Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 8

Yun Yang

Uniform laws of large numbers and metric entropy

Application: Classical Glivenko-Cantelli theorem

Recall the classical Glivenko-Cantelli theorem on the uniform convergence of CDFs:

$$\|\widehat{F}_n - F\|_{\infty} \stackrel{\text{a.s.}}{\to} 0,$$

Corollary

Let F be the cdf and \widehat{F}_n the empirical CDF, then

$$\mathbb{P}\Big[\|\widehat{F}_n - F\|_{\infty} \ge \sqrt{\frac{2\log(2(n+1))}{n}} + \delta\Big] \le 2e^{-\frac{n\delta^2}{8}} \quad \text{for all } \delta > 0,$$

and hence $\|\widehat{F}_n - F\|_{\infty} \stackrel{a.s.}{\to} 0$.

Proof: Take $\mathcal{F} = \{(-\infty, t] : t \in \mathbb{R}\}$, then \mathcal{F} is uniformly bounded by 1, and has polynomial growth of order 1.

The bound is not tight (the log(n + 1) factor can be removed).

Vapnik-Chervonenkis (VC) dimension

Definition

A class $\mathcal{F} \subset \{0,1\}^{\mathcal{X}}$ shatters $(x_1,\ldots,x_d) \subset \mathcal{X}$ means $|\mathcal{F}(x_1^d)| = 2^d$.

The VC-dimension $d_{VC}(\mathcal{F})$ is defined as the largest integer d for which there is some $(x_1,\ldots,x_d)\subset\mathcal{X}$ of d points that can be shattered by \mathcal{F} .

Examples

- ▶ $\mathcal{F}_{left} = \{(-\infty, t] : t \in \mathbb{R}\}$ has VC-dim 1. It has polynomial growth of order 1.
- ▶ $\mathcal{F}_{two} = \{(s, t] : s, t \in \mathbb{R}\}$ has VC-dim 2. It has polynomial growth of order 2 (why?).

Vapnik-Chervonenkis (VC) dimension

Theorem (Sauer's Lemma)

If $d_{VC}(\mathcal{F}) \leq d$, then

$$\Pi_{\mathcal{F}}(n) \leq \sum_{k=1}^{d} \binom{n}{k} \leq (n+1)^d.$$

Consequently, if $d_{VC}(\mathcal{F}) < \infty$ (called VC class), then \mathcal{F} has polynomial growth of order $d_{VC}(\mathcal{F})$.

Proof: See "Weak convergence and empirical processes: with applications to statistics", Section 2.6.1.

Some useful results on Rademacher complexity

Properties

- 1. $\mathcal{F}_1 \subset \mathcal{F}_2$ implies $\mathcal{R}_n(\mathcal{F}_1) \leq \mathcal{R}_n(\mathcal{F}_2)$.
- 2. For any constant $c \in \mathbb{R}$, $\mathcal{R}_n(c \mathcal{F}) = |c| \mathcal{R}_n(\mathcal{F})$.
- 3. For any fixed bounded function g (bounded by b), $|\mathcal{R}_n(\mathcal{F}+g)-\mathcal{R}_n(\mathcal{F})| \leq b \sqrt{2\log 2/n}$.
- 4. $\mathcal{R}_n(\mathsf{conv}(\mathcal{F})) = \mathcal{R}_n(\mathcal{F})$, where $\mathsf{conv}(\mathcal{F})$ is the convex hull of \mathcal{F} .
- 5. If $\phi: \mathbb{R} \to \mathbb{R}$ is 1-Lipschitz continuous and satisfies $\phi(0) = 0$, then $\mathcal{R}(\phi(\mathcal{F})) \leq 2\mathcal{R}(\mathcal{F})$.

For a proof of the last claim, see "Probability in Banach Spaces" by Michel Ledoux and Michel Talagrand, Theorem 4.12.

Covering and packing numbers

A way to measure the "size" of a set with infinitely many elements. Recall:

Definition

A metric space $(\mathbb{T},\,\rho)$ consists of a non-empty set \mathbb{T} equipped with a mapping $\rho:\,\mathbb{T}\times\mathbb{T}\to[0,\,\infty)$ satisfying:

- 1. $\rho(\theta, \theta') = 0$ if and only if $\theta = \theta'$;
- 2. It is symmetric: $\rho(\theta, \theta') = \rho(\theta', \theta)$;
- 3. Triangle inequality: $\rho(\theta, \theta'') \leq \rho(\theta, \theta') + \rho(\theta', \theta'')$.

If the first property is replaced with $\rho(\theta,\,\theta)=0$, then $(\mathbb{T},\,\rho)$ is called a pseudometric space.

