July July

19970609 164

096018

NAVAL AIR DEVELOPMENT CENTER

WARMINSTER, PA. 18974

REPORT NO. NADC-73153-81

20 DEC 1973

SUPPLEMENT TO REPORT NO. NADC-72185-AD VIBRATION ENERGY SUMMATIONS IN RESPONSE DOMAIN FOR COULOMB DAMPED ELASTIC SYSTEMS WITH SINUSOIDAL EXCITATION

(907731) 7300185

AIRTASK NO. WF53-532-404
WORK UNIT No. 1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or Functional Department responsible for the report. For example: Report No. NADC-73015-40 indicates the fifteenth Center report for the year 1973, and prepared by the Crew Systems Department. The numerical codes are as follows:

CODE	OFFICE OR DEPARTMENT
00	Commander, Naval Air Development Center Technical Director, Naval Air Development Center
01 02	Program and Fiscal Management Department
02	Anti-Submarine Warfare Program Office
04	Remote Sensors Program Office
05	Ship and Air Systems Integration Program Office
10	Naval Air Facility Warminster
20	Aero Electronic Technology Department
30	Air Vehicle Technology Department
40	Crew Systems Department
50	Systems Analysis and Engineering Department
81	Administration Department

DEPARTMENT OF THE NAVY

NAVAL AIR DEVELOPMENT CENTER WARMINSTER, PA. 18974

Administration and Technical Services Department

REPORT NO. NADC-73153-81

20 December 1973

SUPPLEMENT TO REPORT NO. NADC-72185-AD VIBRATION ENERGY SUMMATIONS IN RESPONSE DOMAIN FOR COULOMB DAMPED ELASTIC SYSTEMS WITH SINUSOIDAL EXCITATION

AIRTASK NO. WF53-532-404 Work Unit No. 1

This report supplements the previous phase report covering response energy summation analysis for a rigidly-connected coulomb damped elastic structure model, when subjected to all controlled patterns of sinusoidal vibration. Specimen curve evaluations for extended parameter ranges are facilitated by the use of computer plotting programs.

Reported by:

J. N. Tait

Environmental and Test Equipment Division

Approved by:

F. J. Smith, Superintendent

Environmental and Test Equipment Division

F. R. Holden

Director, Administrative & Technical Services Department

FORWARD

This report is a supplement to Report No. NADC-72185-AD, Vibration Energy Summations in Response Domain for Coulomb Damped Elastic Systems with Sinusoidal Excitation, of 2 February 1973.

Sections IX through XIV of Report No. NADC-72185-AD are devoted to the evaluation of the $E_X^{"}$ expressions applied to the revised sinusoidal specimen curve. The results are displayed in tables III through XXVII and in figures 3 through 28 of that report.

Since the publication of Report No. NADC-72185-AD, a computer plotting program has been developed for the functions $E_{S1}^{"}$ through $E_{S1}^{"}$. Apart from greatly simplifying the evaluations, the plotting program affords several additional advantages, which will be apparent upon examination.

This report presents the computer plotting program, together with 30 plots which completely display E"1 through E"12. No applicable discussion or philosophy will be repeated herein unless inadequately treated in Report No. NADC-72185-AD. The reader is therefore referred to that report as the required basis for this supplement.

	Page
FORWARD	iii
LIST OF TABLES	ν
LIST OF FIGURES	νi
DEVELOPMENT OF COMPUTER PLOTTING PROGRAM	1
EVALUATION OF RESPONSE ENERGY SUMMATIONS FOR	
SINUSOIDAL SPECIMEN CURVE	4

LIST OF TABLES

Table	Title	Page
I	(KW) ² Program Entries	10
11	K ² Program Entries	10
III	Σ _{III} Program Entries (W _L < KW)	11
IV	Σ_{I} Program Entries (W _L > KW)	12
V	W_{\min}^2 Program Entries	13
VI	R ² Program Entries	13
VII	W Correction Program Entries	
VIII	Y Scale Program Entries (Log sweep)	15
IX	Y Program Entries (Linear sweep)	16
X	X Program Entries	. 17
XI	Σ'' Program Entries	. 17
XII	Σ'' Program Entries	. 18
XIII	Σ'' Program Entries	. 18
XIV	Σης Program Entries	. 19
xv	E'' Program Entries	. 19
XVI	Curve Plotting Parameters for Ranges I and II	. 20
XVII	Curve Plotting Parameters for Range III	

