ST2334 AY23/24 Sem 2 Finals Cheat Sheet

Chapter 1: Probability

Sample Space	The sample space, denoted by S, is the set of ALL possible outcomes of a statistical experiment. The sample space depends on the problem of interest. An event is a subset of a sample space.	
Notation	For a finite set A, A denotes the number of elements in A.	
Equally Likely Probability	If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the probability of E, denoted $P(E)$, is $P(E) = \frac{The \ number \ of \ outcomes \ in \ E}{The \ total \ number \ of \ outcomes \ in \ S} = \frac{ E }{ S }$	
Statistical Experiment	A Statistical Experiment is any procedure that produces data/ observations.	
Sample Point	A sample point is an outcome (element) in the sample space	
Event	An event is a subset of the sample space.	

- The sample space is itself an event, and is called a sure event
- An event that contains NO ELEMENTS is the empty set, denoted by Ø, aka null event

Event Operation & Relationship Laws			
Basic		Distributive Law	
$A \cap A' = \emptyset$	$A \cap \emptyset = \emptyset$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
$A \cup A' = S$	(A')' = A	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Set Union Law with Complement		Absorption Law	
$A \cup B = A \cup (B \cap A')$		$A = (A \cap B) \cup (A \cup B')$	
De Morgan's Law			
$(A_1 \cup A_2 \cup \cup A_N)' =$		$(A_1 \cap A_2 \cap \cap A_N)' =$	
$A'_1 \cap A'_2 \cap \cap A'_N$		$A'_1 \cup A'_2 \cup \cup A'_N$	
Note: $(A \cup B)' = A' \cap B$		Note: $(A \cap B)' = A' \cup B$	

D()	n! (4)(2) (
P(n,r) =	$\frac{n!}{(n-r)!} = n(n-1)(n-2)(n-r+1)$

,	Order Matters	Order Don't Matter
Repetition is Allowed	n^k	$\binom{k+n-1}{k}$
Repetition is NOT allowed	P(n,k)	$\binom{n}{k}$

Probability Axioms

Let S be a sample space. A probability function P from the set of all events in S to the set of real numbers satisfies the following axioms: For all events A and B in S,

- 1. $0 \le P(A) \le 1$
- P(∅) = 0 and P(S) = 1
- 3. If A and B are disjoint events $(A \cap B = \emptyset)$, then (i.e A & B are mutually exclusive events) $P(A \cup B) = P(A) + P(B)$

Basic Properties of Probabilities

Proposition 1:

The probability of the empty set \emptyset is $P(\emptyset) = 0$ Proposition 2:

If A_1,A_2,\ldots,A_N are mutually exclusive events, that is $A_i\cap A_j=0$ for any $i\neq j$, then

$P(A_1 \cup A_2 \cup \cup A_N) = P(A_1) + P(A_2) + + P(A_N)$		
Proposition 3: Complement Rule	Proposition 4:	
For any event A, we have:	For any 2 events A & B,	
P(A') = 1 - P(A)	$P(A) = P(A \cap B) + P(A \cap B')$	
Proposition 5: General Union 2 Events	Proposition 6:	
For any events A & B,	If $A \subset B$, then $P(A) \leq P(B)$	
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$P(A) = P(A B) \cdot P(B) + P(A B') \cdot P(B')$	

Independence, Mutual Exclusivity			
ME	 2 events CANNOT occur at the same time A, B mutually exclusive ⇔ P(A ∩ B) = Ø 		
Independent Indep $\rightarrow \bot$ dep $\rightarrow \mathcal{X}$	$P(A) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A) \times P(B) = P(A \cap B)$ • A, B independent $\Leftrightarrow \frac{P(A \cap B)}{P(B)} = P(A)P(B)$ • If independent $\& P(A) \neq 0 \Rightarrow P(B A) = P(B)$ • If independent $\& P(B) \neq 0 \Rightarrow P(A B) = P(A)$		
Complement	P(A') = 1 - P(A)		
Expected Value	$\sum_{k=0}^{n} a_k p_k = a_1 p_1 + a_2 p_2 + a_3 p_3 + \dots + a_n p_n$		

Conditional Probability

$$A) = \frac{P(A \cap B)}{A} - (1)$$

$P(B A) = \frac{P(A)}{P(A)} - (1)$			
Multiplying both	sides of (1) by P(A)		es of (2) by P(B A)
$P(A \cap B) = P(B A) \cdot P(A) - (2)$		$P(A) = \frac{P(A)}{P(B)}$	$\frac{\cap B}{B A)}$ - (3)
Multiplication Rule			bility Formula
$P(A \cap B) = P(B A) \cdot P(A), if P(A) \neq 0$ $P(A \cap B) = P(A B) \cdot P(B), if P(B) \neq 0$		P(B A) =	$\frac{P(A \cap B)}{P(A)}$
		Then inverse:	
		$P(A B) = \frac{1}{2}$	$\frac{P(A)P(B A)}{P(B)}$
False Positive	False Negative	Sensitivity	Specificity
P(+'ve D')	P(-'ve D)	P(+'ve D)	P(-'ve D ^c)

Partition, Law of Total Probability

$$P(B) = \sum_{i=1}^{N} P(B \cap A_i) = \sum_{i=1}^{N} P(A_i) P(B|A_i)$$

For any events A & B, we have: P(B) = P(A)P(B|A) + P(A')P(B|A')

