University of Heidelberg Seminar on Lie Algebras

Simple and semisimple Lie Algebras

Second talk

Author:
Arian Gjini

Contents

1	Simple and semisimple Lie Algebras									2	
	1.1	Simple	Lie Algebras							 	2
	1.2	Semisimple Lie Algebras							2		
	1.3	1.3 Cartan's Criterion								 	3
	1.4	Killing	Form							 	4
		1.4.1	Criterion for Semisim	plicity .						 	5
		1.4.2	Example on $\mathfrak{sl}_n(\mathbb{F})$.							 	6
		1.4.3	Example on $\mathfrak{gl}_n(\mathbb{F})$.							 	7
	1.5	Simple	deals of a Semisimpl	e Lie Alg	gebra					 	7
Re	eferen	ices									7

Simple and semisimple Lie Algebras

1.1 Simple Lie Algebras

Definition 1.1.1.

We call a Lie Algebra g simple if:

- (i) g is non-abelian, and
- (ii) the only ideals of \mathfrak{g} are $\{0\}$ or \mathfrak{g} itself.

1.2 Semisimple Lie Algebras

Definition 1.2.1.

We call a Lie Algebra \mathfrak{g} semisimple if:

(i) All abelian ideals of \mathfrak{g} are $\{0\} \iff$ (ii) the radical \mathfrak{r} of \mathfrak{g} being $\{0\}$.

Example 1.2.2. :

- (i) $\mathfrak{sl}_n(V)$ is semisimple.
- (ii) $\mathfrak{sl}_2(V)$ is semisimple.
- (iii) $\mathfrak{so}_{2n+1}(V)$ is semisimple.
- (iv) $\mathfrak{so}_{2n}(V)$ is semisimple.
- (v) $\mathfrak{sp}_{2n}(V)$ is semisimple.
- (vi) $\mathfrak{gl}_n(V)$ is not semisimple.

We will continue with $\mathfrak{sl}_2(V)$, $\mathfrak{sl}_n(V)$, and $\mathfrak{gl}_n(V)$ in Chapter 1.4.

1.3 Cartan's Criterion

Lemma 1.3.1. Let $A, B \subseteq \mathfrak{gl}_n(V)$ with $\dim(V) < \infty$. Define $M = \{x \in \mathfrak{gl}_n(V) \mid [x, B] \subseteq A\}$. Now suppose for $x \in M$: $\operatorname{Tr}(xy) = 0$ for all $y \in M \Longrightarrow x$ is nilpotent.

Proof. Proof in Humphreys, Lemma 4.3 Cartan's Criterion (Page 19).

Theorem 1.3.2 (Cartan's Criterion). Let L be a subalgebra of $\mathfrak{gl}_n(V)$ with $\dim(V) < \infty$. Suppose $\operatorname{Tr}(xy) = 0$ for all $x \in [L, L]$ and for all $y \in L \Longrightarrow L$ is solvable.

Proof. Now we need to prove that [L, L] is nilpotent, which means that all $x \in [L, L]$ are nilpotent elements. We apply Lemma 1.3.1 on V, any vector space, with A = [L, L], B = L:

$$\begin{split} M &= \{x \in \mathfrak{gl}_n(\mathbb{F}) \mid [x,L] \subseteq [L,L]\} \supseteq L, \\ \Longrightarrow L/[L,L] \text{ is abelian.} \end{split}$$

We need to show: $x \in [L, L] \Longrightarrow \operatorname{Tr}(xy) = 0$ for all $y \in L \Longrightarrow x$ is nilpotent. Suppose [x, y] is the generator of [L, L], $z \in M$:

$$\Longrightarrow \operatorname{Tr}([x,y]z) = \operatorname{Tr}(x[y,z]) = \operatorname{Tr}([y,z]x) = 0,$$

the last equation holds because $[y, z] \in [L, L] \Longrightarrow x$ is nilpotent.

Corollary 1.3.3. Let L be a Lie algebra with Tr(ad(x), ad(y)) = 0 for all $x \in [L, L]$ and for all $y \in L \Longrightarrow L$ is solvable.

Proof. This corollary follows directly by applying Theorem 1.3.2 (Cartan's Criterion) and Proposition 3.1 in Humphreys (Page 11). \Box

1.4 Killing Form

Definition 1.4.1 (Killing Form).

