Question 1 [8 pts]

The message signal m(t), whose spectrum is shown in Figure 1 below, is passed through the system in Figure 2 below, where $f_c = 100 \, kHz$, $W = 1 \, kHz$, $A_m = \max \left| m(t) \right| = 0.5$, the bandpass filter is ideal and has a bandwidth of 2W centered around f_c , the lowpass filter is ideal with a bandwidth of W

- a- Sketch the frequency spectra of the signals $y_1(t)$ and $y_2(t)$. Indicate all the center frequencies, bandwidths, and amplitudes of interest for all the components of these signals. [2 pts]
- b- What type of modulation is obtained at the output of System 1? Indicate the modulation index of this modulation. [2 pts]
- c- Sketch the frequency spectra of the signals $y_3(t)$ and $y_4(t)$. Indicate all the center frequencies, bandwidths, and amplitudes of interest for all the components of these signals. [2 pts]
- d-Propose an alternative for System 2 that does not require a coherent carrier to obtain the message signal m(t) at the output $y_4(t)$. [2 pts]

a) $y_1(t) = \chi^2(t) = \left(m(t) + \cos(2\pi f_c t)\right)^2 = m^2(t) + \frac{1}{2} + \frac{1}{2}\cos(4\pi f_c t) + \frac{1}{2}$

b) Modulation: DSB or DSB-SC - (2pts)

Modulation index: H=1

give 1 pt if they mention only AM modulation

d) System 2 is used to demodulate a DSB signal. A coherent carrier is required for the demodulation.

One can use a Costas receiver to perform the demodulation.

Question 2 [10 pts]

A conventional AM signal is given by:

$$s(t) = 5\cos(1800\pi t) + 20\cos(2000\pi t) + 5\cos(2200\pi t)$$

- a- Determine the modulating signal m(t) and the carrier c(t). [2 pts]
- b- Determine the modulation index and the ratio of the power in the sidebands to the power in the carrier. [2 pts]

This signal is fed to a conventional AM receiver using an envelope detector. The average noise power per unit bandwidth measured at the input of the receiver front-end is 10⁻³ watt per Hertz.

- c- Assuming an input resistor of 1 Ω , calculate the input signal-to-noise ratio of the system. [2 pts]
- d- Determine the output signal-to-noise ratio at the output of the receiver. [2 pts]
- e- By how many decibels is this system inferior to a DSB modulation system? [2 pts]
- $C(t) = 20 \text{ Cos } (2000 \pi t)$ = (pt) [identifying the carrier] $(t) = 20 \text{ Cos } (2000 \pi t)$ [I + $k_q m(t)$] $(t) = 20 \text{ Cos } (2000 \pi t)$ [I + $k_q m(t)$] $(t) = 20 \text{ Cos } (2000 \pi t)$

 $20 \omega k (2000 \pi t) k_0 m(t) = 5 \cos(1800 \pi t) + 5 \cos(2200 \pi t) = 10 \cos(2000 \pi t)$. cos(200 πt)

- $k_q m(t) = \frac{1}{2} \cos(200\pi t) = (pt) 0.5 \text{ on form } \cos(.)$ 0.25 on amplitude
 0.25 on freq.
- µ= 0.5 or 50% € (pt)
 - Psidebands = 25W } = Psideband = 25 = D.125 or 12.5%.
 Pearrier = 200W } Promier
 - c) Prin = 2. 100. 103 = 0.2W Psin = 25 + 200 = 225 W
 - SNRin = 81 = 225 = 1125 or 30.5 dB
- d) $SNR_{out} = \frac{P_{sout}}{P_{nout}} = \frac{50}{0.4} = 125$ or $SNR_{out} = \frac{N^2}{2+\mu^2} SNR_{in} = \frac{0.25}{2.25}$. 1125 = 125 | 1pt on calculation
- e) this is inferior to DSB modulation System by Tolog (2.25) = 9.5 dB (2pt

		v	
ě			

Question 3 [10 pts]

An angle-modulated signal around a carrier frequency $f_c = 10 \, MHz$, has the form $s(t) = 100 \cos(2\pi f_c t + 4 \sin(2000\pi t))$

The modulating message has a maximum amplitude $A_m = \max |m(t)| = 1$.