LIST OF FIGURES

Figure	Title	Page
1	$E_X^{\prime\prime}$ Plotting Program Block Diagram	. 22
2	PLOT/ΔW Subroutine Block Diagram	. 23
3	Σ" Subroutine Block Diagram	, 24
4	E" Versus fn for Family 1 d Values	. 25
5	E'' Versus fn for Family 2 d Values (Expanded)	. 26
6	E" Versus fn for Family 2 d Values	. 27
7	E'' Versus fn for Family 1 d Values	. 28
8	E" Versus fn for Family 2 d Values (Expanded)	
9	E" Versus fn for Family 2 d Values	
10	E'' Versus fn for Family 1 d Values	. 31
11	E'' Versus fn for Family 2 d Values (Expanded)	
12	E'' Versus fn for Family 2 d Values	. 33
13	E'' Versus fn for Family 1 d Values	. 34
14	E" Versus fn for Family 2 d Values (Expanded)	
15	E'' Versus fn for Family 2 d Values	. 36
16	E" Versus fn for Family 1 d Values	. 37
17	E'' Versus fn for Family 2 d Values (Expanded)	. 38
18	E" Versus fn for Family 2 d Values	
19	E'' Versus fn for Family 1 d Values	
20	E" Versus fn for Family 2 d Values (Expanded)	
21	E'' Versus fn for Family 2 d Values	. 42
22	E" Versus fn for Family 1 d Values	. 43
23	E" Versus fn for Family 2 d Values (Expanded)	. 44
24	E'' Versus fn for Family 2 d Values	. 45
25	E" Versus fn for Family 1 d Values	
26	E" Versus fn for Family 2 d (Expanded)	. 47
27	E'' Versus fn for Family 2 d Values	. 48

LIST OF FIGURES (continued)

Figure	Title	Page
28	E'' Versus fn for Family 1 d Values	. 49
29	E'' Versus fn for Family 2 d Values (Expanded)	. 50
30	E" Versus fn for Family 2 d Values	. 51
31	E'' Versus fn for Family 1 d Values	
32	E'' Versus fn for Family 2 d Values (Expanded)	. 53
33	E" Versus fn for Family 2 d Values	. 54

DEVELOPMENT OF COMPUTER PLOTTING PROGRAM

Examination of the 10 energy summation functions for swept excitation was made to determine the type and capacity of computer to be used, together with the input/output formats which would best facilitate the evaluations. The following observations were made:

- 1. All elements of the functions are expressed in alphanumeric and transcendental symbology.
- 2. Apart from their arithmetic coefficients, the two most complex terms, i.e., $\ln(W-1) \pm \ln(W+1)$ and $1/(W^2-1)$ or $W/(W^2-1)$, were common to all summation functions.
- 3. The most useful display format, for illustration and comparison as well as direct application, is a set of curve families, one for each summation function. Tabular printout is not considered to be of substantial additional value.

The decision was therefore made to abandon further consideration of both computer group services and direct on-line remote terminal access to an available CDC 6600 facility. Instead, the Hewlett-Packard 9100 B programmable calculator was chosen, together with its companion, the 9125 plotter. This calculator provides direct keyboard entry in mathematical terms, requiring neither the knowledge of special language nor the use of language software interfaces. Further, it offers adequate storage and stacked subroutine capability.

After many trials, a modular plotting program was developed which uses two subroutines, one for the calculation of $E_X^{"}(W)/K_X$ for a single value of W, and the other for the plotting and iteration of W.

In section VII of Report No. NADC-72185-AD, 10 letter coefficients were chosen, and the following generalized summation expressions were written:

For logarithmic sweep with $W \ge \sqrt{d}$,

$$\frac{E_{\mathbf{x}}^{"}(W)}{K_{\mathbf{x}}} = \left[M_{\mathbf{x}} \ln \left(\frac{W-1}{W+1} \right) + O_{\mathbf{x}} \left(\frac{2W}{W^2-1} \right) + \frac{B_{\mathbf{x}}}{W} + \frac{D_{\mathbf{x}}}{W^3} + \frac{L_{\mathbf{x}}}{W^5} \right].$$

For linear sweep with $W \ge \sqrt{d}$,

$$\frac{E''(W)}{K_{x}} = \left[N_{x} \ln(W^{2}-1) + P_{x} \left(\frac{2}{W^{2}-1}\right) + A_{x} \ln(W) + \frac{C_{x}}{W^{2}} + \frac{J_{x}}{W^{4}}\right].$$

Further, in section VI of Report No. NADC-72185-AD, it was shown that

$$\frac{E_{s2}''(W)}{K_{s2}} = \frac{E_{s5}''(W)}{K_{s5}}$$
, and $\frac{E_{s8}''(W)}{K_{s8}} = \frac{E_{s11}''(W)}{K_{s11}}$.

