SUMMARY OF MODERN FEDERATED LEARNING METHODS

REFERENCES

- Reddi, Sashank, et al.
 "Adaptive Federated Optimization."
 arXiv preprint arXiv:2003.00295 (2020).
- Wang, Hongyi, et al. "Federated learning with matched averaging." arXiv preprint arXiv:2002.06440 (2020).
- Xie, Cong, Oluwasanmi Koyejo, and Indranil Gupta. "Generalized byzantine-tolerant sgd." arXiv preprint arXiv:1802.10116 (2018).

REFERENCES

- Thang, Jingzhao, et al. "Why ADAM beats SGD for attention models." arXiv preprint arXiv:1912.03194 (2019).
- Yurochkin, Mikhail, et al. "Bayesian nonparametric federated learning of neural networks." arXiv preprint arXiv:1905.12022 (2019).
- Wang, Yushi.
 "Co-op: Cooperative machine learning from mobile devices."
 (2017).

REFERENCES

- Xie, Cong, Sanmi Koyejo, and Indranil Gupta. "Zeno++: Robust Fully Asynchronous SGD." arXiv preprint arXiv:1903.07020 (2019).
- Lalitha, Anusha, et al. "Peer-to-peer federated learning on graphs." arXiv preprint arXiv:1901.11173 (2019).
- Li, Daliang, and Junpu Wang. "Fedmd: Heterogenous federated learning via model distillation." arXiv preprint arXiv:1910.03581 (2019).

CONTENTS

- What is
 - Federated Learning
 - FedAvg
- Problems on Federated Learning
- Solutions
 - Adaptive Optimizer
 - Matched Averaging
 - Byzantine-tolerant
- TODO

- ▶ 연합 학습(Federated Learning, FL)
 - 분산 머신 러닝 패러다임
 - ▶ 많은 수의 클라이언트들이 중앙 서버에게
 - 자신의 훈련 데이터를 공유하지 않고 학습에 협력

- ▶ 클라이언트들이 모델을 업데이트
 - > 임의의 클라이언트 최적화기를 이용해
 - ▶ 로컬 데이터의 손실(loss)을 줄이기 위해

- 서버는 글로벌 모델을 업데이트
 - 클라이언트가 송신한 모델 업데이트의 평균으로부터
 - ▶ 로컬 모델의 파라미터들을 element-wise하게 평균
 - 클라이언트들에 걸친 손실을 최소화하기 위해

- Point 학습(Federated Learning, FL)
 - 중앙 서버의 조율 하에서
 - 많은 수의 클라이언트가 모델 학습에 협력하는
 - > 엣지(edge) 디바이스
 - 어러 기관 등
 - 머신 러닝 패러다임

- FL의 핵심은
 - ▶ 클라이언트의 원(raw) 데이터가
 - ▶ 절대로 서버나 다른 클라이언트에게
 - 공유되지 않는다는 것

- FEDAVG 기법
 - 각 라운드에서 클라이언트들의 서브셋이 선택되고 (주로 무작위로)
 - 서버가 그들에게 글로벌 모델을 브로드캐스트
 - ▶ 병렬적으로 클라이언트들이 고유의 손실 함수를 통해 SGD를 수행
 - 서버에게 모델을 전송
 - 서버는 로컬 모델들의 평균을 구해 글로벌 모델을 업데이트

FEDAVG 기법

$$x_i^t = \operatorname{SGD}_K(x_t, \eta_l, F_i)$$

- ▶ 그라디언트 $\nabla f_i(x, z)$ 에 대해
- ightharpoonup로컬 학습률 η_l 을 통해
- x_t 에서 시작해
- K스텝만큼 SGD

FEDAVG 기법

Algorithm 1 Simplified FEDAVG

Initialization: x_0

for
$$t=0,\cdots,T-1$$
 do

Sample subset S of clients

$$x_{i,0}^{t} = x_{t}$$

for each client $i \in \mathcal{S}$ in parallel do

$$x_i^t = \operatorname{SGD}_K(x_t, \eta_l, F_i)$$

$$x_{t+1} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} x_i^t$$

- FEDAVG 기법의 재작성
 - 각 라운드에서 클라이언트들의 서브셋이 선택되고 (주로 무작위로)
 - ▶ 서버가 그들에게 글로벌 모델을 브로드캐스트
 - ▶ 병렬적으로 클라이언트들이 고유의 손실 함수를 통해 SGD를 수행
 - ▶ 서버에게 델타(모델의 업데이트 정보)를 전송
 - 서버는 델타들의 평균을 구해 글로벌 모델을 업데이트

