

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

B_c^+ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT		
6274.9 ± 0.8 OUR AVERA	GE				
6274.28 \pm 1.40 \pm 0.32	¹ AAIJ	17L LHCB	<i>pp</i> at 7, 8 TeV		
6274.0 \pm 1.8 \pm 0.4	² AAIJ	14AQ LHCB	<i>pp</i> at 7, 8 TeV		
$6276.28 \pm 1.44 \pm 0.36$	³ AAIJ	13AS LHCB	<i>pp</i> at 7, 8 TeV		
6273.7 \pm 1.3 \pm 1.6		12AV LHCB	pp at 7 TeV		
6275.6 \pm 2.9 \pm 2.5	⁵ AALTONEN	08м CDF	$p\overline{p}$ at 1.96 TeV		
6300 \pm 14 \pm 5	⁵ ABAZOV	08T D0	$p\overline{p}$ at 1.96 TeV		
6400 ± 390 ± 130	⁶ ABE	98м CDF	$p\overline{p}$ at 1.8 TeV		
• • • We do not use the follow	ving data for avera	ages, fits, limit	ts, etc. • • •		
6285.7 \pm 5.3 \pm 1.2	⁵ ABULENCIA	06c CDF	Repl. by AALTONEN 08M		
6320 ± 60	⁷ ACKERSTAFF				
¹ Measured using $B_c^+ o J_c$	$\psi D^0 K^+$ decays.				
² Uses $B_c^+ \rightarrow J/\psi p \overline{p} \pi^+ d$					
3 AAIJ 13AS uses the B_c^+ \rightarrow					
⁴ AAIJ 12AV uses the $B_c^+ \rightarrow$	3	d also measure	is the mass difference $M(B_c^+)$		
$-M(B^+) = 994.6 \pm 1.3$	_		C		
⁵ Measured using a fully reco	onstructed decay m	node of $B_c \rightarrow$	$J/\psi\pi$.		
$6 \Delta BF 98M observed 20.4^{+0}$	5.2 events in the 1	$B^+ \rightarrow L/2/2$	$(1s)\ell u_\ell$ with a significance of		
> 4.8 standard deviations.	J. U	C			
⁷ ACKERSTAFF 980 observed 2 candidate events in the $B_c^+ \rightarrow J/\psi(1S)\pi^+$ channel with an estimated background of 0.63 \pm 0.20 events					

B⁺_c MEAN LIFE

with an estimated background of 0.63 \pm 0.20 events.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

<u>VALUE</u> (10^{-12} s)	DOCUMENT ID		TECN	COMMENT
0.507 ±0.009 OUR EVALUATION OF THE PAGE	ON			
0.507 ±0.009 OUR AVERAGE 0.5134+0.0110+0.0057	^{1,2} AAIJ	15G	LHCB	pp at 7, 8 TeV
$0.509 \pm 0.008 \pm 0.012$	³ AAIJ	14 G	LHCB	pp at 8 TeV
$0.452\ \pm0.048\ \pm0.027$	² AALTONEN	13	CDF	$p\overline{p}$ at 1.96 TeV
$0.448 \ ^{+0.038}_{-0.036} \ \pm 0.032$	⁴ ABAZOV	09н	D0	$p\overline{p}$ at 1.96 TeV
$0.463 \ ^{+ 0.073}_{- 0.065} \ \pm 0.036$	⁴ ABULENCIA	060	CDF	$p\overline{p}$ at 1.96 TeV
$0.46 {+0.18 \atop -0.16} \pm 0.03$	⁴ ABE	98M	CDF	<i>p</i> p 1.8 TeV
HTTP://PDG.LBL.GOV	Page 1		Creat	ed: 5/30/2017 17:23

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)

 B_c^- modes are charge conjugates of the modes below.

