Laboratoire de biologie cellulaire

HOPITAL NEFISSA HAMOUD

Enseignement de deuxième année médecine

(2020-2021)

Dr Y .AHMADI

Dr F. BAIRI

HISTOLOGIE DU PANCREAS ENDOCRINE

Sommaire

- I. Généralités
- II. Embryologie du pancréas
- III. Histologie du pancréas endocrine:
 - A. Méthodes d'étude
 - B. Structure en MO
 - C. Structure en ME
 - D. Vascularisation et innervation
- IV. Cytophysiologie du pancréas endocrine
- V. Conclusion

I. Généralités

- Le pancréas: organe situé dans le cadre duodénal comprenant trois parties : tête, corps et queue,
- Glande mixte, amphicrine hétérotypique, composée de deux structures distinctes :
- a) pancréas exocrine (acini et canaux excréteurs)
 synthèse des enzymes
 pancréatiques (digestives)
- b) pancréas endocrine: (ilots de Langerhans), glande endocrine diffuse trabéculaire synthèse hormonale

- le pancréas endocrine = ilots de LANGERHANS : petites formations sphériques ou ovoïdes éparpillées au sein du parenchyme exocrine.
- Diamètre entre 100 et 200 μm.
- nombre très variable suivant les individus (200000 et 1800000).
- plus abondants dans la queue du pancréas
- /masse totale à peine 1% du poids du pancréas.
- structure **trabéculaire non orientée** et renferment quatre types cellulaires différents et élaborent au moins cinq hormones peptidiques, dont les plus importantes sont l'insuline et le glucagon.

Coupe histologique du pancréas. M.O. faible grossissement, H.E.S

1- pancréas exocrine

2-pancréas endocrine

grossissement, H.E.

Embryologie: II.

Organogenèse:

- Le pancréas provient de trois ébauches entoblastiques situées au niveau de la région du futur duodénum : c'est * l'anneau hépato-pancréatique de WEBER (25^{ème} jours du développement) formé de :
- Une ébauche dorsale;
- Une ébauché ventrale droite;
- 3) Une ébauche ventrale gauche (régresse rapidement).

Les deux premières ébauches **fusionnent** pour constituer le pancréas définitif (7^{eme} semaine)

B. Histogenèse: 05 stades:

- Stade 1 : (4^{ème} à la 5^{ème} semaine in utéro) stade des diverticules pancréatiques primitifs.
- Stade 2 : (8^{ème} semaine) les diverticules prolifèrent dans le mésenchyme ambiant sous forme de cordons primitifs pleins ou cordons variqueux.
- Stade 3 : (8ème à la 12ème semaine) Les cordons se creusent d'une lumière : les tubes pancréatiques primitifs.
 De la paroi de ces tubes, s'isolent des cellules qui se groupent en amas formant des îlots de LANGERHANS primaires (12ème semaine).
- Stade 4: (3^{eme} au 7^{eme} mois) Les îlots de LANGERHANS primaires augmentent de taille et de nombre. A partir du 7^{ème} mois, ils dégénèrent pour disparaître avant la naissance.

Certaines cellules de ces îlots se chargent en glycogène et se disposent en acini primaires.

• Stade 5 : (à partir du 5^{éme} mois) Les acini primaires se multiplient et engendrent les acini secondaires, Ces derniers donnent naissance aux îlots de LANGERHANS secondaires qui peuvent à leur tour engendrer des acini.

Histogenèse du pancréas

III. Histologie du pancréas endocrine:

A. Méthodes d'étude :

- prélèvement précoce chez l'animal;
- Fixation : le bichromate-formol.
- Coloration : hématéine et éosine ou picro-ponceau, hématoxyline férrique et picro-ponceau.
 - techniques spéciales: La technique de Gomori à l'hématoxyline chromique-phloxine ,.....ets
- la détection immunocytologique des hormones en MO et ME: 4 types de cellules et leur topographie.

Coupe histologique du pancréas endocrine. M.O. fort grossissement, H.E

B. Structure en MO des ilots de LANGERHANS:

- Glande trabéculaire : cordons cellulaires irréguliers anastomosés les uns aux autres,
- Amas cellulaires arrondis peu colorables en microscopie optique en coloration classique (trichrome),
- ✔ Plusieurs milliers de cellules par ilot,
- Mélés aux constituants exocrines (acini et conduits excréteurs).
- Entourés d'une fine capsule conjonctive constituée de fibres de réticuline,
- Présence de capillaires fenêtrés,

Coupe histologique du pancréas. M.O. moyen grossissement, trichrome de MASSON

- Cellules des ilots plus petites et plus claires / cellules acineuses:
 - Forme **arrondie** ou polygonale
 - Chaque cellule en contact avec réseau capillaire
 - Plusieurs cellules de taille différente
- Granulations diverses: acidophiles (A) ou basophiles (B)
- Chaque cellule secrète un peptide hormonal spécifique.

en MO: granulations diverses, GOMORI

Coupe histologique du pancréas endocrine. M.O. fort grossissement, H.E

2 types principaux de cellules endocrines mises en évidences par des colorations spécifiques dans un même ilot de LANGERHANS.

