

Preliminary Data Sheet

SV6158 series

Single-chip IEEE 802.11b/g/n WLAN and BLE Combo SoC with SDIO Interface

General Description

The SV6158 series is a fully integrated SoC with 2.4GHz band 1T1R 11b/g/n Wi-Fi, Bluetooth Low Energy 5.0, and MCU. A single chip MCU SoC targets for applications requiring optimal RF performance, strong security, low power consumption, and small form-factor with minimal external components. Equipped with a proven popular SDK, the SV6158 provides customers a fast time to market solution by leveraging existing software eco system, and still keep possibilities for product differentiation.

The SV6158 series supports BLE Master, Slave, Advertiser, Scanner roles. It supports standard HCl in BLE side.

The SV6158 integrated the Balun, T/R switch, LNA, PA with advanced architecture enhancement to achieve great receive sensitivity for noisy home scenarios.

The SV6158's highly integrated on-chip Power Management Unit (PMU) supports 3.3~5V wide range supply voltage switching regulators and LDOs to provide noise isolation in between digital and analog domains minimizing external Bill of Material (BoM).

The SV6158 features an application processor subsystem based on Andes D10F 32-bit RISC floating point core which runs at up to 320MHz. The chip includes up to 384KB of embedded SRAM, split among D10F's local TCMs and system SRAM. The entire 384KB SRAM is peripheral addressable.

The SV6158 has a built-in hardware crypto

engine, a True Random Number Generator (TRNG) and a 2304b e-fuse block for storing chip-specific information. This combining with high efficiency security middleware library, including Wi-Fi WPA3, the SV6158 builds strong secure system products for smart home applications.

The SV6158 has an average of 210uA DTIM3 current, 33mA receiving current and 212mA transmitting current.

SV6158 Series Key Points

- IEEE 802.11 b/g/n compliant
- Bluetooth version 5.0
- TX power +20 dBm (at pin)
- RX sensitivity -97.5 dBm (at pin)
- Single power supply, range from 3.3 ~ 5V
- Security subsystem
- AES/SHA/ECC HW crypto engine
- 2304b e-fuse, TRNG
- Wi-Fi Alliance WPA3 support
- CPU core speed up to 320MHz

- Internal SRAM up to 384KB
- Low power feature
- DTIM3: 210uA
- STA/AP: 55mA (Tx 3Mbps, Continue Rx, 2min average)
- Support 24/26/40 MHz crystal oscillator
- Internal 32.768 KHz RC clock with calibration
- Package: QFN32, 4x4 mm, 0.4mm pitch
- Temperature range: -40°C to +85°C

SV6158 System Block Diagram

Table 1: Comparison of Feature for SV6158 Series

Part number	Feature
SV6158	Wi-Fi
SV6158-B	Wi-Fi+ BLE

Liability Disclaimer

Shenzhen iComm Semiconductor Co., Ltd. reserves the right to make changes without further notice to the product. Shenzhen iComm Semiconductor Co., Ltd. does not assume any liability arising out of the application or use of any product or circuits described herein.

Revision History

Version	Date	Description
0.1	2020/11/05	Draft
0.2	2020/12/07	 Added Table 1: Comparison of Feature for SV6158 Series Added BLE Function Added ch.2.4 Power-on Sequence Added ch.3 Interface Description Modified Table 7: ESD Specifications Modified Table 12: Greenfield changed to Mixed mode Modified Table 19: Pinmux for SV6158 Modified 10 Ordering Information Modified Table 9: Recommended Operating Conditions and DC Characteristics Modified Table 10, Table 11 for Frequency value and OSCIN Input Voltage Max. Modified Table 14, Table 15

Table of Contents

1	System Overview	8
1.1	System Block Diagram8	
1.2	General Description8	
1.3	WLAN Features9	
1.4	Bluetooth Features9	
1.5	SYSTEM9	
1.6	HOST Interface10	
1.7	System Clocking and Reset10	
1.8	Design for Test10	
2	Power Supplies and Power Management1	1
2.1	General Description and PMU Power Connection11	
2.2	DLDO12	
2.3	Buck Converter12	
2.4	Power-on Sequence12	
2.4.1	Power-on Sequence with typical power12	
2.4.2	Power-on Sequence with typical power13	
2.5	Reset Control15	
3	Interface Description1	6
3.1	SDIO Characteristics	
4	DC Characteristics	7
4 4.1	Absolute Maximum Ratings17	7
-		.7
4.1	Absolute Maximum Ratings17	.7
4.1 4.2	Absolute Maximum Ratings	.7
4.1 4.2 4.3	Absolute Maximum Ratings	.7
4.1 4.2 4.3 4.4	Absolute Maximum Ratings	.7
4.1 4.2 4.3 4.4 4.5	Absolute Maximum Ratings	.7
4.1 4.2 4.3 4.4 4.5 4.6	Absolute Maximum Ratings	
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Absolute Maximum Ratings	
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Absolute Maximum Ratings	
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1	Absolute Maximum Ratings	:1
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1 5.2	Absolute Maximum Ratings	:1
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1 5.2	Absolute Maximum Ratings	:1
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1 5.2 6 6.1	Absolute Maximum Ratings	:1
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1 5.2 6 6.1 6.2	Absolute Maximum Ratings	:1 :2
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5 5.1 5.2 6 6.1 6.2	Absolute Maximum Ratings	1 2 2

