

Fig. 1A

```
61 RARKY QQQMER LFEDGTVEAQGYVP----
61 RARKY QQQMER LFEDGTVEAQGYVP----
61 RARKY QQQMER LFEDGTVEAQGVP----
61 EHRKL EQEMVN LFEGKDVHIEGYTPPEAK
61 DHRQL EQEMVN LFEGKDVHIEGYVP----
Bpertussis
Bparapert
Bbronchi
A.actin
Pmultocida
                                          61 EHRKL EQEMVN LFEGKDVHIEGYVP----
Hinfluenzae
                                         61 EHRKLI EQEMVN LFEGADVILEGIVE---
61 EHRQL EAEMVN LFEGKDVHIDGYVP---
61 DDRKF EAQMTS LFEGKDVEIEGFVPE---
61 EHRKLI EQEMVN LFEGKEVHIEGYTPPAK-
61 EHRKLI EQEMVN LFEGKEVHIEGYTPEDKK
61 EHRKLI EQEMVN LFEGKEVHIEGYTPEDKK
Hducreyi
Sputrefasciens
Vcholerae
Ecoli
0157 H7EDL933
                                          61 EHRKL EQEMVN LFEGKEVHIEGYTPEDKK
0157_H7
                                         61 EHRKL EQEMVS LFEGKDVHIEGYTPEDKK
61 EHRKL EQEMVS LFEGKDVHIEGYTPE---
61 EHRKL EQEMVS LFEGKDVHIEGYTPEDKK
Spara
Senteritidis
Sdublin
                                          61 EHRKL EQEMVS LFEGKDVHIEGYTPEDKK
StyphiCT18
                                         61 EHRKL EQEMVS LFEGKDVHIEGYPTEDKK
61 EHRKL EQEMVQ LFEGK------
61 EDRKL EQEMVN LFEGQDVHIAGYTPPSK-
61 EHRKK EKYMKL LFK-----
Styphimurium
Kpneumo
Ypesits
Buchnera
                                        61 EHRKK EKYMKL LFK----
61 SHRAF EEELNK LFERRVAKPEGYIEPD--
61 EDRKF QTEMDK LSGEEYAQAEGYVPPEK-
61 EDRKF QAEMDK FAGEEYAQAEGYVP---
61 EDRKF QQEMDK LSGEDYAKADGYVP---
61 RAREY AQQMEQ FFGDGADAVQGYVPQ---
61 RAREY AQQMEQ FFGDGADAVQGYVPQ---
61 RAREY AQQMEQ FFGDGADAVQGYVPQ---
61 RARQY MKQTEK FFGEGADQASGYVP----
61 KSRTF EKQMEA FFGDGAQSPEGYVP----
61 SARKF EQEREK LFGGGTSTPQGYVP----
61 KARQF EQEMIN LFGTGSEKPAGYTSE---
Xfastidiosa
Psyring
Pputida
Paeruginosa
Ngonorrhoeae
NmeningitB
NmeningitA
Bmallei
Bpseudomallei
Tferrooxidans
Mcapsulatus
Cburneti
```

Fig. 1A (continued)

Fig. 2. Increased levels of YggX protein in $yggX^*$ mutant. Western blot analysis was performed according to Harlow and Lane (59). Proteins were visualized by using alkaline phosphatase conjugated to anti-rabbit secondary antibody (Promega). Lanes A–C were loaded with crude cell-free extracts (1 μ g protein) from strains DM5104, DM5105 ($yggX^*$), and DM5647 (yggX::Gm), respectively. Lane D was loaded with 1 ng purified YggX.

Fig. 3. The $yggX^*$ mutation does not increase MNNG resistance of gshA mutants. Strain LT2 was grown in LB with (\triangle) and without (\triangle) 60 μ M MNNG. Both gshA (\bigcirc) and gshA $yggX^*$ (\bullet) mutant strains were grown in LB with 60 μ M MNNG.

Fig. 4. The $yggX^*$ mutation increases resistance of *S. enterica* to PQ. (A) Growth of gshA (\bigcirc) and gshA $yggX^*$ (\bullet) mutant strains in LB with 4 μ M PQ. (B) Growth of LT2 (\triangle) and $yggX^*$ (\blacktriangle) strains in LB with 40 μ M PQ.

Fig. 5. yggX* does not require soxR to mediate resistance to PQ. Strains LT2 (\spadesuit), soxR (\diamondsuit), and soxR yggX* (\blacktriangledown) were grown in LB with 4.0 μ M PQ.

Fig. 6. Model showing how YggX protects *S. enterica* from oxidative damage. The result of superoxide attack on [Fe-S] clusters is depicted. We hypothesize that YggX is able to block oxidative damage to labile clusters and thus prevent the normal downstream consequences of such oxidation.