

Continuité des applications linéaires, multilinéaires

Cours		
1	Cont	inuité des applications linéaires
	1.1	Caractérisation
	1.2	Cas où E est de dimension finie
	1.3	Norme subordonnée
	1.4	Adaptation matricielle
2	Continuité des applications multilinéaires	
	2.1	Caractérisation
	2.2	Applications polynomiales sur un espace de dimension finie
	2.3	Applications multilinéaires en dimension finie
3	Annexes	
	3.1	Annexe : d'autres caractérisations de la continuité des applications linéaires
	3.2	Annexe : continuité des applications multilinéaires en dimension finie
	3.3	Annexe : un peu de topologie sur $\mathcal{M}_n(\mathbb{K})$
Exercio	es	
Exe	ercices	et résultats classiques à connaître
		our de la continuité de det
		erplan d'un espace normé
		application linéaire continue et non continue
Exe		du CCINP
	ercices	
Pot	ite pro	blàmos d'antrainamant

1 Continuité des applications linéaires

1.1 Caractérisation

Théorème.

Soit E, F deux \mathbb{K} -espaces vectoriels normés, et $u \in \mathcal{L}(E, F)$. Alors u est continue si et seulement si :

$$\exists C \geqslant 0, \ \forall x \in E, \ \|u(x)\| \leqslant C\|x\|$$

Remarque. Ce résultat est très important, car il convient de savoir y faire référence dès que la question posée est celle de la continuité d'une application qui est linéaire.

Notation. On note $\mathcal{L}_c(E,F)$ l'ensemble des applications linéaires continues de E dans F.

1.2 Cas où E est de dimension finie

Théorème.

Soit E, F deux K-espaces vectoriels normés, et $u \in \mathcal{L}(E, F)$. Si E est de dimension finie, alors u est continue.

Corollaire. Soit E un espace vectoriel normé de dimension n, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On appelle application coordonnée :

$$\begin{array}{cccc} \pi_i : E & \to & \mathbb{K} \\ & x & \mapsto & x_i \end{array}$$

où (x_1, \ldots, x_n) est le *n*-uplet des coordonnées de x dans \mathcal{B} . Les applications coordonnées sont continues.

1.3 Norme subordonnée

Définition. Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux K-espaces vectoriels normés. Pour $u \in \mathcal{L}_c(E, F)$, on pose :

$$||u||_{\text{op}} = \sup_{x \neq 0_E} \frac{||u(x)||_F}{||x||_E}$$

que l'on appelle norme d'opérateur ou norme subordonnée aux deux normes fixées sur E et F.

Remarque. On utilise aussi la notation $||u||_{op} = |||u||$.

Théorème.

Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux \mathbb{K} -espaces vectoriels normés. $\|\cdot\|_{\text{op}}$ définit une norme sur $\mathcal{L}_c(E, F)$.

Proposition. Si $u \in \mathcal{L}_c(E, F)$, alors :

- $||u||_{\text{op}} = \sup_{||x||_E = 1} ||u(x)||_F$
- $||u||_{\text{op}}$ est le plus petit $C \in \mathbb{R}$ tel que :

$$\forall x \in E, \ \|u(x)\|_F \leqslant C\|x\|_E$$

Si $u \in \mathcal{L}_c(E, F)$ et $v \in \mathcal{L}_c(F, G)$, alors:

• $||v \circ u||_{\text{op}} \le ||v||_{\text{op}} ||u||_{\text{op}}$

Corollaire. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Alors $\|\cdot\|_{op}$ définit une norme sur $\mathcal{L}_c(E)$ qui vérifie :

- $\|\mathrm{Id}_E\|_{\mathrm{op}} = 1$
- $\forall u, v \in \mathcal{L}_c(E), \|v \circ u\|_{\mathrm{op}} \leqslant \|v\|_{\mathrm{op}} \|u\|_{\mathrm{op}}$
- $\forall u \in \mathcal{L}_c(E), \forall k \in \mathbb{N}, \|u^k\|_{\text{op}} \leqslant \|u\|_{\text{op}}^k$

On dit que $\|\cdot\|_{op}$ est une norme d'algèbre unitaire.