Therefore, only 8 expressions for $E_X''(W)/K_X$ suffice for the 10 summation functions. The Σ'' subroutine has "modules", simple columnar step entries, for the calculation of the coefficients, the functions of W, and the (+) and (-) accumulation of the B_X/W and $A_X\ln(X)$ terms, respectively. For those functions in which one or more of the generalized terms do not appear, the corresponding modular step columns yield zero for their coefficients. The PLOT/AW subroutine contains modules for X and Y scaling, W correction for Y scaling, AX plot and K^2 . The main program contains modules for $(KW)^2 \max$, K^2 , $W^2 \min$, $d^2 \min$, R^2 , $d^2 \max$, Σ_I (for $W_I \leq W \leq W_I$), and Σ_{III} (for $W_L \leq W \leq KW_I$).

The operation of the plotting program is quite simple. However, a few explanations will serve to clarify the main block diagram, figure 1. In section IX of Report No. NADC-72185-AD, the three cases were introduced, which are summarized below:

Case I (locked condition): $(W_L > KW)$

$$E_{\mathbf{x}}^{"}(W) = E_{\mathbf{x}}(W)$$

Case II (relative motion across damper): (W_L < W)

$$E_{\mathbf{x}}^{\mathbf{H}}(\mathbf{W}) = K_{\mathbf{x}} \int_{\mathbf{W}}^{K\mathbf{W}} Q_{\mathbf{x}}(\mathbf{W}) d\mathbf{W}$$

Case III (locked damper breaks loose during sweep): $(W_1 < W_L < KW_1)$

$$E_{\mathbf{x}}^{"}(W)$$
 $\bigg]_{W}^{KW} = E_{\mathbf{x}}^{-}(W)$ $\bigg]_{W}^{W_{\mathbf{L}}} + K_{\mathbf{x}} \int_{W_{\mathbf{L}}}^{KW} Q_{\mathbf{x}}^{-}(W) dW$

The computer program compares W_L first with W_1 , then with KW_1 . At the first junction, if $(W_L < W)$, the FLAG is set, and the Σ " subroutine calculates $[\Sigma''(KW) - \Sigma''(W)]$, indicating a pure Case II condition. At the second junction, since the FLAG was set, [E''(KW) - E''(W)] is plotted,

and (KW)² is incremented (decreased). Eventually, the first junction will find (WL \nmid W), i.e., (W < WL < KW). At this point, the FLAG is no longer set, and the Σ'' subroutine calculates $[\Sigma''(KW) - \Sigma''(W_L)]$, indicating a mixed, or Case III, condition. At the second junction, since the FLAG was not set, $[\Sigma''(KW) - \Sigma''(WL)]$ is not plotted. The Σ'' subroutine has already stored it. Instead, $[\Sigma(WL) - \Sigma(W)]$ is calculated, then added to $[\Sigma''(KW) - \Sigma''(WL)]$. Finally, [E''(KW) - E''(WL) + E(WL) - E''(WL)]E(W)] is plotted, and (KW)² is incremented (decreased). Up to this point, the third junction has found (WL < KW). However, the third junction will eventually find (WL > KW), as W is decreased still further. At this point, $[\Sigma(KW) - \Sigma(W)]$ is calculated, indicating a pure Case I condition. [E(KW) - E(W)] is plotted and the incremented (KW)2 is reentered below the third junction. The Case I summation plotting continues until the fourth junction finds (W < Wmin). The rest of the main program should require no explanation. Figure 2 shows the PLOT/ Δ W subroutine block diagram, and is presented to clarify its single junction, which provides for pen lift whenever Yplot exceeds the maximum ordinate of the paper.

It should be noted that although the main program is written in terms of W, KW and WL, the Σ subroutine is written in terms of W₁ and W₂. This is done for subroutine program clarity. The upper limit W₂ is always KW, while the lower limit W₁ is either W for a FLAG pass (Case II) or W_L for a non-FLAG pass (Case III).

