

膝伸展筋トレーニングリアルタイム評価のため、非接触 式筋活動推定システムの開発

Development of a non-contacting muscular activity measurement system for evaluating knee extension muscles training in real-time

BACKGROUND

- Elderly people fall each year: 28-35% (65 years old~)^[1]
- The loss of muscle (Knee Extension Muscles, or KXMs) strength serves as a known factor of the falling^{[1][2]}

Risk Factors for falls in older age

KXMs training is important.

[1]World Health Organization, World Health Organization. Ageing, & Life Course Unit. (2008). WHO global report on falls prevention in older age. World Health Organization. [2]World Health Organization(Europe), . WHO(2004). What are the main risk factors for falls amongst older people and what are the most effective interventions to prevent these falls?

BACKGROUND

Common Exercises for KXMs training^{[1][2]}:

- Jogging
- Chair extension exercises
- Stair exercises
- _ •••

Problem: KXMs training lacks suitable means to evaluate muscular activity

Exercises for KXMs training

Unable to do quantitative analysis on the muscle

Objective: Developing a real time muscular monitoring system for KXMs training

[1] World Health Organization, World Health Organization. Ageing, & Life Course Unit. (2008). WHO global report on falls prevention in older age. World Health Organization. [2] https://www.bu.edu/enact/living-well/exercise-and-arthritis/exercises/exercise-3-knee-extension/

STATE OF THE ART

Muscular activity evaluation

Measurement Electrical signals, Directly Directly

Sensor SEMG Mechanical signal, Directly

MMG

Fig.4.1: EMG sensor

1.Electromyography

(EMG)[1]

Pressure sensor chip Liquid
Housing Acoustic
wave
Skin surface
Muscle
contraction
Fig. 4.2: MMG sensor

2.Mechanomyogram

(MMG)

Camera, MMG, IMU

 $R^2 = 0.58^{[3]}$

3.Kinematics

Accuracy $R^2 = 0.90 \pm 0.02^{[1]}$ $R^2 = 0.82 \pm 0.04^{[2]}$ Limitation Placement on skin, Affected by sweat Inconvenient placement, Affected by sound noise

Affected by model and measurement

Kinematics method (Easy-to-Place) is a suitable choice for daily KXMs training

^[1] Na, Y A study on estimation of joint force through isometric index finger abduction with the help of SEMG peaks for biomedical applications.

^[2] Wang, Daqing(2019) Estimation of Human Quadriceps Contraction Strength Using Mechanomyogram Signal

^[3] Kasai, Ritaro(2017) Development of a training system to increase knee extension load during walking -Muscular activity estimation by IMU

RESEARCH OBJECTIVE

^[1] Kasai, Ritaro Development of a training system to increase knee extension load during walking -Muscular activity estimation by IMU. [2] Kodama, Takuma(2017)サルコペニア予防のための運動測定システム **慣性センサと機械学習に基づく収縮強度推定手法の提案**

^[3] Z. Gu, M. S. A. Maamari, D. Zhang, Y. Kawakami, S. Cosentino and A. Takanishi, "Design and Evaluation of a Training system to Increase Knee Extension Load During Walking," 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 2019, pp. 1288-1293.

SYSTEM OVERVIEW-MODEL

a: Acceleration $[m/s^2]$ w: Angular verocity [rad/s]

u : Voltage[mV]

MVC : maximum voluntary contraction

 R_{ll} : Lower limb ratio BMI: Body Mass Index

 a_{peak} : Peak acceleration[m/s^2] w_{peak} : Peak angular verocity[rad/s] A_{IMU} : Area under IMU signal curve D_{phase} : Duration of the gait phase[ms]

TRIAL EXPERIMENT

Azure [1] (previous) vs Local training (this study) using previous database

In this study, local training applied as it is more feasible for adjusting training parameters.

Result

	Platform	Cycle	Result(RMSE*)
Previous	Azure	80	9.4%
Re-do 1		100	9.6%
Re-do 2	Local (Tensorflow r1.15)	1000	3.4%
Re-do 3		100	9.3%(BMI)

*
$$RMSE(X,h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2}$$
 smaller is better

- (1) Better result when consider individual difference.
- 2 Overfitting happened when learning cycle increase.
- 3 More database is need.

EXPERIMENT

- ☐ Objective:
- Extend database
- Evaluate algorithm
- **□** Participants:
- 14 healthy young adults (8 male + 6 female,
- 21-44 years old)
- ☐ Protocol:
- Body measurement(Lower limb ratio & BMI)
- Normal walk, 5[m] * 5 [times] back and forth walk: 4 [groups]
- Fast walk, 5[m] * 5 [times] back and forth walk: 4 [groups]
- MVC measurement

☐ Results: 649 Phases available for model training.

SYSTEM OVERVIEW-HARDWARE

SYSTEM OVERVIEW-HARDWARE

PREPROCESSING

11

PREPROCESSING

1. Signal Processing(IMU: BNO055)

Sensor	DOF	Accelerometer		Gyroscope	
		Range	Bandwidth	Range	Bandwidth
BNO055	9	±2g/±4g/±8g/±16	1k~<8 [Hz]	±125~2000 [deg/s]	523~12 [Hz]

Feb, 07, 2021

PREPROCESSING

WASEDA UNIVERSITY, TOKYO, JAPAN

Feb, 07, 2021

MODEL OPTIMIZATION

1. Hyper-parameter Selection

Featured kinematics inputs(via IMU): [4,649]

Individual Differences(via Body measurement): [2,649]

Objective: optimize model's performance by adjusting hyper-parameter

Hyper-Parameter adjusted with *GridSearchCV* method

n_HiddenLayer	7	
n_NeuronUnit	12	
act_Func	'relu'	
Optimizer	'Adam'	
loss_Func	' logcosh'	

*Environment:

-Python 3.6.5 -CUDA 10.0

-Tensorflow 2.0.0

-Keras 2.3.1

Result: Performance was improved by 6.4% in average

14

MODEL OPTIMIZATION

2. Random Connection Dropping(Dropout)

Objective: prevent over-fitting happened (generalization ability reduce)

Result: performance difference between training data and testing data drop from $20\%\sim40\%$ to <5%

15

Results

shows better results)

Results

Conclusion:

- Quantitative estimation for lower limb muscular activity (flat walk) in a high accuracy($r^2 > 0.5$).
- Real time estimation

Limitation:

- Model trained by EMG sensor data, data scale & EMG accuracy limit further performance improvement.
- Preprocessing calculation made the system need powerful hardware or latency increase.

Future work

- Performance improvement:
 - 1. Merge multiple sensor data to break the limit of only using single type sensor(Not just EMG).
 - 2. Extend application scenario(more complicate exercise & specific object group).
- Real time estimation:
 - 1. Simplifying algorithm to decrease calculation difficulty.
 - 2. Trying model no need gait phase detection.

THANK YOU FOR YOUR ATTENTION