Let L be a Lie Algebra and $x, y \in L$. We define the Killing form \mathfrak{K}_L as:

$$\mathfrak{K}_L = \operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y)$$

Then \mathfrak{K}_L is a bilinear form on our Lie Algebra L, called the Killing form.

Remark 1.4.2.

(i) \mathfrak{K}_L is associative, meaning that $\forall x, y, z \in L$: $\mathfrak{K}_L([x, y], z) = \mathfrak{K}_L(x, [y, z])$.

We can instantly see that from the properties of the trace (i.e., Tr([x, y], z) = Tr(x, [y, z])).

(ii) \mathfrak{K}_L is skew-symmetric, which holds the following property $\forall x, y \in L$: $\mathfrak{K}_L(x, y) = -\mathfrak{K}_L(y, x)$.

Lemma 1.4.3.

Let $I \subseteq L$ be an ideal of our Lie Algebra, \mathfrak{K}_L the Killing form over L, and \mathfrak{K}_I the Killing form of I. Then:

$$\Longrightarrow \mathfrak{K}_I = \mathfrak{K}_L|_I$$

Proof.

If $\Phi: V \to W$ is a linear map, then $\operatorname{Tr}_V(\Phi) = \operatorname{Tr}_W(\Phi|_W)$. Let $x \in I$, so $\operatorname{ad}_x(L) \subseteq I$. In matrix notation we get:

$$\operatorname{ad}_x = \begin{pmatrix} 0 & 0 \\ * & \operatorname{ad}_x|_I \end{pmatrix}$$

For $x, y \in I$, we have:

$$\Longrightarrow \operatorname{ad}_x \circ \operatorname{ad}_y = \begin{pmatrix} 0 & 0 \\ * & \operatorname{ad}_x|_I \end{pmatrix} \begin{pmatrix} 0 & 0 \\ * & \operatorname{ad}_y|_I \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ * & \operatorname{ad}_x|_I \circ \operatorname{ad}_y|_I \end{pmatrix}$$

$$\Longrightarrow \mathfrak{K}_L|_I = \operatorname{Tr}(\operatorname{ad}_x \circ \operatorname{ad}_y|_I) = \operatorname{Tr}(\operatorname{ad}_x|_I \circ \operatorname{ad}_y|_I) = \mathfrak{K}_I$$

1.4.1 Criterion for Semisimplicity

Theorem 1.4.1 (Cartan-Killing Criterion). A Lie Algebra L is called semisimple \iff $\mathfrak{K}(X,Y)$ is nondegenerate.

Proof.

First, we have to prove that if $\operatorname{Rad}(L) = 0 \Longrightarrow \operatorname{Rad}(\mathfrak{K}_L) = 0$, where $\operatorname{Rad}(\mathfrak{K}_L) = \{x \in L \mid \mathfrak{K}_L(x,y) = 0 \,\forall y \in L\}$. For this, we need to assume that $\operatorname{Rad}(\mathfrak{K}_L)$ is an ideal of L, meaning $\forall x \in L \text{ and } y \in \operatorname{Rad}(\mathfrak{K}_L) \Longrightarrow [x,y] \in \operatorname{Rad}(\mathfrak{K}_L)$. Let's take any $z \in L$:

$$\mathfrak{K}_L([x,y],z) = \mathfrak{K}_L(x,[y,z])$$

Since $y \in \text{Rad}(\mathfrak{K}_L)$, keep in mind that $\mathfrak{K}_L(y,[z,x]) = 0$. We continue the computation:

$$\mathfrak{K}_{L}([x,y],z) = \mathfrak{K}_{L}(x,[y,z]) = \mathfrak{K}_{L}([y,z],x) = \mathfrak{K}_{L}(y,[z,x]) = 0$$

 $\Longrightarrow [x,y] \in \text{Rad}(\mathfrak{A}_L)$, meaning $\text{Rad}(\mathfrak{A}_L)$ is an ideal of L.

