2019 考研数学一考试真题(完整版)来源:文都教育

一、选择题: 1~8 小题,每小题 4 分,共 32 分。下列每题给出的四个选项中,只有一个选项是符合题目要求的.

- 1. 当 $x \rightarrow 0$,若 $x \tan x$ 与 x^k 是同阶无穷小,则k =
- A.1.
- B.2.
- C.3.
- D.4.
- 2. 设函数 $f(x) = \begin{cases} x \mid x \mid, & x < 0, \\ x \ln x, & x > 0, \end{cases}$ 则 x=0 是 f(x) 的
- A.可导点,极值点.
- B.不可导点, 极值点.
- C.可导点, 非极值点.
- D.不可导点,非极值点.
- 3.设 $\{u_n\}$ 是单调增加的有界数列,则下列级数中收敛的是

$$A. \sum_{n=1}^{\infty} \frac{u_n}{n}.$$

B.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{u_n}$$
.

C.
$$\sum_{n=1}^{\infty} (1 - \frac{u_n}{u_{n+1}})$$
.

D.
$$\sum_{n=1}^{\infty} (u_{n+1}^2 - u_n^2)$$
.

4. 设函数 $Q(x, y) = \frac{x}{y^2}$. 如果对上半平面 (y>0) 内的任意有向光滑封闭曲线 C 都有

$$\oint_C P(x,y) dx + Q(x,y) dy = 0$$
, 那么函数 $P(x,y)$ 可取为

$$A. y - \frac{x^2}{v^3}.$$

$$B.\frac{1}{y} - \frac{x^2}{y^3}.$$

$$C.\frac{1}{x} - \frac{1}{y}.$$

D.
$$x - \frac{1}{y}$$
.

- 5.设 A 是 3 阶实对称矩阵,E 是 3 阶单位矩阵.若 $A^2 + A = 2E$,且 |A| = 4,则二次型 x^TAx 的规范形为
- A. $y_1^2 + y_2^2 + y_3^2$.
- B. $y_1^2 + y_2^2 y_3^2$.
- C. $y_1^2 y_2^2 y_3^2$.
- $D. -y_1^2 y_2^2 y_3^2.$
- 6.如图所示,有3张平面两两相交,交线相互平行,它们的方程

$$a_{i1}x + a_{i2}y + a_{i3}z = d_i(i = 1, 2, 3)$$

组成的线性方程组的系数矩阵和增广矩阵分别记为A.A.,则

- B. r(A) = 2, r(A) = 2.
- C. $r(A) = 1, r(\overline{A}) = 2$.
- D. $r(A) = 1, r(\overline{A}) = 1$.
- 7.设 A, B 为随机事件, 则 P(A) = P(B) 的充分必要条件是
- $A. P(A \cup B) = P(A) + P(B).$
- B. P(AB) = P(A)P(B).
- $C. P(A\overline{B}) = P(B\overline{A}).$
- D. $P(AB) = P(\overline{AB})$.
- 8.设随机变量 X 与 Y 相互独立,且都要从正态分布 $N(\mu, \sigma^2)$,则 $P \mid X Y \mid < 1$
- A.与 μ 无关,而与 σ^2 有关
- B.与 μ 有关,而与 σ^2 无关
- $C.与\mu$, σ^2 都有关
- D.与 μ , σ^2 都无关
- 二、填空题: 9~14 小题, 每小题 4 分, 共 24 分.
- 9.设函数与 f(u) 可导, $z = f(\sin y \sin x) + xy$,则 $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$
- 10.微分方程 $2yy'-y^2-2=0$ 满足条件 y(0)=1 的特解 y=_____.
- 11.幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n$ 在 $0,+\infty$ 内的和函数 S(x) =______.

12.设∑为曲面
$$x^2 + y^2 + 4z^2 = 4(z \ge 0)$$
 的上侧,则 $\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} dx dy = ______.$

13.设 $A = a_1, a_2, a_3$ 为 3 阶矩阵,若 a_1, a_2 线性无关,且 $a_3 = -a_1 + 2a_2$,则线性方程组Ax = 0的通解为______.

