SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road-517583

<u>QUESTION BANK(DESCRIPTIVE)</u> Subject with Code: R Programming for Data Science(20CS1104) Year & Sem: III & II

Course & Branch: B.Tech & CAD **Regulation:** R20

UNIT – I

INTRODUCTION TO R PROGRAMMING

1		What is R? Briefly describe the history and development of the R programming language.	[L2][CO1]	[12M]
2	a)	Explain the different ways to run R code, including using the R console, R scripts, and R Markdown.	[L2][CO1]	[6M]
	b)	Classify the advantages and disadvantages of each method for running R code.	[L4][CO1]	[6M]
	a)	What are R sessions, and how do you manage them effectively?	[L2][CO1]	[6M]
3	b)	Illustrate the concept of functions in R with a program, and how to define and use them?	[L3][CO1]	[6M]
4	a)	Demonstrate basic math operations with program, such as addition, subtraction, multiplication, and division.	[L2][CO1]	[6M]
4	b)	Categorize the order of operations in R and how to use parentheses to control the evaluation of expressions with an example program.	[L4][CO1]	[6M]
5	a)	Illustrate how to declare and assign values to variables in R with a program?	[L3][CO1]	[6M]
	b)	Discuss the different naming conventions and rules for variable naming, each with example in R.	[L2][CO1]	[6M]
	a)	Classify different data types in R with example.	[L4][CO1]	[6M]
6	b)	Conclude how to check the data type of a variable and convert between different data types.	[L4][CO1]	[6M]
7		Classify different data structures in R with examples.	[L4][CO1]	[12M]
8	a)	i)Create a program for manipulating data frames in R.ii)Create a program for manipulating lists in R.	[L6][CO1]	[6M]
	b)	Determine Vector and its functions with examples.	[L3][CO1]	[6M]
9	a)	Differentiate between matrices and data frames?	[L4][CO1]	[6M]
y	b)	Create a program for 2x3 matrix and accessing its second row?	[L6][CO1]	[6M]
	a)	Discriminate the following data structures with syntax and example. i)Arrays	[L5][CO1]	[6M]
10	b)	ii)Matrices Demonstrate how to create, manipulate, and perform operations on these data structures. i)Lists ii)Data Frames	[L2][CO1]	[6M]
		,		

UNIT – II R PROGRAMMING STRUCTURES, OPERATORS AND FUNCTIONS

1		Illustrate different conditional statements in R with appropriate syntax and examples.	[L3][CO2]	[12M]
	a)	Explain working of switch case in R with an example program.	[L2][CO2]	[6M]
2	b)	Develop a R program to check for leap year or not.	[L6][CO2]	[6M]
	a)	Illustrate for loop in R and demonstrate its usage.	[L3][CO2]	[6M]
3	b)	Explain the while loop and create a program for finding the sum of natural numbers.	[L6][CO2]	[6M]
	a)	Describe how to iterate over a list or a data frame using a loop.	[L2][CO2]	[6M]
		Explain the lapply and sapply functions and their use cases and create a		
4	b)	program that uses lapply to apply a function to each element of a list and	[L6][CO2]	[6M]
		returns a new list.		
	a)	Compare the functions next and break with example program.	[L5][CO2]	[6M]
5	1.	Explain the concept of nested if-else statements and prepare an example	[L6][CO2]	[6M]
	b)	that uses the ifelse() function to create a new vector based on conditions.		[UIVI]
	-)	Classify various types of operators in R and write about any two	[L4][CO2]	[6M]
6	a)	operators.	[2:][002]	[02.2]
U	b)	Write a program that demonstrates the use of various arithmetic and	[L2][CO2]	[6M]
	D)	Boolean operators.		
	a)	Explain how to set default values for function arguments in R.	[L2][CO2]	[6M]
7		Justify the importance of default values and their use cases and create a		
•	b)	function that takes two arguments with default values and returns their	[6][CO2]	[6M]
		sum.		
8	a)	Describe the return() function in R and its purpose.	[L2][CO2]	[6M]
	b)	Illustrate the concept of implicit return in R functions.	[L3][CO2]	[6M]
	a)	Discuss the factors to consider when deciding whether to use an explicit	[L2][CO2]	[6M]
9		return () statement.		
	b)	Explain how to return complex objects, such as lists or data frames, from	[L1][CO2]	[6M]
		R functions. Ulustrate the concent of functions being first class citizens in P	II 211CO21	[_N
10	a)	Illustrate the concept of functions being first-class citizens in R. Discuss the absence of pointers in R. greats a recursive function that	[L3][CO2]	[6M]
	b)	Discuss the absence of pointers in R. create a recursive function that	[L6][CO2]	[6M]
		calculates the nth Fibonacci number.		

