

First Course Handout

EE917: PYTHON-Based Simulation, Design and Analysis of Wireless Systems Jan-Mar 2024 **E-masters in Communication Systems Department of Electrical Engineering Indian Institute of Technology Kanpur**

1. Objectives:

As part of the course, students will participate and successfully complete several PYTHON-based projects on key 4G/5G wireless technologies such as Multiple-Antenna Systems, OFDM, MIMO, MIMO-OFDM in significant detail. Students will also be introduced to various concepts from a practical perspective such as beamforming, channel estimation, optimization, detection, and bit-error rate (BER) performance. In these projects, students will also gain exposure to a variety of Python libraries and develop the skills to effectively use integrated development environments (IDEs) for tackling more extensive projects in the future TECHNOLOG

2. Prerequisites:

EE920 Wireless communication

Students are also expected to be familiar with basic concepts of

- Probability, Random Variables and Random Processes
- Linear Algebra, Properties of Matrices etc.
- Calculus, differentiation, integration

3. Course Contents:

S.No	Broad Title	Topics	Number of Lectures
1	Introduction to PYTHON	Project 1: Introduction to PYTHON Programming and Packages for Simulation and Analysis of Communication Systems.	4
2	Wireless channel modeling and digital system simulation	Project 2: PYTHON-Based Wireless Channel Modeling and Analysis. Project 3: PYTHON-Based Digital Comm. System Simulation and Performance.	4
3	Wireless system simulation and analysis	Project 4: PYTHON-Based Wireless System Simulation and Performance.	4
4	Multiple antenna systems, beamforming, diversity and BER performance	Project 5: PYTHON-Based MRC Beamforming for Multi-Antenna Systems. Project 6: PYTHON-Based EGC and Selection Combining for Multi-Antenna Systems.	4
5	MIMO systems – Transceiver design and Analysis	Project 7: PYTHON - Based MIMO ZF/MMSE Receiver Design Project 8: PYTHON - Based MIMO ML Receiver Design.	4
6	MIMO optimization for rate maximization, MIMO channel estimation	Project 9: SVD-Based MIMO optimization. Project 10: PYTHON - Based MIMO channel estimation – ML and MMSE estimators.	4
7	Orthogonal Frequency Division Multiplexing (OFDM) Simulation	Project 11: PYTHON-based 4G/5G OFDM System Design, Simulation and Analysis.	4
8	High Speed MIMO OFDM technology for 4G and 5G	Project 12: PYTHON-based Project for Simulation and Performance of 4G/5G MIMO-OFDM Technology.	4

4. Special Emphasis:

PYTHON-based simulation of below systems

- Fading channel modeling, Deep fade
- Diversity, Multi-Antenna Systems
- MIMO Technology
- OFDM Technology
- MIMO-OFDM Technology

5. Live Interaction:

- Sunday 4:00 PM 5:00 PM via zoom.
- Students can also contact both instructor as well as TAs via e-mail.

6. Evaluation Components & Policies:

क्योगिकी संह	Proposed Weightage
Assignments (Theory)	20%
Quizzes	30%
Final exam	40%
Attendance Minimum 80% attendance	10%

Best 3 out of four quizzes

Best 6 out of 8 assignments

7. Course Policies: Attendance, Honesty Practices, Withdrawal (within the limits of DOAA Guidelines)

Attendance Policy: Minimum 80% attendance is required to score the 10% marks specified for attendance. Attendance will be recorded in every session.

All participants MUST keep their video feed ON during the live interaction to monitor attendance and participation.

Students are expected to observe a **personal code of honesty** in submission of assignment solutions, quizzes and exams. This will be based on honor code. 25% marks will be deducted for plagiarism or copying.

8. Books & References: Properly Formatted along with listing of possible internet sources.

Principles of Modern Wireless Communications	Aditya K. Jagannatham McGraw Hill Education - 2015 http://www.mheducation.co.in/9781259 029578-india-principles-of-modern- wireless-communications-systems
Reference Books	
Practical Numerical Computing Using Python: Scientific & Engineering Applications	Mahendra K Verma
Fundamentals of Wireless Communication	David Tse and Pramod Viswanath Cambridge University Press, 2005 http://www.eecs.berkeley.edu/~dtse/bo ok.html
Wireless Communications	Andrea Goldsmith Cambridge University Press

9. Instructor and TA Information

Instructor				
Prof. Aditya K. Jagannatham	ACES 205D			
Arun Kumar Chair Professor	Electrical Engineering Department			
Electrical Engineering	IIT Kanpur			
100	Kanpur 208016			
OF OF	e-mail: adityaj@iitk.ac.in			
Course TAs				
Anand Mehrotra	anandme@iitk.ac.in			

10. Assignment format

- One assignment every week. Total 8 assignments
- Number of questions in each assignment: 10
- Question format: Multiple choice objective questions with four given options and only one correct option

- One mark per question
- NO negative marking

11. Quiz format

- One quiz every 2 weeks. Total 4 quizzes
- Number of questions in each quiz: 10
- Question format: Multiple choice objective questions with four given options and only one correct option
- One mark per question
- NO negative marking
- Quiz 1 Based on Assignments 1/2
- Quiz 2 Based on Assignments 3/4
- Quiz 3 Based on Assignments 5/6
- Quiz 4 Based on Assignments 7/8

TUTE OF

Duration 30-45 min.

12. Final exam format

- Total questions in Final: 40
- Question format: Multiple choice objective questions with four given options and only one correct option
- One mark per question
- NO negative marking
- Closed-book exam
- Duration is 3 hours

Question Paper PATTERN

- o 8 questions: Recall type (Purely formula), one from each week Assignments/ Quizzes
- o 16 questions: Seen, Directly from Assignments/ Quizzes, two from each week
- 16 questions: Unseen, Roughly 2 from every week based on Assignment/ Quiz questions TECHNOLOG