14.设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & x < 2, \end{cases}$ F(X) 为 X 的分布函数,EX 为 X 的数学期望,则 0, 其他.

$$P F(X) > EX - 1 =$$

三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明,证明过程或演算步骤。解答题(高等部分)

15.设函数 y(x) 是微分方程 $y' + xy = e^{-\frac{x^2}{2}}$ 满足条件 y(0) = 0 的特解.

- (1) 求 y(x);
- (2) 求曲线 y = y(x) 的凹凸区间及拐点.

16.设 a, b 为实数,函数 $z = 2 + ax^2 + by^2$ 在点(3, 4)处的方向导数中,沿方向 l = -3i - 4j 的方向导数最大,最大值为 10.

- (1) 求a, b
- (2) 求曲面 $z = 2 + ax^2 + by^2$ ($z \ge 0$) 的面积.

17.求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

18.
$$\[\mathcal{C} \] a_n = \int_0^1 x^n \sqrt{1 - x^2} \, \mathrm{d} x (n = 0, 1, 2, \cdots)$$

(1) 证明: 数列
$$\{a_n\}$$
 单调减少,且 $a_n = \frac{n-1}{n+2} a_{n-2} (n=2,3,\cdots)$

(2)
$$\vec{x} \lim_{n \to \infty} \frac{a_n}{a_{n-1}}$$

19.设 Ω 是由锥面在 $x^2 + (y-z)^2 - (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体,求 Ω 的形心坐标。

20.设向量组 $x_1 = (1,2,1)^T$ $x_2 = (1,3,2)^T$ $x_3 = (1,a,3)^T$ 为 R^3 的一个基, $\beta = (1,1,1)^T$ 在基下的坐标($b,c,1)^T$.

- (1) 求 *a,b,c*
- (2) 证明 $\alpha_2, \alpha_3, \beta$ 为 R³的一个基.并求 $\alpha_2, \alpha_3, \beta$ 到 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵.

21.已知矩阵
$$A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

- (1) 求x、y
- (2) 求可逆矩阵 P, 使得 P⁻¹AP=B

22. 设随机变量 X 与 Y 独立 .X 服从参数为 1 的指数分布 .Y 的概率分布为 $P\{Y=-1\}=p,\ P\{Y=1\}=1-p(0< p<1),$ 令 Z=XY

- (1) 求 Z 的概率密度.
- (2) p 为何值时, X与 Y不相关?
- (3) X与Z是否相互独立?
- 23. (本题满分11分)

设总体
$$X$$
 的概率密度为 $f(x;\sigma^2) = \begin{cases} \frac{A}{\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, & x \geq \mu. \\ 0, & x < \mu. \end{cases}$

其中 μ 是已知参数, $\sigma>0$ 是未知参数,A是常数, X_1,X_2,\cdots,X_n 是来自总体X的简单随机样本.

- (1) 求A;
- (2) 求 σ^2 的最大似然估计量.

2019 考研数学一考试真题答案解析(完整版) 来源:文都教育

$$1 :: x - \tan x \sim -\frac{x^3}{3}$$
 若要 $x - \tan x = \int x^b$ 同阶无穷小, $\therefore k = 3$

∴选(

2. ①
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x|x| - 0}{x} = 0$$
 $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{x \ln x}{x} = \lim_{x \to 0^{+}} \ln x$ 不存在

$$\therefore x = 0$$
 处 $f(x)$ 不可导

②当
$$x < 0$$
时 $f(x) = -x^2$ ∵ $f'(x) = -2x > 0$ ∴ $f(x)$ 单增

当
$$x > 0$$
 时 $f(x) = x \ln x$: $f'(x) = \ln x + 1$ $x \in (0, e^{-1})$ 时 $f'(x) < 0$.

- $\therefore f(x)$ 单减 $\therefore x = 0$ 为 f(x) 的极值点
- ∴选 B.
- 3. (D)
- ∵ {an}单调增加有界
- : 由单调有界收敛定理可得

$$\{u_n\}$$
极限存在,设 $\lim_{n\to\infty}u_n=A$.

