(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 20 October 2005 (20.10.2005)

PCT

(10) International Publication Number WO 2005/098047 A2

(51) International Patent Classification⁷:

C12Q 1/68

(21) International Application Number:

PCT/US2005/005356

(22) International Filing Date: 18 February 2005 (18.02.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/545,425	18 February 2004 (18.02.2004)	US
60/559,754	5 April 2004 (05.04.2004)	US
60/632,862	3 December 2004 (03.12.2004)	US
60/639,068	22 December 2004 (22.12.2004)	US
60/648,188	28 January 2005 (28.01.2005)	US

- (71) Applicants (for all designated States except US): ISIS PHARMACEUTICALS, INC. [US/US]; 1896 Rutherford Road, Carlsbad, CA 92008 (US). SCIENCE APPLICATIONS INTERNATIONAL CORPORATION [US/US]; 10260 Campus Point Drive, MSC4, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SAMPATH, Rangarajan [US/US]; 12223 Mannix Road, San Diego, CA 92129 (US). HALL, Thomas, A. [US/US]; 5239 Wohlford Street, Oceanside, CA 92056 (US). ECKER, David, J. [US/US]; 1041 Saxony Road, Encinitas, CA 92024 (US). ESCHOO, Mark, W. [US/US]; 615 Glenmont Drive, Solana Beach, CA 92075 (US). MASSIRE, Christian [US/US]; 7498 Altiva Place, Carlsbad, CA

92009 (US). **LARSON, Brons, M.** [US/US]; 10657 Birch Bluff Avenue, San Diego, CA 92131 (US). **LEIGHTON, Terrance** [US/US]; Suite F, 3589 Walnut Street, Lafayette, CA 94549 (US).

- (74) Agent: LEGAARD, Paul, K.; Cozen O'Connor, 1900 Market Street, Philadelphia, PA 19103 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

(57) Abstract: The present invention provides oligonucleotide primers and compositions and kits containing the same for rapid identification of bacteria by amplification of a segment of bacterial nucleic acid followed by molecular mass analysis.

COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of priority to: U.S. Provisional Application Serial No. 60/545,425 filed February 18, 2004, U.S. Provisional Application Serial No. 60/559,754, filed April 5, 2004, U.S. Provisional Application Serial No. 60/632,862, filed December 3, 2004, U.S. Provisional Application Serial No. 60/639,068, filed December 22, 2004, and U.S. Provisional Application Serial No. 60/648,188, filed January 28, 2005, each of which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with United States Government support under DARPA/SPO contract BAA00-09. The United States Government may have certain rights in the invention.

FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of genetic identification of bacteria and provides nucleic acid compositions and kits useful for this purpose when combined with molecular mass analysis.

BACKGROUND OF THE INVENTION

[0004] A problem in determining the cause of a natural infectious outbreak or a bioterrorist attack is the sheer variety of organisms that can cause human disease. There are over 1400 organisms infectious to humans; many of these have the potential to emerge suddenly in a natural epidemic or to be used in a malicious attack by bioterrorists (Taylor et al. Philos. Trans. R. Soc. London B. Biol. Sci., 2001, 356, 983-989). This number does not include numerous strain variants, bioengineered versions, or pathogens that infect plants or animals.

[0005] Much of the new technology being developed for detection of biological weapons incorporates a polymerase chain reaction (PCR) step based upon the use of highly specific primers and probes designed to selectively detect certain pathogenic organisms. Although this approach is appropriate for the most obvious bioterrorist organisms, like smallpox and anthrax, experience has shown that it is very difficult to predict which of hundreds of possible pathogenic organisms might be employed in a terrorist attack. Likewise, naturally emerging human disease that has caused devastating consequence in public health has come from unexpected families of

bacteria, viruses, fungi, or protozoa. Plants and animals also have their natural burden of infectious disease agents and there are equally important biosafety and security concerns for agriculture.

[0006] A major conundrum in public health protection, biodefense, and agricultural safety and security is that these disciplines need to be able to rapidly identify and characterize infectious agents, while there is no existing technology with the breadth of function to meet this need. Currently used methods for identification of bacteria rely upon culturing the bacterium to effect isolation from other organisms and to obtain sufficient quantities of nucleic acid followed by sequencing of the nucleic acid, both processes which are time and labor intensive.

[0007] Mass spectrometry provides detailed information about the molecules being analyzed, including high mass accuracy. It is also a process that can be easily automated. DNA chips with specific probes can only determine the presence or absence of specifically anticipated organisms. Because there are hundreds of thousands of species of benign bacteria, some very similar in sequence to threat organisms, even arrays with 10,000 probes lack the breadth needed to identify a particular organism.

[0008] There is a need for a method for identification of bioagents which is both specific and rapid, and in which no culture or nucleic acid sequencing is required. Disclosed in U.S. Patent Application Serial Nos: 09/798,007, 09/891,793, 10/405,756, 10/418,514, 10/660,997, 10/660,122, 10/660,996, 10/728,486, 10/754,415 and 10/829,826, each of which is commonly owned and incorporated herein by reference in its entirety, are methods for identification of bioagents (any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus) in an unbiased manner by molecular mass and base composition analysis of "bioagent identifying amplicons" which are obtained by amplification of segments of essential and conserved genes which are involved in, for example, translation, replication, recombination and repair, transcription, nucleotide metabolism, amino acid metabolism, lipid metabolism, energy generation, uptake, secretion and the like. Examples of these proteins include, but are not limited to, ribosomal RNAs, ribosomal proteins, DNA and RNA polymerases, elongation factors, tRNA synthetases, protein chain initiation factors, heat shock protein groEL, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, DNA gyrases and DNA topoisomerases, metabolic enzymes, and the like.

[0009] To obtain bioagent identifying amplicons, primers are selected to hybridize to conserved sequence regions which bracket variable sequence regions to yield a segment of nucleic acid which can be amplified and which is amenable to methods of molecular mass analysis. The variable sequence regions provide the variability of molecular mass which is used for bioagent identification. Upon amplification by PCR or other amplification methods with the specifically chosen primers, an amplification product that represents a bioagent identifying amplicon is obtained. The molecular mass of the amplification product, obtained by mass spectrometry for example, provides the means to uniquely identify the bioagent without a requirement for prior knowledge of the possible identity of the bioagent. The molecular mass of the amplification product or the corresponding base composition (which can be calculated from the molecular mass of the amplification product) is compared with a database of molecular masses or base compositions and a match indicates the identity of the bioagent. Furthermore, the method can be applied to rapid parallel analyses (for example, in a multi-well plate format) the results of which can be employed in a triangulation identification strategy which is amenable to rapid throughput and does not require nucleic acid sequencing of the amplified target sequence for bioagent identification.

[0010] The result of determination of a previously unknown base composition of a previously unknown bioagent (for example, a newly evolved and heretofore unobserved bacterium or virus) has downstream utility by providing new bioagent indexing information with which to populate base composition databases. The process of subsequent bioagent identification analyses is thus greatly improved as more base composition data for bioagent identifying amplicons becomes available.

[0011] The present invention provides oligonucleotide primers and compositions and kits containing the oligonucleotide primers, which define bacterial bioagent identifying amplicons and, upon amplification, produce corresponding amplification products whose molecular masses provide the means to identify bacteria, for example, at and below the species taxonomic level.

SUMMARY OF THE INVENTION

[0012] The present invention provides primers and compositions comprising pairs of primers, and kits containing the same for use in identification of bacteria. The primers are designed to produce bacterial bioagent identifying amplicons of DNA encoding genes essential to life such as, for example, 16S and 23S rRNA, DNA-directed RNA polymerase subunits (rpoB and rpoC),

valyl-tRNA synthetase (valS), elongation factor EF-Tu (TufB), ribosomal protein L2 (rplB), protein chain initiation factor (infB), and spore protein (sspE). The invention further provides drill-down primers, compositions comprising pairs of primers and kits containing the same, which are designed to provide sub-species characterization of bacteria.

[0013] In particular, the present invention provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, or a composition comprising the same; an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 26, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 388.

[0014] The present invention also provides an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 29, and a second oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 391.

[0015] The present invention also provides an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, or a composition comprising the same; an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 37, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 362.

[0016] The present invention also provides an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, or a composition comprising the same; a composition comprising both primers; and

a composition comprising a first oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 48, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 404.

[0017] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 160, and a second oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 515.

[0018] The present invention also provides an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 261, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 624.

[0019] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, or a composition comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; , or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 231, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 591.

[0020] The present invention also provides an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, or a composition

comprising the same; an o1igonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 349, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 711.

[0021] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, or a composition comprising the same; an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 240, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 596.

[0022] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:414, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 58, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 414.

[0023] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:369, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 6, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 369.

[0024] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 246, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 246, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 602.

[0025] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, or a composition comprising the same; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 620, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 256, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 620.

[0026] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 344, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 700.

[0027] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of

SEQ ID NO: 235, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 587.

[0028] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 322, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 686.

[0029] The present invention also provides compositions, such as those described herein, wherein either or both of the first and second oligonucleotide primers comprise at least one modified nucleobase, a non-templated T residue on the 5'-end, at least one non-template tag, or at least one molecular mass modifying tag, or any combination thereof.

[0030] The present invention also provides kits comprising any of the compositions described herein. The kits can comprise at least one calibration polynucleotide, or at least one ion exchange resin linked to magnetic beads, or both.

[0031] The present invention also provides methods for identification of an unknown bacterium. Nucleic acid from the bacterium is amplified using any of the compositions described herein to obtain an amplification product. The molecular mass of the amplification product is determined. Optionally, the base composition of the amplification product is determined from the molecular mass. The base composition or molecular mass is compared with a plurality of base compositions or molecular masses of known bacterial bioagent identifying amplicons, wherein a match between the base composition or molecular mass and a member of the plurality of base compositions or molecular masses identifies the unknown bacterium. The molecular mass can be measured by mass spectrometry. In addition, the presence or absence of a particular clade, genus, species, or sub-species of a bioagent can be determined by the methods described herein.

[0032] The present invention also provides methods for determination of the quantity of an unknown bacterium in a sample. The sample is contacted with any of the compositions described

herein and a known quantity of a calibration polynucleotide comprising a calibration sequence. Concurrently, nucleic acid from the bacterium in the sample is amplified with any of the compositions described herein and nucleic acid from the calibration polynucleotide in the sample is amplified with any of the compositions described herein to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon. The molecular mass and abundance for the bacterial bioagent identifying amplicon and the calibration amplicon is determined. The bacterial bioagent identifying amplicon is distinguished from the calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in the sample. The method can also comprise determining the base composition of the bacterial bioagent identifying amplicon.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Figure 1 is a representative pseudo-four dimensional plot of base compositions of bioagent identifying amplicons of enterobacteria obtained with a primer pair targeting the rpoB gene (primer pair no 14 (SEQ ID NOs: 37:362). The quantity each of the nucleobases A, G and C are represented on the three axes of the plot while the quantity of nucleobase T is represented by the diameter of the spheres. Base composition probability clouds surrounding the spheres are also shown.

[0034] Figure 2 is a representative diagram illustrating the primer selection process.

[0035] Figure 3 lists common pathogenic bacteria and primer pair coverage. The primer pair number in the upper right hand corner of each polygon indicates that the primer pair can produce a bioagent identifying amplicon for all species within that polygon.

[0036] Figure 4 is a representative 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples (labeled NHRC samples) closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0037] Figure 5 is a representative mass spectrum of amplification products representing bioagent identifying amplicons of *Streptococcus pyogenes*, *Neisseria* meningitidis, and *Haemophilus influenzae* obtained from amplification of nucleic acid from a clinical sample with primer pair number 349 which targets 23S rRNA. Experimentally determined molecular masses and base compositions for the sense strand of each amplification product are shown.

[0038] Figure 6 is a representative mass spectrum of amplification products representing a bioagent identifying amplicon of *Streptococcus pyogenes*, and a calibration amplicon obtained from amplification of nucleic acid from a clinical sample with primer pair number 356 which targets rplB. The experimentally determined molecular mass and base composition for the sense strand of the *Streptococcus pyogenes* amplification product is shown.

[0039] Figure 7 is a representative process diagram for identification and determination of the quantity of a bioa.gent in a sample.

[0040] Figure 8 is a representative mass spectrum of an amplified nucleic acid mixture which contained the Ames strain of *Bacillus anthracis*, a known quantity of combination calibration polynucleotide (SEQ ID NO: 741), and primer pair number 350 which targets the capC gene on the virulence plasmid pX02 of *Bacillus anthracis*. Calibration amplicons produced in the amplification reaction are visible in the mass spectrum as indicated and abundance data (peak height) are used to calculate the quantity of the Ames strain of *Bacillus anthracis*.

DESCRIPTION OF EMBODIMENTS

[0041] The present invention provides oligonucleotide primers which hybridize to conserved regions of nucleic acid of genes encoding, for example, proteins or RNAs necessary for life which include, but are not limited to: 16S and 23S rRNAs, RNA polymerase subunits, t-RNA synthetases, elongation factors, ribosomal proteins, protein chain initiation factors, cell division proteins, chaperonin groEL, chaperonin dnaK, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, metabolic enzymes and DNA topoisomerases. These primers provide the functionality of producing, for example, bacterial bioagent identifying amplicons for general identification of bacteria at the species level, for example, when contacted with bacterial nucleic acid under amplification conditions.

[0042] Referring to Figure 2, primers are designed as follows: for each group of organisms, candidate target sequences are identified (200) from which nucleotide alignments are created (210) and analyzed (220). Primers are designed by selecting appropriate priming regions (230) which allows the selection of candidate primer pairs (240). The primer pairs are subjected to in silico analysis by electronic PCR (ePCR) (300) wherein bioagent identifying amplicons are obtained from sequence databases such as, for example, GenBank or other sequence collections (310), and checked for specificity in silico (320). Bioagent identifying amplicons obtained from GenBank sequences (310) c an also be analyzed by a probability model which predicts the capability of a particular am plicon to identify unknown bioagents such that the base compositions of amplicons with favorable probability scores are stored in a base composition database (325). Alternatively, base compositions of the bioagent identifying amplicons obtained from the primers and GenBank sequences can be directly entered into the base composition database (330). Candidate primer pairs (240) are validated by in vitro amplification by a method such as, for example, PCR analysis (400) of nucleic acid from a collection of organisms (410). Amplification products that are obtained are optionally analyzed to confirm the sensitivity, specificity and reproducibility of the primers used to obtain the amplification products (420).

[0043] Synthesis of primers is well known and routine in the art. The primers may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthes is is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed.

[0044] The primers can be employed as compositions for use in, for example, methods for identification of bacterial bi oagents as follows. In some embodiments, a primer pair composition is contacted with nucleic acid of an unknown bacterial bioagent. The nucleic acid is amplified by a nucleic acid amplification technique, such as PCR for example, to obtain an amplification product that represents a bioagent identifying amplicon. The molecular mass of one strand or each strand of the double-stranded amplification product is determined by a molecular mass measurement technique such as, for example, mass spectrometry wherein the two strands of the double-stranded amplification product are separated during the ionization process. In some embodiments, the mass spectrometry is electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) or electrospray time of flight mass spectrometry (ESI-TOF-MS). A list of possible base compositions can be generated for the molecular mass value

obtained for each strand and the choice of the correct base composition from the list is facilitated by matching the base composition of one strand with a complementary base composition of the other strand. The molecular mass or base composition thus determined is compared with a database of molecular masses or base compositions of analogous bioagent identifying amplicons for known bacterial bioagents. A match between the molecular mass or base composition of the amplification product from the unknown bacterial bioagent and the molecular mass or base composition of an analogous bioagent identifying amplicon for a known bacterial bioagent indicates the identity of the unknown bioagent.

[0045] In some embodiments, the primer pair used is one of the primer pairs of Table 1. In some embodiments, the method is repeated using a different primer pair to resolve possible ambiguities in the identification process or to improve the confidence level for the identification assignment.

[0046] In some embodiments, a bioagent identifying amplicon may be produced using only a single primer (either the forward or reverse primer of any given primer pair), provided an appropriate amplification method is chosen, such as, for example, low stringency single primer PCR (LSSP-PCR). Adaptation of this amplification method in order to produce bioagent identifying amplicons can be accomplished by one with ordinary skill in the art without undue experimentation.

[0047] In some embodiments, the oligonucleotide primers are "broad range survey primers" which hybridize to conserved regions of nucleic acid encoding RNA, such as ribosomal RNA (rRNA), of all, or at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% of known bacteria and produce bacterial bioagent identifying amplicons. As used herein, the term "broad range survey primers" refers to primers that bind to nucleic acid encoding rRNAs of all, or at least 70%, at least 80%, at least 85%, at least 90%, or at least 95% known species of bacteria. In some embodiments, the rRNAs to which the primers hybridize are 16S and 23S rRNAs. In some embodiments, the broad range survey primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 3, 10, 11, 14, 16, and 17 which consecutively correspond to SEQ ID NOs: 6:369, 26:388, 29:391, 37:362, 48:404, and 58:414.

[0048] In some cases, the molecular mass or base composition of a bacterial bioagent identifying amplicon defined by a broad range survey primer pair does not provide enough resolution to unambiguously identify a bacterial bioagent at the species level. These cases benefit from further analysis of one or more bacterial bioagent identifying amplicons generated from at least one additional broad range survey primer pair or from at least one additional "division-wide" primer pair (vide infra). The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification" (vide infra).

[0049] In other embodiments, the oligonucleotide primers are "division-wide" primers which hybridize to nucleic acid encoding genes of broad divisions of bacteria such as, for example, members of the *Bacillus/Clostridia* group or members of the α -, β -, γ -, and ϵ -proteobacteria. In some embodiments, a division of bacteria comprises any grouping of bacterial genera with more than one genus represented. For example, the β-proteobacteria group comprises members of the following genera: Eikenella, Neisseria, Achromobacter, Bordetella, Burkholderia, and Raltsonia. Species members of these genera can be identified using **b**acterial bioagent identifying amplicons generated with primer pair 293 (SEO ID NOs: 344:700) which produces a bacterial bioagent identifying amplicon from the tufB gene of β-proteobacteria. Examples of genes to which division-wide primers may hybridize to include, but are n ot limited to: RNA polymerase subunits such as rpoB and rpoC, tRNA synthetases such as valyl-tRNA synthetase (valS) and aspartyl-tRNA synthetase (aspS), elongation factors such as elongation factor EF-Tu (tufB), ribosomal proteins such as ribosomal protein L2 (rplB), protein chain initiation factors such as protein chain initiation factor infB, chaperonins such as groL and dnaK, and cell division proteins such as peptidase ftsH (hflB). In some embodiments, the division-wide primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 34, 52, 66, 67, 71, 72, 289, 290 and 293 which consecutively correspond to SEQ ID NOs: 16O:515, 261:624, 231:591, 235:587, 349:711, 240:596, 246:602, 256:620, 344:700.

[0050] In other embodiments, the oligonucleotide primers are designed to enable the identification of bacteria at the clade group level, which is a monophyletic taxon referring to a group of organisms which includes the most recent common ancestor of all of its members and all of the descendants of that most recent common ancestor. The *Bacillus cereus* clade is an example of a bacterial clade group. In some embodiments, the clade group primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobæses, each of which have from 70% to

100% sequence identity with primer pair number 58 which c orresponds to SEQ ID NOs: 322:686.

[0051] In other embodiments, the oligonucleotide primers are "drill-down" primers which enable the identification of species or "sub-species characteristics." Sub-species characteristics are herein defined as genetic characteristics that provide the means to distinguish two members of the same bacterial species. For example, Escherichia coli O1 57:H7 and Escherichia coli K12 are two well known members of the species Escherichia coli. Escherichia coli O157:H7, however, is highly toxic due to the its Shiga toxin gene which is an example of a sub-species characteristic. Examples of sub-species characteristics may also include, but are not limited to: variations in genes such as single nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRs). Examples of genes indicating sub-species characteristics include, but are not limited to, housekeeping genes, toxin genes, pathogenicity markers, antibiotic resistance genes and virulence factors. Drill-down primers provide the functional ty of producing bacterial bioagent identifying amplicons for drill-down analyses such as strain typing when contacted with bacterial nucleic acid under amplification conditions. Identification of such sub-species characteristics is often critical for determining proper clinical treatment of bacterial infections. Examples of pairs of drill-down primers include, but are not limited to, a trio of primer pairs for identification of strains of Bacillus anthracis. Primer pair 24 (SEQ ID NOs: 97:451) targets the capC gene of virulence plasmid pX02, primer pair 30 (SEQ ID NOs: 127:482) targets the cyA gene of virulence plasmid pX02, and primer pair 37 (SEQ ID NOs: 174:530) targets the lef gene of virulence plasmid pX02. Additional examples of drill-down primers include, but are not limited to, six primer pairs that are used for determining the strain type of group A Streptococcus. Primer pair 80 (SEQ ID NOs: 310:668) targets the gki gene, primer pair 81 (SEQ ID NOs: 313:670) targets the gtr gene, primer pair 86 (SEQ ID NOs = 227:632) targets the murI gene, primer pair 90 (SEQ ID NOs: 285:640) targets the mutS gen e, primer pair 96 (SEQ ID NOs: 301:656) targets the xpt gene, and primer pair 98 (SEQ ID NOs: 308:663) targets the yqiL gene.

[0052] In some embodiments, the primers used for amplification hybridize to and amplify genomic DNA, DNA of bacterial plasmids, or DNA of DNA viruses.

[0053] In some embodiments, the primers used for amplification hybridize directly to ribosomal RNA or messenger RNA (mRNA) and act as reverse transcraption primers for obtaining DNA from direct amplification of bacterial RNA or rRNA. Methods of amplifying RNA using reverse

transcriptase are well known to those with ordinary skill in the art and can be routinely established without undue experimentation.

[0054] One with ordinary skill in the art of design of amplification primers will recognize that a given primer need not hybridize with 100% complementarity in order to effectively prime the synthesis of a complementary nucleic acid strand in an amplification reaction. Moreover, a primer may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or a hairpin structure). The primers of the present invention may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% sequence identity with any of the primers listed in Table 1. Thus, in some embodiments of the present invention, an extent of variation of 70% to 100%, or any range therewithin, of the sequence identity is possible relative to the specific primer sequences disclosed herein. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is otherwise identical to another 20 nucleobase primer but having two non-identical residues has 18 of 20 identical residues (18/20 = 0.9 or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length would have 15/20 = 0.75 or 75% sequence identity with the 20 nucleobase primer.

[0055] Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison WI), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some embodiments, homology, sequence identity, or complementarity of primers with respect to the conserved priming regions of bacterial nucleic acid, is at least 70%, at least 80%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or is 100%.

[0056] In some embodiments, the primers described herein comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%, or at least 99%, or 100% (or any range therewithin) sequence identity with the primer sequences specifically disclosed herein. Thus, for example, a primer may have between 70% and 100%, between 75% and 100%, between 80% and 100%, and between 95% and 100% sequence identity with SEQ ID NO: 26. Likewise, a primer may have similar sequence identity with any other primer whose nucleotide sequence is disclosed herein.

[0057] One with ordinary skill is able to calculate percent sequence identity or percent sequence homology and able to determine, without undue experimentation, the effects of variation of primer sequence identity on the function of the primer in its role in priming synthesis of a complementary strand of nucleic acid for production of an amplification product of a corresponding bioagent identifying amplicon.

[0058] In some embodiments of the present invention, the oligonucleotide primers are between 13 and 35 nucleobases in length (13 to 35 linked nucleotide residues). These embodiments comprise oligonucleotide primers 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 nucleobases in length, or any range therewithin.

[0059] In some embodiments, any given primer comprises a modification comprising the addition of a non-templated T residue to the 5' end of the primer (i.e., the added T residue does not necessarily hybridize to the nucleic acid being amplified). The addition of a non-templated T residue has an effect of minimizing the addition of non-templated A residues as a result of the non-specific enzyme activity of *Taq* polymerase (Magnuson et al. Biotechniques, 1996, 21, 700-709), an occurrence which may lead to ambiguous results arising from molecular mass anallysis.

[0060] In some embodiments of the present invention, primers may contain one or more universal bases. Because any variation (due to codon wobble in the 3rd position) in the conserved regions among species is likely to occur in the third position of a DNA triplet, oligonucleotide primers can be designed such that the nucleotide corresponding to this position is a base which can bind to more than one nucleotide, referred to herein as a "universal nucleobase." For example, under this "wobble" pairing, inosine (I) binds to U, C or A; guanine (G) binds to U or C, and uridine (U) binds to U or C. Other examples of universal nucleobases include nitroiridoles such as 5-nitroindole or 3-nitropyrrole (Loakes et al., Nucleosides and Nucleotides, 1995, 14, 1001-1003), the degenerate nucleotides dP or dK (Hill et al.), an acyclic nucleoside analog containing 5-nitroindazole (Van Aerschot et al., Nucleosides and Nucleotides, 1995, 14, 10 53-1056) or the purine analog 1-(2-deoxy-β-D-ribofuranosyl)-imidazole-4-carboxamide (Sala *et* al., Nucl. Acids Res., 1996, 24, 3302-3306).

[0061] In some embodiments, to compensate for the somewhat weaker binding by the "wobble" base, the oligonucleotide primers are designed such that the first and second positions of each triplet are occupied by nucleotide analogs which bind with greater affinity than the unmodified

nucleotide. Examples of these analogs include, but are not limited to, 2,6-diaminopurine which binds to thymine, 5-propynyluracil which binds to adenine and 5-propynylcytosine and phenoxazines, including G-clamp, which binds to G. Propynylated pyrimidines are described in U.S. Patent Nos. 5,645,985, 5,830,653 and 5,484,908, each of which is commonly owned and incorporated herein by reference in its entirety. Propynylated primers are described in U.S. Serial No. 10/294,203 which is also commonly owned and incorporated herein by reference in entirety. Phenoxazines are described in U.S. Patent Nos. 5,502,177, 5,763,588, and 6,005,096, each of which is incorporated herein by reference in its entirety. G-clamps are described in U.S. Patent Nos. 6,007,992 and 6,028,183, each of which is incorporated herein by reference in its entirety.

[0062] In some embodiments, non-template primer tags are used to increase the melting temperature (T_m) of a primer-template duplex in order to improve amplification efficiency. A non-template tag is at least three consecutive A or T nucleotide residues on a primer which are not complementary to the template. In any given non-template tag, A can be replaced by C or G and T can also be replaced by C or G. Although Watson-Crick hybridization is not expected to occur for a non-template tag relative to the template, the extra hydrogen bond in a G-C pair relative to a A-T pair confers increased stability of the primer-template duplex and improves amplification efficiency for subsequent cycles of amplification when the primers hybridize to strands synthesized in previous cycles.

[0063] In other embodiments, propynylated tags may be used in a manner similar to that of the non-template tag, wherein two or more 5-propynylcytidine or 5-propynyluridine residues replace template matching residues on a primer. In other embodiments, a primer contains a modified internucleoside linkage such as a phosphorothioate linkage, for example.

[0064] In some embodiments, the primers contain mass-modifying tags. Reducing the total number of possible base compositions of a nucleic acid of specific molecular weight provides a means of avoiding a persistent source of ambiguity in determination of base composition of amplification products. Addition of mass-modifying tags to certain nucleobases of a given primer will result in simplification of *de novo* determination of base composition of a given bioagent identifying amplicon (*vide infra*) from its molecular mass.

[0065] In some embodiments of the present invention, the mass modified nucleobase comprises one or more of the following: for example, 7-deaza-2'-deoxyadenosine-5-triphosphate, 5-iodo-2'-

deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxycytidine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 5-aza-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, O6-methyl-2'-deoxyguanosine-5'-triphosphate, N2-methyl-2'-deoxyguanosine-5'-triphosphate, 8-oxo-2'-deoxyguanosine-5'-triphosphate or thiothymidine-5'-triphosphate. In some embodiments, the mass-modified nucleobase comprises ¹⁵N or ¹³C or both ¹⁵N and ¹³C.

[0066] In some embodiments of the present invention, at least one bacterial nucleic acid segment is amplified in the process of identifying the bioagent. Thus, the nucleic acid segments that can be amplified by the primers disclosed herein and that provide enough variability to distinguish each individual bioagent and whose molecular masses are amenable to molecular mass determination are herein described as "bioagent identifying amplicons." The term "amplicon" as used herein, refers to a segment of a polynucleotide which is amplified in an amplification reaction. In some embodiments of the present invention, bioagent identifying amplicons comprise from about 45 to about 200 nucleobases (i.e. from about 45 to about 200 linked nucleosides), from about 60 to about 150 nucleobases, from about 75 to about 125 nucleobases. One of ordinary skill in the art will appreciate that the invention embodies compounds of 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, and 200 nucleobases in length, or any range therewithin. It is the combination of the portions of the bioagent nucleic acid segment to which the primers hybridize (hybridization sites) and the variable region between the primer hybridization sites that comprises the bioagent identifying amplicon. Since genetic data provide the underlying basis for identification of bioagents by the methods of the present invention, it is prudent to select segments of nucleic acids which ideally provide enough variability to distinguish each individual bioagent and whose molecular mass is amenable to molecular mass determination.

[0067] In some embodiments, bioagent identifying amplicons amenable to molecular mass determination which are produced by the primers described herein are either of a length, size or mass compatible with the particular mode of molecular mass determination or compatible with a means of providing a predictable fragmentation pattern in order to obtain predictable fragments of a length compatible with the particular mode of molecular mass determination. Such means of providing a predictable fragmentation pattern of an amplification product include, but are not limited to, cleavage with restriction enzymes or cleavage primers, for example. Methods of using restriction enzymes and cleavage primers are well known to those with ordinary skill in the art.

[0068] In some embodiments, amplification products corresponding to bacterial bioagent identifying amplicons are obtained using the polymerase chain reaction (PCR) which is a routine method to those with ordinary skill in the molecular biology arts. Other amplification methods may be used such as ligase chain reaction (LCR), low-stringency single primer PCR, and multiple strand displacement amplification (MDA) which are also well known to those with ordinary skill.

[0069] In the context of this invention, a "bioagent" is any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus. Examples of bioagents include, but are not limited, to cells, (including but not limited to human clinical samples, bacterial cells and other pathogens), viruses, fungi, protists, parasites, and pathogenicity markers (including but not limited to: pathogenicity islands, antibiotic resistance genes, virulence factors, toxin genes and other bioregulating compounds). Samples may be alive or dead or in a vegetative state (for example, vegetative bacteria or spores) and may be encapsulated or bioengineered. In the context of this invention, a "pathogen" is a bioagent which causes a disease or disorder.

[0070] In the context of this invention, the term "unknown bioagent" may mean either: (i) a bioagent whose existence is known (such as the well known bacterial species *Staphylococcus aureus* for example) but which is not known to be in a sample to be analyzed, or (ii) a bioagent whose existence is not known (for example, the SARS coronavirus was unknown prior to April 2003). For example, if the method for identification of coronaviruses disclosed in commonly owned U.S. Patent Serial No. 10/829,826 (incorporated herein by reference in its entirety) was to be employed prior to April 2003 to identify the SARS coronavirus in a clinical sample, both meanings of "unknown" bioagent are applicable since the SARS coronavirus was unknown to

science prior to April, 2003 and since it was not known what bioagent (in this case a coronavirus) was present in the sample. On the other hand, if the method of U.S. Patent Serial No. 10/829,826 was to be employed subsequent to April 2003 to identify the SARS coronavirus in a clinical sample, only the first meaning (i) of "unknown" bioagent would apply since the SARS coronavirus became known to science subsequent to April 2003 and since it was not known what bioagent was present in the sample.

[0071] The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by analyzing a plurality of bioagent identifying amplicons selected within multiple core genes. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of *B. anthracis* (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B. anthracis* genome would suggest a genetic engineering event.

[0072] In some embodiments, the triangulation identification process can be pursued by characterization of bioagent identifying amplicons in a massively parallel fashion using the polymerase chain reaction (PCR), such as multiplex PCR where multiple primers are employed in the same amplification reaction mixture, or PCR in multi-well plate format wherein a different and unique pair of primers is used in multiple wells containing otherwise identical reaction mixtures. Such multiplex and multi-well PCR methods are well known to those with ordinary skill in the arts of rapid throughput amplification of nucleic acids.

[0073] In some embodiments, the molecular mass of a particular bioagent identifying amplicon is determined by mass spectrometry. Mass spectrometry has several advantages, not the least of which is high bandwidth characterized by the ability to separate (and isolate) many molecular peaks across a broad range of mass to charge ratio (m/z). Thus, mass spectrometry is intrinsically a parallel detection scheme without the need for radioactive or fluorescent labels, since every amplification product is identified by its molecular mass. The current state of the art in mass spectrometry is such that less than femtomole quantities of material can be readily analyzed to afford information about the molecular contents of the sample. An accurate assessment of the molecular mass of the material can be quickly obtained, irrespective of whether the molecular

weight of the sample is several hundred, or in excess of one hundred thousand atomic mass units (amu) or Daltons.

[0074] In some embodiments, intact molecular ions are generated from amplification products using one of a variety of ionization techniques to convert the sample to gas phase. These ionization methods include, but are not limited to, electrospray ionization (ES), matrix-assisted laser desorption ionization (MALDI) and fast atom bombardment (FAB). Upon ionization, several peaks are observed from one sample due to the formation of ions with different charges. Averaging the multiple readings of molecular mass obtained from a single mass spectrum affords an estimate of molecular mass of the bioagent identifying amplicon. Electrospray ionization mass spectrometry (ESI-MS) is particularly useful for very high molecular weight polymers such as proteins and nucleic acids having molecular weights greater than 10 kDa, since it yields a distribution of multiply-charged molecules of the sample without causing a significant amount of fragmentation.

[0075] The mass detectors used in the methods of the present invention include, but are not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), time of flight (TOF), ion trap, quadrupole, magnetic sector, Q-TOF, and triple quadrupole.

[0076] In some embodiments, conversion of molecular mass data to a base composition is useful for certain analyses. As used herein, a "base composition" is the exact number of each nucleobase (A, T, C and G). For example, amplification of nucleic acid of *Neisseria meningitidis* with a primer pair that produces an amplification product from nucleic acid of 23S rRNA that has a molecular mass (sense strand) of 28480.75124, from which a base composition of A25 G27 C22 T18 is assigned from a list of possible base compositions calculated from the molecular mass using standard known molecular masses of each of the four nucleobases.

[0077] In some embodiments, assignment of base compositions to experimentally determined molecular masses is accomplished using "base composition probability clouds." Base compositions, like sequences, vary slightly from isolate to isolate within species. It is possible to manage this diversity by building "base composition probability clouds" around the composition constraints for each species. This permits identification of organisms in a fashion similar to sequence analysis. A "pseudo four-dimensional plot" (Figure 1) can be used to visualize the concept of base composition probability clouds. Optimal primer design requires optimal choice

of bioagent identifying amplicons and maximizes the separation between the base composition signatures of individual bioagents. Areas where clouds overlap indicate regions that may result in a misclassification, a problem which is overcome by a triangulation identification process using bioagent identifying amplicons not affected by overlap of base composition probability clouds.

[0078] In some embodiments, base composition probability clouds provide the means for screening potential primer pairs in order to avoid potential misclassifications of base compositions. In other embodiments, base composition probability clouds provide the means for predicting the identity of a bioagent whose assigned base composition was not previously observed and/or indexed in a bioagent identifying amplicon base composition database due to evolutionary transitions in its nucleic acid sequence. Thus, in contrast to probe-based techniques, mass spectrometry determination of base composition does not require prior knowledge of the composition or sequence in order to make the measurement.

[0079] The present invention provides bioagent classifying information similar to DNA sequencing and phylogenetic analysis at a level sufficient to identify a given bioagent. Furthermore, the process of determination of a previously unknown base composition for a given bioagent (for example, in a case where sequence information is unavailable) has downstream utility by providing additional bioagent indexing information with which to populate base composition databases. The process of future bioagent identification is thus greatly improved as more BCS indexes become available in base composition databases.

[0080] In one embodiment, a sample comprising an unknown bioagent is contacted with a pair of primers which provide the means for amplification of nucleic acid from the bioagent, and a known quantity of a polynucleotide that comprises a calibration sequence. The nucleic acids of the bioagent and of the calibration sequence are amplified and the rate of amplification is reasonably assumed to be similar for the nucleic acid of the bioagent and of the calibration sequence. The amplification reaction then produces two amplification products: a bioagent identifying amplicon and a calibration amplicon. The bioagent identifying amplicon and the calibration amplicon should be distinguishable by molecular mass while being amplified at essentially the same rate. Effecting differential molecular masses can be accomplished by choosing as a calibration sequence, a representative bioagent identifying amplicon (from a specific species of bioagent) and performing, for example, a 2 to 8 nucleobase deletion or

insertion within the variable region between the two priming sites. The amplified sample containing the bioagent identifying amplicon and the calibration amplicon is then subjected to molecular mass analysis by mass spectrometry, for example. The resulting molecular mass analysis of the nucleic acid of the bioagent and of the calibration sequence provides molecular mass data and abundance data for the nucleic acid of the bioagent and of the calibration sequence. The molecular mass data obtained for the nucleic acid of the bioagent enables identification of the unknown bioagent and the abundance data enables calculation of the quantity of the bioagent, based on the knowledge of the quantity of calibration polynucleotide contacted with the sample.

.

[0081] In some embodiments, the identity and quantity of a particular bioagent is determined using the process illustrated in Figure 7. For instance, to a sample containing nucleic acid of an unknown bioagent are added primers (500) and a known quantity of a calibration polynucleotide (505). The total nucleic acid in the sample is subjected to an amplification reaction (510) to obtain amplification products. The molecular masses of amplification products are determined (515) from which are obtained molecular mass and abundance data. The molecular mass of the bioagent identifying amplicon (520) provides the means for its identification (525) and the molecular mass of the calibration amplicon obtained from the calibration polynucleotide (530) provides the means for its identification (535). The abundance data of the bioagent identifying amplicon is recorded (540) and the abundance data for the calibration data is recorded (545), both of which are used in a calculation (550) which determines the quantity of unknown bioagent in the sample.

[0082] In some embodiments, construction of a standard curve where the amount of calibration polynucleotide spiked into the sample is varied, provides additional resolution and improved confidence for the determination of the quantity of bioagent in the sample. The use of standard curves for analytical determination of molecular quantities is well known to one with ordinary skill and can be performed without undue experimentation.

[0083] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with multiple primer pairs which also amplify the corresponding standard calibration sequences. In this or other embodiments, the standard calibration sequences are optionally included within a single vector which functions as the

calibration polynucleotide. Multiplex amplification methods are well known to those with ordinary skill and can be performed without undue experimentation.

[0084] In some embodiments, the calibrant polynuc leotide is used as an internal positive control to confirm that amplification conditions and subsequent analysis steps are successful in producing a measurable amplicon. Even in the absence of copies of the genome of a bioagent, the calibration polynucleotide should give rise to a calibration amplicon. Failure to produce a measurable calibration amplicon indicates a failure of amplification or subsequent analysis step such as amplicon purification or molecular mass determination. Reaching a conclusion that such failures have occurred is in itself, a useful event.

[0085] In some embodiments, the calibration sequence is inserted into a vector which then itself functions as the calibration polynucleotide. In some embodiments, more than one calibration sequence is inserted into the vector that functions as the calibration polynucleotide. Such a calibration polynucleotide is herein termed a "combination calibration polynucleotide." The process of inserting polynucleotides into vectors is routine to those skilled in the art and can be accomplished without undue experimentation. Thus, it should be recognized that the calibration method should not be limited to the embodiments described herein. The calibration method can be applied for determination of the quantity of any bioagent identifying amplicon when an appropriate standard calibrant polynucleotide sequence is designed and used. The process of choosing an appropriate vector for insertion of a calibrant is also a routine operation that can be accomplished by one with ordinary skill without undue experimentation.

[0086] The present invention also provides kits for carrying out, for example, the methods described herein. In some embodiments, the kit may comprise a sufficient quantity of one or more primer pairs to perform an amplification reaction on a target polynucleotide from a bioagent to form a bioagent identifying amplicon. In some embodiments, the kit may comprise from one to fifty primer pairs, from one to twenty primer pairs, from one to ten primer pairs, or from two to five primer pairs. In some embodiments, the kit may comprise one or more primer pairs recited in Table 1.

[0087] In some embodiments, the kit may comprise one or more broad range survey primer(s), division wide primer(s), clade group primer(s) or drill-down primer(s), or any combination thereof. A kit may be designed so as to comprise particular primer pairs for identification of a

particular bioagent. For example, a broad range survey primer kit may be used initially to identify an unknown bioagent as a member of the *Bacillus/Clostridia* group. Another example of a division-wide kit may be used to distinguish *Bacillus anthracis*, *Bacillus cereus* and *Bacillus thuringiensis* from each other. A clade group primer kit may be used, for example, to identify an unknown bacterium as a member of the *Bacillus cereus* clade group. A drill-down kit may be used, for example, to identify genetically engineered *Bacillus anthracis*. In some embodiments, any of these kits may be combined to comprise a combination of broad range survey primers and division-wide primers, clade group primers or drill-down primers, or any combination thereof, for identification of an unknown bacterial bioagent.

[0088] In some embodiments, the kit may contain standardized calibration polynucleotides for use as internal amplification calibrants. Internal calibrants are described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0089] In some embodiments, the kit may also comprise a sufficient quantity of reverse transcriptase (if an RNA virus is to be identified for example), a DNA polymerase, suitable nucleoside triphosphates (including any of those described above), a DNA ligase, and/or reaction buffer, or any combination thereof, for the amplification processes described above. A kit may further include instructions pertinent for the particular embodiment of the kit, such instructions describing the primer pairs and amplification conditions for operation of the method. A kit may also comprise amplification reaction containers such as microcentrifuge tubes and the like. A kit may also comprise reagents or other materials for isolating bioagent nucleic acid or bioagent identifying amplicons from amplification, including, for example, detergents, solvents, or ion exchange resins which may be linked to magnetic beads. A kit may also comprise a table of measured or calculated molecular masses and/or base compositions of bioagents using the primer pairs of the kit.

[0090] In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner. Throughout these examples, molecular cloning reactions, and other standard recombinant DNA techniques, were carried out according to methods described in Maniatis et al., Molecular Cloning - A Laboratory Manual,

2nd ed., Cold Spring Harbor Press (1989), using commercially available reagents, except where otherwise noted.

EXAMPLES

[0091] Example 1: Selection of Primers That Define Bioagent Identifying Amplicons [0092] For design of primers that define bacterial bioagent identifying amplicons, relevant sequences from, for example, GenBank are obtained, aligned and scanned for regions where

pairs of PCR primers would amplify products of about 45 to about 200 nucleotides in length and distinguish species from each other by their molecular masses or base compositions. A typical

process shown in Figure 2 is employed.

[0093] A database of expected base compositions for each primer region is generated using an *in silico* PCR search algorithm, such as (ePCR). An existing RNA structure search algorithm (Macke et al., Nuc. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs.

[0094] Table 1 represents a collection of primers (sorted by forward primer name) designed to identify bacteria using the methods herein described. The forward or reverse primer name indicates the gene region of bacterial genome to which the primer hybridizes relative to a reference sequence eg: the forward primer name 16S_EC_1077_1106 indicates that the primer hybridizes to residues 1077-1106 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence represented by a sequence extraction of coordinates 4033120..4034661 from GenBank gi number 16127994 (as indicated in Table 2). As an additional example: the forward primer name BONTA_X52066_450_473 indicates that the primer hybridizes to residues 450-437 of the gene encoding *Clostridium botulinum* neurotoxin type A (BoNT/A) represented by GenBank Accession No. X52066 (primer pair name codes appearing in Table 1 are defined in Table 2). In Table 1, U^a = 5-propynyluracil; C^a = 5-propynylcytosine; * = phosphorothioate linkage. The primer pair number is an in-house database index number.

Table 1: Primer Pairs for Identification of Bacterial Bioagents

Primer	For.		For.			Rev.
pair	primer		SEQ ID	Rev. primer		SEQ ID
number	name	Forward sequence	NO:	name	Reverse sequence	NO:
1	16S EC 107	GTGAGATGTTGGGTTAA	1	16S_EC_1175	GACGTCATCCCCACCTTCC	368

	7 1106 F	GTCCCGTAACGAG	I	1195 R	TC	
				16S_EC_1177		
	16S_EC_108	ATGTTGGGTTAAGTCCC	_	1196_T0G_1	TGACGTCATGGCCACCTTC	
266	2 1100 F	GC	2	1G_R	C management and a commo	372
265	16S_EC_108 2 1100 F	ATGTTGGGTTAAGTCCC	2	16S_EC_1177 1196 10G R	TGACGTCATGCCCACCTTC	373
200	16S EC 108	ATGTTGGGTTAAGTCCC		16S EC 1177	TGACGTCATCCCCACCTTC	1
230	2_1100_F	GC	2	_1196_R	С	374
	16S_EC_108	ATGTTGGGTTAAGTCCC		16S_EC_1525		
263	2_1100 F 16S EC 108	GC ATGTTGGGTTAAGTCCC	2	1541 R 16S EC 1175	AAGGAGGTGATCCAGCC TTGACGTCATCCCCACCTT	382
2	2 1106 F	GCAACGAG	3	1197 R	CCTC	371
	16S_EC_109	TTAAGTCCCGCAACGAG		16S_EC_1175	TGACGTCATCCCCACCTTC	
278	0 1111 2 F	CGCAA	4	_1196_R	CTC	369
	16S_EC_109 0 1111 2 T	TTTAAGTCCCGCAACGA		16S_EC_1175 1196 TMOD	TTGACGTCATCCCCACCTT	
361	MOD F	GCGCAA	5		CCTC	370
	16S_EC_109	TTAAGTCCCGCAACGA'T		16S_EC_1175	TGACGTCATCCCCACCTTC	
3	0 1111 F	CGCAA	6	1196 R	CTC	369
256	16S_EC_109 2 1109 F	TAGTCCCGCAACGAGCG	7	16S_EC_1174 1195 R	GACGTCATCCCCACCTTCC TCC	367
230	16S EC 110		 	16S EC 1174		
159	0_1116_F	CAACGAGCGCAACCCTT	8	_1188_R	TCCCCACCTTCCTCC	366
0.45	16S_EC_119	CAAGTCATCATGGCCCT		16S_EC_1525	7 7 CC7 CC	202
247	5 1213 F 16S EC 122	TA GCTACACACGTGCTACA	9	1541 R 16S EC 1303	AAGGAGGTGATCCAGCC CGAGTTGCAGACTGCGATC	382
4	2_1241_F	ATG	10	1323_R	CG	376
	16S_EC_130	CGGATTGGAGTCTGCAA		16S_EC_1389		
232	3 1323 F 16S EC 133	CTCG	1.1	_1407_R	GACGGGCGGTGTGTACAAG	378
5	2 1353 F	AAGTCGGAATCGCTAGT AATCG	12	16S_EC_1389 1407 R	GACGGCCGGTGTGTACAAG	378
	16S EC 136	TACGGTGAATACGTTCC		16S EC 1485	ACCTTGTTACGACTTCACC	1 370
252	7_1387_F	CGGG	13	_1506_R	CCA	379
250	16S_EC_138	GCCTTGTACACACCTCC	1,,	16S_EC_1494	CACGGCTACCTTGTTACGA	201
250	7_1407_F 16S_EC_138	CTTGTACACACCGCCCG	14	1513 R 16S EC 1525	C	381
231	9_1407 F	TC	15	1541 R	AAGGAGGTGATCCAGCC	382
	16S_EC_139	TTGTACACACCGCCCGT		16S_EC_1486	CCTTGTTACGACTTCACCC	
251	0_1411 F 16S EC 30	CATAC TGAACGCTGGTGGCATG	16	_1505_R	C magazama	380
6	54 F	CTTAACAC	17	16S_EC_105_ 126 R	TACGCATTACTCACCCGTC	361
	16S_EC_314	CACTGGAACTGAGACAC		16S_EC_556_	CTTTACGCCCAGTAATTCC	1
243	332 F	GG	18	575_R	G	385
7	16S_EC_38_ 64 F	GTGGCATGCCTAATAC.A TGCAAGTCG	19	16S_EC_101_ 120 R	TTACTCACCCGTCCGCCGC	357
,	16S EC 405	TGAGTGATGAAGGCCTT	13	16S EC 507	CGGCTGCTGGCACGAAGTT	337
279	432_F	AGGGTTGTAAA	20	527_R	AG	384
_	16S_EC_49_	TAACACATGCAAGTCGA		16S_EC_104_		
8	68_F 16S EC 49	ACG TAACACATGCAAGTCGZA	21	120_R 16S EC 1061	TTACTCACCCGTCCGCC	359
275	68_F	ACG	21	1078 R	ACGACACGAGCTGACGAC	364
	16S_EC_49_	TAACACATGCAAGTCGA		16S_EC_880_		
274	68 F	ACG	21	894 R	CGTACTCCCCAGGCG	390
244	16S_EC_518 536 F	CCAGCAGCCGCGGTAA'T	22	16S_EC_774_ 795 R	GTATCTAATCCTGTTTGCT CCC	387
	16S_EC_556	CGGAATTACTGGGCGTA		16S_EC_683_		T
226	_575_F	AAG	23	700_R	CGCATTTCACCGCTACAC	386
264	16S_EC_556 575 F	CGGAATTACTGGGCGTZA AAG	23	16S_EC_774_ 795 R	GTATCTAATCCTGTTTGCT CCC	387
204	16S EC 683	GTGTAGCGGTGAAATGC	22	16S EC 1303	CGAGTTGCAGACTGCGATC	301
273	_700_F	G	24	_1323_R	CG	377
0	16S_EC_683	GTGTAGCGGTGAAATGC		16S_EC_774_	GTATCTAATCCTGTTTGCT	207
9	_700_F 16S_EC_683	G GTGTAGCGGTGAAATGC	24	795_R 16S_EC_880	ccc	387
158	700 F	G	24	894 R	CGTACTCCCCAGGCG	390
	16S_EC_683	GTGTAGCGGTGAAATGC		16S_EC_967_		
245	700 F	G CACACHURICANICOTICC	24	985_R	GGTAAGGTTCTTCGCGTTG	396
294	16S_EC_7_3	GAGAGTTTGATCCTGGC TCAGAACGAA	25	16S_EC_101_ 122 R	TGTTACTCACCCGTCTGCC ACT	358
	16S_EC_713	AGAACACCGATGGCGAZA		16S_EC_789_	CGTGGACTACCAGGGTATC	
10	732 F	GGC	26	809 R	TA	388
	16S_EC_713 732 TMOD	TAGAACACCGATGGCGZA		16S EC 789	TCGTGGACTACCAGGGTAT	
346	F F	AGGC	27	809 TMOD R	CTA	389
228	16S_EC_774	GGGAGCAAACAGGATTZA	28	16S_EC_880_	CGTACTCCCCAGGCG	390

PCT/US2005/005356

	795 F	GATAC	T	894 R		
	16S EC 785	GGATTAGAGACCCTGGT		16S EC 880		
11	806 F	AGTCC	29	897_R	GGCCGTACTCCCCAGGCG	391
	16S_EC_785					
247	_806_TMOD_	TGGATTAGAGACCCTGG	30	16S_EC_880_ 897 TMOD R	TGGCCGTACTCCCCAGGCG	392
347	F 16S EC 785	TAGTCC GGATTAGATACCCTGGT	30	16S EC 880	IGGCCGIACICCCCAGGCG	392
12	810 F	AGTCCACGC	31	897 2 R	GGCCGTACTCCCCAGGCG	391
	16S EC 789	TAGATACCCTGGTAGTC	 	16S_EC_880_		
13	810_F	CACGC	32	894 R	CGTACTCCCCAGGCG	390
	16S_EC_789	TAGATACCCTGGTAGTC	20	16S_EC_882_	GGGA GGGMA GWCCCCA CC	393
255	810 F 16S EC 791	GATACCCTGGTAGTCCA	32	899 R 16S EC 886	GCGACCGTACTCCCCAGG	393
254	812 F	CACCG	33	904 R	GCCTTGCGACCGTACTCCC	394
	16S EC 8 2	AGAGTTTGATCATGGCT		16S_EC_1525		
248	7_F	CAG	34	1541 R	AAGGAGGTGATCCAGCC	382
	16S_EC_8_2	AGAGTTTGATCATGGCT	24	16S_EC_342_	A GEOGRACIO GENERALIA CONTRA C	383
242	7 F	CAG ACCACGCCGTAAACGAT	34	358 R 16S EC 909	ACTGCTGCCTCCCGTAG CCCCCGTCAATTCCTTTGA	383
253	16S_EC_804 822 F	GA	35	929 R	GT	395
2.55	16S EC 937	AAGCGGTGGAGCATGTG		16S EC 1220	ATTGTAGCACGTGTGTAGC	
246	954_F	G	36	1240 R	cc	375
	16S_EC_960	TTCGATGCAACGCGAAG	0.77	16S_EC_1054	ACGAGCTGACGACAGCCAT	262
14	981_F	AACCT	37	1073_R 16S EC 1054	G	362
	16S_EC_960 981 TMOD	TTTCGATGCAACGCGAA		1073 TMOD	TACGAGCTGACGACAGCCA	
348	F	GAACCT	38	R	TG	363
	16S_EC_969	ACGCGAAGAACCTTA		16S_EC_1061		
119	985 1P F	U ^a C	39	1078_2P_R 16S_EC_1061	ACGACACGAGUªCªGACGAC	364
15	16S_EC_969 985 F	ACGCGAAGAACCTTACC	39	1078 R	ACGACACGAGCTGACGAC	364
13	16S_EC_969	ACCCOLLIGITATION 1110C		16S EC 1389		
272	_985_F	ACGCGAAGAACCTTACC	40	1407_R	GACGGGCGGTGTGTACAAG	378
	16S_EC_971	GCGAAGAACCTTACCAG		16S_EC_1043	ACAACCATGCACCACCTGT	0.00
344	990_F	GTC	41	1062 R 16S EC 1064	С	360
120	16S_EC_972 985 2P F	CGAAGAAUªUªTTACC	42	105_EC_1064 1075 2P R	ACACGAGU ^a C ^a GAC	365
120	16S EC 972	COMMOND O TIMOS		16S EC 1064		
121	_985_F	CGAAGAACCTTACC	42	1075 R	ACACGAGCTGAC	365
	23S_BRM_11	TGCGCGGAAGATGTAAC		23S_BRM_117	TCGCAGGCTTACAGAACGC	207
1073	10 1129 F 23S BRM 51	GGG TGCATACAAACAGTCGG	43	6 1201 R 23S BRM 616	TCTCCTA TCGGACTCGCTTTCGCTAC	397
1074	5 536 F	AGCCT	44	635 R	G ICGGACICGCIIICGCIAC	398
	23S BS -	AAACTAGATAACAGTAG		23S_BS_5_21		
241	68 -44 F	ACATCAC	45	R	GTGCGCCCTTTCTAACTT	399
005	23S_EC_160	TACCCCAAACCGACACA	1.0	23S_EC_1686	GCDDGEGGGGAACDAAC	402
235	2_1620_F 23S_EC_168	GG CCGTAACTTCGGGAGAA	46	1703_R 23S_EC_1828	CCTTCTCCCGAAGTTACG	402
236	5 1703 F	GG	47	1842 R	CACCGGGCAGGCGTC	403
	23S EC 182	CTGACACCTGCCCGGTG		23S_EC_1906		
16	6 1843 F	С	48	1924 R	GACCGTTATAGTTACGGCC	404
	23S_EC_182 6_1843_TMO	ТОТСА СА СОТСООССО		23S_EC_1906 1924 TMOD	TGACCGTTATAGTTACGGC	
349	D F	TCTGACACCTGCCCGGT GC	49	R I I I I I I I I I I I I I I I I I I I	C	405
	23S EC 182			23S EC 1929	CCGACAAGGAATTTCGCTA	
237	7_1843_F	GACGCCTGCCCGGTGC	50	1949 R	CC	407
0.0	23S_EC_183	ACCTGCCCAGTGCTGGA		23S_EC_1919	mocoma comma coa coom	406
249	1 1849 F 23S EC 187	AG GGGAACTGAAACATCTA	51	1936 R 23S EC 242	TCGCTACCTTAGGACCGT	400
234	235_EC_187	AGTA	52	256 R	TTCGCTCGCCGCTAC	408
	23S_EC_23_			23S_EC_115_		
233	37_F	GGTGGATGCCTTGGC	53	130 R	GGGTTTCCCCATTCGG	401
220	23S_EC_243	AAGGTACTCCGGGGATA	54	23S_EC_2490 2511 R	AGCCGACATCGAGGTGCCA AAC	409
238	4 2456 F 23S EC 258	ACAGGC TAGAACGTCGCGAGACA	54	23S_EC_2658	AGTCCATCCCGGTCCTCTC	303
257	6_2607_F	GTTCG	55	_2677_R	G	411
	23S_EC_259	GACAGTTCGGTCCCTAT		23S_EC_2653		1
239	9 2616 F	C C C C C C C C C C C C C C C C C C C	56	2669 R	CCGGTCCTCTCGTACTA	410
18	23S_EC_264 5 2669 2 F	CTGTCCCTAGTACGAGA GGACCGG	57	23S_EC_2751 2767 R	GTTTCATGCTTAGATGCTT TCAGC	417
1	23S EC 264	TCTGTCCCTAGTACGAG	 	23S EC 2744		† · · · ·
17	5_2669_F	AGGACCGG	58	2761 R	TGCTTAGATGCTTTCAGC	414
1	23S_EC_264	CTGTTCTTAGTACGAGA		23S_EC_2745	TTCGTGCTTAGATGCTTTC	415
118	6_2667_F	GGACC	59 60	2765 R	AG TTTCGTGCTTAGATGCTTT	415
360	23S EC 264	TCTGTTCTTAGTACGAG	1 00	23S_EC_2745	1 111CG1GC11AGA1GC1TT	1 3 4 0

	C 0.667 mms	20200		2765 TMOD	CAG	
	6_2667_TMO D F	AGGACC		2765_IMOD_ R	CAG	
147	23S_EC_265 2_2669_F	CTAGTACGAGAGGACCG G	61	23S_EC_2741 _2760_R	ACTTAGATGCTTTCAGCGG T	413
240	23S_EC_265 3 2669 F	TAGTACGAGAGGACCGG	62	23S_EC_2737 2758 R	TTAGATGCTTTCAGCACTT ATC	412
20	23S_EC_493 518 2 F	GGGGAGTGAAAGAGATC CTGAAACCG	63	23S_EC_551_ 571 2 R	ACAAAAGGCACGCCATCAC	418
	23S_EC_493	GGGGAGTGAAAGAGATC		23S_EC_551_	ACAAAAGGTACGCCGTCAC	419
19	518 F 23S_EC_971	CTGAAACCG CGAGAGGGAAACAACCC	63	571 R 23S_EC_1059		
21	992 F AB MLST-	AGACC	64	1077 R	TGGCTGCTTCTAAGCCAAC	400
1150	11- OIF007_120	TCGTGCCCGCAATTTGC	65	AB_MLST-11- OIF007_1266 1296 R	TAATGCCGGGTAGTGCAAT CCATTCTTCTAG	420
1158	2_1225_F AB_MLST-	ATAAAGC	65	R	CCATTCTTCTAG	420
1159	11- OIF007_120 2 1225 F	TCGTGCCCGCAATTTGC ATAAAGC	65	AB_MLST-11- OIF007_1299 1316 R	TGCACCTGCGGTCGAGCG	421
2200	AB_MLST-					
1160	11- OIF007_123 4 1264 F	TTGTAGCACAGCAAGGC AAATTTCCTGAAAC	66	AB_MLST-11- OIF007_1335 1362 R	TGCCATCCATAATCACGCC ATACTGACG	422
	AB_MLST-			AD MICH-11-		
1161	OIF007_132 7_1356_F	TAGGTTTACGTCAGTAT GGCGTGATTATGG	67	AB_MLST-11- OIF007_1422 1448_R	TGCCAGTTTCCACATTTCA CGTTCGTG	423
	AB_MLST- 11-			AB MLST-11-		
1162	OIF007_134 5 1369 F	TCGTGATTATGGATGGC AACGTGAA	68	OIF007_1470 1494 R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1102	AB_MLST-	ANOTOM			1111000	
	11- OIF007 135	TTATGGATGGCAACGTG		AB_MLST-11- OIF007_1470	TCGCTTGAGTGTAGTCATG	
1163	1_1375_F AB MLST-	AAACGCGT	69	_1494_R	ATTGCG	424
	11=	TOTAL CONTROL OF THE		AB_MLST-11-	macamman amama aman ma	İ
1164	OIF007_138 7_1412_F	TCTTTGCCATTGAAGAT GACTTAAGC	70	OIF007_1470 1494_R	TCGCTTGAGTGTAGTCATG ATTGCG	424
	AB_MLST-			AB MLST-11-		
1165	OIF007_154 2 1569 F	TACTAGCGGTAAGCTTA AACAAGATTGC	71	OIF007_1656 1680 R	TGAGTCGGGTTCACTTTAC CTGGCA	425
	AB_MLST-					
	11- OIF007_156	TTGCCAATGATATTCGT		AB_MLST-11- OIF007_1656	TGAGTCGGGTTCACTTTAC	
1166	6 1593 F AB MLST-	TGGTTAGCAAG	72	1680_R	CTGGCA	425
	11-	TCGGCGAAATCCGTATT		AB_MLST-11- OIF007 1731	TACCGGAAGCACCAGCGAC	
1167	OIF007_161 1_1638_F	CCTGAAAATGA	73	1757_R	ATTAATAG	427
	AB_MLST- 11-			AB_MLST-11-		
1168	OIF007_172 6 1752 F	TACCACTATTAATGTCG CTGGTGCTTC	74	OIF007_1790 1821 R	TGCAACTGAATAGATTGCA GTAAGTTATAAGC	428
1100	AB_MLST-					
	11- OIF007_179	TTATAACTTACTGCAAT CTATTCAGTTGCTTGGT		AB_MLST-11- OIF007_1876	TGAATTATGCAAGAAGTGA	
1169	2 1826 F AB MLST-	G	75	1909 R	TCAATTTTCTCACGA	429
	11-	TTATAACTTACTGCAAT CTATTCAGTTGCTTGGT		AB_MLST-11- OIF007 1895	TGCCGTAACTAACATAAGA	
1170	OIF007_179 2_1826_F	G CTATTCAGTTGCTTGGT	75	1927_R	GAATTATGCAAGAA	430
	AB_MLST- 11-			AB_MLST-11-		
1152	OIF007_185 214 F	TATTGTTTCAAATGTAC AAGGTGAAGTGCG	76	OIF007_291_ 324 R	TCACAGGTTCTACTTCATC AATAATTTCCATTGC	432
	AB_MLST-					
	11- OIF007_197	TGGTTATGTACCAAATA		AB_MLST-11- OIF007_2097	TGACGGCATCGATACCACC	
1171	0 2002 F AB MLST-	CTTTGTCTGAAGATGG	77	2118 R	GTC	431
	11- OIF007 206	TGAAGTGCGTGATGATA		AB_MLST-11- OIF007_318_	TCCGCCAAAAACTCCCCTT	
1154	_239_F	TCGATGCACTTGATGTA	78	344_R	TTCACAGG	433

