RÁCTICA	7	ANALISIS DE	REDES										
esa	3			Nombre y ap		Marc Strange							
rupo	1A 1			Nombre y ap		Andreu Mut F	Portes						
echa	###			Nombre y ap	ellidos3								
	ctica aprendem calculados	nos a montar cir	rcuitos más (complejos co	n una red de o	dos mallas en	la que medim	os intensida	des y las com	paramos con			
										4	3,3kΩ	B 3.3k0	2 C
		medio de las le								<u> </u>	₩ ~ —	-\$ \	~
jura. Deter	rmina también l	las diferencias	de potencial	en los bornes	s de cada una	i de las resiste	encias y la d.d	.p. BD. Mon	ta en las dos		7	<u> </u>	' 4V
		ircuito y obtén e Itercalar sucesiv									11	≸1,5k 	
ilizar la ley		tercarar sucesiv	vaniente en	caua rama un	ampenmeno	o medii ia u.u	i.p. en bonies	ue caua les	istellola y		— /з ,	× ,	
	iguiente tabla:											'₹E	
Ddn te	óricas (V)	Ddp, experim	entales (V)	∢ntensidades	teóricas (mA	nsidades exp	erimentales (i	,			'	T ₂ 5V	
		V _{AB} =	2,5822			I I =	0,769					$\frac{1}{D}$	
<u> </u>		~~										,,,,	
10 T		V _{BD} =	5,521			/ _{ED} =	0,344						
48 = 80 = 68 =	1,48	V _{CE} =	1,4057	/ ₀₈ =	-0,447	ا ا _{چو} =	-0,426						
CTIVIDAD	2: Añade en e	el circuito origina	al, una resist	encia de 1,5	<Ω con los te	rminales en 🗗	y D. Mide la i	ntensidad qu	ie circula por	esa			
sistencia.													
							1						
		_	Intensidad		utilizando ciro								
		_		l =		0,239							
		iricamente el ge				los puntos BD)_				4 221		110
		ncial entre los p					. ==				A 3,3 k		$^{3}_{M}$ $^{6}_{M}$
	cuito pasivo (el	liminando los g	eneradores)	y mide la resi	istencia equiv	alente entre lo	s puntos <u>BD.</u>	Compara los	s resultados c	on el valor	├ ~	/v~~~v	VVV
órico.	iguianta table:											→ <	
enena ia si	iguiente tabla:											≥ 1,5 k	Ω
												∀ ≶	
	dore quivalent	te de Thevenin t	teórico	Generador	. equivalente	⊥ de Ţ <u>hevenin</u> ex	vnerimental					$+$ $\overline{1}$	
Gonore	ador equivalent				V _{BD} =		5,521				<u> </u>	D	
Genera	V =												
Genera	V _{BO} = R _{BO} =		5,476 0,785		R _{BD} =		0,778	-					

ularia por	una resistenc	ia de 1,5KΩ s	si la conectára	amos entre 💆	y D.					
					1,5 K	(0				
			•							
nta el circu	uito siguiente y	y mide la inte	nsidad que			/VV				
cula.										
				В	Ι,		D			
				_			_			
						D				
					E _T	R _T				
	resultados cor			e:						
Intens	sidad teórica u	tilizando The								
lakeil	=	-1	2,396			linande -i "	 			
Intensida	ad experiment	ai utilizando j	nevenin	Intensidad ex	cperimental uti = 1		to original 0,239			
	1-				1-		0,239			
TIVIDADE	. Monto los a	irovitaa aarra		ara abtanar a	raceina antalma			 		
							udodoo auto o			
							idades que c			
				siguiente tab						
ediante el pr	rincipio de su	perposición. C	ompara en la	siguiente tab	la los valores	medidos con	los calculado			
ediante el pr	rincipio de su Intensidad te	perposición. C órica I1 (<u>m.A</u>)	Compara en la Intensidad te	siguiente tab eórica I2(mA)	a los valores Intensidad te	medidos con eórica 13(mA)	los calculado			
ediante el pr	rincipio de su ¶ntensidad te I' ₄	perposición. C órica I1 (<u>mA</u>) 1,85	Compara en la Intensidad to I_2'	siguiente tab eórica I2(<u>mA</u>) -0,58	la los valores Intensidad te	medidos con eórica I3(<u>m</u> A) 1,27	los calculado			
ediante el pr	rincipio de su Intensidad te I''_ I'''	perposición. C órica I1 (mA) 1,85 -0,7937	Compara en la Intensidad to I_2^r	siguiente tab eórica I2(mA) -0,58	Intensidad te $I_2^{\prime\prime}$	medidos con eórica I3(mA) 1,27 -1,58	los calculado			
ediante el pr	rincipio de su ¶ntensidad te I' ₄	perposición. C órica I1 (<u>mA</u>) 1,85	Compara en la Intensidad to I_2'	siguiente tab eórica I2(<u>mA</u>) -0,58 -0,7937	Intensidad te $I_2^{\prime\prime}$	medidos con eórica I3(<u>m</u> A) 1,27	los calculado			
ediante el pr	rincipio de su Intensidad te I''_ I'''	perposición. C órica I1 (mA) 1,85 -0,7937	Compara en la Intensidad to I_2^r	siguiente tab eórica I2(mA) -0,58	Intensidad te	medidos con eórica I3(mA) 1,27 -1,58	los calculado			
ediante el pr	Intensidad te	perposición. C órica I1 (mA) 1,85 -0,7937	Intensidad to I_2^{\prime} $I_2^{\prime\prime}$	siguiente tab eórica I2(mA) -0,58	Intensidad te	medidos con eórica I3(mA) 1,27 -1,58	los calculado			
