

Analysis of components of food production for sustainability in Canada

Chris Bunio, Cuneyt Akcora.

S. Moraga ¹ , E. Pacheco ², T. Pender ³, I. Vinícius ⁴ , S. Yeal ¹

August 26, 2021

Team 10 Project by Theorymesh August 26, 2021

¹Department of Mathematics. Simon Fraser University. Canada. ²Department of Mathematics and Statistics, University of Calgary. ³Department of Mathematics and Computer Science, University of Lethbridge. ⁴Department of Mathematics, University of British Columbia

Introduction

- 1 Introduction
- 2 Problem
- 3 Results achieved

4 Data analysis

TheoryMesh and food sustainability challenges

A bit background

Co-founders:

Introduction 00

- Chris Bunio (mentor), Paul Westdal, Sephanie Westdal, Anne Kirk.
- Started 2019.
- Increasing transparency in the food supply chain.

Vision and Goals

- Provide the platform to integrate data from first inputs to consumer purchase, creating a traceable, efficient and intelligent supply chain.
- Certification.
- 3 Traceability.
- 4 Sustainability.

- 1 Introduction
- 2 Problem
- 4 Data analysis

The problem proposed

Expectations

TheoryMesh's goals from the PIMS can be presented as:

- Model and predict the environmental impact from agricultural practices.
- Complement the current TheoryMesh system.
- Combine both systems to measure and predict sustainability levels of products and companies.

1 Introduction

- 2 Problem
- 3 Results achieved
- 4 Data analysis

6 / 18

Availability of information for producers

- Information is power.
- Currently, the relavent information resides in technical journals that is penetrable only for researchers and experts in the field.
- Needs to be available/intelligible to producers.
- The general sentiment conveyed by industry participants:
 - There needs to be a change in the way that information is disseminated.
 - It used to be that the when/where/how questions of crop production were passed by word of mouth: "Do this because it has always worked."
 - This is no longer tenable with the rapidly changing climate/environmental conditions.
 - Over the coming decades that will span a contemporary producer's career, they will invariably need to adjust their approaches.

Team 10 August 26, 2021 Project by Theorymesh

8 / 18

What can be gleaned from the data?

 $K = K(x_1, x_2, ..., x_n)$, where no x_i is a temporal variable.

10 Project by Theorymesh August 26, 2021

 Problem
 Results achieved
 Data analysis

 00
 000●0
 0000000

9 / 18

Factors Affecting K

Problem Results achieved Data analysis

OO OOO● OOOOOOO

August 26, 2021

10 / 18

Yield vs. Precipitation in Alberta

- 1 Introduction
- 2 Problem

- 4 Data analysis

Environmental impact Canada: Amount of indicators from 1984-2017

Correlation between Greenhouse gases and farms

	C02	CO	GHG	Nox	Sox	voc	Beef	Pork	Sheep/Lamb	Poultry
CO2	1.00	-0.34	0.50	0.07	-0.19	-0.30	0.02	-0.00	0.59	0.60
со	-0.34	1.00	0.63	0.89	0.97	1.00	0.90	0.84	-0.77	-0.88
GHG	0.50	0.63	1.00	0.89	0.71	0.66	0.80	0.79	-0.26	-0.29
Nox	0.07	0.89	0.89	1.00	0.91	0.91	0.93	0.91	-0.60	-0.65
Sox	-0.19	0.97	0.71	0.91	1.00	0.97	0.95	0.83	-0.64	-0.82
voc	-0.30	1.00	0.66	0.91	0.97	1.00	0.91	0.85	-0.77	-0.88
Beef	0.02	0.90	0.80	0.93	0.95	0.91	1.00	0.82	-0.52	-0.72
Pork	-0.00	0.84	0.79	0.91	0.83	0.85	0.82	1.00	-0.53	-0.58
Sheep/Lamb	0.59	-0.77	-0.26	-0.60	-0.64	-0.77	-0.52	-0.53	1.00	0.87
Poultry	0.60	-0.88	-0.29	-0.65	-0.82	-0.88	-0.72	-0.58	0.87	1.00

roduction Problem Results achieved Data analysis
0 0 00000 0000 000€0000

Growth farming and agriculture

14 / 18

Correlation Beef-Sox and Pork-Sox

ProblemResults achievedData analysis○○○○○○○○○○○○●○○

Correlation GhG-Co2 and Nox-CO

Closing remarks

- There is a big opportunity to do more research about the challenges of food production.
- The is evidence that variables are strongly correlated.
- an important first step to look at sustainability.
- Still open challenges to tackle: certification and traceability.

Data analysis 00000000

References

DMCI STRATEGIES, D. McInnes (2003), Agri-food sustainability targets. A selected overview,

OECD Publishing, K. Parris et-al. (2010), Sustainable management of water resources in agriculture.

18 / 18