

AFOSR-TR- 79-0197

FINAL TECHNICAL SUMMARY REPORT

for the period

1 October 1977 - 30 September 1978

(12)

LEVEL

THERMODYNAMICS OF ORGANIC COMPOUNDS

AD065664

Bartlesville Energy Technology Center
Department of Energy
Bartlesville, Oklahoma

Research sponsored by:

Air Force Office of Scientific Research (NA)
Department of the Air Force

Contract No. AFOSR-ISSA 78-0009
Project No. 2308

Approved for public release;
distribution unlimited.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.

A. D. BLOSE
Technical Information Officer

79 03 12 27

1. REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT DOCUMENTATION PAGE		2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER	
AFOSR TR. 79-0197		9	
TITLE (and Subtitle)		4. TYPE OF REPORT & PERIOD COVERED	
THERMODYNAMICS OF ORGANIC COMPOUNDS		FINAL technical summary report 1 Oct 77 - 30 Sep 78	
5. PERFORMING ORG. REPORT NUMBER			
6. AUTHOR(S)		B. CONTRACT OR GRANT NUMBER(A)	
WILLIAM D GOOD, DONALD W SCOTT, NORRIS K SMITH,		SUSAN LEE-BECHTOLD ANN G OSBORN	
7. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
BARTLESVILLE ENERGY TECHNOLOGY CENTER DEPARTMENT OF ENERGY BARTLESVILLE, OKLAHOMA 74003		16 2308B1 (17) B1 61102F	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA BLDG 410 BOLLING AIR FORCE BASE, D C 20332		1978	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES	
(12) 10/10/78		20	
15. SECURITY CLASS. (of this report)		15. SECURITY CLASS. (of this report)	
UNCLASSIFIED		UNCLASSIFIED	
16. DISTRIBUTION STATEMENT (of this Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
Approved for public release; distribution unlimited.			
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
ENTHALPY OF COMBUSTION		2,2'-BIINDANYL	
ENTHALPY OF FORMATION		2,2'-BITETRALIN	
VAPOR PRESSURE		RAMJET FUELS	
HEAT CAPACITY		RJ-4-I	
2-ETHYL-6-METHYLNAPHTHALENE		JP-9	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
Both basic and applied research continued on the thermodynamic properties of currently used high energy fuels and of possible constituents of high energy fuels of the future. Enthalpies of combustion were measured for two ramjet fuels currently in use, and differential scanning calorimetry evaluated heat capacities of four such fuels. Enthalpies of combustion were measured for two pure organic compounds having the energetic cyclobutane ring in their molecular structure, and the study of compounds that may have higher combustion energies because of steric interaction of adjacent alkyl groups was continued with vapor			
pressure study on dialkynaphthalene.		UNCLASSIFIED	

FINAL TECHNICAL SUMMARY REPORT

THERMODYNAMICS OF ORGANIC COMPOUNDS

* * * * *

Bartlesville Energy Technology Center
Department of Energy
Bartlesville, Oklahoma

Project Director: W. D. Good

Report* prepared by: N. K. Smith
D. W. Scott
S. Lee-Bechtold
A. G. Osborn
W. D. Good

* Synthesis and purification of research samples were provided by Professor E. J. Eisenbraun, Oklahoma State University, where the samples were produced by purchase agreement for the above project.

Qualified requestors may obtain additional copies from the Defense Documentation Center, all others should apply to the National Technical Information Service.

Approved for public release; distribution unlimited.

Conditions of Reproduction

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.

79 03 12 627

TABLE OF CONTENTS

	<u>Page</u>
FOREWORD	i
ABSTRACT	ii
RESEARCH PROGRESS	1
1. NOMENCLATURE	1
2. ENTHALPIES OF COMBUSTION OF PURE COMPOUNDS	5
3. HEAT CAPACITIES OF PURE COMPOUNDS	9
4. ENTHALPIES OF COMBUSTION OF RAM-JET FUELS	10
5. HEAT CAPACITIES OF RAM-JET FUELS	13
6. THERMODYNAMIC PROPERTIES OF ALKYLNAPHTHALENES AND INDANS .	14
7. ACQUISITION OF RESEARCH SAMPLES	17
8. PUBLICATIONS AND PRESENTATIONS	20

ACCESSION #	
NTIS	White Section <input checked="" type="checkbox"/>
DDC	0.41 Section <input type="checkbox"/>
UNASSIGNED	<input type="checkbox"/>
JUS-1 1564074	
BY	
DISTRIBUTION/AVAILABILITY CODES	
Dist.	Class.
A	

FOREWORD)

The objectives of this research program are formulated within the framework of an integrated and interrelated program of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of thermodynamic and physical properties of materials with molecular structure is used to select substances for study that may be useful as high energy fuels or that may be useful in the synthesis of high energy fuels. These materials are synthesized, and the thermodynamic properties are evaluated. Ram-jet fuels already in use are subjected to careful thermodynamic evaluation.

