HIMax®

Safety Simulator Manual

Todos los productos de HIMA nombrados en el presente manual son marcas registradas. Salvo donde se indique lo contrario, esto se aplicará también a los demás fabricantes aquí citados y a sus productos.

Tras haber sido redactadas cuidadosamente, las notas y las especificaciones técnicas ofrecidas en este manual han sido compiladas bajo estrictos controles de calidad. En caso de dudas, consulte directamente a HIMA. HIMA le agradecerá que nos haga saber su opinión acerca de p. ej. qué información falta en el manual.

Reservado el derecho a modificaciones técnicas. HIMA se reserva asimismo el derecho de actualizar el material escrito sin previo aviso.

Hallará más información en la documentación recogida en el DVD de HIMA y en nuestro sitio web http://www.hima.com.

© Copyright 2015, HIMA Paul Hildebrandt GmbH

Todos los derechos reservados.

Contacto

Dirección de HIMA:

HIMA Paul Hildebrandt GmbH

Apdo. Postal / Postfach 1261

D-68777 Brühl

Tel.: +49 6202 709-0

Fax: +49 6202 709-107

E-Mail: info@hima.com

Índice de	Modificaciones	Tipo de modificación	
revisiones		técnica	redaccional
1.00	Primera edición		

X-OTS Índice de contenidos

Índice de contenidos

1	Introducción	5
1.1	Estructuración y uso del manual	5
1.2	Destinatarios	5
1.3	Convenciones de representación	5
1.3.1 1.3.2	Notas de seguridad Notas de uso	6
2	Seguridad	7
2.1	Uso conforme a la finalidad prevista	7
3	Descripción del producto	8
3.1	Función	8
3.1.1	Simulación del módulo procesador	8
3.1.2	Simulación de las entradas y salidas	8
3.1.3 3.1.4	Inicio y finalización Interfaz OPC	8 9
3.1.4.1	Interfaz de simulación	9
3.1.4.2	Variables globales	9
3.1.4.3	Variables del sistema	9
3.1.5	Guardado y carga del estado de simulación (snapshot)	9
3.2	Equipamiento y volumen de suministro	9
3.3	Composición	10
3.4	Datos del producto	11
4	Puesta en servicio	12
4.1	Instalación	12
4.2	Configuración	13
4.2.1	Parámetros de sistema del recurso OTS	13
4.2.2	Ajustes del host OTS	15
4.3	Creación de programas, generación del código y carga	15
4.4	Variantes	16
5	Funcionamiento	17
5.1	Manejo	17
5.1.1	SILworX	17
5.1.2	Clientes OPC	17
5.2	Diagnóstico	19
6	Mantenimiento	20
7	Puesta fuera de servicio	21

HI 801 315 ES Rev. 1.00 página 3 de 28

Índice de contenidos X-OTS

Índice alfabético

Anexo 23	
Ejemplo de aplicación	23
Glosario	24
Índice de ilustraciones	25
Índice de tablas	26

27

página 4 de 28 HI 801 315 ES Rev. 1.00

X-OTS 1 Introducción

1 Introducción

El producto *X-OTS – HIMax Safety Simulator* simula un sistema de control HIMax o HIMatrix en el marco de la instalación de un OTS (Operator Training System).

X-OTS puede usarse mayormente para los siguientes fines:

- Formación de operadores y programadores de sistemas de control HIMA
- Desarrollo y pruebas de programas de usuario sin necesidad de tener un sistema de control
 En este manual se describe la instalación y utilización del sistema X-OTS.

1.1 Estructuración y uso del manual

El manual se divide en los siguientes capítulos:

- Introducción
- Seguridad
- Descripción del producto
- Puesta en servicio
- Funcionamiento
- Mantenimiento
- Puesta fuera de servicio
- Anexo
 - Ejemplo de aplicación
 - Glosario
 - Índices

1.2 Destinatarios

Este documento va dirigido a planificadores, proyectadores y programadores de equipos de automatización y al personal autorizado para la puesta en servicio, operación y mantenimiento de dispositivos y sistemas. Se presuponen conocimientos especiales en materia de sistemas de automatización con funciones relacionadas con la seguridad.

1.3 Convenciones de representación

Para una mejor legibilidad y comprensión, en este documento se usa la siguiente notación:

Negrita Remarcado de partes importantes del texto.

Designación de botones de software, fichas e ítems de menús

de SILworX sobre los que puede hacerse clic

Coursiva Variables y parámetros del sistema
Coursier Entradas literales del operador

RUN Designación de estados operativos en mayúsculas

Cap. 1.2.3 Las referencias cruzadas son enlaces, aun cuando no estén

especialmente marcadas como tales. Al colocar el puntero sobre un enlace tal, cambiará su aspecto. Haciendo clic en él, se saltará

a la correspondiente página del documento.

Las notas de seguridad y uso están especialmente identificadas.

