答题时不要超过此线

第十四届全国大学生数学竞赛预赛试卷参考答案 (数学 A 类, 2022 年)

考试形式: 闭卷 考试时间: __150__ 分钟 满分: __100__分

题号	-	=	三	四	五.	六	总分
满分	15	15	15	20	15	20	100
得分							

注意:

- 1. 所有答题都须写在标准答题纸上, 写在本试卷或其它纸上均无效.
- 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 3. 如答题空白不够,可写在当页背面,并标明题号.

得分	
评阅人	

一、(本题 15 分) 在空间直角坐标系中已知单叶双曲面 S 的方程为 $x^2+y^2-z^2=1$. 求过 P=(1,1,1) 点落在单叶双曲面 S 上的两条直线之间的夹角.

解答. 设过 P 点直线的方向向量(单位向量)为

(1)
$$v = (a, b, c), a^2 + b^2 + c^2 = 1, c > 0,$$

则直线的参数方程为

$$(x, y, z) = (1, 1, 1) + (a, b, c)t, t \in \mathbb{R}.$$

设它整体落在单叶双曲面 S 上,代入 S 的方程,得到

$$(1+at)^2 + (1+bt)^2 - (1+ct)^2 = 1, t \in \mathbb{R}.$$

$$2(a+b-c)t + (a^2+b^2-c^2)t^2 = 0, t \in \mathbb{R}.$$

......(5分)

于是得到

(2)
$$a+b-c=0, a^2+b^2-c^2=0.$$

由方程(1)和(2)得到

$$c = \frac{\sqrt{2}}{2}$$
, $a^2 + b^2 = \frac{1}{2}$, $a + b = \frac{\sqrt{2}}{2}$.

由此求得两个直线方向

$$v_1 = (a, b, c) = (\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}), \quad v_2 = (a, b, c) = (0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$$

得到两条过 P 且落在单叶双曲面 S 上的直线

$$(x, y, z) = (1, 1, 1) + v_1 t, (x, y, z) = (1, 1, 1) + v_2 t.$$

$$\cos \theta = v_1 \cdot v_2 = \frac{1}{2}.$$

得分	
评阅人	

二、(本题 15 分) 设 $\lim_{n\to+\infty} \frac{a_n}{n^2} = a$, $\lim_{n\to+\infty} \frac{b_n}{n^2} = b$. 证 明极限 $\lim_{n\to+\infty}\frac{1}{n^5}\sum_{k=0}^n a_k b_{n-k}$ 存在并求其值.

解答. 对于 $n \ge 1$, 记 $A_n = \frac{a_n}{n^2} - a$, $B_n = \frac{b_n}{n^2} - b$. 则 $\lim_{n \to +\infty} A_n = \lim_{n \to +\infty} B_n = 0$. 从而 $\{A_n\}$, $\{B_n\}$ 有界. 记 $M = \sup_{n \ge 1} (|A_n| + |B_n|) + |a| + |b|$.

由 Stolz 公式或利用定积分, 我们有

$$\lim_{n \to +\infty} \frac{1}{n^5} \sum_{k=0}^n k^2 (n-k)^2 = \lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{k^2}{n^3} - 2 \sum_{k=0}^n \frac{k^3}{n^4} + \sum_{k=0}^n \frac{k^4}{n^5} \right)$$

$$= \frac{1}{3} - \frac{2}{4} + \frac{1}{5} = \frac{1}{30}.$$

 \dots 另一方面, 对于 $n \geqslant 2$, 有

$$-\frac{2}{4} + \frac{1}{5} = \frac{1}{30}.$$

$$\Rightarrow 2, \vec{n}$$

$$\left| \frac{1}{n^5} \sum_{k=0}^{n} a_k b_{n-k} - \frac{ab}{n^5} \sum_{k=1}^{n-1} k^2 (n-k)^2 - \frac{a_0 b_n + a_n b_0}{n^5} \right|$$

$$= \left| \frac{1}{n^5} \sum_{k=1}^{n-1} k^2 (n-k)^2 \left(A_k B_{n-k} + b A_k + a B_{n-k} \right) \right|$$

$$\leqslant \frac{M}{n} \sum_{k=1}^{n-1} \left(|A_k| + |B_k| \right).$$

由 Stolz 公式,

$$\lim_{n \to +\infty} \frac{M}{n} \sum_{k=1}^{n-1} (|A_k| + |B_k|) = \lim_{n \to +\infty} M(|A_n| + |B_n|) = 0.$$

因此,

$$\lim_{n \to +\infty} \frac{1}{n^5} \sum_{k=0}^{n} a_k b_{n-k} = ab \lim_{n \to +\infty} \frac{1}{n^5} \sum_{k=1}^{n-1} k^2 (n-k)^2 = \frac{ab}{30}.$$
(15 $\frac{1}{2}$)

得分	
评阅人	

三、(本题 15 分) 设 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, 矩阵 $B \ni A$ 可

交换, 其元素均为正整数且行列式为 1. 证明存在正整数 k使得 $B = A^k$.

