Feature Engineering

Machine Learning Model development Process

Fundamental Data types

Attribute: Gender Values: {Male, Female}

NONIMAL DATA

Example 1 (revisited)

Nominal (CN):

- NO unit of measurement (such as second, day, kg, calories, etc.)
- □ it doesn't make sense to order the values (Male vs. Female?)
 - Ordering is completely arbitrary
- Can simply think of it as a <u>labelling process</u>
 - Blood type (O, A, B, A/B)
 - Name (David, Karen, John, ...)
 - Gender
- Special case: If there are only two categories (e.g., Male/Female, True/False), we call it dichotomous (or Boolean attribute)

Ordinal (Categorical Variable)

Attribute: Seatbelt

Values: {Always, Mosttimes, Sometimes,

Rarely, Never

ORDINAL DATA

Example 2 (revisited)

□ Ordinal (CO):

- □ NO unit of measurement (such as second, day, kg, calories, etc.)
- But you <u>can</u> put it in order <u>ordering matters!</u>
 - However, the difference between successive scales is <u>not known</u>.
 - Hence, they can't be placed on the number line.
 - E.g., feeling (Happy, Neutral, Sad) you can't really known how different from Happy to Neutral, or from Neutral to Sad.
- Basic arithmetic is not appropriate, eg: you shouldn't subtract, add, multiply, divide ordinal variable.

Discrete (Metric variable)

Attribute: Age

Values: 1,2,3,4,5,6,7,....,125

DISCRETE DATA

Example 3 (revisited)

Continuous (Metric Variable)

Example 4 (revisited)

Attribute: Height Values: 1.8, 1.57, ...

CONTINUOUS DATA

Classification Tree for Attribute Type

Data transformations

- Machine learning models make a lot of assumptions about the data
- In reality, these assumptions are often violated
- We build *pipelines* that *transform* the data before feeding it to the learners
 - Scaling (or other numeric transformations)
 - Encoding (convert categorical features into numerical ones)
 - Automatic feature selection
 - Feature engineering (e.g. binning, polynomial features,...)
 - Handling missing data
 - Handling imbalanced data
 - Dimensionality reduction (e.g. PCA)
 - Learned embeddings (e.g. for text)
- Seek the best combinations of transformations and learning methods
 - Often done empirically, using cross-validation
 - Make sure that there is no data leakage during this process!

Scaling

- Use when different numeric features have different scales (different range of values)
 - Features with much higher values may overpower the others
- Goal: bring them all within the same range
- Different methods exist

Why do we need scaling?

- KNN: Distances depend mainly on feature with larger values
- SVMs: (kernelized) dot products are also based on distances
- Linear model: Feature scale affects regularization
 - Weights have similar scales, more interpretable

Standard scaling (standardization)

- Generally most useful, assumes data is more or less normally distributed
- Per feature, subtract the mean value μ , scale by standard deviation σ
- New feature has $\mu=0$ and $\sigma=1$, values can still be arbitrarily large

$$\mathbf{x}_{new} = rac{\mathbf{x} - \mu}{\sigma}$$

Min-max scaling

- Scales all features between a given min and max value (e.g. 0 and 1)
- Makes sense if min/max values have meaning in your data
- · Sensitive to outliers

$$\mathbf{x}_{new} = rac{\mathbf{x} - x_{min}}{x_{max} - x_{min}} \cdot (max - min) + min$$

Categorical feature encoding

• Many algorithms can only handle numeric features, so we need to encode the categorical ones

	boro	salary	vegan
0	Manhattan	103	0
1	Queens	89	0
2	Manhattan	142	0
3	Brooklyn	54	1
4	Brooklyn	63	1
5	Bronx	219	0

Ordinal encoding

- Simply assigns an integer value to each category in the order they are encountered
- Only really useful if there exist a natural order in categories
 - Model will consider one category to be 'higher' or 'closer' to another

	boro	boro_ordinal	salary
0	Manhattan	2	103
1	Queens	3	89
2	Manhattan	2	142
3	Brooklyn	1	54
4	Brooklyn	1	63
5	Bronx	0	219

One-hot encoding (dummy encoding)

- Simply adds a new 0/1 feature for every category, having 1 (hot) if the sample has that category
- Can explode if a feature has lots of values, causing issues with high dimensionality
- What if test set contains a new category not seen in training data?
 - Either ignore it (just use all 0's in row), or handle manually (e.g. resample)

16-	boro	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens	salary
0	Manhattan	0	0	1	0	103
1	Queens	0	0	0	1	89
2	Manhattan	0	0	1	0	142
3	Brooklyn	0	1	0	0	54
4	Brooklyn	0	1	0	0	63
5	Bronx	1	0	0	0	219

Goals of Feature Engineering

• Convert 'context' -> input to learning algorithm.

