Applicazioni lisce Corso di Laurea in Matematica A.A. 2024-2025 Docente: Andrea Loi

1. Siano M e N due varietà differenziabili e $q_o \in N$. Dimostrare che

$$i_{q_0}: M \to M \times N, p \mapsto (p, q_0)$$

é un'applicazione liscia.

- 2. Sia S^1 il cerchio unitario di \mathbb{R}^2 . Dimostrare che una funzione liscia $f: \mathbb{R}^2 \to \mathbb{R}$ si restringe ad una funzione liscia $f_{|S^1}: S^1 \to \mathbb{R}$.
- 3. Dimostrare che l'applicazione antipodale $S^n \to S^n$, $x \mapsto -x$ è liscia.
- 4. Dimostrare che l'applicazione

$$S^3 \to S^2, (z, w) \mapsto (z\bar{w} + \bar{z}w, i\bar{z}w - iz\bar{w}, |z|^2 - |w|^2)$$

è liscia, dove stiamo pensando a $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}.$

- 5. Dimostrare che $\mathbb{R}P^1$ è diffeomorfo a S^1/\sim_a .
- 6. Dimostrare che l'applicazione quoziente $\pi_a: S^n \to \mathbb{R}P^n$, che identifica i punti antipodali è liscia.
- 7. Dimostrare che per ogni k < n la grassmanniana G(k,n) è diffeomorfa a G(n-k,n).
- 8. Consideriamo su \mathbb{R} le due strutture differenziabili $\mathbb{R} = (\mathbb{R}, \varphi = id_{\mathbb{R}})$ e $\tilde{\mathbb{R}} = (\mathbb{R}, \psi(x) = x^{\frac{1}{3}})$ e sia $f : \mathbb{R} \to \mathbb{R}$ un'applicazione (non necessariamente liscia). Trovare condizioni necessarie e sufficienti affinchè $f : \mathbb{R} \to \tilde{\mathbb{R}}$ e $f : \tilde{\mathbb{R}} \to \mathbb{R}$ siano applicazioni lisce.
- 9. Siano M e N due spazi topologici e $C^0(M,\mathbb{R})$ (risp. $C^0(M,\mathbb{R})$) l'insieme delle applicazione continue da M (risp. N) in \mathbb{R} . Se $F: N \to M$ è un'applicazione continua, definiamo $F^*: C^0(M,\mathbb{R}) \to C^0(N,\mathbb{R})$ come $F^*(f) = f \circ F$, $\forall f \in C^0(N,\mathbb{R})$. Dimostrare i seguenti fatti:
 - 1. F^* è un'applicazione \mathbb{R} -lineare;
 - 2. Se M e N sono varietà differenziabili allora $F: N \to M$ è liscia se e solo se $F^*(C^{\infty}(M,\mathbb{R})) \subset C^{\infty}(N,\mathbb{R});$
 - 3. Un omeomorfismo $F: N \to M$ tra varietà differenziabili è un diffeomorfismo se e solo se $F^*: C^{\infty}(M, \mathbb{R}) \to C^{\infty}(N, \mathbb{R})$ è un isomorfismo tra spazi vettoriali.
- 10. Dimostrare che sulla palla unitaria $B_1(0) \subset \mathbb{R}^n$ si possono definire un'infinità non numerabile di strutture differenziabili distinte (che possono però essere diffeomorfe). (Suggerimento: per ogni s > 0 si consideri l'applicazione $F_s: B_1(0) \to B_1(0), x \mapsto ||x||^{1-s}x$). Dedurre che se una varietà topologica di dimensione $n \geq 1$ ammette una struttura differenziabile allora ammette un'infinità non numerabile di strutture differenziabili distinte.

1