

Soluciones simétricas del problema de los *N*-cuerpos

Fernando Mazzone

Depto de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto CONICET

Seminario de Investigación en Matemática Aplicada

Problema

Ecuación

Sistema físico

Espacio: Espacio euclideano d dimensional $d \ge 2$ (\mathbb{R}^d).

Objetos: N-puntos de masas m_1, m_2, \ldots, m_N

Variables: tiempo t, posiciones $\mathbf{x}_i = \mathbf{x}_i(t) \in \mathbb{R}^d$,

i = 1, ..., N.

Fuerzas: gravitacionales,

Leyes físicas: Mecánica Newtoniana: Segunda Ley y Ley

de gravitación universal.

Ecuación de los *N*-cuerpos

Ecuación

Ecuaciones N-cuerpos

$$\boldsymbol{x}_i''(t) = G \sum_{j \neq i} m_j \frac{\boldsymbol{x}_j - \boldsymbol{x}_i}{\|\boldsymbol{x}_j - \boldsymbol{x}_i\|^3}.$$

G constante gravitación universal, supondremos G = 1.

Problemas: mapa conceptual

Soluciones simétricas

F. Mazzone

Problema de los *N*-cuerpo

Ecuación

Simetrías

Soluciones homográfica

nomografica

Celusiona

homotética

Movimient

Equilibrios rela

Soluciones homográficas p

Configuraciones Centrales

Jentraies Invariancias

Finitud de E

Configuraciones of Euler, Lagrange y Moulton (d = 3)

Notaciones

Ecuación

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \in \mathbb{R}^{d \times N}$$
, Matríz configuración, \mathbf{x} ,

 $r_{ii} = ||\mathbf{x}_i - \mathbf{x}_i||$, distancias relativas,

$$M = \begin{pmatrix} M_1 & 0_{d \times d} & \cdots & 0_{d \times d} \\ 0_{d \times d} & M_2 & \cdots & 0_{d \times d} \\ \vdots & \ddots & & \vdots \\ 0_{d \times d} & \cdots & & M_N \end{pmatrix}, M_j = \begin{pmatrix} m_j & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & m_j \end{pmatrix} \in \mathbb{R}^{d \times d}$$

$$U(\mathbf{x}) = \sum_{i < j} \frac{m_i m_j}{r_{ij}}$$
 Potencial newtoniano

$$\Delta = \{ \boldsymbol{x}_j = \boldsymbol{x}_j | \text{ para algunos } i \neq j \},$$

 $\mathbb{R}^{dN} - \Delta$ Espacio de configuraciones.

Notaciones

Soluciones simétricas

F. Mazzone

Problema de los *N*-cuerpos Ecuación

Soluciones homográfica

Configuraciones Centrales

homotéticas Movimientos plano:

Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

nvariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

$$\mathbf{v} = \mathbf{x}'$$
 (Velocidades)

$$K(\mathbf{v}) = \frac{1}{2}\mathbf{v} \cdot M\mathbf{v} = \frac{1}{2}\sum_{j=1}^{N} m_j ||\mathbf{v}_j||^2$$
, (Energía cinética)

$$\boldsymbol{c} = \frac{1}{m} \sum_{j=1}^{N} m_j \boldsymbol{x}_j$$
, con $m := \sum_{j=1}^{N} m_j$ (Centro masas)

$$\boldsymbol{p} = \sum_{j=1}^{N} m_j \boldsymbol{v}_j$$
, (momento total)

$$\omega_{kl} = \sum_{i=1}^{N} m_j \left(\mathbf{x}_{jk} \mathbf{v}_{jl} - \mathbf{x}_{jl} \mathbf{v}_{jk} \right), \text{ (Momento angular total } \omega^t = -\omega$$

Notaciones

Soluciones simétricas

F. Mazzone

Problema de los *N*-cuerpos

Ecuación Simetrías

Soluciones

homográfica

Centrales

homotéticas

Maximiantan nin

Equilibrios relativo

Soluciones homográficas para d > 3

Configuracion Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

$$\begin{aligned} \boldsymbol{x} - \boldsymbol{c} &= (\boldsymbol{x}_1 - \boldsymbol{c}, \dots, \boldsymbol{x}_N - \boldsymbol{c}) \\ \boldsymbol{I}(\boldsymbol{x}) &= \frac{1}{2} (\boldsymbol{x} - \boldsymbol{c}) \cdot \boldsymbol{M} (\boldsymbol{x} - \boldsymbol{c}) \quad \text{(Momento de inercia)} \\ &= \frac{1}{2} \sum_{j=1}^N m_j ||\boldsymbol{x}_j - \boldsymbol{c}||^2, \end{aligned}$$

Ecuación N-cuerpos

$$M\mathbf{x}''(t) = \nabla U(\mathbf{x})$$
, (Ecuación N-cuerpos)

Simetrías e integrales primeras (Emmy Noether)

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográfica Configuraciones

Soluciones homotéticas Movimientos plano

Equilibrios relativos Soluciones homográficas par d > 3

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones of Euler, Lagrange y Moulton (d = 3) ■ Simetría por traslaciones $(\mathbf{x}_j \to \mathbf{x}_j + \mathbf{v}_0 t + \mathbf{c}_0, \mathbf{c}_0, \mathbf{v}_0 \in \mathbb{R}^d) \Rightarrow \text{conservación } \mathbf{p} = \mathbf{c}' \Rightarrow \text{movimiento}$ rectilineo uniforme de \mathbf{c}

- Simetría por rotaciones $(x_j \to Qx_j, Q \in O(d)) \Rightarrow$ conservación ω
- La energía total $H: (\mathbb{R}^d \Delta) \times \mathbb{R}^d \to \mathbb{R}$,

 Espacio fases

$$H(\mathbf{x}, \mathbf{v}) = K(\mathbf{v}) - U(\mathbf{x}),$$

se conserva

Simetrías e integrales primeras (Emmy Noether)

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográfica

Centrales
Soluciones
homotéticas
Movimientos planos

Equilibrios relativo Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias
Finitud de ER
Configuracion

Configuraciones d Euler, Lagrange y Moulton (d = 3) ■ Simetría por traslaciones $(\mathbf{x}_j \to \mathbf{x}_j + \mathbf{v}_0 t + \mathbf{c}_0, \mathbf{c}_0, \mathbf{v}_0 \in \mathbb{R}^d) \Rightarrow \text{conservación } \mathbf{p} = \mathbf{c}' \Rightarrow \text{movimiento}$ rectilineo uniforme de \mathbf{c}

