תוכן העניינים

1	מכונות טיורינג	L
2	המחלקות החישוביות RE , R ותכונותן המחלקות החישוביות אור ותכונותן	5
3	אי-כריעות	5
4	רדוקציות	7
5	סיבוכיות	3
6	רדוקציה פולינומיאלית	7
7	NF שלמות	10
8	בעיית הספיקות (SAT)	11
9	יווג שפות ידיועות - סיבוכיות	12
10	רדוקציות זמן פולינומיאליות	16

1 מכונות טיורינג

הגדרה 1: מכונת טיורינג

:כאשר $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ כאשר היא שביעיה (מ"ט) מכונת טיורינג

קבוצת מצבים סופית ולא ריקה Q

 $_ \notin \Sigma$ א"ב הקלט סופי Σ $\Sigma \cup \{_\} \subseteq \Gamma$ א"ב הסרט סופי Γ

 $\delta: (Q \setminus \{q_{\mathsf{rei}}, q_{\mathsf{acc}}\} imes \Gamma o Q imes \Gamma imes \{L, R\}$ פונקציית המעברים δ

 \sim בונקבייוני וופעבו פ q_0 מצב התחלתי.

. מצב מקבל יחיד $q_{
m acc}$

.מצב דוחה יחיד $q_{
m rej}$

הגדרה 2: קונפיגורציה

uqע (או) (u,q,\mathbf{v}) ומילה M ומילה $w\in\Sigma^*$ קונפיגורציה בריצה של M על M היא שלושה $w\in\Sigma^*$ ואו מעלים לשם קיצור) (אם קיצור) כאשר:

- . המילה מתחילת הסרט עד (לא כולל) התו שמתחת לראש: $u \in \Sigma^*$
- . המילה שמתחילה מהתן שמתחת לראש ועד (לא כולל) ה-- הראשון. $ext{v} \in \Sigma^*$

הגדרה 3: גרירה בצעד אחד

תהי c_2 ו- c_2 ו- c_2 חכונת טיורינג, מכונת מכונת $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ תהי

$$c_1 \vdash_M c_2$$

(במילים, c_1 גורר את c_2) אם כשנמצאים ב- c_1 עוברים ל- בצעד בודד.

הגדרה 4: גרירה בכללי

תהי c_2 ו- c_2 קונפיגורציות של $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ תהי $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$

$$c_1 \vdash_M^* c_2$$

. יותר צעדים. c_1 ל- c_2 ב- c_2 אם ניתן לעבור מ- c_1 ל- או יותר צעדים.

הגדרה 5: קבלה ודחייה של מילה

תהי $w\in \Sigma^*$ - מכונת טיורינג, ו $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc}\,,\,q_{
m rej})$ תהי

- $q_0w \vdash_M^* u \; q_{
 m acc}\, {
 m v}$ אם w את א M ullet
 - $q_0wdash_M^*u\ q_{
 m rej}\ {
 m v}$ אם w את Mullet

עבור $v,u\in\Gamma^*$ כלשהם.

הגדרה 6: הכרעה של שפה

תהי M מכריעה את מכריעה אם $L\subseteq \Sigma^*$ וורינג, ו- $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc}\,,q_{\mathrm{rej}})$ מתקיים עלכל $w\in \Sigma^*$ מתקיים

- w מקבלת את מקבלת $M \Leftarrow w \in L$
 - w דוחה את את $M \Leftarrow w \not\in L$

הגדרה 7: קבלה של שפה

תהי M מקבלת את מקבלת את מכונת טיורינג, ו- ב Σ^* שפה. אומרים כי $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc}\,,\,q_{
m rej})$ אם אכל לכל מתקיים $w\in\Sigma^*$ מתקיים

- w אז M מקבלת את $w\in L$ אם w
- w אז M לא מקבלת את $w \not\in L$ אם $w \not\in L$

L(M) = L -ש במקרה כזה נכתוב

f מכונת טיורינג שמחשבת פונקציה 8: מכונת

ים: אם: $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ ותהי ותהי $f:\Sigma_1^* o \Sigma_2^*$ מכונת טיורינג. אומרים כי

- $\Sigma_2 \subset \Gamma$ -1 $\Sigma = \Sigma_1$ •
- $q_0w \vdash q_{\mathrm{acc}}f(w)$ מתקיים $w \in \Sigma_1^*$ לכל

