Les algorithmes évolutionnistes utilisés dans le cadre des neurosciences computationnelles

Jérémie DECOCK

UPMC

29 janvier 2010

But des neurosciences computationnelles et des algorithmes évolutionnistes?

Algorithmes évolutionnistes

 trouver des solutions satisfaisantes à des problèmes d'optimisation

Neurosciences computationnelles

 découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale

Plan

Introduction aux algorithmes évolutionnistes

L'utilisation des algorithmes évolutionnistes dans le contexte des neurosciences computationnelles

Introduction aux algorithmes évolutionnistes

Définition

Les algorithmes évolutionnistes

- algorithmes stochastiques itératifs
- résoudre des problèmes d'optimisation

Principe

S'inspire de la théorie synthétique de l'évolution (neodarwinisme)

- les caractéristiques "innées" sont codées dans les gènes
- chaque individu a un génotype unique
- le phénotype de chacun est plus ou moins adapté à l'environnement
- les gènes des parents sont croisés pour former le génotype de leurs enfants lors de la reproduction
- des mutations peuvent avoir lieu aléatoirement sur le génome des nouveaux individus
- ▶ les individus dont le phénotype inadapté à leur environnement ont moins de chance de survivre jusqu'à la reproduction

Fonctionnement

Parallèle AE/Neodarwinisme

- ▶ individu = une solution potentielle du problème à résoudre
- genome = le codage des solutions

```
begin Evolutionary computation
    t := 0
    P(t) := initialize_population()
    evaluate(P(t))
    while not done do
        t := t+1
        P'(t) := select_parents(P(t))
        crossover(P'(t))
        mutate(P'(t))
        evaluate(P'(t))
        P(t+1) := select_survivals(P'(t),P(t))
    end while
end Evolutionary computation
```

Fonctionnement

Problèmes couverts

Problèmes d'optimisation : recherche d'optimums globaux

Forces

- évitent les optimums locaux
- facilement transposables sur de nombreux types de problèmes
- réussissent là où les méthodes déterministes échouent
 - problèmes NP-complet
 - problèmes avec une fonction objectif discontinue et/ou non dérivable

Faiblesses

- recherche d'optimums « satisfaisants »
- pas de résultat optimal garanti en temps fini
- on peut trouver des résultats différents à chaque exécution
- généralement moins rapides que les méthodes déterministe

Quels attraits pour les neurosciences computationnelles

Modèles calculables des fonctions cérébrales et des processus cognitifs

Optimisation sur des modèles

- dynamiques
- non dérivables
- non continus
- comportant de nombreux paramètres

Recherche d'un optimum global

L'utilisation des algorithmes évolutionnistes dans le contexte des neurosciences computationnelles

Plan - L'utilisation des algorithmes évolutionnistes dans le contexte des neurosciences computationnelles

L'analyse et l'optimisation de modèles biologiques

L'optimisation de modèles « boite noire » L'observation de l'activité cérébrale

L'analyse et l'optimisation de modèles biologiques

Le contexte

- besoin de modèles simulant le comportement des structures nerveuses
- pour étudier leurs capacités computationnelles
- ces modèles sont de plus en plus complexes
- ils renferment de plus en plus de paramètres à optimiser
- pour obtenir un modèle fidèle à la réalité

Les algorithmes évolutionnistes permettent d'automatiser cette tâche

L'analyse et l'optimisation de modèles biologiques

Exemples d'utilisation

- modélisation des propriétés computationnelles d'un neurone [KPK05]
- modélisation de la dynamique du traitement de l'information dans le neocortex [SIK04]
- modélisation et simulation des colonnes neocorticales (Blue Brain Project) [MAR06] [DBG07]

Plan - L'utilisation des algorithmes évolutionnistes dans le contexte des neurosciences computationnelles

L'analyse et l'optimisation de modèles biologiques L'optimisation de modèles « boite noire » L'observation de l'activité cérébrale

L'optimisation de modèles « boite noire »

Le contexte

- optimiser les performances d'un modèle
- sans chercher à comprendre ou interpréter les résultats (applications pratiques)

Les besoins

- un outil capable de résoudre n'importe quel type de problème d'optimisation
- ayant recours à des fonctions objectif non dérivables et discontinues
- qui ne soit pas piégé par un optimum local
- dont l'implémentation doit être simple et générique
- évitant tout réglages qui impliquent une compréhension profonde du problème

L'optimisation de modèles « boite noire »

Les algorithmes évolutionnistes répondent à ces attentes

Exemple d'utilisation

- behavior-based robotics
 - optimisation de modèles des ganglions de la base [WLCH07]
 - optimisation d'un modèle des formations réticulées [HGP05]

Plan - L'utilisation des algorithmes évolutionnistes dans le contexte des neurosciences computationnelles

