

University of Applied Sciences

FACHBEREICH
INGENIEUR- UND
NATURWISSENSCHAFTEN

MECHANISCHE VERFAHRENSTECHNIK

Skriptaufzeichnungen

im WiSe 2019

vorgelegt von

Roman-Luca Zank

3. Semester

Chemie- und Umwelttechnik

E-Mail: romanzank@mail.de

Matrikelnummer: 25240

Adresse: Platz der Bausoldaten 2, Zimmer 224

Ort: 06217 Merseburg

Professor: Dr.-Ing. Thomas Martin

Merseburg, 17. Dezember 2019

Inhaltsverzeichnis

1 4	_erk	ieinern	2
1	1	Was ist "Zerkleinern"?	2
1	2	Feststoff zerkleinern	3
1	3	Energieaufwand von Mühlen (Zerkleinerungsmaschinen)	4
1	.4	Bauarten von Mühlen	7
2 7	Гren	nen	8
2	2.1	Stoffgemische	8
2	2.2	Trennverfahren	8
		2.2.1 Sedimentation	9
2	2.3	Grundlagen der Modellierung	10
2	2.4	Grundlagen der Modellierung	11
2	2.5	Archimediszahl Ar	
2	2.6	Auslegung von Schwerkraftsedimentationsapparaten	15
2	2.7	Auslegung eines Klärbeckens	
2	2.8	Auslegung von G/L und L/L Abscheidern	
2	2.9	Flockung, Flokkuation	
2	2.10	Flotation	20
2		$\label{eq:Zentrifugation} Zentrifugation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
Lite	ratu	rverzeichnis	22
Anh	ang		22

1 Zerkleinern

- Älteste Verfahrenstechnik (prätechnologisch)
 - Kauen von Nahrung
 - Zerkleinern von Getreide im Mörser

1.1 Was ist "Zerkleinern"?

Prozessziel:

Feststoff (aber auch Flüssigkeiten oder Gase) mit vertretbaren Energieaufwand (Betriebskosten) und erträglichen Verschleiß (Wartungskosten) auf eine gewünschte Feinheit (Dispersitätszustand) nach Produktspezifikationen zu bringen.

+ Anschaffungskosten

Was kann zerkleinert werden?

- 1. Getreide \rightarrow Mehl, Gries, Flocken, Schrot, Spreu,...
- 2. Gestein \rightarrow Sand, Kies, Splitt, Zement,...
- 3. Holz \rightarrow Mulch, Spähne, Pallets, Spanplatten, OSB-Platten, Papier, Furnier,...

Wozu wird zerkleinert?

- Erzeugen einer geünschten, bestimmten Korngrößenverteilung (evtl. mit x_{min} und x_{max})
- \bullet vergrößern der spezifischen Oberfläche $\left\lceil \frac{m^2}{m^3} \right\rceil \Rightarrow Reaktivität \!\!\uparrow$
- Freilegen und Aufschließen einer Wertstoffphase (z.B. Erz)
- Struktur- und Formänderung (z.B. Haferflocken)
- mechanische Aktivierung
- Veränderung von Stoffeigenschaften nach Produktspezifikation:
 - Fließverhalten, Transportfähigkeit, Dosierfähigkeit, Lagerfähigkeit
 - Lösegeschwindigkeit, Reaktionsgeschwindigkeit, Extrahierfähigkeit
 - Farbe, Oberfläche, Form, Raumfüllung

— ..