- Simetría por rotaciones $(x_j \to Qx_j, Q \in O(d)) \Rightarrow$ conservación ω
- La energía total $H: (\mathbb{R}^d \Delta) \times \mathbb{R}^d \to \mathbb{R}$,

 Espacio fases

$$H(\mathbf{x}, \mathbf{v}) = K(\mathbf{v}) - U(\mathbf{x}),$$

se conserva

Simetrías e integrales primeras (Emmy Noether)

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográfica Configuraciones Centrales

Soluciones homotéticas Movimientos planos Equilibrios relativos

Equilibrios relativo Soluciones homográficas para d > 3

Configuracion Centrales

Invariancias Finitud de ER Configuraciones Euler, Lagrange ■ Simetría por traslaciones $(\mathbf{x}_j \to \mathbf{x}_j + \mathbf{v}_0 t + \mathbf{c}_0, \mathbf{c}_0, \mathbf{v}_0 \in \mathbb{R}^d) \Rightarrow \text{conservación } \mathbf{p} = \mathbf{c}' \Rightarrow \text{movimiento}$ rectilineo uniforme de \mathbf{c}

■ Simetría por rotaciones $(x_j \to Qx_j, Q \in O(d)) \Rightarrow$ conservación ω

■ La energía total $H: \underbrace{\left(\mathbb{R}^d - \Delta\right) \times \mathbb{R}^d}_{\text{Espacio fases}} \to \mathbb{R},$

$$H(\mathbf{x}, \mathbf{v}) = K(\mathbf{v}) - U(\mathbf{x}),$$

se conserva

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográfica:

Centrales Soluciones homotéticas

Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias
Finitud de ER
Configuraciones

Configuraciones d Euler, Lagrange y Moulton (d = 3)

- $f: \mathbb{R}^d \to \mathbb{R}^m$ se denomina homogénea de grado $\alpha \in \mathbb{R}$ si $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$.
- Si f es homogénea de grado α entonces $\nabla f(x)$ es homogénea de grado $\alpha 1$.
- **Teorema Euler:** Si f es homogénea de grado α entonces $\nabla f(x) \cdot x = \alpha f(x)$.
- U es homogénea de grado -1, ∇U es homogénea de grado -2 e I es homogénea de grado 2.
- Invariancia por traslaciones: si $c_0 \in \mathbb{R}^d \Rightarrow U(x + c_0) = U(x)$.
- Invariancia por rotaciones: si $Q \in O(d) \Rightarrow U(Qx) = U(x)$. Por consiguiente $\nabla U(Qx) = Q\nabla U(x)$.

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas

Movimientos planos Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER Configuraciones d Euler, Lagrange y ■ $f: \mathbb{R}^d \to \mathbb{R}^m$ se denomina homogénea de grado $\alpha \in \mathbb{R}$ si $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$.

- Si f es homogénea de grado α entonces $\nabla f(x)$ es homogénea de grado $\alpha 1$.
- **Teorema Euler:** Si f es homogénea de grado α entonces $\nabla f(x) \cdot x = \alpha f(x)$.
- U es homogénea de grado -1, ∇U es homogénea de grado -2 e I es homogénea de grado 2.
- Invariancia por traslaciones: si $c_0 \in \mathbb{R}^d \Rightarrow U(x + c_0) = U(x)$.
- Invariancia por rotaciones: si $Q \in O(d) \Rightarrow U(Qx) = U(x)$. Por consiguiente $\nabla U(Qx) = Q\nabla U(x)$.

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para

Configuracion
Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

- $f: \mathbb{R}^d \to \mathbb{R}^m$ se denomina homogénea de grado $\alpha \in \mathbb{R}$ si $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$.
- Si f es homogénea de grado α entonces $\nabla f(x)$ es homogénea de grado $\alpha 1$.
- **Teorema Euler:** Si f es homogénea de grado α entonces $\nabla f(x) \cdot x = \alpha f(x)$.
- U es homogénea de grado -1, ∇U es homogénea de grado -2 e I es homogénea de grado 2.
- Invariancia por traslaciones: si $c_0 \in \mathbb{R}^d \Rightarrow U(\mathbf{x} + \mathbf{c}_0) = U(\mathbf{x}).$
- Invariancia por rotaciones: si $Q \in O(d) \Rightarrow U(Qx) = U(x)$. Por consiguiente $\nabla U(Qx) = Q\nabla U(x)$.

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones
homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracione
Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

- $f: \mathbb{R}^d \to \mathbb{R}^m$ se denomina homogénea de grado $\alpha \in \mathbb{R}$ si $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$.
- Si f es homogénea de grado α entonces $\nabla f(x)$ es homogénea de grado $\alpha 1$.
- **Teorema Euler:** Si f es homogénea de grado α entonces $\nabla f(x) \cdot x = \alpha f(x)$.
- U es homogénea de grado −1, ∇U es homogénea de grado −2 e I es homogénea de grado 2.
- Invariancia por traslaciones: si $c_0 \in \mathbb{R}^d \Rightarrow U(x + c_0) = U(x)$.
- Invariancia por rotaciones: si $Q \in O(d) \Rightarrow U(Qx) = U(x)$. Por consiguiente $\nabla U(Qx) = Q\nabla U(x)$.

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones
homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para

Configuracione
Centrales
Invariancias
Finitud de ER
Configuraciones de

- $f: \mathbb{R}^d \to \mathbb{R}^m$ se denomina homogénea de grado $\alpha \in \mathbb{R}$ si $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$.
- Si f es homogénea de grado α entonces $\nabla f(x)$ es homogénea de grado $\alpha 1$.
- **Teorema Euler:** Si f es homogénea de grado α entonces $\nabla f(x) \cdot x = \alpha f(x)$.
- U es homogénea de grado -1, ∇U es homogénea de grado -2 e I es homogénea de grado 2.
- Invariancia por traslaciones: si $c_0 \in \mathbb{R}^d \Rightarrow U(\mathbf{x} + \mathbf{c}_0) = U(\mathbf{x}).$
- Invariancia por rotaciones: si $Q \in O(d) \Rightarrow U(Qx) = U(x)$. Por consiguiente $\nabla U(Qx) = Q\nabla U(x)$.

