FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2015.

Veiledning: 24. og 25. februar. Innleveringsfrist: Fredag 27. februar kl 16.

Øving 7

Oppgave 1

I forelesninger studerte vi en ideell paramagnet med N ikke-vekselvirkende kvantiserte spinn i et ytre magnetfelt \mathcal{H} . Hvert spinn kunne peke "opp" eller "ned" relativt det ytre feltet, slik at partisjonsfunksjonen (pr spinn) ble $z=2\cosh(\mu_0\mathcal{H}/kT)$, og magnetiseringen (magnetisk moment pr volumenhet) ble $M=(N\mu_B/V)\tanh(\mu_0B/kT)$. Hvis feltet er svakt, dvs $\mu_0\mathcal{H}\ll kT$, gir dette lineær respons, $M\sim\mathcal{H}/T$, dvs Curie's lov.

I denne oppgaven skal vi studere entropien til en slik ideell paramagnet. Siktemålet er deretter å kunne beskrive magnetisk kjøling (adiabatisk demagnetisering).

Vi m angi midlere magnetisk moment pr spinn, men skalert med faktoren μ_0 slik at et gitt magnetisk moment har verdien +1 eller -1, og m blir en dimensjonsløs størrelse. Videre lar vi $h = \mu_0 \mathcal{H}$ representere det ytre magnetfeltet, dvs h blir en størrelse med enhet som energi. Dermed har vi

$$m = \tanh \beta h$$
 , $z = 2 \cosh \beta h$ $(\beta \equiv 1/kT)$,

og arbeidet utført av spinnsystemet, pr spinn, når midlere magnetisk moment, pr spinn, endres fra m til m+dm blir $dw=-h\,dm$.

a) Vis at entropien σ kan uttrykkes ved partisjonsfunksjonen z, som $\sigma = k \partial (T \ln z)/\partial T$.

Oppgitt: $g = -kT \ln z$, (med $g, z, \sigma =$ hhv Gibbs fri energi, partisjonsfunksjon, og entropi, alle størrelser pr spinn).

Tips: Utnytt analogien $p dv \rightarrow -h dm$.

b) Med kjent partisjonsfunksjon z kan dermed entropien σ bestemmes. Vis at σ , i første omgang som funksjon av h og β , blir

$$\sigma = k \left[\ln 2 + \ln \cosh \beta h - \beta h \tanh \beta h \right].$$

Du observerer nå at σ kun avhenger av $produktet\ \beta h$, og siden midlere magnetiske moment m også er en funksjon av produktet βh , innser du at entropien må kunne skrives som en funksjon av m alene, $\sigma = \sigma(m)$. Eliminer βh fra $\sigma(\beta h)$ ved å invertere $m = \tanh(\beta h)$. Vis at dette gir $\beta h = \frac{1}{2} \ln \left[(1+m)/(1-m) \right]$. Vis deretter at entropien blir

$$\sigma(m) = k \left[\ln 2 - \frac{1}{2} (1+m) \ln(1+m) - \frac{1}{2} (1-m) \ln(1-m) \right].$$

c) Alternativt kan entropien bestemmes direkte fra Boltzmanns prinsipp, $S=N\sigma=k\ln W$. Anta at et antall N_+ og N_- spinn peker henholdsvis med og mot magnetfeltet. Totalt magnetisk moment blir dermed $Nm=N_+-N_-$. Samtidig har vi selvsagt $N=N_++N_-$. Beregn antall mikrotilstander W som er forenlig med et gitt magnetisk moment Nm (dvs med $Nm=N_+-N_-$ fast) og vis med det at entropien blir som i punkt b.

Oppgitt: $\ln N! = N \ln N - N$ når $N \to \infty$.

d) Et spinnsystem som dette kan benyttes til å oppnå svært lave temperaturer ved å bruke adiabatisk demagnetisering. Et kraftig magnetfelt h_2 settes på isotermt ved en (forholdsvis lav) starttemperatur T_2 . Deretter fjernes den termiske koblingen til omgivelsene (varmereservoaret med temperatur T_2), og magnetfeltet slås av adiabatisk. I praksis, på grunn av en svak kobling mellom spinnene, ender en opp med et effektivt magnetfelt $h_1 > 0$ (og ikke $h_1 = 0$). Hva blir resulterende temperatur T_1 ? [Vi antar at andre bidrag til entropien kan neglisjeres. For lave temperaturer T er spesifikk varme fra kvantiserte gittervibrasjoner $C \propto T^3$, slik at bidraget til entropien herfra, $\int (C/T) dT$ kan neglisjeres.]