Working Notes: Data Analysis with R, Python and Rcpp (version 0.999)

P.BADY

Date: 2024-02-26

Contents

1	Motivations	3
2	first test PCA based on R package ade4 2.1 Example from the R package ade4	3 3
3	PCA from scratch in python	4
4	Collaboration R and python	6
5	5.1 Test pydudi with PCA	10 11 15 20
6		27 27
7	7.1 Test Rcpp: correlation between two variables 7.2 Object dudi	28 28 28 31 34 37
8	References	4 3
9	9.1 Additional R functions	44 44

Contributor: P.BADY
 Date: '2024-02-26'

• **Revision:** Mon Feb 26 14:56:28 2024

• Abstract:

The document investigates the evolution/progression of the tumor size (volume) before the the first TMZ treatment in Low grade Glioma (codeleted and non-codeleted IDH mutant patients) from Montpellier cohort. Several methods were used to estimate the estimation of the growth rate such as linear mixed model, non-linear models with bayesian estimation.

• Keywords: python, C/C++, pandas, numpy, R, dudi, multifactorial analyses

License: GPL version 2 or newer Copyright (C) 2001-2023 Pierre Bady

This program is free software/document; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program/document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

1 Motivations

The objective of this document is to propose an implementation of data analysis methods based on duality diagram in python and to develop and expand my skill in python. The document contains information related to the use of Rcpp (R and C++).

2 first test PCA based on R package ade4

2.1 Example from the R package ade4

```
library(ade4)
data(deug)
pca1 <- dudi.pca(deug$tab, center = deug$cent, scale = FALSE, scan = FALSE)
pca2 <- dudi.pca(deug$tab, center = TRUE, scale = TRUE, scan = FALSE)</pre>
```

The script can be directly usd in Rstudio and R via the R package reticulate (https://rstudio.github.io/reticulate/).

```
write.csv(deug$tab,file="data/deugtab.csv")
```

2.2 Data importation

see for example: https://www.kaggle.com/code/arnopub/pandas-pr-sentation-des-dataframe

```
import numpy as np
import pandas as pd
deugtab = pd.read_csv('data/deugtab.csv')
deugtab
```

##		Unnamed: 0	Algebra	Analysis	Proba	 Option1	Option2	English	Sport
##	0	1	40	26.0	26	 17	24.0	19.0	11.5
##	1	2	37	34.5	37	 24	22.0	26.0	11.5
##	2	3	37	41.0	29	 24	27.0	19.6	11.5
##	3	4	63	37.5	57	 23	23.0	21.0	14.0
##	4	5	55	31.5	34	 19	24.0	24.0	11.5
##						 			
##	99	100	60	41.0	18	 20	24.0	17.2	0.0
##	100	101	48	44.0	22	 22	28.0	19.6	0.0
##	101	102	44	45.0	42	 27	22.0	18.4	15.0
##	102	103	47	32.0	26	 23	28.0	19.0	11.5
##	103	104	44	32.0	42	 28	27.5	23.0	11.5
##									

[104 rows x 10 columns]

del deugtab['Unnamed: 0']
deugtab

##	Algebra	Analysis	Proba	Informatic	 $\mathtt{Option1}$	$\mathtt{Option2}$	English	Sport
## 0	40	26.0	26	26.0	 17	24.0	19.0	11.5
## 1	37	34.5	37	32.0	 24	22.0	26.0	11.5
## 2	37	41.0	29	34.5	 24	27.0	19.6	11.5
## 3	63	37.5	57	35.5	 23	23.0	21.0	14.0
## 4	55	31.5	34	36.0	 19	24.0	24.0	11.5
##					 			
## 99	60	41.0	18	30.0	 20	24.0	17.2	0.0
## 100	48	44.0	22	30.0	 22	28.0	19.6	0.0

```
22.0
## 101
            44
                   45.0
                           42
                                     35.0
                                                    27
                                                                   18.4
                                                                         15.0
                                     21.0 ...
                                                                   19.0
## 102
           47
                   32.0
                           26
                                                    23
                                                          28.0
                                                                         11.5
## 103
                                                          27.5
           44
                   32.0
                            42
                                     26.5 ...
                                                    28
                                                                   23.0
                                                                         11.5
##
## [104 rows x 9 columns]
```

3 PCA from scratch in python

PCA from scratch (https://towardsdatascience.com/principal-component-analysis-from-scratch-in-numpy-61843da1f967)

```
61843da1f967)
# centering = TRUE
X= deugtab - deugtab.mean()
# Normalize
Z = X / X.std(ddof=0)
print('MEAN:')
## MEAN:
print(Z.mean())
## Algebra
               -1.024821e-16
## Analysis
              3.928481e-16
         -1.216975e-16
## Proba
## Informatic -1.708035e-16
## Economy 4.782499e-16
## Option1
              -1.281027e-17
## Option2
               1.814788e-16
## English
               -9.137990e-16
## Sport
                1.665335e-16
## dtype: float64
print('---'*15)
print('STD:')
## STD:
print(Z.std(ddof=0))
## Algebra
                1.0
## Analysis
                1.0
## Proba
                1.0
## Informatic
                1.0
## Economy
                1.0
                1.0
## Option1
## Option2
                1.0
## English
                1.0
## Sport
                1.0
## dtype: float64
diagonalisation and eigenvectors
import numpy as np
len(Z)
## 104
```

```
ZZ = np.dot(Z.T, Z)/len(Z)
eigenvalues, eigenvectors = np.linalg.eig(ZZ)
D = np.diag(eigenvalues)
P = eigenvectors
Z_new = np.dot(Z, P)
```

valeur propres non ordonnées!!!!

Calculate the proportion of variance explained by each feature

```
sum_eigenvalues = np.sum(eigenvalues)
sum_eigenvalues
```

8.9999999999996

```
prop_var = [i/sum_eigenvalues for i in eigenvalues]
```

Calculate the cumulative variance

```
cum_var = [np.sum(prop_var[:i+1]) for i in range(len(prop_var))]
```

Plot scree plot from PCA

```
import matplotlib.pyplot as plt
x_labels = ['PC{}'.format(i+1) for i in range(len(prop_var))]
plt.plot(x_labels, prop_var, marker='o', markersize=6, color='skyblue',
    linewidth=2, label='Proportion of variance')
plt.plot(x_labels, cum_var, marker='o', color='orange', linewidth=2,
    label="Cumulative variance")
plt.legend()
plt.title('Scree plot')
plt.xlabel('Principal components')
plt.ylabel('Proportion of variance')
plt.show()
```


4 Collaboration R and python

```
https://rstudio.github.io/reticulate/
```

```
library(reticulate)
```

```
##
## Attachement du package : 'reticulate'
## L'objet suivant est masqué depuis 'package:rtracklayer':
##
##
       import
library(ade4)
P <- py$P
colnames(P) <- paste("Axis",1:ncol(P),sep="")</pre>
rownames(P) <- colnames(py$deugtab)</pre>
par(mfrow=c(2,2))
s.corcircle(P,sub="Python version")
s.corcircle(pca2$c1,sub="R version")
plot(P[,1],pca2$c1[,1],panel.first=c(grid()),xlab="Python (axis 1)",
     ylab="R (axis 1)",pch=19);abline(0,-1,col="red")
plot(P[,2],pca2$c1[,2],panel.first=c(grid()),xlab="Python (axis 2)",
     ylab="R (axis 2)",pch=19);abline(0,-1,col="red")
```


