PLSC 503 – Spring 2018 Cases and Variables

March 1, 2018

Under the Hood of X

OLS (and regression methods more generally) requires:

- X is full column rank.
- N > K.
- "Sufficient" variability in X.

"Perfect" Multicollinearity

Formally: There cannot be any set of λ s such that:

$$\lambda_0 \mathbf{1} + \lambda_1 \mathbf{X}_1 + ... + \lambda_K \mathbf{X}_K = \mathbf{0}$$

If there was, it would imply

$$\mathbf{X}_j = \frac{-\lambda_0}{\lambda_j} \mathbf{1} + \frac{-\lambda_1}{\lambda_j} \mathbf{X}_1 + \ldots + \frac{-\lambda_K}{\lambda_j} \mathbf{X}_K$$

which means

$$\begin{aligned} \mathbf{Y} &= & \beta_0 \mathbf{1} + \beta_1 \mathbf{X}_1 + \ldots + \beta_j \mathbf{X}_j + \ldots + \beta_K \mathbf{X}_K + \mathbf{u} \\ &= & \beta_0 \mathbf{1} + \beta_1 \mathbf{X}_1 + \ldots + \beta_j \left(\frac{-\lambda_0}{\lambda_j} \mathbf{1} + \frac{-\lambda_1}{\lambda_j} \mathbf{X}_1 + \ldots + \frac{-\lambda_K}{\lambda_j} \mathbf{X}_K \right) + \ldots + \beta_K \mathbf{X}_K + \mathbf{u} \\ &= & \left[\beta_0 + \beta_j \left(\frac{-\lambda_0}{\lambda_j} \right) \right] \mathbf{1} + \left[\beta_1 + \beta_j \left(\frac{-\lambda_1}{\lambda_j} \right) \right] \mathbf{X}_1 + \ldots + \left[\beta_K + \beta_j \left(\frac{-\lambda_K}{\lambda_j} \right) \right] \mathbf{X}_K + \mathbf{u} \\ &= & \left(\beta_0 + \frac{\gamma_0}{\lambda_j} \right) \mathbf{1} + \left(\beta_1 + \frac{\gamma_1}{\lambda_j} \right) \mathbf{X}_1 + \ldots + \left(\beta_K + \frac{\gamma_K}{\lambda_j} \right) \mathbf{X}_K + \mathbf{u} \end{aligned}$$

In Practice

```
> Africa$newgdp<-(Africa$gdppppd-mean(Africa$gdppppd))*1000
> fit<-with(Africa, lm(adrate~gdppppd+newgdp+healthexp+subsaharan+
                       muslperc+literacv))
> summary(fit)
Call:
lm(formula = adrate ~ gdppppd + newgdp + healthexp + subsaharan +
    muslperc + literacy)
Residuals:
            10 Median
    Min
                                  Max
-15 291 -4 329 -1 412 2 723 20 682
Coefficients: (1 not defined because of singularities)
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     -7.78020 10.33872 -0.753 0.4565
                     0.36142
                              0.58214 0.621 0.5385
gdppppd
                                             NA
newgdp
                          NΑ
                                     NA
                                                     NA
healthexp
                     1.87001 0.75667 2.471 0.0182 *
subsaharanSub-Saharan 3.64354 4.54163 0.802
                                                 0.4275
muslperc
                     -0.07908 0.05967 -1.325
                                                 0.1932
literacy
                     0.12445
                                0.09867
                                        1.261
                                                 0.2151
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 7.665 on 37 degrees of freedom
Multiple R-squared: 0.4782, Adjusted R-squared: 0.4077
F-statistic: 6.782 on 5 and 37 DF, p-value: 0.0001407
```

So...

• Perfect multicollinearity is terrible, but

 Perfect multicollinearity not a problem at all.

N > K...

Statistically,

- we lack sufficient degrees of freedom to identify $\hat{\beta}$.
- $\hat{\boldsymbol{\beta}}$ is "overdetermined."