Bayes Theorem:			
K variables	$\begin{split} P(B_k A) &= \frac{P(A B_k) \cdot P(A_k)}{\sum_{l=1}^n P(B_l) P(A B_l)} \\ P(B_k A) &= \frac{P(A B_1) \cdot P(B_1)}{P(A B_1) \cdot P(B_1)} + \frac{P(A B_k) \cdot P(B_k)}{P(A B_2) \cdot P(B_2) + \dots + P(A B_n) \cdot P(B_n)} \end{split}$		
2 variables	$P(B A) = \frac{P(A B) \cdot P(B)}{P(A)} = \frac{P(A B) \cdot P(B)}{P(A B) \cdot P(B) + P(A \overline{B}) \cdot P(\overline{B})} = \frac{P(A \cap B)}{P(A)}$		

Pairwise Independent/ Mutually Independen

•	Events are mutually independent IFF 4 conditions are satisfied:		
	$P(A \cap B) = P(A) \cdot P(B)$	$P(A \cap C) = P(A) \cdot P(C)$	
	$P(B \cap C) = P(B) \cdot P(C)$	$P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$	

- Events can be pairwise independent without satisfying the condition
- $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$ Conversely, they can satisfy the condition $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot$ P(C) without being pairwise independent.

Mutually Independent:

 $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \cdot P(A_2) \cdot ... \cdot P(A_n)$

	$P(A_1 \cap A_2 \cap \cap A_n) = P(A_1) \cdot P(A_2) \cdot \cdot P(A_n)$
Chapter 2: Rand	om Variables
Probability Mass Function (PMF)	$f(x) = \begin{cases} P(X = x) & for \ x \in R_x \\ 0 & for \ x \notin R_x \end{cases}$ Properties of PMF: The pmf, $f(x)$ of a discrete random variable MUST satisfy these conditions: $1) \qquad f(x_i) \geq 0 \text{ for all } x_i \in R_x \\ 2) \qquad f(x_i) = 0 \text{ for all } x_i \notin R_x \\ 3) \qquad \sum_{i=1}^m f(x_i) = 1 \text{ OR } \sum_{x_i \in R_x} f(x_i) = 1$ For any set $B \subset \mathbb{R}$, we have: $\sum_{x_i \in R_x} f(x_i) = \frac{1}{2} \int_{R_x}^{R_x} f(x_i) dx_i =$
Probability	$P(X \in B) = \sum_{x_i \in B \cap R_X} f(x_i)$ 1) $f(x) \ge 0 \text{ for all } x \in R_X; f(x) = 0 \text{ for } x \notin R_X$
Density Function (PDF)	1) $\int_{R_X} f(x) dx = 1$ 2) $\int_{R_X} f(x) dx = 1$ This is equivalent to: $\int_{-\infty}^{\infty} f(x) dx = 1 \operatorname{Since} f(x) = 0 \operatorname{for} x \notin R_X$ 3) For any a and b such that $a \le b$:
	$P(a \le X \le b) = \int_{a}^{b} f(x) \ dx$
	Note: $P(a < X < b) = P(a < X \le b) = P(a \le X < b) = P(a \le X < b) = P(a \le X \le b) = \int_a^b f(x) \ dx$. They all represent the area under the graph $f(x)$ between $x = a$ and $x = b$. To check if pdf:
Cumulative Dist	$1. f(x) \ge 0 \text{ for all } x \in R_X; f(x) = 0 \text{ for } x \notin R_X$ $2. \int_{R_X} f(x) dx = 1$ Fibution Function (CDF) $F(x) = P(X \le x)$

	$2. \int_{R_X} f(x) dx = 1$
Cumulative Distr	ibution Function (CDF) $F(x) = P(X \le x)$
Discrete	$F(x) = \sum_{t \in R_{X} \neq x}, f(t) = \sum_{t \in R_{X} \neq x} P(X = t)$ • The cumulative distribution function of a DRV is a step function. • For any 2 numbers $a < b$, we have: $P(a \le X \le b) = P(X \le b) - P(X < a) = F(b) - F(a - 1)$ $F(a - 1) = \lim_{t \to a} F(x)$
Continuous	$F(x) = \int_{-\infty}^{x} f(t) dt , \qquad f(x) = \frac{dF(x)}{dx}$ Further: $P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$

- Discrete → Summation; Continuous → Integrate
- The ranges of F(x) and f(x) satisfy the following conditions:
- 1. 0 < F(x) < 1
- 2. For discrete distributions, $0 \le f(x) < 1$
- 3. For continuous distributions, $0 \le f(x)$, but NOT NECESSARILY that $f(x) \le 1$

Expectation & Variance **expectation = mean			
Expectation for DRV	Expectation for CRV		
$\mu x = E(X) = \sum_{x_i \in R_X} x_i f(x_i)$	$\mu x = E(X) = \int_{-\infty}^{\infty} x f(x) dx$		
$= \sum_{x_i \in R_X} x_i P(X = x) = \frac{\sum f(x)}{\sum f}$	$= \int_{x \in R_X} x f(x) dx$ rbitrary function		
$E[g(X)] = \sum_{x \in R_X} g(x)f(x)$	$E[g(X)] = \int_{R_X} g(x)f(x) dx$		
Variance			
$\sigma_X^2 = V(X) = E(X - \mu_X)^2 = E(X^2) - [E(X)]^2$			
Note:			

• $V(X) \ge 0$ for any X.

