Advanced Finance Cheatsheet (cs.shivi.io)

PART I: OPTIONS

Core Concepts & Definitions

- D: Option: Right, not obligation, to buy (Call) or sell (Put) an underlying asset (S) at a specified strike price (X) on or before an expiration date
- **D:** Premium (C_0, P_0) : Price paid by option buyer (Long) to seller (Short). Long's max loss; Short's max profit.
- **D:** European vs. American: Exercise at expiration only vs. anytime up to expiration. American usually > European value due to early exercise flexibility (esp. with dividends or high interest rates for puts).
- **D:** Intrinsic Value: Value if exercised now. Call: $\max(S - X, 0)$. Put: $\max(X - S, 0)$.
- D: Time Value: Premium Intrinsic Value. Decreases as expiration approaches (theta decay).
- **D:** Factors Affecting Call Value (C_0): Current stock **D:** Yield to Maturity (YTM): Discount rate equating price $(S_0) \uparrow$, Strike price $(X) \downarrow$, Time to expiration $(T)\uparrow$, Volatility $(\sigma)\uparrow$, Risk-free rate $(r_f)\uparrow$. (For Puts: • **D**: Indenture: Legal contract of bond terms. **D**: $S_0 \downarrow, X \uparrow, T \uparrow, \sigma \uparrow, r_f \downarrow$).

Payoffs at Expiration (S_T) & Profits

 $(S_T: Asset price at expiration; X: Strike price.)$

- **F:** Call Payoff $C_T = \max(S_T X, 0)$
- F: Put Payoff $P_T = \max(X S_T, 0)$
- F: Profit (Long) = Payoff Premium
- F: Profit (Short) = Premium Payoff

Moneyness

(S: Current asset price; X: Strike price.)

- D: In-the-money (ITM): Positive intrinsic value. Call: S > X. Put: S < X.
- **D:** At-the-money (ATM): $S \approx X$.
- D: Out-of-the-money (OTM): Zero intrinsic value. Call: S < X. Put: S > X.

Valuation Models (Discrete, 1-Step Binomial)

X: strike price; $C_u = \max(S_u - X, 0), C_d =$ $\max(S_d - X, 0)$: call payoffs in up/down states; r_p : risk-free rate per period.)

- D: Replicating Portfolio (Call): Portfolio of Δ shares and risk-free borrowing (B_{PV}) that matches option payoffs. **F**: $C_0 = \Delta S_0 - B_{PV}$ **F:** $\Delta = \frac{C_u - C_d}{S_u - S_d}$ (Hedge ratio, shares per option) **F:** $B_{PV} = rac{\Delta S_u - C_u}{1 + r_p}$ (PV of amount to borrow)
- **A:** E.g., $S_0 = 100, S_u = 110, S_d = 90, X = 110$ $100, r_p = 1\%$. Then $C_u = 10, C_d = 0$. $\Delta = \frac{10-0}{110-90} = 0.5$. $B_{PV} = \frac{0.5(110)-10}{1.01} \approx 44.55$. $C_0 = 0.5(100) - 44.55 \approx 5.45$.
- **D:** Risk-Neutral Valuation (Call): Discount expected payoff using risk-neutral probability p^* . $(u = S_u/S_0, d = S_d/S_0)$: up/down factors for stock price.) **F**: $p^* = \frac{(1+r_p)-d}{u-d}$ **F**: $C_0 = \frac{p^*C_u + (1-p^*)C_d}{1+r_p}$
- **A:** E.g., $S_0 = 100, S_u = 110, S_d = 90 \Rightarrow u = 100$ 1.1, d = 0.9. With $r_p = 1\%$. $p^* = \frac{1.01 - 0.9}{1.1 - 0.9} = 0.55$. $C_0 = \frac{0.55(10) + 0.45(0)}{1.01} \approx 5.45.$

Put-Call Parity (European, non-dividend)

• **D:** Relationship between European call (C_0) and put (P_0) prices with same X, T. $(S_0: current stock)$ price; X: strike price; P_0 : current put price; C_0 : current call price; r_f : annual risk-free rate; t: time to

- expiration in years.)
 F: $C_0 + \frac{X}{(1+r_f)^t} = P_0 + S_0$
- A: Find one price or spot arbitrage. E.g., $C_0 =$ $5, X = 100, S_0 = 98, t = 1, r_f = 2\%.$ $PV(X) = \frac{100}{(1.02)^1} \approx 98.04.5 + 98.04 = P_0 + 98 \implies$ $P_0 \approx 5.04$.

