# **Supervised Learning**

**Chapter IX: Evaluation** 

Johannes Jurgovsky

# **Outline**

# Evaluation

- 1. Introduction
- 2. Performance Measures
- 3. Performance Estimation

# 1. Introduction

### Introduction:

#### Motivation

**Setup in Supervised Learning:** Learn a classifier  $h: X \to Y$  from training data such that we can accurately predict the target value of a new (unseen) observation.

**Problem:** The true (physical) process  $y: X \to Y$  that *generates* observations is unknown to us. We only have access to a finite data set of observations.

**Choices:** Different learning algorithms produce different classifiers. They differ in:

- Inductive bias: e.g. linear decision boundary, axis-aligned decision boundary, etc.
- Set of hyper-parameters: e.g. splitting strategy, architecture of neural networks, etc.

Question: Which is the best classifier for a given problem?

**Tools** ...for answering the question:

- 1. Performance measures
- 2. Performance estimation methods
- 3. Comparison with baselines

# Introduction:

#### True Misclassification Rate

Let X be a feature space and  $Y = \{1 \dots M\}$  the set of M class labels. Moreover, let  $h: X \to Y$  be a classifier and  $y: X \to Y$  be the target concept to be learned. Consider the true misclassification rate  $\mathit{Err}^*(h)$ :

$$\textit{Err}^*(h) = \frac{|\{\mathbf{x} \in X : y(\mathbf{x}) \neq h(\mathbf{x})\}|}{|X|}$$

#### Problem:

 $\Box$  Usually the *function* y is unknown.

#### Solution:

□ Estimation of  $Err^*(h)$  with  $Err(h, D_s)$ , i.e., evaluating h on "some" subset  $D_s \subseteq D$  of the labeled data set D we are given.

# 2. Performance Measures

# **Classification Quality**

A performance measure is a function that assesses the *quality* as to which a classifier solves a classification problem.

Many such measures have been proposed, as the definition of "quality" may vary depending on:

- What we are interested in
- What we want to optimize
- The characteristics of the problem (e.g. class imbalance)

# **Example: Misclassification Rate**

The missclassification rate *Err* calculates the average prediction accuracy over all classes.

- □ *Err* is not a good performance measure in the case of imbalanced data sets
- Does not yield insights on the distribution of the error

#### Class Confusion Matrix

Consider a data set of observations  $D = \{(x,y)_n\}$  and a classifier h in a multiclass classification setting. A confusion matrix  $C \in \mathbb{N}^{|Y| \times |Y|}$  contains the class assignments made by the classifier on the data set D.

Each element  $c_{ij}$  denotes the number of data points with class label i that have been assigned to class j (predicted as j):

$$c_{ij} = |\{x_k | y_k = i \land h(x_k) = j\}|$$



Image obtained from scikit learn demo 1

<sup>1</sup>http://scikit-learn.org/stable/auto examples/model selection/plot confusion matrix.html

TP, FP, TN, FN

We can derive several measure from C for class k:

 $\square$  True Positives TP<sub>k</sub>: Number of data points assigned to k which actually belong to class k

$$TP_k = C_{kk}$$

 $\Box$  False Positives FP<sub>k</sub>: Number of data points assigned to k which do not belong to class k

$$FP_k = \sum_{u \neq k} c_{uk}$$

figspace False Negatives FN $_k$ : Number of data points not assigned to k but which belong to class  $k^4$ 

$$FN_k = \sum_{v \neq k} c_{kv}$$

□ True Negative  $TN_k$ : Number of data points not assigned to k which do not belong to class k 5

$$TN_k = \sum_{u \neq k} \sum_{v \neq k} c_{uv}$$

 $<sup>^2</sup>h$  made a POSITIVE P decision and the decision was TRUE  $T \Rightarrow TP$ 

 $<sup>^3</sup>h$  made a POSITIVE P decision but the decision was FALSE  $F \Rightarrow FP$ 

 $<sup>^4</sup>h$  made a NEGATIVE N decision but the decision was FALSE  $F \Rightarrow FN$ 

