

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI

organizowany przez Łódzkiego Kuratora Oświaty dla uczniów szkół podstawowych w roku szkolnym 2022/2023

TEST - ETAP WOJEWÓDZKI

- Na wypełnienie testu masz 120 min.
- Arkusz liczy 12 stron i zawiera 19 zadań, w tym brudnopis.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania czytaj uważnie i ze zrozumieniem.
- Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- W zadaniach zamkniętych zaznacz prawidłową odpowiedź, wstawiając znak X we właściwym miejscu.
- Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Do każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.
- Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.
- Nie używaj korektora. Jeśli pomylisz się w zadaniach otwartych, przekreśl błędną odpowiedź i wpisz poprawną.
- Korzystaj tylko z przyborów i materiałów określonych w regulaminie konkursu.

Powodzenia

Makeymalna liczba nunktów - 100

Maksymama nozba punktow - 100	
Liczba uzyskanych punktów	
lmię i nazwisko ucznia:wypełnia Komisja Kon	nkursowa po zakończeniu sprawdzenia prac
Podpisy członków komisji sprawdzających	n prace:
1	
(imię i nazwisko)	(podpis)
2	
(imię i nazwisko)	(podpis)

Na podstawie wykresu szybkości pojazdu od czasu, oblicz w jakiej odległości od punktu startu znajduje się pojazd po 6 sekundach ruchu.

...../4pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 2

Spośród poniżej przedstawionych prędkości wybierz tę, która jest równa prędkości 30 cm/min.

A. 0,005 m/s,

B. 0,3 cm/s,

C. 0,5 m/s,

D. 3 m/min.

...../1pkt.

Dwaj mechanicy zbudowali samochód. Wypróbowali go na torze wyścigowym przy próbie przyspieszeń ze startu zatrzymanego. Samochód pokonał drogę 400 m w czasie 5 s. Zakładając, że ruch samochodu jest jednostajnie przyspieszony, oblicz przyspieszenie i prędkość końcową tego samochodu.

...../5pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 4

Dwa samochody ruszają równocześnie z linii startu na prostoliniowym torze z różnymi prędkościami początkowymi o jednakowych zwrotach. Samochód pierwszy ma prędkość początkową równą 5m/s, a drugi – 2 m/s. Oba samochody poruszają się z jednakowymi przyspieszeniami. Wyprowadź wzór na odległość samochodów od czasu i narysuj wykres zależności odległości samochodów od czasu trwania ich ruchu dla pierwszych 5 s ruchu.

...../6 pkt.

Wykres przedstawia zależność pędu od czasu dla ciała o masie 5 kg.

Oblicz energię kinetyczną tego ciała w 8s jego ruchu.

...../5 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 6

Piłka spada swobodnie z pewnej wysokości. W punkcie A piłka posiada szybkość 5 m/s, a w punkcie B posiada szybkość 20 m/s.
Oblicz odległość między punktami A i B.
Przyspieszenie ziemskie g= 10 m/s².

...../6 pkt.

Sprężynę współczynniku sprężystości k=7 N/m rozciągnięto wykonując pracę W=0,35J. Oblicz wydłużenie tej sprężyny.

...../4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 8

Chłopiec chciał wyznaczyć masę swojego plecaka. Posiadał linijkę o długości 1m, 1 kg cukru i torebkę plastikową. Na jednym końcu linijki zawiesił cukier umieszczony w torebce plastikowej, a na drugim końcu plecak. Pod linijkę podłożył palce wskazujące obu rąk w dość dużej odległości jeden od drugiego. Następnie zbliżając palce do siebie utrzymywał cały czas linijkę w równowadze. Jego palce spotkały się w odległości 80 cm od torebki z cukrem. Oblicz masę plecaka chłopca.

...../4 pkt.

Bęben pralki ma promień r=24 cm. Oblicz prędkość skarpetek przylegających do bębna podczas wirowania, gdy bęben wykonuje 1200 obrotów na minutę. Do obliczeń przyjmij π =3,14.

...../7 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 10

W czterech naczyniach znajduje się woda o podanej temperaturze i masie. W pierwszym naczyniu 10°C, 150 g, w drugim naczyniu 10°C, 200 g, w trzecim naczyniu 35°C, 200 g i w czwartym naczyniu 35°C, 150 g. Największą energię wewnętrzną ma woda w naczyniu

A. pierwszym

B. drugim

C. trzecim

D. czwartym

...../1pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 11

Rysunek przedstawia 3 ciała o różnych temperaturach. Narysuj strzałki ilustrujące przepływ ciepła między ciałami.

...../3 pkt.

Do szklanki nalano 200g wody mineralnej o temperaturze t= 20°C. Szklankę postawiono na stole oświetlonym przez światło słoneczne, wskutek czego woda ogrzała się do 30°C. Oblicz ile kostek lodu o temperaturze 0°C trzeba wrzucić do szklanki, aby woda miała nie więcej niż 20°C. Masa jednej kostki lodu wynosi 5g. Ciepło topnienia lodu c_L=335000J/kg, ciepło właściwe wody c= 4200 J/kgK.

	 			-					./	1	ľ	2	ŀ	0	k	t			
:	 	 	 	 	. 1.	۷.	 , .	 _				-1-			:		 	I	

Do naczynia w kształcie walca o polu podstawy 0,02 m² wlano 10 l nafty. Oblicz ciśnienie wywierane przez naftę na dno naczynia, jeśli umieścimy je w windzie jadącej do góry z przyspieszeniem a=2m/s². Gęstość nafty wynosi 800 kg/m³, przyspieszenie ziemskie – 10m/s².

...../9 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 14

Gęstość cieczy jest 3 razy większa od gęstości materiału, z którego wykonano kulkę. Gdy tę kulkę umieszczono w cieczy, to wypływała ona ze stałą prędkością do powierzchni cieczy. Oblicz, ile razy siła oporu cieczy działająca na kulkę jest większa od ciężaru kulki. Zachowując proporcje, narysuj siły działające na kulkę i nazwij je.

...../9 pkt.

Dwie kulki o jednakowych masach i objętościach V i 2V zawieszono na ramionach wagi. Następnie pod obie kulki podstawiono naczynia z różnymi cieczami. Kulki zostały zanurzone równocześnie w cieczach. Po zanurzeniu kulek waga pozostała w równowadze. Kulka o objętości 2V została zanurzona w nafcie. Oblicz gęstość cieczy, w której zanurzono kulkę o objętości V. Gęstość nafty d_n=800kg/m³.

...../5 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 16

Na sprężynie zawieszono naelektryzowaną dodatnio metalową kulkę. Opisz jak zachowa się sprężyna, gdy pod naelektryzowaną kulką umieścimy uziemioną drugą kulkę metalową. Podaj uzasadnienie zachowania sprężyny.

Naprawiając żelazko o mocy 800W przeznaczone do pracy pod napięciem 230 V, skrócono jego spiralę o 20%. Oblicz moc naprawionego żelazka.

...../7 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 18

Wykres przedstawia zależność mocy od czasu dla robota kuchennego używanego przez mamę.

Oblicz pracę wykonaną przez robot w czasie 10 min. Wynik podaj w kJ.

...../6 pkt.

Narysuj obraz strzałki AB. Napisz, czy obraz strzałki jest powiększony, pomniejszony czy tej samej wielkości.

...../4 pkt.

BRUDNOPIS