则
$$\sum_{n=1}^{\infty} (u_{n+1}^2 - u_n^2)$$
的前 n 项和为

$$S_n = u_2^2 - u_1^2 + \dots + u_{u+1}^2 - u_n^2$$

= $u_{n+1}^2 - u_1^2$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} u_{n+1}^2 - u_1^2 = A - u_1^2$$
 (D)

4.由题意知,积分与路径无关

则
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

存在
$$u(x,y)$$
使得 $\frac{\partial u}{\partial x} = P(x,y), \frac{\partial u}{\partial y} = Q(x,y)$

$$Q = \frac{x}{y^2}$$

$$\therefore u(x,y) = -\frac{x}{y} + c(x)$$

则
$$P = \frac{\partial u}{\partial x} = -\frac{1}{v} + c'(x)$$

又: x 可为 0

∴ 排除 e, 选 (D)

5.选(C)

解: 由 $A^2 + A = 2E$ 得 $\lambda^2 + \lambda = 2$, λ 为 A 的特征值, $\lambda = -2$ 或 1,

又 $|A|=\lambda_1\lambda_2\lambda_3=4$, 故 $\lambda_1=\lambda_2=-2$, $\lambda_3=1$,

规范形为 $y_1^2 - y_2^2 - y_3^2$, 选(C)

6.选(A)

解:由条件知3张平面无公共交点,方程组无解,

故 $r(A) \neq r(\overline{A})$.

又两平面交于一条直线, 故r(A) = 2,

因此r(A) = 2, $r(\overline{A}) = 3$, 选(A).

7.选(C)

解:
$$P(A\overline{B}) = P(A) - P(AB)$$

$$P(B\overline{A}) = P(B) - P(AB)$$

$$P(A) = P(B)$$
 $P(A\overline{B}) = P(B\overline{A})$ 选 (C)

8.解: 因为 $X \sim N(u, \sigma^2) Y \sim N(u, \sigma^2) X$ 与Y相互独立

$$X - Y \sim N(0, 2\sigma^2)$$

$$\therefore P\{|X-Y|<1\} = P \left| \frac{X-Y}{\sqrt{2}\sigma} \right| < \frac{1}{\sqrt{2}\sigma} = 2\Phi \left| \frac{1}{\sqrt{2}\sigma} \right| - 1$$

 \therefore 与u无关,即与 σ^2 有关 选择(A)

9.解析:
$$\frac{\partial z}{\partial x} = f'(\sin y - \sin x)(-\cos x) + y$$
$$\frac{\partial z}{\partial y} = f'(\sin y - \sin x)(\cos y) + x$$

所以

$$\frac{1}{\cos x} \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} = f'(\sin y - \sin x)(-\cos x) \cdot \frac{1}{\cos x} + y \cdot \frac{1}{\cos x} + \frac{1}{\cos y} \cdot \cos y f'(\sin y - \sin x) + \frac{x}{\cos y}$$

$$= \frac{y}{\cos x} + \frac{x}{\cos y}$$

10.解析:
$$2yy'-y^2-2=0$$

 $y'=\frac{y^2+2}{2y}$
 $\frac{2y}{v^2+2}dy=dx$

两边积分得 $\ln(y^2 + 2) = x + \ln C$

$$v^2 + 2 = Ce^x$$

所以
$$y = \sqrt{3e^x - 2}$$

11.解析:
$$s(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (\sqrt{x}^{2n}) = \cos \sqrt{x}$$

12.解析:
$$\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} \, dx \, dy$$

$$= \iint_{x^2 + y^2 \le 4} \sqrt{4 - x^2 - (4 - x^2 - y^2)} \, dx \, dy$$

$$= \iint_{x^2 + y^2 \le 4} \sqrt{y^2} \, dx \, dy = \iint_{x^2 + y^2 \le 4} |y| \, dx \, dy = 2 \int_0^{2\pi} d\theta \int_0^2 r^2 \sin\theta d\theta$$

$$= \frac{32}{3}$$

13.解:
$$\alpha_1, \alpha_2$$
 线性无关. $r(A) \ge 2$

$$\therefore r(A) \ge 2$$

$$\alpha_3 = -\alpha_1 + 2\alpha_3$$

$$\therefore r(A) < 3$$

$$\therefore r(A) = 2$$

∴
$$Ax=0$$
 为基础解系有 $n-r(A)=3-2=1$

$$\therefore \alpha_1 - 2\alpha_2 + \alpha_3 = 0$$

$$\therefore (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 0$$

∴ 通解为
$$k \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 $k \in R$.

