EULERIAN REPRESENTATIONS FOR COINCIDENTAL REFLECTION GROUPS

SARAH BRAUNER

University of Minnesota braun622@umn.edu

BASED ON arXiv:2005.05953

H₁₂
H₂₃

ARRANGEMENTS AT HOME III: ALGEBRAIC ASPECTS AUGUST 13, 2020

OUTLINE

Big Idea:

Generalize a beautiful Type A story connecting combinatorics, representation theory and topology to a broader class of reflection groups

Outline:

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 The Varchenko-Gelfand ring
- 4 Eulerian idempotents
- 5 Main Results

MOTIVATING STORY: TYPE A

COMPLEMENT OF THE BRAID ARRANGEMENT

Start with the real **Braid arrangement**

$$A = \{H_{ij} = \{x_i - x_j = 0\} : 1 \le i < j \le n\} \subset \mathbb{R}^n$$

and complement

$$\mathcal{M}(\mathcal{A}) := \mathbb{R}^n \setminus \mathcal{A} = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : x_i \neq x_j\}.$$

COMPLEMENT OF THE BRAID ARRANGEMENT

Start with the real **Braid arrangement**

$$A = \{H_{ij} = \{x_i - x_j = 0\} : 1 \le i < j \le n\} \subset \mathbb{R}^n$$

and complement

$$\mathcal{M}(\mathcal{A}) := \mathbb{R}^n \setminus \mathcal{A} = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i \neq x_i\}.$$

We are interested in the d-thickened complement

$$\mathcal{M}^{d}(\mathcal{A}) := \mathcal{M}(\mathcal{A}) \otimes \mathbb{R}^{d} = \mathbb{R}^{dn} \setminus \left(\bigcup_{1 \leq i < j \leq n} H_{ij} \otimes \mathbb{R}^{d} \right)$$
$$= \left\{ (x_{1}, \cdots, x_{n}) \in \mathbb{R}^{dn} : x_{i} \neq x_{j} \right\}$$
$$= \mathsf{Conf}_{n}(\mathbb{R}^{d}).$$

COMPLEMENT OF THE BRAID ARRANGEMENT

Start with the real **Braid arrangement**

$$A = \{H_{ij} = \{x_i - x_j = 0\} : 1 \le i < j \le n\} \subset \mathbb{R}^n$$

and complement

$$\mathcal{M}(\mathcal{A}) := \mathbb{R}^n \setminus \mathcal{A} = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : x_i \neq x_i\}.$$

We are interested in the d-thickened complement

$$\mathcal{M}^{d}(\mathcal{A}) := \mathcal{M}(\mathcal{A}) \otimes \mathbb{R}^{d} = \mathbb{R}^{dn} \setminus \left(\bigcup_{1 \leq i < j \leq n} H_{ij} \otimes \mathbb{R}^{d} \right)$$
$$= \left\{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{dn} : x_{i} \neq x_{j} \right\}$$
$$= \mathsf{Conf}_{n}(\mathbb{R}^{d}).$$

Example: When d=2, this is equivalent to the complement of the complexified arrangement $\mathcal{M}(\mathcal{A})\otimes\mathbb{C}$

COHOMOLOGY PRESENTATION

A natural question:

what is $H^*(\mathsf{Conf}_n(\mathbb{R}^d), \mathbb{R})$?

3

COHOMOLOGY PRESENTATION

A natural question:

what is
$$H^*(\mathsf{Conf}_n(\mathbb{R}^d), \mathbb{R})$$
?

Theorem (Arnol'd (1969): d = 2, F. Cohen (1976): $d \ge 2$).

The ring $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ has presentation

$$\mathbb{R}\langle e_{ij}: 1 \leq i \neq j \leq n \rangle/\mathcal{J}$$

where each e_{ij} is in degree d-1 and \mathcal{J} is generated by

- 1. e_{ii}^2
- 2. $e_{ij} = (-1)^d e_{ji}$
- 3. $e_{ij}e_{j\ell}+e_{j\ell}e_{\ell i}+e_{\ell i}e_{ij}$

for any $1 \le i \ne j \ne \ell \le n$.

COHOMOLOGY PRESENTATION

A natural question:

what is
$$H^*(Conf_n(\mathbb{R}^d), \mathbb{R})$$
?

Theorem (Arnol'd (1969): d = 2, F. Cohen (1976): $d \ge 2$). The ring H^* Conf_n(\mathbb{R}^d) has presentation

$$\mathbb{R}\langle e_{ij}: 1 \leq i \neq j \leq n \rangle / \mathcal{J}$$

where each e_{ii} is in degree d-1 and \mathcal{J} is generated by

- 1. e_{ii}^2
- 2. $e_{ij} = (-1)^d e_{ji}$
- 3. $e_{ij}e_{j\ell} + e_{j\ell}e_{\ell i} + e_{\ell i}e_{ij}$ for any $1 \le i \ne j \ne \ell \le n$.

