

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 680 185 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 29.09.2004 Bulletin 2004/40

(51) Int CI.7: **H04L 29/06**, H04N 7/24, G06F 9/445

(21) Application number: 95105803.1

(22) Date of filing: 19.04.1995

(54) A distributed computer system

Verteiltes Computersystem Système d'ordinateur distribué

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
PT SE

(30) Priority: 28.04.1994 US 233908

(43) Date of publication of application: 02.11.1995 Bulletin 1995/44

(60) Divisional application: 03002720.5 / 1 307 022 03002721.3 / 1 307 023 03002722.1 / 1 307 024 03002723.9 / 1 307 025

(73) Proprietor: OpenTV, Inc.
Mountain View, CA 94043 (US)

(72) Inventors:

 Joseph, Kuriacose Plainsboro, New Jersey 08543 (US)

 Dureau, Vincent Venice, California 90291 (US)

Jessup, Ansley Wayne, Jr.
 Willingboro, New Jersey 08046 (US)

 Delpuch, Alain Los Angeles, California 90064 (US)

(74) Representative: Freeman, Jacqueline Carol et al
 W.P. THOMPSON & CO.
 55 Drury Lane
 London WC2B 5SQ (GB)

(56) References cited:

EP-A- 0 306 208 US-A- 5 299 197 US-A- 5 251 301

P 0 680 185 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

20

Description

[0001] The present invention relates to a client-server distributed computer system. Such a computer system has application in broadcast multimedia applications.

1

[0002] Early computer systems were standalone systems, consisting generally of mainframe computers. Later, several mainframe computer systems were closely connected, or clustered, to handle larger computing jobs, such as a large number of time sharing users. With the advent of personal computers, large numbers of relatively low power standalone computer systems were controlled directly by their users. Soon these large numbers of personal computers were coupled together into networks of computers, providing shared resources and communications capabilities to the users of the individual personal computers and between those users and the preexisting mainframe computers.

[0003] One form of such a network includes a central computer, called a server, which generally includes a large amount of mass storage. Programs used by the network users are centrally stored in the mass storage on the server. When a user desires to run a program, the user's computer requests that a copy of that program be sent to it from the server. In response to that request, the server transfers a copy of the program from its mass storage to the main memory of the personal computer of that user, and the program executes on that personal computer. Data also may be centrally stored in the server and shared by all the users on the network. The data is stored on the mass storage of the server, and is accessible by all the network users in response to a request. The server also serves as a hub for communications of messages (electronic mail) between network users The server in such a system handles the storage and distribution of the programs, data and messages, but does not contribute any processing power to the actual computing tasks of any of the users. I.e. a user cannot expect the server computer to perform any of the processing tasks of the program executing on the personal computer. While such networks perform a valuable function, they are not distributed computing systems, in which interconnected computers cooperate to perform a single computing task.

[0004] In an improvement to such networks, the network may be configured in such a manner that a user on the network may request that the server, or other personal computer connected to the network, execute a program. This is termed remote execution because a computer (server or other personal computer) remote from the requester is executing a program in response to a request from the requester. In such a system, the program of which remote execution is requested is either sent from the requester to the remote computer, or retrieved from the server in response to a request by the remote computer. When the program is received, it is executed. In this manner several computers may be enlisted to cooperate in performing a computing function.

[0005] Recently, there have been programs which distribute the actual computing tasks necessary for performing a single computing function. For example, in such a data base program, where the data base is stored in the mass storage of the server, if a user desires to make a query of the data base, the portion of the data base management program on that user's personal computer will generate a query request, which is forwarded to the server. The portion of the data base management program on the server performs the query processing, e.g. parsing the query request, locating where the data specified in the query request resides on its mass storage device, accessing that data, and sending the results back to the requesting personal computer over the network. The portion of the data base management program on the personal computer then processes the data received from the server, e.g. formatting it, and displaying it on the screen or printing it on a printer. While the server is processing the query request, the personal computer is free to perform other processing, and while the personal computer is generating the query request, and processing the resulting data received from the server, the server is free to process query requests from other personal computers.

[0006] Other types of programs are also amenable to this type of distributed computing, termed client-server computing. The sharing of the processing tasks between the personal computer and the server improves the overall efficiency of computing across the network. Such client-server computer systems, and remote execution networks, may be termed distributed computing systems because several computers (the server and/or the respective peripheral computers) cooperate to perform the computing function, e.g. data base management.

[0007] Recently, broadcast multimedia programs, more specifically, interactive television (TV) programs, have been proposed. Interactive TV programs will allow a viewer of a television program to interact with that program. In an interactive TV system, the central broadcast location (TV network, local TV studio, cable system, etc.) will have a central computer, corresponding to the server computer, which will produce signals related to the interactive TV program to be broadcast simultaneously with the TV (video and audio) signals. These signals carry data representing the interactive TV program and may include commands, executable program code and/or data for controlling the viewer interaction. Each viewer location will have a computer, corresponding to the client computer, which will receive the commands, executable code and/or data from the central computer, execute the executable code, process the received data, accept input from the user and provide data to the user by means of the TV screen. The input from the user may be sent back to the computer at the broadcast location, allowing the user to interact with the interactive TV program.

[0008] U.S. Patent 4,965,825, SIGNAL PROCESS-

15

20

35

40

45

50

ING APPARATUS AND METHODS, issued Oct. 23, 1990 to Harvey et al., describes an interactive TV system in which a central broadcast location includes signals carrying commands, executable code and data in, for example, the vertical blanking interval of the television signal for receipt by the computer systems at the viewer locations. A computer at the viewer location extracts the commands, executable code and data and executes the code to process the data and interact with the user. Such a system is comparable to the remote execution function of distributed computer systems, described above, in that the viewer computer is enlisted into the interactive TV program, and is controlled by the central location.

[0009] U.S. patent 5,251,301, COMPUTER REMOTE CONTROL THROUGH VIDEO SIGNAL, issued October 5 1993, to Gary M. Cook, describes a system for simultaneously using a video signal to provide a video picture and computer data. Data signals, representative of the computer data, are utilized to substitute digital signals representative of video pixels at a transmitting end. A digital signal, so modified, is reconverted to an analog signal, transmitted to a receiver, which then displays a video picture corresponding to the modified signal, and also extracts the computer data so that this data may be provided to a computer. The computer can accordingly be controlled by the computer data, as a video picture is displayed.

[0010] In all of the above systems, a central computer controls or responds to requests from peripheral computers attached to it through a network. I.e. the peripheral computer (personal computer) requests remote execution of a program, requests a file or message from, or sends a query request to, another computer. Only in response to a request does the other computer provide a response, e.g. remote execution, the requested file, message or retrieved data. In addition, in general, the peripheral computer is required to have all the resources necessary to completely, or almost completely execute the desired program, with the server acting only as another storage mechanism or at most sharing a portion of the computing tasks.

[0011] The inventors herein propose a distributed computing system in which a server computer continuously produces a data stream. This data stream acts a mass storage device for the client computers receiving it. This data stream repetitively includes data representing a distributed computing application in which the client computer may participate, including 5 executable code and data. A transport mechanism, including a high speed, one-way, communication path, carries the data stream from the server to the client. The client receives the data stream, extracts the distributed computing representative data and executes the distributed computing application.

[0012] In accordance with one aspect of the present invention there is provided a distributed computer system comprising a data stream source adapted simulta-

neously to produce a plurality of continuous data streams, repetitively to insert data representing a distributed computing application into at least one of the plurality of continuous data streams, and to include a directory module into at least one of the plurality of continuous data streams, the directory module including information relating to the distributed computing application.

[0013] Preferably the source is adapted to insert said data into each of the plurality of continuous data streams, and to include a directory module in each of the plurality of continuous data streams; and further comprising a client computer (20), including a data receiver adapted to select one of the plurality of continuous data streams, to extract (206) the data representing the distributed computing application from the selected one of the plurality of continuous data streams, and to execute (224) the distributed computing application.

[0014] In accordance with a second aspect of the invention there is provided a client computer (22) for use in a distributed computing system, the client computer (22) characterized by: an input terminal (30), a adapted selectively to receive one of a plurality of continuous data streams, the selected one of the plurality of continuous data streams repetitively including data representing a distributed computing application and a directory module; a data stream receiver (207), coupled to the input terminal (30), adapted to receive the selected one of the plurality of continuous data streams and to extract (206) the data representing the distributed computing application; and a processing unit (224), coupled to the data stream receiver, adapted to receive and execute (210) the distributed computing application; wherein the data stream receiver (207) is further adapted to extract the directory module from the selected one of the plurality of continuous data streams and to extract the data representing the distributed computing application from the selected one of the plurality of continuous data streams in response to information in the extracted directory module.

[0015] In a distributed computing system according to the invention, the client computer system need not include all the resources, in particular, main memory and mass storage, necessary to perform the entire program. Instead, no mass storage is required because the data stream provides the function of the mass storage device, and the main memory requirement is modest because only the currently executing portion of the program need be stored in memory. When the currently executing portion has completed, its memory space is freed up, and the next executing portion is extracted from the data stream, stored in the freed memory space, and that portion begins execution.

