Algorithmen und Datenstrukturen (Master) WiSe 19/20

Benedikt Lüken-Winkels

February 8, 2020

Contents

1 Aufgabe 1: 2

1 Aufgabe 1:

Beschreiben Sie jeweils eine Lösung für das Union-Find-Problem mit Laufzeit

- 1. $O(\log n)$ (amortisiert) für UNION und O(1) für FIND
- 2. O(1) für UNION und $O(\log n)$ für FIND

wobei n die Anzahl der Elemente ist. Begründen Sie in beiden Fällen die entsprechenden Laufzeiten.

Lösung 1.)

Union in $O(\log n)$, Find in O(1). **Idee:** Relable the smaller half, sodass jedes Element nur maximal $\log n$ geändert wird:

Datenstruktur

```
name[x]: Name des Blocks, der x enthält
size[A]: Größe des Blocks A (Init 1)
list[A]: Liste der Elemente in Block A
```

Algorithmus 1: Initialisierung

```
\begin{array}{c|c} \mathbf{foreach} \ x \in N \ \mathbf{do} \\ & \mathrm{name}[\mathbf{x}] \leftarrow \mathbf{x}; \\ & \mathrm{size}[\mathbf{x}] \leftarrow 1; \\ & \mathrm{list}[\mathbf{x}] \leftarrow \{\mathbf{x}\}; \\ \mathbf{end} \end{array}
```

Algorithmus 2 : Find(x)

return name[x];

Algorithmus 3: Union(A,B)

Laufzeit

Find: O(1). Lookup im Array.

Union: $O(\log n)$. Jedes x kann maximal $\log n$ mal seinen Namen ändern, da es sich nach jeder Namensänderung in einer doppelt so großen Liste befindet.

Lösung 2.)

Union in O(1) und Find in $O(\log n)$. **Idee:** Bei Union Anhängen des kleineren Teilbaums an den Größeren.

Das ergibt die Abschätzung size[x] $\geq 2^{h\ddot{o}he(x)}$, bzw $\log_2(\text{size}[x]) \geq h\ddot{o}he(x)$, also wird der Baum nie tiefer, als $\log n$

Datenstruktur

```
name[x]: Name des Blocks mit Wurzel x (nur, wenn x eine Wurzel relevant)
size[x]: Anzahl der Knoten im Unterbaum mit Wurzel x
wurzel[x]: Wurzel des Blocks mit Namen x
vater[x]: Vaterknoten des Knotens x. 0, wenn x Wurzel
```

Algorithmus 4: Initialisierung

```
\begin{array}{l} \textbf{foreach} \ x \in N \ \textbf{do} \\ & \text{name}[\mathbf{x}] \leftarrow \mathbf{x}; \\ & \text{size}[\mathbf{x}] \leftarrow 1; \\ & \text{wurzel}[\mathbf{x}] \leftarrow \mathbf{x}; \\ & \text{vater}[\mathbf{x}] \leftarrow 0; \\ & \textbf{end} \end{array}
```

Algorithmus 5 : Find(x) while $vater[x] \neq 0$ do | $x \leftarrow vater[x]$; end return name[x];

Algorithmus 6: Union(A, B, C)

```
\begin{array}{l} a \leftarrow wurzel[A]; \\ b \leftarrow wurzel[B]; \\ \textbf{if } size[a] \geq size[b] \textbf{ then} \\ | vater[b] \leftarrow a; \\ | name[a] \leftarrow C; \\ | wurzel[C] \leftarrow a; \\ | size[a] \leftarrow size[a] + size[b]; \\ \textbf{else} \\ | analog; \\ \textbf{end} \end{array}
```

Laufzeit

Find: $O(\log n)$. Höhe des Baums bleibt maximal $\log n$, da der kleinere Teilbaum immer an die Wurzel des Größeren gehangen wird und sich die Tiefe des Baums durch seine Größe abschätzen lässt.

Union: O(1). Lediglich die Wurzel muss umgeschrieben werden.