Спецкурс 2020/2021: "Геометрические и комбинаторные свойства матриц и аппроксимация" Блок лекций "Сложность матриц и аппроксимация" Лекция 2: "Коммуникационная сложность (продолжение)"

1 ноября 2020 г.

Меры сложности функции $f \colon \mathcal{X} imes \mathcal{Y} o \{0,1\}$:

- C(f) коммуникационная сложность (детерминированная модель);
- R(f) сложность с "ограниченной ошибкой": $P(Q(x,y)=f(x,y))\geqslant \frac{2}{3}, \quad \forall x,y.$
- U(f) сложность с "неограниченной ошибкой": $P>\frac{1}{2}$. (Название не вполне удачное, смысл в том, что мы не ограничиваем ошибку и она может быть сколь угодно близка к $\frac{1}{2}$.)

Меры сложности функции $f\colon \mathcal{X} imes \mathcal{Y} o \{0,1\}$:

- C(f) коммуникационная сложность (детерминированная модель);
- ullet R(f) сложность с "ограниченной ошибкой": $P(Q(x,y)=f(x,y))\geqslant rac{2}{3}, \quad \forall x,y.$
- U(f) сложность с "неограниченной ошибкой": $P>\frac{1}{2}$. (Название не вполне удачное, смысл в том, что мы не ограничиваем ошибку и она может быть сколь угодно близка к $\frac{1}{2}$.)

Примеры: $\mathcal{X} = \mathcal{Y} = \{0,1\}^n$,

- EQ равенство x = y;
- ullet DISJ дизъюнктность: отождествим x,y с подмножествами $\{1,\dots,n\}$ и положим $\mathrm{DISJ}(x,y)=0$ для $x\cap y=\varnothing$, и 1 иначе;
- $IP(x, y) = \sum x_i y_i \mod 2$.

Меры сложности функции $f\colon \mathcal{X} imes \mathcal{Y} o \{0,1\}$:

- C(f) коммуникационная сложность (детерминированная модель);
- ullet R(f) сложность с "ограниченной ошибкой": $P(Q(x,y)=f(x,y))\geqslant rac{2}{3}, \quad \forall x,y.$
- U(f) сложность с "неограниченной ошибкой": $P>\frac{1}{2}$. (Название не вполне удачное, смысл в том, что мы не ограничиваем ошибку и она может быть сколь угодно близка к $\frac{1}{2}$.)

Примеры: $\mathcal{X} = \mathcal{Y} = \{0,1\}^n$,

- \bullet EQ равенство x = y;
- ullet DISJ дизъюнктность: отождествим x,y с подмножествами $\{1,\dots,n\}$ и положим $\mathrm{DISJ}(x,y)=0$ для $x\cap y=\varnothing$, и 1 иначе;
- $IP(x, y) = \sum x_i y_i \mod 2$.

f	C(f)	R(f)	U(f)
EQ	$\asymp n$	$O(\log n)$	O(1)
DISJ	$\asymp n$	$\asymp n$	$O(\log n)$
IP	$\asymp n$	$\approx n$	$\asymp n$

$$C(DISJ) \approx n$$

Матрица DISJ_n невырождена.

$$C(DISJ) \approx n$$

Матрица DISJ_n невырождена.

	$1 \in x$	$1 \not\in x$
$1 \in x$	0	X
1 ∉ <i>x</i>	X	*

При этом $X \sim \mathrm{DISJ}_{n-1}$.

Индукция по *п*.

$$C(DISJ) \approx n$$

Матрица $DISJ_n$ невырождена.

	$1 \in x$	1 ∉ <i>x</i>
$1 \in x$	0	X
1 ∉ <i>x</i>	X	*

При этом $X \sim \mathrm{DISJ}_{n-1}$.

Индукция по *п*.

Таким образом, rank $DISJ_n = 2^n$,

$$C(DISJ_n) \geqslant log_2 rank(DISJ_n) = n.$$

Анне дано множество $x \subset \{1,\ldots,n\}$, Борису — $y \in \{1,2,\ldots,n\}$. Они должны определить, пересекаются ли $x \cap y$ ("appointment scheduling problem").

Анне дано множество $x \subset \{1,\ldots,n\}$, Борису — $y \in \{1,2,\ldots,n\}$. Они должны определить, пересекаются ли $x \cap y$ ("appointment scheduling problem").

Протокол: Анна выбирает случайный элемент $a \in x$ и отправляет его Борису.

Анне дано множество $x \subset \{1,\ldots,n\}$, Борису — $y \in \{1,2,\ldots,n\}$. Они должны определить, пересекаются ли $x \cap y$ ("appointment scheduling problem").

Протокол: Анна выбирает случайный элемент $a \in x$ и отправляет его Борису.

Если Борис обнаруживает, что $a\in y$, то выдаёт ответ "пересечение непусто". Иначе с вероятностью $\frac{1}{2}+\varepsilon$ выдаёт ответ "пусто" (соотв., с вероятностью $\frac{1}{2}-\varepsilon$ "непусто").

Анне дано множество $x \subset \{1,\ldots,n\}$, Борису — $y \in \{1,2,\ldots,n\}$. Они должны определить, пересекаются ли $x \cap y$ ("appointment scheduling problem").

Протокол: Анна выбирает случайный элемент $a \in x$ и отправляет его Борису.

Если Борис обнаруживает, что $a\in y$, то выдаёт ответ "пересечение непусто". Иначе с вероятностью $\frac{1}{2}+\varepsilon$ выдаёт ответ "пусто" (соотв., с вероятностью $\frac{1}{2}-\varepsilon$ "непусто").

