LINGUAGGI FORMALI Esercizi

Nicola Fanizzi

LINGUAGGI DI PROGRAMMAZIONE Corso di Informatica T.P.S.

Dipartimento di Informatica Università di Bari "Aldo Moro"

[2014/01/28-13:30:23]

Indice

1	Intr	oduzione ai Linguaggi Formali	5
	1.1	Operazioni	5
	1.2	Grammatiche	5
	1.3	Automi	7
2	Ling	guaggi Regolari	8
	2.1		8
	2.2	Automi	8
		2.2.1 DFA	8
		2.2.2 NFA e trasformazioni	9
	2.3	Espressioni Regolari	9
	2.4		10
	2.5		10
	2.6	·	11
_			
3	_	5 m 66 m 61.	12
	3.1		12
	3.2	Pumping Lemma	12
	3.3	Proprietà di chiusura	13
	3.4	Forme Normali	13
	25	Automi a Pila	12

1

Introduzione ai Linguaggi Formali

1.1 Operazioni

1.1.1 - Dato $L = \{a^n b^n \mid n > 0\}$, determinare L^2 e L^3

1.1.2 - Dato $L = \{00, 01, 100\}$, stabilire se appartengono a L^* le stringhe

- 000010000
- 100000100001
- 00000100

Quali di queste appartengono a L^4 ?

Suggerimento: scomporre nelle varie sotto-stringhe

1.1.3 - Dato $L = \{0^n 1^n \mid n > 0\}$, determinare \bar{L}

Suggerimento: scomporre in sotto-insiemi (disgiunti) definiti anche ricorsivamente

1.2 Grammatiche

1.2.1 - Data $G = (\Sigma, V, S, P)$, con

- $\Sigma = \{a, b\}$
- $V = \{S, B\}$
- $P = \{S \longrightarrow aB, B \longrightarrow bS|b\}$

indicare

- 1. il tipo di *G*
- 2. **L**(*G*)

(

1

1.2.2 - Data $G = (\Sigma, V, S, P)$, con

•
$$\Sigma = \{a, b, c, d\}$$

•
$$V = \{S, E, F\}$$

•
$$P = \{S \longrightarrow ESF | EF, E \longrightarrow ab, F \longrightarrow cd\}$$

indicare

1. il tipo di *G*

1.2.3 - Data $G = (\{a\}, \{S\}, S, P)$, con

•
$$P = \{S \longrightarrow aS$$
a|aa|a $\}$

indicare

1. il tipo di *G*

2.
$$L(G)$$
 ed il suo tipo

1.2.4 - Dato $G = (\{a, b, c\}, \{S, A\}, S, P)$ dove

•
$$P = \{S \longrightarrow Sc | A, A \longrightarrow aAb | ab\}$$

indicare
$$\mathsf{L}(G)$$

1.2.5 – Dato
$$G = \left(\left\{\mathsf{a},\mathsf{b}\right\},\left\{S\right\},S,P\right)$$
 dove

•
$$P = \{S \longrightarrow \epsilon | SS | aSb | bSa \}$$

indicare
$$L(G)$$

1.2.6 - Dato $G = (\{0\}, \{S, A, B\}, S, P)$ dove

•
$$P = \{S \longrightarrow A0, A \longrightarrow B, B \longrightarrow A0\}$$

indicare
$$L(G)$$
 ed il suo tipo

1.2.7 - Dato $\Sigma = \{0, 1\}$, definire G tale che L = L(G) nei seguenti casi:

- i. L delle stringhe con uno ed un solo 1
- ii. L delle stringhe con almeno uno 0
- iii. L delle stringhe con non più di tre 1
- iv. L delle stringhe con almeno tre 0

1.2.8 - Dato
$$\Sigma = \{0, 1\}$$
, definire G per i seguenti linguaggi:

i.
$$L_1 = \{0^n 1^m \mid m > n \ge 0\}$$

1.3. AUTOMI [7 / 14]

ii.
$$L_2=\left\{0^n1^{2n}\mid n\geq 0\right\}$$

iii.
$$L_3=\left\{0^n1^{n+2}\mid n\geq 1
ight\}$$

iv.
$$L_4 = \left\{0^n 1^{n-3} \mid n \geq 3 \right\}$$

v.
$$L_1 \cup L_2$$

vi.
$$oldsymbol{L_1 \cdot L_2}$$

vii.
$$L_1^3$$

viii.
$$oldsymbol{L_1^*}$$

ix.
$$L_1 - ar{L}_4$$

1.2.9 - Dato
$$L=\{w\in\{0,1\}\mid |w| \ \mathrm{mod}\ 3=1\}$$
, definire G tale che $L=\mathsf{L}(G)$

