Section 2: Learning

Backpropagation
Recurrent Neural Nets

Topics

- Review of backprop
 - Basic operations
 - Class example
- Additional complexity
 - Shared parameters
 - Dealing with vectors (optional)
- Recurrent Neural Net (RNN)
 - Motivation
 - Simple backprop (vector one optional)
 - Demo

Topics

- Review of backprop
 - Basic operations
 - Class example
- Additional complexity
 - Shared parameters
 - Dealing with vectors (optional)
- Recurrent Neural Net (RNN)
 - Motivation
 - Simple backprop (vector one optional)
 - Demo

 χ

 χ

Note: Gradients may be vectors!

x: input

p: predicted value

t: true value

L': (squared) loss

 w_1, w_2, v_1, v_2 : parameters to learn

$$y_1 = \sigma(w_1^T x)$$

$$y_2 = \sigma(w_2^T x)$$

$$p = \sigma(v_1 y_1 - v_2 y_2)$$

 $L' = (p - t)^2$

$$y_1 = \sigma(w_1^T x)$$

$$y_2 = \sigma(w_2^T x)$$

$$p = \sigma(v_1 y_1 - v_2 y_2)$$

$$L' = (p - t)^2$$

x: input

p: predicted value

t: true value

L': (squared) loss

 w_1 , w_2 , v_1 , v_2 : parameters

$$y_1 = \sigma(w_1^T x)$$

$$y_2 = \sigma(w_2^T x)$$

$$p = \sigma(v_1 y_1 - v_2 y_2)$$

$$L' = (p - t)^2$$

Topics

- Review of backprop
 - Basic operations
 - Class example
- Additional complexity
 - Shared parameters
 - Dealing with vectors (optional)
- Recurrent Neural Net (RNN)
 - Motivation
 - Simple backprop (vector one optional)
 - Demo

So far, each computed output goes to 1 unit only

So far, each computed output goes to 1 unit only

What if?

So far, each computed output goes to 1 unit only

What if?

But what if same output goes to multiple units?

Example:
$$z = w^2(w-3)$$
, compute $\frac{dz}{dw}$

But what if same output goes to multiple units?

Example:
$$z = w^2(w-3)$$
, compute $\frac{dz}{dw}$

By hand, use product rule:

$$\frac{dz}{dw} = \frac{dw^2}{dw}(w-3) + w^2 \frac{d(w-3)}{dw}$$
= 2w(w-3) + w²
= 3w² - 6w

But what if same output goes to multiple units?

Example:
$$z = w^2(w-3)$$
, compute $\frac{dz}{dw}$

By hand, use product rule:

$$\frac{dz}{dw} = \frac{dw^2}{dw}(w-3) + w^2 \frac{d(w-3)}{dw}$$
= 2w(w-3) + w²
= 3w² - 6w

$$x = w^{2}$$

$$y = w - 3$$

$$z = x \cdot y$$

But what if same output goes to multiple units?

Example:
$$z = w^2(w-3)$$
, compute $\frac{dz}{dw}$

By hand, use product rule:

$$\frac{dz}{dw} = \frac{dw^2}{dw}(w-3) + w^2 \frac{d(w-3)}{dw}$$
= 2w(w-3) + w²
= 3w² - 6w

$$x = w^{2}$$

$$y = w - 3$$

$$z = x \cdot y$$

But what if same output goes to multiple units?

Example:
$$z = w^2(w-3)$$
, compute $\frac{dz}{dw}$

By hand, use product rule:

$$\frac{dz}{dw} = \frac{dw^2}{dw}(w-3) + w^2 \frac{d(w-3)}{dw}$$
= 2w(w-3) + w²
= 3w² - 6w

$$x = w^{2}$$

$$y = w - 3$$

$$z = x \cdot y$$

But what if same output goes to multiple units?

Example:
$$z = w^2(w-3)$$
, compute $\frac{dz}{dw}$

By hand, use product rule:

$$\frac{dz}{dw} = \frac{dw^2}{dw}(w-3) + w^2 \frac{d(w-3)}{dw}$$
= 2w(w-3) + w²
= 3w² - 6w

$$x = w^{2}$$

$$y = w - 3$$

$$z = x \cdot y$$

So far, each computed output goes to 1 unit only

So far, each computed output goes to 1 unit only

So far, each computed output goes to 1 unit only

So far, each computed output goes to 1 unit only

Why do we add when output/parameter replicated?
 Proof

$$L(y', y'')$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y'} \cdot \frac{\partial y'}{\partial y} + \frac{\partial L}{\partial y''} \cdot \frac{\partial y''}{\partial y}$$

Why do we add when output/parameter replicated?
 Proof

$$\begin{split} &L(y',y'')\\ &\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y'}.\frac{\partial y'}{\partial y} + \frac{\partial L}{\partial y''}.\frac{\partial y''}{\partial y}\\ &\text{Since } y = y' = y'', \text{ it follows:} \end{split}$$

