VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

IV SEMESTER

CS8451 - DESIGN AND ANALYSIS OF ALGORITHMS

Regulation - 2017

Academic Year 2018 - 19

Prepared by

Dr. V. Dhanakoti, Associate Professor Dr. M. Senthil Kumar, Associate Professor Mr. N. Leo Bright Tennisson, Assistant Professor

VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

QUESTION BANK

SUBJECT CODE/NAME: CS8451 DESIGN AND ANALYSIS OF ALGORITHMS

SEM / YEAR: IV/II

UNIT I - INTRODUCTION

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types – Fundamentals of the Analysis of Algorithmic Efficiency –Asymptotic Notations and their properties. Analysis Framework – Empirical analysis - Mathematical analysis for Recursive and Non-recursive algorithms - Visualization

PART - A

	PAKI - A		
Q. No	Questions	BT Level	Competence
1.	Define time complexity and space complexity. Write an algorithm for adding n natural numbers and find the space required by that algorithm	Remember	BTL-1
2.	List the steps to write an Algorithm	Remember	BTL-1
3.	Illustrate an algorithm for (i) Finding factorial of n number. (ii).Sorting the Elements.	Apply	BTL-3
4.	Evaluate an algorithm for computing gcd(m,n) using Euclid's algorithm	Evaluate	BTL-5
5.	Design the equality gcd(m,n)=gcd(n,m mod n) for every pair of positive integers m and n.	Create	BTL-6
6.	List out the steps that need to design an algorithm.	Remember	BTL-1
7.	Examine an algorithm to convert a binary number to a decimal number.	Apply	BTL-3
8.	Identify how you will measure input size of algorithms.	Remember	BTL-1
9.	Explain how many algorithms can you write for solving find the prime numbers. Compare which is the simplest and the most efficient.	Analyze	BTL-4
10.	Explain the various types of problems that can be solved using algorithm.	Analyze	BTL-4
11.	Apply the common technique for proving the correctness of an algorithm.	Apply	BTL-3

12.	Define the term Algorithm	Remember	BTL-1
13.	Define Big 'Oh' notation.	Remember	BTL-1
14.	Formulate the order of growth. Compare the order of growth n! and 2 ⁿ .	Create	BTL-6
15.	Differentiate between Best, average and worst case efficiency.	Understand	BTL-2
16.	Discuss the concepts of asymptotic notations and its properties.	Understand	BTL-2
17.	Analyze the order of growth. (i).F(n) = $2n^2 + 5$ and g(n) = 7n. Use the Ω (g(n)) notation.	Analyze	BTL-4
18.	Evaluate the recurrence relations. (i). $x(n) = x(n-1) + 5$ for $n>1$. (ii). $X(n) = x(n/3) + 1$ for $n>1, x(1) = 1$. (Solve for $n=3^k$)	Evaluate	BTL-5
19.	Discuss the General plan for analyzing efficiency of Non recursive & Recursive algorithms	Understand	BTL-2
20.	Discuss the following questions by consider the definition based algorithm for adding two n by n matrices. 1. What is basic operation? 2. How many times it is performed as a function of the matrix order n? 3. How many times it is performed as a function of the total number of elements in the input matrices?	Understand	BTL-2

	PART - B		
1.	Give the General Plan for Analyzing the Time Efficiency of Recursive Algorithms and use recurrence to find number of moves for Towers of Hanoi problem n (13)	Understand	BTL-2
2.	 (i) Consider the following algorithm for the searching problem. (8) ALGORITHM Linear search (A[0,n-1],key) // Searches an array for a key value by Linear search. //Input: Array A [0n-1] of values and a key value to search. //Output: Returns index if search is successful. For i← 0 to n-1 do If [key== A[i]) Return i. a) Apply this algorithm to search the list 10, 92,38,74,56,19,82,37 for a key value 74. b) Is this algorithm efficient? c) When can this algorithm be used? (ii) What are the most important problem types are used to illustrate different algorithm design techniques and methods of algorithm analysis. (5) 	Apply	BTL-3