14.
$$X$$
的 $p.d.f$ 为 $f(x) = \begin{cases} \frac{x}{2} & 0 < x < 2 \\ 0 & else \end{cases}$

$$EX = \int_0^2 x \cdot \frac{x}{2} \, dx = \frac{1}{2} \int_0^2 x^2 \, dx = \frac{1}{2} \cdot \frac{x^3}{3} \Big|_0^2 = \frac{8}{6} = \frac{4}{3}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{4} & 0 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

$$P\{F(x) \ge Ex - 1\} = P\{F(x) \ge \frac{1}{3}\} = P\{x \ge 2\} \ne P\{\frac{2}{\sqrt{3}} < x < 2\}$$
$$= P\{\frac{2}{\sqrt{3}} < x < 2\} = \int_{\frac{2}{\sqrt{3}}}^{2} \frac{x}{2} dx$$
$$= \frac{x^{2}}{4} \Big|_{\frac{2}{\sqrt{3}}}^{2} = \frac{1}{4} (4 - \frac{4}{3}) = 1 - \frac{1}{3} = \frac{2}{3}$$

15.\(\text{\text{\$\pi\$}}:\)
$$P(x) = x$$
 $Q(x) = e^{-\frac{x^2}{2}}$

$$\therefore y = e^{-\int P(x) dx} \left[\int Q(x) e^{\int P(x) dx} dx + c \right]$$

$$= e^{-\int x dx} \left[\int e^{-\frac{x^2}{2}} e^{\int x dx} dx + c \right]$$

$$= e^{-\frac{x^2}{2}} \left[\int e^{-\frac{x^2}{2}} \cdot e^{\frac{x^2}{2}} dx + c \right]$$

$$= e^{-\frac{x^2}{2}} (x + c)$$

$$\therefore y(0)=0 \qquad \qquad \therefore$$

$$\therefore y = x e^{-\frac{x^2}{2}}$$

$$y'(x) = e^{-\frac{x^2}{2}} + xe^{-\frac{x^2}{2}}(-x) = (1-x^2)e^{-\frac{x^2}{2}}$$

$$y''(x) = -2xe^{-\frac{x^2}{2}} + (1-x^2)e^{-\frac{x^2}{2}}(-x) = (x^3 - 3x)e^{-\frac{x^2}{2}}$$

$$= x(x + \sqrt{3})(x - \sqrt{3})e^{-\frac{x^2}{2}}$$

$$\diamondsuit y''(x) = 0$$

$$\therefore x_1 = 0 \qquad x_2 = \sqrt{3} \qquad x_3 = -\sqrt{3}$$

当
$$-\sqrt{3} < x < 0$$
或 $x > \sqrt{3}$ 时, $y''(x) > 0$

$$\therefore y(x)$$
的凹区间为 $(-\sqrt{3},0)$ 和 $(\sqrt{3},+\infty)$

当
$$x < -\sqrt{3}$$
 或 $0 < x < \sqrt{3}$ 时, $y''(x) < 0$.

 $\therefore y(x)$ 的凸区间为 $(-\infty, -\sqrt{3})$ 和 $(0, \sqrt{3})$

所以曲线 y(x)的拐点为(0, 0), $(\sqrt{3}, \sqrt{3} e^{-\frac{3}{2}}), (-\sqrt{3}, -\sqrt{3} e^{-\frac{3}{2}})$

16.解: (1) 在点 (3, 4) 处的梯度方向为

grad
$$z|_{(3,4)} = (z'_x(3,4), z'_y(3,4)) = (6a,8b)$$

 $\mathbb{E} |\operatorname{grad} z|_{(3,4)} = 10,$

由题意知
$$\begin{cases} -\frac{3}{5} = \frac{6a}{10} & \text{id } \begin{cases} a = -1 \\ b = -1 \end{cases} \\ -\frac{4}{5} = \frac{8b}{10} \end{cases}$$

