Université de Jijel

Faculté des Sciences et de la Technologie Département d'Electrotechnique

Systèmes Asservis, L3, TD N°3

EXO: 1 Soient les racines des équations caractéristiques de différents systèmes. Déterminer dans chaque cas si l'ensemble des racines, représente un système stable, marginalement stable ou instable.

- a) Quatre pôles (P_1 =-5, P_2 = -4, P_3 = -15, P_4 = -7);
- b) Trois pôles (P_1 = -20, P_2 = -12, P_3 = +0.0004);
- c) Quatre pôles ($P_1 = -2$, $P_{2} = -5$, $P_{3} = 0$, $P_{4} = -20$);
- d) Trois pôles ($P_1 = -2-i4$, $P_2 = -2+i4$; $P_3 = -5$)
- e) Quatre pôles ($P_1 = -3-j2$, $P_2 = -3+j2$, $P_3 = -j5$, $P_4 = +j5$);
- f) Quatre pôles $(P_1 = +1-i2, P_2 = +1+i2, P_3 = -4-i5, P_4 = -4+i5);$

EXO: 2 Soient les équations caractéristiques de différents systèmes. Etudier la stabilité de ces systèmes en utilisant le critère de Routh.

a)
$$P^3+4P^2+8P+12=0$$
; b) $P^6+5P^5+9P^4+10P^3+12P^2+8P+3=0$; c) $P^4+6P^3+11P^2+6P+K=0$

EXO : 3En utilisant le développement en éléments simples ou la méthode des résidus, trouvez la transformée inverse de :

a)
$$F(p) = \frac{p+2}{p(p+3)(p+4)}$$
 b) $F(p) = \frac{2p}{(p+3)(p+2)^2}$

EXO : 4 Tracez le lieu de Bode (gain et phase) pour les systèmes donnés par leur fonction de transfert suivante :

a)
$$F(p) = \frac{5}{(1+0.1p)}$$
 b) $F(p) = \frac{1}{p^{\alpha}}$ $\alpha = 1, 2, 3$

EXO : 5Tracez le lieu de Nyquist pour les systèmes donnés par leur fonction de transfert suivante :

a)
$$F(p) = k \frac{1-\tau p}{(1+\tau p)}$$
 b) $F(p) = \frac{1}{p(p+k)}$

EXO: 6 Soit le système asservi linéaire donné par sa FTBO

$$Fo(p) = \frac{4(1+0.25p)}{(1+0.1p)(1+0.4p)(1+0.8p)(1+0.05p)}$$

- 1) On demande de tracer le lieu de Bode
- 2) On demande de déterminer :
 - -La fréquence de coupure ω_c
 - -La fréquence d'inversion de la phase ω_{π}
 - -La marge de phase $\Phi_{\rm m}$
 - -La marge de gain A_m

Solution TD No3

EXO 1:

- a) Quatre pôles réels négatifs donc le système est asymptotiquement stable.
- b) Deux pôles réels négatifs et un pole réel positif ⇒le système est instable.
- c) Trois pôles réels négatifs et un pole nul ⇒ le système est marginalement stable.
- d) Deux pôles complexes à parties réelles négatives et un pole réel négatif ⇒ le système est asymptotiquement stable.
- e) Deux pôles complexes à parties réelles négatives et deux pôles imaginaires pures ⇒ le système est marginalement stable.
- f) Deux pôles complexes à parties réelles négatives et deux pôles complexes à parties réelles positives ⇒ le système est instable.

EXO 2:

- a) $P^3+4P^2+8P+12=0$.
 - La 1^{ere} condition de stabilité est satisfaite car tous les A_n (1, 4, 8, 12) sont de même signes
 - -La 2^{eme} condition, on construit la table de Routh

$$\begin{array}{c|cccc} P^3 & 1 & 8 \\ \hline P^2 & 4 & 12 \\ \hline P^1 & b_1 & b_2 \\ P^0 & c_1 & C_2 \\ \end{array}$$

$$b_1 = \frac{(4*8) - (1*12)}{4} = 5;$$
 $b_2 = 0;$ $c_1 = \frac{(5*12) - (4*0)}{5} = 12;$

Les éléments de la 1^{ere} colonne de la table de Routh (1, 4, 5, 12) sont de même signe donc la deuxième condition de stabilité est satisfaite \Rightarrow système est asymptotiquement stable.

