IMDB 5000 MOVIE DATASET

Gil Gonçalves - A67738 Luis Paulo Ferreira Pedro - A70415 José Pedro Santos Monteiro - A73014 Bruno Manuel Gonçalves Ribeiro - A73269

INTRODUÇÃO

CONTEXTUALIZAÇÃO E APRESENTAÇÃO DO CASO DE ESTUDO

METODOLOGIA CRISP-DM

Business Understanding

- 1. Prever se um filme vai ser bem recebido pela crítica
- 2. Prever se um filme vai ser um sucesso a nível monetário
- 3. Encontrar grupos de filmes com impacto semelhante
- 4. Perceber se os atores e realizadores influenciam a classificação de um filme
- 5. Perceber se os atores e realizadores influenciam a classificação de um filme

Data Understanding

EXPLORAÇÃO DOS DADOS

SELEÇÃO DOS DADOS

Foram analisados os dados e posteriormente descartamos dados que não eram relevantes para o projeto:

- Solor color
- facenumer_in_poster.
- plot_keywords
- movie_imdb_link
- aspect_radio

LIMPEZA DOS DADOS

Foi então necessário realizar a limpeza dos dados para posterior aplicação dos modelos, para isso identificamos e tratamos:

Valores Nulos

O Dados duplicados

CONSTRUÇÃO DE NOVOS DADOS

Para o atributo gênero foi necessário criar novos campos e para isso aplicamos duas abordagens:

- 1-of-C (python)
- Lista (biblioteca reshape->melt)

FORMATAÇÃO DOS DADOS

Procedemos então à seguinte formatação dos dados:

- Uniformização da moeda
- Titulos dos filmes delimitados com um caracter especial

Encontrar filmes com impacto semelhante (Clustering)

Remoção dos outliers

Kmeans

Modelo de previsão para o IMDB score de um filme (Regressão)

Atributos utilizados:

- imdb_scores
- budget
- movie_facebook_likes
- duration
- director_facebook_likes

Resultados:

Modelo	RMSE	R2
Regressão Linear	0.037	0.204
Decision Tree	0.055	0.236
Random Forest	0.026	0.363

Modelo de previsão para a receita bruta de um filme (Regressão)

Atributos utilizados:

- gross
- budget
- imdb_score
- num_critics_for_reviews
- num_voted_users
- num_users_for_reviews

Resultados:

Modelo	RMSE	R2
Regressão Linear	0.548	-15.019
Decision Tree	0.549	-15.057
Random Forest	0.550	-15.089

Perceber se os atores e realizadores influenciam a classificação de um filme (Associação)

Foram então criadas seis escalas:

- muito_fraco \rightarrow varia entre [0;3]
- fraco \rightarrow varia entre [3;6]
- medio \rightarrow varia entre [6;7]
- bom \rightarrow varia entre [7;7.5]
- muito_bom \rightarrow varia entre [7.5;8.5]
- sucesso \rightarrow varia entre [8.5;10]

Resultados:

```
support
                             => {fraco}
     {Brian Levant}
                                                                   3.357266
     {Michael Winterbottom}
                             => {medio}
                                                                   2.560026
                             => {fraco}
     {Jonathan Liebesman}
                                          0.001545993 1.0000000
                                                                   3.357266
    {Tyler Perry}
                             => {fraco}
                                          0.001545993 1.0000000
                                                                   3.357266
    {Raja Gosnell}
                             => {fraco}
                                          0.001545993 1.0000000
     {Michael Jai White}
                                                                   3.357266
                             => {fraco}
                                          0.001803659 1.0000000
     {Jon Turteltaub}
                             => {medio}
     {Jay Roach}
                             => {medio}
                                                                   2.560026
                                          0.001803659 1.0000000
     {Peter Segal}
                             => {medio}
                                                                   2.194308
                                          0.001545993 0.8571429
    {Sarah Michelle Gellar}
                             => {fraco}
                                          0.001803659 0.8750000
                                                                   2.937608
     {Garry Marshall}
                             => {fraco}
                                          0.001545993 0.7500000
                                                                   2.517950
    {Christopher Nolan}
                             => {sucesso} 0.001545993 0.7500000
                                                                  61.930851
    {Amy Poehler}
                             => {fraco}
                                                                   2.517950
    {Zooey Deschanel}
                             => {medio}
                                          0.001803659 0.7777778
[15] {Robin Wright}
                                          0.001545993 0.6666667
```

Atributos utilizados: Director_name, actor_1_name, imdb_score

Perceber se os atores e realizadores influenciam o lucro de um filme (Associação)

Foram então criadas três classes:

- ullet Valores menor que zero ightarrow Prejuízo
- Valores igual a zero \rightarrow Lucro zero
- Valores maior que zero → Lucro

Resultados:

```
support
    {Michael Winterbottom} => {Prejuizo} 0.001545993 1.0000000
                            => {Lucro}
    {Lin Shaye}
    {Tim Story}
                            => {Lucro}
    {Jada Pinkett Smith}
                            => {Lucro}
    {Tyler Perry}
                            => {Lucro}
    {Andy Fickman}
                            => {Lucro}
    {Nia Long}
                            => {Lucro}
    {Catherine Deneuve}
                            => {Prejuizo} 0.001545993 1.0000000
    {Alyson Hannigan}
                            => {Lucro}
                                          0.001803659 1.0000000
[10] {James Wan}
                            => {Lucro}
                                          0.001545993 0.8571429 1.623510
```

Atributos utilizados: Director_name, actor_1_name, grosse o budget

Evaluation

Perceber se os atores e realizadores influenciam o lucro de um filme

Genres

Foi feita uma análise por atributo, e vimos quais os realizadores mais

rentáveis na área:

IMDB 5000 MOVIE DATASET

Gil Gonçalves - A67738 Luis Paulo Ferreira Pedro - A70415 José Pedro Santos Monteiro - A73014 Bruno Manuel Gonçalves Ribeiro - A73269