Contour Plots & Gradients

Nipun Batra and teaching staff

IIT Gandhinagar

August 17, 2025

Table of Contents

Understanding Contour Plots

Definition: What is a Contour Plot?

Concept: A contour plot shows curves where a function f(x, y) = K for different constant values K

Definition: What is a Contour Plot?

Concept: A contour plot shows curves where a function f(x, y) = K for different constant values K

Example: Function: $z = f(x, y) = x^2 + y^2$

Circular Contours

Definition: What is a Contour Plot?

Concept: A contour plot shows curves where a function f(x, y) = K for different constant values K

Example: Function: $z = f(x, y) = x^2 + y^2$

Circular Contours

Key Points

Key Insight: Each contour line represents all points (x, y) where f(x, y) = K for a specific constant K

```
Example: Function: z = f(x, y) = x^2
```

Note: This function depends only on x, not on y!

Example: Function: $z = f(x, y) = x^2$

Note: This function depends only on x, not on y!

Key Points

Observation: Contour lines are vertical because $f(x, y) = x^2$ is constant for all y values when x is fixed

Key Points

Observation: Contour lines are vertical because $f(x, y) = x^2$ is constant for all y values when x is fixed

Important: ML Connection

This represents: A loss function that doesn't depend on one of the parameters!

Contour Example: Manhattan Distance

Example: Function: z = f(x, y) = |x| + |y|

Also known as: Manhattan distance or L1 norm

Contour Example: Manhattan Distance

Example: Function: z = f(x, y) = |x| + |y|

Also known as: Manhattan distance or L1 norm

Contour Example: Manhattan Distance

Key Points

Shape: Diamond-shaped contours due to absolute value functions

Important: ML Connection

This represents: L1 regularization in machine learning (promotes sparsity!)

Example: Function: $z = f(x, y) = x^2 \cdot y$

Type: Mixed polynomial (quadratic in x, linear in y)

Example: Function: $z = f(x, y) = x^2 \cdot y$

Type: Mixed polynomial (quadratic in x, linear in y)

Key Points

Key Features:

Asymmetric contours

Key Points

Key Features:

- Asymmetric contours
- Different behavior above and below y = 0

Key Points

Key Features:

- Asymmetric contours
- Different behavior above and below y = 0
- Non-linear interaction between variables

Key Points

Key Features:

- Asymmetric contours
- Different behavior above and below y = 0
- Non-linear interaction between variables

Important: ML Connection

This represents: Complex loss surfaces with variable interactions

```
Example: Function: z = f(x, y) = xy
```

Type: Bilinear function (linear in each variable separately)

Example: Function: z = f(x, y) = xy

Type: Bilinear function (linear in each variable separately)

Key Points

Shape: Hyperbolic contours with saddle point at the origin

Key Points

Shape: Hyperbolic contours with saddle point at the origin

Important: ML Significance

Saddle points: Common in neural network optimization - neither minimum nor maximum!

Gradients and Contour Plots

Definition: What is a Gradient?

Gradient ∇f : Vector pointing in the direction of steepest increase of function f

Definition: What is a Gradient?

Gradient ∇f : Vector pointing in the direction of steepest increase of function f

Key Points

Key Properties

· Direction: Points toward steepest ascent

Definition: What is a Gradient?

Gradient ∇f : Vector pointing in the direction of steepest increase of function f

Key Points

Key Properties

· Direction: Points toward steepest ascent

• Magnitude: Rate of steepest change

Definition: What is a Gradient?

Gradient ∇f : Vector pointing in the direction of steepest increase of function f

Key Points

Key Properties

· Direction: Points toward steepest ascent

• Magnitude: Rate of steepest change

• Contour relationship: Always perpendicular to contour lines

Example: Fundamental Insight

All points on the same contour have identical f(x, y) values

Example: Fundamental Insight

All points on the same contour have identical f(x, y) values Moving along a contour: No change in function value

Example: Fundamental Insight

All points on the same contour have identical f(x,y) values Moving along a contour: No change in function value Moving perpendicular to contour: Maximum change in function value

Example: Fundamental Insight

All points on the same contour have identical f(x,y) values Moving along a contour: No change in function value Moving perpendicular to contour: Maximum change in function value

Important: ML Application

Gradient descent: Move opposite to gradient direction to minimize loss!

Gradients Visualized: Circular Contours

Example: Function: $z = f(x, y) = x^2 + y^2$

Gradients Visualized: Circular Contours

Example: Function: $z = f(x, y) = x^2 + y^2$

Gradient:
$$\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Example: Function: $z = f(x, y) = x^2 + y^2$

Gradient: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

Key Points

Observations:

• Gradient arrows point radially outward

Key Points

Observations:

- · Gradient arrows point radially outward
- Arrows are perpendicular to circular contours

Key Points

Observations:

- · Gradient arrows point radially outward
- Arrows are perpendicular to circular contours
- Magnitude increases away from origin

Key Points

Observations:

- · Gradient arrows point radially outward
- Arrows are perpendicular to circular contours
- Magnitude increases away from origin
- · All arrows point toward steepest ascent

Key Points

Observations:

- · Gradient arrows point radially outward
- Arrows are perpendicular to circular contours
- Magnitude increases away from origin
- · All arrows point toward steepest ascent

Important: Perfect for Optimization

This is an ideal optimization landscape: Single global minimum at origin!

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase in f(x, y)

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase in f(x, y)

Steepest Descent: $-\nabla f$ points toward maximum decrease in

f(x,y)

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase in f(x, y)

Steepest Descent: $-\nabla f$ points toward maximum decrease in f(x,y)

Key Points

Contour Relationship

• Same contour: All points have identical f(x, y) values

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase in f(x, y)

Steepest Descent: $-\nabla f$ points toward maximum decrease in f(x,y)

Key Points

Contour Relationship

- Same contour: All points have identical f(x, y) values
- Gradient direction: Always perpendicular to contour lines

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase in f(x, y)

Steepest Descent: $-\nabla f$ points toward maximum decrease in f(x,y)

Key Points

Contour Relationship

- Same contour: All points have identical f(x, y) values
- Gradient direction: Always perpendicular to contour lines
- Zero gradient: Occurs at critical points (minima, maxima, saddle points)

Definition: Machine Learning Connection

Optimization algorithms use gradients to:

- Find minimum loss (gradient descent: $\theta_{new} = \theta_{old} \alpha \nabla L$)
- · Navigate complex parameter spaces
- Escape saddle points
- Converge to optimal solutions

Key Points

What We Learned

• Contour plots: Visualize function behavior in 2D

Key Points

What We Learned

- Contour plots: Visualize function behavior in 2D
- Different shapes: Circular, diamond, hyperbolic, asymmetric

Key Points

What We Learned

- Contour plots: Visualize function behavior in 2D
- Different shapes: Circular, diamond, hyperbolic, asymmetric
- Gradients: Point toward steepest function increase

Key Points

What We Learned

- Contour plots: Visualize function behavior in 2D
- Different shapes: Circular, diamond, hyperbolic, asymmetric
- Gradients: Point toward steepest function increase
- Perpendicular relationship: Gradients contours

Important: ML Applications

• Loss landscapes: Understanding optimization challenges

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- **Regularization:** L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization

Definition: Next Steps

These concepts enable understanding of:

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization

Definition: Next Steps

These concepts enable understanding of:

· Advanced optimization algorithms

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization

Definition: Next Steps

These concepts enable understanding of:

- · Advanced optimization algorithms
- · Learning rate selection

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization

Definition: Next Steps

These concepts enable understanding of:

- · Advanced optimization algorithms
- · Learning rate selection
- · Convergence analysis