FCC Test Report

Report No.: AGC07398161101FE03

FCC ID : 2ACF7-AD11245

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: RC FLYING FALCON

BRAND NAME : TRU

MODEL NAME : AD11245

CLIENT : XI FU TOYS CO., LTD.

DATE OF ISSUE : Dec. 02, 2016

STANDARD(S)

TEST PROCEDURE(S) : FCC Part 15 Rules

REPORT VERSION V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC07398161101FE03 Page 2 of 32

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Dec. 02, 2016	Valid	Original Report

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
2.2. TABLE OF CARRIER FREQUENCY	5
3. MEASUREMENT UNCERTAINTY	6
4. DESCRIPTION OF TEST MODES	6
5. SYSTEM TEST CONFIGURATION	7
5.1. CONFIGURATION OF EUT SYSTEM	7
5.2. EQUIPMENT USED IN EUT SYSTEM	7
5.3. SUMMARY OF TEST RESULTS	7
6. TEST FACILITY	8
7. RADIATED EMISSION	9
7.1TEST LIMIT	g
7.2. MEASUREMENT PROCEDURE	10
7.3. TEST SETUP	12
7.4. TEST RESULT	13
8. BAND EDGE EMISSION	18
8.1. MEASUREMENT PROCEDURE	18
8.2 TEST SETUP	18
8.3 RADIATED TEST RESULT	18
9. 20DB BANDWIDTH	23
9.1. MEASUREMENT PROCEDURE	23
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
9.3. MEASUREMENT RESULTS	23
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	26
APPENDIX B: PHOTOGRAPHS OF EUT	27

Page 4 of 32

1. VERIFICATION OF CONFORMITY

Applicant	XI FU TOYS CO., LTD.	
Address	7/F Pearl Oriental Tower, 225 Nathan Road, Tsimshatsui, H.K.	
Manufacturer	Hongqi Industrial Co., Ltd	
Address	12 Rong Tong Industry, Rong Tong Road, Wu Lian Village, Feng Gang Town, Dongguan, Guangdong, China	
Product Designation	RC FLYING FALCON	
Brand Name	TRU	
Test Model	AD11245	
Date of test	Nov.28, 2016 to Nov. 29, 2016	
Deviation	None	
Condition of Test Sample Normal		
Test Result	Pass	
Report Template	AGCRT-US-BR/RF	

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.249.

Tested by

Max Zhang(Zhang Yi)

Dec. 02, 2016

Reviewed by

Bart Xie(Xie Xiaobin))

Approved by

Solger Zhang(Zhang Hongyi)

Authorized Officer

Dec. 02, 2016

Page 5 of 32

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Outpution Frances	0.405.011- 4- 0.470011-
Operation Frequency	2.425 GHz to 2.470GHz
Maximum field strength	87.12dBuV/m@3m(AV)
Maximum output power	-8.08dBm(Output power=Field strength-95.2)
Modulation	GFSK
Number of channels	3
Antenna Gain	2dBi
Antenna Designation	Fixed Antenna (Met 15.203 Antenna requirement)
Hardware Version	XF-02FNTX-2.4G
Software Version	V1.0
Power Supply	DC 6V by battery

Note: The USB port is only for discharging.

2.2. TABLE OF CARRIER FREQUENCY

Frequency Band	Channel Number	Frequency
	1	2425MHZ
2400~2483.5MHZ	2	2452MHZ
	3	2470MHZ

Page 6 of 32

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±3.18dB
2	All emissions,radiated	±3.91dB
3	Temperature	±0.5°C
4	Humidity	±2%

4. DESCRIPTION OF TEST MODES

TEST MODE DESCRIPTION
Low channel TX in GFSK modulation
Middle channel TX in GFSK modulation
High channel TX in GFSK modulation

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Report No.: AGC07398161101FE03 Page 7 of 32

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure 1:

EUT

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	RC FLYING FALCON	AD11245	2ACF7-AD11245	EUT

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.249	Radiated Emission	Compliant
§15.249	Band Edges	Compliant
§15.215	20dB bandwidth	Compliant

Report No.: AGC07398161101FE03 Page 8 of 32

6. TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.	
FCC Registration No. 371540	
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014.

