Bir veya donna fazla bağımlı depişkenin, bir veya danna fazlar borgımsız depişkene göre firevlerini igeren denkleme diferansiyel denkiem and verille.

Adí Dif. Denklem (Bagimsiz depisken birden farla)

Dif. Denklem Kismi Dif. Denklem (Bagimsiz depisken birden farla) Bir diferansiyel denklemde bulunan en yöksek mertebeden törevinin mertebesine dif. denklemin mertebesi denir. Bir diferensiyel denklemde bulunon en yoksek mertebeden torevinin kuwetine dif. denklemin derecesi denir- $\frac{d^2y}{dx^2} + xy\left(\frac{dy}{dx}\right)^2 = 0$ 2. mertebeden 1. dereceden adi dif. denklem $\frac{d^{4}x}{dt^{4}} + 5\frac{d^{2}x}{dt^{2}} + 3x = Sint 4 \cdot mertebeolen 1 \cdot dereceden \text{ and i dif. denklern}$ 2. Mertebeden 3. dereceden adi dif-denklem (4 başımsız, 5 başımlı depişten) x,y,2 bajjimsiz depiskenk, u bajjimli dejisken $(5^{11})^3 + t^2 5^1 + 5 = 0$ 2. mertebeden 1. dereceden kismi dif. denklem $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ (Uxx+Vyy+Uzz=0)) 2 $U_{\pm} = U_{xx} + 2.0.0$ 2. mertebeden 1. dereceden ±15mi dif. denklem $\frac{d^2y}{dx^2} = \frac{w}{H} \sqrt{I + \left(\frac{dy}{dx}\right)^2} \frac{Asih Teller}{denklemi} + \frac{v + m \frac{dv}{dm} = v^2}{Asih Teller} \frac{Rolet uausuna}{air} \frac{dv}{denklem}$ Sourhaun kir.-1. Sorkacin kicik sahamh

dez + kx = 0 hareketlerinde ortaga

Gikar $a\frac{d^2x}{dt^2} + b\frac{dx}{dt} + Cx = f(t)$ $Z(t) = D(q) \cdot q_{tt} + M(q, q_t) + G(q)$ House feorisinde karşımıza Robot kolunun dinamik denkleminde

n. mertebeden and afferansiyel dentlem $9(x,y,y',y'',---,y^{(n)})=0$ g fonksiyonu y,y',y", ---, y(n) depiskenleri cinsinden lineer bir fonksiyon ise dif. denklemi lineer, depilse dif. denklemi $a_0(x) y^{(n)} + \cdots + a_{n-1}(x) \cdot y' + a_n(x) \cdot y = b(x)$ $a_0(x) \neq 0$ $n \cdot mertebeden \cdot lineer$ $adi dif \cdot denklern$ $adi dif \cdot denklern$ lineer dépildir. $\frac{d^4y}{dx^4} + \chi^2 \frac{d^3y}{dx^3} + \chi^3 \frac{dy}{dx} = \chi e^{\chi}$ 4. mertebeden lineer ordi dif. denklen 2. mertebeden lineer adi dif. denklem $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$ 2. merte beden Lineer olmonyan dry + 5 dy + 6y2 = 0 adiferansiyel $\frac{d^{2}y}{dx^{2}} + 5(\frac{dy}{dx})^{2} + 6y = 0$ den Member. Agik Gözüm, Kapadı Gözüm (Her ikisi de basit uszimdir)
+y=0 dif. denk. ayıh $\frac{d^2y}{dx^2} + 5y\frac{dy}{dx} + 6y = 0$ $\frac{d^2y}{dx^2} + y = 0 \quad \text{dif. denk. as the Goziminion } y = 2sinx + 3cosx \quad \text{oldusound}$ $y = 2sinx + 3cosx \quad \frac{d^2y}{dx^2} + y = 0 \quad \text{olmod}$ $y' = 2cosx - 3sinx \quad \frac{d^2y}{dx^2} + y = -2sinx - 3cosx + 2sinx + 3cosx = 0$ $y'' = 2cosx - 3sinx \quad y'' + y = -2sinx - 3cosx + 2sinx + 3cosx = 0$ $y'' = -2sinx - 3cosx \quad y'' + y = -2sinx - 3cosx + 2sinx + 3cosx = 0$ $y'' = -2sinx - 3cosx \quad y'' + y = -2sinx - 3cosx + 2sinx + 3cosx = 0$ $y'' = -2sinx - 3cosx \quad y'' + y = -2sinx - 3cosx + 2sinx + 3cosx = 0$ $y'' = -2sinx - 3cosx \quad y'' + y = -2sinx - 3cosx + 2sinx + 3cosx = 0$ $y'' = -2\sin x - \sin x - 3\cos x$) $u = -2\sin x - 3\cos x - 3\cos x$ $u = -2\sin x - 3\cos x - 3\cos x$ $u = -2\sin x - 3\cos x - 3\cos x$ $u = -2\sin x - 3\cos x - 3\cos x - 3\cos x$ $u = -2\sin x - 3\cos x - 3\cos$ $\chi^2 + y^2 = 25 \rightarrow 2X + 2yy' = 0 \rightarrow y' = \frac{dy}{dx} = -\frac{y}{y}$ x+y==0 olmal x+y.(-x/y)=x-x=0~

```
Başlangıy Deper Problemi
      g(x, y, y', y'') = 0 dif. denk. veriliyor.
       y(xo), y'(xo), y''(xo) verilirse sabitler buluneibilir.
 2: y'-2x+3=0, y(z)=3 ise y=?
     \frac{dy}{dx} - 2x + 3 = 0 \longrightarrow dy = (2x - 3)dx \longrightarrow y = \int (2x - 3)dx
                                                                 = x^2 - 3X + C
   x=2 igin y=3 olur.
    y = x^2 - 3x + c \longrightarrow 3 = 4 - 6 + c \longrightarrow c = 5
     y = x^2 - 3x + 5
\frac{\partial y}{\partial x^{2}} + \frac{\partial y}{\partial x} - 6y = 0, \quad y(0) = 6, \quad y'(0) = 2 \text{ ise } y = ?
   m^2 + m - 6 = 0 y = c_1 e^{2x} + c_2 e^{-3x}
 (m-2)(m+3) = 0 y' = 2C_1e^{2X} - 3C_2e^{-3X}

m=2 m=-3
 y(0) = c_1 + c_2 = 6 c_1 = 2 c_2 = 2 c_3 = 2 c_4 = 2x + 2e^{-3x}

y'(0) = 24 - 3c_2 = 2 c_4 = 2
          Diferensiyel Denklemin Blusturulması
Or y= C1x2+C2e-2x fonk. kullanarok dif. denk. oluştur.
 y' = 2C_1 \times -2C_2 e^{-2x} y'' + 2y' = 2C_1 + 4C_1 \times

y'' = 2C_1 + 4C_2 e^{-2x} y''' + 2y'' = 4C_1 \rightarrow (y^{(4)} + 2y'') = 0
 iki bilinmeyen olduğunda z.mertebeden dif. denk. oluşturula bilir.
y'+2y = 29x(x+1) 39 qekilir ise
  y'' + 2y' = 2q(2x+1) (x(x+1)y'' + (2x^2-1)y' - 2(2x+1)y = 0)
```

y = a.cos(3x) + b. Sin(3x) forh. kullanoroik dif-denk - oursvur. (4) $y' = -3a\sin(3x) + 3b\cos(3x)$ $y'' = -9\alpha \cos(3x) - 9b\sin(3x) = -9(a\cos(3x + b\sin(3x))) = -9y$ y'' + 9y = 0 bulunur. De Merkezi orijin olan gember ailesinin oluşturduğu dif. denk. 2 ye böl. x²+y²=r² tirev > 2x+2yy'=0 dx ile garp x dx + ydy=0 De Merkezi orijin olan elips ailesinin oluşturdupu dif. denk. $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$ three $2(\frac{x}{a}) \cdot (\frac{1}{a}) + 2(\frac{y}{b})(\frac{y'}{b}) = 0$ $o^2yy' + b^2x = 0 \longrightarrow b^2 = -\frac{x}{y\cdot y'}$ $a^{2}(y')^{2}+y'y'')+b^{2}=0 \rightarrow \frac{a^{2}}{b^{2}}=\frac{-1}{y\cdot y''+(y')^{2}}$ $(y'' + \frac{1}{y}(y')^2 - \frac{1}{x}y' = 0)$ dif. denthe Dirlemde bitin dogralarin plusturdaje dif. denklem. $y = mx + b \rightarrow y' = m \rightarrow (y'' = 0)$ De Dislemde originalen gegen dogrularin obusturdupu dif. denk. $y = mx \rightarrow y' = m \rightarrow x \frac{dy}{dx} - y = 0$ y=mx=xy' xdy-ydx=0De Simetri ekseni x=2 dejorusu szerinde olan parabollerin olus. dif.denh; sul= > nv+h-n $y = \alpha x^2 + bx + C$ $y = 2\alpha x + b = 0 \rightarrow x = -\frac{b}{2}\alpha = 2$ $y = \alpha x^{2} - 4\alpha x + C$ $y' = 2\alpha x - 4\alpha$ (x-2)y'' - y' = 0 $y = 2\alpha$

4,784

Dizlemde r yarızaplı, (a,b) merkezli gemberlerin oluşturduğu O dif. denklemi bul. $y-b=\frac{1+(y')^2}{-y''}$ $(x-a)^2 + (y-b)^2 = r^2$ 2(x-a) + 2(y-b)y' = 0 sadelestir. $3y'y'' + \frac{1+(y')^2}{-y''}y''' = 0$ ite x-a + (u-b) u' = 0 $x-\alpha+(y-b)y'=0$ $(1+(y')^2)y'''-3y'(y'')^2=0$ $1 + (y')^2 + (y-b)y'' = 0$ Dirlemde x²+ cy²= 4 épri ailesinin dik yörüngelerinin oluşturduğu dif. denklemi bul- $\chi^2 + C y^2 = 4 \longrightarrow C = \frac{4 - \chi^2}{y^2}$ türevi 2x + 2cyy' = 0 soudelesti x + cyy' = 0 $x + \frac{4-x^2}{y^2} \cdot y \cdot y' = 2 \Rightarrow xy + (4-x^2)y' = 0$ Bu dif. denk. $y' = -\frac{1}{y'}$ konurso egri oulesinin dik yöringelerinin olusturduju dif-denh. bulunur. $xy + (4-x^2) \cdot (-\frac{1}{y'}) = 0 \implies x \cdot y \cdot y' + x^2 - 4 = 0$ Is m kitteli bir cisim y sksekten serbest dosmeye birakılıyor. Cisme ethi eden hava direnci cismin hizi ile dopru orantili.

Gisme ethi eden hava direnci cismin hizi ile dopru orantili.

Genk- olustur.

gergehimi 8 ise. Yol ve türevlerine bağlı dif. denk- olustur. f=ma=m.v'=mg-kv Cisme other eden knowet V'=X'' yor zarsonh $MX''=Mg-kX'\Rightarrow X''+\frac{k}{m}X'=g$ x 250 gr tuz suda erititiyor. Erime him heniz erimemis tuz miktariyla doğru orantılı ise erime himi zamana başılı veren dif. denk bul. y: tuz mihtari y' = k(250 - y) t: zaman k: oranti sabiti

Birinci Mertebeden Viferansiyel Venklemler $(F(x,y)=C) \rightarrow dF(x,y) = (\frac{\partial F(x,y)}{\partial x}dx + \frac{\partial F(x,y)}{\partial y}dy = 0)$ $M(x,y) = \frac{\partial F(x,y)}{\partial x}$ $N(x,y) = \frac{\partial F(x,y)}{\partial y}$ alinirson (M(x,y) dx + N(x,y) dy = 0) $\frac{\partial^2 F(x,y)}{\partial y \partial x} = \frac{\partial^2 F(x,y)}{\partial x \partial y} \underbrace{\begin{pmatrix} \partial F(x,y) \\ \partial x \end{pmatrix}}_{yoni} \Rightarrow \underbrace{\partial_y \left(\frac{\partial F(x,y)}{\partial x} \right)}_{yoni} = \underbrace{\partial_x \left(\frac{\partial F(x,y)}{\partial y} \right)}_{yoni}$ 3M(XIY) = ON(XIY) Normalde birbirlerine eşit olmalidir. 3y Fakat, dif.denh. sadeleştirme yapılır son eşit olmaz. 2M(x,y) = 2N(x,y) ise Tam Dif. Denlem) 2M(xiy) + 2N(xiy) ise Tam olmayon Dif. Dendlem Dr xy2+2x3y+3x+y3=5 kapali fonk. dif. denklemine donvitir. $\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = 0 \Longrightarrow (y^2 + 6x^2y + 3) dx + (2xy + 2x^3 + 3y^2) dy = 0$ $\int_{M} \int_{M} dx dx + \frac{\partial F}{\partial y} dy = 0$ $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \frac{2y + 6x^2}{6x^2} \frac{\text{Tom. dif. denklem}}{\sqrt{1 + 6x^2}}$ Dr x4y3 + 0.5x2y4 = 2.5 Laponli font. dif. denti. don'tir. $F(x_1y) = x^4y^3 + 0.5x^2y^4 = 2.5$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ $(4x^3y^3 + xy^4) dx + (3x^4y^2 + 2x^2y^3) dy = C$ 2F dx + 2F dy = 0 $(4x^2y + y^2) dx + (3x^3 + 2xy) dy = 0$ ohur. $\frac{3M}{3u} = 4x^2 + 2y + \frac{3N}{3x} = \frac{9x^2 + 2y}{1 - \frac{3N}{3}}$ Fam olmongan

Tom Viferonsiyer venkremier $\left(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\right)$ ise fam dif. denklem $M(x,y) = \frac{\partial F(x,y)}{\partial x} \longrightarrow \partial F(x,y) = M(x,y).\partial x$ $F(x,y) = \int M(x,y) \cdot \partial x + \Phi(y)$ $N(x,y) = \frac{\partial F(x,y)}{\partial y} = \frac{\partial}{\partial y} \int M(x,y) \cdot \partial x + \Phi'(y)$ A'(y) = N(x,y) - (am(x,y) ax yerine konursa dif. denk 452 ilmis olur. $N(x,y) = \frac{\partial F(x,y)}{\partial y} \longrightarrow \partial F(x,y) = N(x,y) \cdot \partial y$ $F(x,y) = \int N(x,y) \cdot \partial y + \Phi(x)$ Tam olmanan N. Some N. Some N. Some N. Some N. Some Norman N. Some N. Tam almayan Diferansiyel Denklemler M(X,y) carpani ile carpilarak tam hale petirilir (u(x,y) M(x,y) dx + (u(x,y) N(x,y) dy = 0 Tam dif. oldu. $\frac{\partial}{\partial y} \left(\mu(x,y) M(x,y) \right) = \frac{\partial}{\partial x} \left(\mu(x,y) M(x,y) \right)$ $\frac{\partial u(x,y)}{\partial x(x,y)} = \frac{\partial u(x,y)}{\partial x} + u(x,y) \frac{\partial u(x,y)}{\partial x} = \frac{\partial u(x,y)}{\partial x} N(x,y) + u(x,y) \frac{\partial u(x,y)}{\partial x}$ $N(x,y) \frac{\partial u(x,y)}{\partial x} - M(x,y) \frac{\partial y}{\partial u(x,y)} = \left[\frac{\partial y}{\partial x} - \frac{\partial x}{\partial x} \right] \cdot (u(x,y))$ dif.denk.

tam olsa idi burası sıfır olurdu

M x'e bogle bir farksigen ise

$$N(x,y) \frac{du(x)}{dx} = \begin{bmatrix} \frac{2M(x,y)}{3y} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(x))$$
 $\frac{du(x)}{dx} = \begin{bmatrix} \frac{2M(x,y)}{3y} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(x))$
 $\frac{du(x)}{du(x)} = \ln u(x) = \begin{bmatrix} \frac{2M(x,y)}{3y} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(x))$
 $\frac{du(x)}{du(x)} = \ln u(x) = \begin{bmatrix} \frac{2M(x,y)}{3y} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3y} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \ln u(y) = \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3y} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}{3x} - \frac{2M(x,y)}{3x} \end{bmatrix} \cdot (u(y))$
 $\frac{du(y)}{dy} = \frac{1}{2M(x,y)} \begin{bmatrix} \frac{2M(x,y)}$

 $x^3y^2 + x^4y^3 = C$

* (2xey-x)dx+(x2ey+x2 +2y)dy=0 dif. denle. Ve tom oldugum goster ve 482- $M = 2xe^{y} - \frac{x}{y^{2}} \longrightarrow \frac{\partial M}{\partial y} = 2xe^{y} + \frac{2x}{y^{3}} \frac{\partial M}{\partial y} = \frac{\partial M}{\partial x}$ $N = x^2 e^y + \frac{x^2}{y^3} + 2y \longrightarrow \frac{3N}{3N} = 2x e^y + \frac{2x}{y^3} \int T_{am} dy denth_{-}$ $F(x,y) = \int M(x,y) \partial x + \phi(y) = \int (2xe^y - \frac{x}{y^2}) \partial x + \phi(y)$ $= x^{2}e^{y} - \frac{x^{2}}{y^{2}} + \phi(y)$ $= x^{2}e^{y} - \frac{x^{2}}{y^{2}} + \phi(y)$ $= x^{2}e^{y} - \frac{x^{2}}{y^{2}} + \phi(y)$ $\Rightarrow \phi(y) = 2y$ $\Rightarrow \phi(y) = y^{2}$ $\Rightarrow \phi(y) = y^{2}$ $\Rightarrow \phi(y) = y^{2}$ $\Rightarrow \phi(y) = y^{2}$ $\Rightarrow \phi(y) = y^{2}$ $F(x,y) = x^2e^y - \frac{x^2}{2y^2} + y^2 = C$ $0 \quad y' = \frac{3x - y}{x} \quad dif \quad denk = 4702.$ $y' = \frac{3x - y}{x} = \frac{dy}{dx} \Rightarrow (3x - y)dx = x dy$ (y-3x)dx + xdy = 0 $M = y-3x \longrightarrow \frac{3M}{3y} = 1$ $N = x \longrightarrow \frac{3N}{3y} = 1$ $N = x \longrightarrow \frac{3N}{3y} = 1$ Town diff denth. $F(x,y) = \int M(x,y) \partial x + \Phi(y) = \int (y-3x) \partial x + \Phi(y)$ $= xy - 3x^2 + \Phi(y)$ $N = \frac{2F}{3y} = x + \Phi'(y)$ $\Phi'(y) = 0$ $\Phi(y) = c_1$ $F(x,y) = xy - \frac{3x^2}{2} = C$

