Основы информационной безопасности (Прохождение внешнего курса)

Автор: Назармамадов Умед Джамшедович Дата выполнения: 14 мая 2025 года

Цель работы

Задачей данного отчёта является документирование прохождения внешнего курса на платформе Stepik «Основы кибербезопасности» с указанием выполненных заданий и кратких описаний пройденных модулей.

Задание

Необходимо выполнить и описать все задания курса «Основы кибербезопасности» на Stepik, перечислить темы модулей и конкретные подтемы, а также приложить скриншоты итоговых тестов.

Теоретическое введение

Слушатели курса «Основы кибербезопасности» на Stepik узнают, как обеспечивается безопасность интернет-трафика, какие пароли нужно выбирать и как их хранить; познакомятся с методами защиты сообщений в мессенджерах (WhatsApp, Telegram); поймут, как работают механизмы аутентификации в электронных платежах и многое другое (stepik.org).

Выполнение лабораторной работы

Модуль 1: Безопасность в сети

• 1.1 Как работает интернет: базовые сетевые протоколы

Выберите протокол прикладного уровня

Выберите один вариант из списка

снимок демонстрирует структуру TCP-пакета в Wireshark, чтобы показать основы обмена данными в сети.

На каком уровне работает протокол ТСР?

Выберите один вариант из списка

Правильно, молодец!

для иллюстрации ARP-запроса и формирования таблицы сопоставления MAC/IPадресов.

Выберите все подходящие ответы из списка

DNS-запроса и ответа, показывающий, как происходит разрешение доменных имён.

DNS сервер

Выберите один вариант из списка

Иллюстрация работы ICMP (ping) для проверки доступности узла в сети.

Выберите корректную последовательность протоколов в модели ТСР/ІР

Выберите один вариант из списка

🗸 Хорошая работа.

сетевой прикладной транс	•	·	
	евой прикладной		
• прикладной транс	портный сетевой	канальный	
Следующий шаг	Решить снова		

запрос к веб-серверу с отображением заголовков и кода ответа.

Протокол http предполагает

Выберите один вариант из списка

Всё получилось!

Показан

процесс установления TLS-сессии (HTTPS) для защищённого соединения.

\checkmark) Здо	рово,	всё	верно

O			
одной фазы аутентис	рикации сервера		
двух фаз: рукопожати	ия и передачи данны	XIX	
🔾 двух фаз: аутентифин	кация клиента и сер	вера и шифрования данных	
трех фаз: аутентифик	ации клиента, аутен	тификация сервера, генерация общего ключа	
Следующий шаг	Решить снова		
Ваши решения Вы получи.	ли: 1 балл		Разбор

НТТР-заголовков запроса и ответа на конкретном примере.

Версия протокола TLS определяется

Выберите один вариант из списка

Результат трассировки маршрута (traceroute), демонстрирующий hops между узлами.

В фазе "рукопожатия" протокола TLS не предусмотрено

Выберите один вариант из списка

/		
аутентификация (кавыбираются алгоры	ак минимум однои из итмы шифрования/ау	
• шифрование даннь	IX	
Следующий шаг	Решить снова	

помощью фильтров в Wireshark для выделения трафика конкретного протокола.

• 1.2 Персонализация сети

Куки хранят:

Правильно.

Выберите все подходящие ответы из списка

Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в комментариях, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений.

для демонстрации изменения МТИ при персонализации сетевых настроек.

аутентификации пол	пьзователя		
	 персонализации веб-страниц 		
отслеживания инфо	рмации о пользователе		
Сборе статистики по	осещаемости сайта		
• улучшения надежно	ости соединения		
Следующий шаг	Решить снова		
Ваши решения Вы получ	или: 1 балл		

Иллюстрация настройки статического ІР-адреса для устройства в локальной сети.

Куки генерируются

Выберите один вариант из списка

Прекрасный ответ.

установки приоритета трафика (QoS) в роутере для конкретного приложения.

Сессионные куки хранятся в браузере?

Выберите один вариант из списка

🗸 Правильно, молодец!

параметры VPN-подключения для обеспечения безопасного удалённого доступа.

Показаны

• 1.3 Браузер TOR. Анонимизация

Сколько промежуточных узлов в луковой сети TOR?

Выберите один вариант из списка

Правильно, молодец!

демонстрирует стартовую страницу TOR Browser с показом индикатора защищённого соединения.

ІР-адрес получателя известен

Выберите все подходящие ответы из списка

Показаны

настройки конфиденциальности и безопасности для повышения анонимности при серфинге.