[0016] In addition, a distributed computing system according to the present invention allows the user of the client computer to have the option of participating in the distributed computing task. If it is desired to participate, the client computer extracts the data representing the

20

40

distributed computing application and executes the distributed computing application, as described above. If it is desired not to participate, the data stream is merely ignored, and the processing desired by the user, or none at all, is performed. Such a distributed computing system also allows each participating client computer to join the distributed computing function at any time and to proceed at its own pace in performing its own computing function.

[0017] A distributed computing system according to the present invention is particularly amenable to interactive TV applications because it allows a viewer to tune into an interactive TV channel at any time, join in the interactivity whenever desired (or not at all), and allows all the viewers to proceed at their different paces. This is especially advantageous in an environment when an interactive commercial, with its own executable code and data, may be presented within an interactive program, or when the viewer wishes to change channels.

BRIEF DESCRIPTION OF THE DRAWING

[0018] In the drawing:

FIGURE 1 is a block diagram of a distributed computing system according to the present invention; FIGURE 2 is a block diagram of a server computer as illustrated in FIGURE 1;

FIGURE 3 is a timing diagram illustrating the data streams produced by a server computer in a distributed computing system as illustrated in FIGURE 1; FIGURE 4 is a block diagram of a client computer as illustrated in FIGURE 1.

[0019] FIGURE 1 is a block diagram of a distributed computing system according to the present invention. In FIGURE 1, a server computer 10, which may include a large computer system, is coupled to a plurality of client computers 20 through a transport mechanism 30. The server computer 10 may be coupled to more than the three client computers 20 illustrated in FIGURE 1, and the client computers 20 may be geographically widely dispersed. Client computer 22 is bidirectionally coupled to a local computer 40, to an auxiliary data processing system 50 and to a central processing facility 60. The central processing facility 60 is bidirectionally coupled to the server computer 10. The central processing facility 60 may also be connected to facilities other than the server computer 10 illustrated in FIGURE 1. The local computer 40 is further bidirectionally coupled to a mass storage device 70. The client computer 22 interacts with a user 80 by providing information to the user via a display screen or other output device (not shown) and by accepting information from the user via a keyboard or other input device (also not shown).

[0020] Client computers 24 and 26 also interact with their users, (not shown in order to simplify the drawing). In addition, client computers 24 and 26 are bidirection-

ally coupled to the central processing facility 60. Such links are optional, however. The only requirements for any client computer 20 is a way to interact with a user, and a connection to the transport mechanism 30. Links to local computers, auxiliary data processing systems, and the central processing facility 60 are all optional, and need not be present in every one of the client computers 20.

[0021] The transport mechanism 30 includes a unidirectional high speed digital data link, such as a direct fiber optic or digital satellite link from the server 10 to the client computers 20. The data may be transported over the transport system 30 by a packet data system. In such a system, a stream of data packets, each including identification information indicating, among other things, the type of data contained in that packet and the actual data, is transmitted through the data link. Such a packet data system allows several independent streams of data, each identified by identification information in their packets, to be time multiplexed within a single stream of packets.

[0022] In addition, it is possible to multiplex a plurality of such packet data streams over respective channels on the same physical medium (fiber optic or satellite radio link) making up the transport mechanism 30. For example, different data streams may be modulated on carrier signals having different frequencies. These modulated carriers may be transmitted via respective transponders on a satellite link, for example. Further, if a particular transponder has sufficient capacity, it is possible to time multiplex several data streams on a single modulated carrier.

[0023] The client computers 20 each contain a data receiver for selecting one of the streams of packets being transported over the transport mechanism 30, receiving the selected stream of packets and extracting the data contained in them. Continuing the above example, the data receiver may include a tunable demodulator for receiving one of the respective modulated carriers from the satellite link. In addition, the data receiver may include circuitry for time demultiplexing the respective data streams being carried by that modulated carrier.

[0024] In operation, the server 10 produces a continuous data stream in the form of a stream of packets for the client computers 20. The server 10 repetitively inserts a packet, or successive packets, containing data representing the distributed computing application, including at least one executable code module, into the data stream. This code module contains executable code for the client computers 20. The data receiver in, for example, client computer 22, continuously monitors the packets in the data stream on transport mechanism 30. When a packet including identification information indicating that it contains the code module (or a portion of the code module) required by the client computer 22 is present in the data stream, the client computer 22 detects its presence, extracts the code module (or the por-

10

20

25

35

40

45

50

55

tion of the code module) from that packet and stores it in the main memory. When the code module is completely received, the client computer 22 begins to execute it

[0025] There may be more than one code module placed in the continuous data stream, each containing a different portion of the distributed computing application. For example, it is possible to divide the distributed computing application into small portions in such a manner that only one portion at a time need be executed at a time. The portion of the distributed computing application currently needed to execute is loaded into the memory of the client computer 22. When that portion has completed its execution, then a code module containing the executable code for the next portion of the distributed computing application is extracted from the data stream, stored in memory and executed. Each portion is extracted from the data stream as needed. If there is sufficient memory in the client computer 22, it is possible to load several code modules into the memory and switch between them, without extracting them from the data flow, but this is not necessary. By structuring a distributed computing application in this manner, the required memory size of the client computer 22 may be minimized

[0026] The server 10 may also repetitively include a packet or packets containing one or more data modules in the data stream. The data modules contain data to be processed by the executable code in the code module. Prior to, or during the execution of the code from a previously extracted code module, the client computer 22 may require access to the data in the data module or modules. If so, the client computer 22 monitors the data stream for the required data module or modules. When packets containing the data module or modules (or portions of the data module or modules) are present in the data stream, they are extracted, and the contents stored in the main memory of the client computer 22. When all the required data modules have been completely received, the client computer 22 begins or continues execution of the code from the code module to process the data from the received data module or modules. As is the case for code modules, it is possible for more than one data module to be stored in memory, if there is sufficient memory in client computer 22.

[0027] The server 10 may further repetitively include in the data stream a packet or packets containing a directory of the code and data modules currently being included in the data stream. The directory includes a list of all the code and data modules which are present in the data stream, along with information about those modules. If a directory is present in the data stream, then, prior to extraction of any code or data modules from the data stream, the client computer 22 monitors the data stream for the directory. When packets containing the directory (or portions of the directory) are present in the data stream, they are extracted, and their data stored in the main memory of the client computer 22.

When the directory has been completely received, the client computer 22 evaluates the entries in the directory, then requests the first code and/or data module from the data stream and execution proceeds as described above

[0028] Any of the client computers 20 may join the distributed computing function represented by the packet stream at any time, and each of the client computers 20 may operate at its own speed, generally in response to the user 80. In order to allow for this, the server 10 repetitively places the directory and all the code and data modules which the client computers 20 may require to perform their portion of the distributed computing function into the data stream on the transport mechanism 30. Whenever one of the client computers 20 joins the distributed computing function, it monitors the newly selected packet stream on the transport mechanism 30 for the directory module, extracts it, and processes it as described above. During execution, whenever one of the client computers 20 requires the a new code and/or data module, it monitors the data stream on the transport mechanism 30 for the newly required code and/or data module, extracts it and either executes it, if it is a code module, or processes it if it is a data module, as described above.

[0029] The packet data stream may also include packets of auxiliary data. This data is not required by the client computer 22 for execution of the code, although it may be related to the execution because the user 80 may interact with the executing program on the client computer 22 based on received auxiliary data. The data stream receiver in the client computer 22 recognizes the auxiliary data packets in the data stream on the transport mechanism 30 and passes them directly to the auxiliary data processor 50. The auxiliary data processor 50 processes its packets independently of the client computer 22. If the auxiliary data must be presented to the user 80, the auxiliary data processor 50 may provide its own display device (not shown) which may be shared with the client computer 22, or the display device (not shown) associated with the client computer 22 may be shared with the auxiliary data processor 50, to provide a single information display to the user 80. The auxiliary data processor 50 may have links to other illustrated elements (not shown), but that is dependent upon the type of data.

[0030] In an interactive TV system, for example, the auxiliary data includes the video and audio portions of the underlying television signal. For example, the auxiliary data would include video packets containing MPEG, or MPEG-like, encoded data representing the television image and audio packets containing digitally encoded audio. Further, there may possibly be several different audio packet streams carrying respective audio channels for stereo, second audio program (SAP) or multilanguage capability. In an auxiliary data processor 50 in such a system, the video packets would be supplied to a known MPEG (or similar) decoder (not shown) which

25

30

40

45

50

would generate standard video signals, which would be supplied to a television receiver or video monitor (not shown). The audio packets would be supplied to a known audio decoder (not shown) which would generate standard audio signals for the television receiver or speakers (not shown).

[0031] In such an interactive TV system, the client computer 22 may, in response to execution of the executable code module, generate graphic displays to supply information to the user 80. These graphic displays may be combined with the standard video signal from the MPEG decoder in a known manner, and the combined image displayed on the television receiver or video monitor. The client computer 22 may also generate sounds to provide other information to the viewer. The generated sounds may be combined, in known manner, with the standard audio signals from the audio decoder, and the combined sound played through the television receiver or speakers.

[0032] Furthermore, time code data may be included in either or both of the television auxiliary packet data stream and the packet data stream representing the interactive TV application. This permits synchronization of any graphic images or sounds generated by the client computer 22 with the television signal from the auxiliary data. In this case, the client computer 22 would have access to the time code data, and would control the generation of the graphic image and/or sound to occur at the desired time, as supplied by the time code data.

