

ANÁLISIS MATEMÁTICO I Examen Final 28/09/2023

APELLIDO DEL ALUMNO:	NOMBRE:
CORRIGIÓ:	. REVISÓ:

1	2	3	4	5	CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): 50% del examen correctamente resuelto.

1 – Hallar una función f y una constante C que satisfagan que:

$$\int_{1}^{x^{2}} f(t) dt = x^{3} + C \quad \cos x > 0$$

2 – Dada la función:

$$f(x) = \frac{\sqrt{x} - 1}{x}$$

- a) Determinar extremos y asíntotas, si tiene.
- b) Determinar en qué tramo/s del dominio la función es estrictamente creciente.
- 3 Hallar el valor de a para que el área encerrada por las funciones:

$$f(x) = x^3$$
 y $g(x) = ax$ sea igual a 8

4 – Dada la función:

$$f(x) = \sum_{n=2}^{\infty} \frac{3}{2^{n+1}} (x+1)^n$$

- a) Determinar el intervalo de convergencia.
- b) Indicar, si es posible, el valor de $f_{(-2)}$. Si no es posible, indicar por qué no lo es.
- 5 Indicar Verdadero o Falso, justificando convenientemente.
- a) $M(t)=-100e^{-kt}+C$ es una solución particular de la ecuación $M'(t)=k\big(C-M_{(t)}\big)$ con k y C constantes

b)
$$Si \int_{1}^{+\infty} \frac{1}{x^2} dx$$
 converge entonces $\int_{1}^{+\infty} \frac{\cos^2 x}{x^3} dx$ converge