Review of Mathematical Foundations – Part 3

Objectives

Review random variables & their distributions

Discrete Random Variables

Let x be a discrete random variable that can take any of the m different values in the set $V=\{v_1, v_2, ..., v_m\}$ with respective probabilities $\{p_1, p_2, ..., p_m\}$, i.e., $p_i=Prob[x=v_i]$.

$$- p_i \ge 0, \sum_{j=1,...,m} p_j = 1.$$

Probability Mass Function P(x) is used to represent the set of probabilities $\{p_1, p_2, ..., p_m\}$

$$P(x) \ge 0$$
, $\sum_{x \text{ in } \lor} P(x) = 1$

Expected Value (Means) & Variance

The **expected value** (mean) of x, E[x], often denoted μ $\mu = E[x] = \sum_{x \text{ in } V} xP(x)$

The expected value of a function f(x), E[f(x)], $E[f(x)] = \sum_{x \text{ in } V} f(x)P(x)$

E[] is linear when viewed as an operator.

$$\mathsf{E}[\alpha f(\mathsf{x}) + \beta g(\mathsf{x})] =$$

The **variance** of x, Var[x], often denoted σ^2 $\sigma^2 = Var(x) = E[(x-\mu)^2] = \sum_{x \text{ in } V} (x-\mu)^2 P(x)$

Joint Distributions

Consider a pair of discrete random variables, x and y, taking values in $V=\{v_1, v_2, ..., v_m\}$ and $W=\{w_1, w_2, ..., w_n\}$ respectively.

- -(x, y) to take a pair of values (v_i, w_j) with probability p_{ij}
- –Or, we consider the **joint probability mass function** P(x, y)

Marginal Distributions

Knowing P(x, y), can we figure out $P_x(x)$ or $P_y(y)$?

→ The concept of marginal distribution for x and y respectively.

Statistical Independence

Random variables x and y are said to be statistically independent if and only if $P(x, y) = P_x(x) P_y(y)$

Covariance

Cov(x, y), often denoted σ_{xy}

Covariance matrix Σ , $\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t]$

Conditional Density

$$P(x|y) =$$

Similarly, we may write the Bayes Rule in terms of densities.

How about continuous random variables?

Instead of P(x), we have the **probability density** function (PDF) p(x)

Some properties of p(x):

The cumulative distribution function (CDF) F(x):

Continuous Random Variables

Mean, variance, etc., are similarly defined, via integrals.

Joint PDF p(x,y) of two variables

- Marginal PDFs for x and y
- If $x \sim p_x(x)$ and $y \sim p_y(y)$ are independent p(x,y) =

Continuous Random Variables

Conditional PDF p(x|y)

Bayes rule for PDF: