

Batch: B

Group: 5

Date: 24/03/2022

Members:

Sai Teja Burla

Vishnu S

Spandana Y R

Yashwanth K

Thathireddy Vishnuvardhan Reddy

Tilak Raj

- O1 Problem Statement
- 02 Data Analysis
- 03 Visualization
- O4 Data Pre-Processing
- O5 ML Model Development and Evaluation
- O6 PySpark and AWS
- O7 Model Deployment and Demonstration

Store Sales Forecast

Problem Statement

Dean's is a large web e-trailer chain which sells different types of products nationally. It has shopping services via different modes/types of transportation. It keeps track of order details, shipping details, discounts, provided to the customer, profit earned etc.

Solution

- To preprocess and aggregate the data into monthly sales
- To identify various factors in the data such as trend, seasonality and stationarity, etc.
- To build various forecasting models for the time series data for forecasting sales in future
- Comparing all the forecasting models based on RMSE value to find the best one

IMPLEMENTATION

Data Analysis Using SQL

ER DIAGRAM

TABLE DESIGN

Data Analysis Using Python

Number	of	Rows	in	the	Dataset:	9985
		-	-			100

Order_Year	Duration	Profit	Discount	Quantity	Sales	Postal_Code	ROW_ID	
9985.000000	9985	9985.000000	9985.000000	9985.000000	9985.000000	9985.00000	9985.000000	count
2012.723986	3 days 23:01:09.584376564	28.587722	0.156183	3.789685	229.636100	55182.79359	4993.896545	mean
1.123722	1 days 17:55:50.881956015	234.183523	0.206477	2.225074	622.927104	32060.89504	2883.894709	std
2011.000000	0 days 00:00:00	-6599.978000	0.000000	1.000000	0.444000	1040.00000	1.000000	min
2012.000000	3 days 00:00:00	1.731000	0.000000	2.000000	17.280000	23223.00000	2497.000000	25%
2013.000000	4 days 00:00:00	8.671500	0.200000	3.000000	54.500000	56301.00000	4993.000000	50%
2014.000000	5 days 00:00:00	29.364000	0.200000	5.000000	209.940000	90008.00000	7489.000000	75%
2014.000000	7 days 00:00:00	8399.976000	0.800000	14.000000	22638.480000	99301.00000	9994.000000	max

dfm['Category'].value_counts()

Office Supplies 6020 Furniture 2120 Technology 1845

Name: Category, dtype: int64

dfm['Segment'].value_counts()

Consumer 5188 Corporate 3016 Home Office 1781

Name: Segment, dtype: int64

Day = dfm.groupby(['Ship_Mode','WeekDay']).count()['Row_ID']
Day

DIIIP_Hode	HEEKDay	
First Class	Friday	248
	Monday	135
	Saturday	290
	Sunday	274
	Thursday	256
	Tuesday	147
	Wednesday	184
Same Day	Friday	74
	Monday	110
	Saturday	47
	Sunday	13
	Thursday	118
	Tuesday	102
	Wednesday	76
Second Class	Friday	262
	Monday	274
	Saturday	332
	Sunday	392
	Thursday	208
	Tuesday	198
	Wednesday	272
Standard Class	Friday	711
	Monday	976
	Saturday	948
	Sunday	846
	Thursday	550
	Tuesday	1090
	Wednesday	852
Name: Row_ID, c	ltype: int64	

WeekDay

Ship Mode

Data Analysis Using Python

```
dfm['Region_Name'].value_counts()

West 3199

East 2845
Central 2321
South 1620
Name: Region_Name, dtype: int64
```

```
State Count = dfm.loc[dfm['Region Name'] == 'West', 'State']
State Count. value counts()
California
              1998
Washington
               506
Arizona
               224
Colorado
               182
               124
Oregon
Utah
                53
Nevada
                39
New Mexico
                36
Tdaho
                21
                15
Montana
Wyoming
Name: State, dtype: int64
```

```
City Count = dfm.loc[dfm['State'] == 'California', 'City Name']
City Count.value counts().head(10)
Los Angeles
                 747
San Francisco
                 509
San Diego
                 170
San Jose
                  42
Long Beach
                  2.7
Anaheim
                  26
Oakland
                  26
Fresno
                  25
Pasadena
                  25
Westminster
                  17
Name: City_Name, dtype: int64
```

Hypothesis Testing:
Anova
Chi-Square
T-Test(One Sample)
T-Test(Two Sample)
T-Test(Paired Sample)
Correlation Test

Data Visualization Using Python

Out[17]. <AxesSubplot:xlabel='Region Name', ylabel='Count'>

Category

Data Visualization Using PowerBI

Data Visualization Using PowerBI

Leather Low-Back Tilter

Product Name

Punch Plastic Comb Binding Machine with Manual Bind

Advanced Copier

Data Preprocessing

Row ID	0
Order ID	0
Order Date	0
Ship Date	0
Ship Mode	O
Customer ID	0
Customer Name	0
Segment	0
Country	0
City Code	0
State Code	0
Postal Code	0
Product ID	0
Category	0
Sub-Category	0
Product Name	0
Sales	0
Quantity	0
Discount	0
Profit	0
dtype: int64	

Data pre-processing steps are normally used to convert the raw data into clean data set that can be used for training the model.

- Null Value Detection and Treatment
- Outlier Analysis and Treatment
- Data Encoding
- Data Scaling and Transformations
- Feature Engineering
- Splitting into Train and Test

	Order_Date	Sales
0	2013-11-09	261.9600
1	2013-11-09	731.9400
2	2013-06-13	14.6200
3	2012-10-11	957.5775
4	2012-10-11	22.3680

ML Part

ETL and Data Engineering Using PySpark

- Load data from local file system to Hadoop Cluster using Hive Table
- Using Spark Session, load the data from Hive table to the Spark DataFrame
- Null Value Identification and Outlier Analysis and treatment of both using Spark
- Data Profiling using Spark
- Execute SQL Commands using Spark
- Save the data in parquet form for later use, using Spark

- Moving the datasets to AWS S3
- Creating Redshift Instance
- Creating tables in Redshift
- Creating a pipeline/copy command to move the data from S3(storage) to Redshift Table
- Connecting Redshift data to PowerBI
- Visualization in PowerBI

We made an AWS S3 Bucket and moved all the datasets into the same and we also created a Redshift Instance.

We then made tables in Redshift and moved the data from S3 into the created tables using COPY command.

We then connected Redshift to PowerBI and checked the relationship between all the tables created

AWS Cloud Analysis Power BI Dashboard

ML Model Deployment Using Flask Architecture

Deployment and DEMO