FEDAVG 기법의 재작성

$$x_{t+1} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} x_{i,K}^t = x_t - \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \left(x_t - x_{i,K}^t \right)$$

$$\Delta_i^t := x_{i,K}^t - x_t$$

$$\Delta^t = \frac{1}{|S|} \Sigma \Delta_i^t$$

18

FEDAVG

- 서버는
 - ▶ 평균을 통한 수도-그라디언트(pseudo-gradient)를
 - ▶ 학습률 1로 SGD함과 동일

- FEDAVG 기법의 재작성
- 수도-그라디언트 관점에서 일반화

Algorithm 2 Generalized FEDAVG

```
Initialization: x_0 for t=0,\cdots,T-1 do Sample subset \mathcal{S} of clients x_{i,0}^t=x_t for each client i\in\mathcal{S} in parallel do for k=0,\cdots,K-1 do Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t) x_{i,k+1}^t=\text{CLIENTOPT}(x_{i,k}^t,g_{i,k}^t,\eta_l,t) \Delta_i^t=x_{i,K}^t-x_t \Delta_t=\frac{1}{|\mathcal{S}|}\sum_{i\in\mathcal{S}}\Delta_i^t x_{t+1}=\text{ServerOpt}(x_t,-\Delta_t,\eta,t)
```

- 일부에서는 가중 평균(weighted average)를 사용
 - 클라이언트의 훈련 샘플의 수에 따른 가중 평균
 - 클라이언트의 데이터에 대한 메타데이터에 해당
 - Uniform한 평균 대비 일반적으로 좋은 성능

PROBLEMS

- FL의 문제점
 - 이종적인 데이터
 - 높은 통신 비용
 - 클라이언트 드리프트
 - 적응형 학습률의 부재

- 기존의 분산 최적화와는 달리
 - 연산의 병렬화에 초점
 - 에이터는 할당됨
- FL은 이종적인 데이터를 다룬다는 점이 문제이자 쟁점
 - 클라이언트마다의 데이터 편향이 극심

- 미니배치(mini-batch)를 사용하는 표준적인 접근법은
 - 한 번 (배치 혹은 에폭) 학습하고 통신하고
- 노은 통신 비용을 초래하므로
- ▶ 많은 FL 환경에 적합하지 않음

- 이에 FL을 위한 많은 최적화 기법은
 - ▶ 로컬(local) 클라이언트 업데이트를 활용
 - ▶ 클라이언트가 통신 전에 로컬 모델을 수 차례 업데이트
- FL에 널리 쓰이는 로컬 최적화 기법 중 하나인
 - FEDAVG

- FEDAVG의 각 라운드에서
 - ▶ 클라이언트의 일부는 병렬적으로 SGD의 몇 에폭을 수행
 - ▶ 클라이언트 드리프트(client drift) 발생
- 클라이언트는 모델 업데이트 정보를 서버와 통신
 - 서버는 평균을 통해 새 글로벌 모델을 계산
 - > 적응적 학습률(adaptive learning rate)의 부재

CLIENT DRIFT

- 클라이언트 드리프트 (client drift)
 - 이종적 환경에서 여러 로컬 SGD 에폭의 수행은
 - 글로벌한 최적 모델로부터 멀리 떨어지게(drift) 만듦

ADAPTIVE LEARNING RATE

- > 적응적 학습률 (adaptive learning rate)
 - 학습 과정 중의 Heavy-tail 노이즈 분포 등
 - 필연적으로 적응적 학습률이 필요한 환경들이 있음
 - ▶ 이는 과거의 반복(iteration)들로부터 정보에 기반한
 - ▶ 그래디언트 기반의 최적화를 수행하도록 함
- > 정보 공유를 하지 않는 FL의 기본 속성에 따르면
 - 적응형 학습률은 도전적인 문제임

30

- 컨트리뷰션
 - → 클라이언트와 서버가 다른 학습률을 활용할 수 있도록 함
 - FL을 위한 적응형 최적화 기술들을 개발

- ▶ 클라이언트와 서버의 학습률을 분리하는 자연스러운 방법을 제시
 - 즉, FEDAVG의 일반화
 - ▶ FEDAVG는 클라이언트와 서버가 SGD를 쓰고, 서버의 학습률이 1인 경우
- 클라이언트와 서버가 다른 학습률을 활용할 수 있도록 함
 - 로컬 업데이트의 억제 & 강화가 가능
 - 클라이언트 드리프트를 해결할 방법을 제공

