Measurements of ZZ and Higgs Production at $\sqrt{s}=13\,\text{TeV} \text{ in Four-Lepton Events Using the}$ CMS Detector at the CERN LHC

by

Nathaniel Woods

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
(Physics)

at the

University of Wisconsin - Madison 2017

Defended on X August 2017

Dissertation approved by the following members of the Final Oral Committee:

Wesley Smith · Bjorn Wiik Professor of Physics

Sridhara Dasu · Professor of Physics

Matthew Herndon \cdot Professor of Physics

Someone · Professor of Physics

Someone · Professor of Something

Abstract

This thesis presents some cool stuff.

${\bf Acknowledgements}$

Nice people are nice.

Contents

	Abst	tract	j
	Ackı	nowledgements	ii
Li	st of	Figures	vii
Li	st of	Tables	viii
1	The	Standard Model	1
	1.1	Introduction	1
	1.2	Matter and Force	1
	1.3	Electroweak Symmetry Breaking and the Higgs Boson	1
	1.4	Diboson Physics	2
		1.4.1 Vector Boson Scattering	2
	1.5	Limitations and Possible Extensions	2
		1.5.1 Anomalous Gauge Couplings	2
2	$\mathbf{Z}\mathbf{Z}$	Phenomenology and Previous Results	3
	2.1	Proton-Proton Collisions	3
	2.2	ZZ Production and Decay	3
		2.2.1 Nonresonant Production	3
		2.2.1.1 Nonresonant $Z\gamma^*$ Production	4

				iv
			2.2.1.2 Vector Boson Scattering	4
			2.2.1.3 Prior Measurements	4
	2.3	Reson	ant $ZZ^*/Z\gamma^*$ Production	4
		2.3.1	Z Boson Decays to Four Leptons	4
		2.3.2	Higgs Boson Production	4
			2.3.2.1 Prior Measurements	4
	2.4	Backg	round Processes	4
	2.5	Anom	alous Gauge Couplings	5
•	m.			0
3			Experiment and the CERN LHC	6
	3.1	The C	ERN Large Hadron Collider	6
		3.1.1	Layout and Accelerator Chain	6
		3.1.2	Design Goals and Constraints	6
		3.1.3	Operation in 2015 and 2016	6
	3.2	The C	Compact Muon Solenoid Detector	7
		3.2.1	Terminology and Geometry	7
		3.2.2	Magnet and Inner Tracking System	7
			3.2.2.1 Pixel Detector	7
			3.2.2.2 Strip Tracker	7
		3.2.3	Electromagnetic Calorimeter	7
		3.2.4	Hadronic Calorimeter	7
		3.2.5	Muon Spectrometer	7
			3.2.5.1 Drift Tubes	8
			3.2.5.2 Cathode Strip Chambers	8
			3.2.5.3 Resistive Place Chambers	8
		3.2.6	Data Acquisition and Trigger	8

			3.2.6.1 Level-1 Trigger	8
			3.2.6.2 High-Level Trigger	8
4	Sim	ulation	ı	9
	4.1	Monte	Carlo Event Generation	9
		4.1.1	Matrix Element Generation	9
		4.1.2	Parton Shower, Hadronization, and Underlying Event	9
		4.1.3	Pileup Simulation	9
	4.2	Detect	or Simulation	9
5	Obj	ect Re	construction and Selection 1	.0
	5.1	Track	Reconstruction and Vertex Identification	10
	5.2	Partic	le Flow Reconstruction	10
		5.2.1	PF Candidates	10
			5.2.1.1 Muons	10
			5.2.1.2 Electrons and Charged Hadrons	11
			5.2.1.3 Photons and Neutral Hadrons	11
		5.2.2	Jets	11
		5.2.3	Missing Transverse Energy	11
	5.3	Object	Identification and Selection	11
		5.3.1	Electrons	11
		5.3.2	Muons	11
		5.3.3	Jets	11
		5.3.4	Final State Photon Radiation	12
		5.3.5	Misidentified Objects	12
	5.4	ZZ Ca	ndidate and Event Selection	12
		5.4.1	Z Candidate Selection	12

		5.4.2	ZZ Candidate Selection	12
		5.4.3	Background Estimation	12
		5.4.4	VBS Signal Selection	12
6	Ana	alysis S	Strategy	13
	6.1	Backg	round Estimation	13
	6.2	System	natic Uncertainties	13
	6.3	Fiduci	al and Total Cross Section Calculation	13
		6.3.1	Signal Strength Extraction	13
		6.3.2	$Z \to 4\ell$ Branching Fraction	13
	6.4	Differe	ential Cross Sections	14
		6.4.1	Unfolding	14
		6.4.2	Propagation of Systematic Uncertainties	14
	6.5	VBS S	Signal Extraction	14
	6.6	Anom	alous Gauge Coupling Searches	14
7	Res	${ m ults}$		15
	7.1	Four-I	Lepton Yield and Distributions	15
		7.1.1	Full Spectrum	15
		7.1.2	$Z \to 4\ell$ Resonance	15
		7.1.3	Higgs Resonance	15
		7.1.4	ZZ Production	15
	7.2	ZZ Fie	ducial and Total Cross Section	16
		7.2.1	$Z \to 4\ell$ Branching Fraction	16
	7.3	Differe	ential Cross Sections	16
	7.4	Vector	Boson Scattering	16
	7.5			

		vii
8	Conclusions	17
Bi	bliography	18

List of Figures

List of Tables

The Standard Model

1.1 Introduction

Some history and stuff

1.2 Matter and Force

Does this need subsections? Not the way it's structured in my head right now, but maybe it could have one subsection for fermions and another for gauge bosons.

