Математическая логика и теория алгоритмов Лекция 6 Автоматическое доказательство теорем

Куценко Дмитрий Александрович

Белгородский государственный технологический университет имени В. Г. Шухова

Институт информационных технологий и управляющих систем Кафедра программного обеспечения вычислительной техники и автоматизированных систем

7 октября 2011 г.

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\stackrel{-}{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

- $\begin{array}{ccc}
 \bullet & \forall x & 21(x) \Rightarrow \exists x & 21(x); \\
 \bullet & \exists x & 21(x) \Rightarrow \forall x & 21(x);
 \end{array}$
 - - 21 \ / 33 = 21 & 35:
 - 0 2(& 93 m → 2(∨ 93

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\stackrel{-}{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

- $\exists x \, \mathfrak{A}(x) \Rightarrow \exists x \, \mathfrak{A}(x);$ $\exists x \, \mathfrak{A}(x) \Rightarrow \forall x \, \mathfrak{A}(x);$
 - 21 == 21;
 - $\overline{\mathfrak{A} \vee \mathfrak{B}} \Rightarrow \overline{\mathfrak{A}} \& \overline{\mathfrak{B}};$
 - 0 21 & 93 mm 21 V 93

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\stackrel{-}{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

Для этого применяют следующие преобразования:

$$2 \mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \forall x \, \mathfrak{A}(x) & \Rightarrow \exists x \, \mathfrak{A}(x); \\
\bullet & \overline{\exists x \, \mathfrak{A}(x)} & \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};
\end{array}$$

o 2(∨ 23 => 2(& 23:

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\bar{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

Для этого применяют следующие преобразования:

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

• 21 ∨ 23 m 21 & 3;

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\stackrel{-}{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

- $\bullet \quad \forall x \, \mathfrak{A}(x) \Longrightarrow \exists x \, \overline{\mathfrak{A}(x)};$
 - $\bullet \ \exists x \, \mathfrak{A}(x) \Longrightarrow \forall x \, \overline{\mathfrak{A}(x)};$
 - 21 => 21:
 - <u>21 \ / 33</u> <u>21 & 33</u>.
 - 2(& 23 m) 2(\ 25.

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\stackrel{-}{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \forall x \, \mathfrak{A}(x) & \Rightarrow \exists x \, \overline{\mathfrak{A}(x)}; \\
\bullet & \overline{\exists x \, \mathfrak{A}(x)} & \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};
\end{array}$$

$$\overline{21 \& 3} \rightarrow \overline{21} \lor \overline{3}$$

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\stackrel{-}{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\bullet \ \overline{\exists x \, \mathfrak{A}(x)} \bullet \forall x \, \overline{\mathfrak{A}(x)};$$

•
$$\overline{\mathfrak{A} \& \mathfrak{B}} \rightarrow \overline{\mathfrak{A}} \vee \overline{\mathfrak{B}}$$
.

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\bar{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

•
$$\exists x \, \mathfrak{A}(x) \Longrightarrow \forall x \, \overline{\mathfrak{A}(x)};$$

•
$$\overline{\mathfrak{A} \vee \mathfrak{B}} \longrightarrow \overline{\mathfrak{A}} \& \overline{\mathfrak{B}}$$
:

•
$$\overline{\mathfrak{A} \& \mathfrak{B}} \rightarrow \overline{\mathfrak{A}} \vee \overline{\mathfrak{B}}$$
.

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\bar{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

•
$$\exists x \, \mathfrak{A}(x) \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};$$

•
$$\overline{\mathfrak{A} \vee \mathfrak{B}} \longrightarrow \overline{\mathfrak{A}} \& \overline{\mathfrak{B}}$$
:

•
$$\overline{\mathfrak{A} \& \mathfrak{B}} \rightarrow \overline{\mathfrak{A}} \vee \overline{\mathfrak{B}}$$
.

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P\big(f(x,y) \big) \Big) \& \overline{\forall y \big(Q(x,y) \to P(y) \big)} \Big).$$

$$\forall x \bigg(P(x) \to \forall y \Big(P(y) \to P \big(f(x, y) \big) \Big) \& \overline{\forall y \big(Q(x, y) \to P(y) \big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \overline{\forall y \big(\overline{Q(x, y)} \lor P(y) \big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \exists y \big(\overline{Q(x, y)} \lor P(y) \big) \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \exists y \big(Q(x, y) \& \overline{P(y)} \big) \bigg).$$

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P\big(f(x,y) \big) \Big) \& \overline{\forall y \big(Q(x,y) \to P(y) \big)} \Big).$$

$$\forall x \left(P(x) \to \forall y \Big(P(y) \to P \Big(f(x, y) \Big) \Big) \& \overline{\forall y \Big(Q(x, y) \to P(y) \Big)} \right) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \Big(f(x, y) \Big) \Big) \& \overline{\forall y \Big(\overline{Q(x, y)} \lor P(y) \Big)} \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \Big(f(x, y) \Big) \Big) \& \exists y \Big(\overline{Q(x, y)} \lor P(y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \Big(f(x, y) \Big) \Big) \& \exists y \Big(\overline{Q(x, y)} \& \overline{P(y)} \Big) \Big).$$

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P\big(f(x,y) \big) \Big) \& \overline{\forall y \big(Q(x,y) \to P(y) \big)} \Big).$$

$$\forall x \bigg(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \overline{\forall y \Big(\overline{Q(x,y)} \lor P(y) \Big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{Q(x,y)} \lor P(y) \Big) \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(Q(x,y) \& \overline{P(y)} \Big) \bigg).$$

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \big(Q(x,y) \to P(y) \big)} \Big).$$

$$\forall x \left(P(x) \to \forall y \Big(P(y) \to P(f(x,y) \Big) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \right) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \overline{\forall y \Big(\overline{Q(x,y)} \lor P(y) \Big)} \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{\overline{Q(x,y)}} \lor P(y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{Q(x,y)} \& \overline{P(y)} \Big) \Big).$$

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P\big(f(x,y) \big) \Big) \& \overline{\forall y \big(Q(x,y) \to P(y) \big)} \Big).$$

$$\forall x \bigg(P(x) \to \forall y \Big(P(y) \to P \big(f(x, y) \big) \Big) \& \overline{\forall y \big(Q(x, y) \to P(y) \big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \overline{\forall y \big(\overline{Q(x, y)} \lor P(y) \big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \exists y \big(\overline{\overline{Q(x, y)}} \lor P(y) \big) \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \exists y \big(Q(x, y) \& \overline{P(y)} \big) \bigg).$$

Предварённая нормальная форма

Всякую формулу логики предикатов, находящуюся в приведённой форме, с помощью эквивалентных преобразований можно привести к равносильной формуле в предварённой нормальной форме (ПНФ), в которой все кванторы стоя́т в её начале, а область действия каждого из них распространяется до конца формулы, т. е. привести к виду

$$\underbrace{\mathsf{M}_1 x_1 \ldots \mathsf{M}_n x_n \ldots}_{\mathsf{префикс}} \underbrace{\mathfrak{A}(x_1, \ldots, x_n, \ldots)}_{\mathsf{матрица}},$$

где $\lambda_1, \dots, \lambda_n$ — кванторы (либо \exists , либо \forall), называемые префиксом, формула $\mathfrak A$ не содержит кванторов и называется матрицей.

Замечание

В ПНФ префикса может и не быть

Предварённая нормальная форма

Всякую формулу логики предикатов, находящуюся в приведённой форме, с помощью эквивалентных преобразований можно привести к равносильной формуле в предварённой нормальной форме (ПНФ), в которой все кванторы стоя́т в её начале, а область действия каждого из них распространяется до конца формулы, т. е. привести к виду

$$\underbrace{\mathbb{M}_1 x_1 \dots \mathbb{M}_n x_n \dots}_{\text{префикс}} \underbrace{\mathfrak{A}(x_1, \dots, x_n, \dots)}_{\text{матрица}},$$

где $\lambda_1, \ldots, \lambda_n$ — кванторы (либо \exists , либо \forall), называемые префиксом, формула $\mathfrak A$ не содержит кванторов и называется матрицей.

Замечание

В ПНФ префикса может и не быть.

