

Mathématiques et Calcul 1

Contrôle continu n°1 — 16 octobre 2017 durée: 1h30

Tout document interdit. Les calculatrices et les téléphones portables, même prévus à titre d'horloge, sont également interdits.

MERCI DE BIEN INDIQUER VOTRE GROUPE DE TD SUR VOTRE COPIE

Exercice 1. On définit les deux nombres complexes u et v suivants :

$$u = (1+i)^{13}$$
 et $v = (1-i\sqrt{3})^7$.

- 1) Mettre u sous forme exponentielle.
- 2) Mettre v sous forme exponentielle.
- 3) Calculer le module de u/v.
- 4) Donner l'argument de u/v, représenté dans $[0, 2\pi]$.

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par u_0 et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 1 + \frac{u_n^2}{4}.$$

- 1) Si la suite $(u_n)_{n\in\mathbb{N}}$ converge, alors quelle est sa limite, ℓ ?
- 2) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3) a) Montrer par récurrence que si $0 \le u_0 \le 2$, alors pour tout $n \in \mathbb{N}$, $0 \le u_n \le 2$.
 - b) En déduire que si $0 \le u_0 \le 2$ alors la suite (u_n) est convergente et donner sa limite.
- 4) a) Montrer par récurrence que si $u_0 > 2$ alors pour tout $n \in \mathbb{N}$, $u_n > 2$.
 - b) En déduire, en utilisant un raisonnement par l'absurde, que si $u_0 > 2$ alors la suite (u_n) est divergente.

Exercice 3. Soit $\theta \in \mathbb{R}$. On pose $z = 1 + e^{i\theta}$.

- 1) Montrer que pour tout $n \in \mathbb{N}$, $z^n = e^{\frac{in\theta}{2}} 2^n \cos^n(\frac{\theta}{2})$
- 2) Pour $\theta \in \left]\frac{2\pi}{3}, \pi\right]$, prouver que $|\cos(\frac{\theta}{2})| < \frac{1}{2}$.
- 3) En déduire que pour $\theta \in \left[\frac{2\pi}{3}, \pi\right]$, la suite $(a_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $a_n = |z^n|$ est convergente et donner sa limite.

Exercice 4.

1) Donner les solutions sous forme exponentielle de l'équation

$$(z^9 - i)(z^2 + 4) = 0.$$

2) Donner les solutions sous forme algébrique de l'équation

$$z^3 + z^2 = (-1 + i)z.$$

Exercice 5. Pour tout entier naturel n, on note A_n le point du plan complexe d'affixe z_n , où la suite (z_n) est définie par $z_0 = 1$ et la récurrence

$$\forall n \in \mathbb{N}, \quad z_{n+1} = \frac{3z_n}{4} + i\frac{\sqrt{3}z_n}{4}.$$

- 1) Montrer que la suite (z_n) est géométrique et donner sa raison.
- 2) Mettre z_1 sous forme exponentielle.
- 3) En déduire pout tout $n \in \mathbb{N}$, l'expression de z_n en fonction de n.
- 4) Donner, pour tout n, l'expression de la longueur du segment OA_n (le point O étant l'origine du repère, c'est-à-dire le point d'affixe 0). En déduire la limite de cette longueur lorsque n tend vers l'infini. (On rappelle qu'étant donnés deux points du plan complexe A et B d'affixes respectifs z_A et z_B, la longueur du segment AB est donnée par |z_B z_A|.)
- 5) Démontrer à l'aide du théorème de Pythagore que pour tout $n \in \mathbb{N}$, le triangle OA_nA_{n+1} est rectangle en A_{n+1} .
- 6) Sur une figure, tracer dans le plan complexe les points A_1, A_2, A_3, A_4, A_5 et A_6 , en utilisant seulement la valeur des arguments des (z_i) (pour i = 1, 2, ..., 6) et la propriété montrée à la question 5. On codera sur la figure les éléments remarquables (distances égales, angles égaux, angles droits) utilisés pour la construction.