הגדרה 9: מודלים שקולים חישובית

ימים: מתקיימים L מודלים אם לכל שפה B ו- B אומרים כי אומרים חישוביים. אומרים מודלים אם לכל שפה אומרים מיחי

- A שמכריעה את שמכריעה מ"ט במודל B שמכריעה את אם"ם קיימת מ"ט במודל שמכריעה את אם"ם קיימת מ
- A שמקבלת את B אם"ם קיימת מ"ט במודל B שמקבלת את אם"ם קיימת מ"ט במודל B

הגדרה 10: מכונט טיורינג מרובת סרטים

מכונת טיורינג מרובת סרטים היא שביעייה:

$$M = (Q, \Sigma, \Gamma, \delta_k, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$$

כאשר Q, Q, Q, Q, Q מוגדרים כמו מ"ט עם סרט יחיד (ראו הגדרה 1). ההבדל היחיד בין מ"ט עם סרט יחיד לבין מטב"ס הוא הפונקצית המעברים. עבור מטמ"ס הפונקצית המעברים היא מצורה הבאה:

$$\delta_k : (Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

 $(u_1 q \; \mathbf{v}_1 \; , \; u_2 q \; \mathbf{v}_2 \; , \; \ldots \; , \; u_k q \; \mathbf{v}_k \; .)$ הקונפיגורציה של מכונת טיורנג מרובת סרטים מסומנת

משפט 1: שקילות בין מ"ט מרובת סרטים למ"ט עם סרט יחיד

M -לכל מטמ"ס M קיימת מ"ט עם סרט יחיד M השקולה ל $w \in \Sigma^*$ כלומר, לכל קלט

- w אם M מקבלת את w מקבלת את M'
- w אם M דוחה את w w דוחה את w \bullet
- w אם $M' \Leftarrow w$ לא עוצרת על $M' \Leftrightarrow w$ אם M

הגדרה 11: מכונת טיורינג אי-דטרמיניסטית

מכונת טיורינג אי-דטרמיניסטית (מ"ט א"ד) היא שביעייה

$$M = (Q, \Sigma, \Gamma, \Delta, q_0, q_{\rm acc}, q_{\rm rej})$$

(ראו הגדרה 1). כאשר מוגדרים כמו מוגדרים מוגדרים פאר $Q, \Sigma, \Gamma, q_0, q_{
m acc}, q_{
m rej}$ היא פונקצית המעברים Δ

$$\Delta: (Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma \to P(Q \times \Gamma \times \{L, R, S\})$$
.

$$\Delta(q, a) = \{(q_1, a, S), (q_2, b, L), \ldots\}$$
.

. כלומר, לכל זוג $q \in Q, \alpha \in \Gamma$ או יותר $q \in Q, \alpha \in \Gamma$ כלומר, לכל

- קונפיגורציה של מ"ט א"ד זהה לקונפיגורציה של מ"ט דטרמיניסטית.
 - לכל קונפיגורציה ייתכן מספר קונפיגורציות עוקבות.
 - ייתכן מספר ריצות שונות: $w \in \Sigma^*$ לכל מילה
 - $.q_{
 m acc}$ -ריצות שמגיעות ל \circ
 - $.q_{
 m rej}$ -ריצות שמגיעות ל \circ
 - ∘ ריצות שלא עוצרות.
 - ∘ ריצות שנתקעות.

הגדרה 12: קבלה ודחייה של מילה ושפה של מכונט טיורינג אי דטרמיניסטית

מילה $w\in \Sigma^*$ מתקבלת במ"ט א"ד M אם קיימת לפחות ריצה אחת שמגיעה ל- $w\in \Sigma^*$. השפה של מ"ט א"ד M

$$L(M) = \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* : q_0 w \vdash_* u q_{acc} v \}$$

כלומר:

- w אם קיימת ריצה אחת שבה M מקבלת את $w \in L(M)$
- . אם בכל ריצה של M על M על על עוצרת, או נתקעת $w \notin L(M) \circ$

L הגדרה 13: מ"ט אי דטרמיניסטית המכריעה שפה

 $w \in \Sigma^*$ אם לכל שפה L אם מכריעה שפה M אומרים כי מ"ט אי דטרמיניסטית

- w אם $M \Leftarrow w \in L$ אם
 - w אם $M \Leftarrow w \notin L$ אם $M \Leftrightarrow w \notin L$ אם

