▼ Import pandas package and read the sample csv data from Github

```
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/neshuynh/Sample_Portfolio/main/sklearn/Au
```

▼ Check the first few rows and the dimensions of the data

```
print('First 5 rows: \n', df.head())
print('\nDimensions: ', df.shape)
   First 5 rows:
         mpg cylinders displacement horsepower weight acceleration year \
      18.0
                    8
                             307.0
                                          130
                                                 3504
                                                              12.0 70.0
    1 15.0
                    8
                             350.0
                                          165
                                                 3693
                                                              11.5 70.0
    2 18.0
                  8
                             318.0
                                          150
                                                 3436
                                                              11.0 70.0
                                          150
    3 16.0
                    8
                             304.0
                                                 3433
                                                              12.0 70.0
    4 17.0
                             302.0
                                          140
                                                 3449
                                                               NaN 70.0
       origin
            1 chevrolet chevelle malibu
    1
                      buick skylark 320
    2
                     plymouth satellite
            1
    3
            1
                          amc rebel sst
            1
                           ford torino
    Dimensions: (392, 9)
```

▼ Trying the describe function on the mpg, weight, and year columns

```
df[["mpg","weight","year"]].describe(include="all")
```

mpg weight year
mpg range (min-max): (9-46.6), 37.6
weight range (min-max): (1613-5140), 3527
year range (min-max): (70-82), 12
mpg average: 23.445918
weight average: 2977.584184
year average: 76.010256

46 600000 E140 000000

oo 000000

Check datatypes of the columns

```
df.dtypes
```

```
float64
mpg
cylinders
                  int64
displacement
                float64
horsepower
                  int64
                  int64
weight
acceleration
                float64
                float64
year
                  int64
origin
                 object
name
dtype: object
```

▼ Change the 'cylinders' and 'origin' columns to categorical

```
df['cylinders'] = df['cylinders'].astype('category').cat.codes
df['origin'] = df['origin'].astype('category')
```

Verify by checking the datatypes of the altered columns

```
df[['cylinders', 'origin']].dtypes
    cylinders int8
    origin category
    dtype: object
```

Data Cleaning

Delete the rows that contain NA's and check the new dimensions

```
print('\nDimensions before dropping NAs: ', df.shape)
df = df.dropna()
print('\nDimensions after dropping NAs: ', df.shape)

Dimensions before dropping NAs: (392, 9)

Dimensions after dropping NAs: (389, 9)
```

Create a new column

It is a categorical column created from the 'mpg' column where it equals 1 if mpg > average, else it is 0

```
df['mpg_high'] = pd.cut(df['mpg'], bins=[0, df["mpg"].mean(), float('Inf')], labels=[0, 1])
```

Delete 'mpg' and 'name' columns

Then view the head of the dataframe

```
df.drop(columns=['mpg', 'name'], inplace=True)
print('First 5 rows: \n', df.head())
```

First 5 rows:								
	cylinders	displacement	horsepower	weight	acceleration	year	origin	\
0	4	307.0	130	3504	12.0	70.0	1	
1	4	350.0	165	3693	11.5	70.0	1	
2	4	318.0	150	3436	11.0	70.0	1	
3	4	304.0	150	3433	12.0	70.0	1	
6	4	454.0	220	4354	9.0	70.0	1	

```
mpg_high
0 0
1 0
2 0
3 0
```

Data exploration with graphs:

Import seaborn package

import seaborn as sb

▼ Seaborn catplot on 'mpg_high'

sb.catplot(x="mpg_high", kind='count', data=df)

<seaborn.axisgrid.FacetGrid at 0x7f203f15f990>

There are slightly more vehicles with below average 'mpg' compared to vehicles with above average 'mpg'

Seaborn relplot ('weight' vs. 'horsepower')

sb.relplot(x='horsepower', y='weight', data=df, hue=df['mpg_high'], style=df['mpg_high'])

<seaborn.axisgrid.FacetGrid at 0x7f204cb66050>

Vehicles with higher than average 'mpg' tend to be on the lighter side and have lower horsepower than those with the lower than average 'mpg'

XXX SAS

Seaborn boxplot ('weight' vs. 'mpg_high')

```
sb.boxplot('mpg_high', y='weight', data=df)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f203bb58190>

Again, we can see that vehicles with higher than average 'mpg' tend to be lighter

→ Train/test split

Preparation for the next set of tests

```
# import the necessary package
from sklearn.model selection import train test split
```

```
# split the x and y dataframes into their respective columns
x = df.drop(columns=['mpg_high'])
y = df['mpg_high']