Black-Scholes Model

• D: Continuous-time model for European options. Assumes lognormal prices, constant volatility (σ) , constant risk-free rate (r_f) , no dividends, no transaction costs, continuous trading. (Formula often provided or calculated with $N(d_1)$, $N(d_2)$).

PART II: DEBT FINANCING **Bond Basics & Definitions**

- D: Bond: Issuer owes holder principal (Face Value, FV) and typically periodic interest (coupons).
- D: Coupon Rate: Annual rate for coupon payments ($C_p = \mathsf{CpnRate} \times FV/k$, where k is cpns/yr).
- PV of bond's future CFs to its market price (P_0) .
- Trustee: Oversees for bondholders.
- D: Security: Debenture: Unsecured. Mortgage Bond: Backed by specific assets.
- D: Seniority: Claim priority in bankruptcy. Senior > Subordinated/Junior.
- D: Call Provision: Issuer's right to redeem bond early. A: Issuer calls if market rates ≪ coupon
- D: Put Provision: Holder's right to sell bond back to issuer early. A: Holder puts if rates ≫ coupon rate or credit deteriorates.
- D: Convertible Bond: Holder can exchange for issuer's stock. A: Value = Straight Bond + Call Option on Stock. Lower coupon for issuer.

Bond Pricing

(S_0 : current stock price; S_u, S_d : stock price if up/down; (C_p : periodic coupon payment; FV: face value; YTM: yield to maturity (annual); k: coupons per year; N: total number of periods (num years $\times k$).)

- **F:** $P_0 = \sum_{i=1}^{N} \frac{C_p}{(1+YTM/k)^i} + \frac{FV}{(1+YTM/k)^N}$
- A: Price vs FV: If $YTM > CpnRate \implies P_0 <$ FV (Discount). If $YTM < CpnRate \implies P_0 >$ FV (Premium). If $YTM = \mathsf{CpnRate} \implies P_0 =$ FV (Par).
- A: Ex: 2yr, 4% semi-annual cpn, FV = 1000, YTM = 5% (ann.). $C_p = 20, N = 4, YTM/k = E[Loss] + \text{Loadings.}$ $0.025. P_0 = \frac{20}{1.025^1} + \dots + \frac{20}{1.025^4} + \frac{1000}{1.025^4} \approx \981.41 . • D: Financial Derivatives: Value derived from undividual to the property of the proper

Credit Risk & Risky Debt

- D: Credit Risk: Risk of issuer default. D: Default: Failure to make promised payment.
- D: Recovery Rate (RR): % of exposure recovered in default. **D**: Loss Given Default (LGD): 1 - RR. ($CF_{Promised}$: promised cash flow; $CF_{Default}$: cash flow in default (e.g., $FV \times RR$); p_D : probability of
- F: $E[CF] = (1 p_D)CF_{Promised} + p_DCF_{Default}$
- **F**: $V_{RiskyDebt} = PV(E[CF])$ (discount at risk-adj. rate, or r_f if p_D is risk-neutral).
- D: Option to Default View: Equity is call option on firm assets (V_{Assets}) with X = Debt $FV. V_{Equity} = \max(V_{Assets} - FV_{Debt}, 0).$ $V_{RiskyDebt} = V_{Assets} - V_{EquityCall}$.
- **D:** Credit Spread: $YTM_{RiskyBond}$ –

 $YTM_{RiskFreeBond}$. Compensates for default risk & liquidity.

