50.042 FCS Summer 2024 Lecture 12 – Asymmetric Cryptography

Felix LOH
Singapore University of Technology and Design

Asymmetric cryptography: motivation

- Last lecture, we started discussing the topic of key establishment over an insecure channel and how asymmetric crypto can help us achieve that goal
- In particular, we discussed DHKE and the idea of using a public key and a private key
 - Public key: known to everyone, can be safely transmitted over an insecure channel
 - Private key: must be kept secret
- Using a *one-way function*, as well as the public and private keys, one can compute a *shared* secret session key for legitimate parties
- Now that we have some notion of a functional real-world asymmetric crypto scheme (DHKE), let's <u>formally</u> discuss the basic idea of asymmetric crypto and its principles

Basic idea and principles of asymmetric cryptography

- The basic idea of asymmetric cryptosystems is that <u>different</u> keys are used for encryption and decryption:
 - The public key, which is known to everyone, is used for encryption
 - The private key, which is secret, is used for decryption
 - By contrast, symmetric ciphers use the same secret key for both encryption and decryption
- The encryption and decryption functions of most asymmetric cryptosystems are based on selected functions in number theory and as a result, have a compact mathematical description
 - Contrast this with symmetric ciphers, where the encryption and decryption functions cannot be succinctly described by some math equation

Basic idea and principles of asymmetric cryptography

Alice $k_{pub} \leftarrow b \qquad (k_{pub}, k_{pr}) = k$ $y = e_{k_{pub}}(x)$ $y \rightarrow x = d_{k_{pr}}(y)$

- Basic protocol: Alice wishes to encrypt and send a message x to Bob
 - 1. Bob sends Alice his public key k_{pub} over the insecure channel
 - 2. Alice then encrypts x using k_{pub} to obtain a ciphertext y, which she then transmits over the same channel
 - 3. Bob then decrypts y using his private key k_{pr} to obtain x
- Even if Oscar knows the public key k_{pub} , he can't use it to decrypt y

Basic idea and principles of asymmetric cryptography

Alice		Bob
	\leftarrow k_{pub}	k_{pub}, k_{pr}
choose random k		
$y = e_{k_{pub}}(k)$	y	
		1 1 ()
encrypt message x:		$k = d_{k_{pr}}(y)$
$z = AES_k(x)$		
	$\xrightarrow{\hspace*{1cm} z \hspace*{1cm}}$	
		$x = AES_k^{-1}(z)$

- In practice, the asymmetric cryptosystem, e.g. RSA, is not used to encrypt the plaintext message itself; rather, it is used to <u>encrypt a</u> <u>shared secret key</u> k that will be used in a symmetric cipher, like AES
 - Here, RSA is utilized as a key transport method

Key establishment (recap)

- The techniques for key establishment can be classified into two main groups:
 - Key transport methods (e.g. RSA)
 - Key agreement methods (e.g. DHKE)

Yet more modular arithmetic...

- Before we discuss the Elgamal and RSA algorithms in more detail, there's a little bit more modular arithmetic concepts to cover first
- Mostly recap from previous lectures, but some additional new theorems

Group: definition (recap)

- A group $G = (S, \circ)$ is a set of elements, S, together with an operation \circ which combines two elements of S. A group **must** have the following four properties:
- The group is **closed**, i.e. $a \circ b = c \in S$ for all $a, b \in S$
- The group operation is **associative**, i.e. $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in S$
- There is an **identity** element $i \in S$ with respect to the operation \circ , such that $i \circ a = a \circ i = a$ for all $a \in S$
- For each $a \in S$, there exists an **inverse** element $a^{-1} \in S$, such that $a \circ a^{-1} = a^{-1} \circ a = i$

Order of a finite group (recap)

- We have seen sets with an infinite number of elements, such as $\mathbb Z$ and $\mathbb R$
- In cryptography, we are generally more interested in sets with a finite number of elements (i.e. finite sets) such as the set \mathbb{Z}_m , which has m elements
- The order |G| of a finite group G is the number of elements in G

