CONCOURS COMMUN POLYTECHNIQUE (ENSI)

q

FILIERE MP

MATHEMATIQUES 2

EXERCICE

Commutant d'une matrice

- 1. Soit $A \in \mathcal{M}_3(\mathbb{R})$.
- Puisque $0 \times A = A \times 0 = 0$, $0 \in C(A)$.
- Soient $(M, N) \in (C(A))^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$A(\lambda M + \mu N) = \lambda AM + \mu AN = \lambda MA + \nu NA = (\lambda M + \mu N)A,$$

et donc $\lambda M + \mu N \in C(A)$.

On a montré que

 $\forall A \in \mathcal{M}_3(\mathbb{R}), \ C(A) \ \mathrm{est \ un \ sous-espace \ vectoriel \ de \ } \mathcal{M}_3(\mathbb{R}).$

2. • Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

$$X \in \operatorname{Ker}(A - 3I_3) \Leftrightarrow \left\{ \begin{array}{l} -2x + 4y - 2z = 0 \\ 3y - 3z = 0 \\ -x + 4y - 3z = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} z = y \\ -2x + 4y - 2y = 0 \\ -x + 4y - 3y = 0 \end{array} \right. \Leftrightarrow x = y = z.$$

$$\mathrm{Donc}\ \mathrm{Ker}(A-3I_3)=\mathrm{Vect}(e_1)\ \mathrm{où}\ e_1=\left(\begin{array}{c}1\\1\\1\end{array}\right).$$

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

$$X \in \operatorname{Ker}(A - 2I_3) \Leftrightarrow \left\{ \begin{array}{l} -x + 4y - 2z = 0 \\ 4y - 3z = 0 \\ -x + 4y - 2z = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} z = \frac{4}{3}y \\ x = 4y - \frac{8}{3}y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} z = \frac{4}{3}y \\ x = \frac{4}{3}y \end{array} \right..$$

$$\operatorname{Donc} \, \operatorname{Ker}(A-2I_3) = \operatorname{Vect}(e_2) \, \operatorname{où} \, e_2 = \left(\begin{array}{c} 4 \\ 3 \\ 4 \end{array} \right).$$

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

$$AX = 2X + e_2 \Leftrightarrow \begin{cases} -x + 4y - 2z = 4 \\ 4y - 3z = 3 \\ -x + 4y - 2z = 4 \end{cases} \Leftrightarrow \begin{cases} z = \frac{4}{3}y - 1 \\ x = 4y - 2\left(\frac{4}{3}y - 1\right) - 4 \end{cases} \Leftrightarrow \begin{cases} z = \frac{4}{3}y - 1 \\ x = \frac{4}{3}y - 2 \end{cases}$$

Donc le vecteur $e_3=\left(\begin{array}{c} -2\\ 0\\ -1 \end{array} \right)$ est un vecteur tel que $Ae_3=e_2+2e_3.$

$$\begin{vmatrix} 1 & 4 & -2 \\ 1 & 3 & 0 \\ 1 & 4 & -1 \end{vmatrix} = -3 - 4 + 6 = -1 \neq 0 \ \mathrm{et} \ \mathrm{donc} \ (e_1, e_2, e_3) \ \mathrm{est} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ \mathcal{M}_{3,1}(\mathbb{R}).$$

Si on pose $P = \begin{pmatrix} 1 & 4 & -2 \\ 1 & 3 & 0 \\ 1 & 4 & -1 \end{pmatrix}$, on a $T = P^{-1}AP$ et donc les matrices A et T sont semblables.

$$\textbf{3.} \quad \mathrm{Soit} \ M = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \in \mathcal{M}_3(\mathbb{R}).$$

$$M \in C(T) \Leftrightarrow \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 3a & 3b & 3c \\ 2d + g & 2e + h & 2f + i \\ 2g & 2h & 2i \end{pmatrix} = \begin{pmatrix} 3a & 2b & b + 2c \\ 3d & 2e & e + 2f \\ 3g & 2h & h + 2i \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 3a = 3a \\ 3b = 2b \\ 3c = b + 2c \\ 2d + g = 3d \\ 2e + h = 2e \\ 2f + i = e + 2f \\ 2g = 3g \\ 2h = 2h \\ 2i = h + 2i \end{cases} \Leftrightarrow \begin{cases} b = 0 \\ c = 0 \\ g = 0 \\ h = 0 \\ i = e \end{cases}$$

