Action-Based Temporal Logics and Model Checking (part II)

Radu Mateescu

Inria and LIG / Convecs

http://convecs.inria.fr

Action-based temporal logics

Regular logics

Fixed point logics

Regular logics

- They allow to reason about the regular execution sequences of an LTS
- Basic operators:
 - ► Regular formulas

two states are linked by a sequence whose concatenated actions form a word of a regular language

- Modalities on sequences from a state, some (all) outgoing regular transition sequences lead to certain states
- Propositional Dynamic Logic (PDL) [Fischer-Ladner-79]

Regular formulas

(syntax)

$$\beta := \alpha$$

l nil

 $\beta_1 \cdot \beta_2$

 $|\beta_1|\beta_2$

 $|\beta_1^*|$

 β_1

one-step sequence

empty sequence

concatenation

choice

iteration (≥ 0 times)

iteration (≥ 1 times)

Some identities:

$$\beta^+ = \beta \cdot \beta^*$$

Regular formulas

(semantics)

Let $M = (S, A, T, s_0)$. Interpretation $[[\beta]] \subseteq S \times S$:

■
$$[[\alpha]] = \{(s, s') \mid \exists a \in [[\alpha]] . (s, a, s') \in T\}$$

$$\blacksquare$$
 [[nil]] = { $(s, s) | s \in S$ }

$$\blacksquare$$
 [[β₁ . β₂]] = [[β₁]] ο [[β₂]]

■
$$[[β_1 | β_2]] = [[β_1]] \cup [[β_2]]$$

$$\blacksquare$$
 [[β_1^*]] = [[β_1]] *

$$\blacksquare$$
 [[β_1^+]] = [[β_1]] +

Example (1/3)

One-step sequences: $NCS_0 \lor CS_0$

Example (2/3)

Alternative sequences: $(REQ_0 . CS_0) | (REQ_1 . CS_1)$

Example (3/3)

Sequences with repetition: $NCS_0 \cdot (\neg NCS_1)^* \cdot CS_0$

PDL logic

(syntax)

$$| \phi_1 \vee \phi_2 |$$

$$| \phi_1 \wedge \phi_2 |$$

$$-\phi_1$$

$$|\langle \beta \rangle \varphi_1|$$

$$[\beta] \varphi_1$$

boolean constants

disjunction

conjunction

negation

possibility

necessity

$$[\beta] \phi = \neg \langle \beta \rangle \neg \phi$$

PDL logic

(semantics)

Let $M = (S, A, T, s_0)$. Interpretation $[[\phi]] \subseteq S$:

- [[true]] = S
- **■** [[false]] = ∅
- \blacksquare [[$φ_1 \lor φ_2$]] = [[$φ_1$]] \cup [[$φ_2$]]
- $[[\neg \varphi_1]] = S \setminus [[\varphi_1]]$
- $[[\langle \beta \rangle \varphi_1]] = \{ s \in S \mid \exists s' \in S .$

$$(s, s') \in [[\beta]] \land s' \in [[\phi_1]]$$

 $[[[\beta] \phi_1]] = \{ s \in S \mid \forall s' \in S .$

$$(s, s') \in [[\beta]] \Rightarrow s' \in [[\phi_1]]$$

Example (1/2)

Potential reachability of critical section: (NCS₀ . true* . CS₀) true

Example (2/2)

Mutual exclusion: $[CS_0 \cdot (\neg REL_0)^* \cdot CS_1]$ false

Some identities

- Distributivity of regular operators over ⟨⟩ and []:

 - $[\beta_1, \beta_2] \varphi = [\beta_1] [\beta_2] \varphi$
- Potentiality and invariance operators of ACTL:
 - $\blacktriangleright \mathsf{EF}_{\alpha} \, \varphi = \langle \, \alpha^* \, \rangle \, \varphi$
 - \blacktriangleright AG_{α} ϕ = [α *] ϕ

Fairness properties

Problem: from the initial state of the LTS, there is no inevitable execution of action CS₀, so process P₁ can enter its critical section indefinitely often

- Fair execution of an action a: from a state, all transition sequences that do not cycle indefinitely contain action a
- Action-based counterpart of the fair reachability of predicates [Queille-Sifakis-82]

Fair execution

■ Fair execution of an action *a* expressed in PDL:

fair
$$(a) = [(\neg a)^*] \langle \text{true*. } a \rangle \text{true}$$

Equivalent formulation in ACTL:

fair (a) =
$$AG_{\neg a} EF_{tt} \langle a \rangle$$
 true

Example

Fair execution of critical section: $[(\neg CS_0)^*] \langle true^*. CS_0 \rangle true$

