Gentle Introduction to Physics in Games and Demos

Jetro Lauha Seminar presentation

Assembly 2005, 28th - 31st July 2005

Contents

- Basic components of physical simulation
- Integration to the application
- Physics featured in demoscene releases and case study of Stair Dismount and sequels
- Questions & Answers

Basic Components of Physical Simulation

- Kinematics
- Rigid body dynamics
- Constraints and joints
- Collision detection

Kinematics

- Single particle
 - Mass
 - Position
 - Velocity
 - Applied forces (e.g. gravity)
- Can be joined together with springs or constraints
 - Jakobsen's Verlet-system as an example (later)

Rigid Body Dynamics

- Extension to particle physics
 - Orientation
 - Angular velocity
 - Shape
 - Center of mass
 - Inertia tensor

- Forces applied to arbitrary point
 - Relative to center (typically center of mass)

[Smi04]

Constraints and Joints

Joints limit degrees of freedom

- position: 3, orientation: 3 - collectively 6

- Constraints, examples:
 - limit position to given region
 - force position to given plane
 - limit angle of hinge joint between given minimum and maximum angle

Collision Detection

- Coarse test
- Detailed contact
 - position
 - normal vector
 - penetration depth
- Collision handling
 - body & surface material properties (bounciness, slippiness) => coefficient of restitution, friction forces

Integration to the Application

- Proxy geometries
- Updating simulation
- Use of existing packages (Middleware)
- Verlet integration [Jak01]
 - Short look at one specific physics implementation technique

Proxy Geometries

- Primitive geometries
 - approximate given part of original detailed model
- Physics simulator's understanding of the model
 - Rendering code handles modification of detailed model to match with the proxy geometries (orientations, skinning)

Updating Simulation

- Game applications contain several logical clocks
 - updating of game logic
 - physics simulation
 - rendering
- Use fixed size time step for physics simulation
 - Despite of several papers recommending dynamic one

[McL03, adaptation]

Use of Existing Packages (Middleware)

- Saves implementation time
- Saves development costs
- Applicability to be carefully evaluated

- Simple, fast, relatively stable
- Single particles, clothes, plants, ragdolls
- Rigid bodies
 - Combined from particles with constraints
 - Simple basic building blocks used to create more complex systems
- Used in *Hitman*
 - Developer by IO Interactive, published by Eidos

Euler integration

$$x = x + v \cdot \Delta t$$
$$v = v + a \cdot \Delta t$$

Verlet integration

$$x' = 2x - x^* + a \cdot \Delta t^2$$
$$x' = x$$

$$F = ma$$

 x^* previous position

$$2x - x^* = x + (x - x^*)$$

$$x - x^* \sim v$$

```
#define DAMPING (0.999)
#define TIMESTEPSQ (0.02 * 0.02)
// pos,oldPos = position and previous position
// accumForces = combined forces affecting
              the particle
Vector3 pos, oldPos, accumForces;
pos += DAMPING * (pos - oldPos) +
       accumforces * TIMESTEPSQ;
```


Body built of particles and constraints

Separate collision system with particle system used to define body rotation

Pin joint (ball-and-socket)

Hinge joint

Physics Featured in Demoscene Releases

- Some demos featuring physics simulation
- Case study: Stair
 Dismount and sequels

Some Demos Featuring **Physics Simulation**

Trauma: Mindtrap 08/1997

tAAt: Laatukauraa -**Quality Oat** 08/2002

PlayStation 2

Floppy: **Dream Equation** 10/2002

Dream Equation II 07/2003

Faktory: Feed your machine 08/2003 £t. 47'111.0 08/2004

Screenshot from pouet.net

Some Demos Featuring Physics Simulation

Screenshot from pouet.net

Fairlight:
Digital Dynamix
08/2003

Mayoneez and the boys: MOPED 08/2004

Lonely Coders: Cubic Revolution 08/2004

4 KB intro

Nesnausk!: in.out.side: the shell **05/2005**

Screenshot from pouet.net

Screenshot from pouet.net

- Porrasturvat (Stair Dismount) Assembly'02
 - Stairs and a ragdoll
- Rekkaturvat (Truck Dismount) Assembly'03
 - Truck and the ragdoll, mini editor (ramps etc.)
- Dismount Levels (Preview) Assembly'04
 - Generic editor, integrated scripting language
 - Still in development (looking for contributors)
 - Has small community

- Juice used to model ragdoll
- Use of open source libraries have saved a lot of effort and time with development
 - SDL, SDL_image, SDL_mixer, FMOD, zlib, CFL, libpng, libjpeg, ODE, libcurl, expat, libogg, AngelScript, TinyXml, Mersenne Twister
 - Turska limited but simple framework/UI library as spin off from the games, features-added-as-needed

http://turska.sourceforge.net (v0.1.1)

Ragdoll model in *Juice*

[Smi04]

Questions & Answers

- My home page: http://jet.ro
 - This presentation will be available there.
- Other links
 - ODE: http://ode.org
 - Dismount games: http://jet.ro/dismount/
 - Juice: http://www.natew.com/juice/
 - Jakobsen, T., *Advanced Character Physics*, Game Developers Conference, 2001. http://www.gdconf.com/archives/2001/ [2005-06-21] http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml [2005-06-21]
 - McL03 McLaurin, M., *Outsourcing Reality: Integrating a Commercial Physics Engine*, 2003. http://www.gamasutra.com/resource_guide/20030121/maclaurin_01.shtml [2005-06-21]
 - Smi04 Smith, R., *Open Dynamics Engine User Guide*, 2001-2004. http://ode.org/ode-latest-userguide.html [2005-06-21]