Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних

циклічних алгоритмів»

Варіант 30

виконав студент	пт-13, Симотюк денис Андриович			
•	(шифр, прізвище, ім'я, по батькові)			
Перевірив				
• •	(прізвище, ім'я, по батькові)			

Лабораторна робота 4 Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 30

Дано дійсне число х. Обчислити
$$\frac{(x-2)(x-4)(x-8)...(x-64)}{(x-1)(x-3)(x-7)...(x-63)}$$

Постановка задачі

Для вирішення створимо два цикли, щоб обчислити чисельник і знаменник. В кінці кожного повторення ітераційним змінним буде присвоюватися значення {змінна}+2, поки змінні не набудуть значень 64 і 63 для чисельника і знаменника відповідно. Після закінчення циклів обраховуємо результат.

Побудова математичної моделі

Побудуємо таблицю змінних:

Змінна	Тип	Призначення
Задане число х	Дійсна	Вхідні дані
Лічильник першого циклу і	Ціла	Ітераційна змінна
Лічильник другого циклу k	Ціла	Ітераційна змінна
Чисельник num	Ціла	Проміжкові дані
Знаменник den	Ціла	Проміжкові дані
Результат res	Дійсна	Вихідні дані

- Крок 1. Визначаємо основні дії.
- Крок 2. Вводимо дані та декларуємо змінні.
- Крок 3. Деталізуємо дію знаходження пит.
- Крок 4. Деталізуємо дію знаходження den.
- Крок 5. Деталізуємо дію знаходження res.

Псевдокод алгоритму

Крок 1.

```
Початок
      Введення х
      num := 1
     den := 1
     Знаходження пит
     Знаходження den
     Обчислення res
     Виведення res
Кінець
Крок 2.
Початок
      Введення х
      num := 1
     den := 1
     Повторити для і від 2 до 64, 2
           num := num * (x - i)
     Все повторити
     Знаходження den
      Обчислення res
      Виведення res
Кінець
Крок 3.
Початок
      Введення х
      num := 1
     den := 1
     Повторити для і від 2 до 64, 2
           num := num * (x - i)
      Все повторити
     Повторити для к від 1 до 63, 2
           den := den * (x - i)
```

Все повторити

Обчислення res

Виведення res

Кінець

Крок 4.

Початок

Введення х

num := 1

den := 1

Повторити для і від 2 до 64, 2

$$num := num * (x - i)$$

Все повторити

Повторити для к від 1 до 63, 2

$$den := den * (x - i)$$

Все повторити

res := num / den

Виведення res

Кінець

Блок-схема алгоритму

Випробування алгоритму

Блок	Дія
	Початок
1	Введення $x = 0$
2	Обчислення num
i=2	num = -2
i=4	num=8
i=62	num=-1.76584e+43
i=64	num=1.13014e+45
3	Обчислення den
k=1	den=-1
k=3	den=3
k=61	den=-1.78215e+42
k=63	den = 1.12276e + 44
4	res = 10.0658
5	Виведення res
	Кінець

Висновки:

Ми дослідили оператори повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій, закріпили вміння декомпозувати задачу.