Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения»
Отчёт по лабораторной работе №2

Выполнил:	Проверил:
Мажитов В.	Гапанюк Ю.Е
группа ИУ5-62Б	

Дата: 07.04.25 Дата:

Подпись:

Лабораторная работа

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
 - обработку пропусков в данных;
 - кодирование категориальных признаков;
 - масштабирование данных.

```
In [1]: import pandas as pd
         import numpy as np
         from sklearn.preprocessing import StandardScaler
In [2]: path = './student admission record dirty.csv'
         df = pd.read_csv(path)
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 157 entries, 0 to 156
         Data columns (total 7 columns):
         #
            Column
                                       Non-Null Count Dtype
         ____
                                       -----
         0 Name 147 non-null object
1 Age 147 non-null float64
2 Gender 147 non-null object
3 Admission Test Score 146 non-null float64
          4 High School Percentage 146 non-null float64
                                       147 non-null object
          5 City
            Admission Status
                                       147 non-null object
         dtypes: float64(3), object(4)
        memory usage: 8.7+ KB
```

```
In [ ]: df.isna().sum()
```

```
Name
 Out[]:
                                       10
          Age
          Gender
                                       10
          Admission Test Score
                                       11
          High School Percentage
                                       11
                                       10
                                       10
          Admission Status
          dtype: int64
 In [6]:
          df.dropna(subset=['Gender', 'City'], inplace=True)
          df['Age'].fillna(df['Age'].mean(), inplace=True)
          df['High School Percentage'].fillna(df['High School Percentage'].mean(),
          df['Admission Test Score'].fillna(df['Admission Test Score'].mean(), inpl
 In [7]:
          df.isnull().sum()
                                       8
          Name
 Out[7]:
                                       0
          Age
          Gender
                                       0
          Admission Test Score
                                       0
          High School Percentage
                                       0
          City
                                       0
          Admission Status
                                       6
          dtype: int64
 In [8]:
          df.drop(columns='Name', inplace=True)
 In [9]:
          df.head()
 Out[9]:
                              Admission Test
                                                     High School
                                                                               Admission
             Age Gender
                                                                      City
                                      Score
                                                     Percentage
                                                                                  Status
            24.0
                   Female
                                       50.0
                                                           68.90
                                                                    Quetta
                                                                                Rejected
             21.0
                                       99.0
                   Female
                                                           60.73
                                                                   Karachi
                                                                                    NaN
          2
             17.0
                     Male
                                       89.0
                                                           76.30 Islamabad
                                                                                Accepted
             17.0
                     Male
                                        55.0
                                                           85.29
                                                                   Karachi
                                                                                Rejected
             20.0
                                       65.0
                     Male
                                                           61.13
                                                                   Lahore
                                                                                    NaN
In [10]:
          numerical_features = ['Age', 'Admission Test Score', 'High School Percent
          scaler = StandardScaler()
          df[numerical_features] = scaler.fit_transform(df[numerical_features])
In [11]:
          df.head()
                                                                               Admission
Out[11]:
                                  Admission Test
                                                       High School
                  Age Gender
                                                                        City
                                          Score
                                                       Percentage
                                                                                  Status
              1.009103
                                                     -4.357777e-01
          0
                        Female
                                      -1.722736
                                                                      Quetta
                                                                                Rejected
              0.297768
                                                     -9.168999e-01
                                                                     Karachi
          1
                        Female
                                       1.440320
                                                                                    NaN
```

0.794798

-1.399975

-0.754453

-1.673723e-15 Islamabad

Karachi

Lahore

5.294110e-01

-8.933443e-01

Accepted

Rejected

NaN

2 -0.650678

-0.650678

0.060656

Male

Male

Male

10

```
In [12]: categorical_features = df[['Gender', 'City']]
    categorical_data_encoded = pd.get_dummies(categorical_features, drop_firs)
In [13]: categorical_data_encoded.head()
Out[13]: Gender_Male City_Karachi City_Lahore City_Multan City_Peshawar City_Quetta City_Company C
```

[13]:		Gender_Male	City_Karachi	City_Lahore	City_Multan	City_Peshawar	City_Quetta	Cit
	0	False	False	False	False	False	True	
	1	False	True	False	False	False	False	
	2	True	False	False	False	False	False	
	3	True	True	False	False	False	False	
	4	True	False	True	False	False	False	

```
In [14]: numerical_data = ['Age', 'Admission Test Score', 'High School Percentage'
    categorical_data = ['Gender', 'City']
    categorical_data_encoded = pd.get_dummies(df[categorical_data], drop_firs
    encoded_data = categorical_data_encoded
    numerical_data_encoded = scaler.fit_transform(df[numerical_data])
    encoded_data[numerical_data] = numerical_data_encoded
    encoded_data
```

Out[14]:

Gender_Male City_Karachi City_Lahore City_Multan City_Peshawar City_Quetta

0	False	False	False	False	False	True
1	False	True	False	False	False	False
2	True	False	False	False	False	False
3	True	True	False	False	False	False
4	True	False	True	False	False	False
•••						
152	False	False	False	False	False	True
153	False	False	False	False	False	False
154	False	False	False	True	False	False
155	True	False	False	False	False	True
156	True	False	True	False	False	False

138 rows × 10 columns