1.2 Feststoff zerkleinern

Einteilung erfolgt nach Größe des Produkts:

Brechen:	5-50mm: fein
	> 50mm: grob
Mahlen:	0, 5 - 50mm: grob
	$50\mu m - 500\mu m$: fein
	5μ m $ 50\mu$ m: feinst
	< 5μm: kolloid

Ziel: Überwinden der inneren Bindungskräfte \rightarrow Bruch

mechanische Beanspruchung:

- Druck
- Reibung
- Schlag
- Prall
- gegenseitiger Partikelstoß
- Schneiden (spalten)
- Scheren
- Scherströmung (für Tropfen, Mikroorganismen,..)
- Druckwelle (z.B. Sprengung)
- Kavitation (implodierende Dampfblase, bei der Teilchen herausgerissen wird)

nicht-mechanische Beanspruchung:

d.h. Energiezufuhr

- chemisch
- elektrisch
- thermisch

1.3 Energieaufwand von Mühlen (Zerkleinerungsmaschinen)

Ziele:

- Berechnung der Antriebsleistung einer Mühle ist abhängig von:
 - Durchsatz
 - Art des Stoffes
 - Teilchenspezifikation (Korngröße)
- Bauarten und Auswahl von Mühlen

spezifische Zerkleinerungsarbeit e:

$$e = \frac{W}{m} \left[\frac{J}{kg} \right] \tag{1.1}$$

erweitern mit $\frac{1}{t}$

$$e = \frac{W/t}{m/t} = \frac{P}{\dot{m}} \left[\frac{W}{kg \cdot s^{-1}} \right]$$
 (1.2)

Abhängigkeit von der Stoffeigenschaft:

charakterisiert durch eine Materialkonstante

 c_B (Bondkonstante: experimentell bestimmt)

Abhängigkeit von der Partikelgröße:

charakteristische Teilchengröße

$$X_{80}$$
 d.h. $H(x_{80}) = 80\%$ Durchgang

HIER STEHT IHR BILD

 \rightarrow restliche 20% werden meist ausgesiebt und wieder zurückgeführt "80-20-Regel"

Die Modellierung von Zerkleinerungsprozessen ist äußerst komplex. Deshalb werden empirische Abschätzungsgleichungen verwendet ($\pm 50\%$ Genauigkeit).

Nur bei idealen Einzelkörnern kann man eine Bruchfunktion analytisch annähern.

Name	Anwendung	Gleichung	Stoffkonstante
KICK	$x_{80\omega} > 50 \mathrm{mm}$	$e_{KICK} = c_K \cdot log(\frac{x_{80_{\alpha}}}{x_{80_{\omega}}})$	$c_K = 1,15 \cdot \frac{c_B}{\sqrt{0,05} \text{m}} \left[\frac{\text{m}^2}{\text{s}^2} \right]$ $c_B \text{: tabelliert } \left[\frac{\text{m}^{2,5}}{\text{s}^2} \right]$
BOND	$50 \mu \text{m} < x_{80_{\omega}} < 50 \text{mm}$	$e_{BOND} = c_B \cdot \left(\frac{1}{\sqrt{x_{80\omega}}} - \frac{1}{\sqrt{x_{80\alpha}}}\right)$	c_B : tabelliert $\left\lfloor \frac{\mathrm{m}^{2,5}}{\mathrm{s}^2} \right\rfloor$
RIT- TER	$x_{80_{\omega}} > 50 \mu \text{m}$	$e_{RITT} = c_R \cdot \left(\frac{1}{x_{80\omega}} - \frac{1}{x_{80\alpha}}\right)$	$c_R = 0, 5 \cdot c_B \cdot \sqrt{5 \cdot 10^{-5} \mathrm{m}}$

Hinweise:

- \bullet α : Anfangsgröße am Eingang
- \bullet ω : Endgröße am Ausgang
- Teilchengröße <u>immer</u> als [m] einsetzen!

Zerkleinerungsstrahl:

Abbildung 1.1: Zerkleinerungsstrahl

c_B -Beispiele:

Kohle:	$548 \frac{m^{2, 5}}{s^2}$
Gips:	$394 \frac{m^{2, 5}}{s^{2}}$ $745 \frac{m^{2, 5}}{s^{2}}$
Eisenerz:	$745 \frac{m^{2,5}}{s^2}$
gebr. Ton:	$69 \frac{m^{2,5}}{s^2}$
Glimmer (Mineral):	$6488 \frac{m^{2, 5}}{s^2}$

meist: c_B für trockenes Mahlen $> c_B$ für nasses Mahlen

Beispielaufgabe: Zerkleinern

Energieaufwand beim Zerkleinern

- Zerkleinern ist eine sehr energieintensive Grundoperation, deshalb hohe Betriebs- und Wartungskosten
- ca. 5% der Weltenergieerzeugung für Zerkleinerung
- Zementherstellung sind 25% der Kosten für Zerkleinerung