• E.g. the order of the group $G = (\mathbb{Z}_m, +)$ is $|G| = |\mathbb{Z}_m| = m$

Order of an element in a finite group (recap)

• The order ord(a) of an element $a \in S$ in a group $G = (S, \circ)$ is the smallest positive integer k, such that

$$a^k = a \circ a \circ a \dots a \circ a = i,$$

k times

where $i \in S$ is the identity element with respect to the operation \circ

- E.g.
 - The order of the element 1 in $G = (\mathbb{Z}_6, +) = (\{0, 1, 2, 3, 4, 5\}, +)$ is 6, since $1^6 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0 \mod 6$, with element 0 being the identity element
 - The order of the identity element 0 in $G = (\mathbb{Z}_6, +)$ is 1, since $0^1 \equiv 0 \mod 6$
 - The order of the element 2 in $G = (\mathbb{Z}_6, +)$ is 3, since $2^3 = 2 + 2 + 2 \equiv 0 \mod 6$
 - The order of the element 1 in $G = (\mathbb{Z}_m, +)$ is m

Ring: definition (recap)

• A ring is a group $(S, \circ, *)$ that has a second operation *, with the following requirements on *:

- The operation * must be **closed**, i.e. $a * b = c \in S$ for all $a, b \in S$
- The operation * must be **associative**, i.e. a * (b * c) = (a * b) * c for all $a, b, c \in S$
- There must be an **identity** element $i' \in S$ with respect to the operation *, such that i' * a = a * i' = a for all $a \in S$
- The operation * must be **distributive** over the operation o
- Note: there is no invertibility requirement on the operation *

Integer rings (recap)

• The integer ring is an important example of a ring

- The integer ring $(\mathbb{Z}_m, +, \cdot)$ consists of:
- 1. The finite set $\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$
- 2. Two operations '+' and '·' for all $a, b \in \mathbb{Z}_m$ such that:

$$a + b \equiv c \mod m$$
, $(c \in \mathbb{Z}_m)$

$$a \cdot b \equiv d \mod m, (d \in \mathbb{Z}_m)$$

Field: definition (recap)

• A field $F = (S, +, \cdot)$ is a ring with the following properties:

- All elements of S form an additive group with the group operation '+' and the identity element 0
- All elements of *S*, except the element 0, form a multiplicative group with the group operation '·' and the identity element 1
 - Particularly, each non-zero element has a multiplicative inverse
- When the two group operations are mixed, the operation '·' is distributive over the operation '+', i.e. $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in S$

Finite fields (recap)

- In cryptography, we are usually interested in fields with a finite number of elements
 - These fields are known as finite fields or Galois fields
- The number of elements in the field is called the *order* of the field (similar to the order of a finite group)

- The following theorem regarding finite fields is fundamental:
 - A field with order m only exists if m is a prime power, i.e. $m = p^n$ for some positive integer n and prime integer p. p is called the characteristic of the finite field.

Prime fields (recap)

- A prime field GF(p) is a Galois (finite) field of prime order (i.e. n=1)
- The two operations of the field are integer addition modulo p and integer multiplication modulo p
- The following important theorem defines a prime field:

Let p be a prime integer. The integer ring \mathbb{Z}_p is denoted as GF(p) and is referred to as a prime field, or as a Galois field with a prime number of elements. All non-zero elements of GF(p) have an inverse. Arithmetic in GF(p) is done modulo p.

