SF1677 Analysens grunder Kurssammanfattning

Leo Trolin

29/05-2024

Kapitel 1: Reella tal	1
Supremum	1
Konstruktion av \mathbb{R}	2
Egenskaper hos \mathbb{R}	2
Kapitel 2: Topologi	3
Uppräknelighet	
Metriska rum	
Kompakthet	
Kapitel 3: Talföljder och serier	6
Konvergens	6
Serier	
Kapitel 4: Kontinuitet	8
Kapitel 5: Derivata	9
Kapitel 6: Integraler	9
Kapitel 7: Funktionsföljder och funktionsserier	10
Kapital 0. Flanzana	11

Denna kurssammanfattning blev ganska påskyndad runt andra halvan och jag anser inte att den är färdig i dess nuvarande form. Jag väljer ändå att publicera den ifall någon är intresserad då jag förmodligen inte kommer skriva mer på den.

Kapitel 1: Reella tal

Supremum

Definition: (Ordning)

En ordning på en mängd S är en relation < så att, för $x, y, z \in S$:

- \bullet Exakt en av följande gäller: $x < y, \, x = y, \, x > y$
- $x < y \text{ och } y < z \implies x < z$

Definition: (Ordnad kropp)

En ordnad kropp K är en kropp som är en ordnad mängd, som dessutom uppfyller för $x, y, z \in K$ att:

- $y < z \implies x + y < x + z$
- $x > 0, y > 0 \implies xy > 0$

Definition: (Övre gräns/Undre gräns)

Låt S vara en ordnad mängd och $E \subset S$. Då har E en övre gräns $\alpha \in E$ och är därmed uppåt begränsad om $\alpha \geq x \ \forall x \in E$.

På motsvarande sätt definierar vi undre gräns och nedåt begränsad.

Definition: (Supremum/Infimum)

Låt S vara en ordnad mängd och $E \subset S$. Då har E ett supremum eller minsta övre gräns $\alpha = \sup E \in S$ om:

- $\bullet \ \alpha$ är en övre gräns till E
- Om $\beta < \alpha$ så är β inte en övre gräns till E

På motsvarande sätt definierar vi infimum eller största undre gräns.

Definition: (Supremumegenskapen)

En ordnad mängd S har supremumegenskapen om varje icke-tom uppåt begränsad delmängd $E \subset S$ har ett supremum sup $E \in S$.

Sats:

Q saknar supremumegenskapen.

 → Bevis:

Låt $A := \{r \in \mathbb{Q}_+ : r^2 < 2\}$. Antag att A har ett supremum $\alpha = \sup A$. Tag ett $p \in A$. Låt

$$q := \frac{2p+2}{p+2} = p - \overbrace{\frac{p^2-2}{p+2}}^{\leq 0} > p$$

men samtidigt gäller

$$q^{2}-2=\left(\frac{2p+2}{p+2}\right)^{2}-2=\frac{2p^{2}-4}{(p+2)^{2}}<0$$

så q>p samt $q\in A$, vilket innebär att A inte har ett största element. Därmed måste det gälla att $\alpha^2>2$ (eftersom det inte finns något rationellt tal vars kvadrat är 2). Låt $B:=\left\{r\in\mathbb{Q}_+:r^2>2\right\}$. Tag ett $p\in B$. Låt

$$q := \frac{2p+2}{p+2} = p - \frac{\overbrace{p^2 - 2}^{>0}}{p+2} < p$$

men samtidigt gäller

$$q^{2}-2=\left(\frac{2p+2}{p+2}\right)^{2}-2=\frac{2p^{2}-4}{(p+2)^{2}}>0$$

så q < p samt $q \in B$, vilket innebär att B inte har ett minsta element. Detta visar att α inte kan vara minimalt vilket motsäger att α är supremum.

Konstruktion av \mathbb{R}

Definition: (Snitt)

Ett (Dedekind-)snitt är en delmängd $\alpha \subset \mathbb{Q}$ så att:

- $\alpha \neq \emptyset$, $\alpha \neq \mathbb{Q}$
- $p \in \alpha$ och $q \in \mathbb{Q}$, q
- $p \in \alpha \implies \exists r \in \mathbb{Q} : r > p \text{ och } r \in \alpha$
- \hookrightarrow Intuition: Vi kan tänka att ett snitt nödvändigtvis är på formen $(-\infty, x) \cap \mathbb{Q}$ för något $x \in \mathbb{R}$.

Definition: (\mathbb{R})

 $\mathbb{R} := \{\alpha : \alpha \text{ är ett snitt}\}. \text{ Om } p \in \mathbb{Q} \text{ så identifierar vi } p \text{ med } p^* := \{r \in \mathbb{Q} : r < p\}.$

Definition: (<)

För $\alpha, \beta \in \mathbb{R}$ låter vi $\alpha < \beta$ om $\alpha \subsetneq \beta$.

Det återstår att visa att detta verkligen utgör en ordning.

\rightarrow Bevis:

Transivitet är uppenbart från mängdlära. Vidare är det uppenbart att högst en av $\alpha < \beta$, $\alpha = \beta$ och $\alpha > \beta$ kan gälla. Det återstår att visa att minst en måste gälla.

Antag $\alpha \not< \beta$ och $\alpha \neq \beta$. Tag ett $a \in \alpha$ så att $a \notin \beta$. Tag ett $b \in \beta$. Då måste b < a eftersom annars skulle det gälla att $a \in \beta$. Detta säger oss att $b \in \alpha$ vilket att $\alpha > \beta$.

Sats:

 \mathbb{R} har supremumegenskapen.

→ Bevis:

Låt $A \subset \mathbb{R}$ så att A är uppåt begränsad och icke-tom. Låt γ vara unionen av alla snitt i A. Vi kommer visa att $\gamma = \sup A \in \mathbb{R}$.

Påstående: γ är ett snitt:

Vi ser $\gamma \neq \emptyset$ eftersom $A \neq \emptyset$. Vi ser $\gamma \neq \mathbb{Q}$ eftersom A är uppåt begränsad.