ABSTRACT

Both basic and applied research have continued on the thermodynamic properties of currently used high energy fuels and of possible constituents of high energy fuels of the future.

Enthalpies of combustion were measured for two ram-jet fuels currently in use, and differential scanning calorimetry evaluated heat capacities of four such fuels.

Enthalpies of combustion were measured for two pure organic compounds having the energetic cyclobutane ring in their molecular structure, and the study of compounds that may have higher combustion energies because of steric interaction of adjacent alkyl groups was continued with vapor-pressure study on a dialkylnaphthalene.

Results of parts of the research were reported both orally and in special reports and journal articles.

RESEARCH PROGRESS

1. NOMENCLATURE

This annual report will describe research on the thermodynamic properties of several organic compounds with rather complex molecular structure. In an effort to facilitate understanding, the molecular structure and nomenclature of these compounds are given in Table 1.

TABLE 1. Nomenclature of Compounds

1.		<p>$5,6,6a\beta,6b\alpha,11,12,12a\alpha,12b\beta$-Octahydrocyclobuta[1,2-a:3,4-a']-dinaphthalene (or) $5,6,6a,6b,11,12,12a,12b$-Octa-hydrodibenzo[a,g]biphenylene</p>
2.		<p>$5,6,6a\beta,6b\alpha,7,8,12b\alpha,12c\beta$-Octahydrocyclobuta[1,2-a:4,3-a']-dinaphthalene (or) $5,6,6a,6b,7,8,12b,12c$-Octa-hydrodibenzo[a,i]biphenylene</p>

TABLE 1. Nomenclature of Compounds--Continued

$4b\alpha, 4c\beta, 5, 9b\beta, 9c\alpha, 10-$
Hexahydrocyclobuta[1,2-a:3,4-a']-
diindene
(or)
anti,trans-Truxane

$4b\beta, 4c\alpha, 9, 9a\alpha, 9b\beta, 10-$
Hexahydrocyclobuta[1,2-a:4,3-a']-
diindene
(or)
syn,trans-Truxane

2-Ethyl-6-methylnaphthalene

TABLE 1. Nomenclature of Compounds--Continued

6.

2,2'-Biindanyl

7.

2,2'-Bitetralin

8.

exo-Tetrahydryliclo pentadiene

9.

exo-Tetrahydrodi(methyl)cyclopentadiene

TABLE 1. Nomenclature of Compounds--Continued

10.

endo-Tetrahydrodi(methylcyclopentadiene)

11.

(a)

Hydrogenated dimers of
norbornadiene ($C_{14}H_{18}$)

(b)

2. ENTHALPIES OF COMBUSTION OF PURE COMPOUNDS

Measurements of the enthalpies of combustion of four compounds with complex molecular structures centered about a cyclobutane ring (compounds 1,2,3, and 4 of Nomenclature Section) were reported in the last annual report. This report describes study of the enthalpies of combustion of two compounds that are closely related to those molecules. 2,2'-Biindanyl and 2,2'-bitetralin, (compounds 6 and 7, Nomenclature Section) were synthesized and purified in the laboratories of Professor E. J. Eisenbraun at Oklahoma State University.

Precision oxygen-bomb combustion calorimetry of 2,2'-biindanyl and 2,2'-bitetralin gave values of their enthalpies of combustion and formation. For 2,2'-biindanyl the combustion and formation reactions are (1) and (2), respectively.

For 2,2'-bitetralin the combustion and formation reactions are (3) and (4), respectively.

Summaries of individual combustion experiments with 2,2'-biindanyl and 2,2'-bitetralin are given in Tables 2 and 3, respectively. Values of $\Delta E_c^\circ/m$ for 2,2'-biindanyl and 2,2'-bitetralin refer to equations (1) and (3), respectively. Values of ΔE_c° , the standard molar energy of the idealized constant-volume combustion reaction, ΔH_c° , the standard molar enthalpy of combustion and ΔH_f° , the standard molar enthalpy of formation, for both compounds are given in Table 4. Values of ΔE_c° and ΔH_c° refer to equations (1) and (3). Values of ΔH_f° refer to equations (2) and (4). Uncertainties expressed in Table 2 are the "uncertainty interval" equal to twice the final overall standard deviation of the mean.

