Programación Científica

Simulación: Osciladores acoplados

09 de enero de 2023

Propósito.

Simular la dinámica de un sistema de osciladores acoplados según se muestra en la figura:

Método.

La posición de cada masa se calculará como una combinación lineal de los modos normales, según:

$$x_i(t) = \sum_{k=0}^{N} a_{ki} \text{Cos}(\omega_k t + \phi_k)$$

 a_{ki} : es la componente *i*-ésima del vector propio correspondiente a la frecuencia ω_k ϕ_k : es la fase del modo normal k que permite establecer las condiciones iniciales.

Las frecuencias de los modos normales se encontrarán resolviendo el problema de valores propios correspondiente al sistema.

Paramétros:

- ω_k se medirá en términos $\omega_0 = \sqrt{\frac{k_{min}}{m}}$, donde k_{min} es la menor de las constantes elásticas.
- N = 2, 4 y 6

El problema de los valores propios se resolverá con el método QR

Actividades

- 1. Simular la evolución del sistema para N=2,4 y 6, con $k_i=1$, $\forall i$ Para cada simulación graficar la evolución temporal de los desplazamientos de los osciladores.
- 2. Simular la evolución del sistema para N=2,4 y 6, con $k_{2i-1}=2k_{2i}$. Para cada simulación:
 - Graficar la evolución temporal de los desplazamientos de los osciladores.
 - Identificar los osciladores cuya frecuencia está modulada y estimar las frecuencias de la modulación de la amplitud.

- 3. Simular la evolución del sistema para N=2,4 y 6, con $k_{2i-1}=4k_{2i}$. Para cada simulación:
 - Graficar la evolución temporal de los desplazamientos de los osciladores.
 - Identificar los osciladores cuya frecuencia está modulada y estimar las frecuencias de la modulación de la amplitud.
- 4. Simular la evolución del sistema para N=2,4 y 6, con $k_{2i-1}=6k_{2i}$. Para cada simulación:
 - Graficar la evolución temporal de los desplazamientos de los osciladores.
 - Identificar los osciladores cuya frecuencia está modulada y estimar las frecuencias de la modulación de la amplitud.
- 5. Para todos los casos en los que se tuvo modulación de la amplitud, relacionar la frecuencia de la modulación con las frecuencias de los modos normales del sistema.

Estructura del Reporte

- 1. Introducción
 - Descripción del sistema de estudio.
 - Ecuaciones del movimiento y ecuación de valores propios.
 - Planteamiento del problema.
- 2. Metodología
 - Estructura del programa utilizado.
 - Condiciones de las simulaciones.
 - Procedimiento para el análisis y el tratamiento de los datos.
- 3. Resultados
 - Gráficos representativos de la evolución de las posiciones de las partículas.
 - Condiciones en las que se tiene modulación de la amplitud y frecuencias correspondientes.
 - Relación entre las frecuencias de modulación y las frecuencias de los modos normales.
- 4. Conclusiones

Las conclusiones deben relacionarse directamente con lo presentado en la sección anterior.

Fecha de entrega del reporte: 16 de enero de 2023

Marco V Bayas