	AB MLST-				-	
	11-		ŀ	AB_MLST-11-		
	OIF007_260	TGGAACGTTATCAGGTG		OIF007 364	T TGCAATCGACATATCCAT	
1153	289 F	CCCCAAAAATTCG	79	393 R	T TCACCATGCC	434
	AB MLST-		<u> </u>			
	11-			AB MLST-11-		
	OIF007 522	TCGGTTTAGTAAAAGAA		OIF007 587	TTCTGCTTGAGGAATAGTG	
1155	552 F	CGTATTGCTCAACC	80	610 R	CGTGG	435
	AB MLST-					
	11-			AB MLST-11-		
	OIF007_547	TCAACCTGACTGCGTGA	<u> </u>	OIF007 656	TACGTTCTACGATTTCTTC	
1156	571 F	ATGGTTGT	81	686 R	A TCAGGTACATC	436
1130	AB MLST-	AIGGIIGI	01	000_K	ATCHGGIIIGH	
	11-			7 D MT OT _ 11 _		
		man nagrana a communac		AB_MLST-11-	T*ACAACGTGATAAACACGA	
1157	OIF007_601	TCAAGCAGAAGCTTTGG		OIF007_710_		437
1157	627 F	AAGAAGAAGG	82	736_R	CCAGAAGC	437
	AB_MLST-					1
	11-	l		AB_MLST-11-		
	OIF007_62_	TGAGATTGCTGAACATT		OIF007_169_	TTGTACATTTGAAACAATA	l
1151	91_F	TAATGCTGATTGA	83	203_R	T GCATGACATGTGAAT	426
	ASD_FRT_1_	TTGCTTAAAGTTGGTTT		ASD_FRT_86_	T GAGATGTCGAAAAAAACG	
1100	29_F	TATTGGTTGGCG	84	116_R	TTGGCAAAATAC	439
	ASD_FRT_43	TCAGTTTTAATGTCTCG		ASD_FRT_129	TCCATATTGTTGCATAAAA	l
1101	76 F	TATGATCGAATCAAAAG	85	_156_R	CCTGTTGGC	438
	ASPS EC 40	GCACAACCTGCGGCTGC		ASPS EC 521		
291	5 422 F	G	86	538 R	A.CGGCACGAGGTAGTCGC	440
	BONTA X520	· · · · · · · · · · · · · · · · · · ·				
	66 450 473	TCTAGTAATAATAGGAC	[BONTA X5206	TAACCATTTCGCGTAAGAT	
485	F	CCTCAGC	87	6 517 539 R	TCAA	441
	BONTA X520	T*Ua*CaGTAATAATAG	1	BONTA X5206		
	66 450 473	GA*Ua*Ua*Ua*Ca*UaAG		6 517 539P	TAACCA*Ca*Ca*Ca*UaGC	ŀ
486	P F	c	87	R R	GTAAGA*Ca*Ca*UaAA	441
100	BONTA X520		101		31111011 0 0 0 1111	11
	66 538 552		l	BONTA X5206		
481	F	TATICCCTCTACTACTCAA	88	6 647 660 R	TGTTACTGCTGGAT	443
401		TATGGCTCTACTCAA	00	BONTA X5206	I GITACIGCIGGAT	443
	BONTA_X520	#3 + G3CCC+ G3+173+ G32	İ		TG*Ca*CaA*Ua*CaC*Ua*C	
400	66_538_552	TA*CaGGC*Ca*Ua*CaA		6_647_660₽_		442
482	PF	*Ua*Ca*UaAA	88	R	a GGAT	443
	BONTA X520				i e	
	_					
	66_591_620	TGAGTCACTTGAAGTTG		BONTA_X5206	TCATGTGCTAATGTTACTG	
487	66_591_620 F	TGAGTCACTTGAAGTTG ATACAAATCCTCT	89	BONTA_X5206 6_644_671_R	T*CATGTGCTAATGTTACTG C*TGGATCTG	442
487	66_591_620 F BONTA_X520	ATACAAATCCTCT	89	6 644 671 R		442
	66_59T_620 F BONTA_X520 66_70T_720	ATACAAATCCTCT GAATAGCAATTAATCCA		6 644 671 R BONTA_X5206	CTGGATCTG	
487	66_591_620 F BONTA_X520 66_701_720 F	ATACAAATCCTCT	89 90	6 644 671 R BONTA_X5206 6 759 775 R		442
	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520	ATACAAATCCTCT GAATAGCAATTAATCCA AAT		6 644 671 R BONTA_X5206 6 759 775 R BONTA_X5206	CTGGATCTG T-TACTTCTAACCCACTC	
483	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720	GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C	90	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_	T*TACTTCTAACCCACTC T*TA*U**C**C**U**C*AA*	444
	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT		6 644 671 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775P R	CTGGATCTG T-TACTTCTAACCCACTC	
483	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053	GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C	90	6 644 671 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775P R CAF1 AF0539	T*TACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**U**C*C*C*	444
483	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F	GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C	90	6 644 671 R BONTA_X5206 6 759 775 R BONTA_X5206 6_759_775P_ R CAF1_AF0539 47_33494_33	T*TACTTCTAACCCACTC T*TA*U**C**C**U**C*AA*	444
483	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U**U*AAAT	90	6 644 671 R BONTA_X5206 6 759 775 R BONTA_X5206 6 759_775P_R CAF1_AF0539 47_33494_33 514_R	T*TACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**U**C*C*C*	444
483	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*U*AAAT TCAGTTCCGTTATCGCC	90	6 644 671 R BONTA_X5206 6 759 775 R BONTA_X5206 6_759_775P_ R CAF1_AF0539 47_33494_33	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**C**C**C**C**AA* U**U**U**A*U**C*C* TGCGGGCTGGTTCAACAAG	444
483 484 774	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U*V*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG	90	BONTA_X5206 6 759 775 R BONTA_X5206 6 759 775P_R CAF1_AF0539 47_33494_33 514 R CAF1_AF0539 47_33499_33	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG	444
483	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33430 F CAF1_AF053 947_33435_ 33457_F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*aG*U*AA*C**C *AA*C*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT	90	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_ R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**C**C**C**C**AA* U**U**U**A*U**C*C* TGCGGGCTGGTTCAACAAG	444
483 484 774	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P_F CAF1_AF053 947_33407_ 33430_F CAF1_AF053 947_33435_ 33457_F CAF1_AF053	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U*V*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG	90	BONTA_X5206 6 759 775 R BONTA_X5206 6 759 775P_R CAF1_AF0539 47_33494_33 514 R CAF1_AF0539 47_33499_33	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG	444
483 484 774	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33430 F CAF1_AF053 947_33435_ 33457_F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U*V*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG	90	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_ R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG	444
483 484 774	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P_F CAF1_AF053 947_33407_ 33430_F CAF1_AF053 947_33435_ 33457_F CAF1_AF053	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG	90	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC	444
483 484 774 776	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_ 33457 F CAF1_AF053 947_33515_	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*XU*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG	90 90 91	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U**C*C*C* TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA	444 444 445
483 484 774 776	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_ 33457 F CAF1_AF053 947_33515_ 33541 F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*XU*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG	90 90 91	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U**C*C*C* TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA	444 444 445
483 484 774 776	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_ 33457 F CAF1_AF053 947_33515_ 33541 F CAF1_AF053	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC	90 90 91	BONTA_X5206 6 759 775 R BONTA_X5206 6 759 775 P R CAF1_AF0539 47_33494_33 514 R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539	CTGGATCTG TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA AGAGTAAG	444 444 445
483 484 774 776	BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33430 F CAF1_AF053 947_33435_ 33457_F CAF1_AF053 947_33515_ 33541_F CAF1_AF053 947_33541_F CAF1_AF053 947_33687_	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AAA*C**C *AA*C**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC	90 90 91 92	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 782_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**C*C*C* TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC ACACTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA	444 444 445 446 447
483 484 774 776 775	BONTA_X520 66_701_720 F BONTA_X520 66_701_720 PF CAF1_AF053 947_33430 F CAF1_AF053 947_33435 3457_F CAF1_AF053 947_33515 33541 F CAF1_AF053 947_33687 33716_F CAPC_BA_10	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT	90 90 91 92 93	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 782_R CAPC_BA_180	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG	444 444 445 446 447
483 484 774 776	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407 33430 F CAF1_AF053 947_33435 3457_F CAF1_AF053 947_33515 33541_F CAF1_AF053 947_33687 33716_F CAPC_BA_10 4_131_F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*AU*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTGTTTAATCAGCC GTTATTTAGCACTCGTT	90 90 91 92	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 782_R CAPC_BA_180 205_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACG	444 444 445 446 447
483 484 774 776 775 777	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 PF CAF1_AF053 947_33430 F CAF1_AF053 947_33435 33457 F CAF1_AF053 947_33515 33541 F CAF1_AF053 947_33516 33716 F CAF1_AF053 947_33515 33716 F CAF1_AF053	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**Y*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTAGCACTGTTTTAATCAGCC ACTCGTTTTTAATCAGCC ACTCGTTTTTAATCAGCC	90 90 91 92 93 94	6 644 671 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P. CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACG TGAATCTTGAAACACCATA	444 444 445 446 447 448 449
483 484 774 776 775	BONTA X520 66_701_720 F BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33407 33430 F CAF1 AF053 947_33435 33457 F CAF1 AF053 947_33515 33541 F CAF1 AF053 947_33697 33716 F CAPC_BA_10 4 131 F CAPC_BA_11 4 133 F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*A*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG	90 90 91 92 93	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 762_R CAF1_AF0539 47_33755_33 762_R CAF1_AF0539 47_33755_33 762_R CAPC_BA_180 205_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAACCATA CGTAACG TGAATCTTGAAACACCATA CG	444 444 445 446 447
483 484 774 776 775 777 22 23	BONTA X520 66_701_720 F BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33407 33430 F CAF1 AF053 947_33435 33457 F CAF1 AF053 947_33515 33541 F CAF1 AF053 947_33687 33716 F CAPC_BA_10 4 131 F CAPC_BA_11 4 133 F CAPC_BA_27	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*V*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG GATTATTGTTATCCTGT	90 90 91 92 93 94 95	BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P BONTA X5206 6 759 775P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185 205 R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U**C*C*C*C*C*C*C*C*C*C*C*C*C*C*C	444 444 445 446 447 448 449
483 484 774 776 775 777	BONTA X520 66_701_720 F BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33430 F CAF1 AF053 947_33435_ 33457 F CAF1 AF053 947_33515_ 33541 F CAF1 AF053 947_33687_ 33716 F CAPC BA 10 4 131 F CAPC BA 10 4 133 F CAPC BA_27 4 303 F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*A*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG	90 90 91 92 93 94	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 762_R CAF1_AF0539 47_33755_33 762_R CAF1_AF0539 47_33755_33 762_R CAPC_BA_180 205_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAACCATA CGTAACG TGAATCTTGAAACACCATA CG	444 444 445 446 447 448 449
483 484 774 776 775 777 22 23	BONTA X520 66_701_720 F BONTA X520 66_701_720 P BONTA X520 66_701_720 P F CAF1 AF053 947_33430 F CAF1 AF053 947_33435 33457_F CAF1 AF053 947_33515 33541_F CAF1 AF053 947_33687 33716_F CAPC_BA_10 4_131_F CAPC_BA_11 4_133_F CAPC_BA_27 4_303_F CAPC_BA_27 4_303_F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCAGTTCATACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG	90 90 91 92 93 94 95	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 782_R CAPC_BA_180_205_R CAPC_BA_180_205_R CAPC_BA_185_205_R CAPC_BA_185_205_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACG TGAATCTTGAAACACCATA CG TGAATCTTGTCTTTGAAT TGTATTTGC	444 444 445 446 447 448 449
483 484 774 776 775 777 22 23 24	BONTA X520 66_701_720 F BONTA X520 66_701_720 P BONTA X520 66_701_720 P CAF1_AF053 947_33407 33430 F CAF1_AF053 947_33435 3457 F CAF1_AF053 947_33515 33541 F CAF1_AF053 947_33687 33716 F CAPC_BA_10 4 131 F CAPC_BA_11 4 133 F CAPC_BA_27 4 303 F CAPC_BA_27 4 303 TMOD	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTG	90 90 91 92 93 94 95 96	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775_P R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 782_R CAPC_BA_180 205_R CAPC_BA_185 205_R CAPC_BA_349 376_R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACG TGAATCTTGAAACACCATA CG TGAATCTTGTCTTTGAAT TGTAATTGC TGTAACCCTTGTCTTTGAAT	444 444 445 446 447 448 449 450 451
483 484 774 776 775 777 22 23	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 PF CAF1_AF053 947_33407 33430_F CAF1_AF053 947_33435_ 3457_F CAF1_AF053 947_335515 33541_F CAF1_AF053 947_33687 33716_F CAPC_BA_10 4_131_F CAPC_BA_11 4_133_F CAPC_BA_11 4_133_F CAPC_BA_27 4_303_F CAPC_BA_27 4_303_TMOD F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**U*AU*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTGCT TTTAATCAGCC ACTCGTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTGT TTATGCCATTTGAG TGATTATTGTTATCCTGT TTATGCCATTTGAG	90 90 91 92 93 94 95	BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185 205 R CAPC BA 349 376 R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CG TGAATCTTGAAACACCATA CG TGAATCTTGTTTTGAAT TGTATTTGC	444 444 445 446 447 448 449
483 484 774 776 775 777 22 23 24 350	BONTA_X520 66_701_720 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407 33430 F CAF1_AF053 947_33435 33457 F CAF1_AF053 947_33515 33541 F CAF1_AF053 947_33515 GAF1_AF053 947_33515 GAF1_AF053 947_33515 GAF1_AF053 947_33515 GAF1_AF053 947_33515 GAF1_AF053 947_33515 GAF1_AF053 947_33515 CAPC_BA_10 4 131 F CAPC_BA_10 4 133 F CAPC_BA_11 4 133 F CAPC_BA_27 4 303 F CAPC_BA_27 4 303 TMOD F CAPC_BA_27	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C**Y*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTAGCACTGCTTTAATCAGCC ACTCGTTTTAATCAGCC ACTCGTTTTAATCAGCC TATGCCATTTGAG TATGCCATTTGAG TGATTATTGTTATCCTGT TTATGCCATTTGAG TTATGCCATTTGAG TTATTGCCATTTGAG TTATTGTTATCCTGTTA	90 90 91 92 93 94 95 96 97 98	6 644 671 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P. CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 180 205 R CAPC BA 349 376 R CAPC BA 349 376 TMOD R CAPC BA 358	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CG TGAATCTTGAAACACCATA CG TGTAACCCTTGTCTTTGAAT TGTATTTGC TGTAACCCTTGTCTTTGAA TTGTATTTGC GGTAACCCTTGTCTTTGAA	444 444 445 446 447 448 449 450 451
483 484 774 776 775 777 22 23 24	BONTA X520 66_701_720 F BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33407 33430 F CAF1 AF053 947_33435 33457 F CAF1 AF053 947_33515 33541 F CAF1 AF053 947_33516 CAF1 AF053 947_33687 33716 F CAPC BA 10 4_131 F CAPC BA 11 4_133 F CAPC BA 11 4_133 F CAPC BA 27 4_303 F CAPC BA 27 4_303 TMOD F CAPC BA 27 6_296 F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U*A*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCAGTTCCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAATCAGC ACTCGTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTG TTATTGCCATTTGAG TTATTGCCATTTGAG TTATTGTTATCCTGT TTATTGCCATTTGAG TTATTGCCATTTGAG TTATTGCCATTTGAG TTATTGCCATTTGAG TGCC	90 90 91 92 93 94 95 96	6 644 671 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33755 33 621 R CAF1 AF0539 47 33755 33 782 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185 205 R CAPC BA 349 376 R CAPC BA 349 376 TMOD R CAPC BA 358 377 R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CG TGAATCTTGAAACACCATA CG TGAATCTTGTTTTGAAT TGTATTTGC	444 444 445 446 447 448 449 450 451
483 484 774 776 775 777 22 23 24 350 25	BONTA X520 66_701_720 F BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33430 F CAF1 AF053 947_33435_ 33457 F CAF1 AF053 947_33515_ 33541 F CAF1 AF053 947_33687_ 33716 F CAPC BA 10 4 131 F CAPC BA 10 4 133 F CAPC BA_27 4 303 F CAPC BA_27 4 303 TMOD F CAPC BA_27 6 296 F CAPC_BA_28	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C AAA*C*U*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCAGTTCATACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTG TTATTGCCATTTGAG TGATTATTGTTATCCTG TTATTGCCATTTGAG TGATTATTGTTATCCTGT TGCC GTTATTCCTGTTAT	90 90 91 92 93 94 95 96 97 98 99	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775_P R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539 47_33499_33 517_R CAF1_AF0539 47_33595_33 621_R CAF1_AF0539 47_33755_33 782_R CAF1_AF0539 47_33755_33 782_R CAPC_BA_180_205_R CAPC_BA_180_205_R CAPC_BA_185_205_R CAPC_BA_185_205_R CAPC_BA_349_376_R CAPC_BA_349_376_TMOD_R CAPC_BA_358_377_R CAPC_BA_358_377_R CAPC_BA_361	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACG TGAATCTTGAAACACCATA CG GTAACCCTTGTCTTTGAAT TGTATTTGC GGTAACCCTTGTCTTTGAA TTGTATTTGC GGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA T	444 444 445 446 447 448 449 450 451 452 453
483 484 774 776 775 777 22 23 24 350	BONTA X520 66_701_720 F BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33407 33430 F CAF1 AF053 947_33435 33457 F CAF1 AF053 947_33515 33541 F CAF1 AF053 947_33687 33716 F CAPC_BA_10 4 131 F CAPC_BA_11 4 133 F CAPC_BA_27 4_303 F CAPC_BA_27 4_303 TMOD F CAPC_BA_27 6_296 F CAPC_BA_28 1_301_F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCAGTTCATACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTG TTATTGCACTTTTATCCTG TTATGCCATTTGAG TGATTATTGTTATCCTG TTATTGCACTCTTATTGCCATTTGAG TTATTGTTATCCTGTTATTGCCA TTTTG	90 90 91 92 93 94 95 96 97 98	BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 762 R CAPC BA 180 205 R CAPC BA 185 205 R CAPC BA 349 376 TMOD R CAPC BA 349 376 TMOD R CAPC BA 358 377 R CAPC BA 361 378 R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA** U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CG TGAATCTTGAAACACCATA CG TGTAACCCTTGTCTTTGAAT TGTATTTGC TGTAACCCTTGTCTTTGAA TTGTATTTGC GGTAACCCTTGTCTTTGAA	444 444 445 446 447 448 449 450 451
483 484 774 776 775 777 22 23 24 350 25 26	BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33430 F CAF1 AF053 947_33435 33457_F CAF1 AF053 947_33515 33541 F CAF1 AF053 947_33541 F CAF1 AF053 947_33687 33716_F CAPC_BA_10 4_131_F CAPC_BA_11 4_133_F CAPC_BA_27 4_303_TMOD F CAPC_BA_27 6_296_F CAPC_BA_28 1_301_F CAPC_BA_28 1_301_F CAPC_BA_31	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTG TTATTGCCATTTGAG TTATTGTTATCCTGTTATTGCCA TTATTGTTATCCTGTTATTGCCATTTGAG CCGTTGTTATCCTGTTATTCCTGTTATTGCCATTTGAG TTATTGTTATCCTGTTATTCCTGTTATTGCCATTTGCCATTTGAG CCGTTGTTATTCCTGTTATGCCA TTTTG CCCGTGGTATTGGAGTTA	90 90 91 92 93 94 95 96 97 98 99 100	BONTA X5206 6 759 775 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33755 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185 205 R CAPC BA 349 376 R CAPC BA 349 376 TMOD R CAPC BA 358 377 R CAPC BA 361 378 R CAPC BA 361 378 R CAPC BA 361	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACC TGAATCTTGTCTTTGAAT TGTATTTGC GGTAACCCTTGTCTTTGAA TTGTAATTTGC GGTAACCCTTGTCTTTGAA TGTAATTTGC GGTAACCCTTGTCTTTGAA T	444 444 445 446 447 448 449 450 451 452 453
483 484 774 776 775 777 22 23 24 350 25 26 27	66_591_620 F BONTA_X520 66_701_720 F BONTA_X520 66_701_720 PF CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_ 33457 F CAF1_AF053 947_33515_ 33541 F CAF1_AF053 947_33687_ 33716 F CAPC_BA_10 4 131 F CAPC_BA_11 4 133 F CAPC_BA_11 4 133 F CAPC_BA_27 4 303_F CAPC_BA_27 4 303_TMOD F CAPC_BA_27 6 296 F CAPC_BA_28 1 301 F CAPC_BA_28 1 301 F CAPC_BA_28 1 301 F CAPC_BA_31 5 334 F	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTGT TTTAATCAGCC ACTCGTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTGT TTATTGCCATTTGAG TGATTATTGTTATCCTG TTATTGCCATTTGAG TTATTGCCATTTGAG TCCC GTTATCCTGTTATCCTGT TTTTTTTTTT	90 90 91 92 93 94 95 96 97 98 99 100 101	BONTA X5206 6 759 775 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185 205 R CAPC BA 349 376 R CAPC BA 349 376 TMOD R CAPC BA 358 377 R CAPC BA 361 378 R	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACG TGAATCTTGAAACACCATA CG TGAATCTTGTCTTTGAAT TGTATTTGC TGTAACCCTTGTCTTTGAA TTGTATTTGC GGTAACCCTTGTCTTTGAA TGTATTTGC TGGTAACCCTTGTCTTTGAA TGTATTTGC TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGTAACCCTTGTCTTTGAA TGGGTAACCCTTGTCTTTG	444 444 445 446 447 448 449 450 451 452 453 454
483 484 774 776 775 777 22 23 24 350 25 26	BONTA X520 66_701_720 F BONTA X520 66_701_720 P F CAF1 AF053 947_33430 F CAF1 AF053 947_33435 33457_F CAF1 AF053 947_33515 33541 F CAF1 AF053 947_33541 F CAF1 AF053 947_33687 33716_F CAPC_BA_10 4_131_F CAPC_BA_11 4_133_F CAPC_BA_27 4_303_TMOD F CAPC_BA_27 6_296_F CAPC_BA_28 1_301_F CAPC_BA_28 1_301_F CAPC_BA_31	ATACAAATCCTCT GAATAGCAATTAATCCA AAT GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC GTTATTTAGCACTCGTT TTTAATCAGCC ACTCGTTTTTAATCAGC CCG GATTATTGTTATCCTGT TATGCCATTTGAG TGATTATTGTTATCCTG TTATTGCCATTTGAG TTATTGTTATCCTGTTATTGCCA TTATTGTTATCCTGTTATTGCCATTTGAG CCGTTGTTATCCTGTTATTCCTGTTATTGCCATTTGAG TTATTGTTATCCTGTTATTCCTGTTATTGCCATTTGCCATTTGAG CCGTTGTTATTCCTGTTATGCCA TTTTG CCCGTGGTATTGGAGTTA	90 90 91 92 93 94 95 96 97 98 99 100	BONTA X5206 6 759 775 R BONTA X5206 6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33755 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BA 180 205 R CAPC BA 185 205 R CAPC BA 349 376 R CAPC BA 349 376 TMOD R CAPC BA 358 377 R CAPC BA 361 378 R CAPC BA 361 378 R CAPC BA 361	TTACTTCTAACCCACTC TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAACAAC TCCTGTTTTATAGCCGCCA AGAGTAAG TCAAGGTTCTCACCGTTTA CCTTAGGAG TGAATCTTGAAACACCATA CGTAACC TGAATCTTGTCTTTGAAT TGTATTTGC GGTAACCCTTGTCTTTGAA TTGTAATTTGC GGTAACCCTTGTCTTTGAA TGTAATTTGC GGTAACCCTTGTCTTTGAA T	444 444 445 446 447 448 449 450 451 452 453

	80 1110 F	CTTTTGATTCTTT	·	6 1198 R	TCAGGATAAAAAGC	
	CJST CJ 12	AGTTATAAACACGGCTT		CJST CJ 134	TCGGTTTAAGCTCTAC_ATG	
1063	68 1299 F	TCCTATGGCTTATCC	103	9 1379 R	ATCGTAAGGATA_	457
	CJST_CJ_12	TGGCTTATCCAAATTTA		CJST_CJ_140	TTTGCTCATGATCTGC_ATG	
1050	90_1320_F	GATCGTGGTTTTAC	104	6 1433 R	AAGCATAAA	458
1050	CJST_CJ_16	TTATCGTTTGTGGAGCT	105	CJST_CJ_172	TGCAATGTGTGCTATG*TCA	459
1058	43 1670 F CJST CJ 16	AGTGCTTATGC TGCTCGAGTGATTGACT	1.05	4_1752_R CJST CJ 177	GCAAAAAGAT TGAGCGTGTGGAAAAG GAC	459
1045	68 1700 F	TTGCTAAATTTAGAGA	106	4 1799 R	TTGGATG	460
4045	CJST CJ 16	TGATTTTGCTAAATTTA		CJST CJ 179	TATGTGTAGTTGAGCT TAC	
1064	80 1713 F	GAGAAATTGCGGATGAA	107	5_1822_R	TACATGAGC	461
	CJST_CJ_18	TCCCAATTAATTCTGCC		CJST_CJ_198	TGGTTCTTACTTGCTT TGC	
1056	80_1910_F	ATTTTCCAGGTAT	108	1_2011_R	ATAAACTTTCCA	462
1054	CJST_CJ_20	TCCCGGACTTAATATCA	109	CJST_CJ_214 8 2174 R	TCGATCCGCATCACCA TCA	463
1054	60 2090 F CJST CJ 21	ATGAAAATTGTGGA TGCGGATCGTTTGGTGG	109	CJST CJ 224	TCCACACTGGATTGTA_ATT	403
1059	65 2194 F	TTGTAGATGAAAA	110	7 2278 R	TACCTTGTTCTTT	464
1000	CJST CJ 21	TCGTTTGGTGGTGGTAG	1	CJST CJ 228	TCTCTTTCAAAGCACC_ATT	
1046	71_2197_F	ATGAAAAAGG	111	3_2313_R	GCTCATTATAGT	465
	CJST_CJ_21	TAGATGAAAAGGGCGAA		CJST_CJ_228	TGAATTCTTTCAAAGC.ACC	
1057	85_2212_F	GTGGCTAATGG	112	3_2316_R	ATTGCTCATTATAGT	466
	CJST_CJ_26	TGCCTAGAAGATCTTAA		CJST_CJ_275	TTGCTGCCATAGCAAA GCC	4.67
1049	36 2668 F CJST CJ 26	TCCCCAGGACACCTGA	113	3_2777_R CJST CJ 276	TACAGC TGTGCTTTTTTTGCTG CCA	467
1062	78 2703 F	AATTTCAAC	114	0 2787 R	TAGCAAAGC	468
1002	CJST CJ 28	TGGCATTTCTTATGAAG		CJST_CJ_296	TGCTTCAAAACGCATT TTT	
1065	57 2887 F	CTTGTTCTTTAGCA	115	5 2998 R	ACATTTTCGTTAAAG	469
1877.00.00	CJST_CJ_28	TGAAGCTTGTTCTTTAG	1	CJST_CJ_297	TCCTCCTTGTGCCTCA_AAA	
1055	69_2895_F	CAGGACTTCA	116	9_3007_R	CGCATTTTTA	470
	CJST_CJ_32	TTTGATTTTACGCCGTC		CJST_CJ_335	TCAAAGAACCCGCACC TAA	45.
1051	67 3293 F	CTCCAGGTCG	117	6 3385 R	TTCATCATTTA	471
1061	CJST_CJ_36 0 393 F	TCCTGTTATCCCTGAAG TAGTTAATCAAGTTTGT	118	CJST_CJ_443 477 R	TACAACTGGTTCAAAA.ACA TTAAGCTGTAATTGTC	473
1001	0_393_E	TCCTGTTATCCCTGAAG	110	4//_K	TIAAGCIGIAATIGIC	373
	CJST CJ 36	TAGTTAATCAAGTTTGT		CJST CJ 442	TCAACTGGTTCAAAAA.CAT	
1048	0 394 F	Т	119	476 R	TAAGTTGTAATTGTCC	472
		TAGGCGAAGATATACAA				ĺ
	CJST_CJ_5_	AGAGTATTAGAAGCTAG		CJST_CJ_104	TCCCTTATTTTTTTTT CTA	
1052	39 F	A	120	_137_R	CTACCTTCGGATAAT	455
1047	CJST_CJ_58 4 616 F	TCCAGGACAAATGTATG AAAAATGTCCAAGAAG	121	CJST_CJ_663 692 R	TTCATTTTCTGGTCCA_AAG TAAGCAGTATC	474
1047	CJST CJ 59	TGAAAAATGTCCAAGAA	121	CJST CJ 711	TCCCGAACAATGAGTT GTA	4/4
1060	9 632 F	GCATAGCAAAAAAAGCA	122	743 R	TCAACTATTTTTAC	475
,	CTXA VBC 1	TCTTATGCCAAGAGGAC		CTXA VBC 19	TGCCTAACAAATCCCG TCT	
1096	17_142_F	AGAGTGAGT	123	4_218_R	GAGTTC	476
	CTXA_VBC_3	TGTATTAGGGGCATACA		CTXA_VBC_44	TGTCATCAAGCACCCC_AAA	l
1097	51_377_F	GTCCTCATCC	124	1_466_R	ATGAACT	477
20	CYA_BA_105 5 1072 F	GAAAGAGTTCGGATTGG G	105	CYA_BA_1112 1130 R	memmen cen meemmen mae	479
28	CYA BA 134	ACAACGAAGTACAATAC	125	CYA BA 1426	TGTTGACCATGCTTCT TAG CTTCTACATTTTTAGC CAT	4/3
277	9 1370 F	AAGAC	126	1447 R	CAC	480
	CYA BA 135	CGAAGTACAATACAAGA		CYA BA 1448	TGTTAACGGCTTCAAG-ACC	
30	3_1379_F	CAAAAGAAGG	127	_1467_R	C	482
	CYA_BA_135		1	CYA_BA_1448		
251	3_1379_TMO	TCGAAGTACAATACAAG	100	_1467_TMOD_	TTGTTAACGGCTTCAA GAC	402
351	D_F CYA BA 135	ACAAAAGAAGG ACAATACAAGACAAAAG	128	R CYA BA 1447	CC	483
31	9 1379 F	ACAATACAAGACAAAAG	129	1461 R	CGGCTTCAAGACCCC	481
<u> </u>	CYA BA 914	CAGGTTTAGTACCAGAA	1	CYA BA 999	ACCACTTTTAATAAGG TTT	
32	937 F	CATGCAG	130	1026_R	GTAGCTAAC	484
	CYA_BA_916	GGTTTAGTACCAGAACA		CYA_BA_1003	CCACTTTTAATAAGGT TTG	
33	935 F	TGC	131	_1025_R	TAGC	478
115	DNAK_EC_42	CGGCGTACTTCAACGAC	120	DNAK_EC_503	CGCGGTCGGCTCGTTGATG	405
115	8_449_F	AGCCA	132	_522_R GALE FRT 24	TCACCTACAGCTTTAA AGC	485
1102	GALE_FRT_1 68 199 F	TTATCAGCTAGACCTTT TAGGTAAAGCTAAGC	133	1 269 R	CAGCAAAATG	486
	GALE FRT 3	TCCAAGGTACACTAAAC	100	GALE FRT 39	TCTTCTGTAAAGGGTG-GTT	
1104	08_339_F	TTACTTGAGCTAATG	134	0_422_R	TATTATTCATCCCA	487
	GALE_FRT_8	TCAAAAAGCCCTAGGTA		GALE_FRT_90	TAGCCTTGGCAACATC.AGC	
1103	34_865_F	AAGAGATTCCATATC	135	1_925_R	AAAACT	488
1000	GLTA_RKP_1	TCCGTTCTTACAAATAG	126	GLTA_RKP_11	TTGGCGACGGTATACC CAT	400
1092	023 1055 F GLTA RKP 1	CAATAGAACTTGAAGC	136	29_1156_R	AGCTTTATA	489
	043_1072_2	TGGAGCTTGAAGCTATC		GLTA RKP 11	TGAACATTTGCGACGG TAT	
1093	F	GCTCTTAAAGATG	137	38 1162 R	ACCCAT	490
	 			·		

	GLTA_RKP_1 043 1072 3	TGGAACTTGAAGCTCTC		GLTA RKP 11	TGTGAACATTTGCGACGGT	
1094	_F	GCTCTTAAAGATG	138	38_1164_R	ATACCCAT	492
1090	GLTA_RKP_1 043_1072_F	TGGGACTTGAAGCTATC GCTCTTAAAGATG	139	GLTA_RKP_11 38_1162_R	TGAACATTTGCGACGGTAT ACCCAT	491
1001	GLTA_RKP_4	TCTTCTCATCCTATGGC	140	GLTA_RKP_49	TGGTGGGTATCTTAGCAAT CATTCTAATAGC	493
1091	00 428 F GLTA RKP 4	TATTATGCTTGC TCTTCTCATCCTATGGC	140	9_529_R GLTA RKP 50	TGCGATGGTAGGTATCTTA	493
1095_	00_428_F	TATTATGCTTGC	140	5_534_R	GCAATCATTCT	494
224	GROL_EC_21 9 242 F	GGTGAAAGAAGTTGCCT CTAAAGC	141	GROL_EC_328 350 R	TTCAGGTCCATCGGGTTCA TGCC	496
	GROL EC 49	ATGGACAAGGTTGGCAA	141	GROL_EC_577	TAGCCGCGGTCGAATTGCA	150
280	6_518_F	GGAAGG	142	596_R	T	498
281	GROL_EC_51 1 536 F	AAGGAAGGCGTGATCAC CGTTGAAGA	143	GROL_EC_571 593 R	CCGCGGTCGAATTGCATGC CTTC	497
201	GROL EC 94	TGGAAGATCTGGGTCAG	110	GROL_EC_103	CAATCTGCTGACGGATCTG	
220	1_959_F	GC	144	9 1060 R	AGC	495
	GYRA AF100	TCTGCCCGTGTCGTTGG		GYRA_AF1005 57 119 142	TCGAACCGAAGTTACCCTG	
924	557 4 23 F	TGA	145	R	ACCAT	499
	GYRA_AF100 557 70 94	TCCATTGTTCGTATGGC		GYRA_AF1005 57 178 201	TGCCAGCTTAGTCATACGG	
925	F	TCAAGACT	146	R R	ACTTC	500
	GYRB_AB008			GYRB_AB0087	77 FF COCCA FICE COL FICE FI	
926	700_19_40_ F	TCAGGTGGCTTACACGG CGTAG	147	00_111_140_ R	TATTGCGGATCACCATGAT GATATTCTTGC	501
	GYRB_AB008			GYRB_AB0087		
927	700_265_29 2 F	TCTTTCTTGAATGCTGG	148	00_369_395_ R	TCGTTGAGATGGTTTTTAC CTTCGTTG	502
921	GYRB AB008	TGTACGTATCG	140	GYRB AB0087	CITCHILE	302
	700_368_39	TCAACGAAGGTAAAAAC	, , ,	00_466_494_	TTTGTGAAACAGCGAACAT	
928	4 F GYRB AB008	CATCTCAACG	149	R GYRB AB0087	TTTCTTGGTA	503
	700_477_50	TGTTCGCTGTTTCACAA		00_611_632_	TCACGCGCATCATCACCAG	
929	4_F	ACAACATTCCA	150	R SVPP AP0007	TCA	504
	GYRB_AB008 700 760 78	TACTTACTTGAGAATCC		GYRB_AB0087 00 862 888	TCCTGCAATATCTAATGCA	
949	7_F	ACAAGCTGCAA	151	2_R	CTCTTACG	505
	GYRB_AB008 700 760 78	TACTTACTTGAGAATCC		GYRB_AB0087 00 862 888	ACCTGCAATATCTAATGCA	
930	7_F	ACAAGCTGCAA	151	R R	CTCTTACG	506
000	HFLB_EC_10	TGGCGAACCTGGTGAAC	150	HFLB_EC_114	CTTTCGCTTTCTCGAACTC	E03
222	82 1102 F HUPB CJ 11	GAAGC TAGTTGCTCAAACAGCT	152	4_1168_R HUPB CJ 157	TCCCTAATAGTAGAAATAA	507
1128	3_134_F	GGGCT	153	_188_R	CTGCATCAGTAGC	509
1130	HUPB_CJ_76 102 F	TCCCGGAGCTTTTATGA CTAAAGCAGAT	154	HUPB_CJ_114 135 R	TAGCCCAGCTGTTTGAGCA ACT	508
1130	HUPB CJ 76	TCCCGGAGCTTTTATGA	134	HUPB CJ 157	TCCCTAATAGTAGAAATAA	300
1129	_102_F	CTAAAGCAGAT	154	188 R	CTGCATCAGTAGC	510
1079	ICD_CXB_17 6_198_F	TCGCCGTGGAAAAATCC TACGCT	155	ICD_CXB_224 _247_R	TAGCCTTTTCTCCGGCGTA GATCT	512
1013	ICD_CXB_92	TTCCTGACCGACCCATT	133	ICD_CXB_172	TAGGATTTTTCCACGGCGG	1 2 2
1078	120 F	ATTCCCTTTATC	156	194 R	CATC	510
1077	ICD_CXB_93 120 F	TCCTGACCGACCCATTA TTCCCTTTATC	157	ICD_CXB_172 194 R	TAGGATTTTTCCACGGCGG CATC	511
	INFB_EC_11	GTCGTGAAAACGAGCTG		INFB_EC_117		
221	03 1124 F INFB EC 13	GAAGA TGCGTTTACCGCAATGC	158	4 1191 R INFB EC 141	CATGATGGTCACAACCGG	513
964	47_1367_F	GTGC	159	4 1432_R	TCGGCATCACGCCGTCGTC	514
24	INFB_EC_13	TGCTCGTGGTGCACAAG	1.00	INFB_EC_143	TGCTGCTTTCGCATGGTTA	E1E
34	65 1393 F INFB EC 13	TAACGGATATTA	160	9 1467 R INFB EC 143	ATTGCTTCAA	515
	65_1393_TM	TTGCTCGTGGTGCACAA		9_1467_TMOD	TTGCTGCTTTCGCATGGTT	
352	OD F INFB EC 19	GTAACGGATATTA CGTCAGGGTAAATTCCG	161	_R INFB EC 203	AATTGCTTCAA AACTTCGCCTTCGGTCATG	516
223	69_1994_F	TGAAGTTAA	162	8_2058_R	TT	517
	INV_U22457		1 "		mmaaammaa a a a a a a a a a a a a a a a	
781	_1558_1581	TGGTAACAGAGCCTTAT AGGCGCA	163	INV_U22457_ 1619 1643 R	TTGCGTTGCAGATTATCTT TACCAA	518
	INV_U22457	TGGCTCCTTGGTATGAC		INV_U22457_	TGTTAAGTGTGTTGCGGCT	
778	515 539 F	TCTGCTTC	164	571 598 R	GTCTTTATT TCACCCCACCACCACCCATC	519
779	INV_U22457 699 724 F	TGCTGAGGCCTGGACCG ATTATTTAC	165	INV_U22457_ 753 776 R	TCACGCGACGAGTGCCATC CATTG	520
	INV_U22457	TTATTTACCTGCACTCC		INV_U22457_	TGACCCAAAGCTGAAAGCT	
780	834 858 F	CACAACTG	166	942_966_R	TTACTG	521

	nom 1	maammaa aaaaammaa		TD311 GGT 17	mmmaga coca moga coca	-
1106	IPAH_SGF_1 13 134 F	TCCTTGACCGCCTTTCC GATAC	167	IPAH_SGF_17 2 191 R	TTTTCCAGCCATGCAGCGA	522
4400	IPAH SGF_2	TGAGGACCGTGTCGCGC		IPAH SGF_30	TCCTTCTGATGCCTGATGG	
1105	58_277_F	TCA	168	1_327_R	ACCAGGAG	523
	IPAH_SGF_4	TCAGACCATGCTCGCAG		IPAH_SGF_52		504
1107	62 486 F	AGAAACTT	169	2_540_R IS1111A NC0	TGTCACTCCCGACACGCCA	524
	IS1111A_NC 002971 686	TCAGTATGTATCCACCG		02971 6928	TAAACGTCCGATACCAATG	
1080	6 6891 F	TAGCCAGTC	170	6954 R	GTTCGCTC	525
	IS1111A NC	277000710710		IS1111A NCO		
	002971_745	TGGGTGACATTCATCAA		02971_7529_	TCAACAACACCTCCTTATT	
1081	6 7483 F	TTTCATCGTTC	171	7554_R	CCCACTC	526
	LEF_BA_103	mannan ann ann an an	170	LEF_BA_1119	GAATATCAATTTGTAGC	527
35	3 1052 F LEF BA 103	TCAAGAAGAAAAAGAGC CAAGAAGAAAAAGAGCT	172	1135_R LEF BA 1119	AGATAAAGAATCACGAATA	321
36	6 1066 F	TCTAAAAAGAATAC	173	1149 R	TCAATTTGTAGC	528
	LEF BA 756	AGCTTTTGCATATTATA		LEF BA 843	TCTTCCAAGGATAGATTTA	
37	781 F	TCGAGCCAC	174	872_R	TTTCTTGTTCG	530
	LEF_BA_756					
550	_781_TMOD_	TAGCTTTTGCATATTAT	175	LEF_BA_843_	TTCTTCCAAGGATAGATTT	531
353	F LEF BA 758	ATCGAGCCAC CTTTTGCATATTATATC	175	872 TMOD R LEF BA 843	ATTTCTTGTTCG AGGATAGATTTATTTCTTG	221
38	778 F	GAGC	176	865 R	TTCG	529
	LEF BA 795	TTTACAGCTTTATGCAC	 	LEF BA 883		
39	813_F	CG	177	900_R	TCTTGACAGCATCCGTTG	532
	LEF_BA_883			LEF_BA_939_	CAGATAAAGAATCGCTCCA	
40	899 F	CAACGGATGCTGGCAAG	178	958_R	G	533
	LL_NC00314 3 2366996	TGTAGCCGCTAAGCACT		LL_NC003143 2367073 23	TCTCATCCCGATATTACCG	
782	2367019 F	ACCATCC	179	67097 R	CCATGA	534
702	LL NC00314	710011100	1.5	LL NC003143	30111011	-
	3 2367172	TGGACGGCATCACGATT		_2367249_23	TGGCAACAGCTCAACACCT	
783	2367194_F	CTCTAC	180	67271_R	TTGG	535
	MECA_Y1405			MECA_Y14051		
878	1_3645_367 0 F	TGAAGTAGAAATGACTG AACGTCCGA	181	_3690_3719_ R	TGATCCTGAATGTTTATAT CTTTAACGCCT	536
070	MECA Y1405	AACGICCGA	101	MECA Y14051	CITTAACGCCI	330
	1 3774 380	TAAAACAAACTACGGTA		_3828_3854_	TCCCAATCTAACTTCCACA	
877	2_F	ACATTGATCGCA	182	R	TACCATCT	537
	MECA_Y1405			MECA_Y14051		
070	1_4507_453	TCAGGTACTGCTATCCA	100	_4555_4581_ R	TGGATAGACGTCATATGAA	538
879	0_F MECA Y1405	CCCTCAA	183	MECA Y14051	GGTGTGCT	336
	1 4510 453	TGTACTGCTATCCACCC		4586 4610	TATTCTTCGTTACTCATGC	
880	0_F	TCAA	184	R	CATACA	539
	MECA_Y1405			MECA_Y14051		
000	1_4520_453	merderda rederderd oderda a	105	_4590_4600P	CªAUªCªUªACªGUªUªA	540
882	OP F MECA Y1405	TU ^a U ^a AU ^a U ^a U ^a C ^a U ^a AA	185	R MECA Y14051	C AO C O AC GO O A	1 540
	1 4520 453			4600 4610P		
883	OP F	TU ^a U ^a AU ^a U ^a U ^a C ^a U ^a AA	185	_R	CaACaCanaCaCanaCca	541
	MECA_Y1405			MECA_Y14051		
001	1_4669_469	TCACCAGGTTCAACTCA	100	_4765_4793_	TAACCACCCCAAGATTTAT	E42
881	8_F MECIA Y140	AAAAATATTAACA	186	R MECIA Y1405	CTTTTTGCCA	542
	51 3315 33	TTACACATATCGTGAGC		1 3367 3393	TGTGATATGGAGGTGTAGA	
876	41_F	AATGAACTGA	187	R	AGGTGTTA	543
	OMPA_AY485			OMPA_AY4852		
07.4	227_272_30	TTACTCCATTATTGCTT	100	27_364_388_	GAGCTGCGCCAACGAATAA	= 4.4
914	1 F OMPA AY485	GGTTACACTTTCC	188	R OMPA AY4852	ATCGTC	544
1	227_311_33	TACACAACAATGGCGGT		27 424 453	TACGTCGCCTTTAACTTGG	
916	5_F	AAAGATGG	189	R R	TTATATTCAGC	545
	OMPA_AY485			OMPA_AY4852		
01-	227_379_40	TGCGCAGCTCTTGGTAT	100	27_492_519_	TGCCGTAACATAGAAGTTA	E40
915	1 F	CGAGTT	190	R OMPA AY4852	CCGTTGATT	546
	OMPA_AY485 227 415 44	TGCCTCGAAGCTGAATA		27 514 546	TCGGGCGTAGTTTTTAGTA	
917	1 F	TAACCAAGTT	191	R R	ATTAAATCAGAAGT	547
	OMPA_AY485			OMPA_AY4852		
	227_494_52	TCAACGGTAACTTCTAT	100	27_569_596_	TCGTCGTATTTATAGTGAC	E 40
918	O F	GTTACTTCTG	192	R OMDA AV4952	CAGCACCTA	548
	OMPA_AY485 227 551 57	TCAAGCCGTACGTATTA		OMPA_AY4852 27 658 680	TTTAAGCGCCAGAAAGCAC	
919	7 F	TTAGGTGCTG	193	R R	CAAC	550
	· ·				1	

		,				1
	OMPA_AY485 227_555_58	TCCGTACGTATTATTAG		OMPA_AY4852 27_635_662_	TCAACACCAGCGTTACCTA	
920	1_F	GTGCTGGTCA	194	R	AAGTACCTT	549
	OMPA AY485			OMPA_AY4852		
	227_556_58	TCGTACGTATTATTAGG		27_659_683_	TCGTTTAAGCGCCAGAAAG	ł
921	3_F	TGCTGGTCACT	195	R	CACCAA	551
	OMPA_AY485			OMPA_AY4852		
	227_657_67	TGTTGGTGCTTTCTGGC		27_739_765_	TAAGCCAGCAAGAGCTGTA	==0
922	9_F	GCTTAA	196	R	TAGTTCCA	552
	OMPA_AY485			OMPA_AY4852 27 786 807	TACAGGAGCAGCAGGCTTC	<u> </u>
923	227_660_68 3 F	TGGTGCTTTCTGGCGCT TAAACGA	197	R	AAG	553
323	OMPB RKP 1	TCTACTGATTTTGGTAA	137	OMPB RKP 12	TAGCAGCAAAAGTTATCAC	
1088	192 1221 F	TCTTGCAGCACAG	198	88 1315 R	ACCTGCAGT	554
	OMPB RKP 3	TGCAAGTGGTACTTCAA		OMPB RKP 35	TGGTTGTAGTTCCTGTAGT	
1089	417_3440_F	CATGGGG	199	20_3550_R	TGTTGCATTAAC	555
	OMPB_RKP_8	TTACAGGAAGTTTAGGT		OMPB_RKP_97	TCCTGCAGCTCTACCTGCT	
1087	60_890_F	GGTAATCTAAAAGG	200	2_996_R	CCATTA	556
	PAG_BA_122	CAGAATCAAGTTCCCAG	1	PAG_BA_190_	CCTGTAGTAGAAGAGGTAA	
41	_142_F	GGG	201	209 R	C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	558
42	PAG_BA_123 145 F	AGAATCAAGTTCCCAGG GGTTAC	202	PAG_BA_187_ 210 R	CCCTGTAGTAGAAGAGGTA ACCAC	557
42	PAG BA 269	AATCTGCTATTTGGTCA	202	PAG_BA_326_	ACCAC	337
43	287 F	GG	203	344 R	TGATTATCAGCGGAAGTAG	559
	PAG BA 655	GAAGGATATACGGTTGA		PAG BA 755		
44	675 F	TGTC	204	772_R	CCGTGCTCCATTTTTCAG	560
	PAG BA 753	TCCTGAAAAATGGAGCA		PAG BA 849	TCGGATAAGCTGCCACAAG	
45	_772_F	CGG	205	868_R	G	561
	PAG_BA_763	TGGAGCACGGCTTCTGA		PAG_BA_849_	TCGGATAAGCTGCCACAAG	1
46	_781_F	TC	206	868_R	G	562
	PARC_X9581	l				
010	9_123_147_	GGCTCAGCCATTTAGTT	007	PARC_X95819	TCGCTCAGCAATAATTCAC	566
912	F PADG VOE01	ACCGCTAT	207	232 260 R PARC X95819	TATAAGCCGA TTCCCCTGACCTTCGATTA	300
913	PARC_X9581 9 43 63 F	TCAGCGCGTACAGTGGG TGAT	208	143 170 R	AAGGATAGC	563
313	PARC X9581	TGGTGACTCGGCATGTT	200	PARC X95819	GGTATAACGCATCGCAGCA	303
911	9 87 110 F	ATGAAGC	209	192 219 R	AAAGATTTA	564
	PARC X9581	TGGTGACTCGGCATGTT		PARC X95819	TTCGGTATAACGCATCGCA	
910	9 87_110_F	ATGAAGC	209	201 222 R	GCA	565
	PLA_AF0539			PLA_AF05394		
	45_7186_72	TTATACCGGAAACTTCC		5_7257_7280	TAATGCGATACTGGCCTGC	
773	11_F	CGAAAGGAG	210	_R	AAGTC	567
	PLA_AF0539 45 7377 74	mca ca mccccccmca ccm		PLA_AF05394 5 7434 7462	TGTAAATTCCGCAAAGACT	
770	02 F	TGACATCCGGCTCACGT TATTATGGT	211	S_7434_7402	TTGGCATTAG	568
- <u></u> -	PLA AF0539	111111111111111111111111111111111111111		PLA AF05394	11000111110	
	45 7382 74	TCCGGCTCACGTTATTA		5 7482 7502	TGGTCTGAGTACCTCCTTT	
771	04_F	TGGTAC	212		GC	569
	PLA_AF0539			PLA_AF05394		
	45_7481_75	TGCAAAGGAGGTACTCA		5_7539_7562	TATTGGAAATACCGGCAGC	
772	03 F	GACCAT	213	_R	ATCTC	570
	RECA_AF251 469 169 19	TGACATGCTTGTCCGTT		RECA_AF2514 69 277 300	TGGCTCATAAGACGCGCTT	
909	0 F	CAGGC	214	R R	GTAGA	572
303	RECA AF251	- Grides		RECA AF2514		
	469 43 68	TGGTACATGTGCCTTCA		69 140 163	TTCAAGTGCTTGCTCACCA	
908	F	TTGATGCTG	215	R	TTGTC	571
	RNASEP_BDP	TGGCACGGCCATCTCCG		RNASEP_BDP_	TCGTTTCACCCTGTCATGC	
1072	574 592 F	TG	216	616_635_R	CG	573
10==	RNASEP_BKM	TGCGGGTAGGGAGCTTG	015	RNASEP_BKM_	TCCGATAAGCCGGATTCTG	674
1070	580 599 F	AGC TCCTAGAGGAATGGCTG	217	665_686_R RNASEP_BKM_	TGC TGCCGATAAGCCGGATTCT	574
1071	RNASEP_BKM 616 637 F	CCACG	218	665 687 R	GTGC	575
20/1	RNASEP BRM	TACCCCAGGGAAAGTGC		RNASEP BRM	TCTCTTACCCCACCCTTTC	1
1112	325 347 F	CACAGA	219	402 428 R	ACCCTTAC	576
	RNASEP_BRM	TAAACCCCATCGGGAGC		RNASEP_BRM_	TGCCTCGTGCAACCCACCC	
1172	461_488_F	AAGACCGAATA	220	542 561 2 R	G	577
	RNASEP_BRM	TAAACCCCATCGGGAGC		RNASEP_BRM_	TGCCTCGCGCAACCTACCC	
1111	461 488 F	AAGACCGAATA	220	542_561_R	G	578
050	RNASEP_BS_	GAGGAAAGTCCATGCTC	201	RNASEP_BS_3	GTAAGCCATGTTTTGTTCC	670
258	43 61 F	CACCAAACTCCATCCTC	221	63 384 R	ATC GTAAGCCATGTTTTGTTCC	579
259	RNASEP_BS_ 43 61 F	GAGGAAAGTCCATGCTC GC	221	RNASEP_BS_3 63 384 R	ATC	578
239	RNASEP BS	GAGGAAAGTCCATGCTC	241	RNASEP EC 3	1110	13,5
1		GC	221	45 362 R	ATAAGCCGGGTTCTGTCG	581
258	43 61 F					

	RNASEP_BS_	GAGGAAAGTCCATGCTC		RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	
258	43_61_F	GC	221	58_379_R	ATC	584
4076	RNASEP_CLB	TAAGGATAGTGCAACAG	000	RNASEP_CLB_	TTTACCTCGCCTTTCCACC	579
1076	459 487 F	AGATATACCGCC	222	498 522 R	CTTACC	379
1075	RNASEP_CLB 459 487 F	TAAGGATAGTGCAACAG AGATATACCGCC	222	RNASEP_CLB_ 498 526 R	TGCTCTTACCTCACCGTTC CACCCTTACC	580
1075	RNASEP EC	AGATATACCGCC	222	RNASEP BS 3	GTAAGCCATGTTTTGTTCC	300
258	61 77 F	GAGGAAAGTCCGGGCTC	223	63 384 R	ATC	578
	RNASEP_EC_	31.33.22.33.33.33.33.33		RNASEP EC 3		
258	61 77 F	GAGGAAAGTCCGGGCTC	223	45 362 R	ATAAGCCGGGTTCTGTCG	581
	RNASEP EC			RNASEP EC 3		
260	61_77_F	GAGGAAAGTCCGGGCTC	223	45_362_R	ATAAGCCGGGTTCTGTCG	581
	RNASEP_EC_			RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	
258	61_77_F	GAGGAAAGTCCGGGCTC	223	58 379 R	ATC	584
	RNASEP_RKP	TCTAAATGGTCGTGCAG		RNASEP_RKP_	TCTATAGAGTCCGGACTTT	E 0.0
1085	_264_287_F	TTGCGTG	224	295_321_R	CCTCGTGA	582
1000	RNASEP_RKP	TGGTAAGAGCGCACCGG	225	RNASEP_RKP_	TCAAGCGATCTACCCGCAT TACAA	583
1082	419 448 F RNASEP RKP	TAAGTTGGTAACA	225	542_565_R RNASEP RKP	TCAAGCGATCTACCCGCAT	303
1083	422 443 F	TAAGAGCGCACCGGTAA GTTGG	226	542 565 R	TACAA	583
1005	RNASEP RKP	TGCATACCGGTAAGTTG	1220	RNASEP RKP	TCAAGCGATCTACCCGCAT	
1086	426 448 F	GCAACA	227	542 565 R	TACAA	583
	RNASEP RKP	TCCACCAAGAGCAAGAT		RNASEP RKP	TCAAGCGATCTACCCGCAT	
1084	_466_491_F	CAAATAGGC	228	542_565_R	TACAA	583
	RNASEP_SA_	GAGGAAAGTCCATGCTC		RNASEP_BS_3	GTAAGCCATGTTTTGTTCC	
258	31_49_F	AC	229	63_384_R	ATC	578
	RNASEP_SA_	GAGGAAAGTCCATGCTC	1	RNASEP_EC_3		
258	31_49_F	AC	229	45_362_R	ATAAGCCGGGTTCTGTCG	581
	RNASEP_SA_	GAGGAAAGTCCATGCTC		RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	504
258	31_49_F	AC CREATA NOTE COMPO	229	58_379_R	ATC	584
262	RNASEP_SA_ 31 49 F	GAGGAAAGTCCATGCTC AC	229	RNASEP_SA_3 58 379 R	ATAAGCCATGTTCTGTTCC ATC	584
202	RNASEP VBC	TCCGCGGAGTTGACTGG	223	RNASEP_VBC_	TGACTTTCCTCCCCCTTAT	204
1098	331 349 F	GT	230	388 414 R	CAGTCTCC	585
	RPLB EC 65	GACCTACAGTAAGAGGT	200	RPLB EC 739	TCCAAGTGCTGGTTTACCC	-
66	0 679 F	TCTGTAATGAACC	231	762 R	CATGG	591
	RPLB EC 65					
	0_679_TMOD	TGACCTACAGTAAGAGG		RPLB_EC_739	TTCCAAGTGCTGGTTTACC	
356	F	TTCTGTAATGAACC	232	762 TMOD R	CCATGG	592
	RPLB_EC_66	TGTAATGAACCCTAATG		RPLB_EC_735	CCAAGTGCTGGTTTACCCC	
73	9 698 F	ACCATCCACACGG	233	_761_R	ATGGAGTA	586
74	RPLB_EC_67 1 700 F	TAATGAACCCTAATGAC CATCCACACGGTG	234	RPLB_EC_737 762 R	TCCAAGTGCTGGTTTACCC CATGGAG	590
74	RPLB EC 68	CATCCACACGGTGGTGG	234	RPLB EC 736	GTGCTGGTTTACCCCATGG	390
67	8 710 F	TGAAGG	235	757 R	AGT	587
<u> </u>	RPLB EC 68	CATCCACACGGTGGTGG		RPLB EC 743	TGTTTTGTATCCAAGTGCT	
70	8 710 F	TGAAGG	235	771 R	GGTTTACCCC	593
	RPLB EC 68					
	8_710_TMOD	TCATCCACACGGTGGTG		RPLB_EC_736	TGTGCTGGTTTACCCCATG	
357	F	GTGAAGG	236	_757_TMOD_R	GAGT	588
		TCCACACGGTGGTGGTG		RPLB_EC_737	TGTGCTGGTTTACCCCATG	
449	0 710 F	AAGG	237	758 R	GAG	589
113	RPOB_EC_13 36 1353 F	GACCACCTCGGCAACCG	238	RPOB_EC_143 8 1455 R	TTCGCTCTCGGCCTGGCC	594
113	RPOB EC 15	TCAGCTGTCGCAGTTCA	230	RPOB EC 163	TCGTCGCGGACTTCGAAGC	J J 4
963	27 1549 F	TGGACC	239	0 1649 R	C	595
	RPOB EC 18	TATCGCTCAGGCGAACT	 	RPOB EC 190	GCTGGATTCGCCTTTGCTA	
72	45 1866 F	CCAAC	240	9 1929 R	CG	596
	RPOB_EC_18			RPOB_EC_190		
	45_1866_TM	TTATCGCTCAGGCGAAC		9_1929_TMOD	TGCTGGATTCGCCTTTGCT	
359	OD_F	TCCAAC	241	R	ACG	597
	RPOB_EC_20	TCGTTCCTGGAACACGA		RPOB_EC_204	TTGACGTTGCATGTTCGAG	500
962	05_2027_F	TGACGC	242	1 2064 R	CCCAT	598
69	RPOB_EC_37 62 3790 F	TCAACAACCTCTTGGAG GTAAAGCTCAGT	243	RPOB_EC_383 6 3865 R	TTTCTTGAAGAGTATGAGC TGCTCCGTAAG	600
03	RPOB EC 37	CTTGGAGGTAAGTCTCA	143	RPOB EC 382	CGTATAAGCTGCACCATAA	000
111	75 3803 F	TTTTGGTGGGCA	244	9 3858 R	GCTTGTAATGC	599
	RPOB EC 37	TGGGCAGCGTTTCGGCG	 	RPOB EC 386	TGTCCGACTTGACGGTTAG	
940	98_3821_F	AAATGGA	245	2_3889_2_R	CATTTCCTG	604
_	RPOB_EC_37	TGGGCAGCGTTTCGGCG		RPOB_EC_386	TGTCCGACTTGACGGTCAG	
939	98_3821_F	AAATGGA	245	2_3889_R	CATTTCCTG	605
	RPOB_EC_37	GGGCAGCGTTTCGGCGA	l _	RPOB_EC_386	GTCCGACTTGACGGTCAAC	
289	99_3821_F	AATGGA	246	2_3888_R	ATTTCCTG	602
262	RPOB_EC_37	TGGGCAGCGTTTCGGCG	245	RPOB_EC_386	TGTCCGACTTGACGGTCAA	603
362	99 3821 TM	AAATGGA	245	2_3888_TMOD	CATTTCCTG	603