TABLE 2. Summary of Calorimetric Experiments for 2,2'-Biindanyl at 298.15 K^a
(cal_{th} = 4.184 J)

Experiment number	1	2	4	7	8	9	10	11
m ^c (compound)/g	0.801402	0.812955	0.813056	0.805969	0.815628	0.811788	0.812979	0.811761
m ^c (auxiliary substance)/g	-	-	-	-	-	-	-	-
m ^c (fuse)/g	0.001736	0.001804	0.001715	0.001764	0.001793	0.001846	0.001490	0.001627
n ^d (H ₂ O)/mol	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535
Δt _c /K = (t _f - t _i + Δt _{corr})/K	1.974050	2.001946	2.001845	1.984194	2.001611	1.998491	2.000821	1.997801
Ε(calor)(-Δt _c)/cal _{th}	-7910.06	-8021.84	-8021.45	-7951.11	-8020.50	-8078.00	-8017.53	-8005.25
Ε(cont)(-Δt _c)/cal _{th} ^b	-8.73	-8.85	-8.76	-9.91	-10.06	-10.04	-10.06	-9.97
ΔE _{ign} /cal _{th}	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
ΔE _{dec} (HNO ₃)/cal _{th}	-	-	-	-	-	-	-	-
ΔE(corr to std states)/cal _{th} ^c	4.18	4.25	4.25	4.21	4.25	4.25	4.25	4.24
{-m ^c (ΔEc°/M)(auxiliary substance)}/cal _{th}	-	-	-	-	-	-	-	-
{-m ^c (ΔEc°/M)(fuse)}/cal _{th}	7.03	7.31	6.95	7.14	7.26	7.48	6.03	6.52
{m ^c (ΔEc°/M)(compound)}/cal _{th}	-7907.40	-8018.95	-8018.81	-7949.49	-8018.87	-8006.15	-8016.95	-8004.13
{(ΔEc°/M)(compound)}/cal _{th} g ⁻¹	-9866.96	-9865.95	-9862.81	-9863.27	-9862.07	-9862.34	-9861.78	-9861.28
{(ΔEc°/M)(compound)}/cal _{th} g ⁻¹	-9862.97	-9862.97	-9862.97	-9862.97	-9862.97	-9862.97	-9862.97	-9862.97

^a The symbols and abbreviations of this table are those of W. N. Hubbard et al., Experimental Thermochemistry, Chap. 5, pp. 5-128.
F. D. Rossini, editor. Interscience: New York, 1956.

^b Εⁱ(cont)(t_i - 298.15 K) + Ε^f(cont)(298.15 K - t_f + Δcorr). ^c Item 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al. (footnote a).

TABLE 3. Summary of Calorimetric Experiments for 2,2'-Bitetralin at 298.15 K^a
(cal_{th} = 4.184 J)

Experiment number	1	2	3	4	6	7	8	9
m'(compound)/g	0.810175	0.805517	0.804840	0.805757	0.805703	0.805926	0.804550	0.804992
m''(auxiliary substance)/g	-	-	-	-	-	-	-	-
m'''(fuse)/g	0.001779	0.001654	0.001967	0.001895	0.001778	0.001851	0.001787	0.001655
n(H ₂ O)/mol	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535
Δt _c /K = (t _f - t _i + Δt _{corr})/K	2.018286	2.006373	2.005104	2.006620	2.006618	2.002092	2.003565	2.004635
ε(calor)(-Δt _c)/cal _{th}	-8037.51	-8039.58	-8034.49	-8040.57	-8040.56	-8022.45	-8027.57	-8032.62
ε(cont)(-Δt _c)/cal _{th} ^b	-8.99	-8.80	-8.80	-8.85	-8.83	-8.79	-8.81	-8.82
ΔE ₁₉₀ /cal _{th}	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
ΔE _{dec} (HNO ₃)/cal _{th}	-	-	-	-	-	-	-	-
ΔE(corr to std states)/cal _{th} ^c	4.10	4.07	4.66	4.07	4.07	4.00	4.06	4.06
{-m'''(ΔEc°/N)(auxiliary substance)}/cal _{th}	-	-	-	-	-	-	-	-
{(-m'''(ΔEc°/N)(fuse))}/cal _{th}	7.21	6.70	7.97	7.68	7.20	7.50	7.24	6.70
{m'(ΔEc°/N)(compound)}/cal _{th}	-8084.81	-8037.45	-8051.08	-8037.45	-8037.94	-8019.48	-8024.83	-8030.50
{(ΔEc°/N)(compound)}/cal _{th} g ⁻¹	-9979.99	-9977.98	-9978.46	-9975.33	-9976.51	-9975.40	-9974.55	-9975.88
{(ΔEc°/N)(compound)}/cal _{th} g ⁻¹	-9976.60 ± 0.60	(mean and standard deviation of the mean)						

^a The symbols and abbreviations of this table are those of W. N. Hubbard et al., Experimental Thermochemistry, Chap. 5, pp. 75-128.
F. D. Rossini, editor. Interscience: New York, 1956.

