGTGAAGAACGATTAAGGAAGGTCTAGTAGGAA
AATGA (SEQ ID NO: 252)

AOLFR137 sequences:

30 MSPENQSSVSEFLLGLPIRPEQQAVFFALFLGMYLTVLGNNLIMLLIQQLDSHLHTPMYFFLSH
LALTDISFSSVTVPKMLMNMQTQH LA VFYKG C ISQTYFFFADLDSFLITSMAYDRYVAICHPL
HYATIMTQSQCVMVLAGSWVIACACALLHTLLAQLSFCADHIIPH YFCDLGALLKLSCSDTSL
NQLAFTAALTAIMPLFLCILVSYGHIGVTILQIPSTKGICKALSTCGSHLSVTTYYRTIIGLYFLP
PSSNTNDKNIASVITYAVTPMLNPFTYSLRNKDIKGALRKLLSRSGAVAHACNLSTLGG (SEQ
ID NO: 253)

35 ATGAGCCCTGAGAACCAAGAGCAGCGTGTCCGAGTTCCCTCTGGCCTCCCCATCCGGC
CAGAGCAGCAGGCCGTGTTCTGCCCTGTTCCCTGGCATGTACCTGACCACGGTGTGGG
GAACCTGCTCATCATGCTGCTCATCCAGCTAGACTCTCACCTCACACCCCCATGTACTTCT
TCCCTAGCCACTTGGCCCTCACTGACATCTCTTACATCTGTCACTGTCCCTAACAGATGCTG
40 ATGAACATGCAGACTCAGCACCTAGCCGTCTTACAAGGGATGCATTACAGACATATT
TTTCATATTTTGCTGACTTAGACAGTTCTTATCACTTCAATGGCATATGACAGGTAT
GTGGCCATCTGTCTACATTATGCCACCATCATGACTCAGAGCCAGTGTGTCTG
TGGTGGCTGGTCTGGTCTCGTGTGCTCTTGCATACCCCTCTGGCC
CAGCTTCCCTCTGTGCTGACCACATCATCCCTCACTACTCTGTGACCTGGTCCCTGCT
45 CAAGTTGCTCTGCTCAGACACCTCCCTCAATCAGTTAGCAATCTTACAGCAGCATTGACA
GCCATTATGCTTCCATTCTGTGCATCTGGTTCTATGGTCACATTGGGTCACTGGGTCACCACCT
CCAGATTCCCTCTACCAAGGGCATATGCAAAGCCTGTCCACTGTGGATCCCACCTCTCA
GTGGTGACTATCTATTATCGGACAATTATTGGTCTCTTCCCTGGGAGGCTTAAGAAA
CAATGACAAGAACATAATTGCTTCAGTGATATACACAGCAGTCACTCCCATGTTGAACCCA
50 TTCATTACAGTCTGAGAAATAAGACATTAAGGGAGCCCTAAGAAA
CTTGTGAGTAGG
TCAGGGCAGTGGCTCATGCCGTAACTCAGCACTTGGGAGGCTGA (SEQ ID NO: 254)

AOLFR138 sequences:

55 MLNFTDVTEFILLGLTSRREWQVLFFIVFLVYIITVVGNIGMMLIKVSPQLNSPMYFFLSHLS
FVDVWFSSNVTPKMLENLFSDKKTISYADCLAQCFFFIALVHVEIFILAIAFDRTVIGNPLLY
GSKMSRGVCIRLITFPYIYGFLTSLATLWTYGLYFCGKIEINHFYCADPPLIKMACAGTFVKEY

TMLILAGINFTYSLTVIISYLFLIAILRMRSAEGRQKAFSTCGSHPTAVIIFYGTLIFMYLRRPTE
ESVEQGMVAVFYTTVIPMLNPMTYSLRNVDVKAMMKVISRSC (SEQ ID NO: 255)

5 ATGCTCAATTACCGATGTGACAGAGTCATTCTTGGGCTAACGAGCCGTCGGGAAT
GGCAAGTTCTCTTCTCATCGTTTCTGTGGTCTACATTATCACCGTGGTGGCAATATC
GGCATGATGTTAATCAAGGTCACTGCAGCTAACAGCCCCATGACTTTCTCAT
GTCACCTGTCAATTGATGTGGTTCTCCAATGTCACCCCTAAATGTTGAAT
CTGTTATCAGATAAAAAACAAATTCTATGCTGGCTGTTAGCACAGTGTCTTCTCAT
TGCTCTGTCCATGGAAATTCTTATTCTGCTGCATTGCCCTGATAGATAACAGTGA
10 TTGAAATCCTTGCTTATGGCAGCAAAATGTCAGGGATGTCGTATTGACTGATTAC
TTTCCCTACATTATGGTTCTGACGAGTCTGACAGCAACATTGACTATGGCTTGT
ACTTCTGAAAATTGAGATCAACCCTACTGTGCAAGATCCACCTCTCATCAAAT
GGCCTGTGCCGGGACCTTGAAAAGAATATACAATGCTCATACTGCCGGCATCAACTC
ACATATCCCTGACTGTAATTATCATCTTACTTATTCATCCTCATGCCATTGCGAAT
15 GCGCTCAGCAGAAGGAAGGAGAAGGCCCTTCCACATGTGGTCCCCTGACAGCTGT
CATCATATTCTATGGTACTCTGATCTCATGTATCTCAGACGCTCCACAGAGGAGTGTG
GAGCAGGGGAAGATGGTGGCTGTTCTATACCACAGTGTACCCATGTAATCCATGA
TCTACAGTCTGAGGAACAAGGATGTAAGGCACTGATGAAAGTGTACAGCAGATCAT
GTTAA (SEQ ID NO: 256)

20 AOLFR139 sequences:

MGFPGIHSWQHWSLPLALLYLLALSANLILJINKEAALHQPMYYFLGILAMADIGLATTIMP
KILAILWFNAKTISLLECFQAQMAYAIHCVAMESSTFVCMADRYVAICRPLRYPSTTESFVFKAN
25 GFMALRNSLCLISVPLLAQRHYCSQNQIEHCLCSNLGVTSLSCLDRRINSINQVLLAWTLMGS
DLGLIILSYALILYSVLKLNNSPEAAASKALSTCTSHLILILFFYTVIIVVISITRSTGMRVPLIPVLLNVL
HNVIPPALNPVMVYALKNKELRQGLYKVRLGVKGT (SEQ ID NO: 257)

30 ATGGGATTCCCTGGCATTACAGTGGCAGCACTGGCTCTCCCTGCCCTGGCTCTGCTCT
ACCTCTAGCTCTCAGTCCAACATCCTTATCCTGATCATCAACAAAGAGGCAGCACT
GCACCAGCCTATGTAATCTGGGCATCTGGCTATGGCAGACATAGGCCCTGGCTACC
ACCATCATGCCTAAGATTCTGGCCATCTTATGGCTCAATGCTAACGACATCAGTCTCTGG
AGTGCTTGCTCAGATGTATGCCATACATTGCTTGCCATGGAATCAAGTACCTTGT
CTGCATGGCTATTGATAGATATGAGCCATTGTCGACCGCTACGATATCCATCAATCATC
ACTGAATCTTGTCAAAGCAAATGGCTATGGCACTGAGAACAGCCTGTC
35 TCTCAGTGCCTCTGTTGGCTGCCAGAGGCATTACTGCTCCAGAACATTGAGCACTG
TCTTGTCTAACCTGGAGTCACTAGCCTATCTGTGATGATCGAAGAACATAGCATT
AACCAAGGCCTTGGCTTGACACTCATGGGAAGTGACCTGGTTGATTATTTATCAT
ATGCTCTAACACTTACTCTGCTGAAGCTGAACCTCCAGAACAGCTGCATCCAAGGCCCT
40 AAGTACCTGCACCTCCCACCTCATCTAACCTTCTCTACACAGTCATTGTGATT
CCATTACTCGTAGTACAGGAATGAGAGTTCCCTTATTCCAGTTCTACTTAATGTGCTACA
CAATGTCATTCCCCCTGCCCTGAACCCCATGGTATATGCACTCAAGAACAGGAACCTCAGG
CAAGGCTTATACAAGGTACTTAGACTGGAGTGAAGGGCACCTGA (SEQ ID NO: 258)

AOLFR140 sequences:

45 MLTLNKTDLIPASFILENGVPGLEDTQLWISFPFCMSYVVAMVGNCGLYLIHYEDALHKPMMY
FLAMLSFTDLVMCSSTIPKALCIFWFHLKDIFDECLVQMFIFTGMESGVLMLMALDRYV
AICYPLRYSTILTNPVIAKVTATFLRGVLLIIPFTFLTKRLPYCRGNILPHTYCDHMSVAKLSCG
NVKVNAIYGLMALLIGGFIDLCITISYTMILRAVVSLSADARQKAFTCTAHICAIVFSYTPAF
50 FSFFSHRFGEHITPPSCHIVANIYLLPPTMNPIVYGVTKQIRDGVIRILSGSKDTKSYSM (SEQ
ID NO: 259)

55 ATGCTAACACTGAATAAACAGACCTAATACCAGCTCATTTATTCTGAATGGAGTCCCAG
GACTGGAAGACACACAACCTGGATTCTCCATTCTGCTCTATGTATGTTGGCTAT
GGTAGGGAATTGTGGACTCTCTACCTCATTCACTATGAGGATGCCCTGCACAAACCCATG
TACTACTCTGGCCATGCTTCTTACTGACCTGTTATGTCCTAGTACAATCCCTAA
AGCCCTCTGCATCTCTGGTTCATCTCAAGGACATTGATGAAATGCCCTGTCAG

ATGTTCTTCATCCACACCTTCACAGGGATGGAGTCTGGGGTGCCTATGCTTATGCCCTGG
 ATCGCTATGTGGCATCTGCTACCCCTAACGCTATTCAACTATCCTACCAATCCTGTAATT
 GCAAAGGTTGGGACTGCCACCTCCTGAGAGGGTATTACTCATTATCCTTACTTCC
 CACCAAGCGCTGCCCTACTGCAGAGGAATATACTTCCCCATACCTACTGTGACCACATG
 5 TCTGTAGCCAATTGTCTGTGGAATGTCAAGGTCATGCCATCTATGGTCTGATGGTG
 CCCTCCTGATTGGGGCTTGCACATACTGTGATCACCATCTCTATACCATGATTCTCC
 GCACTGGTCAGCCTCTCCTCAGCAGATGCTCGGAGAAGGCCCTTAATACCTGCACTGCC
 ACATTGTGCCATTGTTCTCTATACTCCAGCTTCTCTCTTCCCACCGCTTG
 GGGAACACATAATCCCCCTCTTGCACATCATTGTAGCCAATATTATCTGCTCCTACCA
 10 CCCACTATGAACCTTATTGTCTATGGGGTAAAACAAACAGATACGAGACTGTGTCATAA
 GGATCCTTCAGGTTCTAAGGATACCAAATCCTACAGCATGTGA (SEQ ID NO: 260)

AOLFR141 sequences:

MSSTLGHNMESPNTDVPVFLLGIPGLEQFHLWLSLPVCGLGTATIVGNITILVVVATEPVL
 15 HKPVYLFCLMLSTIDLASVSTVPKLLAJFWCGAGHISASACLAQMFFIHAFCMMESTVLLAM
 AFDRYVAICHPLRYATILTDTIIAHIGVAAVVRGSLLMLPCPFLIGRLNFCQSHVILHTYCEHMA
 VVKLACGDTRPNRVYGLTAALLVIGVDLFCIGLSYALSAQAVRLSSHEARSKALGTCCSHVC
 VILISYTPALFSFFTFRFGHHVPVHILLANVYLLLPPALNPVYVGKTKQIRKRVVRVFQSGQ
 GMGIKASE (SEQ ID NO: 261)
 20 ATGTCCAGCACTCTGGCCACAACATGGAATCTCTTAATCACACTGATGTTGACCCCTCTG
 TCTTCTCCTCTGGCATCCAGGTCTGGAACATTICATTGTTGGCTCTCACTCCCTGTG
 TGTGGCTTAGGCACAGCCACAATTGTGGCAATATAACTATTCTGGTTGTTGCCACTG
 AACAGTCTGACAAGCCTGTGTACCTTTCTGTGATGCTCTCAACCATCGACTGGCT
 25 GCCTCTGTCTCCACAGTCTCCAGCTACTGGTATCTCTGGTGTGGAGCCGGACATATAT
 CTGCCCTCTGCCCTGGCACAGATGTTCTCATGCCCTCTGCATGATGGAGTCCACT
 GTGCTACTGGCCATGGCCTTGTGATCGTACGTGGCCATCTGCCACCCACTCCGATGCCA
 CAATCCTCACTGACACCACATTGCCACATAGGGTGGCAGCTGTAGTGCAGGGCTCCCT
 GCTCATGCTCCCAGTCCCTCTATTGGCGTTGAACTTCTGCCAAAGCCATGTGATCC
 30 TACACACGTACTGTGAGCACATGGCTGTGGTAAGCTGGCTGTGGAGACACCAGGCCA
 ACCGTGTGATGGGCTGACAGCTGCACTGTGTCATTGGGTTGACTTGTGTCATTGG
 TCTCTCTATGCCCTAAGTGCACAAGCTGCTTCTGCCCTCTCATCCCATGAAAGCTCGGTCCA
 AGGCCCTAGGGACCTGTGGTCCCAGTCTGTGTCATCTCATCTCTTACACCAGCCCTC
 TTCTCTTTTACACACCGCTTGGCCATCACGTTCCAGTCCATATTCACATTCTTGGC
 35 CAATGTTATCTGTTTGCACCTGCTTAATCCTGTGGTATATGGAGTTAACGACAAAC
 AGATCCGTAAGAGTTGTCAAGGTGTTCAAAGTGGCAGGGAATGGCATCAAGGCAT
 CTGAGTGA (SEQ ID NO: 262)

AOLFR143 sequences:

40 MLGLNGTPFQPATLQLTGIPGIQTGLTWVALIFCILYMISIVGNLSILTVFWEPALHQPMYYFL
 SMLALNDLGVSFSLPTVISTFCFNHVAFNACLVQMFFIHTFSFMESGILLAMSLSRFAICY
 PLRYVTVLTHNRILAMGLGILTSFTTLFPFPVVKRLPFCKGNVLHSYCLHPDLMKVACGDI
 HVNNIYGLLVIIIFTYGMDFSTFILLSYALILRAMLVIISQEQLKALNTCMHICAVLAFYVPIIAVS
 MIHRFWKSAPPVHVMMNSNVYLFVPPMLNITYSVKTEIRKGILKFFFHKSQA (SEQ ID NO:
 45 263)

ATGCTGGGTCTCAATGGCACCCCTCCAGCCAGCAACACTCCAGCTGACAGGCATTCCTG
 GGATACAAACAGGCCCTACCTGGGTTGCCCTGATTTCTGCATCCTACATGATCTCATT
 50 GTAGGTAACCTCAGCATTCTCACTCTGGTTTTGGAGCCTGCTCTGCATCAGCCCATGT
 ACTACTCCTCTATGCTCGCTCAATGATCTGGAGTGTCTTCTACACTTCCACT
 GTGATTCTACTTCTGCTCAACTACAACCATGTTGCGTTAATGCTTGCCTGGTCCAGAT
 GTTCTCATCCACACTTCTCTCATGGAGTCAGGCATACTGCTGCCATGAGCTGGATC
 GCTTGTGGTATTGTTATCCATTACGCTATGTCACTGTGCTCACTCACAACCGTATATTG
 GCTATGGGTCTGGCATCCTACCAAGAGTTTACCAACTCTCTCCCTTCCCTTGTGGT
 55 GAAACGACTGCCCTCTGCAAAGGCAATGTTTGATCACTCCTACTGTCTCCATCCAGAT
 CTCATGAAAGTAGCATGTGGAGACATCCATGTTAACACATTATGGCTTGTGATCA

5 TTTTACCTATGGTATGGACTCAACTTCATCCTGTTCTACGCATTGATCCTGAGAGCC
 ATGCTGGTCATCATATCCCAGGAACAGCGGCTCAAGGACTCAACACCTGCATGTACACA
 TCTGTGAGTGCTGGCTTTATGTGCCATAATTGCTGTCTCATGATTCAACCGCTCTGG
 AAAAGTGTCCACCTGTTCATGTCAATGTCTACCTGTTGTACCAACCCAT
 GCTCAACCTATCATCTACAGTGTGAAAACCAAGGAGATCCGAAAGGGATTCTCAAGTC
 TTCCATAAATCCCAGGCCTGA (SEQ ID NO: 264)

AOLFR144 sequences:

10 MGLFNWTHPAFFLLTGIPGLESSHWSLGPLCVMYAVALGGNTVILQA VRVEPSLHEPMYYFL
 SMLSFSVAISMATLPTVLRTFCLNARNITFDACLIQMFLIHFFSMMESGILLAMSFDYVAICD
 PLRYATVLTTEVIAAMGLGAAARSFTLFLPLFLIKRLPICRSNVLSHSYCLHPDMMRLLACADISI
 NSIYGLFVLVSTFGMDLFIFLFSYVLLRSLVMATASREERLKALNTCVSHILA VLAFYVPMIGVS
 TVHFRGKHVPCYIHVLMNSVYLFVPPVLNPLIYSAKTKEIRRAIFRMFHIIKI (SEQ ID NO: 265)

15 ATGGGGTTGTTCAATGTCACTCACCCCTGCATTCTCCTGACTGGTATCCCTGGCTGG
 GAGCTCTCACTCCTGGCTGTCAAGGGCCCCCTCTGCGTGATGTGATGCTGTGGCCCTGGGG
 AATACAGTGAATCTGCAGGCTGTGCGAGTGGAGGCCAGCCTCCATGAGCCATGTACT
 TCCTGTCATGTTGCTTCAGTGAATGTTGATGCCATATCCATGGCCACACTGCCACTGTACTC
 CGAACCTTCTGCCTCAATGCCCGCAACATCACTTTGATGCCGTCTAATTCAAGATGTTCT
 20 TATTCACTCTTCTCCATGATGGAATCAGGTATTCTGCTGCCATGAGTTGACCCTATG
 TG GCCATTGTAACCCCTTGCCTATGCAACTGTGCTCACCACAGAAGTCATTGCTGCAAT
 GGGTTAGGTGCAAGCTGCTGAAGCTCATCACCCCTTCCCTTCCCTTCTATTAAAGA
 GGCTGCCTATCTGAGATCCAATGTTCTACTCCTACTGCCGACCCAGACATGATG
 AGGCTTGCCCTGTGCTGATATCAGTATCAACAGCATTGGACTTTGTTCTGTATCCAC
 25 CTTTGGCATGGACCTGTTTTATCTTCTCTCCATGTCATGCTCATTCTGCCCTGT
 CCACCTGCTCCCGTGAGGAACGCCCTCAAAGCTCTAACACATGTGTCACATATCCTGG
 TGTAATTGCAATTGTCATGCAATGATTGGGTCTCCACAGTGCACCGCTTGGGAAGCAT
 GTCCCAGTCTACATACATGTCCTCATGTCAAATGTTGACCTATTGTCCTGTGCTCAA
 CCCTCTCATTTATAGGCCAAGACAAGGAAATCCGCCAGGCATTTCGCATGTTCAC
 30 CACATCAAAATATGA (SEQ ID NO: 266)

AOLFR145 sequences:

35 MSVQYSLSQPQFMLLSNITQFSPIFYLTSFPGLEGIKHWIFIPFFFFYMVAISGNCFILIIKTNPRLH
 TPMYYLLSLLALTDLGLCVSTLPTTMGIFWFNSQSIFYGACQIQMFCIHSFSFMESSVLLMMSFD
 RFVAICHPLRYSVITGQQVVRAGLIVIFRGPVATIPIVLLKAFTPYCGSVVLSHSFCLHQEVQLA
 CTDTTFNNLYGLMVVFTVMLDVLVIALSYGLIHTVAGLASQEEQRRAFQTCAHLCAVLVF
 FVPMMGLSLVHFRGKHAPPAILMANVYLFVPPMLNPYIYSIKTKEIRRAIKLLGLKKASK
 (SEQ ID NO: 267)

40 ATGTCAGTCAAATATCGCTCAGTCCTCAATTGTCATGCTGATCCAACATTACTCAGTTAG
 CCCCATATTCTATCACCAGCTTCTGGATTGGAAGGCATCAAACACTGGATTTCATCC
 CCTTTTCTTATGTACATGGTGCATCTCAGGCAATTGTTCTATTGATCATTATTAAG
 ACCAACCTCGTCTGCACACACCCATGTACTATCTACTATCCTGCTGCCACTGACCT
 GGGGCTGTGTGTGCCACGTTGCCACCACTATGGGATCTCTGGTTAACCTCCAGAGT
 45 ATCTACTTTGGAGCGTGTCAAATCCAGATGTTCTGCATCCACTCTTTCTCATGGAGTC
 CTCAGTGCCTCATGATGTCCTTGACCGTTGTCAGGCCATCTGCCACCCCTGAGGTATT
 CGGTCAATTACTGCCAGCAAGTGGTCAGAGCAGGCCATAATGTCATCTCCGGGGACC
 TGTGCCACTATCCCTATTGTCCTCTCTGAAGGTTTCCACTGTGGATCTGTGGTCC
 TCTCCCACTCATTTGCCTGCACCAAGGAAGTGATAACAGCTGCCCTGCACAGATAACCACCTT
 50 CAATAATCTGTATGGACTGATGGTGTAGTTTCACTGTGATGCTGGACCTGGTCTCATC
 GCACTGCTCATGACTCATCCTGCACACAGTAGCAGGCCCTGCCCTCCAAAGAGGAGCAGC
 GCCGTGCCCTTCAGACATGCACCGCTCATCTGTGCTGTGCTAGTATTCTTGCCCATG
 ATGGGGCTGTCCCTGGTGCACCGTTGGGAAGCATGCCACCTGCTATTGATCTCTTAT
 GGCAATGTCTACCTTTGTCCTCCATGCTTAACCCAATCATACAGCATTAAAGACC
 55 AAGGAGATCCACCGTGCCTATTCAAACCTCTAGGTCTAAAAAGGCCAGTAAATGA (SEQ
 ID NO: 268)

AOLFR146 sequences:

MSQVTNTTQEGLYFILTDIPGEASHTWISIPVCCLYTISIMGNTTILT VIRTEPSVHQRMYLFLSM
 5 LALTDLGLTLTLPVMQLLWFNVRRISSEACFAQFFLHGFSMESSVLLAMSVDCYVAICCP
 LHYASILTNEVIGRTGLAIIICCVLAVLPSLFLKRLPFCHSHLLSRSYCLHQDMIRLVCA DIRLN
 SWYGFALALLIIVDPLLIVISYTLILKNILGTATWAERLRALNNCLSHILA VLVLYIPMVGVSMT
 HRFAKHASPLVHVIMANIYLLAPPVMNPIYSVKNKQIQWGMLNFLSLKNMHSR (SEQ ID NO:
 269)

10 ATGTCCCAGGTGACTAACACCACACAAGAAGGCATCTACTTCATCCTCACGGACATCCCTG
 GATTTGAGGCCCTCCCACATCTGGATCTCCATCCCCGCTGCTGCTCACCCATCTCCATC
 ATGGGCATAACCACCATCTCACTGTCATTGCAACAGAGCCATCTGTCACCAGCGCATGT
 ATCTGTTCTCTCATGCTGGCCCTGACGGACCTGGGCTCACCCTCACCCCTACCCACA
 GTCATGAGCTTCTGGTCAACGTCAGTAGAATCAGCTCTGAGGCCTGTTTGCTCAGTT
 15 TTTCTCCCTCATGGATTCTCTTATGGAGTCCTCTGCTCCTGGCTATGTCGTTGACT
 GCTATGTGGCCATCTGCTGCTCCATTATGCCCTCATCCTCACCAATGAAGTCATTGGT
 AGAACTGGGTTAGCCATCA TTGCTGCTGTCTGGCGGTTCTCCCTCCCTTTCTTACT
 CAAGCGACTGCCCTCTGCCACTCCACCTCTCTCGCTCTATTGCCCTCACCAAGGATA
 20 TGATCCGCTGGTCTGCTGACATCAGGCTAACAGCTGGTATGGATTGCTCTTGCTT
 GCTCATTATTATCGGGATCCTCTGCTCATTGTGATCTCTATACACTTATTCTGAAAAATA
 TCTGGCACAGCCACCTGGGCTGAGCGACTCCGTGCCCTCAATAACTGCCCTGCCCACAT
 TCTAGCTGCTCTGGCTCTACATTCCATGGTGGTATCTATGACTCATCGCTTGCCA
 AGCATGCCCTCCACTGGTCCATGTTATGCCAATATCTACCTGCTGGCACCCCCGGT
 25 GATGAACCCCACATTACAGTGTAAAGAACAGCAGATCCAATGGGAATGTTAAATTTC
 CTTCCCTCAAAATATGCATTCAAGATGA (SEQ ID NO: 270)

AOLFR147 sequences:

MPSASAMIIFNLSSYNPGPFILVGIPGLEQFHVWIGIPFCIYIVAVVNCILLYLIVVEHSLHEPMF
 FFLSMLAMTDLILSTAGVPKALSIFWLGAREITFPGCLTQMFFLHYNFVLD SAILMAMAFDH YV
 30 AICSPLRYTTILTPTKTIKSAMGISFRSF CILPDVFLLTCLPFCRTRIPIHTYCEHIGVAQLACADISI
 NFWYGF CVPIMTVISDVILIAVS YAHILCAVFGPLSQDACQKALGTCGSHVCVILMFYTPAFFSI
 LAHRFGHNVSRTHIMFANLYTIPPA LPNMVYGVTKQIRDKVILLFSKG TG (SEQ ID NO:
 271)

35 ATGCCATCTGCCCTGCCATGATCATTTCAACCTGAGCAGTTACAATCCAGGACCCCTCAT
 TCTGGTAGGGATCCAGGCCTGGAGCAATTCCATGTGTGGATTGGAATTCCCTCTGTATC
 ATCTACATTGTAGCTGTTGGGAAACTGCATCTCTACCTCATTGTGGTGGAGCATA
 GTCTTCATGAACCCATGTTCTCTCTCCATGCTGGCCATGACTGACCTCATCTGTCC
 ACAGCTGGTGTGCCAACAGCACTCAGTATCTTTGGCTAGGGGCTCGCAAATCACATTCC
 40 CAGGATGCCCTACACAAATGTTCTCTTCACTATAACTTTGTCCTGGATTCCAGGCAATTCTG
 ATGGCCATGGCATTGATCACTATGTA GCTATCTGTCCTTGAGATATACCACCATCTT
 GACTCCCAAGACCATCATCAAGAGTGTCTATGGCCTCTCGAAGCTTCTGCATCATC
 CTGCCAGATGTATTCTGCTGACATGCCCTCTGCTGAGCACCGCATCATACCCACA
 CATACTGTGAGCATATAGGTGGTCCCAGCTGCCCTGTGCTGATATCTCCATCAACTCTG
 45 GTATGGCTTTGTTGCTCCATCATGACGGTCATCTCAGATGTGATTCTCATGCTGTTCCCT
 ACGCACACATCCTCTGTGCTGCTTGGCCTCCCTCCAAAGATGCCAGAAAGCCT
 CGGCACCTGTGGTCTCATGTCGTGTCATCCTCATGTTTATACACCTGCCCTTTCTCCA
 TCCTGCCCATGCCCTGGACACAATGTCCTCGCACCTCCACATCATGTTGCCAATCTC
 50 TACATTGTTATCCCACCTGCACTCAACCCATGGTTACGGAGTGAAGACCAAGCAGATCA
 GAGATAAGGTTATACTTTGTTCTAAGGGTACAGGATGA (SEQ ID NO: 272)

AOLFR148 sequences:

MPTVNHSHTSVFHLLGIPGLQDQHMWISIPFFISYVTALLGNSSLIFIILTKRSLHEPMYLFLC
 MLAGADIVLSTCTIPQALAI FWFRAGDISLRCITQLFFIHSTFISESGILLVMAFDHYIAICYPLR
 55 YTTLTNALIKKICVTVSLRSYGTIFPIFLKRLTFCQNNI PHTFCEHIGLAKYACNDIRINTWYG

FSILMSTVVLVLFISYMLILHAVFHMPSPDACHKALNTFGSHVCIIIFYGSIFTILTQRFGR
HIPPCHIPLANVCILAPPMLNPIIYGIKTKQIQEQVVQFLFIKQKITLV (SEQ ID NO: 273)

5 ATGCCTACTGTAAACCACAGTGGCACTAGCCACACAGTCITCCACTGCTGGCATCCCTG
GCCTACAGGACCAGCACATGTGGATTCTATCCCATTCTCATTCTATGTCACCGCCCTT
CTTGGGAACAGCCTGCTCATCTCATTATCCTACAAAAGCGCAGCCTCCATGAACCCATGT
ACCTCTCCTCTGCATGCTGGCTGGAGCAGACATTGCTCTCCACGTGCACCATTCAG
GCCCTAGCTATCTCTGGTTCGTCTGGGACATCTCCCTGGATCGTTGCATCACTCAGCT
CTTCTCATCCATTCCACCTCATCTCTGAGTCAGGGATCTGCTGGTATGGCCTTGACC
10 ACTATATTGCCATATGCTACCCACTGAGGTACACCACATTCTAACAAATGCTCTGATCAA
GAAAATTGTGTGACTGTCTCTGAGAAGTTATGGTACAATTTCCTATCATATTCTT
AAAAAGATTGACTTCTGCCAGAATAATATTATTCCACACACCTTTGTGAACACATTGG
CCTAGCCAATATGCATGTAATGACATTGAATAAACATTGGTATGGGTTCCATTCTA
ATGTCGACGGTGGCTTAGATGTTACTAATTTCATTCATATGCTGATTCTCCATGC
15 TGTCTCCACATGCCCTCCAGATGCTGCCACAAAGCTCTCACACACATTGGCTCCATG
TCTGCATCATCATCCTCTTTATGGCTGGCATCTCACAACTCTTACCCAGAGGTTGGA
CGCCACATTCCACCTTGTATCCACATCCGTTGGCTAATGTCGATTCTGGCTCCACCTAT
GCTGAATCCCATTATATGGATCAAACCAAGCAAATCCAGGAACAGGTGGTTAGTT
TTGTTATAAAACAGAAAATAACTTGGTTAA (SEQ ID NO: 274)

20 **AOLFR149 sequences:**

MSNASLLTAFILEMGLPHAPALDAPLFGVFLVVYVLTVLGNLLLIVRVDSHLHTTMYYFLNL
SFIDMWFSVTVPKLLMTLVFPGRAISFHSCMAQLYFFHFLGGTECFLYRVMSCDRYLAISYP
25 LRYTSMMTGRSCTLLATSTWLSGSLHSAVQAILTFHLPYCPNWIQHYLCDAPPILKLACADTS
AIETVIFVTGVIVASGCFVLIVLSYVSIVCSILRIRTSEKGKHRAFQTCAHCIVVLCFFGPGLFIYLR
PGSRKAVDGVVAVFYTVLPLLNPVYTLRNKEVKALLKDKVAHSQSK (SEQ ID NO:
275)

30 ATGTCCAACGCCAGCCTACTGACAGCGTTCATCCTCATGGGCCCTCCCCATGCCAGCGC
TGGACGCCCTCTTGGAGCTTCTGGTGGTTACGTGCTACTGTGCTGGGAACCT
CCTCATCCTGCTGGTATCAGGGTGGATCTCACCTCCACACCACCATGTAACATTCCTCA
CCAACCTGCGTTATTGACATGTGGCTCTCAACTGTCACGGTGCACAAATTGCTGATGAC
TTGGTGTCCCAAGTGGCAGGGCTATCTCCACAGCTGCACTGGCTCAGCTCTATTCT
TTCACCTCTAGGGGCACCGAGTGTCTCTACAGGGCATGTCTGTGATCGCTACCT
35 GGCCATCAGTTACCCGCTCAGGTACACCAAGCATGATGACTGGCGCTCGTGTACTCTCTG
GCCACCAGCACTGGCTCAGTGGCTCTGCACTCTGCTGTCCAGGCCATATTGACTTTCC
ATTGCCCCACTGTGGACCCAACTGGATCCAGCACTATTGTGTGATGCACCGCCCATCCT
GAAACTGGCTGTGCAGACACCTCAGCCATAGAGACTGCAATTGTGACTGTGAAATA
GTGGCCTCGGGCTGCTTGTCTGATAGTGCTGCTATGTGTCATCGCTGTCCATCCT
40 GCGGATCCGCACCTCAGAGGGAAAGCACAGAGCCTTCAGACCTGTGCTCCACTGTATC
GTGGCCTTGTCTTGGCCTGGCTTCTACACTGTGCTGACGCCCTCTCACCCCTGTGTTG
ACACCCCTGAGGAACAAGGAGGTGAAGAAAGCTCTGTTGAAGCTGAAAGACAAAGTAGCAC
ATTCTCAGAGCAAATAG (SEQ ID NO: 276)

45 **AOLFR150 sequences:**

MELGNVTRVKEFIFLGLTQSQDSLVLFLCLVYMTLGNLLIMVTVCESRLHTPMYFLLR
NLAILDICFSSTTAKVLLDLLSKKKTISYTSCMTQIFLHLLGGADIFSLVMAFDYCMAISKPL
50 HYVTIMSRGQCTALISASWMGGFVHSIVQISLLPLFCGPVNLDFTYCDVPQLKTCTDTFA
LEFLMISNNGLVTTLWFIFLLVSYTIVLMTRSQAGGRRKAISTSPHHCGDPAFCALHLCLC
PALHCPPHRKGHLCHLCHLPSAEPFDLHSEEPGNEVSHEKTEEKTRAF (SEQ ID NO: 277)

55 ATGGAGITGGAAATGTCACCAAGAGTAAAGAATTATAATTCTGGACTTACTCAATCCC
AAGACCAGAGTTGGTCTTGTCTTTTATGTCTGTGATCATGACGACTCTGCTGGGA
AACCTCCTCATCGGTACCGTGACCTGTGAGTCGCTGCCTCACACCCCCATGTACTTCCT
GCTCCGCAATCTAGCCATCCTGACATCTGCTCTCCTCACAACTGCTCTAAAGTCTG

TGGACCTTCTGTCAAAGAAAAAGACCATATCCTATACAAGCTGCATGACACAGATAATTCT
 CTTCCACCTCCTGGTGGGGCAGACATTCTCTCTGTGATGGCGTTGACTGCTACA
 TGGCCATCTCCAAGCCCCCTGCACTATGTGACCATCATGAGTAGAGGGCAATGCACTGCCCT
 5 CATCTCTGCCCTTGATGGGGCTTGCACTCCATCGCAGATCTCCCTGTTGCTGC
 CTCTCCCCTCTGTGGACCCAATGTTCTGACACTTTCTACTGCGATGTCCCCCAGGTCTC
 AAACTCACTTGCACTGACACTTTGCTCTTGAGTTCTGATGATTCCAACAATGGCTGGT
 CACTACCCGTGGTTATCTTCCTGCTTGTCCTACACAGTCATCTAAATGACGCTGAGGT
 10 CTCAGGAGGGGGCAGGAGGAAGCCATCTCCACTTGCAACCTCCCCACATCACTGTG
 GTGACCTGCACTTTGTCCTGCATCTATGTCTATGCCGCCCTCACTGCCCTCCCCAC
 AGAAAAGGCCATCTGTCACTTCACTGTCACTCCCCTCTGCTGAACCCTTGATCTACA
 CTCTGAGGAACCAGGAATGAAGTCAGCCATGAGAAGACTGAAGAGAAAGACTCGTGCCTT
 CTGA (SEQ ID NO: 278)

AOLFR151 sequences:

15 MFSPNHTIVTEFILLGLTDPPVLEKILFGVFLAIYIITLAGNLCMILLRTNSHLQTPMYFFLGHS
 FVDICYSSNVTPNMLHNFLSEQKTISYAGCFTQCLLFIALVITEFYILASMDRYVAICSPHYS
 SRMSKNICVCLVTIPYMGFLSGFSQSLLTFHLSFCGSLEINHFYCADPPLIMLACSDTRVKKMA
 MFVVAGFNSSLFILLSYLFIFAAIRIRSAEGRHKAFSTCASHLTIVTLFYGTLFCMYVRPPSE
 KSVEESKITAVFYFLSPMLNPLIYSLRNTDVILAMQQMIRGKSFHKIAV (SEQ ID NO: 279)
 20 ATGTTCTCCCCAAACCACACCATACTGACAGAACATTCTCTGGGACTGACAGACGACC
 CAGTGCTAGAGAAAGATCCTGTTGGGTATTCCCTGCGATCTACCTAACACTGGCAGG
 CAACCTGTGCATGATCCTGCTGATCAGGACCAATTCCACCTGCAAACACCCATGTATTTC
 TTCCCTGGCACCTCTCCTTTGTAGACATTGCTATTCTCAATGTTACTCCAAATATGCT
 25 GCACAATTTCCTCTCAGAACAGAACGACATCTCTACGCTGGATGCTTCACACAGTGCTT
 CTCTTCATCGCCCTGGTGAATCAGTTTACATCTTGCCTCAATGGCATTGGATCGCTA
 TGAGCCATTGCAAGCCCTTGCAATTACAGITCCAGGATGTCCAAGAACATCTGTGCTGT
 CTGGTCACTATCCCTTACATGTATGGTTCTAGTGGGTTCTCTCAGTCAGTCACTGCTAACCTT
 30 TCACTTACCTCTGTGGCTCCCTGAAATCAATCATTTCTACTGCGCTGATCCTCCTCTTA
 TCATGCTGGCTGCTCTGACACCCGTGTCAAAAGATGGCAATGTTGTAGTTGAGGCTT
 TAATCTCTCAAGCTCTCTTCATCATTCTCTGCTCATTTCTGCTTCTTCAATTGCAAGCGATCTT
 CAGGATCGTTGCTGAAGGCAGGCACAAAGCCTTCTACGTGTGCTTCCACCTGACA
 ATAGTCATTGTTATGGAACCCCTCTCTGCATGTACGTAAGGCCTCCATCAGAGAAGT
 35 CTGTAGAGGAGTCACAAATAACTGCAGCTTATACCTTTGAGGCCAATGCTGAACCC
 ATTGATCTATAGCCTACCGAACACAGATGTAATCCCTGCCATGCAACAAATGATTAGGGAA
 AAATCCTTCATAAAATTGCAAGTTAG (SEQ ID NO: 280)

AOLFR152 sequences:

40 MDQINHTNVKEFFFELTRSRELEFFLFVVFFAVYVATVLGNALIVVTITCESRLHPTMYFLRN
 KSVLDIVFSSITVPKFLVDLSDRKTISYNDMAQIFFFHAGGADIFFLSVMAYDRYLAIAKPL
 HYVTMMRKEVVVALVVASWVSGGLHSIIQVILMLPPPFCPNLDASFYCYVLQVVKLACTDT
 FALELFMISNNGLVTLLWFLLLGSYTVILVMLRSHSGEGRNKALSTCTSHMLVVTLHFVPCV
 YIYCRPFMLPMDDTISINNTVITPMLNPITYSLRNQEMKSAMQRQLRRGPSESRKWG (SEQ ID
 NO: 281)
 45 ATGGACCAAGATCAACCACACTAATGTGAAGGAGTTTCTCCTGGAACCTACACGTTCCC
 GAGAGCTGGAGTTTCTGTTGTGGCTCTCTTGCTGTATGTAGCAACAGTCCTGG
 AAATGCACTCATTGTGGTCACTATTACCTGTGAGTCCCCTACACACTCCTATGACTTT
 50 TCCGTGCGAACAAATCAGTCCTGGACATCGTTTTCTATCATCACCGTCCCCAAGTCC
 GTGGATTTTATCAGACAGGAAACATCTCCTACAATGACTGCATGGCACAGATCTTT
 TCTTCCACTTGCTGGTGGGGCAGATATTCTCTCTGTGATGGCTATGACAGATAC
 CTGCAATGCCAACCCCCCTGCACTATGTGACCATGATGAGGAAAGAGGTGTGGGTGGCC
 TTGGTGGTGGCTTCTGGGTGAGTGGTGGTTGCATTCAATCATCCAGGTAATTCTGATGC
 TTCCATTCCCTCTGTGGCCCCAACACACTGGATGCCCTACTGTTATGTGCTCCAGGTG
 55 GTAAAACGGCCTGCACTGACACCTTGCTTGAGCTTCTGATCTCTAACAAACGGAC
 TGGTGACCTGCTCTGGTCCCTGCTGGCTCTACACTGTCAATTCTGGTGTGCTG

AGATCCCAC TCTGGGAGGGCGGAACAAGGCCCTCCACGTGCACGTCCCACATGCTG
 GTGGTGACTCTCACTTCGCGCTTGTGTTACATCTACTGCCGCCCTCATGACGCTGCC
 CATGGACACAACCATATCCATTAAATAACACGGTCA TACCCCCATGCTGAACCCCACATC
 TATTCCCTGAGAAATCAAGAGATGAAGTCAGCCATGCAGAGGCTGCAGAGGAGACTGGG
 5 CCTTCCGAGAGCAGAAAATGGGGTGA (SEQ ID NO: 282)

AOLFR153 sequences:

MSKTSVLTAFLTGLPHAPGLDAPLFGIFLVYVLTVLGNLLILLVIRVDSHLHTPMYYFLTNLS
 FIDMWFSTVTVPKMLMTLVSPGRAISFHSCVAQLYFFHFLGSTECLFLYTVMSYDRYLAIYPL
 10 RYTSMMSGSRCALLATSTWLSGSLHSAVQTILTFLPYCVPNQJQHYLCDAPPILKLACADTS
 NEMVTFVDIGLVASGCFLLIVLSYVSIVCSILRIHTSEGRHRAFQTCASHCIVVLCFFVCVFIYLR
 PGSRDVVDGVVAIFYTVLTLPLNPVVYTLRNKEVKAVLKLRDKVAHSQGE (SEQ ID NO:
 283)

15 ATGTCCAAGACCAGCCTCGTACAGCGITCATCCTCACGGGCCCTCCCCATGCCCAAGGGC
 TGGACGCCCACTCTTGAATCTCCTGGTTACGTGCTCACTGTGCTGGGAACCT
 CCTCATCCTGCTGGTATCAGGGTGGATCTCACCTCCACACCCCCATGTACTACTCCTCA
 CCAACCTGTCCCTCATTGACATGTGGCTCCACTGTACGGTGCCAAATGCTGATGAC
 CTGGTGCTCCCAAGCGCAGGGCTATCTCCTCCACAGCTGCGTGGCTCAGCTCTATTTT
 20 TCCACTTCCGGGAGCACCAGTGTTCCTCTACACAGTCATGTGAGTGGGAGCAGATGTGCCCTCTGG
 GCCATCAGTTACCGCTCAGGTACACCAGCATGATGAGTGGGAGCAGATGTGCCCTCTGG
 CCACCAAGCACTGGCTCAGTGGCTCTGCACTCTGCTGTCCAGACCATATTGACTTCCAT
 TTGCCCTACTGTGGACCCAACCAGATCCAGCACTATTGTGTGATGCACCGCCCATCTGA
 AACTGGCCTGTGCA GACACCTCAGCCAACGAGATGGTCATTTGTGGACATTGGCTAGT
 25 GGCCCTGGGCTGCTTCTCTGATAGTGTCTTATGTGTCATCGTGTGTTCCATCCTGC
 GGATCCACACCTCAGAGGGAGGCACAGAGCCTTCAGACCTGTGCCTCCACTGCATG
 GGTCCITTGCTTTTGTNNCCTGTGTTTCATTACCTGAGACCAGGCTCAGGGACGTCG
 TGGATGGAGTTGTGGCCATTCTACACTGTGCTGACACCCCTCTCAACCTGTTGTAC
 ACCCTGAGAAACAAGGAGGTGAAGAAAGCTGTGTTGAAACTGAGAGACAAAGTAGCACAT
 30 TCTCAGGGAGAATAA (SEQ ID NO: 284)

AOLFR156 sequences:

MCWAMPSPFTGSSTRNMESRNQSTVTEFFTGFPLQDGSLLYFPPLLFIYTFIUDNLLIFSAVRL
 DTHLGPNPMYNFISIFSLEIWIYTATIPKMLSNLISEKKAISMTGCILQMYFFHSLENSEGILLTT
 35 MAIDRYVAICNPLRYQMIMTPRLCAHLSAGSCLFGFLILLPEIVMISTLPFCGPNIHQIFCDLVP
 VLSLACTDTSMILEDVIHAVTIIITFLIIALSYVRIVTVLIRIPSSEGRQKAXSTCAGHLMVFLIFFG
 SVSLMYLRFNSNTYPVVLDAIALMFTVLAPFFNPILYSLRNKDMNNAIKLFCLQKVLNKPGG
 (SEQ ID NO: 285)

40 ATGTGCTGGCTATGCCCTCCATTACAGGTAGCTACTAGAAATATGGAGAGCAGAA
 ACCAACATCAACAGTGAATTATCTTCACTGGATTCCCTCAGCTTCAGGATGGTAGTCT
 CCTGTA CTTCTTCTTACTTTCATCTACTTTATTATCATTGATAACCTATTAACTT
 CTCTGCTGTAAGGCTGGACACCCATCTGGCAACCCATGTATAATTATCAGTATATT
 CCTTCTGGAGATCTGTACACCACAGCCACCATCCCAAGATGCTCTCAACCTCATCAG
 45 TGAAAAGAAGGCCATCTCAATGACTGGCTGCACTTGAGATGTTCTTCCACTCACTT
 GAAAACCTCAGAGGGATCTGCTGACCACCATGGCCATTGACAGATACGTTGCCATCTGCA
 ACCCTCTCGCTATCAAATGATCATGACCCCCCGGCTGTGCTCACCTCTGCAAGGTTCC
 TGCCTCTCGGTTCTTATCCTGCTTCCGAGATTGTGATGATTCCACACTGCCTTCTG
 TGGGCCAACCAAATCCATCAGATCTCTGTGACTTGGTCCCTGTGTAAGCCTGGCTGT
 50 ACAGACACGTCCATGATTGATTGAGGATGTGATTCACTGTGATATTGAGGATTCCCTCT
 TCCTAATCATTGCCCTGTCTATGTAAGAATTGTCACTGTGATATTGAGGATTCCCTCT
 GAAGGGAGGCAAAGGCTNTTCTACCTGTGCAAGGCCACCTCATGGTCTTCTGATATTCT
 TTGGCAGTGTATCACTCATGTACTTGCCTTCACTGTGACTTGCCTTCAATCCACAGTTGGACAC
 AGCCATTGCACTGATGTTACTGTACTTGCCTTCAATCCACATTTATAGCCTGA
 55 GAAACAAGGACATGAACAATGCAATTAAAAAACTGTTCTGTCTCAAAAGTGTGAACA
 AGCCTGGAGGTTAA (SEQ ID NO: 286)

AOLFR157 sequences:

5 MAMDNVTAVFQFLIGISNYPQWRDTFFTLVLIYLSTLLNGNGFMIFLHFDPNLHTPIYFFLSNL
 SFLDLCYGTASMPQALVHCFSTHPYLSYPRCLAQTSVSLALATAECLLLAAMA YDRVVAISNP
 LRYSVVMNGPVCVCLVATSWGTSVLTA MLLSRLHFCGANVINHFACEILSLIKLTCSDTSL
 NEFMILITSIFTLLPFGVLLSYIRIAMAIIRIRSLQGRLKAFTCGSHLT VTFYGS AISM YMKT
 QSKSSPDQDKFISVFYGA LTPMLNPLIYSLRKKDVKRAIRKVMLKRT (SEQ ID NO: 287)

10 ATGGCCATGGACAATGTCACAGCAGTGTTCAGTTCTCCATTGGCATTCTAACTATCC
 TCAATGGAGAGACAGTTTCACATTAGT GCTGATAATTACCTCAGCACATTGGGG
 AATGGATTATGATCTTCTATTCACTTGACCCCAACCTCCACACTCCAATCTACTTCT
 CCTTAGTAACCTGCTTCTTAGACCTTGTATGGAACAGCTCCATGCCCGAGGCTTGG
 TG CATTGTTCTACCCATCCTACCTCTTATCCCCGATGTTGGCTCAAACGAGTGTC
 TCCITGGCTTGGCCACAGCAGAGTGCCTCTACTGGCTGCCATGGCTATGACCGTGTGG
 15 TTGCTATCAGCAATCCCCTGCGTATTCA GTGGTTATGAATGCCAGTGTGTCTGCTT
 GGTTGCTACCTCATGGGGACATCACTTGTGCTACTGCCATGCTCAT CCTATCCCTGAGG
 CTTCACTTCTGTGGGCTAATGTCATCAACCATTGCTGTGAGATTCTCCCTCATTA
 GCTGACCTGTTCTGATACCA GCGCTCAATGAATTATGATCCTCATCACCAGTATCTCACCC
 TGCTGCTACCATTTGGTTGTTCTCCTCCTACATACGAATTGCTATGGCTATCATAAGG
 20 ATTGCTCACTCCAGGGCAGGCTCAAGGCCTTACACATGTTGCTCTCACCTGACCGTGG
 TGACAATCTCTATGGGTAGCCATCTCATGTATATGAAAACCTAGTCCAAGTCTCCCC
 TGACCA GGACAAGTTATCTCAGTGT TATGGAGCTTGACACCCATGTTGAACCCCTG
 ATATATAGCCTGAGAAAAAAAGATGTTAACGGGAATAAGGAAAGTTATGTTGAAAAGG
 ACATGA (SEQ ID NO: 288)

25

AOLFR158 sequences:

MKAGNFSDTPEFFLLGLSGDPELQPILFMLFLSMYLATMLGNLLILAVNSDSHLHTPMYFLLSI
 LSLVDICFTSTTMPKMLVNQIAQQAQSINYGCLTQICFVLVFGLENGILVMMA YDRFVAICHPL
 30 LRYNVIMNPKLCGLLLL SFIVSVDALLHTLMVLQLTFCIDLEIPHFFCEL AHIKLACSDV LIN
 NILVYLVTSLGVVPLSGIIFS YTRIVSSVMKIPSAGGKYKA FSCGSHLIVVS LFYGTGF GVY LSS
 GATHSSRKGAIASV MYTVVTPMLNPLIYSLRNKDMLKALRKLISRIPSFH (SEQ ID NO: 289)

35 ATGAAAGCAGGAAACTCTCAGACACTCCAGAATTCTCTCTGGATIGTCAGGGGATC
 CGGAGCTGCAGCCCATCCTCTTCATGCTGTTCTGTCATGTACCTGCCACAATGCTGGG
 GAACCTGCTCATCCTGGCGTCAACTCTGACTCCCACCTCCACACCCCATGTA CTCC
 TCCCTCTATCCTGCTCTGGTCGACATCTGTTACCTCCACACGATGCCCAAGATGCTG
 GTGAACATCCAGGGCACAGGCTCAATCCATCAATTACACAGGCTGCCACCCAAATCTGCT
 TTGTCCTGGTTTTGTTGGATTGAAAATGGAATTCTGGTCATGATGGCTATGATCGATT
 40 TGTGGCCATCTGTCACCCACTGAGGTACAATGTCATCATGAACCCCAA ACTCTGTGGGCTG
 CTGCTTCTGCTGTCCTCATCGTTAGTGTCTGGATGCTCTGCTGACACGTTGATGGTGT
 ACAGCTGACCTCTGCATAGACCTGGAAATTCCCACTTTCTGTGA ACTAGCTCATATTC
 TCAAGCTCGCTGTTCTGATGTCTCATCAATAACATCCTGGGTATTTGGT GACCAGCCT
 GTTAGGGTGTGTTCTCTCTGGGATCATTTCTCTTACACACGAATTGTCCTCTGTCA
 45 TGAAAATCCATCAGCTGGTGGAAAGTATAAAGCTTTCCATCTGCGGTACATTAA
 CGTTGTTCTGTTATGGAACAGGGTTGGGTGACCTTAGTCTGGGCTACCCACT
 CCTCCAGGAAGGGTGCAATAGCATCAGTGTATACCGTGGTCACCCCATGCTGAACCC
 ACTCATTTACAGCCTGAGAAACAAGGACATGTGAAGGTTGAGGAAACTAATATCTAG
 GATACCATCTTCCATTGA (SEQ ID NO: 290)

50

AOLFR159 sequences:

MGPRNQTAVSEFLMKVTDPELKLIPFSLFLSMYLVTILGNLLILLA V ISD SHLHTPMYFLLFN
 LSFTDICLTTTVPKILVNQIAQNQSITYGCLTQICLVLVFA GLESCFLAVMAYDRYVAICHPL
 RYT VLMNVHFVGLLILLSMFMSTM DALVQSLMVLQLSFCKNVEIPLFFCEV VQVI KLA CS DTL
 55 INNLIYFASSVFGAIPLSGIIFS YSQIVTSVLRMPSARGKYKA FSTCGCHLSVFS LFYGTAFGVYIS
 SAVAESSRITAVASV MYTVV PQMMNPFIYSLRNKEMKKALRKLIGRLFPF (SEQ ID NO: 291)

