CLAIMS

What is claimed is:

1	1. An apparatus for reducing the parachuting of a probe measuring the
2	topography of a surface comprising:
3	an oscillating probe;
4	a phase detection circuit coupled to the oscillating probe; and
5	a probe drive boosting circuit coupled to the phase detection circuit and the probe,
6	wherein the phase detection circuit detects a reduction of a variation of a phase
7	signal from the probe and the probe drive boosting circuit boosts a/signal to
8	the probe based on the phase signal detected by the phase detection circuit to
9	produce a boosted probe drive signal.
1	2. The apparatus according to claim 1, wherein the phase detection circuit
2	comprises:
3	a precision full wave rectifier; and
4	an envelope detector coupled to the precision full wave rectifier,
5	wherein the precision full wave rectifier rectifies a phase signal of the probe to
6	produce a rectified phase signal and the envelope detector detects the
7	rectified phase signal to produce an envelope detected signal.

1	3. The apparatus according to claim 2, wherein the phase detection circuit
2	further comprises:
3	a comparator coupled to the envelope detector; and
4	an event detector and hold off circuit coupled to the comparator,
5	wherein the comparator and the event detector and hold off circuit generate an even
6	signal from the envelope detected signal.
1	4. The apparatus according to claim 3, wherein the phase detection circuit
2	further comprises a multiplier coupled to the event detector,
3	wherein the multiplier combines the event signal with a probe drive signal to
4	produce the boosted probe drive signal.
1	5. The apparatus according to claim 3, wherein the phase detection circuit
2	further comprises:
3	a multiplier coupled to the event detector; and
4	a control module, wherein the multiplier combines the event signal with a gain
5	setting in the control module to increase error integration.
1	6. The apparatus according to claim 4, further comprising an event level setting
2	circuit coupled between the event detector and hold off circuit and the multiplier, wherein
3	the event level setting circuit sets an event level of the event signal.

1 7. The apparatus according to claim 4, wherein the boosted probe drive signal 2 is boosted 20 to 30 percent of the probe drive signal above the probe drive signal. 8. 1 The apparatus according to claim 3, wherein the event detector and hold off 2 circuit delays the generation of the event signal for a predetermined time. 9. A method for reducing the parachuting of a probe obtaining accurate 1 42 information representative of a surface of a sample comprising: 3 scanning the surface of the sample with an oscillating probe; 4 detecting a reduction of a variation of a phase signal of the probe indicative of free oscillation of the probe; and 5 6 reducing a distance between the probe and the sample in response to the detection of 7 the reduction of the variation of the phase signal of the probe. 10. The method according to claim 9, wherein the detecting step further 1 2 comprises: 3 rectifying the phase signal of the probe to produce a rectified phase signal; and

envelope detecting the rectified phase signal of the probe to produce an envelope

detected phase signal of the probe.

4

5

1 11. The method according to claim 9, wherein the reducing step further 2 comprises boosting a drive signal of the probe to produce a boosted drive signal of the 3 probe. The method according to claim 11, wherein the detecting step further 12. 4 5 comprises triggering an event signal based on the detected phase signal and the boosting 6 step further comprises boosting the drive signal of the probe by combining the event signal 7 with the drive signal of the probe to produce a boosted drive amplitude signal. 1 13. The method according to claim 12, wherein the detecting step further 2 comprises delaying the triggering of the event signal for a predetermined time. 1 14. The method according to claim 11, wherein the boosted drive signal is 20 to 2 30 percent of the drive signal above than the drive signal. 15. 1 The method according to claim 9, further comprising: 2 detecting an error signal of the probe when the oscillating amplitude of the probe is

3

4

too high; and

accumulating the error signal of the probe.

I	10. The method according to claim 9, further comprising:
2	detecting an error signal of the probe when the oscillating amplitude of the probe is
3	too small; and
4	accumulating the error signal of the probe.
1	17. The method according to claim 9, wherein the detecting step detects a
2	reduction of a variation of a phase signal when the phase difference between a sinusoidal
3	drive and a probe response signal is substantially 90 degrees.
]	18. The method according the claim 9, wherein the reducing step further
2	comprises boosting a drive signal of the probe to increase the accumulation of an error
3	signal of the probe.
l	19. An apparatus for reducing the parachuting of a probe measuring the
2	topography of a surface comprising:
3	an oscillating probe;
4	parachuting detection circuitry coupled to the oscillating probe
5	parachuting reduction circuitry coupled to the parachuting detection circuitry,
6	wherein the parachuting reduction circuitry reduces the parachuting of the

probe in response to the detection of parachuting of the probe.

- 20. The apparatus according to claim 19, wherein the parachuting detection
- 2 circuitry comprises a phase detection circuit and the parachuting reduction circuitry
- 3 comprises a probe drive boosting circuit.

1