

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
	<u> </u>	(лата, полпись преполавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № М-3

Изучение вращательного движения на маховике Обербека

Опыт № 1 Опыт № 2 Опыт № 3

1. Запишите цель проводимого эксперимента:	
2. Сформулируйте основной закон динамики вращательного движения	
3. Дайте определение момента инерции: 1) материальной точки; 2) твердог	о тела.
4. Дайте определение углового ускорения. Объясните, как найти напрагуглового ускорения.	зление вектора
5. Дайте определение момента сил. Объясните, как найти направление мом сила создает вращательный момент и куда он направлен?	ента сил. Какая
	R)
	7
	\vec{T}
	+ -
	$\uparrow \bar{\mathcal{I}}$
-	
Y	
•	$m\bar{g}$
	$\psi_{\bar{a}}$
	•

6. Заполните таблицу измерений в лаборатории.

m =	кг	S =	M	D =	M
Опыт	t_i, c	$\langle t \rangle$, c	М, Н∙м	ε , рад/ c^2	<i>J</i> , кг·м ²
Опыт № 1					
Опыт № 2					
Опыт № 3					

Обработка результатов измерений

1. Рассчитать среднее значение времени падения груза:

$$\frac{1 \text{ опыт}}{3} \qquad \langle t_1 \rangle = \frac{t_1 + t_2 + t_3}{3} =$$

$$2$$
 опыт $\langle t_2 \rangle = \frac{t_1 + t_2 + t_3}{3} =$

$$\frac{3 \text{ опыт}}{3} \qquad \langle t_3 \rangle = \frac{t_1 + t_2 + t_3}{3} =$$

2. Вычислить момент силы (g=9,81 м/с 2):

$$M_1 = \frac{mD}{2} \left(g - \frac{2S}{\langle t \rangle^2}\right) =$$

$$M_2 = \frac{mD}{2} \left(g - \frac{2S}{\langle t \rangle^2} \right) =$$

$$M_3 = \frac{mD}{2} \left(g - \frac{2S}{\langle t \rangle^2} \right) =$$

3. Вычислить угловое ускорение:

$$\frac{1 \text{ опыт}}{\varepsilon_1 = \frac{4S}{D\langle t_1 \rangle^2}} = \frac{\frac{2 \text{ опыт}}{4S}}{\varepsilon_2 = \frac{4S}{D\langle t_2 \rangle^2}} = \frac{\frac{3 \text{ опыт}}{4S}}{\varepsilon_3 = \frac{4S}{D\langle t_3 \rangle^2}} =$$

4.	Вычислить	момент	инершии	по	формул	re G	4).
т.	DDI INCAMID	MOMETII	ппорции	110	φορινι y J	10 (т,.

<u>1 опыт</u>

$$J_1 = \frac{M_1}{\varepsilon_1} =$$

$$J_2 = \frac{M_2}{\varepsilon_2} =$$

$$J_3 = \frac{M_3}{\varepsilon_3} =$$

5. Рассчитать для опыта № 1 абсолютную Δt и относительную δ_t погрешности:

t_i	$\langle t \rangle$	Δt_i	Δt_i^2	$\sigma_{\langle t \rangle}$	$\Delta t_{ m np}$	$\Delta t_{ ext{c}{\scriptscriptstyle J}}$	Δt	δ_t

5.1. Отклонение от среднего:

$$\Delta t_1 = |t_1 - \langle t \rangle| =$$

$$\Delta t_2 = |t_2 - \langle t \rangle| =$$

$$\Delta t_3 = |t_3 - \langle t \rangle| =$$

5.2. Среднеквадратичное отклонение:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{\sum_{i=1}^{n} \Delta t_i^2}{n(n-1)}} =$$

5.3. Случайная погрешность $(t_{p,n}=2,9)$:

$$\Delta t_{\text{сл}} = \sigma_{\langle t \rangle} \cdot t_{p,n} =$$

5.4. Абсолютная погрешность ($\Delta t_{\rm np}$ – приборная погрешность секундомера):

$$\Delta t = \sqrt{\Delta t_{
m np}^2 + \Delta t_{
m cm}^2} =$$

5.5. Относительная погрешность, выраженная в абсолютных долях:

$$\delta_t = \frac{\Delta t}{\langle t \rangle} =$$

5.6. Абсолютную погрешность момента инерции для опыта № 1:

$$\Delta J_1 = \delta_t \cdot J_1 =$$

5.7. Записать окончательный результат для опыта № 1:

$$J = (J_1 \pm \Delta J_1)$$
, кг · м² $J =$

5.8. Ответы на вопросы.

Как изменяется момент силы при изменении	
положения цилиндров на осях крестовины?	
Как изменяется угловое ускорение при изменении положения цилиндров на осях крестовины?	
Как изменяется момент инерции при изменении положения цилиндров на осях крестовины?	

Подпись студента

Дата