1.4 Adaptation matricielle

Proposition. Soit $\|\cdot\|$ une norme sur $\mathcal{M}_{n1}(\mathbb{K})$. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on définit :

$$|||A||| = \sup_{\substack{X \in \mathcal{M}_{n1}(\mathbb{K}) \\ X \neq 0}} \frac{||AX||}{||X||} = \sup_{||X|| = 1} ||AX||$$

On définit ainsi une norme sur $\mathcal{M}_n(\mathbb{K})$ vérifiant :

- $||I_n|| = 1$
- $\forall A, B \in \mathcal{M}_n(\mathbb{K}), \||AB|| \leqslant ||A|| \||B||$
- $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall k \in \mathbb{N}, |||A^k||| \leqslant |||A|||^k$

2 Continuité des applications multilinéaires

2.1 Caractérisation

<u>Proposition.</u> Soit E_1, \ldots, E_p, F des K-espaces vectoriels normés, et $f: E_1 \times \cdots \times E_p \to F$ une application multilinéaire. Alors f est continue si et seulement si :

$$\exists C \geqslant 0, \ \forall (x_1, \dots, x_p) \in E_1 \times \dots \times E_p, \ \|f(x_1, \dots, x_p)\|_F \leqslant C \|x_1\|_{E_1} \dots \|x_p\|_{E_p}$$

Corollaire. Si $(E, \langle \cdot, \cdot \rangle)$ est un espace préhilbertien réel, alors le produit scalaire est continu sur $E \times E$.

2.2 Applications polynomiales sur un espace de dimension finie

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Pour $k_1, \dots, k_n \in \mathbb{N}$, on définit l'application :

$$m_{(k_1,\ldots,k_n)} = \pi_1^{k_1} \pi_2^{k_2} \ldots \pi_n^{k_n} : x \mapsto x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n}$$

où (x_1, x_2, \ldots, x_n) est le *n*-uplet des coordonnées de x dans \mathcal{B} .

On appelle **application polynomiale sur** E toute application : $E \to \mathbb{K}$ qui est combinaison linéaire des $m_{(k_1,\ldots,k_n)}$.

Remarque. Le fait qu'une application soit polynomiale ne dépend pas du choix de la base \mathcal{B} .

Proposition. Toute application polynomiale sur un espace de dimension finie est continue.

Exemple. L'application det est continue sur $\mathcal{M}_n(\mathbb{K})$.

2.3 Applications multilinéaires en dimension finie

Proposition. Soit E_1, \ldots, E_p, F des K-espaces vectoriels normés.

S'ils sont de dimensions finies, toute application multilinéaire $f: E_1 \times \cdots \times E_p \to F$ est continue.

Exemple. Soit E un K-espace vectoriel de dimension finie, et \mathcal{B} une base de E. Alors $\det_{\mathcal{B}}$ est continue sur E^n .

3 Annexes

3.1 Annexe : d'autres caractérisations de la continuité des applications linéaires

Théorème.

Soit E, F deux \mathbb{K} -espaces vectoriels normés, et $u \in \mathcal{L}(E, F)$. Alors les assertions suivantes sont équivalentes :

(i) Il existe $C \ge 0$ tel que :

$$\forall x \in E, \ \|u(x)\| \leqslant C\|x\|$$

- (ii) u est bornée sur la boule unité $BF(0_E, 1)$
- (iii) u est bornée sur la sphère unité $S(0_E, 1)$
- (iv) u est lipschitzienne sur E
- (v) u est uniformément continue sur E
- (vi) u est continue sur E
- (vii) u est continue en 0_E

Preuve.