The following symbols are used in the program, and supplement those listed in Report No. NADC-72185-AD.

```
dmin dmax - Iterative program damping parameter limits
```

R - The incrementing ratio for d

$$\Sigma_{I}$$
 - E_{X}/K_{X} for Case I

$$\Sigma_{III}$$
 - E_{X}/K_{X} for Case III

$$\Sigma_{MN}^{"}$$
 - $M_{\mathbf{X}} \ln \left(\frac{W-1}{W+1} \right)$ or $N_{\mathbf{X}} \ln \left(W^2 - 1 \right)$

$$\Sigma_{OP}^{"}$$
 - $O_{\mathbf{x}}$ $\frac{2W}{W^2-1}$ or $P_{\mathbf{x}}$ $\frac{2}{W^2-1}$

$$\Sigma_{RA}^{"}$$
 - B_{X}/W or $A_{X}ln(W)$

$$\Sigma_{DC}^{"}$$
 - $D_{X}/_{W^3}$ or $C_{X}/_{W^2}$

 $\Sigma_{LJ}^{"}$ - $L_{X}/_{W^5}$ or $J_{X}/_{W^4}$

 Σ'' - $(\Sigma_{MN}^{II} + \Sigma_{OP}^{II} \pm \Sigma_{BA}^{II} + \Sigma_{DC}^{II} + \Sigma_{LJ}^{II})$

(KW)²max, W²min - Iterative program W limits

X scale, Y scale - Plotting subroutine constant entries which yield suitable horizontal and vertical scaling rates

Xplot, Yplot - The numerical values actually fed to the plotter servos

The complete program is presented on the following pages. Figure 1 outlines the overall program in block diagram form. Figure 2 is a block diagram of the PLOT/ ΔW subroutine. Figure 3 is a block diagram of the Σ " subroutine.

Tables I through XV, which follow the program, are self-explanatory. Reference is made to tables I through VI in the program, to table II and tables VII through X in the PLOT/ ΔW subroutine, and to tables XI through XV in the Σ " subroutine. It will be noted that three modules are not tabulated; these entries are arbitrary, not mandatory.

EVALUATION OF RESPONSE ENERGY SUMMATIONS FOR SINUSOIDAL SPECIMEN CURVE

Using the computer plotting program presented in the preceding section, and entering the appropriate adjustment and scaling for each of the 10 specific swept sinusoidal energy summations expressions, 30 curve families have been plotted. Three of these plots present the summations for each specific expression. Figures 4 through 33 present the 10 curve family groups as plotted on the Hewlett-Packard Model 9125 plotter, for the sinusoidal specimen curve.

The overall damping parameter range used in Report No. NADC-72185-AD is 1.0186 \leq d \leq 12.5. The corresponding ranges of η and W_L are 0.80 \leq η \leq 9.818, and 1.0092 \leq W_L \leq 3.535.

Using the computer plotting program, the above ranges have been expanded, particularly in the low damping domain. The corresponding ranges follow:

 $1.000001 \le d \le 16.0$, $0.7854 \le \eta \le 12.57$, and $1.0000005 \le W_L \le 4.0$.

The overall natural frequency range has a constant lower limit in each range. The upper limit has been determined for each plot such that the lowest value of fn for Case I (locked damper) is shown. The resulting summation value is therefore constant for all higher values of fn.

For all three ranges, the following two families of damping parameter values have been used:

Family 1: d = 1.000001, 1.000002, 1.000005, 1.00001, 1.00002, 1.00005, 1.0001, 1.0002, 1.0005, 1.0001, 1.0002, 1.0005 and 1.01.

Family 2: d = 1.01, 1.02, 1.05, 1.1, 1.2, 1.5,2.0, $2\sqrt{2}$, 4.0, $4\sqrt{2}$, 8.0, $8\sqrt{2}$ and 16.0.

The family assignments, fn ranges, and scaling data, for figures 4 through 33, have been tabulated in table XVI for ranges I and II, and table XVII for range III.