Если $x\cap y=\varnothing$, то вероятность успеха $\frac{1}{2}+\varepsilon$.

Анне дано множество $x \subset \{1,\ldots,n\}$, Борису — $y \in \{1,2,\ldots,n\}$. Они должны определить, пересекаются ли $x \cap y$ ("appointment scheduling problem").

Протокол: Анна выбирает случайный элемент $a \in x$ и отправляет его Борису.

Если Борис обнаруживает, что $a\in y$, то выдаёт ответ "пересечение непусто". Иначе с вероятностью $\frac{1}{2}+\varepsilon$ выдаёт ответ "пусто" (соотв., с вероятностью $\frac{1}{2}-\varepsilon$ "непусто").

Если $x\cap y=\varnothing$, то вероятность успеха $\frac{1}{2}+\varepsilon$.

Если $|x\cap y|=k>0$, то с вероятностью $q=k/|x|\geqslant 1/n$ Анна выберет элемент $a\in x\cap y$ и мы придём к успеху. Следовательно, вероятность успеха равна

$$q+(1-q)(rac{1}{2}-arepsilon)=rac{1}{2}+q(rac{1}{2}+arepsilon)-arepsilon\geqslantrac{1}{2}+rac{1}{2n}-arepsilon,$$

что больше $\frac{1}{2}$ при достаточно малом arepsilon.

Сигнум матрица = матрица с элементами ± 1 .

Сигнум рангом (signum rank) сигнум-матрицы $S \in \{-1,1\}^{m \times n}$ назовём минимальный ранг матриц A, таких что sign A = S:

 $\operatorname{rank}_{\pm}(S) := \min \{ \operatorname{rank} A : \operatorname{sign} A_{i,j} \equiv S_{i,j} \}.$

Сигнум матрица = матрица с элементами ± 1 .

Сигнум рангом (signum rank) сигнум-матрицы $S \in \{-1,1\}^{m \times n}$ назовём минимальный ранг матриц A, таких что sign A = S:

$$\operatorname{rank}_{\pm}(S) := \min \{ \operatorname{rank} A : \operatorname{sign} A_{i,j} \equiv S_{i,j} \}.$$

Геометрическая интерпретация сигнум-ранга:

ullet Наборы векторов $X = \{x_1, \dots, x_m\}$ и $Y = \{y_1, \dots, y_n\}$ в \mathbb{R}^d реализуют сигнум матрицу S, если

$$sign\langle x_i, y_j \rangle = S_{i,j}, \quad \forall i, j.$$

 $\operatorname{rank}_{\pm}(S)$ — минимальная размерность d, в которой существует реализация (X,Y) матрицы S.

Сигнум матрица = матрица с элементами ± 1 .

Сигнум рангом (signum rank) сигнум-матрицы $S \in \{-1,1\}^{m imes n}$ назовём минимальный ранг матриц A, таких что sign A=S:

$$\operatorname{rank}_{\pm}(S) := \min \{ \operatorname{rank} A : \operatorname{sign} A_{i,j} \equiv S_{i,j} \}.$$

Геометрическая интерпретация сигнум-ранга:

ullet Наборы векторов $X = \{x_1, \dots, x_m\}$ и $Y = \{y_1, \dots, y_n\}$ в \mathbb{R}^d реализуют сигнум матрицу S, если

$$sign\langle x_i, y_j \rangle = S_{i,j}, \quad \forall i, j.$$

 $\operatorname{rank}_{\pm}(S)$ — минимальная размерность d, в которой существует реализация (X,Y) матрицы S. Замечание: можно считать x_i и y_i единичными векторами и что они находятся в общем положении (т.е. любые d линейно независимы). Почему?

Сигнум матрица = матрица с элементами ± 1 .

Сигнум рангом (signum rank) сигнум-матрицы $S\in\{-1,1\}^{m imes n}$ назовём минимальный ранг матриц A, таких что sign A=S:

$$\operatorname{rank}_{\pm}(S) := \min \{ \operatorname{rank} A : \operatorname{sign} A_{i,j} \equiv S_{i,j} \}.$$

Геометрическая интерпретация сигнум-ранга:

ullet Наборы векторов $X = \{x_1, \dots, x_m\}$ и $Y = \{y_1, \dots, y_n\}$ в \mathbb{R}^d реализуют сигнум матрицу S, если

$$sign\langle x_i, y_j \rangle = S_{i,j}, \quad \forall i, j.$$

 $\operatorname{rank}_{\pm}(S)$ — минимальная размерность d, в которой существует реализация (X,Y) матрицы S. Замечание: можно считать x_i и y_i единичными векторами и что они находятся в общем положении (т.е. любые d линейно независимы). Почему?

• Вместо векторов x_i и y_i можно говорить о точках P_i и гиперплоскостях H_i , разделяющих пространство на положительное полупространство H_i^+ и отрицательное H_i^- . Тогда $P_i \in H_i^+$, если $S_{i,j} = 1$ и $P_i \in H_i^-$, если $S_{i,j} = -1$.

U и Сигнум-ранг

Theorem (Paturi, Simon, 1986)

$$\lceil \log_2 \operatorname{rank}_{\pm}(f) \rceil \leqslant U(f) \leqslant \lceil \log_2 \operatorname{rank}_{\pm}(f) \rceil + 1.$$

U и Сигнум-ранг

Theorem (Paturi, Simon, 1986)

$$\lceil \log_2 \operatorname{rank}_{\pm}(f) \rceil \leqslant U(f) \leqslant \lceil \log_2 \operatorname{rank}_{\pm}(f) \rceil + 1.$$

Упрощённый протокол. Анна посылает Борису сообщение α_i с вероятностью $p_i(x),\ 1\leqslant i\leqslant m$. Борис, получив α_i , выдаёт 1 с вероятностью $q_i(y)$ и 0 с вероятностью $1-q_i(y)$. Таким образом, упрощённый протокол задаётся функциями

$$p_1,\ldots,p_m\colon \mathcal{X}\to [0,1],\ \sum_{i=1}^m p_i(x)\equiv 1,\quad q_1,\ldots,q_m\colon \mathcal{Y}\to [0,1].$$

Чему равна сложность протокола?

