Trabajo de Fin de Grado

Aprendizaje por refuerzo para la navegación autónoma de drones para el mapeo tridimensional de entornos

Pablo Cañadas Miquel

OBJETIVOS DEL TRABAJO

- Reunir información
- Prueba de concepto

PRIMERA PARTE

INVESTIGACIÓN

Mapeo tridimensional de entornos

google.es/maps

SLAM

Simultaneous Localization and Mapping

Localización y Mapeo Simultáneos

TECNOLOGÍAS

VS

Chip GPS

UAV/Dron

NAVEGACIÓN AUTÓNOMA DE DRONES

Navegación

Búsqueda de caminos

Exploración ¿Aprendizaje por Refuerzo?

APRENDIZAJE POR REFUERZO

Esquema general definido por MDP

Taxonomía Aprendizaje por Refuerzo

SEGUNDA PARTE

DISEÑO Y DESARROLLO

VEHÍCULO

HERRAMIENTA DE MAPEO

OctoMap (vóxels)

Eficiencia computacional

Nube de puntos

Alto detalle

Mapas indefinidamente grandes

ENTORNO DE RL

$\text{Función de recompensa} \\ r_t^+ = max(4, (voxels_t - voxels_{t-1}) \cdot C); C \in (0,1) \\ \text{Condición de reinicio} \\ \text{ACCIONES}$

Percepción

AGENTE AUTÓNOMO

DEEP REINFORCEMENT LEARNING

ALGORITMO 'ACTOR-CRITIC'

PROXIMAL POLICY OPTIMIZATION (PPO)

Variantes

- 'Feed-forward'
- Recurrente

AGENTE AUTÓNOMO: RESULTADOS

Recompensa media durante el entrenamiento:

(Mejores instancias)

Malos resultados

CONCLUSIONES