

ຄວາມປອດໄພເວບໄຊ (Web Security)

ສອນໂດຍ: ອຈ ເພັດ ສອນວິໄລ

ມືຖື: 020 58390300

ອີເມວ: p.sonevilay@nuol.edu.la

ບົດທີ1

ຄວາມຮູ້ເບື້ອງຕົ້ນກ່ຽວກັບຄວາມປອດໄພ (Web Security Fundamentals)

ເນື້ອໃນໂດຍລວມ

- ສະເໜີເບື້ອງຕົ້ນ
- ນິຍາມຂອງຄວາມປອດໄພ
- ອົງປະກອບພື້ນຖານຂອງຄວາມປອດໄພ
- ใพย์มยาท
- ສ້າງເວບໃຫ້ມີຄວາມປອດໄພ
- ສະຫຼັບ

ສະເໜີເບື້ອງຕົ້ນ

- ຄວາມປອດໄພຂອງເວບໄຊ໌, ມີຫຼາຍແນວຄວາມຄິດ ເຊັ່ນວ່າ:
 - ການບຸກໂຈມຕີເວບໄຊ໌(defacing Web sites).
 - ລັກລະຫັດບັດ credit(stealing credit card numbers)
 - ຄຸກຄາມເວບໄຊ໌ດ້ວຍການສັ່ງປິດບັນດາບໍລິການໃດໜຶ່ງບໍ່ໃຫ້ ເຮັດວຸງກໄດ້(bombarding Web sites).
 - ໄວຣັດ(viruses), Trojan horses ແລະ Worms
- ເວບ ໄຊ໌ ໃນປັດຈຸບັນພົບບັນຫາດັ່ງກ່າວຄຸກຄາມ.
- Firewall ບໍ່ສາມາດປ້ອງກັນໄດ້ໝົດ.

ນິຍາມຂອງຄວາມປອດໄພ

- ຄວາມປອດໄພ ເປັນພື້ນຖານການປ້ອງກັນຂໍ້ມູນຊັບສິນ, ຊຶ່ງຊັບສິນດັ່ງກ່າວລວມທັງສິ່ງທີ່ຈັບຕ້ອງໄດ້ ເຊັ່ນວ່າ: ເວບເພຈ໌ (Web page), ຖານຂໍ້ມູນເກັບ ກຳຂໍ້ມູນລູກຄ້າ ຫຼື ຂໍ້ມູນຂອງອົງກອນຕ່າງໆ.
- ຄວາມປອດ ໄພຄືກັບ ເສັ້ນທາງທີ່ບໍ່ມີຈຸດສີ້ນສຸດ, ຊຶ່ງຜູ້ຮັກສາ ຄວາມປອດ ໄພຕ້ອງ ໄດ້ວິເຄາະ ໂຄງສ້າງລະບົບ ແລະ ໄປຣແກຣມທີ່ນຳໃຊ້ຢູ່ ເພື່ອໃຫ້ຮູ້ໄດ້ເຖິງຄວາມສ່ຽງ, ຈຳແນກ ໄດ້ຄວາມສ່ຽງແຕ່ລະໆດັບ ແລະ ວາງແຜນ ບໍລິຫານຈັດການກັບຄວາມສ່ຽງດັ່ງກ່າວໃຫ້ສາມາດຄວບຄຸມ ໄດ້.

- ຄວາມປອດໄພຂອງຂໍ້ມູນປະກອບມີດັ່ງນີ້:
 - ການຢືນຢັນຜູ້ໃຊ້ (Authentication)
 - ການອານຸຍາດ(Authorization)
 - ການກວດສອບ (Auditing)
 - ຄວາມລັບຂອງຂໍ້ມູນ(Confidentiality)
 - ຄວາມຖືກຕ້ອງຂໍ້ມູນ(Integrity)
 - ຄວາມພ້ອມໃຫ້ບໍລິການຂໍ້ມູນ(Availability)