ATGGGACCCAGAAACCAAACAGCTGTTCTAGAATTCTCTCATGAAAGTGACAGAGGAC
 CCAGAACATGAAGTTAATCCCTTCAGCCTGTTCTGTCACTGTACCTGGTCACCACCTGG
 GGAACCTGCTCATCTCCTGGCTGTCACTCTGACTCCCACCTCCACACCCCCATGTACTTC
 CTTCTCTTAATCTCTCTTACTGACATCTGTTAACCAACCAACAGTCCAAAGATCCT
 5 AGTGAACATCCAAGCTCAGAATCAGAGTATCACTTACACAGGCTGCCTCACCCAGATCTGT
 CTTGTCTGGTTTTGCTGGCTGGAAAGTTGCTTCTGCAGTCATGGCTACGACCGCTA
 TGTCAGGCACTTGCACCCACTGAGGTACACAGTCCATGAATGTCCAATTCTGGGGCTG
 CTGATTCTCTCATGTCAGTCAGACTATGGATGCCCTGGTTCAAGAGTCTGTATGGTATT
 GCAGCTGCTCTGCACAAAACGTTGAAATCCCTTGTCTCTGTGAAGTCGTCAAGGTC
 10 ATCAAGCTCGCCTGTTCTGACACCCCTCATCAACAACATCCTCATATATTTGCAAGTAGTGT
 ATTGGTGCAATTCTCTCTGGAATAATTCTCTTATTCCTAAATAGTCACCTCTGTC
 TGAGAAATGCCATCAGCAAGAGGAAAGTAAAGCGTTTCCACCTGTGGCTGTACCTCTC
 TGTTTTCTCTGTCTATGGACAGCTTGGGGTGTACATTAGTCTGTGTGCTGAGT
 15 CTTCAGCTACAGCTGAGAAATAAGGAGATGAAGAAAGCTTGTAGGAAACTATTGGTAG
 GCTGTTCTTTAG (SEQ ID NO: 292)

AOLFR160 sequences:

MPMQLLTDIIFSIRFIINSMEARNQTAISKFLLLGLIEDPELQPVLFLSMLVTLGNLLILL
 20 AVISDSHLHTPMYFLSNLSFLDICLSTTIPKMLVNIQQAQNRSITYSGCLTQICFVLFFAGLENC
 LLAAMAYDRYVAICHPLRYTVIMNPRLCGLLILSLLTSVNVALLSLMVLRLSFCTDLEIPLFF
 CELAQVQLTCSDLINNLIYFAACIFGGVPLSGIILSYTQITSCVLRMPSASGKHKAVENTCGSHL
 SIVLLFYGAGLVYISSVVTDSRKTAVASVMYSVFPQMVNPFYSLRNKDMKGTLRKFIGRIP
 SLLWCAICFGFRFLE (SEQ ID NO: 293)

25 ATGCCGATGCAGCTGCTTACAGATTATTATCTTCCATCAGATTCTCATCACACAG
 CATGGAAGCGAGAAACCAAACAGCTATTCAAAATTCTCTCTGGACTGATAGAGGAT
 CCGAACATGCAGCCGTCCTTCTGAGCTTCTGTCCATGACTTGGTACCCATCTGGG
 GAACCTGCTCATCCTCTGGCTGTATCTGACTCTCACCTCCACACCCCCATGTACTCT
 30 TCCTCTCAATCTCTCTTGGACATTGTTAACGACAACACGATCCAAAGATGCTG
 GTAACATCCAAGCTCAGAACGGAGCATCACGTAACAGGCTGCCTACCCAGATCTGCT
 TTGTCTGTTTTGCTGGCTGGAAAATTGTCCTTGAGCAATGGCTATGACCGCTAT
 GTGCCATTGTCACCCCTTAGATACACAGTCATCATGAACCCCGCCTGTGGCTGC
 TGATTCTCTCTGTGACTAGTGTGAATGCCCTCTTCAGCTGATGGTGTG
 35 AGGCTGCTCTCTGACAGACCTGGAATCCCGCTTCTCTGTGAACGGCTCAGTC
 TCCAACTCACCTGTCAGACACCCCTCATCAATAACATCCTGATATAATTGCAAGCTGCATA
 TTTGGTGGTGTCTCTGTGGAATCATTTGTCCTACACTCAGATCACCTCTGTGTTT
 GAGAATGCCATCAGCAAGTGGAAAGCACAAAGCAGTTCCACCTGTGGCTCACCTCC
 40 ATTGTTCTCTGTTCTATGGGGCAGGTTGGGGTGTACATTAGTCTGTGGTACTGACTC
 ACCTAGGAAGACTGCAGTGGCTCAGTGATGTATTCTGTGTTCCCTCAAATGGTAACCC
 TTTATCTATAGTCGAGGAATAAGGACATGAAAGGAACCTGAGGAAGTTCATAGGGAGG
 ATACCTCTCTGTGGTGCCTTGTGATTGCTTGGATTCAAGTTCTAGAGTAA (SEQ ID
 NO: 294)

AOLFR161 sequences:

MEPRNQTSASQFILLGLSEKPEQETLLFLSILFCMYLVMVVGNLILAIISIDSHLHTPMYFFLANL
 SLVDFCLATNTIPKMLVSLQTSKAISYPCCLIQMYFFHFFGIVDSVIIAMMAYDRFVAICHPLH
 YAKIMSLRLCRLLVGALWAFSCFISLTHILLMARLVFCGSHEVPHFCDLTPILRLSCTDTSVNR
 IFILIVAGMVIATPVFCILASYARILVAIMKVPSSAGGRKKAFSTCSSHLSVVALFYGTIGVYLCP
 50 SSVLTTVKEKASAIVMYTAVTPMLNPFIYSLRNRLKGALRKLVRNKITSSS (SEQ ID NO: 295)

55 ATGGAACCAAGAAACCAAACCCAGTCATCTCAATTCTCATCCTCTGGACTCTCAGAAAAGC
 CAGAGCAGGAGACGCTCTCTTCTGAGCTGATGTAACCTGGTACGGTCGTGGG
 GAACCTGCTCATCATCTGGCCATCAGCATAGACTCCCACCTCCACACCCCCATGTACTCT
 TCCTGGCCAACCTGTCCTGTTGATTCTGTCTGCCACCAACACCATCCCTAAGATGCT
 GGTGAGCCTCAAACCGGGAGCAAGGCCATCTTATCCCTGCTGCCTGATCCAGATGTAC

TTCTTCATTCTTGGCATCGTGGACAGCGTCATAATGCCATGATGGCTATGACCGGTT
 CGTGGCCATCTGCCACCCATTGCACTACGCCAAGATCATGAGCCTACGCCCTGTGCCCTG
 CTGGTCGGGCCCTCTGGGCGTTTCTGCCTCATCTCACTCACATCCTCCTGATGGC
 CCGTCTCGTTTCTGCCAGCCATGAGGTGCCTCACTACTCTGCGACCTCACTCCCATCC
 5 TCCGACTTCTGTGACGGACACCTCTGGAATAGGATCTTCATCCTCATTTGTGGCAGGGAT
 GGTGATAGCCACGCCCTTGCTGCATCCTGGCCTCTATGCTCGCATCCTGTGGCCATCA
 TGAAGGTCCCCCTCTGCAGGGCCAGGAAGAAAGCCCTCTCCACCTGCAGCTCCCACCTGTC
 TGTGGTGCTCTCTATGGGACCACCTGGCGTCTATCTGTGTCCTCCTCGGTCTCA
 10 CCACTGTGAAGGAGAAAGCTCTGCGGTGATGTACACAGCAGTCACCCCCATGCTGAATCC
 CTTCATCTACAGCTGAGGAACAGAGACCTGAAAGGGCTCTCAGGAAGCTGGTCAACAG
 AAAGATCACCTCATCTCCTGA (SEQ ID NO: 296)

AOLFR162 sequences:

MMRLMKEVRGRNQTEVTEFLLGLSDNPDLQGVLFALFLIYMANMVGNLGMIVLIKIDLCLH
 15 TPMYFFLSSLSFVDASYSSVTPKMLVNLMKAISFHGCAAQFYFFGSFLGTECFLLAMMA
 YDRYAAIWNPPLLYPVLVSGRICFLIATSFLAGCGNAIHTGMTFRLSFCGSNRINHFYCDTPPL
 LKLSCSDTHFNGIVIMAFSSFIVSCVMIVLISYLCIFIAVLKMPSELGRHKAFSTCASYLMAVTIF
 FGTILFMYLRPTSSYSMEQDKVVSVFYTVIPVNLPIYSLKNKDVKALKKILWKHIL (SEQ ID
 NO: 297)

20 ATGATGAGACTTATGAAAGAGGTTCGAGGCAGAAATCAAACAGAACAGAACAGAACATTCTC
 CTCTTAGGACTTCCGACAATCCAGATCTACAAGGAGTCCTCTTGATTTGTTCTGTTGAT
 CTATATGGCAAACATGGTGGCAATTGGGGATGATTGATTGATAAGATTGATCTCTGT
 CTCCACACCCCCATGTATTTCTCAGTAGCCTCTCTTGATAGTGCCTCTTACTCTCT
 25 TCCGTCACTCCCCAAGATGCTGGTAACCTCATGGCTGAGAATAAGGCCATTCTTTCATG
 GATGTGCTGCCAGTTCTACTCTTGGCTCTCTGGGACTGAGTGCTTCTGTTGGCC
 ATGATGGCATATGACCGCATGAGCCATTGGAAACCCCTGCTCTACCCAGTTCTCGTGT
 CTGGGAGAATTGCTTTGCTAATAGCTACCTCTTCTAGCAGGTTGGAAATGCAGC
 CATACATACAGGGATGACTTTAGGTTGCTTTGTGGTCTAATAGGATCAACCAATTCT
 30 ACTGTGACACCCCCCCTGCTCAAACCTCTTGCTCTGATAACCCACTCAATGGCATTG
 ATCATGGCATTCTCAAGTTTATTGTCATCAGCTGTGTTATGATTGCTCTATTCTTACCT
 GTGTATCTCATTGCCGCTCTGAAGATGCCCTCGTAGAGGGCAGGCACAAAGCCTCTCC
 ACCTGTGCCCTTACCTCATGGCTGTACCATACTTGGAAACAATCCTCTCATGTACTT
 GCGCCCTACATCTAGCTACTCAATGGAGCAAGACAAGGTTGCTCTGCTTTACAGTA
 35 ATAATCCTGTGCTAAATCCCTCATCTATAGTTAAAAAATAAGGATGTAAGGAGCC
 TAAAGAAGATCTTATGGAAACACATCTTGTAG (SEQ ID NO: 298)

AOLFR163 sequences:

MQRSNHVTETILLGFTTDPMQLGLFVFLGVYSLTVGNSTLIVLICNDSCLHTPMYFFTGN
 40 LSFLDLWYSSVYTPKILVTCISEDKSISFAGCLCQFFFASLAYSECYLLAAVAYDRYVAISKPL
 LYAQAMSIKLCALLVAWSYCGFINSSIITKKTSFNFRCRENIIDFFCDLLPLVELACGEKGGYK
 IMMYFLLASNVICPAVLILASYLFIITSVLRISSSKGYLKAFSTCSSHLTSVTLYGSILYIYALPRS
 SYSFDMDKIVSTFYTVFPMLNLMYSLRNKDVKBALKKLLP (SEQ ID NO: 299)

45 ATGCAGAGGAGCAATCATACTGACTGAGTTATACTGCTGGCTTACCCACAGACCCA
 GGAATGCAGCTGGCCTCTCGTGGTGTCCCTGGCGTGACTCTCTCACTGTGGTAGGAA
 ATAGCACCCCTCATCGTGTGATCTGTAATGACTCTGCCCTCCACACACCCATGTATTTTC
 ACTGGAAATCTGTCGTTCTGGATCTGGTATTCTCTGTCTACACCCCAAAGATCTTAGT
 GACCTGCATCTGAAGACAAAAGCATCTCCTTGTGGCTGCCGTGTCACTTCTCTTCT
 50 CTGCAGGGCTGGCTATAGTGAAGTGTACCTGCTGGCTGCCGTGGCTTATGACCGCTACGT
 GGCCATCTCCAAGCCCCCTGCTTATGCCAGGCCATGTCCATAAAGCTGTGTGATTGCTG
 GTAGCAGTCTCATATTGTGGTGGCTTATTAACCTCTCAATCATCACCAAGAAAACGTTTC
 CTTTAACCTCTGCCGTGAAACATCATTGATGACTTTCTGTGATTGCTCCCTGGTGG
 AGCTGGCCTGTGGCGAGAAGGGCGGCTATAAAATTATGATGTACTCTCTGCTGGCCTCCAA
 55 TGTCACTGCCCCCGCAGTGTCTCATCTGCCCTCTACCTCTTATCATCACCAAGTGTCTGA
 GGATCTCCTCCTCCAAGGGCTACCTCAAAGCCCTCCACATGCTCCTCCACCTGACCTCT

GTCACTTATACTATGGCTCCATTCTACATCTACGCTCTCCCCAGATCTAGCTATTCTT
 TGATATGGACAAAATAGTTCTACATTACACTGTGGTATTCCCATGTTGAATCTCATG
 ATCTACAGCCTAAGGAATAAGGATGTGAAAGAGGCTCTGAAAAAAACTCTCCCATAA (SEQ
 ID NO: 300)

5

AOLFR164 sequences:

MFLTERNTTSEATFTLLGFSDYELQIPLFFVFLAVYGSVVGNLGMIVIKINPKLHTPMYFFLN
 HLSFVDFCYSSIIAPMMLVNLVVEDRTISFGCLVQFFFCTFVVTTELILFAVMAYDHFVAICNP
 LLYTVAISQKLCAMLVVVLYAWGVACSLTLACSAKLFSHGFNTIHFFCELSSLISLSDPSYL
 10 SQLLFTVATFNEISTLLIILTSYAFIIVTLLKMPASGHRKVFSTCASHLTAITIFHGTILFLYCVP
 NSKNSRHTVKVASVFYTVVPLNPLIYSLRNKDVKDAIRKIINTKYFHIKHRHWYPFNFVIEQ
 (SEQ ID NO: 301)

ATGTTTCTGACAGAGAGAAATACGACATCTGAGGCCACATTCACTCTTGGCTTCTCAG
 15 ATTACCTGGAACTGCAAATTCCCTCTTCTTGATTTCTGGCAGTCTACGGCTTCAGTGTG
 GTAGGGAATCTTGGGATGATAGTGTACATCAAATTAAACCCAAATTGCATACCCCATGT
 ATTTTTCTCAACCACCTCTCCCTTGATTTCTGGCAGTCTTCAGGATTTGGTGCATT
 TGCTGGTGAACCTGGTTGAGAAGATAGAACCATTCATTCTCAGGATTTGGTGCATT
 CTTTTCTTTGACCTTTGACTGAAATTAAATTCTATTGCGGTGATGCCATGACC
 20 ACTTTG GCCATTGCAATCCTCTGCTCACACAGTTGCCATCTCCAGAAACTCTGTGCC
 ATGCTGGTGGTTGATTGTATGCACTGGGAGTCGCATGTCCTGACACTCGCGTGCCTG
 CTTAAGTTATCTTCACTGGTTCAACACAATCAATCATTTCTCTGTGAGTTATCTCC
 CTGATATCACTCTTACCTGACTCTATCTCAGCAGTTGCTTCTTCACTGTTGCCAC
 TTTAATGAGATAAGCACACTACTCATCATTCTGACATCTATGCATTCAATTGTACCA
 25 CCTGAAAGATGCCATTGCACTGGGACCGCAAAGTCTCTCCACCTGTGCCCTCCACCT
 GACTGCCATCACCCTTCCATGGCACCATCCTCTACTGTGACCCAACTCCAAAA
 ACTCCAGGCACACAGTCAAAGTGGCTCTGTGTTTACACCGTGGTATCCCCTGTTGAA
 TCCCCTGATCTACAGTCTGAGAAATAAGATGTTAAGGATGCAATCCGAAAAATAATCAAT
 AAAAAATATTTCATATTAAACATAGGCATTGGTATCCATTAAATTGTTATTGAACAAATA
 30 A (SEQ ID NO: 302)

AOLFR165 sequences:

MAVGRNNNTIVTKFILLGLSDHPQMFKIFLFLGLYLLTLAWNLSIALIKMDSHLHMPMYFFL
 SNLSFLDICVYSSTAPKMLSIDIETEQKTISFVGCAIQYFVFCGMGLTECFLLAAMAYDRYAAICN
 35 PLLYTVLISHTLCLKMVGAYVGGFLSSFIETYSVYQHDFCGPYMINHFFCDLPPVLALSCSDTF
 TSEVVTFIVSVVGVISVLVVLISYGYIVAAVKISSATGRTKAFSTCASHLTAVTLFYGSGFFM
 YMRFSSSYSLNRDKVVSIFYALVIPVNPIYFSRNKEIKNAMRKAMERDPGISHGGPFIFMTLG
 (SEQ ID NO: 303)

40 ATGGCTGTAGGAAGGAACAACACAATTGTGACAAAATTCACTCTCTGGACTTCAGACC
 ATCCTCAAATGAAGATTTCCTTTATGTTATTTCTGGGCTCTACCTCTGACGTGGCC
 TGGAACTTAAGCCTCATTGCCCTCATTAAGATGGACTCTCACCTGCACATGCCATGTACT
 TCTCTCTAGTAACCTGCTCTCCTGGACATCTGCTATGTGCTCTCACCGCCCTAAGATG
 CTGCTGACATCATCACAGAGCAGAAAACCATTCTCTTGTGGCTGTGCCACTCAGTACT
 45 TTGTCTCTGTGGGATGGGGCTGACTGAATGCTTCTCTGGCAGCTATGCCCTATGACCG
 GTATGCTGCAATCTGCAACCCCTGCTTACACAGTCTCATATCCCACACTTTGTTAA
 AGATGGGGTTGGCGCTATGTGGGTTGAACTCTTAGTTCTTCAATTGAAACATACTCTGT
 CTATCAGCATGATTCTGTGGCCCTATATGATCAACCACTTTCTGTGACCTCCCTCCAG
 TCTGGCTCTGTCTGCTGATAACCTCACCGCAGGGTGGTGCACCTTCATAGTCAGTGT
 50 GTCGTTGAATAGTGTCTGTGCTAGTGGCTCTCATCTTATGGTTACATTGTTGCTGCTGT
 TGTGAAGATCAGCTCAGCTACAGGTAGGACAAAGGCCCTCAGCACCTGTGCCCTCACCTG
 ACTGCTGTGACCCCTCTCATGGTTCTGGATTCTCATGTACATGCGACCCAGTTCCAGCTA
 CTCCCTAAACAGGGACAAGGTGGTGCATATTCTATGCCTGGTATCCCCTGGTGAAT
 CCCATCATCTACAGTTTAGGAATAAGGAGATTAAGGAAAGCCATGAGGAAAGCCATGGAA
 55 AGGGACCCCGGGATTCTCACGGTGGACCATTCAATTGACCTTGGCTAA (SEQ ID
 NO: 304)

AOLFR166 sequences:

5 MEMENCTRKEFIFLGLTQNREVSLVLFLLLWYVTLLGNLLIMVTVCESRLHTPMYFLH
 NLSIADICFSSITVPKVLVDLLSERKTISFNHCFTQMFLHLIGGVDFSLSVMALDRYVAISKPL
 HYATIMSRDHICLTVAAWLGGFVHSIVQISLLLPLPFCGPVLDTFYCDVHRVLKLAHTDIFIL
 ELLMISNNGLTTLWFLLLWVSYTIVSLPKSQAGEGRRKAISTCTSHITVTLHFVPCIYVYARP
 FTALPMDKAISVTFTVISPLLNPLIYTLRNHEMKSAMRRLKRLVPSDRK (SEQ ID NO: 305)

10 ATGGAGATGGAAAACGCACCAAGGGAAAAGAATTATTTCTTGGCCTGACCCAGAACATC
 GGGAAAGTGAGCTTAGTCITATTCTTCTACTCTGGGTATGTGACAACATTGCTGGGA
 AACCTCCTCATCGGTCACTGTACCTGTGAATCTGCCCTCACAGCCCCATGTATTIT
 GCTCCATAATTATCTATTGCCGATATCTGCTCTTCCATCACAGTCCCCAAGGTTCTGG
 TGGACCTCTGCTGAAAGAAAGACCATCTCCITCAATCATTGCTTCACTCAGATGTTCTA
 TTCCACCTATTGGAGGGGTTGGATGTATTCTCTTGGTATGGCATTGGATCGATATG
 15 TGGCCATCTCAAGCCCCCTGCACTATGCCACTATCATGAGTAGAGACCATTCGATTGGCT
 CACAGTGGCTGCCTGGTGGGGGCTTGTCCACTCCATCGTCAGATTTCCCTGTTGCTC
 CCACCTCCCTTGCGGACCCAATGTTCTGACACTTCTACTGTGATGTCACCCGGGCTC
 CAAACTGGCCCATAACAGACATTTCATACTGAACACTAATGATTCCAACAATGGACTG
 CTCACCAACACTGTGGTTTCTGCTCTGGTCTCATAGTCATATTATCATTACCCAA
 20 GTCTCAGGCAGGAGAGGGCAGGAGGAAAGCCATCTCACCTGCACCTCCACATCACTGT
 GGTGACCTGCAATTCTGTGCCCTGCATCTATGCTATGCCGGCCCTCACTGCCCTCCCCA
 TGGATAAGGCCATCTGTACCTTCACTGTCACTCCTGCTCAACCCCTGATCTAC
 ACTCTGAGGAACCAGATGAGATGAAGTCAGCCATGAGGAGACTGAAGAGAAGACTTGTGCCT
 TCTGATAGAAAATAG *SEQ ID NO: 306)

25

AOLFR167 sequences:

30 MSITKAWNSSSVTMFILLGFTDHPELQALLFVTFLGIYLITLAWNLAFLIRGDTHLHTPMYFF
 LSNLSDIDCYSSAVAPNMLTDFFWEQKTIISVGCAAQFFFFVGMGLSECLLTAMAYDRYAAI
 SSPLLYPTIMTQGLCTRMMVVAVGGLSLSLIQASSIFRLHFCGPNIINHFFCDLPPVLALSCSDT
 FLSQVNVLVVVTVGGSFLQLLISYGYIVSAVLKIPSAEGRWKACNTCASHLMVVTLFGTAL
 FVYLRPSSYLLGRDKVVSVFYSLVIPMLNPLIYSLRNKEIKDALWKVLERKKVFS (SEQ ID
 NO: 307)

35 ATGTCCATAACCAAAGCCTGGAACAGCTCATCAGTGACCATGTTCATCCTCTGGATTCA
 CAGACCATCCAGAACTCCAGGCCCTCCTTGTGACCTTCCCTGGCATCTATCTTACCA
 CTGGCCTGGAACCTGGCCCTCATTITCTGATCAGAGGTGACACCCATCTGCACACACCCA
 TGTACTCTCCTAAGCAACTTATCTTCAATTGACATCTGCTACTCTCTGCTGTGGCTCC
 AATATGCTACTGACTCTCTGGGAGCAGAAAGACCATATCATTGTGGCTGTGCTGTC
 AGTTTTTTCTTGTGGCATGGGTCTGTGAGTGCCTCCCTGACTGCTATGGCATA
 40 GACCGATATGCAGGCCATCTCAGCCCCCTCTCACCCACTATCATGACCCAGGGCTCT
 GTACACGCATGGGGCATATGTTGGCTCTGAGGCTCCCTGAGCTCCCTGATCCAGGCCAG
 CTCCATATTAGGCTTCACTTTGGGACCCAACATCATCAACCACTCTCTGCGACCTCC
 CACCACTGCTGGCTCTGCTTGCTGACACCTCCAGTCAAGTGGTAATTCCCTG
 GTGGTCACTGTCGGAGGAACATGTTCCAACTCTTATCTCTATGGTACATA
 45 CTGCGGCTCTGAAGATCCCTCAGCAGAGGGCGATGGAAAGCTGCAACACGTGTGCCT
 CGCATCTGATGGGGTGAECTGCTGTTGGGACAGCCCTTTCGTGACTTGCAGCCAG
 CTCCAGCTACTGCTAGGCAGGGACAAGGTGGTCTGTGTTCTATTCACTGGTATCCCC
 ATGCTGAACCCCTCTCATTACAGTTGAGGAACAAAGAGATCAAGGATGCCCTG
 GTGTTGGAAAGGAAGAAAGTGTGTTCTAG (SEQ ID NO: 308)

50

AOLFR168 sequences:

55 MEKINNVTEFIFWGLSQSPEIEKVCFVVFSSFYIILLGNLLIMLTVCLSNLFKSPMYFFLSLSFV
 DICYSSVTAPKMIVDLLAKDKTISYVGCMQLLGVHFFGCTEIFILTVMAYDRYVAICKPLHYM
 TIMNRETCNKMLLGTVVGGFLHSIIQVALVVQLPFCGPNEIDHYFCDVHPVLKACTETYIVG
 VVVTANSGTIALGSFVILLISYIILVSLRKQSAEGRRKALSTCGSHIAMVVIFFGPCTFMYMRPD

TTFSEDKMWAVFYTIITPMLNPLIYTLRNAEVKNAMKKLWGRNVLEAKGK (SEQ ID NO: 309)

5 ATGGAAAAAATAAACAAACGTAACTGAATTCACTTCTGGGGCTTCTCAGAGCCCAGAGA
 TTGAGAAAAGTTGTGGTCTTCATACATAATCATTCTCTGGAAATCTC
 CTCATCATGCTGACAGTTGCCTGAGCAACCTGTTAAGTCACCCATGTATTCCTTCAG
 CTTCTTGCTTGTGGACATTGTACTCTCAGTCACAGCTCCAAGATGATTGTTGACC
 TGTTAGCAAAGGACAAAACCATCTCTTATGTGGGGTGCATGTTGCAACTGCTGGAGTAC
 ATTTCTTGGTTGCACTGAGATCTCATCTTACTGTAATGGCCTATGATCGTATGTGGCT
 10 ATCTGTAAACCCCTACATTATATGACCATCATGAACCGGGAGACATGCAATAAAATGTTAT
 TAGGGACGTGGTAGGTGGGTTCTACACTCCATTATCCAAGTGGCTGGTAGTCCAAC
 ACCCTTTGTGGACCCAATGAGATAGATCACTACTTTGTGATGTTCACCCGTGTTGAAA
 CTTGCCTGACAGAAACATACATTGTGGTGTGACAGCCAACAGTGGTACCATG
 CTCTGGGGAGTTTGTATCTGCTAATCTCTACAGCATCATCTAGTTCCCTGAGAAAG
 15 CAGTCAGCAGAAGGCAGGCGCAAAGCCCTCTCCACCTGTGGCTCCACATTGCCATGGTCG
 TTATCTTTCGGCCCCGTACTTTATGTCATGCCCTGTATGACCTTTCAGAGGAT
 AAGATGGTGGCTGTATTTACACCATTATCACTCCATGTTAAATCCTGTATTTACACT
 GAGAAATGCAAGAAGTAAAGAATGCAATGAAGAAACTGTGGGGCAGAAATGTTTCTTGG
 GGCTAAAGGAAATAG (SEQ ID NO: 310)

20 **AOLFR169 sequences:**

MMDNHSSATEFHLLGFPGSQGLHHILFAIFFFFYLVTLMGNTVIVIVCVDKRLQSPMYFLSHL
 STLEILVTTTVPMMWLGLLFLGCRQYLSLHSVSLNFSCGTMEALLGVMAVDRYVAVCNPLRY
 25 NIIMNSSTCIWVVIVSVWVFGFLSEIWPIYATFQFTFRKSNSLDHFYCDRGQLLKLSDNLLTEFI
 LFLMAVFILIGSLIPTIVSYTYIISTILKIPSASGRRKAFSTFASHFTCVVIGYGSCLFLYVKPKQTQ
 GVEYNKIVSLLVSVLTPFLNPIFTLRNDKVKEALRDGMKRCQQLKD (SEQ ID NO: 311)

30 ATGATGGACAACCACTCTAGGCCACTGAATTCCACCTTCTAGGCTCCCTGGGTCCAAG
 GACTACACCACATTCTTTGCTATATTCTTTCTCTATTAGTACATTAATGGGAAAC
 ACGGTCACTCATTGTGATTGTCGTGTGGATAAACGCTGCACTCCCCCATGTATTTCTCCT
 CAGCCACCTCTCACCCCTGGAGATCCTGGTCACAACCATAATTGCTCCCATGATGCTTGG
 GGATTGCTCTCCTGGGATGCAGACAGTATCTTCTACATGTATGCTCAACTTTCTG
 TGGGACCATGGAGTTGCATTACTGGAGTGATGGCTGTGGACCGTTATGTGGCTGTGT
 AACCTTTGAGGTACAACATATTGAACAGCAGTACCTGTATTGGGGGTAATAGTGT
 35 CATGGGTGTTGGATTCTTCTGAAATCTGCCCATCTATGCCACATTCACTTACCTTC
 CGCAAATCAAATTCTTACAGACCATTACTGTGACCGAGGGCAATTGCTCAAACGTGCT
 GCGATAACACTCTCACAGAGTTATCTTCTTAATGGCTTTTATTCTCATTGGT
 TCTTGTATCCCTACGATTGTCTCTACACCTACATTATCTCCACCATCTCAAGATCCCCTC
 AGCCTCTGGCCGGAGGAAGCTTCTCCACTTTGCCCTCCACTCACCTGTGTGATTG
 40 GCTATGGCAGCTGTTCTACGTGAAACCCAAGCAAACACAGGGAGTTGAGTACAA
 TAAGATAGTTCCCTGTTGGTTCTGTGTTAACCCCCCTCTGAATCTTCACTTTACTCT
 TCGGAATGACAAAGTCAAAGAGGCCCTCCGAGATGGGATGAAACGCTGCTGCAACTCCT
 GAAAGATTAG (SEQ ID NO: 312)

45 **AOLFR170 sequences:**

MSFTSLIPSLCFSLTLPLFCYLSLLPFLSAFLFITRWLLAFLSLFSVSVSSVSSSMVLCLYLSVS
 ASPSVFCFCMGPILWIMANLSPQSEFVLLGFFSGFELQALLYGPFLMLYLLAFMGNTIIIVMVI
 ADTHLHTPMYFFLGNFSLLEILVTMTAVPRMLSDDLVPHKVTFTGCMVQFYFHSLGSTSFLIL
 50 TDMALDRFVAICHPLRYGTLMSRAMCVQLAGAAWAAPFLAMVPTVLSRAHLDYCHGDVINH
 FFCDNEPLLQLSCSDTRLLEFWDFLMLTFVLSFLVTLISGYIVTTVLRIPSASSCQKAFSTCG
 SHLTLVFIGYSSTIFLYVRPGKAHSVQVRKVALVTSVLPFLNPILTFCNQTVKTVLQGQMQR
 RLKGGLCKAQ (SEQ ID NO: 313)

55 ATGTCTTCACCTCTCATACCCCTCACTCTGTTCTCCTTGACTCTCCATTCTGTGTTGT
 TATCTTCTTATTGCCGTTCTTCTGCTTCTGTTATCACTCGCTGGCTACTGCCCTT
 CTCTCTCTATTCTGCTCTGCTCCCTGTTCTGTTCAAGTTCAATGGTCTCTGTC

TATCTCTCTGTTCTGCCCTCCGTCTGTCCTTGTGATGCAGGGCCCCATACTG
 TGGATCATGGCAAATCTGAGCCAGCCCTCGAATTGTCCTCTGGCTCTCCCTTGG
 TGAGCTCAGGCCCTCTGTATGGCCCTCTCATGCTTATCTCTGCCCTCATGGAA
 ACACCATCATCATAGTTATGGTCATAGCTGACACCCACCTACATACACCCATGACTCTC
 5 CTGGCAATTTCCTGCTGGAGATCTGGTAACCATGACTGCACTGCCAGGATGCTCT
 CAGACCTGTTGGCCCCAACAAAGTCATACCTCACTGGCTGCACTGGTCCAGITCTACTTC
 CACTTTCCCTGGGGTCCACCTCCATCTGACAGACATGGCCCTGATGCTTGT
 GGCCATCTGCCACCCACTGCGCTATGGCACTCTGATGAGCCGGCTATGTGTCCAGCTG
 GCTGGGGCTGCCGGCAGCTCTTCCTAGCCATGGTACCCACTGCTCTCCGAGCTC
 10 ATCTGATTACTGCCATGGCAGTCATCAACCACTCTCTGTGACAATGAACCTCTCTG
 CAGTTGTCATGCTCTGACACTGCCGTTGGAATTCTGGACTTCTGATGGCTTGACCTT
 TGTCCTCAGCTCCTCCTGGTACCCCTCATCTCTATGGCTACATAGTACCCACTGTGCTG
 GGATCCCCTCTGCCAGCAGCTGCCAGAAGGCTTCTCCACTGCGGGCTCACCTCACACT
 15 GGTCTTCATCGGCTACAGTAGTACCATCTTCTGTATGTCAGGCCCTGGCAAAGCTCACCT
 GTGCAAGTCAGGAAGGTCGGCTTGGTACCTCAGITCTCACCCCTTCTCAATCCCT
 TTATCCTTACCTCTGCAATCAGACAGTAAAACAGTGTACAGGGCAGATGCAGAGGCT
 GAAAGGCCCTTGCAAGGCACAATGA (SEQ ID NO: 314)

AOLFR171 sequences:

20 MVGNLLIWVTIGSPSLGSLMYFFLAYLSLMDAIYSTAMSPKLMIDLCDKIAISLSACMQLFI
 EHLLGGAEVFLLVVMAYDRYVAISKPLHYLNIMNRLVCILLVVAMIGGFVHSVVQIVFLYSLP
 ICGPNVIDHSVCDMYPILLELLCLDTYFIGLTVVANGGIICMVIFTFLLISCGVILNFLKTYSQEER
 HKALPTCISHTVVVALVFVPCIFMYVRPVSNFPFDKLMTVFSIITMLNPLIYSLRQSEMKNAM
 KNLWCEKLSIVRKRVSPTLNIFIPSSKATNRR (SEQ ID NO: 315)
 25 ATGGTGGGAAACCTCCTCATTGGGTGACTACTATTGGCAGCCCCCTCTGGGCTCCCTAA
 TGTAATTCTCTCTGCCTACTTGTCACTTATGGATGCCATATACTCCACTGCCATGTACCC
 AAATTGATAGACTTACTCTGTGATAAAATCGTATTCTCTGTGCACTGGTCATGGTC
 AGCTCTCATAGAACACTTACTTGTGGTGCAGAGGTCTCCCTTTGGTGGTATGGCCTA
 30 TGATCGCTATGTGGCTATCTAAGCCGCTGCACTATTGAACATCATGAATCGACTGGTT
 TGCACTCCTCTGTGGTGGGCCATGATTGGAGGTTTGTGCACTCTGTGGTCAAATTGT
 CTTCTGTACAGTCTACCAACTCTGTGGCCCAATGTTATTGACCAACTCTGTCTGTGACATGT
 ACCCATGGAAACTGTGTGCCTGACACCTACTTATAGGACTCACTGTGGTGCCTA
 35 TGGTGGAAATAATTGTATGGTCACTTACCTTCTGCTAATCTCTGTGGAGTCATCTAA
 ACTTCCCTAAACTACAGTCAGGAAGAGAGGCATAAAGCCCTGCCACTGCATCTCCA
 CATCATTGTGGTTCGCCCTCGTTTGTGCTGCTGTTATGTTATGTTAGACCCGTTCCA
 ACTTCCCTTGTATAAAATTGACTGTGTTTATTCAATTATCACACTCATGTTGAATCCT
 TTAATATACTCGITGAGACAATCAGAGATGAAAAATGCTATGAAAAATCTGGTGTGAA
 40 AAGTTAAGTATAGTTAGAAAAGAGTATCTCCCACACTGAACACATATTATTCTAGTTCTA
 AGGCAACAAATAGGCGGTAA (SEQ ID NO: 316)

AOLFR172 sequences:

MAETLQLNSTFLHPNFFILTGFPGGLGSAQTWLTLVFGPIYLLALLNGNALPAVVWIDSTLHQPM
 FLLLAILAATDGLATSIAPGLLAVLWLRPSVPYAVCLVQMFVHALTAMESGVLLAMACDR
 45 AAAIGRPLHYPVLVTKACVGYAALALALKAVAIVVPPPLLVAKFEHFQAKTIGHTYCAHMAV
 VELVVGNTQATNLYGLALSLAISGMIDLGITGSYGLIAHVLQLPTREAHAKAFGTCSHICVIL
 AFYIPGLFSYLAHRFGHHTVPKPVHILLSNIYLLPPALNPLIYGARTKQIRDRLLETFTFRKSPL
 (SEQ ID NO: 317)

50 ATGGCAGAAACTACAACCAATTCCACCTCTACACCCAAACTCTCATACTGACTG
 GCTTCCAGGGCTAGGAAGTCCCAGACTTGGCTGACACTGGCTTTGGCCATTATCT
 GCTGGCCCTGCTGGCAATGGAGCACTGCCGGCAGTGGTGTGGATAGACTCCACACTGCA
 CCAGCCCATGTTCTACTGTGGCCATCTGGCAGCCACAGACCTGGCTTAGCCACATCT
 ATAGCCCCAGGGTTGCTGGCTGTGGCTTGGCCCGATCTGTGCCATATGCTGTGT
 55 GCCTGGTCCAGATGTTCTTGTACATGCACACTGACCTGCCATGGAATCAGGTGTGCTTGGC
 CATGGCCTGTGATCGTGCTGCCAATAGGGCGTCCACTGCACTACCCCTGCTGGTCACC

AAAGCCTGTGTGGGTTATGCAGCCTGGCCACTGAAAGCTGTGGCTATTGTTGTAC
 CTTTCCCAC TGCTGGCAAAGTTGAGCACTTCCAAGCCAAGACCATAGGCCATACCTA
 TTGTCGACACATGGCAGTGGTAGAACACTGGTGGTGGTAACACACAGGCCACCAACTTATA
 TGGCTGGCACTTCACTGGCCATCTCAGGTATGGATATTCTGGTATCACTGGCTCTAT
 5 GGACTCATTGCCATGCTGTGCTGCAGCTACCTACCCGGGAGGCCATGCCAAGGCCCTTG
 GTACATGTAGTTCTCACATCTGTGCACTCTGGCTTCTACATACCTGGTCTCTCTCCTAC
 CTCGCACACCGCTTGGTCATCACACTGTCCAAAGCCTGTGCACATCCTCTCCTCAACAT
 CTACTTGCTGCTGCCACCTGCCCTAACCCCCCTCATCTATGGGGCCCGACCAAGCAGATC
 AGAGACCGACTCCTGGAAACCTCACATTAGAAAAAGCCGTTGTAA (SEQ ID NO: 318)

10

AOLFR173 sequences:

MSHTNVTFHAPAVFLPGIPGLEAYHIWLSIPLCLIYITAVLGNSILIVVIVMERNLHVPMYFFLS
 MLA VMDILLSTTTVPKALAIWLQAHNIAFDACVTQGFFVHMMFVGESAILLAMAFDRFVAIC
 APLRYTTVLTWPVVGRIALAVTRSFCLIFPVIFLLKRLPFC LTNIVPHSYCEHIGVARLACADITV
 15 NIWYGFSPIVMVILDVILIAVSYSLLRAVFRLPSQDARHKALSTCGSHLCVILMFYVPSFTLL
 THHFGRNIPQHVHILLANLYVAVPPMLNPIVGVTKQIREGVAHRFFDIKTWCCTSPLGS
 (SEQ ID NO: 319)

20 ATGAGTCACACCAATGTTACCATCTTCCATCCTGCAGTTTTGTCCTCCTGGCATCCCTGG
 GTTGGGAGGCTTATCACATTGGCTGTCAATACCTCTTGCCTCATTTACATCACTGCAGTCC
 TGGGAAACAGCATTCTGATAGTGGTTATTGTCAATGGAACGTAACCTTCACTGTGCCATGTA
 TTTCTTCTCTCAATGCTGGCCGTATGGACATCCTGCTGTCAACCACATGCCCCAAGGC
 CCCTAGCCATCTTGGCTTCAAGCACATAACATTGCTTTGATGCCGTGTCACCCAAAGGC
 TTCTTGTCCATATGATGTTGTGGGGAGTCAGCTATCCTGTTAGCATGGCCTTGTGATCG
 25 CTTTGTGGCCATTGTGCCCACTGAGATAACACAGTGTAAACATGGCCTGTTGTGGGG
 AGGATTGCTCTGGCCGTATACCCGAAGCTCTGCATCATCTTCCCAGTCATATTCTGCT
 GAAGCGGCTGCCCTCTGCCTAACCAACATTGTCCTCACTCCTACTGTGAGCATATTGGA
 GTGGCTGTTAGCCTGTGCTGACATCACTGTAACATTGGTATGGCTTCTCAGTGCCCAT
 TGTCACTGGTCATCTTGGATGTTATCCTCATCGCTGTCTTA CACTGATCCTCCGAGCAG
 30 TGTTTCGTTGCCCTCCCAGGATGTCGGCACAAGGCCCTCAGCACTTGIGGCTCCACCT
 CTGTGTCATCCTTATGTTTATGTTCCATCCTTACCTTATGACCCATCATTTGGCG
 TAATATTCCCAACATGTCATATCTGTGGCAATCTTATGTCAGTGCCACCAATGCA
 TGAACCCCATTGTCATGGTGTGAAGACTAACGAGAACGAGACTGAGGGGTAGCCACCGGTT
 CTTTGACATCAAGACATTGGTGTGACCTCCCCTCTGGCTCATGA (SEQ ID NO: 320)

35

AOLFR175 sequences:

MHFLSQNDLNINLIPHLC LHRHSVIAGAFTIHRHMKIFNSPSNSSTFGILLGFPCPREGQILLFV
 LFTVVYLLTLMNGNSIICAVHDQRLHAPMYILLANFSLEICYVTSTVPSMLANFLSDTKIISF
 40 SGCFLOFYFFFSLGSTECFFLA VMAFDRLAICRPLRYPTIMTRRLCTNLVVNCWVLGFIWFLIPI
 VNISQMSFCGSRIIDHFLCDPAPLLTLCCKGPVIELVFSVLSPLPVFMLFLFIVGSYALVVR AVL
 RVPSAAGRKA FSTCGSHLA VVSLFYGSVLMYGSPPSKNEAGKQKTVTLFYSVVTPLLNPVI
 YSLRNKDMRKALKFWGT (SEQ ID NO: 321)

45 ATGCATTTCTTCCAAAATGATTAAATATAATCTGATTCCCCATCTATGTTGCACCG
 TCATTCA GTAAATGCTGGTCTTACAATTCA CACAGGCACATGAAAATCTCAACAGCCCC
 AGCAACTCCAGCACCTTCACTGGCTTCACTCCTCCTGGCTTCCCTGCCCAAGGGAGGGC
 AGATCCTCTCTTGTGCTCTCACTGTTACCTCCTGACCCATGGCAATGGTCC
 ATCATCTGTGCTGTGCACTGGGATCAGAGACTCCACGCCCAATGTACATCCTGCTGCCA
 ACTTCTCTCTTGGAGATATGTTATGTCACCTCCACAGTCCCCAGCATGCTGCCAATTC
 50 CTCTCTGACACCAAGATCATCTGTTCTGGCTGCTCCAGTTCTACCTTTCTCTCC
 TTGGGCTCTACAGAATGTTTCTGGCAGTTATGGCATTTGATCGATA CCTGCCATCTG
 TCGGCCCTCTACGCTATCCAACCAATTATGACCA GACGGTCTGTACCAATCTGTGGTCAATT
 GCTGGGTA CTTGGTTCTGATCTGGTCTGTGATTCTATCGTCAACATCTCCAAATGTCTTC
 TGTGGATCTAGGATTATTGACCACTTCTATGTGACCCAGCTCCTCTCAACTCTCACCTG
 55 CAAAAAAAGGCCCTGTGATAGAGCTTGTCTTCTGCTTAAGTCTCTGCCGTCTTATGC
 TCTTCTCTCATTGTGGGTCTATGCTCTGGCGTGAGAGCTGTGTTGAGGGTCCCTCA

5 GCAGCTGGGAGAAGAAAGGTTTCTCACCTGTGGGTCTCACCTGGCTGTGGTTCACTGT
TCTACGGCTCAGTACTGGTCATGTATGGGAGCCACCATCTAAGAATGAAGCTGGAAAGC
AGAAGACTGTGACTCTGTTTATTCTGTGTTACCCCCTGCTAACCTGTGATATAGT
CTTAGGAACAAAGATATGAGAAAAGCTGAGAAAATTGGGAACATAA (SEQ ID NO:
322)

AOLFR176 sequences:

10 MFFIIHSLVTSVFLTALGPQNRTMHFVTEFVLLGFHQREMQSCFFSFILVLYLLTLLGNGAIVC
AVKLDRLRHTPMYILLGNFAFLEIWYISSTVPNMLVNILSEIKTISFGCFLQFYFFFSLGTTECFF
LSVMAYDRYLAICRPLHYP SIMTGF CII LVCVCWVGGFLCYPVPIVLISQLPFCGPNIIDHLVCD
PGPLFALACISAPSTELICYTFNSMIIFGPFLSILGSYTLVIRAVLCIPSGAGR KAFSTCGSHLMV
VSLFYGTLMVMYVSPTSGNPAGM QKIITLVYTAMTPFLNPLIYSLRNKDMKDALKRVLGLTVS
QN (SEQ ID NO: 323)

15 ATGTTCTTATTATTCTTGGTACTCTGTTTCTAACAGCTTGGAACCCAGAA
CAGAACATGCATTTGTGACTGAGTTGTCTCTGGTTCTCATGGTCAAAGGGAGATG
CAGAGCTGCTCTCTCATCCTGGTCTATCTCTGACACTGCTAGGAATGGAGC
TATTGTCGTGCACTGAAATGGACAGGCGGCTCCACACACCCATGTACATCCTCTGGGA
AACTTTGCCCTTCAGAGATCTGGTACATTCCCTCACTGTCCAAACATGCTAGTCATAT
CCTCTGAGATTAACACCATCTCCTCTGGTTGCTCCTGCAATTCTATTTCTTTC
ACTGGGTACAACAGAGTGTCTTATCAGTTATGGCTTATGATCGGTACCTGGCCATC
TGTGTCCTTACACTACCCCTCCATCATGACTGGGAAGTCTGTATAATTCTGGTCTGTG
ATGCTGGGTAGGCGGATTCTCTGCTATCCAGTCCCTATTGTTCTATCTCCAACCTCC
TCTGTGGGCCAACATCATTGACCACTGGTGTGACCCAGGCCATTGTTGCACTGGC
25 CTGCATCTGCTCCTCCACTGAGCTATCTTACACCTCAACTCGATGATTATCTTG
GGCCCTCCCTCCATCTGGATCTACACTCTGGTCACTCAGAGCTGTGTTGATTCCC
TCTGGTGTGGTCAACTAAAGCTTCTCACATGTGGTCCACCTAATGGTGGTGTCTC
TATTCTATGAAACCTTATGGTGTATGTGAGCCAACATAGGGAACCCAGCAGGAAT
GCAGAACATCATCACTCTGGTATACACAGCAATGACTCCATTCTAAATCCCCTATCTAT
30 AGTCTTCGAAACAAAGACATGAAAGATGCTCTAAAGAGAGTCCTGGGTTAACAGTTAGC
CAAAACTGA (SEQ ID NO: 324)

AOLFR177 sequences:

35 MSFFFVDLPMNRSATHVTEFILLGFPGCWKIQIFLFLVIYVLTLLGNGAIYAVRCNPLLH
TPMYFLLGNAFLEIWYVSSTIPNMLVNILSKTKAISFGCFLQFYFFFSLGTTECLFLAVMAYD
RYLAICHPLQYPAIMTVRFCGKLVSFCWLIGFLGYPIFYISQLPFCGPNIIDHFLCDMDPLMAL
SCAPAPITECIFYTQSSLVLFFTSMYILRSYILLTA VFQVPSAAGRKA FSTCGSHLVVVSFLYG
TVMVMYVSPTYGIPTLLQKILT VY SVT PFLNPLIYTLRNKDMKLALRNVLFGMRIRQNS
(SEQ ID NO: 325)

40 ATGTTCTTCTTGTAGACTTAAGACCCATGAACAGGTCA GCAACACACATCGT GACAG
AGTTTATTCTCCTGGGATTCCCTGGTTGCTGGAAAGATTCA GATTCTCTCTCATTTGTT
TTGGTGATTATGCTTGACCTTGCTGGAAATGGAGCCATCATCTATGCA GTGAGATGCA
ACCCACTACTACACACCCCCATGTA CTTCTGCTGGAAATTGCTTCTTGAGATCTGG
45 TATGTGTCCTCCACTATTCTAACATGCTAGTCACATTCTCTCCAAGACCAAGGCCATCTC
ATTCTGGGTGCTCCTCCAGTTCTATTCTCTTCACTGGAAACA ACTGAATGCTCT
TTCTGGCAGTAATGGCTTATGATCGATACCTGGCCTCTGCCACCCACTGCA GTACCCCTGC
CATCATGACTGTAAGGTTCTGGTAAGCTGGTGTCTTGTTGCTTATTGGATTCTTG
GATACCCAATTCCATTCTACATCTCCAACCTCCCTCTGTTGCTTAATATCATTGAT
50 CACTTCTGTGTGACATGGACCCATTGATGGCTCTACCTGTGCCCCAGCTCCATAACTG
AATGTATTCTATACTCAGAGCTCCCTGTCTCTTCACTAGTATGTA CATTCTCGA
TCCTATATCCTGTTACTAACAGCTGTTTCACTGGTGTGGTATCTCTTCTATGGACAGTCATGGTA
ATGTATGTAAGTCTACATATGGGATCCAACCTTATTGCAAGAAGATCCICACACTGGTAT
55 ATTCACTGTAACGACTCCTCTTTAATCCTCTGATCTACTCTCGTAATAAGGACATGAAA

CTCGCTCTGAGAAATGTCCTGTTGGAATGAGAATTGTCAAAATTGTGA (SEQ ID NO: 326)

AOLFR178 sequences:

5 MVGANHSVVSEFVFLGLTNSWEIRLLLLVFSSMFYMASMMGNSLILLTVTSDFHLHSPMYFLL
ANLSFIDLGVSSVTSPKMIYDLFRKHEVISFGGCIAQIFFIHVIGGVEMVLIAMAFDRYVAICKP
LQYLTIMSPRMCMFFLVAAWVTGLIHSVVQLVFVNVLPFCGPNVSDSFYCDLPRFIKLACTDSY
RLEFMVTANSFISLGSFFILJISYVVIIITVLKHSSAGLSKALSTLSAHVSVVLFGLIFVYTW
PSPSTHLDKFLAIFDAVLTPVLPNPIYTFRN (SEQ ID NO: 327)

10 ATGGTTGGGCAAATCACTCCGTGGTGTCAAGAGTTGTGTTCTGGACTACCAATTCTT
GGGAGATCCGACTTCTCCTCCCTGTGTTCTCCTCCATGTTTACATGGCCAGTATGATGGGA
AACTCTCTCATTTGCTACTGTGACTTCTGACCCTCACCTGCACTCCCCATGTATTCTTCT
GTTAGCCAACCTCTCCTCATTGACCTGGGTGTTCTCTGTCACTTCTCCAAAATGATT
15 ATGACCTGTTAGAAAGCACGAAGTCATCTCTTGAGGCTGCTGCTCATAGCCATGGCCTTGACAGATAT
CATCCACGTCACTGGCGGTGAGGATGGTGTGCTCATAGCCATGGCCTTGACAGATAT
GTGCCATATGTAAGCCCTCCAGTACCTGACCATTATGAGCCAAGAATGTGCATGTTCT
TCTTAGTGGCTGCCGGTACCGGCCTTACCACTCTGTAGTTCAATTGGTTTTGTAGTA
AACTTGCCTCTGTGGTCTTAATGATCGGACAGTTACTGTGACCTTCCTCGGTCTCAT
20 CAAACTTGCCCTGACAGACAGCTACCGACTGGAGTTCATGGTACAGCCAACAGTGATT
ATCTCTCTGGGCTCCTCTTCATACTGATCATTCCTATGTGGTACATTCTCACTGTTCT
GAAACACTCTCAGCTGGTTATCCAAGGCTCTGTCACCCCTTCAGCTCACGTCACTGTG
GTAGTTTGTCTTGGCTTGTATACGTGGCCATCTCCACACACCT
GGATAAGTTCTGCCATCTTGATGCAGTTCACTCTGTTAAATCCTATCATCTACA
25 CATTAGGAATTGA (SEQ ID NO: 328)

AOLFR179 sequences:

MNGMNHSVVSEFVFMGLTNSREIQLLLFSLLFYFASMMGNLVIVFTVTMDAHLHSPMYFLL
ANLSIIMDAFCSTAPKMICDIFKKHKAIISFRGCITQIPFSHALGGTEMVLIAMAFDRYMAICKP
30 LHYLTIMSPRMCLYFLATSSIIGLIHSLVQLVFVVDLPCGPNIIDSFYCDLPRLLRACTNTQEL
EFMVTVNSGLISVGFSVLLVISYIFILFTVWKHSSGGLAKALSTLSAHVTVVILFFGPLMFYTW
PSPTSHLDKLYLAIFDAFIFTPLNPVIYTFRNPKDMKVAMRRRLCSRLAHFTKIL (SEQ ID NO: 329)