^b εⁱ(cont)(t_i - 298.15 K) + ε^f(cont)(298.15 K - t_f + Δt_{corr}). Item 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).

^c

TABLE 4. Derived Molar Values for Condensed State at 298.15 K
 $(c_{\text{alth}} = 4.184 \text{ J})$

Substance	State	ΔE_c°	ΔH_C°	ΔH_F°
		kcal th mol^{-1}	kcal th mol^{-1}	kcal th mol^{-1}
2,2'-Biindanyl	Crystalline	-2311.33 \pm 0.52	-2314.00 \pm 0.52	6.24 \pm 0.56
2,2'-Bitetralin	Crystalline	-2617.84 \pm 0.55	-2621.10 \pm 0.55	-11.38 \pm 0.60
∞				

3. HEAT CAPACITIES OF PURE COMPOUNDS

Values of the heat capacity at 298.15 K are needed in combustion calorimetry to convert the energy of the actual bomb process to that of the isothermal process at 298.15 K. Values were measured by differential scanning calorimetry for compounds 1, 2, 3, 4, 6 and 7 of Table 2. These values are listed in Table 5.

TABLE 5. HEAT CAPACITIES OF PURE COMPOUNDS AT 298.15 K

COMPOUND	C_p cal _{th} g ⁻¹
1	0.29 ₇
2	0.30 ₆
3	0.26 ₀
4	0.28 ₃
6	0.33 ₉
7	0.34 ₆

4. ENTHALPIES OF COMBUSTION OF RAM-JET FUELS

Precise measurements of the enthalpies of combustion of two ram-jet fuels were completed. RJ-4-I is a mixture of isomers of exo-tetrahydro(dimethylcyclopentadiene), compound 9 of Nomenclature Section. JP-9 is a mixture of 65-70 percent exo-tetrahydroniclopentadiene (compound 8 of Nomenclature Section), 20-25 percent RJ-5 (compounds 11(a) and 11(b) of the Nomenclature Section), and 10-12 percent methylcyclohexane. Since these fuels are mixtures, the molar values of enthalpy of combustion and enthalpy of formation are not meaningful, and only energies and enthalpies of combustion on a weight basis are reported.

Summaries of the individual combustion experiments with RJ-4-I are reported in Table 6, and similar summaries for JP-9 are given in Table 7. Values of $\Delta E_c^\circ/m$ for RJ-4-I refer to equation 5. Values of $\Delta E_c^\circ/m$ for

JP-9 refer to equation 6.

The values of $\Delta E_c^\circ/m$ in Tables 6 and 7 are the energy of the idealized constant-volume bomb reaction at 25° C with all reactants and products in their standard states. If these values are converted to those for the constant pressure reaction at 25° C, the so-called "gross heats" of combustion, or enthalpies of combustion, of RJ-4-I and JP-9 become -(10781.95 + 0.57) cal g⁻¹ and -(10686.16 + 0.78) cal g⁻¹, respectively. If these values are converted to those of the combustion reaction yielding gaseous CO₂ and gaseous H₂O, the values of the "net" heat of combustion are -(10141.7 + 2.2) and -(10089.5 + 2.4) cal g⁻¹ for RJ-4-I and JP-9, respectively.

TABLE 6. Summary of Calorimetric Experiments for RJ-4-I at 298.15 K

(cal_{th} = 4.184 J)