Ta ett $p \in \gamma$. Då är $p \in \alpha$ för något snitt $\alpha \in A$. Alltså gäller det för alla $q \in \mathbb{Q}$ där q < p att $q \in \alpha$. Av samma anledning, $\exists r > p$ så att $r \in \alpha \subset \gamma$.

Påstående: $\gamma = \sup A$:

Det gäller $\alpha \leq \gamma$ för alla $\alpha \in A$ trivialt per konstruktionen av γ . Ta något $\beta < \gamma$. Då finns ett $p \in \gamma$ så att $p \notin \beta$, men $p \in \alpha$ för något $\alpha \in A$. Alltså gäller $\beta < \alpha$.

Definition: (+)

För $\alpha, \beta \in \mathbb{R}$ låter vi $\alpha + \beta := \{a + b : a \in \alpha, b \in \beta\}.$

Definition: (\cdot)

 $\overline{\text{F\"{o}r }\alpha,\beta}\in\mathbb{R}$ låter vi $\alpha\cdot\beta:=\{a\cdot b:a\in\alpha,b\in\beta\}.$

Egenskaper hos \mathbb{R}

Sats: (R är arkimediskt)

 $\overline{\text{Låt }}x,y\in\mathbb{R}$ så att x>0. Då finns ett positivt heltal n så att nx>y.

\rightarrow Bevis:

Antag motsatsen, dvs. $nx < y \ \forall n$. Låt $A = \{nx : n \in \mathbb{N}\}$. Nu har A en övre gräns y. Sätt $\alpha = \sup A$. Då x > 0 gäller $\alpha - x < \alpha$ så $\alpha - x$ är ej en övre gräns till A. Alltså finns ett $m \in \mathbb{N}$ så att $\alpha - x < mx$. Men nu gäller $\alpha < (m+1)x$ vilket motsäger att α är en övre gräns till A.

Sats: (\mathbb{Q} är tät i \mathbb{R})

Låt $x, y \in \mathbb{R}$ så att x < y. Då finns ett $p \in \mathbb{Q}$ så att x .

 → Bevis:

Notera y-x>0, eftersom $\mathbb R$ är arkimediskt existerar ett $n\in\mathbb N$ så att n(y-x)>1. Vidare kan vi få tal ett tal $m\in\mathbb Z$ så att $m-1\leq nx< m$. Totalt har vi nu

$$nx < m \le 1 + nx < ny.$$

Eftersom n > 0 gäller då $x < \frac{n}{m} < y$.

Kapitel 2: Topologi

Uppräknelighet

Definition: (Kardinalitet)

 $\overline{\text{Två mäng}}$ der A, B har samma kardinalitet om det finns en bijektion $f: A \to B$.

Definition: (Uppräknelig/Överuppräknelig)

 $\overline{\text{Låt } A}$ vara en o
ändlig mängd. Om A har samma kardinalitet som $\mathbb N$ är A vara uppräknelig. Annars är A överuppräknelig.

Sats:

Varje oändlig delmängd av en uppräknelig mängd är uppräknelig.

Sats:

 $\overline{\text{Låt}}(E_n)$ vara en följd med $n=1,2,3,\ldots$ av uppräkneliga mängder. Då är $\bigcup_{n=1}^{\infty} E_n$ uppräknelig.

→ Kommentar: Bevisas med diagonal räkning.

Sats:

Q är uppräkneligt.

 \vdash Kommentar: Bevisas genom att identifiera $\frac{p}{q} \leftrightarrow (p,q)$ och visa att alla n-tuplar (eller 2-tuplar i detta fall) av uppräkneliga mängder är uppräkneliga.

Sats:

 \mathbb{R} är överuppräkneligt.

→ Kommentar: Bevisas med Cantors diagonalargument.

Metriska rum

Definition: (Metriskt rum)

För en mängd X utgör $d: X \times X \to \mathbb{R}$ en metrik om:

- d(p,q) > 0 om $p \neq q$ och d(p,p) = 0 (positivt definit)
- d(p,q) = d(q,p) (symmetri)
- $d(p,q) \le d(p,r) + d(r,q)$ (triangelolikheten)

I så fall kallas (X, d) för ett metriskt rum.

Definition: (Omgivning)

 $\overline{\text{Låt}(X,d)}$ vara ett metriskt rum. En omgivning av $p \in X$ är $N_r(p) := \{q \in X : d(p,q) < r\}$ för $r \in \mathbb{R}$.

Definition: (Hopningspunkt)

Låt (X, \overline{d}) vara ett metriskt rum och $E \subset X$. En punkt $p \in X$ är en hopningspunkt till E om varje omgivning $N_r(p)$ innehåller någon punkt $q \in E$ där $q \neq p$.

Definition: (Isolerad punkt)

Låt (X,d) vara ett metriskt rum och $E \subset X$. Om $p \in E$ inte är en hopningspunkt till E så är p en isolerad punkt.

Definition: (Sluten)

 $\overline{\text{Låt}(X,d)}$ vara ett metriskt rum och $E \subset X$. E är sluten om varje hopningspunkt till E ingår i E.

Definition: (Inre punkt)

 $\overline{\text{Låt}(X,d)}$ vara ett metriskt rum och $E \subset X$. En punkt $p \in E$ är en inre punkt till E om $N_r(p) \subset E$.

Definition: (Öppen)

 $\overline{\text{Låt}(X,d)}$ vara ett metriskt rum och $E \subset X$. E är öppen om varje punkt i E är en inre punkt.

Definition: (Perfekt)

Låt (X, d) vara ett metriskt rum och $E \subset X$. E är perfekt om den är sluten och alla $p \in E$ är hopningspunkter till E.

Definition: (Begränsad)

 $\overline{\text{Låt}(X,d)}$ vara ett metriskt rum och $E \subset X$. E är begränsad om $\exists M \in \mathbb{R}$ och $q \in X$ så att $d(p,q) < M \ \forall p \in E$.

Definition: (Tät)

 $\overline{\text{Låt}(X,d)}$ vara ett metriskt rum och $E \subset X$. E är tät i X om alla $p \in X$ är hopningspunkter till E.

Definition: (Tillslutning)

Låt (X, d) vara ett metriskt rum och $E \subset X$. Vi definierar $E' := \{\text{hopningspunkter till } E\}$ och tillslutningen av $E \text{ som } \overline{E} := E \cup E'$.