2 (cosx - xsinx + 2xsiny)dx + (3x²cosysin²y + ½)dy = 0 dif-denk-tam ise gruplama yon-452 $\frac{(\cos x - x \sin x) dx + dy + (2x \sin^3 y dx + 3x^2 \sin^2 y \cos y dy)}{x^2 \sin^3 y} = 0$ $x \cos x + \ln y + x^2 \sin^3 y = C$ Gruplamer asony dik. $F(x,y) = \int N(x,y) \partial y + \varphi(x) = \int (3x^2 \sin^2 y \cos y + \frac{1}{y}) dy + \varphi(x)$ $= x^2 sin^3 y + \ln y + \phi(x)$ $M = 2E = 2x sin^3 y + \phi'(x)$ $\phi(x) = \cos x - x sin x$ $\phi(x) = x sin x$ $F(x,y) = x^2 \sin^3 y + \ln y + x \sin x = C$ D' (1+e²⁵)dx + (2xe²⁵+y²)dy = 0 dif. denk. 452. $M = 1 + e^{2y} \longrightarrow \frac{\partial M}{\partial y} = 2e^{2y}$ Tom dif. denh. $N = 2xe^{2y} + y^2 \longrightarrow \frac{\partial N}{\partial x} = 2e^{2y}$ $F(x,y) = \int M(x,y) dx + \phi(y) = \int (1 + e^{2y}) dx + \phi(y)$ $= x + xe^{2y} + \phi(y)$ $N(x,y) = \frac{\partial E}{\partial y} = 2xe^{2y} + \phi'(y) \longrightarrow \phi'(y) = y^2$ $\phi(y) = \frac{y^3}{3}$ $F(x,y) = x + xe^{2y} + y^{3} = C$

 $2(e^{3y}-2xye^{-x^2y}+y^2)dx+(3xe^{-3}-x^2e^{-x^2y}+2xy+1)dy=0$ $dif \cdot denk \cdot 452 \cdot \frac{1}{2}$ $M(x,y) = e^{3y} - 2xye^{-x^2y} + y^2 - \frac{3y}{3y} = 3e^{-2x}e^{-x^2y} + 2x^3ye^{-x^2y} + 2y$ $M(x,y) = e^{3y} - 2xye^{-x^2y} + y^2 - \frac{3y}{3y} = 3e^{-2x}e^{-x^2y} + 2x^3ye^{-x^2y} + 2y$ $N(x,y) = 3xe^{3y} - x^2e^{-x^2y} + 2xy + 1 \rightarrow 3x = 3e^{3y} - 2xe^{-x^2y} + 2x^3ye^{-x^2y} + 2y$ om = 30 oldugunden dif. denh. tamdir. $F(x,y) = \int M(x,y) \partial x + \Phi(y) = \int (e^{3y} - 2xy e^{-x^2y} + y^2) \partial x + \Phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $= x e^{3y} + e^{-x^2y} + xy^2 + \phi(y)$ $F(x,y) = xe^{3y} + e^{-x^2y} + xy^2 + y = C$ $\int_{0}^{1} (x \sqrt{x^{2}+y^{2}} - y) dx + (y \sqrt{x^{2}+y^{2}} - x) dy = 0$ df. denh. 402 iniz $M(x,y) = x \sqrt{x^2 + y^2} - y \longrightarrow \frac{2M}{2y} = \frac{xy}{\sqrt{x^2 + y^2}} - 1$ $N(x,y) = y \sqrt{x^2 + y^2} - x \longrightarrow \frac{2M}{2x} = \frac{xy}{\sqrt{x^2 + y^2}} - 1$ $\int_{-\infty}^{\infty} \frac{dx}{\sqrt{x^2 + y^2}} dx = \frac{xy}{\sqrt{x^2 + y^2}} - 1$ $\int_{-\infty}^{\infty} \frac{dx}{\sqrt{x^2 + y^2}} dx = \frac{xy}{\sqrt{x^2 + y^2}} - 1$ $\int_{-\infty}^{\infty} \frac{dx}{\sqrt{x^2 + y^2}} dx = \frac{xy}{\sqrt{x^2 + y^2}} - 1$ $F(x,y) = \int M(x,y) \partial x + \Phi(y)$ $u = \sqrt{x^2 + y^2}$ $= \left(\left(x \sqrt{x^2 + y^2} - y \right) \partial x + \Phi(y) \right)$ $u^2 = x^2 + y^2$ $2u^2 = 2X$ $= \left(u^2 \partial u - xy + \Phi(y) \right)$ $= \frac{u^3}{3} - xy + 4(y) = \frac{1}{3}(x^2 + y^2)^{\frac{3}{2}} - xy + 4(y)$ $= \frac{3}{3} - xy + 4(y) = \frac{1}{3}(x^2 + y^2)^{\frac{3}{2}} - xy + 4(y)$ $N(x,y) = \frac{\partial F}{\partial y} = y \sqrt{x^2 + y^2} - x + \phi'(y) \longrightarrow \phi'(y) = 0$ $F(x,y) = \frac{1}{3}(x^2+y^2)^{3/2} xy + G = G \Rightarrow (x^2+y^2)^{3/2} = G$

y'ye boigh integrasyon Garpani var. $\mu(y) = ?$ ve 402. $M = 2xy + y \ln y - y^2 \sin X \rightarrow \frac{\partial M}{\partial y} = 2x + \ln y + 1 - 2y \sin X$ $N = x + y \cos X - \frac{\partial M}{\partial x} = 1 - y \sin X$ $\int \frac{dep M}{dep M}.$ $g(y) = \frac{3N - 3M}{3x} = \frac{(1 - y \sin x) - (2x + \ln y + 1 - 2y \sin x)}{2x + \ln y - 2y \sin x}$ 2xy+ylny-y2sinx $= \frac{+y\sin x - 2x - \ln y}{-y(y\sin x - 2x - \ln y)} = -\frac{1}{y}$ $u(y) = e^{\int g(y) dy} - \int dy = e^{\int hy} = e^{\int hy} = \frac{1}{y}$ denklem by ile Garpilirson $(2x + \ln y - y s \ln x) dx + (\frac{y}{y} + \cos x) dy = 0$ $M = 2x + \ln y - y \sin x \longrightarrow \frac{\partial M}{\partial y} = \frac{i}{y} - \sin x$ Tam dif. dent. $N = \frac{x}{y} + \cos x \longrightarrow \frac{\partial N}{\partial x} = \frac{i}{y} - \sin x$ $F(x,y) = \int N(x,y) \partial y + \Phi(x) = \int (\overset{\times}{y} + \cos x) \partial y + \Phi(x)$ = \Rightarrow (x) = 2x $= x \ln y + y \cos x + \phi(x)$ $\phi(x)=x^2$ $M(x,y) = \frac{\partial F}{\partial x} = \ln y - y \sin x + \Phi'(x)$ $F(x,y) = x \ln y + y \cos x + x^2 = C$ Gruplama yon. yaparsah (2x+lny-ysinx)dx + (xy+cosx)dy = 0 2xdx + (Inydx + xydy) + (-ys/1xdx + cosxdy) = 0 $x^2 + x h y + y \cos x = C$

Ayrisabilir Viferansiyel Denklemler M(x) dx + N(y) dy = 0 sellindeli dif-denklemleridir. and = and = 0 ayrı zamanda famdırlar. f(x) g(y) dx + p(x) h(y) dy = 0 ise ayrışabilir hale getirilir. f(x) dx + h(y) dy = 0 elde edilir hale getirilir. f(x) dx + h(y) dy = 0 elde edilir f(x) dx + h(y) dy = 0 $0'(1+2x)ydy + (1+y^2)dx = 0$ 452. $\frac{dx}{2x+1} + \frac{ydy}{1+y^2} = 0 \implies \frac{2dx}{2x+1} + \frac{2ydy}{1+y^2} = 0$ $\begin{cases}
 \frac{2dx}{2x+1} + \int \frac{2ydy}{1+y^2} = C_1 & u = 2x+1 \\
 \frac{2dx}{1+y^2} + \int \frac{2ydy}{1+y^2} = C_1 & u = 2x+1 \\
 \frac{du}{u} = 2dx & dv = 2ydy
 \end{cases}$ $\begin{cases}
 \frac{dy}{u} + \int \frac{dy}{v} = C_1 & u = 2x+1 \\
 \frac{dy}{u} = 2dx & dv = 2ydy
 \end{cases}$ |u| = |u| $\frac{\partial^2 y' = \frac{x(1+y^2)}{y(1+x^2)} dif. denk. 432}{y(1+x^2)}$ $\frac{dy}{dx} = \frac{x(1+y^2)}{y(1+x^2)} \longrightarrow \frac{2xdx}{1+x^2} - \frac{2ydy}{1+y^2} = 0$ du=2xdx V= 1+y? dv = 2 y dy $\int \frac{2x \, dy}{1+x^2} - \int \frac{2y \, dy}{1+y^2} = G$ $\frac{1}{1+y^2} - \frac{1}{1+y^2} = \frac{1}{1+y^2} =$ $\int \frac{dy}{u} - \int \frac{dv}{v} = c_1$

x. cosy. dx - ex. siny. dy = 0 dif. denk. defiskenlerine ayrılabılir let hale getirip göz. $e^{x}\cos y$ ile bisersek $xe^{-x}dx - \int \frac{\sin y}{\cos y}dy = C$ $xe^{-x}dx - \frac{\sin y}{\cos y}dy = 0$ $|n|\cos y| - (x+1).e^{-x} = C$) y'= sin(x-y+s) dif. denk. 462. $u = x - y + 5 \rightarrow \frac{dy}{dx} = 1 - \frac{dy}{dx} = 1 - y' = 1 - \sin u$ $\frac{du}{1-\sin u} - dx = 0 \Rightarrow \begin{cases} \frac{du}{1-\sin u} - x = C \Rightarrow \tan u + \sec u - x = C \\ \frac{du}{1-\sin u} - \frac{du}{1-\sin u} = 0 \end{cases}$ $y' = (3x + 3y + 8)^2$ dif. denk. 402 u = 3x + 3y + 8 $\longrightarrow \frac{du}{dx} = 3 + 3\frac{dy}{dx} = 3 + 3y' = 3 + 3u^2 = 3(1 + u^2)$ $\frac{du}{1+u^2} - 3dx = 0 \rightarrow \int \frac{du}{1+u^2} - 3\int dx = 0$ arctan u - 3x = C $\Rightarrow arctan (3x+3y+8) - 3x = C$ $y' = tan^2(x+u)$ Aif. -local2 y'= tan2 (x+y) dif. denk. 432. $u = x + y \rightarrow \frac{du}{dx} = 1 + y' = 1 + \tan^2 u = 5ec^2 u = \frac{1}{\cos^2 u}$ $\cos^2 u \, du - dx = 0 \longrightarrow \int \cos^2 u \, du - \int dx = C_1$ $\int \frac{1 + \cos^2 u}{2} du - x = C_1 \rightarrow \frac{u}{2} + \frac{\sin^2 u}{4} - x = C_1$ $\frac{x+y}{2} + \frac{\sin(2x+2y)}{4} - x = 4 \implies y-x + \frac{1}{2} \sin(2x+2y) = C$ 2 (x+y+1)y'=1 dif. denk. 402. $\frac{u\,du}{u+1}-dx=0 \Rightarrow du-dx-\frac{du}{u+2}=0 \Rightarrow u-x-\ln|u+1|=C_1$ $x+y+1-x-|n|x+y+1+1|=C, \Rightarrow y-|n|x+y+2|=C$

0 (2+2x2. (y). ydx + (x2 (y+2) x dy = 0 dif. denk. 452. $\frac{dy}{dx} = -\frac{y(2+2x^2.\sqrt{y})}{x(2+x^2.\sqrt{y})}, \quad u = x^2.\sqrt{y}$ $\frac{du}{dx} = 2x\sqrt{y} + \frac{x^2}{2\sqrt{y}} \frac{dy}{dx} = 2x\sqrt{y} - \frac{x^2}{2\sqrt{y}} \frac{y(2+2x^2\sqrt{y})}{x(2+x^2\sqrt{y})}$ $x \frac{du}{dx} = 2x^{2}\sqrt{y} - x^{2}\sqrt{y} \frac{1+x^{2}\sqrt{y}}{2+x^{2}\sqrt{y}} = 2u - \frac{u(1+u)}{2+u} = \frac{u(u+3)}{u+2}$ $\frac{u+2}{u(u+3)}du - \frac{dx}{x} = 0 \rightarrow 2\frac{du}{u} + \frac{du}{u+3} - 3\frac{dx}{x} = 0$ $2\ln|u| + \ln|u+3| - 3\ln|x| = C_1 - \ln\left|\frac{u^2(u+3)}{x^3}\right| = C_1 = \ln|c|$ $\frac{u^2(u+3)}{x^3} = C \longrightarrow \frac{x^4 y \left(x^2 \sqrt{y} + 3\right)}{x^3} = C \longrightarrow xy \left(x^2 \sqrt{y} + 3\right) = C$ Homojen Diferansiyel Denklemter $F(kx,ky) = k^n F(x,y)$ veyor $M(kx,ky) = k^n M(x,y)$ N(kx, ky) = k $u = \frac{y}{x}$ yazılarak homojenlik kontrol edilir. $\frac{dy}{dx} = \frac{2y - x}{2x - y} = \frac{2\frac{x}{x} - 1}{2 - \frac{y}{x}} = \frac{2u - 1}{2 - u}, \quad u = \frac{y}{x}$ $y = xu \rightarrow y' = u + xu' = \frac{2u - 1}{2 - u} \Rightarrow xu' = \frac{u^2 - 1}{2 - u} = x\frac{du}{dx}$ $\frac{u-2}{u^2-1} du + \frac{dx}{x} = 0 \qquad \frac{u-2}{(u-1)(u+1)} = \frac{a}{u-1} + \frac{b}{u+1} \qquad a = -\frac{1}{2}$ - 2 du + 3 du + dx = 0 $\frac{1}{2} \ln \left| \frac{(u+1)^3 \times^2}{(u-1)} \right| = \ln |c|$ 3 du - du + 2 dx = 0 $\frac{3u+1}{u+1} - \frac{1}{u-1} + \frac{x}{2\ln|x|} = C$ $\frac{(u+1)^3x^2}{u-1} = C$ $\frac{(x+y)^3}{y-x} = C$

2 (x2-3y2) dx + 2xy dy = 0 df. denk-452. $\frac{dy}{dx} = \frac{3y^2 - x^2}{2xy} = \frac{3}{2}(\frac{y}{x}) - \frac{1}{2}(\frac{x}{y}) = \frac{3u}{2} - \frac{1}{2u}, \quad u = \frac{y}{x}$ $y = xu \rightarrow y' = u + xu' = \frac{3u}{2} - \frac{1}{2u} \rightarrow x\frac{du}{dx} = \frac{u-1}{2u} = \frac{u-1}{2u}$ $\frac{2udu}{u^2-1} - \frac{dx}{x} = 0 \longrightarrow \int \frac{2udu}{u^2-1} - \int \frac{dx}{x} = 4$ $\ln|u^2-1|-\ln|x|=c_1 - \ln|\frac{u^2-1}{x}|=\ln|c|=c_1$ $\frac{y^2-1}{x}=C \rightarrow \frac{y^2-1}{x}=C \rightarrow \frac{y^2-1}{x^2}=CX \Rightarrow y^2-X^2=CX^3$ gr (y+Vx2+y2)dx -xdy=0, y(1)=0 dif. denk-452 $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x} = \frac{y}{x} + \sqrt{1 + (\frac{y}{x})^2} = u + \sqrt{1 + u^2}, \quad u = \frac{y}{x}$ $y=xu \rightarrow y'=x+xu'=x+\sqrt{1+u^2} \rightarrow x\frac{dy}{dx}=\sqrt{1+u^2}$ $\frac{du}{\sqrt{1+u^2}} - \frac{dx}{x} = 0 \rightarrow \int \frac{du}{\sqrt{1+u^2}} - \int \frac{dx}{x} = c_1 \qquad u = fand$ digerek 452 $\ln|u + \sqrt{1+u^2}| - \ln|x| = C_1 - \ln\left|\frac{u + \sqrt{1+u^2}}{x}\right| = C_1 = \ln|C|$ $\frac{U + \sqrt{1 + u^2}}{X} = C = \frac{y + \sqrt{x^2 + y^2}}{X^2} \quad x = 1, y = 0 \rightarrow C = \frac{0 + 1}{1} = 1$ $y + \sqrt{x^2 + y^2} - x^2 = 0 \rightarrow y = \frac{x^2 - 1}{2}$ of 2x3ydx + (x4+y4)dy=0 dif.denk. as2, $\frac{dy}{dx} = \frac{-2x^3y}{x^4 + y^4} \longrightarrow \frac{dx}{dy} = \frac{x^4 + y^4}{-2x^3y} = -\frac{x}{2y} - \frac{1}{2}(\frac{y}{x})^3 = -\frac{1}{2}u - \frac{1}{2u^3}, u = \frac{x}{y}$ $x = yu \rightarrow \frac{1}{3} = u + y \frac{1}{3} = -\frac{1}{2}u - \frac{1}{2}u = -\frac{3u}{2}u - \frac{1}{2}u = -\frac{3u^{2} + 1}{2u^{3}}$ $\frac{2u^3du}{3u^4+1} + \frac{dy}{y} = 0 \longrightarrow \frac{1}{6}\ln|3u^4+1| + \ln|y| = C_1 \longrightarrow \ln|y^6(3u^4+1)| = C_2 = \ln|x|$ $u^{6}(3u^{4}+1) = C \longrightarrow 3x^{4}y^{2} + y^{6} = C \longrightarrow y^{2}(3x^{4}+y^{4}) = C$

$$\frac{dy}{dx} = \frac{-2y^2}{x^2 + y^2} = -2 \frac{(\frac{y}{x})^2}{1 + (\frac{y}{y})^2} = -\frac{2u^2}{1 + u^2}, \quad u = \frac{y}{x}$$

