Hyperbolas

The definition of a hyperbola is the same as the definition of an ellipse. The only difference is we replace the word *sum* in the definition of an ellipse with *difference* for a hyperbola.

The definition of a hyperbola is the same as the definition of an ellipse. The only difference is we replace the word *sum* in the definition of an ellipse with *difference* for a hyperbola.

A hyperbola is the set of points such that the <u>difference</u> of their distances from 2 fixed points (called <u>foci</u>) is constant.

Just like an ellipse, the midpoint joining the foci is the center.

Just like an ellipse, the midpoint joining the foci is the **center**.

Whereas ellipses could appear taller or wider, hyperbolas will open up and down, or left and right.

Just like an ellipse, the midpoint joining the foci is the **center**.

Whereas ellipses could appear taller or wider, hyperbolas will open up and down, or left and right.

A key difference, however, is that hyperbolas will open left/right if the sign in front of x is positive, and will open up/down if the sign in front of y is positive; regardless of the values of a and b.

Equation
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Equation
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
Vertices $(h \pm a, k)$

Equation
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 Vertices $(h \pm a, k)$

x-Axis Transverse Axis

x-Axis Transverse Axis

y-Axis Conjugate Axis

$$c^2 = a^2 + b^2$$

Asymptotes
$$y = \pm \frac{b}{a}(x - h) + k$$

Equation
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Equation
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Vertices $(h, k \pm a)$

Equation
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Vertices $(h, k \pm a)$

Foci $(h, k \pm c)$

x-Axis Conjugate Axis

x-Axis Conjugate Axis

y-Axis Transverse Axis

Objectives

Find the center, vertices, foci, and equations of the asymptotes for the hyperbola

$$\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$$

Find the center, vertices, foci, and equations of the asymptotes for the hyperbola

$$\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$$

Find the center, vertices, foci, and equations of the asymptotes for the hyperbola

$$\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$$

Center: (2,0)

Find the center, vertices, foci, and equations of the asymptotes for the hyperbola

$$\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$$

Center: (2,0)

$$a^2 = 4 \longrightarrow a = \pm 2$$

Find the center, vertices, foci, and equations of the asymptotes for the hyperbola

$$\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$$

Center: (2,0)

$$a^2 = 4 \longrightarrow a = \pm 2$$

Vertices: $(2 \pm 2, 0)$

Find the center, vertices, foci, and equations of the asymptotes for the hyperbola

$$\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$$

Center: (2,0)

$$a^2 = 4 \longrightarrow a = \pm 2$$

Vertices: $(2 \pm 2, 0)$

Vertices: (0,0) and (4,0)

Example 1 $\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$

Example 1 $\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$

Foci:
$$c^2 = a^2 + b^2$$

Example 1 $\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$

Foci:
$$c^2 = a^2 + b^2$$

Foci:
$$c^2 = 4 + 25$$

Example $1 \frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$

Foci:
$$c^2 = a^2 + b^2$$

Foci:
$$c^2 = 4 + 25$$

Foci:
$$c = \pm \sqrt{29}$$

Example 1 $\frac{(x-2)^2}{4} - \frac{y^2}{25} = 1$

Foci:
$$c^2 = a^2 + b^2$$

Foci:
$$c^2 = 4 + 25$$

Foci:
$$c = \pm \sqrt{29}$$

Foci:
$$(2\pm\sqrt{29},0)$$

Asymptotes:
$$y-0=\pm \frac{5}{2}(x-2)$$

Asymptotes:
$$y-0=\pm \frac{5}{2}(x-2)$$

Asymptotes:
$$y = \pm \frac{5}{2}(x-2)$$

Asymptotes:
$$y - 0 = \pm \frac{5}{2}(x - 2)$$

Asymptotes:
$$y = \pm \frac{5}{2}(x-2)$$

$$y = \frac{5}{2}x - 5$$
 and $y = -\frac{5}{2}x + 5$

Objectives

Writing Equations in Standard Form

Writing the equation of a hyperbola in standard form uses a similar approach to that for ellipses. *However, the negative term will actually be subtracted from the right side.*

(a)
$$9x^2 + 162x - 16y^2 + 64y + 89 = 0$$

(a)
$$9x^2 + 162x - 16y^2 + 64y + 89 = 0$$

$$9x^2 + 162x - 16y^2 + 64y = -89$$

(a)
$$9x^2 + 162x - 16y^2 + 64y + 89 = 0$$

 $9x^2 + 162x - 16y^2 + 64y = -89$
Vertex: $(-9, -729)$ Vertex: $(2, 64)$

(a)
$$9x^2 + 162x - 16y^2 + 64y + 89 = 0$$

 $9x^2 + 162x - 16y^2 + 64y = -89$
Vertex: $(-9, -729)$ Vertex: $(2, 64)$
 $9(x+9)^2 - 16(y-2)^2 = -89 + |-729| - |64|$

(a)
$$9x^2 + 162x - 16y^2 + 64y + 89 = 0$$

 $9x^2 + 162x - 16y^2 + 64y = -89$
Vertex: $(-9, -729)$ Vertex: $(2, 64)$
 $9(x+9)^2 - 16(y-2)^2 = -89 + |-729| - |64|$
 $9(x+9)^2 - 16(y-2)^2 = 576$

(a)
$$9x^2 + 162x - 16y^2 + 64y + 89 = 0$$

 $9x^2 + 162x - 16y^2 + 64y = -89$
Vertex: $(-9, -729)$ Vertex: $(2, 64)$
 $9(x+9)^2 - 16(y-2)^2 = -89 + |-729| - |64|$
 $9(x+9)^2 - 16(y-2)^2 = 576$
 $\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$

