

Evolutionary Algorithms 101

António Leitão CISUC

Outline

- Evolutionary algorithms
- Biological background
- An application example on a design task
- GAs for hyper-parameterization
- Training a classifier
- Challenges for GA

Evolutionary Algorithms

- Nature inspired approach for optimization
 - Darwin's model on natural selection
 - Mendel's genetics ideas of inheritance

- Different flavors:
 - Most popular ones: Genetic Algorithms and Genetic Programming

Genetic Algorithms

- Guided Search
 - Profit from population dynamics
 - Drift its candidate solutions toward relevant parts of the search space
 - Hopefully find a global optima or approximate solution

PORTUGAL

Genetic level

Two relevant behaviors

Individual / Population level

PORTUGAL

Macro evolution

Genetic Algorithm

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5	Х6	Y6	
-------------------------------	----	----	--

Ang1 Dist1 An	ng2 Dist2 /	Ang3 Dist3	Ang4 Dist4	Ang5 Di	st5 Ang6	Dist6
---------------	-------------	------------	------------	---------	----------	-------

Initialization

- Population
 - 5 individuals

- Each individual
 - Distances: random sample [0,max]
 - Angles: random sample [0,2] pi rad

Ang1 Dist1 Ang2 Dist2 Ang3 Dist3 Ang4 Dist4 Ang5 Dist5 Ang6 Dis	Ang1	Dist1	Ang2	Dist2	Ang3	Dist3	Ang4	Dist4	Ang5	Dist5	Ang6	Dist6
---	------	-------	------	-------	------	-------	------	-------	------	-------	------	-------

Initialization

1.0	0.7	1.5	1.3	1.1	1.4	0.5	1.9	0.7	1.0	1.3	0.9
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

1.3	0.9	1.1	1.1	2.0	1.4	0.2	0.3	0.7	1.1	1.2	0.6
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

0.3	1.2	0.5	1.3	0.1	1.7	0.8	1.0	1.2	1.1	1.5	0.9
							l				1

Evaluation

- Multiple possibilities
 - Distance traveled in x seconds
 - Time before stopping
 - Combination of both

Crossover

1.3	0.9	1.7	1.1	2.0	1.4	0.2	0.3	0.7	1.1	1.6	0.3	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

Mutation

1.2

1.3 0.9	1.7	1.1	2.0	1.4	0.2	0.3	0.9	1.1	1.6	0.3
---------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Configuring a NN

- Various parameters set by
 - Rules of thumb
 - Guidelines
 - Knowledge on the target problem
 - Experience
 - Random initialization

Evolving NN parameters

N neurons in hidden layer
Learning rate
Momentum
Training type
Epoch
Minimum error

Activation function 1
Bias 1
Activation function 2
Bias 2
Initial weight 1
Initial weight 2
Initial weight 3

Should we use this?

- When to use
 - Little knowledge of the problem / data
 - As a starting point to find good parameters
- Downsides
 - Computationally expensive
 - Search could be wider than needed
- Tip
 - Use reason to restrict genes to appropriate intervals
 - Customize initialization and variation operators

Training NN with GAs

GAs for small NNs

- Reported results are competitive
- Gas are capable of
 - Maintaining sturdiness through population size
 - Exploit genetic material through crossover
 - Explore the search space through mutation
 - Depend little on initial conditions to approximate global optima

What about large NNs?

- NNs with huge number of inputs, dealing with large data widen the search space
- Very large populations may be prohibitive
 - Due to computational effort
- There's a chance of losing appropriate coverage of the search space
 - Individuals become sparse
 - Risking beneficial exploitation

Destructive crossover

А	В	С
50	100	50

Challenges for GA

- Can we offset the need for computational effort?
 - Island Models (parallelization)
 - Fitness sharing
 - Restricted Mating
 - Fitness scaling or transformation
 - Local search methods

Gradient methods vs Population Dynamics

- Gradient based methods use information on expected output
 - Adjust the weights in the right direction
- GAs rely on population dynamics and fitness information
 - Drifting genes toward seemingly good areas of the search space

Combining GAs with local search

Combining GAs with local search

Conclusions

- GAs have proven valuable on various classification tasks (mostly academic)
- Large data problems present a number of new challenges
- Further studies are needed to assess its usefulness