This implies that $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ is concentrated in degrees k(d-1) for $0 \le k \le n-1$ commutative when d is odd anti-commutative when d is even

The symmetric group S_n acts on

$$Conf_n(\mathbb{R}^d) = \{(x_1 \cdots, x_n) \in \mathbb{R}^{dn} : x_i \neq x_j\},\$$

The symmetric group S_n acts on

$$\mathsf{Conf}_n(\mathbb{R}^d) = \{(x_1 \cdots, x_n) \in \mathbb{R}^{dn} : x_i \neq x_j\},$$

$$\mathsf{making} \ H^* \, \mathsf{Conf}_n(\mathbb{R}^d) \ \mathsf{into} \ \mathsf{an} \ \mathsf{S}_n\text{-module...}$$

Known fact: When d is **odd**,

$$H^* \operatorname{Conf}_n(\mathbb{R}^d) \cong_{S_n} \mathbb{R} S_n$$
.

The symmetric group S_n acts on

$$\operatorname{Conf}_n(\mathbb{R}^d) = \{(x_1 \cdots, x_n) \in \mathbb{R}^{dn} : x_i \neq x_j\},$$

making $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ into an S_n -module...

Known fact: When d is **odd**,

$$H^* \operatorname{Conf}_n(\mathbb{R}^d) \cong_{S_n} \mathbb{R} S_n$$
.

A more refined question:

What representation does $H^{k(d-1)}$ Conf_n(\mathbb{R}^d) carry for each k?

The symmetric group S_n acts on

$$Conf_n(\mathbb{R}^d) = \{(x_1 \cdots, x_n) \in \mathbb{R}^{dn} : x_i \neq x_j\},\$$

making $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ into an S_n -module...

Known fact: When *d* is **odd**,

$$H^* \operatorname{Conf}_n(\mathbb{R}^d) \cong_{S_n} \mathbb{R} S_n$$
.

A more refined question:

What representation does $H^{k(d-1)}$ Conf_n(\mathbb{R}^d) carry for each k?

When *d* is **odd**,

the answer is linked to classical objects in combinatorics called the **Eulerian idempotents**...

Let $\mathbb{R} S_n$ be the group algebra of S_n and $w = (w_1, w_2, \dots w_n) \in S_n$.

Let $\mathbb{R} S_n$ be the group algebra of S_n and $w = (w_1, w_2, \dots w_n) \in S_n$.

Definition (Barr, 1968).

The **Shuffle (Barr) element** in $\mathbb{R} S_n$ is

$$\mathcal{S} := \sum_{i=1}^{n-1} \sum_{\substack{w \in S_n: \\ w_1 < \dots < w_i \\ w_{i+1} < \dots < w_n}} w \in \mathbb{R} S_n.$$

Example: When n = 3,

$$S = \underbrace{(\mathbf{1}, \mathbf{2}, \mathbf{3}) + (\mathbf{2}, \mathbf{1}, \mathbf{3}) + (\mathbf{3}, \mathbf{1}, \mathbf{2})}_{i=1} + \underbrace{(\mathbf{1}, \mathbf{2}, \mathbf{3}) + (\mathbf{1}, \mathbf{3}, \mathbf{2}) + (\mathbf{2}, \mathbf{3}, \mathbf{1})}_{i=2}$$
$$= 2(1, 2, 3) + (2, 1, 3) + (3, 1, 2) + (1, 3, 2) + (2, 3, 1).$$

Theorem (Gerstenhaber-Schack, 1987). S acts semisimply on $\mathbb{R} S_n$

Theorem (Gerstenhaber-Schack, 1987).

S acts semisimply on $\mathbb{R} S_n$

S has eigenvalues $\sigma_k := 2^{k+1} - 2$ for $0 \le k \le n - 1$.

Theorem (Gerstenhaber-Schack, 1987).

S acts semisimply on $\mathbb{R} S_n$

S has eigenvalues $\sigma_k := 2^{k+1} - 2$ for $0 \le k \le n-1$.

Corollary.

By Lagrange interpolation, the idempotent projecting onto the σ_k -th eigenspace of S is

$$e_k := \prod_{j \neq k} \frac{S - \sigma_j}{\sigma_k - \sigma_j}.$$

Theorem (Gerstenhaber-Schack, 1987).

S acts semisimply on $\mathbb{R} S_n$

S has eigenvalues $\sigma_k := 2^{k+1} - 2$ for $0 \le k \le n-1$.

Corollary.

By Lagrange interpolation, the idempotent projecting onto the σ_k -th eigenspace of S is

$$\mathfrak{e}_k := \prod_{j \neq k} \frac{\mathcal{S} - \sigma_j}{\sigma_k - \sigma_j}.$$

Call the e_k the **Eulerian idempotents**.

Theorem (Gerstenhaber-Schack, 1987).

S acts semisimply on $\mathbb{R} S_n$

S has eigenvalues $\sigma_k := 2^{k+1} - 2$ for $0 \le k \le n-1$.

Corollary.

By Lagrange interpolation, the idempotent projecting onto the σ_k -th eigenspace of S is

$$\mathfrak{e}_k := \prod_{j \neq k} \frac{\mathcal{S} - \sigma_j}{\sigma_k - \sigma_j}.$$

Call the e_k the **Eulerian idempotents**.

