Realizing Human-Robot Cooperative Rope-Spinning with Central Pattern Generator-Based Control Using Visual Information

○Kakeru Yamasaki*¹, Koki Iida *¹, Patrick Hénaff *²,³, Tomohiro Shibata *¹

*¹ The Graduate School of Life Science and Systems Engineering, Kyutech, Japan

*² LORIA UMR 7503 laboratory, University of Lorraine-INRIA-CNRS, F-54506 Nancy, France

*³ ENIB - École Nationale d'Ingénieurs de Brest, Lab-STICC UMR CNRS 6285, Brest, France

yamasaki586868@gmail.com

Background

1 Manipulating flexible objects

② Personalized collaborative movements

Rope-Spinning Robot

Related Works

Category	Study / Reference	Task Type	Control Method	Key Features	Relation to This Study
1. Handshake Robots (Rigid Interaction)	Jouaiti et al. [1], Melnyk et al. [2], Yamasaki et al. [3]	Handshaking	CPG with force feedback	Capable of human rhythm synchronization; high adaptability	Basis of the CPG model used in this study
2. Handshake Robots (Model- Based)	Tagne et al. [4], Costanzo et al. [5]	Handshaking	Harmonic oscillator models	Require parameter tuning; less flexible	This study favors bio-inspired CPG for adaptability
3. Flexible Object HRI (Force- based)	Iida et al. [6]	Rope spinning	CPG with force feedback	Real-time response to tension; high synchronization fidelity	Previous work by the authors; used force instead of vision
4. This Study	This Paper	Rope spinning	CPG with vision feedback	Non-contact sensing	Vision-only feedback

Vision sensor feedback is used as input to the Central Pattern Generator.

^[1] M. Jouaiti et al., Frontiers in Neurorobotics, 2018

^[2] A. Melnyk et al., IEEE ELNANO, 2016

^[3] K. Yamasaki et al., Advanced Robotics, 2024

^[4] G. Tagne et al., IEEE IROS, 2016

^[5] M. Costanzo et al., Frontiers in Robotics and AI, 2021

^[6] K. Iida et al., SAES2025, 2024

Research Purpose

To realize real-time coordinated motion between a human and a robot through a flexible object (a rope), by feeding vision-based human motion data into a Central Pattern Generator (CPG) controller

ICIEV2025

System Overview

Recognizing human movements on a two-dimensional plane

Controlling two orthogonal joints of a robot

CPG Control

Rowat-Selverston CPG

- Biologically inspired model based on the Van der Pol oscillator
- Generates stable rhythmic motion using nonlinear dynamics
- Capable of adaptive synchronization with external inputs
- Requires only a few parameters

Experiment

Participants

3 healthy male participants (age: 23, right-handed)

Rope Length Conditions

4 conditions: 250 cm, 300 cm, 350 cm, and 400 cm

Auditory cue at 1 Hz

Evaluating human-robot coordination

Results

Human Hand Trajectory Robot Hand Trajectory

The distance between the human hand and the robot end-effector in the Y-Z plane.

Rope Length 250cm

Rope Length 400cm

Results

FFT Analysis

Human Hand Trajectory

Human Hand Trajectory Robot Hand Trajectory

Z-Axis

Discussion

Coordination Degrades with Rope Length

- Increased slack and tension variation
- Greater distance fluctuation, especially in Z-direction
 The robot torque in the Z direction can have been insufficient.

Robot Response

- Smaller motion amplitude than human
- Delayed reaction to rhythmic changes

Inter-Subject Variability

 Some participants showed lower coordination regardless of rope length

Conclusion & Future Work

Conclusion

- Vision-based CPG enabled human-robot rope-spinning
- Coordination degraded with longer ropes (more slack)
- Z-direction tracking was unstable (low torque, occlusion)

Future Work

- Control Improvements
 - Minimize Euclidean distance between human and robot
 - Predict human motion for better responsiveness
- Sensing & Adaptation
 - Combine vision with force sensing (multimodal feedback)
 - Personalize CPG parameters to individual motion patterns

Acknowledgments

This research was partially supported by the 2024 joint project between the University of Lorraine and Kyutech.