Branching-time vs regular logics

- ACTL and PDL have uncomparable expressiveness:
 - ► A [true_{true} U_a true] $\not\in$ PDL (inevitable execution of a)
 - ► $\langle (a^* . b)^* . c \rangle$ true $\not\in$ ACTL (nested iterations)
- The extension PDL-△ (PDL with looping) subsumes ACTL:
 - ► $< \beta > @$ infinite looping operator (infinite repetition of β)

► A [true_{true} U_a true] = \neg (< ($\neg a$)* > deadlock \lor < $\neg a$ > @)

Regular logics

(summary)

- They allow a direct and natural description of regular execution sequences in LTSs
- More intuitive description of safety properties:
 - Mutual exclusion:

$$[CS_0] AG_{\neg REL0} [CS_1]$$
false = (in ACTL)
 $[CS_0. (\neg REL_0)^*. CS_1]$ false (in PDL)

- But:
 - ► Not sufficiently powerful to express inevitability operators (expressiveness uncomparable with branching-time logics)

Fixed point logics

- Very expressive logics ("temporal logic assembly languages") allowing to characterize finite or infinite tree-like patterns in LTSs
- Basic temporal operators:
 - Minimal fixed point (μ)
 "recursive function" defined over the LTS:
 finite execution trees going out of a state
 - ► Maximal fixed point (v) dual of the minimal fixed point operator: infinite execution trees going out of a state
- Modal mu-calculus [Kozen-83,Stirling-01]

Modal mu-calculus

(syntax)

$$| \phi_1 \vee \phi_2 | \neg \phi_1$$

$$| \langle \alpha \rangle \varphi_1$$

$$[\alpha] \varphi_1$$

$$\mid X$$

$$\mid \mu X \cdot \varphi_1 \mid$$

$$| vX. \varphi_1$$

boolean constants

boolean connectors

possibility

necessity

propositional variable

minimal fixed point

maximal fixed point

■ Duality:
$$vX \cdot \varphi = \neg \mu X \cdot \neg \varphi [\neg X / X]$$

Syntactic restrictions

- Syntactic monotonicity [Kozen-83]
 - ► Necessary to ensure the existence of fixed points
 - ▶In every formula σX. φ (X), where $σ ∈ {μ, ν}$, every free occurrence of X in φ falls in the scope of an even number of negations

$$\mu X . \langle a \rangle X \vee \neg \langle b \rangle X$$

- Alternation depth 1 [Emerson-Lei-86]
 - ► Necessary for efficient (linear-time) verification
 - In every formula μX . φ (X), every maximal subformula νY . φ' (Y) of φ is closed

$$\mu X . \langle a \rangle \nu Y . ([b] Y \wedge [c] X)$$

Positive Normal Form

(elimination of negations)

- Propagate negations downwards using dualities:
 - ▶ ¬ false = true

 - $\blacktriangleright \neg \langle \alpha \rangle \phi = [\alpha] \neg \phi$
 - $\blacktriangleright \neg \mu X \cdot \phi(X) = \nu X \cdot \neg \phi(\neg X)$

PNF transformation works because of syntactic monotonicity

Example:

- $\neg \mu X$. ($\langle s \rangle \nu Y$. ([r] false \land [true] Y) $\lor \langle$ true $\rangle X$)
- = $vX \cdot (\neg \langle s \rangle vY \cdot ([r] \text{ false } \land [\text{ true }] Y) \land \neg \langle \text{ true } \rangle \neg X)$
- = $vX \cdot ([s] \neg vY \cdot ([r] \text{ false } \land [\text{ true }] Y) \land [\text{ true }] X)$
- = $vX \cdot ([s] \mu Y \cdot (\langle r \rangle \text{ true } \vee \langle \text{ true } \rangle Y) \wedge [\text{ true }] X)$

Modal mu-calculus

(semantics)

Let $M = (S, A, T, s_0)$ and $\rho : X \to 2^S$ a context mapping propositional variables to state sets. Interpretation $[[\phi]] \subseteq S$:

- $[[X]] \rho = \rho (X)$

Minimal fixed point

Potential reachability of an action a (existence of a sequence leading to a transition labeled by a):

$$\mu X . \langle a \rangle$$
 true $\vee \langle$ true $\rangle X$

Associated functional:

$$\Phi(U) = [[\langle a \rangle \text{ true } \vee \langle \text{ true } \rangle X]] [U/X]$$

Evaluation on an LTS:

Example

Potential reachability: $\mu X \cdot \langle CS_0 \rangle \text{ true} \vee \langle \neg (REL_1 \vee REL_0) \rangle X$

Maximal fixed point

■ Infinite repetition of an action *a* (existence of a cycle containing only transitions labeled by *a*):

$$\vee X . \langle a \rangle X$$

Associated functional:

$$\Phi(U) = [[\langle a \rangle X]] [U/X]$$

Evaluation on an LTS:

