

CH32V003 数据手册

V1.4

概述

CH32V003 系列是基于青稞 RISC-V2A 内核设计的工业级通用微控制器,在产品功能上支持 48MHz 系统主频。该系列具有宽压、单线调试、低功耗、超小封装等特点。提供常用的外设功能,内置 1 组 DMA 控制器、1 组 10 位模数转换 ADC、1 组运放比较器、多组定时器、标准通讯接口如 USART、I2C、SPI 等。产品额定工作电压为 3. 3V 或 5V,工作温度范围为 -40° C~ 85° C工业级。

产品特性

● 内核 Core

- 青稞 32 位 RISC-V 内核, RV32EC 指令集
- 快速可编程中断控制器+硬件中断堆栈
- 支持2级中断嵌套
- 支持系统主频 48MHz

● 存储器

- 2KB 易失数据存储区 SRAM
- 16KB 程序存储区 CodeFlash
- 1920B 系统引导程序存储区 BootLoader
- 64B 系统非易失配置信息存储区
- 64B 用户自定义信息存储区

● 电源管理和低功耗

- 系统供电 V₂ 额定: 3.3V 或 5V
- 低功耗模式: 睡眠、待机

● 系统时钟、复位

- 内嵌出厂调校的 24MHz 的 RC 振荡器
- 内嵌 128KHz 的 RC 振荡器
- 外部支持 4~25MHz 高速振荡器
- 上/下电复位、可编程电压监测器

● 1组1路通用 DMA 控制器

- 7个通道,支持环形缓冲区管理
- 支持 TIMx/ADC/USART/I2C/SPI

● 1组运放、比较器: 连接 ADC 和 TIM2

● 1 组 10 位模数转换 ADC

- 模拟输入范围: 0~V₀₀
- 8 路外部信号+2 路内部信号通道
- 支持外部延迟触发

● 多组定时器

- 1 个 16 位高级定时器,增加死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- -1个16位通用定时器,提供输入捕获/输出比较/PWM/脉冲计数及增量编码器输入
- 2 个看门狗定时器(独立和窗口型)
- 系统时基定时器: 32 位计数器

● 标准通讯接口

- 1个USART接口
- 1个 I2C 接口
- 1个 SPI 接口

● GPIO端口

- 3组 GPIO 端口. 18 个 I/O 口
- 映像 1 个外部中断
- 安全特性: 64 位芯片唯一 ID
- 调试模式:串行单线调试接口
- 封装形式: SOP、TSSOP、QFN

型号	闪存	SRAM	引脚数	通用 I/0	高级定量器	通用油器	看门狗	系统 时钟源	ADC 通勤	SPI	120	USART	封装 形式
CH32V003F4P6	141/	21/	20	18	1	1	2	2	8	1	1	1	TSS0P20
CH32V003F4U6	16K	K 2K	20	10	'	'		3	0	'	1	'	QFN20
CH32V003A4M6	16K	2K	16	14	1	1	2	3	6	_	1	1	S0P16
CH32V003J4M6	16K	2K	8	6	1	1	2	3	6	1	1	1	SOP8

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集的青稞 V2A 设计,其架构中将内核、仲裁单元、DMA 模块、SRAM 存储等部分通过多组总线实现交互。设计中集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是系列产品内部总体架构框图。

图 1-1 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

1.3 时钟树

系统中引入 3 组时钟源: 内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)。其中,低频时钟源为独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 2 倍频后输出为系统总线时钟 (SYSCLK),系统时钟再由各预分频器提供了 AHB 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 1-3 时钟树框图 to gpio(internal,to time) **IWDGCLK** 128kHz to independent watchdog LSI RC to pwr(low power clock source) RCC_CFGR0 *2 OSC_IN 4~25MHz PLLSRC HSE OSC OSC_OUT -SYSCLK-➤to Flash(time base) /3 24MHz HSI HSI RC CSS MCO[1:0] → to Flash (register) AHB prescaler /1,/2.../256 HSI FCLK core free running clock MCO HSE PLLCLK → to Core System Timer /8 HCLK → to SRAM/DMA 48MHz max peripheral clock enable to AHB peripherals peripheral clock enable peripheral clock enable → to TIM1 peripheral clock enable ADCPRE to ADC /2,/4,/6,/8,/12,/1 6 ... , /64 , /96 , /128 /4096 ➤ to WWDG peripheral clock enable

1.4 功能概述

1.4.1 RISC-V2A 处理器

RISC-V2A 支持 RISC-V 指令集 EC 子集。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、扩展指令支持等单元。总线与外部单元模块相连,实现外部功能模块和内核的交互。RV32EC 指令集,小端数据模式。

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景。

- 支持机器模式
- 快速可编程中断控制器 (PFIC)
- 2级硬件中断堆栈
- 串行单线调试接口
- 自定义扩展指令

1.4.2 片上存储器

内置 2K 字节 SRAM 区,用于存放数据,掉电后数据丢失。

内置 16K 字节程序闪存存储区(Code FLASH), 用于用户的应用程序和常量数据存储。

内置 1920 字节系统存储区(System FLASH),用于系统引导程序存储(厂家固化自举加载程序)。 64 字节用于系统非易失配置信息存储区,64 字节用于用户选择字存储区。

支持 Boot 和用户代码互相跳转。

1.4.3 供电方案

V₀ = 2.7~5.5V: 为 I/O 引脚和内部调压器供电(使用 ADC 时, V₀如小于 2.9V 则性能逐渐变差)。

1.4.4 供电监控器

本产品内部集成了上电复位 (POR) /掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 2.7V 时工作;当 V₁₀ 低于设定的阀值 (V_{POR/PDR}) 时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阀值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 3 章。