L הגדרה 14: מ"ט א"ד המקבלת שפה

 $w \in \Sigma^*$ אם לכל שפה L אם מקבלת שפה M אומרים כי מ"ט אי דטרמיניסטית

- w אם $M \Leftarrow w \in L$ אם •
- w אם $M \notin w \notin L$ אם או $M \leftarrow w \notin L$ אם $M \leftarrow w \notin L$

RE -ם שקילות בין מ"ט א"ד למ"ט דטרמיניסטית ב2

-ש כך Dכל מ"ט היימת מ"ט קיימת מ"ט א"ד א לכל $L(N) = L(D) \; . \label{eq:loss}$

 $:\!\!w\in\Sigma^*$ כלומר לכל

w אם N מקבלת את w מקבל את v

ותכונותן $Co\,RE$ ותכונותן R, ותכונותן 2

הגדרה 15: כוכב קליני

בהינתן השפה L^{st} מוגדרת:

$$L^* = \{\varepsilon\} \cup \{w = w_1 w_2 \cdots w_k \mid \forall \ 1 \le i \le k \ , \ w_i \in L\}$$

:16 הגדרה

 $R = \{L \subseteq \Sigma^* \mid L$ אוסף השפות הכריעות מסומן R ומוגדר אוסף השפות הכריעות מסומן אוסף ומוגדר \bullet

 $RE = \left\{ L \subseteq \Sigma^* \mid L$ אוסף השפות הקבילות מסומן R ומוגדר ומוגדר $\left\{ L \subseteq \Sigma^* \mid L \right\}$

 $Co\,RE = \{L \subseteq \Sigma^* \mid ar{L} \in RE\}$ אוסף השפות שהמשלימה שלהן קבילה מסומן R ומוגדר ullet

משפט 3: סגירות של השפות הכריעות והשפות הקבילות

. סגורה תחת: (1) איחוד (2) חיתוך (3) שרשור (4) סגור קלין (5) משלים R ullet

סגור קלין. (1) איחוד (2) חיתוך (3) שרשור (4) סגור קלין. RE ullet

משפט 4: תכונות של השפות החישוביות

 $L \in R$ אזי $\bar{L} \in RE$ אזי $L \in RE$ אזי.

 $ar{L} \in Co\,RE \backslash R$ כי $ar{L} \notin RE$ אזי $L \in RE \backslash R$.2

 $.RE \cap CoRE = R$.3

הגדרה 17: מכונט טיורינג אוניברסלית

מ"ט אוניברסלית U מקבלת כקלט זוג, קידוד של מ"ט $\langle M \rangle$ וקידוד של מילה $\langle w \rangle$, ומבצעת סימולציה של ריצה של M על w ועונה בהתאם.

$$L(U) = \{ \langle M, w \rangle \mid w \in L(M) \} .$$

3 אי-כריעות

משפט 5: סיווג שפות ידועות - חישוביות

$L_{ m acc} = \left\{ \langle M, w angle \middle w \in L(M) ight\}$	$\in RE \backslash R$
$L_{ ext{halt}} = ig\{ \langle M, w angle \ \ w$ עוצרת על $M ig\}$	$\in RE \backslash R$
$L_M = ig\{ \langle M angle ig \langle M angle $ המקבלת את $M ig\}$	$\in RE \backslash R$
$L_{d} = \big\{ \langle M \rangle \big \langle M \rangle \notin L(M) \big\}$	$\in \operatorname{CoRE} \backslash R$
$L_E = \{ \langle M \rangle \big L(M) = \emptyset \}$	$\in \operatorname{CoRE} \backslash R$
$L_{EQ} = \left\{ \left\langle M_1, M_2 \right\rangle \middle L\left(M_1\right) = L\left(M_2\right) \right\}$	$\notin RE \backslash R, \notin CoRE \backslash R$
$L_{REG} = \left\{ \left\langle M ight angle \middle L\left(M ight) ight\}$	$\notin RE \backslash R, \notin CoRE \backslash R$
$L_{NOTREG} = ig\{ \langle M angle \ \ $ לא רגולרית ל $L\left(M ight) ig\}$	$\notin RE \backslash R, \notin CoRE \backslash R$