Energie ist nötig für:

- Überwinden der inneren Bindungskräfte im Kern
- Reibung der Teilchen untereinander und im Apparat (Dissipation)
- kinet. Energie des Mahlprodukts
- Maschinenteil verschleißen
- Deformation der Teilchen ohne Bruch
- nicht ideale Einbringung der Kräfte (schiefer Stoß)
- \Rightarrow Energie
effizienz der Zerkleinerung < 1%

Tabelle 1.1: Vor- und Nachteile Trocken-/Nassmahlen

	Trockenmahlen	Nassmahlen
Vorteile	• Gut ist trocken	 geringerer Energiebedarf keine Staubentwicklung Kühlung des Produkts entgegen der Reibung
Nachteile	 hoher Energiebedarf Staubentwicklung keine Kühlung des Produkts entgegen der Reibung 	• Gut ist nicht trocken

1.4 Bauarten von Mühlen

- Backenbrecher
- Rundbrecher, Kegelbrecher

• Kugelmühle

- Kaskadenbewegung Beanspruchung: Reibung $\rightarrow n=0,6...0,7\cdot n_{Krit}$
- Kateraktbewegung Beanspruchung: Reibung und Schlag $\rightarrow n=0,8...0,9\cdot n_{Krit}$

Bestimmung der Grenzdrehzahl:

$$F_G = F_Z \tag{1.3}$$

$$m \cdot g = m \cdot r \cdot \omega^2 \text{ mit } \omega = 2 \cdot \pi \cdot n \text{ (n... Drehzahl)}$$
 (1.4)

$$g = r \cdot 4 \cdot \pi^2 \cdot n^2 \tag{1.5}$$

$$n_{Krit} = \sqrt{\frac{g}{4 \cdot \pi^2 \cdot r}} \approx \sqrt{\frac{1 \left[\frac{m}{s^2}\right]}{4 \cdot \pi^2 \cdot r}} = \frac{1 \left[\sqrt{m}\right]}{\sqrt{2 \cdot D}}$$
(1.6)

(1.7)

Vorsicht mit den Einheiten ! $n_{Krit} = \left[\frac{1}{s}\right]$

Vorteile	Nachteile
 sehr feines Mahlen möglich großer Zerkleinerungsgrad z = ζ = x80,α/x80,ω enge Korngrößenverteilung, wegen vorrangiger Zerkleinerung großer Teilchen Mahlkörper können dem Mahlgut angepasst werden (Material, Größe) Autogenes Mahlen möglich * Mahlgut selbst ist Mahlkörper * Mahlkörper werden durch Abrieb immer kleiner (Abrieb = Produkt) * Mahlkörper müssen immer weiter zugegeben werden 	 sehr energieaufwendig (Kugel zu heben kostet eben) trennen von Mahlgut und Mahlkörper erfor- derlich Lärm

2 Trennen

2.1 Stoffgemische

Tabelle 2.1: Stoffgemische

Kombination der Phasen	Bezeichnung
S in G	Rauch, Staub,
S in L (Aerosol)	Suspension, Schlamm, Trübe,
L in G (Aerosol)	Dampfwolken, Nebel, Regen, Sprühwolke,
G in L	Sprudelschicht, Blasenschwarm, Schaum,
${f L}$ in ${f L}$	Emulsion, Tropfenschwarm

2.2 Trennverfahren

Alle Stoffsysteme sind dispers und bestehen aus mindestens 2 Phasen. Nur dann kann man <u>mechanische Trennverfahren</u> anwenden. (Grenze nach unten ist dabei die Partikelgröße)

Für einphasige Stoffsysteme müssen thermische Trennverfahren angewendet werden.

