第五章 MAC子层进阶-VLAN和WLAN

授课教师:崔勇

清华大学

致谢社区成员						
袁华 华南理工大学	曹轶臻 中国传媒大学					
赵婧如 西安邮电大学	徐敬东 南开大学					

回顾: 以太网

> 规模可扩展的以太网

- · 冲突域太大效率低,谦让的CSMA无能为力,如何划分多个冲突域?
- 扩展性1: 集线器->交换机, 无配置并自适应拓扑(少做无用转发)?
- 交换机: 逆向学习+转发、过滤和洪泛
- 扩展性2: 冗余拓扑导致,广播风暴、重复帧、MAC表震荡
- 生成树协议: 根桥、根端口、指定端口, 解决了问题但不够优化
- 源路由网桥: 能够寻找最优路径
- ▶ 扩展性3: 大规模以太网的时延
 - 链路层交换机的三种转发模式
 - 存储转发、直通模式、无碎片模式

规模扩展引入的 不同问题

- ➤ VLAN: 局域网规模再大点?
 - 交换机隔离冲突域
 - 广播帧的全网洪泛
- ▶ 无线局域网?
 - · 以太网的CSMA/CD的前提
 - CD: 边发边听冲突检测
 - 需要明确的冲突域
 - 无线发送/接收功率差异大, 无法边发边听②
 - 不是所有站点都能互相感知到 对方发送的信号
 - 真假冲突? 问题更加复杂

- > 主要内容
 - 虚拟局域网VLAN
 - 无线局域网WLAN

▶ 学习目标

- 了解虚拟局域网的使用场景和 实现方法
- 了解无线局域网的拓扑结构和 组织方式
- 掌握CSMA/CA协议和其主要问 题及应对方案
- 了解WLAN的常见问题和配置 方法

- ➤ 广播域 (Broadcasting Domain)
 - 广播域是广播帧能够到达的范围

不是冲突域!

- 缺省情况下,交换机所有端口同属于一个广播域,无法隔离广播域
- 广播帧在广播域中传播, 占用资源, 降低性能, 且具有安全隐患

图中某个站点 发送了一个广播帧 能够收到该广播帧的设备 同处于一个广播域

- 需求分析:需要在物理网络上根据用途、工作组、应用等来进行逻辑划分的局域网络,与用户的物理位置没有关系
- > VLAN (Virtual LAN)
 - VLAN是一个独立的广播域
 - 交换机通过划分VLAN来分 隔广播域

不同VLAN的成员 不能直接进行二层通信

➤ VLAN类型

- •基于端口的VLAN (最常见)
- 基于MAC地址的VLAN
- •基于协议的VLAN
- 基于子网的VLAN

➤ 基于端口的VLAN

➤ 基于MAC地址的VLAN

➤ 基于协议的VLAN

➤ 基于子网的VLAN

- ➤ 如何能让交换机区分不同VLAN的数据帧?
 - 在数据帧中需要携带VLAN标记
 - VLAN标记由交换机添加/剥除,对终端站点透明

交换机需要区分VLAN, 但希望对主机透明

- ➤ 帧标记标准: IEEE802.1Q
 - 带VLAN标记的帧称为标记帧(Tagged Frame)

交换机需要区分VLAN, 但希望对主机透明

不携带VLAN标记的普通以太网帧称为无标记帧(Untagged Frame)

- ➤ 接入链路 (Access) 类型端口
 - 交换机连接主机的端口
 - 在单交换机环境中,所有端口都是Access类型端口
 - 对采用基于端口的VLAN划分, Access端口只能加入一个VLAN
 - 一旦Access端口加入了特定的VLAN,连接在该端口的设备被视为属于该VLAN

VLAN Table				
VLAN ID	Port			
10	F0/1			
10	F0/2			
20	F0/3			
20	F0/4			

- ➤ 干道 (Trunk) 类型端口
 - Trunk端口一般用于交换机之间连接
 - 干道链路允许多个VLAN的流量通过

VLAN标记的 添加/剥除

• Port VLAN ID/PVID: trunk端口默认为1

S2 VLAN Table				
VLAN ID	Port			
10	F0/2			
20	F0/3			

- ➤ VLAN控制广播域范围
 - 广播流量被限制在一个 VLAN内
- > 增强网络的安全性
 - VLAN间相互隔离,无法进 行二层通信
- > 提高网络的可管理性
 - 将不同的业务规划到不同 VLAN便于管理
 - 灵活构建虚拟工作组不必局限于同一物理范围
- ➤ VLAN间用三层设备通信

全球分布的开发部,能否构成局域网?

