Why Proofs?

Alexander Shen

LIRMM

Outline

Proofs? Really?

Proof by example

Impossibility proof

Impossibility Proof, II

Conclusion

• mathematicians: main tool

- mathematicians: main tool
- programmers: more skeptical

- mathematicians: main tool
- programmers: more skeptical
 - correctness proof of a video game? or search engine?

- mathematicians: main tool
- programmers: more skeptical
 - correctness proof of a video game? or search engine?
 - but real-time operating system or cryptographic protocol is a different thing

 proof: a long formal meaningless manipulation

- proof: a long formal meaningless manipulation
- not at all: an argument that is so convincing that you are ready to use it to convince other people

- proof: a long formal meaningless manipulation
- not at all: an argument that is so convincing that you are ready to use it to convince other people
- a by-product and a sign of understanding

- proof: a long formal meaningless manipulation
- not at all: an argument that is so convincing that you are ready to use it to convince other people
- a by-product and a sign of understanding
- believe or not: proofs are fun

learn by examples how to understand proofs

- learn by examples how to understand proofs
- how to invent proofs

- learn by examples how to understand proofs
- how to invent proofs
- how to explain proofs

- learn by examples how to understand proofs
- how to invent proofs
- how to explain proofs
- how to enjoy proofs (most important and ambitious goal)

- learn by examples how to understand proofs
- how to invent proofs
- how to explain proofs
- how to enjoy proofs (most important and ambitious goal)

Intended audience: beginners

- learn by examples how to understand proofs
- how to invent proofs
- how to explain proofs
- how to enjoy proofs (most important and ambitious goal)

Intended audience: beginners

Prerequsites: curiosity

Paul Erdős and The Book

[Google Books and Wikipedia images]

To Begin With...

Can a chessboard 8×8 be tiled (no overlaps or empty space) by domino 1×2 -tiles?

Outline

Proofs? Really?

Proof by example

Impossibility proof

Impossibility Proof, II

Conclusion

Tiling a Chessboard

Prove that a chessboard 8×8 can be tiled (no overlaps or empty space) by domino 1×2 -tiles.

Tiling a Chessboard

Prove that a chessboard 8×8 can be tiled (no overlaps or empty space) by domino 1×2 -tiles.

Tiling a Chessboard

Prove that a chessboard 8×8 can be tiled (no overlaps or empty space) by domino 1×2 -tiles.

Other Tilings

One tiling is enough for the proof. But there are others:

Can We Tile This Board?

 did we find a tiling (and prove that it exists)?

 did we find a tiling (and prove that it exists)? No.

- did we find a tiling (and prove that it exists)? No.
- did we prove that tiling does not exist?

- did we find a tiling (and prove that it exists)? No.
- did we prove that tiling does not exist? No.

- did we find a tiling (and prove that it exists)? No.
- did we prove that tiling does not exist? No.
- can we do one of these two proofs?

Outline

Proofs? Really?

Proof by example

Impossibility proof

Impossibility Proof, II

Conclusion

Can We Tile This Board?

• one cell will always remain, because...

- one cell will always remain, because...
- there are $63 = 8 \times 8 1$ cells, an odd number

- one cell will always remain, because...
- there are $63 = 8 \times 8 1$ cells, an odd number
- 31 tiles cover 62 cells, one remains

- one cell will always remain, because...
- there are $63 = 8 \times 8 1$ cells, an odd number
- 31 tiles cover 62 cells, one remains
- mission *provably* impossible

Two Corners Cut

Two Corners Cut

64 - 2 = 62 cells, 62/2 = 31 tiles. So the tiling is possible...

Two Corners Cut

64 - 2 = 62 cells, 62/2 = 31 tiles. So the tiling is possible... is this argument OK?

should we try harder?

Outline

Proofs? Really?

Proof by example

Impossibility proof

Impossibility Proof, II

Conclusion

Can We Tile This Board?

32 white, 30 black

32 white, 30 black \Rightarrow two whites remain

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

Proof.

black and white cells, 4 black / 4 white

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

- black and white cells, 4 black / 4 white
- opposite corners are (say) black

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

- black and white cells, 4 black / 4 white
- opposite corners are (say) black
- 30 black and 32 white

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

- black and white cells, 4 black / 4 white
- opposite corners are (say) black
- 30 black and 32 white
- a domino: two different colors

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

- black and white cells, 4 black / 4 white
- opposite corners are (say) black
- 30 black and 32 white
- a domino: two different colors
- (at least) two white remain

Theorem. A chess board 8×8 without two opposite corners cannot be tiled by 1×2 dominos.

- black and white cells, 4 black / 4 white
- opposite corners are (say) black
- 30 black and 32 white
- a domino: two different colors
- (at least) two white remain
- quod erat demonstrandum

Outline

Proofs? Really?

Proof by example

Impossibility proof

Impossibility Proof, II

Conclusion

• Proofs can be really convincing

- Proofs can be really convincing
- What if we cut two non-opposite corners?
 Can we tile the rest?

- Proofs can be really convincing
- What if we cut two non-opposite corners?
 Can we tile the rest?
- Bonus problem: what if we cut any two cells of different colors?

