LII Olimpíada Internacional e XXVI Olimpíada Iberoamericana Segundo Teste de Seleção 26 de março de 2011

Instruções:

- Não resolva mais de uma questão por folha de almaço. Escreva seu nome em cada folha que usar.
 Entregue também o rascunho, pois ele pode ser utilizado a seu favor na correção.
- É proibido o uso de calculadora ou computador. É permitido o uso de régua, esquadro e compasso.
- Tudo o que você escrever deve ser justificado.
- Todas as questões têm o mesmo valor.
- Duração da prova: 5 horas.
- Não divulgue o conteúdo dessa prova até julho de 2011! Alguns dos problemas foram retirados do Banco da IMO 2010, que deve permanecer secreto até essa data.

▶PROBLEMA 1

Sejam P_1 , P_2 e P_3 polinômios de grau dois com coeficiente líder (coeficiente do termo de grau dois) positivo e raízes reais. Prove que se cada par de polinômios possui uma raiz comum, então o polinômio $P_1 + P_2 + P_3$ também possui raízes reais.

▶PROBLEMA 2

Determine o menor inteiro positivo n para o qual existe um conjunto $\{s_1, s_2, \ldots, s_n\}$ de n inteiros positivos distintos tais que

$$\left(1-\frac{1}{s_1}\right)\left(1-\frac{1}{s_2}\right)\cdots\left(1-\frac{1}{s_n}\right)=\frac{51}{2010}.$$

▶PROBLEMA 3

2500 reis de xadrez devem ser dispostos sobre um tabuleiro quadriculado 100×100 , cada um sobre uma casa (quadrado 1×1) de forma que

- (i) nenhum rei ataque outro (ou seja, não haja dois reis ocupando casas com vértice comum);
- (ii) cada linha e cada coluna do tabuleiro contenha exatamente 25 reis.

Determine o número de maneiras de se realizar tal disposição.

▶PROBLEMA 4

Seja ABCDE um pentágono convexo tal que os lados BC e AE são paralelos, AB = BC + AE, e $\angle ABC = \angle CDE$. Seja M o ponto médio de CE, e O o circuncentro do triângulo BCD. Dado que o ângulo $\angle DMO$ é reto, prove que $2\angle BDA = \angle CDE$.