[0033] In such an interactive TV system, both the client computer 22 and the auxiliary data processor 50 may be contained in a single enclosure, such as a television receiver, or television set-top decoder box. A television receiver, or decoder box would include connectors for attaching to a local computer or other equipment. [0034] The user 80 provides input to the program running on the client computer 22 during its execution. This data may be required by the server 10 in order to effect the distributed computing function. In an interactive TV system, for example, user 80 may provide input to the client computer through a handheld remote control unit. [0035] The user data is transferred to the server computer 10 via the central processing facility 60. In one embodiment, data is sent from the client computers 20 to the server computer 10 via modems through the telephone system acting as the central processing facility 60. The server computer 10 receives and processes the data received from the client computers 20 during execution of its portion of the distributed computing function. [0036] Server computer 10 may generate new, or modify existing, code and/or data modules in the data stream on the transport mechanism 30, in a manner described below, based on that received data. Alternatively, the server computer 10 may immediately return information to the client computers 20 in the other direction through the central processing facility 60. The information in newly generated code and/or data modules is processed by all client computers 20 participating in the

distributed computing function, while information passed from the server computer 10 to the client computers 20 through the central processing facility 60 is specifically related to the client computer (22, 24, 26) to which that information was sent.

[0037] In another embodiment, the central processing facility 60 may include its own computer system, separately connected by modem to both the client computers 20 and the server computer 10 through the telephone system. In either of the above embodiments, the central computing facility 60 provides access to other computers or processing facilities (not shown) via the telephone system. Thus, if information from other computer systems is needed to perform the distributed computing function, those computer systems may be accessed via modem through the telephone system by either the client computers 20 or the server computer 10.

[0038] An input/output (I/O) port on the client computer 22 is coupled to a corresponding port on the local computer 40. Local computer 40 is collocated with the client computer 22. Local computer 40 may be a personal computer used by the user 80 of the client computer 22, or may be a larger computer, or computer network located at the same site as the client computer 22. This allows the client computer 22 to access data on the attached mass storage 70 of the personal computer or a computer on the network located at the client computer 22 site. In addition, the client computer 22 may use the mass storage 70 of the local computer 40 for storage of data to be retrieved later. It is likely that the local computer 40 will include both an output device (not shown) such as a computer monitor and an input device (also not shown) such as a computer keyboard. Both of these may be shared with the client computer 22 and/or the auxiliary data processor 50, as described above.

[0039] For example, the distributed computing system illustrated in Figure 1 may be part of a widespread corporate computing system, and the server 10 may be located at a central location of that corporation. The client computer 22 may be located at a remote location, and the local computer 40 may be coupled to the personal computer network at that location. Workers at that location may store shared data (e.g. financial information) on the server connected to that network. The distributed computing function may include gathering local financial data from the client computers at the remote locations, processing that financial data and returning overall financial results to the client computers. In such an application, the executable code executed on the client computer 22 accesses the data from the local computer 40 (either from its attached mass storage 70 or through the network) through the I/O port, and sends it to the server computer 10 through the central processing facility 60. The server computer 10 continues its processing based on the information received from client computer 22 (and other client computers 20), and returns the results of that processing to the client computers 20 either through the central processing facility

20

25

30

45

60 or via the data stream on the transport mechanism 30

[0040] In another example, the distributed computing system may be an interactive television system, broadcasting a home shopping show as the distributed computing application. In such a case, the auxiliary data carries the video and audio portion of the television signal, which may show and describe the items being offered for sale, and may include both live actors and overlaid graphics generated at the central studio. Code and data modules making up the interactive television application may include data about the products which will be offered for sale during this show, or portion of the show, and executable code to interact with the user in the manner described below.

[0041] When a viewer wishes to order an item, a button is pressed on the TV remote control. This button signals the client computer 22 to display a series of instructions and menus necessary to solicit the information necessary to place the order, e.g. the item number, name and address of the viewer, the method of payment, the credit card number (if needed), etc. These instructions are generated in the client computer as graphics which are overlaid on the television video image. It is also possible for a computer generated voice to be generated and combined with the television audio either by voice-over, or by replacing the television audio. The viewer responds to the instruction by providing the requested information via the TV remote control. When the information requested by the on-screen display and/ or voice instructions has been entered by the viewer, it is sent to a central computer via the modem in the client computer. An order confirmation may be sent in the other direction from the central computer.

[0042] It is also possible that permanent information about the viewer (i.e. the name, address, method of payment and credit card number) may be preentered once by the viewer, so it is not necessary to solicit that information each time an order is placed. The information is stored in permanent memory in the client computer. In such a case, when an order is placed, that information is retrieved from the permanent memory, appended to the item number and transmitted to the central computer. It is further possible that, by means of time codes, or other commands, inserted into the data stream, the client computer will know which item is currently being offered for sale. In such a case, the viewer will be able to order it by simply pressing one button on the TV remote control. In response, the client computer can combine the previously received information related to the item currently being offered for sale with the previously stored personal information related to the viewer, and transmit the order to the central computer and receive the confirmation in return.

[0043] Because the code and data modules related to the home shopping program are repetitively inserted into the data stream, a viewer may tune into the program at any time and be able to participate interactively. Sim-

ilarly, it is not necessary for the viewer to participate interactively, but may simply ignore the interactive portion of the show.

[0044] It is also possible for the client computer 22 to receive control information from the local computer 40. For example, the user 80, using the local computer 40, could control the client computer 22 via the I/O port to select a desired one of the data streams on transport mechanism 30, and process the program currently being broadcast on that data stream, with interaction with the user 80 through the input and output devices (not shown) connected to the local computer 40.

[0045] It is further possible for the user 80 to cause the client computer 22 to access the server computer 10 through the central processing facility 60, instead of via the data stream on transport mechanism 30, and receive code and data modules via this bidirectional link. [0046] FIGURE 2 is a block diagram illustrating a server computer 10 as illustrated in FIGURE 1. In FIG-URE 2, a source of distributed computing application code and data 101 includes an application compiler, and software management module (not shown) and has an output terminal coupled to an input terminal of a flow builder 102. An output terminal of flow builder 102 is coupled to an input terminal of a transport packetizer 104. An output terminal of transport packetizer 104 is coupled to a first input terminal of a packet multiplexer 106. An output terminal of packet multiplexer 106 is coupled to an input terminal of a transport multiplexer 110. An output terminal of transport multiplexer 110 is coupled to the physical medium making up the transport mechanism 30 (of FIGURE 1). A second input terminal of packet multiplexer 106 is coupled to a source of auxiliary data packets 107. A clock 109 has respective output terminals coupled to corresponding input terminals of the transport packetizer 104 and auxiliary data source 107. A data transceiver 103 has an first bidirectional terminal coupled to the central processing facility 60 (of FIGURE 1) and a second bidirectional data coupled to the application code and data source 101.

[0047] Application code and data source 101, flow builder 102, transport packetizer 104, auxiliary data source 107, clock 109 and packet multiplexer 106, in combination, form a channel source 108 for the transport mechanism, illustrated by a dashed box in . Other channel sources, including similar components as those illustrated in channel source 108 but not shown in FIG-URE 1, are represented by another dashed box 108a. The other channel sources (108a) have output terminals coupled to other input terminals of the transport multiplexer 110, and may have input terminals coupled to central processing facilities through data transceivers. [0048] In operation, data representing the distributed computing application program, and data related to the transmission of the program over the transport mechanism 30 are supplied to the flow builder 102 from the application source 101. This data may be supplied either in the form of files containing data representing the code

30

35

and data modules, or by scripts providing information on how to construct the code and data modules, or other such information. The code and data modules may be constant or may change dynamically, based on inputs received from the client computers 20 via the central computing facility 60 and/or other sources. The executable code and data module files may be generated by a compiler, interpreter or assembler in a known manner in response to source language programming by an application programmer. The data file related to the transmission of the modules includes such information as: the desired repetition rates for the directory and the code and data modules to be included in the data stream; the size of main memory in the client computers 20 required to store each module, and to completely execute the application program; a priority level for the module, if it is a code module, etc.

[0049] Flow builder 102 processes the data from the application source 101. In response, flow builder 102 constructs a directory module, giving an overall picture of the application program. The information in the directory module includes e.g. the identification of all the code and data modules being repetitively transmitted in the data stream, their size and possibly other information related to those modules. Then the application program representative data is processed to generate the code and data modules. The directory, code and data modules thus constructed are formatted by adding module headers and error detection and/or correction codes to each module. A transmission schedule is also generated. After this processing is complete, the data representing the directory module and the code and data modules are repetitively presented to the transport packetizer 104 according to the schedule previously generated.

[0050] The transport packetizer 104 generates a stream of packets representing the directory module and the code and data modules as they are emitted from the flow builder 102. Each packet has a constant predetermined length, and is generated by dividing the data stream from the flow builder into groups of bits, and adding a packet header with information identifying the information contained in the packet, and an error detection and/or correction code, etc., to each group, such that each packet is the same predetermined length. (If there is insufficient data from the flow builder 102 to completely fill a packet, the packet is padded with null data.) These packets are time multiplexed with the auxiliary data packets, in a known manner, to form a single packet stream in the packet multiplexer 106. It is also possible for the generated packets to have varying lengths. In this case, the packet header for each packet will contain the length of that packet. In addition, time code data packets are placed in the data stream packets and/or the auxiliary data packets based on data received from the clock 109.

