

OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015.05.20

MAT372 K.T.D.D. - Final Sınavı

N. Course

Adi: ÖRNEKTİR	Süre: 120 dk.
SOYADI: S A M P L E	Sure. 120 dk.
ÖĞRENCİ NO:	Sınav sorularından 4 tanesini seçerek
İMZA:	cevaplayınız.

Do not open the exam until you are told that you may begin. Sınavın başladığı yüksek sesle söylenene kadar sayfayı çevirmeyin.

- You will have 120 minutes to answer 4 questions from a choice of 0. If you choose to answer more than 4 questions, then only your best 4 answers will be counted.
- 2. The points awarded for each part, of each question, are stated next to it.
- All of the questions are in English. You may answer in English or in Turkish.
- 4. You must show your working for all questions.
- 5. Write your student number on every page.
- 6. This exam contains ?? pages. Check to see if any pages are missing.
- 7. If you wish to leave before the end of the exam, give your exam script to an invigilator and leave the room quietly. You may not leave in the first 20 minutes, or in the final 10 minutes, of the exam.
- Calculators, mobile phones and any digital means of communication are forbidden. The sharing of pens, erasers or any other item between students is forbidden.
- 9. All bags, coats, books, notes, etc. must be placed away from your desks and away from the seats next to you. You may not access these during the exam. Take out everything that you will need before the exam starts.
- Any student found cheating or attempting to cheat will receive a mark of zero (0), and will be investigated according to the regulations of Yükseköğretim Kurumları Öğrenci Disiplin Yönetmeliği.

- Sınav süresi toplam 120 dakikadır. Sınavda 0 soru sorulmuştur. Bu sorulardan 4 tanesini seçerek cevaplayınız. 4'den fazla soruyu cevaplarsanız, en yüksek puanı aldığınız 4 sorunun cevapları geçerli olacaktır.
- 2. Soruların her bölümünün kaç puan olduğu yanlarında belirtilmiştir.
- Tüm sorular İngilizce'dir. Cevaplarınızı İngilizce yada Türkçe verebilirsiniz.
- 4. Sonuca ulaşmak için yaptığınız işlemleri ayrıntılarıyla gösteriniz.
- 5. Öğrenci numaranızı her sayfaya yazınız.
- 6. Sınav ?? sayfadan oluşmaktadır. Lütfen eksik sayfa olup olmadığını kontrol edin.
- 7. Sınav süresi sona ermeden sınavınızı teslim edip çıkmak isterseniz, sınav kağıdınızı gözetmenlerden birine veriniz ve sınav salonundan sessizce çıkınız. Sınavın ilk 20 dakikası ve son 10 dakikası içinde sınav salonundan çıkmanız yasaktır.
- Sınav esnasında hesap makinesi, cep telefonu ve dijital bilgi alışverişi yapılan her türlü malzemelerin kullanımı ile diğer silgi, kalem, vb. alışverişlerin yapılması kesinlikle yasaktır.
- Çanta, palto, kitap ve ders notlarınız gibi eşyalarınız sıraların üzerinden ve yanınızdaki sandalyeden kaldırılmalıdır. Sınav süresince bu tür eşyaları kullanmanız yasaktır, bu nedenle ihtiyacınız olacak herşeyi sınav başlamadan yanınıza alınız.
- 10. Her türlü sınav, ve diğer çalışmada, kopya çeken veya kopya çekme girişiminde bulunan bir öğrenci, o sınav ya da çalışmadan sıfır (0) not almış sayılır, ve o öğrenci hakkında Yükseköğretim Kurumları Öğrenci Disiplin Yönetmeliği hükümleri uyarınca disiplin kovuşturması yapılır.