◎ 本节内容

- ➤ 虚拟局域网VLAN
- ➤ 无线局域网WLAN

- 1. 无线局域网概述
- 2.802.11介质访问控制
- 3. 无线局域网的构建
- 4.802.11帧结构
- 5. 无线局域网配置

◎ 无线局域网概述

无线局域网(WLAN):指以无线信道作为传输介质的计算机局域网

➤ IEEE 802.11无线局域网发展历程

1999

802.11b标准发布,工 作频段2.4G. 最大速 率可达11Mbps

2003

802.11g标准发布, 工 作频段2.4G,最大速率 可达54Mbps

2013 (Wi-Fi 5)

802.11ac标准wave1 版本,工作频段5G, 最大谏率可达1.73G

2019 (Wi-Fi 6)

802.11ax标准发布,工作频段 2.4G和5G, 支持OFDMA、 MU-MIMO. 最大速率可达9.6G

1997

802.11标准发布, 工 作频段2.4G. 最大速 率2Mbps

1999

801.11a标准发布, 工 作频段5G. 最大速率 可达54Mbps

2009 (Wi-Fi 4)

802.11n标准发布, 工 作频段2.4G和5G. 支 持MIMO,最大速率可 以达600Mbps

2015 (Wi-Fi 5)

802.11ac标准 wave2 版本,工作频段在5G, 支持MU-MIMO, 最大 谏率可达3.47G

5.5 无线局域网

18

● 无线局域网组网模式

- > 基础架构模式
 - 分布式系统
 - 访问点 (AP) , 站点 (STA)
 - 站点互相访问需要通过AP进行
 - SSID (Service Set IDentifier)

- ▶ 自组织模式 (Ad hoc)
 - 站点 (STA)
 - 站点之间直接通信
 - 共享同一无线信道
 - IBSS Independent Basic Service Set

多个AP共同构成一个分布式系统

无线局域网体系结构

- ➤ 物理介质相关子层 (PMD层)
 - PMD-Physical Media Dependent
 - 物理介质关联层接口
 - 调制解调、编码/解码
- ➤ 物理层汇聚协议 (PLCP层)
 - Physical Layer Convergence Protocol
 - 向上提供独立于传输技术的物理层访问点

PLCP层头

- ➤ 介质访问控制层 (MAC层)
 - 可靠数据传输
 - 介质访问控制
 - 安全机制

网络层数据单元

网络层数据单元

LLC层头

LLC层头

LLC层头

MAC层头

MAC层头

网络层数据单元 MAC层尾

网络层数据单元 MAC层尾

无线局域网体系结构

> 物理层技术概览

- —<mark>频段:2.4GHz、5GHz(ISM</mark>频段,无需授权;限制发送功率,例如:≤1瓦)
- 调制技术: DPSK → QPSK → CCK → 64-QAM → 256-QAM → 1024-QAM
- 直接序列扩频 (DSSS) → 正交频分多路复用 (OFDM) →正交频分多址 (OFDMA)
- 单天线 → 单用户多入多出(SU-MIMO)→ 多用户多入多出(MU-MIMO)
- 目标: 提升传输速率、增强可靠性、支持高密度接入

逻程链路控制子层 (LLC)							
介质访问控制子层 (MAC)							
802.11 最高速率 2Mbps	802.11b 最高速率 11Mbps	802.11a 最高速率 54Mbps	802.11g 最高速率 54Mbps	802.11n 最高速率 600Mbps	802.11ac 最高速率 3.47Gbps	802.11ax 最高速率 9.6Gbps	