Examples: Euclidean space $(\mathbb{R}^n, \|\cdot\|_2)$, function space $(L^2[0, 1], \|\cdot\|_\infty)$, function space with pseudometric $\rho(f, g) = \|f - g\|_n = \sqrt{n^{-1} \sum_{i=1}^n [f(x_i) - g(x_i)]^2}$.

Covering number

Definition

An ε -cover of a set $\mathbb T$ w.r.t. a metric ρ is a set $\{\theta^1,\dots,\theta^N\}\subset\mathbb T$ such that for each $\theta\in\mathbb T$, there exists some $i\in\{1,\dots,N\}$, $\rho(\theta,\,\theta^i)\leq \varepsilon$. The ε -covering number $N(\varepsilon,\,\mathbb T,\,\rho)$ is the smallest cardinality of all ε -covers.

A set $\mathbb T$ is **totally bounded** if for all $\varepsilon>0, N(\varepsilon,\,\mathbb T,\,\rho)<\infty$ (compact?).

The function $\varepsilon \mapsto \log N(\varepsilon, \mathbb{T}, \rho)$ is the **metric entropy** of \mathbb{T} w.r.t. ρ .

 $N(\varepsilon, \mathbb{T}, \rho)$ is non-increasing in ε . Often interested in the growth of metric entropy as $\varepsilon \to 0_+$. If $\lim_{\varepsilon \to 0_+} \log N(\varepsilon)/\log(1/\varepsilon)$ exists, it is called the **metric dimension**.

Example: Covering number of unit cubes

Example

Consider interval $[-1,\,1]$ in $\mathbb{R},$ equipped with the Euclidean metric $|\cdot|.$ Then we have

$$N(\varepsilon, [-1, 1], |\cdot|) \le \frac{1}{\varepsilon} + 1$$
, for all $\varepsilon > 0$.

More generally, for the d-dim cube $[-1, 1]^d$, we have $N(\varepsilon, [-1, 1]^d, \|\cdot\|_{\infty}) \leq \left(\frac{1}{\varepsilon} + 1\right)^d$, and its metric dimension is d.

Packing number

Definition

An ε -packing of a set $\mathbb T$ w.r.t. a metric ρ is a set $\{\theta^1,\dots,\theta^M\}\subset\mathbb T$ such that $\rho(\theta^i,\,\theta^j)>\varepsilon$ for all distinct pairs $(i,j)\in\{1,\dots,M\}^2$. The ε -packing number $M(\varepsilon,\,\mathbb T,\,\rho)$ is the largest cardinality of all ε -packings.

Covering and packing relation

Theorem

For all $\varepsilon > 0$, the packing and covering numbers are related by:

$$M(2\varepsilon, \mathbb{T}, \rho) \leq N(\varepsilon, \mathbb{T}, \rho) \leq M(\varepsilon, \mathbb{T}, \rho).$$

Thus, the scalings of the covering and packing numbers are the same.

Example: Packing number of unit cubes

Example

Consider interval $[-1,\,1]$ in $\mathbb{R},$ equipped with the Euclidean metric $|\cdot|.$ Then we have

$$M(2\varepsilon, [-1, 1], |\cdot|) \ge \left|\frac{1}{\varepsilon}\right|, \text{ for all } \varepsilon > 0.$$

Therefore, from the previous theorem, we can conclude

$$\log N(\varepsilon, [-1, 1], |\cdot|) \simeq \log \frac{1}{\varepsilon}, \quad \text{for all } \varepsilon > 0.$$

More generally, for the *d*-dim cube $[-1, 1]^d$, we have $\log N(\varepsilon, [-1, 1]^d, \|\cdot\|_{\infty}) \simeq d \log(1/\varepsilon)$.

Volume ratios and metric entropy

Theorem

Consider a pair of norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on \mathbb{R}^d , Let \mathbb{B}_1 and \mathbb{B}_2 be the corresponding unit balls. The the ε -covering number of \mathbb{B}_1 in the $\|\cdot\|_2$ norm satisfies

$$\left(\frac{1}{\varepsilon}\right)^{d} \frac{\operatorname{vol}(\mathbb{B}_{1})}{\operatorname{vol}(\mathbb{B}_{2})} \leq N(\varepsilon, \, \mathbb{B}, \, \|\cdot\|_{2}) \leq \frac{\operatorname{vol}(\frac{2}{\varepsilon} \, \mathbb{B}_{1} + \mathbb{B}_{2})}{\operatorname{vol}(\mathbb{B}_{2})}.$$

In particular, if $\|\cdot\|_1 = \|\cdot\|_2 = \|\cdot\|$, then

$$\left(\frac{1}{\varepsilon}\right)^d \leq N(\varepsilon, \, \mathbb{B}, \, \|\cdot\|) \leq \left(\frac{2}{\varepsilon} + 1\right)^d.$$