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\exists_{1} \times \mathfrak{A}(\ldots \exists_{2} \times \mathfrak{B}(\ldots \times \ldots) \ldots) \Longrightarrow$$

$$\Longrightarrow \exists_{1} \times \mathfrak{A}(\ldots \exists_{2} y \mathfrak{B}(\ldots y \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме:

$$\mathfrak{A} \vee \mathsf{A} \times \mathfrak{B}(x) \Rightarrow \mathsf{A} \times (\mathfrak{A} \vee \mathfrak{B}(x))$$

$$\mathfrak{A} \& \mathsf{A} \times \mathfrak{B}(x) \Rightarrow \mathsf{A} \times (\mathfrak{A} \& \mathfrak{B}(x))$$

Замечание

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\exists_1 x \mathfrak{A}(\ldots \exists_2 x \mathfrak{B}(\ldots x \ldots) \ldots) \Longrightarrow \exists \exists_1 x \mathfrak{A}(\ldots \exists_2 y \mathfrak{B}(\ldots y \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме:

$$\mathfrak{A} \vee \mathsf{A} \times \mathfrak{B}(\mathsf{x}) \Longrightarrow \mathsf{A} \mathsf{x} (\mathfrak{A} \vee \mathfrak{B}(\mathsf{x}));$$

$$\mathfrak{A} \& \mathsf{A} \times \mathfrak{B}(\mathsf{x}) \Longrightarrow \mathsf{A} \mathsf{x} (\mathfrak{A} \& \mathfrak{B}(\mathsf{x})).$$

Замечание

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\exists \exists_1 x \, \mathfrak{A}(\ldots \exists_2 x \, \mathfrak{B}(\ldots x \ldots) \ldots) \Longrightarrow \exists \exists_1 x \, \mathfrak{A}(\ldots \exists_2 y \, \mathfrak{B}(\ldots y \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме

$$\mathfrak{A} \vee \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \vee \mathfrak{B}(x));$$

$$\mathfrak{A} \& \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \& \mathfrak{B}(x)).$$

Замечание

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\exists_1 x \mathfrak{A}(\ldots \exists_2 x \mathfrak{B}(\ldots x \ldots) \ldots) \Longrightarrow$$

$$\Rightarrow \exists_1 x \mathfrak{A}(\ldots \exists_2 y \mathfrak{B}(\ldots y \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

2 Приведение к предварённой форме:

$$\mathfrak{A} \vee \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \vee \mathfrak{B}(x));$$

$$\mathfrak{A} \& \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \& \mathfrak{B}(x)).$$

Замечание

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\lambda_1 \times \mathfrak{A}(\ldots \lambda_2 \times \mathfrak{B}(\ldots \times \ldots) \ldots) \Longrightarrow$$

$$\longrightarrow \lambda_1 \times \mathfrak{A}(\ldots \lambda_2 \times \mathfrak{B}(\ldots \times \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме:

$$\mathfrak{A} \vee \mathsf{A} \times \mathfrak{B}(x) \Longrightarrow \mathsf{A} \times (\mathfrak{A} \vee \mathfrak{B}(x));$$

$$\mathfrak{A} \& \mathsf{A} \times \mathfrak{B}(x) \Longrightarrow \mathsf{A} \times (\mathfrak{A} \& \mathfrak{B}(x)).$$

Замечание

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$\forall x \Big(P(x) \& \forall y \exists x \Big(\overline{Q(x,y)} \lor R(a,x,y) \Big) \Big) \equiv$ $\equiv \forall x \Big(P(x) \& \forall y \exists z \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big) \equiv$

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x \Big(\overline{Q(x,y)} \lor R(a,x,y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big).$$

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x \Big(\overline{Q(x,y)} \lor R(a,x,y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big).$$

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x \Big(\overline{Q(x,y)} \lor R(a,x,y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big).$$

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы из ложности исходной формулы $\mathfrak A$ следовала ложность преобразованной формулы $\mathfrak A'$:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'}$$
,

в общем случае $\mathfrak{A}'\not\equiv\mathfrak{A}$.

Одной из таких форм является сколемовская нормальная форма — такая предварённая нормальная форма, в которой исключены кванторы существования.

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы из ложности исходной формулы $\mathfrak A$ следовала ложность преобразованной формулы $\mathfrak A'$:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'}$$
,

в общем случае $\mathfrak{A}'\not\equiv\mathfrak{A}$.

Одной из таких форм является сколемовская нормальная форма — такая предварённая нормальная форма, в которой исключены кванторы существования.

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы из ложности исходной формулы $\mathfrak A$ следовала ложность преобразованной формулы $\mathfrak A'$:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'}$$
,

в общем случае $\mathfrak{A}' \not\equiv \mathfrak{A}$.

Одной из таких форм является сколемовская нормальная форма — такая предварённая нормальная форма, в которой исключены кванторы существования.

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы из ложности исходной формулы $\mathfrak A$ следовала ложность преобразованной формулы $\mathfrak A'$:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'}$$
,

в общем случае $\mathfrak{A}'\not\equiv\mathfrak{A}$.

Одной из таких форм является сколемовская нормальная форма — такая предварённая нормальная форма, в которой исключены кванторы существования.

Рассмотрим формулу $\forall x \exists y P(x, y)$.

Здесь предикат P(x, y) выполняется для любого x и некоторого y; при этом y, возможно, зависит от x.

Эту зависимость можно обозначить явно с помощью некоторой функции f(x)=y, ставящей в соответствие каждому x то значение y, которое существует согласно записи $\exists y$.

Если заменить y на f(x), то квантор $\exists y$ можно отбросить:

$$\forall x P(x, f(x)).$$

Рассмотрим формулу $\forall x \exists y P(x, y)$.

Здесь предикат P(x, y) выполняется для любого x и некоторого y; при этом y, возможно, зависит от x.

Эту зависимость можно обозначить явно с помощью некоторой функции f(x)=y, ставящей в соответствие каждому x то значение y, которое существует согласно записи $\exists y$.

$$\forall x P(x, f(x)).$$

Рассмотрим формулу $\forall x \exists y P(x, y)$.

Здесь предикат P(x, y) выполняется для любого x и некоторого y; при этом y, возможно, зависит от x.

Эту зависимость можно обозначить явно с помощью некоторой функции f(x) = y, ставящей в соответствие каждому x то значение y, которое существует согласно записи $\exists y$.

Если заменить y на f(x), то квантор $\exists y$ можно отбросить:

$$\forall x P(x, f(x)).$$

Рассмотрим формулу $\forall x \exists y P(x, y)$.

Здесь предикат P(x, y) выполняется для любого x и некоторого y; при этом y, возможно, зависит от x.

Эту зависимость можно обозначить явно с помощью некоторой функции f(x) = y, ставящей в соответствие каждому x то значение y, которое существует согласно записи $\exists y$.

Если заменить y на f(x), то квантор $\exists y$ можно отбросить:

$$\forall x P(x, f(x)).$$

Рассмотрим формулу $\forall x \exists y P(x, y)$.

Здесь предикат P(x, y) выполняется для любого x и некоторого y; при этом y, возможно, зависит от x.

Эту зависимость можно обозначить явно с помощью некоторой функции f(x) = y, ставящей в соответствие каждому x то значение y, которое существует согласно записи $\exists y$.

Если заменить y на f(x), то квантор $\exists y$ можно отбросить:

$$\forall x P(x, f(x)).$$

Аналогично, если в префиксе имеется набор кванторов $\forall y_1 \dots \forall y_n \exists z$, то $\exists z$ удаляется, а переменная z всюду заменяется на функцию $g(y_1, \dots, y_n)$.

Очевидно, что если самой левой группой кванторов являются кванторы существования $\exists x_1 \dots \exists x_{n_1}$, то они удаляются, а переменные $x_1 \dots x_{n_1}$ заменяются на константы a_1, \dots, a_{n_1} .

Правило элиминирования кванторов существования

Каждое вхождение переменной, относящейся к квантору существования, заменяется на сколемовскую функцию, аргументами которой являются те переменные, которые связаны с кванторами всеобщности, в область действия которых попал удаляемый квантор существования. Если левее квантора существования нет кванторов всеобщности, то соответствующая переменная заменяется на константу. Элиминирование происходит слева направо.

Сколемизация (продолжение)

Аналогично, если в префиксе имеется набор кванторов $\forall y_1 \dots \forall y_n \exists z$, то $\exists z$ удаляется, а переменная z всюду заменяется на функцию $g(y_1, \dots, y_n)$.

Очевидно, что если самой левой группой кванторов являются кванторы существования $\exists x_1 \dots \exists x_{n_1}$, то они удаляются, а переменные $x_1 \dots x_{n_1}$ заменяются на константы a_1, \dots, a_{n_1} .

Правило элиминирования кванторов существования

Каждое вхождение переменной, относящейся к квантору существования, заменяется на сколемовскую функцию, аргументами которой являются те переменные, которые связаны с кванторами всеобщности, в область действия которых попал удаляемый квантор существования. Если левее квантора существования нет кванторов всеобщности, то соответствующая переменная заменяется на константу. Элиминирование происходит слева направо.

Сколемизация (продолжение)

Аналогично, если в префиксе имеется набор кванторов $\forall y_1 \dots \forall y_n \exists z$, то $\exists z$ удаляется, а переменная z всюду заменяется на функцию $g(y_1, \dots, y_n)$.

