# **Machine Learning**

#### Topic 15: Reinforcement Learning

(thanks in part to Bill Smart at Washington University in St. Louis)

#### **Learning Types**

- Supervised learning:
  - (Input, output) pairs of the function to be learned can be perceived or are given.

#### Back-propagation in Neural Nets

- Unsupervised Learning:
  - No information about desired outcomes given

#### K-means clustering

- Reinforcement learning:
  - Reward or punishment for actions

#### **Q-Learning**

#### **Reinforcement Learning**

#### Task

- Learn how to behave to achieve a goal
- Learn through experience from trial and error

#### Examples

- Game playing: The agent knows when it wins, but doesn't know the appropriate action in each state along the way
- Control: a traffic system can measure the delay of cars, but not know how to decrease it.

#### **Basic RL Model**

- 1. Observe state, s<sub>t</sub>
- 2. Decide on an action, at
- 3. Perform action
- 4. Observe new state, s<sub>t+1</sub> S
- 5. Observe reward, r<sub>t+1</sub>
- 6. Learn from experience
- 7. Repeat



 Goal: Find a control policy that will maximize the observed rewards over the lifetime of the agent

### An Example: Gridworld

#### Canonical RL domain

States are grid cells

4 actions: N, S, E, W

Reward for entering top right cell

-0.01 for every other move



#### **Mathematics of RL**

- Before we talk about RL, we need to cover some background material
  - Simple decision theory
  - Markov Decision Processes
  - Value functions
  - Dynamic programming

### **Making Single Decisions**

- Single decision to be made
  - Multiple discrete actions
  - Each action has a reward associated with it
- Goal is to maximize reward
  - Not hard: just pick the action with the largest reward
- State 0 has a value of 2
  - Sum of rewards from taking the best action from the state



#### **Markov Decision Processes**

- We can generalize the previous example to multiple sequential decisions
  - Each decision affects subsequent decisions
- This is formally modeled by a Markov Decision Process (MDP)



#### **Markov Decision Processes**

- Formally, a MDP is
  - A set of states,  $S = \{s_1, s_2, \dots, s_n\}$
  - A set of actions, A =  $\{a_1, a_2, \dots, a_m\}$
  - − A reward function, R:  $S \times A \times S \rightarrow \Re$
  - A transition function,  $P_{ij}^a = P(s_{t+1} = j | s_t = i, a_t = a)$ 
    - Sometimes T: S×A→S
- We want to learn a policy,  $\pi$ :  $S \rightarrow A$ 
  - Maximize sum of rewards we see over our lifetime

#### **Policies**

- A policy π(s) returns what action to take in state s.
- There are 3 policies for this MDP

Policy 1:  $0 \rightarrow 1 \rightarrow 3 \rightarrow 5$ 

Policy 2:  $0 \rightarrow 1 \rightarrow 4 \rightarrow 5$ 

Policy 3:  $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$ 



### **Comparing Policies**

- Which policy is best?
- Order them by how much reward they see

Policy 1: 
$$0 \rightarrow 1 \rightarrow 3 \rightarrow 5 = 1 + 1 + 1 = 3$$

Policy 2: 
$$0 \rightarrow 1 \rightarrow 4 \rightarrow 5 = 1 + 1 + 10 = 12$$

Policy 3: 
$$0 \rightarrow 2 \rightarrow 4 \rightarrow 5 = 2 - 1000 + 10 = -988$$



#### **Value Functions**

- We can associate a value with each state
  - For a fixed policy
  - How good is it to run policy  $\pi$  from that state s
  - This is the state value function, V



#### **Q** Functions

- Define value without specifying the policy
  - Specify the value of taking action A from state S and then performing optimally, thereafter



#### **Value Functions**

So, we have two value functions

$$V^{\pi}(s) = R(s, \pi(s), s') + V^{\pi}(s')$$

s' is the next state

a' is the next action

$$Q(s, a) = R(s, a, s') + max_{a'} Q(s', a')$$

- Both have the same form
  - Next reward plus the best I can do from the next state