8.3	Mode Selection	28	
8.4	Function Selection For SV6158	28	
9	Package Information		29
10	Ordering Information		31

Lists of Tables

Table 1: Comparison of Feature for SV6158 Series	2
Table 2: Reset Timing Parameters	15
Table 3: SDIO Timing Specifications	16
Table 4: Absolute Maximum Ratings	
Table 5: Environmental Ratings	17
Table 6: The thermal characteristics of the SV6158	18
Table 7: ESD Specifications	18
Table 8: Power-On Hours	18
Table 9: Recommended Operating Conditions and DC Characteristics	19
Table 10: Crystal Oscillator Specifications	21
Table 11: External Clock-Requirements and Performance	21
Table 12: 2.4G WLAN RF Performance Specifications	23
Table 13: Bluetooth RF Performance Specifications	24
Table 14: Power Consumption at DCDC mode (DCDC buck convertor is enable)	25
Table 15: Power Consumption at LDO mode (DCDC buck convertor is disable)	25
Table 16: SV6158 Pin coordination	
Table 17: SV6158 Package Pin-out	27
Table 18: Mode Selection table	28
Table 19: Pinmux for SV6158	28
Table 20: SV6158 Ordering Part Number	31

Lists of Figures

Figure 1: SV6158 Block Diagram	8
Figure 2: SV6158 typical Power Connection	
Figure 3: SV6158 Power Connection with Internal LDO	
Figure 4: Power-on sequence with typical power	13
Figure 5: Reset Timing with typical power	
Figure 6: Power-on sequence with Internal LDO	
Figure 7: Reset Timing with Internal LDO	
Figure 8: SDIO Timing	
Figure 9: RF Front-End Reference Topology for RF Performance	
Figure 10: SV6158 Pin Assignment –QFN32 (top view)	
Figure 11: OFN 4 x 4 mm Package Dimensions	

1 System Overview

1.1 SYSTEM BLOCK DIAGRAM

Figure 1: SV6158 Block Diagram

1.2 GENERAL DESCRIPTION

The SV6158 series WLAN SoC is designed to support IEEE 802.11 b/g/n single spatial stream and Bluetooth 5.0 It is designed with the state of-the-art techniques and process technology to achieve low power consumption and high throughput performance to address the requirement of mobile and handheld devices. The SV6158 WLAN low power function uses the innovative design techniques and the optimized architecture which best utilizes the advanced process technology to reduce active and idle power, and to achieve extreme low power consumption at sleep state to extend the battery life. The SV6158 WLAN A-MPDU Tx function maximizes the throughput performance while achieving the best buffer utilization.

The Bluetooth subsystem contains the Bluetooth radio, modem, and link controller.

1.3 WLAN FEATURES

- IEEE 802.11 b/g/n 1T1R compliant
- IEEE 802.11 d/e/i/k/r/w supported
- Support 20/40MHz up to MCS7 150Mbps
- 802.11n features supported
 - A-MPDU Tx & Rx for high MAC throughput
 - Support immediate Block-Ack
- STA, SoftAP and Sniffer modes supported
- Concurrent AP + STA supported
- Ad-hoc, peer-to-peer and Wi-Fi Direct modes supported
- Low power Tx/Rx for short range scenario
- Low power beacon listen mode
- Low power dormant mode
- WFA features
 - WEP/WPA/WPA2/WPA3
 - WMM
- Short Guard Interval for 802.11n optimal performance
- Greenfield mode for 802.11n optimal performance
- STBC in RX mode
- Tx power: +20 dBm
- Rx sensitivity: -97.5dBm
- Integrated Balun, T/R switch, LNA and PA for 2.4GHz
- Enhanced and robust sensitivity for wider coverage range
- Supports calibration algorithm to handle non-ideal effects from CMOS RF block