 $||u(x)|| \le C||x||$ par (i) $\le C$ indépendant de x

donc u est bornée sur $BF(0_E, 1)$.

$$(ii) \implies (iii)$$

Immédiat, car $S(0_E, 1) \subset BF(0_E, 1)$.

$$(iii) \implies (iv)$$

Par hypothèse, il existe $C \geqslant 0$ tel que :

$$\forall z \in S(0_E, 1), \|u(z)\| \leqslant C$$

Soit $x, y \in E$, avec $x \neq y$. Alors:

$$\frac{\|u(y)-u(x)\|_F}{\|y-x\|_E} = \frac{1}{\|y-x\|_E} \|u(y-x)\|_F$$

par linéarité de u

$$= \left\| \frac{1}{\|y - x\|_E} u(y - x) \right\|_F$$

et homogénéité de la norme

$$= \left\| u \left(\frac{y-x}{\|y-x\|_E} \right) \right\|_F$$

par linéarité de u

$$\leqslant C \operatorname{car} \frac{y-x}{\|y-x\|_E} \in S(0_E, 1)$$

et donc u est lipschitzienne.

$$(iv) \implies (v) \implies (vi) \implies (vii)$$

Ces implications sont claires.

$$(vii) \implies (i)$$

On applique la définition de la continuité avec $\varepsilon=1$, en notant que $u(0_E)=0_F$. Alors, il existe $\alpha>0$ tel que :

$$\forall x \in E, \ x \in BF(0_E, \alpha) \implies ||u(x)||_F \leqslant 1$$

Pour tout $x \in E$ non nul, on a $\alpha \frac{x}{\|x\|_E} \in BF(0_E, \alpha)$

donc:

$$\left\|u\left(\alpha\frac{x}{\|x\|_E}\right)\right\|_F\leqslant 1$$

c'est-à-dire, par linéarité de u et homogénéité de la norme :

$$\frac{\alpha}{\|x\|_E} \|u(x)\|_F \leqslant 1$$

et donc, en posant $C = \frac{1}{\alpha}$:

$$\forall x \in E, \ \|u(x)\|_F \leqslant C\|x\|_E$$

cette inégalité étant triviale pour $x = 0_E$.

3.2 Annexe : continuité des applications multilinéaires en dimension finie

<u>Proposition.</u> Soit E_1, \ldots, E_p, F des \mathbb{K} -espaces vectoriels normés et $f: E_1 \times \cdots \times E_p \to F$ une application multilinéaire. Si E_1, \ldots, E_p sont de dimensions finies, alors f est continue.

Preuve.

- Si F est de dimension finie, il suffit de dire que les applications coordonnées de f sont toutes polynomiales sur un espace de dimension finie, donc continues, et donc f est continue.
- Dans le cas où F est quelconque, on traite le cas où p=2, ce qui ne change pas le principe de la démonstration. On considère $f: E_1 \times E_2 \to F$ une application bilinéaire, avec E_1 et E_2 de dimension finie. On considère $\mathcal{B}_1 = (e_1^1, \dots, e_{n_1}^1)$ et $\mathcal{B}_2 = (e_1^2, \dots, e_{n_2}^2)$ des bases de E_1 et E_2 respectivement.

On munit E_1 de la norme :

$$||x_1||_{E_1} = \max_{i=1}^{n_1} |x_i^1|$$

où $(x_1^1,\ldots,x_{n_1}^1)$ sont les coordonnées de x_1 dans \mathcal{B}_1 . On munit E_2 de la norme $\|\cdot\|_{E_2}$ définie de la même manière. Soit $(x_1,x_2)\in E_1\times E_2$, avec x_1 de coordonnées $(x_1^1,\ldots,x_{n_1}^1)$ et x_2 de coordonnées $(x_1^2,\ldots,x_{n_2}^2)$. On a

5/12

alors :

ce qui justifie la continuité de f.