- ການຢືນຢັນຜູ້ໃຊ້ (Authentication)
 - ການຢືນຢັນຜູ້ໃຊ້ເປັນການຖາມຄຳຖາມຜູ້ໃຊ້ລະບົບເພື່ອ ຢືນຢັນວ່າຜູ້ໃຊ້ດັ່ງກ່າວມີຕົວຕົນຢູ່ໃນລະບົບບໍ ເຊັ່ນວ່າ: ຖາມຄຳຖາມຜູ້ໃຊ້ວ່າ: "ເຈົ້າແມ່ນໃຜ(who are you)?" ຂະບວນການນີ້ຈະເປັນການຈຳແນກໃຫ້ຮູ້ໄດ້ລະຫວ່າງຜູ້ໃຊ້ ໂປຣແກຣມ(Clients) ແລະ ການໃຫ້ບໍລິການ, ຊຶ່ງຜູ້ໃຊ້ ໂປຣແກຣມ(Clients) ເຫຼົ່ານີ້ ອາດຈະເປັນຜູ້ທົ່ວໄປ(Enduser), ບໍລິການອື່ນໆ, ຂະບວນການ ຫຼື ຄອມພິວເຕີ ກໍ່ ເປັນໄປໄດ້.
 - ສຳນວນ "ການຢືນຢັນຜູ້ໃຊ້" ຢູ່ໃນຄວາມໝາຍຄວາມປອດ ໄພແລ້ວເອີ້ນວ່າ: ຂໍ້ກຳນິດ (Principals)

- ການອານຸຍາດ(Authorization)
 - ການອານຸຍາດເປັນການຖາມຄຳຖາມກ່ຽວກັບສິດຜູ້ໃຊ້ລະບົບເພື່ອ ໃຫ້ຮູ້ໄດ້ຜູ້ໃຊ້ດັ່ງກ່າວມີສິດເຂົ້າເຖິງຂໍ້ມູນຢູ່ໃນລະບົບ ເຊັ່ນວ່າ: ຖາມຄຳຖາມຜູ້ໃຊ້ວ່າ: "ເຈົ້າສາມາດເຮັດຫຍັງໄດ້ແດ່(what can you do)?" ຂະບວນການນີ້ຈະເປັນການຄວບຄຸມຊັບພະຍາກອນ ໃຫ້ກັບຜູ້ໃຊ້ທີ່ໄດ້ຮັບອານຸຍາດເຂົ້າເຖິງຂໍ້ມູນໄດ້.
 - · ຊັບພະຍາກອນດັ່ງກ່າວລວມມີ ໄຟລຂໍ້ມູນ, ຖານຂໍ້ມູນ, ຕາກຂໍ້ມູນ, ຕາກຂໍ້ມູນ, ຕານປະມວນຜົນຂໍ້ມູນ, ການຕັ້ງຄ່າໄຟລຂໍ້ ມູນ ແລະ ການເຂົ້າເຖິງການເຮັດວຸງກຂອງລະບົບຕ່າງໆ.

- ການກວດສອບ (Auditing)
 - ການກວດສອບເປັນການໃຫ້ລະຫັດ(Key) ໃຫ້ກັບຜູ້ໃຊ້ທີ່ຖືກ ອານຸຍາດໃຫ້ເຂົ້າສູ່ລະບົບ, ເພື່ອຮັບປະກັນບໍ່ໃຫ້ຖືກປັດຕິ ເສດຈາກລະບົບ ແລະ ຜູ້ໃຊ້ດັ່ງກ່າວບໍ່ສາມາດໄປກຳນົດ ສິດທິບໍ່ອານຸຍາດ(Deny)ໃຫ້ການເຮັດວຽກ ແລະ ການ ປະມວນຜົນຂໍ້ມູນ.
 - ຕົວຢ່າງຢູ່ໃນລະບົບການຄ້າອີເລັກໂທຣນິກ(e-commerce system), ກົນໄກການກວດສອບແມ່ນມີຄວາມຈຳເປັນເພື່ອບໍ່ ໃຫ້ຜູ້ໃຊ້ໄປກຳນົດສິດບໍ່ອານຸຍາດ(Deny)ໃຫ້ມີການບໍລິການ ສັ່ງຈອງສິນຄ້າ ຫຼື ລະລະບຸງັບການບໍລິການ.