Canonical Forms:

$$\begin{aligned} Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu &= G \\ A^* &= A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2 \\ B^* &= 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y \\ C^* &= A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2 \\ D^* &= A\xi_{xx} + B\xi_{xy} + C\xi_{yy} + D\xi_x + E\xi_y \\ E^* &= A\eta_{xx} + B\eta_{xy} + C\eta_{yy} + D\eta_x + E\eta_y \\ F^* &= F \\ G^* &= G \\ H^* &= -D^*u_\xi - E^*u_\eta - F^*u + G^* \\ \frac{dy}{dx} &= \frac{B \pm \sqrt{\Delta}}{2A} \end{aligned}$$

Fourier Transforms:

$$F(\omega) = \mathcal{F}[f](\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$
$$f(x) = \mathcal{F}^{-1}[F](x) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega x} d\omega$$
$$f(x) \qquad F(\omega)$$

$$u_t(x,t)$$
 $U_t(\omega,t)$ $u_x(x,t)$ $i\omega U(\omega,t)$ $u_{xx}(x,t)$ $-\omega^2 U(\omega,t)$ $e^{-\alpha x^2}$ $\frac{1}{\sqrt{4\pi\alpha}}e^{-\frac{\omega^2}{4\omega}}$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi)g(x-\xi) d\xi \quad F(\omega)G(\omega)$$

$$\delta(x - x_0) \qquad \qquad \frac{1}{2\pi} e^{-i\omega x_0}$$

$$f(x-\beta) e^{-i\omega\beta}F(\omega)$$

 $iF_{\omega}(\omega)$

$$\frac{2\alpha}{x^2+\alpha^2}$$
 $e^{-|\omega|\alpha}$

xf(x)

$$f(x) = \begin{cases} 0 & |x| > a \\ 1 & |x| < a \end{cases} \frac{\sin a\omega}{\pi\omega}$$

Famous PDEs:

$$u_t = ku_{xx}$$
 heat equation
$$u_{tt} - c^2 u_{xx} = 0$$
 wave equation
$$\nabla^2 u = 0$$
 Laplace's Equation

Fourier Series:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi}{L} x + b_k \sin \frac{k\pi}{L} x$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \ dx$$

$$a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{k\pi}{L} x \ dx$$

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{k\pi}{L} x \ dx$$

If
$$f(x) = \sum_{k=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$
 then

$$f'(x) = \sum_{k=1}^{\infty} -\left(\frac{n\pi}{L}\right) a_n \sin\frac{n\pi x}{L}.$$

If
$$f(x) = \sum_{k=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$
 then

$$f'(x) = \frac{1}{L} \Big[f(L) - f(0) \Big] + \sum_{k=1}^{\infty} \Big[\frac{n\pi}{L} b_n + \frac{2}{L} \Big((-1)^n f(L) - f(0) \Big) \Big] \cos \frac{n\pi x}{L}.$$

ODEs:

The solution of $\phi' = \mu \phi$ is

$$\phi(x) = Ae^{\mu x}$$
.

The solution of $\phi'' = \mu^2 \phi$ is

$$\phi(x) = Ae^{\mu x} + Be^{-\mu x}$$
$$= C\cosh \mu x + D\sinh \mu x.$$

The solution of $\phi'' = -\mu^2 \phi$ is

$$\phi(x) = A\cos\mu x + B\sin\mu x.$$

The solution of $x(x\phi')' - \mu^2 \phi = 0 \ (\mu \neq 0)$ is

$$\phi(x) = Ax^{-\mu} + Bx^{\mu}.$$

The solution of $x(x\phi')' = 0$ is

$$\phi(x) = A \log x + B.$$

Soru 1 (Separation of Variables)

[25p] Explain the method of Separation of Variables for partial differential equations.

[25p] Değişkenleri Ayırma Yöntemini kısmi türevli diferansiyel denklemleri için açıklayınız.

Imagine that you are explaining the method of Separation of Variables to someone who hasn't studied this course. How would you explain it? This question should take you ≈ 25 minutes.

You might like to include:

- the main concepts of this method;
- an explaination of the sepa $ration\ constant$
- an explaination of eigenvalues and eigenfunctions;
- an example of your choosing.

almamış Bu dersi birisine Değişkenleri Ayırma Yöntemini anlatmanız gerektiğini varsayalım. Bu yöntemi nasıl anlatırdınız? Bu soruyu cevaplamak yaklaşık 25 dakikanızı alacaktır.

