poslední změna: 1.3.2021

Příklad 1. Do jednoho obrázku načrtněte grafy prvních tří členů funkční posloupnosti (f_n) .

Určete limitní funkci f, načrtněte její graf a stanovte obor konvergence K.

Rozhodněte o stejnoměrné konvergenci $f_n \stackrel{K}{\rightrightarrows} f$ na celém oboru konvergence K.

(Při ověřování lim-sup kritéria využijte vlastností elementárních funkcí.)

1)
$$f_n(x) = \frac{x^n}{3^n}$$

4)
$$f_n(x) = \frac{2n}{n+1} \cdot \operatorname{arccotg} x$$

2)
$$f_n(x) = \frac{1}{|x-1|^n}$$

5)
$$f_n(x) = \frac{2n}{n+1} \cdot x$$

3)
$$f_n(x) = \frac{n+1}{n} + \cos x$$

6)
$$f_n(x) = n \cdot \operatorname{tg} x$$

Příklad 2. Určete limitní funkci f, načrtněte její graf a stanovte obor konvergence K funkční posloupnosti (f_n) .

Rozhodněte o stejnoměrné konvergenci $f_n \stackrel{M_i}{\rightrightarrows} f$ postupně na množinách M_1 , M_2 .

(Při ověřování lim-sup kritéria využijte vlastností elementárních funkcí.)

$$1) \quad f_n(x) = \frac{x^{2n}}{2^n}$$

$$M_1 = (1, \sqrt{2})$$

$$M_2 = (-1,0)$$

2)
$$f_n(x) = \frac{(-1)^n}{(x+3)^n}$$
 $M_1 = \langle 0, 1 \rangle$

$$M_1 = \langle 0, 1 \rangle$$

$$M_2 = (-2, +\infty)$$

$$3) \quad f_n(x) = n^x$$

$$M_1 = (-2, -1)$$

$$M_2 = (-1,0)$$

4)
$$f_n(x) = \sqrt[n]{x-1}$$
 $M_1 = \langle 1, 10 \rangle$

$$M_1 = \langle 1, 10 \rangle$$

$$M_2 = (1,2)$$

5)
$$f_n(x) = e^{x-n}$$
 $M_1 = \mathbb{R}$

$$M_1 = \mathbb{R}$$

$$M_2=(-\infty,1)$$

6)
$$f_n(x) = 3^{\frac{x}{n}}$$
 $M_1 = \langle 0, 5 \rangle$

$$M_1 = \langle 0, 5 \rangle$$

$$M_2 = \langle 0, +\infty \rangle$$

7)
$$f_n(x) = \arctan(nx)$$
 $M_1 = (0,1)$

$$M_1 = (0, 1)$$

$$M_2 = (1, 2)$$

8)
$$f_n(x) = \cos^n x$$
 $M_1 = (\frac{\pi}{4}, \frac{\pi}{2})$

$$M_1 = \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

$$M_2 = (-\pi, \pi)$$

poslední změna: 1.3.2021

Příklad 3. Uveď te příklad:

- 1) funkční posloupnosti (f_n) , která má obor konvergence $K=\langle -1,3\rangle$
- 2) (nekonstantní) funkční posloupnosti (f_n) , jejíž limitní funkce je dána

$$f(x) = \begin{cases} 0 & \text{pro} \quad x \neq 0 \\ 1 & \text{pro} \quad x = 0 \end{cases}$$

- 3) (nekonstantní) funkční posloupnosti (f_n) , která konverguje stejnoměrně na množině $M=\mathbb{R}$ k limitní funkci $f(x)=x^2-x$
- 4) funkční posloupnosti (f_n) , která má obor konvergence $K=\langle 1,+\infty \rangle$, ale ke své limitní funkci nekonverguje stejnoměrně na množině K
- 5) množiny M takové, že funkční posloupnost (f_n) , kde $f_n(x) = e^{nx}$, konverguje stejnoměrně na M
- 6) množiny M takové, že funkční posloupnost (f_n) , kde $f_n(x)=\arccos(x-n)$, nekonverguje stejnoměrně na M

\bigstar **Příklad 4.** Vypočtěte limitní funkci f a stanovte obor konvergence K funkční posloupnosti (f_n) .

Rozhodněte o stejnoměrné konvergenci $f_n \stackrel{M_i}{\rightrightarrows} f$ postupně na množinách M_1 , M_2 .

(Při ověřování lim-sup kritéria si pomozte vyšetřením průběhu funkce $f_n(x)$ či vhodným odhadem.)

1)
$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
 $M_1 = (0, 2)$ $M_2 = (1, 2)$

2)
$$f_n(x) = nx \cdot e^{-nx^2}$$
 $M_1 = (0,1)$ $M_2 = (1, +\infty)$

3)
$$f_n(x) = x^2 e^{-nx}$$
 $M_1 = (0,1)$ $M_2 = (-1,1)$

4)
$$f_n(x) = \sqrt{x + \frac{1}{n}} - \sqrt{x}$$
 $M_1 = \langle 0, +\infty \rangle$ $M_2 = \langle 0, 1 \rangle$

5)
$$f_n(x) = \frac{nx}{1+n+x}$$
 $M_1 = (\frac{1}{2}, 1)$ $M_2 = (1, +\infty)$

6)
$$f_n(x) = \frac{\sin x}{1 + n^2 x^2}$$
 $M_1 = (0, 1)$ $M_2 = (1, +\infty)$