Problem Statement: To predict the Rainfall based on the Various Features of DataSet

In [1]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r"C:\Users\HP\Downloads\rainfall in india 1901-2015.csv")
df
```

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jŧ F
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	13(
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	15!
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	150
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	2.
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	1!
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	61
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	6!
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	:
4116 rows × 19 columns							•									

Data Preprocessing

Type $\mathit{Markdown}$ and LaTeX : α^2

```
In [3]:
```

1 df.head()

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12 <u>.</u> 2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	4
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	5
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	3
4 0																	•

In [4]:

1 df.tail()

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7
4		_	_	_	_	_	_	_	_	_	_	_	_			

In [5]:

1 df.isnull().any()

Out[5]:

SUBDIVISION	False
YEAR	False
JAN	True
FEB	True
MAR	True
APR	True
MAY	True
JUN	True
JUL	True
AUG	True
SEP	True
OCT	True
NOV	True
DEC	True
ANNUAL	True
Jan-Feb	True
Mar-May	True
Jun-Sep	True
Oct-Dec	True
dtype: bool	

```
In [6]:
```

```
1 df.fillna(method='ffill',inplace=True)
```

In [7]:

```
1 df.isnull().sum()
```

Out[7]:

SUBDIVISION 0 YEAR 0 0 JAN 0 FEB MAR 0 0 APR 0 MAY JUN 0 0 JUL 0 AUG 0 SEP OCT 0 NOV 0 0 DEC ANNUAL 0 Jan-Feb 0 Mar-May 0 Jun-Sep 0 Oct-Dec 0

In [8]:

dtype: int64

1 df.describe()

Out[8]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AU(
count	4116,000000	4116.000000	4116.000000	4116,000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.00000
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.567979	347.177235	290.23979
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.896056	269.321089	188.78563
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.00000
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.475000	175.900000	155.85000
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.900000	284.800000	259.40000
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.150000	418.325000	377.80000
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.60000
					_				

```
In [9]:
 1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
    Column
                 Non-Null Count Dtype
                 -----
0
    SUBDIVISION 4116 non-null
                                object
1
                 4116 non-null
2
    JAN
                 4116 non-null
                                float64
3
    FEB
                 4116 non-null
                                float64
    MAR
                 4116 non-null
                                float64
                                float64
5
    APR
                 4116 non-null
                 4116 non-null
                                float64
6
    MAY
7
    JUN
                 4116 non-null
                                float64
8
    JUL
                 4116 non-null
                                float64
9
                 4116 non-null
                                float64
    AUG
10
    SEP
                 4116 non-null
                                float64
11
    OCT
                 4116 non-null
                                float64
12
    NOV
                 4116 non-null
                                float64
13
    DEC
                 4116 non-null
                                float64
 14
    ANNUAL
                 4116 non-null
                                float64
15
                 4116 non-null
                                float64
    Jan-Feb
16 Mar-May
                 4116 non-null
                                float64
17 Jun-Sep
                 4116 non-null
                                float64
                 4116 non-null
18 Oct-Dec
                                float64
dtypes: float64(17), int64(1), object(1)
memory usage: 611.1+ KB
In [10]:
 1 df.columns
Out[10]:
'Jun-Sep', 'Oct-Dec'],
     dtype='object')
In [11]:
 1 df.shape
Out[11]:
(4116, 19)
In [12]:
 1 df['ANNUAL'].value_counts()
Out[12]:
ANNUAL
790.5
770.3
         4
         4
1836.2
1024.6
         4
1926.5
         3
443.9
         1
689.0
         1
605.2
         1
509.7
         1
1642.9
         1
Name: count, Length: 3712, dtype: int64
```