- Equality holds iff P(X = E(X)) = 1, that is when X is a constant
- The positive root of the variance = standard deviation of X

$\sigma_X = \sqrt{V(X)}$ Variance for DRV Variance for CRV $V(X) = \sum_{x} (x - \mu_x)^2 f(x)$ $(x - \mu_x)^2 f(x) dx$

Basic Properties of Expectations & Variance:

Expectation	Variance
a) $E(a) = a$	a) $V(a) = 0$
b) $E(aX) = aE(X)$	b) $V(aX) = a^2V(X)$
c) $E(aX \pm b) = aE(X) \pm b$	c) $V(aX \pm b) = a^2V(X)$
d) $E(aX \pm bY) = aE(X) \pm bE(Y)$	d) $V(aX \pm bY) = a^2V(X) \pm b^2V(Y)$
e) $E(x_1 + x_2 + \dots + x_n) = nE(X)$	e) $V(x_1 + x_2 + \cdots + x_n) = nV(X)$
$E(a_1X_1++a_kX_k)$	
$= a_1E(X_1)++a_kE(X_k)$	

Chapter 3. Joint Distributions			
	2D Random Vector		
Let E be an ex	periment and S be a corresponding sample space.		
Suppose X and	If Y are two functions each assigning a real number to each $s \in S$.		
We call (X,Y) a 2D random vector , or a 2D random variable .			
2D Discrete $ (X,Y) \text{ is a discrete 2D random variable if the number of possible values of } (X(s),Y(s)) \text{ are finite/countable.} $ That is, the possible values of $(X(s),Y(s))$ may be represented by: $ (x_{l},y_{l}), i=1,2,3,; \ j=1,2,3 $			
2D (X,Y) is a continuous 2D random variable if the possible values of $(X(s),Y(s))$ can assume any value in some region of the Euclidean space \mathbb{R}^2 .			

We can view X and Y separately to JUDGE whether (X, Y) is discrete or cont.

If both X and Y are discrete random variables → (X, Y) is discrete.

• If both X and Y are continuous random variables $\rightarrow (X,Y)$ is continuous

n-Dimensional Random Vector

Let X_1, X_2, \dots, X_n be n functions each assigning a real number to all outcome $s \in S$. We call $(X_1, X_2, ..., X_n)$ a n-dimensional random vector, or a n-dimensional random variable.

Discrete Joint Probability Function

 $f_{x,y}(x,y) = P(X = x, Y = y), for (x,y) \in R_{X,Y}$

Properties of Discrete Joint Probability Function $f_{x,y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$

 $f_{x,y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{x,y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = 1$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{x,y}(x_i, y_j) = 1$$

Let A be any subset of $R_{X,Y}$, then

$$P((X,Y) \in A) = \sum_{(x,y) \in A} f_{X,Y}(x,y)$$

$$P((X,Y) \in D) = \iint_{(x,y) \in D} f_{x,y}(x,y) \, dy dx$$

For any $D \subset \mathbb{R}^2$, more specifically:

$$P(a \le X \le b, c \le Y \le d) = \int_{a}^{b} \int_{c}^{d} f_{x,y}(x, y) \, dy dx$$

Properties of Continuous Joint Probability Function

 $f_{x,y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$ $f_{x,y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$ 2.

> $f_{x,y}(x,y)\,dydx=1\qquad ,$ $f_{x,y}(x,y) dydx = 1$

Y is DRV (Discrete)	For any x : $f_x(x) = \sum_y f_{x,y}(x,y)$	
Y is CRV (Continuous)	For any x : $f_x(x) = \int_{-\infty}^{\infty} f_{x,Y}(x,y) dy$	
. Administrated	table at a la lite a "and la at a " afab a 20 formation for (or a) and at a	

- Marginal distribution is like a "projection" of the 2D function $f_{X,Y}(x,y)$ onto the 1D function.
- The marginal distribution of X is the individual distribution of X ignoring the values of Y.
- $f_X(x)$ is a probability function; so it satisfies all the properties of the probability function

Conditional Distribution

	u, cona prob m:	Given $f_y(y) > 0$, cond prob in:
$f_{Y X}(y x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$		$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$
If $f_x(x) > 0$,	$f_{X,Y}(x,y) = f_X(x)f_{Y X}(y x),$	If $f_Y(y) > 0$, $f_{X,Y}(x,y) = f_Y(y)f_{X Y}(x y)$
Discrete	$P(Y = y X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{f_{X,Y}(x, y)}{f_X(x)}$	
Continuous	$P(Y \le y X = x) = \int_{-\infty}^{y} f_{Y X}(y x) dy$	
	$E(Y X=x) = \int_{-\infty}^{\infty} y f_{Y X}(y x) dy$	

 $conditional\ distribution = \frac{joint\ density}{marginal\ distribution}$

Independent Random Variables

Random variables X and Y are independent IFF for any x and y:

$$f_{X,Y}(x,y) = f_x(x)f_Y(y)$$

Random variables $X_1, X_2, ..., X_n$ are independent IFF for any $x_1, x_2, ..., x_n$:

 $f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_n}(x_n)$

Just check if their joint probability = product of their individual probabilities

If $R_{X,Y}$ is NOT a product space $\rightarrow X$ and Y are NOT independent

Properties of Independent Random Variables

Suppose X, Y are independent random variables:

1. If A and B are arbitrary subsets of \mathbb{R} , the events $X \in A$ and $Y \in B$ are independent events in S. As such:

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$
 For any real numbers x, y :

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y)$$

- 2. For arbitrary functions $g_1(\bullet)$ and $g_2(\bullet)$, $g_1(X)$ and $g_2(Y)$ are independent. For example
- X² and Y are independent.
- sin(X) and cos(Y) are independent.
- e^X and log(Y) are independent.
- 3. Independence is connected with conditional distribution. - If $f_X(x) > 0$, then $f_{Y|X}(y|x) = f_Y(y)$
- If $f_Y(y) > 0$, then $f_{X|Y}(x|y) = f_X(x)$

depending on both x and y.

CHECKING INDEPENDENCE

We have a handy way to check independence.

X and Y are independent if and only if both of the following hold:

(a) R_{XY} , the range where the probability function is positive, is a product space. (b) For any $(x,y) \in R_{X,Y}$, we have

 $f_{X,Y}(x,y) = C \times g_1(x) \times g_2(y).$ That is, $f_{X,Y}(x,y)$ can be "factorized" as the product of two functions g_1 and g_2 , where g_1 depends on x only, g_2 depends on y only, and C is a constant not

Note: $g_1(x)$ and $g_2(y)$ on their own NEED NOT be probability functions.

Definition 9: Expectation of 2-Dimensional Random Variables		
Consider any 2-variable function $g(x, y)$		
(Discrete) $ E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y) $		
If (x, y) is CRV (Continuous)	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$	

 $g(X,Y) = (X - E(X))(Y - E(Y)) = (X - \mu_Y)(Y - \mu_Y)$

The expectation E[g(X,Y)] leads to the covariance of X and Y.

The covariance of X and Y is defined to be:

cov(X,Y) = E[(X - E(X))(Y - E(Y))]If X and Y are $cov(X,Y) = \sum \sum (x - \mu_x)(y - \mu_y) f_{X,Y}(x,y)$ (Discrete) If X and Y are CRV $(x - \mu_x)(y - \mu_y)f_{X,Y}(x,y) dydx$

(Continuous) Properties of the Covariance

1. cov(X,Y) = E(XY) - E(X)E(Y)

2. If X and Y are independent, then cov(X, Y) = 0

However, cov(X,Y) = 0 does not imply independence (1 way relation). i.e:

- i) $X \perp Y \Rightarrow cov(X, Y) = 0$ (X &Y independent \rightarrow cov = 0)
- ightharpoonup Since $E(XY) = E(X)E(Y) \rightarrow cov(X,Y) = 0$ ii) $cov(X,Y) = 0 \Rightarrow X \perp Y$ (cov = 0 does not imply independence)
- 3. $cov(aX + b, cY + d) = ac \cdot cov(X, Y)$
- i) cov(X, Y) = cov(Y, X)
- cov(X + b, Y) = cov(X, Y)
- iii) $cov(aX, Y) = a \cdot cov(X, Y)$
- 4. $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot cov(X, Y)$
- $V(aX) = a^2V(X)$
- ii) V(X + Y) = V(X) + V(Y) + 2cov(X, Y)

Properties of Variance and Covariance

Using V(X + Y) = V(X) + V(Y) + 2cov(X, Y), we can derive the following:

1. For random variables X and Y that are independent, we have:

 $V(X \pm Y) = V(X) \pm V(Y)$

2. For random variables X_1, X_2, \dots, X_n , we have: (Not independent) $V(X_1 + X_2 + ... + X_n) = V(X_1) + V(X_2) + ... + V(X_n) + 2 \sum_{i=1}^{n} cov(X_i, X_i)$

3. For random variables X_1, X_2, \dots, X_n that are independent, we have:

 $V(X_1 \pm X_2 \pm ... \pm X_n) = V(X_1) \pm V(X_2) \pm ... \pm V(X_n)$ $cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(X))(y_i - E(Y))$ $V(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(X))^2$

To test if X and Y are independent: -Check $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ for all possible combinations

Chapter 4: Special Probability Distributions

ili a Discrete Offilo	n a Discrete Official Distribution.		
Expectation of X	$\mu_X = E(X) = \sum_{i=1}^{k} x_i f_X(x_i) = \frac{1}{k} \sum_{i=1}^{k} x_i$		
Variance of X	$\sigma_X^2 = V(X) = E(X^2) - (E(X))^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 - \mu_X^2$		

Note the Probability Equivalence:

- $P(X > a) = 1 P(X \le a)$
- $P(X < a) = P(X \le (a-1))$
- $P(b \le X \le a) = P(X \le a) P(X \le (b-1))$
- $P(b < X < a) = P(X \le (a-1)) P(X \le b)$
- $P(X \ge a) = 1 P(X \le (a-1))$

