Absorption von β - und γ -Strahlung Versuchsanleitung

1 Was Sie zur Versuchsdurchführung wissen sollten

Natürliche und künstliche Radioaktivität; Kernreaktionen; radioaktiver Zerfall; β - und γ -Strahlung, ihre Entstehung durch Kernumwandlungen und ihre Absorption beim Durchgang durch Materie; Nachweis von β - und γ - Strahlung, Zählrohre; Zählstatistik beim radioaktiven Zerfall, Poisson-Verteilung.

2 Achtung!

- Lesen Sie das Kapitel zum Strahlenschutz!
- Die radioaktiven Präparate werden NUR vom zuständigen Betreuer in die Apparatur eingesetzt!
- Die Praktikumsteilnehmer dürfen NICHT selbst mit den Präparaten hantieren!

3 Durchführung und Auswertung

- 1. Bestimmen Sie die Zählrohrcharakteristik. Setzen Sie dazu das β -Präparat ohne Absorber vor das Zählrohr und messen Sie die Impulsrate als Funktion der Zählrohrspannung. Die Zählzeit ist so zu wählen, dass die relative Unsicherheit unter 3% liegt¹. Wählen Sie für die folgenden Messungen die Arbeitsspannung etwa 100-150 V oberhalb der Einsatzspannung.
- 2. Messen Sie 200 mal die Zahl der Untergrundpulse in 10 Sekunden.
 - (a) Bestimmen Sie den Mittelwert und die empirische Standardabweichung der Verteilung.

¹Welche Gesamtimpulszahl pro Messpunkt ist dazu notwendig?

- (b) Fertigen Sie je ein Diagramm der absoluten und der relativen Häufigkeitsverteilung an, wie es im Abschnitt *Poisson-Verteilung* beschrieben wird².
- (c) Tragen Sie in das Diagramm der relativen Häufigkeitsverteilung die nach Gleichung (14) zu berechnende Poisson-Verteilung ein und prüfen Sie, ob letztere die Messwerte richtig wiedergibt.
- ! Nutzen Sie die in Aufgabe 2a bestimmte mittlere Untergrundaktivität, um an allen weiteren Messungen eine Untergrundkorrektur durchzuführen.
- 3. Messen Sie die Impulsrate $a_{\gamma}(x)$ des γ -Präparats (137 Cs, $E_{\gamma} \cong 0,66$ MeV) in Abhängigkeit von der Schichtdicke des Blei-Absorbers. Die relative Unsicherheit jeder Messung soll unter 3% liegen.
 - (a) Tragen Sie die Zählrate logarithmisch gegen die Absorberdicke auf.
 - (b) Bestimmen Sie den Absorptionskoeffizienten μ_{γ} sowie den Massenabsorptionskoeffizienten $\mu_{\gamma,m}$ von Blei für die angegebene Energie.
- 4. Messen Sie die Impulsrate $a_{\beta}(x)$ des β -Präparats (90 Sr) in Abhängigkeit von der Schichtdicke des Aluminium-Absorbers. Verwenden Sie die vorhandenen und auf dem Rahmen angegebenen Schichtdicken; Zwischenwerte und größere Schichtdicken lassen sich ggf. durch Kombination mehrerer Folien erreichen. Überlegen Sie, welche Schichtdicken sinnvoll sind. Die relative Unsicherheit jeder Messung soll unter 3% liegen.
 - (a) Tragen Sie die Zählrate logarithmisch gegen die Absorberdicke auf. In welchem Bereich lässt sich eine exponentielle Näherung verwenden?
 - (b) Bestimmen Sie mit Hilfe von Gl. (7) den Absorptionskoeffizienten μ_{β} und den Massenabsorptionskoeffizienten $\mu_{\beta,m}$.
- 5. Messen Sie die Impulsrate $a_{\beta}(x)$ mit je einem Plexiglas- und Gummiabsorber.
 - (a) Berechnen Sie die Absorptionskoeffizienten μ_{β} für Plexiglas und Gummi.
 - (b) Zeichnen Sie die berechneten Absorptionskurven $(a_{\beta,0})$ wie bei Aluminium) und die Messwerte für Plexiglas, sowie Gummi in das Diagramm für Aluminium ein.

²Die Untergrundstrahlung ersetzt die langlebige radioaktive Substanz

- (c) Was erwarten Sie für Blei als Absorber?
- 6. Überprüfen Sie, ob Sie alle Messungen durchgeführt und alle Größen bestimmt haben, die Sie zur Auswertung benötigen.
- 7. Bestimmen Sie die Unsicherheiten Ihrer Messergebnisse.
- 8. Diskutieren Sie alle Ihre Beobachtungen.