#### **Value Functions**

 These can be extend to probabilistic actions (for when the results of an action are not certain, or when a policy is probabilistic)

$$V^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))(R(s,\pi(s),s') + V^{\pi}(s'))$$

$$Q(s,a) = \sum_{s'} P(s'|s,a)(R(s,a,s') + max_{a'} Q(s',a'))$$

## **Getting the Policy**

• If we have the value function, then finding the optimal policy,  $\pi^*(s)$ , is easy...just find the policy that maximized value

$$\pi^*(s) = \text{arg max}_a (R(s, a, s') + V^{\pi}(s'))$$
  
 $\pi^*(s) = \text{arg max}_a Q(s, a)$ 

#### **Problems with Our Functions**

- Consider this MDP
  - Number of steps is now unlimited because of loops
  - Value of states 1 and 2 is infinite for some policies

$$Q(1, A) = 1 + Q(1, A)$$
  
= 1 + 1 + Q(1, A)  
= 1 + 1 + 1 + Q(1, A)  
= ...

- · This is bad
  - All policies with a nonzero reward cycle have infinite value



#### **Better Value Functions**

- Introduce the discount factor γ, to get around the problem of infinite value
  - Three interpretations
    - Probability of living to see the next time step
    - Measure of the uncertainty inherent in the world
    - Makes the mathematics work out nicely

Assume 
$$0 \le \gamma \le 1$$

$$V^{\pi}(s) = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

$$Q(s, a) = R(s, a, s') + \gamma max_{a'} Q(s', a')$$

#### **Better Value Functions**



### **Dynamic Programming**

 Given the complete MDP model, we can compute the optimal value function directly



[Bertsekas, 87, 95a, 95b]

#### Reinforcement Learning

- What happens if we don't have the whole MDP?
  - We know the states and actions
  - We don't have the system model (transition function) or reward function
- We're only allowed to sample from the MDP
  - Can observe experiences (s, a, r, s')
  - Need to perform actions to generate new experiences
- This is Reinforcement Learning (RL)
  - Sometimes called Approximate Dynamic Programming (ADP)

#### **Learning Value Functions**

- We still want to learn a value function
  - We're forced to approximate it iteratively
  - Based on direct experience of the world

- Four main algorithms
  - Certainty equivalence
  - TD  $\lambda$  learning
  - Q-learning
  - SARSA

# **Certainty Equivalence**

Collect experience by moving through the world

$$-s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, r_4, s_4, a_4, r_5, s_5, \dots$$

- Use these to estimate the underlying MDP
  - Transition function, T:  $S \times A \rightarrow S$
  - Reward function, R:  $S \times A \times S \rightarrow \Re$
- Compute the optimal value function for this MDP
- And then compute the optimal policy from it

### How are we going to do this?



100 points

- Reward whole policies?
  - That could be a pain
- What about incremental rewards?
  - Everything has a reward of 0 except for the goal
- Now what???

### **Exploration vs. Exploitation**

- We want to pick good actions most of the time, but also do some exploration
- Exploring means we can learn better policies
- But, we want to balance known good actions with exploratory ones
- This is called the exploration/exploitation problem

## On-Policy vs. Off Policy

- On-policy algorithms
  - Final policy is influenced by the exploration policy
  - Generally, the exploration policy needs to be "close" to the final policy
  - Can get stuck in local maxima

#### Off-policy algorithms

<sup>Siven</sup> enough experience

- Final policy is independent of exploration policy
- Can use arbitrary exploration policies
- Will not get stuck in local maxima

### **Picking Actions**

#### ε-greedy

- Pick best (greedy) action with probability ε
- Otherwise, pick a random action
- Boltzmann (Soft-Max)
  - Pick an action based on its Q-value

$$P(a \,|\, s) = \frac{e^{\left(\frac{Q(s,a)}{\tau}\right)}}{\sum\limits_{a'} e^{\left(\frac{Q(s,a')}{\tau}\right)}}$$
 ...where  $\tau$  is the "temperature"

## $TD(\lambda)$

- TD-learning estimates the value function directly
  - Don't try to learn the underlying MDP