1.4 BLUETOOTH FEATURES

- Bluetooth 5.0 Low Energy
- Integrated Balun and PA
- High power mode: up to 10dBm
- Rx sensitivity: -94dBm
- Channel assessment for AFH
- Internal co-existence scheme between Wi-Fi and Bluetooth
- Concurrent slave/advertiser/scanner operations supported
- Master mode supported
- SIG Mesh v1.01 supported
- GATT and Mesh profile
- Data channel long packet supported
- Device Provision Protocol (DPP) with BLE 5.0 Extended Advertising supported

1.5 SYSTEM

- Andes Technology D10F processor w/ ILM/DLM and I-cache/D-cache
- DSP instruction set with SIMD
- Tightly coupled single precision floating point unit (FPU)
- Dedicated 16KB I-cache/D-cache supported
- Memory Protection Unit (MPU) supported

- 128KB ROM and up to 384KB SRAM for Instruction and data SRAM in total
- Low power Dormant mode with 16KB retention SRAM
- Low power Shut-Down mode
- Integrated on-chip Power Management Unit (PMU) support 3.3~5V wide range
- Security and encryption
- AES/SHA/ECC hardware acceleration
- Integrated True Random Number Generator
- Integrated 2304b e-fuse and Secure boot
- Suspend/Wake-up manger controller
- 2DMA, each with 8 channels
- Four millisecond timers
- Four microsecond timers
- Two watchdog timers

1.6 HOST INTERFACE

- SDIO 2.0
 - 1bit/4bits mode supported
 - Support Clock up to 50MHz

1.7 System Clocking and Reset

The SV6158 has a system clocking block and reset which controls the clocks and power going to other internal modules. Its inputs consist of sleep requests from these modules and its outputs consist of clock enable and power signals which are used to gate the clocks going to internal modules. The system clocking and reset block also manages resets going to other modules within the device.

1.8 DESIGN FOR TEST

It also has features which enable testing of digital blocks via ATPG scan, memories via MBIST, analog components, and the radio.

2 POWER SUPPLIES AND POWER MANAGEMENT

2.1 General Description and PMU Power Connection

The power management unit (PMU) contains Low Dropout Regulators (LDOs), buck DC-DC converter and reference bandgap circuit.

The PMU integrates multi-LDOs and one buck converter. Those circuits are optimized for the given functions by balancing quiescent current, dropout voltage, line / load regulation, ripple rejection and output noise.

The input voltage of the buck converter is 3.3V. Its output voltage is 1.1V and feeds into the input power of the RF circuit and DLDO which has 0.8V output voltage for all digital circuits. Figure 2 shows the typical power connection for SV6158. DLDO and some RF circuits are powered by the buck converter output. The VDDIO is a power input which may be 1.8V or 3.3V from the host side. The connection structure is shown in the Figure 2

SV6158 supports 5V input, and internal LDO generates 3.3V through RVD33_OUT for all 3.3V power pins. Figure 3 shows 5V power connection for SV6158. This feature can save one additional LDO component on PCB. The connection structure is shown in the Figure 3

Figure 2: SV6158 typical Power Connection

Figure 3: SV6158 Power Connection with Internal LDO

2.2 DLDO

The DLDO is integrated in the PMU to supply digital core. It converts voltage from 1.1V input to 0.8V output which suits the digital circuits. The input is typically connected to the buck's output.

2.3 Buck Converter

The regulator is a DC-DC step-down converter (buck converter) to source 300mA (max.) with 1.3V to 1.05V programmable output voltage based on the register setting. It supplies power for the RF circuit and DLDO.

2.4 POWER-ON SEQUENCE

2.4.1 Power-on Sequence with typical power

Figure 4 shows the VDD33=3.3V power-on sequence of the SV6158 from power-up to firmware download, including the initial device power-on reset evoked by LDO_EN signal. The LDO_EN input level must be kept above the threshold voltage. After initial power-on, the LDO_EN signal can be held low to turn off the SV6158 or pulsed low to induce a subsequent reset.

After LDO_EN is asserted, the host starts the power-on sequence of the SV6158. From that point, the typical SV6158 power-on sequence is shown below:

- 1. Within T1+2.5ms, the internal power-on reset (POR) will be done. And host could download firmware code of DPLL setting if the crystal is not default setting, 26MHz. The internal running clock is crystal frequency.
- 2. After 100us of DPLL settling time, host could set internal clock to full speed and finish all the downloading of firmware code.

Figure 4: Power-on sequence with typical power

Figure 5: Reset Timing with typical power

2.4.2 POWER-ON SEQUENCE WITH TYPICAL POWER

Figure 6 shows the VBAT=5V power-on sequence of the SV6158 from power-up to firmware download, including the initial device power-on reset evoked by LDO_EN signal. The LDO_EN input level pull high automatically by chip internal VBAT when VBAT input. After initial power-on, the LDO_EN signal can be held low to turn off the SV6158 or pulsed low to induce a subsequent reset.