Note:

By construction, $\mathbb{R} S_n e_k$ is the σ_k -eigenspace of S

EULERIAN IDEMPOTENTS FOR n=3

Example: When n = 3, the Barr element S has eigenvalues 0, 2, 6:

$$\begin{split} \varepsilon_0 &= \frac{(\mathcal{S}-2)(\mathcal{S}-6)}{(0-2)(0-6)} \qquad \qquad \sigma_0 = 0 \text{-eigenspace projector} \\ &= \frac{1}{6} \big((\textbf{1},\textbf{2},\textbf{3}) - (\textbf{2},\textbf{1},\textbf{3}) - (\textbf{3},\textbf{1},\textbf{2}) - (\textbf{1},\textbf{3},\textbf{2}) - (\textbf{2},\textbf{3},\textbf{1}) + \textbf{2}(\textbf{3},\textbf{2},\textbf{1}) \big) \end{split}$$

$$\varepsilon_1 = \frac{(S-0)(S-6)}{(2-0)(2-6)}$$

$$= \frac{1}{2}((1,2,3)-(3,2,1))$$
 $\sigma_1 = 2$ -eigenspace projector

$$\varepsilon_2 = \frac{(S-0)(S-2)}{(6-0)(6-2)} \qquad \sigma_2 = 6$$
= $\frac{1}{6}$ ((1,2,3) + (2,1,3) + (3,1,2) + (1,3,2) + (2,3,1) + (3,2,1))

We are interested in the **Eulerian representations** $\mathbb{R} S_n \mathfrak{e}_k$

We are interested in the **Eulerian representations** $\mathbb{R} S_n \varepsilon_k$

Key connection:

When
$$d \ge 3$$
 is **odd**, for $0 \le k \le n-1$,

$$H^{k(d-1)}\operatorname{Conf}_n(\mathbb{R}^d) \cong_{S_n} \mathbb{R} S_n \mathfrak{e}_{n-1-k}.$$

We are interested in the **Eulerian representations** $\mathbb{R} S_n \varepsilon_k$

Key connection:

When $d \ge 3$ is **odd**, for $0 \le k \le n - 1$,

$$H^{k(d-1)}\operatorname{Conf}_n(\mathbb{R}^d)\cong_{S_n}\mathbb{R}\,S_n\mathfrak{e}_{n-1-k}.$$

How do we know?

We are interested in the **Eulerian representations** $\mathbb{R} S_n e_k$

Key connection:

When $d \ge 3$ is **odd**, for $0 \le k \le n - 1$,

$$H^{k(d-1)}\operatorname{Conf}_n(\mathbb{R}^d)\cong_{\mathsf{S}_n}\mathbb{R}\operatorname{S}_n\mathfrak{e}_{n-1-k}.$$

How do we know?

1990 Hanlon computes the characters of $\mathbb{R} S_n e_{n-1-k}$

We are interested in the **Eulerian representations** $\mathbb{R} S_n e_k$

Key connection:

When $d \ge 3$ is **odd**, for $0 \le k \le n - 1$,

$$H^{k(d-1)}\operatorname{Conf}_n(\mathbb{R}^d)\cong_{\mathsf{S}_n}\mathbb{R}\operatorname{S}_n\mathfrak{e}_{n-1-k}.$$

How do we know?

- **1990** Hanlon computes the characters of $\mathbb{R} S_n e_{n-1-k}$
- **1997** Sundaram-Welker prove an equivariant formulation of the Goresky-MacPherson formula relating

cohomology of a subspace arrangement
$$\longleftrightarrow$$
 homology of its intersection lattice

As a special case:

they compute the characters of $H^k \operatorname{Conf}_n(\mathbb{R}^d)$

DESCENTS

There is another way to define the Eulerian idempotents...

DESCENTS

There is another way to define the Eulerian idempotents...

For $w = (w_1, \dots, w_n) \in S_n$, the **descent set** of w is

$$\mathsf{Des}(w) := \{ i \in [n-1] : w_i > w_{i+1} \}$$

$$= \left\{ \underbrace{s_i}_{\substack{\text{transposition} \\ (i,i+1)}} \in \underbrace{S}_{\substack{\text{Coxeter} \\ \text{generators}}} : \underbrace{\ell(ws_i) < \ell(w)}_{\substack{\text{Coxeter length}}} \right\}.$$

The **descent number** of w is

$$des(w) := \# Des(w).$$

Example: If w = (1, 3, 2, 5, 4), then

Des(
$$W$$
) = {2, 4} = {s₂ = (23), s₄ = (45)}, des(W) = 2.

Remark: Des and **des** can be defined for any Coxeter group.

SOLOMON'S DESCENT ALGEBRA

Surprising fact: (Solomon, 1976)

There is a *subalgebra* of $\mathbb{R} S_n$ generated by sums of elements with the same descent set:

$$\mathcal{D}(S_n) := \left\langle Y_T := \sum_{\substack{w \in S_n \\ \mathsf{Des}(w) = T}} c_T w : c_T \in \mathbb{R}, T \subset [n-1] \right\rangle$$

called Solomon's descent algebra.

