

Evaluating Traffic Efficiency and Safety by Varying Truck Platoon Characteristics in a Critical Traffic Situation

GRIP on Freight Trips

TRB Annual Meeting 2020

Paper No. 20-01282

Timo Faber, TU Delft; Salil Sharma, TU Delft (S.Sharma-4@tudelft.nl); Maaike Snelder, TU Delft and TNO; Gerdien Klunder, TNO; Lóránt Tavasszy, Professor, TU Delft; and Hans van Lint, Professor, TU Delft

Introduction

- Truck platooning is the application of cooperative adaptive cruise control where multiple trucks are electronically linked using V2V communication.
- Truck platoons might bring fuel savings and emission reductions. However, their interactions with surrounding traffic and resulting impact on traffic operations and safety are not fully understood.
- Research is needed to assess the impacts of truck platoons especially in critical traffic situations. One of these situations lies around merging sections.

Research objective

 To evaluate the effects of varying truck platoon characteristics on traffic efficiency and safety around a merging section

Modeling of truck platoons

Ego truck

Ego truck

■ Longitudinal controller

Preliminaries

$$r_{\text{mode}}^{\text{safe}} = t_{\text{mode}}^{\text{system}} \cdot v + r_{\text{standstill}} \quad \forall \quad \text{mode} \in \{\text{CACC, ACC}\}$$

Cooperative Adaptive Cruise Control (CACC)

Adaptive Cruise Control (ACC)

 $a_{\text{ACC}} = \min(a_{\text{max}}, \max(\min(a_{\text{ACC}}^{\text{ego}}, a_{\text{ACC}}^{\text{lead}}), a_{\text{min}}))$

Cruise Control (CC)

 $a_{\text{CC}} = \min(a_{\text{max}}, \max(a_{\text{CC}}^{\text{ego}}, a_{\text{min}}))$

■ Lane changing controller

- Last-vehicle first principle
- Last vehicle in a platoon starts blinker and changes lane first
- Rest of vehicles in a platoon change lanes
- Trucks in a platoon may also decelerate to shorten the lane changing process
 - Gap-creation deceleration

High traffic intensity (HTI) Interchange Benelux on A15, The Netherlands ■ Microscopic traffic simulator ■ Trucks: 15% OpenTrafficSim

Experimental design

Java-based which uses IDM+ and LMRS

Base case: No platoons

mainline carriageway

Scenario 2: Truck

■ Scenarios

merging

carriageway

platoons

mainline

■ Indicators

Safety
Time to collision (TTC<4s)
Req. Braking rate (RBR<-2.1m/s ²)

On-ramp demand is 25%

of mainline demand

Impact of reference platoon configuration

■ Platoon characteristics

- **Market penetration rate**: 0% (Base case), 25%, **50%**, 75%, and 100%.
- Platoon length: 2 trucks, 3 trucks, 4 trucks, and 5 trucks.
- Headway in a platoon: 0.3 s, 0.9 s, and 1.5 s.
- Desired platoon speed: 80 km/h and 100 km/h.
- Gap-creation deceleration: 0 m/s² (off), 1.5 m/s², and 3.0 m/s²
- Lane changing: only mandatory lane changing is allowed Cut-ins: only if intra-platoon headway allows for that
- Scenario RBR TTC (n/v/h) | (n/v/h) | Low traffic intensity Base case (no platoons) 117.12 0.00 0.76 Reference platoon on mainline carriageway 0.68 119.65 4.25 Reference platoon merging onto mainline 0.02 117.51 0.60
- **High traffic intensity** Base case (no platoons) 127.93 1884 27.95 18.44 Reference platoon on mainline carriageway 65.40 49.01 149.04 1682 Reference platoon merging onto mainline 26.72 22.17 132.16 1854

Local (one-at-a-time) sensitivity analysis

Platoons on mainline carriageway

Scenario 1: Truck platoons on

onto

- We change one characteristic of a platoon at a time by keeping others fixed at reference configuration and observe its effect on the output.
- Useful to select some of the best performing platoon configurations in a situation

Conclusions

- ❖ Truck platooning on the mainline carriageway seems to be detrimental to traffic efficiency and safety in high traffic intensity.
- ❖ Truck platoons merging onto mainline carriageway has limited effects on traffic efficiency and safety.
- ❖ Uncertainty in traffic efficiency and safety strongly depends on the interactions among platoon characteristics, traffic demand, and considered traffic scenarios.

Global sensitivity analysis

- Latin-hypercube sampling is used to generate full design space.
- Moment-independent measure (δ) technique is used to quantify the uncertainty in output/indicators.
- Higher the value of δ_i , the higher will be the effect of input i on output.
- Interactions between platoon characteristics play a major role in output uncertainty.

Platoons on mainline carriageway

Platoons merging onto mainline

Acknowledgements