After LDO_EN is asserted, the host starts the power-on sequence of the SV6158. From that point,

the typical SV6158 power-on sequence is shown below:

- 1. Within T1+3.5ms, the internal power-on reset (POR) will be done. And host could download firmware code of DPLL setting if the crystal is not default setting, 26MHz. The internal running clock is crystal frequency.
- 2. After 100us of DPLL settling time, host could set internal clock to full speed and finish all the downloading of firmware code.

Figure 6: Power-on sequence with Internal LDO

Figure 7: Reset Timing with Internal LDO

Table 2: Reset Timing Parameters

Parameters	Description	Min.	Unit
T ₁	Duration of LDO_EN signal level < VIL_nRST(refer	500	us
	to its value in Table 9: Recommended Operating		
	Conditions and DC Characteristics) to reset the chip		

2.5 RESET CONTROL

The SV6158 **LDO_EN** pin can be used to completely reset the entire chip. After this signal has been de-asserted, the SV6158 is in off mode waiting for host communication. Until then, the MAC, Baseband modem, and MCU subsystem blocks are powered off and all modules are held in reset. Once the host has initiated communication, the SV6158 turns on its crystal and later on DPLL. After all clocks are stable and running, the resets to all blocks are automatically de-asserted.

3 Interface Description

3.1 SDIO CHARACTERISTICS

SDIO is compliant to SDIO specification version 2.0, supporting 1-bit and 4-bit data transfer mode, and compliant to high speed SD Bus

Figure 8: SDIO Timing

Table 3: SDIO Timing Specifications

Parameter	Condition/Notes	Min.	Тур.	Max.	Unit
SDIO clock frequency	-	(TBD)		50	Mhz
SDIO clock high time	tCHL	7	1	i	ns
SDIO clock low time	tCLH	7	1	i	ns
SDIO input setup time	tDVCH	6	1	1	ns
SDIO input hold time	tCHDX	2	-	-	ns
SDIO output delay	Min.: tCHQX, Max.: tCHQV	2.5	-	14	ns

4 DC CHARACTERISTICS

4.1 ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings in Table 4 indicate levels where permanent damage to the device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.

Symbol Description Unit **Max Rating** (domain) AVDD11 SX VDD input for analog 1.1V -0.3 to 3.6 V ٧ AVDD11_RF VDD input for analog 1.1V -0.3 to 3.6 AVDD33_SX VDD input for external components -0.3 to 3.6 I/O control AVDD33_PA VDD input for external components -0.3 to 3.6 V I/O control VDD input for external components AVDD33_TX -0.3 to 3.6 I/O control V **DVDDIO1** VDD input for GPIO pins -0.3 to 3.6 **DVDDIO2** VDD input for GPIO pins -0.3 to 3.6 V ٧ **DVDDIO3** VDD input for GPIO pins -0.3 to 3.6 DVDD08_DIG VDD output for internal digital circuit -0.3 to 1.0 V **DVDD11 DIG** VDD input for digital circuit's LDO -0.3 to 1.4 V **VBAT** VDD input for VBAT -0.3 to 5.5 **AVDD33 DCDC** -0.3 to 3.6 VDD input for DCDC

Table 4: Absolute Maximum Ratings

4.2 ENVIRONMENTAL RATINGS

The environmental ratings are shown in Table 5

Table 5: Environmental Ratings

	Part Number	Value	Units
Operating Temperature(T _{A)}	SV6158 series	-40 to +85	°C

4.3 STORAGE CONDITION

The calculated shelf life in sealed bag is 12 months if stored between 0°C and 40°C at less than 90% relative humidity (RH). After the bag is opened, devices that are subjected to solder reflow or other high temperature processes must be handled in the following manner:

- a) Mounted within 168-hours of factory conditions < 30 °C /60%RH
- b) Storage humidity needs to maintained at <10% RH
- c) Baking is necessary if customer exposes the component to air over 168 hours, baking condition: 125°C / 8hours

4.4 THERMAL CHARACTERISTICS

Table 6: The thermal characteristics of the SV6158

Thermal characteristics without external heat sink in still air condition

Symbol	Description	Тур.	Unit
Tı	Maximum Junction Temperature (Plastic Package)		°C
θ_{JA}	Thermal Resistance θ _{JA} (°C /W) for JEDEC 4L system PCB		°C/W
θις	Thermal Resistance θ_{JC} (°C /W) for JEDEC 4L system PCB	TBD	°C/W
Ψ _{Jt}	Thermal Characterization parameter Ψ_{Jt} (°C /W) for JEDEC 4L system PCB	4.13	°C/W
	Maximum Lead Temperature (Soldering 10s)	260	°C

Notes: * JEDEC 51-7 system FR4 PCB size: 3" x 4.5" (76.2 x 114.3 mm)

4.5 ELECTROSTATIC DISCHARGE SPECIFICATIONS

This is an ESD sensitive product. Observe precaution and handle with care. Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and heel grounding straps to discharge static electricity is required when handling these devices.