Sats:

E är öppen $\iff E^c$ är sluten.

 □ Bevis:

 \Longrightarrow :

Antag att E är öppen. Antag att x är en hopningspunkt till E^c . Då gäller att varje omgivning $N_r(x) \not\subset E$, så x kan inte vara en inre punkt till E. Därmed gäller $x \notin E \iff x \in E^c$.

⇐= :

Antag att E^c är sluten. Tag en punkt $x \in E$. Då gäller $x \notin E^c$, så x kan inte vara en hopningspunkt till E. Alltså finns en omgivning $N_r(x)$ som inte innehåller någon punkt i E^c , och därmed gäller $N_r(x) \subset E$ vilket visar att x är en inre punkt till E.

Sats

 $\overline{\mathrm{Om}} \{ E_{\alpha} \}$ är en familj av öppna mängder så är $\bigcup_{\alpha} E_{\alpha}$ öppen.

Sats:

 $\overline{\mathrm{Om}} \{E_{\alpha}\}$ är en familj av slutna mängder så är $\bigcap_{\alpha} E_{\alpha}$ sluten.

Sats:

 $\overline{\text{Låt}}\ X$ och Y vara metriska rum så att $X\subset Y$, och låt $E\subset X$. Då är E öppen i X om och endast om $E=X\cap F$ för något öppet $F\subset Y$.

Exempel: (Cantormängden)

Låt $E_0 = [0, 1], E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1], \dots$ Cantormängden definieras som $\bigcap_{n=1}^{\infty} E_n$. Det gäller att Cantormängden är överuppräknelig och perfekt men inte innehåller något segment (a, b).

<u>Definition</u>: (Separerad)

Låt A,B vara delmängder av ett metriskt rum X. A och B är separerade om $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.

Definition: (Sammanhängande)

Låt E vara en delmängd av ett metriskt rum X. E är sammanhängande om E inte kan skrivas som unionen av två icke-tomma separerade mängder.

Kompakthet

Definition: (Öppen övertäckning)

 $\overline{\text{Låt }X \text{ vara ett metriskt rum och } E \subset X$. En öppen övertäckning av E är en familj av öppna mängder $\{G_{\alpha}\}$ så

att $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition: (Kompakt)

Låt X vara ett metriskt rum och $K \subset X$. K är kompakt i X om varje öppen övertäckning $\{G_{\alpha}\}$ har en ändlig delövertäckning, dvs. om det finns ändligt många index $\alpha_1, \ldots, \alpha_N$ så att $K \subset \bigcup_{i=1}^N G_{\alpha_i}$.

Sats:

 $K \subset X$ är kompakt $\implies K$ är begränsad.

Sats

 $K \subset X$ är kompakt $\implies K$ är sluten.

Sats

 $\overline{\text{Låt }}K \subset X$ vara kompakt. Om $E \subset K$ är sluten så är E också kompakt.

 \rightarrow Bevis:

Låt $\{G_{\alpha}\}$ vara en öppen övertäckning av E. Då gäller att $K \subset E^c \cup \bigcup_{\alpha} G_{\alpha}$. Eftersom E^c och alla G_{α} är öppna så ger kompaktheten av K att det finns ändligt många $\alpha_1, \ldots, \alpha_N$ så att $K \subset E^c \cup \bigcup_{j=1}^N G_{\alpha_j}$, och då speciellt $E \subset \bigcup_{j=1}^N G_{\alpha_j}$.

 \hookrightarrow Korrolarium: K är kompakt och E är sluten $\implies K \cap F$ är kompakt.

Sats

 $\overline{\text{Låt}}\{K_{\alpha}\}$ vara en familj av kompakta mängder så att snittet av varje ändlig delfamilj är icke-tomt. Då är $\bigcap_{\alpha} K_{\alpha}$ icke-tomt.

 → Bevis:

BWOC, antag att $\bigcap_{\alpha} K_{\alpha} = \emptyset$. Ta en av mängderna i $\{K_{\alpha}\}$ och kalla den K_{1} . Då gäller att ingen punkt i K_{1} tillhör alla K_{α} . För alla α , låt $G_{\alpha} := K_{\alpha}^{c}$ som är öppen. Nu gäller att $\{G_{\alpha}\}$ är en öppen övertäckning av K_{1} (om ej övertäckning så skulle det finnas en punkt i K_{1} som inte tillhör något K_{α}^{c}). Eftersom att K_{1} är kompakt så finns en ändlig delövertäckning $K_{1} \subset \bigcup_{j=1}^{N} G_{\alpha_{j}} = \left(\bigcap_{j=1}^{N} K_{\alpha}\right)^{c}$, dvs. $K_{1} \cap \bigcap_{j=1}^{N} K_{\alpha} = \emptyset$ vilket motsäger satsen antagande.

→ Korrolarium: Om $\{K_n\}$ är kompakta och $K_{n+1} \subset K_n$ så är $\bigcup_{n=1}^{\infty} K_n$ icke-tom.

Sats

 $\overline{\text{Låt}}\{I_n\}$ vara en följd av icke-tomma (slutna) intervall i \mathbb{R} så att $I_{n+1} \subset I_n$. Då är $\bigcup_{n=1}^{\infty} I_n$ icke-tomt.

→ Bevis:

Beteckna $I_n = [a_n, b_n]$. Definiera $E := \{a_n : n = 1, 2, \dots\}$. Vi ser att E är icketom och uppåt begränsad av t. ex. b_1 , så $x := \sup E$ existerar. Eftersom $a_n \le a_{n+m} \le b_{m+n} \le b_n$ för positiva heltal n, m så måste $x \in I_n$ för alla n.

