SEIR Modelling

Aditi

August 2024

1 Introduction

1.1 list of new stuff

- imp
- 1. syntax of composition dictating how the subsystems interact
- $2.\ {\rm semantics}\ ({\rm logic})$ of composition assigning concrete mathematical models to the subsystems
- 1.2 -
- 1.3 -
- 1.4 -

2 Implementing the model in Julia

ref

- S: susceptible
- E: exposed, Diseases (like COVID-19) often have an incubation period or a latency period and this category accommodates it. (The SIR model does not have this category.)
- I: infected
- R: recovered, also includes removed (ie, no more capable of spreading the disease

$$s = \frac{S}{N}$$
, $e = \frac{E}{N}$, $i = \frac{I}{N}$, and $r = \frac{R}{N}$

2.1 Setting up DE's:

- S: A susceptible person can either become exposed or get removed $\frac{dS}{dT} = -\lambda S \alpha S$
- E: An exposed person will get infected after the incubation period or get removed, some susceptible people will get converted to exposed as well $\frac{dE}{dT} = \lambda S \kappa E \sigma I$
- • I: Infected people will get removed, exposed person may get infected $\frac{dI}{dT} = \sigma E - \gamma I$
- R: $\frac{dR}{dT} = \alpha S + \kappa E + \gamma I$

2.2 Understanding the parameters:

- $-\alpha$: susceptible person being removed (natural death)
- $-\beta$: exposed person being removed (natural death)
- $-\gamma$: infected person recovering
- $-\lambda$: susceptible person getting exposed $=\frac{kI}{N}$
- $-\sigma$: exposed person getting infected The known functions s(t), e(t), i(t), and r(t), have now become:

$$s = \frac{S}{N}, \quad e = \frac{E}{N}, \quad i = \frac{I}{N}, \quad r = \frac{R}{N}.$$

$$\frac{ds}{dt} = -\beta i s - \alpha s$$

$$\frac{de}{dt} = \beta i s - \sigma e - \kappa e$$

$$\frac{di}{dt} = \sigma e - \gamma i,$$

$$\frac{dr}{dt} = \gamma i.$$