3. If you have to solve the searching problem for list of n numbers, how can you take advantages of the fact that the list is known to be sorted? Give separate Answers for i)Lists represented as arrays. (7) ii)Lists represented as Linked lists. (6) Create the time complexities involved in the analysis of both the algorithms.	Create	BTL-6
 4. For each of the following algorithms, i) Compute n! ii) Asses & find the largest element in a list of n numbers with respect to the following conditions: (a) A natural size metric for its inputs. (b) Its basic operation. (c) Whether the basic operation count can be different for inputs of the same sizes. 	Analyze	BTL-5
5. (i)Discuss in detail about the worst case, best case and Average case efficiencies of sequential search function. (ii)Discuss how much the function value will change if the sequential search function's argument is increased. (6)	Understand	BTL-2
6. (i). Compare the worst and Average case analysis of binary search using suitable illustrations. (8) (ii). Explain the drawbacks in using the standard unit of time, to measure the runtime of an algorithm(5)	Analyze	BTL-4
7. Illustrate briefly on Big oh Notation ,Omega Notation and Theta Notations .Give Examples. (13)	Evaluate	BTL-3
8. (i)Define a Mathematical analysis of recursive algorithms. (4) (ii) Examine the efficiency of factorial of some number n with the help of General plan. (9)	Remember	BTL-1
9. (i)Define a Mathematical analysis of Non-recursive algorithms. (5) (ii) Tell about the efficiency of finding the element with maximum value in a given Array with the help of General plan.(8)	Remember	BTL-1
10. (i)Define Towers of Hanoi problem. (3) (ii) Describe the time complexity of Towers of Hanoi problem.(10)	Remember	BTL-1
11. Explain in detail about Analysis Framework with a suitable example (13)	Analyze	BTL-4
12. Analyze the recursive and non-recursive versions of the factorial function. i)Examine how much each function requires as 'n'becomes large. (7) ii) Find the time complexity and space complexity (6)	Analyze	BTL-4
13. (i) Label the algorithm of fundamental problem solving. (7) (ii) Show the useful property involving the asymptotic notations. (6)	Apply	BTL-1
14. Discuss in detail about the fundamentals of algorithmic problem solving. (13)	Understand	BTL-2

	PART C			
1.	Evaluate the following equalities are correct:		Evaluate	BTL-5
	$i)5n^2-6n=\Theta(n^2)$	(4)		
	$ii)n!=O(n^n)$	(4)		
	$iii)n^3 + 10^6n^2 = \Theta(n^3)$	(4)		
	$iv)2n^22^n+n logn=\Theta(n^22^n)$	(3)		
2.	Evaluate the following recurrences completely		Evaluate	BTL-5
	i) $T() = \sum_{i=1}^{n-1} (i) + 1 \ge 2Given T(n) = 1 if n = 1$	(5)		
	ii) $T(n) = 5T(n-2) - 6T(n-2)$	(5)		
	iii)T(n)=2T(n/2) + nlogn	(5)		
3.	Design a consecutive integer checking algorithm and school procedure algorithm.	middle-	Create	BTL-6
4.	Consider the problem of finding the smallest and large	est elements	Create	BTL-6
	in an array of n numbers.	1 1		
	i) Design a presorting-based algorithm for solving this prol	(-)		
	determine its efficiency class	(7)		
	ii) Compare the efficiency of the three algorithms:a) The Brute-force algorithm	(8)		
	b)This presorting –based algorithm and			
	c) The divide-and conquer algorithm.	5.		

UNIT II - BRUTE FORCE AND DIVIDE-AND-CONQUE

Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - Exhaustive Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem. Divide and Conquer Methodology – Binary Search – Merge sort – Quick sort – Heap Sort - Multiplication of Large Integers – Closest-Pair and Convex - Hull Problems.

	PART - A		
Q.No	Questions	BT Level	Competence
1.	State Master's theorem	Remember	BTL-1
2.	Examine a brute force algorithm for string matching problem.	Apply	BTL-3
3.	Give an example of a text of length n and a pattern of length m that constitutes a worst case input for the brute force string matching algorithm. Formulate and find how many character comparisons will be made for such input.	Create	BTL-6
4.	Define closest pair problem.	Remember	BTL-1
5.	Examine a brute force algorithm for counting the number of vowels in a given text.	Apply	BTL-3
6.	Define convex hull problem.	Remember	BTL-1
7.	Find the number of comparisons required to search for '6' in the given Sequence of numbers: 10, 19, 7, 9, 6, 15.	Analyze	BTL-4