Distinction des 4 types principaux de cellules par immunohistochimie.

Coloration de GOMORI:

- Cellules A:colorées en rouge
- Cellules B:colorées en bleu

Type cellulaire	Méthodes d' étude	Localisation dans l'ilot	Proportion	Granulations	Hormone synthétisée
Cellules A (ou alpha)	Trichrome, Gomori	Périphérique	20%	Volumineuses, acidophiles	Glucagon (hyper-glycémi ante)
Cellules B (ou béta)	Trichrome, Gomori	Centrale	70%	Nombreuses, basophiles, irrégulières, de densité moyenne	Insuline (hypo-glycémi ante)
Cellules D (ou delta)	Imprégnation argentique, Immuno-histoc himie	Dispenée	5 à 10%	Volumineuses, peu nombreuses, densité faible	Somatostatine (inhibe libération hormonale des autres cellules de l'ilot: action locale paracrine)
Cellules F (ou PP)	Immuno-histo chimie	Dispersée	< 5%	Plus petites de toutes les autres	Polypeptide pancréatique (contrôle la sécrétion exocrine du pancréas)

Tableau résumant les caractéristiques des différentes cellules des ilots de LANGERHANS

Schéma représentant la distribution des cellules A, B, D et PP au niveau de l'îlot de Langerhans

C. Structure en ME des ilots de LANGERHANS:

En microscopie électronique, les cellules se reconnaissent uniquement à l'aspect de leurs grains.

Cellules endocrines du pancréas en ME.

A- cellules A B- cellules B

Volumineuses,

Nombreuses, irrégulières, de densité moyenne

Volumineuses, peu nombreuses, densité faible

Plus petites de toutes les autres

D. Vascularisation et innervation des ilots de LANGERHANS:

- Comme toute glande endocrine, ils sont richement irrigués par un réseau dense de capillaires.
- Les artérioles proviennent des artères intralobulaires, elles donnent des branches précapillaires qui forment un réseau péri-insulaire.

De ce dernier, partent des capillaires qui se disposent dans les espaces intercellulaires.

Les veinules naissent à la périphérie de l'ilot.

Acinus séreux

Cellules endocrines

Corps cellulaires de neurones

Ganglion nerveux parasympathique

llot de LANGERHANS

Coupe histologique du pancréas. M.O. moyen grossissement, trichrome de MASSON

IV. Cytophysiologie du pancréas endocrine

Chaque type cellulaire secrète au moins un peptide hormonal :

Les cellules A ou a :

- élaborent le glucagon, peptide hyperglycémiant, secrété sous l'influence directe de la **baisse de la glycémie**.
- I agit sur les hépatocytes en stimulant la glycogénolyse.

B. Les cellules B ou β :

- secrètent l'insuline, hormone hypoglycémiante, en réponse à l'augmentation de la glycémie.
- L'insuline augmente la glycogénogenèse et favorise la pénétration intra-cytoplasmique du glucose dans pratiquement toutes les cellules de l'organisme.
- ∠ L'alfération du fonctionnement ou la diminution des cellules B entraine le diabète insu ino-prive (pathologie très fréquente).

5 - Pénétration facilitée du glucose

Rôle de l'insuline

V. Conclusion

- Le pancréas endocrine représente très peu de cellules par rapport à la masse totale du pancréas, mais joue un rôle majeur dans l'équilibre glycémique car c'est le seul qui synthétise l'hormone hypoglycémiante (insuline).
- On retrouve au niveau du pancréas une pathologie très fréquente : le diabète, du à une insuffisance de production de l'insuline.
- Des cultures et des greffes de cellules insulaires ont été deux moyens d'étude largement utilisés pour une meilleure analyse des fonctions cellulaires des ilots de LANGERHANS, en particulier des cellules à insuline.
- La outre, ces investigations ont débouché sur une application pratique : une véritable relève de l'insulinothérapie, car celle-ci n'est pas exempte d'échecs ou de complications.
- Aussi en est-on venu à mettre au point des pancréas artificiels et à envisager la réalisation de transplantations pancréatiques.

Merci