# **Linear Algebra**

1. Create 5 matrices with five different dimensions (1-D,2-D,...5-D)

```
In [54]: import numpy as np
          from numpy import linalg as la
  In [3]: | arr=np.array([1,2,3])
          print(arr)
          [1 2 3]
In [57]: | arr1=np.array([[1,2,3],[4,5,6],[7,8,9]])
          print(arr1)
          [[1 2 3]
           [4 5 6]
           [7 8 9]]
In [106]:
          arr2=np.array([[[1,2,3,5],[7,8,9,7],
                           [4,5,6,3],[7,8,9,1],
                           [1,2,3,6],[7,8,9,1]]])
          print(arr2)
          [[[1 2 3 5]
            [7 8 9 7]
            [4 5 6 3]
            [7 8 9 1]
            [1 2 3 6]
            [7 8 9 1]]]
In [21]: arr3=np.array([[[[1,2,3],[4,5,6]]],
                          [[[4,5,6],[1,2,3]]])
          print(arr3)
          [[[[1 2 3]
             [4 5 6]]]
           [[[4 5 6]
             [1 2 3]]]
```

```
In [47]: arr4=np.array([[[[[1,2,3]],[[4,5,6]]],[[[4,5,6]],[[1,2,3]]]],
                         [[[[1,2,3]],[[4,5,6]]],[[[4,5,6]],[[1,2,3]]]],
                         [[[[1,2,3]],[[4,5,6]]],[[[4,5,6]],[[1,2,3]]]],
                         [[[[1,2,3]],[[4,5,6]]],[[[4,5,6]],[[1,2,3]]]])
         print(arr4)
         [[[[1 2 3]]
             [[4 5 6]]]
            [[[4 5 6]]
             [[1 2 3]]]]
           [[[[1 2 3]]
             [[4 5 6]]]
            [[[4 5 6]]
             [[1 2 3]]]
           [[[[1 2 3]]
             [[4 5 6]]]
            [[[4 5 6]]
             [[1 2 3]]]]
           [[[[1 2 3]]
             [[4 5 6]]]
            [[[4 5 6]]
             [[1 2 3]]]]
           2. Find determinants of 5 matrices and display your output
```

```
In [75]: print(la.det(arr1))
```

-9.51619735392994e-16

3. Find inverse of the above 5 matrices and display your output

```
print(la.inv(arr1))
In [58]:
         [[ 3.15251974e+15 -6.30503948e+15 3.15251974e+15]
           [-6.30503948e+15 1.26100790e+16 -6.30503948e+15]
           [ 3.15251974e+15 -6.30503948e+15 3.15251974e+15]]
           4. Find the rank, diagonal and trace of the 5 matrices
In [82]:
         print(la.matrix_rank(arr))
In [83]: |print(la.matrix_rank(arr1))
         2
In [84]: |print(la.matrix_rank(arr2))
         [4]
In [85]: print(la.matrix_rank(arr3))
          [[2]
           [2]]
In [86]: print(la.matrix_rank(arr4))
         [[[1 1]
            [1 1]]
           [[1 \ 1]
           [1 1]]
           [[1 \ 1]
           [1 1]]
           [[1 \ 1]
            [1 1]]]
In [87]: |print(np.diag(arr))
          [[1 0 0]
           [0 2 0]
           [0 0 3]]
In [88]: print(np.diag(arr1))
         [1 5 9]
```

```
In [94]: |print(np.trace(arr1))
          15
          print(np.trace(arr2))
 In [95]:
          [1 2 3 5 6 7 1 2 3]
 In [96]: print(np.trace(arr3))
          [[1 2 3]
            [4 5 6]]
 In [97]: print(np.trace(arr4))
          [[[5 7 9]]
            [[5 7 9]]]
            5. Find Eigen value and eigen vector for 5 matrices
 In [99]: |x,y=la.eig(arr1)
          print("root",x)
          print("matrix",y)
           root [ 1.61168440e+01 -1.11684397e+00 -3.38433605e-16]
          matrix [[-0.23197069 -0.78583024 0.40824829]
            [-0.52532209 -0.08675134 -0.81649658]
            [-0.8186735
                          0.61232756 0.40824829]]
In [104]: |print(la.eigvals(arr1))
           [ 1.61168440e+01 -1.11684397e+00 -3.38433605e-16]
```