$$y = xu \rightarrow y' = u + xu' = -\frac{2u^2}{1 + u^2} \rightarrow x\frac{du}{dx} = -\frac{u(u+1)^2}{u^2 + 1}$$

$$\frac{u^2 + 1}{u(u+1)^2}du + \frac{dx}{x} = 0 \quad \frac{conjour lamps}{cyyrr} \int \frac{du}{u} - 2\int \frac{du}{(u+1)^2} + \int \frac{dy}{x} = C$$

$$\frac{dy}{dx} = \frac{x^2 + y^2}{u^2 + 1} = -\frac{1}{2}(\frac{x}{y})^2 - \frac{1}{2} = -\frac{u^2}{2} - \frac{1}{2} = \frac{u^2 + 1}{-2}, \quad u = \frac{x}{y}$$

$$x = yu \rightarrow \frac{dx}{dy} = u + y\frac{dy}{dy} = \frac{u^2 + 1}{-2} \rightarrow y\frac{du}{dy} = -\frac{(u+1)^2}{2}$$

$$\frac{dy}{dx} + 2\frac{du}{(u+1)^2} = 0 \rightarrow \ln|y| - \frac{2u}{u+1} = C \Rightarrow \ln|y| - \frac{2u}{x+y} = C$$

$$\frac{dy}{dx} + 2\frac{du}{(u+1)^2} = 0 \rightarrow \ln|y| - \frac{2u}{u+1} = C \Rightarrow \ln|y| - \frac{2u}{x+y} = C$$

$$\frac{dy}{dx} + 2\frac{du}{x} = \frac{y}{x} - \sqrt{y} = u - \sqrt{u}, \quad u = \frac{y}{x}$$

$$y = xu \rightarrow y' = u + xu' = u - \sqrt{u} \rightarrow x\frac{du}{dx} = -\sqrt{u}$$

$$\frac{du}{dx} + \frac{dx}{dx} = 0 \rightarrow 2\sqrt{u} + \ln|x| = C \rightarrow 2\sqrt{y} + \ln|x| = C$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow 2\sqrt{u} + \ln|x| = C \rightarrow 2\sqrt{y} + \ln|x| = C$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow 2\sqrt{u} + xu' = u - \cos^2 u \rightarrow x\frac{du}{x} = -\cos^2 u$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow \cos^2(\frac{u}{x}) = u - \cos^2 u \rightarrow x\frac{du}{x} = -\cos^2 u$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow \cos^2(\frac{u}{x}) = u - \cos^2 u \rightarrow x\frac{du}{x} = -\cos^2 u$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow \cos^2(\frac{u}{x}) = u - \cos^2 u \rightarrow x\frac{du}{x} = -\cos^2 u$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow \cos^2 u + \frac{dx}{x} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow \cos^2 u + \frac{dx}{x} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{x} = 0 \rightarrow \cos^2 u + \frac{dx}{x} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{\sqrt{u}} = 0 \rightarrow \cos^2 u + \frac{dx}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{\sqrt{u}} = 0 \rightarrow \cos^2 u + \frac{dx}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{\sqrt{u}} = 0 \rightarrow \cos^2 u + \frac{dx}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{\sqrt{u}} = 0 \rightarrow \cos^2 u + \frac{dx}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{\sqrt{u}} = 0 \rightarrow \cos^2 u + \frac{dx}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{dx}{\sqrt{u}} = 0 \rightarrow \cos^2 u + \frac{dx}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{u}} + \frac{du}{\sqrt{u}} = 0 \rightarrow 0$$

$$\frac{du}{\sqrt{u}} + \frac{du}{\sqrt{u}} = 0 \rightarrow 0$$

$$\frac{du}{\sqrt{u}} + \frac{du}{\sqrt{u}} = 0$$

$$\frac{du}{\sqrt{$$

 $tanu + ln|x| = C \longrightarrow tan(\frac{x}{x}) + ln|x| = C$

$$y' = \frac{y'}{x - \sqrt{xy}} \quad \text{dif. dent. 462.}$$

$$y' = \frac{3/x}{1 - \sqrt{2/x}} = \frac{u}{1 - \sqrt{u}}, \quad \frac{x}{x} = u$$

$$y = x \, u \rightarrow y' = u + x \, u' = \frac{u}{1 - \sqrt{u}}$$

$$x \, \frac{du}{dx} = \frac{u}{1 - \sqrt{u}} - u = \frac{u \sqrt{u}}{1 - \sqrt{u}} \Rightarrow \frac{1 - \sqrt{u}}{u \sqrt{u}} \, du - \frac{dx}{x} = 0$$

$$\begin{cases} u^{3/2} du - \int \frac{du}{u} - \int \frac{dx}{x} = c_1 \\ -2 u^{-1} - \frac{1}{2} |u| - \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{3/2} du - \int \frac{du}{u} - \int \frac{dx}{x} = c_1 \\ -2 u^{-1} - \frac{1}{2} |u| - \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| - \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c \end{cases}$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{2\sqrt{x}}{x} + \frac{1}{2} |u| = c \end{cases}$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{1}{2} |u| = c \end{cases}$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases} = \frac{1}{2} |u| = c \end{cases}$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u| + \frac{1}{2} |u| = c \end{cases}$$

$$\begin{cases} u^{-1} + \frac{1}{2} |u$$

 $y = -2x + arcsin(ce^x)$

Aprilability Hade Getiritebilen Cif. Denklembers

$$(a_1x + b_1y + c_1) dx + (a_2x + b_2y + c_2) dy = 0$$
 $a_1x + b_1y + c_1 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_1x + b_2y + c_2 = 0$
 $a_2x + b_2y + c_2 = 0$
 $a_1x + c_2x +$

 $dx + du - 9 \frac{du}{u+7} = 0$ $\Rightarrow x + u - 8ln|u+7| = C$ 2x + 3y - 8ln|x + 3y + 7| = C

1 (2x-y+4)dx + (x+2y+7)dy = 0 dif-denk. 482. $2x-y+4=0 \rightarrow y=2x+4$) doprulari dizdemde bir noktada. $x+2y+7=0 \rightarrow y=\frac{x+7}{-2}$ birlesir. $y=y \rightarrow 2x+4 = \frac{x+7}{-2} \rightarrow y=-2$ [-3,-2] nohtasında iki dağru kesişir. $x = -3 + t \longrightarrow dx = dt$ y = -2+2 -> dy = dz (2x-y+4)dx + (x+2y+7)dy = 0(x+2++8-2+4)d++(-3++2++7)d2=0 (2t-2)dt+(t+22)dz=0 $\frac{d2}{dt} = \frac{2-2t}{22+t} = \frac{2/t-2}{2\sqrt[4]{t+1}} = \frac{u-2}{2u+1}, u = \frac{2/t}{2}$ $z = tu \rightarrow dz = u + t du = \frac{u-z}{2u+1} \rightarrow t dt = -2 \frac{u^2 + d}{2u+1}$ $\frac{2u+1}{u^2+1}du + 2\frac{dt}{t} = 0 \longrightarrow \frac{2udu}{u^2+1} + \frac{du}{u^2+1} + 2\frac{dt}{t^2} = 0$ In (u2+1) + arctain 4 + 2/n/t/ = C $\arctan(\frac{2}{4}) + \ln(2^2 + t^2) = C \Rightarrow \arctan(\frac{y+2}{x+3}) + \ln((x+3)^2 + (y+2)^2) = C$ Dr (x-y+1) dx + (3-x-y) dy=0 dif. denk. 452 - $\begin{cases} x-y+1=0 \rightarrow y=x+1 \\ 3-x-y=0 \rightarrow y=3-x \end{cases} x+1=3-x \rightarrow y=2$ (1,2) notions 1 $x = 1 + t \rightarrow dx = dt$ $y=2+2 \rightarrow dy=d2$ $\rightarrow (x-y+1) dx + (3-x-y) dy = 0$ (x+t/2-2+1)dt + (x/1-t/2-2)d2=0 $(t-2)dt - (t+2)d2 = 0 \implies \frac{d2}{dt} = \frac{t-2}{t+2} = \frac{1-2/t}{1+2/t} = \frac{1-u}{1+u}, u = \frac{2}{t}$

$$\frac{2}{2t} = tu \rightarrow \frac{dt}{dt} = u + t \frac{du}{dt} = \frac{1-u}{1+u}$$

$$\frac{dt}{t} + \frac{u+1}{u^2+2u-1} du = 0 \rightarrow 2\frac{dt}{t} + \frac{2(u+1)du}{u^2+2u-1} = 0$$

$$\frac{2}{t} + \frac{2(u+1)du}{u^2+2u-1} = C_1$$

$$\frac{2}{t} + \frac{2(u+1)du}{u^2+2u-1} = C_2$$

$$\frac{2}{t} + \frac{2}{t} + \frac{2}{t}$$

$$\int_{X-y-1}^{y-1} \int_{X-y-1}^{y-1} \int_{X-y-1}^{y-1} \int_{Y-y-1}^{y-1} \int_{Y-y-1}^{y-1} \int_{X-y-1}^{y-1} \int_{X-y-1}^{$$

9 y' = en cos2 (x2-y2) + /y, u=x2-y2 kul- dif. denk. 402 (4) $u = x^2 - y^2 \rightarrow u' = 2x - 2yy' = 2x - 2y(\frac{e^x}{y}\cos^2(x^2 - y^2) + \frac{x}{y})$ $= 2x - 2e^{x}\cos^{2}(x^{2}-y^{2}) - 2x = -2e^{x}\cos^{2}u = \frac{du}{dx}$ $\frac{du}{dx} + 2e^{x}\cos^{2}u = 0 \implies \frac{du}{\cos^{2}u} + 2e^{x}dx = 0$ $\int \sec^2 u \, du + \int 2e^{x} \, dx = C \longrightarrow \tan(x^2 y^2) + 2e^{x} = C$ 9 y (xy+1) dx + x (1+xy+x²y²) dy = 0 dif.denk.482. $\frac{dy}{dx} = -\frac{y(xy+1)}{x(1+xy+x^2y^2)} = -\frac{xy(xy+1)}{x^2(x^2y^2+xy+1)} = -\frac{u(u+1)}{x^2(u^2+u+1)}, u=xy$ $u=xy \rightarrow \frac{du}{dx} = y + x \frac{dy}{dx} = y - x \frac{u(u+1)}{x^2(u^2+u+1)}$ $x \frac{du}{dx} = xy - \frac{u(u+1)}{u^2 + u + 1} = u - \frac{u(u+1)}{u^2 + u + 1} = \frac{u^3}{u^2 + u + 1}$ $\frac{u^2 + u + 1}{u^3} du - \frac{dx}{x} = 0$ $\frac{u^2 + u + 1}{u^3} = \frac{a}{u} + \frac{b}{u^2} + \frac{c}{u^3} = \frac{a}{u} + \frac{b}{u^3} + \frac{c}{u} = \frac{a}{u} + \frac{b}{u^3} + \frac{c}{u} = \frac{a}{u} + \frac{b}{u} + \frac{c}{u} + \frac{c}{u} + \frac{c}{u} + \frac{c}{u} = \frac{a}{u} + \frac{c}{u} + \frac{c}{u} + \frac{c}{u} = \frac{a}{u} + \frac{c}{u} + \frac{c}$ $\frac{du}{u} + \frac{du}{u^{2}} + \frac{du}{u^{3}} - \frac{dx}{x} = 0 \rightarrow \ln|u| - \frac{1}{u} - \frac{1}{2u^{2}} - \ln|x| = C_{1}$ $\left|n\left|\frac{u}{x}\right| - \frac{2u+1}{2u^2} = C_1 \Rightarrow \left|n\left|y\right| - \frac{xy+1}{2x^2u^2} = C_1$ $|n|y| = C + \frac{xy+1}{2x^2y^2} \implies y = C e^{\frac{xy+1}{2x^2y^2}}$ & (x2+9) y' + xy = 0 dif-denk. 40%. $(x^2+9)\frac{dy}{dx} + xy = 0 \rightarrow (x^2+9)dy + xydx = 0$ $\frac{dy}{y} + \frac{xdx}{x^2+9} = 0 \implies 2\frac{dy}{y} + \frac{2xdx}{x^2+3} = 0$ $2\ln|y| + \ln(x^2+8) = C_1$ $\rightarrow \ln y^2(x^2+8) = C_1$ $y^2(x^2+3) = C$

1. mertebeden kineer diferansiyer denkiemier $y' + P(x) \cdot y = Q(x)$ seklindeki dif. denk. $(\rho(x).y - Q(x)) dx + dy = 0$ $M(x,y) = P(x) \cdot y - Q(x) \longrightarrow \frac{\partial M}{\partial y} = P(x)$ Tam depit $P(x,y) = P(x) \cdot y - Q(x) \longrightarrow \frac{\partial N}{\partial x} = 0$ tam elmasi initial. P(x,y) = 1 $\frac{\partial N}{\partial x} = 0$ $g(x) = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \rho(x)$ $M(x) \left(\rho(x) \cdot \mu - D(x) \right) du$ $M(x) \left(\rho(x) \cdot \mu - D(x) \right) du$ n integrasyon corpani kullomilir. $\frac{\mu(x)\left(\rho(x),y-Q(x)\right)dx+\mu(x)dy=0}{\mu(x,y)}$ $\frac{\mu(x,y)}{\rho(x,y)}$ $\frac{\mu(x,y)}{\rho(x)}=\frac{\mu'(x)}{\rho(x)}=\frac{\mu'(x)}{\mu(x)}=\rho(x)$ $\frac{\partial \mu}{\partial y}=\frac{\partial \lambda}{\partial x}\rightarrow \mu(x)\rho(x)=\mu'(x) \Rightarrow \frac{\mu'(x)}{\mu(x)}=\rho(x)$ $\frac{d\mu(x)}{\mu(x)} = p(x)dx \longrightarrow \ln|\mu(x)| = \int p(x)dx \Longrightarrow \mu(x) = e^{\int p(x)dx}$ $F(x,y) = \int N(x,y) \partial y + \phi(x) = \int \alpha(x) \partial y + \phi(x) = y \alpha(x) + \phi(x)$ $M(x,y) = \frac{\partial F(x,y)}{\partial x} = y u(x) + \phi(x) = u(x) P(x) y - u(x) Q(x)$ $\mu'(x) = \mu(x) P(x) V$ $\Phi'(x) = -\mu(x) Q(x)$ $\phi(x) = -\int (u(x)Q(x)dx$ $F(x,y) = y \mu(x) + \Phi(x) = C$ = $y \mu(x) - \int \mu(x) \alpha(x) dx = C$ $y = \frac{1}{u(x)}(c + \int u(x) R(x) dx) \qquad u(x) = e^{\int P(x) dx}$

9' y' + tanx. y + cot x = 0 dif. denk. 422 $y' + tanx. y = -cot^2x \rightarrow \rho(x) = tanx, &(x) = -cot^2x$ $M(x) = e^{\int P(x) dx} = e^{\int \frac{\sin x dx}{\cos x}} \ln(\sec x) = \sec x$ $y = \frac{1}{u(x)} (c + \int u(x) Q(x) dx) = \frac{1}{secx} (c - \int secx. cot^2x dx)$ $= cosx(c-)\frac{cosxdx}{sin^2x}) = cosx.(c+\frac{1}{sinx}) = c.cosx + cotx$ $(x^{2}+1)y' + 2xy = x^{2} \text{ dif. denk. } 45^{2}.$ $y' + \frac{2x}{x^{2}+1}y = \frac{x^{2}}{x^{2}+1} \Rightarrow P(x) = \frac{2x}{x^{2}+1}, Q(x) = \frac{x}{x^{2}+1}$ $(P(x)dx) \int_{x^{2}+1}^{2x} \frac{2xdx}{x^{2}+1} dx = x^{2}+1$ $(x^2+1)y' + 2xy = x^2 dif. denk. 402.$ $M(x) = e^{\int P(x) dx} = e^{\int \frac{2x dx}{x^2 + 1}} = e^{\int n(x^2 + 1)} = x^2 + 1$

 $y = \frac{1}{u(x)} (c + \int u(x) R(x) dx) = \frac{1}{x^2 + 1} (c + \int x^2 dx)$

 $=\frac{1}{x^2+1}\left(C+\frac{x^5}{3}\right)$

 $2 (x+1) y'-y = e^{x} (x+1)^{2}, y(0)=3 dif. denk-452.$ $y' - \frac{1}{x+1}y = (x+1)e^{x} - p(x) = -\frac{1}{x+1}, \ \delta(x) = (x+1)e^{x}$

 $\mu(x) = e^{\int \rho(x)dx} = e^{\int \frac{dx}{x+1}} = e^{\ln(x+1)} = \frac{1}{x+1}$

 $y = \frac{1}{a(x)} \left(c + \int a(x) B(x) dx \right)$ $= (x+1)(c+ \int e^{x}dx) = (x+1)(c+e^{x})$

 $y(0)=3 \rightarrow C=2 \rightarrow y=(x+1)(z+e^{x})$

$$\frac{dy}{dx} = \frac{4y + x^6 e^x}{x} = \frac{4y}{x} y + x^5 e^x \rightarrow y' - \frac{4y}{x} y = x^5 e^x$$

$$\frac{dy}{dx} = \frac{4y + x^6 e^x}{x} = \frac{4y}{x} y + x^5 e^x \rightarrow y' - \frac{4y}{x} y = x^5 e^x$$

$$p(x) = e^{\int \frac{4x}{x}} =$$

1. mertebeden lineer dif. denntemine donisebiten dif. denklemleri (52) $2y'+1 = 4e^{-(x+y)}\sin x$, y(0) = 0 dif-dent. 962. $e^{y}y' + e^{y} = 4e^{-x}sinx$, $u = e^{y} \rightarrow u' = e^{y}.y'$ $u' + u = 4e^{-x} \sin x \longrightarrow P(x) = 1$, $Q(x) = 4e^{-x} \sin x$ $u(x) = e^{\int \rho(x) dx} = e^{\int dx} = e^{x}$ $u = \frac{1}{\mu(x)} \left(c + \int u(x) Q(x) dx \right) = e^{-x} \left(c + \int 4 \sin x dx \right)$ $=e^{-x}\left(c-4\cos x\right)=e^{3}$ $x=0, y=0 \Rightarrow e^{\circ}(c-4\cos 0)=e^{\circ} \Rightarrow c-4=1 \rightarrow c=5$ $e^{y} = e^{-x} (s - 4\cos x) \rightarrow e^{x+y} = s - \cos x$ $x+y = \ln(s-\cos x) \rightarrow y = -x + \ln(s-\cos x)$ 2 y2dx + (3xy-1)dy = 0 dif-denk-482. $y' = \frac{dy}{dx} = \frac{y^2}{1 - 3xy} \implies \frac{dx}{dy} = \frac{1 - 3xy}{y^2} = \frac{1}{y^2} - \frac{5}{y}x$ $x' + \frac{3}{7}x = y^{-2} \rightarrow p(y) = \frac{3}{7}, R(y) = y^{-2}$ $M(y) = e^{\int P(y) dy} = e^{\int \frac{3dy}{y}} = e^{\int \frac{3dy}{y}} = y^3$ $X = \frac{1}{m(y)} \left(C + \int m(y) \mathcal{D}(y) dy \right)$ $=\frac{1}{4^3}(c+\int y\,dy)=\frac{1}{4^3}(c+\frac{y^2}{2})$ $=\frac{c_3}{y^3}+\frac{1}{2y}$

