Isomosphism of Graph. Graph Tranversal

Graph Algorithms

Dr. Samit Biswas, *Assistant Professor*, Department of Computer Sc. and Technology, Indian Institute of Engineering Science and Technology, Shibpur

Isomorphism of Graphs

- Two simple graphs are isomorphic if:
 - there is a one-to one correspondence between the vertices of the two graphs
 - the adjacency relationship is preserved
- The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 .

Example: Isomorphism

Example: Isomorphism

- Invariants: properties that two simple graphs must have in common to be isomorphic
 - Same number of vertices
 - Same number of edges
 - Degrees of corresponding vertices are the same
 - If one is bipartite, the other must be; if one is complete, the other must be; and others ...

Are G and H isomorphic?

Example: Isomorphism

Are these two graphs isomorphic?

- They both have 5 vertices
- They both have 8 edges
- They have the same number of vertices with the same degrees: 2, 3, 3, 4, 4.

- G and H don't appear to be isomorphic.
- However, we haven't tried mapping vertices from G onto H yet.

- Start with the vertices of degree 2 since each graph only has one: $deg(u_3) = deg(v_2) = 2$ therefore $f(u_3) = v_2$
- Now consider vertices of degree 3
 deg(u₁) = deg(u₅) = deg(v₁) = deg(v₄) = 3
 therefore we must have either one of
 f(u₁) = v₁ and f(u₅) = v₄ or f(u₁) = v₄ and f(u₅) = v₁
- Now try vertices of degree 4:

$$deg(u_2) = deg(u_4) = deg(v_3) = deg(v_5) = 4$$

therefore we must have one of:

$$f(u_2) = v_3$$
 and $f(u_4) = v_5$ or $f(u_2) = v_5$ and $f(u_4) = v_3$

There are four possibilities

$$f(u_1) = v_1$$
, $f(u_2) = v_3$, $f(u_3) = v_2$, $f(u_4) = v_5$, $f(u_5) = v_4$
 $f(u_1) = v_4$, $f(u_2) = v_3$, $f(u_3) = v_2$, $f(u_4) = v_5$, $f(u_5) = v_1$
 $f(u_1) = v_1$, $f(u_2) = v_5$, $f(u_3) = v_2$, $f(u_4) = v_3$, $f(u_5) = v_4$
 $f(u_1) = v_4$, $f(u_2) = v_5$, $f(u_3) = v_2$, $f(u_4) = v_3$, $f(u_5) = v_4$

G	H	H'	
	$v_1 v_2 v_3 v_4 v_5$	1711 1711 1771 1771 1771 1771	
$u_1 0 1 0 1 1$	$v_1 0 0 1 1 1$	$v_1 \ 0 \ 1 \ 0 \ 1 \ 1$	
$u_2 1 0 1 1 1$	v_2 0 0 1 0 1	$v_3 1 0 1 1 1$	
$u_3 \ 0 \ 1 \ 0 \ 1 \ 0$	$v_3 1 1 0 1 1$	v_2 0 1 0 1 0	
$u_4 1 1 1 0 1$	$v_4 1 0 1 0 1$	$v_5 1 1 1 0 1$	
$u_5 1 1 0 1 0$	$v_5 1 1 1 1 0$	$v_4 1 1 0 1 0$	

 We permute the adjacency matrix of H (per function choices above) to see if we get the adjacency of G. Let's try:

$$\checkmark f(u_1) = v_1, f(u_2) = v_3, f(u_3) = v_2, f(u_4) = v_5, f(u_5) = v_4$$

Does G = H'? Yes!

Isomorphism - Application

- Chemists use molecular graphs to model chemical compounds. Vertices
 represent atoms and edges represent chemical bonds. When a new
 compound is synthesized, a database of molecular graphs is checked to
 determine whether the graph representing the new compound is
 isomorphic to the graph of a compound that this already known.
- Electronic circuits are modeled as graphs in which the vertices represent components and the edges represent connections between them.
 - Graph isomorphism is the basis for the verification that a particular layout of a circuit corresponds to the design's original schematics.
 - determining whether a chip from one vendor includes the intellectual property of another vendor.