U и Сигнум-ранг

Theorem (Paturi, Simon, 1986)

$$\lceil \log_2 \operatorname{rank}_{\pm}(f) \rceil \leqslant U(f) \leqslant \lceil \log_2 \operatorname{rank}_{\pm}(f) \rceil + 1.$$

Упрощённый протокол. Анна посылает Борису сообщение α_i с вероятностью $p_i(x),\ 1\leqslant i\leqslant m$. Борис, получив α_i , выдаёт 1 с вероятностью $q_i(y)$ и 0 с вероятностью $1-q_i(y)$. Таким образом, упрощённый протокол задаётся функциями

$$p_1,\ldots,p_m\colon \mathcal{X}\to [0,1],\ \sum_{i=1}^m p_i(x)\equiv 1,\quad q_1,\ldots,q_m\colon \mathcal{Y}\to [0,1].$$

Чему равна сложность протокола?

Сложность равна $\lceil \log_2 m \rceil$. Сообщения $\alpha_i =$ бинарные строки, кодирующие m вариантов.

Теорема Paturi-Simon

Пусть f принимает (для удобства) значения ± 1 . Отождествим f с сигнум матрицей $S=S_f$. Анна знает i, Борис знает j, нужно вычислить $S_{i,j}$.

Теорема Paturi-Simon

Пусть f принимает (для удобства) значения ± 1 . Отождествим f с сигнум матрицей $S=S_f$. Анна знает i, Борис знает j, нужно вычислить $S_{i,j}$.

Пусть есть реализация сигнум-матрицы S в виде системы векторов x_i, y_i . Построим упрощённый протокол.

Теорема Paturi-Simon

Пусть f принимает (для удобства) значения ± 1 . Отождествим f с сигнум матрицей $S=S_f$. Анна знает i, Борис знает j, нужно вычислить $S_{i,j}$.

Пусть есть реализация сигнум-матрицы S в виде системы векторов x_i, y_i . Построим упрощённый протокол.

"Причешем" реализацию: повышением размерности на 1 можно добиться выполнения неравенств:

$$x_{i,k} \geqslant 0, \quad \sum_{k=1}^{d} x_{i,k} = 1, \quad y_{j,k} \in [-\frac{1}{2}, \frac{1}{2}].$$

Итак, Анне выдали точку x_i , Борису — y_j . Анна отравляет сообщение α_k с вероятностью $x_{i,j}$. Борис отвечает, получив α_k :

$$egin{cases} 1, & ext{c вероятностью } rac{1}{2} + y_{j,k}, \ -1, & ext{c вероятностью } rac{1}{2} - y_{j,k}. \end{cases}$$

Тогда разность вероятностей P(ответ=1) - P(ответ=0) равна

$$\sum_{k=1}^{d} x_{k,j} (\frac{1}{2} + y_{k,j}) - \sum_{k=1}^{d} x_{k,j} (\frac{1}{2} - y_{k,j}) = \langle x_i, y_j \rangle.$$

Тогда разность вероятностей $P(\text{ответ}{=}1) - P(\text{ответ}{=}0)$ равна

$$\sum_{k=1}^{d} x_{k,j} (\frac{1}{2} + y_{k,j}) - \sum_{k=1}^{d} x_{k,j} (\frac{1}{2} - y_{k,j}) = \langle x_i, y_j \rangle.$$

Значит, если $S_{i,j}=1$, то $\langle x_i,y_j \rangle>0$ и вероятность ответа "1" (правильного) выше, чем вероятность неправильного ответа.

Тогда разность вероятностей P(ответ=1) - P(ответ=0) равна

$$\sum_{k=1}^{d} x_{k,j} (\frac{1}{2} + y_{k,j}) - \sum_{k=1}^{d} x_{k,j} (\frac{1}{2} - y_{k,j}) = \langle x_i, y_j \rangle.$$

Значит, если $S_{i,j}=1$, то $\langle x_i,y_j \rangle>0$ и вероятность ответа "1" (правильного) выше, чем вероятность неправильного ответа.

Обратно, вектора вероятностей упрощённого протокола задают реализацию сигнум-матрицы подходящей размерности (проверьте!). Теорема доказана.

Тогда разность вероятностей P(ответ=1) - P(ответ=0) равна

$$\sum_{k=1}^{d} x_{k,j} (\frac{1}{2} + y_{k,j}) - \sum_{k=1}^{d} x_{k,j} (\frac{1}{2} - y_{k,j}) = \langle x_i, y_j \rangle.$$

Значит, если $S_{i,j}=1$, то $\langle x_i,y_i\rangle>0$ и вероятность ответа "1" (правильного) выше, чем вероятность неправильного ответа.

Обратно, вектора вероятностей упрощённого протокола задают реализацию сигнум-матрицы подходящей размерности (проверьте!). Теорема доказана. Или нет?

Тогда разность вероятностей P(ответ=1) - P(ответ=0) равна

$$\sum_{k=1}^{d} x_{k,j} (\frac{1}{2} + y_{k,j}) - \sum_{k=1}^{d} x_{k,j} (\frac{1}{2} - y_{k,j}) = \langle x_i, y_j \rangle.$$

Значит, если $S_{i,j}=1$, то $\langle x_i,y_i\rangle>0$ и вероятность ответа "1" (правильного) выше, чем вероятность неправильного ответа.