 $\frac{\sin y}{\cos^2 y} y' - \frac{1}{\cos y} = -xe^{x} \text{ dif. denk. 462}.$ $u = \frac{1}{\cos y} \rightarrow u' = \frac{\sin y}{\cos^2 y} y'$ $yu'-u=-xe^{x}$ $\rightarrow \rho(x)=-1$, $Q(x)=-xe^{x}$ $u(x) = e^{Sp(x)dx} = e^{-Sdx} = e^{-x}$ $u = \frac{1}{u(x)} (c + \int u(x) Q(x) dx) = e^{x} (c - \int x dx)$ $= e^{x} \left(c - \frac{x^{2}}{z}\right) = \frac{1}{\cos y} \Rightarrow \cos y = \frac{2e^{-x}}{c - x^{2}} \Rightarrow y = \operatorname{arc} \cos \left(\frac{2e^{-x}}{c - x^{2}}\right)$ Ø x2cosy.y'-2xsiny=-1 dif.denh.452. $u = \sin y \longrightarrow u' = \cos y \cdot y'$ $\chi^{2}u'-2\chi u=-1 \longrightarrow u'-\frac{2}{\chi}u=-\frac{1}{\chi^{2}}$ $Q(\chi)=-\frac{1}{\chi^{2}}$ $u(x) = e^{\int p(x) dx} = e^{-2\int \frac{dx}{x}} = e^{-2\ln x} = \frac{1}{2}$ $u = \frac{1}{\alpha(x)} \left(c + \int u(x)Q(x) dx \right) = x^2 \left(c - \int \frac{dx}{x^4} \right) = x^2 \left(c + \frac{1}{3x^3} \right)$ $= cx^2 + \frac{1}{3x} = \sin y \Rightarrow y = \arcsin \left(cx^2 + \frac{1}{3x} \right)$ Dr eyy+ (1+ey) cotx = 5e cosx dif. denk. 452. $u = 1 + e^{4} \rightarrow u' = e^{4}y' \rightarrow u' + u \cdot \cot x = 5e^{\cos x}$ $\mu(x) = e^{\int P(x)dx} = e^{\int \cot x dx} = e^{\int \cot x dx}$ $u = \frac{1}{u(x)} \left(c + \int u(x)Q(x)dx \right) = \frac{1}{\sin x} \left(c + s \right) \sin x e^{\cos x} dx$ $=\frac{1}{\sin x}\left(c-se^{\cos x}\right)=1+e^{4}\Rightarrow(1+e^{4})\sin x+se^{\cos x}=C$

Bernoulli Viferansiyel Genklemi (lineer depit) y' + p(x)y = Q(x).y'', $n \neq 0$, $n \neq 1$ $y^{-n}y' + P(x)y^{1-n} = Q(x)$ $u = y^{1-n}$ $u' = (1-n)y^{-n}y'$ $(1-n)y^{-n}y' + (1-n)P(x)y^{1-n} = (1-n)Q(x)$ $u' + \underbrace{(1-n)P(x)}_{P(x)} u = \underbrace{(1-n)Q(x)}_{Q(x)}$ lineer hale peldi

Ox x dy + y (1-x3y5) dx = 0 dif.denh-482.

 $xy' + y = x^3y^6 \longrightarrow y^{-6}y' + \frac{1}{x}y^{-5} = x^2$ $u' = -5y^{-6}y'$ $xy' + y(1-x^3y^5) = 0$

 $-5y^{6}y' - \frac{5}{5}y^{-5} = -5x^{2} \Rightarrow u' - \frac{5}{5}u = -5x^{2} \quad \rho(x) = -5x$

 $u(x) = e^{\int p(x)dx} = e^{-5\int \frac{dx}{x}} = e^{-5\ln x} = \frac{1}{x^5}$

 $u = \frac{1}{n\alpha} \left(c + \int u(x) O(x) dx \right) = x^5 \left(c - 5 \int x^{-3} dx \right)$

 $= x^{5} \left(c + \frac{5}{2x^{2}}\right) = y^{5} \Rightarrow y = \left(cx^{5} + \frac{5x^{3}}{2}\right)^{-1/5}$

 $2x^2y-x^3y'=y^4\cos x dif.denh.462.$

 $y' - \frac{1}{x}y = -\frac{\cos x}{x^3}y^4$, $-3y^{-4}$ ile comp

 $-3y^{-4}y' + \frac{3}{x}y^{-3} = \frac{3\cos x}{x^3} \qquad u = y^{-3} \implies u' = -3y^{-4}y'$

 $u' + \frac{3}{x}u = \frac{3\cos x}{x^3}$ $\rho(x) = \frac{3}{x}$ $Q(x) = \frac{3\cos x}{x^3}$ $\rho(x) = e^{3\rho(x)dx} = e^{3(\alpha x)} = e^{3(\alpha x)} = e^{3(\alpha x)}$

 $u = \frac{1}{u(x)} \left(c + \int (u(x) Q(x) dx) = \frac{1}{x^3} \left(c + 3 \int \cos x dx \right) = \frac{c + 3s^{1}nx}{x^3} = y^{-3}$

$$xy'-(1+y^2) \operatorname{arctony} - x'e^{x}(1+y^2) = 0 \text{ dif. denk. } 402.$$

$$y = fanu \qquad 1+y^2 = 1+fan^2u = see^2u$$

$$y' = see^2u. u' \qquad u = \operatorname{arctony}$$

$$x \operatorname{see^2u. u'} - u. \operatorname{see^2u} - x^2e^x \operatorname{see^2u} = 0$$

$$xu'-u-x^2e^x = 0 \rightarrow u'-\frac{1}{x}u = xe^x \qquad \theta(x) = xe^x$$

$$u(x) = e^x = e^x = e^x = \frac{1}{x}$$

$$u = \frac{1}{u(x)}(c + (u(x)\theta(x)dx) = x(c + e^x dx)$$

$$= x(c + e^x) \Rightarrow y = fanu = fan(cx + xe^x)$$

$$x' + u = e^x \qquad y' + e^y = e^x \qquad dif. denk. 402.$$

$$u' + u = e^x \qquad \rho(x) = 1, \quad \rho(x) = e^x$$

$$u' + u = e^x \qquad \rho(x) = 1, \quad \rho(x) = e^x$$

$$u' + u = e^x \qquad \rho(x) = 1, \quad \rho(x) = e^x$$

$$u' + u = e^x \qquad \rho(x) = e^x$$

$$y' - \frac{1}{3x}y = y^{4} / nx \quad dif \cdot denk . 462 .$$

$$u = y^{-3} \rightarrow u' = -3y^{-4}y', \quad -3y^{-4}y' \quad ile \quad dif \cdot denk . 402 .$$

$$u' + \frac{1}{x} u = -3 / nx \qquad p(x) = \frac{1}{x}, \quad Q(x) = -3 / nx$$

$$u' + \frac{1}{x} u = -3 / nx \qquad p(x) = \frac{1}{x} \quad (C - 3 / x / nx dx)$$

$$u' + \frac{1}{x} u = -3 / nx \qquad p(x) = \frac{1}{x} \quad (C - 3 / x / nx dx)$$

$$u' + \frac{1}{x} u = -3 / nx \qquad p(x) = \frac{1}{x} \quad (C - 3 / x / nx dx)$$

$$u' + \frac{1}{x} (C + \sqrt{nux}) \mathcal{B}(x) dx = \frac{1}{x} \quad (C - 3 / x / nx dx)$$

$$= \frac{1}{x} \left(C - \frac{3x^{2}}{4} (2 / nx - 1) \right) = y^{-3} \Rightarrow y = \left(\frac{c}{x} + \frac{3x}{4} - \frac{3x^{2}}{2} / nx \right)^{-\frac{1}{3}}$$

$$y' = \sqrt{1} \quad (C + \sqrt{nux}) \mathcal{B}(x) dx = \sqrt{1} \quad (C + \sqrt{1}) \mathcal{B}(x) dx = \sqrt{1} \quad$$

 $2(x^2-1)y\cdot y'-xy^2=x(x^2-1)$ dif. denk. 452. $2yy' - \frac{x}{x^2-1}y^2 = x$, $u=y^2 \rightarrow u' = 2yy'$ $u' - \frac{x}{x^2 - 1} u = x$ $\rho(x) = -\frac{x}{x^2 - 1}$, Q(x) = x $u(x) = e^{\int \rho(x) dx} = e^{-\frac{1}{2} \int \frac{2x dx}{x^2 - 1}} = e^{\frac{1}{2} \ln(x^2 - 1)} = \frac{1}{\sqrt{x^2 - 1}}$ $U = \frac{1}{\mu(x)} \left(C + \int \mu(x) Q(x) dx \right) = \sqrt{x^2 - 1} \left(C + \int \frac{x dx}{\sqrt{x^2 - 1}} \right)$ $= \sqrt{x^2 - 1} \left(C + \sqrt{x^2 - 1} \right) = C \sqrt{x^2 - 1} + x^2 - 1 = y^2 \Rightarrow \frac{y^2 - x^2 + 1}{\sqrt{x^2 - 1}} = C$ $u' + 2xu = -2xe^{-x^2}$ $\rho(x) = 2x$, $Q(x) = -2xe^{-x}$ $u(x) = e^{\int \rho(x)dx} = e^{\int 2xdx} = e^{x^2}$ $u = \frac{1}{u(x)} \left(c + \int u(x) \theta(x) dx \right) = e^{-x^2} \left(c - \int 2xdx \right)$ $= e^{-x^2} (c - x^2) = y^{-2} \longrightarrow y = \mp \sqrt{\frac{e^{x^2}}{c - x^2}}$ Or $y'+y=y^2(\cos x-\sin x)$ dif-denk-486. $-y^{-2}y'-y^{-1} = \sin x - \cos x$ $u = y^{-1}$, $u' = -y^{-2}y'$ $u'-u=\sin x-\cos x$ $\rho(x)=-1$, $Q(x)=\sin x-\cos x$ $\mu(x) = e^{\int P(x) dx} = e^{\int dx} = e^{-x}$ $u = \frac{1}{\alpha(x)} \left(c + \int \alpha(x) \delta(x) dx \right) = e^{x} \left(c + \int (\sin x - \cos x) e^{-x} dx \right)$ $= e^{x} (c - sinx.e^{-x}) = ce^{x} - sinx = y^{-1}$ $y = \frac{1}{ce^{x} - sinx}$

$$y'_{1} = \rho(x).y_{1}^{2} + Q(x).y_{1} + R(x)$$

$$y'_{2} = y'_{1} - \frac{u'_{1}}{u^{2}} = \rho(x)(y_{1} + \frac{1}{u})^{2} + Q(x).(y_{1} + \frac{1}{u}) + Q(x)(y_{1} + \frac{1}{u})^{2} + Q(x)$$

$$y' = y'_{1} - \frac{u'_{1}}{u^{2}} = P(x) \left(y'_{1} + \frac{1}{u} \right)^{2} - y'_{1}^{2} + Q(x) \left(y'_{1} + \frac{1}{u} - y'_{1} \right)$$

$$y' - y'_{1} = -\frac{u'_{1}}{u^{2}} = P(x) \left((y'_{1} + \frac{1}{u})^{2} - y'_{1}^{2} \right) + Q(x) \left(y'_{1} + \frac{1}{u^{2}} \right)$$

$$= P(x) \left(\frac{2y'_{1}}{u} + \frac{1}{u^{2}} \right) + Q(x) \cdot \frac{1}{u}$$

$$= P(x) \left(\frac{2y'_{1}}{u} + \frac{1}{u^{2}} \right) + Q(x) \cdot \frac{1}{u}$$

$$= Q(x) \cdot \frac{1}{u} + \frac{1}{u^{2}} \cdot \frac{1}{u} + \frac{1}{u} \cdot$$

$$u' + \left(\frac{2P(x)y_1 + Q(x)}{P(x)}\right)u = -\frac{P(x)}{Q(x)} \Rightarrow u' + \frac{P(x)}{P(x)}u = \frac{Q(x)}{Q(x)} \text{ denk.}$$

$$u' + \left(\frac{2P(x)y_1 + Q(x)}{P(x)}\right)u = -\frac{P(x)}{Q(x)} \Rightarrow u' + \frac{P(x)}{Q(x)}u = \frac{Q(x)}{Q(x)} \text{ denk.}$$

$$1 \cdot \text{mertebeden linear differential points of } 1 \cdot \frac{1}{Q(x)} = \frac{P(x)}{Q(x)}\left(\frac{y^2 - y_1^2}{y^2}\right) + Q(x)\left(\frac{y - y_1}{y^2}\right)$$

$$\frac{1}{Q(x)} = \frac{P(x)}{Q(x)}\left(\frac{y^2 - y_1^2}{y^2}\right) + Q(x)\left(\frac{y - y_1}{y^2}\right)$$

$$\frac{2 \text{ billiniyorson}}{y' = \rho(x) y^2 + \Omega(x) y + R(x)} y' - y'_1 = \rho(x) (y^2 - y_1^2) + \Omega(x) (y - y_1)$$

$$y' = \rho(x) y^2 + \Omega(x) y + R(x)$$

$$y' - y'_1 = \rho(x) y_1^2 + \Omega(x) y_2 + R(x)$$

$$y' - y'_1 = \rho(x) y_2^2 + \Omega(x) y_2 + R(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$y' - y'_1 = \rho(x) (y + y_1) + \Omega(x)$$

$$\frac{y'-y'_{1}}{y-y_{1}} = \rho(x)(y+y_{1}) + Q(x)$$

$$\frac{y'-y'_{1}}{y-y_{2}} = \rho(x)(y+y_{2}) + Q(x)$$

$$\frac{y'-y'_{2}}{y-y_{2}} = \rho(x)(y+y_{2}) + Q(x)$$

$$\frac{y'-y_2'}{y-y_2} = \rho(x)(y+y_2)$$

$$\frac{d}{dx}\left(\ln(\frac{y-y_1}{y-y_2})\right) = \rho(x)\cdot(y_2-y_1) \Longrightarrow \ln(\frac{y-y_1}{y-y_2}) = \int (y_1-y_2)\cdot\rho(x)\cdot dx + C_1$$

$$\frac{y-y_1}{y-y_2} = C. e^{\int (y_1-y_2).P(x).dx}$$

$$\frac{y-y_1}{y-y_2} = C \frac{y_3-y_1}{y_3-y_2} e_{\xi_1} + l_1'\bar{p}_1' saplanır.$$

4 özel sozim biliniyorsa

$$\frac{y_4 - y_1}{y_4 - y_2} = C \frac{y_3 - y_1}{y_3 - y_2} = C \frac{y_3 - y_1}{y_3 - y_2}$$

Görömlerden denklemi oluşturmon

$$y' = P(x) y^{2} + Q(x) y + R(x)$$

$$y'_{1} = P(x) y_{1}^{2} + Q(x) y_{1} + R(x)$$

$$y'_{2} = P(x) y_{2}^{2} + Q(x) y_{2} + R(x)$$

$$y'_{1} = \rho(x) y_{1}^{2} + \delta(x) y_{2} + R(x)$$

$$y'_{2} = \rho(x) y_{2}^{2} + \delta(x) y_{2} + R(x)$$

$$y_2' = \rho(x)y_2 + Q(x)y_3 + R(x)$$

$$y_3' = \rho(x)y_3^2 + Q(x)y_3 + R(x)$$

$$\begin{bmatrix} y' & y^2 & y & 1 \\ y'_1 & y_1^2 & y_1 & 1 \\ y'_2 & y_2^2 & y_2 & 1 \\ y'_2 & y_3^2 & y_3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ P(x) \\ R(x) \\ R(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $2y'+y^2+\frac{y}{x}-\frac{h}{x^2}=0$ Riccorti dif. denh. bir brel 48 cimi $y_1=\frac{2}{x}$

$$-\frac{2}{x^{2}} - \frac{1}{x^{2}} + \frac{4}{x^{2}} +$$

$$-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{$$

$$-\frac{u'}{u^{2}} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$-\frac{u'}{u^{2}} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$= \frac{5}{xu} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$= \frac{5}{xu} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$= \frac{5}{xu} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$= \frac{5}{xu} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$= \frac{5}{xu} + \frac{5}{xu} + \frac{1}{u^{2}} = 0 \implies u' - \frac{5}{x}u = 1, p(x)$$

$$= \frac{5}{xu} + \frac{5}{xu} + \frac{1}{xu} + \frac{5}{xu} + \frac{1}{xu} + \frac{1}{xu}$$

y'=-y2+2x2y+2x-x4 Riccoti dif. denkleninin bir özel 3 $|600000 y_1 = x^2 ise penel 402000.$ $y = y_1 + \frac{1}{u} = x^2 + \frac{1}{u} \rightarrow y' = 2x - \frac{u'}{u^2}$ $2x - \frac{u'}{u^2} = -(x^2 + \frac{1}{u})^2 + 2x^2(x^2 + \frac{1}{u}) + 2x - x^4$ $2x - \frac{u'}{u^2} = -x^4 - \frac{1}{12} - \frac{2x^2}{u} + \frac{2x^2$ $u'=1=\frac{du}{dx} \rightarrow du=dx \rightarrow u=x+c \rightarrow y=y_1+t_1=x^2+\frac{1}{x+c}$ $2xy' = (y-x)^2 + 2y-x$ Riccorti dif. denk. ün özel 462 imű $y_1 = X$, $y_2 = X - 2$, $y_3 = \frac{x^3 - 2x^2 - X}{x^2 - 1}$ ise pend 452 cm. $\frac{y-y_1}{y-y_2} = C \frac{y_3-y_1}{y_3-y_2} \Rightarrow \frac{y-x}{y-x+2} = C \frac{x^2-1}{x^3-2x^2-x} - x+2$ $\frac{y-x+2-2}{y-x+2} = 1 - \frac{2}{y-x+2} = Cx^2 \Rightarrow y = x-2 + \frac{2}{1-cx^2}$ 2 y = x, y = 1, y = -x özel gözimleri bilinen Riccoti dif. Jenk.
olustur ve penel gözimi bul. $\begin{vmatrix} y' & y^2 & y & 1 \\ 1 & x^2 & x & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix} = 0$ $y' = \frac{1}{x(x^2 - 1)} y^2 + \frac{x^2 + x + 1}{x(x - 1)} y - \frac{x}{x^2 - 1}$ $-1 x^2 - x & 1 \end{vmatrix}$ $\frac{y-y_1}{y-y_2} = C_1 \frac{y_3-y_1}{y_3-y_2} \implies \frac{y-x}{y-1} = C_1 \frac{2x}{x+1}$ $y = C_1 \frac{y_3-y_1}{y_3-y_2} = C_2 \frac{2x}{x+1}$ $y = C_1 \frac{2x}{x+1} = C_2 \frac{2x}{x+1}$ $y = C_1 \frac{2x}{x+1} = C_2 \frac{2x}{x+1}$ $y = C_1 \frac{2x}{x+1} = C_2 \frac{2x}{x+1}$

