

NEW YORK UNIVERSITY
COURANT INSTITUTE - LIBRARY
4 Washington Place, New York 3, N.Y.

IMM-NYU 317
FEBRUARY 1964

NEW YORK UNIVERSITY
COURANT INSTITUTE OF
MATHEMATICAL SCIENCES

An Approximation Theorem

LIPMAN BERS

PREPARED UNDER
CONTRACT NO. NONR-285(46)
WITH THE
OFFICE OF NAVAL RESEARCH

IMM-317

IMM-NYU 317
February 1964

New York University
Courant Institute of Mathematical Sciences

AN APPROXIMATION THEOREM

Lipman Bers

This report represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under the sponsorship of the Office of Naval Research, Contract No. Nonr-285(46).

Reproduction in whole or in part is permitted for any purpose of the United States Government.

AN APPROXIMATION THEOREM*

Lipman Bers

The simple approximation theorem stated below, an incidental by product of an investigation with a different aim, seems not to be recorded in the literature. The proof uses a device due to Ahlfors.

Definition. Let D be a domain in the complex plane, \bar{D} its boundary and $\Gamma \subset \bar{D}$ a closed set. We call Λ ample if (i) it contains every point of \bar{D} which is not a boundary point of the complement G of $D \cup \Gamma$, and (ii) in every component of G , the part of Γ contained in its boundary has positive harmonic measure.

Examples. Let D be the complement of a nowhere dense set Λ ; then Λ is ample. Let D be bounded by k closed Jordan curves C_j and let λ_j be a subarc of Λ_j ; then $\Lambda = \lambda_1 \cup \dots \cup \lambda_k$ is ample. If C_j is rectifiable, it suffices to assume that $\cap C_j$ has positive linear measure.

Theorem. Let Λ be a set on the boundary of a plane domain D and assume that the closure of Λ is ample. Let $f(z)$ be analytic in D and such that

$$(1) \quad \iint_D |f(z)| dx dy < +\infty.$$

* This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under the sponsorship of the Office of Naval Research, Contract No. Nonr-241(1). Reproduction in whole or in part is permitted for any purpose of the United States Government.

Then there exists a sequence of rational functions $r_j(z)$, with simple poles in Λ and no other singularities, such that

$$(2) \quad \lim_{j \rightarrow \infty} \iint_D |f(z) - r_j(z)| dx dy = 0.$$

Proof. We assume Λ to be infinite; otherwise the statement is trivial. Let α denote the set of rational functions with simple poles in Λ , which are absolutely integrable over D . Analytic functions satisfying (1) form a Banach space. Let \mathcal{L} be a continuous linear functional on this space. It suffices to show that if $\mathcal{L}(\phi) = 0$ for all ϕ in α , then $\mathcal{L} \equiv 0$.

Every \mathcal{L} is of the form

$$(3) \quad \mathcal{L}(f) = \iint_D f(z) \mu(z) dx dy$$

where μ is a bounded measurable function. Let a_1 and a_2 be two points in Λ and set

$$(4) \quad h(z) = -\frac{(z - a_1)(z - a_2)}{\pi} \iint_D \frac{\mu(\xi) d\xi d\eta}{(\xi - z)(\xi - a_1)(\xi - a_2)}$$

Then $h(z)$ is continuous everywhere, $h(a_1) = h(a_2) = 0$, h has generalized derivatives which are locally square integrable,

$$(5) \quad \partial h / \partial \bar{z} = \mu \text{ in } D$$

and $h(z)$ is analytic in the complement G of the closure of D . Also,

$$(6) \quad h(z) = O(|z| \log |z|), \quad z \rightarrow \infty,$$

and, for every $R > 0$,

$$(7) \quad |h(z') - h(z'')| \leq C(R) |z' - z''| |\log |z' - z''|| \quad \text{for } |z'|, |z''| \leq R.$$

All this is verified by standard arguments.

