

Advanced Computer Science Course Lecture 1

Tishreen University

Computer and automatic control engineering dept.

Master Program- 2024

1st year

Dr. Ali Mahmoud Mayya

Deep Learning Vs. Machine Learning

Machine Learning

- Supervised learning (training with labeled data), unsupervised learning (clustering un-labeled data), and semisupervised learning (use both labeled and unlabeled data)
- Supervised learning:
 classification and regression
- Classification: output is discrete value
- Regression: output is real value

Learning Example: Recognize Handwriting

Classification: recognize each number

Clustering: cluster the same numbers together

Regression: predict the index of Dow-Jones

Machine Learning- Linear regression

Statistics Root: Linear Regression Example

DATASET

outputs
$y_1 = 1$
$y_2 = 2.2$
$y_3 = 2$
$y_4 = 1.9$
$y_5 = 3.1$

Fish length vs. weight?

X: input or predictor

Y: output or response

Goal: learn a linear function E[y|x] = wx + b.

Machine Learning- Linear regression

Definition of a linear model:

$$y = wx + b + noise$$
.
noise $\sim N(0, \sigma^2)$

• Assume σ is a **constant**.

$$y \sim N(wx + b, \sigma^2)$$

- Estimate expected value of y given x (E[y/x] = wx + b).
- Given a set of data:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

Goal: to find the optimal

• Goal: to find the optima parameters w and b.

Fish length vs. weight?

Objective Function (Least squared error)

$$\sum_{i=1}^{N} (y_i - wx_i - b)^2$$

Machine Learning- Overfitting

The training data contains information about the regularities in the mapping from input to output. But it also contains noise When we fit the model, it cannot tell which regularities are real and which are caused by sampling error. So it fits both kinds of regularity.

Machine Learning- Prevent Overfitting

Standard ways to limit the capacity of a neural net:

1. Limit the number of hidden units. Limit the size of the weights (Weight-decay).

Adding a *penalty* term to the cost function during training. This penalty term encourages the model to have smaller weights.

2. Stop the learning before it has time to overfit (early stop training).

The regularization parameter λ determines the relative importance of the weight decay penalty compared to the loss function. Higher values of λ increase the penalty for large weights, leading to more weight shrinkage and stronger regularization.

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(64, activation='relu',
input_shape=(input_size,)),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(num_classes, activation='softmax')
])
# Define loss function
loss fn = tf.keras.losses.CategoricalCrossentropy()
```

Machine Learning- Prevent Overfitting (training loop)

```
# Define optimizer
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
# Define the regularization parameter (lambda)
l2 lambda = 0.01
# Define the training loop
for epoch in range(num epochs):
  for x batch, y batch in train dataset:
    with tf.GradientTape() as tape:
      # Forward pass
      logits = model(x batch)
      # Calculate the loss
       loss_value = loss_fn(y_batch, logits)
# Calculate the weight decay penalty
      12 regularization = tf.reduce sum([
         tf.nn.l2 loss(var) for var in model.trainable variables])
      weight_decay_penalty = I2_lambda * I2_regularization
# Add the weight decay penalty to the loss
      total loss = loss value + weight decay penalty
    # Compute the gradients
    grads = tape.gradient(total loss,
model.trainable variables)
    # Update the model's weights
    optimizer.apply gradients(zip(grads,
model.trainable variables))
```

Machine Learning- Prevent Overfitting (Fit function)

```
import tensorflow as tf
# Define model architecture
model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(64, activation='relu',
input_shape=(input_size,)),
  tf.keras.layers.Dense(64, activation='relu'),
  tf.keras.layers.Dense(num classes,
activation='softmax')
# Define loss function
loss_fn =
tf.keras.losses.CategoricalCrossentropy()
# Define optimizer with weight decay
optimizer = tf.keras.optimizers.Adam(
  learning rate=0.001,
  beta 1=0.9,
  beta 2=0.999,
  epsilon=1e-07,
  decay=1e-5, # Weight decay parameter
```

