Strojno učenje

Ansambli modela

Tomislav Šmuc

FIGURE 2.11. Test and training error as a function of model complexity.

Skup za učenje je *T* slučajno uzorkovan => predikcija *ŷ* slučajna varijabla

Dekompozicija prediktivne pogreške: Pristranost i varijanca modela

Očekivane vrijednosti

$$E(e) = bias^2 + varijanca + šum$$

$$E_T[(y - \hat{y})^2] = (E_T[\hat{y}] - y)^2 + E_T[(\hat{y} - E_T[\hat{y}])^2] + E[\varepsilon \mid x]$$
a
b
c

Pristranost/Bias: sistematska greška na točki

x - prosjek preko "svih" skupova za

učenje T veličine N

Varijanca: Varijacija greške oko prosječne

vrijednosti

Šum: Greška u određivanju stvarnih

vrijednosti y(x)

$$(E_y\{y\}-E_T\{\hat{y}\})^2$$

 $E_T\{\hat{y}\}$ = prosječni rezultat modela (preko svih T)

bias² = greška između stvarne vrijednosti i prosječnog estimacijskog modela

Dekompozicija prediktivne pogreške: Pristranost i varijanca modela

$$var_T\{y\} = E_T\{(\hat{y}-E_T\{\hat{y}\})^2\}$$

 $var_{\tau}\{\hat{y}\}$ = estimacijska varijanca = zbog over-fitinga

$$var_{\varepsilon} \{y\} = E_{y} \{(y - E_{y} \{y\})^{2}\}$$

rezidualna greška = minimalna greška koju možemo dostići

Dekompozicija prediktivne pogreške: Pristranost i varijanca modela

$$E = \text{var}_{\varepsilon}\{y\} + \text{bias}^2 + \text{var}_{\tau}\{y\}$$

Dekompozicija prediktivne pogreške: Pristranost i varijanca modela

13-Mar-13

Pristranost (bias) obično pada s povećanjem kompleksnosti modela, dok se varijanca povećava s kompleksnosti modela

Ansambli (en Ensembles)

 Kombiniranje predikcija više modela koji su napravljeni s istim/različitim algoritmom na istim/različitim podacima - s ciljem poboljšavanja predikcije u odnosu na jedan model

Ansambli (en Ensembles)

= Kombiniranje modela

Zašto ansambli?

Pretpostavimo da imamo *L* nezavisnih modela (klasifikatora npr.), čija je točnost *p*, tada se može pokazati da vrijedi:

$$P(\hat{y} = y) = \sum_{k=0}^{\lfloor L/2 \rfloor} p^{L-k} (1-p)^k$$

Gdje je:

 $P(\hat{y} = y)$ - vjerojatnost točne klasifikacije ansambla

 $\lfloor L/2 \rfloor$ => najveći cijeli broj $\leq L/2$

... točnost ansambla-klasifikatora dobivenog glasanjem L nezavisnih klasifikatora točnosti p (većina pobjeđuje)

	L=3	L=5	L=7
P=0.6	0.648	0.683	0.733
P=0.7	0.784	0.837	0.901
P=0.8	0.896	0.942	0.980

Osnovni problemi

- 1. Kako učiti/generirati bazne modele (klasifikatore) h_1 , h_2 ,... h_m
 - Različiti algoritmi ili različiti podaci
- 2. Kako ih kombinirati u procesu odlučivanja

$$h^* = F(h_{1(\chi)}, h_{2(\chi)}, ..., h_{m(\chi)})$$

F(h) – prosječna vrijednost, težinski usrednjena prosječna vrijednost, većinsko glasanje

Tipovi ansambl metoda

- Bazirani na učenju nad različitim dijelovima/distribucijama iz skupa podataka za učenje
 - Bagging; Boosting
- 2. Manipuliranje izlaznim varijablama
 - ECOC (Error Correcting Output Coding)
 Stacking (stacked generalization)
- 3. Zašto ansambli (dobro) funkcioniraju?