Python version

R version

problem in the order of the eigenvalues!!!

pca2\$eig

[1] 3.1013578 1.3629834 1.0323269 0.9340533 0.7397529 0.5746693 0.5325414 0.4375395 ## [9] 0.2847754

```
py$D
```

```
##
     [,1]
        [,2]
            [,3]
                [,4]
                    [,5]
                        [,6]
                            [,7]
 ##
 ##
 ##
 [5,] 0.000000 0.000000 0.0000000 0.000000 0.9340533 0.0000000 0.0000000 0.0000000
##
##
 [6,] 0.000000 0.000000 0.0000000 0.0000000 0.7397529 0.0000000 0.0000000
 ##
 ##
##
     [,9]
 [1,] 0.0000000
##
##
 [2,] 0.0000000
##
 [3,] 0.0000000
##
 [4,] 0.0000000
 [5,] 0.0000000
 [6,] 0.0000000
##
##
 [7,] 0.0000000
##
 [8,] 0.0000000
 [9,] 0.5325414
```

py\$eigenvalues

```
## [1] 3.1013578 1.3629834 0.2847754 1.0323269 0.9340533 0.7397529 0.4375395 0.5746693 ## [9] 0.5325414
```

problem!!!

test of the pca from scikit-learn

```
import sklearn.decomposition as sd
from sklearn.decomposition import PCA
pca = PCA(n_components=9)
Z2 = Z/np.sqrt(104)
pca.fit(Z2)

## PCA(n_components=9)
print(pca.explained_variance_ratio_)

## [0.34459531 0.1514426 0.11470299 0.1037837 0.08219477 0.06385214
## 0.05917127 0.0486155 0.03164171]
print(pca.singular_values_)

## [1.76106724 1.16746882 1.01603489 0.96646433 0.86008891 0.75806943
## 0.72975436 0.66146771 0.5336435 ]
print(pca.singular_values_*pca.singular_values_)

## [3.10135782 1.36298344 1.0323269 0.9340533 0.73975293 0.57466926
## 0.53254143 0.43753953 0.28477539]
```

5 Construction of the function "pydudi" (first prototype)

based on the duality diagram (see more details below)

- https://pbil.univ-lyon1.fr/R/pdf/tdr61.pdf
- https://pbil.univ-lyon1.fr/R/pdf/stage3.pdf
- https://pbil.univ-lyon1.fr/R/pdf/bs8.pdf

first test => need to adjust the weighting (test with COA)

```
import os
import string
import re
import pandas as pd
import numpy as np
def pydudi(X,cw,lw,nf):
 dim = X.shape
 n = dim[0]
 p = dim[1]
 nf0 = nf-1
  # n=len(X)
  # p=len(X.columns)
 D = np.diag(np.sqrt(lw))
  Q = np.diag(np.sqrt(cw))
  # XtDXQ => problem with Q !!!
  XD = np.dot(X.T,D).T
  XD = np.dot(XD,Q)
  XtX = np.dot(XD.T,XD)
  # decomposition
```

```
eigenvalues, eigenvectors = np.linalg.eig(XtX)
  index = np.argsort(eigenvalues)[::-1]
  # np.nonzero(eigenvalues)[0]
  eigenvalues = eigenvalues.real
  eigenvectors = eigenvectors.real
  eigenvalues=eigenvalues[index]
  eigenvectors=eigenvectors[:,index]
  # results
  rank = len(np.nonzero(eigenvalues)[0])
  C1 = np.dot(np.diag(1/np.sqrt(cw)),eigenvectors[:,0:nf])
  #C1 = eigenvectors[:,0:nf]
  XQ = np.dot(X,np.diag(cw))
 Li = np.dot(XQ, C1)
  # need to adjust the weighting (problem with sqrt)
  L1 = np.dot(Li,np.diag(1/np.sqrt(eigenvalues[0:nf])))
 Co = np.dot(C1,np.diag(np.sqrt(eigenvalues[0:nf])))
 return eigenvalues,rank,Li,L1,Co,C1,nf;
###
```

5.1 Test pydudi with PCA

```
import numpy as np
import pandas as pd
deugtab = pd.read_csv('data/deugtab.csv')
deugtab
```

##		Unnamed: 0	Algebra	Analysis	Proba	 Option1	Option2	English	Sport
##	0	1	40	26.0	26	 17	24.0	19.0	11.5
##	1	2	37	34.5	37	 24	22.0	26.0	11.5
##	2	3	37	41.0	29	 24	27.0	19.6	11.5
##	3	4	63	37.5	57	 23	23.0	21.0	14.0
##	4	5	55	31.5	34	 19	24.0	24.0	11.5
##						 			
##	99	100	60	41.0	18	 20	24.0	17.2	0.0
##	100	101	48	44.0	22	 22	28.0	19.6	0.0
##	101	102	44	45.0	42	 27	22.0	18.4	15.0
##	102	103	47	32.0	26	 23	28.0	19.0	11.5
##	103	104	44	32.0	42	 28	27.5	23.0	11.5
##									

[104 rows x 10 columns]

del deugtab['Unnamed: 0']
deugtab

##		Algebra	Analysis	Proba	Informatic	 Option1	Option2	English	Sport
##	0	40	26.0	26	26.0	 17	24.0	19.0	11.5
##	1	37	34.5	37	32.0	 24	22.0	26.0	11.5
##	2	37	41.0	29	34.5	 24	27.0	19.6	11.5
##	3	63	37.5	57	35.5	 23	23.0	21.0	14.0
##	4	55	31.5	34	36.0	 19	24.0	24.0	11.5
##						 			

```
## 99
             60
                     41.0
                                         30.0
                                                                 24.0
                                                                          17.2
                                                                                  0.0
                               18
                                                         20
                                         30.0 ...
## 100
             48
                     44.0
                               22
                                                         22
                                                                 28.0
                                                                          19.6
                                                                                  0.0
             44
                     45.0
                              42
                                         35.0 ...
                                                                 22.0
                                                                                 15.0
## 101
                                                         27
                                                                          18.4
## 102
             47
                     32.0
                               26
                                                         23
                                                                 28.0
                                                                                 11.5
                                         21.0
                                                                          19.0
## 103
             44
                     32.0
                               42
                                         26.5
                                                         28
                                                                 27.5
                                                                          23.0
                                                                                 11.5
##
## [104 rows x 9 columns]
X= deugtab - deugtab.mean()
# Normalize
X = X / X.std(ddof=0)
dim = X.shape
n = dim[0]
p = dim[1]
# lw = pd.DataFrame(np.repeat(1/len(X),len(X)))[0]
# cw = pd.DataFrame(np.repeat(1,len(X.columns)))[0]
lw = pd.DataFrame(np.repeat(1/n,n))[0]
cw = pd.DataFrame(np.repeat(1,p))[0]
ted = pydudi(X,cw,lw,2)
library(reticulate)
names(py$ted) <- c("eig", "rank", "li", "l1", "co", "c1", "nf")</pre>
coordli <- py$ted$li</pre>
par(mfrow=c(2,2))
s.label(coordli,sub="Python version")
s.label(pca2$li,sub="R version")
plot(coordli[,1],pca2$li[,1],panel.first=c(grid()),xlab="Python (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordli[,2],pca2$1i[,2],panel.first=c(grid()),xlab="Python (CS 2)",
     ylab="R (CS 2)",pch=19);abline(0,-1,col="red")
```



```
coordl1 <- py$ted$l1
par(mfrow=c(2,2))
s.label(coordl1,sub="Python version")
s.label(pca2$l1,sub="R version")
plot(coordl1[,1],pca2$l1[,1],panel.first=c(grid()),xlab="Python (CS 1)",
        ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordl1[,2],pca2$l1[,2],panel.first=c(grid()),xlab="Python (CS 2)",
        ylab="R (CS 2)",pch=19);abline(0,-1,col="red")</pre>
```