HI 801 315 ES Rev. 1.00 página 5 de 28

1 Introducción X-OTS

1.3.1 Notas de seguridad

Las notas de seguridad del documento se representan de la siguiente forma. Para garantizar mínimos niveles de riesgo, deberá seguirse sin falta lo que indiquen. Los contenidos se estructuran en

- Palabra señalizadora: peligro, advertencia, precaución, nota
- Tipo y fuente de peligro
- Consecuencias del peligro
- Prevención del peligro

A PALABRA SEÑALIZADORA

¡Tipo y fuente de peligro! Consecuencias del peligro Prevención del peligro

Las palabras señalizadoras significan

- Peligro: su inobservancia originará lesiones graves o mortales
- Advertencia: su inobservancia puede originar lesiones graves o mortales
- Precaución: su inobservancia puede originar lesiones moderadas

NOTA

¡Tipo y fuente del daño! Prevención del daño

1.3.2 Notas de uso

La información adicional se estructura como sigue:

i En este punto figura el texto con la información adicional.

Los trucos y consejos útiles aparecen en la forma:

RENCIA

SUGE- En este punto figura el texto con la sugerencia.

HI 801 315 ES Rev. 1.00 página 6 de 28

X-OTS 2 Seguridad

2 Seguridad

¡No se permite usar X-OTS para aplicaciones relacionadas con la seguridad!

2.1 Uso conforme a la finalidad prevista

X-OTS es apto para los siguientes fines:

Composición de simuladores para formación de operadores, planificadores y programadores

Pruebas de programas de usuario

HI 801 315 ES Rev. 1.00 página 7 de 28

3 Descripción del producto

X-OTS simula un sistema de control HIMax o HIMatrix y sirve para formar operadores, planificadores y programadores, así como para probar programas de usuario.

X-OTS puede usarse para componer simuladores de plantas que operan mediante uno o más sistemas de control HIMax o HIMatrix. La interfaz OPC de X-OTS permite conectar diversos sistemas de monitorización y control centralizado, además de simuladores de proceso.

3.1 Función

Las principales funciones de X-OTS son:

- Simulación del módulo procesador
- Simulación de las entradas y salidas
- Inicio y finalización de la simulación y de los programas de usuario
- Ejecución de la secuencia de simulación un determinado número de ciclos del programa de usuario o durante un tiempo determinado
- Guardado y carga del estado de simulación

La interfaz OPC de X-OTS es apta para el acceso a los datos (DA). Para exportar las alarmas y los eventos (A&E) se necesitará además un servidor X-OPC.

3.1.1 Simulación del módulo procesador

SILworX considera X-OTS como recurso OTS que admite las siguientes funciones:

- Cargar por download
- Inicio en frío
- Inicio en caliente
- Finalización

3.1.2 Simulación de las entradas y salidas

X-OTS pone a disposición todas las variables globales del proyecto SILworX en forma de tags OPC. Uno o más clientes OPC pueden escribir los tags empleados como entradas y leer los tags empleados como salidas.

En los siguientes casos de variables globales podrá sólo leerse el tag respectivo:

- En variables con el atributo Constant.
- En variables globales que escribe el programa del usuario.
- En variables globales que escribe safeethernet.

3.1.3 Inicio y finalización

Toda la simulación actúa igual que un módulo procesador:

- Con SILworX pueden iniciarse y finalizarse los recursos y los distintos programas
- La forma en que actuará el servicio X-OTS al iniciarse el PC puede configurarse:
 - En la instalación puede elegirse si X-OTS se iniciará al hacerlo el PC.
 - Esta forma de actuar puede modificarse con los ajustes de los servicios.
- Al iniciarse o reiniciarse X-OTS, la simulación actuará tal y como lo indique el valor de la variable del sistema Autostart.

Mediante la interfaz de simulación es posible poner la simulación en estado de pausa o de ejecución. El estado de ejecución corresponde al estado RUN del módulo procesador, el estado de pausa corresponde al estado TEST del módulo procesador.

página 8 de 28 HI 801 315 ES Rev. 1.00

3.1.4 Interfaz OPC

Los tags OPC se dividen en los siguientes grupos:

- Interfaz de simulación
- Variables globales
- Variables del sistema

Los grupos se identifican por nombres de nodo, véase la Tabla 1.

Nombre de nodo	Función de los tags
Simulación OTS	Control y observación de la simulación
«Ressource- Name».Global_Vars	Variables globales que pueden escribirse y leerse, pudiendo así simularse la entrada/salida. Variables que en SILworX se declararon como constantes, son sólo de lectura.
«Ressource-Name».System	Variables del sistema

Tabla 1: Grupo de tags OPC

3.1.4.1 Interfaz de simulación

La interfaz de simulación consta de tags OPC con cuya ayuda puede controlarse la simulación. La simulación tiene dos estados: pausa y ejecución, es decir, *Pause* y *Run*. El estado actual lo indica el tag OPC *SimulationState*. Si se aplica el *SimulationState* a un valor se cambia el estado. Los demás tags de la interfaz de simulación afectan también al estado. Los tags de la interfaz de simulación se describen en la Tabla 7.