- a- Determine the peak-phase deviation and peak-frequency deviation of s(t). [2 pts]
- b- Determine m(t) and k_f if s(t) is an FM signal [2 pts]
- c- Determine m(t) and k_p if s(t) is a PM signal [2 pts]
- d- Determine the approximate bandwidth of s(t) using Carson's rule. [2 pts]
- e- Sketch the spectrum of the modulated signal s(t). Show only the sidebands within the approximate bandwidth calculated in d-. Indicate all the frequencies and amplitudes of interest (Use the table below) 12 nts

mierest.	interest. (Ose the table below) [2 pis]						
	$\beta = 1$	$\beta = 2$	$\beta = 3$	$\beta = 4$	$\beta = 5$		
n = 0	0.7652	0.2239	-0.2601	-0.3971	-0.1776		
<i>n</i> = 1	0.4401	0.5767	0.3391	-0.066	-0.3276		
n = 2	0.1149	0.3528	0.4861	0.3641	0.04657		
n = 3	0.0196	0.1289	0.3091	0.4302	0.3648		
n = 4	0.0025	0.034	0.132	0.2811	0.3912		
<i>n</i> = 5		0.007	0.043	0.1321	0.2611		
<i>n</i> = 6		0.0012	0.0114	0.0491	0.131		
n = 7			0.0025	0.01518	0.05338		
n = 8				0.004	0.01841		
n = 9					0.0055		

a) peak phase deviation: B=4 rad [Ird]

peak frequency deviation:
$$\triangle f = \beta \cdot f_m = 4 \text{ kH}_2$$
 [Ird]

c) if
$$s(t)$$
 is a PM signal:

$$kp = 4 \text{ raol/V} = \text{Ipt}$$

$$m(t) = \sin(2000 \pi t) = \text{Ipt}$$

e)
$$Q_{1}$$
 Q_{2} Q_{3} Q_{4} Q_{5} Q

the question is on 2pts in total :

0.5 pt on the shape (impulses on both sides of fic stagging at)
0.5 pt on spacing between impulses (fm or 1kH2)
0.5 pt on amplitudes $\frac{A_c}{2}J_n(\beta)$ 0.5 pt on shaving $\frac{A_c}{2}J_n(\beta) = (-1)^n \frac{A_c}{2}J_n(\beta)$ [anti-symmetric for n oold symmetric for n even]

Question 4 [8 pts]

A FM modulation system has a modulation index $\beta = 4 \ rad$.

a- The SNR at the input of the FM receiver is equal to 30 dB. What is the SNR at the output of the FM receiver if no pre-emphasis and de-emphasis filters are used. [2 pts]

This FM modulation system uses a pair of pre-emphasis and de-emphasis filters defined by:

$$H_{pe}(f) = 1 + j\frac{f}{f_0}$$
 and $H_{de}(f) = \frac{1}{1 + j\frac{f}{f_0}}$

where $f_0 = 2.1 \text{kHz}$, the message bandwidth W = 15 kHz.

- b- What is the value of the improvement factor *I* in the output signal-to-noise ratio of the FM receiver produced by using this pair of pre-emphasis and de-emphasis filters? [2 pts]
- c- What is the SNR at the output of the FM receiver taking into account the effect of the preemphasis and de-emphasis filters. [2 pts]
- d- By how many decibels this FM system is superior to a DSB system? [2 pts]

a)
$$SNR_{out} = (\frac{3}{2} \beta^2) \cdot SNR_{in} = \frac{3}{2}(4)^2 \cdot 1000$$

