The University of Hong Kong School of Public Health

CMED 6040 Advanced Statistical Methods II TUTORIAL 3

Indoor particulate matter and airway macrophages black carbon content

A longitudinal study recruited 200 adults aged 60 to 69y to investigate the relation between indoor PM_{2.5} exposure and black carbon content in airway macrophages (AMBC). Subjects were visited for 5 times in the study. The dataset was saved in 'ambc.csv' with the following variables:

Variable	Data label	Remark
id	Subject identification number	
age	Age in years	
male	Male sex	0: Female; 1: Male
time	Follow-up occasion	
pm	Mean indoor PM _{2.5} concentration (μ g/m ³)	
ambc	Mean area of black carbon in airway macrophages (μm²)	

- (a) Read the dataset into R. Plot the pattern of pattern of indoor PM_{2.5} and AMBC over time. Do you think AMBC are correlated within subjects?
- (b) Explore the relationship between indoor PM_{2.5} and AMBC content for some subjects.
- (c) Fit an ordinary regression model to predict AMBC by age, male, and PM_{2.5}. Summarize your results in the following table:

Variable	Estimated coefficient	95% CI*
Male		
Age		
$PM_{2.5}$		

^{*}CI: confidence interval

- (d) Fit a generalized estimating equation (GEE) model to predict AMBC by age, male, and PM_{2.5}, by assuming independence, exchangeable, AR(1) and unstructured correlation structure.
- (e) Select the best model from (d).
- (f) Summarize your results from the selected model in (e) in the following table:

Variable	Estimated coefficient	95% CI*
Male		
Age		
PM _{2.5}		

^{*}CI: confidence interval

(g) Fit a linear mixed model with random intercept to predict AMBC by age, male, and PM_{2.5}. Summarize your results in the following table:

Variable	Estimated coefficient	95% CI*
Male		
Age		
$_{_}$		

^{*}CI: confidence interval

- (h) Calculate the intraclass correlation (ICC) for the model in (g).
- (i) Fit a linear effects model with random intercept and slope to predict AMBC by age, male, and PM_{2.5}. Summarize your results in the table below and compare your results with that in (g).

Variable	Estimated coefficient	95% CI*
Male		
Age		
PM _{2.5}		

^{*}CI: confidence interval

- (j) Compare the results in (a)-(i) from different methods.
- (k) Suppose it is also interesting to investigate how the previous mean indoor PM_{2.5} concentrations will affect the AMBC at the 5th visit. Fit a linear regression for the purpose and summarize your results in the table below:

[hint: convert data to wide format]

Variable	Estimated coefficient	95% CI*
Male		
Age		
PM _{2.5} (visit 1)		
PM _{2.5} (visit 2)		
PM _{2.5} (visit 3)		
PM _{2.5} (visit 4)		
PM _{2.5} (visit 5)		

^{*}CI: confidence interval

(1) Perform a LASSO regression and select the optimal λ by cross-validation method.