TABLE I

(KW) 2 PROGRAM ENTRIES

Step	Range						
	I	II	III				
0.8	4	2	4				
0.9	•	5	0				
0.a	0	6	9				
0.ъ	0	•	6				

TABLE II

κ² PROGRAM ENTRIES

	Step		Range	•			
			I	II	III		
1.1	3.1	5.a	7.4	-3.2	8	6	1
1.2	3.2	5.b	7.5	-3.3	•	4	6

TABLE III

PROGRAM ENTRIES (W_L < KW)

_		Log S	Sweep		Linear Sweep			
Step	S1	S 2/S5	S3	S6	S7	S8/S11	S 9	S12
3.8	†	√ X	√ X	†	†	+	+	†
3.9	√ X	†	+	√X	х	С	С	+
3.a	x	С	+	х	С	-	+	С
3.b	С	√X	С	С	+	2	+	-
3.c	+	-	√ X	†	х	÷	ln(X)	Roll+
3.d	√ X	CONT	-	√x	+	CONT	+	x
4.0	х	CONT	Roll+	х	-	CONT	2	2
4.1	+	CONT	х	+	4	CONT	.	х
4.2	-	CONT	+	-	÷	CONT	CONT	+
4.3	3	CONT	÷	Roll+	CONT	CONT	CONT	‡
4.4	÷	CONT	CONT	х	CONT	CONT	CONT	CONT
4.5	CONT	CONT	CONT	3	CONT	CONT	CONT	CONT
4.6	CONT	CONT	CONT	х	CONT	CONT	CONT	CONT
4.7	CONT	CONT	CONT	+	CONT	CONT	CONT	CONT
4.8	CONT	CONT	CONT	+	CONT	CONT	CONT	CONT

TABLE IV $\Sigma_{I} \text{ PROGRAM ENTRIES } (W_{L} > KW)$

24		Log S	Sweep			Linear S	Sweep	
Step	\$1	\$2/\$5	S3	\$ 6	S7	S8/S11	S9	Ş12
6.1	7	7 3	•	2	6	6 1	1	1
6.2		+	7	1	3	3 5	6	5
6.3	2	С	5	†	+	+	ln(X)	+
6.4	0	√ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	†	6	С	С	+	3
6.5	9	Х	С	4	х	x	2	2
6.6	1	CONT	√X	+	Х	2	:	‡
6.7	4	CONT	‡	С	4	+	CONT	С
6.8	0	CONT	CONT	+	+	CONT	CONT	+
6.9	0	CONT	CONT	√X	CONT	CONT	CONT	CONT
6.a	0	CONT	CONT	х	CONT	CONT	CONT	CONT
6.b	0	CONT	CONT	+	CONT	CONT	CONT	CONT
6.c	0	CONT	CONT	+	CONT	CONT	CONT	CONT
6.d	0	CONT	CONT	CONT	CONT	CONT	CONT	CONT

TABLE V
W² PROGRAM ENTRIES

	Range						
Step		1]	I	III		
	,fn/	'in	fn/	'in	fn/	'in	
	1	2	10	20	20	50	
7.7	•	•	•	•	•	•	
7.8	3	0	0	0	3	0	
7.9	0	7	2	0	9	6	
7.a	5	6	4	6	0	2	
7.b	1	2	4	1	6	5	
7.c	7	9	1	0	2	0	
7.d	5	3	4	3	5	0	
8.a	8	9	0	5	0	0	
8.b	0	5	8	2	0	0	

T A B L E V I

R² PROGRAM ENTRIES

S+on	R ²					
Step	4	2	√2	+√2		
9.3	4	2	2	2		
9.4		•	√X	√x		
9.5	0	0	CONT	√X		
9.6	0	0	CONT	CONT		

TABLE VII
W CORRECTION PROGRAM ENTRIES

6.		Log	Sweep		Linear Sweep			
Step	S1	S2/S5	S 3	S 6	S7	S8/S11	S 9	S12
a.4	†	√ X	√ X	+	↑	.	CONT	Х
a.5	√X	+	х	√X	х	CONT	CONT	CONT
a.6	х	CONT	CONT	х	+	CONT	CONT	CONT
a.7	+	CONT	CONT	+	+	CONT	CONT	CONT
a.8	+	CONT	CONT	х	CONT	CONT	CONT	CONT

TABLE VIII

Yscale PROGRAM ENTRIES (LOG SWEEP)
(STEPS a.9 THROUGH b.1)