 $y' = (y-x)^2 + 2y - x$ Riccoti dif-denk bir brel 402 înv 4 $y_1 = x$ ise genel 402 în. $y = y_1 + \frac{1}{u} = x + \frac{1}{u} \longrightarrow y' = 1 - \frac{u'}{u^2}$ $\times \left(1 - \frac{u'}{u^2}\right) = \left(x + \frac{1}{u} - x\right)^2 + 2\left(x + \frac{1}{u}\right) - x$ $X - X \frac{u!}{u^2} = \frac{1}{u^2} + 2X + \frac{2}{u} - X$ $u' + \frac{2}{5}u = -\frac{1}{5}$ $\rho(x) = \frac{2}{5}$ $\rho(x) = -\frac{1}{5}$ $\mu(x) - e^{SP(x)dx} = e^{2\int dx} = e^{2\ln x} = x^2$ $u = \frac{1}{u(x)} \left(c + \int u(x) Q(x) dx \right) = \frac{1}{x^2} \left(c_1 - \int x dx \right) = \frac{c_1 - x^2/2}{x^2}$ $y = x + \frac{1}{4} = x + \frac{x^2}{4 - x^2} = x - 2 + \frac{2c_1}{4 - x^2} = x - 2 + \frac{2}{1 + 6x^2}$ y = sec2x -ytanx +y2 Riccordi dif-denk. bir bzel 482imi y = tanx ise penel 432im. $y = y_1 + \frac{1}{u} = fanx + \frac{1}{u} \rightarrow y' = sec^2 x - \frac{u'}{u^2}$ $\sqrt{\sec^2 x - \frac{u'}{u^2}} = \sec^2 x - (\tan x + \frac{t}{u}) \cdot \tan x + (\tan x + \frac{t}{u})^2$ Seex-ul = seex-tonx-tonx + touxx+ L2 + 2+ouxx $u' + u \cdot fanx = -1 \qquad p(x) = fanx, \quad Q(x) = -1$ $u(x) = e^{\int fanx \, dx} = e^{\int fanx$ $u = \frac{1}{u(x)} (c + \int c(x) D(x) dx) = \frac{1}{secx} (c - \int secx dx)$ = cosx. (c-In(secx+tanx)) $y = tanx + d = tanx + \frac{secx}{C - |n| secx + tanx|}$

Yüksek Dereceli Birinci Mertebeden Viferansiyel Venklemler (4) Tekil Gözüm: Birinci mertebeden g(x,y,y') = 0 dif. denklemi ile 29/24 = 0 denklemi arasında y' gehilerek elde edilen $\phi(x,y) = 0$ denkleminin gösterdigi eprlye Diskriminant egrisi denir. Bu egri veya bunun bir kolu, dif. denkleminin bir gözümű olabilir. Bu gözüme Tekit Gözüm denir. or y=xy'+4(y')2 dif-denk-tehil 4020moni bul. $\frac{\partial g}{\partial y'} = -x - 8y' = 0 \rightarrow y' = -\frac{x}{8} \text{ dif. denh. yerine koy.}$ $y = x \cdot (-\frac{x}{8}) + 4(-\frac{x}{8})^2 = -\frac{x^2}{8} + \frac{4x^2}{64} = -\frac{x^2}{16}$ Tehil Gown $y^2 = \frac{4}{1 + (y')^2} dx' \cdot denk \cdot fekil 402 i mûnî bul.$ $g(x,y,y') = y^2(1+(y')^2)-4=0$ $\frac{\partial g}{\partial y'} = 2y^2y'=0 \rightarrow y'=0 \text{ dif. denk. yerine loy.}$ $y^2 = \frac{4}{1 + (y')^2} = \frac{4}{1 + 0} = 4 \implies y^2 - 4 = 0 \text{ felial 4020m}$ 2 y=xy'+ if dif. denk. teket assiming but. $g(x_1y_1y_1') = y - xy_1' - \frac{1}{y_1'}$ $\partial y_1' = -x + \frac{1}{(y_1')^2} = 0 - 3(y_1')^2 = \frac{1}{x} dif. denk yerhe koy.$ $y = xy' + \frac{1}{y'} \implies y^2 = (xy' + \frac{1}{y'})^2 = x^2(y')^2 + \frac{1}{(y')^2} + 2xy' \cdot \frac{1}{y'}$ $y^2 = x^2(y')^2 + \frac{1}{(y')^2} + 2x = x^2 + x + 2x = 4x$ Tekil 4520m

$$(y=xy'+f(y')) = \begin{cases} y=xy'+f(y') \end{cases} = \begin{cases} y=xy'+f(y') \end{cases} \Rightarrow y'=p+xp'+f(y') \Rightarrow y'=p+xp'+f(y') \end{cases}$$

$$p = y' \text{ yazılırsa } y = xp + f(p) \rightarrow y' = p + xp' + f'(p) \cdot p' = p'$$

$$p' \left(x + f'(p)\right) = 0$$

$$x + f'(p) = 0 \Rightarrow x = -f'(p) \text{ yarına koy.}$$

$$p' = 0 \text{ dif. denk.}$$

$$p = C \text{ yerina koy.}$$

$$y = -p f(p) + f(p) \text{ Tekil 402im}$$

$$6enel 402imin posterdipi doğru ailesinin
$$6enel 402imin posterdipi doğru ailesinin$$$$$$$$$$

y = Cx + f(c) Dopru aitesimm penel 452mm

Cenel 4620min posterdipi dopru ailesining varfidir. P gehilirse zourfin karteryen koordinattahi denklemi elde edilir

Lagrange Diféronsiyel Denklemi

y=x.g(y')+f(y')) relativelet dif. Jenklember!

g(y')=y' plurs a clairant dif. dent.

=y' goverhors a

p=yl yazıhrsa $y = xg(p) + f(p) \rightarrow y' = g(p) + (xg'(p) + f'(p)) \cdot p' = p$

 $(g(p)-p)+(xg'(p)+f'(p))\cdot p'=0$ x'e pore lineer off. dent.

 $\mu(\rho) = e^{\int \frac{d\rho}{9(\rho) - \rho}}$

 $x = \frac{1}{(g(p)-p)\cdot \mu(p)} \left(c - \int \mu(p) \cdot f'(p) \cdot dp\right) = h(p,c)$ 6enel 6520min

 $y = h(p,c) \cdot g(p) + f(p)$

Sparametrih gosterimi

P gehilirse x ve y depishenterine bajunts bir fonksigen elde editir. Diger torli fonksigen parametrik olarah karlır.

2' y=xy'+ 1/y' df. denk penel ve varsa tehr 452vmv. $p=y' \rightarrow y=xp+p' \rightarrow y'=p+xp'-\frac{p'}{p^2}=p$ $p'=0 \Rightarrow x-\frac{1}{p^2}=0 \Rightarrow x=\frac{1}{p^2} \text{ dif-denk. yerme key}$ $p=0 \Rightarrow x-\frac{1}{p^2}=0 \Rightarrow x=\frac{1}{p^2} \text{ dif-denk. yerme key}$ $p=0 \Rightarrow x-\frac{1}{p^2}=0 \Rightarrow x=\frac{1}{p^2} \text{ dif-denk. yerme key}$ $y=\frac{1}{p^2} \Rightarrow y=\frac{1}{p^2} \Rightarrow y$ of y=xy'+4(y')2 dif. denk-penel ve voirsa tekit 4525mi. $p=y' \rightarrow y=xp+4p^2 \rightarrow y'=p'+xp'+8pp'=p'$ $\rho'(x+8p) = 0$ $\rho' = 0$ $\rho' = 0$ $\rho =$ Ös y=xy'- 1 (y')2 df. denh. penel ve varsar felit 45 zvinv. $\rho = y' \rightarrow y = x\rho - \frac{1}{\rho^2} \rightarrow y' = p' + x\rho' + \frac{2\rho'}{\rho^3} = p'$ $p' \cdot \left(x + \frac{2}{\rho^3}\right) = 0$ $p' = 0 \quad \text{if denh} \quad \text{woring } t = 0$ p=0
dif.denh.

p=c yerine koy $x = -\frac{2}{p^3}$ dif. denk. yerine koy $y = (-\frac{2}{p^3})\rho - \frac{1}{p^2} = -\frac{3}{p^2}$ $y = Cx - \frac{1}{c^2}$ benel usrom p achitirse $\frac{x^2}{4} + \frac{y^3}{27} = 0$ Tekil abzüm

 $y = xy' + \sqrt{4 + (y')^2}$ dif. denk. genel ve voirsa teket 482 vnis (44) $\rho = y' \longrightarrow y = x\rho + \sqrt{4+\rho^2}$ $y' = p' + xp' + \frac{1}{2}(4+p^2)^{-1/2} 2pp' = p'$ $\rho' = 0$ $\rho' =$ $y = Cx + \sqrt{4+c^2}$ $y = \left(\frac{-\rho}{\sqrt{4+\rho^2}}\right) \cdot \rho + \sqrt{4+\rho^2} = \frac{4}{\sqrt{4+\rho^2}}$ $p = \sqrt{4+\rho^2}$ $p = \sqrt{4+\rho^2}$ ppenil $y = y + p^2 - 2p^3 \rightarrow y' = 1 + 2pp' - 2p^2p' = p$ $2\rho(1-\rho)\rho' = \rho-1 \Rightarrow (\rho-1) + 2\rho(\rho-1)\frac{d\rho}{dx} = 0$ $(p-1)\frac{dx}{dp} + 2p(p-1) = 0$ $(\rho-1)\cdot\left(\frac{dx}{d\rho}+2\rho\right)=0$ denklemde yerine koy $x = C - \rho^2 denk. yerine koy.$ $y = c - \rho^2 + \rho^2 - \frac{2\rho^3}{3} = c - \frac{2\rho^3}{3}$ Sdx + S2pdp = 0 $y = x + 1 - \frac{2}{3}$ $= x + \frac{1}{3}$ fehil wozum p achilirse 4 $(c-x)^3 - 9(c-y)^2 = 0$ Genel 452ûn

9 y = -xy' + (y') dif. denk. genel 48 20 mo $\rho = y' \rightarrow y = -x\rho + \rho^2 \rightarrow y' = -\rho - x\rho' + 2\rho\rho' = \rho$ $2\rho = (2\rho - x) p' \longrightarrow \frac{d\rho}{dx} = \frac{2\rho}{2\rho - x} \longrightarrow \frac{dx}{d\rho} = \frac{2\rho - x}{2\rho}$ $\frac{dx}{d\rho} + \frac{1}{2\rho} \times = 1 \quad \rho(\rho) = \frac{1}{2\rho} , \ Q(\rho) = 1$ $u(p) = e^{\int p(p)dp} = e^{\int \frac{dp}{2p}} = e^{\frac{1}{2}/np} = \sqrt{p}$ $X = \frac{1}{m(p)} \left(c + \int u(p) Q(p) dp \right) = \frac{1}{p} \left(c + \int v p dp \right)$ $=\frac{C+\frac{2}{3}\rho^{3/2}}{V\rho}=\frac{C}{V\rho}+\frac{2}{3}\rho \text{ diffdenk yerine key.}$ $y = -\left(\frac{C}{V\rho} + \frac{2P}{3}\right)\rho + \rho^2 = \frac{\rho^2}{3} - CV\rho \quad \text{benel 452 im parametrik} \\ \frac{C}{V\rho} = -\left(\frac{C}{V\rho} + \frac{2P}{3}\right)\rho + \rho^2 = \frac{\rho^2}{3} - CV\rho \quad \text{benel 452 im parametrik} \\ \frac{C}{V\rho} = -\frac{2VV}{3} + \frac{2P}{3} + \frac{2P}{$ If y = 2xy' + (y')2 df. denk. genel 48 wonon but. $\rho = y' \longrightarrow y = 2x\rho + \rho^2 \longrightarrow y' = 2\rho + 2x\rho' + 2\rho\rho' = \rho$ $(2x+2p)\rho' = -p \implies \rho' = \frac{-p}{2x+2p} = \frac{dp}{dx}$ $\frac{dx}{d\rho} = \frac{2x + 2\rho}{-\rho} \Rightarrow \frac{dx}{d\rho} + \frac{2}{\rho}x = -2, \ \rho(\rho) = \frac{2}{\rho}, \ Q(\rho) = -2$ $u(p) = e^{\int p(p)dp} = 2\int_{p}^{dp} = 2\ln p = p^{2}$ $x = \frac{1}{\alpha(p)} \left(C + \int \alpha(p) \partial(p) dp \right)_{2}$ $= \frac{1}{p^2}(c-25p^2dp) = \frac{c-\frac{2}{3}p^3}{p^2} = \frac{c}{p^2} - \frac{2}{3}p \text{ yerine key}$ $= \frac{1}{2}(c-25p^2dp) = \frac{c-\frac{2}{3}p^3}{p^2} = \frac{c}{p^2} - \frac{2}{3}p \text{ yerine key}$ $y = 2\left(\frac{\zeta}{\rho^2} - \frac{2}{3}\rho\right) \cdot \rho + \rho^2$ p relitentyer Genel us zom parametrik $=\frac{2}{5}-\frac{2}{3}$ oborah kalir.

 $2 \times (y')^2 + (1-y)y' - 1 = 0$ benel ve varsa tekn çozum. $\rho = y' \longrightarrow \times \rho^2 + (1-y)\rho - 1 = 0$ $p'=0 \qquad p'(x+\frac{1}{p^2})$ $p'=0 \qquad p'(x+\frac{1}{p^2}) \qquad p'=0 \qquad$ $y = 1 + xp - \frac{1}{p} \rightarrow y' = p' + xp' + \frac{p'}{p^2} = p'$ y=1+cx-1/c $p = 1-\frac{1}{p^2}p - \frac{1}{p} = 1-\frac{2}{p}$ y=1+cx-1/c $p = 1-\frac{1}{p^2}p - \frac{1}{p} = 1-\frac{2}{p}$ Genel 452vm $p = 1-\frac{1}{p^2}p - \frac{1}{p} = 1-\frac{2}{p}$ $5^{\circ} \times (y^{\circ})^2 + 4 = yy^{\circ}$ Genel 4525m ve varsa tehil 4025m $p = y' \rightarrow x p^2 + 4 = y p \rightarrow y = x p + 4p$ $y' = p' + x p' - 4p^2 p' = p$ $p'(x - 4p^2) = 0$ p' = 0 p' = 0 p = 0y = cx + 4/cGenel 40200 p gehillerse $y^2 = 16x$ tehet 452000 $y = x(1+y^1) + (y^1)^2$ different. genel ve varsa teket 4500000 $\rho = y' \longrightarrow y = x(1+\rho) + \rho^2 \longrightarrow y' = 1+\rho' + x\rho' + 2\rho\rho' = \rho'$ $\rho' = -\frac{1}{x+2\rho} = \frac{d\rho}{dx} \Rightarrow \frac{dx}{d\rho} + x = -2\rho \quad \rho(\rho) = 1, \quad Q(\rho) = -2\rho$ $u(p) = e^{Sp(p)dp} = e^{Sdp} = e^{p}$ $x = \frac{1}{\alpha(p)} (c + \int (\alpha(p) \otimes (p) dp) = e^{-p} (c - 2 \int pe^{p} dp)$ $=e^{-\rho}(c-2(\rho-1)e^{\rho})=ce^{-\rho}-2\rho+2$ dif. denk. yenne koy. $y = (ce^{-\rho} - 2\rho + 2)(1+\rho) + \rho^2 = C(\rho+1)e^{-\rho} + 2-\rho^2$ penel 4520m parametrish obarash karbir.