SOLOMON'S DESCENT ALGEBRA

Surprising fact: (Solomon, 1976)

There is a *subalgebra* of $\mathbb{R} S_n$ generated by sums of elements with the same descent set:

$$\mathcal{D}(S_n) := \left\langle Y_T := \sum_{\substack{w \in S_n \\ \mathsf{Des}(w) = T}} c_T w : c_T \in \mathbb{R}, T \subset [n-1] \right\rangle$$

called Solomon's descent algebra.

Example: When n = 3, the descent algebra $\mathcal{D}(S_3)$ has basis:

$$Y_{\emptyset} = (1, 2, 3)$$

$$Y_{1} = (2, 1, 3) + (3, 1, 2)$$

$$Y_{2} = (1, 3, 2) + (2, 3, 1)$$

$$Y_{1,2} = (3, 2, 1).$$

Remark: In fact, $\mathcal{D}(W)$ is a subalgebra for any Coxeter group.

EULERIAN IDEMPOTENTS, REDEFINED

Theorem (Garsia-Reutenaur, 1989).

The **Eulerian idempotents** are defined by the equation

$$\sum_{k=0}^{n-1} t^{k+1} \mathfrak{e}_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

EULERIAN IDEMPOTENTS, REDEFINED

Theorem (Garsia-Reutenaur, 1989).

The Eulerian idempotents are defined by the equation

$$\sum_{k=0}^{n-1} t^{k+1} \mathfrak{e}_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

Remark(s):

It is not obvious that this definition matches the Gerstenhaber-Schack definition!

(The proof of equivalence is due to Loday, 1989)

EULERIAN IDEMPOTENTS, REDEFINED

Theorem (Garsia-Reutenaur, 1989).

The **Eulerian idempotents** are defined by the equation

$$\sum_{k=0}^{n-1} t^{k+1} \mathfrak{e}_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

Remark(s):

It is not obvious that this definition matches the Gerstenhaber-Schack definition!

(The proof of equivalence is due to Loday, 1989)

The e_k are in $\mathcal{D}(S_n)$ and generate a commutative subalgebra spanned by sums of elements with the same descent number (This algebra is called the **Eulerian subalgebra**)

IDEMPOTENTS FOR n=3

Example: When n = 3,

$$\begin{split} \mathfrak{e}_0 &= \frac{1}{6} \big((1,2,3) - (2,1,3) - (3,1,2) - (1,3,2) - (2,3,1) + 2(3,2,1) \big) \\ &= \frac{1}{6} \big(Y_{\emptyset} - Y_1 - Y_2 + 2Y_{1,2} \big) \end{split}$$

$$e_1 = \frac{1}{2} ((1, 2, 3) - (3, 2, 1))$$

= $\frac{1}{2} (Y_{\emptyset} - Y_{1,2})$

$$\begin{aligned} \varepsilon_2 &= \frac{1}{6} \big((1,2,3) + (2,1,3) + (3,1,2) + (1,3,2) + (2,3,1) + (3,2,1) \big) \\ &= \frac{1}{6} \big(Y_{\emptyset} + Y_1 + Y_2 + Y_{1,2} \big) \end{aligned}$$

TYPE A SUMMARY

Summary: For $0 \le k \le n-1$, the following are equivalent as S_n -representations:

- 1. $H^{k(d-1)} \operatorname{Conf}_n(\mathbb{R}^d)$ for $d \geq 3$ and odd
- 2. The $\sigma_{n-1-k} = \{2^{n-k} 2\}$ -eigenspace of the shuffle operator S
- 3. The representation $\mathbb{R} S_n e_{n-1-k}$, where e_{n-1-k} is defined by

$$\sum_{k=0}^{n-1} t^{k+1} e_k = \sum_{w \in S_n} {t-1+n-\operatorname{des}(w) \choose n} w$$

TYPE A SUMMARY

Summary: For $0 \le k \le n-1$, the following are equivalent as S_n -representations:

- 1. $H^{k(d-1)} \operatorname{Conf}_n(\mathbb{R}^d)$ for $d \geq 3$ and odd
- 2. The $\sigma_{n-1-k} = \{2^{n-k}-2\}$ -eigenspace of the shuffle operator $\mathcal S$
- 3. The representation $\mathbb{R} S_n e_{n-1-k}$, where e_{n-1-k} is defined by

$$\sum_{k=0}^{n-1} t^{k+1} e_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w$$

Goal:

Generalize this statement to coincidental reflection groups, i.e. reflection groups whose exponents form an arithmetic progression

$$1, 1+g, 1+2g, 1+3g, \cdots$$

COINCIDENTAL ANALOG

Recall the rising factorial $(t)_k := (t)(t+1)...(t+k-1)$ and let

$$\beta_{W,k}(t) := \frac{\left(\frac{t+g-1}{g} - k\right)_k \left(\frac{t+1}{g}\right)_{r-k}}{\left(\frac{2}{g}\right)_r}.$$

Theorem (B-, 2020).

