ITSE 1302 - Assignment 09

General Points

- Use the course material located at:
 - Python Data Science Handbook
- Assignment 09 can be completed using previously covered material and content from the following chapters:
 - 00.00-Preface through 02.05-Computation on Arrays Broadcasting
- After completing the requirements, test to ensure all cells run correctly in the .ipynb file.
- Include appropriate markdown cells to identify the requirements below by number. See this <u>example</u>.
- Produce an .html file that shows the .ipynb after a successful test run.
 - by File | Download as | HTML (.html) .
- Test the .html file by opening it in a browser and ensure the content is produced correctly from the run in Jupyter Notebook.
- Submit BOTH the .ipynb and .html files to the appropriate link in Blackboard | Assignments. <u>Submit the files individually</u> (via a multi-select). However, if your browser posts an error for the .html file, submit it as a .zip.
- Submit any additional files required to complete the assignment.

Requirements

(Ensure that all Requirements are complete)

- 1. Using Jupyter Notebook (or similar tool), create a file named:
 - assignment-09.ipynb
- 2. Add an H1 markup: "This is Assignment 09 <yournamehere>"
- 3. Include appropriate markdown cells to identify the requirements below by number.
- 4. Explain how NumPy arrays are like Python lists and how they are different. See multiple chapters for this information.

Austin Community College

ITSE 1302 - Assignment 09

- 5. Explain how variable typing is performed in Python compared to how it is performed in a language like C.
- 6. Explain how integer storage is performed in Python compared to how it is performed in a language like C.
- 7. Create a list (L1) of numbers 1-20. Convert the numbers in L1 to strings and store them in a new list (L2).
- 8. Demonstrate a heterogeneous list with at least 5 different data types.
- 9. Create a Python array using the built-in array module. Demonstrate the following operations on the array:
 - append
 - insert
 - index
 - attempt to insert an element of a different type
- 10. Create a NumPy array of 10 floats named one_d_array. Demonstrate the following operations on the array:
 - implicit casting (the author calls this up-casting)
 - explicit casting
- 11. Use list comprehension to create a two-dimensional NumPy array named two_d_array with 5 rows and 3 columns with the following content:

- 12. Create a 3-dimensional NumPy array named three_d_array with random numbers between 0-99. The *shape* of the array should be (3, 5, 5). Also display the size in bytes of the array.
- 13. Demonstrate accessing 4 different individual elements of the three_d_array.

ITSE 1302 - Assignment 09

- 14. Demonstrate modifying 4 different individual elements of the three_d_array.
- 15. Using one_d_array, demonstrate slicing:
 - the first 7 elements
 - all after index 7
 - from index 3 to index 8
 - every other element
 - elements reversed
 - reverse every other element from index 7
- 16. Using two_d_array, demonstrate slicing:
 - first 2 rows and first 2 columns
 - all rows and every other column
 - all columns and every other row
 - extracting a subarray
- 17. Use NumPy's arrange and reshape methods to create a 10x10 array with values as shown:

]]	1	2	3	4	5	6	7	8	9	10]
[11	12	13	14	15	16	17	18	19	20]
[21	22	23	24	25	26	27	28	29	30]
[31	32	33	34	35	36	37	38	39	40]
[41	42	43	44	45	46	47	48	49	50]
[51	52	53	54	55	56	57	58	59	60]
[61	62	63	64	65	66	67	68	69	70]
[71	72	73	74	75	76	77	78	79	80]
[81	82	83	84	85	86	87	88	89	90]
[91	92	93	94	95	96	97	98	99	100]]

- 18. Using one_d_array, create a row vector and a column vector.
- 19. Explain what a NumPy universal function is and why they are useful.
- 20. Demonstrate the use of the *out* argument.
- 21. Use aggregates to show the product of all elements of one_d_array.

ITSE 1302 - Assignment 09

22. Create the NumPy arrays x and y below and use the multiply() and outer() methods to produce the output as shown.

- 23. Demonstrate NumPy's sum, min, and max functions. Use the %timeit magic function to compare the performance to Python's built-in sum, min, and max functions.
- 24. Use the file president_heights.csv to produce a histogram of U.S. President height information.
- 25. Use broadcasting and Matplotlib to plot produce a plot of a two-dimensional array.
- 26. Use markdown to include a statement at the end of assignment-09.ipynb explaining your experiences with Assignment 09. Make this authentic (minimum of 2-3 sentences).

TEST – TEST your .ipynb file to ensure all requirements are met.

Produce an .html file from a *successful test run* of the .ipynb file. Ensure that the .html is produced correctly by opening it in a browser.

- Use the list above as a confirmation checklist.
- Not meeting all requirements = 0 points for the assignment.