Sats

 $\overline{\text{Varje}}\ k\text{-cell}\ \text{\"ar kompakt},\ \text{d\"ar k-cell}\ \text{\"ar en m\"angd}\ I=\left\{(x_1,\ldots,x_k):a_j\leq x_j\leq b_j,j=1,\ldots,k\right\}\subset\mathbb{R}^k.$

 → Bevis:

Ta en k-cell I. Låt $\delta := \sqrt{(b_1 - a_1)^2 + \dots + (b_k - a_k)^2}$. Då gäller $|\boldsymbol{x} - \boldsymbol{y}| \leq \delta \ \forall \boldsymbol{x}, \boldsymbol{y} \in I$. Ta en öppen övertäckning $\{G_{\alpha}\}$ av I och antag BWOC att den inte har en ändlig delövertäckning. Definiera $c_j := \frac{a_j + b_j}{2}$ för $j = 1, \dots, k$. Då utgör intervallen $[a_j, c_j]$ och $[c_j, b_j]$ 2^k stycken k-celler Q_l vars union är I. Minst en av Q_l måste sakna en ändlig delövertäckning; kalla en sådan I_1 . Vi utför samma process på I_1 och får I_2 , osv. ad infinitum.

Vi har nu en följd av k-celler $\{I_n\}$ som uppfyller $I_{n+1} \subset I_n$ och dessutom kan ingen av dessa täckas av en ändlig delövertäckning. Enligt korrolariet ovan måste det finnas ett ξ som ligger i alla I_n , och måste speciellt tillhöra något G_{α} . Eftersom som detta G_{α} är öppet finns något r > 0 så att $|y - \xi| < r \implies$

 $y \in G_{\alpha}$. Välj nu n så stort att $2^{-n}\delta < r$. Per vår konstruktion vet vi att $|x - y| \le 2^{-n}\delta$ för $x, y \in I_n$, så detta medför att $I_n \subset G_{\alpha}$ vilket motsäger att I_n inte kan täckas av en ändlig delövertäckning.

Sats: (Heine-Borel+)

 $\overline{\operatorname{Lat}} E \subset \mathbb{R}^k$. Då är följande ekvivalenta:

- (i) E är sluten och begränsad
- (ii) E är kompakt
- (iii) Varje o
ändlig delmängd av E har en hopningspunkt i E
- → Bevis:

 $(i) \implies (ii)$

 $E \subset I$ för någon k-cell I. Så E är en sluten delmängd av en kompakt mängd $\implies E$ är kompakt. $(ii) \implies (i)$ visades tidigare.

 $(ii) \implies (iii)$:

Låt E vara kompakt och ta en o
ändlig delmängd $F \subset E$. Antag BWOC att F ej har en hopningspunkt i
 E. Så, varje $q \in E$ är inte en hopningspunkt till F och därmed finns en omgivning V_q som inte innehåller
 någon punkt i F förutom q. Notera att $\{V_q\}$ utgör en öppen övertäckning av E. Eftersom E är kompakt
 så finns en ändlig delövertäckning. Men eftersom varje V_q bara innehåller en punkt i F som är o
ändlig så kan ingen ändlig delmängd av $\{V_q\}$ täcka F och därmed speciellt inte E, vilket ger motsägelse.

 $(iii) \implies (i)$:

Antag BWOC att E är obegränsad. Då finns för varje n = 1, 2, ... ett $x_n \in E$ så att $|x_n| > E$. Då är $\{x_n\}$ en oändlig delmängd i E som saknar hopningspunkt i E, vilket ger motsägelse.

Antag BWOC att E ej är sluten. Då finns ett $x_0 \in \mathbb{R}^k$ där $x_0 \notin E$ men x_0 är hopningspunkt till E. Då finns en följd $\{x_n\}$ i E så att $|x_n - x_0| < \frac{1}{n}$. Denna följd är en oändlig delmängd av E, men har ingen hopningspunkt förutom x_0 vilket ger motsägelse.

Följdsats: (Weierstrass sats)

Varje begränsad följd i \mathbb{R}^k har en hopningspunkt i \mathbb{R}^k .

Följdsats: (Bolzano-Weierstrass sats)

Varje begränsad följd i \mathbb{R} har en konvergent delföljd.

Sats:

Låt $K \subset X \subset Y$ där X, Y är metriska rum. Då är K kompakt i Y om och endast om K är kompakt i X.

Kapitel 3: Talföljder och serier

Konvergens

Definition: (Konvergera)

En följd $\{p_n\}_{n=1}^{\infty}$ i ett metriskt rum X konvergerar mot $p \in X$ om $\forall \varepsilon > 0 \; \exists N$ så att $d(p_n, p) < \varepsilon$ för $n \geq N$. Vi skriver $\lim_{n \to \infty} p_n = p$ eller $p_n \to p$ då $n \to \infty$.

Sats:

Om $\{p_n\}$ är konvergent så är $\{p_n\}$ begränsad.

Sats:

Om $E \subset X$ och p är en hopningspunkt till E så finns en följd $\{p_n\}$ i E så att $p_n \to p$.

Sats:

Om $\{p_n\}$ är en följd i ett kompakt metriskt rum X så har $\{p_n\}$ en delföljd som konvergerar mot något $p \in X$.

→ Kommentar: Följer från Heine-Borel+.

Definition: (Cauchyföljd)

En följd $\{p_n\}$ i ett metriskt rum X är en Cauchyföljd om $\forall \varepsilon > 0 \ \exists N$ så att $d(p_n, p_m) < \varepsilon$ för $n, m \ge N$.

Definition: (Fullständigt)

Ett metriskt rum där alla Cauchyföljder konvergerar kallas fullständigt.

Definition: (Diameter)

 $\overline{\text{Låt }E\subset X}$. Diametern av E är diam $E:=\sup\left\{d(p,q):p,q\in E\right\}$ om det existerar. Annars säger vi diam $E=\infty$.

Sats:

Varje konvergent följd är Cauchy.

Sats:

 $\overline{\text{Låt}}\{p_n\}$ vara en Cauchyföljd i ett kompakt metriskt rum X. Då är $\{p_n\}$ konvergent mot något $p \in X$.

 → Bevis:

Låt $E_N=\{p_N,p_{N+1},\dots\}$ för $N=1,2,\dots$ Då gäller lim diam $E_N=\lim$ diam $\overline{E}_N=0$. Eftersom \overline{E}_N är slutna i det kompakta X så är alla \overline{E}_N kompakta. Vidare, eftersom $\overline{E}_{N+1}\subset \overline{E}_N$, så finns exakt en punkt $p\in\bigcap\overline{E}_N$.