	1 0D T	Т	r	T 5		I
	OD_F	CACCCUMUCCCCCAAAU		RPOB EC 386	CGACTTGACGGTTAACATT	
288	RPOB_EC_38 02 3821 F	CAGCGTTTCGGCGAAAT GGA	247	2 3885 R	TCCTG	601
280	RPOC EC 10	GGA	247	Z_3003_K	10019	001
	18 1045 2	CAAAACTTATTAGGTAA		RPOC EC 109	TCAAGCGCCATCTCTTTCG	
48	F	GCGTGTTGACT	248	5 1124 2 R	GTAATCCACAT	610
	RPOC EC 10	CAAAACTTATTAGGTAA		RPOC EC 109	TCAAGCGCCATTTCTTTTG	
47	18 1045 F	GCGTGTTGACT	248	5 1124 R	GTAAACCACAT	611
	RPOC EC 10	CGTGTTGACTATTCGGG		RPOC EC 109	ATTCAAGAGCCATTTCTTT	
68	36 1060 F	GCGTTCAG	249	7_1126_R	TGGTAAACCAC	612
	RPOC_EC_11	TAAGAAGCCGGAAACCA		RPOC_EC_213	GGCGCTTGTACTTACCGCA	
49	4_140_F	TCAACTACCG	250	232 R	С	617
	RPOC_EC_12	ACCCAGTGCTGCTGAAC		RPOC_EC_129	GTTCAAATGCCTGGATACC	
227	56_1277_F	CGTGC	251	5 1315 R	CA	613
	RPOC_EC_13	CGCCGACTTCGACGGTG	050	RPOC_EC_143		614
292	74_1393_F	ACC	252	7 1455 R RPOC EC 143	GAGCATCAGCGTGCGTGCT	614
	RPOC_EC_13 74 1393 TM	TCGCCGACTTCGACGGT		7 1455 TMOD	TGAGCATCAGCGTGCGTGC	
364	OD F	GACC	253	R R	TGAGCATCAGCGTGCGTGC	615
304	RPOC EC 15	TGGCCCGAAAGAAGCTG	200	RPOC EC 162	ACGCGGGCATGCAGAGATG	010
229	84 1604 F	AGCG	254	3 1643 R	cc	616
	RPOC EC 21	TCAGGAGTCGTTCAACT		RPOC EC 222	TTACGCCATCAGGCCACGC	
978	45 2175 F	CGATCTACATGATG	255	8 2247 R	A	622
	RPOC_EC_21	CAGGAGTCGTTCAACTC		RPOC_EC_222		
290	46_2174_F	GATCTACATGAT	256	7_2245_R	ACGCCATCAGGCCACGCAT	620
	RPOC_EC_21			RPOC_EC_222		
	46_2174_TM	TCAGGAGTCGTTCAACT		7_2245_TMOD	TACGCCATCAGGCCACGCA	
363	OD_F	CGATCTACATGAT	257	_R	T	621
	RPOC_EC_21					
	78_2196_2_	TGATTCCGGTGCCCGTG	050	RPOC_EC_222	TTGGCCATCAGACCACGCA	C10
51	F RPOC EC 21	GT TGATTCTGGTGCCCGTG	258	5_2246_2_R RPOC EC 222	TAC	618
50	78 2196 F	GT	259	5 2246 R	TTGGCCATCAGGCCACGCA TAC	619
50	RPOC EC 22	GI	239	J_2246_K	IAC	019
	18 2241 2	CTTGCTGGTATGCGTGG		RPOC EC 231	CGCACCATGCGTAGAGATG]
53	F	TCTGATG	260	3 2337 2 R	AAGTAC	623
	RPOC EC 22	CTGGCAGGTATGCGTGG		RPOC EC 231	CGCACCGTGGGTTGAGATG	
52	18 2241 F	TCTGATG	261	3 2337 R	AAGTAC	624
	RPOC EC 22			RPOC_EC_231		
	18_2241_TM	TCTGGCAGGTATGCGTG		3_2337_TMOD	TCGCACCGTGGGTTGAGAT	
354	OD_F	GTCTGATG	262	_R	GAAGTAC	625
	RPOC_EC_22	TGGTATGCGTGGTCTGA		RPOC_EC_232	TGCTAGACCTTTACGTGCA	
958	23_2243_F	TGGC	263	9_2352_R	CCGTG	626
0.00	RPOC_EC_23	TGCTCGTAAGGGTCTGG	264	RPOC_EC_238	TACTAGACGACGGGTCAGG	627
960	34 2357 F RPOC EC 80	CGGATAC CGTCGTGTAATTAACCG	264	0 2403 R RPOC EC 865	TAACC ACGTTTTTCGTTTTGAACG	02/
55	8 833 2 F	TAACAACCG	265	891 R	ATAATGCT	629
	RPOC EC 80	CGTCGGGTGATTAACCG	203	RPOC EC 865	GTTTTTCGTTGCGTACGAT	023
54	8 833 F	TAACAACCG	266	889 R	GATGTC	628
	RPOC EC 91	TATTGGACAACGGTCGT	 	RPOC EC 100	TTACCGAGCAGGTTCTGAC	T
961	7 938 F	CGCGG	267	9 10 3 4 R	GGAAACG	607
	RPOC EC 91	TCTGGATAACGGTCGTC	1	RPOC_EC_100	TCCAGCAGGTTCTGACGGA	
959	8_938_F	GCGG	268	9_1031_R	AACG	606 .
	RPOC_EC_99	CAAAGGTAAGCAAGGAC		RPOC_EC_103	CGAACGGCCAGAGTAGTCA	
57	3 1019 2 F	GTTTCCGTCA	269	6 1059 2 R	ACACG	608
	RPOC_EC_99	CAAAGGTAAGCAAGGTC		RPOC_EC_103	CGAACGCCTGAGTAGTCA	
56	3 1019 F	GTTTCCGTCA	270	6_1059_R	ACACG	609
75	SP101_SPET	AACCTTAATTGGAAAGA	071	SP101_SPET1	CCCACCAACGTTCACCAA	676
75	11 1 29 F SP101 SPET	AACCCAAGAAGT	271	1 92 116 R SP101 SPET1	GGGCAG	676
	11 1 29 TM	TAACCTTAATTGGAAAG		1 92 116 TM	TCCTACCCAACGTTCACCA	
446	oD F	AAACCCAAGAAGT	272	OD R	AGGGCAG	677
<u> </u>	SP101 SPET			SP101_SPET1		
	11_1154_11	CAATACCGCAACAGCGG		1_1251_1277	GACCCCAACCTGGCCTTTT	
85	79 F	TGGCTTGGG	273	_R	GTCGTTGA	630
	SP101_SPET			SP101_SPET1		
	11_1154_11	TCAATACCGCAACAGCG		1_1251_1277	TGACCCCAACCTGGCCTTT	
424	79 TMOD F	GTGGCTTGGG	274	_TMOD_R	TGTCGTTGA	631
	SP101_SPET	COMOCHONANA		GD101 GD777	momococca mmmera coa co	
76	11_118_147 F	GCTGGTGAAAATAACCC	275	SP101_SPET1	TGTGGCCGATTTCACCACC TGCTCCT	644
76	SP101 SPET	AGATGTCGTCTTC	213	1 213 238 R SP101 SPET1	1601001	044
	11 118 147	TGCTGGTGAAAATAACC		1 213 238 T	TTGTGGCCGATTTCACCAC	
	TMOD F	CAGATGTCGTCTTC	276	MOD R	CTGCTCCT	645
425	I THOD E					
425 86	SP101 SPET	CGCAAAAAAATCCAGCT	277	SP101 SPET1	AAACTATTTTTTTTAGCTAT	632

	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 mm 2 cc	,	1 1402 1421	ACTCGAACAC	
	11_1314_13 36 F	ATTAGC		1_1403_1431 R	ACICGAACAC	
	SP101 SPET			SP101_SPET1		
	11_1314_13	TCGCAAAAAAATCCAGC		1_1403_1431	TAAACTATTTTTTTAGCTA	
426	36_TMOD_F	TATTAGC	278	TMOD R	TACTCGAACAC	633
	SP101 SPET			SP101_SPET1	CCA MARGINGCINGCINA ACA A	
07	11_1408_14 37 F	CGAGTATAGCTAAAAAA	279	1_1486_1515 R	GGATAATTGGTCGTAACAA GGGATAGTGAG	634
87	SP101 SPET	ATAGTTTATGACA	219	SP101 SPET1	GGGATAGTGAG	-034
	11 1408 14	TCGAGTATAGCTAAAAA		1 1486 1515	TGGATAATTGGTCGTAACA	
427	37 TMOD F	AATAGTTTATGACA	280	TMOD R	AGGGATAGTGAG	635
	SP101 SPET			SP101 SPET1		
	11_1688_17	CCTATATTAATCGTTTA		1_1783_1808	ATATGATTATCATTGAACT	
88	16_F	CAGAAACTGGCT	281	_R	GCGGCCG	636
	SP101_SPET			SP101_SPET1		
400	11_1688_17	TCCTATATTAATCGTTT	282	1_1783_1808 TMOD R	TATATGATTATCATTGAAC	637
428	16 TMOD F	ACAGAAACTGGCT	282	SP101 SPET1	TGCGGCCG	037
	SP101_SPET 11 1711 17	CTGGCTAAAACTTTGGC		1 1808 1835	GCGTGACGACCTTCTTGAA	
89	33 F	AACGGT	283	R	TTGTAATCA	638
	SP101 SPET	32.0002		SP101 SPET1		
	11_1711 17	TCTGGCTAAAACTTTGG		1_1808_1835	TGCGTGACGACCTTCTTGA	
429	33 TMOD F	CAACGGT	284	_TMOD_R	ATTGTAATCA	639
	SP101_SPET			SP101_SPET1		
	11_1807_18	ATGATTACAATTCAAGA		1_1901_1927	TTGGACCTGTAATCAGCTG	
90	35_F	AGGTCGTCACGC	285	R	AATACTGG	640
	SP101_SPET			SP101_SPET1	mmm.cca.ccm.cma.a.moa.ccm	
430	11_1807_18	TATGATTACAATTCAAG	286	1_1901_1927	TTTGGACCTGTAATCAGCT	641
430	35_TMOD_F SP101_SPET	AAGGTCGTCACGC	286	TMOD R SP101 SPET1	GAATACTGG	041
	11 1967 19	TAACGGTTATCATGGCC		1 2062 2083	ATTGCCCAGAAATCAAATC	
91	91 F	CAGATGGG	287	1_2002_2003	ATC	642
	SP101 SPET	onioni de		SP101 SPET1		
	11 1967 19	TTAACGGTTATCATGGC		1 2062 2083	TATTGCCCAGAAATCAAAT	
431	91_TMOD_F	CCAGATGGG	288	TMOD_R	CATC	643
	SP101_SPET					
	11_216_243	AGCAGGTGGTGAAATCG		SP101_SPET1	TGCCACTTTGACAACTCCT	
77	F	GCCACATGATT	289	1 308 333 R	GTTGCTG	654
	SP101_SPET	ma caa camaamaa a ama		SP101_SPET1	mmccca cmmmca ca a a cmcc	
432	11_216_243 TMOD F	TAGCAGGTGGTGAAATC GGCCACATGATT	290	1_308_333_T MOD R	TTGCCACTTTGACAACTCC TGTTGCTG	655
-134	SP101 SPET	GGCCACATGATT	230	SP101 SPET1	IGIIGCIG	033
	11 2260 22	CAGAGACCGTTTTATCC		1 2375 2397	TCTGGGTGACCTGGTGTTT	
92	83 F	TATCAGC	291	R	TAGA	646
	SP101_SPET			SP101_SPET1		
	11_2260_22	TCAGAGACCGTTTTATC		1_2375_2397	TTCTGGGTGACCTGGTGTT	
433	83 TMOD_F	CTATCAGC	292	TMOD_R	TTAGA	647
	SP101 SPET		ļ	SP101_SPET1		
93	11_237523 99 F	TCTAAAACACCAGGTCA	293	1_2470_2497 R	AGCTGCTAGATGAGCTTCT GCCATGGCC	648
33	SP101 SPET	CCCAGAAG	233	SP101 SPET1	GCCAIGGCC	010
	11_2375_23	TTCTAAAACACCAGGTC		1 2470 2497	TAGCTGCTAGATGAGCTTC	
434	99 TMOD F	ACCCAGAAG	294	TMOD R	TGCCATGGCC	649
	SP101 SPET			SP101 SPET1		
	11_2468_24	ATGGCCATGGCAGAAGC		1_2543_2570	CCATAAGGTCACCGTCACC	
94	87 F	TCA	295	R	ATTCAAAGC	650
<u></u>					1	
	SP101_SPET		ŀ	SP101_SPET1		
425	11_2468_24	TATGGCCATGGCAGAAG	200	1_2543_2570	TCCATAAGGTCACCGTCAC	CE 1
435	11_2468_24 87_TMOD_F	TATGGCCATGGCAGAAG CTCA	296		TCCATAAGGTCACCGTCAC CATTCAAAGC	651
435	11_2468_24 87_TMOD_F SP101_SPET	CTCA	296	1_2543_2570 TMOD R	CATTCAAAGC	651
	11_2468_24 87_TMOD_F SP101_SPET 11_266_295	CTCA CTTGTACTTGTGGCTCA		1_2543_2570 TMOD R SP101_SPET1	CATTCAAAGC GCTGCTTTGATGGCTGAAT	
435 78	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 _F	CTCA	296	1_2543_2570 TMOD R	CATTCAAAGC	651
	11_2468_24 87_TMOD_F SP101_SPET 11_266_295	CTCA CTTGTACTTGTGGCTCA		1_2543_2570 TMOD R SP101_SPET1 1_355_380_R	CATTCAAAGC GCTGCTTTGATGGCTGAAT	
	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 F SP101_SPET	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG		1_2543_2570 TMOD R SP101_SPET1 1_355_380_R SP101_SPET1 1_355_380_T MOD_R	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC	
78	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 _F SP101_SPET 11_266_295 _TMOD_F SP101_SPET	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC	297	1_2543_2570 TMOD R SP101_SPET1 1_355_380_R SP101_SPET1 1_355_380_T MOD_R SP101_SPET1	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC	661
78 436	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 _F SP101_SPET 11_266_295 _TMOD_F SP101_SPET 11_2961_29	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT	297	1_2543_2570 TMOD R SP101_SPET1 1_355_380_R SP101_SPET1 1_355_380_T MOD R SP101_SPET1 1_3023_3045	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC GGAATTTACCAGCGATAGA	661
78	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 F SP101_SPET 11_266_295 TMOD_F SP101_SPET 11_2961_29 84_F	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG	297	1_2543_2570 TMOD R SP101_SPET1 1_355_380_R SP101_SPET1 1_355_380_T MOD R SP101_SPET1 1_3023_3045 R	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC	661
78 436	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 F SP101_SPET 11_266_295 TMOD_F SP101_SPET 11_2961_29 84_F SP101_SPET	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA	297	1_2543_2570 TMOD R SP101_SPET1 1_355_380_R SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R SP101_SPET1	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC GGAATTTACCAGCGATAGA CACC	661
78 436 95	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 F SP101_SPET 11_266_295 TMOD_F SP101_SPET 11_2961_29 84_F SP101_SPET 11_2961_29	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA TACCATGACAGAAGGCA	297 298 299	1_2543_2570 TMOD R SP101_SPET1 1 355 380 R SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R SP101_SPET1 1_3023_3045	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC GGAATTTACCAGCGATAGA CACC TGGAATTTACCAGCGATAG	661 662 652
78 436	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 F SP101_SPET 11_266_295 TMOD_F SP101_SPET 11_2961_29 84_F SP101_SPET 11_2961_29 84_TMOD_F	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA	297	1_2543_2570 TMOD R SP101_SPET1 1_355_380 R SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R SP101_SPET1 1_3023_3045 TMOD_R	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC GGAATTTACCAGCGATAGA CACC	661
78 436 95	11 2468 24 87 TMOD F SP101 SPET 11 266 295 F SP101 SPET 11 266 295 TMOD F SP101 SPET 11 2961 29 84 F SP101 SPET 11 2961 29 84 TMOD F SP101 SPET	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA TACCATGACAGAAGGCA TTTTGACA	297 298 299	1_2543_2570 TMOD R SP101_SPET1 1 355 380 R SP101_SPET1 1 355 380_T MOD R SP101_SPET1 1_3023_3045 R SP101_SPET1 1 3023_3045 TMOD R SP101_SPET1	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC GGAATTTACCAGCGATAGA CACC TGGAATTTACCAGCGATAG ACACC	661 662 652
78 436 95	11_2468_24 87_TMOD_F SP101_SPET 11_266_295 F SP101_SPET 11_266_295 TMOD_F SP101_SPET 11_2961_29 84_F SP101_SPET 11_2961_29 84_TMOD_F	CTCA CTTGTACTTGTGGCTCA CACGGCTGTTTGG TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA TACCATGACAGAAGGCA	297 298 299	1_2543_2570 TMOD R SP101_SPET1 1_355_380 R SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R SP101_SPET1 1_3023_3045 TMOD_R	CATTCAAAGC GCTGCTTTGATGGCTGAAT CCCCTTC TGCTGCTTTGATGGCTGAA TCCCCTTC GGAATTTACCAGCGATAGA CACC TGGAATTTACCAGCGATAG	661 662 652

	144	T-75-550-55	ı	1 0100 0100	7.3.7.C3.777777C	 -
	11_3075_31 03 TMOD F	ATGGTC AGGCAGC		1_3168_3196 TMOD R	AAAGATTTCTC	
	SP101 SPET	<u> </u>		SP101 SPET1		
	11 3085 31	TAGCTAATGGTCAGGCA		1 3170 3194	TCGACGACCATCTTGGAAA	
448	04_F	GCC	303	_R	GATTTC	658
"	SP101_SPET					
	11_322_344	GTCAAAGTGGCACGTTT		SP101_SPET1		
79	F	ACTGGC	304	1 423 441 R	ATCCCCTGCTTCTGCTGCC	665
	SP101_SPET	ECECA A A CHICCOA COME		SP101_SPET1	TATCCCCTGCTTCTGCTGC	
439	11_322_344 TMOD F	TGTCAA AGTGGCACGTT TACTGGC	305	1_423_441_T MOD R	C	666
433	SP101 SPET	INCIGGO	303	SP101 SPET1	0	
	11 3386 34	AGCGTA AAGGTGAACCT		1 3480 3506	CCAGCAGTTACTGTCCCCT	
97	03 F	Т	306		CATCTTTG	659
	SP101_SPET			SP101_SPET1		
	11_3386_34	TAGCGTAAAGGTGAACC		1_3480_3506	TCCAGCAGTTACTGTCCCC	
440	03_TMOD_F	TT	307	TMOD R	TCATCTTTG	660
	SP101_SPET 11 3511 35	CCHHCA CCAAHCAAHCA		SP101_SPET1 1 3605 3629	GGGTCTACACCTGCACTTG	
98	35 F	GCTTCAGGAATCAATGA TGGAGCAG	308	1_3005_3029 R	CATAAC	663
30	SP101 SPET	IGGAGCAG	300	SP101 SPET1	CATAC	003
	11 3511 35	TGCTTCAGGAATCAATG		1 3605 3629	TGGGTCTACACCTGCACTT	
441	35 TMOD F	ATGGAGCAG	309	_TMOD_R	GCATAAC	664
	SP101_SPET					
	11_358_387	GGGGAT TCAGCCATCAA		SP101_SPET1	CCAACCTTTTCCACAACAG	
80	F GD101 GDD	AGCAGC TATTGAC	310	1 448 473 R	AATCAGC	668
	SP101_SPET 11 358 387	TGGGGATTCAGCCATCA		SP101_SPET1 1 448 473 T	TCCAACCTTTTCCACAACA	
442	TMOD F	AAGCAGCTATTGAC	311	MOD R	GAATCAGC	669
114	SP101 SPET	PARCOAGCIATIONC	711	1.00_1	GIIII GIIGG	005
	11 364 385	TCAGCCATCAAAGCAGC		SP101 SPET1	TACCTTTTCCACAACAGAA	
447	F	TATTG	312	1_448_471_R	TCAGC	667
	SP101_SPET					
0.1	11_600_629	CCTTACTTCGAACTATG	212	SP101_SPET1	CCCATTTTTTCACGCATGC	670
81	F SP101 SPET	AATCTT TTGGAAG	313	1 686 714 R SP101 SPET1	TGAAAATATC	670
	11 600 629	TCCTTACTTCGAACTAT		1 686 714 T	TCCCATTTTTTCACGCATG	
443	TMOD F	GAATCT TTTGGAAG	314	MOD R	CTGAAAATATC	671
	SP101 SPET					
	11_658_684	GGGGAT TGATATCACCG		SP101_SPET1	GATTGGCGATAAAGTGATA	1
82	F	ATAAGA.AGAA	315	1 756 784 R	TTTTCTAAAA	672
	SP101_SPET			SP101_SPET1		
444	11_658_684 TMOD F	TGGGGATTGATATCACC GATAAGAAGAA	316	1_756_784_T MOD R	TGATTGGCGATAAAGTGAT ATTTCTAAAA	673
444	SP101 SPET	GATAAGAAGAA	210	MOD_K	ATTTCTAAAA	673
	11 776 801	TCGCCAATCAAAACTAA		SP101 SPET1	GCCCACCAGAAAGACTAGC	
83	F	GGGAATGGC	317	1 871 896 R	AGGATAA	674
	SP101_SPET			SP101_SPET1		
	11_776_801	TTCGCCAATCAAAACTA		1_871_896_T	TGCCCACCAGAAAGACTAG	
445	TMOD_F	AGGGAATGGC	318	MOD R	CAGGATAA	675
	SP101_SPET 11_893_921	GGGGTT GT GGT GGGGTT		SP101_SPET1 1 988 1012	CAMCACACOCA A CACCHCA	
84	11_693_921 F	GGGCAACAGCAGCGGAT TGCGATTGCGCG	319	1_986_1012_ R	CATGACAGCCAAGACCTCA CCCACC	678
	SP101 SPET	2000.12 200000	- <u>`</u> -	SP101 SPET1		
	11_893_921	TGGGCAACAGCAGCGGA		1_988_1012_	TCATGACAGCCAAGACCTC	
423	TMOD F	TTGCGATTGCGCG	320	TMOD_R	ACCCACC	679
705	SSPE_BA_11	TCAAGCAAACGCACAAT	201	SSPE_BA_196	TTGCACGTCTGTTTCAGTT	600
706	4 137 F	CAGAAGC	321	222_R	GCAAATTC TTGCACGTU ^a C ^a GTTTCAGT	683
612	SSPE_BA_11 4 137P F	TCAAGCAAACGCACAAC *u*AGAAGC	321	SSPE_BA_196 222P R	TGCAAATTC	684
	SSPE BA 11	CAAGCAAACGCACAATC	75.1	SSPE BA 197	TGCACGTCTGTTTCAGTTG	
58	5_137_F	AGAAGC	322	222 R	CAAATTC	686
	SSPE_BA_11					
	5_137_TMOD	TCAAGCAAACGCACAAT		SSPE_BA_197	TTGCACGTCTGTTTCAGTT	
355	F	CAGAAGC	321	222 TMOD R	GCAAATTC	687
215	SSPE_BA_12 1 137 F	AACCCA CAAUCACAACC	323	SSPE_BA_197 216 R	TCTGTTTCAGTTGCAAATT C	685
210	SSPE BA 12	TGCACAATCAGAAGCTA	رعد	SSPE BA 202	TTTCACAGCATGCACGTCT	003
699	3 153 F	AGAAAGCGCAAGCT	324	231 R	GTTTCAGTTGC	688
	SSPE_BA_14	TGCAAGCTTCTGGTGCT		SSPE BA 242	TTGTGATTGTTTTGCAGCT	
704	6_168_F	AGCATT	325	267 R	GATTGTG	689
=	SSPE_BA_15	TGCTTCTGGTGCTAGCA	000	SSPE_BA_243	TGATTGTTTTGCAGCTGAT	601
702	0 168 F	тт	326	_264_R	TGT	691
610	SSPE_BA_15 0 168P F	TGCTTCTGGC°GU°C°AG U°ATT	326	SSPE_BA_243 264P R	TGATTGTTTTGU*AGU*TGA C*C*GT	691
OTO.	10_100F_E	I O WIT	1 320	204F_K	10091	1 03±

700	SSPE_BA_15 6 168 F	TGGTGCTAGCATT	327	SSPE_BA_243 255 R	TGCAGCTGATTGT	690
	SSPE_BA_15			SSPE_BA_243		690
608	6_168P_F SSPE_BA_63	TGGC ^a GU ^a C ^a AGU ^a ATT TGCTAGTTATGGTACAG	327	255P_R SSPE_BA_163	TGUªAGUªTGACªCªGT TCATAACTAGCATTTGTGC	690
705	_89 F SSPE BA 72	AGTTTGCGAC TGGTACAGAGTTTGCGA	328	191 R SSPE BA 163	TTTGAATGCT TCATTTGTGCTTTGAATGC	682
703	89 F	С	329	182_R	T	681
611	SSPE_BA_72 89P F	TGGTAU ^a AGAGC ^a C ^a G U ^a GAC	329	SSPE_BA_163 182P R	TCATTTGTGCCaCaCaGAACaGU	681
	SSPE_BA_75			SSPE_BA_163		
701	89 F SSPE BA 75	TACAGAGTTTGCGAC TAU*AGAGC*C*CCCGU*G	330	177_R SSPE BA 163	TGTGCTTTGAATGCT	680
609	89P F	AC	330	177P_R	TGTGCC ^a C ^a GAAC ^a GU ^a T	680
1099	TOXR_VBC_1 35_158 F	TCGATTAGGCAGCAACG AAAGCCG	331	TOXR_VBC_22 1 246 R	TTCAAAACCTTGCTCTCGC CAAACAA	692
	TRPE_AY094 355 1064 1	TCGACCTTTGGCAGGAA		TRPE_AY0943 55 1171 119	TACATCGTTTCGCCCAAGA	
905	086_F	CTAGAC	332	6_R	TCAATCA	693
	TRPE_AY094	TCAAATGTACAAGGTGA		TRPE_AY0943 55 1392 141	TCCTCTTTTCACAGGCTCT	
904	303_F	AGTGCGTGA	333	8_R	ACTTCATC	694
	TRPE_AY094 355 1445 1	TGGATGGCATGGTGAAA		TRPE_AY0943 55_1551_158	TATTTGGGTTTCATTCCAC	
903	471_F	TGGATATGTC	334	0_R	TCAGATTCTGG	695
	TRPE_AY094 355 1467 1	ATGTCGATTGCAATCCG		TRPE_AY0943 55 1569 159	TGCGCGAGCTTTTATTTGG	
902	491_F TRPE AY094	TACTTGTG	335	2_R	GTTTC	696
	355_666_68	GTGCATGCGGATACAGA		TRPE_AY0943 55_769_791_	TTCAAAATGCGGAGGCGTA	
906	8 F TRPE AY094	GCAGAG	336	R TRPE AY0943	TGTG	697
	355_757_77	TGCAAGCGCGACCACAT		55_864_883_	TGCCCAGGTACAACCTGCA	
907	6_F TUFB EC 22	ACG GCACTATGCACACGTAG	337	R TUFB_EC_284	T TATAGCACCATCCATCTGA	698
114	5_251_F	ATTGTCCTGG	338	309 R	GCGGCAC	706
60	TUFB_EC_23 9 259 2 F	TTGACTGCCCAGGTCAC	339	TUFB_EC_283 _303 2 R	GCCGTCCATTTGAGCAGCA CC	704
	TUFB_EC_23	TAGACTGCCCAGGACAC		TUFB_EC_283	GCCGTCCATCTGAGCAGCA	
59	9_259_F TUFB EC 25	GCTG TGCACGCCGACTATGTT	340	_303_R TUFB_EC_337	CC TATGTGCTCACGAGTTTGC	705
942	1 278 F	AAGAACATGAT	341	_360_R	GGCAT	707
941	TUFB_EC_27 5_299_F	TGATCACTGGTGCTGCT CAGATGGA	342	TUFB_EC_337 362 R	TGGATGTGCTCACGAGTCT GTGGCAT	708
117	TUFB_EC_75 7 774 F	AAGACGACCTGCACGGG C	343	TUFB_EC_849 867 R	COCOMOCA OCHOMINATOCO	709
	TUFB_EC_95	CCACACGCCGTTCTTCA	343	TUFB_EC_103	GCGCTCCACGTCTTCACGC GGCATCACCATTTCCTTGT	709
293	7_979_F TUFB_EC_95	ACAACT	344	4_1058_R TUFB EC 103	CCTTCG	700
	7_979_TMOD	TCCACACGCCGTTCTTC		4_1058_TMOD	TGGCATCACCATTTCCTTG	
367	TUFB EC 97	AACAACT AACTACCGTCCTCAGTT	345	R TUFB EC 104	TCCTTCG GTTGTCACCAGGCATTACC	701
62	6_1000_2 F	CTACTTCC	346	5_1068_2 R	ATTTC	702
61	TUFB_EC_97 6 1000 F	AACTACCGTCCGCAGTT CTACTTCC	347	TUFB_EC_104 5 1068 R	GTTGTCGCCAGGCATAACC ATTTC	703
	TUFB_EC_98	CCACAGTTCTACTTCCG		TUFB_EC_103	TCCAGGCATTACCATTTCT	
63	5_1012_F VALS_EC_11	TACTACTGACG CGTGGCGGCGTGGTTAT	348	3_1062_R VALS_EC_119	ACTCCTTCTGG ACGAACTGGATGTCGCCGT	699
225	05 1124 F VALS EC 11	CGA	349	5 1214 R VALS EC 119	T CCCTACCAACTCCATCTCC	710
71	05_1124_F	CGTGGCGGCGTGGTTAT CGA	349	5 1218 R	CGGTACGAACTGGATGTCG CCGTT	711
	VALS_EC_11 05 1124 TM	TCGTGGCGGCGTGGTTA		VALS_EC_119 5 1218 TMOD	TCGGTACGAACTGGATGTC	
358	OD_F	TCGA	350		GCCGTT	712
965	VALS_EC_11 28 1151 F	TATGCTGACCGACCAGT GGTACGT	351	VALS_EC_123 1 1257 R	TTCGCGCATCCAGGAGAAG TACATGTT	713
	VALS_EC_18	CGACGCGCTGCGCTTCA		VALS_EC_192	GCGTTCCACAGCTTGTTGC	
112	33_1850_F VALS EC 19	CTTCTGCAACAAGCTGT	352	0 1943 R VALS EC 194	AGAAG TCGCAGTTCATCAGCACGA	714
116	20_1943_F	GGAACGC	353	8_1970_R	AGCG	715
295	VALS_EC_61 0_649_F	ACCGAGCAAGGAGACCA GC	354	VALS_EC_705 727 R	TATAACGCACATCGTCAGG GTGA	716
931	WAAA Z9692 5 2 29 F	TCTTGCTCTTTCGTGAG	355	WAAA Z96925	CAAGCGGTTTGCCTCAAAT	
931 932	WAAA Z9692	TTCAGTAAATG TCGATCTGGTTTCATGC	355 356	115_138_R WAAA_Z96925	AGTCA TGGCACGAGCCTGACCTGT	717

Г	5_286_311_	TGTTTCAGT	_394_412_R	
	F			l

[0095] Primer pair name codes and reference sequences are shown in Table 2. The primer name code typically represents the gene to which the given primer pair is targeted. The primer pair name includes coordinates with respect to a reference sequence defined by an extraction of a section of sequence or defined by a GenBank gi number, or the corresponding complementary sequence of the extraction, or the entire GenBank gi number as indicated by the label "no extraction." Where "no extraction" is indicated for a reference sequence, the coordinates of a primer pair named to the reference sequence are with respect to the GenBank gi listing. Gene abbreviations are shown in bold type in the "Gene Name" column.

Table 2: Primer Name Codes and Reference Sequences

		Organism		1	Extraction
Primer		_	Reference	Extracted gene	or entire
name			GenBarık	coordinates of gi	gene
code	Gene Name		gi number	number	SEQ ID NO:
	16S rRNA (16S	Escherichia			719
	ribosomal RNA	coli			1
16S_EC	gene)		16127994	40331204034661	
	23s rRNA (23s	Escherichia			720
	ribosomal RNA	coli			
23S_EC	gene)		16127994	41662204169123	
	capC (capsule	Bacillus	64701 51	Complement	721
CAPC_BA	biosynthesis gene)	anthracis	6470151	(5562856074)	722
	cya (cyclic AMP	Bacillus	400407.6	Complement (154288156626)	122
CYA BA	gene)	anthracis Escherichia	489421.6	(154288156626)	723
DATAR EIG	dnaK (chaperone	coli	16127004	12163 14079	123
DNAK_EC	dnaK gene) groL (chaperonin	Escherichia	16127994	1216314079	724
GROL EC	grob)	coli	16127994	43686034370249	724
GROLL EC	hflb (cell	Escherichia	1012/334	43000034370249	725
	division protein	coli		Complement	123
HFLB EC	peptidase ftsH)	COLL	16127994	(33226453324576)	
III DD_DC	infB (protein	Escherichia	2012/331	(5522015.155215.157	726
	chain initiation	coli		Complement	120
INFB EC	factor infB gene)	0022	16127994	(33109833313655)	
	lef (lethal	Bacillus		Complement	727
LEF BA	factor)	anthracis	21392688	(149357151786)	
	pag (protective	Bacillus	†*	,	728
PAG BA	antigen)	anthracis	21392 688	143779146073	
	rp1B (50S	Escherichia			729
	ribosomal protein	coli			
RPLB EC	L2)		16127994	34490013448180	
	rpoB (DNA-directed	Escherichia			730
	RNA polymerase	coli		Complement	
RPOB EC	beta chain)		6127994	41788234182851	
	rpoC (DNA-directed	Escherichia	1		731
	RNA polymerase	coli			
RPOC_EC	beta' chain)		16127994	41829284187151	
SP101ET	Concatenation				
_SPET_1	comprising:	Artificial			732
1		Sequence* -	15674250	01	
	gki (glucose	partial gene		Complement	
	kinase)	sequences of Streptococcus		(12582941258791)	
	gtr (glutamine	pyogenes		complement	
	transporter	pyogenes		(12367511237200)	
	protein)			(2230/3211423/200)	
	murI (glutamate			312732313169	
	racemase)				
	mutS (DNA mismatch			Complement	

			1	(17107600 1700007)	
	repair protein)			(17876021788007)	
	<pre>xpt (xanthine phosphoribosyl transferase)</pre>			930977931425	*
	yqiL (acetyl-CoA- acetyl transferase)			129471129903	
	tkt (transketolase)			13918441391386	
	sspE (small acid- soluble spore	Bacillus			733
SSPE_BA	protein)	anthracis	30253828	22 6496226783	77.4
TUFB_EC	tufB (Elongation factor Tu)	Escherichia coli	16127994	41735234174707	734
VALS EC	valS (Valyl-tRNA synthetase)	Escherichia coli	16127994	Complement (44814054478550)	735
ASPS EC	aspS (Aspartyl- tRNA synthetase)	Escherichia coli	16127994	complement (1946777	736
CAF1_AF	caf1 (capsular	Yersinia	2996286	No extraction - GenBank coordinates	_
053947	protein caf1)	pestis Vancinia	1256565	used 743772	737
INV_U22 457	inv (invasin)	Yersinia pestis			
LL_NC00 3143	Y. pestis specific chromosomal genes - difference region	Yersinia pestis	16120353	No extraction - GenBank coordinates used	-
BONTA_X 52066	BoNT/A (neurotoxin type A)	Clostridium botulinum	40381	773967	738
MECA_Y1 4051	mecA methicillin resistance gene	Staphylococcus aureus	2791983	No extraction - GenBank coordinates used	739
TRPE_AY 094355	trpE (anthranilate synthase (large component))	Acinetobacter baumanii	20853695	No extraction - GenBank coordinates used	740
RECA_AF 251469	recA (recombinase	Acinetobacter baumanii	9965210	No extraction - GenBank coordinates used	741
GYRA_AF 100557	gyrA (DNA gyrase subunit A)	Acinetobacter baumanii	4240540	No extraction - GenBank coordinates used	742
GYRB_AB 008700	gyrB (DNA gyrase subunit B)	Acinetobacter baumanii	4514436	No extraction - GenBank coordinates used	743
WAAA_Z9 6925	waaA (3-deoxy-D-manno-octulosonic-acid transferase)	Acinetobacter baumanii	2765828	No extraction - GenBank coordinates used	744
	Concatenation comprising:				
CJST_CJ	tkt (transketolase) glyA (serine hydroxymethyltrans	Artificial Sequence* - partial gene sequences of Campylobacter jejuni		15 694151569873 367573368079	
	ferase) gltA (citrate		15791399	complement	
	synthase) aspA (aspartate			(1 6045291604930) 96 69297168	
	ammonia lyase) glnA (glutamine synthase)			complement (657609658085)	745
	<pre>pgm (phosphoglycerate mutase)</pre>			32 7773328270	

			,		
	unca (ATP			112163112651	
	synthetase alpha				
DNA CED	chain) RNase P	Bordetella	33591275	Complement	
RNASEP_ BDP	(ribonuclease P)	pertussis	33591275	(32267203227933)	746
RNASEP	RNase P	Burkholderia	53723370	Complement	
BKM	(ribonuclease P)	mallei		(25272962528220)	747
RNASEP_ BS	RNase P (ribonuclease P)	Bacillus subtilis	16077068	Complement (23302502330962)	748
RNASEP_	RNase P	Clostridium	18308982	Complement	
CLB	(ribonuclease P)	perfringens		(22917572292584)	749
RNASEP_ EC	RNase P (ribonuclease P)	Escherichia coli	16127994	Complement (32674573268233	750
RNASEP_ RKP	RNase P (ribonuclease P)	Rickettsia prowazekii	15603881	complement(6052766 06109)	751
RNASEP	RNase P	Staphylococcus	15922990	complement (1559869	
SA	(ribonuclease P)	aureus		1560651)	752
RNASEP_	RNase P	Vibrio	15640032	complement(2580367	
VBC	(ribonuclease P)	cholerae	005055	2581452)	753
דכח כעם	<pre>icd (isocitrate dehydrogenase)</pre>	Coxiella burnetii	29732244	complement (1143867 1144235)	754
ICD_CXB	multi-locus	Acinetobacter	29732244	1144233)	-
T011117	IS1111A insertion	baumannii	35.02211	No overnosti	
IS1111A	element (outer	Rickettsia	40287451	No extraction	
OMPA AY	membrane protein	prowazekii	4020/451		
485227	Α〉			No extraction	755
	ompB (outer	Rickettsia	15603881		
OMPB_RK	membrane protein B)	prowazekii		complement(8812648 86195)	756
GLTA_RK P	<pre>gltA (citrate synthase)</pre>	Vibrio cholerae	15603881	complement(1062547 1063857)	757
	toxR	Francisella	15640032		
TOXR_VB	(transcription regulator toxR)	tularensis		complement(1047143 1048024)	758
	asd (Aspartate	Francisella	56707187		
ASD FRT	semialdehyde dehydrogenase)	tularensis		complement (4386084 39702)	759
GALE_FR T	galE (UDP-glucose 4-epimerase)	Shigella flexneri	56707187	809039810058	760
IPAH SG	ipaH (invasion	Campylobacter	30061571	0030337010036	700
F F	plasmid antigen)	jejuni	30002512	22107752211614	761
		Coxiella		complement (8493178	
HUPB CJ	hupB (DNA-binding protein Hu-beta)	burnetii	15791399	49819)	762
	Concatenation				
	comprising:	Artificial Sequence* - partial gene sequences of Acinetobacter baumannii			763
	trpE (anthranilate synthase component I))				
AB_MLST	adk (adenylate kinase)		-	Sequenced in-house	
	mutY (adenine glycosylase)				
	fumC (fumarate hydratase)				
	efp (elongation factor p)				
	<pre>ppa (pyrophosphate phospho- hydratase</pre>				

[0096] * Note: These artificial reference sequences represent concatenations of partial gene extractions from the indicated reference gi number. Partial sequences were used to create the concatenated sequence because complete gene sequences were not necessary for primer design. The stretches of arbitrary residues "N"s were added for the convenience of separation of the partial gene extractions (100N for SP101_SPET11 (SEQ ID NO: 732); 50N for CJST_CJ (SEQ ID NO: 745); and 40N for AB_MLST (SEQ ID NO: 763)).

[0097] Example 2: DNA isolation and Amplification

[0098] Genomic materials from culture samples or swabs were prepared using the DNeasy® 96 Tissue Kit (Qiagen, Valencia, CA). All PCR reactions are assembled in 50 µl reactions in the 96 well microtiter plate format using a Packard MPII liquid handling robotic platform and MJ Dyad® thermocyclers (MJ research, Waltham, MA). The PCR reaction consisted of 4 units of Amplitaq Gold®, 1x buffer II (Applied Biosystems, Foster City, CA), 1.5 mM MgCl₂, 0.4 M betaine, 800 µM dNTP mix, and 250 nM of each primer.

[0099] The following PCR conditions were used to amplify the sequences used for mass spectrometry analysis: 95C for 10 minutes followed by 8 cycles of 95C for 30 seconds, 48C for 30 seconds, and 72C for 30 seconds, with the 48C annealing temperature increased 0.9C after each cycle. The PCR was then continued for 37 additional cycles of 95C for 15 seconds, 56C for 20 seconds, and 72C for 20 seconds.

[0100] Example 3: Solution Capture Purification of PCR Products for Mass Spectro metry with Ion Exchange Resin-Magnetic Bead's

[0101] For solution capture of nucleic acids with ion exchange resin linked to magnetic beads, 25 μl of a 2.5 mg/mL suspension of BioClon amine terminated supraparamagnetic beads were added to 25 to 50 μl of a PCR reaction containing approximately 10 pM of a typical PCR amplification product. The above suspension was mixed for approximately 5 minutes by vortexing or pipetting, after which the liquid was removed after using a magnetic separator. The beads containing bound PCR amplification product were then washed 3x with 50mM ammonium bicarbonate/50% MeOH or 100mM ammonium bicarbonate/50% MeOH, followed by three more washes with 50% MeOH. The bound PCR amplicon was eluted with 25mM piperidine, 25mM imidazole, 35% MeOH, plus peptide calibration standards.

[0102] Example 4: Mass Spectrometry and Base Composition Analysis

[0103] The ESI-FTICR mass spectrometer is based on a Bruker Daltonics (Billerica, MA) Apex II 70e electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer that employs an actively shielded 7 Tesla superconducting magnet. The active shielding constrains the majority of the fringing magnetic field from the superconducting magnet to a relatively small volume. Thus, components that might be adversely affected by stray magnetic fields, such as CRT monitors, robotic components, and other electronics, can operate in close proximity to the FTICR spectrometer. All aspects of pulse sequence control and data acquisition were performed on a 600 MHz Pentium II data station running Bruker's Xmass software under Windows NT 4.0 operating system. Sample aliquots, typically 15 μl, were extracted directly from 96-well microtiter plates using a CTC HTS PAL autos ampler (LEAP Technologies, Carrboro, NC) triggered by the FTICR data station. Samples were injected directly into a 10 µl sample loop integrated with a fluidics handling system that supplies the 100 µl /hr flow rate to the ESI source. Ions were formed via electrospray ionization in a modified Analytica (Branford, CT) source employing an off axis, grounded electrospray probe positioned approximately 1.5 cm from the metalized terminus of a glass desolvation capi llary. The atmospheric pressure end of the glass capillary was biased at 6000 V relative to the ESI needle during data acquisition. A countercurrent flow of dry N₂ was employed to assist in the desolvation process. Ions were accumulated in an external ion reservoir comprised of an rf-only hexapole, a skimmer cone, and an auxiliary gate electrode, prior to injection into the trapped ion cell where they were mass analyzed. Ionization duty cycles > 99% were achieved by simultaneously accumulating ions in the external ion reservoir during ion detection. Each detection event consisted of 1M data points digitized over 2.3 s. To improve the signal-to-noise ratio (S/N), 32 scans were co-added for a total data acquisition time of 74 s.

[0104] The ESI-TOF mass spectrometer is based on a Bruker Daltonics MicroTOFTM. Ions from the ESI source undergo orthogonal ion extraction and are focused in a reflectron prior to detection. The TOF and FTICR are equipped with the same automated sample handling and fluidics described above. Ions are formed in the standard MicroTOFTM ESI source that is equipped with the same off-axis sprayer and glass capillary as the FTICR ESI source. Consequently, source conditions were the same as those described above. External ion accumulation was also employed to improve i onization duty cycle during data acquisition. Each detection event on the TOF was comprised of 75,000 data points digitized over 75 μs.

[0105] The sample delivery scheme allows sample aliquots to be rapidly injected into the electrospray source at high flow rate and subsequently be electrosprayed at a much lower flow rate for improved ESI sensitivity. Prior to injecting a sample, a bolus of buffer was injected at a high flow rate to rinse the transfer line and spray needle to avoid sample contamination/carryover. Following the rinse step, the autosampler injected the next sample and the flow rate was switched to low flow. Following a brief equil bration delay, data acquisition commenced. As spectra were co-added, the autosampler continued rinsing the syringe and picking up buffer to rinse the injector and sample transfer line. In general, two syringe rinses and one injector rinse were required to minimize sample carryover. During a routine screening protocol a new sample mixture was injected every 106 seconds. More recently a fast wash station for the syringe needle has been implemented which, when combined with shorter acquisition times, facilitates the acquisition of mass spectra at a rate of just under one spectrum/minute.

[0106] Raw mass spectra were post-calibrated with an internal rmass standard and deconvoluted to monoisotopic molecular masses. Unambiguous base compositions were derived from the exact mass measurements of the complementary single-stranded oligonucleotides. Quantitative results are obtained by comparing the peak heights with an internal PCR calibration standard present in every PCR well at 500 molecules per well for the ribosomal DNA-targeted primers and 100 molecules per well for the protein-encoding gene targets. Calibration methods are commonly owned and disclosed in U.S. Provisional Patent Application Serial No. 60/545,425.

[0107] Example 5: *De Novo* Determination of Base Composition of Amplification Products using Molecular Mass Modified Deoxynucleotide Triphosph ates

[0108] Because the molecular masses of the four natural nucleo bases have a relatively narrow molecular mass range (A = 313.058, G = 329.052, C = 289.046, T = 304.046 – See Table 3), a persistent source of ambiguity in assignment of base composition can occur as follows: two nucleic acid strands having different base composition may have a difference of about 1 Da when the base composition difference between the two strands is $G \leftrightarrow A$ (-15.994) combined with $C \leftrightarrow T$ (+15.000). For example, one 99-mer nucleic acid strand having a base composition of $A_{27}G_{30}C_{21}T_{21}$ has a theoretical molecular mass of 30779.058 while another 99-mer nucleic acid strand having a base composition of $A_{26}G_{31}C_{22}T_{20}$ has a theoretical molecular mass of 30780.052. A 1 Da difference in molecular mass may be within the experimental error of a

molecular mass measurement and thus, the relatively narrow molecular mass range of the four natural nucleobases imposes an uncertainty factor.

[0109] The present invention provides for a means for removing this theoretical 1 Da uncertainty factor through amplification of a nucleic acid with one mass-tagged raucleobase and three natural nucleobases. The term "nucleobase" as used herein is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dINTP).

[0110] Addition of significant mass to one of the 4 nucleobases (dNTPs) in an amplification reaction, or in the primers themselves, will result in a significant difference in mass of the resulting amplification product (significantly greater than 1 Da) arising from ambiguities arising from the $G \leftrightarrow A$ combined with $C \leftrightarrow T$ event (Table 3). Thus, the same the $G \leftrightarrow A$ (-15.994) event combined with 5-Iodo-C $\leftrightarrow T$ (-110.900) event would result in a molecular mass difference of 126.894. If the molecular mass of the base composition $A_{27}G_{30}$ 5-Iodo- $C_{21}T_{21}$ (33422.958) is compared with $A_{26}G_{31}$ 5-Iodo- $C_{22}T_{20}$, (33549.852) the theoretical molecular mass difference is +126.894. The experimental error of a molecular mass measurement is not significant with regard to this molecular mass difference. Furthermore, the only base composition consistent with a measured molecular mass of the 99-mer nucleic acid is $A_{27}G_{30}$ 5-Iodo- $C_{21}T_{21}$. In contrast, the analogous amplification without the mass tag has 18 possible base compositions.

Table 3: Molecular Masses of Natural Nucleobases and the Mass-Modified Nucleobase 5-Iodo-C and Molecular Mass Differences Resulting from Transitions

Nucleobase	Molecular Mass	Transition	Δ Molecular Mass
A	313.058	A>T	-9.012
A	313.058	A>C	-24.012
A	313.058	A>5-Iodo-C	101.888
A	313.058	A>G	15.994
Т	304.046	T>A	9.012
Т	304.046	T>C	-15.000
Т	304.046	T>5-Iodo-C	110.900
Т	304.046	T>G	25.006
c	289.046	C>A	24.012
C	289.046	C>T	15.000
С	289.046	C>G	40.006

5-Iodo-C	414.946	5-Iodo-C>A	-101.888
5-Iodo-C	414.946	5-Iodo-C>T	-110.900
5-Iodo-C	414.946	5-Iodo-C>G	-85.894
G	329.052	G>A	-15.994
G	329.052	G>T	-25.006
G	329.052	G>C	-40.006
G	329.052	G>5-Iodo-C	85.894

[0111] Example 6: Data Processing

[0112] Mass spectra of bioagent identifying amplicons are analyzed independently using a maximum-likelihood processor, such as is widely used in radar signal processing. This processor, referred to as GenX, first makes maximum likelihood estimates of the input to the mass spectrometer for each primer by running matched filters for each base composition aggregate on the input data. This includes the GenX response to a calibrant for each primer.

[0113] The algorithm emphasizes performance predictions culminating in probability-of-detection versus probability-of-false-alarm plots for conditions involving complex backgrounds of naturally occurring organisms and environmental contaminants. Matched filters consist of *a priori* expectations of signal values given the set of primers used for each of the bioagents. A genomic sequence database is used to define the mass base count matched filters. The database contains the sequences of known bacterial bioagents and includes threat organisms as well as benign background organisms. The latter is used to estimate and subtract the spectral signature produced by the background organisms. A maximum likelihood detection of known background organisms is implemented using matched filters and a running-sum estimate of the noise covariance. Background signal strengths are estimated and used along with the matched filters to form signatures which are then subtracted, the maximum likelihood process is applied to this "cleaned up" data in a similar manner employing matched filters for the organisms and a running-sum estimate of the noise-covariance for the cleaned up data.

[0114] The amplitudes of all base compositions of bioagent identifying amplicons for each primer are calibrated and a final maximum likelihood amplitude estimate per organism is made based upon the multiple single primer estimates. Models of all system noise are factored into this two-stage maximum likelihood calculation. The processor reports the number of molecules of each base composition contained in the spectra. The quantity of amplification product

corresponding to the appropriate primer set is reported as well as the quantities of primers remaining upon completion of the amplification reaction.

[0115] Example 7: Use of Broad Range Survey and Division Wide Primer Pairs for Identification of Bacteria in an Epidemic Surveillance Investigation

[0116] This investigation employed a set of 16 primer pairs which is herein designated the "surveillance primer set" and comprises broad range survey primer pairs, division wide primer pairs and a single *Bacillus* clade primer pair. The surveillance primer set is shown in Table 4 and consists of primer pairs originally listed in Table 1. This surveillance set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (*vide supra*) relative to originally selected primers which are displayed below in the same row. Primer pair 449 (non-T modified) has been modified twice. Its predecessors are primer pairs 70 and 357, displayed below in the same row. Primer pair 360 has also been modified twice and its predecessors are primer pairs 17 and 118.

Table 4: Bacterial Primer Pairs of the Surveillance Primer Set

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
346	16S_EC_713_732_TMOD_F	27	16S_EC_789_809_TMOD_R	389	16S rRNA
10	16S_EC_713_732_F	26	16S_EC_789_809	388	16S rRNA
347	16S_EC_785_806_TMOD_F	30	16S_EC_880_897_TMOD_R	392	16S rRNA
11	16S EC 785 806 F	29	16S EC 880 897 R	391	16S rRNA
348	16S_EC_960_981_TMOD_F	38	16S_EC_1054_1073_TMOD_R	363	16S rRNA
14	16S_EC_960_981_F	37	16S_EC_1054_1073_R	362	16S rRNA
349	23S_EC_1826_1843_TMOD_F	49	23S_EC_1906_1924_TMOD_R	405	23S TRNA
16	23S_EC_1826_1843_F	48	23S_EC_1906_1924_R	404	23S rRNA
352	INFB_EC_1365_1393_TMOD_F	161	INFB_EC_1439_1467_TMOD_R	516	infB
34	INFB EC 1365 1393 F	160	INFB_EC_1439_1467_R	515	infB
354	RPOC_EC_2218_2241_TMOD_F	262	RPOC_EC_2313_2337_TMOD_R	625	rpoC
52	RPOC_EC_2218_2241_F	261	RPOC_EC_2313_2337_R	624	rpoC
355	SSPE_BA_115_137_TMOD_F	321	SSPE_BA_197_222_TMOD_R	687	sspE
58	SSPE_BA_115_137_F	322	SSPE_BA_197_222_R	686	sspE
356	RPLB_EC_650_679_TMOD_F	232	RPLB_EC_739_762_TMOD_R	592	rplB
66	RPLB_EC_650_679_F	231	RPLB_EC_739_762_R	591	rplB
358	VALS_EC_1105_1124_TMOD_F	350	VALS_EC_1195_1218_TMOD_R	712	valS
71	VALS EC 1105 1124 F	349	VALS EC 1195 1218 R	711	valS
359	RPOB_EC_1845_1866_TMOD_F	241	RPOB_EC_1909_1929_TMOD_R	597	rpoB
72	RPOB_EC_1845_1866_F	240	RPOB_EC 1909 1929_R	596	rpoB
360	23S_EC_2646_2667_TMOD_F	60	23S_EC_2745_2765_TMOD_R	416	23s rRNA
118	23S_EC_2646_2667_F	59	23S_EC_2745_2765_R	415	23s rRNA
17	23S_EC_2645_2669_F	58	23S_EC_2744_2761_R	414	23s rRNA

361	16S_EC_1090_1111_2_TMOD_F	5	16S_EC_1175_1196_TMOD_R	370	16S rRNA
3	16S EC 1090 1111_2_F	6	16S_EC_1175_1196_R	369	16S rRNA
362	RPOB_EC_3799_3821_TMOD_F	245	RPOB_EC_3862_3888_TMOD_R	603	rpoB
289	RPOB EC 3799 3821 F	246	RPOB_EC_3862_3888_R	602	rpoB
363	RPOC_EC_2146_2174_TMOD_F	257	RPOC_EC_2227_2245_TMOD_R	621	rpoC
290	RPOC EC 2146 2174 F	256	RPOC_EC_2227_2245_R	620	rpoC
367	TUFB_EC_957_979_TMOD_F	345	TUFB_EC_1034_1058_TMOD_R	701	tufB
293	TUFB EC 957 979 F	344	TUFB_EC_1034_1058_R	700	tufB
449	RPLB_EC_690_710_F	237	RPLB_EC_737_758_R	589	rplB
357	RPLB_EC_688_710_TMOD_F	236	RPLB_EC_736_757_TMOD_R	588	rplB
67	RPLB_EC_688_710_F	235	RPLB_EC_736_757_R	587	rplB

[0117] The 16 primer pairs of the surveillance set are used to produce bioagent identifying amplicons whose base compositions are sufficiently different amongst all known bacteria at the species level to identify, at a reasonable confidence level, any given bacterium at the species level. As shown in Tables 6A-E, common respiratory bacterial pathogens can be distinguished by the base compositions of bioagent identifying amplicons obtained using the 16 primer pairs of the surveillance set. In some cases, triangulation identification improves the confidence level for species assignment. For example, nucleic acid from Streptococcus pyogenes can be amplified by nine of the sixteen surveillance primer pairs and Streptococcus pneumoniae can be amplified by ten of the sixteen surveillance primer pairs. The base compositions of the bioagent identifying amplicons are identical for only one of the analogous bioagent identifying amplicons and differ in all of the remaining analogous bioagent identifying amplicons by up to four bases per bioagent identifying amplicon. The resolving power of the surveillance set was confirmed by determination of base compositions for 120 isolates of respiratory pathogens representing 70 different bacterial species and the results indicated that natural variations (usually only one or two base substitutions per bioagent identifying amplicon) amongst multiple isolates of the same species did not prevent correct identification of major pathogenic organisms at the species level.

[0118] Bacillus anthracis is a well known biological warfare agent which has emerged in domestic terrorism in recent years. Since it was envisioned to produce bioagent identifying amplicons for identification of Bacillus anthracis, additional drill-down analysis primers were designed to target genes present on virulence plasmids of Bacillus anthracis so that additional confidence could be reached in positive identification of this pathogenic organism. Three drill-down analysis primers were designed and are listed in Tables 1 and 5. In Table 5 the drill-down set comprises primers with T modifications (note TMOD designation in primer names) which

constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row.

Table 5: Drill-Down Primer Pairs for Confirmation of Identification of Bacillus anthracis

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
350	CAPC_BA_274_303_TMOD_F	98	CAPC_BA_349_376_TMOD_R	452	capC
24	CAPC_BA 274 303 F	97	CAPC BA_349 376 R	451	capC
351	CYA_BA_1353_1379_TMOD_F	128	CYA_BA_1448_1467_TMOD_R	483	cyA
30	CYA_BA_1353_1379_F	127	CYA_BA_1448_1467_R	482	cyA
353	LEF_BA_756_781_TMOD_F	175	LEF_BA_843_872_TMOD_R	531	lef
37	LEF BA 756 781 F	174	LEF BA 843 872 R	530	lef

[0119] Phylogenetic coverage of bacterial space of the sixteen surveillance primers of Table 4 and the three Bacillus anthracis drill-down primers of Table 5 is shown in Figure 3 which lists common pathogenic bacteria. Figure 3 is not meant to be comprehensive in illustrating all species identified by the primers. Only pathogenic bacteria are listed as representative examples of the bacterial species that can be identified by the primers and methods of the present invention. Nucleic acid of groups of bacteria enclosed within the polygons of Figure 3 can be amplified to obtain bioagent identifying amplicons using the primer pair numbers listed in the upper right hand corner of each polygon. Primer coverage for polygons within polygons is additive. As an illustrative example, bioagent identifying amplicons can be obtained for Chlamydia trachomatis by amplification with, for example, primer pairs 346-349, 360 and 361, but not with any of the remaining primers of the surveillance primer set. On the other hand, bioagent identifying amplicons can be obtained from nucleic acid originating from Bacillus anthracis (located within 5 successive polygons) using, for example, any of the following primer pairs: 346-349, 360, 361 (base polygon), 356, 449 (second polygon), 352 (third polygon), 355 (fourth polygon), 350, 351 and 353 (fifth polygon). Multiple coverage of a given organism with multiple primers provides for increased confidence level in identification of the organism as a result of enabling broad triangulation identification.

[0120] In Tables 6A-E, base compositions of respiratory pathogens for primer target regions are shown. Two entries in a cell, represent variation in ribosomal DNA operons. The most predominant base composition is shown first and the minor (frequently a single operon) is indicated by an asterisk (*). Entries with NO DATA mean that the primer would not be expected to prime this species due to mismatches between the primer and target region, as determined by theoretical PCR.