5.2 Test pydudi with COA

COA: correspondence analysis.

Benzécri, J.P. and Coll. (1973) _L'analyse des données. II L'analyse des correspondances_, Bordas, Paris. 1-620.

Greenacre, M. J. (1984) $_$ Theory and applications of correspondence analysis $_$, Academic Press, London.

Si R help from ade4 (dudi.coa) and https://pbil.univ-lyon1.fr/R/pdf/stage4.pdf

data(rpjdl)
chisq.test(rpjdl\$fau)\$statistic

Warning in chisq.test(rpjdl\$fau): L'approximation du Chi-2 est peut-être incorrecte

```
## X-squared
## 7323.597
rpjdl.coa <- coa1 <- dudi.coa(rpjdl$fau, scannf = FALSE, nf = 4)
sum(rpjdl.coa$eig)*rpjdl.coa$N # the same
## [1] 7323.597
write.csv(rpjdl$fau,file="data/fau.csv")
# import numpy as np
import pandas as pd
fau = pd.read_csv('data/fau.csv')
##
         Unnamed: 0
                       AR
                           CP
                                ST
                                     CC
                                         UE
                                              PV
                                                   JT
                                                             CN
                                                                  SS
                                                                      FC
                                                                           MC
                                                                                EC
                                                                                    EΗ
                                                                                         El
                                                                                              PD
## 0
                                           0
                                                    0
                                                                        0
                                                                                 0
                                                                                          0
                   1
                        0
                             0
                                 0
                                      0
                                               0
                                                       . . .
                                                              1
                                                                   0
                                                                            0
                                                                                      0
                                                                                               1
## 1
                   2
                        0
                             0
                                 0
                                      0
                                           0
                                               0
                                                    0
                                                              0
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          0
                                                                                               0
                                                        . . .
                                                                   1
                   3
                             0
                                                                                               0
## 2
                        0
                                 0
                                      0
                                           1
                                               0
                                                    0
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          1
                                                              1
                                                                   1
                                                        . . .
## 3
                   4
                        0
                             0
                                 0
                                      0
                                                              1
                                                                                 0
                                                                                      0
                                                                                          0
                                                                                               0
                                                       . . .
                                                                                               0
## 4
                   5
                            0
                                 0
                                      0
                                          0
                                               0
                                                              0
                                                                   0
                                                                        0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                        1
                                                    0
## ..
                 . . .
## 177
                 178
                        0
                             0
                                 0
                                      0
                                          0
                                               0
                                                    0
                                                              0
                                                                   0
                                                                        0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                                                                                               0
                             0
                                 0
                                      0
                                          0
                                                                                          0
                                                                                               0
## 178
                 179
                        0
                                               0
                                                    0
                                                              0
                                                                   0
                                                                       1
                                                                            0
                                                                                 0
                                                                                     0
                                                       . . .
## 179
                 180
                        0
                            0
                                 0
                                      0
                                          0
                                                    0
                                                              0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                                                                                               0
                                               1
                                                                   1
                                                                       1
## 180
                 181
                        0
                             0
                                 1
                                      0
                                          0
                                               0
                                                    1
                                                              0
                                                                   1
                                                                        0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                                                                                               0
                                                       . . .
## 181
                 182
                                 0
                                      0
                                                    0
                                                              0
                                                                   1
                                                                                          0
                                                                                               0
## [182 rows x 52 columns]
del fau['Unnamed: 0']
fau
##
         AR
             CP
                  ST
                       CC
                           UE
                                PV
                                     JΤ
                                         GT
                                              LA
                                                         CA
                                                             CN
                                                                  SS
                                                                      FC
                                                                           MC
                                                                                EC
                                                                                    EΗ
                                                                                         El
                                                                                              PD
## 0
          0
               0
                   0
                        0
                             0
                                 0
                                      0
                                           0
                                               0
                                                          1
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          0
                                                                                               1
                                                              1
                                                                   0
## 1
          0
               0
                   0
                        0
                             0
                                 0
                                      0
                                           1
                                               0
                                                          1
                                                              0
                                                                   1
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          0
                                                                                               0
                                 0
## 2
          0
              0
                   0
                        0
                             1
                                      0
                                           0
                                               0
                                                          0
                                                              1
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          1
                                                                                               0
## 3
          0
              0
                   0
                        0
                            0
                                 0
                                      0
                                          0
                                               0
                                                          0
                                                              1
                                                                   0
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          0
                                                                                               0
## 4
          1
               0
                   0
                        0
                             0
                                 0
                                      0
                                           1
                                                   . . .
                                                              0
                                                                   0
                                                                        0
                                                                            0
                                                                                 0
                                                                                      0
                                                                                          0
                                                                                               0
##
## 177
          0
              0
                   0
                        0
                            0
                                 0
                                      0
                                          0
                                               0
                                                          0
                                                              0
                                                                   0
                                                                        0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                                                                                               0
                                                   . . .
          0
              0
                   0
                        0
                            0
                                 0
                                      0
                                          0
                                               0
                                                          0
                                                              0
                                                                   0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                         0
                                                                                               0
## 178
                                                                       1
## 179
          0
                   0
                            0
                                 1
                                                  . . .
                                                          0
                                                              0
                                                                                          0
                                                                                               0
## 180
          0
               0
                        0
                            0
                                 0
                                          0
                                               0
                                                          0
                                                              0
                                                                       0
                                                                            0
                                                                                 0
                                                                                     0
                                                                                          0
                                                                                               0
                   1
                                      1
                                                                   1
##
   181
          0
                   0
                             0
                                 0
                                      0
                                           0
                                                          0
                                                              0
                                                                            0
                                                                                          0
##
## [182 rows x 51 columns]
import numpy as np
X=fau
sumX = fau.sum().sum()
sumCol = fau.sum(axis=0)
sumRow = fau.sum(axis=1)
pij = X/sumX
pi = sumRow/sumX
```

```
pj = sumCol/sumX
Dj = np.diag(1/pj)
Di = np.diag(1/pi)
Z = np.dot(Di,pij)
Z= np.dot(Z,Dj)
Z.shape
## (182, 51)
Z = Z - 1
Z = np.nan_to_num(Z)
# Normalize
lw = pi
cw = pj
D= np.diag(np.sqrt(pi))
Q= np.diag(np.sqrt(pj))
X = Z
ted = pydudi(Z,cw,lw,2)
require(reticulate)
names(py$ted) <- c("eig","rank","li","l1","co","c1","nf")</pre>
head(t(t(py$X)%*%py$D))[,1]
## [1] -0.06986433 -0.06986433 -0.06535210 -0.04940154 0.85002979 0.76588343
head(py$X*diag(py$D))[,1]
## [1] -0.06986433 -0.06986433 -0.06535210 -0.04940154 0.85002979 0.76588343
XD \leftarrow t(t(py$X)%*%py$D)
head(XD%*%py$Q)[,1]
## [1] -0.007717578 -0.007717578 -0.007219133 -0.005457152 0.093898719 0.084603474
head(sweep(XD,2,diag(py$Q),"*"))[,1]
## [1] -0.007717578 -0.007717578 -0.007219133 -0.005457152 0.093898719 0.084603474
coa1$eig
## [1] 0.753246079 0.292905714 0.229339077 0.204667043 0.157288711 0.151440858
## [7] 0.150767524 0.139271459 0.128099632 0.121613888 0.117678929 0.114349277
## [13] 0.111133629 0.108686867 0.104567293 0.098786861 0.093491391 0.089476206
## [19] 0.083038229 0.078627728 0.071855317 0.066171912 0.064569801 0.063747501
## [25] 0.061830129 0.056205831 0.054891709 0.051264371 0.051057282 0.048112526
## [31] 0.047741238 0.045225569 0.042174679 0.041081123 0.039945517 0.037205530
## [37] 0.034420610 0.031713688 0.029256753 0.027162167 0.026386209 0.022092347
## [43] 0.021089820 0.020517411 0.016786030 0.016066325 0.015476722 0.014463573
## [49] 0.012991222 0.008353461
py$ted$eig
## [1] 7.532461e-01 2.929057e-01 2.293391e-01 2.046670e-01 1.572887e-01
## [6] 1.514409e-01 1.507675e-01 1.392715e-01 1.280996e-01 1.216139e-01
## [11] 1.176789e-01 1.143493e-01 1.111336e-01 1.086869e-01 1.045673e-01
```

```
9.878686e-02 9.349139e-02 8.947621e-02 8.303823e-02
                                                              7.862773e-02
        7.185532e-02 6.617191e-02 6.456980e-02 6.374750e-02 6.183013e-02
##
  [21]
  [26]
        5.620583e-02 5.489171e-02 5.126437e-02 5.105728e-02 4.811253e-02
  [31]
        4.774124e-02 4.522557e-02 4.217468e-02 4.108112e-02 3.994552e-02
##
  [36]
        3.720553e-02 3.442061e-02
                                   3.171369e-02
                                                2.925675e-02
                                                              2.716217e-02
        2.638621e-02 2.209235e-02 2.108982e-02 2.051741e-02 1.678603e-02
## [41]
        1.606633e-02 1.547672e-02 1.446357e-02 1.299122e-02 8.353461e-03
## [46]
## [51] -1.171126e-16
```