3.1.4.2 Variables globales

Las variables globales definidas en SILworX para el recurso están a disposición en forma de tags OPC.

3.1.4.3 Variables del sistema

Las variables de sistema del recurso están a disposición en forma de tags OPC. Hallará más información de las variables del sistema en el manual HI 801 141 ES.

3.1.5 Guardado y carga del estado de simulación (snapshot)

Mediante la interfaz de simulación (véanse Tabla 7, Tags *SnapshotFile...*) podrá guardarse durante el estado *Pause* una réplica completa de la simulación como archivo en el sistema de archivos para poder volver a cargarlo más tarde. La réplica contiene los nombres y los valores de las variables.

Al cargar una réplica guardada, X-OTS la adaptará a la simulación actual:

- Las variables se identifican por sus nombres.
- Las variables de la simulación actual adoptarán el valor actual de la réplica.
- Se ignorarán aquellas variables de la réplica que no existan ya en la simulación actual.
- Aquellas variables de la simulación que no existan en la réplica adoptarán su valor inicial.
- Los valores estadísticos y de temporización se sustituirán por los valores de la réplica.

3.2 Equipamiento y volumen de suministro

X-OTS se entrega junto con el DVD de HIMA.

Hardware y software necesarios:

- PC con las siguientes características
 - Core Duo
 - 3 GB RAM
 - aprox. 20 MB de capacidad de disco duro
 - Windows XP Professional a partir de SP2 (32 bits) o

HI 801 315 ES Rev. 1.00 página 9 de 28

- Windows Server 2003 a partir de SP1 (32 bits) o
- Windows 7 Ultimate/Professional (32 ó 64 bits) o
- Windows Server 2008 R2 (64 bits)
- Para operar y programar X-OTS es imprescindible disponer de una versión completa de SILworX de la versión V.4.116 o más reciente.
- Cliente OPC

Si se desean exportar alarmas y eventos se tendrá que instalar además el servidor X-OPC.

3.3 Composición

- Uno o más clientes OPC para la operación/observación de tags OPC
- 3 X-OTS4 SILworX
- Servidor X-OPC para alarmas y eventos (opcional)

Fig. 1: Composición de una instalación X-OTS

X-OTS 3 se ejecuta como servicio en el sistema operativo Windows.

SILworX 4 configura y opera X-OTS como recurso OTS.

Uno o más clientes OPC 1 operan/observar los tags OPC:

- Interfaz de simulación
- Variables globales, como p. ej. entradas y salidas
- Variables del sistema

Un servidor X-OPC opcional 2 lee las alarmas y los eventos.

PC y sistema operativo del X-OTS y/o del servidor OPC pueden ser p. ej. los mismos en los que se haya instalado SILworX.

página 10 de 28 HI 801 315 ES Rev. 1.00

En la siguiente tabla se describe la conexión de los sistemas con X-OTS, así como el tipo de datos que se intercambian.

Sistema	Conexión mediante	Datos intercambiados
PC de instructor (simulador de proceso)	OPC	Interfaz de simulación y según se necesite: Datos de entrada y salida (variables globales) Variables del sistema
Servidor OPC X	OPC	Alarmas y eventos (opcional)
SILworX	Interfaz de PADT	Datos de PADT
Sistema de monitorización o control centralizado	OPC	Datos de entrada y salida (variables globales) y, según sea necesario, otros

Tabla 2: Intercambio de datos entre X-OTS y otros sistemas

3.4 Datos del producto

Datos	Valor
Cantidad de instalaciones de OTS por PC	10
Cantidad de recursos por instalación	Ilimitada (según la capacidad del PC)
Cantidad de tags OPC por recurso	Ilimitada (según la capacidad del PC)

Tabla 3: Datos del producto

Para X-OTS rigen las siguientes restricciones:

- X-OTS no es compatible con Unicode. Todos los textos se generan en ASCII y se espera que sean ASCII, p. ej. nombres de objetos.
- Los tiempos de la simulación de un sistema de control con X-OTS se diferencian de los tiempos de un sistema de control real a consecuencia de la incapacidad de procesamiento en tiempo real del sistema operativo Windows®.

HI 801 315 ES Rev. 1.00 página 11 de 28

4 Puesta en servicio X-OTS

4 Puesta en servicio

La puesta en servicio consta de los siguientes pasos:

- 1. Instalación de X-OTS en un PC Windows
- 2. Configuración de un recurso OTS con SILworX
- 3. Creación de programas, generación del código y carga

Además deberá instalarse el software adicional que se requiera, como p. ej. un cliente OPC.

