Politecnico di Milano - Scuola di Ingegneria Industriale e dell'Informazione

I Appello di Statistica per Ingegneria Fisica 28 agosto 2017

©I diritti d'autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito.

COGNOME, NOME, MATRICOLA:

Problema 1. Un biglietto di lotteria istantanea costa 2 euro e assicura una vincità V così distribuita:

- 1. Trovare media e varianza della vincita V.
- 2. Trovare media e varianza del guadagno G.

Si consideri il guadagno totale X_n di n biglietti indipendenti.

- 3. Trovare media e varianza del guadagno totale X_n .
- 4. Trovare, in funzione di n, la probabilità di perdere più di 15 euro. È possibile dare solo una risposta approssimata per n grande.
- 5. Calcolare il limite di tale probabilità per $n \to \infty$.
- 6. Per quali n tale probabilità supera il 75%?

Risultati.

1.
$$\mathbb{E}[V] = 1.95$$
, $Var(V) = 1.1475$.

2.
$$\mathbb{E}[G] = \mathbb{E}[V-2] = \mathbb{E}[V] - 2 = -0.05, \quad \operatorname{Var}(G) = \operatorname{Var}(V-2) = \operatorname{Var}(V) = 1.1475.$$

3. Se
$$G_k$$
 è il guadagno del biglietto k , allora $X_n = \sum_{k=1}^n G_k$ per cui

$$\mathbb{E}[X_n] = -0.05 n, \quad Var(X_n) = 1.1475 n.$$

4. Per n grande vale il TCL per cui

$$\mathbb{P}(X_n < -15) = \mathbb{P}(X_n \le -15.5) \simeq \Phi\left(\frac{-15.5 + 0.05 \, n}{\sqrt{1.1475 \, n}}\right).$$

5.
$$\mathbb{P}(X_n < -15) \to 1 \text{ per } n \to \infty.$$

6. Supponendo n grande abbiamo

$$\Phi\left(\frac{-15.5 + 0.05 \, n}{\sqrt{1.1475 \, n}}\right) \ge 0.75 \iff \frac{-15.5 + 0.05 \, n}{\sqrt{1.1475 \, n}} \ge z_{0.25} = 0.674 \iff n \ge 690$$

che è coerente con l'ipotesi n grande.

Problema 2. Il Professor Mosk Han vuole provare che la proporzione di newtype nella popolazione di Side 7 è superiore alla proporzione di newtype nella popolazione di Side 3. Non potendo ricorrere ad un censimento deve accontentarsi di una indagine campionaria e delle relative conclusioni inferenziali.

- 1. Impostate un opportuno test statistico per provare che la proporzione di newtype su Side 7 è superiore alla proporzione di newtype su Side 3. Specificate in particolare:
 - le distribuzioni delle popolazioni di interesse e i rispettivi parametri incogniti su cui inferire,
 - ipotesi nulla e ipotesi alternativa del test,
 - regione critica di livello α per decidere sulla base di due campioni casuali, uno per popolazione, di numerosità (elevata) n_3 ed n_7 rispettivamente.

Il Professor Mosk Han riesce a esaminare un campione casuale di $n_3 = 25$ abitanti di Side 3, trovando 8 newtype, ed un campione casuale di $n_7 = 54$ abitanti di Side 7, trovando 19 newtype.

- 2. Quanto valgono le proporzioni di newtype nei due campioni?
- 3. Quanto vale il p-value dei dati raccolti?
- 4. Cosa può concludere il Professor Mosk Han? La conclusione è forte o debole?

Risultati.

1. • Popolazioni Bernoulliane (successo = newtype) di parametri rispettivamente p_3 e p_7 , dove p_k è la proporzione di newtype nella popolazione di Side k

•
$$H_0: p_7 \le p_3$$
 vs $H_1: p_7 > p_3$

• Indicando con \hat{p}_k la proporzione di newtype nel campione di Side k, posto $\hat{p} = \frac{n_3 \hat{p}_3 + n_7 \hat{p}_7}{n_3 + n_7}$,

$$R_{\alpha}: \widehat{p}_7 > \widehat{p}_3 + \sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_3} + \frac{1}{n_7}\right)} z_{\alpha}$$

2. $\hat{p}_7 = 0.3518$ mentre $\hat{p}_3 = 0.32$

3. Per i dati raccolti

$$z_{\alpha} = \frac{\widehat{p}_7 - \widehat{p}_3}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_3} + \frac{1}{n_7}\right)}} = 0.28$$

dà

p-value =
$$1 - \Phi(0.28) = 0.39$$

4. Nonostante $\hat{p}_7 > \hat{p}_3$, il p-value è alto e il Professor Mosk Han non può rifiutare H_0 agli usuali livelli di significatività. Ottiene quindi la conclusione debole: $p_7 \leq p_3$.

Problema 3. La società Firebolt s.r.l sta sperimentando un nuovo tipo di saldatore laser applicato alla saldatura a sovrapposizione. In particolare vuole studiare la relazione tra il rapporto di forma H (cioè il rapporto fra profondità e larghezza del cordone saldato) e alcuni parametri di processo: la potenza dell'impulso p (in kW), la durata dell'impulso p (in ms) e il diametro dello spot p (in mm). Vengono considerati due possibili modelli empirici gaussiani di regressione lineare,

- Modello 1: H su p, t e d,
- Modello 2: H su $p \in d$.
- 1. Si scriva la relazione ipotizzata dai due modelli fra il responso H e i corrispondenti predittori.

