1 Counting motifs in dynamic graphs

In this Secion, we describe basic insights regarding motifs in dynamic graphs. Then, we describe *StreaM*, a new stream-based algorithm for counting undirected 4-vertex motifs in dynamic graphs, and discuss its runtime complexity.

1.0.1 Basic insights

Whenever an edge $e = \{a, b\}$ is added to a graph G_t , i.e., update $u_{t+1} = add(e)$, two things happen: existing motifs are changed and new motifs are formed. First, consider an existing motif m_i that consists of a, b, and 2 other vertices. The addition of e causes the motif to change into a different motif m_j which contains one more edge. We denote this operation as $(i \to j)$. Its execution decreases the occurrences of m_i and increases the occurrences of m_j , i.e.,

$$(i \to j): \mathcal{F}_{t+1}(m_i) := \mathcal{F}_t(m_i) - 1, \ \mathcal{F}_{t+1}(m_i) := \mathcal{F}_t(m_i) + 1$$

Second, consider vertices c and d that do not form a connected component with a and b without e's existence. In case e connects the four vertices, a new motif m_k is formed. We denote this operation as +(k). Its execution increases the occurrences of m_k , i.e.,

$$+(k): \mathcal{F}_{t+1}(m_k) := \mathcal{F}_t(m_k) + 1$$

In case an existing edge is removed, i.e., $u_{t+1} = rm(e)$, the inverse happens: some motifs are changed and others are dissolved. We denote these operation as $(i \to j)^{-1}$ and $+(i)^{-1}$.

$$(i \to j)^{-1}$$
: $\mathcal{F}_{t+1}(m_i) := \mathcal{F}_t(m_i) + 1$, $\mathcal{F}_{t+1}(m_j) := \mathcal{F}_t(m_j) - 1$
 $+(k)^{-1}$: $\mathcal{F}_{t+1}(m_k) := \mathcal{F}_t(m_k) - 1$

Adding or removing a vertex with degree 0 has no effect on the motif count.

Each motif $m_i \in \mathcal{M}$ contains at least 3 and at most 6 edges. The addition and removal of edges leads to transitions between them (cf. Figure 1). For example, adding the missing edge to m_5 changes it to m_6 ((5 \rightarrow 6)) while removing any edge from m_6 changes it to m_5 ((5 \rightarrow 6)⁻¹). Adding edge $\{b,d\}$ to the disconnected set of nodes x creates a new motif m_1 (+(1)) which is dissolved by the removal of any of its 3 edges (+(1)⁻¹).

The main idea behind our new stream-based algorithm is to find and apply these operations to correctly update \mathcal{F} for each edge addition and removal.

1.0.2 StreaM

Assume an update (addition or removal) of edge $e = \{a, b\}$. To correctly adapt \mathcal{F} , we need to consider all 2-vertex sets $\{c, d\} \in CD(a, b)$ such that a, b, c, and d form a motif if e exists. Either both vertices are connected to a or b directly or d is a neighbor of c which is connected to a or b. With

$$N(a,b) := (n(a) \cup n(b)) \setminus \{a,b\},\$$

Figure 1: Transitions between the motifs $m_i \in \mathcal{M}$ when adding and removing edges

Table 1: Operation mapping \mathcal{O} from signatures $\mathcal{S}(a,b,c,d)$ to operations

S	10010 01100	10001 01001 00101 00011	11000 00110	11001 00111	10011 01101	11100 11010 10110 01110	10101 01011	11110	11101 11011 10111 01111	11111
\mathcal{O}	+(1)	+(1)	+(2)	+(4)	$(1 \rightarrow 3)$	$(1 \rightarrow 4)$	$(2 \rightarrow 4)$	$(3 \rightarrow 5)$	$(4 \rightarrow 5)$	$(5 \rightarrow 6)$
	а р	а р	@ © @	Фр	@ ⊙0	аb С О	@:-b	@b 6 d	аb cd	96 IXI

we can define CD(a, b) as follows:

$$CD(a,b) = \{\{c,d\} : (c,d \in N(a,b), c \neq d) \lor (c \in N(a,b), d \in n(c) \setminus \{a,b\})\}$$

Besides $\{a, b\}$, 5 edges are possible between a, b, c, and d. We denote their existence as a quintuple S(a, b, c, d) = (ac, ad, bc, bd, cd), called their *signature*. At least two distinct edges must exist, the first connecting c and the second connecting d. Therefore, there are $2^5 - 2 \cdot 2^2 = 24$ possible signatures.

Each signature corresponds to a specific operation that must be executed to update \mathcal{F} . We define a function \mathcal{O} that maps a signature \mathcal{S} on the corresponding operation. The complete assignment of signatures to operations is given in Table 1. In case the edge $\{a,b\}$ is removed instead of added, the inverse operation must be executed. As an example consider the signature (10010) which is isomorph to (01100). The addition of $\{a,b\}$ creates the motif m_1 . Its removal dissolves the motif as a,b,c, and d are no longer connected.

Based on S and O, we can now describe the stream-based algorithm StreaM for updating the motif frequency in an undirected graph (cf. Algorithm 1). For an edge $\{a,b\}$ that is added or removed (described by type), we first determine the set CD(a,b) of all pairs of vertices connected to a and b. For each pair $\{c,d\} \in CD(a,b)$, the required operation o = O(S(a,b,c,d)) is determined from

the signature of a, b, c, and d. If $\{a, b\}$ is added, the operation o is executed. Otherwise, the inverse operation o^{-1} is executed.

```
\begin{array}{l} \mathbf{Data:} \ G, \{a,b\}, type \in \{add, rm\} \\ \mathbf{begin} \\ & | \ \mathbf{for} \ \{c,d\} \in CD(a,b) \ \mathbf{do} \\ & | \ o = \mathcal{O}(\mathcal{S}(a,b,c,d)) \ ; \\ & | \ \mathbf{if} \ type = add \ \mathbf{then} \\ & | \ \mathbf{execute} \ o \ ; \\ & | \ \mathbf{else} \ \mathbf{if} \ type = rm \ \mathbf{then} \\ & | \ \mathbf{execute} \ o^{-1} \ ; \\ & | \ \mathbf{end} \end{array}
```

Algorithm 1: StreaM for maintaining \mathcal{F} in dynamic graphs

1.0.3 Complexity discussion

StreaM iterates over the $|CD(a,b)| \leq 5 \cdot (d_{max})^2$ elements of CD(a,b). For each element $\{c,d\}$, it computes the signature which can be done in $5 \cdot O(1)$ time, assuming hash-based datastructures are used for adjacency lists. In addition, \mathcal{F} is incremented or decremented which has time complexity of O(1) as well. Therefore, processing a single edge addition or removal with StreaM has time complexity of

$$O((d_{max})^2) \cdot (O(1) + O(1)) = O((d_{max})^2)$$