Recap

Vector Fields on a regular surface S $X \in \{C^{\infty}(S \longrightarrow IR^3) : X(p) \in T_p S\}$

Hen de $(DuV) \neq dv(Dwz)$ Hen de $(DuV) \neq dv(Dwz)$

Hope to define $D_{XY} = de(D_{VU}) = dvr(D_{W2})$ $= \frac{1}{2}$ Not True!!

$$D^{s} \times Y (p) = D_{x} \overline{Y} (p)$$
i.e. $D^{s} \times Y = D_{x} \overline{Y}$

$$D^{s} \times Y = D_{x} \overline{Y}$$

$$D^{s} \times Y = D_{x} \overline{Y}$$

$$D^{s} \times Y = D_{x} \overline{Y}$$

$$\frac{Properties}{\nabla_{x} Y = D_{x} Y - \langle D_{x} Y, N \rangle N}$$

(i)
$$\nabla_X Y = D_X Y - \Delta D_X Y, -N)(-N)$$

(ii)
$$\Delta^{tx+Q\lambda} S = \mathcal{L}^{\perp} (\mathcal{D}^{tx+Q\lambda} S)$$

$$\frac{10do:}{10do:} \frac{1}{10} \times (42') = 40 \times 2' + (0 \times 4) = 2'$$
usual product rule for scalars.

Note
$$(f \times)(\varphi) = \varphi(\varphi) \times (\varphi)$$

 $\times \in \tau_{1}S \implies + \times \in \tau_{p}S$

$$\overline{\chi}(\rho) = \hat{\chi}(\rho)$$

$$D_{\overline{X}} Y (P) = dY_{P} (\overline{X} (P))$$

$$= dY_{P} (\overline{X} (P))$$

Then if
$$\tilde{X}|_{S} = \tilde{X}|_{S} = X$$
 and $p \in S$ then $\tilde{X}(p) = \tilde{X}(p)$

part is different Dx Y (p) = lin in depot; ulhd of fact only need line p+h×(1)

 $\mathcal{T}(t) = (x'(t), \dots, x''(t))$

Let
$$Y(t) = (x'(t), ..., x''(t))$$

$$V(x', ..., x') = V'(x', ..., x'') e_{t}$$

$$+ V''(x', ..., x'') e_{t}$$

$$+ V''(x', ..., x'') e_{t}$$
Solve: $(x'(t), ..., x''(t))$

$$= V'(x'(t), ..., x''(t))$$

Claim:

$$T_{X}(t) = \Psi(T_{U}(t)) \in S$$

where $T_{U} = T_{C}$ through two

 $T_{X} = T_{C}$ through 1. Since

 $T_{X} = T_{C}$

(i)
$$\varphi(\chi_{(0)}) = \varphi(u_{0}) = f_{0}$$

11 since
$$y_u = IC$$
 of U

Dxy (p) depends only on

y (xx (+1))

to not on a full open about

of p.

where
$$\sigma$$
 is any cure such that $\sigma'(o) = X(p)$

Note
$$\mathcal{S}_{X}'(b) = X(p)$$

$$D = \overline{Y}(p) = X(p)$$
 for $p \in S$

$$\frac{1}{2}\left(x^{2}(+1)\right) = \frac{1}{2}\left(x^{2}(+1)\right)$$

Notation for
$$X = 2i^{2}$$
, $X^{i}e^{i}$

write $X = X^{i}e^{i}$ (without $2i$)

 $\partial_{X} f = 2i^{2}$, $X^{i}\partial_{i}f$

write $X^{i}\partial_{i}f$ abbeviation

 $\partial_{Y} f = 2i^{2}$, $Y^{i}\partial_{i}f$
 $\partial_{X} \partial_{Y} f = 2i^{2}$, $Y^{i}\partial_{i}f$

writen $X^{i}\partial_{i}f$
 $X^{i}\partial_{i}f$

$$\begin{array}{lll}
(x,\lambda)_{3} &=& & & & & & & & \\
(x,\lambda)_{4} &=& & & & & & \\
(x,\lambda)_{4} &=& & & & \\
(x,\lambda)_{4} &=& & \\
(x,\lambda)_{4} &=& & \\
(x,\lambda)_{4} &=& & \\
(x,\lambda)_{5} &=& \\
(x,\lambda)_{5$$