 $<sup>^{5}</sup>h$  made a NEGATIVE N decision and the decision was TRUE  $T \Rightarrow TN$ 

TP, FP, TN, FN

Visualized in the class confusion Matrix for class k=2

|               |      | Predicted Class $h(x)$ |    |    |    |  |
|---------------|------|------------------------|----|----|----|--|
|               |      | 1                      | 2  |    | Y  |  |
| $\mathcal{S}$ | 1    | TN                     | FP | TN | TN |  |
| Class         | 2    | FN                     | TP | FN | FN |  |
| <u>S</u>      | 3    | TN                     | FP | TN | TN |  |
|               | 4    | TN                     | FP | TN | TN |  |
| Actual        | :    | TN                     | FP | TN | TN |  |
| A             | Y -1 | TN                     | FP | TN | TN |  |
|               | Y    | TN                     | FP | TN | TN |  |

Precision, Recall & Co for a class k

□ Recall  $\rho_k$  of a class k (Sensitivity, True Positive Rate (TPR)): Determines how complete the decisions of h regarding a class have been, i.e. the fraction of correct assignments to k among data points of class k:

$$\rho_k = \frac{\mathsf{TP}_k}{\mathsf{TP}_k + \mathsf{FN}_k}$$

ightharpoonup **Precision**  $\pi_k$  **of a class** k determines how precise decisions in favor of class k are, i.e. the fraction of correct assignments to class k among all assignments to class k:

$$\pi_k = rac{\mathsf{TP}_k}{\mathsf{TP}_k + \mathsf{FP}_k}$$

□ **False Positive Rate** FPR $_k$  **of a class** k determines how likely a non class-k data point gets assigned to class k:

$$\mathsf{FPR}_k = rac{\mathsf{FP}_k}{\mathsf{FP}_k + \mathsf{TN}_k}$$

**Note:** There are many more measures that can be derived from the Class Confusion Matrix.

 $F_{\beta}$ -Score

Precision  $\pi_k$  and Recall  $\rho_k$  can be combined into a single score.

 $F_{\beta}$ -Score as weighted harmonic mean of  $\pi_k$  and  $\rho_k$  with  $\beta$  determining the importance of recall over precision:

$$(\mathsf{F}_{\beta})_k = \frac{1+\beta^2}{\frac{1}{\pi_k} + \frac{\beta^2}{\rho_k}}$$

- $\ \square \ \beta < 1$  favors precision  $\frac{1}{\beta}$  times more over recall
- $\beta = 1$  harmonic mean between precision and recall, the so called  $F_1$ -Score (most common choice for  $\beta$ )

Overall performance

# **Macro-Averaging:**

Averages over all class measures

$$\pi^{(M)} = \frac{1}{|Y|} \sum_{k \in Y} \pi_k$$

$$\rho^{(M)} = \frac{1}{|Y|} \sum_{k \in Y} \rho_k$$

$$\mathsf{F}_{\beta}^{(M)} = \frac{1 + \beta^2}{\frac{1}{\pi^{(M)}} + \frac{\beta^2}{\rho^{(M)}}}$$

The macro-average weighs all classes equally. There are also versions with class-specific weights.

**Micro-Averaging:** Calculates the performance measures over the individual assignments

$$\pi^{(\mu)} = \frac{\sum_{k \in Y} \mathsf{TP}_k}{\sum_{k \in Y} \mathsf{TP}_k + \mathsf{FP}_k}$$

$$\rho^{(\mu)} = \frac{\sum_{k \in Y} \mathsf{TP}_k}{\sum_{k \in Y} \mathsf{TP}_k + \mathsf{FN}_k}$$

$$\mathsf{F}_{\beta}^{(\mu)} = \frac{1 + \beta^2}{\frac{1}{\pi^{(\mu)}} + \frac{\beta^2}{\rho^{(\mu)}}}$$

In the standard single-label scenario,  $\pi^{(\mu)}$ ,  $\rho^{(\mu)}$  and  $\mathsf{F}_{\beta}^{(\mu)}$  are equal to the *accuracy* =  $\frac{\sum_{k \in Y} \mathsf{TP}_k}{N}$  of the classifier (N data points).