8. Define the term exhaustive search. Remember BTL-1 9. Describe the concepts of Travelling Salesman Problem. Remember BTL-1 10. Define Assignment problem (Hungarian method). Remember BTL-1 11. Analyze the time efficiency and drawbacks of merge sort algorithm. Analyze algorithm. 12. Explain the advantages and disadvantages of binary search algorithm. BTL-4 algorithm. 13. Differentiate Sequential technique from binary search technique. Understand BTL-2 technique. 14. Is merge sort stable sorting algorithm? Justify your answer. Apply BTL-3 15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. Understand BTL-2 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort.								
10. Define Assignment problem (Hungarian method). 11. Analyze the time efficiency and drawbacks of merge sort algorithm. 12. Explain the advantages and disadvantages of binary search algorithm. 13. Differentiate Sequential technique from binary search technique. 14. Is merge sort stable sorting algorithm? Justify your answer. Apply BTL-3 15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. Understand BTL-2 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. Remember problem given below. (13) Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 3 7 4. (i) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii)Write the algorithm to perform Binary search and compute its un time complexity. (5)	8.	Define the term	m exhaustiv	e search.			Remember	BTL-1
11. Analyze the time efficiency and drawbacks of merge sort algorithm. 12. Explain the advantages and disadvantages of binary search algorithm. 13. Differentiate Sequential technique from binary search technique. 14. Is merge sort stable sorting algorithm? Justify your answer. Apply BTL-3 15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. Understand BTL-2 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Person 4 3 8 6 Person 5 7 2 4 4 Person 16 9 3 1 Person 16 9 3 3 1 Person 17 Person 17 Person 18 Person 19 Person	9.	Describe the o	concepts of	Travelling S	alesman Prob	lem.	Remember	BTL-1
algorithm. 12. Explain the advantages and disadvantages of binary search algorithm. 13. Differentiate Sequential technique from binary search technique. 14. Is merge sort stable sorting algorithm? Justify your answer. Apply BTL-3 15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. Understand BTL-2 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) 10b Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 4 Person 16 9 3 1 Person 16 9 3 3 1 Person 17 9 1 Person 18 Person 19 9 3 1 Person 19 9 3 9 1 Person 19 9 9 9 1 Person 19 9 9 9 9 1 Person 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10.	Define Assign	ment probl	em (Hungaria	n method).		Remember	BTL-1
algorithm. 13. Differentiate Sequential technique from binary search technique. 14. Is merge sort stable sorting algorithm? Justify your answer. Apply BTL-3 15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. Understand BTL-2 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART - B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull, problems by brute force. (6) 2. (i) List out the procedures to solve travelling salesman problem. (7) (iii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) 1. Job Job I Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 3 7 4. (i) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii)Write the algorithm to perform Binary search and compute its run time complexity. (5)	11.	•	me efficien	cy and drawb	acks of merg	e sort	Analyze	BTL-4
technique. 14. Is merge sort stable sorting algorithm? Justify your answer. Apply BTL-3 15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. Understand BTL-2 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART - B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) 10b	12.		lvantages a	nd disadvanta	ges of binary	search	Analyze	BTL-4
15. Describe brute force approach. What are the advantages and disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (1) (1) (1) Closest pair and convex hull problems by brute force. (6) 2. (i) List out the procedures to solve travelling salesman problem. (7) (ii) Closest pair and convex hull problems by brute force. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Job Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 4 Person 16 9 3 1 Person 16 9 3 1 Person 16 9 3 1 Person 2 5 5 3 7 2 4 Person 16 9 3 1 Person 2 5 5 3 7 2 4 Person 16 9 3 1 Person 16 9 3 1 Person 2 5 5 3 3 7	13.		Sequential	technique from	m binary sear	ch	Understand	BTL-2
disadvantages of this approach? 16. Discuss the three processing steps in Quick sort. 17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Job Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 7 Person 16 9 3 1 Person 16 9 3 1 Person 2 5 7 2 4 Person 16 9 3 1 Person 2 5 7 2 4 Person 2 5 3 7 Person 16 9 3 1 Person 2 5 7 2 4 Person 16 9 3 1 Person 5 7 2 4 Person 16 9 3 1 Person 5 7 2 4 Person 16 9 3 1 Person 5 7 2 4 Person 16 9 3 1 Person 5 7 2 4 Person 16 9 3 1 Person 5 7 2 4 Person 16 9 3 1 Person 5 7 2 4 Person 5 7 7 8 7 Person 5 7 8 8 Person 6 8 Person 7 8 Person 7 9 8 Person 7 9 8 Person 8 9 8 Person 9 9 9 9 Person 9 9 9 9 Person 9 9 9 9 Person 9 9 Per	14.		stable sortin	g algorithm?	Justify your	answer.	Apply	BTL-3
17. Multiply the numbers 54 and 45. Evaluate by using multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Dob Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 6 Person 4 3 8 6 6 Person 5 7 2 4 4 Person 16 9 3 1 Person 16 9 7 2 4 4 Person 16 9 7 2 6 4 Person 16 Person 16 9 7 2 6 4 Person 16 9 7 2 6 4 Person 16 Person 16 9 7 2 6 4 Person 16 Person 16 9 7 2 6 4 Person 16	15.				re the advant	ages and	Understand	BTL-2
multiplication of Large integer concepts. 18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. 13. Job Job I Job 2 Job 3 Job 4 Person Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 16 9 9 3 1 Person 16 9 Person 16 9 9 3 1 Person 16 9 9 9 3 1 Person 16 9 9 9 9 9 Person 16 9 9 9 9 9 9 Person 16 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	16.	Discuss the three	ee processi	ng steps in Qu	aick sort.		Understand	BTL-2
18. Give an example problem that cannot be solved by a Brute force approach and also how to decide? 19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. 1. Explain the concepts of the following. (7) (ii) Closest pair and convex hull problems by brute force. (6) 2. (i) List out the procedures to solve travelling salesman problem. (7) (ii) Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) 1. Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 7 2 4 Person 16 9 3 1 Person 2 5 3 7 2 4 Person 2 5 5 5 5 5 5 5 5 5	17.	1 0			, ,		Evaluate	BTL-5
19. Define and design the Convex set. Invent the sets such are convex. a) Star b) Cone C) Pentagon D) Semicircle. 20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i)Brute force string matching Algorithm. (7) (ii)Closest pair and convex hull problems by brute force. (6) 2. (i)List out the procedures to solve travelling salesman problem. (7) (ii)Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 16 9 3 1 Person 2 5 3 7 2 4 Person 16 9 3 1 Person 16 9 3 1 Person 16 9 1 Person 16 P	18.	Give an exampl	le problem tl	nat cannot be so		te force	Evaluate	BTL-5
20. Discuss the recurrence equation for the worst case behavior of merge sort. PART – B 1. Explain the concepts of the following. (i) Brute force string matching Algorithm. (ii) Closest pair and convex hull problems by brute force. (6) 2. (i) List out the procedures to solve travelling salesman problem. (7) (ii) Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Job Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 16 9 3 1 Person 2 5 3 7 Person 2 5 3 7 10) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii) Write the algorithm to perform Binary search and compute its run time complexity. (5)	19.	Define and de s	sign the Co	nvex set. Inv		uch are	Create	BTL-6
1. Explain the concepts of the following. (i) Brute force string matching Algorithm. (ii) Closest pair and convex hull problems by brute force. (6) 2. (i) List out the procedures to solve travelling salesman problem. (ii) Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Job Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 7 Person 16 9 3 1 Person 2 5 3 7 (i) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii) Write the algorithm to perform Binary search and compute its run time complexity. (5)	20.	Discuss the re-		·		ehavior of	Understand	BTL-2
1. Explain the concepts of the following. (i) Brute force string matching Algorithm. (ii) Closest pair and convex hull problems by brute force. (6) 2. (i) List out the procedures to solve travelling salesman problem. (ii) Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Job Job I Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 16 9 3 1 Person 2 5 3 7 4. (i) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii) Write the algorithm to perform Binary search and compute its run time complexity.]	PART – B			
2. (i) List out the procedures to solve travelling salesman problem. (ii) Describe the Knapsack problem by using Exhaustive search. (ii) Describe the Knapsack problem by using Exhaustive search. (6) 3. Find and Analyze the optimal solution for the assignment problem given below. (13) Job Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 7 4. (i) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii) Write the algorithm to perform Binary search and compute its run time complexity.	1.	(i)Brute force	string matc	he following. hing Algorith	m.		Evaluate	BTL-5
3. Find and Analyze the optimal solution for the assignment problem given below. Job Job 1 Job 2 Job 3 Job 4 Person 4 3 8 6 Person 5 7 2 4 Person 16 9 3 1 Person 2 5 3 7 4. (i) Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. (8) (ii) Write the algorithm to perform Binary search and compute its run time complexity.	2.	(i)List out the p	procedures	to solve travel	lling salesma	n problem. (7) ive search.	Remember	BTL-1
numeric Example. Predict the complete analysis for the same. (8) (ii)Write the algorithm to perform Binary search and compute its run time complexity. (5)	3.	Job Person Person Person Person	below. Job 1 4 5 16	Job 2 3 7 9	Job 3 8 2 3	(13) Job 4 6 4 1	Analyze	BTL-4
5. (i)Define Assignment problem .Examine the optimal solution Remember BTL-1	4.	numeric Examp (ii)Write the alg	ole. Predic t	t the complete	e analysis for	the same. (8) compute its	Understand	BTL-2
	5.	(i)Define Assi	gnment pro	blem .Exami	ne the optima	al solution	Remember	BTL-1