4.1 Instalación

Notas para la instalación:

- Para instalar se necesita disponer de derechos de administrador.
- HIMA recomienda desinstalar versiones antiguas de X-OTS antes de instalar la actual.
- El idioma de instalación se pregunta al proceder a instalar. La opción predeterminada es el idioma alemán (Deutsch/German).
- Al instalar deberán especificarse los parámetros descritos en la Tabla 4.

Parámetro	Descripción
System ID	ID de sistema asignado al recurso OTS. Deberá especificarse en la configuración en SILworX.
PADT Port	Número del puerto que constituye la conexión entre X-OTS y SILworX. Dicho número de puerto deberá tener un valor > 1024, ya que de lo contrario puede surgir problemas con otros programas. Deberán evitarse igualmente números de puerto asignados manualmente a otros programas instalados. Si hay Firewalls en la conexión entre X-OTS y PADT, deberá habilitarse este número de puerto en los Firewalls.
Service name	Nombre de servicio de X-OTS para diferenciar varios servicios X-OTS en un mismo PC.
CLSID	El CLSID (Class Identifier) para la funcionalidad OPC-DA del X-OTS es un identificador inequívoco del X-OTS instalado, es decir, de la instancia. Aquí se elegirá si se desea asignar el CLSID manualmente o automáticamente. En caso de asignarlo manualmente, tendrá Ud. que escribir el CLSID.

Tabla 4: Parámetros a introducir durante la instalación

Instalación de X-OTS en un PC

- Introduzca el DVD de HIMA. El programa de instalación se inicia automáticamente al cabo de unos segundos.
 - Como alternativa puede ejecutarse manualmente start.exe en el directorio principal del DVD.
- 2. Abra la página de instalación de X-OTS. Seleccione **X-OTS Installation** en el menú.
- Inicie la instalación de X-OTS y siga sus instrucciones.
 Aquí se elegirá el idioma de instalación (alemán o inglés) y se especificarán los parámetros según la Tabla 4.
- X-OTS está instalado y puede ejecutarse.

En un PC puede haber instaladas hasta 10 instancias de X-OTS.

Para comprobar los parámetros de la Tabla 5 se usará regedit.exe. En HKEY\LOCAL_MACHINE\SOFTWARE\HIMA\X-OTS se hallará para cada instancia instalada una clave con el respectivo service name. En cada una de esas claves se encuentran los parámetros.

Tras modificar el parámetro *System ID* y *PADT Port* deberá reiniciarse el servicio X-OTS para que el cambio sea efectivo.

página 12 de 28 HI 801 315 ES Rev. 1.00

X-OTS 4 Puesta en servicio

Una modificación de los demás parámetros podría menoscabar la capacidad funcional de X-OTS. Absténgase, por tanto, de realizarla.

4.2 Configuración

Para configurar un recurso OTS, el programa SILworX deberá tener licencia para X-OTS. La licencia se aplica con ayuda de un dongle que ofrece HIMA.

Una vez que SILworX posea licencia para X-OTS, podrá agregarse X-OTS como nuevo recurso a un marco de configuración.

Creación de un recurso OTS

- Seleccione la configuración y elija New en el menú contextual o en la barra de acciones.
 ✓ Se abrirá el cuadro de diálogo New Object.
- 2. Haga clic en el cuadro de diálogo Operator Training System.
- 3. Escriba en el recuadro Name el nombre del nuevo recurso OTS.
- 4. Haga clic en OK.

Se habrá creado un recurso OTS en el marco de configuración.

Un recurso OTS deberá asimismo tener licencia para que pueda ejecutarse. A tal fin podrá generarse un código de habilitación con ayuda del número de licencia y el ID de sistema que hallará en la página web de HIMA http://www.hima.com. Dicho código deberá Ud. introducirlo en el administrador de licencias de SILworX.

4.2.1 Parámetros de sistema del recurso OTS

Los parámetros de sistema de un recurso OTS varían respecto a los de otro recurso. Véase la siguiente tabla:

Parámetro/Switch	Descripción	Valor por defecto	Opción recomendada
Name	Nombre del recurso OTS. Éste tendrá que constar sólo de caracteres ASCII.	-	-
System ID [SRS]	ID de sistema del recurso OTS 165 535 Al ID del sistema tendrá Ud. que asignarle un valor distinto al valor por defecto, de lo contrario el proyecto no será ejecutable. El ID del sistema deberá tener asignado el valor que se haya introducido al instalar la respectiva instancia de X-OTS.	60 000	Valor inequívoco dentro de la red de los recursos
Safety Time [ms]	Tiempo de seguridad del recurso	20 000 ms	Específico de la aplicación
Watchdog Time [ms]	Tiempo WatchDog del recurso OTS ≤ ½* safety time [ms]	10 000 ms	Específico de la aplicación
Main Enable	Habilitación de los siguientes parámetros para la modificación en línea: System ID Resource Watchdog Time Safety Time Target Cycle Time Target Cycle Time Mode Autostart Global Forcing Allowed Global Force Timeout Reaction Load Allowed Start Allowed	ON	Específico de la aplicación