_ только с охранным	узлом			
с охранным и проме	с охранным и промежуточным узлом			
• с охранным, промеж	куточным и выходно	м узлом		
с промежуточным и	выходным узлом			
Следующий шаг	Решить снова			
Ваши решения Вы получ	или: 1 балл			

Иллюстрация изменения уровня безопасности cemu (Security Slider) в TOR Browser.

Должен ли получатель использовать браузер Tor (или другой браузер, основанный на луковой маршрутизации) для успешного получения пакетов?

Пример

подключения к скрытому сайту (.onion) через TOR для анонимного доступа.

• 1.4 Беспроводные сети Wi-Fi

Выберите один вариант из списка Правильно.

сокращение от "wireтехнология беспров		ти, работающая в соответствии со стандартом IEEE 802.11	
	метод соединения компьютеров по проводной сети Ethernet метод подключения смартфона с глобальной сети Интернет		
у метод подключения	гсмартфона с глобал	внои сети интернет	
Следующий шаг	Решить снова		
Ваши решения Вы получ	или: 1 балл		

обнаружение беспроводных сетей с помощью инструмента NetStumbler.

Освещает

На каком уровне работает протокол WiFi?

Выберите один вариант из списка

Показывает настройку шифрования WPA2 на роутере для защиты Wi-Fi.

Небезопасный метод обеспечения шифрования и аутентификации в сети Wi-Fi

Выберите один вариант из списка

Прекрасный ответ.

Иллюстрация анализа пакетов Wi-Fi с помощью Wireshark.

Данные между хостом сети (компьютером или смартфоном) и роутером

Выберите один вариант из списка

Прекрасный ответ.

использования Aircrack-ng для подбора пароля к беспроводной сети.

Пример

Для домашней сети для аутентификации обычно используется метод

Выберите один вариант из списка

✓ Так точно!

Результат проверки уязвимости WPS с помощью инструмента reaver.

Модуль 2: Защита ПК/Телефона

• 2.1 Шифрование диска

Можно ли зашифровать загрузочный сектор диска

Выберите один вариант из списка

🗸 Хорошие новости, верно!

Пример

использования BitLocker для шифрования системного диска в Windows.

🗸 Хорошая работа.

Демонстрация процесса ввода ключа восстановления при загрузке.

Интерфейс управления шифрованием дисков в Linux с помощью LUKS.

• 2.2 Пароли

С помощью каких программ можно зашифровать жесткий диск?

Select all correct options from the list

надёжного пароля с помощью менеджера паролей.

Генерация

Где безопасно хранить пароли?

Выберите один вариант из списка

сложности пароля онлайн через инструмент zxcvbn.

Зачем нужна капча?

Использование двухфакторной аутентификации для повышения безопасности.

Для чего применяется хэширование паролей?

Выберите один вариант из списка

Сохранение паролей в зашифрованном хранилище KeePass.

Поможет ли соль для улучшения стойкости паролей к атаке перебором, если элоумышленник получил доступ к серверу?

Восстановление доступа к учётной записи через резервный код.

пароля администратора на сетевом устройстве.

• 2.3 Фишинг

фишингового письма с поддельной ссылкой на сайт банка.

Может ли фишинговый имейл прийти от знакомого адреса?

Выберите один вариант из списка

🗸 Правильно.

URL-перенаправления для выявления фишингового домена.

• 2.4 Вирусы. Примеры

🗸 Здорово, всё верно.

Сканирование компьютера антивирусом Avast и обнаружение заражённого файла.

обязательно шифрус	ет данные и вымога	ет ключ дешифрования	
• маскируется под лег	гитимную программ	у	
работает исключите	ельно под OC Windov	VS	
🔾 разработан греками	I		
Следующий шаг	Решить снова		
Ваши решения Вы получи	или: 1 балл		

событий антивирусной программы с информацией о карантине.

• 2.5 Безопасность мессенджеров

На каком этапе формируется ключ шифрования в протоколе мессенджеров Signal?

Выберите один вариант из списка

✓ Так точно!

при получении сообц	цения		
• при генерации перво	 при генерации первого сообщения стороной-отправителем 		
при установке прило	жения		
🔾 при каждом новом с	ообщении от сторо	ны-отправителя	
Следующий шаг Решить снова			
Ваши решения Вы получи	пи: 1 балл		

Демонстрация включения сквозного шифрования в WhatsApp и отображения статуса безопасности.

Суть сквозного шифрования состоит в том, что

Выберите один вариант из списка

Правильно, молодец!

• сообщения передак	отся по узлам связи	(серверам) в зашифрованном виде			
сервер получает со	сервер получает сообщения в открытом виде для передачи нужному получателю				
сервер перешифров	вывает сообщения в	процессе передачи			
осообщения передак	осообщения передаются от отправителя к получателю без участия сервера				
Следующий шаг Решить снова					
Ваши решения Вы получ	или: 1 балл				

кода безопасности в Telegram для подтверждения безопасности сессий.

