Matrix Decompositions 3 of 3

Singular Value Decomposition

The singular value decomposition (SVD) of a matrix is a central matrix decomposition method in linear algebra.

- It has been referred to as the fundamental theorem of linear algebra
 - SVD can be applied to all matrices, even non square ones
 - ▶ The decomposition is also always possible.

Singular Value Decomposition

SVD Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. The SVD of \mathbf{A} is a decomposition of the form

$$\mathbf{A} = \underbrace{\mathbf{U}}_{Rotation Stretch Rotation} \underbrace{\mathbf{\nabla}}_{\mathbf{V}^{\mathsf{T}}} \underbrace{\mathbf{V}^{\mathsf{T}}}_{(1)}$$

- $\mathbf{U} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix with column vectors \mathbf{u}_i , $i = 1, \dots, m$, and
- $\mathbf{V} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix with column vectors \mathbf{v}_j , $j = 1, \dots, n$.
- Lastly $\Sigma \in \mathbb{R}^{m \times n}$ matrix with $\Sigma_{ii} = \sigma_i \geq 0$ and $\Sigma_{ij} = 0, i \neq j$.

Singular Value Decomposition: Additional Terminology

The are a couple of important additional conventions and terminology with SVD. Specifically,

- The diagonal entries σ_i , $i=1,\ldots,r$, of Σ are called the **singular** values.
- The vectors \mathbf{u}_i are called the **left-singular vectors**.
- The vectors \mathbf{v}_i are called the **right-singular vectors**.
- By convention, the singular values are ordered: $\sigma_1 > \sigma_2 > \cdots > \sigma_r > 0$

For a $\mathbf{A}\in\mathbb{R}^{3 imes2}$ Source: M.P. Deisenroth *et al*, Mathematics for Machine Learning (First Edition)

R2 -> R=

Geometric Intuitions for the SVD I grave this focus on prevalue interpolation matrix of a linear mapping $\Phi: \mathbb{R}^n \to \mathbb{R}^m$

Assume we have transformation matrix of a linear mapping $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ with respect to the standard bases B and C of \mathbb{R}^n and \mathbb{R}^m respectively. Moreover, assume a second basis \tilde{B} of \mathbb{R}^n and \tilde{C} of \mathbb{R}^m .

- ① The matrix performs a basis change in the domain \mathbb{R}^n from \tilde{B} to standard basis B
 - $lackbox{ }lackbox{ }lackbox{$
- ② Having changed the coordinate system to \tilde{B} , Σ scales the new coordinates by the singular values σ_i (and adds or deletes dimensions)
 - $ightharpoonup \Sigma$ is the transformation matrix of Φ with respect to \tilde{B} and \tilde{C}
 - If m > n the scaling happens in a n-dimensional embedding within the m dimensional space. (In the example m = 3 and n = 2)
 - ▶ If m < n the process is more akin to the scaling of a projection as we are mapping from a higher dimensional space into a lower one.

Geometric Intuitions for the SVD

Ignore

Solution Lastly **U** performs a basis change in the codomain \mathbb{R}^m from \tilde{C} into the canonical basis of \mathbb{R}^m

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Geometric Intuitions for the SVD: Example

Consider

$$\mathbf{A} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \tag{2}$$

$$\begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix} \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}$$
(3)

Consider a large number of vectors in the unit square centered around ${\bf 0}$ we can easily visualize the transformation.

Geometric Intuitions for the SVD: Example

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

SVD and Eigendecomposition equivalence for SPD matrices

There is a direct relationship between the SVD and the eigendecomposition.

• Let **S** be a symmetric, positive definite matrix then we have that

$$S = PDP^{-1} \tag{4}$$

$$= \mathbf{P} \mathbf{D} \mathbf{P}^T \tag{5}$$

where \mathbf{P} is an orthogonal matrix and \mathbf{D} is diagonal.

• If we then set

$$\mathbf{U} = \mathbf{P} = \mathbf{V}, \text{ and } \mathbf{D} = \mathbf{\Sigma} \tag{6}$$

we see that the SVD of symmetric, positive definite matrices is their eigendecomposition.

