```
In [1]: import numpy as np
        from scipy.linalg import lu
        from scipy.linalg import solve
        import random
        import time
        import pandas as pd
        import matplotlib.pyplot as plt
In [2]: def row interchange(B,g,h):
           B[g], B[h] = B[h].copy(), B[g].copy()
                                                    #helper function to interchange rows
            return B
        def col interchange(p,g,h):
            p[:,[g,h]]=p[:,[h,g]]
                                                     #helper function to interchange columns
            return p
In [3]: def LUFACT(A):
            n=len(A)
                                                              #Initializing U and L as A and I res
            U=np.copy(A).astype(float)
            p=[(0,0) \text{ for } i \text{ in } range(n+1)]
            l=[np.eye(n) for r in range(n+1)]
            for k in range(n-1):
                maxp=abs(U[k][k])
                maxrow=k
                for z in range(k+1,n):
                    if abs(U[z][k])>maxp:
                        maxp=abs(U[z][k])
                                                                     #partial pivoting step
                        maxrow=z
                if maxp == 0:
                    return("can not find non zero pivots")
                                                                      #To avoid Singular matrices
                elif maxrow!=k:
                    p[k] = (k, maxrow)
                    U=row interchange(U,k,maxrow)
                for j in range(k+1,n):
                    l[k][j][k] = (U[j][k]/U[k][k])
                    for i in range(k,n):
                        U[j][i]=U[j][i]-l[k][j][k]*U[k][i]
            #Multiplying permutation matrices with the lower triangualar matrices we got from ea
            for d in range(n-1):
                for c in range (d+1,n+1):
                    l[d]=col interchange(row interchange(l[d],p[c][0],p[c][1]),p[c][0],p[c][1])
            #calculatitn P
            prod1=np.eye(n)
            prod=np.eye(n)
            for x in range(n):
                prod=np.dot(prod, l[x])
                prod1=row interchange(prod1,p[x][1],p[x][0])
            L=prod
            P=prod1
            return P, L, U
```

```
def solution(A,b):
                                                                  #stops the algorithm if the input
            if type(LUFACT(A)) == "str":
                return ("input is out of scope of this algorithm")
            P, L, U=LUFACT (A)
            b=np.dot(P,b)
            b1=forward sub(L,b)
            sol=backward sub(U,b1)
            return sol
        def forward sub(a,b):
            n=len(a)
            y=np.zeros((n,1))
            for i in range(n):
               k=0
                y[i][0]=b[i][0]
                for j in range(i):
                    k+=a[i][j]*y[j][0]
                y[i][0] = (y[i][0]-k)
            return y
        def backward sub(a,b):
            n=len(a)
            x=np.zeros((n,1))
            for i in range (n-1,-1,-1):
                k=0
                x[i][0]=b[i][0]
                for j in range(i+1,n):
                    k+=a[i][j]*x[j][0]
                x[i][0] = (x[i][0]-k)/a[i][i]
            return x
                                               #argument "a" is for the number of matrices and "b"
In [4]: def matrix generator(a,c):
            matrices=[]
            for i in range(a):
                k=random.randint(1,c)
                                               #generating random matrix sizes
                A=100*np.random.rand(k,k)
                                               #genearting coefficient matrix, constant matrices wi
                b=100*np.random.rand(k,1)
                matrices.append([A,b])
            return matrices
In [5]:
        def measure timeSOL(L):
            time1=[]
            scipy time=[]
            for x in L:
                start1=time.time()
                p=solution(x[0],x[1])
                end1=time.time()
                t1=end1-start1
                time1.append(t1)
                start2=time.time()
                p=solve(x[0],x[1])
                end2=time.time()
                t2=end2-start2
                scipy time.append(t2)
            return time1,scipy_time
```

```
In [6]:

def measure_timeLU(L):
    time1=[]
    scipy_time=[]
    for x in L:

        start1=time.time()
        p=LUFACT(x[0])
        end1=time.time()
        t1=end1-start1
        time1.append(t1)

        start2=time.time()
        p=lu(x[0])
        end2=time.time()
        t2=end2-start2
        scipy_time.append(t2)
    return time1,scipy_time
```

RESULTS

First let us run the helper function file.

```
In [1]: %run helper_functions.ipynb
```

Using the matrix generator function we've created, we can generate desired number of random matrices.

```
In [2]: M=matrix_generator(15,100)
```