Låt $\varepsilon > 0$. Då finns N_0 så att $N \ge N_0 \implies \operatorname{diam} \overline{E}_N < \varepsilon$. Så eftersom $p \in \overline{E}_N$ så gäller $d(p,q) < \varepsilon$ för alla $q \in \overline{E}_N$. Med andra ord gäller $d(p_n,p) < \varepsilon$ för $n \ge N_0$.

Sats:

 \mathbb{R}^k är ett fullständigt metriskt rum.

Sats.

 $\overline{\mathrm{Om}} \{s_n\}$ är en monoton följd i \mathbb{R} så är $\{s_n\}$ konvergent om och endast om $\{s_n\}$ är begränsad.

 □ Bevis:

' \Longrightarrow ' visades tidigare. Vi visar nu ' \Longleftarrow ' i fallet där $\{s_n\}$ är monotont växande:

Antag att $\{s_n\}$ är växande och begränsad. Då finns $S := \sup\{s_n\}$. För varje $\varepsilon > 0$ finns N så att $S - \varepsilon < s_N$, eftersom $S - \varepsilon$ inte kan vara en övre gräns till $\{s_n\}$. Vidare eftersom $\{s_n\}$ är växande gäller för $n \geq N$ att $S - \varepsilon < s_n < s$ vilket visar att $s_n \to S$ konvergerar.

Definition: (limsup/liminf)

Låt $\{s_n\}$ vara en följd i \mathbb{R} . Låt E vara mängden av alla tal x så att $s_{n_k} \to x$ för någon delföljd $\{s_{n_k}\}$. Då definierar vi:

$$\limsup_{n \to \infty} s_n := \begin{cases} \sup E, & \text{om detta existerar} \\ \infty, & \text{annars} \end{cases}$$

$$\liminf_{n \to \infty} s_n := \begin{cases} \inf E, & \text{om detta existerar} \\ -\infty, & \text{annars} \end{cases}$$

Alternativt kan vi definiera $\limsup s_n := \lim_{n \to \infty} \sup_{m \ge n} s_m$.

Serier

Definition: (Konvergens (serie))

Vi säger att serien $\sum_{n=1}^{\infty} a_n$ konvergerar till s om följden av partialsummor $s_N = \sum_{n=1}^{N} a_n$ konvergerar till s.

Sats: (Cauchykriteriet)

 $\overline{\text{Serien}} \sum_{n=1}^{\infty} a_n \text{ konvergerar om och endast om } \forall \varepsilon > 0 \ \exists N \text{ så att } m \geq n \geq N \implies \left| \sum_{k=n}^m a_k \right| < \varepsilon.$

Sats.

 $\overline{\operatorname{Om}} \sum_{n=1}^{\infty} a_n$ konvergerar så måste $|a_n| \to 0$ när $n \to \infty$.

Sats: (Jämförelsetest)

Betrakta serier $\sum a_k$ och $\sum b_k$.

- (i) Om det finns N så att $n \ge N \implies |a_n| \le b_n$, och $\sum b_k$ är konvergent, så är $\sum a_k$ konvergent.
- (ii) Om det finns N så att $n \ge N \implies a_n \ge b_n \ge 0$, och $\sum b_k$ är divergent, så är $\sum a_k$ divergent.

Sats: (Rot-testet)

Betrakta serien $\sum a_k$. Sätt $\alpha = \limsup_{k \to \infty} \sqrt[k]{|a_k|}$. Om $\alpha < 1$ så är $\sum a_k$ konvergent. Om $\alpha > 1$ så är $\sum a_k$ divergent.

→ Bevis:

Antag $\alpha < 1$. Välj något β så att $\alpha < \beta < 1$. Välj N så att $\sqrt[k]{|a_k|} < \beta$ för $k \ge N$, vilket är möjligt iom. lim sup. Nu gäller $|a_k| < \beta^k$. Eftersom $\sum \beta^k$ är en konvergent geometrisk serie så konvergerar $\sum a_k$ enligt jämförelsetest.

Antag $\alpha > 1$. Då finns en delföljd a_{n_k} så att $\sqrt[k]{|a_{n_k}|} \to \alpha$, vilket ger att termerna a_k inte går mot noll.

Sats: (Kvot-testet)

Betrakta serien $\sum a_k$. Om $\limsup_{k\to\infty} \left|\frac{a_{k+1}}{a_k}\right| < 1$ så konvergerar serien. Om $\left|\frac{a_{k+1}}{a_k}\right| \ge 1 \ \forall k \ge N$ för något N så divergerar serien.

→ Bevis:

Antag $\limsup_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=:\alpha<1$. Välj något β så att $\alpha<\beta<1$. Välj N så att $\left|\frac{a_{k+1}}{a_k}\right|<\beta$ för $k\geq N$, vilket är möjligt iom. \limsup Nu gäller $|a_{N+1}|<\beta|a_N|$, och itererat $|a_{N+p}|<\beta^p|a_N|$. Eftersom $|a_N|\sum\beta^k$ är en konvergent geometrisk serie så konvergerar $\sum a_k$ enligt jämförelsetest. Antag $\left|\frac{a_{k+1}}{a_k}\right|\geq 1$. Då går termerna inte mot noll och vi får divergens.

Sats: (Leibniz kriterie)

Antag $|a_1| \ge |a_2| \ge \dots$, och $a_{2m-1} \ge 0$, $a_{2m} \le 0$ samt $\lim a_k = 0$. Då konvergerar $\sum a_k$.

Kapitel 4: Kontinuitet

Definition: (Kontinuitet)

Låt X och Y vara metriska rum med metriker d_X respektive d_Y . Låt $f: E \to Y$ vara en funktion med $E \subset X$. Vi säger att f är kontinuerlig i en punkt $p \in E$ om $\forall \varepsilon > 0 \; \exists \delta > 0$ så att $d_Y(f(x), f(p)) < \varepsilon$ för alla $x \in E$ så att $d_X(x, p) < \delta$.

Sats:

 $\overline{\text{Låt}}\ X,\ Y\ \text{och}\ Z\ \text{vara metriska rum}.$ Givet funktioner $f:X\to Y\ \text{och}\ g:Y\to Z,$ bilda $h:=g\circ f.$ Om f är kontinuerlig i $p\in X,$ och g är kontinuerlig i $f(p)\in Y,$ då är h kontinuerlig i p.

