Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all polynomials with the operations, for any $f,g\in V,\,c\in\mathbb{R},$

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V3.

$$\begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 12 \\ -9 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \\ -8 \end{bmatrix} \} = \mathbb{R}^3?$$

Standard V4.	Mark:

Let W be the set of all complex numbers that are purely real (i.e of the form a+0i) or purely imaginary (i.e. of the form 0+bi). Determine if W is a subspace of \mathbb{C} .

Standard S2.

Mark:

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V3.

Mark:

$$\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
5 \\
-1 \\
-2
\end{bmatrix}, \begin{bmatrix}
2 \\
0 \\
-1
\end{bmatrix}, \text{ and } \begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix} \text{ span } \mathbb{R}^3$$

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2. $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ is a basis of \mathbb{R}^4 .

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all polynomials with the operations, for any $f,g\in V,\,c\in\mathbb{R},$

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V3.

Determine if the vectors
$$\begin{bmatrix} -3\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$ span \mathbb{R}^3

Standard V4.
$$\begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R}$$
 a subspace of \mathbb{R}^4 .

Standard S2.

Mark:

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V3.

Mark:

$$\begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \\ -2 \end{bmatrix}, \text{ and } \begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \text{ span } \mathbb{R}^4.$$

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2. $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}$ is a basis of \mathbb{R}^4 .

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all polynomials with the operations, for any $f,g\in V,\,c\in\mathbb{R},$

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Determine if the vectors
$$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2.

Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x,y\in V$ and $c\in\mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that this scalar multiplication \odot is associative.
- (b) Determine if V is a vector space or not. Justify your answer

Standard V4.	Mark:
--------------	-------

Let W be the set of all complex numbers a+bi satisfying a=2b. Determine if W is a subspace of $\mathbb C.$

Standard S2.

Mark:

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2