Mon rapport

Prénom Nom Mettre la date du jour ici

Table des matières

1	Ma première section	2
	1.1 Une sous-section	2
	1.2 Une autre sous-section	2
2	Nouvelle section	2
3	Les tableaux	2
4	Insérer une image	3
5	Le mode mathématique	3
6	Tri par sélection d'un jeu de cartes	4
7	Restitution d'un code	4
8	Figures avec Tikz	5
9	Citation de références	6

1 Ma première section

1.1 Une sous-section

Ce texte est en italique tandis que celui-ci est en gras.

1.2 Une autre sous-section

Liste des items:

- item 1
- item 2
- item 3

2 Nouvelle section

Ceci est un rapport rédigé en LaTeX ¹. La première sous-section, c'est-àdire la sous-section 1.1 se situe en page 2 (numéro de page calculé automatiquement). Ci-dessous se trouve une liste numérotée d'items :

- 1. bla
- 2. ble
- 3. bli
- 4. blo
- 5. blu

3 Les tableaux

texte centré	texte à gauche	texte à droite
a	b	c
d	e	f

Table 1 – Nom du tableau

Le tableau 1 est nommé.

^{1.} langage que nous apprenons aujourd'hui.

4 Insérer une image

La Figure 1 mesure en largeur la moitié de la largeur du texte.

FIGURE 1 – Une photo de smiley

5 Le mode mathématique

Le nombre π vaut environ 3.14, ou encore $\frac{22}{7}$ ou $\frac{\frac{44}{2}}{\sqrt{7^2}}$ à un (gros) ϵ près.

Une équation non numérotée :

$$a^2 + b^2 = c^2$$

Une équation numérotée :

$$a^2 + b^2 = c^2 (1)$$

On peut citer l'équation précédente comme étant l'équation 1.

Avec "align", on peut citer chaque ligne d'une équation. Par exemple, l'équation 2 et l'équation 3.

$$f(x) = x^2 + 8x + 16$$

$$= (x+4)^2$$
(3)

6 Tri par sélection d'un jeu de cartes

```
Algorithme 1: Tri d'un jeu de cartes
   Entrées : Un jeu de cartes jeuNonTrie = \{c_1, c_2, \dots, c_n\} où chaque
                carte a une couleur parmi { cœur, carreau, pique, trèfle }
                et une hauteur entre 1 et 13 (11 étant valet, 12 étant
                dame, 13 étant roi). Les couleurs sont supposées
                comparables telles que cœur < carreau < pique < trèfle.
   Sortie: Le jeu de cartes trié par couleur puis hauteur
 1 jeu Trie \leftarrow \emptyset
 2 tant que jeuNonTrie! = \emptyset faire
       min \leftarrow c_1
 3
       pour carte \leftarrow c_2 \ \grave{a} \ c_n \ faire
 4
           si carte.couleur < min.couleur alors
 5
               min \leftarrow carte
 6
           sinon si
 7
             carte.couleur = min.couleur \land carte.hauteur < min.hauteur
             alors
               min \leftarrow carte
 8
           _{\rm fin}
 9
       fin
10
       jeuTrie \leftarrow jeuTrie \cup \{min\}
11
       jeuNonTrie \leftarrow jeuNonTrie - min
12
13 fin
14 retourner jeuTrie
```

7 Restitution d'un code

Un exemple avec \lstlisting:

```
public static void main (String [] args) {
    //on affiche bonjour
    System.out.println("Bonjour");
}
```

Un exemple avec \lstinputlisting:

```
code/Hello.java
```

```
public static void main (String [] args) {
    //on affiche bonjour
    System.out.println("Bonjour");
}
```

8 Figures avec Tikz

L'objectif est de reproduire des figures ressemblant aux Figures 2, 3 et 4.

FIGURE 2 – Plan simplifié de Caen

FIGURE 3 – Plan de Caen précis

FIGURE 4 – Plan de Caen précis et coloré

9 Citation de références

Je cite la première référence [1]. Je peux aussi citer en citer 2 en même temps [1, 3].

Références

- [1] A. H. Dekker and B. D. Colbert. Network Robustness and Graph Topology. In *Proceedings of the 27th Australasian Conference on Computer Science Volume 26*, ACSC '04, pages 359–368, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.
- [2] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. *Annals of Mathematics*, 155(1):157–187, 2002.
- [3] J. Xu. Topological structure and analysis of interconnection networks, volume 7 of Network Theory and Applications. Springer-Verlag, 2001.