Теория групп. Лекция 10

Штепин Вадим Владимирович

7 ноября 2019 г.

Простота знакопеременных групп A_n при n>4

Теорема (Д-во Штепина)

 A_5 простая.

Доказательство

Рассмотрим классы сопряженных элементов в S_5 , состоящие из четных подстановок и проверим, какие из них совпадают с классами сопряженных элементов A5, а какие распадаются на два класса:

$$(12) \in C_{S_5}((12)(34)) \neq C_{A_5}((12)(34)) \Rightarrow ((12)(34))^{S_5} = ((12)(34))^{A_5}$$
 по лемме. Аналогично, $(45) \in C_{S_5}((123)) \neq C_{A_5}((123)) \Rightarrow ((123))^{S_5} = ((123))^{A_5}$

Аналогично,
$$(45) \in C_{S_{\epsilon}}((123)) \neq C_{A_{\epsilon}}((123)) \Rightarrow ((123))^{S_5} = ((123))^{A_5}$$

Вычислим $C_{S_5}((12345))$:

Пусть
$$\sigma \in C_{S_5}((12345)) \Leftrightarrow \sigma(12345) = (12345)\sigma$$

Пусть
$$\sigma \in C_{S_5}((12345)) \Leftrightarrow \sigma(12345) = (12345)\sigma$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \sigma_1 & \sigma_2 & \sigma_3 & \sigma_4 & \sigma_5 \end{pmatrix}$$

Значит, $\sigma_1 \to \sigma_2 \to \sigma_3 \to \sigma_4 \to \sigma_5 \to \sigma_1$ в цикле (12345), причем $sigma_{i+1}$ восстанавливается по σ_i однозначно, следовательно $C_{S_5}((12345)) = \langle (12345) \rangle = C_{A_5}((12345))$. По лемме, $|((12345))^{A_5}| = \frac{|((12345))^{S_5}|}{2}$, а по замечанию, так как $S_5 = A_5 \cup (45)A_5$ (так как $(45) \notin A_5$, то $((12345))^{S_5} = ((12345))^{A_5} \cup (((12345))^{(45)})^{S_5}$ и $((12345))^{(45)} = (12354)$

Значит, этот класс сопряженных элементов распадается на два. В таблице показаны представители и мощности классов.

Пусть $\{e\} \neq H \triangleleft A_5$. Согласно одному из критериев, H представляет собой дизъюнктное объединение классов сопряженных элементов, в по теореме Лагранжа, мощность H — это делитель мощности A_5 . Пусть δ_i — индикатор того, что i-тый класс вложен в H. Тогда $|H|=\delta_1+15\delta_2+20\delta_3+12\delta_4+12\delta_5$. Единственный возможный набор $\delta_i\in\{0,1\}$, подходящий всем условиям, это $\delta_i = 1$ для всех i. Значит A_5 — простая.

	$ x^{S_5} $	$x \in S_5$	$x \in A_5$	$ x^{A_5} $
1.	1	e	e	1
2.	15	(12)(34)	(12)(34)	15
3.	20	(123)	(123)	20
4.	24	(12345)	(12345)	12
			(12354)	12

Теорема. (Альтернативное д-во) Группа A_n , при $n \ge 5$ - простая

Доказательство. Индукция по n. База n=5. A_5 - простая. Переход: пусть A_5,\ldots,A_{n-1} простые, докажем, что A_n простая. Пусть $\{e\} \neq H \triangleleft A_n$ докажем, что найдется $\pi \in H$,такая что $\pi \neq e$ и $\pi(n)=n$. Возьмем $\tau \neq e$ если $\tau(n)=n$, то $\pi=\tau$, иначе пусть $\tau(n)=a$. Возьмем $i \notin \{n,a\}$ такое, что $\tau(i) \neq i$ (такое найдется т.к иначе $\tau=(an) \notin A_n$). Возьмем различные $k,l \notin \{\tau(i),i,n,a\}$. В силу нормальности H, $\tau^{(ikl)} \in H$.

Пусть $\pi = \tau^{-1} \tau^{(ikl)} = \tau^{-1} (ikl) \tau(ilk) \in H$, $\pi(n) = n$. Проверим, что $\pi \neq e$. $\pi(k) = i \neq k$, следовательно $\pi \neq e$.

 $\pi \in H \cap A_{n-1} = K$. Так как $A_{n-1} \leq A_n$ и $H \triangleleft A_n$, то $K \triangleleft A_{n-1}$. Следовательно из предположения индукции $K = A_{n-1} \Rightarrow (123) \in K \leq H \Rightarrow (123)^{A_n} \subset H$, так как H нормальная. Причем $(123)^{A_n} = (123)^{S_n}$, т.к $(45) \in C_{S_n}((123))$, но $(45) \notin A_n$. Значит, H содержит все тройные циклы, следовательно $H = A_n$, т.к A_n порождается всеми тройными циклами.

Лемма

 A_n порождается тройными циклами

Доказательство

 $\sigma \in A_n \Rightarrow \sigma$ разлагается в произведение четного числа транспозиций. Разобьем их на пары соседних и перемножим: (ij)(st) = (ijs)(ist), если транспозиции не пересекаются и (ij)(jk) = (ijk), то есть σ разложилось в произведение тройных циклов

Теорема

Группы A_n при $n \geq 5$ простые.