Euler's phi function (recap)

- The number of integers in the set \mathbb{Z}_m that are *relatively prime* to m is denoted by $\Phi(m)$
 - An integer j is relatively prime to m if gcd(j, m) = 1
- E.g.
 - When m = 6, we have $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. Then, we have gcd(0, 6) = 6; gcd(1, 6) = 1; gcd(2, 6) = 2; gcd(3, 6) = 3; gcd(4, 6) = 2 and gcd(5, 6) = 1. So, there are two integers that are relatively prime to 6 and thus, $\Phi(6) = 2$
 - When m = 5, we have $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Then, we have gcd(0, 5) = 5; gcd(1, 5) = 1; gcd(2, 5) = 1; gcd(3, 5) = 1 and gcd(4, 5) = 1. So, there are four integers that are relatively prime to 5 and thus, $\Phi(5) = 4$

Euler's phi function: comments (recap)

- For large m, calculating Euler's phi function $\Phi(m)$ by going through all elements of the set \mathbb{Z}_m and computing the greatest common divisor is extremely slow
- However, if we know the factorization of m, then there is a much faster method to compute $\Phi(m)$

This property is critical to the RSA algorithm

Fast method to compute Euler's phi function (recap)

- Let *m* have the following *factorized* form:
 - $m=p_1^{e_1}\cdot p_2^{e_2}\cdot \ldots \cdot p_n^{e_n}$, where the p_j are distinct prime numbers and the e_j are positive integers
- Then we have $\Phi(m) = \prod_{j=1}^{n} (p_j^{e_j} p_j^{e_j-1})$
- E.g. when $m = 240 = 2^4 \cdot 3 \cdot 5$, we have $\Phi(240) = (2^4 2^3) \cdot (3^1 3^0) \cdot (5^1 5^0) = 8 \cdot 2 \cdot 4 = 64$
- Note that computing $\Phi(240)$ by computing the gcd 240 times would have been much slower than using the formula above; but the formula requires that we know the factorization of m

Fermat's Little Theorem

Let a be an integer and p be a prime number. Then we have $a^p \equiv a \mod p$

- Note that arithmetic in a prime field GF(p) is performed modulo p, so the above theorem holds for all elements of a prime field (except 0), and the theorem can be rewritten as $a \cdot a^{p-2} \equiv 1 \mod p$
- This has a useful implication:
 - a^{p-2} is the multiplicative inverse of a, thus we can invert any integer a, modulo some prime p, by using the formula $a^{-1} \equiv a^{p-2} \mod p$

Euler's Theorem

Let a and m be integers that are relatively prime, i.e. gcd(a, m) = 1. Then we have $a^{\Phi(m)} \equiv 1 \mod m$

- Arithmetic in an integer ring $(\mathbb{Z}_m, +, \cdot)$ is performed modulo m, so the above theorem holds for all elements of an integer ring
- Fermat's Little Theorem is special case of this theorem, i.e. when *m* is a prime number

This theorem is critical to the RSA algorithm

One-way functions (recap)

- A function *f*() is a one-way function if:
 - 1) y = f(x) is computationally easy, and
 - 2) $x = f^{-1}(y)$ is computationally infeasible.
- Important note:
 - The 'one-way function' defined here for asymmetric cryptosystems is not the same as a 'one-way function' defined in the context of hash functions
 - In the case of a hash function, the 'one-way function' refers to a non-invertible function f(x) where the inverse $f^{-1}(y)$ does **not** mathematically exist
 - In the case of asymmetric cryptosystems, the inverse of a one-way function does exist, but is extremely difficult to compute
- Most asymmetric crypto schemes of practical use, including RSA and DHKE, are based on a one-way function

DHKE (recap)

- a. Diffie-Hellman setup phase (picking of domain parameters):
 - 1. Choose a large prime *p*
 - 2. Choose a generator $\alpha \in \{2, 3, ..., p-2\}$
 - 3. Publish the domain parameters p and α (for Alice and Bob to use in the next phase key exchange)

DHKE (recap)

Alice

choose $a = k_{pr,A} \in \{2, ..., p-2\}$ compute $A = k_{pub,A} \equiv \alpha^a \mod p$

choose $b = k_{pr,B} \in \{2, \dots, p-2\}$ compute $B = k_{pub,B} \equiv \alpha^b \mod p$

$$k_{AB} = k_{pub,B}^{k_{pr,A}} \equiv B^a \mod p$$

$$k_{AB} = k_{pub}^{k_{pr,B}} \equiv A^b \mod p$$

Bob

b. Diffie-Hellman key exchange phase (generate a joint secret key k_{AB}):