#### Intermediate Exercise

**Exercise:** You are working for a *Christmas gift insurance company* on the problem of identifying fraud<sup>6</sup>. You have trained two classifiers A and B and tested them on 10000 claims, the results are shown on the right.

- Compute the overall accuracy for both models. Which one has the higher accuracy and thus seems to be better?
- For both models, compute precision and recall for the "fraud" class. Which model would you choose and why?

| Model A |          | Predicted Class |       |  |
|---------|----------|-----------------|-------|--|
|         |          | no fraud        | fraud |  |
| Actual  | no fraud | 9700            | 150   |  |
| Class   | fraud    | 50              | 100   |  |

| Model B |          | Predicted Class |       |  |
|---------|----------|-----------------|-------|--|
|         |          | no fraud        | fraud |  |
| Actual  | no fraud | 9850            | 0     |  |
| Class   | fraud    | 100             | 50    |  |

Supervised Learning: IX-14 Evaluation

<sup>&</sup>lt;sup>6</sup>Goes by the principle: "Wish one get two for free".

#### **ROC Curve**

**Receiver Operator Characteristic Curve (ROC-Curve)**<sup>7</sup>: A method to visualize (summarize) the performance of a *binary classifier* ("+" or "-") across all possible classification thresholds.

- □ Requires classifier to output a predicted probability (score) for each observation
- □ Sort the observations according to the assigned score in descending order
  - Pick some score as decision threshold  $s_t$  and consider all observations with a score >  $s_t$  as being classified as "+" and all observations with a score <=  $s_t$  as "-".
  - Evaluate TPR and FPR for this situation to obtain one point on the ROC-curve.
- □ TPR and FPR are unaffected by imbalanced classes
- □ Area under ROC curve (AUC) is a robust performance summary for imbalanced classification problems.



# **Performance Measures: Real-valued Output**

#### Common Error Measures

Let  $y:X\to\mathbb{R}$  be the target function to be learned, mapping from feature space X to real values. Let  $h:X\to\mathbb{R}$  be a predictor for y and let  $D=\{(\mathbf{x}_i,y_i)\}\subseteq X\times\mathbb{R}$  be a set of examples.

Mean Squared Error (MSE): Preferred loss function due to mathematical convenience. Sensitive to outliers.

$$MSE(h) = \frac{1}{|D|} \sum_{(\mathbf{x}_i, y_i) \in D} (y_i - h(\mathbf{x}_i))^2$$

Mean Absolute Error (MAE): Interpretable error due to same units. Each deviation influences the MAE in direct proportion to its absolute value.

$$\mathsf{MAE}(h) = \frac{1}{|D|} \sum_{(\mathbf{x}_i, y_i) \in D} |y_i - h(\mathbf{x}_i)|$$

The Mean Relative Approximation Error (MRAE) quantifies the deviation from the target value relative to the target value's magnitude:

$$\mathsf{MRAE}(h) = \frac{1}{|D|} \sum_{(\mathbf{x}: y_i) \in D} \frac{|y_i - h(\mathbf{x}_i)|}{y_i}$$

# Recap

# Challenge

- 1. Which is the best classification algorithm for a given problem?
- 2. Which is the most suitable configuration of hyper-parameters of a classification algorithm for a given problem?
- ightharpoonup Select a performance measure and calculate a score  $s_h$  to quantify the classification quality

$$D = \{(\mathbf{x}_1, y(\mathbf{x}_1)), \dots, (\mathbf{x}_n, y(\mathbf{x}_n))\} \subseteq X \times Y \text{ is a set of examples.}$$

# Recap

But we have limited information: A finite data set.

 $\rightarrow$   $s_h$  is a random variable - its true value is unknown.

Instead, calculate an estimate  $\hat{s}_h$  of the score, based on the set of observations that have been sampled from the underlying process.