ok for the eigenvalues, probleme dans le calcul des coordonnées ???

```
coordli <- py$ted$li
par(mfrow=c(2,2))
s.label(coordli,sub="Python version")
s.label(coa1$li,sub="R version")
plot(coordli[,1],coa1$li[,1],panel.first=c(grid()),xlab="Python (CS 1)",
        ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordli[,2],coa1$li[,2],panel.first=c(grid()),xlab="Python (CS 2)",
        ylab="R (CS 2)",pch=19);abline(0,-1,col="red")</pre>
```


2

3


```
par(mfrow=c(2,2))
plot(py$Z[,1],coa1$tab[,1],panel.first=c(grid()),xlab="Python (col 1 of Z)",
        ylab="R (col 1 of tab)",pch=19);abline(0,1,col="red")
plot(py$ted$c1[,1],coa1$c1[,1],panel.first=c(grid()),xlab="Python (normed Axis 1)",
        ylab="R (normed Axis 1)",pch=19);abline(0,-1,col="red")
plot(py$ted$co[,1],coa1$co[,1],panel.first=c(grid()),xlab="Python (Axis 1)",
        ylab="R (Axis 1)",pch=19);abline(0,-1,col="red")
```


=> need to check the weight !!! => Ok !!

5.3 Test pydudi with MCA

MCA: Multiple Correspondence Analysis

Tenenhaus, M. & Young, F.W. (1985) An analysis and synthesis of multiple correspondence analysis, optim Lebart, L., A. Morineau, and M. Piron. 1995. Statistique exploratoire multidimensionnelle. Dunod, Paris

Si R help from ade4 (dudi.acm) and https://pbil.univ-lyon1.fr/R/pdf/stage4.pdf. the description of the methods is given below:

- https://pbil.univ-lyon1.fr/R/pdf/tdr521.pdf
- https://pbil.univ-lyon1.fr/R/pdf/tdr52.pdf

duality diagram

```
data(ours)
summary(ours)
   altit deniv cloiso domain boise hetra favor inexp citat depart
## 1:8
          1:13
                1:12
                       1: 9
                             1:10
                                    1:19
                                           1:15
                                                  1:20
                                                        1:22
                                                               AHP:5
## 2:17
                2: 4
                                    2: 5
                                                        2: 7
          2:14
                       2:13
                              2:15
                                           2:12
                                                  2:10
                                                               AM :4
## 3:13
          3:11
                3:22
                       3:16 3:13
                                    3:14
                                           3:11
                                                  3: 8
                                                        3: 4
                                                               D :5
##
                                                        4: 5
                                                               HP :8
##
                                                               HS:4
##
                                                               I :5
##
                                                               S :7
acm1 <- dudi.acm(ours, scan = FALSE)</pre>
write.csv(ours,file="data/ours.csv")
```

importation with pandas

```
# import numpy as np
import pandas as pd
ours = pd.read_csv('data/ours.csv')
ours
```

