Data Mining

#2 – Information theory

מציאת תבניות אינפורמטיביות

- אנו זקוקים לקריטריון על מנת לבחור תבניות
 אינפורמטיביות מתוך כלל התבניות הקיימות במסד הנתונים.
- תורת האינפורמציה מספקת מסגרת מתמטית פורמלית שמאפשרת לנו לזהות תבניות אינפורמטיביות, ולהעריך את מידת האינפורמטיביות שלהן ביחס לתבניות אחרות.

תורת האינפורמציה

- <u>אי-וודאות</u>: המידע המוגבל שיש לנו לגבי תוצאה של אירוע כלשהו, בד"כ אירוע עתידי
 - <u>אנטרופיה</u>: המטרה של מדד זה היא להעריך את אי-הוודאות של משתנה מקרי כלשהו (X)

Motivating Entropy

- Let's assume that we have a device that emits one symbol (A). We have no uncertainty as to what we will see: uncertainty is zero.
- A device that emits two symbols (A, B). We have one choice, either A or B: our uncertainty is *one*, because we could use one bit (0 or 1) to encode the outcome.
- A device that emits four symbols (A, B, C, D). We would need *two* bits (00, 01, 10, 11) to encode the outcome.
- What we are describing is a log₂M, where M is the number of symbols.
- Entropy = average number of bits required to transmit the signal.

Entropy explained

Let's consider a set of possible events with equal probability (a fair dice with values from 1 to n). The uncertainty for such set of outcomes is defined by u= log₂n

https://www.miniwebtool.com/log-base-2-calculator/

- The logarithm is used to provide the **additive** characteristic for independent uncertainty.
 - The uncertainty of playing with two dice (n*m possible outcomes) is obtained by adding the uncertainty of the second dice to the uncertainty of the first dice:
 - $u = log_2(n*m) = log_2n + log_2m$.

Entropy explained, cont.

• Now return to the playing with one dice only (the first one); since the probability of each event is 1/n, we can write

$$u = \log_2(1/p(x_i)) = -\log_2(p(x_i)), \forall 1 \le i \le n$$

- In the case of a non-uniform probability mass function (or distribution in the case of continuous random variable), we let $u_i = -log_2(p(x_i))$, (the lower the probability, the higher the uncertainty or the surprise)
- The average uncertainty is obtained by

 $\sum p(x_i) \cdot u_i = -\sum p(x_i) \cdot \log_2 p(x_i)$ and is used as the definition of the information entropy

Entropy

• Entropy $H(X) = -\sum p(x) \cdot \log_2 p(x)$

Where:

- *X* a discrete random variable
- *x* value of *X*
- p(x) probability of x
- Interpretation: measure of uncertainty of *X*.

Entropy

אם לכל ערכי המשתנה X יש את אותה הסתברות, האנטרופיה היא פונקציה מונוטונית עולה.

Entropy - with two states

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$$

$$H(X) = -\sum_{i} \Pr(X = x_i) \log_2 \Pr(X = x_i)$$

$$H(X) = -p \log_2 p - (1-p) \log_2 (1-p)$$

p

In general:

Entropy is maximal and equal to $\log_2 n$ if all n states have the same probability.

Entropy - Illustration

Entropy – Small Examples

$$A_n \in \{0,1\}$$

$$p_0 = \Pr(A_n = 0)$$

$$p_1 = \Pr(A_n = 1) = 1 - p_0$$

Example:
$$p_0 = 0.2 \\ p_1 = 0.8$$
 $-0.2*log_2(0.2)-0.8*log_2(0.8) = 0.72$

Example 2.1 (Weather). As a specific weather example, suppose that weather in California is either sunny or cloudy with probabilities 7/8 and 1/8, respectively. The entropy of this source of information is the average information of sunny and cloudy days. Hence

$$H = -(7/8)\log(7/8) - (1/8)\log(1/8) = .54$$
 bits.

Entropy – Examples

	x=A	x=B	x=C	x=D	Total	
Data	1	2	30	5	38	H(X)
p(x)	1/38	2/38	30/38	5/38		
$-\log(p(x))$	5.25	4.25	0.34	2.93		
-p(x)*log(p(x))	0.14	0.22	0.27	0.38	\sum (1.016)	bit

	y=A	y=B	y=C	y=D	Total	
Data	19	21	22	18	80	H(Y)
p(x)	19/80	21/80	22/80	18/80		
$-\log(p(x))$	2.07	1.93	1.86	2.15		
-p(x)*log(p(x))	0.49	0.51	0.51	0.48	\sum 1.995	bit

Conditional Entropy

•
$$H(Y|X) = -\sum p(x,y) \cdot \log p(y|x)$$

- Where
- *X*, *Y* discrete random variables
- p(x,y) joint probability of x and y
- p(y|x) conditional probability of y given x
- Interpretation: measure of uncertainty of *Y*, when *X* is given.

