# Algorithms (Algorithm Analysis)

### **Pramod Ganapathi**

Department of Computer Science State University of New York at Stony Brook

February 15, 2021



### **Contents**

- Complexity Analysis
- Worst-case, Best-case, and Average-case
- Asymptotic Notations and Complexity Classes

# **Complexity Analysis**

# **Complexity analysis**

- Framework for analyzing the efficiency/complexity of algorithms
   e.g.: time complexity and space complexity
- Running time of a computer program depends on:
  - Algorithm
  - Input size
  - Input data distribution
  - Machine or computing system
  - Operating system
  - Compiler
  - Programming language
  - Coding
- We analyze the running time of algorithms using asymptotic analysis

# **Complexity analysis**

 Running time of an algorithm can be considered as a function of the algorithm's input size

# **Complexity analysis**

| Problem                                       | Running time                          |
|-----------------------------------------------|---------------------------------------|
| Search in a sorted array                      | $\mathcal{O}\left(\log n\right)$      |
| Search in an unsorted array, Integer addition | $\mathcal{O}\left(n\right)$           |
| Generate primes                               | $\mathcal{O}\left(n\log\log n\right)$ |
| Sorting, Fast Fourier transform               | $\mathcal{O}\left(n\log n\right)$     |
| Integer multiplication                        | $\mathcal{O}\left(n^2\right)$         |
| Matrix multiplication                         | $\mathcal{O}\left(n^3\right)$         |
| Linear programming                            | $\mathcal{O}\left(n^{3.5}\right)$     |
| Primality test                                | $\mathcal{O}\left(n^{10}\right)$      |
| Satisfiability problem                        | $\mathcal{O}\left(2^{n}\right)$       |
| Traveling salesperson problem                 | $\mathcal{O}\left((n-1)!\right)$      |
| Sudoku, Chess, Checkers, Go                   | expo. class                           |
| Simulate problem, Halting problem             | $\infty$                              |
| Program correctness, Program equivalence      | $\infty$                              |
| Integral roots of a polynomial                | $\infty$                              |

6

# Polynomial and exponential functions



### Units for measuring running time

- Basic operation is the most important operation of the algorithm.
   Each basic operation takes constant time.
  - Arithmetic operation  $(\times, \div, +, -)$
  - Comparison operation  $(<, \leq, =, \neq, >, \geq)$
  - Memory operation  $(a \leftarrow b, C[i])$
  - Function invocation and return

### Units for measuring running time

• Runtime = 1 + n(2+3) + 1 = 5n + 2 operations (n comparisons, n increments, n memory index accesses, n+1 assignments, n additions, 1 function return)

ç

# Worst-case, best-case, and average-case analysis

- Worst-case complexity  $T_{\mathsf{worst}}(n)$  of an algorithm. Complexity for the worst-case input of size n for which the algorithm runs the longest among all possible inputs of that size.
- Best-case complexity  $T_{\rm best}(n)$  of an algorithm. Complexity for the best-case input of size n for which the algorithm runs the shortest among all possible inputs of that size.
- Average-case complexity  $T_{\text{avg}}(n)$  of an algorithm. Complexity for a typical or random input of size n.
- Amortized complexity  $T_{\rm amortized}(n)$  of an algorithm. Average complexity for a sequence of operations.

# Worst-case, best-case, and average-case analysis

#### Problem

What are the worst-case, best-case, and average-case analyses for the sequential search algorithm?

#### SEQUENTIAL-SEARCH(A[0..n-1], key)

**Input:** An array A and search key key

 $\begin{picture}(200,20) \put(0,0){\line(1,0){10}} \put(0$ 

- or  $-1\ \mbox{if there are no matching elements}$
- 1.  $i \leftarrow 0$
- 2. while i < n and  $A[i] \neq key$  do
- 3.  $i \leftarrow i+1$
- 4. if i < n then return i
- 5. else return -1

# Worst-case, best-case, and average-case analysis

#### Solution

- $T_{\text{worst}}(n) = n$   $\triangleright$  Why?
- $T_{\mathsf{best}}(n) = 1$   $\triangleright$  Why?

Let  $p \in [0,1]$  be the probability of successful search The prob. of first match occurring at any position be the same  $T_{\mathsf{avg}}(n) = \left(1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}\right) + n \cdot (1-p)$  Simplifying,  $T_{\mathsf{avg}}(n) = \frac{p(n+1)}{2} + n(1-p)$ .

What do you get when you set p = 1 or p = 0?