Mechanische Verfahren sind meist effizienter als thermische Verfahren.

- Sedimentation $\approx 10 \, \mu m \, (S/G, \, S/L, \, L/L, \, G/L, \, L/G)$
 - = Absetzen/Aufsteigen von Teilchen im Schwerkraftfeld
 - $\rightarrow \textit{Voraussetzung:}$ unterschiedliche Dichte der Teilchen gegenüber Fluid
- Zentrifugation $< 10 \, \mu m \, (\mathrm{S/L})$
 - = Trennen im Zentrifugalfeld
 - \rightarrow geeignet für sehr geringe Dichteunterschiede und sehr kleine Teilchen
- \bullet Filtration (S/G, S/L)
 - = Teilchendurchmesser > Porendurchmesser des Filtermediums "Sterische (räumliche) Hinderung"

- Sieben (S/G)
 - = Trennen nach Größenunterschied
 - \rightarrow Klassierung
- Sichten (S/G)
 - = Trennen nach Luftwiderstand und Dichte
- Flotation (S/S/G)
 - = spezielle Sedimentation
- **Zyklon** (S/G, S/L)
 - = ähnlich wie Zentrifugation

2.2.1 Sedimentation

= Absetzen einer dispersen Phase unter Einwirkung der Schwerkraft

Disperse Phase kann eine höhere oder niedrigere Dichte haben, als die Kontinuierliche.

 \rightarrow wichtige Trennoperation, weil Apparate
 einfach und somit günstig sind

Bezeichnung des Sediments nach Zweck

• Klären:

Trennziel = klare Flüssigkeit mit möglichst wenig Teilchen

• Eindicken:

Trennziel = möglichst konzentrierter Schlamm mit möglichst wenig Flüssigkeit

2.3 Grundlagen der Modellierung

Bewegung eines Einzelteilchens im Schwerkraftfeld \rightarrow Annahme: Teilchen ist starr, kugelförmig und glatt

 $d_P > 10 \, \mu \text{m}$ $\rho_P > \rho_F$

Abbildung 2.1: Skizze eines Partikels

$$F_G = m_P \cdot g = V_P \cdot \rho_P \cdot g = \frac{\pi}{6} \cdot d_P^3 \cdot \rho_P \cdot g \tag{2.1}$$

$$F_T = m_F \cdot g = V_P \cdot \rho_F \cdot g = \frac{\pi}{6} \cdot d_P^3 \cdot \rho_F \cdot g \tag{2.2}$$

"Auftrieb ist Masse der verdrängten Flüssigkeit"

$$F_R = c_W \cdot \rho_F \cdot \frac{1}{2} \cdot v_P^2 \cdot A_\perp \tag{2.3}$$

 c_W ... Widerstandsbeiwert $c_W = f(v, \text{Geometrie}, \text{Rauigkeit}, ...)$ v_P ... Relativgeschwindigkeit zwischen Teilchen und Partikel A_{\perp} ... Projezierte Fläche des Partikels in Bewegungsrichtung hier: Kugel \to Kreis mit $A_{\perp} = \frac{\pi}{4} \cdot d_P^2$

2.4 Grundlagen der Modellierung

Bewegung eines Einzelteilchens im Schwerkraftfeld

Annahme Teilchen ist:

- kugelförmig
- starr
- glatt
- $d_P > 10 \, \mu \text{m}$
- $\rho_P > \rho_F$

Kräfte die wirken:

- a) $\overrightarrow{F_G}$: Gewichtskraft
- b) $\overrightarrow{F_T}$: Trägheitskraft (bei kleineren Partikeln eher uninteressant)
- c) $\overrightarrow{F_A}$: Auftriebskraft
- d) $\overrightarrow{F_R}$: Reibungskraft