Experiment number	1	2	3	4	5	6
m' (compound)/g	0.656454	0.657437	0.661629	0.664266	0.671437	0.690385
m'' (auxiliary substance)/g	0.088773	0.084967	0.081998	0.078245	0.071440	0.052527
m''' (fuse)/g	0.001362	0.001247	0.001250	0.001410	0.001280	0.001070
n ⁱ (H ₂ O)/mol	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535
Δt _c /K = (t _f - t _i + Δt _{corr})/K	2.006933	1.998944	2.002348	1.998786	1.999118	1.997937
ε(calor)(-Δt _c)/cal _{th}	-8041.81	-8009.81	-8023.45	-8009.18	-8010.51	-8005.78
ε(cont)(-Δt _c)/cal _{th} ^b	-10.29	-10.17	-10.19	-10.23	-10.23	-10.15
ΔE _{ign} /cal _{th}	0.18	0.18	0.18	0.18	0.18	0.18
ΔE _{dec} (HNO ₃)/cal _{th}	-	-	-	-	-	-
ΔE _{(corr) to std states} /cal _{th} ^c	2.91	2.90	2.91	2.91	2.91	2.92
{-m''(ΔE [°] /M)(auxiliary substance)}/cal _{th}	976.89	935.01	902.33	861.04	786.15	578.03
{-m'''(ΔE [°] /M)(fuse)}/cal _{th}	5.52	5.05	5.06	5.71	5.18	4.33
{m'(ΔE [°] /M)(compound)}/cal _{th}	-7066.63	-7076.84	-7123.16	-7149.57	-7226.32	-7430.47
{(ΔE [°] /M)(compound)}/cal _{th} g ⁻¹	-10764.85	-10764.29	-10766.09	-10763.11	-10762.47	-10762.79
{(ΔE [°] /M)(compound)}/cal _{th} g ⁻¹	-10763.93 ± 0.57 (mean and standard deviation of the mean)					

^a

The symbols and abbreviations of this table are those of W. N. Hubbard et al, Experimental Thermochemistry, Chap. 5, pp. 75-128. F. D. Rossini, editor. Interscience: New York. 1956.

^b

εⁱ_(cont)(t_i - 298.15 K) + ε^f_(cont)(298.15 K - t_f + Δt_{corr}). ^c Item 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).

TABLE 7. Summary of Calorimetric Experiments for JP-9 at 298.15 K^a
(cal_{th} = 4.184 J)

Experiment number	1	2	3	4	5	6
m' (compound)/g	0.671018	0.670861	0.675054	0.684136	0.686320	0.696639
m''' (auxiliary substance)/g	0.079766	0.077597	0.073573	0.065586	0.062454	0.053173
m'''' (fuse)/g	0.001260	0.001230	0.001078	0.000907	0.001208	0.001296
n ⁱ (H ₂ O)/mol	0.05535	0.05535	0.05535	0.05535	0.05535	0.05535
Δt _c /K = (t _f - t _i + Δt _{corr})/K	2.005814	1.998772	1.998899	2.000508	1.998630	2.000358
ε(calor)(-Δt _c)/cal _{th}	-8037.34	-8009.12	-8009.63	-8016.08	-8008.55	-8015.48
ε(cont)(-Δt _c)/cal _{th} ^b	-10.18	-10.25	-10.15	-10.15	-10.20	-10.14
ΔE _{ign} /cal _{th}	0.18	0.18	0.18	0.18	0.18	0.18
ΔE _{dec} (HNO ₃)/cal _{th}	-	-	-	-	-	-
ΔE _{(corr) to std states} /cal _{th} ^c	3.10	3.08	3.09	3.10	3.10	3.11
{-m'''(ΔEc°/M)(auxiliary substance)}/cal _{th}	877.78	853.91	809.63	721.74	687.27	585.14
{-m''''(ΔEc°/M)(fuse)}/cal _{th}	5.10	4.98	4.36	3.67	4.89	5.25
{m'(ΔEc°/M)(compound)}/cal _{th}	-7161.36	-7157.22	-7202.52	-7297.54	-7323.31	-7431.94
{(ΔEc°/M)(compound)}/cal _{th} g ⁻¹	-10672.38	-10668.71	-10669.55	-10666.80	-10670.40	-10668.28
{(ΔEc°/M)(compound)}/cal _{th} g ⁻¹	-10669.35 ± 0.78	(mean and standard deviation of the mean)				

^a The symbols and abbreviations of this table are those of W. N. Hubbard et al, Experimental Thermochemistry, Chap. 5, pp. 75-128. F. D. Rossini, editor. Interscience: New York. 1956.

^b εⁱ(cont)(t_i - 298.15 K) + ε^f(cont)(298.15 K - t_f + Δt_{corr}). ^c Item 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).

