Directional Derivatives and Optimality

David Rosenberg

New York University

February 4, 2016

Convex Sets and Functions

Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \leqslant \theta \leqslant 1$ we have

$$\theta x_1 + (1-\theta)x_2 \in C.$$

Convex and Concave Functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom}\ f$, and $0 \leqslant \theta \leqslant 1$, we have

$$f(\theta x + (1 - \theta)y) \leqslant \theta f(x) + (1 - \theta)f(y).$$

Directional Derivatives and Minima

Directional Derivatives

Definition

A [one-sided] directional derivative of f at x in the direction v is

$$f'(x;v) = \lim_{h \downarrow 0} \frac{f(x+hv) - f(x)}{h},$$

and it can be $\pm \infty$ (e.g. for discontinuous functions).

Directional Derivatives

Definition

A [one-sided] directional derivative of f at x in the direction v is

$$f'(x;v) = \lim_{h \downarrow 0} \frac{f(x+hv) - f(x)}{h},$$

and it can be $\pm \infty$ (e.g. for discontinuous functions).

• If f is convex and finite near x, then f'(x; v) exists.

Directional Derivatives

Definition

A [one-sided] directional derivative of f at x in the direction v is

$$f'(x;v) = \lim_{h \downarrow 0} \frac{f(x+hv) - f(x)}{h},$$

and it can be $\pm \infty$ (e.g. for discontinuous functions).

- If f is convex and finite near x, then f'(x; v) exists.
- f is differentiable at x iff for some $g(=\nabla f(x))$ and all v,

$$f'(x; v) = g^T v.$$

Definition

v is a descent direction for f at x if f'(x; v) < 0.

Definition

v is a descent direction for f at x if f'(x; v) < 0.

• For differentiable f, if $\nabla f(x) \neq 0$, then $\delta x = -\nabla f(x)$ is a descent direction.

Definition

v is a descent direction for f at x if f'(x; v) < 0.

- For differentiable f, if $\nabla f(x) \neq 0$, then $\delta x = -\nabla f(x)$ is a descent direction.
- We have a nice characterization for a minimum in terms of directional derivative:

Definition

v is a descent direction for f at x if f'(x; v) < 0.

- For differentiable f, if $\nabla f(x) \neq 0$, then $\delta x = -\nabla f(x)$ is a descent direction.
- We have a nice characterization for a minimum in terms of directional derivative:

Theorem

If f is convex and finite near x, then either

- x minimizes f, or
- there is a descent direction for f at x.

$$J_{\lambda}(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

Lasso objective

$$J_{\lambda}(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

• Is there a λ_{\max} such that $\lambda \geqslant \lambda_{\max}$ implies $\arg \min_{w} J_{\lambda}(w) = 0$?

$$J_{\lambda}(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

- Is there a λ_{\max} such that $\lambda \geqslant \lambda_{\max}$ implies $\arg \min_{w} J_{\lambda}(w) = 0$?
- Suppose yes.

$$J_{\lambda}(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

- Is there a λ_{\max} such that $\lambda \geqslant \lambda_{\max}$ implies $\arg \min_{w} J_{\lambda}(w) = 0$?
- Suppose yes.
- Then w = 0 is a minimum of $J_{\lambda}(w)$.

$$J_{\lambda}(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{1}$$

- Is there a λ_{\max} such that $\lambda \geqslant \lambda_{\max}$ implies $\arg \min_w J_{\lambda}(w) = 0$?
- Suppose yes.
- Then w = 0 is a minimum of $J_{\lambda}(w)$.
- Let's see what that means in terms of our directional derivative characterization.

• Consider a step direction v. For convenience, take v s.t. |v| = 1.

- Consider a step direction v. For convenience, take v s.t. |v| = 1.
- Then directional derivative at w = 0 in direction v is

$$J'_{\lambda}(0; \nu) = \lim_{h \downarrow 0} \frac{J(h\nu) - J(0)}{h}.$$

- Consider a step direction v. For convenience, take v s.t. |v| = 1.
- Then directional derivative at w = 0 in direction v is

$$J'_{\lambda}(0; \nu) = \lim_{h \downarrow 0} \frac{J(h\nu) - J(0)}{h}.$$

• For w = 0 to be a minimizer, need to have $J'_{\lambda}(0; v) \ge 0$ for every direction v.

- Consider a step direction v. For convenience, take v s.t. |v| = 1.
- Then directional derivative at w = 0 in direction v is

$$J'_{\lambda}(0; v) = \lim_{h \downarrow 0} \frac{J(hv) - J(0)}{h}.$$

- For w=0 to be a minimizer, need to have $J'_{\lambda}(0;v)\geqslant 0$ for every direction v.
- Can find λ_{max} by finding conditions on λ for this to be the case.