Leasing

- D: Lease: Use an asset (e.g., truck, machine) via regular payments. Lessee uses; lessor owns.
- D: Operating Lease: Short-term, lessor maintains. D: Financial Lease: Long-term, lessee maintains. Like borrowing to buy.
- D: Net Advantage to Leasing (NAL): Cost difference between leasing and buying. A: If NAL > 0, leasing is better.
- (I₀: Purchase price if buying. (e.g.\$100k machine), L_t : Lease payment in year t. (e.g.\$20k/year), T_c : Tax rate. (e.g.30%), Dep_t : Depreciation (tax shield if owned)., r_d : Pre-tax borrowing rate. (e.g.8%), $r_{d,AT}$: After-tax rate = $r_d(1 - T_c)$. (e.g.5.6%), SV: After-tax salvage value at end. (e.g.\$10k))
 - $NAL = I_0$ $-\sum_{t=0}^{N-1} \frac{L_t(1-T_c)}{(1+r_{d,AT})^{t'}}$ $-\sum_{t=0}^{N} \frac{Dep_t \cdot T_c}{(1 + r_{d,AT})^t}$ $\pm \frac{SV(1-T_c)}{(1+r_{d,AT})^N}$
- · Final SV term: Add if buyer keeps value; subtract if asset returns to lessor.

PART III: RISK MANAGEMENT Why Manage Risk?

- A: Reduce costly financial distress (bankruptcy, lost sales).
- A: Ensure cash for good investments (avoid underinvestment).
- A: Reduce agency costs (align manager/shareholder interests).
- A: Improve planning & performance measurement (smoother CFs).
- A: Goal: Smooth CFs, focus on core biz, avoid disasters (not necessarily higher avg profit).

Tools: Insurance, Derivatives, Hedging

- D: Insurance: Transfers risk of large, infrequent, non-financial losses for a premium. Premium =
- derlying asset.
- D: Forward Contract: Custom OTC agreement for future buy/sell at forward price (F_0). A: Locks price, reduces uncertainty. Counterparty risk. (S_0 : spot price; r_f : risk-free rate (annual); t: time to maturity in years.)
- **F:** F_0 (no income) = $S_0(1 + r_f)^t$
- (PV(I): PV of known income I_i from asset at times t_i before T.)
- **F**: F_0 (known income *I*): = $(S_0 PV(I))(1 + r_f)^t$
- $(r_{fp}$: periodic r_f ; u_p : periodic storage cost as % of S_0 ; y_{cp} : periodic convenience yield as % of S_0 ; N: number of periods to delivery.)
- **F**: F_0 (commodity): = $S_0(1 + r_{fp} + u_p y_{cp})^N$ • A: Ex: $S_0 = \$50$, $r_f = 3\%/yr$, t = 0.5yr.
- $F_0 = 50(1.03)^{0.5} \approx $50.74.$

- D: Futures Contract: Standardized forward, exchange-traded, daily mark-to-market (MTM), clearinghouse. A: More liquid, less counterparty risk. MTM reduces default risk.
- D: Net Convenience Yield (NCY): Benefit of holding physical commodity (y_c) less storage costs (u). $NCY = y_c - u$.
- D: Swap: Agreement to exchange series of CFs (e.g., Interest Rate Swap: fixed for float), Notional Principal. A: IRS to change debt nature (fixed \leftrightarrow float) or match Assets/Liabilities.
- **D:** Options for Hedging: Buy Put for price fall (floor). Buy Call for price rise (cap). Cost=premium. A: Downside protection, retains upside (vs. forwards/futures).

Hedging Concepts

- **D:** Hedge Ratio (HR or δ): Amt of hedge instrument per unit of hedged item. For options: Delta (Δ). (S: spot price of asset being hedged; F: price of *futures contract used for hedging.)*
- **F:** HR (min variance) = $\frac{\text{Cov}(\vec{S}, F)}{\text{Var}(F)}$
- **D:** Basis Risk: Imperfect hedge due to $Basis_t =$ $S_t - F_t$ (spot vs futures) changing unpredictably. Sources: Mismatched asset, maturity, location.
- D: Duration (Bonds): Price sensitivity to yield changes (ΔYTM). ($PV(CF_t)$: PV of cash flow at time t; P_0 : current bond price; YTM: yield to maturity; k: coupons per year.)
- **F:** Macaulay Duration (*D*) = $\frac{\sum t \cdot PV(CF_t)}{P_0}$ (weighted avg time to CFs)
- **F:** Modified Duration $(ModD) = \frac{D}{1+VTM/k}$
- **F:** Price Change $\Delta P \approx -ModD \cdot P_0 \cdot \Delta YTM$
- A: Duration Matching: To immunize portfolio NW from small parallel Δi , set $(ModD_{Asset})$ MV_{Asset}) = $(ModD_{Liab} \cdot MV_{Liab})$.

