TP9: Factorisation

Résumé du TP

Bertrand Meyer 21 avril 2020

Divisions successives

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

d	n	facteurs
2	7644	2
	3822	2 × 2
	1911	$2 \times 2 \times 2$

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

d	n	facteurs
2	7644	2
	3822	2 × 2
	1911	$2 \times 2 \times 2$
3	637	$2 \times 2 \times 2 \times 3$

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

d	n	facteurs
2	7644	2
	3822	2 × 2
	1911	$2 \times 2 \times 2$
3	637	$2 \times 2 \times 2 \times 3$
4	637	$2 \times 2 \times 2 \times 3$

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

3
3
3

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

		1
d	n	facteurs
2	7644	2
	3822	2 × 2
	1911	$2 \times 2 \times 2$
3	637	$2 \times 2 \times 2 \times 3$
4	637	$2 \times 2 \times 2 \times 3$
5	637	$2 \times 2 \times 2 \times 3$
6	637	$2 \times 2 \times 2 \times 3$

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

d	n	facteurs
2	7644	2
	3822	2 × 2
	1911	$2 \times 2 \times 2$
3	637	$2 \times 2 \times 2 \times 3$
4	637	$2 \times 2 \times 2 \times 3$
5	637	$2 \times 2 \times 2 \times 3$
6	637	$2 \times 2 \times 2 \times 3$
7	91	$2 \times 2 \times 2 \times 3 \times 7$
	13	$2 \times 2 \times 2 \times 3 \times 7 \times 7$

On épuise les diviseurs d = 2, 3, 4, 5, 6, ..., possibles de n.

Factorisons, par exemple, n = 15288:

d	n	facteurs
2	7644	2
	3822	2 × 2
	1911	$2 \times 2 \times 2$
3	637	$2 \times 2 \times 2 \times 3$
4	637	$2 \times 2 \times 2 \times 3$
5	637	$2 \times 2 \times 2 \times 3$
6	637	$2 \times 2 \times 2 \times 3$
7	91	$2 \times 2 \times 2 \times 3 \times 7$
	13	$2 \times 2 \times 2 \times 3 \times 7 \times 7$

Les facteurs sont $13 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7$.

On peut aller plus vite en considérant d=2 puis les diviseurs impairs uniquement d=3, 5, 7, 9, ..., possibles de n.

On peut aller encore plus vite en considérant d=2 et d=3 puis les diviseurs non-divisibles par 2 ou 3 uniquement d=5, 7, 11, 13, 17 ..., possibles de n, que l'on obtient par incrément alternatif de 2 ou de 4.

Etc. en privilégiant les *k* premiers diviseurs au lieu des 2 premiers.

On veut factoriser $n = p \times q$.

On veut factoriser $n = p \times q$.

La suite $(x_n)_{n\in\mathbb{N}}$ engendrée par $x \leftarrow x^2 + 1$ boucle dans $\mathbb{Z}/n\mathbb{Z}$.

On veut factoriser $n = p \times q$.

La suite $(x_n)_{n \in \mathbb{N}}$ engendrée par $x \leftarrow x^2 + 1$ boucle dans $\mathbb{Z}/n\mathbb{Z}$.

Les termes étant plutôt uniformément distribuée dans $\mathbb{Z}/p\mathbb{Z}$, on doit y trouver deux termes x_k et $x_{k'}$ égaux modulo p assez vite $(O(\sqrt{p})$ selon le paradoxe des $\overset{\text{de}}{\longrightarrow}$).

On veut factoriser $n = p \times q$.

La suite $(x_n)_{n\in\mathbb{N}}$ engendrée par $x \leftarrow x^2 + 1$ boucle dans $\mathbb{Z}/n\mathbb{Z}$.

Les termes étant plutôt uniformément distribuée dans $\mathbb{Z}/p\mathbb{Z}$, on doit y trouver deux termes x_k et $x_{k'}$ égaux modulo p assez vite $(O(\sqrt{p})$ selon le paradoxe des $\overset{\text{def}}{\longrightarrow}$).

 $x_k \equiv x_{k'} \mod p \Rightarrow (x_k - x_{k'}) \land n \text{ divise } n$

On veut factoriser $n = p \times q$.

La suite $(x_n)_{n\in\mathbb{N}}$ engendrée par $x \leftarrow x^2 + 1$ boucle dans $\mathbb{Z}/n\mathbb{Z}$.

Les termes étant plutôt uniformément distribuée dans $\mathbb{Z}/p\mathbb{Z}$, on doit y trouver deux termes x_k et $x_{k'}$ égaux modulo p assez vite $(O(\sqrt{p})$ selon le paradoxe des $\overset{\text{def}}{\longrightarrow}$).

$$x_k \equiv x_{k'} \mod p \Rightarrow (x_k - x_{k'}) \land n \text{ divise } n$$

k et k′ s'obtiennent avec l'algorithme du ‱ et de la ጮ.

