多様体論

竹田航太

2021年6月24日

目次

1	多様体	1
2	ベクトル場	2
3	交代 k 形式	2
4.1	多様体上の積分 積分	2
5	リーマン計量	2
	概要	
	※書きかけ	

現代数学を研究する上で外せない多様体論について、基礎的な定義や結果をまとめる. 備 忘録的なものなので定義が抜けていることがある.

多様体 1

Definition 1.1. 位相空間 M が n 次元多様体 (mfd) $\overset{def}{\Leftrightarrow}$

- (1) M \t Hausdorff.
- (2) $\forall x \in M, \exists U \colon open \ nbd \ of \ x \ on \ M \ s.t. \ U \underset{homeo}{\sim} \exists V \subset \mathbb{R}^n$

Theorem 1.2. n 次元 mfd M が単連結とする. このとき以下は同値.

- (1) M は距離つけ可能.
- (2) M は σ -コンパクト.

- (3) M はパラコンパクト.
- (4) M は第2可算.

2 ベクトル場

Definition 2.1. M: n 次元 C^{∞} 多様体に対して, $X: M \to \mathbb{R}^n$ が M 上の vector field (ベクトル場)

 $\stackrel{def}{\Leftrightarrow} X: M\ni x\mapsto X(x)\in T_xM$

また,M上の C^{∞} ベクトル場全体を $\mathfrak{X}^{\infty}(M)$ とかく.

Remark 2.2. n 次元多様体 M 上のベクトル場 X と C^{∞} 局所座標 (U,ϕ) から誘導される $\phi(U) \subset \mathbb{R}^n$ 上のベクトル場 $T\phi(X):\phi(U) \to \mathbb{R}^n$ を次で定めることができる. $x \in U$ に対して,

$$T\phi(X)(\phi(x)) := T_x\phi(X(x))$$

ただし、 $T_x \phi: T_x M \to \mathbb{R}^n$

3 交代 k 形式

Definition 3.1 (交代 k 形式).

Definition 3.2 (ウェッジ積).

Definition 3.3 (differential k-form).

Proposition 3.4 (外微分).

4 多様体上の積分

Definition 4.1 (向き).

Definition 4.2 (volume form).

4.1 積分

5 リーマン計量

Definition 5.1 (リーマン計量).