We can extend the statement to $\operatorname{ad}_L(\operatorname{Rad}(\mathfrak{K}_L))$ being a solvable ideal in $\operatorname{ad}_L(L)$ using Theorem 1.3.2 (Cartan's Criterion). We get:

$$\operatorname{Tr}(\operatorname{ad} x, \operatorname{ad} y) = \mathfrak{K}_L = 0 \, \forall x \in \operatorname{Rad}(\mathfrak{K}_L) \supseteq [\operatorname{Rad}(\mathfrak{K}_L), \operatorname{Rad}(\mathfrak{K}_L)]$$

 $\forall y \in L \supseteq \operatorname{Rad}(\mathfrak{K}_L)$

 $\mathfrak{z}(\operatorname{Rad}(\mathfrak{K}_L)) = \{z \in \operatorname{Rad}(\mathfrak{K}_L) \mid \forall x \in \operatorname{Rad}(\mathfrak{K}_L) : [x, z] = 0\}$ is abelian and solvable. Since:

$$\mathrm{ad}_L(\mathrm{Rad}(\mathfrak{K}_L)) \cong \mathrm{Rad}(\mathfrak{K}_L)/\mathfrak{z}(\mathrm{Rad}(\mathfrak{K}_L))$$

we conclude that $Rad(\mathfrak{K}_L)$ is solvable.

As $\operatorname{Rad}(\mathfrak{K}_L) \subseteq \operatorname{Rad}(L) \Longrightarrow \operatorname{Rad}(\mathfrak{K}_L) = 0$, this means that \mathfrak{K}_L is nondegenerate.

The second statement we need to show is that if $Rad(\mathfrak{K}_L) = 0 \Longrightarrow Rad(L) = 0$.

Let's assume L is not a semisimple Lie Algebra, so there exists an abelian ideal $I \subseteq L$:

$$\implies (\operatorname{ad} x \operatorname{ad} y)^2 = 0, \ x \in L, y \in I$$

$$\implies (\operatorname{ad} x \operatorname{ad} y) \text{ is nilpotent}$$

$$\implies \mathfrak{K}_L = \operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y) = 0 \ \forall x \in L, y \in I$$

$$\implies 0 \neq I \subseteq \operatorname{Rad}(\mathfrak{K}_L)$$

$$\implies \mathfrak{K}_L \text{ is degenerate}$$

1.4.2 Example on $\mathfrak{sl}_n(\mathbb{F})$

Remark 1.4.1 (continuation of Example 1.2.2). $\mathfrak{sl}_n(\mathbb{F})$ is a semisimple Lie Algebra.

Proof.

In the first part of the proof, we focus on showing that $k_{\mathfrak{sl}_n}(x,y) = 2n \operatorname{Tr}(xy)$ for all $x, y \in \mathfrak{sl}_n(\mathbb{F})$, which will be helpful to demonstrate that the Killing form is nondegenerate: If we examine the Killing form over $\mathfrak{gl}_n(\mathbb{F})$ with the basis $\{E_{ij}\}$, we obtain:

$$adE_{ij} adE_{kl}(E_{gh}) = [E_{ij}, E_{kl}E_{gh} - E_{gh}E_{kl}]$$

$$= [E_{ij}, \delta_{lg}E_{kh} - \delta_{hk}E_{gl}]$$

$$= E_{ij}(\delta_{lg}E_{kh} - \delta_{hk}E_{gl}) - (\delta_{lg}E_{kh} - \delta_{hk}E_{gl})E_{ij}$$

$$= \delta_{lg}E_{ij}E_{kh} - \delta_{hk}E_{ij}E_{gl} - \delta_{lg}E_{kh}E_{ij} - \delta_{hk}E_{gl}E_{ij}$$

$$= \delta_{lg}\delta_{jk}E_{ih} - \delta_{hk}\delta_{jg}E_{il} - \delta_{lg}\delta_{hi}E_{kj} - \delta_{hk}\delta_{li}E_{gj}$$

Now, we focus on the (g, h) coordinate of the vector $\operatorname{ad}(E_{ij}\operatorname{ad}(E_{kl})(E_{gh}))$ in the basis of $(E_{\alpha\beta})_{1\leq\alpha,\beta\leq n}$:

$$a_{gh} = \delta_{gi}\delta_{lg}\delta_{jk} - \delta_{ig}\delta_{lh}\delta_{hk}\delta_{jg} - \delta_{kg}\delta_{jh}\delta_{lg}\delta_{hi} - \delta_{jh}\delta_{gk}\delta_{li}$$

