2 RG&TC-Code

2e

```
ln[54]:= g = {{Exp[2 \beta[r]], 0, 0},
             \{0, r^2, 0\},\
             \{0, 0, r^2 \sin[\theta]^2\};
         g // MatrixForm
Out[55]//MatrixForm=
  In[56]:= xcoord = \{r, \theta, \phi\}
 Out[56]= \{r, \theta, \phi\}
  In[57]:= RGtensors[g, xcoord]
        gdd = \begin{pmatrix} e^{2\beta[r]} & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin[\theta]^2 \end{pmatrix}
        LineElement = e^{2\beta[r]}d[r]^2 + r^2d[\theta]^2 + r^2d[\phi]^2Sin[\theta]^2
         gUU computed in 0.004038 sec
         Gamma computed in 0.001647 sec
        Riemann (dddd) computed in 0.001665 sec
        Riemann (Uddd) computed in 0.001432 sec
         Ricci computed in 0.003464 sec
        Weyl computed in 0.000025 sec
        Testing for 3-dim conformal flatness...
         Outer: Heads Times and List at positions 3 and 2 are expected to be the same.
         Einstein computed in 0.001583 sec
 Out[57]= All tasks completed in 0.02007
```

In[58]:= Rdd // MatrixForm

Out[58]//MatrixForm=

$$\begin{pmatrix} \frac{2\,\beta'[r]}{r} & 0 & 0 \\ 0 & e^{-2\,\beta[r]} \left(-\,1 + e^{2\,\beta[r]} + r\,\beta'[r]\right) & 0 \\ 0 & 0 & e^{-2\,\beta[r]} \,\mathrm{Sin}[\theta]^2 \left(-\,1 + e^{2\,\beta[r]} + r\,\beta'[r]\right) \, ,$$

$$ln[59]:=$$
 DSolve[Rdd == 2 kg, β '[r], r]

Out59]= DSolve
$$\left[\left\{\left\{\frac{2\,\beta'[r]}{r},\,0,\,0\right\},\,\left\{0,\,e^{-2\,\beta[r]}\left(-1+e^{2\,\beta[r]}+r\,\beta'[r]\right),\,0\right\},\,\left\{0,\,0,\,e^{-2\,\beta[r]}\,\text{Sin}[\theta]^2\left(-1+e^{2\,\beta[r]}+r\,\beta'[r]\right)\right\}\right\} = \left\{\left\{2\,e^{2\,\beta[r]}\,k,\,0,\,0\right\},\,\left\{0,\,2\,k\,r^2,\,0\right\},\,\left\{0,\,0,\,2\,k\,r^2\,\text{Sin}[\theta]^2\right\}\right\},\,\beta'[r],\,r\right]$$

3a

Integrate
$$\left[\frac{1}{\text{Sqrt}[1-k r^2]}, r\right]$$

$$\text{Out[60]=} \quad \frac{\text{ArcSin}\Big[\sqrt{k} \ r\Big]}{\sqrt{k}}$$

k=-1

In[61]:= Solve
$$\left[\chi == \text{Limit}\left[\frac{\text{ArcSin}\left[\sqrt{k} \text{ r}\right]}{\sqrt{k}}, k \rightarrow -1\right], r, \text{ Reals}\right]$$

Out[61]=
$$\{\{r \rightarrow Sinh[\chi]\}\}$$

k=0

In[62]:= Solve
$$\left[\chi == \text{Limit}\left[\frac{\text{ArcSin}\left[\sqrt{k} r\right]}{\sqrt{k}}, k \to 0\right], r\right]$$

Out[62]=
$$\{\{r \rightarrow \chi\}\}$$

k=1

In[63]:= Solve
$$\left[\chi = \text{Limit}\left[\frac{\text{ArcSin}\left[\sqrt{k} \ r\right]}{\sqrt{k}}, \ k \to 1\right], \ r, \ \text{Reals}\right]$$

Out[63]=
$$\left\{\left\{r \rightarrow \left[Sin[\chi] \text{ if } -\frac{\pi}{2} \leq \chi \leq \frac{\pi}{2}\right]\right\}\right\}$$

3b

In[67]:= RGtensors[g, xcoord]

In [64]:=
$$g = \{ \{-1, 0, 0, 0\}, \{0, bigR[t]^2, 0, 0\}, \{0, 0, sk[\chi]^2, 0\}, \{0, 0, 0, sk[\chi]^2, 0\}, \{0, 0, 0, sk[\chi]^2 sin[\theta]^2 \} \}$$

Out [64]:= $\{ \{-1, 0, 0, 0\}, \{0, bigR[t]^2, 0, 0\}, \{0, 0, sk[\chi]^2, 0\}, \{0, 0, 0, sin[\theta]^2 sk[\chi]^2 \} \}$