Обратно, вектора вероятностей упрощённого протокола задают реализацию сигнум-матрицы подходящей размерности (проверьте!). Теорема доказана. Или нет?

Нужно доказать, что задача коммуникации с неограниченной ошибкой сводится к упрощённым протоколам!

Это сделано в той же работе Paturi и Simon.

Как по обычному протоколу Q построить упрощённый протокол?

Как по обычному протоколу Q построить упрощённый протокол? Пусть H — множество всех возможных *историй*, т.е. последовательностей передаваемых Анной и Борисом сообщений:

$$h=(\alpha_1,\beta_1,\ldots,\beta_n),$$

где α_1 — сообщение Анны, β_1 — ответ Бориса и т.д. Последнее сообщение β_n состоит из одного бита и содержит ответ (для определенности считаем, что его посылает Борис). Обозначим это последнее сообщение через $h_{\rm last}$.

В упрощённом протоколе Анна будет передавать $h \in H$ или специальное сообщение γ .

Грубо говоря, Анна предполагает, что Борис отправляет свои сообщения с равными вероятностями, рассчитывает историю коммуникации и отправляет её в соответствии со своими вероятностями. Борис "корректирует" вероятность и выдаёт ответ.

Анна и Борис действуют в соответствии с вероятностным протоколом. Для Анны есть распределения: $p(\alpha_1|x)$ — вероятности отправить α_1 для заданного x, распределение $p(\alpha_2|\alpha_1,\alpha_1,x)$ и т.д. У Бориса это $q(\beta_1|\alpha_1,y)$ и т.д.

При заданных x, y вероятность истории h получается произведением вероятностей для Анны и Бориса:

$$P_A(h,x) = p(\alpha_1|x)p(\alpha_2|\beta_1,x)\cdots p(\alpha_n|...),$$

$$P_B(h,y) = q(\beta_1|y)q(\alpha_2|\beta_1,y)\cdots q(\beta_n|...).$$

Ключевой момент в том, что P_A не зависит от y, а P_B не зависит от x. Вероятность, того, что получим ответ b (при фиксированных x,y) равна

$$P(b|x,y) = \sum_{h: h_{last} = b} P_A(h,x) P_B(h,y).$$
 (*)

Положим

$$d_x^b := \sum_{h : h_{x,x} = b} P_A(h,x), \quad b \in \{0,1\}, \quad d := \max_x d_x^1.$$

Зададим вероятности для упрощённого протокола. Для Анны нужно задать вероятности отправить историю h или специальный символ γ :

$$p'(h|x) = \begin{cases} \frac{1}{2d} P_A(h, x), & h_{\text{last}} = 1, \\ \frac{1}{2d_x^0} P_A(h, x), & h_{\text{last}} = 0, \\ \frac{1}{2} - \frac{d_x^1}{2d}, & h = \gamma. \end{cases}$$

Нетрудно убедиться, что $\forall x \; \sum_h p'(h|x) = 1$. Для Бориса задаём вероятность ответа в зависимости от y и полученного h:

$$q'(1|y,h) = egin{cases} P_B(h,y), & h_{ ext{last}} = 1, \ 1 - rac{1}{2d}, & h_{ ext{last}} = 0, \ 0, & h = \gamma. \end{cases}$$

Здесь нужно убедиться, что $q'\in[0,1]$, для этого нужно, чтобы $d\geqslant 1/2$. Почему это так: при некотором x вероятность ответа 1 больше 1/2 (иначе функция тождественно нулевая, не о чем говорить). Но эта вероятность не больше d_x^1 , что видно из формулы (*).

Teopema Paturi-Simon (окончание)

Проверим, что упрощённый протокол даёт тот же результат. Фиксируем (x,y). Предположим, по обычному протоколу был ответ 1 (с вероятностью P(1|x,y)>1/2). Докажем, что вероятность по упрощённому тоже >1/2. Она равна:

$$\sum_{h_{\text{last}}=1} \frac{1}{2d} P_A(h, x) P_B(h, y) + \sum_{h_{\text{last}}=0} \frac{1}{2d_x^0} P_A(h, x) (1 - \frac{1}{2d}) =$$

$$= \frac{1}{2d} P(1|x, y) + \frac{1}{2} \cdot (1 - \frac{1}{2d}) = \frac{1}{2} + \frac{1}{2d} (P(1|x, y) - \frac{1}{2}) > \frac{1}{2}.$$

Аналогично разбирается случай P(0|x,y) > 1/2.

Отметим особо, что вероятности изменились! Остался неизменным лишь знак $\mathrm{sign}(P-1/2)$. Следовательно, это рассуждение позволяет свести к упрощённому протоколу только коммуникацию с неограниченной ошибкой. В случае ограниченной ошибки доказано, что упрощённые протоколы слабее общих.

$U(EQ) \ll const$

Рассмотрим $2^n \times 2^n$ матрицу E, соответствующую EQ: на диагонали 1, вне диагонали -1. Оцените её сигнум-ранг.

$U(EQ) \ll const$

Рассмотрим $2^n \times 2^n$ матрицу E, соответствующую EQ: на диагонали 1, вне диагонали -1. Оцените её сигнум-ранг.

Легко видеть, что ${\rm rank}_\pm(E)\leqslant 3$: рассмотрим функции $a+bt+ct^2$, ясно, что на точках $\{1,\dots,N\}$ можно получить ими любую последовательность знаков вида $(-1,-1,\dots,-1,1,-1,\dots,-1)$.