High level game plan for $\mathbf{A} \in \mathbb{R}^{m \times n}$:

- Find two sets of orthonormal bases $U = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ and $V = (\mathbf{v}_1, \dots \mathbf{v}_n)$ of the codomain \mathbb{R}^m and the domain \mathbb{R}^n , respectively.
 - ▶ From these ordered bases, we will construct the matrices **U** and **V**.
- We are however looking for two specific orthonormal bases such that

$$AV = U\Sigma \tag{7}$$

where Σ has only no-zero values for $\Sigma_{ii} = \sigma_i$ and that they decreases as i increases.

We can solve for our \mathbf{v}_i s (right-singular vectors) by noting that $\mathbf{A}^T \mathbf{A}$ is symmetric, positive semi-definite and therefor diagonalizable. This means that

$$\mathbf{A}^{T}\mathbf{A} = \mathbf{P} \begin{bmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{bmatrix} \mathbf{P}^{T}$$
 (8)

where **P** is an orthogonal matrix, which is composed of the orthonormal eigenbasis. Where $\lambda_i \geq 0$ are the eigenvalues of $\mathbf{A}^T \mathbf{A}$

Also observe, under the assuming that the SVD exists that,

$$\mathbf{A}^{T}\mathbf{A} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T})^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} \tag{9}$$

$$= \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \tag{10}$$

$$= \mathbf{V} \mathbf{\Sigma}^T \mathbf{\Sigma} \mathbf{V}^T \tag{11}$$

$$= \mathbf{V} \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sigma_n^2 \end{bmatrix} \mathbf{V}^T$$
 (12)

Now can see by equating equation (8) and equation (12) that

$$\mathbf{P} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \mathbf{P}^T = \mathbf{V} \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sigma_n^2 \end{bmatrix} \mathbf{V}^T$$
 (13)

It follows that

$$\mathbf{V}^T = \mathbf{P}^T \tag{14}$$

$$\sigma_i^2 = \lambda_i \tag{15}$$

- Therefore, the eigenvectors of $\mathbf{A}^T \mathbf{A}$ that compose \mathbf{P} are the right-singular vectors \mathbf{V} of \mathbf{A}
- ullet The eigenvalues of $oldsymbol{A}^Toldsymbol{A}$ are the squared singular values of $oldsymbol{\Sigma}$

We can now follow a similar approach to the \mathbf{u}_i s (left-singular vectors). Namely

$$\mathbf{A}\mathbf{A}^{T} = \mathbf{Q} \begin{bmatrix} \alpha_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_{m} \end{bmatrix} \mathbf{Q}$$
 (16)

where \mathbf{Q} is an orthogonal matrix, which is composed of the orthonormal eigenbasis. Where $\alpha_i \geq 0$ are the eigenvalues of \mathbf{AA}^T

Also observe, under the assuming that the SVD exists that,

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T)^T \tag{17}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \tag{18}$$

$$= \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^T \mathbf{U}^T \tag{19}$$

$$= \mathbf{U} \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sigma_m^2 \end{bmatrix} \mathbf{U}^T$$
 (20)

Now can see by equating equation (16) and equation (17) that

$$\mathbf{Q} \begin{bmatrix} \alpha_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_m \end{bmatrix} \mathbf{Q}^T = \mathbf{U} \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \sigma_m^2 \end{bmatrix} \mathbf{U}^T$$
 (21)

It follows that

$$\mathbf{U} = \mathbf{Q} \tag{22}$$

$$\sigma_i^2 = \alpha_i \tag{23}$$

- \bullet Therefore, the eigenvectors of $\mathbf{A}\mathbf{A}^T$ that compose \mathbf{Q} are the left-singular vectors \mathbf{U} of \mathbf{A}
- ullet The eigenvalues of ${f A}{f A}^T$ are the squared singular values of ${f \Sigma}$

Recall that a matrix \mathbf{A} and its transpose \mathbf{A}^T possess the same eigenvalues.

- ullet This means that $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ have the same eigenvalues.
- This means that the nonzero entries of the Σ matrices in the SVD for both cases have to be the same. $(\lambda_i = \alpha_i = \sigma_i^2)$

Now in principle we already have our diagonalization.

- But it requires more calculation that we would like.
- It is possible to actually get U from V and A.