```
# Compile the model
model.compile(optimizer=optimizer, loss=loss fn,
metrics=['accuracy'])
# Define early stopping callback
early_stopping = tf.keras.callbacks.EarlyStopping(
  monitor='val_loss',
  patience=3,
  restore_best_weights=True,
# Train the model using model.fit
history = model.fit(
  x=train data,
  y=train labels,
  batch_size=batch_size,
  epochs=num_epochs,
  validation_data=(val_data, val_labels),
  callbacks=[early_stopping],
# Evaluate the model on the test set
test_loss, test_accuracy = model.evaluate(x=test_data, y=test_labels)
```

Machine Learning- Prevent Overfitting- Use validation set

Divide the total dataset into three subsets:

Training data is used for learning the parameters of the model.

Validation data is not used of learning but is used for deciding what type of model and what amount of regularization works best.

Test data is used to get a final, unbiased estimate of how well the network works. We expect this estimate to be worse than on the validation data.

We could then re-divide the total dataset to get another unbiased estimate of the true error rate.

•

Hierarchical representation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolution

Output volume size= N*((W-K+2P)/S+1)

Convolution layer

Convolution

Output volume size= N*((W-K+2P)/S+1)

Input size: 32*32, Kernel size: 5*5, padding=2, stride = 1

Output volume size= $(32 + 2 \times 2 - 5)/1 + 1 = 32$ spatially Each filter has 5*5*3 + 1 (for bias) = 76 parameters For all 10 filters \rightarrow 760 parameters

Convolution

Output volume size= N*((W-K+2P)/S+1)

Pooling

Deep Learning- CN³ Convolutional Neural Networks

The whole CNN- Cat dog classification example

Can repeat many times

Deep Learning- CNN applications

Self-driving cars

Detection [Ren et al., 2015]

Image Captioning

No errors

A white teddy bear sitting in the grass

Minor errors

A man in a baseball uniform throwing a ball

Somewhat related

A woman is holding a cat in her hand

Image Recognition

Deep Learning- CNN applications

Self-driving cars

Detection [Ren et al., 2015]

Image Captioning

No errors

A white teddy bear sitting in the grass

Minor errors

A man in a baseball uniform throwing a ball

Somewhat related

A woman is holding a cat in her hand

Image Recognition

CNN-Keras

Python Implementation

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

read train

train = pd.read_csv("../input/train.csv")

print(train.shape)

train.head()

put labels into y train variable

Y_train = train["label"]

Drop 'label' column

X_train = train.drop(labels = ["label"],axis = 1)

Build & Train CNN

Simple Character Recognition Example

استيراد المكاتب اللازمة Numpy للتعامل مع المصفوفات Numpy للتعامل مع المصفوفات Matplotlib للرسم والعرض Pandas للتعامل مع ملفات مجموعات البيانات النصية مثل Train_test_split

قراءة مجموعة بيانات التدريب من الملف train.csv

تحديد الخرج Y_train

تحديد الدخل X_train

خطوة 1: تحميل مجموعة بيانات الصور

ثم تقسيم مجموعة البيانات عند الحاجة

Python Implementation

X_train = X_train / 255.0
print("x_train shape: ",X_train.shape)

تطبيع البيانات Normalize Data بتقسيم قيم البيانات على 255

Build & Train CNN Simple Character Recognition Example

x_train shape: (42000, 784)

ناتج طباعة حجم مصفوفة X_train

X_train = X_train.values.reshape(-1,28,28,1)
print("x train shape: ",X train.shape)

تحويل مصفوفة X_train لحجم مناسب للشبكة 28*28*1

x_train shape: (42000, 28, 28, 1)

ناتج طباعة حجم مصفوفة الدخل

from keras.utils.np_utils import to_categorical

Y_train = to_categorical(Y_train, num_classes = 10) _

ترميز شعاع الخرج

 $2 \Rightarrow [0,0,1,0,0,0,0,0,0,0]$

 $4 \Rightarrow [0,0,0,0,1,0,0,0,0,0]$

خطوة 1: تحميل مجموعة بيانات الصور

ثم تقسيم مجموعة البيانات عند الحاجة

from sklearn.model_selection import train_test_split

X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random state=2)

تقسيم مجموعة بيانات التدريب الأصلية إلى تدريب بنسبة 90% وتحقق بنسبة 10%

Python Implementation

```
print("x_train shape",X_train.shape)
print("x_val shape",X_val.shape)
print("y_train shape",Y_train.shape)
print("y_val shape",Y_val.shape)
```

Some examples
plt.imshow(X_train[2][:,:,0],cmap='gray')
plt.show()

طباعة حجم كل من مجموعتي بيانات التدريب والتحقق

```
x_train shape (37800, 28, 28, 1)
x_test shape (4200, 28, 28, 1)
y_train shape (37800, 10)
y_test shape (4200, 10)
```

Build & Train CNN Simple Character Recognition Example

خطوة 1: تحميل مجموعة بيانات الصور

ثم تقسيم مجموعة البيانات عند الحاجة

رسم (عرض) بعض عينات مجموعة البيانات

Python Implementation

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop,Adam
from keras.preprocessing.image import ImageDataGenerator

Optimizer هو خوارزمية تستخدم لتقليل تابع الخطأ Loss لتعديل أوزان وانحيازات الشبكة Function

في حين تقوم خوارزمية التدريب Back Propagation باشتقاق ونشر الخطأ Gradient وحساب تعديلات الأوزان، يقوم Optimizer بتعديل الأوزان وفقاً لقاعدة محددة يستخدم فيها معدل التعلم لتعديل الأوزان مما يساعد الشبكة على التقارب بشكل أسرع

Optimizer الأكثر استخداماً لشبكات CNN هو ADAM

Build & Train CNN Simple Character Recognition Example

مكتبة Keras للتعلم العميق:

Keras.sequential

لبناء طبقات شبكة التعلم العميق

Keras.optimizers لاختيار نوع خوارزمية التحسين المستخدمة في عملية التدريب

Keras.preprocessing image. لتطبيق عمليات المعالجة المسبقة على الصورة

خطوة 2: استيراد المكاتب اللازمة

fully connected

model.add(Flatten())

model.add(Dropout(0.5))

Python Implementation