HI 801 315 ES Rev. 1.00 página 13 de 28

4 Puesta en servicio X-OTS

Parámetro/Switch	Descripcio	ón	Valor por defecto	Opción recomendada
Autostart	ON	Recurso y programas de usuario se inician al hacerlo X-OTS	ON	Específico de la aplicación
	OFF	Sin inicio automático		
Start Allowed	ON	Es posible iniciar los programas de usuario con ayuda del PADT	ON	Específico de la aplicación
	OFF	No se permite el inicio		
Load Allowed	ON OFF	Es posible cargar una nueva configuración No está permitido cargar	ON	Específico de la aplicación
Global Forcing Allowed	ON OFF	Es posible forzar variables globales No es posible forzar variables globales	ON	Específico de la aplicación
Global Force Timeout Reaction	timeout gl Stop F	mo responderá el recurso tras expirar el force lobal:	Stop Forcing Only	Específico de la aplicación
Max.Com. Time Slice ASYNC [ms]	Valor máx usa para l Véase el l	Valor máximo, en ms, del intervalo de tiempo que se usa para la comunicación dentro del ciclo del recurso. Véase el manual de comunicación HI 801 195 ES, 25000 ms		Específico de la aplicación
Target Cycle Time [ms]	Time Mod (consigna	e ciclo deseado o máximo. Véase <i>Target Cycle</i> de, 07500 ms. El valor del tiempo deseado) del ciclo podrá ser tan grande como el tiempo de g configurado -1000 ms. De lo contrario, el X-OTS ará.	50 ms	Específico de la aplicación
Multitasking Mode	Modo 1	La longitud de un ciclo de la CPU se atendrá a la duración de ejecución necesaria para todos los programas de usuario.	Mode 1	Específico de la aplicación
	Modo 2	El procesador pondrá a disposición de los programas de usuario de mayor prioridad el tiempo de ejecución no necesitado por los programas de usuario de menor prioridad. Modo operativo para alta disponibilidad.		
	Modo 3	El procesador aguardará el tiempo de ejecución no necesitado por los programas de usuario y alargará así el ciclo.		
Target Cycle	Utilizaciór	n del tiempo Target Cycle Time [ms].	Fixed-	-
Time Mode	Fixed	El X-OTS mantendrá el tiempo deseado del ciclo y, de ser necesario, prolongará el ciclo. No será válido en caso de que el tiempo de proceso de los programas de usuario sobrepase el tiempo de ciclo deseado.	tolerant	
	Fixed- tolerant	Igual que <i>Fixed</i> , pero en el 1er ciclo de activación de reload no se considerará el tiempo de ciclo deseado.		
	Dynamic- tolerant	Igual que <i>Dynamic</i> , pero en el 1er ciclo de activación de reload no se considerará el tiempo de ciclo deseado.		
	Dynamic	X-OTS mantendrá en lo posible el tiempo de ciclo deseado, pero ejecutará el ciclo tan rápido como sea posible.		
Namespace Prefix	Identificador adicional para el recurso, p. ej. en caso de que varios recursos contenga variables globales con igual nombre.		"" (vacío)	Específico de la aplicación

página 14 de 28 HI 801 315 ES Rev. 1.00

X-OTS 4 Puesta en servicio

Parámetro/Switch	Descripción	Valor por defecto	Opción recomendada
Namespace Separator	Punto . Barra inclinada / Dos puntos : Barra inclinada inversa \	Punto .	Específico de la aplicación
Namespace Type	A ajustar según los requisitos del cliente OPC:Hierarchical NamespaceFlat Namespace	Hierarchi- cal Name- space	Específico de la aplicación
Changeless Update	Ajuste según los requisitos del cliente OPC: ON X-OTS transmite cíclicamente siempre todos los ítems al cliente OPC. OFF X-OTS transmite al cliente OPC sólo los valores modificados.	OFF	Específico de la aplicación
Cycle Delay [ms]	El retardo de ciclo limita la tasa de trabajo de la CPU del PC solicitable por el servidor OPC X, para que también puedan ejecutarse otros programas. Rango de valores: 1100 ms	5 ms	Específico de la aplicación
Short Tag Names for DA	Sólo si se ha elegido <i>Flat Name Space</i> podrá activarse este parámetro. Es una opción mediante la cual se ofrecerán datos y eventos al cliente OPC sin más contexto (ruta).	OFF	Específico de la aplicación

Tabla 5: Parámetros de sistema de un recurso OTS

4.2.2 Ajustes del host OTS

El host OTS es un subobjeto del recurso OTS que contiene parámetros acerca del PC en el que se ejecuta el X-OTS.

