

Fraternité

ECFG932- ing3 FOO'DS Techniques avancées en évaluation sensorielle et étude consommateurs (2)

TRAITEMENT DE DONNÉES « TRI LIBRE »

Le Tri libre

Introduction

- Le Tri Libre fait partie des méthodes holistiques.
- Les méthodes holistiques
 - présentent l'ensemble des produits d'intérêt en même temps aux panélistes
 - mesurent les similarités ou dissimilarités entre les produits en fonction de leurs propriétés sensorielles globales
 - Ne nécessitent aucune caractérisation analytique contrairement aux méthodes descriptives.

Principe

- On demande à *N* participants de proposer une partition de *P* produits en sous ensembles disjoints.
- Le nombre de partitions sera en général compris entre 2 et P-1.
- Il s'agit d'une technique descriptive et non verbale qui est proposée à des sujets non entrainés.

Avantages

- Lorsque le nombre de produits est relativement important pour éviter la lourdeur cognitive et la fatigue induite des méthodes descriptives.
- Peut capter des informations latentes difficiles à verbaliser par des descripteurs sensoriels analytiques.

Inconvénients

- Dépendant de l'espace produit
- Impossible d'agréger les données de plusieurs études (facilement)
- Besoin d'informations descriptives additionnelles pour comprendre l'espace produit

Du côté de R

Package *FreeSorteR* écrit par P. Courcoux.

On va se baser sur un des exemples de ce package *AromaSort*.

Data AromaSort dans FreeSortR

On va étudier un premier exemple de tri libre de 16 arômes proposés à 31 sujets.

Food Quality and Preference 32 (2014) 107-112

Contents lists available at SciVerse ScienceDirect

Food Quality and Preference

journal homepage: www.elsevier.com/locate/foodqual

Determination of the consensus partition and cluster analysis of subjects in a free sorting task experiment

Ph. Courcoux*, P. Faye, E.M. Qannari

LUNAM University, ONIRIS, USC Sensometrics and Chemometrics Laboratory, Nantes F-44322, France INRA, Nantes F-44316, France

Exemple individu 1:

[1] "{Citron, pamplemousse, poire, noisettes
grillées, fraise}{ananas, miel, poivre
vert}{beurre, pain grillé}{framboise, cerise,
cassis}{fumé, poivre, réglisse}"

Stimuli	Ind1
Citron	5
pamplemousse	5
ananas	4
poire	5
miel	4
beurre	1
pain grillé	1
noisettes grillées	5
fraise	5
framboise	3
cerise	3
cassis	3
poivre vert	4
fumé	2
poivre	2
réglisse	2

VetAgroBio Nantes ÉCOLE NATIONALE

Matrice de dissimilarités individuelles

On note $D^{(n)}=\left(d_{i,j}^{(n)}\right)_{i,j}$ la matrice de dissimilarités obtenue à partir de la partition du n-ième individu. On a

$$d_{i,j}^{(n)} = 0$$
 si i, j sont dans la même partition,

$$d_{i,j}^{(n)} = 1 \text{ sinon.}$$

Remarque La matrice $D^{(n)}$ est une matrice symétrique dont la diagonale est nulle.

Exemple individu 1:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. Citron	0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	1
2. pamplemousse	0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	1
3. ananas	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1
4. poire	0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	1
5. miel	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1
6. beurre	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1
7. pain grillé	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1
8. noisettes grillées	0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	1
9. fraise	0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	1
10. framboise	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1
11. cerise	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1
12. cassis	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1
13. poivre vert	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1
14. fumé	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
15. poivre	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
16. réglisse	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0

Matrice de dissimilarités à l'échelle du panel

On ajoute toutes les matrices de dissimilarités individuelles. On obtient la matrice *D* de coefficients :

$$\delta_{i,j} = \sum_{n=1}^{N} d_{i,j}^{(n)}$$

Cette matrice est symétrique et sa diagonale est nulle.

Tous les coefficients de cette matrice sont des entiers inférieurs ou égaux à N.