ALL TEST EQUIPMENT LIST

Radiated Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 3, 2016	June 2, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 3, 2016	June 2, 2017
Spectrum analyzer	Agilent	E4407B	MY46185649	June 3, 2016	June 2, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	June 3, 2016	June 2, 2017
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 3, 2016	June 2, 2017

Page 9 of 32

7. RADIATED EMISSION

7.1TEST LIMIT

Standard FCC15.249

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics	
	(millivolts/meter)	(microvolts/meter)	
900-928MHz	50	500	
2400-2483.5MHz	50	500	
5725-5875MHz	50	500	
24.0-24.25GHz	250	2500	

Standard FCC 15.209

Frequency	Distance	Field	Strengths Limit			
(MHz)	Meters	μ V/m	dB(μV)/m			
0.009 ~ 0.490	300	2400/F(kHz)				
0.490 ~ 1.705	30	24000/F(kHz)				
1.705 ~ 30	30	30				
30 ~ 88	3	100	40.0			
88 ~ 216	3	150	43.5			
216 ~ 960	3	200	46.0			
960 ~ 1000	3	500	54.0			
Above 1000	3	Other:74.0 dB(µV)/m	Other:74.0 dB(µV)/m (Peak) 54.0 dB(µV)/m (Average)			

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Page 10 of 32

7.2. MEASUREMENT PROCEDURE

1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the guasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report No.: AGC07398161101FE03 Page 11 of 32

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/1MHz for Peak, 1MHz/10Hz for Average

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

Page 12 of 32

7.3. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 13 of 32

7.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION 30MHz-1GHZ

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 1	Polarization:	Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		49.4000	-0.28	11.28	11.00	40.00	-29.00	peak			
2		143.1667	-0.87	14.43	13.56	43.50	-29.94	peak			
3		442.2500	-0.42	20.35	19.93	46.00	-26.07	peak			
4		765.5833	-0.41	26.84	26.43	46.00	-19.57	peak			
5		794.6833	-0.63	27.25	26.62	46.00	-19.38	peak			
6	*	946.6500	0.70	29.91	30.61	46.00	-15.39	peak			

RESULT: PASS

Report No.: AGC07398161101FE03 Page 14 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 1	Polarization :	Vertical

										Limit:	_
										Margin:	
\vdash											
										6	
								4 X-nnA4m	men 3	www.iw	ywwyy
	2 *			3 X	المسالية مان	newlekerwhow	hydrophym of home	Mary Con			
1 .*	greght for	M	and the state of t	Mary Jay	Man - and Asses)	prof. 1 ·					
Mh	Mary	- Welver -									
Н											
									1.1		

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		47.7833	4.32	8.39	12.71	40.00	-27.29	peak			
2		141.5500	4.72	15.21	19.93	43.50	-23.57	peak			
3		354.9500	0.93	18.77	19.70	46.00	-26.30	peak			
4		742.9500	-1.55	26.43	24.88	46.00	-21.12	peak			
5		818.9333	-0.89	27.32	26.43	46.00	-19.57	peak			
6	*	911.0833	-0.96	28.92	27.96	46.00	-18.04	peak			

RESULT: PASS

Note:

Factor=Antenna Factor + Cable loss, Margin=Result-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The mode 1 is the worst case, and only the data of the worst case recorded in this test report.

Report No.: AGC07398161101FE03 Page 15 of 32

RADIATED EMISSION ABOVE 1GHZ

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 1	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
2425.013	100.13	-9.37	90.76	114	-23.24	peak		
2425.013	96.24	-9.37	86.87	94	-7.13	AVG		
4850.026	46.53	3.74	50.27	74	-23.73	peak		
4850.026	42.16	3.74	45.9	54	-8.1	AVG		
7275.039	39.55	8.14	47.69	74	-26.31	peak		
7275.039	35.21	8.14	43.35	54	-10.65	AVG		
Remark:								
Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 1	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type				
2425.013	98.06	-9.37	88.69	114	-25.31	peak				
2425.013	94.21	-9.37	84.84	94	-9.16	AVG				
4850.026	45.33	3.74	49.07	74	-24.93	peak				
4850.026	41.12	3.74	44.86	54	-9.14	AVG				
7275.039	39.47	8.14	47.61	74	-26.39	peak				
7275.039	35.16	8.14	43.3	54	-10.7	AVG				
Remark:	Remark:									
Factor = Ante	nna Factor + Ca	able Loss – Pr	e-amplifier.	•						

Report No.: AGC07398161101FE03 Page 16 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 2	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
2452.016	100.65	-9.63	91.02	114	-22.98	peak
2452.016	96.75	-9.63	87.12	94	-6.88	AVG
4904.032	47.14	3.76	50.9	74	-23.1	peak
4904.032	43.05	3.76	46.81	54	-7.19	AVG
7356.048	40.05	8.17	48.22	74	-25.78	peak
7356.048	7356.048 35.98 8.17 44.15 54 -9.85 AVG					
Remark:						
Factor = Ante	nna Factor + Ca	able Loss – Pr	e-amplifier.			

