АЛГЕБРА (ЕГЭ профиль)

					ГАБ	ЛИІ	ЦА К	BA	ДР	ATO)B							1			БЛИЦА				1	
		0	1	2	3	Ед 4	иницы 5	6		7	8	9				20	2^n	3 ⁿ		4 ⁿ	5 ⁿ	6 ⁿ		7 ⁿ	8 ⁿ	9 ⁿ
	1	100	121	144	169	196	225	25		89	324	361	1				= 1 = 2	$3^0 = 1$ $3^1 = 3$		$4^0 = 1$ $4^1 = 4$	$5^0 = 1$ $5^1 = 5$	$6^0 = 1$ $6^1 = 6$		$7^0 = 1$ $7^1 = 7$	$8^0 = 1$ $8^1 = 8$	$9^0 = 1$ $9^1 = 9$
	2	400	441	484	529	576	625	67		29	784	841]			2^2	= 4	$3^2 = 9$		$4^2 = 16$	$5^2 = 25$	$6^2 = 36$		$7^2 = 49$	$8^2 = 64$	$9^2 = 81$
	3	900	961	1024	1089	1156		129	_		1444	1521					= 8 = 16	$3^3 = 27$		$4^3 = 64$	$5^3 = 125$	$6^3 = 216$	5	$7^3 = 343$	$8^3 = 512$	$9^3 = 729$
I X	4 5	1600 2500	1681 2601	1764 2704	1849 2809	1936 2916		313		209 249	2304 3364	2401 3481	-				= 32	$3^4 = 81$ $3^5 = 243$		$4^4 = 256$ $4^5 = 1024$	$5^4 = 625$					
Десятки	6	3600	3721	3844	3969	4096		435		189	4624	4761	1				= 64	$3^6 = 729$		4 - 1024						
	7	4900	5041	5184	5329	5476		577		929	6084	6241	1				= 128 = 256									
	8	6400	6561	6724	6889	7056		739		569	7744	7921				29	= 512									
	9	8100	8281	8464	8649	8836	9025	921	16 9	409	9604	9801					= 1024	<u> </u>							<u> </u>	<u> </u>
СТЕПЕНИ																										
a^n –	- это с	тепені			D				2				3			4			9		3			7		3
a –	это ос	снован	ие а	$a^n \cdot a^m$	$=a^n$	+m	a^n :	$a^m =$	$= a^{n-}$	m	(a	$(n)^m =$	$=a^{n\cdot n}$	m	$a^n \cdot b$	$o^n = (a$	$(a \cdot b)^n$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	a_{n}	C	$a^0 = 1$		a^{-n}	_ 1	$\left(\frac{a}{b}\right)^{-n}$	$=\left(\frac{b}{a}\right)^n$
n-	это по	жазате	ель															$\frac{b^n}{b^n} - \left(\frac{b}{b}\right)^n$	<i>5)</i>			(u ·	$=\frac{1}{a^n}$	$(\frac{\overline{b}}{b})$	$=\left(\frac{-}{a}\right)$
КОРНИ																										
			0							2						3					₄				5	
\sqrt{a}	$\sqrt{b} =$	\sqrt{ah}				V	a I	ā						$(\sqrt{a})^2$	— a				1/0	$\overline{a^2} = a $			1	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$		
V 00	٧.	, ,,,				1/	$\frac{\overline{a}}{\overline{b}} = $	$\frac{\overline{b}}{b}$					(va)						V 66 1661				$\sqrt{u} - u^n$			
ФОРМУЛЫ СОКРАЩЁННОГО УМНОЖЕНИЯ																										
		Разност	пь квад	ратов				K	вадрап	разно	ocmu				Кв	задрат с	уммы			P	азность кубов				Сумма кубо	В
a^2 -	$-b^2 =$	(a - b)	b)(a +	- b)		(($(a-b)^2$	$c^2 = c$	$u^2 - 2$	2ab +	⊢ <i>b</i> ²		$(a+b)^2 = a^2 + 1$			+ 2ai	$b + b^2$		$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$			($a^3 + b^3 = (a + b)(a^2 - ab + b^2)$			
															ЛОГ	AP	1ФМЬ	ı								
\log_a	$b - \Lambda$	огариф	рм <i>b</i> п	о осно	ванин	юа		0r	тределе	Hue AC	огарифі	ма		0Д3			D O					2				
<i>a</i> –	основ	ание					Если l	$\log_a l$	b = c	тоа	$a^c = k$)				(a >			log	$g_a b + \log_a$	$c = \log_a b$	С	1	log h log	a = log	b
b -	подло	гариф	мичес	кое вь	іраже:	ние								Для lo	$\log_a b$	$\begin{cases} a \neq b > \end{cases}$								$\log_a b - \log$	$a c = \iota o g_a$	C
			3							4}						E					3				7	
a^{\log}	$a^b = b$	b					$\log_a b$	^m =	$m \cdot lc$	$g_a b$				log "n	$h = \frac{1}{\cdot}$	log . h	log h		$\sigma h = \frac{1}{1}$,	$\log_a b = \frac{\log_a b}{\log_a b}$		_	
											108a"	$b = \frac{1}{n}.$	108a t	,		10	$g_a b = \frac{1}{\log_b}$, a		ľ	log	$g_c a$				
														Г	1POV	13B(однь	IE								
	3					Ą			9			3			7		3									
<i>C'</i> =	$C' = 0 \qquad \qquad x' = 1 \qquad \qquad (Cx)' = C$					(x^n)	$'=n\cdot x$	χ^{n-1}	($(\sqrt{x})' = \frac{1}{2}$	1		$(U\cdot V)'=$	=U'V+UV	$\left(\frac{U}{V}\right)'$:	= <i>U'</i>	V - UV'	(U(V))'	$= (U(V))' \cdot V'$							
		9				10				00				08	9			<u>2√x</u> 03			19	(V)		V ²		13
(sin	r)' -			(cos			γ			1					_	($(e^x)' = e$			$(a^x)' = a$			- 1	1		1
(5111	<i>x</i>) –	$(\sin x)' = \cos x \qquad (\cos x)' = -\sin x$				— SIII	ı	(tg	(x)' =	cos	$\frac{1}{2}x$		(ctg	(x)' = -	$-\frac{1}{\sin^2 x}$	1	C) — E			(u) - t	ı 111 U	$(\ln x)$	$'=\frac{1}{2}$	<u>-</u> x	$(\log_a b)'$	$a = \frac{1}{b \cdot \ln a}$

