

Teknik Pengolahan Data

Curve Fitting: Regresi dan Interpolasi

- Acuan
 - Chapra, S.C., Canale R.P., 1990, *Numerical Methods for Engineers*, 2nd Ed., McGraw-Hill Book Co., New York.
 - Chapter 11 dan 12, pp. 319-398.

- Mencari garis/kurva yang mewakili serangkaian titik data
- Ada dua cara untuk melakukannya, yaitu
 - Regresi
 - Interpolasi
- Aplikasi di bidang enjiniring
 - Pola perilaku data
 - Uji hipotesis

Regresi

- Apabila data menunjukkan tingkat kesalahan yang cukup signifikan atau menunjukkan adanya noise
- Untuk mencari satu kurva tunggal yang mewakili pola umum perilaku data
- Kurva yang dicari tidak perlu melewati setiap titik data

Interpolasi

- Diketahui bahwa data sangat akurat
- Untuk mencari satu atau serangkaian kurva yang melewati setiap titik data
- Untuk memperkirakan nilainilai di antara titik-titik data

- Ekstrapolasi
 - Mirip dengan interpolasi, tetapi untuk memperkirakan nilai-nilai di luar kisaran titik-titik data
 - Ekstrapolasi tidak disarankan

Curve Fitting terhadap Data Pengukuran

- Analisis pola perilaku data
 - Pemanfaatan pola data (pengukuran, eksperimen) untuk melakukan perkiraan
 - Apabila data persis (akurat): interpolasi
 - Apabila data tak persis (tak akurat): regresi
- Uji hipotesis
 - Pembandingan antara hasil teori atau hasil hitungan dengan hasil pengukuran

data

merepresentasikan sebaran

Beberapa Besaran Statistik

Rata-rata aritmatik, mean

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Deviasi standar, simpangan

baku, standard deviation
$$\Rightarrow s_Y = \sqrt{\frac{S_t}{n-1}} \quad S_t = \sum_{i=1}^n (y_i - \bar{Y})^2$$

■ Varian ('ragam'), variance

$$\Rightarrow s_Y^2 = \frac{S_t}{n-1}$$

Coefficient of variation

$$c. v. = \frac{s_Y}{\overline{Y}} \times 100\%$$

Distribusi Probabilitas

Regresi dan Interpolasi

Regresi Linear

Regresi: Metode Kuadrat Terkecil

- Mencari satu kurva atau satu fungsi (pendekatan) yang sesuai dengan pola umum yang ditunjukkan oleh data
 - Datanya menunjukkan kesalahan yang cukup signifikan
 - Kurva tidak perlu memotong setiap titik data
- Metode
 - Regresi linear
 - Regresi persamaan-persamaan tak-linear yang dilinearkan
 - Regresi polinomial
 - Regresi linear ganda
 - Regresi tak-linear

Regresi: Metode Kuadrat Terkecil

- Bagaimana caranya?
 - Program komputer
 - Spreadsheet (Microsoft Excel)
- Program aplikasi gratis, mirip MatLab
 - Octave
 - Scilab
 - Freemat

■ Mencari suatu kurva lurus yang cocok menggambarkan pola serangkaian titik data: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

```
y_{reg} = a_0 + a_1 x

a_0 intercept

a_1 slope
```

- Microsoft Excel
 - INTERCEPT $(y_1:y_n,x_1:x_n)$
 - SLOPE $(y_1:y_n,x_1:x_n)$

■ Kesalahan atau residu (e) adalah perbedaan antara nilai y sesungguhnya (data y) dan y nilai pendekatan (y_{reg}) menurut persamaan linear $y_{reg} = a_0 + a_1 x$

$$e = y - y_{reg} = y - (a_0 + a_1 x) = y - a_0 - a_1 x$$

Minimumkan jumlah kuadrat residu tersebut

$$\min[S_r] = \min\left[\sum e_i^2\right] = \min\left[\sum (y_i - a_0 - a_1 x_i)^2\right]$$

