

Computer Engineering - Sem IV

NCMPC 41: Design and Analysis of Algorithms

Module - 2 : Divide and Conquer Strategy (6 Hours)

Instructor: Mrs. Lifna C S

Topics to be covered

- General method
- Min-Max Algorithm
- Merge sort
- Quick sort
- Analysis of Binary search
- Strassen's Matrix Multiplication.

Divide and Conquer Strategy

Divide

Dividing the problem into smaller sub-problems

Conquer

Solving each sub-problems recursively

Combine

Combining sub-problem solutions to build the original problem solution

Courtesy: <u>Easy Algorithms</u>

Divide and Conquer Strategy

Sost pb/m, P. divided unto	subplatm of Sost Pi
NB pblm is to arrange divide the tasks as	a wordshop doster making
4	Invitation to speaken
Here tasks = pblm.	invitation to pasticipants
	lab arrangements

Divide and Conquer Strategy


```
else
                                    Quick Sm
          Search
                                    storassen's Matrix Mul
        Max.
 Muge Sort
```


Topics to be covered

- General method
- Min-Max Algorithm
- Merge sort
- Quick sort
- Analysis of Binary search
- Strassen's Matrix Multiplication.

Min-Max Algorithm

<u>Task</u>: Given an array X[] of size n, write a program to find the maximum and minimum element in the array.

Goal: To complete the task with minimum no. of comparisons

Examples

Input: X[] = [4, 2, 0, 8, 20, 9, 2], Output: max = 20, min = 0

Input: X[] = [-8, -3, -10, -32, -1], Output: max = -1, min = -32

Min-Max Algorithm - Brute Force Method


```
University of Alumbai
```

```
int[] minMax(int X[], int n)
    int max = X[0]
    int min = X[0]
    for (int i = 1; i < n; i = i + 1)
        if (X[i] > max)
            max = X[i]
        else if (X[i] < min)
            min = X[i]
    int output[2] = {max, min}
    return output
```

- Initialize two variables, max = min = X[0]
- 2. Traverse the array to compare each element with min & max.
 - a. If $X[i] < \min$, then $\min = X[i]$.
 - b. if X[i] > max, then max = X[i].
- 3. Return min & max values

 $Courtesy: \underline{Medium}$

Min-Max Algorithm - Divide & Conquer Method

1. Divide array by calculating mid index

i.e. mid =
$$I + (r - I)/2$$

- 2. Recursively find the maximum and minimum of left part by calling the same function i.e. leftMinMax[2] = minMax(X, I, mid)
- 3. Recursively find the maximum and minimum of right part by calling the same function i.e. rightMinMax[2] = minMax(X, mid + 1, r)
- 4. Finally, get the overall maximum and minimum by comparing the min and max of both halves.

```
if (leftMinMax[0] > rightMinMax[0])
   max = lminMax[0]
else
   max = rightMinMax[0]
if (leftMinMax[1] < rightMinMax[1])
   min = leftMinMax[1]
else
   min = rightMinMax[1]</pre>
```


Min-Max Algorithm - Analysis

Recurrence Relation:

$$T(n) = 2 T(n/2) + 2$$
, where $T(2) = 1$ and $T(1) = 0$.

$$\Rightarrow$$
 T(n) = $O(n)$

Base cases

- 1. If the array size = 1, return that single element as both max and min.
- 2. If the array size = 2, compare both elements and return maximum and minimum.

Auxiliary Space: O(log n) as the stack space will be filled for the maximum height of the tree formed during recursive calls same as a binary tree.

Min-Max Algorithm - Analysis

Min-Max Algorithm - Analysis w.r.t Comparisons

Number of Comparisons be T(n).

Strategy - 1 : Using Tournament Method:

If n is a power of 2, then we can write T(n) as: T(n) = 2T(n/2) + 2

$$\Rightarrow$$
 T(n) = 3n/2 -2

T(n) = 3n/2 - 2 comparisons, if n is a power of 2.

T(n) > 3n/2 - 2 comparisons if n is not a power of 2.