Example

Infinite repetition: $vX \cdot \langle NCS_1 \lor REQ_1 \lor CS_1 \lor REL_1 \rangle X$

Exercise: semantics

Evaluate the formula: $\mu X \cdot \langle CS_0 \rangle$ true $\vee ([NCS_0]$ false $\wedge \langle true \rangle X)$

Encodings of temporal operators

Some ACTL operators:

- $\blacktriangleright E [\varphi_{1\alpha 1} \cup_{\alpha 2} \varphi_2] = \mu X . \varphi_1 \wedge (\langle \alpha_2 \rangle \varphi_2 \vee \langle \alpha_1 \rangle X)$
- ► A [$\phi_{1\alpha 1} \cup_{\alpha 2} \phi_2$] = μX . $\phi_1 \wedge \langle \text{ true } \rangle \text{ true } \wedge [\neg(\alpha_1 \vee \alpha_2)] \text{ false}$ $\wedge [\neg\alpha_1 \wedge \alpha_2] \phi_2 \wedge [\neg\alpha_2] X \wedge [\alpha_1 \wedge \alpha_2] (\phi_2 \vee X)$
- $\blacktriangleright \mathsf{EF}_{\alpha} \varphi = \mu X \cdot \varphi \vee \langle \alpha \rangle X$
- ▶ $AF_{\alpha} \varphi = \mu X \cdot \varphi \lor (\langle \text{ true } \rangle \text{ true } \land [\neg \alpha] \text{ false } \land [\alpha] X)$

PDL iteration modalities:

Regular modalities vs fixed points

(conciseness)

PDL:

```
\langle send . (true*. err)* . recv \rangle true
```

Mu-calculus:

```
\langle \text{ send } \rangle \langle (\text{true*. err})^* \rangle \langle \text{ recv } \rangle \text{ true}

= \langle \text{ send } \rangle \mu X. (\langle \text{ recv } \rangle \text{ true } \vee \langle \text{ true*. err } \rangle X)

= \langle \text{ send } \rangle \mu X. (\langle \text{ recv } \rangle \text{ true } \vee \langle \text{ true*. err } \rangle X)

= \langle \text{ send } \rangle \mu X. (\langle \text{ recv } \rangle \text{ true } \vee \langle \text{ true } \rangle Y))
```

Inevitable reachability

■ Inevitable reachability of an action a:

access (a) =
$$AF_{tt} \langle a \rangle$$
 true = $\mu X \cdot \langle a \rangle$ true \vee (\langle true \rangle true \wedge [true] X)

Associated functional:

$$\Phi(U) = [[\langle a \rangle \text{ true } \vee (\langle \text{ true } \rangle \text{ true } \wedge [\text{ true }] X)]] [U/X]$$

Evaluation on an LTS:

Inevitable execution

■ Inevitable execution of an action a:

inev (a) =
$$\mu X$$
. \langle true \rangle true \wedge [$\neg a$] X

Associated functional:

$$\Phi(U) = [[\langle \text{true} \rangle \text{true} \wedge [\neg a]X]] [U/X]$$

Evaluation on an LTS:

Example

Inevitable execution:

$$\mu X \cdot \langle \text{ true } \rangle \text{ true } \wedge [\neg CS_0] X$$

Fair execution

Fair execution of an action a:

fair
$$(a) = [(\neg a)^*] \langle \text{true*. } a \rangle \text{true}$$

= $vX \cdot \langle \text{true*. } a \rangle \text{true} \wedge [\neg a] X$

Associated functional:

$$\Phi(U) = [[\langle \text{true*. } a \rangle \text{true} \land [\neg a]X]] [U/X]$$

Evaluation on an LTS:

Example

Fair execution: $[(\neg CS_0)^*] \langle true^*. CS_0 \rangle true$

Fixed point logics

(summary)

- They allow to encode virtually all TL proposed in the literature
- Expressive power obtained by nesting the fixed point operators:

$$\langle (a . b^*)^* . c \rangle$$
 true =
 $\mu X . \langle c \rangle$ true $\vee \langle a \rangle \mu Y . (X \vee \langle b \rangle Y)$

■ Alternation depth of a formula: degree of mutual recursion between μ and ν fixed points

Example of alternation depth 2 formula:

$$vX \cdot \langle a^*, b \rangle X = vX \cdot \mu Y \cdot \langle b \rangle X \vee \langle a \rangle Y$$

Some verification tools

(for action-based logics)

- CWB (Edinburgh) and
- Concurrency Factory (State University of New York)
 - Modal μ-calculus (fixed point operators)
- UMC (University of Pisa, Italy)
 - \blacktriangleright μ -ACTL (modal μ -calculus combined with ACTL)
- CADP (Inria Grenoble Rhône-Alpes / CONVECS)
 - ▶ Regular alternation-free μ -calculus (PDL modalities and fixed point operators)