Table 6A – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying

Amplicons Corresponding to Primer Pair Nos: 346, 347 and 348

	1	Primer 346	Primer 347	Primer 348
Organism	Strain	[A G C T]	[A G C T]	[A G C T]
Klebsiella	Journal	[29 32 25 13]	[23 38 28 26]	[26 32 28 30]
pneumoniae	MGH78578	[29 31 25 13]*	[23 37 28 26]*	[26 31 28 30]*
·••	CO-92 Biovar			[29 30 28 29]
Yersinia pestis	Orientalis	[29 32 25 13]	[22 39 28 26]	[30 30 27 29]*
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	[29 32 25 13]	[22 39 28 26]	[29 30 28 29]
				[29 30 28 29]
Yersinia pestis	91001	[29 32 25 13]	[22 39 28 26]	[30 30 27 29]*
Haemophilus influenzae	KW20	[28 31 23 17]	[24 37 25 27]	[29 30 28 29]
Pseudomonas	KW20	[20 31 23 17]	[26 36 29 24]	[29 30 20 29]
aeruginosa	PAO1	[30 31 23 15]	[27 36 29 23]*	[26 32 29 29]
Pseudomonas	-			
fluorescens	Pf0-1	[30 31 23 15]	[26 35 29 25]	[28 31 28 29]
Pseudomonas				
putida	KT2440	[30 31 23 15]	[28 33 27 27]	[27 32 29 28]
Legionella	_, ,, , , , , ,			
pneumophila Francisella	Philadelphia-1	[30 30 24 15]	[33 33 23 27]	[29 28 28 31]
Francisella tularensis	schu 4	[32 29 22 16]	[28 38 26 26]	[25 32 28 31]
Bordetella	JOHU T	[32 23 22 10]	[20 30 20 20]	[23 32 20 31]
pertussis	Tohama I	[30 29 24 16]	[23 37 30 24]	[30 32 30 26]
Burkholderia				[27 36 31 24]
cepacia	J2315	[29 29 27 14]	[27 32 26 29]	[20 42 35 19]*
Burkholderia				
pseudomallei	K96243	[29 29 27 14]	[27 32 26 29]	[27 36 31 24]
Neisseria	FA 1090, ATCC			
gonorrhoeae	700825	[29 28 24 18]	[27 34 26 28]	[24 36 29 27]
Neisseria meningitidis	MC58 (serogroup B)	[29 28 26 16]	127 24 27 271	[25 25 20 26]
Neisseria	MC38 (Selogioup B)	[29 20 20 10]	[27 34 27 27]	[25 35 30 26]
meningitidis	serogroup C, FAM18	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Neisseria				[== == == == == == == == == = = = = = =
meningitidis	Z2491 (serogroup A)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Chlamydophila				
pneumoniae	TW-183	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila				
pneumoniae Chlamydophila	AR39	[31 27 22 19]	NO DATA	[32 27 27 29]
pneumoniae	CWL029	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila	J.,3023	[21 21 22 13]	IIV DAIA	[36 61 61 63]
pneumoniae	J138	[31 27 22 19]	NO DATA	[32 27 27 29]
Corynebacterium				
diphtheriae	NCTC13129	[29 34 21 15]	[22 38 31 25]	[22 33 25 34]
Mycobacterium				
avium	k10	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium	104	107 26 01 151	[[[]]]]]]]]	[01 26 07 201
avium Mycobacterium	104	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
tuberculosis	CSU#93	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium		00 24 401	[22 0, 30 20]	[LD4 00 11 00]
tuberculosis	CDC 1551	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium				,
tuberculosis	H37Rv (lab strain)	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycoplasma				
pneumoniae	M129	[31 29 19 20]	NO DATA	NO DATA
Staphylococcus aureus	MRSA252	[27 30 21 21]	125 25 20 261	[30 29 30 29]
Staphylococcus	HADA202	[21 20 27 27]	[25 35 30 26]	[29 31 30 29]* [30 29 30 29]
aureus	MSSA476	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
Staphylococcus			, , , , , , , , , , , , , , , , , , , ,	[30 29 30 29]
aureus	COT	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus				[30 29 30 29]
aureus	Mu50	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus	1570	107 00 51		[30 29 30 29]
aureus	MW2	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*

Staphylococcus				[30 29 30 29]
aureus	N315	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus			[25 35 30 26]	[30 29 30 29]
aureus	NCTC 8325	[27 30 21 21]	[25 35 31 26]*	[30 29 29 30]
Streptococcus			[24 36 31 25]	
agalactiae	NEM316	[26 32 23 18]	[24 36 30 26]*	[25 32 29 30]
Streptococcus				
equi	NC_002955	[26 32 23 18]	[23 37 31 25]	[29 30 25 32]
Streptococcus				
pyogenes	MGAS8232	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	MGAS315	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	SSI-1	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	MGAS10394	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	Manfredo (M5)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				105 21 22 213
pyogenes	SF370 (M1)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				105 20 20 201
pneumoniae	670	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
Streptococcus		1	105 35 00 001	125 22 20 201
pneumoniae	R6	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
Streptococcus		100 00 00 101	105 27 00 001	125 32 30 201
pneumoniae	TIGR4	[26 32 23 18]	[25 35 28 28]	[25 32 30 29]
Streptococcus		105 22 22 101	1 104 26 21 251	[25 31 29 31]
gordoni i	NCTC7868	[25 33 23 18]	[24 36 31 25]	[25 31 29 31]
Streptococcus	YOUR 10061	106 22 22 101	[25 35 30 26]	[24 31 35 29]*
mitis	NCTC 12261	[26 32 23 18]	[25 35 30 26]	[24 31 33 29]"
Streptococcus	rrn 1 5 0	104 22 24 101	125 27 20 241	[28 31 26 31]
mutans	UA159	[24 32 24 19]	[25 37 30 24]	[20 31 20 31]

Table 6B – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying

Amplicons Corresponding to Primer Pair Nos: 349, 360, and 356

		Primer 349	Primer 360	Primer 356
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella				
pneumoniae	MGH78578	[25 31 25 22]	[33 37 25 27]	NO DATA
	CO-92 Biovar	[25 31 27 20]		
Yersinia pestis	Orientalis	[25 32 26 20]*	[34 35 25 28]	NO DATA
	KIM5 P12 (Biovar	[25 31 27 20]		
Yersinia pestis	Mediaevalis)	[25 32 26 20]*	[34 35 25 28]	NO DATA
Yersinia pestis	91001	[25 31 27 20]	[34 35 25 28]	NO DATA
Haemophilus				
influenzae	KW20	[28 28 25 20]	[32 38 25 27]	NO DATA
Pseudomonas			[31 36 27 27]	
aeruginosa	PAO1	[24 31 26 20]	[31 36 27 28]*	NO DATA
Pseudomonas			[30 37 27 28]	
fluorescens	Pf0-1	NO DATA	[30 37 27 28]	NO DATA
Pseudomonas				
putida	KT2440	[24 31 26 20]	[30 37 27 28]	NO DATA
Legione11a		<u> </u>		
pneumophila	Philadelphia-1	[23 30 25 23]	[30 39 29 24]	NO DATA
Francisella				
tularensis	schu 4	[26 31 25 19]	[32 36 27 27]	NO DATA
Bordetella				
pertussis	Tohama I	[21 29 24 18]	[33 36 26 27]	NO DATA
Burkholderia				
cepacia	J2315	[23 27 22 20]	[31 37 28 26]	NO DATA
Burkholderia		1		
pseudomallei	K96243	[23 27 22 20]	[31 37 28 26]	NO DATA
Neisser i a				l
gonorrhoeae	FA 1090, ATCC 700825	[24 27 24 17]	[34 37 25 26]	NO DATA
Neisseria	1			
meningitidis	MC58 (serogroup B)	[25 27 22 18]	[34 37 25 26]	NO DATA
Neisseria				
meningitidis	serogroup C, FAM18	[25 26 23 18]	[34 37 25 26]	NO DATA
Neisser i a	Z2491 (serogroup A)	[25 26 23 18]	[34 37 25 26]	NO DATA

meningitidis				
Chlamydophila				
pneumoniae	TW-183	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila		100 00 00		
pneumoniae	AR39	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila				
pneumoniae	CWL029	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila				
pneumoniae	J138	[30 28 27 18]	NO DATA	NO DATA
Corynebacterium	*** G m G 1 3 1 0 0	NO DAMA	100 40 00 051	NO DATA
diphtheriae Mycobacterium	NCTC13129	NO DATA	[29 40 28 25]	NO DATA
avium	k10	NO DATA	[33 35 32 22]	NO DATA
Mycobacterium	TELO .	110 21111	[00 00 02 22]	
avium	104	NO DATA	[33 35 32 22]	NO DATA
Mycobacterium				
tuberculosis	CSU#93	NO DATA	[30 36 34 22]	NO DATA
Mycobacterium				
tuberculosis	CDC 1551	NO DATA	[30 36 34 22]	NO DATA
Mycobacterium	1727p (1-1-)	170 DAMES	120 26 24 001	NO DAMA
tuberculosis	H37Rv (lab strain)	NO DATA	[30 36 34 22]	NO DATA
Mycoplasma pneumoniae	M129	[28 30 24 19]	[34 31 29 28]	NO DATA
Staphylococcus	M123	[20 30 24 13]	[54 51 25 20]	NO DATA
aureus	MRSA252	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				
aureus	MSSA476	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				
aureus	COL	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus		1		
aureus	Mu50	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus	METERS	126 20 25 201	[21 20 24 20]	1 122 20 21 271
aureus Staphylococcus	MW2	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
aureus	N315	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus	11010	(20 00 20 20)	, , , , , , , , , , , , , , , , , , , ,	122 24 42 27
aureus	NCTC 8325	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Streptococcus				
agalactiae	NEM316	[28 31 22 20]	[33 37 24 28]	[37 30 28 26]
Streptococcus				
equi	NC_002955	[28 31 23 19]	[33 38 24 27]	[37 31 28 25]
Streptococcus	MGAS8232	120 21 22 101	[33 37 24 28]	[38 31 29 23]
pyogenes Streptococcus	FIGMOUZUZ	[28 31 23 19]	[33 37 24 20]	[[]]]] [] []
pyogenes	MGAS315	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus			<u> </u>	
pyogenes	SSI-1	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus				
pyogenes	MGAS10394	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus		100 21 22 127	1 122 27 04 00:	120 21 00 021
pyogenes	Manfredo (M5)	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus	SF370 (M1)	[28 31 23 19] [28 31 22 20]*	[33 37 24 28]	[38 31 29 23]
pyogenes Streptococcus	51370 (HI)	[20 31 22 20]^	[33 37 24 20]	[[]]] [] [] []
pneumoniae	670	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus		1		1
pneumoniae	R6	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus				
pneumoniae	TIGR4	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus	NT GTT GTT G C G			1,26,21,00,051
gordonii	NCTC7868	[28 32 23 20]	[34 36 24 28]	[36 31 29 25]
Streptococcus mitis	NCTC 12261	[28 31 22 20] [29 30 22 20]*	[34 36 24 28]	[37 30 29 25]
Streptococcus	1,010 12201	[29 30 22 20]"	[34 30 24 20]	[31 30 23 23]
mutans	UA159	[26 32 23 22]	[34 37 24 27]	NO DATA
L				

Table 6C – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352

r	, 	I	T =	I ======= 050
	at a second	Primer 449	Primer 354	Primer 352
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella	WGW70570	NO DIET		NO DATE
pneumoniae	MGH78578	NO DATA	[27 33 36 26]	NO DATA
Vanainia maatia	CO-92 Biovar	NO DAMA	[20 21 22 20]	120 00 00 051
Yersinia pestis	Orientalis KIM5 P12 (Biovar	NO DATA	[29 31 33 29]	[32 28 20 25]
Yersinia pestis	KIM5 P12 (Biovar Mediaevalis)	NO DAMA	[29 31 33 29]	122 20 20 251
		NO DATA		[32 28 20 25]
Yersinia pestis	91001	NO DATA	[29 31 33 29]	NO DATA
Haemophilus influenzae	KW20	NO DATA	[30 29 31 32]	NO DATES
Pseudomonas	_ XW2U	NO DATA	[30 29 31 32]	NO DATA
aeruginosa	PAO1	NO DATA	[26 33 39 24]	NO DATA
Pseudomonas	FAUL	NO DATA	[20 33 39 24]	NO DATA
fluorescens	Pf0-1	NO DATA	[26 33 34 29]	NO DATA
Pseudomonas	110-1	NO DATA	[20 33 34 23]	NO DRIM
putida	KT2440	NO DATA	[25 34 36 27]	NO DATA
Legionella	112440	NO DATA	[23 34 30 27]	NO DATA
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella			1 521111	
tularensis	schu 4	NO DATA	[33 32 25 32]	NO DATA
Bordetella				
pertussis	Tohama I	NO DATA	[26 33 39 24]	NO DATA
Burkholderia				
cepacia	J2315	NO DATA	[25 37 33 27]	NO DATA
Burkholderia		,		
pseudomallei	K96243	NO DATA	[25 37 34 26]	NO DATA
Neisseria				
gonorrhoeae	FA 1090, ATCC 700825	[17 23 22 10]	[29 31 32 30]	NO DATA
Neisseria				
meningitidis	MC58 (serogroup B)	NO DATA	[29 30 32 31]	NO DATA
Neisseria			<u> </u>	1
meningitidis	serogroup C, FAM18	NO DATA	[29 30 32 31]	NO DATA
Neisseria				
meningitidis	Z2491 (serogroup A)	NO DATA	[29 30 32 31]	NO DATA
Chlamydophila.				
pneumoniae	TW-183	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	CWL029	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	J138	NO DATA	NO DATA	NO DATA
Corynebacterium				
diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium				
avium	k10	NO DATA	NO DATA	NO DATA
Mycobacterium				l
avium	104	NO DATA	NO DATA	NO DATA
Mycobacterium		l	l	l
tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA
Mycobacterium	ana 1551			
tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA
Mycobacterium	wazn /1 -			,,, ,,,,,
tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
Mycoplasma	M120	NO DAMA	NO DAWN	NO DAMA
pneumoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus	MDCD252	[17 20 21 17]	120 27 20 257	126 24 10 261
aureus Staphylococcus	MRSA252	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
	MGSD 476	[17 20 21 171	130 27 20 251	136 24 10 261
Staphylogogus	MSSA476	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus aureus	COL	[17 20 21 171	130 27 20 251	[35 24 10 271
Staphylococcus	1 000	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
aureus	Mu50	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus		[1/20 21 1/]	[[50 2, 50 55]	[30 24 13 20]
aureus	MW2	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
	L *****	L + 1 + 0 + T T T T T T T T T T T T T T T T T	[[] [] [] [] [] []	[00 24 49 20]

	T		T	
Staphylococcus aureus	N315	[17 20 21 <u>17]</u>	[30 27 30 35]	[36 24 19 26]
Staphylococcus aureus	NCTC 8325	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
Streptococcus agalactiae	NEM316	[22 20 19 14]	[26 31 27 38]	[29 26 22 28]
Streptococcus equi	NC_002955	[22 21 19 13]	NO DATA	NO DATA
Streptococcus pyogenes	MGAS8232	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus pyogenes	MGAS315	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus pyogenes	SSI-1	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus pyogenes	MGAS10394	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus pyogenes	Manfredo (M5)	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus pyogenes	SF370 (M1)	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus pneumoniae	670	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus pneumoniae	R6	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus pneumoniae	TIGR4	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus gordonii	NCTC7868	[21 21 19 14]	NO DATA	[29 26 22 28]
Streptococcus mitis	NCTC 12261	[22 20 19 14]	[26 30 32 34]	NO DATA
Streptococcus mutans	UA159	NO DATA	NO DATA	NO DATA

Table 6D – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying
Amplicons Corresponding to Primer Pair Nos: 355, 358, and 359

	_	Primer 355	Primer 358	Primer 359
Organism	Strain	[A.GCT]	[AGCT]	[AGCT]
Klebsiella				
pneumoniae	MGH78578	NO DATA	[24 39 33 20]	[25 21 24 17]
	CO-92 Biovar	·		
Yersinia pestis	Orientalis	NO DATA	[26 34 35 21]	[23 23 19 22]
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	NO DATA	[26 34 35 21]	[23 23 19 22]
Yersinia pestis	91001	NO DATA	[26 34 35 21]	[23 23 19 22]
Haemophilus				
influenzae	KW20	NO DATA	NO DATA	NO DATA
Pseudomonas				
aeruginosa	PAO1	NO DATA	NO DATA	NO DATA
Pseudomonas				
fluorescens	Pf0-1	NO DATA	NO DATA	NO DATA
Pseudomonas				
putida	KT2440	NO DATA	[21 37 37 21]	NO DATA
Legionella		1		
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella				
tularensis	schu 4	NO DATA	NO DATA	NO DATA
Bordetella				
pertussis	Tohama I	NO DATA	NO DATA	NO DATA
Burkholderia				
cepacia	J2315	NO DATA	NO DATA	NO DATA
Burkholderia				
pseudomallei	K96243	NO DATA	NO DATA	NO DATA
Neisseria				
gonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
Neisseria				
meningitidis	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
Neisseria				
meningitidis	serogroup C, FAM18	NO DATA	NO DATA	NO DATA

	_		1	T
Neisseria meningitidis	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
Chlamydophila	MZ431 (SCIGGIOUP A)	NO DATA	NO DATA	NO BILLI
pne umoniae	TW-183	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila				
pne umoniae	CWL029	NO DATA	NO DATA	NO DATA
Chlamydophila	7120	NO DAMA	NO DAMA	NO DAMA
pne umoniae Corynebacterium	Ј138	NO DATA	NO DATA	NO DATA
diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium	101010101	1.00 2		
avi um	k10	NO DATA	NO DATA	NO DATA
Mycobacterium				
avium	104	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA
Mycobacterium tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA
Mycobacterium	CDC 1551	NO DATA	NO DATA	NO DATA
tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
Mycoplasma	,			
pne umoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	MRSA252	NO DATA	NO DATA	NO DATA
Sta_phylococcus				
aureus	MSSA476	NO DATA	NO DATA	NO DATA
Staphylococcus aureus	COT	NO DATA	NO DATA	NO DATA
Staphylococcus	COL	NO DATA	NO DATA	NO DATA
aureus	Mu50	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	MW2	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	N315	NO DATA	NO DATA	NO DATA
Staphylococcus	NGMG 0205	מונים האו	NO DAMA	NO DATA
aureus Streptococcus	NCTC 8325	NO DATA	NO DATA	NO DATA
aga lactiae	NEM316	NO DATA	NO DATA	NO DATA
Streptococcus	NAME OF THE PARTY	110 211111	110 21111	110 2222
equi	NC 002955	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	MGAS8232	NO DATA	NO DATA	NO DATA
Streptococcus				NO DAMA
pyogenes	MGAS315	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	SSI-1	NO DATA	NO DATA	NO DATA
Streptococcus	551 1	1.0 1/11/11	1.0 21111	2.7 22.2.1
pyogenes	MGAS10394	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	Manfredo (M5)	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	SF370 (M1)	NO DATA	NO DATA	NO DATA
Streptococcus	670	NO DAGA	NO DATA	NO DAMA
pneumoniae Streptococcus	670	NO DATA	NO DATA	NO DATA
pne umoniae	R6	NO DATA	NO DATA	NO DATA
Streptococcus	 			
pne umoniae	TIGR4	NO DATA	NO DATA	NO DATA
Streptococcus				
gordonii	NCTC7868	NO DATA	NO DATA	NO DATA
Streptococcus			l	
mitis	NCTC 12261	NO DATA	NO DATA	NO DATA
Streptococcus	117/159	NO DATA	NO DATE	NO DATA
mutans	UA159	NO DATA	NO DATA	NO DATA

Table 6E – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 362, 363, and 367

Organisms		Primer 362 Primer 363 Primer 367						
Renumoniase	Organism	Strain						
Yersinia pestis								
Versinia pestis	pneumoniae		[21 33 22 16]	[16 34 26 26]	NO DATA			
Yersinia pestis	Yersinia pestis		[20 34 18 20]	NO DATA	NO DATA			
	Terbania person		(20 0. 20 20)	NO DILLE	3.0 3.13.1			
Remophilus Influenze	Yersinia pestis	Mediaevalis)	[20 34 18 20]	NO DATA	NO DATA			
influenzae	Yersinia pestis	91001	[20 34 18 20]	NO DATA	NO DATA			
Pacition	1 -				1			
PAOI		KW20	NO DATA	NO DATA	NO DATA			
PS-BUGGOROMS		PAO1	[19 35 21 17]	[16 36 28 22]	NO DATA			
Provided Philadelphia NO DATA NO DATA NO DATA NO DATA Pranciscila tulazensis Schu 4 NO DATA NO DATA NO DATA NO DATA Pranciscila tulazensis Schu 4 NO DATA NO DATA NO DATA NO DATA Pranciscila tulazensis Schu 4 NO DATA NO DATA NO DATA Pranciscila tulazensis Schu 4 Pranciscila tulazensis Schu 4 NO DATA NO DATA Pranciscila tulazensis Schu 4 Pranciscila tulazensis Schu 4 NO DATA NO DATA Pranciscila tulazensis Pranciscil								
Dutids	fluorescens	Pf0-1	NO DATA	[18 35 26 23]	NO DATA			
Degianella Philadelphia-1 NO DATA NO DATA NO DATA NO DATA					VO DAWA			
Principaliza	*	KT2440	NO DATA	[16 35 28 23]	NO DATA			
Prancisella		Philadelphia-1	NO DATA	NO DATA	NO DATA			
Derdetella		TIME COMPTING I	1.0 2.11.1					
Dertussis		schu 4	NO DATA	NO DATA	NO DATA			
Burkholderia Cepacia J2315 [20 33 21 18] [15 36 26 25] [25 27 32 20] Burkholderia Seuchmallei K96243 [19 34 19 20] [15 37 28 22] [25 27 32 20] Burkholderia Seuchmallei K96243 [19 34 19 20] [15 37 28 22] [25 27 32 20] Burkholderia Seuchmallei K96243 [19 34 19 20] [15 37 28 22] [25 27 32 20] Burkholderia Seuchmallei K96243 [19 34 19 20] [15 37 28 22] [25 27 32 20] Burkholderia Seuchmallei K96243 No DATA N		m-1	100 01 04 177	F1F 24 22 22	100 05 04 101			
cepecia J2315 [20 33 21 18] [15 36 26 25] [25 27 32 20] Burkholderia pseudomallei K96243 [19 34 19 20] [15 37 28 22] [25 27 32 20] Neisseria geningitidis FA 1090, ATCC 700825 NO DATA NO DATA NO DATA Neisseria meningitidis MCSE (serogroup B) NO DATA NO DATA NO DATA Neisseria meningitidis Serogroup C, FAMIS NO DATA NO DATA NO DATA Neisseria meningitidis Z2491 (serogroup A) NO DATA NO DATA NO DATA Neisseria meningitidis Z2491 (serogroup A) NO DATA NO DATA NO DATA Neisseria meningitidis TW-183 NO DATA NO DATA NO DATA Neisseria meningitidis Z2491 (serogroup A) NO DATA NO DATA NO DATA Neisseria meningitidis TW-183 NO DATA NO DATA NO DATA Chlamydophila pneumoniae CWL029 NO DATA NO DATA NO DATA Corynebacterium diphtheriae NCTC13129 NO DATA NO DATA NO DATA Rycobacterium dub	-	Tohama I	[20 31 24 17]	[15 34 32 21]	[26 25 34 19]			
Burkholderia Pseudomallei K96243 [19 34 19 20] [15 37 28 22] [25 27 32 20]	l e	J2315	[20 33 21 181	[15 36 26 25]	[25 27 32 201			
Neisseria No DATA		0.000	(20 00 00)	[20 00 20 20]	,			
gonorkhoese FA 1090, ATCC 700825 NO DATA NO DATA NO DATA NO DATA Neisseria meningitidis MC58 (serogroup B) NO DATA NO DATA NO DATA NO DATA Neisseria meningitidis Serogroup C, FAM18 NO DATA NO DATA NO DATA NO DATA Neisseria meningitidis Z2491 (serogroup A) NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae TW-163 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae CWL029 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae J138 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae NCTC13129 NO DATA NO DATA NO DATA NO DATA Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] NY DATA Mycobacterium tuberculosis CSU#93 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis M378v (lab strain) [19 31 24 18] NO DATA NO DATA <td>pseudomallei</td> <td>К96243</td> <td>[19 34 19 20]</td> <td>[15 37 28 22]</td> <td>[25 27 32 20]</td>	pseudomallei	К96243	[19 34 19 20]	[15 37 28 22]	[25 27 32 20]			
Neisseria								
meningitidis MC58 (seregroup B) NO DATA NO DATA NO DATA NO DATA Neisseria meningitidis seregroup C, FAM18 NO DATA NO DATA NO DATA NO DATA Neisseria meningitidis Z2491 (seregroup A) NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae TW-183 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae CWL029 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumoniae J136 NO DATA NO DATA NO DATA NO DATA Corynebacterium diphtheriae NCTC13129 NO DATA NO DATA NO DATA NO DATA Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA NO DATA		FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA			
Neisseria		MC58 (serogroup B)	NO DATA	NO DATE	NO DATA			
Neisseria		nest (seregroup 2)	NO DATA	, , , , , , , , , , , , , , , , , , , ,				
meningitidis Z2491 (serogroup A) NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumcniae TW-183 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumcniae AR39 NO DATA NO DATA NO DATA NO DATA Chlamydophila pneumcniae CWL029 NO DATA NO DATA NO DATA NO DATA Corynebacterium diphtheriae NCTC13129 NO DATA NO DATA NO DATA NO DATA Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumcniae M129 NO DATA NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA NO DATA	meningitidis	serogroup C, FAM18	NO DATA	NO DATA	NO DATA			
Chlamydophila								
Decimination Deci		Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA			
Chlamydophila		TW-183	NO DATA	NO DATZ	NO DATA			
Chlamydophila pneumoniae CWL029 NO DATA		111 200	210 21111	Dilli				
Decimoniae CWL029	pneumoniae	AR39	NO DATA	NO DATZA	NO DATA			
Chlamydophila pneumoniae J138 NO DATA NO DATA NO DATA Corynebacterium diphtheriae NCTC13129 NO DATA NO DATA NO DATA Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium avium 104 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA NO DATA					l i			
December December		CWL029	NO DATA	NO DATA	NO DATA			
Corynebacterium diphtheriae NCTC13129		.T138	אר סאדב	NO DATZ	NO DATA			
Mycobacterium avium k10 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium avium 104 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA					1.0 2.1.1.1			
avium k10 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium avium 104 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA	diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA			
Mycobacterium avium 104 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA	-	1-10	110 24 62 163	170 D. W. W.	104 06 07 103			
avium 104 [19 34 23 16] NO DATA [24 26 35 19] Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		KIU	[19 34 23 16]	NO DATA	[24 26 35 19]			
Mycobacterium tuberculosis CSU#93 [19 31 25 17] NO DATA [25 25 34 20] Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		104	[19 34 23 16]	NO DATA	[24 26 35 19]			
Mycobacterium tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA	Mycobacterium							
tuberculosis CDC 1551 [19 31 24 18] NO DATA [25 25 34 20] Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		CSU#93	[19 31 25 17]	NO DATA	[25 25 34 20]			
Mycobacterium tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		ODG 1551	(10 21 04 101	NO DATE	TOE OF 04 003			
tuberculosis H37Rv (lab strain) [19 31 24 18] NO DATA [25 25 34 20] Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		CDC 1991	[19 31 24 18]	NO DATA	[25 25 34 20]			
Mycoplasma pneumoniae M129 NO DATA NO DATA NO DATA Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA	4	H37Rv (lab strain)	[19 31 24 18]	NO DATA	[25 25 34 201			
Staphylococcus aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA NO DATA				-				
aureus MRSA252 NO DATA NO DATA NO DATA Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		M129	NO DATA	NO DATA	NO DATA			
Staphylococcus aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		MDCAGEG	NO DAMA	NO DAMES	NO DAIRA			
aureus MSSA476 NO DATA NO DATA NO DATA Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		PINDAZJZ	NO DATA	NO DALA	NO DATA			
Staphylococcus aureus COL NO DATA NO DATA NO DATA Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA		MSSA476	NO DATA	NO DATA	NO DATA			
Staphylococcus aureus Mu50 NO DATA NO DATA NO DATA								
aureus Mu50 NO DATA NO DATA NO DATA		COL	NO DATA	NO DATA	NO DATA			
		M1150	NO DATE	NO DATE	NO DATE			
Staphylococus		MUOU	NO DATA	NU DALA	NO DATA			
aureus MW2 NO DATA NO DATA NO DATA		MW2	NO DATA	NO DATA	NO DATA			
Staphylococcus N315 NO DATA NO DATA NO DATA		· · · · · · · · · · · · · · · · · · ·						
	aureus	· · · · · · · · · · · · · · · · · · ·						

aureus	1		1	
Staphylococcus	 	 		
aureus	NCTC_8325	NO DATA	NO DATA	NO DATA
Streptococcus agalactiae	NEM316	NO DATA	NO DATA	NO DATA
Streptococcus equi	NC_002955	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	MGAS8232	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	MGAS315	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	SSI-1	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	MGAS10394	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	Manfredo (M5)	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	SF370 (M1)	NO DATA	NO DATA	NO DATA
Streptococcus pneumoniae	670	NO DATA	NO DATA	NO DATA
Streptococcus pneumoniae	R6	[20 30 19 23]	NO DATA	NO DATA
Streptococcus pneumoniae	TIGR4	[20 30 19 23]	NO DATA	NO DATA
Streptococcus gordonii	NCTC7868	NO DATA	NO DATA	NO DATA
Streptococcus mitis	NCTC 12261	NO DATA	NO DATA	NO DATA
Streptococcus mutans	UA159	NO DATA	NO DATA	NO DATA

[0121] Four sets of throat samples from military recruits at different military facilities taken at different time points were analyzed using the primers of the present invention. The first set was collected at a military training center from November 1 to December 20, 2002 during one of the most severe outbreaks of pneumonia associated with group A *Streptococcus* in the United States since 1968. During this outbreak, fifty-one throat swabs were taken from both healthy and hospitalized recruits and plated on blood agar for selection of putative group A *Streptococcus* colonies. A second set of 1 5 original patient specimens was taken during the height of this group A *Streptococcus* -associated respiratory disease outbreak. The third set were historical samples, including twenty-seven isolates of group A *Streptococcus*, from disease outbreaks at this and other military training facilities during previous years. The fourth set of samples was collected from five geographically separated military facilities in the continental U.S. in the winter immediately following the severe November/December 2002 outbreak.

[0122] Pure colonies isolated from group A *Streptococcus*-selective media from all four collection periods were analyzed with the surveillance primer set. All samples showed base compositions that precisely matched the four completely sequenced strains of *Streptococcus pyogenes*. Shown in Figure 4 is a 3D diagram of base composition (axes A, G and C) of bioagent identifying ampli cons obtained with primer pair number 14 (a precursor of primer pair

number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0123] In addition to the identification of *Streptococcus pyogenes*, other potentially pathogernic organisms were identified concurrently. Mass spectral analysis of a sample whose nucleic acid was amplified by primer pair number 349 (SEQ ID NOs: 49 and 405) exhibited signals of bioagent identifying amplicons with molecular masses that were found to correspond to analogous base compositions of bioagent identifying amplicons of *Streptococcus pyogenes* (A27 G32 C24 T18), *Neisseria meningitidis* (A25 G27 C22 T18), and *Haemophilus influenzae* (A28 G28 C25 T20) (see Figure 5 and Table 6B). These organisms were present in a ratio of 4:5:20 as determined by comparison of peak heights with peak height of an internal PCR calibration standard as described in commonly owned U. S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0124] Since certain division-wide primers that target housekeeping genes are designed to provide coverage of specific divisions of bacteria to increase the confidence level for identification of bacterial species, they are not expected to yield bioagent identifying amplicions for organisms outside of the specific divisions. For example, primer pair number 356 (SEQ ID NOs: 232:592) primarily amplifies the nucleic acid of members of the classes *Bacilli* and *Clostridia* and is not expected to amplify proteobacteria such as *Neisseria meningitidis* and *Haemophilus influenzae*. As expected, analys is of the mass spectrum of amplification products obtained with primer pair number 356 does not indicate the presence of *Neisseria meningitidis* and *Haemophilus influenzae* but does indicate the presence of *Streptococcus pyogenes* (Figures 3 and 6, Table 6B). Thus, these primers or type s of primers can confirm the absence of particular bioagents from a sample.

[0125] The 15 throat swabs from military recruits were found to contain a relatively small set of microbes in high abundance. The most common were Haemophilus influenza, Neisseria meningitides, and Streptococcus pyogenes. Staphylococcus epidermidis, Moraxella cattarhalis, Corynebacterium pseudodiphtheriticum, and Staphylococcus aureus were present in fewer samples. An equal number of samples from healthy volunteers from three different geographic locations, were identically analyzed. Results indicated that the healthy volunteers have bacterial

flora dominated by multiple, commensal non-beta-hemolytic *Streptococcal* species, including the viridans group *streptococci* (*S. parasangunis*, *S. vestibularis*, *S. mitis*, *S. oralis* and *S. pneumoniae*; data not shown), and none of the organisms found in the military recruits were found in the healthy controls at concentrations detectable by mass spectrometry. Thus, the military recruits in the midst of a respiratory disease outbreak had a dramatically different microbial population than that experienced by the general population in the absence of epidemic disease.

[0126] Example 8: Drill-down Analysis for Determination of emm-Type of *Streptococcus* pyogenes in Epidemic Surveillance

[0127] As a continuation of the epidemic surveillance investigation of Example 7, determination of sub-species characteristics (genotyping) of *Streptococcus pyogenes*, was carried out based on a strategy that generates strain-specific signatures according to the rationale of Multi-Locus Sequence Typing (MLST). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced (Enright et al. Infection and Immunity, 2001, 69, 2416-2427). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced. In the present investigation, bioagent identifying amplicons from housekeeping genes were produced using drill-down primers and analyzed by mass spectrometry. Since mass spectral analysis results in molecular mass, from which base composition can be determined, the challenge was to determine whether resolution of *emm* classification of strains of *Streptococcus pyogenes* could be determined.

[0128] An alignment was constructed of concatenated alleles of seven MLST housekeeping genes (glucose kinase (gki), glutamine transporter protein (gtr), glutamate racemase (murl), DNA mismatch repair protein (mutS), xanthine phosphoribosyl transferase (xpt), and acetyl-CoA acetyl transferase (yqiL)) from each of the 212 pre viously emm-typed strains of Streptococcus pyogenes. From this alignment, the number and location of primer pairs that would maximize strain identification via base composition was determined. As a result, 6 primer pairs were chosen as standard drill-down primers for determination of emm-type of Streptococcus pyogenes. These six primer pairs are displayed in Table 7. This drill-down set comprises primers with T modifications (note TMOD designation in primer mames) which constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed be low in the same row.

Table 7: Group A Streptococcus Drill-Down Primer Pairs

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
442	SP101_SPET11_358_387_ TMOD_F	311	SP101_SPET11_448_ 473_TMOD_R	669	gki
80	SP101_SPET11_358_387_ F	310	SP101_SPET11_448_ 473_TMOD_R	668	gki
443	SP101_SPET11_600_629_ TMOD_F	314	SP101_SPET11_686_ 714_TMOD_R	671	gtr
81	SP101_SPET11_600_629_ F	313	SP101_SPET11_686_ 714_R	670	gtr
426	SP101_SPET11_1314_133 6_TMOD_F	278	SP101_SPET11_1403 _1431_TMOD_R	633	murI
86	SP101_SPET11_1314_133 6_F	277	SP101_SPET11_1403 _1431_R	632	murI
430	SP101_SPET11_1807_183 5_TMOD_F	286	SP101_SPET11_1901 _1927_TMOD_R	641	mutS
90	SP101_SPET11_1807_183 5_F	285	SP101_SPET11_1901 _1927_R	640	mutS
438	SP101_SPET11_3075_310 3_TMOD_F	302	SP101_SPET11_3168 _3196_TMOD_R	657	xpt
96	SP101_SPET11_3075_310 3_F	301	SP101_SPET11_3168 3196 R	656	xpt
441	SP101_SPET11_3511_353 5_TMOD_F	309	SP101_SPET11_3605 _3629_TMOD_R	664	уqiL
98	SP101_SPET11_3511_353 5_F	308	SP101_SPET11_3605 _3629_R	663	yqiL

[0129] The primers of Table 7 were used to produce bioagent identifying amplicons from nucleic acid present in the clinical samples. The bioagent identifying amplic ons which were subsequently analyzed by mass spectrometry and base compositions corresponding to the molecular masses were calculated.

[0130] Of the 51 samples taken during the peak of the November/December 2002 epidemic (Table 8A-C rows 1-3), all except three samples were found to represent *emm3*, a Group A *Streptococcus* genotype previously associated with high respiratory virulence. The three outliers were from samples obtained from healthy individuals and probably represent non-epidemic strains. Archived samples (Tables 8A-C rows 5-13) from historical collections showed a greater heterogeneity of base compositions and *emm* types as would be expected from different epidemics occurring at different places and dates. The results of the mass spectrometry analysis and *emm* gene sequencing were found to be concordant for the epidemic and historical samples.

- 62 -

Table 8A: Base Composition Analysis of Bioagent Identifying Amplicons of Group A

Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 426

and 430

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	murI (Primer Pair No. 426)	muts (Primer Pair No. 430)
48	3	3	MCRD San		A39 G25 C20 T34	A38 G27 C23 T33
2	6	6	Diego	2002	A40 G24 C20 T34	A38 G27 C23 T33
1	28	28	(Cultured)	2002	A39 G25 C20 T34	A38 G27 C23 T33
15	3	ND	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
6	3	3			A39 G25 C20 T34	A38 G27 C23 T33
3	5,58	5			A40 G24 C20 T34	A38 G27 C23 T33
6	6	6	NHRC San		A40 G24 C20 T34	A38 G27 C23 T33
1	11	11	Diego-		A39 G25 C20 T34	A38 G27 C23 T33
3	12	12	Archive	2003	A40 G24 C20 T34	A38 G26 C24 T33
1	22	22	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
3	25,75	75	, '		A39 G25 C20 T34	A38 G27 C23 T33
4	44/61,82,9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	53,91	91			A39 G25 C20 T34	A38 G27 C23 T33
1	2	2		ŀ	A39 G25 C20 T34	A38 G27 C24 T32
2	3	3			A39 G25 C20 T34	A38 G27 C23 T33
1	4	4			A39 G25 C20 T34	A38 G27 C23 T33
1	6	6	Ft. Leonard		A40 G24 C20 T34	A38 G27 C23 T33
11	25 or 75	75	Wood	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	25,75, 33, 34,4,52,84	75	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	5 or 58	5			A40 G24 C20 T34	A38 G27 C23 T33
3	1	1			A40 G24 C20 T34	A38 G27 C23 T33
2	3	3	Ft. Sill	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
1	28	28			A39 G25 C20 T34	A38 G27 C23 T33
1	3	3			A39 G25 C20 T34	A38 G27 C23 T33
1	4	4			A39 G25 C20 T34	A38 G27 C23 T33
3	6	6			A40 G24 C20 T34	A38 G27 C23 T33
1	11	11	Ft. Benning		A39 G25 C20 T34	A38 G27 C23 T33
1	13	94**	20	2003	A40 G24 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	82	(Cultured)		A40 G24 C20 T34	A38 G26 C24 T33
1	5 or 58	58			A40 G24 C20 T34	A38 G27 C23 T33
1	78 or 89	89			A39 G25 C20 T34	A38 G27 C23 T33
2	5 or 58		Lackland		A40 G24 C20 T34	A38 G27 C23 T33
1	2		AFB		A39 G25 C20 T34	A38 G27 C24 T32
1.	81 or 90	ND	(Throat	2003	A40 G24 C20 T34	A38 G27 C23 T33
1	78		(Throat Swabs)		A38 G26 C20 T34	A38 G27 C23 T33
3***	No detection				No detection	No detection
7	3	ND			A39 G25 C20 T34	A38 G27 C23 T33
_1	3	ND	MCRD San		No detection	A38 G27 C23 T33
1	3	ND	Diego	2002	No detection	No detection
1	3	ND	(Throat		No detection	No detection
2	3	ND	Swabs)		No detection	A38 G27 C23 T33
3	No detection	ND			No detection	No detection

Table 8B: Base Composition Analysis of Bioagent Identifying Amplicons of Group A

Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438

and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	xpt (Primer Pair No. 438)	yqiL (Prim⇔r Pair No. 441)
	spectiometry				NO. 430)	NO. 421)
48	3	3	MCRD San		A30 G36 C20 T36	A40 G29 C19 T31
2	6	6	Diego	2002	A30 G36 C20 T36	A40 G29 C19 T31
1	28	28	(Cultured)		A30 G36 C20 T36	A41 G28 C18 T32
15	3	ND	(Curcureu)		A30 G36 C20 T36	A40 G29 C19 T31
6	3	3]		A30 G36 C20 T36	A40 G29 C19 T31
3	5,58	5			A30 G36 C20 T36	A40 G29 C19 T31
6	6	6	NHRC San		A30 G36 C20 T36	A40 G29 C19 T31
1	11	11	Diego-		A30 G36 C20 T36	A40 G≥9 C19 T31
3	12	12	Archive	2003	A30 G36 C19 T37	A40 G29 C19 T31
1	22	22	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
3	25,75	75			A30 G36 C20 T36	A40 G29 C19 T31
4	44/61,82,9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	53,91	91			A30 G36 C19 T37	A40 G29 C19 T31
1	2	2			A30 G36 C20 T36	A40 G29 C19 T31
2	3	3			A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	_,		A30 G36 C19 T37	A41 G28 C19 T31
1	6	6	Ft. Leonard		A30 G36 C20 T36	A40 G29 C19 T31
11	25 or 75	75	Wood	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	25,75, 33, 34,4,52,84	75	(Cultured)		A30 G36 C19 T37	A40 G29 C19 T31
1	44/61 or 82 or 9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58	5			A30 G36 C20 T36	A40 G29 C19 T31
3	1	1			A30 G36 C19 T37	A40 G29 C19 T31
2	3	3	Ft. Sill	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	(Cultured)	====	A30 G36 C19 T37	A41 G28 C19 T31
1	28	28			A30 G36 C20 T36	A41 G28 C18 T32
1	3	3			A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
3	6	6	l		A30 G36 C20 T36	A40 G29 C19 T31
1	1.1	11	Ft. Benning		A30 G36 C20 T36	A40 G29 C19 T31
1	13	94**	Demiling	2003	A30 G36 C20 T36	A41 G28 C19 T31
1	44/61 or 82 or 9	82	(Cultured)		A30 G36 C20 T36	A41 G≥8 C19 T31
1	5 or 58	58			A30 G36 C20 T36	A40 G≥9 C19 T31
1	78 or 89	89			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58		Lackland		A30 G36 C20 T36	A40 G29 C19 T31
1	2		AFB		A30 G36 C20 T36	A40 G29 C19 T31
1	81 or 90	ND	(Throat	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	78		Swabs)		A30 G36 C20 T36	A41 G28 C19 T31
3***	No detection				No detection	No detection
7	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
1	3	ND	MCRD San		A30 G36 C20 T36	A40 G29 C19 T31
1.	3	ND	Diego	2002	A30 G36 C20 T36	No detection
1.	3	ND	(Throat		No detection	A40 G29 C19 T31
2	3	ND	Swabs)		A30 G36 C20 T36	A40 G29 C19 T31
3	No detection	ND			No detection	No detection

Table 8C: Base Composition Analysis of Bioagent Identifying Amplicons of Group A

Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438

and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	gki (Primer Pair No. 442)	gtr ((Primer Pair No. 443)
48	3	3	MODD Co-		A32 G35 C17 T32	A39 G28 C16 T32
2	6	6	MCRD San Diego		A31 G35 C17 T33	A39 G28 C15 T33
1	28	28	1 1	2002	A30 G36 C17 T33	A39 G28 C16 T32
15	3	ND	(Cultured)		A32 G35 C17 T32	A39 G28 C16 T32
6	3	3			A32 G35 C17 T32	A39 G28 C16 T32
3	5,58	5			A30 G36 C20 T30	A39 G28 C15 T33
6	6	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	NHRC San Diego-		A30 G36 C20 T30	A39 G28 C16 T32
3	12	12	Archive	2003	A31 G35 C17 T33	A39 G28 C15 T33
1	22	22	(Cultured)		A31 G35 C17 T33	A38 G29 C15 T33
3	25,75	75	(Curtured)		A30 G36 C17 T33	A39 G28 C15 T33
4	44/61,82,9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	53,91	91			A32 G35 C17 T32	A39 G28 C16 T32
1	2	2			A30 G36 C17 T33	A39 G28 C15 T33
2	3	3			A32 G35 C17 T32	A39 G28 C16 T32
1	4	4	1		A31 G35 C17 T33	A39 G28 C15 T33
1	6	6	Ft.		A31 G35 C17 T33	A39 G28 C15 T33
11	25 or 75	75	Leonard Wood	2003	A30 G36 C17 T33	A39 G28 C15 T33
1	25,75, 33, 34,4,52,84	75	(Cultured)	2000	A30 G36 C17 T33	A39 G28 C15 T33
1	44/61 or 82 or 9	44/61	1		A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58	5		-	A30 G36 C20 T30	A39 G28 C15 T33
3	1	1	Ft. Sill		A30 G36 C18 T32	A39 G28 C15 T33
2	3	3	-	2003	A32 G35 C17 T32	A39 G28 C16 T32
1	4	4	(Cultured)		A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
1	3	3	4		A32 G35 C17 T32	A39 G28 C16 T32
1	4	4	4		A31 G35 C17 T33	A39 G28 C15 T33
3	6	6	- _{Ft.}		A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	Benning	2003	A30 G36 C20 T30	A39 G28 C16 T32
1	13	94**	- (0-3+	2003	A30 G36 C19 T31	A39 G28 C15 T33
1	44/61 or 82 or 9	82	(Cultured)		A30 G36 C18 T32	A39 G28 C15 T33
1	5 or 58	58	1		A30 G36 C20 T30	A39 G28 C15 T33
1	78 or 89	89	-		A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58			<u> </u>	A30 G3.6 C20 T30	A39 G28 C15 T33
1	2	1	Lackland AFB		A30 G36 C17 T33	A39 G28 C15 T33
1	81 or 90	ND	ACD	2003	A30 G36 C17 T33	A39 G28 C15 T33
1	78	1	(Throat		A30 G36 C18 T32	A39 G28 C15 T33
3***	No detection	1	Swabs)		No detection	No detection
7	3	ND	1		A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	MCRD San		No detection	No detection
1	3	ND	Diego		A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	(Throat	2002	A32 G35 C17 T32	No detection
2	3	ND	Swabs)		A32 G35 C17 T32	No detection
3	No detection	ND	1		No detection	No detection
	I WO GOOGGETOIL	1 -1-		1	1 0 00000000000000000000000000000000	1

[0131] Example 9: Design of Calibrant Polynucleotides based on Bioagent Identifying Amplicons for Identification of Species of Bacteria (Bacterial Bioagent Identifying Amplicons)

[0132] This example describes the design of 19 calibrant polynucleotides based on bacterial bioagent identifying amplicons corresponding to the primers of the broad surveillance set (Table 4) and the *Bacillus anthracis* drill-down set (Table 5).

[0133] Calibration sequences were designed to simulate bacterial bioagent identifying amplicons produced by the T modified primer pairs shown in Table 4 (primer names have the designation "TMOD"). The calibration sequences were chosen as a representative member of the section of bacterial genome from specific bacterial species which would be amplified by a given primer pair. The model bacterial species upon which the calibration sequences are based are also shown in Table 9. For example, the calibration sequence chosen to correspond to an amplicon produced by primer pair no. 361 is SEQ ID NO: 722. In Table 9, the forward (F) or reverse (R) primer name indicates the coordinates of an extraction representing a gene of a standard reference bacterial genome to which the primer hybridizes e.g.: the forward primer name 16S EC 713 732 TMOD F indicates that the forward primer hybridizes to residues 713-732 of the gene encoding 16S ribosomal RNA in an E. coli reference sequence (in this case, the reference sequence is an extraction consisting of residues 4033120-4034661 of the genomic sequence of E. coli K12 (GenBank gi number 16127994). Additional gene coordinate reference information is shown in Table 10. The designation "TMOD" in the primer names indicates that the 5' end of the primer has been modified with a non-matched template T residue which prevents the PCR polymerase from adding non-templated adenosine residues to the 5' end of the amplification product, an occurrence which may result in miscalculation of base composition from molecular mass data (vide supra).

[0134] The 19 calibration sequences described in Tables 9 and 10 were combined into a single calibration polynucleotide sequence (SEQ ID NO: 741 - which is herein designated a "combination calibration polynucleotide") which was then cloned into a pCR®-Blunt vector (Invitrogen, Carlsbad, CA). This combination calibration polynucleotide can be used in conjunction with the primers of Table 9 as an internal standard to produce calibration amplicons for use in determination of the quantity of any bacterial bioagent. Thus, for example, when the combination calibration polynucleotide vector is present in an amplification reaction mixture, a calibration amplicon based on primer pair 346 (16S rRNA) will be produced in an amplification

reaction with primer pair 346 and a calibration amplicon based on primer pair 363 (rpoC) will be produced with primer pair 363. Coordinates of each of the 19 calibration sequences within the calibration polynucleotide (SEQ ID NO: 783) are indicated in Table 10.

Table 9: Bacterial Primer Pairs for Production of Bacterial Bioagent Identifying
Amplicons and Corresponding Representative Calibration Sequences

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Calibration Sequence Model Species	Calibration Sequence (SEQ ID NO:)
361	16S_EC_1090_1111_2_T MOD_F	5	16S_EC_1175_1196_TMOD_R	370	Bacillus anthracis	764
346	16S_EC_713_732_TMOD_ F	27	16S_EC_789_809_TMOD_R	389	Bacillus anthracis	765
347	16S_EC_785_806_TMOD_ F	30	16S_EC_880_897_TMOD_R	392	Bacillus anthracis	766
348	16S_EC_960_981_TMOD_ F	38	16S_EC_1054_1073_TMOD_R	363	Bacillus anthracis	767
349	23S_EC_1826_1843_TMO D F	49	23S_EC_1906_1924_TMOD_R	405	Bacillus anthracis	768
360	23S_EC_2646_2667_TMO D F	60	23S_EC_2745_2765_TMOD_R	416	Bacillus anthracis	769
350	CAPC_BA_274_303_TMOD F	98	CAPC_BA_349_376_TMOD_R	452	Bacillus anthracis	770
351	CYA_BA_1353_1379_TMO D_F	128	CYA_BA_1448_1467_TMOD_R	483	Bacillus anthracis	771
352	INFB_EC_1365_1393_TM OD F	161	INFB_EC_1439_1467_TMOD_	516	Bacillus anthracis	772
353	LEF_BA_756_781_TMOD_ F	175	LEF_BA_843_872_TMOD_R	531	Bacillus anthracis	773
356	RPLB_EC_650_679_TMOD F	232	RPLB_EC_739_762_TMOD_R	592	Clostridium botulinum	774
449	RPLB_EC_690_710_F	237	RPLB_EC_737_758_R	589	Clostridium botulinum	775
359	RPOB_EC_1845_1866_TM OD F	241	RPOB_EC_1909_1929_TMOD_ R	597	Yersinia Pestis	776
362	RPOB_EC_3799_3821_TM OD_F	245	RPOB_EC_3862_3888_TMOD_ R	603	Burkholderia mallei	777
363	RPOC_EC_2146_2174_TM OD_F	257	RPOC_EC_2227_2245_TMOD_R	621	Burkholderia mallei	778
354	RPOC_EC_2218_2241_TM OD_F	262	RPOC_EC_2313_2337_TMOD_R	625	Bacillus anthracis	779
355	SSPE_BA_115_137_TMOD F	321	SSPE_BA_197_222_TMOD_R	687	Bacillus anthracis	780
367	TUFB_EC_957_979_TMOD _F	345	TUFB_EC_1034_1058_TMOD_	701	Burkholderia mallei	781
358	VALS_EC_1105_1124_TM OD_F	350	VALS_EC_1195_1218_TMOD_ R	712	Yersinia Pestis	782

Table 10: Primer Pair Gene Coordinate References and Calibration Polynucleotide Sequence Coordinates within the Combination Calibration Polynucleotide

Bacterial Gene and Species	Gene Extraction Coordinates of Genomic or Plasmid Sequence	Reference GenBank GI No. of Genomic (G) or Plasmid (P) Sequence	Primer Pair No.	Coordinates of Calibration Sequence in Combination Calibration Polynucleotide (SEQ ID NO: 783)
16S E. coli	40331204034661	16127994 (G)	346	16109
16S E. coli	40331204034661	16127994 (G)	347	83190
16S E. coli	40331204034661	16127994 (G)	348	246353
16S E. coli	40331204034661	16127994 (G)	361	368469
23S E. coli	41662204169123	16127994 (G)	349	743837
23S E. coli	41662204169123	16127994 (G)	360	865981
rpoB E.	41788234182851	16127994 (G)	359	15911672
coli.	(complement strand)			
rpoB E. coli	41788234182851	16127994 (G)	362	20812167
	(complement strand)			
rpoC E. coli	41829284187151	16127994 (G)	354	18101926
rpoC E. coli	41829284187151	16127994 (G)	363	21832279
infB E. coli	33136553310983	16127994 (G)	352	16921791
	(complement strand)			
tufB E. coli	41735234174707	16127994 (G)	367	24002498
rplB E. coli	34490013448180	16127994 (G)	356	19452060
rplB E. coli	34490013448180	16127994 (G)	449	1986.,2055
valS E. coli	44814054478550	16127994 (G)	358	14621572
	(complement strand)			

capC B. anthracis	5607455628 (complement strand)	6470151 (P)	350	25172616
cya B. anthracis	156626154288 (complement strand)	4894216 (P)	351	13381449
lef B. anthracis	127442129921	4894216 (P)	353	1121.,1234
sspE B. anthracis	226496226783	30253828 (G)	355	1007-1104

[0135] Example 10: Use of a Calibration Polynucleotide for Determining the Quantity of *Bacillus Anthracis* in a Sample Containing a Mixture of Microbes

[0136] The process described in this example is shown in Figure 7. The capC gene is a gene involved in capsule synthesis which resides on the pX02 plasmid of Bacillus anthracis. Primer pair number 350 (see Tables 9 and 10) was designed to identify Bacillus anthracis via production of a bacterial bioagent identifying amplicon. Known quantities of the combination calibration polynucleotide vector described in Example 3 were added to amplification mixtures containing bacterial bioagent nucleic acid from a mixture of microbes which included the Ames strain of Bacillus anthracis. Upon amplification of the bacterial bioagent nucleic acid and the combination calibration polynucleotide vector with primer pair no. 350, bacterial bioagent identifying amplicons and calibration amplicons were obtained and characterized by mass spectrometry. A mass spectrum measured for the amplification reaction is shown in Figure 8). The molecular masses of the bioagent identifying amplicons provided the means for identification of the bioagent from which they were obtained (Ames strain of Bacillus anthracis) and the molecular masses of the calibration amplicons provided the means for their identification as well. The relationship between the abundance (peak height) of the calibration amplicon signals and the bacterial bioagent identifying amplicon signals provides the means of calculation of the copies of the pX02 plasmid of the Ames strain of Bacillus anthracis. Methods of calculating quantities of molecules based on internal calibration procedures are well known to those of ordinary skill in the art.

[0137] Averaging the results of 10 repetitions of the experiment described above, enabled a calculation that indicated that the quantity of Ames strain of *Bacillus anthracis* present in the sample corresponds to approximately 10 copies of pX02 plasmid.

[0138] Example 11: Drill-down Genotyping of Campylobacter Species

[0139] A series of drill-down primers were designed as described in Example 1 with the objective of identification of different strains of *Campylobacter jejuni*. The primers are listed in Table 11 with the designation "CJST_CJ." Housekeeping genes to which the primers hybridize and produce bioagent identifying amplicons include: tkt (transketolase), glyA (serine

hydroxymethyltransferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), pgm (phosphoglycerate mutase), and uncA (ATP synthetase alpha chain).

Primer Forward Primer Name Pair No.		Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene	
1053	CJST CJ 1080 1110 F	102	CJST CJ 1166 1198 R	456	gltA	
1064	CJST CJ 1680 1713 F	107	CJST CJ 1795 1822 R	461	glyA	
1054	CJST CJ 2060 2090 F	109	CJST CJ 2148 2174 R	463	pgm	
1049	CJST CJ 2636 2668 F	113	CJST CJ 2753 2777 R	467	tkt	
1048	CJST CJ 360 394 F	119	CJST CJ 442_476 R	472	aspA	
1047	CJST CJ 584 616 F	121	CJST CJ 663 692 R	474	glnA	

Table 11: Campylobacter Drill-down Primer Pairs

[0140] The primers were used to amplify nucleic acid from 50 food product samples provided by the USDA, 25 of which contained *Campylobacter jejuni* and 25 of which contained *Campylobacter coli*. Primers used in this study were developed primarily for the discrimination of *Campylobacter jejuni* clonal complexes and for distinguishing *Campylobacter jejuni* from *Campylobacter coli*. Finer discrimination between *Campylobacter coli* types is also possible by using specific primers targeted to loci where closely-related *Campylobacter coli* isolates demonstrate polymorphisms between strains. The conclusions of the comparison of base composition analysis with sequence analysis are shown in Tables 12A-C.

Table 12A — Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drilldown MLST Primer Pair Nos: 1048 and 1047

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1048 (aspA)	Base Composition of Bicagent Identifying Amplicon Obtained with Primer Pair No: 1047 (glnA)
J-1	C. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A30 G25 C16 T46	A47 G21 C16 T25
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A30 G25 C16 T46	A48 G21 C17 T23
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A30 G25 C15 T47	A48 G21 C18 T22
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A30 G25 C16 T46	A48 G21 C18 T22
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A30 G25 C16 T46	A48 G21 C17 T23
J-6	c.	Human	Complex 443	ST 51, complex	RM4275	A30 G25 C15 T47	A48 G21 C17 T23
	jejuni	Tanan	Complex 445	443	RM4279	A30 G25 C15 T47	A48 G21 C17 T23
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A30 G25 C15 T47	A48 G21 C18 T22
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A30 G25 C15 T47	A48 G21 C18 T22
J-9	c. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A30 G25 C15 T47	A47 G21 C18 T23
	C. jejuni	Human	Consistent	ST 828	RM4183	A31 G27 C20 T39	A48 G21 C16 T24

	1	1	with 74	ST 832	RM1169	A31 G27 C20 T39	A48 G21 C16 T24
			closely related	ST 1056	RM1857	A31 G27 C20 T39	A48 G21 C16 T24
			sequence types (none	ļ	RM1166	A31 G27 C20 T39	A48 G21 C16 T24
			belong to a	ST 889			
			clonal complex)	ST 829	RM1182	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1050	RM1518	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1051	RM1521	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1053	RM1523	A31 G27 C20 T39	A48 G21 C16 T24
		Poultry		ST 1055	RM1527	A31 G27 C20 T39	A48 G21 C16 T24
		Pourcry		ST 1017	RM1529	A31 G27 C20 T39	A48 G21 C16 T24
C-1	C. coli			ST 860	RM1840	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1063	RM2219	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1066	RM2241	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1067	RM2243	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1068	RM2439	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1016	RM3230	A31 G27 C20 T39	A48 G21 C16 T24
		Swine		ST 1069	RM3231	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1061	RM1904	A31 G27 C20 T39	A48 G21 C16 T24
		Unknown		ST 825	RM1534	A31 G27 C20 T39	A48 G21 C16 T24
		Olikilowii		ST 901	RM1505	A31 G27 C20 T39	A48 G21 C16 T24
C-2	C. coli	Human	ST 895	ST 895	RM1532	A31 G27 C19 T40	A48 G21 C16 T24
			Consistent with 63	ST 1064	RM2223	A31 G27 C20 T39	A48 G21 C16 T24
		. coli	closely related	ST 1082	RM1178	A31 G27 C20 T39	A48 G21 C16 T24
C-3	C. coli		sequence	ST 1054	RM1525	A31 G27 C20 T39	A48 G21 C16 T24
			types (none belong to a	ST 1049	RM1517	A31 G27 C20 T39	A48 G21 C16 T24
		Marmoset	clonal complex)	ST 891	RM1531	A31 G27 C20 T39	A48 G21 C16 T24

Table 12B – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drilldown MLST Primer Pair Nos: 1053 and 1064

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1053 (gltA)	Base Composition of Bicagent Identifying Amplicon Obtained with Primer Pair No: 1064 (glyA)
J-1	C. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A24 G25 C23 T47	A40 G29 C29 T45
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A24 G25 C23 T47	A40 G29 C29 T45
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A24 G25 C23 T47	A40 G29 C29 T45
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A24 G25 C23 T47	A40 G29 C29 T45
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A24 G25 C23 T47	A39 G30 C26 T48
J-6	с.	Human	Complex 443	ST 51, complex	RM4275	A24 G25 C23 T47	A39 G30 C28 T46
	jejuni	numan	COMPLEX 443	443 RM4279	RM4279	A24 G25 C23 T47	A39 G30 C28 T46
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A24 G25 C23 T47	A39 G30 C26 T48

J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A24 G25 C23 T47	A38 G31 C28 T46
J-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A24 G25 C23 T47	A38 G31 C28 T46
	C. jejuni			ST 828	RM4183	A23 G24 C26 T46	A39 G30 C27 T47
		Human		ST 832	RM1169	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1056	RM1857	A23 G24 C26 T46	A39 G30 C27 T47
			-	ST 889	RM1166	A23 G24 C26 T46	A39 G30 C27 T47
				ST 829	RM1182	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1050	RM1518	A23 G24 C26 T46	A39 G30 C27 T47
		Poultry		ST 1051	RM1521	A23 G24 C26 T46	A39 G30 C27 T47
			Consistent with 74 closely related sequence types (none belong to a clonal complex)	ST 1053	RM1523	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1055	RM1527	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1017	RM1529	A23 G24 C26 T46	A39 G30 C27 T47
C-1	C. coli			ST 860	RM1840	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1063	RM2219	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1066	RM2241	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1067	RM2243	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1068	RM2439	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1016	RM3230	A23 G24 C26 T46	A39 G30 C27 T47
		Swine		ST 1069	RM3231	A23 G24 C26 T46	NO DATA
				ST 1061	RM1904	A23 G24 C26 T46	A39 G30 C27 T47
		Unknown		ST 825	RM1534	A23 G24 C26 T46	A39 G30 C27 T47
-		OHRHOWH		ST 901	RM1505	A23 G24 C26 T46	A39 G30 C27 T47
C-2	C. coli	Human	ST 895	ST 895	RM1532	A23 G24 C26 T46	A39 G30 C27 T47
			Consistent with 63	ST 1064	RM2223	A23 G24 C26 T46	A39 G30 C27 T47
		Poultry	closely related	ST 1082	RM1178	A23 G24 C26 T46	A39 G30 C27 T47
C-3	C. coli		sequence types (none	ST 1054	RM1525	A23 G24 C25 T47	A39 G30 C27 T47
			belong to a	ST 1049	RM1517	A23 G24 C26 T46	A39 G30 C27 T47
		Marmoset	complex)	ST 891	RM1531	A23 G24 C26 T46	A39 G30 C27 T47

Table 12C – Results of Base Composition Analysis of 50 *Campylobacter* Samples with Drilldown MLST Primer Pair Nos: 1054 and 1049

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (tkt)
J-1	C. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A26 G33 C18 T38	A41 G28 C35 T38
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A26 G33 C19 T37	A41 G28 C36 T37
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A27 G32 C19 T37	A42 G28 C36 T36
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A27 G32 C19 T37	A41 G29 C35 T37
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A26 G33 C18 T38	A41 G28 C36 T37

ı	1	1	1	1]	1	1 1
J-6	C. jejuni	Human	Complex 443	ST 51, complex 443	RM4275	A27 G31 C19 T38	A41 G28 C36 T37
					RM4279	A27 G31 C19 T38	A41 G28 C36 T37
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A27 G32 C19 T37	A42 G28 C35 T37
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A26 G33 C19 T37	A42 G28 C35 T37
J-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A28 G31 C19 T37	A43 G28 C36 T35
	C. jejuni			ST 828	RM4183	A27 G30 C19 T39	A46 G28 C32 T36
C-1	C. coli	Human	Consistent with 74 closely related sequence types (none belong to a clonal complex)	ST 832	RM1169	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1056	RM1857	A27 G30 C19 T39	A46 G28 C32 T36
		Poultry		ST 889	RM1166	A27 G30 C19 T39	A46 G28 C32 T36
				ST 829	RM1182	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1050	RM1518	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1051	RM1521	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1053	RM1523	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1055	RM1527	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1017	RM1529	A27 G30 C19 T39	A46 G28 C32 T36
				ST 860	RM1840		
				ST 1063	RM2219	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1066	RM2241	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1067	RM2243	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1068	RM2439	A27 G30 C19 T39	A46 G28 C32 T36
		Swine		ST 1016	RM3230	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1069	RM3231	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1061	RM1904	A27 G30 C19 T39	A46 G28 C32 T36
		Unknown		ST 825	RM1534	A27 G30 C19 T39	A46 G28 C32 T36
				ST 901	RM1505	A27 G30 C19 T39	A46 G28 C32 T36
C-2	C. coli	Human	ST 895	ST 895	RM1532	A27 G30 C19 T39	A46 G28 C32 T36
C-3		Poultry	Consistent with 63 closely related sequence types (none belong to a clonal complex)	ST 1064	RM2223	A27 G30 C19 T39	A45 G29 C32 T36
	C. coli			ST 1082	RM1178	A27 G30 C19 T39	A45 G29 C32 T36
				ST 1054	RM1525	A27 G30 C19 T39	A45 G29 C32 T36
						A27 G30 C19 T39	A45 G29 C32 T36
		Manmana		ST 1049	RM1517	A27 G30 C19 T39	A45 G29 C32 T36
L		Marmoset	<u> </u>	ST 891	RM1531	A27 G30 C19 T39	A45 G29 C32 T36

[0141] The base composition analysis method was successful in identification of 12 different strain groups. Campylobacter jejuni and Campylobacter coli are generally differentiated by all loci. Ten clearly differentiated Campylobacter jejuni isolates and 2 major Campylobacter coli groups were identified even though the primers were designed for strain typing of

Campylobacter jejuni. One isolate (RM4183) which was designated as Campylobacter jejuni was found to group with Campylobacter coli and also appears to actually be Campylobacter coli by full MLST sequencing.

[0142] Example 12: Identification of *Acinetobacter baumannii* Using Broad Range Survey and Division-Wide Primers in Epidemiological Surveillance

[0143] To test the capability of the broad range survey and division-wide primer sets of Table 4 in identification of *Acinetobacter* species, 183 clinical samples were obtained from individuals participating in, or in contact with individuals participating in Operation Iraqi Freedom (including US service personnel, US civilian patients at the Walter Reed Army Institute of Research (WRAIR), medical staff, Iraqi civilians and enemy prisoners). In addition, 34 environmental samples were obtained from hospitals in Iraq, Kuwait, Germany, the United States and the USNS Comfort, a hospital ship.

[0144] Upon amplification of nucleic acid obtained from the clinical samples, primer pairs 346-349, 360, 361, 354, 362 and 363 (Table 4) all produced bacterial bioagent amplicons which identified *Acinetobacter baumannii* in 215 of 217 samples. The organism *Klebsiella pneumoniae* was identified in the remaining two samples. In addition, 14 different strain types (containing single nucleotide polymorphisms relative to a reference strain of *Acinetobacter baumannii*) were identified and assigned arbitrary numbers from 1 to 14. Strain type 1 was found in 134 of the sample isolates and strains 3 and 7 were found in 46 and 9 of the isolates respectively.

[0145] The epidemiology of strain type 7 of *Acinetobacter baumannii* was investigated. Strain 7 was found in 4 patients and 5 environmental samples (from field hospitals in Iraq and Kuwait). The index patient infected with strain 7 was a pre-war patient who had a traumatic amputation in March of 2003 and was treated at a Kuwaiti hospital. The patient was subsequently transferred to a hospital in Germany and then to WRAIR. Two other patients from Kuwait infected with strain 7 were found to be non-infectious and were not further monitored. The fourth patient was diagnosed with a strain 7 infection in September of 2003 at WRAIR. Since the fourth patient was not related involved in Operation Iraqi Freedom, it was inferred that the fourth patient was the subject of a nosocomial infection acquired at WRAIR as a result of the spread of strain 7 from the index patient.

[0146] The epidemiology of strain type 3 of Acinetobacter baumannii was also investigated. Strain type 3 was found in 46 samples, all of which were from patients (US service members, Iraqi civilians and energy prisoners) who were treated on the USNS Comfort hospital ship and subsequently returned to Iraq or Kuwait. The occurrence of strain type 3 in a single locale may provide evidence that at least some of the infections at that locale were a result of a nosocomial infections.

[0147] This example thus illustrates an embodiment of the present invention wherein the methods of analysis of bacterial bioagent identifying amplicons provide the means for epidemiological surveillance.

[0148] Example 13: S election and Use of MLST Acinetobacter baunzanii Drill-down Primers [0149] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by multilocus sequence typing (MLST) such as the MLST methods of the MLST Databases at the Max-Planck Institute for Infectious Biology (web.mpiib-berlin.mpg.de/mlst/dbs/Mcatarrhalis/ documents/primersCatarrhalis html), an additional 21 primer pairs were selected based on analysis of housekeeping genes of the genus Acinetobacter. Genes to which the drill-down MLST analogue primers hybridize for production of bacterial bioagent identifying amplicons include anthranilate synthase component I (trpE), adenylate kinase (adk), adenine glycosylase (mutY), fumarate hydratase (fumC), and pyrophosphate phospho-hydratase (ppa). These 21 primer pairs are indicated with reference to sequence listings in Table 13. Primer pair numbers 1151-1154 hybridize to and amplify segments of trpE. Primer pair numbers 1155-1157 hybridize to and amplify segments of adk. Primer pair numbers 1158-1164 hybridize to and amplify segments of mutY. Primer pair numbers 1165-1170 hybridize to and amplify segments of fumC. Primer pair number 1171 hybridizes to and amplifies a segment of ppa. The primer names given in Table 13 indicates the coordinates to which the primers hybridize to a reference sequence which comprises a concatenation of the genes TrpE, efp (elongation factor p), adk, mutT, fumC, and ppa. For example, the forward primer of primer pair 1151 is named AB_MLST-11-OIF007_62_91_F because it hybridizes to the Acinetobacter MLST primer reference sequence of strain type 11 in sample 007 of Operation Iraqi Freedom (OIF) at

positions 62 to 91.