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones
homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracion Centrales Invariancias Finitud de ER Configuraciones de Euler, Lagrange y

- $f: \mathbb{R}^d \to \mathbb{R}^m$ se denomina homogénea de grado $\alpha \in \mathbb{R}$ si $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$.
- Si f es homogénea de grado α entonces $\nabla f(x)$ es homogénea de grado $\alpha 1$.
- **Teorema Euler:** Si f es homogénea de grado α entonces $\nabla f(x) \cdot x = \alpha f(x)$.
- U es homogénea de grado −1, ∇U es homogénea de grado −2 e I es homogénea de grado 2.
- Invariancia por traslaciones: si $c_0 \in \mathbb{R}^d \Rightarrow U(\mathbf{x} + \mathbf{c}_0) = U(\mathbf{x}).$
- Invariancia por rotaciones: si $Q \in O(d) \Rightarrow U(Q\mathbf{x}) = U(\mathbf{x})$. Por consiguiente $\nabla U(Q\mathbf{x}) = Q\nabla U(\mathbf{x})$.

Configuraciones centrales (CC)

Configuraciones

Centrales

Definición

Una configuración de puntos masa, con masas m_1, \ldots, m_N y posiciones x_1, \dots, x_N es central si existe $\lambda \in \mathbb{R}$ tal que

$$\nabla U(\mathbf{x}) + \lambda M(\mathbf{x} - \mathbf{c}) = \nabla U(\mathbf{x}) + \lambda \nabla I(\mathbf{x} - \mathbf{c}) = 0.$$

Configuraciones centrales (CC)

Configuraciones

Centrales

Definición

Una configuración de puntos masa, con masas m_1, \ldots, m_N y posiciones x_1, \ldots, x_N es central si existe $\lambda \in \mathbb{R}$ tal que

$$\nabla U(\mathbf{x}) + \lambda M(\mathbf{x} - \mathbf{c}) = \nabla U(\mathbf{x}) + \lambda \nabla I(\mathbf{x} - \mathbf{c}) = 0.$$

Observación: En una configuración central el vector aceleración sobre cada cuerpo apunta hacia c y es proporcional a la distancia a c.

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográficas Configuraciones

Centrales Soluciones homotéticas

homotéticas Movimientos pla

Equilibrios relativo Soluciones homográficas para d > 3

Configuraciones Centrales

Invariancias
Finitud de ER
Configuraciones
Euler, Lagrange y

- Cuando N = 2 todas las configuraciones son centrales.
- Para masas arbitrarias la existencia es poco clara.
- **Soluciones sencillas** Si todas las masas son iguales $m_1 = m_2 = \cdots = m_N$ podemos ponerlas como vértices de un polítopo, polígono regular del plano, poliedro regular (sólido platónico), etc. Claramente la configuración es central. Se puede agregar una masa arbitraria en el centro.
- Notoriamente en el caso del regular d-simplex (triángulo equilátero, tetraedro, etc) tenemos CC independientemente de las masas.

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográficas Configuraciones Centrales

Soluciones homotéticas

Equilibrios relativo Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias
Finitud de ER
Configuraciones of
Euler, Lagrange y
Moulton (d = 2)

- Cuando N = 2 todas las configuraciones son centrales.
- Para masas arbitrarias la existencia es poco clara.
- **Soluciones sencillas** Si todas las masas son iguales $m_1 = m_2 = \cdots = m_N$ podemos ponerlas como vértices de un polítopo, polígono regular del plano, poliedro regular (sólido platónico), etc. Claramente la configuración es central. Se puede agregar una masa arbitraria en el centro.
- Notoriamente en el caso del regular d-simplex (triángulo equilátero, tetraedro, etc) tenemos CC independientemente de las masas.

Problema de os N-cuerpo Ecuación Simetrías

homográficas Configuraciones Centrales Soluciones homotéticas Movimientos plano

Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracione

Configuraciones
Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

- Cuando N = 2 todas las configuraciones son centrales.
- Para masas arbitrarias la existencia es poco clara.
- **Soluciones sencillas** Si todas las masas son iguales $m_1 = m_2 = \cdots = m_N$ podemos ponerlas como vértices de un polítopo, polígono regular del plano, poliedro regular (sólido platónico), etc. Claramente la configuración es central. Se puede agregar una masa arbitraria en el centro.
- Notoriamente en el caso del regular d-simplex (triángulo equilátero, tetraedro, etc) tenemos CC independientemente de las masas.

Configuraciones Centrales

- Cuando N = 2 todas las configuraciones son centrales.
- Para masas arbitrarias la existencia es poco clara.
- Soluciones sencillas Si todas las masas son iguales $m_1 = m_2 = \cdots = m_N$ podemos ponerlas como vértices de un polítopo, polígono regular del plano, poliedro regular (sólido platónico), etc. Claramente la configuración es central. Se puede agregar una masa arbitraria en el centro.
- Notoriamente en el caso del regular d-simplex (triángulo equilátero, tetraedro, etc) tenemos CC independientemente de las masas.

F. Mazzone

Problema de los *N*-cuerpos Ecuación

homográfica Configuraciones

Centrales
Soluciones
homotéticas
Movimientos plano

Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracione Centrales

Invariancias Finitud de ER Configuraciones d Euler, Lagrange y

Definición

Una solución $\mathbf{x}(t)$ de las ecuaciones de los N-cuerpos es homográfica si, y sólo si, existe una función escalar $r: \mathbb{R} \to (0, +\infty)$, una matricial $Q: \mathbb{R} \to SO(d)$ y un vector fijo $\mathbf{x}_0 \in \mathbb{R}^{dN}$ tal que

$$\mathbf{x}(t) - \mathbf{c}(t) = r(t)Q(t)(\mathbf{x}_0 - \mathbf{c}_0),$$

donde \mathbf{c}_0 y $\mathbf{c}(t)$ son los centros de masas de \mathbf{x}_0 y $\mathbf{x}(t)$ respectivamente.

Soluciones homotéticas

F. Mazzone

Problema de los *N*-cuerpos

Soluciones homográficas Configuraciones

Soluciones homotéticas

Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Definicion

Si Q = I (identidad $d \times d$) la solución se dice homotética.

Remplazando en la ecuación de los N cuerpos

$$r^{\prime\prime}(t)M(\boldsymbol{x}_0-\boldsymbol{c}_0)=\frac{1}{r^2(t)}\nabla U(\boldsymbol{x}_0)$$

Por consiguiente debe existir $\lambda \in \mathbb{R}$

$$r''(t) = -\frac{\lambda}{r^2(t)}$$
 y $M(\mathbf{x}_0 - \mathbf{c}_0) = -\lambda \nabla U(\mathbf{x}_0)$.

r(t) es una solución del problema de Kepler unidimensional y \mathbf{x}_0 es una CC.