קבילה	כריעה	
✓	×	$L_{ m acc}$
×	×	$\overline{L_{ m acc}}$
×	×	$L_{ m d}$
✓	×	L_{Halt}
×	×	$\overline{L_{ ext{Halt}}}$
×	×	$L_{\scriptscriptstyle m E}$
✓	×	$\overline{L_{\scriptscriptstyle m E}}$
×	×	$L_{ t EQ}$
×	×	$\overline{L_{ t EQ}}$
×	×	$L_{ exttt{REG}}$
×	×	$L_{ ext{NOTREG}}$

:6 משפט

$$\begin{array}{ccc} L_{\rm acc} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm acc} \notin RE \ , \\ L_{\rm halt} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm halt} \notin RE \ , \\ L_{\rm d} \notin RE \backslash R \ . \end{array}$$

4 רדוקציות

הגדרה 18: מ"ט המחשבת פונקציה

 $x\in \Sigma^*$ אם לכל את מחשבת מ"ט f מחשבת $f:\Sigma^* o \Sigma^*$ אומרים בהינתן בהינתן פונקציה

- וגם f(x) מגיעה ל- $q_{
 m acc}$ בסוף החישוב של M
 - f(x) רשום M רשום •

הגדרה 19: מ"ט המחשבת פונקציה

 $f:\Sigma^* o \Sigma^*$ אומרים מ"ט חשיבה אם היימת לו אומרים כי $f:\Sigma^* o \Sigma^*$

הגדרה 20: רדוקציוה

בהינתן שתי שפות $L_1,L_2\subseteq \Sigma^*$ אומרים כי L_1 ניתנת לרדוקציה ל- ומסמנים

$$L_1 \leq L_2$$
,

:אם קיימת פונקציה $f:\Sigma^* o\Sigma^*$ המקיימת

- חשיבה f (1
- $x \in \Sigma^*$ לכל (2

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

משפט 7: משפט הרדוקציה

לכל שתי שפות $L_1 \leq L_2$, אם קיימת רדוקציה לכל $L_1, L_2 \subseteq \Sigma^*$ אזי

$$L_{1} \in R \quad \Leftarrow \quad L_{2} \in R$$

$$L_{1} \in RE \quad \Leftarrow \quad L_{2} \in RE$$

$$L_{1} \in CoRE \quad \Leftarrow \quad L_{2} \in CoRE$$

$$L_{1} \notin R \quad \Rightarrow \quad L_{2} \notin R$$

$$L_{1} \notin RE \quad \Rightarrow \quad L_{2} \notin RE$$

$$L_{1} \notin CoRE \quad \Leftarrow \quad L_{2} \notin CoRE$$

משפט 8: תכונות של רדוקציה

- $L \leq L$ מתקיים: $L \leq L$
 - $ar{L}_1 \leq ar{L}_2$ אזי $L_1 \leq L_2$ אם ullet
- $L_1 \leq L_3$ אזי $L_2 \leq L_3$ וגם $L_1 \leq L_2$ אזי $L_2 \leq L_3$
- $L \leq L'$ מתקיים Σ^*,\emptyset שאינה L' ולכל ולכל •

משפט 9: משפט רייס

 $L_S
otin R$ עבור כל תכונה S של שפות שאינה טריויאלית מתקיים:

 $S
eq \emptyset$ וגם S
eq RE כך ש RE כך שפות ב אם וגם S
eq RE וגם ס ריויאלית היא קבוצה של שפות ב

$$.L_S = \{ \langle M \rangle \mid L(M) = S \} \circ$$

5 סיבוכיות

משפט 10:

לכל מ"ט מרובת סרטים M הרצה בזמן f(n), קיימת מ"ט סרט יחיד M השקולה ל- M ורצה בזמן לכל מ"ט מרובת סרטים $O\left(f^2(n)\right)$