Mode Fraction (Γ_i/Γ) Confidence level

The following quantities are not pure branching ratios; rather the fraction

```
\Gamma_i/\Gamma \times B(\overline{b} \to B_c).
            J/\psi(1S)\ell^+\nu_\ell anything
                                                                                               (5.2 \begin{array}{c} +2.4 \\ -2.1 \end{array}) \times 10^{-5}
            J/\psi(1S)\mu^+\nu_\mu
            J/\psi(1S)\pi^+
                                                                                                 seen
            J/\psi(1S)K^{+}
                                                                                                 seen
            J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}
                                                                                                 seen
\Gamma_6 = J/\psi(1S) a_1(1260) 
 \Gamma_7 = J/\psi(1S) K^+ K^- \pi^+
                                                                                                                       \times 10^{-3}
                                                                                                                                                         90%
                                                                                             < 1.2
                                                                                                 seen
            J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}
Γ<sub>8</sub>
                                                                                                 seen
            \psi(2S)\pi^{+}
                                                                                                 seen
\Gamma_{10} J/\psi(1S)D^0K^+
          J/\psi(1S)D^*(2007)^0K^+
\Gamma_{12} = J/\psi(1S)D^*(2010)^+K^{*0}

\Gamma_{13} = J/\psi(1S)D^+K^{*0}
\Gamma_{14} = J/\psi(1S) D_s^+ \ \Gamma_{15} = J/\psi(1S) D_s^{*+}
                                                                                                 seen
                                                                                                 seen
\Gamma_{16} J/\psi(1S) p \overline{p} \pi^+
                                                                                                 seen
                                                                                                (2.4 \ ^{+0.9}_{-0.8} \ )\times 10^{-5}
\Gamma_{17} \chi_c^0 \pi^+
         p\overline{p}\pi^+
\Gamma_{18}
                                                                                                 not seen
           D^*(2010)^+ \overline{D}{}^0
                                                                                                                       \times 10^{-3}
                                                                                                                                                         90%
                                                                                             < 6.2
          D^{+}K^{*0}
\Gamma_{20}
                                                                                                                       \times 10^{-6}
                                                                                             < 0.20
                                                                                                                                                         90%
          D^+\overline{K}^{*0}
\Gamma_{21}
                                                                                             < 0.16
                                                                                                                       \times 10^{-6}
                                                                                                                                                         90%

\Gamma_{22} \quad D_{s}^{+} K^{*0} 

\Gamma_{23} \quad D_{s}^{+} \overline{K}^{*0} 

\Gamma_{24} \quad D_{s}^{+} \phi 

\Gamma_{25} \quad K^{+} K^{0}

                                                                                                                       \times 10^{-6}
                                                                                             < 0.28
                                                                                                                                                         90%
                                                                                                                       \times 10^{-6}
                                                                                             < 0.4
                                                                                                                                                         90%
                                                                                            < 0.32
                                                                                                                       \times 10^{-6}
                                                                                                                                                         90%
                                                                                                                       \times 10^{-7}
                                                                                            < 4.6
                                                                                                                                                         90%
\Gamma_{26} B_s^0 \pi^+ / B(\overline{b} \rightarrow B_s)
                                                                                               (2.37^{\,+\,0.37}_{\,-\,0.35})\times 10^{-3}
```

Created: 5/30/2017 17:23

 $^{^1}$ Also measures the width difference $\Delta\Gamma=\Gamma_{B_a^+}-\Gamma_{B^+}=4.46\pm0.14\pm0.07~\text{mm}^{-1}~\text{c}.$

 $^{^2}$ Uses fully reconstructed $B_c^+
ightarrow J/\psi \pi^+$ decays.

 $^{^3\,{\}rm Measured}$ using $B_c^+ \to \ J/\psi \mu^+ \nu_\mu X$ decays.

 $^{^4}$ The lifetime is measured from the $J/\psi\,e$ decay vertices.

B⁺ BRANCHING RATIOS

$\Gamma(J/\psi(1S)\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$

 $\Gamma_1/\Gamma \times B$

$VALUE$ (units 10^{-5}) CL	% DOCUMENT ID	TECN	COMMENT
8.2±1.3 OUR AVERAGE			
$8.8 \pm 1.0 \pm 0.3$	^{1,2} AALTONEN	16A CDF	$p\overline{p}$ at 1.96 TeV
$5.2^{+2.4}_{-2.1}$	³ ABE	98м CDF	<i>p</i> p 1.8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

<16	90	⁴ ACKERSTAFF	980	OPAL	$e^+e^- \rightarrow Z$	Ζ
<19	90	⁵ ABREU	97E	DLPH	$e^+e^- ightarrow 2$	Ζ
<12	90	⁶ BARATE	97H	ALEP	$e^+e^- \rightarrow Z$	Ζ

