LAST NAME:	FIRST NAME:	CIRCLE:				
		Makhijani Makhijani Zweck 8:30am 11:30am 2:30pm 11:30am				

1	/10	2	/10	3	/10	4	/10	5	/10		
6	/10	7	/10	8	/10	9	/10	10	/10	Т	/100

MATH 2415 Final Exam, Spring 2019

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

(1) [10 pts] (a) If
$$z = f(x, y)$$
, with $x = e^t$, $y = t^2 + 3t + 2$, $\nabla f = (2xy^2 - y, 2x^2y - x)$ find $z'(t)$ at $t = 0$.

(b) Parametrize the surface $(y-2)^2 + (z-3)^2 = 4$.

((2)	[10 pts]	Let $\mathbf{F}_1(x)$	(u) = (2u -	$-x^2e^{-y})\mathbf{i}+2x$	e^{-y} i and \mathbf{F}_2	$(x,y) = 2xe^{x}$	$^{-y}$ i + $(2y -$	$-x^{2}e^{-y})i$

(a) One of these vector fields is conservative. Which one is it and why?

(b) Find a potential function for the conservative vector field.

(c) Evaluate $\int_C \mathbf{G} \cdot d\mathbf{r}$ where C is the line segment from (1,0) to (2,1) and \mathbf{G} denotes the conservative vector field you identified in (a).

(3) [10 pts] Use Green's theorem to evaluate $\int_C xy^2 dx - x^2y dy$ where C is given in the figure.

(4) [10 pts] Evaluate $\int_{x=0}^{x=1} \int_{y=\sqrt{x}}^{y=1} \cos(y^3) dy dx.$

(5) [15 pts] Make a labelled sketch of the traces of the surface

$$y^2 - 4x^2 - z^2 = 1$$

in the planes $x=0,\,z=0,$ and y=k for $k=0,\,\pm 1,\,\pm 2.$ Then sketch the surface.

(6)	[10nts	1 Let 4 —	$(1\ 2\ 5)$	B = (2, 2, 7)	and $C - C$	3 5 8)	he three r	points in space.
(UΙ	TODES	Let A —	(1, 2, 0).	, D - (2, 2, 1),	and $C = 0$	0, 0, 0)	be unee p	Johns in Space.

(b) Let P_2 be the plane containing the line segment AB and which is parallel to the normal vector to the plane P_1 . Find a parametrization for the plane P_2 .

⁽a) Let P_1 be the plane containing the points A, B, and C. Find an equation of the form ax + by + cz = d for the plane P_1 .

(7) [10 pts] Let D be the closed triangular domain with verticies (0,0), (2,0), and (0,4). Find the absolute maximum and minimum of the function f(x,y) = xy - x - y on D.

(8) [10 pts] Evaluate $\iint_R (x+2y)(y-3x) dA$ where R is the parallelogram enclosed by the lines x+2y=-4, $x+2y=3,\ y-3x=-1,\ y-3x=5$.

(9) [10 pts] Let E be the solid region bounded by the surfaces $z=y,\,z=y^2,\,x=0,$ and x+2z=2. Sketch the region E and calculate $\iiint_E y\,dV$.

(10)) [10	pts
1 10	, ,	10	00

(10) [10 pts] (a) Let $\mathbf{F}_1(x,y) = x^2\mathbf{i} + y\mathbf{j}$ be the velocity vector field of a fluid flowing in \mathbb{R}^2 . On average, is the fluid flowing in or out of a small disc centered at the point (-3,1)? Why?

(b) Let $\mathbf{F}_2(x,y) = y^2 \mathbf{i} + x^2 \mathbf{j}$ be the velocity vector field of a fluid flowing in \mathbb{R}^2 . On average, is the fluid rotating clockwise or counter-clockwise around the point (1,2)? Why?