:11 משפט

 $2^{(f(n))}$ א"ד N הרצה בזמן (n), קיימת מ"ט דטרמיניסטית השקולה ל

הגדרה 21: אלגוריתם אימות

אלגוריתם אימות עבור בעייה A הוא אלגוריתם V כך שלכל קלט $w\in \Sigma^*$ מתקיים: $w\in X$ הוא אלגוריתם אימת מילה ע באורך פולינומיאלי ב- $w\in X$ מקבל את הזוג $w\in X$. כלומר:

$$V(w,y) = T$$
 -פיים $y \in \Sigma^*$ קיים $w \in A$ אם $w \in A$

V(w,y) = F מתקיים $y \in \Sigma^*$ לכל $\Leftrightarrow w \notin A$ אם •

:22 הגדרה

- . קבוצת כל השפות שיש להן מ"ט דטרמיניסטית המכריעה אותן בזמן פולינומיP ullet
- המאמת אותן בזמן פולינומי. פולינומי. אימות המאמת שיש להן להן אלגוריתם אימות המאמת אותן בזמן פולינומי. הגדרה שקולה:
- . קבוצת כל השפות שיש להן מ"ט אי-דטרמיניסטית המכריעה אותן בזמן פולינומיNP ullet
- $Co\,NP = ig\{A \mid ar{A} \in NP\ .ig\}$ אייכת ל- NP שייכת שהמשלימה שלחם שהמשלימה כל השפות כל השפות שהמשלימה שלהן שייכת ל-

NP -ו P משפט 12: תכונות של

- $.P \subseteq NP \bullet$
- $ar{A} \in P$ סגורה תחת משלים: אם $A \in P$ אזי גם P
 - $.P \subseteq NP \cap CoNP \bullet$

6 רדוקציה פולינומיאלית

הגדרה 23: פונקציה פולינומיאלית

בהינתן פונקציה $\Sigma^* \to \Sigma^*$ אומרים כי f חשיבה בזמן פולינומיאלי אם קיים אלגוריתם (מ"ט היטרמיניסטית) המחשב את f בזמן פולינומיאלי.

הגדרה 24: רדוקציה פולינומיאלית

בהינתן שתי הבעיות A ו- B. אומרים כי A ניתנת לרדוקציה פולינומיאלית ל- B, ומסמנים $A \leq_P B$, אם קיימת פונקציה $f: \Sigma^* \to \Sigma^*$ המקיימת:

- חשיבה בזמן פולינומיאלי f
 - $:w\in \Sigma^*$ לכל (2

$$w \in A \iff f(w) \in B$$
.

משפט 13: משפט הרדוקציה

לכל שתי בעיות $A \mathrel{\leq_P} B$ אם $B \mathrel{\in} A$ אזי

$$\begin{array}{cccc} A \in P & \Leftarrow & B \in P \\ A \in NP & \Leftarrow & B \in NP \\ A \notin P & \Rightarrow & B \notin P \\ A \notin NP & \Rightarrow & B \notin NP \end{array}$$

NP 7 שלמות

(NP-hard) הגדרה - NP :25 הגדרה

 $A \leq_P B$ קיימת רדוקציה $A \in NP$ העייה אם לכל קשה אחNP נקראת בעייה בעייה

(NP-complete) שלמה -NP :26 הגדרה

בעייה B נקראת אם בעייה

- $B \in NP$ (1
- $A \leq_p B$ קיימת רדוקציה $A \in NP$ לכל בעייה

משפט 14: תכונות של רדוקציה פולינומיאלית

- P=NP אזי $B\in P$ אוגם $B\in NPC$ אם קיימת שפה $B\in NPC$
 - $.ar{A} \leq_P ar{B}$ אזי $A \leq_P B$ אס
 - $A \leq_p C$ אזי $B \leq_p C$ וגם $A \leq_p B$ אחי
 - $A \leq_P B$ מתקיים Σ^*,\emptyset שאינה B ולכל ולכל •

:15 משפט

(SAT) בעיית הספיקות 8

CNF נוסחת: 27 הגדרה

 (C_1,C_2,\ldots,C_m) פסוקיות (x_1,x_2,\ldots,x_n) מוסחת בוליאנית מעל $(x_i\setminus \bar{x}_i)$ משתנים משתנים $(x_i\setminus \bar{x}_i)$ בוליאני והפסוקיות מחוברות מחוברים ע"י $(x_i\setminus \bar{x}_i)$ בוליאני. לדוגמה:

$$\phi = \begin{pmatrix} C_1 \\ x_1 \lor \bar{x}_2 \lor x_4 \lor \bar{x}_7 \end{pmatrix} \land \begin{pmatrix} C_2 \\ x_3 \lor x_5 \lor \bar{x}_8 \end{pmatrix} \land \cdots$$

3CNF הגדרה 28: נוסחת

נוסחת ϕ ,3CNF שבה בכל פסקוית שבה ליטרלים. לדוגמה:

$$\phi = \left(x_1 \vee \bar{x}_2 \vee x_4\right) \wedge \left(x_3 \vee x_5 \vee \bar{x}_8\right) \wedge \cdots$$

