Relational Databases, SQL

Ahmet Sacan

What you'll need

- · Firefox, SQLite plugin
- SqliteStudio

- Matlab: Database toolbox or a SQLite database driver
- Python: No additional packages needed

DB Definitions

- Relational database: collection of tables (also called relations)
- Database Management System (DBMS): a software that is used to create, access, and maintain a database; e.g., sqlite, mysql, postgresql, oracle, sql server.
- Table: Collection of rows (also called tuples or records).
- Each row in a table contains a set of columns (also called fields or attributes).
- Each column has a type:
 - Text: VARCHAR(20)
 - Integer: INTEGER
 - Floating-point: FLOAT, DOUBLE
 - Date/time DATE, TIME, DATETIME
- Primary key: provides a unique identifier for each row (optional).
- Schema: the structure of the database tables
 - The table name
 - The names and types of its columns
 - Various optional additional information (defaults, constraints, etc.)

SQL

- SQL = "Structured Query Language"
 - Non-procedural
 - Set-oriented
 - Relationally complete
 - Functionally incomplete
- Four main types of queries:
 - Insert, Delete, Select, Update

Create/drop table

- Syntax:
 - https://www.sqlite.org/lang_createtable.html
- Create a table for the students:

```
CREATE TABLE students (
id INTEGER PRIMARY KEY,
name VARCHAR(30) UNIQUE,
birth DATE,
gpa FLOAT,
grad INTEGER
);
```

Drop table:

DROP TABLE students;

Insert/Delete

Add rows to the students table:

• Delete row(s):

DELETE FROM students;

Select Queries

- 3 main elements:
 - What you want
 - Where it is found
 - How you want it filtered
- Show entire contents of a table:

Select

Show just a few columns from a table:

Filtering: only get a subset of the rows:

Select

Sorting:

```
SELECT gpa, name, grad FROM students WHERE gpa > 3.0 ORDER BY gpa DESC;
+----+
| gpa | name | grad |
+----+
| 3.9 | Anderson | 2009 |
| 3.2 | Chen | 2011 |
| 3.1 | Hernandez | 2011 |
+----+
```

• Limiting: only get a certain number of rows:

Update / Delete

• Update:

```
UPDATE students
   SET gpa = 2.6, grad = 2013
WHERE id = 2;
```

• Delete:

```
DELETE FROM students
WHERE id = 2;
```

Joins

- Join: a query that merges the contents of 2 or more tables, retrieves information from the merged results.
- Join example: many-to-one relationship
- Students have advisors; add a new table describing faculty.

Join example: many-to-one relationship

 Add new column advisor_id to the students table. This is a foreign key.

Perform the join query: Get the students who are advised by Fujimura

+-		-+-		+-		-+
	id		name		title	١
+-		-+-		+-		-+
	1		Fujimura		assocprof	
	2		Bolosky		prof	
+-		-+-		+-		- +

Join example: many-to-many relationship

- Courses: students take many courses, courses have many students
- Add a new table describing courses:

	number		++ quarter
1 2 3	CS142 ART101	Web stuff Finger painting Finger painting Mud wrestling	Winter 2009

 Create a "join table" courses_students describing which students took which courses.

+	+-		+
course_id		student_id	
+	+ -		+
1		1	
3		1	
4		1	
1		2	
2		2	
1		3	
2		4	
4		4	
+	- + -		+

Join example: many-to-many relationship

• Find all students who took a particular course ('ART101'):

```
SELECT s.name, c.quarter
   FROM students s, courses c, courses_students cs
WHERE c.number = 'ART101'
   AND c.id = cs.course_id
   AND cs.student_id = s.id;
```

'	•	gpa	grad
1 Anderson 2 Jones 3 Hernandez 4 Chen	1987-10-22 1990-04-16	3.9 2.4 3.1 3.2	2009

+	+.		+
name		quarter	
+	+ -		+
Jones		Fall 2008	
Chen		Fall 2008	
Anderson		Winter 2009	
+	+ -		+

id number name	quarter
1 CS142 Web stuff 2 ART101 Finger painti 3 ART101 Finger painti 4 PE204 Mud wrestling	Winter 2009 .ng Fall 2008 .ng Winter 2009

+	-++
course_id	student_id
+	-++
1	1
] 3	1
4	1
1	2
2	2
1	3
1 2	4
4	4
+	-++

Additional Database Features

- Indexes: used to speed up searches
- Concurrency: Allow more than one program use the database at the same time.
- Transactions: used to group operations together to provide predictable behavior even when there are concurrent operations on the database.
- · Locks: Used to limit concurrent access.
- Views: a virtual table for results of a stored query
- Procedures: a set of sql statements stored in the database

Exercise

- GO database
 - http://geneontology.org/page/lead-database-schema
 - http://geneontology.org/sites/default/files/public/diag-godb-er.jpg
 - http://www.berkeleybop.org/goose/
- · Retrieve the names of the species that are under the genus 'Drosophila'
- Retrieve the genus and species name of the organisms whose species name has a prefix 'mel' (use LIKE function).
- Retrieve the gene symbols (gene_product.symbol) of all Drosophila melanogaster (species.genus, species.species) genes that are annotated to the 'nucleus'.
 - Join path: term.id -> graph_path.term1_id /term2_id -> association.term_id /gene_product_id -> gene_product.id
 - Join path: gene_product.species_id -> species.id