Computación Gráfica 2020

Unidad 4 Espacios y Transformaciones

Definición

Transformación: función o mapeo que hace corresponder cada punto del espacio con otro punto del mismo espacio.

$$\mathbf{P} = T(\mathbf{P})$$

Transformaciones en el Pipeline

Procesamiento de Vértices: Model Matrix

Procesamiento de Vértices: View Matrix

Procesamiento de Vértices: Vertex Shading

Procesamiento de Vértices: Vertex Shader

Procesamiento de Vértices: Projection

Procesamiento de Vértices: Projection Matrix

Procesamiento de Primitivas: Clipping

Procesamiento de Vértices y Primitivas

Transformación Lineal

Es **Lineal** sii preserva la combinación lineal:

$$T(\alpha \mathbf{P}_1 + \beta \mathbf{P}_2) = \alpha T(\mathbf{P}_1) + \beta T(\mathbf{P}_2)$$

$$\mathbf{P} = \mathbf{M} \mathbf{P}$$

Puede representarse como matriz. Aplicar la transformación equivale a premultiplicar por la matriz correspondiente.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Ax + By \\ Cx + Dy \end{bmatrix}$$

$$\{v_i\} = \{v_1, v_2, \dots, v_m\}$$
 Conjunto de m vectores

$$u = \sum_{i=1}^{m} \alpha^{i} \mathbf{v}_{i}$$
 Combinación lineal de m vectores = vector

subíndice = columna o ítem
$$\longrightarrow$$
 v_1 v_2 v_3 \dots v_m $\sum_{i=1}^m \alpha^i v_i$

$$\{ \boldsymbol{v_i} \} \text{ es L.I} \Leftrightarrow \left(\sum \alpha^i \boldsymbol{v_i} = \boldsymbol{0} \Rightarrow \alpha^i = 0 \; \forall \; i \right) \quad \text{Independencia Lineal (LI)}$$

$$-\alpha^1 \boldsymbol{v_1} + \alpha^2 \boldsymbol{v_2} = \boldsymbol{0} \Rightarrow \boldsymbol{v} \; 2 = -\alpha^1 / \alpha^2 \boldsymbol{v_1}$$
 no se puede despejar uno en función del resto

$$\{e_i\} = \{e_1, e_2, \dots, e_n\}$$
 base = n vectores LI

$$\mathbf{v} = \sum_{i=1}^{n} \alpha^{i} \mathbf{e}_{i}$$
 vector = combinación lineal de n vectores base

$$\underline{\mathbf{v}} = \sum_{i=1}^{n} \alpha^{i} L(\mathbf{e}_{i}) = \sum_{i=1}^{n} \alpha^{i} \underline{\mathbf{e}}_{i}$$
 $\underline{\mathbf{v}}$ en función de $\underline{\mathbf{e}}_{i}$, se mantienen los α^{i}

Transformación Lineal

Dos formas de ver una transformación:

Vector original:
$$\mathbf{v} = \sum v_i \mathbf{e_i}$$

- (1) Componentes transformadas: $\underline{\mathbf{v}} = \sum \underline{\mathbf{v}}_i \mathbf{e}_i$
- (2) Base transformada: $\underline{\mathbf{v}} = \sum v_i \underline{\mathbf{e}_i}$

$$\underline{\underline{\mathbf{M}}} = \begin{bmatrix} \underline{e}_{x}^{1} & \underline{e}_{x}^{2} \\ \underline{e}_{y}^{1} & \underline{e}_{y}^{2} \end{bmatrix} \quad \Rightarrow \quad \underline{\mathbf{v}} = \underline{\underline{\mathbf{M}}} \, \mathbf{v}$$

Composición de Transformaciones

Aplicación de sucesivas transformaciones. Ejemplo:

- 1. Desplazar: $\underline{P}^1 = T^1(P)$
- 2. Escalar: $\mathbf{P}^2 = T^2(\mathbf{P}^1) = T^2(\mathbf{T}^1(\mathbf{P}))$
- 3. Rotar: $\underline{P}^3 = T^3(\underline{P}^2) = T^3(T^2(T^1(P)))$

Combinación: Utilizando las matrices asociadas:

$$\underline{\mathbf{P}}^{3} = \underline{\mathbf{T}}^{3} (\underline{\mathbf{T}}^{2} (\underline{\mathbf{T}}^{1} (\underline{\mathbf{P}}))) = \\
= \underline{\underline{\mathbf{M}}}^{3} \cdot (\underline{\underline{\mathbf{M}}}^{2} \cdot (\underline{\underline{\mathbf{M}}}^{1} \cdot \underline{\mathbf{P}})) = \\
= (\underline{\underline{\mathbf{M}}}^{3} \cdot \underline{\underline{\mathbf{M}}}^{2} \cdot \underline{\underline{\mathbf{M}}}^{1}) \cdot \underline{\mathbf{P}} = \underline{\underline{\hat{\mathbf{M}}}} \underline{\mathbf{P}}$$

$$\underline{\underline{\hat{\mathbf{M}}}}$$

Notar que el orden altera el resultado

Orden de Interpretación

Orden de Interpretación

escalar girar dibujar objeto trasnformad

ČG2019

Ejemplo

$$\begin{array}{c|cccc}
 & \mathbf{e}_{1} & \mathbf{e}_{2} & 0.1 & \mathbf{v} \\
\hline
 & 1.6 & -0.3 & 0.1 & \mathbf{v} \\
 & 1.2 & 0.4 & 0.2 & \mathbf{v}
\end{array}$$

Transformaciones Lineales

$$\underline{\mathbf{M}} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$$

Rotación:

$$\underline{\mathbf{M}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Transformaciones Lineales

Shear/Deslizamiento:

Transformaciones Lineales

Traslación/Desplazamiento:

Peeero....

