

Enabling Physical Analytics in Retail Stores Using Smart Glasses

Swati Rallapalli*

Joint work with

Aishwarya Ganesan⁺, Krishna Chintalapudi⁺, Venkat Padmanabhan⁺, Lili Qiu^{*}

*The University of Texas at Austin +Microsoft Research India

ACM MobiCom 2014 September 8, 2014

Location
Demographics
Interests

3x growth in 5 years from 2009 - 2013

Important to capture shopper behavior not only in the online world but also in the physical world

Even excluding those categories:

Online sales in U.S. in 2013 only

Human behavior in the physical world:

- ✓ Contains signals missed by web-analytics & loyalty programs
- ✓ Indicates reinforced interest in buying

Physical Analytics

Understanding the intent of the shoppers in the physical world

Benefits

Alice sees a coupon as she is about to walk away!

Enable contextual recommendations

Shopping list reminders

Guides to product locations

Our approach

Phytics Engine

Enable a wide coverage and obtain rich user profiles!

ourselves
closely to any
store..

Technology

Localization, Product layouts, User analytics

Incentives

Privacy

Stores: increased sales
Physical analytics provider:
share of profits by partnering
with stores

Users: discounts, shopping

Survey: Cc January 17, 2012, 9:00am EST

2014 at 1 Shoppers Willing to Tell All

f Share < 37

A new consumprovider <u>Swirl</u>, v and <u>Ani</u> and Tin indoor location

consumer acce overblown.

9

Teresa Novellino
Upstart Business Journal Entrepreneurs &
Enterprises Editor
Email | Twitter

It is true that co to their location clear value for doing so. t might surprise retailers, but a new IBM study reveals that consumers are much more willing to give up information about themselves.

AutoLayout

Behavior Classification

Overview: ThirdEye - AutoLayout

Contextual recommendations

Shopping list reminders

Guides to product locations

Problem formulation: unknowns

Localization

 ${\color{red} sLoc_k^i}$: 2D location of k^{th} shopper after i^{th} step

Product layout

 $pLoc_j$: 2D location of j^{th} product in store

Problem formulation

Minimize

Log Distance Path Loss (LDPL) model: eRSS(sLoc, apLoc, apTxPwr, γ) = $apTxPwr - 10 \gamma \log(\parallel sLoc - apLoc \parallel)$

Minimizes error in measured RSS values and those estimated by parameters describing the LDPL model

$$\sum_{l} \sum_{m \in SS_{l,k,i} \in W_{l}} ||mRSS_{l,k,i} - eRSS(sLoc_{k}^{i}, aLoc_{l}, P_{l}, \gamma_{l})||$$

$$l^{th} AP \qquad \text{Over all measured RSS values from that AP across all users}$$

Incorporate mobility: inertial sensors

Minimize

Wi-Fi term Inertial sensor term Camera term
$$w_1 \cdot r(sLoc, aLoc, P, \gamma) + w_2 \cdot p(sLoc, t) + w_3 \cdot q(sLoc, pLoc)$$

Accelerometer: step-count [Zee, UnLoc] → distance **Compass:** heading direction

For all shoppers, at all steps:

$$-x_{i+1} \approx x_i + d * cos(\theta)$$

$$-y_{i+1} \approx y_i + d * sin(\theta)$$

Distance between locations at consecutive steps close to the estimate from the inertial sensors

$$\sum_{i} \sum_{k} \left\| sLoc_{k}^{i+1} - sLoc_{k}^{i} - \hat{e}_{k}^{i} \right\|^{2}$$

$$i^{th} \text{step} \qquad \hat{e}_{k}^{i} = \left[\cos \theta_{k}^{i} \sin \theta_{k}^{i} \right]^{T}$$
1

Tie in product locations: camera

Minimize

Wi-Fi term Inertial sensor term Camera term
$$w_1 \cdot r(sLoc, aLoc, P, \gamma) + w_2 \cdot p(sLoc, t) + w_3 \cdot q(sLoc, pLoc)$$

Leverage Google Reverse Image search to obtain labels for product images

All shopper locations from where a particular product was seen must be close to each other

$$\sum_{j} \sum_{\langle k,m \rangle \in L_{j}} \left\| sLoc_{k}^{m} - pLoc_{j} \right\|^{2}$$

$$j^{th} \text{product} \qquad k^{th} \text{shopper saw } j^{th} \text{product at } m^{th} \text{step}$$

Optimization

Example walks around aisles in Target

After BFS: all tracks are in same coordinate system

After optimization: tracks look closer to actual walk

Inferred layout for H-E-B: improves with more shoppers

Actual Layout

7 shoppers

Autolayout

Behavior Classification

Overview: ThirdEye - User analytics

In a retail setting

Analyzed 3 hours of shopping videos from 7 shoppers wearing Google Glass from 2 large stores: H-E-B and Target

Time spent: dwell (50.7%) > gaze (23.7%) > walk (17.3%) > reach-out (8.2%)

- Most frequent inter-state transitions: dwell and gaze
- Reaching-out: tend to remain in the state for few seconds

Behavior classification algorithm

Gaze and Reach-out

When shopper is gazing/reaching-out scene in front of him does not change

Leverage vision based technique Optical Flow to detect gaze/reach-out

- Optical flow (of): difference in terms of pixels between consecutive images
- If $of < of_{gaze}$ detect gaze/reach-out

88% detection rate at 1.8% false detections

Attention identification

A frame may

Important to identify the part of the frame that user was interested in!

0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 No of Products as 16 items!

- Estimated X: center of frame with offset for camera position
- Estimated Y: Function of head tilt

PDF of error in X, Y estimates

Behavior classification algorithm

Reach-out detection

Reach-out indicates high degree of interest: important to detect

Hand seen in the frame:

detect hands to detect reach-out

Train TextonBoost Classifier

Leveraging TextonBoost classifier

Divided hand

Cluster together nearby segments

Spurious hand

Ignore very small segments

Detection success rate: 86% False detection rate: 15%

Behavior classification algorithm

Dwell detection

Accelerometer showing that user is static?

Shopper may not be static, he may take few steps looking at nearby items

Dwell characterized by small net displacement!

Detect dwell based on periods of low net displacement

Suppose K steps in time window τ and heading at step i is θ_i

Detect steps using prior work Zee [MobiCom 2011]

Magnitude of net velocity vector
$$\|v\| = \sqrt{\sum_{i=1}^{i=K} \cos \theta_i}^2 + (\sum_{i=1}^{i=K} \sin \theta_i)^2$$
 Net displacement in 5 sec. Dwell if: $\|v\| < \|v\|_{dwell}$

95% detection rate at 10% false alarms

Related work

Research

- Localization [MobiSys12, MobiCom10, MobiCom12, ..]
- Vision [ICCV09, ICCV13, ..]
- Robotics [UbiComp09, ..]
- Human-activity sensing [Sensys07, ..]
- Shopping-behavior [UbiCom08, Pervasive Computing11, ..]

Industry

Get In-Store Notifications

Conclusion

Our contributions

- Fuse Wi-Fi, inertial sensor and video data from smart glasses
- AutoLayout: Map the store without any user or store input
- Use these inferences to track glass/non-glass users in online phase
- Characterize walk, dwell, gaze and reaching-out activities of shoppers
- Attention identification within the captured frame

Future work

- Larger data-set for patterns representative of more diverse population
- In-depth analytics of shoppers

Thank You!

swati@cs.utexas.edu