CENTRO DE CIENCIAS MATEMÁTICAS

CINVESTAV

ENES

Análisis exploratorio de datos de microbiomas

Capítulo 7

Andrés Arredondo (email_1@gmail.com) Adriana Haydé Contreras Peruyero (haydeeperuyero@gmail.com) David Alberto García Estrada (@gmail.com)

Morelia

Septiembre de 2022

${\bf \acute{I}ndice}$

1.	Dat	os de l	R	l a	to	ne	S	\mathbf{y}	Η	iu	m	aı	10	S																						3
2.	Aná	ilisis e	хĮ	p	lor	at	O1	ric) (co	n	re	esi	ur	ne	en	ιg	gr	áf	ìc	ю															3
	2.1.	l. Gráficos de riqueza													3																					
	2.2.	Barras	s	d	э а	bu	ınc	da	nc	ia																						 				5
	2.3.	Mapas	sc	d	e c	alo	r																									 				6
	2.4.	Redes	;																													 				6
	2.5.	Árbol	fil	ile	ıg∈	nέ	tio	co																								 				6
3.	Clus	Clusters															6																			
	3.1.	Distancias													6																					
	3.2.	Difere	nt	tε	s t	jip	os	d	e c	εlί	íst	er	s																			 				6
		3.2.1.	Ş	S	ng	gle																										 				6
		3.2.2.	(C	on	npl	et	e																								 				6
		3.2.3.	I	A	vei	rag	je																									 				6
		3.2.4.	7	V	/ar	d											•		•								•	•		•		 	•	•		6
4.	\mathbf{Ord}	Ordination															6																			
	4.1.	PCA																														 				6
	4.2.	PCoA	L																													 				6
	4.3.	NMDS	\mathbf{S}																													 				6
	4.4.	CA .								•																						 				6
	4.5.	RDA								•																						 				6
	4.6.	CCA																														 				6
	4.7.	CAP		•													٠		•				•				•	•		٠		 	•	•		6
5.	Con	lusion	es	s																																6

1. Datos de Ratones y Humanos

Las bases de datos que se ocuparon son dos:

- Vdr: es una base de datos de ratones. Contiene datos de microbiomas intestinales y fueron recolectados de heces y muestras de heces cecales. Las que se usan en este capítulo son de heces.
- Troat.otu.tab: estos datos son de fumadores y se encuentran en el paquete GUniFrac. Estos datos se usarán para explorar el árbol filogenético.

2. Análisis exploratorio con resumen gráfico

En este capítulo se exploran diferentes gráficos usuales: riquesa, barras de abundancia, mapas de calor, redes y árbol filogenético.

2.1. Gráficos de riqueza

En el capítulo anterior se exploró la diversidad alfa, en este capítulo vamos a explorar un gráfico relacionado a esto. Para esto, se usa la función plot_richness() del paquete phyloseq. Generalmente, la riqueza se refiere a un gráfico del número toal de especies, taxones u OTUs en un ambiente, pero está función también nos da otras figuras relacionadas a otras diversidades.

Lo primero que debemos hacer es instalar el paquete y leer los datos.

```
#Para instalar el paquete, usamos Bioconductor

#if (!require("BiocManager", quietly = TRUE))
    # install.packages("BiocManager")

#BiocManager::install("phyloseq")
```

En la carpeta data se encuentra la base de datos a usar VdrFecalGenusCounts.csv.

```
setwd("D:/Users/hayde/Documents/R_sites/Equipo4/")
```

```
#library(phyloseq)
#library(ggplot2)
abund_table=read.csv("D:/Users/hayde/Documents/R_sites/Equipo4/data/VdrFecalGenusCounts.csv",row.names=
abund_table<-t(abund_table)</pre>
```

Lo primero que se debe de hacer es contruir nuestro objeto phyloseq. Este objeto se contruye tomando en cuenta los siguientes componentes: - Tabla OTU. - Datos muestra. - Tabla de taxonomía. - Árbol filogenético.

Se deben de proporcionar dos objetos de datos pero el orden en que se proporcionan no es importante. Construimos primero nuestra tabla de metadatos con los siguientes comandos.

```
meta_table <- data.frame(row.names=rownames(abund_table),t(as.data.frame(strsplit(rownames(abund_table)
meta_table$Group <- with(meta_table,ifelse(as.factor(X2) %in% c(11,12,13,14,15),c("Vdr-/-"), c("WT")))</pre>
```

Convertimos los datos al formato phyloseq.

```
OTU = otu_table(as.matrix(abund_table), taxa_are_rows = FALSE)
SAM = sample_data(meta_table)
physeq <- merge_phyloseq(phyloseq(OTU),SAM)
physeq</pre>
```

```
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 248 taxa and 8 samples ]
## sample_data() Sample Data: [ 8 samples by 4 sample variables ]
```

Una vez que tenemos nuestro objeto phyloseq, podemos usar la función plot_richness() para contruir graficar las diversidades alpha observadas y estimadas.

Figura 1: Gráficos de diversidad alpha con Vdr y grupos WT en muestras de heces.

Esta función también nos permite seleccionar solo algunas diversidades. El siguiente es un ejemplo usando solo dos diversidades, la de Chao1 y Shannon.

Figura 2: Gráficos de diversidad alpha seleccionando las diversidades de Chao y Shannon.

2.2. Barras de abundancia

La herramienta de phyloseq que nos permite graficar las barras de abundancia es plot_bar().

- 2.3. Mapas de calor
- 2.4. Redes
- 2.5. Árbol filogenético
- 3. Clusters
- 3.1. Distancias
- 3.2. Diferentes tipos de clústers
- **3.2.1.** Single
- 3.2.2. Complete
- 3.2.3. Average
- 3.2.4. Ward
- 4. Ordination
- 4.1. PCA
- 4.2. PCoA
- 4.3. NMDS
- 4.4. CA
- 4.5. RDA
- 4.6. CCA
- 4.7. CAP
- 5. Conlusiones