

Tipo Abstracto de Datos Lista

T.A.D. LISTA

ESTRUCTURAS DE DATOS
y ALGORITMOS
LCC TUPW

LISTAS

Las **listas** son estructuras de datos flexibles porque pueden crecer y contraerse, y los elementos accedidos, insertados y eliminados en cualquier posición de la lista.

T.A.D. LISTA - Especificación (1)

Lista: Secuencia de 0 o mas elementos de un tipo determinado, que puede crecer y contraerse sin restricción.

$$L = (a1, a2,, an), n>=0$$

n: longitud de la lista

Si n=0, lista vacía : L=()

Si n>0, entonces:

ai es el *i-esimo elemento*a1 es el *primer elemento*an es el *último elemento*ai *precede a* ai+1, para 1<=i<n
ai *sucede a* ai-1, para 1<i<=n

Existe una relación de orden dada por la posición del elemento en la lista

T.A.D. LISTA - Especificación

En matemáticas, un **orden total**, **orden lineal**, **orden simple**, o simplemente **orden** en un conjunto X es una relación binaria sobre X que es antisimétrica, transitiva, y total; esto es, si se denota una tal relación por ≤, lo siguiente vale para cualesquiera a, b, y c en X:

- \S i $a \le b$ y $b \le a$, entonces a = b (antisimetría).
- Si $a \le b$ y $b \le c$, entonces $a \le c$ (transitividad).
- a ≤ b o b ≤ a (totalidad o completitud : todo los pares de elementos son comparables bajo la relación).

Ejemplos

- Las letras del alfabeto con el orden alfabético usual: "A" < "B" < "C" < "X"
- Los *naturales*, *enteros*, *racionales* y los *reales*, con el orden usual de las relaciones < o >, son conjuntos bien ordenados.

T.A.D. LISTA - Especificación

¿p?

Ingresar el elemento X, en la lista L, en la posición p

1<=p<=n+1

$$L = (X, a1, a2, ..., ai, ..., an)$$
 $L = (a1, a2, ..., ai, ..., an, X)$

$$1 2 i n+1$$

$$1 2 i n+1$$

$$si p = 1$$

$$si p = n+1$$

T.A.D. LISTA - Especificación

¿p?

Eliminar de la lista L, el elemento que se encuentra en la posición p

L =
$$(a1, a2, ..., ai+1, ..., an)$$
 X= ai si p = i

$$L = (a2, ..., ai, ..., an)$$
 $X=a1$ $L = (a1, a2, ..., an-1)$ $X=an$ 1 2 $n-1$ $si p = 1$ $si p = n$

T.A.D. LISTA - Especificación (2)

Operaciones Abstractas

Sean L: Lista; X: elemento y p,p1: posiciones

NOMBRE	ENCABEZADO	FUNCION	ENTRADA	SALIDA
Insertar	Insertar(X,L,p)	Ingresa el elemento X, en la lista L, en la posición p	L, X y p	L= $(a_1,, a_{p-1}, X, a_{p+1},, a_n)$ o L= $(a_1,, a_n, X)$ o L= (X) , si 1<=p<=n+1; Error en caso contrario
Suprimir	Suprimir(L,p,X)	Elimina de la lista L, el elemento que se encuentra en la posición p	Lур	L= $(a_1,, a_{p-1},a_{p+1},)$ y X= a_p , si 1<= p <= n ; Error en caso contrario
Recuperar	Recuperar(L,p,X)	Recupera de la lista L, el elemento que se encuentra en la posición p	Lyp	$X=a_p$, si $L=(a_1,,a_p,,a_n)$ y $1 <= p <= n$; Error en caso contrario
Buscar	Buscar(X,L,p)	Localiza en la lista L, el elemento X	LyX	p=i, si L=(a ₁ ,,a _i =X,,a _n); Error en caso contrario

T.A.D. LISTA – Especificación (3)