35 ATGAATGGAATGAATCACTCTGTGGTATCAGAATTGTATTGATGGACTACCAACTCAC
GGGAGATTCACTCTACTTTTGTCTTCTTGTGTTCTACTTTCGAGCATGATGGGA
AACCTTGTCAATTGATATGGCATTTGCTCAATTACAGCCCTAAGATGATT
CCTGGCTAACCTCTCAATTGATATGGCATTTGCTCAATTACAGCCCTAAGATGATT
GTGATATTTCAGAAAGCACAAAGGCCATCTCCCTTCGGGGATGTATTACTCAGATCTCTT
TAGCCATGCTCTGGGGCACTGAGATGGTGTGCTCATAGCCATGGCCTTGACAGATAC
40 ATGGCCATATGTAACACTCTCCACTACCTGACCATCATGAGCCAAGAATGTGTCTATACT
TTTAGCCACTTCCCTATCATGGCTTATCCACTCATGGCCAATTAGTTTGTGGTA
GATTACCTTTGTGGCTTAATATCTTGTGACAGTTTACTGTGATCTCCCTCGGCTCCT
CAGACTGCTGTACCAACACCAAGAACACTGGAGTTCATGGTCACTGTCAATAGTGGACTC
ATTTCTGTGGGCTCCCTTGCTGGTAATTCTACATCTCATTCTGTGACTGTTG
45 GAAACATTCTCTGGTGGCTAGCCAAGGCCCTCTACCCGTCACTGTCAATGTCACTGTG
GTCATCTGTCTTGGGCCACTGATGTTTCTACACATGGCCTCTCCCACATCACACCT
GGATAAAATATCTGCTATTGTGATGCAATTACTCCCTTCTGAATCCAGTTATCTACA
CATTAGGAACAAAGACATGAAAGTGGCAATGAGGAGACTGTGCACTGGCATT
TTACAAAGATTGTAA (SEQ ID NO: 330)

50

AOLFR180 sequences:

MTNKMYAIYIKNLNYFSFLIVQCLQPTMAIFNNNTSSSNFLTAFPGLECAHWISIPVCCLYTI
ALLGNSMIFLVITKRRRLHKPMYYFLSMLAAVDLCLTTTLPVLGVLWFHAREISFKACFIQMF
55 FVHAFLSLESSVLAAMAFDRFVAICNPLNYATILDRMVLVIGLVICRPAVFLPLLVAINTVSF
HGGHELHSPFCYHPEVIKYTYSKPWISSFWGLFLQLYLNGLDVLFILFSYVLLRTVLGIVARKK

QQKALSTCVCHICAVTIFYVPLISLAAHRLFHSTPRVLCSTLANIYLLPPVLNPIIYSLKTKTIR
QAMFQLLQSKGSWGFNVRLGRWD (SEQ ID NO: 331)

5 ATGACTAATAAAATGTATGCTATATATAAGAACCTTAATTATTTCTTCCTCATAGT
TCAGTGTCTCAACCAACCAGGCAATATTCAATAAACACCACCTCGCTTCCTCAAACCTCC
TCCTCACTGCATTCCTGGGCTGGAATGTGCTCATGTCATGGATCTCCATTCCAGTCTGCTGT
CTCTACACCATTGCCCTTGGGAAACAGTATGATCTTCTGTCATCATTACTAACGGGA
GAATCCACAAACCCATGTATTATTCCTCCATGTCATGGCAGCTGTTGATCTATGTCTGACC
ATTACGACCCCTCCACTGTCTTGGTCTCTGTTATGCCCGGGAGATCAGCTTAA
10 AGCTTGCTTCATTCAAATGTCTTGTGATGCTTCTCCTGCTGGAGTCTCGGTGCTGG
TAGCCATGGCCTTGACCGCTCGTGGCATCTGTAACCCACTGAACATATGCTACTATCCTC
ACAGACAGGATGGCCTGGTATAGGGCTGGTATCTGCATTAGACCAGCAGTTCTTAC
TTCCCTCTGTAGCCATAAACACTGTGCTTCTATGGGGTCACGAGCTTCCCATCCA
TTTGCTACCACCCAGAAGTGTCAAATACACATATTCAAACCTGGATCAGCAGTTTT
15 GGGGACTGTTCTCAGCTCACCTGAATGGCACTGACGTATTGTTATTCTTCTCCTAT
GTCCTGATCCTCCGTACTGTTCTGGGATTGTGGCCGAAAGAAGCAACAAAAGCTCTCA
GCACTTGTGTCACATCTGTGCACTATTCTATGTGCCACTGATCAGCCTCTCT
TTGGCACACCGCCTTCCACTCCACCCCCAAGGGTGTCTGAGCACTTGGCCAATATTIA
TCTGCTTCTACCACCTGTGCTGAACCTATCATTTACAGCTGAAAGACCAAGACAATCCGC
20 CAGGCTATGTTCCAGCTGCTCAATCCAAGGGTATGGGTTTAATGTGAGGGTCTTA
GGGAAGATGGGATTGA (SEQ ID NO: 332)

AOLFR181 sequences:

25 MSVLNNSEVKLFLLIGIPGLEHAHTWFSIPICLMYLLAIMGNCTILFIKTEPSLHEPMYYFLAML
AVSDMGLSLSLPTMLRVFLFNAMGISPNAQFAQEFFFHGFVMESSVLLIMSLRFLAIHNPLR
YSSILTSNRVAKMGLILAIRSILLVIPFPFTLRLKYCQKNLLSHSYCLHQDTMKLACSDNKTNV
IYGFFIALCTMLDLALIVLSYVLIKTLISLASERLKALNTCVSHICAVLTFYVPITLAAMHHF
AKHKSPLVVILIADMFLVPPPLMNPIVYCVKTRQIWEKILGKLLNVCGR (SEQ ID NO: 333)

30 ATGTCTGTTCTCAATAACTCCGAAGTCAGCTTTCTTCTGATTGGGATCCAGGACTGG
AACATGCCACATTGGTCTCCATCCCCATTGCCATGTACCTGCTTGCCATCATGGGC
AACTGCACCATCTCTTATTATAAGACAGAGCCCTCGCTCATGAGCCATGTATTATT
CCTGCCATGTGGCTGTCTGACATGGGCCCTGCCCTCTCCCTCTACCATGTGA
GGGTCTCTGTCATGCCATGGGAATTCACTTAATGCCCTGCTTGTCAAGAATTCTTC
35 ATTCAATGGATTCACTGTCATGGAATCCTCAGTACTTCTAATTATGTCTTGGACCGCTTCT
TGCCATTCAACATCCCTTAAGATACAGTCTATCCTCACTAGCAACAGGGTTGCTAAATG
GGACTTATTAGCCATTAGGAGCATTCTCTAGTGAATTCCATTCCCTCACCTTAAGGAG
ATTAAAATATTGTCAAAAGAATCTCTCACTCATACTGTCTTCATCAGGATACCATGA
AGCTGGCCTGCTGACAACAAGACCAATGTCTATGGCTTCTTCTATTGCTCTGTACT
40 ATGCTGGACTTGGCACTGATTGTTGTCTTATGTGCTGATCTGAAGACTATACTCAGCAT
TGCATCTTGGCAGAGAGGCTTAAGGCCCTAAATACCTGTGCTCCACATCTGTGCTGTG
CTCACCTCTATGTGCCCATCATCACCCCTGGCTGCCATGCATCACTTGCACAGCACAAAA
GCCCTCTTGTGATCCTTATTGAGATATGTTCTGGTGCACGCCCTTATGAACCCCC
ATTGTGACTGTGAAAGACTCGACAAATCTGGGAGAAGATCTGGGAAGTTGCTTAAT
45 GTATGGGAGATAA (SEQ ID NO: 334)

AOLFR182 sequences:

50 MTLGSLGNSSSSVATFLSGIPGLERMHIWISIPLCFMYLVSIPGNCTILFIKTERSLHEPMYLFL
SMLALIDLGLSLCTLPTVLGIFWVGAREISHDACFAQLFFIHCFSLLESSVLLSMAFDRFVAICHPL
LHYVSILNTNVIGRIGLVLGRSVALIFPLPFMLKRFPYCGSPVLSHSYCLHQEVMKLACADMK
ANSIYGMFVIVSTVGDSSLILFSYALILRTVLSIASRAERFKALNTCVSHICAVLFLYTPMIGLSV
IHRFGKQAPHLVQVMGMFYLLFPPVMNPIVYSVTKQIRDRTVTHAFCY (SEQ ID NO: 335)

55 ATGACCCCTGGGATCCCTGGGAAACAGCAGCAGCAGCAGCGTTCTGCTACCTCCTGCTGAGTG
GCATCCCTGGGCTGGAGCGCATGCACATCTGGATCTCCATCCCACTGTGCTTCATGTATCT
GGTTCCATCCCCGGCAACTGCACAATTCTTTATCATTAAAACAGAGCGCTCACTTCAT

GAACCTATGTATCTCTTCTGTCATGCTGGCTCTGATTGACCTGGGTCTCCCTTGAC
 TCTCCCTACAGTCTGGCATCTTTGGTGGAGCACGAGAAATTAGCCATGATGCCATGC
 TTTGCTCAGCTCTTTCATTCACTGCTCTCCCTCGAGTCCTCTGTGCTACTGTCTATG
 GCCTTTGACCGCTTGTGGCATCTGCCACCCCTTGCACATATGTTCCATTCTCACCAACAC
 5 AGTCATTGGCAGGATTGGCCTGGCTCTGGGTCTAGTGTAGCACTCATTTCATTCCA
 CCTTTATGCTCAAAGATTCCCATTGTGGCTCCCCAGTCTCTCACATTCTATTGTCT
 CCACCAAGAAGTGTGAAATTGGCCTGTGCCACATGAAGGCCAACAGCATCACGGCAT
 GTTGTGTCATCGTCTCACAGTGGGTATAAGACTCACTGCTCATCTCTTATGCTCTGA
 10 TCCTGCCACCGTGTGCCATGCCCTCAGGCTGAGAGATTCAAGGCCCTAACACCTG
 TGTTTCCCACATCTGTGCTGTGCTCTACACTCCATGATTGGCCTCTGTGTCATCC
 ATCGCITGGAAAGCAGGCCACCCACCTGGTCCAGGTGGTATGGGTTCATGTATCTCT
 CTTCCCTCTGTGATGAATCCCATTGTCTACAGTGTGAAAGACCAACAGATCCGGGATCGA
 GTGACGCATGCCCTTGTACTAA (SEQ ID NO: 336)

15 AOLFR183 sequences:

MTNLNASQANHRNFI LTGIPGTPDKNPWLAFPLGFLYTLTLLNGNTILAVIKVEPSLHEPTYYFL
 SILALTDVSLSMSTLPSMLSIYWFNAPQIVFDACIMQMFFIHVFVGFESGVLVSMADFRAIRN
 PLHYVSLIHDVIRKTGIVLTRA CVVFPVFLIKCLPFCHSNVLHSYCLHQNMMLACASTR
 INSLYGLIVVIFTLGLDVLLTLLSYVLTKLTVLGIVSRGERLTLSTCLSHMSTVLLFYVPMGA
 20 ASMIHRFWEHLSVVHMVMADIYLLPPVLPNVYVSVTKQI (SEQ ID NO: 337)

ATGACGAACITGAATGCATCACAGGCCAACCAACCACCGTAACCTCATTCTGACAGGTATCCCAG
 GAACGCCAGACAAGAACCCATGGTTGGCTTCTCCCTGGGATTCTCTACACACTCACACT
 CCTGGGAAATGGTACCATCTAGCTGTCAAGGTGGAGCCAAGTCTCCATGAGGCCACG
 25 TATTACTCCTTCTATCTTGCTCTCACTGACGTTAGTCTCTCCATGTCCACCTGCCCTCC
 ATGCTCAGCATCTACTGGTTAATGCCCTCAGATTGTTTGATGCATGCATGCAGAT
 GTTCTTCATCCATGTATTGGAAATGAGTAAATCAGGAGTCTAGTGTCCATGGCCTTGAC
 AGATTGTTGGCCATCCGAAACCCATTACACTATGTTCCATCTCACTCACGATGTATTG
 AAAGACTGGAATATCTGTCTCACCCGGGAGTCTGTGTTGGTATCCCTGTGCCCTCCTT
 30 ATAAAGTGCCTACCCCTGCCCATTCCAATGTCCTGCTCATTCACTGTCTTCACCAAAA
 CATGATGCGGCTAGCTTGTGCCAGCACCCGCATCAACAGCCTACGGCCTCATGTCGTC
 ATCTTCACACTGGGCTCGATGTTCTCTCACTCACTGTCTTATGTAUTCACCCTGAAGAC
 TGTGTTGGCATTGTCTCCAGAGGTGAAAGGCTGAAACCCCTCAGCACATGCCCTCTCAC
 35 ATGTCTACCGTGTCCCTCTATGTTCTTATGGTGTGCTGCCCATGATCCACAGATT
 TTGGGAGCATTATCACCACTAGTGCACATGGTGTGATATACCTACTGCTCCCG
 CCTGTGCTAAACCCATTGTCTACAGTGTGAAAGACCAAGCAAAATTGA (SEQ ID NO: 338)

AOLFR184 sequences:

MSTLPTQIAPNSSTSMAPTFLLVGMPGLSGAPSWWTLPLIAVYLLSALGNGTILWIALQPALHR
 40 PMHFFLFLLSVSDIGLVTALMPTLLGIALAGAHTVPASACLLQMVFIHVFSVMESSVLLAMSID
 RALAICRPLHYPALLTNGVISKISLAISFRCLGLHLPLPFLAYMPYCLPQLVTHSYCLHPDVARL
 ACPEAWGAAYSFLVVLSAMGLDPPLLIFFSYGLIGKVLQGVESREDRWKAGQTCAAHLSAVLLF
 YIPMILLALINHPELPITQHTHLLSYVHFLLPPLINPILYSVKMKEIRKRILNRLQPRKVGGAQ
 (SEQ ID NO: 339)

45 ATGTCAACATTACCAACTCAGATAGCCCCAATAGCAGCACTCAATGGCCCCCACCCTCT
 TGCTGGGGCATGCCAGGCCATCAGGTGCACCCCTCTGGTGGACATTGCCCTCATG
 TGTCTACCTTCTCTGCACITGGAAATGGCACCATCCTCTGGATCATGCCCTGCAGCCC
 GCCCTGCACCGCCAATGCACTCTTCCCTTCTGCTTAGTGTGCTGATATTGGATTGGT
 50 CACTGCCCTGATGCCACACTGCTGGCATGCCCTGCTGGGCTCACACTGTCCCTGCC
 TCAGCCTGCCCTCTACAGATGGTTTATCCATGTCCTTCTGTCATGGAGTCTCTGTCTT
 GCTCGCCATGTCCATTGATGGGCACTGGCATCTGCCACCTCTCCACTACCCAGCGCTC
 CTCACCAATGGTGAATTAGAAAATCAGCTGGCATTTCTTCTGATGCCCTGGGTCTCC
 ATCTGCCCTGCCATTCTGCTGGCTACATGCCCTACTGCCCTCCACAGGTCTAACCCAT
 55 TCTTATTGCTGCACTCAGATGTGGCTGTTGGCTGCCAGAAGCTGGGTGCAAGCCT
 ACAGCCTATTGTTGGCTTCTCAGCCATGGGTTGGACCCCTGCTTATTCTCTCCTAT

5 GGCCTGATTGGCAAGGTGTTGCAAGGGTGGAGTCAGAGAGGATCGCTGGAAGGCTGG
 CAAACCTGTGCTGCCAACCTCTGCAGTGCTCTTCTATATCCCTATGATCCTCTGGC
 ACTGATTAACCATCCTGAGCTGCCAATCACTCAGCATACCCATACTCTCTATCCTATGTCC
 ATTCCTCTCCATTGATAAAACCTATTCTCTATAGTGTCAAGATGAAGGAGATTAGA
 5 AAGAGAATACTCAACAGGGTGCAGCCCAGGAAGGGGGTGGTGCAGTGA (SEQ ID NO:
 340)

AOLFR185 sequences:

10 MFYPILNNDISTKNNNSNIMSCCNILFIKTVEILVYNQTQSPWYPIVPSKSLVYNNNTCFDCYHLQR
 VDCVPSRDHINQSMVLASGNSSHPVSFILLGIPGLESFQLWIAFPFCATYAVAVGNITLLHVIR
 IDHTLHEPMYFLFLAMLAITDLVLSSTQPKMLAIFWFHAHEIQYHACLIQVFTHAFSSVESGVL
 MAMALDCYVATCPFLRHSSILTPSVVIKLTIVMLRGLWVSPFCFMVSRMPCQHQAIQSYC
 EHMAVLKLVCADTSISRGYGLFVAFSVAGFDMIVIGMSYVMILRAVLQLPSGEARLKAFSTRA
 SHICVILALYIPALFSFLTYRFGHDVPRVVHILFANLYLLIPPMNLNPPIYGVRTKQIGDRVQGCCG
 15 NIP (SEQ ID NO: 341)

20 ATGTTCTACCCCATTGAATGACATAAGTACGAAAAACAACAGTAACATCATGTCATGTT
 GTAACATATTATTAAAACAGTTGAAATTATTCTAGTTATAATCAAACCCAATCAC
 CTGGTATCCAATAGTCCCATCCAAAAGCCTGTATATAATAAAACACTTGTGTTGATTGTT
 ATCATCTGCAGAGAGTAGATTGCGTCCCAGCAGAGACCATATTAACCAAGTCCATGGTCT
 GGCTTCAGGAACAGCTCTCATCCTGTGTCCTCATCCTGCTGGAAATCCCAGGCTG
 GAGAGTTCCAGTTGTGGATTGCCCTTCGTTCTGCCCCACGAGACCATGAGCCCATGTACCTC
 AAATATCACTCTCCATGTAACTCAGAATTGACCACACCCCTGCATGAGCCCATGTACCTC
 TTTCTGCCATGCTGCCATCACTGACCTGGCCTCTCCTCCACTCAACCTAACAGATGTT
 25 GGCCATATTCTGGTTCATGCTCATGAGATTCACTGACCTGGCTCATCCAGGTGTTCT
 TCATCCATGCCCTTCTGTGGAGTCGGGGTGCATGGCTATGCCCTGGACTGCTAC
 GTGGCTACCTGCTCCCCTCCGACACTCTAGCATCCTGACCCCATGGTCGTGATCAAAC
 TGGGGACCATCGTGTGAGAGGGCTGCTGTGGGTGAGCCCCCTCTGCTTATGGTGTGTC
 TAGGATGCCCTCTGCCAACACCAAGCCATTCCCAGTCATACTGTGAGCACATGGCTGTG
 30 CTGAAGTTGGTGTGCTGATACAAGCATAAGTCGTTGGATGGCTCTTGTGGCTTCT
 CTGTGGCTGGCTTGTATGATTGCTATTGGTATGTCATCGTGTGATTTGAGAGCTGT
 GCTTCAGTTGCCCTCAGGTGAAGGCCGCCTCAAAGCTTCTAGCACACGTGCCCTCCATATC
 TGTGTGTCATCTGGCTCTTATATCCCAGCCCTTTCTTCTCACCTACCGCTTGGCCAT
 35 GATGTGCCCGAGTTGTACACATCCTGTTGCTAATCTCTACTGATACCTCCATGCT
 CAACCCCATCATTATGGAGTTAGAACCAAACAGATCGGGACAGGGTTATCCAAGGATG
 TTGTGAAACATCCCCTGA (SEQ ID NO: 342)

AOLFR186 sequences:

40 MSNASLVTAFILTGLPHAPGLDALLFGIFLVVYVLTVLGNLLILLVIRVDSHLHTPMYYFLTNLS
 FIDMWFSTVTVPKMLMTLVSPSGRAISFHSCVAQLYFFHFLGSTECLYTVMSYDRYLAIYPL
 RYTSMMSGSRCALLATGTWLSGSLHSAVQTILTFHLPYCGPNQIHYFCDAPPILKLACADTS
 NVMVIFVDIGIVASGCFVLIVLSYVSIVCSILRIRTSGRRRAFQTCASHCIVLCCFPVCVVIYLR
 PGSMIDAMDGVVAIFYTVLTLNPVVYTLRNKEVKKAVALKLRDKVAHPQRK (SEQ ID NO:
 343)

45 ATGTCCAACGCCAGCCTCGTGACAGCATTCTCACAGGCCCTCCCCATGCCCAAGGGC
 TGGACGCCCTCTTGGAAATCTTCTGGTGGTTACGTGCTACTGTGCTGGGAACCT
 CCTCATCCTGCTGGTATCAGGGTGGATCTCACCTCCACACCCCATGTACTACTCCTCA
 CCAACCTGTCTTCAATTGACATGTGGCTTCCACTGTCACGGTGCCTAAATGCTGATGAC
 50 CTTGGTCTCCCAGCGGCAGGGCTATCTCCACAGCTGCGTGGCTCAGCTCTATTTT
 TCCACTTCTGGGAGCACCAGTGTTCTCTACACAGTCATGTCCTATGTCGCTACTTG
 GCCATCAGTTACCCGTCAGGTACACCAGCATGATGAGTGGGAGCAGGGTGTGCCCTGG
 CCACCGCACTTGGCTCAGTGGCTCTGCACCTGCTGTCCAGGACCATATTGACTTCCAT
 TTGCCCTACTGTGGACCCAACCAGATCCAGCAGCACTACTCTGTGACGCACCGCCATCCTGA
 55 AACTGGCCTGTGCAGACACCTCAGCAACGTGATGGTCATCTTGTGGACATTGGGATAGT
 GGCCTCAGGCTGCTTGTCTGATAGTGTGTCCTATGTCATCGTCTGTTCCATCCTGC

GGATCCGCACCTCAGATGGGAGGCGCAGAGCCTTCAGACCTGTGCCTCCACTGTATTGT
 GGTCTTGTCTTGTCTGTGTCATTTATCTGAGGCCAGGCTCATGGATGCCA
 TGGATGGAGTTGTGCCATTCTACACTGTGCTGACGCCCTCTCAACCTGTTGTAC
 5 ACCCTGAGAAACAAGGAGGTGAAGAAAGCTGTGAAACTAGAGACAAAGTAGCACAT
 CCTCAGAGGAATAA (SEQ ID NO: 344)

AOLFR187 sequences:

MAQVRALHKIMALFSANSIGAMNNSDTRIAGCFLTGPGLEQLHIWLSIPFCIMYIAALEGNGILI
 10 CVILSQAILHEPMYIFLSMLASADVLLSTTMPKALANLWLGYSHISFDGCLTQKFFHFLFIHSA
 VLLAMAFDRYVAICSPRLYVTILTSKVIGKIVTATLSRSFIMFPSIFLLEHLHYCQINIIAHTFCEH
 MGI AHLSCSDISINVYGLAAALLSTGLDMLITVSYIHLQAVFRLSQDARSKALSTCGSHICV
 ILLFYVPALFSVFAYRGGRSIPCYVHILLASLYVVPPMLNPVITYVRTKPILEAKQMFSNLAK
 GSK (SEQ ID NO: 345)

15 ATGGCACAGGTGAGGGCGCTGC TAAAATCATGGCCCTTTCTGCTAACAGCATAGGTG
 CTATGAACAACACTGACACTCGCATAGCAGGCTGCTCCTCACTGGCATCCCTGGCTGGA
 GCAACTACATATCTGGCTGTCATCCCAGGCAATCCTGCATGAGCCATGTACATAT
 AATGGCATTCTAATTGTGTCATCCTCTCCAGGCAATCCTGCATGAGCCATGTACATAT
 TCTTATCTATGCTGGCCAGTGCTGATGTCCTGCTCTACCACACATGCCAAGGCCCTG
 20 GCCAATTGTGGCTAGGTTAGCCACATTCCCTTGATGGCTGCCTCACTCAAAGTTCTT
 CATTCACTCCCTTCATTCACTCTGCTGCTGCTGGCCATGCCCTTGACCGCTATGTGG
 CCATCTGCTCCCCCTGCGATATGTCACAATCCTACAAGCAAGGTATTGGAAAGATCGT
 CACTGCCACCCCTGAGCCGCAAGCTTCATCATTGTTCCATCCATCTTCTCTGAGCACC
 TGCACTATTGCCAGATCAACATCATTGCACACACATTGTGAGCACATGGCATTGCCA
 25 TCTGTCTCTGATATCTCCATCAATGTCTGGTATGGTTGGCAGCTGCTCTCTCCA
 CAGGCCTGGACATCATGCTTATTACTGTTCTACATCCACATCTCCAAGCAGTCCTCCGC
 CTCCCTCTCAAGATGCCGCTCAAGGCCCTGAGTACCTGTGGATCCATCTGTGT
 CCTACTCTCTATGTCCTGCCCTTTCTGTCCTGCTACAGGTTGGGGAGAAGCA
 TCCCAGTCTATGTCATATTCTCTGGCAGCCTACGTTGTCATTCTCTATGCTCAAT
 30 CCCGTATTATGGAGTGAGGACTAAGCCAATACTGGAAGGGCTAACAGATGTTCA
 AATCTTGCCAAAGGATCTAAATAA (SEQ ID NO: 346)

AOLFR188 sequences:

MFPSLCPVLLVQLPLMNENMQCFVFCSDSLLRMMVSRFIHPVFKMKRIIVGGYSKHFSSN
 35 ELLCVRPWSGKTWSIRHHIFDMELLNNLKFTDPVCRRLRHLSPTPSEEHMKNNVTEFILL
 GLTQNPEGQKVLFTFLIYMTIMGNLLIUTMASQLGSPMYFLASLSFIDTVYSTAFAPK
 MIVDLLSEKKTISFQGCMQLFMDHLAGAEVILLVVMAYDRYMAICKPLHELITMNRRVCVL
 MLLAAWIGGFLHSLVQFLFIYQLPFCGPNVIDNFLCDLYPLLKACTNTYVTGLSMIANGGAI
 AVTFITLSSYGVILHSLKTQSLEGKRKAFTYCASHVTVVILFFVPCIFLYARPNSTFPIDKSMTV
 40 VLTFITPMNLNPIYTLKNAEMKSAMRKLWSKKVSLAGKWLYHS (SEQ ID NO: 347)

ATGTTCCCTCCCTGTGTCATGTGTTCTCTGTCACCTCCACTTATGAATGAGAACAT
 GCAGTGTGTTGTTCTGTTCTGTGATAGTTGCTGAGAATGATGGTTCCGCTTCATCC
 ATGTCCTTCTGAAAAATGAAAAGGATAATTGTGGGAGGATATTCTAAACACTTCTTTC
 45 TAATGAGCTGCTCTGAGGGCCCTGGTCAGGGAAAACGTGGTCATAAGGCATCACAT
 TTTGACATGGAGCTCTGACAAATAATCTCAAATTATCAGTGCACCTTGTGAGGC
 TCCGACACCTGAGTCCAACACCTTCAGAAGAACACATGAAAAATAAGAACAAATGTGACTG
 AATTCTCTTCTAGGGCTCACACAGAACCCCTGAGGGGAAAAGGTTTATTGTACATT
 CTTAATCTACATGGTACGATAATGGCAACCTGCTATCATAGTGCACATGGCC
 50 AGCCAGTCCCTGGTTCCCCCATGTACTTTCTGCTCTTATCATTGACATACCGT
 CTATTCTACTGCATTGCTCCAAAATGATTGTTGACTTGCTCTGAGAAAAAGACCA
 CCTTTCAGGGTTGATGGCTCAACTTTATGGATCATTTGCTGGTGTGAAGTCATT
 CTTCTGGTGTAAATGGCTATGATCGATACTGGCCATCTGTAAGCCTCTCATGAATTGA
 TCACCATGAATCGTCAGTCTGTGTTCTATGCTGTTGGCGGCTGGATTGGAGGCTTCT
 55 TCACTCATTGGTCAATTCTCTTATTATCAGCTCCCTTCTGTTGGACCCAATGT
 ACAACTCCCTGTGTGATTGTATCCCTATTGAAACTTGCTGTCACCAATACCTATGTC
 ACT

5 GGGCTTCTATGATAGCTAATGGAGGAGCGATTGTGCTGTACACCTCTCACTATCCTGC
 TTCCCATGGGTATATTACACTCTTAAGACTCAGAGTTGGAAGGGAAACGAAAAGC
 TTTCTACACCTGTGCATCCCACGTCACTGTGGTCATTITATTCTTGTCCCCGTATCTTCTT
 GTATGCAAGGCCAATTCTACTTTCCATTGATAAAATCCATGACTGTAGTTCTAACTTTA
 10 TAACTCCCAGTGAACCCACTAATCTATACCCGTAAAGAATGAGAAATGAAAAGTGCAT
 GAGGAAACTTGAGTAAAAAGTAAGCTAGCTGGAAATGGCTGTATCACTCATGA
 (SEQ ID NO: 348)

AOLFR189 sequences:

10 MQQNNSVPEFILLGLTQDPLRQKIVFVFLIFYMGTVVGNMLIITIKSSRTLGSPMYFFLFYLSF
 ADSCFSTSTAPRLIVDALSEKKIITYNECMQTVFALHLFGCMEIFVLILMAVDRYVAICKPLRYP
 TIMSQQCIVLIVLAWIGSLIHSTAQIILALRLPFCGPYLIDHYCCDLQPLLKACMDTYMINLLL
 VSNSGAICSSSFMLIISYIVILHSLRNSAKGKKKALSACTSHIIIVLFFGPCIIFYTRPPTTFPM
 KMVAVFYTIGTPFLNPLIYTSEEKRSEKCHEK (SEQ ID NO: 349)

15 ATGCAGCAAAATAACAGTGTGCCTGAATTCTACAGTTAGGATTAACACAGGATCCCTGA
 GGCAGAAAATAGTGTGTAATCTTCTTAATTCTATATGGGAAGTGTGGTGGGAATAT
 GCTCATTATTGTGACCACATCAAGTCCAGCAGCACACTAGGAAGGCCATGTACTTCTTCTA
 TTTTATTGTGCTTGCAGATTCTGCTTCAACTCCACAGGCCCTAGATTAATTGTGGA
 20 TGCTCTCTGAAAAGAAAATTATAACCTACAATGAGTGCATGACACAAGTCTTGCAC
 CATTTATTGGCTGCATGGAGATCTTGCCTCATCTCATGGCTGTTGATCGCTATGTGGC
 CATCTGTAAGGCCCTGCGTACCCAACCACATGAGCCAGCAGGTCTGCATCATCCTGATT
 GTTCTTGCGCTGGATAGGGCTTAAATACACTCTACAGCTCAGATTATCCTGGCTTAAGATT
 25 GCCTTCTGTGGACCCATTGATTGATCATTATTGCTGTGATTGCTGAGCCCTGTTGAAAC
 TTGCCCTGCATGGACACTTACATGATCAACCTGCTGTTGGTGTCAACAGTGGGCAATTG
 CTCAAGTAGTTCATGATTTGATAATTCTATATTGTATCTTGCATTCACTGAGAAACC
 ACAGTGCCAAGGGAAGAAAAGGCTCTCCGCTTGCACGTCACATAATTGTAGTCAT
 CTTATTCTTGCCCATGTATATTCTATATACACGCCCGACCACTTCCCCATGGACA
 30 AGATGGTGGCAGTATTATACATTGAAACACCCCTCTCAATCCACTCATCACACATCT
 GAGGAATGCAGAAGTGAAGGAAATGCCATGAGAAAG (SEQ ID NO: 350)

AOLFR190 sequences:

35 MQRSNHTVTEFILLGFTTDPMQLGLFVVFGLVYCLTVVGSSTLIVLICNDSRLHTPMYFVIGN
 LSFLDLWYSSVHTPKILVTCISEDKSISFAGCLCQFFSARLAYSECYLLAAMAYDHVVAISKPLL
 YAQTMPRRLLCICLVLYSYTGGFVNAILTSNTFTLDFCGDNVIDDFFCDVPPLVKLACSVRESYQ
 AVLHFLLASNVISPTVLILASLYSIIITLRIHSTQGRIVFSTCSSHLISVTLYGSILYNYSRPSSS
 YSLKRDKMVSTFYTMLFPMLNPMIYSLRSKDMDAALKFFKSA (SEQ ID NO: 351)

40 ATGCAGAGGAGCAATCACACAGTGAAGTTACCTGCTGGCTTCACCAAGATCCAG
 GGATGCAACTGGGCCTCTTGTGGTCTGGTACTGTCTGACTGTGGTAGGAAG
 TAGCACCCCTCATCGTGTGATCTGAATGACTCCGCCTACACACACCCATGTATTGTCA
 TTGGAATCTGCTTCTGGATCTCTGTATTCTCTGTCCACACCCAAAGATCCTAGTG
 ACCTGCATCTCTGAAGACAAAAGCATCTCTTGTGGCTGCCGTGTGTCAGTTCTCTGC
 CAGGCTGCCATAGTGAGTGTACCTACTGGCTGCCATGGCTTATGACCAACTACGTGGCC
 45 ATCTCCAAGGCCCTGTTATGCTCAGACCATGCCAAGGAGATTGTGCATCTGTTGGTTT
 ATATTCTATACTGGGGTTTGTCAATGCAATAATATTAAACCAGCAACACATTCACTTG
 GATTTTGTGGTACAATGTGATTGACTTTCTGTGATGTTCCACCCCTCGTGAAGCT
 GGCATGCAGTGTGAGAGAGAGCTACCAAGGCTGTGCTGCACTTCTCTGCCCTCAATGTC
 50 ATCTCCCTACTGTGCTCATCTTGCCTTACCTCTCCATCATCACCACATCTGAGGAT
 CCACTCTACCCAGGGCCGACAAAGTCTCTCCACATGCTCTCCACCTGATCTCCGTTA
 CCTTATACTATGGCTCCATTCTCTACAACACTCTCCGGCCAAGTCCAGCTACTCCCTCAAG
 AGGGACAAAATGGTTCTACCTTATACATGCTGTTCCCCATGTTGAAATCCATGATCTA
 CAGTCTGAGGAGTAAAGACATGAAAGACGCTGAAAAAAATTCTCAAGTCAGCATAA
 (SEQ ID NO: 352)

55

AOLFR191 sequences:

MTGGGNITEITYFILLGFSDFPRIKVLFTIFLVIYITSLAWNLSLIVLIRMDSHLHTPMYFFLSNLS
 FIDVCYIISTVPKMLSNLQQEQQTIFVGCIIQYFIFSTMGLSESCLMTAMAYDRYAAICNPLLLYS
 5 SIMSPTLCVWMVLGAYMTGLTASLFQIGALLQLHFCSNVIRHFFCDMPQLLILSCTDTFFVQV
 MTAILTMFFGIASALVIMISYGYIGISIMKITSAKGSPKAFTCASHLTAVSLFYTSGIFVYLRSSS
 GGSSSFDRFASVFYTIVVIPMLNPLIYSLRNKEIKDALKRQKRKCC (SEQ ID NO: 353)

ATGACTGGGGAGGAAATTACAGAAATCACCTATTCTACCTGCTGGGATTCTCAGATT
 10 TTCCCAGGATCATAAAAGTGCCTTCACTATATTCTGGTGATCTACATACATCTCTGGCC
 TGGAACCTCTCCCTCATTGTTTAATAAGGATGGATTCCCACCTCCATACACCCATGTATT
 CTTCTCAGTAACCTGTCTTCATAGATGTCGCTATCAGCTCCACAGTCCCCAAGATGC
 TCTCCAACCTTACAGGAACAGCAAACATACACTTGTGTTGTGTTATTACAGTACTTT
 ATCTTTCAACGATGGGACTGAGTGAATGTCATGACAGCCATGGCTTATGATCGTT
 ATGCTGCCATTGTAACCCCTGCTCTATTCCATCATGTCACCCACCCCTGTGTTGG
 15 ATGGTACTGGGAGCCTACATGACTGGCCTCAGTCCTTATTCAAATTGGTGCTTGCT
 TCAACTCCACTCTGTGGGTCAATGTCATCAGACATTCTCTGTGACATGCCCAACTGT
 TAATCTGTCTGTACTGACACATTCTTGTACAGGTGACTGCTATATTACCATGTT
 TTTGGGATAGCAAGTGCCTAGTTATCATGATATCCTATGGCTTATGGCATCTCCATCA
 TGAAGATCACTCAGCTAAAGGCAGTCCAAAGGCATTCAACACCTGTGCTCTCATCTAAC
 20 AGCTGTTCCCTCTCTACATCAGGAATCTTGTCTATTGAGGTCCAGCTCTGGAGGTT
 CTTCAAGCTTGACAGATTGCACTGTTCTACACTGTGGTCATTCCATGTTAAATCCC
 TTGATTACAGTTGAGGAACAAAGAAATTAAAGATGCCTAAAGAGGTTGCAAAAGAGA
 AAGTGCTGCTGA (SEQ ID NO: 354)

AOLFR192 sequences:

MENNTEVTEFILVGLTDDPELQIPLFIVFLTYLITLVGNLGMIELLLDSCLHTPMYFFLSNLSV
 DFGYSSAVTPKVMGVFLTDKFILYNACATQFFFFVAFITAESFLASMYDRYAAALKPLHY
 TTTMTTNCACLAIGSYICGFLNASIHTGNTFRLSFCSRVVEHFCDAPPLTLSCSDNYISEM
 VIFFVVGFNDLFSILVILISYLFIFTIMKMRSPERQKAFSTCASHLTAVSIFYGTGIFMYLRPNSS
 30 HFMGTDKMASVFYAVIPMLNPLVYSLRNKEVSAFKKTVGAKASIGFIF (SEQ ID NO: 355)

ATGGAGAACACACAGAGGTGACTGAATTCTACCTTGTGGGTTAACTGATGACCCAGAA
 CTGCAGATCCACTCTCATAGTCCTTTCATCTACCTCATCACTCTGGTGGGACCT
 GGGGATGATTGAATTGATTCTACTGGACTCCTGTCCACACCCCCATGTAATTCTTCTCA
 35 GTAACCTCTCCCTGGTGGACTTGGTTATTCTCAGCTGTCACTCCAAAGGTGATGGTGGG
 GTTCTCACAGGAGACAAATTCAATTATATAATGTTGCCCCACAATTCTCTTCTTGT
 TAGCCTTATCACTGAGAAAGTTCTCTGGCACTAACATGGCTATGACCGCTATGCAGC
 ATTGTGAAACCCCTGCATTACACCACCATGACAACAAATGTATGTGCTTGCGCTGGCC
 ATAGGCTCCTACATCTGTGGTTCTGAATGCATCCATTCAACTGGGAACACTTTCAAGGC
 40 TCTCTCTGTAGATCCAATGTAGTTGAAACACTTTCTGTGATGTCCTCTCTCTTGACT
 CTCTCATGTTGAGACAACTACATCAGTGAGATGGTTATTGTTGTTGGGATTCAATG
 ACCTCTTCTATCTGGTAATCTTGATCTCTACTTATTTATTTATCACCACATGAG
 ATGCGCTCACCTGAAGGACGCCAGAAGGCCTTCTACTGTGCTTCCACCTTACTGCAG
 45 TTGTCATCTTATGGACAGGAATCTTATGTAATTACGACCTAACCTCCAGCCATTCAATG
 GGCACAGACAAATGGCATCTGTGTTATGCCATAGTCATTCCATGTTGAATCCACTGG
 TCTACAGCCTGAGGAACAAAGAGGTTAAGAGTGCCTTAAAAGACTGTAGGGAAGGCAA
 AGGCCTCTATAGGATTCAATTAA (SEQ ID NO: 356)

AOLFR193 sequences:

MENKTEVTQFILLGNTNDSELQVPLFITFPFIYIITLVGNLGIIVLIFWDSCLHNPMYFFLSNLSV
 DFCYSSAVTPIVMAGFLIEDKVISYNACAAQMYIFVAFATVENYLLASMYDRYAAVKPLHY
 TTTMTTTCARLAIGSYLCGFLNASIHTGDTFSLSFCKSNEVHHFCDIPAVMVLSCSDRHISEL
 VLIYVVSFNIFIALLVILISYTFIFITLKMHSASVYQKPLSTCASHFIAVGIFYGTIFMYLQPSSSH
 SMDTDKMAPVFYTMVIPMLNPLVYSLRNKEVSAFKKVEAKLSVGWSV (SEQ ID NO:
 55 357)

ATGGAAAATAAGACAGAAGTAACACAATTCACTTCTAGGACTAACCAATGACTCAGAA
 CTGCAGGTCCCCTTTATAACGTTCCCTCATCTATATTACTCTGGTGGAAACCT
 GGGATTATTGTATTGATATTCTGGGATTCCTGTCCACAATCCCCTGACTTTCTCA
 5 GTAACTGTCTAGTGGACTTTGCTACTCTCAGCTGCACCCCCATCGTCATGGCTGA
 TTCCCTATAGAAGACAAGGTCACTCTTACAATGCATGTGCTGCTCAAATGTATATCTTGT
 AGCTTTGCCACTGTGGAAAATTACCTCTGGCTCAATGGCTATGACCGCTATGCAGCA
 GTGTGCAAAACCCCTACATTACACCACAACCATGACAACAACGTGTGCTCGTGGCCA
 TAGGCTCTACCTCTGTGGTTCTGAATGCCCTCACACACTGGGACACATTAGTCTC
 10 TCTTCTGTAAGTCAATGAAGTCCATCACTTTCTGTGATATTCCAGCAGTCATGGTCT
 CTCTGCTCTGATAGACATATTAGCAGCTGTTCTATTATGTGTGAGCTCAATATCT
 TTATAGCTCTCTGGTTATCTGATATCCTACACATTCACTTATCACCATCCTAAAGATG
 CACTCAGCTTCAGTATACCAAGAAGCCTTGTCCACCTGTGCCCTCATTCATTGAGTCGG
 CATCTCTATGGGACTATTATCTCATGTACTTACAACCCAGCTCCAGTCACTCCATGGACA
 CAGACAAAATGGCACCTGTGTTCTATACAATGGTCATCCCCATGCTGAACCCCTGGCTA
 15 TAGTCTGAGGAACAGGAAGTGAAGAGTGCATTCAAGAAAGTTGTGAGAAGGAAAATT
 GTCTGTAGGATGGTCAGTTAA (SEQ ID NO: 358)

AOLFR194 sequences:

MERQNQSCVVFILLGFSNYPELQQLFVAFLVLYLVTLIGNAIVIVSLDQSLHVPMYLFLLNL
 20 SVVDLSFSAVIMPEMLVVLSTEKTTISFGGCFAQMYYFILLFGGAECFLLGAMA YDRFAAICHPL
 NYQMIMMKGVFMKLIIFSWALGFMLGTQTSWVSSFPFCGLNEHISCETPAVLELACADTFL
 FEIYAFGTGFLILVPFLILLSYIRVLFFAILKMPSTTGRQKAFSTCAAHILSVTLFYGTASMTYLQ
 PKSGYSPETKKVMSLSYSLLTPLLNLJYSLRNSEMKRALKLWRRLVVHLTI (SEQ ID NO:
 359)

25 ATGGAAAGACAAAATCAAAGCTGIGTGAATTCACTCTTGGCTTTCTAATCTAC
 CTGAGCTCCAGGGCAGCTTGTGGCTTCTGGTTATTATCTGGTACCCGTAGAG
 AAATGCCATTATTATAGTCATCGTCCCTAGACCAAGAGCCTCCACGTTCCATGTACCTGT
 TTCTCTGAACCTATCTGTGGTGGACCTGAGTTTCAGTGCAGTTATTATGCCGAAATGCT
 GGTGGCTCTCTACTGAAAAAAACTACAATTCTTCTGGGGCTGTTGCACAGATGTAT
 TTCATCCTCTTGGTGGGCTGAATGTTCTCTGGGAGCAATGGCTTATGACCGATT
 TGCTGCAATTGCCATCCTCTCAACTACCAATGATTATGAATAAAGGAGTTTATGAAA
 TTAATTATATTCTATGGGCTTAGGTTATGTTAGGTACTGTTCAAACATCATGGGTATC
 TAGTCTTCCCTTGTGGCTTAATGAAATTAAACCATATATCTGTGAAACCCAGCAGTGT
 35 TAGAACCTTGATGTGCAGACACGTTTGTGAAATCTATGCATTACAGGCACCTTTTG
 ATTATTTGGTCCCTTCTGTGATACTCTGTCTTACATTGAGTTCTGTTGCCATCCTG
 AAGATGCCATCAACCAACTGGGAGACAAAAGGCCCTTCCACCTGTGCCGCTCACCTCACAT
 CTGTGACCTAATTCTATGGCACAGCCAGTATGACTTATTTACAACCCAAATCTGGCTACTC
 ACCGGAAACCAAGAAAGTGTGTCATTGCTACTCACCTCTGACACCAGTGTGAAATCTG
 40 CTTATCTACAGTTGCGAAATAGTGAGATGAAGAGGGCTTGTGATGAAATTATGGCGAAGG
 CGAGTGGTTTACACACAATCTGA (SEQ ID NO: 360)

AOLFR195 sequences:

MIVQLICTVCFLAVNTFHVRSSDFLKADDMGEINQLVSEFLLGLSGYPKIEIVYFALILVMY
 45 LVIILNGVLIASIFDSHFTPMLYFFLGNSFLDICYSSVPSTLVSLSKKNISFSGCAVQMFF
 GFAMGSTECLLLGMMAFDRYVAICNPRLYPIILSKVAYVLMASVWSLSGGINSAVQTLLAMRL
 PFCNNIINHFACEILAVLKLACADISLNITMVISNMAFLVPLMVIFFSYMFLYTILQMSATG
 RRKAFTCSAHTTVIIFYGTIFMYAKPKSQDLIGEEKLQALDKLISLFYGVVTPMLNPILYSLR
 NKDVKAIVKYLLNKKPIH (SEQ ID NO: 361)

50 ATGATTGTTCAAGTTAATTGACTGTTGTTCTGGCAGTAATAACATTTCATGTTAGATC
 TTCTTTGATTCTGAAAGCAGATGACATGGGTGAGATTAAACCAGACACTGTGTCAGAA
 TTCTCTCTGGCTTCTGGATACCCAAAGATTGAGATTGTTACTTGTCTCATTTCT
 AGTTATGTACCTAGTGATTCTAATTGGCAATGGTGTCTAATCATAGCCAGCATCTTGATT
 55 CTCATTTCACACACCAATGACTCTCTGGCAACCTCTTCTGGATATCTGCTAT
 ACATCCTCCTGTTCCCTCAACATTGGTGAAGCTTAATCTCAAAGAAAAGAAACATTCC

TCTCTGGATGTGCAGTGCAGATGTTCTTGGGTTGCAATGGGGTCAACAGAACATGTCTGCT
 TCTTGGCATGATGCCATTGATCGTTATGTCGCCATCTGCAACCCACTGAGATAACCCATC
 ATCCTGAGCAAGGTGGCGTATGTATTGATGGCTCTGTGTCCTGGCTGTCGGTGGAAATAA
 5 ATTCACTGTGCAAACATTACTGCCATGAGACTGCCCTCTGTGGGAATAATATTATCAA
 TCATTCGCATGTGAAATATTAGCTGTCTCAAGCTGGCCTGTGCTGATATATCCCTCAATA
 TTATCACCATGGTATATCAAATATGCCCTCCTGTTCTCCACTGATGGTCATTTTTC
 10 TCCTATATGTTCATCCTCACCCATCTGCAAATGAATTCAAGCCACAGGAAGACGCAAGG
 CATTTCACGTCTCAGCTCACCTGACTGTGGTATCATATTACGGTACCATCTCTT
 ATGTATGCGAAACCGAAGTCTCAAGACCTGATTGGGAAGAAAAATTGCAAGCATTAGAC
 15 AAGCTCATTCTCTGTTATGGGTAGTGACACCCATGCTGAATCCTATACTCTAGCTT
 GAGAAAATAAGGATGTAAGCTGCTGAAATATTGCTGAACAAAAACCAATTCACTA
 A (SEQ ID NO: 362)

AOLFR196 sequences:

15 MLESNYTMPTEFLFGFTDYLPLRVTLFLVFLLYTLMVNILLILVNINSSLQIPMYYFLSNL
 SFLDISCSTAIPKMLANFLASRKSIISPYGICALQMFFFASFADAELILAAMAYDRYAAICNPLL
 YTTLMSRRVCVCIVLAYFSGSTTSVLHVCLTFRLSFCGSNVNHFCDIPPLLAISCTDTQINQL
 LLFALCSFIQTSTFVVIFISYFCILITVLSIKSSGGRSKTFSTCASHLIAVTLFYGALLFMYLQPTTS
 20 YSLDTDKVVAVFYTVVFPMFNPPIYSFRNKDVKNALKKLERIGYSNEWYLNRLRIVNI (SEQ
 ID NO: 363)

ATGTTGGAGAGTAATTACACCATGCCAATGAGCTTCTATTGTTGGATTACAGATTATC
 TACCTCTCAGAGTCACACTGTTCTGGTATTCTCTGGTATATACATTAACATGGTCGGA
 AATATACTCTTAATAATTCTAGTTAATTTAATTCAAGCCCTCAAATTCCCATGTTATTATT
 25 TCTTAGCAACTTATCTCTTCTAGACATCAGCTGTTCTACAGCAATCACTCTAAAATGCTGG
 CAAACTCTTGGCATCCAGGAAAGCATTCTCTTATGGGTGTGCACTACAAATGTTTT
 CTTCGCTCTTGTGATGCTGAGTGCCTTATCTGGCAGCAATGGCTTATGACCGCTATG
 CAGCCATCTGCAACCCACTGCTCTATACTACACTGATGTTAGGAGAGTCTGTGCTGCTT
 30 CATTGTTGGCATATTTCAGTGGAAAGTACAACATCACTGGTCCATGTGTCCTCACATT
 AGGCTGTCAATTGTTGGCTCCAATATCGTCAATCATTTCTGTGATATCCCACCTCTTCT
 GGCTTATCATGTACAGACACTCAGATCAACCAGCTCTGCTCTTGTGCACTGCTTCA
 TCCAGACCAGCACTTTGTGTTAATATTCTACTCTGCTATCCTCATCACTGTTG
 AGCATCAAGTCTCAGGTGGCAGAAGCAAAACATTCTCCACTTGTGCTTCCCACCTCATAG
 35 CAGTCACCTTATTCTATGGAGCGCTCTGTTATGTAACCTACAGCCCACCACTAGCTATTCC
 CTAGACACTGATAAGGTGGTGGCAGTGTATTACTGTTGATTTCCCATGTTAATCCAA
 TAATTATAGTTCAAGAACAAAGGATGTGAAAAATGCTCTCAAAAGCTATTAGAAAGAA
 TTGGATATTCAAATGAATGGTATTAAATCGTTAAGAATAGTCAATATCTAA (SEQ ID NO:
 364)

AOLFR197 sequences:

MCYLSQLCLSLGEHTLHMGMRHTNESNLAGFILLGFSDYPQLQKVLFVLLILYLTLGNTTI
 ILVSRLEPKLHMPMYFFLSHLSFLYRCFTSSVIPQLLVNLWEPMKTIAYGGCLVHLYNSHALGS
 TECVLLALMSCDRYVAVCRPLHYTVLMHILCMALASMAWLSGIATTLVQSTLTLQLPFCGH
 45 RQVDHFICEVPVLIKLACVGTTNEAELFVASILFLIVPVSILVSSGYIAHAVLRIKSATRRQKAF
 GTCFSHLTVVTFYGTIFMYLQPAKRSRDQGKFVSLFYTVVTRMLNPLIYTLRIKEVKGALKK
 VLAKALGVNIL (SEQ ID NO: 365)

ATGTGTTATCTTCTCAGCTATGCCCTGGGAACACACTTACATATGGGGATGG
 TGAGACATACCAATGAGAGCAACCTAGCAGGTTCTACCTTTAGGGTTCTGATTATCC
 50 TCAGTTACAGAAGGTTCTATTGTGCTCATATTGATTCTGTATTACTAATCTTGGGA
 ATACCACCATCATTCTGGTTCTCGTCTGGAACCCAAAGCTTCTATGCCGATGTATTCTC
 CTTTCTCATCTCTCCCTGTACCGCTGCTCACAGCAGTGTATTCCCCAGCTCTGGT
 AACCTGTGGAACCCATGAAAACATGCCCTATGGGGCTGTTGGTTACCTTACAAC
 55 TCCCATGCCCTGGGATCCACTGAGTGCCTCTGGCTCTGATGTCTGTGACCGCTATGT
 GGCTGTCTGCCGTCTCCATTACACTGCTTAATGCATATCCATCTCTGCATGGCCTGG
 CATCTATGGCATGGCTCAGTGGAAATGCCAACCCCTGGTACAGTCCACCCCTCACCTGCA

GCTGCCCTCTGGCATGCCAAGTGGATCATTCACTCGGAGGTCCCTGTGCTCATC
 AAGCTGGCTTGTCGGCACACGTTAACGAGGCTGAGCTTTGTGGTAGTACCTT
 TCCCTATAGTGCCTGTCTCATTCATCCTGGCTCCTGGCTACATTGCCACGCAGTGTG
 AGGATTAAGTCAGCTACCAGGAGACAGAAAGCATTGGACCTGCTCTCCCACCTGACA
 5 GTGGTCACCATCTTATGGAACCATCATTCATGTATCTGCAGCCAGCCAAGAGTAGAT
 CCAGGGACCAGGGCAAGTTGTTCTCTTACACTGTGGTAACCCGATGCTTAACCC
 TCTTATTATACCTGAGGATCAAGGAGGTGAAAGGGGATTAAAGAAAGTTCTAGCAA
 GGCTCTGGGAGTAAATATTATGA (SEQ ID NO: 366)

10 AOLFR198 sequences:

MENCTEVTKFILLGLTSVPELQIPLFILFTFYLLTCGNLGMMLLILMDSCLHTPMYFFLSNLSL
 VDFGYSSAVTPKVMAGFLRGDKVISYNACAVQMFFFVALATVENYLASMAYDRYAAVCKP
 LHYTTMTASVGACLAALGSYVCGFLNASFHIGGIFSLSFCKSNLVHHFFCDVPAVMALSCSDKH
 TSEVILVFMSFNIFVFVLLVIFISYLFIFITLKMHSAKGHHQKALSTCASHFTAVSVFYGTVIFTYQ
 15 PSSHSMDTDKMASVYAMIIPMLNPVVYSLRNREVQNAFKVLRRQKFL (SEQ ID NO: 367)

