PROVA 2 DE BCC 342 - PLE

Fazer os modelos na forma explicita

1. Uma montadora abastece três revendedoras a partir de duas plantas. Os custos de transporte por veículo, as demandas das revendedoras e as capacidades de produção das plantas são dadas na Tabela abaixo. Por força de contrato, caso algum veículo seja fornecido a partir de uma planta, incorre em um custo fixo da planta, sendo este custo de \$1.200 na Planta 1 e de \$1.500 na Planta 2. Escreva um modelo de programação linear para atender as demandas com o menor custo possível. (valor: 2,0)

	Revenda 1	Revenda 2	Revenda 3	Cap. produção
Planta 1	\$100	\$180	\$150	120
Planta 2	\$120	\$90	\$130	150
Demanda min.	55	70	65	

2. Uma empresa aérea deseja alocar suas aeronaves nas rotas em que opera. A Tabela abaixo mostra os custos de operação dos 5 tipos de aeronaves nas respectivas rotas de atuação da empresa.

	Aero 1	Aero 2	Aero 3	Aero 4	Aero 5
R_1	100	125	130		
R_2		130	150	200	
R_3			175	250	190

As capacidades das aeronaves são de k_1 , k_2 , ..., k_5 passageiros respectivamente. A empresa dispõe de T_1 , T_2 , ..., T_5 aeronaves de cada tipo. Sendo a demanda mínima diária de passageiros em cada rota de D_1 , D_2 e D_3 , fazer o modelo de alocação das aeronaves com o menor custo possível.

Obs.: Considere que cada aeronave realiza uma única viagem por dia na rota alocada. (valor: 2,0)

3. A região metropolitana de Belo Horizonte inclui 6 cidades que precisam de serviço de ambulância. Devido à proximidade entre as cidades, uma única *estação de ambulância* pode atender a mais de uma comunidade. A determinação é que a estação deve estar a menos de 15 minutos das cidades que atender. A Tabela abaixo fornece os tempos de viagem, em minutos, entre as cidades. Monte um modelo de PL para estabelecer a melhor localização das estações e garantir que cada cidade seja atendida por pelo menos uma estação de ambulância. (valor: 2,0)

	C1	C2	C3	C4	C5	C6
C1	0	23	14	18	10	32
C2	23	0	24	13	22	11
C3	14	24	0	12	56	20
C4	18	13	60	0	14	18
C5	10	22	13	55	0	12
C6	32	11	20	19	12	0
Custo de instalação	35	47	24	58	25	34

4. Uma indústria dispõe de barras de 7 metros de comprimento que devem ser cortadas em itens que são vendidos aos seus clientes. As barras devem ser cortadas para atender os seguintes pedidos:

Comprimento	2 metros	3 metros	4 metros
Demanda mínima	80	75	60

Elabore um modelo de PL para atender à demanda com o menor desperdício possível.(valor: 2,0) <u>Obs.:</u> Você deve considerar todos os possíveis padrões de corte das barras. Considere como perda qualquer sobra estritamente menor do que o menor item.

5. Considere o problema de otimização abaixo com sua respectiva árvore branch-and-bound

Max
$$f(x) = c_1x_1 + c_2x_2$$

sujeito a: $a_{11}x_1 + a_{12}x_2 \le b_1$
 $a_{21}x_1 + a_{22}x_2 \le b_2$
 $x_1, x_2 \ge 0$ e inteiros

Pede-se:

- a) Escrever os modelos de PL completos referentes ao problema 4 e o problema 5;
- b) É possível afirmar que a solução ótima foi encontrada? Por que?
- c) Listar os problemas que ainda precisam e os que não precisam ser examinados, justificando cada resposta;
- d) Escreva os modelos completos que devem ser resolvidos a partir do problema 5, *supondo* que este venha ser examinado.

(valor: 2,0)

Obs.:

- 1. Neste exercício não é necessário fazer contas.
- 2. As respostas do tipo sim/não devem sempre ser justificadas e as justificativas compreendem 50% da nota.