UNIT – III

MATH FUNCTIONS, SIMULATION IN R AND EXTENDED EXAMPLE

CALCULATING PROBABILITY

1		Identify different built-in mathematical functions in R with for example for each	[L3][CO3]	[12M]
2	a)	Categorize the different methods for calculating minimum, maximum, and cumulative sum statistics on vectors in R.	[L4][CO3]	[6M]
2	b)	Differentiate between cumulative sums and products in the context of numerical analysis within R.	[L4][CO3]	[6M]
	a)	Create a R program for calculating the probability.	[L6][CO3]	[6M]
3	b)	Explain following functions with example i)dnorm ii)qchisq iii)qbinom iv)rnorm	[L2][CO3]	[6M]
4		Evaluate the capabilities of R for performing basic calculus operations (e.g., differentiation, integration).	[L5][CO3]	[12M]
5		Explain efficient techniques for sorting data vectors in R based on specific criteria .	[L2][CO3]	[12M]
	a)	Classify fundamental linear algebra operations on vectors and matrices in R, including addition, subtraction, and scalar multiplication .	[L4][CO3]	[6M]
6	b)	Prioritize an example (excluding vector cross product) of how vector operations are used in linear algebra applications within R.	[L4][CO3]	[6M]
7		Demonstrate the vector cross product and its applications in R.	[L2][CO3]	[12M]
8	a)	Distinguish Markov chains and their significance in modeling probabilistic systems.	[L4][CO3]	[6M]
	b)	Illustrate how to import data in R programming.	[L3][CO3]	[6 M]
9	a)	Classify set operations (union, intersection, difference) and their implementation for data manipulation in R.	[L4][CO3]	[6M]
	b)	Explain reading and writing files in R.	[L2][CO3]	[6M]
	a)	What is the purpose of getwd() and setwd() functions in R	[L4][CO3]	[6M]
10	b)	Explain the purpose of the following functions in R: i. read.csv() ii. write.csv() iii. read.xlsx()	[L2][CO3]	[6M]

UNIT-4

GRAPHICS

	a)	Describe the role of the plot() function in R base graphics.	[L2][CO4]	[6M]
1	b)	What are the essential components required to create a graph using the plot() function?	[L6][CO4]	[6M]
2	a)	How do you customize the appearance of a graph using the plot() function in R?	[L2][CO4]	[6M]
2	b)	Illustrate the concept of data visualization and its importance in data analysis.	[L3][CO4]	[6M]
	a)	Discuss the advantages of using R base graphics for creating graphs.	[L2][CO4]	[6M]
3	b)	Categorize some common types of graphs that can be created using the plot() function.	[L4][CO4]	[6M]
4	a)	How do you add labels to the axes of a graph created with the plot() function?	[L2][CO4]	[6M]
	b)	Describe the process of changing the color and line type of a plot in R.	[L2][CO4]	[6M]
_	a)	Explain the significance of customizing the title of a graph in data visualization.	[L2][CO4]	[6M]
5	b)	Assess the use of the main parameter in the plot() function for adding a title to a graph.	[L5][CO4]	[6M]
	a)	Illustrate Data visualization with R and ggplot2.	[L3][CO4]	[6M]
6	b)	Identify the different options available for adjusting the size and aspect ratio of a graph in R.	[L3][CO4]	[6M]
7	a)	Outline the process of saving a graph created with the plot() function to a file in R.	[L2][CO4]	[6M]
	b)	Discover the purpose of the file parameter in the plot() function for saving graphs.	[L3][CO4]	[6M]
	a)	List and explain about different R – Charts and Graphs in R.	[L2][CO4]	[6M]
8	b)	Discriminate the importance of choosing an appropriate file format when saving a graph in R.	[L5][CO4]	[6M]
	a)	How do you specify the dimensions and resolution of a saved graph in R?	[L2][CO4]	[6M]
9	b)	Describe the process of exporting a graph to different file formats using the plot() function.	[L2][CO4]	[6M]
10		Develop a code to demonstrate various charts using tree datasets for the following a. Histogram b. Scatter plot c. Box plot d. Line chart	[L3][CO4]	[12M]

UNIT-5

PROBABILITY DISTRIBUTIONS AND LINEAR REGRESSION

	a)	Classify the characteristics of the normal distribution and provide an	[L4][CO5]	[6M]
1	·	example of its application in real-world data analysis. Identify the properties of the binomial distribution and give an example of	[L3][CO5]	[6M]
	b)	its use. What are the key features of the Poisson distribution, and when is it	[L1][CO5]	[3M]
2	a)	commonly used.		
	b)	Discuss about standard deviation with example.	[L2][CO5]	[7M]
_	a)	Determine basic statistics and explain their importance in data analysis?	[L3][CO5]	[6M]
3	b)	Illustrate the concepts of correlation and covariance and explain how they are calculated.	[L3][CO5]	[6M]
4	a)	Analyze the purpose of T-tests in statistical analysis and provide examples of when they are used.	[L4][CO5]	[6M]
4	b)	Distinguish the use of ANOVA (Analysis of Variance) in comparing	[L5][CO5]	[6M]
_	a)	means across multiple groups. Examine the concept of linear models and give an example of simple	[L4][CO5]	[6M]
5	b)	linear regression. Describe the process of multiple regression and its applications.	[L2][CO5]	[6M]
		Discuss generalized linear models and their advantages over traditional	[L6][CO5]	[6M]
6	a)	linear models.		
	b)	Explain the logistic regression model and provide an example of its use.	[L2][CO5]	[6M]
		Apply the regression models:	[L3][CO5]	[12M]
		height 176 154 138 196 132 176 181 169 150 175 bodymass 82 49 53 112 47 69 77 71 62 78		
7		For the above data:		
/		Perform linear regression and display the result.Create a Regression plot with the following specifications.		
		•Display the title of the graph as "Height Vs. Bodymass"		
		•Set the color of the plot as blue		
	5)	Assess the Poisson regression model and its application in analyzing count	[L5][CO6]	[6M]
8	a)	data.		
	b)	Summarize advantages of using Random Forest.	[L2][CO6]	
0	a)	Explain the structure of decision tree.	[L2][CO6]	[6M]
9	b)	Categorize the principles behind decision trees and their application in random forests.	[L4][CO6]	[6M]
	a)	Discuss the advantages of random forests over traditional statistical	[L2][CO6]	[6M]
10	b)	models. Give examples of real-world scenarios where random forests are used for predictive modeling.	[L2][CO6]	[6M]

Prepared by: A SATHISH