	PART_C		
14.	Examine in detail about Exhaustive search techniques. (13)	Remember	BTL-1
13.	i) Differentiate sequential search from binary search technique. (7) ii) Write an algorithm for Quicksort and write its time complexity with example list are 5,3,1,9,8,2,4,7. (6)	Analyze	BTL-4
12.	Analyze and Write an algorithm to sort a given list of elements using merge sort. Show the operation of the algorithm, on the list 38,27,43,3,9,82,10. (13)	Analyze	BTL-4
11.	(i)Describe in detail about divide and conquer strategy. (6) (ii)Explain the binary search with suitable example problem. (7)	Understand	BTL-2
10.	(i) Discuss in detail about the closest pair and convex hull problems by using Divide and conquer method. (7) (ii) Write the KMP string matching algorithm for finding a pattern on a text, and analyze the algorithm. (6)	Understand	BTL-2
	(ii) How to show the average time complexity for merge sort algorithm. (6)		
9.	method. (8) (ii) Analyze the time and space complexity of Divide and conquer methodology. (5) (i) Apply Strassen's matrix algorithm to compute. (7)	Apply	BTL-3
7. 8.	Examine that the procedure SEARCH of binary search algorithm gives the Smallest possible expected search time if all elements in the universal set are equally likely to be sought. (13) (i) Solve 2138 × 4967 by applying the Divide and Conquer	Remember	BTL-1
6.	(i) Design a Quick sort algorithm (5) (ii) Develop Best, worst and Average case analysis for Quicksort method. (8)	Create	BTL-6
	for the assignment problem with one example. (7) (ii)Explain convex hull problem and the solution involved behind it. (6)		