Kräftegleichgewicht:

$$0 = \overrightarrow{F_G} + \overrightarrow{F_T} + \overrightarrow{F_A} + \overrightarrow{F_R} \tag{2.4}$$

a)
$$\overrightarrow{F_G} = m \cdot g = V_P \cdot \rho_P \cdot g = \frac{\pi}{6} \cdot (d_P)^3 \cdot \rho_P \cdot g$$

b)
$$\overrightarrow{F_T} = V_P \cdot (\rho_P + c_W \cdot \rho_F) \frac{\mathrm{d}v_P}{\mathrm{d}t}$$

$$m_{P}... = V_P \cdot \rho_P$$

$$oldsymbol{m_{F...}} = V_P \cdot c_m \cdot
ho_F$$
 (für Kugeln $c_m = 0, 5$)

 m_F ist Masse des umgebenden Fluids das mit Partikel mitgerissen und beschleunigt wird (Schleppwirbel)

c) "Auftrieb ist Masse der verdrängten Flüssigkeit"
$$\overrightarrow{F_A} = m_F \cdot g = V_P \cdot \rho_F \cdot g = \frac{\pi}{6} \cdot (d_P)^3 \cdot \rho_F \cdot g$$

d)
$$\overrightarrow{F_R} = c_W \cdot \rho_F \cdot \frac{1}{2} \cdot (v_P)^2 \cdot A_\perp$$

 $c_{\mathbf{W}}$... Widerstandsbeiwert $c_{\mathbf{W}} = f(V, Geometrie, Rauhigkeit, ...)$

 $\boldsymbol{v_P}$... Relativgeschwindigkeit zwischen Partikel und Fluid

 A_{\perp} ... projezierte Fläche des Partikels in Bewegungsrichtung hier: Kugel \to Kreis $\varnothing d_P \to A_{\perp} = \frac{\pi}{4} \cdot (d_P)^2$

ABBILDUNG

Differentialgleichung der Bewegung einer starren Kugel im Schwerkraftfeld:

$$\frac{\mathrm{d}v_P}{\mathrm{d}t} = \frac{g \cdot |\rho_P - \rho_F|}{\rho_P + \frac{\rho_F}{2}} - \frac{3 \cdot c_W \cdot \rho_F \cdot (v_P)^2}{4 \cdot d_P \cdot (\rho_P + \frac{\rho_F}{2})}$$
(2.5)

Bei der Sedimentation von kleinen Teilchen wird davon ausgegangen, dass die Beschleunigungsphase sehr kurz ist.

 \rightarrow kann deshalb vernachlässigt werden

$$\frac{\mathrm{d}v_P}{\mathrm{d}t} = 0\tag{2.6}$$

Teilchen haben eine konstante Geschwindigkeit

 \rightarrow stationäre Sedimentation(sgeschwindigkeit)

Umschlagpunkt von laminar \rightarrow Übergang/turbulent

- in Rohrleitungen bei $Re_R = 2300$
- Umströmung von Partikeln bei $Re_P = 1$

ABBILDUNG

a) <u>laminarer Bereich</u> $Re_P < 1$ (Zogg:Re < 0, 2) In diesem Bereich ist c_W -Wert genau definiert

$$c_W = \frac{24}{Re_P} \tag{2.7}$$

b) <u>Übergangsbereich</u> $1 < Re_P < 10^4$ In diesem Bereich existieren viele Näherungsgleichungen

$$c_W = \frac{1}{3} \left(\sqrt{\frac{72}{Re_P}} + 1 \right)^2 \tag{2.8}$$

c) <u>turbulenter Bereich</u> $Re_P > 10^4$

$$c_W = 0,44 = const.$$
 (2.9)

2.5 Archimediszahl Ar[-]

$$Ar = \frac{g \cdot (d_P)^3 \cdot |\rho_p - \rho_F| \cdot \rho_F}{(\eta_F)^2}$$
 (2.10)

Ziel: Berechnung der Sinkgeschwindigkeit

ullet laminare Strömung Re < 0,2 und Ar < 3,6

$$Re_P = \frac{Ar}{18} \tag{2.11}$$

$$v_P = \frac{|\rho_P - \rho_F| \cdot g \cdot (d_P)^2}{18 \cdot \eta_F} \tag{2.12}$$