▶ 无线传输相关的"范围"

- 传输范围(TX-Range):成功接收帧的通信范围,取决于发送功率和无线电波传输特性
- 物理层侦听范围(PCS-Range):检测到该传输的范围,取决于接收器的灵敏度和无 线电波传输特性
- 干扰范围 (IF-Range): 在此范围内的节点如果发送不相关的帧,将干扰接收端的接收并导致丢帧

- ➤ CSMA/CD的有线局域网
 - CD: 边发边听进行冲突检测
 - · 具有明确的冲突域: n个站点∈一个冲突域, 且n个站点构成一个等价类
- ➤ 直接将CSMA/CD用于无线局域网?
 - 冲突检测困难
 - 发送功率和接收功率相差太大,站点无法在发送时同时检测冲突
 - 载波侦听失效
 - 在同一BSS中,不是所有站点都能互相感知到对方发送的信号
 - 但在接收站点处发生冲突 如何解决,找找巨人?

- ▶ 随机访问协议: 努力减少冲突
 - Aloha: 任性->时隙
 - CSMA: 先听后发;
 - 不坚持听,不一定发
 - p-持续: 持续侦听, 概率p发送
 - 时延增大,冲突不可避免
- ▶ 小结:减少冲突的思路

思路 晚点再晚点发送

不检测冲突,但知道忙不忙

所有站点完成发送后,必须等待一段很短的时

➤ CSMA/CA发送流程

- > CSMA/CA (Carrier Sense Multiple Access with Collision Avoid)
 - CSMA/CA: 带冲突避免的载波侦听多路访问
 - 当信道空闲时间大于IFS(Inter-frame space 帧间隙),立即传输
 - 当信道忙时,尽量避免冲突
 - 延迟直到当前传输结束+IFS时间,然后开始<mark>随机退后</mark>过程
 - 从 (0, CWindow) 中选择一个随机数作为退后计数器 (backoff counter)
 - 通过侦听确定每个时间槽是否活动
 - 如果信道空闲,则继续减少退后时间
 - 退后过程中如果信道忙,则挂起暂停退后过程(解决站点之间的公平问题),在当前帧传输结束后恢复退后过程

➤ CSMA/CA示例

1023

- > 退后算法目标
 - 当网络负载轻时,减小站点等待时间
 - 当网络负载重时,避免太多的冲突
- ▶竞争窗口 (CWindow) 的选择
 - 竞争窗口的选择应与网络负载情况相适应
 - 冲突次数越多, 表明网络负载越重
- > 二进制指数退后算法
 - 竞争窗口的初始值为某个最小值,发生 冲突时加大窗口,直到达到最大值

两个重要组织 IEEE 802.11工作组 Wi-Fi联盟 (Wi-Fi Alliance, WFA)

> 差错检测与确认重传

- 差错检测: 32位CRC校验(与以太网相同)
- 采用停等机制:发送数据,等待确认,超时重传(重传定时器)
- 如果达到最大重传限制,该帧被丢弃,并告知上层协议

为什么停等而非流水线机制?

停等简单且 网络RTT小

如何保证Ack能够 率先发出来?

- > 不同帧间隙控制优先级
 - SIFS (Short IFS): 最高优先级,用于Ack, CTS, 轮询响应等
 - PIFS(点协调功能PCF IFS):中等优先级(SIFS+1槽口时间),轮询服务

• DIFS (分布式协调DCF IFS): 最低优先级 (SIFS+2槽口时间), 异步数

据服务

> 隐藏终端问题

- 由于距离太远(或障碍物)导致站点无法检测到竞争对手的存在
- 隐藏站点不能侦听到发送端但能干扰接收端
- 假设: A正在向B传输数据, C也要向B发送数据

- ➤ RTS-CTS机制 (可选机制)
 - 目的:通过信道预约,避免数据帧(长帧)冲突
 - 发送端发送RTS (request to send)
 - 接收端回送CTS (clear to send)
 - RTS和CTS中的持续时间(Duration)中指明传输所需时间(数据+控制)
 - 其他相关站点能够收到RTS或(和)CTS,维护NAV
 - 虚拟载波侦听 (Virtual Carrier Sense)
 - RTS和CTS帧很短,即使产生冲突,信道浪费较少

