

Figure 7.2
Example of two ad-hoc wireless networks

Clearly, the two basic variants of wireless networks (here especially WLANs), infrastructure-based and ad-hoc, do not always come in their pure form. There are networks that rely on access points and infrastructure for basic services (e.g., authentication of access, control of medium access for data with associated quality of service, management functions), but that also allow for direct communication between the wireless nodes.

However, ad-hoc networks might only have selected nodes with the capabilities of forwarding data. Most of the nodes have to connect to such a special node first to transmit data if the receiver is out of their range.

From the three WLANs presented, IEEE 802.11 (see section 7.3) and HiperLAN2 (see section 7.4) are typically infrastructure-based networks, which additionally support ad-hoc networking. However, many implementations only offer the basic infrastructure-based version. The third WLAN, Bluetooth (see section 7.5), is a typical wireless ad-hoc network. Bluetooth focuses precisely on spontaneous ad-hoc meetings or on the simple connection of two or more devices without requiring the setup of an infrastructure.

7.3 IEEE 802.11

The IEEE standard 802.11 (IEEE, 1999) specifies the most famous family of WLANs in which many products are available. As the standard's number indicates, this standard belongs to the group of 802.x LAN standards, e.g., 802.3 Ethernet or 802.5 Token Ring. This means that the standard specifies the physical and medium access layer adapted to the special requirements of wireless LANs, but offers the same interface as the others to higher layers to maintain interoperability.

The primary goal of the standard was the specification of a simple and robust WLAN which offers time-bounded and asynchronous services. The MAC layer should be able to operate with multiple physical layers, each of which exhibits a different medium sense and transmission characteristic. Candidates for physical layers were infra red and spread spectrum radio transmission techniques.

Additional features of the WLAN should include the support of power management to save battery power, the handling of hidden nodes, and the ability to operate worldwide. The 2.4 GHz ISM band, which is available in most countries around the world, was chosen for the original standard. Data rates envisaged for the standard were 1 Mbit/s mandatory and 2 Mbit/s optional.

The following sections will introduce the system and protocol architecture of the initial IEEE 802.11 and then discuss each layer, i.e., physical layer and medium access. After that, the complex and very important management functions of the standard are presented. Finally, this subsection presents the enhancements of the original standard for higher data rates, 802.11a (up to 54 Mbit/s at 5 GHz) and 802.11b (today the most successful with 11 Mbit/s) together with further developments for security support, harmonization, or other modulation schemes.

7.3.1 System architecture

Wireless networks can exhibit two different basic system architectures as shown in section 7.2: infrastructure-based or ad-hoc. Figure 7.3 shows the components of an infrastructure and a wireless part as specified for IEEE 802.11. Several nodes, called **stations** (STA_i), are connected to **access points** (AP). Stations are terminals with access mechanisms to the wireless medium and radio contact to

Figure 7.3
Architecture of an infrastructure-based IEEE 802.11

the AP. The stations and the AP which are within the same radio coverage form a basic service set (BSS_i). The example shows two BSSs – BSS₁ and BSS₂ – which are connected via a distribution system. A distribution system connects several BSSs via the AP to form a single network and thereby extends the wireless coverage area. This network is now called an extended service set (ESS) and has its own identifier, the ESSID. The ESSID is the 'name' of a network and is used to separate different networks. Without knowing the ESSID (and assuming no hacking) it should not be possible to participate in the WLAN. The distribution system connects the wireless networks via the APs with a portal, which forms the interworking unit to other LANs.

The architecture of the distribution system is not specified further in IEEE 802.11. It could consist of bridged IEEE LANs, wireless links, or any other networks. However, **distribution system services** are defined in the standard (although, many products today cannot interoperate and needs the additional standard IEEE 802.11f to specify an inter access point protocol, see section 7.3.8).

Stations can select an AP and associate with it. The APs support roaming (i.e., changing access points), the distribution system handles data transfer between the different APs. APs provide synchronization within a BSS, support power management, and can control medium access to support time-bounded service. These and further functions are explained in the following sections.

In addition to infrastructure-based networks, IEEE 802.11 allows the building of ad-hoc networks between stations, thus forming one or more independent BSSs (IBSS) as shown in Figure 7.4. In this case, an IBSS comprises a group of stations using the same radio frequency. Stations STA_1 , STA_2 , and STA_3 are in $IBSS_1$, STA_4 and STA_5 in $IBSS_2$. This means for example that STA_3 can communicate

Figure 7.4 Architecture of IEEE 802.11 ad-hoc wireless LANs

directly with STA₂ but not with STA₅. Several IBSSs can either be formed via the distance between the IBSSs (see Figure 7.4) or by using different carrier frequencies (then the IBSSs could overlap physically). IEEE 802.11 does not specify any special nodes that support routing, forwarding of data or exchange of topology information as, e.g., HIPERLAN 1 (see section 7.4) or Bluetooth (see section 7.5).

7.3.2 Protocol architecture

As indicated by the standard number, IEEE 802.11 fits seamlessly into the other 802.x standards for wired LANs (see Halsall, 1996; IEEE, 1990). Figure 7.5 shows the most common scenario: an IEEE 802.11 wireless LAN connected to a switched IEEE 802.3 Ethernet via a bridge. Applications should not notice any difference apart from the lower bandwidth and perhaps higher access time from the wireless LAN. The WLAN behaves like a slow wired LAN. Consequently, the higher layers (application, TCP, IP) look the same for wireless nodes as for wired nodes. The upper part of the data link control layer, the logical link control (LLC), covers the differences of the medium access control layers needed for the different media. In many of today's networks, no explicit LLC layer is visible. Further details like Ethertype or sub-network access protocol (SNAP) and bridging technology are explained in, e.g., Perlman (1992).

The IEEE 802.11 standard only covers the physical layer PHY and medium access layer MAC like the other 802.x LANs do. The physical layer is subdivided into the physical layer convergence protocol (PLCP) and the physical medium dependent sublayer PMD (see Figure 7.6). The basic tasks of the MAC layer comprise medium access, fragmentation of user data, and encryption. The

Figure 7.5
IEEE 802.11
protocol architecture
and bridging

Figure 7.6
Detailed IEEE 802.11
protocol architecture
and management

PLCP sublayer provides a carrier sense signal, called clear channel assessment (CCA), and provides a common PHY service access point (SAP) independent of the transmission technology. Finally, the PMD sublayer handles modulation and encoding/decoding of signals. The PHY layer (comprising PMD and PLCP) and the MAC layer will be explained in more detail in the following sections.

Apart from the protocol sublayers, the standard specifies management layers and the station management. The MAC management supports the association and re-association of a station to an access point and roaming between different access points. It also controls authentication mechanisms, encryption, synchronization of a station with regard to an access point, and power management to save battery power. MAC management also maintains the MAC management information base (MIB).

The main tasks of the **PHY management** include channel tuning and PHY MIB maintenance. Finally, **station management** interacts with both management layers and is responsible for additional higher layer functions (e.g., control of bridging and interaction with the distribution system in the case of an access point).

7.3.3 Physical laver

IEEE 802.11 supports three different physical layers: one layer based on infra red and two layers based on radio transmission (primarily in the ISM band at 2.4 GHz, which is available worldwide). All PHY variants include the provision of the **clear channel assessment** signal (CCA). This is needed for the MAC mechanisms controlling medium access and indicates if the medium is currently idle. The transmission technology (which will be discussed later) determines exactly how this signal is obtained.

The PHY layer offers a service access point (SAP) with 1 or 2 Mbit/s transfer rate to the MAC layer (basic version of the standard). The remainder of this section presents the three versions of a PHY layer defined in the standard.

