Lista 11: Fundamentos Estatísticos para Ciência dos Dados

Ricardo Pagoto Marinho

21 de maio de 2018

- 1. Para o caso de c(1|2) = c(2|1) e $\pi_1 = \pi_2$, a comparação fica reduzida apenas à quantidade de indivíduos nas duas amostras, já que o que vai definir a região é qual função de densidade é a maior.
 - Para $\pi_1 = 0.001$, consequentemente $\pi_2 = 0.99$ e c(1|2) = c(2|1), a função de classificação fica:

$$\frac{f_1(x)}{f_2(x)} > \frac{\pi_2}{\pi_1}
\frac{f_1(x)}{f_2(x)} > \frac{0.99}{0.01}
\frac{f_1(x)}{f_2(x)} > 99
f_1(x) > 99 f_2(x)$$

Ou seja, $f_1(x)$ deve ser mais do que 99 vezes maior do que $f_2(x)$

• Neste caso, com $c(1|2) = \frac{c(2|1)}{10}$ e $\pi_1 = 0.001$ e $\pi_2 = 0.99$ temos:

$$\begin{array}{ll} \frac{f_1(x)}{f_2(x)} > & \frac{c(1|2)}{c(2|1)} \frac{\pi_2}{\pi_1} \\ \\ \frac{f_1(x)}{f_2(x)} > & \frac{c(2|1)}{10} \frac{1}{c(2|1)} \frac{0.99}{0.01} \\ \\ \frac{f_1(x)}{f_2(x)} > & \frac{0.99}{0.1} \\ \\ \frac{f_1(x)}{f_2(x)} > & 9.9 \\ \\ f_1(x) > & 9.9 f_2(x) \end{array}$$

Ou seja, a regra do item anterior fica 10 vezes menor, já que aqui, $f_1(x)$ deve ser mais do que 9.9 vezes maior do que $f_2(x)$.