

Global United Technology Services Co., Ltd.

Report No.: GTS201907000072F01

FCC REPORT

Applicant: Shenzhen Transtar Electronics Co., LTD

Colinda Industrial Park, Opposite Side of No. 15 Furong **Address of Applicant:**

Road, Songgang, Bao'an, Shenzhen, China

Shenzhen Transtar Electronics Co., LTD Manufacturer/Factory:

Address of Colinda Industrial Park, Opposite Side of No. 15 Furong

Road, Songgang, Bao'an, Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: window robot

Model No.: WA6, WA3, WA5, WA7, WA8, WA9, W611, W612, W615,

> W616, W618, W619, W622, W626, W628, W655, W668, W669, W676, W686, W810, W811, W812, W815, W816, W818, W820, W830, W850, W860, W870, W910, W920, W930, W950, W960, W970, W600, W610, W620, W630, W650, W660, W670, W680, W690, W55, W56, W57, W58,

W59

2AI2SWA6 FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249

Date of sample receipt: July 11, 2019

Date of Test: July 12-29, 2019

Date of report issued: July 30, 2019

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	July 30, 2019	Original

Prepared By:	Las zong	Date:	July 30, 2019
	Project Engineer		
Check By:	Jobinson	Date:	July 30, 2019
	Reviewer		

3 Contents

			Page
1	COVI	ER PAGE	1
2	VED	SION	2
_	VER	5ION	Z
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	6
	5.4	DEVIATION FROM STANDARDS	6
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	6
	5.6	TEST FACILITY	6
	5.7	TEST LOCATION	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	RADIATED EMISSION METHOD	
	7.2.	1 Field Strength of The Fundamental Signal	12
	7.2.2	- P	
	7.2.3		
	7.3	20DB OCCUPY BANDWIDTH	17
8	TES	T SETUP PHOTO	18
9	EUT	CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	N/A
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Remarks:

- 1. Test according to ANSI C63.10: 2013.
- 2. Pass: The EUT complies with the essential requirements in the standard.
- 3. N/A; not applicable

4.1 Measurement Uncertainty

Test Item	Test Item Frequency Range Measurement Uncertain		Notes						
Radiated Emission	9kHz ~ 30MHz	±3.80 dB	(1)						
Radiated Emission	30MHz ~ 1000MHz	± 3.97 dB	(1)						
Radiated Emission 1GHz ~ 26.5GHz ± 4.29 dB									
Note (1): The measurement und	certainty is for coverage factor of k	=2 and a level of confidence of 9	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

	Centeral Description of Eur				
	Product Name:	window robot			
Model No.:		WA6, WA3, WA5, WA7, WA8, WA9, W611, W612, W615, W616, W618, W619, W622, W626, W628, W655, W668, W669, W676, W686, W810, W811, W812, W815, W816, W818, W820, W830, W850, W860, W870, W910, W920, W930, W950, W960, W970, W600, W610, W620, W630, W650, W660, W670, W680, W690, W55, W56, W57, W58, W59			
	Test model:	WA6			
	Remark: All above models are only difference is model name a	identical in the same PCB layout, interior structure and electrical circuits. The and color.			
	Serial No.:	QSD-WA6-TS			
	Hardware Version:	WA6_V1.5			
	Software Version:	WA6-V190628F			
	Test sample(s) ID:	GTS201907000072-1			
	Sample(s) Status	Engineered sample			
	Operation Frequency:	2450MHz			
	Channel numbers:	1			
	Modulation type:	GFSK			
	Antenna Type:	PCB Antenna			
	Antenna gain:	1.5dBi(declare by applicant)			
		Remote control:			
		DC3.0V(2*1.5V, SIZE"AAA")			
		Window robot rechargeable battery:			
	Power supply:	DC14.8V 650mAh			
	r owor ouppry.	Window robot adapter			
		Model: GM95-240375-D			
		Input: AC 100-240V, 50/60Hz, 2.5A			
		Output: DC 24V, 3.75A			

Note: The test report is for remote control only

Operation Frequency each of channel			
Channel	Frequency		
1	2450MHz		

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
Remark: During all the test, New	battery is used.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Υ	Z
Field Strength(dBuV/m)	88.43	89.06	87.32

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020

RF C	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020	
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 1.5dBi, reference to the appendix II for details

