COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Segment Intersection

Paul Rosen Assistant Professor University of South Florida

PROBLEM STATEMENT

PROBLEM STATEMENT

REPRESENTING CURVES

- CURVES OFTEN REPRESENTED BY A POLYNOMIAL OR POLYNOMIAL SPLINE
 - Bezier, NURBS, etc.
- TESSELATE CURVE INTO MANY SMALL LINE SEGMENTS

REPRESENTING CURVES

- CURVES USUALLY REPRESENTED BY A POLYNOMIAL OR POLYNOMIAL SPLINE
 - Bezier, NURBS, etc.
- TESSELATE CURVE INTO MANY SMALL LINE SEGMENTS

REPRESENTING CURVES

- CURVES USUALLY REPRESENTED BY A POLYNOMIAL OR POLYNOMIAL SPLINE
 - Bezier, NURBS, etc.
- TESSELATE CURVE INTO MANY SMALL LINE SEGMENTS

SEGMENT-SEGMENT INTERSECTION

- A LINE SEGMENT \overline{pq} IS DENOTED BY ITS TWO ENDPOINTS PAND Q:
 - $\alpha p_{x} + (1 \alpha)q_{x}$
 - $\alpha p_y + (1 \alpha) q_y$) where $0 \le \alpha \le 1$
- LINE SEGMENTS ARE ASSUMED TO BE CLOSED WITH ENDPOINTS, NOT OPEN
- TWO LINE SEGMENTS <u>INTERSECT IF THEY HAVE</u> SOME POINT IN COMMON.
- IT IS A PROPER INTERSECTION IF IT IS EXACTLY ONE INTERIOR POINT OF EACH LINE SEGMENT

DO THEY INTERSECT?

- OBSERVATION: IF THE TWO SEGMENTS INTERSECT, THE TWO RED POINTS MUST LIE ON DIFFERENT SIDES OF THE BLACK LINE (OR LIE EXACTLY ON IT)
- THE SAME HOLDS WITH BLACK/RED SWITCHED

DO THEY INTERSECT?

- WHAT DOES "DIFFERENT SIDES" MEAN?
- Use the cross product to determine sidedness

REPRESENTING A LINE

SLOPE-INTERCEPT FORM:

$$y = mx + b$$

- GIVEN 2 POINTS, P_1 AND P_2 , HOW DO YOU COMPUTE m AND b?
- GIVEN 2 LINES, m_1 , b_1 and m_2 , b_2 , how do you compute the intersection point, P_I , between them?
- How do you know if P_I is on the segment defined by P_1 and P_2 ?

REPRESENTING A LINE

STANDARD FORM:

$$Ax + By + C = 0$$

- GIVEN 2 POINTS, P_1 AND P_2 , HOW DO YOU COMPUTE A, B AND C?
- GIVEN 2 LINES, A_1 , B_1 , C_1 and A_2 , B_2 , C_2 , how do you compute the intersection point, P_I , between them?
- How do you know if P_I is on the segment defined by P_1 and P_2 ?

REPRESENTING A LINE

PARAMETRIC FORM:

$$P = P_0 + Dt$$

- GIVEN 2 POINTS, P_1 AND P_2 , HOW DO YOU REPRESENT THE PARAMETRIC LINE?
- GIVEN 2 LINES, HOW DO YOU COMPUTE THE INTERSECTION POINT, P_I , BETWEEN THEM?
- How do you know if P_I is on the segment defined by P_1 and P_2 ?

Intersection of >2 Line Segments

Intersection of >2 Line Segments

- PROBLEM DEFINITION
 - Given N line segments in the plane, report all their points of intersection (pairwise).
- LINE SEGMENT INTERSECTION (LSI).
 - Instance:
 - Set $S = \{s_1, s_2, ..., s_N\}$ of line segments in the plane;
 - For $1 \le i \le N$, $s_i = (P_{i1}, P_{i2})$ (endpoints of the segments); and
 - For $1 \le j \le 2$, $P_{ij} = (x_{ij}, y_{ij})$ (coordinates of the endpoints).
 - Question:
 - Report all points of intersection of segments in S.

- ALGORITHM (BRUTE FORCE ALGORITHM)
 - For every pair of segments in S, test the two segments for intersection.
 - (Segment intersection test can be done in constant time using one of the methods we've already discussed.)
- Analysis (Preprocessing, Query, and Storage costs)
 - Preprocessing: None
 - Query: $O(N^2)$; there are $\frac{N(N-1)}{2} = O(N^2)$ pairs, each requiring a constant time test.
 - Storage: O(N); for S.

Naïve Intersection of >2 Line Segments

- What is the worst case number of intersections?
 - If all pairs intersect there are (n^2) intersections, then our time bound is optimal as a function of n.
- CAN WE IMPROVE PERFORMANCE?
 - Yes, we will look for output-sensitive algorithms.

