Математический анализ: темы, выносимые на экзамен

Напоминаю, что итоговую оценку за семестр вы зарабатываете в течение семестра. Как эта оценка выставляется, было объявлено в начале семестра, и описано в соответствующем документе на сайте. При этом

- Если вы получили 2, то обязаны прийти на экзамен, чтобы доказать, что достойны быть аттестованными за семестр. С собой требуется иметь объяснительную записку о причинах неудовлетворительной аттестации в семестре. Вы не можете получить больше, чем 3.
- Если вы получили 3 или 4, то можете согласиться с этой оценкой и экзамен не посещать. Я внесу оценку в экзаменационную ведомость в день экзамена, а в зачётку можем занести на лекции в следующем семестре. Если вы считаете, что способны на большее, то имеете право посетить экзамен получаете оценку, которую заработали на экзамене.
- Если вы получили 5, убедительно прошу не приходить на основной экзамен, чтобы снизить нагрузку на преподавателей. Если вы хотите проверить свои знания, и улучшить мои, я буду рад побеседовать с вами на пересдаче экзамена.

Порядок проведения экзамена

- Экзамен начинается в 9:00. При себе *нужсно* иметь ручку и зачётную книжку, *можсно* воду и закуску. Вспомогательные материалы, книги, конспекты не допускаются. Телефон должен быть выключен. Шпаргалки должны быть хорошо спрятаны.
- Вы получаете билет случайным образом, а также бумагу для ведения записей. Занимаете место в аудитории и готовите ответ на вопрос в письменном виде. Время для подготовки — полтора часа.
- Во время экзамена использование шпаргалок, соседей, телефона в любых целях приравнивается к оценке неудовлетворительно (2).
- Если во время экзамена вам требуется выйти, то по возвращении вы должны сразу начать сдачу экзамена.

Структура билета

Каждый билет содержит два вопроса. Каждый вопрос охватывает одну тему курса: теорему и задачу к этой теореме.

- Теорема должна быть строго сформулирована. Вы должны уметь сформулировать все определения, входящие в формулировку теоремы.
- Доказательство можно (и даже поощряется) привести в схематичном виде. Однако, по просьбе преподавателя, нужно уметь детализировать каждый шаг доказательства. Если доказательство теоремы опирается на другие утверждения курса, эти утверждения нужно уметь сформулировать и объяснить, как они используются (т.е. какие буквы в утверждении каким объектам доказательства соответствуют).
- Решение задачи должно быть полным. Нужно уметь объяснить, как именно используется определение или теорема в решении задачи (какие буквы утверждения теоремы каким объектам в задаче соответствуют).

Оценка ответа

Каждый вопрос билета оценивается по четырёхбальной шкале (2–5). При этом

- Оценка «отлично» (5) означает, что вы владеете материалом курса на выдающемся уровне:
 - свободно владеете терминологией;
 - можете объяснить доказательство на идейном уровне;
 - можете объяснить, почему каждое условие в теореме важно, привести контрпримеры в случае, если какое-либо условие теоремы неверно;
 - можете объяснить, верна ли теорема в обратную сторону, если нет, то по каким причинам;
 - допускаете лишь незначительные ошибки, способны их тут же исправить после замечания преподавателя.
- Оценка «хорошо» (4) означает, что вы хорошо усвоили материал:

- знаете определения курса и формулировки теорем;
- понимаете идею доказательства и его связь с другими разделами курса;
- не допускаете грубых ошибок, после замечаний преподавателя способны самостоятельно исправить допущенные ошибки.
- Оценка «удовлетворительно» (3) означает, что вы удовлетворяете минимальным требованиям к положительной аттестации:
 - знаете определения курса и формулировки теорем;
 - способны с помощью преподавателя довести до конца доказательство теоремы и решение сопутствующей задачи.
- В противном случае выставляется оценка «неудовлетворительно» (2).

Общая оценка определяется из этих двух как среднее с округлением вниз, т. е.:

$$\begin{array}{lll} (2,2),(2,3) & \Rightarrow & 2, \\ (2,4),(2,5),(3,3),(3,4) & \Rightarrow & 3, \\ (3,5),(4,4),(4,5) & \Rightarrow & 4, \\ (5,5) & \Rightarrow & 5. \end{array}$$

Вопросы

1. Границы числовых множеств.

Что такое граница числового множества? Что такое точная граница числового множества? Что такое ограниченное множество? Сформулируйте и докажите теорему о существовании точных границ числового множества.