[Sutton, 88]

- Keep an estimate of  $V^{\pi}(s)$  in a table
  - Update these estimates as we gather more experience
  - Estimates depend on exploration policy,  $\pi$
  - TD is an on-policy method

### **TD(0)-Learning Algorithm**

- Initialize V<sup>π</sup>(s) to 0
- Make a (possibly randomly created) policy  $\pi$
- For each 'episode' (episode = series of actions)
  - Observe state s
  - 2. Perform action according to the policy  $\pi(s)$
  - 3.  $V(s) \leftarrow (1-\alpha)V(s) + \alpha[r + \gamma V(s')]$
  - 4. s ← s'
  - 5. Repeat until out of actions
- Update policy given newly learned values
- Start a new episode

Note: this formulation is from Sutton & Barto's "Reinforcement Learning"

r = rewardα= learning rateγ= discount factor

# (Tabular) TD-Learning Algorithm

- 1. Initialize  $V^{\pi}(s)$  to 0, and  $e(s) = 0 \forall s$
- 2. Observe state, s
- 3. Perform action according to the policy  $\pi(s)$
- 4. Observe new state, s', and reward, r
- 5.  $\delta \leftarrow r + \gamma V^{\pi}(s') V^{\pi}(s)$
- 6.  $e(s) \leftarrow e(s)+1$
- 7. For all states j  $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \delta e(j)$   $e(j) \leftarrow \gamma \lambda e(s)$
- 8. Go to 2

 $\gamma$  = future returns discount factor  $\lambda$  = eligibility discount  $\alpha$  = learning rate

#### **TD-Learning**

- V<sup>π</sup>(s) is guaranteed to converge to V<sup>\*</sup>(s)
  - After an infinite number of experiences
  - If we decay the learning rate

$$\sum_{t=0}^{\infty} \alpha_t = \infty \qquad \sum_{t=0}^{\infty} {\alpha_t}^2 < \infty$$

$$\alpha_t = \frac{c}{c+t} \qquad \text{will work}$$

- In practice, we often don't need value convergence
  - Policy convergence generally happens sooner

#### SARSA

- SARSA iteratively approximates the state-action value function, Q
  - Like Q-learning, SARSA learns the policy and the value function simultaneously
- Keep an estimate of Q(s, a) in a table
  - Update these estimates based on experiences
  - Estimates depend on the exploration policy
  - SARSA is an on-policy method
  - Policy is derived from current value estimates

### **SARSA Algorithm**

- Initialize Q(s, a) to small random values, ∀s, a
- 2. Observe state, s
- 3.  $a \leftarrow \pi(s)$  (pick action according to policy)
- 4. Observe next state, s', and reward, r
- 5.  $Q(s, a) \leftarrow (1-\alpha)Q(s, a) + \alpha(r + \gamma Q(s', \pi(s')))$
- 6. Go to 2
- $0 \le \alpha \le 1$  is the learning rate
  - We should decay this, just like TD

# **Q-Learning**

- Q-learning iteratively approximates the stateaction value function, Q
  - We won't estimate the MDP directly
  - Learns the value function and policy simultaneously
- Keep an estimate of Q(s, a) in a table
  - Update these estimates as we gather more experience
  - Estimates do not depend on exploration policy
  - Q-learning is an off-policy method

### **Q-Learning Algorithm**

- Initialize Q(s, a) to small random values, ∀s, a (what if you make them 0? What if they are big?)
- 2. Observe state, s
- 3. Randomly (or  $\epsilon$  greedy) pick action, a
- 4. Observe next state, s', and reward, r
- 5.  $Q(s, a) \leftarrow (1 \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'}Q(s', a'))$
- 6. s ←s'
- 7. Go to 2

 $0 \le \alpha \le 1$  is the learning rate & we should decay  $\alpha$ , just like in TD Note: this formulation is from Sutton & Barto's "Reinforcement Learning" This is not identical to Mitchell's formulation, which does not use learning rate.

