(19) BUNDESREPUBLIK DEUTSCHLAND

[®] Patentschrift[®] DE 195 00 817 C 1

(5) Int. Cl. 6: G 01 B 11/14

G 01 C 11/00 G 06 T 9/20 // G01C 5/00,9/00

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

195 00 817.0-52

2 Anmeldetag:

13. 1.95

Offenlegungstag:

_

Veröffentlichungstag

der Patenterteilung: 22. 2.98

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

3 Patentinhaber:

Carl Zeiss Jena GmbH, 07745 Jena, DE

(72) Erfinder:

Marold, Thomas, Dipl.-Phys., 07747 Jena, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 37 31 531 A1 DE 36 26 208 A1

DD 2 01 500 EP 03 89 968 A2

DE-Z: Wiss. Zeitschrift Techn. Univers. Dresden, 25 (1976) 4, S. 951-953;

US-Buch: JAMES, M.: Pattern Recognition, John Wiley & Sons, New York 1988, S. 35-44;

(4) Verfahren zur Bestimmung von Kantenpositionen

Die Erfindung betrifft ein Verfahren zur Ermittlung von Kantenpositionen durch Auswertung der digitalisierten elektrischen Signale, welche bei der Abtastung mindestens einer Hell-Dunkel-Struktur durch Fotoempfängerzeilen gewonnen werden. Das Verfahren ist gekennzeichnet dadurch,

 daß zunächst aus den Signalen Y, Bereiche von jeweils vier benachbarten Fotoempfängern (i; i + 1; i + 2; i + 3) festgelegt werden, inmitten derer sich eine zu bestimmende Kante befindet,

- daß dann aus den Signalen Y, die Art der Kante, Hell-Dunkel- oder Dunkel-Hell-Kante bzw. Weiß-Schwarzoder Schwarz-Weiß-Übergang, festgestellt wird,

daß weiterhin aus den Signalen der ersten beiden Fotoempfänger (i; i + 1) eine Größe Mi gebildet wird, derart, daß Mi jeweils das für die festgestellte Art der Kante zu erwartende Extremum von Y₁ und Y₁ ist,
 daß aus den Signalen der zwei weiteren Fotoempfänger (i

daß aus den Signalen der zwei weiteren Fotoempfänger (i + 2; i + 3) eine Größe Ma gebildet wird, derart, daß Ma jeweils das für die festgestellte Art der Kante zu erwartende

Extremum von Y_{1 + 2} und Y_{1 + 3} ist,
- und daß danach die Position x der zu bestimmenden Kante
im Bezug auf die Trennkante der beiden Fotoempfänger i +
1; i + 2 in Einheiten der Fotoempfängergröße ermittelt wird
nach der Beziehung

$$x = \frac{Mi - Y_{c+1} - Y_{c+2} + Ma}{Ma - Mi}.$$

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung von Kantenpositionen in einer Hell-Dunkel-Struktur mittels eines Fotoempfängerarrays. Es ist anwendbar bei der Abbildung eines kodierten Teilungsträgers auf eine CCD-Zeile, wie sie unter anderem bei Nivellements mit digital arbeitenden Nivellieren vorge-

Für digitale Meßvorgänge mit CCD-Sensoren oder 10 ähnlichen diskret abtastenden fotoelektrischen Sensoren ist es oft notwendig, Positionen von Kanten oder Hell-Dunkel-Übergänge einer abgebildeten Struktur zu erkennen und mit hoher Genauigkeit zu bestimmen.

Aus der "Wiss. Zeitschrift der TU Dresden", 25 (1976) 15 4, S. 951 bis 953, ist bekannt, die Suche nach Kanten und Strukturen mit Hilfe der Kreuzkorrelationsfunktion (KKF) durchzuführen. Dabei wird die KKF aus einem Teil des Bildinhaltes, z. B. der Helligkeitsfunktion Y; einiger Pixel i, und einer idealen Bezugskante gebildet. 20 Dort, wo die KKF ein Extremum besitzt, kann eine Kante festgestellt werden. Es hat sich jedoch gezeigt, daß die Form der Vergleichsfunktion ohne Belang ist. So kann -1, -1) genommen werden, womit sich die KKF, z. B. 25 für vier verwendete Pixel, zu

$$KKF = Y_i + Y_{i+1} - Y_{i+2} - Y_{i+3}$$

Es würde sich also bei einem Extremum dieser Funktion eine Kante im Bereich der Pixel i+1 und i+2 ergeben. In der "Jenaer Rundschau", 1979, 2, S. 84 bis 88, wird dazu vorgeschlagen, die pixelweise gebildete KKF parabolisch (quadratisch) auszugleichen, um die genaue 35 Lage des entsprechenden Extremums zwischen den Pixeln zu finden. Nachteilig ist dabei, der hohe Rechenaufwand. Außerdem ist bei scharf abgebildeten Schwarz-Weiß-Übergängen das Maximum sehr scharf, so daß es fraglich ist, ob die parabolische Ausgleichung zu opti- 40 malen Resultaten führt, insbesondere bei wechselnden Abbildungsmaßstäben, wie sie z. B. bei Nivellements in der Geodäsie auftreten.

