ANÁLISE DE SENSIBILIDADE CONTINUAÇÃO

DCE692 - Pesquisa Operacional

Atualizado em: 4 de outubro de 2023

ANÁLISE DE SENSIBILIDADE

Na análise de sensibilidade, nós estamos interessados em investigar variações da solução ótima de um problema de programação linear

Também estamos interessados em analisar diferentes valores para os coeficientes do modelo

 \bigcirc Matriz A e vetores b e c

Variações nestes coeficientes podem ter 3 diferentes resultados

- 1. A solução ótima não é alterada
- 2. A solução ótima atual torna-se inviável
- 3. É possível encontrar outra solução com valor melhor que o ótimo atual

MUDANÇA DE COEFICIENTE DE CUSTO NÃO BÁSICO

Seja x_r uma variável não-básica

o não está no vetor básico ótimo

Esta variável tem coeficiente de custo c_r

Assumindo que todos os outros coeficients de custo continuem inalterados

Oual é o intervalo de valores de c_r dentro do qual B' continua sendo uma base ótima?

ANÁLISE DE SENSIBILIDADE

Vamos continuar com o modelo da aula passada

X_1	\mathbf{x}_{2}	X_3	X_4	X ₅	\mathbf{x}_{6}	b
1	2	0	1	0	-6	11
0	1	1	3	-2	-1	6
1	2	1	3	0 -2 -1	-5	13
3	2	-3	-6	10	-5	0

ANÁLISE DE SENSIBILIDADE

A solução ótima x' do modelo possui variáveis básicas x_1, x_2 e x_3

- x' = (3,4,2,0,0,0)
- $> z^* = 11$
- \bigcirc $B' = (x_1, x_2, x_3) \leftarrow$ base ótima

VB		Т		b'				
x_1	-1	-2	2	3				
\mathbf{x}_{2}	1	1	-1	4				
\mathbf{x}_3	-1	0	1	2				
-Z	-2	4	-1	-11				
-π								

5

MUDANÇA DE COEFICIENTE DE CUSTO NÃO BÁSICO

Temos que B' continuará sendo uma base ótima se

$$c_r' = c_r + (-\pi)A_r \ge 0$$

Ou seja, ela continuará ótima se $c_r \ge (\pi)A_r$.

Caso $c_r < (-\pi)A_r$, então x_r será a única variável não-básica com curso relativo negativo em relação à base B'

- \bigcirc Logo, x_r deverá entrar na base
- Necessária mais uma iteração do método Simplex

MUDANÇA DE COEFICIENTE DE CUSTO NÃO BÁSICO - EXEMPLO

Levando em consideração o modelo anterior, temos que $c_5 = 10$

○ Coeficiente da variável *x*₅

$$c_5 + (-\pi)A_5 = c_5 + (-2 \quad 4 \quad -1)\begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix} \ge 0$$

Fazendo a conta acima, temos que c_5 não altera a B' caso $c_5 \ge 7$

Assim, para qualquer valor de $c_5 \ge 7$, temos que B' continua igual

 \bigcirc Para c_5 < 7, é necessária a re-otimização do modelo

7

MUDANÇA EM COEFICIENTE DE COLUNA NÃO-BÁSICA DE A

Seja x_j uma variável que não está na base ótima B'

Vamos determinar um intervalo de valores para os quais um coeficiente a_{ij} pode ser modificado de tal forma que B' permaneça inalterada

MUDANÇA EM COEFICIENTE DE COLUNA NÃO-BÁSICA DE A

Seja α_{ij} um parâmetro que represente o valor de a_{ij}

- Ocomo a variável x_j não é básica, alterações em α_{ij} não farão com que B' torne-se inviável
- \bigcirc Entretanto, pode alterar o custo relativo de x_j e fazer com que ela tenha que tornar-se básica

Temos que *B'* continuará sendo ótima se

$$c_j'(\alpha_{ij}) = c_j + (-\pi)A_j\alpha_{ij},$$

onde

$$A_j\alpha_{ij}=(a_{1,j},\ldots,a_{i-1,j},\alpha_{ij},a_{i+1,j},\ldots,a_{mj})^T$$

MUDANÇA EM COEFICIENTE DE COLUNA NÃO-BÁSICA DE A

Vamos estudar a variação do parâmetro $a_{2,5} = -2$

 \bigcirc Relembrando que x_5 é uma variável não-básica

$$c'_{5}(\alpha_{2,5}) = 10 + (-2 \quad 4 \quad -1) \begin{pmatrix} 0 \\ \alpha_{2,5} \\ -1 \end{pmatrix} = 11 + 4\alpha_{2,5}$$

Logo, temos que B' continuará inalterada caso $11+4\alpha_{2,5}\geq 0$, ou seja, caso $\alpha_{2,5}\geq \frac{-11}{4}$

Para valores de $a_{2,5} < \frac{-11}{4}$, temos que c_5' é negativo

 Isto implica que x₅ deverá entrar na base utilizando o pivoteamento do Simplex

OUTRAS MODIFICAÇÕES

- Incluir uma restrição de igualdade
- Mudança de coeficiente de custo básico
- Mudança em coeficiente do lado direito (vetor b)
- Mudança em coeficiente de coluna básica de A

Todas estas modificações são viáveis

- Entretanto, elas dependem de conceitos mais avançados que não vimos aqui na disciplina
- Assim, n\u00e3o estudaremos suas implica\u00f3\u00f3es e como faze-las
- Indicado para nível de pós-graduação