Math 723 Homework 5

Theo Koss

November 2024

Assignment 5

Chapter 5

- 15. Suppose $a \in \mathbb{R}$, f is a twice differentiable real function on (a, ∞) , and M_0, M_1, M_2 are least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively on (a, ∞) .
 - (a). Prove that

$$M_1^2 \leqslant 4M_0M_2$$

Proof. By Taylor's theorem, for h > 0 we have the approximation:

$$f'(x) = \frac{1}{2h} [f(x+2h) - f(x)] - hf''(\zeta)$$

For some $\zeta \in (x, x + 2h)$. Therefore,

$$M_1 = |f'(x)| \le hM_2 + \frac{M_0}{h}$$

Taking the derivative of the right (w.r.t. h) gives $M_2 - \frac{M_0}{h^2}$. Since we want to minimize RHS, we let the derivative equal 0. Then

$$M_2 = \frac{M_0}{h^2} \implies h^2 = \frac{M_0}{M_2} \implies h = \sqrt{\frac{M_0}{M_2}}$$

Plugging this value for h above gives

$$M_1 = \sqrt{\frac{M_0}{M_2}} \cdot M_2 + \frac{M_0}{\sqrt{\frac{M_0}{M_2}}} = 2\sqrt{M_0 M_2}$$

Squaring both sides:

$$M_1^2 = 4M_0 M_2$$

(b). Show that equality can actually happen. Define

$$f(x) = \begin{cases} 2x^2 - 1 & \text{if } (-1 < x < 0) \\ \frac{x^2 - 1}{x^2 + 1} & \text{if } (0 \le x < \infty) \end{cases}$$

We have $M_0 = 1$ because $|\lim_{x \to -1} f(x)| = 1$. Therefore least upper bound is 1. $M_1 = 4$ because $|\lim_{x \to -1} 4x| = 4$, and similarly, $M_2 = 4$ because f''(x) = 4 for -1 < x < 0. (and second derivative of the other piece is never greater than 4). Therefore

$$M_1^2 = 16 = 4M_0M_2$$

- (c). Does this inequality hold for vector valued functions? Not necessarily, because the mean value theorem need not hold for vector valued functions. (Remark 5.16)
- 22. Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point if f(x) = x.
 - (a). If f is differentiable and $f'(t) \neq 1$ for all real t, prove that f has at most one fixed point.

Proof. Let f be differentiable and $f'(t) \neq 1$ for all real t. Then define g(x) = f(x) - x, then we have roots of g are fixed points of f. To find roots of g, we can look at the derivative g'(x) = f'(x) - 1 (it is differentiable because f is, and clearly x is.) However we have that $f'(x) \neq 1$ for all real x, so the derivative is never equal to 0. This means the function g is monotonic, so it never crosses the x axis more than once, giving at most one fixed point of f. \square

(b). Show that

$$f(t) = t + (1 + e^t)^{-1}$$

Has no fixed point, although 0 < f'(t) < 1 for all real t.

Proof. Fixed point of f implies f(t) = t which gives $(1+e^t)^{-1} = 0$. However, $\frac{1}{1+e^t}$ is never 0. So there are no fixed points of f, but the derivative is

$$f'(t) = 1 - \frac{1 + e^t}{(1 + e^t)^2}$$

Which is between 0 and 1.

(c). If there is a constant A < 1 such that $|f'(t)| \leq A$ for all real t, prove that a fixed point of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real, and

$$x_{n+1} = f(x_n)$$

Proof. Again define g(x) = f(x) - x. We again never have g'(x) = 0 because |f'(x)| < 1. However, $\exists a, \ g(a) > 0$ and $\exists b, \ g(b) < 0$. Therefore, by the intermediate value theorem, there is a point c with g(c) = 0, which gives a fixed point x^* of f. Now, considering the sequence $\{x_n\}$, with

$$x_{n+1} = f(x_n)$$

and $x_1 \in \mathbb{R}$. We have $x_{n+1} - x^* = f(x_n) - f(x^*)$. Then, by the mean value theorem, there exists some ζ such that $x_{n+1} - x^* = f'(\zeta)(x_n - x^*)$. This gives

$$|x_{n+1} - x^*| \le A|x_n - x^*| \le A^2|x_{n-1} - x^*| \le \dots$$

And, since |A| < 1, this sequence converges to 0, so

$$\{x_n\} \to x^*$$

(d). I'm not sure what is meant by the zig-zag path.

