Assignment1

刘兆琦 学号 2201110045

2022年9月17日

→, Monte Carlo integration

1.1 问题描述

数值计算积分

$$I(f) = \int_0^1 \sin(x) dx = \mathbb{E}(\sin X) \tag{1}$$

并分析 Monte Carlo 半阶收敛性质。

1.2 数值计算

在 [0,1] 中均匀取 N 个点, 计算 $\mathbb{E}(\sin X) = \frac{1}{N} \sum_{i=1}^N \sin X_i$, 重复 M 次。计算平均误差

$$\mathbb{E}(|e_n|) = \frac{1}{M} \sum_{j=1}^{M} |\bar{X}_j - (1 - \cos(1))|$$

取 $N = \{10, 100, 1000, 10000, 100000\}$, 计算收敛阶

$$o_k = \frac{\log(e_{n_{k+1}}/e_{n_k})}{\log(n_{k+1}/n_k)}$$

结果如下表。

表 1: Monte Carlo 积分误差即收敛阶

N	error	order
10	0.65872412	NaN
100	0.20495824	0.50703819
1000	0.06347936	0.50903286
10000	0.01962411	0.50984243
100000	0.00630419	0.49316046

二、limit process

2.3 问题描述

数值分析 Binomial, Possion, Normal distribution 的极限性质。

2.4 数值计算

数值计算 Possion 分布 $P(\lambda)$ 的 pmf, 舍弃掉密度小于 1e-6 的点。计算 Binomial 分布 $B(N,\lambda/N)$ 的 pmf, 并计算二者的偏差

$$loss_{\lambda,N} = \sum_{i=0}^{\infty} |\mathbb{P}(P(\lambda) = i) - \mathbb{P}(B(N, \lambda/N) = i)|$$
 (2)

通过增大 N 可以找到使得 $loss_{\lambda,N} < \epsilon$ 的最小的 N。取 $\epsilon = 0.01$, 结果如下。

表 2: Binomial 分布逼近 Possion 分布要求的 N

λ	N/λ	λ	N/λ
1	56	6	48.2
2	46	7	49.1
3	50.6	8	49.6
4	50.7	9	49.6
5	49.6	10	49.5

可以看出当 $p \simeq 0.02$ 时,大致有 loss < 0.01。

对正态分布 N(0,1) 计算

$$p_{\lambda,i} = \int_{x_i - 1/(2\sqrt{\lambda})}^{x_i + 1/(2\sqrt{\lambda})} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
 (3)

其中 $x_i = \frac{i-\lambda}{\sqrt{\lambda}}$. 计算 $loss_{\lambda} = \sum_{i=0}^{\infty} |\mathbb{P}(P(\lambda) = i) - p_{\lambda,i}|$ 。通过增大 λ 来减少 $loss_{\lambda}$ 。取 $\epsilon = 0.05$,在 $\lambda = 26$ 时有 $loss_{\lambda} < \epsilon$ 。

2.5 画图

Binomial 逼近 Possion

Possion 逼近正态分布

三、代码

3.6 数值积分

```
import numpy as np
N = [10, 100, 1000, 10000, 100000]
nlist=np.array(N)
dlist=np.array([])
olist=np.array([])
for n in nlist:
    d=0
    for k in range (1000):
        x=np.random.rand(n)
        y=np.sin(x)
        i=sum(y)/n
        d+=abs(i-(1-np.cos(1)))
    dlist=np.append(dlist,d/100)
olist=np.log(dlist[0:-1]/dlist[1:])/np.log(nlist[1:]/nlist[0:-1])
print('order:', olist)
print('error', dlist)
```

3.7 分布的极限

```
global epsilon;
epsilon = 1e-6;
ratiob =[];
%% binomial 遠近 possion
```

```
for lambda=1:10
     t=possion(lambda);
    nmin=t(1,1);
    nmax=t(end,1);
    loss=1;
    N=lambda+1;
    \mathbf{while}(loss > 0.01)
         N=N+1;
         p=lambda/N;
         b=binomial(N,p,[nmin,nmax]);
         while (b(\mathbf{end},1) < \mathbf{nmax})
              b(\mathbf{end}+1,:)=[b(\mathbf{end},1)+1;0];
         end
         loss=sum(abs(t(:,2)-b(:,2)));
    \quad \text{end} \quad
     ratiob (end+1)=N/lambda;
\mathbf{end}
ratiob
% possion 逼近 Guassian
lambda = 10;
gaussianpdf=@(mu, sigma, x)1/sqrt(2*pi*sigma)*exp(-(x-mu).^2/2/sigma^2);
loss=1;
\mathbf{while}( loss > 0.05)
    lambda=lambda+1;
     t=possion(lambda);
    s=sqrt (lambda);
    x=(t(:,1)-lambda)/s;
    probg=zeros(size(x));
     parfor i=1:numel(x)
         probg(i) = integral(@(xx))gaussianpdf(0,1,xx), x(i)-1/s/2, x(i)+1/s/2);
    end
     loss=sum(abs(t(:,2)-probg));
end
lambda
%% 画图
figure(10);
```

```
x = -3:0.01:3;
y=gaussianpdf(0,1,x);
plot(x,y);
for lambda = 10:10:30
    t=possion(lambda);
    s = \mathbf{sqrt} (lambda);
    x=(t(:,1)-lambda)/s;
    y=t(:,2)*s;
    hold on;
    \mathbf{plot}(x,y);
end
legend('N(0,1)', 'possion(10)', 'possion(20)', 'possion(30)');
for lambda=1:3
    figure (lambda);
    t=possion(lambda);
    nmin=t(1,1);
    nmax=t(end,1);
    plot (t(:,1),t(:,2));
    for N = (30:10:50) * lambda
         hold on;
         b=binomial(N, lambda/N, [nmin, nmax]);
         plot(b(:,1),b(:,2));
    \mathbf{end}
    legend (['possion(',num2str(lambda),')'],['N=',num2str(30*lambda)],...
         [ 'N=', num2str(40*lambda)],[ 'N=', num2str(50*lambda)])
end
function mf=possion(lambda)
    global epsilon
    i = 0;
    mf = [];
    p=exp(-lambda);
    while (p<epsilon)
         i = i + 1;
         p=p*lambda/i;
    end
    while (p>=epsilon)
         mf(\mathbf{end} + 1,:) = [i;p];
         i=i+1;
```