ATGGAGAATTGTACGGAAGTGACAAAGTTCACTCTAGGACTAACAGTGTCCCAGAAC
 TACAGATCCCCCTTATCTTGTACCTTCATCTACCTCCTCACTCTGTTGGAAACCTG
 GGGATGATGTTGCTGATCCTGATGGACTCTGTCCTCCACACCCCCATGTACTTTTCTCAG
 20 TAACCTGTCTCTGGTGGACTTTGGATACTCCTCAGCTGTCACTCCAAGGTCACTGGCTGGG
 TTCCCTAGAGGAGACAAGGTCACTCCATACAATGCATGTGCTGTTCAAGATGTTCTTGT
 AGCCITGGCCACGGTGGAAAATTACTTGTGGCTCAATGGCTATGACCGCTATGCAGCA
 GTGTGCAAACCCCTACACTACACCACCATGACGGCCAGTGTAGGTGCCGTGCTGGCC
 TAGGCTCATATGTCTGTGGCTCTAAATGCCCTATCCACATGGGGCATATTCACTC
 25 TCTTCTGAAATCCAATCTGGTACATCACTTTCTGTGATGTTCCAGCAGTCATGGCTCT
 GTCTTGTCTGATAAAACACACTAGTGAGGTGATTCTGGTTTATGTCAAGCTTAATATCT
 TTTTGTCTCTAGTTATCTTATCTCTACTTGTCTCATATTCACTACCATCTGAAGATGC
 ATTCACTAAGGGACACCAAAAAGCATGTCCACCTGTGCCCTCCTACTCACTGCAGTC
 CGTCTCTATGGGACAGTAATCTCATCTACTTGCAAGCCCAGCTCCAGCCACTCCATGGAC
 30 ACAGACAAAATGGCATCTGTGTTCTATGCTATGATCATCCCCATGCTGAACCCGTGGTCT
 ACAGCTGAGGAACAGAGAAGTCCAGAATGCATTCAAGAAAGTGTGAGAAGGAAAAAT
 TTCTATAA (SEQ ID NO: 368)

AOLFR199 sequences:

35 MDTGNKTLQDFLGGPGSQTLQLSLFMLFLVMYIILTGVSGNVAILMLVSTSHQLHTPMYFFLS
 NLSFLEIWYTTAAVPKALAILLGRSQTSFTSCLLQMYFVFSLGCTEYFLLAAMA YDRCLAICYP
 LHYGAIMSSLLSAQLALGSWVCFGVIAVPTALISGLSFCGPRADNHFFCDIAPWIALACTNTQA
 VELVAFVIAVVVILSSCLITFVSYVYIISTLIRPSASGRSKAFSTCSHLLTVVLIWYGSTVFLHVR
 TSIKDALDLIKAVHVLNTVTPVLPFIYTLRNKEVRETLKKWKKGK (SEQ ID NO: 369)

40 ATGGACACAGGCAACAAAACCTGCCAGGACTTTCTCTACTGGCTTCTGGTCTC
 AAACCTCTCAGCTCTCTCTTATGCTTTCTGGTGTACATCCTCACAGTTAGTGGT
 AATGTGGCTATCTGATGTGGTGAGCACCTCCATCAGTGATACCCCCATGTACTCTT
 TCTGAGCAACCTCTCTTCTGGAGATTGGTATACCACAGCAGCAGTGCCAAAGCACTG
 45 GCCATCCTACTGGGAGAAGTCAGACCATATCATTACAAGCTGTCTTGCAGATGTACT
 TTGTTTCTCATTAGGCTGCACAGAGTACTCCTCTGGCAGCCATGGCTATGACCGCTGT
 CTTGCCATCTGCTATCTTACACTACGGAGCCATCATGAGTAGCCTGCTCAGCGCAGC
 TGGCCCTGGCTCTGGGTGTGGTTCTGAGCAGTGGCCATGAGTGCAGTGCCACAGCCCTCATCAG
 TGGCCTGCTCTGTGGCCCCGTGCCATCAACCACTTCTCTGTGACATTGACCTGG
 50 TTGCCCTGGCTGACCAACACACAGGAGTAGAGCTGTGGCTTGTGATTGCTGTGT
 GGTTATCCTGAGTTCATGCCCTCATCACCTTGTCTCTATGTGTACATCATCAGCACCAC
 TCAGGATCCCCCTGCCAGTGGCCGGAGCAAAGCCTCTCCACGTGCTCCTGCATCTAC
 CGTGGTGTCACTGGTATGGTCCACAGTTCTCCTACGTCCGCACCTCTATCAAAGAT
 GCCTTGATCTGATCAAAGCTGTCCACGTGCTGAACACTGTGGTAGCTCCAGTTAAACC
 55 CCTCATCTATACGCTTCGTAATAAGGAAGTAAGAGAGACTCTGCTGAAGAAATGGAAGG
 GAAAATAA (SEQ ID NO: 370)

AOLFR200 sequences:

5 MTRKNYTSLTEFVLLGLADTLELQIILFLEFLVIYTTLTVLGNLGMILLRIDSQLETPMYFFLANL
 SFVDVCNSTTITPKMLADLLSEKKTISFAAGCFLQMYFFISLATTECILFGLMAYDRYAAICRPLL
 YSLIMSRVTYVLKMAAGAFAAGLLNFMVNTHVSSLSFCDSNVIIHFFCDSPPLFKLSCSDTILKE
 SISSILAGVNIVGTLVILSSSYVLFISIYMSHSGEGRHRRAFSTCASHLTAIILFYATCIYTYLRPSS
 SYSLNQDKVASVFTVVIPMLNPLIYSLRSKEVKALANVISRKRTSSFL (SEQ ID NO: 371)

10 ATGACCAGAAAAATTATAACCTCACTGACTGAGTCGTCTATTGGGATTAGCAGACACGC
 TGGAGCTACAGATTATCCTCTTTGTTTCTGTGATTTACACTACAGTACTGGGA
 AATCTCGGGATGATCCTCTTAATCAGGATCGATTCCAGCTTCACACACCCATGTATTCTT
 CCTGGCTAACCTGCTTTGTGGACGTTGTAACCTAACATACCCAAAGATGCTG
 GCAGATTATTATCAGAGAAGAAAACCATCTCTTGTGGCTGCTTCTACAGATGTACT
 TCTTATCTCCCTGGCGACAACCGAATGCATCCTCTTGGGTTAATGCCATGACAGGTA
 15 TGCGGCCATATGTCGCCCCGTGCTTACTCCTGATCATGTCAGGACCGTCTACCTAAAAA
 ATGGCAGCCGGGGCTTTGTCGAGGGTGTGAACCTCATGGTCAACACAAGCCATGTCA
 GCAGCTGTCACTCTGTGACTCCAATGTCACTCCATACTCTCTGTGACAGTCCCCACTT
 TTCAAGCTCTCTTGTTCTGACACAATCTGAAAGAAAGCATAAGTCTATTGGCTGGTG
 TGAATATTGTGGGGACTCTGCTGTCACTCCTCTCTACTCCTACGTTCTTCTCCATT
 20 TTTCTATGCATTGGGGAGGGGAGGGCACAGAGCTTCTCCACGTGTGCCCTCACCTGA
 CAGCCATAATTCTGTCTATGCCACCTGCATCTACACTACGACTAGTCCAGCTAC
 TCCCTGAATCAGGACAAGTGGCTCTGTGTTCTACACAGTGGTGAATCCCAGTGAATC
 CTCTGATCTACAGCCTCAGGAGTAAGGAAGTAAAGAAGGCTTAGCGAATGTAATTAGCA
 GGAAAAGGACCTCTCCCTTCTGTGA (SEQ ID NO: 372)

25

AOLFR201 sequences:

MEWENHTILVEFFLKGLSGHPRLELLFFVLIFIMYVVILLGNGLLISILDPHLHTPMYFFLGNL
 SFLDICYTTTSIPSTLVSFLSERKTISLSGCAVQMFLGLAMGTTECVLLGMMAFDRYVAICNPLR
 30 YPIIMSKDAYVPMAAGSWIIGAVNSAVQSVFVQLPFCRNNIINHFTCEILAVMKLACADISDN
 EFIMLVATTLFILTPLLIIIVSYTLIIVSIFKISSSEGRSKASSTCSAHLTVIIFYGTILFMYMKPKS
 KETLNSDDLDATDKIISMFYGVMTPMNNPLIYSLRNKDVKAEVKHLLNRFFSK (SEQ ID NO:
 373)

35 ATGGAATGGAAAACCACACCATTCTGGTGAATTCTGAAGGGACTTCTGGTCACC
 CAAGACTTGAGTTACTCTTTCTGTGCTCATCTTCATAATGTATGTGGTCATCCTCTGGGG
 AATGGTACTCTCATTTAATCAGCATCTGGACCCCTCACCCCTATGTAATTCTT
 TCTGGGAACCTCTCTTCTGGACATCTGCTACACCACCCCTATCCCTCACCCTAG
 TGAGCTTCTTCAGAAAGAACGACATTCCCTTCTGGCTGTGAGTGCAGATGTCCCT
 CGGCTTGGCCATGGGGACAACAGAGTGTGCTCTGGCATGATGCCCTTGACCGCTAT
 40 GTGGCTATCTGCAACCTCTGAGATATCCATCATGAGTAAGGATGCCATATGACCCA
 TGGCAGCTGGGTCTGGATCATAGGAGCTGTCAATTCTGAGTACAATCAGTGTGTTG
 ACAATTGCTTCTGAGGAATAACATCATCAATTCTCACCTGTGAAATTCTGGCTGTC
 ATGAAAATGGCCTGTGCTGACATCTCAGAACATGAGTTCATGCTTGCGACAAACAT
 TGTCATATTGACACCTTGTATTAAATCATGTCCTACACGTTAATCATTGTGAGCATC
 45 TTCAAAATTAGCTCTCCGAGGGGAGAACCAAAGCTCCTCACCTGTTGAGCCATCTGA
 CTGTGGTCATAATATTCTATGGGACCATCCTCTTCATGTACATGAAGCCCAAGTCTAAAGA
 GACACTTAATTGGATGACTGGATGCTACCGACAAAATTATATCCATGTTCTATGGGTG
 ATGACTCCCATGATGAATCCTTAATCTACAGTCTTAGAAACAAGGATGTGAAAGAGGCA
 GTAAAACACCTACTGAACAGAAGGTCTTAGCAAGTGA (SEQ ID NO: 374)

50

AOLFR202 sequences:

MEWENHTILVEFFLKGLSGHPRLELLFFVLIFIMYVVILLGNGLLISILDPHLHTPMYFFLGNL
 SFLDICYTTTSIPSTLVSFLSERKTISLSGCAVQMFLSLAMGTTECVLLGVMAFDYVAICNPLR
 55 YPIIMSKDAYVPMAAGSWIIGAVNSAVQTVFVQLPFCRNNIINHFTCEILAVMKLACADISGN
 EFILLVTTTLFLLTPLLIIIVSYTLIILSIFKISSSEGRSKPSSTCSARLTVVITFCGTIFLMYMKPKSQ

ETLNSDDLDATDKLIFIFYRVMPMMNPLIYSLRNKDVKAEAVKHLRRKNFNK (SEQ ID NO: 375)

5 ATGGAATGGAAAACCACACCATTCTGTGAATTCTGAAGGGACTTCTGGTCACC
 CAAGACTTGAGTTACTCTTTGTGCTCATCTCATAATGTATGTGGTCATCCCTCTGGGG
 AATGGTACTCTCATTTAATCAGCATCTGGACCTCACCTCACACCCCTATGTACTCTT
 TCTGGGGAACCTCTCCTCTGGACATCTGCTACACCACCCCTATCCCTCCACGCTAG
 TGAGCTCCTTCAGAAAGAAAGACCAATTCCCTCTGGCTGTGCAGTGCAGATGTTCT
 CAGCTTGGCCATGGGACAACAGAGTGTGCTCTGGCGTGTGGCCTTGTGACCGCTAT
 10 GTGGCTATCTGCAACCCCTGAGATATCCCACATCATGAGTAAGGATGCCATGTACCCA
 TGGCAGCTGGGTCTGGATCATAGGAGCTGTCAATTGCACTGAGTACAACAGTGTGGT
 ACAATTGCTTCTGCAGGAATAACATCATCAATCATTACCTGTGAAATTCTAGCTGTC
 ATGAAAATGGCCTGTGCTGACATCTCAGGCAATGAGTTCATCTGCTTGTGACCACAAACAT
 TGTTCTATTGACACCTTGTATTAATTATTGTCTTACACGTTAATCATTGAGCATC
 15 TTCAAATTAGCTCTCGGAGGGAGAACAGAACCTCCTCACCTGCTCAGCTCGTCTGA
 CTGTGGTGATAACATTCTGTGGGACCATCTCTCTCATGTACATGAAGCCCAAGTCTCAAGA
 GACACTTAATTCACTGACTTGGATGCCACTGACAAACATTATTCATATTCTACAGGGTG
 ATGACTCCCATGATGAATCCTTAATCTACAGTCTAGAAACAAAGGATGTGAAGGAGGCA
 GTAAAACACCTACTGAGAAGAAAAATTAAACAAGTAA (SEQ ID NO: 376)

20 AOLFR203 sequences:

MKRQNQSCVVEFILLGFSNFPPELQLFGVFLVIVVTLMGNAITVIISLNQSLHVPMYLFLLN
 LSVVEVSFAVTPMEIVVLSTEKTMSFVGCFQMYFILLFGGTECFLLGAMAYDRFAAICHPL
 25 NYPVIMNRGVFMKLVIFSWIGIMVATVQTTWVFSFPFCGPNEINHFCETPPVLELVCAADTFLF
 EIYAFGTILIVMVFLLLSSYIRVLFAILKMPSTTGRQKAFTSTCASHLTSVTLYGTANMTYLQ
 PKSGYSPETKKLISLAYTLLTPLNPLIYSLRNSEMKRTLKLWRRKVILHTF (SEQ ID NO: 377)

30 ATGAAAAGACAAATCAAAGCTGTGTTGAATTCTACCTCCTGGCTTCTAACCTTC
 CTGAGCTCCAGGTGCAGCTCTGGGGTTTCTAGTTATTATGTGGTGAACCTGATGGG
 AAATGCCATCATTACAGTCATCATCTCCTAAACCAAGAGCCTCACGTTCCATGTACCTGT
 35 TCCTCCTGAACCTATCTGTGGTGGAGGTGAGTTCTAGTCAGTCAGTCATTACGCTGAAATGCT
 GGTGGTGTCTCTACTGAGAAAATATGATTCTTTGTGGCTGTGACAGATGTAT
 TTCATCCTCTTTGGTGGACTGAATGTTCTCTGGAGCGATGGCTATGACCGATT
 TGCTGCAATTGCCATCCTCTGAACCTACCCAGTGATTATGAACAGAGGGTTTATGAAA
 TTAGTAATTCTCATGGATCTCAGGGATCATGGTGGTACTGTGCAAGACCACTGGGTAT
 40 TTAGTTTCAATTGTGGCCCAATGAAATTAAATCATCTCTCTGTGAGACTCCCCGGTA
 CTAGAGCTGTGTGCAGACACCTCTATTGAAATCTATGCCCTCACAGGCACCAATT
 GATTGTTATGGTCCCTTCTGTTGATCCTCTGTCTACATTGAGITCTGTTGCCATCCT
 GAAGATGCCATCAACTACTGGGAGACAAAAGCCTTCCACCTGTGCCTCTCACCTCACA
 TCTGTGACCCCTGTTCTATGGCACAGCCAATATGACTTATTCACACCCAAATCTGGCTACTC
 ACCCGAAACCAAGAAACTGATCTCATTGGCTACACGTTGCTTACCCCTCTGCTCAATCCG
 CTCATCTATAGCTTACGAAACAGTGAGATGAAGAGGACTTGATAAAACTATGGCGAAGA
 AAAAGTGATTTCACACACATTCTGA (SEQ ID NO: 378)

45 AOLFR204 sequences:

MEKKNVTEFILGLTQNPIKEVTFVVFLVLYMITLSGNLLIVVTTSQALSSPMYFFLTHLSL
 IDTVYSSSSAPKLIVDSFQEKKIISFNGCMAQAYAEHIFGATEIILTVMACDCYVAICKPLNYTT
 50 IMSHSLCILVAVAIVVGGFLHATIQILFTVWLPFCGPNVIGHFMCDLYPLLKLVCIDHTLGLFV
 AVNSGFICLLNFLIVVSYVIIRLSLKNNSLGRCKALSTCISHTVVLFVPCIFVYLRSVTTLPI
 DKAVALFYTVMVVPMLNPVYTLRNAEVKSAIRKLWRKKVTSND (SEQ ID NO: 379)

55 ATGGAGAAGAAAAAGAATGTGACTGAATTCTATTAAATAGGTCTTACACAGAACCCATA
 ATGGAGAAAGTCACGTTGTAGTTTTGGTCTTACATGATAACACTTCAGGCAACC
 TGCTCATTGTGGTACCAATTACCAACAGCCAGGCTGTGAGCTCCCCATGTACTCTCCTG
 ACCCACCTTCTTGATAGACACAGTTATTCTCTTCAAGTTGATTGTGGA
 TTCCCTTCAAGAGAGAAAATCATCTCCTTAATGGGTGTATGGCTCAAGCCTATGCAGAA

CACATTTGGTGTACTGAGATCATCCTGCTGACAGTGATGCCCTGTGACTGCTATGTGG
 CCATCTGAAACCTCTGAACATACACAACCATTATGAGCCACAGCCTGTGCATTCTCTGGT
 GGCAGTGGCCTGGTGGGAGGATTCTCATGCAACTATTCAAGATTCTCTTACAGTATGG
 CTGCCCTCTGTGGCCCCAATGTCATAGGCCACTTCATGTGACTGTACCCATTGTTAAA
 5 ACTTGTGTCATAGACACTCATACCCCTGGTCTTGTGCTGTGAACAGTGGTTATCT
 GCTTATTAAACTCCCTATCTGGTGGTATCCTATGTGATCATCTGAGATCTTAAAGAAC
 AATAGCTTGGAGGGAGGTGAAAGCCCTCTCCACCTGTATTCTCACATCATAGTAGTTG
 TCTTATTCTTGTGCCCTGTATATTGTGATCTCGCCTCAGTGACCACTGCCATTGAT
 AAAGCTGTTGTGTTATTTATACTATGGTGGTCCAATGTTAAATCCCGTGGTACACAC
 10 TCAGAAATGCTGAGGTAAGAAGTCAATAAGGAAGCTTGGAGAAAAAAAGTGACTTCAG
 ATAATGATTAA (SEQ ID NO: 380)

AOLFR205 sequences:

MESENRTVIREFILLGLTQSQDIQLLVFVLVLIFYFILPGNFLIFTIKSDPGLTAPLYFFLGNLAFL
 15 DASYSFTVAPRMLVDLFAKKSISYRCITQLFLFHFLGGEGLLVVMAFDRYIAICRPLHYPT
 VMNPRTCYAMMLALWLGGFVHSIQVVLILRLPFCGPNQLDNFFCDVPQVKLACTDTFVVEL
 LMVFNSGLMTLLCFLGLLASYAVILCIRGSSEAKNKAMSTCTHIVIFFMFGPGIFIYTRPFRA
 FPADKVSLFHTVIFPLLNPIVYTLRNQEVKASMKKVFNKHIA (SEQ ID NO: 381)

20 ATGGAAGCGAGAACAGAACAGTGATAAGAGAACATTACCTCCTTGGTCTGACCCAGTCT
 CAAGATATTCTCAGCTCTGGTCTTGTGCTAGTTAACATTACTTCATCATCCTCCCTGG
 AAATTTCTCATTTTACACATAAAAGTCAGACCCCTGGGCTCACAGCCCCCTCTATTCT
 TTCTGGGCAACTTGGCTTCTGGATGCATCCTACTCCTACTGTGGCTCCGGATGTTG
 GTGGACTTCTCTCTGCGAAGAACAGATAATCTCCTACAGAGGCTGCATCACTCAGCTTTT
 25 TCTTGCACTTCTTGGAGGAGGGAGGGATTACTCCTGTTGTGATGCCCTTGACCGCTA
 CATCGCCATCTGCCGGCCTCTGCACTATCCTACTGTGATGAACCTAGAACCTGCTATGCA
 ATGATGTTGGCTCTGTGGCTTGGGGTTTGTCCACTCCATTATCAGGTGGCCTCATCCT
 CCGCTTGCTTTTGTGGCCCAAACCAAGCTGGACAACCTCTCTGTGATGCCCACAGGTC
 ATCAAGCTGGCCTGCACCGACACATTGTGGTGGAGCTCTGATGGCTTCAACAGTGGCC
 30 TGATGACACTCTGTGCTTCTGGGCTCTGGCCTCCTATGCACTGATTCTTGTCGCTATA
 CGAGGGCTCTCTGTGAGGCAAAAAACAAGGCCATGTCCACGTGCATACCCATATCATTG
 TTATATTCTCATGTTGGACTGGCATCTCATCACACGCGCCCTTCAGGGCTTCCA
 GCTGACAAGGTGGTTCTCTCTCCACACAGTGATTTCTGTGATGTTGAATCTGTCTTAA
 TACCTTCGCAACCAGGAAGTGAAAGCTCCATGAAAAAGGTGTTAATAAGCACATAGC
 35 CTGA (SEQ ID NO: 382)

AOLFR206 sequences:

MANRNNVTREFILLTENPKMQKIIFFVVFVSVIYINAMIGNVLIVVTITASPLSRSPMYFFLAYLSFI
 40 DACYSSVNTPKLITDSLYENKTILFNGCMTQVFGEHFRGVVEILTVMAJDHYVAICKPLHYT
 TIMKQHVCSLLVGWSVWGGFLHATIQILFICQLPFCGPNVIDHFMCMDLYTLINLACTNTHTLGLF
 IAANSGFICLLNCLLLVSCVVIYLSQLKTHSLEARHEALSTCVSHITVVLSPICFVYMRPPATL
 PIDKAVAVFYTMITSMLNPLIYTLRNAQMKNAIRKLCSRKAISSVK (SEQ ID NO: 383)

45 ATGGCGAATAGAACAAATGTGACAGAGTTATTCTATTGGGCTTACAGAGAACATCCAAA
 ATGCAGAAAATCATATTGTGTTCTGTATCATCACATCACGCCATGATAGGAAATG
 TGCTCATGTGGTCACCATCACTGCCAGCCCATCACTGAGATCCCCATGTACTTTCTG
 GCCTATCTCTCTTATTGATGCCTGCTATTCTCTGTCAATACCCCTAAGCTGATCACAGA
 TTCACTCATGAAAACAAGACTATCTATTCAATGGATGTATGACTCAAGTCTTGGAGAA
 CATTTCAGAGGTGTTGAGGTATCCTACTGTAAATGCCATGACCAACTATGTGG
 50 CCATCTGCAAGCCCTTGCACTATACCACCATCATGAAGCAGCATGTTGTAGCCTGCTAGT
 GGGAGTGTATGGTAGGAGGCTTCTCATGCAACCATAACAGATCCTCTCATCTGTCAA
 TTACCTTCTGTGGCTTAATGTATGACTCACTTATGTGATCTCTACACTTGTCAA
 TCTGCTGCAACTAACCCACACTCTAGGACTCTTCATGCTGCCAACAGTGGGTCATAT
 GCCTGTTAAACTGTCTCTGCTCTGGTCTCTGCGTGGTCATACTGTACTCCTAAAGACC
 55 CACAGCTTAGAGGAAGGCATGAAGCCCTCTACCTGTGCTCCACATCACAGTTGTCA
 TCTTATCTTATACCCCTGCATATTGTGATCATGAGACCTCCAGCTACTTACCCATTGAT

AAAGCAGTTGCTGTATTCTACACTATGATAACTCTATGTTAAACCCCTTAATCTACACCTT
GAGGAATGCTCAAATGAAAATGCCATTAGGAATTGTGTAGTAGGAAAGCTATTCAAG
TGTCAAATAA (SEQ ID NO: 384)

5 AOLFR207 sequences:

MERTNDSTSTEFFL VGLSAHPKLQTVFFVILWMYLMLLGNGVLISVIIFDSHLHTPMYFLCN
LSFLDVCYTSSSVPLILASFLAVKKVFSGCMVQMFISFAMGATECMLGTMALDRYVAICYP
LRYPVIMSKGAYVAMAAGSWVTGLVDVVQTAFAMQLPFCANNVKHFVCEILAILKLACADI
SINVISMGSNLIVLVIPLLVISIYIFIVATILRIPSTEKGHKAFSTCSAHLTVVIFYGTIFFMYAKP
10 ESKASVDSGNEDIEALISLFYGVMTPMLNPLIYSLRNKDVKAAVKNILCRKNFSDGK (SEQ ID
NO: 385)

ATGGAAAGGACCAACGATTCCACGTCGACAGAATTTCCTGGTAGGGCTTCTGCCACC
CAAAGCTCCAGACAGTTCTCGTTCTAATTTGTGGATGTACCTGATGATCCTGCTTGG
15 AATGGAGTCCTTATCTCAGTTATCATCTTGATTCTCACCTGCACACCCCCATGTATTCTT
CCTCTGTAATCTTCTTCCTCGACGTTGCTACACAAGTCCCTGTCCCCTAATTCTG
CCAGCTTCTGGCAGTAAAGAAAAGGTTCTCTGGGTGTATGGTCAAATGTTAT
TTCTTTGCCATGGGGCCACGGAGTGCATGATCTAGGCACGGATGGCACTGGACCGCTAT
GTGGCCATCTGCTACCCACTGAGATACCCGTATCATGAGCAAGGGTGCCTATGTGGCA
20 TGCGAGCTGGTCTGGTCACTGGCTGTGGACTCAGTAGTGCAGACAGCTTGTCAAT
GCAGTTACCATCTGTGCTAATAATGTCTTAAACATTTGTCTGTGAAATTCTGGCTATCT
TGAAACTGGCTGTGCTGATAATTCAATCAATGTGATTAGTATGACAGGGTGAATCTGAT
TGTTCTGGTATTCCATTGTTAGTAATTCCATCTCTACATATTATTGTTGCCACTATTCT
GAGGATTCTCCACTGAAGGAAAACATAAGGCCCTCTCCACCTGCTCAGCCCACCTGACA
25 GTGGTGATTATATTCTATGGAACCATCTCTCATGTACGCAAAGCCTGAGTCTAAAGCCT
CTGTTGATTCAAGGTAATGAAGACATCATTGAGGCCCTCATCTCCCTTCTATGGAGTGAT
GACTCCCATGCTTAATCCTCTCATCTATAGTCTGCGAAACAAGGATGAAAGGCTGCTGTC
AAAAACATACTGTGTAGGAAAAACTTTCTGATGGAAAATGA (SEQ ID NO: 386)

30 AOLFR208 sequences:

MFPANWTSVKVFFFLGFFHYPKVQVIIFAVCLLMLYLITLLGNIFLISITILDSHLHTPMYLFLSNL
SFLDIWYSSSALSPMLANFVSGRNTISFSGCATQMYLSLAMGSTECVLLPMMAYDRYVAICNP
LRYPVIMRRRTCVQIAAGSWMTGCLTAMVEMMSVLPLSLCGNSIINHFTCEILAILKLVCVDT
35 LVQLIMLVISVLLPMPMLLICSYAFILASILRISSVEGRSKAFSTCTAHLMVVLFYGTALSMH
LKPSAVDSQEIDKFMALVYAGQTPMLNPIYSLRNKEVKVALKKLIRNHFNTAFISILK (SEQ
ID NO: 387)

ATGTTCCCGCAAATTGGACATCTGAAAAGTATTTCCTGGGATTTCACIACCC
CAAAGTTCAAGGTCACTCATATTGCGGTGCTGCTGATGTACCTGATCACCTTGCTGG
40 AACATTTCCTGATCTCCATCACCATCTAGATTCCACCTGCACACCCCTATGTACCTCTT
CCTCAGCAATCTCCTTCTGGACATCTGGACTCCTCTGCCCCCTCTCCAATGCTGG
CAAACTTGTTCAAGGGAGAACACTATTCAATTCTCAGGGTGCGCCACTCAGATGTACCT
CTCCCTGCCATGGGCTCCACTGAGTGTGTCTGCCATGATGGCATATGACCGGTAT
GTGGCCATCTGCAACCCCTGAGATACCCGTATCATGAATAGGAGAACCTGTGTGCAGA
45 TTGCAGCTGGCTCTGGATGACAGGCTGCTCACTGCCATGGTGGAAATGATGTCTGTGCT
GCCACTGTCTCTGTGGTAATAGCATCATCAATCATTTCACTGTGAAATTCTGGCCATCT
TGAAATTGGTTGTGTGGACACCTCCCTGGTCAGTTAATCATGCTGGTATCAGTGTACT
TCTTCTCCCATGCCAATGCTACTCATTTGTATCTCTTATGCAATTATCTCGCCAGTATCC
TGAGAACAGCTCAGTGGAAAGGTGAAAGTAAAGCCTTCAACGTGCACAGCCCACCTGA
50 TGGTGGTAGTTGTCTATGGGACGGCTCTCCATGCACCTGAAGGCCCTCGCTGTAGA
TTCACAGGAAATAGACAAATTATGGCTTGGTGTATGCCGACAAACCCCCATGTGAAT
CCTATCATCTATAGTCTACGGAACAAAGAGGTGAAAGTGGCTTGA AAAAATTGCTGATTA
GAAATCATTAAATACTGCCITCATTCCATCCTCAAATAA (SEQ ID NO: 388)

AOLFR209 sequences:

MDKINQTFVREFILLGLSGYPKLEIIFALILVMYVVILIGNGVLIASILDRLHMPMYFFLGNLS
 FLDICYTSSIPSTLVSLSKKRNISFSGCAVQMFFGFAMGSTECAFLLGMMAFDRLYVAICNPLRY
 5 PIIMNKVVYVLLTSVSWLSGGINSTVQTSLAMRWPFCCNNIINHFLCEILAVLKLACSDISVNIV
 TLAVSNAFLVLPPLLVIFFSYMFILYTLRTNSATGRHKAFSTCSAHLTVIIFYGTIFFMYAKPKS
 QDLLGKDNLQATEGLVSMFYGVVTPMLNPITYSLRNKDVKAIAKYLSRKAINQ (SEQ ID NO:
 389)

10 ATGGACAAGATAAACCAAGACATTGTGAGAGAACATTCTGGGACTCTCTGGITACC
 CCAAACCTTGAGATCATTTCTTGCTCTGATTCTAGTTATGTACGTGATTCTAATTGGC
 AATGGTGTCTGATCATAGCAAGCATCTGGATTCTCGTCTTCACATGCCATGTACTCTT
 CCTGGGCAACCTCTCTTCCTGGATATCTGCTATACAACCTCCATTCCCTCAACACTGG
 TGAGCTTAATCTCAAAGAAAAGAAACATTCTCTCTGGATGTGCAGTGCAGATGTCTT
 15 TGGGTTGCAATGGGGTCAACAGAAATGTTCTCTGGCATGATGCAATTGATGTTAT
 GTGGCCATCTGTAACCTCTGAGATACCCCCTCATCATGAACAAAGGTGGTGTATGTAATGC
 TGACTCTGTATCATGGCTTCTGGTGAATCAATCAACTGTGCAAACATCACTTGCCT
 GCGATGCCCTTCTGTGGGAAACAATTATTAACTATTCATTCATGCGAGATCTTAGCTGTCC
 TAAAATTAGCTTGTCTGATATATCTGTCAATATTGTTACCTAGCAGTGTCAAATATTGCT
 20 TTCTCTAGTTCTCCCTGCTCGTGTATTCTCCATATGTTCTACATGCTCACCCATCTG
 CGAACGAACTCGGCCACAGGAAGACACAAGGCATTCTACATGCTCACCTGACTG
 TGGTGTATCATATTATGGTACCATCTCTTATGTAATGCAAACCTAAGTCCCAGGACCTC
 CTGGGAAAGACAACCTGCAAGCTACAGAGGGCTGTTCCATGTTATGGGTTGTGA
 25 CCCCATGTTAAACCCATAATCTATAGCTTGAGAAATAAGATGTAAGCTGCTATAAA
 ATATTGCTGAGCAGGAAAGCTTAAACCAGTAA (SEQ ID NO: 390)

AOLFR210 sequences:

MMGRRNDTNVADFILTGLSDSEEVQMALFMLLIIYLITMLGNVGMLIIRLDLQLHTPMYFFL
 THLSFIDLSYSTVTPKTLANLTSNYISFTGFAQMFCFVFLGTAECYLLSSMAYDRYAAICSP
 30 LHYTVIMPKRCLALITGPYIGFMDSFNVVMSRLHFCDSNIIHFFCDTSPILALSCTDTDN
 TEMLIFIAGSTLMVSLITISASYVSILSTILKINSTSGKQAFSTCVSHLLGVTIFYGTMIFTYLKP
 RKSYSLG RDQVAPVFYTIVIPMLNPLIYSLRNREVKNALIRVMQRQDSR (SEQ ID NO: 391)

35 ATGATGGGTAGAAGGAATGACACAAATGTGGCTGACTTCATCCTTACGGGACTGTCAAGAC
 TCTGAAGAGGTCCAGATGGCTCTGTTATGCTATTCTCCTCATACCTAACTATGCT
 GGGGAATGTGGGGATGCTATTGATAATCCGCCTGGACCTCCAGCTTCACACTCCATGTAT
 TTTTCCCTACTCACCTGTCAATTGACCTCAGTTACTCAACTGTGCGTCACACCTAAAC
 CTTAGCGAACTTACTGACTTCAACTATATTCTCCTACGGGCTGCTTGCCTCAGATGTTCT
 GTTTTGTCTCTGGTACTGCTGAATGTTATCTCTCCTCAATGCCATGATCGCTAT
 40 GCAGCGATCTGCACTGCCTCTACACTACACAGTTATTATGCCAAAAGGCTCTGCCTCGCTC
 TCATCACTGGGCCTATGTTGACTGGCTTATGGACTCCCTTGCAATGTGTTCCATGAGC
 AGATTGCAATTCTGTGACTCAAACATAATTCACTCATTCTCTGTGACACTTCCCCAATT
 AGCTCTGCTCTGCACTGACACAGACAACACTGAAATGCTGATATTCAATTGCTGGTTCC
 ACCCTGATGGTGTCCCTTATCACAATATGCTCATCCTATGTTCCATTCTCTCTACCACCT
 45 GAAAATTAACTCAGGAAAGCAGAAAGCTTCTACTTCGCTCTCATCTCTG
 GGAGTCACCATCTCTATGGAACATGATTCTACTTAAAGCCAAGAAAGTCTTATT
 CTTGGGAAGAGATCAAGTGGCTCTGTGTTTACTATTGTAATCCATGCTGAATCC
 ACTCATTATAGTCTTAGAAACAGAGAAGTGAAGAAATGCTCTATTAGAGTCATGCAGAG
 AAGACAGGACTCCAGGTAG (SEQ ID NO: 392)

50

AOLFR211 sequences:

MMGRRNNNTVADFILMGLTLSEEIQMALEMLLIIYLITMLGNVGMLIIRLDLQLHTPMYFFL
 THLSFIDLSYSTVTPKTLANLTSNYISFTGFAQMFFFAGLTAECYLLSSMAYDRYAAICSP
 LHYTVIMSKRCLALITGPYIGFIDSFNVVMSRLHFYDSNVIIHFFCDTSPILALSCTDTYNT
 55 EILIFITVGSTLMVSLITISASYVFLTILKINSTSGKQAFSTCVSHLLGVTIFYSTLIFTYLKP
 RKSYSLG RDQVASVFTIVIPVLNPLIYSLRNKEVNAIRVMQRQDSR (SEQ ID NO: 393)

ATGATGGGTAGAAGGAATAACACAAATGTGGCTGACTTCATCCTTATGGGACTGACACTTT
 CTGAAGAGATCCAGATGGCTGTTATGCTATTCTCCTGATATACCTAATTACTATGCTG
 GGGATGTGGGGATGATATTGATAATCCGCTGGACCTCCAGCTCACACTCCCATGTATT
 5 TTTCCCTACTCACCTGTCAATTGACCTCAGTTACTCAACTGTCGTACACCTAAAACC
 TTAGCGAACCTACTGACTTCAACTATATTCCTTACGGGCTGTTGCCAGATGTTCTT
 TTTGCCTCTGGTACTGCTGAATGTTACCTCTCCTCAATGGCCATGATCGCTATG
 CAGCGATCTGCAGTCCTCAACTACACAGTTATTATGTCAAAAGGCTGCTCGCTCT
 CATCACTGGGCCTATGTGATTGGCTTATAGACTCCTTGTCAACGTGGTTCCATGAGCA
 10 GATTGCATTCTACGACTCAAACGTAATTCACTCACTTTCTGTGACACTCCCCAATTITA
 GCTCTGCTCTGCACTGATAACATACAACACCGAAATCCTGATATTCAATTGTTGGTCCAC
 CCTGATGGTGTCCCTTTCACAATATCTGCATCCTATGTTGCTTCTTACCATCCTGA
 AAATTAAATTCCACTCAGGAAAGCAGAAAGCTTCTCTACTGCGTCTCTCATCTCTGGG
 AGTACCATCTTTATAGCACTCTGATTTTACTTATTAAAACCAAGAAAGTCTTATTCC
 15 TGGGAAGAGATCAAGTGGCTCTGTTTTATACTATTGTGATTCCGTGCTGAATCCACT
 CATTATAGCTTAGAAACAAAGGGTAAAAATGCTGTCATCAGAGTCATGCAGAGAAG
 ACAGGACTCCAGGTAA (SEQ ID NO: 394)

AOLFR212 sequences:

20 MAGNNFTEVTVFILSGFANHPELQVSLFLIFIYLVNLGLITLIRMDSQLHTPMYFFLSN
 LAFIDIFYSSVTVPKALVNFSNRRSISFVGCFVQMYFFVGLVCCECFLLGSMAYNRYIAICNPL
 LYSVVMSQKVSNWLGVMPYVIGFTSSLISVWVVISSLAFCDSINHFFCDTALLALSCVDTFGT
 EMVSFVLAGFTLSSLLIITVTVIIISAIRQSAAGRQAFSTCASHLMAVTIFYGSLIFTYLQPD
 NTSSLTQAQVASVFTTIVIPMLNPLIYSLRNKDVKNALLRVIRKLFP (SEQ ID NO: 395)

25 ATGGCTGGCAACAAATTCACTGAGGTTACCGTCTTCATCCTCTGGATTGCAAATCACC
 CTGAATTACAAGTCAGCTTTCTGATGTTCTCTCATTTATCTATTCACTGTTGGGA
 AACCTGGGACTGATCACGTTAACAGAATGGATTCTCAGCTTCACACCCCTATGACTTT
 TCCTGAGCAATTAGCATTTATTGACATATTACTCCTCTACTGTAACACCTAACGGATTG
 30 GTGAATTCCAATCCAATCGGAGATCCATCTCTTGTGGCTGTTGTCATGAAATGACTT
 TTTGTTGGATTGGTGTGGTGTGAGTGTCTGGATCAATGGCTACAATCGCTACA
 TAGCAATCTGCAATCCCTACTGTAATCAGTAGTCATGTCCTAAAGTGTCAACTGGCT
 GGGAGTAATGCCATATGTGATAGGCTCACAGCTCGTGAATCTGTCGGGTGATAAGC
 AGTTTGGCTCTGTGATTCCAGCATCAATCATTTTTGTGACACCAACAGCTTTAGC
 35 ACTCTCTGTGATAGATACATTGGCACAGAAATGGTGTGAGCTTGTCTAGCTGGATTCACT
 CTTCTAGCTCTCTTATCATCACAGTCACTTATATCATCATCTCAGCCATCTGAG
 GATCCAGTCAGCAGCAGGCAGGCAGAAGGCCCTCTCCACCTGCGATCCACCTCATGGCT
 GTAATCATCTTATGGGTCTGTGATTTCACCTATTGCAACCTGATAACACATCATCGCT
 GACCCAGGCGCAGGTGGCATCTGATTCTATACGATTGTCACTCCATGCTGAATCCACTC
 40 ATCTACAGTCTGAGGAACAAAGATGTGAAAATGCTCTGAGAGTCATACATAGAAAA
 CTTTTCCATGA (SEQ ID NO: 396)

AOLFR213 sequences:

45 MNSLGKLVSMILSAHVFCYSKFNCFGTHSIPALGADPPGMGLGNESLMDFILLGFSDHPRL
 EAFLVFVLFYLLTVGNFTIIISYLDPPLHTPMYFFLSNLSLLDICFTTSLAPQTLVNLQRPKK
 TITYGGCVAQLYISLALGSTECLLADMALDRYIAVCKPLHYVVIMNPRLCQQLASIWLSGLA
 SSLIHATFTLQLPLCGNHRLDHFICEVPALLKLA CVDTVNELVLFVVSVLFVIPPALISIYGFI
 TQAVLRIKSVEARHKAFSTCSSHLTVVIIFYGTIIYVYLQPSDSYAQDQGKFISLFYTMTPTLNP
 IIYTLRNKDMKEALRKLLSGKL (SEQ ID NO: 397)

50 ATGAATAGTTGGAAAGTGGCTCCATGATCCTCTCAGCTCATGTTCTGTTATTCTAA
 ATTAAATTGTTGGATGTACCCATTCCATTCTGCTTAGGTGCGGATCCCCCTGGAGGG
 ATGGGATTGGGCAATGAGAGTTCCCTAATGGATTTCATCCTCTAGGCTTCTCAGACACC
 CTCGTCTGGAGGCTGTTCTCTTGTATTGCTTCTTCACTCCTGACCCCTGTGGGA
 55 AACTCACCATAATCATCATCTCATATCTGGATCCCCCTCTCATACCCCAATGACTTTT
 TCTCAGCAACCTCTTACTGGACATCTGCTTCACTAGCCTTGCTCTCAGACCTTAG

TTAACITGCAAAGACCAAAGAAGACGATCACTTACGGTGGTTGTGGCGCAACTCTATAT
 TTCTCTGGCACTGGGCTCCACTGAATGTATCCTCTGGCTGACATGGCCTGGATCGTAC
 ATTGCTGTCTGCAAACCCCTCCACTATGTAGTCATCATGAACCCCACGGCTTGCCAACAGC
 5 TGGCATACTATCTCCTGGCTCAGTGGTTGGCTAGTCCCTAATCCATGCAACTTTACCTTG
 CAATTGCCCTCTGTGGCAACCATAAGGCTGGACCATTATTGCGAAGTACCAAGCTCTCT
 CAAGTTGGCTGTGGACACCACTGTCAATGAATTGGCTTTGTTAGTGTCTGT
 TTGTTGTCACTCCACCAGCACTCATCTCCATCTCCTATGGCTTCATAACTCAAGCTGTGCTG
 AGGATCAAATCAGTAGAGGCATAAACGCTTCAGCACCTGCTCCTCCACCTACAG
 10 TGGTGATTATATTCTATGGCACCATAACTACAGTGTACCTGCAACCTAGTGACAGCTATGC
 CCAGGACCAAGGGAAAGTTATCTCCCTCTACACCAGGCTGACAGCTATGC
 ATCATCTATACTTAAGGAACAAGGATATGAAAGAGGCTGTGAGGAAACTCTCTCGGAA
 AAATTGTGA (SEQ ID NO: 398)

AOLFR214 sequences:

15 MDKSNSVVSEFVLLGLCSSQKLQLFYFCFFSVLYTVILGNLLIILTTSRDLHSPMYFLLGN
 LSFVDICQASFATPKMIAFDLSAHEISFSGCIAQIFFIHLFGEMVLLVSMAYDRYVAICKPLY
 YVIVMSRRTCTVLMISWAWSLVHTLSQLSFTVNLPCGPNVDSFFCDLPRVTKLACLDSYIE
 ILIVVNSGILSLSTFSLLVSSYIILVTVWLKSSAAMAKAFSTLASHIAVVLFFGPCIFIYVWPFTIS
 PLDKFLAIFYTVFTPVLNPITYTLRNRMKAARVKIVNHYLRPRRISEMSLVVRTSFH (SEQ ID
 20 NO: 399)

ATGGATAAGTCCAATTCTCAGTGGTGTGAATTGTACTGTGGACTCTGTAGTTCTC
 AAAAACTCCAGTTTCTATTITTTGTTCTCTGTGTGTATACAGTCATTGTGCTGGGA
 AATCTTCTCATTATCCTCACAGTGACTCTGTATACCAGCCTGACTCCCCATGTACTTTCT
 25 CTTGGGAAACCTTCTTGTGACATTGTCAAGGCTCTTTGCTACCCCTAAAATGATTG
 CAGATTTCAGTGACACGAGACCATATCTTCAGTGGCTGCATAGCCAAATTCTT
 ATTCACTTTTACTGGAGGGAGATGGTCACTTGTGATGGCTATGACAGGTATG
 TAGCCATATGCAAACCCCTACTATGTGGTCATCATGAGCCGAAGGACATGCACTGTCTT
 GGTAAATGATCTCTGGCTGTGAGCTGGTCACACATTAAGCCAGTTATCATTACTGTG
 30 AACCTGCCCTTGTGGACCTAATGTAGTAGACAGCTTTTGTGATCTCCTCGAGTCAC
 CAAACTGCCGCTGGACTCTACATCATTGAAATACTAATTGTGGTCAATAGTGGAAATT
 CTTCCTAAGCACTTCTCTCTGGTCAGCTCTACATCATTATTCTGTTACAGTTG
 GCTCAAGTCCTCAGCTGCAATGGCAAAGGCTTACGCTGGCTCCATATTGCAAGTA
 GTAATATTCTTGGACCTGCACTCATCTATGTGTGGCCCTTACCATCTCTCTT
 35 GGATAAATTCTGCCATATTACACTGTTTCACCCCGCTCTAAACCCATTATTATA
 CACTAAGGAATAGGGATATGAAAGGCTGCCGTAGGAAAATTGTGAACCATTACCTGAGGC
 CAAGGAGAATTCTGAAATGCACTAGTAGTGAGAACCTCCTTCATTAA (SEQ ID NO:
 400)

AOLFR215 sequences:

MAHTNESMVSEFVLLGLNSWGLQLFFFIAFSIVYVTSVLGNLIVIISFDSHLNSPMYFLLSNL
 SFIDICQSNFATPKMLVDFFIERKTISFEGCMAQIFVLSFVGSEMLLVAMAYDRFIAICKPLH
 YSTIMNRRLCVIFVSISWAVGVLSVSHLAFTVDLPCGPNEVDSSFCDLPVIELACMDTYEM
 EIMTLTNSGLISLSCFLALIISYTIILIGVRCSRSGSSKALSTLTAHITVVLFFGPCIYFYIWPPSR
 45 PVDKFLSVFYTVCTPLNPIYSLRNEDVKAAMWKLRNHHVNSWKN (SEQ ID NO: 401)

ATGGCTCACACAAATGAATCGATGGTGTGAGTTGTACTTTGGACTCTCTAATTCT
 GGGGACTTCAACTTTCTTTGCCATCTCTCTATAGTCTATGTGACATCAGTGTAGGC
 AATGTCTTAATTATGTCATTATCTTCTTGTACTCCATTGAACCTCTCTATGTACTCTTG
 50 CTCAGTAATCTTCTTCTTGTGATATCTGTCAGTCTAACCTTGCACCCCCAAGATGCTTGT
 AGACTTTTATTGAGCGCAAGACTATCTCCTTGAGGGTGTGATGGCCACAGATATTGTT
 CTTCACAGTTTGTGGAGTGAGATGATGTTGTTGAGCTATGGCATATGACAGATTAA
 TAGCCATATGTAAGCCTCTGCACTACAGTACAATTATGAAACGGAGGCTGTGTAATT
 TGTGTCTATTCTGGCGGTGGCGTCTTCATTCTGTGAGGCCACTGGCTTACAGTGG
 55 ACCTGCCATTCTGTTGGTCCAAATGAGGTGGATAGCTTCTTGTGACCTCCCTGGTGATA
 GAGCTGGCTTGATGGATACATATGAAATGGAATTATGACCTAACGAAACAGTGGCTG

ATATCATTGAGCTTTCTGGCTTAATTATTCCTACACCACATTTGATCGGTGTCGG
 ATGCAGGTCCCTCAGTGGTCATCTAAGGCTCTTCTACATTAACGCCACATCACAGTG
 GTCATTCTTCTCGGGCCTTCGATTATTCATATGGCCTTTAGCAGACTTCCTGT
 GGACAAATTCTTCTGTCTACACTGTTGACTCCCTGGAACCCATCATCTACT
 5 CTTGAGGAATGAAGATGTTAAAGCAGCCATGTGGAAGCTGAGAAACCATCATGTGAAC
 CCTGGAAAAACTAG (SEQ ID NO: 402)

AOLFR216 sequences:

MDVGNKSTMSEFVLLGLSNSWELQMFFMVFSLLYVATMVGNSLIVITVIVDPHLHSPMYFLL
 10 TNLSIIDMSLASFATPKMITDYLTHKTISFDGCLTQIFFLHLFTGTEIILMAMSFDRYIAICKPL
 HYASVISPVQCVALVVASWIMGMHSMSQVIFALTLPFCGPYEVDSSFCDLPVVFQLACVDTY
 VLGLFMISTSGIIALSCFIVLFNSYVIVLTVKHHSSRGSSKALSTCAHFIIVFLFFGPCIITYMW
 PLSSFLTDKILSVFYTIPTLNPVIYTLRNQEVKIAMRKLKNRFLNFNKAMPS (SEQ ID NO: 403)

15 ATGGATGTGGGCAATAAGTCTACCATGTCGAATTGTTGCTGGGCTCTCTAATTCT
 GGGAACTACAGATGTTTCTTATGGTGTTCATTGCTTATGTGGCAACAATGGTGGG
 TAACAGCCTCATAGTCATCACAGTTATACTGGACCCCTCACCTACACTCTCTATGTATTCC
 TGCTTACCAATCTTCAATCATGATATGTCCTTGCTCTTCGCCACCCAAAGATGATT
 ACAGATACCTAACAGGTACAAAACCATCTCTTGTATGGCTGCCAACCCAGATATTCT
 20 TTCTCCACCTTCACTGGAACGAGATCATCTTACTCATGCCATGTCCTTGATAGGTAT
 ATTGCAATATGCAAGCCCCGCACTATGCTCTGTCATTAGTCCCAGGTGTGTTGCTCT
 CGTGGTGGCTTCTGGATTATGGAGTATGCAATTCAATGAGTCAGGTCAATTGCCCTC
 ACGITACCATTCTGTGGTCCCTATGAGGTAGACAGCTTTCTGTGACCTTCTGTGGTGT
 CCAGITGGCTTGTGGATACTATGTTCTGGCCTTTATGATCTCAACAAGTGGCATA
 25 ATTGCGTTGTCCTGTTTATTGTTTATTAAATTCAATGTTATTGTCCTGTTACTGTGAA
 GCATCATTCTTCCAGAGGATCATCTAAGGCCCTTCTACTTGTACAGCTCATTGATTG
 TCTTCTTGTCTTGGGCCATGCATCTCATCTACATGTGGCCACTAAGCAGCTTCTCACA
 GACAAGATTCTGTGTGTGTTTATACCATCTTACTCCACTCTGAACCCAATAATCTAC
 TTTGAGGAATCAAGAAGTAAAGATAGCCATGAGGAAACTGAAAATAGGTTCTAAATT
 30 TAATAAGGCAATGCCCTCATAG (SEQ ID NO: 404)

AOLFR217 sequences:

MLESFQKSEQMAWSNQSAVTIFLRGLSSLELQIFYLFFSIVYAAVLGNLLIVVTIASEPHLH
 SPTYFLLGNLSFIDMSLASFATPKMIADFLREHKAFSEGCMTQMFFLHLLGGAEIVLLISMFD
 35 RYVAICKPLHYLTIMSRRMCVGLVILSWIVGIFHALSQLAFTVNLPFCGPNEVDSSFCDLPVLIK
 LACVDTYILGVFMISTSGMIALVCFILLVISYTIILVTVQRSSGGSSKALSTCSAHFTVVTLFFGP
 CTFIYVWPFTNFPIDKVLSVFTIYTPLLNPVIYTVRNKDVKYSMRKLSSHIFKSRKTDHTP
 (SEQ ID NO: 405)

40 ATGCTAGAGTCCTCCAGAAATCAGAGCAAATGCCCTGGAGCAATCAGTCTGGTAACC
 GAATTCTACTACGGGGTCTGTCAGTTAGAACCTCCAGATTCTACTTCTGTTT
 CTCCATAGTCTATGCAAGCCACTGTGCTGGGAACCTCTTATGTGGTCACCATTGCA
 GAGCCACACCTTCATTCCCTACGTACTTCTGCTGGCAATCTCTTCAATTGACATGTC
 CCTGGCCTCATTTGCCACCCAAAATGATTGAGACTTCTTAGAGAACACAAAGCCATC
 45 TCTTGTGAAGGCTGCATGACCCAGATGTTCTCTACATCTTCTAGGGGGTGTGAGATTG
 TACTGCTGATCTCATGTCCTTGATAGGTACGTGGCTATCTGTAAGCCTACATTACCTA
 ACAATCATGAGCCGAAGAATGTGTGTGGCTTGTGATACTTCTGGATGTCGGCATCT
 TCCATGCTCTGAGTCAGTTAGCATTTACAGTGAATGCCCTCTGTGGACCCAAATGAAGT
 AGACAGTTCTTGTGACCTCCCTTGGTATTAAACTTGCTGTGTCGACACATATATT
 50 TGGGGGTGTTCATGATCTCAACCAGTGGCATGATTGCCCTGGTGTGCTCATCTCTTGGT
 GATCTCTTACACTATCATCTGGTACCGGTTGGCAGCGTCTCTGGTGGATCCTCCAAA
 GCCCTCTCCACGTGCAGTGCCACTTACTGTTGTGACCCCTTCTTGGCCCATGCACIT
 CATTATGTGTGGCCTTCACAAATTCCAATAGACAAAGTACTCTCAGTATTATACCA
 TATACACTCCCTCTGAATCCAGTGTATACCGTTAGGAATAAGATGTCAAGTATT
 55 CATGAGGAAACTAACAGCCATATCTTAAATCTAGGAAGACTGATCATACTCCTTAA
 (SEQ ID NO: 406)

AOLFR218 sequences:

METANYKVTTEFVLTGLSQREVQLVLFVIFLSFYLFILPGNIICTIRLDPHLTSPMYFLLANLA
 5 LLDIWYSSITAPKMLIDFFVERKIISFGGCIAQLFFLHFVGASEMFLLIVMAYDRYAAICRPLHYA
 TIMNRRLLCILVALSWMGGFIHSIIQVALIVRLPFCGPNELDSYFCIDITQVVRIACANTFPEELVM
 ICSSGLISVVCFCIALLMSYAFLALLKKHSGSDENTNRAMSTCYSHHTIVVLMFGPSIYTYARPF
 SFSLDKVVSFHTVIFPLLNPPIYTLRNKEVKAAMRKVVTKYILCEEK (SEQ ID NO: 407)

10 ATGGAAACTGCAAATTACACCAAGGTGACAGAATTGTTCTCACTGGCCTATCCCAGACTC
 GGGAGGTCCAACTAGTCCTATTGTTATATTCTATCCTCTATTGTTCATCCTACCCAGGA
 AATATCCTTATCATTTGCAACCATCAGGCTAGACCCCTCATCTGACTTCTCTATGTATTCC
 GTTGGCTAATCTGCCCTCCTGATATTGGTACTCTCCATTACAGCCCCCTAAATGCTCA
 TAGACTTCTTGTTGGAGAGGAAGATAATTCCITTGGTGGATGCATTGACAGCTCTCTT
 CTTACACTTGTGGGGCTTCGGAGATGTTCTGCTCATAGTGATGGCTATGACCGCTAT
 15 GCTGCTATCTGCCACCCCTCCACTATGCTACCATCATGAATCGACGCTCTGCTGTATCCT
 GGTGGCTCTCCTGGATGGGGGCTTCATTCTTCTGCTCATAGACAGCTACTCTGTGACATCACACAGGTG
 CGACTTCTTCTGTGGGCCAATGAGTTAGACAGTTACTCTGTGACATCACACAGGTG
 TCCGGATTGCCCTGTGCCAACACCTTCCCAGAGGAGTAGTGATGATCTGTAGTAGGGTCT
 GATCTCTGTGGTGTGTTATTGCTCTGTTAATGCTCTATGCCCTCCTCTGGCTTGTCA
 20 AGAAACATTAGGCTCAGATGAGAATACCAACAGGGCATGCCACCTGCTATTCCCACAT
 TACCATTGTGGTGTAAATGTTGGCCATCCATCTACATTATGCTGCCCTATTGACTCAT
 TTTCCCTAGATAAAAGTGGTGTCTGTGTTCTACTGTAATATTCCCTTACTTAATCCCATT
 ATTTACACATTGAGAAACAAGGAAGTAAAGGCAGCCATGAGGAAGGTGGTCACCAAATAT
 ATTTGTGTGAAGAGAAAGTGA (SEQ ID NO: 408).