 1 AALTONEN 16A reports $[\Gamma(B_c^+ \to J/\psi(1S)\ell^+\nu_\ell\,{\rm anything})/\Gamma_{\rm total} \times {\rm B}(\overline{b} \to B_c)]/[{\rm B}(\overline{b} \to B^+)]/[{\rm B}(B^+ \to J/\psi(1S)K^+)] = 0.211 \pm 0.012^{+0.021}_{-0.020}$ which we multiply by our best values ${\rm B}(\overline{b} \to B^+) = (40.4 \pm 0.6) \times 10^{-2}, \ {\rm B}(B^+ \to J/\psi(1S)K^+) = (1.026 \pm 0.031) \times 10^{-3}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

² AALTONEN 16A also measures the cross-section $\sigma(B_C) \times \mathrm{B}(B_C \to J/\psi \mu \nu_\mu) = 0.60 \pm 0.09$ nb and estimates the total cross-section $\sigma(B_C)$ to be in the range 25 \pm 4 to 52 \pm 8 nb for $p_T(B_C) > 6$ GeV/c and $|\mathrm{y}(B_C)| < 1$.

³ ABE 98M result is derived from the measurement of $[\sigma(B_c) \times B(B_c \rightarrow J/\psi(1S)\ell\nu_\ell)]/[\sigma(B^+) \times B(B^+ \rightarrow J/\psi(1S)K^+)] = 0.132^{+0.041}_{-0.037}(\text{stat}) \pm 0.031(\text{sys})^{+0.032}_{-0.020}(\text{lifetime})$ by using PDG 98 values of $B(b \rightarrow B^+)$ and $B(B^+ \rightarrow J/\psi(1S)K^+)$.

⁴ ACKERSTAFF 980 reports B($Z \to B_c X$)/B($Z \to q q$)×B($B_c \to J/\psi(1S) \ell \nu_\ell$) < 6.95 × 10⁻⁵ at 90%CL. We rescale to our PDG 98 values of B($Z \to b \overline{b}$).

 5 ABREU 97E value listed is for an assumed $\tau_{B_c}=0.4\,\mathrm{ps}$ and improves to 1.6×10^{-4} for $\tau_{B_c}=1.4\,\mathrm{ps}.$

 6 BARATE 97H reports B($Z\to B_c$ X)/B($Z\to q\,q$)·B($B_c\to J/\psi(1S)\,\ell\nu_\ell$) $<5.2\times10^{-5}$ at 90%CL. We rescale to our PDG 96 values of B($Z\to b\,\overline{b}$). A $B_c^+\to J/\psi(1S)\,\mu^+\nu_\mu$ candidate event is found, compared to all the known background sources 2×10^{-3} , which gives $m_{B_c}=5.96^{+0.25}_{-0.19}$ GeV and $\tau_{B_c}=1.77\pm0.17$ ps.

$\Gamma(J/\psi(1S)\pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$

 $\Gamma_3/\Gamma \times B$

Created: 5/30/2017 17:23

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
seen					pp at 8 TeV
seen		² KHACHATRY	.15AA	CMS	pp at 7 TeV
seen			13	CDF	$p\overline{p}$ at 1.96 TeV
seen		³ AAIJ	12AV	LHCB	pp at 7 TeV
seen		AALTONEN	M80	CDF	$p\overline{p}$ at 1.96 TeV
seen		ABAZOV	Т80	D0	$p\overline{p}$ at 1.96 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$< 2.4 \times 10^{-4}$	90	⁴ ACKERSTAFF	980	OPAL	$e^+e^- ightarrow Z$
$< 3.4 \times 10^{-4}$	90	⁵ ABREU	97E	DLPH	$e^+e^- o Z$
$< 8.2 \times 10^{-5}$	90	⁶ BARATE	97H	ALEP	$e^+e^- o Z$
$< 2.0 \times 10^{-5}$	95	⁷ ABE	96 R	CDF	<i>p</i> p 1.8 TeV

```
^{1} AAIJ 15M reports a measurement of B(B _{c}^{+} \rightarrow J/\psi \, \pi^{+}) / B(B ^{+} \rightarrow J/\psi \, K^{+}) \cdot f_{c}/f_{u} = (0.683 \pm 0.018 \pm 0.009)% at p_{T}(B) < 20 GeV and 2.0 < y(B) < 4.5.
```

