Cuerpos finitos.

Ejercicio 1. Calcula el cociente y el resto de dividir $2x^4 + 3x^3 + x^2 + 6x + 1$ entre $3x^2 + 1$ en $\mathbb{Z}_7[x]$ y en $\mathbb{Z}_{10}[x]$.

Ejercicio 2. Comprueba que $x^4 + 1$ es reducible en $\mathbb{Z}_p[x]$ para p = 2, 3, 5, 7, 11, 13, 17.

En general se tiene que $x^4 + 1$ es reducible en $\mathbb{Z}_p[x]$ para cualquier número primo.

- Si α es tal que $\alpha^2 \equiv -1 \pmod{p}$ entonces $(x^2 + \alpha)(x^2 \alpha)$ es una factorización de $x^4 + 1$ en $\mathbb{Z}_p[x]$.
- Si α es tal que $\alpha^2 \equiv 2 \pmod{p}$ entonces $(x^2 + \alpha x + 1)(x^2 \alpha x + 1)$ es una factorización de $x^4 + 1$ en $\mathbb{Z}_p[x]$.
- Si α es tal que $\alpha^2 \equiv -2 \pmod{p}$ entonces $(x^2 + \alpha x 1)(x^2 \alpha x 1)$ es una factorización de $x^4 + 1$ en $\mathbb{Z}_p[x]$.

Y se tiene que para cualquier primo p, hay en \mathbb{Z}_p una raíz cuadrada de -1, de 2 o de -2.

Ejercicio 3. Sean $p(x) = x^4 + 2x^2 + 2x + 1$, y $q(x) = x^3 + 2x^2 + x + 2$ dos polinomios con coeficientes en \mathbb{Z}_3 . Sean $r(x) = p(x) \mod q(x)$ y $s(x) = q(x) \mod r(x)$.

- Calcula todos los divisores de p(x) (hay 8 en total, cuatro de ellos mónicos), de q(x) (también hay 8) de r(x) (en total 6) y s(x) (hay 4).
- Calcula todos los divisores comunes de p(x) y q(x); de q(x) y r(x); y de r(x) y s(x).
- Calcula el mínimo común múltiplo de p(x) y q(x).

Ejercicio 4. Calcula un máximo común divisor de a(x) y b(x) en los siguientes casos:

- 1. $a(x) = x^4 + 2x^2 + 1$, $b(x) = x^4 1$ en $\mathbb{Z}_5[x]$.
- 2. $a(x) = x^4 + 2x^2 + 1$, $b(x) = x^2 + 2$ en $\mathbb{Z}_3[x]$.

Ejercicio 5. Calcula las raíces en \mathbb{Z}_5 del polinomio $x^2 + x + 4$.

Ejercicio 6. Calcula en $\mathbb{Z}_7[x]$ el resto de dividir

- 1. $x^7 + x^2 + 1$ entre x 1,
- 2. $x^n + 1$ entre x 1.

Ejercicio 7. Calcula en $\mathbb{Z}_5[x]$ el resto de dividir $x^n + 2$ entre x + 4.

Ejercicio 8. Calcula el resto de dividir el polinomio $x^{1321} + 5$ por el polinomio x + 3 en el anillo $\mathbb{Z}_7[x]$.

Ejercicio 9. Calcula el cociente y el resto de la división para las siguientes parejas de polinomios considerados en los anillos, $\mathbb{Z}_5[x]$ y $\mathbb{Z}_7[x]$.

1

- 1. $p(x) = x^4 x^2 + 1$, $q(x) = 2x^2 + 1$.
- 2. $p(x) = x^5 x^3 + 3x 5$, $q(x) = x^2 + 5$.
- 3. $p(x) = x^8 + x^4 + 1$, $q(x) = x^2 x + 1$.

4.
$$p(x) = x^5 - x^3 + 3x - 5$$
, $q(x) = x^2 + 7$.