Bei dem Nivelliersystem und dem Verfahren nach der DE-PS 34 24 806 wird als Vergleichsfunktion der ge- 45 samte Lattencode verwendet, woraus sich einige Nachteile ergeben. Der Rechenaufwand ist erheblich, da die Vergleichsfunktion entsprechend der von einem am Fokussiertrieb angebrachten Geber angegebenen Entfernung vorskaliert und in einem Entfernungs- und Höhen- 50 KKF(i) = $\pm Y_i \pm Y_{i+1} \mp Y_{i+2} \mp Y_{i+3}$ bereich, also in zwei Freiheitsgraden, nach einem KKF-Maximum gesucht werden muß. Dazu muß in jedem einzelnen Schritt die Vergleichsfunktion nach der Entfernung skaliert und nach der Höhe verschoben werden, bis das entsprechende Maximum gefunden ist. Da insbesondere bei größeren Entfernungen nicht mehr alle Striche des Codemusters erkannt werden können, muß die Vergleichsfunktion zusätzlich mit der Detektorempfindlichkeitskurve gefaltet werden, um eine einigermaßen realistische Vergleichsfunktion zu erhalten. Da mit zu- 60 nehmender Entfernung immer breitere Striche nicht diskret erkannt werden können, muß dieses Informationsdefizit dadurch ausgeglichen werden, daß ein immer größerer Abschnitt des Codemusters zur Messung herangezogen wird. Für das Anwendungsgebiet des Nivel- 65 lements bedeutet das, daß der Meßwert aus einem gro-Ben Teil der Lattenteilung gewonnen werden muß, womit sich Probleme mit bodennaher Refraktion ergeben.

Aus der DD-PS 201 500 ist ein Verfahren zur Ermittlung der Kantenposition bekannt, bei dem die zur photometrischen Ortsbestimmung der Kante erforderlichen Integrale durch Summation von Einzelamplituden mehrerer Pixel bestimmt werden. Dieses Verfahren ist nicht ohne Nachteile. Bei einer scharfen Abbildung befindet sich die Kante praktisch auf einem Pixel und ist lediglich hinsichtlich der Beugung, der Luftunruhe und der Modulationsübertragungsfunktion der verwendeten Optik verschmiert, was bedeutet, daß eine Verschmierung der Kante über mehrere Pixel durch Übervergrößerung oder Defokussierung herbeigeführt werden muß, wobei jedoch Information verlorengeht. Eine Struktur, die nur zwei Pixel breit ist, kann nicht aufgelöst und demnach auch nicht interpoliert werden. Für Nivellements in der Geodäsie bedeutet dieses eine drastische Verringerung der Reichweite des Meßsystems.

In der DD-PS 1 49 143 ist ein Verfahren zur störungsarmen Erkennung von Funkfernschreibsignalen beschrieben, bei welchem die erhaltenen Signale mehrmals pro Elementarschritt abgetastet werden. Dabei wird zunächst über vier Abtastwerte nach einem Maximum der KKF gesucht. Das in dieser Druckschrift beschriebene Verfahren, das an eine feste Grundfrequenz gebunden ist, läßt sich jedoch nicht ohne weiteres auf Anwendungsgebiete übertragen, bei denen mit einem variablen Abbildungsmaßstab gearbeitet werden muß, wie es bei Nivellements der Fall ist.

Der Erfindung liegt deshalb die Aufgabe zugrunde, 30 die dem Stand der Technik innewohnenden Nachteile zu beseitigen und ein Verfahren zur Bestimmung der Kantenposition in einer Hell-Dunkel-Struktur zu schaffen, mit welchem mit einer minimalen Anzahl von Fotoempfängern einer Fotoempfängeranordnung eine automatische Bestimmung von Kantenpositionen mit einer Genauigkeit kleiner als ein Pixel oder Empfängerelement, auch über einen breiten Bereich eines variablen Abbildungsmaßstabes der abbildenden Optik erreicht werden kann.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen nach dem ersten Anspruch gelöst. In den weiteren Ansprüchen sind Einzelheiten der Erfindung angegeben.