PART IV: FINANCIAL PLANNING & WORKING CAPITAL MANAGEMENT

Financial Planning

- D: Short-Term (Cash Budgeting): Forecasts cash inflows/outflows to find shortages/surpluses.
- A: Structure: Beg. Cash + Sources Uses = End Cash (before new fin.). Compare to Min. Cash ⇒ Need/Surplus.
- D: Long-Term (Pro Forma Statements): Projected Income Statement, Balance Sheet based on sales
- D: Percentage of Sales Method: Many IS/BS items grow proportionally with sales.
- D: External Funds Needed (EFN) / External Capital Req. (ECR): Added funding for pro forma BS. $\overline{(A^*/S_0: assets tied to sales, as % of current sales}$ S_0 ; ΔS : projected change in sales; L_{snont}^*/S_0 : spontaneous liabilities (accounts payable (A/P), accruals) as % of S_0 ; S_1 : projected total sales ($S_0 + \Delta S$); *PM*: profit margin on sales; b: retention ratio (1-dividend payout ratio).)
- **F:** $ECR = (Reg.\Delta Assets) (Spont.\Delta Liab.) (\Delta Ret.Earnings)$
- **F**: $ECR = (A^*/S_0)\Delta S (L_{spont}^*/S_0)\Delta S (S_1 \cdot$
- A: If ECR > 0, need external funds. If ECR < 0, surplus funds.
- D: Sustainable Growth Rate (q*): Max sales

growth without new equity, keeping debt to equity (D/E) and payout constant. (ROE_{beg} : Return on Equity at beginning of period; b: retention ratio.)

• **F**: $g^* = ROE_{beg} \times b$

 A: If target growth > g*, must: issue equity, ↑ debt, $\uparrow b$, or $\uparrow ROE$.

Working Capital Management

D: Net Working Capital (NWC): CurrentAssets(CA) - CurrentLiabilities(CL).Measures ST liquidity.

D: Cash Conversion Cycle (CCC): Time from paying for inputs to collecting cash from sales. (DSI: Days • D: Merger: Two firms combine. D: Acquisition: Sales of Inventory; DSO: Days Sales Outstanding; DPO: Days Payables Outstanding.)

• \mathbf{F} : CCC = DSI + DSO - DPO

• **F:** Inv. Period (DSI) = $\frac{Avg.Inventory}{COGS/365}$

• **F:** Rec. Period (DSO) = $\frac{Avg.A_IR}{CreditSales/365}$

• **F:** Pay. Period (DPO) = $\frac{Avg.A/4}{\text{COGS (or Purchases)}/365}$

• A: Goal: Shorten CCC (faster inv. turnover & collections, optimal payments) to cut working capital financing needs.

D: Specific Accounts:

- Cash Mgmt: Balance liquidity vs. investing sur-

- Inventory Mgmt (EOQ): Minimize total inv. costs (ordering + carrying). (D: annual demand (units); S: cost per order; H: annual holding cost per

- **F:** Economic Order Qty (EOQ) = $\sqrt{\frac{2 \cdot D \cdot S}{H}}$ **A:** Order EOQ units.

 Accnt Receivable Mgmt (Credit Policy): Terms (e.g., "2/10, net 30"), Credit Analysis (5 Cs: Character, Capacity, Capital, Collateral, Conditions), Collection Policy.

 Accnt Payable Mgmt: A: Take discount if its effective anual rate (EAR) > cost of ST funds. Else, pay on last day.

PART V: FINANCIAL ANALYSIS, MERGERS, & RE-**STRUCTURING**

Financial Ratios (Selected)

 MV_{Equity} : market value of equity; BV_{Equity} : book value of equity; NOPAT: Net Operating Profit After Tax; EBIT: Earnings Before Interest & Taxes; T_c : corporate tax rate; WACC: Weighted Avg. Cost of Capital; $Capital_{Employed}$: total capital (debt + equity); NI: Net Income; Avg.: average over period; TA: Total Assets; COGS: Cost of Goods Sold; A/R: Accounts Receivable; PM: Profit Margin; T.O.: • Turnover; CA: Current Assets; CL: Current Liabili-

D: Market Value Added (MVA): MV_{Equity} – BV_{Equity} . A: Wealth created over capital con-

D: Economic Value Added (EVA): NOPAT - $(WACC \times Capital_{Employed}). (NOPAT =$ $EBIT(1-T_c)$) **A:** True economic profit.