		Range		
in-lb/in	I	II	III	
10 ⁹	.000204	.004611	.036890	
2 x 10 ⁸	.001018	.023060	.184500	
108	.002036	.046110	.368900	
5 x 10 ⁷	.004072	.092220	.737800	
2×10^{7}	.010180	.230600	1.84500	
107	.020360	.461100	3.68900	
5 x 10 ⁶	.040720	.922200	7.37800	
2.5×10^6	.081440	1.84400	14.7600	
2×10^{6}	.101800	2.30600	18.4500	
10 ⁶	.203600	4.61100	36.8900	
5 x 10 ⁵	.407200	9.22200	73.7800	
2.5×10^5	.814400	18.4400	147.600	
2×10^{5}	1.01800	23.0600	184.500	
10 ⁵	2.03600	46.1100	368.900	
5 x 10 ⁴	4.07200	92.2200	737.800	
2.5 x 10 ⁴	8.14400	184.400	1476.00	
2 x 10 ⁴	10.1800	230.600	1845.00	
104	20:3600	461.100	3689.00	
5×10^{3}	40.7200	922.200	7378.00	
2.5×10^3	81.4400	1844.00	14760.0	
2×10^{3}	101.800	2306.00	18450.0	
10 ³	203.600	4611.00	36890.0	
500	407.200	9222.00	73780.0	
250	814.400	18440.0	147600.	
200	1018.00	23060.0	184500.	

TABLE IX

Yscale PROGRAM ENTRIES (LINEAR SWEEP)
(STEPS a.9 THROUGH b.1)

		Range	
in-lb/in	I	II,	III
10 ⁹	.000010	.000670	,042880
2×10^{8}	.000052	.003350	.214400
10 ⁸	.000105	.006700	.428800
5 x 10 ⁷	.000209	.013400	.857600
2×10^{7}	.000524	.033500	2.14400
107	.001047	.067000	4.28800
5 x 10 ⁶	.002094	.134000	8.57600
2.5×10^6	.004188	.268000	17.1500
2×10^{6}	.005235	.335000	21.4400
10 ⁶	.010470	.670000	42.8800
5 x 10 ⁵	.020940	1.34000	85.7600
2.5×10^5	.041880	2.68000	171.500
2×10^{5}	.052350	3.35000	214.400
10 ⁵	.104700	6.70000	428.800
5×10^4	.209400	13.4000	857.600
2.5×10^{4}	.418800	26.8000	1715.00
2 x 10 ⁴	.523500	33.5000	2144.00
104	1.04700	67.0000	4288.00
5×10^{3}	2.09400	134.000	8576.00
2.5×10^3	4.18800	268.000	17150.0
2×10^{3}	5.23500	335.000	21440.0
10 ³	10.4700	670.000	42880.0
500	20.9400	1340.00	85760.0
250	41.8800	2680.00	171500.
200	52.3500	3350.00	214400.
100	104.700		
.50	209.400		

TABLE X

X PROGRAM ENTRIES

(STEPS b.3 THROUGH b.9, AND-2.3 THROUGH-2.9)

	Range								
fn/in	I	II	III						
50			1250.00						
20		390.625	3125.00						
10		781.250	:						
2	1381.07								
1	2762.14								

TABLE XI

EMN PROGRAM ENTRIES

Step		Log S	weep		Linear Sweep			
Step	S1	S2/S5	S3	S 6	S7	S8/S11	S9	S12
-4.1		+				X		
-5.1	x					+		
-5.8	3	5	7	9	1	2	3	4
-5.9	х	x	x	х	х	х	х	х
-5.a	1	1	3	5	1	0	1	2
-5.b	+	-	-	-	•	+	-	-
-5.c	4	4	4	4	2	2	2	2

TABLE XII

E'' PROGRAM ENTRIES

C+ am	Sweep				
Step	Log	Linear			
-6.4	f	1			
-7,3	С	1			

T A B L E X I I I

EW PROGRAM ENTRIES

S+on	Log Sweep Step				Linear Sweep			:
Step	S1	S2/S5	S3	S6	S7	S8/S11	S9	S12
-8.7		+		,		1n(X)		
-8.b	-					ln(X)		
-8.c	Roll+				XY			
-8.d	х				. -			
-9.0		+		·	CONT			
-9.1		+				CONT		
-9.4	0	2	3	4	0	2	3	4
-9.5	х	х	х	х	х	x	х	х
-9.6	0	0	1	2	0	0	1	2
-9.b		ACC +			ACC -			