Un parámetro es el puerto del PADT. Éste deberá tener asignado el valor que se haya especificado al instalar el X-OTS.

Los demás parámetros describen las conexiones Ethernet del PC. Para cada conexión se tienen los siguientes parámetros:

Parámetro	
Name	Nombre de la conexión Ethernet
IP Address	Dirección IP, tal y como figura en el PC
Standard Interface	Si se han configurado varias conexiones IP, ésta será la interfaz predeterminada para la comunicación con SILworX.
HH Port	Puerto de datos de proceso a los siguientes interlocutores: Otras instancias de X-OTS Sistemas de control Servidor OPC ¡Si en un PC se han instalado varias instancias de X-OTS, deberá asignarse un número de puerto propio e inequívoco para cada instancia!

Tabla 6: Parámetros para una conexión Ethernet

4.3 Creación de programas, generación del código y carga

Los programas de usuario y sus variables globales deberán crearse de igual modo que en el caso de un sistema de control. Es posible copiar programas desde otro recurso.

Conclusión de la puesta en servicio del recurso OTS

- 1. Genere el código para recurso y programa(s) de usuario
- Cargue el código generado en el recurso OTS.
- 3. Inicie el recurso. Según la configuración, se iniciarán los programas de usuario.
- 4. Si es necesario y se desea, inicie los programas de usuario.

El recurso se ha puesto en servicio. Los tags de la interfaz de simulación son operables.

HI 801 315 ES Rev. 1.00 página 15 de 28

4 Puesta en servicio X-OTS

4.4 Variantes

Además de recursos OTS, un proyecto OTS puede contener también recursos del tipo HIMax y HIMatrix. Los recursos OTS están conectados entre sí y con los demás recursos a través de safe**ethernet**. Observe lo siguiente:

- ¡No se permite que los recursos OTS asuman funciones relacionadas con la seguridad!
- Las conexiones safeethernet a los recursos OTS no funcionan de forma relacionada con la seguridad.

página 16 de 28 HI 801 315 ES Rev. 1.00

X-OTS 5 Funcionamiento

5 Funcionamiento

X-OTS funcionará como servicio durante su ejecución en el sistema operativo Windows.

Para iniciar la simulación habrá que iniciar el recurso OTS con SILworX. SILworX podrá entonces iniciar distintos programas, detenerlos o ejecutarlos en modo de prueba.

Un cliente OPC podrá poner en estado de pausa la simulación (es decir, todos los programas de usuario) y volver a iniciarlos luego en los siguientes modos:

Durante una cantidad dada de milisegundos.

En este modo los programas funcionarán hasta que transcurra el tiempo definido y volverán a adoptar a continuación el estado de pausa.

Durante una cantidad dada de ciclos.

En este modo los programas funcionarán hasta que transcurra la cantidad definida de ciclos del programa de usuario y volverán a adoptar a continuación el estado de pausa. SILworX indica durante ese tiempo el modo de pruebas.

Régimen continuo.

En este modo los programas funcionarán sin límite de tiempo.

Entre estos modos se cambia con ayuda de la interfaz de simulación. Véase más abajo.

Los tags OPC de un recurso OTS estarán disponibles sólo en el estado RUN del recurso. En el estado STOP estarán fuera de servicio («Out of service»).

5.1 Manejo

El recurso OTS se opera mediante SILworX y mediante uno o varios clientes OPC.

5.1.1 SILworX

Con ayuda de SILworX se puede iniciar y finalizar el recurso OTS y con ello también la simulación.

Igual que en un sistema de control, son posibles las siguientes acciones:

- Download
- Inicio y finalización de la simulación y de los programas de usuario
- Prueba en línea
- Forzado
- Modificación en línea de parámetros

5.1.2 Clientes OPC

En un cliente OPC son visibles los siguientes grupos de tags:

- Tags de la interfaz de simulación. Estos se identifican por el nombre de nodo OTS Simulation.
- Tags para las variables globales. Estos se identifican por el nombre de nodo «Ressource name», seguido de Global Vars.
- Tags para variables de sistema y parámetros de sistema. Estos se identifican por el nombre de nodo «Ressource name», seguido de System.
- Si en los parámetros de sistema del recurso OTS (véase Tabla 5) se ha especificado un prefijo NameSpace, éste aparecerá como nodo propio antes del nombre indicado.

