

ethereum vienna

General Introduction

GridSingularity

CASPER - The friendly ghost

Socialising

ethereum vienna

GridSingularity

Slides not available

ethereum vienna

The Road to 2.0: Casper

PoS Consensus System

Proof of Work

Miner can spend hashing power on only one chain Mining an alternate chain has cost and no profits

Proof of Stake

"Miners" vote with currency instead of hashing power

Mining an multiple chains has no cost (Nothing at stake)

Incentive to vote on all chains

Proof of Stake

Nothing at Stake problem split into two:

Security Deposits

Validators have to put down a security deposit

If misbehaviour is cryptographically provable

The entire deposit is forfeited ("slashed")

Stake doesn't count towards consensus?

Consensus by bet

Basic Idea:

Bet for inclusion of a specific block at a height

Profit in all chains where it is included

Loss in all other chains

Incentive to bet on the chain most likely to win

Consensus by bet

Similar to Proof of Work:

If you mine on a block

Profit in all chains where it is included (hopefully)

Loss in all other chains (electricity cost, etc.)

Consensus by Block

In Ethereum 1.0:

Blocks contain hash of parent

In Casper:

Blocks are independent of each other

Block with best bets at a certain height wins

Validators bet on every block height individually

Betting

Scoring Rules & Revelation Principle

Validators bet with their "opinion" about the chance that the block will be confirmed

|Height | Block hash State root Probability 0x8a7f040d 0x45abe61d Prevhash: 0x78a3b123 0.6667 2 0.3333 0xf83f1ca019 Signature: 1 50bd9b362e1 0.8500 f21a325a5d9 0 0.9775

The higher their estimated probability ("opinion"), the more risk and reward (up to 90% loss)

Finalisation

After a certain threshold of

enough bets

with high enough probability each

- => Majority of validators risking most of their deposit
- => Block is considered finalised

Clients will refuse any other block at that height

Invalid transactions?

Consensus by Block

Consensus by Block

Bonded Validators

Transactions for joining and leaving the validator pool

Minimum Deposit: 1250 eth

rises with number of validators

Maximum of 250 concurrent validators (currently)

Not profitable after some bonded time

At least 4 month wait time for withdrawal

Casper Contract

Most of Casper implemented as a serpent contract github.com/ethereum/pyethereum serenity branch

Keeps track of the validators and their opinions Custodian of all security deposits

Block proposition

A specific validator is specified for a specific block

Timestamp: G + N *5

Missing proposers as source of entropy

Betting on missing blocks?

Weak Subjectivity

After the end of the withdrawal delay prior security deposits no longer owned by Casper no incentive not to start LRNaS attacks

If a node was offline longer than the withdrawal period:

List of current validators needs to be fetched

externally

POC-2

Casper implemented in POC2 in pyethereum

Also includes EIP 101 and EIP 105

Open Issues

Convergence is still not proven

Optimal validator strategies

More than 250 Validators

Disappearance of all current validators catastrophic

Still a lack of detailed specification

Lack of documentation on PoC

github.com/ahirner/ethereum