y' degiskenine gore görülebilen dif. denklemlers $(y')^2 - (y + sinx)y' + ysinx = 0$ Genel adriven $p=y' \rightarrow p^2 - (y+sinx)p + ysinx = 0$ (p-y)(p-sinx)=01. mertebeden difdenk. sadèce bir keyfi $p = sin x = \frac{dy}{dx}$ deper iserir. Bu yvirden $p=y=\frac{dy}{dx}$ dy=smxdx $c_2 = c_3 = C$ dy = dx $y = C_3 - \cos X$ olmalidir. $lny = x + C_1$ iki denklem Garpihrson Genel (y-cex)(y+cosx-c)=0 Girdin y+cosx-63=0 y = ex+9 = czex $y-c_1e^{k}=0$ $\frac{6}{3}$ 24 (41)² + (6x²y-1)y'-3x²=0 Genel 452 Jun $p = y' \implies 2y p^2 + (6x^2y - 1)p - 3x^2 = 0$ $\rho^2 + \frac{6x^2y - 1}{2y} \rho - \frac{3x^2}{24} = 0$ 1. mertebeden $(\rho - \frac{1}{2y})(\rho + 3x^2) = 0$ dif. denk. sadece bit keyfi $\int_{\rho+3x^2=0}^{4\pi}$ p-1/2y=0 deper l'aerir. $\frac{dy}{dx} + 3x^2 = 0$ C1 = C2 = C # - 2y = 0 $dy + 3x^2 dx = 0$ olmali 2y dy - dx = 0 $y + x^3 - c_2 = 0$ $y^2 - x - 9 = 0$ iki denklem Garpilirson $(y^2-x-c)(y+x^3-c)=0$ Genel uszim

 $y'' x^2 (y')^2 - 4xyy' - 5y^2 = 0$ Genel 4524m. $p = y' \rightarrow x^2 p^2 - 4xyp - 5y^2 = 0$ 1. mertebeden dif. dent. $\rho^2 - \frac{4y}{x} p - \frac{5y^2}{x^2} = 0$ sadece bir keyft deper inerir (p-学)(p+类)=0 $c_2 = c_4 = c$ $p + \frac{y}{x} = 0$ $\rho - \frac{55}{x} = 0$ iki denklem garpilirsa # + ½ = 0 数-5y-0 $(y-cx^5)(xy-c)=0$ 如十二0 数-5荣=0 benel userim Iny + lnx = C3 lny-slnx = C1 xy-C4=0 $y-c_2x^5=0$ Genel 45Lom. $\int_{0}^{\infty} (y')^{2} + y^{2} = 1$ $p = y' \longrightarrow \rho^2 + y^2 = 1 \longrightarrow \rho^2 - (1 - y^2) = 0$ 1. mertebeden. $(p+\sqrt{1-y^2})(p-\sqrt{1-y^2})=0$ dif. denklemi sodece bir keyfi $p - \sqrt{1 - y^2} = 0$ p + V1-y2 =0 deper l'aerir. dy - VI-y2 = 0 $c_1 = c_2 = c$ $\frac{dy}{dx} + \sqrt{1-y^2} = 0$ $\frac{dy}{\sqrt{1-y^2}} - dx = 0$ olmati. $\frac{dy}{V_1-y^2}+dx=0$ arcsiny $-X-C_2=0$ $arcsiny+x-c_1=0$

The denklem corporarsa

(arcsiny + x - c) (arcsiny - x - c) = 0

(arcsiny + x - c) (arcsiny - x - c) 6enel 452in

Yüksek Mertebeli Diferansiyel Venklemler

Baginh Degisken (y) isermeyen dif. denklemleri \$\times xy" + 3x(y')^2 - 2y' = 0 dif. denk. penel 402" mis u=y', $u'=y'' \rightarrow xu' + 3xu^2 - 2u = 0 \rightarrow u' - \frac{2}{x}u = -3u^2$ ite sarp $-u^{-2}u' + \frac{2}{x}u^{-1} = 3$ $v = u^{-1} \rightarrow v' = -u^{-2}u'$

 $V' + \frac{2}{x}V = 3$ $P(x) = \frac{2}{x}$, Q(x) = 3

 $\mu(x) = e^{\int \rho(x)dx} = e^{\int \frac{dx}{x}} = e^{2\ln x} = x^2$

 $V = \frac{1}{\alpha(x)} \left(c + \int \alpha(x) R(x) dx \right) = \frac{1}{x^2} \left(c_1 + \int_{3x^2} dx \right)$

 $= \frac{c_1 + x^3}{x^2} = \frac{1}{u} = \frac{1}{y'} = \frac{dx}{dy} - 3dy = \frac{x^2 dx}{x^3 + c_1}$

 $y = \int \frac{x^2 dx}{x^3 + 4} = \frac{1}{3} \ln(x^3 + c_1) + c_2$

 $u=y', u'=y'' \rightarrow x^3u'=1 \rightarrow u'=\frac{1}{x^3}=\frac{du}{dx} \rightarrow du=\frac{dx}{x^3}$ 25 x3y"=1 Genel ascom

 $u = \int_{x^{3}}^{\frac{1}{2}} = c_{1} - \frac{1}{2x^{2}} = y' = \frac{dy}{dx} \rightarrow dy = c_{1} dx - \frac{dx}{2x^{2}}$

 $y = c_1 \times + \frac{1}{2} \times + c_2$

 $5^{\circ} \times y^{11} - 2y^{11} = 0$ Genel 4520m

 $u=y'', u'=y''' \longrightarrow \chi u'-2u=0 \longrightarrow \chi \frac{du}{dx}-2u=0$

 $\frac{du}{u} - 2 \frac{dx}{x} = 0 \rightarrow \ln u - 2\ln x = C \rightarrow \ln \frac{u}{x^2} = C = \ln C_0$

 $u = c_0 x^2 = y''$

 $y' = \int y'' dx = \int Cax^2 dx = \frac{Ca}{3}x^3 + Cb$

 $y = \int y' dx = \int (\frac{c_a}{3}x^3 + c_b) dx = \frac{c_a}{12}x^4 + c_bx + c_b$ Genel

$$y'' = \frac{y'}{x} + x \cdot \cos x \quad \text{ penel } c \ni 2 \text{ Jum}$$

$$u = y', u' = y'' \rightarrow u' - \frac{1}{x}u = x \cos x \quad \alpha(x) = x \cos x$$

$$u(x) = e^{\int \alpha(x)} dx = e^{\int \alpha(x)} e^{\int \alpha(x)} = e^{\int \alpha(x)} =$$

Booms12 dégisken(X) igermeyen diferansign denkiemier

$$\int_{0}^{2} y'' = y(y')^{3} \text{ Genel 452im}$$

$$\int_{0}^{2} y'' = y' = y'' = \frac{dy}{dx} = \frac{dy}{dx} = y' \frac{dy}{dy} = u \frac{dy}{dy}$$

$$\int_{0}^{2} y'' = y'' = \frac{dy}{dx} = \frac{dy}{dx} = y' \frac{dy}{dy} = u \frac{dy}{dy}$$

$$\int_{0}^{2} y'' = y'' = \frac{dy}{dx} = \frac{dy}{dx} = y' \frac{dy}{dy} = u \frac{dy}{dy}$$

$$\int_{0}^{2} y'' = y'' = \frac{dy}{dx} = \frac{dy}{dx} = y' \frac{dy}{dx} = u \frac{dy}{dy}$$

$$\int_{0}^{2} y'' = y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$$

$$\int_{0}^{2} y'' = \frac{dy}{dx} = \frac$$

$$\frac{1}{u} = G_0 - \frac{1}{2} - \frac{1}{3}$$

$$G_0 - \frac{1}{3} = x + C_0 \rightarrow 6G_0 - y^3 = 6x + 6C_0 \rightarrow y^3 + C_1 y + 6x + C_2 = 0$$

$$G_0 - \frac{1}{3} = x + C_0 \rightarrow 6G_0 - y^3 = 6x + 6C_0 \rightarrow y^3 + C_1 y + 6x + C_2 = 0$$

$$\int_{0}^{2} y^{2}y'' + (y')^{3} = 0 \quad \text{Genel 48} \text{ with}$$

$$u = y' \rightarrow u' = y'' = \frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} = y' \frac{du}{dy} = u \frac{du}{dy}$$

$$y^{2}u \frac{du}{dy} + u^{3} = 0 \rightarrow \frac{du}{u^{2}} + \frac{dy}{y^{2}} = 0 \rightarrow -\frac{1}{u} - \frac{1}{y} = C,$$

$$\frac{1}{u} = -C_{1} - \frac{1}{y} = \frac{1}{y'} = \frac{dx}{dy} \rightarrow (C_{1} + \frac{1}{y}) \frac{dy}{dy} + dx = 0$$

 $C_1y + \ln |y| + x = C_2$ $\frac{u'}{u'} = (y')^2$ Genel Goz. u = y', $u' = y'' = u \frac{du}{dy}$

$$(y+1)y'' = (y')^2$$
 Gent $\frac{dy}{dy} = \frac{dy}{dy} \rightarrow |n|y| = |n|y+1/+ C$
 $(y+1)u \frac{du}{dy} = u^2 \rightarrow \frac{du}{dy} = \frac{dy}{y+1} \rightarrow |n|y| = |n|y+1/+ C$

$$u = e^{c + \ln |y-1|} = c_1(y-1) = y' = \frac{dy}{dx}$$

$$\frac{dy}{y+1} = \frac{C_1 (y^{-1})}{y+1} = \frac{C_1 x + C_2}{6enel + 3^2 \cdot u}$$

$$\frac{dy}{y+1} = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 \times 4 - 2$$

$$y+1 = C_1 dx \longrightarrow \ln|y+1| = C_1 dx \longrightarrow$$

$$yy'' + (1+y)(y')^2 = 0 \implies dy + \frac{1+y}{y} dy = 0$$

$$y'' \frac{dy}{dy} + (1+y)u^2 = 0 \implies dy + \frac{1+y}{y} dy = 0$$

$$\frac{y^{u} + y^{u} + (1+y)u}{dy} + (1+y)u = 0 \rightarrow \ln|u| + \ln|y| + y = 0$$

$$\frac{du}{dy} + \frac{dy}{dy} + dy = 0 \rightarrow \ln|u| + \ln|y| + y = 0$$

$$\frac{du + dy + dy = 0}{u} \rightarrow \frac{\ln|u| + \ln|y|}{y} \Rightarrow u = \frac{c_1}{y e^y} = y' = \frac{dy}{dx}$$

$$\ln|uy| = c - y \rightarrow uy = e^{c - y} = c_1 e^{-y} \rightarrow u = \frac{c_1}{y e^y} = y' = \frac{dy}{dx}$$

$$ye^{3}dy = GdX \rightarrow \int ye^{3}dy = \int C_{1}dX$$

$$(y-1)e^{y} = GX + GZ$$

De
$$y(y-1)y'' + (y')' = 0$$
 Gener 420^{2} .

 $y(y-1)y'' + (y')' = 0$ Gener 420^{2} .

 $y(y-1)y'' + (y')' = 0$ $y'' = \frac{1}{2}y'' = \frac{1$

y ve tirevberine gore homojen dij. Lennemler $52 \times yy'' - x(y')^2 + yy' = 0$ Genel 452im $x\frac{y''}{y}-x(\frac{y'}{y})^2+\frac{y'}{y}=0$ $\frac{y'}{y}=u, \frac{y''}{y}=u'+u^2$ $x(u'+u^2)-xu^2+u=0 \rightarrow xu'+xu'-xu''+u=0$ x # + u = 0 -> # + # = 0 -> In|u| + In|x| = C $|n|ux| = C = |n|ca| \rightarrow ux = Ca \rightarrow u = \frac{Ca}{x} = \frac{y'}{y} = \frac{dy}{ydx}$ dy = cadx -> ln/y/= ca/n/x/+ Go $y = e^{\operatorname{Caln}|X| + Cb} = C_2 \times^{C_1}$ $\int_{y}^{2} y^{2} - 2xyy' + x^{2}(y')^{2} - x^{2}yy'' = 0$ Genel 452im $1-2x\frac{y'}{y}+x^{2}(\frac{y'}{y})^{2}-x^{2}\frac{y''}{y}=0$ $\frac{y'}{y}=u, \frac{y''}{y}=u'+u^{2}$ $1 - 2xu + x^{2}u^{2} - x^{2}(u^{1} + u^{2}) = 0$ $1 - 2xu + x^{2}u^{2} - x^{2}u^{1} - x^{2}u^{2} = 0 \longrightarrow u^{1} + \frac{2}{x}u = \frac{1}{x^{2}}$ $1 - 2xu + x^{2}u^{2} - x^{2}u^{1} - x^{2}u^{2} = 0 \longrightarrow u^{1} + \frac{2}{x}u = \frac{1}{x^{2}}$ $\mu(x) = e^{\int \alpha(x) dx} = e^{2\int \frac{dx}{x}} = e^{2\ln x} = x^2$ $u = \frac{1}{m(x)} \left(c + \int u(x) \mathcal{Q}(x) dx \right) = \frac{1}{x^2} \left(c + \int dx \right) = \frac{c + x}{x^2}$ $= \frac{1}{2} + \frac{1}{2} = \frac{1}{3} = \frac{$ Inly1 = - = + In|x| + co -> y = e-x elnx eca = c2xecix 4(18)2 Dy"-3y'=0 Genelaizon $u=y', u'=y'' \rightarrow u'-3u=0 \rightarrow \frac{du}{dx}-3u=0$ $\Rightarrow |n|u| = 3x + C \Rightarrow u = e^{3x + C}$ $\frac{du}{dx} - 3 dx = 0$ $\int \frac{du}{u} - 3 \int dx = c$ $u = e^{c}e^{3x} = y' = \frac{dy}{3x}$ $y = c_1 e^{3x} + c_2$

```
n. mertebeden lineer diferansiyel denklemler
      a_0(x).y^{(n)} + \cdots + a_{n-2}(x)y'' + a_{n-2}(x)y' + a_n(x)y = b(x), a_0(x) \neq 0
   b(x)=0 ise df. denklemi homojen, depilse homojen depildit.
   a_i(x) = k_i, i = 0,1,2,--,n Katsayılar sabit ise dif. denk. sabit katsayılıdır.
   y"-3y"+4y'-12y=xex sabit kaitsayılı homojen olmayanını.
3, mertebeden lineer dif. denklemi.
  (x2-1)y"+4xy+2y=0 2. mertebeden homojen lineer dif. denklenn'
                               Lineer dif. denkleminin olusturulmoisi
 of y=(C1+C2x)ex+x2+3x genel 45zim ise lineer dif. denh. dustur.
     y = (-1)^{1/2} - 2^{1/2}

It y= Ge2x + C2x genel assim se lineer dif. denk olighen
       \begin{vmatrix} y & e^{2x} & x \\ y' & 2e^{2x} & 1 \end{vmatrix} = 0 \implies y'' - \frac{4x}{2x-1}y' + \frac{4}{2x-1}y = 0
y'' & 4e^{2x} & 0 \end{vmatrix}
y = qe^{3x} + 2x^2 - 3x + 5 genel 4025m ise lineer dif. denk. oluştur
  \left| \frac{y^{-2x^2+3x-5}}{y'-4x+3} \right| = 0 \implies y'-3y = -6x^2+13x-18
2^{2}y = C_{1}x^{2} + C_{2}x + 3x penel 452 ûn ise lineer dix. denk. oluştur.
        \begin{vmatrix} y^{-3x} & x^2 & \frac{1}{x} \\ y' - 3 & 2x & -\frac{1}{x^2} \end{vmatrix} = 0 \longrightarrow y'' - \frac{2}{x^2}y = -\frac{6}{x}
y'' \qquad 2 \qquad \frac{2}{x^3}
```

```
y-3x^2-5 x^3 x

y'-6x 3x^2 1 = 0 \rightarrow x^2y''-3xy'+3y = -3x^2+15

y''-6 6x 0
 y = c_1 x^3 + c_2 x + 3x^2 + 5 genel assum ise linear different. Objective.
0/y = C_1 \cos(3x) + C_2 \sin(3x) + 2x + 3 \text{ perel 4500m ise Inverse dif-denk. oluştur-}
          y-2x-3 (os(3x) Sin(3x)
        y'-2 -35h(3x) 36s(3x) = 0 -3 y'' + 9y = 18x + 27
               Homojen lineer dif. denklemberinde mertebe indirpene
             y'' -9\cos(3x) -9\sin(3x)
De \chi^2 y'' - \chi y' - 3y = 0 dif. denk. bir bzel 482 vm.
       y = y_1 u = x^3 u \longrightarrow y' = 3x^2 u + x^3 u'

y'' = 6x u + 6x^2 u' + x^3 u''
      x^{2}(6xu+6x^{2}u^{1}+x^{3}u^{4})-x(3x^{2}u+x^{3}u^{1})-3x^{3}u=0
       6x^{3}u + 6x^{4}u^{1} + x^{5}u^{11} - 3x^{3}u - x^{4}u^{1} - 3x^{3}u = 0
            u'' + \frac{\xi}{\chi} u' = 0, v = u', v' = u'' = \frac{dv}{dx}
       数+ = 0 → + sdx = 0 → ln/v|+ sln/x|= ln/c|
         yx^5 = C \rightarrow v = \frac{c}{x^5} = u' = \frac{du}{dx} \rightarrow du = c \frac{dx}{x^5}
        u = -\frac{c}{4x^4} + c_2 = c_1 x^{-4} + c_2 \rightarrow y = x^3 u = c_2 x^3 + \frac{c_1}{x}
$\(\frac{1}{2}\times \frac{1}{2}\times \frac{1}{
                        y=x+1 ise penel usion
   y = y_1 u = (x+1)u \rightarrow y' = u + (x+1)u'
                                                                                y'' = 2u' + (x+1)u''
```