(2) 由 (1) 知
$$z = 2 - x^2 - y^2$$
,

由 $z \ge 0$ 得 $x^2 + y^2 \le 2$,

$$\Rightarrow D = \{x, y \mid x^2 + y^2 \le 2\}$$
,

曲面面积为

$$S = \iint_{D} \sqrt{1 + {z'}_{x}^{2} + {z'}_{y}^{2}} \, dx \, dy = \iint_{D} \sqrt{1 + 4(x^{2} + y^{2})} \, dx \, dy$$

$$= \int_{0}^{2\pi} a\theta \int_{0}^{\sqrt{2}} \sqrt{1 + 4r^{2}} \cdot r \, dr$$

$$= 2\pi \times \frac{1}{8} \int_{0}^{\sqrt{2}} \sqrt{1 + 4r^{2}} \, d(1 + 4r^{2})$$

$$= \frac{\pi}{4} \times \frac{2}{3} (1 + 4r^{2})^{\frac{3}{2}} |_{0}^{\sqrt{2}}$$

$$= \frac{13\pi}{3}$$

17.解析: (1)
$$y' - xy = \frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$$

通解
$$y = e^{-xdx} \left| \int \frac{1}{2\sqrt{x}} e^{\frac{x^2}{2}} \cdot e^{-(-x)dx} dx + C \right|$$

$$= e^{\frac{x^2}{2}} \left| \int \frac{1}{2\sqrt{x}} e^{\frac{x^2}{2}} \cdot e^{-\frac{x^2}{2}} dx + C \right|$$

$$= e^{\frac{x^2}{2}} \left| \int \frac{1}{2\sqrt{x}} dx + C \right|$$

$$= e^{\frac{x^2}{2}} \left(\sqrt{x} + C \right)$$

由
$$f(1) = \sqrt{e} = (C+1)\sqrt{e}$$
 得 $C = 0$

所以
$$f(x) = \sqrt{x} \cdot e^{\frac{x^2}{2}}$$

(2)

$$V_{x} = \pi \int_{1}^{2} \left| \sqrt{x} \cdot e^{\frac{x^{2}}{2}} \right|^{2} dx$$

$$= \pi \int_{1}^{2} x \cdot e^{x^{2}} dx$$

$$= \frac{\pi}{2} \int_{1}^{2} e^{x^{2}} dx^{2} = \frac{\pi}{2} e^{x^{2}} \Big|_{1}^{2} = \frac{\pi}{2} (e^{4} - e)$$

18.设
$$a_n = \int_0^1 x^n \sqrt{1 - x^2} dx (n = 0, 1, 2, \dots)$$

(1) 证明: 数列
$$\{a_n\}$$
单调减少,且 $a_n = \frac{n-1}{n+2}a_{n-2}(n=2,3,\cdots)$;

(2)
$$\vec{x} \lim_{n\to\infty} \frac{a_n}{a_{n-1}}$$

解析 (1)
$$a_n - a_{n-1} = \int_0^1 x^n \sqrt{1 - x^2} dx - \int_0^1 x^{n-1} \sqrt{1 - x^2} dx = \int_0^1 x^{n-1} (x - 1) \sqrt{1 - x^2} dx < 0$$
. 则 $\{a_n\}$ 单调递减.
$$a_n = \int_0^1 x^n \sqrt{1 - x^2} dx \underline{x - \sin t} \int_0^{\pi/2} \sin^n t \cdot \cos^2 t dt = \int_0^{\pi/2} \sin^n t \cdot (1 - \sin^2 t) dt = I_n - I_{n+2} = \frac{1}{n+2} I_n,$$
 则
$$a_{n-2} = \frac{1}{n} I_{n-2}, \text{则} a_n = a \frac{n-1}{n(n+2)} I_{n-2} = \frac{n-1}{(n+2)} a_{n-2}.$$

(2) 由 (1) 知,
$$\left\{a_{n}\right\}$$
 单调递减,则 $a_{n}=\frac{n-1}{n+2}a_{n-2}>\frac{n-1}{n+2}a_{n-1}$,即 $\frac{n-1}{n+2}<\frac{a_{n}}{a_{n-1}}<1$.