Формулы приведения

0

Если в аргументе есть $\frac{\pi}{2}$ или $\frac{3\pi}{2}$ или $\frac{5\pi}{2}$ и т.д., то функция меняется на кофункцию Если в аргументе есть π или 2π или 3π и т.д., то функция не меняется на кофункцию

Пример:

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$tg(\pi + \alpha) = tg \alpha$$

92

Чтобы определить знак, необходимо понять в какой четверти находится аргумент и смотреть на изначальную функцию, а не на изменившуюся

Пример:

$$\sin\left(\frac{3\pi}{2} + \alpha\right)$$

Это IV четверть, в ней синус имеет знак минус, поэтому

$$\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$$

ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ											
Синус	Косинус	Тангенс	Котангенс								
$\sin = \frac{\text{противолежащий катет}}{\text{гипотенуза}}$	$\cos = \frac{\text{прилежащий катет}}{\text{гипотенуза}}$	$tg = \frac{противолежащий катет}{прилежащий катет}$	$ctg = \frac{прилежащий катет}{противолежащий катет}$								
		$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$								
Q	2	3	q								
$\sin^2\alpha + \cos^2\alpha = 1$	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$	$tg \alpha \cdot ctg \alpha = 1$								
9	3	I	3								
$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\cos 2\alpha = 2\cos^2\alpha - 1$	$\cos 2\alpha = 1 - 2\sin^2\alpha$								
9	10	00	02								
$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$	$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$	$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$								

	ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ										
Геометрический смысл производной	Физический смысл производной	Взаимное расположение двух прямых	Условие касания функции и прямой	Первообразная	Формула Ньютона-Лейбница						
$f'(x_0) = k = \operatorname{tg} \alpha$	S'(t) = V(t) $V'(t) = a(t)$	$y=k_1x+b_1$ $y=k_2x+b_2$ \emptyset Если $k_1=k_2$ и $b_1=b_2$, то прямые совпадают Пример: $y=2x+7$ и $y=2x+7$ \mathbb{Z} Если $k_1=k_2$ и $b_1\neq b_2$, то прямые параллельны Пример: $y=2x+7$ и $y=2x-5$ \mathbb{S} Если $k_1\neq k_2$, то прямые пересекаются Пример: $y=2x+7$ и $y=3x+7$	$\begin{cases} y' = f'(x_0) \\ y = f(x_0) \end{cases}$	F'(x) = f(x)	S_{ϕ игуры под графиком $=F(b)-F(a)$						