- 적응형 방법들인
 - ADAGRAD, ADAM, YOGI 등은 머신 러닝 커뮤니티에서 유명한 기법들
 - 학습률을 튜닝할 수고를 덜고
 - Heavy-tail 노이즈 분포 등을 잘 다룸
- 이들 프레임워크 위에서
 - FL을 위한 적응형 최적화 기술들을 개발
 - ▶ 최초의 FL을 위한 적응형 최적화 기법

FEDADAGRAD

```
Initialization: x_0, \tau > 0 and v_{-1} \ge \tau^2
for t=0,\cdots,T-1 do
   Sample subset S of clients
   x_{i,0}^t = x_t
   for each client i \in \mathcal{S} in parallel do
       for k=0,\cdots,K-1 do
           Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
          x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t
       \Delta_i^t = x_{i,K}^t - x_t
   v_t = v_{t-1} + \Delta_t^2
x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

FEDADAGRAD

Initialization:
$$x_0, \tau > 0$$
 and $v_{-1} \ge \tau^2$ for $t = 0, \cdots, T-1$ do Sample subset \mathcal{S} of clients $x_{i,0}^t = x_t$ for each client $i \in \mathcal{S}$ in parallel do for $k = 0, \cdots, K-1$ do Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$ $x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t$ CLIENTOPT = SGD $\Delta_i^t = x_{i,K}^t - x_t$ $\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t$ $v_t = v_{t-1} + \Delta_t^2$ $x_{t+1}^t = x_t + \eta \frac{\Delta_t}{\sqrt{v_t + \tau}}$

FEDADAGRAD

```
Initialization: x_0, \tau > 0 and v_{-1} \ge \tau^2
for t=0,\cdots,T-1 do
   Sample subset S of clients
   x_{i,0}^t = x_t
   for each client i \in \mathcal{S} in parallel do
       for k=0,\cdots,K-1 do
          Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
          x_{i,k+1}^t = x_{i,k}^t - \eta_i g_{i,k}^t
                                            통합 후 평균
   v_t - v_{t-1} + \Delta_t^2
x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

FEDADAGRAD

Initialization:
$$x_0, \tau > 0$$
 and $v_{-1} \ge \tau^2$ for $t = 0, \cdots, T-1$ do Sample subset \mathcal{S} of clients $x_{i,0}^t = x_t$ for each client $i \in \mathcal{S}$ in parallel do for $k = 0, \cdots, K-1$ do Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$ $x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t$ $\Delta_i^t = x_{i,K}^t - x_t$ $\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t$ $v_t = v_{t-1} + \Delta_t^2$ $x_{t+1}^t = x_t + \eta \frac{\Delta_t}{\sqrt{v_t + \tau}}$ ADAGRAD

FEDYOGI & FEDADAM

Algorithm 4 FEDYOGI (and FEDADAM)

Initialization:
$$x_0, v_{-1} \geq \tau^2$$
, decay $\beta_2 \in (0, 1)$ for $t = 0, \cdots, T-1$ do

Sample subset \mathcal{S} of clients $x_{i,0}^t = x_t$ for each client $i \in \mathcal{S}$ in parallel do

for $k = 0, \cdots, K-1$ do

Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$ $x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t$ $\Delta_i^t = x_{i,K}^t - x_{t-1}$ $\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t$ $v_t = v_{t-1} - (1-\beta_2)\Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2)$ (FEDYOGI) $v_t = \beta_2 v_{t-1} + (1-\beta_2)\Delta_t^2$ (FEDADAM) $x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t + \tau}}$

FEDYOGI & FEDADAM

```
Algorithm 4 FEDYOGI (and FEDADAM)
   Initialization: x_0, v_{-1} \ge \tau^2, decay \beta_2 \in (0, 1)
   for t=0,\cdots,T-1 do
      Sample subset S of clients
      x_{i,0}^t = x_t
      for each client i \in \mathcal{S} in parallel do
         for k=0,\cdots,K-1 do
             Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
             r_{i,\kappa+1}^t = r_{i,\kappa}^t - \eta_i g_{i,\kappa}^t
                                                    CLIENTOPT = SGD
       v_t = v_{t-1} - (1 - \beta_2) \Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2) (FEDYOGI)
      v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2 (FEDADAM)
      x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

FEDYOGI & FEDADAM

