Функціональний аналіз I курс магістратура, 2 семестр

17 лютого 2024 р.

0.1 Деякі вступні слова

Деякі означення зі загальної топології, метричних просторів, лінійної алгебри та теорії міри вважатимуться відомими.

Definition 0.1.1 Задано E – векторний простір над полем k (у рамках даного курсу переважно будуть поля \mathbb{R}, \mathbb{C}).

Векторний простір E буде **топологічним**, якщо

1) задана стандартна топологія на полі k

2) операції $+\colon E\times E\to E$ (додавання) та $\cdot\colon k\times E\to E$ (множення на скаляр) – неперервні

Мабуть, варто розписати детально, що ми матимемо в такому разі. Тимчасово позначу додавання за відображення add: $E \times E \to E$ та множення на скаляр за відображення scalar: $k \times E \to E$. Оберемо будь-яку точку $(x,y) \in E \times E$. Тоді на ній add неперервне, тобто $\forall U$ — відкритий окіл add $(x,y):\exists V$ — відкритий окіл точки (x,y): add $(V)\subset U$. Зауважимо, що для V — відкритого окола (x,y) — існують відкриті околи V_x,V_y , для яких $V_x \times V_y \subset V$. Далі, в нашому випадку add $(U)=\{$ add $(x,y) \mid (x,y) \in V\}=\{x+y \mid (x,y) \in V\} \supset \{x'+y' \mid x' \in V_x, y' \in V_y\} \stackrel{\text{позн.}}{=} V_x + V_y$.

Таким чином, $\forall U_{x+y}$ – відкритий окіл $x+y:\exists V_x,V_y$ – відкриті околи $x,y:V_x+V_y\subset U_{(x,y)}.$ Аналогічно $\forall U_{\lambda x}$ – відкритий окіл $\lambda x:\exists V_\lambda,V_x$ – відкриті околи $\lambda,x:V_\lambda\times V_x\subset U_{\lambda x}.$

Remark 0.1.2 Для топологічного векторного простору достатньо визначити окіл точки 0. Дійсно, всі інші околи $U_x \cong U_0$. В одну сторону в нас неперервне відображення $y \mapsto y + x$, а в іншу сторону – теж неперервне $y \mapsto y - x$.