OBSERVATIONS?

AXIS ALIGNED BOUNDING BOXES (AABB)

AXIS ALIGNED BOUNDING BOXES (AABB)

- MANY REPRESENTATIONS
 - 2 Points
 - Point, width, height
 - Intervals
- FOR OUR CONTEXT, WE WILL USE INTERVALS
 - $x \in [\min(x_1, x_2), \max(x_1, x_2)]$
 - $y \in [\min(y_1, y_2), \max(y_1, y_2)]$

AABB INTERSECTION

- GIVEN A SET OF N AXIS-PARALLEL RECTANGLES IN THE PLANE, REPORT ALL INTERSECTING PAIRS
 - Intersect ≡ share at least one point

Intersection of rectangles Problem definition

- RECTANGLE INTERSECTION
- INSTANCE: Set $S = \{r_1, r_2, ..., r_N\}$ of rectangles in the plane.
- For $1 \le i \le N$, $r_i = ([x_{i1}, x_{i2}], [y_{i1}, y_{i2}])$
- QUESTION: Report all pairs of rectangles that intersect
 - (Edge and interior intersections should be reported.)

CHECKING IF 2 RECTANGLES INTERSECT

- $r_1 \cap r_2$, IF?
 - $[x_{11}, x_{12}] \cap [x_{21}, x_{22}] \neq \emptyset \text{ AND}$ $[y_{11}, y_{12}] \cap [y_{21}, y_{22}] \neq \emptyset$
- How do we code this intersection?
 - $[x_{11}, x_{12}] \cap [x_{21}, x_{22}] =$ $[\max(x_{11}, x_{21}), \min(x_{12}, x_{22})]$
 - $[y_{11}, y_{12}] \cap [y_{21}, y_{22}] =$ $[\max(y_{11}, y_{21}), \min(y_{12}, y_{22})]$
 - Check that the range of both intersections is ≥ 0

INTERSECTION OF A SET OF RECTANGLES

Brute force algorithm

- 1. for every pair (r_i, r_j) of rectangles $\in S, i < j$
- 2. if $(r_i \cap r_i \neq \emptyset)$ then
- 3. report (r_i, r_j)

- ANALYSIS
 - Preprocessing?
 - None
 - Query?

$$\bullet \quad \frac{N(N-1)}{2} = O(N^2)$$

- Storage?
 - O(N)
- Does this really help us with the Segment intersection problem?

Algorithm using interval trees

- 1. Plane sweep algorithm, vertical (top-to-bottom) sweep Event points are Beginning and end of rectangle intervals
- 2. At the starting interval:
- 3. Compare rectangle x-interval to active set for overlap.
- 4. Add rectangle x-interval to active set.
- 5. At the ending interval remove rectangle X-interval from active set.

ANALYSIS

- Preprocessing: $O(N \log N)$; ordering intervals for sweep
- Query: Worst case $O(N^2)$; Best case O(N)
- Storage: O(N); active rectangles O(N), event queue O(N).

COMMENTS

- We haven't improved worst case, but the best case has gotten significantly better.
- We are now output sensitive.
- Can we do any better?

ID CENTERED INTERVAL TREES

- TREE-BASED DATA STRUCTURE
- EACH NODE STORES A CENTER
 POINT
 - Intervals are placed into 3 group,
 - Left of center—placed in left subtree
 - Right of center—placed in right subtree
 - Covering center—placed in a specialized list*

ID CENTERED INTERVAL TREES

- Performance Analysis
 - Insertion/removal: $O(\log N)$
 - Query: $O(\log N + K)$
 - Storage: O(N)

ANALYSIS

- Preprocessing: $O(N \log N)$; ordering intervals for sweep
- Query: $O(N \log N + K)$
- Storage: O(N); interval tree O(N), event queue O(N).

COMMENTS

- $O(N \log N + K)$ is lower bound for rectangle intersection problem. Can be shown by lower bounds proof.
- We've gone to a lot of trouble to improve the time from $O(N^2)$ to $O(N \log N)$ via the interval tree, for good reason.
 - E.g. if $N = 10^6$, $N^2 = 10^{12}$ and $N \log N = 2 \cdot 10^7$

BACK TO THE SEGMENT INTERSECTION PROBLEM

 CAN WE DO BETTER THAN REDUCING IT TO THE AABB INTERSECTION PROBLEM?

• YES AND NO, CAN'T DO BETTER THAN $O(N \log N + K)$, BUT CAN IMPROVE CONSTANTS

SWEEP ALGORITHM

SWEEP ALGORITHM

SWEEP ALGORITHM – WHERE DO EVENTS OCCUR?