### **Q-learning**

 Q-learning, learns the expected utility of taking a particular action a in state s







r(state, action) immediate reward values

V\*(state) values

Q(state, action) values

#### **Convergence Guarantees**

- The convergence guarantees for RL are "in the limit"
  - The word "infinite" crops up several times
- Don't let this put you off
  - Value convergence is different than policy convergence
  - We're more interested in policy convergence
  - If one action is significantly better than the others, policy convergence will happen relatively quickly

#### Rewards

- Rewards measure how well the policy is doing
  - Often correspond to events in the world
    - Current load on a machine
    - Reaching the coffee machine
    - Program crashing
  - Everything else gets a 0 reward



- Things work better if the rewards are incremental
  - For example, distance to goal at each step

dense rewards

- These reward functions are often hard to design

### **The Markov Property**

- RL needs a set of states that are Markov
  - Everything you need to know to make a decision is included in the state
  - Not allowed to consult the past
- Rule-of-thumb
  - If you can calculate the reward function from the state without any additional information, you're OK





#### **But, What's the Catch?**

- RL will solve all of your problems, but
  - We need lots of experience to train from
  - Taking random actions can be dangerous
  - It can take a long time to learn
  - Not all problems fit into the MDP framework

### **Learning Policies Directly**

- An alternative approach to RL is to reward whole policies, rather than individual actions
  - Run whole policy, then receive a single reward
  - Reward measures success of the whole policy
- If there are a small number of policies, we can exhaustively try them all
  - However, this is not possible in most interesting problems

# **Policy Gradient Methods**

- Assume that our policy, p, has a set of n real-valued parameters, q = {q<sub>1</sub>, q<sub>2</sub>, q<sub>3</sub>, ..., q<sub>n</sub>}
  - Running the policy with a particular q results in a reward, r<sub>q</sub>
  - Estimate the reward gradient,  $\frac{\partial R}{\partial \theta_i}$ , for each  $q_i$



### **Policy Gradient Methods**

- This results in hill-climbing in policy space
  - So, it's subject to all the problems of hill-climbing
  - But, we can also use tricks from search, like random restarts and momentum terms
- This is a good approach if you have a parameterized policy
  - Typically faster than value-based methods
  - "Safe" exploration, if you have a good policy
  - Learns locally-best parameters for that policy

### An Example: Learning to Walk

[Kohl & Stone, 04]

- RoboCup legged league
  - Walking quickly is a big advantage
- Robots have a parameterized gait controller
  - 11 parameters
  - Controls step length, height, etc.



- Robots walk across soccer pitch and are timed
  - Reward is a function of the time taken

## An Example: Learning to Walk

- Basic idea
  - 1. Pick an initial  $\theta = \{\theta_1, \theta_2, \dots, \theta_{11}\}$
  - 2. Generate N testing parameter settings by perturbing  $\theta$   $\theta^{j} = \{\theta_{1} + \delta_{1}, \theta_{2} + \delta_{2}, \dots, \theta_{11} + \delta_{11}\}, \delta_{i} \in \{-\epsilon, 0, \epsilon\}$
  - 3. Test each setting, and observe rewards  $\theta^j \rightarrow r_i$
  - 4. For each  $\theta_{i} \in \theta$ Calculate  $\theta_{1}^{+}$ ,  $\theta_{1}^{0}$ ,  $\theta_{1}^{-}$  and set  $\theta'_{i} \leftarrow \theta_{i}^{+} + \begin{cases} \delta & \text{if } \theta_{i}^{+} \text{ largest} \\ 0 & \text{if } \theta_{i}^{0} \text{ largest} \end{cases}$ 5. Set  $\theta \leftarrow \theta'$ , and go to 2

Average reward when  $q_i^n = q_i - d_i$ 

### An Example: Learning to Walk





Initial Final

http://utopia.utexas.edu/media/features/av.qtl

Video: Nate Kohl & Peter Stone, UT Austin

#### Value Function or Policy Gradient?

- When should I use policy gradient?
  - When there's a parameterized policy
  - When there's a high-dimensional state space
  - When we expect the gradient to be smooth

- When should I use a value-based method?
  - When there is no parameterized policy
  - When we have no idea how to solve the problem