Construction of the SVD (Full SVD since 5 is not square)

From $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ it follows that

$$AV = U\Sigma \tag{24}$$

this means that

$$\mathbf{A}\mathbf{v}_i = \mathbf{u}_i \sigma_i \tag{25}$$

so each \mathbf{u}_i is

$$\mathbf{u}_{i} = \frac{1}{\sigma_{i}} \mathbf{A} \mathbf{v}_{i} \tag{26}$$

What is not clear is if these \mathbf{u}_i will be orthogonal, but we can show this now

Note that $\mathbf{v}_i \perp \mathbf{v}_j$ $(i \neq j)$ still holds under the application of \mathbf{A} , namely

$$\mathbf{A}\mathbf{v}_i \perp \mathbf{A}\mathbf{v}_j \quad i \neq j \tag{27}$$

This can be shown by

$$(\mathbf{A}\mathbf{v}_i)^T(\mathbf{A}\mathbf{v}_j) = \mathbf{v}_i^T(\mathbf{A}^T\mathbf{A})\mathbf{v}_j \qquad \mathbf{A}^T\mathbf{A} \simeq \mathbf{A}^T\mathbf{A} \qquad (28)$$

$$= \mathbf{v}_i^T(\lambda_j\mathbf{v}_j) \text{ recall that } \mathbf{v}_j \text{ is an eigenvector of } \mathbf{A}^T\mathbf{A} \qquad (29)$$

$$= \lambda_j \mathbf{v}_i^T \mathbf{v}_j \tag{30}$$

$$=0 (31)$$

This means that we can build a r dimensional orthogonal basis from $(\mathbf{Av}_1, \dots \mathbf{Av}_r)$ where r is the rank of \mathbf{A} .

We can replace

$$(\mathbf{A}\mathbf{v}_1, \dots \mathbf{A}\mathbf{v}_r)$$
 with $(\mathbf{u}_1, \dots \mathbf{u}_r)$ (32)

to obtain an orthonormal basis, since

$$\|\mathbf{u}_{i}\| = \|\frac{1}{\sigma_{i}}\mathbf{A}\mathbf{v}_{i}\|$$

$$= \frac{1}{|\sigma_{i}|}\|\mathbf{A}\mathbf{v}_{i}\|$$

$$= \frac{1}{|\sigma_{i}|}\|\mathbf{A}\mathbf{v}_{i}\|$$

$$= \frac{\sqrt{V_{i}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{V}_{c}}}{\sqrt{V_{i}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{V}_{c}}}$$
(34)

$$= \frac{1}{|\sigma_i|} \|\mathbf{A}\mathbf{v}_i\| = \frac{\mathbf{V}_i^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{v}_i}{\mathbf{v}_i^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{v}_i}$$
(34)

$$= \frac{1}{|\sigma_i|} \sqrt{\lambda_i \mathbf{v}_i^T \mathbf{v}_1} \overset{\text{since ATAU.}}{=} \overset{\text{hiV}}{\text{by definition of}}$$
Eig Decomp

$$=\frac{\sqrt{\lambda_i}}{|\sigma_i|}\|\mathbf{v}_i\|\tag{36}$$

$$=1 \tag{37}$$

since $\|\mathbf{v}_i\|$ is unit length already and $\lambda_i = \sigma_i^2$

We have a couple of cases to consider

- If n < m (we have more rows than columns) then equation (25) only holds for $i \le n$ and does not say anything about \mathbf{u}_i for i > n
 - ▶ However, we know by construction that they are orthonormal.
- Conversely, for m < n equation (25) only holds for $i \le m$
 - ightharpoonup For i>m, we have $\mathbf{Av}_i=\mathbf{0}$ and we still know that the \mathbf{v}_i form an orthonormal set
 - ★ These would correspond to the orthonormal basis of the kernel of A.
 - ★ $\{x|Ax = 0\}$

SVD Example

Work through Example 4.13 for a nice example.

 \bullet Try use \mathbf{A}^T as an exercise (it will have more rows than columns)

It is well worth comparing and contrasting the eigendecomposition

 $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ and the SVD $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$

- The SVD always exists for any matrix $\mathbb{R}^{m \times n}$ where as eigendecomposition is only defined for square matrices $\mathbb{R}^{n \times n}$, and only if only exists if we can find a basis of eigenvectors of \mathbb{R}^n
- The vectors in the eigendecomposition matrix P are not necessarily orthogonal
 - So they are not necessarily a simple rotation and scaling.