Soluciones homotéticas

F. Mazzone

Problema de los N-cuerpo Ecuación
Simetrías

Soluciones homográfica Configuraciones Centrales

Soluciones homotéticas

Equilibrios relativos
Soluciones
homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER Configuraciones

Definicion

Si Q = I (identidad $d \times d$) la solución se dice homotética.

Remplazando en la ecuación de los N cuerpos

$$r''(t)M(\boldsymbol{x}_0 - \boldsymbol{c}_0) = \frac{1}{r^2(t)}\nabla U(\boldsymbol{x}_0)$$

Por consiguiente debe existir $\lambda \in \mathbb{R}$

$$r''(t) = -\frac{\lambda}{r^2(t)}$$
 y $M(\boldsymbol{x}_0 - \boldsymbol{c}_0) = -\lambda \nabla U(\boldsymbol{x}_0)$.

r(t) es una solución del problema de Kepler unidimensional y \mathbf{x}_0 es una CC.

Soluciones homotéticas

F. Mazzone

Problema de los *N*-cuerpo

Ecuació

_ . . .

homográfica

Centrales

Soluciones homotéticas

Movimientee play

Equilibrios relativ

Soluciones homográficas pa

Configuracione Centrales

Invariancias

nitud de EF

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Imagen: Richard Moeckel

Movimiento plano

F. Mazzone

Problema de los *N*-cuerpos

Simetrías

Soluciones homográfica

Configuraciones

Solucione

Movimientos planos

Equilibrios relativo Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3) Suponiendo d = 2 (movimiento plano):

$$Q(t) = \begin{pmatrix} \cos(\theta(t)) & \sin(\theta(t)) \\ -\sin(\theta(t)) & \cos(\theta(t)) \end{pmatrix} \in SO(2)$$

Remplazando $\boldsymbol{x} - \boldsymbol{c} = rQ(\boldsymbol{x}_0 - \boldsymbol{c}_0)$ en la ecuación

$$r'' - r\theta'^2 = -\frac{\lambda}{r^2}$$
, $r\theta'' + 2r'\theta' = 0$ $y - \lambda M(\mathbf{x}_0 - \mathbf{c}_0) = \nabla U(\mathbf{x}_0)$

r, θ resuelven la ecuación (coordenadas polares) de la ecuación de los dos cuerpos. Los cuerpos describen elipses keplerianas homotéticas.

Movimiento plano

F. Mazzone

Problema de los *N*-cuerpos

Soluciones homográficas

Configuraciones
Centrales

homotéticas

Movimientos planos

Equilibrios relativos Soluciones homográficas para

Configuraciones Centrales

Invariancias Finitud de ER Configuraciones d Suponiendo d = 2 (movimiento plano):

$$Q(t) = \begin{pmatrix} \cos(\theta(t)) & \sin(\theta(t)) \\ -\sin(\theta(t)) & \cos(\theta(t)) \end{pmatrix} \in SO(2)$$

Remplazando $\boldsymbol{x} - \boldsymbol{c} = rQ(\boldsymbol{x}_0 - \boldsymbol{c}_0)$ en la ecuación

$$r'' - r\theta'^2 = -\frac{\lambda}{r^2}$$
, $r\theta'' + 2r'\theta' = 0$ $y - \lambda M(\boldsymbol{x}_0 - \boldsymbol{c}_0) = \nabla U(\boldsymbol{x}_0)$

r, θ resuelven la ecuación (coordenadas polares) de la ecuación de los dos cuerpos. Los cuerpos describen elipses keplerianas homotéticas.

Movimiento plano

Soluciones simétricas

F. Mazzone

Problema de los N-cuerpo: Ecuación

Soluciones homográficas Configuraciones Centrales

homotéticas

Movimientos planos

Equilibrios relativos

Soluciones

Configuracione Centrales

Invariancias Finitud de ER Configuraciones de Euler, Lagrange y Suponiendo d = 2 (movimiento plano):

$$Q(t) = \begin{pmatrix} \cos(\theta(t)) & \sin(\theta(t)) \\ -\sin(\theta(t)) & \cos(\theta(t)) \end{pmatrix} \in SO(2)$$

Remplazando $\boldsymbol{x} - \boldsymbol{c} = rQ(\boldsymbol{x}_0 - \boldsymbol{c}_0)$ en la ecuación

$$r'' - r\theta'^2 = -\frac{\lambda}{r^2}$$
, $r\theta'' + 2r'\theta' = 0$ $y - \lambda M(\boldsymbol{x}_0 - \boldsymbol{c}_0) = \nabla U(\boldsymbol{x}_0)$

r, θ resuelven la ecuación (coordenadas polares) de la ecuación de los dos cuerpos. Los cuerpos describen elipses keplerianas homotéticas.

Movimiento rígido (equilibrio relativo)

F. Mazzone

Problema de los *N*-cuerpos

Ecuación Simetrías

Soluciones homográfica

homográfica

Soluciones

homotética

Movimientos planos Equilibrios relativos

Soluciones

homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de EF

Configuraciones of Euler, Lagrange y Moulton (d = 3)

Definicion

Si $r(t) \equiv 1$ la solución (independientemente que d=2) se dice que es un moviento rígido o equilibrio relativo.

Soluciones homográficas para $d \ge 3$

F. Mazzon

Problema de los N-cuerpo Ecuación Simetrías

Soluciones homográficas Configuraciones Centrales Soluciones homotéticas Movimientos planos Equilibrios relativos Soluciones homográficas para d > 3

Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y

En *d* = 3 la única solución no planar es el movimiento homotético [Wintner, 2014, Moeckel, 1994, Jaume Llibre, 2016]. En *d* > 3 la situación es más compleja [Albouy and Chenciner, 1997, Chenciner, 2011, Chenciner and Jiménez-Pérez, 2013], ver [Jaume Llibre, 2016].

F. Mazzoni

Problema de los N-cuerpo Ecuación Simetrías

Soluciones homográfica

Configuraciones Centrales

Soluciones homotéticas Movimientos planos

Equilibrios relativos
Soluciones
homográficas para

d > 3

Configuracion Centrales Invariancias Finitud de ER

nvariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Teorema

Sea \mathbf{x}_0 una CC y $C = \langle \mathbf{x}_{01} - \mathbf{c}_0, \dots, \mathbf{x}_{0N} - \mathbf{c}_0 \rangle$. Supongamos que existe $J \in \mathbb{R}^{d \times d}$ antisimétrica que satisface $J^2|_C = -I|_C$. Si r, θ son solución del problema de Kepler plano, entonces existe

$$\boldsymbol{x} - \boldsymbol{c} = r(t)Q(t)(\boldsymbol{x}_0 - \boldsymbol{c}_0)$$

con

$$Q(t) = e^{\theta(t)J}.$$

es una solución homográfica. Toda solución homográfica no rígida es de esta forma.

