ML PROJECT-2 (SEM-IV)

BY-DEVIKA JAIN (01101192023)

TO - DEBENDRA DHIR SIR

Predicting Employee Attrition Using Machine Learning

Objective: Develop a machine learning model to predict employee attrition for proactive HR strategies.

Dataset: IBM HR Analytics Employee Attrition Dataset

IBM HR Analytics Employee Attrition & Performance | Kaggle

Tech Stack: Python, Pandas, Scikit-learn, Seaborn, Matplotlib

Data Understanding & Preparation

Data Understanding

- Countplot shows imbalance in Attrition (More 'No' than 'Yes')
- Correlation heatmap reveals weak linear correlation between most features
- Job Satisfaction countplot shows lower satisfaction is linked to higher attrition

Data Preparation

- Dropped constant or irrelevant columns (EmployeeNumber, Over18, etc.)
- Label Encoding for categorical variables
- Imputation of missing values using mean. Why Mean?
 - Suitable for numerical features with normal or near-normal distribution
 - Maintains the central tendency of the data
 - Efficient and simple to implement
 - Why Not Median/Mode?
 - Median is better for **skewed data** or when **outliers** are present
 - Mode is used for categorical features, not ideal for continuous data
 Result: Ensures data completeness without distorting underlying patterns
- Scaling using StandardScaler
- Handled Class Imbalance using SMOTE
- Feature selection with SelectKBest (Top 10 features)

Feature Selection Technique & Justification

Method Used: SelectKBest with **ANOVA F-test** (f_classif)

Why This Method?

- Focuses on **selecting the top features** that have the strongest relationship with the **target variable (Attrition)**
- The ANOVA F-test is ideal for classification problems with numerical input and categorical output
- Helps reduce **dimensionality**, which:
 - i. Improves model performance
 - ii. Reduces overfitting
 - iii. Enhances interpretability

Outcome:

- Top 10 most relevant features selected out of the entire dataset
- These features were used to train the models, ensuring efficient learning and faster computation

Conclusion:

SelectKBest with f_classif was chosen for its simplicity, speed, and relevance to supervised classification tasks.

Modeling & Evaluation

Models Used:

- Logistic Regression: 0.69 accuracy
- Random Forest: 0.88 accuracy
- SVM: 0.74 accuracy

Evaluation Method:

- Accuracy Score and Classification Report
- Cross-validation (5-fold) to ensure unbiased performance estimates
 - Used 5-Fold CV to evaluate Logistic Regression, Random Forest, and SVM
 - ii. Calculated the average accuracy across all folds
 - iii. Helped in selecting the model with consistent performance
- Best Model: Random Forest → balances performance and interpretability

Hyperparameter Tuning with GridSearchCV

Objective: Enhance the performance of the Random Forest classifier through hyperparameter optimization using **GridSearchCV**.

GridSearchCV – performs an exhaustive search over specified parameter values using cross-validation.

Improved Accuracy: From **86.74%** (default) → **88.2%** (after tuning)

GridSearchCV helped to systematically test different parameter combinations and identify the optimal configuration, leading to improved model performance.

Parameter	Description	Values Tried
n_estimators	Number of trees in the forest	[50, 100, 150]
max_depth	Maximum depth of each tree	[None, 10, 20]
min_samples_split	Minimum samples required to split a node	[2, 5, 10]
bootstrap	Whether bootstrap samples are used	[True, False]

SELECTED MODEL: RANDOM FOREST CLASSIFIER

Performance Metrics:

- Highest Accuracy: ~88% on test data
- Strong Precision, Recall, and F1-Score for both attrition classes
- Consistently high cross-validation scores

Why Random Forest?

- Handles non-linearity and interactions between features effectively
- Robust to outliers and noise
- Performs automatic feature importance analysis
- Works well even with imbalanced data (with SMOTE applied)

Why It Fits Our Problem:

- Employee attrition is influenced by multiple interacting factors (e.g., job satisfaction, environment, income)
- Random Forest's ensemble approach captures these relationships better than simpler models like logistic regression
- Offers high predictive power, crucial for actionable insights in HR analytics

Managerial Implications & Insights

Insights:

- Low job satisfaction = higher attrition risk
- Model can help HR proactively manage workforce

Actions for HR:

- Early identification of high-risk employees
- Employee engagement & retention programs
- Use model output for data-driven decisions

Novelty and Innovation

Real-World Focus: Tackles the business-critical issue of employee attrition using ML for proactive HR decisions.

Class Imbalance Solved with SMOTE: Balanced dataset using synthetic oversampling to improve minority class prediction.

Comparative Modeling: Evaluated Logistic Regression, Random Forest, and SVM to identify the best-performing model.

Statistical Feature Selection: Used SelectKBest with ANOVA F-value to reduce noise and improve model performance.

Visual Insights for Stakeholders: EDA with meaningful plots like Attrition vs. Job Satisfaction aids managerial understanding.

Reliable Evaluation: Applied K-Fold Cross-Validation for unbiased performance metrics

Managerial Recommendations: Model insights guide HR teams on retention strategies based on top influencing factors.

REFERENCES

IBM Dataset from Kaggle- IBM HR Analytics Employee Attrition & Performance | Kaggle

Scikit-learn documentation- https://scikit-learn.org/stable/

Pandas documentation- https://pandas.pydata.org/docs/

Medium articles on SMOTE and model evaluation-

<u>Tackling Imbalanced Datasets with SMOTE (Synthetic Minority Over-sampling Technique) | by Husein Ghadiali | Medium</u>

THANK YOU!!

SUBMITTED BY :- DEVIKA JAIN (01101192023)
SUBMITTED TO :- PROF DEBENDRA DHIR