or $SNR_{out} = 24000$ or 43.8 dB

(P) $SNR_{out} = 24000$ or 43.8 dB

(P) $SNR_{out} = 24000$ or 43.8 dB

$$I = \frac{2W^3}{3\int_{-W}^{W} |H_{ole}(f)|^2 f^2 df} = \frac{2W^3}{3\int_{-W}^{W} \frac{p^2}{1+\frac{p^2}{p^2}} df}$$

$$I = \frac{(Wp)^3}{3[(W) - \tan^2(W)]} = 21.25 \quad \text{or} \quad [13.3 dB]$$

$$I = \frac{(7.14)^3}{3[7.14 - \tan^2(7.14)]} = 21.25 \quad \text{or} \quad [13.3 dB]$$

c) $SNR_{out} = \exp |hasis = 43.8 \text{ dB} + 13.3 \text{ dB} = 57.1 \text{ dB} = 29.3 \text{ or}$

$$= 24000 \times 21.25 = 510000$$

d) This dystem is superior to a DSB system by $(13.8 + 13.3) = 27.1 \text{ dB}$

2			
		4	

Question 5 [6 pts]

a. Plot the spectrum of a PAM wave produced by the modulating signal:

$$m(t) = 2\sin(2\pi f_m t)$$

Assuming a modulation frequency of $f_m = 1 \text{ kHz}$, sampling period $T_s = 200 \mu s$ and pulse duration $T = 100 \mu s$ [2 pts]

- b. Using an ideal reconstruction filter, plot the spectrum of the filter output. [2 pts]
- c. What should be the expression of the amplitude spectrum of the equalizer required to compensate for the aperture effect. [2 pts]

For the spectrum plots, indicate all the frequencies and amplitudes of interest.

a)
$$S_{PAM}(f) = \frac{T}{T_S} \sum_{n=-\infty}^{\infty} M(f-nf_S) \operatorname{Sinc}(\pi PT) e^{j\pi PT}$$

$$M(f) = \frac{1}{j} S(f+f_M) - \frac{1}{j} S(f+f_M) \cdot \operatorname{Span}(f)$$

$$S_{PAM}(f) = \frac{1}{j} S(f+f_M) \cdot \operatorname{Span}(f) \cdot \operatorname{Span}(f)$$

$$a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_{10} \quad f(k+2)$$

$$a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_{10} \quad f(k+2)$$

$$a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_{10} \quad f(k+2)$$

$$Q_{1} = \frac{1}{j} \cdot \frac{T}{T_{S}} \quad Sinc \left(\Pi \cdot 1kHz \cdot 0.1 \, \text{ms} \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \, \Pi \right) e^{-j \left(1kHz \cdot 0.1 \, \text{ms} \right)} = \frac{1}{2j} \quad Sinc \left(0.1 \,$$

$$a_2 = -\frac{1}{2j}$$
 Sine (0.411) e $-j0.4\pi$
 $a_3 = \frac{1}{2j}$ Sinc (0.617) e

$$Q_1 = \frac{1}{2j}$$
 Sinc (0.17) $e^{j0.17}$
 $Q_{-1} = \frac{1}{2j}$ Sinc (0.17) $e^{j0.17}$

$$|E(x)| = \frac{1}{|T| \operatorname{Sinc}(\pi x)} = \frac{1}{|T| \operatorname{Sinc}(\pi x)}$$

Question 6 [8 pts]

For practical considerations, a pulse g(t) in a PAM signal is assumed to have the shape shown in Figure 3. The amplitude is A = 1, and the pulse duration is T = 3 ms.

- a. Determine the impulse response h(t) of a filter matched to this signal and sketch it. [2 pts]
- b. What is the peak value of the matched filter output? [2 pts]
- c. What is the expression of the peak-pulse signal-to-noise ratio if a white noise with double-sided power spectral density of $N_o/2 = 10^{-4} W/Hz$ is added to the signal before the matched filter? [2 pts]
- d. Compare the peak-pulse signal-to-noise ratio in this case to the ideal case where the pulse has zero rising and falling times, the same amplitude (A=1), and the same pulse duration (T=3 ms). [2 pts]

