Name: K.Sri Hari

Registration Number: 21BCE9652

E-mail id: srihari.21bce9652@vitapstudent.ac.in

CAMPUS: VIT-AP

1. IMPORT THE LIBRARIES

In [1]: **import** numpy **as** np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns
from scipy import stats

from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

2. IMPORT THE DATASET

In [2]: df=pd.read_csv("Titanic-Dataset.csv")

In [3]:	df												
Out[3]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
	888	889	0	3	Johnston, Miss. Catherine	female	NaN	1	2	W./C. 6607	23.4500	NaN	

				Helen "Carrie"								
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

	891 rows × 12	colur	nns										
In [4]:	df.head()												
Out[4]:	Passenger	ld Su	ırvived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	(
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	(
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	(
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	(
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	\$
In [5]:	df.tail()												
Out[5]:	Passeng	jerld	Survived	Pclass	s Name	e Se	c Age	SibSp) Parch	n Ticket	Fare C	abin Eı	mbarked

In [5]: df.t	tail()	
--------------	--------	--

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

In [6]: df.shape

```
Out[6]: (891, 12)
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
             Column
                         Non-Null Count
         #
                                         Dtype
                         -----
         0
            PassengerId 891 non-null
                                         int64
         1
            Survived
                         891 non-null
                                         int64
         2
             Pclass
                         891 non-null
                                         int64
         3
             Name
                         891 non-null
                                         object
         4
            Sex
                         891 non-null
                                         object
         5
            Age
                        714 non-null
                                         float64
         6
             SibSp
                         891 non-null
                                         int64
         7
             Parch
                         891 non-null
                                         int64
         8
            Ticket
                         891 non-null
                                         object
         9
             Fare
                         891 non-null
                                         float64
         10 Cabin
                         204 non-null
                                         object
         11 Embarked
                        889 non-null
                                         object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
        df.describe()
In [8]:
Out[8]:
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [9]: corr=df.corr() corr

C:\Temp\ipykernel_24488\3182140910.py:1: FutureWarning: The default value of numeric_onl
y in DataFrame.corr is deprecated. In a future version, it will default to False. Select
only valid columns or specify the value of numeric_only to silence this warning.
corr=df.corr()

Out[9]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

```
In [10]: plt.subplots(figsize=(15,10))
```

sns.heatmap(corr,annot=True)

Out[10]: <AxesSubplot: >

In [11]: df.Survived.value_counts()

Out[11]: 0 549 1 342

Name: Survived, dtype: int64

In [12]: df.Sex.value_counts()

Out[12]: male 577 female 314

Name: Sex, dtype: int64

In [13]: df.Embarked.value_counts()

Out[13]: S 644 C 168 Q 77

Name: Embarked, dtype: int64

3. CHECK FOR NULL VALUES

In [14]: df.isnull().any()

Out[14]: PassengerId False Survived False Pclass False Name False Sex False

```
SibSp
                        False
         Parch
                        False
         Ticket
                        False
         Fare
                        False
         Cabin
                         True
         Embarked
                         True
         dtype: bool
In [15]:
         df.isnull().sum()
         PassengerId
                          0
Out[15]:
         Survived
                          0
         Pclass
                          0
         Name
                          0
         Sex
                          0
                        177
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
                          0
         Fare
                        687
         Cabin
         Embarked
                          2
         dtype: int64
         Fill null values in the 'Age' column with the mean age
         mean_age = df['Age'].mean()
In [16]:
         df['Age'].fillna(mean_age, inplace=True)
         Fill null values in the 'Embarked' column with the most common value
         most_common_embarked = df['Embarked'].mode()[0]
In [17]:
         df['Embarked'].fillna(most_common_embarked, inplace=True)
In [18]:
         df.drop(['Cabin'], axis=1, inplace=True)
         df.drop(['Ticket'], axis=1, inplace=True)
In [19]:
         df.drop(['Name'], axis=1, inplace=True)
In [20]:
In [21]:
         print(df.isnull().sum())
         PassengerId
                        0
         Survived
```

4. Data Visualization

0

0

0

0

0

0

0

0

Pclass

Sex

Age

SibSp

Parch

Embarked

dtype: int64

Fare

Age

True

```
# Visualize the distribution of the 'Survived' column (0 = Not Survived, 1 = Survived)
sns.countplot(data=df, x='Survived')
plt.title('Survival Count')
plt.xlabel('Survived')
```

plt.ylabel('Count')
plt.show()


```
In [23]: #Visualize the distribution of the 'Age' column
    sns.histplot(data=df, x='Age', bins=20, kde=True)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()
```