In [65]:= $\{ x coord = \{t, r, \theta, \phi\} \}$

Out [65]:= $\{ \{-1, 0, 0, 0\}, \{0, \frac{1^2}{1 - k r^2}, 0, 0\}, \{0, 0, r^2, 0\}, \{0, 0, 0, r^2 sin[\theta]^2 \} \}$

Out [66]:= $\{ \{-1, 0, 0, 0\}, \{0, \frac{1}{1 - k r^2}, 0, 0\}, \{0, 0, r^2, 0\}, \{0, 0, 0, r^2 sin[\theta]^2 \} \}$

LineElement = $-\frac{d[r]^2}{-1 + k r^2} - d[t]^2 + r^2 d[\theta]^2 + r^2 d[\phi]^2 Sin[\theta]^2$

$$gUU = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 - k r^2 & 0 & 0 \\ 0 & 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 0 & \frac{Csc(\theta)^2}{r^2} \end{pmatrix}$$

gUU computed in 0.002933 sec

Gamma computed in 0.00534 sec

Riemann (dddd) computed in 0.006296 sec

Riemann (Uddd) computed in 0.004903 sec

Ricci computed in 0.001194 sec

Weyl computed in 0.010067 sec

Conformally Flat

Einstein computed in 0.000458 sec

Out[67]= All tasks completed in 0.039249

In[68]:= GUdd // MatrixForm

Out[68]//MatrixForm=

$$\begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

eqn1 =
$$r''[\lambda] - \frac{k r[\lambda]}{-1 + k r[\lambda]^2} (r'[\lambda])^2 + r[\lambda] (-1 + k r[\lambda]^2) Sin[\frac{\pi}{2}]^2 (\phi'[\lambda])^2;$$

eqn2 = $\phi''[\lambda] + 2 \frac{1}{r[\lambda]} (r'[\lambda] \times \phi'[\lambda]);$

k = 1:

In[71]:= **S1** =

NDSolve
$$\left[\left\{ \text{eqn1} == 0, \text{eqn2} == 0, \phi'[0] == -1, r'[0] == 0, r[0] == 0.5, \phi[0] == \frac{\pi}{2} \right\} / . \{k \to 1\}, \{r[\lambda], \phi[\lambda]\}, \{\lambda, 0, 5\} \right] \left[[1] \right];$$

s2 = NDSolve
$$\left[\left\{\text{eqn1} == 0, \text{eqn2} == 0, \phi'[0] == 1, r'[0] == 0, r[0] == 0.5, \phi[0] == \frac{-\pi}{2}\right\}/.$$
 $\left\{k \to 1\right\}, \left\{r[\lambda], \phi[\lambda]\right\}, \left\{\lambda, 0, 5\right\}\right]$ [[1]];

In[73]:=

ParametricPlot [{{Evaluate $[r[\lambda] \cos[\phi[\lambda]] /. s1$ }, Evaluate $[r[\lambda] \sin[\phi[\lambda]] /. s1$ }, In[74]:= {Evaluate $[r[\lambda] \cos[\phi[\lambda]] / . s2]$, Evaluate $[r[\lambda] \sin[\phi[\lambda]] / . s2]$ }, { λ , 0, 3.2}]

k = 0:

In[75]:= **\$1** =

NDSolve $\left[\left\{ \text{eqn1} == 0, \text{eqn2} == 0, \phi'[0] == -1, r'[0] == 0, r[0] == 0.5, \phi[0] == \frac{\pi}{2} \right\} /. \{k \to 0\}, \{r[\lambda], \phi[\lambda]\}, \{\lambda, 0, 5\} \right] [[1]];$

s2 = NDSolve $\left[\left\{\text{eqn1} == 0, \text{eqn2} == 0, \phi'[0] == 1, r'[0] == 0, r[0] == 0.5, \phi[0] == \frac{-\pi}{2}\right\}/.$ $\left\{k \to 0\right\}, \left\{r[\lambda], \phi[\lambda]\right\}, \left\{\lambda, 0, 5\right\}\right]$ [[1]];

ParametricPlot [{{Evaluate [r[λ] Cos[$\phi[\lambda]$] /. s1], Evaluate [r[λ] Sin[$\phi[\lambda]$] /. s1]}, {Evaluate [r[λ] Cos[$\phi[\lambda]$] /. s2], Evaluate [r[λ] Sin[$\phi[\lambda]$] /. s2]}}, { λ , 0, 3.2}]

k = -1:

s2 = NDSolve $\left[\left\{\text{eqn1} == 0, \text{eqn2} == 0, \phi'[0] == 1, r'[0] == 0, r[0] == 0.5, \phi[0] == \frac{-\pi}{2}\right\}/.$ $\left\{k \to -1\right\}, \left\{r[\lambda], \phi[\lambda]\right\}, \left\{\lambda, 0, 5\right\}\right]$ [[1]];

