Package 'unusualprofile'

February 15, 2024

Type Package

```
Title Calculates Conditional Mahalanobis Distances
Version 0.1.4
Description Calculates a Mahalanobis distance for every row of a set of
      outcome variables (Mahalanobis, 1936
      <doi:10.1007/s13171-019-00164-5>). The conditional Mahalanobis
      distance is calculated using a conditional covariance matrix (i.e., a
      covariance matrix of the outcome variables after controlling for a set
      of predictors). Plotting the output of the cond maha() function can
      help identify which elements of a profile are unusual after
      controlling for the predictors.
License GPL (>= 3)
URL https://github.com/wjschne/unusualprofile,
      https://wjschne.github.io/unusualprofile/
BugReports https://github.com/wjschne/unusualprofile/issues
Depends R (>= 3.1)
Imports dplyr, ggnormalviolin, ggplot2, magrittr, purrr, rlang, stats,
      tibble, tidyr
Suggests bookdown, covr, extrafont, forcats, glue, kableExtra, knitr,
      lavaan, lifecycle, mvtnorm, patchwork, ragg, rmarkdown,
      roxygen2, scales, simstandard (>= 0.6.3), stringr, sysfonts,
      testthat
VignetteBuilder knitr
Encoding UTF-8
Language en-US
LazyData TRUE
RoxygenNote 7.3.1
NeedsCompilation no
Author W. Joel Schneider [aut, cre] (<a href="https://orcid.org/0000-0002-8393-5316">https://orcid.org/0000-0002-8393-5316</a>),
      Feng Ji [aut]
```

2 cond_maha

Maintainer W. Joel Schneider <w.joel.schneider@gmail.com>

Repository CRAN

Date/Publication 2024-02-14 23:20:03 UTC

R topics documented:

	cond_maha
	$d_example \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	plot.cond_maha
	plot.maha
	proportion2percentile
	proportion_round
	R_example
Index	

cond_maha

Calculate the conditional Mahalanobis distance for any variables.

Description

Calculate the conditional Mahalanobis distance for any variables.

Usage

```
cond_maha(
  data,
  R,
  v_dep,
  v_ind = NULL,
  v_ind_composites = NULL,
  mu = 0,
  sigma = 1,
  use_sample_stats = FALSE,
  label = NA
)
```

Arguments

data	Data.frame with the independent and dependent variables. Unless mu and sigma are specified, data are assumed to be z-scores.
R	Correlation among all variables.
v_dep	Vector of names of the dependent variables in your profile.
v_ind	Vector of names of independent variables you would like to control for.

cond_maha 3

v_ind_composites

Vector of names of independent variables that are composites of dependent vari-

ables

mu A vector of means. A single value means that all variables have the same mean.

sigma A vector of standard deviations. A single value means that all variables have the

same standard deviation

use_sample_stats

If TRUE, estimate R, mu, and sigma from data. Only complete cases are used

(i.e., no missing values in v_dep, v_ind, v_ind_composites).

label optional tag for labeling output

Value

a list with the conditional Mahalanobis distance

- dCM = Conditional Mahalanobis distance
- dCM_df = Degrees of freedom for the conditional Mahalanobis distance
- dCM_p = A proportion that indicates how unusual this profile is compared to profiles with the same independent variable values. For example, if dCM_p = 0.88, this profile is more unusual than 88 percent of profiles after controlling for the independent variables.
- dM_dep = Mahalanobis distance of just the dependent variables
- dM_dep_df = Degrees of freedom for the Mahalanobis distance of the dependent variables
- dM_dep_p = Proportion associated with the Mahalanobis distance of the dependent variables
- dM_ind = Mahalanobis distance of just the independent variables
- dM_ind_df = Degrees of freedom for the Mahalanobis distance of the independent variables
- dM_ind_p = Proportion associated with the Mahalanobis distance of the independent variables
- v_dep = Dependent variable names
- v_ind = Independent variable names
- v_ind_singular = Independent variables that can be perfectly predicted from the dependent variables (e.g., composite scores)
- v_ind_nonsingular = Independent variables that are not perfectly predicted from the dependent variables
- data = data used in the calculations
- d_ind = independent variable data
- d_inp_p = Assuming normality, cumulative distribution function of the independent variables
- d_dep = dependent variable data
- d_dep_predicted = predicted values of the dependent variables
- d_dep_deviations = d_dep d_dep_predicted (i.e., residuals of the dependent variables)
- d_dep_residuals_z = standardized residuals of the dependent variables
- d_dep_cp = conditional proportions associated with standardized residuals
- d_dep_p = Assuming normality, cumulative distribution function of the dependent variables

4 cond_maha

• R2 = Proportion of variance in each dependent variable explained by the independent variables