证明. 令

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

由于 B 与 A 可交换, 可得 c = b, d = a - b. B 的元素均为正整数, 故 a, b 为正整 数且 a > b. 再由 $\det B = 1$ 得到 $a^2 - ab - b^2 = 1$.

若 b=1,则由 $a^2-ab-b^2=1$ 易得 a=2,因此 $B=\begin{pmatrix}2&1\\1&1\end{pmatrix}=A.$

$$B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = A.$$

若 b > 1, 考察矩阵

> 1, 考察矩阵
$$B_1 = A^{-1}B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ b & a-b \end{pmatrix} = \begin{pmatrix} a-b & 2b-a \\ 2b-a & 2a-3b \end{pmatrix}.$$

$$B_1 = \left(\begin{array}{cc} a_1 & b_1 \\ b_1 & a_1 - b_1 \end{array}\right).$$

显然 a_1 为正整数. 注意到 $a^2 - ab - b^2 = 1$, 若 $a \ge 2b$, 则有 $1 + b^2 = a^2 - b^2 = 1$ $ab = a(a - b) \ge 2b^2$, 即 $b^2 \le 1$, 矛盾, 由此得到 $b_1 = 2b - a$ 也是正整数. 显 然 $a_1^2 - a_1b_1 - b_1^2 = \det B_1 = (\det A)^{-1} \det B = 1$, 即 $a_1(a_1 - b_1) = 1 + b_1^2 > 0$, 从 而 $a_1 > b_1$. 这表明矩阵 B_1 中的元素 a_1, b_1 满足矩阵 B 中元素 a, b 所满足的条 件, 但是 $b_1 = b - (a - b) < b$. 若 $b_1 > 1$, 则类似地矩阵

$$B_2 = A^{-1}B_1 = (A^{-1})^2 B = \begin{pmatrix} a_2 & b_2 \\ b_2 & a_2 - b_2 \end{pmatrix}$$

中的元素 a_2, b_2 也满足矩阵 B 中元素 a, b 所满足的条件, 但是 $b_2 < b_1 < b$. 继续 进行下去,通过左乘 A^{-1} 有限次,比如 s 次后可以使得得到的矩阵

$$B_s = (A^{-1})^s B = \begin{pmatrix} a_s & b_s \\ b_s & a_s - b_s \end{pmatrix}$$

中的元素 a_s, b_s 满足 $a_s > b_s > 0, a_s^2 - a_s b_s - b_s^2 = 1$ 且 b_s 为最小正整数,即	$b_s = 1$
	(12分)
由前面的证明得到 $B_s = A$, 从而 $B = A^{s+1}$, 令 $k = s+1$ 即可.	
	(15分)

TOTAL WILLIAM AND THE REAL PROPERTY OF THE PARTY OF THE P

得分	
评阅人	

四、 (本题 20 分) 设 $n \ge 2$ 为正整数,证明多项 式 $f(x) = x^n - x - 1$ 在有理数域 \mathbb{Q} 上不可约.

证明. 对任意多项式 $F(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$, 用 $\widetilde{F}(x)$ 表示 F(x) 的 互反多项式,即

$$\widetilde{F}(x) = a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m = x^{\deg F} F\left(\frac{1}{x}\right).$$

显然有 $\widetilde{\widetilde{F}}(x) = F(x)$ 且若 F(x) = G(x)H(x) 为多项式 G(x) 和 H(x) 的乘积, 则 $\widetilde{F}(x) = \widetilde{G}(x)\widetilde{H}(x)$ 是互反多项式 $\widetilde{G}(x)$ 和 $\widetilde{H}(x)$ 的乘积.

项式 $g(x), h(x) \in \mathbb{Z}[x]$ 使得 f(x) = g(x)h(x) 且 $1 \le \deg g(x) = r < n$. 这 时 degh(x) = n - r. 进一步地, 由于 f(x) 的首项系数为 1, 常数项为 -1, 我们可 以假设 g(x) 和 h(x) 的首项系数均为 1, 而它们的常数项只能是 ± 1 .