1.4.5 电压调节器

复位后,调节器自动开启,根据应用方式有两个操作模式

- 开启模式:正常的运行操作,提供稳定的内核电源
- 低功耗模式: CPU 停止, 系统自动进入待机模式

1.4.6 低功耗模式

系统支持两种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 待机模式

置位 PDDS、SLEEPDEEP 位,执行 WF I / WFE 指令进入。内核部分的供电被关闭,HS I 的 RC 振荡器和HSE 晶体振荡器也被关闭,此模式下可以达到最低的电能消耗。

CH32V003 数据手册 <u>http://wch.cn</u>

退出条件:任意外部中断/事件(EXTI信号)、NRST上的外部复位信号、IWDG复位,其中EXTI信号包括 18 个外部 I/O 口之一、PVD 的输出、AWU 自动唤醒。

1.4.7 快速可编程中断控制器 (PFIC)

产品内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前产品管理了 4 个内核私有中断和 23 个外设中断管理,其他中断源保留。PFIC的寄存器均可以在机器特权模式下访问。

- 2个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 2 路免表中断(VTF)
- 向量表支持地址或指令模式
- 支持2级中断嵌套
- 支持中断尾部链接功能

1.4.8 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 8 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 AHB 的时钟周期。18 个通用 I/0 口都可选择连接到同一个个外部中断源。

1.4.9 通用 DMA 控制器

系统内置了 1 组通用 DMA 控制器,管理 7 个通道,灵活处理存储器到存储器、外设到存储器和存储器到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级定时器 TIMx、ADC、USART、I2C、SPI。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.10 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 24MH 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 4~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

1.4.11 ADC (模拟/数字转换器)

产品内嵌 1 个 10 位的模拟/数字转换器 (ADC),共用多达 8 个外部通道和 2 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门狗功能允许非常精准地监视一路或多路选中的通道,用于监视通道信号电压。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。支持外部触发延迟功能,使能该功能后,当外部触发沿产生时,控制器根据配置的延迟时间将触发信号进行延迟,延迟时间到即刻触发 ADC 转换。

1.4.12 定时器及看门狗

系统中的定时器包括 1 个高级定时器、1 个通用定时器、2 个看门狗定时器以及系统时基定时器。

● 高级控制定时器

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完

CH32V003 数据手册 <u>http://wch.cn</u>

整的通用定时器功能外,可以被看成是分配到 6 个通道的三相 PWM 发生器,具有带死区插入的互补 PWM 输出功能,允许在指定数目的计数器周期之后更新定时器进行重复计数周期,刹车功能等。高级控制定时器的很多功能都与通用定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作,提供同步或事件链接功能。

● 通用定时器

通用定时器是一个 16 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。任意通用定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。这些定时器还能够处理增量编码器的信号,也能处理 1 至 3 个霍尔传感器的数字输出。

● 独立看门狗

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的 128KHz 的 RC 振荡器(LSI)提供时钟; LSI 独立于主时钟,可运行于待机模式。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器(SysTick)

青稞微处理器内核自带一个 32 位递增的计数器,用于产生 SYSTICK 异常(异常号: 15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 32 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.13 通讯接口

1. 4. 13. 1 通用同步/异步收发器(USART)

产品提供了1组通用同步/异步收发器(USART)。支持全双工异步通信、同步单向通信以及半双工单线通信,也支持LIN(局部互连网),兼容 ISO7816 的智能卡协议和 IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作,还允许多处理器通信。其采用分数波特率发生器系统,并支持 DMA 操作连续通讯。

1.4.13.2 串行外设接口(SPI)

1 个串行外设 SPI 接口,提供主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

1.4.13.3 I2C 总线

1 个 I2C 总线接口, 能够工作于多主机模式或从模式, 完成所有 I2C 总线特定的时序、协议、仲裁等, 支持标准和快速两种通讯速度。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。

1.4.14 通用输入输出接口(GPIO)

系统提供了 3 组 GPI0 端口,共 18 个 GPI0 引脚。每个引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。 多数 GPI0 引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的 GPI0 引脚都有大电流通过能力。提供锁定机制冻结 I0 配置,以避免意外的写入 I/0 寄存器。

系统中 10 引脚电源由 V_{10} 提供,通过改变 V_{10} 供电将改变 10 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

1.4.15 运放/比较器(OPA)

产品内置 1 组运放/比较器,内部选择关联到 ADC 和 TIM2(CH1)外设,其输入和输出均可通过更改配置对多个通道进行选择。支持将外部模拟小信号被放大送入 ADC 以实现小信号 ADC 转换,也可以完成信号比较器功能,比较结果由 GP10 输出或者直接接入 TIMx 的输入通道。

1.4.16 串行单线调试接口(1-wire SDI Serial Debug Interface)

内核自带一个串行单线调试的接口, SWIO 引脚(Single Wire Input Output)。系统上电或复位后默认调试接口引脚功能开启。

第2章 引脚信息

2.1 引脚排列

CH32V003F4P6

CH32V003F4U6

CH32V003A4M6

CH32V003J4M6

注: 引脚图中复用功能均为缩写。

示例: A:ADC_, A7 (ADC_IN7)
T:TIME_, T2CH4 (TIM2_CH4)
U:USART, URX (USART_RX)
OP:OPA_, OPO (OPA_OUT) 、 OPP1 (OPA_P1)
OSCI (OSCIN)

OSCO (OSCOUT)

SDA (12C_SDA)

SCL (12C_SCL)

SCK (SPI_SCK)

 ${\sf NSS}\,({\sf SPI_NSS})$

MOSI(SPI_MOSI)

MISO(SPI_MISO)

