SEQUENCE LISTING

```
<110> Saus, Juan
<120> TNF-Inducible Promoters and Methods for Using
<130> 98,723-E1
<140>
<141>
<150> 60/254,649
<151> 2000-12-08
<160> 102
<170> PatentIn Ver. 2.0
<210> 1
<211> 2389
<212> DNA
<213> Homo sapiens
<400> 1
gcaggaagat ggcggcggta gcggaggtgt gagtggacgc gggactcagc ggccggattt 60
tctcttccct tcttttccct tttccttccc tatttgaaat tggcatcgag ggggctaagt 120
tegggtggca gegeeggeg caacgeaggg gteaeggega eggeggegge ggetgaegge 180
tggaagggta ggcttcattc accgctcgtc ctccttcctc gctccgctcg gtgtcaggcg 240
cggcggcggc gcggcgggcg gacttcgtcc ctcctcctgc tccccccac accggagcgg 300
gcactetteg ettegecate eccegaceet teacceegag gaetgggege etecteegge 360
gcagctgagg gagcgggggc cggtctcctg ctcggttgtc gagcctccat gtcggataat 420
cagagetgga actegteggg eteggaggag gatecagaga eggagtetgg geegeetgtg 480
gagcgctgcg gggtcctcag taagtggaca aactacattc atgggtggca ggatcgttgg 540
gtagttttga aaaataatgc tctgagttac tacaaatctg aagatgaaac agagtatggc 600
tgcagaggat ccatctgtct tagcaaggct gtcatcacac ctcacgattt tgatgaatgt 660
cgatttgata ttagtgtaaa tgatagtgtt tggtatcttc gtgctcagga tccagatcat 720
agacagcaat ggatagatgc cattgaacag cacaagactg aatctggata tggatctgaa 780
 tccagcttgc gtcgacatgg ctcaatggtg tccctggtgt ctggagcaag tggctactct 840
gcaacatcca cctcttcatt caagaaaggc cacagtttac gtgagaagtt ggctgaaatg 900
 gaaacattta gagacatctt atgtagacaa gttgacacgc tacagaagta ctttgatgcc 960
 tgtgctgatg ctgtctctaa ggatgaactt caaagggata aagtggtaga agatgatgaa 1020
```

gatgactttc ctacaacgcg ttctgatggt gacttcttgc atagtaccaa cggcaataaa 1080 gaaaagttat ttccacatgt gacaccaaaa ggaattaatg gtatagactt taaaggggaa 1140 gcgataactt ttaaagcaac tactgctgga atccttgcaa cactttctca ttgtattgaa 1200 ctaatggtta aacgtgagga cagctggcag aagagactgg ataaggaaac tgagaagaaa 1260 agaagaacag aggaagcata taaaaatgca atgacagaac ttaagaaaaa atcccacttt 1320 ggaggaccag attatgaaga aggccctaac agtctgatta atgaagaaga gttctttgat 1380 gctgttgaag ctgctcttga cagacaagat aaaatagaag aacagtcaca gagtgaaaag 1440 gtgagattac attggcctac atccttgccc tctggagatg ccttttcttc tgtggggaca 1500 catagatttg tccaaaagcc ctatagtcgc tcttcctcca tgtcttccat tgatctagtc 1560 agtgcctctg atgatgttca cagattcagc tcccaggttg aagagatggt gcagaaccac 1620 atgacttact cattacagga tgtaggcgga gatgccaatt ggcagttggt tgtagaagaa 1680 ggagaaatga aggtatacag aagagaagta gaagaaaatg ggattgttct ggatccttta 1740 aaagctaccc atgcagttaa aggcgtcaca ggacatgaag tctgcaatta tttctggaat 1800 gttgacgttc gcaatgactg ggaaacaact atagaaaact ttcatgtggt ggaaacatta 1860 gctgataatg caatcatcat ttatcaaaca cacaagaggg tgtggcctgc ttctcagcga 1920 gacgtattat atctttctgt cattcgaaag ataccagcct tgactgaaaa tgaccctgaa 1980 acttggatag tttgtaattt ttctgtggat catgacagtg ctcctctaaa caaccgatgt 2040 gtccgtgcca aaataaatgt tgctatgatt tgtcaaacct tggtaagccc accagaggga 2100 aaccaggaaa ttagcaggga caacattcta tgcaagatta catatgtagc taatgtgaac 2160 cctggaggat gggcaccagc ctcagtgtta agggcagtgg caaagcgaga gtatcctaaa 2220 tttctaaaac gttttacttc ttacgtccaa gaaaaaactg caggaaagcc tattttgttc 2280 tagtattaac aggtactaga agatatgttt tatctttttt taactttatt tgactaatat 2340 gactgtcaat actaaaattt agttgttgaa agtatttact atgtttttt 2389

<210> 2

<211> 1304

<212> DNA

<213> Homo sapiens

<400> 2

gacgaaccct ccgggcttgc gggcccagac gtgagagagc tttccgctga agatgacggg 60 cctgctttcc agggcggctt gtcgaaagcc cgggagcatc tggccgcttc cgcctcaacc 120

