Лабораторна робота ФПЕ-10

ДОСЛІДЖЕННЯ ЗАГАСАЮЧИХ КОЛИВАНЬ У КОЛИВАЛЬНОМУ КОНТУРІ

Владислав Присяжнюк КІ-32

<u>Мета роботи:</u> визначення параметрів та характеристик реального коливального контуру.

<u>Прилади та обладнання:</u> Блок-схема експериментальної установки ГЗ111 — генератор звукових сигналів ГЗ-111; С1-76 — осцилограф С1-76; ФПЭ10/11 — касета з контуром ФПЕ-10/11; ПІ-ФПЭ-09 — перетворювач імпульсів; Дж — джерело живлення; МО — магазин опорів.

Теоретичні відомості

Реальний коливальний контур складається з послідовно з'єднаних конденсатора С, котушки індуктивності L і резистора R . Якщо зарядити конденсатор від батареї Б до напруги U, а потім від'єднати батарею за допомогою ключа К, то конденсатор почне розряджатися через котушку і у контурі виникнуть електромагнітні коливання.

Спочатку розглянемо випадок, коли опір контуру R = 0.

Після замикання контуру в ньому виникне розрядний струм І, який не відразу набуває максимального значення. Плавна зміна сили струму в колі зумовлена появою в котушці ЕРС самоіндукції, яка за правилом Ленца перешкоджає зміні струму, тобто гальмує розряд конденсатора. Як тільки заряд конденсатора стане рівним нулю, сила струму в контурі досягне максимуму. З

цього моменту сила струму в колі починає зменшуватися, не змінюючи свого напрямку. В цьому випадку ЕРС самоїндукції підтримує струм, який викликав її появу. Ця ж ЕРС призводить до перезарядки конденсатора, після чого процес повторюється, однак з іншим напрямом струму. У подальшому ці процеси повторюються, тобто виникають коливання.

Час, протягом якого в коливальному контурі відбувається один повний цикл змін і контур повертається в початковий стан, називають періодом електричного коливання.

Якщо активний опір в контурі дорівнює 0, то коливання в контурі можуть продовжуватися нескінченно довго. Такі коливання, які відбуваються внаслідок процесів у самому коливальному контурі без зовнішніх впливів і втрат енергії, називають власними електричними коливаннями. Вони є незагасаючими. У початковий момент, коли конденсатор був заряджений, у ньому була накопичена енергія.

$$W_e = \frac{CU^2}{2}$$

Під час розрядки енергія електричного поля конденсатора перетворюється в енергію магнітного поля котушки і, коли конденсатор повністю розряджений, енергія магнітного поля досягає максимального значення:

$$W_m = \frac{LI_0^2}{2}$$

де – амплітуда сили струму в контурі. Під час перезарядки конденсатора енергія магнітного поля знову перетворюється на енергію електричного поля. За умови у контурі відбуваються незагасаючі електромагнітні коливання.

Усі без винятку провідники за звичайних умов мають відмінний від нуля опір, тому частина енергії при коливаннях витрачається на їх нагрівання, тобто перетворюється на теплову і втрачається. В наслідок цього амплітуда електромагнітних коливань в контурі зменшується — відбувається загасання коливань

При достатньо великому опорі контуру або малій індуктивності коливання у ньому взагалі не виникають, а відбувається так званий аперіодичний розряд конденсатора.

Заряд конденсатора і сила струму у котушці коливального контуру постійно змінюються за значенням і напрямом.

Логарифмічним декрементом загасання називається натуральний логарифм відношення значень напруги, розділених інтервалом часу, який дорівнює періоду коливань Т.

У деяких випадках зручно вивчати коливний процес у системі координат І та U, тобто відкладати на осі абсцис значення сили струму в контурі, а на осі ординат – напругу на конденсаторі у той же момент часу.

Дослід 1 $l=0.3\ l_1=4\ v=250 \Gamma$ ц

$R_m(OM)$	$A_1(M)$	$A_2(M)$	$A_3(M)$	λ	β	$L(\Gamma$ н $)$	С(Ф).	$r_k(OM)$	<i>R(Ом)</i>
							10^{-8}		
100	1.488	1.136	0.928	0.269	448.7	0.234	1.948	110	210
200	0.912	0.592	0.432	0.432	720.9	0.215	2.120	110	310
300	0.624	0.336	0.176	0.619	1030.2	0.199	2.291	110	410
400	0.337	0.160	0.064	0.744	1237.9	0.206	2.213	110	510
500	0.208	0.096	0.016	0.773	1220	0.250	1.824	110	610

