## 1. 距離空間の復習

岩井雅崇 2022/10/04

問 1.1 正の自然数 n について  $\mathbb{R}^{n+1}$  の部分集合  $S^n$  を

$$S^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{m+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$$

と定める.  $S^n$  は  $\mathbb{R}^{n+1}$  の有界閉集合であることを示せ.

問 1.2 閉区間 [a,b] とし,

$$B[a,b] := \{f | f は [a,b] 上の実数値有界関数 \}$$

とし  $f, g \in B[a, b]$  について

$$d(f,g) := \sup_{x \in [a,b]} \{ |f(x) - g(x)| \}$$

と定める. (B[a,b],d) が距離空間であることを示せ.

問 1.3 実数列  $x=\{x_n\}_{n=1}^\infty$  で  $\sum_{i=1}^\infty x_i^2 < \infty$  となるものの集合を  $l^2$  とする.  $x,y \in l^2$  について

$$d(x,y) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$$

と定める. d が well-defined であることを示し $^1$ ,  $(l^2,d)$  は距離空間となることを示せ. (この空間は Hilbert 空間と呼ばれる.)

- 問 1.4 距離空間 (X,d) とその部分集合  $A \subset X$  において次を示せ.
  - (a) A の内部  $A^i$  は A に含まれる最大の開集合である.
  - (b) A の閉包  $\overline{A}$  は A を含む最小の閉集合である.

ここで  $A^i$  は A の内点の集合とし,  $\overline{A}$  は A の触点の集合とする. また A が開集合であるとは  $A=A^i$  となることとし A が閉集合であるとは  $A=\overline{A}$  となることとする.(教科書 4 章の定義通りとする.)

- 問 1.5 d, d' を X 上の距離関数とする.
  - (a) ある正の数 C>0 があって任意の  $x,y\in X$  について  $d(x,y)\leq Cd'(x,y)$  ならば、恒等 写像  $id:(X,d')\to (X,d)$  は連続であることを示せ.
  - (b) (X,d) における開集合全体の集合を  $\mathcal{O}_d$  とし,(X',d') における開集合全体の集合を  $\mathcal{O}_{d'}$  とする.ある正の数 C>0 があって, $C^{-1}d'(x,y) \leq d(x,y) \leq Cd'(x,y)$  ならば, $\mathcal{O}_d=\mathcal{O}_{d'}$  であることを示せ.

 $<sup>\</sup>overline{1}\sum_{i=1}^{\infty}(x_i-y_i)^2$  がなぜ収束するのかを示してください.

- 問 1.6~A を距離空間 X の部分集合とするとし,  $f:X\to\mathbb{R}$  を f(x)=d(x,A) で定める. f は連続であることを示せ.
- 問 1.7 任意の空でない集合 X について、ある距離関数 d があって (X,d) は距離空間になることをしめせ、
- 問 1.8\*(X,d) を距離空間とする. X の部分集合 A が有界であるとは、ある正の数 M があって任意の  $x,y\in A$  について  $d(x,y)\leq M$  であることとする.  $\mathcal{B}(X)$  を X の有界閉集合全体の集合とする. 次の問いに答えよ.
  - (a)  $A,B\in\mathcal{B}(X)$  について  $\sup_{x\in A}d(x,B)<+\infty$  であることを示せ. $^2$
  - (b)  $A, B \in \mathcal{B}(X)$  について

$$d_H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{y \in B} d(A, y)\}$$

とする. 任意の  $x \in X$  について

$$d(x, A) \leq d(x, B) + d_H(A, B)$$

が成り立つことを示せ.

問 1.9 \* 問 1.8 での  $(\mathcal{B}(X),d_H)$  は距離空間になることを示せ. (これはハウスドルフ距離と呼ばれる.)

 $<sup>^{2}</sup>d(x,B)=\inf_{y\in B}d(x,y)$  である.