$U(EQ) \ll const$

Рассмотрим $2^n \times 2^n$ матрицу E, соответствующую EQ: на диагонали 1, вне диагонали -1. Оцените её сигнум-ранг.

Легко видеть, что ${\rm rank}_{\pm}(E)\leqslant 3$: рассмотрим функции $a+bt+ct^2$, ясно, что на точках $\{1,\ldots,N\}$ можно получить ими любую последовательность знаков вида $(-1,-1,\ldots,-1,1,-1,\ldots,-1)$.

Упражнение. Найти ${\sf rank}_{\pm}(E) \in \{1,2,3\}.$

Оценка Forster-a

Theorem (Forster, 2002)

Для
$$S \in \{-1,1\}^{m imes n}$$
,

$$\operatorname{\mathsf{rank}}_\pm(S)\geqslant rac{\sqrt{mn}}{\|S\|_{2 o 2}}.$$

Оценка Forster-a

Theorem (Forster, 2002)

Для $S \in \{-1,1\}^{m imes n}$,

$$\operatorname{\mathsf{rank}}_\pm(S)\geqslant rac{\sqrt{mn}}{\|S\|_{2 o 2}}.$$

Вспомним, что в матрице Уолша—Адамара $H^n(x,y)=(-1)^{\mathrm{IP}(x,y)}$ строки ортогональны и их длина равна $2^{n/2}$, поэтому $\|H\|=2^{n/2}$. Следствие: $U(\mathrm{IP}) \asymp \log \mathrm{rank}_{\pm} H \geqslant n/2$.

Оценка Forster-a

Theorem (Forster, 2002)

Для $S \in \{-1,1\}^{m imes n}$,

$$\operatorname{rank}_{\pm}(S)\geqslant rac{\sqrt{mn}}{\|S\|_{2 o 2}}.$$

Вспомним, что в матрице Уолша-Адамара $H^n(x,y)=(-1)^{\mathrm{IP}(x,y)}$ строки ортогональны и их длина равна $2^{n/2}$, поэтому $\|H\|=2^{n/2}$. Следствие: $U(\mathrm{IP})\asymp \log \mathrm{rank}_\pm\,H\geqslant n/2$. Доказательство теоремы. Пусть $x_i,y_j\in\mathbb{R}^d$ — вектора, реализующие S, при этом $d=\mathrm{rank}_\pm(S)$.

Оценка Forster-a

Theorem (Forster, 2002)

Для $S \in \{-1,1\}^{m imes n}$,

$$\mathsf{rank}_{\pm}(S) \geqslant \frac{\sqrt{mn}}{\|S\|_{2\to 2}}.$$

Вспомним, что в матрице Уолша-Адамара $H^n(x,y)=(-1)^{\mathrm{IP}(x,y)}$ строки ортогональны и их длина равна $2^{n/2}$, поэтому $\|H\|=2^{n/2}$. Следствие: $U(\mathrm{IP}) \asymp \log \mathrm{rank}_+ H \geqslant n/2$.

Доказательство теоремы. Пусть $x_i, y_j \in \mathbb{R}^d$ — вектора, реализующие S, при этом $d = \operatorname{rank}_{\pm}(S)$.

"Причешем" их, применив подходящий невырожденный линейный оператор $B\colon \mathbb{R}^d \to \mathbb{R}^d$ и положив $\widetilde{x}_i:=Bx_i/|Bx_i|$. При этом, если $\widetilde{y}_j:=B^{-t}y_j/|B^{-t}y_j|$, то

$$\mathsf{sign}\langle \widetilde{x_i}, \widetilde{y_j} \rangle = \mathsf{sign}\langle Bx_i, (B^{-t}y_j) \rangle = \mathsf{sign}\langle B^{-1}Bx_i, y_j \rangle = S_{i,j}.$$

Доказательство теоремы Forster-a

Lemma (без доказательства)

Пусть $x_1, \ldots, x_m \in \mathbb{R}^d$ — вектора в общем положении. Существует невырожденный линейный оператор $B \colon \mathbb{R}^d \to \mathbb{R}^d$, такой что для $\widetilde{x_i} := Bx_i/|Bx_i|$ выполнено

$$\sum_{i=1}^m \widetilde{x}_i \widetilde{x}_i^t = \frac{m}{d} I_d.$$

Доказательство теоремы Forster-a

Lemma (без доказательства)

Пусть $x_1,\ldots,x_m\in\mathbb{R}^d$ — вектора в общем положении. Существует невырожденный линейный оператор $B\colon\mathbb{R}^d\to\mathbb{R}^d$, такой что для $\widetilde{x_i}:=Bx_i/|Bx_i|$ выполнено

$$\sum_{i=1}^m \widetilde{x}_i \widetilde{x}_i^t = \frac{m}{d} I_d.$$

Применим B для теоремы Форстера. Итак, мы можем считать, что $x_i, y_j \in \mathbb{R}^d$, реалзующие S, являются единичными векторами, причём $\sum x_i x_i^t = (m/d) I_d$.

Доказательство теоремы Forster-a

Lemma (без доказательства)

Пусть $x_1,\ldots,x_m\in\mathbb{R}^d$ — вектора в общем положении. Существует невырожденный линейный оператор $B\colon\mathbb{R}^d\to\mathbb{R}^d$, такой что для $\widetilde{x_i}:=Bx_i/|Bx_i|$ выполнено

$$\sum_{i=1}^{m} \widetilde{x}_i \widetilde{x}_i^t = \frac{m}{d} I_d.$$

Применим B для теоремы Форстера. Итак, мы можем считать, что $x_i, y_j \in \mathbb{R}^d$, реалзующие S, являются единичными векторами, причём $\sum x_i x_i^t = (m/d) I_d$.