Les éléments de C(T) sont les matrices de la forme $\left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & e & f \\ 0 & 0 & e \end{array} \right), \, (\alpha,e,f) \in \mathbb{R}^3.$

 $C(T) = \text{Vect}(E_{1,1}, E_{2,2} + E_{3,3}, E_{2,3})$. De plus, la famille $(E_{1,1}, E_{2,2} + E_{3,3}, E_{2,3})$ est libre car pour $(\mathfrak{a}, e, \mathfrak{f}) \in \mathbb{R}^3$,

$$\alpha E_{1,1} e(E_{2,2} + E_{3,3}) + f E_{2,3} = 0 \Rightarrow \left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & e & f \\ 0 & 0 & e \end{array} \right) = 0 \Rightarrow \alpha = e = f = 0.$$

Donc,

$$\dim(C(\mathsf{T})) = 3.$$

- **4.** Notons φ l'application $M \mapsto P^{-1}MP$.
 - $\bullet \ \mathrm{Soient} \ (M,N) \in (\mathcal{M}_3(\mathbb{R}))^2 \ \mathrm{et} \ (\lambda,\mu) \in \mathbb{R}^2.$

$$\phi(\lambda M + \mu N) = P^{-1}((\lambda M + \mu N)P = \lambda P^{-1}MP + \mu P^{-1}NP = \lambda \phi(M) + \mu \phi(N).$$

• Soit $M \in \mathcal{M}_3(\mathbb{R})$. $M \in \mathrm{Ker}(\phi) \Rightarrow P^{-1}MP = 0 \Rightarrow PP^{-1}MPP^{-1} = P0P^{-1} \Rightarrow M = 0$. Ainsi $\mathrm{Ker}(\phi) = \{0\}$ et donc $\phi \in GL(\mathcal{M}_3(\mathbb{R}))$ car $\dim(\mathcal{M}_3(\mathbb{R})) < +\infty$.

Soit $M \in \mathcal{M}_3(\mathbb{R})$. $M \in C(A) \Leftrightarrow AM = MA \Leftrightarrow PTP^{-1}M = MPTP^{-1} \Leftrightarrow TP^{-1}MP = P^{-1}MPT \Leftrightarrow \phi(M) \in C(T)$. Donc $\phi(C(A)) = C(T)$ et puis que ϕ est un automorphisme, $\dim(C(A)) = \dim(C(T))$ ou encore

$$\dim(C(A)) = 3.$$

5. (a) Le polynôme minimal μ_A de A est un diviseur unitaire de $\chi_A = \chi_T = -(X-2)^2(X-3)$ et un multiple de (X-2)(X-3). Donc, $\mu_A = (X-2)(X-3)$ ou $\mu_A = (X-2)^2(X-3)$.

$$(X-2)(X-3). \text{ Donc, } \mu_{A} = (X-2)(X-3) \text{ ou } \mu_{A} = (X-2)^{2}(X-3).$$
Ensuite, $\operatorname{rg}(A-2I_{3}) = \operatorname{rg}(T-2I_{3}) = \operatorname{rg}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = 2 \text{ ou encore } \dim(\operatorname{Ker}(A-2I_{3}) = 1 < 2. \text{ Puisque 2 est valeur}$

propre double de A, la matrice A n'est pas diagonalisable et donc μ_A n'est pas à racines simples.

On en déduit que $\mu_A = (X-2)^2(X-3)$ puis qu'un polynôme non nul annulateur de A est de degré supérieur ou égal à 3, celui-ci devant être un multiple de μ_A .

Donc le seul polynôme de degré inférieur ou égal à 2 et annulateur de A est le polynôme nul.

(b) On en déduit que la famille (I_3, A, A^2) est libre. Maintenant, I_3 , A et A^2 sont dans C(A). Donc, la famille (I_3, A, A^2) est une famille libre de C(A) qui est de dimension $3 = \operatorname{card}(I_3, A, A^2) < +\infty$. Par suite, la famille (I_3, A, A^2) est une base de C(A) et en particulier

$$C(A) = \operatorname{Vect}(I_3, A, A^2).$$

(c) On sait que $\mathbb{R}[A] \subset C(A)$. Réciproquement, un élément de C(A) est un polynôme en A d'après la question précédente et donc $C(A) \subset \mathbb{R}[A]$. Finalement,

$$C(A) = \mathbb{R}[A].$$

Si on prend $A = I_3$, $\mathbb{R}[A] = \mathbb{R}I_3 \neq \mathcal{M}_3(\mathbb{R}) = \mathbb{C}(A)$ et donc le résultat précédent n'est pas toujours vrai.

