Práctica 0 – Parte 2 de 8

Ejercicio 5

Sistema de representación natural de base B y números de N dígitos.

- Cantidad de números diferentes representables: B^{I}
- Número máximo representable: $B^N 1$
- Resolución (incremento mínimo):
- a) Para la misma cantidad de dígitos, ¿qué base permite representar mayor cantidad de números diferentes: binaria, octal, decimal, hexadecimal, o base 24?
- b) Para la misma cantidad de números diferentes a representar, ¿qué base requerirá menor cantidad de dígitos?
- c) Opine: ¿por qué los humanos favorecemos el uso de las representaciones en bases elevadas (decimal, hexadecimal) por encima de la base binaria para representar números?
 - a) La de mayor base B, es decir Base 24 > Hex (16) > Decimal (10) > Octal (8) > Binaria (2)
 - b) La que requiere menos dígitos es la de mayor base B también, es decir, Base 24.
 - c) Se prefieren las bases elevadas en la vida cotidiana para usar menos dígitos.

Ejercicio 6

Gracias a las capacidades del hardware de video actual, hoy en día es común utilizar 24 bits para codificar el color de un pixel en una imagen digital, de los cuales 8 bits codifican la intensidad de color rojo, 8 la de verde y 8 la de azul. En los programas de edición esto suele representarse mediante un número hexadecimal prefijado con un numeral. Por ejemplo, el color #1B2CFF es aquel que tiene intensidades de rojo, verde y azul que son respectivamente $1B_{16}$, $2C_{16}$ y FF_{16} .

- a) ¿Cuántas tonalidades diferentes de rojo, verde o azul pueden representarse?
- b) ¿Cuántos colores diferentes pueden representarse?
- c) Un pixel de una imagen tiene los colores #8388AE. Exprese en formato decimal el nivel de intensidad de Rojo, Verde y Azul de este pixel.
- a) Se usan 8 bits para cada color, existen $2^8 = 256$ tonalidades diferentes para c/u.
- b) Combinando los 3 colores, se usan 24 bits, existiendo $2^{24} = 16.777.216$ colores
- c) $83_{16} = (3 + 8 * 16)_{10} = 131_{10}$ de rojo $88_{16} = (8 + 8 * 16)_{10} = 136_{10}$ de verde $AE_{10} = (14 + 10 * 16)_{10} = 174_{10}$ de azul (174/255 = 68,24% de azul)

Ejercicio 7

- a) En Ipv4 (32 bits) se pueden representar $2^{32} \cong 4,29 * 10^9$ direcciones En Ipv6 (128 bits) se pueden representar $2^{128} \cong 3,4 * 10^{38}$ direcciones
- b) Por cada dirección Ipv4 hay $2^{128-32} = 2^{96} \cong 7.92 * 10^{28}$ direcciones Ipv6
- c) La Tierra tiene una superficie de $5.1*10^{14}~m^2$, entonces en cada metro cuadrado de la superficie caben $\frac{2^{128}}{5.1*10^{14}}\cong 6.67*10^{23}$ direcciones Ipv6 (bastantes en mi opinión).