

MONASH INFORMATION TECHNOLOGY

UNIT REVIEW

LECTURE 11b / FIT2100 / SEMESTER 2 2020

WEEK 12

FINAL EXAM

CLOSED-BOOK ONLINE EXAMINATION

EXAM DURATION

- 2 hours and 10 minutes (recommended to spend 10 minutes for reading)
- Calculators permitted
- 5 sheets of blank papers are allowed
- Close book exam: No reading materials are permitted

EXAM FORMAT

- Total marks: 70
- Multiple Choice Questions (MCQ) (70 marks) 35 questions
 - Same **two-answer** format as mid-sem test

PRE-EXAM CONSULTATIONS

- For Clayton students: Held during SWOT-VAC WEEK. (Week 13). Refer to dates and times
 posted on Moodle.
- For Malaysian students: make appointments with the lecturer/tutor.

REALITY LEVEL:100

MEME

FUNNY (LAUGH)

- Edgy
- Relatable
- Cool

Aim for understanding rather than just remembering points.

What the professor covered

What's on the exam

What you remember

GUIDE TO LECTURE WEEKS

THE FOLLOWING SLIDES SHOW A WEEK-BY-WEEK BREAKDOWN OF SUGGESTED POINTS FOR STUDY

- These learning points may help you focus your study on important points covered in lectures
 - This is not an exhaustive list, nor is it a list of exam questions
 - All materials from weeks 1 to 12 are examinable unless otherwise stated.
- For each week's lecture, refer also to the corresponding tutorial/lab (usually in the following week) for additional material.
- Also attempt revision MCQs posted under the Exam page on Moodle.

COMPUTER SYSTEM OVERVIEW

- Understand the roles of different components of a computer system, and how they relate to each other
 - CPU
 - Main memory
 - I/O devices
 - Secondary storage
 - System bus

OPERATING SYSTEM OVERVIEW

- Understand the role of the operating system kernel
- Understand the role of a system call in relation to program execution
- Understand the difference between 'kernel' and 'user' modes of execution as provided by the CPU
- The benefit of multiprogramming as a way of improving system utilization
- Understand what is meant by an 'execution context'

I/O MANAGEMENT AND HARD DRIVES

- Be able to compare and contrast characteristics of the three fundamental I/O techniques
 - Programmed I/O
 - Interrupt-driven I/O
 - Direct Memory Access (DMA)
- Be able to identify the difference between blocking and non-blocking I/O
- Understand the distinction between a block-oriented vs. a stream-oriented device.
- Identify the types of I/O buffers that are maintained within the OS itself
- Identify the arrangement of data on a hard drive (tracks, sectors, blocks/clusters, etc.)
- Understand the characteristics of the different disk-scheduling algorithms.

FILE SYSTEMS

- Understand what is meant by fragmentation in the world of filesystems
- Understand how a FAT-based filesystem is laid out
- For inode-based filesystems, understand what information is stored in an inode
 - Understand how the blocks in a file are indexed within an inode
 - e.g. direct inode entries, single indirect inode entries, double-indirect, etc.
- Understand the purpose of the boot sector.

PROCESSES

- Understand the purpose of a process control block (PCB)
 - What information is stored within a PCB
 - What information is stored outside a PCB
- Understand what transitions between process states can occur and why
 - Identify the different states and transitions in the five-state process model
 - Understand the reasons why a process may change state
- Understand what is meant by the 'process image' and the relationship to the process table, as well as the role of the process identifier.
- Have an understanding of what steps may be involved in switching between processes.

UNIPROCESSOR SCHEDULING

- Be able to describe the different roles of short-, medium- and long-term scheduling.
- Understand why it might be useful for long-term scheduling to limit the degree of multiprogramming.
- Understand the meaning of the terms: turnaround time, throughput, response time.
 - Be able to discuss which of these measurements would be useful in different situations.
- Understand and be able to define the behaviour of the main process scheduling algorithms
 - Especially FCFS, RR, SPN, SRT.
- Be able to compare the different characteristics of preemptive vs non-preemptive systems.

MID-SEMESTER TEST

NO LECTURES THIS WEEK

- Look back through the practice test.
- Make sure you are familiar with the two-answer system for multiple-choice questions.
 - The exam will have the same format.

THREADS AND CONCURRENCY

- Understand the differences between threads and processes.
 - What does a thread contain? What does a process contain? Why?
- Be able to compare advantages and disadvantages of using multiple threads vs. using multiple processes.
- Understand the difference between kernel-level threads and user-level threads.
- Be able to explain why concurrency issues are important when dealing with multiple processes or threads.
- Understand what a 'race condition' is and how mutual exclusion can prevent race conditions from happening.

ADVANCED CONCURRENCY

- Understand what a semaphore does (binary and general/counting semaphores)
- Understand what a mutex does
 - and the difference between a semaphore and a mutex
- Remember and understand the four conditions needed for deadlock
- Understand what deadlock prevention means, and how one or more of the deadlock conditions can be removed from the system
- Understand what deadlock **avoidance** means, and how to apply the banker's algorithm to determine if a set of resource allocations leads to a deadlock (unsafe state).
 - Practice writing down the steps involved in following banker's algorithm. Remember that if a process can be chosen to proceed, it runs to completion and frees all its resources.
 - **Example step:** P1 runs to completion and releases resources (4,2,0) to available vector.
- Understand what deadlock detection/recovery means, and how a system might recover after deadlock.

VIRTUAL MEMORY

- Understand how a logical address is translated into a physical address.
 - See also tutorial #7 (week 11)
- Understand the differences between paged and segmented systems.
 - And how fragmentation applies to main memory under each system
- Know what a page fault is.
- Know what a segmentation fault is.
- Understand how to carry out the steps of the most common page replacement algorithms
 - FIFO, LRU, OPT
 - ...and the advantages/disadvantages of implementing those algorithms on a real system.
- How does shared memory relate to virtual memory?

INTERPROCESS COMMUNICATION

- Be able to compare the characteristics of each IPC mechanism discussed.
 - How data is transmitted
 - If and how the data is structured
 - Whether the data is buffered and where
 - The concurrency implications of different IPC mechanisms (e.g. does the kernel guarantee FIFO behaviour when a sender and receiver share the same resource?)

SECURITY

- Identify the categories of security threats on a system
- Understand how the operating system provides protection against possible security threats.
 - Through the filesystem
 - Through the virtual memory system
- Beware of **DARK** patterns.