Let W be a real coincidental reflection group of rank r. For $0 \le k \le r$, the following are equivalent as W-representations:

- 1. $\mathcal{V}^k(\mathcal{A})$, the k-th graded piece of the associated graded Varchenko-Gelfand ring
- 2. The σ_{r-k} -th eigenspace of the shuffle element $\mathcal{S}(W) \in \mathbb{R} \ W$
- 3. The representation $\mathbb{R} W e_{r-k}$ where e_{r-k} is defined by

$$\sum_{k=0}^{r} t^{k} e_{k} = \sum_{w \in W} \beta_{W, \mathsf{des}(w)}(t) \cdot w.$$

COINCIDENTAL ANALOG

Recall the rising factorial $(t)_k := (t)(t+1)...(t+k-1)$ and let

$$\beta_{W,k}(t) := \frac{\left(\frac{t+g-1}{g} - k\right)_k \left(\frac{t+1}{g}\right)_{r-k}}{\left(\frac{2}{g}\right)_r}.$$

Theorem (B—, 2020).

Let W be a real coincidental reflection group of rank r. For o < k < r, the following are equivalent as W-representations:

- 1. $\mathcal{V}^k(\mathcal{A})$, the k-th graded piece of the associated graded Varchenko-Gelfand ring
- 2. The σ_{r-k} -th eigenspace of the shuffle element $S(W) \in \mathbb{R}$ W
- 3. The representation $\mathbb{R} W e_{r-b}$ where e_{r-b} is defined by

$$\sum_{k=0}^{r} t^{k} e_{k} = \sum_{w \in W} \beta_{W, \mathsf{des}(w)}(t) \cdot w.$$

To do: define the terms in blue!

OUTLINE

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 The Varchenko-Gelfand ring
- 4 Eulerian idempotents
- 5 Main Results

COINCIDENTAL REFLECTION GROUPS

REFLECTION ARRANGEMENTS

Notation:

 \mathcal{A} is an irreducible reflection (Coxeter) arrangement, i.e. an irreducible, real reflection group W acts on \mathcal{A} :

reflection $s \in W \longleftrightarrow$ hyperplane $H_s \in A$.

Assume A is central and has rank r.

 $\mathcal{L}(\mathcal{A})$ is the lattice of flats (intersection subspaces) of \mathcal{A} , ordered by reverse inclusion.

Example:

COINCIDENTAL REFLECTION GROUPS

W has exponents e_1, e_2, \dots, e_r

COINCIDENTAL REFLECTION GROUPS

W has exponents $e_1, e_2, ..., e_r$

Definition

A reflection group is **coincidental** if its exponents form an arithmetic progression:

$$1, 1+g, 1+2g, \cdots, 1+(r-1)g.$$

for some integer g.

The real coincidental reflection groups are:

W	<i>r</i> := rank	exponents	g:= progression
Sn	n – 1	$1, 2, 3, \cdots, n-1$	1
B_n	n	$1, 3, 5, \cdots, 2n-1$	2
H_3	3	1, 5, 9	4
$I_2(m)$	2	1, <i>m</i> − 1	m-2

WHAT MAKES THESE GROUPS SPECIAL?

For $X \in \mathcal{L}(A)$, the restriction arrangement A^X is

$$\mathcal{A}^{X} := \{ H \cap X : H \in \mathcal{A}, X \not\subset H \}.$$

WHAT MAKES THESE GROUPS SPECIAL?

For $X \in \mathcal{L}(A)$, the restriction arrangement A^X is

$$\mathcal{A}^X := \{ H \cap X : H \in \mathcal{A}, X \not\subset H \}.$$

Theorem: (Abramenko, 1994; Aguiar-Mahajan, 2017). \mathcal{A}^X is a reflection arrangement for every $X \in \mathcal{L}(\mathcal{A})$ if and only if W is a (product of) coincidental reflection group(s)

When W is coincidental: $A^X \cong A^Y$ if and only if $\dim(X) = \dim(Y)$

OUTLINE

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 The Varchenko-Gelfand ring
- 4 Eulerian idempotents
- 5 Main Results

HYPERPLANE COMPLEMENTS

Goal: Define an analogue of $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ for any A:

HYPERPLANE COMPLEMENTS

Goal: Define an analogue of $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ for any A:

Recall:

$$\mathsf{Conf}_n(\mathbb{R}^d) = \mathbb{R}^{dn} \setminus (\bigcup_{1 \leq i < j \leq n} H_{ij} \otimes \mathbb{R}^d)$$

HYPERPLANE COMPLEMENTS

Goal: Define an analogue of $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ for any A:

Recall:

$$\mathsf{Conf}_n(\mathbb{R}^d) = \mathbb{R}^{dn} \setminus (\bigcup_{1 \leq i < j \leq n} H_{ij} \otimes \mathbb{R}^d)$$

Definition:

For any central hyperplane arrangement A of rank r,

$$\mathcal{M}^{\textit{d}}(\mathcal{A}) := \mathbb{R}^{\textit{rd}} \setminus \big(\bigcup_{H_i \in \mathcal{A}} H_i \otimes \mathbb{R}^{\textit{d}}\,\big)$$

As in Type A, we are interested in $H^*(\mathcal{M}^d(A))$.

