

8-BIT SHIFT REGISTER WITH OUTPUT LATCHES (3-STATE)

PRELIMINARY DATA

- LOW POWER DISSIPATION $I_{CC} = 4 \mu A (MAX.) AT T_A = 25 °C$
- HIGH NOISE IMMUNITY $V_{NIH} = V_{NIL} = 28\% V_{CC} (MIN.)$
- OUTPUT DRIVE CAPABILITY 15 LSTTL LOADS FOR QA to QH 10 LSTTL LOADS FOR QH'
- SYMMETRICAL OUTPUT IMPEDANCE |IOH| = IOL = 6mA MIN. FOR QA to QH 4mA Min. FOR QH'
- BALANCED PROPAGATION DELAYS tpi + = tphi
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS595

PIN CONNECTIONS (top view)

Q.B

v_{CC}

Q C QΔ αD SI ΩF G ΩF RCK DESCRIPTION 06 5CK The M54/74HC595 is a high speed CMOS 8-BIT QН SCLR GND αн 5-7086/ 88 SN SA 89 Qρ Si The shift register has a direct-overriding clear, se-QΕ 7 NC NC QF Þ٦ RCK h۰ QG SCK NC = SH GND NC NC SCLR

No internal Connection

SHIFT REGISTERS/OUTPUT LATCHES (3-STATE) fabricated in silicon gate C2MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption. This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has 8 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register.

rial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register. All inputs are equipped with protection circuits against static discharge or transient excess voltage.

TRUTH TABLE

		INPUTS			FUNCTION					
SI	SCK	SCLR	RCK	G	FUNCTION					
х	×	×	Х	Н	QA THRU QH OUTPUTS DISABLE					
Х	×	х	х	L	QA THRU QH OUTPUTS ENABLE					
Х	х	L	Х	х	SHIFT REGISTER IS CLEARED					
L		н	×	х	FIRST STAGE OF S.R. BECOMES "L". OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY					
н	<u>_</u>	, н	х	х	FIRST STAGE OF S.R. BECMOSE "H". OTHER STAGE STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY					
Х	7	Н	х	×	STATE OF S.R. IS NOT CHANGED					
Х	х	х	<u>_</u>	x	S.R. DATA IS STORED INTO SOTRAGE REGISTER					
х	х	х	7_	х	STORAGE REGISTER STATE IS NOT CHANGED					

X: DON'T CARE

BLOCK DIAGRAM

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to 7	٧
Vı	DC Input Voltage	-0.5 to V _{CC} +0.5	٧
v _o	DC Output Voltage	-0.5 to V _{CC} +0.5	٧
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Current Per Pin QA-QH	± 35	mA
lo	DC Output Current Per Pin QH'	± 25	mA
ICC or IGND	DC V _{CC} or Ground Current	± 70	mA
PD	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	- 65 to 150	°C
TL	Lead Temperature 10 sec	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500 mW: ≅65°C derate to 300 mW by 10 mW/°C: 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 6	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
TA	Operating Temperature 74HC Series 54HC Series	- 40 to 85 - 55 to 125	°C
t _r , t _f	Input Rise and Fall Time	V _{CC}	ns

INPUT AND OUTPUT EQUIVALENT CIRCUIT

DC SPECIFICATIONS

Symbol	Parameter	v _{cc}	Test	Condition		A=25° C and 7			85°C HC	- 55 to	125°C HC	Unit
					Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.0 4.5 6.0			1.5 3.15 4.2	_		1.5 3.15 4.2		1.5 3.15 4.2		٧
V _{IL}	Low Level Input Voltage	2.0 4.5 6.0				<u>-</u>	0.5 1.35 1.8	<u>-</u>	0.5 1.35 1.8		0.5 1.35 1.8	· V
V _{ОН}	High Level Output Voltage QA-QH	2.0 4.5 6.0 4.5 6.0	V _{IN} V _{IH} or V _{IL}	OH - 20 μA - 6.0 mA - 7.8 mA	1.9 4.4 5.9 4.18 5.68	2.0 4.5 6.0 4.31 5.8		1.9 4.4 5.9 4.13 5.63		1.9 4.4 5.9 4.10 5.60	- - -	V
V _{OL}	Low Level Output Voltage QA-QH	2.0 4.5 6.0 4.5 6.0	V _{IN} V _{IH} or V _{IL}	I _{OH} 20 μA 6.0 mA 7.8 mA	- - -	0 0 0 0.17 0.18	0.1 0.1 0.1 0.26 0.26	- - -	0.1 0.1 0.1 0.33 0.33	_ _ _	0.1 0.1 0.1 0.40 0.40	٧
V _{OH}	High Level Output Voltage QH'		V _{IN} V _{IH} or V _{IL}	l _{OH} - 20 μA - 4.0 mA - 5.2 mA	1.9 4.4 5.9 4.18 5.68	2.0 4.5 6.0 4.31 5.8	- - -	1.9 4.4 5.9 4.13 5.63	- - - -	1.9 4.4 5.9 4.10 5.60	- - -	V
V _{OL}	Low Level Output Voltage QH'	2.0 4.5 6.0 4.5 6.0	V _{IN} V _{IH} or V _{IL}	¹ OH 20 μA 4.0 mA 5.2 mA		0 0 0 0.17 0.18	0.1 0.1 0.1 0.26 0.26	_ _ _	0.1 0.1 0.1 0.33 0.33	_ _ _	0.1 0.1 0.1 0.40 0.40	٧
liN	Input Leakage Current	6.0	V _{IN} = V _{CC} or GND		-	-	±0.1		±1	_	±1	
loz	3-State Output Off state Current	6.0	V _I ⇒ V _{IH} or V _{IL} V _O = V _{CC} or GND		_		±0.5	_	±0.5	_	±10	μΑ
lcc	Quiescent Supply Current	6.0	V _{IN} =	V _{CC} or GND	_	_	4		40	_	80	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 pF$, Input $t_f = t_f = 6 ns$)

