ECON61001: Econometric Methods

Study Group Questions # 2

Please work on these questions in your study groups and submit your answers to Gradescope following the instructions in the *Weekly Assignments* folder on BB.

The questions refer to the log-level model considered in the Tutorial session that is,

$$log(w) = \beta_1 + \beta_2 x_2 + u$$

where the (observable) dependent variable is y = log(w), x_2 is an observable explanatory variable, u is the unobservable error, (β_1, β_2) are the regression parameters, and for ease of presentation we omit the observation index on the variables as it plays no role in our discussion here.

As in the Tutorial session, we use the following notation: for any variable a, the change in a is denoted by Δa and the percentage change in a is denoted by $\Delta\% a$ that is, if the value of a changes from a_0 to a_1 then: $\Delta a = a_1 - a_0$ and $\Delta\% a = 100 \{(a_1 - a_0)/a_0\}$.

Recall from the tutorial that if x_2 is a continuous variable then for sufficiently small changes Δx_2 , we have

$$\Delta w = \frac{\partial w}{\partial x_2} \Delta x_2. \tag{1}$$

Please enter the details of the group:

Group name	Matrix
Student ID 1	11335127
Student ID 2	10710007
Student ID 3	10850471
Student ID 4	10704589
Student ID 5	11465531

1. Consider the case where x_2 is a continuous variable but (1) does not necessarily hold. Show that if x_2 changes by Δx_2 then the resulting percentage change in w is given by

$$\Delta\%w = 100 \times \left(e^{\beta_2 \Delta x_2} - 1\right). \tag{2}$$

We have the model:
$$\log(\omega) = \beta_{\Lambda} + \beta_{Z} x_{Z+\Lambda} + \omega$$
Let $\log(\omega_{\Lambda}) = \beta_{\Lambda} + \beta_{Z} x_{Z+\Lambda} + \omega$

$$\log(\omega_{0}) = \beta_{\Lambda} + \beta_{Z} x_{Z+\Lambda} + \omega$$

$$= \log(\omega_{\Lambda}) - \log(\omega_{0}) = \beta_{Z} (x_{Z+\Lambda} - x_{Z+\Lambda})$$

$$= \beta_{Z} \cdot \Delta x_{Z}$$

$$= \log\left(\frac{\omega_{\Lambda}}{\omega_{0}}\right) = \beta_{Z} \cdot \Delta x_{Z}$$

$$= \log\left(\frac{\omega_{\Lambda}}{\omega_{0}}\right) = 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right)$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right)$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

$$= 2 \times \beta\left(\beta_{Z} \cdot \Delta x_{Z}\right) - 1$$

2. What is the MacLaurin expansion for e^a ?

We have the Taylor expansion of real punction f(x) at point x = a: $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$

the Maclaurin expansion is one special case of the Taylor expansion when a = 0. $f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{2!} x^n + \dots$

For $f(\Re) = e^{\chi}$, we have the Taylor expansion for $\Re = \alpha$: $e^{\chi} = e^{\alpha} + e^{\alpha}(\chi - \alpha) + \frac{e^{\alpha}}{2!} (\chi - \alpha)^{2} + \dots + \frac{e^{\alpha}}{n!} (\chi - \alpha)^{n} + \dots$

For a=0, we have Madaurin expansion of e^{x} : $e^{x} = e^{0} + e^{0}x + \frac{e^{0}}{2!}x^{2} + \dots + \frac{e^{0}}{n!}x^{n} + \dots$ $= 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$

3. Show that if Δx_2 is sufficiently small then the formula for $\Delta\%w$ in (2) implies that $\Delta\%w \approx 100\beta_2\Delta x_2.$

From (2), we have $\triangle \% = 100 \times (e^{\beta_2 \triangle x_2} - 1)$ To prove that $\triangle \% \approx 100$. $\beta_2 \triangle x_2$ for when $\triangle x_2 \Rightarrow 0$ we need to show that $(e^{\beta_2 \triangle x_2} - 1) \approx \beta_2 \triangle x_2$ when $\triangle x_2 \Rightarrow 0$ Indeed, from the Maclaurin expansion of $f(x) = e^x$, we have $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$ (at a = 0)

For x very small \Rightarrow $e^{x} \approx 1+\pi$ Similarly, when Δx_{2} become very small, $e^{x} \approx 1+\beta_{2}\Delta x_{2}$ $e^{x} \approx 1+\beta_{2}\Delta x_{2}$ $e^{x} \approx 1+$