Домашняя работа №7 по курсу ТЕХ'а

Морозов Данила Егорович

22 февраля 2024 г.

Содержание

1	Неравенства Йенсена	2
2	Круги Эйлера	2

1 Неравенства Йенсена

Theorem 1.1 (Неравенства Йенсена). Пусть f(x) выпукла верх на [a,b]. Тогда $\forall x_1,...,x_n \in [a,b]u$ их выпуклой комбинации выполнено неравнество $\sum_{k=1}^{n} \alpha_k f(x_k) \leq f(\sum_{k=1}^{n} \alpha_k x_k)$

Доказательство. (Докажем по индукции)

База: n=2

Неравенство превращается в определение выпуклой вверх функции, для которой это, очевидно, выполняется.

Переход: Пусть это выполняется для n.Докажем, что это работает и для n+1

$$\sum_{k=1}^{n+1}\alpha_k=1,$$
обозначим за $s_n=\sum_{k=1}^{n+1}\alpha_k$

Пусть $\beta_k = \frac{\alpha_k}{s_n}$. Тогда получаем: $\sum_{k=1}^n \beta_k = 1$

$$\sum_{k=1}^{n+1} \alpha_k f(x_k) = s_n \sum_{k=1}^{n} \beta_k f(x_k) + \alpha_{n+1} f(x_{n+1}) \le$$

$$\leq$$
 (по предположению индукции) $s_n\left(\sum_{k=1}^n \beta_k x_k\right) + \alpha_{n+1} f(x_n+1) \leq$

$$\leq (\text{так как} s_n + \alpha_{n+1} = 1) f\left(\sum_{k=1}^{n+1} \alpha_k x_k\right)$$

Значит, шаг индукции проделан, неравенство доказано для произвольного n.

2 Круги Эйлера

$$(A \cup B) \setminus (A \cap B)$$

Рис. 1: Симметрическая разность