Bu soruyu cevaplarken aşağıdaki noktalara da yer veriniz:

- bu yöntemin temel kavramları;
- ayırma sabitinin açıklaması;
- özdeğer $\ddot{o}zislev$ 'in açıklamaları;
- sizin seçeğiniz bir örnek.

Soru 2 (Method of Characteristics) Consider

$$\frac{\partial u}{\partial t} + t^2 u \frac{\partial u}{\partial x} = 5. \tag{1}$$

(a) [1p] Equation (??) is

non-linear AND quasilinear; linear; non-linear, but not quasilinear;

(b) [17p] Use the method of characteristics to solve

$$\begin{cases} \frac{\partial u}{\partial t} + t^2 u \frac{\partial u}{\partial x} = 5\\ u(x,0) = x. \end{cases}$$
 (2)

Therefore

u(x,t) =

$$\frac{\partial u}{\partial t} + t^2 u \frac{\partial u}{\partial x} = 5 \tag{??}$$

(c) [7p] Check your answer to part (b) by differentiating your solution u(x,t) and calculating $(u_t + t^2 u u_x).$

Soru 3 (The Parallelogram Rule) Consider the wave equation on a string, of length L, with fixed ends:

where c > 0.

(a) [5p] First show that

$$u(x,t) = F(x - ct) + G(x + ct)$$

solves the wave equation, $u_{tt} - c^2 u_{xx} = 0$, for any twice differentiable functions $F:(0,L) \to \mathbb{R}$ and $G:(0,L)\to\mathbb{R}$.

$$A = (x_1, t_1)$$

$$B = (x_2, t_2)$$

$$C = (x_3, t_3)$$

$$D = (x_4, t_4)$$

Suppose that

- the parallelogram ABCD is contained in $[0, L] \times [0, \infty)$;
- each of the edges of the parallelogram lies on characteristics of the wave equation; and
- u(x,t) = F(x-ct) + G(x+ct).
- (b) [20p] Prove that

$$u(A) + u(C) = u(B) + u(D).$$

Soru 4 (Fourier Transforms) Let \mathcal{F} denote the Fourier Transform operator with respect to x.

(a) [7p] Suppose that $v: \mathbb{R}^2 \to \mathbb{R}$ is differentiable. Show that

$$\mathcal{F}\left[\frac{\partial v}{\partial t}\right](\omega,t) = \frac{\partial}{\partial t}\mathcal{F}[v](\omega,t)$$

for all $\omega, t \in \mathbb{R}$.

(b) [18p] Use the Fourier Transform to solve

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} + u \frac{\partial^2 u}{\partial x^2} - \left(\frac{\partial u}{\partial x}\right)^2 = 0, & -\infty < x < \infty, \quad 0 < t < \infty, \\ u(x,0) = f(x) & \\ u_t(x,0) = 0. & \end{cases}$$
(4)

Soru 5 (Fourier Sine Series) Define the function $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{1}{2} & x = 0, \ x = 1, \\ -\frac{1}{2} & 0 < x \le \frac{1}{2} \\ x & \frac{1}{2} < x < 1. \end{cases}$$
 (5)

(a) [7p] Show that

 $\{\sin n\pi x : n \in \mathbb{N}\}\$

is an orthogonal system on [-1, 1].

[HINT: $\cos(A+B) = \cos A \cos B - \sin A \sin B$, $\cos \cos(A+B) + \cos(A-B) = ?$ and $\cos(A+B) - \cos(A-B) = ?$]

(b) [1p] Sketch f.

(c) [7p] Sketch the Fourier **Sine** Series of f.

$$f(x) = \begin{cases} \frac{1}{2} & x = 0, \ x = 1, \\ -\frac{1}{2} & 0 < x \le \frac{1}{2} \\ x & \frac{1}{2} < x < 1. \end{cases}$$

(d) [10p] Calculate the coefficients $(b_k, k = 1, 2, 3, ...)$ of the Fourier Sine Series of f.