MATH-505A: Homework # 4

Due on Friday, September 19, 2014

Saket Choudhary 2170058637

Contents

ercise # 2.1	:
(1)	3
(2)	9
(3)	
$(4) \ldots \ldots$	
$(5) \ldots \ldots$	
ercise # 2.3	4
(1)	
(1)	4
(1)	4
(1)	4

Exercise # 2.1

(1)

Given: X is a random variable \Longrightarrow

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F} \ \forall x \in R \tag{1}$$

Part A) To Prove: aX is a random variable

Consider Y = aX, then since equation 1 holds:

Case1: $a \ge 0$

Then $\{\omega \in \Omega : aX(\omega) \le x'\} \in \mathcal{F} \ \forall x' \in R \text{ where } x' = ax$

Case2: $a \leq 0$

Then $\{\omega \in \Omega : aX(\omega) \ge x'\} \forall x' \in R \text{ where } x' = ax \implies \bigcup \{\{\omega \in \Omega : aX(\omega) \le x''\}\}^c \in \mathcal{F} \text{ where } x'' = x'$

Case 3: a is 0 Then, aX = 0Case i: x < 0

 $\{\omega \in \Omega : aX(\omega) = \phi\} \in \mathcal{F}$

Case ii: $x \ge 0$

 $\{\omega \in \Omega : aX(\omega) = \Omega\} \in \mathcal{F}$ Thus from all the above cases,

(2)

For part 1, Y' = aX is also a random variable:

To Prove: Y = Y' + b is a random variable where Y' is a random variable and b is a constant.

Since Y' is a random variable: $\{\omega \in \Omega : Y(\omega) \le y\} \in \mathcal{F} \ \forall y \in R \ \text{and so}, \ \{\omega \in \Omega : Y(\omega) + b \le y'\} \in \mathcal{F} \ \forall y' \in R \ \text{where} \ y' = y + b$

Since $\{\omega \in \Omega : Y(\omega) + b \le y'\} \in \mathcal{F} \ \forall y' \in R, Y' + b \text{ is a random variable } \implies aX + b \text{ is a random variable}$

(3)

$$p(H) = p; p(T) = 1 - p$$

Tossing a coin n times is a binomial process(each individual toss is a bernoulli process) and let A be the event such that k out of n tosses are heads and this can occur in $\binom{n}{k}$ ways with probability p^k . There would also be n-k tails and the probability for that is $(1-p)^{n-k}$. Thus,:

$$p(A) = \binom{n}{k} p^k * (1-p)^{n-k}$$

For a fair coin, $p = \frac{1}{2}$ and hence $p(A) = \binom{n}{k} (\frac{1}{2})^k (\frac{1}{2})^{n-k} = \binom{n}{k} (\frac{1}{2})^n$

(4)

(5)

(4)

Exercise	# 2.3			
(1)				
(2)				
(3)				

(5)