TABLE XIV

Σ"C PROGRAM ENTRIES

6.		Log S	Sweep	·	Linear Sweep			
Step	S1	S 2/S5	S3	S 6	S7	S8/S11	S 9	S12
-a.0		√ <u>X</u>			CONT			
-a.1		Х				CONT		
-a.4		√X			CONT			
-a.5		X			CONT			
-b.0	0	0	2	3	O.	0	2	3
-b.1	х	Х	х	х	х	Х	х	Х
-b.2	0	0	0	1	0	0	0	1
-b.3	-	-	-	-	_	-	-	-
-b.4	3	3	3	3	2	2	2	2

 $T \ A \ B \ L \ E \qquad X \ V$

Σ" PROGRAM ENTRIES

		Log S	Sweep		Linear Sweep			
Step	S1 S2/S5 S3 S6		S 6	S 7	S8/S11	S 9	S12	
-b.d		√x				CONT		
- 6. 0	x				CONT			
-c.4		√X			CONT			
-c.5		X			CONT			
-d.0	0	0	0	2	0	0	n	2
-d.1	х	х	х	х	х	Х	х	х
-d.2	5	5	5	5	4	4	4	4

T A B L E X V I

CURVE PLOTTING PARAMETERS FOR RANGES I AND II

	7.11			fn		Scalin	ng Rate
Range	E''	Fig	Family	Min	Max	Hor (fn/in)	Vert (in-lb/in)
		4	1		20	2	2(10 ⁴)
	E"S1	5	2	0.9756	10	1	500
_	31	6	2		20	2	2.5(10 ³)
I		7	1		20	2	2.5(10 ³)
	E"S7	8	2	0.9766	10	1	50
	37	9	2		20	2	250
	E'' S2	10 11	1 2	7.8125	200 100	20 10	2(10 ⁵) 1(10 ⁴)
	52	12	2		200	20	2.5(104)
II		13	1		200	20	2(10 ⁵)
	E"S8	14	2	7.8125	100	10	1(104)
	36	15	2		200	20	2.5(104)

TABLE XVII

CURVE PLOTTING PARAMETERS FOR RANGE III

_				fn		Scali	ng Rate
Range	Range E''	Fig	Family	Min	Max	Hor (fn/in)	Vert (in-lb/in)
		16	1		500	50	5(10 ⁵)
	E"S	17	2	7.8125	200	20	5(10 ⁴)
	33	18	2		500	50	1(10 ⁵)
		19	1	<u> </u>	500	50	2.5(10 ⁶)
	E",	20	2	7.8125	200	20	1(10 ⁵)
	211	21	2		500	50	5 (10 ⁵)
		22	1		500	50	2(10 ⁵)
	E"	23	2	7.8125	200	20	1(104)
	53	24	2		500	50	2.5(104)
111		25	1		500	50	2(10 ⁵)
	E'' _{S9}	26	2	7.8125	200	20	2.5(104)
	-S9	27	2		500	50	5(104)
		28	1		500	50	1(10 ⁵)
	E"S6	29	2	7.8125	200	20	5(10 ³)
	20	30	2		500	50	2(104)
		31	1		500	50	2(10 ⁵)
	E"S12	32	2	7.8125	200	20	1(104)
·	512	33	2		500	50	2.5(104)

FIGURE 1 - $E_{\mathbf{X}}^{"}$ Plotting Program Block Diagram

FIGURE 2 - PLOT/AW Subroutine Block Diagram

FIGURE 3 - Σ" Subroutine Block Diagram

FIGURE 4 - E" Versus fn for Family 1 d Values

FIGURE 5 - E' Versus fn for Family 2 d Values (Expanded)

FIGURE 6 - E' Versus fn for Family 2 d Values

FIGURE 7 - $E_{S7}^{"}$ Versus fn for Family 1 d Values

ENERGY (IN - LB)/SWEEP X 10.3

FIGURE 8 - E" Versus fn for Family 2 d Values (Expanded)

FIGURE 9 - $E_{S7}^{"}$ Versus fn for Family 2 d Values

ENERGY (IN - LB)/SWEEP X 10.2

- 31 -

FIGURE 11 - E' Versus fn for Family 2 d Values (Expanded)

ENERGY (IN - LB)/SWEEP X 10-4

FIGURE 12 - $E_{\rm S2}^{\prime\prime}$ Versus fn for Family 2 d Values

FIGURE 13 - E'8 Versus fn for Family 1 d Values

FIGURE 14 - E_{S8}^{H} Versus fn for Family 2 d Values (Expanded)

FIGURE 17 - E's Versus fn for Family 2 d Values (Expanded)