Table 7: ESD Specifications

ESD Mode	Standard	Pin Name	Value	Unit
Human Body	JEDEC EIA/JESD22-A114	All pins exclude XO/XI	±3000	V
Mode (HBM)		XO/XI	±2000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process

4.6 Power-On Hours(POH)

This information is provided solely for your convenience and does not extend or modify the warranty provided under iComm's standard terms and conditions for iComm semiconductor products.

Table 8: Power-On Hours

OPERATION CONDITION	Part Number	Power-On Hours(POH)(hours)
T _A up to 85°C°	SV6158	87600

a. The TX duty cycle (power amplifier ON time) is assumed to be 10% of the device POH. Of the remaining 90% of the time, the device can be in any other state.

^{*} Thermal characteristics without external heat sink in still air condition

4.7 RECOMMENDED OPERATING CONDITIONS AND DC CHARACTERISTICS

Table 9: Recommended Operating Conditions and DC Characteristics

Domain	Description	Min.	Тур.	Max.	Unit
(Symbol)	·		,		
AVDD11_SX	VDD input for analog 1.1V		1.1		V
AVDD11_RF	VDD input for analog 1.1V		1.1		V
AVDD33_SX	VDD input for external components	2.1	3.3	3.46	V
	I/O control				
AVDD33_PA	VDD input for external components	2.1	3.3	3.46	V
	I/O control				
AVDD33_TX	VDD input for external components	2.1	3.3	3.46	V
	I/O control				
DVDDIO1	VDD input for GPIO pins	1.75	3.3	3.46	V
DVDDIO2	VDD input for GPIO pins	1.75	3.3	3.46	V
DVDDIO3	VDD input for GPIO pins	1.75	3.3	3.46	V
DVDD08_DIG	VDD output for internal digital circuit		0.8		V
DVDD11_DIG	VDD input for digital circuit's LDO		1.1		V
VBAT with 5v*a	VDD input	3.13	5	5.25	V
RVDD33*a	VDD output		3.3		V
VBAT with 0v*b	VDD input/VDD output		0		V
AVDD33_DCDC	VDD input for DCDC	2.1	3.3	3.46	V
(V _{IL})	Input Low voltage when VDDIO=3.3V	-0.3		0.8	V
(V _{IH})	Input High voltage when VDDIO=3.3V	2		3.6	V
(V _{T+})	Schmitt trigger low to high threshold	1.52	1.63	1.77	V
	voltage when VDDIO=3.3V				
(V _{T-})	Schmitt trigger high to low threshold	1.29	1.41	1.56	V
	voltage when VDDIO=3.3V				
(V _{OL})	Output low voltage when VDDIO=3.3V			0.4	V
(V _{OH})	Output high voltage when VDDIO=3.3V	2.4			V
(R _{PD})	Input weakly pull-down resistance				ΚΩ
	when VDDIO=3.3V.				
	All GPIO pins have internal weakly pull-				
	down option except that GPIO_5 has				
	internal weakly pull-up option				
(R _{PU})	Input weakly pull-high resistance when				ΚΩ
	VDDIO=3.3V.				
	All GPIO pins have internal weakly pull-				
	down option except that GPIO_5 has				
	internal weakly pull-up option				
VIH_nRST	Chip reset release voltage		>1		V
VIL_nRST	Chip reset voltage		<0.1		V

(I _{OL})	Low level output current @ Vol(max),		mA
	8mA setting		
	Low level output current @ Vol(max),		mA
	12mA setting		
(Іон)	High level output current @ V _{он} (min),		mA
	8mA setting		
	High level output current @ V _{он} (min),		mA
	12mA setting		

^{*}a: In 5v application, VBAT connects to 5V, RVDD33 can provide 3.3V.

^{*}b: In 3.3v application, VBAT connects to 0v, RVDD33 is connected to 0v as well.