```
model = Sequential()
model.add(Conv2D(filters = 8, kernel size = (5,5),padding = 'Same',
         activation ='relu', input shape = (28,28,1)))
                                           طبقة Maxpooling
model.add(MaxPool2D(pool_size=(2,2)))
                                               بحجم 2*2
                             طبقة dropout بنسبة
model.add(Dropout(0.25))
                                    %25
model.add(Conv2D(filters = 16, kernel_size = (3,3),padding = 'Same',
         activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
                                                           طيقة
model.add(Dropout(0.25))
                             طبقة dropout بنسبة
                                                      Maxpooling
```

طبقة Conv2D عدد المرشحات 8 وحجم نافذة المرشح 5 ويتم استخدام حشو وتابع التفعيل Relu، حجم صورة الدخل 28*28

طبقة Conv2D عدد المرشحات 16 وحجم نافذة المرشح 3 ويتم استخدام حشو وتابع Relu التفعيل

Build & Train CNN

يتم إضافة طبقات للمودل model باستخدام الأمر model.add

خطوة **3: بناء** طبقات الشبكة

model.add(Dense(256, activation = "relu")) model.add(Dense(10, activation = "softmax"))

%25

الطبقة كاملة الاتصال: طبقة Flatten وطبقة تخفيض وسيطية بحجم 256 عصبون وتابع Relu طبقة Dropout بنسبة 50% طبقة تخفيض تمثل طبقة التصنيف ب 10 عصبونات وتابع تفعيل Softmax

بحجم 2*2

Python Implementation

```
# Define the optimizer
```

optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

Compile the model

model.compile(optimizer = optimizer , loss
"categorical_crossentropy", metrics=["accuracy"])

تحدید Optimizer و هو هنا خوارزمیة Adam بمعدل تعلم 0.001 ومعاملات تدرج beta1, beta2

Build & Train CNN

Model.compile

خطوة 4: تحديد Optimizer

خطوة 5:

Compile Model

خطوة 6:

تحدید بعض بارامترات التدریب

مرحلة Compile Model نحدد 3 أمور هي:
Adam وهو optimizer -1
وه optimizer -1 المستخدم في عملية التدريب وهو هنا Loss المستخدم في عملية التدريب وهو هنا Categorical_Crossentropy لأن المسألة هنا تصنيف متعدد الأصناف وليست Binary Classification وفي حال كانت مسألة Binary Classification يستخدم تابع Binary_Crossentropy

8-والمقياس المستخدم لتقييم الأداء وهو الدقة Accuracy

epochs = 10 # for better result increase the epochs batch_size = 250

عدد التكرارات

ويمكن اختيار Loss

حجم Batch Size

وهو يمثل عدد عينات التدريب التي ستقدم للنموذج (المودل) كل دفعة تدريب وهنا مثلا 250.

بفرض عدد العينات 1000 سنحتاج 1000/250 4 سيستغرق 4 GPU دفعات ليتم عملية تدريب واحدة.

Python Implementation

datagen = ImageDataGenerator(

rotation_range=5,

zoom_range = 0.1,

width_shift_range=0.1,

height_shift_range=0.1,

horizontal_flip=False,

vertical_flip=False)

datagen.fit(X_train)

مجال التدوير العشوائي المستخدم 5 درجات.

مجال ال Zoom هو 0.1

مجال الإزاحة الأفقية والعمودية 0.1

إمكانية القلب الأفقي والعمودي False (يمكن وضعها True) لكن في مثال الأرقام قد تؤثر على الرقم.

يمكن استخدام عمليات أخرى مثل تغيير الإضاءة.

نستخدم ImageDataGenerator

لتوليد عينات جديدة (عشوائياً) من عينات مجموعة البيانات

يمكن استخدام عملية واحدة أو أكثر.

Build & Train CNN

تستخدم هذه الخطوة لتجنب Overfitting ولزيادة عدد عينات مجموعة التدريب وتوليد عينات جديدة بخصائص جديدة مما يزيد قوة التدريب

خطوة 7: Data Augmenta tion

Python Implementation