3.3 Annexe : un peu de topologie sur $\mathcal{M}_n(\mathbb{K})$

Rien de ce paragraphe n'est au programme, mais il est bon d'avoir réfléchi aux questions de topologie dans l'espace $\mathcal{M}_n(\mathbb{K})$.

 $= C \|x_1\|_{E_1} \|x_2\|_{E_2}$

Quelle norme?

Comme $\mathcal{M}_n(\mathbb{K})$ est de dimension finie, toutes les normes sont équivalentes. Ainsi la topologie de $\mathcal{M}_n(\mathbb{K})$ (voisinages, ouverts, fermés, bornés, convergence etc.) ne dépend pas du choix de la norme. On connaît bien, pour $A = (a_{ij})_{ij} \in \mathcal{M}_n(\mathbb{K})$:

$$||A||_{1} = \sum_{i,j} |a_{ij}|$$

$$||A||_{2} = \sqrt{\operatorname{tr}(\overline{A}^{\top} A)} = \sqrt{\sum_{i,j} |a_{ij}|^{2}}$$

$$||A||_{\infty} = \max_{i,j} |a_{ij}|$$

mais on préfèrera en général utiliser une « norme d'algèbre », c'est-à-dire une norme satisfaisant :

$$N(I_n) = 1$$
 et $N(AB) \leq N(A)N(B) \ \forall A, B$

Pour cela, il suffit de choisir une norme d'opérateur subordonnée à une norme choisie sur $\mathcal{M}_{n1}(\mathbb{K})$. Faisant ce choix, il n'est pas nécessaire d'expliciter cette norme d'opérateur.

Exemple. Déterminer la norme d'opérateur subordonnée à $\|\cdot\|_1$.

Solution.

Pour
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n1}(\mathbb{K})$$
, on note $||X||_1 = \sum_{i=1}^n |x_i|$.

Considérons $A\in\mathcal{M}_n(\mathbb{K}),$ et on cherche $\|\|A\|$, c'est-à-dire le plus petit k tel que :

$$\forall X \in \mathcal{M}_{n1}(\mathbb{K}), \ \|AX\|_1 \leqslant k\|X\|_1$$

Pour $X \in \mathcal{M}_{n1}(\mathbb{K})$:

$$||AX||_{1} = \sum_{i=1}^{n} |[AX]_{i}|$$

$$= \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|$$

$$\leq \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}| |x_{j}| \right)$$

$$= \sum_{j=1}^{n} |x_{j}| \left(\sum_{i=1}^{n} |a_{ij}| \right)$$

$$\leq k \sum_{j=1}^{n} |x_{j}| \text{ en posant } k = \max_{j=1}^{n} \sum_{i=1}^{n} |a_{ij}|$$

$$= k||X||_{1}$$

Notons alors j_0 un indice tel que $k=\sum_{i=1}^n |a_{ij_0}|$. Avec $X=E_{j_01}$ (i.e. $x_j=\delta_{jj_0}$), il y a égalité dans toutes les inégalités précédentes, donc k est le plus petit possible et :

$$|||A|| = \max_{j=1}^{n} \sum_{i=1}^{n} |a_{ij}|$$

Quelques propriétés topologiques

Résultat. det est continue sur $\mathcal{M}_n(\mathbb{K})$.

Preuve.

M1 On dit simplement que, par la formule :

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$

2024-2025 http://mpi.lamartin.fr

le déterminant est polynomial en les coefficients de A, donc continu en les coefficients de A, donc en A.

 $\fbox{M2}$ On note $C_k: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_{n1}(\mathbb{K})$ l'application qui associe à une matrice A sa k-ième colonne $C_k(A)$. Alors:

$$\mathcal{M}_n(\mathbb{K}) \rightarrow (\mathcal{M}_{n1}(\mathbb{K}))^n$$
 $A \mapsto (C_1(A), \dots, C_n(A))$

est continue car linéaire sur $\mathcal{M}_n(\mathbb{K})$ qui est de dimension finie, et :

$$(\mathcal{M}_{n1}(\mathbb{K}))^n \to \mathbb{K}$$

 $(C_1, \dots, C_n) \mapsto \det_{\operatorname{canonique}}(C_1, \dots, C_n)$

est continue car multilinéaire sur $\big(\mathcal{M}_{n1}(\mathbb{K})\big)^n$ qui est de dimension finie.