הגדרה 29: נוסחת CNF ספיקה

נוסחת ϕ -ע כך ש- $T \setminus F$ ע"י x_1, x_2, \ldots, x_n נוסחת השמה למשתנים קימת הש קימת השמה לפחות ליטרל אחד שקיבל ערך T, כלומר בכל פסוקית ישנו לפחות ליטרל אחד שקיבל ערך T

SAT בעיית 30: הגדרה

 ϕ ,CNF נוסחת נוסחת פלט: פלט: האם ϕ ספיקה?

 $SAT = \{ \langle \phi \rangle \mid \text{ ספיקה } CNF$ נוסחת $\phi \}$

3SAT הגדרה 31: בעיית

 $.\phi~3CNF$ קלט: נוסחת

 ϕ ספיקה?

 $3SAT = \{ \langle \phi \rangle \mid \text{ ספיקה } 3CNF$ נוסחת $\phi \}$

:16 משפט

- $.SAT \in NP \bullet$
- $SAT \in NPC$: משפט קוק לוין
 - $.3SAT \in NPC \bullet$
 - $.SAT \in P \Leftrightarrow P = NP \bullet$

9 סיווג שפות ידיועות - סיבוכיות

PATH הגדרה 32: בעיית מסלול

t -ו s ושני קודקודים G ו- t ברף מכוון G מכיל מסלול מקודקוד s לקודדוק t לקודדוק t

 $PATH = ig\{ \langle G, s, t
angle \mid t \cdot s \ s \ s$ גרף מכוון המכיל מסלול מ $G \ ig\}$

RELPRIME בעיית 33 הגדרה

.y -ו x פלט: שני מספרים

x ו- y זרים x בלט: האם

 $RELPRIME = \{ \langle x, y \rangle \mid \gcd(x, y) = 1 \}$.

הגדרה 34: מסלול המילטוני

- בהינתן גרף מכוון s - ושני קודקודים s - ושני הוא מסלול המילטוני מ- בהינתן המילטוני מ- ושני קודקודים G=(V,E) שעובר דרך כל קודקוד ב- בדיוק פעם אחת.

הגדרה 35: בעיית מסלול המילטוני - HAMPATH

 $s,t\in V$ ושני קודקודים G=(V,E) ארף מכוון גרף מכוון G=(V,E) מכיל מסלול המילטוני מ- S ל- S

 $HAMPATH = ig\{ \langle G, s, t
angle \mid \ ?t$ ל- s ל- s להמכיון המכיל מסלול המילטוני מG

הגדרה 36: מעגל המילטוני

G=(V,E) בהינתן גרף מכוון

.חת. בדיוק פעם בדיוק ב- בדיוק מעגלי שעובר כל מעגל מסלול מעגלי מעגל מעגלי מעג

הגדרה 37: בעיית מעגל המילטוני - HAMCYCLE : מיית

G=(V,E) קלט: גרף מכוון

פלט: האם G מכיל מעגל המילטוני?

 $HAMCYCLE = \{\langle G
angle \mid \$ גרף מכוון המכיל מעגל המילטוני. G
brace

הגדרה 38: קליקה

G = (V, E) בהינתן גרף לא מכוון

 $u, v \in C$ מתקיים $u, v \in C$ מתקיים שני קודקודים כך ב- $u, v \in C$ מתקיים כליקה ב- $u, v \in C$

:k=3 קליקה בגודל

:k=5 קליקה בגודל

הגדרה 39: בעיית הקליקה - CLIQUE

A ומספר G=(V,E) ומספר ארף: גרף לא

?k פלט: האם G קליקה בגודל

 $CLIQUE = ig\{ \langle G, k
angle \mid k$ גרף גודל קליקה מכוון המכיל גרף גודל G

הגדרה 40: כיסוי בקודקודים

כך $C\subseteq V$ כיסוי של קודקודים ב- G הוא תת-קבוצה של קודקודים כיסוי, כיסוי בקודקודים א קודקודים כי $v\in C$ או $v\in C$ מתקיים $u,v\in S$ שלכל צלע

k=5 כיסוי בקדקודים בגודל

:k=2 כיסוי בקדקודים בגודל

k=5 כיסוי בקדקודים בגודל

VC בעיית:41 הגדרה

k ומספר G=(V,E) ומספר $rac{1}{2} \cdot k$ בגודל G -ב בקודקודים ב- בגודל פלט: האם קיים כיסוי

