Rational Exponents

Summary

1.
$$\sqrt[root]{x^{power}} = x^{power/root}$$

Radicand

For $\sqrt[n]{a}$, the **radicand** is **a**.

We are going to build the intuition of rational exponents.

•
$$(12^5)^9 =$$

•
$$(12^6)^7 =$$

•
$$(12^{\frac{1}{7}})^7 =$$

• Let $x=12^{\frac{1}{7}}$. Substitute x into the equation below

$$(12^{\frac{1}{7}})^7 = 12$$

• Solve for *x* using radicals.

$$x^7 = 12$$

• We have $x = 12^{\frac{1}{7}}$ and $x = \sqrt[7]{12}$:

$$12^{\frac{1}{7}} = \sqrt[7]{12}$$

In general,

$$\sqrt[\text{root}]{x^{\text{power}}} = x^{\text{power/root}}$$

Example 1. Write each of the following in radical form.

(a)
$$5^{1/2}$$

(b)
$$(-9)^{5/3}$$

(c)
$$x^{1/3}$$

Example 2. Write each of the following using rational exponents.

(a)
$$\sqrt{6}$$

(b)
$$\sqrt[3]{8}$$

(c)
$$\sqrt[4]{x^3}$$

(a)
$$\sqrt{72x^2}$$

(b)
$$\sqrt{175x^3}$$

(c)
$$\sqrt{18x^4}$$

(d)
$$\sqrt{65x^5y^3}$$

(e)
$$\sqrt[3]{27x^7y^8}$$

(f)
$$\sqrt[3]{128x^6}$$