5. HEAT CAPACITIES OF RAM-JET FUELS

Heat capacities were measured for four ram-jet fuels by means of the differential scanning calorimeter. The following equations were fitted to the experimental data:

exo-THDC (275-365 K)

$$C_s = 0.04606_1 + 0.001237_1 T(\text{cal g}^{-1} \text{K}^{-1}) \quad (7)$$

$$\text{Root mean square deviation (RMSD)} = 0.0015_3 \text{ cal g}^{-1} \text{K}^{-1}$$

RJ-4 (275-330 K)

$$C_s = 0.1377_2 + 0.001021_7 T(\text{cal g}^{-1} \text{K}^{-1}) \quad (8)$$

$$\text{RMSD} = 0.0018_4 \text{ cal g}^{-1} \text{K}^{-1}$$

RJ-4-I (260-360 K)

$$C_s = 0.1412_6 + 0.001006_6 T(\text{cal g}^{-1} \text{K}^{-1}) \quad (9)$$

$$\text{RMSD} = 0.0030_8 \text{ cal g}^{-1} \text{K}^{-1}$$

JP-9 (260-360 K)

$$C_s = 0.09299_8 + 0.001006_0 T(\text{cal g}^{-1} \text{K}^{-1}) \quad (10)$$

$$\text{RMSD} = 0.0041_0 \text{ cal g}^{-1} \text{K}^{-1}$$

6. THERMODYNAMIC PROPERTIES OF ALKYLNAPHTHALENES AND INDANS

As part of a continuing study of alkynaphthalenes and indans in which high steric energies may contribute to higher values of enthalpy of combustion, the vapor pressure of 2-ethyl-6-methylnaphthalene in the liquid state was determined by inclined-piston-gauge manometry with the results listed in the first two columns of Table 8. The data were represented with the equation:

$$\begin{aligned} \ln \underline{P}_R &= \underline{A} + \underline{B}/\underline{T}_R - 3.013 \ln \underline{T}_R + 5.512 \underline{T}_R - 3.294 \underline{T}_R^2 \\ &+ \underline{C}(-62.646 \ln \underline{T}_R + 77.392 \underline{T}_R - 19.424 \underline{T}_R^2) \quad (11) \\ &+ 0.176 \underline{P}_R \exp\{(1.65 + 0.8 \underline{C}/\underline{T}_R - 0.9 \underline{C})\}. \end{aligned}$$

The constants obtained are:

$$\underline{A} = -11.72145 \pm 0.93$$

$$\underline{B} = -18.47791 \pm 0.36$$

$$\underline{C} = 0.4679775 \pm 0.021$$

with

$$\underline{P}_R/kPa = \frac{P/kPa}{\pi_c/kPa} \qquad \underline{T}_R = \frac{T/K}{\theta_c/K}$$

$$\theta_c/K = 769.5 \text{ and } \pi_c/kPa = 2203.0.$$

The calculated values of vapor pressure are compared with the observed ones in the third and fourth columns of Table 8, and the weighting factors are listed in the final column.

The enthalpy of vaporization at selected temperatures was calculated by use of the Clapeyron equation and estimated values of the second virial coefficient and molal volume of liquid. The results are in Table 9.

TABLE 8. Vapor pressure of 2-ethyl-6-methylnaphthalene

T/K	p(obs)	p(calc)	p(obs) - p(calc)	σ
	kPa			
337.816	0.0283	0.0283	0.0000	0.00027
343.15	0.0403	0.0406	-0.0003	0.00027
348.15	0.0559	0.0562	-0.0003	0.00028
353.15	0.0769	0.0771	-0.0002	0.00029
358.15	0.1045	0.1045	0.0000	0.00029
363.15	0.1407	0.1402	0.0005	0.00030
368.15	0.1865	0.1864	0.0001	0.00031
373.15	0.2458	0.2454	0.0004	0.00032
378.15	0.3200	0.3203	-0.0003	0.00034
383.15	0.4144	0.4144	0.0000	0.00037
388.15	0.5317	0.5320	-0.0003	0.00039
393.15	0.6778	0.6775	0.0003	0.00043
398.15	0.8563	0.8564	-0.0001	0.00047
403.15	1.0743	1.0750	-0.0007	0.00052
408.15	1.3406	1.3400	0.0006	0.00057

TABLE 9. Enthalpy of vaporization of 2-ethyl-6-methylnaphthalene

T/K	$\Delta_v^{\circ} H/\text{kJ mol}^{-1}$
298.15	68.94 ± 0.54
300.	68.77 ± 0.52
325.	66.54 ± 0.36
350.	64.46 ± 0.21
375.	62.49 ± 0.08
400.	60.60 ± 0.09
425.	58.77 ± 0.20
450.	56.98 ± 0.33

7. ACQUISITION OF RESEARCH SAMPLES

Research samples of 2,2'-biindanyl and 2,2'-bitetralin (compounds 6 and 7 of Nomenclature Section) were synthesized and purified at Oklahoma State University under purchase agreement with Professor E. J. Eisenbraun. Brief descriptions of their synthesis and purification follow. Full accounts of the synthesis routes used will appear in the chemical literature under Professor Eisenbraun's authorship; inquiries concerning the preparation of these materials may be addressed directly to him.

