

David Gunter
25 November 2013

EXECUTIVE SUMMARY

- A versatile distributed database/storage system that accommodates massive amounts of data (petabytes and beyond) through distribution amongst many servers.
- Aims for "wide applicability, scalability, high performance, and high availability"
- Dynamic, bare-bones data formats
 - Not a true relational database; it's up to the user to configure data relations

IMPLEMENTATION

- Maps
 - Row key, column key, timestamp
 - Rows: read/writes are atomic
 - Items of the same "domain" are grouped together to speed up searching
 - Row ranges = tablets which are distributed across machines
 - Column keys: sets of column families
 - Families comprised of many columns, but tables have small number of families (families grouped bye same data type)
 - Timestamps: used for garbage collecting & versioning

IMPLEMENTATION (CONT.)

- Distribution
 - BigTable runs on machines shared with other processes
 - 3 Components: library, master server, tablet servers
 - Master responsible for assigning tablets to table servers
 - Rarely communicated with. Master servers = lightly loaded
 - Responsible for ensuring server is serving tablets and reassigning tablets that are not being served
 - Tablet servers handle r/w requests & manages tablet size
 - Perform the bulk of operations
 - No tablet <200MB in size

ANALYSIS

- Wildly versatile
 - The DB storage system is bare-bones, providing only what is necessary for organization. Giving users control of how data is received and transformed is very powerful
 - Being able to store literally any kind of data enables wide applicability to a multitude of industries
 - i.e. storing thousands of images or even entire webpages in cells
- Highly scalable, fault-tolerant
 - The master & tablet servers do an excellent job of both balancing and resolving errors
 - The tablet server's ability to reduce and remap locations is highly intelligent and helps reduce data loss
 - The master server and its redistribution upon error notification is also incredible in its data quality capabilities

ADVANTAGES & DISADVANTAGES

Advantages

- Highly flexible with data types and organization
- Self-managing
 - Tablets automatically broken down once they reach a size threshold
- Does not require dedicated resources
 - BigTable runs on computers that share processes with other applications

Disadvantages

- Reliant upon Google File System (GFS)
 - Many points of failure (hardware, maintenance, GFS quotas)
- Some performance hiccups in random reads
 - Requiring "transfer of 64KB block for every 1000-byte read" slows down reads

HOW CAN I USE THIS?

- Google Earth
 - One table to hold all images for geo. segments (70TB+ of data!)
 - Rows organized so that "adjacent geographic segments are stored near each other"
 - Reduces search time!
- Personalized Search
 - Grouping user actions together
 - Decrease latency, r/w time
 - Highly replicated
 - Increased availability, latency reduced by replicating to servers near the user