Conceptually:

- Variables > Cases means
- ...no unique conclusion about explanatory / causal factors.

N = K in Practice

```
> smallAfrica<-subset(Africa, subsaharan=="Not Sub-Saharan")
> fit2<-with(smallAfrica,lm(adrate~gdppppd+healthexp+muslperc+
                             literacy+war))
+
> summary(fit2)
Call:
lm(formula = adrate ~ gdppppd + healthexp + muslperc + literacy +
   war)
Residuals:
ALL 6 residuals are 0: no residual degrees of freedom!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.12430
                            NΑ
                                    NΑ
                                             NΑ
gdppppd
           -0.97906
                            NΑ
                                    NΑ
                                             NΔ
healthexp -0.45166
                            NΑ
                                    NΑ
                                             NΑ
muslperc 0.01413
                            NΑ
                                    NΙΔ
                                             NΑ
literacy 0.09512
                            NΑ
                                    NA
                                             NΑ
war
           -0.96429
                            NΑ
                                    NΑ
                                             NΑ
```

Residual standard error: NaN on 0 degrees of freedom Multiple R-squared: 1,Adjusted R-squared: NaN F-statistic: NaN on 5 and 0 DF, p-value: NA

High (Non-Perfect) Multicollinearity

Recall that

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

We can write the kth diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ as:

$$rac{1}{(\mathsf{X}_k'\mathsf{X}_k)(1-\hat{R}_k^2)}$$

where \hat{R}_k^2 is the R^2 from the regression of \mathbf{X}_k on all the other variables in \mathbf{X} .

The Obligatory Venn Diagram

High (Non-Perfect) Multicollinearity

Things to understand:

- 1. Multicollinearity is a sample problem.
- 2. Multicollinearity is a matter of degree.

Near-Perfect Collinearity: An Example

$$\mathsf{HIV}_i = \beta_0 + \beta_1(\mathsf{Civil}\;\mathsf{War}_i) + \beta_2(\mathsf{Intensity}_i) + u_i$$

```
> with(Africa, table(internalwar,intensity))
```

```
internal war 0 1 2 3
0 30 0 0 0
1 0 6 2 5
```

Table: Three Models

	Dependent variable: adrate		
	(1)	(2)	(3)
internalwar	-4.459		-2.849
	(3.274)		(6.682)
intensity		-1.955	-0.837
		(1.481)	(3.018)
Constant	10.713***	10.502***	10.713***
	(1.800)	(1.734)	(1.821)
Observations	43	43	43
R^2	0.043	0.041	0.045
Adjusted R ²	0.020	0.017	-0.003
Residual Std. Error	9.860 (df = 41)	9.873 (df = 41)	9.973 (df = 40)
F Statistic	1.855 (df = 1; 41)	1.743 (df = 1; 41)	0.945 (df = 2; 40)
Note:	*p<0.1; **p<0.05; ***p<0.01		

(Near-Perfect) Multicollinearity: Detection

- 1. High R², but nonsignificant coefficients.
- 2. High pairwise correlations among independent variables.
- 3. High partial correlations among the Xs.
- 4. VIF and Tolerance.

VIF / Tolerance

If $\hat{R}^2_{\nu} = 0$, then

$$\widehat{\mathsf{Var}(\hat{\beta}_k)} = \frac{\hat{\sigma}^2}{\mathsf{X}'_k \mathsf{X}_k};$$

So:

$$\mathsf{VIF}_k = \frac{1}{1 - \hat{R}_k^2}$$

$$\mathsf{Tolerance} = \frac{1}{\mathsf{VIF}_k}$$

Rule of Thumb: VIF > 10 is a problem...

What To Do?

Don't:

- Drop Covariates!!!
- Restrict βs...

Do:

- Add data.
- Transform the covariates
 - · Data reduction
 - · First differences
 - · Orthogonalize
- Shrinkage Methods (e.g., "ridge regression")