- ຄວາມລັບຂອງຂໍ້ມູນ (Confidentiality)
 - ຄວາມລັບ ຫຼື Privacy ເປັນຂະບວນການໃຫ້ກຳນົດໃຫ້ຂໍ້ມູນ ເປັນສ່ວນຕົວຈາກຜູ້ໃຊ້ອື່ນໆທີ່ບໍ່ກ່ຽວຂ້ອງ, ຂໍ້ມູນຈະຖືກ ເຜີຍແຜ່ ຫຼື ເຂົ້າເຖິງໄດ້ສະເພາະຜູ້ໃຊ້ທີ່ໄດ້ຮັບການອານຸ ຍາດນັ້ນໄດ້.
 - ການເຂົ້າລະຫັດ(encryption) ຈະຖືກບັງຄັບໃຊ້ໃນການ ກຳນິດໃຫ້ສິດສ່ວນຕົວຂອງຂໍ້ມູນ.
 - ການກຳນົດສິດແບບ Access control lists (ACLs) ຈະບໍ່ ກ່ຽວຂ້ອງກັບການບັງຄັບໃຊ້ສິດສ່ວນຕົວຂອງຂໍ້ມູນ.

- ຄວາມຖືກຕ້ອງຂໍ້ມູນ(Integrity)
 - ຄວາມຖືກຕ້ອງຂໍ້ມູນເປັນການຮັບປະກັນວ່າຂໍ້ມູນມີຄວາມ ເຊື່ອຖືໄດ້ ແລະ ໄດ້ຖືກປ້ອງກັນການສູນເສຍ(accidental or deliberate or malicious)ທີ່ອາດຈະເກີດຂື້ນກັບຂໍ້ມູນເມື່ອມີ ການປູ່ງນແປງ ຫຼື ປັບປຸງຂໍ້ມູນ.
 - ຄ້າຍຄືກັບການໃຫ້ສິດສ່ວນຕົວ(Privacy), ການປ້ອງກັນຈະ ນຳໃຊ້ລະຫັດ(Key) ໃຫ້ກັບຂໍ້ມູນໃນຂະນະທີ່ສົ່ງຂໍ້ມູນຜ່ານ ເຄືອຂ່າຍໄປຍັງປາຍທາງ. ວິທີການກຳນົດລະຫັດອາດຈະ ນຳໃຊ້ຫຼັກການ hashing techniques ແລະ ການຢືນຢັນ ດ້ວຍລະຫັດ(message authentication codes)

- ຄວາມພ້ອມໃຫ້ບໍລິການຂໍ້ມູນ(Availability)
 - ຈາກແນວຄວາມຄິດຄວາມປອດໄພ, ຄວາມພ້ອມໃຫ້ບໍລິການ ຂໍ້ມູນໝາຍເຖິງການຮັບປະກັນບໍລິການຂໍ້ມູນໃຫ້ກັບຜູ້ໃຊ້ທີ່ໄດ້ ຮັບອະນຸຍາດເຂົ້າໃຊ້ຂໍ້ມູນໄດ້ເມື່ອຕ້ອງການ.
 - ຄວາມພ້ອມໃຫ້ບໍລິການຂໍ້ມູນຈະເປັນເປົ້າໝາຍຂອງຜູ້ບຸກ ໂຈມຕີລະບົບ, ຊຶ່ງຈະພະຍາຍາມປິດການບໍລິການ ແລະ ສະກັດກັ້ນບໍ່ໃຫ້ຜູ້ໃຊ້ສາມາດນຳໃຊ້ຂໍ້ມູນນັ້ນໄດ້.

ໄພຄຸກຄາມ

- ໄພຄຸກຄາມ(Threats)
 - ໄພຄຸກຄາມໝາຍເຖິງທຸກບັນຫາທີ່ກໍ່ໃຫ້ເກີດຄວາມເສຍ ຫາຍຂື້ນກັບຂໍ້ມູນ ຫຼື ຊັບສິນ ແລະ ຕໍ່ອົງປະກອບຂອງ ຄວາມປອດໄພດ້ານໃດດ້ານໜຶ່ງ.
 - ໄພຄຸກຄາມອາດຈະບໍ່ເກີດຂຶ້ນກໍ່ເປັນໄປໄດ້ຖ້າມີການ ປ້ອງກັນທີ່ດີ ຫຼື ມີວິທີຈັດການກັບໄພຄຸກຄາມ, ການ ກະທຳທີ່ກໍ່ໃຫ້ເກີດການເສຍຫາຍຂອງຂໍ້ມູນເອີ້ນວ່າ: ການບຸກໂຈມຕີ(Attack), ຜູ້ທີ່ກະທຳ ຫຼື ຜູ້ທີ່ເປັນເຫດ ກໍ່ໃຫ້ເກີດເຫດການດັ່ງກ່າວເອີ້ນວ່າ: ຜູ້ບຸກໂຈມຕີ (Attacker)