The cohomology of $\mathcal{M}^d(\mathcal{A})$

When d = 2 (or any even number), as a graded ring:

 $H^*(\mathcal{M}^2(\mathcal{A})) \cong_W$ the Orlik-Solomon algebra of \mathcal{A} .

21 3:

The cohomology of $\mathcal{M}^d(\mathcal{A})$

When d = 2 (or any even number), as a graded ring:

 $H^*(\mathcal{M}^2(\mathcal{A})) \cong_W$ the Orlik-Solomon algebra of \mathcal{A} .

Theorem (Moseley, 2017).

When $d \ge 3$ and **odd**, there is a graded ring isomorphism

$$\begin{split} H^*(\mathcal{M}^d(\mathcal{A})) &\cong_W \mathcal{V}(\mathcal{A}), \\ H^{k(d-1)}(\mathcal{M}^d(\mathcal{A})) &\cong_W \mathcal{V}^k(\mathcal{A}), \end{split}$$

where

 $\mathcal{V}(\mathcal{A}) :=$ the associated graded Varchenko-Gelfand ring $\mathcal{V}^k(\mathcal{A}) :=$ the k-th graded piece of $\mathcal{V}(\mathcal{A})$.

The cohomology of $\mathcal{M}^d(\mathcal{A})$

When d = 2 (or any even number), as a graded ring:

 $H^*(\mathcal{M}^2(\mathcal{A})) \cong_W$ the Orlik-Solomon algebra of \mathcal{A} .

Theorem (Moseley, 2017).

When $d \ge 3$ and **odd**, there is a graded ring isomorphism

$$\begin{split} H^*(\mathcal{M}^d(\mathcal{A})) &\cong_W \mathcal{V}(\mathcal{A}), \\ H^{k(d-1)}(\mathcal{M}^d(\mathcal{A})) &\cong_W \mathcal{V}^k(\mathcal{A}), \end{split}$$

where

 $\mathcal{V}(\mathcal{A}) :=$ the associated graded Varchenko-Gelfand ring $\mathcal{V}^k(\mathcal{A}) :=$ the k-th graded piece of $\mathcal{V}(\mathcal{A})$.

Intuition:

 $\mathcal{V}(\mathcal{A})$ is a commutative version of the Orlik-Solomon algebra.

THE VARCHENKO-GELFAND RING

Definition/Theorem (Varchenko-Gelfand, 1987).

The associated graded Varchenko-Gelfand ring $\mathcal{V}(\mathcal{A})$ has presentation

$$\mathbb{R}[e_{H_i}: H_i \in \mathcal{A}]/\mathcal{J}$$

where \mathcal{J} is generated by:

- 1. $e_{H_i}^2$ for each $H_i \in A$;
- 2. For every circuit $C = C^+ \sqcup C^-$ in \mathcal{A} with $C = (H_1, H_2, \cdots, H_m)$,

$$\sum_{i=1}^{m} c(i)e_{H_1} \cdots \widehat{e_{H_i}} \cdots e_{H_m}$$

where

$$c(i) = \begin{cases} 1 & \text{if } H_i \in C^-, \\ -1 & \text{if } H_i \in C^+. \end{cases}$$

EXAMPLE

Example: In Type A, when n = 3:

There is 1 circuit: $C^+ = H_{12}$, H_{23} and $C^- = H_{13}$. Hence

$$\begin{split} \mathcal{V}(\mathcal{A}) &= \mathbb{R}[e_{H_{12}}, e_{H_{23}}, e_{H_{13}}] / \Big\langle e_{H_{12}}^2, e_{H_{23}}^2, e_{H_{13}}^2, \\ & e_{H_{12}} e_{H_{23}} - e_{H_{12}} e_{H_{13}} - e_{H_{23}} e_{H_{13}} \Big\rangle \end{split}$$

Note: This matches Cohen's presentation of H^* Conf₃(\mathbb{R}^d), d odd

CONFIGURATION SPACES AGAIN...

More generally,

In Type A, V(A) matches Cohen's presentation:

$$\mathcal{V}(\mathcal{A}) \longleftrightarrow H^* \operatorname{Conf}_n(\mathbb{R}^d), d \operatorname{odd}.$$

In Type B, V(A) matches Xicotencatl's (1997) presentation:

$$\mathcal{V}(\mathcal{A}) \longleftrightarrow H^* \operatorname{\mathsf{Conf}}^{\mathbb{Z}_2}_n(\mathbb{R}^d), d \operatorname{\mathsf{odd}},$$

where

$$\mathsf{Conf}_n^{\mathbb{Z}_2}(\mathbb{R}^d) := \{ (x_1, \cdots, x_n) \in \mathbb{R}^{dn} : x_i \neq \pm x_j, x_i \neq 0 \}$$

is the \mathbb{Z}_2 -orbit configuration space of \mathbb{R}^d .