Problème

Inégalités sur les déterminants de matrices symétriques

1. Question préliminaire

Soit $S \in \mathcal{S}_n(\mathbb{R})$. D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_i)_{1 \leq i \leq n} \in \mathcal{D}_n(\mathbb{R})$ telles que $S = PD^{t}P$. Pour $i \in [\![1,n]\!]$, on note e_i la i-ème colonne de P de sorte que e_i est un vecteur propre unitaire de S associé à la valeur propre λ_i .

- Si $S \in \mathcal{S}_n^+(\mathbb{R})$, pour tout $i \in [1, n]$, $0 \le {}^te_i Se_i = \lambda_i {}^te_i e_i = \lambda_i {}^le_i {}^l = \lambda_i$. Par suite, toutes les valeurs propres de S sont des réels positifs.
- Supposons que toutes les valeurs propres de S soient des réels positifs. Soit $X=(x_i)_{1\leqslant i\leqslant n}\in \mathcal{M}_{n,1}(\mathbb{R})$. On pose ${}^tPX=X'=(x_i')_{1\leqslant i\leqslant n}$.

$$^{t}XSX = {^{t}XPD^{t}PX} = {^{t}(^{t}PX)D^{t}PX} = {^{t}X'DX'} = \sum_{i=1}^{n} \lambda_{i}x_{i}'^{2} \geqslant 0,$$

et donc $S \in \mathcal{S}_n^+(\mathbb{R})$.

Partie I

2. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$. On pose $\operatorname{Sp}(S) = (\lambda_i)_{1 \leqslant i \leqslant n}$. D'après la question 1, les λ_i sont des réels positifs et d'après le résultat admis par l'énoncé,

$$\sqrt[n]{\det(S)} = \left(\prod_{i=1}^n \lambda_i\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^n \lambda_i = \frac{1}{n} \mathrm{trace}(S).$$

- **3.** Application.
- (a) Soit $M \in \mathcal{M}_{n,1}(\mathbb{R})$. ${}^t({}^tMM) = {}^tM{}^t({}^tM) = {}^tMM$ et donc ${}^tMM \in \mathcal{S}_n(\mathbb{R})$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

$${}^{t}X^{t}MMX = {}^{t}(MX)MX = ||MX||_{2}^{2} \geqslant 0.$$

Donc, ${}^{t}MM \in \mathcal{S}_{n}^{+}(\mathbb{R}).$

$$\forall M\in \mathcal{M}_n(\mathbb{R}),\ ^tMM\in \mathcal{S}_n^+(\mathbb{R}).$$

(b) $\det({}^{t}MM) = \det({}^{t}M)\det(M) = (\det(M))^{2}$. D'autre part,

$$\mathrm{trace}({}^{t}MM) = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i,j} \times m_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i,j}^{2}.$$

Par suite, d'après les questions 2 et 3.a),

$$(\det M)^2 = \det({}^t M M) \leqslant \left(\frac{1}{n}\right)^n (\operatorname{trace}({}^t M M))^n = \left(\frac{1}{n}\right)^n \left(\sum_{i=1}^n \sum_{j=1}^n \mathfrak{m}_{i,j}^2\right)^n.$$

Partie II : Théorème de réduction simultanée

- 4. (a) On sait que ${}^{t}RAR$ est la matrice du produit scalaire ϕ dans la base \mathcal{B}' . Puisque cette base est orthonormée pour le produit scalaire ϕ , la matrice de ϕ dans \mathcal{B}' est I_n et donc ${}^{t}RAR = I_n$.
- (b) ${}^{t}C = {}^{t}R{}^{t}BR = {}^{t}RBR$ et donc C est une matrice symétrique réelle. D'après le théorème spectral, il existe une matrice orthogonale Q et une matrice diagonale réelle D telle que ${}^{t}QCQ = D$.
- (c) On a $B = {}^tR^{-1}CR^{-1} = {}^tR^{-1}QD^tQR^{-1} = {}^t({}^tQR^{-1})D({}^tQR^{-1})$. Soit $P = {}^tQR^{-1}$. P est une matrice inversible en tant que produit de deux matrices inversibles et $B = {}^tPDP$. D'autre part, ${}^tPP = {}^tR^{-1}Q^tQR^{-1} = {}^tR^{-1}R^{-1} = A$.

La matrice $P = {}^{t}QR^{-1}$ est une matrice inversible telle que $A = {}^{t}PP$ et $B = {}^{t}PDP$.