1.2.10 – Dato
$$L=\left\{0^n1^k\mid k=n+1, n\geq 0\right\}$$
, definire G tale che $L=\mathsf{L}(G)$

1.3 Automi

1.3.1 - Dato l'automa *M* definito da:

	а	b
$ ightarrow q_0$	q_0	q_1
$*q_1$	q_0	q_2
q_2	q_2	q_1

Quali tra a³b, abaab, a⁴bba, a⁶b⁸ab sono accettate?

1.3.2 - Dato l'automa definito nell'Esercizio 1.3.1, fornire il diagramma di transizione

LO

1.3.3 - Dato l'automa definito dal diagramma di transizione

fornire la sua tabella di transizione

()

1.3.4 - Dato l'automa definito dal diagramma di transizione

indicare il linguaggio accettato

Ø,

1

Linguaggi Regolari

2.1 Grammatiche Lineari Destre

- **2.1.1** Definire grammatiche lineari destre che generino ognuno linguaggi seguenti:
 - i. L delle stringhe binarie con uno ed un solo 1
 - ii. L delle stringhe binarie con almeno uno 0
 - iii. L delle stringhe binarie con non più di tre 1
 - iv. L delle stringhe binarie con almeno tre 0
- **2.1.2** Definire una grammatica lineare destra che generi $\{1^n0 \mid n>0\} \cup \{0^k1 \mid k>0\}$

2.2 Automi

2.2.1 DFA

- **2.2.1** Trovare un DFA *M* tale che accetti l'insieme delle stringhe binarie che abbiano 11 come prefisso
- **2.2.2** Trovare un DFA tale che accetti $\{(10)^k \mid n > 0\}$
- **2.2.3** Dato $L = \{w \in \{\mathsf{a},\mathsf{b}\}^* \mid |w| \bmod 3 = 1\}$, definire un DFA M tale che $L = \mathsf{L}(M)$
- **2.2.4** Definire un DFA *M* che accetta tutte le stringhe binarie tranne quelle che contengono 001 come sottostringa
- **2.2.5** Dato $L = \{awa \mid w \in \{a, b\}^*\}$, definire il DFA M tale che L = L(M)
- **2.2.6** Dato L dell'esercizio 2.2.5, definire il DFA M tale che $L^2 = L(M)$

2.3. ESPRESSIONI REGOLARI [9/14]

2.2.7 - Trovare un DFA per i seguenti linguaggi sull'alfabeto binario:

$$\begin{split} &\text{i. } \{w \in \{\mathsf{a},\mathsf{b}\}^* \mid |w| \bmod 3 = 0\} \\ &\text{ii. } \{w \in \{\mathsf{a},\mathsf{b},\mathsf{c}\}^* \mid |w| \bmod 5 \neq 0\} \\ &\text{iii. } \{w \in \{\mathsf{0},\mathsf{1}\}^* \mid n_\mathsf{1}(w) \bmod 3 = 0\} \\ &\text{iv. } \{w \in \{\mathsf{0},\mathsf{1}\}^* \mid [n_\mathsf{0}(w) \bmod 3] > [n_\mathsf{1}(w) \bmod 3] \,\} \end{split}$$

2.2.2 NFA e trasformazioni

2.2.8 - Trovare un DFA equivalente al NFA

2.2.9 - Definire un NFA con massimo 5 stati per

$$\{\mathsf{baba}^n\mid n\geq 0\}\cup \{\mathsf{bab}^m\mid m\geq 0\}$$

1

2.2.10 - Trovare un DFA equivalente a:

2.3 Espressioni Regolari

2.3.1 - Data
$$R = (00)^*(11)^*1$$
, definire $L(R)$ come insieme

2.3.2 - Definire un'espressione regolare per ognuno linguaggi seguenti:

[10 / 14] 2. LINGUAGGI REGOLARI

	i. $m{L}$ delle stringhe binarie con uno ed un solo 1	
	ii. $m{L}$ delle stringhe binarie con almeno uno 0	
	iii. $m{L}$ delle stringhe binarie con non più di tre 1	
	iv. $m{L}$ delle stringhe binarie con almeno tre 0	Ø)
2.3.3	- Definire un'espressione regolare R per il linguaggio $\{w \in \{0,1\}^* \mid w \text{ non contiene zeri consecutivi }\}$	L
2.3.4	– Definire un'espressione regolare $m{R}$ per il linguaggio $\left\{ a^ib^j\mid i+j \;pari\; \right\}$	L
2.3.5	– Definire un'espressione regolare $m{R}$ per il linguaggio $ig\{ m{w} \in \{0,1\}^* \mid m{n}_0(m{w}) + m{n}_1(m{w}) ext{ dispari } ig\}$	L 1
	2.4 Applicazioni del Teorema di Kleene	
2.4.1	- Definire un DFA per ognuna delle espressioni regolari ottenute nell'Es. 2.3.2.	L o
2.4.2	– Definire espressioni regolari per i linguaggi di cui all'Es. 2.2.7 trasformando ognuno di DFA.	lei
2.4.3	– Data ${m R}=(00)^*(11)^*1$, definire un DFA ${m M}$ ed una grammatica ${m G}$ tali che ${m L}({m R})={m L}({m M})$	= (3)
2.4.4	– Dato l'automa M dell'Es. 2.2.8, trovare una R tale che $L(R) = L(M)$.	Ø)
2.4.5	– Dato l'automa M dell'Es. 2.2.9, trovare una R tale che $L(R) = L(M)$.	L
2.4.6	– Dato l'automa M dell'Es. 2.2.10, trovare una R tale che $L(R) = L(M)$.	L
2.4.7	- Definire un NFA che accetti il linguaggio denotato da: $((10 + 1)(11)^*) + (01)^*$	L o
	2.5 Proprietà di chiusura	
2.5.1	– Definire una grammatica lineare destra che generi: $\{w\in \{{\sf a},{\sf b}\}^*\mid w={\sf a}^k nee {\sf b}^k {\sf a},\ k>0\}$	L o
2.5.2	- Definire un DFA per il complemento dei linguaggi di cui all'Es. 2.2.7.	Ø)
2.5.3	- Definire una grammatica regolare per ognuno dei DFA ottenuti nell'Es. 2.5.2.	L D
2.5.4	- Sfruttando la chiusura rispetto all'unione, definire una grammatica lineare destra ed un Diper il linguaggio $\{\ldots \ldots \}$ *da completare*	FA 🕼
2.5.5	- Trovare gli NFA che accettino	
	i. $L((0+1)1^*) \cap L(011^*)$	
	ii. L (ab*a*) ∩ L (a*b*a)	L o

D

2.6 Pumping Lemma – Linguaggi regolari

Esercizi da risolvere attraverso il Pumping Lemma su \mathcal{L}_{reg} .

2.6.1 - Provare che non sono regolari i linguaggi:

i.
$$\{0^i 1^j \mid i, j > 0, \ i < j\}$$

ii.
$$\left\{\mathsf{a}^i\mathsf{b}^j\mid i,j>0,\ i>j\right\}$$

iii.
$$\{0^i 1^j \mid i, j > 0, 2i > j\}$$

iv.
$$\{a^ib^j \mid i, j > 0, i \neq j\}$$

$$\text{ v. } \{w \in \{0,1\}^* \mid i,j>0, \ 2i>j\}$$

vi.
$$\{w \in \{0,1\}^* \mid n_0(w) \neq n_1(w)\}$$

vii.
$$\{w \in \{\mathsf{a},\mathsf{b}\}^* \mid n_\mathsf{a}(w)
eq n_\mathsf{h}(w)\}$$

2.6.2 - Provare che non sono regolari i linguaggi:

i.
$$\{a^i b a^i | i > 0\}$$

ii.
$$\{ww^R \mid w \in \{a, b\}^*\}$$

iii.
$$\{ww \mid w \in \{0,1\}^*\}$$

2.6.3 - Provare che non sono regolari i linguaggi:

i.
$$\{a^kb^kc^k \mid k \geq 0\}$$

ii.
$$\{a^hb^kc^kd^h\mid h,k\geq 0\}$$

2.6.4 - Provare che non sono regolari i linguaggi:

i.
$$\{0^k \mid k = 2^i, i \ge 0\}$$

ii.
$$\{0^h \mid h = i^2, i > 0\}$$

iii.
$$\{w\in\{\mathsf{a},\mathsf{b}\}^*\mid |w|=i^2,\ i\geq 0\}$$

2.6.5 – Stabilire se possa essere regolare
$$\{w_1 \in w_2 \mid w_1, w_2 \in \{\mathsf{a}, \mathsf{b}\}^*, \ w_1 \neq w_2\}$$