Table 13: MLST Drill-Down Primers for Identification of Sub-species characteristics (Strain Type) of Members of the Bacterial Genus *Acinetobacter*

Primer	Forward Primer Name	Forward	Reverse Primer Name	Reverse
Pair No.		Primer (SEQ ID NO:)		Primer (SEQ ID NO:)
NO.		(35Q ID NO:)		(SEQ ID NO:)
1151	AB MLST-11-01 F007 62 91 F	83	AB MLST-11-01F007 169 203 R	426
1152	AB MLST-11-01 F007 185 214 F	76	AB MLST-11-01F007 291 324 R	432
1153	AB MLST-11-01:F007_260_289_F	79	AB MLST-11-0IF007 364 393 R	434
1154	AB MLST-11-01 F007 206 239 F	78	AB_MLST-11-01F007_318_344_R	433
1155	AB_MLST-11-01:F007_522_552_F	80	AB MLST-11-01F007_587_610_R	435
1156	AB MLST-11-01:F007 547 571 F	81	AB_MLST-11-01F007 656 686 R	436
1157	AB_MLST-11-01:F007_601_627_F	82	AB MLST-11-0IF007 710 736 R	437
1158	AB_MLST-11-	65		
	OIF007_1202_ 1 _225_F		AB_MLST-11-01F007_1266_1296_R	420
1159	AB_MLST-11-	65		
	OIF007_1202_1L225_F		AB_MLST-11-01F007 1299 1316 R	421
1160	AB_MLST-11-	66		
	OIF007 1234 1 264 F		AB_MLST-11-01F007_1335_1362_R	422
1161	AB_MLST-11-	67		
	OIF007_1327_1L356_F		AB_MLST-11-01F007_1422_1448_R	423
1162	AB_MLST-11-	68		
	OIF007 1345_1.369_F		AB MLST-11-01F007 1470 1494 R	424
1163	AB_MLST-11-	69		
	OIF007 1351_3L375_F		AB MLST-11-0IF007 1470 1494 R	424
1164	AB_MLST-11-	70		
	OIF007 1387 1 412 F		AB MLST-11-01F007 1470 1494 R	424
1165	AB_MLST-11-	71		
	OIF007 1542 1569 F		AB MLST-11-01F007 1656 1680 R	425
1166	AB_MLST-11-	72		
	OIF007 1566_1593_F		AB MLST-11-01F007_1656_1680_R	425
1167	AB MLST-11-	73		1.70
	OIF007 1611 1638 F		AB MLST-11-01F007 1731 1757 R	427
1168	AB MLST-11-	74		
	OIF007 1726 1752 F		AB MLST-11-01F007 1790 1821 R	428
1169	AB_MLST-11-	75		
	OIF007 1792_1826_F		AB MLST-11-0IF007 1876 1909 R	429
1170	AB MLST-11-	75		
· · · =	OIF007 1792 1.826 F	· -	AB MLST-11-0IF007_1895_1927_R	430
1171		77		
1171	AB MLST-11-	77	AB MLST-11-0IF007 2097 2118 R	431

[0150] Analysis of bioagent identifying amplicons obtained using the primers of Table 13 for over 200 samples from Operation Iraqi Freed om resulted in the identification of 50 distinct strain type clusters. The largest cluster, designated strain type 11 (ST11) includes 42 sample isolates, all of which were obtained from US service personnel and Iraqi civilians treated at the 28th Combat Support Hospital in Baghdad. Several of these individuals were also treated on the hospital ship USNS Comfort. These observations are indicative of significant epidemiological correlation/linkage.

[0151] All of the sample isolates were tested against a broad panel of antibiotics to characterize their antibiotic resistance profiles. As an example of a representative result from antibiotic susceptibility testing, ST11 was found to consist of four different clusters of isolates, each with a varying degree of sensitivity/resistance to the various antibiotics tested which included penicillins, extended spectrum penicillins, cerphalosporins, carbipenem, protein synthesis inhibitors, nucleic acid synthesis inhibitors, anti-metabolites, and anti-cell membrane antibiotics. Thus, the genotyping power of bacterial bioagent identifying amplicons, particularly drill-down bacterial bioagent identifying amplicons, has the potential to increase the understanding of the transmission of infections in combat casualties, to identify the source of infection in the environment, to track hospital transmission of nosocomial infections, and to rapidly characterize drug-resistance profiles which enable development of effective infection control measures on a time-scale previously not achievable.

[0152] Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, gene bank accession numbers, internet web sites, and the like) cited in the present application is incorporated herein by reference in its entirety.

WHAT IS CLAIMED IS:

1. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, an oligonucleotide prim er 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ IID NO:414, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:369, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 24-6, an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, an oligonucleotide primer 14 to 35 nucleobases in length

comprising 70% to 100% sequence identity with SEQ ID NO: 620, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587;

wherein said primer comprises a non-templated T residue on the 5'-end, or at least one non-template tag.

- 2. A composition comprising one or more of the oligonucleotide primers of claim 1.
- 3. A composition comprising two or more of the oligonucleotide primers of claim 1.
- 4. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.
- 5. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
- 6. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
- 7. The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
- 8. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, and an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686.
- 9. A composition comprising one or both of the oligonucleotide primers of claim 8.
- 10. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.

- 11. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
- 12. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
- 13. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
- 14. A kit comprising the composition of claim 3 or claim 9.
- 15. The kit of claim 14 further comprising at least one calibration polynucleotide.
- 16. The kit of claim 14 further comprising at least one ion exchange resin linked to magnetic beads.
- 17. A method for identification of an unknown bacterium comprising:

amplifying nucleic acid from said bacterium using the composition of claim 3 or claim 9 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or base composition of said amplification product with a plurality of molecular masses or base compositions of known bacterial bioagent identifying amplicons, wherein a match between said molecular mass or base composition of said amplification product and the molecular mass or base composition of a member of said plurality of molecular masses or base compositions identifies said unknown bacterium.

- 18. The method of claim 17 wherein said molecular mass is determined by mass spectrometry.
- 19. A method of determining the presence or absence of a bacterium of a particular clade, genus, species, or sub-species in a sample comprising:

amplifying nucleic acid from said sample using the composition of claim 3 or claim 9 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or base composition of said amplification product with the known molecular masses or base compositions of one or more known clade, genus, species, or sub-species bioagent identifying amplicons, wherein a match between said molecular mass or base composition of said amplification product and the molecular mass or base composition of one or more known clade, genus, species, or sub-species bioagent identifying amplicons indicates the presence of said clade, genus, species, or sub-species in said sample.

- 20. The method of claim 19 wherein said molecular mass is determined by mass spectrometry.
- 21. A method for determination of the quantity of an unknown bacterium in a sample comprising:

contacting said sample with the composition of claim 3 or claim 9 and a known quantity of a calibration polynucleotide comprising a calibration sequence;

concurrently amplifying nucleic acid from said bacterium in said sample with the composition of claim 3 or claim 9 and amplifying nucleic acid from said calibration polynucleotide in said sample with the composition of claim 3 or claim 9 to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon;

determining the molecular mass and abundance for said bacterial bioagent identifying amplicon and said calibration amplicon; and

distinguishing said bacterial bioagent identifying amplicon from said calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in said sample.

22. The method of claim 21 further comprising determining the base composition of said bacterial bioagent identifying amplicon.

Figure 1

1/8

Figure 2

Figure 3

PCT/US2005/005356

Figure 4

Figure 5

7/8

SEQUENCE LISTING

```
<110> Isis Pharmaceuticals, Inc.
      Sampath, Rangarajan
      Hall, Thomas A.
      Ecker, David J.
      Eshoo, Mark. W.
      Massire, Christian
      Science Applications International Corporation
      Larson, Brons M.
      Leighton, Terrance
<120> COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA
<130> IBIS0074-500WO (DIBIS-0057WO1)
<150> 60/545,425
<151> 2004-02-18
<150> 60/559,754
<151> 2004-04-05
                               -{
<150> 60/632,862
<151> 2004-12-03
<150> 60/639,068
<151> 2004-12-22
<150> 60/648,188
<151> 2005-01-28
<160> 785
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
                                                                    30
gtgagatgtt gggttaagtc ccgtaacgag
<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 2
                                                                    19
atgttgggtt aagtcccgc
<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence
```

<220> <223> Primer	
<400> 3 atgttgggtt aagtcccgca acgag	25
<210> 4 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 4 ttaagtcccg caacgagcgc aa	22
<210> 5 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 5 tttaagtccc gcaacgagcg caa	23
<210> 6 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 6 ttaagtcccg caacgatcgc aa	22
<210> 7 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7 tagtcccgca acgagcgc	18
<210> 8 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 8	

caacgagege aaccett	17
<210> 9 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 9 caagtcatca tggccctta	19
<210> 10 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 10 gctacacacg tgctacaatg	20
<210> 11 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 11 cggattggag tctgcaactc g	21
<210> 12 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 12	
aagtoggaat ogrotagtaat og	22
<210> 13 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 13 tacggtgaat acgttcccgg g	21
<210> 14 <211> 21 <212> DNA <213> Artificial Sequence	

<220> <223>	Primer	
<400>		
gcctt	gtaca cacctcccgt c	21
<210><211><211><212><213>	19	
<220> <223>	Primer	
<400> cttgta		19
<210><211><211><212><213>	22	
<220> <223>	Primer	
<400> ttgtad		22
<210>	17	
<211> <212> <213>		
<220> <223>	Primer	
<400> tgaaco		25
<210> <211> <212> <213>	19	
<220> <223>	Primer	
<400> cactgo		19
<210><211><211><212><213>	26	
<220> <223>	Primer	
<400>	19	

4

WO 2005/098047 PCT/US2005/005356 gtggcatgcc taatacatgc aagtcg 26

90990	acgos saacat	sarge dageeg		
<210>				
<211> <212>				
	Artificial	Sequence		

<220> <223> Primer

<400> 20
tgagtgatga aggccttagg gttgtaaa 28

<210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220>

<400> 21
taacacatgc aagtcgaacg 20

<210> 22 <211> 19 <212> DNA <213> Artificial Sequence

<220> <223> Primer

<400> 22 ccagcagccg cggtaatac 19

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence
<220>

<223> Primer
<400> 23

cggaattact gggcgtaaag 20
<210> 24
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 24
gtgtagcggt gaaatgcg

18

<210> 25 <211> 27 <212> DNA

<213> Artificial Sequence

<223> Primer

<220> <223>	Primer	
<400> gagagt	25 Ettga teetggetea gaaegaa	27
<210> <211> <212> <213>	20	
<220> <223>	Primer	
<400> agaaca	26 uccga tggcgaaggc	20
<210> <211> <212> <213>	21	
<220> <223>	Primer	
<400> tagaac	27 accg atggcgaagg c	21
<210><211><211><212><213>	22	
<220> <223>	Primer	
<400> gggagc	28 aaac aggattagat ac	22
<210> <211> <212> <213>	22	
<220> <223>	Primer	
<400> ggatta	29 gaga ccctggtagt cc	22
<210> <211> <212> <213>	23	
<220> <223>	Primer	
<400> :		23

<210> <211> <212>	26	
<213>	Artificial Sequence	
<220> <223>	Primer	
<400> ggatta	31 agata ccctggtagt ccacgc	26
<210><211><211><212><213>	22	
<220> <223>	Primer	
<400> tagata	32 accet ggtagtecae ge	22
<210> <211> <212> <213>	22	
<220> <223>	Primer	
<400> gatacc	33 octgg tagtocacac cg	22
<210><211><211><212><212><213>	20	
<220> <223>	Primer	
<400> agagtt	34 tgat catggctcag	20
<210> <211> <212> <213>	19	
<220> <223>	Primer	
<400>	35	
accacg	ccgt aaacgatga	19
<210> <	18	

<213>	Artificial	Sequence	
<220> <223>	Primer		
<400> aagcgg	36 Jtgga gcatgt	tgg	18
<210><211><211><212>	22 DNA	Company	
<220>	Artificial Primer	sequence	
<400> ttcgat	37 Igcaa cgcgaa	agaac ct	22
<210> <211> <212> <213>	23	Sequence	
<220> <223>	Primer		
<400> tttcga	38 itgca acgcga	aagaa cct	23
<210> <211> <212> <213>	17	Sequence	
<220> <223>	Primer		
<400> acgcga	39 agaa ccttac	cc	17
<210> <211> <212> <213>	17	Sequence	
<220> <223>	Primer		
<400> acgcga	40 aagaa cettac	cc	17
<210> <211> <212> <213>	20	Sequence	
<220> <223>	Primer		
<400>	41		

8

gcgaagaacc ttaccaggtc	20
<210> 42 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 42 cgaagaacct tacc	14
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 43 tgcgcggaag atgtaacggg	20
<210> 44 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 44 tgcatacaaa cagtcggagc ct	22
<210> 45 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 45 aaactagata acagtagaca tcac	24
<210> 46 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 46 taccccaaac cgacacagg	19
<210> 47 <211> 19	

PCT/US2005/005356

WO 2005/098047

<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> ccgtaa	47 acttc gggagaagg	19
<210> <211> <212> <213>	18	
<220> <223>	Primer	
<400> ctgaca	48 acctg cccggtgc	18
<210> <211> <212> <213>	19	
<220> <223>	Primer	
<400> tctgac	49 Pacct geoeggtge	19
<210> <211> <212> <213>	16	
<220> <223>	Primer	
<400> gacgco	50 Etgee eggtge	16
<210><211><211><212><213>	19	
<220> <223>	Primer	
<400> acctgo		19
<210><211><211><212><213>	21	
<220>		

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 52 gggaactgaa acatctaagt a	21

gggaactgaa acatctaagt a 21
<210> 53
<211> 15
<212> DNA
<213> Artificial Sequence
<220>

<223> Primer

<400> 53
ggtggatgcc ttggc 15

<210> 54 <211> 23 <212> DNA <213> Artificial Sequence

<223> Primer

<400> 54

aaggtactcc ggggataaca ggc 23

<220>

aaggtactcc ggggataaca ggc

<210> 55

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 55
tagaacgtcg cgagacagtt cg 22

<210> 56 <211> 18 <212> DNA <213> Artificial Sequence

<220>
<223> Primer

<400> 56
gacagttegg teectate 18

<223> Primer

<400> 57

ctgtccctag tacgagagga ccgg 24

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	50	
<400>		
tctgt	cccta gtacgagagg accgg	25
401 OS	F.0.	
<210>		
<211><212>		
\Z13>	Artificial Sequence	
<220>		
	Primer	
\2257	TITUET	
<400>	5.9	
	ettag tacgagagga cc	22
ocgcc.	occus cucyuguggu oc	22
<210>	60	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>	60	
tctgti	cctta gtacgagagg acc	23
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
40005		
<220>		
<223>	Primer	
<100×	61	
<400>		10
Clagia	acgag aggaccgg	18
<210>	62	
<211>		
<212>		
	Artificial Sequence	
,		
<220>		
	Primer	
<400>	62	
tagtad	gaga ggaccgg	17
<210>		
<211>		
<212>		
<213>	Artificial Sequence	

<220>	•	
	Primer	
<400>	63	
	gtgaa agagatcctg aaaccg	26
ggggag	gegaa agagacoocg aaaoog	20
<210>	64	
<211>		
<212>		
<213>	Artificial Sequence	
40005		
<220>		
<223>	Primer	
<400>		
cgagag	ggaa acaacccaga cc	22
<210>	65	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	65	
	cogo aatttgcata aago	24
00909		
<210>	66	
<211>		
<212>		
	Artificial Sequence	
\Z13/	Wichtight peddence	
<220>		
\2202		
/ 222	Primer	
\223/	LITHEI	
<400>		
		21
ttgtag	gcaca gcaaggcaaa tttcctgaaa c	31
2010s		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	67	
taggtt	tacg tcagtatggc gtgattatgg	30
<210>		
<211>	25	
<212>	DNA	
	Artificial Sequence	
_	•	
<220>		
	Primer	
		
<400>	68	
	attat ggatggcaac gtgaa	25
2 - 2 - 2 -	J J == = = = = = = = = = = = = = = = =	

<210> 69 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 69 ttatggatgg caacgtgaaa cgcgt	25
<210> 70 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 70 tetttgecat tgaagatgac ttaagc	26
<210> 71 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 71 tactageggt aagettaaac aagattge	28
<210> 72 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 72 ttgccaatga tattcgttgg ttagcaag	28
<210> 73 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 73 tcggcgaaat ccgtattcct gaaaatga	28
<210> 74 <211> 27	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 74 taccactatt aatgtcgctg gtgcttc	27
<210> 75	
<211> 35	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 75	
ttataactta ctgcaatcta ttcagttgct tggtg	35
<210> 76	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 76	
tattgtttca aatgtacaag gtgaagtgcg	30
<210> 77	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 77	
tggttatgta ccaaatactt tgtctgaaga tgg	33
<210> 78	
<211> 34	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 78	
tgaagtgcgt gatgatatcg atgcacttga tgta	34
<210> 79	
<211> 30	
<212> DNA <213> Artificial Seguence	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 79	

15

tggaacgtta tcaggtgccc caaaaattcg	30
<210> 80 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 80 tcggtttagt aaaagaacgt attgctcaac c	31
<210> 81 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 81 tcaacctgac tgcgtgaatg gttgt	25
<210> 82 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 82 tcaagcagaa gctttggaag aagaagg	27
<210> 83 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 83 tgagattgct gaacatttaa tgctgattga	30
<210> 84 . <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 84 ttgcttaaag ttggttttat tggttggcg	29
<210> 85 <211> 34 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 85 tcagttttaa tgtctcgtat gatcgaatca aaag	34
<210> 86 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 86 gcacaacctg cggctgcg	18
<210> 87 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 87 tctagtaata ataggaccct cagc	24
<210> 88 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 88 tatggctcta ctcaa	15
<210> 89 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 89 tgagtcactt gaagttgata caaatcctct	30
<210> 90 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 90 gaatagcaat taatccaaat	20
<210> 91 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 91 tcagttccgt tatcgccatt gcat	24
<210> 92 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 92 tggaactatt gcaactgcta atg	23
<210> 93 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 93 tcactcttac atataaggaa ggcgctc	27
<210> 94 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 94 tcaggatgga aataaccacc aattcactac	30
<210> 95 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 95 gttatttagc actcgttttt aatcagcc	28
<210> 96 <211> 20	

<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 96 actegttttt aateageeeg	20
<210> 97 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 97 gattattgtt atcctgttat gccatttgag	30
<210> 98 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 98 tgattattgt tatcctgtta tgccatttga g	31
<210> 99 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 99 ttattgttat cctgttatgc c	21
<210> 100 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 100 gttatcctgt tatgccattt g	21
<210> 101 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223>	Primer	
<400>	101 tatt ggagttattg	20
<210> <211> <211> <212> <213> <	31	
<220> <223>	Primer	
<400> ttgagg		31
<210> (211> (211> (212> (213>	32	
<220> <223>	Primer	
<400> :		32
<210> 3 <211> 3 <212> 3 <213> 4	31	
<220> <223>	Primer	
<400> : tggctta		31
<210> : <211> : <212> : <213> :	28	
<220> <223> 1	Primer	
<400> 3		28
<210> 1 <211> 3 <212> 1 <213> 2	33	
<220> <223> 1	Primer	
<400> 1		33

<210> 107 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 107 tgattttgct aaatttagag aaattgcg	ga tgaa 34
<210> 108 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 108 tcccaattaa ttctgccatt tttccagg	ta t
<210> 109 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 109 tcccggactt aatatcaatg aaaattgtg	gg a 31
<210> 110 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 110 tgcggatcgt ttggtggttg tagatgaaa	aa 30
<210> 111	
<211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 111 tcgtttggtg gtggtagatg aaaaagg	27
<210> 112 <211> 28 <212> DNA	

21

<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	112	
tagat	gaaaa gggcgaagtg gctaatgg	28
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>	113	
tgccta	agaag atcttaaaaa tttccgccaa ctt	33
<210>	114	
<211>	26	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Primer	
<400>	114	
	aggac accctgaaat ttcaac	26
<210>	115	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	115	
tggcat	ttct tatgaagett gttctttage a	31
<210>	116	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
\ 2237	ELTWEL	
<400>		
tgaago	ettgt tetttageag gaettea	27
<210>	117	
<211>	27	
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	

<400> 117 tttgatttta cgccgtcctc caggtcg	27
<210> 118 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 118 tcctgttatc cctgaagtag ttaatcaagt ttgt	34
<210> 119 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 119 tcctgttatc cctgaagtag ttaatcaagt ttgtt	35
<210> 120 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 120 taggcgaaga tatacaaaga gtattagaag ctaga	35
<210> 121 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 121 tccaggacaa atgtatgaaa aatgtccaag aag	33
<210> 122 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 122 tgaaaaatgt ccaagaagca tagcaaaaaa agca	34
<210> 123 <211> 26 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 123	
tcttatgcca agaggacaga gtgagt	26
<210> 124	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 124	
tgtattaggg gcatacagtc ctcatcc	27
<210> 125	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 125	
	1_8
	0
<210> 126 <211> 22	
<211> 22	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 126	
acaacgaagt acaatacaag ac	2 2
<210> 127	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 127	
cgaagtacaa tacaagacaa aagaagg	2 7
<210> 128	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

24

<400> 128 28 tcgaagtaca atacaagaca aaagaagg <210> 129 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 129 acaatacaag acaaaagaag g 21 <210> 130 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 130 caggtttagt accagaacat gcag 24 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 131 ggtttagtac cagaacatgc 20 <210> 132 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 132 cggcgtactt caacgacagc ca 22 <210> 133 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 133 ttatcagcta gaccttttag gtaaagctaa gc 32 <210> 134 <211> 32

PCT/US2005/005356

WO 2005/098047

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 134 tccaaggtac actaaactta cttgagctaa tg	32
<210> 135 <211> 32 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 135 tcaaaaagcc ctaggtaaag agattccata tc	32
<210> 136 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 136 tccgttctta caaatagcaa tagaacttga agc	33
<210> 137 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 137 tggagcttga agctatcgct cttaaagatg	30
<210> 138 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 138 tggaacttga agctctcgct cttaaagatg	30
<210> 139 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 139 tgggacttga agctatcgct cttaaagatg	30
<210> 140 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 140 tcttctcatc ctatggctat tatgcttgc	29
<210> 141 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 141 ggtgaaagaa gttgcctcta aagc	24
<210> 142 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 142 atggacaagg ttggcaagga agg	23
<210> 143 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 143 aaggaaggeg tgateaeegt tgaaga	26
<210> 144 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 144 tggaagatet gggteagge	19

<210> <211> <212> <213>	20	
<220> <223>	Primer	
<400> tctgcc	145 ccgtg tcgttggtga	20
<210>	146	
<211> <212> <213>		
<220> <223>	Primer	
<400> tccatt	146 gttc gtatggctca agact	25
<210><211><211><212><213>	22	
<220> <223>	Primer	
<400>	147	
tcaggt	ggct tacacggcgt ag	22
<210><211><211><212><213>	28	
<220> <223>	Primer	
<400> tctttc		28
<210><211><211><212><213>	27	
<220> <223>	Primer	
<400> tcaacg		27
<210> <211> <212> <213>	28	

<220> <223>	Primer	
<400>		
	gotgt ttcacaaaca acattoca	28
-010>	1.51	
<210> <211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	151	
tactta	cttg agaatccaca agctgcaa	28
<210>	152	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tggcga	acct ggtgaacgaa gc	22
<210>		
<211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tagttg		22
		22
<210>		
<211> <212>		
	Artificial Sequence	
<220> <223>	Primer	
<400> tcccaa		28
		20
<210>		
<211> <212>		
<2135	Artificial Sequence	
	rarearrotat pedaeuce	
<220>	Primer	
~4437	E T TIMAT	
<400>	1 55	

WO 2005/098047	PCT/US2005/005356
tcgccgtgga aaaatcctac gct	23
<210> 156 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 156 ttcctgaccg acccattatt ccctttatc	29
<210> 157 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 157 tcctgaccga cccattattc cctttatc	28
<210> 158 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 158 gtcgtgaaaa cgagctggaa ga	22
<210> 159 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 159 tgcgtttacc gcaatgcgtg c	21
<210> 160 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 160 tgctcgtggt gcacaagtaa cggatatta	29
<210> 161 <211> 30 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 161 ttgctcgtgg tgcacaagta acggatatta	30
<210> 162 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 162 cgtcagggta aattccgtga agttaa	26
<210> 163 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 163 tggtaacaga gccttatagg cgca	24
<210> 164 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 164 tggctccttg gtatgactct gcttc	25
<210> 165 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 165 tgctgaggcc tggaccgatt atttac	26
<210> 166 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 166 ttatttacct gcactcccac aactg	25

<210>		
<211> <212>		
	Artificial Sequence	
\ZIJ/ /	vrciiiciai peddeuce	
<220>		
<223>	Primer	
<400>	167	
tccttg	accg cctttccgat ac	22
<210>		
<211>		
<212> 1		
<z13> I</z13>	Artificial Sequence	
<220>		
<223> 1	Primar	
12207	T THO T	
<400>	168	
	ccgt gtcgcgctca	20
3 23	J. J. J. J. J. J. J. J. J. J. J. J. J. J	20
<210>	169	
<211> 2		
<212> 1		
<213> 7	Artificial Sequence	
<220>		
<223> I	Primer	
<400> 3	160	
	catg ctcgcagaga aactt	0 E
coagao	outy otogodydd ddoll	25
<210> 1	170	
<211> 2		
<212> [DNA	
<213> I	Artificial Sequence	
<220>		
<223> I	Primer	
~100× 1	170	
<400> 1		
ccaycai	tgta tecacegtag ecagte	26
<210> 1	171	
<211> 2		
<212> [
	Artificial Sequence	
	•	
<220>		
<223> E	Primer	
<400> 1		
cgggtga	acat tcatcaattt catcgttc	28
<210> 1	72	
<210> 1		
<211> 1		
	/1411	

<213>	Artificial S	Sequence	
<220> <223>	Primer		
<400>	172		
tcaaga	agaa aaagagc		17
<210> <211> <212> <213>	31	Sequence	
<220> <223>	Primer		
<400> caagaa		ctct aaaaagaata c	31
<210> <211> <212> <213>	26	Sequence	
<220> <223>	Primer		
<400> agcttt	174 tgca tattata	atcg agccac	26
<210><211><212><212><213>	27	dequence	
<220> <223>	Primer		
<400> tagctt	175 ttgc atattata	atc gagccac	27
<210> <211> <212> <213>	21	equence	
<220> <223>	Primer		
<400> cttttg	176 cata ttatatco	gag c	21
<210> : <211> : <212> : <213> :	19	equence	
<220> <223> 1	Primer		

33

<400> 177 tttacagctt tatgcaccg	19
<210> 178 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 178 caacggatgc tggcaag	17
<210> 179 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 179	
tgtagccgct aagcactacc atcc	24
<210> 180 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 180 tggacggcat cacgattctc tac	23
<210> 181 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 181 tgaagtagaa atgactgaac gtccga	26
<210> 182 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 182 taaaacaaac tacggtaaca ttgatcgca	29
<210> 183	

<211> 2 <212> E <213> P		
<220> <223> E	Primer	
<400> 1		24
<210> 1 <211> 2 <212> E <213> A	21	
<220> <223> P		
<400> 1 tgtactg		21
<210> 1 <211> 1 <212> D <213> A	1	
<220> <223> P	Primer	
<400> 1		11
<210> 1 <211> 3 <212> D <213> A	30	
<220> <223> P	Primer	
<400> 1 tcaccag		30
<210> 1 <211> 2 <212> D	7	
<213> A	rtificial Sequence	
<220> <223> P	rimer	
<400> 1: ttacaca		27
<210> 10	0	
<220>		

35

<223> Primer	
<400> 188 ttactccatt attgcttggt tacactttcc	30
<210> 189 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 189 tacacaacaa tggcggtaaa gatgg	25
<210> 190 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 190 tgcgcagctc ttggtatcga gtt	23
<210> 191 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 191 tgcctcgaag ctgaatataa ccaagtt	27
<210> 192 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 192 tcaacggtaa cttctatgtt acttctg	27
<210> 193 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 193 ccaageegta egtattatta ggtgetg	27
<210> 194	

<211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 194 tccgtacgta ttattaggtg ctggtca	27
<210> 195 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 195 tcgtacgtat tattaggtgc tggtcact	28
<210> 196 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 196 tgttggtget ttetggeget taa	23
<210> 197 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 197 tggtgctttc tggcgcttaa acga	24
<210> 198 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 198 tctactgatt ttggtaatct tgcagcacag	30
<210> 199 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 199 tgcaagtggt acttcaacat gggg	24
<210> 200 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 200 ttacaggaag tttaggtggt aatctaaaag g	31
<210> 201 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 201 cagaatcaag ttcccagggg	20
<210> 202 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 202 agaatcaagt tcccaggggt tac	23
<210> 203 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 203 aatctgctat ttggtcagg	19
<210> 204 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 204 gaaggatata cggttgatgt c	21
<210> 205	

WO 2005/098047 PCT/V	US2005/005356
----------------------	---------------

<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 205	0.0
tcctgaaaaa tggagcacgg	20
<210> 206	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 206	
tggagcacgg cttctgatc	19
<210> 207	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
<400> 207	
ggctcagcca tttagttacc gctat	25
ggotougoou teeugeeuoo gooda	
<210> 208	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
ZISV AILITICIAL Bequence	
<220>	
<223> Primer	
<223> Filmer	
<400> 208	
	21
tcagcgcgta cagtgggtga t	24
<21.0	
<210> 209	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
40005	
<220>	
<223> Primer	
4400 000	
<400> 209	24
tggtgactcg gcatgttatg aagc	۵ ٦
(010) 010	
<210> 210	
<211> 26	
<212> DNA	
<213> Artificial Sequence	

<220> <223>	Primer	
<400>	210	
	cegga aacttecega aaggag	26
<210>	211	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>	211	
tgacat	ccgg ctcacgttat tatggt	26
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>		
tccggc	ctcac gttattatgg tac	23
<210>	213	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>		
tgcaaa	ggag gtactcagac cat	23
<210>	214	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>		
tgacat	gctt gtccgttcag gc	22
<210>	215	
<211>	26	
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>	215	

WO 2005/098047	PCT/US2005/005356
tggtacatgt gccttcattg atgctg	26
<210> 216	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 216	
tggcacggcc atctccgtg	19
<210> 217	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 217	
tgcgggtagg gagcttgagc	20
<210> 218	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 218	
tcctagagga atggetgcca cg	22
<210> 219	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 219	
taccccaggg aaagtgccac aga	23
<210> 220	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 220	
taaaccccat cgggagcaag accgaata	28
<210> 221	
<211> 19	
<212> DNA	

<213>	Artificial Sequence	
<220>		
	Primer	
<400>	· · · ·	
gagga	aagtc catgctcgc	19
<210>	222	
<211>		
<212>	DNA Artificial Sequence	
\Z13/	Altititat Sequence	
<220>		
<223>	Primer	
<400>	222	
	atagt gcaacagaga tataccgcc	29
<210>		
<211><212>		
	Artificial Sequence	
	•	
<220>	Dud-man.	
\ ZZ3>	Primer	
<400>	223	
gagga	aagtc cgggctc	17
<210>	221	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>		0.4
tctaa	atggt cgtgcagttg cgtg	24
<210>	225	
<211>		
<212>	DNA Artificial Sequence	
\21 3/	viciticiai pedrence	
<220>		
<223>	Primer	
<400>	225	
		30
<210><211>		
<211>		
	Artificial Sequence	
<220>	Primer	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E T T III C T	

<400>	226	
taagag	gogca ooggtaagtt gg	22
-0105	207	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>		
tgcata	accgg taagttggca aca	23
<01.0>	200	
<210>		
<211> <212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tccaco	caaga gcaagatcaa ataggc	26
<210>	229	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	
~10D>	220	
<400>		1.0
gaggaa	aagtc catgctcac	19
<210>	230	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>	230	
	gagt tgactgggt	19
000909	9494 094009990	13
<210>	231	
<211>		
<212>	DNA	
	Artificial Sequence	
2000:		
<220>	Daiman	
\	Primer	
<400>	231	
		30
<210>		
<211>		
<212S	LIMA	

WO 2005/098047

PCT/US2005/005356

<213>	Artificial Sequence	
<220>		
	Primer	
<400>	232	
tgacci	tacag taagaggttc tgtaatgaac c	31
<210>	233	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	233	
	gaac cctaatgacc atccacacgg	30
		J 0
<210> <211>		
<212>		
	Artificial Sequence	
	-	
<220>	Primer	
\2237	titudet	
<400>		
taatga	accc taatgaccat ccacacggtg	30
<210>	235	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	235	
		23
<210> <211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>		
tcatcc	acac ggtggtggtg aagg	24
<210>	237	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	

44

<400> tccaca	237 acggt ggtggtgaag g	21
<210><211><211><212><213>	18	
<220> <223>	Primer	
<400> gaccac	238 ceteg geaacegt	18
<210> <211> <212> <213>	23	
<220> <223>	Primer	
<400> tcagct	239 tgtcg cagttcatgg acc	23
<210> <211> <212> <213>	22	
<220> <223>	Primer	
<400> tatcg	240 ctcag gcgaactcca ac	22
<210> <211> <212> <213>	23	
<220> <223>	Primer	
<400> ttatce	241 getea ggegaaetee aae	23
<210><211><211><212><213>	23	
<220> <223>	Primer	
<400> tcgtt	242 cctgg aacacgatga cgc	23
<210> <211>		

WO 2005/098047

PCT/US2005/005356

<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400>	243	
tcaaca	aacct cttggaggta aagctcagt	29
<210>	244	
<211>	29	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	244	
cttgga	nggta agtctcattt tggtgggca	29
<210>		
<211> <212>		
	Artificial Sequence	
12107	metricial pedaence	
<220>		
<223>	Primer	
<400>	245	
	gcgt ttcggcgaaa tgga	24
<210> <211>		
<211>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>	246	
gggcag	cgtt tcggcgaaat gga	23
-010× ·		
<210> : <211> :		
<211> /		
	Artificial Sequence	
40.005		
<220> <223>]	Desimon	
~223/]	er Tillêt	
<400> 2		
cagcgti	ttcg gcgaaatgga	20
<210> 2	248	
<211> 2		
<212> I	DNA	
<213> A	Artificial Sequence	
<220>		
<223> E	Primer	

<400> 248 caaaacttat taggtaagcg tgttgact	28
<210> 249 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 249 cgtgttgact attcggggcg ttcag	25
<210> 250 <211> 27 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 250 taagaagccg gaaaccatca actaccg	27
<210> 251 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 251 acccagtgct gctgaaccgt gc	22
<210> 252 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 252 cgccgacttc gacggtgacc	20
<210> 253 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 253 tcgccgactt cgacggtgac c	21

<210> 254 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 254 tggcccgaaa gaagctgagc g	21
<210> 255 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 255 tcaggagtcg ttcaactcga tctacatgat g	31
<210> 256 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 256 caggagtcgt tcaactcgat ctacatgat 2	9
<210> 257 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 257 tcaggagtcg ttcaactcga tctacatgat 3	0
<210> 258 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 258 tgatteeggt geeegtggt	9
<210> 259 <211> 19 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 259 tgattctggt gcccgtggt	19
<210> 260 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 260 cttgctggta tgcgtggtct gatg	24
<210> 261 <211> 24 <212> DNA <213> Artificial Sequence	
<220>	
<400> 261 ctggcaggta tgcgtggtct gatg	24
<210> 262 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 262 tetggeaggt atgegtggte tgatg	25
<210> 263 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 263 tggtatgcgt ggtctgatgg c	21
<210> 264 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 264 tgctcgtaag ggtctggcgg atac	24

<210> 265 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 265 cgtcgtgtaa ttaaccgtaa caaccg	26
<210> 266 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 266 cgtcgggtga ttaaccgtaa caaccg	26
<210> 267 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 267 tattggacaa cggtcgtcgc gg	22
<210> 268 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 268 tctggataac ggtcgtcgcg g	21
<210> 269 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 269 caaaggtaag caaggacgtt teegtea 2	27
<210> 270 <211> 27 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 270 caaaggtaag caaggtcgtt tccgtca	27
<210> 271 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 271 aaccttaatt ggaaagaaac ccaagaagt	29
<210> 272 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 272 taaccttaat tggaaagaaa cccaagaagt	30
<210> 273 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 273 caataccgca acagcggtgg cttggg	26
<210> 274 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 274 tcaataccgc aacagcggtg gcttggg	27
<210> 275 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 275	

WO 2005/098047	PCT/US2005/005356
gctggtgaaa ataacccaga tgtcgtcttc	30
<210> 276 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 276 tgctggtgaa aataacccag atgtcgtctt c	31
<210> 277 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 277 cgcaaaaaaa tccagctatt agc	23
<210> 278 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 278 tcgcaaaaaa atccagctat tagc	24
<210> 279 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 279 cgagtatagc taaaaaaata gtttatgaca	30
<210> 280 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

31

<400> 280

<210> 281 <211> 29 <212> DNA

tcgagtatag ctaaaaaaat agtttatgac a

<213> Artificial Sequence

<220> <223> Pr	rimer	
<400> 28 cctatatt		29
<210> 28 <211> 30 <212> DN		
<220> <223> Pr		
<400> 28	2	30
<210> 28: <211> 23 <212> DNZ		
<213> Ar	tificial Sequence	
<220> <223> Pri	imer	
<400> 283 ctggctaaa		23
<210> 284 <211> 24 <212> DNA <213> Art		
<220> <223> Pri	imer	
<400> 284 totggotas		24
<210> 285 <211> 29 <212> DNF		
<213> Art	tificial Sequence	
<220> <223> Pri	imer	
<400> 285 atgattaca		9
<210> 286 <211> 30 <212> DNA <213> Art		
<220> <223> Pri	imer	

<400> 286 tatgattaca attcaagaag gtcgtcacgc	30
<210> 287 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 287 taacggttat catggcccag atggg	25
<210> 288 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 288 ttaacggtta tcatggccca gatggg	26
<210> 289	
<211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 289 agcaggtggt gaaatcggcc acatgatt	28
<210> 290 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 290 tagcaggtgg tgaaatcggc cacatgatt	29
<210> 291 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 291 cagagaccgt tttatcctat cagc	24
<210> 292	

<211><212><213>		
<220> <223>	Primer	
<400> tcaga	292 gaccg ttttatccta tcagc	25
<210> <211>	25	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tctaa	293 aacac caggtcaccc agaag	25
<210> <211>	26	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> ttcta	294 aaaca ccaggtcacc cagaag	26
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> atggc	295 catgg cagaagctca	20
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tatggo	296 ccatg gcagaagctc a	21
<210> <211>		
<212>		
<220> <223>	Primer	

<400> 297 cttgtacttg tggctcacac ggctgtttgg	30
<210> 298 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 298 tcttgtactt gtggctcaca cggctgtttg g	31
<210> 299 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 299 accatgacag aaggcatttt gaca	24
<210> 300 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 300 taccatgaca gaaggcattt tgaca	25
<210> 301 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 301 gatgactttt tagctaatgg tcaggcagc	29
<210> 302 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 302 tgatgacttt ttagctaatg gtcaggcagc	30
<210> 303	

<211> <212> <213>		
<220>		
	Primer	
<400>	303	
tagcta	aatgg teaggeagee	20
<210>	304	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	304	
gtcaaa	ngtgg cacgtttact ggc	23
<210>	305	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>		
tgtcaa	agtg gcacgtttac tggc	24
<210>	306	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	306	
agcgta	aagg tgaacctt	18
<210>	307	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	307	
tagcgt	aaag gtgaacctt	19
<210>	308	
<211>		
<212>	DNA	
<213>	Artificial Sequence	

<220> <223> Primer	
<400> 308 gcttcaggaa tcaatgatgg agcag	25
<210> 309 <211> 26	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 309 tgcttcagga atcaatgatg gagcag	26
<210> 310 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 310 ggggattcag ccatcaaagc agctattgac	30
<210> 311 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 311 tggggattca gccatcaaag cagctattga c	31
<210> 312 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 312 tcagccatca aagcagctat tg	22
<210> 313 <211> 30 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 313	

58

ccttacttcg aactatgaat cttttggaag	30
<210> 314	
<211> 31	
<212> DNA <213> Artificial Sequence	
V213> Altiticial peddeuce	
<220>	
<223> Primer	
<400> 314	
toottactto gaactatgaa tottttggaa g	31
<210> 315	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
ZZZZZ ETTIIIQT	
<400> 315	
ggggattgat atcaccgata agaagaa	27
<210> 316	
<211> 28 <212> DNA	
<213> Artificial Sequence	
aro, interrorat bequeite	
<220>	
<223> Primer	
<400> 21C	
<400> 316 tggggattga tatcaccgat aagaagaa	0.0
cygygactya tattattyat aagaayaa	28
<210> 317	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 317	
tcgccaatca aaactaaggg aatggc	26
<210 > 210	
<210> 318 <211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 318	
ttcgccaatc aaaactaagg gaatggc	27
5	<i>41</i>
<210> 319	
<211> 29	
<212> DNA	

WO 2005/098047

PCT/US2005/005356

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 319	
gggcaacagc agcggattgc gattgcgcg	29
<210> 320	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 320	
tgggcaacag cagcggattg cgattgcgcg	30
<210> 321	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 321	
tcaagcaaac gcacaatcag aagc	24
<210> 322	
<211> 23 <212> DNA	
<213> Artificial Sequence	
- <220>	
<223> Primer	
<400. 200	
<400> 322 caagcaaacg cacaatcaga agc	23
	23
<210> 323 <211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 323	
aacgcacaat cagaagc	17
<210> 324	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Primer</pre>	

<400> 324 tgcacaatca gaagctaaga aagcgcaagc t	31
<210> 325 <211> 23 <212> DNA <213> Artificial Sequence	
<22O> <223> Primer	
<400> 325 tgcaagette tggtgetage att	23
<210> 326 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 326 tgcttctggt gctagcatt	19
<210> 327 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 327 tggtgctagc att	13
<210> 328 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 328 tgctagttat ggtacagagt ttgcgac	27
<210> 329 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 329 tggtacagag tttgcgac	18
<210 > 330 <211 > 15	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tacage	330 agttt gegae	15
<210> <211> <212>	24 DNA	
<213> <220>	Artificial Sequence	
	Primer	
<400> tcgatt	aggc agcaacgaaa gccg	24
<210> <211> <212> <213>	23	
<220> <223>	Primer	
<400> tcgaco	332 Etttg gcaggaacta gac	23
<210><211><211><212><213>	26	
<220> <223>	Primer	
<400> tcaaat	333 gtac aaggtgaagt gcgtga	26
<210> <211> <212> <213>	27	
<220> <223>	Primer	
<400> tggatg	334 gcat ggtgaaatgg atatgtc	27
<210> <211> <212> <213>	25	
<220> <223>	Primer	

<400> atgtc	335 gattg caatcegtae ttgtg	25
<210> <211> <212> <213>	23	
<220> <223>	Primer	
<400> gtgcat	336 Egegg atacagagea gag	23
<210> <211> <212> <213>	20	
<220> <223>	Primer	
<400> tgcaag	337 gegeg accaeataeg	20
<210><211><211><212><213>	27	
<220> <223>	Primer	
<400> gcacta	338 utgca cacgtagatt gtootgg	27
<210><211><211><212><213>	21	
<220> <223>	Primer	
<400>	339	
ttgact	geec aggteaeget g	21
<210><211><211><212><213>	21	
<220> <223>	Primer	
<400> tagact	340 gccc aggacacgct g	21

<210><211><211><212><213>	28	
<220> <223>	Primer	
<400> tgcacq	341 geega etatgttaag aacatgat	28
<210><211><211><212><213>	25	
<220> <223>	Primer	
<400> tgatca	342 actgg tgctgctcag atgga	25
<210><211><211><212><213>	18	
<220> <223>	Primer	
<400> aagaco	343 gacct gcacgggc	18
<210><211><211><212><213>	23	
<220> <223>	Primer	
<400> ccacac	344 egecg ttetteaaca act	23
<210><211><211><212><213>	24	
<220> <223>	Primer	
<400> tccaca		24
<210><211><211><212><213>	25	

<220> <223> Primer	
<400> 346 aactaccgtc ctcagttcta cttcc	25
<210> 347 <211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 347 aactaccgtc cgcagttcta cttcc	25
<210> 348 <211> 28 <212> DNA	
<213> Artificial Sequence <220> <223> Primer	
<400> 348 ccacagttct acttecgtac tactgacg	28
<210> 349 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 349 cgtggcggcg tggttatcga	20
<210> 350 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 350 tcgtggcggc gtggttatcg a	21
<210> 351 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 351 tatgctgacc gaccagtggt acgt	24

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220>		
<223>	Primer	
<400>	352	
	getg egetteae	18
cgacge	gety eyetteae	то
<210>	353	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Primer	
<400>		
cttctc	gcaac aagctgtgga acgc	24
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
\ 2237	FITMEL	
<400>	354	
	Caag gagaccagc	19
	- Caus gagaooago	19
<210>	355	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
<223>	Primer	
<400>		
tcttgc	tctt tcgtgagttc agtaaatg	28
Z2105	21.6	
<210> <211>		
<211>		
	Artificial Sequence	
\Z.I.J.	Arctitotal peddence	
<220>		
	Primer	
<400>	356	
	tggt ttcatgctgt ttcagt	26
<210>		
<211>		
<212>	TNIA	
	Artificial Sequence	

<220> <223>	Primer	
<400> ttact	357 caccc gtccgccgct	20
<210> <211> <212> <213>	22	
<220> <223>	Primer	
<400> tgtta	358 ctcac ccgtctgcca ct	22
<210>	359	
<211> <212> <213>		
<220> <223>	Primer	
<400> ttacto		17
<210> <211> <212> <213>	20	
<220> <223>	Primer	
<400>		
acaaco	catge accacetgt c	20
<210><211><212><213>	22	
<220>	Primer	
<400> tacgca		22
<210><211><211><212><213>	20	
<220> <223>	Primer	
<400>	362	

acgagctgac gacagccatg 20 <210> 363 <211> 21 <212> DNA <213> Artificial Sequence <223> Primer <400> 363 tacgagctga cgacagccat g 21 <210> 364 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 364 acgacacgag ctgacgac 18 <210> 365 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 365 acacgagetg ac 12 <210> 366 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 366 tcccacctt cctcc 15 <210> 367 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 367 gacgtcatcc ccaccttcct cc 22 <210> 368 <211> 21 <212> DNA

PCT/US2005/005356

WO 2005/098047

<213>	Artificial Sequence	
<220>		
	Primer	
<400>	368	
gacgt	catee ecacetteet e	21
<210>	369	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	369	
tgacg	tcatc cccaccttcc tc	22
<210>	370	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	370	
	gtcat ccccaccttc ctc	23
	•	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	371	
ttgaco	gteat ecceacette etc	23
<210>	372	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	372	
		20
-5~090		20
<210>	373	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	

69

<400> 373	
tgacgtcatg cccaccttcc	20
<210> 374	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 374	
tgacgtcatc cccaccttcc	20
	2.0
<210> 375	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 375	
attgtagcac gtgtgtagcc c	21
<210> 376	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 376	
cgagttgcag actgcgatcc g	21
<210> 377	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 377	
cgagttgcag actgcgatcc g	21
<210> 378	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 378	
	19
<210> 379	
\$211> 22	

PCT/US2005/005356

WO 2005/098047

<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 379 accttgttac gacttcaccc ca	22
<210> 380 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 380 ccttgttacg acttcaccc	20
<210> 381 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 381 cacggctacc ttgttacgac	20
<210> 382 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 382 aaggaggtga tccagcc	17
<210> 383 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 383 actgctgcct cccgtag	17
<210> 384 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	

71

<223> Primer	
<400> 384	
cggctgctgg cacgaagtta g	21
<210> 385	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 385	
ctttacgccc agtaattccg	20
<210> 386	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 386	
cgcatttcac cgctacac	1.8
	T 0
<210> 387	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 387	
gtatctaatc ctgtttgctc cc	2 2
<210> 388	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
0. 22202	
<400> 388	
cgtggactac cagggtatct a	2 1
<210> 389	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 389	
tcgtggacta ccagggtatc ta	22

WO 2005/098047

PCT/US2005/005356

<210> <211>	15	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	390	
cgtact	cocc aggog	15
<210>	391	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	391	
ggccgt	cactc cccaggcg	18
<210>	392	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	392	
tggccg	rtact ccccaggcg	19
<210>	303	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	303	
		18
		10
<210>	394	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	394	
		19
<210>	395	
<211>	21	
<212>		
<213>	Artificial Sequence	

<220>	
<223> Primer	
<400> 395	
ccccgtcaa ttcctttgag t	21
<210> 396	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
4000	
<220>	
<223> Primer	
<400> 396	
ggtaaggttc ttcgcgttg	19
5555	19
<210> 397	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 397	
tegeaggett acagaacget etecta	26
	40
<210> 398	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
40.00	
<220>	
<223> Primer	
<400> 398	
toggactogo tttogotacg	20
	20
<210> 399	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
1220 IIImet	
<400> 399	
gtgcgccctt tctaactt	18
	=
<210> 400	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><220></pre>	
<400> 400	
Eggctgcttc taagccaac	19

WO 2005/098047

PCT/US2005/005356

<210>	401	
<211>	16	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Primer	
12201	I I I III O I	
<400>	401	
	tcccc attcgg	
gggtt	cooc accogg	16
<210>	402	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	402	
ccttct	tcccg aagttacg	18
		_
<210>	403	
<211>	15	
<212>		
	Artificial Sequence	
<220>		
	Primer	
12207	1 T TIMOT	
<400>	103	
~400 <i>></i>	403	
a=aaa	Tagga agata	
caccy	ggcag gcgtc	15
2010s	404	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	404	
gaccgt	tata gttacggcc	19
- 5	555	17
<210>	405	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
-445/	± ± ±mo ±	
<400>	405	
Lyaucy	ttat agttacggcc	20
-21AS	406	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	

<220> <223> Primer	
<400> 406 tcgctacctt aggaccgt	18
<210> 407 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 407 ccgacaagga atttcgctac c	21
<210> 408 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 408 ttcgctcgcc gctac	15
<210> 409 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 409 agccgacatc gaggtgccaa ac	22
<210> 410 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 410 ceggteetet egtaeta	17
<210> 411 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 411	

agtccatccc ggtcctctcg	20
<210> 412 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 412 ttagatgctt tcagcactta tc	22
<210> 413 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 413 acttagatgc tttcagcggt	20
<210> 414 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 414	
tgcttagatg ctttcagc	18
<210> 415 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 415 ttcgtgctta gatgctttca g	21
<210> 416 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 416 tttcgtgctt agatgctttc ag	22
<210> 417 <211> 24	

WO 2005/098047

PCT/US2005/005356

<212> I <213> I	DNA Artificial Sequence	
<220>		
<223> I	Primer	
<400>		
gtttcat	tgct tagatgcttt cagc	24
<210> 4		
<211> 2		
<212> I <213> I	Artificial Sequence	
<220>		
<223> I	Primer	
<400> 4		
acaaaag	ggea egecateace e	21
<210> 4		
<211> 2 <212> E		
	Artificial Sequence	
	orr road poduciioo	
<220> <223> E	ly ima y	
\ZZJ/ E	rimer	
<400> 4		
acaaaag	ggta cgccgtcacc c	21
<210> 4	120	
<211> 3		
<212> [
<213> A	Artificial Sequence	
<220>		
<223> F	Primer	
<400> 4	120	
taatgcc	ggg tagtgcaatc cattcttcta g	31
<210> 4	121	
<211> 1		
<212> D		
<213> A	artificial Sequence	
<220>		
<223> P	Primer	
<400> 4	.21	
		18
<210> 4	22	
<211> 2	8	
<212> D	NA	
<213> A	rtificial Sequence	
<220>		
<223> P	rimer	

<400> 422 tgccatccat aatcacgcca tactgacg	28
<210> 423 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 423 tgccagtttc cacatttcac gttcgtg	27
<210> 424 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 424 tcgcttgagt gtagtcatga ttgcg	25
<210> 425 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 425 tgagtcgggt tcactttacc tggca	25
<210> 426 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 426 ttgtacattt gaaacaatat gcatgacatg tgaat	35
<210> 427 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 427 taccggaagc accagcgaca ttaatag	27
<210> 428 <211> 32	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400>		
tgcaa	ctgaa tagattgcag taagttataa gc	32
<210> <211> <212>	34 DNA	
	Artificial Sequence	
<220> <223>	Primer	
<400> tgaat	429 tatgc aagaagtgat caattttctc acga	34
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220>	Projector	
<400>	Primer 420	
	taact aacataagag aattatgcaa gaa	33
<210><211><211><212><213>	22	
<220>	Vicilioiai peddeuce	
	Primer	
<400> tgacgo	· ·	22
<210><211><211><212><213>	34	
<220>	Primer	
<400> tcacaç		34
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	

<400> 433 tccgccaaaa actccccttt tcacagg	27
<21 0> 434 <21 1> 30 <21 2> DNA <21 3> Artificial Sequence	
<22 0> <22 3> Primer	
<40 0> 434 ttgcaatcga catatccatt tcaccatgcc	30
<21 0> 435 <21 1> 24 <21 2> DNA <21 3> Artificial Sequence	
<22 0> <22 3> Primer	
<40 O> 435	
ttctgcttga ggaatagtgc gtgg	24
<21 0> 436 <21 1> 31 <21 2> DNA <21 3> Artificial Sequence	
<22 0> <22 3> Primer	
<40 O> 436 tacgttctac gatttcttca tcaggtacat c	31
<210> 437 <211> 27 <212> DNA <213> Artificial Sequence	
<22 O> <22 3> Primer	
<40 O> 437 tacaacgtga taaacacgac cagaagc	27
<210> 438 <211> 28 <212> DNA <213> Artificial Sequence	
<22O> <223> Primer	
<40O> 438 tccatattgt tgcataaaac ctgttggc	28
<21O> 439	

<211>		
<212><213>	DNA Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tgagat	gtcg aaaaaacgt tggcaaaata c	31
<210>	440	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	440	
	cgag gtagtcgc	18
		10
<210> <211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	
< 4 00>		
Lalacca	tttc gcgtaagatt caa	23
<210>	442	
<211>		
<212>	DNA Artificial Sequence	
.2132	vicitional peducine	
<2 20>		
<2 23>	Primer	
<4 00>	442	
tcatgt	gcta atgttactgc tggatctg	28
<2 10> -	113	
<2 11> :		
<2 12> 1		
/0 T 2 \ :	3	
\Z 13 <i>> 1</i>	Artificial Sequence	
<2 20>		
<2 23> 1	Primer	
<4 00> 4	443	
		14
<210> 4		
<2 1 1 > 2 <2 11 > 3		
<212> I	DNA	
<2 13> <i>I</i>	Artificial Sequence	
<220>		

82

<223> Primer	
<400> 444 ttacttctaa cccactc	17
<210> 445 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 445 tgcgggctgg ttcaacaaga g	21
<210> 446 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 446 tgatgcgggc tggttcaac	19
<210> 447 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 447 tcctgtttta tagccgccaa gagtaag	27
<210> 448 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 448 tcaaggttct caccgtttac cttaggag	28
<210> 449 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 449 tgaatcttga aacaccatac gtaacg	26
<210> 450	

<211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 450 tgaatcttga aacaccatac g	21
<210> 451 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 451 gtaacccttg tctttgaatt gtatttgc	28
<210> 452 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 452 tgtaaccctt gtctttgaat tgtatttgc	29
<210> 453 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 453 ggtaaccctt gtctttgaat	20
<210> 454 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 454 tggtaaccct tgtctttg	18
<210> 455 <211> 34 <212> DNA <213> Artificial Sequence	
<220>	

<223> Primer	
<400> 455 tcccttattt ttctttctac taccttcgga taat	34
<210> 456 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 456 tcccctcatg tttaaatgat caggataaaa agc	33
<210> 457 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 457 teggtttaag etetacatga tegtaaggat a	31
<210> 458 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 458 tttgctcatg atctgcatga agcataaa	28
<210> 459 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 459 tgcaatgtgt gctatgtcag caaaaagat	29
<210> 460 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 460 tgagcgtgtg gaaaaggact tggatg	26

<211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 461 tatgtgtagt tgagcttact acatgagc	28
<210> 462 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 462 tggttcttac ttgctttgca taaactttcc a	31
<210> 463 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 463 togatoogoa toaccatoaa aagcaaa	27
<210> 464 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 464 tccacactgg attgtaattt accttgttct tt	32
<210> 465 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 465 tototttcaa agcaccattg otoattatag t	31
<210> 466 <211> 34 <212> DNA <213> Artificial Sequence	

WO 2005/098047	PCT/US2005/005356
<220> <223> Primer	
<400> 466 tgaattettt caaageacea ttgeteatta tag	t 34
<210> 467 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 467	
ttgctgccat agcaaagcct acagc	25
<210> 468 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 468 tgtgcttttt ttgctgccat agcaaagc	28
<210> 469 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 469 tgcttcaaaa cgcattttta cattttcgtt aaag	34
<210> 470 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 470 teeteettgt geeteaaaae geatttta	29
<210> 471 <211> 30 <212> DNA <213> Artificial Sequence	

30

<220>

<223> Primer

tcaaagaacc cgcacctaat tcatcattta

<400> 471

<210><211><212><212>	35 DNA	
	Artificial Sequence	
<220> <223>	Primer	
<400>		
tcaact	eggtt caaaaacatt aagttgtaat tgtcc	35
<210>		
<211><212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tacaac	etggt tcaaaaacat taagctgtaa ttgtc	35
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttcatt	474 : ttct ggtccaaagt aagcagtatc	30
<210>	475	
<211> <212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tcccga	acaa tgagttgtat caactatttt tac	33
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
	Primer	
<400>	476	
tgccta	acaa atcccgtctg agttc	25
<210>	477	
<211>		
<212> <213>	DNA Artificial Sequence	

<220> <223> Primer	
<400> 477 tgtcatcaag caccccaaaa tgaact	26
<210> 478 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 478 ccacttttaa taaggtttgt agc	23
<210> 479 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 479 tgttgaccat gcttcttag	19
<210> 480 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 480 cttctacatt tttagccatc ac	22
<210> 481 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 481 cggcttcaag acccc	15
<210> 482 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 482 tgttaacggc ttcaagaccc	20

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
12201		
<400>	483	
	aacgg cttcaagacc c	21
-		
<210>	484	
<211>	28	
<212>		
<213>	Artificial Sequence	
<220>	n. '	
<223>	Primer	
<400>	191	
	ttta ataaggtttg tagctaac	28
accaci	città ataayyttiy tayotaac	20
<210>	485	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
cgcggt	ccggc tcgttgatga	20
Z2105	106	
<210> <211>		
<212>		
	Artificial Sequence	
72137	vicitional pedmence	
<220>		
	Primer	
<400>	486	
tcacct	cacag ctttaaagcc agcaaaatg	29
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
2000		
<220>	Doiman	
\ <u>\</u> \ <u>\</u> \\	Primer	
<400>	487	
	gtaa agggtggttt attattcatc cca	33
	J	J J
<210>	488	
<211>	25	
<212>		
<213>	Artificial Sequence	

<220>	
<223> Primer	
<400> 488 tagccttggc aacatcagca aaact	25
<210> 489 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 489 ttggcgacgg tatacccata gctttata	28
<210> 490 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 490 tgaacatttg cgacggtata cccat	25
<210> 491 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 491 tgtgaacatt tgcgacggta tacccat	27
<210> 492 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 492 tggtgggtat cttagcaatc attctaatag c	31
<210> 493 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 493	

tgcgatggta ggtatcttag caatcattct	30
<210> 494 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 494 caatctgctg acggatctga gc	22
<210> 495 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 495 ttcaggtcca tcgggttcat gcc	23
<210> 496 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 496 ccgcggtcga attgcatgcc ttc	23
<210> 497 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 497 tagccgcggt cgaattgcat	20
<210> 498 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 498 tcgaaccgaa gttaccctga ccat	24
<210> 499	

WO 2005/098047

PCT/US2005/005356

<211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 499	
tgccagctta gtcatacgga cttc	24
<210> 500 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 500 tattgcggat caccatgatg atattcttgc	30
<210> 501 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 501 tcgttgagat ggtttttacc ttcgttg	27
<210> 502 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 502 . tttgtgaaac agcgaacatt ttcttggta	29
<210> 503 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 503 tcacgcgcat catcaccagt ca	22
<210> 504 <211> 27 <212> DNA <213> Artificial Sequence	
<220>	

<223> Primer	
<400> 504 tcctgcaata tctaatgcac tcttacg	27
<210> 505 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 505 acctgcaata tctaatgcac tcttacg	27
<210> 506 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 506 ctttcgcttt ctcgaactca accat	25
<210> 507 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 507 tagcccagct gtttgagcaa ct	22
<210> 508 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 508 tecetaatag tagaaataae tgeateagta ge	32
<210> 509 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 509 tccctaatag tagaaataac tgcatcagta gc	32

<210> 510 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 510 taggattttt ccacggeggc atc	23
<210> 511 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 511 tagccttttc tccggcgtag atct	24
<210> 512 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 512 catgatggtc acaaccgg	18
<210> 513 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 513 teggeateae geegtegte	19
<210> 514 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 514 tgctgctttc gcatggttaa ttgcttcaa	29
<210> 515 <211> 30 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 515 ttgctgcttt cgcatggtta attgcttcaa	30
<210> 516 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 516 aacttegeet teggteatgt t	21
<210> 517 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 517 ttgcgttgca gattatcttt accaa	25
<210> 518 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 518 tgttaagtgt gttgcggctg tctttatt	28
<210> 519 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 519 tcacgcgacg agtgccatcc attg	24
<210> 520 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 520 Egacccaaag ctgaaagctt tactg	25

<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
	Primer	
<400>	521	
	Cagee atgeagegae	20
	sayee acgeagegae	20
<210>	500	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
tccttc	ctgat gcctgatgga ccaggag	27
<210>	523	
<211>	19	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Primer	
12207	T T TITO T	
<400>	523	
Lythac	tccc gacacgcca	19
2010	TO 4	
<210>		
<211>	27	
<212>		
	DNA Artificial Sequence	
<213> <220>		
<213> <220>	Artificial Sequence	
<213> <220>	Artificial Sequence Primer	
<213> <220> <223> <400>	Artificial Sequence Primer 524	27
<213> <220> <223> <400>	Artificial Sequence Primer 524	27
<213> <220> <223> <400> taaacg	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc	27
<213> <220> <223> <400> taaacg	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525	27
<213> <220> <223> <400> taaacg <210> <211>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26	27
<213> <220> <223> <400> taaacc <210> <211> <212>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA	27
<213> <220> <223> <400> taaacc <210> <211> <212>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26	27
<213> <220> <223> <400> taaacg <210> <211> <211> <213>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA	27
<213> <220> <223> <400> taaacc <210> <211> <211> <212> <213>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence	27
<213> <220> <223> <400> taaacc <210> <211> <211> <212> <213>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA	27
<213> <220> <223> <400> taaacc <210> <211> <212> <213> <220> <223>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer	27
<213> <220> <223> <400> taaacg <210> <211> <212> <213> <220> <400>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer 525	
<213> <220> <223> <400> taaacg <210> <211> <212> <213> <220> <400>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer 525	27
<213> <220> <223> <400> taaacc <210> <211> <212> <213> <220> <223> tcaaca	Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer 525 acac ctccttattc ccactc	
<213> <220> <223> <400> taaacc <210> <211> <212> <213> <400> taaaca <220> <223>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer 525 acac ctccttattc ccactc 526	
<213> <220> <223> <400> taaacg <210> <211> <212> <213> <400> taaca <2210> <2213>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer 525 acac ctccttattc ccactc 526 17	
<213> <220> <223> <400> taaacc <210> <211> <212> <213> <400> taaca <2213> <2213> <2213> <2213> <2213>	Artificial Sequence Primer 524 tccg ataccaatgg ttcgctc 525 26 DNA Artificial Sequence Primer 525 acac ctccttattc ccactc 526	