Exemple (factorisons n = 35 en partant de $x_0 = 7$) Étape 0 : $= x_0 = 7$, $= x_0 = 7$

Exemple (factorisons
$$n = 35$$
 en partant de $x_0 = 7$)
Étape 1 : $= x_1 = 15, = x_2 = 16,$

Exemple (factorisons
$$n = 35$$
 en partant de $x_0 = 7$)
Étape 2 : $= x_1 = 16$, $= x_2 = 5$, ($= -16$) $= 1$

Exemple (factorisons
$$n=35$$
 en partant de $x_0=7$)
Étape $3: \Re = x_2=12$, $\Im = x_4=12$, $\Im = x_4=12$

Exemple (factorisons
$$n = 35$$
 en partant de $x_0 = 7$)
Étape 4 : $= x_3 = 5$, $= x_6 = 26$, ($- n = 7$)

On a repéré un cycle dans $\mathbb{Z}/7ZZ$ et non dans $\mathbb{Z}/5\mathbb{Z}$ ce qui donne un facteur.

Petit théorème de Fermat Si *p* est premier, alors, pour tout *a*,

$$a^{p-1} \equiv 1 \mod p$$
.

Si p est un facteur de n, alors $(a^{\lambda \cdot (p-1)} - 1) \wedge n$ est divisible par p.

Petit théorème de Fermat

Si p est premier, alors, pour tout a,

$$a^{p-1} \equiv 1 \mod p$$
.

Si p est un facteur de n, alors $(a^{\lambda \cdot (p-1)} - 1) \wedge n$ est divisible par p.

Méthode p-1 de Pollard

Pour a quelconque, calculer

$$(a^m-1) \wedge n$$

pour des petites valeurs de m, disons $m = ppcm\{1, 2, 3, ..., b\}$ pour un certain b.

Petit théorème de Fermat Si p est premier, alors, pour tout a,

$$a^{p-1} \equiv 1 \mod p$$
.

Si p est un facteur de n, alors $(a^{\lambda \cdot (p-1)} - 1) \wedge n$ est divisible par p.

Méthode p-1 de Pollard

Pour a quelconque, calculer

$$(a^m-1) \wedge n$$

pour des petites valeurs de m, disons $m = ppcm\{1, 2, 3, ..., b\}$ pour un certain b.

On attrape les diviseurs p de n tels que p-1 est b-ultrafriable.

Si y et z vérifient

$$y^2 \equiv z^2 \mod n,$$

alors

$$(y-z)\times(y+z)\equiv 0\mod n$$

peut révéler une factorisation de n par pgcd.

Si y et z vérifient

$$y^2 \equiv z^2 \mod n$$
,

alors

$$(y-z)\times(y+z)\equiv 0\mod n$$

peut révéler une factorisation de n par pgcd.

 $\bullet \bullet$ y et z : on génère des carrés et on combine des produits de leur réduction modulo n pour trouver un autre carré.

Si y et z vérifient

$$y^2 \equiv z^2 \mod n,$$

alors

$$(y-z)\times(y+z)\equiv 0\mod n$$

peut révéler une factorisation de n par pgcd.

 \mathfrak{S} y et z : on génère des carrés et on combine des produits de leur réduction modulo n pour trouver un autre carré.

On \triangle cet autre carré via de l'algèbre linéaire dans \mathbb{F}_2 sur les exposants en se restreignant à une base de petits premiers.

Factorisons n = 2886.

Factorisons n = 2886. Avec $\sqrt{n} \simeq 53, 7$.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 & \text{mod } n \\ x_1 = 55^2 = 3025 \equiv 139 & \text{mod } n \\ x_2 = 56^2 = 3136 \equiv 250 & \text{mod } n \\ x_3 = 57^2 = 3249 \equiv 363 & \text{mod } n \\ \vdots & & & \end{cases}$$

Factorisons n = 2886.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ x_1 = 55^2 = 3025 \equiv 139 = 139 = a_1 \mod n \\ x_2 = 56^2 = 3136 \equiv 250 = 2 \cdot 5^3 = a_2 \mod n \\ x_3 = 57^2 = 3249 \equiv 363 = 3 \cdot 11^2 = a_3 \mod n \\ \vdots$$

On fixe {2,3,5,7,11} comme base de friabilité.

Factorisons n = 2886.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ x_1 = 55^2 = 3025 \equiv 139 = 139 = a_1 \mod n \\ x_2 = 56^2 = 3136 \equiv 250 = 2 \cdot 5^3 = a_2 \mod n \\ x_3 = 57^2 = 3249 \equiv 363 = 3 \cdot 11^2 = a_3 \mod n \\ \vdots$$

On fixe {2,3,5,7,11} comme base de friabilité.