 $(2x+1) x^{2} (2u' + (x+1)u'') + 2(x+1) \times (u + (x+1)u') - 2x(x+1) u = 0$ $x^{2}(x+1)(2x+1)u'' + 2x^{2}(2x+1)u' + 2x(x+1)u' + 2x(x+1)u - 2x(x+1)u = 0$ $u'' + \frac{6x^2 + 6x + 2}{x(x+1)(2x+1)}u' = 0 \quad v = u', \ v' = u'' = \frac{dv}{dx}$ $\frac{dv}{dx} + \frac{6x^2 + 6x + 2}{K(x+1)(2x+1)} v = 0 \rightarrow \frac{dv}{v} + 2\frac{dx}{x} + 2\frac{dx}{x+1} - 2\frac{dx}{2x+1} = 0$ $|h|v| + 2|n|x| + 2|h|x+1| - |h|2x+1| = C = |n|c_1|$ $\left| n \left| \frac{v x^2 (x+1)^2}{2x+1} \right| = \left| n \left| 4 \right| \longrightarrow V = G \frac{2x+1}{x^2 (x+1)^2} = u' = \frac{du}{dx}$ $\frac{du}{dx} = c_1 \left(\frac{1}{x^2} - \frac{1}{(x+1)^2} \right) \rightarrow du = c_1 \frac{dx}{x^2} - c_1 \frac{dx}{(x+1)^2}$ $u = \frac{c_1}{x+1} - \frac{c_1}{x} + c_2 \Rightarrow y = (x+1)u = c_1 - 4\frac{x+1}{x} + c_2(x+1)$ = G(x+1) - C/X If y" + (tanx-2cotx)y + 2y cot2x = 0 dif denk. bir bzel horimi y=sinx ise genel aswm. $y = y_1 u = u.sinx \rightarrow y' = u!sinx + u.cosx$ y'' = u'' sin x + 2u' cos x - u sin x(u"sinx + zu cosx-usinx) + (tonx-2cotx) (u'sinx+ucosx) + zusinx cot2x = 0 $u^{11}sinx + 2u^{1}cosx - usinx + \frac{sin^{2}x - 2(os^{2}x)}{cosx}u^{1} + \frac{sin^{2}x - 2tos^{2}x}{sinx}u + \frac{2cos^{2}x}{8inx}u = 0$ $u'' + \frac{\sin x}{\cos x} u' = 0$, v = u', $v' = u'' = \frac{dv}{dx}$ $\frac{dv}{dx} + \frac{\sin x}{\cos x} v = 0 \implies \frac{dv}{dx} + \frac{\sin x}{\cos x} dx = 0$ $\int \frac{dv}{v} + \int \frac{\sin x}{\cos x} dx = C \Rightarrow |u|v| - |u|\cos x| = C = |u|4|$ 1/200x = 1/4/ -> v= (, cosx = 4/4) du = G cosx dx -> u = G sinx + Cz $y = u \cdot s in x = (c_1 s in x + c_2) \cdot s in x$

$$|x| = \frac{1}{(x^{2}-1)}y^{1/2} + 4xy^{1/2} + 2y = 0 \text{ different. bir titel foreigns } y_{1} = \frac{1}{(x+1)^{2}}$$

$$|y| = \frac{1}{(x+1)^{2}} + \frac$$

Homojen olmayan Lineer dif. denk. mertebe indir penne Sh = C, y, + Czyz+ - - + Cnyn Homojen Kismin Gözümű y = CIXYI + CIXYI + - - + CIXYIn Genel Gozin C/x y1 + C2x y2+ - - - + Cnx yn = 0 Parametre C/x y' + C2x y'2+ - - + C/nx y'n = 0 Desisim $C(xy_1^{(n-2)} + C_{2x}y_2^{(n-2)} + - - + C_{nx}y_n^{(n-2)} = 0$ Yortemi (Sabitler Depisimi) Youtemi $C_{1x}' y_{1}^{(n-1)} + C_{2x}' y_{2}^{(n-1)} + - - - + C_{nx}' y_{n}^{(n-1)} = \frac{b(x)}{a_{o}(x)}$ $y_{(n-2)}^{1}$ $y_{(n-2)}^{2}$. . $y_{(n-2)}^{2}$ y(n-1) y(n-1) ... y(n-1) | Cnx 2. mertebeden dif. denk. igin $a_0(x)y'' + a_1(x)y' + a_2(x)y'' = b(x) \rightarrow y_h = c_1y_1 + c_2y_2$ ise y = C1xy1 + C2x y2 C1x y1 + C2x y2 = 0 Homojen kismin brel 46 rumi y,=X $C_{1}^{\prime}y_{1}^{\prime}+C_{2}^{\prime}y_{2}^{\prime}=\frac{b(x)}{a_{0}(x)}$ $y'' - \frac{3}{2}y' + \frac{3}{2}y = 2x - 1$ is e penel assim $y_h = y_1 u = xu \rightarrow y_h' = u + xu', y_h' = 2u' + xu''$ >ボーギャ=0 $y_h'' - \frac{3}{2}y_h' + \frac{3}{2}y_h = 0$ $\frac{dy}{dx} - \frac{x}{dx} = 0$ $(2u' + xu'') - \frac{3}{2}(u + xu') + \frac{3}{2}(xu) = 0$ |n|v| - |n|x| = |n/c|2u1+xu11- 3u-3u1+ 3u=0 In/x/= In/c/ $u'' - \frac{1}{2}u' = 0$, V = u', $V' = u'' = \frac{dV}{dt}$ ¥ = C

$$V = CX = \frac{du}{dx} \rightarrow du = CXdX$$

$$u = (\frac{x^{2}}{2} + C_{2}) = (1x^{2} + C_{2}) \rightarrow y_{h} = Xu = (1x^{3} + C_{2})X$$

$$C_{1}'X^{3} + C_{2}'X \times = 0 \qquad \begin{cases} x^{3} \times 0 \\ 3x^{2} + C_{2}'X & = 2X - 1 \end{cases} \begin{cases} x^{3} \times 0 \\ 3x^{2} + C_{2}'X & = 2X - 1 \end{cases} \begin{cases} x^{3} \times 0 \\ 3x^{2} + C_{2}'X & = 2X - 1 \end{cases} \begin{cases} x^{3} \times 0 \\ 3x^{2} + C_{2}'X & = 2X - 1 \end{cases} \begin{cases} x^{3} \times 0 \\ 0 + \frac{1}{2} - X \end{cases} \sim \begin{bmatrix} x^{2} + C_{2} \\ 0 + \frac{1}{2} - X \end{cases} \sim \begin{bmatrix} x^{2} + C_{2} \\ 0 + \frac{1}{2} - X \end{cases} \sim \begin{bmatrix} x^{2} + C_{2} \\ 0 + \frac{1}{2} - X \end{cases} \sim \begin{bmatrix} x^{2} + C_{2} \\ 0 + \frac{1}{2} - X \end{cases} \sim \begin{bmatrix} x^{2} + C_{2} \\ 0 + \frac{1}{2} - X \end{cases} = \begin{bmatrix} x^{2} + C_{2} \\ x + C_{2} + C_{2} + C_{2} \end{cases} \times \begin{bmatrix} x^{3} + C_{2}X \times (\ln|x| + \frac{1}{2}X + C_{1}) \times (\ln|x| + \frac{1}{2}X + C_{1}) \times (\ln|x| + \frac{1}{2}X + C_{2}) \times (\ln|x| + \frac{1}{2}X + C_{2}X + \frac{1}{2}X + \frac{1}{2}X + C_{2}X + \frac{1}{2}X + \frac{1}$$

$$C_{1x}'\frac{1}{x^{2}} + C_{2x}'\frac{1}{x} = 0$$

$$C_{1x}'\left(\frac{1}{x^{2}}\right) + C_{2x}'\left(\frac{1}{x^{2}}\right) = e_{x}'^{2}$$

$$C_{1x}'\left(\frac{1}{x^{2}}\right) + C_{2x}'\left(\frac{1}{x^{2}}\right) =$$

 $\frac{\partial^2 x^2 y'' + 10xy' + 8y = x^2}{\sqrt{4}} df denk. y_h = \frac{C_1}{x} + \frac{C_2}{x^8}$ ise penel (62) $C_{1}(x) = 0$ $C_{1}(x) = 0$ $C_{2}(x) = 0$ $C_{3}(x) = 0$ C_{3 $C_{1x}^{1} = \frac{x^{2}}{7} \rightarrow C_{1x} = \frac{x^{3}}{21} + C_{1}$ $y = \frac{C_{1X}}{X} + \frac{C_{2X}}{X^{8}}$ $c_{1x}^{\prime} = -\frac{x^{9}}{7} \rightarrow c_{1x} = -\frac{x^{10}}{70} + c_{1x}$ $y = \left(\frac{x^{3}}{21} + c_{1}\right) + \left(-\frac{x^{10}}{70} + c_{2}\right) + \left(\frac{x^{2}}{70} + c_{2}\right) + \left(\frac{x^{2}}{70$ 1. mertebeden sabit katsayılı lineer dif. denklemleri $a_0 y^{(n)} + \cdots + a_{n-2} y'' + a_{n-1} y' + a_n y = b(x), a_0 \neq 0$ b(x) = 0 ohrsø dif. denh. homojendir. Sabit Katsaysh Lineer D.f. Denklemleri y'+2y=0 beneform $y'+2y=0 \rightarrow r=-2 \rightarrow y=C_1e^{-2x}$ $\int_{-x}^{x} y''+2y'-3y=0$ 9 y 4 2 y = 0 Genel 45 2 v m 0 = y' - 3y = 0 Genel Gozim $r^2 + 2r - 3 = 0$ $r-3=0 \rightarrow r=3 \rightarrow y=c_1e^{3x}$ (r-1)(r+3)=0r=1 , r=-3Dr y'=0 Genel 452vm y = c, ex + & e-3x $r=0 \rightarrow y=C_1$ 13-212-r+2=0 (r-1)(r+1)(r-2)=025 y111-2y"-y"+2y=0 r=1, r=-1, r=2 y= c,ex + cze-x + cze2x benel abrûm

```
9 y(4) 2y"+11y"-2y+10y=0 Genel Goron
  r^4 - 2r^3 + 11r^2 - 2r + 10 = 0
  (r^2-2r+10)(r^2+1)=0 \Rightarrow r_{1,2}=\mp 1
  ((r-1)^2+3)(r^2+1)=0 r_{3.4}=1\mp31
 y=Gcosx+Cosinx+ex(Gcos3x+Cusin3x)
\int y'' - 6y' + 9y = 0 Genel as zon
   r^2-6r+9=0 \rightarrow (r-3)^2=0 \rightarrow r_1=r_2=3
       y = (c_1 + c_2 \times) e^{3x}
y(5) - 2y(4) + y(1) = 0 benef 4500
   r^{5} - 2r^{4} + r^{3} = 0 \longrightarrow r^{3}(r-1)^{2} = 0 \longrightarrow r_{1} = r_{2} = r_{3} = 0, r_{4} = r_{5} = 1
   9=4+6x+63x2+(64+65x)ex
$\frac{1}{2} y^{(4)} + 6y''' + 12y'' + 8y' = 0 Genel assim
    r4+6r3+12r2+8r=0
    r(r^3+6r^2+12r+8)=0 \rightarrow r(r+2)^3=0
   \eta = 0, \eta = \eta = -2 \longrightarrow y = q + (c_2 + c_3 x + c_4 x^2) e^{-2x}
2° y(4) + 8y" + 16y = 0 6enel 452vn
    r4+812+16=0
    (r^2+4)^2=0 y=(c_1+c_2x)(os2x)
                                 + (G+4x) Sin2x
    r=12=21
    r3=r4=-21
```

```
9'' y'' - 4y = 0 Genel 4020m
   r^2 4 = 0 \rightarrow (r-2)(r+2) = 0 \rightarrow y = c_1 e^{2x} + c_2 e^{-2x}
                  1=2,2=-2
Or y"+y'=0 Genel 4520m
    r^2 + r = 0 \rightarrow r(r+1) = 0 \rightarrow y = c_1 + c_1 e^{-x}
                  1=0, 1=-1
   r^3 - 9r = 0 \rightarrow r(r^2 - 9) = 0 \rightarrow r(r - 3)(r + 3) = 0 \rightarrow r_1 = 0, r_2 = 3, r_3 = -3
De y"-9y'=0 benel 452im
      y = c_1 + c_2 e^{3x} + c_3 e^{-3x}
2 y(4)-2y"-y"+2y'=0 Genel 462vm
   r^{4}-2r^{3}-r^{2}+2r=0
r(r-1)(r+1)(r-2)=0
y=c_{1}+c_{2}e^{x}+c_{3}e^{-x}+c_{4}e^{2x}
   r^2+g=0 \rightarrow r^2=-g=gi^2 \rightarrow r_{1,2}=\mp 3i \rightarrow y=C_1\cos 3x+C_2\sin 3x
D'y"+9y=0 Genel 4520m
    r^3+4r=0 \rightarrow r(r^2+4)=0 \rightarrow r(r-2i)(r+2i)=0
DE y"+44 = 0 Genel 452 dm
   r_1 = 0, r_2 = 2\bar{i}, r_3 = -2\bar{i} \longrightarrow y = c_1 + c_2 \cos 2x + c_3 \sin 2x
    r^2-6r+13=0 \rightarrow (r-3)^2+4=0 \rightarrow \int_{1/2}^{1/2}=3\mp 2i
or y"-6y'+13y=0 Genel 4520m
                                      y= e3x (Gcos2x + Czsin2x)
$\frac{1}{2}y''' - 3y'' + 4y' - 12y = 0 Genel 462im
   r^3 - 3r^2 + 4r - 12 = 0
r_1 = 3, r_2 = 2i, r_3 = -2i
    (r-3)(r^2+4)=0 y=qe^{3x}+c_2\cos 2x+c_3\sin 2x
2 y"- 4y"+5y'=0 Genel 452m
   r^{3}-4r^{2}+5r=0 > r((r-2)^{2}+1)=0 > y=G+\ell^{2x}(c_{2}6sx)
                                                                    + czsinx)
  r(r^2-4r+5)=0 r_1=0, r_2=2+1, r_3=2-1
```

 $((r-2)^2+1)^5$. r^2 . $(r-2)^3$. $(r^2+9)(r^2-9)$ $r_1 = r_2 = r_3 = 2 + i$ $r_7 = r_8 = 0$ 1g=10=11=2 =31 14=3 $r_4 = r_5 = r_6 = 2 - i$ y = (c1+c2x+c3x2) e2x cosx + (C4+C5x+6x2) e2x sinx + c7+C8x (Cg+G0X+C11X2) e2X+C12C0S3X+G13Sin3X+C14e3X+G5e-3X $(r^2+4)^3((r-3)^2+4)^2.(r+2).r^4.(r^2-9)^2$ $\Gamma_1 = \Gamma_2 = \Gamma_3 = 2i$ $\Gamma_3 = \Gamma_8 = 3 + 2i$ $\Gamma_{11} = -2$ $\Gamma_4 = \Gamma_5 = \Gamma_6 = -2i$ $\Gamma_9 = \Gamma_{10} = 3 - 2i$ $\Gamma_{12} = 7$ 1/2=1/3=1/4=1/5=0 $y = (C_1 + C_2 \times + C_3 \times^2) \cos 2x + (C_4 + C_5 \times + C_4 \times^2) \sin 2x$ + (G+Gx) e3xcos2x + (Cg+Gox) e3xsin2x + G1e-2x $+C_{12}+C_{13}X+C_{14}X^{2}+C_{15}X^{3}+(C_{16}+C_{17}X)e^{3X}+(C_{18}+C_{19}X)e^{-3X}$ Sabit Kortsaysh Homojen olmayorn lineer dif. denklemleri $a_0 y^{(n)} + - - + a_{n-2} y'' + a_{n-1} y' + a_n y = b(x) \neq 0$ 4 = 4n + 4p yn: Homojen 462m yp: özel 482im Homojen Kisimdon Kath Kok Yokson b(x) = b, cospx + b_2 singx -> yp = Gcospx + Cesingx (bir tonesi)
b(x) = pmx/hrasex + h- simpr)

mx. $b(x) = b \rightarrow y_p = c$ $b(x) = e^{mx} (b_1 cos \beta x + b_2 sin \beta x) \rightarrow y_p = e^{mx} (C_1 cos \beta x + C_2 sin \beta x) \rightarrow$ $b(x) = b_0 x^n + \cdots + b_{n-1} x + b_n \longrightarrow y_p = G_0 x^n + \cdots + G_{n-1} x + C_n$ $b(x) = (b_0 x^n + \dots + b_{n-1} x + b_n) e^{mx} \rightarrow y_p = (c_0 x^n + \dots + c_{n-1} x + c_n) e^{mx}$ $b(x) = b_1(x) \cos \beta x + b_2(x) \sin \beta x \longrightarrow yp = c_1(x) \cos \beta x + c_2(x) \sin \beta x$ $b(x) = (b_1(x) \cos \beta x + b_2(x) \sin \beta x) e^{mx} - y = (c_1(x) \cos \beta x + c_2(x) \sin \beta x) e^{mx}$

```
b_1(x) = x^3 + 3x } n = 3 \rightarrow \zeta_1(x), \zeta_2(x) 3 mertebeden iki polinom (66) b_2(x) = x^2 + 4
       Homojen kisimda korth kók varsa
               K tane kath kok olsun bu durumda Gözüm Xk ile çarpıhr.
             y_h(x) = \frac{c_1 + c_2 x}{k_1 = 2} + \frac{c_3 e^{3x}}{k_2 = 1}, b(x) = b_1 + b_2 e^{3x} olsum
              yp(x) = C4x2 + C5xe3x olur.
 1/3/= (c1+(2x)e2x cos3x + (c3+c4x)e2x sin3x + C5 cos2x + Gsin2x
        b(x) = xe^{2x} \sin 3x + x^2 \cos 2x \text{ ise } 9p = ?
 r_3=r_2=2+3i Tiki tone r_5=2i I tone r_5=r_4=2-3i \chi^2 ite 4arp r_6=-2i \chi^2 ite 4arp
    y_p = x^2 ((b_x + b_1)e^{2x} \cos 3x + (b_x + b_3)e^{2x} \sin 3x)
                                                                                                                                                                                      = G + Cex + Gx + (Q+
+ (Ce+Gx)sin2x
)= x+2+ corrx + o'
                + \times ((b_4 x^2 + b_5 x + b_6) \cos 2x + (b_7 x^2 + b_8 x + b_9) \sin 2x)
 y y = 4e2x + 6x2+ c3x + C4 + C5 cos 3x + C6 sin3x
          b(x) = e^{2x}\cos 3x + x + \cos 3x \text{ ise } y_p = ?
foliate b(x) te \frac{r_2 = r_3 = r_4 = 0}{r_5 = 3i} | r_5 = 3i | r_5 = 3i | r_6 = -3i | r_6 =
 y_p = e^{2x} (b_0 \cos 3x + b_1 \sin 3x) + x^3 (b_2 x + b_3) + x (b_4 \cos 3x + b_5 \sin 3x)
D' yh = (4+62x+63x2) e-2x+64ex+65x+66
           b(x) = xe^{-2x} + x^2 + e^{2x} ise y_p = ?
      1=12=13=-2 14=1 15=16=0
 y_p = x^3 (b_0 x + b_1) e^{-2x} + x^2 (b_2 x^2 + b_3 x + b_4) + b_5 e^{2x}
```