$\Gamma(J/\psi(1S)\pi^+)/\Gamma(J/\psi(1S)\mu^+\nu_\mu)$

 Γ_3/Γ_2

VALUE DOCUMENT ID TECN COMMENT

(4.69 \pm 0.28 \pm 0.46) \times 10⁻²

1 AAIJ 14W LHCB pp at 7 TeV

$\Gamma(J/\psi(1S)K^+)/\Gamma(J/\psi(1S)\pi^+)$

 Γ_4/Γ_3

 VALUE
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.079±0.007±0.003
 AAIJ
 16AF LHCB
 pp at 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $0.069\pm0.019\pm0.005$

0 AAIJ

13BY LHCB Repl. by AAIJ 16AF

$\Gamma(J/\psi(1S)\pi^+\pi^+\pi^-)/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$

 $\Gamma_5/\Gamma \times B$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<5.7 \times 10⁻⁴ 90 ¹ ABREU 97E DLPH $e^+e^- \rightarrow Z$

$\Gamma(J/\psi(1S)\pi^+\pi^+\pi^-)/\Gamma(J/\psi(1S)\pi^+)$

 Γ_5/Γ_3

Created: 5/30/2017 17:23

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 2.4 \pm 0.4 OUR AVERAGE
 COMMENT
 2.55 \pm 0.80 \pm 0.33 \pm 0.04 KHACHATRY...15AA CMS
 PP at 7 TeV

 2.41 \pm 0.30 \pm 0.33
 AAIJ
 12Y LHCB
 PP at 7 TeV

 $^{^2}$ KHACHATRYAN 15AA reports a measurement of B(B $_c^+ \to J/\psi \, \pi^+)$ / B(B $^+ \to J/\psi \, K^+) \cdot f_c/f_{_{I\!\!I}} = (0.48 \pm 0.05 \pm 0.03 \pm 0.05)\%$, at $p_{_{I\!\!I}} >$ 15 GeV and $|\eta(B)| <$ 1.6.

³ AAIJ 12AV reports a measurement of B($B_c^+ \to J/\psi \pi^+$)/B($B^+ \to J/\psi K^+$) $f_c/f_u = (0.68 \pm 0.10 \pm 0.03 \pm 0.05)\%$ at $p_T(B) >$ 4 GeV and 2.5 $< \eta(B) <$ 4.5.

⁴ ACKERSTAFF 980 reports B($Z \to B_c X$)/B($Z \to qq$)×B($B_c \to J/\psi(1S)\pi^+$) < 1.06 × 10⁻⁴ at 90%CL. We rescale to our PDG 98 values of B($Z \to b\overline{b}$).

⁵ ABREU 97E value listed is for an assumed $\tau_{B_c}=0.4$ ps and improves to 2.7×10^{-4} for $\tau_{B_c}=1.4$ ps.

 $^{^6}$ BARATE 97H reports B($Z\to~B_{\it C}$ X)/B($Z\to~q\,q)\cdot$ B($B_{\it C}\to~J/\psi(1S)\,\pi)<3.6\times10^{-5}$ at 90%CL. We rescale to our PDG 96 values of B($Z\to~b\,\overline{b}$).

⁷ ABE 96R reports B(b → B_cX)/B(b → B⁺X)·B(B⁺_c → J/ψ(1S)π⁺)/B(B⁺ → J/ψ(1S) κ⁺) < 0.053 at 95%CL for $\tau_{B_c} = 0.8$ ps. It changes from 0.15 to 0.04 for 0.17 ps< $\tau_{B_c} < 1.6$ ps. We rescale to our PDG 96 values of B(b → B⁺) = 0.378±0.022 and B(B⁺ → J/ψ(1S) κ⁺) = 0.00101 ± 0.00014.

 $^{^1}$ AAIJ 14W reports also a measurement B(B $_c^+ \to J/\psi \pi^+)$ / B(B $_c^+ \to J/\psi \mu^+ \nu_\mu) = 0.271 \pm 0.016 \pm 0.016$ in the region $m_{J/\psi \, \mu^+} > 5.3$ GeV.

 $^{^{1}}$ ABREU 97E value listed is independent of 0.4 ps< $\tau_{B_{c}} <$ 1.4 ps.