由夹逼准则知, $\lim_{n\to\infty} \frac{a_n}{a_{n-1}} = 1$.

19.设 Ω 是由锥面 $x^2 + (y-z^2) = (1-z)^2 (0 z 1)$ 与平面 z = 0 围成的锥体,求 Ω 的形心坐标.

解: 令
$$D_z = \{(x,y)|x^2 + (y-z^2) \le (1-z)^2\}$$
, 形心为 $(x,y,z,)$,

由于 Ω 关于yOz 面对称.

故 $\bar{x} = 0$

$$\frac{1}{y} = \frac{y dv}{dv} = \frac{\int_{0}^{1} dz \quad y dx dy}{\int_{0}^{1} dz \quad dx dy}$$

$$= \frac{\int_{0}^{1} dz \quad \int_{0}^{2\pi} d\theta \quad \int_{0}^{1-z} (z + r \sin \theta) r dr}{\int_{0}^{1} \pi (1 - z)^{2} dz}$$

$$= \frac{3}{\pi} \int_{0}^{1} dz \quad \int_{0}^{2\pi} \frac{1}{2} z (1 - z)^{2} + \frac{1}{3} (1 - z)^{3} \sin \theta \, d\theta$$

$$= \frac{3}{\pi} \int_{0}^{1} \pi (1 - z)^{2} dz$$

$$= \frac{1}{4}$$

$$\bar{z} = \frac{z dv}{dv} = \frac{\pi}{3} \int_{0}^{1} dz dz = \frac{3}{\pi} \int_{0}^{1} z \cdot \pi (1-z)^{2} dz = \frac{1}{4}$$

故 Ω 的形心坐标为 $\left[0,\frac{1}{4},\frac{1}{4}\right]$.

20. (1) 由题意可知, $\beta = b\alpha_1 + c\alpha_2 + \alpha_3$

$$\begin{cases} b+c=0 & 1 & 1 & 0 & b & 0 \\ 2b+3c+a=1 & \exists 1 & 2 & 3 & 1 & c=1 \\ b+2c=-2 & 1 & 2 & 0 & a & -2 \end{cases}$$

$$\therefore b = 2, c = -2, a = 3$$

$$(2) |\alpha_2, \alpha_3, \beta| = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 3 & 1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & -1 \end{vmatrix} = 2 \neq 0 \therefore \alpha_2, \alpha_3, \beta$$
 线性无关.

且向数量个数为 $3 \land : \alpha_2, \alpha_3, \beta$ 是 R^3 的一个基.

$$(\alpha_2, \alpha_3, \beta) = (\alpha_2, \alpha_3, 2\alpha_1, -2\alpha_2 + \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$(P:E) = \begin{pmatrix} 0 & 0 & 2 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 0 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \end{pmatrix}$$

$$\therefore P^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$$

$$(\alpha_2, \alpha_3, \beta) \begin{pmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3)$$

即
$$(\alpha_2,\alpha_3,eta)$$
 到 $(\alpha_1,\alpha_2,\alpha_3)$ 的过渡矩阵为 $egin{pmatrix} 1 & 1 & 0 \\ -rac{1}{2} & 0 & 1 \\ rac{1}{2} & 0 & 0 \end{pmatrix}$

$$21. A = \begin{bmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{bmatrix}$$
相似

(1)

$$\therefore A \sim B$$

$$\therefore tr(A) = tr(B) \Rightarrow \begin{cases} x - 4 = 1 + y \\ y = -2x + 4 \end{cases} \Rightarrow \begin{cases} x = 3 \\ y = -2 \end{cases}$$

$$\lambda_1 = -1, \, \lambda_2 = -2, \, \lambda_3 = 2$$

$$\lambda = -1 \text{ iff}, A + E = \begin{bmatrix} -1 & -2 & 1 \\ 2 & 4 & -2 \\ 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \xi = (-210^{\text{T}})$$

$$\lambda = -2 \text{ if}, A + 2E = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 5 & -2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 10 & 4 \\ 0 & -10 & 5 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \xi_2 = (-124)^T$$