Operaciones Abstractas

Sean L: Lista; X: elemento y p: posicion

NOMBRE	ENCABEZADO	FUNCION	ENTRADA	SALIDA
Primer_elemento	Primer_elemento (L,X)	Reporta el primer elemento de la lista L	L	X=a _{1,} si n>0 ; Error en caso contrario
Ultimo_elemento	Ultimo_elemento (L,X)	Reporta el último elemento de la lista L	L	X=a _{n,} si n>0 ; Error en caso contrario
Siguiente	Siguiente(L,p,p ₁)	Recupera de la lista L la posición (dirección) siguiente a p	Lyp	p ₁ =direccion(p+1), si 1< =p <n; Error en caso contrario</n;
Anterior	Anterior(L,p,p ₁)	Recupera de la lista L la posición (dirección) anterior a p	Lyp	p ₁ =dirección(p-1), si 1< p<=n; Error en caso contrario
Recorrer	Recorrer(L)	Procesa todos los elementos de la lista L	L	Está sujeta al proceso que se realice sobre los elementos de L
Crear	Crear(L)	Inicializa L	L	L=()
Vacía	Vacía(L)	Evalúa si L tiene elementos	L	Verdadero si L No tiene elementos, Falso en caso contrario.

T.A.D. LISTA – Representación

Representación secuencial

$$L = (a1, a2,, an)$$

relación posición "lógica" ubicación "física" operación insertar, debe prever el desplazamiento (shifteo) de los elementos almacenados, overflow.

T.A.D. LISTA -

Construcción de operaciones abstractas

Ver Video Insertar-representacion secuencial TAD Lista.mp4

EPRESEN

T.A.D. LISTA - Representación

Representación encadenada:

relación posición "lógica" no coincide con ubicación "física".

T.A.D. LISTA

Construcción de operaciones abstractas

Complete la siguiente tabla con el tiempo de ejecución de cada operación abstracta – parámetro para evaluar la eficiencia-, en cada una de las representaciones trabajadas

	Representaciones	SECUENCIAL	ENCADENADA
	Operaciones		
	Insertar(X,L,p)		
	Suprimir(X,L,p)		
	Recuperar(L,p,X)		
	Buscar(X,L,p)		
	Primer_elemento (L,X)		
	Ultimo_elemento (L,X)		
	Siguiente(L,p,p ₁)		
	Anterior(L,p,p_1)		
	Recorrer(L)		

T.A.D. LISTA — Representación

Representación Secuencial

Representación Encadenada

Variables dinámicas

Cursores: enteros que indican posiciones en un arreglo o en otros tipos de datos

REPRESENTACIÓ

T.A.D. LISTA - Representación

- Cursores: valores enteros que indican posiciones en un arreglo o en un archivo. Los cursores pueden ser usados, al igual que las variables dinámicas, para construir objetos de datos con representación vinculada.
- Para una lista con representación vinculada, cada celda es un registro con dos campos: Elemento y Enlace al siguiente elemento. Cuando trabajamos con cursores, Enlace es un valor entero.

T.A.D. LISTA - Representación

T.A.D. LISTA – Representación

T.A.D. LISTA ORDENADA POR CONTENIDO

Lista ordenada por contenido: Lista en la que debe conservarse un orden lineal entre los valores de alguno de los atributos que conforman sus elementos.

Que modificación requiere la **Especificación** de Lista?

Insertar(X,L)

Entrada : L=(a1,...,an) n>=0 y X

Función: Insertar el elemento X manteniendo el orden lineal

entre los valores de los elementos de L, esto es:

ai <= ai+1, para 1 <= i < n.

Salida: L=(a1,...,ai,X,ai+1,....,an) si ai <= X < ai+1, 1 <= i < n

L=(X,a1,...,an) si X<a1 L=(a1,...,an,X) si an<X

¿ Suprimir ?

T.A.D. LISTA – Aplicación

Diseñe el algoritmo que, apoyado en el TAD Lista, elimine elementos con valores repetidos de una lista de números naturales.

Entrada Salida
$$L = (10, 5, 7, 5, 2, 10)$$
 \rightarrow $L = (10, 5, 7, 2)$

Nota: No usar estructuras de datos adicionales, solo la lista de entrada