

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals: Understand how convolution is used to enable different computer vision applications

- Typical network structures in convolutional networks
- Specific adjustments to layers and connections that allow to overcome training and use challenges

How will we do this?

- We first consider image classification and the network architectures that allow to perform the task effectively
- We then turn to transfer learning: how we can use existing network architectures to apply to our own computer vision problems
- Finally, we study some other computer vision problems and the relevant adjustments required in convolutional networks to tackle them

A brief recap of convolutional and pooling layers

Typical computer vision problems

Semantic segmentation

Object detection

Neural style transfer

Source: Lin, reiinakano.com

From fully connected to locally connected

Source: Dieleman

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

20	

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

20	12	

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

20	12	19

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

20	12	19
22		

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

1 2 2 1

20	12	19
22	21	

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

1 2 2 1

20	12	19
22	21	22
22	15	16

Convolution on a 3D array

Multiple 3D convolutions

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

6	5	

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

6	5	5

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

6	5	5
6	5	5
5	4	5

Typical architectures

Typical architecture

Source: Géron

The ImageNet challenge

- Major computer vision benchmark for image classification (and later, more advanced stuff)
- From 2010-2017 (now transferred to Kaggle)
- 1.4 mio images in 1,000 classes
- Models need to predict the top 5 most likely labels
 - Winner: lowest "top-5 error rate" percentage of test images for which true label is not among top 5 most likely labels
- More information: https://www.image-net.org/challenges/LSVRC/index.php

Architectures over time

Source: Dieleman

Architectures over time

Traditional computer vision techniques

LeNet-5

- Created by Yann LeCun, 1998
- Widely used for handwritten digit recognition (e.g., bank cheques)

- Uses mostly tanh
- See http://yann.lecun.com/exdb/lenet/index.html for demos

AlexNet

- Winner of the 2012 challenge, by Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton
- Similar to LeNet, but much deeper
- Adds multiple convolutional layer before a pooling layer
- Using ReLU
- Regularization with dropout on the final two layers + data augmentation

AlexNet

Inception modules

- General idea: to achieve higher performance networks are being made deeper and deeper, with negative effects on computation and overfitting
- Would be more effective to make the network sparser, but numerical computations slow
- Inception modules as a way to trade-off: exploit sparsity, but also current hardware
- The module name is actually inspired by this:

Source: knowyourmeme.com ^{CIT}

Inception modules 1x1 conv 3x3 conv 1x1 conv 1x1 conv 28x28x192 5x5 conv 28x28x256 3x3 max pool 1x1 conv

CITY, UNIVERSITY OF LONDON

GoogLeNet

Source: Szegedy

ResNets – using skip connections

MobileNets

- Idea: network that is fast to use even with limited hardware (e.g., mobile phone)
 - Note: training can still be long, as the phone will use a pre-trained model
- "Normal" convolution:

*

=

4x4x3

2x2x3

3x3

MobileNets

- Idea: network that is fast to use even with limited hardware (e.g., mobile phone)
 - Note: training can still be long, as the phone will use a pre-trained model
- "Depthwise separable" convolution:

4x4x3

3 Filters: 2x2x1

3 outputs: 3x3

MobileNets

- Idea: network that is fast to use even with limited hardware (e.g., mobile phone)
 - Note: training can still be long, as the phone will use a pre-trained model
- "Depthwise separable" convolution:

3 outputs: 3x3

1x1x3

Transfer learning

Transfer learning

- Say you want to create a neural network, which your cleaning robot can use to classify objects on the floor
- Instead of developing a new neural network, you decide to use a winner of an ImageNet competition. After all, they are pretty good at classifying many different objects
- Going through the list of objects in ImageNet, you realize there are no classes capturing dirty socks or similar items
- But you believe that such items, while not contained in the original network's training, share the same low-level features as other items that are found there

Repurposing a neural network

- Naïve approach: take the existing (trained) neural network
- Adjust the output layer
- Train some more with your data set

Difference between low-level and high-level features

- Problem with the previous approach: training may be very slow
- But: early layers capture low-level features that are unlikely to be different
- Deeper layers capture high-level features that are likely to be different