 $k_{pub,B}=B$

- 1. Alice picks a private key, $k_{pr,A} = a \in \{2, 3, ..., p-2\}$ and computes her public key $k_{pub,A} = A \equiv \alpha^a \mod p$, then sends the public key over to Bob
- 2. Likewise, Bob picks a private key, $k_{pr, B} = b \in \{2, 3, ..., p-2\}$ and computes his public key $k_{pub, B} = B \equiv \alpha^b \mod p$, then sends the public key over to Alice
- 3. Upon receiving each other's public key, Alice computes the joint secret key $k_{AB} = (k_{pub, B})^a \equiv \alpha^{ba} \mod p$ and Bob computes $k_{AB} = (k_{pub, A})^b \equiv \alpha^{ab} \mod p$

Elgamal: an extension to DHKE

- Recall that the DHKE protocol generates a joint secret key $k_{\it AB}$ for use in a symmetric cipher
 - It doesn't really perform any encryption and decryption
- We can extend the functionality of DHKE, such that it can function as a cipher, which is known as Elgamal:
 - 1. Suppose Alice wishes to send Bob a message $x \in \mathbb{Z}^*_p$
 - 2. After Alice and Bob have both computed the shared secret key k_{AB} via DHKE, Alice can encrypt the plaintext x by multiplying it with k_{AB} , modulo p, to obtain the ciphertext y, i.e. $y \equiv x \cdot k_{AB} \mod p$
 - k_{AB} is used as a multiplicative mask here
 - 3. Upon receiving the ciphertext y, Bob can decrypt it by multiplying y with the inverse of k_{AB} , modulo p, i.e. $x \equiv y \cdot k_{AB}^{-1} \mod p$
 - The inverse of k_{AB} can be found by using Fermat's Little Theorem

RSA: introduction

- An asymmetric cryptosystem proposed by Ron Rivest, Adi Shamir and Leonard Adleman in 1977
- It is commonly used in many protocols relevant to internet security:
 - Most public key infrastructure (PKI) products
 - Protocols for certificates and key exchange, e.g. SSL and TLS
 - Secure email, e.g. Outlook, Pretty Good Privacy (PGP)

- It is capable of encrypting and decrypting messages, but is typically used to encrypt/decrypt keys for use in *symmetric* ciphers
 - That's mainly because of performance issues we'll talk about those issues later in this lecture

RSA: introduction

- It uses the integer factorization problem as its one-way function
 - More on this later in the lecture
- Encryption and decryption is performed in the integer ring \mathbb{Z}_n
 - Because \mathbb{Z}_n contains only the elements $\{0, 1, ..., n-1\}$, the binary value of both the plaintext x and the ciphertext y must be less than n
- Modular exponentiation plays an important role in RSA

- RSA consists of two phases, similar to DHKE:
 - a. Key generation (setup)
 - b. Encryption/decryption

RSA

- a. Key generation phase (setup):
 - The output of this phase is $k_{pub} = (n, e)$ and $k_{pr} = d$
 - 1. Choose two large prime numbers p and q
 - 2. Compute $n = p \cdot q$
 - 3. Calculate $\Phi(n) = (p 1) \cdot (q 1)$
 - 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n)-1\}$, such that $gcd(e, \Phi(n)) = 1$
 - 5. Compute the private key d, such that $d \cdot e \equiv 1 \mod \Phi(n)$, i.e. d is the inverse of e modulo $\Phi(n)$
- For security, n should be 1024 bits long at a minimum

RSA

- b. Encryption/decryption phase:
 - Encryption: Given the plaintext x and the public key $k_{pub} = (n, e)$, the encryption function is $y = e_{k_{pub}}(x) \equiv x^e \mod n$, where $x, y \in \mathbb{Z}_n$
 - **Decryption**: Given the ciphertext y and the private key $k_{pr} = d$, the decryption function is $\mathbf{x} = d_{k_{pr}}(\mathbf{y}) \equiv \mathbf{y}^d \mod n$, where $x, y \in \mathbb{Z}_n$