Beliri Katsayılar Metrodu

$$y'''-3y''+2y=2x^2+3$$
 Genel Gozim

 $r^2-3y'+2=0 \rightarrow (r-1)(r-2)=0 \rightarrow r_1=1, r_2=2$
 $y_n=c_1e^x+c_2e^{2x}$
 $y_p=b_0x^2+b_1x+b_2$
 $y_p''=2b_0x+b_1$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0x^2+(2b_1-6b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0x^2+(2b_1-2b_0)x+(2b_1-2b_0)x+(2b_2-3b_1+2b_0)=2x^2+3$
 $y''=2b_0x^2+(2b_1-2b_0)x+(2b$

 $y_p = -\frac{x^3}{2} - \frac{x^2}{2} - xe^{x} + 2\cos x - 5inx$ $y = y_1 + y_p = G + C_2 \times + G e^{X} - \frac{x^3}{6} - \frac{x^2}{2} - x e^{X} + 2\cos x - \sin X$

2 y"-y = exsinx dif. denk. veriliyor a) Parametre Depision Youtemigle 402. b) Belirsiz Katsayılar Yöntemiyle 402. a) $r^2 - 1 = 0 \rightarrow (r - 1)(r + 1) = 0 \rightarrow r_1 = 1$, $r_2 = -1 \rightarrow y_h = c_1 e^{x} + c_2 e^{-x}$ $C_{1x}'e^{x} + C_{2x}'e^{-x} = 0$ $C_{1x}'e^{x} + C_{2x}'e^{-x} = e^{x}sinx$ $\left[e^{x} - e^{-x}\right]\left[G_{1x}'\right] = \left[e^{x}sinx\right]$ $C_{1x}'e^{x} - C_{2x}'e^{-x} = e^{x}sinx$ $\begin{bmatrix} e^{x} & e^{-x} & o \\ e^{x} & -e^{-x} & e^{x} sinx \end{bmatrix} \sim \begin{bmatrix} e^{x} & e^{-x} & o \\ 2e^{x} & o & e^{x} sinx \end{bmatrix} \sim \begin{bmatrix} 1 & e^{-2x} & o \\ 2 & o & sinx \end{bmatrix}$ $C_{1X}' = \frac{1}{2} \sin X \longrightarrow C_{1X} = C_1 - \frac{1}{2} \cos X$ $c'_{2x} = -\frac{1}{2}e^{2x}sinx \longrightarrow c_{2x} = c_2 + \frac{e^{2x}}{10}(cosx-2sinx)$ $y = G_X e^X + G_X e^{-X} = G_1 e^X + G_2 e^{-X} - \frac{1}{5} e^X (2\cos X + \sin X)$ 2) $r^2 \cdot 1 = 0$ → (r-1)(r+1) = 0 → $r_1 = 1$, $r_2 = -1$ → $y_h = c_1 e^{x} + c_2 e^{-x}$ $y_p' = e^{x} ((b_1+b_2)\cos x + (b_2-b_1)\sin x)$ $y_p'' - y_p = e^{x}\sin x$ $y_p'' = e^{x} (2b_2\cos x - 2b_1\sin x)$ $y_{p}^{\mu}-y_{p}=e^{x}(2b_{z}cosx-2b_{1}sinx)-e^{x}(b_{1}cosx+b_{2}sinx)$ $= e^{\times}((2b_2-b_1)\cos \times -(2b_1+b_2)\sin \times) = e^{\times}\sin \times$ $2b_{2}-b_{1}=0$ $b_{2}+2b_{1}=-1$ $\begin{bmatrix} -1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 5 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2/5 \\ 0 & 1 & -1/5 \end{bmatrix} \rightarrow b_{2}$ 26× $y_p = e^{x} \left(-\frac{2}{3}\cos x - \frac{1}{5}\sin x\right) = -\frac{e^{x}}{5} \left(2\cos x + \sin x\right)$ 2/X y=yh+yp=Gex+Ge-x-ex (2cosx+sinx)

```
De y"+y = secx Parametre Kestirim Yon. Genel 452vm
  r^2 + 1 = 0 \rightarrow r = i, r_2 = -i \rightarrow y_h = G \cos x + G \sin x
C_{1X}' \cos X + C_{2X}' \sin X = 0
-C_{1X}' \sin X + C_{2X}' \cos X = \sec X
\left[ -\sin X \cos X \right] \left[ -\sin X \cos X \right] \left[ -\sin X \cos X \right] \left[ -\cos X \right] \left[ -\sin X \cos X \right] \left[ -\cos X \right]
 [cosx sinx o] ~ [cosxsinx sin2x o] ~ [cosxsinx sin2x o] ~ [cosxsinx cos2x 1] ~ [0 1 1]
  y = Gx cosx + C2x Sin X
  C'_{1X} = -tanX \longrightarrow G_{1X} = G + ln|cosX|
                                                                              = C1 COSX + C2 SINX
  C_{2x} = 1 \longrightarrow C_{2x} = C_2 + X
                                                                                 + cosx. Inlcosxl
Ds y"+44 = 4 ton2x P.K.Y. The 402.
                                                                                  + x sinx
     7+4=0->+==zi, ==-zi->=yn= 4 ensex + Cosinex
C_{1x} \cos 2x + C_{2x} \sin 2x = 0
-2C_{1x} \sin 2x + 2C_{2x} \cos 2x = 4 \tan 2x
\left[ -\sin 2x + \cos 2x + \cos 2x + \cos 2x \right] \left[ -\cos 2x - \cos 2x \right]
  [cos2x sin2x o] ~ [cos2x sin2x sin2x o] 
[-sin2x cos2x 2fan2x] ~ [-cos2x sin2x cos2x 2sin2x]
   \sim \begin{bmatrix} \cos 2x \sin 2x & \sin^2 2x & 0 \\ 0 & 1 & 2\sin 2x \end{bmatrix} \sim \begin{bmatrix} \cos 2x \sin 2x & 0 & -2\sin^3 2x \\ 0 & 1 & 2\sin 2x \end{bmatrix}

\sim \begin{bmatrix} 1 & 0 & -\frac{2\sin^2 2x}{\cos 2x} \\ 0 & 1 & 2\sin^2 2x \end{bmatrix} G_{1x}' = -\frac{2\sin^2 2x}{\cos 2x} \rightarrow G_{1x} = G_{1x} + \sin^2 2x + \tan^2 2x \\
C_{2x}' = 2\sin^2 2x \rightarrow G_{2x} = G_{2x} - \cos^2 2x

       = C, cos2x + Czsin2x + cos2xSin2x - cos2x. In |sec2x + tan2x | - cos2x stn2x
   y = C_{1X} \cos 2X + C_{2X} \sin 2X
       = C1 cos2x + C2 sin2x - cos2x. |n| sec2x + Yan2x|
```

$$(a_0 x^n y^{(n)} + \cdots + a_{n-2} x^2 y'' + a_{n-1} x y' + a_n y = b(x))$$

$$x = e^{t} \xrightarrow{dx} = e^{t} = x$$

$$dt = e^{-t} = x$$

$$dt = e^{-t} = x$$

$$dt = e^{-t} = x$$

$$y' = \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = e^{-t} \frac{dy}{dt} = \frac{1}{x} \frac{dy}{dt} = \frac{1}{x$$

$$y'' = \frac{d^2y}{dx^2} = \frac{d}{dx}(y') = \frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right) \left(\frac{x^2y''}{x^2}\right) \xrightarrow{X^2y''} D(0-1)y$$

$$y''' = \frac{d^{3}y}{dx^{3}} = \frac{d}{dx}(y'') = \frac{1}{x^{3}}\left(\frac{d^{3}y}{dt^{3}} - 3\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt}\right) (x^{3}y''' \rightarrow D(0-1)(0-2)y$$

x yerine
$$ax+b$$
 obsa idi
 $ax+b=e^{t} \rightarrow \frac{dx}{dt} = \frac{a}{a}e^{t} = \frac{ax+b}{a} \rightarrow \frac{dt}{dx} = ae^{t} = \frac{a}{ax+b}$
 $ax+b=e^{t} \rightarrow \frac{dx}{dt} = \frac{a}{a}e^{t} = \frac{ax+b}{a} \rightarrow \frac{dt}{dx} \Rightarrow aDy$

$$ax + b = e^{c} \rightarrow \overline{dt} = \alpha$$

$$y' = \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{\alpha}{\alpha x + b} \frac{dy}{dt} \qquad (\alpha x + b) y' \rightarrow \alpha D y$$

$$y' = \frac{d^{2}y}{dx} = \frac{d^{2}y}{dx^{2}} = \frac{d$$

$$y'' = \frac{d^2y}{dx^2} = \frac{d}{dx}(y') = \frac{a^2}{(ax+b)^2} \left(\frac{d^2y}{dt^2} - \frac{d^2y}{dt}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt} \left(\frac{d^2y}{dt^2} - \frac{d^2y}{dt}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt} \left(\frac{d^2y}{dt^2} - \frac{d^2y}{dt}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt} \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt} \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt} \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt^2} \left(\frac{d^2y}{dt^2} - \frac{d^2y}{dt^2}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt^2} \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt^2} \left(\frac{d^2y}{dt^2} - \frac{d^2y}{dt^2}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} = \frac{d^2y}{dt^2} \left(\frac{d^2y}{dt^2} - \frac{d^2y}{dt^2}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{ax+b}{y}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2} + \frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \left(\frac{d^2y}{dt^2}\right) \frac{d^2y}{dt^2}$$

$$\int_{0}^{2\pi} dx^{3} dx = (ax+b)^{3}$$

$$\int_{0}^{2\pi} dx^{3} dx = (ax+b)^{3}$$

$$\int_{0}^{2\pi} dx^{3} dx = (ax+b)^{3}$$

$$\frac{1}{2} \int_{0}^{2} x^{3} y''' + 3x^{2} y'' = \ln x + x \text{ Genel advisor}$$

$$x = e^{t}$$
 ise $\ln x = t$, $\dot{\chi} = e^{-t}$ ohm.

$$D(0-1)(0-2)y + 3D(0-1)y = t + e^{t}$$

$$(D^{3}-D)y = t + e^{t} \rightarrow \frac{d^{3}y}{dt^{3}} - \frac{dy}{dt} = t + e^{t}$$

$$y_p = t(at+b)+t(ce^t)$$

= $at^2+bt+ctet$

$$\frac{dy_{P}}{dt} = 2at + b + ce^{t} + cte^{t}$$

$$r(r-1)(r+1)=0$$

 $r(r_5-1)=0$
 $r_3-r=0$

$$r_1=0, r_2=1, r_3=-1$$

$$y_h = c_1 + c_2 e^{t} + c_3 e^{-t}$$

$$\frac{d^2y_p}{dt^2} = 2a + 2ce^t + cte^t$$

$$\frac{d^3y_{P}}{dt^3} = 3ce^t + cte^t$$

 $\frac{d^3y_p}{dt^3} - \frac{dy_p}{dt} = t + e^t = 2ce^t - 2at - b$ $a = -\frac{1}{2}$, b = 0, $c = \frac{1}{2}$ $\frac{3}{3} \frac{1}{3} + 43 = 45in^2 X$ $\frac{3}{3} \frac{1}{3} + 43 = 0$ $\frac{3}{3} \frac{1}{3} \frac{1}{3} = 4 \times (3)^2 - 43 = 0$ $\frac{3}{3} \frac{1}{3} \frac{1}{3} = 4 \times (3)^2 - 43 = 0$ yp=-だ+ =et y=yn+yp= a+ get+ ge-t- +2+ tet $= G + GX + \frac{C_3}{X} + \frac{InX}{2}(X - InX)$ $y'' x^2y'' + 4xy' + 2y = x^2$ Genel 4525m $/ x = e^{t} - 3 \times y' = Dy, x^{2}y'' = D(0-1)y$ $(r+1)(r+2) = 0 \rightarrow r=-1, r=-2$ $D(0-1)y+4Dy+2y=e^{2t}$ $y_h = c_1 e^{-t} + c_2 e^{-rt}$ $(0^2+30+2)y=e^{2t}$ yp = a ert Kath Lisk yoh $\frac{d^{2}y}{dt^{2}} + 3\frac{dy}{dt} + 2y = e^{2X}$ $\frac{dt}{dt} = 200^{2t} \frac{d^2y}{dt^2} + 400^{2t}$ $\frac{d^{2}y_{p}}{dt^{2}} + 3\frac{dy_{p}}{dt} + 2y_{p} = e^{2x} = 12ae^{2t}$ $y = y_h + y_p = 4e^{-t} + 2e^{-2t} + 12e^{2t} = 4 + 12e^{2t} = 4$ $(x-1)^2 y'' - 4(x-1)y' + 6y = x$ Genel 452vm $0(0-1)y-40y+6y=1+e^{t}$, $x-1=e^{t}$ $r^2 - 5r + 6 = 0 \rightarrow (r-2)(r-3) = 0$ $(0^2-50+6)y=1+e^t$ $y_{h} = c_{1}e^{2t} + c_{2}e^{3t}$ $\frac{d^{2}y}{dt^{2}} - 8\frac{dy}{dt} + 6y = 1 + e^{t}$ $\frac{d^2y_0}{dt^2} - 5\frac{dy_0}{dt} + 6y_0 = 1 + e^t$ = 6a + 2bet $a = \frac{1}{6}b = \frac{1}{2}$ $\Rightarrow t$ yp = a + bet Kath kok yoh. y=yn+yp=4e2+4e3++++2et dyo = bet $\frac{d^2yp}{dt^2} = be^t$ $= c_1(x-1)^2 + c_2(x-1)^3 + \frac{x-1}{2} + \frac{1}{6}$

 $x^2 = 4x = 4x - 6x^2$, y(z) = 4, y'(z) = -1/ dif. denh. genel commu $x = e^{t} \rightarrow x' = e^{-t}, xy' = 0y, x^{2}y'' = 0(0-1)y$ $\Rightarrow D(0-1)y-4Dy+4y=4e^{2t}-6e^{3t}$ $(D^2 - 5D + 4)y = 4e^{2t} - 6e^{3t}$ (r-1)(r-4)=0 $y_h = c_1 e^t + c_2 e^{4t}$ $\frac{d^2y}{dt^2} - 5\frac{dy}{dt} + 4y = 4e^{2t} - 6e^{3t}$ $y_p = ae^{2t} + be^{3t}$ Kath Kok yoh $\frac{dy_{p}}{dt} = 2ae^{2t} + 3be^{3t}$, $\frac{d^{2}y_{p}}{dt^{2}} = 4ae^{2t} + 9be^{3t}$ $\frac{d^{2}y_{p}-5}{dt^{2}} - 5\frac{dy_{p}+4y_{p}=4e^{2t}-6e^{3t}=-2\alpha e^{2t}-2be^{3t}}{dt^{2}} = -2\alpha e^{2t}-2be^{3t}$ $y_p = -2e^{2t} + 3e^{3t}$ $y = y_h + y_p = 4e^{4t} + 2e^{4t} + 3e^{3t}$ $y(2) = 4 \longrightarrow 26 + 1662 - 8 + 24 = 4 \longrightarrow 6 + 862 = -6$ $y'(2) = -1 \longrightarrow c_1 + 32c_2 - 8 + 36 = -1 \longrightarrow c_1 + 32c_2 = -29$ $y' = 4 + 46x^3 - 4x + 9x^2$ $C_1 = \frac{5}{3}$ $C_2 = -\frac{23}{24}$ $y = \frac{5x}{3} - \frac{23x^4}{24} - 2x^2 + 3x^3$ $x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = x^{3}$ Genel 4825m $\frac{1}{x^3} \frac{d^3y}{dx^3} - 4x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} - 8y = 4\ln x$ Genel 402im $(3x+2)^2y'' + 3(3x+2)y' - 36y = 3x^2 + 4x + 1$ Genel corn (3x+2)y' = 30y $(3x+2)^2y'' = 90(0-1)y$ $3x+2=e^t$ $90(0-1)y + 90y' - 36y = 3(\frac{e^{t}-2}{3})^{2} + 4(\frac{e^{t}-2}{3}) + 1$ bu schilde 452

Dönüşüm Kullanovak förüm $\tilde{y}_{1}(1-x^{2})y''-xy'+4y=2x^{2}-1$ dif-denk. $x=\cos t$ donojomonia kullanarak 452. $x = cost \longrightarrow \frac{dx}{dt} = -sint \longrightarrow \frac{dt}{dx} = -\frac{1}{sint}$ $y' = \frac{dy}{dt} = \frac{dy}{dt} = -\frac{1}{sint} \frac{dy}{dt}$ $y'' = \frac{d^2y}{dx^2} = \frac{d}{dx}(y') = \frac{d}{dt}(y') \cdot \frac{dt}{dx} = \frac{1}{\sin^2 t} \left(\frac{d^2y}{dt^2} - \frac{\cos t}{\sin t} \frac{dy}{dt}\right)$ $(1-\cos^2t)\frac{1}{\sin^2t}\left(\frac{d^2y}{dt^2}-\frac{\cos t}{\sin t}\frac{dy}{dt}\right)+\frac{\cos t}{\sin t}\frac{dy}{dt}+4y=2\cos^2t-1$ $\frac{d^{2}y}{dt^{2}} + 4y = \cos 2t \qquad r^{2} + 4 = 0 \implies r_{1} = 2i, r_{2} = -2i$ $y_{h} = C_{1} \cos 2t + C_{2} \sin 2t$ yp = t (a cos2t+bsin2t) Karth bol von $\frac{ds}{dt} = (a\cos 2t + b\sin 2t) + t(-2a\sin 2t + 2b\cos 2t)$ $\frac{d^2 y_0}{dt^2} = (-4a \sin 2t + 4b \cos 2t) + t(-4a \cos 2t - 4b \sin 2t)$ $\frac{d^{2}y_{p}}{dt^{2}} + 4y_{p} = cos2t = -40sin2t + 4bcos2t = -40sin2t$ $= G(2x-1) + G(2x(1-x^2))$ $y = y_h + y_p = G_1 \cos 2t + C_2 \sin 2t + \frac{t}{4} \sin 2t$ + 4 (arccosx). (2x VI-x2) = C1(2x-1) + 2C2x VI-x2 $\cos 2t = 2\cos^2 t - 1 = 2x - 1$ $sin2t = 2 cost sint = 2x \sqrt{1-x^2}$ * * Trink. arccosx