Очевидно, что если самой левой группой кванторов являются кванторы существования $\exists x_1 \dots \exists x_{n_1}$, то они удаляются, а переменные $x_1 \dots x_{n_1}$ заменяются на константы a_1, \dots, a_{n_1} .

Правило элиминирования кванторов существования

Каждое вхождение переменной, относящейся к квантору существования, заменяется на сколемовскую функцию, аргументами которой являются те переменные, которые связаны с кванторами всеобщности, в область действия которых попал удаляемый квантор существования. Если левее квантора существования нет кванторов всеобщности, то соответствующая переменная заменяется на константу. Элиминирование происходит слева направо.

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо. В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$. Отбросим все кванторы существования, а переменную x заменим на константу a, переменную u— на функцию f(y,z), переменную w— на функцию g(v,z,v).

Т. о. получим следующую форму

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо.

В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

Отбросим все кванторы существования, а переменную x заменим на константу a, переменную u — на функцию f(y,z), переменную w — на функцию g(y,z,v).

Т. о. получим следующую форму

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо. В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

Отбросим все кванторы существования, а переменную x заменим на константу a, переменную u— на функцию f(y,z), переменную w— на функцию g(y,z,v).

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо.

В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

Отбросим все кванторы существования, а переменную x заменим на константу a, переменную u— на функцию f(y,z), переменную w— на функцию g(y,z,v).

Т. о. получим следующую форму

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо.

В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

Отбросим все кванторы существования, а переменную x заменим на константу a, переменную u — на функцию f(y,z), переменную w — на функцию g(y,z,v).

Т. о. получим следующую форму:

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v)).$$

Сколемизация (окончание)

Любую формулу логики предикатов можно привести к сколемовской нормальной форме с сохранением противоречивости.

Идея использования функций вместо групп кванторов восходит к работам Т. Сколема и Ж. Эрбра́на, поэтому такие функции называют сколемовскими или (реже) эрбрановскими, а их добавление — сколемизацией.

Туральф Ско́лем (1887—1963) — норвежский математик, логик и философ

Жак Эрбра́н (1908—1931) — французский математик

Автоматическое доказательство теорем

Доказательство теорем, реализуемое программно, называется автоматическим доказательством теорем.

Процесс доказательства основывается на логике высказываний и логике предикатов.

В настоящее время автоматическое доказательство теорем применяется в системах искусственного интеллекта, а также в промышленности при разработке и верификации интегральных схем.

Доказательство теорем, реализуемое программно, называется автоматическим доказательством теорем.

Процесс доказательства основывается на логике высказываний и логике предикатов.

В настоящее время автоматическое доказательство теорем применяется в системах искусственного интеллекта, а также в промышленности при разработке и верификации интегральных схем.

Автоматическое доказательство теорем

Доказательство теорем, реализуемое программно, называется автоматическим доказательством теорем.

Процесс доказательства основывается на логике высказываний и логике предикатов.

В настоящее время автоматическое доказательство теорем применяется в системах искусственного интеллекта, а также в промышленности при разработке и верификации интегральных схем.

Алгоритм, который проверяет отношение

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B}$$

для формулы \mathfrak{B} относительно формул $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, называется алгоритмом автоматического доказательства теорем (ААДТ).

В общем случае ААДТ невозможен, т. е. не существует алгоритма, который для любых $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, \mathfrak{B} выдавал бы ответ «Да», если $\mathfrak{A}_1, \ldots, \mathfrak{A}_n \vdash \mathfrak{B}$, и «Нет» в противном случае Для некоторых простых формальных теорий и некоторых простых классов формул ААЛТ известны

Пример

Алгоритм, который проверяет отношение

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B}$$

для формулы \mathfrak{B} относительно формул $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, называется алгоритмом автоматического доказательства теорем (ААДТ).

В общем случае ААДТ невозможен, т. е. не существует алгоритма, который для любых $\mathfrak{A}_1,\dots,\mathfrak{A}_n$, \mathfrak{B} выдавал бы ответ «Да», если $\mathfrak{A}_1,\dots,\mathfrak{A}_n \vdash \mathfrak{B}$, и «Нет» в противном случае.

Для некоторых простых формальных теорий и некоторых простых классов формул ААДТ известны.

Пример

Алгоритм, который проверяет отношение

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B}$$

для формулы \mathfrak{B} относительно формул $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, называется алгоритмом автоматического доказательства теорем (ААДТ).

В общем случае ААДТ невозможен, т. е. не существует алгоритма, который для любых $\mathfrak{A}_1,\dots,\mathfrak{A}_n$, \mathfrak{B} выдавал бы ответ «Да», если $\mathfrak{A}_1,\dots,\mathfrak{A}_n \vdash \mathfrak{B}$, и «Нет» в противном случае.

Для некоторых простых формальных теорий и некоторых простых классов формул ААДТ известны.

Пример

Алгоритм, который проверяет отношение

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B}$$

для формулы \mathfrak{B} относительно формул $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, называется алгоритмом автоматического доказательства теорем (ААДТ).

В общем случае ААДТ невозможен, т. е. не существует алгоритма, который для любых $\mathfrak{A}_1,\dots,\mathfrak{A}_n$, \mathfrak{B} выдавал бы ответ «Да», если $\mathfrak{A}_1,\dots,\mathfrak{A}_n \vdash \mathfrak{B}$, и «Нет» в противном случае.

Для некоторых простых формальных теорий и некоторых простых классов формул ААДТ известны.

Пример

В основе многих AAДT лежит идея доказательства «от противного».

Теорема

Если $\mathfrak{A}_1, \ldots, \mathfrak{A}_n, \overline{\mathfrak{B}} \vdash 0$, то $\mathfrak{A}_1, \ldots, \mathfrak{A}_n \vdash \mathfrak{B}$

Доказательство

$$\mathfrak{A}_{1}, \dots, \mathfrak{A}_{n}, \overline{\mathfrak{B}} \vdash 0 \equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}} \to 0 \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}}} \lor 0 \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}}} \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n}} \lor \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \to \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \to \mathfrak{B} = \\
\equiv \mathfrak{A}_{1} \dots \mathcal{A}_{n} \vdash \mathfrak{B}_{n}$$

Доказательство «от противного»

В основе многих AAДT лежит идея доказательства «от противного».

Теорема

Если $\mathfrak{A}_1, \ldots, \mathfrak{A}_n, \overline{\mathfrak{B}} \vdash 0$, то $\mathfrak{A}_1, \ldots, \mathfrak{A}_n \vdash \mathfrak{B}$.

Доказательство

$$\mathfrak{A}_{1}, \dots, \mathfrak{A}_{n}, \overline{\mathfrak{B}} \vdash 0 \equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}} \to 0 \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}}} \lor 0 \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}}} \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n}} \lor \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \to \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \dots \& \mathfrak{A}_{n} \vdash \mathfrak{B}$$

Доказательство «от противного»

В основе многих AAДT лежит идея доказательства «от противного».

Теорема

Если $\mathfrak{A}_1, \ldots, \mathfrak{A}_n, \overline{\mathfrak{B}} \vdash 0$, то $\mathfrak{A}_1, \ldots, \mathfrak{A}_n \vdash \mathfrak{B}$.

Доказательство

$$\mathfrak{A}_{1}, \dots, \mathfrak{A}_{n}, \overline{\mathfrak{B}} \vdash 0 \equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}} \to 0 \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}}} \lor 0 \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \& \overline{\mathfrak{B}}} \equiv \\
\equiv \overline{\mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n}} \lor \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \& \dots \& \mathfrak{A}_{n} \to \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \dots \& \mathfrak{A}_{n} \to \mathfrak{B} \equiv \\
\equiv \mathfrak{A}_{1} \dots & \mathfrak{A}_{n} \vdash \mathfrak{B}.$$

Метод резолюций для логики высказываний

Пусть дана формула логики высказываний $\mathfrak A$

Общезначимость формулы 🎗 можно проверить с помощью метода резолюций, предложенного А. Робинсоном в 1965 г.

Метод резолюций является ААДТ, основанным на доказательстве «от противного», т. е. вместо доказательства $\vdash \mathfrak{A}$ доказывается, что формула $\overline{\mathfrak{A}}$ является противоречием.

Джон Алан Робинсон (род. в 1930 г.)— американский математик и информатик

Для доказательства $\vdash \mathfrak{A}$ сначала формируют отрицание $\overline{\mathfrak{A}}$.

Формулу $\overline{\mathfrak{A}}$ приводят к КНФ, т. е.

$$\overline{\mathfrak{A}}=\mathfrak{D}_1\,\&\ldots\&\,\mathfrak{D}_p,$$

где $\mathfrak{D}_1,\ldots,\mathfrak{D}_p$ — дизъюнкции конечного числа пропозициональных переменных или их отрицаний.

