#### PROVA SCRITTA DI ELETTRONICA 1 20 LUGLIO 2017

1) Nel circuito in figura, i transistori possono essere descritti da un modello "a soglia", con  $V_{\gamma}$ =0.75 V e  $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento  $V_u(V_i)$ , per 0< $V_i$ < $V_{cc}$ , e il margine d'immunità ai disturbi della rete.



 $V_{cc} = 5 \text{ V}, \ \beta_F = 100, \ R_1 = 500 \ \Omega, \ R_2 = 5 \ k\Omega, \ R_3 = 800 \ \Omega, \ R_4 = 800 \ \Omega.$ 

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia  $V_{T1}$  e  $V_{T2}$  e dai coefficienti  $\beta_1$  e  $\beta_2$ . In particolare, il transistore M2 è del tipo "a svuotamento", con  $V_{T2}<0$ . Il diodo è descritto da un modello a soglia, con  $V_{\gamma}=0.75$  V. Il segnale di ingresso abbia l'andamento sequente:

$$\begin{array}{ll} t<0, & V_i=V_{dd}\\ t>0, & V_i=0 \end{array}$$

Si determini il tempo di propagazione  $T_p$  relativo alla corrispondente transizione del segnale di uscita  $V_u$ .

$$V_{dd} = 3.3V$$
,  $V_{T1} = 0.35$  V,  $V_{T2} = -0.05$  V,  $\beta_1 = 1.4$  mA/V<sup>2</sup>,  $\beta_2 = 0.2$  mA/V<sup>2</sup>, C=15 fF.



Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di ELETTRONICA 1 / FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- · Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

# Compito del 18-07-2017 - Esercizio #1

# Osservazioni preliminari:

1) T2 quando ON è in AD;

**Regione 1**:  $vi < v_{\gamma}$ : T1 OFF; T2 AD

| ir3=(vcc-vu)/r3                                                                               | Risolvendo si trova che: |
|-----------------------------------------------------------------------------------------------|--------------------------|
| $ib2=(vcc-(vu+v_{\gamma}))/r2$                                                                | vu= 4.057 V              |
| ir4=vu/r4                                                                                     |                          |
| Ma ir3+ $(\beta_f + 1)*ib2=ir4$                                                               |                          |
| Si rimane in questa regione fintantoché T1 rimane off, sse vi< v <sub>γ</sub> , sse vi<0.75 V |                          |
| Regione 1: per $0 < vi < v_{\gamma}$                                                          |                          |

### Regione 2: T1 ON in AD, T2 in AD.

| ir3=(vcc-vu)/r3                                  | Risolvendo si trova che:                                                                                         |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $ib2=(vcc-(vu+v_{\gamma}))/r2$                   | vu=10.665-8.811 vi                                                                                               |
| ir4=vu/r4                                        | Si rimane in questa regione fintantoché T1 va sat.                                                               |
| $ib1=(vi-v_{\gamma}))/r1$                        |                                                                                                                  |
| Ma ir3+ $(\beta_f + 1)$ *ib2=ir4+ $\beta_f$ *ib1 |                                                                                                                  |
| , , ,                                            |                                                                                                                  |
|                                                  |                                                                                                                  |
| T1 va sat quando vu=vcesat                       | Si può notare come in questa regione  dvu/dvi =10.665>1.                                                         |
| T1 va sat quando vu=vcesat<br>sse vu=1.188 V     | Si può notare come in questa regione  dvu/dvi =10.665>1.<br>Quindi il primo punto notevole coincide con il punto |
| <u> </u>                                         |                                                                                                                  |
| <u> </u>                                         | Quindi il primo punto notevole coincide con il punto                                                             |

### **Regione 3**: T1 SAT, e T2 in AD.

| -10g-010 0 1 1 2 11 1                                                                              |                                                            |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| vu=vcesat                                                                                          | Quindi il secondo punto notevole coincide con il secondo   |
|                                                                                                    | punto angoloso, e cioè:                                    |
|                                                                                                    | V <sub>OLMAX</sub> =vcesat V, V <sub>IHMIN</sub> =1.188 V. |
| Regione 3: per 1.188 V < vi < Vcc                                                                  |                                                            |
| Si ricava allora che $NM_H$ = $(4.057-1.188)V$ = $2.869$ e $NM_L$ = $(0.75-0.2)V$ = $0.55$ V= $NM$ |                                                            |

Di seguito si riporta la caratteristica statica di trasferimento.