Sats.

 $\overline{\text{Låt}} f: X \to Y$ vara en funktion mellan två metriska rum. f är kontinuerlig om och endast om $f^{-1}(V)$ är öppen för alla öppna $V \subset Y$.

\rightarrow Bevis:

\Longrightarrow :

Antag att f är kontinuerlig och V är öppen i Y. Ta ett $p \in X$ där $f(p) \in V$, alltså $p \in f^{-1}(V)$ (om inget sådant p existerar är $f^{-1}(V) = \emptyset$ som är öppen). Eftersom V är öppen så $\exists \varepsilon > 0$ så att $d_Y(y, f(p)) < \varepsilon \implies y \in V$. Eftersom f är kontinuerlig så, för detta ε , $\exists \delta > 0$ så att $d_X(x, p) < \delta \implies d_Y(f(x), f(p)) < \varepsilon$. Alltså, för alla $x \in X$ så att $d_X(x, p) < \delta$ gäller $f(x) \in V$, dvs. $x \in f^{-1}(V)$, dvs. $x \in f^{-1}(V)$. Detta visar att $f^{-1}(V)$ är öppen.

\iff

Antag att $f^{-1}(V)$ är öppen för alla öppna V. Ta något $p \in X$ och $\varepsilon > 0$. Definiera $V := N_{\varepsilon}(f(p))$ som är öppen och därmed är $f^{-1}(V)$ öppen, och notera $p \in f^{-1}(V)$. Då $\exists \delta > 0$ så att $d_X(x,p) < \delta \implies x \in f^{-1}(V)$ och vidare för sådana x gäller $f(x) \in V \implies d_Y(f(x),f(p)) < \varepsilon$. Vi ser alltså, med detta val av δ , att f är kontinuerlig.

 \downarrow Korrolarium: f är kontinuerlig om och endast om $f^{-1}(V)$ är sluten för alla slutna V.

Sats:

Om $f: X \to Y$ är kontinuerlig och X är kompakt, då är f(X) kompakt.

 \vdash Korrolarium: Om $f: X \to \mathbb{R}$ är kontinuerlig och X är kompakt, då antar f ett största och minsta värde.

Definition: (Likformigt kontinuerlig)

En funktion $f: X \to Y$ mellan metriska rum är likformigt kontinuerlig på X om $\forall \varepsilon > 0 \; \exists \delta > 0$ så att $d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon$.

Sats:

 $\overline{\mathrm{Om}} f: X \to Y$ är kontinuerlig på ett kompakt X, då är f likformigt kontinuerlig.

Sats:

Om $f: E \to Y, E \subset X$ är kontinuerlig och E är sammanhängande, då är f(E) sammanhängande.

Kapitel 5: Derivata

Definition: (Derivata)

Ta en funktion $f:[a,b]\to\mathbb{R}$ och en punkt $x\in[a,b]$. Derivatan av f i x är $f'(x):=\lim_{t\to x}\frac{f(t)-f(x)}{t-x}$ om detta existerar och är ändligt.

Sats:

Om $f:[a,b]\to\mathbb{R}$ är deriverbar så är f också kontinuerlig.

Sats: (Medelvärdesatsen)

Låt $f:[a,b]\to\mathbb{R}$ vara kontinuerlig, och deriverbar på (a,b). Då $\exists \xi\in(a,b)$ så att $f'(\xi)=\frac{f(b)-f(a)}{b-a}$.

Sats: (Generaliserade medelvärdesatsen)

Låt $f, g : [a, b] \to \mathbb{R}$ vara kontinuerliga, och deriverbara på (a, b). Då $\exists \xi \in (a, b)$ så att $(f(b) - f(a)) g'(\xi) = (g(b) - g(a)) f'(\xi)$.

Sats:

Antag att f är deriverbar på [a,b], och $f'(a) < \lambda < f'(b)$ för något λ . Då finns $\xi \in (a,b)$ så att $f'(\xi) = \lambda$.

→ Intuition: Derivatan antar alla mellanliggande värden.

Sats: (L'Hôpital)

Låt $-\infty \le a < b \le \infty$. Antag att $f, g : \mathbb{R} \to \mathbb{R}$ är deriverbara på (a, b) och $g'(x) \ne 0 \ \forall x \in (a, b)$. Antag antingen " $f(x) \to 0$ och $g(x) \to 0$ när $x \to a$ " eller " $g(x) \to \infty$ när $x \to a$ ". Om $f'(x)/g'(x) \to A$ när $x \to a$ så gäller då $f(x)/g(x) \to A$ när $x \to a$.

Sats: (Taylors formel)

Ta en funktion $f: [\alpha, \beta] \to \mathbb{R}$ och ett positivt heltal n. Antag att $f^{(n-1)}$ är kontinuerlig på $[\alpha, \beta]$ och att $f^{(n)}(t)$ existerar i varje $t \in (\alpha, \beta)$. Låt a och x vara olika punkter i $[\alpha, \beta]$. Då finns ett ξ mellan a och x så att $f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(\xi)}{n!} (x-a)^n$.

Kapitel 6: Integraler

Definition: (Partition)

En partition P av [a, b] är ändligt många punkter $a = x_0 \le x_1 \le \ldots \le x_n = b$.

Definition: (Riemann-integral)

 $\overline{\text{Låt } f:[a,b]} \to \mathbb{R}$ vara begränsad. För en partition P, sätt $\Delta x_i := x_i - x_{i-1}$. Sätt vidare $M_i := \sup_{x_{i-1} \le x \le x_i} f(x)$ och $m_i := \inf_{x_{i-1} \le x \le x_i} f(x)$. Sätt $U(P,f) := \sum_{i=1}^n M_i \Delta x_i$ och $L(P,f) := \sum_{i=1}^n m_i \Delta x_i$. Beteckna överintegralen $\overline{\int_a^b f} dx =: \inf_P U(P,f)$ och underintegralen $\underline{\int_a^b f} dx =: \sup_P L(P,f)$. Om dessa två är samma kallar vi detta för integralen $\int_a^b f dx$.