AETR (ADC_ETR)

2.2 引脚描述

表 2-1 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

	 引脚编号			, ,,,,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H MC-97 RC o	
S0P16	TSS0P20	QFN20	S0P8	引脚 名称	引脚 类型	主功能 (复位 后)	默认复用功能	重映射功能
_	-	0	_	VSS	Р	VSS	_	-
8	1	18	8	PD4	1/0/A	PD4	UCK/T2CH1ETR ⁽¹⁾ /A7/0P0	TIETR_2/T1CH4_3
9	2	19	8	PD5	1/0/A	PD5	UTX/A5	T2CH4_3/URX_2
10	3	20	1	PD6	1/0/A	PD6	URX/A6	T2CH3_3/UTX_2
11	4	1	_	PD7	1/0/A	PD7	NRST/T2CH4/0PP1	UCK_1/UCK_2/T2CH4_2
12	5	2	1	PA1	1/0/A	PA1	T1CH2/A1/OPNO	OSCI/T1CH2_2
13	6	3	3	PA2	1/0/A	PA2	TICH2N/A0/OPP0	OSCO/AETR2_1/TICH2N_2
14	7	4	2	VSS	Р	VSS	-	-
_	8	5	_	PD0	1/0/A	PD0	TICH1N/OPN1	SDA_1/UTX_1/TICH1N_2
15	9	6	4	VDD	Р	VDD	-	-
16	10	7	_	PC0	1/0	PC0	T2CH3	NSS_1/UTX_3/T2CH3_2 /T1CH3_1
1	11	8	5	PC1	I/0/FT	PC1	SDA/NSS	T1BKIN_1/T2CH4_1 T2CH1ETR ⁽¹⁾ _2/URX_3 /T2CH1ETR ⁽¹⁾ _3/T1BKIN_3
2	12	9	6	PC2	I/0/FT	PC2	SCL/URTS/T1BKIN	AETR_1/T2CH2_1 /T1ETR_3/URTS_1 /T1BKIN_2
3	13	10	_	PC3	1/0	PC3	T1CH3	T1CH1N_1/UCTS_1 /T1CH3_2/T1CH1N_3
4	14	11	7	PC4	1/0/A	PC4	T1CH4/MCO/A2	T1CH2N_1/T1CH4_2 /T1CH1_3
_	15	12	1	PC5	I/0/FT	PC5	SCK/T1ETR	T2CH1ETR ⁽¹⁾ _1/SCL_2 /SCL_3/UCK_3/T1ETR_1 /T1CH3_3/SCK_1
5	16	13	ı	PC6	I/0/FT	PC6	MOSI	T1CH1_1/UCTS_2/SDA_2 /SDA_3/UCTS_3/T1CH3N_3 /MOSI_1
6	17	14	1	PC7	1/0	PC7	MISO	T1CH2_1/URTS_2 /T2CH2_3/URTS_3 /T1CH2_3/MISO_1
7	18	15	8	PD1	1/0/A	PD1	SWIO/T1CH3N/AETR2	SCL_1/URX_1/T1CH3N_1 /T1CH3N_2
_	19	16	_	PD2	1/0/A	PD2	T1CH1/A3	T2CH3_1/T1CH2N_3 /T1CH1_2

1	20	17	1	PD3	1/0/A	PD3	A4/T2CH2/AETR/UCTS	T2CH2_2/T1CH4_1

注: 1. TIM2_CH1、TIM2_ETR;

2. 重映射功能下划线后的数值表示 AFIO 寄存器中相对应位的配置值。例如: T1CH4_3 表示 AFIO 寄存器相应位配置为 11b;

3. 表格缩写解释:

I = TTL/CMOS 电平斯密特输入;

0 = CMOS 电平三态输出;

P = 电源;

FT = 耐受5V;

A = 模拟信号输入或输出。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。 表 2−2 引脚复用和重映射功能

复用 引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI	SWIO	OPA
PA1	A1	T1CH2/T1CH2_2			OSCI				OPN0
PA2	A0/AETR2_1	T1CH2N/T1CH2N_2			0SC0				0PP0
PC0		T1CH3_1	T2CH3/T2CH3_2	UTX_3			NSS_1		
PC1		T1BKIN_1/T1BKIN_3	T2CH4_1/T2CH1ETR ⁽¹⁾ _2 /T2CH1ETR ⁽¹⁾ _3	URX_3		SDA	NSS		
PC2	AETR_1	T1BKIN/T1ETR_3 /T1BKIN_2	T2CH2_1	URTS/URTS_1		SCL			
PC3		T1CH3/T1CH1N_1 T1CH3_2/T1CH1N_3		UCTS_1					
PC4	A2	T1CH4/T1CH2N_1 /T1CH4_2/T1CH1_3			MCO				
PC5		T1ETR/T1CH3_3 /T1ETR_1	T2CH1ETR ⁽¹⁾ _1	UCK_3		SCL_2/SCL_3	SCK/SCK_1		
PC6		T1CH1_1/T1CH3N_3		UCTS_2/UCTS_3		SDA_2/SDA_3	MOSI/MOSI_1		
PC7		T1CH2_1/T1CH2_3	T2CH2_3	URTS_2/URTS_3			MISO/MISO_1		
PD0		T1CH1N/T1CH1N_2		UTX_1		SDA_1			OPN1
PD1	AETR2	T1CH3N/T1CH3N_1 /T1CH3N_2		URX_1		SCL_1		SWIO	
PD2	А3	T1CH1/T1CH2N_3 /T1CH1_2	T2CH3_1						
PD3	A4/AETR	T1CH4_1	T2CH2/T2CH2_2	UCTS					
PD4	A7	T1ETR_2/T1CH4_3	T2CH1ETR ⁽¹⁾	UCK					0P0
PD5	A5		T2CH4_3	UTX/URX_2					
PD6	A6		T2CH3_3	URX/UTX_2					
PD7			T2CH4/T2CH4_2	UCK_1/UCK_2	NRST				0PP1

