Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 28.06.2013

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	Aufgabe	1	2	3	4	Σ]
	erreichbare Punkte	10	11	10	9	40	
		10	11	10		10]
	erreichte Punkte]
Bitte							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	dem I)eckbla	tt ein,
rechnen S	ie die Aufgaben auf se	paratei	n Blätte	ern, ni o	c ht auf	dem A	ingabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer a	an.
G	J						,
begründer	n Sie Ihre Antworten a	usführl	lich und	d			
	ie hier an, an welchen ntreten können:	n der fo	olgende	n Term	nine Sie	e nicht	zur mündlichen
	□ Fr., 5.7.2013	}		\square N	Ло., 8.7	7.2013	

1. Im folgenden Beispiel soll ein Windrad mit Generator, dargestellt in Abbildung 1, untersucht werden. Das Windrad besteht aus vier identischen Flügeln mit der Länge l und der Breite b, deren Anstromwinkel α über den Eingang ζ mit $\dot{\alpha} = \zeta \cos(\zeta)$ eingestellt werden kann. Dadurch kann die vom Wind mit der Geschwindigkeit v angeströmte Fläche mit der Modulationsfunktion $k(\alpha) = \cos(\alpha)$ verändert werden. Auf die Flügelflächen wirkt in Drehrichtung der Windruck $p_w = c_p(\alpha) \frac{\rho}{2} v^2$, der das Rad antreibt. Hierbei bezeichnet $c_p(\alpha)$ den Windbeiwert und ρ die Dichte der Luft.

Das Windrad ist über eine starre Welle mit einem Gleichstromgenerator verbunden, der das Moment $\tau_{el}=c_A\Phi i_A$ mit der Maschinenkonstanten $c_A>0$ und dem magnetischen Fluss $\Phi>0$ erzeugt. Das gesamte Trägheitsmoment des Windrads samt Stange und Generator sei Θ . Am Generator liegt die konstante Gleichspannung U_N an. Die induzierte Spannung ergibt sich zu $u_i=c_A\Phi\omega$ mit der Drehwinkelgeschwindigkeit der Maschine ω in rad/s.

Abbildung 1: Windrad mit Generator.

Lösen Sie die nachfolgenden Teilaufgaben:

a) Stellen Sie die Modellgleichungen mit den Zustandsgrößen $\mathbf{x} = \begin{bmatrix} \omega, i_A, \alpha \end{bmatrix}^T$ in 5 P.| der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$
$$y = h(\mathbf{x}, \mathbf{u})$$

mit dem Eingang $\mathbf{u} = \begin{bmatrix} v, \zeta \end{bmatrix}^T$ und dem Ausgang $\mathbf{y} = i_A$ dar.

Hinweis: Das durch den Winddruck p_w erzeugte Drehmoment auf einen Flügel kann durch Integration über den Hebelarm s

$$\tau_F = \int_s p_w k(\alpha) b s' \mathrm{d}s'$$

berechnet werden.

- b) Berechnen Sie die Ruhelagen des Systems für eine konstante Windgeschwin- 2 P.| digkeit v_R und mit $\zeta_R=0$.
- c) Linearisieren Sie das mathematische Modell um die berechnete Ruhelage \mathbf{x}_R 3 P.| und stellen Sie das linearisierte System in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{u}$$
$$\Delta y = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{u}$$

dar. Ist die Ruhelage des linearisierten autonomen Systems asymptotisch stabil? Begründen Sie Ihre Antwort.

2. Gegeben ist das autonome System

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
 mit $\mathbf{A} = \begin{bmatrix} 2c & -2 \\ 5 + 3c + \frac{1}{2}c^2 & -6 \end{bmatrix}$.

- a) Geben Sie ein Intervall für den konstanten Parameter $c \in \mathbb{R}$ an, sodass die 2P.| Ruhelage \mathbf{x}_R für jeden Anfangswert $\mathbf{x}_0 \in \mathbb{R}^2$ global asymptotisch stabil ist.
- b) Bestimmen Sie den Zeitverlauf von $\mathbf{x}(t)$ für den Anfangswert $\mathbf{x}_0 \in \mathbb{R}^2$. 4 P.| **Hinweis:** Die Eigenvektoren der gegebenen Dynamikmatrix können mit

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ \frac{c+3-I}{2} \end{bmatrix}$$
 und $\mathbf{v}_2 = \begin{bmatrix} 1 \\ \frac{c+3+I}{2} \end{bmatrix}$

angenommen werden.