LO

Linguaggi Liberi

3.1 Grammatiche

3.1.1 - Determinare una grammatica *G* per i seguenti linguaggi:

1.
$$\{ww^R \mid w \in \{a, b, c\}^*\}$$

2.
$$\{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$$

3.2 Pumping Lemma

3.2.1 – Dimostrare che i seguenti linguaggi non sono liberi da contesto:

i.
$$\{a^nb^nc^n \mid n>0\}$$

ii.
$$\{a^nb^mc^p \mid 1 \le n \le m \le p\}$$

iii. {
$$\mathsf{a}^i\mathsf{b}^j\mathsf{c}^i\mathsf{d}^j\mid i,j\geq 1$$
}

iv.
$$\{ww \mid w \in \{0,1\}^+\}$$

3.2.2 – Dimostrare che i seguenti linguaggi non sono liberi da contesto:

i.
$$\{a^t \mid t \text{ numero primo}\}$$

ii.
$$\{a^{n^2} \mid n > 0\}$$

iii.
$$\{a^ib^j \mid i=2^j, \ i,j \geq 0\}$$

iv.
$$\{a^nb^m \mid n > 2^m, n, m \ge 0\}$$

v.
$$\{a^kb^r \mid k > 0, r > k^2\}$$

vi.
$$\{a^{2^n} \mid n \ge 1\}$$

3.3 Proprietà di chiusura

3.3.1 - Determinare una grammatica *G* per i seguenti linguaggi:

1.
$$\left\{0^i 1^j \mid i \neq j, \ i, j > 0\right\}$$

2. $\left\{w \in \{a, b\}^* \mid n_{\mathsf{a}}(w) \neq n_{\mathsf{b}}(w)\right\}$

3.3.2 - Dimostrare che i seguenti linguaggi sono liberi da contesto:

i.
$$\{0^n1^n \mid n=2k+1, \ k>0\}$$

ii. $\{a^nb^n \mid n>0, \ n\neq 7\}$
iii. $\{w\in \{a,b\}^* \mid n_a(w)=n_b(w) \text{ e } w \text{ non contiene bbb}\}$
iv. $\{c^na^ib^kc^m \mid n,m,i,k>0, \ i\neq k\}$

3.3.3 – Dimostrare che sono liberi da contesto i linguaggi complemento \bar{L} dei seguenti linguaggi:

i.
$$\{ww\mid w\in\{0,1\}^*\}$$
 ii. $\{\mathsf{a}^i\mathsf{b}^i\mathsf{c}^i\mid i\geq 0\}$

3.3.4 – Dimostrare che i seguenti linguaggi <u>non</u> sono liberi da contesto:

i.
$$\{\mathsf{a}^n\mathsf{b}^n\mathsf{c}^n\mid n>0\}$$
 ii. $\{w\in\{\mathsf{a},\mathsf{b},\mathsf{c}\}^*\mid n_\mathsf{a}(w)=n_\mathsf{b}(w)=n_\mathsf{C}(w)\}$

3.4 Forme Normali

3.4.1 – Date le grammatiche di cui all'Esercizio 3.1.1, trasformarle in GNF.

3.5 Automi a Pila

3.5.1 – Date le grammatiche di cui all'Esercizio 3.4.1, ricavare i PDA che riconoscano gli stessi linguaggi.

Bibliografia

- [1] Giorgio Ausiello, Fabrizio D'Amore, e Giorgio Gambosi. *Linguaggi, Modelli, Complessità*. FrancoAngeli, 2003.
- [2] Daniel I.A. Cohen. Introduction to Computer Theory. Wiley, 1996.
- [3] John E. Hopcroft, Rajeev Motwani, e Jeffrey D. Ullman. *Automi, Linguaggi e Calcolabilità*. Pearson Italia, 3a edizione, 2009.
- [4] Peter Linz. *An Introduction to Formal Languages and Automata.* Jones & Bartlett, 5a edizione, 2012.
- [5] Robert N. Moll, Michael A. Arbib, e Assaf J. Kfoury. *An introduction to formal language theory.* Springer, 1988.
- [6] Michael Sipser. *Introduction to the theory of computation*. Thomson, 2a edizione, 2005.
- [7] Thomas Sudkamp. Languages and Machines. Addison-Wesley, 3a edizione, 2006.