- lacktriangle Cara mendapatkan koefisien a_0 dan a_1
 - Diferensialkan persamaan tersebut dua kali, masing-masing terhadap a_0 dan a_1

$$\frac{\partial S_r}{\partial a_0} = -2\sum_i (y_i - a_0 - a_1 x_i) \qquad \frac{\partial S_r}{\partial a_1} = -2\sum_i (y_i - a_0 - a_1 x_i) x_i$$

Samakan kedua persamaan hasil diferensiasi tersebut dengan nol

$$\sum (y_i - a_0 - a_1 x_i) = 0 \qquad \sum (y_i - a_0 - a_1 x_i) x_i = 0$$

- Cara mendapatkan koefisien a_0 dan a_1
 - Selesaikan persamaan tersebut untuk mendapatkan a_0 dan a_1

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \bar{y} - a_1 \bar{x}$$

• Dalam hal ini, \bar{y} dan \bar{x} masing-masing adalah nilai y rerata dan x rerata

Contoh #1

Tabel data

i	X _i	$y_i = f(x_i)$
0	1	0.5
1	2	2.5
2	3	2
3	4	4
4	5	3.5
5	6	6
6	7	5.5

Grafik data

Hitungan Regresi Linear

i	Χi	y i	X i y i	xi ²	y reg	$(y_i - y_{reg})^2$	(yi-y _{mean}) ²
0	1	0.5	0.5	1	0.910714	0.168686	8.576531
1	2	2.5	5	4	1.75	0.5625	0.862245
2	3	2.0	6	9	2.589286	0.347258	2.040816
3	4	4.0	16	16	3.428571	0.326531	0.326531
4	5	3.5	17.5	25	4.267857	0.589605	0.005102
5	6	6.0	36	36	5.107143	0.797194	6.612245
6	7	5.5	38.5	49	5.946429	0.199298	4.290816
Σ =	28	24.0	119.5	140	Σ =	2.991071	22.71429

Hitungan Regresi Linear

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = \frac{7 \times 119.5 - 28 \times 24}{7 \times 140 - 28^2} = 0.839286$$

$$\bar{y} = \frac{24}{7} = 3.4$$

$$\bar{x} = \frac{28}{7} = 4$$

$$a_0 = 3.4 - 0.839286 \times 4 = 0.071429$$

Grafik Regresi Linear

- Kuantifikasi kesalahan
 - Kesalahan standar

$$s_{y/x} = \sqrt{\frac{S_r}{n-2}}$$
 $S_r = \sum (y_i - a_0 - a_1 x_i)^2$

Perhatikan kemiripannya dengan simpangan baku

$$s_y = \sqrt{\frac{S_t}{n-1}} \qquad S_t = \sum (y_i - \bar{y})^2$$

 Beda antara kedua kesalahan tersebut menunjukkan perbaikan atau pengurangan kesalahan

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$
 koefisien determinasi (coefficient of determination)

$$r = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \quad \longrightarrow \quad \text{koefisien korelasi}$$

$$(correlation coefficient)$$

Hitungan Regresi Linear

$$S_r = \sum (y_i - a_0 - a_1 x_i)^2 = 2.991071$$

$$S_t = \sum (y_i - \bar{y})^2 = 22.71429$$

$$r^2 = \frac{S_t - S_r}{S_t} = \frac{22.71429 - 2.991071}{22.71429}$$

$$r = 0.931836$$

Contoh #2

Tabel data

X _i	$y_i = f(x_i)$
1	5.5
2	6
3	3.5
4	4
5	2
6	2.5
7	0.5
	1 2 3 4 5 6

Grafik/kurva data

Regresi dan Interpolasi

Regresi persamaan non-linear

- Linearisasi persamaan-persamaan non-linear
 - Logaritmik menjadi linear
 - Eksponensial menjadi linear
 - Pangkat (polinomial tingkat n > 1) menjadi linear (polinomial tingkat 1)
 - DII.