ENERGY (IN - LB)/SWEEP X 10-6

FIGURE 21 - $E_{\rm S11}^{\prime\prime}$ Versus fn for Family 2 d Values

FIGURE 22 - E's Versus fn for Family 1 d Values

FIGURE 23 - E_{S3}^{H} Versus fn for Family 2 d Values (Expanded)

FIGURE 24 - E's Versus fn for Family 2 d Values

FIGURE 25 - E'9 Versus fn for Family 1 d Values

FIGURE 26 - $E_{\rm S9}^{\rm u}$ Versus fn for Family 2 d Values (Expanded)

FIGURE 27 - E''s Versus fn For Family 2 d Values

- 49 -

FIGURE 29 - E% Versus fn for Family 2 d Values (Expanded)

FIGURE 30 - E% Versus fn for Family 2 d Values

- 51 -

FIGURE 31 - E'' Versus fn for Family 1 d Values

FIGURE 32 - E'12 Versus fn for Family 2 d (Expanded)

FIGURE 33 - E''s Versus fn for Family 2 d Values

UNCLASSIFIED

Security Classification							
DOCUMENT CONTR	ROL DATA - R &	k D					
(Security classification of title, body of abstract and indexing ar	nnotation must be e.	ntered when the c	overall report is classified)				
ORIGINATING ACTIVITY (Corporate author) ADMINISTRATION AND TECHNICAL SERVICES DEPARTMENT		UNCLASSIFIED					
NAVAL AIR DEVELOPMENT CENTER WARMINSTER, PENNSYLVANIA 18974	2b. GROUP	ROUP					
SUPPLEMENT TO REPORT NO. NADC-72185-AD VIBR DOMAIN FOR COULOMB DAMPED ELASTIC SYSTEMS W	RATION ENERG	Y SUMMATIO DAL EXCITA	NS IN RESPONSE TION				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)							
5 AUTHOR(5) (First name, middle initial, last name)							
J. N. TAIT			T				
6 REPORT DATE 20 DECEMBER 1973	78. TOTAL NO. OF PAGES 75. NO. OF RE		7b. NO. OF REFS				
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(5)						
b. PROJECT NO. WF53-532-404	NADC-73153-81						
WORK UNIT NO. 1	9b. OTHER REPO this report)	ORT NO(S) (Any other numbers that may be assigned					
d.							
10. DISTRIBUTION STATEMENT							
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED							
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	VITY				
	NAVAL AIR SYSTEMS COMMAND DEPARTMENT OF THE NAVY						
12 ARCTRACT	J.,						

This report supplements the previous phase report covering response energy summation analysis for a rigidly-connected coulomb damped elastic structure model, when subjected to all controlled patterns of sinusoidal vibration. Specimen curve evaluations for extended parameter ranges are facili-

tated by the use of computer plotting programs.

DD FORM 1473

S/N 0102-014-6600

(PAGE 1) PLATE NO. 21856 UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification		. LIN	. LINK A		LINK B		LINKC	
	KEY WORDS	ROLE		ROLE	WT	ROLE	w T	
						I		
			İ	1.		Ī		
						1		
		}						
							;	
							•	
]					
]		
			[
	•					1		
						1		
			1 :					
			•					
		1						
		ļ						
			}					
						1		
				,]		
							·	
	•							
	•							
				ľ				
	•							
	•							

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED

DISTRIBUTION LIST

REPORT NO. NADC-73153-81

AIRTASK NO. WF53-532-404 Work Unit No. 1

	No. of copies
NAVAIRSYSCOM, AIR-50174	9
(2 for retention)	
(1 for AIR-503)	
(1 for AIR-533)	
(1 for AIR-53355)	
(2 for AIR-53355A)	
(2 for AIR-340)	
CNO, OP-03EG	2
COMOPTEVFOR	1
NAVELECSYSCOM	1
NAVSHIPSYSCOM, Code 2051	1
AIRTEVRON ONE	1
NELCEN	1
NUSC, New London	1
NUSC. Newport	1
NSRDC	1
NAVWPNSCEN	3
(1 for retention)	
(1 for 453)	
(1 for 4533)	
NURDC	1
NWL	1
NRL	1
	1
NOL	1
NAVAIRTESTCEN, WST Div	
NAVPGSCOL	1
NAVIONICFAC	1
NAVMISCEN	1
AFSC (SCTS), Andrews AFB	1
USAECON, AMSEL-GG-DD	1
DDC	2