$\Gamma(J/\psi(1S)a_1(1260)$	0))/Γ _{total} :	$\times B(\overline{b} \to B_c)$				$\Gamma_6/\Gamma \times B$
	CL%	DOCUMENT ID				
$<1.2 \times 10^{-3}$	90	¹ ACKERSTAF	F 980	OPAL	$e^+e^- \rightarrow$	Z
1 ACKERSTAFF 98 $< 5.29 \times 10^{-4}$ at						
$\Gamma(J/\psi(1S)K^+K^-)$	$\pi^+)/\Gamma_{ m tot}$			TECN	COMMENT	$\Gamma_7/\Gamma \times B$
seen		DOCUMENT ID 1 AAIJ	13CA	LHCB	pp at 7, 8	TeV
¹ A signal yield of 78 using an integrate	8 ± 14 decay	s is reported with	n a sign			
$\Gamma(J/\psi(1S)K^+K^-)$ VALUE	$(\pi^+)/\Gamma(J)$)	TECN	COMMENT	Γ_7/Γ_3
0.53±0.10±0.05		DOCUMENT ID 1 AAIJ	13CA	LHCB	pp at 7, 8	TeV
¹ A signal yield of 78 using an integrate		s is reported with	n a sign			
$\Gamma(J/\psi(1S)\pi^+\pi^+)$	$\pi^{+}\pi^{-}\pi^{-}$	$/\Gamma(J/\psi(1S)\pi)$	· +)	TECN	COMMENT	Γ_8/Γ_3
1.74±0.44±0.24		¹ AAIJ	 14P	LHCB	pp at 7, 8	TeV
¹ A signal yield of 3	2 ± 8 decays					
$\Gamma(\psi(2S)\pi^+)/\Gamma(J)$ VALUE	$/\psi(1S)\pi^+$) DOCUMENT ID)	TECN	COMMENT	Γ_9/Γ_3
0.268±0.032±0.007=	±0.006				pp at 7, 8	TeV
• • • We do not use			es, fits,	limits, e	etc. • • •	
$0.250 \pm 0.068 \pm 0.014$	±0.006	¹ AAIJ	13AN	иLНСВ	Repl. by A	AIJ 15AY
1 The last uncertain $\mu^+\mu^-)$ ratio mea		the uncertainty	of the	B(ψ(2 <i>S</i>	$(1) \rightarrow \mu^+ \mu^-$	$(J/\psi \rightarrow$
$\Gamma(J/\psi(1S)D^0K^+)$	$)/\Gamma ig(J/\psi ig(1$					Γ_{10}/Γ_3
<u>VALUE</u>		DOCUMENT ID			COMMENT	
$0.432 \pm 0.136 \pm 0.028$		AAIJ	17L	THCB	pp at 7, 8	IeV
$\Gamma(J/\psi(1S)D^*(200))$ VALUE	07) ⁰ K ⁺)/I	$\Gamma(J/\psi(1S)\pi^+)$,	TECN	COMMENT	Γ_{11}/Γ_3
5.1±1.8±0.4					pp at 7, 8	TeV
$\Gamma(J/\psi(1S)D^*(201))$.0) ⁺ K* ⁰),	$/\Gammaig(J/\psi(1S)\pi^{-1}$	⊦)			Γ ₁₂ /Γ ₃
<u>VALUE</u>		DOCUMENT ID	17.	<u>TECN</u>	<u>COMMENT</u>	T. V
$2.10\pm1.08\pm0.34$		AAIJ	1/L	LHCB	pp at 1, 8	ieV
$\Gamma(J/\psi(1S)D^+K^*)$ VALUE	$O)/\Gamma(J/\psi)$	$(1S)\pi^+)$)	TECN	COMMENT	Γ_{13}/Γ_3
0.63±0.39±0.08		AAIJ			pp at 7, 8	TeV
		, 0.03	-1-	200	77 41 1, 0	. • •