NAV (Network Allocation Vector)

B向C发送数据过程中, 由于D听到C发的CTS, 因此D保持静默, 避免隐藏站点问题

> 暴露终端问题

- 由于侦听到其他站点的发送而误以为信道忙导致不能发送
- 暴露站点能侦听到发送端但不会干扰接收端
- 假设: B正在向A传输数据, C要向D发送数据

- ➤ RTS-CTS机制 (可选机制)
 - 目的:通过信道预约,避免长帧冲突
 - 发送端发送RTS (request to send)
 - 接收端回送CTS (clear to send)
 - RTS和CTS中的持续时间(Duration)中 指明传输所需时间(数据+控制)
 - 其他站点能够收到RTS或(和)CTS,维护NAV
 - 虚拟载波侦听 (Virtual Carrier Sense)
 - RTS和CTS帧很短,即使产生冲突,信道浪费较少

NAV (Network Allocation Vector)

C只收到RTS但未收到 CTS,因此C可以给D 发送数据,避免暴露 站点问题

- ➤ RTS-CTS机制示例
 - 源站点的隐藏站点可以接收到目的站点发送的CTS

NAV (Network Allocation Vector)

- ▶如何应对无线链路较高的出错率?
 - 解决方法: 采用较小的帧 (将用户数据帧分段的机制对用户透明)
 - F_i帧中携带F_{i+1}的传输时间

- ➤ EDCA (Enhanced Distributed Channel Access) (802.11e)
 - 目标:针对不同的应用提供不同的优先级,保证QoS
 - 单发送队列 → 多发送队列 (AC, Access Category)
 - AC3: 语音 (Voice traffic)
 - AC2: 视频 (Video traffic)
 - AC1: 尽力而为数据流 (Best effort traffic)
 - AC0: 背景流 (Background traffic)
 - 每个队列基于下面四种参数独立竞争
 - Cwmin: 最小竞争窗口, 越小的Cwmin其优先级越高
 - Cwmax: 最大竞争窗口, 越小的Cwmax其优先级越高
 - TXOP: 传输机会,参数值为TXOPlimit,代表占用信道最长时间
 - · AIFS: 要获得传输机会时, 必须等待的信道空闲时间

Wi-Fi联盟定义: WMM (Wireless Multimedia Enhancements)

TXOP: Transmission Opportunity

AIFS: Arbitration Interframe Space

- ➤ 队列参数设置 (QSTA)
 - 退后随机数选取
 - •从[1, CW(AC)+1]中选取一个随机数
 - · AIFS计算方法:
 - $AIFS(AC) = AIFSN(AC) \times aSlotTime + SIFS$

AC	CW _{min}	CW _{max}	AIFSN	TXOP Limit (802.11b)	TXOP Limit (802.11a/g)
AC_BK	aCW _{min}	aCW _{max}	7	0	0
AC_BE	aCW _{min}	aCW _{max}	3	0	0
AC_VI	(aCW _{min} +1) /2-1	aCW _{min}	2	6.016ms	3.008ms
AC_VO	(aCW _{min} +1) /4-1	(aCW _{min} +1) /2-1	2	3.264ms	1.504ms

QSTA: 支持802.11e的站点

- ➤ QoS数据传输 (QSTA)
 - QSTA在获得使用权后,在TXOP Limit时间内可以发送多个数据帧
 - TXOP内首发帧需要预约整个TXOP Limit内帧传输的所有时间,以便其他STA进行虚拟 侦听