В вопросах реализации важен margin (зазор), т.е. расстояние от P_i до гиперплоскости H_j . Чем он больше, т.е. чем дальше точки от края и реализация "лучше". Это применяется в оценках ML алгоритмов типа SVM (будет разобрано в следующих лекциях). Имеем

$$\operatorname{dist}(P_i, H_i) = |\langle x_i, y_i \rangle|, \quad \text{т.к. } |y_i| = 1.$$

$$D = \sum_{j=1}^{n} (\sum_{i=1}^{m} \operatorname{dist}(P_{i}, H_{j}))^{2}.$$

$$D = \sum_{j=1}^{n} (\sum_{i=1}^{m} \operatorname{dist}(P_{i}, H_{j}))^{2}.$$

Мы покажем, что если размерность мала, то при условии

$$\sum_{i=1}^{m} x_i x_i^t = (m/d) I_d$$

величина D не может быть маленькой.

$$D = \sum_{j=1}^{n} (\sum_{i=1}^{m} \operatorname{dist}(P_{i}, H_{j}))^{2}.$$

Мы покажем, что если размерность мала, то при условии

$$\sum_{i=1}^{m} x_i x_i^t = (m/d) I_d$$

величина D не может быть маленькой.

$$\sum_{i=1}^{m} |\langle x_i, y_j \rangle| \geqslant \sum_{i=1}^{m} \langle x_i, y_j \rangle^2 = \sum_{i=1}^{m} y_j^t x_i x_i^t y_j =$$

$$= y_j^t \sum_{i=1}^{m} x_i x_i^t y_j = y_j^t \frac{m}{d} I_d y_j = \frac{m}{d}.$$

$$D = \sum_{j=1}^{n} (\sum_{i=1}^{m} \operatorname{dist}(P_{i}, H_{j}))^{2}.$$

Мы покажем, что если размерность мала, то при условии

$$\sum_{i=1}^m x_i x_i^t = (m/d) I_d$$

величина D не может быть маленькой.

$$\sum_{i=1}^{m} |\langle x_i, y_j \rangle| \geqslant \sum_{i=1}^{m} \langle x_i, y_j \rangle^2 = \sum_{i=1}^{m} y_j^t x_i x_i^t y_j =$$

$$= y_j^t \sum_{i=1}^{m} x_i x_i^t y_j = y_j^t \frac{m}{d} I_d y_j = \frac{m}{d}.$$

Отсюда $D \geqslant nm^2/d^2$.

$$D = \sum_{j=1}^{n} (\sum_{i=1}^{m} \operatorname{dist}(P_{i}, H_{j}))^{2}.$$

Мы покажем, что если размерность мала, то при условии

$$\sum_{i=1}^{m} x_i x_i^t = (m/d) I_d$$

величина D не может быть маленькой.

$$\sum_{i=1}^{m} |\langle x_i, y_j \rangle| \geqslant \sum_{i=1}^{m} \langle x_i, y_j \rangle^2 = \sum_{i=1}^{m} y_j^t x_i x_i^t y_j =$$

$$= y_j^t \sum_{i=1}^{m} x_i x_i^t y_j = y_j^t \frac{m}{d} I_d y_j = \frac{m}{d}.$$

Отсюда $D \geqslant nm^2/d^2$. Где использовалось, что это реализация S?

Доказательство теоремы Forster-а (продолжение)

Теперь оценим D сверху, используя $\|S\|:=\|S\|_{2 o 2}.$

Доказательство теоремы Forster-а (продолжение)

Теперь оценим D сверху, используя $\|S\|:=\|S\|_{2 o 2}$.

$$\sum_{i=1}^m |\langle x_i, y_j \rangle| = \sum_{i=1}^m S_{i,j} \langle x_i, y_j \rangle \leqslant \sum_{i=1}^m \langle S_{i,j} x_i, y_j \rangle \leqslant |\sum_{i=1}^m S_{i,j} x_i|.$$

Доказательство теоремы Forster-а (продолжение)

Теперь оценим D сверху, используя $\|S\| := \|S\|_{2 o 2}$.

$$\sum_{i=1}^{m} |\langle x_i, y_j \rangle| = \sum_{i=1}^{m} S_{i,j} \langle x_i, y_j \rangle \leqslant \sum_{i=1}^{m} \langle S_{i,j} x_i, y_j \rangle \leqslant |\sum_{i=1}^{m} S_{i,j} x_i|.$$

Суммируем по j:

$$D \leqslant \sum_{j=1}^{n} |\sum_{i=1}^{m} S_{i,j} x_{j}|^{2} = \sum_{j=1}^{n} (\sum_{k=1}^{m} S_{k,j} x_{k}^{t}) (\sum_{l=1}^{m} S_{l,j} x_{l}) = \sum_{1 \leqslant k,l \leqslant m} x_{k}^{t} x_{l} \sum_{j=1}^{n} S_{k,j} S_{l,j} = \sum_{1 \leqslant k,l \leqslant m} \langle x_{k}, x_{l} \rangle (SS^{t})_{k,l}.$$

Доказательство теоремы Forster-а (продолжение) У нас возникло скалярное произведение двух $m \times m$ матриц:

$$\langle G, H \rangle := \sum_{i,j} G_{i,j} H_{i,j}.$$

Первая матрица = матрица Грама системы $\{x_k\}$, вторая матрица = SS^t . Заметим, что обе матрицы являются неотрицательно определёнными (напомним, $H\geqslant 0$, если $H=H^t$ и $x^tHx\geqslant 0$ для всех x).