5 FREQUENCY REFERENCES

5.1 CRYSTAL OSCILLATOR SPECIFICATIONS

Table 10: Crystal Oscillator Specifications

Parameter	Condition/Notes	Min.	Тур.	Max.	Unit
Frequency	-		24/26	5/40 MHz	
Crystal load Capacitance	_	ı	10		pF
ESR	-	_	_	70	Ω
Frequency tolerance Initial and over temperature	_	-20	-	20	ppm

5.2 EXTERNAL CLOCK-REQUIREMENTS AND PERFORMANCE

Table 11: External Clock-Requirements and Performance

Parameter	Condition/Notes	Min.	Тур.	Max.	Unit
Frequency	-		24/26	5/40 MHz	
OSCIN Input Voltage	AC-couple analog signal	400	I	900	mV_{PP}
Frequency tolerance Initial and over temperature	-	-20	-	20	ppm
Duty Cycle	26MHz clock	40	50	60	%
	26MHz clock at 1KHz offset	_	_	-119	dBc/Hz
Phase Noise	26MHz clock at 10KHz offset	_	_	-129	dBc/Hz
(802.11b/g)	26MHz clock at 100KHz offset	_	_	-134	dBc/Hz
	26MHz clock at 1MHz offset	-	-	-139	dBc/Hz
	26MHz clock at 1KHz offset	-	_	-125	dBc/Hz
Phase Noise	26MHz clock at 10KHz offset	_	_	-135	dBc/Hz
(802.11n 2.4GHz)	26MHz clock at 100KHz offset	-	_	-140	dBc/Hz
	26MHz clock at 1MHz offset	_	-	-145	dBc/Hz

6 ELECTRICAL SPECIFICATIONS

Figure 9: RF Front-End Reference Topology for RF Performance

Note: All specifications are measured at the RF Port unless otherwise specified.

6.1 WLAN RF PERFORMANCE SPECIFICATIONS

Table 12: 2.4G WLAN RF Performance Specifications

Parameter	Condition/Notes	Min.	Тур.	Max.	Unit
Frequency Range		2412	-	2484	MHz
	CCK, 1 Mbps		-97.5		dBm
Rx Sensitivity	CCK, 2 Mbps		-94.5		dBm
(CCK)	CCK, 5.5 Mbps		-92.5		dBm
	CCK, 11 Mbps		-89.0		dBm
	OFDM, 6 Mbps		-92.5		dBm
	OFDM, 9 Mbps		-91.5		dBm
	OFDM, 12 Mbps		-89.5		dBm
Rx Sensitivity	OFDM, 18 Mbps		-87.5		dBm
(OFDM)	OFDM, 24 Mbps		-84.5		dBm
	OFDM, 36 Mbps		-81.5		dBm
	OFDM, 48 Mbps		-76.5		dBm
	OFDM, 54 Mbps		-75.5		dBm
	HT20, MCS0		-92.0		dBm
Rx Sensitivity	HT20, MCS1		-89.0		dBm
(HT20)	HT20, MCS2		-87.0		dBm
Mixed mode	HT20, MCS3		-84.0		dBm
800nS GI	HT20, MCS4		-81.0		dBm
Non-STBC	HT20, MCS5		-76.0		dBm
	HT20, MCS6		-75.0		dBm
	HT20, MCS7		-73.5		dBm
Parameter	Condition/Notes	Min.	Тур.	Max.	Unit
RX Adjacent Channel	1 Mbps		41		dB
Rejection (CCK)	11 Mbps		41		dB
RX Adjacent Channel	6 Mbps		39		dB
Rejection (OFDM)	54 Mbps		23		dB
RX Adjacent Channel	MCS0		38		dB
Rejection (HT20)	MCS7		21		dB
RX Adjacent Channel	MCS0		30		dB
Rejection (HT40)	MCS7		11		dB
	CCK, 1-11 Mbps		19		dBm
TX Output Power	OFDM, 54 Mbps		15		dBm
(with PADPD)	HT20, MCS7		15		dBm

6.2 BLUETOOTH RF PERFORMANCE SPECIFICATIONS

Table 13: Bluetooth RF Performance Specifications

TX Characteristic	Min.	Тур.	Max.	Unit
Frequency Range	2402	-	2480	MHz
Output power	0	6	10	dBm
Carrier Frequency Offset and Drift				
Frequency Offset	-150		150	KHz
Frequency Drift	-50		50	KHz
Max Drift Rate	-20		20	KHz/50us
Modulation Characteristic				
	225		275	KHz
	185			KHz
△f1avg/△f2avg	0.8	0.94		
In-band Spurious Emission				
±2M Offset			-20	dBm
> ±3MHz offset			-30	dBm

RX Characteristic	Min.	Тур.	Max.	Unit
Frequency Range	2402	-	2480	MHz
Receiver Sensitivity		-94		dBm
C/I Co-channel		6.5	21	dB
C/I 1MHz		4	15	dB
C/I 2MHz		-21	-17	dB
C/I ≥3MHz		-30	-27	dB
C/I Image channel		NA		dB
C/I Image 1MHz		NA		dB
Inter-modulation	-50	-35		dBm
Out-of-band blocking				
30MHz to 2000MHz	-30			dBm
2001MHz to 2339MHz	-35			dBm
2501MHz to 3000MHz	-35	_	_	dBm
3001MHz to 12.75GHz	-30			dBm