## DV

With the two datasets given (refer to drive) - Frame a problem statement, clean, preprocess and visulaize the data and interpret your conclusion"

1)Find the relation between radius\_mean & area\_mean

```
In [109]: import pandas as pd
```

In [110]: df=pd.read\_csv(r"C:\Users\user\Downloads\8\_BreastCancerPrediction.csv")
 df

#### Out[110]:

|     | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_ |
|-----|----------|-----------|-------------|--------------|----------------|-----------|-------------|
| 0   | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.          |
| 1   | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.          |
| 2   | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.          |
| 3   | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.          |
| 4   | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.          |
|     |          | •••       |             |              |                |           |             |
| 564 | 926424   | М         | 21.56       | 22.39        | 142.00         | 1479.0    | 0.          |
| 565 | 926682   | M         | 20.13       | 28.25        | 131.20         | 1261.0    | 0.          |
| 566 | 926954   | М         | 16.60       | 28.08        | 108.30         | 858.1     | 0.          |
| 567 | 927241   | М         | 20.60       | 29.33        | 140.10         | 1265.0    | 0.          |
| 568 | 92751    | В         | 7.76        | 24.54        | 47.92          | 181.0     | 0.          |
|     |          |           |             |              |                |           |             |

4

569 rows × 33 columns

In [114]: df.isnull()

#### Out[114]:

|       | id    | diagnosis  | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mea |
|-------|-------|------------|-------------|--------------|----------------|-----------|----------------|
| 0     | False | False      | False       | False        | False          | False     | Fals           |
| 1     | False | False      | False       | False        | False          | False     | Fals           |
| 2     | False | False      | False       | False        | False          | False     | Fals           |
| 3     | False | False      | False       | False        | False          | False     | Fals           |
| 4     | False | False      | False       | False        | False          | False     | Fals           |
|       |       |            |             |              |                |           |                |
| 564   | False | False      | False       | False        | False          | False     | Fals           |
| 565   | False | False      | False       | False        | False          | False     | Fals           |
| 566   | False | False      | False       | False        | False          | False     | Fals           |
| 567   | False | False      | False       | False        | False          | False     | Fals           |
| 568   | False | False      | False       | False        | False          | False     | Fals           |
| 569 r | ows × | 33 columns | 3           |              |                |           |                |
| 4     |       |            |             |              |                |           | <b>•</b>       |

#### Out[111]:

|     | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_ |
|-----|----------|-----------|-------------|--------------|----------------|-----------|-------------|
| 0   | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.          |
| 1   | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.          |
| 2   | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.          |
| 3   | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.          |
| 4   | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.          |
|     |          | •••       |             |              |                |           |             |
| 564 | 926424   | М         | 21.56       | 22.39        | 142.00         | 1479.0    | 0.          |
| 565 | 926682   | М         | 20.13       | 28.25        | 131.20         | 1261.0    | 0.          |
| 566 | 926954   | М         | 16.60       | 28.08        | 108.30         | 858.1     | 0.          |
| 567 | 927241   | М         | 20.60       | 29.33        | 140.10         | 1265.0    | 0.          |
| 568 | 92751    | В         | 7.76        | 24.54        | 47.92          | 181.0     | 0.          |
|     |          |           |             |              |                |           |             |

4

569 rows × 33 columns

In [113]: df1.dropna(axis=1)