atgggctggg gttttgtgag ctactagtgc caagggtttt ctttccacca gaccaccgct 180 gtaaatctcg agggtcttac tcattagaag ttagaattca catttgacgt ttaaaggaag 240 aatttcctta gtaccttctc acaagcacgc acttcgcatt tttagatttc tagagtttgc 300 tttgtagaaa gtaattttga ggttgtcaga gaataaatga cgttagaaag gtttttaaag 360 taaaacaaga atgtgagatg atagcctggg attttctctt ggttgtaaat gaatatctta 420 ctgagaacca cgttaaccat gcctgcccct caaagatagg aaaggttgga tatatagaaa 480 ctttctcgta ttagaaatac cgaagtgcag tggttttgtg tgtacaaggg attaggcaat 540 aggaggctat ttttgtttta agactagggt tgaattagca gaaagaccaa tagaagatct 600 aacaactctt gtcagttgtc aaggataact ttgattatga gactttgact ttgtagcttc 660 agtaatttcc tctcgttagc tattttaata tagtcgattt ccttgtaatt gccaagagta 720 aaatttgtta ttaaacctta gaaagagtac tttcttacta caaggatggg acgataggag 780 cgaaatttcg agtctaaggg aaaacgctgg ccgagtgtgg tggctcacgc ctgtgatccc 840 ggcacttcgg gaggccgagg tgggtggatc acctgaggcc gggagtttga gaccagcctg 900 ggcggcaggg tgggaccccg tctctactaa aaatacaaag attagccgag catggtggta 960 ggtgcctgta actccagctc tttatatcct ggtttcaaat ctaggcttga tgaccttctc 1020 ccatatccca gtatcatatt tttttcttcc tgcatggggg attaattacg attctgaatg 1080 gttggtagca tgaagctagg ttatccctat cgtggcaatg gatatttaag taggcattgc 1140 caatatttat cttgctttct tttactttct tctttttctg accatccaca ctccatttat 1200 attgatgagt tcttttacta atatcaatta ttattatatt atgctcatac tgccatgtct 1260 1304 tattctgcag ctttgatcct taaggtgact ttgcatatct gtct

<210> 3

<211> 955

<212> DNA

<213> Homo sapiens

<400> 3
ggcatggtta acgtggttct cagtaagata ttcatttaca accaagagaa aatcccaggc 60
tatcatctca cattcttgtt ttactttaaa aacctttcta acgtcattta ttctctgaca 120
acctcaaaat tactttctac aaagcaaact ctagaaatct aaaaatgcga agtgcgtgct 180
tgtgagaagg tactaaggaa attcttcctt taaacgtcaa atgtgaattc taacttctaa 240
tgagtaagac cctcgagatt tacagcggtg gtctggtgga aagaaaaccc ttggcactag 300

tageteacaa aaceceagee catggttgag geggaagegg ceagatgete eeggettte 360 gacaageegg eetggaaage aggeeegtea tetteagegg aaagetetet eacgtetggg 420 eeeggaagee eggaggtte gteataaaca cacaaggeaa ggatagaage gaggeegggg 480 ggetggteae geaactgtea aacgaageee acecacegae tgacaaggee eeaaggggae 540 aaggetgegg ageggggat acteaceegt taceteagga tegegactae aacteecagg 600 aggetggeeg agegaeggae eaacgeeett eeeagaatge ageacagetg eateectace 660 eegeeette etteteege teeteetget tttetaceeg tegeteagae geaggagggg 720 aggacgggee gggagagagg ateecegaagg eteggeggt egggaagggg aaggacggg 730 ggaggggggg gggagaatg ggggagaatg ggaggaegga aaggaeggg aaggaeggg aaggaeggg aaggaeggg egggagggg aaggaeggg 930 ggagggggg aaggaeggg ggeaggggg ggeaggggg aaggaeggg ggeaggggg aaggaeggg ggtggaggg ggeagggga teagaeggg gattttetet teeettett teeetttee tteee tteee

<210> 4 <211> 771

<212> DNA

<213> Homo sapiens

<400> 4
tctagaaatctaaaaatgcgaagtgcgtgcttgtgagaaggtactaaggaaattcttcc60ttaaacgtcaaatgtgaattctaacttctaatgagtaagaccctcgagatttacagcggt120ggtctggtggaaagaaaacccttggcactagtagctcacaaaaccccagcccatggttga180ggcggaagcggccagatgctcccgggctttcgacaagccgccctggaaagcaggcccgtc240atcttcagcggaaagctctctcacgtctgggcccgcaagcccggagggttcgtcataaac300acacaaaggcaaggatagaagcgaggccgaggggctggtcacgcaactgtcaaacgaagcc360cacccaccgactgacaaggccccaaggggacaagcgatccccgcgcgggatactcacccg420ttacctcaggatcgcacagctgcatccctacgaggctgccgagcgacggaccaacgccct480tcccagaatgcagcacagctgcatccctaccccgccctctcctttctccgctcctctgc540ttttctacccgtcgtcagacgccgggagggggagaggggggaggagatgggggagaa660gggaggacgaaggggagggaaaggacaggggaggggggggggaggagatggccaggcag720gaagatggcggcggtagcggaggaggggggggaagagggggccaggcag721

<210><211><211><212><213>	771 DNA	sapiens					
<400>	E						
cggccg	ıctga	gtcccgcgtc	cactcacacc	tccgctaccg	ccgccatctt	cctgcctggc	60
ccacta	ıttta	ccctcccctc	ccctgtcctt	tcccctcccc	ttcgtcctcc	cattctcccc	120
cactac	tccc	cgccccgtcc	ccctcccggc	gtctgacgcg	acacgccgag	ccttcgggat	180
cctcct	cccg	aaccctacct	ccggctctcc	cgggtgacga	cgggtagaaa	agcaggagga	240
gcggag	gaaag	gagagggcgg	ggtagggatg	cagctgtgct	gcattctggg	aagggcgttg	300
gtccgt	cgct	cgcgcagcct	cctgggagtt	gtagtcgcga	tcctgaggta	acgggtgagt	360
atcccg	gcgcg	gggatcgctt	gtccccttgg	ggccttgtca	gtcggtgggt	gggcttcgtt	420
tgacag	gttgc	gtgaccagcc	cctcggcctc	gcttctatcc	ttgccttgtg	tgtttatgac	480
gaacco	ctccg	ggcttgcggg	cccagacgtg	agagagcttt	ccgctgaaga	tgacgggcct	540
gcttt	ccagg	gcggcttgtc	gaaagcccgg	gagcatctgg	ccgcttccgc	ctcaaccatg	600
ggctgg	gggtt	ttgtgagcta	ctagtgccaa	gggttttctt	tccaccagac	caccgctgta	660
aatct	cgagg	gtcttactca	ttagaagtta	gaattcacat	ttgacgttta	aaggaagaat	720
ttccti	tagta	ccttctcaca	agcacgcact	tcgcattttt	agatttctag	a	771
<210><211><212><212><213>	140 DNA	sapiens					
<400> gggtt		ggaggatccc	gaaggctcgg	cgtgtcgcgt	cagacgccgg	gagggggacg	60
gggcg	gggag	tagtggggga	gaatgggagg	acgaagggga	ggggaaagga	caggggaggg	120
gaggg	taaat	agtgggccag					140
	140 DNA Homo	sapiens					
<400> ctggc		atttaccctc	ccctcccctg	teettteece	tccccttcgt	cctcccattc	60
tcccc	cacta	ctccccgccc	cgtccccctc	ccggcgtctg	acgcgacacg	ccgagccttc	120
gggat	cctcc	tcccgaaccc					140