Ejercicio 10. Encuentra todos los números primos p tales que $x^2 + 2$ sea un divisor de $x^5 - 10x + 12$ en $\mathbb{Z}_p[x]$.

Ejercicio 11. Halla un máximo común divisor y un mínimo común múltiplo en $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$ de las siguientes parejas de polinomios:

1.
$$p(x) = x^2 - 1$$
, $q(x) = x^3 - 3x^2 + 6x - 4$.

2.
$$p(x) = x^2 + 2x + 1$$
, $q(x) = x^3 + 7x^2 + 15x + 9$.

3.
$$p(x) = x^5 + 5x^4 + 4x^3 + 3x^2 + 2x - 1$$
, $q(x) = x^3 - 3x^2 + 2x - 1$.

Encuentra en cada caso polinomios u(x) y v(x) tales que

$$p(x) \cdot u(x) + q(x) \cdot v(x) = mcd(p(x), q(x)).$$

Ejercicio 12. Encuentra todas las raíces de $x^2 - 1 \in \mathbb{Z}_8[x]$. Da dos factorizaciones distintas de $x^2 - 1$ como producto de polinomios mónicos.

Ejercicio 13. Comprueba que los polinomios $x^3 + x^2 + x + 1$ y $x^2 + 2x + 1$ determinan la misma aplicación $f: \mathbb{Z}_3 \to \mathbb{Z}_3$.

Ejercicio 14. El polinomio $x^4 - 1$ puede factorizarse en factores lineales en $\mathbb{Z}_5[x]$. Encuentra dicha factorización.

Ejercicio 15. Descompón como producto de irreducibles el polinomio $x^6 - 1$ en $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{Z}_7[x]$.

Ejercicio 16. Sea $A = \mathbb{Z}_2[x]_{x^3+1}$.

- 1. Calcula las unidades de A, y da, en cada caso, su inverso. ¿Es la suma de dos unidades una unidad? ¿Y el producto?
- 2. Calcula los divisores de cero¹. Para cada uno de ellos, encuentra un elemento no nulo de A que al multiplicarlo por él de cero. ¿Es la suma de dos divisores de cero un divisor de cero? ¿Y el producto?.

Ejercicio 17. Sea $A = \mathbb{Z}_5[x]_{x^3+3}$, $y \alpha = [x] \in A$.

- Comprueba que $3\alpha^2 + 3\alpha + 1$ y $2\alpha + 3$ son unidades y calcula sus inversos.
- Comprueba que $3\alpha^2 + 3$ y $4\alpha^3 + \alpha^2 + 3\alpha + 1$ son divisores de cero. Multiplícalos por un elemento no nulo de A para que de cero.

Ejercicio 18. ¿Cuántos elementos tiene $\mathbb{Z}_3[x]_{x^4+x^2+x+1}$? ¿Cuántos de ellos tienen inverso?

Ejercicio 19. Sean $K_1 = \mathbb{Z}_2[x]_{x^4+x+1}$ y $K_2 = \mathbb{Z}_2[x]_{x^4+x^3+x^2+x+1}$. Sean $\alpha = [x]$ y $\beta = [x]$, tomadas respectivamente en K_1 y K_2 .

Calcula todas las potencias de α y β , y encuentra un isomorfismo $K_2 \rightarrow K_1$.

Ejercicio 20. Demuestra que $x^2 + 1$ es irreducible en $\mathbb{Z}_3[x]$ y que $x^3 + x + 1$ es irreducible en $\mathbb{Z}_2[x]$. Describe todos los elementos, y la aritmética de $\mathbb{Z}_3[x]_{x^2+1}$ y $\mathbb{Z}_2[x]_{x^3+x+1}$.

 $^{^1}Dado$ un anillo conmutativo A y un elemento $\alpha \in A$ se dice que es un divisor de cero si existe $b \in A, \, b \neq 0,$ tal que $\alpha \cdot b = 0$

Preguntas test.

Ejercicio 21. ¿Cuál de los siguientes anillos es un cuerpo?

