Tema 3 - Elementos (assets) y captura de datos.

3.2 Técnicas de desenrollado y texturas 2D.

Germán Arroyo, Juan Carlos Torres

5 de febrero de 2021

Contenido del tema

Tema 3: Elementos (assets) y captura de datos.

- 3.1 Nubes de puntos y capturas mediante escáneres 3D.
- 3.2 Técnicas de desenrollado y texturas 2D.
- 3.3 Simplificación de modelos 3D y texturización automát
- 3.4 Materiales y shaders de iluminación.
- 3.5 Nuevas técnicas software y hardware para la de genera

3.2 Técnicas de desenrollado y texturas 2D.

Una **textura** es una imagen que se proyecta sobre una geometría.

Transferida de disco (SSD)/memoria a GPU.

Tipos de texturas

Una textura puede tener múltiples dimensiones: 1D, 2D o 3D.

La unidad básica de una textura es el texel.

Texture mappping

La correspondencia se establece asociando al vértice las coordenadas del punto de la textura (coordenadas de textura). Las **coordenadas de textura** se dan **normalizadas**.

Parametrización (I)

Las coordenadas de textura se puede obtener desplegando las caras del objeto.

Problemas de realizar la parametrización:

- Islas (zonas no conexas).
- Aristas abiertas formando costuras (seams) en el modelo.

Figura 1: Proceso de marcado de costuras en Blender.

Parametrización (II)

Más problemas de realizar la parametrización:

Zonas no utilizadas en la textura.

Figura 2: Ejemplo de textura no aprovechada al 100%.

Parametrización (III)

Tipos de parametrización:

- Completamente manual (triángulo a triángulo o por áreas).
- Completamente automática (aparecen problemas).
- Semi-automática (zonas desplegadas mediante algoritmos, marco de costuras, etc.)

Parametrización automática (I)

Parametrización automática al crear un objeto:

- Envolver el objeto con una superficie paramétrica.
- Asignar coordenadas de textura en a partir de puntos correspondientes en la superficie.
- La parametrización es la inversa de la función paramétrica que define la superficie.

```
parameterization: f(u, v) = (\cos u, \sin u, v)

inverse: f^{-1}(x, y, z) = (\arccos x, z)
```


Parametrización automática (II)

Para cada vértice tendremos unas coordenadas UV asignadas.

Se pueden tener varios canales UV.

Las islas se consiguen duplicando los vértices.

```
var uvs = PoolVector2Array()
...
arr[Mesh.ARRAY_TEX_UV] = uvs
```

Parametrización automática (III)

La proyección genera distorsiones y no es unívoca.

Se puede obtener desplegando cintas de triángulos.

- Genera muchas costuras.
- Genera muchos espacios perdidos.
- Genera muchas islas.

Kai Hormann, Bruno Lévy, Alla Sheffer. **Mesh Parametrization: Theory and Practice.** Siggraph Course Notes, 2007.

Olga Sorkine and Daniel Cohen-Or. **Warped textures for UV mapping encoding.** SHORT PAPER EUROGRAPHICS 2001

Aplicaciones de la parametrización

Se utiliza entre otras operaciones para:

- Morphing.
- Reparar mallas.
- Materiales.
- Creación de terrenos.
- etc.

Bump mapping (I)

Las texturas no solamente se utilizan para el color:

Figura 4: Ejemplo de bump mapping.

https://upload.wikimedia.org/wikipedia/commons/9/93/FakeBump2D-animation.gif

Bump mapping (II)

- Ocomprobar la altura del mapa que corresponde a la superficie.
- 2 Calcular la normal a la superficie en el mapa de altura, típicamente mediante derivadas.
- Combinar la normal de la superficie con la normal real (geométrica), combinándolas en una nueva dirección.
- Calcular la interacción de la luz con la superficie con algún modelo de iluminación (ej. Lambert, Phong, etc.).

Derivada de una imagen (I)

The Derivative

Figura 5: Definición de derivada.

Derivada de una imagen (II)

Convolución y *kernel*:

Figura 6: Operación de convolución.

Derivada de una imagen (III)

Kernel DoG:

Figura 7: 1^a derivada de la Gaussiana.

Derivada de una imagen (IV)

Magnitud y dirección:

Figura 8: Direcciones (izq. y centro) y magnitud (derecha) de los vectores.

Normal mapping

Parecido al Bump Mapping, pero las normales del mapa ya vienen dadas en RGB: $\vec{n}=(n_x={\sf R},n_y={\sf G},n_z={\sf B}).$

Figura 9: Ejemplo de imagen de normales.

Tangente y bitangente (I)

Calcular la tangente (\vec{T}) y la bitangente (\vec{B}) a partir de los lados del triángulo $(\Delta_1 pos, \Delta_2 pos)$ usando sus coordenadas de textura $(\Delta_1 UV, \Delta_2 UV)$:

- $\bullet \ \Delta_1 pos_x = \Delta_2 UV_x \cdot \vec{T} + \Delta_1 UV_y \cdot \vec{B}$
- $\bullet \ \Delta_2 pos_x = \Delta_2 UV_x \cdot \vec{T} + \Delta_2 UV_y \cdot \vec{B}$

Tangente y bitangente (II)

Teniendo \vec{T} , \vec{N} y \vec{B} pasamos todo al espacio de la tangente, usamos la inversa de la matriz TBN (descompuesta en filas), o (por eficiencia) su traspuesta:

$$\mathsf{TBN}^T = \begin{pmatrix} T_x & T_y & T_z \\ B_x & B_y & B_z \\ N_x & N_y & N_z \end{pmatrix}$$

Solamente si primero la hacemos ortogonal. Para ello, hacemos la tangente perpendicular a la normal:

$$\vec{T} = \mathsf{norm}([\vec{T} - \vec{N}] \cdot [\vec{N} \cdot \vec{T}])$$

Cocinado (bake) de texturas

Necesario que ambos modelos compartan el mismo espacio UV.

Figura 10: Modelo a alta resolución (izq.), modelo a baja (dcha.) y mismo modelo con normales precocinadas.