OUTLINE

- Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 The Varchenko-Gelfand ring
- 4 Eulerian idempotents
- 5 Main Results

EULERIAN IDEMPOTENTS

EULERIAN IDEMPOTENTS

Recall that $e_k \in \mathbb{R} S_n$ were defined in two ways:

- 1. As the idempotent projectors onto the eigenspaces of the shuffle element \mathcal{S} , and
- 2. Via the generating function

$$\sum_{k=0}^{n-1} t^{k+1} \varepsilon_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

EULERIAN IDEMPOTENTS

Recall that $e_k \in \mathbb{R} S_n$ were defined in two ways:

- 1. As the idempotent projectors onto the eigenspaces of the shuffle element S, and
- 2. Via the generating function

$$\sum_{k=0}^{n-1} t^{k+1} \varepsilon_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

The Eulerian idempotents have been extensively studied and generalized since then!

1992: Bergeron-Bergeron define a Type *B* analog:

$$\sum_{k=0}^n t^k \mathfrak{e}_k = \sum_{w \in B_n} \binom{\frac{t-1}{2} + n - \operatorname{des}(w)}{n} w.$$

27

1992: Bergeron-Bergeron define a Type *B* analog:

$$\sum_{k=0}^n t^k \mathfrak{e}_k = \sum_{w \in B_n} \binom{\frac{t-1}{2} + n - \operatorname{des}(w)}{n} w.$$

1992: Bergeron-Bergeron-Howlett-Taylor define a finer family of idempotents in $\mathcal{D}(W)$ for any reflection group W The idempotents are indexed by descent sets; summing over idempotents with the same descent size recovers the \mathfrak{e}_k

1992: Bergeron-Bergeron define a Type *B* analog:

$$\sum_{k=0}^{n} t^{k} \mathfrak{e}_{k} = \sum_{w \in B_{n}} {\binom{\frac{t-1}{2} + n - \operatorname{des}(w)}{n}} w.$$

- **1992:** Bergeron-Bergeron-Howlett-Taylor define a finer family of idempotents in $\mathcal{D}(W)$ for any reflection group W The idempotents are indexed by descent sets; summing over idempotents with the same descent size recovers the \mathfrak{e}_k
- **2009:** Saliola constructs for any central arrangement \mathcal{A} , a family of idempotents \mathfrak{e}_X for each flat $X \in \mathcal{L}(\mathcal{A})$ In the case that \mathcal{A} is a reflection arrangement, the \mathfrak{e}_X can be realized in \mathbb{R} W

1992: Bergeron-Bergeron define a Type *B* analog:

$$\sum_{k=0}^{n} t^{k} \mathfrak{e}_{k} = \sum_{w \in B_{n}} {t-1 \choose 2} + n - \operatorname{des}(w) \choose n} w.$$

- **1992:** Bergeron-Bergeron-Howlett-Taylor define a finer family of idempotents in $\mathcal{D}(W)$ for any reflection group W The idempotents are indexed by descent sets; summing over idempotents with the same descent size recovers the \mathfrak{e}_k
- **2009:** Saliola constructs for any central arrangement \mathcal{A} , a family of idempotents \mathfrak{e}_X for each flat $X \in \mathcal{L}(\mathcal{A})$ In the case that \mathcal{A} is a reflection arrangement, the \mathfrak{e}_X can be realized in \mathbb{R} W
 - **2017:** Aguiar-Mahajan further develop the theory of e_X , particularly for coincidental reflection groups

27

Upshot:

For any reflection group, these definitions all recover the same family of idempotents $e_k \in \mathbb{R}$ W for $0 \le k \le r...$

Call this family the **Eulerian idempotents**.

28

Upshot:

For any reflection group, these definitions all recover the same family of idempotents $\varepsilon_k \in \mathbb{R}$ W for $0 \le k \le r...$

Call this family the **Eulerian idempotents**.

There is yet another way to define these Eulerian idempotents...

28

Barr's Shuffle element can be rephrased in terms of descents:

$$\mathcal{S} := \sum_{i=1}^{n-1} \sum_{\substack{w \in S_n: \\ W_1 < \dots < W_i \\ W_{i+1} < \dots < W_n}} w = \sum_{i=1}^{n-1} \sum_{\substack{w \in S_n: \\ \mathsf{Des}(w) \subset \{i\}}} w \in \mathcal{D}(S_n) \subset \mathbb{R} S_n.$$

Example: When n = 3,

$$\mathcal{S} = \underbrace{(\textbf{1}, \textbf{2}, \textbf{3}) + (\textbf{2}, \textbf{1}, \textbf{3}) + (\textbf{3}, \textbf{1}, \textbf{2})}_{\mathsf{Des}(w) \subset \{\textbf{1}\}} + \underbrace{(\textbf{1}, \textbf{2}, \textbf{3}) + (\textbf{1}, \textbf{3}, \textbf{2}) + (\textbf{2}, \textbf{3}, \textbf{1})}_{\mathsf{Des}(w) \subset \{\textbf{2}\}}$$