<210> 8 <211> 137 <212> DNA <213> Homo	sapiens					
<400> 8						
gggctagtgg	cgaggctgag	ggcttcacgc	aggtcccgac	aggcagcgag	cggaagggag	60
caagcgggga	tgccccggaa	caggtggaat	gcgcggggct	gggggaagag	gcgaggaggg	120
ggcttgtcca	gtgccta					137
<210> 9 <211> 137 <212> DNA <213> Homo <400> 9	sapiens					
taggcactgg	acaagccccc	tcctcgcctc	ttcccccagc	cccgcgcatt	ccacctgttc	60
cggggcatcc	ccgcttgctc	ccttccgctc	gctgcctgtc	gggacctgcg	tgaagccctc	120
agcctcgcca	ctagccc					137
<210> 10 <211> 142 <212> DNA <213> Homo	sapiens					
<400> 10 tggccactcc	ctccaccctg	cgcagccacc	tececacege	gcagccacct	ccccaccgca	60
caccccaaa	cgccccacct	ccgaccgcac	cccacttccc	cgcctgggcc	cccggacctt	120
gggagcatca	cctccttaac	cc				142
<210> 11 <211> 142 <212> DNA <213> Homo	sapiens					
<400> 11 gggttaagga	. ggtgatgctc	ccaaggtccg	ggggcccagg	cggggaagtg	gggtgcggtc	60
ggaggtgggg	cgtttggggg	tgtgcggtgg	ggaggtggct	gcgcggtggg	gaggtggctg	120
cgcagggtgg	agggagtggc	ca				142

<210> 12 <211> 371 <212> DNA <213> Homo	sapiens					
<400> 12 aagcggggcc	tcccgcagac	gccggcgcgc	ctcccgttaa	tctgggcagg	gccgctggcc	60
actccctcca	ccctgcgcag	ccacctcccc	accgcgcagc	cacctcccca	ccgcacaccc	120
ccaaacgccc	cacctccgac	cgcaccccac	ttccccgcct	gggcccccgg	accttgggag	180
catcacctcc	ttaacccctt	accctggatc	cgcgcccacc	tgcccctcag	gcgcccagcc	240
ctttctcgcc	tcctgggcac	gatgcccggg	tagaagggac	actgcctggt	aagttgggag	300
ggagggggta	tgagggcggg	acctgagcca	cgtcttccct	cccttgaagc	cacaaccaaa	360
aagcctgggt	g					371
<210> 13 <211> 371 <212> DNA <213> Homo	sapiens					
<400> 13 cacccaggct	ttttggttgt	ggcttcaagg	gagggaagac	gtggctcagg	tecegecete	60
ataccccctc	cctcccaact	taccaggcag	tgtcccttct	acccgggcat	cgtgcccagg	120
aggcgagaaa	a gggctgggcg	cctgaggggc	aggtgggcgc	ggatccaggg	taaggggtta	180
aggaggtgat	gctcccaagg	teegggggee	caggcgggga	agtggggtgc	ggtcggaggt	240
ggggcgtttg	g ggggtgtgcg	gtggggaggt	ggctgcgcgg	tggggaggtg	gctgcgcagg	300
gtggagggag	g tggccagcgg	ccctgcccag	attaacggga	ggcgcgccgg	cgtctgcggg	360
aggccccgct	t t					371
<210> 14 <211> 140 <212> DNA <213> Home	o sapiens					
<400> 14 ctggtgccc	a attttctcca	a tcacgcacac	cettetegee	tctccctgcc	tcctgccttt	60
ccacttgca	c cagttttccc	c accccagcct	cagggcgggg	ctgcctcgtc	acttgtctcg	120
gggcagatc	t gccctacaca	a				140

	<210> 15 <211> 140 <212> DNA <213> Homo	sapiens					
	<400> 15 tgtgtagggc	agatctgccc	cgagacaagt	gacgaggcag	ccccgccctg	aggctggggt	60
	gggaaaactg	gtgcaagtgg	aaaggcagga	ggcagggaga	ggcgagaagg	gtgtgcgtga	120
	tggagaaaat	tgggcaccag					140
	<210> 16 <211> 140 <212> DNA <213> Homo	sapiens					
	<400> 16 gggctggggg	ggcggggctt	gtgggtaagg	cgggcggagg	cggggaccct	ccgcccgatg	60
The state of	atagggctgg	aggaggaagc	ggcgggctga	agaaggggaa	ggtgggaaga	gcccagccgg	120
isi H	ggctacaaat	tgggtgaagc					140
The State State State State Street	<210> 17 <211> 140 <212> DNA <213> Homo	sapiens					
-	<400> 17 gcttcaccca	atttgtagcc	ccggctgggc	tcttcccacc	ttccccttct	tcagcccgcc	60
	gcttcctcct	ccagccctat	catcgggcgg	agggtccccg	cctccgcccg	ccttacccac	120
	aagccccgcc	ccccagccc					140
	<210> 18 <211> 140 <212> DNA <213> Homo	o sapiens					
	<400> 18 ggttgccggt	: gcagtctaaa	actgtggcgg	agtgatacto	aaattccctt	gtgctggtga	60
	ggagggggg	cttgcacggg	gaagagaggg	aggaaagtag	atctgtagga	attgagtgaa	120
	gaaaaagttt	gcaagtctgg	ſ				140
	<210> 19 <211> 140 <212> DNA						

