* Matrix norms: We can view an mxn motrix as a vector of length mn, then use one of the vector norms Dep: The Frobenius (Hilbert-Sach Schmidt) norm
of A & Rmxn is defined as $\|A\|_{\mathbf{F}} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2\right)^{1/2}.$ $= \left(\frac{n}{2} \left\| \overrightarrow{\partial}_{1} \right\|_{2}^{2} \right)^{4/2}$ = Vtr(ATA) Vtr (AAT) Dec: For $X \in \mathbb{R}^{m \times n}$ $tr(X) = \sum_{i=1}^{m \times n} x_i$ is called the trace of X However, there exist different types of mouth'x norms called induced matrix norms (goten called operator norms), which are defined in terms of the behavior of a motrix as an operator between its normed domain and range space. . Doc: Let $A \in \mathbb{R}^{m \times n}$. Then the exceptor norm is defined as In other words, IAIL is the smallest constant C sofisgying lately < Clark tx Elen

* Why matrix norm is important?
A canno
A computer earnot represent real numbers exactly unless they are digital numbers (e.g. 12 and 1).
⇒ Suppose we want to solve A⊋ = B
where $A \in \mathbb{R}^{m \times m}$ $\mathbb{R} \in \mathbb{R}^m$ and $\overline{b} \in \mathbb{R}^m$.
=> we have to girst encode A; \$\frac{1}{26}\$, and \$\frac{1}{6}\$.
on the computer
$A \longrightarrow A$
$7 \rightarrow 7$
$\overrightarrow{z} \longrightarrow \overrightarrow{z}$ $\overrightarrow{b} \longrightarrow \overrightarrow{b}'$ i.e. we solve $\overrightarrow{Az'} = \overrightarrow{b}'$
For simplicity, suppose $\vec{b} = \vec{h}$ and \vec{A} is invertible. The solution: $ \vec{x}' - \vec{x} = \vec{x}' - \vec{A}^{\top}\vec{b} $
x - x = 1 x - A 5
$- \ \vec{z}' - A^{1} A \vec{z}'\ $
113/11
$= \ A^{\perp}(A-A')\overline{z}'\ $
12/1
2 A'(A-A') Z'
112/1
$\leq \ A\ \ A^{\perp}\ \ A - A\ $.
condition . NAI
number relative error in matrix.

condition number: K(A) = ||A|| ||A⁻¹|| To K(A) is large then A is bad i.e., there is a large error in solution = A² = A² b. . If A singular, $K(A) = + \infty$ * Orthogonal Vectors: Deg: Two vectors \$ \$\vec{y} \in \mathbb{R}^n are said to be orthogonal is $\vec{z} \cdot \vec{y} = 0$ (The zero vector is orthogonal to any vector) Two sets of vectors X Y are said to be orthogonal if + ₹ ∈ X and + y ∈ Y, \$\frac{1}{2} \cdot y = 0 A set of vectors S is said to be orthogonal is + ₹ € S, + ₹ € S, ₹ ≠ ₹, $\vec{x} \cdot \vec{y} = 0.$ A tec set of vectors S is said to be arthonormal if S is orthogonal and $422 \in S$, 1121 = 1 (orthonormal = othogonal + normalized Thm: The vectors in an orthogonal set S are linearly independent. pf: let S = [v, v] Suppose they are not lin indep.

If s true for any j=1, n. $\Rightarrow \vec{R} = \vec{P} + \sum_{i=1}^{n} \langle \vec{q}_i, \vec{r} \rangle \vec{q}_i$ where $Q = \begin{bmatrix} \vec{q} & \vec{q} & \vec{q} \end{bmatrix} \in \mathbb{R}^{m \times n}$ The state of the and $QQ^T = T$ Dec: A square matrix QERMXM is said to be orthogonal if i.e., OTQ = QQT = I. -46 43 5/6 Remarks If Q= [9] 9, J & IR^{mxn} with m>n and those vectors are arthonormal, then it is always true that Q'Q = I but QQ' & I unless m=n