Section 1C. Elements of Probability Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Elements of probability

Basic elements:

- ightharpoonup Sample space Ω : The set of all possible outcomes
- Set of events \mathcal{F} : A set of subsets of Ω
- $lacktriangleright Probability measure: A function <math>\Pr: \mathcal{F}
 ightarrow \mathbb{R}$ satisfying
 - 1. For all $A \in \mathcal{F}$, $Pr(A) \geq 0$
 - 2. $Pr(\Omega) = 1$
 - 3. If A_1 and A_2 are *disjoint* events, then $\Pr(A_1 \cup A_2) = \Pr(A_1) + \Pr(A_2)$

Example. Tossing a six-sided dice:

- ▶ The sample space is $\Omega = \{1, 2, ..., 6\}$
- lacktriangle A possible choice for ${\mathcal F}$ is the set of all subsets of Ω
- ► The probability that the outcome $\omega \in \Omega$ is in a set $\mathcal{A} \subseteq \Omega$ is given by $\Pr(\omega \in \mathcal{A}) = |\mathcal{A}|/6$, where $|\mathcal{A}|$ is the cardinality of the set \mathcal{A}

Elements of Probability (cont.)

A few properties of probability measures:

- $Pr(A \cap B) \leq min(Pr(A), Pr(B))$
- $ightharpoonup \Pr(A \cup B) \leq \Pr(A) + \Pr(B)$
- ▶ If $A_1, ..., A_k$ are a partition of Ω , then $\sum_{i=1}^k \Pr(A_i) = 1$

Conditional probability and independence:

▶ The conditional probability of any event A given an event B is defined as,

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

In plain words, Pr(A|B) represents the probability of event A after observing the occurrence of event B.

▶ Two events are called *independent* if and only if

$$Pr(A \cap B) = Pr(A)Pr(B)$$
 or, equivalently, $Pr(A|B) = Pr(A)$

Random Variables

A *random variable* (r.v.) is a function $X : \Omega \to \mathbb{R}$.

- ▶ For an outcome $\omega \in \Omega$, we denote r.v.'s using upper case letters $X(\omega)$ or simply X
- ▶ We denote the realization that the random variable may take using lower case x

Example: Toss three different (fair) coins at once

- ▶ The sample space is $\Omega = \{HHH, HHT, HTH, ..., TTT\}$
- ▶ Define the r.v. $H(\omega)$ as the number of heads in the random outcome ω

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.