Из них формируется множество дизъюнктов ${\mathscr K}$:

$$\mathcal{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_p\}.$$

Для доказательства $\vdash \mathfrak{A}$ сначала формируют отрицание $\overline{\mathfrak{A}}$.

Формулу $\overline{\mathfrak{A}}$ приводят к КНФ, т. е.

$$\overline{\mathfrak{A}}=\mathfrak{D}_1\,\&\ldots\&\,\mathfrak{D}_p,$$

где $\mathfrak{D}_1, \dots, \mathfrak{D}_p$ — дизъюнкции конечного числа пропозициональных переменных или их отрицаний.

Из них формируется множество дизъюнктов \mathcal{H} :

$$\mathcal{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_p\}.$$

Для доказательства $\vdash \mathfrak{A}$ сначала формируют отрицание $\overline{\mathfrak{A}}$.

Формулу $\overline{\mathfrak{A}}$ приводят к КНФ, т. е.

$$\overline{\mathfrak{A}}=\mathfrak{D}_1\,\&\ldots\&\,\mathfrak{D}_p,$$

где $\mathfrak{D}_1, \dots, \mathfrak{D}_p$ — дизъюнкции конечного числа пропозициональных переменных или их отрицаний.

Из них формируется множество дизъюнктов \mathcal{K} :

$$\mathcal{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_n\}.$$

Находят два дизъюнкта этого множества \mathfrak{D}_i и \mathfrak{D}_j , содержащие пропозициональные переменные с противоположными знаками,— контрарные литералы (к примеру X и \overline{X}):

$$\mathfrak{D}_i = \mathfrak{A} \vee X, \quad \mathfrak{D}_j = \mathfrak{B} \vee \overline{X}$$

При этом \mathfrak{D}_i и \mathfrak{D}_j формируют третий дизъюнкт — резольвенту $\mathfrak{A} \vee \mathfrak{B}$, в которой исключены контрарные литералы

$$\frac{\mathfrak{A}\vee X,\,\mathfrak{B}\vee\overline{X}}{\mathfrak{A}\vee\mathfrak{B}}(\mathsf{R}).$$

В частности, если $\mathfrak{D}_i=X$ и $\mathfrak{D}_j=\overline{X}$, то резольвента для них— это дизъюнкт, равный 0, т. к. $X \& \overline{X} \equiv 0$.

Его называют пустым дизъюнктом или пустой резольвентой и обозначают знаком «□»

Находят два дизъюнкта этого множества \mathfrak{D}_i и \mathfrak{D}_j , содержащие пропозициональные переменные с противоположными знаками,— контрарные литералы (к примеру X и \overline{X}):

$$\mathfrak{D}_i = \mathfrak{A} \vee X, \quad \mathfrak{D}_j = \mathfrak{B} \vee \overline{X}$$

При этом \mathfrak{D}_i и \mathfrak{D}_j формируют третий дизъюнкт — резольвенту $\mathfrak{A} \vee \mathfrak{B}$, в которой исключены контрарные литералы:

$$\frac{\mathfrak{A}\vee X,\,\mathfrak{B}\vee\overline{X}}{\mathfrak{A}\vee\mathfrak{B}}(\mathsf{R}).$$

В частности, если $\mathfrak{D}_i=X$ и $\mathfrak{D}_j=\overline{X}$, то резольвента для них— это дизъюнкт, равный 0, т. к. $X\&\overline{X}\equiv 0$.

Его называют пустым дизъюнктом или пустой резольвентой и обозначают знаком «□»

Находят два дизъюнкта этого множества \mathfrak{D}_i и \mathfrak{D}_j , содержащие пропозициональные переменные с противоположными знаками,— контрарные литералы (к примеру X и \overline{X}):

$$\mathfrak{D}_i = \mathfrak{A} \vee X, \quad \mathfrak{D}_j = \mathfrak{B} \vee \overline{X}$$

При этом \mathfrak{D}_i и \mathfrak{D}_j формируют третий дизъюнкт — резольвенту $\mathfrak{A} \vee \mathfrak{B}$, в которой исключены контрарные литералы:

$$\frac{\mathfrak{A}\vee X,\,\mathfrak{B}\vee\overline{X}}{\mathfrak{A}\vee\mathfrak{B}}(\mathsf{R}).$$

В частности, если $\mathfrak{D}_i=X$ и $\mathfrak{D}_j=\overline{X}$, то резольвента для них— это дизъюнкт, равный 0, т. к. $X \& \overline{X} \equiv 0$.

Его называют пустым дизъюнктом или пустой резольвентой и обозначают знаком « \square ».

Находят два дизъюнкта этого множества \mathfrak{D}_i и \mathfrak{D}_j , содержащие пропозициональные переменные с противоположными знаками,— контрарные литералы (к примеру X и \overline{X}):

$$\mathfrak{D}_i = \mathfrak{A} \vee X, \quad \mathfrak{D}_j = \mathfrak{B} \vee \overline{X}$$

При этом \mathfrak{D}_i и \mathfrak{D}_j формируют третий дизъюнкт — резольвенту $\mathfrak{A} \vee \mathfrak{B}$, в которой исключены контрарные литералы:

$$\frac{\mathfrak{A}\vee X,\,\mathfrak{B}\vee\overline{X}}{\mathfrak{A}\vee\mathfrak{B}}(\mathsf{R}).$$

В частности, если $\mathfrak{D}_i=X$ и $\mathfrak{D}_j=\overline{X}$, то резольвента для них— это дизъюнкт, равный 0, т. к. X & $\overline{X}\equiv 0$.

Его называют пустым дизъюнктом или пустой резольвентой и обозначают знаком « \square ».

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ является логическим следствием дизъюнктов $\mathfrak{D}_i=\mathfrak{A}\vee X$ и $\mathfrak{D}_j=\mathfrak{B}\vee\overline{X}$, т. е.

$$\mathfrak{D}_i, \mathfrak{D}_j \vdash (\mathfrak{A} \vee \mathfrak{B}).$$

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ добавляется в множество дизъюнктов \mathscr{K} .

Неоднократно применяя правило получения резольвент (принцип резолюции) к множеству дизъюнктов, стремятся получить пустую резольвенту □.

Наличие \Box свидетельствует о том, что $\overline{\mathfrak{A}}$ противоречива, т. к. если $\overline{\mathfrak{A}}$ \vdash 0. то \vdash \mathfrak{A} .

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ является логическим следствием дизъюнктов $\mathfrak{D}_i=\mathfrak{A}\vee X$ и $\mathfrak{D}_j=\mathfrak{B}\vee\overline{X}$, т. е.

$$\mathfrak{D}_i, \mathfrak{D}_j \vdash (\mathfrak{A} \vee \mathfrak{B}).$$

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ добавляется в множество дизъюнктов \mathscr{K} .

Неоднократно применяя правило получения резольвент (принцип резолюции) к множеству дизъюнктов, стремятся получить пустую резольвенту □.

Наличие \square свидетельствует о том, что $\overline{\mathfrak{A}}$ противоречива, т. к. если $\overline{\mathfrak{A}}$ \vdash 0. то \vdash \mathfrak{A} .

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ является логическим следствием дизъюнктов $\mathfrak{D}_i=\mathfrak{A}\vee X$ и $\mathfrak{D}_j=\mathfrak{B}\vee\overline{X}$, т. е.

$$\mathfrak{D}_i, \mathfrak{D}_j \vdash (\mathfrak{A} \vee \mathfrak{B}).$$

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ добавляется в множество дизъюнктов \mathscr{K} .

Неоднократно применяя правило получения резольвент (принцип резолюции) к множеству дизъюнктов, стремятся получить пустую резольвенту □.

Наличие \square свидетельствует о том, что $\overline{\mathfrak{A}}$ противоречива, т. к. если $\overline{\mathfrak{A}} \vdash 0$ то $\vdash \mathfrak{A}$.

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ является логическим следствием дизъюнктов $\mathfrak{D}_i=\mathfrak{A}\vee X$ и $\mathfrak{D}_j=\mathfrak{B}\vee\overline{X}$, т. е.

$$\mathfrak{D}_i, \mathfrak{D}_j \vdash (\mathfrak{A} \vee \mathfrak{B}).$$

Полученная резольвента $\mathfrak{A}\vee\mathfrak{B}$ добавляется в множество дизъюнктов \mathscr{K} .

Неоднократно применяя правило получения резольвент (принцип резолюции) к множеству дизъюнктов, стремятся получить пустую резольвенту \square .

Наличие \square свидетельствует о том, что $\overline{\mathfrak{A}}$ противоречива, т. к. если $\overline{\mathfrak{A}} \vdash 0$, то $\vdash \mathfrak{A}$.