Strategy - 2 : Comparing pairs

$$T(n) = 3*(n-1)/2$$
, n is odd

$$T(n) = 1 + 3*(n-2)/2 = 3n/2-2$$
, Otherwise

(1 comparison for initializing min and max,

3(n-2)/2 comparisons for rest of the elements

Topics to be covered

- General method
- Min-Max Algorithm
- Merge sort
- Quick sort
- Analysis of Binary search
- Strassen's Matrix Multiplication.

Merge Sort Algorithm


```
Algorithm 2: MergeSort(A)
```

Now, we need to describe the Merge procedure, which takes two sorted arrays, L and R, and produces a sorted array containing the elements of L and R. Consider the following Merge procedure (Algorithm 3), which we will call as a subroutine in MergeSort.

Algorithm 3: Merge(L, R)

```
\begin{split} & m \leftarrow \operatorname{length}(L) + \operatorname{length}(R); \\ & S \leftarrow \operatorname{empty array of size} m; \\ & i \leftarrow 1; j \leftarrow 1; \\ & \text{for } k = 1 \rightarrow m \text{ do} \\ & \text{ if } L(i) < R(j) \text{ then } \\ & \left[ \begin{array}{c} S(k) \leftarrow L(i); \\ i \leftarrow i + 1; \\ \text{else} \\ & \left[ \begin{array}{c} S(k) \leftarrow R(j); \\ j \leftarrow j + 1; \end{array} \right] \end{split} return S;
```


Merge Sort Example

Merge Sort Analysis

T(n) Merge Sort (A)

$$n = len(A)$$
 $l = len(A)$
 $l = len$

Merge Sort Analysis

Merge Sort Analysis

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

Merge sort:
$$a = 2$$
, $b = 2 \implies n^{\log_b a} = n^{\log_2 2} = n$
 \Rightarrow Case 2 $(k = 0) \Rightarrow T(n) = \Theta(n \lg n)$.

Merge Sort - Recurrence Relation

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

• We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.

Merge Sort - Solving Recurrence Relation

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Topics to be covered

- General method
- Min-Max Algorithm
- Merge sort
- Quick sort
- Analysis of Binary search
- Strassen's Matrix Multiplication.

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.


```
Partition(A, p, q) \triangleright A[p ... q]
    x \leftarrow A[p] \triangleright pivot = A[p]
                                                 Running time
    i \leftarrow p
                                                  = O(n) for n
    for j \leftarrow p + 1 to q
                                                  elements.
        do if A[j] \leq x
                 then i \leftarrow i + 1
                         exchange A[i] \leftrightarrow A[j]
    exchange A[p] \leftrightarrow A[i]
    return i
Invariant:
                           < x
                                           > x
```


6	10	13	5	8	3	2	11
i	j						

Courtesy : <u>Cormen et. al</u>

Courtesy : <u>Cormen et. al</u>

Quick Sort - Algorithm


```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q+1, r)
```

Initial call: QUICKSORT(A, 1, n)

Quick Sort Analysis (Worst Case)

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

Quick Sort Analysis (Worst Case Recursion Tree)

$$T(n) = T(0) + T(n-1) + cn$$

$$\Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$\Theta(1) \quad c(n-2)$$

$$\Theta(1) \quad T(n) = \Theta(n) + \Theta(n^2)$$

$$= \Theta(n^2)$$

Quick Sort Analysis (Best Case)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

Quick Sort Analysis (Almost Best Case)

Quick Sort Analysis - More Intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$L(n) = 2U(n/2) + \Theta(n)$$
 lucky
 $U(n) = L(n-1) + \Theta(n)$ unlucky

Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

$$= 2L(n/2 - 1) + \Theta(n)$$

$$= \Theta(n \lg n) \quad Lucky!$$

How can we make sure we are usually lucky? Randomized Quick Sort !!

Quick Sort - Summary

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

Topics to be covered

- General method
- Min-Max Algorithm
- Merge sort
- Quick sort
- Analysis of Binary search
- Strassen's Matrix Multiplication.