```
In [25]: #Pair plot for selected numerical columns
    sns.pairplot(data=df[['Fare', 'SibSp', 'Parch']])
    plt.title('Pair Plot')
    plt.show()
```



```
In [26]: corr_matrix = df.corr()
    sns.heatmap(corr_matrix, annot=True,cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```

C:\Temp\ipykernel_24488\554220597.py:1: FutureWarning: The default value of numeric_only
in DataFrame.corr is deprecated. In a future version, it will default to False. Select o
nly valid columns or specify the value of numeric_only to silence this warning.
 corr_matrix = df.corr()

5. Detect and Handle Outliers

```
In [27]:
         z_scores = np.abs(stats.zscore(df['Age']))
         max_threshold=3
         outliers = df['Age'][z_scores > max_threshold]
         # Print and visualize the outliers
         print("Outliers detected using Z-Score:")
         print(outliers)
         Outliers detected using Z-Score:
         96
                71.0
         116
                70.5
         493
                71.0
         630
                80.0
         672
                70.0
                70.0
         745
         851
                74.0
         Name: Age, dtype: float64
         z_scores = np.abs(stats.zscore(df['Fare']))
In [28]:
         max_threshold=3
         outliers = df['Fare'][z_scores > max_threshold]
         # Print and visualize the outliers
         print("Outliers detected using Z-Score:")
         print(outliers)
         Outliers detected using Z-Score:
         27
                263.0000
         88
                263.0000
                247.5208
         118
```

```
299
                  247.5208
          311
                  262.3750
          341
                  263.0000
          377
                  211.5000
          380
                  227.5250
          438
                  263.0000
          527
                  221.7792
          557
                  227,5250
          679
                  512.3292
          689
                  211.3375
          700
                  227.5250
          716
                  227.5250
          730
                  211.3375
          737
                  512.3292
          742
                  262.3750
          779
                  211.3375
          Name: Fare, dtype: float64
          column_name = 'Fare'
In [29]:
          # Calculate the first quartile (Q1) and third quartile (Q3)
          Q1 = df[column_name].quantile(0.25)
          Q3 = df[column_name].quantile(0.75)
          # Calculate the IQR
          IQR = Q3 - Q1
          # Define the lower and upper bounds for outliers
          lower\_bound = Q1 - 1.5 * IQR
          upper\_bound = Q3 + 1.5 * IQR
          # Filter rows with values outside the IQR bounds
          df_cleaned = df[(df[column_name] > lower_bound) & (df[column_name] <upper_bound)]</pre>
          # Display the original and cleaned DataFrame sizes
          print(f"Original DataFrame size: {df.shape}")
          print(f"Cleaned DataFrame size: {df_cleaned.shape}")
          df_cleaned
          Original DataFrame size: (891, 9)
          Cleaned DataFrame size: (775, 9)
               Passengerld Survived Pclass
                                                                           Fare Embarked
Out[29]:
                                             Sex
                                                       Age SibSp Parch
            0
                                 0
                                            male 22.000000
                                                                          7.2500
                                                                                        S
                        1
                                        3
                                                               1
                                                                      0
                                                                                        S
            2
                        3
                                 1
                                          female 26.000000
                                                               0
                                                                      0
                                                                          7.9250
                                                                                        S
            3
                        4
                                 1
                                           female 35.000000
                                                               1
                                                                        53.1000
                                                                                        S
                        5
                                 0
                                        3
                                            male 35.000000
                                                               0
                                                                          8.0500
            4
                                                                      0
            5
                        6
                                 0
                                        3
                                                  29.699118
                                                               0
                                                                          8.4583
                                                                                        Q
                                            male
                                                                      0
            ...
          886
                      887
                                 0
                                        2
                                            male 27.000000
                                                               0
                                                                      0 13.0000
                                                                                        S
                                                                                        S
          887
                      888
                                 1
                                          female 19.000000
                                                               0
                                                                      0 30.0000
                                                                                        S
          888
                      889
                                 0
                                        3
                                           female 29.699118
                                                               1
                                                                      2 23,4500
                                                                                        С
                                            male 26.000000
                                                               0
                                                                      0 30.0000
          889
                      890
                                 1
                                        1
                                                               0
          890
                      891
                                 0
                                        3
                                                 32.000000
                                                                         7.7500
                                                                                        Q
                                            male
```