$\Gamma(J/\psi(1S)D_s^+)/\Gamma(J/\psi(1S)\pi)$ VALUE 3.1 ±0.5 OUR AVERAGE	+) DOCUMENT ID		<u>TECN</u>	Γ ₁₄ /Γ ₃
3.8 $\pm 1.1 \pm 0.4$ 2.90 $\pm 0.57 \pm 0.24$	AAD AAIJ			pp at 7, 8 TeV pp at 7, 8 TeV
$\Gamma(J/\psi(1S)D_s^{*+})/\Gamma(J/\psi(1S))$	π+) DOCUMENT ID		TECN	Γ_{15}/Γ_{3}
10.4±3.1±1.6	AAD			pp at 7, 8 TeV
$\Gamma(J/\psi(1S)D_s^{*+})/\Gamma(J/\psi(1S)D_s^{*+})$	D+) DOCUMENT ID		<u>TECN</u>	Γ ₁₅ /Γ ₁₄
2.5 ±0.5 OUR AVERAGE				
$2.8 \begin{array}{c} +1.2 \\ -0.8 \end{array} \pm 0.3$	AAD			pp at 7, 8 TeV
$2.37 \pm 0.56 \pm 0.10$	AAIJ	13AS	LHCB	<i>pp</i> at 7, 8 TeV
$\Gamma(J/\psi(1S)\rho\overline{\rho}\pi^+)/\Gamma(J/\psi(1S))$	$()\pi^+)$		TECN	Γ ₁₆ /Γ ₃
0.143 ^{+0.041} _{-0.036}	AAIJ			<i>pp</i> at 7, 8 TeV
$\Gamma(\chi_c^0\pi^+)/\Gamma_{ m total}$				Γ ₁₇ /Γ
VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
$24.3^{+8.6}_{-7.7} \pm 0.4$	² AAIJ	16AT	LHCB	pp at 7 and 8 TeV
1 AAIJ 16AT reports [$\Gamma(B_c^+ \rightarrow \chi_c^0) \times 10^{-6}$ which we divide by Our first error is their experiment from using our best value. 2 The significance of the observed	y our best value ent's error and o	$\Gamma(\overline{b} - \mathbf{ur})$ sec	\rightarrow $B^+)$, ond erro	$/\Gamma_{ m total} = 0.404 \pm 0.006.$ or is the systematic error
$\Gamma(p\overline{p}\pi^+)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₁₈ /Γ
	¹ AAIJ			<i>pp</i> at 7, 8 TeV
¹ Measures the ratio $(f_c/f_u) \times 1$ region $m(p\overline{p}) < 2.85 \text{ GeV/c}^2$,	C	⁺) <	3.6 ×	10^{-8} at 95% CL, in the

the *b*-quark into the B_c^+ (B_u^+) meson.

 $\Gamma_{19}/\Gamma \times B$

Created: 5/30/2017 17:23

98Q ALEP $e^+e^- \rightarrow Z$

 $^{^1}$ BARATE 98Q reports B(Z \rightarrow B_c X)×B(B_c \rightarrow $D^*(2010)^+\overline{D}{}^0)<1.9\times10^{-3}$ at 90%CL. We rescale to our PDG 98 values of B(Z \rightarrow $b\,\overline{b}).$