#### 20.7.2017 - Esercizio 2

Il circuito è un invertitore nMOS, con pull-up costituito da un transistore nMOS a svuotamento. Il pull-down è costituito da un nMOS in serie a un diodo.

Osservazioni preliminari:

$$V_{GS2} = V_{dd} - V_u V_{DS2} = V_{dd} - V_u$$
  $\rightarrow V_{GS2} = V_{DS2} \xrightarrow{V_{T2} < 0} V_{GS2} > V_{DS2} + V_{T2} \rightarrow M_2 \text{ LIN (se ON)}$ 

Se  $M_2$  ON, LIN:

$$I_{D2} > 0 \xrightarrow{I_{D2} = I_{Diodo}} I_{Diodo} > 0 \rightarrow D \text{ ON}$$

e viceversa.

t < 0:  $V_i = V_{dd} > V_{T1} \rightarrow M_1ON$ . In condizioni statiche, la corrente sul condensatore è nulla e quindi  $I_{D1} = I_{D2} = I_{Diodo} > 0$  e quindi  $M_2$  ON (necessariamente LIN) e D ON. Ipotizzando  $M_1$ in regione lineare (\*) si ha :

$$I_{D1} = \beta_1 \left( (V_{dd} - V_{T1}) V_x - \frac{{V_x}^2}{2} \right)$$

$$I_{D2} = \beta_2 \left( (V_{dd} - V_u - V_{T2}) (V_{dd} - V_u) - \frac{(V_{dd} - V_u)^2}{2} \right)$$

$$V_u = \begin{cases} 0.899 \text{ V} \\ 6.413 \text{ V (inaccettabile)} \end{cases}$$

$$V_x = V_u - V_y$$

La soluzione soddisfa l'ipotesi (\*):

$$V_{GS1} = V_{dd} > V_{DS1} + V_{T1} = 0.899 + 0.35$$

t > 0:  $V_i = 0 < V_{T1} \rightarrow M_1 OFF$ . In condizioni statiche  $(t \rightarrow \infty)$ , la corrente sul condensatore è nulla e quindi  $I_{D1} = I_{D2} = I_{Diodo} = 0$ . Il transistore  $M_2$ , è OFF per:

$$V_{GS2} = V_{dd} - V_{u} < V_{T2} \rightarrow V_{u} > V_{dd} - V_{T2} = 3.35 \ V > V_{dd}$$

 $M_2$  è quindi ON e necessariamente LIN, per cui si ha:

$$I_{D2} = 0 \rightarrow V_{DS2} = V_{dd} - V_u = 0 \rightarrow V_u = V_{dd}$$

La tensione di uscita, quindi, compie una transizione da 0.899 a 3.3 V. Il valore intermedio (50% dell'escursione) vale:

$$V_{u,fin} = \frac{0.899 + 3.3}{2} = 2.1 \, V$$

Durante il transitorio,  $M_2$  è sempre in regione lineare e si ha:

$$I_{C} = C \frac{dV_{u}}{dt}$$

$$I_{D2} = \beta_{2} \left( (V_{dd} - V_{u} - V_{T2})(V_{dd} - V_{u}) - \frac{(V_{dd} - V_{u})^{2}}{2} \right)$$

$$I_{D2} = I_{C}$$

$$\rightarrow t_p = \int_{0.899}^{2.1} \frac{C}{\beta_2 \left( (V_{dd} - V_u - V_{T2})(V_{dd} - V_u) - \frac{(V_{dd} - V_u)^2}{2} \right)} dV_u = 58.81 ps$$