Linearisasi Persamaan Non-linear

Linearisasi Persamaan Non-linear

Linearisasi Persamaan Non-linear

Regresi dan Interpolasi

Regresi Polinomial

Regresi Polinomial

- Sebagian data bidang teknik, walaupun menunjukkan pola yang jelas, namun pola tsb tidak dapat diwakili oleh sebuah garis lurus
 - Metode 1: transformasi koordinat (linearisasi persamaan non-linear)
 - Metode 2: regresi polinomial
 - Polinomial tingkat m

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$$

Jumlah residu kuadrat

$$S_r = \sum_{i=1}^n e_i^2 = (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m)^2$$

Metode kuadrat terkecil yang diperluas untuk regresi polinomial tingkat m

$$\frac{\partial S_r}{\partial a_0} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m)$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum_{i=1}^n x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m)$$

$$\vdots$$

$$\vdots$$

$$\frac{\partial S_r}{\partial a_m} = -2\sum_{i=1}^n x_i^m (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m)$$

31

 Persamaan-persamaan tersebut disamakan dengan nol dan disusun sedemikian rupa menjadi sistem persamaan linear

$$\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m) = 0$$

$$\sum_{i=1}^{n} x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m) = 0$$

$$\sum_{i=1}^{n} x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m) = 0$$

$$\vdots$$

$$\sum_{i=1}^{n} x_i^m (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m) = 0$$

Ada m+1 persamaan linear dengan m+1 variabel tak diketahui, yaitu a_0 , a_1 , a_2 , ..., a_m

$$a_{0}n + a_{1} \sum_{i=1}^{n} x_{i} + a_{2} \sum_{i=1}^{n} x_{i}^{2} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{m} = \sum_{i=1}^{n} y_{i}$$

$$a_{0} \sum_{i=1}^{n} x_{i} + a_{1} \sum_{i=1}^{n} x_{i}^{2} + a_{2} \sum_{i=1}^{n} x_{i}^{3} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{m+1} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$a_{0} \sum_{i=1}^{n} x_{i}^{2} + a_{1} \sum_{i=1}^{n} x_{i}^{3} + a_{2} \sum_{i=1}^{n} x_{i}^{4} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{m+2} = \sum_{i=1}^{n} x_{i}^{2} y_{i}$$

$$\vdots$$

$$a_{0} \sum_{i=1}^{n} x_{i}^{m} + a_{1} \sum_{i=1}^{n} x_{i}^{m+1} + a_{2} \sum_{i=1}^{n} x_{i}^{m+2} + \dots + a_{m} \sum_{i=1}^{n} x_{i}^{2m} = \sum_{i=1}^{n} x_{i}^{m} y_{i}$$

- Persamaan-persamaan linear ini dapat diselesaikan dengan metode
 - Eliminasi Gauss
 - Gauss-Jordan
 - Iterasi Jacobi
 - Inversi matriks

Inversi matriks

n	$\sum_{i=1}^{n} x_i$	$\sum_{i=1}^{n} x_i^2$		$\sum_{i=1}^{n} x_i^{m}$		$\left(\sum_{i=1}^{n} y_{i}\right)$
$\sum_{\substack{i=1\\n}}^{n} x_i$	$\sum_{i=1}^{n} x_i^2$	$\sum_{i=1}^{n} x_i^3$		$\sum_{i=1}^{n} x_i^{m+1}$	$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$	$\left \sum_{i=1}^{n} x_i y_i \right $
$\sum_{i=1}^{\infty} x_i^2$	$\sum_{i=1}^{N} x_i^3$	$\sum_{i=1}^{N} x_i^4$:	$\sum_{i=1}^{N} x_i^{m+2}$:		$\left \sum_{i=1}^{N} x_i^2 y_i \right $
$\left[\sum_{i=1}^{n} x_i^{m}\right]$	$\sum_{i=1}^{n} x_i^{m+1}$	$\sum_{i=1}^{n} x_i^{m+2}$	•	$\sum_{i=1}^{n} x_i^{2m}$		$\left[\sum_{i=1}^{n} x_i^{\ m} y_i\right]$