Retour sur l'exemple

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. Citron	0	9	21	15	26	30	31	29	20	21	25	25	29	31	24	30
2. pamplemousse	9	0	18	17	26	29	31	29	20	24	26	25	27	31	24	29
3. ananas	21	18	0	15	27	28	30	30	14	20	22	24	25	31	29	31
4. poire	15	17	15	0	28	30	31	30	11	14	23	24	28	31	27	30
5. miel	26	26	27	28	0	23	22	22	28	30	28	25	24	24	26	23
6. beurre	30	29	28	30	23	0	22	22	28	27	27	21	28	28	30	27
7. pain grillé	31	31	30	31	22	22	0	12	31	30	28	27	24	23	30	24
8. noisettes grillées	29	29	30	30	22	22	12	0	30	29	28	26	26	24	29	27
9. fraise	20	20	14	11	28	28	31	30	0	14	22	26	30	31	30	31
10. framboise	21	24	20	14	30	27	30	29	14	0	24	22	27	30	31	28
11. cerise	25	26	22	23	28	27	28	28	22	24	0	26	29	30	26	28
12. cassis	25	25	24	24	25	21	27	26	26	22	26	0	27	30	29	28
13. poivre vert	29	27	25	28	24	28	24	26	30	27	29	27	0	26	27	26
14. fumé	31	31	31	31	24	28	23	24	31	30	30	30	26	0	28	22
15. poivre	24	24	29	27	26	30	30	29	30	31	26	29	27	28	0	24
16. réglisse	30	29	31	30	23	27	24	27	31	28	28	28	26	22	24	0

MDS (Multi Dimensionnal Scaling)

On cherche à représenter la matrice D qui est symétrique de dimension P dans un espace de dimension k < P. Cela suppose :

- L'existence de variables latentes (ie qui permettent de résumer des dissimilarités entre produits)
- Le choix d'un indice de qualité de la projection des dissimilarités dans l'espace latent (→ *Stress*).

Le stress

Soit $D' = (\hat{\delta}_{i,j})_{i,j}$ la matrice des dissimilarités restituées dans l'espace latent on définit

• le stress $S = \sum_{i < j} (\delta_{i,j} - \hat{\delta}_{i,j})^2$

• le stress normalisé $S_n = \frac{\sum_{i < j} (\delta_{i,j} - \widehat{\delta}_{i,j})^2}{\sum_{i < j} \delta_{i,j}^2}$

Choix du nombre de dimension du MDS

Ellipse de confiance

- On se pose la question de la stabilité de la configuration. D'autres individus proposeraient d'autres partitions → autre configuration.
- Pseudo-individus simulés à partir des individus de l'échantillon (Bootstrapping) : on tire des individus avec remise dans l'échantillon et on construit la configuration obtenue (en général B=500 tirages).
- Construction d'ellipses de confiance à partir de ces *B* configurations.

Représentation obtenue

MDS stress= 0.06

Partition consensuelle

Mesure d'accord entre deux partitions

On demande à 2 participants de partager en groupes 5 produits numérotés {1,2,3,4,5}.

On obtient les deux partitions suivantes : $P_1 = \{\{1,2,3\}, \{4,5\}\}\$ et $P_2 = \{\{1,2\}, \{3,4,5\}\}.$

On va mesurer l'accord entre ces deux partitions en regardant si chaque paire de produits est :

groupé dans P_1 (Gr P1),

séparé dans P_1 (sep P1).

De même dans P_2 .

	Gr P2	Sep P2
Gr P1	4	2
Sep P1	2	2

Rand Index (RI)

$$RI(P_1, P_2) = \frac{a+d}{P(P-1)/2}$$

où a+d est le nombre d'accord entre P_1, P_2 (ie lorsqu'elles regroupent ou qu'elles séparent les deux produits).

$$0 \le RI(P_1, P_2) \le 1$$

0 : désaccord total et 1 : accord total

Inconvénient : Il augmente en moyenne lorsque le nombre N de sujets augmente.

Adjusted Rand Index (ARI)

RI est remplacé par

$$ARI(P_1, P_2) = \frac{RI(P_1, P_2) - \overline{RI}}{1 - \overline{RI}}$$

où \overline{RI} est la moyenne du RI pour 2 partitions dont le consensus n'est dû qu'au hasard.

Conséquences

- 1. $ARI(P_1, P_2) = 0$ lorsque le consensus n'est dû qu'au hasard,
- 2. $ARI(P_1, P_2) = 0$ lorsque le consensus est parfait (ie les partitions sont identiques).