ຊ່ອງໂວ່(Vulnerability)

- ຈຸດອ່ອນ ຫຼື ຊ່ອງໂວ(Vulnerability)
 - ຈຸດອ່ອນ ຫຼື ຊ່ອງໂວ່ໝາຍເຖິງຂໍ້ຜິດພາດຂອງລະບົບທີ່ ພາໃຫ້ເກີດມີຄວາມສ່ຽງຕໍ່ການຄຸກຄາມ.
 - ຈຸດອ່ອນອາດຈະເກີດຈາກການອອກແບບລະບົບພິດ ພາດ(Poor design), ການຕັ້ງຄ່າລະບົບຜິດພາ (configuration mistakes), ຫຼື ຜິດພາດທາງດ້ານ ເຕັກນິກການຂອງໂປຣແກຣມ ເຊັ່ນວ່າ: ການກວດສອບ ການປ້ອນຂໍ້ມູນຂອງຜູ້ໃຊ້(Weak input validation) ເຮັດໃຫ້ເກີດຊ່ອງໂວຕໍ່ການບຸກໂຈມຕີ ດ້ວຍວິທີການ ປ້ອນຂໍ້ມູນ.

- ການບຸກໂຈມຕີ(Attacks)
 - ການບຸກໂຈມຕີເປັນເຫດການໜຶ່ງທີ່ດຳເນີນການຜ່ານຈຸດ ອ່ອນ ຫຼື ຊ່ອງໂວ່ ຫຼື ຄວາມສ່ຽງຂອງລະບົບ ເຊັ່ນວ່າ: ການບຸກໂຈມຕີດ້ວຍການສິ່ງຄຳສັ່ງ(malicious input) ຜ່ານໂປຣແກຣມ ຫຼື ບຸກໂຈມຕີເຄື່ອຂ່າຍ (flooding a network) ເພື່ອຢຸດການບໍລິການຂອງລະບົບ.

- ການອອກແບບ ແລະ ສ້າງເວບໃຫ້ມີຄວາມປອດໄພ
 ຈຳເປັນຕ້ອງຮູ້ຈັກຄວາມສ່ຽງທີ່ອາດຈະເກີດຂື້ນ. ແບບ
 ຈຳລອງຄວາມສ່ຽງ(Threat Modeling) ເປັນສ່ວນ
 ປະກອບສຳຄັນໃນການອອກແບບເວບ, ເພື່ອວິເຄາະ
 ສະຖາປັດຕະຍະກຳຂອງເວບ, ອອກແບບ ແລະ ຮູ້ໄດ້ຈຸດ ອ່ອນ ຫຼື ຊ່ອງໂວ່ຂອງໂປຣແກຣມ.
- ການພັດທະນາ ໂປຣແກຣມຕ້ອງ ໃຫ້ຕອບສະໜອງຄື: ເຄືອ ຂ່າຍປອດ ໄພ(secure network), ຄອມພິວເຕີປອດ ໄພ (secure host) ແລະ ການຕັ້ງຄ່າ ໄຟລ ໂປຣແກຣມປອດ ໄພ(secure application configuration)

ລຳດັບຊັ້ນຂອງຄວາມປອດໄພ

Secure the Host		
Secure the Applic	ation	
Presentation Logic	Business Logic	Data Access Logic
Runtim	e Services and Com	ponents
Platforr	n Services and Com	ponents
	Operating System	

- ເຄືອຂ່າຍມີຄວາມປອດໄພ
 - ປະເພດຄວາມປອດໄພຂອງເຄືອຂ່າຍຕ້ອງປະກອບມີ ອຸປະກອນຄື:
 - routers
 - Firewalls
 - switches.
 - ການກຳນົດສິດທິ(Role) ໃຫ້ຜູ້ໃຊ້ເຂົ້າເຖິງຂໍ້ມູນຢ່າງມີຄວາມ ປອດໄພ, ມີການຈັດການປ້ອງກັນການບຸກໂຈມຕີຜ່ານທາງ ເຄືອຂ່າຍ.