25

AOLFR219 sequences:

MLTSLTDLCSPIQVAEIKSLPKSMNETNHSRVTEFVLLGLSSRELQPFLFTFSLLYLAILGNF
 LIILTVDTSDSLHPTMVFLLANLNSIDVCVASFATPKMIADFLVERKTISFDACLAQIFFVHLFTGS
 EMVLLVSMAYDRYVAICKPLHYMTMSSRVCVVLLISWFVGFHITTSQALFTVNLPFCGP
 30 KVDSFFCDLPLVTKLACIDTYVVSLLIVADSGFLSSLFLLLVSYTVILVTVRNRSSASMAKAR
 STLTAHITVVTLFFGPCIFIYWWPFSSYSDVKLAVFYTIITLILNPVIYTLRNKEVKAAMSKLKS
 RYLKPSQSVSVIRNVLFLETK (SEQ ID NO: 409).

35 ATGCTCACTTCATTAACTGATCTCTGTTCTCCTATTAGGTAGCTGAAATTAGTCCCT
 TCCAAAATCGATGAATGAGACAATCATTCTCGGGTACAGAATTGTTGCTGGACTG
 TCTAGTCAAGGGAGCTCCAACCTTCTGTTCTACATTTCACACTTATCTAGCAAT
 TCTGTTGGCAACTTCTCATCCTCACTGTGACCTCAGATCCGCCTCACACCCCCA
 TGACTTCTGCTTGCAAACCTGTCAATTATAGACGTATGTTGCCCTTTGCTACCCCT
 AAAATGATTGCAAGACTTCTGGTTAGCGCAAGACTATTCTTGTATGCCCTGCCTGGCC
 40 AGATTTCTTGTTCATCTCTCACTGGCAGTGAATGGTGTCTCTAGTTCCATGGCCTAT
 GACCGTTATGTTGCTATATGCAAACCTCTCCACTACATGACAGTCATGAGCCGTGTTGAT
 GTGTTGTCGTCCTCATTTCTGTTGTTGCTCATCCACTACCAAGCCAGTTGGCA
 TTCACTGTTAATCTGCCATTGGTGGCTAATAAGGTAGACAGTTCTGTGACCTTCC
 TCTAGTGACCAAGTTAGCCTGCATAGACACTTATGTTGTAGCTACTAATAGITGCAGAT
 45 AGTGGCTTCTCTGAGTTCCCTCTCCTCTGTTGCTCTACACTGTAATAACTTGT
 ACAGITAGGAATCGCTCCTCTGCAAGCATGGCGAAGGCCGCTCCACATTGACTGCTCACA
 TCACTGTTGTCATTCTTCTGACCATGCATTCTCATCTATGTTGCCCTTCAGCAGT
 TACTCAGTTGACAAAGTCCCTGCTGATTCTACACCATCTCACGCTTATTAAACCCGT
 50 AATCTACACGCTAACGAAACAAGAAGTGAAGGCAGCTATGTCAAAATGAAGAGTCGGTA
 TCTGAAGCCTAGTCAGGTTCTGTAGTCATAAGAAATGTTCTTCTAGAAACAAAGTAA
 (SEQ ID NO: 410).

AOLFR220 sequences:

MKQYSVGNQHSNRSLLFPFLCSQMTQLTASGNQTMVTEFLFSMFPAHRGGLLFFIPLLIYG
 55 FILTGNNLIMFIVQVGMALHTPLYFFISVLSFLEICYTTTIPKMLSCLISEQKSISVAGCLLQMYFF
 HSLGITESTCVLTAMAIDRYIAICNPLRYPTIMPKLCIQLTVGSCFCGFLLVLPEIAWISTLPFCGS

NQIHQIFCDFTPVLSLACTDTFLVVIVDAIHAEEIVASFLVIALSYIRIIIVLGMHSAEGHHKAFST
CAAHLAVFLLFFGSVAVMYLRFSATYSVFWDTAIAVTFVILAPFFNPITYSLKNKDMKEAIGRLF
HYQKRAGWAGK (SEQ ID NO: 411).

5 ATGAAGCAATATTCACTGGGTAAATCAACATTCCAATTATAGGAGTCTCTGTTCCCTTTCT
GTGTTCACAGATGACACAGTTGACGCCAGTGGGAATCAGACAATGGTACTGAGTCCT
CTTCTCATGTTCCCGCATGCCACAGAGGTGGCCTCTTATCTTATTCCCTGCCTCTCA
TCTACGGATTTATCCTAATGGAAACCTAATAATGTTATGTCATCCAGGTGGCATGGC
CCTGCACACCCCTTGATTTCTTATCAGTGTCCCTCCCTGGAGATCTGCTATACCA
10 CAACCACCATCCCCAAGATGCTGTCCTGCCAATCAGTGAGCAGAACAGACATTCCGGC
TGGCTGCCCTGCAGATGTTCTTCACTCACTGAGTATCACAGAAAAGCTGTGTCCTG
ACAGCAATGGCCATTGACAGGTACATAGCTATCTGCAATCCACTCCGTTACCAACCACATCA
TGATTCCCAAACCTTGATCCAGCTGACAGTTGGATCCCTGCTTTGTGGCTTCCCTGTG
CTTCTGAGATTGATGGATTCCACCTTGCTGTGTTCTGCTTGGCTCCAACCAAGATCCACCAAGAT
15 ATTCTGTGATTTCACACCTGTGCTGAGCTTGGCCTGCACAGATACTTCTAGTGGTCATT
GTGGATGCCATCCATGCAAGCGGAAATTGTAAGCTCCTTCTGGTCATTGCTCTATCCTACA
TCCGGATTATTATAGTGAATTCTGGGAATGCACTCAGCTGAAGGTATCACAAGGCCTTTC
CACCTGTGCTGTCACCTTGCTGTGTTCTGCTATTITGGCAGTGTGGCTGTATGTATT
TGAGATTCTCAGCCACCTACTCAGTGTGTTGGACACAGCAATTGCTGTCACTTTGTATC
20 CTTGCTCCCTTTCAACCCATCATCTATAGCCTGAAAAACAAGGACATGAAAGAGGCTA
TTGGAAGGCTTTCACTATCAGAAGAGGGCTGGTGGCTGGAAATAG (SEQ ID NO:
412).

AOLFR221 sequences:

25 MRNLSGGHVEEFVLVGFTTPPLQLLFVLFIAIYLTLLENALIVFTIWAPSLHRPMYFFLGH
LSFLELWYINVTPRLLAFLTDQGRVSYVGCMQLYFFIALACTECVLLAVMAYDRYLAICGP
LLYPSLMPSSLATRLAAASWGSFFFSSMMKLLFISQLSYCGPNINHFFCDISPLNLTCSDKEQA
ELVDFLALVMILLPLLAJVSSYTAIIAAILRIPTSRGHKAFTCAAHLAVVVIYSSTLFTYAR
PRAMYTFNHNKIISVLYTIIVPFNPAYCLRNEVKEARFKTVMRCHYPRDVQD (SEQ ID
30 NO: 413).

ATGAGAAAATTGAGTGGAGGCCATGTCAGGAGTTGTCTGGTGGTTCCCTACCACGC
CTCCCCTCCAGCTGCTCCTTTGCAATTACCTCTGACATTGTTGGAGA
ATGCACTTATTGTCCTCACAAATATGGCTGCTCAAGCCTCATCGTCCCATTGACTTTTC
35 CTTGGCCATCTCTCTTCTGGAGCTATGGTACATCAATGTCACCAATTCTCGGCTCTGGC
AGCCTTCTTACCCAGGATGGTAGAGTCTCTACGTTGACGGCTTGTGATGACCCAACTGTACTTC
TTTATTGCTTAGGCTGTACTGAATGTTGCTGTTGGCAGTTATGGCTATGATCGTACCT
GGCCATCTGTGGACCCCTCTTACCTAGTCTCATGCTTCCAGTCTGGCCACTCGCCTTG
40 CTGCTGCTCTTGGGGCAGTGGCTCTCAGCTCATGATGAAGCTTCTTATTCCCAA
TTGTCTACTGTGGACCCAAACATTCAACCACTTTCTGTGATATTCCCCACTACTCAA
CCTCACCTGCTGACAAGGAGCAAGCAGAGCTAGTAGACTTCTTCTGGCCCTGGTATG
ATTCTACTCCCTCTATTGGCTGTGGTTCTCATACACTGCCCATTGCAAGCCATCTGAG
GATCCCTACGTCCAGGGGACGCCACAAAGCTTCCACTGTGCGCTCATCTGGCAGTG
45 GTTGTATCTACTACTCCTCCACTCTCTCACCTATGCAACGGCCCCGGCCATGTACACCTT
CAACCAACAAAGATTATCTGTGCTACACTATCATTGTAACATTCTCAACCCAGCCA
TCTACTGCCTGAGGAACAAGGAGGTGAAGGAGGCTTCAGGAAGACAGTGTGGCAGAT
GTCACTATCCTAGGGATGTTAGGACTGA (SEQ ID NO: 414).

AOLFR222 sequences:

50 MGQTNVTSWRDFVFLGFSSSGELQLLFLSLYLVLTTSNVFIIAIRLDSHLHTPMYLFSL
SFSETCYTLGIIPRMLSGLAGGDQAISYVGCAQMFFSASWACTNCFLAAMGFDYVAICPL
HYASHMNPTLCAQLVITSFLTGFLGLGMTLVIFHLSFCSSHEIQHFFCDTPPVLSLACGDTGPS
ELRIFILSLLVLLVSFFFITISYAIIAAILRIPSAEGQKKAFSTCASHLTVVIIHYGCASFVYLRPK
ASYSLERDQLIAMTYTVVTPLLNPIVYSLRTRAIQTAALRNAFRGRLLGKG (SEQ ID NO: 415).

ATGGGGCAGACCAACGTAACCTCTGGAGGGATTGTCTCTGGGTTCTCCAGTTCTG
 GGGAGTTGCAGCTCCTCTTGCCTTGTCTCTGTATCTAGTCACCTGACCAGC
 AATGTCTTCATTATCATAGCCATCAGGCTGGATAGGCATCTGCACACCCCCATGTACCTCT
 5 CCTTCTCTCTATCCTCTCTGAGACCTGCTACACTTGGCATCATCCCTAGAATGCTCT
 CTGGCCTGGCTGGGGGGACAGGCTATCTCTATGTGGCTGCTGCCAGATGCTCT
 TTCTGCCTCATGGCCTGACTAACCTGCTTCTGGCTGCCATGGGCTTGACAGATATG
 TGGCCATCTGCTCCACTCCACTATGCCAGCACATGAATCTACCCCTGTGCCAGCT
 GGTCAATTACTCTCTCTGACTGGATACCTCTTGGACTGGGAATGACACTAGTTATTTCC
 10 ACCTCTCATTCTGCAGCTCCATGAAATCCAGCACTTTTGAGCTGACGCCACCTGTGCTG
 AGCTAGCCTGTGGAGATAACAGGCCAGTGAGCTGAGGATCTTATCCTAGTCAGTCCTTG
 TCCTCTGGCTCCTCTCTCATCACCATCTCTACGCCATCTGGCAGCAAACTG
 AGGATCCCCTCTGAGGGGCAGAAGAAGGCCCTCTCCACTTGTGCCCTCGCACCTACAG
 TGGTCATTATTCAATTGGCTGTGCTTCTCGTGTACCTGAGGCCAAAGCCAGCTACTCT
 CTTGAGAGAGATCAGCTATTGCCATGACCTATACTGTAGTGACCCCCCTCTTAATCCCA
 15 TTGTTTATAGTCTAAGGACTAGGGCTATACAGACAGCTCTGAGGAATGCTTCAAGAGGGAG
 ATTGCTGGTAAAGGATGA (SEQ ID NO: 416).

AOLFR223 sequences:

MEAANESSEGISFVLLGLTSPGQQRPLFLFLLYVASLLGNLIVAAIQASPALHAPMYFLLA
 20 HLSFADLCFASVTVPKMLANLILAHDHISLAGCLTQMYFFFALGVTDSCLLAAMAYDCYVAIR
 HPLPYATRMSRAMCAALVGMAWLVSHVHSLLYILLMARLSFCASHQVPHFFCDHQPLRLSC
 SDTHHIQLIFTEGAAVVTPFLILASYGAIAAAVLQLPSASGRLLRAVSTCGSHLAVVSLFYGT
 VIAVYFQATSRSREAEWGRVATVMYTVVTPMLNPIYSLWNRDVQGALRALLIGRRISASDS
 (SEQ ID NO: 417).

25 ATGGAGGCTGCCAATGAGTCAGAGGAATCTATTCGTTTATTGGACTGACAACAA
 GTCCCTGGACAGCAGCGGCCCTCTTTGTGTTCTGCTCTTGTATGTGCCAGCCTCTG
 GGTAAATGGACTCATTGTGGCTGCCATCCAGGCCAGTCCAGCCCTCATGCACCCATGTACT
 TCCTGCTGGCCACCTGTCTTGTGACCTCTGTTGCCCTCGTCACTGTGCCAAGATG
 30 TTGGCCAACCTGTGGCCATGACCACTCCATCTGCTGGCTGGCTGCTGCCAAGCCAAATGT
 ACTTCTCTTGCCTGGGGTAACCTGATAGCTGTTCTGGCCGATGCCCTATGACTG
 CTACGTGGCCATCCGGCACCCCTCCCTATGCCACGAGGATGTCCGGCCATGTGCGCA
 GCCCTGGTGGGAATGGCATGGCTGGTGTCCCACGTCCACTCCCTCTGTATATCCTGCTCA
 TGGCTGCTTGTCTGTGCTTCCACCAAGTGCCCACTTCTCTGTGACCACCAAGCCT
 35 CTCTTAAGGCTCTCGTGTCTGACACCCACCATCCAGCTGTCATCTCACCGAGGGCG
 CCGCAGTGGTGGTCACTCCCTCTGCTCATCTGCCCTCTATGGGGCATCGCAGCTGC
 CGTGTCCAGCTGCCCTAGCCTCTGGAGGCTCCGGCTGTGTCCACCTGTGGCTCCAC
 CTGGCTGTTGTGAGCCTTCTATGGACAGTCATTGAGCTACTTCCAGGCCACATCCC
 GACGCGAGGAGCAGTGGGGCGTGTGGCACTGTACACTGTAGTCACCCCCATGC
 40 TGAACCCATCATCTACAGCTCTGGAATCGCGATGTACAGGGGCACTCCGAGCCCTCT
 CATTGGCGAAGGATCTCAGCTAGTGA(TGTACTCTGA (SEQ ID NO: 418).

AOLFR224 sequences:

MGSFNTSFEDGFILVGFSDWPOLEPILFVFIFYSLTLFGNTIIIALSWLDLRLHTPMYFFLSHLSL
 45 LDLCFTTSTVPQLLNLCGVDRITRGGCVAQLFIYLALGSTECVLLVVMADFDRYAAVCRPLHY
 MAIMHPHLCQTLAISWGAGFVNLSIQTGLAMAMPLCGHRLNHFFCEMPVFLKLACADTEGT
 EAKMFVARVIVVAVPAALILGSYVHIAHALRVKSTAGRKAFTCGSHLUVFLFYGSAYT
 YLQSIHNYSEREGKFVALFYTIIPILNPILYTLRNKDVKLGWLKVWLWRGRDSG (SEQ ID NO:
 419).

50 ATGGGAAGTTCAACACCAAGTTGAAGATGGCTCATTGGTGGGATTCTCAGATTGGC
 CGCAACTGGAGCCCATCCTGTTGTCTTATTCTACTCCCTAATCTCTTGGC
 AACACCATCATCGCTCTCCTGGCTAGACCTTGGCTGCACACACCTATGTACTCTT
 TCTCTCTCATCTGCTCCCTCTGGACCTCTGCTTACCCACAGCACCGTGGCCCAAGCTCC
 55 TCAACCTTGGGGGTGGACCGCACCACACCCGGTGGAGGGTGTGGCTCAGCTCTCAT
 CTACCTAGCCCTGGCTCCACAGAGTGTGTGCTCTGGTGTGGCTCAGCTCTCAT

GCTGCTGTCGTCCACTCCACTACATGGCATCATGCCACCCCCATCTGCCAGACCC
 GGCTATCGCCTCTGGGTTGCGGGTTCGTGAACCTCTGATCCAGACAGGTCTCGAATG
 GCCATGCCCTCTGTGGCATCGACTGAATCACTCTCTGTGAGATGCCGTATTCTGAA
 GTTGGCTTGTGCGGACACAGAAGGAACAGAGGCCAAGATGTTGTGGCCGAGTCATA
 5 CGTGGCTTGTGCGGACACAGAAGGAACAGAGGCCAAGATGTTGTGGCCGAGTCATA
 AGGGTGAAGTCACAGGCTGGGCGAGAAGGCTTGGACTGTGGTCCCACCTCTA
 GTAGTTTCTTTTATGGCTCAGCCATCACACATATCTCAATCCATCCACAATTATTC
 TGAGCGTGAGGGAAAATTGTTGCCCTTTTATACTATAATTACCCCCATTCTCAATCC
 10 TCATTATACTAACAGAAACAAGGACGTGAAGGGCTCTGTGGAAAGTACTATGGAGGG
 GCAGGGACTCAGGGTAG (SEQ ID NO: 420).

AOLFR225 sequences:

MENYNQTSTDFILLGLFPPSIIDLFFFILIVFIFLMALIGNLSMILLFLDTHLHTPMYFLLSQLSLID
 LNYISTIVPKMASDFLHGNKSISFTGCGIQSFFFALGGAELLASMA YDRYIAICFPLHYLIRM
 15 SKRVCVLMITGSWIIGSINACAHVYVLHPIYCRSRAINHFFCDVPAMVTACMDTWVYEGTV
 FLSATIFLVFPFIGISCSYQVLFAVYHMKSAEGRKKAYLTCSTHLTVVTFYAPFVYTYLRPRS
 LRSPTEDKVLAVFYLTTPMLNPITYSLRNKEVMGALTRVSQRICSVKM (SEQ ID NO: 421).

ATGGAAAATTACAATCAAACATCAACTGATTTCATCTTATTGGGCTGTTCCACCACAA
 20 TAATTGACCTTTCTCTTCATTCTCATTGTTTCTGATGGCTCAATTGGAAACC
 TGTCCATGATTCTCTCATCTCTGGACACCCATCTCCACACACCCATGATTCTCTACTG
 AGTCAGCTCCCTCATTGACCTAAATTACATCTCACCATTGTCCTAAGATGGCATCTGA
 TTTCTGCATGGAACAAAGTCTATCTCTTCACTGGGTGTGGATTAGAGTTCTCTCT
 25 TGGCATTAGGAGGTGCAGAACGACTACTTTGGCATCTATGCCATGATCGTTACATTGC
 TATTGCTTCCCTCCACTATCTCATCCGATGAGCAAAGAGTGTGTGCTGATGATA
 ACAGGGCTTGGATCATAGGCTCGATCAATGCTGCTCACACTGTATATGTA
 30 TTCCATTATTGCCATCCAGGCCATCAATCATTCTCTGTGATGTCCTGCAATGGTACT
 CTGGCCTGATGGACACCTGGCTATGAGGGCACAGTGTGAGTGCCACCATCTTC
 TCGTTTCCCTCATGGTATTCTATGTTCTATGCCAGGTTCTTGTGCTGATACCAC
 ATGAAATCTGAGAACAGGAGGAAGAACGCTATTGACCTGAGCACCCACCTCACTGTA
 35 GTAATTCTACTATGCACCTTTGTCTACACTTATCTACGTCCAAGATCCCTGCGATCTCC
 AACAGAGGACAAGGTTCTGGCTGTCTTACACCACCTCACCCAAATGCTCAACCCATC
 ATCTATAGCCTGAGGAACAAGGAGGTGATGGGGCCCTGACAGAGTGA
 TGCTGTGAAAATGTAG (SEQ ID NO: 422).

AOLFR226 sequences:

MEWRNHSGRVSEFVLLGFPAAPLQLVLLFALLLAYVVLVLTENTLIUMAIRNHS
 40 ANMSFLEIWYVTIPKMLAGFVGSKQDHGQLISFGCMQLYFFLGLGCTECVLLAVMAYD
 RYMAICYPLHYPVIVSGRLCVQMAAGSWAGGFISMVKVFLISGLSYCPNIINHFFCDVSPLL
 NLSCTDMSTAELDFILAIFIILGPLSVTGA
 SASYVAITGAVMHISSAAGRYKA
 FSTCASHLTVVII
 YAASIFTYARPKALS
 AFDTNKLVS
 VLYAVIVPLLN
 PIYCLRNQEV
 KRALC
 CTLHLYQH
 QDPDP
 KKASRNV (SEQ ID NO: 423).

ATGGAGTGGCGAACCATAGGGAGAGTGAGTGAGTTGTGTTGCTGGCTTCCCTGCT
 45 CCTGCGCCACTACAGGTACTATTGTTGCCCTTTGCTGCTGGCTATGTTGGTGTGAC
 TGAGAACACACTCATCATTATGGCAATTAGGAACCAATTCTACCCACAAACCCATGTAC
 TTTTCTAGCTAATATGTCCTTCTGGAGATCTGGTATGTC
 ACTGTCACTATTCCCAAGATGCTGCTGGCTTGGGATC
 GCTTGCTGGCTTGTGGATCCAACAGGATCATGGACAGCTAATCTCTTGGAGGATGC
 ATGACACAGCTACTTTCTTGGCTGGGCTGCACTGAGTGTGCTTCTGCTGTTAT
 50 GGCCTATGATCGCTATATGGCATCTGCTATCCTCTCCACTACCCAGTCATTGTCAGTGGCC
 GGCTGTGTGCA
 GAGATGGCTGCTGGCTTGGGCTGGAGGTTGGCATCTCCATGGTCAA
 AGTTTCTTATTCTGGCTCTTACTGTGGCCCAACATCATCAACCACTTTCTGTG
 ATGTCTCCATTGCTCAACCTCTCATGCACTGATATGTC
 ACACAGCAGAGCTACAGATTTC
 ATCCTGCCATT
 TTATTCTTAGGGCACTCTGTCACTGGGCTCTATGTGGCCAT
 55 TACTGGTGTGATGCACATATCTCGGCTGCTGGACGCTATAAGGC
 TTCCACCTGT
 GCCTCTCATCTCACTGTTGTGATAATCTCTATGCAGCCAGTATCTCATGCTCGGCC

AAAGGCACTCTCAGCTTGTACCAACAAGTTGGCTCTGTACTGTATGCTGTCAATTGTA
 CCATTGCTCAATCCCATCATTTACTGCCTGCGCAATCAAGAGGTCAAGAGAGCCCTATGCT
 GTACTCTGCACCTGTACCAGCACCAGGATCCTGACCCCAAGAAAAGCTAGCAGAAATGTATA
 G (SEQ ID NO: 424).

5

AOLFR227 sequences:

MEPQNTSTVTNFQLLGFQNLLWEWQALLFVFLIYCLTLIGNVVIITVVSQGLRLHSPMFLQH
 LSFLEVWYTSTTPVLLANLLSWGQAISFSACMAQLYFFVFLGATECFLLAFMAYDRYLAIISP
 10 LRYPFLMHRLCARLVVSVWTGVSTGVFLHSMMISRLDFCRNQINHFFCDLPLMQLSCSRV
 YITEVTIFILSIAVLICICFFLTGLGPYVFIVSLLRIPSTSRRKTFSTCGSHLAVVTLYYGTMSMYV
 CPSPHLLPEINKIISVFYTVVTPLLNPVIYSLRNKDFKEAVRKVMRRKGILWSTSKRKF
 LY (SEQ ID NO: 425).

15 ATGGAGCCCCAAAATACCTCACTGTGACTAACCTCAGCTGTAGGATTCAGAACCTTC
 TTGAATGGCAGGCCCTGCTCTTGTCACTTCTCTGCTCATCTACTGCCTGACCATTATAGGG
 AATGTGTGTCATCATCACCGTGGTGAGCCAGGGCCTGCAGCTGCACACTCCCTATGTACATGT
 TCCCTCAGCATCTCTCCTTCTGGAGGTCTGGTACACGTCCACCACTGTGCCCTTCTCCTA
 GCCAACCTGCTGCTCTGGGGCAAGCCATCTCTCTGCCTGCATGGCACAGCTCTACT
 20 TCTTCGTATTCTCGCGGCCACCGAGTGCTTCTCTCATGCATCGTGGCTATGTGCCAGGTTAC
 CTGGCCATCTGCAGCCCACCTCGCTACCCCTTCTCATGCATCGTGGCTATGTGCCAGGTT
 GGTGGTGGTCTCATGGTGACAGGGGTAGCACAGGCTTCTGCATTCCATGATGATTTCC
 AGGTTGGACTCTGTGGCGCAATCAGATTAACCATTCTCTGCACCTCCGCCACTCA
 TGCAGCTCTCTGTCCAGACTTATACACCAGGGTACCATCTCATCTGTCAATTGCC
 GTGCTGTGCAATTGTTTTCTGACACTGGGGCCATGTGTTCTATTGTGCTCTCCATATT
 25 GAGAATCCCTTCCACCTCTGGCCGGAGAAAGACCTTTCCACATGTGGCTCCCACCTGGCT
 GTTGTCACTCTACTACGGGACCATGATCTCATGTATGTGTGCTCCAGTCCCCACCTGTT
 GCCTGAAATCAACAAGATCATTTCTGTCTACACTGTGGTCACACCAGTGTGAACCCA
 GTTATCTACAGCTTGAGGAACAAAGACTCAAAGAAGCTGTAGAAAGGTACATGAGAAGG
 AAATGTGGTATTCTATGGAGTACAAGAAAAGGAAGTCCCTTATTAG (SEQ ID NO: 426).

30

AOLFR229 sequences:

MFYVNQIPFQLYHISFVYPTELWSRAIIPCMPTLSFWVCSATPVSPGFFALILLVFVTSIASNVVK
 IILIHDSRLHTPMYFLLSQLSLRDILYIISTIVPKMLVDQVMSQRAISFAGCTAQHFLYLTLAGAE
 35 FFLGLMSCDRYVAICNPLHYPDLMRSRKICWLIVAAAALGGSIDGFLTPVTMQFPFCASREIN
 HFFCEVPALLKLSCTDT SAYETAMYVCCIMLLIPFSVISGSYTRILITVYRMSEAEGRRKAVAT
 CSSHMVVVSLFYGAAMYTYVLPHSYHTPEQDKAVSAFYTILTPMLNLIYSLRNKDVTGALQK
 VVGRCVSSGKVTTF (SEQ ID NO: 427).

40 ATGTTTATGTAAATCAGATACTTCCAACCTTATCATATCTCTTGTGTACCCCTACAGA
 GCTATGGAGCAGAGCAATTATCCGTGATGCCGACTTATCTCTGGTTTGTCTCAGCA
 ACGCCCGTTCCCTGGCTCTTGCCCTCATTCTCTGGTCTTGTGACCTCCATAGCCAG
 CAACGTGGTCAAGATCATTCTCATCCACATAGACTCCGCCCTCACACCCCCATGTACTTC
 CTGCTCAGCCAGCTCCCTCAGGGACATCCTGTATATTCCACCATGTGCCAAATGCT
 GGTGACCCAGGTGATGAGCCAGAGGCCATTCTCTGCTGGATGACTGCCAACACTTC
 45 CTCTACTTGCACCTAGCAGGGCTGAGTTCTCTCTCTAGGACTCATGTCTGTGATCGCTA
 CGTAGCCATCTGCAACCCCTGCACTATCTGACCTCATGAGCCGAAGATCTGCTGGTG
 ATTGTGGCGCAGCTGGCTGGAGGGTCTATCGATGGTTCTGCTCACCCCCGTACCA
 TGCAAGTCCCCCTCTGTGCTCTCGGGAGATCAACCACTCTCTGCGAGGTGCTGCCCT
 CTGAAGCTCTCTGACGGACACATCAGCCTACGAGACAGCCATGTATGTCTGTATT
 50 TGATGCTCTCATCCCTTCTGTGATCTGGGCTCTACACAAAGAATTCTCATTACTGTT
 TATAGGATGAGCGAGGCAGAGGGGAGGCAGAAAGGCTGTGGCCACCTGCTCCTCACACATG
 GTGGTTGTCACTCTATGGGGCTGCCATGTACACATACGTCGCTGCCCTATTCTACCA
 CACCCCTGAGCAGGACAAAGCTGTATCTGCCCTACACCATCTCACTCCATGCTCAAT
 CCACTCATTACAGCCTAGGAACAAGGATGTCACGGGGCCCTACAGAAGGTTGGGG
 55 AGGTGTGTGCTCAGGAAAGGTAAACCACTTCTAA (SEQ ID NO: 428).

AOLFR230 sequences:

MGMEGLLQNSTNFVLTGLITHPAFPGLLFAIVFSIFVVAITANLV MILLIHMDSRLHTPMYFLLS
 QLSIMDTIYICITVPKMLQDLLSKDKTISFLGCAVQIFLYLTLLIGEFFLLGLMAYDRYVAVCNP
 LRYPLLMNRRVCLFMVVGSWGGSLDFMLTPVTMSFPFCRSREINHFFCEIPAVLKLSCTDTS
 5 LYETLMLYACCVLMLLIPLSVISVSYTHILLTVHRMNSAEGRRKAFTCSSHIMVVSVFYGAAFY
 TNVLPHSYHTPEKDVKVSAFYTILTPMLNPLIYSLRNKDVAALRKVLGRCGSSQSIRVATVIR
 KG (SEQ ID NO: 429).

10 ATGGGCATGGAGGGCTTCTCCAGAACCTCCACTAACTCGTCTCACAGGCCTCATCACCC
 ATCCTGCCCTCCCCGGGCTTCTTGCATGAACTGCTCCATCTTGTGGCTGCTATAACA
 GCCAACCTGGTCATGATTCTGCTCATCCACATGGACTCCGCCACACACCCATGTACTT
 CTTGCTCAGCCAGCTCCATCATGGATACCATCTACATCTGTATCACTGTCCCCAAGATGC
 TCCAGGACCTCTGTCCAAGGACAAGACCATTCTCTCTGGGCTGTGAGCTCAGATCTT
 CCTCTACCTGACCCGATTGGAGGGGAACTCTTCTGCTGGGCTCATGGCCTATGACCGC
 15 TATGTGGCTGTGCAACCCCTACGGTACCCCTCCTCATGAACCGCAGGGTTGCTTATT
 CATGGTGGTCGGCTCTGGGTTGGTGGCTTGGATGGGTCATGCTGACTCCTGTCACT
 ATGAGTTCCCTCTGTAGATCCCAGAGAGATCAATCACTTTCTGTGAGATCCCAGCCGT
 GCTGAAGTTGCTTGACAGACACGTCACTCTATGAGACCTGATGTATGCCCTGTCGTG
 CTGATGCTGCTTATCCCTCATCTGTACCTCTGTCTACACGCACATCCCTGACTGT
 20 CCACAGGATGAACCTCTGCTGAGGGCCGGCAAAGCCTTGTACGTGTTCTCCACATT
 ATGGTGGTGAGCGTTCTACGGGGCAGCCTCTACACCAACGTGTCGCCCCACTCTACC
 ACACCTCCAGAGAAAGATAAAAGTGGTGTGCTGCTTACACCATCCTCACCCCCATGCTAA
 CCCACTCATCTACAGCTGAGGAATAAAGATGTGGCTGCAGCTCTGAGGAAAGTAGTACAGG
 25 GAGATGTGGTTCTCCAGAGCATCAGGGTGGCAGTGTGATCAGGAAGGGCTAG (SEQ ID
 NO: 430).

AOLFR231 sequences:

MERANHSVSEFILLGSKSQNLQILFFLGSVVFVGIVLGNLLILVTVTFDLLHTPMYFLLSNL
 SCIDMILASFATPKMIVDFLRERKTISWWGCVSQMFHMLLGGSEMMLLVAMAIDRYVAICKP
 30 LHYMTIMSPRVLTGLLLSSYAVGVFHSSSQMAFMLTLPPCGPNVIDSFFCDLPVLIKLA
 CKDTYIQLLVIADSGLLSLVCFLLLVSYGVIIFSVRYRAASRSSKAFSTLSA
 HITVVTLFAPCVFIYVWFPSRYSVDKILSVFYTIFTPLLNPIYTLRNQE
 VKAJJKRLCI (SEQ ID NO: 431).

35 ATGGAAAGAGCAAACCAATTCACTGGTATCGGAATTATTTGTTGGACTTCAAATCTC
 AAAATCTTCAGATTATTCTTCTGGGATTCTCTGTGGCTCTGGGGATTGTGTTAGGA
 AACCTGCTCATCTGGTACTGTGACCTTGTACCTGCTCCCTCACACACCAATGTATTCT
 GCTTAGCAACCTCTCCTGCATTGATATGATCCTGGCTCTTGTACCCCTAAGATGATTG
 TAGATTCTCCGAGAACGTAAGACCATCTCATGGGGATGTTATTCCAGATGTTCTT
 TATGCACCTCCTGGGTGGGAGTGGAGATGATGTTGCTGTAGCCATGGCAATAGACAGGTAT
 40 GTTGCCATATGCAAACCCCTCATTACATGACCATCATGAGCCCACGGGTGCTCACTGGC
 TACTGTTATCCTCTATGCACTGGATTGTGCACTCATCTAGTCAAATGGCTTCA
 TGTGACTTTGCCCTCTGTGGTCCCAATGTTATAGACAGCTTTCTGTGACCTCCCTGTGAT
 TAAACTGCTGCAAGGACACCTACATCCTACAGCTCCTGGTATTGCTGACAGTGGCTC
 CTGTCACTGGTCTGCTTCTCTCTGTGCTTGTCTCTATGGAGTCATAATATTCTCAGTTAG
 45 GTACCGTGCTGCTAGTCGATCCTCTAAGGTTCTCACTCTCAGTCACATCACAGTTG
 TGACTCTGTTCTTGCTCCGTGTCTTATCTACGTCCTGGCCCTCAGCAGATACTCGGTA
 GATAAAATTCTCTGTGTTTACACAATTTCACACCTCTCTAAATCCTATTATTATAC
 ATTAAAGAAATCAAGAGGTAAAAGCAGCCATTAAAAAAAGACTCTGCATATAA (SEQ ID NO:
 432).

50

AOLFR232 sequences:

MDNITWMASHGWSDFILMGLFRQSKHPMANITWMANHTGWSDFILLGLFRQSKHPALLCV
 VIFVVFLMALSGNAVLILLIHCDAHLHTPMYFFISQLSMDMAYISVTVPKMLLDQVMGVNKIS
 APECGMQMFFYVTLAGSEFFLLATMAYDRYVAICHPLRYPVLMNHRVCLFLSSGCWFLGSVD
 55 GFTFTPITMTPFRGSREIHFFCEVPALNLCSDTSLYEIFMYLCCVLMILLIPVVISSSYLLILL

TIHGMNSAEGRKKAFATCSSHLTVVILFYGAIIYTYMLPSSYHTPEKDMMVSVFYTILTPVVNP
LIYSLRNKDVMGALKMLTVEPAFKAME (SEQ ID NO: 433).

5 ATGGACAAACATCACCTGGATGGCCAGGCCACACTGGATGGTCGGATTCTACCTTGATGGGAC
TCTTCAGACAATCCAAACATCCAATGGCCAATATCACCTGGATGGCCAACCACACTGGATG
GTCGGATTCTACCTGTGGGACTCTCAGACAATCCAAACATCCAGCACTACTTGTG
GTCATTCTGTGGTTCTCTGATGGCGTTGTCTGGAAATGCTGTCTGATCCCTCTGATACA
CTGTGACGCCAACCTCCACACCCCCATGTACTTTCTACATCAGTCATGTCCTCATGGACA
10 TGGCGTACATTCTGTCACTGTGCCAAGATGCTCTGGACCAGGTATGGGTGTGAATAA
GATCTCAGCCCCCTGAGTGTGGGATGCAGATGTTCTCTACGTGACACTAGCAGGTTCAGAA
TTTTCTCTAGCCACCATGGCCTATGACCGCTACGTGCCATCTGCCATCCCTCCGTTA
CCCTGTCTCATGAACCATAGGGTGTCTCTCTGTATCAGGCTGCTGGTTCTGGCT
CAGTGGATGGCTTCACATTCACTCCCACCATGACCTCCCCCTCCGTGGATCCCGGGA
15 GATTGATCATCATTCTCTGTGAAGTCTGTGTATTGAATCTCTCTGCTCAGACACCTCAC
TCTATGAGATTTCTATGTAATTGTGCTGTGTCTCATGCTCTCATCCCTGTGGTATCATT
TCAAGCTCTATTACTCATCCTCTCACCATCCACGGGATGAACCTCAGCAGAGGGCCGGA
AAAAGGCCATTGCCACCTGCTCTCCACCTGACTGTGGTCATCTCTCTATGGGCTGCC
ATCTACACCTACATGCTCCCCAGCTCTACCAACACCCCTGAGAAGGACATGATGGTATCTG
20 TCTCTATACCATCCTCACTCCAGTGGTGAACCTTAAATCTATAGCTTAGGAATAAGGAT
GTCATGGGGCTCTGAAGAAAATGTTAACAGTGGAACCTGCCCTTCAAAAGCTATGGAG
TAG (SEQ ID NO: 434).

AOLFR233 sequences:

25 MANITRMANHTGKLDFFILMGLFRRSKHPALLSVVIFVVFLKALSGNAVLILLIHCDAHLHSPMY
FFISQLSLMDMAYISVTVPKMlldQVMGVNKVSAPECGMQMFLYLTLAGSEFFLATMAYDR
YVAICHPLRYPVLMNHVRCLFLASCGCWFLGSVDGFMLTPITMSFPFCRSWEIHFFCEVPAVTI
LSCSDTSLYETLMLYLCVLMILLIPVTISSLSSYLLLTVHRMNSAEGRKKAFATCSSHLTVVLFY
GAAVYTMLPSSYHTPEKDMMVSVFTILTVPVNPLIYSLRNKDVMGALKKMLTVRFVL
(SEQ ID NO: 435).

30 ATGGCCAACATCACCAAGGATGGCCAACCACACTGGAAAGTGGATTCTCATGGAC
 TCTTCAGACGATCCAAACATCCAGCTACTTAGTGTGGCATCTTGTGGTTCTGAAG
 GCGITGTCTGAAATGCTGCTGATCCTCTGATACACTGTGACGCCACCTCCACAGCC
 CCATGTACTTTTCTCATCAGTCATTGCTCTCATGGACATGGCGTACATTCTGTCAGTG
 35 CCCAAGATGCTCCTGGACCAGGTATGGGTGTAATAAGGTCTCAGCCCCCTGAGTGTGGG
 ATGCAGATGTCCTCTATCTGACACTAGCAGGTCGAACTTTCTCTAGCCACCATGGC
 CTATGACCGCTACGTGGCATCTGCCATCCTCCGTTACCCCTGTCTCATGAACCATAGG
 GTCTGTCCTTCTGGCATGGGCTGCTGGTCTGGCTCAGTGGATGGCTCATGCTCAC
 40 TCCCATACCATGAGCTCCCTCTGCAGATCTGGAGATTCTCATCTTCTGTGAAG
 TCCCTGCTGTAACGATCTGTCCTGCTCAGACACCTCACTCTATGAGACCCCTCATGTACCTA
 TGCTGTGCTCATGCTCTCATCCCTGTGACGATCATTCAAGCTCTATTACTCATCCT
 CCTCACCGTCCACAGGATGAACTCAGCAGAGGGCCGGAAAAAGGCCTTGCACCTGCTC
 CTCCCACCTGACTGTGGCATCTCTATGGGGCTGCCGTACACCTACATGCTCCCCA
 45 GCTCTACCACACCCCTGAGAAGGACATGATGGTATCTGCTCTATACCATCCTCACTCC
 GGTGCTGAACCCCTTAATCTATAGTCTTAGAATAAGGATGTCATGGGGCTCTGAAGAAA
 ATGTTAACTGTGAGATTGTCCTTAG (SEQ ID NO: 436).

AOLFR234 sequences:

50 MPNSTTVMEPLLMRFSDDVWTLQLHSASFFMLYLVTLMGNILIVTTCDSLLHMPMYFFLRN
 LSILDACYISVTVPPTSCVNSSLDTISKAGCVAQVFLVVFFVYVELLFLTAIMHDRYVAVCQLP
 HYPVIVNSRICIQMTLASLLSGLVYAGMHTGSTQLPFCRSNVIHQFFCDIPSLLKLSCSDTSNE
 VMIVVSALGVGGGCFIFIRSYIHFSTVLGFPRGADRTKAFTSTCIPHILVVSVFLSSCSSVYLRPP
 AIPAATQDLILSGFYSIMPLFNPIYTSLRNKQIKVAKKIMKRIFYSENV (SEQ ID NO: 437).

55 ATGCCCAATTCAACCACCGTGATGGAATTCTCCTCATGAGGTTTCTGATGTGTGGACAC
TACAGATTTACATTCTGCATCCCTTATGTGTATTGGTAACTCTAATGGGAAACATC

CTCATTGTGACCGTCACCAACCTGTGACAGCAGCCTCACATGCCATGTACTTCTCAG
 GAATCTGTCTATCTGGATGCCTGCTACATTCTGTACAGTCCTACCTCATGTGTCAATT
 CCCTACTGGACAGCACCACTTCAAGGCGGGATGTGAGCTCAGGTCTTCCTCGTGGT
 5 TTTTTTGTTATATGTGGAGCTCTGTTCTACCATATTGGCTCATGACCGCTATGTGGCTG
 TCTGCCAGCCACTTCACTACCCCTGTGATCGTAACCTCGAATCTGCATCCAGATGACACT
 GCCCTCCCTACTCAGTGGCTGTCTATGCAGGATGCACACTGGCAGCACATTCCAGCTG
 CCCTCTGTGCGTCCAACGTTATTCATCAATTCTCTGTGACATCCCCTCTGCTGAAGCT
 CTCTTGCTCTGACACCTTCAGCAATGAGGTATGATTGTTCTGCTCTGGGGTAGGT
 10 GCGGCTGTTCATCTTATCATCAGGCTTACATTACATCTTCGACATCCCTCACATCCTGGTGGT
 TCCAAGAGGAGCAGACAGAACAAAGGCCCTTCCACCTGCATCCCTCACATCCTGGTGGT
 TCAGTCTCCTCAGTCTCATGCTCTCTGTGACCTCAGGCCACTCGCATAACCTGCAGCAC
 CCAGGATCTGATCTCTGGTTTATTCATAATGCCCTCCCTTAAACCTATTATTA
 CAGTCTAGAAATAAGCAAATAAGGTGGCCATCAAGAAAATCATGAAGAGAATTTTTA
 TTCAGAAAATGTGTAA (SEQ ID NO: 438).

15

AOLFR235 sequences:

MDGVNDSSLQGFVLMGJSDHPQLEMIFFIAILFSYLLTLLGNSTIILSRLEARLHTPMYFFLSNL
 SSSDLALFATSSVPQMLINLWGPQKTISYGGCITQLYVFLWLGAECILLVVMADFDRYVAVCRPL
 20 RYTAIMPNPQLCWLLAVIACLGGLGNSVIQSTFTLQLPLCGHRRVEGLCEVPAMIKLACGDTSL
 NQAVLNGVCTFFTAVPLSIVISYCLIAQAVLKIRSAEGRRKAFNTCLSHLLVVFLFYGSASYGY
 LLPAKNSKQDQGKFISLYSLVTPMVNPLIYTLLRNMEVKGALRRLLGKGREVG (SEQ ID NO:
 439).

25 ATGGACGGGGTGAATGATAGCTCCTGCAGGGCTTGTCTGATGGCATATCAGACCATC
 CCCAGCTGGAGATGATCTTTTATAGCCATCCTCTCCTATTGCTGACCCCTACTGGG
 AACTCAACCACATCTTGCTTCCCGCTGGAGGCCGCTCCATACACCCATGTACTTCTT
 CCTCAGCAACCTCTCCTCTGGACCTGCTTCGCTACTAGTTCACTGCCCCAAATGCTGA
 TCAATTATGGGGACCAGGCAAGACCATCAGCTATGGGGCTGCATAACCCAGCTCTATGT
 30 CTTCTTGGCTGGGGCCACCGAGTGCATCCTGCTGGTGGTATGGCATTGACCGCTAC
 GTGGCAGTGTGCCGCCCTCCGCTACACCGCCATCATGAACCCCCAGCTCTGCTGGCTGC
 TGGCTGTGATTGCCGCTGGCTGGCAACTCTGTGATCCAGTCACATTCACTCT
 GCAGCTCCCATTTGTTGGGACCGGAGGGTGGAGGGATTCCCTGCGAGGGTGCCTGCCAT
 GATCAAACCTGGCTGTGGCAGACACAAGTCTCAACCAGGCTGTGCTCAATGGTGTCTGACC
 35 TTCTTCACTGCAGTCCCCTAAGCATCATCGTATCCTACTGCCTCATGCTCAGGCAGT
 GCTGAAAATCCGCTCTGCAGAGGGGAGGCAGAAGGGCGTTCAATACGTGCCTCTCCCATCT
 GCTGGTGTGTTCTCTTCTATGGCTAGCCAGCTATGGGTATCTGCTTCCGGCCAAGAAC
 AGCAAACAGGACCAGGGCAAGTTCACTTCCCTGTTACTCGTGTGTCACACCCATGGTGA
 ATCCCCTCATCTACACGCTGGGAACATGGAAGTGAAGGGCGACTGAGGAGGTTGCTGG
 GGAAAGGAAGAGAAGTTGGCTGA (SEQ ID NO: 440).

40

AOLFR236 sequences:

MTSQERDTAIYSINVSVAKGMTSRVCEKMTMTENPNQTVVSHFFLEGIRYTAHKSSLFFL
 LFLLIYSITVAGNLLILLTVGSDSHLSLPMYHFLGHLSFLDACLSTVTPVKVMAGLLTDGKVIS
 FEGCAVQLYCFHFLASTECFLYTVMAYDRYLAICQPLHYPVAMNRRMCAEMAGITWAIGATH
 45 AAIIHTSLTFRLLYCGPCHIAYFFCDIPPVLKACTDTTNELVMLASIGIVAAGCLILVISYIFIVA
 AVLIRIRTAQGRQRQRFSPCTAQLTGVLLYYVPPVCTYLQPRSSEAGAGAPAVFYTIVTPMLNPFTY
 TLRNKEVKHALQRLCSSFRESTAGSPPP (SEQ ID NO: 441).

50 ATGACATCTCAGGAAAGGGATACAGCTATTATCCATTAATGTCAGTTTGTGCAAAGG
 GGATGACTAGCCGCTCTGTGTGAGAAAGATGACCATGACAACGGAGAACCCCAACCGA
 CTGTGGTGAGCCACTTCTCCTGGAGGGTTGAGGTACACCGCTAAACATTAGCCTCTT
 CTTCCTCCTCTCCTCATCTACAGCATTACACTGTTGGCTGGGAATCTCCTCATCCTCTAA
 CTGTGGGCTCTGACTCTCACCTCAGCTTACCCATGTACCACTTCTGGGGCACCTCTCCTC
 CTGGATGCCTGTTGTCTACAGTGCACAGTGCCTAAGGTATGGCAGGCCCTGCTGACTCTGG
 55 ATGGGAAGGTGATCTCCTTGAGGGCTGTGCCGTACAGCTTATTGCTTCCACATTCTGGC
 CAGCACTGAGTGCTCCTGTACACAGTCATGCCATGACCGCTATCTGGCTATCTGTCAA

5 CCCCTGCACTACCCAGTGGCATGAACAGAAGGATGTGTGCAGAAATGGCTGGAATCACC
 TGGGCCATAGGTGCCACGCAAGCTGCAATCCACACCTCCCTCACCTCCGCTGCTACT
 GTGGGCCTTGCCACATTGCCACTTCTCGGACATAACCCCTGTCTAAAGCTGGCTGT
 ACAGACACCACCATTAATGAGCTAGTCATGCTTGCAGCATTGGCAGTCAGTGGCTGCAGGCT
 10 GCCTCATCCTCATCGTTATTCCATACATCTCATCGTGGCAGCTGTGGCTGCATCCGCACA
 GCCCAGGGCCGGCAGCGGGCCTCTCCCCCTGCAGTCCCAGCTACTGGGTGCTCCGT
 ACTACGTGCCACCTGTCTGTATCTACCTGCAGCCTCGCTCAGTGAGGCAGGAGCTGGGC
 CCCTGCTGCTCTACACAATCGTAACTCAATGCTCAACCCATTCAATTACACTITGCGGA
 ACAAGGAGGTGAAGCATGCTGCAAAGGTTTGTCAGCAGCTCCGAGAGTCTACAG
 CAGGCAGCCCACCCCCATAG (SEQ ID NO: 442).

AOLFR237 sequences:

15 MDQRNYTRVKEFTFLGITQSRELSQVLFTFLVYMTLMGNFLIMVTVCESHLHTPMYFLL
 RNLSILDIFCSSITAPKVLI DLLSETKTISFSGCVTQMFFFHLLGGADVFSLVMAFDRYIAISKPL
 HYMTMSRGRCTGLIVGFLGGGLVHSIAQISLLLPLVCPGVNLDTFYCDVPQVLKLA
 CTDTFTLELLMISNNGLVSWFVFFFLLISYTVILMMRLSHTGEERRKAISTCTSHITV
 VTLHFVPCIVYA RPFTALPTDTAISVTFVISPLLNPPIYTLRNQEMKLAMRK
 LKRRILGQSERILIQ (SEQ ID NO: 443).