D: Profitability: $ROE = \frac{NI}{Avg.Equity}$. $ROA_{adj} =$ $\frac{NI+Int(1-T_c)}{Avg.TotalAssets}$. Net PM = $\frac{NI}{Sales}$

D: Efficiency (Turnover): Asset T.O. = $\frac{Sales}{Ava.TA}$. Inv. T.O. $= \frac{COGS}{Avg.Inv.}$. Rec. T.O. $= \frac{CreditSales}{Avg.A/R}$

D: Du Pont System (ROE): $ROE = (\frac{NI}{Sales}) \times$

 $(\frac{Sales}{Avg.TA}) \times (\frac{Avg.TA}{Avg.Equity}) = PM \times AssetT.O. \times \bullet$ **D**: SDGs (Sustainable Development Goals): 17 UN Eq.Multiplier. A: Decomposes ROE.

• **D:** Leverage: D/E Ratio = $\frac{TotalDebt}{TotalEquity}$. Times Instrest Earned (TIE) = $\frac{EBIT}{InterestExpense}$. A: Debt use; risk & return.

• **D:** Liquidity: Current Ratio = $\frac{CA}{CL}$. Quick Ratio $= \frac{\overline{CA-Inventory}}{CL}$. A: Meet ST obligations.

Mergers & Acquisitions (M&A)

• (PV_A, PV_B: pre-merger values of acquirer/target; PV_{AB} : value of combined firm.)

One buys another.

• **D**: Synergy (ΔPV_{AB}): $PV_{AB} > PV_A + PV_B$. Sources: Economies, strategic benefits, tax gains.

• D: Types: Horizontal (competitors). Vertical (supply chain). Conglomerate (unrelated).

 D: Motives (Sensible): Economies scale/scope, vertical integration, tax gains, improved mgt.

• D: Motives (Dubious): Diversification (shareholders (SHs) can do), earnings per share bootstrap, managerial hubris.

• **D:** Tender Offer: Direct offer to target SHs. **D:** Proxy Contest: Fight for SH votes.

• **F:** Economic Gain from Merger = ΔPV_{AB} = $PV_{AB} - (PV_A + PV_B)$.

• **F:** Cost of Acquisition (Cash Offer) = CashPaid –

• (α : fraction of combined firm shares given to target SHs.)

• **F**: Cost of Acquisition (Stock Offer) = $(\alpha \times PV_{AB})$ –

• **F:** NPV of Merger to Acquirer = ΔPV_{AB} - $Cost_{Acquisition}$. A: Proceed if NPV > 0.

 D: Takeover Defenses: Target tactics. Poison Pill, Staggered Board, White Knight.

Corporate Restructuring

• D: Changes to portfolio, capital structure, or ownership to improve value.

• D: Leveraged Buyout (LBO): Acquisition (often by private equity + mgt) heavily debt-financed. A: Value drivers: Tax shields, mgt incentives, operational improvements. MBO (Mgt Buyout).

 D: Spin-off: New independent co. from division; shares distributed to parent SHs. No cash raised. A: Focus core biz, unlock value.

• D: Equity Carve-out: Parent sells minority stake of sub to public (IPO). Cash raised. Parent usually keeps control. A: Raise K, market value for sub.

D: Asset Sale/Divestiture: Selling part of com-

• **D**: Privatization: Transfer state-owned enterprises to private ownership.

• D: Bankruptcy: Ch. 7 (Liquidation): Assets sold, proceeds to creditors. Ch. 11 (Reorganization): Firm protected, develops restructure plan.

 D: Absolute Priority Rule (APR): Creditor payment order (secured, unsecured, equity). Deviations in Ch.11.
PART VI: ADVANCED TOPICS

Sustainable Finance, Regulation, ESG

• D: ESG: Environmental, Social, Governance criteria for investments & operations.

