Boletín 3

Razonamientos y Deducciones en Lógica Proposicional

3.1. Razonamientos

Ejercicio 36.

Responde a las siguientes cuestiones:

- 1. Para qué se usa \rightarrow .
- 2. Cuándo se utiliza \models .
- 3. Qué quieren decir los símbolos \Rightarrow , \Leftarrow , \Leftrightarrow
- 4. Qué relación existe entre \rightarrow y \models .
- 5. ¿Por qué **NO es cierta esta expresión**? $\alpha \models \beta \Longleftrightarrow \alpha \rightarrow \beta$

Ejercicio 37.

Justifica la validez de las siguientes afirmaciones sobre razonamientos válidos expresados como consecuencias lógicas:

- 1. Si Φ es una contradicción y Ψ es una tautología entonces $\models \Phi \lor \Psi$.
- 2. Si Φ es una contradicción y $\models \Psi$ entonces $\models \neg \Phi \land \Psi$.
- 3. Si Φ es una contradicción y $\models \Psi$ entonces $\models \Phi \rightarrow \Psi$.
- 4. Si $\models \beta$ entonces $\models \Phi \rightarrow (\Psi \lor \beta)$.
- 5. Si $\models \Psi$ entonces $\Phi \models \Psi$.
- 6. Si Φ es una contradicción entonces $\Phi \models \Psi$.
- 7. Φ y Ψ son lógicamente equivalentes si
i $\Phi \models \Psi$ y $\Psi \models \Phi$.
- 8. $\models \Phi \rightarrow \Psi \sin \Phi \models \Psi$.

Ejercicio 38.

Demostrar mediante refutación utilizando DPLL, Resolución (con conjunto soporte y notación Fitting) y Tableaux semántico si el siguiente razonamiento es válido.

Justifica claramente el proceso que sigues para la demostración y las conclusiones obtenidas.

$$\{q \to p; q; p \to (r \land t)\} \models r \lor t$$

Ejercicio 39.

Demuestra, utilizando todas las técnicas SAT, si es cierto que:

$$p \models p \rightarrow q \land p \rightarrow p \land q$$

Indica explícitamente cómo utilizas las técnicas para demostrar una consecuencia lógica.

Ejercicio 40.

Se afirma que $(p \land q)$ es una oración que es consecuencia lógica del conjunto de premisas

$$\{q \to (p \lor s); p \to q; \neg r \land s \to p \lor q; \neg p \to (q \lor r) \land (q \lor \neg r); q \to (p \lor r) \land (p \lor \neg r)\}$$

Comprueba si es cierto utilizando DPLL y Tableaux Semánticos. Justifica cómo se aplican estas técnicas para comprobar razonamientos válidos.

3.2. Deducción Natural

Ejercicio 41.

Explica formalmente en qué se basan las estrategias: a) prueba por casos; b) teorema de la deducción; y c) reducción al absurdo, en el contexto de los métodos sintácticos o deductivos, como es la Deducción Natural.

Ejercicio 42.

Deduzca usando las reglas primitivas del sistema de Deducción Natural las siguientes afirmaciones:

- 1. $p \land q \vdash q \land p$
- 2. $p \lor q \vdash q \lor p$
- 3. $p \wedge (q \wedge r) \vdash (p \wedge q) \wedge r$
- 4. $p \to (q \to r) \vdash (p \land q) \to r$
- 5. $q \to p, \neg \neg q, p \to (r \land t) \vdash r \lor t$
- 6. $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$
- 7. $p \to r, q \to r \vdash (p \lor q) \to r$