Difference between low-level and high-level features

We can go further, by adjusting some of the layers to fit better with our context

Beyond classification – object detection

Typical computer vision problems Image classification

Semantic segmentation

Neural style transfer

Source: Lin, reiinakano.com

Before detection: classification + localization

Learning bounding boxes

Intersection over Union (IoU) as the standard metric for bounding boxes E.g., if IoU \geq 0.6, consider the bounding box as correctly predicted

Object detection with sliding windows

Fully convolutional networks and YOLO

- FCN: Replace dense layers at the top of CNN by convolutional layers
 - instead of having to process parts of the image, the whole image will be processed at once
 - each cell of the final convolutional layer contains the output corresponding to one part (e.g., probability of object, class probabilities, bounding box coordinates)
- YOLO You Only Look Once
 - Five bounding boxes per grid, each with a probability of containing an object and 20 box-independent class probabilities
 - Predict bounding box coordinates relative to grid cell positions
 - Use five representative "anchor boxes" based on training set, and only predicts how actual bounding boxes have to be rescaled relatively
 - Extremely fast: https://www.youtube.com/watch?v=MPU2Histivl

Beyond classification – semantic segmentation

Typical computer vision problems

Image classification

Object detection

Neural style transfer

Source: Lin, reiinakano.com

Objective: classify each pixel

Source: Géron

Semantic segmentation versus object detection

- More accurate, as we don't rely on (rectangular) bounding boxes
- For training and testing, we need images where every pixel is labeled
 - there are some tools that help, but this is still more tedious than drawing bounding boxes

The general approach

Upsampling with transpose convolutions

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

1 2 2 1

20	12	19
22	21	22
22	15	16

1	3	1
6	1	5
5	4	2

1 2 2 1

*

RSITY OF LONDON

Transpose convolution with stride 2

Upsampling with transpose convolutions

1	3	1	
6	1	5	
5	4	2	

1	2
2	1

1	2	3	6	1	2
2	1	6	3	2	1
6	12	1	2	5	10
12	6	2	1	10	5
5	10	4	8	2	4
10	5	8	4	4	2

U-Net

Source: Ronneberge

Going further: instance segmentation

See Lin et al., 2014, Microsoft COCO: Common Objects in Context: https://arxiv.org/pdf/1405.0312.pdf

Beyond classification – neural style transfer

Typical computer vision problems

Image classification

Semantic segmentation

Object detection

Neural style transfer

Source: Lin, reiinakano.com

Neural style transfer

- Idea: create an image that has a similar representation to both the content image and the style image
 - Use a pre-trained CNN
 - Start with a randomly generated picture
 - Consider some layer and how active it is, given the content image. Consider also how active it is, given the generated image. The difference is the "content cost".
 - Consider some layer and how correlated its different activations are, given the style image. Consider the same for the generated image. The difference is the "style cost"
 - We adjust the output image to minimize content and style costs together
- Applications:
 - Artificial artwork
 - Image enhancements

Convolutions of 1D and 3D data

Applications

- 1D: analyze sequence data
 - E.g., audio
- 3D
 - analyze three-dimensional images, e.g., MRIs
 - analyze videos (time is the third dimension)

3D-convolution of 3D-data

Sources

- Bhaskhar, 2021, Introduction to Deep Learning: https://cs229.stanford.edu/syllabus.html
- DeepLearning.AI, n.d.: <u>deeplearning.ai</u>
- Dieleman, 2020, Lecture 3: Convolutional Neural Networks:
 https://storage.googleapis.com/deepmind-media/UCLxDeepMind_2020/L3%20-%20UUCLxDeepMind%20DL2020.pdf
- Géron, 2019, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Liang, 2016, Introduction to Deep Learning: https://www.cs.princeton.edu/courses/archive/spring16/cos495/
- Lin et al., 2014, Microsoft COCO: Common Objects in Context: https://arxiv.org/pdf/1405.0312.pdf
- Ronneberger et al., 2015, U-Net: Convolutional Networks for Biomedical Image
 Segmentation: https://link.springer.com/content/pdf/10.1007/978-3-319-24574-4_28.pdf
- Szegedy et al., 2015, Going Deeper with Convolutions: https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_CVPR_paper.pdf