- (d) Soit ϕ la forme quadratique canoniquement associée à B. Pour tout $u=(x,y)\in\mathbb{R}^2,\;\phi(u)=x^2+2xy+y^2=(x+y)^2.$ Si on pose x'=x+y et y'=y ou encore y=y' et x=x'-y', on définit une base \mathcal{B}' de \mathbb{R}^2 et la matrice de passage de la base canonique \mathcal{B} à la base \mathcal{B}' est $P=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$ Cette matrice n'est pas orthogonale. Néanmoins, pour tout $u\in\mathbb{R}^2,\;\phi(u)=x'^2$ et donc la matrice de ϕ dans la base \mathcal{B}' est la matrice diagonale $D=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$
- 5. (a) On reprend les notations de la question précédente. Vérifions tout d'abord que les valeurs propres λ_i , $1 \le i \le n$, de D sont positives (la matrice P n'étant pas nécessairement orthogonale, les valeurs propres de D ne sont pas nécessairement les valeurs propres de B).

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. ${}^t X D X = {}^t X {}^t P^{-1} B P^{-1} X = {}^t (P^{-1} X) B (P^{-1} X) \geqslant 0$ car $B \in \mathcal{S}_n^+$. Donc $D \in \mathcal{S}_n^+(\mathbb{R})$ et d'après la question 1, les valeurs propres λ_i , $1 \leqslant i \leqslant n$, de la matrice D sont des réels positifs. Ensuite,

$$\begin{split} \det(A+B) &= \det({}^tPP + {}^tPDP) = \det({}^tP(I_3+D)P) = \det(P) \times \det(I_3+D) \times \det(P) = (\det(P))^2 (\det(I_3+D) \\ &= (\det(P))^2 \prod_{i=1}^n (1+\lambda_i) \\ &\geqslant (\det(P)^2 \left(1+\prod_{i=1}^n \lambda_i\right) \left(\operatorname{car} \left(\det(P)\right)^2 > 0 \ \operatorname{et} \ \prod_{i=1}^n (1+\lambda_i) = 1 + \prod_{i=1}^n \lambda_i + ... \geqslant 1 + \prod_{i=1}^n \lambda_i \right) \\ &= (\det(P))^2 + (\det(P))^2 \prod_{i=1}^n \lambda_i = \det({}^tP) \det(P) + \det({}^tP) \det(D) \det(P) = \det({}^tPP) + \det({}^tPDP) \\ &= \det(A) + \det(B). \end{split}$$

$$\forall (A,B) \in \mathcal{S}_n^{++}(\mathbb{R}) \times \mathcal{S}_n^{+}(\mathbb{R}), \, \det(A+B) \geqslant \det(A) + \det(B).$$

(b) On suppose maintenant que les matrices A et B sont dans $\mathcal{S}_n^+(\mathbb{R})$ mais pas dans $\mathcal{S}_n^{++}(\mathbb{R})$. Si on affine la démonstration de la question 1, on établit que les valeurs propres d'un élément de $\mathcal{S}^+(\mathbb{R})$ sont positives mais ne sont pas toutes strictement positives. Ainsi, 0 est valeur propre de A et de B et donc $\det(A) + \det(B) = 0$. D'autre part, la matrice A+B est symétrique et pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tX(A+B)X = {}^tXAX + {}^tXBX \geqslant 0$. Donc $A+B \in \mathcal{S}_n^+(\mathbb{R})$. On en déduit que les valeurs propres de A+B sont des réels positifs puis que le déterminant de A+B, qui est le produit de ces valeurs propres, est un réel positif. Par suite, $\det(A+B) \geqslant 0 = \det(A) + \det(B)$.

$$\forall (A,B) \in \mathcal{S}_n^+(\mathbb{R}) \times \mathcal{S}_n^+(\mathbb{R}), \, \det(A+B) \geqslant \det(A) + \det(B).$$

6. D'après la question 5.(a), les λ_i , $1 \le i \le n$, sont des réels positifs. Puisque $B \in \mathcal{S}_n^{++}(\mathbb{R})$, B est inversible et il en est de même de D. Les λ_i , $1 \le i \le n$, sont donc des réels strictement positifs. (a) Soit $t \in [0,1]$.

$$\begin{split} \det(tA+(1-t)B) &= \det(t^tPP+(1-t)^tPDP) = \det({}^tP)\det(P)\det(tI_n+(1-t)D) \\ &= (\det(P))^2 \prod_{i=1}^n (t+(1-t)\lambda_i). \end{split}$$