- a) $\mathbb{Z}_7[x]$.
- b) $\mathbb{Z}_5[x]_{x^2-1}$.
- c) $\mathbb{Z}_2[x]_{x^2+1}$.
- d) $\mathbb{Z}_3[x]_{x^2+1}$.

Ejercicio 22. ¿Cuál de los siguientes grupos de polinomios de $\mathbb{Z}_7[x]$ es múltiplo de $x^2 - 1$?

- a) $x^{2n} + 1$ para $n \ge 1$.
- b) $x^{4n} + x^{2n} 2$ para $n \ge 1$.
- c) $x^{2n} x^n 1$ para $n \ge 1$.
- d) $x^{2n} 2x^n + 1$ para $n \ge 1$.

Ejercicio 23. Dados $p(x) = x^4 + x^3 + x^2 + x$ y $q(x) = x^5 + x^2 + x + 1$ dos polinomios con coeficientes en \mathbb{Z}_2 , el máximo común divisor de p(x) y q(x) vale:

- a) $x^2 + 1$.
- b) $x^2 + x$.
- c) $x^4 + x^3 + x^2 + x$.
- d) 1.

Ejercicio 24. Sea $A = \mathbb{Z}_5[x]_{x^4+3x^3+3x^2+x+2}$, y sea $p(x) = x^2 + 1 \in A$. Entonces:

- a) p(x) no tiene inverso en A, pues $x^4 + 3x^3 + 3x^2 + x + 2$ tiene a x = 1 como raíz.
- b) p(x) no tiene inverso en A, pues $x^2 + 1$ no es irreducible.
- c) p(x) tiene inverso en A y vale $2x^3 + x^2 + 4x + 1$.
- d) p(x) tiene inverso en A y vale $x^3 + x^2 + 4x + 2$.

Ejercicio 25. Determina cuál de los siguientes anillos es un cuerpo:

- 1. $\mathbb{Z}_3[x]_{x^2+1}$.
- 2. $\mathbb{Z}_5[x]_{x^2+1}$.
- 3. $\mathbb{Z}_{11}[x]_{x^2+1}$.
- 4. $\mathbb{Z}_{13}[x]_{x^2+1}$.

Ejercicio 26. Sea $A = \mathbb{Z}_2[x]_{x^4+x+1}$, y $p(x) = x^3 + x^2 + x + 1 \in A$. Entonces:

- a) p(x) no tiene inverso, ya que no es irreducible.
- b) p(x) tiene inverso, y vale $x^3 + x + 1$.
- c) p(x) no tiene inverso, pues p(1) = 0.
- d) p(x) tiene inverso y vale x^3 .

Ejercicio 27. En el cuerpo $A = \mathbb{Z}_2[x]_{x^3+x+1}$ el elemento x^2+x+1 es igual a:

- a) x^4 .
- b) x^5 .
- c) x^6 .
- d) x^7 .

Ejercicio 28. Sea $p(x) = x^5 + x^4 + x^3 + 4x^2 + 3 \in \mathbb{Z}_5[x]$. Entonces p(x) es igual a:

- a) $(x+2)^2 \cdot (x+3) \cdot (x+4)^2$.
- b) $(x+2)^2 \cdot (x+3)^2 \cdot (x+4)$.
- c) $(x+2) \cdot (x+3)^2 \cdot (x+4)^2$.
- d) $(x+2)^2 \cdot (x+3) \cdot (x+4)$.

Ejercicio 29. Sea el anillo $A = \mathbb{Z}_3[x]_{x^4+2x+1}$. Entonces:

- a) A es un cuerpo con 3^4 elementos.
- b) A es un anillo con 4^3 elementos que no es un cuerpo y en el que el inverso de $[x^2 + x + 1]$ vale $[x^2 + 2x]$.
- c) A es un cuerpo en el que el inverso de [x] es $[2x^3 + 1]$.
- d) A no es un cuerpo, pero el elemento $[x^2 + x + 1]$ tiene inverso y vale $[2x^2 + x]$.