```
# Fit the model
```

history = model.fit generator(datagen.flow(X train,Y train,

نمرر لتابع التدريب

- 1- عینات التدریب X_train بعد وخرج کل عینه Y_train بعد تمریرها علی تابع datagen
- 2- حجم الدفعة Batch Size
 - 3- عدد التكرارات
- 4- مجموعة بيانات التحقق وهي X_val, Y_val
- 5- عدد العينات في كل تكرار وهو ناتج قسمة عدد العينات على حجم الدفعة.

Build & Train CNN

تستخدم هذه الخطوة لتجنب Overfitting ولزيادة عدد عينات مجموعة التدريب وتوليد عينات جديدة بخصائص جديدة مما يزيد قوة التدريب

خطوة 8: تدريب النموذج

Model Fit

Python Implementation

Build & Train CNN نتيجة التدريب 37800/250 = 151.2≈151

Epoch 4/10 Epoch 5/10

Epoch 6/10

Epoch 7/10

Epoch 8/10

Epoch 9/10

Epoch 10/10

Epoch 1/10

Epocn 2/10

Epoch 3/10

Python Implementation

Plot the loss and accuracy curves for training and validation plt.plot(history.history['val_loss'], color='b', label="validatior loss")

plt.title("Test Loss")

plt.xlabel("Number of Epochs")

plt.ylabel("Loss")

plt.legend()

plt.show()

history نستخدم تعليمة الرسم التدريب للشبكة لعرض نتيجة Val Loss Val Accuracy

Build & Train CNN

لتقييم أداء النموذج يتم رسم منحنى الأداء ويمكن استخدام مصفوفة الـ Confusion Matrix ومعاملات قياس الأداء أيضاً. خطوة 9: رسم منحني الأداء (الدقة)LOSSوالـ

Python Implementation

confusion matrix
import seaborn as sns
Predict the values from the validation dataset

Y_pred = model.predict(X_val)

Convert predictions classes to one hot vectors

Y_pred_classes = np.argmax(Y_pred,axis = 1)

Convert validation observations to one hot vectors

Y_true = np.argmax(Y_val,axis = 1)

compute the confusion matrix

confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)

plot the confusion matrix

f,ax = plt.subplots(figsize=(8, 8))

sns.heatmap(confusion_mtx,annot=True, linewidths=0.01,cmap="Greens",linecolor="gray",fmt= '.1f',ax=ax)

plt.xlabel("Predicted Label")

plt.ylabel("True Label")

plt.show()

plt.title("Confusion Matrix")

ترسم مصفوفة ال CM العلاقة بين Predicted classes من أجل معرفة تفاصيل نتائج كل صنف لوحده ومعرفة الخلل في أي صنف في حال وجوده

Build & Train CNN

400

- 300

- 200

- 100

خطوة 9: رسم منحني الأداء (الدقة والـ LOSS)

لتقييم أداء النموذج يتم رسم منحنى الأداء ويمكن استخدام مصفوفة الـ Confusion ومعاملات قياس الأداء أيضاً.

ACTUAL

Python Implementation

Build & Train CNN

- 400

- 300

- 200

- 100

- 0

خطوة 9: رسم منحني الأداء (الدقة والـ LOSS)

PREDICTED

3	PREDICTED								
	POSITIVE	NEGATIVE							
POSITIVES	TRUE POSITIVES	FALSE NEGATIVES							
NEGATIVE	FALSE POSITIVES	TRUE NEGATIVES							

من خلال مصفوفة CM نستطيع حساب بارامترات

True Positives TP

True Negatives TN

False Positives FP

False Negatives FN

Python Implementation

from sklearn.metrics import classification_report

classification_report(Y_true, Y_pred_classes)

precision recall f1-score support

0	0.99	1.00	0.99	411	
1	1.00	0.98	0.99	485	
2	0.98	0.99	0.98	403	
3	0.99	0.98	0.98	418	
4	0.99	0.97	0.98	461	
5	0.99	0.98	0.98	372	
6	0.98	0.99	0.99	413	
7	0.98	0.99	0.99	446	
8	0.97	0.99	0.98	382	
9	0.97	0.97	0.97	409	

accuracy			0.98	4200
macro avg	0.98	0.98	0.98	4200
weighted avg	0.98	0.98	0.98	4200

Build & Train CNN

الدفه او مقياس الجودة
Precision= TP/ (TP+FP)

قابلية الإرجاع

Recall = TP/(TP+FN)

F1-score الدقة الوسطية F1-Score = 2*Precision*Recall/(Precision+Recall)

Accuracy مفهوم الدقة الشامل

ACC= (TP+TN)/ (TP+TN+FP+FN)

يستخدم لتقييم أداع النموذج حيث يتم حساب قيم Precision, Recall, F1-score لكل صنف من أصناف المسألة للم يتم حساب الدقة المسطدة