$$\lambda = 2 \text{ if}, A - 2E = \begin{bmatrix} -4 & -2 & 1 \\ 2 & 1 & -2 \\ 0 & 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \xi = (-120)^{\text{T}}$$

$$P_{1} = (\xi_{1}, \xi, \xi_{3}) = \begin{bmatrix} -2 & -1 & -1 \\ 1 & 2 & 2 \\ 0 & 4 & 0 \end{bmatrix} \qquad P_{1}^{-1}AP_{1} = \begin{bmatrix} -1 & & \\ & -2 & \\ & & 2 \end{bmatrix}$$

$$P_1^{-1}AP_1 = \begin{bmatrix} -1 & & \\ & -2 & \\ & & 2 \end{bmatrix}$$

$$\lambda = -1 \text{ H}, \quad B + E = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad x = (-130^{\text{T}})$$

$$\lambda_2 = -2 \text{ H}, \quad B + 2E = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad x_2 = (00)^{\text{T}}$$

$$\lambda_3 = 2 \text{ H}, \quad B - 2E = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad x = (100)^{\text{T}}$$

$$P_2 = (x_1 x_2 x_3) \qquad \qquad P_2^{-1} B P_2 = \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$$

$$B = P_2 \begin{bmatrix} -1 & & \\ & -2 & \\ & & 2 \end{bmatrix} P_2^{-1}$$

$$B = P_2 P_1^{-1}(A_2) P_1 P_2 - 1$$

故
$$P = P_1 P_2^{-1}$$

$$= \begin{bmatrix} -2 & -1 & -1 \\ 1 & 2 & 2 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -1 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

22. (1) 随机变量
$$X$$
 的分布函数为 $F_X(x) = \begin{cases} 1 - e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$

$$\begin{split} F_Z(z) &= P\{Z \le z\} = P\{XY \le z\} \\ &= P\{X \le z, Y = 1\} + P\{X \ge -z, Y = -1\} \\ &= (1-p)F_X(z) + p(1-F_X(-z)) \end{split}$$

当
$$z < 0$$
时, $F_z(z) = p(1 - F_X(-z)) = pe^z$

当
$$z \ge 0$$
时, $F_z(z) = (1-p)F_x(z) + p(1-F_x(-z)) = (1-p)(1-e^{-z}) + p$

$$\mathbb{M} f_{Z}(z) = \begin{cases} (1-p)e^{-z}, & z > 0 \\ pe^{z}, & z \le 0 \end{cases}$$

(2)
$$EX = 1, EZ = E(XY) = EX \cdot EY = 1 - 2p$$

$$E(XZ) = E(X^2Y) = E(X^2)E(Y) = (DX + (EX)^2)(1 - 2p) = 2(1 - 2p)$$

当 $E(XZ) = E(X^2)E(Z)$ 时, X, Z 不相关. 即 1-2p = 2(1-2p) , 可得 $p = \frac{1}{2}$.

(3) 因为
$$P{X \le 1, Z \le -1} = P{X \le 1, Y = -1, X \ge 1} = 0$$

$$\mathbb{Z} P\{X \le 1\} = 1 - e^{-1}, P\{Z \le -1\} = pe^{-1}$$

则 $P\{X \le 1, Z \le -1\} \ne P\{X \le 1\} \cdot P\{Z \le -1\}$, 故不独立.

(2) 设 x_1, x_2, \dots, x_n 为样本值,似然函数为

$$L(\sigma^{2}) = \begin{cases} \frac{1}{\sigma^{n}} \left(\sqrt{\frac{2}{\pi}}\right)^{n} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}}, & x_{1}, x_{2}, \dots, x_{n} > \mu \\ 0, & else \end{cases}$$

当 $x_1, x_2, \dots, x_n > \mu$ 时,

$$\ln L(\sigma^{2}) = \frac{n}{2} (\ln 2 - \ln \pi) - \frac{n}{2} \ln(\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

故
$$\sigma^2$$
的最大似然估计量为 $\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^n \left(X_1 - \mu\right)^2}{n}$.