7.3.3.1 Frequency hopping spread spectrum

Frequency hopping spread spectrum (FHSS) is a spread spectrum technique which allows for the coexistence of multiple networks in the same area by separating different networks using different hopping sequences (see chapters 2 and 3). The original standard defines 79 hopping channels for North America and Europe, and 23 hopping channels for Japan (each with a bandwidth of 1 MHz

in the 2.4 GHz ISM band). The selection of a particular channel is achieved by using a pseudo-random hopping pattern. National restrictions also determine further parameters, e.g., maximum transmit power is 1 W in the US, 100 mW EIRP (equivalent isotropic radiated power) in Europe and 10 mW/MHz in Japan.

The standard specifies Gaussian shaped FSK (frequency shift keying), GFSK, as modulation for the FHSS PHY. For 1 Mbit/s a 2 level GFSK is used (i.e., 1 bit is mapped to one frequency, see chapter 2), a 4 level GFSK for 2 Mbit/s (i.e., 2 bits are mapped to one frequency). While sending and receiving at 1 Mbit/s is mandatory for all devices, operation at 2 Mbit/s is optional. This facilitated the production of low-cost devices for the lower rate only and more powerful devices for both transmission rates in the early days of 802.11.

Figure 7.7 shows a frame of the physical layer used with FHSS. The frame consists of two basic parts, the PLCP part (preamble and header) and the payload part. While the PLCP part is always transmitted at 1 Mbit/s, payload, i.e. MAC data, can use 1 or 2 Mbit/s. Additionally, MAC data is scrambled using the polynomial $s(z) = z^7 + z^4 + 1$ for DC blocking and whitening of the spectrum. The fields of the frame fulfill the following functions:

- **Synchronization:** The PLCP preamble starts with 80 bit synchronization, which is a 010101... bit pattern. This pattern is used for synchronization of potential receivers and signal detection by the CCA.
- Start frame delimiter (SFD): The following 16 bits indicate the start of the frame and provide frame synchronization. The SFD pattern is 0000110010111101.
- PLCP_PDU length word (PLW): This first field of the PLCP header indicates the length of the payload in bytes including the 32 bit CRC at the end of the payload. PLW can range between 0 and 4,095.
- PLCP signalling field (PSF): This 4 bit field indicates the data rate of the payload following. All bits set to zero (0000) indicates the lowest data rate of 1 Mbit/s. The granularity is 500 kbit/s, thus 2 Mbit/s is indicated by 0010 and the maximum is 8.5 Mbit/s (1111). This system obviously does not accommodate today's higher data rates.
- **Header error check (HEC):** Finally, the PLCP header is protected by a 16 bit checksum with the standard ITU-T generator polynomial $G(x) = x^{16} + x^{12} + x^5 + 1$.

Figure 7.7 Format of an IEEE 802.11 PHY frame using FHSS

7.3.3.2 Direct sequence spread spectrum

Direct sequence spread spectrum (DSSS) is the alternative spread spectrum method separating by code and not by frequency. In the case of IEEE 802.11 DSSS, spreading is achieved using the 11-chip Barker sequence (+1, -1, +1, +1, -1, +1, +1, -1, -1, -1, -1, -1). The key characteristics of this method are its robustness against interference and its insensitivity to multipath propagation (time delay spread). However, the implementation is more complex compared to FHSS.

IEEE 802.11 DSSS PHY also uses the 2.4 GHz ISM band and offers both 1 and 2 Mbit/s data rates. The system uses differential binary phase shift keying (DBPSK) for 1 Mbit/s transmission and differential quadrature phase shift keying (DQPSK) for 2 Mbit/s as modulation schemes. Again, the maximum transmit power is 1 W in the US, 100 mW EIRP in Europe and 10 mW/MHz in Japan. The symbol rate is 1 MHz, resulting in a chipping rate of 11 MHz. All bits transmitted by the DSSS PHY are scrambled with the polynomial $s(z) = z^7 + z^4 + 1$ for DC blocking and whitening of the spectrum. Many of today's products offering 11 Mbit/s according to 802.11b are still backward compatible to these lower data rates.

Figure 7.8 shows a frame of the physical layer using DSSS. The frame consists of two basic parts, the PLCP part (preamble and header) and the payload part. While the PLCP part is always transmitted at 1 Mbit/s, payload, i.e., MAC data, can use 1 or 2 Mbit/s. The fields of the frame have the following functions:

- **Synchronization:** The first 128 bits are not only used for synchronization, but also gain setting, energy detection (for the CCA), and frequency offset compensation. The synchronization field only consists of scrambled 1 bits.
- Start frame delimiter (SFD): This 16 bit field is used for synchronization at the beginning of a frame and consists of the pattern 1111001110100000.
- Signal: Originally, only two values have been defined for this field to indicate the data rate of the payload. The value 0x0A indicates 1 Mbit/s (and thus DBPSK), 0x14 indicates 2 Mbit/s (and thus DQPSK). Other values have been reserved for future use, i.e., higher bit rates. Coding for higher data rates is explained in sections 7.3.6 and 7.3.7.
- **Service:** This field is reserved for future use; however, 0x00 indicates an IEEE 802.11 compliant frame.
- Length: 16 bits are used in this case for length indication of the payload in microseconds.
- **Header error check** (HEC): Signal, service, and length fields are protected by this checksum using the ITU-T CRC-16 standard polynomial.

Figure 7.8 Format of an IEEE 802.11 PHY frame using DSSS

7.3.3.3 Infra red

The PHY layer, which is based on infra red (IR) transmission, uses near visible light at 850–950 nm. Infra red light is not regulated apart from safety restrictions (using lasers instead of LEDs). The standard does not require a line-of-sight between sender and receiver, but should also work with diffuse light. This allows for point-to-multipoint communication. The maximum range is about 10 m if no sunlight or heat sources interfere with the transmission. Typically, such a network will only work in buildings, e.g., classrooms, meeting rooms etc. Frequency reuse is very simple – a wall is more than enough to shield one IR based IEEE 802.11 network from another. (See also section 7.1 for a comparison between IR and radio transmission and Wesel, 1998 for more details.) Today, no products are available that offer infra red communication based on 802.11. Proprietary products offer, e.g., up to 4 Mbit/s using diffuse infra red light. Alternatively, directed infra red communication based on IrDA can be used (IrDA, 2002).

7.3.4 Medium access control layer

The MAC layer has to fulfill several tasks. First of all, it has to control medium access, but it can also offer support for roaming, authentication, and power conservation. The basic services provided by the MAC layer are the mandatory **asynchronous data service** and an optional **time-bounded service**. While 802.11 only offers the asynchronous service in ad-hoc network mode, both service types can be offered using an infrastructure-based network together with the access point coordinating medium access. The asynchronous service supports broadcast and multi-cast packets, and packet exchange is based on a 'best effort' model, i.e., no delay bounds can be given for transmission.

The following three basic access mechanisms have been defined for IEEE 802.11: the mandatory basic method based on a version of CSMA/CA, an optional method avoiding the hidden terminal problem, and finally a contention-free polling method for time-bounded service. The first two methods are also summarized as **distributed coordination function (DCF)**, the third method is called **point coordination function (PCF)**. DCF only offers asynchronous service, while PCF offers both asynchronous and time-bounded service but needs an access point to control medium access and to avoid contention. The MAC mechanisms are also called **distributed foundation wireless medium access control (DFWMAC)**.

For all access methods, several parameters for controlling the waiting time before medium access are important. Figure 7.9 shows the three different parameters that define the priorities of medium access. The values of the parameters depend on the PHY and are defined in relation to a **slot** time. Slot time is derived from the medium propagation delay, transmitter delay, and other PHY dependent parameters. Slot time is $50 \, \mu s$ for FHSS and $20 \, \mu s$ for DSSS.

The medium, as shown, can be busy or idle (which is detected by the CCA). If the medium is busy this can be due to data frames or other control frames. During a contention phase several nodes try to access the medium.