# use given seed 1234 for consistency
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1234)

# check dimensions of both x_train and x_test
print('train size:', x_train.shape)
print('test size:', x_test.shape)

train size: (311, 7)
test size: (78, 7)
```

Logistic Regression

```
# import the necessary package
from sklearn.linear model import LogisticRegression
# train the model
clf = LogisticRegression(max_iter=420)
clf.fit(x_train, y_train)
clf.score(x train, y train)
# make predictions
pred = clf.predict(x_test)
# evaluate
# import metrics
from sklearn.metrics import accuracy score, precision score, recall score, f1 score
print('accuracy score: ', accuracy_score(y_test, pred))
print('precision score: ', precision score(y test, pred))
print('recall score: ', recall_score(y_test, pred))
print('f1 score: ', f1 score(y test, pred))
# confusion matrix
# import the matrix
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, pred)
    accuracy score: 0.8974358974358975
    precision score: 0.777777777778
    recall score: 1.0
    f1 score: 0.8750000000000001
```

```
array([[42, 8], [ 0, 28]])
```

→ Decision Tree

```
# import the necessary package
from sklearn.tree import DecisionTreeClassifier
# create a decision tree
dt = DecisionTreeClassifier()
dt.fit(x_train, y_train)
DecisionTreeClassifier()
# make predictions
pred2 = dt.predict(x test)
# evaluate
print('accuracy score: ', accuracy_score(y_test, pred2))
print('precision score: ', precision_score(y_test, pred2))
print('recall score: ', recall score(y test, pred2))
print('f1 score: ', f1_score(y_test, pred2))
     accuracy score: 0.8846153846153846
     precision score: 0.8518518518518519
     recall score: 0.8214285714285714
     f1 score: 0.8363636363636364
```

Neural Network

```
# import the necessary package to normalize data
from sklearn import preprocessing
# import the classification report
from sklearn.metrics import classification_report

scaler = preprocessing.StandardScaler().fit(x_train)
x_train_scaled = scaler.transform(x_train)
x_test_scaled = scaler.transform(x_test)

# train
from sklearn.neural_network import MLPClassifier
# use seed 1234
neural = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(4, 2), max_iter=690, random_state=
neural.fit(x_train_scaled, y_train)

# make predictions
```

```
pred3 = neural.predict(x test scaled)
# evaluate
print('accuracy = ', accuracy_score(y_test, pred3))
# confusion matrix
print('confusion matrix: \n', confusion matrix(y test, pred3))
# classification report
print(classification report(y test, pred3))
# train with a different network topology and settings
neural2 = MLPClassifier(solver='sgd', hidden_layer_sizes=(6, 3), max_iter=720, random_state=1
neural2.fit(x_train_scaled, y_train)
# make predictions
pred4 = neural2.predict(x test scaled)
# evaluate
print('accuracy = ', accuracy_score(y_test, pred4))
# confusion matrix
print('confusion matrix: \n', confusion matrix(y test, pred4))
# classification report
print(classification_report(y_test, pred4))
     accuracy = 0.8846153846153846
     confusion matrix:
      [[43 7]
      [ 2 26]]
                   precision
                               recall f1-score
                                                   support
                        0.96
                                  0.86
                                            0.91
                                                         50
                0
                1
                        0.79
                                  0.93
                                            0.85
                                                         28
                                            0.88
                                                         78
         accuracy
                        0.87
                                  0.89
                                            0.88
                                                         78
        macro avg
     weighted avg
                        0.90
                                  0.88
                                            0.89
                                                         78
     accuracy = 0.8717948717948718
     confusion matrix:
      [[40 10]
      [ 0 28]]
                               recall f1-score
                   precision
                                                   support
                        1.00
                                  0.80
                                            0.89
                                                         50
                0
                1
                        0.74
                                  1.00
                                            0.85
                                                         28
                                            0.87
                                                         78
         accuracy
                                  0.90
                                                         78
                        0.87
                                            0.87
        macro avg
     weighted avg
                        0.91
                                  0.87
                                            0.87
                                                         78
```

The performance was pretty similar which I believe is due to the large number of iterations, granting both models ample time to learn and become accurate and precise

Analysis

- 1. Logistic Regression performed best in these tests
- 2. It had the greatest accuracy, recall, and f1 score, but its precision was lower than most other tests
- 3. Logistic regression performed best, probably because the data is relatively simple and the other algorithms may have overfitted the data slightly
- 4. I personally prefer Python over R as I am more familiar with Python and its syntax.

Colab paid products - Cancel contracts here

✓ 1s completed at 6:05 PM

X