Доказательство теоремы Forster-a (продолжение)

У нас возникло скалярное произведение двух $m \times m$ матриц:

$$\langle G, H \rangle := \sum_{i,j} G_{i,j} H_{i,j}.$$

Первая матрица = матрица Грама системы $\{x_k\}$, вторая матрица = SS^t . Заметим, что обе матрицы являются неотрицательно определёнными (напомним, $H\geqslant 0$, если $H=H^t$ и $x^tHx\geqslant 0$ для всех x).

Хочется воспользоваться неравенством

$$\langle H,G \rangle \geqslant 0$$
, если $H \geqslant 0$ и $G \geqslant 0$.

Почему это так? См., например, Лекцию №0.

Доказательство теоремы Forster-a (продолжение)

У нас возникло скалярное произведение двух $m \times m$ матриц:

$$\langle G, H \rangle := \sum_{i,j} G_{i,j} H_{i,j}.$$

Первая матрица = матрица Грама системы $\{x_k\}$, вторая матрица = SS^t . Заметим, что обе матрицы являются неотрицательно определёнными (напомним, $H\geqslant 0$, если $H=H^t$ и $x^tHx\geqslant 0$ для всех x).

Хочется воспользоваться неравенством

$$\langle H,G \rangle \geqslant 0$$
, если $H \geqslant 0$ и $G \geqslant 0$.

Почему это так? См., например, Лекцию №0.

Например, представим H и G в виде сумм одноранговых матриц вида aa^t . Для такой пары матриц утверждение очевидно: $\sum_{k,l} a_k a_l b_k b_l = (\sum a_k b_k)^2$.

Доказательство теоремы Forster-a (продолжение)

У нас возникло скалярное произведение двух $m \times m$ матриц:

$$\langle G, H \rangle := \sum_{i,j} G_{i,j} H_{i,j}.$$

Первая матрица = матрица Грама системы $\{x_k\}$, вторая матрица = SS^t . Заметим, что обе матрицы являются неотрицательно определёнными (напомним, $H\geqslant 0$, если $H=H^t$ и $x^tHx\geqslant 0$ для всех x).

Хочется воспользоваться неравенством

$$\langle H,G
angle\geqslant 0,$$
 если $H\geqslant 0$ и $G\geqslant 0.$

Почему это так? См., например, Лекцию №0.

Например, представим H и G в виде сумм одноранговых матриц вида aa^t . Для такой пары матриц утверждение очевидно:

 $\sum_{k,l} a_k a_l b_k b_l = (\sum a_k b_k)^2.$

Верно ли неравенство:

$$\langle H, G_1 \rangle \leqslant \langle H, G_2 \rangle$$
, если $H \geqslant 0$ и $G_1 \leqslant G_2$.

Доказательство теоремы Forster-a (окончание)

Заметим, что $AA^t \leqslant \|A\|^2 I_m$ для любой $m \times n$ матрицы:

$$x^{t}AA^{t}x = |A^{t}x|^{2} \leqslant ||A||^{2}|x|^{2}, \quad x^{t}(||A||^{2}I_{m} - AA^{t})x \geqslant 0.$$

Следовательно,

$$\sum_{k,l} \langle x_k, x_l \rangle (SS^t)_{k,l} \leqslant \sum_{k,l} \langle x_k, x_l \rangle ||S||^2 (I_m)_{k,l} = ||S||^2 \sum_k |x_k|^2 = ||S||^2 m.$$

Доказательство теоремы Forster-a (окончание)

Заметим, что $AA^t \leqslant \|A\|^2 I_m$ для любой $m \times n$ матрицы:

$$x^{t}AA^{t}x = |A^{t}x|^{2} \leqslant ||A||^{2}|x|^{2}, \quad x^{t}(||A||^{2}I_{m} - AA^{t})x \geqslant 0.$$

Следовательно,

$$\sum_{k,l} \langle x_k, x_l \rangle (SS^t)_{k,l} \leqslant \sum_{k,l} \langle x_k, x_l \rangle ||S||^2 (I_m)_{k,l} = ||S||^2 \sum_k |x_k|^2 = ||S||^2 m.$$

Итого, $D \leqslant ||S||^2 m$.

Доказательство теоремы Forster-a (окончание)

Заметим, что $AA^t \leqslant \|A\|^2 I_m$ для любой $m \times n$ матрицы:

$$x^t A A^t x = |A^t x|^2 \leqslant \|A\|^2 |x|^2, \quad x^t (\|A\|^2 I_m - A A^t) x \geqslant 0.$$

Следовательно,

$$\sum_{k,l} \langle x_k, x_l \rangle (SS^t)_{k,l} \leqslant \sum_{k,l} \langle x_k, x_l \rangle ||S||^2 (I_m)_{k,l} = ||S||^2 \sum_k |x_k|^2 = ||S||^2 m.$$

Итого, $D \leqslant ||S||^2 m$.

Сравнивая с неравенством $D\geqslant nm^2/d^2$, получим оценку на d.

Сигнум-ранг для случайных матриц

Для матрицы Уолша—Адамара $H^n_{x,y}=(-1)^{\langle x,y\rangle}$ имеем ${\rm rank}_\pm\,H^n\geqslant N^{1/2}$, где $N=2^n$, что даёт оптимальную оценку U-сложности

$$U(IP) \asymp \log \operatorname{rank}_{\pm}(H^n) \asymp \log N.$$

Однако, ранг сигнум-матрицы из $\{-1,1\}^N$ теоретически, может быть порядка N. Существуют ли такие матрицы?