<220> <223>	Primer	
<400> gaata	tcaat ttgtage	17
<210><211><211><212>	31 DNA	
<213 <i>></i>	Artificial Sequence	
<220> <223>	Primer	
<400> agata	527 aagaa tcacgaatat caatttgtag c	31
<210><211><211><212><213>	23	
<220> <223>	Primer	
<400> aggata	528 agatt tatttettgt teg	23
<210><211><211><212><213>	30	
<220> <223>	Primer	
<400> tcttc	529 Caagg atagatttat ttottgttog	30
<210><211><211><212><213>	31	
<220> <223>	Primer	
<400> ttctt c		31
<220> <223>	Primer	

<400> 531	
tcttgacagc atccgttg	18
<210> 532 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 532 cagataaaga atcgctccag	20
<210> 533 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 533 tctcatcccg atattaccgc catga	25
<210> 534 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 534 tggcaacagc tcaacacctt tgg	23
<210> 535 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 535 tgatcctgaa tgtttatatc tttaacgcct	30
<210> 536 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 536 tcccaatcta acttccacat accatct	27
<210> 537 <211> 27	

WO 2005/098047

PCT/US2005/005356

<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tggat	537 agacg tcatatgaag gtgtgct	27
<210><211><211><212><213>	25	
<220> <223>	Primer	
<400> tattc	538 ttcgt tactcatgcc ataca	25
<210> <211> <212>	11	
<213>	Artificial Sequence	
<220> <223>	Primer	
<400> tacto	539 atgcc a	11
<210> <211> <212> <213>	11	
<220> <223>	Primer	
<400> tattct	540 etegt t	11
<210><211><211><212><213>	29	
<220> <223>	Primer	
<400> taacca	541 acccc aagatttatc tttttgcca	29
<210><211><211><212><213>	27	
<220>	Primer	

<400> 542 tgtgatatgg aggtgtagaa ggtgtta	27
<210> 543 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 543 gagctgcgcc aacgaataaa tcgtc	25
<210> 544 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 544 tacgtcgcct ttaacttggt tatattcagc	30
<210> 545 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 545 tgccgtaaca tagaagttac cgttgatt	28
<210> 546 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 546 tcgggcgtag tttttagtaa ttaaatcaga agt	33
<210> 547 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 547 tegtegtatt tatagtgace ageaceta	28
<210> 548	

<211> <212> <213>		
<220> <223>	Primer	
<400> tcaaca	· 548 saccag cgttacctaa agtacctt	28
<210><211><211><212><213>	23	
<220>		
<400> tttaag	· 549 gegee agaaageace aac	23
<210> <211> <212> <213>	25	
<220> <223>	Primer	
<400> tcgttt	550 taagc gccagaaagc accaa	25
<210> <211> <212> <213>	27	
<220> <223>	Primer	
<400>	551	
	cagca agagetgtat agtteca	27
<210><211><211><212><213>	22	
<220> <223>	Primer	
<400> tacago	552 gagca gcaggcttca ag	22
<210><211><211><212><213>	28	
<220>		

<223>	Primer	
<400>	5.5.3	
	gcaaa agttatcaca cctgcagt	28
cagoas	Journal agreetoute Congony	20
<210>	554	
<211>		
<212>		
	Artificial Sequence	
<220>		
	Primer	
\ 2237	rimer	
<400>	554	
tggttg	gtagt tootgtagtt gttgcattaa c	31
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
12207		
<400>	555	
teetge	raget ctacetgete catta	25
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
\2237	LITUMET	
<400>	556	
ccctgt	agta gaagaggtaa ccac	24
<210>	557	
<211>		
<212>		
<213>	Artificial Sequence	
~ 0.00\		
<220>	Design and the	
\2437	Primer	
<400>	557	
	gtag aagaggtaac	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
2000 5		
<220>	Designation	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Primer	
<400>	558	
	tcag cggaagtag	1 0

PCT/US2005/005356

WO 2005/098047

<210><211><211><212><213>	18	
<220> <223>	Primer	
<400> ccgtg	559 ctcca ttttcag	18
<210><211><211><212><213>	20	
<220> <223>	Primer	
<400> tcgga	560 taagc tgccacaagg	20
<210><211><212><212><213>	20	
<220> <223>	Primer	
<400> tcggai	561 taage tgccacaagg	20
<210><211><211><212><213>	28	
<220> <223>	Primer	
<400> ttccc	562 otgac ottogattaa aggatago	28
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400>	563	
ggtata	aacgc atcgcagcaa aagattta	28
<210><211><211><212>	22 DNA	
<213>	Artificial Sequence	

<220> <223> Primer	
<400> 564 ttcggtataa cgcatcgcag ca	22
<210> 565 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 565 togotoagoa ataattoact ataagooga	29
<210> 566 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 566 taatgcgata ctggcctgca agtc	24
<210> 567 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 567 tgtaaattcc gcaaagactt tggcattag	29
<210> 568 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 568 tggtctgagt acctectttg c	21
<210> 569 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 569 cattggaaat accggcagca toto	24

<210><211><211><212><213>	24	
<220> <223>	Primer	
<400> ttcaa	570 gtgct tgctcaccat tgtc	24
<210><211><212>	24	
<213>	Artificial Sequence	
<220> <223>	Primer	
<400> tggct	571 cataa gacgcgcttg taga	24
<210><211><211><212><213>	21	
<220> <223>	Primer	
<400> tcgttt	572 ccacc ctgtcatgec g	21
<210><211><211><212><213>	22	
<220> <223>	Primer	
<400> tccgat	573 Eaage eggattetgt ge	22
<210><211><211><212><212><213>	23	
<220> <223>	Primer	
<400> tgccga		23
<210> <211>		
<212>	DNA	

<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	575	
tctctt	accc caccetttea ceettae	27
<210>	576	
<211> 2		
<212> 1		
<213> 2	Artificial Sequence	
<220>		
<223> 1	Primer	
<400> 5	576	
	•	20
J	5-5	20
<210> 5		
<211> 2		
<212> I		
<213> 1	Artificial Sequence	
<220>		
<223> I	Primer	
<400> 5	577	
	,	20
090000	gogo dacocacoog	20
<210> 5	578	
<211> 2	22	
<212> [DNA	
<213> P	Artificial Sequence	
<220>		
<223> E	Primer	
<400> 5		
gtaagco	catg ttttgttcca tc	22
1010		
<210> 5		
<211> 2		
<212> D		
\Z13> P	Artificial Sequence	
<220>		
<223> P	Primer	
<400> 5	579	
tttacct	cgc ctttccaccc ttacc	25
-046		
<210> 5		
<211> 2		
<212> D		
\213> A	artificial Sequence	
<220>		
<223> P	rimer	
· -		
<400> 5	.80	

tgctcttacc tcaccgttcc acccttacc	29
<210> 581 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 581 ataagccggg ttctgtcg	18
<210> 582 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 582 tctatagagt ccggactttc ctcgtga	27
<210> 583 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 583 tcaagcgatc tacccgcatt acaa	24
<210> 584 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 584 ataagccatg ttctgttcca tc	22
<210> 585 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 585 tgactttcct cccccttatc agtctcc	27
<210> 586 <211> 27 <212> DNA <213> Artificial Sequence	

WO 2005/098047

PCT/US2005/005356

<220> <223>	Primer	
<400> ccaag	586 tgctg gtttacccca tggagta	27
<210> <211>	22	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> gtgct	587 ggttt accccatgga gt	22
<210> <211>	23	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tgtgct	588 Eggtt taccccatgg agt	23
<210> <211>		
<212>		
<220> <223>	Primer	
<400> tgtgct	589 Eggtt taccccatgg ag	22
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tccaag		26
<210>		
<211> <212> <213>		
<220> <223>	Primer	

<400> 591 tccaagtgct ggtttacccc atgg	24
<210> 592 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 592 ttccaagtgc tggtttaccc catgg	25
<210> 593 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 593 tgttttgtat ccaagtgctg gtttacccc	29
<210> 594 <211> 18 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 594 ttcgctctcg gcctggcc	18
<210> 595 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 595	
tcgtcgcgga cttcgaagcc	20
<210> 596 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 596 gctggattcg cctttgctac g	21
<210> 597	

WO 2005/098047

PCT/US2005/005356

<211><212><213>		
<220> <223>	Primer	
<400> tgctg	597 gatto gootttgota og	22
<210><211><211><212>	24	
	Artificial Sequence	
<220> <223>	Primer	
<400> ttgaco	598 gttgc atgttcgagc ccat	24
<210> <211> <212> <213>	30	
<220> <223>	Primer	
<400> cgtata	599 agct gcaccataag cttgtaatgc	30
<210><211><211><212><213>	30	
<220> <223>	Primer	
<400> tttctt		30
<210> <211> <212> <213>	24	
<220> <223>	Primer	
<400> cgactt		24
<210><211><211><212><213>	27	
<220>	Primer	

<400> 602 gtccgacttg acggtcaaca tttcctg	27
<210> 603 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 603 tgtccgactt gacggtcaac atttcctg	28
<210> 604 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 604 tgtccgactt gacggttagc atttcctg	28
<210> 605 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 605 tgtccgactt gacggtcagc atttcctg	28
<210> 606 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 606 tccagcaggt tctgacggaa acg	23
<210> 607 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 607 ttaccgagca ggttctgacg gaaacg	26
<210> 608	

<211 > 24 <212 > DNA <213 > Artificial Sequence	
<220 > <223 > Primer	
<400> 608 cgaa cggcca gagtagtcaa cacg	24
<210 > 609 <211 > 24 <212 > DNA <213 > Artificial Sequence	
<220> <223> Primer	
<400> 609 cgaa cggcct gagtagtcaa cacg	24
<210 > 610 <211 > 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400 > 610 tcaagcgcca tctctttcgg taatccacat	30
<210 > 611 <211 > 30 <212 > DNA <213 > Artificial Sequence	
<220 > <223 > Primer	
<400> 611 tcaagcgcca tttcttttgg taaaccacat	30
<210> 612 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 612 attcaagage catttettt ggtaaaceae	30
<210> 613 <211> 21 <212> DNA <213> Artificial Sequence	
- <220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 613 gttcaaatgc ctggataccc a	21
<210> 614 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 614 gagcatcagc gtgcgtgct	19
<210> 615 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 615 tgagcatcag cgtgcgtgct	20
<210> 616 <211> 21 <212> DNA <213> Artificial Sequence	
<220	

<223> Primer <400> 616

acgcggcat gcagagatgc c 21 <210> 617

<211> 20 <212> DNA <213> Artificial Sequence

<220> <223> Primer

<400> 617 ggcgcttgta cttaccgcac 20

<210> 618 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer

<400> 618 ttggccatca gaccacgcat ac 22

<210> 619

<211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 619 ttggccatca ggccacgcat ac	22
<210> 620 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 620 acgccatcag gccacgcat	19
<210> 621 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 621 tacgccatca ggccacgcat	20
<210> 622 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 622 ttacgccatc aggccacgca	20
<210> 623 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 623 cgcaccatgc gtagagatga agtac	25
<210> 624 <211> 25 <212> DNA <213> Artificial Sequence	
- <220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 624 cgcaccgtgg gttgagatga agtac	25
<210> 625 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 625 tcgcaccgtg ggttgagatg aagtac	26
<210> 626 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 626 tgctagacct ttacgtgcac cgtg	24
<210> 627 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 627	
tactagacga cgggtcaggt aacc	24
<210> 628 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 628 gtttttcgtt gcgtacgatg atgtc	25
<210> 629 <211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	

<223> Primer

<400> 629

acgtttttcg ttttgaacga taatgct	27
<210> 630	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 630	
gaccccaacc tggccttttg tcgttga	27
4010. 601	
<210> 631	
<211> 28	
<212> DNA <213> Artificial Sequence	
12137 Altilitat Sequence	
<220>	
<223> Primer	
<400> 631	
tgaccccaac ctggcctttt gtcgttga	28
<210> 632	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(22) LITINGI	
<400> 632	
aaactatttt tttagctata ctcgaacac	29
	2.5
<210> 633	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(223) IIIMeI	
<400> 633	
taaactattt ttttagctat actcgaacac	30
J. C.	50
<210> 634	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
2000	
<220> <223> Primer	
ZZZZZ ETTWEL	
<400> 634	
ggataattgg tcgtaacaag ggatagtgag	30
22 2	20
<210> 635	
<211> 31	
<212> DNA	

WO 2005/098047

PCT/US2005/005356

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 635	
tggataattg gtcgtaacaa gggatagtga g	31
<210> 636	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 636	
atatgattat cattgaactg cggccg	26
	20
<210> 637 <211> 27	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
ZZZZZ ETTWET	
<400> 637	
tatatgatta tcattgaact gcggccg	07
and a square a country and a c	27
<210> 638	
<211> 28	
<212> DNA <213> Artificial Sequence	
valor Wichiterar Bedneuce	
<220>	
<223> Primer	
<400> 638	
gcgtgacgac cttcttgaat tgtaatca	28
<210> 639	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 639	
tgcgtgacga ccttcttgaa ttgtaatca	29
	43
<210> 640	
<211> 27 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
and the second s	

<400> 640 ttggacctgt aatcagctga atactgg	27
<210> 641 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 641 tttggacctg taatcagctg aatactgg	28
<210> 642 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 642 attgcccaga aatcaaatca tc	22
<210> 643 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 643 tattgcccag aaatcaaatc atc	23
<210> 644 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 644 tgtggccgat ttcaccacct gctcct	26
<210> 645 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 645 ttgtggccga tttcaccacc tgctcct	27
<210> 646 <211> 23	

WO 2005/098047

PCT/US2005/005356

<212> D <213> A	DNA Artificial Sequence	
<220> <223> F	Primer	
<400> 6		23
<210> 6<211> 2<212> 0<213> A	2 4	
<220> <223> P	Primer	
<400> 6		24
<210> 6 <211> 2 <212> D <213> A	28	
<220> <223> P	Primer	
<400> 6 agctgct		28
<210> 6 <211> 2 <212> D <213> A	29	
<220> <223> P	Primer	
<400> 6 tagctgc		29
<210> 6 <211> 2 <212> D <213> A	8	
<220> <223> P:	rimer	
<400> 6.		28
<210> 69 <211> 29 <212> DI <213> A	9	
<220> <223> P:	rimer	

<400> 651 tccataaggt caccgtcacc attcaaagc	29
<210> 652 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 652 ggaatttacc agcgatagac acc	23
<210> 653 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 653 tggaatttac cagcgataga cacc	24
<210> 654 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 654 tgccactttg acaactcctg ttgctg	26
<210> 655 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 655 ttgccacttt gacaactcct gttgctg	27
<210> 656 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 656 aatcgacgac catcttggaa agatttete	29
<210> 657	

<211> <212> <213>		
<220> <223>	Primer	
<400> taatcg	657 gacga ccatcttgga aagatttctc	30
<210> <211> <212> <213>	25	
<220> <223>	Primer	
<400> tcgacg	658 acca tottggaaag attto	25
<210> <211> <212> <213>	27	
<220> <223>	Primer	
<400>	659	
ccagca	gtta ctgtcccctc atctttg	27
<210> < < 211> : < < 212> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213> : < < 213	28	
<220> <223> 1	Primer	
<400> 6	660 agtt actgtcccct catctttg	28
<210> 6 <211> 2 <212> I <213> A	26	
<220> <223> I	Primer	
<400> 6 gctgctt	and the second of the second o	26
<210> 6 <211> 2 <212> D <213> A	27	
<220>	-	

<223> Primer	
<400> 662 tgctgctttg atggctgaat eccette	27
<210> 663 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 663 gggtctacac ctgcacttgc ataac	25
<210> 664 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 664 tgggtctaca cctgcacttg cataac	26
<210> 665 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 665 atcccctgct tctgctgcc	19
<210> 666 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 666 tatcccctgc ttctgctgcc	20
<210> 667 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 667 taccttttcc acaacagaat cagc	24

<210> 668	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(223) IIIIOI	
<400> 668	
	0.0
ccaacctttt ccacaacaga atcagc	26
.010	
<210> 669	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 669	
tccaaccttt tccacaacag aatcagc	27
cocadoctic toodcaday aattage	21
<210> 670	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 670	
cccatttttt cacgcatgct gaaaatatc	29
<210> 671	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 671	
tcccattttt tcacgcatgc tgaaaatatc	30
<210> 672	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
-DD- LILMOL	
Z400\ 672	
<400> 672	
gattggcgat aaagtgatat tttctaaaa	29
(010) (70	
<210> 673	
<211> 30	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 673 tgattggcga taaagtgata ttttctaaaa	30
<210> 674 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 674 gcccaccaga aagactagca ggataa	26
<210> 675 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 675 tgcccaccag aaagactagc aggataa	27
<210> 676 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 676 cctacccaac gttcaccaag ggcag	25
<210> 677 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 677 tectacecaa egtteaecaa gggeag	26
<210> 678 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 678 catgacagcc aagacctcac ccacc	25

<210><211><211><212><213>	26	
<220> <223>	Primer	
<400> tcatga	679 acago caagacetea eccace	26
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Primer	
<400> tgtgct	680 Ettga atgct	15
<210><211><211><212><213>	20	
<220> <223>	Primer	
<400> tcattt	681 Egtge tttgaatget	20
<210> <211> <212> <213>	29	
<220> <223>	Primer	
<400> tcataa	682 actag catttgtgct ttgaatgct	29
<210><211><211><212><213>	27	
<220> <223>	Primer	
<400> ttgcac		27
<210><211><211><212><213>	27	

<220> <223> Primer	
<400> 684 ttgcacgtct gtttcagttg caaattc	27
<210> 685 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 685 tctgtttcag ttgcaaattc	20
<210> 686 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 686 tgcacgtctg tttcagttgc aaattc	26
<210> 687 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 687 ttgcacgtct gtttcagttg caaattc	27
<210> 688 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 688 tttcacagca tgcacgtctg tttcagttgc	30
<210> 689 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 689	

ttgtgattgt tttgcagctg attgtg 26 <210> 690 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 690 tgcagctgat tgt 13 <210> 691 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 691 tgattgtttt gcagctgatt gt 22 <210> 692 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 692 ttcaaaacct tgctctcgcc aaacaa 26 <210> 693 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 693 tacatcgttt cgcccaagat caatca 26 <210> 694 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 694 tcctctttc acaggctcta cttcatc 27 <210> 695 <211> 30 <212> DNA

PCT/US2005/005356

WO 2005/098047

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 695	20
tatttgggtt tcattccact cagattctgg	30
<210> 696	
<211> 24	
<212> DNA <213> Artificial Sequence	
C213/ Altilitat Sequence	
<220>	
<223> Primer	
<400> 696	
tgcgcgagct tttatttggg tttc	24
<210> 697	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 697	
ttcaaaatgc ggaggcgtat gtg	23
<210> 698 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(400) (000	
<400> 698 tgcccaggta caacctgcat	20
<210> 699	
<211> 3 0 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 6 99	
tccaggcatt accatttcta ctccttctgg	30
<210> 7 00 <211> 2 5	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

129

<400> 7 00 ggcatca cca tttccttgtc cttcg	25
<210> 7 01 <211> 2 6 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 7 O1 tggcatcacc atttccttgt ccttcg	26
<210> 7 O2 <211> 2 4 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7O2 gttgtcacca ggcattacca tttc	24
<210> 7O3 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7O3 gttgtcgcca ggcataacca tttc	24
<210> 7O4 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7O4 gccgtccatt tgagcagcac c	21
<210> 705 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 705 gccgtccatc tgagcagcac c	21
<210> 70 6 <211> 26	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 706 tatagcacca tccatctgag cggcac	26
<210> 707 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 707 tatgtgctca cgagtttgcg gcat	24
<210> 708 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 708 tggatgtgct cacgagtctg tggcat	26
<210> 709 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 709 gcgctccacg tcttcacgc	19
<210> 710 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 710 acgaactgga tgtcgccgtt	20
<210> 711 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 711 cggtacgaac tggatgtcgc cgtt	24
<210> 712 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 712 tcggtacgaa ctggatgtcg ccgtt	25
<210> 713 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 713 ttcgcgcatc caggagaagt acatgtt	27
<210> 714 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 714 gcgttccaca gcttgttgca gaag	24
<210> 715 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 715 tcgcagttca tcagcacgaa gcg	23
<210> 716 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 716 tataacgcac atcgtcaggg tga	23
<210> 717	

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 717
caageggttt geetcaaata gtea
                                                                   24
<210> 718
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 718
tggcacgagc ctgacctgt
                                                                   19
<210> 719
<211> 1542
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 719
aaattgaaga gtttgatcat ggctcagatt gaacgctggc ggcaggccta acacatgcaa 60
gtcgaacggt aacaggaaga agcttgcttc tttgctgacg agtggcggac gggtgagtaa 120
tgtctgggaa actgcctgat ggagggggat aactactgga aacggtagct aataccgcat 180
aacgtcgcaa gaccaaagag ggggaccttc gggcctcttg ccatcggatg tgcccagatg 240
ggattagcta gtaggtgggg taacggctca cctaggcgac gatccctagc tggtctgaga 300
ggatgaccag ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg 360
ggaatattgc acaatgggcg caagectgat gcagecatgc cgcgtgtatg aagaaggect 420
tcgggttgta aagtactttc agcggggagg aagggagtaa agttaatacc tttgctcatt 480
gacgttaccc gcagaagaag caccggctaa ctccgtgcca gcagccgcgg taatacggag 540
ggtgcaagcg ttaatcggaa ttactgggcg taaagcgcac gcaggcggtt tgttaagtca 600
gatgtgaaat ccccgggctc aacctgggaa ctgcatctga tactgqcaag cttgagtctc 660
gtagaggggg gtagaattcc aggtgtagcg gtgaaatgcg tagagatctg gaggaatacc 720
ggtggcgaag gcggcccct ggacgaagac tgacgctcag gtgcgaaagc gtggggagca 780
aacaggatta gataccctgg tagtccacgc cgtaaacgat gtcgacttgg aggttgtgcc 840
cttgaggcgt ggcttccgga gctaacgcgt taagtcgacc gcctggggag tacggccgca 900
aggttaaaac tcaaatgaat tgacggggc ccgcacaagc ggtggagcat gtggtttaat 960
tcgatgcaac gcgaagaacc ttacctggtc ttgacatcca cggaagtttt cagagatgag 1020
aatgtgcctt cgggaaccgt gagacaggtg ctgcatggct gtcgtcagct cgtgttgtga 1080
aatgttgggt taagtcccgc aacgagcgca accettatce tttgttgcca geggtccggc 1140
cgggaactca aaggagactg ccagtgataa actggaggaa ggtggggatg acgtcaagtc 1200
atcatggccc ttacgaccag ggctacacac gtgctacaat ggcgcataca aagagaagcg 1260
acctogogag agcaagogga cotoataaag tgogtogtag tooggattgg agtotgcaac 1320
togactocat gaagtoggaa togctagtaa togtggatca gaatgccacg gtgaatacgt 1380
teccgggeet tgtacacace geeegteaca ceatgggagt gggttgeaaa agaagtaggt 1440
agcttaacct tcgggagggc gcttaccact ttgtgattca tgactggggt gaagtcgtaa 1500
caaggtaacc gtaggggaac ctgcggttgg atcacctcct ta
<210> 720
```

<211> 2904

<212> DNA <213> Artificial Sequence <220> <223> Escherichia coli <400> 720 ggttaagcga ctaagcgtac acggtggatg ccctggcagt cagaggcgat gaaggacgtg 60 ctaatctgcg ataagcgtcg gtaaggtgat atgaaccgtt ataaccggcg atttccgaat 120 ggggaaaccc agtqtgtttc qacacactat cattaactga atccataggt taatqaggcg 180 aaccggggga actgaaacat ctaagtaccc cgaggaaaag aaatcaaccg agattccccc 240 agtagcqqcq agcqaacqqq qaqcaqccca qaqcctqaat caqtqtgtqt qttaqtqqaa 300 gegtetggaa aggegegega tacagggtga cageceegta cacaaaaatg cacatgetgt 360 gagetegatg agtagggegg gacaegtggt atcetgtetg aatatgggggg gaccatecte 420 caaggctaaa tactcctgac tgaccgatag tgaaccagta ccgtgaggga aaggcgaaaa 480 gaaccceggc gaggggagtg aaaaagaacc tgaaaccgtg tacgtacaag cagtgggagc 540 acgcttaggc gtgtgactgc gtaccttttg tataatgggt cagcgactta tattctgtag 600 caaggttaac cgaatagggg agccgaaggg aaaccgagtc ttaactgggc gttaagttgc 660 agggtataga cccgaaaccc ggtgatctag ccatgggcag gttgaaggtt gggtaacact 720 aactggagga ccgaaccgac taatgttgaa aaattagcgg atgacttgtg gctgggggtg 780 aaaggccaat caaaccggga gatagctggt tctccccgaa agctatttag gtagcgcctc 840 gtgaattcat ctccgggggt agagcactgt ttcggcaagg gggtcatccc gacttaccaa 900 cccgatgcaa actgcgaata ccggagaatg ttatcacggg agacacacgg cgggtgctaa 960 cgtccgtcgt gaagagggaa acaacccaga ccgccagcta aggtcccaaa gtcatggtta 1020 agtqqqaaac gatqtqqqaa qqcccaqaca qccaqqatqt tqqcttaqaa qcaqccatca 1080 tttaaagaaa qcgtaatagc tcactggtcg agtcggcctg cgcggaagat gtaacggggc 1140 taaaccatgc accgaagctg cggcagcgac gcttatgcgt tgttgggtag gggagcgttc 1200 tgtaageetg egaaggtgtg etgtgaggea tgetggaggt ateagaagtg egaatgetga 1260 cataagtaac gataaagcgg gtgaaaagcc cgctcgccgg aagaccaagg gttcctgtcc 1320 aacgttaatc ggggcagggt gagtcgaccc ctaaggcgag gccgaaaggc gtagtcgatg 1380 ggaaacaggt taatattcct gtacttggtg ttactgcgaa ggggggacgg agaaggctat 1440 gttggccggg cgacggttgt cccggtttaa gcgtgtaggc tggttttcca ggcaaatccg 1500 gaaaatcaag gctgaggcgt gatgacgagg cactacggtg ctgaagcaac aaatgccctg 1560 cttccaggaa aagcctctaa gcatcaggta acatcaaatc gtaccccaaa ccgacacagg 1620 tggtcaggta gagaatacca aggcgcttga gagaactcgg gtgaaggaac taqqcaaaat 1680 ggtgccgtaa cttcgggaga aggcacgctg atatgtaggt gaggtccctc gcggatggag 1740 ctgaaatcag tcgaagatac cagctggctg caactgttta ttaaaaacac agcactgtgc 1800 aaacacgaaa gtggacgtat acggtgtgac gcctgcccgg tgccggaagg ttaattgatg 1860 gggttagcgc aagcgaagct cttgatcgaa gccccggtaa acggcggccg taactataac 1920 ggtcctaagg tagcgaaatt ccttgtcggg taagttccga cctgcacqaa tggcgtaatg 1980 atggccaggc tgtctccacc cgagactcag tgaaattgaa ctcgctgtga agatgcagtg 2040 tacccgcggc aagacggaaa gaccccgtga acctttacta tagcttgaca ctgaacattg 2100 agcettgatg tgtaggatag gtgggagget ttgaagtgtg gaegeeagte tgcatggage 2160 cgaccttgaa ataccaccct ttaatgtttg atgttctaac gttgacccgt aatccgggtt 2220 geggaeagtg tetggtgggt agtttgaetg gggeggtete etectaaaga gtaaeggagg 2280 agcacgaagg ttggctaatc ctggtcggac atcaggaggt tagtqcaatg gcataagcca 2340 gettgactgc gagegtgacg gegegageag gtgcgaaagc aggtcatagt gatceggtgg 2400 ttctgaatgg aagggccatc gctcaacgga taaaaggtac tccqqqqata acaggctqat 2460 accgcccaag agttcatatc gacggcggtg tttggcacct cgatqtcqqc tcatcacatc 2520 ctggggctga agtaggtccc aagggtatgg ctgttcgcca tttaaagtgg tacgcgagct 2580 gggtttagaa cgtcgtgaga cagttcggtc cctatctqcc gtgggcgctg gagaactgag 2640 gggggctgct cctagtacga gaggaccgga gtggacgcat cactggtgtt cgggttgtca 2700 tgccaatggc actgcccggt agctaaatgc ggaagagata agtgctqaaa gcatctaagc 2760 acgaaacttg ccccgagatg agttctccct gaccctttaa gggtcctgaa ggaacgttga 2820 agacgacgac gttgataggc cgggtgtgta agcgcagcga tgcgttqagc taaccggtac 2880 taatgaaccg tgaggcttaa cctt 2904 <210> 721 <211> 447 <212> DNA <213> Artificial Sequence

```
<220>
<223> Bacillus anthracis
<400> 721
atgtttggat cagatttata tattgcatta gtattaggag ttacactgag ccttattttt 60
acagaaagaa caggtatttt acctgcaggt ttagttgtac ctggttattt agcactcgtt 120
tttaatcagc cogtatttat gttggttgtt ttatttatca gtattttaac ætatgtaatc 180
gttacgtatg gtgtttcaag attcatgatt ttatatggcc gtagaaaatt tgcggcaacg 240
ctaattacaq gtatttgttt aaaactttta tttgattatt gttatcctgt tatgccattt 300
gagattttttg aattccgtgg tattggagtt attgttccag gattaattgc aaatacaatt 360
caaagacaag ggttaccatt aacaattgga actacaattt tgttaagtgg tgcaacattt 420
gcaatcatga atatttatta cttattt
<210> 722
<211> 2339
<212> DNA
<213> Artificial Sequence
<220>
<223> Bacillus anthracis
<400> 722
atgactagaa ataaatttat acctaataag tttagtatta tatccttttc agtattacta 60
tttgctatat cctcctcaca ggctatagaa gtaaatgcta tgaatgaaca ttacactgag 120
agtgatatta aaagaaacca taaaactgaa aaaaataaaa ctgaaaaaga aaaatttaaa 180
gacagtatta ataacttagt taaaacagaa tttaccaatg aaactttaga taaaatacag 240
cagacacaag acttattaaa aaagatacct aaggatgtac ttgaaattta tagtgaatta 300
ggaggagaaa tctattttac agatatagat ttagtagaac ataaggagtt acaagattta 360
agtgaagaag agaaaaatag tatgaatagt agaggtgaaa aagttccgtt tgcatcccgt 420
tttgtatttg aaaagaaaag ggaaacacct aaattaatta taaatatcaa aqattatgca 480
attaatagtg aacaaagtaa agaagtatat tatgaaattg gaaaggggat ttctcttgat 540
attataagta aggataaatc tctagatcca gagtttttaa atttaattaa cagtttaagc 600
gatgatagtg atagtagcga cettttattt agtcaaaaat ttaaagagaa gctagaattg 660
aataataaaa gtatagatat aaattttata aaagaaaatt taactgaatt tcagcatgcg 720
ttttctttag cgttttctta ttattttgca cctgaccata gaacggtatt a.gagttatat 780
gcccccgaca tgtttgagta tatgaataag ttagaaaaag ggggatttga gaaaataagt 840
gaaagtttga agaaagaagg tgtggaaaaa gataggattg atgtgctgaa a.ggagaaaaa 900
gcacttaaag cttcaggttt agtaccagaa catgcagatg cttttaaaaa aattgctaga 960
gaattaaata catatattet ttttaggeet gttaataagt tagetacaaa cettattaaa 1020
agtggtgtgg ctacaaaggg attgaatgtt catggaaaga gttcggattg grggccctgta 1080
gctggataca taccatttqa tcaaqattta tctaaqaaqc atqqtcaaca attaqctqtc 1140
gagaaaggaa atttagaaaa taaaaaatca attacagagc atgaaggtga alataggtaaa 1200
ataccattaa agttagacca tttaagaata gaagagttaa aggaaaatqq grataattttq 1260
aagggtaaaa aagaaattga taatggtaaa aaatattatt tgttagaatc graataatcag 1320
gtatatgaat ttagaattag cgatgaaaac aacgaagtac aatacaagac aaaagaaggt 1380
aaaattactg ttttagggga aaaattcaat tggagaaata tagaagtgat grgctaaaaat 1440
gtagaagggg tottgaagco gttaacagct gactatgatt tatttgcact tgccccaagt 1500
ttaacagaaa taaaaaaaca aataccacaa aaagaatggg ataaagtagt taacacccca 1560
aattcattag aaaagcaaaa aggtgttact aatttattga ttaaatatqq aattgagagg 1620
aaaccggatt caactaaggg aactttatca aattggcaaa aacaaatgct tgatcgtttg 1680
aatgaagcag tcaaatatac aggatataca gggggggatg tggttaacca tggcacagag 1740
caagataatg aagagtttcc tgaaaaagat aacgaaattt ttataattaa tccagaaggt 1800
gaatttatat taactaaaaa ttgggagatg acaggtagat ttatagaaaa a.aacattacg 1860
ggaaaagatt atttatatta ttttaaccgt tcttataata aaatagctcc tggtaataaa 1920
gcttatattg agtggactga tccgattaca aaagccaaaa taaataccat ccctacqtca 1980
gcagagttta taaaaaactt atccagtatc agaagatctt caaatgtagg agtttataaa 2040
gatagtggcg acaaagacga atttgcaaaa aaagaaagcg tgaaaaaaat tgcaggatat 2100
ttgtcagact attacaattc agcaaatcat attttttctc aggaaaaaaa gcgtaaaata 2160
tcaatatttc gtggaatcca agcctataat gaaattgaaa atgttctaaa atctaaacaa 2220
atagcaccag aatacaaaaa ttattttcaa tatttaaagg.aaaggattac caatcaagtt 2280
```

```
caattgcttc taacacatca aaaatctaat attgaattta aattattgta taaacaatt 2339
<210> 723
<211> 1917
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 723
atgggtaaaa taattggtat cgacctgggt actaccaact cttgtgtagc gattatggat 60
ggcaccactc ctcgcgtgct ggagaacgcc gaaggcgatc gcaccacgcc ttctatcatt 120
gcctataccc aggatggtga aactctagtt ggtcagccgg ctaaacgtca ggcagtgacg 180
aacccgcaaa acactctgtt tgcgattaaa cgcctgattg gtcgccgctt ccaggacgaa 240
gaagtacagc gtgatgtttc catcatgccg ttcaaaatta ttgctgctga taacggcgac 300
gcatgggtcg aagttaaagg ccagaaaatg gcaccgccgc agatttctgc tgaagtgctg 360
aaaaaaatga agaaaaccgc tgaagattac ctgggtgaac cggtaactga agctgttatc 420
accgtaccgg catactttaa cgatgctcag cgtcaggcaa ccaaagacgc aggccgtatc 480
gctggtctgg aagtaaaacg tatcatcaac gaaccgaccg cagctgcgct ggcttacggt 540
ctggacaaag gcactggcaa ccgtactatc gcggtttatg acctgggtgg tggtactttc 600
gatatttcta ttatcgaaat cgacgaagtt gacggcgaaa aaaccttcga agttctggca 660
accaacggtg atacccacct ggggggtgaa gacttcgaca gccgtctgat caactatctg 720
gttgaagaat tcaagaaaga tcagggcatt gacctgcgca acgatccgct ggcaatgcag 780
cgcctgaaag aagcggcaga aaaagcgaaa atcgaactgt cttccgctca gcagaccgac 840
gttaacctgc catacatcac tgcagacgcg accggtccga aacacatgaa catcaaaqtg 900
actogtgoga aactggaaag cotggttgaa gatotggtaa accgttocat tgagcogotg 960
aaagttgcac tgcaggacgc tggcctgtcc gtatctgata tcgacqacqt tatcctcqtt 1020
ggtggtcaga ctcgtatgcc aatggttcag aagaaagttg ctgagttctt tggtaaagag 1080
ccgcgtaaag acgttaaccc ggacgaaget gtagcaatcq qtqctqctqt tcaqqqtqgt 11.40
gttctgactg gtgacgtaaa agacgtactg ctgctggacg ttaccccqct qtctctqqgt 1200
ategaaacca tgggeggtgt gatgaegaeg etgategega aaaacaccae tateeegaee 1260
aagcacagcc aggtgttctc taccgctgaa gacaaccagt ctgcggtaac catccatgtg 1320
ctgcagggtg aacgtaaacg tgcggctgat aacaaatctc tgggtcagtt caacctagat 1380
ggtatcaacc cggcaccgcg cggcatgccg cagatcgaag ttaccttcga tatcgatgct 14 40
gacggtatcc tgcacgtttc cgcgaaagat aaaaacagcg gtaaagagca gaagatcacc 1500
atcaaggett ettetggtet gaacgaagat gaaatecaga aaatggtaeg egaegeagaa 1560
gctaacgccg aagctgaccg taagtttgaa gagctggtac agactcgcaa ccagggcgac 1620
catctgctgc acagcacccg taagcaggtt gaagaagcag gcgacaaact gccggctgac 1680
gacaaaactg ctatcgagtc tgcgctgact gcactggaaa ctgctctgaa aggtgaagac 17 40
aaagccgcta tcgaagcgaa aatgcaggaa ctggcacagg tttcccagaa actgatggaa 1800
atcgcccagc agcaacatgc ccagcagcag actgccggtg ctgatgcttc tgcaaacaac 18 60
gcgaaagatg acgatgttgt cgacgctgaa tttgaagaag tcaaagacaa aaaataa
<210> 724
<211> 1647
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 724
atggcagcta aagacgtaaa attcggtaac gacgctcgtg tgaaaatgct gcgcggcgta 60
aacgtactgg cagatgcagt gaaagttacc ctcggtccaa aaggccgtaa cgtagttctg 12 0
gataaatctt teggtgeace gaccateace aaagatggtg ttteegttge tegtgaaate 18 0
gaactggaag acaagttcga aaatatgggt gcgcagatgg tgaaagaagt tgcctctaaa 24 0
gcaaacgacg ctgcaggcga cggtaccacc actgcaaccg tactggctca ggctatcatc 30 0
actgaaggtc tgaaagctgt tgctgcgggc atgaacccga tggacctgaa acgtggtatc 36 0
gacaaagcgg ttaccgctgc agttgaagaa ctgaaagcgc tgtccgtacc atgctctgac 42 0
tctaaagcga ttgctcaggt tggtaccatc tccgctaact ccgacgaaac cgtaggtaaa 48 0
```

```
ctgatcqctq aaqcgatqqa caaaqtcqgt aaaqaaqqcq ttatcaccgt tgaagacggt 540
acceptition aggacgaact gracetigth gaaggtatge agttegaccg tggetacetg 600
tctccttact tcatcaacaa gccggaaact ggcgcagtag aactggaaag cccgttcatc 660
ctgctggctg acaagaaaat ctccaacatc cgcgaaatgc tgccggttct ggaagctgtt 720
gccaaagcag gcaaaccgct gctgatcatc gctgaagatg tagaaggcga agcgctggca 780
actetggttg ttaacaccat gegtggcate gtgaaagteg etgeggttaa ageaeeggge 840
ttcggcgatc gtcgtaaagc tatgctgcag gatatcgcaa ccctgactgg cggtaccgtg 900
atctctgaag agatcggtat ggagctggaa aaagcaaccc tggaagacct gggtcaggct 960
aaacgtgttg tgatcaacaa agacaccacc actatcatcg atggcgtggg tgaagaagct 1020
qcaatccagg qccqtqttqc tcaqatccqt caqcaqattq aaqaaqcaac ttctqactac 1080
qaccqtqaaa aactqcaqqa acqcqtaqcq aaactqqcaq qcqqcqttqc aqttatcaaa 1140
gtgggtgctg ctaccgaagt tgaaatgaaa qagaaaaaaq cacqcgttga agatgcctg 1200
cacqcqaccc qtqctqcqqt aqaaqaaqqc qtqqttqctq qtqqtqqtqt tqcqctqatc 1260
cgcgtagcgt ctaaactggc tgacctgcgt ggtcagaacg aagaccagaa cgtgggtatc 1320
aaagttgcac tgcgtgcaat ggaagctccg ctgcgtcaga tcgtattgaa ctgcggcgaa 1380
gaaccgtctg ttgttgctaa caccgttaaa ggcggcgacg gcaactacgg ttacaacgca 1440
gcaaccgaag aatacggcaa catgatcgac atgggtatcc tggatccaac caaagtaact 1500
cgttctgctc tgcagtacgc agcttctgtg gctggcctga tgatcaccac cgaatgcatg 1560
gttaccgacc tgccgaaaaa cgatgcagct gacttaggcg ctgctggcgg tatgggggc 1620
atgggtggca tgggcggcat gatgtaa
<210> 725
<211> 1935
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 725
atggcgaaaa acctaatact ctggctggtc attgccgttg tqctgatqtc agtattccaq 60
agetttggge ccagegagte taatggeegt aaggtggatt actetacett cetacaagag 120
gtcaataacg accaggttcg tgaagcgcgt atcaacggac gtgaaatcaa cgttaccaag 180
aaagatagta accgttatac cacttacatt ccggttcagg atccgaaatt actggataac 240
ctgttgacca agaacgtcaa ggttgtcggt gaaccgcctg aagaaccaag cctgctggct 300
totatottea totootggtt coogatgetg ttgctgattg gtgtctggat cttcttcatg 360
cgtcaaatgc agggcggcgg tggcaaaggt gccatgtcgt ttggtaagag caaagcgcgc 420
atgctgacgg aagatcagat caaaacgacc tttgctgacg ttgcgggctg cgacgaagca 480
aaagaagaag ttgctgaact ggttgagtat ctgcgcgagc cgagccgctt ccagaaactc 540
ggcggtaaga toccgaaagg cgtottgatg gtcggtocto cgggtaccgg taaaacgotg 600
ctggcgaaag cgattgcagg cgaagcgaaa gttccgttct ttactatctc cggttctgac 660
ttcgtagaaa tgttcgtcgg tgtgggtgca tcccgtgttc gtgacatgtt cgaacaggcg 720
aagaaagegg cacegtgcat catetttate gatgaaateg aegeeqtagg eegeeagegt 780
ggcgctggtc tgggcggtgg tcacgatgaa cgtgaacaga ctctgaacca gatgctggtt 840
gagatggatg gettegaagg taaegaaggt ateategtta tegeegegae taaeegteeg 900
gacgtteteg acceggeest getgegteet ggeegttteg accgteaggt tgtggtegge 960
ttgccagatg ttcgcggtcg tgagcagatc ctgaaagttc acatgcgtcg cgtaccattg 1020
gcaccegata tegacgegge aateattgce egtggtacte etggtttete eggtgetgae 1080
ctggcgaacc tggtgaacga agcggcactg ttcgctgctc gtggcaacaa acgcgttgtg 1140
tegatggttg agttegagaa agegaaagae aaaateatga tgggtgegga aegtegetee 1200
atggtgatga cggaagcgca gaaagaatcg acggcttacc acgaagcggg tcatgcgatt 1260
ateggtegee tggtgeegga acacgateeg gtgeacaaag tgaegattat cecaegeggt 1320
cgtgcgctgg gtgtgacttt cttcttgcct gagggcgacg caatcagcgc cagccgtcag 1380
aaactggaaa gccagatttc tacgctgtac ggtggtcgtc tggcagaaga gatcatctac 1440
gggccggaac atgtatctac cggtgcgtcc aacgatatta aagttgcgac caacctggca 1500
cgtaacatgg tgactcagtg gggcttctct gagaaattgg gtccactgct gtacgcggaa 1560
gaagaaggtg aagtgtteet eggeegtage gtagegaaag egaaacatat gteegatgaa 1620
actgcacgta tcatcgacca ggaagtgaaa gcactgattg agcgtaacta taatcgtgcg 1680
cgtcagcttc tgaccgacaa tatggatatt ctgcatgcga tgaaaqatgc tctcatgaaa 1740
```

```
tatgagacta tegacgeace geagattgat gacetgatgg caegtegega tgtacgteeg 1800
ccagcgggct gggaagaacc aggcgcttct aacaattctg gcgacaatgg tagtccaaag 1860
gctcctcgtc cggttgatga accgcgtacg ccgaacccgg gtaacaccat gtcagagcag 1920
ttaggcgaca agtaa
<210> 726
<211> 2673
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 726
atgacagatg taacgattaa aacgctggcc gcagagcgac agacctccgt ggaacgcctg 60
gtacagcaat ttgctgatgc aggtatccgg aagtctgctg acgactctgt gtctgcacaa 120
gagaaacaga ctttgattga ccacctgaat cagaaaaatt caggcccgga caaattgacg 180
ctgcaacgta aaacacgcag caccettaac attectggta ccggtggaaa aagcaaatcg 240
gtacaaatcg aagtccgcaa gaaacgcacc tttgtgaaac gcgatccgca agaggctgaa 300
cgccttgcag cggaagagca agcgcagcgt gaagcggaag agcaagcccg tcgtgaggca 360
qaaqaatcgg ctaaacgcga qgcqcaacaa aaagctgaac gtgaggccgc agaacaagct 420
aagcgtgaag ctgctgaaca agcgaaacgt gaagctgcgg aaaaagacaa agtgagcaat 480
caacaagacg atatgactaa aaacgcccag gctgaaaaag cccgccgtga gcaggaagct 540
gcagagctca agcgtaaagc tgaagaagaa gcgcgtcgta aactcgaaga agaagcacgt 600
cqcqttqctq aaqaaqcacq tcqtatqqcq qaaqaaaaca aatqqactqa taacqcqqaa 660
ccgactgaag attccagcga ttatcacgtc actacttctc aacatgctcg ccaggcagaa 720
gacgaaagcg atcgtgaagt cgaaggcggc cgtggccgtg gtcgtaacgc gaaagcagcg 780
cqtccgaaga aaggcaacaa acacgctgaa tcaaaagctg atcgtgaaga agcacgcgca 840
gcagtacgtg gcggtaaagg cggaaaacgt aaaggttctt cgctgcagca aggcttccag 900
aagcetgete aggeegttaa eegtgaegtt gtgateggeg aaactateae egttggegaa 960
ctggcgaaca agatggcggt taaaggctct caggtcatca aagcgatgat gaaactgggc 1020
gcaatggcaa ccatcaacca ggttatcgat caggaaaccg cacagctggt tgctgaagag 1080
atgggccata aagttatcct gcgtcgtgaa aacgagctgg aagaggcggt aatgagcgac 1140
cgtgacacgg gtgctgcggc tgaaccgcgc gcgccggttg tgaccatcat gggtcacgtt 1200
gaccacggta aaacctctct gctggactac attcgttcaa cgaaagtggc ctctggcgaa 1260
gcgggcggca ttacccagca cattggtgca taccacgttg aaactgaaaa cggcatgatc 1320
accttectgg acacceggg geacgeggg tttactteaa tgegtgeteg tggtgegeag 1380
gcaacggaca tegtagteet ggttgttget geegacgacg gtgtgatgee geagaccate 1440
gaagcaatcc agcacgcgaa agcggcgcag gtaccggtgg tggttgcagt gaacaagatc 1500
gataaaccag aagctgatcc ggatcgcgtt aagaacgaac tctcccagta cggcatcctg 1560
ccggaagagt ggggcggtga aagccagttc gtacacgtat ctgcgaaagc gggtaccggt 1620
atcgatgaac tgctggacgc tatcctgctg caggcggaag ttctggagct gaaagcggta 1680
cgtaaaggta tggcgagcgg tgcggttatc gaatccttcc tcgataaagg tcgtggtccg 1740
gttgctaccg ttctggtacg tgaaggtact ctgcacaagg gcgatatcgt tctgtgtggc 1800
ttcgaatacg gtcgtgttcg tgcgatgcgt aacgaactgg gtcaggaagt gctggaagcg 1860
ggtccgtcca ttccggtgga aatcctcggc ctgtccggcg taccggctgc gggtgatgaa 1920
gttaccgttg tacgtgacga gaagaaagcg cgtgaagttg cactctatcg tcagggtaaa 1980
ttccgcgaag ttaaactggc gcgtcagcag aaatctaaac tcgagaacat gttcgccaac 2040
atgaccgaag gegaagttca cgaagtgaat ategteetga aggeagaegt acagggttet 2100
gtcgaagcga tctccgactc cttgctgaaa ctgtctactg acgaagttaa agtgaagatc 2160
ateggttetg gegtaggtgg tateacegaa acegaegeea eeetggetge ggegteeaac 2220
gccatcctgg ttggctttaa cgtacgtgct gatgcctctg cacgtaaagt gattgaagcg 2280
gaaagcctgg atctgcgtta ctactccgtc atctataacc tgattgacga agtgaaagcg 2340
gcgatgagcg gtatgctgtc tccggaactg aaacagcaga ttatcggtct ggcggaagtt 2400
cgtgacgtgt tcaaatcgcc gaaatttggt gccatcgcag gctgtatggt taccgaaggt 2460
gtggttaaac gtcacaaccc gatccgcgtt ctgcgtgaca acgtggttat ctacgaaggc 2520
gagctggagt ccctgcgccg cttcaaagat gacgttaacg aagtccgtaa cggtatggaa 2580
tgtggtatcg gcgttaagaa ctacaacgac gtccgcactg gcgatgtgat cgaagtattc 2640
gaaatcatcg agatccaacg taccattgct taa
```

```
<210> 727
<211> 2480
<212> DNA
<213> Artificial Sequence
<220>
<223> Bacillus anthracis
<400> 727
atgaatataa aaaaagaatt tataaaagta attagtatgt catgtttagt aacagcaatt 60
actitigaging giccogitett tatececett giacaggggg egggeggica tggtgatgta 120
ggtatgcacg taaaagagaa agagaaaaat aaagatgaga ataagagaaa agatgaagaa 180
cgaaataaaa cacaggaaga gcatttaaag gaaatcatga aacacattgt aaaaatagaa 240
gtaaaagggg aggaagctgt taaaaaagag qcagcaqaaa aqctacttga qaaaqtacca 300
tctgatgttt tagagatgta taaagcaatt ggaggaaaga tatatattgt ggatggtgat 360
attacaaaac atatatcttt agaagcatta tctgaagata agaaaaaaat aaaagacatt 420
tatgggaaag atgctttatt acatgaacat tatgtatatg caaaagaagg atatgaaccc 480
gtacttgtaa tccaatcttc ggaagattat gtagaaaata ctgaaaaggc actgaacgtt 540
tattatgaaa taggtaagat attatcaagg gatattttaa gtaaaattaa tcaaccatat 600
cagaaatttt tagatgtatt aaataccatt aaaaatgcat ctgattcaga tggacaagat 660
cttttattta ctaatcagct taaggaacat cccacagact tttctgtaga attcttggaa 720
caaaatagca atgaggtaca agaagtattt gcgaaagctt ttgcatatta tatcgagcca 780
cagcatcgtg atgttttaca gctttatgca ccggaagctt ttaattacat ggataaattt 840
aacgaacaag aaataaatct atccttggaa gaacttaaag atcaacggat gctgtcaaga 900
tatgaaaaat gggaaaagat aaaacagcac tatcaacact ggagcgattc tttatctgaa 960
gaaggaagag gacttttaaa aaagctgcag attcctattg agccaaagaa agatgacata 1020
attcattctt tatctcaaga agaaaaagag cttctaaaaa gaatacaaat tgatagtagt 1080
gattttttat ctactgagga aaaagagttt ttaaaaaaagc tacaaattga tattcgtgat 1140
tetttatetg aagaagaaaa agagetttta aatagaatae aqqtqqataq taqtaateet 1200
ttatctgaaa aagaaaaaga gtttttaaaa aagctgaaac ttgatattca accatatgat 1260
attaatcaaa ggttgcaaga tacaggaggg ttaattgata gtccgtcaat taatcttgat 1320
gtaagaaagc agtataaaag ggatattcaa aatattgatg ctttattaca tcaatccatt 1380
ggaagtacct tgtacaataa aatttatttg tatgaaaata tgaatatcaa taaccttaca 1440
gcaaccctag gtgcggattt agttgattcc actgataata ctaaaattaa tagaggtatt 1500
ttcaatgaat tcaaaaaaa tttcaaatat agtatttcta gtaactatat gattgttgat 1560
ataaatgaaa ggcctgcatt agataatgag cgtttgaaat ggagaatcca attatcacca 1620
gatactcgag caggatattt agaaaatgga aagcttatat tacaaagaaa catcggtctg 1680
gaaataaagg atgtacaaat aattaagcaa toogaaaaag aatatataag gattgatgog 1740
aaagtagtgc caaagagtaa aatagataca aaaattcaag aagcacagtt aaatataaat 1800
caggaatgga ataaagcatt agggttacca aaatatacaa agcttattac attcaacgtg 1860
cataatagat atgcatccaa tattgtagaa agtgcttatt taatattgaa tgaatggaaa 1920
aataatattc aaagtgatct tataaaaaag gtaacaaatt acttagttga tggtaatgga 1980
agatttgttt ttaccgatat tactctcct aatatagctg aacaatatac acatcaagat 2040
gagatatatg agcaagttca ttcaaaaggg ttatatgttc cagaatcccg ttctatatta 2100
ctccatggac cttcaaaagg tgtagaatta aggaatgata gtgagggttt tatacacgaa 2160
tttggacatg ctgtggatga ttatgctgga tatctattag ataagaacca atctgattta 2220
gttacaaatt ctaaaaaatt cattgatatt tttaaggaag aagggagtaa tttaacttcg 2280
tatgggagaa caaatgaagc ggaattttt gcagaagcct ttaggttaat gcattctacg 2340
gaccatgctg aacgtttaaa agttcaaaaa aatgctccga aaactttcca atttattaac 2400
gatcagatta agttcattat taactcataa gtaatgtatt aaaaattttc aaatggattt 2460
aataataata ataataataa
<210> 728
<211> 2295
<212> DNA
<213> Artificial Sequence
<223> Bacillus anthracis
<400> 728
```

```
atgaaaaaac gaaaagtgtt aataccatta atggcattgt ctacgatatt agtttcaagc 60
acaggtaatt tagaggtgat tcaggcagaa gttaaacagg agaaccggtt attaaatgaa 120
tcagaatcaa gttcccaggg gttactagga tactatttta gtgatttgaa ttttcaagca 180
cccatggtgg ttacctcttc tactacaggg gatttatcta ttcctagttc tgagttagaa 240
aatattccat cggaaaacca atattttcaa tctgctattt ggtcaggatt tatcaaagtt 300
aagaagagtg atgaatatac atttgctact tccgctgata atcatgtaac aatgtgggta 360
gatgaccaag aagtgattaa taaagcttct aattctaaca aaatcagatt agaaaaagga 420
agattatatc aaataaaaat tcaatatcaa cgagaaaatc ctactgaaaa aggattggat 480
ttcaagttgt actggaccga ttctcaaaat aaaaaagaag tgatttctag tgataactta 540
caattgccag aattaaaaca aaaatcttcg aactcaagaa aaaagcgaag tacaagtgct 600
ggacctacgg ttccagaccg tgacaatgat ggaatccttg attcattaga ggtagaagga 660
tatacggttg atgtcaaaaa taaaagaact tttctttcac catggatttc taatattcat 720
gaaaagaaag gattaaccaa atataaatca totootgaaa aatggagcac ggottotgat 780
ccgtacagtg atttcgaaaa ggttacagga cggattgata agaatgtatc accagaggca 840
agacaccccc ttgtggcagc ttatccgatt gtacatgtag atatggagaa tattattctc 900
tcaaaaaatg aggatcaatc cacacagaat actgatagtc aaacgagaac aataagtaaa 960
aatacttcta caagtaggac acatactagt gaagtacatg gaaatgcaga agtgcatgcg 1020
tegttetttg atattggtgg gagtgtatet geaggattta gtaattegaa tteaagtaeg 1080
gtcgcaattg atcattcact atctctagca ggggaaagaa cttgggctga aacaatgggt 1140
ttaaataccg ctgatacagc aagattaaat gccaatatta gatatgtaaa tactgggacg 1200
gctccaatct acaacgtgtt accaacgact tcgttagtgt taggaaaaaa tcaaacactc 1260
gcgacaatta aagctaagga aaaccaatta agtcaaatac ttgcacctaa taattattat 1320
ccttctaaaa acttggcgcc aatcgcatta aatgcacaag acgatttcag ttctactcca 1380
attacaatga attacaatca atttcttgag ttagaaaaaa cgaaacaatt aagattagat 1440
acggatcaag tatatgggaa tatagcaaca tacaattttg aaaatggaag agtgagggtg 1500
gatacagget egaactggag tgaagtgtta eegcaaatte aagaaacaac tgeacgtate 1560
atttttaatg gaaaagattt aaatctggta gaaaggcgga tagcggcggt taatcctagt 1620
gatccattag aaacgactaa accggatatg acattaaaag aagcccttaa aatagcattt 1680
ggatttaacg aaccgaatgg aaacttacaa tatcaaggga aagacataac cgaatttgat 1740
tttaatttég atcaacaaac atctcaaaat atcaagaatc agttagegga attaaacgca 1800
actaacatat atactgtatt agataaaatc aaattaaatg caaaaatgaa tattttaata 1860
agagataaac gttttcatta tgatagaaat aacatagcag ttggggcgga tgagtcagta 1920
gttaaggagg ctcatagaga agtaattaat tcgtcaacag agggattatt gttaaatatt 1980
gataaggata taagaaaaat attatcaggt tatattgtag aaattgaaga tactgaaggg 2040
cttaaagaag ttataaatga cagatatgat atgttgaata tttctagttt acggcaagat 2100
ggaaaaacat ttatagattt taaaaaatat aatgataaat taccgttata tataagtaat 2160
cccaattata aggtaaatgt atatgctgtt actaaagaaa acactattat taatcctagt 2220
gagaatgggg atactagtac caacgggatc aagaaaattt taatcttttc taaaaaaggc 2280
tatgagatag gataa
<210> 729
<211> 822
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 729
atggcagttg ttaaatgtaa accgacatct ccgggtcgtc gccacqtagt taaaqtqqtt 60
aaccctgagc tgcacaaggg caaacctttt gctccgttgc tggaaaaaaa cagcaaatcc 120
ggtggtcgta acaacaatgg ccgtatcacc actcgtcata tcggtqqtqq ccacaaqcaq 180
gcttaccgta ttgttgactt caaacgcaac aaagacggta tcccqqcagt tgttgaacgt 240
cttgagtacg atccgaaccg ttccgcgaac atcgcgctgg ttctgtacaa agacggtgaa 300
cgccgttaca tcctggcccc taaaggcctg aaagctggcg accagattca gtctggcgtt 360
gatgctgcaa tcaaaccagg taacaccctg ccgatgcgca acatcccggt tggttctact 420
gttcataacg tagaaatgaa accaggtaaa ggcggtcagc tggcacgttc cgctggtact 480
tacgttcaga togttgetcg tgatggtgct tatgtcaccc tgcgtctgcg ttctggtgaa 540
atgogtaaag tagaagcaga ctgccgtgca actctgggcg aagttggcaa tgctgagcat 600
atgctgcgcg ttctgggtaa agcaggtgct gcacgctggc gtggtgttcg tccgaccgtt 660
cgcggtaccg cgatgaaccc ggtagaccac ccacatggtg gtggtqaagg tcgtaacttt 720
```

```
qqtaaqcacc eqqtaactcc qtgqqqcqtt cagaccaaaq qtaagaagac ccgcagcaac 780
aagcgtactg ataaattcat cgtacgtcgc cgtagcaaat aa
<21.0> 730
<211> 4029
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 730
atggtttact cctataccga gaaaaaacgt attcgtaagg attttggtaa acgtccacaa 60
qttctggatg taccttatct cctttctatc cagcttgact cgtttcagaa atttatcgag 120
caagatectg aagggeagta tggtetggaa getgetttee gtteegtatt eeegatteag 180
agctacageg gtaatteega getgeaatae gteagetaee geettggega aeeggtgttt 240
gacgtccagg aatgtcaaat ccgtggcgtg acctattccg caccgctgcg cgttaaactg 300
cgtctggtga tctatgagcg cgaagcgccg gaaggcaccg taaaagacat taaagaacaa 360
gaagtctaca tgggcgaaat tccgctcatg acagacaacg gtacctttgt tatcaacggt 420
actgagegtg ttategttte ecagetgeac egtagteegg gegtettett tgaeteegae 480
aaaggtaaaa cccactcttc gggtaaagtg ctgtataacg cgcgtatcat cccttaccgt 540
ggttcctggc tggacttcga attcgatccg aaggacaacc tgttcgtacg tatcgaccgt 600
cgccgtaaac tgcctqcgac catcattctq cgcqccctqa actacaccac aqaqcaqatc 660
ctcgacctgt tctttgaaaa agttatcttt gaaatccgtg ataacaagct gcagatggaa 720
ctggtgccgg aacgectgcg tggtgaaacc gcatcttttg acatcgaagc taacggtaaa 780
gtgtacgtag aaaaaggccg ccgtatcact gcgcgccaca ttcgccagct ggaaaaagac 840
gacgtcaaac tgatcgaagt cccggttgag tacatcgcag gtaaagtggt tgctaaagac 900
tatattgatg agtctaccgg cgagctgatc tgcgcagcga acatqgagct gagcctggat 960
ctgctggcta agetgagcca gtctggtcac aagegtateg aaacgctgtt caccaacgat 1020
ctggatcacg gcccatatat ctctgaaacc ttacgtgtcg acccaactaa cgaccgtctg 1080
agcgcactgg tagaaatcta ccgcatgatg cqccctqqcq aqccqccqac tcqtqaaqca 1140
gctgaaagcc tgttcgagaa cctgttcttc tccqaagacc gttatgactt gtctgcggtt 1200
ggtcgtatga agttcaaccq ttctctqctq cqcqaaqaaa tcqaaqqttc cqqtatcctq 1260
agcaaagacg acatcattga tgttatgaaa aagctcatcg atatccgtaa cggtaaaggc 1320
gaaqtcqatq atatcqacca cctcqqcaac cqtcqtatcc qttccqttqq cqaaatqqcq 1380
gaaaaccagt teegegttgg cetggtaegt gtagagegtg eggtqaaaga gegtetgtet 1440
ctgggcgatc tggataccct gatgccacag gatatgatca acgccaagcc gatttccgca 1500
geagtgaaag agttettegg ttecageeag etgteteagt ttatggaeea gaacaaceeg 1560
ctgtctgaga ttacgcacaa acgtcgtatc tccgcactcg gcccaggcgg tctgacccgt 1620
gaacgtgcag gcttcgaagt tcgagacgta cacccgactc actacggtcg cgtatgtcca 1680
ategaaacce etgaaggtee gaacateggt etgateaact etetgteegt gtaegeacag 1740
actaacgaat acggetteet tgagaeteeg tategtaaag tgacegaegg tgttgtaact 1800
gacgaaattc actacctgtc tgctatcgaa gaaggcaact acgttatcgc ccaggcgaac 1860
tccaacttgg atgaagaagg ccacttcgta gaagacctgg taacttqccq taqcaaagqc 1920
gaat ccaget tgttcagecg cgaccaggtt gactacatgg acqtatecae ccagcaggtg 1980
gtatccgtcg gtgcgtccct gatcccgttc ctggaacacg atqacqccaa ccgtqcattg 2040
atgggtgcga acatgcaacg tcaggccgtt ccgactctgc gcgctgataa gccgctggtt 2100
ggtactggta tggaacgtgc tgttgccgtt gactccgqtg taactqcqqt aqctaaacgt 2160
ggtggtgtcg ttcagtacgt ggatgcttcc cqtatcgtta tcaaagttaa cqaaqacqag 2220
atgtatccgg gtgaagcagg tatcgacatc tacaacctga ccaaatacac ccgttctaac 2280
cagaacacct gtatcaacca gatgccgtgt gtgtctctgg gtgaaccggt tgaacgtggc 2340
gacgtgctgg cagacggtcc gtccaccgac ctcggtgaac tggcgcttgg tcagaacatg 2400
cgcgtagcgt tcatgccgtg gaatggttac aacttcgaag actccatcct cgtatccgag 2460
cgtgttgttc aggaagaccg tttcaccacc atccacattc aggaactgqc gtgtgtcc 2520
cgtgacacca agctgggtcc ggaagagatc accgctgaca tcccgaacgt gggtgaagct 2580
gegeteteca aactggatga atceggtate gtttacattg gtgeggaagt gaceggtgge 2640
gacattetgg ttggtaaggt aacgeegaaa ggtgaaacte agetgaeeee agaagaaaaa 2700
ctgctgcgtg cgatcttcgg tgagaaagcc tctgacgtta aagactcttc tctgcgcgta 2760
```