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ											
Элементы прогрессии	Û	2	3	4							
d — это разность (на сколько изменяется каждый следующий член прогрессии) a_n — это какой-либо член прогрессии S_n — это сумма какого-либо количества членов прогрессии	$a_n = a_1 + d(n-1)$	$S_n = \frac{(a_1 + a_n)n}{2}$	$d = a_{n+1} - a_n$	$d = \frac{a_n - a_m}{n - m}$							

модуль												
Раскрытие модуля	O .	2	9									
D	$ a \cdot b = a \cdot b $	$\left \frac{a}{a} \right = \frac{ a }{a}$	$ a ^2 = a^2$									
Если внутримодульное выражение положительное, то просто опускаем модуль		b - b										
Пример:												
y = 2 - 1 = 2 - 1												
2												
Если внутримодульное выражение отрицательное, то раскрываем модуль,												
меняя все знаки внутри модуля на противоположные												
Пример:												
y = 1 - 2 = -1 + 2												

КВАДРАТНЫЕ УРАВНЕНИЯ										
Дискриминант	Теорема Виета	Разложение на множители								
$ax^2 + bx + c = 0$	$ax^2 + bx + c = 0$	$ax^2 + bx + c = a(x - x_1)(x - x_2)$								
$D = b^2 - 4ac$	$\left(x + x - \frac{b}{a}\right)$									
$-b \pm \sqrt{D}$	$\int x_1 + x_2 = -\frac{1}{a}$									
$x_{1,2} = \frac{}{2a}$	$x_1 \cdot x_2 = \frac{c}{a}$									

ВЕРОЯТНОСТЬ												
Определение вероятности	Кубик бросают дважды						Сложение и умножение вероятностей	Вероятность суммы двух				
								несовместных событий				
Вероятность – это отношение	11	21	31	41	51	61	Складываем вероятности если нам подходит или одно событие, или	p(A+B) = p(A) + p(B)				
благоприятных исходов ко всем исходам	12	22	32	42	52	62	другое					
	13	23	33	43	53	63						
$p = \frac{благоприятные\;исходы}{п}$	14	24	34	44	54	64	Умножаем вероятности если нам подходит и одно событие, и другое					
все исходы	15	25	35	45	55	65						
	16	26	36	46	56	66						

ТЕКСТОВЫЕ ЗАДАЧИ										
Средняя скорость	Схема задач на производительность									
Чтобы найти среднюю скорость необходимо суммарное		D								
пройденное расстояние разделить на суммарное		Заполняем табличку:								
потраченное время			А (производительность)	t (время)	V (количество)					
$V = \frac{S_{\text{суммарное}}}{}$		I	A_1	t_1	V_1					
$V_{\text{средняя}} = \frac{1}{t_{\text{суммарное}}}$		II	A_2	t_2	V_2					
			•	2	•					
		То,	что требуется найти – берём	x_0 за x_0 , рядом с	х ставим у					
				3						
		Доз	аполняем табличку и решаег	и систему ураві	нений: $egin{cases} A_1 \cdot t_1 = V_1 \ A_2 \cdot t_2 = V_2 \end{cases}$					

Геометрия

лежит меньший угол

РОМБ											
Определение	Площадь	Площадь	Площадь	Площадь	Признаки ромба						
Ромб – это параллелограмм, у которого все стороны равны	$S = \frac{d_1 \cdot d_2}{2}$	$ \begin{array}{c c} a \\ h \\ S = ah \end{array} $	$a \qquad a \qquad a$ $S = a^2 \cdot \sin \alpha$	S = 2ar	1) Если в четырёхугольнике все стороны равны, то он — ромб 2) Если в параллелограмме две смежные стороны равны, то он — ромб 3) Если в параллелограмме диагонали пересекаются под прямым углом, то он — ромб 4) Если в параллелограмме одна из диагоналей является биссектрисой его углов, то он — ромб						