ediante el pr	Intensidad te	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29	Intensidad to I_2^r I_2^r	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92	Intensidad te	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sujuntensidad ter $\frac{I_{1}'}{I_{1}''}$ $\frac{I_{1}'''}{I_{1}'''}$ $I_{1} = \sum_{i=1}^{3} I_{1}^{i}$	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29	Compara en la Intensidad to $I_{2}^{I_{2}}$ $I_{2}^{I_{2}^{I_{2}}}$ $I_{2} = \sum_{i=1}^{3} I_{i}^{I_{2}}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92	Intensidad te I_2'' I_2'' I_2''' I_2''' I_2'''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sujuntensidad ter $\frac{I_{1}'}{I_{1}''}$ $\frac{I_{1}'''}{I_{1}'''}$ $I_{1} = \sum_{i=1}^{3} I_{1}^{i}$	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29	Compara en la Intensidad to $I_{2}^{I_{2}}$ $I_{2}^{I_{2}^{I_{2}}}$ $I_{2} = \sum_{i=1}^{3} I_{i}^{I_{2}}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92	Intensidad te I_2'' I_2'' I_2''' I_2''' I_2'''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sur fintensidad ter I_1' I_1'' I_1''' I_1''' I_1''' I_1'''	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29	Compara en la Intensidad te $I_{\frac{1}{2}}^{t}$ $I_{\frac{1}{2}}^{t} = \sum_{t=1}^{3} I_{\frac{1}{2}}^{t}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537	Intensidad te I_2'' I_3'' I_3'' I_3'' I_3''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sujuntensidad ter I_{4}^{\prime} $I_{4}^{\prime\prime}$ $I_{4}^{\prime\prime}$ $I_{4}^{\prime\prime\prime}$ $I_{4}^{\prime\prime\prime}$ $I_{4}^{\prime\prime\prime}$ Intensidad e	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29 0,7663	Intensidad to $I_{2}^{I_{2}^{I}}$ $I_{2} = \sum_{i=1}^{3} I_{2}^{I}$ Intensidad e	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537	Intensidad te I_2'' I_3'' I_3'' I_3'' I_3''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sujuntensidad ter I_{4}^{\prime} $I_{4}^{\prime\prime}$ $I_{4}^{\prime\prime}$ $I_{4}^{\prime\prime\prime}$ $I_{4}^{\prime\prime\prime}$ $I_{4}^{\prime\prime\prime}$ Intensidad e	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29 0,7663	Compara en la Intensidad to I_2' I_2'' I_2'' $I_2 = \sum_{i=1}^3 I_2^i$ Intensidad e	siguiente tab eórica I2(<u>mA</u>) -0,58 -0,7937 0,92 -0,4537	Intensidad te I_2'' I_3'' I_3'' I_3'' I_3''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sur rincipio de s	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29 0,7663	Compara en la Intensidad te $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = \sum_{i=1}^{2} I_{\frac{1}{2}}^{I}$ Intensidad e $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = I_{\frac{1}{2}}^{I}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537 xp. I2(mA)	Intensidad te I_2'' I_3'' I_3'' I_3'' I_3''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sur rincipio de s	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29 0,7663	Compara en la Intensidad to I_2' I_2'' I_2'' $I_2 = \sum_{i=1}^3 I_2^i$ Intensidad e I_2'' I_2'' I_2''	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537 xp. I2(mA)	Intensidad to I_2'' $I_2 = \sum_{i=1}^3 I_2''$ Intensidad I_3'' $I_2 = \sum_{i=1}^3 I_2'$ I_3'' I_3''	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sur rincipio de s	oerposición. O órica I1 (mA) 1,85 -0,7937 -0,29 0,7663 exp. I1 (mA)	Compara en la Intensidad te $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = \sum_{i=1}^{2} I_{\frac{1}{2}}^{I}$ Intensidad e $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = I_{\frac{1}{2}}^{I}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537 xp. I2(mA)	Intensidad to I_3'' $I_2 = \sum_{i=1}^3 I_2^{i''}$ Intensidad I_2''' $I_2 = \sum_{i=1}^3 I_2^{i'}$ $I_3 = \sum_{i=1}^3 I_2^{i'}$	medidos con eórica I3(mA) 1,27 -1,58 0,63 0,32	los calculado			
ediante el pr	rincipio de sur rincipio de s	oerposición. C órica I1 (mA) 1,85 -0,7937 -0,29 0,7663	Compara en la Intensidad te $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = \sum_{i=1}^{2} I_{\frac{1}{2}}^{I}$ Intensidad e $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = I_{\frac{1}{2}}^{I}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537 xp. I2(mA)	Intensidad to I_3'' $I_2 = \sum_{i=1}^3 I_2^{i''}$ Intensidad I_2''' $I_2 = \sum_{i=1}^3 I_2^{i'}$ $I_3 = \sum_{i=1}^3 I_2^{i'}$	medidos con eórica I3(mA) 1,27 -1,58 0,63	los calculado			
ediante el pr	rincipio de sur rincipio de s	oerposición. O órica I1 (mA) 1,85 -0,7937 -0,29 0,7663 exp. I1 (mA)	Compara en la Intensidad te $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = \sum_{i=1}^{2} I_{\frac{1}{2}}^{I}$ Intensidad e $I_{\frac{1}{2}}^{I}$ $I_{\frac{1}{2}}^{I} = I_{\frac{1}{2}}^{I}$	siguiente tab eórica I2(mA) -0,58 -0,7937 0,92 -0,4537 xp. I2(mA)	Intensidad to I_3'' $I_2 = \sum_{i=1}^3 I_2^{i''}$ Intensidad I_2''' $I_2 = \sum_{i=1}^3 I_2^{i'}$ $I_3 = \sum_{i=1}^3 I_2^{i'}$	medidos con eórica I3(mA) 1,27 -1,58 0,63 0,32	los calculado			