(b) Soient $i \in [1,n]$ et $t \in [0,1]$. $t+(1-t)\lambda_i = \mathrm{bar}(1(t),\lambda_i(1-t)) \in [\lambda_i,1]$ et donc $t+(1-t)\lambda_i > 0$. La fonction ln est deux fois dérivable sur $]0,+\infty[$ et pour x>0, $\ln''(x)=-\frac{1}{x^2}\leqslant 0$. Donc la fonction ln est concave sur $]0,+\infty[$. Par suite,

$$\ln(t + (1-t)\lambda_i) \geqslant t \ln(1) + (1-t) \ln(\lambda_i) = \ln(\lambda_i^{1-t}),$$

et donc, par croissance de la fonction ln sur $]0, +\infty[$, on en déduit que $t + (1-t)\lambda_i \geqslant \lambda_i^{1-t}$.

(c) Puisque $(\det(P))^2 > 0$,

$$\begin{split} \det(tA + (1-t)B) &= (\det(P))^2 \prod_{i=1}^n (t+(1-t)\lambda_i) \geqslant (\det(P))^2 \prod_{i=1}^n \lambda_i^{1-t} = (\det(P))^2 (\det D)^{1-t} \\ &= \left((\det(P))^2 \right)^t \left((\det(P))^2 \det D \right)^{1-t} = (\det(A))^t \left(\det(B) \right)^{1-t}. \\ &\forall (A,B) \in (\mathcal{S}_n^{++}(\mathbb{R}))^2, \ \forall t \in [0,1], \ \det(tA + (1-t)B) \geqslant (\det(A))^t \left(\det(B) \right)^{1-t}. \end{split}$$

7. (a) Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Les valeurs propres $\lambda_i, 1 \leqslant i \leqslant n$, de A sont tous des réels positifs. Pour $\mathfrak{p} \in \mathbb{N}$, on pose $A_{\mathfrak{p}} = A + \frac{1}{\mathfrak{p}+1} I_n$.

Soit $p \in \mathbb{N}$. A_p symétrique et ses valeurs propres, à savoir les $\lambda_i + \frac{1}{p+1}$, $1 \leqslant i \leqslant n$, sont toutes des réels strictement positifs. Donc, A_p est dans $\mathcal{S}_n^{++}(\mathbb{R})$.

Comme $\lim_{p\to +\infty} A_p = A$, la suite $(A_p)_{p\in\mathbb{N}}$ est une suite d'éléments de $\mathcal{S}_n^{++}(\mathbb{R})$, convergente, de limite A. Donc A est adhérent à $\mathcal{S}_n^{++}(\mathbb{R})$.

On a montré que tout élément de $\mathcal{S}_n^+(\mathbb{R})$ est adhérent à $\mathcal{S}_n^{++}(\mathbb{R})$ et donc que

$$\mathcal{S}_n^{++}(\mathbb{R})$$
 est dense dans $\mathcal{S}_n^+(\mathbb{R})$.

(b) On définit de même la suite $B_p = B + \frac{1}{p+1}I_n$. Puisque les matrices A_p et B_p sont dans $\mathcal{S}_n^{++}(\mathbb{R})$, pour tout entier naturel p, on a

$$\left(\det\left(A+\frac{1}{p+1}I_n+B+\frac{1}{p+1}I_n\right)\right)^{\frac{1}{n}}\leqslant \left(\det\left(A+\frac{1}{p+1}I_n\right)\right)^{\frac{1}{n}}+\left(\det\left(B+\frac{1}{p+1}I_n\right)\right)^{\frac{1}{n}}.$$

Quand p tend vers $+\infty$, par continuité de la fonction $M \mapsto \det(M)$ sur $\mathcal{M}_n(\mathbb{R})$ et de la fonction $x \mapsto \sqrt[n]{x}$ sur \mathbb{R}^+ , on obtient $(\det(A+B))^{\frac{1}{n}} \leq (\det(A))^{\frac{1}{n}} + (\det(B))^{\frac{1}{n}}$.