HI 801 315 ES Rev. 1.00 página 17 de 28

5 Funcionamiento X-OTS

Los tags de la interfaz de simulación se describen en la siguiente tabla:

Nombre del tag OPC	Significado	Se puede escribir en el estado	Acceso
ColdStart	Se llevará a cabo un inicio en frío de los programas de usuario1 = no válido, 0 = pausa, 1 = en ejecución	Pausa	W
LastFileOperationMsg	Mensaje de resultado de la última operación de archivo snapshot en texto inglés	-	R
RealTimeFactor	Relación deseada entre tiempo de simulación y tiempo realmente transcurrido. Este parámetro repercute sobre todos los programas de usuario. 10-610	Ambos	W
RealTimeFactorReached	Valor realmente alcanzado de RealTimeFactor, el cual depende de la capacidad del PC y otros factores. Se calculará sólo si el tiempo de ciclo deseado es > 0.	-	R
RunForCycles	Escribiendo un valor n > 0 se dará lugar al inicio de los programas de usuario durante n ciclos.	Ambos	W
RunForMs	Escribiendo un valor n > 0 se dará lugar al inicio de los programas de usuario durante n milisegundos. Los programas de usuario se ejecutan hasta el final de su ciclo. Ello podrá hacer que se exceda el tiempo de ejecución predefinido.	Ambos	W
SimTicks	Contador rotativo en ms: TimerTicks multiplicado por RealTimeFactorReached ¡Si se modifica RealTimeFactor esta interrelación dejará de aplicarse!	-	R
SimulationState	 Estado de la simulación y de los programas de usuario: 0 = Pause 1 = Run: se están ejecutando los programas de usuario SimulationState tendrá el valor 1 incluso tras iniciarse los programas de usuario por medio de RunForCycles y RunForMs. 	Ambos	W
SnapshotFileDelete	La especificación de un nombre válido de un archivo de snapshot provoca el borrado de ese archivo, en caso de que el mismo contenga una instantánea o snapshot OTS. El resultado se mostrará en <i>LastFileOperationMsg</i> .	Ambos	W
SnapshotFileLoad	Se carga la instantánea desde el archivo indicado en el OTS. El resultado se mostrará en LastFileOperationMsg.	Pausa	W
SnapshotFileSave	Se guarda el estado actual del OTS en el archivo especificado dentro del sistema de archivos. No se sobrescribirá un archivo ya existente que tenga ese nombre. El resultado se mostrará en LastFileOperationMsg.	Pausa	W
TimerTicks	Contador rotativo en ms	-	R
WarmStart	Se llevará a cabo un inicio en caliente de los programas de usuario1 = no válido, 0 = pausa, 1 = en ejecución	Pausa	W

Tabla 7: Tags OPC de interfaz de simulación para operar X-OTS

página 18 de 28 HI 801 315 ES Rev. 1.00

X-OTS 5 Funcionamiento

5.2 Diagnóstico

X-OTS guarda registro en forma de historial de los eventos y los fallos producidos. En este historial los eventos se guardan en orden cronológico. El historial está implementado como búfer circular.

El historial de diagnóstico consta de diagnósticos a largo y corto plazo:

- Diagnóstico a corto plazo:
 - Si se alcanza la máxima capacidad, para cada nueva entrada se borrará la más antigua.
- Diagnóstico a largo plazo:
 - El diagnóstico a largo plazo guarda principalmente acciones y modificaciones de configuración del usuario.
 - Si se alcanza la máxima capacidad, por cada nueva entrada se borrará la más antigua sólo cuando tenga más de tres días de antigüedad.
 - Si sólo hay entradas de menor antigüedad que tres días, se desechará la nueva entrada. Un registro especial avisa de que se han desechado entradas.

La cantidad de eventos que puedan guardarse:

- En el diagnóstico a corto plazo 10 000 entradas
- En el diagnóstico a largo plazo 10 000 entradas
- En los siguientes casos, es posible que se pierdan entradas de registro de diagnóstico, de no haberse guardado éstas aún en la memoria no volátil:
 - En caso de cortarse la corriente
 - En caso de una finalización incorrecta del servicio OTS, p. ej. cancelando manualmente el proceso.
 - SILworX ofrece la posibilidad de exportar y representar los historiales de los distintos recursos de forma tal que ofrezcan la información necesaria para el análisis de un problema.

Más funciones del historial de diagnóstico en la ayuda en pantalla de SILworX.

HI 801 315 ES Rev. 1.00 página 19 de 28

6 Mantenimiento X-OTS

6 Mantenimiento

El mantenimiento de X-OTS requiere las mismas medidas que un PC Windows:

 Actualización del sistema operativo
 HIMA recomienda instalar regularmente las actualizaciones más recientes disponibles para la versión en uso del sistema operativo Windows.

 Copia de seguridad, especialmente de los archivos de instantáneas (snapshot) en soportes de datos intercambiables.

página 20 de 28 HI 801 315 ES Rev. 1.00

X-OTS

7 Puesta fuera de servicio

Para poner un X-OTS fuera de servicio, primeramente deberá finalizarse el recurso OTS mediante SILworX.

A continuación podrá desinstalarse X-OTS.