Figure 7.9
Medium access and inter-frame spacing

- Short inter-frame spacing (SIFS): The shortest waiting time for medium access (so the highest priority) is defined for short control messages, such as acknowledgements of data packets or polling responses. For DSSS SIFS is $10 \,\mu s$ and for FHSS it is $28 \,\mu s$. The use of this parameter will be explained in sections 7.3.4.1 through 7.3.4.3.
- PCF inter-frame spacing (PIFS): A waiting time between DIFS and SIFS (and thus a medium priority) is used for a time-bounded service. An access point polling other nodes only has to wait PIFS for medium access (see section 7.3.4.3). PIFS is defined as SIFS plus one slot time.
- DCF inter-frame spacing (DIFS): This parameter denotes the longest waiting time and has the lowest priority for medium access. This waiting time is used for asynchronous data service within a contention period (this parameter and the basic access method are explained in section 7.3.4.1). DIFS is defined as SIFS plus two slot times.

7.3.4.1 Basic DFWMAC-DCF using CSMA/CA

The mandatory access mechanism of IEEE 802.11 is based on **carrier sense multiple access with collision avoidance** (CSMA/CA), which is a random access scheme with carrier sense and collision avoidance through random backoff. The basic CSMA/CA mechanism is shown in Figure 7.10. If the medium is idle for at least the duration of DIFS (with the help of the CCA signal of the physical layer), a node can access the medium at once. This allows for short access delay under light load. But as more and more nodes try to access the medium, additional mechanisms are needed.

Figure 7.10 Contention window and waiting time

If the medium is busy, nodes have to wait for the duration of DIFS, entering a contention phase afterwards. Each node now chooses a **random backoff time** within a **contention window** and delays medium access for this random amount of time. The node continues to sense the medium. As soon as a node senses the channel is busy, it has lost this cycle and has to wait for the next chance, i.e., until the medium is idle again for at least DIFS. But if the randomized additional waiting time for a node is over and the medium is still idle, the node can access the medium immediately (i.e., no other node has a shorter waiting time). The additional waiting time is measured in multiples of the above-mentioned slots. This additional randomly distributed delay helps to avoid collisions – otherwise all stations would try to transmit data after waiting for the medium becoming idle again plus DIFS.

Obviously, the basic CSMA/CA mechanism is not fair. Independent of the overall time a node has already waited for transmission; each node has the same chances for transmitting data in the next cycle. To provide fairness, IEEE 802.11 adds a backoff timer. Again, each node selects a random waiting time within the range of the contention window. If a certain station does not get access to the medium in the first cycle, it stops its backoff timer, waits for the channel to be idle again for DIFS and starts the counter again. As soon as the counter expires, the node accesses the medium. This means that deferred stations do not choose a randomized backoff time again, but continue to count down. Stations that have waited longer have the advantage over stations that have just entered, in that they only have to wait for the remainder of their backoff timer from the previous cycle(s).

Figure 7.11 explains the basic access mechanism of IEEE 802.11 for five stations trying to send a packet at the marked points in time. Station₃ has the first request from a higher layer to send a packet (packet arrival at the MAC SAP). The station senses the medium, waits for DIFS and accesses the medium, i.e., sends the packet. Station₁, station₂, and station₅ have to wait at least until the medium is idle for DIFS again after station₃ has stopped sending. Now all three stations choose a backoff time within the contention window and start counting down their backoff timers.

Figure 7.11 shows the random backoff time of station₁ as sum of bo_e (the elapsed backoff time) and bo_r (the residual backoff time). The same is shown for station₅. Station₂ has a total backoff time of only bo_e and gets access to the medium first. No residual backoff time for station₂ is shown. The backoff timers of station₁ and station₅ stop, and the stations store their residual backoff times. While a new station has to choose its backoff time from the whole contention window, the two old stations have statistically smaller backoff values. The older values are on average lower than the new ones.

Now station₄ wants to send a packet as well, so after DIFS waiting time, three stations try to get access. It can now happen, as shown in the figure, that two stations accidentally have the same backoff time, no matter whether remaining or newly chosen. This results in a collision on the medium as shown, i.e., the trans-

Figure 7.11
Basic DFWMAC-DCF
with several competing
senders

mitted frames are destroyed. Station₁ stores its residual backoff time again. In the last cycle shown station₁ finally gets access to the medium, while station₄ and station₅ have to wait. A collision triggers a retransmission with a new random selection of the backoff time. Retransmissions are not privileged.

Still, the access scheme has problems under heavy or light load. Depending on the size of the contention window (CW), the random values can either be too close together (causing too many collisions) or the values are too high (causing unnecessary delay). The system tries to adapt to the current number of stations trying to send.

The contention window starts with a size of, e.g., $CW_{min} = 7$. Each time a collision occurs, indicating a higher load on the medium, the contention window doubles up to a maximum of, e.g., $CW_{max} = 255$ (the window can take on the values 7, 15, 31, 63, 127, and 255). The larger the contention window is, the greater is the resolution power of the randomized scheme. It is less likely to choose the same random backoff time using a large CW. However, under a light load, a small CW ensures shorter access delays. This algorithm is also called **exponential backoff** and is already familiar from IEEE 802.3 CSMA/CD in a similar version.

While this process describes the complete access mechanism for broadcast frames, an additional feature is provided by the standard for unicast data transfer. Figure 7.12 shows a sender accessing the medium and sending its data. But now, the receiver answers directly with an **acknowledgement** (ACK). The receiver accesses the medium after waiting for a duration of SIFS so no other station can access the medium in the meantime and cause a collision. The other stations have to wait for DIFS plus their backoff time. This acknowledgement ensures the correct reception (correct checksum CRC at the receiver) of a frame on the MAC layer, which is especially important in error-prone environments

Figure 7.12
IEEE 802.11 unicast
data transfer

such as wireless connections. If no ACK is returned, the sender automatically retransmits the frame. But now the sender has to wait again and compete for the access right. There are no special rules for retransmissions. The number of retransmissions is limited, and final failure is reported to the higher layer.

7.3.4.2 DFWMAC-DCF with RTS/CTS extension

Section 3.1 discussed the problem of hidden terminals, a situation that can also occur in IEEE 802.11 networks. This problem occurs if one station can receive two others, but those stations cannot receive each other. The two stations may sense the channel is idle, send a frame, and cause a collision at the receiver in the middle. To deal with this problem, the standard defines an additional mechanism using two control packets, RTS and CTS. The use of the mechanism is optional; however, every 802.11 node has to implement the functions to react properly upon reception of RTS/CTS control packets.

Figure 7.13 illustrates the use of RTS and CTS. After waiting for DIFS (plus a random backoff time if the medium was busy), the sender can issue a **request to send (RTS)** control packet. The RTS packet thus is not given any higher priority compared to other data packets. The RTS packet includes the receiver of the data transmission to come and the duration of the whole data transmission. This duration specifies the time interval necessary to transmit the whole data frame and the acknowledgement related to it. Every node receiving this RTS now has to set its **net allocation vector (NAV)** in accordance with the duration field. The NAV then specifies the earliest point at which the station can try to access the medium again.

If the receiver of the data transmission receives the RTS, it answers with a clear to send (CTS) message after waiting for SIFS. This CTS packet contains the duration field again and all stations receiving this packet from the receiver of the intended data transmission have to adjust their NAV. The latter set of receivers need not be the same as the first set receiving the RTS packet. Now all nodes within receiving distance around sender and receiver are informed that they have to wait more time before accessing the medium. Basically, this mechanism reserves the medium for one sender exclusively (this is why it is sometimes called a virtual reservation scheme).