 $A_1 = \ln \frac{A_1}{A_2} = 0.269$ $A_2 = \ln \frac{A_1}{A_2} = \ln \frac{0.912}{0.592} = 0.432$ 23 = 0.619 24 = 0.744 25 = 0.773 R1 = rx + Rm1 = 110 + 100 = 210 R1 = 310 R3 = 410 R4 = 510 R5 = 610 T = 42 = 0.3 = 0.0003c L1 = 1x + Rm T = 110+100 0.0003 = 0.234 TH L2 = 0.215 TH L3 = 0.199 TH Ly = 0.206 TH L5 = 0.250 TH B1 = 21 = 2.0.234 = 448.7 B2 = 720.9 $\mathcal{B}_{3} = 1030.2 \quad \mathcal{B}_{4} = 1237.9 \quad \mathcal{B}_{5} = 1220$ $C_{1} = \frac{7^{2}}{2\pi^{2}L_{1}} = \frac{0.0003^{2}}{2\pi^{2}.0.234} = 1.948 \times 10^{-8} \quad C_{2} = 2.120 \times 10^{-8}$ C3 = 2.291×10-8 Cy = 2.213×10-8 C5 = 1.824×10-8 < L> = L1+L2 + L3 + L4 + L5 - 0.234+0.215+0.199+0.208+0.268 (=0.221)

$$<\mathcal{C}>=rac{(1.948+2.120+2.291+2.213+1.824) imes 10^{-8}}{5}=2.079 imes 10^{-8}$$
 $R_{mKP}+r_k=2\sqrt{rac{< L>}{< C>}}=2\sqrt{rac{0.221}{2.079 imes 10^{-8}}}=6520~\mathrm{OM}$

Дослід 2

$R_m(OM)$	$R_m + r_k$ (Ом)	$U_1(B)$	$U_2(B)$	$U_3(B)$	$\lambda_U(\Gamma_{\rm H})$	$I_1(A)$	$I_2(A)$	$I_3(A)$	$λ_I(\Gamma$ H)
100	150	2.480	2.112	1.776	0.161	3.312	2.800	2.416	0.168
200	250	2.176	1.648	1.280	0.280	2.928	2.240	1.648	0.268
300	350	1.952	1.344	0.864	0.373	2.560	1.712	1.152	0.402
400	450	1.712	1.008	0.624	0.530	2.272	1.360	0.832	0.513
500	550	1.520	0.784	0.432	0.662	1.984	1.056	0.560	0.630

$$\Delta U_1 = 0.1$$

$$\Delta U_2 = 0.1$$

$$\lambda_{U_1} = \ln \frac{U_1}{U_2} = \ln \frac{2.480}{2.412} = 0.161$$

$$\lambda_{U_2} = 0.280 \qquad \lambda_{U_3} = 0.373$$

$$\lambda_{U_4} = 0.530 \qquad \lambda_{U_5} = 0.662$$

$$\lambda_{I_4} = \ln \frac{I_1}{I_2} = 0.168 \qquad \lambda_{I_2} = 0.268$$

$$\lambda_{I_3} = 0.402 \qquad \lambda_{I_4} = 0.513$$

$$\lambda_{I_5} = 0.630$$

Обчислення похибки

$$\Delta\lambda_{U1} = \sqrt{\frac{\Delta U_1^2}{U_{11}^2} + \frac{\Delta U_2^2}{U_{12}^2}} = \sqrt{\frac{0.1^2}{2.480^2} + \frac{0.1^2}{2.112}} = 0.062$$

$$\Delta\lambda_{U2} = 0.076$$

$$\Delta\lambda_{U3} = 0.090$$

$$\Delta\lambda_{U4} = 0.109$$

$$\Delta\lambda_{U5} = 0.144$$

Фазова картина при аперіодичному розряді конденсатора.

R=5100 Ом

Фазова крива незагасаючих коливань у контурі

Висновок

Під час виконання лабораторної роботи було досліджено поведінку реального коливального контуру, складеного з послідовно з'єднаних конденсатора, котушки індуктивності та резистора. Згідно з експериментальними та теоретичними даними, наданими формулами і графіками, коливання можуть тривати нескінченно довго при умові відсутності опору в контурі. Однак при наявності опору енергія поступово витрачається на теплові втрати, що призводить до загасання коливань. У реальних умовах незагасаючі коливання ϵ ідеалізацією, оскільки кожна система має деякий рівень втрат енергії, що призводить до загасання. Були вивченні основні принципи та характеристики реальних коливальних контурів, демонструючи їхню важливість у різних областях фізики та техніки.