Alberto Arath Figueroa Salomon

Se tiene una neurona con los siguientes pesos $w_0 = -4$, $w_1 = 3$, $w_2 = 1$ y función de activación Hacer lo siguiente:

- 1. Dibuje la neurona con sus pesos y sus entradas y salida mostrando la entrada que está fija a 1.
- 2. Calcular el producto W^TX y graficarlo en Geo Gebra 3D.

$$wtx(x_1, x_2) = 3x_1 + x_2 - 4$$

3. Encontrar la ecuación de la recta que divide al espacio de entrada en 2 partes y graficarla usando GeoGeora~2D.

$$0 = 3x_1 + x_2 - 4$$

4. Graficar en Geo Gebra 3D la salida de la neuron
a $\boldsymbol{y}.$

Diseñar una neurona que divida el espacio de entrada (x_1, x_2) con una línea recta con pendiente m = 3, b = -2 (b es el valor que toma el eje x_2 cuando $x_1 = 0$, es decir, donde la recta cruza con el eje x_2) y función de activación f(wtx) = Sigmoide. Una vez diseñada la neurona haga lo siguiente:

- 1. Dibuje la neurona con sus pesos y sus entradas y salida mostrando la entrada que está fija a 1.
- 2. Calcular el producto W^TX y graficarlo en Geo Gebra 3D.

$$wtx(x_1, x_2) = -3x_1 + x_2 + 2$$

3. Encontrar la ecuación de la recta que divide al espacio de entrada en 2 partes y graficarla usando GeoGebra 2D.

$$0 = -3x_1 + x_2 + 2$$

4. Graficar en Geo Gebra 3D la salida de la neuron
a $\boldsymbol{y}.$