 P(X ≤ 	$a) = P(X \le a)$			
	bability Distributions:	V D	noulli(p)	
Bern- oulli	f	$A \sim Beri$ (x) = D(Y = x)	$y = \begin{cases} p, & x = 1; \\ 1 - p, & x = 0; \end{cases}$	
)x'	$p^{x}(1-p)^{1-x}, f$	(1-p, x=0)	
	Expectation		$\mu_X = E(X) = p$	1
	Variance		=V(X)=p(1-p)=pq	1
Bino- mial	(Y = x	$X \sim Bi$	n(n,p) $p)^{n-x}$, for $x = 0,1,2,3,,n$	
illiai	Expectation	$J = \binom{\chi}{\chi} p (1 - \frac{1}{\chi}) q (1 - \frac{1}{\chi}) $	E(X) = nv	7
	Variance		V(X) = np(1-p)	1
	• $E(X) = E(X_1) + \cdots$	$+E(X_n)=p+$	$\cdots + p = np$	
	 V(X) = V(X₁++ 	$V(X_1) = V(X_1) + V(X_1)$	$+V(X_n) = pq++pq = npq$ B(k, p)	
Neg- ative	$f_X(x) = P(X = x) = ($	$\binom{x-1}{k-1} p^k (1-1)$	$p)^{x-k}$, for $x = k, k + 1, k + 2$,	3,.
Bino-	Expectation		$E(X) = \frac{k}{p}$	
mial	Variance		$V(X) = \frac{p}{(1-p)k}$	
Geom- etric		$X \sim G\epsilon$ $f_{x}(x) = P(X = I)$	com(n)	
cuit	Expectation		$E(X) = \frac{1}{p}$ $E(X) = \frac{1}{p}$	1
	Variance		$V(X) = \frac{1-p}{p^2}$	1
Poi-		X~Poisson(λ), where $\lambda > 0$	
sson		$f_X(k) = P(X$	$=k)=\frac{e^{-\lambda k}}{k!}$	
		0,1,is the #	occurence of such events	
	Expectation Variance		$E(X) = \lambda$ $V(X) = \lambda$	4
	Note:	1	. (.,)	
			ion using Poisson Approx	
	 Given n → ∞ a > n > 20 an 	nd $p \rightarrow 0$ in such d $v < 0.05$ OR r	h a way that $\lambda=np$ remains a const $a\geq 100$ and $np\leq 10$	ant
	Poiss	son Approximat	tion (~~ Binomial)	
	11 _	$\lim_{0,n\to\infty} P(X=x)$	$=\frac{e^{-np}(np)^x}{x!}$	
Cont-		X ~ U	U(a,b)	
Inuous	PDF		CDF $ (0, x < a)$	
Uni-	$f_X(x) = \begin{cases} \frac{1}{b-a}, \\ 0, \end{cases}$	$a \le x \le b$; otherwise	$F_{\chi}(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \end{cases}$	b
form			1, x > b	
	Expectation		$E(X) = \frac{a+b}{2}$	1
	Variance	V(X) =	$E(X^{2}) - (E(X))^{2} = \frac{(b-a)^{2}}{12}$	1
	$F_X(x) = 0$ when $x < a$ When $a \le x \le b$:	and $F_X(x) = 1$	when $x > b$	
	$F_X(x) = \int_{-\infty}^{x} f_X(t)$	$dt = \int_{-\infty}^{a} 0 dt +$	$-\int_{a}^{x} \frac{1}{b-a} dt = \frac{1}{b-a} [t]_{a}^{x} = \frac{x-a}{b-a}$	
Expon-		X∼E	$xp(\lambda)$	
ential	1st form	if r > 0·	2 nd form	
	$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, \\ 0, \end{cases}$	$if x \le 0$, $if x < 0$	$f_{\chi}(x) = \begin{cases} \frac{1}{\mu} e^{-x/\mu}, & x \ge 0; \\ 0, & x < 0 \end{cases}$	
	E(X) =	1 1	$E(X) = \mu$	
	$V(X) = E(X^2) - (I$	$E(X))^2 = \frac{1}{\lambda^2}$	$V(X) = E(X^2) - (E(X))^2 = \mu^2$	2
	Inverse relationship	$\mu = \frac{1}{\lambda}$		
	+'ve number s and	t, we have:	Distribution with $\lambda > 0$. Then for an	y 2
			> s) = $P(X > t)emory"/ "memoryless"$	
	Exponential Distribution		, . ,	

Proof Memoryless: Given $X \sim Exp(\lambda)$, we check that: $P(X > s + t | X > s) = \frac{P(\{X > s + t\} \cap \{X > s\})}{P(\{X > s + t\} \cap \{X > s\})}$

P(X > s)

 $=e^{-\lambda(t)}=P(X>t)$

 $=\frac{e^{-\lambda(s+t)}}{-\lambda(s+t)}$

P(X > s + t)

P(X > s)