Chapter 6

3. Define three functions $\beta_1, \beta_2, \beta_3$ as follows: $\beta_j(x) = 0$ if x < 0, $\beta_j = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_3(0) = \frac{1}{2}$. Let f be a bounded function on [-1, 1].

(a). Prove that $f \in R(\beta_1)$ iff f(x+) = f(0) and that then

$$\int f d\beta_1 = f(0)$$

Proof. (\Longrightarrow) Let $f \in R(\beta_1)$ and pick a $\varepsilon > 0$. Then, by theorem 6.6, we have for every $\varepsilon > 0$, there exists a partition P such that

$$U(P, f, \beta_1) - L(P, f, \beta_1) < \varepsilon$$

So, choose a parition $P = \{x_1, x_2, \dots, x_n\}$ containing 0, say $x_k = 0$. Because $\Delta \beta_i = 0$ everywhere *except* when β_1 jumps to 1, we have:

$$U(P, f, \beta_1) = M_k = \sup f(x)$$
 For $(0 = x_k < x < x_{k+1})$

And

$$L(P, f, \beta_1) = m_k = \inf f(x)$$
 For $(0 = x_k < x < x_{k+1})$

Are epsilon-close when x is between x_k and x_{k+1} . We also have that M_k and m_k are respectively the supremum and infimum of f(x), so

$$m_k \leqslant f(x) \leqslant M_k \implies |f(x) - f(0)| < \varepsilon$$

and so f(x+) = f(0).

(\iff) Let f(x+) = f(0). Then we have for any $\varepsilon > 0$, there exists a $\delta > 0$ with $|f(x) - f(0)| < \varepsilon$ when $0 < x < \delta$. Now consider a partition Q of [-1,1] which contains a point $x_k = 0$. By the equality above, we have for $x \in (0,\delta)$, that

$$|f(x) - f(0)| \leq M_k - m_k$$

$$= U(Q, f, \beta_1) - L(Q, f, \beta_1)$$

$$< \varepsilon$$

And so the Riemann-Stieltjes sums are epsilon-close, which gives

$$\int f d\beta_1$$

Exists, and equals f(0).

(b). State and prove a similar result for β_2 . Similarly, we have $f \in R(\beta_2) \iff f(x-) = f(0)$.

Proof. Same as above!

(c). Prove that $f \in R(\beta_3)$ iff f is continuous at 0.

Proof. (\Longrightarrow) Let $f \in R(\beta_3)$. Then there is a partition P for which the Riemann-Stieltjes sums are epsilon-close,

$$U(P, f, \beta_3) - L(P, f, \beta_3) < \varepsilon$$

In this case, because $\beta_3 = \frac{1}{2}$ for x = 0. We have that at the point in the partition where $x_k = 0$, $\Delta \beta_3 = \frac{1}{2}$ from above and below, so

$$\Delta \beta_3(x_k) = \frac{1}{2}, \ \Delta \beta_3(x_{k-1}) = \frac{1}{2}$$

And $\Delta \beta_3 = 0$ everywhere else. Thus,

$$U(P, f, \beta_3) = \frac{M_{k-1} - M_k}{2}$$

And

$$L(P, f, \beta_3) = \frac{m_{k-1} - m_k}{2}$$

So then

$$U(P, f, \beta_3) - L(P, f, \beta_3) = \frac{(M_{k-1} - M_k) - (m_{k-1} - m_k)}{2} < \varepsilon$$

But |f(x) - f(0)| is at most the max of $M_k - m_k$ or $M_{k-1} - m_{k-1}$. This gives

$$|f(x) - f(0)| \le (M_k - m_k) + (M_{k-1} - m_{k-1}) < \varepsilon$$

As required.

(\iff) Let $\varepsilon > 0$ be given and $|f(x) - f(0)| < \varepsilon$ for $x \in (0, \delta)$. Then,

$$|f(x) - f(0)| \le (M_k - m_k) + (M_{k-1} - m_{k-1}) < \varepsilon$$

Gives that the Riemann-Stieltjes sums are epsilon-close, so $f \in R(\beta_3)$.

(d). If f is continuous at 0, prove that

$$\int f d\beta_1 = \int f d\beta_2 = \int f d\beta_3 = f(0)$$

Proof. Let f be continuous at 0, then clearly

$$f(x+) = f(x-) = \lim_{x \to 0} f(x) = f(0)$$

Gives

$$\int f d\beta_1 = \int f d\beta_2 = \int f d\beta_3 = f(0)$$

By (a), (b), and (c).