So ergeben sich die Bereiche von jeweils vier benachbarten Fotoempfängern i, i+1, i+2, i+3, inmitten derer jeweils mindestens eine zu ermittelnde Kante liegt, durch ein lokales Extremum der Kreuzkorrelationsfunktion

0
 KKF(i) = $\pm Y_{i} \pm Y_{i+1} \mp Y_{i+2} \mp Y_{i+3}$

wobei die KKF aus den Signalen Yj einer Anzahl von Fotoempfängern, welche vorteilhaft CCD-Elemente in einer CCD-Anordnung sein können, und einer idealen Vergleichskante gebildet wird. Die Anzahl der Fotoempfänger kann prinzipiell frei gewählt werden. In Rahmen des erfindungsgemäßen Verfahrens sind vier Fotoempfänger für die Bestimmung der Position der Kante vorgesehen.

Gemäß dem Verfahren werden einem lokalen Medium der KKF eine Kante gleicher Art wie die Vergleichskante und einem lokalen Minimum der KKF eine Kante umgekehrter Art wie die Vergleichskante zugeordnet.

Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß nur soviel Pixel zur Interpolation herangezogen werden, wie wirklich auf der abgetasteten Kante liegen. Somit ist bei drei Pixeln noch eine fehlerfreie Interpolation möglich. Selbst mit zwei Pixeln kann

50

die Kante noch erkannt werden. Ihre Position liegt in diesem Falle zwischen den beiden Pixeln. Somit ist es möglich, Codemuster oder Teilungen von Meßlatten, welche, in der kleinsten Strukturbreite abgebildet, die doppelte Pixelgröße ergeben, mit einer hohen Genauigkeit abzutasten und zu erkennen und durch Interpolation weitere zusätzliche Informationen über die Lage des Musters in Relation zur CCD-Zeile zu gewinnen.

Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden. In der Zeichnung zeigen

Fig. 1 eine Kante im Bereich von vier Pixeln,

Fig. 2 eine Kante im Bereich von drei Pixeln und

Fig. 3 eine Kante im Bereich von zwei Pixeln.

Die Ermittlung der Kantenposition und Interpolation von Positionen, die zwischen Pixeln liegen, wird am Beispiel eines CCD-Empfängers erläutert, dessen CCD-Elemente in Zeilen angeordnet sind. Dabei liefert jedes CCD-Element (Pixel) ein Signal Yi, das Helligkeit folgendermaßen bewertet:

Y_i = 0 entpricht "Weiß" und Y_i = 255 entspricht "Schwarz", was den 256 Graustufen einer 8-bit-Auflö-

sung bei A-D-Wandlern entspricht.

Die Bestimmung der Kantenposition und die Interpolation erfolgt in mehreren Schritten. Zunächst wird in an sich bekannter Weise pixelweise nach Extrema (Maxima oder Minima) der KKF gesucht, die aus einem Teil des Bildinhaltes, nämlich aus den Signalen Yi einer Anzahl von Fotoelementen oder CCD-Elementen, gebildet wird. Dabei sei beispielsweise ein Extremum für die Pixel i, i+1, i+2 und i+3 gefunden, also

KKF (i) =
$$+Y_i+Y_{i+1} - Y_{i+2} - Y_{i+3} = Max$$
 oder Min

Alle Maxima werden mit einem Polaritätsflag "0" (für Dunkel-Hell-Kante) und alle Minima werden mit einem Polaritätsflag "1" (Hell-Dunkel-Kante) markiert. Diese Markierung kehrt sich bei umgekehrter Helligkeitsbewertung durch die Yi um.

In einem weiteren Schritt werden aus den vier Signalen $Y_i, Y_{i+1}, Y_{i+2}, Y_{i+3}$ der betreffenden CCD-Elemente (Pixel), für die die entsprechende Art der Kante festgelegt wurde, folgende Größen bestimmt:

für eine Dunkel-Hell-Kante: $Mi = Max \{Y_i, Y_{i+1}\}$ $Ma = Min \{Y_{i+2}, Y_{i+3}\}$

für eine Hell-Dunkel-Kante: $Mi = Min \{Y_i; Y_{i+1}\}$ $Ma = Max \{Y_{i+2}; Y_{i+3}\}$

Der Interpolationswert wird nun in einem weiteren Schritt in Einheiten der Fotoemfänger- oder Pixelgröße ermittelt nach der Beziehung

$$X = \frac{Mi - Yi+1 - Yi+2 + Ma}{Ma - Mi}$$

In Fig. 1 ist eine Schwarz-Weiß-Kante in einem Feld von vier CCD-Elementen dargestellt. Dabei habe die KKF für die vier beteiligten Pixel ein Maximum, womit ein Polaritätsflag "0", d. h. eben die Dunkel-Hell-Kante, erkannt wird. Es gilt also Mi = Y_i und Ma = Y_{i+3} .