Partie III: Théorème de Choleski

8. (a)
$${}^{t}T_{1}T_{1} = {}^{t}T_{2}T_{2} \Rightarrow T_{1}T_{2}^{-1} = {}^{t}(T_{2}){}^{t}(T_{1}^{-1}) \Rightarrow T_{1}T_{2}^{-1} = {}^{t}\left(\left(T_{2}^{-1}T_{1}\right)^{-1}\right).$$

Les matrices T_1 et T_2 sont triangulaires supérieures et inversibles. On sait qu'il en est de même des matrices $T_1T_2^{-1}$ et $\left(T_2^{-1}T_1\right)^{-1}$. Mais alors, la matrice $^{\rm t}\left(\left(T_2^{-1}T_1\right)^{-1}\right)$ est triangulaire inférieure inversible puis la matrice $T_1T_2^{-1}$ est à la fois triangulaire supérieure et triangulaire inférieure. On en déduit que la matrice $T_1T_2^{-1}$ est une matrice diagonale D ou encore, il existe une matrice diagonale réelle D telle que $T_1 = DT_2$. Puisque les coefficients diagonaux de T_1 et de T_2 sont

des réels strictement positifs, en analysant la diagonale de la matrice T_2D , on voit que les coefficients diagonaux de D sont des réels positifs.

Enfin, l'égalité ${}^tT_1T_1={}^tT_2T_2$ fournit ${}^tT_2{}^tDDT_2={}^tT_2T_2$ puis $D^2=I_n$ (car T_2 est inversible) et enfin $D=I_n$ car les valeurs propres de D sont positives. On a montré que $T_1T_2^{-1}=I_n$ et donc que $T_1=T_2$.

(b) Immédiatement,

$$A = \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 1 & 2 & \dots & \dots & 2 \\ \vdots & 2 & & & \vdots \\ \vdots & \vdots & & n-1 & n-1 \\ 1 & 2 & \dots & n-1 & n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 1 & 1 & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & 0 \\ 1 & \dots & & \dots & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 0 & 1 & & & \vdots \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}.$$

9. Un peu d'informatique

Immédiatement et sans calculatrice, on obtient

$$\bullet A_1 = \begin{pmatrix} 49 & 14 & -14 \\ 14 & 20 & -8 \\ -14 & -8 & 21 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 0 \\ 2 & 4 & 0 \\ -2 & -1 & 4 \end{pmatrix} \begin{pmatrix} 7 & 2 & -2 \\ 0 & 4 & -1 \\ 0 & 0 & 4 \end{pmatrix}.$$

$$\bullet A_2 = \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ 1/2 & 0 & 3/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 0 \\ 1/2 & 0 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1/\sqrt{2} & 0 \\ 0 & 0 & 1/\sqrt{2} \end{pmatrix}.$$

$$\bullet A_3 = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ -2 & -1 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\bullet A_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 20 & 26 \\ 3 & 26 & 70 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}.$$

10. Inégalité d'Hadamard

(a)
$$\det(S) = \det({}^{t}TT) = (\det(T))^{2} = \prod_{i=1}^{n} t_{i,i}^{2}.$$

Maintenant, pour $i \in [1, n]$, $s_{i,i} = \sum_{i=1}^{n} t_{i,i}t_{i,i} = \sum_{i=1}^{n} t_{i,i}^{2}.$

 $\mathrm{Maintenant,\ pour\ }i\in\llbracket 1,n\rrbracket,\ s_{\mathfrak{i},\mathfrak{i}}=\sum_{i=1}^nt_{j,\mathfrak{i}}t_{j,\mathfrak{i}}=\sum_{i=1}^{\mathfrak{i}}t_{j,\mathfrak{i}}^2\geqslant t_{\mathfrak{i},\mathfrak{i}}^2\geqslant 0\ \mathrm{et\ donc}$

$$\det(S) = \prod_{i=1}^n t_{i,i}^2 \leqslant \prod_{i=1}^n s_{i,i}.$$

$$\forall S \in \mathcal{S}_n^{++}(\mathbb{R}), \, \det(S) \leqslant \prod_{i=1}^n s_{i,i}.$$

(b) Soit $M \in GL_n(\mathbb{R})$. On applique le résultat précédent à la matrice $S={}^tMM$. S est dans $\mathcal{S}_n^+(\mathbb{R})$ d'après la question 5 et n'admet pas 0 pour valeur propre car M est inversible. Donc $S \in \mathcal{S}_n^{++}(\mathbb{R})$. On en déduit que

$$(\det(M))^2 = \det(S) \leqslant \prod_{i=1}^n s_{i,i} = \prod_{i=1}^n \left(\sum_{k=1}^n m_{k,i}^2 \right),$$

et donc

$$\forall M=(\alpha_{i,j})\in GL_n(\mathbb{R}),\, |\mathrm{det}(M)|\leqslant \left(\prod_{i=1}^n \left(\sum_{k=1}^n m_{k,i}^2\right)\right)^{\frac{1}{2}}.$$