PhysH308

Hamiltonian Mechanics!

Ted Brzinski, Nov. 7, 2024

Nearly Lagrangian

Consider the system
pictured without friction. The
spring is ideal and Hookean.

$$T = \frac{1}{2}m\dot{x}^2$$

$$U = \frac{1}{2}kx^2$$

$$\mathscr{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$\mathcal{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$\frac{\partial \mathcal{L}}{\partial x} = -kx$$
 is the generalized force

.
$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$$
 is the generalized momentum

. E-L yields:
$$\ddot{x} = -\frac{k}{m}x$$
 (as we'd expect)

Nearly Lagrangian

• Let's do this a different way...

$$\mathscr{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

.
$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$$
 is the generalized momentum p

• We'll define the Hamiltonian: $\mathcal{H} = p\dot{x} - \mathcal{L}$

Nearly Lagrangian

• Let's do this a different way...

$$\mathscr{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

- $p = m\dot{x}$ is the generalized momentum
- We'll define the Hamiltonian:

$$\mathcal{H} = p\dot{x} - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

•
$$p = m\dot{x}$$

$$\mathcal{H} = p\dot{x} - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

•
$$p = m\dot{x}$$

$$\mathcal{H} = p\dot{x} - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

$$= m\dot{x}^2 - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

Nearly Lagrangian

•
$$p = m\dot{x}$$

$$\mathcal{H} = p\dot{x} - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$
$$= m\dot{x}^2 - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

$$= \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

Which looks like the total energy!

Nearly Lagrangian

But let's go back to here:

•
$$p = m\dot{x}$$

$$. \mathcal{H} = p\dot{x} - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

Nearly Lagrangian

But let's go back to here:

$$\dot{x} = \frac{p}{m}$$

$$\mathcal{H} = p\dot{x} - \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

Nearly Lagrangian

But let's go back to here:

$$\dot{x} = \frac{p}{m}$$

$$\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

• So we've gone from $\mathscr{L}(x,\dot{x},t)$ to $\mathscr{H}\left(x,p,t\right)$

Nearly Lagrangian

•
$$\mathcal{H} \equiv p\dot{x} - \mathcal{L}$$

$$\frac{\partial \mathcal{H}}{\partial x} = p \frac{\partial \dot{x}}{\partial x} - \left(\frac{\partial \mathcal{L}}{\partial x} + \frac{\partial \mathcal{L}}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial x} \right)$$

Nearly Lagrangian

•
$$\mathcal{H} \equiv p\dot{x} - \mathcal{L}$$

$$\frac{\partial \mathcal{H}}{\partial x} = p \frac{\partial \dot{x}}{\partial x} - \left(\frac{\partial \mathcal{L}}{\partial x} + p \frac{\partial \dot{x}}{\partial x} \right)$$

Nearly Lagrangian

•
$$\mathcal{H} \equiv p\dot{x} - \mathcal{L}$$

$$\frac{\partial \mathcal{H}}{\partial x} = p \frac{\partial \dot{x}}{\partial x} - \left(\frac{\partial \mathcal{L}}{\partial x} + p \frac{\partial \dot{x}}{\partial x} \right)$$

$$= -\frac{\partial \mathcal{L}}{\partial x} = -\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}} = -\dot{p}$$

Nearly Lagrangian

• What about E-L?

•
$$\mathcal{H} \equiv p\dot{x} - \mathcal{L}$$

$$\frac{\partial \mathcal{H}}{\partial x} = -\dot{p}$$

 $=\dot{x}$

$$\frac{\partial \mathcal{H}}{\partial p} = \dot{x} + p \frac{\partial \dot{x}}{\partial p} - \frac{\partial \mathcal{L}}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial p}$$
$$= \dot{x} + p \frac{\partial \dot{x}}{\partial p} - p \frac{\partial \dot{x}}{\partial p}$$

Nearly Lagrangian

• What about E-L?

•
$$\mathcal{H} \equiv p\dot{x} - \mathcal{L}$$

$$\frac{\partial \mathcal{H}}{\partial x} = -\dot{p}$$

$$\frac{\partial \mathcal{H}}{\partial p} = \dot{x}$$

• \mathscr{L} yields a 2nd-order diff EQ, \mathscr{H} yields 2x1st-order diff EQs

$$\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

$$\frac{\partial \mathcal{H}}{\partial x} = -\dot{p}$$

$$\frac{\partial \mathcal{H}}{\partial p} = \dot{x}$$

$$\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

$$\frac{\partial \mathcal{H}}{\partial x} = -\dot{p} = kx$$
 (i) force

$$\frac{\partial \mathcal{H}}{\partial p} = \dot{x} = \frac{p}{m} \text{ (ii) momentum}$$

•
$$p = m\dot{x} \Rightarrow \dot{p} = m\ddot{x}$$
 (iii)

• (i) & (iii):
$$m\ddot{x} = -kx$$

$$x = x_0 \cos\left(\sqrt{\frac{k}{m}}t + \delta\right)$$

Two problems

- 13.4 It's tempting to treat \mathscr{H} and E=T+U as interchangeable. But they aren't always! Here you'll see when they are.
- 13.3 Find the motion of a system using the Hamiltonian approach!