- ➤ QoS数据传输 (QSTA)
 - 目的相同时,可以使用Block ACK对多帧进行一次确认

- > 基础架构模式
 - 通过AP接入有线网络(互联网络)
 - 关键: 主机如何关联到哪个AP?
 - BSSID: AP的MAC地址,标识AP管理的基本服务集
 - SSID: 32字节网名, 标识一个扩展服务集(ESS), 包含一个或多个基本服务集
 - 关联到AP的三个阶段
 - 扫描(Scan)、认证(Authentication)、关联(Association)

BSSID: Basic Service Set Identifier

SSID: Service Set Identifier

胖AP: Fat AP, 功能全面

瘦AP: Fit AP, 配合无线交换机组网

> 被动扫描

- AP周期性发送Beacon帧,站点在每个可用的通道上扫描Beacon帧
- Beacon帧提供的AP相关信息包括:
 - Timestamp, Beacon Interval (eg. 100ms), Capabilities, SSID, Supported Rates, parameters, Traffic Indication Map (TIM)

> 主动扫描

- · 站点依次在每个可用的通道上发出包含SSID的Probe Request 帧,具有 被请求SSID的AP返回Probe Response帧
- Probe Response帧包含AP相关信息:
 - Timestamp, Beacon Interval, Capabilities, SSID, Supported Rates, parameters

> 认证过程

- 当站点找到与其有相同 SSID 的 AP, 在 SSID 匹配的 AP 中, 根据收到 的 AP 信号强度,选择一个信号最强的 AP,然后进入认证阶段
- 主要认证方式包括:
 - 开放系统身份认证 (open-system authentication)
 - 共享密钥认证 (shared-key authentication)
 - WPA PSK认证 (pre-shared key)
 - 802.1X EAP认证

> 关联过程

- 身份认证获得通过后,进入关联阶段
- 站点向 AP 发送关联请求 (Association Request)
 - 包含: Capability, Listen Interval, SSID, Supported Rates
- AP 向站点返回关联响应(Association Response)
 - 包含: Capability, Status Code, Station ID, Supported Rates
- AP维护站点关联表,并记录站点的能力(如能够支持的速率等)

> 自组织模式

- 站点先寻找具有指定SSID的IBSS是否已存在
- 如果存在,则加入;若不存在,则自己创建一个IBSS,发 出Beacon, 等其他站来加入

➤ Beacon帧的发送

- IBSS中的所有站点参与Beacon发送(保证健壮性),每个 站点在Beacon窗口竞争Beacon的产生,对于每个站点:
 - 确定一个随机数k
 - 等待 1个时间槽
 - 如果没有其他站点发送Beacon,则开始发送Beacon

移动性带来的新问题? 漫游、节能、信号不稳定

- > 站点漫游
 - 当前的AP的通道质量下降时,站点漫游到不同的AP
 - 通过扫描功能发现通道质量更好的AP
 - 被动扫描或主动扫描
 - 站点向新的AP发送重关联请求 (Reassociation Request)
 - 如果AP接受重关联请求
 - AP 向站点返回重关联响应 (Reassociation Response)
 - 如果重关联成功,则站点漫游到新的AP
 - 新的AP通过分布系统通知之前的AP

▶ 站点漫游示例

- 关联请求
- 关联响应
- 探测请求
- 探测响应
- 重关联请求
- 重关联响应

- > 站点睡眠管理
 - 如何延长移动站点的续航时间?
- > 解决方案
 - 无线网卡的空闲接收状态占电量消耗的 主要部分,关闭无线网卡可以减少电量 的消耗

- AP缓存数据:关联的AP允许空闲站睡眠,AP跟踪睡眠的站点,并为之缓存数据, 保证数据不丢失,保证会话的持续性
- Beacons 中的TIM(Traffic Indication Map)通知睡眠站点有需要接收的数据
- 睡眠站点定期唤醒接收数据:如果有数据要接收,发送PS-Poll帧,请求AP发送数 据帧

