Geometry of surfaces - Solutions

- **39.** Let $Ldu^2 + 2Mdudv + Ndv^2$ be the second fundamental form of σ . We have $\tilde{\sigma}_u = \lambda \sigma_u$ and $\tilde{\sigma}_v = \lambda \sigma_v$. This implies $\tilde{\sigma}_{uu} = \lambda \sigma_{uu}$, $\tilde{\sigma}_{uv} = \lambda \sigma_{uv}$ and $\tilde{\sigma}_{vv} = \lambda \sigma_{vv}$. Moreover, the unit normal $\tilde{\mathbf{N}}$ of $\tilde{\sigma}$ satisfies $\tilde{\mathbf{N}} = \frac{\tilde{\sigma}_u \times \tilde{\sigma}_v}{\|\tilde{\sigma}_u \times \tilde{\sigma}_v\|} = \frac{\lambda^2(\sigma_u \times \sigma_v)}{\|\tilde{\sigma}_u \times \sigma_v\|} = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|} = \mathbf{N}$. This implies $\tilde{L} = \tilde{\sigma}_{uv} \cdot \tilde{\mathbf{N}} = \lambda \sigma_{uv} \cdot \mathbf{N} = \lambda L$, $\tilde{M} = \tilde{\sigma}_{uv} \cdot \tilde{\mathbf{N}} = \lambda \sigma_{uv} \cdot \mathbf{N} = \lambda M$ and $\tilde{N} = \tilde{\sigma}_{vv} \cdot \tilde{\mathbf{N}} = \lambda \sigma_{vv} \cdot \mathbf{N} = \lambda N$. Thus the second fundamental form of $\tilde{\sigma}$ is $\lambda (Ldu^2 + 2Mdudv + Ndv^2)$.
- **40.** We have $\sigma_u(u,v) = (2u,v,1)$ and $\sigma_v(u,v) = (0,u,-1)$. Thus $\sigma_u(1,1) = (2,1,1)$ and $\sigma_v(1,1) = (0,1,-1)$, which implies $(\sigma_u \times \sigma_v)(1,1) = (-2,2,2)$. Thus the unit normal at $\sigma(1,1)$ is $\mathbf{N}(1,1) = \frac{1}{\sqrt{3}}(-1,1,1)$. Next, we have $\sigma_{uu}(u,v) = (2,0,0)$, $\sigma_{uv}(u,v) = (0,1,0)$ and $\sigma_{vv}(u,v) = (0,0,0)$. Thus $\sigma_{uu}(1,1) = (2,0,0)$, $\sigma_{uv}(1,1) = (0,1,0)$ and $\sigma_{vv}(1,1) = (0,0,0)$. This implies $L(1,1) = \sigma_{uu}(1,1) \cdot \mathbf{N}(1,1) = -\frac{2}{\sqrt{3}}, M(1,1) = \sigma_{uv}(1,1) \cdot \mathbf{N}(1,1) = \frac{1}{\sqrt{3}}$ and $N(1,1) = \sigma_{vv}(1,1) \cdot \mathbf{N}(1,1) = 0$. Thus the second fundamental form of the surface at $\sigma(1,1)$ is $-\frac{2}{\sqrt{3}}du^2 + \frac{2}{\sqrt{3}}dudv$.
- **41.** We have $\kappa'_n = \ddot{\gamma} \cdot \mathbf{N}' = \ddot{\gamma} \cdot (-\mathbf{N}) = -\ddot{\gamma} \cdot \mathbf{N} = -\kappa_n$.
- **42.** We have $\dot{\tilde{\gamma}}(s) = -\dot{\gamma}(-s)$ and $\ddot{\tilde{\gamma}}(s) = \ddot{\gamma}(-s)$; thus $\dot{\tilde{\gamma}}(0) = -\dot{\gamma}(0)$ and $\ddot{\tilde{\gamma}}(0) = \ddot{\gamma}(0)$. This gives $\tilde{\kappa}_g(0) = (\ddot{\tilde{\gamma}} \cdot (\mathbf{N} \times \dot{\tilde{\gamma}}))(0) = (\ddot{\gamma} \cdot (\mathbf{N} \times (-\dot{\gamma})))(0) = -(\ddot{\gamma} \cdot (\mathbf{N} \times \dot{\gamma}))(0) = -\kappa_g(0)$ and $\tilde{\kappa}_n(0) = (\ddot{\tilde{\gamma}} \cdot \mathbf{N})(0) = (\ddot{\gamma} \cdot \mathbf{N})(0) = \kappa_n(0)$.
- **43.** At O we have $\kappa_g = \ddot{\gamma}(0) \cdot (\mathbf{N} \times \dot{\gamma}(0)) = (1, -1, 2) \cdot \frac{1}{\sqrt{2}}(-1, 1, 0) = -\sqrt{2}$ and $\kappa_n = \ddot{\gamma}(0) \cdot \mathbf{N} = (1, -1, 2) \cdot (0, 0, 1) = 2$.
- **44.** At O we have $\kappa_g = \ddot{\gamma}(0) \cdot (\mathbf{N} \times \dot{\gamma}(0)) = (0, 2, 1) \cdot (0, 1, 0) = 2$ and $\kappa_n = \ddot{\gamma}(0) \cdot \mathbf{N} = (0, 2, 1) \cdot (0, 0, 1) = 1$.
- **45.** It follows from the assumption that the unit normal **N** of \mathcal{S} is constant along γ and therefore $0 = \frac{d}{dt}(\mathbf{N} \cdot \dot{\gamma}) = \mathbf{N} \cdot \ddot{\gamma} = \kappa_n$ along γ . Since the curvature κ of γ satisfies $\kappa^2 = \kappa_n^2 + \kappa_g^2$, we obtain $\kappa_g = \pm \kappa$ along γ .
- **46.** Let γ be a normal section with $\gamma(t_0) = p$. Because a normal section is a curve on σ , the distance $||\gamma(t)||$ from the origin O to $\gamma(t)$ obtains a maximum at t_0 and we can apply Exercise 11, using the fact that $\kappa(t_0) = |k_n|$.
- **47.** From Exercise 31 we know that $\tilde{\mathcal{F}}_I = \lambda^2 \mathcal{F}_I$ and from Exercise 39 we know that $\tilde{\mathcal{F}}_{II} = \lambda \mathcal{F}_{II}$. Therefore

$$\det(\tilde{\mathcal{F}}_{II} - \kappa \tilde{\mathcal{F}}_{I}) = \det(\lambda \mathcal{F}_{II} - \kappa \lambda^{2} \mathcal{F}_{I}) = \det(\lambda (\mathcal{F}_{II} - \kappa \lambda \mathcal{F}_{I})) = \lambda^{2} \det(\mathcal{F}_{II} - \kappa \lambda \mathcal{F}_{I})$$

The principal curvatures κ_1 and κ_2 of σ are the roots of the equation $\det(\mathcal{F}_{II} - \kappa \mathcal{F}_I) = 0$. The above equation then tells us that the roots $\tilde{\kappa}_1$ and $\tilde{\kappa}_2$ of the equation $\det(\tilde{\mathcal{F}}_{II} - \kappa \tilde{\mathcal{F}}_I) = 0$ are $\frac{\kappa_1}{\lambda}$ and $\frac{\kappa_2}{\lambda}$. In other words, the principal curvatures of $\tilde{\sigma}$ are $\frac{\kappa_1}{\lambda}$ and $\frac{\kappa_2}{\lambda}$.