

Gene Expression & Coexpression Analyses

Prof. Dr. Boas Pucker (Plant Biotechnology and Bioinformatics)

Availability of slides

- All materials are freely available (CC BY) after the lectures:
 - O StudIP: Lecture: Grundlagen der Biochemie und Bioinformatik der Pflanzen (Bio-MB 09)
 - Skype: (link shared via email)
 - GitHub: https://github.com/bpucker/teaching

- Questions: Feel free to ask at any time
- Feedback, comments, or questions: b.pucker[a]tu-braunschweig.de

My figures and content can be re-used in accordance with CC-BY 4.0, but this might not apply to all images/logos. Some figure were constructed using bioRender.com.

What is gene expression?

- Gene expression = formation of gene product (i.e. a protein)
- Transcription of DNA by RNA polymerase and translation of mRNAs by polymerase
- Transcript abundance is often used as proxy (=gene expression)

Concept of coexpression

- Genes can show similar expression values across numerous samples
- Reality usually results in similar, but not identical patterns
- Different samples could be different plant parts of plants cultivated under different conditions

Molecular basis of coexpression

- Shared transcription factor can explain similar expression patterns
- Example: MYB12 controls the flavonol biosynthesis through activation of CHS, CHI, F3H, and FLS
- Expectation: CHS, CHI, F3H, and FLS should show a similar expression pattern

Nothing is perfect

- Genes can be regulated by multiple TFs (e.g. DFR by MYB123 and MYB75)
- TFs can control different processes (e.g. proanthocyanidins, trichome development, root hair development)
- Co-expression of TFs and structural genes in pathways is not perfect

Types of expression data

Microarray

RT-qPCR

RNA-Seq

Microarray

- Transcript abundances are compared
- Cy3 and Cy5 are fluorescent labels
- Fluorescence intensity indicates transcript abundances
- Dynamic range is small due to saturation of signal
- Only genes represented on the microarray can be studied
- High investment costs for microarray generation

RT-qPCR

Quantification of cDNA based on incorporation of fluorescent dyes

RNA-Seq

Gene expression databases

- GEO: Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
- SRA/ENA: Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)
- ArrayExpress: microarray database (https://www.ebi.ac.uk/arrayexpress/)

How to find the right dataset? (1)

- Search for the species of interest
- Additional keywords e.g. specific tissues are possible
- Filter by species (panel on the right)
- Filter by 'RNA', 'paired' (?), and sequencing technology

How to find the right dataset? (2)

- Send pre-filtered results to 'RunSelector'
- Download 'Metadata' and 'AccessionList'
 - Metadata = table with details about samples
 - AccessionList = text file with one run ID per line

Retrieving data

- Various tools available for large data set download
- Fastq-dump: https://rnnh.github.io/bioinfo-notebook/docs/fastq-dump.html
- Wget: https://www.gnu.org/software/wget/
- Web browser-based download is no longer supported by most repositories

Concept of gene expression quantification

- Reads can be aligned to a reference genome sequence or transcriptome assembly
- Pseudo-alignments are an alternative
- Reads per gene serve as basis for relative gene expression calculation
- Normalization for sequencing depth of all samples

Processing expression data

- Kallisto: alignment-free analysis approach; very fast, but slightly less precise
- STAR: split read alignment; very memory intensive
- HISATII: split read alignment

Benchmarking in HISAT2 paper

Benchmarking in STAR paper

Counts, TPMs, and FPKMs

- Counts = Number of reads that are assigned to a feature (gene, exon, transcript isoform, ...)
- TPMs = Transcripts Per Million Transcripts
- RPKMs = Reads Per Kb exon per Million reads (single-end reads)
- FPKMs = Fragments Per Kb exon per Million fragments (paired-end reads)

Example:

- Counts: gene1=12, gene2=3, gene3=5
- Transcript lengths: gene1=1.5kb, gene2=1kb, gene3=3kb
- TPMs (simplified approximation):
 - \circ gene1 = 12 / ((12+3+5)/1000000)
 - \circ gene2 = 3 / ((12+3+5)/1000000)
- RPKMs:
 - o gene1 = 12 / (1.5 * ((12+3+5)/1000000))
- FPKMs:
 - same as RPKM, but for paired-end

Baits for coexpression analyses

- Bait genes are previously characterized genes with a function of interest e.g. encode an enzyme in the same biosynthesis pathway
- Shared transcription factors of a pathway can be helpful to identify all structural genes of a pathway
- Knowledge from other species can be applied in this step (details in later section)

Coexpression

Correlation - examples

Normalization

Pearson correlation coefficient

- Line is fitted to achieve minimal distance of all data points to the line
- Only good for linear correlation

Spearman correlation coefficient

- Rank-based correlation coefficient
- Not restricted to linear correlation
- More appropriate for gene expression which might not show linear correlation

Simple coexpression analysis

- Coexpression analysis of DN38171_c1_g2_i1 (ID of sequence in Trinity transcriptome assembly)
- Correlation coefficient between 0 and 1
- Adjusted p-value describes how well correlation fits the data points
- Annotation is based on Arabidopsis thaliana

0	0 15		Adjusted	
CandidateGene	GeneID	Correlation p	p-value	FunctionalAnnotation
DN38171_c1_g2_i1	DN34048_c0_g1_i4	0.976	1.37E-06	AT4G08350;GTA2.global transcription factor group A2
DN38171_c1_g2_i1	DN30512_c0_g2_i1	0.972	5.47E-06	AT2G46800;ZAT.zinc transporter
DN38171_c1_g2_i1	DN30331_c0_g2_i2	0.969	1.08E-05	AT5G60760.P-loop containing nucleoside triphosphate hydrolases superfamily protein
DN38171_c1_g2_i1	DN39190_c7_g1_i5	0.969	1.08E-05	AT5G10260;RABH1e.RAB GTPase homolog H1E
DN38171_c1_g2_i1	DN30136_c1_g2_i1	0.969	1.24E-05	AT4G14580;CIPK4.CBL-interacting protein kinase 4
DN38171_c1_g2_i1	DN36185_c0_g1_i3	0.968	1.46E-05	AT1G73100;SUVH3.histone-lysine N-methyltransferase, H3 lysine-9 specific SUVH3-like protein

WGCNA

- WGCNA = Weighted Gene Correlation Network Analysis
- Expression of genes is controlled by multiple TFs > not only linear correlation

Coexpression network example

Cytoscape

- Cytoscape can be used for illustration of regulatory networks
- Mapping of expression values (heatmap)
- Freely available open source software

https://cytoscape.org/ Shannon et al., 2003: 10.1101/gr.1239303

Summary of the process

Thank you!

Questions

- 1. What is gene expression?
- 2. Why are genes co-expressed?
- 3. Which methods can be used to measure/approximate gene expression?
- 4. What are the important steps of an RNA-Seq experiment?
- 5. Where can you find transcriptomic data sets?
- 6. What are TPM and RPKM/FPKM?
- 7. What are the differences between Pearson and Spearman correlation coefficients?
- 8. How can you normalize expression data prior to co-expression analyses?

