Protokoll Gammadosisleistung

Fuchs, Gutmann, Kosbab, Kowal, Steindorf, Fälker, Richter

9. Januar 2023

Inhaltsverzeichnis

1	Kurzbeschreibung des Versuches	1
2	Funktionsweise eines Szintillators	1
3	Nullwertmessungen	2
4	Messwerte	3
5	Graphische Darstellung	4
6	Bestimmung der Halbwertszeiten	5
7	Berechnen der Neutronenflussdichte am Bestrahlungsort	6

1 Kurzbeschreibung des Versuches

- Zu Beginn des Versuchs wird der Nulleffekt gemessen.
- Drei verschiedene Präparate werden für jeweils 10 Minuten im geöffneten Experimentierkanal bestrahlt.
- Nach Herausnehmen der Proben werden sie sofort in den Szintillator montiert.
- Anschließend wird alle 30 Sekunden die Zahl der Impulse für je sechs Sekunden gemessen.

2 Funktionsweise eines Szintillators

- 1. Lichtblitze (Szintillationen), die beim Auftreffen von Strahlung entstehen, werden durch fotoelektrischen Effekt in Fotoelektronen umgewandelt.
- 2. Elektronen werden im SEV durch Stoßionisation verstärkt.
- 3. Die Spannungsimpulse werden weiter verstärkt und gezählt.

Folgende Werte wurden am Strahlungsmessgerät eingestellt:

Parameter	Wert
Pegel	$\int 5.7 V$
Hochspannung	-1140 V
Verstärkung	22 dB
Messzeit	6s
Kanalbreite	DIS

${\bf 3}\quad {\bf Null wert messungen}$

Messung		
1	522	408
2	522	488
3	545	415
4	526	396
5	575	492
Ø	$N_0 = 538$	439,8

Tabelle 1: Untergrundstrahlung bei laufendem Reaktor mit und ohne Menschen als Abschirmmaterial

4 Messwerte

Zeit	Al: [# <i>Impulse</i>]		Cu: [# Impulse]		\mathbf{X} : [# $Impulse$]	
[min]	N_i	$N_i - N_0$	N_{i}	$N_i - N_0$	N_i N_i	$N_i - N_0$
0	-	-	_	_	-	_
0,5	24505	23967	24063	23525	11971	11433
1,0	21163	20625	22350	21812	11134	10596
1,5	18339	17801	20668	20130	10651	10113
2,0	15840	15302	19868	19330	10252	10113
2,5	13718	13180	18376	17838	9285	8747
3,0	11656	11118	17582	17044	8809	8271
3,5	10279	9741	16477	15939	8314	7776
4,0	8744	8206	15461	14923	8117	7579
4,5	7612	7074	14629	14097	7423	6885
5,0	6536	5998	13838	13300	7081	6543
5,5	5961	5423	12893	12355	6791	6253
6,0	5102	4564	12004	11466	6380	5842
6,5	4426	3888	11673	11135	6026	5488
7,0	3948	3410	11196	10658	5638	5100
7,5	3381	2843	10355	9817	5410	4872
8,0	3060	2522	10077	9539	5180	4642
8,5	2691	2153	9477	8939	4852	4314
9,0	2300	1762	9009	8471	4645	4107
10,0	1930	1392	8152	7614	4096	3558

Tabelle 2: Anzahl der Impulse für verschiedene Materialien zu verschiedenen Zeitpunkten

5 Graphische Darstellung

Abbildung 1: Messwerte mit linearer Achse

Abbildung 2: Messwerte mit logarithmischer Achse

6 Bestimmung der Halbwertszeiten

Anhand der Abklingkurven kann man nun die Halbwertszeiten ablesen.