#### Out[113]:

|       | id         | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_ |
|-------|------------|-----------|-------------|--------------|----------------|-----------|-------------|
| 0     | 842302     | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.          |
| 1     | 842517     | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.          |
| 2     | 84300903   | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.          |
| 3     | 84348301   | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.          |
| 4     | 84358402   | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.          |
|       |            |           |             |              |                |           |             |
| 564   | 926424     | М         | 21.56       | 22.39        | 142.00         | 1479.0    | 0.          |
| 565   | 926682     | М         | 20.13       | 28.25        | 131.20         | 1261.0    | 0.          |
| 566   | 926954     | М         | 16.60       | 28.08        | 108.30         | 858.1     | 0.          |
| 567   | 927241     | М         | 20.60       | 29.33        | 140.10         | 1265.0    | 0.          |
| 568   | 92751      | В         | 7.76        | 24.54        | 47.92          | 181.0     | 0.          |
| 569 r | ows × 32 c | columns   |             |              |                |           |             |
| 4     |            |           |             |              |                |           | <b>&gt;</b> |

In [121]: df1.plot.line('radius\_mean','area\_mean')

Out[121]: <Axes: xlabel='radius\_mean'>



```
In [116]: df1.plot.scatter(x='radius_mean',y='area_mean')
```

Out[116]: <Axes: xlabel='radius\_mean', ylabel='area\_mean'>



both radius\_mean & area\_mean consists of similar values

```
In [ ]: 2)vishualize Depthm & Btl_Cnt
```

```
In [122]: dff=pd.read_csv(r"C:\Users\user\Downloads\bottle.csv")
dff
```

C:\Users\user\AppData\Local\Temp\ipykernel\_7948\2901418093.py:1: DtypeWarnin g: Columns (47,73) have mixed types. Specify dtype option on import or set lo  $w_memory=False$ .

dff=pd.read\_csv(r"C:\Users\user\Downloads\bottle.csv")

#### Out[122]:

|        | Cst_Cnt | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | SaInty  | O2ml_L | STheta   | O2S   |
|--------|---------|---------|----------------|------------------------------------------------------------|--------|--------|---------|--------|----------|-------|
| 0      | 1       | 1       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0000A-3 | 0      | 10.500 | 33.4400 | NaN    | 25.64900 | Na    |
| 1      | 1       | 2       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0008A-3 | 8      | 10.460 | 33.4400 | NaN    | 25.65600 | Na    |
| 2      | 1       | 3       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0010A-7 | 10     | 10.460 | 33.4370 | NaN    | 25.65400 | Na    |
| 3      | 1       | 4       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0019A-3 | 19     | 10.450 | 33.4200 | NaN    | 25.64300 | Na    |
| 4      | 1       | 5       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0020A-7 | 20     | 10.450 | 33.4210 | NaN    | 25.64300 | Na    |
|        |         |         |                | •••                                                        | •••    |        |         |        | •••      |       |
| 864858 | 34404   | 864859  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0000A-7 | 0      | 18.744 | 33.4083 | 5.805  | 23.87055 | 108.7 |
| 864859 | 34404   | 864860  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0002A-3 | 2      | 18.744 | 33.4083 | 5.805  | 23.87072 | 108.7 |
| 864860 | 34404   | 864861  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0005A-3 | 5      | 18.692 | 33.4150 | 5.796  | 23.88911 | 108.∠ |
| 864861 | 34404   | 864862  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0010A-3 | 10     | 18.161 | 33.4062 | 5.816  | 24.01426 | 107.7 |

|        | Cst_Cnt | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | SaInty  | O2ml_L | STheta   | O2S   |  |
|--------|---------|---------|----------------|------------------------------------------------------------|--------|--------|---------|--------|----------|-------|--|
| 864862 | 34404   | 864863  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0015A-3 | 15     | 17.533 | 33.3880 | 5.774  | 24.15297 | 105.€ |  |