$$\implies k_{\mathfrak{gl}_n}(E_{ij}, E_{kl}) = \sum_{g=1}^n a_{gg}$$

$$= \sum_{g=1}^n (\delta_{gi}\delta_{lg}\delta_{jk} - \delta_{ig}\delta_{lg}\delta_{gk}\delta_{jg} - \delta_{kg}\delta_{jg}\delta_{lg}\delta_{gi} - \delta_{jg}\delta_{gk}\delta_{li})$$

$$= n\delta_{il}\delta_{jk} - \delta_{kl}\delta_{ij} - \delta_{ij}\delta_{kl} + n\delta_{jk}\delta_{il}$$

$$= 2n\delta_{il}\delta_{jk} + 2\delta_{ij}\delta_{kl}$$

$$= 2n\mathrm{Tr}(E_{ij}E_{kl}) - 2\mathrm{Tr}(E_{ij})\mathrm{Tr}(E_{kl})$$

Using Lemma 1.4.3, $\operatorname{Tr}(x) = 0$ for all $x \in \mathfrak{sl}_n(\mathbb{F})$, the bilinearity of the Killing form, and the fact that \mathfrak{sl}_n is an ideal of \mathfrak{gl}_n , we get:

$$\Longrightarrow k_{\mathfrak{sl}_n} = k_{\mathfrak{gl}_n}|_{\mathfrak{sl}_n} \Longrightarrow k_{\mathfrak{sl}_n}(x,y) = 2n\mathrm{Tr}(xy) - 2\mathrm{Tr}(x)\mathrm{Tr}(y) = 2n\mathrm{Tr}(xy)$$

It remains to show that $k_{\mathfrak{sl}_n}$ is nondegenerate, so we can use Theorem 1.4.1: Let's assume we have a nonzero $x \in \mathfrak{sl}_n(\mathbb{F})$ such that $k_{\mathfrak{sl}_n}(x,y) = 2n \operatorname{Tr}(xy) = 0$ for all $y \in \mathfrak{sl}_n(\mathbb{F})$. Considering y = x, since $x \neq 0 \Longrightarrow x^2 \neq 0 \Longrightarrow k_{\mathfrak{sl}_n}(x,x) = 2n \operatorname{Tr}(x^2) \neq 0$, which is a

contradiction. \Box

1.4.3 Example on $\mathfrak{gl}_n(\mathbb{F})$

Remark 1.4.1 (continuation of Example 1.2.2).

 $\mathfrak{gl}_n(\mathbb{F})$ is not a semisimple Lie Algebra.

Proof. From the previous remark, we know that $k_{\mathfrak{gl}_n}(x,y) = 2n\operatorname{Tr}(xy) - 2\operatorname{Tr}(x)\operatorname{Tr}(y)$. Let's use $x = \lambda I$ for all $y \in \mathfrak{gl}_n$, which implies $\operatorname{Tr}(x) = n\lambda$ and $xy = yx = \lambda y$.

$$\implies k_{\mathfrak{gl}_n}(\lambda I, y) = 2n \operatorname{Tr}(\lambda y) - 2 \operatorname{Tr}(\lambda I) \operatorname{Tr}(y) = 2n \lambda \operatorname{Tr}(y) - 2n \lambda \operatorname{Tr}(y) = 0$$

$$\Longrightarrow k_{\mathfrak{gl}_n}$$
 is degenerate.

1.5 Simple Ideals of a Semisimple Lie Algebra

Definition 1.5.1 (Direct Sum).

A Lie Algebra L is a direct sum of ideals $I_1, I_2, ..., I_n$ if:

$$L = I_1 \oplus I_2 \oplus \ldots \oplus I_n$$

This means that each $x \in L$ can be uniquely represented as $x = x_1 + x_2 + \ldots + x_n$ with $x_j \in I_j$, and $I_j \cap I_k = \{0\}$ for all $j \neq k$.

Theorem 1.5.2.

If L is a semisimple Lie Algebra, then there exist ideals $L_1, L_2, ..., L_n \subseteq L$ such that:

(i) Each L_i is simple,

$$(ii)L = L_1 \oplus L_2 \oplus \ldots \oplus L_n.$$

Proof. \Box

Bibliography

[Hum72] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972.

[Ser87] Jean-Pierre Serre, Complex semisimple Lie algebras, Springer-Verlag, New York, 1987, Translated from the French by G. A. Jones.