```
Algorithm 4 FEDYOGI (and FEDADAM)
   Initialization: x_0, v_{-1} \ge \tau^2, decay \beta_2 \in (0, 1)
   for t=0,\cdots,T-1 do
      Sample subset S of clients
      x_{i,0}^t = x_t
      for each client i \in \mathcal{S} in parallel do
         for k=0,\cdots,K-1 do
            Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t)
                                               통합 후 평균
       v_t = v_{t-1} - (1 - \beta_2) \Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2) (FEDYOGI)
      v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2 (FEDADAM)
     x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}
```

FEDYOGI & FEDADAM

```
Algorithm 4 FEDYOGI (and FEDADAM)
```

```
Initialization: x_0, v_{-1} \geq \tau^2, decay \beta_2 \in (0, 1) for t = 0, \cdots, T-1 do

Sample subset \mathcal{S} of clients x_{i,0}^t = x_t for each client i \in \mathcal{S} in parallel do

for k = 0, \cdots, K-1 do

Compute an unbiased estimate g_{i,k}^t of \nabla F_i(x_{i,k}^t) x_{i,k+1}^t = x_{i,k}^t - \eta_l g_{i,k}^t \Delta_t^t = x_{i,K}^t - x_{t-1} \Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_t^t v_t = v_{t-1} - (1-\beta_2) \Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2) (FEDYOGI)
```

 $v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2$ (FEDADAM)

 $x_{t+1} = x_t + \eta \frac{\Delta_t}{\sqrt{v_t} + \tau}$

YOGI 또는 ADAM

ADAPTIVE LEARNING RATE

- FEDAVG 대비 FEDADAGRAD, FEDADAM, FEDYOGI를 비교
 - 서버의 학습률이 조정된다는 특징
 - 학습률이 1고정이 아님
- 서버 최적화기가
 - 조정된 학습률과
 - ▶ 모멘텀 파라미터 0.9를 가지는 SGD와도 비교
 - FEDAVGM으로 표기

FEDAVGM

- 서버 최적화기가
 - 조정된 학습률과
 - ▶ 모멘텀 파라미터 0.9를 가지는 SGD
 - FEDAVGM으로 표기

> 적응형 최적화기만 사용해도 FL의 성능이 크게 오름

FED	ADAGRAD	ADAM	Yogı	AvgM	Avg
CIFAR-100	23.9	42.3	41.6	37.3	26.5
EMNIST CR	85.7	86.0	86.1	86.3	85.9
SHAKESPEARE	57.1	57.4	57.6	57.5	57.0
STACKOV NV	WP 11.3	22.1	22.2	13.7	9.5
STACKOV LF	0.68	0.62	0.64	0.22	0.19
EMNIST AE	7.29	16.99	0.98	1.21	2.63

- FedAvg에서 coordinate-wise averaging
 - 여러 문제가 생길 수 있음
 - 이는 신경망 파라미터의 치환 불변성 때문

- > 치환 분별성(permutation invariance)
 - ▶ 주어진 신경망 파라미터의 순서만 바꿔서 여러 변형을 만들 수 있음
- $\hat{y} = \sigma(xW_1)W_2 \Rightarrow \hat{y} = \sigma(xW_1\Pi)\Pi^T W_2$

필터의 매칭을 시각화해서 살펴보면 더 직관적:

- ightharpoonup 최적의 가중치가 $\{W_1, W_2\}$ 이라 가정,
- 두 이종적 데이터셋 $X_j, X_{j'}$ 에 대한 훈련된 가중치는
 - $\{W_1\Pi_j, \Pi_j^T W_2\}$ 와 $\{W_1\Pi_{j'}, \Pi_{j'}^T W_2\}$
- 노은 확률로 $\Pi_j \neq \Pi_{j'}$ 이므로
- 어떠한 Π 에 대해서도 $(W_1\Pi_j+W_1\Pi_{j'})/2 \neq W_1\Pi$

- 의미있는 평균을 위해서는 치환을 풀어야 함
 - $(W_1\Pi_j\Pi_j^T + W_1\Pi_{j'}\Pi_{j'}^T)/2 = W_1$

PROBABILITY FEDERATED NEURAL MATCHING

- 화률적(Probability) Federated Neural Matching (PFNM)
 - ▶ Averaging 하기 전
 - ▶ 클라이언트 신경망의 뉴런들을 매칭함으로써 문제를 다룸

PROBABILITY FEDERATED NEURAL MATCHING

- PFNM이 FedAvg 대비
 - 우수한 성능과 효율적인 커뮤니케이션 비용을 보임
 - ▶ 그러나 PFNM은 단순한 신경망에서만 동작
 - ▶ 가령, 전연결 feedforward 네트워크

PROBABILITY FEDERATED NEURAL MATCHING

- PFNM을 CNN과 LSTM에 적용
 - > 그러나 가중치 평균 방법 대비 매우 적은 수준의 향상만 있었음
- PFNM을 CNNs와 LSTMs로 확장할 수 있지만
 - 고은 구조들에서 효과를 보지 못함
 - ▶ 반복적인 matched averaging이
 - 전체적으로 좋지 못한 결과를 야기한 것으로 추정

- Federated Matched Averaging (FedMA) 방법을 제안
 - ▶ 최신 CNN이나 LSTM을 위한 새로운 layer-wise 연합 학습 알고리즘
 - > 커뮤니케이션 비용을 줄이고, SOTA의 성능을 보임

- Layer-wise한 매칭 스킴을 제안
 - ▶ 데이터 센터(서버)가 클라이언트로부터 레이어의 첫 층에 해당하는 가중치를 수집
 - 한 레이어에 해당하는 매칭을 수행
 - 연합 모델의 가중치를 클라이언트들에게 브로드캐스트
 - ▶ 클라이언트는 반영 후 연속되는 모든 레이어를 고유 데이터셋으로 학습
 - 이 때 연합 레이어는 동결함
 - ▶ 마지막 레이어에 이르기까지 반복

Algorithm 1: Federated Matched Averaging (FedMA)