Now that we've the list of randomly created matrices let us calculate the LU factorization of the matrices, the difference between PA and LU, Solution of AX=b, and the difference between AX and b.

```
normLU=[]
In [3]:
        normSOL=[]
        for x in M:
            P1, L1, U1=LUFACT (x[0])
            q=np.dot(P1,x[0])
            r=np.dot(L1,U1)
            n=np.linalg.norm(q-r)
            normLU.append(n)
            y=solution(x[0],x[1])
            m=np.dot(x[0],y)
            z=np.linalg.norm(m-x[1])
            normSOL.append(z)
            #print("Size of the Matrix:",len(x))
            #print("P:\n",P1,"\n")
            #print("L:\n",L1,"\n")
            #print("U:\n",U1,"\n")
            \#print("PA-LU is : \n", q-r, "\n")
            #print("Solution to AX=b is:\n",y)
        print("Norms of PA-LU is:\n", normLU)
        print("Norms of AX-b is:\n", normSOL)
```

```
Norms of PA-LU is:
[1.2917348974815226e-12, 2.2061114442076724e-12, 1.0587608382197967e-12, 1.104176593309
202e-12, 2.408824824607806e-12, 3.4891090523611284e-13, 5.697490303155319e-13, 2.3705298
79295217e-13, 1.8147882078901266e-12, 1.7290261366949012e-13, 1.8888818762248754e-12, 7.
78360544769648e-13, 0.0, 5.624352792277627e-13, 9.646294471829118e-13]
Norms of AX-b is:
[3.341450722137136e-11, 1.8644260642387194e-11, 1.1515979044762974e-12, 1.1977186432104
14e-12, 6.6205559648287545e-12, 2.4815687562588183e-13, 6.609629022663084e-13, 5.0179644
05823497e-13, 1.8280402488730182e-12, 1.602669906413122e-13, 4.069787837625156e-12, 1.52
6146152194083e-12, 1.4210854715202004e-14, 1.7563788883643145e-12, 2.1781036994377764e-12]
```

Now, let us calculate the same for the inbuilt function in Scipy

```
In [4]: sci_normLU=[]
    sci_normSOL=[]
    size=[]
    for x in M:
```

```
size.append(len(x[0]))
    P1, L1, U1=lu(x[0])
    q=np.dot(P1,x[0])
    r=np.dot(L1,U1)
    n=np.linalg.norm(q-r)
    sci normLU.append(n)
    y=solve(x[0],x[1])
    m=np.dot(x[0],y)
    z=np.linalg.norm(m-x[1])
    sci normSOL.append(z)
    #print("Size of the Matrix:",len(x[0]))
    #print("P:\n",P1,"\n")
    #print("L:\n",L1,"\n")
    #print("U:\n",U1,"\n")
    #print("PA-LU is :\n", q-r, "\n")
    #print("Solution to AX=b is:\n",y)
print("Norms of PA-LU is:\n",sci normLU)
print("Norms of AX-b is:\n",sci normSOL)
```

Norms of PA-LU is:

[2557.2852831088107, 3568.5418145349745, 2308.2833095777924, 2329.021155330863, 3832.23 35613025525, 1207.0661638502777, 1626.487246066234, 929.0850187356434, 3056.95952975964 1, 717.0071241935564, 3239.942395628104, 1864.0318151622005, 1.7763568394002505e-15, 164 4.012668814204, 2182.4761502057054]

Norms of AX-b is:

[2.1055697730753597e-11, 2.1673102355754512e-11, 1.0024107717115615e-12, 7.856010923420 094e-13, 4.995415996888695e-12, 3.5020848058227755e-13, 7.774240471697501e-13, 3.2009191 19439219e-13, 1.5051905723307699e-12, 1.704568041361993e-13, 3.666499945758256e-12, 1.47 6237234047517e-12, 5.859285502108464e-14, 1.627469899365532e-12, 2.091348161237309e-12]

Time taken to solve Ax=b

Time taken to do LU Factorization

Table

```
In [11]: Gaussian=pd.DataFrame()
    Gaussian["n"]=size
    Gaussian["Norm of PA-LU using my code"]=normLU
    Gaussian["Norm of Ax-b using my code"]=normSOL
    Gaussian["Norm of PA-LU using Scipy"]=sci_normLU
    Gaussian["Norm of Ax-b using Scipy"]=sci_normSOL
    Gaussian["Time taken to do LU factorozation using my code"]=my_time1
    Gaussian["Time taken to do LU factorozation using Scipy"]=scipy_time1
    Gaussian["Time taken solve Ax=b using my code"]=my_time
    Gaussian["Time taken solve Ax=b using Scipy"]=scipy_time
    Gaussian.sort_values(by="n")
```

Time

Time

Out[11]:

		n	Norm of PA- LU using my code	Norm of Ax-b using my code	Norm of PA- LU using Scipy	Norm of Ax-b using Scipy	Time taken to do LU factorozation using my code	Time taken to do LU factorozation using Scipy	taken solve Ax=b using my code	taken solve Ax=b using Scipy
1	12	2	0.000000e+00	1.421085e- 14	1.776357e-15	5.859286e- 14	0.000000	0.0	0.000000	0.0
	9	18	1.729026e-13	1.602670e- 13	7.170071e+02	1.704568e- 13	0.000000	0.0	0.015581	0.0
	7	24	2.370530e-13	5.017964e- 13	9.290850e+02	3.200919e- 13	0.015623	0.0	0.015622	0.0
	5	30	3.489109e-13	2.481569e- 13	1.207066e+03	3.502085e- 13	0.015627	0.0	0.031245	0.0
1	13	40	5.624353e-13	1.756379e- 12	1.644013e+03	1.627470e- 12	0.031242	0.0	0.078094	0.0
	6	41	5.697490e-13	6.609629e- 13	1.626487e+03	7.774240e- 13	0.031237	0.0	0.078104	0.0
1	11	48	7.783605e-13	1.526146e- 12	1.864032e+03	1.476237e- 12	0.062485	0.0	0.140603	0.0
1	14	54	9.646294e-13	2.178104e- 12	2.182476e+03	2.091348e- 12	0.124970	0.0	0.156213	0.0
	3	58	1.104177e-12	1.197719e- 12	2.329021e+03	7.856011e- 13	0.093725	0.0	0.204489	0.0
	2	59	1.058761e-12	1.151598e- 12	2.308283e+03	1.002411e- 12	0.109305	0.0	0.251898	0.0
	0	64	1.291735e-12	3.341451e- 11	2.557285e+03	2.105570e- 11	0.149700	0.0	0.275733	0.0
	8	76	1.814788e-12	1.828040e- 12	3.056960e+03	1.505191e- 12	0.249316	0.0	0.453064	0.0
1	10	80	1.888882e-12	4.069788e- 12	3.239942e+03	3.666500e- 12	0.249897	0.0	0.515499	0.0
	1	87	2.206111e-12	1.864426e- 11	3.568542e+03	2.167310e- 11	0.322896	0.0	0.609277	0.0
	4	94	2.408825e-12	6.620556e- 12	3.832234e+03	4.995416e- 12	0.376729	0.0	0.781064	0.0

	n	Norm of PA- LU using my code	Norm of Ax-b using my code	Norm of PA- LU using Scipy	Norm of Ax-b using Scipy	Time taken to do LU factorozation using my code	Time taken to do LU factorozation using Scipy	taken solve Ax=b using my code	taken solve Ax=b using Scipy
0	64	1.291735e-12	3.341451e- 11	2.557285e+03	2.105570e- 11	0.149700	0.0	0.275733	0.0
1	87	2.206111e-12	1.864426e- 11	3.568542e+03	2.167310e- 11	0.322896	0.0	0.609277	0.0
2	59	1.058761e-12	1.151598e- 12	2.308283e+03	1.002411e- 12	0.109305	0.0	0.251898	0.0
3	58	1.104177e-12	1.197719e- 12	2.329021e+03	7.856011e- 13	0.093725	0.0	0.204489	0.0
4	94	2.408825e-12	6.620556e- 12	3.832234e+03	4.995416e- 12	0.376729	0.0	0.781064	0.0
5	30	3.489109e-13	2.481569e- 13	1.207066e+03	3.502085e- 13	0.015627	0.0	0.031245	0.0
6	41	5.697490e-13	6.609629e- 13	1.626487e+03	7.774240e- 13	0.031237	0.0	0.078104	0.0
7	24	2.370530e-13	5.017964e- 13	9.290850e+02	3.200919e- 13	0.015623	0.0	0.015622	0.0
8	76	1.814788e-12	1.828040e- 12	3.056960e+03	1.505191e- 12	0.249316	0.0	0.453064	0.0
9	18	1.729026e-13	1.602670e- 13	7.170071e+02	1.704568e- 13	0.000000	0.0	0.015581	0.0
10	80	1.888882e-12	4.069788e- 12	3.239942e+03	3.666500e- 12	0.249897	0.0	0.515499	0.0
11	48	7.783605e-13	1.526146e- 12	1.864032e+03	1.476237e- 12	0.062485	0.0	0.140603	0.0
12	2	0.000000e+00	1.421085e- 14	1.776357e-15	5.859286e- 14	0.000000	0.0	0.000000	0.0
13	40	5.624353e-13	1.756379e- 12	1.644013e+03	1.627470e- 12	0.031242	0.0	0.078094	0.0
14	54	9.646294e-13	2.178104e- 12	2.182476e+03	2.091348e- 12	0.124970	0.0	0.156213	0.0

Time

Time

```
In [12]: # Plot the change in values of the two variables
    plt.plot(Gaussian["n"], Gaussian["Time taken to do LU factorozation using my code"], lab
    plt.plot(Gaussian["n"],Gaussian["Time taken to do LU factorozation using Scipy"] , label

# Add labels and title
    plt.xlabel('n')
    plt.ylabel('Time')
    plt.title('LU TIME')
    plt.legend() # Add legend

# Show the plot
    plt.grid(True) # Add grid
    plt.show()
```



```
In [13]: plt.plot(Gaussian["n"], Gaussian["Time taken solve Ax=b using my code"], label='My time'
  plt.plot(Gaussian["n"], Gaussian["Time taken solve Ax=b using Scipy"], label='Scipy time

  plt.xlabel('n')
  plt.ylabel('Time')
  plt.title('SUBSTITUTION TIME')
  plt.legend() # Add legend

# Show the plot
  plt.grid(True) # Add grid
  plt.show()
```

SUBSTITUTION TIME

In []: