```
User: assignment 2 ex 2
                                          Copyright 1985-2011 StataCorp LP
                                          StataCorp
                                          4905 Lakeway Drive
        Special Edition
                                          College Station, Texas 77845 USA
                                                               http://www.stata.com
                                          800-STATA-PC
                                          979-696-4600
                                                               \underline{\texttt{stata@stata.com}}
                                          979-696-4601 (fax)
   Single-user Stata network perpetual license:
          Serial number: 93611859953
            Licensed to: STATAforAll
                          STATA
   Notes:
         1. (/v# option or -set maxvar-) 5000 maximum variables
   Checking for updates...
   (contacting http://www.stata.com)
  bad serial number
   unable to check for update; verify Internet settings are correct.
 1 . *(9 variables, 136 observations pasted into data editor)
2 . do "C:\Users\WILLIA~1\AppData\Local\Temp\STD00000000.tmp"
 3 . cd "C:\Users\William Li\Documents\Uni Marburg 2.0\WS18 Macroeconomics\Tutorial\Assignment 2\"
  C:\Users\William Li\Documents\Uni Marburg 2.0\WS18 Macroeconomics\Tutorial\Assignment 2
 5 . log using "Assignment 2 ex 2", replace
         name: <unnamed>
         log: C:\Users\William Li\Documents\Uni Marburg 2.0\WS18 Macroeconomics\Tutorial\Assignment
     log type: smcl
                 6 Jan 2019, 23:16:40
    opened on:
 6.
  end of do-file
7 . do "C:\Users\WILLIA~1\AppData\Local\Temp\STD00000000.tmp"
9 . //***use assignment ifm.dta, clear***
10 . ***we couldn't open the above file directly from STATA,
11 . ***so we used R studio to open the file and copy and paste onto 1)ms excel then 2) STATA
12 .
13 . //2a
14 . gen time2=tq(1973q1) + n-1
15 . format time2 %tq
16 . tsset time2, quarterly
           time variable: time2, 1973q1 to 2006q4 delta: 1 quarter
```

- 17 . //2b
- 18 . tsline s 11.f
- 19 . //test the unbiasedness Hypothesis// 20 . reg s l1.f

_	Source Model Residual Total	3.1785182 .127371089 3.30588929	1 133 134	.000	MS .785182 .957677 .670816		Number of obs F(1, 133) Prob > F R-squared Adj R-squared Root MSE	=	135 3318.99 0.0000 0.9615 0.9612 .03095
_	S	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ιr	nterval]
	f L1.	. 9837288	.0170	755	57.61	0.000	. 9499542	•	1.017503
	_cons	.0121465	.0095	5768	1.27	0.207	0067959		.031089

21 . reg s l1.f i_us i_uk infl_us infl_uk

Source Model Residual	3.20353266 .10235663	df 5 129	.000	MS 0706533 0793462 		Number of obs F(5, 129) Prob > F R-squared Adj R-squared Root MSE	= = =	135 807.48 0.0000 0.9690 0.9678 .02817
s	Coef.	Std.		t	P> t	[95% Conf.	In	
f L1.	.9407016	. 0254	1366	36.98	0.000	.8903748		9910285
i_us i_uk infl_us infl_uk cons	0082065 .0047159 .0057949 0009764 .0235906	.0015 .0012 .0021 .0008	2882 1562 3036	-5.34 3.66 2.69 -1.22 1.82	0.000 0.000 0.008 0.227 0.071	0112478 .002167 .0015287 0025663 0020052		0051652 0072647 0100611 0006135 0491865

- 22 . test _cons=0
 - (1) _cons = 0

- 23 . test 11.f=1
 - (1) **L.f** = **1**

$$F(1, 129) = 5.43$$

 $Prob > F = 0.0213$

Sunday January 6 23:17:44 2019 Page 3

- $24 \cdot \text{test (cons} = 0) (11.f = 1)$
 - (1) <u>cons</u> = 0 (2) **L.f** = 1

F(2, 129) = 2.76 Prob > F = 0.0670

25 . estat bgodfrey, lags(4)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2		
4	2.661	4	0.6161		

HO: no serial correlation

- 26 . //2c
- 27 . gen $s_1 = log(s)$
- 28 . reg s l

Source	SS	df		MS		F(0, 135) = 0 Prob > F = R-squared = 0.0 Adj R-squared = 0.0		136 0.00
Model Residual	0 13.437073	0 135	.099	9533874				0.000
Total	13.437073	135	.099	9533874				
s_1	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
_cons	6531772	.02	7053	-24.14	0.000	7066797		5996746

- 29 . //alternatively//
 30 . dfuller s, lag(4) trend regress

Augmented Dickey-Fuller test for unit root Number of obs =

131

Z(t)	-2.500	-4.030	-3.446	-3.146
	Statistic	Value	Value	Value
	Test	1% Critical	5% Critical	10% Critical
		Inte	erpolated Dickey-F	ıller ———

MacKinnon approximate p-value for Z(t) = 0.3280

D.s	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
s						
L1.	0786003	.0314406	-2.50	0.014	1408301	0163706
LD.	.2471596	.0882418	2.80	0.006	.0725043	.4218148
L2D.	0174137	.0908429	-0.19	0.848	1972172	.1623898
L3D.	.0909026	.0903998	1.01	0.317	0880239	.269829
L4D.	.0470945	.0892157	0.53	0.599	1294884	.2236775
trend	0000396	.0001221	-0.32	0.746	0002812	.000202
_cons	.0441305	.0227587	1.94	0.055	0009153	.0891763

Sunday January 6 23:17:44 2019 Page 4

- $31 \cdot //2d$
- 32 . gen diffs = f.s-s
 (1 missing value generated)
- 33 . gen diffs1 = s-L1.s
 (1 missing value generated)
- 34 . gen diffs2 = d.s
 (1 missing value generated)
- 35 . gen diffr = $i_us i_uk$
- 36 . reg diffs diffr

	Source	SS	df		MS		Number of obs F(1, 133)		135 5.09
	Model Residual	.01055828 .276110161	1 133		.055828 2076016	Prob > F R-squared		=	0.0258 0.0368
_	Total	.286668441	134	.002	2139317		Adj R-squared Root MSE		0.0296 .04556
_	diffs	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
_	diffr _cons	0040889 0117984	.0018		-2.26 -1.98	0.026 0.049	0076751 0235582		0005026 0000386

- 37 .
- 38 . test _cons=0
- (1) _cons = 0

$$F(1, 133) = 3.94$$

 $Prob > F = 0.0493$

- 39 . test diffr=1
 - (1) **diffr = 1**

$$F($$
 1, 133) = 3.1e+05
 $Prob > F =$ 0.0000

- 40 . test (cons=0) (diffr=1)
 - (1) _cons = 0
 - $\begin{array}{ccc} (2) & \overline{\mathbf{diffr}} = 1 \end{array}$

$$F($$
 2, 133) = 3.5e+05
 $Prob > F =$ 0.0000

41 . estat bgodfrey, lags(4)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2		
4	7.415	4	0.1155		

HO: no serial correlation

- 42 . end of do-file
- 43 .