		Λ - N (μ, υ)		
	$f_{\nu}(x)$	$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$		
	7, ()			
	Expectation $E(X) = \mu$			
	Variance	$V(X) = E(X^2) - (E(X))^2 = \sigma^2$		
	Properties of Normal I			
	Total area under co			
		me V(X), $\sigma^2 \rightarrow$ Same shape, maybe diff points.		
		an, the more the curve shifts right.		
		→ curve flattens (Larger range of values)		
	Standardized Normal I			
		$Z \sim N(0,1), Z = \frac{X - \mu}{\sigma}$		
	 E(Z) = 0 and V(Z) = 1.		
	pdf o	$f Z = \phi(z) = f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$		
		$\Phi(z) = \int_{-\infty}^{z} \phi(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$		
	$X < x_2$)	2) and any real numbers x_1, x_2 , where $P(x_1 <$		
	$x_1 < X < x_2 \Leftrightarrow \frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{x_2 - \mu}{\sigma}$			
	$P(x_1 < X < x_2) = P(z_1 < Z < z_2), where z_1 = \frac{x_1 - \mu}{\sigma}, z_2 = \frac{x_2 - \mu}{\sigma}$			
	$P(x_1 < X < x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$			
	Properties of Standard			
	 P(Z ≥ 0) = P(Z ≤ 	$S(0) = \Phi(0) = 0.5$ $P(Z \le z) = P(Z \ge -z) = 1 - \Phi(-z)$		
	- Symmetric pro			
	 If Z~N(0,1), then 			
	3. If $Z \sim N(0,1)$, then $-Z \sim N(0,1)$; 4. If $Z \sim N(0,1)$, then $\sigma Z + \mu \sim N(\mu, \sigma^2)$			
	Approximation to Binomial			
	Let $X \sim Bin(n, p)$, so that $E(X) = np$ and $V(X) = np(1 - p)$. $n \rightarrow \infty$:			
	$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1 - p)}} is approximately \sim N(0, 1)$			
	Continuity Correction (IMPT) $P(X = k) \approx P(k - 1/2 < X < k + 1/2)$			
	$P(a \le X \le b) \approx P(a - 1/2 \le X \le b + 1/2)$			
	$P(a < X \le b) \approx P(a + 1/2 < X < b + 1/2)$			
	$P(a \le X \le b) \approx P(a + 1/2 \le X \le b + 1/2)$			
	$P(a < X < b) \approx P(a + 1/2 < X < b - 1/2)$			
		$0 \le X \le c$ $\approx P(-1/2 < X < c + 1/2)$		
		$(X \le n) \approx P(c + 1/2 < X < n + 1/2)$		
Cal	nnling & Samnling Distri	hutions		

Chapter 5: Sampling & Sampling Distributions

Denoted by σ²

Sample Mean $\vec{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		Realization
		$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
	Statistic	Realization
Sample Variance	$S^{2} = \frac{1}{1-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$	$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Validity of \overline{X} as an estimator for μ_X

- The expectation of \bar{X} is equal to the population mean μ_X . ($E(\bar{X}) = \mu_X$)
- In the long run, \bar{X} does not introduce any systematic bias as an estimator of μ_X . - Hence, \bar{X} can serve as a valid estimator of μ_X .
- For an infinite population, when n gets larger and larger, $\frac{\sigma \tilde{\chi}}{n}$, the variance of \bar{X} , becomes smaller and smaller, that is, the accuracy of \bar{X} as an estimator of μ_X keeps improving. $\mu_{\bar{X}} = E(\bar{X}) = \mu_{\bar{X}} \& \sigma_{\bar{X}}^2 = V(\bar{X}) = \frac{\sigma_{\bar{X}}^2}{n}$

Error	 Measures tx_x. Measures the spread of the sampling distribution (s.d). The standard error of X̄ describes how much X̄ tends to vary from sample to sample of size n. As n increases, ^{x̄}/_n decreases → X̄ tends to be closer to μ_X as n increases. 	
Law of	$P(\bar{X} - \mu > \varepsilon) \to 0 \text{ as } n \to \infty$	
Large Nums	 As such, X	
	 As the sample size increases, the probability that the sample mean differs from the population mean goes to zero. 	
	It is increasingly likely that \bar{X} is close to μ_X , as n gets larger	
CLT	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \to Z \sim N(0,1) \ equivalently \ \bar{X} \to N\left(\mu, \frac{\sigma^2}{n}\right)$	
	 Large n → random samples follows the normal distribution. 	
	• In the case where X_1, X_2, \dots, X_n are independent and identically	
	distributed $N(\mu, \sigma^2)$, then:	
	$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), or \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$	

Exactly, regardless of the sample size n. (For Normal Distribution)