Soluciones

homográficas para

Definición

Si $A \in \mathbb{R}^{d \times d}$

$$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$$

Ejemplo:
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, e^{tJ} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

$$[e^A]^t e^A = e^{A^t} e^A = e^{-A} e^A = e^{-A+A} = I$$

F. Mazzone

Problema de los *N*-cuerpos

Ecuación Simetrías

Soluciones homográfica:

homográfica

Centrales Soluciones

homotéticas Movimientos planos

Equilibrios relativos

Soluciones homográficas para d > 3

Configuracion Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Definición

Si $A \in \mathbb{R}^{d \times d}$

$$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$$

Ejemplo:
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, e^{tJ} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

Si A es antisimétrica e^A es ortogonal:

$$[e^A]^t e^A = e^{A^t} e^A = e^{-A} e^A = e^{-A+A} = I$$

F. Mazzone

Problema de los *N*-cuerpos

Ecuación Simetrías

Soluciones homográfica:

Configuraciones Centrales

Soluciones homotéticas Movimientos planos

Equilibrios relativos Soluciones homográficas para

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Definición

Si $A \in \mathbb{R}^{d \times d}$

$$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$$

Ejemplo:
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, e^{tJ} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

Si A es antisimétrica e^A es ortogonal:

$$[e^A]^t e^A = e^{A^t} e^A = e^{-A} e^A = e^{-A+A} = I.$$

Estructuras Hermitianas

Soluciones homográficas para d > 3

Definición

Una estructura Hermitiana sobre un subespacio H viene dada por producto interno sobre H y una función lineal $J: H \rightarrow H$ que es antisimétrica respecto al producto interno con $J^2 = -I$.

Si J es la matríz del Teorema

- \blacksquare H = C + JC tendrá una estructura Hermitiana, es invariante y $J^2|_H = -I|_H$.
- Una transformación antisimétrica tiene rango par.
- Es una condición necesaria que C este contenido en
- A la vez es suficiente.

F. Mazzone

Problema de los N-cuerpo Ecuación Simetrías

nomográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracion Centrales
Invariancias

nvariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Definición

Una estructura Hermitiana sobre un subespacio H viene dada por producto interno sobre H y una función lineal $J: H \to H$ que es antisimétrica respecto al producto interno con $J^2 = -I$.

Si J es la matríz del Teorema

- H = C + JC tendrá una estructura Hermitiana, es invariante y $J^2|_H = -I|_H$.
- Una transformación antisimétrica tiene rango par. Corolario: homográfico no homotétitco ⇒ plano.
- Es una condición necesaria que C este contenido en un espacio con dimensión par.
- A la vez es suficiente.

F. Mazzone

Problema de os N-cuerpo Ecuación Simetrías

Soluciones nomográficas
Configuraciones Centrales
Soluciones homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para d > 3

Configuracion
Centrales
Invariancias
Finitud de FR

nvariancias iinitud de ER configuraciones de culer, Lagrange y

Definición

Una estructura Hermitiana sobre un subespacio H viene dada por producto interno sobre H y una función lineal $J: H \to H$ que es antisimétrica respecto al producto interno con $J^2 = -I$.

Si J es la matríz del Teorema

- H = C + JC tendrá una estructura Hermitiana, es invariante y $J^2|_{H} = -I|_{H}$.
- Una transformación antisimétrica tiene rango par. Corolario: homográfico no homotétitco ⇒ plano.
- Es una condición necesaria que *C* este contenido en un espacio con dimensión par.
- A la vez es suficiente.

F. Mazzone

Problema de los N-cuerpo Ecuación Simetrías

Soluciones homográficas Configuraciones Centrales Soluciones homotéticas Movimientos planos Equilibrios relativos Soluciones homográficas para d > 3

Configuracior Centrales Invariancias Finitud de ER

nvariancias
initud de ER
configuraciones de
iuler, Lagrange y

Definición

Una estructura Hermitiana sobre un subespacio H viene dada por producto interno sobre H y una función lineal $J: H \to H$ que es antisimétrica respecto al producto interno con $J^2 = -I$.

Si J es la matríz del Teorema

- H = C + JC tendrá una estructura Hermitiana, es invariante y $J^2|_{H} = -I|_{H}$.
- Una transformación antisimétrica tiene rango par. Corolario: homográfico no homotétitco ⇒ plano.
- Es una condición necesaria que *C* este contenido en un espacio con dimensión par.
- A la vez es suficiente.

F. Mazzone

Problema de los N-cuerpo Ecuación Simetrías

Soluciones homográfica

Centrales
Soluciones
homotéticas
Movimientos planos

Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracion Centrales Invariancias Finitud de ER Configuraciones de Euler, Lagrange y

Teorema

Para todo movimiento rígido existe una matriz de configuración \mathbf{x}_0 (no necesariamente central) y una martriz antisimétrica $A \in \mathbb{R}^{d \times d}$ tal que

$$\boldsymbol{x} - \boldsymbol{c} = Q(t)(\boldsymbol{x}_0 - \boldsymbol{c}_0)$$

con

$$Q(t) = e^{\theta(t)A}.$$

A su vez, para d = 4, existen x_0 no centrales tales que la fórmula anterior define un movimiento rígido.

Simetrías para CC

F. Mazzone

Problema de los *N*-cuerpos

Simetrías

Soluciones homográfica

homográfica Configuraciones

Soluciones homotéticas

Movimientos planos Equilibrios relativos

Configuracion Centrales

Invariancias Finitud de ER Configuraciones

Configuraciones de Euler, Lagrange y Moulton (d = 3) \boldsymbol{x} es CC si existe $\lambda \in \mathbb{R}$

$$\nabla U(\mathbf{x}) + \lambda \nabla I(\mathbf{x} - \mathbf{c}) = 0.$$

con

$$U(\mathbf{x}) = \sum_{i < j} \frac{m_i m_j}{r_{ij}}$$
 e $I(\mathbf{x}) = \frac{1}{2} \sum_{j=1}^{N} m_j ||\mathbf{x}_j - \mathbf{c}||^2$.