RSA: example

Alice

message x = 4

 $y = x^e \equiv 4^3 \equiv 31 \mod 33$

$k_{pub} = (33,3)$

$$y=31$$

Bob

- 1. choose p = 3 and q = 11
- 2. $n = p \cdot q = 33$
- 3. $\Phi(n) = (3-1)(11-1) = 20$
- 4. choose e = 3
- $5. d \equiv e^{-1} \equiv 7 \mod 20$

$$y^d = 31^7 \equiv 4 = x \mod 33$$

Proof of the correctness of RSA encryption

• Let's show that RSA decryption is the inverse of RSA encryption, i.e.

$$d_{k_{pr}}(y) = d_{k_{pr}}[e_{k_{pub}}(x)] \equiv (x^e)^d \equiv x^{d \cdot e} \equiv x \mod n$$

• Starting with the expression $d \cdot e \equiv 1 \mod \Phi(n)$, we can use the definition of the modulo operation to re-express that equation as:

$$d \cdot e \equiv 1 + t \cdot \Phi(n)$$
, for some integer t

• Then we have $d_{k_{pr}}(y) = x^{d \cdot e} \equiv x^{1+t \cdot \Phi(n)} \equiv x \cdot x^{t \cdot \Phi(n)} \equiv (x^{\Phi(n)})^t \cdot x \mod n$

Proof of the correctness of RSA encryption

• This simplifies our problem to proving that: $x \equiv (x^{\Phi(n)})^t \cdot x \mod n$

- Case 1: x and n are relatively prime, i.e. gcd(x, n) = 1:
 - When x and n are relatively prime, Euler's Theorem holds, i.e. $x^{\Phi(n)} \equiv 1 \mod n$
 - As a result, $(x^{\Phi(n)})^t \cdot x \equiv 1^t \cdot x \equiv x \mod n$

Proof of the correctness of RSA encryption

- Case 2: x and n are **not** relatively prime, i.e. $gcd(x, n) \neq 1$:
 - Since $n = p \cdot q$, we have $gcd(x, n) = gcd(x, p \cdot q) \neq 1$
 - Because p and q are both prime integers, and x < n, this means that either p is a factor of x, or q is a factor of x (but not both p and q)
 - So, we have either $x = r \cdot p$ for some integer r, or $x = s \cdot q$ for some integer s
 - Now let's assume that $x = s \cdot q$; this implies that gcd(x, p) = 1
 - Thus, we can use Euler's Theorem again, i.e. $x^{\Phi(p)} \equiv 1 \mod p$, to show that: $(x^{\Phi(n)})^t \cdot x \equiv (x^{(p-1)\cdot(q-1)})^t \cdot x \equiv (x^{p-1})^t \cdot (q-1) \cdot x \equiv (x^{\Phi(p)})^t \cdot (q-1) \cdot x \equiv 1^t \cdot (q-1) \cdot x \equiv x \mod n$
 - We will obtain a similar result if we assume that $x = r \cdot p$ instead

The integer factorization problem

- The integer factorization problem is the one-way function behind RSA
 - This problem forms the foundation of the security of RSA

- Multiplying two large prime numbers is computationally easy
- By contrast, given the product of two large prime numbers, it is very difficult to factorize this product to obtain the two prime numbers
 - So, in the case of RSA, it is difficult to factorize n into its primes p and q and as a result, it is difficult to compute $\Phi(n)$

RSA: comments

- There are a couple of non-trivial tasks during the key generation phase
 - Choosing the two large prime numbers p and q is not straightforward, but one
 way to do that is to pick two large numbers p and q randomly, then use a
 primality test, such as the Fermat test or the Miller-Rabin test, to check that
 the two numbers chosen are prime if p and/or q are not prime, then pick
 the number(s) again
 - Computing the private key $k_{pr} = d$ is also not trivial, but this can be obtained using the extended Euclidean algorithm (EEA)
- The encryption and decryption functions, which involve modular exponentiation, can be computationally intensive – even though those operations can be somewhat efficiently computed using the square and multiply algorithm, it results in performance issues