• Übergangsbereich $0,2 < Re < 10^4$ und $3,6 < Ar < 10^{10}$ es existieren viele Näherungsgleichungen für Re_P

$$Re_P = 18 \cdot \left(\sqrt{1 + \frac{\sqrt{Ar}}{9}} - 1\right)^2$$
 (2.13)

$$v_P = Re_P \cdot \frac{\eta_F}{\rho_F \cdot d_P} \tag{2.14}$$

- turbulente Strömung
 - \rightarrow ist für die Sedimentation nicht relevant

Vorangegangene Gleichungen gelten nur für Einzelteilchen!!

Bei der Sedimentation im <u>Teilchenschwarm</u> wird de Sinkgeschwindigkeit gering, weil:

- die Teilchen behindern sich gegenseitig (besonders bei unterschiedlich großen Teilchen)
- Jedes Teilchen transportiert Flüssigkeit im Schleppenwirbel mit nach unten
 - ightarrow Folge: Es entsteht eine Aufwärtsströmung Deswegen muss die Sinkgeschwindigkeit, die berechnet wurde, für das Einzelteilchen angepasst werden ightarrow siehe Diagramm Zogg

ABBILDUNG

"Teilchenvolumenanteil" κ :

$$\chi = \frac{m_{P^{\text{(trocken)}}}}{m_F} \tag{2.15}$$

$$\kappa = \frac{\chi}{\chi + \frac{\rho_P}{\rho_F}} \tag{2.16}$$

2.6 Auslegung von Schwerkraftsedimentationsapparaten

ABBILDUNG

Prozessziel:

- Klären: $\rho_{s,\omega_1} \approx 0$
- Eindicker: $\rho_{s,\omega_2} \approx 0, 4...0, 5$ mineralische Stoffe

$$\rho_{s,\omega_2}\approx 0,65...9,0$$
biologische Stoffe

ABBILDUNG

Die Absetzvorgänge treten gleichermaßen auch im durchströmten Sedimentationsapparat auf. Das Material aus der Kompressionszone soll nur ausgetragen werden, wenn es ausreichend konzentriert wird.

2.7 Auslegung eines Klärbeckens

ABBILDUNG

- gegeben: $\dot{V}_{\alpha}, \rho_{\alpha}$
- gefordert: $\rho_{\omega_1}, \rho_{\omega_2}$
- gesucht: $\dot{V}_{\omega_1}, \dot{V}_{\omega_2}, l, s, b$

Annahmen:

- Zulauf ist eine ideale, beruhigte, horizontale Propfenströmung (gleichmäßig über den Behälterquerschnitt) A_{\perp} verteilt: Horizontalgeschwindigkeit $v_B = const$.
- \bullet Einlaufzone wird nicht zu l gezählt
- Horizontalgeschwindigkeit v_B wird nur durch \dot{V}_{ω_1} bestimmt (d.h. der Feststoffanteil wird vernachlässigt)
- trotz des Absetzens von Feststoffen wird die vertikale Komponente der klaren Phase vernachlässigt (ist in v_P integriert)

Herleitung:

→ Zeit für das Absinken eines Teilchens von der Oberfläche bis zum Boden:

$$t = \frac{s\left[\mathbf{m}\right]}{v_P\left[\frac{\mathbf{m}}{\mathbf{s}}\right]} \tag{2.17}$$

→ Zeit für die horizontale Durchströmung des Behälters mit:

$$v_B = \frac{\dot{V}_{\alpha}}{A_{\perp}} \approx \frac{\dot{V}_{\omega_1}}{A_{\perp}} = \frac{\dot{V}_{\omega_1}}{s \cdot b} \tag{2.18}$$

$$t = \frac{l\left[\mathbf{m}\right]}{v_B\left[\frac{\mathbf{m}}{s}\right]} \tag{2.19}$$