Factorisons n = 2886.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ x_1 = 55^2 = 3025 \equiv 139 = 139 = a_1 \mod n \\ x_2 = 56^2 = 3136 \equiv 250 = 2 \cdot 5^3 = a_2 \mod n \\ x_3 = 57^2 = 3249 \equiv 363 = 3 \cdot 11^2 = a_3 \mod n \\ \vdots$$

On fixe {2,3,5,7,11} comme base de friabilité.

On résoud le système dans \mathbb{F}_2

$$\begin{cases} e_0 + e_2 &= 0 \text{ (puissances de 2)} \\ e_0 + e_3 &= 0 \text{ (puissances de 3)} \\ e_0 + 3e_2 &= 0 \text{ (puissances de 5)} \\ 2e_3 &= 0 \text{ (puissances de 11)} \end{cases}$$

Crible quadratique sur un exemple

Factorisons n = 2886.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ x_1 = 55^2 = 3025 \equiv 1399 = 1399 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ x_2 = 56^2 = 3136 \equiv 250 = 2 \cdot 5^3 = a_2 \mod n \\ x_3 = 57^2 = 3249 \equiv 363 = 3 \cdot 11^2 = a_3 \mod n \\ \vdots$$

On fixe $\{2,3,5,7,11\}$ comme base de friabilité. Le produit $a_0a_2a_3$ a des exposants pairs.

Crible quadratique sur un exemple

Factorisons n = 2886.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ \cancel{x} = 55^2 = 3025 \equiv 139 = 139 = \cancel{x} \mod n \\ x_2 = 56^2 = 3136 \equiv 250 = 2 \cdot 5^3 = a_2 \mod n \\ x_3 = 57^2 = 3249 \equiv 363 = 3 \cdot 11^2 = a_3 \mod n \\ \vdots$$

On fixe $\{2,3,5,7,11\}$ comme base de friabilité. Le produit $a_0a_2a_3$ a des exposants pairs. On a trouvé la relation

$$2094^2 = (54 \cdot 56 \cdot 57)^2 \equiv (2 \cdot 3 \cdot 5^2 \cdot 11)^2 = 1650^2 \mod n.$$

Crible quadratique sur un exemple

Factorisons n = 2886.

$$\begin{cases} x_0 = 54^2 = 2916 \equiv 30 = 2 \cdot 3 \cdot 5 = a_0 \mod n \\ x_1 = 55^2 = 3025 \equiv 139 = 139 = x \mod n \\ x_2 = 56^2 = 3136 \equiv 250 = 2 \cdot 5^3 = a_2 \mod n \\ x_3 = 57^2 = 3249 \equiv 363 = 3 \cdot 11^2 = a_3 \mod n \\ \vdots$$

On fixe $\{2,3,5,7,11\}$ comme base de friabilité. Le produit $a_0a_2a_3$ a des exposants pairs. On a trouvé la relation

$$2094^2 = (54 \cdot 56 \cdot 57)^2 \equiv (2 \cdot 3 \cdot 5^2 \cdot 11)^2 = 1650^2 \mod n.$$

Or $(2094 - 1650) \land n = 13$. D'où une factorisation de $n = 13 \cdot 222$.

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т														

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	(0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x) 3	0	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	1	1	1	1	1	1	1	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	1	1	1	1	1	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	1	1	1	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	2	1	1	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	2	1	2	1	1	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

	х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f	(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
	Т	2	1	2	1	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	2	1	2	1	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

	х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f	(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
	Т	6	1	2	1	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

	х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
	Т	6	1	2	3	2	1	2	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	6	1	2	3	2	1	6	1	2	1	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	6	1	2	3	2	1	6	1	2	3	2	1	2	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	6	1	2	3	2	1	6	1	2	3	2	1	6	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

	х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
	Т	6	1	2	3	2	1	6	1	2	3	2	1	6	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	6	1	2	3	2	1	6	1	2	3	2	1	6	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

)	х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
٦	Г	30	1	10	3	2	1	6	1	2	3	2	1	6	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	30	1	10	3	2	5	6	5	2	3	2	1	6	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
T	30	1	10	3	2	5	6	5	2	3	10	1	30	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	30	1	50	3	2	5	6	5	2	3	10	1	30	1

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	30	1	250	3	2	5	6	5	2	3	10	1	30	1

f(x) s'annule en 2 et 15 dans $\mathbb{Z}/125\mathbb{Z}$

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	30	1	250	363	2	35	42	5	2	3	1210	1	1470	7

Et ainsi de suite pour tout $p \le 11$.

Nous voulons repérer les nombres 11-friables parmi

$$f(x) = (x + 54)^2 - 2886$$
 pour $x = 0, 1, 2...$

х	0	1	2	3	4	5	6	7	8	9	10	11	12	13
f(x)	30	139	250	363	478	595	714	835	958	1083	1210	1339	1470	1603
Т	30	1	250	363	2	35	42	5	2	3	1210	1	1470	7

On repère les termes friables : f(0), f(2), f(3), f(10), f(12).