Inversi matriks

$$\begin{Bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_m \end{Bmatrix} = \begin{bmatrix}
n & \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 & \dots & \sum_{i=1}^n x_i^2 & \dots & \sum_{i=1}^n x_i^m \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 & \sum_{i=1}^n x_i^3 & \dots & \sum_{i=1}^n x_i^{m+1} \\ \sum_{i=1}^n x_i^2 & \sum_{i=1}^n x_i^3 & \sum_{i=1}^n x_i^4 & \dots & \sum_{i=1}^n x_i^{m+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^n x_i^m & \sum_{i=1}^n x_i^{m+1} & \sum_{i=1}^n x_i^{m+2} & \dots & \sum_{i=1}^n x_i^{2m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \\ \sum_{i=1}^n x_i^2 y_i \\ \vdots \\ \sum_{i=1}^n x_i^m y_i \end{bmatrix}$$

Contoh

Temukanlah kurva polinomial tingkat
 2 yang mewakili pola sebaran data
 pada tabel di sisi kanan ini

$$y = a_0 + a_1 x + a_2 x^2$$

Jawab

$$y = 2.47857 + 2.35929x + 1.86071x^2$$

$$r^2 = 1 - \frac{S_r}{S_t} = 1 - \frac{3.74657}{2513.39} = 0.99851$$

$$r = 0.99925$$

x_i	y_i
0	2.1
1	7.7
2	13.6
3	27.2
4	40.9
5	61.1

Regresi dan Interpolasi

Regresi Linear Ganda (Multiple Linear Regression)

• Misal variabel y adalah fungsi linear dua variabel bebas x_1 dan x_2

$$y = a_0 + a_1 x_1 + a_2 x_2$$

• Koefisien a_0 , a_1 , a_2 dalam persamaan di atas dapat ditemukan dengan metode kuadrat terkecil kesalahan

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_1 - a_2 x_2)^2$$

 Diferensial parsial persamaan tersebut terhadap masingmasing koefisien

$$\frac{\partial S_r}{\partial a_0} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n x_{1i} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum_{i=1}^n x_{2i} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

 Samakan persamaan diferensial tsb dengan nol dan atur sukusuku dalam persamaan

$$na_0 + \sum_{i=1}^n x_{1i}a_1 + \sum_{i=1}^n x_{2i}a_2 = \sum_{i=1}^n y_i$$

$$\sum_{i=1}^n x_{1i}a_0 + \sum_{i=1}^n x_{1i}x_{1i}a_1 + \sum_{i=1}^n x_{1i}x_{2i}a_2 = \sum_{i=1}^n x_{1i}y_i$$

$$\sum_{i=1}^n x_{2i}a_0 + \sum_{i=1}^n x_{2i}x_{1i}a_1 + \sum_{i=1}^n x_{2i}x_{2i}a_2 = \sum_{i=1}^n x_{2i}y_i$$

 Persamaan-persamaan linear tersebut dapat dituliskan dalam bentuk persamaan matriks

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{2i} \\ \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{1i} x_{1i} & \sum_{i=1}^{n} x_{2i} x_{1i} \\ \sum_{i=1}^{n} x_{2i} & \sum_{i=1}^{n} x_{2i} x_{1i} & \sum_{i=1}^{n} x_{2i} x_{2i} \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{cases} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_{1i} y_i \\ \sum_{i=1}^{n} x_{2i} y_i \end{cases}$$

Inversi matriks

$$\begin{cases}
a_0 \\ a_1 \\ a_2
\end{cases} = \begin{bmatrix}
n & \sum_{i=1}^n x_{1i} & \sum_{i=1}^n x_{2i} \\ \sum_{i=1}^n x_{1i} & \sum_{i=1}^n x_{1i} x_{1i} & \sum_{i=1}^n x_{2i} x_{1i} \\ \sum_{i=1}^n x_{2i} & \sum_{i=1}^n x_{2i} x_{1i} & \sum_{i=1}^n x_{2i} x_{2i}
\end{bmatrix}^{-1} \begin{cases}
\sum_{i=1}^n y_i \\ \sum_{i=1}^n x_{1i} y_i \\ \sum_{i=1}^n x_{2i} y_i
\end{cases}$$