<213> Homo	sapiens					
<400> 19	aaacttttc	ttaaataaat	tactacacat	ctactttcct	ccctctcttc	60
cccgtgcaag	geeceetee	tcaccagcac	aagggaattt	gagtateaet	cegecacage	
tttagactgc	accggcaacc					140
<210> 20 <211> 140						
<212> DNA <213> Homo	saniens					
<400> 20	bapiens					
cggggctgtc	: tgctgtcaat	catcccccct	accttgggca	gccggtagtc	tttctcactt	60
tcaggcacct	ttccacacaa	cagccctaag	tatctccaca	gcttcacaca	cagcccctta	120
gagacctata	cgctaagacc					140
<210> 21 <211> 140						
<212> DNA <213> Homo	sapiens					
<400> 21						.
	g tataggtctc					
ttgtgtggaa	a aggtgcctga	aagtgagaaa	gactaccggc	: tgcccaaggt	aggggggatg	120
attgacagca	a gacagccccg	ı				140
<210> 22 <211> 140						
<212> DNA <213> Hom	o caniens					
	o sapiens					
<400> 22 cggagccct	g gtgtcccggo	gcactgcago	c cacactccco	g ggccgcgcgc	: tecegeegee	: 60
tcttacccg	c gccgcagggt	cctccccttt	gaggcgccg	ccgcgcaccg	ı ccgggcggga	120
gggggcagc	g ccaacaaati	=				140
<210> 23 <211> 140						
<212> DNA <213> Hom						
<400> 23						

aatttgttgg	cgctgccccc	tcccgcccgg	cggtgcgcgg	gcggcgcctc	aaaggggagg	60
accctgcggc	gcgggtaaga	ggcggcggga	gcgcgcggcc	cgggagtgtg	gctgcagtgc	120
gccgggacac	cagggctccg					140
<210> 24						
<211> 140 <212> DNA						
<213> Homo	sapiens					
<400> 24 gaggtgcgca	aacqcccgag	ttttccctgg	tgcgcgggtt	ccgcctttgc	agtgccctcc	60
				tgttcctgtc		
		-5	33	_		140
ggegteetge	cgcgcgatgc					
<210> 25						
<211> 140 <212> DNA						
<213> Homo	sapiens					
<400> 25	acadacacc	gactttccgg	gacaggaaca	aaaggcctgg	gaaggaggcg	60
		ggagggcacc	gcaaaggcgg	aacccgcgca	ccagggaaaa	140
ctcgggcgtt	tgcgcacctc					140
<210> 26 <211> 140						
<212> DNA	caniene					
<213> Homo	saprens					
<400> 26 cgcggcaccg	cgtgtgcagg	cagctcccac	ccacttcccc	tcagcccggg	ccctgcaatc	60
tgcacaccct	gcgcgcgagc	cccgcccctc	cctacccgcg	g cagggtgtgc	tagcgcgctc	120
agccctctcc	ggccggctta					140
<210> 27 <211> 140						
<212> DNA	caniend					
<213> Homo	, pahrens					
<400> 27 taagccggcc	: ggaga g ggct	gagcgcgcta	a gcacaccct	g cgcgggtagg	gaggggcggg	60
acteacacae	agggtgtgca	aattqcaqqq	a cccaaacta	a cgggaagtgg	gtgggagctg	120

•	<212>	28 138 DNA Hom		apier	ns												
	1220			_													
,	<400> cggaa	> 28 actcc	a g	gttgi	tege	c gc	ccgca	accc	tcc	agct	gga	ccgca	agag	ga g	gaag	gccca	60
(ctcgg	ggggt	c g	cagga	agcc	g 99:	ggga	ggtg	gtg	cggg	aag	gccg	cgta	cc t	gcgg	ggcgg	120
•	cggca	aaggo	g t	gcgc.	tcg												138
	<212	> 138 > DNA > Hom	Ā	apie	ns												
	cgag	cgcac	cg c	cttg	ccgc	c gc	cccg	cagg	tac	gcgg	cct	tccc	gcac	ca c	ctcc	ccccg	60
	gctc	ctgc	ga c	cccc	gagt	g gg	cctt	cctc	ctc	tgcg	gtc	cagc	tgga	gg 9	tgcg	ggcgg	120
	cgac	aacct	tg g	agtt	.ccg												138
	<212 <213	> 202 > DNZ > Hor	A	apie	ens												
		> > CD: > (1		(2016	5)												
	atα	> 30 gat Asp	agc Ser	aca Thr	aag Lys 5	gag Glu	aag Lys	tgt Cys	gac Asp	agt Ser 10	tac Tyr	aaa Lys	gat Asp	gat Asp	ctt Leu 15	ctg Leu	48
	ctt Leu	agg Arg	atg Met	gga Gly 20	ctt Leu	aat Asn	gat Asp	aat Asn	aaa Lys 25	gca Ala	gga Gly	atg Met	gaa Glu	gga Gly 30	tta Leu	gat Asp	96
	aaa Lys	gag Glu	aaa Lys 35	att Ile	aac Asn	aaa Lys	att Ile	ata Ile 40	atg Met	gaa Glu	gcc Ala	acg Thr	aag Lys 45	GJÀ aaa	tcc Ser	aga Arg	144
	ttt Phe	tat Tyr	gga Gly	aat Asn	gag Glu	ctc Leu	aag Lys	aaa Lys	gaa Glu	aag Lys	caa Gln	gtc Val 60	aac Asn	caa Gln	cga Arg	att Ile	192