 $VC = \left\{ \langle G, k
angle \mid k$ גרף לא מכוון המכיל כיסוי בקודקודים בגודל $G \mid R$

הגדרה 42: קבוצה בלתי תלויה

כך $S\subseteq V$ בהינתן גרף לא מכוון G=(V,E), קבוצה בלתי תלויה ב-G היא תת-קבוצה של קודקודים $u,\mathbf{v})
otin E$ מתקיים $u,\mathbf{v} \in S$ שלכל שני קודקודים

:k=3 קבוצה בלתי תלוייה בגודל

k=3 קבוצה בלתי תלוייה בגודל

IS בעיית 43 הגדרה

k ומספר G=(V,E) ומספר

k בגודל G -בגודל בלתי תלויה ב- בגודל

 $IS = \{\langle G, k
angle \mid k$ גרף לא מכוון המכיל קבוצה בלתי תלויה בגודל G

הגדרה 44: בעיית PARTITION

 $S=\{x_1,x_2,\dots,x_n\}$ קלט: קבוצת מספרים שלמים $Y\subseteq S$ שלמים קיימת תת-קבוצה $Y\subseteq S$ כך ש $Y=\sum_{y\in Y}y=\sum_{y\in S\setminus Y}y$ כד

 $PARTITION = \left\{ S \; \middle| \; \sum_{y \in Y} y = \sum_{y \in S \setminus Y} y \; ext{-u - TION} \in S \; | \; S \;$ קבוצת שלמים, וקיימת תת-קבוצה $S \; \middle| \; S \;$

SubSetSum בעיית ביית 45 הגדרה

 x_1 ומספר ומספר $S=\{x_1,x_2,\ldots x_n\}$ ומספר פלט: קבוצת מספרים איבריה שווה S שסכום איבריה שווה S

 $SubSetSum = \left\{ \langle S, t \rangle \; \; \middle | \; \; \sum_{x \in Y} x = t \; ext{-ש.} \; Y \subseteq S \;$ קיימת $Y \subseteq S$

:17 משפט

 $\in P$ $RELPRIME = \{ \langle x, y \rangle \mid \gcd(x, y) = 1 \}$ $\in P$ $SAT = \{ \langle \phi \rangle \mid \text{ ספיקה } CNF$ היא נוסחת $\phi \}$ $\in NP, \in NPC$ $3SAT = \{ \langle \phi \rangle \mid \text{ ספיקה } 3CNF$ היא נוסחת $\phi \}$ $\in NP, \in NPC$ $IS = \{ \langle G, k \rangle \mid k$ גרף גודל קליקה המכיל המכיל מכוון המכיל ארף לא $\in NP, \in NPC$ $CLIQUE = \left\{ \langle G, k \rangle \; \; \middle | \; \; k$ גרף לא מכוון המכיל קליקה בגודל $G \; \right\}$ $\in NP, \in NPC$ $VC = \left\{ \langle G, k \rangle \mid k$ גרף בקודקודים ביסוי המכיל מכוון המכיל הרף לא $G \mid R \in NP, \in NPC$ $HAMCYCLE = \{ \langle G \rangle \mid$ גרף מכוון המכיל מעגל המילטוני $G \}$ $\in NP$ $SubSetSum = \left\{ \langle S, t \rangle \mid \sum_{x} x = t \text{ -שימת }
ight\}$ קיימת $Y \subseteq S$ קיימת $Y \subseteq S$ $\in NP$ $\overline{HAMPATH}$ $\in CoNP$ \overline{CLIQUE} $\in CoNP$

משפט 18: בעיות פתוחות בתורת הסיבוכיות

- P = NP האם •
- CoNP = NP האם •
- $CoNP \cap NP = P$ האם

10 רדוקציות זמן פולינומיאליות

משפט 19: רדוקציות פולינומיאליות

 $SAT \leq_P 3SAT$

 $3SAT \leq_P CLIQUE$

 $CLIQUE \leq_P IS$

 $IS \leq_P VC$

 $SubSetSum \leq_{P} PARTITION$

 $HAMPATH \leq_P HAMCYCLE$