Tutoría 3: Mapeos y funciones de variable compleja

Ejercicio 1. Aplique el mapeo lineal $w = \sqrt{2}(1-j)z + j$ a la región sombreada de la figura 1.

Figura 1: Plano z para ejercicios 1 y 2.

Respuesta:

Ejercicio 2. Aplique el mapeo de inversión a la región sombreada de la figura 1. *Respuesta:*

Ejercicio 3. Aplique el mapeo bilineal $w=-2+\frac{j4}{2z+j}$ a la región sombreada de la figura 2.

Figura 2: Plano z para ejercicio 3.

Respuesta:

Ejercicio 4. Encuentre a qué corresponde en el plano w la región del plano z=x+jy dada por $y\geq 0$ bajo el mapeo: $w=f(z)=e^{j\theta}\frac{z-z_0}{z-z_0^*}$ Para ello, encuentre los valores particulares de θ y z_0 si se cumple que f(j)=0 y $f(\infty)=-1$. Respuesta:

Ejercicio 5. Encuentre un mapeo bilineal w = f(z) que transforme a la curva A y B del plano z en la sección (a) de la figura 3 en la curva A y B del plano w de la sección (b) de dicha figura. Respuesta:

$$f(z) = \frac{z}{2z - 4}$$

Ejercicio 6. Describa y dibuje en el plano w la imagen de la recta $x=\beta$ (β constante) del plano z bajo el mapeo $w=z^2$. Respuesta:

Relación funcional: Re $\{w\} = u$ y Im $\{w\} = v$.

$$u = \beta^2 - \left(\frac{v}{2\beta}\right)^2$$

Representación gráfica: $Re\{w\} = u \ y \ Im\{w\} = v$.

Figura 3: Planos zywpara ejercicio 5.