 $\diamondsuit k(x) = q(x)\widetilde{h}(x) \in \mathbb{Z}[x],$ 即由于 $\deg \widetilde{h}(x) = \deg h(x) = n-r,$ 我们有 $\deg k(x) =$ n,且

$$k(x)\widetilde{k}(x) = g(x)\widetilde{h}(x)\widetilde{g}(x)h(x) = f(x)\widetilde{f}(x). \tag{1}$$

$$f(x)\widetilde{f}(x) = -x^{2n} - x^{2n-1} + x^{n+1} + 3x^n + x^{n-1} - x - 1.$$

记 $k(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$, 则显然有 $b_n, b_0 = \pm 1$. 比较 (1) 式两 端 x^n 的系数得到

$$b_0^2 + b_1^2 + \dots + b_{n-1}^2 + b_n^2 = 3,$$

所以 $b_1^2 + \cdots + b_{n-1}^2 = 1$. 由于 b_1, \cdots, b_{n-1} 均为整数, 所以 b_1, \cdots, b_{n-1} 中恰有一个为 ±1 而其余均为 0, 即 k(x) 形如 $k(x) = b_n x^n + b_i x^i + b_0$, $1 \le i \le n-1$, 且 $b_n, b_i, b_0 = \pm 1$. 由此得到

$$k(x)\widetilde{k}(x) = b_n b_0 x^{2n} + b_n b_i x^{2n-i} + b_i b_0 x^{n+i} + 3x^n + b_n b_i x^i + b_i b_0 x^{n-i} + b_n b_0.$$

下面看 (1) 式中次数 < n 的各项系数, 常数项 $b_nb_0 = -1$, 由此得到 $b_0 = -b_n$. 又由 $n \ge 3$ 有 n > n - 1 > 1, 所以 $n - i \ne i$. 若 n - i > i, 则有 i = 1 且 $b_i = b_0 = -b_n$, 这时 $k(x) = b_n x^n - b_n x - b_n = b_n f(x)$. 若 n - i < i, 则有 i = n - 1 且 $b_i = b_n = -b_0$, 这时 $k(x) = b_n x^n + b_n x^{n-1} - b_n = -b_n \widetilde{f}(x)$. 这样我们证明了 $k(x) = \pm f(x)$ 或者 $k(x) = \pm \widetilde{f}(x)$.

若 $k(x) = \pm f(x)$, 则有 $\widetilde{h}(x) = \pm h(x)$. 故 h(x) 的任一复根就是 f(x) 和 $\widetilde{f}(x)$ 的公共根. 类似地, 若 $k(x) = \pm \widetilde{f}(x)$, 则有 $\widetilde{g}(x) = \pm g(x)$. 故 g(x) 的任一复根也是 f(x) 和 $\widetilde{f}(x)$ 的公共根. 这表明不论那种情况, f(x) 和 $\widetilde{f}(x)$ 都有公共根. 设 α 是 f(x) 和 $\widetilde{f}(x)$ 的一个公共根, 则有 $\alpha \neq 0$, $\alpha^n = \alpha + 1$ 且 $\alpha^n = -\alpha^{n-1} + 1$, 由此得到 $\alpha^{n-1} = -\alpha$, 即 $\alpha^n = -\alpha^2$. 从而 $\alpha^2 + \alpha + 1 = 0$, 故 $\alpha^3 = 1$, 所以 $\alpha^n = 1$, α 或者 α^2 . 若 $\alpha^n = 1$, 则有 $1 = \alpha + 1$, 即 $\alpha = 0$, 矛盾. 若 $\alpha^n = \alpha$, 则有 $\alpha = \alpha + 1$, 矛盾. 若 $\alpha^n = \alpha^2$, 则有 $\alpha^2 = -\alpha^2$, 即 $\alpha = 0$, 矛盾. 所以 $f(x) = x^n - x - 1$ 在 $\mathbb Q$ 上不可约.

(20分

注: 也可以利用多项式 f(x) 与 $\tilde{f}(x)$ 互素来说明 f(x) 和 $\tilde{f}(x)$ 没有公共根.

得分	
评阅人	

五、 (本题 15 分) 设 $\lim_{n \to +\infty} \beta_n = 0$, 函数 f 在 [-1, 2]上有界,在 [0,1] 上 Riemann 可积. 证明: $\lim_{n\to+\infty}\frac{1}{n}\sum_{n=1}^{\infty}f\left(\frac{k}{n}+\frac{k}{n}\right)$ β_n) = $\int_0^1 f(x) dx$.