Le déterminant, qui est la composition de ces deux applications, est donc continu.

Résultat. $GL_n(\mathbb{K})$ est ouvert dans $\mathcal{M}_n(\mathbb{K})$.

Preuve. On a $\mathrm{GL}_n(\mathbb{K}) = \det^{-1}(\mathbb{K} \setminus \{0\})$ ouvert comme image réciproque d'un ouvert par une application continue. \square

Résultat. $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

Preuve. Soit $A\in\mathcal{M}_n(\mathbb{K})$. On considère la suite de terme général $M_p=A-\frac{1}{p}I_n$. Alors $M_p\xrightarrow[p\to+\infty]{}A$ et :

$$\det(M_p) = \det(A - \frac{1}{p}I_n)$$
$$= (-1)^n \chi_A(\frac{1}{p})$$

 $\neq 0$ à partir d'un certain rang

car χ_A n'a qu'un nombre fini de racines.

6/12 http://mpi.lamartin.fr 2024-2025

Exercices et résultats classiques à connaître

Autour de la continuité de det

45.1

- (a) Montrer que det est continue sur $\mathcal{M}_n(\mathbb{K})$.
- (b) Montrer que $GL_n(\mathbb{K})$ est ouvert dans $\mathcal{M}_n(\mathbb{K})$.
- (c) Montrer que $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

Hyperplan d'un espace normé

45.2

Soit E un espace normé. Montrer que tout hyperplan de E est dense ou fermé.

Une application linéaire continue et non continue

45.3

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni des normes :

$$||f||_1 = \int_0^1 |f(t)| dt \text{ et } ||f||_\infty = \sup_{t \in [0,1]} |f(t)|$$

On considère l'endomorphisme u de E défini par :

$$\forall t \in [0,1], \ u(f)(t) = f(t) - f(0)$$

- (a) Montrer que u est continu pour la norme $\|\cdot\|_{\infty}$.
- (b) Montrer que u n'est pas continu pour la norme $\|\cdot\|_1$.
- (c) Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ sont-elle équivalentes ?

 $\bigcap_{\mathbb{NP}} 1.2$

45.4

On note E l'espace vectoriel des applications continues sur [0,1] à valeurs dans $\mathbb R.$

On pose : $\forall f \in E$, $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $||f||_1 = \int_0^1 |f(t)| dt$.

2. Dans cette question, on munit E de la norme $\|\cdot\|_{\infty}$.

(a) Soit $u: \begin{cases} E \to \mathbb{R} \\ f \mapsto f(0) \end{cases}$

Prouver que u est une application continue sur E.

(b) On pose $F = \{ f \in E, \ f(0) = 0 \}$. Prouver que F est une partie fermée de E pour la norme $\| \cdot \|_{\infty}$.

45.5

Soient E et F deux espaces vectoriels normés sur le corps \mathbb{R} . On note $|| \cdot ||_E$ (respectivement $|| \cdot ||_F$) la norme sur E (respectivement sur F).

- 1. Démontrer que si f est une application linéaire de E dans F, alors les propriétés suivantes sont deux à deux équivalentes :
 - **P1.** f est continue sur E.
 - **P2.** f est continue en 0_E .
 - **P3.** $\exists k > 0 \text{ tel que} : \forall x \in E, ||f(x)||_F \le k ||x||_E.$
- 2. Soit E l'espace vectoriel des applications continues de [0;1] dans $\mathbb R$ muni de la norme définie par : $\|f\|_{\infty} = \sup_{x \in [0;1]} |f(x)|$. On considère l'applica-

tion φ de E dans \mathbb{R} définie par : $\varphi(f) = \int_0^1 f(t) dt$.