- Si \boldsymbol{x} es CC para λ y $\boldsymbol{c}_0 \in \mathbb{R}^d$ entonces $\boldsymbol{x} + \boldsymbol{c}_0$ es CC para el mismo λ .
- Si \mathbf{x} es CC para λ y $Q \in SO(d)$ entonces $Q\mathbf{x}$ es CC para el mismo λ .
- Si \mathbf{x} es CC para λ y $\sigma \in \mathbb{R}$ entoces $\sigma \mathbf{x}$ es CC para $\sigma^{-3}\lambda$

Simetrías para CC

F. Mazzone

Problema de los N-cuerpos Ecuación

Simetrías

Soluciones homográfica

Centrales
Soluciones
homotéticas
Movimientos planos

Movimientos plano Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias
Finitud de ER
Configuraciones

Configuraciones de Euler, Lagrange y Moulton (d = 3) \boldsymbol{x} es CC si existe $\lambda \in \mathbb{R}$

$$\nabla U(\mathbf{x}) + \lambda \nabla I(\mathbf{x} - \mathbf{c}) = 0.$$

con

$$U(\mathbf{x}) = \sum_{i < j} \frac{m_i m_j}{r_{ij}}$$
 e $I(\mathbf{x}) = \frac{1}{2} \sum_{j=1}^{N} m_j ||\mathbf{x}_j - \mathbf{c}||^2$.

- Si \boldsymbol{x} es CC para λ y $\boldsymbol{c}_0 \in \mathbb{R}^d$ entonces $\boldsymbol{x} + \boldsymbol{c}_0$ es CC para el mismo λ .
- Si \mathbf{x} es CC para λ y $Q \in SO(d)$ entonces $Q\mathbf{x}$ es CC para el mismo λ .
- Si \mathbf{x} es CC para λ y $\sigma \in \mathbb{R}$ entoces $\sigma \mathbf{x}$ es CC para $\sigma^{-3}\lambda$.

Simetrías para CC

Invariancias

 \mathbf{x} es CC si existe $\lambda \in \mathbb{R}$

$$\nabla U(\boldsymbol{x}) + \lambda \nabla I(\boldsymbol{x} - \boldsymbol{c}) = 0.$$

con

$$U(\mathbf{x}) = \sum_{i < j} \frac{m_i m_j}{r_{ij}}$$
 e $I(\mathbf{x}) = \frac{1}{2} \sum_{j=1}^{N} m_j ||\mathbf{x}_j - \mathbf{c}||^2$.

- Si \boldsymbol{x} es CC para λ y $\boldsymbol{c}_0 \in \mathbb{R}^d$ entonces $\boldsymbol{x} + \boldsymbol{c}_0$ es CC para el mismo λ .
- Si \mathbf{x} es CC para λ y $Q \in SO(d)$ entonces $Q\mathbf{x}$ es CC para el mismo λ .
- Si \boldsymbol{x} es CC para λ y $\sigma \in \mathbb{R}$ entoces $\sigma \boldsymbol{x}$ es CC para $\sigma^{-3}\lambda$.

Finitud de equlibrios relativos

F. Mazzone

Problema de los *N*-cuerpos

Ecuación Simetrías

Soluciones homográfica

Configuraciones Centrales Soluciones homotéticas Movimientos planos Equilibrios relativos

Movimientos planos Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones d Euler, Lagrange y Moulton (d = 3)

Definición

Dos CC \boldsymbol{x} e \boldsymbol{y} son equivalentes si existe $\sigma \in \mathbb{R}$, $Q \in SO(d)$ y $\boldsymbol{c}_0 \in \mathbb{R}^d$ tales que $\boldsymbol{y} = \sigma Q \boldsymbol{x} + \boldsymbol{c}_0$.

Problema de Chazy-Wintner-Smale, Steve Smale, "Mathematical problems for the next century", [Smale, 2000]

Existe un número finito de clases de equivalencias de CC.

F. Mazzon

Problema de los N-cuerpos Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones d Euler, Lagrange y Moulton (d = 3)

- Para N = 2 todo x es CC, pero hay una sóla clase de equivalencia.
- Para N = 3 hay 5 clases distintas, Euler-Lagrange.
- Para N = 4. Dadas 4 masas m₁, m₂, m₃, m₄ el número de clases distintas está comprendido entre 32 y 8472 ([Hampton and Moeckel, 2006]).
- Para *N* = 5 y *d* = 2. En [Albouy and Kaloshin, 2012] se obtuvo finitud para todas las masas excepto en una variedad de codimensión 2 en el espacio de masas.

F. Mazzon

Problema de los N-cuerpo: Ecuación Simetrías

Soluciones
homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

- Para *N* = 2 todo *x* es *CC*, pero hay una sóla clase de equivalencia.
- Para N = 3 hay 5 clases distintas, Euler-Lagrange.
- Para N = 4. Dadas 4 masas m₁, m₂, m₃, m₄ el número de clases distintas está comprendido entre 32 y 8472 ([Hampton and Moeckel, 2006]).
- Para *N* = 5 y *d* = 2. En [Albouy and Kaloshin, 2012] se obtuvo finitud para todas las masas excepto en una variedad de codimensión 2 en el espacio de masas.

Problema de los N-cuerpo Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para
d > 3

Configuracione Centrales Invariancias Finitud de ER

Finitud de ER Configuraciones de Euler, Lagrange y Moulton (d = 3)

- Para N = 2 todo x es CC, pero hay una sóla clase de equivalencia.
- Para N = 3 hay 5 clases distintas, Euler-Lagrange.
- Para N = 4. Dadas 4 masas m_1, m_2, m_3, m_4 el número de clases distintas está comprendido entre 32 y 8472 ([Hampton and Moeckel, 2006]).
- Para N = 5 y d = 2. En [Albouy and Kaloshin, 2012] se obtuvo finitud para todas las masas excepto en una variedad de codimensión 2 en el espacio de masas.

Problema de los N-cuerpo Ecuación Simetrías

Soluciones
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para d > 3

Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y

- Para N = 2 todo x es CC, pero hay una sóla clase de equivalencia.
- Para N = 3 hay 5 clases distintas, Euler-Lagrange.
- Para N = 4. Dadas 4 masas m_1, m_2, m_3, m_4 el número de clases distintas está comprendido entre 32 y 8472 ([Hampton and Moeckel, 2006]).
- Para *N* = 5 y *d* = 2. En [Albouy and Kaloshin, 2012] se obtuvo finitud para todas las masas excepto en una variedad de codimensión 2 en el espacio de masas.