证明. 记 $M = \sup_{x \in [-1,2]} |f(x)|, m_n = \left[n|\beta_n|\right] + 1$. 则 $\lim_{n \to +\infty} \frac{m_n}{n} = 0$. 从而存在 $N \geqslant 1$ 使得当 $n \geqslant N$ 时, $2m_n \leqslant n$. 考虑 $n \geqslant 3N + 3$, 我们有

$$n \left| \int_{\frac{k}{n} + \beta_{n}}^{\frac{k+1}{n} + \beta_{n}} \left(f\left(\frac{k}{n} + \beta_{n}\right) - f(x) \right) dx \right|$$

$$\leq \sup_{t \in \left[\frac{k}{n} + \beta_{n}, \frac{k+1}{n} + \beta_{n}\right]} f(t) - \inf_{t \in \left[\frac{k}{n} + \beta_{n}, \frac{k+1}{n} + \beta_{n}\right]} f(t)$$

$$\leq \left(\sup_{t \in \left[\frac{k}{n} - |\beta_{n}|, \frac{k+1}{n} - |\beta_{n}|\right]} f(t) - \inf_{t \in \left[\frac{k}{n} - |\beta_{n}|, \frac{k+1}{n} - |\beta_{n}|\right]} f(t) \right)$$

$$+ \left(\sup_{t \in \left[\frac{k}{n} + |\beta_{n}|, \frac{k+1}{n} + |\beta_{n}|\right]} f(t) - \inf_{t \in \left[\frac{k}{n} + |\beta_{n}|, \frac{k+1}{n} + |\beta_{n}|\right]} f(t) \right), \quad m_{n} \leq k \leq n - m_{n}.$$

$$(5 \, \%)$$

因此

$$\left| \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n} + \beta_{n}\right) - \int_{0}^{1} f(x) \, dx \right|$$

$$\leq \left| \frac{1}{n} \sum_{k=m_{n}}^{n-m_{n}} f\left(\frac{k}{n} + \beta_{n}\right) - \int_{\frac{m_{n}}{n} + \beta_{n}}^{1 - \frac{m_{n}}{n} + \beta_{n}} f(x) \, dx \right| + \frac{6m_{n}}{n}$$

$$= \left| \frac{1}{n} \sum_{k=m_{n}}^{n-m_{n}} \int_{\frac{k}{n} + \beta_{n}}^{\frac{k+1}{n} + \beta_{n}} \left(f\left(\frac{k}{n} + \beta_{n}\right) - f(x) \right) dx \right| + \frac{6m_{n}}{n}$$

$$\leq \left(U(f; P_{n}) - L(f; P_{n}) \right) + \left(U(f; Q_{n}) - L(f; Q_{n}) \right) + \frac{6m_{n}}{n},$$

其中 U(f,P) 以及 L(f,P) 依次表示 f 对应与于 [0,1] 的划分 P 的 Darboux 上和 与 Darboux 下和, P_n 表示分点为 $\left\{\frac{k}{n} - |\beta_n| |n|\beta_n| \leq k \leq n\right\} \cup \{a,b\}$ 的划分, Q_n 表示分点为 $\left\{\frac{k}{n} + |\beta_n| \left| 1 \leqslant k \leqslant n - n |\beta_n| \right\} \cup \left\{a, b\right\}$ 的划分. 于是由 f 在 [0, 1] 的可积性以及 $\lim_{n \to +\infty} \frac{m_n}{n} = 0$ 得到结论.

得分	
评阅人	

六、 (本题 20 分) 设 f 在 $[0,+\infty)$ 的任意闭区间上 Riemann 可积. 对于 $x\geqslant 0$,定义 $F(x)=\int_0^x t^\alpha f(t+x)\,dt$.

(1) 若 $\alpha \in (-1,0)$ 且 $\lim_{x\to +\infty} f(x) = A$, 证明: F 在

 $[0,+\infty)$ 上一致连续.

(2) 若 $\alpha \in (0,1)$, f 以 T > 0 为周期, $\int_0^3 f(t) dt = 2022$. 证明: F 在 $[0,+\infty)$ 上非一致连续.