Сигнум-ранг для случайных матриц

Для матрицы Уолша-Адамара $H^n_{x,y}=(-1)^{\langle x,y\rangle}$ имеем ${\rm rank}_\pm\,H^n\geqslant N^{1/2}$, где $N=2^n$, что даёт оптимальную оценку U-сложности

$$U(IP) \simeq \log \operatorname{rank}_{\pm}(H^n) \simeq \log N.$$

Однако, ранг сигнум-матрицы из $\{-1,1\}^N$ теоретически, может быть порядка N. Существуют ли такие матрицы?

Явные конструкции таких матриц науке неизвестны (лучший результат — $N^{1/2}$). Однако, можно доказать, что сигнум-матриц сигнум ранга $\leqslant \varepsilon N$ мало (при маленьком, но фиксированном $\varepsilon>0$) и, следовательно, существуют матрицы с $\mathrm{rank}_\pm(S)\geqslant \varepsilon N$.

Algebraic method (Alon, Frankl, Rödl, 1985)

Denote by $S_r(n_1, n_2)$ the number of $n_1 \times n_2$ signum-matrices (sign $B_{i,j}$), for all rank $B \leq r$ with nonzero elements.

Algebraic method (Alon, Frankl, Rödl, 1985)

Denote by $S_r(n_1, n_2)$ the number of $n_1 \times n_2$ signum-matrices (sign $B_{i,j}$), for all rank $B \leqslant r$ with nonzero elements.

Let p_1, \ldots, p_M be polynomials of N variables. Each point $x \in \mathbb{R}^N$ with $p_i(x) \neq 0$, $i = 1, \ldots, M$, yields the signum-vector $(\text{sign } p_1(x), \ldots, \text{sign } p_M(x)) \in \{-1, 1\}^M$. Denote by $z(p_1, \ldots, p_M)$ the number of such signum vectors.

Denote by Z(N, M, D) the maximum possible value of $z(p_1, \ldots, p_M)$ over polynomials p_1, \ldots, p_M of degree $\leq D$.

Algebraic method (Alon, Frankl, Rödl, 1985)

Denote by $S_r(n_1, n_2)$ the number of $n_1 \times n_2$ signum-matrices (sign $B_{i,j}$), for all rank $B \leqslant r$ with nonzero elements.

Let p_1, \ldots, p_M be polynomials of N variables. Each point $x \in \mathbb{R}^N$ with $p_i(x) \neq 0$, $i = 1, \ldots, M$, yields the signum-vector $(\text{sign } p_1(x), \ldots, \text{sign } p_M(x)) \in \{-1, 1\}^M$. Denote by $z(p_1, \ldots, p_M)$ the number of such signum vectors.

Denote by Z(N, M, D) the maximum possible value of $z(p_1, ..., p_M)$ over polynomials $p_1, ..., p_M$ of degree $\leq D$.

Statement (Alon, Frankl, Rödl)

$$S_r(n_1, n_2) \leqslant Z(r(n_1 + n_2), n_1 n_2, 2).$$

Доказательство.

If a matrix M has rank $\leqslant r$ and yields signum-matrix $\sigma = (\text{sign } M_{i,j})$, then for some vectors $u^s \in \mathbb{R}^{n_1}$, $v^s \in \mathbb{R}^{n_2}$, $s = 1, \ldots, r$, we have

$$M = \sum_{s=1}^{r} u^{s} \otimes v^{s}, \quad \sigma_{i,j} = \operatorname{sign}(\sum_{s=1}^{r} u_{i}^{s} v_{j}^{s}).$$

Доказательство.

If a matrix M has rank $\leqslant r$ and yields signum-matrix $\sigma = (\text{sign } M_{i,j})$, then for some vectors $u^s \in \mathbb{R}^{n_1}$, $v^s \in \mathbb{R}^{n_2}$, $s = 1, \ldots, r$, we have

$$M = \sum_{s=1}^{r} u^{s} \otimes v^{s}, \quad \sigma_{i,j} = \operatorname{sign}(\sum_{s=1}^{r} u_{i}^{s} v_{j}^{s}).$$

Let us look at this in the following way: we have variables x_i^s and y_j^s , $i \in [n_1]$, $j \in [n_2]$, $s \in [r]$, $r(n_1 + n_2)$ of them. There are fixed polynomials in these variables:

$$q_{i,j}(x,y) = \sum_{s=1}^r x_i^s y_j^s.$$

So, the existence of M that yields σ is equivalent to existence of x such that (sign $q_{i,j}(x,y)$) equals σ . Hence $S_r(n_1,n_2)=z(\{q_{i,j}\})$.

Warren's bound

It is convenient to use Warren's bound (1968) on the number of connected components of the set $\mathbb{R}^N\setminus \bigcup_{i=1}^M \{p_i(x)=0\}$, which gives

$$Z(N, M, D) \leqslant (4eDM/N)^N$$
, for $M \geqslant N$.

Warren's bound

It is convenient to use Warren's bound (1968) on the number of connected components of the set $\mathbb{R}^N \setminus \bigcup_{i=1}^M \{p_i(x)=0\}$, which gives

$$Z(N, M, D) \leqslant (4eDM/N)^N$$
, for $M \geqslant N$.

We use bound on S_r together with Warren's bound for $n \times n$ matrices and rank $r = \varepsilon n$:

$$\log S_r(n,n) \leqslant \log Z(2rn,n^2,2) \leqslant 2rn\log(cn/r) \asymp n^2\varepsilon\log(1/\varepsilon).$$

There totally 2^{n^2} signum matrices and only $2^{cn^2\varepsilon\log(1/\varepsilon)}$ of low signum-rank.