CC y teoría puntos críticos [Smale, 1970a, Smale, 1970b]

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones
homográficas para

Configuracione Centrales Invariancias

Configuraciones de Euler, Lagrange y Moulton (d = 3)

- Cambiando de coordenadas a abricéntricas podemos asumir c = 0.
- **The Example 2** Cambiando de escala podemos asumir $I(\mathbf{x}) = 1$.

Por la técnica de los multiplicadores de Lagrange, interpretamos

$$\nabla U(\mathbf{x}) + \lambda \nabla I(\mathbf{x}) = 0.$$

como que una CC es un punto crítico del potencial con la restricción de que $x \in S$ donde S es el elipsoide

$$S = \{ x | I(x) = 1 \}.$$

F. Mazzone

Problema de los N-cuerpos

Soluciones homográficas

Centrales Soluciones homotéticas

Equilibrios relativo Soluciones homográficas para

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3) U es función de las distancias relativas, $r_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||$. Veamos que I también

$$\sum_{i,j=1}^{N} m_i m_j || \mathbf{x}_i - \mathbf{x}_j ||^2 = \sum_{i,j=1}^{N} m_i m_j || \mathbf{x}_i ||^2$$

$$-2 \sum_{i,j=1}^{N} m_i m_j \mathbf{x}_i \cdot \mathbf{x}_j + \sum_{i,j=1}^{N} m_i m_j || \mathbf{x}_j ||^2$$

$$= 4mI$$

Pongamos r al vector de distancias relativas. Luego

$$\frac{\partial U}{\partial x} + \lambda \frac{\partial I}{\partial x} = \left(\frac{\partial U}{\partial r} + \lambda \frac{\partial I}{\partial r} \right) \frac{\partial r}{\partial x}$$

F. Mazzone

Problema de los N-cuerpos Ecuación

Soluciones homográficas Configuraciones

Soluciones homotéticas

Equilibrios relativo Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

U es función de las distancias relativas, $r_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||$. Veamos que I también

$$\sum_{i,j=1}^{N} m_i m_j || \mathbf{x}_i - \mathbf{x}_j ||^2 = \sum_{i,j=1}^{N} m_i m_j || \mathbf{x}_i ||^2$$

$$-2 \sum_{i,j=1}^{N} m_i m_j \mathbf{x}_i \cdot \mathbf{x}_j + \sum_{i,j=1}^{N} m_i m_j || \mathbf{x}_j ||^2$$

$$= 4mI$$

Pongamos *r* al vector de distancias relativas. Luego

$$\frac{\partial U}{\partial \mathbf{x}} + \lambda \frac{\partial I}{\partial \mathbf{x}} = \left(\frac{\partial U}{\partial \mathbf{r}} + \lambda \frac{\partial I}{\partial \mathbf{r}}\right) \frac{\partial \mathbf{r}}{\partial \mathbf{x}}$$

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación

Soluciones homográficas Configuraciones Centrales

homotéticas

Movimientos planos

Equilibrios relativos

Soluciones

Configuracion Centrales

Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3) Queremos ver que si los cuerpos no estan alineados

$$0 = \frac{\partial U}{\partial \boldsymbol{x}} + \lambda \frac{\partial I}{\partial \boldsymbol{x}} \Leftrightarrow 0 = \frac{\partial U}{\partial \boldsymbol{r}} + \lambda \frac{\partial I}{\partial \boldsymbol{r}}.$$

Pero

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\mathbf{x}_1 - \mathbf{x}_2}{r_{12}} & -\frac{\mathbf{x}_1 - \mathbf{x}_2}{r_{12}} & 0\\ \frac{\mathbf{x}_1 - \mathbf{x}_3}{r_{13}} & 0 & -\frac{\mathbf{x}_1 - \mathbf{x}_3}{r_{23}} \\ 0 & \frac{\mathbf{x}_2 - \mathbf{x}_3}{r_{23}} & -\frac{\mathbf{x}_1^{r_{13}} \mathbf{x}_3}{r_{23}} \end{pmatrix} \in \mathbb{R}^{3 \times 6}$$

La afirmación sale de que si los cuerpos no estan alineados $x_1 - x_2$ y $x_1 - x_3$ son LI, lo mismo $x_1 - x_2$ y $x_2 - x_3$

F. Mazzone

Problema de los *N*-cuerpo

Ecuación Simetrías

Soluciones homográfica:

homográfica Configuraciones

Soluciones

Movimientos planos

Soluciones homográficas para

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3) Así tenemos que resolver

$$0 = -\frac{m_i m_j}{r_{ij}^2} + \lambda m_i m_j r_{ij}$$

Entonces

$$r_{ij}=\lambda^{-1/3}.$$

La configuración es un triángulo equilátero.

Soluciones Lagrangianas

Soluciones simétricas

F. Mazzon

Problema de los *N*-cuerpo

Simetrías

Soluciones homográfica

Configuracione:

Soluciones

Movimientos plan

Equilibrios relativo Soluciones homográficas para

Configuracion Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Asteroides troyanos de Jupiter (orbit calc)

Sondas STEREO y SOHO

Configuraciones de Moulton (colineales)

F. Mazzoni

Problema de los *N*-cuerpo

Ecuación Simetrías

Soluciones homográfica

Configuraciones Centrales Soluciones

Soluciones homotéticas

Equilibrios relativo Soluciones homográficas para d > 3

Configuracion Centrales

Invariancias

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Definición

Una CC se denomina colineal si todos los cuerpos estan sobre una línea recta.

Teorema I

Dadas *N* masas existen *N*!/2 configuraciones centrales colineales

Discutiremos la idea de la demostración para N=3.

Configuraciones de Moulton (colineales)

F. Mazzoni

Problema de los *N*-cuerpo

Soluciones

Configuraciones Centrales Soluciones homotéticas

Movimientos plano Equilibrios relativos Soluciones homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Definición

Una CC se denomina colineal si todos los cuerpos estan sobre una línea recta.

Teorema [Moulton, 1910]

Dadas N masas existen N!/2 configuraciones centrales colineales

Discutiremos la idea de la demostración para N=3.

Configuraciones de Moulton (colineales)

F. Mazzoni

Problema de los N-cuerpo Ecuación Simetrías

Soluciones homográfica Configuraciones

Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos

Equilibrios relativo
Soluciones
homográficas para d > 3

Configuracior Centrales Invariancias Finitud de ER

Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Definición

Una CC se denomina colineal si todos los cuerpos estan sobre una línea recta.

Teorema [Moulton, 1910]

Dadas N masas existen N!/2 configuraciones centrales colineales

Discutiremos la idea de la demostración para N = 3.