Assume that $\ell(\phi) = 0$ for all ϕ in α . For every $a \in \Lambda$, $a \neq a_1, a_2$, the function $\phi(\xi) = (\xi - a)^{-1}(\xi - a_1)^{-1}(\xi - a_2)^{-1}$ belongs to α . For this ϕ , $-\pi h(a) = (a - a_1)(a - a_2)\ell(\phi)$. Thus $h = 0$ on the closure of Λ . Using condition (ii) of ampleness we conclude that $h \equiv 0$ in G , and hence

$$(8) \quad h = 0 \text{ on } \overset{\circ}{D}$$

Let $\delta(z)$ denote the distance from z to $\overset{\circ}{D}$; by (6) and (8)

$$(9) \quad |h(z)| \leq C(R) \delta(z) |\log \delta(z)| \text{ for } |z| \leq R.$$

Now let $j(t)$, $-\infty$ be an infinitely differentiable function such that $0 < j(t) < 1$, $j(t) = 0$ for $t \leq 1$, $j(t) = 1$ for $t > 2$ and set, for $n = 1, 2, \dots$, and for z in D ,

$$\omega_n(z) = j\left(-n/\log \log \frac{1}{\delta(z)}\right)$$

(this device is due to Ahlfors). Since $\delta(z)$ is Lipschitz continuous with constant 1, and $j'(t) = 0$ outside the interval $1 < t < 2$, one verifies that

$$(10) \quad \left| \frac{\partial \omega_n(z)}{\partial z} \right| \leq \frac{c}{n} \frac{1}{\delta(z) |\log \delta(z)|}.$$

For every $R > 0$, let $D(R)$ and $\Gamma(R)$ denote the intersection of D with the disc $|z| \leq R$ and the circle $|z| = R$, respectively. By (5) and Stokes' theorem

$$\begin{aligned} \iint_{D(R)} \omega_n(z) f(z) \mu(z) dx dy &= \iint_{D(R)} \omega_n(z) \frac{\partial}{\partial \bar{z}} (h(z) f(z)) dx dy \\ &= -\frac{i}{2} \int_{\Gamma(R)} \omega_n(z) h(z) f(z) dz - \iint_{D(R)} f(z) h(z) \frac{\partial \omega_n(z)}{\partial \bar{z}} dx dy \end{aligned}$$

for every $f(z)$ analytic in D , since $\omega_n \equiv 0$ near \dot{D} . Assume now that (1) holds. By (9) and (10) the last integral goes to 0 for $n \rightarrow \infty$, and, since $\omega_n \rightarrow 1$, we conclude that

$$\left| \iint_{D(R)} f(z) \mu(z) dx dy \right| \leq \left| \frac{1}{2} \int_{\Gamma(R)} f(z) h(z) dz \right|.$$

Here the right hand side vanishes for large R if D is bounded, but is in all cases less than

$$(11) \quad \text{const. } R \log R \int_{\Gamma(R)} |f(z)| |dz| \quad (R > 1)$$

in view of (7). Since

$$\int_0^{+\infty} \left\{ \int_{\Gamma(R)} |f(z)| |dz| \right\} dR < +\infty$$

by (1), the quantity (11) can not remain above a positive number as $R \rightarrow \infty$. We conclude from (3) that $\mathcal{L}(f) = 0$, q.e.d.

OFFICIAL DISTRIBUTION LIST

Chief of Naval Research Navy Department Washington 25, D.C. Attn: Code 432 Code 438	5	Chief, Bureau of Ships Navy Department Washington 25, D.C. Attn: Library Code 280	2
Director Naval Research Laboratory Washington 25, D.C. Attn: Library Code 6230 Tech. Information Officer	2	Chief, Bureau of Ordnance Navy Department Washington 25, D.C. Attn: Tech. Library	1
Commanding Officer Office of Naval Research Branch Office 207 East 24th Street New York 11, New York	6	Director David Taylor Model Basin Washington 25, D.C. Attn: Library Dr. H. Polachek	1
Commanding Officer Office of Naval Research Branch Office 1030 East Green Street Pasadena 1, California Attn: Tech. Library		U.S. Naval Electronics Laboratory San Diego 52, California Attn: Library Dr. F. A. Sabransky	1
Commanding Officer Office of Naval Research Branch Office 495 Summer Street Boston 10, Massachusetts		U.S. Naval Weapons Plant Washington 25, D.C. Attn: Library	
Commanding Officer Office of Naval Research Branch Office 1000 Geary Street San Francisco, California		U.S. Navy Underwater Sound Lab. Fort Trumbull New London, Connecticut	
Commanding Officer Office of Naval Research Branch Office Navy No. 100, Fleet Post Office New York, New York	40	Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Mechanics Division Library	1
		U.S. Naval Hydrographic Office Suitland, Maryland	2
		Beach Erosion Board U.S. Corps of Engineers Little Falls Road, N.W. Washington 16, D.C.	
		Superintendent U.S. Naval Postgraduate School Monterey, California	

Commander
U.S. Naval Weapons Laboratory
Dahlgren, Virginia
Attn: Library

Commanding General
Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Library

Commanding General
Wright-Patterson Air Force Base,
Ohio
Attn: Central Air Documents (D13) 1
Aeronautical Research
Lab. 1

Chief
Armed Forces Special Weapons
Project
Washington 25, D.C.