Da der Verlauf der Aktivitätswerte durch den radioaktiven Zerfall einer Exponentialfunktion folgt, kann diese mittels exponentieller Regression näherungsweise bestimmt und anschließend die Halbwertszeit errechnet werden. Die aus den gemessenen Aktivitätswerten resultierenden Exponentialfunktionen sind folgende:

$$y_{\text{Al}} = e^{10.2344 - 0.3021 \cdot x}$$

 $y_{\text{Cu}} = e^{10.0940 - 0.1182 \cdot x}$
 $y_{\text{X}} = e^{9.3969 - 0.1210 \cdot x}$

Nach der Bestimmung der Umkehrfunktionen lassen sich die Halbwertszeiten wie folgt berechnen:

$$T_{1/2} = y^{-1} \left(\frac{y(100)}{2} \right) - 100$$

Die damit berechneten Halbwertszeiten lauten:

 $T_{1/2; Al}: 2.29 \,\mathrm{min}$ $T_{1/2; Cu}: 5.86 \,\mathrm{min}$ $T_{1/2; X}: 5.72 \,\mathrm{min}$

Es handelt sich bei dem unbekannten Element also vermutlich um Messing.

7 Berechnen der Neutronenflussdichte am Bestrahlungsort

Es ergibt sich folgende Gleichung zu Berechnung der Neutronenflussdichte:

$$\Phi = \frac{(\mathbf{Z}(t_b) - n_0) \cdot \mathbf{AG}}{C \cdot V \cdot \rho \cdot P \cdot N_L \cdot \sigma \cdot \left[1 - \exp(-\ln(2)/T_{1/2} \cdot t_b)\right]}$$

Dabei ist P der Anteil des betrachteten Isotops am Gemisch, für Kupfer ist P = 0.309.

Mit Kupfer wurde der Proportionalitätsfaktor bestimmt und beträgt C=0,01, anhand von Volumen und Dichte lässt sich die Masse der Aluminium- und Kupfer-Proben berechnen und aus der gerade berechneten Halbwertszeit lässt sich die Zerfallskonstante berechnen.

Für Aluminium ergibt sich also für die Neutronenflussdichte:

$$\begin{split} \Phi &= \frac{\left(4640.79\,\frac{1}{\mathrm{s}} - 538\,\frac{1}{\mathrm{s}}\right) \cdot 27\,\frac{\mathrm{g}}{\mathrm{mol}}}{0.01 \cdot 0.71\,\mathrm{cm}^3 \cdot 2.2\,\frac{\mathrm{g}}{\mathrm{cm}^3} \cdot 6.025 * 10^{23}\,\frac{1}{\mathrm{mol}} \cdot 0.215 * 10^{-24}\,\mathrm{cm}^2 \cdot \left[1 - \exp\left(-\frac{\ln(2)}{2.29\,\mathrm{min}} \cdot 10\,\mathrm{min}\right)\right]}{= 5.7 \cdot 10^7\,\frac{\mathrm{n}}{\mathrm{cm}^2 \cdot \mathrm{s}}} \end{split}$$

Analog lässt sich die Neutronenflussdichte für Kupfer berechnen:

$$\begin{split} \Phi &= \frac{\left(4032.9\,\frac{1}{\mathrm{s}} - 538\,\frac{1}{\mathrm{s}}\right) \cdot 65\,\frac{\mathrm{g}}{\mathrm{mol}}}{0.01 \cdot 0.71\,\mathrm{cm}^3 \cdot 8.92\,\frac{\mathrm{g}}{\mathrm{cm}^3} \cdot 6.025 * 10^{23}\,\frac{1}{\mathrm{mol}} \cdot 2.1 * 10^{-24}\,\mathrm{cm}^2 \cdot \left[1 - \exp\left(-\frac{\ln(2)}{5.86\,\mathrm{min}} \cdot 10\,\mathrm{min}\right)\right]} \\ &= 1.3 \cdot 10^7\,\frac{\mathrm{n}}{\mathrm{cm}^2 \cdot \mathrm{s}} \end{split}$$

Es ergibt sich also ein Durchschnittswert von $3.5 \cdot 10^7 \, \frac{\rm n}{\rm cm^2 \cdot s}$