- zSEE = Standardized standard error of the estimate for each dependent variable
- SEE = Standard error of the estimate for each dependent variable
- ConditionalCovariance = Covariance matrix of the dependent variables after controlling for the independent variables
- distance_reduction = 1 (dCM / dM_dep) (Degree to which the independent variables decrease the Mahalanobis distance of the dependent variables. Negative reductions mean that the profile is more unusual after controlling for the independent variables. Returns 0 if dM_dep is 0.)
- variability_reduction = 1 sum((X_dep predicted_dep) ^ 2) / sum((X_dep mu_dep) ^ 2) (Degree to which the independent variables decrease the variability the dependent variables (X_dep). Negative reductions mean that the profile is more variable after controlling for the independent variables. Returns 0 if X_dep == mu_dep)
- mu = Variable means
- sigma = Variable standard deviations
- d_person = Data frame consisting of Mahalanobis distance data for each person
- d_variable = Data frame consisting of variable characteristics
- label = label slot

Examples

```
library(unusualprofile)
library(simstandard)
m <- "
Gc = 0.85 * Gc1 + 0.68 * Gc2 + 0.8 * Gc3
Gf = 0.8 * Gf1 + 0.9 * Gf2 + 0.8 * Gf3
Gs = 0.7 * Gs1 + 0.8 * Gs2 + 0.8 * Gs3
Read =~ 0.66 * Read1 + 0.85 * Read2 + 0.91 * Read3
Math =~ 0.4 \times Math1 + 0.9 \times Math2 + 0.7 \times Math3
Gc \sim 0.6 * Gf + 0.1 * Gs
Gf \sim 0.5 * Gs
Read \sim 0.4 * Gc + 0.1 * Gf
Math ~ 0.2 * Gc + 0.3 * Gf + 0.1 * Gs"
# Generate 10 cases
d_demo <- simstandard::sim_standardized(m = m, n = 10)</pre>
# Get model-implied correlation matrix
R_all <- simstandard::sim_standardized_matrices(m)$Correlations$R_all</pre>
cond_maha(data = d_demo,
          R = R_all
          v_dep = c("Math", "Read"),
          v_ind = c("Gf", "Gs", "Gc"))
```

d_example 5

d_example

An example data.frame

Description

A dataset with 1 row of data for a single case.

Usage

```
d_example
```

Format

A data frame with 1 row and 8 variables:

- **X_1** A predictor variable
- **X_2** A predictor variable
- X_3 A predictor variable
- Y_1 An outcome variable
- Y_2 An outcome variable
- Y_3 An outcome variable
- X A latent predictor variable
- Y A latent outcome variable

plot.cond_maha

Plot the variables from the results of the cond_maha function.

Description

Plot the variables from the results of the cond_maha function.

Usage

```
## S3 method for class 'cond_maha'
plot(
    x,
    ...,
    p_tail = 0,
    family = "sans",
    score_digits = ifelse(min(x$sigma) >= 10, 0, 2)
)
```

6 plot.maha

Arguments

x The results of the cond_maha function.
... Arguments passed to print function
p_tail The proportion of the tail to shade
family Font family.
score_digits Number of digits to round scores.

Value

A ggplot2-object

plot.maha Plot objects of the maha class (i.e, the results of the cond_maha function using dependent variables only).

Description

Plot objects of the maha class (i.e, the results of the cond_maha function using dependent variables only).

Usage

```
## S3 method for class 'maha'
plot(
    x,
    ...,
    p_tail = 0,
    family = "sans",
    score_digits = ifelse(min(x$sigma) >= 10, 0, 2)
)
```

Arguments

x The results of the cond_maha function.
 ... Arguments passed to print function
 p_tail Proportion in violin tail (defaults to 0).
 family Font family.
 score_digits Number of digits to round scores.

Value

A ggplot2-object

proportion2percentile 7

 $\begin{tabular}{ll} proportion 2 percentile & Rounds & proportions & to & significant & digits & both & near & 0 & and & 1, & then & converts & to & percentiles \\ \end{tabular}$

Description

Rounds proportions to significant digits both near 0 and 1, then converts to percentiles

Usage

```
proportion2percentile(
  p,
  digits = 2,
  remove_leading_zero = TRUE,
  add_percent_character = FALSE
)
```

Arguments

Value

character vector

Examples

```
proportion2percentile(0.01111)
```

proportion_round

Rounds proportions to significant digits both near 0 and 1

Description

Rounds proportions to significant digits both near 0 and 1

Usage

```
proportion_round(p, digits = 2)
```

8 R_example

Arguments

p probability
digits rounding digits

Value

numeric vector

Examples

```
proportion_round(0.01111)
```

R_example

An example correlation matrix

Description

A correlation matrix used for demonstration purposes It is the model-implied correlation matrix for this structural model: $X = 0.7 * X_1 + 0.5 * X_2 + 0.8 * X_3 Y = 0.8 * Y_1 + 0.7 * Y_2 + 0.9 * Y_3 Y = 0.6 * X$

Usage

R_example

Format

A matrix with 8 rows and 8 columns:

- X_1 A predictor variable
- X_2 A predictor variable
- X_3 A predictor variable
- Y_1 An outcome variable
- Y_2 An outcome variable
- Y_3 An outcome variable
- **X** A latent predictor variable
- Y A latent outcome variable

Index

```
* datasets
    d_example, 5
    R_example, 8

cond_maha, 2

d_example, 5

plot.cond_maha, 5

plot.maha, 6

proportion2percentile, 7

proportion_round, 7

R_example, 8
```