The vectors in the matrices ${\bf U}$ and ${\bf V}$ in the SVD are orthonormal, so they do represent rotations.

It is well worth comparing and contrasting the eigendecomposition

- $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ and the SVD $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$
 - Both the eigendecomposition and the SVD are compositions of three linear mappings:
 - ① Change of basis in the domain
 - Independent scaling of each new basis vector and mapping from domain to codomain
 - Change of basis in the codomain

A key difference between the eigendecomposition and the SVD is that in the SVD, domain and codomain can be vector spaces of **different dimensions**.

It is well worth comparing and contrasting the eigendecomposition

- $A = PDP^{-1}$ and the SVD $A = U\Sigma V^T$
 - ullet In the SVD, the left- and right-singular vector matrices ullet and ullet are generally not inverses of each other
 - ▶ They perform basis changes in different vector spaces

In the eigendecomposition, the basis change matrices ${\bf P}$ and ${\bf P}^{-1}$ are inverses of each other.

It is well worth comparing and contrasting the eigendecomposition $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ and the SVD $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$

- ullet In the SVD, the entries in the diagonal matrix ullet are all real and nonnegative, which is not generally true for the diagonal matrix in the eigendecomposition.
- For symmetric matrices $A \in \mathbb{R}^{n \times n}$, the eigenvalue decomposition and the SVD are one and the same.

We will now investigate how the SVD allows us to represent a matrix \mathbf{A} as a sum of simpler (low-rank) matrices \mathbf{A}_i , which lends itself to a matrix approximation scheme that is cheaper to compute than the full SVD.

• We can construct rank-1 matrices $\mathbf{A}_i \in \mathbb{R}^{m \times n}$ as

$$\mathbf{A}_i := \mathbf{u}_i \mathbf{v}_i^T \tag{38}$$

where \mathbf{u}_i and \mathbf{v}_i are the *i*th orthogonal column vectors of \mathbf{U} and \mathbf{V} respectively.

A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r an be written as a sum of rank-1 matrices \mathbf{A}_i so that

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_{i=1}^{r} \sigma_i \mathbf{A}_i$$
 (39)

where the outer-product matrices \mathbf{A}_i are weighted by the *i*th singular value σ_i .

If we sum only up to k < r we obtain a rank-k approximation

$$\hat{\mathbf{A}}(k) := \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_{i=1}^{k} \sigma_i \mathbf{A}_i$$
 (40)

(a) Original image A.

(b) Rank-1 approximation $\widehat{A}(1)$.(c) Rank-2 approximation $\widehat{A}(2)$.

(d) Rank-3 approximation $\widehat{A}(3)$.(e) Rank-4 approximation $\widehat{A}(4)$.(f) Rank-5 approximation $\widehat{A}(5)$.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Can we quantify how close our approximation, $\hat{\mathbf{A}}(k)$, is from the original \mathbf{A} ?

- All we need is a distance metric, in our case we will use a full matrix norm.
- There exists a couple of common matrix norms, for our current focus we will use the spectral norm

Spectral Norm of a Matrix

Spectral Norm of a Matrix

For $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, the spectral norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\|\mathbf{A}\|_{2} := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$$
 (41)

The spectral norm is the maximum 'scale', by which the matrix **A** can 'stretch' a vector.

Theorem 4.24

The spectral norm of **A** is its largest singular value σ_1 .

Spectral Norm of a Matrix

Eckart-Young Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be of rank r and let $\mathbf{B} \in \mathbb{R}^{m \times n}$ be of rank k

• For all k < r with $\hat{\mathbf{A}}(k) = \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ it holds that

Optimal
$$\rightarrow \hat{\mathbf{A}}(k) = \operatorname{argmin}_{rk(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_2$$
 (42)
 $\|\mathbf{A} - \hat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}$ (43)

$$|\mathbf{A} - \mathbf{A}(k)||_2 = \sigma_{k+1} \tag{43}$$

The Eckart-Young theorem implies that we can use SVD to reduce a rank-r matrix **A** to a rank-k matrix $\hat{\mathbf{A}}$ in a principled, optimal (in the spectral norm sense) manner.

• We can interpret the approximation of **A** by a rank-k matrix as a form of lossy compression

Matrix Phylogeny Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