Contoh

- Temukanlah persamaan linear yang mewakili pola sebaran data dalam tabel di samping ini
- Jawab

$$y = 5 + 4x_1 - 3x_2$$

$$r^2 = 1$$

X ₁	<i>x</i> ₂	у
0	0	5
2	1	10
2.5	2	9
1	3	0
4	6	3
7	2	27

 Regresi linear ganda dapat dipakai dalam kasus hubungan antar variabel yang berupa persamaan pangkat (power equations)

$$y = a_0 x_1^{a_1} x_2^{a_2} \dots x_m^{a_m}$$

- Persamaan di atas sangat bermanfaat pada kasus *fitting* data eksperimen
- Persamaan di atas ditransformasikan menjadi persamaan linear

$$\log y = \log a_0 + a_1 \log x_1 + a_2 \log x_2 + \dots + a_m \log x_m$$

Regresi dan Interpolasi

Bentuk Umum Persamaan Regresi Linear (Metode Kuadrat Terkecil)

Regresi Linear (Kuadrat Terkecil)

 Tiga jenis regresi yang telah dipaparkan, yaitu regresi linear, regresi polinomial, dan regresi linear ganda dapat dituliskan dalam bentuk umum model kuadrat terkecil

$$y = a_0 z_0 + a_1 z_1 + a_2 z_2 + ... + a_m z_m$$

- z_0, z_1, \dots, z_m adalah fungsi-fungsi yang berjumlah m+1
- m+1 adalah jumlah variabel bebas
- n adalah jumlah data
- Persamaan di atas dapat dituliskan dalam bentuk persamaan matriks

$$\{Y\} = [Z]\{A\}$$

Regresi Linear (Kuadrat Terkecil)

$${Y} = [Z]{A}$$
 $[Z]^T[Z]{A} = [Z]^T{Y}$

- {Y} adalah vektor kolom variabel tak bebas
- [Z] adalah matriks data nilai variabel bebas
- {A} adalah vektor kolom koefisien yang tidak diketahui

$$S_r = \sum_{i=1}^n \left(y_i - \sum_{j=0}^m a_j z_{ji} \right)^2$$

Regresi Linear (Kuadrat Terkecil)

$$[Z]^T[Z]{A} = [Z]^T{Y}$$

- Strategi penyelesaian
 - Dekomposisi LU
 - Metode Cholesky
 - Inversi matriks

$$\rightarrow$$
 $\{A\} = [[Z]^T [Z]]^{-1} [Z]^T \{Y\}$

Regresi dan Interpolasi

Interpolasi

Interpolasi

Interpolasi

- Situasi
 - Keperluan untuk memperkirakan nilai variabel di antara data akurat yang diketahui
 - Metode yang paling sering dipakai untuk keperluan tersebut adalah interpolasi polinomial
- Bentuk umum persamaan polinomial tingkat n

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

■ Hanya ada satu polinomial tingkat n atau tingkat yang lebih kecil yang melalui semua n+1 titik data

Interpolasi

- Penyelesaian persamaan polinomial tingkat n membutuhkan sejumlah n+1 titik data
- Metode untuk mencari polinomial tingkat n yang merupakan interpolasi sejumlah n+1 titik data:
 - Metode Newton
 - Metode Lagrange

Interpolasi Linear: Metode Newton

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Interpolasi Kuadratik: Metode Newton