注: TIM2_CH1、TIM2_ETR。

第3章 电气特性

3.1 测试条件

除非特殊说明和标注,所有电压都以Vss为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 $V_{00} = 3.3V$ 或 5V 环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 3-1 常规供电典型电路

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
V_{DD} - V_{SS}	外部主供电电压(V _{DD})	-0. 3	5. 5	٧
VIN	FT(耐受 5V)引脚上的输入电压	V _{ss} -0. 3	5. 5	٧
VIN	其他引脚上的输入电压	V _{ss} -0. 3	V _{DD} +0. 3	
$ \triangle V_{DD_x} $	不同主供电引脚之间的电压差		50	mV
$ \triangle V_{ss_x} $	不同接地引脚之间的电压差		50	mV
V _{ESD (HBM)}	ESD 静电放电电压(人体模型,非接触式)	4K		٧
I _{VDD}	经过 V₀ 电源线的总电流(供应电流)		100	
I _{Vss}	经过 Vss 地线的总电流(流出电流)		80	
	任意 1/0 和控制引脚上的灌电流		20	
I 10	任意 1/0 和控制引脚上的输出电流		-20	mA
	HSE 的 OSC_IN 引脚		+/-4	
INJ (PIN)	其他引脚的注入电流		+/-4	
Σ I INJ (PIN)	所有 I0 和控制引脚的总注入电流		+/-20	

3.3 电气参数

3.3.1 工作条件

表 3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位	
FHCLK	内部 AHB 时钟频率			50	MHz	
V	 标准工作电压	未使用 ADC	2. 7	5. 5	V	
$V_{ extsf{DD}}$	が准工作电圧	使用 ADC(建议)	2. 8	50	V	
T _A	环境温度		-40	85	°C	
TJ	结温度范围		-40	105	°C	

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
_	V₀上升速率		0	∞	us/V
t _{VDD}	V∞下降速率		30	8	us/V

3.3.2 内嵌复位和电源控制模块特性

表 3-4 复位及电压监测 (PDR 选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0] = 000(上升沿)		2. 85		٧
		PLS[2:0] = 000(下降沿)		2. 7		٧
		PLS[2:0] = 001(上升沿)		3. 05		٧
		PLS[2:0] = 001(下降沿)		2. 9		٧
		PLS[2:0] = 010(上升沿)		3. 3		٧
		PLS[2:0] = 010(下降沿)		3. 15		٧
		PLS[2:0] = 011(上升沿)		3. 5		V
V _{PVD} (1)	可编程电压检测器的电	PLS[2:0] = 011(下降沿)		3. 3		V
V PVD	平选择	PLS[2:0] = 100(上升沿)		3. 7		٧
		PLS[2:0] = 100(下降沿)		3. 5		V
		PLS[2:0] = 101(上升沿)		3. 9		V
		PLS[2:0] = 101(下降沿)		3. 7		V
		PLS[2:0] = 110(上升沿)		4. 1		V
		PLS[2:0] = 110(下降沿)		3. 9		V
		PLS[2:0] = 111(上升沿)		4. 4		٧
		PLS[2:0] = 111(下降沿)		4. 2		٧
$V_{ t PVDhyst}$	PVD 迟滞			0. 18		V
$V_{POR/PDR}$	上电/掉电复位阈值	上升沿	2. 32	2. 5	2. 68	V
▼ POR/PDR	工七/ 汗七夕世网但	下降沿	2. 3	2. 48	2. 66	V
$V_{ t PDRhyst}$	PDR 迟滞			20		mV
t _{rsttempo}	上电复位		12	17	22	mS
URSTTEMP0	其他复位			300		uS

注: 1. 常温测试值。

CH32V003 数据手册 <u>http://wch.cn</u>

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 17	1. 2	1. 23	٧
$T_{S_vrefint}$	当读出内部参考电压 时,ADC 的采样时间		3		500	1/f _{ADC}

3.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 3-2 电流消耗测量

微控制器处于下列条件:

常温 V_{DD} = 3. 3V 或 5V 情况下,测试时:所有 IO 端口配置下拉输入;测试 IO HSI 时 HSE 关闭,HSE= 24M,IO HSI 已校准);当 IO FHOLK= 48MHz、IO 6MHz 时,系统时钟来源 IO CLK*2;打开所有外设时仅打开所有外设的时钟。使能或关闭所有外设时钟的功耗。

夫 2-6-1	法行横式下曲刑的由流沿耗	数据外理代码从内部闪存中运行(V∞ = 3.3V)	١
75 3 0 1	141 175 D. 17 44 DI HI /III / DATE		,

表 3-0-1 色1] 候式下典空的电流消耗,数据处理代码从内部内存中色1](Viii - 3.3V)									
符号	参数	 		典型	世值	単位			
1ড় '5	多奴	余 什		使能所有外设	关闭所有外设	半世			
			$F_{HCLK} = 48MHz$	7. 0	4. 6				
			$F_{HCLK} = 24MHz$	5. 2	4. 2				
		外部时钟	$F_{HCLK} = 16MHz$	4. 6	3. 8				
L _{DD} ⁽¹⁾ 运行机			$F_{HCLK} = 8MHz$	3. 1	2. 7				
	运行模式下的		F _{HCLK} = 750KHz	1. 8	1. 8	^			
I DD	供应电流		$F_{HCLK} = 48MHz$	6. 3	3. 9	mA			
		运行于高速内部 RC 振荡器 (HSI),	$F_{HCLK} = 24MHz$	4. 3	3. 1				
		使用 AHB 预分频	$F_{HCLK} = 16MHz$	3. 9	3. 1				
		以減低频率	$F_{HCLK} = 8MHz$	2. 3	1. 9				
		以外以以外	F _{HCLK} = 750KHz	1. 1	1. 0				

