Prova di Analisi Matematica II - 05 Novembre 2018 Ing. Informatica Prof.ssa Virginia De Cicco

1)	2)	3)	4)	5)	VOTO:

N.B. La parte sovrastante è riservata al docente.

Cognome	Nome
---------	------

Dichiaro di aver sostenuto con profitto l'esame di Analisi Matematica 1

FIRMA:

ESERCIZIO 1. Per ciascuna delle seguenti questioni, si indichi la (sola) risposta corretta. Ogni risposta esatta vale 2 punti, ogni risposta errata -1 punto ed ogni risposta non data 0 punti. (10 pt.)

- 1) (I) La parte reale di $f(z) = e^z$, con z = x + iy, è
 - (a) e^x
 - (b) $e^x seny$
 - $e^x \cos y$
 - (d) nessuna delle precedenti.

- (II) La funzione $f(z) = \frac{\cos z 1}{z^4}$ è tale che
 - ii. ha un polo semplice in z = 0;

 - iii. ha una singolarità eliminabile;
 - ******. ha un polo doppio in z=0.
- (III) L'antitrasformata di Laplace di $F(z) = \frac{z}{z^2-3}$ è
 - $X. f(t) = \cosh(\sqrt{3}t);$
 - ii. f(t) = cosh(3t);
 - iii. $f(t) = senh(\sqrt{3}t)$;
 - iv. f(t) = senh(3t).
- (IV) Data la funzione $F(z) = |Log(z)|, z \in \mathbb{C}$, il suo insieme di definizione è:
 - i. \mathbb{C}
 - $X \mathbb{C}^*$
- Log(9) = Cop121+i Azy(2) = Copp + i6

 $\frac{Z}{Z^4-3}=\cosh(\sqrt{3}t)$

- iii. \mathbb{C}^{**}
- iv. Ø.
- (V) Data la funzione 2π -periodica definita in $[-\pi, \pi]$ da

$$f(x) = x|x|$$
 disposi

il coefficiente a_0 del suo sviluppo di Fourier è

- **x**: 0
- ii. $\frac{\pi}{2}$
- iii. $\frac{\pi}{4}$
- iv. π .

ESERCIZIO 2.

- (i) Si dia la definizione di integrale curvilineo di una funzione f(x,y) su una curva $\gamma(t) \subset \mathbb{R}^2$ con $t \in [a,b]$.
- (ii) Si disegni la seguente curva:

$$\gamma(t) = (t^2, t^4), \quad t \in [0, 1]$$

e si calcoli:

$$\int_{\gamma} \sqrt{x(1+4y)} \ ds.$$

1) Dali A C C nu opents connesso, f: A-o C nua finaliste continua e 8: [a,b]-o C nua cirva regolera (o regulare a tishi) la cii taccia 8([a,b]) CA, ni definisce l'integrale di f longo 8:

$$\int_{8}^{2} f(x) dz = \int_{a}^{b} f(x(t)) x'(t) dt$$

 $2) \int \sqrt{x(1+4y)} ds = 0$

ESERCIZIO 3.

(i) Si determini l'insieme

$$A = \{z : \cos z = 0\}.$$

- (ii) Si dia la dimostrazione di tale fatto.
- (iii) Si cerchi l'insieme di definizione e l'aperto di olomorfia della seguente funzione

$$f(z) = \frac{1}{\cos(iz)}.$$

- (iv) Si disegni tale insieme.
- 1) $COD_{\tau=0}$ $\tau=x+iy$, CON(x+iy)=0 => $x+iy=\frac{\pi}{2}+\kappa\pi$ $\begin{cases} x=\frac{\pi}{2}+\kappa\pi & \kappa\in\mathbb{Z} \\ y=0 \end{cases}$

3)
$$f(x) = \frac{1}{\cos(14)}$$
 define to per $i \neq \sqrt{2}$ the $i \neq -9 \neq \sqrt{2}$ the $i \neq -9 \neq \sqrt{2}$

ESERCIZIO 4.

- (i) Si dia la definizione di convergenza puntuale ed uniforme per una successione di funzioni.
- (ii) Si studi la convergenza puntuale ed uniforme della seguente successione di funzioni:

$$f_n(x) = \frac{1}{x^n} + \frac{1}{n^x}, \quad x \in [1, +\infty).$$

over txEA tESO JUX, EEN: tn> Ux, E |fix) -fix) | EE

Dola una successione de funcione (fulneil définée in I e dota f: A SI-R si duce de la fi-if uniformemente in A se

HERO FREN: HARLE | July - July (CE HXEA.

2)
$$f_n(x) = \frac{1}{x^{n+1}} \times \left[\frac{1}{n^x} \times \left[\frac{1}{n^{n+1}} \right] \right]$$

$$|\nabla u| = \frac{1}{|u|} + \frac{1}{|u|} = \frac{1}{|u|} + \frac{1}{|u|} \rightarrow 0 \quad \text{per} \quad |u| = 1$$

$$[A_1 + au]$$

ESERCIZIO 5.

- (i) Sia dia la definizione di serie di Taylor centrata in x_0 .
- (ii) Si scriva lo sviluppo in serie di Taylor centrata in $x_0=0$ della seguente funzione:

$$f(x) = \frac{2x}{5 + 2x},$$

precisandone l'insieme di convergenza.

2) Dola fix una funcione C^{∞} in (0,b), n può considerare $\sum_{k \geq 0} \frac{f(k)}{k!} (x-x_0)^k$

che prende in nome de serve de toyolor de f est i coefficiente

$$Qu = \frac{\int_{(x_0)}^{(x_0)} (x_0)}{|x|}$$

sous delle sefficients d'toyen.

2) $\int (x) = \frac{2x}{5+2x} = \frac{2x}{5(1+\frac{2}{5}x)} = \frac{2}{5}x \cdot \frac{1}{(1-(-\frac{2}{5}x))} = \frac{2}{5}x \cdot \frac{5}{(1-(-\frac{2}{5}x))} = \frac$

$$= \sum_{n=1}^{\infty} (-1)^n \left(\frac{2}{5}\right)^{n+1} \chi^{n+1}$$

Couverge per $\left|-\frac{2}{5}x\right| < 1 \rightarrow |x| < -\frac{5}{2}$