 \rightarrow Gleichsetzen ergibt:

$$\frac{\mathscr{S}}{v_P} = \frac{l}{v_B} = \frac{l \cdot \mathscr{S} \cdot b}{\dot{V}_{\omega_1}} \tag{2.20}$$

 \rightarrow Länge des Beckens l:

$$l = \frac{\dot{V}_{\omega_1}}{v_P \cdot b} \tag{2.21}$$

$$v_P = \frac{\dot{V}_{\omega_1}}{l \cdot b} = \frac{\dot{V}_{\omega_1}}{A_o} \tag{2.22}$$

 A_o ... Oberfläche des Beckens "Klärfläche"

Gleichung ist <u>unabhängig</u> von Tiefe des Beckens

ABER:

 v_B darf nur so groß sein, dass die Teilchen nicht aufgewirbelt werden, d.h. im Becken muss eine laminare Strömung vorliegen, d.h.:

$$Re < 2000 \pmod{\max. 2300 \text{ laminar}}$$
 (2.23)

weitere Auslegungsbedingung:

$$Re_B = \frac{v_B \cdot d_{hydr} \cdot \rho_F}{\eta_F} \tag{2.24}$$

 d_{hydr} ... hydraulischer Durchmesser

$$d_{hydr} = \frac{4 \cdot A_{\perp}}{\text{benetzter Umfang}} \tag{2.25}$$

Beispiel:

- quadratischer Kanal
- $d_{hydr} = \frac{\cancel{4} \cdot a^{\cancel{4}}}{\cancel{4} \cdot \cancel{d}} = a$
- offenes, rechteckiges Becken

$d_{hydr} = \frac{4 \cdot (s \cdot b)}{2s + b}$

damit ist:

$$Re_B = \frac{4 \cdot s \cdot b \cdot v_B \cdot \rho}{(2s+b) \cdot \eta_F} \tag{2.26}$$

$$= \frac{4 \cdot \dot{V}_{\omega_1} \cdot \rho_F}{(b+2s) \cdot \eta_F} \tag{2.27}$$

weiteres Kriterium (Erfahrungswert):

$$\frac{b}{s} = 2...4$$
 (rechteckiges Klärbecken) (2.28)

ABBILDUNG

Beckentiefe kommt in der Auslegungsgleichung nicht vor!

$$v_P = \frac{\dot{V}_{\omega_1}}{A_{\alpha}} \tag{2.29}$$

Aber: laminare Durchströmung! \rightarrow dadurch ergibt sich die Beckentiefe

Unterteilung des Beckens in Stapeln der Absetzzonen

ABBILDUNG

Die gesamte Klärfläche A_o wird auf eine viel kleine Grundfläche A_G gebracht.

ABBILDUNG

Schrägstellen des Plattenpakets hilft beim Schlammaustrag (Abrutschen des Schlamms) \rightarrow Lamellenklärer/Schrägklärer

2.8 Auslegung von G/L und L/L Abscheidern

Die Behälter können horizontal als auch vertikal sein.

- \bullet L/L \to immer horizontal
- G/L
 - \rightarrow hoher Flüssigkeitsanteil $\geq 10\%$: horizontal
 - \rightarrow geringer Flüssigkeitsanteil $\leq 10\%$: vertikal

Die Auslegung von horizontalen Abscheidern ist äquivalent zum Klärbecken.

ABBILDUNG

Der Behälter ist zur Hälfte mit Flüssigkeit (bzw. schwere flüssige Phase) gefüllt.

Die (vertikale) Absetzlänge ist der halbe Behälterdurchmesser.

Koaleszens:

Vereinigung von Tropfen mit kontinuierlicher Flüssigkeit oder das Zusammenfließen von 2 Tropfen.