注: 1. 以上为实测参数。

2. 当 VDD < 3V 时, 电流功耗会增大。

表 3-6-2 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行(V_D = 5V)

符号	符号参数	条件	典型	单位	
17.75	多奴	余片	使能所有外设	关闭所有外设	平江

			F _{HCLK} = 48MHz	8. 0	5. 6		
			$F_{HCLK} = 24MHz$	6. 4	5. 6		
		外部时钟	$F_{HCLK} = 16MHz$	5. 8	5. 0		
			F _{HCLK} = 8MHz	3. 8	3. 4		
l _{DD} (1)	运行模式下的		F _{HCLK} = 750KHz	2. 2	2. 1		
I DD	供应电流		$F_{HCLK} = 48MHz$	7. 3	4. 9	mA	
		运行于高速内部	F _{HCLK} = 24MHz	5. 3	4. 1		
		RC 振荡器(HSI),		F _{HCLK} = 16MHz	5. 0	4. 3	
		使用 AHB 预分频 以减低频率	F _{HCLK} = 8MHz	3. 1	2. 7		
		以 规以火 干	$F_{HCLK} = 750KHz$	1. 4	1. 4		

注: 1. 以上为实测参数。

表 3-7-1 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行(V_□ = 3.3V)

<i>ሱ</i> ታ 🗆	∠ *.	夕 //	<i>₹</i> 7 (4-		型值		
符号	参数	条件 		使能所有外设	关闭所有外设	单位	
			$F_{HCLK} = 48MHz$	4. 9	2. 5		
			F _{HCLK} = 24MHz	2. 9	1. 7		
	· · · · · · · · · · · · · · · · · · ·	外部时钟	$F_{HCLK} = 16MHz$	2. 5	1. 7		
	睡眠模式下 的供应电流			$F_{HCLK} = 8MHz$	1. 7	1. 3	
I _{DD} ⁽¹⁾	的供应电流 (此时外设供		F _{HCLK} = 750KHz	1. 2	1. 1	mA	
■ DD	电和时钟保	│ │运行于高速内部	$F_{HCLK} = 48MHz$	4. 2	1. 8	IIIA	
	持)	BC 振荡器 (HSI),	$F_{HCLK} = 24MHz$	2. 2	1. 0		
	147	使用 AHB 预分频	$F_{HCLK} = 16MHz$	1. 8	1. 0		
		以減低频率	$F_{HCLK} = 8MHz$	1. 0	0. 6		
		ド ヘルス K\プ火 干 	F _{HCLK} = 750KHz	0. 4	0. 4		

注: 1. 以上为实测参数。

表 3-7-2 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行($V_{DD}=5V$)

符号	∠ ₩.	夕 //		典型	型值	⇔ /÷	
付写	参数	余件	条件 		关闭所有外设	单位	
			$F_{HCLK} = 48MHz$	4. 9	2. 5		
			$F_{HCLK} = 24MHz$	2. 9	1. 7		
	· · · · · · · · · · · · · · · · · · ·	外部时钟	$F_{HCLK} = 16MHz$	2. 5	1. 7		
	睡眠模式下 的供应电流			$F_{HCLK} = 8MHz$	1. 7	1. 3	
I _{DD} (1)	的供应电流 (此时外设供		$F_{HCLK} = 750KHz$	1. 2	1. 1	mA	
I DD	(此时外设供 电和时钟保		$F_{HCLK} = 48MHz$	4. 2	1. 8	ША	
	持)	运行于高速内部 RC 振荡器 (HSI),	$F_{HCLK} = 24MHz$	2. 2	1. 0		
	147	使用 AHB 预分频	$F_{HCLK} = 16MHz$	1. 8	1. 0		
		以減低频率	$F_{HCLK} = 8MHz$	1. 0	0. 6		
		ドス /9 気 K\ 2火 T-	F _{HCLK} = 750KHz	0. 4	0. 4		

注: 1. 以上为实测参数。

表 3-8 待机模式下典型的电流消耗

符号	参数	条件		典型值	单位
		LSI 打开	$V_{DD} = 3.3V$	10. 5	
	 待机模式下的供应电流	LSI 11 TT	$V_{DD} = 5V$	11. 1	
I DD	1分机俣入下的供应电流	101 *江	$V_{DD} = 3.3V$	9. 0	uA
		LSI 关闭 	$V_{DD} = 5V$	9.6	

注: 以上为实测参数。

3.3.5 外部时钟源特性

表 3-9 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F_{HSE_ext}	外部时钟频率		4	24	25	MHz
$V_{HSEH}^{(1)}$	OSC_IN 输入引脚高电平电压		0. 8V _{DD}		V_{DD}	٧
V _{HSEL} ⁽¹⁾	OSC_IN 输入引脚低电平电压		0		0. 2V _{DD}	٧
$C_{in(\text{HSE})}$	OSC_IN 输入电容			5		pF
DuTy (HSE)	占空比		40	50	60	%
ΙL	OSC_IN 输入漏电流				±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图 3-3 外部提供高频时钟源电路