- f 0 Взять отрицание формулы ${\mathfrak A}$, т. е. $\overline{{\mathfrak A}}$.
- @ Привести формулу $\overline{\mathfrak{A}}$ к КНФ.
- ${\color{red} oldsymbol{ eta}}$ Выписать множество её дизъюнктов ${\mathscr K} = \{{\mathfrak D}_1, \dots, {\mathfrak D}_p\}.$
- Выполнить анализ пар множества \mathcal{K} по правилу: если существуют дизъюнкты \mathfrak{D}_i и \mathfrak{D}_j , один из которых (\mathfrak{D}_i) содержит некоторый литерал X, а другой (\mathfrak{D}_j) контрарный литерал \overline{X} , то нужно соединить эту пару с помощью дизъюнкции $(\mathfrak{D}_i \vee \mathfrak{D}_j)$ и сформировать новый дизъюнкт резольвенту, исключив из неё контрарные литералы X и \overline{X} .
- Сли в результате соединения дизъюнктов будет получена пустая резольвента □, то результат достигнут (доказательство подтвердило противоречие), в противном случае включить резольвенту в множество дизъюнктов Ж и перейти к шагу 4.

- f 0 Взять отрицание формулы ${\mathfrak A}$, т. е. $\overline{{\mathfrak A}}$.
- $oldsymbol{0}$ Привести формулу $\overline{\mathfrak{A}}$ к КНФ.
- $oldsymbol{\mathfrak{G}}$ Выписать множество её дизъюнктов $\mathcal{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_p\}.$
- Выполнить анализ пар множества \mathcal{K} по правилу: если существуют дизъюнкты \mathfrak{D}_i и \mathfrak{D}_j , один из которых (\mathfrak{D}_i) содержит некоторый литерал X, а другой (\mathfrak{D}_j) контрарный литерал \overline{X} , то нужно соединить эту пару с помощью дизъюнкции $(\mathfrak{D}_i \vee \mathfrak{D}_j)$ и сформировать новый дизъюнкт резольвенту, исключив из неё контрарные литералы X и \overline{X} .
- Если в результате соединения дизъюнктов будет получена пустая резольвента □, то результат достигнут (доказательство подтвердило противоречие), в противном случае включить резольвенту в множество дизъюнктов ℋ и перейти к шагу 4.

Алгоритм метода резолюций для логики высказываний

- **①** Взять отрицание формулы \mathfrak{A} , т. е. $\overline{\mathfrak{A}}$.
- $oldsymbol{ ilde{Q}}$ Привести формулу $\overline{\mathfrak{A}}$ к КНФ.
- $oldsymbol{\mathfrak{G}}$ Выписать множество её дизъюнктов $\mathscr{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_p\}.$
- ① Выполнить анализ пар множества \mathscr{K} по правилу: если существуют дизъюнкты \mathfrak{D}_i и \mathfrak{D}_j , один из которых (\mathfrak{D}_i) содержит некоторый литерал X, а другой (\mathfrak{D}_j) контрарный литерал \overline{X} , то нужно соединить эту пару с помощью дизъюнкции $(\mathfrak{D}_i \vee \mathfrak{D}_j)$ и сформировать новый дизъюнкт резольвенту, исключив из неё контрарные литералы X и \overline{X} .
- Если в результате соединения дизъюнктов будет получена пустая резольвента □, то результат достигнут (доказательство подтвердило противоречие), в противном случае включить резольвенту в множество дизъюнктов ℋ и перейти к шагу 4.

Алгоритм метода резолюций для логики высказываний

- **1** Взять отрицание формулы \mathfrak{A} , т. е. \mathfrak{A} .
- ② Привести формулу $\overline{\mathfrak{A}}$ к КНФ.
- ullet Выписать множество её дизъюнктов $\mathcal{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_p\}$.
- lacktriangle Выполнить анализ пар множества ${\mathscr K}$ по правилу: если существуют дизъюнкты \mathfrak{D}_i и \mathfrak{D}_i , один из которых (\mathfrak{D}_i) содержит некоторый литерал X, а другой (\mathfrak{D}_i) контрарный литерал \overline{X} , то нужно соединить эту пару с помощью дизъюнкции $(\mathfrak{D}_i \vee \mathfrak{D}_i)$ и сформировать новый дизъюнкт — резольвенту, исключив из неё контрарные литералы X и \overline{X} .
- Если в результате соединения дизъюнктов будет получена случае включить резольвенту в множество дизъюнктов ${\mathscr K}$

- f 0 Взять отрицание формулы ${\mathfrak A}$, т. е. $\overline{{\mathfrak A}}$.
- $oldsymbol{2}$ Привести формулу $\overline{\mathfrak{A}}$ к КНФ.
- $oldsymbol{\mathfrak{G}}$ Выписать множество её дизъюнктов $\mathscr{K} = \{\mathfrak{D}_1, \dots, \mathfrak{D}_p\}.$
- ① Выполнить анализ пар множества \mathcal{K} по правилу: если существуют дизъюнкты \mathfrak{D}_i и \mathfrak{D}_j , один из которых (\mathfrak{D}_i) содержит некоторый литерал X, а другой (\mathfrak{D}_j) контрарный литерал \overline{X} , то нужно соединить эту пару с помощью дизъюнкции $(\mathfrak{D}_i \vee \mathfrak{D}_j)$ и сформировать новый дизъюнкт резольвенту, исключив из неё контрарные литералы X и \overline{X} .
- ⑤ Если в результате соединения дизъюнктов будет получена пустая резольвента □, то результат достигнут (доказательство подтвердило противоречие), в противном случае включить резольвенту в множество дизъюнктов ℋ и перейти к шагу 4.

При реализации указанного алгоритма возможны три случая:

- Среди текущего множества дизъюнктов нет резольвируемых. Это означает, что формула Я не является общезначимой.
- На каком-то шаге получается пустая резольвента Формула 21 общезначима.

При реализации указанного алгоритма возможны три случая:

- Ореди текущего множества дизъюнктов нет резольвируемых. Это означает, что формула № не является общезначимой.
- На каком-то шаге получается пустая резольвента.
 Формула Я общезначима.
- Процесс не останавливается, т. е. множество дизъюнктов пополняется всё новыми резольвентами, среди которых нет пустых. В таком случае нельзя ничего сказать об общезначимости формулы Ω.

Результаты алгоритма

При реализации указанного алгоритма возможны три случая:

- Ореди текущего множества дизъюнктов нет резольвируемых. Это означает, что формула № не является общезначимой.
- **②** На каком-то шаге получается пустая резольвента. Формула $\mathfrak A$ общезначима.
- Процесс не останавливается, т. е. множество дизъюнктов пополняется всё новыми резольвентами, среди которых нет пустых. В таком случае нельзя ничего сказать об общезначимости формулы Ω.

Результаты алгоритма

При реализации указанного алгоритма возможны три случая:

- Ореди текущего множества дизъюнктов нет резольвируемых. Это означает, что формула № не является общезначимой.
- **②** На каком-то шаге получается пустая резольвента. Формула $\mathfrak A$ общезначима.
- ⑤ Процесс не останавливается, т. е. множество дизъюнктов пополняется всё новыми резольвентами, среди которых нет пустых. В таком случае нельзя ничего сказать об общезначимости формулы ¾.

Метод резолюций годен и для доказательства того, что формула $\mathfrak B$ является логическим следствием формул $\mathfrak A_1,\dots,\mathfrak A_n$, поскольку

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B} \equiv \vdash \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \to \mathfrak{B}.$$

Для того чтобы применить метод резолюций для данного случая, предварительно нужно воспользоваться равенством

$$\mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \rightarrow \mathfrak{B} \equiv \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \& \overline{\mathfrak{B}}.$$

Формула $\mathfrak{C} = \mathfrak{A}_1 \& \dots \& \mathfrak{A}_n \& \overline{\mathfrak{B}}$ будет общезначимой, если формула $\overline{\mathfrak{C}} = \mathfrak{A}_1 \& \dots \& \mathfrak{A}_n \& \overline{\mathfrak{B}}$ является противоречием.

Метод резолюций годен и для доказательства того, что формула $\mathfrak B$ является логическим следствием формул $\mathfrak A_1,\dots,\mathfrak A_n$, поскольку

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B} \equiv \vdash \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \to \mathfrak{B}.$$

Для того чтобы применить метод резолюций для данного случая, предварительно нужно воспользоваться равенством

$$\mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \rightarrow \mathfrak{B} \equiv \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \& \overline{\mathfrak{B}}.$$

Формула $\mathfrak{C}=\mathfrak{A}_1\ \&\dots\&\,\mathfrak{A}_n\ \&\,\overline{\mathfrak{B}}$ будет общезначимой, если формула $\overline{\mathfrak{C}}=\mathfrak{A}_1\ \&\dots\&\,\mathfrak{A}_n\ \&\,\overline{\mathfrak{B}}$ является противоречием.

