Section 6 Assignment (123 points) – Boolean Functions

To receive credit, you must either show your work on the worksheet or explain how you got the answer.

- 1. (12 points) Indicate whether the following Boolean expressions are in conjunctive normal form (CNF), disjunctive normal form (DNF), both (B), or neither (N).
 - a. (4 pts) CNF / DNF / B / N $(\overline{x} + \overline{y})(\overline{z} + x)$

CNF

- b. (4 pts) CNF / DNF / B / N $xz + \overline{y}$ DNF
- c. (4 pts) CNF / DNF / B / N (\bar{x} + 3)

CNF, DNF (both)

2. (10 points) Using the *Simplification Rules for Boolean Variables* and the *Laws of Boolean Algebra*, determine if the two Boolean expressions in each pair are equivalent.

$$\overline{x + \overline{y}} + \overline{x}\overline{y} = \overline{y}$$

tralourge for

3. (20 points) Give the Boolean function described by the following digital logic (circuit) diagrams

$$=(\chi'+\alpha')'$$

$$(x+w)+[x(x+w)]'$$

$$\left[\chi \eta + \left((\overline{\eta} + \chi)(\chi + (\overline{\eta} + \overline{\zeta})) \right) \right]$$

4. (15 pts) For question 3c, use the laws of Boolean algebra to find a simpler circuit that computes the same function (you don't need to draw it).

#0fogodos: 7 AND: 3 OR: 3 NOT 1

Simples circuit

[x + yz]'

of garles=3

ALM:1

1:6UA

5. (18 points) Draw the digital logic (circuit) diagrams for the following Boolean functions a. (6 pts) (xy)($y+\bar{z}$)

b. (6 pts) $(x + y + z) + \bar{y}z$

C. (6 pts) $xz + \overline{y+z}$

6. (18 points) For each Karnaugh map, use the *Kmap Grouping Rules* to group the elements and then list the simplified Boolean expression:

To receive credit, you must show grouping of the terms.

a. (4 pts)

	у`	У
X`	1	
x		1

b. (6 pts)

c. (8 pts)

	Z`	Z`	Z	Z	
x`	1	1	1	1	y`
X`	1	1	1	1	у
X				1	у
x	1			1	y`
	w`	W	W	w`	_

7. (30 points) For each truth table, fill in the k-map, use the *Kmap Grouping Rules* to group the elements, and then list the simplified Boolean expression:

To receive credit, you must fill in the Kmap and show grouping of the terms.

a. (4 pts)

α . ()	Pio,	<u>'</u>
X	У	f(x,y)
1	1	0
1	0	1
0	1	0
0	0	1

	У	y`
х		
X,		

X	y	f(x,y)
1	1	1
1	0	0
0	1	1
0	0	1

b. (4 pts)

	У	y`
х		
X`		

X	V	Z	f(x,y,z).
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	1

	Z	Z`
ху		
x`y		
x`y`		
xy`		

c. (6 pts)

d. (6 pts)

X	У	Z	f(x,y,z)
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

	Z	z`
ху		
x`y		
x`y`		
xy`		

e. (10 pts)

X	У	Z	W	f(x,y,z,w)
1	1	1	1	1
1	1	1	0	1
1 1 1	1	0	1	0
1 1 1 1 0 0 0 0	1	0 1 1 0	0 1 0 1 0	0
1	0	1	1	1
1	0 0 0 0	1	0	1
1	0	0	1	0
1	0	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	0 0 1	1	1
0	1	0	0	1
0	1 1 0	1	1	0
0	0	1	1 0 1 0	1
0	0	0	1	0
0	0	0	0	0

	ZW	z`w	z`w`	ZW`
ху				
x`y				
x`y`				
xy`				

$$2\omega' + \chi' y 2' + 2\chi$$