

Introduction

Dr. Bassam Jamil

Adopted from slides of the textbook

Outline

- □Brief History
- **□**MOS Transistor

Introduction

- ☐ Integrated circuits: many transistors on one chip.
- □ Very Large Scale Integration (VLSI): bucketloads!
- ☐ Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- □ Rest of the course: How to build a good CMOS chip

A Brief History

- ☐ 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas
 Instruments
- **2010**
 - Intel Core i7 μprocessor
 - 2.3 billion transistors
 - 64 Gb Flash memory
 - > 16 billion transistors

Courtesy Texas Instruments

[Trinh09] © 2009 IEEE

Growth Rate

- ☐ 53% compound annual growth rate over 50 years
 - No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

[Moore65]

Electronics Magazine

Annual Sales

- □ >10¹⁹ transistors manufactured in 2008
 - 1 billion for every human on the planet

Invention of the Transistor

- □ Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - See Crystal Fireby Riordan, Hoddeson

AT&T Archives. Reprinted with permission.

Transistor Types

- Bipolar transistors
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration

MOS Integrated Circuits

- ☐ 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

[Vadasz69] © 1969 IEEE.

Intel Museum. Reprinted with permission.

Intel 1101 256-bit SRAM

Intel 4004 4-bit µProc

■ 1980s-present: CMOS processes for low idle power

Moore's Law: Then

☐ Gordon Moore found transistor count doubling every 18 months

Integration Levels

SSI: 10 gates

MSI: 1000 gates

LSI: 10,000 gates

VLSI: > 10k gates

Electronics Magazine

And Now...

Feature Size

☐ Minimum feature size shrinking 30% every 2-3 years

Corollaries

- Many other factors grow exponentially
 - Ex: clock frequency, processor performance

MOS Transistor: Silicon Lattice

- ☐ Transistors are built on a silicon substrate
- □ Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

Dopants

- ☐ Silicon is a semiconductor.
- ☐ Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- ☐ Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- □ A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

p-type n-type

anode cathode

nMOS Transistor

- ☐ Four terminals: gate, source, drain, body
- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 Source Gate Drain
 - Even though gate is no longer made of metal*

netal*

Polysilicon
SiO₂

n+

Body
P
bulk Si

^{*} Metal gates are returning today!

Transistors as Switches

- □ We can view MOS transistors as electrically controlled switches
- ☐ Voltage at gate controls path from source to drain

g = 0

g = 1

CMOS Inverter

А	Υ
0	1
1	0