Метод резолюций годен и для доказательства того, что формула $\mathfrak B$ является логическим следствием формул $\mathfrak A_1,\dots,\mathfrak A_n$, поскольку

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B} \equiv \vdash \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \to \mathfrak{B}.$$

Для того чтобы применить метод резолюций для данного случая, предварительно нужно воспользоваться равенством

$$\mathfrak{A}_1 \& \dots \& \mathfrak{A}_n \rightarrow \mathfrak{B} \equiv \overline{\mathfrak{A}_1 \& \dots \& \mathfrak{A}_n \& \overline{\mathfrak{B}}}.$$

Формула $\underline{\mathfrak{C}} = \overline{\mathfrak{A}_1} \& \dots \& \underline{\mathfrak{A}_n} \& \overline{\underline{\mathfrak{B}}}$ будет общезначимой, если формула $\overline{\underline{\mathfrak{C}}} = \underline{\mathfrak{A}_1} \& \dots \& \underline{\mathfrak{A}_n} \& \overline{\underline{\mathfrak{B}}}$ является противоречием.

Метод резолюций годен и для доказательства того, что формула $\mathfrak B$ является логическим следствием формул $\mathfrak A_1,\dots,\mathfrak A_n$, поскольку

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_n\vdash\mathfrak{B} \equiv \vdash \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \to \mathfrak{B}.$$

Для того чтобы применить метод резолюций для данного случая, предварительно нужно воспользоваться равенством

$$\mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \rightarrow \mathfrak{B} \equiv \mathfrak{A}_1 \& \ldots \& \mathfrak{A}_n \& \overline{\mathfrak{B}}.$$

Формула $\underline{\mathfrak{C}} = \underline{\mathfrak{A}}_1 \& \dots \& \underline{\mathfrak{A}}_n \& \underline{\overline{\mathfrak{B}}}$ будет общезначимой, если формула $\overline{\underline{\mathfrak{C}}} = \underline{\mathfrak{A}}_1 \& \dots \& \underline{\mathfrak{A}}_n \& \overline{\underline{\mathfrak{B}}}$ является противоречием.

Пример

Доказать с помощью метода резолюций, что формула Bявляется логическим следствием формул $\overline{A \& B}$ и A.

$$\overline{A \& B} \& A \rightarrow \overline{B} \equiv 1.$$

$$(\overline{A} \vee \overline{B}) \& A \& B$$

Доказать с помощью метода резолюций, что формула \overline{B}

Доказать с помощью метода резолюций, что формула B является логическим следствием формул $\overline{A\&B}$ и A.

Доказательство

Чтобы формула \overline{B} была логическим следствием формул $\overline{A}\ \&\ B$ и A, должно выполняться равенство

$$\overline{A \& B} \& A \to \overline{B} \equiv 1.$$

Поскольку метод резолюций устанавливает тождественную ложность формул, задачу необходимо переформулировать в виде противоречия.

 $\overline{A \& B} \& A \& B \equiv 0$, пригодному для применения метода резолюций.

КНФ полученной формулы будет иметь вид

$$(\overline{A} \vee \overline{B}) \& A \& B$$
.

Пример

Доказать с помощью метода резолюций, что формула Bявляется логическим следствием формул $\overline{A \& B}$ и A.

Доказательство

Чтобы формула \overline{B} была логическим следствием формул $\overline{A \& B}$ и A, должно выполняться равенство

$$\overline{A \& B} \& A \rightarrow \overline{B} \equiv 1.$$

Поскольку метод резолюций устанавливает тождественную ложность формул, задачу необходимо переформулировать в виде противоречия.

$$(\overline{A} \vee \overline{B}) \& A \& B$$
.

Доказать с помощью метода резолюций, что формула \overline{B} является логическим следствием формул $\overline{A \& B}$ и A.

Доказательство

Чтобы формула \overline{B} была логическим следствием формул $\overline{A}\ \&\ B$ и A, должно выполняться равенство

$$\overline{A \& B} \& A \to \overline{B} \equiv 1.$$

Поскольку метод резолюций устанавливает тождественную ложность формул, задачу необходимо переформулировать в виде противоречия.

Эквивалентными преобразованиями равенство можно привести к виду $\overline{A \& B \& A \& B} \equiv 0$, пригодному для применения метода резолюций.

КНФ полученной формулы будет иметь вид

$$(\overline{A} \vee \overline{B}) \& A \& B$$
.

Пример

Доказать с помощью метода резолюций, что формула \overline{B} является логическим следствием формул $\overline{A \& B}$ и A.

Доказательство

Чтобы формула \overline{B} была логическим следствием формул $\overline{A \& B}$ и A, должно выполняться равенство

$$\overline{A \& B} \& A \to \overline{B} \equiv 1.$$

Поскольку метод резолюций устанавливает тождественную ложность формул, задачу необходимо переформулировать в виде противоречия.

Эквивалентными преобразованиями равенство можно привести к виду $\overline{A \& B} \& A \& B \equiv 0$, пригодному для применения метода резолюций.

КНФ полученной формулы будет иметь вид:

$$(\overline{A} \vee \overline{B}) \& A \& B$$
.

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathcal{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

- lacktriangle lacktriang
- ullet ${\mathfrak D}_5=\square$ получен с помощью принципа резолюции для ${\mathfrak D}_3$ и ${\mathfrak D}_4$.
- В итоге мы получили пустой дизъюнкт
- Следовательно, равенство $\overline{A}\ \&\ B\ \&\ \underline{A}\ \&\ B\equiv 0$ является верным, а значит
- верным также является равенство A & B & A
 ightarrow
- Это, в свою очередь, означает, что исходное утверждение «формула E
- является логическим следствием формул A & b и A» верно,

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathcal{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

- $\mathfrak{D}_4 = \overline{B}$ получен с помощью принципа резолюции для \mathfrak{D}_1 и \mathfrak{D}_2 ;

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathcal{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

- ullet $oldsymbol{\mathfrak{D}}_4=\overline{B}$ получен с помощью принципа резолюции для \mathfrak{D}_1 и \mathfrak{D}_2 ;
- ullet $\mathfrak{D}_5 = \Box -$ получен с помощью принципа резолюции для \mathfrak{D}_3 и \mathfrak{D}_4 .

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathcal{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

- ullet $oldsymbol{\mathfrak{D}}_4=\overline{B}$ получен с помощью принципа резолюции для \mathfrak{D}_1 и \mathfrak{D}_2 ;
- $\mathfrak{D}_5 = \square$ получен с помощью принципа резолюции для \mathfrak{D}_3 и \mathfrak{D}_4 .

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathscr{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

Получим новые дизъюнкты:

- ullet $\mathfrak{D}_4=\overline{B}$ получен с помощью принципа резолюции для \mathfrak{D}_1 и \mathfrak{D}_2 ;
- ullet $\mathfrak{D}_5=\square$ получен с помощью принципа резолюции для \mathfrak{D}_3 и \mathfrak{D}_4 .

В итоге мы получили пустой дизъюнкт.

Следовательно, равенство $A \& B \& A \& B \equiv 0$ является верным, а значит верным также является равенство $\overline{A \& B} \& A \to \overline{B} \equiv 1$.

Это, в свою очередь, означает, что исходное утверждение «формула \overline{B} является логическим следствием формул $\overline{A}\ \&\ B$ и A» верно,

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathscr{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

Получим новые дизъюнкты:

- ullet $\mathfrak{D}_4=\overline{B}$ получен с помощью принципа резолюции для \mathfrak{D}_1 и \mathfrak{D}_2 ;
- $\mathfrak{D}_5 = \square$ получен с помощью принципа резолюции для \mathfrak{D}_3 и \mathfrak{D}_4 .

В итоге мы получили пустой дизъюнкт.

Следовательно, равенство $\overline{A \& B} \& A \& B \equiv 0$ является верным, а значит, верным также является равенство $\overline{A \& B} \& A \to \overline{B} \equiv 1$.

Это, в свою очередь, означает, что исходное утверждение «формула \overline{B} является логическим следствием формул $\overline{A}\ \&\ B$ и A» верно,

Доказательство (продолжение)

Выпишем набор дизъюнктов:

$$\mathscr{K} = \{\mathfrak{D}_1 = \overline{A} \vee \overline{B}; \quad \mathfrak{D}_2 = A; \quad \mathfrak{D}_3 = B\}.$$

Получим новые дизъюнкты:

- ullet ${\mathfrak D}_4=\overline{B}$ получен с помощью принципа резолюции для ${\mathfrak D}_1$ и ${\mathfrak D}_2$;
- $\mathfrak{D}_5 = \square$ получен с помощью принципа резолюции для \mathfrak{D}_3 и \mathfrak{D}_4 .