Пример задачи: Пусть $E \subseteq \mathbb{R}$ — ограниченное сверху числовое множество, $\lambda > 0$. Докажите, что

$$\sup(\lambda E) = \lambda \cdot \sup E.$$

2. Мощности числовых множеств

Что такое мощность множества? Какую мощность может иметь множество чисел? Что такое конечное множество? Что такое счётное множество? Сформулируйте и докажите теорему Кантора о несчётности отрезка.

Пример задачи: пусть $f:[a,b] \to \mathbb{R}$ — непрерывная непостоянная функция. Докажите, что множество значений, которые принимает функция, несчётно.

3. Конечный предел числовой последовательности

Что такое последовательность чисел? Как определяется конечный предел числовой последовательности? Какими свойствами обладает этот предел? Пусть $x_n \to a \neq 0$ при $n \to \infty$. Докажите по определению предела, что последовательность $\frac{1}{x_n}$ определена и имеет конечный предел при $n \to \infty$. Чему равен этот предел?

Пример задачи: вычислите
$$\lim_{n \to \infty} n^{\frac{2}{3}} (\sqrt[3]{n+3} - \sqrt[3]{n+1}).$$

4. Предел и неравенства

Как связаны неравенства между последовательностями и неравенства между их пределами? Сформулируйте и докажите теорему о пределе промежуточной последовательности.

Пример задачи: вычислите
$$\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$$
.

5. Монотонные последовательности

Что такое монотонная последовательность? Что такое ограниченная последовательность? Всякая ли ограниченная последовательность сходится? Сформулируйте и докажите теорему Вейерштрасса о монотонной последовательности. Какие есть приёмы вычисления предела монотонной последовательности?

Пример задачи: пусть $x_1=8,\ x_{n+1}=\sqrt{8x_n-15}$ для всех $n\in\mathbb{N}.$ Докажите, что последовательность x_n имеет предел и вычислите его.

6. Верхний и нижний пределы последовательности

Как определяются верхний и нижний пределы числовой последовательности? Докажите, что всякая ограниченная числовая последовательность имеет конечные верхний и нижний пределы. Как связаны верхний и нижний пределы последовательности с её пределом, с её частичными пределами?

Пример задачи: пусть $x_n = \sin \frac{\pi n}{2} + \frac{1}{n}$. Постройте последовательности верхних и нижних границ для последовательности x_n . Найдите верхний и нижний пределы последовательности x_n .

7. Критерий Коши сходимости последовательности

Дайте определение колебанию последовательности. Как ведёт себя последовательность колебаний? Сформулируйте и докажите критерий Коши сходимости последовательности. Как оценить разницу между членом последовательности и её пределом с помощью критерия Коши?

Пример задачи: Используя критерий Коши, докажите, что существует предел последовательности

$$x_n = \frac{\sin\sqrt{1}}{2} + \frac{\sin\sqrt{2}}{2^2} + \ldots + \frac{\sin\sqrt{n}}{2^n}$$

при $n \to \infty$. Найдите номер N, начиная с которого, все члены последовательности отличаются от её предела менее, чем на 0,001.

8. Предел функции

Дайте топологическое определение предела функции. Как задаются окрестности конечной точки, точки $+\infty$, точки $-\infty$? Дайте определения левого предела, правого предела, двустороннего предела функции в конечной точке. Как связаны односторонние пределы функции с её двусторонним пределом? Докажите это.

Пример задачи: Вычислите левый и правый пределы в нуле функции $f(x)=\frac{1}{1+e^{1/x}}$. Совпадают ли они? Какой тип особой точки имеет функция f в нуле?

9. Непрерывность

Сформулируйте определение непрерывной функции. Сформулируйте и докажите теорему о пределе композиции с непрерывной функции. Что можно сказать о непрерывности монотонной функции? Что можно сказать о непрерывности выпуклой функции?

Пример задачи: Вычислите
$$\lim_{x\to\infty} (\sin\sqrt{x+2} - \sin\sqrt{x})$$
.

10. Теорема Больцано — Коши о промежуточных значениях

Сформулируйте и докажите теорему Больцано — Коши о промежуточных значениях непрерывной функции. Что можно сказать о максимальном и минимальном значениях непрерывной функции?

Пример задачи: Докажите, что уравнение $x + e^x = 10$ имеет решение.

11. Теорема Вейерштрасса о непрерывной функции

Сформулируйте и докажите теорему Вейерштрасса об экстремумах непрерывной функции. Что можно сказать о промежуточных значениях непрерывной функции?

Пример задачи: докажите, что непрерывная функция переводит отрезок в отрезок.

12. Теорема о непрерывной обратной

Сформулируйте и докажите теорему о непрерывной обратной функции. Всегда ли обратная к дифференцируемой функции дифференцируема?