[0051] Packet streams from all of the channel sources (108,108a) are multiplexed into a single transport chan-

nel, which is transmitted through transport mechanism 30. As described above, the packet streams may be frequency multiplexed by having each packet stream modulate a carrier signal at a different frequency, with all of the carriers being carried by a satellite link to the client computers 20, in a known manner. In addition, if there is sufficient capacity within one carrier channel, several packet streams may be statistically time multiplexed, and used to modulate a single carrier, also in a known manner. For example, it has been proposed to time multiples up to eight interactive television data streams through a single satellite link.

[0052] Data from the client computers 20 via the central processing facility 60 (of FIGURE 1) is received at the server computer 10 by the data transceiver 103, which may include its own processor (not shown). If an immediate response is generated, the transceiver 103 processor returns that response via the central processing facility 60 to a specific client computer (22-26), a specific set of the client computers 20 or to all client computers 20 in their turn. If, however, a common response to all client computers 20 is desired, the application programmer may amend the code and data files in the application code and data source 101 using the application compiler. These amended files are then processed by the flow builder again to generate another flow. It is further possible that the code and data files in the application source 101 may be amended automatically and dynamically (i.e. in real time) in response to data received from the transceiver 103, and the flow updated as the data is being received from the client computers 20. [0053] FIGURE 3 is a timing diagram illustrating the

data streams produced by the server computer 10 in a distributed computing system as illustrated in FIGURE 1. In FIGURE 3 server computer 10 is shown as simultaneously producing a plurality of packet streams 32-38. Each packet stream (32-38) is shown as a horizontal band divided into packets having the same duration and number of bits. As described above, it is possible that the size of the packets within any packet stream vary with the amount of data to be carried. In FIGURE 3 it can be seen that the starting times of the packets are not synchronized. It is possible to synchronize the packets, but it in not necessary. In FIGURE 3, packets carrying data representing directories are designated DIR, packets carrying data representing code modules are designated CM, packets carrying data representing data modules are designated DM, and packets carrying auxiliary data are designated AUX.

[0054] In the top series of packets 32, the leftmost packet contains data representing a code module, CM. This is followed by three packets containing auxiliary data, AUX, followed by another packet containing data representing the code module, CM. From the series of packets 32 it can be seen that the code module is repetitively produced. There may be more or fewer packets in between successive repetitions of the code module packets CM. The rate of repetition may be specified

15

20

by the programmer when the application is programmed, and may be varied during the execution of the application.

[0055] In the next series of packets 34, the leftmost packet contains auxiliary data, AUX. The next two packets contain respective portions of a code module (CM1,CM2). The last packet contains auxiliary data, AUX. From the series of packets 34 it can be seen that if a code module is too large to be contained in a single packet, it may be carried by more than one, with each packet containing a portion of the code module. Although two packets are illustrated in the series of packets 34 as containing the code module (CM1,CM2), any number of packets may be used to carry the code module, depending upon its size. The two packets carrying the code module, (CM1,CM2) are repetitively transmitted (not shown) in the series of packets 34, as described above.

In the series of packets 36, the leftmost packet [0056] contains data representing a code module (CM). The next packet (DM1) is a first packet containing data representing a data module. The next packet contains auxiliary data, AUX. The next packet (DM2) is a second packet containing the remaining data representing the data module. From the series of packets 36 it may be seen that a data module (DM1,DM2), associated with the code module (CM), may also be included in the packet stream. Both the code module (CM) and the data module (DM1,DM2) are repetitively transmitted (not shown) in the series of packets 36. The rate of repetition of the code module (CM) may be different from that of the data module (DM1,DM2), and both rates may be specified by the application programmer and varied during the execution of the application.

[0057] It may further be seen that if the data module is too large to be contained in a single packet, it may be carried by more than one packet, with each packet containing a portion of the data module. Although two packets are illustrated in the series of packets 36 as containing the data module (DM1,DM2), any number of packets may be used to carry the data module, depending upon its size. It may be further seen that the packets carrying the data module need not be transmitted sequentially, but may have intervening packets in the packet stream. The same is true for multiple packets carrying a code module or directory module (not shown).

[0058] In the bottommost series of packets 38, the leftmost packet contains data representing the directory (DIR). The next packet contains data representing a code module (CM), followed by a packet containing auxiliary data (AUX) and a packet containing data representing a data module (DM). In the series of packet 38 all of a directory module (DIR), a code module (CM) and a data module (DM) in a single packet stream may be seen. The respective repetition rates of these three modules may be different, as specified by the programmer of the application, and may be varied during the execution of the application.

[0059] FIGURE 4 is a block diagram of a client computer 22 as illustrated in FIGURE 1. In FIGURE 4, transport mechanism 30 (of FIGURE 1) is coupled to an input terminal of a stream selector 202. An output terminal of stream selector 202 is coupled to respective input terminals of an auxiliary data extractor 204 and a packet data extractor 206. An output terminal of auxiliary data extractor 204 is coupled to the auxiliary data processor 50 (of FIGURE 1). A bidirectional terminal of packet data extractor 206 is coupled to a corresponding terminal of a stream I/O adapter 208. A control output terminal of stream I/O adapter 208 is coupled to a corresponding control input terminal of stream selector 202. The combination of stream selector 202, auxiliary data extractor 204 and packet data extractor 206 form a data stream receiver 207 for client computer 22, illustrated by a dashed line in FIGURE 4.

[0060] Stream I/O adapter 208 forms a part of a processing unit 224 in client computer 22, illustrated by a dashed line in FIGURE 4. In addition to the stream I/O adapter 208, processing unit 224 includes a processor 210, read/write memory (RAM) 212 and read-only memory (ROM) 214 coupled together in a known manner via a system bus 216. Further input and output facilities are provided by an I/O port 218, coupled to the local processor 40 (of FIGURE 1); user I/O adapter 220, for communicating with user 80; and modem 222, coupled to the central processing facility 60 (of FIGURE 1); all also coupled to the system bus 216 in a known manner. Other adapters (not shown) may be coupled to system bus 216 to provide other capabilities to the processing unit 224.

[0061] As described above, auxiliary data extractor 204, I/O port 218 and modem 222 are not required in a client computer 20 according to the present invention. They are illustrated in FIGURE 1 and FIGURE 4 to show optional additional functionality.

[0062] In operation, processor 210 of processing unit 224 retrieves program instructions permanently stored in ROM 214, or temporarily stored in RAM 212, and executes the retrieved instructions to read data from ROM 212 and/or RAM 214, write data to RAM 212 and/or receive data from or supply data to outside sources via the I/O port 218, user I/O adapter 220 and/or modem 222, in a known manner. Under program control, processor 210 may also request a code and/or data module from the data stream supplied to the client computer 22 via the transport mechanism 30 (of FIGURE 1). To retrieve this data, processor 210 first instructs stream I/O adapter 208 to send a selection control signal to the stream selector 202, possibly in response to user input from user I/O adapter 220. Then processor 210 issues a request for a specific code or data module to the stream I/O adapter 208. Stream I/O adapter 208 relays this request to the packet data extractor 204.

[0063] Transport mechanism 30 (of FIGURE 1) supplies all of the plurality of packet streams (32-38 of Figure 3) it carries to the stream selector 202, which passes

25

30

45

only the selected packet stream. Auxiliary data extractor 204 monitors the selected packet stream, extracts the auxiliary data packets from it and supplies them directly to the auxiliary data processor 50 (of FIGURE 1). Packet data extractor 206 similarly monitors the selected packet stream, extracts the directory, code and/or data module packets requested by the stream I/O adapter 208 and supplies them to the stream I/O adapter 208. The data in the packets returned to the stream I/O adapter 208 is supplied to the RAM 212. When the entire module has been retrieved from the packet stream (which may require several packets, as described above), processor 210 is notified of its receipt by the stream I/O adapter 208. Processor 210 may then continue execution of its program.

[0064] The data stream in a distributed computing system illustrated in FIGURE 1 is similar to a mass storage system in prior art systems. An application program executing on the processor 210 makes a request for a module listed in the directory in the same manner that such a program would make a request for a file containing a code or data module previously stored on a mass storage device in a prior art system. The data stream receiver 207 is similar to a mass storage device, and stream I/O 208 acts in a similar manner to a mass storage adapter on a prior art system by locating the desired data, transferring it to a predetermined location (I/O buffer) in the system memory and informing the processor of the completion of the retrieval. However, the stream I/O adapter 208 can only retrieve code and data from the data stream; data cannot be written to the data stream.

[0065] As described above, the distributed computing application may be divided into more than one code module, each containing executable code for a different portion of the distributed computing application. When a particular code module is desired, processor 210 requests that code module from stream I/O adapter 208. When execution of that module has completed, processor 210 requests the next module from stream I/O 208. Because code and data modules are repetitively carried on the data stream, a module may be deleted from RAM 212 when it is not currently needed without the necessity of temporarily being stored, because if it is required later, it may again be retrieved from the data stream when needed. However, if RAM 212 has sufficient capacity, processor 210 may request stream I/O adapter to simultaneously load several code modules into RAM 212. If this can be done, then processor 210 may switch between code modules without waiting for stream I/O adapter 208 to extract them from the data stream.

[0066] As described above, other I/O adapters may be coupled to the system bus 216 in a known manner. For example, in an interactive TV system, a graphics adapter may be coupled to system bus 216. The graphics adapter generates signals representing graphical images, in a known manner, in response to instructions from the processor 210. Further, these signals may be

combined with the standard video signal produced by the video decoder (described above) in the auxiliary data processor 50 of an interactive TV system. When the graphical image representative signal and the standard video signal are combined, the resulting signal represents an image in which the image generated by the graphics adapter is superimposed on the image represented by the broadcast video signal. It is also possible to selectively combine these two image representative signals under the control of the processor 210.

[0067] An interactive TV system, may also include a sound adapter coupled to the system bus 216. The sound adapter generates a signal representing a computer generated sound (such as music, synthesized voice or other sound), in a known manner, in response to instructions from the processor 210. Further, these signals may be combined with the standard audio signal produced by the audio decoder (described above) in the auxiliary data processor 50 of an interactive TV system. When the sound representative signal and the standard audio signal are combined, the resulting signal represents the combination of the sound generated by the sound adapter and the broadcast audio signal. It is also possible to selectively combine these two sound representative signals under the control of the processor 210. [0068] The timing of the generation and display of the graphical image and sound representative signals, may be controlled by receipt of the time code data from the data stream. This enables an executable code module to synchronize the display of processor generated image and presentation of processor generated sound to the broadcast video and audio. It is further possible to synchronize the operation of the interactive TV application by the insertion of specialized packets into the data stream which cause an interrupt of the code currently executing in processor 210. Stream I/O 208 monitors the data stream for such specialized packets, and generates an interrupt, in a known manner, for the processor 210. Processor 210 responds to that interrupt, also in known manner, by executing an interrupt service routine (ISR). This ISR may be used for synchronization of the interactive TV application, or other purposes.

[0069] A client computer 22 in a distributed computing system as illustrated in FIGURE 1 does not need a mass storage device, nor a large amount of RAM 212. Such a system decreases the cost of a client computer, and increases the functionality of the lower cost client computers. In addition, such a client computer has the option of participating in a distributed computing function, may join in the distributed computing function at any time (or may drop out and return later), and may participate at its own pace.

Claims

1. A distributed computer system comprising:

20

25

35

40

a data stream source (10) adapted simultaneously to produce a plurality of continuous data streams, repetitively to insert data representing a distributed computing application into at least one of the plurality of continuous data streams, and to include a directory module into at least one of the plurality of continuous data streams, the directory module including information relating to the distributed computing application.

2. The distributed computer system of claim 1 wherein:

said source is adapted to insert said data into each of the plurality of continuous data streams, and to include a directory module in each of the plurality of continuous data streams; and further comprising a client computer (20), including a data receiver adapted to select one of the plurality of continuous data streams, to extract (206) the data representing the distributed computing application from the selected one of the plurality of continuous data streams, and to execute (224) the distributed computing application.

The computer system of claim 2, further characterized by an auxiliary data processor (50); wherein:

the data stream source (10) is adapted to produce the plurality of continuous data streams further to include auxiliary data; and the client computer (20) is adapted to extract the auxiliary data from the selected one of the plurality of data streams and to supply the auxiliary data to the auxiliary data processor (50).

4. The computer system of claim 3, characterized in that:

the data stream source (10) is adapted to produce the plurality of data streams in the form of a series of packets; including a first packet containing the data representing the distributed computing application, identification information indicating that the first packet contains data representing the distributed computing application, a second packet containing the auxiliary data, and identification information indicating that the second packet contains the auxiliary data.

The computer system of claim 2, further characterized by an auxiliary data processor (50); wherein:

> the data stream source (10) is adapted to produce the plurality of continuous data streams further including auxiliary data; and the client

computer (20) is adapted to extract the auxiliary data from the selected one of the plurality of continuous data streams and to supply the extracted auxiliary data to the auxiliary data processor (50).

The computer system of claim 2, characterized in that:

the data stream source (10) is adapted to produce the plurality of continuous data streams in the form of a series of packets (32-38) including: a first packet (CM) containing data representing an executable code module and identification information indicating that the first packet contains the data representing the executable code module; a second packet (DM) containing data representing a data module and identification information indicating that the second packet contains data representing the data module; and a third packet (AUX) containing auxiliary data and identification information indicating that the third packet contains the auxiliary data.

- 7. The computer system of claim 6, characterized in that: the data stream source (10) is adapted to produce the plurality of continuous data streams further to include the directory module to contain information related to the code module; and the client computer (20) is adapted first to extract the directory module from the selected one of the plurality of continuous data streams, then to extract the code module in response to the information related to the code module in the extracted directory module, and to execute the extracted code module.
- The computer system of claim 2, characterized in that: the data stream source (10) is adapted to produce the plurality of continuous data streams as a series of packets (32-38) including: a first packet (CM) containing data representing an executable code module and identification information indicating that the first packet contains the data representing the executable code module; a second packet (DM) containing data representing a data module and identification information indicating that the second packet contains the data representing the data module; a third packet (DIR) containing data representing a directory module and identification information indicating that the third packet contains the data representing the directory module; and a fourth packet (AUX) containing auxiliary data and identification information indicating that the fourth packet contains the auxiliary data.
- The computer system of claim 8, characterized in that: the data stream source (10) is adapted to pro-

11

20

duce the plurality of continuous data streams further including the data module and the directory module, the directory module containing information related to the data module; and the client computer (20) further is adapted to extract the data module from the selected one of the plurality of continuous data streams in response to the information related to the data module in the directory module and to execute the code module to process the extracted data module.

- 10. A client computer (22) for use in a distributed computing system, the client computer (22) comprising: an input terminal (30), adapted selectively to receive one of a plurality of continuous data streams, the selected one of the plurality of continuous data streams repetitively including data representing a distributed computing application and a directory module; a data stream receiver (207), coupled to the input terminal (30), adapted to receive the selected one of the plurality of continuous data streams and to extract (206) the data representing the distributed computing application; and a processing unit (224), coupled to the data stream receiver, adapted to receive and execute (210) the distributed computing application; wherein the data stream receiver (207) is further adapted to extract the directory module from the selected one of the plurality of continuous data streams and to extract the data representing the distributed computing application from the selected one of the plurality of continuous data streams in response to information in the extracted directory module,
- 11. The client computer of claim 10, characterized in that the processing unit (224) comprises: a system bus (216); read/write memory (212), coupled to the system bus; a data stream input/output adapter (208), coupled between the data stream receiver (207) and the system bus (216) adapted to receive the data representing the extracted distributed computing application from the data stream receiver (207), and to store the data representing the extracted distributed computing application in the read/write memory (212): and a processor (210), coupled to the system bus (216) adapted to execute the distributed computing application.
- 12. The client computer of claim 10 or 11, characterized in that: the input terminal (30) is adapted to receive the selected one of the plurality the data streams as a series of packets containing packets carrying the data representing the distributed computing application; and the data stream receiver (207) comprises a packet data extractor (206), coupled to the input terminal (30), adapted to extract the packets carrying the data representing the distributed computing application.

13. The client computer of claim 12, characterized in that:

the series of packets in the data stream further include packets carrying auxiliary data; the client computer (32) further includes an auxiliary data processor; and the data stream receiver (207) includes an auxiliary data packet extractor, coupled to the auxiliary data processor, adapted to extract the packets carrying the auxiliary data from the data stream and to supply the packets carrying the auxiliary data processor.

- 14. The client computer of claim 13, characterized in that the distributed computing system is an interactive television system, and the auxiliary data is television video and audio.
- 15. The client computer of claim 10 to 14, characterized in that: the input terminal (30) being adapted to receive the plurality of continuous data streams, each including data representing a respective distributed computing application; and the data stream receiver (207) comprises: a data stream selector (202), coupled to the input terminal (30), adapted to produce the selected one of the plurality of data streams in response to control signals from the processing unit (224); and an extractor of data representative of the distributed computing application coupled between the data stream selector (202) and the processing unit (224) adapted to extract the data representing the distributed computing application from the selected one of the plurality of data streams.
 - 16. The client computer of claim 15, characterized in that:

the data stream selector (202) includes a selection control input terminal, and is adapted to produce the selected one of the plurality of data streams in response to a control signal at the selection control input terminal; the processing unit (224) comprises: a system bus (216); read/ write memory (212), coupled to the system bus (216); a data stream input/output adapter (208), coupled between the data stream receiver (207) and the system bus(216), adapted to receive the extracted data representing the distributed computing application from the data stream receiver (207), and to store the data representing the distributed computing application in the read/write memory (212), and having a control output terminal coupled to the selection control input terminal of the data stream selector (202), adapted to produce the selection control signal; and a processor (210), coupled to

the system bus(216), adapted to control the data stream input/output device to generate a selection control signal selecting the selected one of the plurality of data stream, and to execute the distributed computing application.

- 17. The client computer of claim 10 to 14, characterized in that: the input terminal (30) is adapted to receive the distributed computing application representative data including an executable code module; the data stream receiver (207) is adapted to extract the executable code module; and the processing unit is adapted to execute the extracted code module.
- 18. The client computer of claim 17, characterized in that:

the input terminal (30) is adapted to receive the data representing the distributed computing application and the directory module containing information related to the executable code module and; and the data stream receiver (207) is adapted first to extract the directory module from the data stream; the processing unit is adapted to process the information related to the executable code module in the directory module; the data stream receiver (207) is adapted to extract the executable code module from the data stream based on the information. related to the executable code module in the extracted directory module; and the processing unit is adapted to execute the extracted executable code module.

- 19. The client computer of claim 18 wherein the distributed computing application representative data further includes a data module and the directory module further contains information related to the data module the client computer, characterized in that: the processing unit (210) is adapted to process information related to the data module in the directory module; the data stream receiver (207) is adapted to extract the data module from the data stream based on the information related to the data module in the extracted directory module; and the processing unit is adapted to execute the extracted code module to process the extracted data.
- 20. The client computer of claim 10 to 14 wherein the distributed computing application is divided into a plurality of modules, representing portions of the application, characterized in that the processing unit is adapted to store only modules of said plurality of modules, necessary to execute the current portion of the application.

Patentansprüche

- Verteiltes Computersystem, das eine Datenstromquelle (10) umfasst, die gleichzeitig dafür ausgelegt ist, eine Vielzahl kontinuierlicher Datenströme zu erzeugen, wiederkehrend Daten, die eine verteilte Computeranwendung darstellen, in mindestens einen Datenstrom der Vielzahl kontinuierlicher Datenströme einzufügen und ein Verzeichnismodul in mindestens einen Datenstrom der Vielzahl kontinuierlicher Datenströme einzufügen, wobei das Verzeichnismodul Informationen enthält, die die verteilte Computeranwendung betreffen.
- Verteiltes Computersystem nach Anspruch 1, wobei die Quelle dafür ausgelegt ist, die Daten in jeden Datenstrom der Vielzahl kontinuierlicher Datenströme einzufügen und ein Verzeichnismodul in jeden Datenstrom der Vielzahl kontinuierlicher Datenströme einzufügen; und das des Weiteren einen Client-Computer (20) umfasst, der einen Datenempfänger enthält, der dafür ausgelegt ist, einen Datenstrom der Vielzahl kontinuierlicher Datenströme auszuwählen, um die Daten, die die verteilte Computeranwendung darstellen, aus dem ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme auszublenden (206), und um die verteilte Computeranwendung auszuführen (224).
- Computersystem nach Anspruch 2, das des Weiteren durch einen Hilfsdatenprozessor (50) gekennzeichnet ist; wobei: die Datenstromquelle (10) dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme so zu erzeugen, dass sie des Weiteren Hilfsdaten enthalten; und der Client-Computer (20) dafür ausgelegt ist, die Hilfsdaten aus dem ausgewählten Datenstrom der Vielzahl von Datenströmen auszublenden und die Hilfsdaten dem Hilfsdatenprozessor (50) zuzuführen.
 - 4. Computersystem nach Anspruch 3, dadurch gekennzeichnet, dass: die Datenstromquelle (10) dafür ausgelegt ist, die Vietzahl von Datenströmen in Form einer Reihe von Pakten zu erzeugen; einschließlich eines ersten Pakets, das die Daten enthält, die die verteilte Computeranwendung darstellen, Identifikationsinformationen, die darauf hinweisen, dass das erste Paket Daten enthält, die die verteilte Computeranwendung darstellen, eines zweiten Pakets, das die Hilfsdaten enthält, und Identifikationsinformationen, die darauf hinweisen, dass das zweite Paket die Hilfsdaten enthält.
- Computersystem nach Anspruch 2, das des Weiteren durch einen Hilfsdatenprozessor (50) gekennzeichnet ist, wobei: die Datenstromquelle (10) dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme zu erzeugen, die des Weiteren Hilfsdaten

45

enthalten; und der Client-Computer (20) dafür ausgelegt ist, die Hilfsdaten aus dem ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme auszublenden und die ausgeblendeten Hilfsdaten dem Hilfsdatenprozessor (50) zuzuführen.

- 6. Computersystem nach Anspruch 2, dadurch gekennzeichnet, dass: die Datenstromquelle (10) dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme in Form einer Reihe von Paketen (32-38) zu erzeugen, einschließlich: eines ersten Pakets (CM), das Daten, die ein ausführbares Codemodul darstellen, und Identifikationsinformationen enthält, die anzeigen, dass das erste Paket die Daten enthält, die das ausführbare Codemodul darstellen; eines zweiten Pakets (DM), das Daten, die ein Datenmodul darstellen, und Identifikationsinformationen enthält, die darauf hinweisen, dass das zweite Paket Daten enthält, die das Datenmodul darstellen; und eines dritten Pakets (AUX), das Hilfsdaten und Identifikationsinformationen enthält, die anzeigen, dass das dritte Paket die Hilfsdaten enthält.
- 7. Computersystem nach Anspruch 6, dadurch gekennzeichnet, dass: die Datenstromquelle (10)
 dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme so zu erzeugen, dass sie des Weiteren
 das Verzeichnismodul umfassen, um Informationen
 zu enthalten, die das Codemodul betreffen; und
 dass der Client-Computer (20) dafür ausgelegt ist,
 zuerst das Verzeichnismodul aus dem ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme auszublenden, daraufhin das Codemodul
 als Reaktion auf die Informationen bezüglich des
 Codemoduls in dem ausgeblendeten Verzeichnismodul auszublenden und das ausgeblendete Codemodul auszuführen.
- 8. Computersystem nach Anspruch 2, dadurch gekennzeichnet, dass: die Datenstromquelle (10) dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme als Reihe von Paketen (32-38) zu erzeugen, einschließlich: eines ersten Pakets (CM), das Daten, die ein ausführbares Codemodul darstellen, und Identifikationsinformationen enthält, die anzeigen, dass das erste Paket die Daten enthält, die das ausführbare Codemodul darstellen; eines zweiten Pakets (DM), das Daten, die ein Datenmodul darstellen, und Identifikationsinformationen enthält, die anzeigen, dass das zweite Paket die Daten enthält, die das Datenmodul darstellen; eines dritten Pakets (DIR), das Daten, die ein Verzeichnismodul darstellen, und Identifikationsinformationen enthält, die anzeigen, dass das dritte Paket die Daten enthält, die das Verzeichnismodul darstellen; und eines vierten Pakets (AUX), das Hilfsdaten und Identifikationsinformationen enthält, die anzeigen, dass das vierte Paket die Hilfsdaten enthält.

- 9. Computersystem nach Anspruch 8, dadurch gekennzeichnet, dass: die Datenstromquelle (10) dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme zu erzeugen, die des Weiteren das Datenmodul und das Verzeichnismodul umfassen, wobei das Verzeichnismodul Informationen enthält, die das Datenmodul betreffen; und dass der Client-Computer (20) des Weiteren dafür ausgelegt ist, als Reaktion auf die Informationen bezüglich des Datenmoduls in dem Verzeichnismodul das Datenmodul aus dem ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme auszublenden und das Codemodul auszuführen, um das ausgeblendete Datenmodul zu verarbeiten.
- 10. Client-Computer (22) zur Verwendung in einem verteilten Computersystem, wobei der Client-Computer (22) Folgendes umfasst: eine Eingangsklemme (30), die selektiv dafür ausgelegt ist, einen Datenstrom einer Vielzahl kontinuierlicher Datenströme zu empfangen, wobei der ausgewählte Datenstrom der Vielzahl kontinuierlicher Datenströme wiederkehrend Daten umfasst, die eine verteilte Computeranwendung und ein Verzeichnismodul darstellen; einen Datenstromempfänger (207), der mit der Eingangsklemme (30) verbunden ist und dafür ausgelegt ist, den ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme zu empfangen und die Daten auszublenden (206), die die verteilte Computeranwendung darstellen; und eine Verarbeitungseinheit (224), die mit dem Datenstromempfänger verbunden und dafür ausgelegt ist, die verteilte Computeranwendung zu empfangen und auszuführen (210); wobei der Datenstromempfänger (207) des Weiteren dafür ausgelegt ist, das Verzeichnismodul aus dem ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme auszublenden und als Reaktion auf Informationen in dem ausgeblendeten Verzeichnismodul die Daten, die die verteilte Computeranwendung darstellen, aus dem ausgewählten Datenstrom der Vielzahl kontinuierlicher Datenströme auszublenden.
- 11. Client-Computer nach Anspruch 10, dadurch gekennzeichnet, dass die Verarbeitungseinheit (224) Folgendes umfasst: eine Systembusleitung (216); einen Schreib-/Lesespeicher (212), der mit der Systembusleitung verbunden ist; einen Datenstromeingabe-/-ausgabeadapter (208), der zwischen dem Datenstromempfänger (207) und der Systembusleitung (216) angeschlossen ist und dafür ausgelegt ist, die Daten, die die ausgeblendete verteilte Computeranwendung darstellen, aus dem Datenstromempfänger (207) zu empfangen, und die Daten, die die ausgeblendete verteilte Computeranwendung darstellen, in dem Schreib-/Lesespeicher (212) zu speichern; und einen Prozessor (210), der mit der Systembusleitung (216) verbun-

45

15

20

25

30

40

den und dafür ausgelegt ist, die verteilte Computeranwendung auszuführen.

- 12. Client-Computer nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass: die Eingangsklemme (30) dafür ausgelegt ist, den ausgewählten Datenstrom der Vielzahl von Datenströmen als eine Reihe von Paketen zu empfangen, die Pakete enthalten, die die Daten befördern, die die verteilte Computeranwendung darstellen; und dass der Datenstromempfänger (207) eine Paketdatenmaske (206) umfasst, die mit der Eingangsklemme (30) verbunden und dafür ausgelegt ist, die Pakete auszublenden, die die Daten befördern, die die verteilte Computeranwendung darstellen.
- 13. Client-Computer nach Anspruch 12, dadurch gekennzeichnet, dass: die Reihe von Paketen in dem Datenstrom des Weiteren Pakete umfasst, die Hilfsdaten befördern; der Client-Computer (32) des Weiteren einen Hilfsdatenprozessor umfasst; und der Datenstromempfänger (207) eine Hilfsdatenmaske umfasst, die mit dem Hilfsdatenprozessor verbunden und dafür ausgelegt ist, die Pakete, die die Hilfsdaten befördern, aus dem Datenstrom auszublenden, und die Pakete, die die Hilfsdaten befördern, dem Hilfsdatenprozessor zuzuführen.
- 14. Client-Computer nach Anspruch 13, dadurch gekennzeichnet, dass das verteilte Computersystem ein interaktives Fernsehsystem ist und die Hilfsdaten Fernseh-Videodaten und Fernseh-Audiodaten sind
- 15. Client-Computer nach Anspruch 10 bis 14, dadurch gekennzeichnet, dass: die Eingangsklemme (30) dafür ausgelegt ist, die Vielzahl kontinuierlicher Datenströme zu empfangen, wobei jeder der Datenströme Daten umfasst, die eine entsprechende verteilte Computeranwendung darstellen; und dass der Datenstromempfänger (207) Folgendes umfasst: einen Datenstromselektor (202), der mit der Eingangsklemme (30) verbunden und dafür ausgelegt ist, als Reaktion auf Steuersignale von der Verarbeitungseinheit (224) den ausgewählten Datenstrom der Vielzahl von Datenströmen zu erzeugen; und eine Maske für die repräsentativen Daten der verteilten Computer anwendung, die zwischen dem Datenstromselektor (202) und der Verarbeitungseinheit (224) angeschlossen und dafür ausgelegt ist, die Daten, die die verteilte Computeranwendung darstellen, aus dem ausgewählten Datenstrom der Vielzahl von Datenströmen auszublenden.
- Client-Computer nach Anspruch 15, dadurch gekennzeichnet, dass: der Datenstromselektor (202) eine Auswahlsteuereingangsklemme umfasst und

- dafür ausgelegt ist, als Reaktion auf ein Steuersignal an der Auswahlsteuereingangsklemme den ausgewählten Datenstrom der Vielzahl von Datenströmen zu erzeugen; die Verarbeitungseinheit (224) Folgendes umfasst: eine Systembusleitung (216); einen Schreib-/Lesespeicher (212), der mit der Systembusleitung (216) verbunden ist; einen Datenstromeingabe-/-ausgabeadapter (208), der zwischen dem Datenstromempfänger (207) und der Systembusleitung (216) angeschlossen und dafür ausgelegt ist, die ausgeblendeten Daten, die die verteilte Computeranwendung darstellen, von dem Datenstromempfänger (207) zu empfangen, und die Daten, die die verteilte Computeranwendung darstellen, in dem Schreib-/Lesespeicher (212) zu speichern, und der eine Steuerausgangsklemme aufweist, die mit der Auswahlsteuereingangsklemme des Datenstromselektors (202) verbunden ist, welcher dafür ausgelegt ist, das Auswahlsteuersignal zu erzeugen; und einen Prozessor (210), der mit der Systembusleitung (216) verbunden und dafür ausgelegt ist, die Datenstromeingabe-/-ausgabevorrichtung zu steuern, um ein Auswahlsteuersignal zu erzeugen, das den ausgewählten Datenstrom der Vielzahl von Datenströmen auswählt, und um die verteilte Computeranwendung auszuführen.
- 17. Client-Computer nach Anspruch 10 bis 14, dadurch gekennzeichnet, dass: die Eingangsklemme (30) dafür ausgelegt ist, die repräsentativen Daten der verteilten Computeranwendung, einschließlich eines ausführbaren Codemoduls, zu empfangen; der Datenstromempfänger (207) dafür ausgelegt ist, das ausführbare Codemodul auszublenden; und die Verarbeitungseinheit dafür ausgelegt ist, das ausgeblendete Codemodul auszuführen.
- 18. Client-Computer nach Anspruch 17, dadurch gekennzeichnet, dass: die Eingangsklemme (30) dafür ausgelegt ist, die Daten, die die verteilte Computeranwendung darstellen, und das Verzeichnismodul, das Informationen bezüglich des ausführbaren Codemoduls enthält, zu empfangen; und dass der Datenstromempfänger (207) dafür ausgelegt ist, zuerst das Verzeichnismodul aus dem Datenstrom auszublenden; die Verarbeitungseinheit dafür ausgelegt ist, die Informationen bezüglich des ausführbaren Codemoduls im Verzeichnismodul zu verarbeiten; der Datenstromempfänger (207) dafür ausgelegt ist, das ausführbare Codemodul aus dem Datenstrom basierend auf den Informationen bezüglich des ausführbaren Codemoduls in dem ausgeblendeten Verzeichnismodul auszublenden; und die Verarbeitungseinheit dafür ausgelegt ist, das ausgeblendete ausführbare Codemodul auszuführen.

25

30

35

40

- 19. Client-Computer nach Anspruch 18, wobei die repräsentativen Daten der verteilten Computeranwendung des Weiteren ein Datenmodul umfassen und das Verzeichnismodul des Weiteren Informationen bezüglich des Datenmoduls des Client-Computers umfasst, dadurch gekennzeichnet, dass: die Verarbeitungseinheit (210) dafür ausgelegt ist, Informationen bezüglich des Datenmoduls im Verzeichnismodul zu verarbeiten; der Datenstromempfänger (207) dafür ausgelegt ist, das Datenmodul aus dem Datenstrom basierend auf den Informationen bezüglich des Datenmoduls in dem ausgeblendeten Verzeichnismodul auszublenden; und die Verarbeitungseinheit dafür ausgelegt ist, das ausgeblendete Codemodul auszuführen, um die ausgeblendeten Daten zu verarbeiten.
- 20. Client-Computer nach Anspruch 10 bis 14, wobei die verteilte Computeranwendung in eine Vielzahl von Modulen unterteilt ist, die Abschnitte der Anwendung darstellen, dadurch gekennzeichnet, dass die Verarbeitungseinheit dafür ausgelegt ist, nur Module der Vielzahl von Modulen zu speichern, die zur Ausführung des aktuellen Abschnitts der Anwendung notwendig sind.

Revendications

1. Un système informatique réparti comprenant :

une source de train de données (10) adaptée de façon à produire simultanément une pluralité de trains de données continues, de façon à insérer itérativement des données représentant une application informatique répartie dans au moins un train de données continues de la pluralité de trains de données continues et de façon à inclure un module de répertoire dans au moins un train de données continues des trains de données continues, ce module de répertoire comprenant des informations relatives à l'application informatique répartie.

 Le système informatique réparti selon la Revendication 1 où :

ladite source est adaptée de façon à insérer lesdites données dans chacun des trains de données continues de la pluralité de trains de données continues ; à inclure un module de répertoire dans chacun des trains de données continues de la pluralité de trains de données continues ; et comprenant en outre un ordinateur client (20), incluant un récepteur de données adapté de façon à sélectionner un train de données continues de la pluralité de trains de données continues, de façon à extraire

(206) les données représentant l'application informatique répartie du train de données continues sélectionné dans la pluralité de trains de données continues, et de façon à exécuter (204) l'application informatique répartie.

 Le système informatique selon la Revendication 2, caractérisé en outre par un processeur de données auxiliaires (50) où:

la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données continues de façon à y inclure en outre des données auxiliaires; et l'ordinateur client (20) est adapté de façon à extraire les données auxiliaires du train de données sélectionné dans la pluralité de trains de données et de façon à fournir les données auxiliaires au processeur de données auxiliaires (50).

4. Le système informatique selon la Revendication 3, caractérisé par le fait que :

la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données sous la forme d'une série de paquets ; y compris d'un premier paquet contenant les données représentant l'application informatique répartie, des informations d'identification indiquant que le premier paquet contient des données représentant l'application informatique répartie, un deuxième paquet contenant les données auxiliaires et des informations d'identification indiquant que le deuxième paquet contient les données auxiliaires.

 Le système informatique selon la Revendication 2, caractérisé en outre par un processeur de données auxiliaires (50) où:

> la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données continues incluant en outre des données auxiliaires ; et

> l'ordinateur client (20) est adapté de façon à extraire les données auxiliaires du train de données continues sélectionné dans la pluralité de trains de données continues et de façon à fournir les données auxiliaires extraites au processeur de données auxiliaires (50).