▶ 802.11帧格式—般结构

	协议 版本	帧 类型	子 类型	去往 DS	来自 DS	更多段	重传	电源管理	更多数据	安全保护	顺序
比特	2	2	4	1	1	1	1	1	1	1	1

> 帧控制域段解释

• 协议版本:通常为0

• 帧类型:管理帧、控制帧、数据帧

• 子类型: CTS、RTS等

• DS: 是否发往或来自分布式系统

• 更多段: 用于长帧被分段的情况, 1表示不是最后一段

• 重传: 表明当前帧是以前帧的重传

• 电源管理: 1表示节能模式; 0表示活跃状态

• 更多数据: 指明有更多的数据要发送(缓存)

• 安全保护: 1表明采用802.11标准的安全机制, 对数据进行保护

• 顺序: 1指示接收者必须严格按照顺序处理

00: 管理帧

01: 控制帧

10: 数据帧

11: 保留

字节	2	2	6	6	6	2	6	4	0~2312	4
	帧 控制	持续时间	地址1	地址2	地址3	顺序 控制	地址4	QoS 控制	数据	CRC 校验

> 主要域段解释

- 帧控制:具有多种用途
- 持续时间:下一个要发送帧可能持续的时间(NAV)或关联ID(AID)
- 地址1~地址4:每个地址的含义基于"去往DS"和"来自DS"域段确定
- 顺序控制:通过序号过滤掉重复帧,或用于分片组合
- QoS控制域段:存放数据流的QoS信息(802.11e中扩展)
- 数据:包含任意长度的数据(0-2312字节)
- CRC校验: 802.11采用4个字节的校验码

> 地址域段的使用

BSSID: 基本服务集标识符,为AP的MAC地址

说明	去往DS Distribution System	来自DS Distribution System	地址1 (物理接收者)	地址2 (物理发送者)	地址3 (逻辑发送者)	地址4 (逻辑接收者)
自组织模式	0	0	DA	SA	IBSSID	
接收自AP	0	1	DA	BSSID	SA	
发送至AP	1	0	BSSID	SA		
AP到AP	1	1	接收AP	发送AP	SA	DA

▶主要管理帧

	协议 版本	帧 类型	子 类型	去往 DS	来自 DS	更多段	重传	电源 管理	更多数据	安全保护	顺序
比特	2	2	4	1	1	1	1	1	1	1	1

帧类型	子类型	名称
00	0000	关联请求 (Association Request)
00	0001	关联响应 (Association Response)
00	0010	重新关联请求 (Reassociation Request)
00	0011	重新关联响应 (Reassociation Response)
00	0100	探测请求 (Probe Request)
00	0101	探测响应 (Probe Response)
00	1000	信标帧 (Beacon)
00	1001	通知传输指示消息 (ATIM)
00	1010	解除关联 (Disassociation)
00	1011	认证 (Authentication)
00	1100	解除认证 (Deauthentication)


```
▶ Frame 13063: 265 bytes on wire (2120 bits), 265 bytes captured (2120 bits) on interface 0
▶ Radiotap Header v0, Length 54
▶ 802.11 radio information
                                            00: 管理帧
▼ IEEE 802.11 Beacon frame, Flags: ......
   Type/Subtype: Beacon frame (0x0008)
                                            01: 控制帧
                                                                 使用Wireshark分析802.11帧
  ▼ Frame Control Field: 0x8000
                                            10: 数据帧
      .... ..00 = Version: 0
      .... 00.. = Type: Management frame (0)
                                            11: 保留
     1000 .... = Subtype: 8
        .... ..00 = DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0) (0x0)
        .... .0.. = More Fragments: This is the last fragment
        .... 0... = Retry: Frame is not being retransmitted
        ...0 .... = PWR MGT: STA will stay up
        .. 0. .... = More Data: No data buffered
        .0.. .... = Protected flag: Data is not protected
       0... = Order flag: Not strictly ordered
                                                             周期性广播帧
   .000 0000 0000 0000 = Duration: 0 microseconds
   Receiver address: Broadcast (ff:ff:ff:ff:ff)
   Destination address: Broadcast (ff:ff:ff:ff:ff)
   Transmitter address: HuaweiTe_1e:8c:70 (d4:94:e8:1e:8c:70)
   Source address: HuaweiTe_1e:8c:70 (d4:94:e8:1e:8c:70)
                                                             BSSID=MAC
   BSS Id: HuaweiTe_1e:8c:70 (d4:94:e8:1e:8c:70)
   .... .... 0000 = Fragment number: 0
   0011 1101 0101 .... = Sequence number: 981
▼ IEEE 802.11 wireless LAN
  ▼ Fixed parameters (12 bytes)
     Timestamp: 0x0000012dfa87e03b
     Beacon Interval: 0.102400 [Seconds]
    ▶ Capabilities Information: 0x1501
  ▼ Tagged parameters (175 bytes)
                                                                             使用信道和
    ▶ Tag: SSID parameter set: NKU_WLAN
    ▶ Tag: Supported Rates 12(B), 18, 24(B), 36(B), 48, 54, [Mbit/sec]
    ▶ Tag: DS Parameter set: Current Channel: 60
    ▶ Tag: Traffic Indication Map (TIM): DTIM 0 of 0 bitmap
```