Figure 7.13
IEEE 802.11 hidden node provisions for contention-free access

Finally, the sender can send the data after SIFS. The receiver waits for SIFS after receiving the data packet and then acknowledges whether the transfer was correct. The transmission has now been completed, the NAV in each node marks the medium as free and the standard cycle can start again.

Within this scenario (i.e., using RTS and CTS to avoid the hidden terminal problem), collisions can only occur at the beginning while the RTS is sent. Two or more stations may start sending at the same time (RTS or other data packets). Using RTS/CTS can result in a non-negligible overhead causing a waste of bandwidth and higher delay. An RTS threshold can determine when to use the additional mechanism (basically at larger frame sizes) and when to disable it (short frames). Chhaya (1996) and Chhaya (1997) give an overview of the asynchronous services in 802.11 and discuss performance under different load scenarios.

Wireless LANs have bit error rates in transmission that are typically several orders of magnitude higher than, e.g., fiber optics. The probability of an erroneous frame is much higher for wireless links assuming the same frame length. One way to decrease the error probability of frames is to use shorter frames. In this case, the bit error rate is the same, but now only short frames are destroyed and, the frame error rate decreases.

However, the mechanism of fragmenting a user data packet into several smaller parts should be transparent for a user. The MAC layer should have the possibility of adjusting the transmission frame size to the current error rate on the medium. The IEEE 802.11 standard specifies a **fragmentation** mode (see Figure 7.14). Again, a sender can send an RTS control packet to reserve the medium after a waiting time of DIFS. This RTS packet now includes the duration for the transmission of the first fragment and the corresponding acknowledgement. A certain set of nodes may receive this RTS and set their NAV according to the duration field. The receiver answers with a CTS, again including the duration of the transmission up to the acknowledgement. A (possibly different) set of receivers gets this CTS message and sets the NAV.

Figure 7.14 IEEE 802.11 fragmentation of user data

As shown in Figure 7.13, the sender can now send the first data frame, frag_1 , after waiting only for SIFS. The new aspect of this fragmentation mode is that it includes another duration value in the frame frag_1 . This duration field reserves the medium for the duration of the transmission following, comprising the second fragment and its acknowledgement. Again, several nodes may receive this reservation and adjust their NAV. If all nodes are static and transmission conditions have not changed, then the set of nodes receiving the duration field in frag_1 should be the same as the set that has received the initial reservation in the RTS control packet. However, due to the mobility of nodes and changes in the environment, this could also be a different set of nodes.

The receiver of $frag_1$ answers directly after SIFS with the acknowledgement packet ACK_1 including the reservation for the next transmission as shown. Again, a fourth set of nodes may receive this reservation and adjust their NAV (which again could be the same as the second set of nodes that has received the reservation in the CTS frame).

If ${\rm frag}_2$ was not the last frame of this transmission, it would also include a new duration for the third consecutive transmission. (In the example shown, ${\rm frag}_2$ is the last fragment of this transmission so the sender does not reserve the medium any longer.) The receiver acknowledges this second fragment, not reserving the medium again. After ACK₂, all nodes can compete for the medium again after having waited for DIFS.

7.3.4.3 DFWMAC-PCF with polling

The two access mechanisms presented so far cannot guarantee a maximum access delay or minimum transmission bandwidth. To provide a time-bounded service, the standard specifies a **point coordination function (PCF)** on top of the standard DCF mechanisms. Using PCF requires an access point that controls medium access and polls the single nodes. Ad-hoc networks cannot use this function so, provide no QoS but 'best effort' in IEEE 802.11 WLANs.

The **point co-ordinator** in the access point splits the access time into super frame periods as shown in Figure 7.15. A **super frame** comprises a **contention-free period** and a **contention period**. The contention period can be used for the two access mechanisms presented above. The figure also shows several wireless stations (all on the same line) and the stations' NAV (again on one line).

Figure 7.15
Contention-free access
using polling
mechanisms (PCF)

At time t_0 the contention-free period of the super frame should theoretically start, but another station is still transmitting data (i.e., the medium is busy). This means that PCF also defers to DCF, and the start of the super frame may be postponed. The only possibility of avoiding variations is not to have any contention period at all. After the medium has been idle until t_1 , the point coordinator has to wait for PIFS before accessing the medium. As PIFS is smaller than DIFS, no other station can start sending earlier.

The point coordinator now sends data D_1 downstream to the first wireless station. This station can answer at once after SIFS (see Figure 7.15). After waiting for SIFS again, the point coordinator can poll the second station by sending D_2 . This station may answer upstream to the coordinator with data U_2 . Polling continues with the third node. This time the node has nothing to answer and the point coordinator will not receive a packet after SIFS.

After waiting for PIFS, the coordinator can resume polling the stations. Finally, the point coordinator can issue an end marker (CF_{end}), indicating that the contention period may start again. Using PCF automatically sets the NAV, preventing other stations from sending. In the example, the contention-free period planned initially would have been from t_0 to t_3 . However, the point coordinator finished polling earlier, shifting the end of the contention-free period to t_2 . At t_4 , the cycle starts again with the next super frame.

The transmission properties of the whole wireless network are now determined by the polling behavior of the access point. If only PCF is used and polling is distributed evenly, the bandwidth is also distributed evenly among all polled nodes. This would resemble a static, centrally controlled time division multiple access (TDMA) system with time division duplex (TDD) transmission. This method comes with an overhead if nodes have nothing to send, but the access point polls them permanently. Anastasi (1998) elaborates the example of voice transmission using 48 byte packets as payload. In this case, PCF introduces an overhead of 75 byte.

7.3.4.4 MAC frames

Figure 7.16 shows the basic structure of an IEEE 802.11 MAC data frame together with the content of the frame control field. The fields in the figure refer to the following:

- Frame control: The first 2 bytes serve several purposes. They contain several sub-fields as explained after the MAC frame.
- **Duration/ID:** If the field value is less than 32,768, the duration field contains the value indicating the period of time in which the medium is occupied (in μ s). This field is used for setting the NAV for the virtual reservation mechanism using RTS/CTS and during fragmentation. Certain values above 32,768 are reserved for identifiers.
- Address 1 to 4: The four address fields contain standard IEEE 802 MAC addresses (48 bit each), as they are known from other 802.x LANs. The meaning of each address depends on the DS bits in the frame control field and is explained in more detail in a separate paragraph.
- **Sequence control:** Due to the acknowledgement mechanism frames may be duplicated. Therefore a sequence number is used to filter duplicates.
- Data: The MAC frame may contain arbitrary data (max. 2,312 byte), which is transferred transparently from a sender to the receiver(s).
- Checksum (CRC): Finally, a 32 bit checksum is used to protect the frame as it is common practice in all 802.x networks.

The frame control field shown in Figure 7.16 contains the following fields:

- **Protocol version:** This 2 bit field indicates the current protocol version and is fixed to 0 by now. If major revisions to the standard make it incompatible with the current version, this value will be increased.
- Type: The type field determines the function of a frame: management (=00), control (=01), or data (=10). The value 11 is reserved. Each type has several subtypes as indicated in the following field.
- **Subtype:** Example subtypes for management frames are: 0000 for association request, 1000 for beacon. RTS is a control frame with subtype 1011, CTS is coded as 1100. User data is transmitted as data frame with subtype 0000. All details can be found in IEEE, 1999.