	PART – C		
1.	How exhaustive search method uses Brute force approach to	Evaluate	BTL-5
	evaluate various problems and find whether the given string		
	follows the specified pattern and return 0 or 1 accordingly.		
	Examples:		
	1)Pattern "abba" input: "redblueredblue" should return 1		
	2)Pattern "aaaa" input: "asdasdasdasd" should return 1		
	3)Pattern "aabb" input: "xyzabcxyzabc" " should return 0		

	Deduce the operation of binary search algorithm for the input -15, -6, 0, 7, 9, 23, 54, 82, 101,112, 125,131,142,151 if you are searching for the element 9.	Evaluate	BTL-5
	Compose and give an example of an algorithm that should not be considered an application of the brute-force approach.	Create	BTL-6
	Formulate and give an example of a text of length <i>n</i> and a pattern of length <i>m</i> that constitutes a worst-case input for the brute-force string-matching algorithm. Exactly how many character comparisons will be made for such input?		BTL-6

UNIT III - DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Dynamic programming – Principle of optimality - Coin changing problem, Computing a Binomial Coefficient – Floyd's algorithm – Multi stage graph - Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique – Container loading problem - Prim's algorithm and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman Trees.

PART - A

Q. No	Questions	BT Level	Competence
1.	How is a transportation network represented?	Remember	BTL-1
2.	Describe the method to construct an optimal binary search tree	Remember	BTL-1
3.	Define Transitive closure of a directed graph.	Remember	BTL-1
4.	Describe the general principle of Greedy algorithm.	Remember	BTL-1
5.	Compare Divide & Conquer and Dynamic Programming.	Analyze	BTL-4
6.	Discover the pseudo code of the Warshall's algorithm.	Apply	BTL-3
7.	Summarize feasible and optimal solution.	Understand	BTL-2
8.	Contrast Greedy algorithm and Dynamic programming.	Analyze	BTL-4
9.	List the properties of Dynamic programming approach	Remember	BTL-1
10.	Define the minimum spanning tree problem	Remember	BTL-1
11.	Explain how the Binomial coefficient is computed.	Evaluate	BTL-5
12.	Estimate the time and space complexity for Warshall's algorithm.	Understand	BTL-2
13.	Demonstrate the obstacles in constructing a minimum spanning tree by an exhaustive search.	Apply	BTL-3
14.	Estimate the space and time complexity of a prim's algorithm.	Understand	BTL-2

15.	Analyze the time complexity of optimal Binary search Tree algorithm.	Analyze	BTL-4
16.	Show an algorithm to make for 1655 using the greedy strategy. The coins available are {1000, 500, 100, 50, 20, 10, 5}.	Apply	BTL-3
17.	Distinguish prim's and Kruskal's algorithm.	Understand	BTL-2
18.	Summarize Huffman trees and its applications.	Evaluate	BTL-5
19.	Integrate Minimum spanning tree concepts and Prim's algorithm.	Create	BTL-6
20.	Develop an algorithm for memory function knapsack problem.	Create	BTL-6
	PART - B	-	
1.	Consider the following distance network. a) Write the floyd's algorithm and generate the final distance matrix. (7) b) Analyze the shortest path and the corresponding distance from the source node to the destination node as indicated in each of the cases 1-6, 5-1 and 5-2 (6)	Analyze	
2.	i) Illustrate all-pair shortest path problem algorithm. (4) (ii)Calculate the all-pair shortest path problem for the diagraph with the weighted matrix given below. (9) a b c d a 0 \alpha 3 \alpha	Apply	BTL-3

		c	A	7	0	1			
		d	6	α	α	0]		
3.					all's algorit		(7)	Understand	BTL-2
	(ii)Dise	cuss topic	on Knapsa	ck problem	with mem	ory functi	ons.		
							(6)		
4.	Descri	i he and cor	mpute bing	mial coeff	icient by th	e formula		Understand	BTL-2
			k-1)+C		iciciii by ti	ic ioiiiiuia	(13)	Officerstation	DIL-2
	C(11, K)	C(II 1,	K 1) (C)	(ii 1, k).			(13)		
5.	Analy	ze the algo	rithm by a	pplying the	following	keys and		Analyze	BTL-4

