PT1301 产品资料

REV1.0

2005年12月

PT1301

小尺寸、高效率、低启动电压的升压 DC/DC 转换器

概述

PT1301是一款最低启动电压可低于1V的小尺寸高效率升压DC/DC转换器,采用自适应电流模式PWM控制环路。

PT1301 内部包含误差放大器、斜坡产生器、比较器、功率开关和驱动器。PT1301 能在较宽的负载电流范围内稳定和高效的工作,并且不需要任何外部补偿电路。

PT1301 的启动电压可低于 1V,因此可满足单节干电池的应用。PT1301 内部含有 2A 功率开关,在锂电池供电时最大输出电流可达 300mA,同时 PT1301 还提供用于驱动外部功率器件(NMOS 或 NPN)的驱动端口,以便在应用需要更大负载电流时,扩展输出电流。500KHz 的开关频率可缩小外部元件的尺寸。输出电压由两个外部电阻设定。14μA 的低静态电流,再加上高效率,可使电池使用更长时间。

特点

- 低静态(开关关断状态)工作电流: 14 μ A
- 低启动输入电压:典型 0.8V
- 高供电能力:由一节碱性电池提供 3.3V 100mA; 一节锂电池提供 5V 300mA
- 关断状态零工作电流
- 高效率: 90%
- 固定开关频率: 500KHz
- 可选择内部或外部功率管开关
- 封装形式: SOT-26, SOT-89-5

应用

MP3、PDA、电子词典、电子学习机、DSC、LCD显示屏、射频标签、便携设备、无线设备、等等。

引脚排列

引脚说明

	,				
引脚序号		符号	说明		
SOT-26	SOT-89-5	10 3	AC-52		
1	1	CE	使能端,CE 为低电平时,PT1301 关断		
2		EXT	外接功率开关驱动输出端		
3	5	GND	地		
4	4	LX	内部功率开关输出		
5	2	VDD	电源管脚		
6	3	FB	反馈输入管脚		

订货信息

电路框图

最大额定值

符号	项目	极限值	单位
VDD	电源电压	-0.3~7.0V	V
VLX	LX 管脚开关电压	-0.3~7.0V	V
VIO	其它 I/O 口电压	-0.3V to (VDD+0.3V)	
IOUT	LX 引脚输出电流	2.5	A
IEXT	EXT 引脚驱动电流	200	mA
PTR1	SOT-26 封装热阻, Θ _{JC}	145	W/℃
PTR2	SOT-89-5 封装热阻, O _{JC}	45	W/℃
Topt	工作温度范围	-40~125	$^{\circ}$ C
Tstg	储存温度范围	-65~150	$^{\circ}$ C
Tsolder	引脚焊接温度	260℃, 10s	

备注:最大额定值是芯片在任何条件下都不允许超过的极限值,在最大额定值之外工作会导致芯片的永久性损坏,这些仅是应力极限,并不表示在此条件下芯片可正常工作。

电气特性参数

(V_{IN}=1.5V, VDD=3.3V, 负载电流=0, TA=25℃, 除非另有指定。)

符号	项目	测试条件	Min	Тур	Max	单位
V_{ST}	启动电压	IL = 1mA		0.80	1.05	V
V_{DD}	VDD 工作电压	VDD 引脚电压	2	-	6	V
I_{OFF}	关断电流 I (V _{IN})	CE Pin = $0V$, VIN = $4.5V$		0.01	1	μА
$I_{SWITCH\ OFF}$	开关关断电流 I(V _{DD})	VIN = 6V		14	25	μА
I_{SWITCH}	连续开关电流	VIN = CE = 3.3V, VFB = GND	0.22	0.24	0.7	mA
I _{NO LOAD}	无负载电流I(V _{IN})	VIN = 1.5V, $VOUT = 3.3V$		56		μА
V _{REF}	反馈端参考电压	闭环, VDD = 3.3V	1.225	1.25	1.275	V
Fs	开关频率	VDD = 3.3V	425	500	575	KHz
D_{MAX}	最大占空比	VDD = 3.3V	85	94		%
	LX 对 VDD 导通电阻	VDD = 3.3V		0.3	1.1	Ω
I _{LIMIT}	限流电流	VDD = 3.3V	1	1.5	2	A
	EXT 对 VDD 导通电阻	VDD = 3.3V		4.4	8.5	Ω
	EXT 对 GND 导通电阻	VDD = 3.3V		2.45	8.5	Ω
$\triangle V_{LINE}$	线调节率	$VIN = 3.5 \sim 6V, IL = 1mA$		1.25	5	mV/V
$\triangle V_{LOAD}$	负载调节率	$VIN = 2.5V, IL = 1 \sim 100mA$		0.14		mV/mA
	CE 引脚动作电压	VDD = 3.3V	0.4	0.8	1.2	V
TS	Vout 的温度系数			50		ppm/°C
△TSD	过热关断迟滞			10		$^{\circ}$