Choice of how to exploit the given dataset:

- Resubstitution
- □ Hold-Out
- Cross-Validation and Leave-One-Out
- Bootstrap

Resubstitution [True Misclassification Rate]

A naive idea: Use full dataset for both training and score estimation

- $D_{tr} = D$  is the training set.
- $\neg h: X \to Y$  is a classifier learned on the basis of  $D_{tr}$ .

Example: Calculate Misclassification rate on  $D_{tr}$ :

$$\hat{s}_h = \textit{Err}(h, D_{tr}) = \frac{|\{(\mathbf{x}, y_i) \in D_{tr} : y_i \neq h(\mathbf{x})\}|}{|D_{tr}|}$$

Bad estimator of the true score:

- $\ \ \ \hat{s}_h$  is based on examples that have been exploited to learn h.
- $\rightarrow$   $\hat{s}_h$  quantifies memorization but not the generalization capability of h.
- $\Rightarrow$   $\hat{s}_h$  is too optimistic, i.e., it is constantly better than the score we observe when applying h in the wild.

#### Hold-Out

- Split dataset into training and testing sets
- Often pessimistic estimation of true score
- Useful for large datasets, bad for small datasets



#### k-fold Cross-Validation

Partition the data set into k folds, each of size  $j = \lfloor N/k \rfloor$ . Repeat k times:

- $\Box$  Train on joint data from k-1 folds
- Calculate score on data from the held-out fold



k-fold Cross-Validation



After k rounds, the average over k scores is reported as the classifier's performance.

- Less pessimistic than Hold-Out
- Suitable for smaller datasets

Leave-one-out Cross-Validation

**Leave-one-out Cross-Validation:** Special case of k-fold CV, where k = N

- □ Each fold contains only one observation
- $\Box$  Calculate N scores, each based on only one observation



- High computational cost
- □ Better estimation of true score, but less stable (=high variance)

# **Bootstrap**

- □ Repeat *k* times:
  - Create "bootstrap dataset" of j observations by randomly sampling with replacement
  - Train classifier on bootstrap dataset
  - Estimate score on full dataset
- → Problematic: Uses data from the training phase. Optimistic estimation.
- Not recommended

# .632-Bootstrap

- □ Repeat *k* times:
  - Create "bootstrap dataset"  $D_b$  of N observations by randomly sampling with replacement
  - Train classifier on bootstrap dataset  $D_b$
  - Estimate score on dataset  $D \setminus D_b$
- ightharpoonup Expected number of distinct observations in  $D_b$  is approximately 0.632\*N
- → No training data used for estimation
- → Pessimistic estimate
- → Useful for small data sets



# Stratified Sampling

Problem: Imbalanced classes

- □ Splits may not contain any observations of the infrequent classes
- Leads to bad classifiers / estimations

**Solution:** *Stratification.* Keep the proportions of the classes in the splits equal to the full dataset. *Stratified sampling* can be incorporated in all estimation techniques:

- □ Hold-Out
- Cross-Validation
- □ Bootstrap



### Further Details<sup>8</sup>

# Comparison to Baselines

Baselines are lower bounds on the achievable performance obtained from a trivial predictor.

Used as "sanity" check when approaching new problems. Examples:

- □ **Trivial Classification:** Always predict the majority class
- Trivial Regression: Use a central tendency (e.g. mean, median)
- $lue{}$  Random Guessing: Randomly guess the outcome based on the marginal distribution P(y)

# **Example:**

Unbalanced data set with two-classes:  $D = \{(x_1, 0), (x_2, 0), \dots (x_{99}, 0), (x_{100}, 1)\}$ 

Baseline for missclassification rate: Err(h) = 1%

Performance Estimation Summary

### Resubstition

□ Do not use.

#### **Hold-Out**

- Good for large data sets
- Computation expensive
- $\Box$  Frequent splits 80%/20% or 70%/30% (train / test)
- Can be done repeatedly to improve estimation (repeated hold-out)

### **Cross-Validation and Leave-One-Out**

- Good for small datasets
- Computationally expensive

# **Bootstrap**

- $\Box$  .632Bootstrap good for small datasets
- Computationally expensive