В итоге мы получили пустой дизъюнкт.

Следовательно, равенство $\overline{A \& B} \& A \& B \equiv 0$ является верным, а значит, верным также является равенство $\overline{A \& B} \& A \to \overline{B} \equiv 1$.

Это, в свою очередь, означает, что исходное утверждение «формула \overline{B} является логическим следствием формул $\overline{A\ \&\ B}$ и A» верно, что и требовалось доказать.

Введём рекурсивное определение терма логики предикатов:

- Любая предметная переменная х является термом.
- ② Любая предметная константа а является термом.
- ullet Если f-n-местный функциональный символ, а t_1,\ldots,t_n термы, то $f(t_1,\ldots,t_n)$ является термом
- Других термов не существует

Примеры термов

f(b,x,g(x,y)), f(b,b,b), b, x, g(b,f(x,y,g(x,y))), где f — трёхместный, g — двухместный функциональные символы, x, y — предметные переменные, b — предметная константа.

Введём рекурсивное определение терма логики предикатов:

- f 0 Любая предметная переменная x является термом.
- Дюбая предметная константа а является термом.
- Если f-n-местный функциональный символ, at_1, \ldots, t_n термы, то $f(t_1, \ldots, t_n)$ является термом
- Других термов не существует.

$$f(b,x,g(x,y))$$
, $f(b,b,b)$, b , x , $g(b,f(x,y,g(x,y)))$, где f — трёхместный, g — двухместный функциональные символы, x , y — предметные переменные, b — предметная константа.

Введём рекурсивное определение терма логики предикатов:

- f 0 Любая предметная переменная x является термом.
- Обая предметная константа а является термом.
- ③ Если f-n-местный функциональный символ, а t_1,\ldots,t_n —термы, то $f(t_1,\ldots,t_n)$ является термом
- Других термов не существует.

$$f(b, x, g(x, y))$$
, $f(b, b, b)$, b , x , $g(b, f(x, y, g(x, y)))$, где f — трёхместный, g — двухместный функциональные символы, x , y — предметные переменные, b — предметная константа.

Введём рекурсивное определение терма логики предикатов:

- Оправления переменная и пер
- Обая предметная константа а является термом.
- ullet Если f-n-местный функциональный символ, а t_1,\ldots,t_n термы, то $f(t_1,\ldots,t_n)$ является термом.
- Других термов не существует.

$$f(b,x,g(x,y))$$
, $f(b,b,b)$, b , x , $g(b,f(x,y,g(x,y)))$, где f — трёхместный, g — двухместный функциональные символы, x , y — предметные переменные, b — предметная константа.

Введём рекурсивное определение терма логики предикатов:

- **1** Любая предметная переменная x является термом.
- Обая предметная константа а является термом.
- ullet Если f-n-местный функциональный символ, а t_1,\ldots,t_n- термы, то $f(t_1,\ldots,t_n)$ является термом.
- Других термов не существует.

$$f(b,x,g(x,y))$$
, $f(b,b,b)$, b , x , $g(b,f(x,y,g(x,y)))$, где f — трёхместный, g — двухместный функциональные символы, x , y — предметные переменные, b — предметная константа.

Введём рекурсивное определение терма логики предикатов:

- **1** Любая предметная переменная *х* является термом.
- Дюбая предметная константа а является термом.
- ullet Если f-n-местный функциональный символ, а t_1,\ldots,t_n —термы, то $f(t_1,\ldots,t_n)$ является термом.
- Других термов не существует.

$$f(b,x,g(x,y))$$
, $f(b,b,b)$, b , x , $g(b,f(x,y,g(x,y)))$, где f — трёхместный, g — двухместный функциональные символы, x , y — предметные переменные, b — предметная константа.

Введём рекурсивное определение терма логики предикатов:

- Любая предметная переменная х является термом.
- Любая предметная константа а является термом.
- ullet Если f-n-местный функциональный символ, а t_1,\ldots,t_n —термы, то $f(t_1,\ldots,t_n)$ является термом.
- Других термов не существует.

$$f(b,x,g(x,y))$$
, $f(b,b,b)$, b , x , $g(b,f(x,y,g(x,y)))$, где f — трёхместный, g — двухместный функциональные символы, x , y — предметные переменные, b — предметная константа.

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\dots,t_n- термы, то $P(t_1,\dots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер

п-литерный дизъюнкт — это дизъюнкт, содержащий *п* литер

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\ldots,t_n —термы, то $P(t_1,\ldots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

n-литерный дизъюнкт — это дизъюнкт, содержащий *n* литер

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\ldots,t_n —термы, то $P(t_1,\ldots,t_n)$ —атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

n-литерный дизъюнкт — это дизъюнкт, содержащий n литер

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\ldots,t_n —термы, то $P(t_1,\ldots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

 \emph{n} -литерный дизъюнкт — это дизъюнкт, содержащий \emph{n} литер.

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\dots,t_n —термы, то $P(t_1,\dots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

n-литерный дизъюнкт — это дизъюнкт, содержащий n литер.

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\dots,t_n —термы, то $P(t_1,\dots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

n-литерный дизъюнкт — это дизъюнкт, содержащий n литер.

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\dots,t_n —термы, то $P(t_1,\dots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

n-литерный дизъюнкт — это дизъюнкт, содержащий n литер.

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Далее также будем использовать следующие термины.

Если P-n-местный предикатный символ и t_1,\ldots,t_n — термы, то $P(t_1,\ldots,t_n)$ — атом.

Литера — это атом или отрицание атома.

Дизъюнкт — это дизъюнкция литер.

n-литерный дизъюнкт — это дизъюнкт, содержащий n литер.

Однолитерный дизъюнкт — дизъюнкт, состоящий из одной литеры.

Дизъюнкт, не содержащий литер, называется пустым дизъюнктом (обозначается \square).

Подстановки

Подстановка — конечное множество $\{t_1/v_1,\ldots,t_n/v_n\}$, где каждая v_i — предметная переменная, каждый t_i — терм, а запись t_i/v_i означает, что переменная v_i заменяется термом t_i , причём t_i отличается от v_i , а среди v_1,\ldots,v_n нет одинаковых переменных.

Подстановки будем обозначать строчными греческими буквами $lpha, \ldots, \omega$.

Подстановка, не содержащая элементов, называется пустой и обозначается символом ε.

Пример

Следующие множества являются подстановками:

$$\theta = \{f(z)/x, y/z\}, \quad \sigma = \{a/x, g(y)/y, f(g(b))/z\}, \quad \varepsilon = \{\}.$$

Подстановки

Подстановка — конечное множество $\{t_1/v_1,\ldots,t_n/v_n\}$, где каждая v_i — предметная переменная, каждый t_i — терм, а запись t_i/v_i означает, что переменная v_i заменяется термом t_i , причём t_i отличается от v_i , а среди v_1,\ldots,v_n нет одинаковых переменных.

Подстановки будем обозначать строчными греческими буквами α, \dots, ω .

Подстановка, не содержащая элементов, называется пустой и обозначается символом ε.

Пример

Следующие множества являются подстановками:

$$\theta = \{f(z)/x, y/z\}, \quad \sigma = \{a/x, g(y)/y, f(g(b))/z\}, \quad \varepsilon = \{\}.$$

Подстановки

Подстановка — конечное множество $\{t_1/v_1,\ldots,t_n/v_n\}$, где каждая v_i — предметная переменная, каждый t_i — терм, а запись t_i/v_i означает, что переменная v_i заменяется термом t_i , причём t_i отличается от v_i , а среди v_1,\ldots,v_n нет одинаковых переменных.

Подстановки будем обозначать строчными греческими буквами α, \dots, ω .

Подстановка, не содержащая элементов, называется пустой и обозначается символом ε .

Пример

Следующие множества являются подстановками

$$\theta = \{ f(z)/x, y/z \}, \quad \sigma = \{ a/x, g(y)/y, f(g(b))/z \}, \quad \varepsilon = \{ \}.$$

Подстановки

Подстановка — конечное множество $\{t_1/v_1,\ldots,t_n/v_n\}$, где каждая v_i — предметная переменная, каждый t_i — терм, а запись t_i/v_i означает, что переменная v_i заменяется термом t_i , причём t_i отличается от v_i , а среди v_1,\ldots,v_n нет одинаковых переменных.

Подстановки будем обозначать строчными греческими буквами α, \dots, ω .

Подстановка, не содержащая элементов, называется пустой и обозначается символом ε .