Why do we add when output/parameter replicated?
 Proof

$$L(y', y'')$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y'} \cdot \frac{\partial y'}{\partial y} + \frac{\partial L}{\partial y''} \cdot \frac{\partial y''}{\partial y}$$
Since $y = y' = y''$, it follows:
$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y'} + \frac{\partial L}{\partial y''}$$

Additional complexity: Shared parameters

Why do we add when output/parameter replicated?
 Proof

$$L(y',y'')$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y'} \cdot \frac{\partial y'}{\partial y} + \frac{\partial L}{\partial y''} \cdot \frac{\partial y''}{\partial y}$$
Since $y = y' = y''$, it follows:
$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial y'} + \frac{\partial L}{\partial y''}$$

Note: All operations, including backprop, are component-wise!

38

Topics

- Review of backprop
 - Basic operations
 - Class example
- Additional complexity
 - Shared parameters
 - Dealing with vectors (optional)
- Recurrent Neural Net (RNN)
 - Motivation
 - Simple backprop (vector one optional)
 - Demo

Conventional Neural Networks

Fixed input and output size

- 1 input (d dimensional)
- 1 output (n dimensional)

Fixed computing steps

- Independent of input
- Static framework

Typical applications

- Image classification
- Regression

 We desire variable input/output size, variable computational steps...

one to many

Image captioning (one-to-many)

"man in black shirt is playing guitar."

"man in blue wetsuit is surfing on wave."

"a young boy is holding a baseball bat."

Sentiment Analysis (many-to-one)

The action switches between past and present, but the material link is too tenuous to anchor the emotional connections that purport to span a 125-year divide.

Drops you into a dizzying, volatile, pressure-cooker of a situation that quickly snowballs out of control, while focusing on the what much more than the why.

The film is itself a sort of cinematic high crime, one that brings military courtroom dramas down very, very low.

Classify as:

- 0 negative
- 1 somewhat negative
- 2 neutral
- 3 somewhat positive
- 4 positive

Machine translation (many-to-many)

Character-level language model (many-to-many)

Predict every next character. For example, consider "hello"; use "hell" to predict "ello"

$$s_t = \sigma(Ux_t + Ws_{t-1})$$

$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters (matrices)

Hidden state stores past information that may be relevant in future.

- Provides context
- Long range dependence

Character-level language model (many-to-many)

[DEMO]

Script: https://gist.github.com/karpathy/d4dee566867f8291f086 **Config**: hidden state has 100 dimensions, 93 different characters

Input: norvig.com/big.txt

iter 0, loss: 113.314988

I fechowta ecyoumepuave omas mmur a band chou os Carbinn yond here wa,k, oly soongy pas yin fou alinfo#gtid ed levenupksen Ia tbinl and. Yury sleve lsok ufimeme conlanf youlsseg ve-;aud Mas finn ass w

iter 185000, loss: 49.667141

hing the hri, theme ummengi-hy linced. The candiccevinicas he visur. The her in war to Ereart in dnintorvaned wenced to as rewnighly restera he by appored bat riculing at hooke thiming a somews, and

Observe: Starts looking like English; new sentence starts with big letter; end with full stop; short words spelled correctly; long words still messed up

Character-level language model (many-to-many)

Paul Graham's essays

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

"The surprised in investors weren't going to raise money. I'm not the company with the time there are all interesting quickly, don't have to get off the same programmers. There's a super-angel round fundraising, why do you can do. If you have a different physical investment are become in people who reduced in a startup with the way to argument the acquirer could see them just that you're also the founders will part of users' affords that and an alternation to the idea. [2] Don't work at first member to see the way kids will seem in advance of a bad successful startup. And if you have to act the big company too."

Observe: Learns spelling and grammar from scratch; learns to cite; says "a company is a meeting to think to investors", starts understanding a bit.

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters (matrices)

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters

$$s_t = \sigma(Ux_t + Ws_{t-1})$$

 $o_t = \sigma(Vs_t)$
 x_t : input
 s_t : hidden state $(s_{-1} = 0)$

 o_t : output U, V, W: parameters

$$L = \sum_t o_t$$
: loss (assume)

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, V, W: parameters

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters

$$L = \sum_t o_t$$
: loss (assume)

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters (matrices)

$$s_t = \sigma(Ux_t + Ws_{t-1})$$
$$o_t = \sigma(Vs_t)$$

 x_t : input

 s_t : hidden state $(s_{-1} = 0)$

 o_t : output

U, *V*, *W*: parameters (matrices)

Recurrent Neural Net (RNN): Example (optional)

We assumed U,V and W were scalars

Work through the backprop when U, V and W are matrices.