Homework 7 Theory

Joseph Mulray

Febuary 28, 2017

Problem 5.20:

Write a program using the MFSET operations that computes the sets of equivalent states of a given finite automaton.

Problem 2:

Consider an undirected graph G = (V,E) with n = IVI and m = IEI. The degree of a vertex is the number of edges incident on that vertex. Let di be the degree of vertex vi, Show that SUM[1..n](di) = 2m

An undirected edge that connects to two vertices together has a degree of 2. The degree its 2 because each vertex is incident on that vertex summing up to 2, 1 + 1, for each vertex. For each edge, m, there is 2m that it each edge contributes to. Therefore SUM[1..n](di) = 2m(edges)

Problem 3:

In a directed graph, we can talk about in-degree and out-degree, the number of edges, respectively, arriving and leaving a given vertex. Show that the sum of the in-degrees of a graph is equal to the sum of the out-degrees.

One out-degree edge has an in-degree for one vertex and an out-degree for another vertex. This means that one out-degree edge in a directed graph will have SUM[1..n] where n is the number of out-degree edges will equal to m edges.

Problem 6.1:

By an adjacency matrix giving arc costs:

	а	b	С	d	е	f
а		3		4		5
b			1			1
С				2		
d		3				
е				3		2
f				2		

By a linked adjacency list with arc costs indicated:

а	\Rightarrow (a,0) \Rightarrow (b,3) \Rightarrow (d,4) \Rightarrow (f,5)
b	\Rightarrow (b,0) \Rightarrow (c,1) \Rightarrow (f,1)
С	=> (c,0) => (d,2)
d	=> (b,3) => (d,0)
е	=> (d,3) => (e,0) => (f,2)
f	=> (d,2) => (f,0)