表 3-10 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{osc_in}	谐振器频率		4	24	25	MHz
$R_{\scriptscriptstyle F}$	反馈电阻 (无需外置)			250		kΩ
С	建议的负载电容与对应晶体 串行阻抗 R。	$R_{s} = 60 \Omega^{(1)}$		20		pF
₂	HSE 驱动电流	V₀ = 3.3V, 20p 负载		0. 32		mA
gm	振荡器的跨导	启动		6. 8		mA/V
t _{SU (HSE)}	启动时间	V远稳定, 24M 晶体		2		ms

注: 1.25M 晶体 ESR 建议不超过 60 欧,低于 25M 可适当放宽。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1=CL2。

图 3-4 外接 24M 晶体典型电路

3.3.6 内部时钟源特性

表 3-11 内部高速(HSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)			24		MHz
DuCy _{HS1}	占空比		45	50	55	%
ACC _{HS1}	HSI 振荡器的精度(校准后)	$TA = 0^{\circ}C \sim 70^{\circ}C$	-1. 2		1. 6	%
AUUHSI	ПОТ 1版/勿指的1件 人代文/任/日 /	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2. 2		2. 2	%
t _{SU(HSI)}	HSI 振荡器启动稳定时间			10		us
DD (HSI)	HSI 振荡器功耗		120	180	270	uA

表 3-12 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LSI}	频率		100	128	150	KHz
DuTy _{LS1}	占空比		45	50	55	%
t _{SU(LSI)}	LSI 振荡器启动稳定时间			80		us
DD (LSI)	LSI 振荡器功耗			1. 5		uA

3.3.7 从低功耗模式唤醒的时间

表 3-13 低功耗模式唤醒的时间 (1)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	30	us
twustdby	从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒	200	us

注:以上为实测参数。

3.3.8 存储器特性

表 3-14 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{ERASE_64}	页(64 字节)编程时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 1	ms
t _{ERASE}	页(64 字节)擦除时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 1	ms
t_{prog}	16 位的编程时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 1	ms
t _{ME}	整片擦除时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 1	ms
V_{prog}	编程电压		2. 8		5. 5	٧

表 3-15 闪存存储器寿命和数据保存期限

符号

CH32V003 数据手册 http://wch.cn

N _{END}	擦写次数	$T_A = 25^{\circ}C$	10K	80K ⁽¹⁾	次
$t_{\mathtt{RET}}$	数据保存期限		10		年

注: 实测操作擦写次数, 非担保。

3.3.9 I/O 端口特性

表 3-16 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位	
V _{IH}	标准 I/0 脚,输入高电平电压		0. 22* (V _{DD} - 2. 7) +1. 55		V _{DD} +0. 3	٧	
V IH	FT 10 引脚,输入高电平电压		0. 22*(VDD- 2. 7)+1. 55		5. 5	٧	
V	标准 1/0 脚,输入低电平电压		-0. 3		0. 19* (V _{DD} - 2. 7) +0. 65	٧	
V _{IL}	FT 10 引脚,输入低电平电压		-0. 3		0. 19* (VDD- 2. 7) +0. 65	٧	
V _{hys}	施密特触发器电压迟滞		150			mV	
	输入漏电流	标准 I0 端口			1	- uA	
lkg	制入漏电流 	FT 10 端口			3		
R _{PU}	弱上拉等效电阻		35	45	55	kΩ	
R _{PD}	弱下拉等效电阻		35	45	55	kΩ	
C ₁₀	I/0 引脚电容			5		рF	

输出驱动电流特性

GP10 (通用输入/输出端口) 可以吸收或输出多达 \pm 8mA 电流,并且吸收或输出 \pm 20mA 电流 (不严格达到 V_{ol}/V_{ol})。在用户应用中,所有 10 引脚驱动总电流不能超过 3.2 节给出的绝对最大额定值。

表 3-17 输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{oL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀ = +8mA		0.4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -0. 4		V
V_{oL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀ = +8mA		0.4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	2. 3		V
V_{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		1. 3	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -1.3		٧

注: 以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 3.2 节给出的绝对最大额定值。另外 8个 10 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 10 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-18 输入输出交流特性

MODEx[1:0] 配置	符号	参数	条件	最小 值	最大 值	单位
10	$F_{\text{max}(10)\text{out}}$	最大频率	$CL = 50pF, V_{DD} = 2.7-5.5V$		2	MHz
10 (2MHz)	t _{f(10)out}	输出高至低电平的下降时间	OL - 50-5 V - 2 7-5 5V		125	ns
(ZMHZ)	t _{r(10)out}	输出低至高电平的上升时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		125	ns

01	F _{max(10) out}	最大频率	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	MHz
01 (10MHz)	t _{f(I0)out}	输出高至低电平的下降时间	CL = 50pF, V _{DD} = 2. 7-5. 5V		25	ns
(1011112)	t _{r(I0)out}	输出低至高电平的上升时间	OL - SUPP, VD - 2. 7-5. 5V		25	ns
	$F_{\text{max}(10)\text{out}}$	最大频率	$CL = 50pF, V_{DD} = 2.7-5.5V$		30	MHz
11 (30MHz)	t _{f(I0)out}	输出高至低电平的下降时间	CL = 50pF, V _{DD} = 2.7-5.5V		10	ns
(SUMINZ)	t _{r(10)out}	输出低至高电平的上升时间	CL = 50pF, V _{DD} = 2.7-5.5V		10	ns
	t _{EXTIPW}	EXTI 控制器检测到外部信号 的脉冲宽度		10		ns

3.3.10 NRST 引脚特性

表 3-19 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL (NRST)}	NRST 输入低电平电压		-0. 3		0. 28* (V _{DD} -1. 8) +0. 6	٧
V _{IH (NRST)}	NRST 输入高电平电压		0. 41* (V _{DD} -1. 8) +1. 3		V _{DD} +0. 3	٧
$V_{hys(NRST)}$	NRST 施密特触发器电压 迟滞		150			mV
R _{PU} ⁽¹⁾	弱上拉等效电阻		35	45	55	kΩ