```
In [13]:
 1 df['Jan-Feb'].value_counts()
Out[13]:
Jan-Feb
        238
0.0
0.1
         80
0.2
         52
0.3
         38
0.4
         32
23.3
         1
95.2
         1
76.9
         1
66.5
         1
69.3
         1
Name: count, Length: 1220, dtype: int64
In [14]:
 1 df['Mar-May'].value_counts()
Out[14]:
Mar-May
0.0
         29
         13
0.1
0.3
         11
8.3
         11
11.5
         10
246.3
         1
248.1
         1
151.3
         1
249.5
         1
223.9
Name: count, Length: 2262, dtype: int64
In [15]:
 1 df['Jun-Sep'].value_counts()
Out[15]:
Jun-Sep
434.3
         4
334.8
         4
573.8
         4
613.3
         4
1082.3
         3
301.6
         1
380.9
         1
409.3
         1
229.4
         1
958.5
         1
Name: count, Length: 3683, dtype: int64
```

```
In [16]:
 1 df['Oct-Dec'].value_counts()
Out[16]:
Oct-Dec
         16
0.0
0.1
         15
0.5
         13
0.6
         12
0.7
         11
191.5
          1
124.5
          1
139.1
41.5
555.4
          1
Name: count, Length: 2389, dtype: int64
```

Data Analysis

```
In [17]:
```

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
In [18]:
```

```
1 df.columns
Out[18]:
```

```
Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')
```

In [19]:

```
1 x=df[["FEB"]]
  y=df["JAN"]
```

Linear Regression

In [20]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [21]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

9.650666612303553

Out[21]:

coefficient

FEB 0.442278

In [22]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.1793580786264921

In [23]:

predictions=reg.predict(X_test)

In [24]:

```
plt.scatter(y_test,predictions)
```

Out[24]:

<matplotlib.collections.PathCollection at 0x1c0f02591d0>

In [25]:

```
df500=df[:][:500]
sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
plt.show()
```


In [26]:

```
1 X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
```

- 2 reg.fit(X_train,y_train)
- 3 reg.fit(X_test,y_test)

Out[26]:

▼ LinearRegression LinearRegression()

In [27]:

```
1  y_pred=reg.predict(X_test)
2  plt.scatter(X_test,y_test,color='black')
3  plt.plot(X_test,y_pred,color='red')
4  plt.show()
```


In [28]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.13822029797956226

Ridge Regression

In [29]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [30]:

```
1 features= df.columns[0:5]
2 target= df.columns[-5]
```

In [31]:

```
1 x=np.array(df['JAN']).reshape(-1,1)
2 y=np.array(df['FEB']).reshape(-1,2)
```

In [32]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

In [33]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

In [34]:

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

Ridge Model:

the train score for ridge model is0.99999999874192 the test score for ridge model is0.9999999998833

In [35]:

1 lr=LinearRegression()

```
In [36]:
```

```
gurte(figsize= (10,10))
bt(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='red',label=r'Ridge; $\alpha
bt(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='Linear Regression')
icks(rotation = 90)
gend()
bw(6)
```


Lasso Regression

```
In [37]:
```

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for 1s model is 0.9999207747038827 The test score for 1s model is 0.9999206791315255

In [38]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[38]:

<Axes: >

In [39]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.999999999999921

0.999999999999921

```
In [40]:
```

```
gure(figsize= (10,10))

bt(Features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='red',label=r'Ridge; $\alpha = bt(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'Ridge; $\alpha = 100$')

bt(Features,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regression')

icks(rotation = 90)

gend()

bw(/)
```


Elastic Net:

```
In [41]:
```

```
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
print(regr.score(x,y))
```

```
[9.99098574e-01 0.00000000e+00 3.02728910e-05 0.00000000e+00
```

^{0.00000000}e+001

^{0.016258606966612632}

^{0.9999992160905338}

```
In [42]:

1  y_pred_elastic = regr.predict(x_train)

In [43]:

1  mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
2  print("Mean Squared Error on test set", mean_squared_error)
```

Mean Squared Error on test set 0.0008816302333951295

Conclusion:

In	
e t2b	r insurance data set have performed linear,logistic,random forest and decision tree models of regression and at the most accuracy is occured in Logistic regression,i.e 99percent at the Logic Regression model is best fit for given data
In	[]:
1	
In	[]:
1	