# **Asymptotic notations**

| Notation                       | Meaning                                                                                                                                                 |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\mathcal{O}\left(g(n)\right)$ | Set of all functions with the                                                                                                                           |  |  |
| at most $g(n)$                 | same or lower order of growth as $g(n)$                                                                                                                 |  |  |
|                                | $3n^2 \in \mathcal{O}(n^2)$ , $n^2/17 + n \in \mathcal{O}(n^2)$ , $n(n-1)/2 \in \mathcal{O}(n^2)$                                                       |  |  |
|                                | $n \in \mathcal{O}(n^2)$ , $4\sqrt{n} + 3\log^2 n \in \mathcal{O}(n^2)$ , $2000 \in \mathcal{O}(n^2)$                                                   |  |  |
|                                | $n^{3} \notin \mathcal{O}\left(n^{2}\right)$ , $0.001n^{\pi-1} \notin \mathcal{O}\left(n^{2}\right)$ , $n^{4}+n+1 \notin \mathcal{O}\left(n^{2}\right)$ |  |  |
| $\Omega\left(g(n)\right)$      | Set of all functions with the                                                                                                                           |  |  |
| at least $g(n)$                | same or higher order of growth as $g(n)$                                                                                                                |  |  |
|                                | $3n^2\in\Omega\left(n^2\right)$ , $n^2/17+n\in\Omega\left(n^2\right)$ , $n(n-1)/2\in\Omega\left(n^2\right)$                                             |  |  |
|                                | $n^{3} \in \Omega(n^{2})$ , $0.001n^{\pi-1} \in \Omega(n^{2})$ , $n^{4} + n + 1 \in \Omega(n^{2})$                                                      |  |  |
|                                | $n \notin \Omega\left(n^2\right)$ , $4\sqrt{n} + 3\log^2 n \notin \Omega\left(n^2\right)$ , $2000 \notin \Omega\left(n^2\right)$                        |  |  |
| $\Theta(g(n))$                 | Set of all functions with the                                                                                                                           |  |  |
| same as $g(n)$                 | same order of growth as $g(n)$                                                                                                                          |  |  |
|                                | $3n^{2} \in \Theta(n^{2}), n^{2}/17 + n \in \Theta(n^{2}), n(n-1)/2 \in \Theta(n^{2})$                                                                  |  |  |

#### Definition

A function T(n) is said to be in  $\mathcal{O}(g(n))$ , denoted  $T(n) \in \mathcal{O}(g(n))$ , if T(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and nonnegative integer  $n_0$  such that

$$T(n) \le c \cdot g(n)$$
 for all  $n \ge n_0$ 



#### Problem

Show that if f(n) is a polynomial of degree d, that is,  $T(n) = a_d n^d + a_{d-1} n^{d-1} \cdots + a_1 n + a_0$  and  $a_d > 0$ , then  $T(n) \in \mathcal{O}\left(n^d\right)$ .

#### Solution

- For  $n \ge 1$ , we have  $1 \le n \le n^2 \le \cdots \le n^d$ .
- So,  $a_d n^d + \dots + a_1 n + a_0 \le (|a_d| + \dots + |a_1| + |a_0|) n^d$
- By choosing  $c=(|a_d|+\cdots+|a_1|+|a_0|)$  and  $n_0=1$ , we get  $T(n)\in\mathcal{O}\left(n^d\right)$



# $\Omega()$ notation

#### Definition

A function T(n) is said to be in  $\Omega\left(g(n)\right)$ , denoted  $T(n) \in \Omega\left(g(n)\right)$ , if T(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and nonnegative integer  $n_0$  such that

$$T(n) \ge c \cdot g(n)$$
 for all  $n \ge n_0$ 

# $\Omega()$ notation



# $\Omega()$ notation



# $\Theta$ () notation

#### Definition

- A function T(n) is said to be in  $\Theta\left(g(n)\right)$ , denoted  $T(n) \in \Theta\left(g(n)\right)$ , if  $T(n) \in \mathcal{O}\left(g(n)\right)$  and  $T(n) \in \Omega\left(g(n)\right)$ .
- A function T(n) is said to be in  $\Theta\left(g(n)\right)$ , denoted  $T(n) \in \Theta\left(g(n)\right)$ , if T(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants  $c_1,c_2$  and nonnegative integer  $n_0$  such that  $T(n) \in [c_2 \cdot g(n),c_1 \cdot g(n)]$  for all  $n \geq n_0$

# $\Theta()$ notation



# $\Theta$ () notation

#### **Problem**

Show that  $\frac{1}{2}n(n-1) \in \Theta(n^2)$ .