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 2	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
2452.016	98.61	-9.63	88.98	114	-25.02	peak
2452.016	94.85	-9.63	85.22	94	-8.78	AVG
4904.032	46.53	3.76	50.29	74	-23.71	peak
4904.032	42.51	3.76	46.27	54	-7.73	AVG
7356.048	39.85	8.17	48.02	74	-25.98	peak
7356.048	35.27	8.17	43.44	54	-10.56	AVG
Remark:						

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 17 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 3	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
2470.021	99.87	-9.61	90.26	114	-23.74	peak
2470.021	94.75	-9.61	85.14	94	-8.86	AVG
4940.042	48.26	3.83	52.09	74	-21.91	peak
4940.042	44.16	3.83	47.99	54	-6.01	AVG
7410.063	40.26	8.21	48.47	74	-25.53	peak
7410.063 35.95 8.21 44.16 54 -9.84 AVG						
Remark:						
Factor = Ante	nna Factor + Ca	able Loss – Pi	e-amplifier.			

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 3	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
2470.021	97.65	-9.61	88.04	114	-25.96	peak
2470.021	92.84	-9.61	83.23	94	-10.77	AVG
4940.042	47.66	3.83	51.49	74	-22.51	peak
4940.042	43.25	3.83	47.08	54	-6.92	AVG
7410.063	39.74	8.21	47.95	74	-26.05	peak
7410.063 35.16 8.21 43.37 54 -10.63 AVG						
Remark:						
Factor = Ante	enna Factor + Ca	able Loss – P	re-amplifier.			

Note: Other emissions from 8G to 25 GHz are considered as ambient noise. No recording in the test report. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Page 18 of 32

8. BAND EDGE EMISSION

8.1. MEASUREMENT PROCEDURE

- 1. The lowest or highest channels are tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.
- 2. Max hold the trace of the setp 1, and the EUT operates at hopping-on test mode to verify the largest spurious emissions power.
- 3. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz; VBW=1/on time(1KHz) / Sweep=AUTO

8.2 TEST SETUP

RADIATED EMISSION TEST SETUP

8.3 RADIATED TEST RESULT

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain. Field Strength=Factor + Reading level
- 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(µV) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Report No.: AGC07398161101FE03 Page 19 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 1	Polarization:	Horizontal

PK Value

AV Value

Report No.: AGC07398161101FE03 Page 20 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 1	Polarization :	Vertical

PK Value

AV Value

Report No.: AGC07398161101FE03 Page 21 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 3	Polarization :	Horizontal

PK Value

AV Value

Report No.: AGC07398161101FE03 Page 22 of 32

EUT:	RC FLYING FALCON	Model Name. :	AD11245
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC6V
Test Mode :	Mode 3	Polarization :	Vertical

PK Value

AV Value

Page 23 of 32

9. 20DB BANDWIDTH

9.1. MEASUREMENT PROCEDURE

- 1. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- 2. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
- 3. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

9.3. MEASUREMENT RESULTS

TEST ITEM	20DB BANDWIDTH
TEST MODE	Mode1;Mode2;Mode3

Test Data (MHz)	Criteria	
Low Channel	1.302	PASS
Middle Channel	1.202	PASS
High Channel	1.154	PASS

Page 24 of 32

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Page 25 of 32

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 26 of 32

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHz

RADIATED EMISSION TEST SETUP ABOVE 1GHz

Page 27 of 32

APPENDIX B: PHOTOGRAPHS OF EUT

ALL VIEW OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

BACK VIEW OF EUT

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

OPEN VIEW OF EUT-1

OPEN VIEW OF EUT-2

INTERNAL VIEW OF EUT-1

Report No.: AGC07398161101FE03 Page 32 of 32

INTERNAL VIEW OF EUT-2

----END OF REPORT----