gaa Glu 65	aat Asn	atg Met	atg Met	caa Gln	caa Gln 70	aaa Lys	gct Ala	caa Gln	atc Ile	acc Thr 75	agc Ser	caa Gln	cag Gln	cta Leu	aga Arg 80	240
aaa Lys	gca Ala	caa Gln	tta Leu	cag Gln 85	gtt Val	gac Asp	aga Arg	ttt Phe	gca Ala 90	atg Met	gaa Glu	tta Leu	gaa Glu	caa Gln 95	agc Ser	288
cga Arg	aat Asn	ttg Leu	agc Ser 100	aat Asn	acc Thr	ata Ile	gtg Val	cac His 105	att Ile	gac Asp	atg Met	gat Asp	gct Ala 110	ttc Phe	tat Tyr	336
gca Ala	gct Ala	gta Val 115	gaa Glu	atg Met	agg Arg	gac Asp	aat Asn 120	cca Pro	gaa Glu	ttg Leu	aag Lys	gat Asp 125	aaa Lys	ccc Pro	att Ile	384
gct Ala	gta Val 130	gga Gly	tca Ser	atg Met	agt Ser	atg Met 135	ctg Leu	tct Ser	act Thr	tca Ser	aat Asn 140	tac Tyr	cat His	gca Ala	agg Arg	432
aga Arg 145	ttt Phe	ggt Gly	gtt Val	cgt Arg	gca Ala 150	gcc Ala	atg Met	cca Pro	gga Gly	ttt Phe 155	att Ile	gct Ala	aag Lys	agg Arg	ctg Leu 160	480
tgc Cys	cca Pro	caa Gln	ctt Leu	ata Ile 165	ata Ile	gtg Val	ccc Pro	ccc Pro	aac Asn 170	ttt Phe	gac Asp	aaa Lys	tac Tyr	cga Arg 175	gct Ala	528
gtg Val	agt Ser	aaa Lys	gag Glu 180	gtt Val	aag Lys	gaa Glu	ata Ile	ctt Leu 185	gct Ala	gat Asp	tat Tyr	gat Asp	ccc Pro 190	aat Asn	ttt Phe	576
atg Met	gcc Ala	atg Met 195	agt Ser	ctt Leu	gat Asp	gaa Glu	gcc Ala 200	tac Tyr	ttg Leu	aat Asn	ata Ile	aca Thr 205	aag Lys	cac His	tta Leu	624
												Tyr		atc Ile	aaa Lys	672
atg Met 225	gga Gly	agc Ser	tct Ser	gta Val	gaa Glu 230	aat Asn	gat Asp	aat Asn	cca Pro	gga Gly 235	Lys	gaa Glu	gtt Val	aat Asn	aaa Lys 240	720
ctg Leu	agt Ser	gag Glu	cat His	gaa Glu 245	Arg	tcc Ser	atc Ile	tct Ser	cca Pro 250	Leu	ctt Leu	ttt Phe	gaa Glu	gag Glu 255	Ser	768
cct Pro	tct Ser	gat Asp	gtg Val 260	cag Gln	ccc Pro	cca Pro	gga Gly	gat Asp 265	cct	ttc Phe	caa Gln	gtg Val	aac Asn 270	Phe	gaa Glu	816
			Asn					Gln					Phe		aca Thr	864

	tca Ser	gcc Ala 290	cag Gln	gaa Glu	gtg Val	gta Val	aag Lys 295	gaa Glu	att Ile	cgt Arg	ttc Phe	aga Arg 300	att Ile	gag Glu	cag Gln	aaa Lys	912
٠	aca Thr 305	aca Thr	ctg Leu	aca Thr	gcc Ala	agt Ser 310	gca Ala	ggt Gly	gtt Val	cgg Arg	ata Ile 315	tct Ser	agt Ser	ttt Phe	ccc Pro	aat Asn 320	960
•	gaa Glu	gag Glu	gac Asp	agg Arg	aaa Lys 325	cac His	caa Gln	caa Gln	agg Arg	agc Ser 330	att Ile	att Ile	ggc Gly	ttt Phe	tta Leu 335	cag Gln	1008
	gct Ala	gga Gly	aac Asn	caa Gln 340	gcc Ala	ctg Leu	tca Ser	gcc Ala	act Thr 345	gag Glu	tgt Cys	aca Thr	tta Leu	gag Glu 350	aaa Lys	act Thr	1056
	gac Asp	aaa Lys	gat Asp 355	aag Lys	ttt Phe	gta Val	aaa Lys	cct Pro 360	cta Leu	gaa Glu	atg Met	tct Ser	cat His 365	aag Lys	aag Lys	agt Ser	1104
	ttc Phe	ttt Phe 370	gat Asp	aaa Lys	aaa Lys	cga Arg	tca Ser 375	gaa Glu	agg Arg	aaa Lys	tgg Trp	agt Ser 380	cac His	caa Gln	gat Asp	aca Thr	1152
	ttt Phe 385	aaa Lys	tgt Cys	gaa Glu	gcc Ala	gtg Val 390	aat Asn	aaa Lys	caa Gln	agt Ser	ttc Phe 395	cag Gln	aca Thr	tca Ser	caa Gln	cca Pro 400	1200
	ttc Phe	caa Gln	gtt Val	tta Leu	aag Lys 405	aag Lys	aag Lys	atg Met	aat Asn	gag Glu 410	aat Asn	ttg Leu	gaa Glu	ata Ile	tca Ser 415	gag Glu	1248
	aat Asn	tca Ser	gat Asp	gac Asp 420	tgt Cys	cag Gln	ata Ile	ctt Leu	acc Thr 425	tgt Cys	cct Pro	gtt Val	tgc Cys	ttt Phe 430	agg Arg	gct Ala	1296
	caa Gln	gly ggg	tgc Cys 435	atc Ile	agt Ser	ctg Leu	gaa Glu	gcc Ala 440	ttg Leu	aat Asn	aaa Lys	cat His	gta Val 445	Asp	gaa Glu	tgt Cys	1344
	ctt Leu	gat Asp 450	gga Gly	cct Pro	tca Ser	atc Ile	agt Ser 455	Glu	aac Asn	ttt Phe	aaa Lys	atg Met 460	Phe	tcg Ser	tgt Cys	tca Ser	1392
	cat His 465	Val	tct Ser	gct Ala	acc Thr	aaa Lys 470	gtt Val	aac Asn	aag Lys	aaa Lys	gaa Glu 475		gtt Val	cct Pro	gct Ala	tct Ser 480	1440
	tca Ser	ctt Leu	tgt Cys	gag Glu	aag Lys 485	caa Gln	gat Asp	tat Tyr	gaa Glu	gcc Ala 490	His	cca Pro	aaa Lys	att Ile	aaa Lys 495	gaa Glu	1488
					Asp					. Val					Asn	tca Ser	1536
	tct	aaa	gca	gaa	. agc	ata	gat	gct	tta	. agt	aat	aag	cat	ago	aag	gaa	1584