Démontrer que φ est linéaire et continue.

GNP 38

1. On se place sur $E = \mathcal{C}([0,1],\mathbb{R})$, muni de la norme $|| \ ||_1$ définie par : $\forall f \in E, ||f||_1 = \int_0^1 |f(t)| dt$.

Soit
$$u: E \xrightarrow{F} E$$
 avec $\forall x \in [0,1], g(x) = \int_0^x f(t)dt$.

On admet que u est un endomorphisme de E.

Prouver que u est continue et calculer |||u|||.

Indication: considérer, pour tout entier n non nul, la fonction f_n définie par $f_n(t) = ne^{-nt}$.

2. Soit $n \in \mathbb{N}^*$. Soit $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ un n-uplet **non nul**, **fixé**. $\mathbb{R}^n \longrightarrow \mathbb{R}$

Soit
$$u: (x_1, x_2, ..., x_n) \longmapsto \sum_{i=1}^n a_i x_i$$

- (a) Justifier que u est continue quel que soit le choix de la norme sur \mathbb{R}^n .
- (b) On munit \mathbb{R}^n de $||\ ||_2$ où $\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}$.
 Calculer |||u|||.
- (c) On munit \mathbb{R}^n de $||\ ||_{\infty}$ où $\forall x=(x_1,x_2,...,x_n)\in\mathbb{R}^n,\ ||x||_{\infty}=\max_{1\leqslant k\leqslant n}|x_k|.$ Calculer |||u|||.
- 3. Déterminer un espace vectoriel E, une norme sur E et un endomorphisme de E non continu pour la norme choisie. Justifier.

Remarque: Les questions 1., 2. et 3. sont indépendantes.

45.7

Continuité des applications linéaires, multilinéaires

On note ℓ^2 l'ensemble des suites $x=(x_n)_{n\in\mathbb{N}}$ de nombres réels telles que la série $\sum x_n^2$ converge.

Dans la suite de l'exercice, on admet que (|) est un produit scalaire dans ℓ^2 . On suppose que ℓ^2 est muni de ce produit scalaire et de la norme euclidienne associée, notée || ||.

2. Soit $p \in \mathbb{N}$. Pour tout $x = (x_n) \in \ell^2$, on pose $\varphi(x) = x_p$. Démontrer que φ est une application linéaire et continue de ℓ^2 dans \mathbb{R} .

45.8 Sind 54.23

Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.

- 2. On pose : $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $||u|| = \sup_{n \in \mathbb{N}} |u_n|$.
 - (b) Prouver que : $\forall u = (u_n)_{n \in \mathbb{N}} \in E, \sum \frac{u_n}{2^{n+1}}$ converge.
 - (c) On pose : $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $f(u) = \sum_{n=0}^{+\infty} \frac{u_n}{2^{n+1}}$. Prouver que f est continue sur E.

Exercices

45.9

Montrer que l'ensemble des matrices symétriques est un fermé de $\mathcal{M}_n(\mathbb{K})$.

45.10

Montrer que l'ensemble des matrices de trace nulle est un fermé de $\mathcal{M}_n(\mathbb{K})$.

45.11

9/12

Montrer la continuité de l'application inverse définie sur $\mathrm{GL}_n(\mathbb{K})$:

$$M \mapsto M^{-1}$$

45.12

Soit E un espace normé. Que vaut $\| \operatorname{Id}_E \|$?

45.13

On munit $\mathcal{M}_{21}(\mathbb{R})$ de la norme $\|\cdot\|_{\infty}$. Calculer :

$$\| \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \|$$

45.14

On considère $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$, et $F = \mathcal{C}^1([0,1],\mathbb{R})$ muni de la norme N où $N(f) = \|f\|_{\infty} + \|f'\|_{\infty}$.