Ansambli

Pogled na bagging i boosting

- Tehnike usrednjavanja:
 - "Paralelno/nezavisno" generirani modeli usrednjena predikcija
 - Bagging, random forests
 - Ovim pristupima smanjuje se primarno varijanca greške
- Tehnike "boosting" tipa (en. boost pojačati)
 - "Sekvencijalno" generirani modeli
 - Primjeri: Adaboost, MART
 - Ovim pristupom smanjuje se primarno pristranost (bias), no kasnija istraživanja pokazala su da boosting smanjuje i varijancu modela

Bagging (Bootsrap AGG regat ING)

- Napraviti (velik) broj modela koristeći bootstrap replike podataka
- Spojiti u jedan zajednički (bagged) model odnosno predikciju
- Svi modeli "glasaju":
 - U slučaju klasifikacije pravilo većine
 - U slučaju regresije prosjek svih predikcija

Ansambli – bootstrap

Bootstraping

- metoda ponavljanog uzorkovanja iz skupa podataka (en resampling statistical method)
- Korištenje skupa podataka za učenje da se naprave slučajni skupovi – replike originalnog skupa podataka, radi dobivanja informacija o nekim statistikama skupa podataka (bias, variance)

Bootstrap D_i replika skupa podataka D

 Dobiva se slučajnim uzorkovanjem (primjer po primjer) |D| primjera iz D sa ponavljanjem (to znači da u D_i nalazimo i kopije istog primjera) (en with replacement)

19

Bagging

 D_i - bootstrap replika podataka

 h_i - klasifikator baziran na D_i

 $\alpha_i = 1/m$

klasifikacijski primjer: stabla odlučivanja

Ansambli: bagging

Očekivana kv. greška jednog modela (regresija)

$$h_i(\mathbf{x}) = y(\mathbf{x}) + \varepsilon_i(\mathbf{x})$$
$$E[(h_i(\mathbf{x}) - y(\mathbf{x}))^2] = E[(\varepsilon_{i(\mathbf{x})})^2]$$

Prosječna kv. greška *m* modela:

$$\bar{E}_m = \frac{1}{m} \sum_{i} E\left[(\varepsilon_{i(\boldsymbol{X})})^2 \right]$$

Kolika je prosječna kv. greška h^* modela ? $h^*(x) = \frac{1}{m} \sum_i h_i(x)$

.... uz pretpostavku da su greške modela $\varepsilon_{i(\mathbf{X})}$ takve da vrijedi $E[\varepsilon_{i(\mathbf{X})}] = 0$ -- srednja vrijednost ~ 0 $E[\varepsilon_{i(\mathbf{X})}\varepsilon_{j(\mathbf{X})}] = 0$ -- medjusobno su nekorelirane

$$\bar{E}_{h^*} = E\left[\left(y(\mathbf{x}) - \frac{1}{m}\sum_{i} h_i(\mathbf{x})\right)^2\right] = E\left[\left(\frac{1}{m}\sum_{i} \varepsilon_{i(\mathbf{x})}\right)^2\right] = \frac{1}{m}\bar{E}_{m}$$

$$\bar{E}_{h^*} \leq \bar{E}_{m} !!$$

Bagging - Pristranost i varijanca

Pristranost(Bias): $E[h^*(x) - y]$

Varijanca: $\sum_{i} (h^*(x) - h_i(x))^2 / (m-1) => 0$, za m>>

Dakle:

- Bagging reducira varijancu
- To je povoljno svojstvo za algoritme/modele koji imaju visoku varijancu, a mali bias ("sklonost overfitanju")
 - stabla odlučivanja, 1-nn...

Random forests algoritam

- Kombinira bagging sa slučajnim odabirom podskupa varijabli/atributa (perturbacija modela)
 - Gradi stabla odlučivanja iz bootstrap uzorka skupa za učenje
 - Umjesto izabiranja najboljeg atributa za split između svih atributa – izabire između k slučajno odabranih atributa
 - (= bagging , kad je k jednak broju atributa
 - tipično za RF k= \sqrt{n})
- Balans bias/varijanca korištenjem k:
 - Što je manji k veća je redukcija varijance, ali je i veći bias

Boosting metode – "jačanje" slabih modela

Motivacija:

 kombiniranje outputa "slabih" modela da bi se napravio točniji ansambl modela.