$\Gamma(D^+K^{*0})/\Gamma_{\text{total}}$	$\times B(\overline{b} \rightarrow$	B_c)		Γ ₂₀ /Γ × Β
VALUE (units 10 ⁻⁶) <0.20	CL%	DOCUMENT ID	TECN	COMMENT
<0.20	90	¹ AAIJ	13R LHCB	pp at 7 TeV
¹ AAIJ 13R reports	$[\Gamma(B_c^+) \rightarrow$	$D^+ K^{*0})/\Gamma_{\text{total}}$	$\times \ B(\overline{b} \to B)$	(B_c)] / $[B(\overline{b} \rightarrow B^+)]$ <
$0.5 \times 10^{-6} \text{ which}$				
$\Gamma(D^+\overline{K}^{*0})/\Gamma_{\text{total}}$	$\times B(\overline{b} \rightarrow$	B_c)		$\Gamma_{21}/\Gamma \times B$
VALUE (units 10 ^{−6}) <0.16	CL%	DOCUMENT ID	TECN	COMMENT
<0.16	90	¹ AAIJ	13R LHCB	pp at 7 TeV
¹ AAIJ 13R reports	$[\Gamma(B_c^+)]$	$D^+\overline{K}^{*0})/\Gamma_{\text{total}}$	$\times \ B(\overline{b} \to B)$	$(B_c)] / [B(\overline{b} \rightarrow B^+)] <$
0.4×10^{-6} which	we multiply	/ by our best value	$e B(\overline{b} \rightarrow B^+)$	$= 40.4 \times 10^{-2}$.
$\Gamma(D_s^+ K^{*0})/\Gamma_{\text{total}}$	$\times B(\overline{b} \rightarrow$	B_c)		$\Gamma_{22}/\Gamma \times B$
<i>VALUE</i> (units 10 ^{−6}) <0.28	CL%	DOCUMENT ID	TECN	COMMENT
<0.28	90	¹ AAIJ	13R LHCB	pp at 7 TeV
¹ AAIJ 13R reports	$[\Gamma(B_c^+ \rightarrow$	$D_{s}^{+}K^{*0})/\Gamma_{total}$	$\times \ B(\overline{b} \to B)$	(B_c)] / $[B(\overline{b} \rightarrow B^+)]$ <
$0.7 \times 10^{-6} \text{ which}$		3		
$\Gamma(D_s^+\overline{K}^{*0})/\Gamma_{\text{total}}$	$\times B(\overline{b} \rightarrow$	B_c)		$\Gamma_{23}/\Gamma \times B$
VALUE (units 10^{-6})				
<0.4	90	¹ AAIJ	13R LHCB	pp at 7 TeV
1 AAIJ 13R reports 1.1×10^{-6} which	C	9		(B_c)] / $[B(\overline{b} \rightarrow B^+)]$ < (B_c) = 40.4 × 10 ⁻² .
$\Gamma(D_s^+\phi)/\Gamma_{\text{total}} \times E$		_	,	Γ ₂₄ /Γ × Β
VALUE (units 10^{-6})	•	•	TECN	
<0.32	90	¹ AAIJ	13R LHCB	pp at 7 TeV
				$(B(\overline{b} \rightarrow B^+)] < 0.8 \times$
10^{-6} which we mi				
$\Gamma(K^+K^0)/\Gamma_{\text{total}} \times$	$B(\overline{b} \to E$	B_c)		$\Gamma_{25}/\Gamma \times B$
VALUE 4.6 × 10⁻⁷	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$<4.6 \times 10^{-7}$	90	¹ AAIJ	13BS LHCB	pp at 7 TeV
¹ Derived from $\Gamma(K^{-1})$	$+\kappa^0$)/ $\Gamma \times B$	$B(\overline{b} \to B_C) / (B(B))$	$^+ \rightarrow \kappa^0 \pi^+)$	$B(\overline{\mathit{b}} ightarrow \mathit{B}^+)) < 5.8\%$ at
90% CL using norr	nalization n	node B($B^+ o \ K^0$	$^{0}\pi^{+}) = (23.9$	$7 \pm 0.53 \pm 0.71) \times 10^{-6}$
and assuming a B	production	ratio $f(\overline{b} \rightarrow B_u^+)$	= 0.33.	
$\Gamma(B_s^0\pi^+/B(\overline{b}\to B))$	$(B_s))/\Gamma_{tot}$	$_{al} imes B ig(\overline{b} o B_c ig)$		$\Gamma_{26}/\Gamma \times B$
VALUE (units 10^{-3})		DOCUMENT ID	TECN	COMMENT
$2.37\!\pm\!0.31\!\pm\!0.11^{+0.1}_{-0.1}$.7 .3	¹ AAIJ	13BU LHCB	<i>pp</i> at 7, 8 TeV
¹ The last uncertinty	/ is due to t	the uncertainty of	the B_c^+ lifetim	ne measurument.

POLARIZATION IN B_c^+ DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel (\parallel) or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases ϕ_\parallel and ϕ_\perp . See the definitions in the note on "Polarization in B Decays" review in the B^0 Particle Listings.

Γ_L/Γ in $B_c^+ \rightarrow J/\psi D_s^{*+}$

- <u>H</u> C				
VALUE	DOCUMENT ID		TECN	COMMENT
0.54 ± 0.15 OUR AVERAGE				
0.62 ± 0.24	¹ AAD	16H	ATLS	pp at 7, 8 TeV
0.48 ± 0.20	² AAIJ	13AS	LHCB	pp at 7, 8 TeV
1 AAD 16H measures 1 $ \Gamma_{L}/$ 2 AAIJ 13AS measures 1 $ \Gamma_{LL}$				
L'				