F. Mazzone

Problema de los *N*-cuerpos Ecuación

Soluciones homográficas Configuraciones

Soluciones homotéticas Movimientos planos

Equilibrios relativos
Soluciones
homográficas para d > 3

Configuracione Centrales

Invariancias Finitud de ER

Configuraciones de Euler, Lagrange y Moulton (d = 3) Usando un conveniente sistema de coordenadas podemos suponer las posiciones en \mathbb{R} , $x_1, x_2, x_3 \in \mathbb{R}$. Escribamos $\mathbf{x} = (x_1, x_2, x_3)$.

Sean $H = \{ \boldsymbol{x} | m_1 x_1 + m_2 x_2 + m_3 x_3 = 0 \}$, el elipsoide $S = \{ \boldsymbol{x} | m_1 x_1^2 + m_2 x_2^2 + m_3 x_3^2 = 0 \}$ y el conjunto de colisiones $\Delta = \{ x_i = x_j | i \neq j \}$.

Se observa que hay que encontrar un punto crítico de *U* en el conjunto

$$S \cap H \setminus \Delta$$
.

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos plano

Movimientos planos Equilibrios relativos Soluciones homográficas para d > 3

Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Usando un conveniente sistema de coordenadas podemos suponer las posiciones en \mathbb{R} , $x_1, x_2, x_3 \in \mathbb{R}$. Escribamos $\mathbf{x} = (x_1, x_2, x_3)$.

Sean $H = \{ \boldsymbol{x} | m_1 x_1 + m_2 x_2 + m_3 x_3 = 0 \}$, el elipsoide $S = \{ \boldsymbol{x} | m_1 x_1^2 + m_2 x_2^2 + m_3 x_3^2 = 0 \}$ y el conjunto de colisiones $\Delta = \{ x_i = x_j | i \neq j \}$.

Se observa que hay que encontrar un punto crítico de *U* en el conjunto

$$S \cap H \setminus \Delta$$
.

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos plano
Equilibrios relativos

Movimientos planos Equilibrios relativos Soluciones homográficas para d>3

Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Usando un conveniente sistema de coordenadas podemos suponer las posiciones en \mathbb{R} , $x_1, x_2, x_3 \in \mathbb{R}$. Escribamos $\mathbf{x} = (x_1, x_2, x_3)$.

Sean $H = \{ \mathbf{x} | m_1 x_1 + m_2 x_2 + m_3 x_3 = 0 \}$, el elipsoide $S = \{ \mathbf{x} | m_1 x_1^2 + m_2 x_2^2 + m_3 x_3^2 = 0 \}$ y el conjunto de colisiones $\Delta = \{ x_i = x_i | i \neq j \}$.

Se observa que hay que encontrar un punto crítico de *U* en el conjunto

$$S \cap H \setminus \Delta$$
.

Soluciones simétricas

F. Mazzoni

Problema de los N-cuerpos Ecuación Simetrías

homográficas
Configuraciones
Centrales
Soluciones
homotéticas
Movimientos planos
Equilibrios relativos
Soluciones

Configuracione Centrales Invariancias Finitud de ER

Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Usando un conveniente sistema de coordenadas podemos suponer las posiciones en \mathbb{R} , $x_1, x_2, x_3 \in \mathbb{R}$. Escribamos $\mathbf{x} = (x_1, x_2, x_3)$.

Sean $H = \{ \boldsymbol{x} | m_1 x_1 + m_2 x_2 + m_3 x_3 = 0 \}$, el elipsoide $S = \{ \boldsymbol{x} | m_1 x_1^2 + m_2 x_2^2 + m_3 x_3^2 = 0 \}$ y el conjunto de colisiones $\Delta = \{ x_i = x_j | i \neq j \}$.

Se observa que hay que encontrar un punto crítico de *U* en el conjunto

$$S \cap H \setminus \Delta$$
.

Soluciones simétricas

F. Mazzoni

Problema de los *N*-cuerpos Ecuación

Soluciones

homográfica

Centrales

homotéticas

Equilibrios relativos Soluciones

Configuracion Centrales

Invariancias

Configuraciones de Euler, Lagrange y Moulton (d = 3)

Nos quedan N!/2 componentes conexas. Se demuestra que hay un mínimo (punto crítico) de U en cada una de ellas y que hay a lo sumo 1 punto crítico

Configuraciones de Euler, Lagrange v Moulton (d = 3)

- Albouy, A. and Chenciner, A. (1997). Le probleme des n corps et les distances mutuelles. Inventiones mathematicae, 131(1):151–184.
- Albouy, A. and Kaloshin, V. (2012). Finiteness of central configurations of five bodies in the plane.

Annals of mathematics, 176(1):535–588.

- Chenciner, A. (2011). The lagrange reduction of the n-body problem, a survey.
 - arXiv preprint arXiv:1111.1334.
- Chenciner, A. and Jiménez-Pérez, H. (2013). Angular momentum and horn's problem. Moscow Mathematical Journal, 13(4):621-630.

F. Mazzone

Problema de los N-cuerpos Ecuación Simetrías

Soluciones homográficas Configuraciones Centrales Soluciones homotéticas Movimientos planos Equilibrios relativos Soluciones homográficas para

Configuracion
Centrales
Invariancias
Finitud de ER
Configuraciones de
Euler, Lagrange y
Moulton (d = 3)

Hampton, M. and Moeckel, R. (2006). Finiteness of relative equilibria of the four-body problem.

Inventiones mathematicae, 163(2):289–312.

Jaume Llibre, Richard Moeckel, C. S. (2016).

Central Configurations, Periodic Orbits, and Hamiltonian Systems.

Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser.

- Moeckel, R. (1994).

 Celestial Mechanics—especially central configurations.

 http://www.math.umn.edu/rmoeckel/notes/
 Notes.html.
- Moulton, F. R. (1910).

 The straight line solutions of the problem of n bodies.

The Annals of Mathematics, 12(1):1–17.

- Smale, S. (1970a).
 Topology and mechanics. i. *Inventiones mathematicae*, 10(4):305–331.
- Smale, S. (1970b).
 Topology and mechanics. ii.
 Inventiones mathematicae, 11(1):45–64.
- Smale, S. (2000).

 Mathematical problems for the next century.

 In Arnol'd, V., editor, *Mathematics: Frontiers and Perspectives*.
- Wintner, A. (2014).

 The Analytical Foundations of Celestial Mechanics.

 Dover Books on Physics. Dover Publications.