Chi	A χ^2 random variable with n degree of freedom(df) as $\chi^2(n)$.		
Square	Properties of χ^2 Distributions		
χ^2	 If Y~χ²(n), then E(Y) = n and V(Y) = 2n. 		
Distribu	 For large n, χ²(n) is approximately N(n, 2n). 		
tion	3. If Y_1 and Y_2 are independent χ^2 random variables with m and n		
	degrees of freedom respectively, then $Y_1 + Y_2$ is a χ^2 random		
	variable with $m + n$ degrees of freedom.		
	 The χ² distribution is a family of curves, each determined by the 		
	degrees of freedom, n .		
	 All the density functions have a LONG RIGHT TAIL. 		
	$1 \sum_{n=1}^{\infty} x_n = x_n$		
	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$		
	<i>i</i> =1		
	• $E(S^2) = \sigma^2$		
	 If S² is the VAR of a random sample of size n taken from a normal 		
	population having the variance σ^2 , then the random variable:		
	$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2}$		
	${\sigma^2} = {\sigma^2}$		
	Has a χ^2 distribution with $n-1$ degrees of freedom. $T = \frac{Z}{\sqrt{\frac{U}{m}}}$		
t-	$T = \frac{Z}{}$		
distribut	1 – U		
ion	$\sqrt{\overline{n}}$		
	Follows the t-distribution with n degrees of freedom.		
	Properties of t-Distribution		
	 The t-Distribution approached N(0,1) as n → ∞. 		
	 When n ≥ 30, we can replace it (approximate) it to be N(0,1). 		
	2. If $T \sim t(n)$, then $E(T) = 0$ and $V(T) = \frac{n}{(n-2)}$ for $n > 2$.		
	The graph of the t-Distribution is symmetric about the vertical axis		
	and resembles the graph of the standard normal distribution.		
	(Graph $t(n)$ similar to graph $N(0,1)$)		
	** t-distribution appears as a result of random sampling		
	If X. X are independent and identically distributed normal random		
	variables with mean μ and variance σ^2 , then: $\frac{3^2-\mu}{5/\sqrt{m}} \sim t(n)$		
	variables with mean μ and variance σ^2 , then: $\frac{s}{s/\sqrt{n}} \sim t(n)$		
	Follows a t-Distribution with $n-1$ degrees of freedom.		
F-	Follows a t-Distribution with $n-1$ degrees of freedom. $F = \frac{U/m}{V/L}$		
Distribu	$F = \frac{7 m}{V I}$		
tion	n		
	Follows the F-distribution with (m, n) degrees of freedom. Properties of t-Distribution		
	1. The F-distribution with (m, n) df is denoted by: $F(m, n)$.		
	 The r-distribution with (m, n) or is denoted by: F (m, n). If X~F(m, n), then: 		
	2. II X - F (III, II), tileli.		
	$E(X) = \frac{1}{n-2}$, for $n > 2$		
	$E(X) = \frac{n}{n-2}, \text{ for } n > 2$ $V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}, \text{ for } n > 4$		
	3. If $F \sim F(n, m)$, then $\frac{1}{F} \sim F(m, n)$.		
	This follows immediately from the def of the F-Distribution.		
	 The values of interest are F(m, n; α) such that: 		
	$P(F > F(m, n; \alpha)) = \alpha$, where $F \sim F(m, n)$		
	4. $F(m, m; 1 - \alpha) = \frac{1}{F}(n, m; \alpha)$		
Chapter 6: Est			

Let X_1, X_2, \dots, X_n be a random sample from the same population with mean μ and var σ^2 . Then S^2 is an unbiased estimator of σ^2 , since $E(S^2) = \sigma^2$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Define z_{α} to be the number with an upper-tail probability of α for the standard normal distribution Z. That is $P(Z > z_{\alpha}) = \alpha$.

$$P\left(-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\overline{\sigma}/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - a$$

	· y n	/
To get Max Error		To get min sample size
$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$		$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$

Point Estimate: Different Cases (Refer to Examplify Formula Sheet)

A confidence interval is a range of values that is likely to contain a population parameter based on a certain degree of confidence.

Population Proportion:	Population Mean
$CI = p^* \pm z^* \times \sqrt{\frac{p^*(1-p^*)}{n}}$	$CI = \bar{x} \pm t^* \times \frac{s}{\sqrt{n}}$
$z = \frac{x - \mu}{\sigma}$	$t = \frac{\bar{x} - \mu_0}{\left(\frac{s}{\sqrt{n}}\right)}$

Independent: (Refer to Examplify Formula Sheet)

Paired Data:

Assumptions for Paired Data:

- 1. $(X_1, Y_1), \dots, (X_n, Y_n)$ are matched pairs, where $X_1, \dots X_n$ is a random sample from population 1, Y_1, \dots, Y_n is a random sample from population 2.
- X_i and Y_i are dependent.
- (X_i, Y_i) and (X_i, Y_i) are independent for any i ≠ j.
- 4. For matched pairs, define $D_i = X_i Y_i$, $\mu_D = \mu_1 \mu_2$.
- 5. Now we can treat D_1, D_2, \dots, D_n as a random sample from a SINGLE population with mean μ_D and variance σ_D^2 .

We can employ all the techniques for single population to Paired Data.

$T = \frac{\sum_{i=1}^{n} D_i}{\sum_{i=1}^{n} D_i} \sum_{i=1}^{n} (D_i - \overline{D})$		Where:	Where:	$\overline{D} - \mu_D$	
\sqrt{n} $D = \frac{1}{n}$ $S_{\tilde{D}} = \frac{1}{n-1}$	$\overline{D})^2$	$S_D^2 = \frac{Z_{i=1}D_i}{n}$ $S_D^2 = \frac{Z_{i=1}(D_i - D)}{n-1}$	$\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n}$	$T = \frac{1}{S_D / \sqrt{n}}$	

- If n < 30, and the population is normally distributed, then: $T \sim t_{n-1}$
- If n ≥ 30 is large, then: T~N(0,1)

For paired data, if n is small & the pop is norm distributed, a $100(1-\alpha)\%$ CI for μ_n :

$$\bar{d} \pm t_{n-1;\alpha/2} \cdot \frac{s_D}{\sqrt{n}}$$

If n is large, a 100(1-lpha)% CI for $\mu_{\!\scriptscriptstyle D}$ ${ar d} \pm z_{lpha/\!\!\!/}$

Independent Sample vs Paired Data:

- . Independent samples involve measurements from two completely independent groups
- Paired Samples: Paired samples involve measuring the same individuals or units before and after a treatment, intervention, or simply over time.