```
ccaaacggtg tatccggtac ggttatcgac gttcaggtct ttactcgcga tggcgtagaa 2820
aaagacaaac gtgcgctgga aatcgaagaa atgcagctca aacaggcgaa gaaagacctg 2880
tctgaagaac tgcagatcct cgaagcgggt ctgttcagcc gtatccgtgc tgtgctggta 2940
geoggtggcg ttgaagetga gaagetegae aaactgeege gegategetg getggagetg 3000
ggcctgacag acgaagagaa acaaaatcag ctggaacagc tggctgagca gtatgacgaa 3060
ctgaaacacg agttcgagaa gaaactcgaa gcgaaacgcc gcaaaatcac ccagggcgac 3120
gatctggcac cgggcgtgct gaagattgtt aaggtatatc tggcggttaa acgccgtatc 3180
cagectggtg acaagatgge aggtegteae ggtaacaagg gtgtaattte taagateaae 3240
ccgatcgaag atatgcctta cgatgaaaac ggtacgccgg tagacatcgt actgaacccg 3300
ctgggcgtac cgtctcgtat gaacatcggt cagatcctcg aaacccacct gggtatggct 3360
qcqaaaqqta tcqqcqacaa qatcaacqcc atqctqaaac aqcagcaaqa aqtcqcqaaa 3420
ctgcgcgaat tcatccagcg tgcgtacgat ctgggcgctg acgttcgtca gaaagttgac 3480
ctgagtacct tcagcgatga agaagttatg cgtctggctg aaaacctgcg caaaggtatg 3540
ccaatcgcaa cgccggtgtt cgacggtgcg aaagaagcag aaattaaaga gctgctgaaa 3600
cttggcgacc tgccgacttc cggtcagatc cgcctgtacg atggtcgcac tgqtqaacaq 3660
ttcgagcgtc cggtaaccgt tggttacatg tacatgctga aactgaacca cctggtcgac 3720
gacaagatgc acgcgcgttc caccggttct tacagcctgg ttactcagca gccgctgggt 3780
qqtaaggcac aqttcggtqg tcaqcqtttc qqqqaqatqq aagtgtgqgc gctggaagca 3840
tacggcgcag catacaccct gcaggaaatg ctcaccgtta agtctgatga cgtgaacggt 3900
cgtaccaaga tgtataaaaa catcgtggac ggcaaccatc agatggagcc gggcatgcca 3960
gaatcettea aegtattgtt gaaagagatt egttegetgg gtateaacat egaactggaa 4020
gacgagtaa
                                                                  4029
<210> 731
<211> 4224
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 731
gtgaaagatt tattaaagtt tctgaaagcg cagactaaaa ccgaagagtt tgatgcgatc 60
aaaattgctc tggcttcgcc agacatgatc cgttcatggt ctttcggtga agttaaaaag 120
ceggaaacca teaactaceg tacgtteaaa ceagaacgtg acggeetttt etgegeeegt 180
atctttgggc cggtaaaaga ttacgagtgc ctgtgcggta agtacaagcg cctgaaacac 240
cgtggcgtca tctgtgagaa gtgcggcgtt gaagtgaccc agactaaagt acgccgtgag 300
cgtatgggcc acatcgaact ggcttccccg actgcgcaca tctggttcct gaaatcgctg 360
ccgtcccgta tcggtctgct gctcgatatg ccgctgcgcg atatcgaacg cgtactgtac 420
tttgaateet atgtggttat egaaggeggt atgaceaace tggaaegtea geagateetg 480
actgaagagc agtatctgga cgcgctggaa gagttcggtg acgaattcga cgcgaagatg 540
ggggcggaag caatccaggc tctgctgaag agcatggatc tggagcaaga gtgcgaacag 600
ctgcqtqaaq aqctqaacqa aaccaactcc qaaaccaaqc qtaaaaaqct qaccaaqcqt 660
atcaaactgc tggaagcgtt cgttcagtct ggtaacaaac cagagtggat gatcctgacc 720
gttctgccgg tactgccgc agatctgcgt ccgctggttc cgctggatgg tggtcgtttc 780
gcgacttctg acctgaacga tctgtatcgt cgcgtcatta accgtaacaa ccgtctgaaa 840
cgtctgctgg atctggctgc gccggacatc atcgtacgta acgaaaaacg tatgctgcag 900
gaagcggtag acgccctgct ggataacggt cgtcgcggtc gtgcgatcac cggttctaac 960
aagcgtcctc tgaaatcttt ggccgacatg atcaaaggta aacagggtcg tttccgtcag 1020
aacctgctcg gtaagcgtgt tgactactcc ggtcgttctg taatcaccgt aggtccatac 1080
ctgcgtctgc atcagtgcgg tctgccgaag aaaatggcac tggagctgtt caaaccgttc 1140
atctacggca agctggaact gcgtggtctt gctaccacca ttaaagctgc gaagaaaatg 1200
gttgagcgcg aagaagctgt cgtttgggat atcctggacg aagttatccg cgaacacccg 1260
gtactgctga accgtgcacc gactctgcac cgtctgggta tccaggcatt tgaaccggta 1320
ctgategaag gtaaagctat ccagctgcac ccgctggttt gtgcggcata taacgccgac 1380
ttcgatggtg accagatggc tgttcacgta ccgctgacgc tggaagccca gctggaagcg 1440
cgtgcgctga tgatgtctac caacaacatc ctgtccccgg cgaacggcga accaatcatc 1500
gttccgtctc aggacgttgt actgggtctg tactacatga cccgtgactg tgttaacgcc 1560
aaaggcgaag gcatggtgct gactggcccg aaagaagcag aacgtctgta tcgctctggt 1620
ctggcttctc tgcatgcgcg cgttaaagtg cgtatcaccg agtatgaaaa agatgctaac 1680
ggtgaattag tagcgaaaac cagcctgaaa gacacgactg ttggccgtgc cattctgtgg 1740
```

```
atgattgtac cgaaaggtct gccttactcc atcgtcaacc aggcgctggg taaaaaagca 1800
atetecaaaa tgctgaacac etgetacege atteteggte tgaaacegae egttattttt 1860
gcggaccaga tcatgtacac cggcttcgcc tatgcagcgc gttctggtgc atctgttggt 1920
atcgatgaca tggtcatccc ggagaagaaa cacgaaatca tctccgaggc agaagcagaa 1980
gttgctgaaa ttcaggagca gttccagtct ggtctggtaa ctgcgggcga acgctacaac 2040
aaagttatcg atatctgggc tgcggcgaac gatcgtgtat ccaaagcgat gatggataac 2100
ctgcaaactg aaaccgtgat taaccgtgac ggtcaggaag agaagcaggt ttccttcaac 2160
agcatctaca tgatggccga ctccggtgcg cgtggttctg cggcacagat tcgtcagctt 2220
gctggtatgc gtggtctgat ggcgaagccg gatggctcca tcatcgaaac gccaatcacc 2280
gcgaacttcc gtgaaggtct gaacgtactc cagtacttca tctccaccca cggtgctcgt 2340
aaaggtotgg oggatacogc actgaaaact gogaactoog gttacotgac togtogtotg 2400
qttqacqtqq cqcaqqacct qqtqqttacc qaaqacqatt qtqqtaccca tqaaqqtatc 2460
atgatgactc cggttatcga gggtggtgac gttaaagagc cgctgcgcga tcgcgtactg 2520
ggtcgtgtaa ctgctgaaga cgttctgaag ccgggtactg ctgatatcct cgttccgcgc 2580
aacacgctgc tgcacgaaca gtggtgtgac ctgctggaag agaactctgt cgacgcggtt 2640
aaagtacgtt ctgttgtatc ttgtgacacc gactttggtg tatgtgcgca ctgctacggt 2700
cgtgacctgg cgcgtggcca catcatcaac aagggtgaag caatcggtgt tatcgcggca 2760
cagtccatcg gtgaaccggg tacacagctg accatgcgta cgttccacat cggtggtgcg 2820
gcatctcgtg cggctgctga atccagcatc caagtgaaaa acaaaggtag catcaagctc 2880
agcaacgtga agtcggttgt gaactccagc ggtaaactgg ttatcacttc ccgtaatact 2940
gaactgaaac tgatcgacga attcggtcgt actaaagaaa gctacaaagt accttacggt 3000
gcggtactgg cgaaaggcga tggcgaacag gttgctggcg gcgaaaccgt tqcaaactgg 3060
gaccegcaca ccatgceggt tatcacegaa gtaageggtt ttgtacgctt tactgacatg 3120
ategacggcc agaccattac gcgtcagacc gacgaactga ccggtctgtc ttcgctggtg 3180
gttctggatt ccgcagaacg taccgcaggt ggtaaagatc tgcgtccggc actgaaaatc 3240
gttgatgctc agggtaacga cgttctgatc ccaggtaccg atatgccagc gcagtacttc 3300
ctgccgggta aagcgattgt tcagctggaa gatggcgtac agatcagctc tggtgacacc 3360
ctggcgcgta ttccgcagga atccggcggt accaaggaca tcaccggtgg tctgccqcgc 3420
gttgeggacc tgttcgaagc acgtcgtccg aaagagccgg caatcctggc tgaaatcagc 3480
ggtatcgttt ccttcggtaa agaaaccaaa ggtaaacgtc gtctggttat caccccggta 3540
gacggtagcg atccgtacga agagatgatt ccgaaatggc gtcagctcaa cgtgttcgaa 3600
ggtgaacgtg tagaacgtgg tgacgtaatt tccgacggtc cggaagcgcc gcacgacatt 3660
ctgcgtctgc gtggtgttca tgctgttact cgttacatcg ttaacgaagt acaggacgta 3720
taccgtctgc agggcgttaa gattaacgat aaacacatcg aagttatcgt tcgtcagatg 3780
ctgcgtaaag ctaccatcgt taacgcgggt agctccgact tcctggaagg cgaacaggtt 3840
gaatactctc gcgtcaagat cgcaaaccgc gaactggaag cgaacggcaa agtgggtgca 3900
acttactccc gcgatctgct gggtatcacc aaagcgtctc tggcaaccga gtccttcatc 3960
teegeggeat egtteeagga gaccaetege gtgetgaceg aagcageegt tgegggeaaa 4020
cgcgacgaac tgcgcggcct gaaagagaac gttatcgtgg gtcgtctgat cccggcaggt 4080
accegettace estaccacca geatcestate esteceests etgegegets agetceeset 4140
gcaccgcagg tgactgcaga agacgcatct gccagcctgg cagaactgct gaacgcaggt 4200
ctgggcggtt ctgataacga gtaa
<210> 732
<211> 3734
<212> DNA
<213> Artificial Sequence
<223> Concatenation of S. pyogenes genes
<220>
<221> misc feature
<222> 499-598, 1049-1148, 1587-1686, 2093-2192, 2652-2751,
3201-3301
<223> n = A, T, C or G
<400> 732
aaccttaatt ggaaagaaac ccaagaagtc ggttccgttg ttgaaaaaga attgggcatt 60
cettttgcca ttgacaatga tgccaatgtg gctgcccttg gtgaacgttg ggtaggtgct 120
ggtgaaaata acccagatgt cgtcttcatg acacttggaa caggtgtcgg tggaggcatt 180
```

attgctgatg	gtaacttgat	tcatggtgtt	gcaggagcag	gtggtgaaat	cggccacatg	240
		ctttgcttgt				
		tgtcaaagtg				
		tattgacaat				
atggcggctg	aaqcaqqqqa	ttcctttgct	gattctgttg	tagaaaaagat	taattactac	480
		nnnnnnnnn				
		nnnnnnnn				
		ttttggaagt				
		agaatgatat				
		ttcccaatat				
		ctaaagcaga				
caaagttgga	ttatcagaaa	aagccaaggc	ttatcctcct	actotttctc	ataaacaaca	900
		gtggactggc				
		cagaaatggt				
		tggttattnn				
		nnnnnnnnn				
		gcaacagcgg				
		gtcttaccgg				
		ggaaccccaa				
		tctattcaag				
		atgtgttcga				
		atagataccc				
		gttatggggc				
		gtcttannnn				
		nnnnnnnnn				
		tttacagaaa				
		tgctgaaacc				
		agaaggtcgt				
		tatctctttt				
		gtcgacttat				
		ggctgctgat				
		tgatgatttg				
		$\verb"nnnnnnnn"$				
${\tt nnnnnnnn}$	${\tt nnnnnnnn}$	${\tt nnnnnnnn}$	nnctatggcc	tatgttcttt	ggaatcactt	2220
		caagccgtaa				
agcaggtcat	ggaagtgcca	tgctttatag	cttgttacac	ttagctggtt	atgatttatc	2340
tgtagaagat	ttaaagaact	tccgtcaatg	gggttctaaa	acaccaggtc	acccagaagt	2400
gaaccacaca	gacggtgtcg	aagcaaccac	aggacctctt	ggtcaaggga	tcgcaaatgc	2460
cgttgggatg	gccatggcag	aagctcatct	agcagctaaa	tttaacaaac	caggctttga	2520
catcgttgat	cactacacat	ttgctttgaa	tggtgacggt	gaccttatgg	aaggggtcag	2580
ccaagaagca	gcaagtatgg	caggacattt	aaaacttggg	aaattggtct	tgctatatga	2640
ttcaaacgac	annnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	2700
nnnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	ngagagaata	2760
ttctaaaggt	agataatttt	ttaactcatc	aagttgatta	ccggttgatg	aaagcaattg	2820
		tatgctgagg				
		gtatacgctg				
		accatgacag				
		acggtgtcta				
		tttttagcta				
		caagtcgtcg				
		nnnnnnnnn				
		nnnnnnnnn				
		taaagcccaa				
gagattgcac	ctgtcactat	tcctcagcgt	aaaaataaac	ctttactcat	taatcaagaa	3420
gaatacccta	aatttogaag	gacagtggat	aadttadcaa	anttacheco	tacttttata	3480
aaagatgagg	ggacagtaac	tgctggtaat	acttcaddaa	tcaatgatga	addaddddc	3540
attttattoa	tgagtaaaga	aaaagctgaa	gaattaggga	tecetattt	acctasastc	3600
actacttato	caagtgcagg	tgtagaccca	agtattatog	actacaaacc	aatacctcct	3660
		ggctcagctg				
aacgaagctt		550 2049009	Louisegueg	adactgatt	gaccgaagca	3734
	5 -					0104

```
<210> 733
<211> 288
<212> DNA
<213> Artificial Sequence
<223> Bacillus anthracis
<400> 733
atgagtaaaa aacaacaagg ttataacaag gcaacttctg gtgctagcat tcaaagcaca 60
aatgctagtt atggtacaga gtttgcgact gaaacaaatg tacaagcagt aaaacaagca 120
aacgcacaat cagaagctaa gaaagcgcaa gcttctggtg ctagcattca aagcacaaat 180
gctagttatg gtacagaatt tgcaactgaa acagacgtgc atgctgtgaa aaaacaaaat 240
gcacaatcag ctgcaaaaca atcacaatct tctagttcaa atcagtaa
<210> 734
<211> 1185
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 734
atgtctaaag aaaagtttga acgtacaaaa ccgcacgtta acgtcggtac tatcggccac 60
gttgaccatg gtaaaacaac gctgaccgct gcaatcacta ccgtactggc taaaacctac 120
ggcggtgctg ctcgcgcatt cgaccagatc gataacgcgc cggaagaaaa agctcgtggt 180
atcaccatca acacttetea egitquatae gacacecega ecegitcaeta egeacaegia 240
gactgcccgg ggcacgccga ctatgttaaa aacatgatca ccggtgctgc gcagatggac 300
ggcgcgatcc tggtagttgc tgcgactgac ggcccgatgc cgcagactcg tgagcacatc 360
ctgctgggtc gtcaggtagg cqttccqtac atcatcqtqt tcctqaacaa atqcqacatq 420
gttgatgacg aagagetget ggaactggtt gaaatggaag ttcgtgaact tctgtctcag 480
tacgacttcc cgggcgacga cactccgatc gttcgtggtt ctgctctgaa agcgctggaa 540
ggcgacgcag agtgggaagc gaaaatcctg gaactggctg gcttcctgga ttcttacatt 600
ccggaaccag agcgtgcgat tgacaagccg ttcctgctgc cgatcgaaga cgtattctcc 660
atctccggtc gtggtaccgt tgttaccggt cgtgtagaac gcggtatcat caaagttggt 720
gaagaagttg aaatcgttgg tatcaaagag actcagaagt ctacctgtac tggcgttgaa 780
atgttccgca aactgctgga cgaaggccgt gctggtgaga acgtaggtgt tctgctgcgt 840
ggtatcaaac gtgaagaaat cgaacgtggt caggtactgg ctaagccggg caccatcaag 900
ccgcacacca agttcgaatc tgaagtgtac attctgtcca aagatqaagg cgqccqtcat 960
actocgttct tcaaaggcta ccgtccgcag ttctacttcc gtactactga cgtgactggt 1020
accatcgaac tgccggaagg cgtagagatg gtaatgccgg qcgacaacat caaaatggtt 1080
gttaccctga tccacccgat cgcgatggac gacggtctgc gtttcgcaat ccgtgaaggc 1140
ggccgtaccg ttggcgcggg cgttgtagca aaagttctga gctaa
<210> 735
<211> 2856
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 735
atggaaaaga catataaccc acaagatatc gaacagccgc tttacgagca ctgggaaaag 60
cagggetact ttaagectaa tggcgatgaa agecaggaaa qtttctqcat catgatcccq 120
ccgccgaacg tcaccggcag tttgcatatg ggtcacgcct tccagcaaac catcatggat 180
accatgatcc gctatcagcg catgcagggc aaaaacaccc tgtggcaggt cggtactgac 240
cacgccggga tcgctaccca gatggtcgtt gagcgcaaga ttgccgcaga agaaggtaaa 300
acceptcacy actaeggeeg egaagettte ategacaaaa tetgggaatg gaaageggaa 360
```

```
tetg geggea ceattaceeg teagatgege egteteggea acteegtega etgggagegt 420
gaacgcttca ccatggacga aggcctgtcc aatgcggtga aagaagtttt cgttcgtctg 480
tata aagaag acctgattta ccgtggcaaa cgcctggtaa actgggatcc gaaactgcgc 540
accg ctatct ctgacctgga agtcgaaaac cgcgaatcga aaggttcgat gtggcacatc 600
cgctatccgc tggctgacgg tgcgaaaacc gcagacggta aagattatct ggtggtcgcg 660
acta cccgtc cagaaaccct gctgggcgat actggcgtag ccgttaaccc ggaagatccg 720
cgtt acaaag atctgattgg caaatatgtc attctgccgc tggttaaccg tcgtattccg 780
atcgttggcg acgaacacgc cgacatggaa aaaggcaccg gctgcgtgaa aatcactccg 840
gcgcacgact ttaacgacta tgaagtgggt aaacgtcacg ccctgccgat gatcaacatc 900
ctga cctttg acggcgatat ccgtgaaagc gcccaggtgt tcgataccaa aggtaacgaa 960
tctgacgttt attccagcga aatccctgca gagttccaga aactggagcg ttttgctgca 1020
cgta aagcag tcgttgccgc agttgacgcg cttggcctgc tggaagaaat taaaccgcac 1080
gacctgaccg ttccttacgg cgaccgtggc ggcgtagtta tcgaaccaat gctgaccgac 1140
cagt ggtacg tgcgtgccga tgtcctggcg aaaccggcgg ttgaagcggt tgagaacggc 1200
gacattcagt tcgtaccgaa gcagtacgaa aacatgtact tctcctggat gcgcgatatt 1260
caggractggt gtateteteg teagttgtgg tggggteace gtatecegge atggtatgae 1320
gaag cgggta acgtttatgt tggccgcaac gaagacgaag tgcgtaaaga aaataacctc 1380
ggtg ctgatg ttgtcctgcg tcaggacgaa gacgttctcg atacctqqtt ctcttctqcq 1440
ctgt ggacct tototaccot tggctggccg gaaaataccg acgccctgcg tcagttccac 1500
ccaa ccagcg tgatggtate tggtttcgac atcattttct tetggattge ecgeatgate 1560
atga tgacca tgcacttcat caaagatgaa aatggcaaac cgcaggtgcc gttccacacc 1620
gttt acatga ccggcctgat tcgtgatgac gaaggccaga agatgtccaa atccaagggt 1680
aacg ttatcg acceactgga tatggttgac ggtatttcgc tgccagaact gctggaaaaa 1740
cgta ccggca atatgatgca gccgcagctg gcggacaaaa tccgtaagcg caccgagaag 1800
cagt tocoga acggtattga geogeacggt actgacgege tgegetteae cetggeggeg 1860
ctgg cgtcta ccggtcgtga catcaactgg gatatgaagc gtctggaagg ttaccgtaac 1920
ttct gtaaca agctgtggaa cgccagccgc tttgtgctga tgaacacaga aggtcaggat 1980
tgcggcttca acggcggcga aatgacgctg tcgctggcgg accgctggat tctggcggag 2040
ttca accaga ccatcaaagc gtaccgcgaa gcgctggaca gcttccgctt cgatatcgcc 2100
gcaggcattc tgtatgagtt cacctggaac cagttctgtg actggtatct cgagctgacc 2160
aagc cggtaa tgaacggtgg caccgaagca gaactgcgcg gtactcgcca tacgctggtg 2220
actg tactgg aaggtetget gegeetegeg cateegatea tteegtteat caeegaaace 2280
atct ggcagc gtgtgaaagt actttgcggt atcactgccg acaccatcat gctgcagccg 2340
ttcccgcagt acgatgcatc tcaggttgat gaagccgcac tggccgacac cgaatggctg 2400
aaacaggcga tcgttgcggt acgtaacatc cgtgcagaaa tgaacatcgc gccgggcaaa 2460
ccgctggagc tgctgctgcg tggttgcagc gcggatgcag aacgtcgcgt aaatgaaaac 2520
cgtg gcttcc tgcaaaccct ggcgcgtctg gaaagtatca ccgtgctgcc tgccgatgac 2580
aaaggtccgg tttccgttac gaagatcatc gacggtgcag agctgctgat cccgatggct 2640
ggcctcatca acaaagaaga tgagctggcg cgtctggcga aagaagtggc gaagattgaa 2700
ggtgaaatca gccgtatcga gaacaaactg gcgaacgaag gctttgtcgc ccgcgcaccg 2760
gaag cggtca tcgcgaaaga gcgtgagaag ctggaaggct atgcggaagc gaaagcgaaa 2820
ctgattgaac agcaggctgt tatcgccgcg ctgtaa
                                                                   2856
<210> 736
<211> 1770
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 736
atgcgtacag aatattgtgg acagctccgt ttgtcccacg tggggcagca ggtgactctg 60
tgtggttggg tcaaccgtcg tcgtgatctt ggtagcctga tcttcatcga tatgcgcgac 120
cgcgaaggta tcgtgcaggt atttttcgat ccggatcgtg cggacgcgtt aaagctggcc 180
tctgaactgc gtaatgagtt ctgcattcag gtcacgggca ccgtacgtgc gcgtgacgaa 240
aaaaatatta accgcgatat ggcgaccggc gaaatcgaaq tgctqqcqtc ctcqctqact 300
atcatcaacc gcgcagatgt tctgccgctt gactctaacc acgtcaacac cgaagaagcg 360
cgtctgaaat accgctacct cgacctgcgt cgtccggaaa tggctcagcg cctgaaaacc 420
cgcgctaaaa tcaccagcct ggtgcgccgt tttatggatg accacggctt cctcgacatc 480
```

```
gaaactccqa tgctgaccaa agccacqccq qaaqqcqcqc qtqactacct qqtqccttct 540
cgtgtqcaca aaggtaaatt ctacqcactg ccgcaatccc cqcagttqtt caaacagctg 600
ctgatgatgt ccggttttga ccgttactat cagatcgtta aatgcttccg tgacgaagac 660
ctgcgtgctg accgtcagcc tgaatttact cagatcgatg tggaaacttc tttcatgacc 720
gcgccqcaaq tgcgtqaaqt gatqqaaqcq ctqqtqcqtc atctgtqqct qqaaqtqaaq 780
ggtgtgqatc tgggcgattt cccqqtaatq acctttqcqq aaqcaqaacq ccqttatqqt 840
tetgataaac eggatetgeg taaceegatg gaactgactg acgttgetga tetgetgaaa 900
tetgttgagt ttgctgtatt tgcaggtecg gcgaacgate cgaaaggteg cgtagegget 960
ctgcgcgttc cgggcggcgc atcgctgacc cgtaagcaga tcgacgaata cggtaacttc 1020
gttaaaatct acggcgcgaa aggtctggct tacatcaaag ttaacgaacg cgcgaaaggt 1080
ctggaaggta tcaacagccc ggtagcgaag ttccttaatg cagaaatcat cgaagacatc 1140
ctggatcgta ctgccgcgca agatggcgat atgattttct tcggtgccga caacaaqaaa 1200
attgttgccg acgcgatggg tgcactgcgc ctgaaagtgg gtaaagacct tggtctgacc 1260
gacgaaagca aatgggcacc gctgtgggtt atcgacttcc cgatgtttga agacgacggt 1320
gaaggcggcc tgacggcaat gcaccatccg ttcacctcac cgaaagatat gacggctgca 1380
gaactgaaag ctgcaccgga aaatgcggtg gcgaacgctt acgatatggt catcaatggt 1440
tacgaagtgg gcggtggttc agtacgtatc cataatggtg atatgcagca gacggtgttt 1500
ggtattctgg gtatcaacga agaggaacag cgcgagaaat tcggcttcct gctcgacgct 1560
ctgaaatacg gtactccgcc gcacgcaggt ctggcattcg gtcttgaccg tctgaccatg 1620
ctgctgaccg gcaccgacaa tatccgtgac gttatcgcct tcccgaaaac cacggcggca 1680
attcaggttg tgaagaaggc tgagaataac
<210> 737
<211> 3699
<212> DNA
<213> Artificial Sequence
<220>
<223> Yersinia pestis
<400> 737
atgatggttt tccagccaat cagtgagttt ctcttgataa ggaatgcggg aatgtctatg 60
tattttaata aaataattte atttaatatt atttcacgaa tagttatttg tatctttttg 120
atatgtggaa tgttcatggc tggggcttca gaaaaatatg atgctaacgc accgcaacag 180
gtccagcctt attctgtctc ttcatctgca tttgaaaatc tccatcctaa taatgaaatg 240
gagagttcaa tcaatccctt ttccgcatcg gatacagaaa gaaatgctgc aataatagat 300
cgcgccaata aggagcagga gactgaagcg gtgaataaga tgataagcac cggggccagg 360
ttagctgcat caggcagggc atctgatgtt gctcactcaa tggtgggcga tgcggttaat 420
caagaaatca aacagtggtt aaatcgattc ggtacggctc aagttaatct gaattttgac 480
aaaaattttt cgctaaaaga aagctctctt gattggctgg ctccttggta tgactctgct 540
tcattcctct tttttagtca gttaggtatt cgcaataaag acagccgcaa cacacttaac 600
cttggcgtcg ggatacgtac attggagaac gqttgqctqt acqqacttaa tactttttat 660
gataatgatt tgaccggcca caaccaccgt atcggtcttg gtgccgaggc ctggaccgat 720
tatttacagt tggctgccaa tgggtatttt cgcctcaatg gatggcactc gtcgcgtgat 780
ttctccgact ataaagagcg cccagccact gggggggatt tgcgcgcgaa tgcttattta 840
cctgcactcc cacaactggg ggggaagttg atgtatgagc aatacaccgg tgagcgtgtt 900
getttattgt geccagaaaa eecccageta ggetgggggt teagtaaage ttteagettt 960
gggtcagtta taaaaacccc ttttgatttg ttaaaacagt ttgcggtctg gcaactgcaa 1020
atgttcaaca agaaatcaaa agggggtccc aatgagggat gaaaagagct tagcgcacac 1080
ccgatggaac tgtaaatatc atatagtttt tgcgccgaag taccgaaggc aggtgttcta 1140
cagggaaaaa cgcagagcga ttggcagtat tttaagaaaa ctgtqcqaat qqaaaaacqt 1200
gaatatcctg gaagcagaat actgtgtgga tcacatccat atgcttctgg agatcccgcc 1260
caagatgagt gtctcgggat ttatggggta cctgaaqqqa aaqaqcaqtc tqatqcttta 1320
tgagcagttt ggcgatttga agttcaaata ccgtaacagg gagttttggt gtcgagggta 1380
ttacgttgat acggtaggga aaaacacggc caggatacaa gaatacataa aqcaccaatt 1440
ggaagaggat aaaatgggtg agcaactctc gatcccqtat cccqqtaqcc cqtttacqqq 1500
ccgtaagtaa tccatagatg caaatgtcag atcgcgatgc gcctgttagg gcgcggctgg 1560
taacagagcc ttataggcgc atatgaaaaa cctccggcta tgccggagga tatttatttt 1620
ggtaaagata atctgcaacg caacccttat gccgtgactg ccgggatcaa ttacaccccc 1680
gtgcctctac tcactgtcgg ggtagatcag cgtatgggga aaagcagtaa gcatgaaaca 1740
```

```
cagtggaacc tocaaatgaa ctatogcotg ggogagagtt ttoagtogca acttagocot 1800
tcagcggtgg cgggaacacg tctactggct gagagccgct ataaccttgt cgatcgtaac 1860
aataatatcg tgttggagta tcagaaacag caggtggtta aactgacatt atcgccagca 1920
actatctccg gcctgccggg tcaggtttat caggtgaacg cacaagtaca aggggcatct 1980
gctgtaaggg aaattgtctg gagtgatgcc gaactgattg ccgctggcgg cacattaaca 2040
ccactgagta ccacacaatt caacttggtt ttaccgcctt ataaacgcac agcacaagtg 2100
agtcgggtaa cggacgacct gacagccaac ttttattcgc ttagtgcgct cgcggttgat 2160
caccaaggaa acagatctaa ctcattcaca ttgagcgtca ccgttcagca gcctcagttg 2220
acattaacgg cggccgtcat tggtgatggc gcaccggcta gtgggaaaac tgcaatcacc 2280
gttqagttca ccgttgctga ttttgagggg aaacccttag ccgggcagga agtggtgata 2340
accaccaata atggtgcgct accgaataaa atcacggaaa agacagatgc aaatggcgtc 2400
gcgcgcattg cattaaccaa tacgacagat ggcqtqacgg taqtcacaqc aqaaqtqqaq 2460
gggcaacggc aaagtgttga tacccacttt gttaagggta ctatcqcqqc ggataaatcc 2520
actotygoty cygtaccyac atotatoate gotyatygte taatygotte aaccateacy 2580
ttggagttga aggataccta tggggacccg caggetggcg cgaatgtggc ttttgacaca 2640
accttaggca atatgggcgt tatcacggat cacaatgacg gcacttatag cgcaccattg 2700
accagtacca cgttgggggt agcaacagta acggtgaaag tggatggggc tgcgttcagt 2760
gtgccgagtg tgacggttaa tttcacggca gatcctattc cagatgctgg ccgctccagt 2820
ttcaccgtct ccacaccgga tatcttggct gatggcacga tgagttccac attatccttt 2880
gtccctgtcg ataagaatgg ccattttatc agtgggatgc agggcttgag ttttactcaa 2940
aacggtgtgc cggtgagtat tagccccatt accgagcagc cagatagcta taccgcgacg 3000
gtggttggga ataccgccgg tgatgtcaca atcacgcctc tggttgatac cctgatactg 3060
agtacattgc agaaaaaaat atccctattc ccggtaccta cgctgaccgg tattctggtt 3120
aacgggcaaa atttcgctac ggataaaggg ttcccgaaaa cgatctttaa aaacgccaca 3180
ttccagttac agatggataa cgatgttgct aataatactc agtatgagtg gtcgtcgtca 3240
ttcacaccca atgtatcggt taacgatcag ggtcaggtga cgattaccta ccaaacctat 3300
agcgaagtgg ctgtgacggc gaaaagtaaa aaattcccaa gttattcggt gagttatcgg 3360
ttctacccaa atcggtggat atacgatggc ggcacttcgc tggtatcgag tatcgaggcc 3420
agcagacaat gccaaggttc agatatgtct gcggttcttg aatcctcacg tgcaaccaac 3480
ggaacgcgtg cgcctgacgg gacattgtgg ggcgagtggg ggagcttgac cgcgtatagt 3540
tctgattggc aatctggcga atattgggtc aaaaggacca gcacggattt tgaaaccatq 3600
aatatgaaca ctggcctgct gcaaccaggg cctgcatact tggcgttccc gctctgtgcg 3660
ctgtcaatat aaccagataa cagatagcaa taagaacag
<210> 738
<211> 3891
<212> DNA
<213> Artificial Sequence
<220>
<223> Clostridium botulinum
<400> 738
atgcaatttg ttaataaaca atttaattat aaagatcctg taaatggtgt tgatattgct 60
tatataaaaa ttccaaatgt aggacaaatg caaccagtaa aagcttttaa aattcataat 120 aaaatatggg ttattccaga aagagataca tttacaaatc ctgaagaagg agatttaaat 180
ccaccaccag aagcaaaaca agttccagtt tcatattatq attcaacata tttaaqtaca 240
gataatgaaa aagataatta tttaaaggga gttacaaaat tatttgagag aatttattca 300 actgatcttg gaagaatgtt gttaacatca atagtaaggg gaataccatt ttggggtgga 360 agtacaatag atacagaatt aaaagttatt gatactaatt gtattaatgt gatacaacca 420 gatggtagtt atagatcaga agaacttaat ctagtaataa taggaccctc agctgatatt 480
atacagtttg aatgtaaaag ctttggacat gaagttttga atcttacgcg aaatggttat 540 ggctctactc aatacattag atttagccca gattttacat ttggttttga ggagtcactt 600 gaagttgata caaatcctct tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660 ttagcacatg aacttataca tgctggacat agattatatg gaatagcaat taatccaaat 720
agggttttta aagtaaatac taatgcctat tatgaaatga gtgggttaga agtaagcttt 780
gaggaactta gaacatttgg gggacatgat gcaaagttta tagatagttt acaggaaaac 840
gaatttcgtc tatattatta taataagttt aaagatatag caagtacact taataaagct 900 aaatcaatag taggtactac tgcttcatta cagtatatga aaaatgttt taaagagaaa 960
tatctcctat ctgaagatac atctggaaaa ttttcggtag ataaattaaa atttgataag 1020
```

```
ttatacaaaa tgttaacaga gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080
cttaacagaa aaacatattt gaattttgat aaagccgtat ttaagataaa tatagtacct 1140
aaggtaaatt acacaatata tgatggattt aatttaagaa atacaaattt agcagcaaac 1200
ggattqtttg aattttataa gttgctatgt gtaagaggga taataacttc taaaactaaa 1320
tcattagata aaggatacaa taaggcatta aatgatttat gtatcaaagt taataattgg 1380
qacttqtttt ttagtccttc agaagataat tttactaatg atctaaataa aggagaagaa 1440
attacatctg atactaatat agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500
caatattatt taacctttaa ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560
tcaagtgaca ttataggcca attagaactt atgcctaata tagaaagatt tcctaatgga 1620
aaaaagtatg agttagataa atatactatg ttccattatc ttcgtgctca agaatttgaa 1680
catggtaaat ctaggattgc tttaacaaat tctgttaacg aagcattatt aaatcctagt 1740
cgtgtttata cattttttc ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800
gctatgtttt taggctgggt agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860
gtaagtacta cggataaaat tgcggatata actataatta ttccatatat aggacctgct 1920
ttaaatatag gtaatatgtt atataaagat gattttgtag gtgctttaat attttcagga 1980
gctgttattc tgttagaatt tataccagag attgcaatac ctgtattagg tacttttgca 2040
cttgtatcat atattgcgaa taaggttcta accgttcaaa caatagataa tgctttaagt 2100
aaaagaaatg aaaaatggga tgaggtctat aaatatatag taacaaattg gttagcaaag 2160
gttaatacac agattgatct aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220
gaagcaacaa aggctataat aaactatcag tataatcaat atactgagga agagaaaat 2280
aatattaatt ttaatattga tgatttaagt tcgaaactta atgagtctat aaataaagct 2340
atgattaata taaataaatt titgaatcaa tgctctgttt catatttaat gaattctatg 2400
atcccttatg gtgttaaacg gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460
aagtatatat atgataatag aggaacttta attggtcaag tagatagatt aaaagataaa 2520
gttaataata cacttagtac agatatacct tttcagcttt ccaaatacgt agataatcaa 2580
agattattat ctacatttac tgaatatatt aagaatatta ttaatacttc tatattgaat 2640
ttaagatatg aaagtaatca tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700
ggtagtaaag taaattttga tccaatagat aaaaatcaaa ttcaattatt taatttagaa 2760
agtagtaaaa ttgaggtaat tttaaaaaaat gctattgtat ataatagtat gtatgaaaat 2820
titagtacta gcittiggat aagaatteet aagtatitta acagtataag tetaaataat 2880
gaatatacaa taataaattg tatggaaaat aattcaggat ggaaagtatc acttaattat 2940
ggtgaaataa tctggacttt acaggatact caggaaataa aacaaagagt agtttttaaa 3000
tacagtcaaa tgattaatat atcagattat ataaacagat ggatttttgt aactatcact 3060
aataatagat taaataactc taaaatttat ataaatggaa gattaataga tcaaaaacca 3120
atttcaaatt taggtaatat tcatgctagt aataatataa tgtttaaatt agatggttgt 3180
agagatacac atagatatat ttggataaaa tattttaatc tttttgataa ggaattaaat 3240
gaaaaagaaa tcaaagattt atatgataat caatcaaatt caggtatttt aaaagacttt 3300
tggggtgatt atttacaata tgataaacca tactatatgt taaatttata tgatccaaat 3360
aaatatgtcg atgtaaataa tgtaggtatt agaggttata tgtatcttaa agggcctaga 3420
ggtagcgtaa tgactacaaa catttattta aattcaagtt tgtatagggg gacaaaattt 3480
attataaaaa aatatgotto tggaaataaa gataatattg ttagaaataa tgatogtgta 3540
tatattaatg tagtagttaa aaataaagaa tataggttag ctactaatgc atcacaggca 3600
ggcgtagaaa aaatactaag tgcattagaa atacctgatg taggaaatct aagtcaagta 3660
gtagtaatga agtcaaaaaa tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720 gataataatg ggaatgatat aggctttata ggatttcatc agtttaataa tatagctaaa 3780
ctagtagcaa gtaattggta taatagacaa atagaaagat ctagtaggac tttgggttgc 3840
tcatgggaat ttattcctgt agatgatgga tggggagaaa ggccactgta a
<210> 739
<211> 9047
<212> DNA
<213> Artificial Sequence
<220>
<223> Staphylococcus aureus
<400> 739
aagcttcttg tgaaaaaata tcttcaatct tatgaaagat ctccacatta tcgctaactt 60
ttgagacaag tgttttcca atttcacccg cttccccatt tgcaccacga tacaattgat 120
tattaataat aagcccaqca ccaatacctt tatgtatact taaagcaata agattattgt 180
```

aggataaatt	atgattaaaa	ttacgttcat	ataacgctga	aagattcgct	tcattttcaa	240
ctacgactgg	aacattaqta	atttctttta	ttttcttagc	aattgaaatt	ccttcagttt	300
catggaatgg	taaatatqtc	acatgctgct	cattatccac	aactccatgt	atagaaacag	360
32	•	3 3				
acacacctaa	tagtccgtta	taagtatcaa	gtttctcctg	aatatcaata	tatttttta	420
ttatgcttaa	tatactacta	accttttcat	caggtaaat c	ataagattca	tocttaatoa	480
cattaccatc	aaaataattg	tacatcactt	caacagaact	ataagttaaa	tocaaagaaa	540
taaaataacc	ataaagatga	ttaaccttca	gaagaatagg	ttttctacca	ccactettea	600
tgctatcacc	ctcaccaacc	tcattaacaa	gagatttata	ctttaactta	ttcaaaatac	660
tagaaatcgt	tgccttatta	actcttttaa	gatatttgga	coccaaatat	tatgatggta	720
			tcatttatat			
accccataag	ttaťtttgaa	tttagtttat	agtttatca t	gtatttttat	accaactatt	840
ttaacataaa	ttaaattaaa	ccttagaaca	acttaaaacc	tcacttaggt	tatcatcttc	900
gttcttttat	tttttttatt	atttcaataa	attacgtat t	tccaatatga	cgattttta	960
tocaaagtco	ttotatottt	ttcaaatttt	tgacatttat	gcaatctaaa	tagccaatta	1020
gggaattttt	aacattttt	atttotttoa	tattatact t	aatgtatctt	aaatagaaag	1080
aggtatgcat	atggatttca	ctaatattat	tacaagcatt	attgatttaa	tcaagacttg	1140
cattcaggct	ttcggttaat	tttttcaact	aaaaaacaga	ggaaatattc	aacqacttqa	1200
ttatttcctc	tgttttctat	gtattgttgt	aaacacaaca	attttattt	ttattcaata	1260
tatttctcaa	ttcttctatt	tcatcttata	atagatette	tttttctaca	aagtttaaga	1320
caagtgaatt	gaaaccgcct	ttgtatactt	tattgataaa	gtttttagat	attttatatt	1380
ttatatcact	ttcttctaca	agagagtaat	attgaaaaa t	tttattgtct	tttttaccat	1440
ctataaatcc	ctttttatac	aatctcotta	taagtgtacg	aataattttt	ggactccagt	1500
ccttttgcat	ttgtatttct	tctattatat	tattcgcact	tocatattt	ttcatccaaa	1560
tgatattcat	aacttcccat	tctgcagatg	atatttcata	cattttatta	tccattatat	1620
taattccatt	tettttaaaa	tacgeteaga	aatttgttgt	actttttcac	cattcacatt	1680
atcttcacct	tttaaatgtg	tagcaaaata	atacgtatta	tctttcattt	caacataacc	1740
tacgaaccat	ccatttactt	ctttgtgatt	cacgattcct	attccaattt	tacctacata	1800
tttataagta	tetttttatt	tcaaagtcat	actattttca	actttttcaa	taccettatt	1860
atcaaaatgc	atottatott	atttcatatt	tttcaacaaa	ttaacctott	ctattacaca	1920
aatttttaat	gaagattcat	tccaataatt	ttcattccct	gatatttctt	cattaccata	1920
ttcaattaga	tctaaataag	atttaacctc	atcttgtctt	asatatttat	ttaaattttc	2040
gtaataccaa	tttactgaat	atttcattca	agaatttaaa	ttttgatctt	gattacetta	2100
tttaaatgga	tattgatgtt	tatcccatto	ttgttcagta	toatttaato	agacteatt	2160
ttggtcgaat	accattaaca	ctaaataaat	tttgtaagta	gatttaggtg	agagtaaatt	2220
tttactttct	ggttcattat	aaatagaata	agcttgctcc	cattcattat	aacaccgccg	2280
acttccatca	aatcctttga	aatacggagg	tagttgattt	aatttttat	atgatacatt	2340
totttcatat	ttatcttatt	gaacatgtgc	agatagtaac	aatacttata	ttaaaaaaaa	2/100
tatactacat	acaatatacq	caacaatacq	cttgtttcga	ttaggtttag	acattaaata	2460
ataaagtgca	atatacttaa	cacattettt	aatatttgaa	ttazaaccta	gtactgaatt	2520
tactaccaca	ttatttatqt	actgagattt	taaaatagag	cattttaata	tccattcacc	2580
			ttttaaaacg			
acagtcatto	tccatcattq	ttttacttat	atatagtgca	ggattaaacc	acacteteet	2700
tttaaaaaca	acataaagct	ggttgaatat	taagtcatga	cttttcacat	agaatactac	2760
atgtagaata	atatattcaa	tttctttatc	attcatggtt	tcgactacga	canttontan	2820
tacaatttgg	gatttcacta	aaccaaatac	catcggatta	tcaatctttc	aactataact	2880
aattottata	tactttttat	agaactgcat	cttactttga	catactttaa	atcattcatt	2940
aagatatgac	gattccaatg	acqaactttt	aataacatca	atttatcaa	atoccttaat	3000
			tacccatatc			
atttgaggtc	tcaaactgat	taacattaat	tgctaagtct	ttcataacaa	atgattatta	3120
accatctaac	atatgactaa	ccdaadaadt	cgtgtcagat	acatttccat	tcatcatatc	3180
ttttgaaaat	gtaaaattcg	atattt+a+a	aaatggtatt	aatogaatta	acataaaaaa	3240
gagcactaat	aaccaaatct	tatotoacat	aatattttga	ctatatttt=	tatagagagac	3300
tctcactaaa	aaaattacac	atatcotoao	caatgaactg	attatactta	acattaaaaa	3360
agatgataac	accttctaca	cctccatate	acaaaaatta	taacattatt	ttgacataaa	3420
tactacattt	gtaatatact	acaaatotao	tcttatataa	adaddatatt	datdaaaaaa	3480
ataaaaatto	ttccacttat	tttaatagtt	gtagttgtcg	aatttaatat	atattttat	3540
gcttcaaaag	ataaagaaat	taataatact	attgatgcaa	ttgaagataa	aaatttcaaa	3600
caagtttata	aagatagcag	ttatatttct	aaaagcgata	atggtgaagt	agaaatgact	3660
gaacqtccqa	taaaaatata	taatagttta	ggcgttaaag	atataaacat	tcaggatcgt	3720
aaaataaaaa	aagtatctaa	aaataaaaaa	cgagtagatg	ctcaatataa	aattaaaaca	3780
			J999			

aactacggta	acattgatcg	caacgttcaa	tttaatt t tg	ttaaagaaga	tggtatgtgg	3840
aagttagatt	gggatcatag	cgtcattatt	ccaggaatgc	agaaagacca	aagcatacat	3900
			attttagacc			
-	_		gttccaaaga	-		
			gaagactata			
			tttaaaaccg			
			acaactaatg			
			ggttatgttg			
			gatgatgcag			
			gaagatggct			
			atagagaaaa			
			aagagta t tt			
tatggctcag	gtactgctat	ccaccctcaa	acaggtgaat	tattagcact	tgtaagcaca	4560
			ggcatgagta			
accgaagata	aaaaagaacc	tctgctcaac	aagttccaga	ttacaacttc	accaggttca	4680
actcaaaaaa	tattaacagc	aatgattggg	ttaaataaca	aaacattaga	cgataaaaca	4740
agttataaaa	tcgatggtaa	aggttggcaa	aaagataaat	cttggggtgg	ttacaacqtt	4800
			gacttaaaac			
			ttaggcagta			
			agtgattatc			
			ttagctgatt			
			atctatagcg			
			aaaaacaaag			
			ggtatgcaac			
			ttaattggca			
			attgggtggt			
			aaagatgtac			
			gatgagctat			
			gcaatccgta			
ttattatgaa	ttattaataa	gtgctgttac	ttctccctta	aatacaattt	cttcattttc	5580
attgtatgtt	gaaagtgaca	ctgtaacgag	tccattttct	ttttttatgg	atttcttatt	5640
tgtaatttca	gcgataacgt	acaatgtatt	acctgggtat	acaggtttaa	taaatttaac	5700
gttattcatt	tgtgttcctg	ctacaacttc	ttctccgtat	ttaccttctt	ctacccataa	5760
			agatgcaatg			
			ttgaggatca			
			tgttttgaat			
			ttcaaattaa			
			agactcacct			
			gataccatca			
			tacgttcaat			
			atcttcagtg			
gtaatttaaa	agigitetee	agtetteacg	aaacgaagtt	gtatggaata	taactgetet	6300
gitatattat	ggeatgattt	cttetgeaag	tttaacaagc	acaacattaa	agcttaaatg	6360
agetettett	gattctgatt	taagtttgtt	aattgttctt	ccacttgctt	aaccatactt	6420
ttagaaagtg	ctagtccatt	cggtccagta	atacctttta	attctacatt	taaattcata	6480
			tcgaaagttg			
ttttcaccaa	accaagatcc	tgcagaagca	tctttaattt	catcataatt	caattcagtt	6600
			aaataatcat			
			aaccagttta			
			gctttactag			
acagttagca	tattacctct	ccttgcattt	tattttttta	attaacgtaa	ctgtattatc	6840
acattaatcg	cacttttatt	tccattaaaa	agagatgaat	atcataaata	aagaagtcqa	6900
			cgtctcatct			
			ctagtttttc			
ttacttagga	ttgcttttaa	cttacccctt	atcagaattt	tactgagaac	tgcttttaac	7080
			actgctttta			
			tatcagcaat			
			actgctttta			
tttacttaga	actoctttta	agetacetet	tatcctgtaa	ttttactcac	aactact+++	7320
			aactgctttt			
ttttacttac	aattootttt	actattcctc	ttattagtat	aatataactt	agaataggta	7///
cccaccag	aaccycttt	actattccc	ciaciaycat	aaccccagca	ayaatyoyta	/44U

```
taaaaatgaa aattacaacc gattttgtaa gtctggacgc ctgagggaat agtatgtgcq 7500
agagactaat ggctcgagcc atacccctag gcaagcatgc acgtacaaaa tcgtaagata 7560
aaaaaataag catatcactg taaactttaa aaaatcagtt tagtgatatg cttatttatt 7620
togagttagg atttatgtcc caagctcatc aagcacaatc ggccactagt ttatttctct 7680
atcttatatg ttctgatatg gtcttctata ctgtataagt atacttttga atatggatct 7740
tgtgtcaatt cacgttcgaa atcaaattct tgattatcaa atgctgttaa agaatgtttc 7800
gtattcttcg actgataatt gctctctaga ttctagcata tttaagtgtt tctctttatc 7860
taatgctttg tcatatcctt taacgattga accactaaag atttctccta ctgctcctga 7920
accataacta aatagacata cttctcttct ggttggaatg tgtggttctg taataacgaa 7980
attaaactta agtataatga tootgtataa atgttaccaa catototatt ocataatacg 8040
gttctgttgc aaagttgaat ttatagtata attttaacaa aæaggagtct tctgtatgaa 8100
ctatttcaga tataaacaat ttaacaagga tgttatcact gtagccgttg gctactatct 8160
aagatataca ttgagttatc gtgatatatc tgaaatatta agggaacgtg gtgtaaacgt 8220
tcatcattca acggtctacc gttgggttca agaatatgcc ccaattttgt atcaaatttg 8280
gaagaaaaag cataaaaaag cttattacaa atqqcqtatt qatqaqacqt acatcaaaat 8340
aaaaggaaaa tggagctatt tatatcgtgc cattgatgca gagggacata cattagatat 8400
ttggttgcgt aagcaacgag ataatcattc agcatatgcg tttatcaaac gtctcattaa 8460
acaatttggt aaacctcaaa aggtaattac agatcaggca ccttcaacga aggtagcaat 8520
ggctaaagta attaaagctt ttaaacttaa acctgactgt cattgtacat cgaaatatct 8580
gaataacctc attgagcaag atcaccgtca tattaaagta agaaagacaa ggtatcaaag 8640
tatcaataca gcaaagaata ctttaaaagg tattgaatgt atttacgctc tatataaaaa 8700
gaaccgcagg tetetteaga tetaeggatt ttegecatge caegaaatta geateatget 8760
agcaagttaa gcgaacactg acatgataaa ttagtggtta gctatatttt tttactttgc 8820
aacagaaccg aaaataatct cttcaattta tttttatatq aatcctqtqa ctcaaqattq 8880
taatatctaa agatttcagt tcatcataga caatgttctt ttcaacattt tttatagcaa 8940
cattgatata gtcaatgaat aatgtacaaa ttatcactca taacagt
<210> 740
<211> 1832
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumanii
<400> 740
```

cgcgtgtacg taatactggt gaagccccac gtcctaagac gatgtttgag ccaggtgaag 60 aattacttgt tattgacggt ccattcacag actttaaagg tgtggtggaa gaggttcaat 120 acgataagtc acgtttaacg ttgacgatta acgtgtttaa tcgaccaact caggttgaac 180 tcgaatttcg ccaagtcgaa aaaacgattt aatcttaatt ggttgaaaag cgcccgattt 240 tatcgggcat tgttgttgta acagtattgt tacgtagaaa ttgggggagcc taacggcgtt 300 tgtacccaga ggtatttaaa atggctaaga agattgacgg ctatatcaag ctgcaagttc 360 cagctggtaa agcaaatcca tctccaccga ttggtcctgc actaggtcaa cgtggtgtaa 420 acatcatggc gttctgtaaa gaattccaaa aacaatttaa agttcctacg gctaaactct 480 taccagactt accaagtttt acgggcggct tggtgggtta ttttgggctac gatgctgtcc 540 gctacatcga gccacgttta aagaatgtac ctgcggctga tccgattacg ctgccagatt 600 tatggttgat gctctcaaag acagtcattg tttttgacaa tcttaaagat acgctatttt 660 taattgtgca tgcggataca gagcagagta atgcttatga agacgctcaa caaaaattag 720 atcaattaga acagttgttg gcgactccag ttagtttgca agcgcgacca catacgcctc 780 cgcattttga atcaattact ggtaaagcaa aattcttaga gacggtagag aaggttaaag 840 aatatattcg tgcaggcgat gtgatgcagg ttgtacctgg gcagcgtatg gtttctgatt 900 ttgatggaga agctttacag gtttaccgtg cattacgtca tttaaatcca tcaccttatc 960 tattcttggt tcaaggacaa acgattactg ataaaaaacc atttcatatt gttggttcat 1020 caccggaaat tttatctcgt ttagaaaatg gtattgctac agttcgacct ttggcaggaa 1080 ctagaccgcg cggtaaaact aaagaagaag atatagcatt agaaaaagat ttgctttctg 1140 atgaaaaaga gattgctgaa catttaatgc tgattgatct tgrggcgaaac gatgtagggc 1200 gcgtatcaaa aataggtaag gtccaagtta cggatcaaat ggftgatcgag cgctattcac 1260 atgtcatgca tattgtttca aatgtacaag gtgaagtgcg tgratgatatc gatgcacttg 1320

```
atgtatttaa agccaccttt ccqqcaqqaa cqttatcaqq tqccccaaaa attcqtqcaa 1380
tggaaattat tgatgaagta gagcctgtga aaagaggagt ttttggcgcg gctgttggtt 1440
atttgggatg gcatggtgaa atggatatgt cgattgcaat ccgtacttgt gttatccgtg 1500
acaaaaaggt gtatgtacag gctggtgcag ggctagttgc tgactcaaat ccagaatctg 1560
agtggaatga aacccaaata aaagctcgcg cagtgatcaa agcggttgaa ttatcatcaa 1620
acggattgat tttatgagtt tttagcggtt tttttaaaaa aaccgcttgc atcqtttgga 1680
agttttgcta aactgcacac cgttccgata cgaaacgtac gaaacactaa gaaacgccgg 1740
catagctcag ttggtagagc aactgacttg taatcagtag gtccacagtt cgaatccgtg 1800
tgccggcacc attttaaagt gttaagttaa tt
                                                                   1832
<210> 741
<211> 382
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumanii
<400> 741
cacaatgaca ttgcaagcaa ttgctcaatg tcaaaaatct ggtggtacat gtgccttcat 60
tgatgctgag cacgccctag accctcaata tgcacqcaag cttggtgtag atattgataa 120
cetacttgtt teacaaceeg acaatggtga geaageactt gaaattgetg acatgettgt 180
ccgttcaggc gcaattgatt taatcgttgt ggactcggta gctgcactta cccctaaagc 240
agaaatcgaa ggtgagatgg gtgactctca tatgggtcta caagcgcgtc ttatgagcca 300
ggcacttcgt aaaattacgg gtaatgctaa acgttcaaac tgtatggtta tcttcattaa 360
ccagattcgt atgaaaattg gt
<210> 742
<211> 344
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumanii
<400> 742
aaatctgccc gtgtcgttgg tgacgtaatc ggtaaatatc acccgcatgg tgactcagct 60
gtttatgaaa ccattgttcg tatggctcaa gactttagct tacgttattt attggttgat 120
ggtcagggta acttcggttc gatcgatggc gatagcgccg cggcaatgcg ttataccgaa 180
gtccgtatga ctaagctggc acatgagctt cttgcagatt tagaaaaaga cacagttgac 240
tgggaagata actacgacgg ttcggaacgt atccctgaag tacttccgac acgtgttcca 300
aacttgttaa tcaacggtgc tgcgggtatc gccgtaggta tggc
<210> 743
<211> 909
<212> DNA
<213> Artificial Sequence
<223> Acinetobacter baumanii
<400> 743
gataatagct ataaagtttc aggtggctta cacggcgtag gtgtttctgt tgttaacgca 60
ctttcaagta aattgcatct aacaatttac cgtgctggtc aaatccatga gcaagaatat 120
catcatggtg atccgcaata tccattgcgt gtgattggtg aaacggata a taccggaaca 180
actgtacgtt tttggccaag tgcagaaaca ttcagtcaaa ccattttta a tgttgaaatt 240
ctagcacgcc gtttacgtga gctttctttc ttgaatgctg gtgtacgtat cgttttacgt 300
gatgaacgta ttaaccttga gcatgtgtat gactatgaag gcggtttat c tgagtttgta 360
aaatacatca acgaaggtaa aaaccatctc aacgaaatct tccatttcac agctgatgct 420
gacaacggta ttgctgtaga agttgcattg caatggaacg atagttacca agaaaatgtt 480
```