775 rows × 9 columns

258

512.3292

```
800
           600
           400
           200
             0
               PassengerIdSurvived
                                      Pclass
                                                          SibSp
                                                                    Parch
                                                 Age
                                                                               Fare
          df=df_cleaned
In [31]:
          Splitting Dependent and Independent variables.
          x=df.drop('Survived', axis=1)
In [32]:
          y=df['Survived']
          x.head()
In [33]:
                                                                      Embarked
Out[33]:
             Passengerld Pclass
                                  Sex
                                            Age
                                                 SibSp
                                                      Parch
                                                                Fare
          0
                      1
                             3
                                 male
                                       22.000000
                                                     1
                                                               7.2500
                                                                             S
          2
                      3
                                female
                                       26.000000
                                                               7.9250
                                                                             S
          3
                      4
                                       35.000000
                                                              53.1000
                                                                             S
                                female
                                                     1
                      5
                                                                             S
                                       35.000000
                                                               8.0500
                                 male
          5
                      6
                             3
                                       29.699118
                                                     0
                                                               8.4583
                                                                             Q
                                 male
          y.head()
In [34]:
```

7. Perform Encoding

Name: Survived, dtype: int64

sns.boxplot(df_cleaned)

<AxesSubplot: >

In [30]:

Out[30]:

Out[34]:

1

0

4

```
en = LabelEncoder()
In [35]:
           x['Sex'] = en.fit_transform(x['Sex'])
           x.head()
In [36]:
              Passengerld
                           Pclass
                                                  SibSp
                                                         Parch
                                                                   Fare
                                                                         Embarked
Out[36]:
                                             Age
           0
                                                                                 S
                        1
                                3
                                       22.000000
                                                       1
                                                              0
                                                                  7.2500
           2
                                3
                                        26.000000
                                                       0
                                                                  7.9250
                                                                                 S
           3
                        4
                                1
                                        35.000000
                                                       1
                                                              0
                                                                53.1000
                                                                                 S
                        5
                                                                                 S
           4
                                3
                                        35.000000
                                                       0
                                                                  8.0500
           5
                        6
                                3
                                        29.699118
                                                       0
                                                              0
                                                                  8.4583
                                                                                 Q
In [37]:
           x = pd.get_dummies(x,columns=['Embarked'])
In [38]:
           x.head()
              Passengerld Pclass Sex
                                             Age
                                                  SibSp Parch
                                                                         Embarked_C Embarked_Q Embarked_S
Out[38]:
                                                                   Fare
           0
                        1
                                3
                                       22.000000
                                                       1
                                                              0
                                                                  7.2500
                                                                                   0
                                                                                                 0
                                                                                                              1
           2
                        3
                                                                                   0
                                                                                                 0
                                3
                                        26.000000
                                                       0
                                                              0
                                                                  7.9250
                                                                                                              1
           3
                        4
                                1
                                        35.000000
                                                                 53.1000
                                                                                   0
                                                                                                 0
                                                                                                              1
           4
                        5
                                3
                                        35.000000
                                                       0
                                                              0
                                                                  8.0500
                                                                                   0
                                                                                                 0
                                                                                                              1
                        6
                                3
                                                                                                              0
           5
                                       29.699118
                                                       0
                                                              0
                                                                                   0
                                                                                                 1
                                                                  8.4583
           8. Feature Scaling
```

```
In [39]:
           scale = StandardScaler()
           x[['Age', 'Fare']] = scale.fit_transform(x[['Age', 'Fare']])
           x.head()
In [40]:
              PassengerId
                           Pclass
                                   Sex
                                             Age
                                                  SibSp
                                                         Parch
                                                                     Fare
                                                                           Embarked_C
                                                                                        Embarked_Q
                                                                                                     Embarked_S
Out[40]:
           0
                                                                                     0
                        1
                                3
                                        -0.556219
                                                                -0.779117
                                                                                                   0
                                                                                                                1
                        3
           2
                                3
                                        -0.243027
                                                      0
                                                                -0.729373
                                                                                     0
                                                                                                  0
                                                                                                               1
           3
                                                                                     0
                                                                                                  0
                        4
                                        0.461654
                                                                 2.599828
                                1
                                                      1
                                                                                                               1
                                3
                                        0.461654
                                                                -0.720161
                                                                                                   0
                                                                                                                1
                        6
           5
                                3
                                        0.046606
                                                      0
                                                             0 -0.690071
                                                                                     0
                                                                                                   1
                                                                                                               0
```

9. Splitting the data into Train and Test

```
In [41]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42
In [42]: print(x_train.shape)
    print(y_train.shape)
    print(y_train.shape)
    print(y_test.shape)
    (620, 10)
    (155, 10)
```

(620,) (155,)