Figure 7.16
IEEE 802.11 MAC packet structure

- To DS/From DS: Explained in the following in more detail.
- More fragments: This field is set to 1 in all data or management frames that have another fragment of the current MSDU to follow.
- **Retry:** If the current frame is a retransmission of an earlier frame, this bit is set to 1. With the help of this bit it may be simpler for receivers to eliminate duplicate frames.
- Power management: This field indicates the mode of a station after successful transmission of a frame. Set to 1 the field indicates that the station goes into power-save mode. If the field is set to 0, the station stays active.
- More data: In general, this field is used to indicate a receiver that a sender has more data to send than the current frame. This can be used by an access point to indicate to a station in power-save mode that more packets are buffered. Or it can be used by a station to indicate to an access point after being polled that more polling is necessary as the station has more data ready to transmit.
- Wired equivalent privacy (WEP): This field indicates that the standard security mechanism of 802.11 is applied. However, due to many weaknesses found in the WEP algorithm higher layer security should be used to secure an 802.11 network (Borisov, 2001).
- Order: If this bit is set to 1 the received frames must be processed in strict order.

MAC frames can be transmitted between mobile stations; between mobile stations and an access point and between access points over a DS (see Figure 7.3). Two bits within the Frame Control field, 'to DS' and 'from DS', differentiate these cases and control the meaning of the four addresses used. Table 7.1 gives an overview of the four possible bit values of the DS bits and the associated interpretation of the four address fields.

to DS	from DS	Address 1	Address 2	Address 3	Address 4
0	0	DA	SA	BSSID	-
0	1	DA	BSSID	SA	_
1	0	BSSID	SA	DA	_
1	1	RA	TA	DA	SA

Table 7.1 Interpretation of the MAC addresses in an 802.11 MAC frame

Every station, access point or wireless node, filters on **address 1**. This address identifies the physical receiver(s) of the frame. Based on this address, a station can decide whether the frame is relevant or not. The second address, **address 2**, represents the physical transmitter of a frame. This information is important because this particular sender is also the recipient of the MAC layer acknowledgement. If a packet from a transmitter (address 2) is received by the receiver with address 1, this receiver in turn acknowledges the data packet using address 2 as receiver address as shown in the ACK packet in Figure 7.17. The remaining two addresses, **address 3** and **address 4**, are mainly necessary for the logical assignment of frames (logical sender, BSS identifier, logical receiver). If address 4 is not needed the field is omitted.

For addressing, the following four scenarios are possible:

- Ad-hoc network: If both DS bits are zero, the MAC frame constitutes a
 packet which is exchanged between two wireless nodes without a distribution system. DA indicates the destination address, SA the source address
 of the frame, which are identical to the physical receiver and sender
 addresses respectively. The third address identifies the basic service set
 (BSSID) (see Figure 7.4), the fourth address is unused.
- Infrastructure network, from AP: If only the 'from DS' bit is set, the frame physically originates from an access point. DA is the logical and physical receiver, the second address identifies the BSS, the third address specifies the logical sender, the source address of the MAC frame. This case is an example for a packet sent to the receiver via the access point.
- Infrastructure network, to AP: If a station sends a packet to another station via the access point, only the 'to DS' bit is set. Now the first address represents the physical receiver of the frame, the access point, via the BSS identifier. The second address is the logical and physical sender of the frame, while the third address indicates the logical receiver.
- Infrastructure network, within DS: For packets transmitted between two access points over the distribution system, both bits are set. The first receiver address (RA), represents the MAC address of the receiving access point. Similarly, the second address transmitter address (TA), identifies the sending access point within the distribution system. Now two more addresses are needed to identify the original destination DA of the frame and the original source of the frame SA. Without these additional addresses, some encapsulation mechanism would be necessary to transmit MAC frames over the distribution system transparently.

Figure 7.17 shows three control packets as examples for many special packets defined in the standard. The **acknowledgement packet** (ACK) is used to acknowledge the correct reception of a data frame as shown in Figure 7.12. The receiver address is directly copied from the address 2 field of the immediately previous frame. If no more fragments follow for a certain frame the duration field is set to 0. Otherwise the duration value of the previous frame (minus the time required to transmit the ACK minus SIFS) is stored in the duration field.

Figure 7.17
IEEE 802.11 special control packets: ACK, RTS, and CTS

For the MACA algorithm the RTS/CTS packets are needed. As Figure 7.13 shows, these packets have to reserve the medium to avoid collisions. Therefore, the **request to send (RTS)** packet contains the receiver address of the intended recipient of the following data transfer and the transmitter address of the station transmitting the RTS packet. The duration (in μ s) comprises the time to send the CTS, data, and ACK plus three SIFS. The immediately following **clear to send (CTS)** frame copies the transmitter address from the RTS packet into its receiver address field. Additionally, it reads the duration field, subtracts the time to send the CTS and a SIFS and writes the result into its own duration field.

7.3.5 MAC management

MAC management plays a central role in an IEEE 802.11 station as it more or less controls all functions related to system integration, i.e., integration of a wireless station into a BSS, formation of an ESS, synchronization of stations etc. The following functional groups have been identified and will be discussed in more detail in the following sections:

- **Synchronization:** Functions to support finding a wireless LAN, synchronization of internal clocks, generation of beacon signals.
- Power management: Functions to control transmitter activity for power conservation, e.g., periodic sleep, buffering, without missing a frame.
- **Roaming:** Functions for joining a network (association), changing access points, scanning for access points.
- Management information base (MIB): All parameters representing the current state of a wireless station and an access point are stored within a MIB for internal and external access. A MIB can be accessed via standardized protocols such as the simple network management protocol (SNMP).

7.3.5.1 Synchronization

Each node of an 802.11 network maintains an internal clock. To synchronize the clocks of all nodes, IEEE 802.11 specifies a **timing synchronization function (TSF)**. As we will see in the following section, synchronized clocks are needed for power management, but also for coordination of the PCF and for synchronization of the hopping sequence in an FHSS system. Using PCF, the local timer of a node can predict the start of a super frame, i.e., the contention free and contention period. FHSS physical layers need the same hopping sequences so that all nodes can communicate within a BSS.

Within a BSS, timing is conveyed by the (quasi)periodic transmissions of a beacon frame. A beacon contains a timestamp and other management information used for power management and roaming (e.g., identification of the BSS). The timestamp is used by a node to adjust its local clock. The node is not required to hear every beacon to stay synchronized; however, from time to time internal clocks should be adjusted. The transmission of a beacon frame is not always periodic because the beacon frame is also deferred if the medium is busy.

Within **infrastructure-based** networks, the access point performs synchronization by transmitting the (quasi)periodic beacon signal, whereas all other wireless nodes adjust their local timer to the time stamp. This represents the simple case shown in Figure 7.18. The access point is not always able to send its beacon B periodically if the medium is busy. However, the access point always tries to schedule transmissions according to the expected beacon interval (**target beacon transmission time**), i.e., beacon intervals are not shifted if one beacon is delayed. The timestamp of a beacon always reflects the real transmit time, not the scheduled time.

For ad-hoc networks, the situation is slightly more complicated as they do not have an access point for beacon transmission. In this case, each node maintains its own synchronization timer and starts the transmission of a beacon frame after the beacon interval. Figure 7.19 shows an example where multiple stations try to send their beacon. However, the standard random backoff algorithm is also applied to the beacon frames so only one beacon wins. All other stations now adjust their internal clocks according to the received beacon and

Figure 7.18
Beacon transmission in a busy 802.11
infrastructure network

Figure 7.19
Beacon transmission in a busy 802.11 ad-hoc network

suppress their beacons for this cycle. If collision occurs, the beacon is lost. In this scenario, the beacon intervals can be shifted slightly because all clocks may vary as may the start of a beacon interval from a node's point of view. However, after successful synchronization all nodes again have the same consistent view.

7.3.5.2 Power management

Wireless devices are battery powered (unless a solar panel is used). Therefore, power-saving mechanisms are crucial for the commercial success of such devices. Standard LAN protocols assume that stations are always ready to receive data, although receivers are idle most of the time in lightly loaded networks. However, this permanent readiness of the receiving module is critical for battery life as the receiver current may be up to 100 mA (Woesner, 1998).