> 主要控制帧

RTS

 帧
 持续

 控制
 时间

 地址1
 地址2

 CRC

 校验

CRC

校验

帧类型

00: 管理帧

01: 控制帧

10: 数据帧

11: 保留

CTS

 帧
 持续

 控制
 时间

ACK

 帧
 持续

 控制
 时间

 地址1
 校验

类型	子类型	名称		
01	1010	PS-Poll		
01	1011	RTS		
01	1100	CTS		
01	1101	确认帧 (ACK)		
01	1000	块确认请求帧 (Block ACK Request)		
01	1001 块确认帧 (Block ACK)			

802.11e

5.5 无线局域网

56

◎ 家庭WLAN配置和问题分析

- 热点区域无线接入点众多,相互干扰愈发严重
- > 无线频谱资源有限,相邻信道互相干扰
- ➤ 5G路由是什么鬼?
 - 双频路由器:同时工作在2.4g赫兹和5g赫兹频段的无线路由器
 - 2.4G低频段善于拐弯抹角,但不稳定,易被干扰,即使看到是 满格,可能网络也很慢。
 - 5GHz传输速率高, 抗干扰性强, 但传输距离短, 穿透性差

WLAN信道数量有限,相邻信道重叠干扰严重

家庭WLAN配置和问题分析

- > 无线信号传输范围有限,难以实现全覆盖
- > 无线信号穿墙困难,信号质量严重下降

如何优化?

设置到最佳信道 (冲突少) 增加wifi信号放大器

> 5GHz频段 80MHz宽度

家庭WLAN配置和问题分析

◎ 家庭WLAN配置和问题分析

设置上网方式

◎ 家庭WLAN配置和问题分析

无线局域网-高级设置

2.4G Wi-Fi 2.4G Wi-Fi 信道 自适应 (6) 模式 802.11b/g/n Wi-Fi 频宽设置 20/40 MHz 11n 前导间隔设置 短间隔 Wi-Fi 隐身 关闭

设置访问控制列表ACL

家庭WLAN配置和问题分析

- ➤ Wi-Fi 6 (802.11ax) 核心目标
 - ·解决网络容量和传输效率问题、降低传输时延,最高速率可达9.6Gbps
 - 2022年1月, 宣布Wi-Fi 6 第2版标准, 使用160MHz频宽
- ➤ Wi-Fi 6 的核心技术
 - OFDMA频分复用技术:实现多站点并行传输,提升效率、降低时延
 - DL/UL MU-MIMO技术:增加系统容量,提升用户的平均吞吐量
 - 高阶调制技术 (1024-QAM): 提高单条空间流的传输速率
 - · 信道切片技术: 提供游戏的专属信道,减低时延,满足云VR游戏等需求
 - 优化站点睡眠管理:引入了目标唤醒时间 TWT,允许设备协商什么时候被唤醒和多久会被唤醒,增加了设备的睡眠时间