7 System Power Consumption

Table 14: Power Consumption at DCDC mode (DCDC buck convertor is enable)

WLAN Operational Modes	Typ. ^c	Unit
OFF ^a	<1	uA
Rx, CCK, 1 Mbps ^e	33	mA
Rx, OFDM, 54 Mbps ^e	33	mA
Rx, HT20, MCS7 ^e	33	mA
Rx, HT40, MCS7 ^e	33	mA
Tx, CCK, 1 Mbps@19dBm ^d	212	mA
Tx, OFDM, 54 Mbps@15dBm ^d	182	mA
Tx, HT20, MCS7@15dBm ^d	183	mA
Tx, HT40, MCS7@15dBm ^d	183	mA
Power-saving(MCU_off) ^b , DTIM1	0.43	mA
Power-saving(MCU_off) ^b , DTIM3	0.21	mA

Table 15: Power Consumption at LDO mode (DCDC buck convertor is disable)

WLAN Operational Modes	Typ. ^c	Unit
OFF ^a	<1	uA
Rx, CCK, 1 Mbps ^e	80	mA
Rx, OFDM, 54 Mbps ^e	80	mA
Rx, HT20, MCS7 ^e	80	mA
Rx, HT40, MCS7 ^e	80	mA
Tx, CCK, 1 Mbps@19dBm ^d	243	mA
Tx, OFDM, 54 Mbps@15dBm ^d	214	mA
Tx, HT20, MCS7@15dBm ^d	215	mA
Tx, HT40, MCS7@15dBm ^d	215	mA
Power-saving(MCU_off) ^b , DTIM1	1.20	mA
Power-saving(MCU_off) ^b , DTIM3	0.45	mA

- a. OFF mode test condition: VBAT=GND, RVDD33=GND, VDD=3.3V, LDO EN=0V
- b. Intra-beacon Sleep when MCU is turn off
- c. Conditions: VBAT=GND, RVDD33=GND, VDD=3.3V
- d. When the CPU CLK is 160MHz, the Tx current increases 10mA, when the CPU CLK is 320MHz, the Tx current increases 20mA
- e. When the CPU CLK is 160MHz, the Rx current increases 6mA, when the CPU CLK is 320MHz, the Rx current increases 12mA

8 PIN DESCRIPTIONS

8.1 PIN LAYOUT

This section contains a listing of the signal descriptions (see Figure 10 for the SV6158 package pin-out)

Figure 10: SV6158 Pin Assignment –QFN32 (top view)

		32	31	30	29	28	27	26	25		
		AVDD11_SX	GP1037	GPIO36	ΙX	ОХ	GP1033	DVDDIO3	DVDDIO2		
1	AVDD11_RF									GPIO22	24
2	AVDD33_SX									GPIO21	23
3	AVSS_PA									GPIO20	22
4	RF_IO_2G	SV6158			GPIO19	21					
5	AVDD33_PA			3	VO	13	0			GPIO18	20
6	AVDD33_TX									GPIO17	19
7	GPIO00									GPIO14	18
8	GPIO01									DVDD08_DIG	17
		DVDDIO1	LDO_EN	GPIO12	AVDD33_DCDC	RVDD33_OUT	VBAT	AVDDLX_DCDC	DVDD11_DIG		
		9	10	11	12	13	14	15	16		

Table 16: SV6158 Pin coordination

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
1	AVDD11_RF	2	AVDD33_SX	3	AVSS_PA	4	RF_IO_2G
5	AVDD33_PA	6	AVDD33_TX	7	GPIO00	8	GPIO01
9	DVDDIO1	10	LDO_EN	11	GPIO12	12	AVDD33_DCDC
13	RVDD33_OUT	14	VBAT	15	AVDDLX_DCDC	16	DVDD11_DIG
17	DVDD08_DIG	18	GPIO14	19	GPIO17	20	GPIO18
21	GPIO19	22	GPIO20	23	GPIO21	24	GPIO22
25	DVDDIO2	26	DVDDIO3	27	GPIO33	28	ХО
29	XI	30	GPIO36	31	GPIO37	32	AVDD11_SX

