Série 2017 PQ selon OFPi 2006

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Nom, prénom	N° de candidat	Date

Temps: 70 minutes pour 16 exercices sur 10 pages

Auxiliaires: Règle, équerre, chablon, recueil de formules sans exemple de calcul et

calculatrice de poche, indépendante du réseau (Tablettes, Smartphones

etc. ne sont pas autorisés).

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

 Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés

deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

1,0

Barème: Nombres de points maximum: 40,0

-0.0

38,0	-	40,0	Points = Note	6,0
34,0	-	37,5	Points = Note	5,5
30,0	-	33,5	Points = Note	5,0
26,0	-	29,5	Points = Note	4,5
22,0	-	25,5	Points = Note	4,0
18,0	-	21,5	Points = Note	3,5
14,0	-	17,5	Points = Note	3,0
10,0	-	13,5	Points = Note	2,5
6,0	-	9,5	Points = Note	2,0
2,0	-	5,5	Points = Note	1,5

1,5 Points = Note

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des expertes / experts:	Points obtenus	Note

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2018.

Créé par: Groupe de travail EFA de l'USIE pour la profession

d'installatrice-électricienne CFC / installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre of maximal	de points obtenus
1.	Pourquoi le secondaire d'un transformateur moyenne tension / basse tension 3 x 400 V est couplé en étoile ? (une réponse)	1	
2.	Citez deux avantages des matériaux d'installation fabriqués sans halogène.	2	
	Avantage 1:	1	
	Avantage 2:	1	
3.	Sur la plaquette signalétique d'un transformateur, on trouve les informations suivantes : Tension au primaire = 230 V, tension au secondaire = 12 V, η = 90 %, cos ϕ = 0,88 Le transformateur est chargé avec 280 W (purement ohmique).	3	
	Calculez : a) le courant côté secondaire.	1	
	b) le courant dans la ligne d'alimentation du transformateur.	2	

Exer	cices	Mombre of maximal	de points obtenus
4.	Comment nomme-t-on les symboles de relais suivants ?	3	
	a)	1	
	b)	1	
	c)	1	
5.	Calculez l'efficacité lumineuse de l'ampoule fluo compact (ampoule économique). Caractéristiques nominales: - Puissance nominale: - Tension nominale: - Flux lumineux: - Durée de vie: - Température de couleur: 4000 K	2	

 Sur un réseau triphasé 3 x 400 V/ 230 V, on relie : - un chauffe-eau triphasé U = 3 x 400 V, 12 A - l'éclairage d'une halle U = 230 V réparti sur les trois phases : 	1 2	
- l'éclairage d'une halle U = 230 V réparti sur les trois phases : $ I_{L1} = 8,2 \ A, \cos \phi_1 = 0,7 \ ; \ I_{L2} = 7,6 \ A, \cos \phi_2 = 0,85 $ $I_{L3} = 9,4 \ A, \cos \phi_3 = 0,9 $ Calculez : a) la puissance du chauffe-eau. b) la puissance active totale de l'éclairage.	·	
$I_{L1}=8,2\ A,\ \cos\phi_1=0,7\ ;\ I_{L2}=7,6\ A,\ \cos\phi_2=0,85$ $I_{L3}=9,4\ A,\ \cos\phi_3=0,9$ Calculez : a) la puissance du chauffe-eau. b) la puissance active totale de l'éclairage.	·	
a) la puissance du chauffe-eau. b) la puissance active totale de l'éclairage.	·	
b) la puissance active totale de l'éclairage.	·	
	2	
c) la puissance active totale de tous les récepteurs.		
	1	
7. Quelle est la tension U_2 , sachant que R_1 = 100 Ω et que R_2 est une diode Zener de 7,2 V ? + \bigcirc R_1 \bigcirc +	2	
\downarrow U_1 R_2 \downarrow U_2		
a) U ₁ = 6 V	1	
U ₂ =		
b) U ₁ = 9 V	1	
$U_2 =$		

