

EMT Bootcamp for BES IBR Studies Part 1: Plant-Level Emphasis 8/3/23

An initiative spearheaded by the Solar Energy Technologies Office and the Wind Energy Technologies Office

Thomas.McDermott@pnnl.gov

How an EMT solver works with trapezoidal integration and a system admittance (Y) matrix.

"Stamping these in" to the system Y matrix:

$$\begin{bmatrix} y_Z + y_R + y_L + y_C & -y_R & -y_L & -y_C & \mathbf{0} \\ -y_R & y_R & 0 & 0 & 0 \\ -y_L & 0 & y_L & 0 & 0 \\ -y_C & 0 & 0 & y_C & 0 \\ \mathbf{0} & 0 & 0 & 0 & y_Z \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix} = \begin{bmatrix} i_1 - h_k - h_L - h_C \\ 0 \\ h_L \\ h_C \\ -h_m \end{bmatrix}$$

Constant-parameter distributed line models rely on modal decomposition matrices with real-number elements.

For three-phase balanced lines, instead of symmetrical components:

$$\mathbf{I_{p}} = \mathbf{T_{i}} \mathbf{I_{m}}$$

$$\mathbf{T_{i}} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix}$$

- Four balanced three-phase lines
 - Optionally with zero-sequence coupling
- A "twelve-phase" unbalanced line
 - Optionally add the ground wires
- Two double-circuits, and other combinations in between

Representing faults and fault clearing operations.

- Voltage across $C_{line}/2$ can't change instantaneously; $\tau = 0.5*R_{gnd}*C_{line}$ governs the discharge.
- Current through L_{src} can't change instantaneously, so, interruption occurs at a natural current zero.
- C_{bus} determines the transient recovery voltage (TRV).

EMT transformer models include multiple windings, neutral connections, saturation, and high-frequency characteristics.

What is the meaning of frequency dependence in lines?

Source: https://doi.org/10.1109/TDC.2008.4517264

EMT machine models include stator flux transients, saturation, shaft torsionals and unbalanced operation.

For control block diagrams: see IEEE 421.5, **EHV Grid** Power System Dynamic Performance (PSDP) Governor Exciter Committee reports, your dynamics program Power System Stabilizer user manual, etc. GSU **Faults** HP LP1 LP2 **IP** Exc Gen $\mathsf{T}_{\mathsf{exc}}$ $0.25\,T_{m}$ $0.25\,T_{m}$ $0.25 T_{m}$ $0.25 T_{\rm m}$

Suggested references: https://doi.org/10.1109/61.473358 and https://doi.org/10.1109/61.473358 and https://doi.org/10.1109/61.517533

"Compact" model of a power electronic switching device; a diode with reverse recovery voltage and switching losses.

$$i(t) = \frac{(q_E - q_M)}{T_M}$$

$$0 = \frac{dq_M}{dt} + \frac{q_M}{\tau} - \frac{(q_E - q_M)}{T_M}$$

$$q_E = I_S \tau \left[\exp(\frac{v}{nV_T}) - 1 \right]$$

$$\tau = \frac{Q_{rr}}{I_{fm}}$$

$$T_M = \frac{\tau T_{rr}}{T_{rr} - \tau}$$

Results are from Simplorer, which is a SPICE-like simulator with variable time step.

An EMT IBR model adds fast control loops, protection functions, and vendor-proprietary code to the phasor-domain model.

Source: Andrew L. Isaacs, "EMT Model Intake and Quality Assurance", ESIG Webinar, 5/18/2023. Adapted with permission.

There are many phase-locked loop implementations; their performance matters to simulation and in the real world.

A simple Synchronous Reference Frame (SRF) PLL works by driving V_q to zero.

$$K_p = \frac{\omega_{bw}}{V_{pk}}$$

$$K_i = K_p T_s \omega_{bw}^2$$

- Choose θ_{bw} =188.5 and T_s =20ms
- Choose V_{pk}=1 in per-unit system
- $K_p = 188.5$ and $K_i = 134e3$

Second-Order Generalized Integrator (SOGI) Frequency-Locked Loop (FLL) is more robust.

- 1. Transform V_{abc} to V_{α} and V_{β}
- 2. Pass V_{α} and V_{β} through separate quadrature signal generator (QSG)s, each using two integrators
 - These require an estimate of ω from the FLL
- 3. Algebraically separate the positive and negative sequence components of V_{α} and V_{β}
 - Those 4 sequence components feed a gainnormalized FLL, which uses 1 integrator in estimating ω for step 2
 - Integrating ω to estimate θ
 - They also establish V_1 and V_2 if needed
- 4. Comparable to the possibly more popular DDSRF:
 - No trig function evaluations
 - Smoother response has been observed

Simulation time and time step selection guidelines.

Factor	Shortest Tmax	Typical ∆t
Natural frequency	2 – 10 cycles	20 per cycle
Line travel time	1 – 4 travel times	1-20 per travel time
Lightning surges	100 – 200 μs	$0.1 - 1 \mu s$
Cable switching surges	0.2 – 1 ms	$1-20~\mu s$
Capacitor switching	1 – 100 ms	10 – 100 μs
Short circuits	0.1 - 1 s	10 – 200 μs
Machine dynamics	0.5 - 5 s	100 – 1000 μs
Ferroresonance	0.1 - 1 s	10 – 50 μs
Steady state / Harmonics	50 – 500 ms	50 μs
Inverter-based resources	0.5 – 45 s	$1 - 200 \mu s$

EMT References

Theory

- 1. Juan A. Martinez-Velasco (ed.), *Transient Analysis of Power Systems: Solution Techniques, Tools and Applications*, IEEE Press, 2014.
- 2. Watson & Arrillaga, *Power Systems Electromagnetic Transients Simulation (2nd ed.)*, IET, 2018.