证明. (1) 由题设, f 有界. 记 $M = \sup_{x \ge 0} |f(x)|$. 对于 $y > x \ge 0$, 记 $\delta = y - x$, 我们有

$$\begin{split} |F(y)-F(x)| &= \Big| \int_0^{x+\delta} t^\alpha f(t+x+\delta) \, dt - \int_0^x t^\alpha f(t+x) \, dt \Big| \\ &\leqslant \ 2M \int_x^{x+\delta} t^\alpha \, dt + M \int_0^\delta t^\alpha \, dt + \Big| \int_0^x t^\alpha f(t+x+\delta) \, dt - \int_\delta^{x+\delta} t^\alpha f(t+x) \, dt \Big| \\ &\leqslant \ 3M \int_0^\delta t^\alpha \, dt + M \int_0^x \left(t^\alpha - (t+\delta)^\alpha \right) \, dt \\ &= \ \frac{3M}{1+\alpha} \delta^{1+\alpha} + \frac{M}{1+\alpha} \Big(x^{1+\alpha} - (x+\delta)^{1+\alpha} + \delta^{1+\alpha} \Big) \\ &\leqslant \ \frac{4M}{1+\alpha} \delta^{1+\alpha} = \frac{4M}{1+\alpha} |y-x|^{1+\alpha} . \end{split}$$

因此, F 在 $[0,+\infty)$ 上一致连续

.....(14 分)

(2) 我们指出, 若函数 g 在 $[0, +\infty)$ 上一致连续, 则 g 是"线性增长"的, 即存在常数 C_1, C_2 使得

$$|g(x)| \leqslant C_1 + C_2 x, \quad \forall x \geqslant 0.$$

具体地, 有 $\delta_0 > 0$ 使得

$$|g(x) - g(y)| \le 1,$$
 $\forall 0 \le x \le y < x + \delta_0.$

因此,对于任何 $x \ge 0$,

$$|g(x)| \le |g(0)| + \left[\frac{x}{\delta_0}\right] + 1 \le |g(0)| + 1 + \frac{x}{\delta_0}.$$

记 $A = \frac{1}{T} \int_0^T f(t) dt$, $G(x) = \int_0^x \left(f(t) - A \right) dt$. 则 G(T) = G(0) = 0. 由此易见 G 以 T 为周期. 从而 G 有界. 设 $M = \max_{x \in [0,T]} |G(x)|$.

若 $A \neq 0$,则

$$\begin{split} &\left| \int_0^x t^\alpha f(t+x) \, dt \right| \geqslant \frac{|A|}{1+\alpha} x^{1+\alpha} - \left| \int_0^x t^\alpha (f(t+x) - A) \, dt \right| \\ &= \frac{|A|}{1+\alpha} x^{1+\alpha} - \left| x^\alpha G(2x) - \alpha \int_0^x t^{\alpha-1} G(t+x) \, dt \right| \\ &\geqslant \frac{|A|}{1+\alpha} x^{1+\alpha} - 2Mx^\alpha, \qquad \forall \, x \geqslant 0. \end{split}$$

因此, F 在 $[0,+\infty)$ 上非线性增长, 从而 F 在 $[0,+\infty)$ 上非一致连续.

若
$$A=0$$
, 则

$$F(x) = x^{\alpha}G(2x) - \alpha \int_0^x t^{\alpha - 1}G(t + x) dt, \quad \forall x \geqslant 0.$$

由我们在 (1) 的证明中所证明的结果可见, 只要说明 $H(x)=x^{\alpha}G(2x)$ 在 $[0,+\infty)$ 上非一致连续. 由题设, G(3)=2022, 而 G(0)=0, 因此, G 不恒为常数. 于是对于任何 $\delta>0$, 有 $s\in(0,\delta)$ 以及 $X\geqslant0$ 使得 $G(2X+2s)\neq G(2X)$. 从而

$$\begin{aligned} & \left| H(X+s+nT) - H(X+nT) \right| \\ &= \left| (X+s+nT)^{\alpha} G(2X+2s+2nT) - (X+nT)^{\alpha} G(2X+2nT) \right| \\ &\geqslant \left| (X+nT)^{\alpha} \left(G(2X+2s+2nT) - G(2X+2nT) \right) \right| \\ &- \left| G(2X+2s+2nT) \left((X+s+nT)^{\alpha} - (X+nT)^{\alpha} \right) \right| \\ &\geqslant \left| (X+nT)^{\alpha} \left| G(2X+2s) - G(2X) \right| - Ms^{\alpha}, \quad \forall n \geqslant 1. \end{aligned}$$

特别,

$$\lim_{n \to +\infty} \left| H(X + s + nT) - H(X + nT) \right| = +\infty.$$

因此, H 在 $[0, +\infty)$ 上非一致连续, 从而 F 在 $[0, +\infty)$ 上非一致连续.

注. 本题证明路径多, 请注意证明中出现的 x^{α} , $x^{1+\alpha}$ 的单调性(单增还是单减), 以及 $\int_0^1 t^s ds$ 的收敛性.