Pour $f \in E$, on définit :

$$\varphi(f): x \mapsto \int_0^x f(t) dt$$

Montrer que φ est une application linéaire continue de $E \to F$, et calculer $\| \varphi \|$.

45.15

(a) Montrer que $S_n(\mathbb{K})$ est fermé dans $\mathcal{M}_n(\mathbb{K})$.

On définit :

$$\mathcal{S}_n^+(\mathbb{R}) = \{ A \in \mathcal{S}_n(\mathbb{R}), \ \forall X \in \mathcal{M}_{n1}(\mathbb{R}), \ X^\top A X \geqslant 0 \}$$

(b) Montrer que $\mathcal{S}_n^+(\mathbb{R})$ est fermé dans $\mathcal{M}_n(\mathbb{R})$.

Petits problèmes d'entrainement

45.16

On note $\mathcal{D}_n(\mathbb{C})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$.

- (a) Déterminer l'adhérence de $\mathcal{D}_n(\mathbb{C})$.
- (b) Déterminer l'intérieur de $\mathcal{D}_n(\mathbb{C})$.

45.17

Montrer qu'une forme linéaire est continue si et seulement si son noyau est fermé.

45.18

Est-ce que l'application $f \mapsto f(0)$ est continue sur $\mathcal{C}^0([0,1],\mathbb{K})$

- lorsque l'on munit cet espace de $\|\cdot\|_{\infty}$?
- lorsque l'on munit cet espace de $\|\cdot\|_1$?

45.19

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$, muni des normes :

$$||f||_1 = \int_0^1 |f(t)| dt \text{ et } ||f||_\infty = \sup_{t \in [0,1]} |f(t)|$$

(a) On note:

$$A = \{ f \in E, \ \int_0^1 f(t) \, \mathrm{d}t \geqslant 0 \}$$

Montrer que A est fermé pour $\|\cdot\|_1$. L'est-il pour $\|\cdot\|_{\infty}$?

(b) On note:

$$B = \{ f \in E, \ f(0) > 0 \}$$

Montrer que B est ouvert pour $\|\cdot\|_{\infty}$. L'est-il pour $\|\cdot\|_1$?

45.20

Soit $A \in \mathcal{M}_p(\mathbb{K})$. On suppose que la suite $(A^n)_{n \in \mathbb{N}}$ converge vers une matrice notée P.

Montrer que P et A commutent et que P est une matrice de projection.

45.21

On note ℓ^{∞} l'espace vectoriel normé formé des suites réelles bornées $x=(x_n)_{n\in\mathbb{N}}$ muni de la norme définie par :

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$$

On considère l'opérateur :

$$\Delta: \ell^{\infty} \to \ell^{\infty}$$

 $(x_n)_{n \in \mathbb{N}} \mapsto (y_n)_{n \in \mathbb{N}} \text{ où } y_n = x_{n+1} - x_n$

Montrer que Δ est linéaire et continue.

45.22

Calculer ||| tr ||| lorsque $\mathcal{M}_n(\mathbb{R})$ est muni de la norme $||\cdot||_1$ (resp. $||\cdot||_2$, resp. $||\cdot||_{\infty}$).

45.23

On considère $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Pour $f \in E$, on définit :

$$\varphi(f) = \int_0^{\frac{1}{2}} f(t) dt - \int_{\frac{1}{2}}^1 f(t) dt$$

- (a) Montrer que φ est une forme linéaire continue sur E.
- (b) Calculer $\|\varphi\|$.

45.24

Montrer que l'application $M \mapsto \operatorname{Com}(M)$ est continue sur $\mathcal{M}_n(\mathbb{K})$ lorsque $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

45.25

(a) Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $(A_k)_k$ une suite de matrices qui convergent vers A. On suppose que :

$$\forall k \in \mathbb{N}, \ \operatorname{rg}(A_k) = p$$

Montrer que $rg(A) \leq p$.

(b) Montrer que l'ensemble des matrices de rang inférieur à p est fermé.

