

MEDICIONES EN MICROONDAS VNA Y SOLUCIONES ACTUALES

Alex Fernández (EA4BFK)

MEDICIONES EN uW's CON VNA SOLUCIONES ACTUALES

ALEX FERNÁNDEZ (EA4BK) ANTONIO FERNÁNDEZ (EA4LE) MANEL RIVAS (EA1BLA)

AGENDA

- La impedancia, una Resistencia algo más entretenida.
- ▶ Coeficiente de Reflexión
- ▶ La carta de Smith
- Adaptación de Impedancias
- Los parámetros S
- La calibración
- ▶ Kits de calibración
- ▶ VNA's accesibles para uW's

LA IMPEDANCIA

- Carga RESISTIVA PURA -> Voltaje / intensidad están en fase.
- ▶ La intensidad que circula en cada momento es:

$$I = \frac{V}{R}$$

LA IMPEDANCIA

- ▶ Carga con C + R --> La intensidad se desfasa del Voltaje. Adelanta al voltaje.
- ▶ El desfase es función de la Capacidad y la Frecuencia

LA IMPEDANCIA

- Carga con L + R --> La intensidad se desfasa del Voltaje. El Voltaje adelanta a la Intensidad.
- ▶ El desfase es función de la Indutancia y la Frecuencia

IMPEDANCIA

- Impedancia: La oposición que presenta un dispositivo al paso de la corriente alterna (RF) debido a la resistencia (R) y a la reactancia (X)
- Es una magnitud con una parte Real (Resistencia) y una parte imaginaria (Reactancia)

La Impedancia es función de la **frecuencia** y del valor de C y/ó L

$$X_L = 2\pi f L \qquad X_C = \frac{1}{2\pi f C}$$

$$|Z| = \sqrt{3^2 + 3.5^2} = 4.609 \,\Omega$$

COEFICIENTE DE REFLEXION

$$Z_L \neq Z_0$$
 Reflexión

Coeficiente Reflexión

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

 $\Gamma_L = |\Gamma_L| \angle \theta^{\circ}$

Número Complejo Magnitud y Fase

$$Z_{L} = 0 \longrightarrow \Gamma_{L} = -1$$

$$Z_{L} = Z_{0} \longrightarrow \Gamma_{L} = 0$$

$$Z_{L} = \infty \longrightarrow \Gamma_{L} = 1$$

$$RL = -20\log(|\Gamma_L|)$$

$$VSWR = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}$$

COEFICIENTE DE REFLEXIÓN

► Impedancia normalizada a $Z_0 = 50\Omega$

$$z = \frac{Z}{Z_0} = \frac{Z}{50}$$

$$z = \frac{Z}{Z_0} = \frac{Z}{50}$$
 $z = \frac{R}{50} \pm j\frac{X}{50} = r \pm jx$

- Representación gráfica de las impedancia.
- El Chart de Smith

- Mizuhashi Tosaku 1937
- Phillip Smith
- 1939

COEFICIENTE DE REFLEXIÓN

• Impedancia normalizada a $Z_0 = 50\Omega$

$$z' = \frac{Z}{Z_0} = \frac{Z}{50}$$

 Representación gráfica del Coeficiente de reflexión

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} \qquad \longrightarrow \qquad \Gamma = \frac{z - 1}{z + 1}$$

COEFICIENTE DE REFLEXIÓN

• Impedancia normalizada a $Z_0 = 50\Omega$

$$z' = \frac{Z}{Z_0} = \frac{Z}{50}$$

 Representación gráfica del Coeficiente de reflexión

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} \qquad \longrightarrow \qquad \Gamma = \frac{z - 1}{z + 1}$$

ADAPTACIÓN DE IMPEDANCIAS

Impedancia = Resistencia

La máxima transferencia de potencia se produce cuando la Impedancia de Carga (R_L) es igual a la impedancia del generador (R_S)

Rs WV RL / Rs

Impedancia = Resistencia + Reactancia

La máxima transferencia de potencia de RF se logra cuando la Impedancia de Carga (Z_L) es igual a la Impedancia conjugada del generador (Z_S).

PARÁMETROS - S

- Describen el comportamiento lineal de un dispositivo cuando se les somete al estimulo de una señal
 - Están relacionados con medidas habituales (Ganancia, Pérdida de inserción, coeficiente de reflexión, SWR, ...)
 - Los parámetros-S representan en una matriz de N x N (N = Número de puertos del dispositivo) y son valores complejos con Magnitud y Fase
 - Se exportan e importan los datos en formatos standard para emplearlos en herramientas de simulación.
 - Los coeficientes de reflexión S11 y S22 se pueden representar en el chart de Smith

S₁₁ = Coeficiente de reflexión Entrada (Adaptación de Entrada)

S₂₁ = Coeficiente de Transmisión (Ganancia o Pérdidas)

S₂₂ = Coeficiente de reflexión Salida (Adaptación de Salida)

S₁₂ = Coeficiente de Transmisión reciproca (Aislamiento Salida Entrada)

https://www.youtube.com/c/OpenEngineeringRF https://www.youtube.com/watch?v=-Pi0UbErHTY

EL VNA

▶ Equipo de medida de parámetros S y mas cosas...

EL VNA ¿CÓMO MEDIR LA SEÑAL REFLEJADA?