Transformación Afín

Es **Afín** sii preserva la combinación afín:

$$T(\alpha \mathbf{P}_1 + \beta \mathbf{P}_2) = \alpha T(\mathbf{P}_1) + \beta T(\mathbf{P}_2), \quad \alpha + \beta = 1$$

Una **traslación** sí preserva la combinación afín

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} A \, 0 + B \, 0 \\ C \, 0 + D \, 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

No Puede representarse como matriz en R^N.

Espacio Afín: Puntos vs. Vectores

Transformación Afín

Es **Afín** sii preserva la combinación afín:

$$T(\alpha P_1 + \beta P_2) = \alpha T(P_1) + \beta T(P_2), \quad \alpha + \beta = 1$$

$$\underline{P} = \underline{\underline{M}} P$$

Sí puede representarse como matriz en "R^{N+1}".

$$\begin{bmatrix} A & B & T_{x} \\ C & D & T_{y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Ax + By + 1T_{x} \\ Cx + Dy + 1T_{y} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0x + 0y + 1 \end{bmatrix}$$

Esto no es Z!

Ejemplo

			V^1	
<u>e</u> 1	<u>e</u> 2	<u>O</u>	V^2	
			1	
1.3	-0.5	0.6	<u>V</u> ¹	
1.5	0.4	0.1	<u>V</u> ²	
0	0	1	1	

Transformación de Tangentes y Normales

Vector Normal: vector ortogonal a todos los vectores tangente

$$\underline{t}(\underline{P}) = \lim_{Q \to \underline{P}} (Q - \underline{P})$$
 $\underline{n} \cdot \underline{t} = 0$

En una transformación afín, la transformación de la normal original no es igual a la normal de la curva transformada

Transformación de Tangentes y Normales

Para una transformación afín A:

$$\begin{array}{c}
\mathbf{n} \cdot \mathbf{t} = 0 \\
\mathbf{n}^{T} \mathbf{t} = 0
\end{array}
\qquad
\begin{array}{c}
\mathbf{\hat{t}} = \mathbf{A} \mathbf{t} \\
\mathbf{t} = \mathbf{A}^{-1} \mathbf{\hat{t}}
\end{array}$$

$$\begin{array}{c}
(\mathbf{n}^{T} \mathbf{A}^{-1}) \mathbf{\hat{t}} = 0 \\
\mathbf{\hat{n}}^{T} \mathbf{\hat{t}} = 0
\end{array}
\qquad
\begin{array}{c}
(\mathbf{A}^{-1})^{T} \mathbf{n}
\end{array}$$

$$\mathbf{\hat{n}} \cdot \mathbf{\hat{t}} = 0$$

Espacio Proyectivo y Plano Ideal

Punto ideal:

- Si $w \ne 0$: la recta corta al plano en (x/w,y/w,1)
- Si w=0: la recta es horizontal, y se corresponde con un punto ideal, en el infinito, definido por un "vector" dirección.

Transformaciones Proyectivas

El efecto de una transformación lineal en \mathbb{R}^3 sobre los puntos de \mathbb{P}^2 se denomina transformación proyectiva.

No proyecta

$$\begin{vmatrix} \underline{e}^{x} & \underline{e}^{x} & \underline{e}^{x} \\ \underline{e}^{y} & \underline{e}^{y} & \underline{e}^{y} \\ \underline{e}^{w} & \underline{e}^{w} & \underline{e}^{w} \\ \underline{e}^{x} & \underline{e}^{y} & \underline{e}^{w} \end{vmatrix} \begin{vmatrix} \underline{p}^{x} \\ \underline{p}^{y} \\ \underline{p}^{w} \end{vmatrix}$$

Transformaciones Afines en P²

Transformaciones Afines en P³

Planos por el Origen en P^2 = Rectas en R^2

Planos por el Origen en P^2 = Rectas en R^2

En el espacio proyectivo todo par de rectas tiene un punto común.

Transformación Proyectiva General

El plano ideal puede inclinarse

Transformación Proyectiva General

Proyecciones

Transformación no invertibles, de rango incompleto.

Ejemplo: Perspectiva Central

Transformación Proyectiva General 3D

					V	
				\bigcirc	\bigcirc	
				WX	X	
				Wy	У	
				WZ	Z	
				W	0	
<u>e</u> xx	$\underline{\mathbf{e}}_{y}^{x}$	<u>e</u> _z ^x	$\mathbf{\underline{e}}_{W}^{X}$	<u>WX</u>	<u>X</u>	
	$\underline{\mathbf{e}}_{y}^{y}$	$\mathbf{\underline{e}}_{z}^{y}$	$\underline{\mathbf{e}}_{W}^{y}$	wy	又	
e z	e z	e z	e z	wz	7	

V

¿Preguntas?

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$