	probabilit	ies to obt	ain the o	optimal bi	inary	tree.			(13)		
	Key	A	В		С		D		1		
	Probability	0.1	0.2		0.4		0.3				
6.	q2=q3=c b) Const tree.) c) Const	q4=1/16, truct the contract the truct the t	P1=1/4, optimal able of	n1< a2< a3 P2=1/8,F binary sea values W	P3=P ² arch t ij, Cij,	4=1/16 ree as	a mir	nimum	cost (7	Evaluate	BTL-5
7.	Plan the fo the knapsa explain it. (13)	ollowing i	nstance		l, kna	psack	prob	lem giv		Create	BTL-6
		Item 1 2 3 4	W	reight 4 3 2 5		Value \$10 \$20 \$15 \$25		C	26/		
8.	8. (i)Define Huffman tree. List the types of Encoding in Huffman tree. (8) (ii)Write the Huffman's algorithm. Construct the Huffman's tree for the following data and obtain its Huffman code. (5)				tree (5)	Remember	BTL-1				
	Characte		0.35	0.5	D 0.1	0.4	0.2		/		
9.	(i)Describ with an ex- (7) (ii)Compa	ample.		, -						Remember	BTL-1
	identify th						_	ann and			

10.	(i)Write and analyze the prim's algorithm. (5)	Remember	BTL-1
	(ii) Describe minimum spanning tree using Prim's algorithm. (8)		
	1 2 4 10 7 10 3 4 5 1 9 5		
11.	(i)List out the short notes on optimal binary search tree.	Remember	BTL-1
	(7) (3) I shall the entimization technique used for Worshall's		
	(ii) Label the optimization technique used for Warshall's algorithm. State the rules and assumptions which are implied		
12.	behind that. (6) (i)Explain in detail about Huffman code (5)	Analyze	BTL-4
	(ii)Let A= $\{1/119, m/96, c/247, g/283, h/72, f/77, k/92, j/19\}$ be the letters and its frequency of distribution in a text file.		
13.	Analyze a suitable Huffman coding to compress the data. (8)	A males	BTL-3
13.	(i) Examine Dijkstra's algorithm with a suitable example (9) (ii)Illustrate how the minimum-sum descent problem can be	Apply	BIL-3
	solved by Dijkstra's algorithm. (4)		
14.	Summarize Knapsack and memory functions problem in detail.	Understand	BTL-2
	(13)		
1.	PART – C Asses and solve all-pair shortest path problem for the digraph	Evaluate	BTL-5
1.	with the weight matrix given below:	Evaluate	DIL-J
	A B C D		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	B 2 0 ∞ ∞		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

2.	Given the mobile numeric keypad. You are up, left, right or down to the first nu sequent numbers. You are not allowed to buttons (i.e. * and #). Given a number N will be involved to press the given num it? Which dynamic programming techn solution for this? Assess each step with and derive its time complexity.	mber pressed to obtain the press bottom row corner the how many key strokes ber. What is the length of ique could be used to find	Evaluate	BTL-5
3.	Apply Warshall's algorithm to find the		Create	BTL-6
	digraph defined by the following adjace	ency matrix		
	0 0 0 1			
	i) Prove that the time efficiency of War	shall's algorithm is cubic		
		(7)		
	ii) Explain why the time efficiency of V			
	inferior to that of the traversal-based alg			
	represented by their adjacency lists.	(8)		
4.	Develop and give an example of a grap	<u> </u>	Create	BTL-6
	negative weights for which Floyd's algorithms algorithms.	(13)		

UNIT IV - ITERATIVE IMPROVEMENT

The Simplex Method - The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs, Stable marriage Problem.

	PART - A						
Q. No	Questions	BT Level	Competence				
1.	Summarize maximum cardinality matching.	Understand	BTL-2				
2.	Define slack and surplus variable	Remember	BTL-1				
3.	Associate Feasibility and optimality condition in simplex method.	Understand	BTL-2				
4.	Describe Dual simplex method	Remember	BTL-1				
5.	Define Basic variable.	Remember	BTL-1				
6.	Quote extreme point theorem	Remember	BTL-1				
7.	Define Network flow and cut.	Remember	BTL-1				
8.	Differentiate Feasible and optimal solution.	Analyze	BTL-4				
9.	Define bipartite graph	Remember	BTL-1				

10.	Discuss the stable marriage problem.	Understand	BTL-2
11.	Point out the Max-flow algorithm	Analyze	BTL-4
12.	Show the Mathematical formulation to solve a max flow problem.	Apply	BTL-3
13.	Summarize the steps to print all edges of minimum cut.	Understand	BTL-2
14.	Generalize about the perfect matching in bipartite graphs.	Create	BTL-6
15.	Compare man-optimal and woman-optimal	Analyze	BTL-4
16.	What if the blocking pair concepts for marriage problem are chosen?	Create	BTL-6
17.	Show the requirements of a standard form to solve a Simplex method problem	Apply	BTL-3
18.	Apply Augmenting path concepts in Maximum flow problem.	Apply	BTL-3
19.	Assess the properties of stable marriage problem (Gale shapley algorithm).	Evaluate	BTL-5
20.	Explain about the articulation point in a graph.	Evaluate	BTL-5
	PART - B	I	I
1.	(i)Solve the following LP problem using graphical method. Maximize $Z = 6x1 + 8x2$ $5x1+10x2 \le 60$ $4x1+4x2 \le 40$ $x1$ and $x2 \ge 0$ (ii). Write the procedure to initialize simplex which determines if a linear program is feasible or not (5)	Apply	BTL-3
2.	(i) Design Extreme Point theorem and generalize how it is used to find the boundary points. (5) (ii) Maximize the given equation. Use the Simplex method to the linear programming problem. (8) Max $Z = 3x + 5y$ Subject to $x + y \le 8$ $x + 3y \le 12$	Create	BTL-6
3.	Identify the maximum value of Z in the following LP problem using Simplex method. (13) Max $Z = 10x1 + 15x2 + 20x3$ Subject to $2x1 + 4x2 + 6x3 \le 24$ $3x1 + 9x2 + 6x3 \le 30$ $x1$, $x2$ and $x3 \ge 0$.	Remember	BTL-1
4.	(i)Discuss the Ford-fulkerson algorithm for maximum flow problem. (7) (ii)Discuss the shortest –augmenting path algorithm. (6)	Understand	BTL-2