```
cgctgtttca caaacaacat tccacaaaaa gatggtggta cgcacttægc aggtttccgc 540
gcagctttaa cacgtggctt aaaccagtat ctggaaaatg aaaatattct caagaaagaa 600
aaagtgaatg tgactggtga tgatgcgcgt gaaggtttaa cagcgattat ttctgttaag 660
gttcctgatc caaaattctc gtctcagaca aaagaaaaat tggtatcaag tgaggtaaaa 720
ccagcggtag agcaagcaat gaacaaagag ttctctqctt acttacttga qaatccacaa 780
gctgcaaaat caattgcagg caagattatt gatgctgcac gcgcacgtga tgctgcacgt 840
aaagcacgtg aaatgacacg ccgtaagagt gcattagata ttgcaggttt gcctggtaaa 900
ttggctgat
                                                                    909
<210> 744
<211> 1430
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumanii
<400> 744
aacttgctct ttcgtgagtt cagtaaatga cttttcttgt atatggtaga gtttaggtat 60
cgaaactctg ccatttttt tatctatgtt atattttccg cagtttttga attttgacta 120
tttgaggcaa accgcttggc gaccccattt tggtacaaca ccgcacttca tttattaaaa 180
ccgttttatc gttggcggat aaaaagacgt gcagaaagtc tagaattata tcagcaggaa 240
tgtctggaaa gatttgggcc atttgaagca ccgaaqaatg taaaagcgat ctggtttcat 300
gctgtttcag tcggggaaac caatgctgca cagcccttaa ttgaatatta cctaaaactt 360
gggcagccag tottagtgac caataccacg aaaacaggtc aggctcgtgc caagtcactt 420
tttctaaaag aaccatattt agatttattt caagccgttt atttgcctgt agaccagaag 480
cctcttttaa aaaaattttt tgagttatat cagccaaagc ttttagcact ggttgaaact 540
gaactctggc caaatttaat cgatcaagcc aaattacagc atqtaccttq tttqctqctt 600
aatgctcggt tgtcagaaaa atctgcaaaa ggatatggca aagtctcggg tttaaccgca 660
ggtatgttaa aacagctgga ctgggtgtta gctcaagata gtgcaact cg tcagcqttat 720
gttgagcttg gtttagacga acacaaaagt caggtcgttg gtaatattaa gtttgatatt 780
catgcgccag aggcttttat taaacaagct gcccaattgc atcagcaa.tg qtatctggaa 840
aatcggcagg ttgtgacgat tgccagtaca catgcacccg aagaacaa.ca aattttggaa 900
gcactcgcac cttatttaaa ttcagatcgt gagttggtgt gtattgtggt gcctcgtcat 960
cctgagcgtt tcgatgaagt atttgaaatt tgccaaaatt taaattta.at tacgcatcgt 1020
agaagtatgg gccaaagtat tcatgccagc acgcaagttt atctcgct qa cagtatgggt 1080
gagetetggt tatggtatge ettaagteag gtgtgttttg taggeggt te tttaaatgag 1140
ccgggtgggg ggcataatat tttagaacct atggttttaa atgtacct ac tgtagttgga 1200
ccgcgttatt ttaactttca aacgattgtc gatgagttca ttgatgaa aa tgctgtgctt 1260
attgctcaag atgcgcagca ggtcgttgat atctggttag catgtctqqc agaacttgag 1320
gcgactgaac agttagtgat acaggcgcat aaagtgttgc aacgtaat ca aggttcctta 1380
caaaaacata toggggtgat taatogctat otggccgaaa aatoatga at
<210> 745
<211> 3609
<212> DNA
<213> Artificial Sequence
<220>
<223> Concatenation of C. jejuni genes
<220>
<221> misc feature
\langle 222 \rangle 478-\overline{5}27, 1005-1054, 1457-1506, 2014-2063, 2562-2611,
      3071-3120
<223> n = A, T, C or G
<400> 745
atgataggtg aagatataca aagagtatta gaagctagaa aattgatt tt aqagatcaat 60
ttgggtggaa ctgctattgg aacaggaatt aattctcatc ctgattat cc gaaggttgta 120
gaaagaaaaa taagagaagt gacaggtttt gaatatactg tggctqaq qa tttaatcqaq 180
```

gcgactcaag	atacgggagc	ttatgtacaa	atttcaggtg	ttttaaaacg	tgt tgcaaca	240
aaactttcta	aagtatgtaa	tgacttaaga	cttttaagta	gtggtccaaa	atg tggtctt	300
aatgagatta	atcttccaaa	aatgcaacca	ggtagttcta	tcatgccagg	taa ggtaaat	360
					aga cgtaact	
gtaacttttg	cttgtgaggg	tggacaatta	caacttaatg	tttttgaacc	agt tgtannn	480
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnngat	cct tttacgg	540
					caa atgtatg	
aaaaatgtcc	aagaagcata	gcaaaaaaag	caatagaaca	ccttaaaaat	agt ggcatag	660
ctgatactgc	ttactttgga	ccagaaaatg	aattctttgt	ttttgatagt	gta aaaatag	720
ttgatactac	tcattgttct	aagtatgaag	ttgataccga	agaaggagag	tgg aatgatg	780
atagagaatt	taccgatagc	tacaatactg	gacacaggcc	aagaaacaaa	ggt ggatatt	840
ttccagttca	gccaattgat	tctttagtag	atattcgttc	tgaaatggtt	caa accettg	900
aaaaagtagg	tcttaaaact	tttgttcatc	atcatgaagt	tgcacaagga	caa gctgaaa	960
taggagtaaa	ttttggcacg	cttgtagaag	cagctgacaa	tgttnnnnnn	nnnannnnn	1020
nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnngaaatg	aaaaaacgtt	cttttatcca	1080
tgaaggtatg	caccgtcttt	ttgattcttt	ccctgataat	gctcatccta	tgg cagtttt	1140
acaaggtgct	gtttcatcgc	ttagtgcttt	ttatcctgat	catttaaaca	tga atgtaaa	1200
agaagaatat	atggaaatgg	cagctagaat	agtagctaaa	atccctacta	tag tggccac	1260
cgcttataga	tataaacacg	gctttcctat	ggcttatcca	aatttagatc	gtggttttac	1320
agaaaatttc	ttatatatgt	taagaaccta	tccttacgat	catgtagagc	ttaaacctat	1380
agaagtaaaa	gcacttgata	cagtttttat	gcttcatgca	gatcatgagc	aaaatgcttc	1440
aacttcaaca	gttcgtnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnmnnnnn	1500
nnnnnnggcg	gacatttaac	tcatggtgca	aaagtaagtt	cttcgggcaa	aat gtatgaa	1560
agctgtttt	acggcgtaga	acttgatgga	agaattgatt	atgaaaaagt	aagagaaatt	1620
					aagagtgatt	
					tgctgatata	
gcacatattg	caggtcttgt	tgtggcaggt	gagcatccaa	gtccttttcc	ata cgctcat	1800
					tat tatgaca	
aatgatgaag	agcttgctaa	aaaaattaat	tctgccattt	ttccaggtat	tcaaggtggt	1920
cctttgatgc	atgtaattgc	tgcaaaagca	gtaggattta	aatttaatct	tagcgatgag	1980
tggaaagttt	atgcaaaaca	agtaagaact	aatnnnnnnn	nnnnnnnnn	nnnmnnnnnn	2040
					gct ttacatc	
					gcttttgatg	
gtgatgcaga	tcgtttggtg	gttgtagatg	aaaaaggcga	agtggctaat	ggggatagtt	2220
tattgggcgt	attggcactt	tatcttaaag	aacaaggtaa	attacaatca	agtgttgtgg	2280
ctactataat	gagtaatggt	gctttaaaag	agtttttaaa	taaacatggt	atagaacttg	2340
atacttgtaa	tgttggcgat	aaatatgtgc	ttgaaaaact	aaaagccaat	ggtggaaatt	2400
					ggagatggtt	
tgatagccgc	cttgcaattt	agtgctttaa	tgctttctaa	gaaaaaatct	gcaagttcta	2520
ttttgggtca	agttaaacct	tatcctcagc	ttttaaccaa	tnnnnnnnn	nnnmnnnnn	2580
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nttacattta	agcggctatg	act taagett	2640
agaagatctt	aaaaatttcc	gccaacttca	ttctaaaacc	cctggacacc	ctgaaatttc	2700
aactcttgga	gtagaaatcg	ctacaggccc	tttaggacaa	ggcgttgcca	atgctgtagg	2760
ctttgctatg	gcagcaaaaa	aagcacaaaa	tttgctaggc	agtgatttaa	tcgatcataa	2820
aatttattgt	ctttgcggag	atggggattt	acaagaaggc	atttcttatg	aagcttgttc	2880
tttagcagga	cttcacaaac	ttgataactt	catacttatt	tatgatagca	acaatatctc	2940
tatagaaggc	gatgtaggtt	tagcctttaa	cgaaaatgta	aaaatgcgtt	ttgaagcaca	3000
aggatttgaa	gttttaagta	taaatggaca	cgattatgaa	gaaatcaata	aagccttaga	3060
acaagctaaa	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	3120
gccggtgctt	cagatcctgc	ggctttacag	tacttagctc	catatactgg	tgtaaccatg	3180
ggtgaatttt	ttagagacaa	cgcaaaacat	gctttaattg	tttatgatga	tttcagcaag	3240
catgctgtag	cttatcgcga	aatgtctttg	attttacgtc	gtcctccagg	tcgtgaagct	3300
tatccaggtg	atgttttta	ccttcattca	agattgcttg	aaaqagcaaq	caagctaaat	3360
gatgaattag	gtgctggttc	tttgacggca	ttgccgataa	ttgaaacaca	agcaggagat	3420
gtttctgctt	atattccaac	taatgttatt	tcaattacag	atggacaaat	tttcttagaa	3480
actgatttat	ttaactcagg	aattcgtcct	gcaattaatg	ttggtttatc	agtatctcgt	3540
gtaggtgggg	ctgctcaaat	taaagctaca	aaacaagttt	caggcacatt	aagacttgac	3600
cttgctcaa			_			3609

<210> 746 <211> 1214

```
<212> DNA
<213> Artificial Sequence
<223> Bordetella pertussis
<400> 746
ttcgggatgg gcatgggcgt cgcacacgac gtcgaacacc gtgccggttt catccagtgc 60
gggttcctgc tcgaccgtgg ccacgcqcag gcccgaactg cgggcgatgt cccctcgtc 120
gggctgcgtg cggccatcga gcaggcgcag cagcgaagat ttgcccqcqc cqttqcqccc 180
gatcaggecg atgegetege ettectggat ggegaaateg gegtggteca gcaaqqqqtg 240
gtggccgtag gccagttgaa cgtcggtaag cgtaataagg gaagcgaggg ccatggacag 300
ccgggagccg gggcgccgac tgtactaaaa tgccgctcgc aqqqcaqatc qcqcaatcqc 420
gggggatgca aatcettega ggaaggteeg gacteeacag ggegggatag eggetaacgg 480
ccgtccggcg acgctggcgg gcttgcccgc cggaaaagcc gaggaacagg gccacagaga 540
cgagtctgtc atgagggcgc gcctggcgcg caccggcacg gccatctccg tgccgcgccg 600
tccggaaacg ggcggcggca tgacagggtg aaacgcggca acctctatcc gcgagcaacat 660
caaataggca tgcgtacggc cgtaaggccg ggaagggcgg ctccgtccaa gcatgcgggt 720
aggtggctgg agcggtccag caatggttcg ccaagaggaa tgattgcccg ccggggaaac 780
ccggcgtaca gaatccggcc tatagatctg ctctgcactg cattttcatg acagccggcc 840
ggaatccggc cggctggctt acggcgccct acgtaaaaca atgaaaqcac qcqcccaqqc 900
cctacttctg atgaatgaca tttaatagtc ggcgcaagct gctgatttat cagcaagttt 960
tccgcgcgcc gtttttacaa ttggctctaa qtccttgttg tgattgaaaa amttgcaacc 1020
acggccttga cccatgaagt tgcttcccgt agagtgggaa aaagtaggaa tttgtgcaac 1080
taagtggggc aaacgggtgt tccagggaag cagcgcactc acgttggatg ctaaggggcg 1140
gatctcgatt ccgacccggc atcgtgacgc gctcatggac cgtgccgaag gccqgttgac 1200
cctgacccgt catc
                                                                 1214
<210> 747
<211> 925
<212> DNA
<213> Artificial Sequence
<220>
<223> Burkholderia mallei
<400> 747
gaccgatccg gcaagccgcg gcttcgcqcc gctqccqqtq ctqqqcqtqc ccqqctqqtq 60
gccqqcqaac gcgtcqccqg ccttctacqa cgatccqcaq gtgtttcqcc gcgqccqccq 120
acgogoaccg gatgtcctcg cccgtgccgc gtgacggacg acgcttgcct ccgcgcgccc 180
gegeggegee gegeacegee ggtgegeget ttegegeaag cegeegeege gcaagggeg 240
tegegeegag eggatgeege tgtaeggtge tagaateeeg etegeaaage acgetaggea 300
gtcgcggctt tcgcggttcg ccgcgaaggg cgaggaaagt ccggactcca acagggcagg 360
gtgatggcta acggccatcc gtggcgacac gcggaacagg gcaacagaaa gcaaaccgcc 420
gatggcccgg cgcaagccgg gatcaggcaa gggtgaaacg gtgcggtaag agcgcaccgc 480
ggctgcggcg acgcagaccg gcacggtaac ctccacccgg agcaattcca agtaggcgga 540
egegeatett eggatgeagg aeggtgeece egtetegtte gegggtagga agettgageg 600
cgtcaqcaat ggcgcgccta gaggaatggc tgccacgggc cgcgcgcctt cgggcgtgcg 660
gttcgcacag aatccggctt atcggcccgc tttgccgccc gatgacgaaa ggccggcgcc 720
cgatgcggcg ccggcctttt ttccgtttcg cqqtccqcqc qcacqqccqc ttcqacqqacq 780
aagcgcgtta cgcqqcqacq atttcqaacq aatqcqacaq ctcqqccqtc ttqqcqatca 840
tgatcgacgc cgaacagtat ttgtcgtgcg acagattgat cgcgcgctcg acggtcgcgg 900
ggttcaggtt gcggcccgtc accgt
                                                                 925
<210> 748
<211> 713
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Bacillus subtilis <400> 748 gttcttaacg ttcgggtaat cgctgcagat cttgaatctg tagaggaaag tccatgctcg 60 cacggtgctg agatgcccgt agtgttcgtg cctagcgaag tcataagcta gggcagtctt 120 tagaggetga eggeaggaaa aaageetaeg tetteggata tegetgagta teettgaaag 180 tgccacagtg acgaagtctc actagaaatg gtgagagtgg aacgcggtaa acccctcgag 240 cgagaaaccc aaattttggt aggggaacct tcttaacgga attcaacgga gagaaggaca 300 gaatgettte tgtagataga tgattgeege etgagtaega ggtgatgage egtttgeagt 360 acgatggaac aaaacatggc ttacaqaacq ttaqaccact tacatttaaa atgatqaaaa 420 caagetetee egtataagga gagettttat ettgaaaaga gaaaagtttt aaaagacagg 480 gtgatacgat gaagaagtat acactaattg caacggcgcc gatgggcatt gaagctgttg 540 togcaaagga agtacgagat ttaggatacg aatgcaaggt tgataacgg aaagttattt 600 ttgaaggtga tgcacttgcc atctgccgtg cgaacctttg gcttagaaca gccgaccgca 660 taaaggttca ggttgcttct tttaaagcga aaacatttga tgaactgttt gaa <210> 749 <211> 828 <212> DNA <213> Artificial Sequence <220> <223> Clostridium perfringens <400> 749 aaaacaagtt cttttcata taatgatgta taagtaatac ttagggtgga gaattatgtg 60 gtccaatttt ggaaatagat ttaatggaga ctgctttaaa gacttaagga gagatttcaa 120 tagattaatg agaaatttta agagaaatgc ttgtaaaaga tgtcttatta ataattqcta 180 tttcagaaat gccttaaagt ggggggctgt aggtggcata ttaaccttcc ttataataag 240 tcaaatagga gttcctttag caattgtttg tattggaata gtagcaata \mathbf{t} ttgtgatttg 300 taataaatgg tagaaaaaat aatttgaaaa aaataagtat atatgttaat attaatcttg 360 cgagtaagcc agacaatcgc tgctagtctt agaactagga gaggaaagtc cgagctccat 420 agggcaggat gctggataac gtccagtgga ggtgactcta aggatagtgc aacagaaata 480 aaccgcctag atttatctag gtaagggtgg aaaggtgagg taagagctca ccagggtata 540 ggtgactata ctgctatgta aaccccatct ggagcaagac caaataggag gacatatagg 600 ggctgcccgt cccgtcctcg ggtgtgtcgc ttgagcctat cggcaacggt aggcctagat 660 agatgattgt caaatacaga actcggctta tagacttatc tcgtatttat aaaacactag 720 gttataatac ctaagtgttt ttttatttta caaaaaaata tactgatagt ttctttcctt 780 attaacttta atcttacagt attaatttaa ttttattgga tatatcta 828 <210> 750 <211> 777 <212> DNA <213> Artificial Sequence <220> <223> Escherichia coli <400> 750 gaagetgace agacagtege egettegteg tegteetett egggggagae gggeggaggg 60 gaggaaagtc cgggctccat agggcagggt gccaggtaac gcctgggggg gaaacccacg 120 accagtgcaa cagagagcaa accgccgatg gcccgcgcaa gcgggatcag gtaagggtga 180 aagggtgcgg taagagcgca ccgcgcggct ggtaacagtc cgtggcacgg taaactccac 240 ccggagcaag gccaaatagg ggttcataag gtacggcccg tactgaaccc gggtaggctg 300 cttgagccag tgagcgattg ctggcctaga tgaatgactg tccacgacag aacccggctt 360 atcggtcagt ttcacctgat ttacgtaaaa acccgcttcg gcgggttttt gcttttggag 420

gggcagaaag atgaatgact gtccacgacg ctatacccaa aagaaagcgg cttatcggtc 480 agtttcacct ggtttacgta aaaacccgct tcggcgggtt tttgcttttg gaggggcaga 540 aagatgaatg actgtccacg acactatacc caaaagaaag cggcttatcg gtcagtttca 600 cctgttttac gtaaaaaccc gcttcggcgg gtttttactt ttggaggggc agaaagatga 660

```
atgactqtcc acqacactat acccaaaaga aagcggctta tcggtcagtt ttacctgatg 720
tacgtaataa accgttccgg cgggtttcag attgttgagt gcgctttatt catqccg
<210> 751
<211> 834
<212> DNA
<213> Artificial Sequence
<220>
<223> Rickettsia prowazekii
<400> 751
taataaatta atttattoat atcaaagttt gotaatagtg tatatgtttt taaqtactac 60
attatttata cattaggaaa aaaatagtag caatgttaaa ttaagatatc tttctttaaa 120
gaattgacat tatggaattt gttattataa ttgtaattat attgtgtgta caattac 180
aataaatttt cccctcagaa cctaacaagc taattgaaat tcttttaaca tattattgac 240
taatttaaga aaagctacca taatctaaat ggtcgtgcag ttgcgtgatg ataatcacga 300
ggaaagtccg gactctatag aggtatggtg ccggttaaca tccggcagag tattattact 360
ttagggctag taccacagaa aatataccgc cgagtatttc ggtaagggtg aaaaggtgtg 420
gtaagagcac accggtaagt tggcaacaag ttacgcatgg ttaaccccac caacagcaag 480
atcaaatagg cattacagaa tttaaatatt tatttaagtt cctgggttac ctctaatcgg 540
attgtaatgc gggtagatcg cttgaggtaa acggtaacgt ttatcctaga taaataactg 600
caatgaatta atattcatac agaatccggc ttatagacca gatgagcagg tattacatgt 660
gttaataccg cagagttatt gcgagtaact gaaaaaagta tqqcaatcta gaamaataat 720
cagattctgt ggatttttag tgttccctcg caatgacgaa aataatacac gtatagatta 780
cagcatgaga tgatactaat acttactgta acataattta atgaaaaagt tata
<210> 752
<211> 783
<212> DNA
<213> Artificial Sequence
<223> Staphylococcus aureus
<400> 752
tgatattttg ggtaatcgct atattatata gaggaaagtc catgctcaca cagtctgaga 60
tgattgtagt gttcgtgctt gatgaaacaa taaatcaagg cattaatttg acgcgcaatga 120
aatatootaa gtotttogat atggatagag taatttgaaa gtgccacagt gacgtagott 180
ttatagaaat ataaaaggtg gaacgcggta aacccctcga gtgagcaatc caaatttggt 240
aggagcactt gtttaacgga attcaacgta taaacgagac acacttcgcg aaatgaagtg 300
gtgtagacag atggttatca cctgagtacc agtgtgacta gtgcacgtga tgacgtacgat 360
ggaacagaac atggcttata gaaatatcac tactagttta gctctcctag atgatggaga 420
gcttttttca tgaaaagaac acttaaaatt aacaccttgt cttgatataa tgacactgcc 480
ttgttttaaa atagtaagcg gatgcgttaa tgtatcagcg attaaatttg ttggaaatgt 540
ataaaaaaca caagctaaga ataaaatacc tgtataaaag gagaatcata tatgtttcaa 600
ttacttgcag tttgtccgat gggattagaa gctgttgttg ctagggaaat tcaagaatta 660
ggctatgaaa caaatgttga aaatggtcgt atattttttg aaggagacgc aagtgcaatt 720
gtaaaggcaa atttatggtt gcgcacagca gaccgaatca aaattgttgt tggacgtttt 780
aac
<210> 753
<211> 1086
<212> DNA
<213> Artificial Sequence
<220>
<223> Vibrio cholerae
<400> 753
```

```
qtqaaatcqq tctggcqatc qagatqqgct gtgatqcaqa aqacatcgca ctgaccattc 60
atgctcaccc aacgctgcat gagtctgtgg gtctggcggc tgaagtattc gaaggcacca 120
tcactgacct gccaaacgcc aaagcgaaaa agaaaaagta atttctgatt cactggtttg 180
gttaaaaagt gtttgattga agaaaccgct gcttgcagcg gttttttttc gcttttgatt 240
cccaattgaa tgcaaagtaa gcagttaaac cgagatttaa cgcgctggcg gattgtttct 300
ggactetget cacacttete getacaatee geegeggagt tgactgggta gtegetgeet 360
tattgacgtc ccttggccta tcgccaggga gactgataag ggggaggamaa gtccgggctc 420
catagagcag ggtgccaggt aacgectggg gggcgcaage ctacgacaæg tgcaacagag 480
agcaaaccgc cgatggcctc tccttcqgga tgqqatcagg taagggtqaa agggtqcggt 540
aaqaqcqcac cqtqcqactq qcaacaqttc qtaqcaqqqt aaactccacc cqqaqcaaqa 600
ccaaataggc ctccacatag cgttgctcgc gttaggaggc gggtaggttg cttgagccag 660
tgagtgattg ctggcctaga ggaatggcta ctaccgcgca agcggaacag aacccggctt 720
atacqtcqac tccacctatt qcaqacccat cataqccttq tqttatqqtq qqttttttqc 780
tttttgctga ctcaggtaac agcaaaacca ttaaacttag cgcaaagtca cgtcctgtat 840
acgettatgg ctageggtag tgtctgaaat cggtacacta acceatatca cgggcatgcc 900
cagcacaacg agaaaatcat gactgettet tteeaacaca tetetgtatt attgaacgaa 960
tcgattgaag gattggcgat caagccggat ggtatctaca tcgatggcac ctttggccgc 1020
ggtggtcaca gtcgcaccat tctcgctcag ttaggcccag aaggtcgtct gtacagcatt 1080
gaccgt
<210> 754
<211> 369
<212> DNA
<213> Artificial Sequence
<220>
<223> Coxiella burnetii
<400> 754
gagttaaccg gagtatccat cgtgacttac caacacatca aagttcccag ccaaqqtgaa 60
aaaatcaccg ttaataaagc cgttttagaa gttcctgacc gacccattat tccctttatc 120
gaaggagatg ggattggcat tgatatcgcg cccgtcatga aaaacgtggt cgatgccgcc 180
gtggaaaaat cctacgctgg aaagcgaaaa attgaatgga tggagatcta cgccggagaa 240
aaggctacga aagtgtatgg caaagacaat tggctgcctg atgagacact cgaagccatt 300
aaagaatacc aagtggccat taaaggtccc ttaaccacgc cggtgggggg tggcatacgt 360
tcgctcaat
                                                                  369
<210> 755
<211> 1317
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumannii
<400> 755
attacgacgg aaattgtaag taattttgtc aataatttac ttgattaaaa ttatcaagca 60
cttggaaagt ctatcaagtg tttgtatgat tcaaatgtga atagcttaaa aataatactg 120
gggtaaaaaa atatctcagg ggccaataaa tttaggctga gcttgaacaa caattgttat 180
ctctggagga tatccatgaa attgagtcgt attgcacttg ctactatgct tgttgctgct 240
ccattagetg etgetaatge tggegtaaca gttacteeat tattgettegg ttacaettte 300
caagacagcc aacacaacaa tggcggtaaa gatggtaact taactaacgg tcctgagtta 360
caagacgatt tattcgttgg cgcagctctt ggtatcgagt taactccatg gttaggtttc 420
gaagctgaat ataaccaagt taaaggcgac gtagacggcg cttctqctgg tgctgaatat 480
aaacaaaaac aaatcaacgg taacttctat gttacttctg atttaattac taaaaactac 540
gacagcaaaa tcaagccgta cgtattatta ggtgctggtc actataaata cgactttgat 600
ggcgtaaacc gtggtacacg tggtacttct gaagaaggta ctttaggtaa cgctggtgtt 660
ggtgctttct ggcgcttaaa cgacgcttta tctcttcgta ctgaagctcg tgctacttat 720
aatgctgatg aagagttctg gaactataca gctcttgctg gcttaaacgt agttcttggt 780
ggtcacttga agcctgctgc tcctgtagta gaagttgctc cagttgaacc aactccagtt 840
gctccacaac cacaagagtt aactgaagac cttaacatgg aacttcgtcgt gttctttgat 900
```

```
actaacaaat caaacatcaa agaccaatac aagccagaaa ttgctaaagt tgctgaaaaa 960
ttatctgaat accctaacgc tactgcacgt atcgaaggtc acacagataa cactggtcca 1020
cqtaagttqa acqaacqttt atctttagct cgtgctaact ctqttaaatc agctcttgta 1080
aacgaataca acgttgatgc ttctcgtttg tctactcaag gtttcgcttg ggatcaaccg 1140
attgctgaca acaaaactaa agaaggtcgt gctatgaacc gtcgtgtatt cgcgacaatc 1200
actggtagcc gtactgtagt agttcaacct ggtcaagaag cggcagctcc tgcagcagct 1260
caataatttg agttcttgaa cagtaaaaaa gcgactcgtt agagtcgctt ttttatg
<210> 756
<211> 4932
<212> DNA
<213> Artificial Sequence
<223> Rickettsia prowazekii
<400> 756
atggctcaaa aaccaaattt tctaaaaaaa ataatttccg caggattggt aactgcttcc 60
acggetacta tagtagetgg tttetetggt gtagcaatgg gtgetgetat geamtataat 120
aggacaacaa atgcagcagc tacaaccttt gatggtatag gctttgatca agctgctggt 180
gctaatattc ctgtcgctcc aaattcagtt attactgcta atgctaataa tcctattact 240
tttaatactc caaacggtca tttaaatagt ttatttttgg atactgcaaa tgatttagca 300
gtaacaatta atgaggatac taccttagga tttataacaa atattgctca gcaggctaag 360
ttctttaatt ttactgttgc tgctggtaaa attcttaaca taacagggca gggtattact 420
gttcaagaag cttctaatac aataaatgct caaaatgctc ttacaaaagt gcatggtggc 480
gctgctatta acgctaatga tcttagcggg ctaggatcaa taacctttgc tgctgcgcct 540
tetgtattag aatttaattt aataaateet acaacteaag aageteetet tacacttggt 600
gctaattcta aaatagttaa tggtggtaat gggacattaa atattactaa tggatttatt 660
caggtttcag ataacacttt tgctggtatt aagaccatta atatcgatga ttgtcaaggt 720
ttaatgttta attctactcc tgatgccgct aatactttaa atttacaagt aggtagataat 780
actattaatt ttaatggaat agacggtact ggtaaattag tattagtcag taagaatggt 840
gctgctaccg aatttaatgt tacaggaact ttaggtggta atctaaaagg tattattgaa 900
ttgaacactg cagcagtage tggtaaactt atctctcaag gaggtgctgc taatgcagta 960
ataggtacag ataatggagc aggtagagct gcaggattta ttgttagtgt tgataatggt 1020
aatgcagcaa caatttctgg acaagtttat gctaaaaaca tggtgataca aagtgctaat 1080
gcaggtggac aagtcacttt tgaacacata gttgatgttg gtttaggcgg taccaccaac 1140
tttaaaactg cagattctaa agttataata acagaaaact caaactttgg ttctactaat 1200
tttggtaatc ttgacacaca gattgtagtc cctgatacta agattcttaa aggtaacttc 1260
ataggtgatg taaaaaataa cggtaatact gcaggtgtga ttacttttaa tgctaatggt 1320
gctttagtaa gtgctagtac tgatccaaat attgcagtaa caaatattaa tgcaattgaa 1380
gcagaagggg ccggggttgt agaattatca ggaatacata ttgcagaatt acgtttaggg 1440
aatggtggct ctatctttaa acttgctgat ggcacagtaa ttaatggtcc agttaaccaa 1500
aatgetetta tgaataataa tgetettgea getggtteta tteagttaga tgggagtget 1560
ataattaccg gtgatatagg taacggtggt gttaatgctg cgttacaaca cattacttta 1620
gctaacgatg cttcaaaaat attagcactc gatggcgcaa atattatcgg ggctaatgtt 1680
ggtggtgcaa ttcattttca agctaacggt ggtactatta aattaacaaa tactcaaaat 1740
aatattgtag ttaattttga tttagatata actactgata aaacaggtgt tgttgatgca 1800
agtagtttaa caaataatca aactttaact attaatggta gtatcggtac tgttgtagct 1860
aatactaaaa cacttgcaca attaaacatc gggtcaagta aaacaatatt aaatgctggc 1920
gatgtcgcta ttaacgagtt agttatagaa aataatggtt cagtacaact taatcacaat 1980
acttacttaa taacaaaaac tatcaatgct gcaaaccaag gtcaaataat cgttgccgct 2040
gatcctctta atactaatac tactcttgct gatggtacaa atttaggtag tgcagaaaat 2100
ccactttcta ctattcattt tgccactaaa gctgctaatg ctgactctat attmaatgta 2160
ggtaaaggag taaatttata tgctaataat attactacta acgatgctaa tgtaggttct 2220
ttacacttta ggtctggtgg tacaagtata gtaagtggta cagttggtgg acagcaaggt 2280
cataagctta ataatttaat attagataat ggtactactg ttaagttttt aggtgataca 2340
acatttaatg gtggtactaa aattgaaggt aaatccatct tgcaaattag caataattat 2400
actactgatc atgttgaatc tgctgataat actggtacat tagaatttgt taacactgat 2460
cctataaccg taacattaaa taaacaaggt gcttattttg gtgttttaaa acamgtaatt 2520
atttctggtc caggtaacat agtatttaat gagataggta atgtaggaat tgtacatggt 2580
```

```
atagcagcta attcaatttc ttttgaaaat gcaagtttag gtacatcttt attcttacct 2640
agtggtactc cattagatgt tttaacaatt aaaagtaccg taggtaatgg tacagtagat 2700
aattttaatg ctcctattgt agttgtatca ggtattgata gtatgatcaa taa.cggtcaa 2760
atcatcggtg ataaaaagaa tattatagct ctatcgcttg gaagtgataa Cag tattact 2820
gttaatgcta atacattata ttcaggtatc agaactacaa aaaataatca aggrtactgtg 2880
acacttagtg gtggtatgcc taataatcct ggtacaattt atggtttagg ttt agagaat 2940
ggtagtccaa agttaaaaca agtgacattt actacagatt ataacaactt aggrtagtatt 3000
attgcaaata atgtaacaat taatgattat gtaactctta ctacaggagg tat agcaggg 3060
acagattttg acgctaaaat tactcttgga agtgttaacg gtaacgctaa cgt aaggttt 3120
gttgatagta cattttctga tcctagaagt atgattgttg ctactcaagc taa taagggt 3180
actgtaactt atttaggtaa tgcattagtt agtaatatcg gtagtttaga tactcctgta 3240
gcttctgtta gatttacagg taatqatagt qqqqcaqqat tacaaqqcaa tatttattca 3300
caaaatatag attttggtac ttataattta actattctaa attctaatgt cattttaggt 3360
ggtggtacta ctgctattaa tggtgaaatc gatcttctga caaataattt aat atttgca 3420
aatggtactt caacatgggg tgataatact tctattagta caacgttaaa tgt atcaagc 3480
ggtaatatag gtcaagtagt cattgccgaa gatgctcaag ttaacgcaac aac tacagga 3540
actacaacca ttaaaataca agataatgct aatgcaaatt tcagtggcac aca agcttat 3600
actttaattc aaggtggtgc tagatttaat ggtactttag gagctcctaa ctt tgctgta 3660
acaggaagta atattttcgt aaaatatgaa ctaatacgtg attctaacca gga ttatgta 3720
ttaacacgta ctaacgatgt attaaacgta gttacaacag ctgttggaaa tagtgcaatt 3780
gcaaatgcac ctggtgtaag tcagaacatt tctagatgct tagaatcaac aaa tacagca 3840
gcttataata atatgctttt agctaaagat ccttctgatg ttgcaacatt tgt aggagct 3900
attgctacag atacaagtgc ggctgtaact acagtaaact taaatgatac aca aaaaact 3960
caagatctac ttagtaatag gctaggtaca cttagatatc taagtaatgc tga aacttct 4020
gatgttgctg gatctgcaac aggtqcagtg tcttcaggtq atgaagcgga agt atcttat 4080
ggtgtatggg ctaaaccttt ctataacatt gcagaacaag acaaaaaagg tgg tatagct 4140
ggttataaag caaaaactac tggggttgta gttggtttag atactctcqc tag cqataac 4200
ctaatgattg gggcagctat tgggatcact aaaactgata taaaacacca agattataag 4260
aaaggtgata aaactgatat taatggttta tcattctctc tatatggttc cca acagctt 4320
gttaagaatt totttgotca aggtaatgca atotttacot taaacaaagt caa aagtaaa 4380
agtcagcgtt acttettega gtctaatggt aagatgagea agcaaattge tgctggtaat 4440
tacgataaca tgacatttgg tggtaattta atatttggtt atgattataa tgc aatgcca 4500
aatgtattag taactccaat ggcaggactt agctacttaa aatcttctaa tga aaattat 4560
aaagaaaccg gtacaacagt tgcaaataag cgcattaata gcaaatttag tga tagagtc 4620
gatttaatag taggggctaa agtagctggt agtactgtga atataactga tat tgtgata 4680
tatccggaaa ttcattcttt tgtggtgcac aaagtaaatg gtaaattatc taa ctctcag 4740
tctatgttag atggacaaac tgctccattt atcagtcaac ctgatagaac tgctaaaacg 4800
tettataata taggettaag tgcaaacata aaatetgatg etaagatgga gta tggtate 4860
ggttatgatt ttaattctgc aagtaaatat actgcacatc aaggtacttt aaa agtacgt 4920
gtaaacttct aa
<210> 757
<211> 1311
<212> DNA
<213> Artificial Sequence
<223> Rickettsia prowazekii
<400> 757
atgactaatg gcaataataa taacttagaa tttgcagaat taaaaattag agg taaacta 60
tttaagttac ctatacttaa agcaagtatc ggtaaagatg taatcgatat aag tagggta 120
tctgcggaag ccgattactt tacttatgat ccgggtttta tgtctactgc ttcttgtcaa 180
tctactatca catatataga cggtgataaa ggcatattat ggtatcgagg ata tgatatt 240
aaagacttag ctgagaaaag tgattttta gaagtggcat atttgatgat ttatggggag 300
ctaccaagta gtgatcagta ttgtaatttt actaaaaagg ttgctcatca ttcattagtg 360
aatgaaagat tacactattt atttcaaacc ttttgtagtt cttctcatcc tatggctatt 420
atgcttgcag ctgttggttc tctttcagca ttctatcctg atttattaaa ttttaatgaa 480
acagactatg aacttaccgc tattagaatg attgctaaga tacctactat cgctgcaatg 540
```

```
tcttataaat attctatagg gcaaccgttt atttatcctg ataattcatt a gattttacc 600
gaaaattttc tacatatgat gtttgcaact ccttgtacta aatataaagt aaatccaata 660
ataaaaaatg ctcttaataa gatatttatc ttacatgcag accatgagca gaatgcttct 720
acttcaacag ttcggattgc tggctcatca ggaqctaatc cttttgcatg tattaqcact 780
ggtattgcat cactttgggg gcctgctcac ggcggggcta atgaagcagt gataaatatg 840
cttaaagaaa ttggcagttc tgagaatatt cctaaatatg tagctaaagc taaaqataaq 900
aatgatccat ttaggttaat gggttttggt catcgagtat ataaaagcta tgacccgcgt 960
gccgcagtac ttaaagaaac ttgtaaagaa gtattaaatg aattaggtca gttagacaat 1020
aatccgctgt tacaaatagc aatagaactt gaagctctcg ctcttaaaga t gaatatttt 1080
attgaaagaa aattatatcc aaatgttgat ttttattcag gcattatcta taaagctatg 1140
ggtataccgt cqcaaatqtt cactqtactt tttqcaataq caaqaaccgt aqqttqqatq 1200
gcacaatgga aagaaatgca cgaagatcct gaacaaaaaa tcagtagacc tagacagctt 1260
tacactggtt atgtacatag agagtataag tgtattgtag aaagaaagtg a
<210> 758
<211> 882
<212> DNA
<213> Artificial Sequence
<220>
<223> Vibrio cholerae
<400> 758
atgttcggat taggacacaa ctcaaaagag atatcgatga gtcatattgg tactaaattc 60
attettgetg aaaaatttae etttgateee etaageaata etetgattga caaagaagat 120
agtgaagaga tcattcgatt aggcagcaac gaaagccgaa ttctttggct gctggcccaa 180
cgtccaaacg aggtgatttc tcgcaatgat ttgcatgact ttgtttggcg agagcaaggt 240
tttgaagteg atgatteeag ettaaeceaa geeatttega etetgegeaa aatgeteaaa 300
gattcgacaa agtccccaca atacgtcaaa acggttccga aacgcggtta ccaattgatc 360
gcccgagtgg aaacggttga agaagagatg gctcgcgaaa gcgaagctgc tcatgacatc 420
teteagecag aatetgteaa tgaataegea gagteaagea gtgtgeette ateagecaet 480
gtagtgaaca caccgcagcc agccaatgtt gtgacgaata aatcggctcc amacttgggg 540
aatcgactgc ttattctgat agoggtctta cttcccctcg cagtattact gctcactaac 600
ccgagccaaa ccagctttaa acccctaacg gttgtcgatg gcgtagccgt caatatgccg 660
aataaccacc ctgatctttc aaactggcta ccgtcaatcg aactgtgcgt taaaaaatac 720
aatgaaaagc atactggtgg gctcaagccg atagaagtca ttgccacagg tggacaaaat 780
aaccagttaa cgctgaatta cattcacagc cctgaagttt caggggaaaa cataacctta 840
cgcatcgttg ctaaccctaa cgatgccatc aaagtgtgtg ag
<210> 759
<211> 1095
<212> DNA
<213> Artificial Sequence
<220>
<223> Francisella tularensis
<400> 759
atgettaaag ttggttttat tggttggege ggaatggteg geteagtttt aætgtetegt 60
atgatcgaat caaaagattt tgattgtatt ttgccaacgt ttttttcgac atctcaggta 120
gggcagctgc caacaggttt tatgcaacaa tatggagcgt tacaagatqc ctatagtatc 180
gaccaactaa gtagtatgga tatacttcta agttgccaag gtggtgaata tæccaaagaa 240
atacaccaca aattaagaga agccggctgg caaggtttct ggatagacgc tccatcgaca 300
ctacgcttag acaaagatag tactctagtt ctagaccctc taaatcacga tcaaataatt 360
aatgctattg ataatggtaa aaaagatttt atcggtagta attgtactgt tagtctaatg 420
tcactagcta tagctggact actcaaagaa gatcttgttg aatqggttaa ctctagtact 480
tatcaagcaa tttcaggagc gggtgccgca gcaatgcaag aactacttca acaaacaagc 540
cttttaagca aaattgataa tagagatgaa gatattctaa ttagagaaaa aattctcaga 600
gaattatcaa aagactcatc aaaaaatccct caacaaaaaa ctgtacaaac tttggcttat 660
aatctattac cttggataga tgttggtatg cctagtggac aaacaaaaga agagtacaaa 720
```

```
qcaqctacaq aacttaataa aattctaqat actaaaaaaa caatccctqt cqatqqtata 780
tototcagag taccaagtct aagatcacac tctcaagcat taacagtcaa acttagacag 840
aaattaacaa ttgaagaaat taagcaaaaa atatctcaag gtaatgaatg ggttaaagta 900
atagataata acaaagaaga tactttaaaa tacctaacac ctcaagctaa ttcaggaact 960
cttgatattg ctataggtcg tatcaaatca tcgttattag ctgatgatat atttcattgt 1020
ttcacagtag gtgatcagct attatgggga gctgctgagc cccttagaag agttttaaat 1080
attattaaaa tataa
<210> 760
<211> 1020
<212> DNA
<213> Artificial Sequence
<223> Francisella tularensis
<400> 760
atgaataaaa aaatcttagt aacaggtggt gtaggctata taggtagtca tacagtggta 60
gaacttettg atagagatta teaagttgtg gtggtagata atettteaaa tageaaagta 120
tctgtaatag acagggttaa aaaaatcaca aataaagatt ttgattttta tcagctagac 180
cttttaggta aagctaagct aacaaaagtt tttcaagagt atgatattta tgctgtaatt 240
cattttgctg gctttaaagc tgtaggtgag agtgttgaaa aaccgttaga gtattatcat 300
aacaatatcc aaggtacact aaacttactt gagctaatgc aagagtataa agtttataat 360
tttgtcttta gttcatcggc gactgtatat gggatgaata ataaaccacc ctttacagaa 420
gatatgcctc taagtacaac taacccatac ggtgcaacta agctaatgtt agaagacatt 480
ttgcgagatt tgcaaaatgc taataataat tttaatatta catgtcttag atattttaat 540
ccagtcggcg cccatagtag tgggatgata ggagaggatc cacagggtat acctaataac 600
ctcatgcctt atgtcgcgca agtaggtgct ggtaaactag ctaaacttag tatctttggt 660
ggtgactatg agactataga tggtacagga gtgagagact atatacatgt tgtagattta 720
gcaataggtc atatattagc gttagaaaaa ttatcacaag ataagcctag ctggagagct 780
tataatcttg gttctggaaa tggctattct gtattagaga ttgtcaaagc ttatcaaaaa 840
gccctaggta aagagattcc atatcagata gtagctagga gagccggtga tattgcagcg 900
agttttgctg atgttgccaa ggctaaaaga gagttgggtt ttgagacaca aaagactata 960
gatgatattt gtgatgatat gcttaaatgg caaaagtacg caaaagagaa taatatctag 1020
<210> 761
<211> 840
<212> DNA
<213> Artificial Sequence
<220>
<223> Shigella flexneri
<400> 761
cgcccctgg ctgatgccgt gacagcatgg ttcccggaaa acaaacaatc tgatgtatca 60
cagatatggc atgcttttga acatgaagag cacgccaaca ccttttccgc gttccttgac 120
cgcctttccg ataccgtctc tgcacgcaat acctccggat tccgtgaaca ggtcgctgca 180
tggctggaaa aactcagtgc ctctgcggag cttcgacagc agtctttcgc tgttgctgct 240
gatgccactg agagctgtga ggaccgtgtc gcgctcacat ggaacaatct ccggaaaacc 300
ctcctggtcc atcaggcatc agaaggcctt ttcgataatg ataccggcgc tctgctccc 360
ctgggcaggg aaatgttccg cctcgaaatt ctggaggaca ttgcccggga taaagtcaga 420
actctccatt ttgtggatga gatagaagtc tacctggcct tccagaccat gctcgcagag 480
aaacttcagc tctccactgc cgtgaaggaa atgcgtttct atggcgtgtc gggagtgaca 540
gcaaatgacc tecgcactge egaagccatg gteagaagce gtgaagagaa tgaatttaeg 600
gactggttct ccctctgggg accatggcat gctgtactga agcgtacgga agctgaccgc 660
tgggcgcagg cagaagagca gaaatatgag atgctggaga atgagtaccc tcagagggtg 720
gctgaccggc tgaaagcatc aggtctgagc ggtgatgcgg atgcggagag ggaagccggt 780
gcacaggtga tgcgtgagac tgaacagcag atttaccgtc agctgactga cgaggtactg 840
```

```
<210> 762
<211> 503
<212> DNA
<213> Artificial Sequence
<223> Campylobacter jejuni
<400> 762
aaaaacttaa aaaaagctgt tttttacttg atattgtttt ttaaaatatqc taaaattaqq 60
caaacagetg ggctaacaaa aaaagacget actactgeta etggatgeagt tatttetaet 180
attactgatg ttttagctaa aggtgatagc atcagtttta ttggttttgg tactttttca 240
actcaagaaa gagctgctag agaagctaga gtaccaagca caggaaaaaac aatcaaagtt 300
cctgctacaa gagttgcaaa atttaaggta ggtaaaaacc ttaaaagaagc tgttgcaaaa 360
gcaageggca aaaagaaaaa ataaaactte ggctagataa attctageet tetttettaa 420
ttaattcaga tattttgtat cttttattta ctttatttt ttaaaactttt ataaaactat 480
cattattaaa caaaaaagga tat
<210> 763
<211> 2118
<212> DNA
<213> Artificial Sequence
<223> Concatenation of A. baumannii genes
<220>
<221> misc feature
<222> 447-486, 778-817, 1162-1201, 1495-1534, 1.928-1967, 2115-2118
<223> n = A, T, C or G
<400> 763
cgcgcggtaa aactaaagaa gaagatatag cattagaaaa aga.tttgctg tctgatgaaa 60
aagagattgc tgaacattta atgctgattg atcttgggcg aaa cgatgta gggcgtgtat 120
cgaaaatagg taaagtccaa gtcacggatc aaatggtgat cgagcgttat tcacatgtca 180
tgcatattgt ttcaaatgta caaggtgaag tgcgtgatga tatcgatgca cttgatgtat 240
ttaaagccac ctttccagca ggaacgttat caggtgcccc aaaaattcgt gcaatggaaa 300
ttattgatga agtagaacct gtgaaaaggg gagtttttgg cggggctgtt ggttatttgg 360
gatggcatgg tgaaatggat atgtcgattg caatccgtac ttcgtqttatc cgtqataaaa 420
aggtgtatgt acaggetggt gcagggnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 480
nnnnnnggaa totggeggtt tagtttoaga tgaactoatt atcggtttag taaaagaacg 540
tattgctcaa cctgactgcg tgaatggttg tattttcgac ggcttcccac gcactattcc 600
tcaagcagaa gctttggaaa aagaagggat cagcattgat cattgtaattg aaattgatgt 660
acctgatgaa gaaategtaa aacgtettte tggtegtegt cagreateetg ettetggteg 720
tgtttatcac gttgtataca atccacctaa agtggaaggt aaægatgatg tcacaggnnn 780
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnncgt tcaaccgtgt aaaattacgt 840
aaccttaaaa ctggtaaagt tttagaaaaa acttttaaat ctggtgatac tttagaagct 900
gctgacatcg tagaagtaga aatgaactac ctatacaacg atgrgcgaaat gtggcacttc 960
atggacccag aaagettega acaaattgca getgacaaaa etgcaatggg tgatgetget 1020
aaatggttaa aagacgactc aaatgaaaca tgtacaatca tgttattcaa cggcgttcct 1080
ttaaacgtaa atgcacctaa cttcgttgta ttgaaagttg ttgaaactga tccgggcgta 1140
ntcgtgcccg yaatttgcat aaagctgccg gccttgtagc aca.gcaaggc aaatttcctg 1260
aaactctaga agaatggatt gcactacccg gcattggtcg ctcgaccgca ggtgcactca 1320
tgtctttagg tttacgtcag tatggcgtga ttatggatgg caa.cgtgaaa cgcgttttag 1380
cccgtttctt tgccattgaa gatgacttaa gcaaaccaca gcacgaacgt gaaatgtgga 1440
aactggctga agagctttgt cccacccaac gcaatcatga ctacactcaa gcgannnnnn 1500
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnttaaaa acactagcgg taagcttaaa 1560
caagattgcc aatgatattc gttggttagc aagtggtcca cgttgcggct tcggcgaaat 1620
```

```
ccqtattcct qaaaatqaac ctggttcaag tatcatgcca ggtaaag tga acccgactca 1680
aagtgaagcc atgaccatgg ttgttgctca agtacttggc aacgatacca ctattaatgt 1740
cgctggtgct tctggtaact tcgagctcaa tgtatttatg ccagtgattg cttataactt 1800
actgcaatct attcagttgc ttggtgatgc atgtaatagt tttaatgatc actgtgcagt 1860
agggategag ccaaategtg agaaaattga teatttettg cataattete ttatgttagt 1920
caaatacttt qtctgaagat qgtgacccat tagacgtact tgttgtaact ccacatcctg 2040
ttgctgccgg ttctgtaatt cgttgccgcc cagtgggcaa attaaacatg gaagacgacg 2100
gtggtatcga tgccnnnn
<210> 764
<211> 276
<212> DNA
<213> Acinetobacter baumannii
atgagcgagc taggcttaaa aagcagtggc aagccaaaaa aatcagcgcg tacagtgggt 60
gatgtacttg gtaaatacca cccacatggt gactcggcat gttatgaagc catggtactc 120
atggctcagc catttagtta ccgctatcct ttaatcgaag gtcaggg gaa ctggggttca 180
cctgatgate ctaaatcttt tgctgcgatg cgttataccg aagccaaact ctcggcttat 240
agtgaattat tgctgagcga attaggtcag ggcact
<210> 765
<211> 9610
<212> DNA
<213> Yersinia pestis
<400> 765
tgtaacgaac ggtgcaatag tgatccacac ccaacgcctg aaatcagatc cagggggtaa 60
tctgctctcc tgattcagga gagtttatgg tcacttttga gacagttatg gaaattaaaa 120
tectgeacaa geagggaatg agtageeggg egattgeeag agaactg ggg ateteeegea 180
ataccgttaa acgttatttg caggcaaaat ctgagccgcc aaaatatacg ccgcgacctg 240
ctgttgette actectggat gaataeeggg attatatteg teaacgeate geegatgete 300
atecttacaa aateceggca acggtaateg etegegagat cagagae cag ggatategtg 360
gcggaatgac catteteagg gcatteatte gttetetete ggtteet cag gageaggage 420
ctgccgttcg gttcgaaact gaacccggac gacagatgca ggttgactgg ggcactatgc 480
gtaatggtcg ctcaccgctt cacgtgttcg ttgctgttct cggatacagc cgaatgctgt 540
acatequatt cactgacaat atgeqttatg acacgetgga gacetge cat egtaatgegt 600
tecgettett tggtggtgtg eegegegaag tgttgtatga caatatgaaa actgtggtte 660
tgcaacgtga cgcatatcag accggtcagc accggttcca tccttcgctg tggcagttcg 720
gcaaggagat gggettetet eccegactgt gtegeeeett eagggea eag actaaaggta 780
aggtggaacg gatggtgcag tacacccqta acagttttta catccca cta atgactcgcc 840
tgcgcccgat ggggatcact gtcgatgttg aaacagccaa ccgccac ggt ctgcgctggc 900
tgcacgatgt cgctaaccaa cgaaagcatg aaacaatcca ggcccgt ccc tgcgatcgct 960
ggctcgaaga gcagcagtcc atgctggcac tgcctccgga gaaaaaa gag tatgacgtgc 1020
atcttgatga aaatctggtg aacttcgaca aacacccct gcatcat cca ctctccatct 1080
acgactcatt ctqcaqaqqa qtqqcqtqat qatqqaactg caacatcaac gactgatggc 1140
gctcgccggg caqttqcaac tggaaagcct tataagcgca gcgcctg cgc tgtcacaaca 1200
ggcagtagac caqqaatgga gttatatgga cttcctggag catctgcttc atgaagaaaa 1260
actggcacgt catcaacgta aacaggcgat gtatacccga atggcag cct tcccggcggt 1320
qaaaacqttc qaaqaqtatq acttcacatt cqccaccqqa qcaccqc aqa aqcaactcca 1380
gtcgttacgc tcactcagct tcatagaacg taatgaaaat atcgtat tac tggggccatc 1440
aggtgtgggg aaaacccatc tggcaatagc gatgggctat gaagcagtcc gtgcaggtat 1500
caaagttege tteacaacag cagcagatet gttactteag ttateta egg cacaacgtea 1560
gggccgttat aaaacgacgc ttcagcgtgg agtaatggcc ccccgcctgc tcatcattga 1620
tgaaataggc tatctgccgt tcagtcagga agaagcaaag ctgttcttcc aggtcatcgc 1680
taaacgttac gaaaagagcg caatgateet gacatecaat etgeegtteg ggeagtggga 1740
tcaaacqttc qccqqtqatq caqcactqac ctcaqcqatq ctqqaccqta tcttacacca 1800
ctcacatgtc gttcacatca aaggagaaag ctatcgactc agacaga aac gaaaggccgg 1860
ggttatagca gaagctaatc ctgagtaaaa cggtggatca atattgg gcc gttggtggag 1920
```

atataagtgg	atcacttttc	atccgtcgtt	gacaccctga	tgaat tcacg	tgttcacgcc	1980
tgaataacaa	gaatgccgga	gatacgcagt	catatttttt	acacaattct	ctaatcccga	2040
				ccggaacaat		
				acccgggcca		
				ttttaaaccg		
				agagtgtgag		
ggaactgtgg	tgaaccatag	ctcaatattc	gagtgagggc	ataccggaaa	cgcgctcaga	2340
ttcgttgtaa	cgcgattttc	cgtaccgggc	aattttttca	gttgt*tttt	cgtttcatgt	2400
				acgcaaacca		
				tcgacgggac		
				agacagcact		
				gtcagacttc		
				tataacgatt		
				aaggcaaaaa		
aacaggcgga	acccggacag	ggggagaacg	aatcgctaaa	taatt t tcgt	agttgtattt	2820
cccatcgttg	ctactgcaac	gggatgaatt	tgccgcagtt	tatcctgtaa	aacaatcctg	2880
				aatag tgaac		
				cctgatactg		
				acgactgcac		
				aagtgaaaca		
				gccgggagca		
				gccatgaccc		
cgatagcgga	gtgtatactg	gcttagtcat	gcggcatcag	tgcggattgt	atgaaaagtg	3300
				gaaca tgcag		
				ttcggctgcg		
				caggggataa		
				ccddaddcdc		
				aagtcagagg		
				tccctcgtgc		
				ccttcgggaa		
ttctcatagc	tcacgctgtt	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	3780
ctgtgtgcac	gaaccccccg	ttcagcccga	ccactgcgcc	ttatccggta	actatcqtct	3840
tgagtccaac	ccggtaagac	acqactttac	gccactggca	gcagccattg	gtaactgaaa	3900
				atcgcggcta		
				caggt tagaa		
				ttttttcgtt		
				gatcttttct		
				tgggtattgc		
				tacacataag		
ctctttttt	tcaatatgca	attggaagtt	cattgactac	ataaa†tagat	tattccaaat	4320
aatttattta	tgtaagaaca	ggatgggagg	gggaatgatc	tcaaagttat	tttgcttggc	4380
				acatatacag		
cttgcaaaac	ctagaattaa	atacctttgg	caattcatto	tctcatggca	totatoogaa	4500
				agcaa Cacca		
				aaaatactag		
				agaccgccaa		
				tttatagtag		
				tagcaagccc		
tgaggggctc	atggttattt	taacaatcca	ctatcgatat	ctttttgcac	cagagegeee	4860
tctcgtttac	gtctgtcaga	cattccatca	acaatattat	taaaagcatt	tacaaggcca	4920
				cagttctgga		
cctttttcat	atccaataca	caccactact	atacaaatta	tcaacggtaa	atcactaaac	5040
				tatgtgagaa		
				tcagaggtgc		
				caagtctatc		
				gaccaaggtc		
				gattagacgg		
gtcggattaa	acccttcaaa	accattactg	gagaaaatat	cgtggtcaac	aatatttacc	5400
				agttaatgac		
				cgttctcttt		
				cacggtagac		
- 500000000		-30000000	aucoucya		2020404009	2000

						F C 4 A
tettttteet	gacctgtttc	aacagttatt	ttctgttcgt	aagacacggt	cccttcagtt	5640
				cactgtcttt		
				tactccggcc		
acataatgtg	gtaatgcaat	tgtaatcgaa	ttagcttcaa	aatttggtct	gtaactgctt	5820
aatgtacttc	cqqaaaaqaq	aaaagccgga	acaccacctg	aaccattcac	taccattgta	5880
				aagttaaaaa		
				ccgctttatt		
ataatatgaa	atttcatttt	totoatotoa	atcactctta	taaaaatcag	аравпровар	6060
				acagaaagga		
				caaacgcctg		
				catccagaaa		
				cagtaacggt		
				tctcgcccgt		
				ggaacgggaa		
				ggatctgaaa		
				gtgagcaaag		
				tatttttaca		
				atgcagagag		
tctaatgaag	aaaagttcta	ttgtggcaac	cattataact	attctgtccg	ggagtgctaa	6720
tgcagcatca	tctcagttaa	taccaaatat	atcccctgac	agctttacag	ttgcagcctc	6780
caccgggatg	ctgagtggaa	agtctcatga	aatgctttat	gacgcagaaa	caggaagaaa	6840
				ctgaaaggtg		
ggatccatac	tcatttctga	ccctgaatgc	cagggggtgg	acgtctctgg	cttccaaatc	6960
				tctgagtgga		
				gacctcaatg		
				ggatatcagg		
				ggagcttata		
				tctatgccat		
				ttatttaaat		
				cttactttcc		
				tattatgtca		
				ggcaaaggag		
				gatgctgccg		
				tgaaaaatac		
tctctttca	tcctccccta	gcggggagga	tgtctgtgga	aaggaggttg	gtgtttgacc	7680
				gacggggcgc		
gttttgcctt	gacattctcc	acgtctttca	gggcatggag	aaggtcaaat	tagacatgga	7800
				taatttgcct		
				gcgctgctcc		
				ttgtgataac		
				tgccatttct		
				tgttctcatt		
				cgcaccagtt		
ccacttatca	ttacttttat	ctcctccaca	aanaacnata	gcccgacgaa	tcadatcaaa	8220
				cgaagctctt		
				aactcaggtc		
				tcttcttgct		
				aaccctataa		
				aaagctggct		
				tcacggcaac		
				ctgataaatt		
				gcctgatgta		
				gaacgggaaa		
				caacaaagac		
				aaattcagca		
				tgagtacatt		
				cctgcttaaa		
aaggcctctg	aaccagaaag	caacaaaaca	caggccatta	agtaaatcgc	gttaaaacac	9060
				gggactgtta		
				tcagaaaaga		
				ttttattt		
5 5	,		J			

```
qataaaaaca aaattaaaqa aataattaat cagaacattc ctt aacttca gggcattgcc 9300
tgtgttccat tttgtgatta gtctgaaact tccgaaggtg gataacaccc ggtatttttt 9360
tgctcacata aagcccctcc ttcaggcaga ggggcttttt ctt tgccacc acataaaaaa 9420
ggccctcaca ggaggtgttc tgtgagggcg tatgataagg act gaatcga tggttaatat 9480
qtctaqtcct gacttttgca tctccqaata taaaaccctg tttaacggca tgcaaaacca 9540
aaaaataaaa atgtgacatc gcaatgccag ataatattga cgcatgaggg aatgcgtacc 9600
ccgacccctg
<210> 766
<211> 102
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 766
tttaagtccc gcaacgagcg caacccttga tcttagttgt ttagttgggc actctaaggt 60
gactgccggt gacaaaccgg aggaaggtgg ggatgacgtc aa
                                                                   102
<210> 767
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 767
tagaacaccg atggcgaagg cgactttctg gtctgtaact gacactgaga aagcgtgggg 60
agcaaacagg attagatacc ctggtagtcc acga
                                                                   94
<210> 768
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 768
tggattagag accetggtag tecaegeegt aaacgatgag tgctaagtgt tagaggeett 60
tagtgctgaa gttaacgcat taagcactcc gcctggggag tacggcca
                                                                   108
<210> 769
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 769
tttcgatgca acgcgaagaa cettaccagg tcttgacatc ctctgacaac cctagcttct 60
ccttcgggag cagagtgaca ggtggtgcat ggctgtcgtc agctcgta
                                                                   108
<210> 770
<211> 95
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 770
tetgacacet geceggtget ggaaggttaa ggagagggt tagegtaact etgaactgaa 60
gccccagtaa acggcggccg taactataac ggtca
<210> 771
<211> 117
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 771
tctgttctta gtacgagagg accgggatgg acgcaccggt accagttgtt ctgccaaggg 60
catagctggg tagctatgtg cggaagggat aagtgctgaa agcatctaag cacgaaa
<210> 772
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgttc 60
caggattaat tgcaaataca attcaaagac aagggttaca
                                                                    100
<210> 773
<211> 112
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
tcgaagtaca atacaagaca aaagaaggta aaattactgt tttaggggaa aaattcaaga 60
aatatagaag tgatggctaa aaatgtagaa ggqgtcttga agccgttaac aa
                                                                   112
<210> 774
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
ttgctcgtgg tgcacaagta acggatatta caatcattgt tgttgcagct gatgacggcg 60
taataaacag ttgaagcaat taaccatgcg aaagca.gcaa
                                                                   100
<210> 775
<211> 114
```

169

```
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 775
tagcttttgc atattatatc gagccacagc atcgtgatgt tttacagctt tatgcaccgg 60
aagettttaa tggataaatt taacgaacaa gaaataaatc tateettgga agaa
<210> 776
<211> 116
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 776
tgacctacag taagaggttc tgtaatgaac cctaatgacc atccacacgg tggtggtgaa 60
ggtagatete etateggaaa gteeacgtae teeatggggt aaaccageae ttggaa
<210> 777
<211> 70
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 777
tccacacggt ggtggtgaag gtagatctcc tatcggaaag tccacgtact ccatggggta 60
aaccagcaca
<210> 778
<211> 82
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 778
ttatcgctca ggcgaactcc aacctggatg atgaaggccg ctttttagaa ggtgacttgt 60
cgtagcaaag gcgaatccag ca
                                                                   82
<210> 779
<211> 87
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 779
tgggcagcgt ttcggcgaaa tggaagtggc tcgaagcgta tggcgcttcg tacgtgctgc 60
aggaaatgtt gaccgtcaag tcggaca
<210> 780
```

170

```
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 780
tcaggagtcg ttcaactcga tctacatgat ggccgaccgc ccggggttcg gcggtgcaga 60
ttcgtcagct ggccggcatg cgtggcctga tggcgta
<21.0> 781
<211> 117
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 781
tetggeaggt atgegtggte tgatggeeaa tecatetggt egtateateg aacttecaat 60
caagtttccg tgaaggttta acagtacttg agtacttcat ctcaacccac ggtgcga
<210> 782
<211> 98
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 782
tcaagcaaac gcacaatcag aagctaagaa agcgcaagct tctggaaagc acaaatgcta 60
gttatggtac agaatttgca actgaaacag acgtgcaa
<210> 783
<211> 99
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 783
tecacaegee gttetteaac aactaeegtg ttetaettee gtaegaegga egtgaeggge 60
tcgatcgagc tgccgaagga caaggaaatg gtgatgcca
                                                                    99
<210> 784
<211> 111
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Sequence
<400> 784
tegtggegge gtggttateg aacceatget gaccgateaa tggtacgtgc acaccgcccc 60
ccaaagtcgc gattgaagcc gtagagaacg gcgacatcca gttcgtaccg a
```

```
<210> 785

<211> 2100

<212> DNA

<213> Artificial Sequence

<220>

<223> Combination Calibration Polynucleotide
```

<400> 785

gaagtagaga tatggaggaa caccagtggc gaaggcgact ttctggtctg taactgacac 60 tgagaaagcg tggggagcaa acaggattag ataccetggt agtccacgcc gtaaacgatg 120 agtgctaagt gttagaggcc tttagtgctg aagttaæcgc attaagcact ccgcctgggg 180 agtacggccg caaggctgaa actcaaagga attgacgggg cacaaggggt ggagcatgtg 240 gtttaattcg aagcaacgcg aagaacctta ccaggtcttg acatcctctg acaaccctag 300 cttctccttc gggagcagag tgacaggtgg tgcatggttg tcgtcagctc gtgtcgtgag 360 atgttgggtt aagteeegea acgagegeaa eeettgætet tagttgttta gttgggeact 420 ctaaggtgac tgccggtgac aaaccggagg aaggtgcgga tgacgtcaaa tcatcatgcc 480 ccaqtaccgt gagggaaagg tgaaaagcac cccggaaggg gagtgaaaga gatcctgaaa 540 ccgtgtgcca tagtcagagc ccgttaacgg gtgatgcgct gccttttgta gaatgaaccg 600 qcqaqttata aqatccqtaq tcaaaaqqqa aacaqcccaq accqccaqct aaqqtcccaa 660 agtgtgtatt gaaaaggatg tggagttgct tagacaacta ggatgttggc ttagaagcag 720 ccaccattta aagagtatag ggggtgacac ctgcccqqtq ctggaaggtt aaggagaggg 780 gttagcqtaa ctctqaactq aagcccaqt aaacqqcqqc cqtaactata acqqtcctaa 840 qqtaqcqaaa qaaatttqaq aqqaqctqtc cttaqtacqa qaqqaccqqq atqqacqcac 900 cggtaccagt tgttctgcca agggcatagc tgggtaccta tgtgcggaag ggataagtgc 960 tgaaagcatc taagcatgaa gccccctca agatgagagc agtaaaacaa gcaaaagcac 1020 aatcagaagc taagaaagcg caagcttctg gaaagcacaa atgctagtta tggtacagaa 1080 tttgcaactg aaacagacgt gcatgctgtg aaatttcgcga aagcttttgc atattatatc 1140 gagccacagc atcgtgatgt tttacagctt tatgcaccgg aagcttttaa tggataaatt 1200 taacgaacaa gaaataaatc tatccttgga agaacttaaa gatcaacgga tgctggcaag 1260 atatgaaaaa taagataaaa cagcactatc aacactggag cgattcttta tctgaagaag 1320 gaaqagcgat gaaaacaacg aagtacaata caagacaaaa gaaggtaaaa ttactgtttt 1380 aggggaaaaa ttcaagaaat atagaagtga tggctamaaa tgtagaaggg gtcttgaagc 1440 cgttaacagc tgttatggcg accgtggcgg cgtggttatc gaacccatgc tgaccgatca 1500 atggtacgtg cacaccgccc cccaaagtcg cgattgmagc cgtagagaac ggcgagatcc 1560 agttcgtccc taaacagtac ggcaacttcg ttatcgctca ggcgaactcc aacctggatg 1620 atgaaggccg ctttttagaa ggtgacttgt cgtagcaaag gcgaatcaag cctgtttagc 1680 cacaactatg cgtgctcgtg gtgcacaagt aacggattatt acaatcattg ttgttgcagc 1740 tgatgacggc gtaataaaca gttgaagcga ttaaccatgc gaaagcagca ggagtaccaa 1800 ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga 1860 acttccaatc aagtttccqt gaaggtttaa caqtacttqa gtacttcatc tctacqcatq 1920 gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980 gaccatccac acggtggtgg tgaaggtaga tetectateg gaaagtecac gtactccatg 2040 gggtaaacca gcacttggat acaaaacaag cgcagttcgg cggccagcgc ttcggtgaaa 2100