Lithium-ammonia Conversion of 5,6,6a,6b,7,8,12b,12c-Octahydrodibenzo[a,i]-biphenylene (1) to 1,1',2,2',3,3',4,4'-Octahydro-2,2'-binaphthyl (2)

A 25-g sample of the photodimer 1, was dissolved in 50-ml of anhydrous ether contained in a 1-liter round-bottomed flask. Anhydrous ammonia (500 ml) was condensed in the flask through use of a Dry Ice condenser. Li (14.4 g) as small pieces was added over 1 hour. Near the end of the addition period, the solution acquired a permanent blue color.

The reaction was quenched with solid ammonium chloride and the liquid ammonia was allowed to evaporate. About 500 ml of water was added with stirring and the resulting slurry was extracted with ether (3 x 150 ml). The extracts were combined, dried ($MgSO_4$), filtered and concentrated to give 23.4 g of 2, mp 83-85°.

The product was recrystallized from isohexane, ethanol, and from acetone. It was next chromatographed from 20 g of basic alumina contained in a Soxhlet apparatus using isohexane as eluant. The isohexane was evaporated and the product was distilled (Kugelrohr apparatus) at 140° (0.01 mm) to give 12.7 g of 2, mp 84-85°. The stereochemistry of 2 has been defined.¹

Reference

1. P. H. Ruehle, T. K. Dobbs, L. L. Ansell, Dick van der Helm, and E. J. Eisenbraun, *J. Org. Chem.*, **42**, 1098 (1977).

Lithium-Ammonia Reductive Cleavage of 4 $\beta\beta$,4 $\alpha\alpha$,9, $\alpha\alpha$,9 $\beta\beta$,10-Hexahydrocyclobuta[1,2-a:4,3-a']diindene (1) to 2,2'-Biindanyl (2)

The indene photodimer 1, mp 110°, (PHR II-58c) was prepared¹ and purified² as previously described. A 20-g sample of 1 was reduced with Li in ammonia containing ether as cosolvent. The excess lithium was destroyed with 1,2-dibromoethane and 19.5 g of 2 was obtained. Light chromatography³ and gas chromatography⁴ studies showed the cleavage was complete.

The following steps were used to purify the product 2.

1. Recrystallization from acetone.
2. Chromatography using a Soxhlet apparatus containing a layer of 100 g of basic alumina (Merck activity I) and a layer of 100 g of acidic alumina (Merck activity I) with purified n-hexane as eluant. The eluant (~500 ml) was allowed to cool and the crystallized 2 was collected by filtration. Only the first crop of crystals were used in the subsequent steps.
3. Step 2 was repeated.
4. Recrystallization from anhydrous methanol to give 13.5 g, mp 165.5-166.5°C in 67% yield, (PHR II-67a).
5. Sublimation at 150° (0.02 mm) (PHR II-67B). The sample was bottled in an Argon atmosphere.

References and Notes

1. (a) P. H. Ruehle, T. K. Dobbs, L. L. Ansell, Dick van der Helm, and E. J. Eisenbraun, *J. Org. Chem.*, 42, 1098 (1977).
2. Acetone was used for recrystallization of 1.
3. -Porasil column using purified isooctane as eluant. A uv detector was used.
4. A 0.25 in. x 6 ft. column containing 1% OV-17 on 80-100 mesh Chromosorb G (AW and DMCS treated at 180°C was used.

Synthesis in Progress

Several diakylindans and dialkylnaphthalenes are in the process of synthesis and purification in Professor Eisenbraun's laboratories.

8. PUBLICATIONS AND PRESENTATIONS

Enthalpies of Combustion of
exo-THDC and RJ-4, by N. K.
Smith and W. D. Good

NAVAIR SYSCOM Program
Reviews, November 1977,
pp. 38-47

The Enthalpies of Formation
of Some Bridged-Ring Poly-
nuclear Aromatic Hydrocarbons,
by W. D. Good

J. Chem. Thermodynamics,
v. 10, No. 6, 1978,
pp. 553-558

Enthalpies of Combustion of
exo-THDC, RJ-4, Isomerized
RJ-4, and JP-9, by N. K.
Smith and W. D. Good

AFOSR Scientific Report
AFOSR-TR-78-1069, 1978,
10 pp. Submitted to the
American Institute of
Aeronautics Journal

Enthalpies of Formation of
Some Bridged-Ring Hydro-
carbons, by N. K. Smith

Oral Presentation at 33rd
Annual Calorimetry Conference,
Utah State University, Logan
Utah, July 26-29, 1978

