

Verteilte Systeme

Prof. Dr. Martin Becke

CaDS - HAW Hamburg

Version 0.9

Inhalt

- 1 Einleitung
 - \blacksquare Allgemein
 - Anwendung
- 2 VS in Hamburg
 - 3 VS Definition
 - Definitionen in der Nutzung
 - Definitionen plural
 - Abgrenzung II
 - Abstraktionsebener
 - Aspekte und Sichten
- 4 Ziele
 - Allgemeine Ziel
 - 1/0 7' 1

- ► Vernetzung und Zusammenarbeit von unabhängigen Computern
- ► Gemeinsame Lösung von Aufgaben
- ► Effektivere und effizientere Lösung von komplexen Anwendungen und Aufgaben
- ► Gemeinsame Nutzung von Rechenleistung und Speicherkapazität mehrerer Computer

- ▶ Weit verbreitet in vielen Bereichen der Industrie
- ➤ Wichtige Rolle bei der Entwicklung neuer Technologien und Anwendungen
- ▶ Besonders wichtig im Bereich der Künstlichen Intelligenz, des maschinellen Lernens und des Internet of Things

5/21

Inhalt

- 2 VS in Hamburg

VS in Hamburg

Anwendungsbeispiele

- ► Smart Port in Hamburg
- ► Verteilte Systeme in Flugzeugen (Airbus)
- ► Real-Time Gross Settlement System (RTGS), Clearinghaus-System

Inhalt

- 1 Einleitung
 - Allgemein
 - Anwendung
- 2 VS in Hamburg
- 3 VS Definition
 - Definitionen in der Nutzung
 - Definitionen plural?
 - Abgrenzung II
 - Abstraktionsebenen
 - Aspekte und Sichten
- 4 Ziele
 - Allgemeine Ziele
 - VS Ziele

VS

7/21

Definitionen

Beispiele

- ► Eine Sammlung unabhängiger Computer, die den Benutzern als ein kohärentes System erscheinen Tanenbaum
- ► Mehrere unabängige Computer, die miteinander kommunizieren und kooperieren, um gemeinsam eine Aufgabe zu erfüllen - Garg
- ► Ein Netzwerk aus autonomen Computern, die miteinander kommunizieren und koordiniert zusammenarbeiten, um eine gemeinsame Aufgabe zu erfüllen - Mukherjee

Definitionen

Definitionen plural?

- ► Wichtig: Nicht gemeinsam genutzter Speicher
- ▶ Definition muss im Prozess vervollständigt werden
- ► Eigenschaften wichtig für korrekten Lösungsbaum (Labyrinth)

Abgrenzung Verteiltes und Monolithisches System Monolithisches System

- ► Vorteile:
 - ► Einfachere Architektur und Implementierung
 - ► Geringere Anforderungen an die Netzwerk- und Kommunikationsinfrastruktur
- ► Nachteile:
 - ► Begrenzte Skalierbarkeit und Verfügbarkeit
 - ► Anfälliger für Ausfälle
 - ► Kann zu Single-Point-of-Failure-Situationen führen

Abgrenzung Verteiltes und Monolithisches System Verteiltes System

- ► Vorteile:
 - ► Bessere Skalierbarkeit und Verfügbarkeit
 - ► Robuster und widerstandsfähiger gegenüber Ausfällen
 - ► Ermöglicht die gemeinsame Nutzung von Ressourcen mehrerer Computer
- ► Nachteile:
 - ► Komplexere Architektur und höhere Komplexität in der Implementierung
 - Höhere Anforderungen an die Netzwerk- und Kommunikationsinfrastruktur

Abgrenzung Großrechner

Verteiltes System

- ► Mehrere unabhängige Computer vs. Großrechner: eine Computeranlage
- ► Höhere Skalierbarkeit und Verfügbarkeit vs. Großrechner: auf eine Computeranlage beschränkt
- ► Robuster und widerstandsfähiger gegenüber Ausfällen vs. Großrechner: anfälliger für Ausfälle
- ► Höhere Flexibilität in der Software-Entwicklung vs. Großrechner: oft auf eine bestimmte Architektur und Plattform beschränkt
- ► Großrechner erfordern oft teurere spezialisierte Hardware und Software

Abstraktionsebenen

Grundlage der Analyse

- ► Technologische Ebene
- ► Anwendungsebene

Abstraktionsebenen

- ► ITS: Generisch bildet der Schwerpunkt die Entwicklung von Algorithmen und Protokollen
- ► ITS: Beispiele: Auswahl Kommunikations-Technologien, Architektur Infrastruktur
- ► AI: Generisch bildet der Schwerpunkt die Anwendung von vorhandenen Technologien
- ► AI: Beispiele aus Anwendungsbereich: Cloud, E-Commerce, Datenbanken

Aspekte und Sichten Aspekte

- ► Skalierbarkeit und Ausfallsicherheit
- ► Datenmanagement
- ► Orchestrierung und Deployment
- ► Sicherheit

Aspekte und Sichten

- ► Architektursicht
- ► Prozesssicht
- ► Datensicht
- ► Sicherheitssicht
- ► Betriebssicht
- ► Entwicklersicht

Einfluss von Sichten auf Entwicklung Beispiel DevOps

- ► DevOps ist eine agile Methode
- ► Zusammenarbeit zwischen der Entwicklung (Dev) und dem Betrieb (Ops)
- ► Enge Zusammenarbeit und Kommunikation zwischen den Teams
- ► Neue Werkzeuge wie: Continuous Integration (CI) und Continuous Delivery (CD)
- ► Hohe Einarbeitungskosten
- ► Hohe kulturelle Herausforderungen

18 / 21

Inhalt

- 4 Ziele
 - Allgemeine Ziele
 - VS Ziele

Allgemeine Ziele

Beispiele

- ► Funktionalität
- ► Zuverlässigkeit
- ► Skalierbarkeit
- ► Leistung/ Effizienz
- ► Sicherheit
- ► Wartbarkeit
- ► Portabilität
- ► Benutzerfreundlichkeit
- ► Anpassbarkeit
- ► Kompatibilität

Allgemeine Ziele

Beispiele Ausfallsicherheit

- ► Mission-critical Anwendungen
- ► Hochverfügbare Anwendungen
- ► Business-kritischeAnwendungen
- ► Nicht-kritische Anwendungen

VS Ziele

Ziele nach Tanenbaum

- ► Resource Sharing
- ► Offenheit (Openess)
- ► Skalierbarkeit
- ► Transparenz