45.26

(a) Montrer que l'application :

$$u: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}_n[X]$$

 $A \to \chi_A$

est continue.

(b) L'application:

$$u: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}_n[X]$$

 $A \to \pi_A$

est-elle continue?

45.27

Soit $A \in \mathcal{M}_n(\mathbb{K})$, où $n \ge 2$. Calculer:

$$\det (\operatorname{Com}(A))$$

45.28

Soit a>0 et E l'espace des fonctions $[0,+\infty[$ $\to \mathbb{R}$ continues et intégrables sur $[0,+\infty[$. On munit E de la norme définie par :

$$\forall f \in E, \ ||f||_1 = \int_0^{+\infty} |f(t)| \, dt$$

Pour $f \in E$, on définit :

$$\phi(f): x \in [0, +\infty[\mapsto e^{-ax} \int_0^x e^{at} f(t) dt]$$

Montrer que ϕ est un endomorphisme continu de E.

45.29

Soit $E = \mathbb{R}[X]$ et $D : P \mapsto P'$.

- (a) Déterminer une norme sur E pour laquelle D n'est pas continue.
- (b) Déterminer une norme sur E pour laquelle D est continue.

45.30

Soit $E = \mathbb{R}_n[X]$ et U l'ensemble des polynômes de degré n, scindés à racines simples. Montrer que U est un ouvert de E.

45.31

On pourra, dans cet exercice, utiliser librement le fait que l'ensemble des matrices inversibles, et celui des matrices diagonalisables, sont denses dans $\mathcal{M}_n(\mathbb{C})$.

- (a) Montrer que $M \mapsto \chi_M$ est continu.
- (b) Montrer que, pour tout $A, B \in \mathcal{M}_n(\mathbb{C}), \chi_{AB} = \chi_{BA}$.
- (c) Montrer le théorème de Cayley-Hamilton : pour tout $A \in \mathcal{M}_n(\mathbb{C})$, $\chi_A(A) = 0_{\mathcal{M}_n(\mathbb{C})}$.

45.32

Soit n un entier non nul. On munit $\mathcal{M}_n(\mathbb{R})$ de sa norme euclidienne usuelle :

$$||M|| = \sqrt{\operatorname{tr} M^{\top} M}$$

et on rappelle que, pour tout $M, N \in \mathcal{M}_n(\mathbb{R})$:

$$\|MN\|\leqslant \|M\|\,\|N\|$$

Soit $A \in \mathcal{M}_n(\mathbb{B})$ fixée, et :

$$f: M \mapsto 2M - MAM$$

On considère la suite définie par récurrence en posant :

$$M_0$$
 quelconque et $\forall k \in \mathbb{N}, M_{k+1} = f(M_k)$

(a) Pour $k \in \mathbb{N}$, établir une relation simple entre $I_n - AM_{k+1}$ et $I_n - AM_k$.

On suppose dorénavant que $||I_n - AM_0|| < 1$.

- (b) Montrer que A est inversible.
- (c) Montrer que $M_k \xrightarrow[k \to +\infty]{} A^{-1}$.

45. Continuité des applications linéaires, multilinéaires

45.33

(a) Montrer que, pour $r \in \{1, ..., n-1\}$, l'ensemble des matrices de rang r n'est ni ouvert, ni fermé, dans $\mathcal{M}_n(\mathbb{K})$.

On rappelle que le rang d'une matrice A est $\geqslant r$ si et seulement s'il existe I et J de cardinal r tels que $(a_{ij})_{(i,j)\in I\times J}$ est inversible.

(b) Montrer que $\{A \in \mathcal{M}_n(\mathbb{K}), \operatorname{rg}(A) \geq r\}$ est ouvert dans $\mathcal{M}_n(\mathbb{K})$.

45.34

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Écrire une formule donnant le coefficient de degré 1 de χ_A en fonction de la trace de la comatrice de A.

On commencera par envisager le cas où A est inversible.