L'analyse et l'optimisation de modèles biologiques L'optimisation de modèles « boite noire » L'observation de l'activité cérébrale

L'observation de l'activité cérébrale

Exemple : l'électro-encéphalographie (EEG)

- mesure de l'activité électrique du cerveau
- renseigne sur l'activité cérébrale du cortex
- précis dans le temps mais pas dans l'espace

L'observation de l'activité cérébrale

Apprentissage automatique

- classification des signaux enregistrés pour reconnaitre l'activité cérébrale mesurée
- pallier au manque de précision des signaux

Algorithmes évolutionnistes

- recherche de caractéristiques [GPAT03] [SBR03]
- optimiser la topologie du classifieur [BSHEB97]

Conclusion

L'utilisation des algorithmes évolutionnistes dans les neurosciences computationnelles :

- l'analyse et l'optimisation de modèles biologiques
- l'optimisation de modèles « boite noire »
- l'observation de l'activité cérébrale

Bibliographie I

- ▶ [BCM02] B. Blankertz, G. Curio, and K.R. Muller, *Classifying single trial EEG: Towards brain computer interfacing*, Advances in neural information processing systems: proceedings of the 2002 conference, MIT Press, 2002, p. 157.
- ▶ [BLV07] O. Bai, P. Lin, S. Vorbach, J. Li, S. Furlani, and M. Hallett, Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG, Clinical Neurophysiology (2007).
- ▶ [BSHEB97] R. Baumgart-Schmitt, WM Herrmann, R. Eilers, and F. Bes, On the Use of Neural Network Techniques to Analyse Sleep EEG Data First Communication: Application of Evolutionary and Genetic Algorithms to Reduce the Feature Space and to Develop Classification Rules, NEUROPSYCHOBIOLOGY-BASEL- 36 (1997), 194–210.

Bibliographie II

- ▶ [DMW08] F. Dohler, F. Mormann, B. Weber, C.E. Elger, and K. Lehnertz, A cellular neural network based method for classification of magnetic resonance images: Towards an automated detection of hippocampal sclerosis, Journal of Neuroscience Methods 170 (2008), no. 2, 324–331.
- ▶ [DBG07] Druckmann, S. and Banitt, Y. and Gidon, A. and Sch
 "urmann, F. and Markram, H. and Segev, I., A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data, Frontiers in neuroscience 1 (2007), no. 1, p7.
- ▶ [GPAT03] D. Garrett, D.A. Peterson, C.W. Anderson, and M.H. Thaut, *Comparison of linear and nonlinear methods for EEG signal classification*, IEEE Transactions on Neural Systems and Rehabilitative Engineering **11** (2003), no. 2, 141–144.

Bibliographie III

- ► [HGP05] Humphries, M.D. and Gurney, K. and Prescott, T.J., *Is there an integrative center in the vertebrate brain-stem?*, Adaptive Behavior **13**, 2005, no. 2, 97.
- ► [HO97] N. Hansen and A. Ostermeier, Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation, Eufit 97, 650–654.
- ► [HO01] N. Hansen and A. Ostermeier, *Completely derandomized self-adaptation in evolution strategies*, Evolutionary computation **9** (2001), no. 2, 159–195.
- ► [KPK05] Keren, N. and Peled, N. and Korngreen, A., Constraining compartmental models using multiple voltage recordings and genetic algorithms, Journal of neurophysiology 94 (2005), no. 6, 3730.
- ► [MAR06] Markram H., *The blue brain project*, Nature Reviews Neuroscience **7** (2006), no. 2, 153–159.

Bibliographie IV

- ▶ [SBR03] M. Schroder, M. Bogdan, W. Rosenstiel, T. Hinterberger, and N. Birbaumer, *Automated EEG feature* selection for brain computer interfaces, Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, 2003, pp. 626–629.
- ▶ [SIK04] S. Schneider, C. Igel, C. Klaes, H.R. Dinse, and J.C. Wiemer, *Evolutionary adaptation of nonlinear dynamical systems in computational neuroscience*, Genetic Programming and Evolvable Machines **5** (2004), no. 2, 215–227.
- ▶ [WN03] T.D. Wager and T.E. Nichols, *Optimization of experimental design in fMRI*: a general framework using a genetic algorithm, Neuroimage **18** (2003), no. 2, 293–309.
- ► [WLCH07] Wang, Y. and Li, S. and Chen, Q. and Hu, W., Biology Inspired Robot Behavior Selection Mechanism: Using Genetic Algorithm, LECTURE NOTES IN COMPUTER SCIENCE 4688 (2007), 777.

Bibliographie V

▶ [YF08] J.Y. Yeh and JC Fu, A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI, Expert Systems with Applications **34** (2008), no. 2, 1285–1295.

Illustrations

Johann "nojhan" Dréo © BY-SA