Ser Lys Ala 515	Glu Ser	Ile Asp	Ala Leu 520	Ser As	an Lys	His Ser 525	Lys	Glu	
gaa tgt tct Glu Cys Ser 530	agt ctc	cca agc Pro Ser 535	aag tct Lys Ser	ttt aa Phe As	at att sn Ile 540	gaa cac Glu His	tgt Cys	cat His	1632
cag aat tct Gln Asn Ser 545	Ser Ser	act gtt Thr Val 550	tca ttg Ser Leu	Glu As	ac gaa sn Glu 55	gat gtt Asp Val	gga Gly	tca Ser 560	1680
ttt aga caa Phe Arg Gln	gaa tac Glu Tyr 565	cgc cag Arg Gln	cct tac Pro Tyr	tta to Leu Cy 570	gt gaa ys Glu	gtg aaa Val Lys	aca Thr 575	ggc Gly	1728
caa gct cta Gln Ala Leu	gtt tgt Val Cys 580	cct gtt Pro Val	tgt aac Cys Asr 585	. Val G	aa caa lu Gln	aag act Lys Thr 590	Ser	gat Asp	1776
cta acc ctg Leu Thr Leu 595	ttc aat Phe Asn	gtg cat Val His	gtg gat Val Asp 600	gtt to Val C	gc tta ys Leu	aat aaa Asn Lys 605	agt Ser	ttt Phe	1824
atc caa gaa Ile Gln Glu 610	tta aga Leu Arg	aag gat Lys Asp 615	aaa ttt Lys Phe	aac c Asn P	ca gtt ro Val 620	aat caa Asn Glr	. ccc . Pro	aaa Lys	1872
gaa agc tcc Glu Ser Ser 625	aga agt Arg Ser	act ggt Thr Gly 630	agc tca Ser Ser	Ser G	ga gta ly Val	cag aag Gln Lys	gct Ala	gta Val 640	1920
aca aga aca Thr Arg Thr	aaa agg Lys Arg 645	cca gga Pro Gly	ttg atg	g aca a Thr L 650	ag tac ys Tyr	tca aca	tca Ser 655	aag Lys	1968
aaa ata aaa Lys Ile Lys	cca aac Pro Asn 660	aat ccc Asn Pro	aaa ca Lys Hi:	Thr L	tt gat Leu Asp	ata tti Ile Phe	e Phe	aag Lys	2016
taagtcgacc									2026
<210> 31 <211> 672 <212> PRT <213> Homo	sapiens								
<400> 31 Met Asp Ser	Thr Lys	Glu Lys	Cys As	p Ser T 10	Tyr Lys	Asp As	o Leu 15		
Leu Arg Met	Gly Leu 20	Asn Asp	Asn Ly 2		3ly Met	Glu Gly		Asp	
Lys Glu Lys 35		Lys Ile	e Ile Me 40	t Glu <i>P</i>	Ala Thr	Lys Gl	y Ser	Arg	

- Phe Tyr Gly Asn Glu Leu Lys Lys Glu Lys Gln Val Asn Gln Arg Ile 50 55 60
- Glu Asn Met Met Gln Gln Lys Ala Gln Ile Thr Ser Gln Gln Leu Arg
 65 70 75 80
- Lys Ala Gln Leu Gln Val Asp Arg Phe Ala Met Glu Leu Glu Gln Ser 85 90 95
- Arg Asn Leu Ser Asn Thr Ile Val His Ile Asp Met Asp Ala Phe Tyr
 100 105 110
- Ala Ala Val Glu Met Arg Asp Asn Pro Glu Leu Lys Asp Lys Pro Ile 115 120 125
- Ala Val Gly Ser Met Ser Met Leu Ser Thr Ser Asn Tyr His Ala Arg 130 135 140
- Arg Phe Gly Val Arg Ala Ala Met Pro Gly Phe Ile Ala Lys Arg Leu 145 150 155 160
- Cys Pro Gln Leu Ile Ile Val Pro Pro Asn Phe Asp Lys Tyr Arg Ala 165 170 175
- Val Ser Lys Glu Val Lys Glu Ile Leu Ala Asp Tyr Asp Pro Asn Phe 180 185 190
- Met Ala Met Ser Leu Asp Glu Ala Tyr Leu Asn Ile Thr Lys His Leu 195 200 205
- Glu Glu Arg Gln Asn Trp Pro Glu Asp Lys Arg Arg Tyr Phe Ile Lys 210 215 220
- Met Gly Ser Ser Val Glu Asn Asp Asn Pro Gly Lys Glu Val Asn Lys 225 230 235 240
- Leu Ser Glu His Glu Arg Ser Ile Ser Pro Leu Leu Phe Glu Glu Ser 245 250 255
- Pro Ser Asp Val Gln Pro Pro Gly Asp Pro Phe Gln Val Asn Phe Glu 260 265 270
- Glu Gln Asn Asn Pro Gln Ile Leu Gln Asn Ser Val Val Phe Gly Thr 275 280 285
- Ser Ala Gln Glu Val Val Lys Glu Ile Arg Phe Arg Ile Glu Gln Lys 290 295 300
- Thr Thr Leu Thr Ala Ser Ala Gly Val Arg Ile Ser Ser Phe Pro Asn 305 310 315 320
- Glu Glu Asp Arg Lys His Gln Gln Arg Ser Ile Ile Gly Phe Leu Gln 325 330 335
- Ala Gly Asn Gln Ala Leu Ser Ala Thr Glu Cys Thr Leu Glu Lys Thr 340 345 350

