Yuxuan Si / Sue

Zheda Road #38, Xihu District, Hangzhou, Zhejiang Province, China 310027, P.R. China +86 18888921371 | E-mail: sue-si@zju.edu.cn

EDUCATION

Department of Information and Electronic Engineering, Zhejiang University, China Aug 2017 - Jul 2021 B.E. of Engineering (expected in Jul 2021).

GPA: 3.91/4.0 (88.38/100) **Ranking**: top 5% among 312 students

Core Courses: Computer vision (98/100), Computer organization and design (95/100),

Information System Security (100/100), Digital signal processing (97/100),

Complex variable function and integral transformation (94/100),

Probability Theory and Mathematical Statistics (95/100),

Java programming (95/100), Electronic circuit foundation (94/100),

Data structure foundation (92/100), Electromagnetic Fields & Waves (91/100).

RESEARCH EXPERIENCE

National University of Singapore (School of Computing)

Singapore

Research Assistant to Professor Dong Jin Song

Jul 2019 - Oct 2019

Phishpedia: Identifying Phishing Target with Visual Explanation

- Proposed a visual analysis based approach to detecting phishing website, identifying its target, and explaining the reason with annotated regions on the screen shot Specific achievements.
- Automatically detected identity UI component in the screenshot, such as logo, via training the modified Yolov3 algorithm.
- Constructed and published two datasets for cyber-security and AI community. Namely, (1) 15,790 phishing webpages with their screenshot and html content, and (2) the labelled identity UI component in 35,090 webpage screenshots.

Zhejiang University (Department of Information and Electronic Engineering) Research Assistant to Professor Chunguang Li

Hangzhou, China Oct. 2019 - Apr. 2020

Hash learning based on deep neural network and its application in image retrieval

- Proposed an end-to-end model for large-scale image retrieval using Learn to Deep Hash technology.
- Presented an equivalent continuous formulation to transform the discrete hashing problem into a continuous optimization problem without any relaxations.
- Treated the query points and database points in an asymmetric way with double-bit quantization.

Zhejiang University (Department of Information and Electronic Engineering) Hangzhou, China Research Assistant to Professor Cheng Zhuo Dec. 2019 - Mar. 2020

Research on Efficient Convolutional Neural Network Search Method for Medical Image Segmentation

- By using the optimized Neural Architecture Search (NAS) method based on gradient descent, we presented a more effective neural network model for medical images segmentation.
- We searched the unit structure and the network-level architecture simultaneously to automatically construct a medical image segmentation model without tuning the network parameters.
- We improved the search space to make it possible to search the classic networks which include skip-connect units like U-Net.
- Our automatically constructed model ranks 31th in the Combined (CT-MR) Healthy Abdominal Organ Segmentation (CHAOS) challenge, exceeding the performance of the U-Net model.

SELECTED AWARDS AND HONORS

•	Zhejiang University First Class Scholarship	2019
•	Provincial Government Scholarship of Zhejiang University	2019
•	Corporate Cooperation Award of 2019 Hangzhou Future Technology City-Smart City Construction	
	Partner Competition (1/405)	2019
•	Second prize of College Student Physics Academic Competition	2019
•	Zhejiang University Third Class Scholarship	2018
•	First Prize of Smart Car Competition (1/92)	2018

ADDITIONAL INFORMATION

Additional Professional and Extracurricular Experiences

- Scala, Python, C/C++, MATLAB, Verilog, Java
- PyTorch, Tensorflow, LaTeX