#### Solution

- Step 1. Show that  $\frac{1}{2}n(n-1) \in \mathcal{O}\left(n^2\right)$   $\frac{1}{2}n(n-1) = \frac{1}{2}n^2 \frac{1}{2}n \le \frac{1}{2}n^2$  for all  $n \ge 0$
- Step 2. Show that  $\frac{1}{2}n(n-1) \in \Omega\left(n^2\right)$   $\frac{1}{2}n(n-1) = \frac{1}{2}n^2 \frac{1}{2}n \ge \frac{1}{2}n^2 \frac{1}{2}n\frac{1}{2}n = \frac{1}{4}n^2$  for all  $n \ge 2$
- As  $c_2 = \frac{1}{4}$ ,  $c_1 = \frac{1}{2}$ , and  $n_0 \ge 2$ , we have the result.

# $\Theta\left(\right)$ notation



### **Properties**

| Notation   | Reflexivity | Symmetry | Transitivity |
|------------|-------------|----------|--------------|
| 0()        | ✓           | Х        | ✓            |
| $\Omega()$ | ✓           | Х        | ✓            |
| $\Theta()$ | ✓           | ✓        | <b>'</b>     |

- $f(n) \in \mathcal{O}\left(g(n)\right)$  if and only if  $g(n) \in \Omega\left(f(n)\right)$
- If  $t_1(n) \in \mathcal{O}(g_1(n))$  and  $t_2(n) \in \mathcal{O}(g_2(n))$ , then  $t_1(n) + t_2(n) \in \mathcal{O}(\max(g_1(n), g_2(n)))$
- How do you formally prove the propositions above?

# Comparing orders of growth

$$\lim_{n\to\infty}\frac{T(n)}{g(n)}= \begin{cases} 0 & \text{implies } T(n) \text{ has smaller growth rate than } g(n),\\ c & \text{implies } T(n) \text{ has same growth rate as } g(n),\\ \infty & \text{implies } T(n) \text{ has larger growth rate than } g(n). \end{cases}$$

$$\lim_{n \to \infty} \frac{T(n)}{g(n)} = \begin{cases} 0 & \text{implies } T(n) \in o\left(g(n)\right), \\ c & \text{implies } T(n) \in \Theta\left(g(n)\right), \\ \infty & \text{implies } T(n) \in \omega\left(g(n)\right). \end{cases}$$

$$\lim_{n \to \infty} \frac{T(n)}{g(n)} = \lim_{n \to \infty} \frac{T'(n)}{g'(n)} \qquad \text{(L'Hôpital's rule)}$$

# **Example**

#### **Problem**

• Prove that  $\log(n!) \in \mathcal{O}(n \log n)$ .

#### Solution

- Show that  $\log(n!) \le cn \log n$  for some c > 0 and  $n \ge n_0$
- S.T.  $\log(n!) \le \log((n^n)^c)$
- S.T.  $\log(n!) \le \log(n^n)$

 $\triangleright$  set c=1

• S.T.  $n! < n^n$ 

- S.T.  $\Pi_{i=1}^n i \leq \Pi_{i=1}^n n$
- S.T.  $i \leq n$  for all  $i \in [1, n]$

 $\triangleright$  set  $n_0 = 1$ 

- This is trivially true from the constraints.
- Thus, the theorem follows.

# **Determining complexities from pseudocodes**

#### SEQUENCE-OF-STATEMENTS

- 1. statement  $s_1$
- 2. statement  $s_2$
- 3. statement  $s_3$

total time = 
$$time(s_1) + time(s_2) + time(s_3)$$

#### IF-ELSE-LADDER

- 1. if condition1 then
- 2. block  $b_1$
- 3. else if condition2 then
- 4. block  $b_2$
- else
- 6. block  $b_3$

total time = max( time(
$$b_1$$
), time( $b_2$ ), time( $b_3$ ))

# Determining complexities from pseudocodes

#### LOOPS

- 1. for  $i \leftarrow 1$  to m do
- 2. for  $j \leftarrow 1$  to n do
- 3. block b

total time  $= mn \times \mathsf{time}(b)$  (assuming block b takes the same time in every iteration)

#### FUNCTIONS

- 1. for  $i \leftarrow 1$  to m do
- 2. for  $j \leftarrow 1$  to n do
- 3. F(i, j)

hickspace > Suppose this takes  $\Theta\left(ij\right)$  time

total time = 
$$\sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{time} (\mathsf{F}(i,j))$$