IBR Behaviors

- 1. Yazdani & Iravani, Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications, IEEE Press, 2010.
- 2. Blaabjerg, Control of Power Electronic Converters and Systems, v1-3, Academic Press, 2018-2021.

Industry Reports

- 1. PES-TR77, "Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies", PSDPC, April 2020.
- 2. PES-TR106, "Trends in microgrid modeling for stability analysis", PSDPC, November 2022.
- 3. CIGRE TB 727, "Modeling of Inverter-Based Generation for Power System Dynamic Studies", 2018.
- 4. CIGRE TB 736, "Power system test cases for EMT-type simulation studies", 2018.
- 5. CIGRE TB 766, "Network Modelling for Harmonic Studies", 2019.
- 6. CIGRE TB 832, "Guide for electromagnetic transient studies involving VSC converters", 2021.

International Conference on Power System Transients: https://www.ipstconf.org/

Platform and tool-independent post-processing with COMTRADE and Python.

Producing and using COMTRADE files from two EMT tools.

 In PSCAD, the recorder is under "Data recorders Readers"

In EMTP, the recorder is under "Protection"

- COMTRADE processing options:
 - Bootcamp examples using https://github.com/dparrini/python-comtrade
 - Plotting tool in your EMT simulator probably reads COMTRADE
 - Relay vendors and other "COMTRADE viewers" you might Google
 - https://www.mathworks.com/matlabcentral/fileexchange/15619-comtrade-reader

Framework of the bootcamp's plant-level model and basic tests.

From P2800.2/D0.3 SG3

- 1. 10-s initialize; then 10-s flat run; $P=P_{min}$ and ICR^* ; Q=0, \pm 0.3287 ICR
- 2. UV ride-through: $3\phi g$ fault; 0.16-s; $Z_f = 0$ and Z_s ; P=ICR; Q=0, \pm 0.3287 ICR A. Repeat for $2\phi g$, 2ϕ and $1\phi g$; $Z_f = 0$ only
- 3. OV ride-through: 1.2 V for 1-s; P=ICR; Q=0, ± 0.3287 ICR

Suggested reference: https://sagroups.ieee.org/2800-2/

^{*} IBR continuous rating

More plant-level control and response tests (P2800.2/D0.3_SG3).

- 1. V_{ref} , Q_{ref} , or pf_{ref} change at ICR; +0.05 pu 5-15s; -0.05 pu 25-35s; run 45s
- 2. P_{ref} change at ICR; 1 pu 0-5s; 0.5 pu 5-15s; 0.04 pu 15-25s; 1 pu 35-35s
- 3. Frequency RT at P_{min} and ICR, Q=0; +1.8 or -3.0 Hz from 5-25s; run 35s
- 4. Grid angle ride-through: ± 25°; P=P_{min} and ICR; Q=0
- 5. Short-circuit ratio (SCR) ramp-down (informational); P=ICR; $3\phi g$ fault with $Z_f = 0$ every 5s; stable operation expected until SCR approaches 2.5

Range [s]	SCR
0-5	20
5-10	10
10-15	5
15-20	4
20-25	3
25-30	2.5
30-35	2
35-40	1.5
40-45	1

Some important figures of merit expected from post-processing.

- Reaction time: duration from step input to changed output at same location
- Rise time: duration from 10% to 90% of the final settled output level
- <u>Settling time</u>: duration from step change to output stays within a settling band around final output level
- Overshoot: normalized amount by which the peak output exceeds final settled output level
- <u>RMS Error</u>: point-by-point root mean square difference from expected output (measurement, spec, another model)

Suggested reference: https://doi.org/10.1109/IEEESTD.2022.9762253, especially the definitions.

Damping ratio estimates: by overshoot or by log decrement.

By per-unit overshoot (O):

$$\zeta = \frac{-\ln(O)}{\sqrt{\pi^2 + \ln^2(O)}}$$

By log decrement:

$$\sigma = \frac{1}{n} \ln \left(\frac{Q_{peak-1}}{Q_{peak-n}} \right)$$

$$\zeta = \frac{1}{\sqrt{1 + \left(\frac{2\pi}{\sigma}\right)^2}}$$

ζ	Behavior
0	Purely oscillatory
< 1	Damped oscillations
1	Critically damped, i.e., no overshoot
> 1	Sluggish

Suggested reference: https://doi.org/10.1109/IEEESTD.2022.9762253, Annex L.

Important Links and Instructions

- Instructions, models, slides, videos, and other material: https://github.com/pnnl/i2x/tree/develop/emt-bootcamp
- Direct questions about software operation to your tool vendor
- Post questions about the bootcamp materials here:
 - https://github.com/pnnl/i2x/issues/16
 - You may benefit from the experience of others this way
- Upcoming video and exercise releases (separate for each tool):
 - August 10: Comparing rotating machine and IBR behaviors in EMT
 - August 17: Comparing switching and average models
 - August 24: Automation of faults
 - August 31: Automation of IEEE P2800.2 type tests
 - September 7: Automation of waveform evaluations
- September 14, 2-4 p.m. Eastern time: System-level Emphasis