```
Input : local weights of N-layer architectures \{W_{j,1},\ldots,W_{j,N}\}_{j=1}^J from J clients
Output: global weights \{W_1, \ldots, W_N\}
n = 1;
while n \leq N do
   if n < N then
       \{\Pi_j\}_{j=1}^J = \text{BBP-MAP}(\{W_{j,n}\}_{j=1}^J); // call BBP-MAP to solve Eq. 2
      W_n = \frac{1}{I} \sum_i W_{j,n} \Pi_i^T;
   else
       W_n = \sum_{k=1}^K \sum_i p_{jk} W_{jl,n} where p_k is fraction of data points with label k on worker j;
    end
    for j \in \{1, ..., J\} do
      W_{j,n+1} \leftarrow \Pi_j W_{j,n+1}; // permutate the next-layer weights
       Train \{W_{j,n+1},\ldots,W_{j,L}\} with W_n frozen;
    end
    n = n + 1;
end
```

FedMA가 FedAvg와 FedProx 성능을 상회

(a) LSTM, Shakespeare; message size

(c) VGG-9, CIFAR-10; message size

FedMA가 FedAvg와 FedProx 성능을 상회

(b) LSTM, Shakespeare; rounds

(d) VGG-9, CIFAR-10; rounds

- 사전 연구들에 따르면
- > 로컬(local) 학습에서의 에폭 E에 따라
 - FedAvg의 성능에 영향을 끼침은 물론
 - 때로는 발산하는 결과를 야기

- 그러나 FedMA에서는
 - Local Epoch이 클 수록 유리
 - ▶ 로컬 클라이언트가 원하는 만큼 학습할 수 있는 **오직 유일한 방법**
- FedAvg는 성능 저하를 야기
- FedProx는 부분적으로만 문제를 경감
 - 너 큰 에폭에서는 성능 저하

▶ FedMA는 로컬 클라이언트가 원하는 만큼 학습할 수 있는 오직 유일한 방법

BYZANTINE TOLERANT

GENERALIZED BYZANTINE-TOLERANT SGD

- 컨트리뷰션
 - ▶ 분산 학습에서 비잔틴 모델의 일반화
 - > 일반화된 비잔틴이 있는 환경에서 강건한 통합 방법을 제안

63

GENERALIZED BYZANTINE

- 분산 학습에서, 여러 종류의 공격 유형이 있음
- 일반적으로 공격자는 모델 학습을 방해하고자 함
 - > SGD 수렴을 느리게 만들거나
 - 나쁜 솔루션을 향하게 함

- $ightharpoonup 실패 모델은 <math>n \times d$ 행렬로 표현 가능
 - > 5명의 워커, 8차원의 그레디언트
 - (a)는 (b)의 특별한 경우에 해당

(a) Classic Byzantine

(b) Generalized Byzantine

전통적인 비잔틴 모델:

 $ilde{v}_i = egin{cases} v_i, & \textit{if the ith worker is correct,} \\ arbitrary, & \textit{if the ith worker is Byzantine.} \end{cases}$

(a) Classic Byzantine

- 일반화된 비잔틴 모델:
- $(\tilde{v}_i)_j = \begin{cases} (v_i)_j, & \text{if the the } j \text{th dimension of } v_i \text{ is correct,} \\ arbitrary, & \text{otherwise,} \end{cases}$