Exer	cices	Nombre maximal	de points obtenus
8.	Réglage d'un relais thermique pour la protection de moteur. Sur la plaquette signalétique du moteur, on trouve les informations suivantes : $P=6500~W,~cos~\phi=0,87,~\eta=0,82,~U=3~x~400~V,~raccordement~en~étoile.$ A quel courant doit-on régler le relais thermique pour protéger le moteur des surcharges ?	2	
9.	Une lampe de contrôle 230 V / 5 W / 50 Hz est raccordée en série avec un condensateur, sur le réseau 400 V / 50 Hz.	4	
	Calculez : a) l'intensité du courant dans ce circuit série.	1	
	b) la tension aux bornes du condensateur.	1	
	c) la capacité du condensateur. (réponse donnée en nF)	2	

Exer	kercices					
10.	Deux résistances, $20~\Omega$ et $60~\Omega$, sont connectées en parallèl une batterie. La tension aux bornes de la batterie est de $6~V$		ntées par	2		
	Calculez : a) le courant l'traversant l'ampèremètre.			1		
	b) la tension à vide U_{\circ} de la batterie.			1		
11.	. Système KNX a) Cochez pour indiquer si l'affirmation suivante est juste ou fausse.					
	Affirmation	Juste	Faux			
	Le système KNX est un système de bus décentralisé avec intelligence distribuée dans les dispositifs connectés.			1		
	b) Comment nomme-t-on les deux différentes adresses dans	s un systè	me KNX ?	1		

Exer	rercices						de points obtenus
12.	Pour chacune des affirmat ou fausse.	ions suivantes, coc	hez afin d'indic	quer si elle	est juste	2	
	Affirmations Juste Faux						
	NiCd – Accus sont ecologique					0,5	
	La force électromotrice (FEM) d'un accumulateur au plomb est de 2 V					0,5	
	Les accumulateurs Nickel-Métal-Hydrure NiMH ont, à taille égale, 10 fois plus de capacité que les accumulateurs NiCd					0,5	
	Lithium-lonen-Accus ont une force électromotrice de ca. 3,6 V					0,5	
13.	Cochez dans le tableau, que différents moyens de prote		ntervient(-ienne	ent) dans l	es	2	
			Composant				
	Moyen de protection	Dispositif magnétique	Dispositif thermique	Dispos couran différei	t		
	Relais de protection pour moteur					0,5	
	DDR (RCD)					0,5	
	Disjoncteur de canalisation					0,5	
	Disjoncteur de moteur					0,5	

Exercices					Mombre maximal	de points obtenus
	sur un réseau triphasé 3 x courants de ligne (I _{L1,} I _{L2,} I _{L3})		Hz		2 1,5	
Tous les conson	nmateurs ont une charge po	urement rés	istive.			
R ₁ = 27 Ω	$P_2 = 1000 \text{ W}$ $R_3 = 54 \Omega$					
a)						
b) Que devient le en étoile de 4l	e courant du neutre, si l'on kW ?	ajoute un ré	cepteur équil	ibré couplé	0,5	
$\begin{array}{c c} L_1 & & \\ L_2 & & \\ L_3 & & \\ \hline N & \\ \hline PE - \cdot \\ \hline R_1 = 27 \Omega \end{array}$	$P_2 = 1000 \text{ W}$ $R_3 = 54 \Omega$		R ₄ R ₄ R ₄	P ₄ = 4 kW		
Cochez l'affirma	tion correcte.					
	Affirmation	Reste le même	Augmente	Diminue		
Le courant dan	s le conducteur de neutre					

Exercices	Nombre maximal	de points obtenus
16. Vous avez mesuré les valeurs suivantes avec les différents appareils de mesure pour un moteur à courant alternatif monophasé.	5	
I = 5,9 A W P = 923 W N H 09 N H 10 N 10 N H 10 N		
Calculez : a) la puissance apparente S.	1	
b) le cos φ.	1	
c) la puissance réactive Q.	1	
d) le courant l lorsque le cos φ passe à 0,9.	1	
e) la capacité du condensateur, raccordé en parallèle avec le moteur, afin d'améliorer le cos φ à 0,9. (Capacité du condensateur en μF)	1	
Total	40	