B⁺ REFERENCES

```
AAIJ
                     PR D95 032005
                                                                                     (LHCb Collab.)
               17L
                                             R. Aaij et al.
                     EPJ C76 4
                                              G. Aad et al.
                                                                                    (ATLAS Collab.)
AAD
               16H
               16AF JHEP 1609 153
                                             R. Aaij et al.
AAIJ
                                                                                     (LHCb Collab.)
AAIJ
               16AT PR D94 091102
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
                                             R. Aaij et al.
AAIJ
               16K
                     PL B759 313
                                                                                     (LHCb Collab.)
                                                                                      (CDF Collab.
AALTONEN
               16A
                     PR D93 052001
                                             T. Aaltonen et al.
AAIJ
               15AY PR D92 072007
                                                                                     (LHCb Collab.
                                             R. Aaij et al.
AALI
                     PL B742 29
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
               15G
AAIJ
               15M
                     PRL 114 132001
                                             R. Aaij et al.
                                                                                     (LHCb Collab.
KHACHATRY... 15AA JHEP 1501 063
                                             V. Khachatryan et al.
                                                                                      (CMS Collab.)
               14AQ PRL 113 152003
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
AAIJ
AAIJ
               14G
                     EPJ C74 2839
                                             R. Aaij et al.
                                                                                     (LHCb Collab.
AAIJ
               14P
                     JHEP 1405 148
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
AAIJ
               14W PR D90 032009
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
AAIJ
               13AM PR D87 071103
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
AAIJ
               13AS PR D87 112012
                                                                                     (LHCb Collab.
                                             R. Aaij et al.
   Also
                     PR D89 019901 (errat.)
                                             R. Aaij et al.
                                                                                     (LHCb Collab.)
                                             R. Aaij et al.
AAIJ
               13BS PL B726 646
                                                                                     (LHCb Collab.)
AAIJ
               13BU PRL 111 181801
                                                                                     (LHCb Collab.
                                             R. Aaij et al.
AAIJ
               13BY JHEP 1309 075
                                              R. Aaij et al.
                                                                                     (LHCb Collab.
                                             R. Aaij et al.
AAIJ
               13CA JHEP 1311 094
                                                                                     (LHCb Collab.)
                     JHEP 1302 043
AAIJ
               13R
                                             R. Aaij et al.
                                                                                     (LHCb Collab.
AALTONEN
               13
                     PR D87 011101
                                              T. Aaltonen et al.
                                                                                      (CDF Collab.
               12AV PRL 109 232001
                                                                                     (LHCb Collab.)
                                             R. Aaij et al.
AAIJ
AAIJ
               12Y
                     PRL 108 251802
                                             R. Aaij et al.
                                                                                     (LHCb Collab.
ABAZOV
               09H
                     PRL 102 092001
                                             V.M. Abazov et al.
                                                                                        (D0 Collab.)
AALTONEN
                     PRL 100 182002
                                                                                      (CDF Collab.)
               M80
                                             T. Aaltonen et al.
ABAZOV
                     PRL 101 012001
                                             V.M. Abazov et al.
                                                                                        (D0 Collab.
               T80
                                                                                      (CDF Collab.
ABULENCIA
               06C
                     PRL 96 082002
                                             A. Abulencia et al.
                     PRL 97 012002
                                                                                      (CDF Collab.)
ABULENCIA
               060
                                             A. Abulencia et al.
ABE
                     PRL 81 2432
                                             F. Abe et al.
                                                                                      (CDF Collab.)
                     PR D58 112004
                                                                                      (CDF Collab.
   Also
                                             F. Abe et al.
ACKERSTAFF
               980
                     PL B420 157
                                             K. Ackerstaff et al.
                                                                                     (OPAL Collab.
BARATE
               98Q
                     EPJ C4 387
                                             R. Barate et al.
                                                                                    (ALEPH Collab.)
                     EPJ C3 1
PDG
                                                                                      (PDG Collab.)
               98
                                                Caso et al.
ABREU
                     PL B398 207
                                                                                   (DELPHI Collab.)
                                             P. Abreu et al.
                                                                                    (ALEPH Collab.)
BARATE
               97H
                     PL B402 213
                                             R. Barate et al.
ABE
               96R
                     PRL 77 5176
                                                Abe et al.
                                                                                      (CDF Collab.)
PDG
                     PR D54 1
                                              R. M. Barnett et al.
                                                                                      (PDG Collab.)
```