8.2 PIN DESCRIPTION

Table 17: SV6158 Package Pin-out

Table 17: SV6158 Package Pin-out							
Pin Name	Pin No.	Type*	Description				
General purpose I/O							
GPIO00	7	1/0	General Purpose I/O Pins				
GPIO01	8	1/0	General Purpose I/O Pins				
GPIO12	11	1/0	Strapping Purpose I/O Pins				
GPIO14	18	1/0	General Purpose I/O Pins				
GPIO17	19	1/0	General Purpose I/O Pins				
GPIO18	20	1/0	General Purpose I/O Pins				
GPIO19	21	1/0	General Purpose I/O Pins				
GPIO20	22	1/0	General Purpose I/O Pins				
GPIO21	23	1/0	General Purpose I/O Pins				
GPIO22	24	1/0	General Purpose I/O Pins				
GPIO33	27	I/O	General Purpose I/O Pins				
GPIO36	30	1/0	General Purpose I/O Pins				
GPIO37	31	I/O	General Purpose I/O Pins				
IO Power							
DVDDIO1	9	Р	VIO input				
DVDDIO2	25	P	VIO input				
DVDDIO3	26	Р	VIO input				
Reset and Clocks							
LDO_EN	10	_	Reset signal to power down IC				
хо	28	0	Output of crystal clock reference				
XI	29	1	Input of crystal clock reference				
PMU/BUCK							
AVDD33_DCDC	12	Р	analog 3.3V input for DCDC				
RVDD33_OUT	13	Р	Internal LDO output				
VBAT	14	Р	Power Supply				
AVDDLX_DCDC	15	Р	DCDC buck regulator: output to inductor				
DVDD11_DIG	16	Р	DCDC 1.1V output				
DVDD08_DIG	17	Р	Digital 0.8V input				
Wi-Fi radio							
AVDD11_SX	32	Р	analog 1.1V input				
AVDD11_RF	1	Р	analog 1.1V input				
AVDD33_SX	2	Р	analog 3.3V input				
AVSS_PA	3	G	Ground				
RF_IO_2G	4	1/0	2.4 GHz RF input & output port				
AVDD33_PA	5	Р	analog 3.3V input				
AVDD33_TX	6	Р	analog 3.3V input				

^{*} I=Input; O=Output; G=Ground; P=Power

8.3 Mode Selection

Table 18: Mode Selection table

strapping truth table						
GPIO	Interface mode	Description				
GPIO[12]						
0	SDIO	SDIO mode (default)*				
1	Reserved					

^{*}No external pull-down resistor is required because internal pull-down is active during power up.

8.4 Function Selection For SV6158

After bootstrap, the SV6158 provides a pad multiplex switching from the bootstrap function to selected I/O function by register signals. There is a condition to leave bootstrap function. That is switching to GPIO first then switching to select I/O function. The table shows the all I/O functions for each PAD.

Table 19: Pinmux for SV6158

Name	Pin No.	Dir	PU/PD	SMAC(SDIO)
GPIO00	7	ı	F	UARTO_RXD
GPIO01	8	0	F	UARTO_TXD
GPIO12	11	1/0	F	Strap
GPIO14	18	0	F	Wi-Fi_WAKEUP_Host
GPIO17	19	1/0	F	SD_DATA2
GPIO18	20	1/0	F	SD_DATA3
GPIO19	21	1/0	F	SD_CMD
GPIO20	22		F	SD_CLK
GPIO21	23	1/0	F	SD_DATA0
GPIO22	24	1/0	F	SD_DATA1
GPIO33	27	0	F	RX_IRQ(out_band)
GPIO36	30	N/A	F	N/A
GPIO37	31	N/A	F	N/A

9 PACKAGE INFORMATION

4 x 4 mm (body size), 0.4mm pitch QFN-32

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		Α	0.8	0.85	0.9	
STAND OFF		A1	0	0.035	0.05	
MOLD THICKNESS		A2		0.65		
L/F THICKNESS		А3	0.203 REF			
LEAD WIDTH		b	0.15	0.2	0.25	
BODY SIZE	X	D	4 BSC			
BODT SIZE	Υ	E	4 BSC			
LEAD PITCH		е	0.4 BSC			
EP SIZE	X	J	2.6	2.7	2.8	
EP SIZE	Υ	K	2.6	2.7	2.8	
LEAD LENGTH	L	0.3	0.35	0.4		
PACKAGE EDGE TOLE	aaa	0.1				
MOLD FLATNESS		bbb	0.1			
COPLANARITY	ccc	0.08				
LEAD OFFSET	ddd	0.1				
EXPOSED PAD OFFSE	eee	0.1				

Figure 11: QFN 4 x 4 mm Package Dimensions

10 Ordering Information

The table below provides the ordering information of the SV6158 series of chips.

Table 20: SV6158 Ordering Part Number

Part number	Package	Feature
SV6158	QFN32	Wi-Fi
SV6158-B	QFN32	Wi-Fi+ BLE