##		Unnamed: 0	altit	deniv	cloiso	domain	 hetra	favor	inexp	citat	depart
##	0	1	2	3	3	2	 3	3	2	1	HS
##	1	2	1	2	1	2	 1	2	2	2	HS
##	2	3	3	3	3	2	 2	3	3	2	HS
##	3	4	3	3	3	1	 3	3	2	3	HS
##	4	5	3	3	1	2	 3	2	3	1	S
##	5	6	3	3	3	1	 3	3	3	3	S
##	6	7	2	2	3	2	 1	2	3	1	S
##	7	8	1	1	2	2	 1	3	2	2	S
##	8	9	2	3	1	2	 2	3	3	4	S
##	9	10	2	2	3	1	 3	2	3	1	S
##	10	11	1	1	1	1	 1	2	2	1	S
##	11	12	2	2	3	1	 3	3	2	3	I
##	12	13	2	3	3	1	 3	3	2	3	I
##	13	14	1	3	2	2	 1	1	3	2	I
##	14	15	2	2	1	3	 2	2	2	1	I
##	15	16	3	3	3	3	 3	3	3	4	I
##	16	17	3	1	3	3	 3	3	1	4	D
##	17	18	3	2	3	3	 3	2	2	4	D
##	18	19	2	1	1	3	 3	3	1	4	D
##	19	20	2	1	1	2	 2	1	1	2	D
##	20	21	2	1	1	2	 2	1	1	1	D
##	21	22	1	1	1	2	 1	1	1	2	HP
##	22	23	2	2	2	2	 1	1	1	2	HP
##	23	24	1	1	3	3	 1	1	1	1	HP
##	24	25	2	3	2	3	 1	1	1	1	HP
##	25	26	2	2	1	1	 1	1	1	1	HP
##	26	27	2	2	3	1	 1	1	1	1	HP
##	27	28	3	2	1	3	 3	2	1	1	HP
##	28	29	2	1	1	2	 1	1	1	1	HP
##	29	30	1	1	3	3	 1	2	1	1	AHP
##	30	31	3	1	3	3	 3	2	1	1	AHP
##	31	32	3	2	3	3	 1	2	1	1	AHP

```
33
                              2
                                      3
                                              3
                                                          1
                                                                                      AHP
                                                                  1
                                                                         1
                                                                                1
## 33
               34
                       3
                              1
                                      3
                                              1
                                                          3
                                                                 1
                                                                                1
                                                                                      AHP
                                                 . . .
                                                                         1
## 34
               35
                              2
                                      3
                                              3
                                                                 1
                                                                                       AM
                                                 . . .
              36
## 35
                       2
                              2
                                      3
                                              3
                                                          1
                                                                 1
                                                                        1
                                                                                1
                                                                                       AM
                       3
## 36
               37
                              1
                                      3
                                              3
                                                                 1
                                                                        1
                                                                                1
                                                                                       AM
                                                          1
                       2
                                      3
                                                                 2
                                                                         2
                                                                                1
## 37
               38
                              3
                                              3
                                                          1
                                                                                       AM
```

[38 rows x 11 columns]

del ours['Unnamed: 0']

ours

##		altit	deniv	cloiso	domain	boise	hetra	favor	inexp	citat	depart
##	0	2	3	3	2	2	3	3	2	1	HS
##	1	1	2	1	2	1	1	2	2	2	HS
##	2	3	3	3	2	2	2	3	3	2	HS
##	3	3	3	3	1	3	3	3	2	3	HS
##	4	3	3	1	2	2	3	2	3	1	S
##	5	3	3	3	1	3	3	3	3	3	S
##	6	2	2	3	2	2	1	2	3	1	S
##	7	1	1	2	2	1	1	3	2	2	S
##	8	2	3	1	2	3	2	3	3	4	S
##	9	2	2	3	1	3	3	2	3	1	S
##	10	1	1	1	1	1	1	2	2	1	S
##	11	2	2	3	1	3	3	3	2	3	I
##	12	2	3	3	1	3	3	3	2	3	I
##	13	1	3	2	2	1	1	1	3	2	I
##	14	2	2	1	3	2	2	2	2	1	I
##	15	3	3	3	3	3	3	3	3	4	I
##	16	3	1	3	3	3	3	3	1	4	D
	17	3	2	3	3	3	3	2	2	4	D
##	18	2	1	1	3	3	3	3	1	4	D
	19	2	1	1	2	2	2	1	1	2	D
	20	2	1	1	2	2	2	1	1	1	D
	21	1	1	1	2	1	1	1	1	2	HP
	22	2	2	2	2	1	1	1	1	2	HP
	23	1	1	3	3	1	1	1	1	1	HP
	24	2	3	2	3	2	1	1	1	1	HP
	25	2	2	1	1	2	1	1	1	1	HP
	26	2	2	3	1	1	1	1	1	1	HP
	27	3	2	1	3	3	3	2	1	1	HP
	28	2	1	1	2	2	1	1	1	1	HP
	29	1	1	3	3	1	1	2	1	1	AHP
	30	3	1	3	3	2	3	2	1	1	AHP
	31	3	2	3	3	2	1	2	1	1	AHP
	32	3	2	3	3	2	1	1	1	1	AHP
	33	3	1	3	1	3	3	1	1	1	AHP
	34	1	2	3	3	1	1	1	1	1	AM
	35	2	2	3	3	2	1	1	1	1	AM
	36	3	1	3	3	3	1	1	1	1	AM
##	37	2	3	3	3	2	1	2	2	1	AM

```
def disjonctif(X):
```

X_cat = X.astype("category")

X_dis = pd.get_dummies(X_cat)

```
X_dis = X_dis*1
  return X_dis ;
preparation of the triplet
Xdis = disjonctif(ours)
m = Xdis.shape[1]
n = Xdis.shape[0]
v = ours.shape[1]
lw = pd.DataFrame(np.repeat(1/n,n))[0]
D = np.diag(lw)
cw = np.dot(np.dot(Xdis.T,D), np.ones(n))
Dm = np.diag(cw)
X = np.dot(Xdis,np.diag(1/cw))-1
cw = cw/v
ted = pydudi(X,cw,lw,2)
require(reticulate)
names(py$ted) <- c("eig","rank","li","l1","co","c1","nf")</pre>
coordli <- py$ted$li
par(mfrow=c(2,2))
s.label(coordli,sub="Python version")
s.label(acm1$li,sub="R version")
plot(coordli[,1],acm1$li[,1],panel.first=c(grid()),xlab="Python (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,1,col="red")
```


plot(coordli[,2],acm1\$li[,2],panel.first=c(grid()),xlab="Python (CS 2)",


```
par(mfrow=c(2,2))
plot(py$X[,1],acm1$tab[,1],panel.first=c(grid()),xlab="Python (col 1 of Z)",
        ylab="R (col 1 of tab)",pch=19);abline(0,1,col="red")
plot(py$ted$c1[,1],acm1$c1[,1],panel.first=c(grid()),xlab="Python (normed Axis 1)",
        ylab="R (normed Axis 1)",pch=19);abline(0,1,col="red")
plot(py$ted$co[,1],acm1$co[,1],panel.first=c(grid()),xlab="Python (Axis 1)",
        ylab="R (Axis 1)",pch=19);abline(0,1,col="red")
```


6 Class and object dudi

define the structure of the object and description of the elements based on object 'dudi' from R package ade4 (and ADE-4):

- \bullet tab
- eig
- rank
- c1
- co
- l1
- li

heritage for the PCA and COA (and other methods):