20 ATGGATCAGAGAAATTACACCAGAGTGAAGAATTACCTTCTGGAAATTACTCAGTCCC
 GAGAACTGAGCCAGGTCTATTACCTTCTGTTTTGGTGTACATGACAACCTAATGGG
 AAACCTCCTCATGGTACAGTTACCTGTGAATCTCACCTCATAGCCCATGTACTTCC
 TGCTCCGCAACCTGTCTATTCTTGACATCTGCTTTCTCCATCACAGCTCTAACGGCTG
 ATAGATCTCTATCAGAGACAAAACCATCTCCTCAGTGGCTGTACTCAAATGTTCT
 25 TCTTCCACCTTCTGGGGGAGCAGACGTTTTCTCTCTGTATGGCGTTGACCGCTAT
 ATAGCCATCTCCAAGCCCTGCACTATATGACCATCATGAGTAGGGGGCGATGCACAGGCC
 TCATCGTGGCTTCTGGTGGGGGCTGTCCACTCCATAGCGCAGATTCTCTATTGCT
 CCCACTCCCTGTCTGTGGACCCAATGTTCTGACACITTCTACTGCGATGCCCCCAGGTCC
 TCAAACCTGCCTGCACTGACACCTTCACTCTGGAGCTCTGATGATTCAAATAATGGTT
 30 AGTCAGTTGGTTGTATTCTCTTCTCATATCTTACACGGTCATCTTGATGATGCTGA
 GGTCTCACACTGGGAAGGCAGGAGGAAAGGCCATCTCACCTGCACCTCCACATCACCG
 TGGTGACCTGCACTTCGTGCCCTGCATCTATGCTATGCCGCCCTCACTGCCCTCCCC
 ACAGACACTGCCATCTCTGTACCTTCACTGTCATCTCCCTTGCTCAATCCTATAATT
 CACGCTGAGGAATCAGGAAATGAAGTTGCCATGAGGAAACTGAAGAGACGGCTAGGAC
 35 AATCAGAAAGGATTAAATTCAATAA (SEQ ID NO: 444).

AOLFR238 sequences:

40 MAPENFTRVTEFILTGVSSCPPELQIPLFLVFLVYVLT MAGNLIITLTSVDSRLQTPMYFFLRHL
 AIINLGNSTVIAPKMLMNFLVKKKITSFYECATQLGGFLFFFIVSEVMMALAVMAYDRYVAICNP
 LLYMVVVSRRLLCLLVLSLTYLYGFSTAIVSPCIFSVSYCSSNIINHYCDIAPLLALSCSDTYIPE
 TIVFISAATNLFFSMITVLVSYFNTVLSLRIRSPERKKAFSTCASHMIAVTVFYGTMLFMYLQP
 QTNHSLDTDKMASVFTLVIPMLNPLIYSLRNNDVNVALKKFMENPCYSFKSM (SEQ ID NO:
 445).

45 ATGGCTCTGAAAATTACACCAGGGTCACTGAGTTATTCTCACAGGTGTCCTAGCTGTC
 CAGAGCTCCAGATCCCCCTCTCTGGTCTCTAGTGCTCTATGTGCTGACCATGGCAGG
 GAACCTGGCATCATCACCCCTCACCAAGTGTGACTCTGACTTCAAAACCCCATGTACTTT
 TCCTGAGACATCTAGCTATCATCAATTCTGGCAACTCTACTGTCATTGCCCTAAAAATGCTG
 ATGAACCTTTAGTAAAGAAGAAAATCACCTCATCTATGAATGTGCCACCCAACTGGGAG
 50 GGTTCTGTTCTTATTGTATCGGAGGTAAATGATGCTGGCTGTATGGCTATGACCGCTA
 TGTGGCCATTGTAACCCCTGCTCTACATGGGGGGTGTCTGGCGGCTCTGCCCTCTGC
 TGGTGTCCCTCACGTACCTCATGGCTTTCTACAGCTATTGTTTACCTGTATATT
 TCTGTGTCTTATTGCTCTCTAAATATAATCAATCATTTACTGTCATATTGACCTCTGTT
 AGCATTATCTGCTCTGATAACTACATACCAGAAACAATAGTCATTATATCTGAGCAACA
 55 AATTGTTTTTCCATGATTACAGTTCTAGTATCTTCAATATTGTTTGTCCATTCTA
 AGGATACGTTACCCAGAAGGAAGGAAAAAGCCTTCCACCTGCGCTTCGCATATGATA

GCAGTCACGGTTTCTATGGGACAATGCTATTATGTATTGAGCCCCAAACCAACCACT
 CACTGGATACTGATAAGATGGCTCTGTGTTTACACATTGGTATTCCATTGCTGAATCC
 CTTGATCTACAGCCTGAGGAATAATGATGAAATGTTGCCAAAGAAATTATCATGGAAAAT
 CCATGTTACTCCTTAAATCAATGTAA (SEQ ID NO: 446).

5

AOLFR239 sequences:

MDPQNYSLVSEFVLHGLCTSRLQNFNFFFGVYVAIMLGNNLLVTVISDPCLHSSPMYFLG
 NLAFLDMWLASFATPKMIRDQLSDQKLISFGGCMQAQIFFLHFTGGAEMVLLSMAYDRYVAIC
 KPLHYMTLMSWQTICIRVLASWVVGFBHSISQVAFVNLPYCPNEVDSFFCDLPLVIKLACM
 10 DTYVLGIIMISDSSLSCFLLLISYTILLAIRQRAAGSTSALSTCSAHIMVVTLLFFGPCIFV
 YVRPFSRFSVDKLLSVFYTIFTPLNPITYTLRNEEMKAAMKKLQNRRVTFQ (SEQ ID NO: 447).

ATGGACCCACAGAACATATTCTTGGTGTCAAGAATTGTGTTGCACTGGACTCTGCACTCAC
 GACATCTCAAAATTTTCTTATATTCTTCTGGGCTATGTGGCCATTATGCTGGG
 15 AACCTTCTCATTTGGTCACTGTAATTCTGATCCCTGCCGACTCCTCCCTATGTACTT
 CCTGCTGGGAACCTAGCTTCTGGACATGTGGCTGGCCTCATTTGCCACTCCCAAGATG
 ATCAGGGATTCTCTTAGTGTCAAAAATCATCTCCTTGGAGGATGTATGGCTCAAATCT
 TCTTCTGCACTTACTGGTGGGCTGAGATGGTGTCTGGTTCCATGCCATGACAG
 20 ATATGTGGCCATATGCAAACCCCTGCAATTACATGACTTTGATGAGTTGGCAGACTTGCATC
 AGGCTGGTGTGGCTCATGGGCGTTGACTCCATCAGTCAGTCAAGTGGCTTCA
 CTGTAATTTGCTTACTGTGGCCCAATGAGGTAGACAGACTCTCTGTGACCTCCCTCTG
 GTGATCAAACCTGGCTGCATGGACACCTATGCTTGGGATAATTATGATCTCAGACAGTG
 25 GGTTGCTTCTGAGCTGTTCTGCTCCCTGATCTCCTAACCGTGATCCTCCCTCGCT
 ATCAGACAGCGTGTGGCTGCGGCTAGCACATCCAAAGCACTCTCCACTTGCTCTGCACATATCA
 TGGTAGTGACGCTGTTCTTGGCCCTGCAATTGTTGTTATGTCGGGCTTCACTGAGGTT
 TCTGTGACAAGCTGCTGCTGTTTACCATTTTACTCCACTCCTGAACCCCATTAT
 CTACACATTGAGAAATGAGGAGATGAAAGCAGCTATGAAGAAACTGCAAAACGACGGGT
 GACTTITCAATGA (SEQ ID NO: 448).

30

AOLFR240 sequences:

MAGENHTLPEFLLGFSDLKALQGPLFWVVLLVYLVTLLGNSLJLLTQVSPALHSPMYFFLR
 QLSVVELFYTTDIVPRTLNLGSPHPQAISFQGCAAQMYFIVLGISECCLLTAMA YDRYVAIC
 QPLRYSTLLSPRACLA MVGSSWLTGTTATTHASLIFSLPFRSHPIPHFLCDILPVRLASAGKHR
 SEISVMTATVFIMIPFSLIVTSYIRILGAILAMASTQSRRKVFSTCSSHLLVVSLLFGTASITYIRPQ
 35 AGSSVTTDRVLSLFYTVITPMLNPIIYTLRNKDVRRALRHLVKRQRPSP (SEQ ID NO: 449).

ATGGCTGGGAAACCAACTACACTGCCGAATTCTCCCTGGATTCTCTGACCTCA
 AGGCCCTGCAGGGCCCCCTGTTCTGGTGGCTCTGGTCACTGGTACCTGCTGG
 TAACCTCCCTGATCATCTCCTCACACAGGTGAGCCCTGCACTCCCCATGACTTCT
 40 TCCTGCCCAACTCTCAGTGGTGGAGCTTCTCACACCACTGACATCGTGCCAGGACCC
 GGCAATCTGGCTCCCCGCACTCCCAGGCCATCTCTCCAGGGCTGTGCAAGCCAGATG
 TACGTCTTATTGCTCTGGCATCTGGAGTGCTGCCATCGGCTACGGCATGGCTATGACC
 GATATGTTGCCATGCCAGCCCTACGCTATTCCACCCCTTGTGAGCCCACGGGCTGCTT
 GGCCATGGTGGGCTCTGGTCACTGGCATCATCACGGCACCACCATGCCCTCC
 45 ATCTTCTCTACCTTTCGCAAGCCACCGATCATCCGCACTTCTCTGTGACATCCTGCC
 AGTACTGAGGCTGCAAGTGTGGAAAGCACAGGAGCGAGATCTCCGTGATGACAGCCAC
 CATAGTCTTATTGATCCCCTCTCTGATTGTCACTTACATCCGATCCTGGTG
 CCATCCTAGCAATGGCTCCACCCAGAGCCGCGCAAGGTCTCTCCACCTGCTCC
 50 TCTGCTGTGGCTCTCTCTTGGAACAGCCAGCATCACCTACATCCGCGCAGGCA
 GGCTCCTCTGTTACACAGACCGCGCCTCAGTCTCTACACAGTCATCACACCCATGCT
 CAACCCATCATCACACCCCTGGAACAGGACGTGAGGAGGGCCCTGCGACACTTGGT
 GAAGAGGCAGCGCCCTCACCTGA (SEQ ID NO: 450).

AOLFR241 sequences:

55 MPQILIFTYLNMFYFFPLQLILAENLTMVTEFLLLGFSSLGEIQLALFVVFLFLYLVILSGNTIIS
 VIHLDKSLHTPMYFFLGLISTSETFYTFVILPKMLINLLSARTISFNCCALQMFFLGFAITNCLL

LGVMGYDRYAAICHPLHYPTLMSWQVCGLAAACAAIGGFLASLTVVNLVFSLPFCSANKVNHYFCDISAVILLACTNTDVNEFVIFICGVLVVPFLFICVSYLCILRILKIPSAEGRRAFKSTCAS
HLSVVIVHYGCASFYLRLPTANYVSNKDRLVTVTYTIVTPLLNPMVYSLRNKDVLQAIRKVLGKKGSALKYN (SEQ ID NO: 451).

5 ATGCCCAAATTCTATATTACACATACCTGAATATGTTTACTCTTCCCCTTGCAGAT
CTTGGCAGAAAACCTCACCATGGTCACCGAATTCCGTGCTGGGTTTCCAGCCTGGT
GAAATTCACTGGCCCTTTGTAGTTTCTTCTGTATCTAGTCATTCTAGTGGCAA
TGTCAACCATTATCAGTGTACCCACCTGGATAAAAGCCTCACACACCAATGTA
CTTCC
10 TTGGCATCTCTAACATCTGAGACCTTACACCTTGTCAATTACCCAAGATGCTCATC
AATCTACTTCTGTGGCCAGGACAATCTCTCAACTGTTGTGCTCTCAAATGTTCTT
CTTGGGTTTGCATTACCAACTGCCTGTTAGGGTGATGGGTTATGATCGCTATGCTG
CCATTGTACCCCTGCATTACCCACTCTTATAGCTGGCAGGTGTGGAAA
AGCTGCCTGTGCAATTGGTGGCTTCTGGCTCTTACAGTAGTAAATTAGTT
CAGCC
15 TCCCTTTGTAGCGCAACAAAGTCATCATTACTCTGTGACATCTCAGCAGTCATCT
CTGGCTGTACCAACACAGATGTTACCGAATTGTGATATTCAATTGTGGAGTTCTGTAC
TTGTGGTCCCTTCTGTATTCTGTGTTCTATCTCTGCATTCTGAGGACTATCCTGAAG
ATTCCCTCAGCTGAGGGCAGACGGAAAGCGTTTCCACCTGCCTCTCACCTCAGTGTG
TTATTGTCATTATGGCTGTGCTTCTACCTGAGGCCTACAGCAAACATATGTC
20 AACAAAGACAGGCTGGTGACGGTACACGATGTCACTCCATTACTAAACCCATG
GTTTATAGCTCAGAAACAAGGATGTCACCTGCTATCAGAAAAGTGTGGCAAGAAA
GGITCTCTAAACTATATAATTGA (SEQ ID NO: 452).

AOLFR242 sequences:

25 MNNTLFHPYSFLLLGPGLESMHLWVGFPFFAVFLTAVLGNITILFVIQTDSSLHHPMFYFLAILS
SIDPGLSTSTIPKMLGTFWFTLREISFEGCLTQMFFIHLCTGMESAVLVAMAYDCYVAICDPLCY
TLVLTNKVVSVMALAIFLRPLVFVIPFVLFILRPLFCGHQIIPHTYGEHMGIARLSCASIRVNITYG
LCAISILVFDIIAIIVSYVQILCAVFLLSSHDAKLAFSTCGSHVCVMLTFYMPAFFSFMT
NIPHFIHILLANFYVVIAPPALNSVIYGVRTKQIRAQVLKMFFNK (SEQ ID NO: 453).

30 ATGAATACCACTCTATTCTACCTTACTCTTCTTCTGGAAATTCTGGCTGGAAAG
TATGCATCTCTGGTTGGTTTCTTCTTGCTGTGCTTCTGACAGCTGCTTCTGGAAATA
TCACCATCCTTTGTGATTCACTGACAGTCACTGAGCTTCTGACATCCC
35 CTTCTGTTTACCTGAGAGAAAATCTCCTTGAAGGATGCCATTCCAGATGTTCT
ACCTGTGACTGGCATGGAATCAGCTGTGCTTGTGCCATGCCATGATTGCTATGTGC
CATCTGTGACCCCTTTGTCACAGCTGGCTGACA
40 TCCATTGAGACCCATTAGTCTTGTCAACCTTGTCTATTATGGCA
CTGGCCATTCTGAGACCCATTAGTCTTGTCAACCTTGTCTATTATCCTAAGGCT
TCCATTGAGACCCATTAGTCTTGTCAACCTTGTCTATTATGGCA
45 ATTTATGGTGTAGAACCAAACAGATTAGAGCACAAGTGTGAAATGTTTCAATAAAT
AA (SEQ ID NO: 454).

AOLFR243 sequences:

50 MEQVNKTvvREFVVLGFSSLARLQQLLFVFLLLYLFTLGTNAIIISTIVLDRALHTPMYFFLAIL
SCSEICYTFVIVPKMLVDLSSQKKTISFLGCAIQMFSFLFFGSSHSFLAAMGYDRYMAICNPLR
YSVLMGHGVCMGLMAAACACGFTVSLVTTSLVFHLPFHSSNQLHHFFCDISPVLKLA
SQLVIFMLGVFALVIPLLLILVSYIRIISAIKIPSSVGRYKTFSTCASHLIVVTHY
SCASFYLRPKTNYTSSQDTLISVSYTILTPLFNPMIYSLRNKEFKSALRRTIGQTFYPLS (SEQ ID NO: 455).

55 ATGGAGCAAGTCATAAGACTGTGGAGAGAGAGTCGTCGTCCTCGGCTCTCATCCCTGG
CCAGGCTGCAGCAGCTGCTTTGTATCTTCTGCTCTACCTGTTACTCTGGCACC

AATGCAATCATCATTTCCACCATTGTGCTGGACAGAGCCCTCATACTCCCATGTACTTCTT
 CCTTGCCATCCTTCTTGTCTGAGATTGCTATAACCTTGTGATGGTACCCAAAGATGCTGG
 TTGACCTGCTGCCAGAAGAACCCATTCTTCTGGCTGTGCCATCCAAATGTTTCC
 5 TTCCCTTCTTGGCTCCTCTACTCCTTCTGCTGCAGCCATGGGCTATGATGCTATAT
 GGCCATCTGTAACCCACTCGCCTACTCAGTGCTCATGGGACATGGGTGTATGGACTA
 ATGGCTGCTGCCTGTGCTGTGGCTTCACTGTCCTGGTCAACCACCTCCCTAGTATTCA
 TCTGCCCTCCACTCCTCCAACCAGCTCCATCACTTCTCTGTGACATCTCCCTGTCCCTA
 AACTGGCATCTCAGCACTCCGGCTCAGTCAGCTGGTCAATTGCTGGGTATTGC
 CTTGGTCACTCCTCTGCTACTTATCCTAGTCTCCTACATCCGATCATCTGCCCCATCTAA
 10 AAATCCCTTCCCGTGGAAAGATACAAGACCTTCTCCACCTGTGCCCTCCATCTATTG
 GTAACTGTTCACTACAGTTGCTCTTCACTACTAAGGCCAAGACTAATTACACTTC
 AAGCCAAGACACCCCTAATATCTGTGTCATACACCACCTTACCCATTGTTCAATCCAATG
 ATTATAGTCTGAGAAATAAGGAATTCAAATCAGCCCTACGAAGAACAAATCGGCCAAACT
 TTCTATCCTCTAGTTAA (SEQ ID NO: 456).

15

AOLFR244 sequences:

MWQEYYFLNVFFPLLKVCLTINSHVILLPWECYHILWKLPIYGTVGSMEYNTSSTDFTF
 MGLFNRKETSGLIFAIISIIFTALMANGVMFLIQTDLRLHTPMYFLSLHSLSIDMMYISTIVPKM
 LVNYLLDQRTISFVGCTAQHFLYLTLVGAEFFLGLMAYDRYVAICNPLRYPVLMMSRRVCWMI
 20 IAGSWFGGSLDGFLTPITMSFPFCNSREINHFFCEAPVLKACADTALYETVMYVCCVLMLL
 IPFSVVLASYARILTTVQCMSSVEGRKKAFATCSSHMTVVSFLYGAAMYTYMLPHSYHKPAQ
 DKVLSVFYTILTPMLNPLIYSLRNKDVTGALKRALGRFKGPQRVSGGVF (SEQ ID NO: 457).

25

ATGTGGCAAGAATACTATTTTAAATGTTTCTTCCACTTTAAAAGTTGCTGCCAAC
 AATTAATTACATGTTGTTATTTACTGCCCTGGGAATGCTATCATCTTATTGGAAGATAT
 TACCTTATATCGGCACAACGTAGGATCAATGGAAGAGTACAACACATCCTCTACAGACTT
 CACTTCTATGGGGCTGTTCAACAGAAAGGAACCTCAGGTCTTATTGCCCCATCATCTCT
 ATCATCTTCTTACCGCACTGATGCCAATGGGTATGATCTCCTGATCCAAACAGATT
 TGCGCTTCATACACCCATGACTTCTCCTCAGCCACCTTCTTAATTGACATGATGTTAT
 30 ATTCCACTATTGIGCTTAAGATGCTGGITAATTACCTGCTGGATCAAAGGACCATTCTT
 TGTGGGGTGCACAGCTAACACTTCTTACCTTACCCCTGTGGGAGCTGAATTCTCCTG
 CTGGGCCATGGCCTATGACCGCTATGTGCCATTGCAACCCCTCTGAGATACCTGTCC
 TCATGAGCCGCCGGGTCTGTGGATGATTAGCAGGTTCTGGTTGGGGCTCTTGG
 TGGCTTCTCTAACCCCCATCACCATGAGCTTCCCTCTGCAATTCCGGGAGATTAAACC
 35 ACTTCTCTGTGAGGCACCAGCAGTCTGAAGTTGGCATGTGCAGACACAGCCCTACGA
 GACAGTGATGATGTGCTGTGTTTGATGCTGCTGATTCCTTCTGTTAGTCCTGTCTT
 CCTATGCCGAATCCTGACTACAGTTCACTGCACTGAGCTCAGTGGAGGGCAGGAAGAAGG
 CATTGCCACTTGTCTCACCCACATGACTGTGGTCTGTTACGGGCTGCCATGTAC
 40 ACCTACATGCTGCCACATTCTTACCCACAGCCAGCCAGGACAAAGTCTCTGTGTTT
 ACACCATCTCACACCCATGCTGAACCCCTCATCTACAGCCTAGAAACAAGGATGTGAC
 TGGAGCTCTGAAGAGGGCCTGGGGAGGTCAAGGGCTCTAAAGGGTGTCAAGGAGGTGTT
 CTTTGA (SEQ ID NO: 458).

AOLFR245 sequences:

45

MDLKNGSLVTEFILLGFFGRWELQIFFFTFSLIYGATVMGNILIMVTVTCRSTLHSPLYFLLGN
 LSFLDMCLSTATTPKMIDLLTDHKTISVWGVCTQMFMHFFGGAEMTLLIIMAFDRYVAICKP
 LHYRTIMSHKLLKGFAILSWIIGFLHSISQIVLTVMNLPCFGHNVINNIFCDLPLVIKLACIETYLE
 LFVIADSGLLSFTCFILLVSYTIVLVSVPKKSSHGLSKALSTLSAHIVVTLFFGPCIFIYVWPSSL
 ASNKTLAVFYTVITPLLNPSIYTLRNKKMQEAIRKLRFQYVSSAQNF (SEQ ID NO: 459).

50

ATGGATCTAAAAATGGATCTAGTGACCGAGTTATTTACTAGGATTTGGACGAT
 GGGAACTCAAATTCTCTTGTGACATTCCCTGATCTACGGTGTACTGTGATGGGA
 AACATTCTCAATTGGTCACAGTGACATGAGGTCAACCCCTCATTCTCCCTGTACTTCT
 CCTTGGAAATCTCTTGGACATGTGCTCTCCACTGCCACAACACCCAAAGATGATCA
 55 TAGATTGCTCACTGACCAACAGACCATCTCTGTGTTGGGGCTGCGTACCCAGATGTCTT
 CATGCACTCTTGGGGTGTGAGATGACTCTCTGATAATCATGGCCTTGTACAGGTAT

GTAGCCATATGTAACCCCTGCACTATAGGACAATCATGAGCCACAAGCTGCTAAAGGGG
 TTTGCGATACTTTCATGGATAATTGGTTTTACACTCCATAAGCCAGATAGTTTAACAAT
 5 GAACTTGCTTCTGTGGCACAATGTCTAAAACAACATATTGTGATCTTCCCCTGTGA
 TCAAGCTGCTTGCATTGAAACATACACCCCTGGAATTATTGTGATTGCTGACAGCGGGCT
 GCTCTCTTCACCTGTTCATCCTCTGTTCTTACATTGTCATCCTGGTCAGTGTACC
 AAAAATCATCACATGGGCTCTCCAAGGCCTGCCCCACATCATTGTG
 10 GTCACTCTGTTCTGGACCTGTATTITATCTATGTTGGCATTCACTGAGTAGTTGGCAAG
 CAATAAAAACCTTGGCGTATTATACAGITATCACACCCCTACTGAATCCGAGTATTATA
 CCCTGAGAAATAAGAAAATGCAAGAGGCCATAAGAAAATTACGGTTCCAATATGTTAGTT
 CTGCACAGAATTCTAG (SEQ ID NO: 460).

AOLFR246 sequences:

MSPENQSSVSEFLLGLPIRPEQQAVFFLFLGMYLTVLGNLLIMLIQLDSHLHPTMYFFLSH
 LALTDISFSSTVPKMLMDMRTKYKSILYEECISQMYFFIFTDLSFLITSMAYDRYVAICHPL
 15 HYTVIMREELCVTLVAWSWILSCASSLSHTLLTRLSFCAANTIPHFCDLAALLKLSCSDIFLNE
 LVMFTVGVVVVILPFMCILVSYGYIGATILRPVSTKGHIKALSTCGSHLSVVSYYGSIFGQYL
 PTVSSSIDKDVTVALMYTVTPMLNPFIYSLRNNDMKEALGKLFSRATFFSW (SEQ ID NO:
 461).

20 ATGAGCCCTGAGAACCAAGAGCAGCGTGTCCGAGTTCCCTCTGGGCCTCCCCATCCGGC
 CAGAGCAGCAGGCTGTGTTCTCACCTGTTCTGGCATGTACCTGACCACGGTGTGGG
 GAACCTGCTCATCATGCTGCTCATCCAGCTGGACTCTCACCTCACACCCCCATGTACTTCT
 TCCTCAGCCACTGGCTCTACTGACATCTCTTCTATCTGTCACTGTCCTAAGATGCTG
 25 ATGGACATGCGGACTAACATGATCCTCTATGAGGAATGCAATTCTCAGATGTATT
 TTTTATAATTTTACTGACCTGGACAGCTCCATTACATCAATGGCATATGACCGATAT
 GITGCCATATGTCACCCCTCCACTACACTGTCATCATGAGGAAGAGCTGTGTCTTCTT
 AGTGGCTGTATCTGGATTCTGTCTTGCCAGCTCCCTCTCACACCCCTCTGACCC
 GGCTGTCCTCTGTGCTGCGAACACCATCCCCATGTCTTGACCTTGCTGCCCTGCTC
 AAGCTGTCCTGCTCAGATATCTCCTCAATGAGCTGGTATGTCACAGTAGGGGTGGTGG
 30 TCATTACCCCTGCCATTCAATGTTATCTGGTATCATATGGCTACATTGGGCCACCATCCTG
 AGGGTCCCTTCACCAAAGGGATCCACAAAGCATTGTCACATGTGGCTCCATCTCTG
 TGTTGTCCTCTATTATGGTCAATATTGGCCAGTACCTTTCCGACTGTAAGCAGTTCT
 ATTGACAAGGATGTCATTGTGGCTCTCATGTCACACGGTGGTACACCCATGTTGAACCCCT
 TTATCTACAGCCTAGGAACAGGGACATGAAAGARGCCCTGGGAAACTCTCAGTAGAG
 35 CAACATTTCCTGGTACATCTGACTTTAAAAAATTAG (SEQ ID NO: 462).

AOLFR247 sequences:

MGQHNLTVLTEFILMELTRRPELQIPLFGVFLVIYLITVVGNLTMILTKLDSHLHPTMYFSIRHL
 ASVDLGNSTVICPKVLANFVDRNTISYYACAAQLAFFLMFIISFFILSAMAYDRYVAICNPLL
 40 YYVIMSQRQLCHVLVGIQYLYSTFQALMFIIKIFLTFCGSNVISHFYCDDVPLLPMLCSNAQEIE
 LLSILFSVFNLISSFLVLVSYMILLAIQMHSAEGRKKAFTCGSHLTVVVVFYGSLLFMYMQ
 PNSTHFFDTDKMASVFYTLVIPMLNPLIYSLRNEEVKNAFYKLFEN (SEQ ID NO: 463).

45 ATGGGCCAACACAATCTAACAGTGCTAATGAAATTCTGATGGAACATCACAAGGCC
 CTGAGCTGCGAGATCCCCCTTTGGAGTCTCCCTCGTCATCTACCTAACATCACAGTGGTGGGC
 AACCTAACTATGATCATTGACCAAACGGACTCCACTTACATACACCTATGTACTTTTC
 TATCAGACATTGCTCTGTGATCTGGTAATTCTACTGTCATTGTCCAAGGTGCTGG
 CAAATTGTTGTGGATCGAAATACTATTCTATTATGCATGTGCTGCACAGCTGGCATTC
 TTCCATTATGTCATTATCAGTGAATTTCATCCTGTCAGCCATGGCTATGACCGCTATGT
 50 GGCCATTGTAACCTCTGCTCTATTATGTTATTATGTCAGCGACTGTGTCTATGACTGG
 TGGGCAATTCAATATCTCTACAGCACATTCAAGGCTCTGATGTTCACTATTAAAGATTTCACA
 TTGACCTTCTGTGGCTCTAATGTCATCAGTCATTGACTGATGATGTTCTTGTCTACC
 TATGCTTGTCAAATGCACAGGAAATAGAATTGTTGAGCATACTATTCTGTATTAAATT
 TGATCTCCTCCTTCTGATAGTCTTAGTGTCTACATGTTGATTTGTTAGCTATATGTCAA
 55 ATGCATTCTGCAGAGGGCAGGAAAAAGCTTCTCCACATGTGGTCCCATTGACAGTGG
 TGGTTGTGTTCTATGGGTCTCTACTCTCATGTCATGCACTGAGCCAAATTCCACTCACTCTT

GATACTGATAAAATGGCTTCTGTGTTTACACTTAGTAATCCCCATGCTTAACCCTTGAT
TTACAGCTTAAGAACGAAGAGGTGAAAATGCCTCTATAAGCTTTGAGAATTGA
(SEQ ID NO: 464).

5 AOLFR248 sequences:

MPCMPICALPTGGLLPHQHTMMEIANVSSPEVFVLLGFSTRPSLETVLFIVVLSFYMVSLGN
GIILVSHTDVHLHPTMYFFFLANLPFLDMSFTTSIVPQLLANLWGPQKTISYGGCVVQFYISHWL
GATECVLLATMSYDRYAAICRPLHYTVIMHPQLCLGLALASWLGTLTSMVGSTLTMLLPLCG
NNCIDHFFCEMPLIMQLACVDTSNEMEMYLASFVFLPLGLLILVSYGHIARAVLKIRSAEGR
10 RKAFTNCSSHVAVVSFLYGSIIFMYLQPAKSTSHEQQKFIALFYTVVTPALNPLIYTLRNT
EVKS ALRHMVLENCCSAGKLAQI (SEQ ID NO: 465).

ATGCCCTGTATGCCCTGTGCTCTTCCCACAGGTGGCTTTGCCCAACCCCCAGCATA
15 GATGGAAATAGCCAATGTGAGTCTCCAGAAGTCCTTGCTCTGGCTTACATGGTATCGATCTGG
CCCTCACTAGAAACTGTCTCTCATAGTTGCTTACAGATGTGACCTCCACACACCTATGTACT
CAATGGCATCATCATTCTGGCTCCCATACAGATGTGACCTCCACACACCTATGTACT
TCTTGCCAAACCTCCCTTCTGGACATGAGCTTACACAGACGAGCATTGTCCCACAGCT
GCTAACCTCTGGGACCAAGAAAACATAAGCTATGGAGGGTGTGGTCCAGTTCTAT
ATCTCCCATGGCTGGGGCAACCGAGTGTGCTGGCCACCATGTCTATGACCGCT
20 ACGCTGCCATCTGCAGGCCACTCCATTACACTGTCTTACAGCTTACAGCTTGCCTTGG
GCTAGCTTGGCCTCTGGCTGGGGCTGACCACAGCATGGTGGGCTCCACGCTCACC
ATGCTCTACCGCTGTGGGAACAATTGCTGACCACTTCTTGCAGATGCCCCTCA
TTATGCAACTGGCTTGTGGATACCAGCTCAATGAGATGGAGATGTACCTGGCCAGCTT
25 TGCTTGTGTTGCTGCTCTGGGCTCATCTGGTCTCTACCGGCCACATTGCCGGCG
TGTTGAAGATCAGGTACAGCAGAAGGGGGAGAAAGGCATTCAACACCTGTTCTCCCACG
TGGCTGTGGTGTCTGTGTTACGGGAGCATCTTACATGTATCTCCAGGCCAGCAAGAG
CACCTCCATGAGCAGGGCAAGTTCATAGCTGTCTACACCGTAGTCACCTGCGCTG
AACCCACTTATTTACACCTGAGGAACACGGAGGTGAAGAGCGCCCTCCGGCACATGGTA
TTAGAGAACTGCTGTGGCTCTGCAGGCAAGCTGGCGAAATTAG (SEQ ID NO: 466).

30

AOLFR249 sequences:

MKSQIEKSDLKYRAILLQKVTRMFLLFWVLLVLSRLLVVMGRGNSTEVFHLLGFGVQHEF
QHVLFIVLLIYVTSLIGNIGMILLKTDRLQTPMYFPQHLAFVDICYTSAITPKMLQSFT
35 ENNLITFRGCVIQFLVYATFATSDCYLLAIMAMDCYVAICKPLRYPMIMSQT
VYIQLVAGSYIIGSI NASVHTGFTFSLSFKSNKINHFCDFGLPILALSCSNIDIN
IILDVVFVGFDFLMFTELVIIFSYIYIM VTI
LKMSSAGRKKSFSTCASHLTAVTIFYGTL
SYMLQPSNNSQENMKVASIFYGT
VIPMLN PLIYSLRNKEGK (SEQ ID NO: 467).

40

ATGAAAAGTCAAATTGAAAAAGTGA
CTTAAATAGAGCCATT
TTATTGCAAAAGTC
ACAAGGATGTTCTGCTTCTGGGCTTCTCTGGTCTTCTAGACTTGGTAGTC
GGTCGAGGAACAGCACTGAAGTGACTGA
AATTCAGCATGCTCTTCTATTGACTTCTCTATCTATGTGACCTCC
GAACAC
TATTGGAATGATCTTACTCATCAAGACGGATTCCAGACT
TCAAACACCCATGTACT
TTTC
CACAACATTGGCTTGTGATATCTTTACTCTGCTATCA
CTTCAAGATGCTCAA
45 AGCTTCA
CAGAAGAAAATAATTGATAACATTCGGGCTGTGATACA
ATTCTAGTT
ATGCAACATTGCAACCAGTGA
CTGTTACCTCTAGCTATTATGGCA
ATGGATTGTTATGT
TGCCATCTGTAAG
GCCCTCGCTATCCC
ATGCT
TAGCTGCTCAT
ATTAGGCTCA
ATAAATGCCTCTG
TACACAG
TTACAGTT
TACATT
CTGCTTCTG
CCTTCA
CATTG
GACAT
CAACAT
CATTCT
AGAT
GTTG
CTTGT
GGGATT
GACT
TGAT
GTTCA
CTGAG
TTGGT
CAT
CTTCT
ACAT
CTAC
ATT
GGT
CACC
ATC
CTGA
AG
ATG
CTTCT
ACT
GCT
GGGAG
AAA
ATC
CT
CC
AC
AT
GT
GC
CT
CC
AC
CT
G
AC
AG
TA
ACC
ATT
CT
AT
GG
AC
CT
CT
AC
AT
GT
ACT
TAC
AG
GC
CT
AG
GT
CT
AA
TA
AT
TC
AG
G
GA
AT
AT
GA
AA
AG
T
AC
G
CT
CT
AT
AT
TT
AT
GG
CA
CT
GT
TT
AT
CC
AT
GT
GA
AT
CC
TT
AA
(SEQ ID NO: 468).

AOLFR250 sequences:

MENQSSISEFFLRGISAPPEQQQLFGIFLCMYLVLTGNLLILAIQSDLHLHTPMYFFLANLSFV
 DMGLTSSIVTKMLVNQTRHHTISYTGCLTQMYFFLMFGDLDSEFLAAMA YDRYVAICHPLCY
 STVMRPQVCALMIALCWVLTNIVALTHFLMARLSCVTGEIAHFFCDITPVLKLSCSDTHINE
 5 MMVFVLGGTVLIVPFLCIVTSYIHIVPAILRVRTRGGVGKAFSTCSSHLCVVCFYGTLSAYLC
 PPSIASEEKDIAAAAMYIVTPMLNPFYSLRNKDMKGALKLFSHRSIVSS (SEQ ID NO: 469).

ATGGAAAACCAATCCAGCATTTCTGAATTTCCTCCGAGGAATATCAGCGCCTCCAGAGC
 10 AACAGCAGTCCTCTTCGGAATTTCCTGTGTATGTATCTTGCACCTTGACTGGAACCTG
 CTCATCATCCTGGCCATTGGCTCTGACCTGCACCTCCACACCCCCATGTACTTTCTTGGC
 CAACCTGTCTTGTGACATGGGTTAACGTCTCCACAGTACCAAGATGCTGGTGAAT
 ATACAGACTCGGCATCACACCACATCTCCTACGGGTTGCCTCACGCAAATGTATTTCTTCT
 GATGTTGGTGTAGACAGCTTCTCTGGCTGCCATGGCTATGACCGCTATGTGGCC
 15 ATTTGCCACCCCTCTGTAACAGTCATGAGGCCCAAGTCTGTGCCCTAATGCTTGC
 ATTGTGCTGGGTCTTACCAATATCGTTGCCCTGACTCACACGTTCTCATGGCTGGTTGT
 CCCTCTGTGTGACTGGGAAATTGCTCATTTCTGTGACATCACTCTGTCTGAAGCTG
 TCATGTTCTGACACCCACATCAACGAGATGATGGTTTGTCTGGAGGCACCGTACTCA
 TCGTCCCCTTTATGCAATTGTCACCTCTACATCCACATTGTGCCAGCTATCTGAGGGTC
 20 CGAACCCGTGGTGGGTGGCAAGGCCTTTCCACCTGCAGTCCCACCTCTGCGTTGTT
 GTGTGTTCTATGGGACCTCTTCAGTGCCTACCTGTGCTCTCCATTGCTCTGAAGAG
 AAGGACATTGCGAGCTGCAATGTACACCATAGTGAACCTCATGTTGAACCCCTTATCT
 ATAGCCTAAGGAACAAGGACATGAAGGGGCCCTAAAGAGGCTTCAAGTCACAGGAGTA
 TTGTTCTCTTAG (SEQ ID NO: 470).

AOLFR251 sequences:

MEGNKTWTIDTLPRFQVGPALEILLCGLFSAFYTLTLLNGNVIFGIICLDCKLHTPMYFFLSHLA
 IVDISYASNYVPKMLTNLMNQESTISFFPCIMQTFLYLAFAHVECLILVVMSYDRYADICHPLRY
 NILMSWRVCTVLAVASWVFSFLALVPLVLLRLPFCGPHEINHFCIEILSVLKACADTWLNQV
 VIFACVFLVGPLCLVLVSYLRLAAILRIQSGEGRRAFSTCSSHLCVVGLFFGSAIVTYMAPK
 30 SRHPEEQKVLSLFYSLFNPMLNPLIYSLRNAEVKGALRRRALRKERLT (SEQ ID NO: 471).

ATGGAAGGCAACAAGACATGGATCACAGACATCACCTTGCCCGATTCCAGGGTTGCTCCA
 GCACCTGGAGATTCTCTCTGGACTTTCTCTGCCCTCTATAACACTCACCCCTGCTGGGAA
 35 TGGGGTCATCTTGGGATTATCTGCCCTGACTGTAAGCTTACACACCCATGACTTCTTCC
 TCTCACACCTGGCATTGTTGACATATCCTATGCTTCAACTATGTCCTTACATGCA
 AATCTTATGAACCAAGAACGACCATCTCTTCTTCCATGCTATGACATCTCTGT
 ATTGGCTTCTGCTCACGTAGAGTGTGATTTGGTGTGATGCTCTATGATCGCTATGCG
 GACATCTGCCACCCCTACGTTACAATATCCTCATGAGCTGGAGAGTGTGCACTGTCTGG
 CTGTGGCTTCTGGTGTCACTTCTCTGGCTCTGGCTCTGGCTTCTGGCTTCTGG
 40 CTGCCCTCTGGGCTCATGAAATCAACCACTCTGTGAAATCTCTGTCTCTCAAGTT
 GGCTGTGCTGACACCTGGCTCAACCAGGTGGTCTTGTGAGCTGGCCATCTG
 GTGGGGCACTCTGCCCTGGTCTCTACTTGCCTACCTGGCCTCTGGCTCTGG
 TCCAGTCGGGGAGGGCCGAGAAAGGCCCTCTCCACCTGCTCTCCCACCTTGTG
 45 GGGACTCTCTTGGCAGCGCCATTGTCACTGACATGGCCCCAAGTCCCACCTCTGAG
 GAGCAGCAGAAAGTCTTCCCTGTTTACAGCTTCAATCCAATGCTGAACCCCTGA
 TATATAGCCTAAGGAATGCGAGAGGTCAAGGGGCCCTGAGGAGGGACTGAGGAAGGAG
 AGGCTGACGTGA (SEQ ID NO: 472).

AOLFR252 sequences:

MRLANQTLGGDFLLGIFSQISHPGRLCLLIFSIFLMAVSWNITLILLIHDSSLHTPMYFFINQLSL
 IDLTYISVTVPKMLVNQLAKDTISVLGCGTQMYFYLQLGGAECCLLAAMAYDRYVAICHPLR
 YSVLMSHRVCLLLASGCWFVGSDGFMLTPIAMSFPFCRSHEIQHFFCEVPAVLKLSCSDTLY
 KIFMYLCCVIMLLIPVTVISVSYYYIILTIHKMNSVEGRKAFTCSSHITVVSIFYGAIYNML
 PSSYQTPEKDMMSFFYTLTPVLNPYISFRNKDVTRALKKMLSVQKPPY (SEQ ID NO: 473).

ATGCGGCTGGCCAACCAGACCCCTGGTGGTACTTTCTGTGGGAATCTTCAGGCCAGA
 TCTCACACCCCTGGCCGCTCTGCTGCTTATCTTCAGTATATTITGATGGCTGTCTGCTGG
 AATATTACATTGATACTTCTGATCCACATTGACTCCTCTGCATACTCCCATGTA
 5 CCTT TATAAACCCAGCTCTCACTCATAGACTGACATATATTCTGTC
 ACTGTCCCCAAATGCTG GTGAACAGCTGGCCAAGACAAGACCATCTCGGCT
 CTGGGACTCTGGGAGGTGCAGAGTGCTGCCTCTAGCCGCATGGCCTATGACCGCT
 TTCTACCTGCAGTGGGAGGTGCAGAGTGCTGCCTCTAGCCGCATGGCCTATGACCGCT
 ATGTGGCTACTGCCATCCTCCGTTACTCTGTCATGAGCCATAGGGTATGTCTCC
 CTGGCATCAGGCTGCTGGTTGGCTCAGTGGATGGCTCATGCTC
 10 ACTCCCACATGCCA TGAGCTCCCCCTCTGCAGATCCCAGTGA
 GAGATTGAGCACTTCTGTCAGTGGCTTCTGTCAGTGGCTTCTGTC
 TTGAAGCTCTGTCAGACACCTCACTTACAAGATTTCATGTA
 CTGTGCTGTGTCAT CATGCTCTGATACTGTGACGGTCATT
 CAGTGTCTTACTACTATATCATCCTCACCATCC
 ATAAGATGAACCTCAGTTGAGGGTCGGAAAAAGGCCCTCAC
 15 ACCCTGCTCCCTCATGGAGCTGCTATTACAAC
 ACTACATGCTCCCCAGCTCCTACCAA
 ACTCTGAGAAAGATATGATGTCATCCTTCTACACTATCCT
 TACACCTGTCITGAATCC
 15 TATCATTTACAGTTTACAGGAATAAGGATGTCACAAGGGCTTGA
 AAAAATGCTGAGCGT GCAGAAACCTCCATATTAA (SEQ ID NO: 474).

AOLFR253 sequences:

MTFFSSGGNCPEVMCSGNQTSQNQTA
 20 STDFTLTGLFAESKHAALLYVTFLFLMALTGNALL
 ILLIHSEPRLHTPMYFFISQLALMDLMYLCVTPKMLVGQV
 TGDITSPSGCGIQMFHHLTLAG
 AEVFLLAAMAYDRYAAVCRPLHYPLL
 MNQRVCQLLVSACWVLGMVDGLL
 TPITMSPPFCQS
 RKILSFFCETPALLKLSCSDVSLYKMLTYL
 CCILMLLT
 PIMVISSSYTLILHLI
 RMNSAAGRKA
 LATCSSHMIIVLLL
 FGASFYTYMLRSSYHTAEQDMMV
 SAFYTFITFPVLNPLIYSLRNKD
 VTRAL
 RSMMQSRMNQEK (SEQ ID NO: 475).

25 ATGACTTTTCTCAGGGGAAACTGTGAGCCAGTCATGTGTCAGGG
 AATCAGACTTCTCAGAACAGCAAGCAACTGATT
 CTCAGAACACAGCAAGC
 ACTGATTTCACCC
 TACGGGACTCTTGCTGAGAGCAAGCA
 TGCTGCCCTCCTCTACACCGT
 GACCTTCTCTTCTTCTGATGCC
 CACTGGGAATGCC
 TCCTCATCCTCCTCATCC
 ACTCAGAGCCCCGCC
 CCACACCCCC
 ATGTA
 CTTCATCAGC
 30 GAGCTCGCGCTCATGGATCTCATGTACCTATGCGT
 GACTGTGCC
 CAAGATGCTTGTGGGCC
 AGGTCA
 CTGGAGATGATACC
 ATTCCCC
 CGTCAGGCTG
 GGGATCC
 CAGAGCTGCT
 GGCATGGCT
 GCCATGGC
 CTATGAC
 GCTGCT
 GTTGCAGAC
 CCTCTCC
 ATTACCC
 ACTGCTG
 ATGA
 ACCAGAGGG
 GTGCCAG
 CTCTGGT
 GTC
 CAGCCTG
 CTGGTT
 TGGGAATGGT
 GATGGTT
 GTGCT
 ACC
 CCC
 ATTACCA
 T
 GAGCTT
 CCC
 TTT
 TGC
 AGTCTAGG
 AAA
 CCTGAG
 TTT
 TCTGT
 GAGACT
 CCTGCC
 TGTGAAGC
 TCTCCTG
 GCTCTG
 AC
 GCTCC
 TCT
 CTC
 ACC
 CCC
 CAT
 ATGGT
 CAT
 CTC
 CAG
 CT
 CAC
 CCT
 CAT
 CCTG
 CAT
 CTC
 CAC
 AGG
 AT
 GA
 ATT
 CTG
 CCG
 CCG
 CCG
 CAG
 GA
 AGG
 C
 CTG
 G
 CC
 AC
 CT
 G
 CT
 C
 CC
 AC
 AT
 G
 AT
 C
 AT
 AG
 TG
 CTG
 CT
 CCG
 G
 GT
 CT
 G
 CT
 T
 AC
 AC
 CCT
 AC
 AT
 G
 CT
 CCG
 G
 AG
 T
 T
 C
 T
 ACC
 AC
 AC
 AG
 CT
 GA
 ACC
 CCC
 CT
 ATT
 AC
 AG
 CT
 CC
 GA
 C
 AA
 AG
 AT
 G
 TA
 ACC
 A
 AG
 A
 AG
 T
 A
 G
 (SEQ ID NO: 476).

AOLFR254 sequences:

45 MTNTSSSDFTLLGLLVNSEAAGIVFTVILA
 VFLGAVTANLVMIFIQVDSRLH
 TPMYFLLSQLSI
 MDTLFIC
 TTVPKLLADM
 VSKEII
 SFVAC
 GQIFLYLT
 MIGSEFFL
 GLMAYDCY
 VACNPLRYP
 VLMNRKKCLL
 AAGA
 WFGGSLDG
 FLL
 TPITMN
 VPCGSRS
 SINH
 FCEIPAV
 LKLACAD
 TSLYET
 LMYICCV
 LML
 LIP
 IS
 TS
 S
 L
 L
 T
 I
 H
 R
 M
 P
 S
 A
 E
 G
 R
 K
 K
 A
 F
 T
 C
 S
 S
 H
 L
 T
 V
 V
 S
 I
 F
 Y
 G
 A
 F
 Y
 T
 Y
 V
 L
 P
 Q
 S
 F
 H
 T
 P
 E
 Q
 D
 K
 V
 V
 S
 A
 F
 Y
 T
 I
 V
 T
 P
 M
 L
 N
 P
 L
 I
 Y
 S
 L
 R
 N
 K
 D
 V
 I
 G
 A
 F
 K
 K
 V
 F
 A
 C
 C
 S
 S
 A
 Q
 K
 V
 A
 T
 S
 D
 A (SEQ ID NO:
 50 477).

55 ATGACGAACACATCATCCTCTGACTTCACCC
 CCTGGGCTTCTGGTGAACAGTGAGG
 CTG
 CCGGG
 ATGT
 ATT
 TACAGT
 GAT
 CCTG
 GT
 TTT
 CT
 T
 GGGGG
 CC
 GT
 ACT
 G
 CAA
 AT
 T
 GGT
 CAT
 G
 AT
 T
 C
 T
 G
 A
 C
 T
 G
 T
 C
 C
 A
 T
 C
 G
 G
 A
 C
 A
 T
 G
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T
 C
 C
 T
 A
 A
 G
 A
 G
 A
 G
 T
 C
 T
 T
 C
 T
 T
 G
 G
 C
 T
 G
 G
 C
 A
 T
 C
 C
 T

ACCATGATTGGTTCTGAGTTCTCCTGGGCCTATGGCCTATGACTGCTACGTGGCTGT
 CTGTAACCCCTCTGAGATACCAAGTCCTGATGAACCGAAGAAAGTGTCTTCTGGCTGCT
 GGTGCCTGGTTGGGGCTCCTCGATGGCTTCTGCTACTCCCATACCATGAATGTCC
 CTTACTGTGGCTCCGAAGTATCAACCATTCTGAGATCCCAGCAGTCTGAAACT
 5 GGCCTGTGCAGACACGTCTTGATGAAACTCTGATGTACATCTGCTGTCTCATGTTG
 CTCATCCCCATCTTATCATCTCCACTTCTACTCCCATCTGTTAACCATCCACCGCAT
 GCCCTCTGCTGAAGGTCGAAAAAGGCCCTCACCACTTGTCTCCACTTGACTGTAGTT
 AGCATCTCTATGGGGCTGCTTCTACACATACGTGCTGCCCCAGTCTCCACACCCCG
 AGCAGGACAAAGTAGTGTCAAGCTTCTATACCATGTCACGCCATGCTTAATCCTCAT
 10 CTACAGCCTCAGAAACAAGGACGTCAAGGGCATTTAAAAGGTATTGATGCTCA
 TCTGCTCAGAAAGTAGCAACAAGTGTAG (SEQ ID NO: 478).

AOLFR255 sequences:

MEQSNSVYADFILLGLFSNARFPWLLFALILLVFLTSIASNVVKIIILIHDSRLHTPMYFLLSQLS
 15 LRDILYISTIVPKMLVDQVMSQRAISFAGCTAQHFLYLTLAGAEFFLLGLMSYDRYVAICNPLH
 YPVLMRSRKICWLIVAAAWLGGSIDGFLLTPVTMQFPFCASREINFFCEVPALLKLSCTDTSAY
 ETAMYVCCIMMLLIPFSVISGSYTRILITVYRMSEAEGRGKAVATCSSHMVVVSLFYGAAMYT
 YVLPHSYHTPEQDKAVSAFYTILTPMLNPLIYSLRNKDVTGALQKVVGRCVSSGKVTTF (SEQ
 ID NO: 479).

20 ATGGAGCAGAGCAATTATTCCGTATGCCGACTTTATCCTCTGGTTGTCAGCAACG
 CCCGTTTCCCCTGGCTCTCTTGCCTCATTCTCTGGCTTTTGACCTCCATAGCCAGC
 AACGTGGTCAAGATCATTCTCATCCACATAGACTCCCGCCTCCACACCCCCATGACTTCT
 GCTCAGCCAGCTCTCCCTCAGGGACATCCTGTATAATTCCACCATTTGTGCCAAAATGCTG
 25 GTCGACCAGGTGATGAGCCAGAGAGCCATTCTCTTGCTGGATGCACTGCCAACACTTCC
 TCTACTTGACCTTACGAGGGCTGAGTTCTCTCTAGGACTCATGTCCTATGATCGCTAC
 GTAGCCATCTGCAACCTCTGCACTATCCTGTCCTCATGAGCCGCAAGATCTGCTGGTTGA
 TTGTGGCGGAGCCTGGCTGGAGGGCTATCGATGGTTCTGCTCACCCCGTCACCAT
 GCAGTTCCCTCTGTGCCTCTCGGGAGATCAACCACTTCTGCGAGGTGCTGCCCTTC
 30 TGAAGCTCTCTGACGGACACATCAGCCTACGAGACAGCCATGATGTCGCTGTATTAT
 GATGCTCTCATCCCTTCTCTGTCACTCGGGCTCTACACAAGAATTCTCATTACTGTT
 ATAGGAATGAGCGAGGCAGAGGGGAGGGGAAAGGCTGTGGCACCTGCTCCTCACACATGG
 TGGTTGTCAGCCTCTATGGGGCTGCATGTACACATACGTGCTGCTCATTCTTACAC
 35 ACCCTGAGCAGGACAAAGCTGATCTGCCTCTACACCATCCTACTCCATGCTCAATC
 CACTCATTACAGCCTTAGGAACAAGGATGTCACAGGGGCCCTACAGAAGGTTGTGGGA
 GGTGTGTGCTCTCAGGAAGGTAACCACCTTCTAA (SEQ ID NO: 480).

AOLFR256 sequences:

MGGKQPWTEFILVGQVGPALAILCGLFSVFYTLTLLNGNGVIFGIICLDSLHLHTPMYFFLSHL
 40 AIIIDMSYASNNVPKMLANLMNQKSTISFVPCIMQTFLYLAFAVTECLILVVMSYDRYVAICHPF
 QYTVIMSWRVCILASTCWIIISFLMALVHITHILRPPFCGPQKINHIFICQIMSFKLACAGPRLNQ
 VVLYAGSAFIVEGPLCLELVSNLHILSRHLEDPVMGRAADRLTPAPSHLCMVGLLFGSTMVM
 YMAPKSRRHPEEQKVLSDLFYSLFNPMLNPLIYSLRNAEVKGALKRVLWKQRSK (SEQ ID NO:
 481).