HI 801 315 ES Rev. 1.00 página 21 de 28

7 Puesta fuera de servicio X-OTS

página 22 de 28 HI 801 315 ES Rev. 1.00

X-OTS Anexo

Anexo

Ejemplo de aplicación

Composición de una aplicación típica de X-OTS:

Fig. 2: Aplicación típica de X-OTS

El PC de instructor sirve al instructor para controlar los siguientes simuladores:

- X-OTS mediante la interfaz de simulación con ayuda de un cliente OPC
- Simulador de proceso
- Simulador de sistema de control centralizado

El operador a instruir usará el sistema de control centralizado para operar la planta simulada y, de ser necesario, el programa SILworX.

El simulador de proceso simula el proceso a controlar y comunica con X-OTS mediante los tags OPC de las variables globales. El simulador de proceso procesa los datos de salida generados por X-OTS y transmite los datos de entrada.

A difencia de lo que muestra la Fig. 2 podrán tenerse instalados varios de estos paquetes de software en un PC conjunto, p. ej. X-OTS y SILworX.

HI 801 315 ES Rev. 1.00 página 23 de 28

Anexo X-OTS

Glosario

Término	Descripción
ARP	Address Resolution Protocol: protocolo de red para asignar direcciones
	de red a direcciones de hardware
Al	Analog input: entrada analógica
Connector Board	Tarjeta de conexión para módulo HIMax
COM	Módulo de comunicación
CRC	Cyclic Redundancy Check: suma de verificación
DI	Digital input: entrada digital
DO	Digital output: salida digital
CEM	Compatibilidad electromagnética
EN	Normas europeas
ESD	ElectroStatic Discharge: descarga electrostática
FB	Bus de campo
FBS	Lenguaje de bloques funcionales
FTT	Tiempo de tolerancia de errores
ICMP	Internet Control Message Protocol: protocolo de red para mensajes de estado
	y de error
IEC	Normas internacionales de electrotecnia
Dirección MAC	Dirección de hardware de una conexión de red (Media Access Control)
PADT	Programming and Debugging Tool (según IEC 61131-3), PC con SILworX
PE	Tierra de protección
PELV	Protective Extra Low Voltage: baja tensión funcional con separación segura
PES	Programmable Electronic System
PFD	Probability of Failure on Demand: probabilidad de un fallo al solicitar una función de seguridad
PFH	Probability of Failure per Hour: probabilidad de una disfunción peligrosa por hora
R	Read
ID de Rack	Identificación (número) de un rack
Sin repercusiones	Suponiendo que hay dos circuitos de entrada conectados a la misma fuente (p. ej. transmisor). Entonces un circuito de entrada se denominará "sin repercusiones", cuando no falsee las señales del otro circuito de entrada.
R/W	Read/Write
SB	Bus de sistema (módulo de bus)
SELV	Safety Extra Low Voltage: baja tensión de protección
SFF	Safe Failure Fraction: porcentaje de fallos fácilmente dominables
SIL	Safety Integrity Level (según IEC 61508)
SILworX	Utilidad de programación para HIMax
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	Direccionamiento por "Sistema.Rack.Slot" de un módulo
SW	Software
TMO	TimeOut
TMR	Triple Module Redundancy: módulos de triple redundancia
W	Write
wS	Valor máximo del total de componentes de corriente alterna
WatchDog (WD)	Control de tiempo para módulos o programas. En caso de excederse el tiempo de WatchDog, el módulo pasará al estado de parada con fallo.
WDT	WatchDog Time
L	. · · · · · · · · · · · · · · · · · · ·

página 24 de 28 HI 801 315 ES Rev. 1.00

X-OTS		Anexo
Índice de ilustraciones		
Fig. 1:	Composición de una instalación X-OTS	10
Fig. 2:	Aplicación típica de X-OTS	23

HI 801 315 ES Rev. 1.00 página 25 de 28

A	X-OTS
Anexo	X-()15

Índice d	e tablas	
Tabla 1:	Grupo de tags OPC	9
Tabla 2:	Intercambio de datos entre X-OTS y otros sistemas	11
Tabla 3:	Datos del producto	11
Tabla 4:	Parámetros a introducir durante la instalación	12
Tabla 5:	Parámetros de sistema de un recurso OTS	15
Tabla 6:	Parámetros para una conexión Ethernet	15
Tabla 7:	Tags OPC de interfaz de simulación para operar X-OTS	18

página 26 de 28 HI 801 315 ES Rev. 1.00

X-OTS Anexo

Índice alfabético

Cliente OPC17	ID de sistema	12, 13
CLSID12	Instantánea	
Datos técnicos11	Interfaz de simulación	9
Diagnóstico a corto plazo19	Nombre del servicio	12
Diagnóstico a largo plazo19		
Dongle		

HI 801 315 ES Rev. 1.00 página 27 de 28

HI 801 315 ES © 2015 HIMA Paul Hildebrandt GmbH HIMax y SILworX son marcas registradas de: HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Alemania Tel. +49 6202 709-0 Fax +49 6202 709-107 HIMax-info@hima.com www.hima.com