- Asp Lys Asp Lys Phe Val Lys Pro Leu Glu Met Ser His Lys Lys Ser 355 360 365
- Phe Phe Asp Lys Lys Arg Ser Glu Arg Lys Trp Ser His Gln Asp Thr 370 375 380
- Phe Lys Cys Glu Ala Val Asn Lys Gln Ser Phe Gln Thr Ser Gln Pro 385 390 395 400
- Phe Gln Val Leu Lys Lys Lys Met Asn Glu Asn Leu Glu Ile Ser Glu
 405 410 415
- Asn Ser Asp Asp Cys Gln Ile Leu Thr Cys Pro Val Cys Phe Arg Ala
 420 425 430
- Gln Gly Cys Ile Ser Leu Glu Ala Leu Asn Lys His Val Asp Glu Cys 435 440 445
- Leu Asp Gly Pro Ser Ile Ser Glu Asn Phe Lys Met Phe Ser Cys Ser 450 455 460
- His Val Ser Ala Thr Lys Val Asn Lys Lys Glu Asn Val Pro Ala Ser 465 470 475 480
- Ser Leu Cys Glu Lys Gln Asp Tyr Glu Ala His Pro Lys Ile Lys Glu 485 490 495
- Ile Ser Ser Val Asp Cys Ile Ala Leu Val Asp Thr Ile Asp Asn Ser 500 505 510
- Ser Lys Ala Glu Ser Ile Asp Ala Leu Ser Asn Lys His Ser Lys Glu 515 520 525
- Glu Cys Ser Ser Leu Pro Ser Lys Ser Phe Asn Ile Glu His Cys His 530 535 540
- Gln Asn Ser Ser Ser Thr Val Ser Leu Glu Asn Glu Asp Val Gly Ser 545 550 555 560
- Phe Arg Gln Glu Tyr Arg Gln Pro Tyr Leu Cys Glu Val Lys Thr Gly 565 570 575
- Gln Ala Leu Val Cys Pro Val Cys Asn Val Glu Gln Lys Thr Ser Asp 580 585 590
- Leu Thr Leu Phe Asn Val His Val Asp Val Cys Leu Asn Lys Ser Phe 595 600 605
- Ile Gln Glu Leu Arg Lys Asp Lys Phe Asn Pro Val Asn Gln Pro Lys 610 615 620
- Glu Ser Ser Arg Ser Thr Gly Ser Ser Ser Gly Val Gln Lys Ala Val
- Thr Arg Thr Lys Arg Pro Gly Leu Met Thr Lys Tyr Ser Thr Ser Lys 645 650 655

Lys Ile Lys Pro Asn Asn Pro Lys His Thr Leu Asp Ile Phe Phe Lys 660 665 670

<210> 32 <211> 1335 <212> DNA <213> Homo sapiens

<400> 32 tgagagaget tteegetgaa gatgaeggge etgettteea gggeggettg tegaaageee 60 gggagcatct ggccgcttcc gcctcaacca tgggctgggg ttttgtgagc tactagtgcc 120 aagggttttc tttccaccag accaccgctg taaatctcga gggtcttact cattagaagt 180 tagaattcac atttgacgtt taaaggaaga atttccttag taccttctca caagcacgca 240 cttcgcattt ttagatttct agagtttgct ttgtagaaag taattttgag gttgtcagag 300 aataaatgac gttagaaagg tttttaaagt aaaacaagaa tgtgagatga tagcctggga 360 ttttctcttg gttgtaaatg aatatcttac tgagaaccac gttaaccatg cctgccctc 420 aaagatagga aaggttggat atatagaaac tttctcgtat tagaaatacc gaagtgcagt 480 ggttttgtgt gtacaaggga ttaggcaata ggaggctatt tttgttttaa gactagggtt 540 gaattagcag aaagaccaat agaagatcta acaactcttg tcagttgtca aggataactt 600 tgattatgag actttgactt tgtagcttca gtaatttcct ctcgttagct attttaatat 660 agtcgatttc cttgtaattg ccaagagtaa aatttgttat taaaccttag aaagagtact 720 ttcttactac aaggatggga cgataggagc gaaatttcga gtctaaggga aaacgctggc 780 cgagtgtggt ggctcacgcc tgtaatccca gcacttcggg aggccgaggt gggtggatca 840 cctgaggccg ggagtttgag accagcctgg gcaacaagat ttttcttcat ccctttactt 900 tgagtctgtg gatgtcattg catgtgatat gggtctcctg aagacagcat accattggat 960 tttgcttctt tatccaagtt atcattctgt cttttaattg gggtgtgcat tcaagataag 1020 tttataccat ggatagcaca aaggagaagt gtgacagtta caaagatgat cttctgctta 1080 ggatgggact taatgataat aaagcaggaa tggaaggatt agataaagag aaaattaaca 1140 aaattataat ggaagccacg aaggggtcca gattttatgg aaatgagctc aagaaagaaa 1200 agcaagtcaa ccaacgaatt gaaaatatga tgcaacaaaa agctcaaatc accagccaac 1260 agctaagaaa agcacaatta caggttgaca gatttgcaat ggaattagaa caaagccgaa 1320 1335 atttgagcaa tacca

```
<210> 33
<211> 105
<212> DNA
<213> Mus musculus
<400> 33
gggagcgtcg cgagccgccg ggagggccc ggggcggggt ggaggagga tgggaggacg 60
                                                                   105
gaggggaggg agctgagaga ggagggaggg taaatagtgg acccg
<210> 34
<211> 105
<212> DNA
<213> Mus musculus
<400> 34
egggtecact atttaccete cetectetet cagetecete eceteegtee teccateete 60
                                                                   105
cctccaccc gccccggcc cctcccggcg gctcgcgacg ctccc
<210> 35
<211> 140
<212> DNA
<213> Homo sapiens
<400> 35
ccctgcttat atagatgacc ccctccccga gactctgaca gacccaggtc acaggcagtc 60
ctcacctgct cctgacaccc ccggcccctc agtgctgctc tctctagcca ccgagctgaa 120
                                                                    140
gtactgagga gcccctacct
<210> 36
<211> 140
<212> DNA
<213> Homo sapiens
<400> 36
aggtagggc tcctcagtac ttcagctcgg tggctagaga gagcagcact gaggggccgg 60
gggtgtcagg agcaggtgag gactgcctgt gacctgggtc tgtcagagtc tcggggaggg 120
                                                                    140
ggtcatctat ataagcaggg
<210> 37
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-GPBP-6c
```