"Slabi" modeli:

modeli s visokim bias-om (klasifikacija - malo bolji od slučajne predikcije)

U odnosu na bagging:

- Modeli se rade "sekvencijalno" na modificiranim verzijama podataka
- Krajnja predikcija je kombinacija predikcija pojedinačnih modela uz korištenje težinskih faktora

Ansambli: boosting

Klasifikacija: $h(\mathbf{x})$ = većina od $\{h_1(\mathbf{x}),...,h_K(\mathbf{x})\}$ uz težine $\{\beta_1,\beta_2,...,\beta_K\}$

Regresija: $h(\mathbf{x}) = \beta_1 h_1(\mathbf{x}) + \beta_2 h_2(\mathbf{x}) + ... + \beta_K h_K(\mathbf{x})$

AdaBoost (Adaptive Boosting) algoritam

- (Freund & Schapire) Generira modele tako da sukcesivno mijenja težine primjera u skupu za učenje
- Adaboost povećava težine primjera za koje su prethodni modeli imali loše predikcije – dakle fokusira učenje na "teške" slučajeve
- Na kraju: glasanje s težinskom-većinom; točniji modeli imaju veći utjecaj u glasanju

Ansambli: boosting

AdaBoost algoritam

D – podaci za učenje, Y=[1,-1] – binarni klasifikacijski problem **Ulaz:**

"Slabi" algoritam SU L (algoritam s visokim high biasom)

T – broj iteracija, N – broj primjera za učenje

"Ojačani" (boosted) klasifikator F (model s niskim biasom) Izlaz:

Inicijaliziraj težine primjera: $w_i^1 = 1/N$, za i = 1,...,N

Za *t* <- 1,2,....,*T* radi

$$\mathbf{1.} \quad \mathbf{p}^t = \mathbf{w}^t / \sum_{i=1}^N w_i^t$$

- 2. Pozovi algoritam SU $L(p^t,X) = \text{rezultat je "slabi" model } (h_t:X->Y)$
- 3. Odredi grešku h_t : $\varepsilon_t = \sum_{i=1}^t p_i^t \frac{1}{2} |h_t(x_i) y_i|$
- 4. Odredi $\alpha^{t} = \log(\frac{1-\varepsilon_{t}}{\varepsilon_{t}})$ 5. Odredi nove težine primjera $w_{i}^{t+1} = w_{i}^{t} \exp(\alpha_{t} \frac{1}{2} |h_{t}(x_{i}) y_{i}|)$, za i = 1, 2, ..., N

Vrati klasifikator *F:*

$$F(x) = \begin{cases} 1, & \text{ako je } \sum_{i=1}^{T} \alpha_i h_i(x) \ge 0, \\ -1, & \text{inace} \end{cases}$$

AdaBoost algoritam

Izraz kojim mijenjamo težine primjera u iteraciji t+1:

$$w_i^{t+1} = w_i^t \exp(\alpha_t \frac{1}{2} |h_t(x_i) - y_i|), \text{ za } i = 1, 2, ..., N$$

Gdje je α_t – težinski faktor modela u iteraciji t:

$$\alpha_t = \log(\frac{1 - \varepsilon_t}{\varepsilon_t})$$

a ε_t prosječna greška u iteraciji t:

$$\varepsilon_{t} = \sum_{i=1}^{t} p_{i}^{t} \frac{1}{2} |h_{t}(x_{i}) - y_{i}|$$

Zašto boosting radi dobro?

- Kombinira modele koji imaju visoki bias (jednostavni), tako da se dobije kompleksniji/ekspresivniji klasifikator
- Boosting => redukcija pristranosti (bias-a), svakom iteracijom model postaje kompleksniji ?
- Što se dešava ako imamo velik broj iteracija (K)? Dobit ćemo vrlo složeni model...a greška na novim primjerima – problem overfittinga?

Algoritmi strojnog učenja - tipični slučaj

Boosting – tipični slučaj !?

