Mathematical Proofs

Friday, September 18, 2020 5:42

What is a proof?

Defn. A proof is an argument that domonstrates why a certain statement is true, subject to certain rules.

Elevents of coming up with a proof.

Definitions Terms, formal Meaning

Intuitions: Meaning of theorem, why it should be true

Conventions: Standard format + techniques for proofs

Writing a first post.

Theorem. If n is an even integer, then n^2 is even.

Defins: An integer n is even if there exists an integer k such that n=2k.

Totalhon! $2^2 = 4 = 2 \cdot 2$ $10^2 = 100 = 2 \cdot 50$ $(-2)^2 = 4 = 2 \cdot 2$ $N^2 = 2 \cdot \rho$ $N^2 = (2L)^2 = 4L^2 = 2(2L^2)$

Proof. Let n be an even integer.

Then, there exists an integer h such that n=2k. Then, $n^2=(2k)^2=4k^2$.

Note that $n^2 = 4k^2 = 2(2k^2)$, so there exists an integer $m = 2k^2$ such that n = 2m. Therefore, n is even.

Jeong rubant

Theorem. For all integers M, N, M+N IS CHEN.

Proof. Let integers m, n be odd. Then there exist even integers ℓ , q such that m=2p+1 and n=2q+1. Then, m+n=2p+2q+2. Note that m+n=2(p+q+1), so there exists an integer r=p+q+1 such that m+n=2r, so m+n is even.

Universal and Existential Statements.

Defn. A universal statement is of the form

For all X, Sproperty holks for X.

An existential statement is of the form

There exists an x where \$property holds for x.

Proving existential statements.

-> Finding the X

Intuition. $| = |^2 - 0^2$ $3 = 2^2 - |^2$ $5 = 3^2 - 2^2$ $7 = 4^2 - 3^2$ $9 = 5^2 - 4^2$ $2K+1 = (K+1)^2 - K^2$

Proof. Let N be an arbitrary odd integer. Then there exists an integer k such that N=2K+1.

Now, let $\Gamma=(K+1)^2$ and $S=K^2$.

Then
$$\Gamma^2 - s^2 = (k+1)^2 - k^2$$

= $k^2 + 2k + 1 - k^2$
= $2k + 1$
= 0 .

Therefore we have found $\Gamma = (K+1)^2$ and $S = k^2$ Such that $n = \Gamma^2 - S^2$.

Proofs on sets.

Theorem. If A, B, C are sets, then for any $X \in (A \cap B) \cup C$, we have $X \in (A \cup C) \cap (B \cup C)$.

Note. Proofs on sets almost always focus on individual elements of those sets.

Defines. The set SUT is defined such that for all X, if $X \in S$ or $X \in T$, then $X \in (SUT)$.

The set SUT is defined such that for all X, if $X \in S$ and $X \in T$, then $X \in (SUT)$.

Proof. Consider an arbitrary element X such that $X \in (A \cap B) \cup C$.

Note that this means $X \in (A \cap B)$ or $X \in C$.

If $X \in (A \cap B)$, then $X \in A$ and $X \in B$,

So $X \in (A \cup C)$ and $X \in (B \cup C)$,

So $X \in (A \cup C) \cap (B \cup C)$.

If $X \in C$, then $X \in (A \cup C)$ and $X \in (B \cup C)$,

50 X € (AUC) Λ (BUC).

Therefore, in both cases, $X \in (AUC) \cap (BUC)$.