	<220> <223> Description of Artificial Sequence: Primer ON-SP1Del	
	<400> 42 cgccgggagg gggacgtagt gggggagaat	30
	<210> 43 <211> 30 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer ON-TATADel	
	<400> 43 caggggaggg gaggggtggg ccagtctaga	30
The first term of the first of the will.	<210> 44 <211> 22 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer ON-DIN2c	
	<400> 44 ggattattgc acttgccttc ac	22
The state of the s	<210> 45 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer ON-DIN5'm	
	<400> 45 aaaggatcca tggatagcac aaaggag	27
	<210> 46 <211> 36 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer ON-DIN-THc	
	<400> 46 aaaaaagtcg acttacttaa aaaatatatc aagggt	36
	<210> 47 <211> 21	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-DINB1-R2
<400> 47
                                                                    21
tggtattgct caaatttcgg c
<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-GPBP-39c
<400> 48
                                                                    18
tgagagagct ttccgctg
<210> 49
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-LMPTAP1m
                                                                    29
atgtctagat gtgtagggca gatctgccc
<210> 50
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-LMPTAP1c
 <400> 50
                                                                    29
atgtctagac tggtgcccaa ttttctcca
 <210> 51
 <211> 29
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer ON-HSP1m
 <400> 51
                                                                     29
 atgtctagat aagccggccg gagagggct
```

```
<210> 52
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-HSP1c
<400> 52
                                                                   29
atgtctagac gcggcaccgc gtgtgcagg
<210> 53
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-SA3A4m
                                                                    31
gactctagag ggttaaggag gtgatgctcc c
<210> 54
<211> 32
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-SA3A4c
<400> 54
                                                                    32
gactctagat ggccactccc tccaccctgc gc
<210> 55
<211> 32
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-INGA3A4m
                                                                    32
gactctagac acccaggett tttggttgtg gc
<210> 56
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-INGA3A4c
```

```
<220>
<223> Description of Artificial Sequence: Primer ON-TRAPD-F1
<400> 61
                                                                    20
gggtccagaa catggctctc
<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-TRAPD-R1
<400> 62
                                                                    20
acatcctggc ctcgagtgac
<210> 63
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-LMP2-F2
<400> 63
                                                                    21
gcagcatata agccaggcat g
<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-LMP2-R2
<400> 64
                                                                    20
tggccagagc aatagcgtct
<210> 65
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-TAP1-F2
<400> 65
                                                                    19
gccgcctcac tgactggat
<210> 66
<211> 21
```

```
<212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: Primer ON-TAP1-R2
   <400> 66
                                                                       21
   tcgagtgaag gtatcggctg a
   <210> 67
   <211> 19
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Description of Artificial Sequence: Primer ON-DHFR-F1
-
<400> 67
                                                                       19
   cctgtggagg aggaggtgg
   <210> 68
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: Primer ON-DHFR-R1
                                                                       21
   ccgattcttc cagtctacgg g
   <210> 69
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Description of Artificial Sequence: Primer ON-MSH3-F1
   <400> 69
                                                                       21
   tgggtaaagg ttggaagcac a
   <210> 70
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: Primer ON-MSH3-R1
   <400> 70
                                                                       21
   aaaaggagag tgaaagcggc t
```

```
<210> 71
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-HO3-F2
<400> 71
                                                                    19
gagctgttgt ccctccgct
<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-HO3-R2
<400> 72
                                                                    20
ggccagataa cgagcaaagg
<210> 73
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-HARS-F2
<400> 73
                                                                     21
aggtggcgaa actcctgaaa c
<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-HARS-R2
 <400> 74
                                                                     20
 tgctttcatc aggacccagc
 <210> 75
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer ON-Hsp10-F1
```

```
<220>
   <223> Description of Artificial Sequence: Primer ON-COL4A1-R1
   <400> 80
                                                                       20
   attgtgctga acttgcgcag
   <210> 81
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Description of Artificial Sequence: Primer ON-COL4A2-F1
   <400> 81
                                                                       20
   gaaaagggtg acgtagggca
   <210> 82
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: Primer ON-COL4A2-R1
   <400> 82
21
   ggtgtctgat ggaatcccgt t
   <210> 83
   <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Description of Artificial Sequence: Primer ON-GP-F1
    <400> 83
    ggagacagtg gatcacctgc a
                                                                        21
    <210> 84
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence: Primer ON-GP-R1
    <400> 84
                                                                        21
    tgctgtggtt tgactgtgtc g
    <210> 85
    <211> 21
```

31

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-COL4A4-F1
                                                                    21
cttgccttcc cgtatttagc a
<210> 86
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-COL4A4-R1
<400> 86
                                                                    21
ggatctgtcg tttctctggg c
<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-COL4A5-F1
                                                                    20
catcgaatgt catgggaggg
<210> 88
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ON-COL4A5-R1
<400> 88
                                                                    21
agttgccagc caaaagctgt a
<210> 89
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ON-COL4A6-F1
<400> 89
                                                                    21
tttgggctag actaccggac a
```

```
<210> 90
            <211> 20
            <212> DNA
            <213> Artificial Sequence
            <223> Description of Artificial Sequence: Primer ON-COL4A6-R1
             <400> 90
                                                                                                                                                                                                                                                                               20
            tctctatgga cccgagggct
             <210> 91
             <211> 19
             <212> DNA
             <213> Artificial Sequence
             <220>
             <223> Description of Artificial Sequence: Primer ON-GPBP-F1
             <400> 91
                                                                                                                                                                                                                                                                                19
             ctgaatccag cttgcgtcg
-
            <210> 92
             <211> 20
            <212> DNA
            <213> Artificial Sequence
The street of th
              <223> Description of Artificial Sequence: Primer ON-GPBP-R1
              <400> 92
                                                                                                                                                                                                                                                                                20
              gcagagtagc cacttgctcc
              <210> 93
               <211> 20
               <212> DNA
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Primer ON-DinB1-F3
               <400> 93
                                                                                                                                                                                                                                                                                 20
              gcccccaac tttgacaaat
               <210> 94
               <211> 21
               <212> DNA
               <213> Artificial Sequence
               <220>
               <223> Description of Artificial Sequence: Primer ON-DinB1-R3
```