• tab

- lw
- cw
- dudi
- and specific elements

6.1 Object Dudi

```
class Dudi:
  def __init__(self,tab,cw,lw,eig,rank,nf,c1,co,l1,li):
   self.tab = tab
   self.cw = cw
    self.lw = lw
   self.eig = eig
   self.rank = rank
   self.nf = nf
   self.c1 = c1
   self.co = co
   self.l1 = l1
   self.li = li
def pyDudi(X,cw,lw,nf):
 dim = X.shape
 n = dim[0]
 p = dim[1]
 nf0 = nf-1
 # n=len(X)
  # p=len(X.columns)
  D = np.diag(np.sqrt(lw))
  Q = np.diag(np.sqrt(cw))
  # XtDXQ => problem with Q !!!
  XD = np.dot(X.T,D).T
  XD = np.dot(XD,Q)
  XtX = np.dot(XD.T,XD)
  # decomposition
  eigenvalues, eigenvectors = np.linalg.eig(XtX)
  index = np.argsort(eigenvalues)[::-1]
  # np.nonzero(eigenvalues)[0]
  eigenvalues = eigenvalues.real
  eigenvectors = eigenvectors.real
  eigenvalues=eigenvalues[index]
  eigenvectors=eigenvectors[:,index]
  # results
  rank = len(np.nonzero(eigenvalues)[0])
  C1 = np.dot(np.diag(1/np.sqrt(cw)),eigenvectors[:,0:nf])
  #C1 = eigenvectors[:,0:nf]
  XQ = np.dot(X,np.diag(cw))
  Li = np.dot(XQ, C1)
  # need to adjust the weighting (problem with sqrt)
 L1 = np.dot(Li,np.diag(1/np.sqrt(eigenvalues[0:nf])))
 Co = np.dot(C1,np.diag(np.sqrt(eigenvalues[0:nf])))
```

```
return Dudi(X,cw,lw,eigenvalues,rank,nf,C1,Co,L1,Li);
```

6.2 test pour PCA

```
def pyPCA(X,cw=None,lw=None,nf=2,center=True,scale=True):
    dim = X.shape
    n = dim[0]
    p = dim[1]
    if center:
        X = X-X.mean()
    if scale:
        X = X/X.std(ddof=0)
    if lw==None:
        lw = pd.DataFrame(np.repeat(1/n,n))[0]
    if cw==None:
        cw = pd.DataFrame(np.repeat(1,p))[0]
    dudi = pyDudi(X,cw,lw,nf)
    return dudi;

pca1 = pyPCA(deugtab)
```

6.3 test pour COA

```
def pyCOA(X,nf=2):
  sumX = X.sum().sum()
  sumCol = X.sum(axis=0)
  sumRow = X.sum(axis=1)
 pij = X/sumX
 pi = sumRow/sumX
 pj = sumCol/sumX
 Dj = np.diag(1/pj)
 Di = np.diag(1/pi)
 Z = np.dot(Di,pij)
 Z = np.dot(Z,Dj)
 Z = Z - 1
 Z = np.nan_to_num(Z)
  dudi = pyDudi(Z,pj,pi,nf)
 return dudi;
coa1 = pyCOA(fau)
```

6.4 test pour ACM

```
def disjonctif(X):
    X_cat = X.astype("category")
    X_dis = pd.get_dummies(X_cat)
    X_dis = X_dis*1
    return X_dis;

def pyACM(X,lw=None,nf=2):
    Xdis = disjonctif(ours)
    m = Xdis.shape[1]
```

```
n = Xdis.shape[0]
v = ours.shape[1]
if lw==None :
    lw = pd.DataFrame(np.repeat(1/n,n))[0]
D = np.diag(lw)
    cw = np.dot(np.dot(Xdis.T,D), np.ones(n))
Dm = np.diag(cw)
X = np.dot(Xdis,np.diag(1/cw))-1
    cw = cw/v
    dudi = pyDudi(X,cw,lw,nf)
    return dudi;
mca1 = pyACM(ours)
```

7 Construction of the function dudi in Rcpp

7.1 Test Rcpp: correlation between two variables

```
require(parallel)
require(Rcpp)

## Le chargement a nécessité le package : Rcpp
require(RcppArmadillo)

## Le chargement a nécessité le package : RcppArmadillo

#Sys.setenv("PKG_CXXFLAGS"="-fopenmp")
#Sys.setenv("PKG_LIBS"="-fopenmp")
sourceCpp(file.path(getwd(), "src", "utility.cpp"))

correlation coefficient
cor(1:10, 2:11)

## [1] 1

CORR(1:10, 2:11)

## [1] 1

computation of the area under curve
```

7.2 Object dudi

dudi obect with Rcpparmadillo

```
sourceCpp(file.path(getwd(),"src","utility.cpp"))
pca2 <- dudi.pca(deug$tab, center = TRUE, scale = TRUE, scan = FALSE)
test <- arc_dudi(as.matrix(pca2$tab),pca2$cw,pca2$lw,2)
test$eig</pre>
```

```
## [,1]
## [1,] 3.1013578
## [2,] 1.3629834
## [3,] 1.0323269
## [4,] 0.9340533
```

```
[5,] 0.7397529
##
  [6,] 0.5746693
  [7,] 0.5325414
## [8,] 0.4375395
   [9,] 0.2847754
```

pca2\$eig

[1] 3.1013578 1.3629834 1.0323269 0.9340533 0.7397529 0.5746693 0.5325414 0.4375395 ## [9] 0.2847754

```
coordli <- test$li
par(mfrow=c(2,2))
s.label(coordli,sub="RcppArmadillo version")
s.label(pca2$li,sub="R version")
plot(coordli[,1],pca2$li[,1],panel.first=c(grid()),xlab="RcppArmadillo (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordli[,2],pca2$li[,2],panel.first=c(grid()),xlab="RcppArmadillo (CS 2)",
     ylab="R (CS 2)",pch=19);abline(0,-1,col="red")
```


RcppArmadillo (CS 2)

```
coordl1 <- test$11</pre>
par(mfrow=c(2,2))
s.label(coordl1,sub="RcppArmadillo version")
s.label(pca2$11,sub="R version")
plot(coordl1[,1],pca2$11[,1],panel.first=c(grid()),xlab="RcppArmadillo (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordl1[,2],pca2$11[,2],panel.first=c(grid()),xlab="RcppArmadillo (CS 2)",
     ylab="R (CS 2)",pch=19);abline(0,-1,col="red")
```


R version

7.3 Test PCA

argument for the function cpca:

- X: matrix
- cw: numeric vector corresponding to the column weighting
- lw: numeric vector corresponding to the row weighting
- nf: number of selected axes
- center: 1 for TRUE, 0 for FALSE
- $\bullet \;$ scale: 1 for TRUE, 0 for FALSE

```
sourceCpp(file.path(getwd(),"src","utility.cpp"))
test2 <- arc_pca(as.matrix(deug$tab),pca2$cw,pca2$lw,2,1,1)
pca2$eig</pre>
```

[1] 3.1013578 1.3629834 1.0323269 0.9340533 0.7397529 0.5746693 0.5325414 0.4375395