ParametricPlot [{{Evaluate $[r[\lambda] \cos[\phi[\lambda]] /. s1$ }, Evaluate $[r[\lambda] \sin[\phi[\lambda]] /. s1$ }, {Evaluate $[r[\lambda] \cos[\phi[\lambda]] /. s2]$, Evaluate $[r[\lambda] \sin[\phi[\lambda]] /. s2]$ }, { λ , 0, 3.2}]

4a

In[96]:=
$$g = \{\{-1, 0, 0, 0\},$$

$$\left\{0, \frac{a[t]^2}{1 - \kappa r^2}, 0, 0\},$$

$$\left\{0, 0, a[t]^2 r^2, 0\},$$

$$\left\{0, 0, 0, a[t]^2 r^2 Sin[\theta]^2\}\right\};$$

g // MatrixForm

Out[97]//MatrixForm=

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{a[t]^2}{1-r^2 \kappa} & 0 & 0 \\ 0 & 0 & r^2 a[t]^2 & 0 \\ 0 & 0 & 0 & r^2 a[t]^2 Sin[\theta]^2 \end{pmatrix}$$

xcoord = $\{t, r, \theta, \phi\}$

In[98]:= RGtensors[g, xcoord]

$$\label{eq:gdd} \text{gdd} \; = \; \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{a[t]^2}{1-r^2\,\kappa} & 0 & 0 \\ 0 & 0 & r^2\,a[t]^2 & 0 \\ 0 & 0 & 0 & r^2\,a[t]^2\,\text{Sin}[\theta]^2 \, \end{pmatrix}$$

LineElement =
$$-\frac{a[t]^2 d[r]^2}{-1 + r^2 \kappa} - d[t]^2 + r^2 a[t]^2 d[\theta]^2 + r^2 a[t]^2 d[\phi]^2 Sin[\theta]^2$$

$$gUU = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -\frac{-1+r^2 \kappa}{a(t)^2} & 0 & 0 \\ 0 & 0 & \frac{1}{r^2 a(t)^2} & 0 \\ 0 & 0 & 0 & \frac{Csc(\theta)^2}{r^2 a(t)^2} \end{pmatrix}$$

gUU computed in 0.004357 sec

Gamma computed in 0.006784 sec

Riemann (dddd) computed in 0.007511 sec

Riemann (Uddd) computed in 0.004744 sec

Ricci computed in 0.00159 sec

Weyl computed in 0.008458 sec

Conformally Flat

Einstein computed in 0.000941 sec

All tasks completed in 0.042554 Out[98]=

In[99]:= Rdd // MatrixForm

Out[99]//MatrixForm=

$$\begin{pmatrix} -\frac{3 \, a''[t]}{a[t]} & 0 & 0 & 0 \\ 0 & -\frac{2 \, \kappa + 2 \, a'[t]^2 + a[t] \, a''[t]}{-1 + r^2 \, \kappa} & 0 & 0 \\ 0 & 0 & r^2 \left(2 \, \kappa + 2 \, a'[t]^2 + a[t] \, a''[t]\right) & 0 \\ 0 & 0 & 0 & r^2 \, \text{Sin}[\theta]^2 \left(2 \, \kappa + 2 \, a'[t]^2 + a[t] \, a''[t]\right) \end{pmatrix}$$

In[100]:= R // Simplify

Out[100]=
$$\frac{6 (\kappa + a'[t]^2 + a[t] a''[t])}{a[t]^2}$$

4d

In[101]:= GUdd // MatrixForm

Out[101]//MatrixForm=

$$\begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} -\frac{a[t] a[t]}{-1+r^2 \kappa} \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ r^2 a[t] a'[t] \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ r^2 a[t] a'[t] \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ r^2 a[t] \sin[\theta]^2 a'[t] \end{pmatrix} \\ \begin{pmatrix} 0 \\ \frac{a'[t]}{a[t]} \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} -\frac{r \kappa}{a't} \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ r(-1+r^2 \kappa) \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ r(-1+r^2 \kappa) \sin[\theta]^2 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ r(-1+r^2 \kappa) \sin[\theta]^2 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ \frac{a'[t]}{a[t]} \\ \frac{1}{r} \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

5a

In[108]:= Rdd / g // Simplify // MatrixForm

Out[108]//MatrixForm=

each R_{ii}/g_{ii} component is the same:

$$\frac{R_{ii}}{g_{ii}} = \frac{2 \kappa + 2 a'[t]^2 + a[t] a''[t]}{a[t]^2}$$