Boosting – Objašnjenje (I)

- Modeli koji su generirani boosting-om (Y=[-1,1]):
 - $h^*(\mathbf{x}) = y(\mathbf{x})$
 - Klasifikacija primjera je korektna ako je $h^*(x) = y(x)$, odnosno pogrešna ako $h^*(x) \neq y(x)$

No – u boosting algoritmu možemo mjeriti pouzdanost klasifikacije!

- $h^*(x)$ je težinski zbroj glasova pojedinih (slabih) klasifikatora!
- Mjera pouzdanosti ~ Margina (sjetite se SVM!) primjera:
 - = pouzdanost glasanja =
 - = (težinski zbroj korektnih glasanja)-(težinski zbroj krivih glasanja)

Boosting – Objašnjenje (II)

 Što je margina veća na skupu za učenje – za očekivati je i manju grešku i na testnom skupu (generalizacijska greška je manja)

Dakle:

- Iako je konačni klasifikator $h^*(x)$ naizgled složeniiji, margine primjera se povećavaju, dakle $h^*(x)$ na neki način postaje robustniji-jednostavniji(!) i smanjuje se njegova greška na novim (testnim) primjerima !
- Boosting algoritmi rade na povećavanju margine
- Intuitivno povećanje margine vodi smanjenju varijance modela
- Boosting algoritmi smanjuju pristranost ali i varijancu konačnog modela!

Boosting – Problemi

Osjetljivost na outliere (podatke sa povećanim šumom)

• Primjeri koji mogu predstavljati greške – dobijaju sve veću težinu pri izgradnji $h^*(x)$!

Ansambli bazirani na manipuliranju ciljnom varijablom

Problem sa y=1,2,..,K – klasa

Mogući pristupi:

- 1. Učenje K binarnih klasifikatora
 - y=1 <-> (y=2,3,4,...,K)
 - y=2 <-> (y=1,3,4,..K)
 -

Odluka – većinskim glasanjem

- 2. Učenje log₂(K) binarnih klasifikatora (bitovi indeksiranje K klasa)
 - $h_0(\mathbf{x}) = 1$ ako y = 2,4,6,8 inače 0
 - $h_1(x) = 1$ ako y = 3,4,7,8 inače 0
 - ...
- → ECOC Error Corecting Output Coding

ECOC: Error Correcting Output Coding

ECOC: Error Correcting Output Coding

(Dietterich/Bakiri, 1995)

Ideja:

Učenje klasifikatora $[h_1(x), h_2(x), ..., h_m(x)]$ kao kodnih-riječi $M > \log_2(K)$ - redundancija ?! **Učenje**

Za i=1,M

- a) Slučajno particioniranje K klasa u dva različita podskupa {A, B}_i
- b) Re-labeliranje primjera u dvije nove klase {A, B}_i
- c) Učenje h_i(**x**) za klasifikaciju primjera {A, B}_i
- d) Ponavljaj

Klasifikacija novog primera

- a) Ako je $h_i(\mathbf{x})=A_i$, tada sve originalne klase u A_i dobiju 1 glas; odnosno ukoliko je $h_i(\mathbf{x})=B_i$ sve originalne klase u B_i dobiju 1 glas
- b) Konačno, klasa s najviše dobivenih glasova je predikcija ECOC ansambla

ECOC: Error Correcting Output Coding

Mapiraj klase koje možeš kodirati sa $log_2(K)$ bita, u M > $log_2(K)$ (redundancija => robustnost na šum)

Broj kodova >> broj poruka (klasa)

Kod dekodiranja klasa se odredjuje prema najbližoj kodnoj-riječi

 Svaka log₂(K) kodna-riječ (klasa) "okružena je" sa bufferzonom sličnih M-bitnih kodnih-riječi – nijedna druga kodnariječ(klasa) ne može biti mapirana u buffer-zonu

Klasa – kodna riječ

Buffer zona

TS: Strojno učenje - Ansambli

Stacking - Stacked generalization

Stacking; Stacked generalization (Wolpert -1992)

(? Stog modela; generalizacija preko stoga modela?)

