Série1 de S.C: Processus, Stationnarité, Densité spectrale

Ex1: Ces processus sont ils stationnaires, $\varepsilon_t \sim i.i.d.N(0, \sigma^2)$

1)
$$X_t = a + b\varepsilon_t + c\varepsilon_{t-2}$$
. 2) $X_t = \varepsilon_t \cos(ct) + \varepsilon_{t-1} \sin(ct)$

3)
$$X_t = \alpha + \beta t + \varepsilon_t$$
. 4) $X_t = \sum_{j=0}^k a_j \varepsilon_{t-j}, a_j \in \mathbb{R}$.

Ex2: I) Vérifier si les processus suivants sont des bruits blancs et dire s'ils sont faible ou fort, $\varepsilon_t \sim i.i.d(0,1)$ avec moments d'ordre 4 fini:

1)
$$Z_t = \varepsilon_t^2 - 1$$
. 2) $Z_t = \varepsilon_t \varepsilon_{t-1}$.

II) Soit $\varepsilon_t \sim i.i.d.N(0,1)$ et soit k un entier positif. On pose $Z_t = \varepsilon_t \varepsilon_{t-1}...\varepsilon_{t-k}$.

Montrer que Z_t est un bruit blanc faible mais pas fort.

Ex3: Les modèles suivants admettent ils des solutions stationnaires? Si c'est oui, calculer l'espérence et la FAC de la solution:

1)
$$X_t = 1 + 0.3X_{t-1} + \varepsilon_t$$
. 2) $X_t = 1 + 3X_{t-1} + \varepsilon_t$.

3)
$$X_t = 1 + 0.5X_{t-1} + \varepsilon_t - 0.4\varepsilon_{t-1}$$
.

Ex4: I) Soit la série définie par $X_t = \varepsilon_t + \theta \varepsilon_{t-2}, \varepsilon_t \backsim BB(0, \sigma^2)$.

1) Calculer la fonction d'ACV γ_h .

2) Calculer la variance de $(X_1 + X_2 + X_3 + X_4)/4$ pour $\theta = 0.8$ et $\sigma^2 = 1$.

II) Soit la série définie par $X_t = \varphi X_{t-2}$ tel que $|\varphi| < 1$ et $\varepsilon_t \backsim BB(0, \sigma^2)$.

1) Calculer la fonction d'ACV γ_h .

2) Calculer la variance de $(X_1 + X_2 + X_3 + X_4)/4$ pour $\varphi = 0.9$ et $\sigma^2 = 1$.

Ex5: 1) Soit $\varepsilon_t \backsim i.i.d(0, \sigma^2)$ et soit $\varphi \neq 0$, on considère le modèle suivant: $X_t - \varphi X_{t-1} = \varepsilon_t$. Montrer que pour $|\varphi| < 1$, la somme infinie $X_t = \sum_{k=0}^{\infty} \varphi^k \varepsilon_{t-k}$ converge en moyenne quadratique et presque surement et que c'est l'unique solution stationnaire.

2) Soit $\{\psi_k\}_{k\in\mathbb{Z}}$ une suite telle que $\sum_{k=-\infty}^{+\infty} |\psi_k| < \infty$ et soit $\{X_t\}$ un processus aléatoire tel que $\sup_{t\in\mathbb{Z}} E(X_t^2) < \infty$. Montrer que pour tout $t\in\mathbb{Z}$, la suite $Y_{n,t} = \sum_{s=-n}^n \psi_s X_{t-s}$ converge

en moyenne quadratique vers $Y_t = \sum_{s=-\infty}^{\infty} \psi_s X_{t-s}$ et $E(Y_t^2) < \infty$.

Ex6: Ecrire les modèles suivants avec l'operateur retard:

$$1\text{-}X_t = 0.3X_{t-1} + \varepsilon_t. \quad 2\text{-}X_t = \varepsilon_t - 1.3\varepsilon_{t-1} + 0.4\varepsilon_{t-2}.$$

$$3\text{-}X_t = 0.5X_{t-1} + \varepsilon_t - 1.3\varepsilon_{t-1} + 0.4\varepsilon_{t-2}$$

$$4 - X_t + 0.2X_{t-1} - 0.48X_{t-2} = \varepsilon_t$$

5-
$$X_t + 1.9X_{t-1} - 0.88X_{t-2} = \varepsilon_t + 0.2\varepsilon_{t-1} + 0.7\varepsilon_{t-2}$$

Ex7: I) Soit $(X_t)_{t\in\mathbb{Z}}$ et $(Y_t)_{t\in\mathbb{Z}}$ deux processus stationnaires non corrélés, de FACV γ_X et γ_Y et pour densité spectrale f_X et f_Y respectivement. Montrer que le processus $Z_t = X_t + Y_t$ est stationnaire d'ordre 2, a pour FACV $\gamma_Z = \gamma_X + \gamma_Y$ et pour densité spectrale $f_Z = f_X + f_Y$.

II) Soit $(X_t)_{t\in\mathbb{Z}}$ le processus défini par $X_t = A\cos\left(\frac{\pi t}{3}\right) + B\sin\left(\frac{\pi t}{3}\right)$, où A et B sont des variables aléatoires indépendantes de moyenne nulle et de variance σ^2 . Montrer que X_t est un processus centré stationnaire d'ordre 2.

III) Soit f la densité spectrale d'un processus stationnaire centré X_t :

$$f(\omega) = \begin{cases} a & \text{si } 0 \leq \omega < \frac{\pi}{2} \\ b & \text{si } \frac{\pi}{2} \leq \omega < \pi \end{cases} . \quad \text{D\'etreminer } \gamma_0 \text{ et } \gamma_h, \text{ pour } h \in \mathbb{Z}.$$

IV) Soit $(X_t)_{t\in\mathbb{Z}}$ une SC stationnaire de fonction de densité spectrale normalisée: $f^*(\omega) = 2(\pi - \omega)/\pi^2$, $0 < \omega < \pi$. Trouver la FAC.