CPSC 420 Lecture 14: Today's announcements:

- ► Examlet 2 on Feb 17 in class. Closed book & no notes
- ▶ Reading: Ch.3 Dynamic Programming [by Erickson] Introduction to Algorithms [by Manber] An O(ND) difference algorithm and its variations [by Myers] https://go.exlibris.link/Wv9Rf8Tn

Today's Plan

- Dynamic programming
 - ► Longest Increasing Subsequence
 - ► Edit Distance

Best Increasing Subsequences Dynamic Programming

$$R[k]$$
 extends $\mathsf{BIS}[j]$ iff $\mathsf{BIS}[j].\mathit{last} < R[k]$ and $(j = |\mathsf{BIS}| \text{ or } \mathsf{BIS}[j+1].\mathit{last} > R[k])$

Maintain lists L[0], L[1], ... where $L_0[0] = [0]$. After we scan R[1..k]

$$L_{k}[j] = \begin{cases} L_{k-1}[j] \circ R[k] & \text{if } R[k] \text{ extends BIS}_{k-1}[j] \\ L_{k-1}[j] & \text{otherwise} \end{cases}$$

$$L[0] = 0$$
 $L[1] = 8 3 2 1$
 $L[2] = 4 2$
 $L[3] = 9 6 5$
 $L[4] = 7$

means b extended BIS ending with a use binary search to find j Running time?

As a result list $L_k[i]$ ends with $BIS_k[j]$. last at step k.

 ${\sf Longest} \ {\sf Common} \ {\sf Subsequence} = {\sf BCBCC}$

What properties do the circled entries have?

What properties do the circled entries have?

They form a sequence of index-pairs of matches that increase in both dimensions.

Longest Common Subsequence = BCBCC

Idea: Use LIS to find a longest such "doubly-increasing" sequence in the sequence of all index-pairs of matches.

Longest Common Subsequence = BCBCC

Write index-pairs of matches in top-bottom, right-left order.

A common sequence of X and Y corresponds to an increasing sequence of S (and vice-versa).

LCS(X, Y)

- 1. Stably sort X keeping track of each character's index in X
- 2. for i = 1 to n
- 3. look up (Y[i]) in sorted X
- 4. add indices of matching characters in reverse order to S
- 5. $Q = LIS(S) \longleftarrow$
- 6. Output X[Q] (characters in X indexed by Q)

$$X = ABCBACCB$$
 $Y = BCDABCC$

Stably forted 3A ABBBCCC

1 5 2 4 8 3 6 7 842 63

time $O(m \log m) + O(n \log m) + O(15 \log |5|)$
 $H(A) = 15$
 $H(B) = 248$
 $H(C) = 367$

In practice: Use hashing rather than sorting.

The **edit distance** between X and Y is the minimum number of **inserts** and **deletes** to transform X into Y.

Problem: Given two strings X and Y, find edit distance d(X, Y).

elephant $\stackrel{d}{\rightarrow}$ elephnt $\stackrel{i}{\rightarrow}$ telephnt $\stackrel{d}{\rightarrow}$ telephn $\stackrel{i}{\rightarrow}$ telephone

elephant
$$\stackrel{a}{\rightarrow}$$
 elephnt $\stackrel{r}{\rightarrow}$ telephnt $\stackrel{a}{\rightarrow}$ telephn $\stackrel{r}{\rightarrow}$ telephone

LCS(elephant, telephone) = elephn

(XI + [Y (- 2LG(X,Y) > d(X,Y) > d(

The **edit distance** between X and Y is the minimum number of **inserts** and **deletes** to transform X into Y.

Problem: Given two strings X and Y, find edit distance d(X, Y).

 $\mathsf{elephant} \xrightarrow{d} \mathsf{elephnt} \xrightarrow{i} \mathsf{telephnt} \xrightarrow{d} \mathsf{telephn} \xrightarrow{i} \mathsf{telephon} \xrightarrow{i} \mathsf{telephone}$

LCS(elephant, telephone) = elephn

$$d(X, Y) = |X| + |Y| - 2|LCS(X, Y)|$$

So why are we talking about edit distance?

Edit distance $d(X, Y) \equiv$ shortest path length from (0, 0) to (m, n).

Edit distance $d(X, Y) \equiv$ shortest path length from (0, 0) to (m, n).

Dijkstra's shortest path alg. explores at most (2d + 1)(n + m) vertices.

$$(0,0) \quad D \quad A \quad R \quad V \quad A \quad T = X$$

$$(x,y-1) \downarrow (x,y) \text{ insert } Y[y]$$

$$(x-1,y) \rightarrow (x,y) \text{ delete } X[x]$$

$$(x-1,y-1) \searrow (x,y) \quad X[x] = Y[y]$$

Edit distance $d(X, Y) \equiv$ shortest path length from (0, 0) to (m, n).

Dijkstra's shortest path alg. explores at most (2d + 1)(n + m) vertices.

Running time: O(d(n+m)).