The basic idea of IEEE 802.11 power management is to switch off the transceiver whenever it is not needed. For the sending device this is simple to achieve as the transfer is triggered by the device itself. However, since the power management of a receiver cannot know in advance when the transceiver has to be active for a specific packet, it has to 'wake up' the transceiver periodically. Switching off the transceiver should be transparent to existing protocols and should be flexible enough to support different applications. However, throughput can be traded-off for battery life. Longer off-periods save battery life but reduce average throughput and vice versa.

The basic idea of power saving includes two states for a station: **sleep** and **awake**, and buffering of data in senders. If a sender intends to communicate with a power-saving station it has to buffer data if the station is asleep. The sleeping station on the other hand has to wake up periodically and stay awake for a certain time. During this time, all senders can announce the destinations of their buffered data frames. If a station detects that it is a destination of a buffered packet it has to stay awake until the transmission takes place. Waking up at the right moment requires the **timing synchronization function** (**TSF**) introduced in section 7.3.5.1. All stations have to wake up or be awake at the same time.

Power management in **infrastructure**-based networks is much simpler compared to ad-hoc networks. The access point buffers all frames destined for stations operating in power-save mode. With every beacon sent by the access point, a **traffic indication map** (TIM) is transmitted. The TIM contains a list of stations for which unicast data frames are buffered in the access point.

The TSF assures that the sleeping stations will wake up periodically and listen to the beacon and TIM. If the TIM indicates a unicast frame buffered for the station, the station stays awake for transmission. For multi-cast/broadcast transmission, stations will always stay awake. Another reason for waking up is a frame which has to be transmitted from the station to the access point. A sleeping station still has the TSF timer running.

Figure 7.20 shows an example with an access point and one station. The state of the medium is indicated. Again, the access point transmits a beacon frame each beacon interval. This interval is now the same as the TIM interval. Additionally, the access point maintains a **delivery traffic indication map** (DTIM) interval for sending broadcast/multicast frames. The DTIM interval is always a multiple of the TIM interval.

All stations (in the example, only one is shown) wake up prior to an expected TIM or DTIM. In the first case, the access point has to transmit a broadcast frame and the station stays awake to receive it. After receiving the broadcast frame, the station returns to sleeping mode. The station wakes up again just before the next TIM transmission. This time the TIM is delayed due to a busy medium so, the station stays awake. The access point has nothing to send and the station goes back to sleep.

At the next TIM interval, the access point indicates that the station is the destination for a buffered frame. The station answers with a **PS** (power saving) **poll** and stays awake to receive data. The access point then transmits the data for the station, the station acknowledges the receipt and may also send some

Figure 7.20
Power management in IEEE 802.11 infrastructure networks

data (as shown in the example). This is acknowledged by the access point (acknowledgments are not shown in the figure). Afterwards, the station switches to sleep mode again.

Finally, the access point has more broadcast data to send at the next DTIM interval, which is again deferred by a busy medium. Depending on internal thresholds, a station may stay awake if the sleeping period would be too short. This mechanism clearly shows the trade-off between short delays in station access and saving battery power. The shorter the TIM interval, the shorter the delay, but the lower the power-saving effect.

In ad-hoc networks, power management is much more complicated than in infrastructure networks. In this case, there is no access point to buffer data in one location but each station needs the ability to buffer data if it wants to communicate with a power-saving station. All stations now announce a list of buffered frames during a period when they are all awake. Destinations are announced using ad-hoc traffic indication map (ATIMs) – the announcement period is called the ATIM window.

Figure 7.21 shows a simple ad-hoc network with two stations. Again, the beacon interval is determined by a distributed function (different stations may send the beacon). However, due to this synchronization, all stations within the ad-hoc network wake up at the same time. All stations stay awake for the ATIM interval as shown in the first two steps and go to sleep again if no frame is buffered for them. In the third step, station₁ has data buffered for station₂. This is indicated in an ATIM transmitted by station₁. Station₂ acknowledges this ATIM and stays awake for the transmission. After the ATIM window, station₁ can transmit the data frame, and station₂ acknowledges its receipt. In this case, the stations stay awake for the next beacon.

Figure 7.21
Power management in IEEE 802.11
ad-hoc networks

One problem with this approach is that of scale. If many stations within an ad-hoc network operate in power-save mode, they may also want to transmit their ATIM within the ATIM window. More ATIM transmissions take place, more collisions happen and more stations are deferred. The access delay of large networks is difficult to predict. QoS guarantees can not be given under heavy load.

7.3.5.3 Roaming

Typically, wireless networks within buildings require more than just one access point to cover all rooms. Depending on the solidity and material of the walls, one access point has a transmission range of 10–20 m if transmission is to be of decent quality. Each storey of a building needs its own access point(s) as quite often walls are thinner than floors. If a user walks around with a wireless station, the station has to move from one access point to another to provide uninterrupted service. Moving between access points is called **roaming**. The term "handover" or "handoff" as used in the context of mobile or cellular phone systems would be more appropriate as it is simply a change of the active cell. However, for WLANs roaming is more common.

The steps for roaming between access points are:

- A station decides that the current link quality to its access point AP₁ is too poor. The station then starts scanning for another access point.
- Scanning involves the active search for another BSS and can also be used for setting up a new BSS in case of ad-hoc networks. IEEE 802.11 specifies scanning on single or multiple channels (if available at the physical layer) and differentiates between passive scanning and active scanning. Passive scanning simply means listening into the medium to find other networks, i.e., receiving the beacon of another network issued by the synchronization function within an access point. Active scanning comprises sending a probe on each channel and waiting for a response. Beacon and probe responses contain the information necessary to join the new BSS.
- The station then selects the best access point for roaming based on, e.g., signal strength, and sends an association request to the selected access point AP₂.
- The new access point AP₂ answers with an association response. If the
 response is successful, the station has roamed to the new access point AP₂.
 Otherwise, the station has to continue scanning for new access points.
- The access point accepting an association request indicates the new station in its BSS to the distribution system (DS). The DS then updates its database, which contains the current location of the wireless stations. This database is needed for forwarding frames between different BSSs, i.e. between the different access points controlling the BSSs, which combine to form an ESS (see Figure 7.3). Additionally, the DS can inform the old access point AP₁ that the station is no longer within its BSS.

Unfortunately, many products implemented proprietary or incompatible versions of protocols that support roaming and inform the old access point about the change in the station's location. The standard IEEE 802.11f (Inter Access Point Protocol, IAPP) should provide a compatible solution for all vendors. This also includes load-balancing between access points and key generation for security algorithms based on IEEE 802.1x (IEEE, 2001).

7.3.6 802.11b

As standardization took some time, the capabilities of the physical layers also evolved. Soon after the first commercial 802.11 products came on the market some companies offered proprietary solutions with 11 Mbit/s. To avoid market segmentation, a common standard, IEEE 802.11b (IEEE 1999) soon followed and was added as supplement to the original standard (Higher-speed physical layer extension in the 2.4 GHz band). This standard describes a new PHY layer and is by far the most successful version of IEEE 802.11 available today. Do not get confused about the fact that 802.11b hit the market before 802.11a. The standards are named according to the order in which the respective study groups have been established.

As the name of the supplement implies, this standard only defines a new PHY layer. All the MAC schemes, management procedures etc. explained above are still used. Depending on the current interference and the distance between sender and receiver 802.11b systems offer 11, 5.5, 2, or 1 Mbit/s. Maximum user data rate is approx 6 Mbit/s. The lower data rates 1 and 2 Mbit/s use the 11-chip Barker sequence as explained in section 7.3.3.2 and DBPSK or DQPSK, respectively. The new data rates, 5.5 and 11 Mbit/s, use 8-chip **complementary code keying (CCK)** (see IEEE, 1999, or Pahlavan, 2002, for details).