Thermodynamics of Ramjet
Fuels, by W. D. Good

1978 AFOSR Contractors
Meeting on Air-Breathing
Combustion Dynamics,
Dayton, Ohio, October 10-13,
1978

DISTRIBUTION LIST

CONTRACTORS

Dow Chemical Company
Thermal Laboratory, Bldg 1707
Midland, MI 48640
Attn: Dr Malcolm Chase

IIT Research Institute
10 West 35 Street
Chicago, IL 60616
Attn: Dr Alan Snelson

Bartlesville Energy Technology
Center, Dept. of Energy
P O Box 1398
Bartlesville, OK 74003
Attn: Mr William D Good

National Bureau of Standards
Physical Chemistry Division, IMS
US Department of Commerce
Washington, DC 20234
Attn: Dr Charles W Beckett, Jr

Space Sciences, Inc
135 W Maple
Monrovia, CA 91016
Attn: Mr Milton Farber

Stanford Research Institute
Physical Sciences Division
Menlo Park, CA 94025
Attn: Dr D L Hildenbrand

NON-CONTRACTORS

AeroChem Research Labs, Inc
P O Box 12
Princeton, NJ 08540
Attn: Dr Hartwell F Calcote

NON-CONTRACTORS (CONTINUED)

Aerojet-General Corporation
Dept 4940, Bldg 0525
P O Box 1947
Sacramento, CA 95809
Attn: Mr. James P Coughlin

Aerospace Corporation
P O Box 95085
Los Angeles, CA 90045
Attn: Dr Nev A Gokcen

Air Force Materials Laboratory
Code LPH
Wright-Patterson AFB, OH 45433
Attn: Mr Paul Dimiduk

Air Force Systems Command
AFRPL/LKCG
Edwards AFB, CA 93523
Attn: Mr Curtis C Selph

Air Force Weapons Laboratory
AFWL/ALD
Kirtland AFB, NM 87117
Attn: Dr Leroy Wilson and
Lt Col Bina

Army Research Office
Box CM, Duke Station
Durham, NC 27705
Attn: Dr David R Squire

University of California
Department of Chemistry
Berkeley, CA 94700
Attn: Dr Leo Brewer

Chemical Propulsion Information
Agency, APL/JHU (2 copies)
8631 Georgia Avenue
Silver Spring, MD 20910

NON-CONTRACTORS (CONTINUED)

Cornell University
Department of Chemistry
Ithica, NY 14850
Attn: Dr S H Bauer

Dow Chemical Company
Thermal Research Laboratory
1707 Building
Midland, MI 48640
Attn: Dr Daniel R Stull

Hercules Incorporated
P O Box 98
Magna, UT 84044
Attn: Dr Billings Brown

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: Mr Theodore W Price

John Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, MD 20910
Attn: Dr Robert Fristrom

Naval Ordnance Station
Indian Head, MD 20640
Attn: Mr Al Camp

NASA
Lewis Laboratories (Mail Stop
6-1)
Cleveland, OH 44135
Attn: Mr Sanford Gordon

NASA
Scientific and Technical
Information Facility
5001 Calvert Road
College Park, MD 20740

NAS-NRC
2101 Constitution Ave, NW
Washington, DC 20418
Attn: Dr H Van Olphen

National Bureau of Standards
ADM A-538
Washington, DC 20234
Attn: Dr David Lide, Chief
Office of Standard Reference
Data

National Bureau of Standards
Institute for Materials
Research
Washington, DC 20234
Attn: Mr. Donald D Wagman

NSSC
Department of the Navy
Washington, DC 20360
Code NSEA-0331
Attn: Mr. John W. Murrin

Office of Naval Research
1030 E Green Street
Pasadena, CA 91101
Attn: Mr Rudolph Marcus

Office of Naval Research
Powers Programs
Ballston Towers No. 1
800 North Quincy Street
Arlington, VA 22217
Attn: Dr Richard Miller

University of Pennsylvania
Department of Chemistry
Philadelphia, PA 19104
Attn: Dr David White

CINDAS
Purdue University Research Park
2595 Yeager Road
West Lafayette, IN 47907
Attn: Prof Y S Touloukian
Dr R E Taylor

Rice University
Department of Chemistry
Houston, TX 77001
Attn: Dr John Margrave

NON-CONTRACTORS (CONTINUED)

Susquehanna Corporation
Edsall Road at Shirley Highway
Alexandria, VA 22314
Attn: Dr Charles Henderson

United Technology Corporation
Research and Advanced Technology Div
Sunnyvale, CA 94086
Attn: Dr R O MacLaren

Air Force Materials Laboratory
Wright-Patterson AFB, OH 45433
Attn: Dr. William Heiser/CCS