Пример

Следующие множества являются подстановками

$$\theta = \{ f(z)/x, y/z \}, \quad \sigma = \{ a/x, g(y)/y, f(g(b))/z \}, \quad \varepsilon = \{ \}.$$

Подстановки

Подстановка — конечное множество $\{t_1/v_1,\ldots,t_n/v_n\}$, где каждая v_i — предметная переменная, каждый t_i — терм, а запись t_i/v_i означает, что переменная v_i заменяется термом t_i , причём t_i отличается от v_i , а среди v_1,\ldots,v_n нет одинаковых переменных.

Подстановки будем обозначать строчными греческими буквами $lpha,\dots,\omega$.

Подстановка, не содержащая элементов, называется пустой и обозначается символом ε .

Пример

Следующие множества являются подстановками:

$$\theta = \{f(z)/x, \ y/z\}, \quad \sigma = \big\{a/x, \ g(y)/y, \ f\big(g(b)\big)/z\big\}, \quad \epsilon = \{\}.$$

Пусть $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ — подстановка, \mathfrak{E} — выражение. Выражение \mathfrak{E}^θ называется примером \mathfrak{E} , если \mathfrak{E}^θ получено из \mathfrak{E} путём замены одновременно всех вхождений переменных v_1, \dots, v_n на термы t_1, \dots, t_n соответственно.

Пусть
$$\theta=\{a/x,\ f(b)/y,\ c/z\},\ \mathfrak{E}=P(x,y,z)$$
 Тогда $\mathfrak{E}^{\theta}=P(a,f(b),c).$

Пусть $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ — подстановка, $\mathfrak E$ — выражение. Выражение $\mathfrak E^\theta$ называется примером $\mathfrak E$, если $\mathfrak E^\theta$ получено из $\mathfrak E$ путём замены одновременно всех вхождений переменных v_1, \dots, v_n на термы t_1, \dots, t_n соответственно.

Пусть
$$\theta=\{a/x,\ f(b)/y,\ c/z\},\ \mathfrak{E}=P(x,y,z)$$
 Тогда $\mathfrak{E}^\theta=P(a,f(b),c).$

Пусть $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ — подстановка, $\mathfrak E$ — выражение. Выражение $\mathfrak E^\theta$ называется примером $\mathfrak E$, если $\mathfrak E^\theta$ получено из $\mathfrak E$ путём замены одновременно всех вхождений переменных v_1, \dots, v_n на термы t_1, \dots, t_n соответственно.

Пусть
$$\theta=\{a/x,\ f(b)/y,\ c/z\},\ \mathfrak{E}=P(x,y,z)$$
 Тогда $\mathfrak{E}^\theta=P(a,f(b),c).$

Пусть $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ — подстановка, $\mathfrak E$ — выражение. Выражение $\mathfrak E^\theta$ называется примером $\mathfrak E$, если $\mathfrak E^\theta$ получено из $\mathfrak E$ путём замены одновременно всех вхождений переменных v_1, \dots, v_n на термы t_1, \dots, t_n соответственно.

Пусть
$$\theta = \{a/x, f(b)/y, c/z\}, \mathfrak{E} = P(x, y, z).$$
 Тогда $\mathfrak{E}^{\theta} = P(a, f(b), c).$

Сколемизация формул

Пусть $\theta = \{t_1/v_1, \dots, t_n/v_n\}$ — подстановка, \mathfrak{E} — выражение. Выражение \mathfrak{E}^{θ} называется примером \mathfrak{E} , если \mathfrak{E}^{θ} получено из \mathfrak{E} путём замены одновременно всех вхождений переменных v_1, \ldots, v_n на термы t_1, \ldots, t_n соответственно.

Пусть
$$\theta=\{a/x,\ f(b)/y,\ c/z\},\ \mathfrak{E}=P(x,y,z).$$
 Тогда $\mathfrak{E}^{\theta}=P(a,f(b),c).$

Пусть $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ и $\lambda = \{u_1/y_1, \dots, u_1/y_m\}$ — две подстановки.

Композицией θ и λ называют подстановку $\theta \circ \lambda$, которая получается из множества

$$\{t_1^{\lambda}/x_1,\ldots,t_n^{\lambda}/x_n,\ u_1/y_1,\ldots,u_m/y_m\}$$

вычёркиванием всех элементов t_j^{λ}/x_j , для которых $t_j^{\lambda}=x_j$, а также всех элементов u_i/y_i , таких, что $y_i\in\{x_1,\ldots,x_n\}$. Композиция подстановок ассоциативна:

$$(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu).$$

$$e \circ A = A \circ e = A$$

Пусть $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ и $\lambda = \{u_1/y_1, \dots, u_1/y_m\}$ — две подстановки.

Композицией θ и λ называют подстановку $\theta \circ \lambda$, которая получается из множества

$$\{t_1^{\lambda}/x_1,\ldots,t_n^{\lambda}/x_n,\ u_1/y_1,\ldots,u_m/y_m\}$$

вычёркиванием всех элементов t_j^{λ}/x_j , для которых $t_j^{\lambda}=x_j$, а также всех элементов u_i/y_i , таких, что $y_i\in\{x_1,\ldots,x_n\}$.

Композиция подстановок ассоциативна:

$$(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu).$$

$$\theta = 3 \circ \theta = \theta \circ 3$$

Пусть $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ и $\lambda = \{u_1/y_1, \dots, u_1/y_m\}$ — две подстановки.

Композицией θ и λ называют подстановку $\theta \circ \lambda$, которая получается из множества

$$\{t_1^{\lambda}/x_1,\ldots,t_n^{\lambda}/x_n,\ u_1/y_1,\ldots,u_m/y_m\}$$

вычёркиванием всех элементов t_j^{λ}/x_j , для которых $t_j^{\lambda}=x_j$, а также всех элементов u_i/y_i , таких, что $y_i\in\{x_1,\ldots,x_n\}$. Композиция подстановок ассоциативна:

$$(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu).$$

$$\theta = 3 \circ \theta = \theta \circ 3$$

Пусть $\theta = \{t_1/x_1, \dots, t_n/x_n\}$ и $\lambda = \{u_1/y_1, \dots, u_1/y_m\}$ — две подстановки.

Композицией θ и λ называют подстановку $\theta \circ \lambda$, которая получается из множества

$$\{t_1^{\lambda}/x_1,\ldots,t_n^{\lambda}/x_n,\ u_1/y_1,\ldots,u_m/y_m\}$$

вычёркиванием всех элементов t_j^{λ}/x_j , для которых $t_j^{\lambda}=x_j$, а также всех элементов u_i/y_i , таких, что $y_i\in\{x_1,\ldots,x_n\}$. Композиция подстановок ассоциативна:

$$(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu).$$

$$\varepsilon \circ \theta = \theta \circ \varepsilon = \theta$$
.

Пусть даны подстановки

$$\theta = \{t_1/x_1, \ t_2/x_2\} = \{f(y)/x, \ z/y\},$$
$$\lambda = \{u_1/y_1, \ u_2/y_2, \ u_3/y_3\} = \{a/x, \ b/y, \ y/z\}.$$

Пусть даны подстановки

$$\theta = \{t_1/x_1, t_2/x_2\} = \{f(y)/x, z/y\},$$

$$\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}.$$

Тогда их композиция образуется из множества

Вычёркиваем $t_2^{\lambda}/x_2 = y/y$, т. к. $t_2^{\lambda} = x_2$.

Пусть даны подстановки

$$\theta = \{t_1/x_1, t_2/x_2\} = \{f(y)/x, z/y\},$$

$$\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}.$$

Тогда их композиция образуется из множества

Вычёркиваем $t_2^{\lambda}/x_2 = y/y$, т. к. $t_2^{\lambda} = x_2$.

т. к. y_1 и y_2 содержатся среди $\{x_1, x_2\} = \{x, y\}$.

Пусть даны подстановки

$$\theta = \{t_1/x_1, t_2/x_2\} = \{f(y)/x, z/y\},$$

$$\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}.$$

Тогда их композиция образуется из множества

Вычёркиваем $t_2^{\lambda}/x_2 = y/y$, т. к. $t_2^{\lambda} = x_2$.

Вычёркиваем $u_1/y_1 = a/x$ и $u_2/y_2 = b/y$,

т. к. y_1 и y_2 содержатся среди $\{x_1, x_2\} = \{x, y\}$.

Пусть даны подстановки

$$\theta = \{t_1/x_1, t_2/x_2\} = \{f(y)/x, z/y\},$$

$$\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}.$$

Тогда их композиция образуется из множества

Вычёркиваем $t_2^{\lambda}/x_2 = y/y$, т. к. $t_2^{\lambda} = x_2$.

Вычёркиваем $u_1/y_1 = a/x$ и $u_2/y_2 = b/y$,

т. к. y_1 и y_2 содержатся среди $\{x_1, x_2\} = \{x, y\}$.

В итоге получаем $\theta \circ \lambda = \{f(b)/x, y/z\}.$

Метод резолюций в логике предикатов