45 ATGGGAGGCAAGCAGCCTGGTCACAGAATTACCTGGTGGATTCCAGGTTGGCCA
 GCACTGGCGATTCTCCTCTGTGGACTCTCTCTGTCTTCTATACACTCACCTGCTGGGAA
 TGGGGTCATCTTGGGATTATCTGCCTGGACTCTAACGCTTACACACCCATGTAATTCTTCC
 TCTCACACCTGCCATCATTGACATGTCCTATGCTTCAACAATGTTCCAAGATGTTGGC
 50 AAACCTAAATGAACCAGAAAAGCACCACATCTCTTGTCCATGCATAATGCAAGACTTTTG
 TATTGCTTTGCTGTACAGAGTCGCTGATTTGGTGGTGTGTCCTATGATAGGTATGT
 GGCCATCTGCCACCTTCCAGTACACTGTCATCATGAGCTGGAGAGTGTGACGATCTG
 GCCTCAACATGCTGGATAATTAGCTTCTCATGGCTCTGGTCCATATAACTCATATTGAG
 GCCGCCTTTGTGGCCACAAAAGATCAACCACTTATCTGTCAAATCATGTCGTATTCA
 55 AATTGGCCTGTGCTGGCCCTAGGCTCAACCAGGTGGCTATATGCGGGTTCTGCGTTCAT
 CGTAGAGGGGCCGCTGCTGGAGCTGGTCTCCAACITGCACTCTGTCGCGCCATCTT

5 GAGGATCCAGTAATGGGGAGGGCCGCAGACCGACTTACTCTTCCTGCTCCTCCCCACCTTT
 GCATGGTGGGACTCCTTTGGCAGCACCATGGTCATGTACATGGCCCCAAGTCCCAGCA
 CCCTGAGGAGCAGCAGAAGGTCTTCCTGTTACAGCCTTCACCCGATGCTGAAC
 CCCTGATCTACAGCCTGAGGAACGCAGAGGTCAAGGGTGCCTGAAAAGAGTGTGTGG
 5 AAACAGAGATCAAAGTGA (SEQ ID NO: 482).

AOLFR257 sequences:

10 MESNQTWITEVILLGFQVDPALELFLFGFLLFYSLTMGNGLIYLDLSRLHTPMYVFLSHL
 AIVDMSYASSTVPKMLANLVMHKKVISFAPCILQTFLYLAFAITECLILVMMCYDRYVAICHPL
 10 QYTLMNWWRVCTVLASTCWIFSPLLALVHITLILRPFCPQKINHFFCQIMSVFKLACADTRLN
 QVVLFAGSAFILVGPLCLVLSYLHLVALRIQSGEGRRKAFSTCSSHLCVVGLFFGSAJVMYM
 APKSSHQSERRKILSLFYSLFNPILNPLIYSLRNAEVKGALKRVLWKQRSM (SEQ ID NO: 483).

15 ATGGAAGCAATCAGACCTGGATCACAGAACGACTCCTGTTGGATTCCAGGTGGACCCA
 GCTCTGGAGTTCTCTCTTGTTCTTCTGCTATTCTACAGCTTAACCCCTGATGGGAAA
 TGGGATTATCCTGGGGCTCATCTACTTGACTCTAGACTGCACACACCCATGTATGCTTC
 CTGTACACCTGGCCATTGTGGACATGTCTATGCCCTGAGTAGTGTCCCTAAGATGCTAG
 CAAATCTTGTGATGCACAAAAAGTCATCTCCTTGCTCCTGCTACTTCAGACTTTTG
 TATTGCGTTGCTATTACAGAGTGTGATTTGGTGATGATGTGCTATGATCGGTATG
 20 TGGCAATCTGTACCCCTTGCACATACACCTCATTATGAACTGGAGAGTGTGACTGCTCCT
 GGCCTCAACTGCTGGATATTAGCTTCTCTGGCTCTGGTCCATATTACTCTTATTCTGA
 GGCTGCCCTTTGTGGCCCACAAAAGATCAACCCTTCTGCTAAATCATGTCCGTATTC
 AAATTGCCCTGTGCTGACACTAGGCTCAACCAGGTGGCTCTTGCCTGGTTCTGCGTTCA
 TCTTAGTGGGGCCGCTCTGCCCTGGTCTGGTCTCTACTTGACATCCTGGTGGCCATCTTG
 25 AGGATCCAGTCTGGGAGGGCCGCAGAAAGGCCTCTCACCTGCTCCTCCCACCTCTGCG
 TGGTGGGGCTTTCTTGGCAGCGCATTGTGATGTACATGGCCCCAAGTCAAGCCATTG
 TCAAGAACGGAGGAAGATCCTTCCCTGTTTACAGCCTTCACCCGATCCTGAACCCCC
 CTCATCTACAGCCTAGGAATGCAGAGGTGAAAGGGCTCTAAAGAGAGTCCCTTGAAA
 CAGAGATCAATGTGA (SEQ ID NO: 484).

AOLFR259 sequences:

30 MGDNQSRVTEFILVGSQLSVEMEVLLWFISLLYLFSSLANGMILGLICLDPLRTPMYFFLSHL
 AVIDIYYASSNLLNMLENLVKHKKTISFISCIMQMAYLTFAAVCMILVVMMSYDRFVAICHPL
 35 HYTVIMNWWRVCTVLAITSWACGFSLALINLILLRLPFCPQEVNHFFGEILSVKLACADTWIN
 EIFVFAGGVFVLVGPLSLMLISYMRILLAIKIQSKERKKAFSTCSSHLCVVGLYFGMAMVY
 LVPDNSQRQKQQKILTLFYSLFNPILLNPLIYSLRNAQVKGALYRALQKKRTM (SEQ ID NO:
 485).

40 ATGGGGACAACCAATCACGGGTACAGAACATTCTGGTTGGATTCCAGCTCAGTGTG
 GAGATGGAAGTGTCTCTCTGGATCTCTCCCTGTTATATCTCTTCAGCCTGCTGGCAAA
 TGGCATGATCTGGGGCTCATCTGCTGGATCCCAGACTGCCACCCCCATGTACTCTCTCC
 TGTACACCTGGCCGTCTTGACATATAACTATGCTTCCAGCAATTGCTCAACATGCTGGA
 AAACCTAGTAAACACAAAAAAACTATCTGTTCTCTTGCTATTATGCAAGATGGCTTIG
 TATTGACTTTGCTGCTGCAGTGTGATGATTTGGTGGTGATGTCCTATGACAGATTTGT
 45 GGCGATCTGCCATCCCTGCATTACACTGTGATCTGCAACTGGAGAGTGTGACAGTACTG
 GCTATTACTCCTGGGCATGTGGATTTCCCTGGCCCTCATAAATCTAAATTCTCTCTCAAG
 GCTGCCCTCTGTGGGGCCCCAGGGAGGTGAACCACTCTCGGTGAAATTCTGCTGCTCCTC
 AAACCTGGCCTGTGCAAGACACCTGGATTAAATGAAATTCTGCTTGTGGTGTGTTG
 TCTTAGTGGGGCCCTTCTGATGCTGATCTCTACATGCCATCCTCTGGCCATCCTG
 50 AAGATCCAGTCAAAGGAGGGCCGAAAAAAAGCCTTCCACCTGCTCCTCCCACCTCTG
 TGGTTGGGCTTACTTTGGCATGGCCATGGTGGTTACCTGGTCCCAGACAACAGTCAACG
 ACAGAACGAGCAGAAAATTCTCACCCCTGTTTACAGCCTTCAACCCATTGCTGAACCCCC
 CTCATCTACAGCCTGCGGAATGCTCAAGTGAAGGGTGCCTTACAGAGCACTGCAGAAA
 AAGAGGACCATGTGA (SEQ ID NO: 486).

55

AOLFR24B sequences:

MPSINDTHFYPPFFLLGIPGLDTLHIWISFPFCIVYLIAVGNMTILFVIKTEHSLHQPMFYFLAM
 LSMIDLGLSTSTIPKMLGIFWFNLQEISFGCQLQMFFIHMFTGMETVLLVVMAAYDRFVAICNP
 5 LQYTMILNTKTISLASVVVGRNVLVTPFVLILRLPFCHNIVPHTYCEHRLAGLACAPIKIN
 IITYGLMVISYIIVDVILIASSYVLILRAVFRLPSQDVRKAFNTCGSHVCVMLCFYTPAFFSFMTH
 RFGQNIPHIIHILLANLYVVVPALNPVITYGVRTKQIREQIVKIFVQKE (SEQ ID NO: 487)

ATGCCTTCTATCAATGACACCCACTTCTATCCCCCTTCTTCCCTGCTAGGAATACCAGG
 10 ACTGGACACTTACATATCTGGATTCTTCCCATTCTGTATTGTGTACCTGATTGCCATTG
 TGGGAATATGACCAATTCTCTTGTGATCAAATCTGAAACATAGTCTACACCAGCCATGTT
 CTACTTCCTGGCCATGGTCTATGATTGATCTGGGTCTGTCCACATCCACTATCCCCAAAAA
 TGCTAGGAATCTCTGGTCAACCTCCAAGAGATCAGCTTGGGGATGCCCTTCTCAGAT
 15 GTTCTTATTACATGTTACAGGCATGGAGACTGTTCTGTGGTGTGATGGCTTATGACC
 GCTTGTGCCCCATCTGCAACCCCTCCAGTACACCATGATCCTCACCAATAAACCATCAG
 TATCCTAGCTCTGTGGTGTGGAAGAAATTAGTTCTGTAAACCCATTGTGTTCTCA
 TTCTGCGTCTGCCATTCTGTGGCATAACATCGTACCTCACACATACTGTGAGCACAGGGG
 20 TCTGGCCGGITGGCCTGTGACCCATTAAGATCAACATAATCTATGGGCTATGGTGATT
 TCTTATATTATTGTGGATGTGATCTAATTGCTCTTCTATGTGCTTATCCTAGAGCTGT
 GTTCTGCTTCCCTCTCAAGATGTCGACTAAAGGCTTCAATACCTGTGGTCTCATGTCT
 AACATTCCCCACTATATCCATATTCTTGGCTAACCTGTATGTGGTGTCCCACCTGCCCT
 TAACCTGTCATTATGGAGTCAGGACCAAGCAGATCCGAGAGCAAATTGTGAAAATT
 GTACAGAAAGAATAA (SEQ ID NO: 488)

AOLFR33B sequences:

MLHTNNNTQFHPSTFLVVGVPGLEDVHWIGFPFAVYLTALLGNIIIILFVIQTEQSLHQPMFYFL
 AMLAGTDLGLSTATIPKMLGIFWFNLGEIAFGACITQMYTIHCTGLESVVLTVTGDRYIAICNP
 30 LRYSMILTNKVIAILGIVIIVRTLVFVTPFTLTLRLPFCGVRIIPHTYCEHMGIAKLCASINVY
 GLIAFSVGYIDISVIGFSYVQILRAVFHLPAWDARLKALSTCGSHVCVMLAFYLPALFSFMTHR
 GHNIPHIIHILLANLYVVFPALNSVIYGVTKQIREQVRLRILNPKSFWHFDPKRIFHNSVRQ
 (SEQ ID NO: 489)

ATGCTTCATACCAACAATACACAGTTCACCCCTCCACCTTCTCGTAGTGGGGTCCCAG
 GGCTGGAAGATGTGATGTGATTGGCTTCCCTTCTTGCGGTGTATCTAACAGCCCT
 35 TCTAGGGAAACATCATTATCTCTTGTGATACAGACTGAACAGAGCCTCCACCAACCCATG
 TTACTTCCTAGCCATGTTGGCCGGCACTGATCTGGCTTGTCTACAGAACCATCCCCA
 AGATGCTGGAAATTCTGGTTAATCTGGAGAGATGTCATTGGTGCCTGCATCACACA
 GATGTATACCATTCATATGCACTGGCTGGAGTCTGTGTACTGACAGTCACGGCATA
 40 GATCGCTATATTGCCATCTGCAACCCCTGAGATATAGCATGATCCTTACCAACAAGGTA
 TAGCCATTCTGGGCATAGTCATCTGTCAAGGACTTGGTATTGTGACTCCATTACATT
 CTCACCTCTGAGATTGCCCTTCTGTGGTGTCCGGATTATCCCTCATACCTATTGTGAACACAT
 GGGCTTGGCAAAGTTAGCTTGTGCCAGTATTAATGTTATATGGATTGATTGCCCTCTCA
 GTGGGATACATTGACATTCTGTGATTGGATTCTCTATGTCCAGATCCTCCGAGCTGTCTT
 45 CCATCTCCAGCCTGGATGCCGGCTTAAGGCACTCAGCACATGTGGCTCTCACGTCTG
 GTTATGTGGCTTCTACCTGCCAGCCCTTCTTCCCTCATGACACACCCGTTGGCCACAA
 CATCCCTCATTACATCCACATCTCTGCCAATCTGTATGTGGTTTCTCCCTGCTCTTA
 ACTCTGTTATCTATGGGGTCAAAACAAACAGATAACGAGAGCAGGTACTTAGGATACTCA
 ACCCTAAAAGCTTGTGACCTTGCACCCAGAGGATCTCCACAAACAATTCAAGTTAGACA
 ATAA (SEQ ID NO: 490)

50

AOLFR112B sequences:

MKNKTVLTFILLGTDVPELQAVFTFLAYLLSILGNLTILLTLLDSHLQTPMYFFLRNFSF
 LEISFTNIFIPRVLISITGNKSISFAGCFTQYFFAMFLGATEFYLLAAMSYDRYVAICKPLHYTTI
 55 MSSRICIQLIFCSWLGGLMAIPTTLMSSQDFCASNRLNHYFCDYEPILLELSCSDTSLIEKVVFL
 VASVTLVVTLVLSYAFIUKTILKLPQAQRKTAFCSTCSSHMIVISLSYGSCKMFMYINPSAKEG
 DTFNKGVALLITSVAPLLNPFTYTLRNQQVKQPFKDMVKLLNL (SEQ ID NO: 491)

ATGAAAAATAAAACCGTGTAACTGAGTTATCCTCTGGGCTAACAGATGTCCCTGAAC
 TCCAGGTGGCAGTTTCACCTTCCTTGCATTTACTCAGCATCCTGGAAATCTG
 ACTATCCTCATCCTCACCTGCTGGACTCCCACCTCAGACTCCCACATGATTCTTC
 5 GAACITCTCCTCTGGAAATTCCCTCACAAACATCTCATCCAAGGGCCTGATTAGCA
 TCACAACAGGAAACAAGAGTATCAGCTTGCTGGCTGCATCAGTATTCTTGCCAT
 GTTCCCTGGGGCTACAGAGTTTACCTCTGGCTGCCATGCTCATGACCGCTATGTGGCC
 ATCTGCAAACCTCTGCATTACACCACATGAGCAGCAGAATCTGCATCCAGCTGATT
 10 TCTGCTTGGCTGGGTGGCTAATGGCTATTATAACCAACAATCACCCGTATGAGTCAGCA
 GGACTTTGTGCATCCAACAGACTGAATCATTACTCTGTGACTATGAGCCTCTGGAA
 CTCTCATGTTAGACACAAGCCTCATAGAGAAGGTTGCTTCTGTGGCATCTGTGACCC
 TGTTGGCACTCTGGTCTAGTATTCTCTCATGCATTATCAAGACTATTCTGAAG
 15 CTCCTCTGCCAACAAAGCACAAAGCCTTCCACATGTTCTCCACATGATTGTCAT
 CTCCTCTTACGGAAGCTGCATGTTATGTACATTAATCCCTGCAAAGAAGGGAT
 ACATTCAACAAGGGAGTAGCTACTCATTACTCAGTTGCTCTTGTGAACCCCTTAT
 TTACACCTAAGGAACCAACAGGTAACACACCCTCAAGGATATGGTCAAAAAGCTTCT
 GAATCTTAA (SEQ ID NO: 492)

AOLFR130B sequences:

20 MEGKNQTAPEFILGFDHNLNEQYLLFTIIFLTYICLGGNVFIIVVTIADSHLHTPMYYFLGNL
 ALIDICYTTTNVPQMMVHLLSEKKIISYGGCVTQLFAFIFVGSECLLLAAMAYDRYIAICKPLR
 YSFIMNKALCSWLAASCWTGFLNSVLHTVLFHLPCFGNNQINYFFCDIPPLLILSCGDTSLNE
 LALLSIGLISWTPFLCIILSYLYIISTILRIRSSEGRHKAFSTCASHLLIVLYGSAIFTYVRPISSYS
 LEKDRLISVLYSVTPMLNPVIYTLRNKDIKEAVKAIGRKWQPPVFSSDI (SEQ ID NO: 493)

25 ATGGAAGGAAAGAACATCAAACAGCTCCATCTGAATTCACTCATCTTGGGTTCGACCCACCTGA
 ATGAATTGCACTTACTCTCACCATCTTCTGACCTACATATGCACCTTAGGAGGC
 AATGTTTATCATGTTGGTACCATAGCTGATTCCCACCTACACACACCCATGTATTATT
 CCTAGGAAATCTGCCCTTATGACATCTGCTACACTACTAATGTCCCCAGATGATG
 30 GTGCATCTCTGTCAGAGAACATCTTCTATGGAGGCTGTGACCCAGCTCTTG
 CATTCACTTCTTGTGGCTCAGAGTGTCTCCCTGGCAGCAATGGCATATGATCGATAT
 ATTGCTATCTGTAAGCCGTTAAGGTACTCATTTATTATGAACAAGGCCCTGTGAGCTGGT
 TAGCAGCCTCATGCTGGACATGTGGTTCTCACTCAGTGTGACACCCGTTGACCTT
 CCACCTGCCCTCTGTTGTAACAATCAGATCAATTATTCTCTGTGACATACCTCCCTG
 35 TCATCTTGTCTGTGGTACTCTCCCTCAATGAACGGTTGCTGTCCATTGGGATCCTC
 ATAAGCTGGACTCCCTCTGTGCATCATCCTTCCCTACCTTACATCATCTCCACCATCCT
 GAGGATCCGTTCTGAGGGGAGGCACAAAGCCTTCCACCTGTGCCCTCCACCTGCTC
 ATTGTTATTCTTATGGCACTGCTATCTCACGTATGTGAGGCCATCTCATCTTACTC
 40 TCTAGAGAAAGATAGATTGATCTCAGTGTCTGTATAGTGTGACACCCATGCTGAATCCT
 GTAATTATACGCTAAGGAATAAGGACATCAAAGAGGCTGTGAAGGCCATAGGGAGAAAG
 TGGCAGCCACCAGTTCTCTGATATATAA (SEQ ID NO: 494)

AOLFR142B sequences:

45 MARKDMAHINCTQATEFILVGLTDHQELKMPLFVLFSIYLFTVVGNLGLILLIRADTSNTPM
 YFFLSNLAFVDFCYSSVTPKMLGNFLYKQNVISFDACATQLGCFLTQMISESLLASMAYDRY
 VAICNPPLLYMVMTPGICIQLVAVPYSYFLMALFHTILTFRLSYCHSNIVNFYCDDMPLLRL
 TCSDTRFKQLWIFACAGIMFISSLIVFSYMFIIASILRMHSAEGRQKAFSTCGSHMLAVTIFYG
 TLIFMYLQPSSSHALDKMASVFYTIVPMLNPLIYSLQNKEVKEALKKIIINKN (SEQ ID NO:
 495)

50 ATGGCCAGAAAAGATATGGCTCACATCAATTGCACCCAGGCAGAGAGTTATTCTGTGG
 GCCTCACAGACCATCAGGAGTTGAAGATGCCCTCTTGTCTATTCTTATCCATCACCTC
 TTCACAGTGGTAGGCAACTGGGTTGATCCTACTCATTAGACGGATAACAAGTCTCAACA
 CACCAATGTACTCTTCTAGCAACCTAGTTTGTGGATTCTGTACTCTCTGTCTCATT
 55 ACACCCAAAATGCTGGAAATTCTGTACAAACAAAATGTTATCCTTGTACTGGCTTCCATG
 CTACTCAACTGGGCTGCTTCTCACCTCATGATATCAGAACATCCTGCTACTGGCTTCCATG

GCCTATGACCGATAATGTGGCCATTGTAAACCCCTATTGTATATGGTTGAATGACTCCAG
 GAATCTGCATTCAACTTGTAGCAGTCCTTATAGCTATAGCTTCATAAAGGCACATTTCAC
 ACCATCCTCACCTTCCGCCCTCCTATTGCCACTCCAACATTGTCAACCATTCTATTGTGA
 TGACATGCCTCTCCTCAGGCTAACITGCTCAGACACTCGCTCAAACAGCTCTGGATCTT
 5 GCCTGTGCTGGTATCATGTTATTCTCCCTCTGATTGTCTTGCTCCTACATGTTCATC
 ATTTCTGCCATCCTGAGGATGCATTCACTGAGCTGAGGGAAAGACAGAAGGCTTCTCGACGTGTG
 GCTCTCACATGCTGGCAGTCACCATATTCTATGGGACCCCTATTATGTACTACAGCCT
 AGCTCTAGCCATGCCCTGGACACAGACAAGATGGCCTCTGTCTTACACAGTGATCATTC
 CCATGTGAATCCCTTAATCTATAGCCTCCAGAATAAGGAGGTGAAAGAAGCTCTGAAGA
 10 AAATCATTATCAATAAAAATAG (SEQ ID NO: 496)

AOLFR171C sequences:

MAEVNIYVTVFILKGITNRPELQAPCFGVFLVIYLTVLGNLGLITLIKIDTRLHPTMYYFLSHL
 AFVDLCYSSAITPKMMVNVERNTIPFHACATQLGFLLFMITECFLLASMAVDCYVAICSP
 15 HYSTLMSRRVCIQLVAPYIYFLVALFHTVITFRLTYCGPNLNHFYCDLPLFLALSCSDTHMK
 EILIFAFAGFDMSSSIVLTSYIFIIAILRIRSTQGQHKAISTCGSHMVTVTIFYGTLIFMYLQPKS
 NHSLDTDKMASVFYTVVIPMLNPLIYSLRNKEVKDASKKALDKGCENLQILTFLKIRKLY (SEQ
 ID NO: 497)

20 ATGGCTGAAGTTAATATCATTATGTCACTGTATTCTGAAAGGAATTACCAACCGGC
 CAGAGCTTCAGGCCCGTCTTGGGGTTAGTTATCTATCTGGTCACAGTGCTGGG
 CAATCTGGGTTGATTACTTAAATCAAGATTGATACTCGACTCCACACACCTATGTACTATT
 TCCTCAGCCACCTGGCTTGTGACCTTGTACTCCTCTGCTATTACACCGAAGATGATG
 GTGAATTITGTTGTGGAACGCAACACCAATTCCATTCCATGCTTGTGCAACCCAACGGTT
 25 GTTTCTCACCTCATGATCACTGAGTTCTCTAGCCTCCATGGCTACGATTGCTAT
 GTGCCATCTGAGTCCCCTGCAATTCAACACTGATGTCAAGAAGAGTCTGCATTCAAC
 TGGTGGCAGTCCATATATATACAGCTTCTGGTTGCCCTCTCCACACCGTTATCACTTC
 CGTCTGACTTACTGTGGCCCAAACCTAAATTAAACATTCTATTGTGATGACCTCCCTTCTT
 AGCTCTGCTCTGCTCAGACACACACATGAAGGAAATTCTGATATTGCTTGTGGCTT
 30 GATATGATCTCTCTCTTCCATTGCTCACCTCCATCTTATTATTGCCCCTATCTTA
 AGGATCCGCTCTACTCAGGGCAACACAAAGCCATTCCACCTGTGGCTCCATATGGTGA
 CTGTCACTATTCTATGGCACACTGATTTATGTACCTACAGCCAAATCAAATCACTCC
 TTGGACACAGACAAGATGGCTCTGATTTCACACAGTGGTGTACCCCCATGTTAAACCCCC
 TAATCTATAGCTAAGGAACAAAGAAGTGAAGATGCTCAAAGAAAGCCTGGATAAAG
 35 GTTGTGAAAACCTACAGATATTAACATTTTAAAAATAAGAAAACCTTATTAA (SEQ ID NO:
 498)

AOLFR225B sequences:

MKNRTMFGEFILLGLTNQPELQVMIFIFLFLTYMLSILGNLTIIITLTLDPHLQTPMYFFLRNSF
 40 LEISFTSIFIPRFLTSMTGNKVISFAGCLTYFFAIFLGATEFYLLASMSYDRYVAICKPLHYLT
 MSSRVCIQLVFCWSLGGFLAILPPIILMTQVDFCVSNILNHYYCDYGPLVELACSDTSILLEMVI
 LLAVVTLVTLVLTLSYTIIRTLRIPSAQQRTKAFSTCSSHMIVISLGSCKMFYINPSAKE
 GGAFNKGIAVLITSVTPLLNPFIYTLRNQQVKQAFKDSVKKIVKL (SEQ ID NO: 499)

45 ATGAAAAACAGAACCATGTTGGTAGTTATTCTACTGGCCTTACAAATCAACCTGAAC
 TCCAAGTGTGATATTCTCATCTTCTGTTCTCACCTACATGCTAAGTATCCTAGGAAATCTG
 ACTATTATCACCCCTCACCTACTAGACCCCCACCTCCAGACCCCCATGTATTCTCTCCG
 GAATTCTCTCTCTAGAAATTCTCACATCCATTATTCTCCAGATTCTGACCCAGCA
 TGACAAACAGGAAATAAAGITATCAGCTTGTGGCTGCTTGACTCAGTATTCTGCTAT
 50 ATTCTCTGGAGCTACCGAGTTTACCTCTGGCCTCCATGCTTATGATCGTTATGTGGCCA
 TCTGCAAACCCCTGCATTACCTGACTATTATGAGCAGCAGAGTCTGCATACAACACTAGTGT
 CTGCTCTGGTGGGGGGATTCCCTAGCAATCTACACCAATCATCTGATGACCCAGGTA
 GATTCTGTGCTCCAACATTCTGAATCACTATTACTGTGACTATGGCCCTCGTGGAGCT
 TGCTGCTCAGACACAAAGCCTCTAGAAACTGATGGTCATCCTCTGGCCCTGTGACTCTC
 55 ATGGTTACTCTGGTGTGGTACACTTCTTACACACATATTACAGGACTATTCTGAGGA
 TCCCTCTGCCAGCAAAGGACAAGCCTTCCACTTGTCTCCCACATGATTGTCATC

TCCCTCTTATGGCAGCTGCATGTTATGTACATTAACTCTGAAAAGAAGGGAGTG
CTTCAACAAAGGAATAGCTGACTCATTACTCGTTACTCCCTTACTGAATCCCTTCATA
TATACTTTAAGAAATCAGCAAGTGAAACAAGCTTCAAGGACTCAGTCAAAAAGATTGTG
AAACTTAA (SEQ ID NO: 500)

5

AOLFR274B sequences:

MEFVFLAYPSCPHELHLSFLGVSLVYGLIITGNILIVSIHETCLCTSMYYFLGSLSGIEICYTAV
VVPHILANTLQSEKTITLLGCATQMAFFIALGSADCFLAAAMA YDRYVAICHPLQYPPLMTLTL
CVHLVVASVISGLFLSLLQLVAFIFSLPFCQAQGIEHFFCDVPPVMHVVCQSHIHEQSVLVAJL
AIAVPFLITTSYTFIVAALLKIHSAAGRHRASFSTCSSHLTUVLQLQYGCCAFMYLCPSSSYNPKQ
DRFISI VVTLLGTPLINPJIYALRNSEMKGAVGRVLTRNCLSQNS (SEQ ID NO: 501)

ATGGAATTGTCTGGCTATCCCTCTGCCAGAACACTGCATATTCTGCTCTTCCCTGG
GGTCAGCCTGGTTATGGTTGATCATCACTGGGAACATTCTCATTTGTGGTGTCCATTAC
ACAGAAACCTGTCTATGCACATCCATGTACTATTCTGGGCAGCCCTCTGGGATTGAAA
15 TATGCTACACTGCAGTGGTGGTCCCCATATCCTGGCCAACACCCCTACAGTCAGAGAAGAC
CATCACTCTCCTGGGCTGTGCCACCCAGATGGCTTCTTCATTGCACTGGCAGTGTGAT
TGCTTCCCTCTGGCTGCATGGCTATGACCGCTATGTGGCCATTGCCACCCGTGCAGTA
20 CCCTCTCCTCATGACATTGACTCTTGTGTCACITGGTTGTGGCATCAGTCATCAGTGGTC
TGTTCTGTCCCTACAACACTGGTGGCCTCATCTTCTCTGCCATTGCCAGGCTCAGGGC
ATTGAGCACCTCTTGTGATGTGCCACCAAGTCATGCATGTTGTTGTGTCAGAGTCACAT
25 TCATGAGCAGTCAGTGTGGTGGCAGCCATACTAGCCATTGCTGCTTCTCCTCATC
ACCACCTCCTACACCTTCATAGTGGCTGCTCTGCTCAAGATCCACTGGCTGCTGGCCGC
ACCGGGCCTTCTCCACCTGCTCTTCCCACCTCACTGTGGTGTGCTGAGTATGGCTGCTG
GCCTTCATGTACCTGTGCCAGCTCCAGCTACAACCCCAAGCAAGATCGGTCATCTCAC
TGGTGTACACATTGGGAAACCCACTGCTCAACCCACTTATCTATGCCCTGAGGAACAGTGA
GATGAAAGGGGCCGTAGGGAGAGTTCTTACCAAGGAACGTGCCCTTCCCAGAACAGCTAG
(SEQ ID NO: 502)

30 AOLFR276B sequences:

MGFGFTNISSTTSFTLTGFPEMKGLEHWLAALLLLYAIISFLGNILILFIIKEEQLSHQPMYYFLS
LFSVNDLGVSFSTLPTVLAAVCFHAPETTFDACLAQMFIIHFSSWTEFGILLAMSFDHYVAICNP
LRYATVLTDRVVAHNGISIVIRSCFMVFPLPFLKLRLPFCKASVVLASHYCLHADLIRLPWGDT
TINSMYGLTVISAFGVDSLLLILSYVVLILHSVLAIASRGERLKTLNTCVSHIYAVLIFYVPMVSVS
MVHFRGRHAPEYVHKEMSLCTSNAALPNYLFHHOD (SEQ ID NO: 503)

ATGGGGGGCTTGGGACTAACATCTCAAGTACTACCAGCTTCACTCTAACAGGCCTCCCTG
40 AGATGAAGGGTCTGGAGCACTGGCTGGCTGCCCTCTGCTGCTGCTTATGCTATTCCCT
CCTGGGCAACATCCTCATCCTCTTATCATAAAGGAAGAGCAGAGCTGACCAGCCAATG
TACTACTTCCTGTCTCTTTCTGTTAATGACCTGGGTGTGCTCTTCTACATTGCCACT
GTACTGGCTGCTGTGTTCTATGCCCGAGAGACAACCTTTGATGCCCTGCCCTGGCCAGA
TGTCTTCATCCACTTTCCCTCTGGACAGAGCTTGGCATCCTACTGGCATGAGTTTGAC
CACTATGTGCCATCTGTAACCCCCTGCGCTATGCCACAGTGCTCACTGATGTCCTGTGG
45 CCCACAATGGCATATCCATTGTATCCGCAGCTCTGCTGGTATTCCACTTCCCTTCCCTC
CTGAAGAGACTGCCCTCTGTAAGGCCAGTGTTACTGGCCATTCCACTGCTGCATG
CAGACCTGATTGGCTGCCCTGGGAGACACTACCATCAACAGCATGTATGGCTGTTCAT
TGTCTCTCTGCCCTGGTGTAGATTCACTGCTCATCCTCTCTATGTGCTCATCTAC
ATTCTGTGCTGCCATTGCCCTCAGGGGTGAGAGGGCTTAAGACACTCAACACATGTGTC
50 ACATATCTATGCAGTGCTGATCTCTATGTGCCATTGGTAGTGTGTCCTATGGTCATCGAT
TTGGGAGGGCATGCTCTGAATATGTGACAAGTTCATGCTCTTGTACCTCCAATGCTCT
ACCCAATTATCTATTCCATCAAGACTAA (SEQ ID NO: 504)

AOLFR311B sequences:

55 MDWENCSSLTDFFLLGITNNPEMKVTLFAVFLAVYIINFSANLGMIVLIRMDYQLHTPMYYFFLS
HLSFCDCDLCYSTATGPKMLVDLLAKNKSIPIFYGCALQFLVFCIFADSECLLSSVMADFDRYKAIIINP
LIYTVMNMSSRVCYLLLTVGVLVGIADALIHMTLAFLRCFCFGSNEINHFFCDIPPLLLSRSRTDQV

NEVLVFTVFGFIELSTISGVFISYCYIILSVLEIHSAEGRFKALSTCTSHLSAVAIFQGTLLFMYFRP
SSSYSLDQDKMTSLFYTLVVPMLNPLIYSLRNKDVKEALKLKKNKILF (SEQ ID NO: 505)

5 ATGGACTGGAAAATTGCTCCTCATTAAC TGATTTCTCTGGAAATTACCAATAACCC
AGAGATGAAAGTGACCCTATTGCTGTATTCTGGCTGTTATATCATTAATTCTCAGCAA
ATCTTCCAATGATAGTTTAATCAGAATGGATTACCAACTTCACACACCAATGTATTCTT
CCTCAGTCATCTGCTTTCTGTGATCTCTGCTATTCTACTGCAACTGGGCCAAGATGCTGG
TAGATCTACTGCCAAGAACAAAGTCAATACCCCTCATGGCTGTCTGCAATTCTGGT
CTTCTGTATCTTGCAGATTCTGAGTGCTACTGCTGCTAGTGATGGCCTTGATCGGTACA
10 AGGCCATCATCAACCCCCCTGCTCTATACAGTCACATGTCTAGCAGAGTGTGCTATCTACT
CTTGACTGGGGTTATCTGGTGGGAATAGCAGATGCTTGTATACATATGACACTGGCCITC
CGCCTATGCTCTGTGGGCTAAATGAGATTAATCATTCTCTGTGATATCCCTCTCTCT
ATTACTCTCGCTCAGATACACAGGTCAATGAGTTAGTGTATTCAACCGCTTGTGGTTTA
TTGAACGTAGTACCATTCAGGAGTTTCATTTCTTATTTGTTATATCATCCTATCAGTCITG
15 GAGATACACTCTGCTGAGGGGAGGTTCAAAGCTCTCTACATGCACTTCCCACCTATCTG
CGGTTGCAATTTCAGGGAACTCTGCTCTTATGTATTCCGGCCAAGTCTTCCTATTCT
CTAGATCAAGATAAAATGACCTATTGTTTACACCCCTGTGGTCCCATGTTGAACCCCC
GATTATAGCCTGAGGAACAAGGATGTGAAAGAGGCCCTGAAAAAAACTGAAAAATAAAAT
TTTATTAA (SEQ ID NO: 506)

20

AOLFR314 sequences:

MEVKNCMVTEILLGIPHTEGLEMTLFVLFLPFYACTLLGNVSILVAVMSSARLHTPMYFFLG
NLSVFDGMGFSSVTCPKMLLYLMGLSRLISYKDCVCQLFFFHFLGSIECFLTVMAYDRFTAICY
PLRYTVIMPRICVALAVGTWLLGCIHSSILSTFTLPYCGPNEVDHFFCDIPALLPLACADTS
25 AQRVSFTNVGLISLVCFLILLSYTRITISLISRTEGRRRAFSTCSAHLIAILCAYGPIITVYLQPT
PNPMLGTVVQILMNLVGPMLNPLIYTLRNKEVKTALKTILHRTGHVPES (SEQ ID NO: 507)

30 ATGGAGGTGAAGAACTGCTGCATGGTACAGAGTTCATCCTTTGGGAATCCCACACACA
GAGGGGCTGGAGATGACACTTTTGTCTTATTCTGCCCTCTATGCCCTGACTCTACTGGG
AAATGTGCTATCCTTGTGCTGTTATGTCTTGTCTGCTGCCCTCACACACCTATGTATTCT
TCCGGAAACTTGTCTGTTGACATGGGTTCTCTCAGTGAATTGTGCTGCCAGCTTCT
GCTCTACCTTATGGGGCTGAGCCGACTCATCTCTACAAAGACTGTGCTGCCAGCTTCT
TCTTCAATTCTCGGGAGCATTGAGTGTCTTGTGACGGTATGCCCTATGCCAGCTTC
ACTGCCATCTGTTATCCTCTGCAGACACAGTCATCATGAACCCAAGGATCTGTGGCC
35 TGGCTGTGGCACATGGCTGTTAGGTGCAATTCCAGTATCTTGACCTCCCTCACCTC
ACCTTGCCTACTGTGGCTTCAATGAAGTGGATCATTCTCTGTGACATTCCAGCAGCTT
GCCCTTGGCTGTGCTGACACATCCTAGCCCAGAGGGTGGACCTGACCAACGTTGGCTC
ATATCTTGTCTGCTTCTGTAATTCTTATCTACACTAGAACATCACAAATATCTATCTT
AAGCATTGCTACAACGTGAGGCCGTCGCCGTGCCCTCTCACCTGAGTGTCACTCATT
40 GCCATCCTCTGTGCCATTGGCCCATCATCACTGCTACCTGCAAGCCCACACCCACCC
TGCTGGGAACCGTGGTACAATTCTCATGAATCTGGTAGGACCAATGCTGAACCTTGAT
CTATACCTTGAGGAATAAGGAAGTAAAACAGGCCCTGAAAACAATATTGACACAGGACAGG
CCATGTTCTGAGAGTTAG (SEQ ID NO: 508)

45

AOLFR324B sequences:

MPIANDTQFHSSFLLGIPGLEDVHIVIGFPFFSVYLIALLGNAIAFFVIQTEQLHEPMYYCLA
MLDSIDLSTATIPKMLGIFWFNIKEISFGGYLSQMFIIHFFTVMESIVLVAMAFDRYIAICKPL
WYTMLTSKIIISLIAGIAVRLSLYMPVILPVFLRLPFCGHRIIPTYCEHMGIA RLACASIKVNIM
50 FGLGSISLLLDVLLIILSHIRILYAVFCLPSWEARLKALNTCGSHIGVILAFSTPAFFSFFTHCPGH
DIPQYIHFLANLYVVVPPTLNPVIYGVRTKHIRETVLRIFFKTDH (SEQ ID NO: 509)

55 ATGCCTATAGCTAACGACACCCAGTTCCATACCTTCTCATGGTACGCTGGTATCCCAGG
GCTAGAAAGATGTGCACATCTGGATTGGATTCCCTTTCTCTGTGATCTTATTCAGCTCC
TGGGAAATGCTGCTATCTCTTGTGATCCAAACTGAGCAGAGTCTCATGAGCCCATGTA
CTACTGCCCTGGCCATTGGATTCCATTGACCTGAGCTGTACGCCACCATCCCAA
ATGCTGGGCATCTCTGGTCAATATCAAGGAATATCTTGTGGAGGCTACCTTCTCAGA

TGTTCTTCATCCATTCTTCACTGTCATGGAGAGCATCGTATTGGTGGCCATGGCCTTGAC
 CGCTACATTGCCATTGCAAACCTTTGGTACACCATGATCCTCACCAAGCAAAATCATCA
 GCCTCATTCAGGCATTGCTGTCTGAGGAGCTGTACATGGTCATTCCACTGGTGTCT
 CCTCTTAAGGTTGCCCTCTGTGGACATCGTATCATCCCTCATACTTACTGTGAGCACATGG
 5 GCATTGCCCGTCTGCCCTGTGCCAGCATCAAAGTCAACATTATGTTGGCTTGGAAGTAT
 TTCTCTGTATTGGATGTGCTCTTATTATTCTCTCCATATCAGGATCCTATGCTGT
 CTTCTGCCCTGCCCTGGGAAGCTCGACTCAAAGCTCTAACACCTGTGGCTCTCACATT
 GGTGTTATCTTAGCCTTCTACACCAGATTCTCTCTTCTTACACACTGCTTGCCAT
 10 GATATTCCCCAATATATCCACATTCTGGCTAATCTATATGTGGGTGTCCTCCCACCC
 CAATCCTGTAATCTATGGGGTCAGAACCAAACATTAGGGAGACAGTGCTGAGGATTTC
 TTCAAGACAGATCACTAA (SEQ ID NO: 510)

AOLFR328 sequences:

MALGNHSTITEFLLGLSADPNIRALLFVFLGIYLLTIMENLMLLVIRADSCLHKPMYFFLSH
 15 LSFVDLCFSSVIVPKMLENLLSQRKTISVEGCLAQVFVFTAGTEACLLSGMAYDRHAIRP
 LLYGQIMGKQLYMHLVWGSWGLGFLDALINVLLAVNMVFCEAKIHHYSYEMPSLLPLSCSDI
 SRSLIVLLCSTLLHGLGNFLLVFLSYTRIISTLISSTSGRSKAFTCSAHLTAVLYYGSGLRHL
 MPNSGSPIELIFSVQYTVVTPMLNSLIYSLKNKEVKVALKRTLEKYLQYTRR (SEQ ID NO: 511)

20 ATGGCCTGGGAATCACAGCACCACCCGAGTTCCCTCCTGGGCTGTCTGCCGACC
 CCAACATCCGGGCTCTGCTCTTGTGCTTCTGGGATTACCTCCTGACCATAATGGA
 AAACCTGATGCTGCTCGTGTGATCAGGGCTGATTCTGTCTCCATAAGCCCATGTATTCT
 TCCTGAGTCACCTCTCTTGTGATCTGCTTCTTCAGTCATTGTGCCAAGATGCTG
 GAGAACCTCTGTACAGAGAAAACCATTTCAGTAGAGGGCTGCCCTGGCTCAGGTCTTCT
 25 TTGTGTTTGTCACTGCAGGGACTGAAGCCTGCCCTCTCAGGGATGGCTATGACCGCCA
 TGCTGCATCCCGCCCAACTACTTATGGACAGATCATGGTAAACAGCTGTATATGCAC
 CTTGTGGGGCTATGGGACTGGCTTCTGGACGCCTCATCAATGTCCTCTAGCTG
 TAAACATGGCTTTGTGAAGCCAAATCATTCAACACTACAGCTATGAGATGCCATCCCT
 CCTCCCTCTGTCCCTGCTCTGATATCTCCAGAACCTCATGTTTGTCTGCTCCACTCTCC
 30 TACATGGCTGGAAACTCCTTTGGTCTCTTATCCTACACCCGTATAATCTCACCATC
 CTAAGCATCAGCTCACCTCGGGCAGAACAGCAAGGCCCTCTCACCTGCTGCCACCTCA
 CTGCAGTGACACTTACTATGGCTCAGGTTGCTCCGCCATCTCATGCCAAACTCAGGTT
 CCCCCTAGAGTTGATCTTCTCTGTGCAGTATACTGTAGTCACCTCCATGCTGAATTCCCTCA
 TCTATAGCCTGAAAAATAAGGAAGTAGAAGGTAGCTCTGAAAAGAAACTTGGAAAAATATT
 35 TGCAATATACCAGACGTTGA (SEQ ID NO: 512)

CLAIMS

What is Claimed:

1. An isolated nucleic acid sequence selected from the group consisting of:
 - 5 (i) an isolated nucleotide sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID

NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
5 NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID
NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326,
SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID
NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
10 SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362,
SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID
NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380,
SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID
15 NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,
SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID
NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416,
SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID
NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
20 SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
25 NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
SEQ ID NO: 508, SEQ ID NO: 510; and SEQ ID NO: 512, or a fragment thereof
which comprises at least 75 nucleotides;

30 (ii) an isolated cDNA or an insoluble RNA transcribed therefrom that encodes a polypeptide having an amino acid sequence selected from the group consisting of:
SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ
ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ

ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ
ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ
ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ
ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ
5 ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ
ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ
ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ
ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ
ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109,
10 SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID
NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127,
SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID
NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145,
SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID
15 NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163,
SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID
NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181,
SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID
NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199,
20 SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID
NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217,
SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID
NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235,
SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID
25 NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253,
SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID
NO:, 263, SEQ ID NO:, 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271,
SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID
NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289,
30 SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID
NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307,
SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID
NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325,

SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361,
5 SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, 10 SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, 15 SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511, or a fragment thereof which encodes at least 25 contiguous amino acids of said polypeptide;
. (iii) a nucleic acid sequence that comprises at least 30% sequence identity with an isolated nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, 20 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, 25 SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, 30 SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92,

SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
5 SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
10 NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
15 SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
20 NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
25 SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
30 NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID

NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,
SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID
NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416,
SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID
5 NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
10 SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512, or to a fragment thereof
15 which comprises at least 100 contiguous nucleotides thereof;

(iv) a nucleic acid sequence that encodes a polypeptide having at least 40%
sequence identity at the amino acid level with a polypeptide having an amino acid
sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ
ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID
20 NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID
NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID
NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID
NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID
NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID
25 NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID
NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID
NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ
ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113,
30 SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID
NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131,
SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID
NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149,

SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185,
5 SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID
10 NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243; SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,
15 SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID
20 NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365,
25 SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID
30 NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID

NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455,
SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID
NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473,
SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID
5 NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491,
SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID
NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509
and SEQ ID NO: 511 or a nucleic acid sequence encoding at least 50 contiguous
amino acid residues thereof;

10 (v) an isolated nucleic acid sequence which encodes an olfactory receptor or a
fragment thereof that specifically hybridizes and exhibits at least 30% sequence
identity under stringent conditions to a nucleic acid sequence selected from the group
consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID
NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID
15 NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID
NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID
NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID
NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID
NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID
20 NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID
NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID
NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID
NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108,
SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID
25 NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126,
SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID
NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144,
SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID
NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162,
30 SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID
NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180,
SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID
NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198,

SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234,
5 SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID
10 NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324,
15 SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID
20 NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414,
25 SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID
30 NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID

NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504,
SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512;
(vi) an isolated nucleic acid sequence that specifically hybridizes to (i) or a portion
thereof under stringent hybridization conditions that is at least 20-30 nucleotides in
length; and
(vii) a naturally occurring allelic or synthetic variant of a nucleic acid sequence
according to (i) or (ii), containing at least one substitution, deletion or addition
mutation in the coding region.

10 2. The isolated nucleic acid sequence of Claim 1 which is selected from
the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID
NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID
NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID
NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID
NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID
NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID
NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID
NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID
NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID
NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID
NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106,
SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID
NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124,
SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID
NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142,
SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID
NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160,
SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID
NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178,
30 SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID
NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196,
SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID
NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214,

SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250,
5 SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID
10 NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340,
15 SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID
20 NO: 386, SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430,
25 SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID
30 NO: 476, SEQ ID NO: 478, SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID

NO: 512 or a fragment thereof which comprises at least 75 contiguous nucleotides thereof.

3. The isolated nucleic acid sequence of Claim 1 which encodes a
5 polypeptide having an amino acid sequence selected from the group consisting of:
SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ
ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ
ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ
ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ
10 ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ
ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ
ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ
ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ
ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ
15 ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ
ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109,
SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID
NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127,
SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID
20 NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145,
SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID
NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163,
SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID
NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181,
25 SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID
NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199,
SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID
NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217,
SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID
30 NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235,
SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID
NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253,
SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID

NO; 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271,
SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID
NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289,
SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID
5 NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307,
SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID
NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325,
SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID
NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343,
10 SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID
NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361,
SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID
NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379,
SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID
15 NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397,
SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID
NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415,
SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID
NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433,
20 SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID
NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451,
SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID
NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469,
SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID
25 NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487,
SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID
NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505,
SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof
encoding at least 25 contiguous amino acid residues of said polypeptide.

30

4. An isolated nucleic acid sequence having at least 30-60% sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID

NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
5 NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
10 ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
15 SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID
20 NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,
25 SEQ ID NO: 238, SEQ. ID NO. 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID
NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
30 NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID

NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326,
SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID
NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
5 NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362,
SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID
NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380,
SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID
NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,
10 SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID
NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416,
SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID
NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
15 NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
20 SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512; or a fragment thereof
comprising at least 100 contiguous nucleotides of any of said sequences.

25 5. An isolated nucleic acid sequence having at least 60-80% sequence
identity with a nucleic acid sequence selected from the group consisting of: SEQ ID
NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
30 NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID

NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
5 SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
10 NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID
NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
15 SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,
SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID
20 NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
25 SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID
NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326,
SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID
30 NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362,
SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID

NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380,
SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID
NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,
SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID
5 NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416,
SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID
NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
10 SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
15 NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a fragment thereof
comprising at least 100 contiguous nucleotides of any of said sequences.

6. An isolated nucleic acid sequence having at least 80-90% sequence
20 identity with a nucleic acid sequence selected from the group consisting of: SEQ ID
NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
25 NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
30 NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,

SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
5 SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
10 NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
15 SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
20 NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
25 SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID
30 NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID

NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
5 NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
10 SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a fragment thereof
comprising at least 100 contiguous nucleotides of any of said sequences.

7. An isolated nucleic acid sequence having at least 85% sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID
15 NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
20 NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
25 ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
30 SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,

SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
5 SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
10 NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
15 SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
20 NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,
25 SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
30 NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID

NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512, or a fragment thereof
5 comprising at least 100 contiguous nucleotides of any of said sequences.

8. An isolated nucleic acid sequence having at least 90% sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
10 NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
15 NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
20 SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
25 NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID
NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
30 SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,

SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
5 SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID
10 NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362,
15 SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID
20 NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
25 SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
30 NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a fragment thereof comprising at least 100 contiguous nucleotides of any of said sequences.

9. An isolated nucleic acid sequence according to Claim 1 which encodes a polypeptide having at least 40-60% sequence identity with a polypeptide having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID

NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291,
SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID
NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309,
SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID
5 NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327,
SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID
NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345,
SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID
NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363,
10 SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID
NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381,
SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID
NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399,
SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID
15 NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417,
SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID
NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435,
SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID
NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453,
20 SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID
NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471,
SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID
NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489,
SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID
25 NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507,
SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof that comprises at least
40 contiguous amino acids thereof.

10. An isolated nucleic acid sequence according to Claim 1 which encodes
30 a polypeptide having at least 60-70% sequence identity with a polypeptide having an
amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID
NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID
NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID

NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID
NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID
NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID
NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID
5 NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID
NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID
NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID
NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ
ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111,
10 SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID
NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129,
SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID
NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147,
SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID
15 NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165,
SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID
NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183,
SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID
NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201,
20 SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID
NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219,
SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID
NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237,
SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID
25 NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255,
SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID
NO:, 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273,
SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID
NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291,
30 SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID
NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309,
SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID
NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327,

SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363,
5 SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID
10 NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453,
15 SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID
20 NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof that comprises at least 40 contiguous amino acids thereof.

11. An isolated nucleic acid sequence according to Claim 1 which encodes
25 a polypeptide having at least 70-80% sequence identity with a polypeptide having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID

NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID
NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID
NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ
ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111,
5 SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID
NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129,
SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID
NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147,
SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID
10 NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165,
SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID
NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183,
SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID
NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201,
15 SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID
NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219,
SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID
NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237,
SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID
20 NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255,
SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID
NO:, 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273,
SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID
NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291,
25 SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID
NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309,
SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID
NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327,
SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID
30 NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345,
SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID
NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363,
SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID

NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381,
SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID
NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399,
SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID
5 NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417,
SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID
NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435,
SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID
NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453,
10 SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID
NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471,
SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID
NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489,
SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID
15 NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507,
SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof that comprises at least
40 contiguous amino acids thereof.

12. An isolated nucleic acid sequence according to Claim 1 which encodes
20 a polypeptide having at least 80-90% sequence identity with a polypeptide having an
amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID
NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID
NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID
NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID
NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID
25 NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID
NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID
NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID
NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID
30 NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID
NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ
ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111,
SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID

NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129,
SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID
NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147,
SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID
5 NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165,
SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID
NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183,
SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID
NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201,
10 SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID
NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219,
SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID
NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237,
SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID
15 NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255,
SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID
NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273,
SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID
NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291,
20 SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID
NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309,
SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID
NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327,
SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID
25 NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345,
SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID
NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363,
SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID
NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381,
30 SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID
NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399,
SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID
NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417,

SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453,
5 SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID
10 NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof that comprises at least 40 contiguous amino acids thereof.

13. An isolated nucleic acid sequence according to Claim 1 which encodes
15 a polypeptide having about 90-99% sequence identity with a polypeptide having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID
20 NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID
25 NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129,
30 SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165,

SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201,
5 SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID
10 NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO:, 263, SEQ ID NO:, 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291,
15 SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID
20 NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381,
25 SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID
30 NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID

NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471,
SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID
NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489,
SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID
5 NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507,
SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof that comprises at least
40 contiguous amino acids thereof.

14. An isolated nucleic acid sequence which exhibits at least 50%
10 sequence identity with a nucleic acid sequence selected from the group consisting of:
SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ
ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ
ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ
ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ
15 ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ
ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ
ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ
ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ
ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ
20 ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100,
SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID
NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118,
SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID
NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136,
25 SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID
NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154,
SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID
NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172,
SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID
30 NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190,
SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID
NO: 200, SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208,
SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID

NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226,
SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID
NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244,
SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID
5 NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262,
SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID
NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280,
SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID
NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298,
10 SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID
NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316,
SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID
NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334,
SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID
15 NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352,
SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID
NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370,
SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID
NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388,
20 SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID
NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406,
SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID
NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424,
SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID
25 NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442,
SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID
NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460,
SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID
NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478,
30 SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID
NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496,
SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID
NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a nucleic acid

sequence which exhibits at least 50% sequence identity to a fragment comprising at least 100 contiguous nucleotides of said nucleic acid sequence.