[9] 0.2847754

```
test2$eig
```

```
##
              [,1]
##
    [1,] 3.1013578
##
    [2,] 1.3629834
   [3,] 1.0323269
##
  [4,] 0.9340533
  [5,] 0.7397529
##
##
   [6,] 0.5746693
##
  [7,] 0.5325414
## [8,] 0.4375395
## [9,] 0.2847754
coordli <- test2$li
par(mfrow=c(2,2))
s.label(coordli,sub="RcppArmadillo version")
s.label(pca2$li,sub="R version")
plot(coordli[,1],pca2$li[,1],panel.first=c(grid()),xlab="RcppArmadillo (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordli[,2],pca2$li[,2],panel.first=c(grid()),xlab="RcppArmadillo (CS 2)",
     ylab="R (CS 2)",pch=19);abline(0,-1,col="red")
```



```
coordl1 <- test2$11
par(mfrow=c(2,2))
s.label(coordl1,sub="RcppArmadillo version")
s.label(pca2$11,sub="R version")
plot(coordl1[,1],pca2$11[,1],panel.first=c(grid()),xlab="RcppArmadillo (CS 1)",</pre>
```

```
ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordl1[,2],pca2$11[,2],panel.first=c(grid()),xlab="RcppArmadillo (CS 2)",
    ylab="R (CS 2)",pch=19);abline(0,-1,col="red")
```


Test COA 7.4

```
sourceCpp(file.path(getwd(),"src","utility.cpp"))
data(rpjdl)
chisq.test(rpjdl$fau)$statistic
```

Warning in chisq.test(rpjdl\$fau): L'approximation du Chi-2 est peut-être incorrecte

X-squared ## 7323.597

rpjdl.coa <- coa1 <- dudi.coa(rpjdl\$fau, scannf = FALSE, nf = 4)</pre> sum(rpjdl.coa\$eig)*rpjdl.coa\$N # the same

[1] 7323.597

test <- arc_coa(as.matrix(rpjdl\$fau),nf=2)</pre>


```
par(mfrow=c(2,2))
plot(test$X[,1],coa1$tab[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (col 1 of Z)",
        ylab="R (col 1 of tab)",pch=19);abline(0,1,col="red")
plot(test$c1[,1],coa1$c1[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (normed Axis 1)",
        ylab="R (normed Axis 1)",pch=19);abline(0,1,col="red")
plot(test$co[,1],coa1$co[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (Axis 1)",
        ylab="R (Axis 1)",pch=19);abline(0,1,col="red")
```


7.5 Test MCA

```
data(ours)
summary(ours)
```

```
{\tt deniv}
                   cloiso domain boise
                                                                         depart
##
    altit
                                          hetra
                                                 favor
                                                          inexp citat
##
    1:8
            1:13
                   1:12
                           1: 9
                                   1:10
                                          1:19
                                                  1:15
                                                          1:20
                                                                 1:22
                                                                         AHP:5
    2:17
                                                                 2: 7
##
            2:14
                   2: 4
                           2:13
                                   2:15
                                          2: 5
                                                  2:12
                                                          2:10
                                                                         AM :4
                                                                 3: 4
##
    3:13
            3:11
                   3:22
                           3:16
                                   3:13
                                          3:14
                                                  3:11
                                                          3: 8
                                                                         D
                                                                            :5
##
                                                                 4: 5
                                                                         HP :8
##
                                                                         HS:4
##
                                                                         Ι
                                                                            :5
                                                                         S
##
                                                                            :7
```

acm1 <- dudi.acm(ours, scan = FALSE)</pre>

for the first version of mca, we give the **disjonctif** table and the variable number.

ylab="R (CS 2)",pch=19);abline(0,1,col="red")


```
par(mfrow=c(2,2))
plot(test$X[,1],acm1$tab[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (col 1 of Z)",
        ylab="R (col 1 of tab)",pch=19);abline(0,1,col="red")
plot(test$c1[,1],acm1$c1[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (normed Axis 1)",
        ylab="R (normed Axis 1)",pch=19);abline(0,-1,col="red")
plot(test$co[,1],acm1$co[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (Axis 1)",
        ylab="R (Axis 1)",pch=19);abline(0,-1,col="red")
```


encoding ${f disjonctif}$ table

```
sourceCpp(file.path(getwd(), "src", "utility.cpp"))
w <- factor(c("a", "a", "b", "c"))
acm.util(w)</pre>
```

a b c ## [1,] 1 0 0 ## [2,] 1 0 0 ## [3,] 0 1 0 ## [4,] 0 0 1

arc_acmutil(w)

[,1] [,2] [,3] ## [1,] 1 0 0 ## [2,] 1 0 0 ## [3,] 0 1 0

```
## [4,]
w1 <- factor(c("e","d","e","f"))</pre>
arc_disjonctif(cbind(w,w1))
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
                0
                      0
                           0
## [2,]
           1
                0
                      0
                           1
                                      0
## [3,]
           0
## [4,]
           0
                                      1
test <- arc_mca( as.matrix(apply(ours,2,function(x) as.numeric(factor(x)))),</pre>
                 lw=acm1$lw,nf=2)
coordli <- test$li
par(mfrow=c(2,2))
s.label(coordli,sub="Rcpp-Armadillo version")
s.label(acm1$li,sub="R version")
plot(coordli[,1],acm1$li[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
plot(coordli[,2],acm1$li[,2],panel.first=c(grid()),xlab="Rcpp-Armadillo (CS 2)",
     ylab="R (CS 2)",pch=19);abline(0,1,col="red")
                                                                                         d = 0.5
                                                                             14
              14
               2
                                                                             2
                          3
                                                                  3
                             9
                                                               9
       23
                                                                                   23
                           1
                                                                 1
                         5
                                                       13
                                                                   5
                                  12
                                                         12
                                                         16
                           10
                                                                10
                          19
                                                                 19
                   38
                            18
                                                               18
Rcpp-Armadillo version
                                                R version
     0.5
                                                    -0.5
     -1.0
               -0.5
         -1.0
                      0.0
                             0.5
                                   1.0
                                                              -0.5
                                                                     0.0
                                                                            0.5
                                                                                   1.0
               Rcpp-Armadillo (CS 1)
                                                               Rcpp-Armadillo (CS 2)
coordl1 <- test$11</pre>
par(mfrow=c(2,2))
s.label(coordl1,sub="Python version")
s.label(acm1$11,sub="R version")
plot(coordl1[,1],acm1$11[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (CS 1)",
     ylab="R (CS 1)",pch=19);abline(0,-1,col="red")
```



```
par(mfrow=c(2,2))
plot(test$X[,1],acm1$tab[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (col 1 of Z)",
        ylab="R (col 1 of tab)",pch=19);abline(0,1,col="red")
plot(test$c1[,1],acm1$c1[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (normed Axis 1)",
        ylab="R (normed Axis 1)",pch=19);abline(0,-1,col="red")
plot(test$co[,1],acm1$co[,1],panel.first=c(grid()),xlab="Rcpp-Armadillo (Axis 1)",
        ylab="R (Axis 1)",pch=19);abline(0,-1,col="red")
```


8 References

- R http://www.R-project.org/.
- R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Dray S, Dufour A (2007). "The ade4 Package: Implementing the Duality Diagram for Ecologists." Journal of Statistical Software, 22(4), 1-20. doi:10.18637/jss.v022.i04 https://doi.org/10.18637/jss.v022.i04.
- Chessel D, Dufour A, Thioulouse J (2004). "The ade4 Package I: One-Table Methods." R News, 4(1), 5-10. https://cran.r-project.org/doc/Rnews/.
- Dray S, Dufour A, Chessel D (2007). "The ade4 Package II: Two-Table and K-Table Methods." R News, 7(2), 47-52. https://cran.r-project.org/doc/Rnews/.
- Thioulouse J, Dray S, Dufour A, Siberchicot A, Jombart T, Pavoine S (2018). *Multivariate Analysis of Ecological Data with ade4*. Springer. doi:10.1007/978-1-4939-8850-1 https://doi.org/10.1007/978-1-4939-8850-1.