• D: CSR (Corporate Social Responsibility): Firm's ethical commitment to sustainable development. goals for global sustainability.

• D: EU Taxonomy: Classification for environmentally sustainable economic activities.

• D: CSRD (Corp. Sustainability Reporting Directive - EU): Mandates sustainability reporting using ESRS.

 D: Double Materiality (CSRD/ESRS): Report on how sustainability affects business (financial view) AND how business impacts society/env (impact

 D: SFDR (Sust. Fin. Disclosure Regulation - EU): ESG disclosure rules for financial market partici-

 D: TCFD (Task Force on Climate-related Fin. Disclosures): Climate risk/opportunity disclosure framework.

D: GRI (Global Reporting Initiative): Standards for sustainability reporting.

 D: ESG Investing: Exclusionary Screening, ESG Integration, Impact Investing.

D: Aggregate Confusion (ESG Ratings): Different raters, different scores for same firm.

 A: ESG factors can be financial risks (carbon tax, stranded assets) or opportunities (green tech) impacting CFs, cost of capital, valuation.

Bank Regulation & Supervision (BIS perspective)

 D: BIS (Bank for International Settlements): Fosters intl. monetary/financial cooperation. Hosts

 D: BCBS (Basel Committee on Banking Supervision): Global standard-setter for bank regulation (Basel Accords).

• D: Basel Accords (I, II, III+): Intl. regs on min. capital, liquidity, supervision. A: Aim: bank resilience, reduce systemic risk.

 D: Regulatory Capital: To absorb unexpected losses.

- CET1 (Common Equity Tier 1): Highest quality (common shares, ret. earnings).

- AT1 (Additional Tier 1): E.g., CoCos (absorb losses as going concern).

- Tier 2 Capital: Subordinated debt (absorb losses in gone-concern).

 D: RWA (Risk-Weighted Assets): Assets weighted by risk. Capital req. = % of RWA. (These are minimums; buffers (CCB, G-SIB) increase actual require-

• F: CET1 Ratio = $\frac{CET1}{RWA} \ge 4.5\%$ (+ buffers)
• F: Tier 1 Ratio = $\frac{CET1+AT1}{RWA} \ge 6\%$ (+ buffers)
• $\frac{CET1+T1}{RWA} = \frac{6\%}{RWA} = \frac{6\%}$

• **F:** Total Capital Ratio = $\frac{Tier1+Tier2}{RWA} \ge 8\%$ (+ buffers)

• D: Leverage Ratio (non-risk-based): F: $\frac{1 \ ier_1 \cup apital}{Total Exposure Measure} \ge \overline{3\%} \text{ (example)}$

D: Liquidity Coverage Ratio (LCR): ST liquidity. F: $\frac{\text{High-Quality Liquid Assets (HQLA)}}{\text{Net Cash Outflows (30-day stress)}} \geq 100\%$

• D: Net Stable Funding Req. (NSFR): LT funding stability. F: Available Stable Funding (ASF) Required Stable Funding (RSF) $\geq 100\%$

• D: IRRBB (Interest Rate Risk in Banking Book): Risk to bank capital/earnings from rate moves on non-trading items. • A: Crises (GFC 2008, Banks 2023): Highlighted

undercapitalization, liquidity/funding issues, IR-

RBB, oversight gaps. Led to reforms (Basel III,

Digital Treasury (Holcim Example context)

 D: Corporate Treasury: Manages financial assets/liabilities, cash, liquidity, funding, fin. risks (FX, IR), bank relations.

• D: FinTech: Tech/innovation improving financial services.

D: Digital Treasury Aspects:

- Integrated Systems: Platforms connecting treasury functions (cash mgt, payments, FX, risk).

- Centralization: Consolidating ops (cash pooling, FX netting, in-house banking) via tech.

 Real-time Data & Analytics: For better forecasting, risk assessment, decisions.

- Automation: Of routine tasks (payments, reconciliation, reporting).

- FinTech Solutions: Tools for Supply Chain Finance, Receivables Mgt, Fraud Prevention.

 A: Digital treasury: from manual/siloed to automated, integrated, data-driven. More strategic role. Holcim likely uses for global treasury.