- b) $P^6 + 5P^5 + 9P^4 + 10P^3 + 11P^2 + 8P + 3 = 0$
 - La 1^{ere} condition de stabilité est satisfaite car tous les A_n (1, 5, 9, 10, 11,10, 3) sont de même signes.
 - -La 2^{eme} condition, on construit la table de Routh

$$b_1 = \frac{(5*9) - (1*10)}{5} = 7; \ b_2 = \frac{(5*12) - (1*8)}{5} = 10.2; \ b_3 = \frac{(5*3) - (1*0)}{5} = 3$$

$$C_{1} = \frac{(b_{1} * 10) - (5 * b_{2})}{b_{1}} = \frac{15}{7}; \quad C_{2} = \frac{(b_{1} * 8) - (5 * b_{2})}{b_{1}} = \frac{41}{7};$$

$$d_{1} = \frac{(C_{1} * b_{2}) - (b_{1} * C_{2})}{C_{1}} = \frac{\left(\frac{15}{7} * 10.2\right) - (7 * \frac{41}{7})}{15/7} = -\frac{134}{7}; \quad d_{2} = \frac{(C_{1} * b_{3}) - (b_{0} * 0)}{C_{1}} = b_{3}$$

$$(d_{1} * C_{2}) - (C_{1} * d_{2}) = 134 \qquad (e_{1} * d_{2}) - (d_{1} * e_{2})$$

 $e_1 = \frac{(d_1 * C_2) - (C_1 * d_2)}{d_1} = -\frac{134}{7}; \quad e_2 = 0; \quad f_1 = \frac{(e_1 * d_2) - (d_1 * e_2)}{e_1} = d_2$

Il y a un changement de signe dans la 1^{ere} colonne de la table de Routh donc il existe une racine à partie réelle positive \Rightarrow le système est instable.

c)
$$P^4 + 6P^3 + 11P^2 + 6P + K = 0$$

- La 1^{ere} condition de stabilité est satisfaite si K>0

-La 2^{eme} condition, on construit la table de Routh

$$c_1 = \frac{(b_1*6) - (6*b_2)}{b_1} = \frac{(10*6) - (6*K)}{10}; \quad c_2 = 0; \quad d_1 = \frac{(C_1*b_2) - (b_1*C_2)}{b_1} = b_2 = K;$$

la 1^{ere} colonne de la table de Routh est (1, 6, 10, $\frac{60-6K)}{10}$, K), ses éléments seront de même signe si $\frac{60-6K)}{10} > 0$ et K > 0 donc le système sera asymptotiquement stable pour 0 < K < 10

EXO 3:

a) $F(p) = \frac{p+2}{p(p+3)(p+4)}$ On utilise le développement en éléments simples

$$F(p) = \frac{p+2}{p(p+3)(p+4)} = \frac{A}{p} + \frac{B}{p+3} + \frac{C}{p+4}$$

$$A = \lim_{p \to 0} p F(p) = \lim_{p \to 0} p \frac{p+2}{p(p+3)(p+4)} = \frac{2}{12}$$

$$B = \lim_{p \to -3} (p+3) F(p) = \lim_{p \to -3} (p+3) \frac{p+2}{p(p+3)(p+4)} = \frac{1}{3}$$

$$C = \lim_{p \to -4} (p+4) F(p) = \lim_{p \to -4} (p+4) \frac{p+2}{p(p+3)(p+4)} = -\frac{1}{2}$$

$$F(p) = \frac{A}{p} + \frac{B}{p+3} + \frac{C}{p+4} = \frac{\frac{2}{12}}{p} + \frac{\frac{1}{3}}{p+3} + \frac{-\frac{1}{2}}{p+4}$$

$$\Rightarrow f(t) = \left(\frac{2}{12}\right) u(t) + \left(\frac{1}{2}\right) e^{-3t} - \left(\frac{1}{2}\right) e^{-4t}$$

b) $F(p) = \frac{2p}{(p+3)(p+2)^2}$ On utilise la méthode des résidus, on a un pole simple (P₁=-3) et un pole double (p₂=p₃=-2)

Au pôle simple on aura

$$r\acute{e}sidu_{p\to -3} = \lim_{p\to -3} (p+3) \frac{2p}{(p+2)^2(p+3)} e^{-3t} = -6 e^{-3t}$$

Au pôle double on aura (m=2)

$$residu_{p\to -2} = \frac{1}{(2-1)!} \lim_{p\to 0} \frac{d^{2-1}}{dp^{2-1}} [(p+2)^2 \frac{2p}{(p+2)^2(p+3)} e^{pt}] = \lim_{p\to 0} \frac{d}{dp} \frac{2p}{(p+3)} e^{pt}$$
$$= (6-4t)e^{-2t}$$

$$f(t) = \sum résidus = -6e^{-3t} + (6 - 4t)e^{-2t}$$

EXO 4:

a) Diagramme de Bode de :
$$F(p) = \frac{5}{(1+0.1p)} \Rightarrow F(j\omega) = \frac{5}{(1+j0.1\omega)}$$