常用应用电路

(1) 典型应用电路

MP3 应用, 1.5V 升压至 3.3V, 100mA 输出电流

(2) 扩流应用电路

1.5V 升压至 3.3V, 250mA 输出电流

(3) 高压大电流应用电路

5V 升压至 12V, 300mA 输出电流

应用设计指导

■ 输出电压

参考典型应用电路图,输出电压 Vout 由电阻 R1 和 R2 按以下公式设定:

$$Vout = (1 + \frac{R1}{R2}) \times 1.25V$$

■ 反馈环路设计

参考典型应用电路图, 电阻 R1 和 R2 阻值的选择,除要符合上述 Vout 公式外,还须在系统的静态电流和抗干扰能力方面做权衡。

- ✔ 更高的电阻取值可降低系统的静态电流(电流 I=1.25V/R2)。
- ✓ 较低的电阻取值则可获得较好的抗噪声和抗干扰能力,降低对 PCB 布图寄生参数的敏感度,提高稳定性。

因此,对于无待机状态或悬置状态的应用而言,R1和R2取值宜低些,而对于对待机或悬置电流要求很高的应用,R1和R2阻值需要取高,这时候由于反馈回路的阻抗很高,从而对干扰非常敏感,必须非常仔细地进行布图,并且避免任何对FB端的干扰。

为了提高系统的稳定性,可在 FB 端与 Vout 之间接一电容,该电容的经验取值是: 当上述电阻为 M Ω 级时,取值约 100pF,当上述电阻取值为几十至几百 K Ω 时,取值在 $10nF\sim0$. 1uF 之间。

■ PCB 布图指导

为提高系统稳定性,在PCB布图时可遵循下述指导:

- ✓ GND 平面不要有缝隙。
- ✓ VDD 与 GND 之间的噪声旁路——5 脚与 3 脚之间的 1 μ F MLCC 噪声旁路电容,连接要短而宽。
- ✓ Vin 与 GND 之间的噪声旁路——如 Vin 输入不是理想电压源,则在就近电感 L1 处加一个 Vin 到 GND 的旁路电容。
- ✓ FB 结点的覆铜面积要尽可能小,并且要远离干扰源。
- ✓ 减小 LX 和 EXT 结点的寄生电容可降低开关损耗。

测试电路

典型工作特性

- (按照测试电路得到)
- (1) 效率
- (1.1)输出3.3V

(1.2)输出5.0V

(2) Line Regulation

(2. 1) Vout=3.3V

(2. 2) Vout=5.0V

(3) Load Regulation

(3. 1) Vout=3.3V

(3. 2) Vout=5.0V

封装外形尺寸

(1) SOT-26

符号	尺寸(单位:毫米)		尺寸(单位:英寸)		
	最小值	最大值	最小值	最大值	
A	0.787	1.450	0.031	0.057	
A1		0.152		0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.559	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
e	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

封装外形尺寸(续)

(2) SOT-89-5

符号	尺寸(单位:毫米)		尺寸(单位:英寸)	
	最小值	最大值	最小值	最大值
A	1.400	1.600	0.055	0.063
b	0.460	0.520	0.014	0.020
В	2.400	2.600	0.094	0.102
b1	0.406	0.533	0.016	0.021
С		4.250		0.167
C1	0.800		0.031	
D	4.400	4.600	0.173	0.181
D1		1.700		0.067
e	1.400	1.600	0.055	0.063
Н	0.380	0.430	0.014	0.017