module4 · tree and ensemble methods

decision 🛣 tress

Example: Will the customer wait for a table at a restaurant?

- " OthOptions: Other options, True if there are restaurants nearby.
- " Weekend: This is true if it is Friday, Saturday or Sunday.
- " Area: Does it have a bar or other nice waiting area to wait in?
- " Plans: Does the customer have plans just after dinner?
- Price: This is either \$, \$\$, \$\$\$, or \$\$\$\$
- Precip: Is it raining or snowing?
- " Genre: French, Mexican, Thai, or Pizza
- " Wait: Wait time estimate: 0-5 min, 6-15 min, 16-30 min, or 30+
- " Crowded: Whether there are other customers (no, some, or full)

	OthOptions	Weekend	Area	Plans	Price	Precip	Genre	Wait	Crowded	Stay?
X ₁	Yes	No	No	Yes	\$\$\$	No	French	0-5	some	Yes
X ₂	Yes	No	No	Yes	\$	No	Thai	16-30	full	No
X ₃	No	No	Yes	No	\$	No	Pizza	0-5	some	Yes
X ₄	Yes	Yes	No	Yes	\$	No	Thai	6-15	full	Yes
X ₅	Yes	Yes	No	No	\$\$\$	No	French	30+	full	No
X ₆	No	No	Yes	Yes	\$\$	Yes	Mexican	0-5	some	Yes
X ₇	No	No	Yes	No	\$	Yes	Pizza	0-5	none	No
X ₈	No	No	No	Yes	\$\$	Yes	Thai	0-5	some	Yes
X ₉	No	Yes	Yes	No	\$	Yes	Pizza	30+	full	No
X 10	Yes	Yes	Yes	Yes	\$\$\$	No	Mexican	6-15	full	No
X	No	No	No	No	\$	No	Thai	0-5	none	No
X 12	Yes	Yes	Yes	Yes	\$	No	Pizza	16-30	full	Yes

As illustrated in the example, decision trees apply a hierarchy of nested logic with associated probabilities of occurrence to determine labels. The rule-based logic applied to the table above produces an answer to the predicted value on the Stay? column. The decision tree itself is illustrated in the graphic to the left showing the progression from the first, to the last question determining the ultimate binary response to the problem set. Decision Trees are generally interpretable, straight forward, and applicable to an array of varying logical problems applied to a dataset.

constructing decision decision decision

In determining which features to split within a **Decision Tree**, it is ideal to split upon the feature that provides the most information about that questions; "will the customer have to wait?":

Examining the **Decision Tree** above displays clearly that splitting on the **genre** feature offers

The example illustrates properties such as:

- " If there is **no crowd**, no one (2) waits for a table
- " If there is **some crowd**, everyone (**4**) waits
- " If the restaurant is **fully crowded**, **2** leave; **4** wait
- " If the menu is **French**, half leave and half wait
- "If the menu is **Mexican**, half leave and half wait
- " If the menu is Pizza, half leave and half wait
- " If the menu is **Thai**, half leave and half wait

no predictive power; the outcomes of each property are equally likely given the training data.