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(\lg n)$.

Topics to be covered

- General method
- Min-Max Algorithm
- Merge sort
- Quick sort
- Analysis of Binary search
- Strassen's Matrix Multiplication.

Matrix Multiplication

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Courtesy : <u>Cormen et. al</u>

Matrix Multiplication

SQUARE-MATRIX-MULTIPLY (A, B)

```
n = A.rows
let C be a new n \times n matrix
for i = 1 to n
     for j = 1 to n
          c_{ij} = 0
          for k = 1 to n
               c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}
return C
```

 $T(n) = \Theta(n^3)$

Matrix Multiplication - Divide & Conquer Method

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r \mid s \\ -++ \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ -+ \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ --+ \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dg$
 $u = cf + dh$

r = ae + bg s = af + bh t = ce + dg8 mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices

Matrix Multiplication - Divide & Conquer Method

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

- n = A.rowslet C be a new $n \times n$ matrix if n == 1 $c_{11} = a_{11} \cdot b_{11}$ else partition A, B, and C as in equations (4.9) $C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})$ + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21}) $T(n) = \Theta(n^3)$ $C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})$ + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A12, B22) $C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})$ 8 + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21}) $C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})$ 9 + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A22, B22)
- 10 return C

1. Given two square matrices A and B of size $n \times n$, divide them into four equal-sized submatrices:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Compute seven matrix products (instead of eight in traditional multiplication):

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
 $M_2 = (A_{21} + A_{22})B_{11}$
 $M_3 = A_{11}(B_{12} - B_{22})$
 $M_4 = A_{22}(B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12})B_{22}$
 $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$

 $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$ Courtesy: Cormen et. al

Compute the resultant submatrices:

$$C_{11} = M_1 + M_4 - M_5 + M_7$$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

Combine these submatrices to get the final result.

Step 1: Compute Strassen's 7 Products

1.
$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_1 = (1+5) \times (6+2) = 6 \times 8 = 48$$

$$M_1 = (1+5) imes (6+2) = 6 imes 8$$

2. $M_2 = (A_{21} + A_{22})B_{11}$

$$M_2 = (7+5) imes 6 = 12 imes 6 = 72$$

3.
$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_3 = 1 \times (8-2) = 1 \times 6 = 6$$

$$M_3 = 1 imes (8-2) = 1 imes 6 = 6$$

$$M_3 = 1 imes (8-2) = 1 imes 6 = 6$$

$$M_3=1 imes(8-2)=1 imes6=6$$

 $M_4 = 5 \times (4-6) = 5 \times (-2) = -10$

$$M_3 = 1 \times (8-2) = 1 \times 6 = 6$$

$$\times$$
 6 = 6

Department of Computer Engineering, VESIT, Mumbai

7.
$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

6.
$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_5 = (1 - 1)^{-1}$$

$$M_5 =$$

$$M_r = (1 \pm 3)$$

$$M_5 = (1 +$$

$$M_5 = (1+3) \times 2 = 4 \times 2 = 8$$

 $M_7 = (3-5) \times (4+2) = (-2) \times 6 = -12$

$$+3) \times 2 = 4 \times 2 = 8$$

Mrs. Lifna C S

5. $M_5 = (A_{11} + A_{12})B_{22}$

NCMPC41: DAA (2024-25)

4. $M_4 = A_{22}(B_{21} - B_{11})$

Compute:
$$\begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}$$

Step 2: Compute the Resultant Matrix C

$$C_{11} = M_1 + M_4 - M_5 + M_7 = 48 + (-10) - 8 + (-12) = 18$$

$$C_{12} = M_3 + M_5 = 6 + 8 = 14$$

$$C_{21} = M_2 + M_4 = 72 + (-10) = 62$$

$$C_{22} = M_1 - M_2 + M_3 + M_6 = 48 - 72 + 6 + 84 = 66$$

Final Answer:

$$C = \begin{bmatrix} 18 & 14 \\ 62 & 66 \end{bmatrix}$$