5.	(i) Apply the maximum-matching algorithm is the following bipartite graph. (7) U V O O O O O O O O O O O O	Apply& Analyze	BTL-3
6.	(i) Analyze about the stable marriage algorithm. (5) (ii) Consider an instance of the stable marriage problem given by the ranking matrix. (8) A B C α 1,3 2,2 3,1 β 3,1 1,3 2,2 γ 2,2 3,1 1,3 1,3 2,2 γ 2,2 3,1 1,3 1,3 2,2 γ 2,2 3,1 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	Analyze	BTL-4
7.	Consider the pipe network shown as in figure showing the flow capacities between various pairs of locations in both ways. Find the maximal flow from node 1 to node 6. (13)	Evaluate	BTL-5
8.	(i)Describe Max-flow problem. (7) (ii)List out the procedures needed to solve the Maximum flow problem by using matrix method. Explain each. (6)	Remember	BTL-1
9.	(i)Prove that the stable marriage algorithm terminates after no more than n² iterations with a stable marriage output (8) (ii)Identify the steps used in Stable marriage algorithm. Which steps are used in Men propose and Woman propose in detail. (5)	Remember	BTL-1

		(7) (6)	Understand	BTL-2
11.	Analyze and apply the maximum matching algorithm for the	2	Analyze	BTL-4
	bi-partite graph.	13)		
]	1->{5,6} 2->{5} 3->{4,5}			
12.	Examine in detail about Iterative Improvement with an		Remember	BTL-1
	example. (13)		
13. (i)Discuss about the graphical method in detail.	(7)	Understand	BTL-2
	(ii)Summarize in detail about the simplex algorithm methods			
		(6)		
	Analyze and Solve the following linear programming		Analyze	BTL-4
	problems geometrically.	(7)		
E	a. maximize $3x+y$			
	subject to			
	$-x + y \le 1$			
	$2x + y \le 4$			
	$x \ge 0, y \ge 0$			
lt	b. maximize $x+2y$	(6)		
	subject to $4x \ge y$			
	$y \le 3 + x$			

	PART – C						
1.	How do you compute a maximum flow for the following graph using Ford-Fulkerson method?	Evaluate	BTL-5				
2.	Evaluate and solve the following problem using simplex method: Maximize $p=2x+3y+z$ Subject to $x+y+z<=40$ $2x+y-z>=10$ $-y+z>=10$ where $x>=0,y>=0,z>=0$	Evaluate	BTL-5				
3.	Formulate and prove following linear programming problem in two variables using geometric interpretation: maximize $3x + 5y$ subject to $x + y \le 4$ $x + 3y \le 6$	Create	BTL-6				

	$x \ge 0, y \ge 0.$		
4.	Design an Extreme Point Theorem.	Create	BTL-6

UNIT V - COPING WITH THE LIMITATIONS OF ALGORITHM POWER

Lower - Bound Arguments - P, NP NP- Complete and NP Hard Problems. Backtracking — n-Queen problem - Hamiltonian Circuit Problem — Subset Sum Problem. Branch and Bound — LIFO Search and FIFO search - Assignment problem — Knapsack Problem — Travelling Salesman Problem - Approximation Algorithms for NP-Hard Problems — Travelling Salesman problem — Knapsack problem.

PART - A

Q. No	Questions	BT Level	Competence
1.	What are tractable and non-tractable problems?	Remember	BTL-1
2.	Compare class P and class NP.	Analyze	BTL-4

Remember

BTL-1

4.	Discuss the principle of backtracking.	~ (Understand	BTL-2

Define NP complete problem.

