

Figure 1: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the dielectric water sphere of diameter 0.6 m at frequency 10 MHz.

Figure 2: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the dielectric water sphere of diameter 0.6 m at frequency 320 MHz.

Figure 3: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the dielectric water sphere of diameter 19.2 m at frequency 10 MHz.

Figure 4: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the dielectric water sphere of diameter 19.2 m at frequency 320 MHz.

Figure 5: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the dielectric water sphere of diameter 0.6 m at frequency 80 MHz.

Figure 6: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the dielectric water sphere of diameter 0.6 m at frequency 80 MHz with $\epsilon = \epsilon_o (78.98 - j0.2)$.