1.3 Electroweak Symmetry Breaking and the Higgs Boson

Everybody's favorite fundamental scalar boson

1.4 Diboson Physics

Really only ZZ, but you get the point

1.4.1 Vector Boson Scattering

Scatter scatter

1.5 Limitations and Possible Extensions

It misses a few things

1.5.1 Anomalous Gauge Couplings

Pro tip: we won't see them

ZZ Phenomenology and Previous Results

Phenomenal!

2.1 Proton-Proton Collisions

Bang

2.2 ZZ Production and Decay

Dibosons come, dibosons go

2.2.1 Nonresonant Production

Working hard not to call this "Standard Model production"

2.2.1.1 Nonresonant $Z\gamma^*$ Production

Virtual particles. Spooooooooky!

2.2.1.2 Vector Boson Scattering

Them jets tho

2.2.1.3 Prior Measurements

The literature before I got here

2.3 Resonant $ZZ^*/Z\gamma^*$ Production

This resonates with me

2.3.1 Z Boson Decays to Four Leptons

Prior measurements of this probably don't need their own subsubsection

2.3.2 Higgs Boson Production

2.3.2.1 Prior Measurements

Discovery!

2.4 Background Processes

Basically, Z+jets and ttbar

2.5 Anomalous Gauge Couplings

Triple and quartic

The CMS Experiment and the CERN LHC

3.1 The CERN Large Hadron Collider

Is a big circle.

3.1.1 Layout and Accelerator Chain

Probably mention the other experiments here too

3.1.2 Design Goals and Constraints

What they wanted...

3.1.3 Operation in 2015 and 2016

... and what we got

3.2 The Compact Muon Solenoid Detector

It's big [1]

3.2.1 Terminology and Geometry

Something something definition of η something

3.2.2 Magnet and Inner Tracking System

The magnet: how does it work?

3.2.2.1 Pixel Detector

Basically the same as your cameraphone

3.2.2.2 Strip Tracker

Silicon for days

3.2.3 Electromagnetic Calorimeter

Lots of crystals

3.2.4 Hadronic Calorimeter

More like HATECAL amirite?

3.2.5 Muon Spectrometer

There's also a return yoke

3.2.5.1 Drift Tubes

Are in the barrel

${\bf 3.2.5.2}\quad {\bf Cathode\ Strip\ Chambers}$

Are in the endcap

3.2.5.3 Resistive Place Chambers

Also exist

3.2.6 Data Acquisition and Trigger

Somethigng about DAQ

3.2.6.1 Level-1 Trigger

Obviously the best part

3.2.6.2 High-Level Trigger

Many Computers

Simulation

4.1 Monte Carlo Event Generation

It's like gambling

4.1.1 Matrix Element Generation

The real physics

4.1.2 Parton Shower, Hadronization, and Underlying Event

The way-too-real physics

4.1.3 Pileup Simulation

Lots of it

4.2 Detector Simulation

All kinds of fun

Object Reconstruction and Selection

5.1 Track Reconstruction and Vertex Identification

So many fits

5.2 Particle Flow Reconstruction

The overview

5.2.1 PF Candidates

5.2.1.1 Muons

yep

5.2.1.2 Electrons and Charged Hadrons

uh huh

5.2.1.3 Photons and Neutral Hadrons

yeah

5.2.2 Jets

sure

5.2.3 Missing Transverse Energy

ok

5.3 Object Identification and Selection

What to use in the actual analysis

5.3.1 Electrons

nice

5.3.2 Muons

even nicer

5.3.3 Jets

not as nice

5.3.4 Final State Photon Radiation

Bit of a mess

5.3.5 Misidentified Objects

Fake rates

5.4 ZZ Candidate and Event Selection

Explain the different classes of events (full spectrum, Higgs, on shell...)

5.4.1 Z Candidate Selection

Mass cuts and lepton pairing

5.4.2 ZZ Candidate Selection

Disambiguation for ¿4 leptons

5.4.3 Background Estimation

5.4.4 VBS Signal Selection

Dijets and so on

Analysis Strategy

6.1 Background Estimation

Control regions for days

6.2 Systematic Uncertainties

Who knows?

6.3 Fiducial and Total Cross Section Calculation

6.3.1 Signal Strength Extraction

Fitting

6.3.2 $Z \rightarrow 4\ell$ Branching Fraction

It is tiny

6.4 Differential Cross Sections

6.4.1 Unfolding

IT'S FREQUENTIST!

6.4.2 Propagation of Systematic Uncertainties

A small pain

6.5 VBS Signal Extraction

BDTs and other hip things

6.6 Anomalous Gauge Coupling Searches

Results

7.1 Four-Lepton Yield and Distributions

7.1.1 Full Spectrum

Everything

7.1.2 $Z \rightarrow 4\ell$ Resonance

Found it

7.1.3 Higgs Resonance

Found it too

7.1.4 ZZ Production

Including ZZ+jets

7.2 ZZ Fiducial and Total Cross Section

The big thing

7.2.1 $Z \rightarrow 4\ell$ Branching Fraction

A nice little measurement

7.3 Differential Cross Sections

With awesome plots

7.4 Vector Boson Scattering

Electroweak signal's electrostrength

7.5 Anomalous Coupling Limits

Winning at not finding things

Conclusions

Definitive

Bibliography

[1] S. Chatrchyan *et al.*, "The CMS experiment at the CERN LHC," *JINST*, vol. 3, p. S08004, 2008.