EVENTS

- WHEN DO THE EVENTS HAPPEN?
 - When the sweep is:
 - At an upper endpoint of the line segment;
 - At a lower endpoint of the line segment; or
 - At an intersection point of line segments
 - At each type, the status changes

- ALGORITHM IDEA (SHAMOS-HOEY ALGORITHM)
- CRUCIAL OBSERVATION:
 - For two segments s_1 and s_2 to intersect, there must be some Y for which s_1 and s_2 are consecutive in the X ordering.
 - This suggests that the sequence of intersections of the segments with the horizontal line contains the information needed to find the intersections between the segments.

- Plane sweep algorithms often use two data structures:
 - I. Sweep-line status
 - 2. Event-point schedule

- SWEEP-LINE STATUS
 - The sweep-line status is a list of the currently comparable segments, ordered by the relation in X.
- The sweep-line status data structure L is used to store the ordering of the currently comparable segments. Because the set of currently comparable segments changes, the data structure for L must support these operations:
 - I. INSERT(s, L). Insert segment s into the total order in L.
 - 2. DELETE(s, L). Delete segment s from L.
 - 3. LEFT(s, L). Return the name of the segment immediately left of s in the ordering in L.
 - 4. RIGHT(s, L). Return the name of the segment immediately right of s in the ordering in L.
- These operations can be performed in $O(\log N)$ time (or better).

- EVENT-POINT SCHEDULE
 - As the sweep-line is swept from top to bottom, the set of the currently comparable segments and/or their ordering by the relation of X changes at a finite set of y values; those are known as events.
- THE EVENTS FOR THIS PROBLEM ARE SEGMENT ENDPOINTS AND SEGMENT INTERSECTIONS. THE EVENT-POINT SCHEDULE DATA STRUCTURE E IS USED TO STORE EVENTS PRIOR TO THEIR PROCESSING. FOR ETHE FOLLOWING OPERATIONS ARE NEEDED:
 - I. MIN(E). Determine the smallest element in E (based on y), return it, and delete it.
 - 2. INSERT(p, E). Insert abscissa p, representing an event, into E.
 - 3. MEMBER(p, E). Determine if abscissa p is a member of E.
- THE PRIORITY QUEUE DATA STRUCTURE CAN PERFORM ALL OF THESE OPERATIONS IN O(LOG N) TIME.

SWEEP ALGORITHM

What Data Structures Should We Use?

• Self-balancing trees (AVL, Red-black)

				_	
\Box				ı.	tree
Ke		nı	ar	ĸ	Tree
	M	vi	uv	П.	

Type tree

Invented 1972

Invented by Rudolf Bayer

Time complexity in big O notation

Algorithm	Average	Worst case
Space	O(n)	O(n)
Search	$O(\log n)^{[1]}$	$O(\log n)^{[1]}$
Insert	$O(\log n)^{[1]}$	$O(\log n)^{[1]}$
Delete	$O(\log n)^{[1]}$	$O(\log n)^{[1]}$

What Data Structures Should We Use?

Priority Queue

Operation	Binary ^[6]	Leftist	Binomial ^[6]	Fibonacci ^{[6][2]}	Pairing ^[7]	Brodal ^{[8][a]}	Rank-pairing ^[10]	Strict Fibonacci ^[11]	2-3 heap
find-min	<i>Θ</i> (1)	Θ(1)	Θ(log <i>n</i>)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	?
delete-min	Θ(log <i>n</i>)	Θ(log n)	Θ(log <i>n</i>)	<i>O</i> (log <i>n</i>) ^[b]	<i>O</i> (log <i>n</i>) ^[b]	<i>O</i> (log <i>n</i>)	$O(\log n)^{[b]}$	O(log n)	$O(\log n)^{[b]}$
insert	<i>O</i> (log <i>n</i>)	Θ(log n)	Θ(1) ^[b]	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	$O(\log n)^{[b]}$
decrease-key	Θ(log <i>n</i>)	Θ(n)	Θ(log <i>n</i>)	Θ(1) ^[b]	$o(\log n)^{[b][c]}$	<i>Θ</i> (1)	Θ(1) ^[b]	Θ(1)	<i>Θ</i> (1)
merge	Θ(n)	Θ(log <i>n</i>)	$O(\log n)^{[d]}$	Θ(1)	<i>Θ</i> (1)	<i>Θ</i> (1)	Θ(1)	Θ(1)	?

- ANALYSIS OF SHAMOS-HOEY ALGORITHM
 - Preprocessing: $O(N \log N)$; sort of endpoints.
 - Query: $O((N + K) \log N)$;
 - each of 2N endpoints and K intersections are inserted into E, an O(log N) operation.
 - Storage: O(N + K); at most 2N endpoints and K intersections are stored in E.

COMMENTS

- As given, assumption that no segments of S are horizontal.
- As given, assumption that no three (or more) segments meet at a point.
- Care must be taken with intersections at segment end points.
- Query time of $O((N + K) \log N)$ is suboptimum; an optimum $O(N \log N + K)$ algorithm exists, but is quite difficult.

