TOY ISA 14

Instruction Set Architecture Specification

Proteus Lab

Generated on: 2025-09-19

Version: 1.14

Table of Contents

J	3
MOVN	4
RBIT	5
ADD	6
SLTI	7
LD	8
SYSCALL	9
CBIT	10
STP	11
BNE	12
USAT	13
BEQ	14
BDEP	15
ST	16

J

Encoding

31:26	25:0
111001	index

Assembler

J target

Semantics

PC ← PC[31:28] || instr_index || 0b00

MOVN

Encoding

31:26	25:21	20:16	15:11	10:6	5:0
000000	rs	rt	rd	00000	111011

Assembler

MOVN rd, rs, rt

if
$$(X[rt] != 0) X[rd] \leftarrow X[rs]$$

RBIT

Encoding

31:26	25:21	20:16	15:6	5:0
000000	rd	rs	000000000	010110

Assembler

RBIT rd, rs

Semantics

 $X[rd] \leftarrow reverse_bits(X[rs])$

Notes

Reverses the order of the bits in the X[rs1] register.

ADD

Encoding

31:26	25:21	20:16	15:11	10:6	5:0
000000	rs	rt	rd	00000	011000

Assembler

ADD rd, rs, rt

$$X[rd] \leftarrow X[rs] + X[rt]$$

SLTI

Encoding

31:26	25:21	20:16	15:0
110101	rs	rt	imm

Assembler

SLTI rt, rs, #imm

Semantics

 $X[rt] \leftarrow X[rs] < sign_extend(imm)$

LD

Encoding

31:26	25:21	20:16	15:0
010010	base	rt	offset

Assembler

LD rt, offset(base)

Semantics

$$X[rt] \leftarrow memory[X[base] + sign_extend(offset)]$$

Notes

The lowest 2 bits of the #offset field must be zero. If they are not, the result of the instruction is undefined (misaligned access).

SYSCALL

Encoding

31:26	25:6	5:0
000000	code	011001

Assembler

SYSCALL

Semantics

SigException(SystemCall)

Notes

X8 — system call number, X0 - X7 — args, X0 — result, see man syscall

CBIT

Encoding

31:26	25:21	20:16	15:11	10:0
111110	rd	rs	imm5	000000000

Assembler

CBIT rd, rs, #imm5

Semantics

$$X[rd] \leftarrow clear_bit_field(X[rs], imm5)$$

Notes

Clears exactly one bit at position #imm in the X[rs] register to 0. All other bits remain unchanged.

STP

Encoding

31:26	25:21	20:16	15:11	10:0
101010	base	rt1	rt2	offset

Assembler

Semantics

```
addr ← X[base] + sign_extend(offset)

memory[addr] ← X[rt1]

memory[addr + 4] ← X[rt2]
```

Notes

The lowest 2 bits of the #offset field must be zero. If they are not, the result of the instruction is undefined (misaligned access).

BNE

Encoding

31:26	25:21	20:16	15:0
110111	rs	rt	offset

Assembler

BNE rs, rt, #offset

USAT

Encoding

31	:26	25:21	20:16	15:11	10:0
100	011	rd	rs	imm5	000000000

Assembler

USAT rd, rs, #imm5

Semantics

 $X[rd] \leftarrow saturate_unsigned(X[rs], imm5)$

Notes

Saturation of the unsigned value in X[rs] to N bits, where N = #imm

BEQ

Encoding

31:26	25:21	20:16	15:0
001011	rs	rt	offset

Assembler

BEQ rs, rt, #offset

BDEP

Encoding

31:26	25:21	20:16	15:11	10:6	5:0
000000	rd	rs1	rs2	00000	001100

Assembler

BDEP rd, rs1, rs2

Semantics

 $X[rd] \leftarrow bit_deposit(X[rs1], X[rs1])$

Notes

Places the least significant bits of X[rs1] into the positions specified by the mask X[rs2]. The remaining bits are filled with zeros.

ST

Encoding

31:26	25:21	20:16	15:0
100101	base	rt	offset

Assembler

ST rt, offset(base)

Semantics

$$memory[X[base] + sign_extend(offset)] \leftarrow X[rt]$$

Notes

The lowest 2 bits of the #offset field must be zero. If they are not, the result of the instruction is undefined (misaligned access).