- Escoufier, Y. (1987) The duality diagram: a means of better practical applications In Development in numerical ecology, Legendre, P. & Legendre, L. (Eds.) NATO advanced Institute, Serie G. Springer Verlag, Berlin, 139–156.
- Benzécri, J.P. and Coll. (1973) L'analyse des données. II L'analyse des correspondances, Bordas, Paris. 1-620.
- Greenacre, M. J. (1984) Theory and applications of correspondence analysis, Academic Press, London.
- Tenenhaus, M. & Young, F.W. (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 1, 91-119.
- Lebart, L., A. Morineau, and M. Piron. 1995. Statistique exploratoire multidimensionnelle. Dunod, Paris.

9 Appendix

9.1 Additional R functions

source("/export/scratch/GITprojects/pbtools/trunk/Rcode/Rgraphics-0.1.R")

9.2 Session information

```
print(sessionInfo(),locale=FALSE)
## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Linux Mint 20.3
##
## Matrix products: default
           /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## BLAS:
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## attached base packages:
##
    [1] parallel
                  datasets
                            stats
                                       graphics utils
                                                            stats4
                                                                      tools
                                                                                grDevices
##
    [9] methods
                  base
##
## other attached packages:
    [1] RcppArmadillo_0.12.2.0.0
                                     Rcpp_1.0.10
                                     circlize_0.4.15
##
    [3] reticulate_1.28
##
   [5] minfi 1.46.0
                                     bumphunter 1.42.0
   [7] locfit_1.5-9.7
                                     iterators_1.0.14
##
    [9] foreach 1.5.2
                                     Biostrings_2.68.0
##
## [11] XVector_0.40.0
                                     SummarizedExperiment_1.30.1
## [13] Biobase_2.60.0
                                     MatrixGenerics_1.12.0
## [15] matrixStats_0.63.0
                                     xtable_1.8-4
                                     rmarkdown_2.21
## [17] tinytex_0.45
##
  [19] knitr_1.42
                                     pixmap_0.4-12
  [21] ade4_1.7-22
                                     RColorBrewer_1.1-3
  [23] rtracklayer_1.60.0
                                     GenomicRanges_1.52.0
  [25] GenomeInfoDb_1.36.0
                                     IRanges_2.34.0
  [27] S4Vectors_0.38.1
                                     BiocGenerics_0.46.0
##
## loaded via a namespace (and not attached):
##
     [1] jsonlite_1.8.4
                                    shape_1.4.6
                                                              rstudioapi_0.15.0
##
     [4] magrittr_2.0.3
                                    GenomicFeatures_1.52.0
                                                              GlobalOptions_0.1.2
```

```
##
     [7] BiocIO 1.10.0
                                    zlibbioc_1.46.0
                                                               vctrs_0.6.2
##
    [10] multtest_2.56.0
                                    memoise_2.0.1
                                                              Rsamtools_2.16.0
                                                               askpass 1.1
    [13] DelayedMatrixStats 1.22.0 RCurl 1.98-1.12
   [16] htmltools_0.5.5
                                    S4Arrays_1.0.1
                                                              progress_1.2.2
##
    [19] curl_5.0.0
                                    rjags_4-14
                                                              Rhdf5lib 1.22.0
##
   [22] rhdf5 2.44.0
                                    nor1mix 1.3-0
                                                              plyr 1.8.8
   [25] cachem 1.0.8
                                    GenomicAlignments 1.36.0
                                                              lifecycle 1.0.3
##
##
    [28] pkgconfig_2.0.3
                                    Matrix 1.5-4
                                                              R6 2.5.1
##
    [31] fastmap 1.1.1
                                    GenomeInfoDbData_1.2.10
                                                               digest_0.6.31
##
   [34] colorspace_2.1-0
                                    siggenes_1.74.0
                                                               reshape_0.8.9
   [37] AnnotationDbi_1.62.1
                                    rprojroot_2.0.3
                                                               RSQLite_2.3.1
   [40] base64_2.0.1
                                    filelock_1.0.2
                                                               fansi_1.0.4
##
##
   [43] httr_1.4.6
                                    compiler_4.3.2
                                                               beamplot_1.3.1
   [46] here_1.0.1
                                                               bit64_4.0.5
##
                                    rngtools_1.5.2
##
   [49] BiocParallel_1.34.1
                                    DBI_1.1.3
                                                              highr_0.10
##
    [52] HDF5Array_1.28.1
                                    biomaRt_2.56.0
                                                               MASS_7.3-60
##
   [55] openss1_2.0.6
                                                               DelayedArray_0.26.2
                                    rappdirs_0.3.3
##
    [58] rison 0.2.21
                                    glue 1.6.2
                                                               quadprog 1.5-8
   [61] restfulr_0.0.15
                                                              rhdf5filters_1.12.1
##
                                    nlme_3.1-162
##
    [64] grid 4.3.2
                                    generics 0.1.3
                                                               gtable 0.3.3
##
   [67] tzdb_0.3.0
                                    preprocessCore_1.62.1
                                                               tidyr_1.3.0
   [70] data.table 1.14.8
                                    hms 1.1.3
                                                               xml2_1.3.4
##
   [73] utf8_1.2.3
                                    pillar_1.9.0
                                                               stringr_1.5.0
##
    [76] limma 3.56.1
                                    genefilter 1.82.1
##
                                                               splines 4.3.2
##
   [79] dplyr_1.1.2
                                    BiocFileCache_2.8.0
                                                               lattice_0.21-8
   [82] survival_3.5-5
                                    bit_4.0.5
                                                               GEOquery_2.68.0
##
   [85] annotate_1.78.0
                                    tidyselect_1.2.0
                                                               xfun_0.39
##
   [88] scrime_1.3.5
                                    stringi_1.7.12
                                                               yaml_2.3.7
##
   [91] evaluate_0.21
                                    codetools_0.2-19
                                                               tibble_3.2.1
   [94] cli_3.6.1
                                    munsell_0.5.0
                                                               dbplyr_2.3.2
##
   [97] coda_0.19-4
                                    png_0.1-8
                                                               XML_3.99-0.14
## [100] ggplot2_3.4.2
                                    readr_2.1.4
                                                              blob_1.2.4
## [103] prettyunits_1.1.1
                                    mclust_6.0.0
                                                               doRNG_1.8.6
                                   bitops_1.0-7
                                                               scales_1.2.1
## [106] sparseMatrixStats_1.12.0
## [109] illuminaio 0.42.0
                                    purrr 1.0.1
                                                               crayon_1.5.2
## [112] rlang_1.1.1
                                    KEGGREST_1.40.0
```