Vademecum LaTeX

- Pour le « dt » des intégrales, la commande à utiliser est $\d{}$ t.
- Pour les vecteurs \overrightarrow{v} , \overrightarrow{OM} : \vv{v}, \vv{\pt0\ptM}
- Pour les opérateurs différentiels classiques, voici les commandes à utiliser
 - $\triangleright \$ \grad U pour $\overline{\operatorname{grad}} U$

 - $\triangleright \forall \text{dive } \forall X \text{ pour } \text{div } \overrightarrow{X}$
- Pour les intégrales multiples, voici quelques commandes.

$$ho$$
 \iint_S f(x,y) \d{} x \d{} y pour $\iint_S f(x,y) \, \mathrm{d} x \, \mathrm{d} y$

$$hickspace \ extrm{\limits} f(x,y,z) \ d{} x \ d{} y \ d{} z \ {
m pour} \ \iiint_V f(x,y,z) \ {
m d} x \ {
m d} y \ d{} z$$

$$hickspace >$$
 \oint f pour $\oint f$

$$ightharpoonup$$
 \text{varolint f pour } \int f

D'autres commandes sont disponibles : tout est expliqué ici.

- Pour la chimie, utilisez les commandes du package mhchem (documentation disponible ici).
- Pour les circuits électriques, utilisez le package circuitikz (documentation disponible ici). Vous pouvez regarder les exemples du CdE 1 (fiches ELC01, ELC02, etc.)
- Pour les points $M, A, B, \Omega, etc. : \ptM, \ptA, \ptB, \ptOmega, etc.$ En effet, pour homégénéiser le style, on utilise des lettres romaines pour les points
- Dérivées et dérivées partielles

$$\rhd \ \text{Pour faire} \ \frac{\mathrm{d}f}{\mathrm{d}x} : \texttt{\diff\{f\}\{x\}}$$

$$ightharpoonup \operatorname{Pour faire} \frac{\mathrm{d}^2 f}{\mathrm{d} x^2} : \mathrm{diff[2]\{f\}\{x\}}$$

$$\triangleright$$
 Pour faire $\frac{\partial f}{\partial x}$: \diffp{f}{x}

$$ightharpoonup ext{pour faire } \frac{\partial^2 f}{\partial x^2} : \texttt{diffp\{f\}\{x\}}$$

$$\triangleright$$
 pour faire $\frac{\partial^3 f}{\partial x \partial y^2}$: \diffp{f}{{x}{y^2}}

- Pour mettre « entre guillemets » : \glm{entre guillemets}
 - « glm » sont trois lettres qui abrègent « guillemets »
- Pour « i » des nombres complexes et le « e » de Euler : \iC et \eEuler
- \bullet De même, le « j » des nombres complexes : $\j C$
- Évidemment, pour \mathbb{R} , \mathbb{C} : \R, \C

$$\bullet \mbox{ Pour les formules dans des accolades } \begin{cases} A = B + C \\ D = E + F \end{cases} : \begin{cases} A = B + C \\ D = E + F \\ \end{cases} \}$$

• Pour les systèmes
$$\begin{cases} 2a-3b+4c=2 \\ a+8b+5c=8 \\ -a+2b+c=-5 \end{cases}$$
 \$\systeme{2a-3b+4c=2, a+8b+5c=8, -a+2b+c=-5}\$

- Pour les ajustements verticaux, utilisez \smallskip, \medskip et \bigskip qui créent des espaces verticaux respectivement petits, moyens et grands.
- Pour les espacements verticaux négatifs, utilisez \minusSmallskip, \minusMedskip et \minusBigskip.

Vademecum siunitx

Les fondamentaux

- \n : pour mettre en forme un nombre, sans unité;
- \bullet \si{} : pour mettre en forme une unité, sans nombre ;
- \SI{}{} : pour mettre en forme un nombre et son unité. Le premier argument est la partie numérique, la seconde l'unité.
- \bullet \ang{} pour la gestion des angles, surtout pour la notation sexagé décimale.

Exemples

\num{123456.123456} \num{1234.12341234\pm ,0012} \num{12e5\pm 0,12e5} \num{e5} \num{e5.1}	$123456,123456$ $1234,1234\pm0,0012$ $(12,00\pm0,12)\times10^{5}$ 10^{5} $10^{5,1}$	regroupement et utilisation des bons séparateurs gestion de la précision écriture scientifique avec le bon nombre chiffres significatifs juste la puissance de 10 juste la puissance de 10, mais avec décimale
<pre>\si{\metre\per\second} \si{\kilo\metre\per\hour} \si{km.s^{-1}} \si{m/s}</pre>	$\begin{array}{l} m \cdot s^{-1} \\ km \cdot h^{-1} \\ km \cdot s^{-1} \\ m/s \end{array}$	écriture des unités avec des commandes gestion des préfixes écriture des unités avec des commandes écriture des unités avec des commandes
\SI{3,00e8}{m/s} \SI{4\pi e-7}{\henry\per\meter} \SI{1}{k\ohm} \SI{25}{\degreeCelsius}	$3,00 \times 10^8 \mathrm{m/s}$ $4\pi \times 10^{-7} \mathrm{H\cdot m^{-1}}$ $1 \mathrm{k}\Omega$ $25 \mathrm{^{\circ}C}$	écriture des unités avec des commandes écriture des unités avec des commandes un autre exemple notation pour les degrés Celsius
\ang{125.3} \ang{125;32;12}	125,3° 125°32′12″	autre notation des angles en degré notation sexagédécimale des angles