Проверка

Модуль 3: Криптография на практике

• 3.1 Введение в криптографию

В асимметричных криптографических примитивах

Иллюстрация работы шифра Цезаря для демонстрации основ симметричного шифрования.

Выберите все подходящие ответы из списка

применения алгоритма AES и его тестовый вектор для проверки корректности реализации.

К алгоритмам цифровой подписи относятся

Выберите все подходящие ответы из списка

Демонстрация работы алгоритма RSA и ключей при асимметричном шифровании.

Код аутентификации сообщения относится к

Выберите один вариант из списка

Правильно, молодец!

длины ключей и их влияния на безопасность в различных схемах шифрования.

асимметричный при	имитив генерации об	цего секретного ключа бщего открытого ключа бщего секретного ключа	
о асимметричный алг Следующий шаг	оритм шифрования Решить снова		
Ваши решения Вы получи	или: 1 балл		Сравнение

скорости работы различных криптографических примитивов.

• 3.2 Цифровая подпись

Протокол электронной цифровой подписи относится к

Выберите один вариант из списка

протоколам с симметричным ключомпротоколам с публичным (или открытым) ключом				
Следующий шаг Решить снова				
Ваши решения Вы получили: 1 балл				

Иллюстрация процесса создания хэш-функции для сообщения перед подписью.

Алгоритм верификации электронной цифровой подписи требует на вход

Выберите один вариант из списка

Верно. Так держать!

Подписание сообщения с помощью алгоритма DSA и проверка подписи.

Электронная цифровая подпись не обеспечивает

Выберите один вариант из списка

Следующий шаг Решить снова
целостность
• конфиденциальность
неотказ от авторства

верификации подписи на примере электронного документа.

Какой тип сертификата электронной подписи понадобится для отправки налоговой отчетности в ФНС?

Выберите один вариант из списка

🗸 Правильно.

усиленная квалифицпростая	цированная
усиленная неквалифицированная	
Следующий шаг	Решить снова
Ваши решения Вы получи	или: 1 балл

Показан

формат Х.509 сертификата и встроенная подпись удостоверяющего центра.

В какой организации вы можете получить квалифицированный сертификат ключа проверки электронной подписи?

цепочки сертификатов и доверенных корневых элементов.

• 3.3 Электронные платежи

Выберите из списка все платежные системы.

Выберите все подходящие ответы из списка ✓ Так точно! Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в комментариях, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений. ВitCoin ✓ MasterCard SecurePay РОS-терминал банкомат ✓ МИР Следующий шаг Решить снова Ваши решения Вы получили: 1 балл

Пример

транзакции в платёжной системе с отображением поля подписи.

Выберите все подходящие ответы из списка ✓ Здорово, всё верно. Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в комментариях, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений. ✓ комбинация проверки пароля + Капча ✓ комбинация проверка пароля + код в sms сообщении ✓ комбинация код в sms сообщении + отпечаток пальца — комбинация РІN код + пароль Следующий шаг Решить снова Ваши решения Вы получили: 1 балл

Иллюстрация работы протокола 3-D Secure при совершении онлайн-покупки.

При онлайн платежах сегодня используется

Выберите один вариант из списка

Анализ

защищённого канала передачи данных при оплате через HTTPS.

• 3.4 Блокчейн

Какое свойство криптографической хэш-функции используется в доказательстве работы?

Выберите один вариант из списка

Визуализация структуры блока и хеширования предыдущего блока для целостности цепи.

Консенсус в некоторых системах блокчейн обладает свойствами

Выберите все подходящие ответы из списка

майнинга и подтверждения транзакций в сети блокчейна.

Процесс

Секретные ключи какого криптографического примитива хранят участники блокчейна?

распределённого реестра и узлов сети в интерфейсе обозревателя блоков.

Выводы

В ходе прохождения курса «Основы кибербезопасности» на Stepik были изучены ключевые аспекты информационной безопасности, включая сетевые протоколы, методы защиты персональных данных, криптографические примитивы и принципы работы систем аутентификации. Полученные знания могут быть применены для повышения безопасности IT-инфраструктуры и личной цифровой гигиены.

Поскольку

по окончании данного курса сертификат не выдаётся, данный скриншот служит доказательством прохождения курса.

Список литературы

- 1. Kypc Stepik «Основы кибербезопасности». Доступно по ссылке: https://stepik.org/course/111512
- 2. Шаблон отчёта для лабораторной работы. GitHub: https://github.com/yamadharma/academic-laboratory-report-template