Definition: (Förfining)

 $\overline{\text{En partition }}P^*$ är en förfining av partionen P om $P \subset P^*$.

Sats:

 $\overline{\mathrm{Om}}\,P^*$ är en förfining av P så gäller $U(P^*,f)\leq U(P,f)$ och $L(P^*,f)\geq L(P,f)$.

Sats:

 $\overline{\int_a^b f} \, \mathrm{d}x \le \overline{\int}_a^b f \, \mathrm{d}x.$

Sats: (Riemannkriteriet)

f är Riemannintegrerbar på [a,b] om och endast om $\forall \varepsilon > 0$ existerar en partition P så at $U(P,f) - L(P,f) < \varepsilon$.

Sats:

 $\overline{\text{Om }} f$ är kontinuerlig på [a, b] så är f Riemannintegrerbar på [a, b].

Sats:

 $\overline{\mathrm{Om}} f$ är monoton på [a, b] så är f Riemannintegrerbar på [a, b].

Sats:

 $\overline{\mathrm{Om}}\ f$ är begränsad på [a,b] med ändligt många diskontinuiteter så är f Riemannintegrerbar på [a,b].

Sats:

Antag att f är Riemannintegrerbar på [a,b] med $m \leq f(x) \leq M$. Låt ϕ vara kontinuerlig på [m,M]. Sätt $h := \phi \circ f$. Då är h Riemannintegrerbar på [a,b].

- → Korrolarium:
 - f, g integrerbara på $[a, b] \implies fg$ integrerbar på [a, b].
 - f integrerbar på $[a,b] \implies |f|$ integrerbar på [a,b].
 - f integrerbar på $[a,b] \implies \left| \int_a^b f \, dx \right| \le \int_a^b |f| \, dx$.

Sats:

Låt f vara Riemannintegrerbar på [a,b]. För $x \in [a,b]$ sätt $F(x) := \int_a^x f(t) dt$. Då är F likformigt kontinuerlig på [a,b]. Vidare om f är kontinuerlig i ett x_0 så är F deriverbar i x_0 med $F'(x_0) = f(x_0)$.

Sats: (Analysens huvudsats)

Låt f vara Riemannintegrerbar på [a,b]. Antag att det finns ett F så att F'=f på [a,b]. Då är $\int_a^b f(x) dx = F(b) - F(a)$.

Kapitel 7: Funktionsföljder och funktionsserier

Definition: (Punktvis konvergens)

 $\overline{\text{Låt }\{f_n\}}$ vara en följd av funktioner $f_n: E \to \mathbb{C}$. Om $\{f_n(x)\}$ är konvergent för varje $x \in E$ så definierar vi $f(x) := \lim_{n \to \infty} f_n(x)$, och säger att $f_n \to f$ punktvis på E.

<u>Definition</u>: (Likformig konvergens)

 $\overline{\text{Låt}\{f_n\}}$ vara en följd av funktioner $f_n: E \to \mathbb{C}$. Vi säger att $f_n \to f$ likformigt om $\forall \varepsilon > 0 \; \exists N \; \text{så att}$ $n \geq N \implies |f_n(x) - f(x)| < \varepsilon \; \forall x \in E$.

Serien $\sum_{n=1}^{\infty} f_n(x)$ konvergerar likformigt om följden av partialsummor $s_N(x) = \sum_{n=1}^N f_n(x)$ konvergerar likformigt.

Sats: (Cauchys kriterie för likformig konvergens (CKLK))

 $\overline{\text{Låt}} \{ f_n \}$ vara en följd av funktioner $f_n : E \to \mathbb{C}$. Då konvergerar $f_n \to f$ likformigt om och endast om $\forall \varepsilon > 0$ $\exists N$ så att $m, n \ge N \implies |f_n(x) - f_m(x)| < \varepsilon \ \forall x \in E$.

Sats: (Weierstrass M-test)

Låt $\{f_n\}$ vara en följd av funktioner $f_n: E \to \mathbb{C}$. Om $|f_n(x)| \le M_n \ \forall x \in E$, och $\sum_{n=1}^{\infty} M_n$ är konvergent, då är $\sum_{n=1}^{\infty} f_n(x)$ likformigt konvergent.

Sats:

Antag att $f_n \to f$ likformigt på E. Då gäller $\lim_{t\to x} f(x) = \lim_{n\to\infty} \lim_{t\to x} f_n(x)$.

 \hookrightarrow Korrolarium: Om alla f_n är kontinuerliga, och $f_n \to f$ likformigt, så är f kontinuerlig.

Sats:

Antag att $f_n \to f$ likformigt på [a,b], och att alla f_n är integrerbara på [a,b]. Då är f integrerbar, och $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$.

Sats:

Antag att alla f_n på [a, b] är deriverbara, och att $\{f'_n\}$ är likformigt konvergent, och att $\{f_n(x_0)\}$ konvergerar för något x_0 . Då konvergerar f_n likformigt, kalla gränsfunktionen f. Då gäller $f'(x) = \lim_{n \to \infty} f'_n(x)$ för $x \in [a, b]$.

Definition: (Punktvis begränsad)

 $\overline{\text{F\"oljden }\{f_n\}}$ av funktioner $f_n: E \to \mathbb{C}$ är punktvis begränsad om f\"oljden $\{f_n(x)\}$ är begränsad f\"or varje $x \in E$.

Definition: (Likformigt begränsad)

Följden $\{f_n\}$ av funktioner $f_n: E \to \mathbb{C}$ är likformigt begränsad om $\exists M$ så att $|f_n(x)| \leq M$ för alla $x \in E$ och $n \in \mathbb{N}$.

Definition: (Ekvikontinuerlig)

En familj \mathcal{F} av funktioner $f: E \to \mathbb{C}$ är ekvikontinuerlig om $\forall \varepsilon > 0 \; \exists \delta > 0$ så att $d(x,y) < \delta \implies |f_n(x) - f_n(y)| < \varepsilon \; \forall f \in \mathcal{F}$.

Sats:

Låt $\{f_n\}$ vara en punktvis begränsad följd av funktioner $f_n: E \to \mathbb{C}$ där E är uppräknelig. Då finns en delföljd $\{f_{n_k}\}$ som konvergerar punktvis.