Mesure de consensus

• On cherche une partition *P* telle que la moyenne des *ARI* de chaque sujet avec cette partition est maximale c'est à dire

$$C_M(P) = \frac{1}{N} \sum_{n=1}^{N} ARI(P, P_n)$$
 maximale.

- On procède de façon itérative en fixant le nombre K de classes dans la partition consensuelle. On choisit la valeur de K pour laquelle $C_M(P)$ est maximal.
- Attention : Cet algorithme est sensible au choix de la première partition.

Recherche du consensus

Résultat pour l'exemple

Partition en 7 classes avec $C_M(P) = 0.308$

arome	Consensus
Citron	1
pamplemousse	1
ananas	1
poire	1
miel	2
beurre	3
pain grillé	2
noisettes grillées	2
fraise	1
framboise	1
cerise	4
cassis	3
poivre vert	5
fumé	6
poivre	7
réglisse	6

Représentation de la partition consensuelle sur le plan latent :

Classification des sujets

• L'ARI permet de définir une distance euclidienne entre les sujets,

$$d_{ARI}(S_1, S_2) = \sqrt{1 - ARI(P_1, P_2)}$$

où le sujet S_i propose la partition P_i .

• On réalise ensuite une Classification ascendante hiérarchique avec cette distance. On établit le consensus sur les groupes obtenus.

CAH avec d_ARI

Cluster Dendrogram

dd hclust (*, "ward.D2")

Consensus dans les deux classes

MDS, stress= 0.032

ÉCOLE NATIONALE

Informations additionnelles

Informations additionnelles (1)

On propose aux 31 sujets une liste de 36 descripteurs pour les 16 produits considérés. On obtient la table de contingence suivante :

Caractérisation des axes latents

On effectue la régression de chacun des descripteurs sur les composantes de la MDS. Soit Y_h l'un des descripteurs proposés on écrit

$$Y_h = \beta_{0,h} + \beta_{1,h}C_1 + \beta_{2,h}C_2 + \beta_{3,h}C_3 + \varepsilon_h$$

Les coefficients $\beta_{1,h}$, $\beta_{2,h}$, $\beta_{3,h}$ seront les coordonnées de Y_h dans les plans factoriels.

Exemple

Descripteur Acide:

Comp1	Comp2	Comp3
-2.39	-0.69	-0.69

Représentation graphique

Informations additionnelles (2): Matrice de Liking

Ces données sont issues d'un cours de sensométrie de François Husson https://husson.github.io/data.html

59 sujets ont réalisé un tri libre de 12 jus d'orange.

48 sujets ont réalisé un liking de ces 12 jus d'orange.

Consignes

4) Jugement d'ensemble

VetAgroBio Nantes

ÉCOLE NATIONALE

Appréciation hédonique (globale)	Très mauvais	-	-	-	•	-	-	 Excellent
Commentaires :		 	 					

Les données de Liking

	Juge.1	Juge.2	Juge.3	Juge.45	Juge.46	Juge.47	Juge.48
Jaf_SP_F	5	6	2	1	3	2	7
Jaf	2	3	4	3	3	3	8
Trop_AP_F	9	8	5	10	3	4	3
Bio	3	2	3	1	2	3	1
Jock	3	5	8	1	2	2	5
And_F	7	5	8	1	5	2	5
Trop_SP_F	7	7	5	6	4	4	7
Jaf_AP_F	3	4	4	7	3	2	3
Trop_SP	1	8	3	1	2	3	6
Trop_AP	3	7	4	2	3	1	4
Trop_pulipissimo	7	2	6	4	3	1	3
Jaf_israel	4	2	3	1	7	4	2

Projection des notes sur le plan factoriel

Plan factoriel à partir de la matrice de dissimilarités obtenue à l'issue du tri libre.

Soit $Juge_h$ les notes attribuées par le juge h pour les 12 jus d'oranges proposés

$$Juge_h = \beta_{0,h} + \beta_{1,h}C_1 + \beta_{2,h}C_2 + \varepsilon_h$$

Les coefficients de régression seront les coordonnées des notes dans le plan factoriel.

MDS, stress= 0.086