7.2 Radiated Emission Method

2 Radiated Emission Method							
FCC Part15 C Section 15.209							
ANSI C63.10:2013							
9kHz to 25GHz							
Measurement D	Distance: 3m						
Frequency	Detector	RBW	VBW	Remark			
9kHz- 150kHz	Quasi-peak		300Hz	Quasi-peak Value			
150kHz- 30MHz	•		10kHz	Quasi-peak Value			
30MHz- 1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Above Toriz	Peak	1MHz	10Hz	Average Value			
Freque	ency			Remark			
2400MHz-24	183 5MHz			Average Value			
2400WII 12 24	100.0IVII 12			Peak Value			
				Remark			
				Quasi-peak Value			
				Quasi-peak Value			
				Quasi-peak Value			
				Quasi-peak Value			
216MHz-960MHz				Quasi-peak Value			
				Quasi-peak Value Quasi-peak Value			
9001011 12-	- IGI1Z			Average Value			
Above 1	IGHz –	5000 @3m		Peak Value			
harmonics, shal fundamental or	ll be attenuate to the general	d by at least ! radiated emi	50 dB belov	v the level of the			
For radiated e	missions fror	n 9kHz to 3	0MHz				
Tum Table	< 3m =	Receiver Prea	mplifier+				
	FCC Part15 C S ANSI C63.10:20 9kHz to 25GHz Measurement E Frequency 9kHz- 150kHz 150kHz 30MHz- 30MHz- 1GHz Above 1GHz Freque 0.009MHz-0 0.490MHz-1 1.705MHz-3 30MHz-8 88MHz-2 216MHz-9 960MHz-4 Emissions radia harmonics, sha fundamental or whichever is the	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9kHz- Quasi-peak 150kHz- Quasi-peak 30MHz- Quasi-peak 1GHz Above 1GHz Frequency 2400MHz-2483.5MHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30.0MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuate fundamental or to the general whichever is the lesser attenu For radiated emissions from	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9kHz- Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz- Quasi-peak 120KHz 1GHz Peak 1MHz Above 1GHz Peak 1MHz Frequency Limit (dBuV, 2400MHz-2483.5MHz 114.0 Frequency Limit (u 0.009MHz-0.490MHz 2400/F(kHz 0.490MHz-1.705MHz 24000/F(kHz 1.705MHz-30.0MHz 30 @3 30MHz-88MHz 100 @3 30MHz-88MHz 150 @3 216MHz-960MHz 200 @4 5000	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9kHz- Quasi-peak 200Hz 300Hz 150kHz- Quasi-peak 9kHz 10kHz 30MHz- Quasi-peak 120KHz 300KHz 1GHz Peak 1MHz 3MHz Above 1GHz Peak 1MHz 10Hz Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 114.00 Frequency Limit (uV/m) 0.009MHz-0.490MHz 2400/F(kHz) @300m 0.490MHz-1.705MHz 24000/F(kHz) @300m 1.705MHz-30.0MHz 30 @30m 30MHz-88MHz 100 @3m 88MHz-216MHz 150 @3m 216MHz-960MHz 200 @3m 960MHz-1GHz 500 @3m Above 1GHz 500 @3m Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB below fundamental or to the general radiated emission limits whichever is the lesser attenuation. For radiated emissions from 9kHz to 30MHz			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTS201907000072F01 < 3m > Test Antenna < 1m ... 4m > FUT < 80cm > Turn Table Receiver₽ Preamplifier↓ For radiated emissions above 1GHz Test Antenna < 1m 4m 3 EUT Turn Table -150cm -Receiver+ Preamplifier-1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz Test Procedure: and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test environment: Temp.: 25 °C Humid .: 52% Press.: 1012mbar DC 3.0V Test voltage: Test results: Pass

Measurement data:

Report No.: GTS201907000072F01

7.2.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2450.00	74.79	27.55	2.96	30.14	75.16	114.00	-38.84	Vertical
2450.00	88.69	27.55	2.96	30.14	89.06	114.00	-24.94	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2450.00	66.57	27.55	2.96	30.14	68.94	94.00	-25.06	Vertical
2450.00	80.25	27.55	2.96	30.14	80.62	94.00	-13.38	Horizontal

7.2.2 Spurious emissions

■ Below 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

■ Below 1GHz

Horizontal:

Vertical:

Above 1GHz

Test Frequency:	2450MHz
-----------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4900.00	44.74	31.33	4.71	37.76	43.02	74.00	-30.98	Vertical
7350.00	40.31	36.48	6.65	35.59	47.85	74.00	-26.15	Vertical
9800.00	33.38	39.29	8.52	36.33	44.86	74.00	-29.14	Vertical
12250.00	31.95	41.42	9.66	36.58	46.45	74.00	-27.55	Vertical
14700.00	32.51	39.30	11.06	35.87	47.00	74.00	-27.00	Vertical
17150.00	32.16	41.52	11.48	36.26	48.90	74.00	-25.10	Vertical
4900.00	52.57	31.33	4.71	37.76	50.85	74.00	-23.15	Horizontal
7350.00	43.07	36.48	6.65	35.59	50.61	74.00	-23.39	Horizontal
9800.00	33.56	39.11	8.31	35.75	45.23	74.00	-28.77	Horizontal
12250.00	31.93	40.47	9.35	36.74	45.01	74.00	-28.99	Horizontal
14700.00	31.84	40.60	10.07	35.47	47.04	74.00	-26.96	Horizontal
17150.00	31.42	40.22	11.26	36.29	46.61	74.00	-27.39	Horizontal

Average value:

Average value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4900.00	40.57	31.33	4.71	37.76	38.85	54.00	-15.15	Vertical
7350.00	33.07	36.48	6.65	35.59	40.61	54.00	-13.39	Vertical
9800.00	20.56	39.11	8.31	35.75	32.23	54.00	-21.77	Vertical
12250.00	19.93	40.47	9.35	36.74	33.01	54.00	-20.99	Vertical
14700.00	20.84	40.60	10.07	35.47	36.04	54.00	-17.96	Vertical
17150.00	19.77	40.48	11.27	36.28	35.24	54.00	-18.76	Vertical
4900.00	40.57	31.33	4.71	37.76	38.85	54.00	-15.15	Horizontal
7350.00	33.07	36.48	6.65	35.59	40.61	54.00	-13.39	Horizontal
9800.00	20.56	39.11	8.31	35.75	32.23	54.00	-21.77	Horizontal
12250.00	19.93	40.47	9.35	36.74	33.01	54.00	-20.99	Horizontal
14700.00	20.84	40.60	10.07	35.47	36.04	54.00	-17.96	Horizontal
17150.00	19.77	40.48	11.27	36.28	35.24	54.00	-18.76	Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

7.2.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test Frequency:	2450MHz

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	40.21	27.14	2.81	30.43	39.73	74.00	-34.27	Horizontal
2400.00	39.98	27.37	2.91	30.24	40.02	74.00	-33.98	Horizontal
2483.50	40.62	27.66	2.99	30.12	41.15	74.00	-32.85	Horizontal
2500.00	39.38	27.70	3.01	30.13	39.96	74.00	-34.04	Horizontal
2310.00	39.27	27.14	2.81	30.43	38.79	74.00	-35.21	Vertical
2400.00	38.22	27.37	2.91	30.24	38.26	74.00	-35.74	Vertical
2483.50	38.96	27.66	2.99	30.12	39.49	74.00	-34.51	Vertical
2500.00	39.51	27.70	3.01	30.13	40.09	74.00	-33.91	Vertical

Average value:

Average value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	29.18	27.14	2.81	30.43	28.70	54.00	-25.30	Horizontal
2400.00	29.09	27.37	2.91	30.24	29.13	54.00	-24.87	Horizontal
2483.50	29.09	27.66	2.99	30.12	29.62	54.00	-24.38	Horizontal
2500.00	28.80	27.70	3.01	30.13	29.38	54.00	-24.62	Horizontal
2310.00	28.84	27.14	2.81	30.43	28.36	54.00	-25.64	Vertical
2400.00	28.62	27.37	2.91	30.24	28.66	54.00	-25.34	Vertical
2483.50	28.80	27.66	2.99	30.12	29.33	54.00	-24.67	Vertical
2500.00	28.66	27.70	3.01	30.13	29.24	54.00	-24.76	Vertical

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.3 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215				
Test Method:	ANSI C63.10:2013				
Limit:	Operation Frequency range 2400MHz~2483.5MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test Frequency:	20dB bandwidth(MHz)	Result
2450MHz	0.823	Pass

Test plot as follows:

2450MHz

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----