15. An isolated nucleic acid sequence which exhibits at least 60%

5 sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ

10 ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ

15 ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136,

20 SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID

25 NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226,

30 SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262,

SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298,
5 SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID
10 NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388,
15 SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID
20 NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478,
25 SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a nucleic acid sequence which exhibits at least 60% sequence identity to a fragment comprising at
30 least 100 contiguous nucleotides of said nucleic acid sequence.

16. An isolated nucleic acid sequence that exhibits at least 70% sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID

NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
5 NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
10 NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
15 NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
20 SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID
NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
25 NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,
SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID
NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
30 SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,

SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
5 SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO:
10 NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
15 SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID NO:
20 NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a nucleic acid sequence having at least 70% sequence identity with a fragment thereof comprising at least 100
25 contiguous nucleotides thereof.

17. An isolated nucleic acid sequence that exhibits at least 80% sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID

NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
5 NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
10 NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
15 SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID
NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
20 NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,
SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID
NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
25 SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID
30 NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326,
SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID
NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID

ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
5 NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
10 SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID
NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
15 NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,
SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID
NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
20 SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID
25 NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326,
SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID
NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362,
30 SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID
NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380,
SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID
NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,

SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
5 SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
10 NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a nucleic acid sequence having at least 85% sequence identity with a fragment thereof comprising at least 100
15 contiguous nucleotides thereof.

19. An isolated nucleic acid sequence that exhibits at least 90% sequence identity with a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
20 SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,

NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
5 NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,
SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID
NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506,
SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a nucleic acid sequence
having at least 90% sequence identity with a fragment thereof comprising at least 100
10 contiguous nucleotides thereof.

20. An isolated nucleic acid sequence that exhibits at least 95% sequence
identity with a nucleic acid sequence selected from the group consisting of: SEQ ID
NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID
15 NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID
NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID
NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID
NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID
NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID
20 NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID
NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID
NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID
NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ
ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110,
25 SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID
NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128,
SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID
NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146,
SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID
30 NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID
NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182,
SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID

NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200,
SEQ ID NO: 202, SEQ ID NO: 204. SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID
NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218,
SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID
5 NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236,
SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID
NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254,
SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID
NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272,
10 SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID
NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290,
SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID
NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308,
SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID
15 NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326,
SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID
NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344,
SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID
NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362,
20 SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID
NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380,
SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID
NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398,
SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID
25 NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416,
SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID
NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434,
SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID
NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452,
30 SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID
NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470,
SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID
NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488,

SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512 or a nucleic acid sequence having at least 95% sequence identity with a fragment thereof comprising at least 100
5 contiguous nucleotides thereof.

21. An isolated nucleic acid sequence that exhibits about 96-99% sequence identity with a nucleic acid sequence encoding an olfactory receptor selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8,
10 SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58,
15 SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID
20 NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152,
25 SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID
30 NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID

NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242,
SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID
NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260,
SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID
5 NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278,
SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID
NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296,
SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID
NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314,
10 SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID
NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332,
SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID
NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350,
SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID
15 NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368,
SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID
NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386,
SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID
NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404,
20 SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID
NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422,
SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID
NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440,
SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID
25 NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458,
SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID
NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476,
SEQ ID NO: 478, SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID
NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494,
30 SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID
NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512
or a fragment having at least 96-99% sequence identity with a fragment thereof
comprising at least 100 contiguous nucleotides thereof.

22. A nucleic acid sequence which encodes for a functional olfactory receptor polypeptide, wherein said nucleic acid sequence comprises a portion which is at least 100 nucleotides in length and exhibits at least 40% sequence identity with at least 100 contiguous nucleotides of a portion of an olfactory receptor encoding a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240, SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256,

SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276, SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292,
5 SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366, SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382,
10 SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472,
15 SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO: 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512.

30

23. The nucleic acid sequence of Claim 22 which is a chimeric nucleic acid sequence, wherein said nucleic acid sequence is produced by combining portions of at least two different G protein-coupled receptors.

24. The chimeric nucleic acid sequence of Claim 23 wherein said two different G protein-coupled receptors are olfactory receptors.

5 25. The chimeric nucleic acid sequence of Claim 23 wherein said chimeric sequence contains at least 200 contiguous nucleotides that are at least 40% identical to a portion of one of said olfactory receptor encoding nucleic acid sequences.

10 26. An isolated nucleic acid sequence according to Claim 1, wherein said isolated nucleic acid sequence is directly or indirectly attached to a nucleic acid sequence that encodes a detectable polypeptide.

15 27. The nucleic acid sequence of Claim 26, wherein said detectable polypeptide is green fluorescent protein, or a fragment or variant thereof.

28. An isolated nucleic acid sequence which encodes a polypeptide that exhibits at least 40% sequence identity with a polypeptide selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID

NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID
NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179,
SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID
5 NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
10 SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
15 NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
20 SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID
NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID
NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID
25 NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377,
SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID
NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395,
SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID
NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413,
30 SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID
NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431,
SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID
NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449,

SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485,
5 SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof comprising at least 40 contiguous amino acids thereof that optionally is directly or indirectly attached to a sequence that facilitates the expression and/or
10 translocation of said polypeptide on the surface of a cell.

29. An isolated nucleic acid sequence which encodes a polypeptide that exhibits at least 50% sequence identity with a polypeptide selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107,
20 SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
25 SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID

NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
5 NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
NO: 261, SEQ ID NO:, 263, SEQ ID NO:, 265, SEQ ID NO: 267, SEQ ID NO: 269,
10 SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
15 NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID
NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID
NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
20 SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID
NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377,
SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID
NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395,
SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID
25 NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413,
SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID
NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431,
SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID
NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449,
30 SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID
NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467,
SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID
NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485,

SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof comprising at least 40 contiguous amino acids thereof that optionally
5 is directly or indirectly attached to a sequence that facilitates the expression and/or translocation of said polypeptide on the surface of a cell.

30. An isolated nucleic acid sequence which encodes a polypeptide that exhibits at least 60% sequence identity with a polypeptide selected from the group
10 consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID

NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
5 NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
10 SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID
NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID
15 NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID
NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377,
SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID
NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395,
20 SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID
NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413,
SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID
NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431,
SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID
25 NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449,
SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID
NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467,
SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID
NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485,
30 SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID
NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503,
SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a
fragment thereof comprising at least 40 contiguous amino acids thereof that optionally

is directly or indirectly attached to a sequence that facilitates the expression and/or translocation of said polypeptide on the surface of a cell.

31. An isolated nucleic acid sequence which encodes a polypeptide that
5 exhibits at least 70% sequence identity with a polypeptide selected from the group
consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID
NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID
NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID
NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID
10 NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID
NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID
NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID
NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID
NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID
15 NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID
NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107,
SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID
NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125,
SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID
20 NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143,
SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID
NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID
NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179,
25 SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID
NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
30 NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID

NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
5 NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID
NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
10 SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID
NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID
NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377,
SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID
15 NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395,
SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID
NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413,
SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID
NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431,
20 SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID
NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449,
SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID
NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467,
SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID
25 NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485,
SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID
NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503,
SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a
fragment thereof comprising at least 40 contiguous amino acids thereof that optionally
30 is directly or indirectly attached to a sequence that facilitates the expression and/or
translocation of said polypeptide on the surface of a cell.

32. An isolated nucleic acid sequence which encodes a polypeptide that exhibits at least 80% sequence identity with a polypeptide selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,

SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
5 SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID
10 NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413,
15 SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID
20 NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503,
25 SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof comprising at least 40 contiguous amino acids thereof that optionally is directly or indirectly attached to a sequence that facilitates the expression and/or translocation of said polypeptide on the surface of a cell.

30 33. An isolated nucleic acid sequence which encodes a polypeptide that exhibits at least 85% sequence identity with a polypeptide selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID

NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID
NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID
NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID
NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID
5 NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID
NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID
NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID
NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID
NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107,
10 SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID
NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125,
SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID
NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143,
SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID
15 NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID
NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179,
SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID
NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
20 SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
25 NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
30 SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,

SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
5 SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID
10 NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449,
15 SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID
20 NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof comprising at least 40 contiguous amino acids thereof that optionally is directly or indirectly attached to a sequence that facilitates the expression and/or translocation of said polypeptide on the surface of a cell.

25

34. An isolated nucleic acid sequence which encodes a polypeptide that exhibits at least 90% sequence identity with a polypeptide selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID

NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID
NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID
NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID
NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID
5 NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107,
SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID
NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125,
SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID
NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143,
10 SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID
NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID
NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179,
SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID
15 NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
20 SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
25 NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
30 SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID
NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID
NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,

NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107,
SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID
NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125,
SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID
5 NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143,
SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID
NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161,
SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID
NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179,
10 SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID
NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197,
SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID
NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,
SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID
15 NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233,
SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID
NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID
NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269,
20 SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID
NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287,
SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305,
SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID
25 NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323,
SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID
NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID
NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359,
30 SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID
NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377,
SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID
NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395,

SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431,
5 SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID
10 NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof comprising at least 40 contiguous amino acids thereof that optionally
15 is directly or indirectly attached to a sequence that facilitates the expression and/or translocation of said polypeptide on the surface of a cell.

36. The isolated nucleic acid sequence according to Claim 26, wherein said isolated nucleic acid sequence is operably linked to a constitutive promoter.

20

37. The isolated nucleic acid sequence according to Claim 1, wherein said isolated nucleic acid sequence is operably linked to a regulatable promoter.

25 38. The isolated nucleic acid sequence of Claim 1, wherein said isolated nucleic acid sequence is directly or indirectly attached to a nucleic acid sequence encoding a mammalian rhodopsin polypeptide or a fragment thereof.

30 39. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a fragment of at least 60 contiguous amino acids of a polypeptide having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID

NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID
NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID
NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID
NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID
5 NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID
NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID
NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ
ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111,
SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID
10 NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129,
SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID
NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147,
SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID
NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165,
15 SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID
NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183,
SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID
NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201,
SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID
20 NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219,
SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID
NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237,
SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID
NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255,
25 SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID
NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273,
SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID
NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291,
SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID
30 NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309,
SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID
NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327,
SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID

NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345,
SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID
NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363,
SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID
5 NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381,
SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID
NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399,
SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID
NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417,
10 SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID
NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435,
SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID
NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453,
SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID
15 NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471,
SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID
NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489,
SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID
NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507,
20 SEQ ID NO: 509, and SEQ ID NO: 511.

40. The isolated nucleic acid molecule of Claim 39, wherein the nucleotide sequence encodes at least 100 amino acids.

25 41. The isolated nucleic acid molecule of Claim 39, wherein the nucleotide sequence encodes at least 150 amino acids.

42. The isolated nucleic acid molecule of Claim 39, wherein the nucleotide sequence encodes at least 200 amino acids.

30 43. The isolated nucleic acid molecule of Claim 39, wherein the nucleotide sequence encodes at least 250 amino acids.

44. The isolated nucleic acid molecule of Claim 39, wherein the polypeptide is an olfactory G protein-coupled receptor.

45. The isolated nucleic acid molecule of Claim 39, wherein the expression product binds an odorant.

46. The isolated nucleic acid molecule of Claim 1 comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178, SEQ ID NO: 180, SEQ ID NO: 182, SEQ ID NO: 184, SEQ ID NO: 186, SEQ ID NO: 188, SEQ ID NO: 190, SEQ ID NO: 192, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202, SEQ ID NO: 204, SEQ ID NO: 206, SEQ ID NO: 208, SEQ ID NO: 210, SEQ ID NO: 212, SEQ ID NO: 214, SEQ ID NO: 216, SEQ ID NO: 218, SEQ ID NO: 220, SEQ ID NO: 222, SEQ ID NO: 224, SEQ ID NO: 226, SEQ ID NO: 228, SEQ ID NO: 230, SEQ ID NO: 232, SEQ ID NO: 234, SEQ ID NO: 236, SEQ ID NO: 238, SEQ ID NO: 240,

SEQ ID NO: 242, SEQ ID NO: 244, SEQ ID NO: 246, SEQ ID NO: 248, SEQ ID NO: 250, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 256, SEQ ID NO: 258, SEQ ID NO: 260, SEQ ID NO: 262, SEQ ID NO: 264, SEQ ID NO: 266, SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 272, SEQ ID NO: 274, SEQ ID NO: 276,
5 SEQ ID NO: 278, SEQ ID NO: 280, SEQ ID NO: 282, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 288, SEQ ID NO: 290, SEQ ID NO: 292, SEQ ID NO: 294, SEQ ID NO: 296, SEQ ID NO: 298, SEQ ID NO: 300, SEQ ID NO: 302, SEQ ID NO: 304, SEQ ID NO: 306, SEQ ID NO: 308, SEQ ID NO: 310, SEQ ID NO: 312, SEQ ID NO: 314, SEQ ID NO: 316, SEQ ID NO: 318, SEQ ID NO: 320, SEQ ID NO: 322, SEQ ID NO: 324, SEQ ID NO: 326, SEQ ID NO: 328, SEQ ID NO: 330, SEQ ID NO: 332, SEQ ID NO: 334, SEQ ID NO: 336, SEQ ID NO: 338, SEQ ID NO: 340, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 350, SEQ ID NO: 352, SEQ ID NO: 354, SEQ ID NO: 356, SEQ ID NO: 358, SEQ ID NO: 360, SEQ ID NO: 362, SEQ ID NO: 364, SEQ ID NO: 366,
10 SEQ ID NO: 368, SEQ ID NO: 370, SEQ ID NO: 372, SEQ ID NO: 374, SEQ ID NO: 376, SEQ ID NO: 378, SEQ ID NO: 380, SEQ ID NO: 382, SEQ ID NO: 384, SEQ ID NO: 386, SEQ ID NO: 388, SEQ ID NO: 390, SEQ ID NO: 392, SEQ ID NO: 394, SEQ ID NO: 396, SEQ ID NO: 398, SEQ ID NO: 400, SEQ ID NO: 402, SEQ ID NO: 404, SEQ ID NO: 406, SEQ ID NO: 408, SEQ ID NO: 410, SEQ ID NO: 412, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID NO: 418, SEQ ID NO: 420, SEQ ID NO: 422, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 428, SEQ ID NO: 430, SEQ ID NO: 432, SEQ ID NO: 434, SEQ ID NO: 436, SEQ ID NO: 438, SEQ ID NO: 440, SEQ ID NO: 442, SEQ ID NO: 444, SEQ ID NO: 446, SEQ ID NO: 448, SEQ ID NO: 450, SEQ ID NO: 452, SEQ ID NO: 454, SEQ ID NO: 456,
15 SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 462, SEQ ID NO: 464, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 470, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 476, SEQ ID NO: 478, SEQ ID NO: 480, SEQ ID NO: 482, SEQ ID NO: 484, SEQ ID NO: 486, SEQ ID NO: 488, SEQ ID NO: 490, SEQ ID NO: 492, SEQ ID NO: 494, SEQ ID NO: 496, SEQ ID NO: 498, SEQ ID NO: 500, SEQ ID NO:
20 502, SEQ ID NO: 504, SEQ ID NO: 506, SEQ ID NO: 508, SEQ ID NO: 510 and SEQ ID NO: 512.

47. An expression vector that comprises a nucleic acid sequence according to Claim 1.

48. The expression vector of Claim 47, wherein said vector is a
5 mammalian, yeast, bacterial or insect expression vector.

49. A cell which is transfected or transformed with at least one nucleic acid sequence according to Claim 1.

10 50. A mammalian cell according to Claim 49.

51. A human cell according to Claim 50.

52. A yeast or insect cell according to Claim 49.

15 53. The mammalian cell according to Claim 49 which is selected from the group consisting of: an olfactory cell, Chinese hamster ovary cell, baby hamster kidney cell, and a myeloma cell.

20 54. A solid phase comprising at least one isolated nucleic acid sequence according to Claim 1.

25 55. A solid phase comprising at least one isolated nucleic acid sequence according to Claim 1, wherein the solid phase is attached to an array comprising at least one additional nucleic acid sequence.

56. The solid phase according to Claim 55 which comprises an array of at least 4 different nucleic acid sequences that encode olfactory receptors or fragments or variants thereof.

30 57. The solid phase according to Claim 55 which comprises at least 10 different nucleic acid sequences that encode olfactory receptors or fragments or variants thereof.

58. The solid phase according to Claim 55 which comprises at least 50 different nucleic acid sequences that encode olfactory receptors or fragments or variants thereof.

5

59. The solid phase according to Claim 55 which comprises at least 100 different sequences that encode olfactory receptors or fragments or variants thereof.

60. An isolated polypeptide that is selected from the group consisting of:

10 (i) a polypeptide comprising an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215,

SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251,
5 SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID
10 NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341,
15 SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID
20 NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431,
25 SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID
30 NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511;

(ii) a polypeptide comprising an amino acid sequence that exhibits at least 40% sequence identity with an amino acid sequence selected from the group consisting of:
SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ
ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ
5 ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ
ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ
ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ
ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ
ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ
10 ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ
ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ
ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ
ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109,
SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID
15 NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127,
SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID
NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145,
SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID
NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163,
20 SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID
NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181,
SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID
NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199,
SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID
25 NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217,
SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID
NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235,
SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID
NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253,
30 SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID
NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271,
SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID
NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289,

SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325,
5 SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID
10 NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415,
15 SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID
20 NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505,
25 SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511;
(iii) a polypeptide comprising an amino acid sequence that exhibits at least 60% sequence identity with a fragment of a polypeptide according to (i) which fragment is at least 40 amino acids in length;
(iv) a chimeric polypeptide that comprises a portion of a polypeptide according to
30 (i) or (ii) that is at least 40 amino acids in length and a portion of at least one other G protein-coupled receptor; and
(v) a variant of a polypeptide according to (i) which differs by said polypeptide by at least one substitution, addition or deletion modification.

61. An isolated polypeptide according to Claim 60 wherein such polypeptide exhibits at least 70% sequence identity with a polypeptide having a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ
5 ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID
10 NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ
15 ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149,
20 SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID
25 NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239,
30 SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,

SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311,
5 SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401,
10 SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491,
15 SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

62. An isolated polypeptide according to Claim 60 wherein said polypeptide exhibits at least 80% sequence identity with a polypeptide having a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID
30

NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID
NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID
NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID
NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID
5 NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID
NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID
NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ
ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113,
10 SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID
NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131,
SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID
NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149,
SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID
15 NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167,
SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID
NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185,
SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID
NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203,
20 SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID
NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221,
SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID
NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239,
SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID
25 NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257,
SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID
NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,
SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID
NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293,
30 SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID
NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311,
SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID
NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329,

SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365,
5 SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455,
10 SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509
15 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

63. An isolated polypeptide according to Claim 60 wherein said polypeptide exhibits at least 90% sequence identity with a polypeptide having a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID
25 NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ
ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113,
SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID
5 NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131,
SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID
NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149,
SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID
NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167,
10 SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID
NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185,
SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID
NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203,
SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID
15 NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221,
SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID
NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239,
SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID
NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257,
20 SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID
NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,
SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID
NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293,
SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID
25 NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311,
SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID
NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329,
SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID
NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347,
30 SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID
NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365,
SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID
NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383,

SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419,
5 SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID
10 NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509
15 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

64. An isolated polypeptide according to Claim 60 wherein said polypeptide exhibits about 80-90% sequence identity with a polypeptide having a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID

NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149,
SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID
NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167,
SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID
5 NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185,
SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID
NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203,
SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID
NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221,
10 SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID
NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239,
SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID
NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257,
SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID
15 NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,
SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID
NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293,
SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID
NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311,
20 SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID
NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329,
SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID
NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347,
SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID
25 NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365,
SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID
NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383,
SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID
NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401,
30 SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID
NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419,
SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID
NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437,

SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473,
5 SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

10

65. An isolated polypeptide according to Claim 60 wherein said polypeptide exhibits at least 90-95% sequence identity with a polypeptide having a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID

NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203,
SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID
NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221,
SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID
5 NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239,
SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID
NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257,
SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID
NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,
10 SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID
NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293,
SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID
NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311,
SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID
15 NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329,
SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID
NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347,
SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID
NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365,
20 SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID
NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383,
SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID
NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401,
SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID
25 NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419,
SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID
NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437,
SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID
NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455,
30 SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID
NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473,
SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID
NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491,

SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

5 66. An isolated polypeptide according to Claim 60 wherein said polypeptide exhibits about 95-99% sequence identity with a polypeptide having a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID

NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257,
SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID
NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275,
SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID
5 NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293,
SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID
· NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311,
SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID
NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329,
10 SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID
NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347,
SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID
NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365,
SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID
15 NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383,
SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID
NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401,
SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID
NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419,
20 SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID
NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437,
SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID
NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455,
SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID
25 NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473,
SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID
NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491,
SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID
NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509
30 and SEQ ID NO: 511 or a fragment thereof which is at least 50 amino acids.

67. A variant according to Claim 60(v) which comprises at least 5 conservative amino acid substitutions.

68. A variant according to Claim 60(v) which comprises at most 5 conservative amino acid substitutions.

5 69. A variant according to Claim 60(v) which comprises 5 to 7 conservative substitution modifications.

70. A variant according to Claim 60(v) which comprises 3 to 4 conservative substitution modifications.

10

71. A variant according to Claim 60(v) which comprises 1 or 2 conservative substitution modifications.

15 72. A solid phase comprising at least one directly or indirectly immobilized isolated polypeptide according to Claim 60, or a cell which expresses said polypeptide on the surface thereof.

20 73. The solid phase of Claim 72 comprising at least 4 different immobilized polypeptides according to Claim 60, or a cell which expresses said polypeptide on the surface thereof.

25 74. The solid phase of Claim 72 comprising at least 16 different immobilized polypeptides according to Claim 60, or a cell which expresses said polypeptide on the surface thereof.

75.

75. The solid phase of Claim 72 comprising at least 25 different immobilized polypeptides according to Claim 60 or a cell which expresses said polypeptide on the surface thereof.

30

76. A method of detecting expression of an olfactory receptor gene comprising (a) hybridizing at least one sample with a nucleic acid according to Claim 1 and (b) detecting expression of the olfactory receptor gene by a positive hybridization signal.

77. A method of screening a library comprising (a) hybridizing the library with a nucleic acid according to Claim 1 and (b) detecting one or more olfactory receptor clones in the library by a positive hybridization signal.

5

78. A recombinant polynucleotide comprising a nucleic acid according to Claim 1 attached directly or indirectly to a heterologous nucleic acid.

79. An expression vector comprising the nucleic acid of Claim 1 and an
10 operably linked heterologous nucleic acid that drives expression thereof.

80. A transfected or transformed cell comprising the recombinant polynucleotide of Claim 78 introduced into a host cell, or a progeny thereof.

15 81. A transgenic non-human organism comprising the recombinant polynucleotide of Claim 78 introduced into a cell of a host non-human organism, or a progeny thereof.

20 82. A method of making a recombinant polynucleotide comprising ligating the nucleic acid of Claim 1 to a heterologous nucleic acid.

83. The method of Claim 82 wherein the heterologous nucleic acid comprises a translational and/or transcriptional regulatory region.

25 84. A method of making a transfected cell comprising introducing the recombinant polynucleotide of Claim 79 into a host cell, and propagating the host cell in which the recombinant polynucleotide has been introduced.

30 85. A method of detecting specific binding of a putative ligand to an olfactory receptor comprising (a) contacting the putative ligand with a cell in which the expression vector of Claim 79 has been introduced, wherein the olfactory receptor is expressed by the cell thereby, and (b) directly or indirectly detecting specific binding between the putative ligand and the olfactory receptor.

86. A method of making transgenic non-human organism comprising introducing the recombinant polynucleotide of Claim 78 into a cell of a host non-human organism, or propagating the host non-human organism in which the 5 recombinant polynucleotide has been introduced.

87. An isolated protein molecule comprising a fragment of at least 60 contiguous amino acids of a polypeptide having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID 10 NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID 15 NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ 20 ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, 25 SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID 30 NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID

NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241,
SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID
NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259,
SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID
5 NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277,
SEQ ID NO: 279, SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID
NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295,
SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID
NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313,
10 SEQ ID NO: 315, SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID
NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331,
SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID
NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349,
SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID
15 NO: 359, SEQ ID NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367,
SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID
NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385,
SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID
NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403,
20 SEQ ID NO: 405, SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID
NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421,
SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID
NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439,
SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID
25 NO: 449, SEQ ID NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457,
SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID
NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475,
SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID
NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493,
30 SEQ ID NO: 495, SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID
NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO:
511.

88. The isolated protein molecule of Claim 87, wherein the fragment contains at least 100 amino acids.

89. The isolated protein molecule of Claim 87, wherein the fragment
5 contains at least 150 amino acids.

90. The isolated protein molecule of Claim 87, wherein the fragment contains at least 200 amino acids.

10 91. The isolated protein molecule of Claim 87, wherein the fragment contains at least 250 amino acids.

92. The isolated protein molecule of Claim 87, which is a functional olfactory receptor polypeptide.

15 93. The isolated protein molecule of Claim 87, wherein the fragment specifically binds an odorant molecule.

20 94. A recombinant polypeptide comprising the protein molecule of Claim 87 and a heterologous peptide domain.

95. The recombinant polypeptide of Claim 94, wherein the heterologous peptide domain comprises a G protein-coupled receptor transmembrane domain.

25 96. The recombinant polypeptide of Claim 94 comprising a seven-transmembrane receptor with an olfactory receptor ligand-binding domain, wherein the olfactory receptor ligand-binding domain is a chimera of at least two different olfactory receptors.

30 97. A method of detecting specific binding of a ligand to an olfactory receptor comprising (a) contacting the ligand with the protein of Claim 86, and (b) directly or indirectly detecting specific binding between the ligand and the olfactory receptor.

98. An antibody or antibody fragment that specifically binds a polypeptide having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ
5 ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ
10 ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID
15 NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155,
20 SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID
25 NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245,
30 SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279, SEQ ID NO: 281,

SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315, SEQ ID NO: 317,
5 SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333, SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351, SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID NO: 361, SEQ ID
10 NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369, SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387, SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 407,
15 SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID NO: 451, SEQ ID
20 NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477, SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495, SEQ ID NO: 497,
25 SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511.

99. A method of detecting specific binding of the antibody of Claim 98 to an olfactory receptor comprising (a) contacting the antibody with a sample comprising the olfactory receptor and (b) detecting specific binding therebetween.
30

100. The method of Claim 99, wherein specific binding of the antibody to a cell in the sample identifies the cell as an olfactory cell.

109. The method of Claim 108 wherein modulation is detected based on changes in intracellular calcium.

110. The method of Claim 108 wherein modulation is detected by 5 measuring the transfer of 32P from gamma-labeled GTP to the olfactory receptor polypeptide.

111. The method of Claim 108 wherein modulation is determined based on a comparison to a control compound known to modulate the particular olfactory 10 receptor protein.

112. The method of Claim 108 wherein the G protein is Ga15 or Ga16 or another promiscuous G protein.

15 113. The method of Claim 108 wherein modulation is determined by detecting whether a change in the level of intracellular cyclic nucleotides occurs.

114. The method of Claim 108 wherein modulation is determined based on the level of transcription of said olfactory polypeptide after contacting the cell with the 20 screened compound.

115. The method of Claim 108 when said screened compounds are synthesized by computer assisted drug devices based on the predicted or actual three-dimensional structure of the amino acid sequence of the olfactory protein or a 25 fragment thereof.

116. The method of Claim 108 wherein compounds that modulate olfactory receptor are identified based on whether they specifically bind to a olfactory receptor polypeptide.

30

117. The method of Claim 108 wherein modulation refers to the inhibition of olfactory receptor function.

118. The method of Claim 108 wherein modulation refers to the enhancement of olfactory receptor function.

119. A method for representing the olfactory perception of one or more odors in one or more mammals, comprising:

providing values X_1 to X_n representative of the quantitative stimulation of each of n odor receptors of said mammals; and
generating from said values a quantitative representation of odor perception, wherein at least one of said odor receptors is an odor receptor polypeptide having a sequence that is at least about 40% identical to a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID

NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225,
SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID
NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243,
SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID
5 NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261,
SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO: 267, SEQ ID NO: 269, SEQ ID
NO: 271, SEQ ID NO: 273, SEQ ID NO: 275, SEQ ID NO: 277, SEQ ID NO: 279,
SEQ ID NO: 281, SEQ ID NO: 283, SEQ ID NO: 285, SEQ ID NO: 287, SEQ ID
NO: 289, SEQ ID NO: 291, SEQ ID NO: 293, SEQ ID NO: 295, SEQ ID NO: 297,
10 SEQ ID NO: 299, SEQ ID NO: 301, SEQ ID NO: 303, SEQ ID NO: 305, SEQ ID
NO: 307, SEQ ID NO: 309, SEQ ID NO: 311, SEQ ID NO: 313, SEQ ID NO: 315,
SEQ ID NO: 317, SEQ ID NO: 319, SEQ ID NO: 321, SEQ ID NO: 323, SEQ ID
NO: 325, SEQ ID NO: 327, SEQ ID NO: 329, SEQ ID NO: 331, SEQ ID NO: 333,
SEQ ID NO: 335, SEQ ID NO: 337, SEQ ID NO: 339, SEQ ID NO: 341, SEQ ID
15 NO: 343, SEQ ID NO: 345, SEQ ID NO: 347, SEQ ID NO: 349, SEQ ID NO: 351,
SEQ ID NO: 353, SEQ ID NO: 355, SEQ ID NO: 357, SEQ ID NO: 359, SEQ ID
NO: 361, SEQ ID NO: 363, SEQ ID NO: 365, SEQ ID NO: 367, SEQ ID NO: 369,
SEQ ID NO: 371, SEQ ID NO: 373, SEQ ID NO: 375, SEQ ID NO: 377, SEQ ID
NO: 379, SEQ ID NO: 381, SEQ ID NO: 383, SEQ ID NO: 385, SEQ ID NO: 387,
20 SEQ ID NO: 389, SEQ ID NO: 391, SEQ ID NO: 393, SEQ ID NO: 395, SEQ ID
NO: 397, SEQ ID NO: 399, SEQ ID NO: 401, SEQ ID NO: 403, SEQ ID NO: 405,
SEQ ID NO: 407, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 413, SEQ ID
NO: 415, SEQ ID NO: 417, SEQ ID NO: 419, SEQ ID NO: 421, SEQ ID NO: 423,
SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 429, SEQ ID NO: 431, SEQ ID
25 NO: 433, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 439, SEQ ID NO: 441,
SEQ ID NO: 443, SEQ ID NO: 445, SEQ ID NO: 447, SEQ ID NO: 449, SEQ ID
NO: 451, SEQ ID NO: 453, SEQ ID NO: 455, SEQ ID NO: 457, SEQ ID NO: 459,
SEQ ID NO: 461, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 467, SEQ ID
NO: 469, SEQ ID NO: 471, SEQ ID NO: 473, SEQ ID NO: 475, SEQ ID NO: 477,
30 SEQ ID NO: 479, SEQ ID NO: 481, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID
NO: 487, SEQ ID NO: 489, SEQ ID NO: 491, SEQ ID NO: 493, SEQ ID NO: 495,
SEQ ID NO: 497, SEQ ID NO: 499, SEQ ID NO: 501, SEQ ID NO: 503, SEQ ID
NO: 505, SEQ ID NO: 507, SEQ ID NO: 509 and SEQ ID NO: 511.

120. The method of claim 119, wherein said representation constitutes a point or a volume in n-dimensional space.

5 121. The method of claim 119, wherein said representation constitutes a graph or a spectrum.

122. The method of claim 119, wherein said representation constitutes a matrix of quantitative representations.

10

123. The method of claim 119, wherein said providing step comprises contacting a plurality of recombinantly produced olfactory receptors with a test composition, and quantitatively measuring the interaction of said composition with said receptors.

15

124. A method for predicting the odor perception in a mammal generated by one or more molecules or combinations of molecules comprising:

providing values X_1 to X_n representative of the quantitative stimulation of each of n odor receptors of said mammal, for one or more molecules or combinations of

20 molecules yielding known odor perception in a mammal,

generating from said values a quantitative representation of odor perception in a mammal for the one or more molecules or combinations of molecules yielding known

odor perception in a mammal;

providing values X_1 to X_n representative of the quantitative stimulation of each of n

25 odor receptors of said mammal, for one or more molecules or combinations of molecules yielding unknown odor perception in a mammal;

generating from said values a quantitative representation of odor perception in a mammal for the one or more molecules or combinations of molecules yielding

unknown odor perception in a mammal; and

30 predicting the olfactory perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown odor perception in a mammal by comparing the quantitative representation of odor perception in a mammal generated by one or more molecules or combinations of molecules yielding unknown odor

perception in a mammal to the quantitative representation of odor perception in a mammal for the one or more molecules or combinations of molecules yielding known odor perception in a mammal, wherein at least one of said odor receptors is a odor receptor polypeptide having a sequence that is at least about 40% identical to a sequence selected from the group consisting of: SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177, SEQ ID NO: 179, SEQ ID NO: 181, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 191, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201, SEQ ID NO: 203, SEQ ID NO: 205, SEQ ID NO: 207, SEQ ID NO: 209, SEQ ID NO: 211, SEQ ID NO: 213, SEQ ID NO: 215, SEQ ID NO: 217, SEQ ID NO: 219, SEQ ID NO: 221, SEQ ID NO: 223, SEQ ID NO: 225, SEQ ID NO: 227, SEQ ID NO: 229, SEQ ID NO: 231, SEQ ID NO: 233, SEQ ID NO: 235, SEQ ID NO: 237, SEQ ID NO: 239, SEQ ID NO: 241, SEQ ID NO: 243, SEQ ID NO: 245, SEQ ID NO: 247, SEQ ID NO: 249, SEQ ID NO: 251, SEQ ID NO: 253, SEQ ID NO: 255, SEQ ID NO: 257, SEQ ID NO: 259, SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 265, SEQ ID NO:

AOLFR01.PX	*	*	20	*	40	*	60	*	80	*	100
			-KT-		-MMVTLR-		-FSSPFIQIGRNMHQGENQT-		-TEPIIIGEFFKODA-HONLLETFITG		:
AOLFR02.PX	:V						-NLSEHPTEDP-		-LGPEDDPK-LQPLP-		46
AOLFR03.PX	:V						-NTS-GTFFLGCFEDDPK-LOVPEL-		-LQPLP-		35
AOLFR04.PX	:V						-VTEFFINCLMENELNLFESA-		-LQPLP-		34
AOLFR05.PX	:V						-ENONN--VTEFFINCLMENELNLFESA-		-LQPLP-		34
AOLFR06.PX	:V						-NCNTVA-EFTI-C7DDE-LRVQD-		-LQPLP-		31
AOLFR07.PX	:V						-NOSSYTFIICFSFEP-LOVPEL-		-LQPLP-		33
AOLFR08.PX	:V						-KNSYTSSETSGEFLGNSNPK-LOKPER-		-LQPLP-		35
AOLFR09.PX	:V						-ATSNHSSGAEFLIAQDPS-LQPLP-		-LQPLP-		70
AOLFR10.PX	:V						-LARNNSLVTEFLAGUDPES-FRQPET-		-LQPLP-		33
AOLFR11.PX	:V						-TLMRSSSVTEFLIVBHEPPE-LQPLP-		-LQPLP-		33
AOLFR12.PX	:V						-PASSOSSRAN-SENUTRAVAAPEFLV-		-LQPLP-		33
AOLFR13.PX	:V						-DOXNG--PSEFFLGSSPPE-DOKP-		-LQPLP-		33
AOLFR14.PX	:V						-SSFGFLLCSDPQ-LELVLE-		-LQPLP-		33
AOLFR15.PX	:V						-SSTLEFILCKEGQR-QDFEF-		-LQPLP-		58
AOLFR16.PX	:V						-RR-INCTAVEFINGLUTR-SQDFEF-		-LQPLP-		33
AOLFR17.PX	:V						-L-NFTDVYBETINCISRE-LQPLP-		-LQPLP-		32
AOLFR18.PX	:V						-SNTNGSALTEFLJLUDOPB-LSQPLP-		-LQPLP-		31
AOLFR19.PX	:V						-ETRNYSSETSGEFLGNSNPK-LOKPER-		-LQPLP-		33
AOLFR20.PX	:V						-ENHMKSEFLV-CHDR-LKLT-		-LQPLP-		34
AOLFR21.PX	:V						-EPKRN--VTDDEVLGFTONPKQKVLFV-		-LQPLP-		33
AOLFR22.PX	:V						-RZNKN--XTEFVLGFODGVKALEY-		-LQPLP-		31
AOLFR23.PX	:V						-KNNLTRV--VSDEVFLCSCOTRELORFLFL-		-LQPLP-		33
AOLFR24.PX	:V						-ETGNLTVW--VSDDEVFLCSCOTRELORFLFL-		-LQPLP-		33
AOLFR25.PX	:V						-AAKNSS-VTEFLCSCDQG-LRIPF-		-LQPLP-		32
AOLFR26.PX	:V						-QNLISSEFLV-CHDR-LSQPLP-		-LQPLP-		34
AOLFR27.PX	:V						-P-NFTDVYBETINCISRE-LQPLP-		-LQPLP-		31
AOLFR28.PX	:V						-SHSPVFLIGFA-RANISTLFL-LSA-		-LQPLP-		35
AOLFR29.PX	:V						-GRLSPMIFCRPTQRMAGHSNTVVE-		-LQPLP-		50
AOLFR30.PX	:V						-GNDHTVVEFLV-CHDR-LQPLP-		-LQPLP-		33
AOLFR31.PX	:V						-SCCNFT-A-TIVVFLSPLEKA-HFWYCPPLS-		-LQPLP-		36
AOLFR32.PX	:V						-GT-		-DGNHYALTGEFLCSDPPI-IRVLEFLS-		32
AOLFR33.PX	:V						-NSLK-		-E-VSEFLV-CHDR-LSHLL-		54
AOLFR34.PX	:V						-LE-		-E-VSEFLV-CHDR-LSHLL-		54
AOLFR35.PX	:V						-EP-		-E-VSEFLV-CHDR-LSHLL-		33
AOLFR36.PX	:V						-EK-		-E-VSEFLV-CHDR-LSHLL-		33
AOLFR37.PX	:V						-ANET-		-SPMGCVWYRISHPPE-LEKTFEN-		1
AOLFR38.PX	:V								-QVNHSHPTVEBTISSEWQAEI-OLPHEP-		1
AOLFR39.PX	:V								-SNAPLTAI-1DPLPG-1DPLS-		1
AOLFR40.PX	:V								-NPENWTQVTSVNGFPESHL--OFIVL-		33
AOLFR41.PX	:V								-GLNV--H-PTAELVSTGELH-LHIVDIEPCL-		31
AOLFR42.PX	:V								-NPANHSO--VAGENLICCSQWEL-REFUE-		33
AOLFR43.PX	:V								-IATNGNLVH-AVYDNYC1DGLPHTHEM1APLCF-		46
AOLFR44.PX	:V								-SECNFT-A-TIVVFLSPLEKA-HFWYCPPLS-		32
AOLFR45.PX	:V								-GT--H-PANE-		35
AOLFR46.PX	:V								-SNAPLTAI-1DPLPG-1DPLS-		107
AOLFR47.PX	:V								-NPENWTQVTSVNGFPESHL--OFIVL-		15
AOLFR48.PX	:V								-GLNV--H-PTAELVSTGELH-LHIVDIEPCL-		36
AOLFR49.PX	:V								-NPANHSO--VAGENLICCSQWEL-REFUE-		35
AOLFR50.PX	:V								-IATNGNLVH-AVYDNYC1DGLPHTHEM1APLCF-		51
AOLFR51.PX	:V								-SECNFT-A-TIVVFLSPLEKA-HFWYCPPLS-		63
AOLFR52.PX	:V								-LGPAINTHMETPASFLYQGLQSS-HLWLBLSA-		37

Figure 1

Figure 1

220	240	260	280	300	320
AOLF01..PF	FGLTLLSBNFLNLAETHTOLIQLFC	NHN-TLPHEPC	DIAPIJLXSCSD	FLNLFENYIP-TVGLSVTFPEPFISS	SIVTCRATVPESS
AOLF02..PF	KGLAIVGSGSYWNGFGPVMCCARLFC	GPN-VINHFC	EPAIJLXSCSD	T-LIPIHNF-SPATENCTILIT	SIVVEFVTVPESS
AOLF03..PF	KGTLVQSSJAWVSCHBLTSALKLCH	GPN-TINHFC	EFSSLISCSA	T-LIINONWF-FLATENSTLLVAT	SIAFAVTVPESS
AOLF04..PF	VCLLKVAGAVGEMFHATOLPMQIPI	GPN-JUDHFC	DIEQIJLXSCSD	T-LHILHNTP-LNSGMCMCAIFIHLIA	SIVTLLCS-1NSYS
AOLF05..PF	YEEVACCOGTICLICHOLIPLIPI	GPN-VINHFC	DIAPIJLXSCSD	T-LHILHNTP-LNATLAVSNVTE	SIVTLLCS-1NSYS
AOLF06..PF	DLIIVGSSSYTLYCSPBLTFLDLSIC	GPN-TINHFC	DHEVILXSCSD	T-LIAFNWSLSDLT-SIVM-LPTTIVPESS	232
AOLF07..PF	HQSLIIVGSSYFHM-FRVLMSRSTIC	GPN-TINHFC	DIVPVIJLXSCSD	T-LSSTAVNTPEPFLCIP-SIVR-LTIVPESS	227
AOLF08..PF	HQSLIIVGSSYFHM-FRVLMSRSTIC	GPN-TINHFC	DIVPVIJLXSCSD	T-LSSTAVNTPEPFLCIP-SIVR-LTIVPESS	230
AOLF09..PF	YQSMTRPAVYLAGAT-AHSGMFRLFC	GPN-TINHFC	DILNLIJLXSCSD	T-LIGGNTTALTAIATLIA-SIVFSTVPESS	230
AOLF10..PF	YQSMTRPAVYLAGAT-AHSGMFRLFC	GPN-TINHFC	DILNLIJLXSCSD	T-LIGGNTTALTAIATLIA-SIVFSTVPESS	230
AOLF11..PF	DNFVJLXSCSD	DSN-VDHEPC	DIVPVIJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF12..PF	CGVLTJLXSCDFPHSH-THLTTMNLQFC	GPN-VINHFC	DIVPVIJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF13..PF	HQVNLJLXSCDFPHSH-WOHTHLLFC	GPN-VINHFC	DDEQVJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	280
AOLF14..PF	HQVNLJLXSCDFPHSH-WOHTHLLFC	GPN-VINHFC	DIVPVIJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF15..PF	SGWMLJGSSVGMANAF-WHTEFLTSEC	GPN-EVANTFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	255
AOLF16..PF	SGWMLJGSSVGMANAF-WHTEFLTSEC	GPN-EVANTFC	DITPVIJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF17..PF	NOIRLJLXSCDFPHSH-AHSGMFRLFC	GPN-BINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF18..PF	GKLJLXSCDFPHSH-AHSGMFRLFC	GPN-BINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	228
AOLF19..PF	HQVNLJLXSCDFPHSH-AHSGMFRLFC	GPN-BINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	231
AOLF20..PF	HQVNLJLXSCDFPHSH-AHSGMFRLFC	GPN-BINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF21..PF	YQVRLJLXSCDFPHSH-AHSGMFRLFC	GPN-VINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	226
AOLF22..PF	YQVRLJLXSCDFPHSH-AHSGMFRLFC	GPN-VINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	226
AOLF23..PF	KGWSJUNVNTCVGCH-IRTTCTEISFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF24..PF	KGWSJUNVNTCVGCH-MOLAMNLPFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF25..PF	KGWSJUNVNTCVGCH-AHSGMFRLFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF26..PF	KGWSJUNVNTCVGCH-AHSGMFRLFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF27..PF	DIAPIJLXSCSD	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	226
AOLF28..PF	KGWSJUNVNTCVGCH-IRTTCTEISFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	251
AOLF29..PF	KGWSJUNVNTCVGCH-IRTTCTEISFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF30..PF	TOLLJLXSCDFPHSH-LETHOMPLFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	197
AOLF31..PF	KGWSJUNVNTCVGCH-TFCGSLRIFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	231
AOLF32..PF	KGWSJUNVNTCVGCH-TFCGSLRIFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	197
AOLF33..PF	KGWSJUNVNTCVGCH-TFCGSLRIFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF34..PF	KGWSJUNVNTCVGCH-TFCGSLRIFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF35..PF	KGWSJUNVNTCVGCH-TFCGSLRIFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	230
AOLF36..PF	KGWSJUNVNTCVGCH-TFCGSLRIFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF37..PF	AMPFLJLXSCDFPHSH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF38..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	243
AOLF39..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	229
AOLF40..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	232
AOLF41..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	304
AOLF42..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	232
AOLF43..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	233
AOLF44..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	248
AOLF45..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	260
AOLF46..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	234
AOLF47..PF	KGWSJUNVNTCVGCH-VOLATIOTFC	GPN-QINHFC	DIPPLAJLXSCSD	T-LVGNINWVPSCLL-SIVFSTVPESS	234

Figure 1

Figure 1

440

AOLFR01.pr	:	- - - - -	:	-
AOLFR02.pr	:	- - - - -	:	-
AOLFR03.pr	:	- - - - -	:	-
AOLFR04.pr	:	- - - - -	:	-
AOLFR05.pr	:	- - - - -	:	-
AOLFR06.pr	:	- - - - -	:	-
AOLFR07.pr	:	- - - - -	:	-
AOLFR08.pr	:	- - - - -	:	-
AOLFR09.pr	:	- - - - -	:	-
AOLFR10.pr	:	- - - - -	:	-
AOLFR11.pr	:	- - - - -	:	-
AOLFR12.pr	:	- - - - -	:	-
AOLFR13.pr	:	- - - - -	:	-
AOLFR14.pr	:	- - - - -	:	-
AOLFR15.pr	:	- - - - -	:	-
AOLFR16.pr	:	- - - - -	:	-
AOLFR17.pr	:	- - - - -	:	-
AOLFR18.pr	:	- - - - -	:	-
AOLFR19.pr	:	- - - - -	:	-
AOLFR20.pr	:	- - - - -	:	-
AOLFR21.pr	:	- - - - -	:	-
AOLFR22.pr	:	- - - - -	:	-
AOLFR23.pr	:	- - - - -	:	-
AOLFR25.pr	:	- - - - -	:	-
AOLFR26.pr	:	- - - - -	:	-
AOLFR27.pr	:	- - - - -	:	-
AOLFR28.pr	:	- - - - -	:	-
AOLFR29.pr	:	- - - - -	:	-
AOLFR30.pr	:	- - - - -	:	-
AOLFR31.pr	:	- - - - -	:	-
AOLFR32.pr	:	- - - - -	:	-
AOLFR34.pr	:	- - - - -	:	-
AOLFR35.pr	:	- - - - -	:	-
AOLFR36.pr	:	HSIPTSANPAP	:	305
AOLFR37.pr	:	- - - - -	:	-
AOLFR38.pr	:	EKGQPH	:	300
AOLFR39.pr	:	- - - - -	:	-
AOLFR40.pr	:	- - - - -	:	-
AOLFR41.pr	:	- - - - -	:	-
AOLFR42.pr	:	- - - - -	:	-
AOLFR43.pr	:	- - - - -	:	-
AOLFR44.pr	:	- - - - -	:	-
AOLFR45.pr	:	- - - - -	:	-
AOLFR46.pr	:	- - - - -	:	-
AOLFR47.pr	:	- - - - -	:	-
AOLFR48.pr	:	- - - - -	:	-
AOLFR49.pr	:	- - - - -	:	-
AOLFR50.pr	:	- - - - -	:	-
AOLFR51.pr	:	- - - - -	:	-
AOLFR52.pr	:	- - - - -	:	-

Figure 1

AOLFR54 .PR : * 20 * 40 * 60 * 80 * 100
 AOLFR57 .PR : -SDENLSDNHL---SPOTV-YNEYLHMTM---
 AOLFR58 .PR : -FSMNTTEALNFAFGTNLL-MTMIPQDQLQFICPNCLYMPG-A-FIPLG-NM---
 AOLFR59 .PR : -ONSPTEFLFV-DGLSQVN-WOIVTVEYFVATV-CMLIVV : 59
 AOLFR60 .PR : -GDWN---NSDAVEPIFCRPGI-EWIVSH-SFLCMLVTS : 49
 AOLFR61 .PR : -FLPNTQFIPESLLCFLGIGL-FIPLG-CMLVTS-GFTFL : 49
 AOLFR62 .PR : -STLN---TSYVBLATEFVCPGL-EYMLWISPLCMLVTS-EGTFLP : 49
 AOLFR63 .PR : -FYNNKSIERHTEFICPGL-DEFINISOCPSVYATL : 49
 AOLFR64 .PR : -SINN---TSYVBLATEFVCPGL-DEFINISOCPSVYATL : 49
 AOLFR65 .PR : -TILL---NSSLVPLATEFVCPGL-KGKQWISPECIFICLIVV : 49
 AOLFR66 .PR : -GR---ARMSTSNTQHFS-FIPLGGL-FDNEWGYE-FIPLGGL : 53
 AOLFR67 .PR : -S---FLNQSLTPOASETNECIPGL-EADUNWISPLCMLVTS-EGTFL : 49
 AOLFR68 .PR : -GONSSSLTPOAEFVCPGL-EADUNWISPLCMLVTS-EGTFL : 49
 AOLFR69 .PR : -M-----SYSI-YKSTNPL---SHQVHSEF-CHRNCHNFCHI---TKFVLDENK : 49
 AOLFR70 .PR : -M-----DSTPQYNL-YNLQYTEM : 49
 AOLFR71 .PR : -GR---R-NNNTMPDELTICLSDSE : 49
 AOLFR72 .PR : -AP---E-
 AOLFR73 .PR : -EQ---H-
 AOLFR74 .PR : -B---G-
 AOLFR75 .PR : -B---E-
 AOLFR76 .PR : -GD---
 AOLFR77 .PR : -
 AOLFR78 .PR : -
 AOLFR79 .PR : -TPG---
 AOLFR80 .PR : -EG---
 AOLFR81 .PR : -K---
 AOLFR82 .PR : -
 AOLFR83 .PR : -
 AOLFR84 .PR : -
 AOLFR85 .PR : -QLVL---LI-MFL---VIFTNT---AP-A-FSVTL-SM---
 AOLFR86 .PR : -MNTIA-QLSGFIDQIPSVLTTRILKFLKMYV-NCNPCAIIRKIN-YPTKLN-DF---
 AOLFR87 .PR : -LD---
 AOLFR88 .PR : -
 AOLFR89 .PR : -
 AOLFR90 .PR : -
 AOLFR91 .PR : -
 AOLFR92 .PR : -
 AOLFR93 .PR : -
 AOLFR94 .PR : -ET---
 AOLFR95 .PR : -LGSKPRVYL-Y---TIPCAQSQVSTM : 48
 AOLFR96 .PR : -I-C---
 AOLFR97 .PR : -TEFL-QSNQPSIRUFRRLGRIPSPSOSPCSTSMVPSFSIAEWRRMORGAN : 72
 AOLFR98 .PR : -RGP---
 AOLFR99 .PR : -ERV---
 AOLFR101 .PR : -
 AOLFR102 .PR : -PV---
 AOLFR103 .PR : -A---
 AOLFR104 .PR : -QGL---
 AOLFR105 .PR : -
 AOLFR106 .PR : -
 AOLFR107 .PR : -Z---
 AOLFR108 .PR : -CBPFU-CQTKOKAISM : 47
 AOLFR109 .PR : -LR---

Figure 2

Figure 2

Figure 2

Figure 2

Figure 3

Figure 3

Figure 3

Figure 3

Figure H

2/4

Figure

Figure 2/5

3/3

Figure F

丁
二

Figure 4

Figure 5
1/5

Figure 5
3/5

Figure 5
4/5

AOLFR259.P : EDNSQRKQ--QXILETYSIPNPLNPLIYSURNAOKGALVFAJQKERTM-----
AOLFR274B. : ESSSYNPKO--DFTFSIUYTLCPLPLNPLIVLARNSENIGAVSEYTRNLSONS-----
AOLFR276B. : HFGHAPAE--YVKEFSLCTSNALDETFPHQ-----
AOLFR31B. : ESSSYSLDQ--DKWTSAYTTEKPMINPLIYSURNKDWEADKTKNKLF-----
AOLFR314.P : ETPNPMIGT--VYCHIMNNIGPMINPLIYSURNKDWEADKTKNKL-----
AOLFR349B. : HCFGDIDPOYTHIFHANLAWVPPFLMPVIYGRTHNRETYLJIFFKTDH-----
AOLFR328.P : LMPSNSSPZEL---IFSVQQTVVTPMLNSLIVSLENKEVKVALKRTEKCYLQYTRR-----
310
305
295
310
312
313
312

Figure 5
5/5