注: 1. 上拉电阻是一个真正的电阻串联一个可开关的 PMOS 实现。这个 PMOS/NMOS 开关的电阻很小(约占 10%)。

电路参考设计及要求:

图 3-5 外部复位引脚典型电路

3.3.11 TIM 定时器特性

表 3-20 TIMx 特性

符号	参数	条件	最小值	最大值	单位
_	定时器基准时钟		1		t _{TIM×CLK}
t _{res(TIM)}		f _{TIMxCLK} = 48MHz	13. 9		ns
_	CH1 至 CH4 的定时器外部时钟频率		0	$f_{\text{TIMxCLK}}/2$	MHz
F _{EXT}		f _{TIMxCLK} = 48MHz	0	36	MHz
R_{esTIM}	定时器分辨率			16	位
_	当选择了内部时钟时, 16 位计数		1	65536	t _{TIM×CLK}
tcounter	器时钟周期	f _{TIMxCLK} = 48MHz	0. 0139	910	us
t _{MAX_} COUNT	最大可能的计数			65535	t _{TIM×CLK}
		f _{TIMxCLK} = 48MHz		59. 6	S

CH32V003 数据手册 http://wch.cn

3.3.12 I2C接口特性

图 3-6 12C 总线时序图

表 3-21 I2C 接口特性

符号	↔ ₩1	标准	120	快速 120		单位	
付写	参数 	最小值	最大值	最小值	最大值	半江	
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us	
t _{w(SCKH)}	SCL 时钟高电平时间	4. 0		0.6		us	
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns	
t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns	
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns	
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns	
t _{h(STA)}	开始条件保持时间	4. 0		0.6		us	
t _{SU (STA)}	重复的开始条件建立时间	4. 7		0.6		us	
t _{SU (STO)}	停止条件建立时间	4. 0		0.6		us	
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us	
Сь	每条总线的容性负载		400		400	pF	

CH32V003 数据手册 http://wch.cn

3.3.13 SPI 接口特性

图 3-7 SPI 主模式时序图

图 3-8 SPI 从模式时序图(CPHA=0)

图 3-9 SPI 从模式时序图 (CPHA=1)

表 3-22 SPI 接口特性

符号	参数	条件	最小值	最大值	单位
£ /±	SPI 时钟频率	主模式		24	MHz
f _{sck} /t _{sck}	OPI 的神妙 学	从模式		24	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{SU (NSS)}	NSS 建立时间	从模式	2t _{PCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式	2t _{PCLK}		ns
$t_{\text{w(SCKH)}}/t_{\text{w(SCKL)}}$	SCK 高电平和低电平时间	主模式 fpck = 48MHz, 预分频系数=2	30	70	ns
t _{su(MI)}	 数据输入建立时间	主模式	5		ns
t _{su(si)}	数据制入建立时间	从模式	5		ns
t _{h(MI)}	 数据输入保持时间	主模式	5		ns
t _{h(SI)}	数据那人不行的门	从模式	4		ns
t _{a (S0)}	数据输出访问时间	从模式,f _{PCLK} = 24MHz	0	1t _{PCLK}	ns
t _{dis(SO)}	数据输出禁止时间	从模式	0	10	ns
t _{V(S0)}	*************************************	从模式 (使能边沿之后)		5	ns
t _{V(MO)}	数据输出有效时间 	主模式(使能边沿之后)		5	ns
t _{h(80)}	*************************************	从模式 (使能边沿之后)	2		ns
t _{h (MO)}	数据输出保持时间 	主模式(使能边沿之后)	0		ns

3. 3. 14 10 位 ADC 特性表 3-23 10 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ exttt{DD}}$	供电电压		2. 8		5. 5	٧
I _{DD}	供电电流			370		uA
		$V_{DD} = 2.8 \text{ to } 5.5V$	1		6	
$f_{\mathtt{ADC}}$	ADC 时钟频率	$V_{DD} = 3.2 \text{ to } 5.5V$	1		12	MHz
		$V_{DD} = 4.5 \text{ to } 5.5V$	1		24	

V _{AIN}	转换电压范围		Vss		$V_{ exttt{DD}}$	V
C _{ADC}	内部采样和保持电容			3		pF
fs		$f_{ADC} = 4MHz$			285	
	 采样速率	$f_{ADC} = 6MHz$			430	KHz
	木件坯 平	$f_{ADC} = 12MHz$			857	KΠZ
		$f_{ADC} = 24MHz$			1710	
	采样时间	$f_{ADC} = 4MHz$		0. 75		
ts		$f_{ADC} = 6MHz$		0. 5		us
		$f_{ADC} = 12MHz$		0. 25		
t _{STAB}	上电时间			7		us
		$f_{ADC} = 4MHz$	3. 5			us
_	总的转换时间(包括采样时	$f_{ADC} = 6MHz$	2. 33			us
t _{conv}	间)	$f_{ADC} = 12MHz$	1. 17			us
		_		14		1/f _{ADC}

注: 以上均为设计参数保证。

表 3-24 ADC 误差($f_{ADC}=12MHz:R_{AIN}<10k\Omega,V_{DD}>2.9V$)($f_{ADC}=24MHz:R_{AIN}<3k\Omega,V_{DD}=5V$)