Le gain
$$A_{dB}(\omega) = 20 \log |F(j\omega)| = 20 \log 5 - 20 \log \sqrt{1 + (0.1 \omega)^2}$$

$$0.1 \omega \ll 1 \Rightarrow A_{dB}(\omega) = 20 \log(5)$$

$$0.1\omega = 1 \Rightarrow A_{dB}(\omega) = 20\log(5) - 20\log(\sqrt{2})$$

$$0.1\omega \to \infty \Rightarrow A_{dB}(\omega) = -20\log(0.1\omega) \to -\infty$$
 avec une pente de -20dB/décade

La phase
$$\varphi(\omega) = \arg(F(j\omega)) = arctg(0/5) - arctg(0.1\omega/1) = -arctg0.1\omega$$

$$0.1\omega \ll 1 \Rightarrow \varphi(\omega) \rightarrow 0$$

$$0.1\omega = 1 \Rightarrow \varphi(\omega) = -\pi/4$$

$$0.1\omega \gg 1 \Rightarrow \varphi(\omega) \rightarrow -\pi/2$$

b) Diagramme de Bode de :
$$F(p) = \frac{1}{p^{\alpha}}$$
 $\alpha = 1, 2, 3 \Rightarrow F(j\omega) = \frac{1}{(j\omega)^{\alpha}}$

$$\alpha = 1 \Rightarrow F(j\omega) = \frac{1}{j\omega} \Rightarrow AdB(\omega) = -20\log(\omega) = \begin{cases} +20dB & \text{si } \omega = 0.1, \\ 0 & dB & \text{si } \omega = 1 \\ -20dB & \text{si } \omega = 10 \end{cases}$$
$$\varphi(j\omega) = artg1 - arct\left(\frac{\omega}{0}\right) = -\pi/2 =$$

$$\alpha = 2 \Rightarrow F(j\omega) = \frac{1}{(j\omega)^2} \Rightarrow AdB(\omega) = -20\log(\omega)^2 = -40\log\omega = \begin{cases} +40dB & \text{si } \omega = 0.1, \\ 0 & \text{dB } \text{si } \omega = 1 \\ -40dB & \text{si } \omega = 10 \end{cases}$$

$$\varphi(j\omega) = \arg\left(\frac{1}{j\omega}\right) + \arg\left(\frac{1}{j\omega}\right) = 2\arg\left(\frac{1}{j\omega}\right) = -\pi$$

$$\alpha = 3 \Rightarrow F(j\omega) = \frac{1}{(j\omega)^3} \Rightarrow AdB(\omega) = -20\log(\omega)^3 = -60\log\omega = \begin{cases} +60dB & \text{si } \omega = 0.1, \\ 0 & \text{dB } \text{si } \omega = 1 \\ -60dB & \text{si } \omega = 1 \end{cases}$$

$$\varphi(j\omega) = \arg\left(\frac{1}{j\omega}\right) + \arg\left(\frac{1}{j\omega}\right) + \arg\left(\frac{1}{j\omega}\right) = 3\arg\left(\frac{1}{j\omega}\right) = -3\pi/2$$

EXO:5

a) Diagramme de Nyquist de :

$$F(p)=k\frac{_{1-\tau p}}{_{(1+\tau p)}}\Rightarrow F(j\omega)=k\frac{_{1-j\omega\tau}}{_{(1+j\omega\tau)}}=k\frac{_{(1-\omega^2\tau^2)}}{_{(1+\omega^2\tau^2)}}-j\frac{_{2k\omega\tau}}{_{(1+\omega^2\tau^2)}}$$

ω	0	1/τ	∞
Réel	k	0	-k
Imaginaire	0	-k	0

b) Diagramme de Nyquist de :

$$F(p) = \frac{1}{p(p+k)} \Rightarrow F(j\omega) = \frac{1}{j\omega(j\omega+k)} = \frac{-1}{\omega^2+k^2} - j\frac{k}{\omega^3+\omega k^2}$$

ω	0	k	∞
Réel	-1/ k ²	-1/2 k ²	0
Imaginaire	-∞	-1/2 k ²	0

EXO: 6

1) Diagramme de Bode de :
$$F(p) = \frac{4(1+0.25p)}{(1+0.8p)(1+0.4p)(1+0.1p)(1+0.05p)}$$