RSA: comments

- The performance issues related to modular exponentiation lead to the fact that RSA is about 100 to 1000 times slower than symmetric ciphers such as AES
- This is why RSA is typically used to encrypt a shared secret key, that can be safely transmitted over an insecure channel, for use in a symmetric cipher like AES

RSA in practice: padding

- What we have discussed so far is the "schoolbook RSA" cryptosystem, which has several weaknesses:
- a) The encryption is deterministic; for a specific public key, a particular plaintext is always mapped to a particular ciphertext
 - So the attacker Oscar can derive some statistical properties of the plaintext from the ciphertext
- b) Schoolbook RSA is *malleable*, which means that Oscar can transform a RSA ciphertext into another ciphertext that results in a <u>known</u> transformation of the original plaintext
 - Oscar does not need to be able to decrypt the ciphertext; he just needs to be capable of manipulating the plaintext in a predictable manner
 - For example, Oscar can replace the ciphertext y with $g^e \cdot y$, where g is some integer; when Bob decrypts the modified ciphertext, he gets $(g^e \cdot y)^d = g^{ed} \cdot x^{ed} \equiv g \cdot x \mod n$

RSA in practice: padding

- These weaknesses can be addressed using padding, which embeds a random structure into the plaintext before encryption
- Modern techniques like Optimal Asymmetric Encryption Padding (OAEP) are used for padding RSA messages
- When the message is decrypted, the structure of the decrypted message is verified to ensure that no decryption error has occurred

How might the attacker Eve/Oscar compromise the security of DHKE?

- There are three general forms of attacks against RSA:
- a. Protocol attacks:
 - These are attacks that exploit weaknesses in the way RSA is used
 - Most of these attacks exploit the malleability of RSA, and these attacks can be thwarted by the use of padding

b. Mathematical attacks:

- The best cryptanalytical method involves factoring the modulus n
- Oscar only knows the modulus n, the public key e and the ciphertext y
- His goal: Calculate the private key d, where $d \cdot e \equiv 1 \mod \Phi(n)$
- However, he **cannot** use the EEA to compute d, which is the inverse of e, because he does **not** know the value of $\Phi(n)$
- At best, he can try to factorize *n* into its primes *p* and *q*. If he is successful in factorizing *n*, then he can do the following:
 - 1. Compute $\Phi(n) = (p 1) \cdot (q 1)$
 - 2. Calculate $d \equiv e^{-1} \mod \Phi(n)$
 - 3. Obtain the plaintext $x \equiv y^d \mod n$
- This kind of attack can be defeated by making the modulus *n* sufficiently large, at least 1024 bits long, so that the factorization of *n* is very difficult

c. Side-channel attacks:

- These attacks exploit information about the private key that is leaked through the timing behaviour or the power consumption
- Such attacks require direct physical access to the RSA implementation, e.g. a smart card or microprocessor
- For example, the next slide shows a power trace of a microprocessor executing the square and multiply algorithm during modular exponentiation

- From the power trace, one can deduce the bits of the private key: '0' for Square (S) and '1' for Square and Multiply (SM) \rightarrow the key is $\underline{1}011010011101_2$
- This attack can be prevented by using dummy operations or power masking

Digital signatures: prelude

- Recall in a previous lecture that MACs can provide message integrity and authentication, but cannot provide non-repudiation
- However, we can use an asymmetric cryptosystem to provide nonrepudiation as a service
- The general idea:
 - Bob can use his <u>private key</u> to "decrypt" a <u>plaintext</u> message x this is essentially a digital signature. He then sends x and the digital signature over to Alice
 - Alice can then verify that Bob was the sender of x, by "encrypting" the digital signature using Bob's public key
 - Since only Bob is in possession of his private key, he cannot later deny that he
 was the sender of the plaintext x
- We will discuss digital signatures in more detail in the next lecture