(b) Generalized Byzantine

- 가 차원에 대해 비잔틴 값의 수는 절반 미만으로 가정
 - 흔한 가정
 - Dimensional Byzantine 탄력성이라 칭함

68

- > 3개의 중앙값 기반 통합 규칙을 제안
 - Geometric Median
 - Marginal Median
 - Beyond Median

- Geometric Median (기하중앙값)
- ▶ 평균에 대한 강건한 추정량으로 사용
 - ▶ 최대, 데이터의 절반이 부정해도
 - 부정하지 않은 데이터에 대한 추정을 제공

▶ Geometric Median (기하중앙값)

$$\lambda = GeoMed(\{\tilde{v}_i : i \in [n]\}) = \operatorname*{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n \|v - \tilde{v}_i\|$$

거리의 합의 최소

- Marginal Median
- $\mu = MarMed(\{\tilde{v}_i : i \in [n]\})$
- ▶ μ 의 j번째 차원은 $\mu_j = median(\{(\tilde{v_1})_j, \dots, (\tilde{v_n})_j\})$
 - $median(\cdot)$ 은 1차원 중앙값

- Marginal Median
- ▶ μ 의 j번째 차원은 $\mu_j = median(\{(\tilde{v_1})_j, \dots, (\tilde{v_n})_j\})$

								_							
worker	1	S	1	5	9	2	5	Sorting	1	3	1	1	2	1	
	4	5	1	4	5	1	9		1	4	1	2	4	2	
	6	4	3	2	2	3	1		4	5	3	4	5	2	
	9	8	5	1	5	2	2		6	6	4	5	5	2	
	1	6	4	8	4	2	3		9	8	5	8	9	3	
dimension															

- Beyond Median
- 비잔틴의 수 q를 쉽게 추정할 수 있다면
- > 중앙값에 가까운 n q 개의 값의 평균을 활용할 수 있을 것
 - mean around median"

- Beyond Median
- $\rho = MeaMed(\{\tilde{v}_i : i \in [n]\})$
- $\rho 의 j 번째 차원은 \rho_j = \frac{1}{n-q} \Sigma_{\mu_j \to i}(\tilde{v}_i) j$
- $\mu_j \rightarrow i$ 는 중앙값 μ_j 에 가장 가까운 top-(n-q) 값들

》예상대로, 평균(mean) 방법은 비잔틴 탄력성이 없음

- GeoMed
 - 전통적인 비잔틴 탄력성은 있으나
 - Dimensional 비잔틴 탄력성은 없음

- MarMed와 MeaMed는 Dimensional 비잔틴 탄력성이 있음
 - ▶ 그러나 Omniscient 공격에서 MarMed는 수렴이 늦음
- Omniscient
 - 모든 워커들이 전송한 그레디언트를 알고 있음
 - 그레디언트의 총합에 매우 큰 음수를 곱함
 - > 목표는 SGD가 원래의 반대 방향으로 크게 이동하도록 하는 것

- > 동기 SGD를 위한 3가지의 중앙값 기반 통합 규칙을 제안
 - ▶ 낮은 시간 복잡도를 가짐
 - ightharpoonup 평균적으로 <math>O(dn)
 - 실제로 좋은 성능을 보임

TODO

- ▶ 네트워크의 일반화
 - 클라이언트-서버 구조가 아닌
 - P2P 등 Decentralized & Asynchronous 한 환경
- Co-op
 - Cooperative Learning
- Zeno++

TODO

- ▶ 전이학습의 응용
- FedMD
 - ▶ 모델까지 Private하게 관리
 - ▶ Consensus를 통한 모델 업데이트

FEDERATED LEARNING

SUMMARY OF MODERN FEDERATED LEARNING METHODS