ABBILDUNG

Vertikaler Absetzbehälter

ABBILDUNG

Schwebezustand eines Tropfens:

$$|v_P| = |v_B| \tag{2.30}$$

Dies ist auch der Grenzfall für die Auslegung

Absetzbedingung:

$$|v_P| > |v_B| \tag{2.31}$$

Erfahrungswerte:

- $d_P = 0.5 \,\mathrm{mm} = 500 \,\mathrm{\mu m}$
- \bullet Trennhöhe H=D
- $H_{\text{Zulauf}} = \frac{1}{4}D$
- H_L aus der L-Verweilzeit= 3...10min
- $H + H_{\text{zul}} + H_L \le L$
- \bullet $\frac{L}{D}=3$ (für niedrige Drücke unter 20 bar) \to wirtschaftlich + Behälterbau
- $Re_P \approx \text{meist Übergangsbereich}$

 $Beh\"{a}lter = gunstig in der Investition, teuer im Betrieb$ $<math>Zentrifuge = teuer in der Investition, g\"{u}nstig im Betrieb$

2.9 Flockung, Flokkuation

Für ein Teilchen kleiner 10 µm ergeben sich sehr lange Absetzzeiten. Teilchen kleiner 1 µm setzen sich unter Schwerkraftwirkung gar nicht mehr ab (Brown'sche Molekülbewegung).

Durch Zugabe von Flockungsmitteln können die kleinen Teilchen agglomerieren, sie bilden größere Verbände (Flocken). Die (größeren) Flocken setzen sich schneller ab. Flocken sind sehr instabil. (Vorsicht bei Pumpen oder anderen hohen Strömungsgeschwindigkeiten!)

\rightarrow Auslegung der Apparate wie oben

Die Auswahl des geeigneten Flockungsmittels und die Flockungseignung von Teilchen und die sich daraus ergebenen Absetzzeiten sind empirisch zu bestimmen.

Aber:

Flockungsmittel sind teuer (Betriebskosten) und dürfen keine "Nebenwirkungen" haben (Toxikologie, Umwelt, Entsorgung)

2.10 Flotation

Schwerkrafttrennung unter Zuhilfenahme von Luft. Es können zwei verschiedene Feststoffe voneinander getrennt werden.

ABBILDUNG

• Prinzip:

ein Feststoff lagert sich an Luftblasen an, der andere nicht. eventuell muss ein Flotationhilfsmittel (Tenside) hinzugegeben werden, um die hydrophobe Eigenschaft einzustellen

ABBILDUNG

• Anwendung:

Papierrecycling, Erzaufbereitung

2.11 Zentrifugation

- = Sedimentation im Zentrifugalkraftfeld
 - \rightarrow bei sehr kleinen Teilchen ($d_P < 10 \,\mu\text{m}$) oder bei sehr geringen Dichteunterschieden würde die Sedimentation im Schwerkraftfeld sehr lange dauern bzw. unmöglich sein.
 - ightarrow Dann: Ersatz der Erdbeschleunigung in Form der Zentrifugalbeschleunigung
 - → Apparat: Zentrifuge
 <u>Aber:</u> Zentrifugen sind sehr aufwendige und damit teure Apparate
 (Invest- + und Betriebskosten)
 - \rightarrow Charakterisierung von Zentrifugen nach Angabe von x-Mal Erdbeschleunigung (z.B. 100g)

• Sedimentationszentrifuge:

- ABBILDUNG
- Flüssigkeit läuft über (kontinuierlich)
- Feststoff setzt sich ab (Sediment)
- Austrag des FS (meist diskontinuierlich)

• Filter- bzw. Siebzentrifuge:

- ABBILDUNG
- Trommel ist perforiert (Sieb) und eventuell mit einem Filtermedium
- Flüssigkeit läuft durch bereits Sedimentiertes Material
- Feststoffaustrag ist diskontinuierlich oder kontinuierlich (Schubzentrifuge)
- → weitere Bauarten: Dekanter, Tellerzentrifuge (Siehe Arbeitsblatt)

Literaturverzeichnis

- 1. Praktikumsskript, Modul, Versuch, Prof. Musterprof.
- 2. DIN 12345, Jahr der Veröffentlichung
- 3. Link der Internetseite, Zugriffsdatum
- 4. Buchtitel, Autor, Verlag, Veröffentlichungsjahr