5.	How is the accuracy of approximation algorithm measured ?	Evaluate	BTL-5

6.	Define backtracking.	/ 0	Remember	BTL-1

	compare backtracking technique.		
8.	Point out some examples of lower bound	Analyze	RTI -4

What are the additional items required for branch and bound? Analyze

9.	Describe the term heuristics	Remember	BTL-1

10.	Define Knapsack problem.	Remember	BTL-1

11.	Discuss the term best first branch bound.	Understand	BTL-2

		i .	1
12.	State whether backtracking always produces optimal	Create	BTL-6

13.	Decide the termination point of the search path in a state	Evaluate	BTL-5
	space tree of branch and bound algorithm.		

14.	Show formal definition of the n-queens problem.	Apply	BTL-3
			1

		,	
15.	Describe the term state space tree	Understand	BTL-2

16.	What is Hamiltonian path? Generalize that Hamiltonian cycle	Create	BTL-6
	is an undirected graph.		

17.	What does NP-hard mean? Demonstrate approximation	Apply	BTL-3
	algorithm for NP hard problem		

18.	How is lower bound found by problem reduction?	Remember	BTL-1
19.	Examine the subset sum problem.	Apply	BTL-3
20.	Give some examples of P and NP problem.	Understand	BTL-2

				DADE D			
	XX71 4 ! - 4	C1 NIDO 1	D:	PART - B	£ 1. 1 - 1.	TT1	DTI 2
1			Discuss about an		Understand	BTL-2	
1.	no poryn	omiai-ume	algorithm has b	een found (13	5)		
2.	(i) Evalu	ate the sub	set sum problem	with set as [3	5 6 7	Evaluate	BTL-5
			Derive all the su	(6)	Lvaiuate	BIL-3	
			lowing instance				
	` '		nd algorithm.	or the imapour	proorein j		
		k capacity	•				
		T J			(7)		
		Item	Weight	Value]		
		1	4	\$40			
		2	7	\$42			
		3	5	\$25		7,	
		4	3	\$12	۷		
			<u> </u>	т			
	(*)T1 4*	e	1 6 (1 1)		2	D 1	DEL 1
3.			ple for the best of			Remember	BTL-1
			n for the assignmed and NP-compl		(6) (7)		
	(II)Desci	ibe inf-iiai	u anu inf-comp	ictelless.	(7)		
4.	Using Ba	ack-Trackir	ng enumerate hov	w can you solve	the	Apply	BTL-3
	Using Back-Tracking enumerate how can you solve the following problems. Apply						
		ens problem			(7)		
			iit problem.		(6)		
5.	(i)Discus	s in detail	about decision tr	ee algorithms.	(6)	Understand	BTL-2
	(ii)Elabor	ate on the r					
	multifragi	ment-heuris	stic algorithm for	r TSP problem	(7)		
	Dogovibo	about the f	allowing			Remember	BTL-1
6.			•		(0)	Remember	DIL-1
		et sum prob			(8)		
7.			lgorithm power. e, design and pro	ove that satisfied	(5)	Create	BTL-6
'`		_			•	Cleate	DIL-0
	Boolean formula in 3-conjunctive normal form I NP-complete. (7)						
			problem for n=6).	(6)		
8.	` '		miltonian path p		Apply	BTL-3	
			problem and vice	(7)			
			oximation algorit				
	salesman		_		(6)		
9.	• •		nplement an alg	orithm for Knap		Analyze	BTL-4
	-	_	Hard approach.	(7)			
	(ii)Distin	guish betw	een the P and NI	(6)			

10.	Describe abou		_		(4)	Remember	BTL-1
10.				osack problem.	` '		
	, ,	ii)Twice around the tree algorithm. (4) iii)Multifragment-heuristic algorithm. (5)					
	(iii)Multifragi	ment-heui	ristic algor				
	•		Analyza	BTL-4			
11		i explain o	elaborately	y on recursive b	_	Analyze	D1L-4
11.	algorithm.				(8)		
	ii) Explain the	backtrack	(5)				
						D 1	DEL 1
12.	There are 5 distinct numbers {1,2,5,6,8}. Identify the					Remember	BTL-1
	combinations of	of these n	umbers su	is 9.Use the			
	backtracking n	nodel to a	rrive at the	e solution.	(13)		
13.	Explain in de	tail about	assignme	(13)	Remember	BTL-4	
1.4						A 1	DTI 0
14.	Estimate the following instance of the knapsack by branch an					Apply	BTL-2
	bound algorithm. (13)				(13)		
		Item	Weight	Values			
		1	10	\$100			
		2	7	\$63	6		
		3	8	\$56			
		4	4	\$12			
					.6.		

PART – C						
1.	Let w={5,7,10,12,15,18,20} and m=35. Compute all possible subset of w whose sum is equivalent to m. Draw the portion of state space tree for this problem.	Evaluate	BTL-5			
2.	With an example, summarize how the branch and bound technique is used to solve 0/1 knapsack problem.	Evaluate	BTL-5			
3.	Design Branch and Bound algorithm to solve the Travelling Salesman problem for the following graph.	Create	BTL-6			
4.	Generate all permutations of A={1,2,3,4} and d=9 by backtracking.	Create	BTL-6			