Пример задачи: докажите, что функция $x + e^{|x|} \operatorname{sgn} x$ обратима, и обратная к ней непрерывна.

13. Равномерная непрерывность

Сформулируйте понятия равномерно непрерывной функции и модуля непрерывности функции. Сформулируйте основные классы равномерно непрерывных функций. Сформулируйте и докажите теорему Кантора о непрерывной функции на отрезке.

Пример задачи: равномерно непрервна ли $f(x) = \sin \frac{1}{x}$ на промежутке (0,1) и на луче $[1,+\infty)$? В каждом случае, если функция равномерно непрерывна, найдите её модуль непрерывности.

14. Производная

Сформулируйте понятие производной функции. Сформулируйте и докажите формулу производной произведения. Сформулируйте остальные формулы дифференциального исчисления.

Пример задачи: в каких точках определена и чему равна производная функции

$$f(x) = \begin{cases} x + x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

15. Производная композиции

Сформулируйте понятие производной функции. Сформулируйте и докажите формулу дифференцирования композиции функций. Может ли композиция недифференцируемых функций быть дифференцируемой?

Пример задачи: вычислите производную функции x^{x^x} .

16. Производная обратной функции

Сформулируйте понятие производной функции. Сформулируйте теорему о непрерывности обратной функции. Сформулируйте и докажите формулу дифференцирования обратной функции.

Пример задачи: докажите, что функция $f(x) = 2x + \sin x$ обратима и обратная функция дифференцируема. Вычислите производную обратной функции.

17. Локальные экстремумы функции

Сформулируйте понятие локального экстремума функции. Сформулируйте и докажите необходимое условие локального экстремума функции. Сформулируйте и докажите теорему Ролля о среднем.

Пример задачи: найдите $\inf_{x>0} x^2 \ln x$.

18. Теорема Лагранжа о среднем

Сформулируйте и докажите теорему Лагранжа о среднем. Сформулируйте и докажите теорему об оценке приращения дифференцируемой функции.

Пример задачи: докажите, что функция $f(x) = \frac{1}{1+x^2}$ липшицева, и оцените её постоянную Липшица.

19. Вторая производная

Сформулируйте понятие дважды дифференцируемой функции. Сформулируйте основные свойства дважды дифференцируемых функций. Докажите, что композиция дважды дифференцируемых функций дважды дифференцируема, выведите правило для второй производной композиции.

Пример задачи: докажите, что функция

$$f(x) = \begin{cases} x^2 + x^4 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

дважды дифференцируема в нуле. Чему равна f''(0)? Непрерывна ли f'' в нуле?

$20.\ Выпуклые\ функции$

Сформулируйте определения выпуклой функции и строго выпуклой функции. Сформулируйте определение точки перегиба функции. Сформулируйте и докажите дифференциальный признак выпуклости функции.

Пример задачи: докажите, что e^x строго выпукла на своей области определения. Используя это, докажите, что для всех $x,y,\alpha,\beta>0$ таких, что $\alpha+\beta=1$, выполнено

$$x^{\alpha}y^{\beta} < \alpha x + \beta y.$$

21. Старшие производные

Сформулируйте определение n раз дифференцируемой функции и n-ой производной функции. Сформулируйте основные свойства n раз дифференцируемых функций. Сформулируйте и докажите формулу для n-ой производной произведения функций.

Пример задачи: сколько раз дифференцируема в нуле функция $f(x)=x^3|x|$? Непрерывна ли её последняя производная?

22. Многочлен Тейлора

Дайте определение многочлена Тейлора функции. Сформулируйте основные свойства многочлена Тейлора. Сформулируйте и докажите формулу Тейлора асимптотического приближения функции многочленом (формулу Тейлора с остаточным членом в форме Пеано).

Пример задачи: постройте многочлены Тейлора второго порядка для функций $f(x) = \cos x, \ g(x) = e^x - x$ относительно $x_0 = 0$. Используя полученный результат, вычислите

$$\lim_{x \to 0} \frac{f(x)}{g(x)}.$$

23. Оценка разности между функцией и её многочленом Тейлора

Дайте определение многочлена Тейлора функции. Сформулируйте основные свойства многочлена Тейлора. Сформулируйте и докажите теорему о среднем для многочлена Тейлора (формулу Тейлора с остаточным членом в форме Лагранжа). Сформулируйте и докажите оценку разницы между функцией и её многочленом Тейлора.

Пример задачи: постройте многочлен Тейлора третьего порядка $P_3(x)$ функции $f(x) = x^2 \ln x$ относительно точки $x_0 = 1$. Оцените разницу между f(x) и построенным $P_3(x)$ на промежутке $\left[\frac{1}{2}, \frac{3}{2}\right]$.