Focométrie des lentilles minces convergentes

ou

Comment mesurer la focale d'une lentille mince convergente ?

M-A BUCHET - Lycée Marceau - PCSI

« Ateliers CPGE » au lycée Louis Bascan de Rambouillet

28/05/2021

marc-antoine.buchet@ac-orleans-tours.fr

Les lentilles : un outil pour dévier les rayons lumineux et former des images

Problème:

Les rayons ne convergent pas en un point unique! C'est ce qu'on appelle les aberrations : les lentilles réelles ne sont pas idéales.

Solution:

Utiliser des lentilles minces. Ce n'est pas parfait mais c'est beaucoup mieux.

Lentille convergente : $f' = \overline{OF'} > 0$

Lentille divergente : $f' = \overline{\mathit{OF'}} < 0$

Foyer image et distance focale image :

Le foyer image d'une lentille mince est le point de convergence des rayons issus de l'infini (d'un objet très loin). La distance focale image f' est la distance entre le centre O de la lentille et le foyer image F': $f' = \overline{OF'}$

Lentilles minces et foyers objets :

Lentille divergente : $f = \overline{OF} > 0$

Foyer objet et distance focale objet :

Le foyer objet d'une lentille mince est le point objet qui donne un faisceau parallèle (l'image est infiniment loin). La distance focale objet f est la distance entre le centre O de la lentille et le foyer objet F: $f = \overline{OF}$

Lois de la réflexion et de la réfraction au niveau de l'interface entre deux milieux :

Lois de la réflexion et de la réfraction au niveau de l'interface entre deux milieux :

