

ParMOO: A parallel framework for multiobjective simulation optimization problems

Tyler Chang^a and Stefan Wild^a

^aMathematics and Computer Science Division, Argonne National Laboratory

ICCOPT 2022

Outlines

Introduction to MOOPs

Existing Techniques & Solvers

ParMOO Design Criteria

Results and Sample Problems

Multiobjective Optimization Problems

$$\min_{x \in \mathcal{X}} F(x)$$

- $ightharpoonup \mathcal{X} \subset \mathbb{R}^n$ is the feasible set
- $F(x) = (f_1(x), f_2(x), \dots, f_o(x))$

 $F: \mathcal{X} \to \mathcal{Y}$

$$\min_{x\in\mathbb{R}^n}F(x)=(f_1(x),f_2(x),\ldots,f_o(x))$$

 $G:\mathbb{R}^o o\mathbb{R}$

$$\min_{x\in\mathbb{R}^n}(G\circ F)(x)$$

$$\min_{x\in\mathbb{R}^n}F(x)=(f_1(x),f_2(x),\ldots,f_o(x))$$

 $G:\mathbb{R}^o o \mathbb{R}$

$$\min_{x\in\mathbb{R}^n}(G\circ F)(x)$$

$$\min_{x\in\mathbb{R}^n}F(x)=(f_1(x),f_2(x),\ldots,f_o(x))$$

$$G:\mathbb{R}^o
ightarrow\mathbb{R}$$

$$\min_{x\in\mathbb{R}^n}(G\circ F)(x)$$

$$\min_{x\in\mathbb{R}^n}F(x)=(f_1(x),f_2(x),\ldots,f_o(x))$$

 $G:\mathbb{R}^o o\mathbb{R}$

$$\min_{x\in\mathbb{R}^n}(G\circ F)(x)$$

Summary of MOO Solvers

 ${\sf Scalarization} + {\sf single-objective} \; {\sf solver} = {\sf multiobjective} \; {\sf solver}$

Summary of MOO Solvers

Acquisition function

Scalarization + single-objective solver = multiobjective solver

Summary of MOO Solvers

Acquisition function

 ${\color{red} \textbf{Scalarization}} + \textbf{single-objective solver} = \textbf{multiobjective solver}$

Goal:

ParMOO a framework for developing, customizing, and deploying parallel multiobjective solvers for science/engineering applications

Multiobjective *Simulation* Optimization

Just "multiobjective solvers" is too broad!

Multiobjective *Simulation* Optimization

Input variables

Objective space

Multiobjective *Simulation* Optimization

Input variables

Blackbox process

Numerical simulation?
Real-world
experiment?
Build a prototype?
Run a test?

 $F:\mathcal{X}\to\mathcal{Y}$

Objective space

Existing Techniques

- Multiobjective Evolutionary/genetic algorithms
- Multidirectional search
- Multiobjective direct search
- Multiobjective Bayesian optimization

Existing Techniques

- Multiobjective Evolutionary/genetic algorithms
- Multidirectional search
- Multiobjective direct search
- Multiobjective Bayesian optimization
- Multi response surface methodology (RSM)

Existing Solvers, Libraries, and Frameworks

Name	Type	Language	Method	Consts	Var Types	Surrogates
BoostDFO	L	Matlab	MS	some	real	yes
BoTorch	F	Python	ВО	yes	mixed	yes
Dragonfly	F/S	Python	ВО	yes	mixed	yes
jMetal/jMetalPy	L/F	Java/Py	EA	yes	mixed	no
MODIR	S	Fortran	MS	no	real	no
BiMADS	S	$C{+}{+}$	MS	yes	mixed	yes
ParEGO	S	C	EA/BO	no	real	yes
PlatEMO	L/F	Matlab	EA	some	mixed	some
Platypus	L	Python	EA	yes	mixed	no
pagmo/pygmo	F	C++/Py	EA	some	mixed	no
parmoo	F	Python	MS/BO	yes	mixed	yes
pymoo	L/F	Python	EA	some	mixed	no
PyMOSO	F	Python	MS	yes	int	no
SPEA2	S	C	EA	no	real	no
VTMOP	S	Fortran	MS	no	real	yes

ParMOO Design Criteria

Design goals:

- 1. Highly customizable framework for multiobjective RSM
- 2. Exploit structure and domain knowledge simulation-based optimization problems
- 3. Flexible problem types (mixed-variables, constraints, etc.)

ParMOO Design Criteria

Design goals:

- 1. Highly customizable framework for multiobjective RSM
- 2. Exploit structure and domain knowledge simulation-based optimization problems
- 3. Flexible problem types (mixed-variables, constraints, etc.)

Design constraints:

- 1. Easy to deploy (parallelism, checkpointing, logging, flexibility)
- 2. Easy to maintain and extend
- 3. Easy to use (clean interfaces)

Customizability

ParMOO uses an object-oriented framework:

Customizability

ParMOO uses an object-oriented framework:

- ► Search/DOE
- Surrogate model
- Acquisition function
- ► Single-obj solver

$$f_i(x) = h_i(x, S(x))$$
 $i = 1, \ldots, o$

$$f_i(x) = h_i(x, S(x))$$
 $i = 1, \ldots, o$

Sum-of-squares structure:

$$h_i(x, S(x)) = \sum_{j \in N_i} (S_j(x))^2$$

where each N_1, \ldots, N_o is an index set.