The standard defines several packet formats for the physical layer. The mandatory format interoperates with the original versions of 802.11. The optional versions provide a more efficient data transfer due to shorter headers/different coding schemes and can coexist with other 802.11 versions. However, the standard states that control all frames shall be transmitted at one of the basic rates, so they will be understood by all stations in a BSS.

Figure 7.22 shows two packet formats standardized for 802.11b. The mandatory format is called **long PLCP PPDU** and is similar to the format illustrated in Figure 7.8. One difference is the rate encoded in the signal field this is encoded in multiples of 100 kbit/s. Thus, 0x0A represents 1 Mbit/s, 0x14 is used for 2 Mbit/s, 0x37 for 5.5 Mbit/s and 0x6E for 11 Mbit/s. Note that the preamble and the header are transmitted at 1 Mbit/s using DBPSK. The optional **short PLCP PPDU** format differs in several ways. The short synchronization field consists of 56 scrambled zeros instead of scrambled ones. The short start frame delimiter SFD consists of a mirrored bit pattern compared to the SFD of the long format: 0000 0101 1100 1111 is used for the short PLCP PDU instead of 1111 0011 1010 0000 for the long PLCP PPDU. Receivers that are unable to receive the short format will not detect the start of a frame (but will sense the medium

is busy). Only the preamble is transmitted at 1 Mbit/s, DBPSK. The following header is already transmitted at 2 Mbit/s, DQPSK, which is also the lowest available data rate. As Figure 7.22 shows, the length of the overhead is only half for the short frames (96 μ s instead of 192 μ s). This is useful for, e.g., short, but time-critical, data transmissions.

As IEEE 802.11b is the most widespread version, some more information is given for practical usage. The standards operates (like the DSSS version of 802.11) on certain frequencies in the 2.4 GHz ISM band. These depend on national regulations. Altogether 14 channels have been defined as Table 7.2 shows. For each channel the center frequency is given. Depending on national restrictions 11 (US/Canada), 13 (Europe with some exceptions) or 14 channels (Japan) can be used.

Figure 7.23 illustrates the non-overlapping usage of channels for an IEEE 802.11b installation with minimal interference in the US/Canada and Europe. The spacing between the center frequencies should be at least 25 MHz (the occupied bandwidth of the main lobe of the signal is 22 MHz). This results in the channels 1, 6, and 11 for the US/Canada or 1, 7, 13 for Europe, respectively. It may be the case that, e.g., travellers from the US cannot use the additional channels (12 and 13) in Europe as their hardware is limited to 11 channels. Some European installations use channel 13 to minimize interference. Users can install overlapping cells for WLANs using the three non-overlapping channels to provide seamless coverage. This is similar to the cell planning for mobile phone systems.

Japan

Χ

Χ

Χ

Χ

Χ

Χ

Χ

1 Χ Χ Χ 2412 2 Χ 2417 Χ Χ 3 2422 Χ Χ Χ 2427 4 Χ Χ Χ 5 2432 Χ Χ Χ 6 2437 Χ Χ Χ 7 2442 Χ Χ Χ

Χ

Χ

Χ

Χ

US/Canada

Europe

Χ

Χ

Χ

Χ

Χ

Χ

Channel

8

9

10

11

12

13

14

Frequency [MHz]

2447

2452

2457

2462

2467

2472

2484

Table 7.2 Channel plan for IEEE 802.11b

Figure 7.23 IEEE 802.11b non-overlapping channel selection

7.3.7 802.11a

Initially aimed at the US 5 GHz U-NII (Unlicensed National Information Infrastructure) bands IEEE 802.11a offers up to 54 Mbit/s using OFDM (IEEE, 1999). The first products were available in 2001 and can now be used (after some harmonization between IEEE and ETSI) in Europe. The FCC (US) regulations offer three different 100 MHz domains for the use of 802.11a, each with a different legal maximum power output: 5.15-5.25 GHz/50 mW, 5.25-5.35 GHz/250 mW, and 5.725-5.825 GHz/1 W. ETSI (Europe) defines different frequency bands for Europe: 5.15-5.35 GHz and 5.47-5.725 GHz and requires two additional mechanisms for operation: dynamic frequency selection (DFS) and transmit power control (TPC) which will be explained in the context of HiperLAN2 in more detail. (This is also the reason for introducing IEEE 802.11h, see section 7.3.8.) Maximum transmit power is 200 mW EIRP for the lower frequency band (indoor use) and 1 W EIRP for the higher frequency band (indoor and outdoor use). DFS and TPC are not necessary, if the transmit power stays below 50 mW EIRP and only 5.15-5.25 GHz are used. Japan allows operation in the frequency range 5.15–5.25 GHz and requires carrier sensing every 4 ms to minimize interference. Up to now, only 100 MHz are available 'worldwide' at 5.15–5.25 GHz.

The physical layer of IEEE 802.11a and the ETSI standard HiperLAN2 has been jointly developed, so both physical layers are almost identical. Most statements and explanations in the following, which are related to the transmission technology are also valid for HiperLAN2. However, HiperLAN2 differs in the MAC layer, the PHY layer packet formats, and the offered services (quality of service, real time etc.). This is discussed in more detail in section 7.4. It should be noted that most of the development for the physical layer for 802.11a was adopted from the HiperLAN2 standardization – but 802.11a products were available first and are already in widespread use.

Again, IEEE 802.11a uses the same MAC layer as all 802.11 physical layers do and, in the following, only the lowest layer is explained in some detail. To be able to offer data rates up to 54 Mbit/s IEEE 802.11a uses many different technologies. The system uses 52 subcarriers (48 data + 4 pilot) that are modulated using BPSK, QPSK, 16-QAM, or 64-QAM. To mitigate transmission errors, FEC is applied using coding rates of 1/2, 2/3, or 3/4. Table 7.3 gives an overview of the standardized combinations of modulation and coding schemes together with the resulting data rates. To offer a data rate of 12 Mbit/s, 96 bits are coded into one OFDM symbol. These 96 bits are distributed over 48 subcarriers and 2 bits are modulated per sub-carrier using QPSK (2 bits per point in the constellation diagram). Using a coding rate of 1/2 only 48 data bits can be transmitted.

Data rate [Mbit/s]	Modulation	Coding rate	Coded bits per subcarrier	Coded bits per OFDM symbol	Data bits per OFDM symbol
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	64-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

Table 7.3 Rate dependent parameters for IEEE 802.11a

Figure 7.24 Usage of OFDM in IEEE 802.11a

Figure 7.24 shows the usage of OFDM in IEEE 802.11a. Remember, the basic idea of OFDM (or MCM in general) was the reduction of the symbol rate by distributing bits over numerous subcarriers. IEEE 802.11a uses a fixed symbol rate of 250,000 symbols per second independent of the data rate (0.8 μ s guard interval for ISI mitigation plus 3.2 μ s used for data results in a symbol duration of 4 μ s). As Figure 7.24 shows, 52 subcarriers are equally spaced around a center frequency. (Center frequencies will be explained later). The spacing between the subcarriers is 312.5 kHz. 26 subcarriers are to the left of the center frequency and 26 are to the right. The center frequency itself is not used as subcarrier. Subcarriers with the numbers –21, –7, 7, and 21 are used for pilot signals to make the signal detection robust against frequency offsets.

