Review

Analogous to the atomic orbitals, wavefunctions which describe electrons in a molecule are called Molecular Orbital (MO)

MO: Polycentric 1-electron function: spreads through the molecule

One way of constructing the molecular orbitals is to add together atomic orbital wavefunctions which are located at various atoms of the molecule: Linear Combination of Atomic Orbitals (LCAO)

Bonding Molecular Orbital

$$\Psi_+ = c_A \Psi_A + c_B \Psi_B$$
 Energy = E_+

Anti-Bonding Molecular Orbital

$$\Psi_{-} = c_{\Delta} \Psi_{\Delta} - c_{R} \Psi_{R}$$
 Energy = E_{-}

For
$$H_2^+$$
: $c_A = c_A^- = 1$

Overlap Integral depends on RAB $2p_z+1s$ 1s+1s $-2p_x+2p_x$ (lateral)

Review

Overlap Integral
$$S_{AB}(R) = \langle \psi_1 | \psi_2 \rangle = \int \psi_1 \psi_2 d\tau$$

 \Rightarrow 5 is a qualitative measure of bond strength \Rightarrow If 5>>0; electron delocalized over molecule \Rightarrow S(R) = 0 \Rightarrow bond formation cannot occur

Overlap Integral depends on Symmetry

Overlap Integral depends on Symmetry

Symmetry Labels

The wavefunction of MO's which are unaffected by a rotation through any angle about the internuclear axis are labelled σ (sigma)

The wavefunction of MO's which changes sign through rotation by 180° about the internuclear axis are labelled π (pi)

Symmetry Labels

Anti-bonding σ* (sigma)

Anti-bonding π^* (pi)

Symmetry and Nomenclature of MOs

Gerade (g) (symmetric) and Ungerade (u) (antisymmetric) wrt inversion of coordinates (operation)!

Inversion Operation: \hat{I}

$$\hat{I} \Rightarrow (+x, +y, +z) \rightarrow (-x, -y, -z)$$

$$\hat{I}\Psi(\vec{r}) = \Psi(-\vec{r}) = +\Psi(\vec{r})$$
: Symmetric

$$\hat{I}\Psi(\vec{r}) = \Psi(-\vec{r}) = -\Psi(\vec{r})$$
: Anti – sym

Hydrogen molecule ion:

"b" \rightarrow Bonding using s: symmetric $\rightarrow \sigma_q$

"a" \rightarrow antibonding using s: antisymmetric $\rightarrow \sigma_{\mu}$

