07. Mô đun giao tiếp nối tiếp (RS232 - EUSART)

Chương 7

GIỚI THIỆU EUSART

Module EUSART (Enhanced Universal Synchronous Asynchronous Receiver Transmitter) là module giao tiếp nối tiếp với thiết bị ngoại vi có các tính năng sau

- Truyền nhận dữ liệu bất đồng bộ ở chế độ full-duplex
- Bộ đệm vào 1 ký tự, bộ đệm ra 2 ký tự
- Chiều dài ký tự có thể lập trình là 8-bit hoặc 9-bit
- Phát hiện lỗi khi truyền nhận
- Có khả năng truyền nhận đồng bộ ở chế độ half-duplex

TRUYỀN DỮ LIỆU NỐI TIẾP (1)

- Truyền dữ liệu ở khoảng cách xa
- Tốc độ truyền dữ liệu thấp

Vi Điều Khiển

- Truyền dữ liệu nối tiếp đồng bộ
- Truyền dữ liệu nối tiếp bất đồng bộ

Chương 7

TRUYỀN DỮ LIỆU NỐI TIẾP (2)

Truyền dữ liệu nối tiếp đồng bộ

- Dùng tín hiệu clock riêng để đồng bộ hóa mạch thu và mạch phát
- Thường dùng khung dữ liệu lớn hơn và truyền nhanh hơn (so với truyền dữ liệu nối tiếp bất đồng bộ)

TRUYỀN DỮ LIỆU NỐI TIẾP (3)

Truyền dữ liệu nối tiếp bất đồng bộ

- Không cần tín hiệu clock riêng để đồng bộ hóa truyền dữ liệu
- Mỗi ký tự được đóng khung bằng "start bit" và "stop bit"
- Bên thu cần nhận dạng "start bit" và "stop bit" để nhận đúng ký tự dữ liệu

TRUYỀN DỮ LIỆU NỐI TIẾP (4)

CÁC KIỂU ĐƯỜNG TRUYỀN

- Đơn công (simplex): đường dây dành riêng cho hoạt động truyền hoặc nhận dữ liệu chứ không dùng cho cả hai
- Bán song công (Half-duplex): đường dây có thể dùng cho hoạt động truyền hoặc nhận dữ liệu nhưng mỗi lần dùng chỉ có 1 chiều
- Song công (Full-duplex): hoạt động truyền và nhận có thể tiến hành đồng thời

CÁC THANH GHI ĐIỀU KHIỂN

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCTL)

Chương 7

ASYNCHRONOUS TRANSMISSION SETUP

- Khởi động các cặp thanh ghi (SPBRGH, SPBRG) và các bit (BRGH, BRG16) để thiết lập tốc độ truyền baudrate
- Cho phép sử dụng cổng nối tiếp bất đồng bộ bằng cách clear bit
 SYNC và set bit SPEN
- Cho phép truyền bằng cách set bit điều khiển TXEN
- Nếu sử dụng ngắt thì set bit TXIE và kiểm tra bit TXIF, sau đó kích khởi bit cho phép ngắt GIE và PEIE
- Đưa dữ liệu cần truyền vào thanh ghi TXREG. Lúc này VĐK sẽ bắt đầu truyền tín hiệu

ASYNCHRONOUS RECEPTION SETUP

- Khởi động các cặp thanh ghi (SPBRGH, SPBRG) và các bit (BRGH, BRG16) để thiết lập tốc độ truyền baudrate
- Cho phép sử dụng cổng nối tiếp bất đồng bộ bằng cách clear bit SYNC và set bit SPEN
- Nếu sử dụng ngắt thì set bit RCIE và kiểm tra bit RCIF, sau đó kích khởi bit cho phép ngắt GIE và PEIE
- Cho phép nhận bằng cách set bit CREN
- Bit cờ ngắt RCIF sẽ được set khi 1 ký tự được truyền đến bộ đệm nhận
- Lấy giá trị dữ liệu 8-bit bằng cách đọc thanh ghi RCREG

SƠ ĐỒ CHÂN MAX232

VÍ DỤ 1: TRUYỀN TÍN HIỆU (1)

Thiết kế và mô phỏng việc truyền tín hiệu bằng VĐK sử dụng module EUSART và thiết bị Virtual Terminal?

Chương 7

VÍ DỤ 1: TRUYỀN TÍN HIỆU (2)

Thiết kế và mô phỏng việc truyền tín hiệu bằng VĐK sử dụng module EUSART và thiết bị Virtual Terminal?

```
void main()
#include <16f887.h>
#FUSES NOWDT, HS, NOPUT,
                                     enable_interrupts(GLOBAL);
NOPROTECT, NODEBUG
                                     enable_interrupts(INT_RDA);
#use delay(clock=20000000)
                                      set_tris_d(0);
#use rs232(baud=9600, parity=N,
                                      while (1)
xmit=PIN_C6, rcv=PIN_C7)
#use fast_io(b)
                                       PORTD = i;
#byte PORTD = 0x8
                                       putc('1');
int8 i=0;
                                       i = i+1;
                                       delay_ms(1000);
```

Thiết kế và mô phỏng việc truyền nhận tín hiệu bằng 2 VĐK sử dụng module EUSART và thiết bị Virtual Terminal?