 Le système informatique selon la Revendication 2, caractérisé par le fait que :

> la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données continues sous la forme d'une série de paquets (32 à 38) incluant : un premier paquet

15

20

25

30

35

40

50

55

(CM) contenant des données représentant un module de code exécutable et des informations d'identification indiquant que le premier paquet contient les données représentant le module de code exécutable; un deuxième paquet (DM) contenant des données représentant un module de données et des informations d'identification indiquant que le deuxième paquet contient des données représentant le module de données; et un troisième paquet (AUX) contenant des données auxiliaires et des informations d'identification indiquant que le troisième paquet con-

 Le système informatique selon la Revendication 6, caractérisé par le fait que :

tient des données auxiliaires.

la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données continues de façon à y inclure en outre le module de répertoire de façon à contenir les informations relatives au module de code; et l'ordinateur client (20) est adapté de façon à extraire en premier lieu le module de répertoire du train de données continues sélectionné dans la pluralité de trains de données continues, puis à extraire le module de code en réponse aux informations relatives au module de code dans le module de répertoire extrait, et à exécuter le module de code extrait.

 Le système informatique selon la Revendication 2, caractérisé par le fait que :

> la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données continues sous la forme d'une série de paquets (32 à 38) incluant : un premier paquet (CM) contenant des données représentant un module de code exécutable et des informations d'identification indiquant que le premier paquet contient les données représentant le module de code exécutable; un deuxième paquet (DM) contenant des données représentant un module de données et des informations d'identification indiquant que le deuxième paquet contient les données représentant le module de données ; un troisième paquet (DIR) contenant des données représentant un module de répertoire et des informations d'identification indiquant que le troisième paquet contient des données représentant le module de répertoire, et un quatrième paquet (AUX) contenant des données auxiliaires et des informations d'identification indiquant que le quatrième paquet contient les données auxiliaires.

 Le système informatique selon la Revendication 8, caractérisé par le fait que :

la source de train de données (10) est adaptée de façon à produire la pluralité de trains de données continues incluant en outre le module de données et le module de répertoire, le module de répertoire contenant des informations relatives au module de données; et l'ordinateur client (20) est adapté en outre de façon à extraire le module de données du train de données continues sélectionné dans la pluralité de trains de données continues en réponse aux informations relatives au module de données dans le module de répertoire, et à exécuter le module de code pour traiter le module de données extrait.

- 10. Un ordinateur client (22) destiné à une utilisation dans un système informatique réparti, l'ordinateur client (22) comprenant : un terminal d'entrée (30), adapté de façon à recevoir sélectivement un train de données continues d'une pluralité de trains de données continues, le train de données continues sélectionné de la pluralité de trains de données continues incluant itérativement des données représentant une application informatique répartie et un module de répertoire ; un récepteur de train de données (207), couplé à un terminal d'entrée (30), adapté de facon à recevoir le train de données continues sélectionné de la pluralité de trains de données continues et pour extraire (206) les données représentant l'application informatique répartie ; et une unité de traitement (224), couplée au récepteur de train de données, adaptée de façon à recevoir et à exécuter (210) l'application informatique répartie ; où le récepteur de train de données (207) est adapté en outre de façon à extraire le module de répertoire du train de données continues sélectionné dans la pluralité de trains de données continues et à extraire les données représentant l'application informatique répartie du train de données continues sélectionné dans la pluralité de trains de données continues en réponse aux informations contenues dans le module de répertoire extrait.
- 11. L'ordinateur client selon la Revendication 10, caractérisé par le fait que l'unité de traitement (224) comprend : un bus système (216); une mémoire lecture/écriture (212) couplée au bus système; un adaptateur d'entrée/sortie de train de données (208) couplé entre le récepteur de train de données (207) et le bus système (216) adapté de façon à recevoir les données représentant l'application informatique répartie extraite du récepteur de train de données (207), et de façon à stocker les données représentant l'application informatique répartie extraite dans la mémoire lecture/écriture (212); et un

processeur (210) couplé au bus système (216) adapté de façon à exécuter l'application informatique répartie.

- L'ordinateur client selon la Revendication 10 ou 11, caractérisé par le fait que: le terminal d'entrée (30) est adapté de façon à recevoir le train de données sélectionné de la pluralité de trains de données sous la forme d'une série de paquets contenant des paquets transportant les données représentant l'application informatique répartie; et le récepteur de train de données (207) comprend un extracteur de données en paquets (206) couplé au terminal d'entrée (30), adapté de façon à extraire les paquets transportant les données représentant l'application informatique répartie.
- 13. L'ordinateur client selon la Revendication 12, caractérisé par le fait que :

la série de paquets du train de données comprend en outre des paquets transportant des données auxiliaires; l'ordinateur client (32) comprend en outre un processeur de données auxiliaires; et le récepteur de train de données (207) inclut un extracteur de paquets de données auxiliaires couplé au processeur de données auxiliaires, adapté de façon à extraire les paquets transportant les données auxiliaires du train de données et à fournir les paquets transportant les données auxiliaires au processeur de données auxiliaires.

- 14. L'ordinateur client selon la Revendication 13, caractérisé par le fait que le système informatique réparti est un système de télévision interactive et que les données auxiliaires sont des signaux audio et vidéo de télévision.
- 15. L'ordinateur client selon les Revendications 10 à 14, caractérisé par le fait que : le terminal d'entrée (30) étant adapté de façon à recevoir la pluralité de trains de données continues, chacun d'eux incluant des données représentant une application informatique répartie distincte ; et le récepteur de train de données (207) comprend : un sélecteur de train de données (202) couplé au terminal d'entrée (30), adapté de façon à produire le train de données sélectionné de la pluralité de trains de données en réponse à des signaux de contrôle provenant de l'unité de traitement (224) ; et un extracteur de données représentatives de l'application informatique répartie couplé entre le sélecteur de train de données (202) et l'unité de traitement (224) adapté de façon à extraire les données représentant l'application informatique répartie du train de données sélectionné dans la pluralité de trains de données.

16. L'ordinateur client selon la Revendication 15, caractérisé par le fait que :

le sélecteur de train de données (202) comprend un terminal d'entrée de contrôle de sélection et est adapté de façon à produire le train de données sélectionné de la pluralité de trains de données en réponse à un signal de contrôle reçu par le terminal d'entrée de contrôle de sélection; l'unité de traitement (224) comprend : un bus système (216) ; une mémoire lecture/écriture (212) couplée au bus système (216); un adaptateur d'entrée/sortie de train de données (208) couplé entre le récepteur de train de données (207) et le bus système (216) adapté de façon à recevoir les données extraites représentant l'application informatique répartie du récepteur de train de données (207), et de façon à stocker les données représentant l'application informatique répartie dans la mémoire lecture/écriture (212), et possédant un terminal de sortie de contrôle couplé au terminal d'entrée de contrôle de sélection du sélecteur de train de données (202), adapté de façon à produire le signal de contrôle de sélection; et un processeur (210) couplé au bus système (216) adapté de façon à contrôler le dispositif d'entrée/sortie de train de données de façon à générer un signal de contrôle de sélection sélectionnant le train de données sélectionné de la pluralité de trains de données et de façon à exécuter l'application informatique répartie.

- 17. L'ordinateur client selon les Revendications 10 à 14, caractérisé par le fait que : le terminal d'entrée (30) est adapté de façon à recevoir les données représentatives de l'application informatique répartie incluant un module de code exécutable ; le récepteur de train de données (207) est adapté de façon à extraire le module de code exécutable ; et l'unité de traitement est adaptée de façon à exécuter le module de code extrait.
- 45 18. L'ordinateur client selon la Revendication 17, caractérisé par le fait que :

le terminal d'entrée (30) est adapté de façon à recevoir les données représentant l'application informatique répartie et le module de répertoire contenant des informations relatives au module de code exécutable ; et le récepteur de train de données (207) est adapté de façon à extraire en premier lieu le module de répertoire du train de données ; l'unité de traitement est adaptée de façon à traiter les informations relatives au module de code exécutable dans le module de répertoire ; le récepteur de train de données

50

(207) est adapté de façon à extraire le module de code exécutable du train de données en fonction des informations relatives au module de code exécutable se trouvant dans le module de répertoire extrait ; et l'unité de traitement est 5 adaptée de façon à exécuter le module de code exécutable extrait.

- 19. L'ordinateur client selon la Revendication 18, où les données représentatives de l'application informati- 10 que répartie incluent en outre un module de données et le module de répertoire contient en outre des informations relatives au module de données de l'ordinateur client, caractérisé par le fait que : l'unité de traitement (210) est adaptée de façon à traiter les informations relatives au module de données dans le module de répertoire ; le récepteur de train de données (207) est adapté de façon à extraire le module de données du train de données en fonction des informations relatives au module de données se trouvant dans le module de répertoire extrait ; et l'unité de traitement est adaptée de façon à exécuter le module de code extrait pour traiter les données extraites.
- 20. L'ordinateur client selon les Revendications 10 à 14 où l'application informatique répartie est divisée en une pluralité de modules représentant des portions de l'application, caractérisé par le fait que l'unité de traitement est adaptée de façon à stocker uniquement les modules de ladite pluralité de modules nécessaires pour exécuter la portion en cours de l'application.

25

30

35

40

45

50