优化内网(容量、速度和时延): 手机频宽、天线数, 多人同时上网

◎ 无线局域网-小结

- 组网方式:基础架构模式 & 自组织架构
- ➤ CSMA/CD失效的2个原因:冲突检测困难,无线传输范围
- ➤ 无线介质访问与CSMA/CA协议原理
 - 差错检测与确认重传
 - 基于帧间间隔的优先级控制:SIFS、PIFS、DIFS
 - 隐藏终端、暴露终端问题: RTS/CTS握手
 - > 无线局域网构建与管理
 - 基础架构模式关联到AP的三个阶段: 扫描(Scan)、认证(Authentication)、关联(Association)
 - 站点漫游与睡眠管理
 - ➤ IEEE 802.11协议帧格式:管理、控制、数据帧,四个地址域,Beacon帧
 - > 家庭WLAN配置和问题分析
 - WLAN问题分析,家庭WLAN配置,优化与发展

本章总结

▶ 信道分配问题

• 随机访问协议: Aloha、CSMA

• 受控访问协议: 令牌环

• 有限竞争协议

≻以太网

- CSMA/CD
- 以太帧与MAC地址
- 单播、广播与组播

规模太大怎么办

扩大局域网的同时,隔离不同的局域网哪些端口属于哪个VLAN,VLAN标记的添加/剥除

> 数据链路层交换

- 交换机
- 生成树协议
- 虚拟局域网

> 无线局域网

- 组网方式
- 介质访问控制
- 802.11协议和帧格式
- 网络配置与问题分析

- ➤ 《Computer Networks-5th Edition》章节末习题
 - CHAPTER 4: 22 (WLAN) , 25 (WLAN)
 - 补充习题(见下页)
 - 小实验2 (MAC帧格式观察, 见网络学堂附件)
- ▶ 截止时间:下下周三晚11:59,提交网络学堂

22. 【2017 统考真题】在下图所示的网络中,若主机 H 发送一个封装访问 Internet 的 IP 分组的 IEEE 802.11 数据帧 F,则帧 F 的地址 1、地址 2 和地址 3 分别是()。

- A. 00-12-34-56-78-9a, 00-12-34-56-78-9b, 00-12-34-56-78-9c
- B. 00-12-34-56-78-9b, 00-12-34-56-78-9a, 00-12-34-56-78-9c
- C. 00-12-34-56-78-9b, 00-12-34-56-78-9c, 00-12-34-56-78-9a
- D. 00-12-34-56-78-9a, 00-12-34-56-78-9c, 00-12-34-56-78-9b

致谢社区本章贡献者

华南理工大学

- 1、信道分配问题
- 2、多路访问协议

曹轶臻

中国传媒大学

2、以太网

赵婧如

西安邮电大学

3、数据链路层交换

徐敬东

南开大学

4、无线网络

《计算机网络: 自顶向下方法》(原书第7版), 库罗斯罗斯, 机械工业出版社, 2018年06月

《计算机网络(第5版)》, Tanenbaum & Wetherall, 清华大学出版社, 2012年3月

《计算机网络(第7版)》,谢希仁,电子工业出版社,2017年01月

《计算机网络(第4版)》,吴功宜,清华大学出版社,2017年04月

《计算机网络技术与应用》,张建忠,徐敬东,清华大学出版社,2019年9月

《路由交换技术详解与实践:第1卷:下册》,新华三大学,清华大学出版社,2017年08月

- > 本课程课件中的部分素材来自于:
 - (1) 库罗斯.罗斯、Tanenbaum & Wetherall、谢希仁、吴功宜、徐敬东等出版的《计算机网络》教材
 - (2) 思科网络技术学院教程
 - (3) H3C网络学院系列教程
 - (4) 网络上搜到的其他资料
- ➤ 在此,对清华大学出版社、思科网络技术学院、H3C网络学院、电子工业 出版社、机械出版社以及其它提供本课程引用资料的个人表示 衷心的感谢!
- 对于本课程引用的素材,仅用于教学,如有任何问题,请与我们联系!