Sats: (Arzela-Ascolis lemma)

Låt K vara ett kompakt metriskt rum. Låt $\{f_n\}$ vara en punktvis begränsad och ekvikontinuerlig av funktioner $f_n \in C(K)$. Då har $\{f_n\}$ en likformigt konvergent delföljd.

Sats: (Arzela-Ascoli)

 $\overline{\text{Låt }}K$ vara ett kompakt metriskt rum och \mathcal{F} vara en familj av funktioner i C(K). Då är \mathcal{F} relativt kompakt i C(K), dvs. $\overline{\mathcal{F}}$ är kompakt i C(K), om och endast om \mathcal{F} är likformigt begränsad och ekvikontinuerlig.

Sats: (Weierstrass)

Om $f:[a,b]\to\mathbb{R}$ är kontinuerlig så finns polynom p_n så att $p_n\to f$ likformigt på [a,b].

Sats

Låt $f(x) = \sum_{n=0}^{\infty} c_n x^n$ med någon konvergensradie R > 0. Då konvergerar serien likformigt på $[-R + \varepsilon, R - \varepsilon]$ för varje litet $\varepsilon > 0$. Vidare är f kontinuerlig och deriverbar på (-R, R).

Sats:

Låt $f(x) = \sum_{n=0}^{\infty} c_n x^n$ med någon konvergensradie R > 0. Då gäller nödvändigtvis att $c_n = \frac{f^{(n)}(0)}{n!}$.

Kapitel 9: Flervarre

Definition

 $\overline{L(X,Y)}$ definieras som mängden av alla linjära avbildningar $X \to Y$.

Definition

 $\overline{\text{F\"{o}r } A \in L}(\mathbb{R}^n, \mathbb{R}^m)$ definierar vi $||A|| := \sup\{|Ax| : x \in \mathbb{R}^n, |x| < 1\}$.

Sats:

Om $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ så gäller $||A|| < \infty$ och A är likformigt kontinuerlig.

Definition: (Differentierbar)

 $\overline{\text{Låt }E\subset\mathbb{R}^n} \text{ vara \"{o}ppen och ta en funktion } f:E\to\mathbb{R}^m. \ f \text{ \"{a}r differentier} \text{bar i punkten } \boldsymbol{x}\in E \text{ om det finns en linjär avbildning } A\in L(\mathbb{R}^n,\mathbb{R}^m) \text{ s\^{a} att } \lim_{\boldsymbol{h}\to 0} \frac{\left|f(\boldsymbol{x}+\boldsymbol{h})-f(\boldsymbol{x})-A\boldsymbol{h}\right|}{|\boldsymbol{h}|} = 0. \text{ I s\^{a} fall skriver vi } f'(\boldsymbol{x})=A.$

Sats: (Kedjeregeln)

Låt $E \subset \mathbb{R}^n$ vara öppen och ta en funktion $f: E \to \mathbb{R}^m$ där f är differentierbar i $\mathbf{x}_0 \in E$. Låt $D \subset f(E)$ vara öppen och ta en funktion $g: D \to \mathbb{R}^k$ där g är differentierbar i $f(\mathbf{x}_0)$. Låt $F = g \circ f$. Då är F differentierbar i $\mathbf{x}_0 \mod F'(\mathbf{x}_0) = g'(f(\mathbf{x}_0)) f'(\mathbf{x}_0)$.

Sats:

 $\overline{\text{Låt}}\ E \subset \mathbb{R}^n$ vara öppen och ta en funktion $f: E \to \mathbb{R}^m$. Då är f differentierbar i $E \mod f'$ kontinuerlig om och endast om alla partialderivator till f existerar och är kontinuerliga.

\downarrow Kommentar: I så fall säger vi $f \in C^1(E)$.

Definition: (Kontraktion)

Låt (X, d) vara ett metriskt rum. Om $\phi: X \to X$ har ett tal c så att 0 < c < 1 och $d(\phi(x), \phi(y)) \le cd(x, y)$ $\forall x, y \in X$ så är ϕ en kontraktion på X.

Sats: (Banachs fixpunktsats)

 $\overline{\text{Om }}X$ är ett fullständigt metriskt rum och $\phi:X\to X$ är en kontraktion så har ϕ en unik fixpunkt x^* så att $\phi(x^*)=x^*$.

Sats: (Inversa funktionssatsen)

 $\overline{\text{Låt }}E \subset \mathbb{R}^n$ vara öppen. Låt $f: E \to \mathbb{R}^n$ uppfylla $f \in C^1$. Låt $\boldsymbol{a} \in E$ så att $f'(\boldsymbol{a})$ är inverterbar. Då finns öppna mängder $U, V \subset \mathbb{R}^n$ så att $\boldsymbol{a} \in U$ och $f(\boldsymbol{a}) \in V$ och $f^{-1}: V \to U$ existerar.

Sats: (Implicita funktionssatsen)

 $\overline{\text{Låt }E} \subset \mathbb{R}^{n+m} \text{ vara \"oppen. Låt } f: E \to \mathbb{R}^n \text{ vara } C^1. \text{ Ta } (a,b) \in E \text{ (alltså } a \in \mathbb{R}^n \text{ och } b \in \mathbb{R}^m) \text{ så att } f(a,b) = 0.$ $\text{Låt } A = f'(a,b) = (A_x,A_y) \text{ där } A_x \text{ är } n \times n \text{ och } A_y \text{ är } n \times m. \text{ Antag att } A_x \text{ är inverterbar. Då finns \"oppna mängder } U \subset E \text{ och } W \subset \mathbb{R}^m \text{ så att } (a,b) \in U \text{ och } b \in W, \text{ och f\"or varje } y \in W \text{ finns ett unikt } x \text{ så att } (x,y) \in U \text{ och } f(x,y) = 0. \text{ Med detta kan vi skriva } x = g(y). \text{ Denna funktion } g: W \to \mathbb{R}^n \text{ uppfyller då } g \in C^1, g(b) = a, f(g(y),y) = 0 \text{ och } g'(b) = -(A_x)^{-1}A_y.$