Доказательство

Индукция по n.

База: A_5 простая (доказано)

Переход: Пусть $A_5,...,A_{n-1}$ простые и $n \ge 6$. Покажем, что A_n простая.

Пусть $H \triangleleft A_n$, $H \neq \{e\}$.

Идея: $\exists \pi \in H, \, \pi \neq \{e\}$ и π имеет неподвижную точку.

Пусть $\tau \in H$ —не имеет неподвижных точек. Б.о.о. $\tau(1)=2$. Так как $\tau \neq (12)$, то $\exists i \ \tau(i)=j, \ i,j \notin \{1,2\}$. Пусть $k,l \notin \{1,2,i,j\}, \ k \neq l$. В силу нормальности $H: \tau^{(jkl)} \in H$. $\tau^{(jkl)}=(jlk)\tau(jkl)=\sigma$. Причем, $\sigma(1)=2, \ \sigma(i)=l$. Пусть $\pi=\tau^{-1}\sigma$. $\pi(2)=2$ и $\pi(j)=l$. Значит, π отлично от e и имеет неподвижную точку. Б.о.о. неподвижной точкой будет являться n (иначе перенумеруем элементы). $\pi \in H \cap A_{n-1}=H_1$. $A_{n-1} \leq A_n$ —группа элементов, сохраняющих n.

 $H \triangleleft A_n \Rightarrow H_1 \triangleleft A_{n-1}$. По предположению индукции, $H_1 = A_{n-1} \Rightarrow (123)H_1 \subset H \Rightarrow (123)^{A_n} \subset H$, так как H — нормальная. Причем, $(1230^{A_n} = (123)^{S_n}$ так как $(45) \in C_{S_n}(123)$, но $(45) \notin A_n$. Значит, H содержит все тройные циклы и $H = A_n$, так как A_n порождается тройными циклами.

Пример

Проективные специальные группы $PSL_n(F)$, где F — конечное поле. $PSL_n(F) = SL_n(F)/Z(SL_n(F)), Z(SL_n(F)) = {\lambda E \mid \lambda \in F}$ — центр группы.

Утв. (б/д)

 $PSL_n(F)$ проста, если $|F| \ge 4$ или $n \ge 3$.

Теорема

Группа SO_3 над R (группа ортогональных преобразований в R^3) простая.

Доказательство

Было доказано, что если $A \in SO_n$, то A приводится к каноническому виду блочнодиагональной матрицы с блоками в виде чисел ± 1 и матриц поворота.

В группе SO_3 канонический вид — это диагональная матрица с ± 1 на главной диагонали, либо блок — поворот на угол ϕ и блок из числа 1. Общий вид:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix}$$

(Можно перенумеровать вектора базиса, чтобы блок был снизу)

Всякая такая матрица соответствует повороту вокруг какой-то прямой на какой-то угол. Пусть $H \triangleleft SO_3$ и $H \neq \{E\}$. Заметим, что сопряжение в SO_3 это отображение $A \rightarrow B^{-1}AB$ переход к новому базису с матрицей перехода В.

Значит, A^B — поворот на угол ϕ вокруг прямой с направляющим вектором $B^{-1}(e_1)$, так как $A^{B}(B^{-1}(e_{1})) = B^{-1}(e_{1})$. Если B пробегает все возможные матрицы из SO_{3} , то A_{B} пробегает все возможные повороты на угол ϕ вокруг всех осей, проходящих через начало координат.

Идея: покажем, что в H содержатся все повороты на угол $\gamma \in U(0)$ — некоторая окрестность точки 0. Тогда в H лежат вообще все повороты (так как композиция поворотов — это поворот на сумму углов).

Пусть B_{ψ} — поворот вокруг e_2 на угол $\psi \in [0, \frac{\pi}{2}$ и $A \neq E$.

Тогда: $[A,B_{\psi}]\in H\ \forall B_{\psi}\in SO_3$.

$$B_{\frac{\pi}{2}} = \begin{pmatrix} 0 & 0 & -10 & 1 & 01 & 0 & 0 \end{pmatrix}$$

$$[A,B_{\frac{\pi}{2}}] = \begin{pmatrix} cos(\phi) & sin(\phi) & 0 \\ -cos(\phi)sin(\phi) & cos^2(\phi) & -sin(\phi) \\ -sin^2(\phi) & sin(\phi)cos(\phi) & cos(\phi) \end{pmatrix}$$

$$tr([A,B_{\frac{\pi}{2}}]) = 2cos(\phi) + cos^2(\phi) < 3, \text{ так как } \phi \neq 0 \text{ } (A \neq E). \text{ Значит, } [A,B_{\frac{\pi}{2}}] - \text{поворот на}$$

Отображение $\psi \to [A,B_\psi]$ непрерывно, и угол поворота γ матрицы $[A,B_\psi]$ так же непрерывно изменяется, причем при $\psi=0$ имеем $\gamma=0,$ а при $\psi=\frac{\pi}{2}$: $\gamma=\gamma_0.$ По теореме о промежуточных значениях непрерывной функции, в H есть матрицы поворота на все углы промежутка $[0, \gamma_0]$, а значит и вообще все углы. Следовательно, $H = SO_3$