864863 rows × 74 columns

In [123]: dff1=dff[0:10000]
 dff1

### Out[123]:

| BtI_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | Salnty | O2ml_L | STheta | O2Sat | <br>R_PHAEO | R_I |
|---------|----------------|------------------------------------------------------------|--------|--------|--------|--------|--------|-------|-------------|-----|
| 1       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0000A-3 | 0      | 10.50  | 33.440 | NaN    | 25.649 | NaN   | <br>NaN     |     |
| 2       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0008A-3 | 8      | 10.46  | 33.440 | NaN    | 25.656 | NaN   | <br>NaN     |     |
| 3       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0010A-7 | 10     | 10.46  | 33.437 | NaN    | 25.654 | NaN   | <br>NaN     |     |
| 4       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0019A-3 | 19     | 10.45  | 33.420 | NaN    | 25.643 | NaN   | <br>NaN     |     |
| 5       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0020A-7 | 20     | 10.45  | 33.421 | NaN    | 25.643 | NaN   | <br>NaN     |     |
|         |                |                                                            |        |        |        |        |        |       | <br>        |     |
| 9996    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0043A-3 | 43     | 15.71  | 33.640 | 5.46   | 24.769 | 96.5  | <br>NaN     |     |
| 9997    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0050A-7 | 50     | 15.35  | 33.621 | 5.26   | 24.835 | 92.3  | <br>NaN     |     |
| 9998    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0065A-3 | 65     | 14.64  | 33.510 | 4.74   | 24.904 | 82.0  | <br>NaN     |     |
| 9999    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0075A-7 | 75     | 14.04  | 33.459 | 4.73   | 24.991 | 80.8  | <br>NaN     |     |

|   | BtI_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | SaInty | O2ml_L | STheta | O2Sat | ••• | R_PHAEO | R_I |
|---|---------|----------------|------------------------------------------------------------|--------|--------|--------|--------|--------|-------|-----|---------|-----|
| • | 10000   | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0100A-7 | 100    | 12.60  | 33.453 | 4.70   | 25.276 | 77.9  |     | NaN     |     |

'4 columns

In [128]: dff.isnull()

Out[128]:

|        | Cst_Cnt   | Btl_Cnt | Sta_ID | Depth_ID | Depthm | T_degC | SaInty | O2mI_L | STheta | O2Sat | • |
|--------|-----------|---------|--------|----------|--------|--------|--------|--------|--------|-------|---|
| 0      | False     | False   | False  | False    | False  | False  | False  | True   | False  | True  | _ |
| 1      | False     | False   | False  | False    | False  | False  | False  | True   | False  | True  |   |
| 2      | False     | False   | False  | False    | False  | False  | False  | True   | False  | True  |   |
| 3      | False     | False   | False  | False    | False  | False  | False  | True   | False  | True  |   |
| 4      | False     | False   | False  | False    | False  | False  | False  | True   | False  | True  |   |
|        |           |         |        |          |        |        |        |        | •••    | •••   |   |
| 864858 | False     | False   | False  | False    | False  | False  | False  | False  | False  | False | • |
| 864859 | False     | False   | False  | False    | False  | False  | False  | False  | False  | False | • |
| 864860 | False     | False   | False  | False    | False  | False  | False  | False  | False  | False | • |
| 864861 | False     | False   | False  | False    | False  | False  | False  | False  | False  | False | • |
| 864862 | False     | False   | False  | False    | False  | False  | False  | False  | False  | False | • |
| 864863 | rows × 74 | columns | 5      |          |        |        |        |        |        |       |   |

In [126]: dff2=dff1
 dff2.fillna(value=1)

