Zusammengesetzte Funktionen

Jan Kunde

Arten zusammengetzter Funktionen und ihre Ableitungen

Summen

Wenn:

$$f(x) = u(x) + v(x)$$

Dann gilt:

$$f'(x) = u'(x) + v'(x)$$

Beispiel:

$$f(x) = x^3 + ln(x)$$

$$f'(x) = 3x^2 + \frac{1}{x}$$

Differenzen

Wenn:

$$f(x) = u(x) - v(x)$$

Dann gilt:

$$f'(x) = u'(x) - v'(x)$$

Beispiel:

$$f(x) = x^3 - ln(x)$$

 $f'(x) = 3x^2 - \frac{1}{x}$

Produkte

Wenn:

$$f(x) = u(x) \cdot v(x)$$

Dann gilt die Produktregel:

$$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Beispiel:

$$f(x) = e^x \cdot x^3$$

$$f'(x) = e^x \cdot x^3 + e^x \cdot 3x^2 = e^x(x^3 + 3x^2)$$

Quotienten

Wenn:

$$f(x) = \frac{u(x)}{v(x)}$$

 $f(x) = \frac{u(x)}{v(x)}$ Dann gilt die Quotientenregel:

Dann gilt die Quotienteneger: $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$ Alternativ lässt sich eine gebrochenrationale Funktion $f(x) = \frac{u(x)}{v(x)}$ zu $f(x) = u(x) \cdot v(x)^{-1}$ umformen und mit der Produktund Kettenregel ableiten.

Beispiel:

$$f(x) = \frac{3x^4}{4x+3}$$

$$f'(x) = \frac{12x^3 \cdot (4x+3) - 4 \cdot 3x^4}{(4x+3)^2}$$

$$= \frac{12x^3 \cdot (4x+3-x)}{(4x+3)^2}$$

$$= \frac{12x^3 \cdot (3x+3)}{(4x+3)^2}$$

$$= \frac{36x^3 \cdot (x+1)}{(4x+3)^2}$$

Verkettete Funktionen

Wenn:

$$f(x) = (u \circ v)(x) = u(v(x))$$

Dann gilt die Kettenregel:

$$f'(x) = v'(x) \cdot u'(v(x))$$

Beispiel:

$$f(x) = e^{3x^2} \quad (u(x) = e^x; \ v(x) = 3x^2)$$

$$f'(x) = 6x \cdot e^{3x^2}$$

Untersuchung zusammengesetzter Funktionen

Bestimmung von Definitionsmengen

Außer bei gebrochen
rationalen Funktionen und Funktionen die als Term einen
 \ln oder eine Wurzel enthalten ist die Definitionsmenge aller abitur
relevanten Funktionen: $D=\mathbb{R}$

Definitionsmengen gebrochenrationaler Funktionen

Gebrochenrationale Funktionen weisen Definitionslücke an den Nullstellen des Nenners auf.

Beispiel:

$$f(x) = \frac{3x^5 + 2x}{x^2 - 3}$$

$$x^2 - 3 = 0 \quad |+3$$

$$x^2 = 3$$

$$x_{1,2} = \pm\sqrt{3}$$

$$D = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

Definitionsmengen bei ln-Funktionen

Der natürliche Logarithmus ist nur für Eingabewerte größer als Null definitiert. Besteht eine Funktion aus einer Verkettung aus natürlichem Logarithmus und einer weiteren Funktion, umfasst die Definitionsmenge nur die X-Werte, für die der innere Teil der Funktion größere Werte als Null annimmt. Zur Bestimmung der Definitionsmenge muss also die Ungleichung v(x) > 0 gelöst werden, wobei v(x) der innere Teil der zusammengesetzten ln-Funktion ist.

Beispiel 1:

$$f(x) = ln(x+3)$$

$$x+3>0 \quad |-3$$

$$x>-3$$

$$D = \{x \in \mathbb{R} | x > -3\}$$

Beispiel 2:

$$f(x) = \ln(x^2 - 6)$$

$$x^{2} - 6 = 0 | + 6$$

$$x^{2} = 6 | \sqrt{6}$$

$$x_{1,2} = \pm \sqrt{6}$$

da
$$x^2-6$$
 im Interval $[-\sqrt{6};\sqrt{6}] \le 0$ ist, ist die Definitionsmenge $D=\mathbb{R}\setminus[-\sqrt{6};\sqrt{6}].$

Definitionsmengen bei Wurzelfunktionen

Bei Wurzelfunktionen in der Form $f(x) = \sqrt[n]{x}$ ist die Definitionsmenge für alle ungeraden n: $D = \mathbb{R}$. Für alle geraden n muss der Wert unter der Wurzel ≥ 0 sein.

Beispiel:

$$f(x) = \sqrt{x-4}$$

$$0 \le x-4 \quad |+4$$

$$4 \le x$$

$$D = \{x \in \mathbb{R} | x \ge 4\}$$

Nullstellen bei zusammengesetzten Funktionen

Nullstellen bei Produktfunktionen

Wenn $f(x) = u(x) \cdot v(x)$ ist, ist f(x) = 0 dann gegeben, wenn mindestens eine der Beiden Funktion u(x) und v(x) gleich Null ist. Daher können zur Findung der Nullenstellen u(x) und v(x) seperat untersucht werden.

Nullstellen bei gebrochenrationalen Funktionen

Wenn $f(x) = \frac{u(x)}{v(x)}$ ist, ist f(x) = 0 dann gegeben, wenn u(x) = 0, also die im Zähler stehende Funktion gleich Null ist.

Nullstellen bei verketteten Funktionen

Wenn $f(x) = (u \circ v)(x)$ ist, ist f(x) = 0 dann gegeben wenn v(x) einen Wert annimmt, für den u(x) den Wert Null annimmt. Ist die äußere Funktion, in diesem Fall u(x) eine Funktion, die für alle $x \in \mathbb{R}$ keine Nullstellen besitzt (z.B. e^x), besitzt f(x) keine Nullenstellen.