Le Gain

$$\begin{split} A_{dB}(\omega) &= 20 \log |F(j\omega)| = 20 \log 4 + 20 \log \sqrt{1 + (0.25)^2 \omega^2} - 20 \log \sqrt{1 + (0.8)^2 \omega^2} \\ &- 20 \log \sqrt{1 + (0.4)^2 \omega^2} - 20 \log \sqrt{1 + (0.1)^2 \omega^2} - 20 \log \sqrt{1 + (0.05)^2 \omega^2} \\ &= A_1 + A_2 + A_3 + A_4 + A_5 + A_6 \end{split}$$

Les pentes de $AdB(\omega)$ seront :

Entre (0 et 1.25) c'est 0 dB/décade Entre (1.25 et 2.5) c'est -20dB/décade Entre (2.5 et 4) c'est -40 dB/décade Entre (4 et 10) c'est -20 dB/décade Entre (10 et 20) c'est -40 dB/décade Entre (20 et ∞) c'est -60 dB/décade

La phase

$$\begin{split} \varphi_1(\omega) &= arctg \left[\frac{0}{4}\right] = arctg0 = 0; \\ \varphi_2(\omega) &= arctg \left[\frac{0.25\omega}{1}\right] \Rightarrow \varphi_2(0) = 0, \quad \varphi_2(4) = +\frac{\pi}{4}, \quad \varphi_2(\infty) = +\pi/2 \\ \varphi_3(\omega) &= -arctg \left[\frac{0.8\omega}{1}\right] \Rightarrow \varphi_3(0) = 0, \quad \varphi_3(1.25) = -\frac{\pi}{4}, \quad \varphi_3(\infty) = -\pi/2 \\ \varphi_4(\omega) &= -arctg \left[\frac{0.4\omega}{1}\right] \Rightarrow \varphi_4(0) = 0, \quad \varphi_4(2.5) = -\frac{\pi}{4}, \quad \varphi_4(\infty) = -\pi/2 \\ \varphi_5(\omega) &= -arctg \left[\frac{0.1\omega}{1}\right] \Rightarrow \varphi_5(0) = 0, \quad \varphi_5(10) = -\frac{\pi}{4}, \quad \varphi_5(\infty) = -\pi/2 \\ \varphi_6(\omega) &= -arctg \left[\frac{0.05\omega}{1}\right] \Rightarrow \varphi_5(0) = 0, \quad \varphi_5(20) = -\frac{\pi}{4}, \quad \varphi_5(\infty) = -\pi/2 \end{split}$$

Lieu de Bode (phase)

- 2) En utilisant MATLAB on détermination
 - La fréquence (pulsation) de coupure ω_c=4.42 rd/s
 - La fréquence d'inversion de la phase ω_{π} =14.1 rd/s
 - La marge de phase $\phi_m = \phi(\omega c) (-\pi) = -112 + 180 = 68^\circ$
 - La marge de gain A_m=-20LogIFo(jωπ)I=19.3 dB

-Pour déterminer la pulsation de coupure (ω_c) on doit résoudre l'équation :

$$\begin{split} A_{dB}(\omega) &= 20 \log |F_o(j\omega)| = 20 \log 4 + 20 \log \sqrt{1 + (0.25)^2 \omega^2} - 20 \log \sqrt{1 + (0.8)^2 \omega^2} \\ &- 20 \log \sqrt{1 + (0.4)^2 \omega^2} - 20 \log \sqrt{1 + (0.1)^2 \omega^2} - 20 \log \sqrt{1 + (0.05)^2 \omega^2} = 0 \end{split} \tag{1}$$

-Pour déterminer la pulsation d'inversion de la phase (ω_{π}) on doit résoudre l'équation :

$$\varphi(\omega) = \varphi_1(\omega) + \varphi_2(\omega) + \varphi_3(\omega) + \varphi_4(\omega) + \varphi_5(\omega) + \varphi_6(\omega) = -\pi$$

$$= arctg\left[\frac{0.25\omega}{1}\right] - arctg\left[\frac{0.8\omega}{1}\right] - arctg\left[\frac{0.4\omega}{1}\right] - arctg\left[\frac{0.1\omega}{1}\right] arctg\left[\frac{0.05\omega}{1}\right] = -\pi$$
 (2)

- -Pour déterminer la marge de phase (ϕ_m) on remplace ' ω ' par ' ω_c ' dans l'équation (2), ce qui nous donne $\phi(\omega_c)$ puis on calcule $\phi m = \phi(\omega_c) + \pi = 68^\circ$
- -Pour déterminer la marge de gain (A_m) on remplace ' ω ' par ' ω_π ' dans l'équation (1), ce qui nous donne A_m =-20LogIFo $(j\omega\pi)$ I=19.3 dB