符号	参数	条件	最小值	典型值	最大值	单位
ET	数据总偏差	$f_{ADC} = 12MHz$		2	4	
ETF24	f _{ADC} = 24MHz 数据总偏差	$f_{ADC} = 24MHz$		3	6	
E0	失调误差	$f_{ADC} = 12MHz$		1	3	LSB
EG	增益误差	$f_{ADC} = 12MHz$		1	2	LOD
ED	微分非线性误差	$f_{ADC} = 12MHz$		0. 5	2	
EL	积分非线性误差	$f_{ADC} = 12MHz$		0.6	2. 5	

注:来源仿真。

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 3-10 ADC 典型连接图

图 3-11 模拟电源及退耦电路参考

3. 3. 15 OPA 特性 表 3-25 OPA 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD}}$	供电电压		2. 8		5. 5	٧
C_{MIR}	共模输入电压		0		$V_{\scriptscriptstyle DD}$	٧
V _{IOFFSET}	输入失调电压			3	10	mV
l _{LOAD}	驱动电流				1.5	mA
DDOPAMP	消耗电流	无负载,静态模式		273		uA
$\mathbf{C}_{MRR}^{(1)}$	共模抑制比	@1KHz		81		dB
$P_{SRR}^{\ (1)}$	电源抑制比	@1KHz		88		dB
A v ⁽¹⁾	开环增益	$C_{LOAD} = 50pF$		105		dB
G _{BW} ⁽¹⁾	单位增益带宽	$C_{LOAD} = 50pF$		12		MHz
$P_{M}^{(1)}$	相位裕度	$C_{LOAD} = 50pF$		75		deg
S _R ⁽¹⁾	压摆率	$C_{LOAD} = 50pF$		7. 7		V/us
t _{WAKU} (1) _P	关闭到唤醒建立时间, 0.1%	输入 V _{DD} /2, C _{LOAD} =50pF, R _{LOAD} =4k Ω		520		ns
$R_{\scriptscriptstyle LOAD}$	电阻性负载		4			kΩ
C_{LOAD}	电容性负载				50	рF
V _{OHSAT} (2)	高饱和输出电压	R _{LOAD} = 4kΩ,输入V _{DD}	$V_{DD} - 180$			mV
V OHSAT	同地州湖山电压	$R_{LOAD} = 20k\Omega, 输入V_{DD}$	V_{DD} -36			IIIV
V (2)	—————————————————————————————————————	R _{LOAD} = 4kΩ,输入0			5	mV
V OLSAT	Volsat ⁽²⁾ 低饱和输出电压	R _{LOAD} = 20kΩ,输入0			5	IIIV
		$R_{LOAD} = 4k \Omega$, @1KHz		83		nv
EN ⁽¹⁾	等效输入电压噪声	$R_{LOAD} = 4k \Omega, @10KHz$		28		$\frac{HV}{\sqrt{Hz}}$

注: 1. 来源设计仿真非实测;

2. 负载电阻会限制饱和输出电压。

第4章 封装及订货信息

芯片封装

订货型号	封装形式	塑体宽度	引脚间距	封装说明	出货料盘
CH32V003F4P6	TSS0P20	4. 4*6. 5mm	0. 65mm	薄小型的 20 脚贴片	卷带
CH32V003F4U6	QFN20	3. 0*3. 0mm	0. 4mm	四边无引线 20 脚	卷带
CH32V003A4M6	S0P16	3. 9*10. 0mm	1. 27mm	标准的 16 脚贴片	塑管
CH32V003J4M6	SOP8	3. 9*5. 0mm	1. 27mm	标准的 8 脚贴片	卷带

说明: 1. QFP/QFN 一般默认为托盘。

2. 托盘尺寸:托盘大小一般为统一尺寸,322.6*135.9*7.62,不同封装类型限位孔尺寸有区别,塑管不同封装厂有区别,具体与厂家确认。

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 4-1 TSSOP20 封装

图 4-2 QFN20 封装 3.0 ± 0.1 10.2±0.05 #10 1.7 ± 0. 1 ö Top View **Bottom View** +1О #20 #6 #1 #5 #1 0.4 ± 0.05 0.025 ± 0.025 (0.15 ± 0.05) 0.4 0.2 ± 0.05 0.75 ± 0.05 (0.55 ± 0.05)

图 4-3 SOP16 封装

图 4-4 SOP8 封装

系列产品命名规则

产品系列

F = 基于 ARM 内核, 通用 MCU

V = 基于青稞 RISC-V 内核, 通用 MCU

L = 基于青稞 RISC-V 内核, 低功耗 MCU

X = 基于青稞 RISC-V 内核, 专用架构或特殊 IO

CH32

产品类型

举例:

0 = 青稞 V2/V4 内核, 主频@48M

1 = M3/青稞 V3/V4 内核, 主频@72M

2 = M3/青稞 V4 非浮点内核, 主频@144M

3 = 青稞 V4F 浮点内核, 主频@144M

产品子系列

03 = 通用型

05 = 连接型(USB 高速、SD10、双 CAN)

07 = 互联型(USB 高速、双 CAN、以太网、SDIO、FSMC)

08 = 无线型(蓝牙 BLE5. X、CAN、USB、以太网)

35 = 连接型(USB、USB PD)

引脚数目

J = 8 脚 A = 16 脚 F = 20 脚

G = 28 脚 K = 32 脚 T = 36 脚

C = 48 脚 R = 64 脚 W = 68 脚

V = 100 脚 Z = 144 脚

闪存存储容量

4 = 16K 闪存存储器

6 = 32K 闪存存储器

7 = 48K 闪存存储器

8 = 64K 闪存存储器

B = 128K 闪存存储器

C = 256K 闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

6 = -40°C~85°C (工业级)

7 = -40℃~105℃ (汽车2级)

3 = -40℃~125℃ (汽车1级)

D = -40°C~150°C (汽车 0 级)