#### Out[126]:

|      | Cst_Cnt | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | SaInty | O2ml_L | STheta | O2Sat |  |
|------|---------|---------|----------------|------------------------------------------------------------|--------|--------|--------|--------|--------|-------|--|
| 0    | 1       | 1       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0000A-3 | 0      | 10.50  | 33.440 | 1.00   | 25.649 | 1.0   |  |
| 1    | 1       | 2       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0008A-3 | 8      | 10.46  | 33.440 | 1.00   | 25.656 | 1.0   |  |
| 2    | 1       | 3       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0010A-7 | 10     | 10.46  | 33.437 | 1.00   | 25.654 | 1.0   |  |
| 3    | 1       | 4       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0019A-3 | 19     | 10.45  | 33.420 | 1.00   | 25.643 | 1.0   |  |
| 4    | 1       | 5       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0020A-7 | 20     | 10.45  | 33.421 | 1.00   | 25.643 | 1.0   |  |
|      |         |         |                |                                                            |        |        |        |        |        |       |  |
| 9995 | 331     | 9996    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0043A-3 | 43     | 15.71  | 33.640 | 5.46   | 24.769 | 96.5  |  |
| 9996 | 331     | 9997    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0050A-7 | 50     | 15.35  | 33.621 | 5.26   | 24.835 | 92.3  |  |
| 9997 | 331     | 9998    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0065A-3 | 65     | 14.64  | 33.510 | 4.74   | 24.904 | 82.0  |  |
| 9998 | 331     | 9999    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0075A-7 | 75     | 14.04  | 33.459 | 4.73   | 24.991 | 80.8  |  |

|      | Cst_Cnt | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | SaInty | O2ml_L | STheta | O2Sat | ••• |
|------|---------|---------|----------------|------------------------------------------------------------|--------|--------|--------|--------|--------|-------|-----|
| 9999 | 331     | 10000   | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0100A-7 | 100    | 12.60  | 33.453 | 4.70   | 25.276 | 77.9  |     |

10000 rows × 74 columns

In [127]: dff2.dropna(axis=1)

#### Out[127]:

|      | Cst_Cnt | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | RecInd | P_qual | Chlqua | Phaqua | SiO3qu N |
|------|---------|---------|----------------|------------------------------------------------------------|--------|--------|--------|--------|--------|----------|
| 0    | 1       | 1       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0000A-3 | 0      | 3      | 9.0    | 9.0    | 9.0    | 9.0      |
| 1    | 1       | 2       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0008A-3 | 8      | 3      | 9.0    | 9.0    | 9.0    | 9.0      |
| 2    | 1       | 3       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0010A-7 | 10     | 7      | 9.0    | 9.0    | 9.0    | 9.0      |
| 3    | 1       | 4       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0019A-3 | 19     | 3      | 9.0    | 9.0    | 9.0    | 9.0      |
| 4    | 1       | 5       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0020A-7 | 20     | 7      | 9.0    | 9.0    | 9.0    | 9.0      |
|      |         |         |                |                                                            |        |        |        |        |        | •••      |
| 9995 | 331     | 9996    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0043A-3 | 43     | 3      | 9.0    | 9.0    | 9.0    | 9.0      |
| 9996 | 331     | 9997    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0050A-7 | 50     | 7      | 9.0    | 9.0    | 9.0    | 9.0      |
| 9997 | 331     | 9998    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0065A-3 | 65     | 3      | 9.0    | 9.0    | 9.0    | 9.0      |
| 9998 | 331     | 9999    | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0075A-7 | 75     | 7      | 9.0    | 9.0    | 9.0    | 9.0      |

|     | Cst_Cnt      | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | RecInd | P_qual | Chlqua | Phaqua | SiO3qu | 1 |
|-----|--------------|---------|----------------|------------------------------------------------------------|--------|--------|--------|--------|--------|--------|---|
| 999 | <b>9</b> 331 | 10000   | 102.0<br>074.0 | 19-<br>4906HO-<br>HY-152-<br>1806-<br>10200740-<br>0100A-7 | 100    | 7      | 9.0    | 9.0    | 9.0    | 9.0    |   |

10000 rows × 19 columns

```
In [137]: dff2.plot.line('Btl_Cnt','Depthm')
```

Out[137]: <Axes: xlabel='Btl\_Cnt'>



```
In [139]: dff2.plot.scatter(x='Btl_Cnt',y='Depthm')
```

Out[139]: <Axes: xlabel='Btl\_Cnt', ylabel='Depthm'>