Increases order of approximation \Rightarrow increases order of convergence

$$f_i(x) = h_i(x, S(x))$$
 $i = 1, \ldots, o$

Sum-of-squares structure:

$$h_i(x, S(x)) = \sum_{j \in N_i} (S_j(x))^2$$

where each N_1, \ldots, N_o is an index set.

Increases order of approximation \Rightarrow increases order of convergence

Heterogeneous MOOPs:

$$h_1(x, S(x)) = S_1(x)$$

 $h_2(x, S(x)) = ||x||^2$

Use expensive surrogate models for h_1 (i.e., S_1) but not for h_2

► Mixed variable-types

► Mixed variable-types Ex: categorical variables

- ► Mixed variable-types Ex: categorical variables
 - ► Focus on *embedding* into continuous space

- Mixed variable-types Ex: categorical variables
 - ► Focus on *embedding* into continuous space

► (Nonlinear) constraints

- ► Mixed variable-types Ex: categorical variables
 - ► Focus on *embedding* into continuous space

- ► (Nonlinear) constraints
 - ► Focus on *augmented Lagrangian* penalties (relax to augmented unconstrained problem)

Easy to use:

- ▶ OOP gives a clean interface for adding attributes to a MOOP instance
- ► Total modularity (free to mix-and-match)

Easy to use:

- ▶ OOP gives a clean interface for adding attributes to a MOOP instance
- ► Total modularity (free to mix-and-match)

Easy to deploy:

- ► Simulation/experiment evaluations are only called in the MOOP.solve() method
- ▶ Extend MOOP class and overwrite solve() to deploy in different workflows
- **Ex:** Deploy parallel solvers on HPC systems using libEnsemble

Easy to use:

- ▶ OOP gives a clean interface for adding attributes to a MOOP instance
- ► Total modularity (free to mix-and-match)

Easy to deploy:

- ► Simulation/experiment evaluations are only called in the MOOP.solve() method
- Extend MOOP class and overwrite solve() to deploy in different workflows
- ► Ex: Deploy parallel solvers on HPC systems using libEnsemble

Easy to maintain and extend:

- OOP + total modularity makes adding new features easy
- Agile development with continuous integration
- ▶ Well-documented interface, contributing, and release process

ParMOO Release

Written in Python (available on pip and GitHub)

https://parmoo.readthedocs.io/en/latest/quickstart.html

Combine with libEnsemble to use parallel solvers

Chang and Wild. 2022. ParMOO: A Python library for parallel multiobjective simulation optimization. Under review with JOSS.

Example 1: Fayans EDF Model Calibration

Find params $x \in [0,1]^{13}$ to fit the Fayans model to data d_i :

$$M(\xi_i;x)\approx d_i \qquad i=1,\ldots,198$$

ParMOO simulation:

$$S_i(x) = M(\xi_i; x) - d_i, \qquad i = 1, ..., 198;$$

Min SOS across 3 observable classes

$$F_t = \sum_{i=1}^{m_t} \left(S_{t,i}(x) \right)^2$$

Bollapragada et al. Journal of Physics G: Nuclear and Particle Physics 48(2), 2020.

Fayans Solution with ParMOO

- Approximated Fayans model using inv dist weighting on existing dataset
- ► Implemented parallel solver in ParMOO using libEnsemble
- ▶ Just 14-25 lines of Python code
- Ran for 10K sim evals
- Compared against same solver w/o exploiting SOS structure

Example 2: Material Manufacturing with ParMOO

Choose optimal settings for material manufacturing in a continuous flow reactor (CFR)

We know how to make a desired material, need to produce at scale:

- 1. Maximize the product (battery electrolyte: TFML)
- 2. Can increase temperature to reduce reaction time
- 3. Too much heat activates a side reaction; need to minimize unwanted byproduct

Challenges:

- Mixed variable types
- Heterogeneous objectives
- Must send experiments to run on CFR

CFR Optimization with ParMOO

Extend MOOP class to send/receive experiment data using MDML library (Apache Kafka)

Used categorical variable embeddings

Modeled Product/Byproduct as simulations and reaction time using algebraic equation of input

Next Release

Coming in v. 0.2

- ► Interactive post-run visualization tools
- ► Support for customized embeddings and passing raw (unscaled) inputs
- ▶ MDML (Apache Kafka) interface for distributing simulation evalutations
- ▶ (Maybe) advanced techniques for design-of-experiments

Resources

E-mail: tchang@anl.gov E-mail: parmoo@mcs.anl.gov

ParMOO is under review with JOSS

GitHub: github.com/parmoo/parmoo
Docs: parmoo.readthedocs.io
PyPI: pip install parmoo

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, SciDAC program under contract number DE-AC02-06CH11357.