Die in Fig. 2 dargestellte Situation wird wie folgt behandelt. Die KKF habe für die vier Pixel ein Minimum. Somit wird das Polaritätsflag "1", also eine Hell-Dunkel-Kante, erkannt. Es gilt also gemäß oben angegebenen Beziehungen Mi = Yi und Ma = Yi+2. Damit wird Pixel i+3, das bereits die nächste Kante enthält, für die Berechnung von der Kante auf Pixel i+1 ausgeschlossen. Die Ermittlung der Kante auf Pixel i+3 würde in einem weiteren Schritt, die Informationen der Pixel i+1, i+2, i+3, i+4 bzw. i+2, i+3, i+4, i+5 je nach Lage des KKF-Extremums enthält, analog durchgeführt werden.

Die in Fig. 3 dargestellte Situation führe zu einem KKF-Maximum. Das Polaritätsflag wird "0", es wird nach einer Dunkel-Hell-Kante gesucht. Es gilt also Mi = Y_{i+1} und Ma = Y_{i+2} . Die Interpolation führt in diesem Falle immer dazu, daß die Kante in die Mitte

zwischen Pixel i+1 und i+2 gelegt wird.

Mit diesem Verfahren konnte mit einer Brennweite des optischen Systems von 270 mm und einer Größe der verwendeten Pixel von 14 µm eine Teilung, bestehend aus abwechselnd hellen und dunklen Strichen von 1 cm Abstand, oder auch von 1 cm und 2 cm in beliebiger Abfolge in einer Entfernung von 100 m unter praktisch allen Sichtbarkeitsbedingungen sicher aufgelöst und interpoliert werden.

Das vorgeschlagene Verfahren ist nicht auf das Anwendungsgebiet der Geodäsie beschränkt zu sehen. Praktisch anwendbar ist es für alle Strukturen mit Bereichen zweier entgegengesetzter Zustände, wobei die Strukturbreite das Zweifache des Abtastschrittes (z. B. Pixelgröße oder Größe des CCD-Elementes) betragen sollte.

Patentansprüche

1. Verfahren zur Bestimmung von Kantenpositionen in einer Hell-Dunkel-Struktur durch Auswertung digitalisierter elektrischer Signale Yj, die bei der Abtastung der Hell-Dunkel-Struktur auf einem Fotoempfängerarray gewonnen werden, bei dem

— anhand der Signale Y_j Bereiche von jeweils vier benachbarten Fotoempfängern i, i+1, i+2, i+3 festgelegt werden, inmitten derer sich jeweils mindestens eine Kante befindet,

— aus den Signalen Y_i, Y_{i+1}, Y_{i+2}, Y_{i+3} eines jeweiligen solchen Bereichs die Art einer dortigen Kante, nämlich Hell-Dunkel- oder Dunkel-Hell-Kante, festgestellt wird,

— eine Größe Mi gebildet wird gemäß Mi = Min (Y_i, Y_{i+1}) oder Mi = Max (Y_i, Y_{i+1}) , je nachdem, ob aufgrund der festgestellten Art der Kante und der Art der Helligkeitsbewertung durch die Y_i niedere oder hohe Werte für Y_i und Y_{i+1} erwartet werden,

— ein Größe Ma gebildet wird gemäß Ma = Min (Yi+2, Yi+3) oder Ma = Max (Yi+2, Yi+3), je nachdem, ob aufgrund der festgestellten Art der Kante und der Art der Helligkeitsbewertung durch die Yj niedere oder hohe Werte für Yi+2 und Yi+3 erwartet werden, und

 die Position x der Kante in bezug auf die Trennlinie der beiden Fotoempfänger i+1, i+2 in Einheiten der Fotoempfängergröße ermittelt wird nach der Beziehung

6

$$x = \frac{Mi - Y_{i+1} - Y_{i+2} + Ma}{Mi - Y_{i+1} - Y_{i+2} + Ma}$$

Ma - Mi

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Bereiche von jeweils vier benach- 10 barten Fotoempfängern, inmitten derer sich jeweils mindestens eine Kante befindet, anhand eines lokalen Extremums der aus den Signalen Yj und einer idealen Vergleichskante gebildeten Kreuzkorrelationsfunktion

$$KKF(i) = \pm Y_i \pm Y_{i+1} \mp Y_{i+2} \mp Y_{i+3}$$

festgelegt werden.

3. Verfahren nach Anspruch 2, dadurch gekenn- 20 zeichnet, daß einem lokalen Maximum der KKF eine Kante von gleicher Art wie die Vergleichskante und einem lokalen Minimum der KKF eine Kante umgekehrter Art wie die Vergleichskante zugeordnet werden.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Fotoempfänger CCD-Elemente verwendet werden.

Hierzu 1 Seite(n) Zeichnungen

30

35

40

45

50

55

60

65

Nummer: Int. Cl.6:

DE 195 00 817 C1 G 01 B 11/14

Veröffentlichungstag: 22. Februar 1998