Conditional Entropy

- If $Y(X) \rightarrow H(Y|X)=0$
- If Y not dependent on $X \rightarrow H(Y|X)=H(Y)$

Conditional Entropy – Example

H(Y)=1.85

P(x,y)	y=A	y=B	y=C	y=D	Total
x=A	6/100	8/100	2/100	5/100	21/100
x=B	9/100	10/100	3/100	11/100	33/100
x=C	15/100	1/100	2/100	1/100	19/100
x=D	14/100	5/100	6/100	2/100	27/100
Total	44/100	24/100	13/100	19/100	100/100

P(y x)	y=A	y=B	y=C	y=D	Total
x=A	6/21	8/21	2/21	5/21	21/21
x=B	9/33	10/33	3/33	11/33	33/33
x=C	15/19	1/19	2/19	1/19	19/19
x=D	14/27	5/27	6/27	2/27	27/27

-P(x,y)*log(P(y x))	y=A	y=B	y=C	y=D	Total
x=A	0.11	0.11	0.07	0.10	0.39
x=B	0.17	0.17	0.10	0.17	0.62
x=C	0.05	0.04	0.06	0.04	0.20
x=D	0.13	0.12	0.13	0.08	0.46
Total	0.46	0.45	0.37	0.40	1.67

H(Y|X)

Conditional Entropy – Example

H(X)=1.96

P(x,y)	y=A	y=B	y=C	y=D	Total
x=A	6/100	8/100	2/100	5/100	21/100
x=B	9/100	10/100	3/100	11/100	33/100
x=C	15/100	1/100	2/100	1/100	19/100
x=D	14/100	5/100	6/100	2/100	27/100
Total	44/100	24/100	13/100	19/100	100/100

P(x y)	y=A	y=B	y=C	y=D
x=A	6/44	8/24	2/13	5/19
x=B	9/44	10/24	3/13	11/19
x=C	15/44	1/24	2/13	1/19
x=D	14/44	5/24	6/13	2/19
Total	44/44	24/24	13/13	19/19

-P(x,y)*log(P(x y))	y=A	y=B	y=C	y=D	Total
x=A	0.17	0.13	0.05	0.10	0.45
x=B	0.21	0.13	0.06	0.09	0.48
x=C	0.23	0.05	0.05	0.04	0.38
x=D	0.23	0.11	0.07	0.06	0.48
Total	0.84	0.41	0.24	0.29	1.78

Mutual Information

Mutual Information (of variables X and Y)

$$I(X;Y) = H(Y) - H(Y/X) = \sum_{x,y} p(x,y) \cdot \log \frac{p(y/x)}{p(y)}$$

• Interpretation: the reduction in the uncertainty of *Y* as a result of knowing *X*.

Mutual Information - Symmetry

$$I(X;Y) = H(Y) - H(Y|X) = I(Y;X) = H(X) - H(X|Y)$$

•
$$I(X;Y) = \sum_{x,y} p(x,y) \bullet \log \frac{p(y/x)}{p(y)}$$

•
$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

•
$$I(X;Y) = \sum_{x,y} p(x,y) \bullet \log \frac{p(x,y)}{p(x)p(y)}$$

Mutual information

- Symmetry $\rightarrow I(X;Y)=I(Y;x)$
- MI always positive or zero
- Max(MI) → Y function of X
- Min(MI) → No connection between Y and X

Mutual Information - Example

Data	y=A	y=B	y=C	y=D	Total
x=A	6	8	2	5	21
x=B	9	10	3	11	33
x=C	15	1	2	1	19
x=D	14	5	6	2	27
x=A x=B x=C x=D Total	44	24	13	19	100

$\sum p(x,y) \bullet \log$	p(y/x)
$\sum_{x,y} p(x,y) \bullet \log$	p(y)

P(x,y)	y=A	y=B	y=C	y=D	Total
x=A	6/100	8/100	2/100	5/100	21/100
x=B	9/100	10/100	3/100	11/100	33/100
x=C	15/100	1/100	2/100	1/100	19/100
x=D	14/100	5/100	6/100	2/100	27/100
Total	44/100	24/100	13/100	19/100	100/100

<u> </u>	y=A	y=B	y=C	y=D	Total
P(y)	44/100	24/100	13/100	19/100	100/100

P(y x)	y=A	y=B	y=C	y=D	Total
x=A	6/21	8/21	2/21	5/21	21/21
x=B	9/33	10/33	3/33	11/33	33/33
x=C	15/19	1/19	2/19	1/19	19/19
x=D	14/27	5/27	6/27	2/27	27/27

P(x,y)*log(P(y x) / P(y))	y=A	y=B	y=C	y=D	Total
x=A	-0.04	0.05	-0.01	0.02	0.02
x=B	-0.06	0.03	-0.02	0.09	0.05
x=C	0.13	-0.02	-0.01	-0.02	0.08
x=D	0.03	-0.02	0.05	-0.03	0.03
Total	0.06	0.05	0.02	0.06	0.18

Mutual Information – Example

Another way to calculate

Mutual Information – Example

And via chain rule

• Chain rule: $H(X,Y) = H(X) + H(Y \mid X)$

• I(X;Y) = H(Y) - H(Y | X) = H(Y) - (H(X,Y) - H(X)) = H(Y) + H(X) - H(X,Y)

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Entropy-mutual-information-relative-entropy-relation-diagram.svg/2000px-Entropy-mutual-information-relative-entropy-relation-diagram.svg/2000px-Entropy-mutual-information-relative-entropy-relation-diagram.svg/png