المستوى: الثانية علوم مدة الإنجاز: ساعتان بتاريخ: 3 أبريل 2015

الفرض الموحد الثاني الدورة الثاني

التنقيط

النمرين إ

أحسب التكاملات التالية:

$$J = \int_0^{\frac{\pi}{4}} \sin(2x) dx \qquad ; \qquad I = \int_0^1 (x^2 - x) dx$$

$$N = \int_0^2 \left(x - 1 + \frac{1}{x+1} \right) dx \qquad ; \qquad K = \int_0^1 \left(e^{2x} - e^{-x} \right) dx$$

$$M = \int_0^{\ln 2} (e^x + 1) (e^x + x - 2) dx \qquad ; \qquad L = \int_0^3 \frac{1}{\sqrt{x+1}} dx$$

6 ن

التعرين

باستعمال المكاملة بالأجزاء أحسب التكاملين:

$$A = \int_0^e \ln x dx \qquad ; \qquad B = \int_0^1 (x+1)e^x dx$$

4 ن

النمرين

$$z^2-2z+10=0$$
 المعادلة C المعادلة C النقط C النقط C النقط المستوى العقدي المنسوب للمعلم المتعامد الممنظم المباشر C التي ألحاقها على التوالي هي :

$$c = 5 + 9i$$
, $b = 7 - i$, $a = 1 + 3i$

ر بين أن النقطة
$$C$$
 هي صورة النقطة B بالدوران الذي مركزه C و زاويته C بين أن النقطة C متساوي الساقين و قائم الزاوية بين أن المثلث C متساوي الساقين و قائم الزاوية

ج. حدد d لحق النقطة D بحيث يكون الرباعي AB مربع

0.75

0.75

التعرين

$$f(x) = \frac{e^{3x}}{e^{2x} - 1}$$
: نعتبر الدالة العددية $\{x\}$ المعرفة على \mathbb{R}^* بما يلي:

$$(O; \overrightarrow{i}; \overrightarrow{j})$$
 منحنی f في معلم متعامد ممنظم (C) ليكن

$$(O; \vec{i}; \vec{j})$$
 منحنی f فی معلم متعامد ممنظم (C) منحنی f فی معلم متعامد ممنظم $\lim_{x \to 0^+} f(x) = +\infty$ و $\lim_{x \to 0^+} f(x) = 0$ و $\lim_{x \to 0^+} f(x) = 0$

$$(\forall x \in \mathbb{R}^*)$$
: $f(x) = e^x \left(\frac{1}{1 - e^{-2x}}\right)$ نا تحقق من أن $(1 - e^{-2x})$ 1.2

ب. استنتج أن
$$\infty + = \lim_{x \to +\infty} f(x) = +\infty$$
 و $0 + \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ و $\lim_{x \to +\infty} f(x) = +\infty$ النتيجة المحصل

$$f'(x) = \frac{e^{3x} (e^{2x} - 3)}{(e^{2x} - 1)^2}$$
ن أن $(x) = \frac{e^{3x} (e^{2x} - 3)}{(e^{2x} - 1)^2}$.3

$$(C)$$
 ج. أنشئ المنحنى

: نعتبر الدالة العددية
$$F$$
 المعرفة على $[-\infty,0]$ بما يلي $[-\infty,0]$

$$F(x) = e^{x} - \frac{1}{2} \left(\ln(1 + e^{x}) - \ln(1 - e^{x}) \right)$$

أ. بين أن الدالة
$$F$$
 دالة أصلية للدالة f على المجال F الدالة F بين أن الدالة F دالة أصلية للدالة F ومحور الأفاصيل والمستقيمان المعرفين بين F أحسب مساحة الحيز المحصور بين F

على التوالي ب
$$x = \ln\left(\frac{1}{3}\right)$$
 و $x = \ln\left(\frac{1}{2}\right)$