Barr's Shuffle element can be rephrased in terms of descents:

$$\mathcal{S} := \sum_{i=1}^{n-1} \sum_{\substack{w \in S_n: \\ W_1 < \dots < W_i \\ W_{i+1} < \dots < W_n}} w = \sum_{i=1}^{n-1} \sum_{\substack{w \in S_n: \\ \mathsf{Des}(w) \subset \{i\}}} w \in \mathcal{D}(S_n) \subset \mathbb{R} \, S_n.$$

Example: When n = 3,

$$\mathcal{S} = \underbrace{(\textbf{1}, \textbf{2}, \textbf{3}) + (\textbf{2}, \textbf{1}, \textbf{3}) + (\textbf{3}, \textbf{1}, \textbf{2})}_{\mathsf{Des}(w) \subset \{\textbf{1}\}} + \underbrace{(\textbf{1}, \textbf{2}, \textbf{3}) + (\textbf{1}, \textbf{3}, \textbf{2}) + (\textbf{2}, \textbf{3}, \textbf{1})}_{\mathsf{Des}(w) \subset \{\textbf{2}\}}$$

Definition (B—, 2020). For any reflection group W with generators s_1, \dots, s_r , the **shuffle element** S(W) is defined by

$$\mathcal{S}(W) := \sum_{i=1}^{r} \sum_{\substack{W \in W: \\ \mathsf{Des}(W) \subseteq \{s_i\}}} W \in \mathcal{D}(W) \subset \mathbb{R} \ W.$$

Proposition (B-, 2020).

 $\mathcal{S}(W)$ acts semisimply on \mathbb{R} W for any reflection group W

Proposition (B-, 2020).

S(W) acts semisimply on \mathbb{R} W for any reflection group W When W is coincidental, S(W) has r+1 distinct integer eigenvalues $\sigma_0 < \sigma_1 < \cdots < \sigma_r$

Proposition (B-, 2020).

 $\mathcal{S}(W)$ acts semisimply on \mathbb{R} W for any reflection group W When W is coincidental, $\mathcal{S}(W)$ has r+1 distinct integer eigenvalues $\sigma_0 < \sigma_1 < \cdots < \sigma_r$ and,

When W is coincidental, the projector onto the σ_k -th eigenspace of S(W) recovers the Eulerian idempotents \mathfrak{e}_k .

Proposition (B-, 2020).

 $\mathcal{S}(W)$ acts semisimply on \mathbb{R} W for any reflection group W When W is coincidental, $\mathcal{S}(W)$ has r+1 distinct integer eigenvalues $\sigma_0 < \sigma_1 < \cdots < \sigma_r$ and,

When W is coincidental, the projector onto the σ_k -th eigenspace of S(W) recovers the Eulerian idempotents \mathfrak{e}_k .

This allows us to generalize the Eulerian subalgebra:

Theorem (B-, 2020).

There is an **Eulerian subalgebra** of $\mathcal{D}(W)$ generated by sums of elements with the same descent number if and only if W is coincidental. This subalgebra is always commutative.

OUTLINE

- **Eulerian idempotents**

MAIN RESULTS

MAIN RESULTS

Recall the rising factorial $(t)_k := (t)(t+1)...(t+k-1)$ and let

$$\beta_{W,k}(t) := \frac{\left(\frac{t+g-1}{g} - k\right)_k \left(\frac{t+1}{g}\right)_{r-k}}{\left(\frac{2}{g}\right)_r}.$$

Theorem (B-, 2020).

Let W be a real coincidental reflection group of rank r. For $0 \le k \le r$, the following are equivalent as W-representations:

- 1. $\mathcal{V}^k(\mathcal{A})$, the k-th graded piece of the associated graded Varchenko-Gelfand ring
- 2. The σ_{r-k} -th eigenspace of the shuffle element $\mathcal{S}(W) \in \mathbb{R}$ W
- 3. The representation \mathbb{R} $W \mathfrak{e}_{r-k}$ where \mathfrak{e}_{r-k} is defined by

$$\sum_{k=0}^r t^k \mathfrak{e}_k = \sum_{w \in W} \beta_{W, \mathsf{des}(w)}(t) \cdot w.$$

PROOF TECHNIQUES

Big idea:

Map S(W) into the Tits (face) semigroup algebra of A

Relate eigenvalues of S(W) to restriction arrangements A^X

Use the fact that when W is coincidental, \mathcal{A}^X depends only on the dimension of X

Upshot: This allows for a uniform, character-free argument!

Thank you for **listening**!

FUTURE DIRECTIONS

Complex Reflection Groups:

- There are complex (non-real) coincidental reflection groups These are precisely Shephard groups, which are the symmetry groups of complex polytopes
- **Question:** To what extent does the story of the real Eulerian representations generalize to Shephard groups?
- I would love to discuss any ideas in this direction!

Properties of the Eulerian representations

- Many representation theoretic properties of ε_k in Type A are not known in other types!
- **Currently:** $\mathbb{R} S_n \varepsilon_k$ has a "hidden" S_{n+1} action. I am working on generalizing this to type B using configuration spaces