= Učenje meta-modela nad predikcijama baznih modela

Učenje se odvija u dva nivoa:

- Razdvoji skup za učenje D na dva dijela D_i i D_{ii} (slučajno stratificirano uzorkovanje) Na prvom dijelu T_i se "uči" nekoliko baznih algoritama L_i – za koje je poželjno da stvaraju što različitije modele h_i
- Nakon što su naučeni modeli baznih algoritama na D_I , ti se modeli iskoriste za predikcije na $D_{II} =>$ i stvara se novi skup primjera na bazi tih predikcija D'_{II}
- 3 Novi algoritam uči kombinirati predikcije modela (meta-model) na D'_{II}

Klasifikacija novog primjera

- 1 Bazni modeli prvo daju svoje predikcije
- 2 Meta-model koristi ove predikcije da bi napravio konačnu predikciju ansambla

46

Zašto kombiniranje modela dobro funkcionira (I)

Statistički pogled

- Uz konačni skup primjera za učenje mnoge hipoteze tipično funkcioniraju približno jednako dobro
- Podsjetnik: Klasifikator prema Optimalnom Bayesovom principu

$$c(x_i) = \underset{c_j \in C}{\operatorname{arg\,max}} \sum_{h_k \in H} P[c_j | h_k] \cdot P[h_k | D]$$

- Težinski usrednjeno glasanje svih hipoteza
- Težine aposteriorne vjerojatnosti hipoteza
- Teorijski pokazano najbolji mogući klasifikator!

Ansambli predstavljaju aproksimaciju Optimalnog Bayesovog klasifikatora!

Zašto kombiniranje modela dobro funkcionira (II)

Problem reprezentacije modela

- Optimalna funkcija cilja ne mora biti ni jedan individualni klasifikator no može se bolje aproksimirati usrednjavanjem većeg broja individualnih modela
- Primjer Stabla odlučivanja –=> slučajna šuma

Zašto kombiniranje modela dobro funkcionira (III)

Problem optimizacije

- Svi algoritmi pretražuju ustvari prostor hipoteza tražeći dovoljno dobru hipotezu
- Kako takvih može biti beskonačno mnogo heuristika pretraživanja postaje ključna
- Algoritam pretraživanja može zapeti u lokalnom minimumu
- Jedna strategija za izbjegavanje lokalnih minimuma ponavljanje pretraživanja uz randomizaciju (početne točke)
 - To vodi/sliči na => bagging!

Ansambli: sažetak

- Metode bazirane na kombiniranju više modela u jednu predikciju
- Poboljšavaju točnost u odnosu na individualne modele, jer reduciraju ili varijancu ili bias (ili oboje!)
- <u>Bagging</u> redukcija "varijance"; efikasna za nestabilne, kompleksnije modele/hipoteze
 - "paralelno" stvaranje modela
 - Osnova su: repetitivno (bootstrap) uzorkovanje i usrednjavanje predikcija (regresija), odnosno većinsko glasanje (klasifikacija)
- Boosting redukcija pristranosti (bias-a), ali i povećanje margine
 - "sekvencijalno" stvaranje modela
 - fokus na teže dijelove/primjere; daje težinu pojedinim modelima prema njihovoj točnosti

Ansambli: sažetak

- S obzirom da zahtijevaju učenje većeg broja modela
 - vremenski su i memorijski zahtjevne metode
- Gotovo na svim realnim problemima, kod kojih je važna prediktivna točnost - najbolje rezultate postižu ansambli!

Literatura - Ansambli

- The Elements of Statistical Learning

 Hastie, Tibshirani, Friedman (ch. 15)
- AI Modern approach
 Russel & Norvig (ch 18.4)
- T. Dieterich: Ensemble Methods in Machine Learning Lecture Notes in Computer Science, Vol. 1857 (2000), pp. 1-15
- Bagging (L. Breiman)
 Random forests: http://stat-www.berkeley.edu/users/breiman/rf.html
 Bolje: R -package (randomForest); PARF => IRB
- Boosting (www.boosting.org)
 Y. Freund, Robert E. Schapire: Experiments with a new boosting algorithm.
 In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996