Armed Services Technical
Information Agency
Arlington Hall Station
Arlington 12, Virginia 10

U. S. Department of Commerce
Washington 25, D.C.
Attn: National Hydraulics Lab.

The Computing Laboratory
National Applied Mathematics Lab.
National Bureau of Standards
Washington 25, D.C.

California Institute of Technology
Hydrodynamics Laboratory
Pasadena, California

University of California
Department of Engineering
Berkeley 4, California
Attn: Dr. J.W. Johnson 1
Dr. S. Schaaf 1

Carnegie Institute of Technology
Department of Mathematics
Pittsburgh, Pennsylvania

Chesapeake Bay Institute
The John Hopkins University
121 Maryland Hall
Baltimore 18, Maryland
Attn: Director,
Dr. D. W. Pritchard

University of Chicago
Department of Meteorology
Chicago, Illinois
Attn: Dr. C.G. Rossby

Columbia University
New York 27, New York
Attn: Prof. M.G. Salvadori

Harvard University
Department of Mathematics
Cambridge, Massachusetts
Attn: Prof. G. Birkhoff

Indiana University
Department of Mathematics
Bloomington, Indiana
Attn: Prof. T.Y. Thomas

State University of Iowa
Iowa Institute of Hydraulic
Research
Iowa City, Iowa
Attn: Prof. L. Landweber

Massachusetts Institute of
Technology
Cambridge 38, Massachusetts 1
Attn: Dr. E. Reissner
Dr. C. C. Lin 1

New York University
Department of Meteorology
New York, New York
Attn: Dr. W. J. Pierson, Jr.

Princeton University
 Department of Mathematics
 Princeton, N.J., Jersey
 Attn: Prof. S. Lefschetz

Rand Corporation
 1700 Main Street
 Santa Monica, California

Scripps Institute of Oceanography
 La Jolla, California
 Attn: Dr. W. Munk 1
 Dr. R.S. Arthur 1

University of Washington
 Oceanographic Department
 Seattle 5, Washington
 Attn: Mr. Maurice Mattrey, Jr. 1

Woods Hole Oceanographic Institute
 Woods Hole, Massachusetts
 Attn: Dr. C. Iselin

Marine Biological Laboratory
 Woods Hole, Massachusetts
 Attn: Library

Dr. Milton Rose
 Radiation Laboratory
 Livermore, California

Dr. Arthur Grad
 National Science Foundation
 Washington 25, D.C.

Serials Work Room
 Main Library, 206
 New York University
 New York, New York

Dr. C. R. DePrima
 California Institute of Technology
 1201 East California Street
 Pasadena, California

Office of Technical Services
 Department of Commerce
 Washington 25, D. C.

Department of Mathematics
 Stanford University
 Stanford, California

Department of Mathematics
 Harvard University
 Cambridge, Massachusetts

Department of Mathematics
 Massachusetts Institute of
 Technology
 Cambridge, Massachusetts

Professor B. Friedman
 Department of Mathematics
 University of California
 Berkeley, California

Director (Code 120)
 USN Underwater Sound Reference
 Lab.
 P.O. Box 8337
 Orlando, Florida

Professor A. Erdelyi
 Department of Mathematics
 California Institute of
 Technology
 Pasadena, California

Professor J. Todd
 Department of Mathematics
 California Institute of
 Technology
 Pasadena, California

Professor C. H. Wilcox
 Department of Mathematics
 University of Wisconsin
 Madison, Wisconsin

Professor B. Zumino
 Department of Physics
 New York University
 New York, New York

Department of Mathematics
 University of California
 Berkeley, California

Professor H. C. Kranzer
Department of Mathematics
Adelphi College
Garden City, New York

Dr. F. J. Weyl
Research Director, Code 402
Office of Naval Research
Washington 25, D. C.

MAR 12 1964
DAY

DATE DUE

NYU
LNM-
317

c.1

Bers

An approximation theorem.

NYU
LNM-

c.1

317 Bers

An approximation theorem

An

APR 16 1968

PAY 5

**N.Y.U. Courant Institute of
Mathematical Sciences**

4 Washington Place
New York 3, N. Y.

