Geometría de curvas y superficies Segundo de Matemáticas, UAM Curso 2020-2021

Resumen sobre curvas

(elaborado por JLF/PFG, UAM, 10 de marzo de 2021)

Reunimos a continuación las nociones, notaciones y fórmulas sobre el material de curvas (planas y espaciales).

Una curva regular γ es una aplicación diferenciable de un intervalo $I \subseteq \mathbb{R}$ en \mathbb{R}^3 ,

$$\gamma: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}^3$$

$$t \longmapsto \gamma(t) = (x(t), y(t), z(t)),$$

tal que el vector "velocidad"

$$\gamma'(t) = (x'(t), y'(t), z'(t))$$
 es distinto de $(0, 0, 0)$ para cada $t \in I$,

donde ' significa derivada con respecto a t. Su **traza** es $\gamma(I)$, el conjunto de puntos de \mathbb{R}^3 que son imagen por γ del intervalo I. A t nos referimos como el **parámetro** de la curva.

Dado $t \in I$, la **longitud de arco** de la curva γ desde el punto $t_0 \in I$ es

$$s(t) = \int_{t_0}^{t} \left\| \dot{\boldsymbol{\gamma}}(u) \right\| du$$

Diremos que la curva está parametrizada por longitud de arco si $\|\gamma'(t)\| = 1$ para cada $t \in I$ (en cuyo caso s(t) = t salvo una constante).

Notación: en lo que sigue,

- si la curva está parametrizada por longitud de arco, reservaremos el símbolo s para su parámetro, y para las derivadas con respecto a s utilizaremos $\gamma'(s)$, $\gamma''(s)$, etc.;
- para parámetro t arbitrario, para las derivadas con respecto a t escribiremos $\dot{\gamma}(t)$, $\ddot{\gamma}(t)$, etc.

A. Curvas parametrizadas por longitud de arco

Como $\|\gamma'(s)\| = 1$ para todo s, los vectores $\gamma'(s)$ y $\gamma''(s)$ son perpendiculares para todo s. En lo que sigue supondremos que la curva es **birregular**, es decir, $\|\gamma''(s)\| \neq 0$ para todo s.

ullet El vector tangente a la curva γ en s se define como

$$\mathbf{t}(s) = \boldsymbol{\gamma}'(s)$$
.

 \blacksquare La curvatura de la curva γ en s será

$$\kappa(s) = \|\mathbf{t}'(s)\| = \|\boldsymbol{\gamma}''(s)\|.$$

lacktriangle El **vector normal** a la curva $oldsymbol{\gamma}$ en s es

$$\mathbf{n}(s) = \frac{\mathbf{t}'(s)}{\|\mathbf{t}'(s)\|} = \frac{\boldsymbol{\gamma}''(s)}{\|\boldsymbol{\gamma}''(s)\|} = \frac{\boldsymbol{\gamma}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}'(s)}{\kappa(s)} \cdot \frac{\mathbf{t}'(s)}{\kappa(s)} \cdot \frac{\mathbf{t}'(s)}{\kappa(s)} \cdot \frac{\mathbf{t}'(s)}{\kappa(s)} = \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}'''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}'''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} \cdot \frac{\mathbf{t}''(s)}{\kappa(s)} = \frac{\mathbf{t}'''(s)}{\kappa(s)} = \frac$$

lacktriangle El vector binormal a la curva γ en s es

$$\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{n}(s)$$
.

Los vectores $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ son perpendiculares entre sí y tienen longitud unidad. Forman un triedro (orientado positivamente), llamado el **triedro de Frenet** de la curva γ en s.

El plano definido por los vectores $\mathbf{t}(s)$ y $\mathbf{n}(s)$ y que pasa por el punto $\gamma(s)$ se conoce como el **plano** osculador de la curva γ en el punto $\gamma(s)$. La ecuación de este plano es

$$(\mathbf{x} - \boldsymbol{\gamma}(s)) \cdot \mathbf{b}(s) = 0.$$

Análogamente, se definen los planos **rectificante** (definido por $\mathbf{t}(s)$ y $\mathbf{b}(s)$) y **normal** (definido por $\mathbf{n}(s)$ y $\mathbf{b}(s)$). Las respectivas ecuaciones son:

(rectificante):
$$(\mathbf{x} - \boldsymbol{\gamma}(s)) \cdot \mathbf{n}(s) = 0$$
; (normal): $(\mathbf{x} - \boldsymbol{\gamma}(s)) \cdot \mathbf{t}(s) = 0$.

El vector que mide la variación del vector tangente es

(1)
$$\mathbf{t}'(s) = \kappa(s) \mathbf{n}(s).$$

El vector $\mathbf{b}'(s)$ resulta ser paralelo a $\mathbf{n}(s)$, de manera que

(2)
$$\mathbf{b}'(s) = \tau(s) \mathbf{n}(s),$$

donde la función $\tau(s)$ es la **torsión**¹ de la curva γ en s. En términos de las derivadas de la curva,

$$\tau(s) = -\frac{(\gamma'(s) \times \gamma''(s)) \cdot \gamma'''(s)}{\|\gamma''(s)\|^2}.$$

Por último,

(3)
$$\mathbf{n}'(s) = -\kappa(s) \mathbf{t}(s) - \tau(s) \mathbf{b}(s).$$

Las identidades (1)–(3) son las llamadas **fórmulas de Frenet**.

B. Curvas con parametrización arbitraria

Escribimos a continuación las fórmulas para todas las cantidades anteriores cuando el parámetro no es (necesariamente) la longitude de arco. Nótese que conviene calcular el triedro de Frenet en el orden $\mathbf{t}(t) \to \mathbf{b}(t) \to \mathbf{n}(t)$:

curvatura:
$$\kappa(t) = \frac{\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|}{\|\dot{\gamma}(t)\|^3}$$
, triedro de Frenet :
$$\begin{cases} \mathbf{t}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}, \\ \mathbf{b}(t) = \frac{\dot{\gamma}(t) \times \ddot{\gamma}(t)}{\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|^2}, \\ \mathbf{n}(t) = \mathbf{b}(t) \times \mathbf{t}(t). \end{cases}$$

C. Curvas planas

En el caso de las curvas planas, podemos dar un signo a la curvatura. Digamos que la curva plana $\gamma:I\subset\mathbb{R}\to\mathbb{R}^2$ viene dada por

$$\boldsymbol{\gamma}(t) = (x(t), y(t)).$$

Su vector velocidad es $\dot{\gamma}(t) = (\dot{x}(t), \dot{y}(t))$ y su vector tangente,

$$\mathbf{t}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} = \frac{(\dot{x}(t), \dot{y}(t))}{\sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}} \cdot \frac{\dot{x}(t)}{\sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}} \cdot \frac{\dot{x}(t)}$$

Definimos entonces el vector normal como el vector unitario y perpendicular (ángulo de $\pi/2$ en sentido antihorario) a $\mathbf{t}(t)$, esto es, como

$$\hat{\mathbf{n}}(t) = \frac{(-\dot{y}(t), \dot{x}(t))}{\sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}}.$$

La curvatura de γ en el punto $\gamma(t)$ resulta ser

$$\hat{\kappa}(t) = \frac{\dot{x}(t) \, \ddot{y}(t) - \ddot{x}(t) \, \dot{y}(t)}{(\dot{x}(t)^2 + \dot{y}(t)^2)^{3/2}},$$

una cantidad con signo (y cuyo módulo coincide, por supuesto, con la curvatura habitual).

¹En algunos textos se define la torsión de manera que en la fórmula (2) aparece un signo menos.