Chapter 7: Hypothesis Testing

Step 1: Null Hypothesis vs Alternative Hypothesis

The outcome of hypothesis testing is either to REJECT or NOT REJECT H_0

Step 2: Level of Significance

For any test of hypothesis, there are only 2 possible conclusions:

- Reject Ho and therefore conclude Ho
- DO NOT Reject H₀ and therefore conclude H₀.

Whatever decision is made, there is always a possibility of making an error:

DO NOT Reject H₀ Reject H_n Correct Decision Type 1 Error Ho is FALSE Type II Frror Correct Decision

The rejection of H₀ when H₀ is TRUE is called a Type I error.

The probability of making a Type I error is called the **level of significance**, α . $\alpha = P(Type\ I\ Error) = P(Reject\ H_0|H_0\ is\ true)$

Not rejecting H₀ when H₀ is FALSE is called a Type II error.

The probability of making a Type II error, denoted by β . That is: $\beta = P(Type\ II\ Error) = P(Do\ not\ reject\ H_0|H_0\ is\ false)$ The power of the test is defined by:

 $1 - \beta = P(Reject H_0|H_0 is false)$ Remarks: Type 1 and Type 2 errors are dependent events.

Step 3: Test Statistics, Distribution and Rejection Region

As the significance level a is given, a decision rule can be found such that it divides the set of all possible values of the test statistic into two regions, one being the rejection region (or critical region) and the other, the acceptance region.

Step 4 & 5: Calculation & Conclusion

- We check if the value is within our rejection region.
- YES → sample improbable assuming H₀ is true, hence we reject H₀.

- NO → We failed to reject H₀ p-value for Hypothesis Testing

Suppose the computed test statistic was z.

- For a 2-sided test, a "worse" result would be if |Z| > z or Z < −|z|. i.e |Z| > |z|. tail
 - The p-value is given by:
 - p-value = P(|Z| > |z|) = 2P(|Z| > z) = 2P(Z < -|z|)
- For the alternative hypothesis H₁: μ < μ₀, the p-value is P(Z < −|z|), L
- tail For the alternative hypothesis H₁: μ > μ₀, the p-value is P(Z > |z|), R

Hypotest: Known Variance

1-tail test: H_0 : $\mu = \mu_0$ vs H_1 : $\mu < \mu_0$ OR $\mu > \mu_0$ Reject H_0 when \bar{X} is too large/small compared to μ_0

 $P(z < -z_{\alpha}) = \alpha \ OR \ P(z > z_{\alpha}) = \alpha$ $H_1: u < u_0 \rightarrow z < -z_0$ $H_1: u > u_0 \rightarrow z > z_0$ 2-tail test H_0 : $\mu = c$ vs H_1 : $\mu \neq \mu_0$

- Reject H₀ when X̄ is too large/small compared to μ₀.
- $P(|Z| > z_{\alpha/2}) = \alpha$ • Rejection region is defined by: $|Z|>z_{\alpha/2}$, which is:
 - $z < -z_{\alpha/2}$ OR $z > z_{\alpha/2}$

Hypotest: Unknown Variance

1-tail test: $H_0: \mu = \mu_0 \quad vs \quad H_1: \mu < \mu_0 \quad OR \ \mu > \mu_0$

Reject H₀ when X̄ is too large/small compared to μ₀.

 $P(t < -t_{n-1;\alpha}) = \alpha \ OR \ P(t > t_{n-1;\alpha}) = \alpha$ $H_1: \mu > \mu_0 \rightarrow t > t_{n-1:\alpha}$

 $H_1: \mu < \mu_0 \rightarrow t < -t_{n-1:\alpha}$ **2-tail test:** H_0 : $\mu = c$ vs H_1 : $\mu \neq \mu_0$

• Reject H_0 when \bar{X} is too large/small compared to μ_0 . $P(|T| > t_{n-1:\alpha/2}) = \alpha$

• Rejection region is defined by: $|Z|>z_{\alpha/2}$, which is:

 $t < -t_{n-1;\alpha/2}$ OR $t > t_{n-1;\alpha/2}$

Test Comparing Means: Independent Samples (Refer to Examplify Formula Sheet)

2P(Z > |z|) OR 2P(Z < -|z|)

Independent Samples: Rejection Regions & p-value Rejection Region p-value P(Z > |z|) $\mu_1 - \mu_2 > \delta_0$ $z > z_{\alpha}$ $u_1 - u_2 < \delta_0$ P(Z < -|z|)z < -z

$\mu_1 - \mu_2 \neq \delta_0$ $z > z_{\alpha/2} \text{ OR } z < -z_{\alpha/2}$ Test Comparing Means: Paired Data

- For paired data, define D_i = X_i − Y_i.
- For paired data, define $D_l=X_l-r_l$.
 For the null hypothesis H_0 : $\mu_D=\mu_{D_0}$, the test statistics is given by: $T=\frac{D-\mu_{D_0}}{SD/\sqrt{n}}$
- If n is small (n < 30) and the population if normally distributed, then: $T \sim t_{n-1}$
- If $n \ge 30$ is large, then: $T \sim N(0,1)$
- Equal variance applies when ½ ≤ S1/S2 ≤ 2