Resumo

* Este caderno de pesquisa tem como objetivo documentar o processo de replicação do estudo realizado por Dhruv Babani, Bernardo Balzan e Eduardo Cardoso sobre a detecção de comunidades em grafos utilizando o algoritmo Infomap. O estudo original investigou a escalabilidade do algoritmo Infomap em ambientes de memória compartilhada e comparou os resultados com o experimento original.

1.Introdução

*O estudo original abordou a importância do desempenho de algoritmos que lidam com estruturas de dados, especialmente em grafos, para fins acadêmicos e analíticos. O artigo atual busca replicar e comparar os resultados obtidos no estudo original, bem como descrever o processo de replicação.

2. Fundamentação Teórica

*Nesta seção, são apresentados os conceitos teóricos relevantes para a compreensão do estudo, incluindo informações sobre grafos, detecção de comunidades em grafos e paralelismo para melhorar a escalabilidade.

2.1 Grafos

- Definição de um grafo como modelo de estrutura de dados.
- Compreensão das comunidades de rede com base no grau dos vértices.
- Descrição das diferentes visões para a detecção de comunidades em grafos, incluindo estrutura fraca e estrutura forte.
- Classificação dos métodos de detecção de comunidades em grafos, como inferência estatística, otimização e simulação de dinâmica.

2.2 Paralelismo para Melhoria de Escalabilidade

- Explicação do paralelismo em memória compartilhada.
- Discussão sobre execução sequencial e concorrente.
- Introdução das métricas de Speed Up e Eficiência para medir o desempenho em ambientes paralelos.

2.3 Experimento original

- Descrição dos experimentos realizados no estudo original, incluindo os parâmetros de análise, como tempo de execução, escalabilidade, consumo de recursos e qualidade das comunidades.
- Apresentação dos algoritmos utilizados (InfoMap e RelaxMap).

3. Processo de Replicação

3.1 Seleção dos Grafos

Para a replicação do estudo, é fundamental escolher grafos apropriados que correspondam aos utilizados no estudo original. Isso garantirá que os resultados sejam comparáveis.

Passo 1: Identificar os grafos originais utilizados no estudo original (no caso, "Live Journal" e "Pokec") e obter informações sobre o número de vértices, arestas e outras métricas relevantes desses grafos.

Passo 2: Encontrar conjuntos de dados ou fontes confiáveis que disponibilizem os grafos escolhidos para download ou acesso. Certifique-se de que os conjuntos de dados estejam nas mesmas condições que os utilizados no estudo original.

Passo 3: Baixar os grafos selecionados e verificar se os arquivos de dados estão em formato apropriado (por exemplo, arquivos de arestas no formato correto).

Passo 4: Analisar os grafos para verificar se correspondem às informações fornecidas no estudo original (número de vértices, arestas, etc.). Faça isso para garantir que os dados estejam corretos.

3.2 Experimento para Detecção de Comunidades

Após a seleção dos grafos, é hora de executar o experimento de detecção de comunidades com os algoritmos InfoMap e RelaxMap, seguindo as configurações e métricas do estudo original.

Passo 5: Configurar o ambiente de experimentação:

- Certificar-se de que o ambiente de execução seja consistente com o ambiente do estudo original (no caso, macOS).
- Verificar se todas as bibliotecas necessárias para a manipulação de grafos e os algoritmos InfoMap e RelaxMap estão instaladas.
- Certificar-se de que o número de threads ou núcleos utilizados para a execução seja o mesmo usado no estudo original (por exemplo, 6, 12, 24, 48 threads).

Passo 6: Executar os algoritmos de detecção de comunidades:

- Iniciar a execução dos algoritmos InfoMap e RelaxMap nos grafos selecionados.
- Registrar o tempo de execução para cada configuração (número de threads) e para cada algoritmo.
- Monitorar o consumo de recursos, como uso de CPU e memória durante a execução.

Passo 7: Coletar os resultados:

- Registrar os resultados da detecção de comunidades para cada execução, incluindo informações sobre as comunidades encontradas e suas métricas (por exemplo, modularidade).
- Certificar-se de que os resultados estejam estruturados e documentados de forma adequada.

Passo 8: Analisar os resultados:

- Comparar os resultados obtidos na replicação com os resultados do estudo original.
- Avaliar a escalabilidade dos algoritmos, observando como o tempo de execução varia com o aumento do número de threads.
- Geração de gráficos demonstrando o percurso dos parâmetros de Eficiência e Speed Up, em relação ao número de threads.

Ao seguir esses passos, você estará preparado para replicar o estudo com precisão e gerar resultados comparáveis aos do estudo original.

Codigos utilizados:

https://github.com/mapequation/infomap - InfoMap http://uwescience.github.io/RelaxMap/ - RelaxMap