Example 2a
$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

Center: (-9,2)

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

Center:
$$(-9, 2)$$

 $a^2 = 64$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

Center:
$$(-9, 2)$$

 $a^2 = 64$
 $a = \pm 8$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

Center:
$$(-9,2)$$

$$a^2 = 64$$

$$a = \pm 8$$
Vertices: $(-9 \pm 8,2)$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

Center:
$$(-9,2)$$

$$a^2 = 64$$

$$a = \pm 8$$
Vertices: $(-9 \pm 8,2)$
Vertices: $(-17,2)$ and $(-1,2)$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

$$c^2 = 64 + 36$$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

$$c^2 = 64 + 36$$
$$c = \sqrt{100} = 10$$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

$$c^2 = 64 + 36$$
 $c = \sqrt{100} = 10$ Foci: $(-9 \pm 10, 2)$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

$$c^2 = 64 + 36$$
$$c = \sqrt{100} = 10$$

Foci:
$$\left(-9\pm10,2\right)$$

Foci:
$$(-19,2)$$
 and $(1,2)$

$$\frac{(x+9)^2}{64} - \frac{(y-2)^2}{36} = 1$$

$$a = 8$$
 $b = 6$ Center: $(-9, 2)$

$$y = \pm \frac{6}{8}(x+9) + 2$$

$$y = \pm \frac{3}{4}(x+9) + 2$$

(a)
$$9y^2 - x^2 - 6x = 10$$

(a)
$$9y^2 - x^2 - 6x = 10$$

 $9y^2 - 1x^2 - 6x = 10$

(a)
$$9y^2 - x^2 - 6x = 10$$

 $9y^2 - 1x^2 - 6x = 10$
Vertex: $(0,0)$ Vertex: $(-3,9)$

(a)
$$9y^2 - x^2 - 6x = 10$$

 $9y^2 - 1x^2 - 6x = 10$
Vertex: $(0,0)$ Vertex: $(-3,9)$
 $9(y-0)^2 - (x+3)^2 = 10 + |0| - |9|$

(a)
$$9y^2 - x^2 - 6x = 10$$

 $9y^2 - 1x^2 - 6x = 10$
Vertex: $(0,0)$ Vertex: $(-3,9)$
 $9(y-0)^2 - (x+3)^2 = 10 + |0| - |9|$
 $9(y-0)^2 - (x-3)^2 = 1$

(a)
$$9y^2 - x^2 - 6x = 10$$

 $9y^2 - 1x^2 - 6x = 10$
Vertex: $(0,0)$ Vertex: $(-3,9)$
 $9(y-0)^2 - (x+3)^2 = 10 + |0| - |9|$
 $9(y-0)^2 - (x-3)^2 = 1$
 $\frac{(y-0)^2}{\frac{1}{0}} - \frac{(x-3)^2}{1} = 1$

Example 2b
$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

Center: (3,0)

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

Center:
$$(3,0)$$
$$a^2 = \frac{1}{9}$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

Center:
$$(3,0)$$

$$a^2=\frac{1}{9}$$

$$a=\frac{1}{3}$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

Center:
$$(3,0)$$

$$a^2 = \frac{1}{9}$$

$$a = \frac{1}{3}$$
Vertices: $\left(3,0 \pm \frac{1}{3}\right)$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

Center:
$$(3,0)$$

$$a^2 = \frac{1}{9}$$

$$a = \frac{1}{3}$$
Vertices: $\left(3,0 \pm \frac{1}{3}\right)$
Vertices: $\left(3,\pm \frac{1}{3}\right)$

Example 2b

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$c^2 = \frac{1}{9} + 1$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$c^2 = \frac{1}{9} + 1$$
$$c^2 = \frac{10}{9}$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$c^2 = \frac{1}{9} + 1$$
$$c^2 = \frac{10}{9}$$
$$c = \frac{\sqrt{10}}{3}$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$c^2 = \frac{1}{9} + 1$$

$$c^2 = \frac{10}{9}$$

$$c = \frac{\sqrt{10}}{3}$$
 Foci:
$$\left(3, \frac{1}{3} \pm \frac{\sqrt{10}}{3}\right)$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$c^2 = \frac{1}{9} + 1$$

$$c^2 = \frac{10}{9}$$

$$c = \frac{\sqrt{10}}{3}$$
 Foci:
$$\left(3, \frac{1}{3} \pm \frac{\sqrt{10}}{3}\right)$$
 Foci:
$$\left(3, \frac{1 \pm \sqrt{10}}{3}\right)$$

Example 2b
$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$a = \frac{1}{3}$$
 $b = 1$ Center: (3,0)

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$a = \frac{1}{3}$$
 $b = 1$ Center: (3,0)

$$y = \pm \frac{1/3}{1}(x-3) - 0$$

$$\frac{(y-0)^2}{\frac{1}{9}} - \frac{(x-3)^2}{1} = 1$$

$$a = \frac{1}{3}$$
 $b = 1$ Center: (3,0)
 $y = \pm \frac{1/3}{1}(x-3) - 0$
 $y = \pm \frac{1}{3}(x-3)$

Find the equation of the hyperbola with asymptotes $y = \pm 2x$ and vertices $(\pm 5, 0)$.

a = 5

$$a = 5$$

$$\frac{b}{5}=2$$

$$a = 5$$

$$\frac{b}{5}=2$$

$$b = 10$$

$$\frac{b}{5}=2$$

$$b = 10$$

$$\frac{x^2}{25} - \frac{y^2}{100} =$$