Symbol	Parameter	v _{cc}	Test Condition		A = 25° C and 7		– 40 to	85°C HC		125°C HC	Unit
				Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time (QA-QH) PARALLEL	2.0 4.5 6.0		<u>-</u>	25 7 6	60 12 10	-	75 15 13	_ 	90 18 15	ns
t _{TLH} t _{THL}	Output Transition Time (QH') SERIAL	2.0 4.5 6.0		<u> </u>	30 8 7	75 15 13	111	95 19 16	_ _ _	110 22 19	ns
t _{PLH} t _{PHL}	Propagation Delay Time (SCK-QH')	2.0 4.5 6.0		<u>-</u>	80 20 17	160 32 27		200 40 34	<u>-</u>	240 40 41	ns
t _{PLH}	Propagation Delay Time (RCK-QH)	2.0 4.5 6.0			88 22 19	175 35 30	<u>-</u>	220 44 37	=	265 53 45	ns
t _{PHL}	Propagation Delay Time (SCLR-QH')	2.0 4.5 6.0			88 22 19	175 35 30	_ _ _	220 44 37		265 53 45	ns
fMAX	Maximum Clock Frequency	2.0 4.5 6.0		6 30 35	12 50 59		5 25 28	=	4 20 24		MHz
t _{W(H)} t _{W(L)}	Minimum Pulse Width (SCK, RCK)	2.0 4.5 6.0		_ _ _	30 8 7	75 15 13	<u>-</u>	95 19 16	=	110 22 19	ns
t _{W(L)}	Minimum Pulse Width (SCLR)	2.0 4.5 6.0		_ _ _	30 8 7	75 15 13	_	95 19 16	_ 	110 22 19	ns
t _s	Minimum Set-up Time (SI-SCK)	2.0 4.5 6.0		<u>-</u>	20 5 4	50 10 9	=	65 13 11	=	75 15 13	ns
t _s	Minimum Set-up Time (SCK-RCK)	2.0 4.5 6.0		-	30 8 7	75 15 13	_	95 19 16	Ξ	110 22 19	ns
t _s	Minimum Set-up Time (SCLR-RCK)	2.0 4.5 6.0		=	44 11 9	100 20 17	=	125 25 21	_ _ _	150 30 26	ns
t _h	Minimum Hold Time	2.0 4.5 6.0		=	_ _ _	0 0	_ _ _	0 0 0	=	0 0 0	ns
tREM	Minimum Clear Removal Time	2.0 4.5 6.0			10 2 2	50 10 9	_ _ _	65 13 11	_ _ _	75 15 13	ns

AC ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	Vcc	Test Condition	T _A = 25°C 54HC and 74HC			- 40 to 85°C 74HC		– 55 to 125°C 54HC		Unit
				Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PZL} t _{PZH}	3-State Output Enable Time	2.0 4.5 6.0	$R_L = 1k\Omega$	_	68 17 14	135 27 23	1 1 1	170 34 29		205 41 35	ns
t _{PLZ} t _{PHZ}	3-State Output Disable Time	2.0 4.5 6.0	$R_L = 1k\Omega$	=	64 21 18	150 30 26	-	190 38 33	_	225 45 38	ns
C _{IN}	Input Capacitance				5	10	_	10	_	10	рF
C _{OUT}	Output Capacitance			_	10	_	_	_	_	_	рF
C _{PD} (*)	Power Dissipation Capacitance			_	254	_	_	_	_	_	ρF

Note (*) C_{PD} is defined as the value of IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit)

Average opeating current is: $I_{CC(opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