- ຄອມພິວເຕີມີຄວາມປອດໄພ
 - ຄວາມປອດໄພຂອງຄອມພິວເຕີປະກອບມີໂປຣແກຣມ ຫຼື ບໍລິການຕ່າງໆໃນເຄື່ອງເຊີເວີຕ້ອງມີການຕັ້ງຄ່າໃຫ້ມີຄວາມ ປອດໄພ ເຊັ່ນວ່າ: ເວບເຊີເວີ(Web server), ໂປຣແກຣມ (Application server), ຖານຂໍ້ມູນ(Database Server).
 - ເມື່ອມີການຕິດຕັ້ງ ໂປຣແກຣມ ໃໝ່ລັງ ໃນເຄື່ອງຄວນ ພິຈາລະນາວ່າມີຜົນກະທົບຕໍ່ກັບຄວາມປອດ ໄພບໍ ເຊັ່ນວ່າ: ໂປຣແກຣມມີການສ້າງ Account ບໍ? ມີການເພີ່ມບໍລິການ ອັດຕະ ໂນມັດບ? ຜູ້ໃຊ້ຄົນ ໃດທີ່ ໃຊ້ບໍລິການດັ່ງກ່າວ? ມີການ ສ້າງ Script ຂື້ນມາໃໝ່ບໍ?

- ປະເພດຈຸດອ່ອນຂອງໂປຣແກຣມ
 - Patches and Updates
 - Services
 - Protocols
 - Accounts
 - Files and Directories
 - Shares
 - Ports
 - Auditing and Logging
 - Registry

21

ຄອມພິວເຕີມີຄວາມປອດໄພ

- ໂປຣແກຣມມີຄວາມປອດໄພ
 - ໂປຣແກຣມທີ່ມີຄວາມປອດໄພຕ້ອງມີການອອກແບບ ແລະ ສ້າງຂື້ນໂດຍຜ່ານການວິເຄາະຮູ້ໄດ້ເຖິງຄວາມສ່ຽງ, ຈຳແນກ ໄດ້ຄວາມສ່ຽງແຕ່ລະໆດັບ, ຮູ້ໄດ້ຈຸດອ່ອນ ແລະ ວາງແຜນ ບໍລິຫານຈັດການກັບຄວາມສ່ຽງດັ່ງກ່າວໃຫ້ສາມາດຄວບຄຸມໄດ້.
 - ຖ້າ ໂປຣແກຣມບໍ່ມີການກວດສອບການປ້ອນຂໍ້ມູນຂອງຜູ້(input validation) ເຮັດໃຫ້ເກີດມີຄວາມສ່ຽງ ແລະ ເປັນຊ່ອງ ໂວ່ໃຫ້ແກ່ ການບຸກ ໂຈມຕີຜ່ານທາງ ໂປຣແກຣມ ເຊັ່ນວ່າ: SQL Injection, Cross site scripting ແລະ ອື່ນໆ.

- ປະເພດຈຸດອ່ອນຂອງໂປຣແກຣມ
 - Input Validation
 - Authentication
 - Authorization
 - Configuration Management
 - Sensitive Data
 - Session Management
 - Cryptography
 - Parameter Manipulation
 - Exception Management
 - Auditing and Logging

ສະຫຼຸບ

- ຄວາມປອດໄພຂອງ Firewall ແລະ ເຄື່ອງເຊີເວີບໍ່ ສາມາດປ້ອງກັນການບຸກໂຈມຕີໄດ້ໝົດ.
- ຄວາມປອດໄພຂອງຂອງໂປຣແກຣມຕ້ອງປ້ອງກັນຢູ່ໃນ 3ລະດັບຄວາມປອດໄພ ຄື: ລະດັບເຄືອຂ່າຍ(network layer), ລະດັບເຄື່ອງເຊີເວີ(host layer), ລະດັບໂປຣ ແກຣມ (application layer).
- ນອກຈາກນັ້ນ, ການອອກແບບ ແລະ ສ້າງໂປຣ
 ແກຣມກໍ່ຕ້ອງນຳໃຊ້ການອອກແບບຄວາມປອດໄພ
 ພ້ອມ ແລະ ພັດທະນາຕາມຍຸດທະສາດຄວາມປອດໄພ

11/05/2 security principles Imputer Science Department

[1] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla and Anandha Murukan. Improving Web Application Security, Microsoft Corporation, 2013 [2] ການປ້ອງກັນ ແລະ ຮັກສາຄວາມປອດໄພເຄືອຂ່າຍ, www.mict4u.net

ຖາມ ແລະ ຕອບ

ຂອບໃຈ