LA CALIBRACIÓN

- Tipos de Errores
 - Aleatorios
 - Sistemáticos
- ► LA CALIBRACIÓN DEL VNA PERMITE MATEMATICAMENTE ELIMINAR LOS ERRORES SISTEMÁTICOS EN LA MEDIDA
 - ▶ Efecto de los Conectores, Cables, Adaptadores, etc
- LA CALIBRACIÓN SE REALIZA MEDIANTE EL USO DE **IMPEDANCIAS STANDARD** CARACTERIZADAS.
- ► HAY DIVERSOS TIPOS DE CALIBRACIÓN
 - ▶ SOLT, TRL, SSLT, ...

LA CALIBRACIÓN

CALIBRACIÓN SOLT

▶ SHORT: $\Gamma = -1$

ightharpoonup OPEN: $\Gamma = 1$

ightharpoonup LOAD: $\Gamma = 0$

► THRU: Atenuación entre el Puerto 1 y 2 en función de la frecuencia

PLANO DE CALIBRACIÓN

La calibración permite establecer el Plano de calibración. Fase = 0

STANDARDS DE CALIBRACIÓN

STANDARDS DE CALIBRACIÓN

- ¿ Cómo conocerlos?
- Opción 1. Comprar un kit de calibración que incluya la información

STANDARDS DE CALIBRACIÓN

- ¿ Cómo conocerlos?
- Opción 2.
 - Encontrar un amigo con un VNA calibrado con un Kit PRO
 - Medir el S11 del Open, Short y Load → Ficheros *.s1p y medir S11,S21, S12, S22 del Thru con un VNA calibrado con un Kit PRO → Fichero *.s2p
 - Crear el modelo con el software de DG8SAQ para el VNWA

KITS DE CALIBRACIÓN

► KIT CALIBRACIÓN ROSSENBERGER HASTA 12GHz por 110€

42.50

22€		OPEN	Delay (ps)	C0 (e ⁻¹⁵ F)	C1 (e ⁻²⁷ F/Hz)	C2 $(e^{-36}F/Hz^2)$	C3 $(e^{-45}F/Hz^3)$
		32K101-K00L5	37.80	90.7086	11564.6018	-1618.3821	65.839
						411217/14 1750	To the Daily Hall
41€		SHORT	Delay (ps)	LO $(e^{-12}H)$	L1 (e ⁻²⁴ H/Hz)	L2 $(e^{-33}H/Hz^2)$	L3 ($e^{-42}H/Hz^3$)
		32Z114-000L5	25.70	150.503	-21754.392	1129.398	-12.295
				Albert No. of the last	Mark Street		
45€		LOAD	Delay (ps)	\mathbf{R} (Ω)	L (pH)	C (fF)	
		32K17R-001E3	40.04	50.00*	0.000606	14.006	
		TRHU	E. Delay (ps	s)			

32K101-K00L5

^{*} Si es posible medir el valor de R en DC con mayor precisión, usar el valor medido

KITS DE CALIBRACIÓN

KIT CALIBRACIÓN LiteVNA64 HASTA 8GHZ

^{*} Si es posible medir el valor de R en DC con mayor precisión, usar el valor medido

VNA's PARA uW's

LiteVNA 64

- 50KHz 6,3GHz / 1001p / S11 noise floor <-50dB / S21 dinamic range 70-90dB
- Tarjeta SD. Guardar Calibraciones / Cal Kits / Imágenes / Medidas S1p y S2p
- Firmware con actualizaciones frecuentes (1.3.43 Mar 2025)
- Amplia gama de visualizaciones de las medidas de reflexión y transmisión

Reflexion (S11)							
☑ LOGMAG	POLAR	Z PHASE					
PHASE	LINEAR	SERIES C					
DELAY	REAL						
SMITH R + jX	IMAG	SERIES L					
SWR	Q FACTOR	PARALLEL R					
RESISTANCE	CONDUCTANCE	PARALLEL X					
REACTANCE	SUSCEPTANCE	PARALLEL C					
IZI	IYI	FINALLEL G					
→ MORE	→ MORE	PARALLEL L					
← BACK	← BACK	← BACK					

VNA's PARA uW's

► LiteVNA 64

Calibración Ideal o con parámetros del Kit empleado

OPEN	SHORT	LOAD	THRU
20	20	R	20
50Ω	50Ω	50.96Ω	50Ω
DELAY	DELAY	20	DELAY
128ps	126ps	50Ω	63.6ps
OFFSET LOSS	OFFSET LOSS	DELAY	OFFSET LOSS
ΘGΩ/s	OGΩ/s	163ps	ΘGΩ/s
C0	L0	OFFSET LOSS	← BACK
-6₊27∗iō ⁱ⁵	59.39 ∗iõ ⁱ²	ΘGΩ/s	
_C1	<u>L1</u>	L	
17387.3613*∅	-84183.7344√	332₊28∗iō ¹² H	
C2	L2	C	
-6228.8599*	27810.3906*%	116₊63*iō ⁱ⁵ F	
C3 128.21*16 ⁴⁵	L3 -2604.1602*%	← BACK	
← BACK	← BACK		

IMPORTANTE EL KIT DE CALIBRACIÓN SOLO SE USA PARA CALIBRAR

VNA's PARA UW'S -> SNA's PARA UW's

► ADALM PLUTO con "ESTEROIDES" + SATSAGEN

VNA's PARA UW'S -> SNA's PARA UW's

► ADALM PLUTO con "+ESTEROIDES"+ SATSAGEN

VNA's PARA uW's

▶ ADALM PLUTO con "+++ESTEROIDES"+ SATSAGEN

VNA's PARA uW's

► ADALM PLUTO con "++ESTEROIDES"+ SATSAGEN

NO OS PERDAIS LOS TALLERES DE MEDICIONES AULAS 10 y 9

GRACIAS