- c) Bestimmen Sie den Anfangswert $\mathbf{x}_0 = \mathbf{x}(t_0)$, $t_0 = 0$, wenn für die Konstante 2 P.| c = 1 gilt und zum Zeitpunkt $t_1 = \frac{1}{2}\pi$ der Zustand $\mathbf{x}(t_1) = \begin{bmatrix} 2e^{-\pi} \\ 3e^{-\pi} \end{bmatrix}$ lautet.
- d) Schreiben Sie das gegebene System in zeitdiskreter Darstellung mit der Ab- 1 P.| tastzeit $T_a=\pi$ an.
- e) Bestimmen Sie den Verlauf des Zustands \mathbf{x}_k für den Anfangswert $\mathbf{x}_0 \in \mathbb{R}^2$. 2 P.

3. Gegeben ist der Regelkreis laut Abbildung 2 mit den Übertragungsfunktionen

$$G_1 = \frac{V}{s}$$
 , $G_2 = \frac{s + 0.5}{2s^2 + 5s + 8}$

mit der Verstärkung V = 20.

Abbildung 2: Regelkreis.

Bearbeiten Sie die folgenden Teilaufgaben.

a) Zeichnen Sie das Bode-Diagramm für die Übertragungsfunktion des offenen $4\,\mathrm{P.}|$ Kreises L. Nutzen Sie hierfür die bereitgestellte Vorlage. Ist der offene Kreis BIBO-stabil? Beurteilen Sie mit Hilfe des Bode-Diagramms die Stabilität des geschlossenen Kreises.

Hinweis: $\log(\frac{5}{4}) \approx 0.1$

b) Welche der beiden Ortskurven in Abbildung 3 beschreibt den offenen Kreis L? 2 P.| Begründen Sie ihre Antwort ausführlich.

Abbildung 3: Ortskurven zu Aufgabe 3.b).

5

- c) Berechnen Sie den Ausgang y(t) des offenen Kreises L für $t \to \infty$ für einen 2 P. Impuls am Eingang $u = \delta(0)$ sowie für den Einheitssprung $u = \sigma(0)$.
- d) Berechnen Sie die eingeschwungene Lösung y(t) des geschlossenen Kreises T 2 P.| für den Eingang $u(t) = \sin(t)$.

4. Gegeben ist das zeitdiskrete System

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 0 & 0.5 \\ 1 & 0 & -1.7 \\ 0 & 1 & 2 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0.3 \\ 0 \\ 0 \end{bmatrix} u_k$$
$$y = [0, 0, 1] \mathbf{x}_k.$$

- a) Bestimmen Sie die zeitdiskrete Übertragungsfunktion G(z) des gegebenen Sy- 1 P. | stems.
- b) Zeigen Sie, dass das System vollständig beobachtbar ist. 2 P.
- c) Entwerfen Sie einen vollständigen Luenberger Beobachter für den Zustand \mathbf{x} . 3 P.| Die Eigenwerte der Dynamikmatrix $\mathbf{\Phi}_e$ des Fehlersystems $\mathbf{e}_{k+1} = \mathbf{\Phi}_e \mathbf{e}_k$ mit $\mathbf{e} = \hat{\mathbf{x}} \mathbf{x}$ sollen die Werte $\lambda_1 = -0.5$, $\lambda_2 = -0.5$ und $\lambda_3 = 0.2$ annehmen.
- d) Untersuchen Sie mit Hilfe des Jury Verfahrens die Stabilität des in Punkt c) 3 P.| entworfenen Beobachters, wenn sich die Dynamikmatrix des gegebenen Systems auf

$$\mathbf{\Phi}_a = \left[\begin{array}{ccc} 0 & 0 & -0.05 \\ 1 & 0 & 0.1 \\ 0 & 1 & 1.8 \end{array} \right]$$

ändert.