• Expose the structure of the concept to the learning algorithm.

• Work well with the structure of the model the algorithm will create.

• Balance number of features, complexity of concept, complexity of model, amount of data.

Sample from SMS Spam

- SMS Message (arbitrary text) -> 5 dimensional array of binary features
- 1 if message is longer than 40 chars, 0 otherwise
- 1 if message contains a digit, 0 otherwise
- 1 if message contains word 'call', 0 otherwise
- 1 if message contains word 'to', 0 otherwise
- 1 if message contains word 'your', 0 otherwise

"SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info"

Long?	Long? HasDigit?		ContainsWord(to)	ContainsWord(your)		

Basic Feature Types

Binary	Features
--------	----------

Categorical Features

Numeric Features

ContainsWord(call)?

FirstWordPOS -> { Verb, Noun, Other } CountOfWord(call)

IsLongSMSMessage?

MessageLength -> { Short, Medium, Long, VeryLong }

MessageLength

Contains(*#)?

- TokenType ->
 { Number, URL, Word, Phone#, Unknown }
- FirstNumberInMessage

ContainsPunctuation?

- GrammarAnalysis ->
 - { Fragment, SimpleSentence, ComplexSentence }

WritingGradeLevel

Feature Engineering for Text

Tokenizing

• TF-IDF

Bag of Words

Embeddings

N-grams

Tokenizing

Breaking text into words

```
"Nah, I don't think he goes to usf" ->
[ 'Nah,' 'I', 'don't', 'think', 'he', 'goes', 'to', 'usf' ]
```

Dealing with punctuation

```
"Nah," ->
    [ 'Nah,' ] or [ 'Nah', ',' ] or [ 'Nah' ]
"don't" ->
    [ 'don't' ] or [ 'don', "', 't' ] or [ 'don', 't' ] or [
'do', 'n't' ]
```

Normalizing

```
"Nah," ->
['Nah,'] or ['nah,']
"1452" ->
['1452'] or [<number>]
```

Some tips for deciding

- If you have lots of data / optimization...
 - Keep as much information as possible
 - Let the learning algorithm figure out what is important and what isn't
- If you don't have much data / optimization...
 - Reduce the number of features you maintain
 - Normalize away irrelevant things
- Focus on things relevant to the concept...
 - Explore data / use your intuition
 - Overfitting / underfitting ← much more later

Bag of Words

One feature per unique token

x_1	а
x_2	word
x_3	of
x_4	text
<i>x</i> ₅	is
<i>x</i> ₆	token
x_7	tokens
<i>x</i> ₈	and
<i>x</i> ₉	features
<i>x</i> ₁₀	few

Features

Bag of Words: Example

test1: Some features for a text example.

Out of vocabulary

m1: A word of text.

m2: A word is a token.

m3: Tokens and features.

m4: Few features of text.

x_1	а
x_2	word
x_3	of
x_4	text
x_5	is
x_6	token
x_7	tokens
<i>x</i> ₈	and
<i>x</i> ₉	features
<i>x</i> ₁₀	few

Selected Features

	m1	m2	m3	m4	
x_1	1	1	0	0	
x_2	1	1	0	0	
x_3	1	0	0	1	
<i>x</i> ₄	1	0	0		
x_5	0	1	0	0	
<i>x</i> ₆		1	0	0	
x_7	0	0	1	0	
<i>x</i> ₈	0	0	1	0	
<i>x</i> ₉	0	0	1	1	
x ₁₀	0	0	0	1	

Training X

	test1
x_1	1
x_2	0
x_3	0
x_4	1
x_5	0
x_6	0
x_7	0
<i>x</i> ₈	0
<i>x</i> ₉	1
<i>x</i> ₁₀	0

Test X

Use bag of words when you have a lot of data, can use many features

N-Grams: Tokens

- Instead of using single tokens as features, use series of N tokens
- "down the bank" vs "from the bank"

Message 1: "Nah I don't think he goes to usf" Message 2: "Text FA to 87121 to receive entry"

Message 2:

Nah I	I don't	don't think	think he	he goes	goes to	to usf	:	Text FA	FA to	87121 to	To receive	receive entry
0	0	0	0	0	0	0		1	1	1	1	1

Use when you have a LOT of data, can use MANY features

Embeddings -- Word2Vec and FastText

- Word -> Coordinate in N dimension
- Regions of space contain similar concepts
- Creating Features Options:
 - Average vector across words
 - · Count in specific regions
- Commonly used with neural networks

Replaces words with their 'meanings' – sparse -> dense representation

build visual codebook/dictionary

build visual codebook/dictionary

clustering/vector quantization

Dictionary