ПРОИЗВОЛЬНЫЙ ЧЕТЫРЁХУГОЛЬНИК

Площадь произвольного четырёхугольника

0			0141	DVV	TI		
Ganagarina i Maria	<u> </u>	Площадь круга		РУЖНОС	ТЬ	Рацаанны об мара	Пациярал ил й дара
Злементы круга 2088 2088 2088 2088	$S=\pi F$	R	R $= 2\pi R$			$2 \alpha^{\circ}$ угол равен половине дуги опирается	
Признак четырёхугольника, в	Пъиз	нак четырёхугольника, П	ризнак четырёхугольника, вписанног	20 В ОКРУЖНОСТЬ	которую он	Свойство касательной	дуги, на которую он опирается Свойство касательных
который вписали окружность	1	санного в окружность	pushak tombiponyoonbhaka, bhabanno	oo o onpymnoomo		obouting Ruddinginging	Section Results And Inches
a + $c = b + d$ $A + C = 180^{\circ}$ $\angle B + \angle D = 180^{\circ}$			образования в противопом и да противопом и да противопом и другой диагоналы в пистырёхугольник можно в пистырёх угольник можно в пистырёх угольник можно в пистырёх угольник можно в пистырёх угольник можно в пистыра в пис	ожной ю, то такой		я к окружности улярна радиусу, проведённ ания	составляют равные углы с прямой, проходящей через эту точку и центр
		0	кружность				окружности
				PEOMETI	РИЯ		
Теорема о трёх перпендикуля	pax	Угол между прямой и плоскостью	Признак перпендикулярности прямой и плоскости	Признак параллельности прямой и плоскости		Признак параллельности двух плоскостей	Схема нахождения угла между плоскостями
Прямая, проведённая в плочерез основание наклонной		А Угол между прямой и плоскостью – это угол	а Если прямая перпендикулярна к	а Если прямая лежащая в да	<u>а</u> <u>b</u>	в ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф	1) Ищем прямую пересечения плоскостей (присунке это <i>CD</i>)
перпендикулярно к её проекции ме		между прямой и её	двум пересекающимся	плоскости, п	араллельна	прямые одной	2) На этой прямой выбираем точку (на рису
		проекцией на плоскос	прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости	какой-нибуд лежащей в эз плоскости, т параллельна плоскости	гой о она	плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны	это точка O) 3) Проводим из этой точки два перпендикуляра в каждой из плоскостей (на рисунке $OA \perp CD$ в плоскости α и $OB \perp CD$ плоскости β) 4) Угол между этими перпендикулярами — искомый угол межлу плоскостями (на рису

искомый угол между плоскостями (на рисунке $\angle AOB$ — угол между плоскостями α и β)

АН — перпендикуляр

10		K	УБ									
Рисунок		Объём	Площадь поверхност	ıu	Диагональ							
a	$V = a^3$		$S_{\text{поверхности}} = 6a^2$		$d = \sqrt{3}a$							
		ПРЯМОУГОЛЬНЫЙ	ПАРАЛЛЕЛЕПИПЕД									
Рисунок		Объём	Площадь поверхност		Диагональ							
h	V = abh		$S_{\text{поверхности}} = 2ab + 2ah + 2bh$	ı	$d^2 = a^2 + b^2 + h^2$							
ПРИЗМА												
Рисунок		Объём	Площадь поверхност	nu	Площадь боковой поверхности							
h	$V = S_{\text{основания}} \cdot$	h	$S_{\text{поверхности}} = 2S_{\text{основания}} + S_{\text{бок}}$	совой поверхности	$S_{ ext{боковой поверхности}} = P_{ ext{основания}} \cdot h$							
		цил	индр									
Рисунок		Объём	Площадь поверхност	ıu	Площадь боковой поверхности							
)h	$V = \pi R^2 h$	$S_{\text{поверхности}} = 2\pi R^2 + 2\pi R h$			$S_{ m 60ковой\ поверхности}=2\pi Rh$							
		КО	НУС									
Рисунок		Объём	Площадь поверхност	nu	Площадь боковой поверхности							
h R	$V = \frac{1}{3}\pi R^2 h$		$S_{\text{поверхности}} = \pi R^2 + \pi R l$		$S_{ m боковой\ поверхности}=\pi R l$							
	-	ПИРА	МИДА									
Рисунок		06	ъём		Площадь поверхности							
		$V = \frac{1}{3} S_{\text{основания}} \cdot h$		$S_{ m поверхности} = S_{ m основания} + S_{ m боковой поверхности}$								
		Ш	AP									
Рисунок		06	ъём		Площадь поверхности							
R		$V = \frac{4}{3}\pi R^3$		$S_{ m c \phi e p m} = 4 \pi R^2$								