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$= b_0 + b_1x - b_1x_0 + b_2x^2 + b_2x_0x_1 - b_2xx_0 - b_2xx_1$$

$$= (b_0 - b_1x_0 + b_2x_0x_1) + (b_1 - b_2x_0 - b_2x_1)x + (b_2)x^2$$

$$f_2(x) = a_0 + a_1 x + a_2 x^2 \begin{cases} a_1 = b_0 - b_1 x_0 + b_2 x_0 x_1 \\ a_2 = b_1 - b_2 x_0 - b_2 x_1 \\ a_2 = b_2 \end{cases}$$

Interpolasi Kuadratik: Metode Newton

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_1, x_0]$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}$$

Interpolasi Polinomial: Metode Newton

$$f_n(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$b_{0} = f(x_{0})$$

$$b_{1} = f[x_{1}, x_{0}]$$

$$b_{2} = f[x_{2}, x_{1}, x_{0}]$$

$$\vdots$$

$$\vdots$$

$$b_{n} = f[x_{n}, x_{n-1}, \dots, x_{1}, x_{0}]$$

Interpolasi Polinomial: Metode Newton

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

$$f[x_n, x_{n-1}, \dots, x_1, x_0] = \frac{f[x_n, x_{n-1}, \dots, x_2, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_1, x_0]}{x_n - x_0}$$

$$f_n(x) = f(x_0) + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_2, x_1, x_0] + \cdots$$
$$(x - x_0)(x - x_1)\cdots(x - x_{n-1})f[x_n, x_{n-1}, \dots, x_0]$$

Interpolasi Polinomial: Metode Newton

;	V	f(v)	Langkah Hitungan		
i	X _i	$f(x_i)$	ke-1	ke-2	ke-3
0	<i>x</i> ₀	$f(x_0)$	$f[x_1,x_0]$	$f[x_2,x_1,x_0] \longrightarrow$	$f[x_3, x_2, x_1, x_0]$
1	<i>X</i> ₁	$f(x_1)$	$ f[x_2,x_1] $	$f[x_3,x_2,x_1]$	
2	<i>X</i> ₂	$f(x_2)$	$f[x_3,x_2]$		
3	<i>X</i> ₃	$f(x_3)$			

Interpolasi Polinomial: Metode Lagrange

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

$$L_i(x) = \prod_{\substack{k=0\\k \neq i}}^n \frac{x - x_k}{x_i - x_k}$$

Interpolasi Polinomial: Metode Lagrange

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$
 $L_i(x) = \prod_{\substack{k=0 \ k \neq i}}^n \frac{x - x_k}{x_i - x_k}$

Contoh interpolasi polinomial order 3:

$$f_3(x) = \left[\frac{x - x_1}{x_0 - x_1} \frac{x - x_2}{x_0 - x_2} \frac{x - x_3}{x_0 - x_3} \right] f(x_0) + \left[\frac{x - x_0}{x_1 - x_0} \frac{x - x_2}{x_1 - x_2} \frac{x - x_3}{x_1 - x_3} \right] f(x_1) + \cdots$$

$$+ \left[\frac{x - x_0}{x_2 - x_0} \frac{x - x_1}{x_2 - x_1} \frac{x - x_3}{x_2 - x_1} \right] f(x_2) + \left[\frac{x - x_0}{x_3 - x_0} \frac{x - x_1}{x_3 - x_0} \frac{x - x_2}{x_3 - x_1} \frac{x - x_2}{x_3 - x_2} \right] f(x_3)$$

Contoh interpolasi

i	X _i	$f(x_i)$
0	1	1.5
1	4	3.1
2	5	6
3	6	2.1

Regresi dan Interpolasi

Spline

Interpolasi: Spline

- Jumlah titik data $n+1 \rightarrow$ interpolasi polinomial tingkat n
 - Tingkat besar, $n \gg$, mengalami kesulitan apabila titik-titik data menunjukkan adanya perubahan tiba-tiba di suatu titik tertentu (perubahan gradien secara tiba-tiba)
 - Dalam situasi tsb, polinomial tingkat kecil, $n \ll$, dapat lebih representatif untuk mewakili pola data
 - Spline
 - Cubic splines (n = 3)
 - Quadratic splines
 - Linear splines

Interpolasi Polinomial vs Spline

■ Polinomial tingkat *n*

Linear Splines

■ *Spline* tingkat 1 : garis lurus

■ Data urut $: x_0, x_1, x_3, ..., x_n$

$$f(x) = f(x_0) + m_0(x - x_0) x_0 \le x \le x_1$$

$$f(x) = f(x_1) + m_1(x - x_1) x_1 \le x \le x_2$$

•

$$f(x) = f(x_{n-1}) + m_{n-1}(x - x_{n-1}) \quad x_{n-1} \le x \le x_n$$

Gradien:

$$m_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Linear Splines

- Linear spline
 - Dengan demikian, linear spline adalah sama dengan interpolasi linear
 - Kekurangan linear spline adalah ketidak-mulusan kurva interpolasi
 - Terdapat perubahan slope yang sangat tajam di titik-titik data atau di titik-titik pertemuan kurva spline (knot)
 - Derivatif pertama fungsi *linear spline* diskontinu di titik-titik knot
 - Kelemahan linear spline tersebut diatasi dengan pemakaian polinomial yang memiliki tingkat lebih tinggi yang menjamin kemulusan kurva spline di knots dengan cara menyamakan nilai derivatif di titik-titik knot

- Quadratic splines
 - Untuk mendapatkan kurva yang memiliki diferensial/laju-perubahan ke-m kontinu di titik knot, maka diperlukan kurva spline yang bertingkat paling kecil m+1
 - Yang paling banyak dipakai adalah spline tingkat 3 (cubic spline): diferensial pertama dan kedua kontinu di titik-titik knot
 - Ketidak-mulusan diferensial ketiga, keempat, dst. umumnya tidak begitu tampak secara visual

- Tujuan: mendapatkan polinomial tingkat 2 untuk setiap interval titik-titik data
- Polinomial tingkat 2 tsb harus memiliki diferensial pertama (laju perubahan) yang kontinu di titik-titik data
- Polinomial tingkat 2:

$$f(x) = a_i x^2 + b_i x^2 + c_i$$

- Untuk n+1 titik data (i=1,2,...,n), terdapat n interval, sehingga terdapat 3n koefisien yang harus dicari (a_i,b_i,c_i) , i=1,2,...,n
- Perlu persamaan sejumlah 3n

- Ke- 3n persamaan tsb adalah (1)
 - Kurva *spline* memotong titik-titik data (*knot*): interval i-1 dan i bertemu di titik data $\{x_{i-1}, f(x_{i-1})\}$

$$a_{i-1}x_{i-1}^2 + b_{i-1}x_{i-1} + c_{i-1} = f(x_{i-1})$$
 $i = 2, 3, ..., n$
 $a_ix_{i-1}^2 + b_ix_{i-1} + c_i = f(x_{i-1})$ $2(n-1)$ pers.

- Ke- 3n persamaan tsb adalah (2)
 - Kurva *spline* di interval pertama memotong titik data pertama (i=1) dan kurva *spline* di interval terakhir memotong titik data terakhir (i=n)

$$a_1 x_0^2 + b_1 x_0 + c_1 = f(x_0)$$

 $a_n x_n^2 + b_n x_n + c_n = f(x_n)$
2 pers.

- Ke- 3n persamaan tsb adalah (3)
 - Diferensial (gradien) kurva spline di dua interval berurutan adalah sama di titik data yang bersangkutan

$$f'^{(x)} = 2ax + b \Rightarrow 2a_{i-1}x_{i-1} + b_{i-1} = 2a_ix_{i-1} + b_i$$
 $i = 2, 3, ..., n$ $(n-1)$ pers.

 Diferensial kedua (laju perubahan gradien) kurva spline di titik data pertama sama dengan nol

$$a_i = 0$$
 1 pers.

Konsekuensi: 2 titik data pertama (i = 0 dan i = 1) dihubungkan dengan garis lurus

■ Dengan demikian, jumlah persamaan seluruhnya adalah 2(n-1) + 2 + (n-1) + 1 = 3n

- Tujuan: mencari polinomial tingkat 3 untuk setiap interval titik-titik data.
 - Polinomial tingkat 3 tsb harus memiliki diferensial pertama (gradien) dan diferensial kedua (laju perubahan gradien) yang kontinu di titik-titik data.
 - Polinomial orde 3:

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

- Untuk (n+1) titik data $(i=0,1,2,\ldots,n)$, terdapat n interval, shg. terdapat 4n koefisien yang harus dicari (a_i,b_i,c_i,d_i) , $i=1,2,\ldots,n$
 - Perlu persamaan sejumlah 4n

- Ke-4n persamaan tsb adalah sbb.
 - Kurva spline memotong titik-titik data (knot): interval i-1 dan i bertemu di titik data $\{x_{i-1}, f(x_{i-1})\} \rightarrow (2n-2)$ pers.
 - Kurva spline di interval pertama memotong titik data pertama dan kurva spline terakhir memotong titik data terakhir → 2 pers.
 - Diferensial pertama kurva *spline* di dua interval berurutan adalah sama di titik data ybs. \rightarrow (n 1) pers.
 - Diferensial kedua kurva *spline* di dua interval berurutan adalah sama di titik data ybs. \rightarrow (n 1) pers.
 - Diferensial kedua kurva spline di titik data pertama dan terakhir sama dengan nol → 2 pers.

- Ke- 4n persamaan tsb.
 - Syarat kelima membawa konsekuensi sbb.
 - Kurva *spline* di interval pertama dan interval terakhir berupa garis lurus
 - dua titik data pertama dihubungkan dengan sebuah garis lurus
 - dua titik data terakhir dihubungkan dengan sebuah garis lurus
 - Ada sebuah syarat alternatif sebagai pengganti syarat kelima tsb
 - Derivatif kedua di titik knot terakhir diketahui

■ Diperoleh 4n persamaan yang harus diselesaikan untuk mencari 4n koefisien, a_i , b_i , c_i , d_i 2(n-1)+2+(n-1)+(n-1)+2=4n

- Dimungkinkan untuk melakukan manipulasi matematis shg diperoleh suatu teknik cubic splines yang hanya memerlukan n-1 penyelesaian (lihat uraian di buku acuan)
 - Chapra, S.P., Canale, R.P., 1985, Numerical Methods for Engineers, McGraw-Hill Book Co., New York, hlm. 395-396).

2 *unknows* di setiap interval:

$$f_i(x) = \frac{f''(x_{i-1})}{6(x_i - x_{i-1})}$$

$$f_i(x) = \frac{f''(x_{i-1})}{6(x_i - x_{i-1})} (x_i - x)^3 + \frac{f''(x_{i-1})}{6(x_i - x_{i-1})} (x - x_{i-1})^3 +$$

$$+ \left[\frac{f(x_{i-1})}{(x_i - x_{i-1})} - \frac{f''(x_{i-1})(x_i - x_{i-1})}{6} \right] (x_i - x) +$$

$$+ \left[\frac{f(x_i)}{(x_i - x_{i-1})} - \frac{f''(x_{i-1})(x_i - x_{i-1})}{6} \right] (x - x_{i-1})$$

$$(x_{i} - x_{i-1})f''(x_{i-1}) + 2(x_{i+1} - x_{i-1})f''(x_{i}) + (x_{i+1} - x_{i})f''(x_{i+1}) = \frac{6}{(x_{i+1} - x_{i})}[f(x_{i+1}) - f(x_{i})] + \frac{6}{(x_{i} - x_{i-1})}[f(x_{i-1}) - f(x_{i})]$$

$$\begin{cases}
n \text{ interval} \\
f''(x_0) = 0 \\
f''(x_n) = 0
\end{cases} \implies (n-1) \text{ pers.}$$

Terima kasih