Figure 7.25
Operating channels of IEEE 802.11a in the U-NII bands

Similar to 802.11b several operating channels have been standardized to minimize interference. Figure 7.25 shows the channel layout for the US U-NII bands. The center frequency of a channel is 5000 + 5*channel number [MHz]. This definition provides a unique numbering of channels with 5 MHz spacing starting from 5 GHz. Depending on national regulations, different sets of channels may be used. Eight channels have been defined for the lower two bands in the U-NII (36, 40, 44, 48, 52, 56, 60, and 64); four more are available in the high band (149, 153, 157, and 161). Using these channels allows for interference-free operation of overlapping 802.11a cells. Channel spacing is 20 MHz, the occupied bandwidth of 802.11a is 16.6 MHz. How is this related to the spacing of the sub-carriers? 20 MHz/64 equals 312.5 kHz. 802.11a uses 48 carriers for data, 4 for pilot signals, and 12 carriers are sometimes called virtual subcarriers. (Set to zero, they do not contribute to the data transmission but may be used for an implementation of OFDM with the help of FFT, see IEEE, 1999, or ETSI, 2001a, for more details). Multiplying 312.5 kHz by 52 subcarriers and adding the extra space for the center frequency results in approximately 16.6 MHz occupied bandwidth per channel (details of the transmit spectral power mask neglected, see ETSI, 2001a).

Due to the nature of OFDM, the PDU on the physical layer of IEEE 802.11a looks quite different from 802.11b or the original 802.11 physical layers. Figure 7.26 shows the basic structure of an IEEE 802.11a PPDU.

Figure 7.26 IEEE 802.11a physical layer PDU

- The PLCP **preamble** consists of 12 symbols and is used for frequency acquisition, channel estimation, and synchronization. The duration of the preamble is $16 \mu s$.
- The following OFDM symbol, called **signal**, contains the following fields and is BPSK-modulated. The 4 bit **rate** field determines the data rate and the modulation of the rest of the packet (examples are 0x3 for 54 Mbit/s, 0x9 for 24 Mbit/s, or 0xF for 9 Mbit/s). The **length** field indicates the number of bytes in the payload field. The **parity** bit shall be an even parity for the first 16 bits of the signal field (rate, length and the reserved bit). Finally, the six **tail** bits are set to zero.
- The **data** field is sent with the rate determined in the rate field and contains a **service** field which is used to synchronize the descrambler of the receiver (the data stream is scrambled using the polynomial $x^7 + x^4 + 1$) and which contains bits for future use. The **payload** contains the MAC PDU (1-4095 byte). The **tail** bits are used to reset the encoder. Finally, the **pad** field ensures that the number of bits in the PDU maps to an integer number of OFDM symbols.

Compared to IEEE 802.11b working at 2.4 GHz IEEE 802.11a at 5 GHz offers much higher data rates. However, shading at 5 GHz is much more severe compared to 2.4 GHz and depending on the SNR, propagation conditions and the distance between sender and receiver, data rates may drop fast (e.g., 54 Mbit/s may be available only in an LOS or near LOS condition). Additionally, the MAC layer of IEEE 802.11 adds overheads. User data rates are therefore much lower than the data rates listed above. Typical user rates in Mbit/s are (transmission rates in brackets) 5.3 (6), 18 (24), 24 (36), and 32 (54). The following section presents some additional developments in the context of 802.11, which also comprise a standard for higher data rates at 2.4 GHz that can benefit from the better propagation conditions at lower frequencies.

7.3.8 Newer developments

While many products that follow the IEEE 802.11a and 802.11b standards are available, several new groups have been formed within the IEEE to discuss enhancements of the standard and new applications. As things change fast, the current status can be checked via (IEEE, 2002a). The following is only a selection of ongoing work (at the time of writing). The completed standards IEEE 802.11c and 802.11d cover additions for bridging support and updates for physical layer requirements in different regulatory domains (i.e., countries).

- 802.11e (MAC enhancements): Currently, the 802.11 standards offer no
 quality of service in the DCF operation mode. Some QoS guarantees can be
 given, only via polling using PCF. For applications such as audio, video, or
 media stream, distribution service classes have to be provided. For this
 reason, the MAC layer must be enhanced compared to the current standard.
- 802.11f (Inter-Access Point Protocol): The current standard only describes the basic architecture of 802.11 networks and their components. The implementation of components, such as the distribution system, was deliberately not specified. Specifications of implementations should generally be avoided as they hinder improvements. However, a great flexibility in the implementation combined with a lack of detailed interface definitions and communication protocols, e.g., for management severely limits the interoperability of devices from different vendors. For example, seamless roaming between access points of different vendors is often impossible. 802.11f standardizes the necessary exchange of information between access points to support the functions of a distribution system.
- 802.11g (Data rates above 20 Mbit/s at 2.4 GHz): Introducing new modulation schemes, forward error correction and OFDM also allows for higher data rates at 2.4 GHz. This approach should be backward compatible to 802.11b and should benefit from the better propagation characteristics at 2.4 GHz compared to 5 GHz. Currently, chips for 54 Mbit/s are available as well as first products. An alternative (or additional) proposal for 802.11g suggests the socalled packet binary convolutional coding (PBCC) to reach a data rate of 22 Mbit/s (Heegard, 2001). While the 54 Mbit/s OFDM mode is mandatory, the 22 Mbit/s PBCC mode can be used as an option. The decision between 802.11a and 802.11g is not obvious. Many 802.11a products are already available and the 5 GHz band is (currently) not as crowded as the 2.4 GHz band where not only microwave ovens, but also Bluetooth, operate (see section 7.5). Coverage is better at 2.4 GHz and fewer access points are needed, lowering the overall system cost. 802.11g access points can also communicate with 802.11b devices as the current 802.11g products show. Dual mode (or then triple mode) devices will be available covering 802.11a and b (and g). If a high traffic volume per square meter is expected (e.g., hot spots in airport terminals), the smaller cells of 802.11a access points and the higher number of available channels (to avoid interference) at 5 GHz are clear advantages.

- 802.11h (Spectrum managed 802.11a): The 802.11a standard was primarily designed for usage in the US U-NII bands. The standardization did not consider non-US regulations such as the European requirements for power control and dynamic selection of the transmit frequency. To enable the regulatory acceptance of 5 GHz products, dynamic channel selection (DCS) and transmit power control (TPC) mechanisms (as also specified for the European HiperLAN2 standard) have been added. With this extension, 802.11a products can also be operated in Europe. These additional mechanisms try to balance the load in the 5 GHz band.
- 802.11i (Enhanced Security mechanisms): As the original security mechanisms (WEP) proved to be too weak soon after the deployment of the first products (Borisov, 2001), this working group discusses stronger encryption and authentication mechanisms. IEEE 802.1x will play a major role in this process.

Additionally, IEEE 802.11 has several **study groups** for new and upcoming topics. The group 'Radio Resource Measurements' investigates the possibilities of 802.11 devices to provide measurements of radio resources. Solutions for even higher throughput are discussed in the 'High Throughput' study group. Both groups had their first meetings in 2002. The first study group recently became the IEEE project 802.11k 'Radio Resource Measurement Enhancements.'

7.4 HIPERLAN

In 1996, the ETSI standardized HIPERLAN 1 as a WLAN allowing for node mobility and supporting ad-hoc and infrastructure-based topologies (ETSI, 1996). (HIPERLAN stands for high performance local area network.) HIPER-LAN 1 was originally one out of four HIPERLANs envisaged, as ETSI decided to have different types of networks for different purposes. The key feature of all four networks is their integration of time-sensitive data transfer services. Over time, names have changed and the former HIPERLANs 2, 3, and 4 are now called HiperLAN2, HIPERACCESS, and HIPERLINK. The current focus is on HiperLAN2, a standard that comprises many elements from ETSI's BRAN (broadband radio access networks) and wireless ATM activities. Neither wireless ATM nor HIPERLAN 1 were a commercial success. However, the standardization efforts had a lot of impact on QoS supporting wireless broadband networks such as HiperLAN2. Before describing HiperLAN2 in more detail, the following three sections explain key features of, and the motivation behind, HIPERLAN 1, wireless ATM, and BRAN. Readers not interested in the historical background may proceed directly to section 7.4.4.