Project A

Mathematical Underpinnings of Machine Learning

Grzegorz Zakrzewski, 313555

Feature selection methods

Method	Stopping rule
Joint Mutual Information	$ S < 2 \cdot \sqrt{n_features}$
Conditional Mutual Info Maximisation	$ S < 2 \cdot \sqrt{n_features}$ $Crit_i > 0.9 \cdot \frac{Crit_{i-1} + Crit_{i-2}}{2}$
Random Forest Feature Importance	$ S < 2 \cdot \sqrt{n_features}$
	$FI_i > rac{1}{2 \cdot n_features}$
Sequential Feature Selection kNN $(k=3)$	$ S < 2 \cdot \sqrt{n_{-} features}$

1

Artificial datasets

x_1	x ₂	<i>x</i> ₃	<i>X</i> ₄	x ₅	<i>x</i> ₆	x ₇	<i>X</i> ₈	x ₉	x ₁₀	Y
$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\sum_{i=1}^{5} X_i > q_{0.50}$

Table 1: irrelevant artificial dataset

<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>X</i> ₉	X ₁₀	Y
$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$\mathcal{N}_{0,1}$	$x_1 \sim_{0.9}$	$X_2 \sim_{0.8}$	X ₃ ∼ _{0.7}	X ₄ ∼ _{0.6}	$X_1 \sim_{0.5}$	$\sum_{i=1}^{5} X_i > q_{0.50}$

Table 2: correlated artificial dataset

X_1	x ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>X</i> ₉	X ₁₀	Y
B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	B _{0.5}	$XOR(X_1, X_2)$

Table 3: XOR artificial dataset

Real-world data examples

Dataset	#rows	#columns	#classes
Abalone	4,177	8	2
Mushroom	58,598	12	2
Students dropout	4,424	36	3

Results assessment

Goal	Method
Effectiveness	accuracy of kNN($k = 3$) with 4-fold CV
Correctness	Bolón-Canedo <i>Success Rate</i>
Stability	Kuncheva consistency index

Bolón-Canedo Success Rate

$$Suc. = \left[\frac{R_s}{R_t} - \alpha \frac{I_s}{I_t}\right]$$

- \bullet R_s the number of relevant features selected
- \bullet R_t the total number of relevant features
- I_s the number of irrelevant features selected
- I_t the total number of irrelevant features
- $\bullet \ \alpha = \{\frac{1}{2}, \frac{R_t}{I_t}\}$

Kuncheva consistency index

$$C(A,B) = \frac{rn - k^2}{k(n-k)}$$

- the consistency for two subsets A, B ⊂ X
- |A| = |B| = k
- $r = |A \cap B|$
- 0 < k < |X| = n
- $C(A, B) \in [-1, 1]$

Artificial datasets - Success Rate

Figure 1: Success Rate computed on artificial datasets.

Artificial datasets - accuracy

Figure 2: Generic classifier accuracy computed on artificial datasets.

Real-world data examples - stability

Figure 3: Stability computed on real-world data examples.

Real-world data examples - accuracy

Figure 4: Generic classifier accuracy computed on real-world data examples.

Conclusions

- The project was performed according to the instructions.
- All feature selection methods are working.
- The best method seems to be Random Forest feature importance.
- A much more extended study should be conducted to fully compare their performance.