I risultati di 24 prove di laboratorio vengono quindi elaborati sulla base dei due modelli di regressione, fornendo i dati di sintesi, i p-value di Shapiro-Wilk dei residui e il diagramma di dispersione dei residui sui responsi stimati riportati di seguito.

- 2. Si commenti l'adeguatezza dei modelli proposti in relazione ai dati raccolti.
- 3. Si trovi una stima puntuale per il rapporto di forma medio nel caso $p=1.3,\,t=10$ e d=0.4
- 4. Si trovi una stima puntuale per la variazione media del rapporto di forma se, a parità degli altri predittori, d aumenta di 0.1.
- 5. Si trovi una stima intervallare al 90% per il rapporto di forma medio nel caso p = 0, t = 0 e d = 0.
- 6. Sapendo che per il Modello 2 il residuo minimo vale -0.103125, si trovino le coordinate del punto corrispondente nel Normal Probability Plot dei residui standardizzati.

> summary(Model1)

Call:

 $lm(formula = H \sim P + T + D)$

Residuals:

Min 1Q Median 3Q Max -0.11225 -0.04760 -0.01300 0.04233 0.11100

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.555726 0.079496 6.991 8.77e-07 *** Ρ 0.478500 0.048853 9.795 4.48e-09 *** Т -0.002607 0.003489 -0.747 0.464 -0.441944 0.081421 -5.428 2.59e-05 *** D

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05983 on 20 degrees of freedom Multiple R-squared: 0.863, Adjusted R-squared: 0.8424 F-statistic: 41.99 on 3 and 20 DF, p-value: 8.08e-09

> shapiro.test(Model1\$residuals)

Shapiro-Wilk normality test

data: Model1\$residuals
W = 0.9553, p-value = 0.3506

Residui Modello 1

> summary(Model2)

Call:

 $lm(formula = H \sim P + D)$

Residuals:

Min 1Q Median 3Q Max -0.103125 -0.043292 -0.008583 0.051458 0.101875

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.53096 0.07149 7.427 2.65e-07 ***

P 0.47850 0.04834 9.899 2.31e-09 ***

D -0.44194 0.08056 -5.486 1.92e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0592 on 21 degrees of freedom Multiple R-squared: 0.8591, Adjusted R-squared: 0.8457 F-statistic: 64.05 on 2 and 21 DF, p-value: 1.153e-09

> shapiro.test(Model2\$residuals)

Shapiro-Wilk normality test

data: Model2\$residuals
W = 0.9519, p-value = 0.2975

Residui Modello 2

Risultati.

1.

$$\begin{array}{ll} \text{Modello1:} & H = \beta_0 + \beta_1 p + \beta_2 t + \beta_3 d + \epsilon, \\ \text{Modello2:} & H = \beta_0 + \beta_1 p + \beta_2 d + \epsilon, \end{array} \qquad \begin{array}{ll} \epsilon \sim N(0, \sigma^2), \\ \epsilon \sim N(0, \sigma^2). \end{array}$$

2. Il Modello 1 ha un $R_{\rm adj}^2$ abbastanza elevato, i residui non presentano tendenze particolari. Considerando il p-value del test di Shapiro- Wilks, l'ipotesi della normalità dei residui non è rifiutata a tutti i livelli usuali. Pertanto è possibile considerare i test di significatività proposti nell'output di R. Il modello è globalmente significativo (p-value 8.08×10^{-09}), ma il coefficiente β_2 risulta non significativamente diverso da 0 (p-value 0.464). Per questo motivo sarebbe opportuno eliminare il predittore t dal modello.

Il Modello 2, ottenuto proprio eliminando t, presenta le stesse buone caratteristiche del Modello 1, ma in questo caso tutti i predittori risultano significativi. Inoltre $R^2_{\rm adj}$ è leggermente aumentato e i p-value del test di significatività della regressione è leggermente diminuito.

Per questi motivi è opportuno scegliere il Modello 2.

- 3. $\hat{H}|_{p=1.3, d=0.4} = 0.53096 + 0.4785 \times 1.3 0.44194 \times 0.4 = 0.976234.$
- 4. $\hat{H}|_{p,d+0.1} \hat{H}|_{p,d} = \hat{\beta}_2 \times 0.1 = -0.44194 \times 0.1 = -0.044194$ quindi stimiamo che, se il diametro dello spot d aumenta di 1 e gli altri predittori non variano, il rapporto di forma H in media diminuisce di 0.044194.
- 5. $\mathbb{E}[H|d=0,p=0]=\beta_0$ per cui dobbiamo calcolare una stima intervallare al 90% per β_0 , ovvero $\hat{\beta}_0 \pm t_{0.05,24-3} \operatorname{se}(\hat{\beta}_0) = 0.53096 \pm 1.721 \times 0.07149 = 0.53096 \pm 0.1230343 = [0.4079257; 0.6539943].$
- 6. Se $e_{(1)}=-0.103125$ e se q_{α} denota il quantile di ordine α di una normale standard, allora, avendo n=24 prove, il corrispondente punto nel Normal Probability Plot dei residui standardizzati ha coordinate

$$\left(q_{\frac{1-0.5}{n}},r_{(1)}\right) = \left(q_{\frac{1}{2n}},\frac{e_{(1)}}{\widehat{\sigma}}\right) = \left(q_{0.02083},\frac{-0.103125}{0.0592}\right) = \left(-2.037,-1.742\right)$$