Machine Learning Taxonomy with Summaries

Machine Learning

- --- 1) Learning Paradigms
 - --- Supervised Learning: Learn from labeled data to predict outputs.
 - --- Regression: Predict continuous numeric values.
 - --- Linear Regression: Fit a straight line to data points.
 - --- Ridge/Lasso Regression: Linear regression with regularization.
 - --- Classification: Predict discrete class labels.
 - --- Logistic Regression: Model probability of classes using sigmoid.
 - --- Decision Trees (CART): Tree-based models splitting data by features.
 - --- Support Vector Machines: Maximize margin between classes with a hyperplane.
 - --- Unsupervised Learning: Discover patterns without labeled outputs.
 - --- Clustering: Group similar data points.
 - --- k-Means: Partition data into k clusters minimizing within-cluster variance.
 - --- DBSCAN: Density-based clustering of arbitrary-shaped clusters.
 - --- Dimensionality Reduction: Reduce feature space while preserving structure.
 - --- PCA: Linear technique for maximizing variance directions.
 - --- t-SNE/UMAP: Nonlinear techniques for visualizing high-dimensional data.
 - --- Semi-Supervised Learning: Use small labeled + large unlabeled data to train.
 - --- Self-Supervised Learning: Create pseudo-labels from data structure itself.
 - --- Reinforcement Learning: Learn optimal actions by trial and error maximizing rewards.
 - --- Value-based (e.g., Q-Learning): Learn expected rewards of actions.
 - --- Policy-based (e.g., Policy Gradients): Learn directly the action probabilities.

--- 2) Model Types

- --- Parametric Models: Fixed number of parameters regardless of data size.
 - --- Linear Models: Predict outputs with weighted sums of inputs.
 - --- Neural Networks (fixed architecture): Layers of neurons with trainable weights.
- --- Non-Parametric Models: Complexity grows with data size.
 - --- k-Nearest Neighbors: Predict based on closest training points.
 - --- Decision Trees: Split data hierarchically without fixed parameters.

--- 3) Algorithms / Approaches

- --- Linear Models: Use weighted sums of inputs to predict outputs.
 - --- Linear/Logistic Regression: Predict continuous values or probabilities.
 - --- Perceptron Algorithm: Early linear classifier updating weights on mistakes.
- --- Decision Trees: Learn tree-like rules for prediction.
 - --- CART, ID3, C4.5: Different algorithms for building decision trees.
- --- Ensemble Methods: Combine multiple models for better performance.
 - --- Bagging (Random Forests): Aggregate bootstrapped trees to reduce variance.
 - --- Boosting (AdaBoost, XGBoost): Sequentially add models to correct errors.
- --- Support Vector Machines: Classifiers maximizing margins with support vectors.
- --- k-Nearest Neighbors: Predict by majority vote or average of nearest data points.
- --- Neural Networks: Layers of connected neurons learning complex patterns.
 - --- Feedforward Networks (MLP): Basic fully-connected layers for regression/classification.
 - --- Convolutional Neural Networks (CNNs): Specialized for images and spatial data.
 - --- Recurrent Neural Networks (RNNs): Handle sequential/time-series data.
 - --- Generative Neural Networks: Learn data distributions to generate new samples.
 - --- GANs: Compete generator and discriminator networks to synthesize realistic data.
 - --- VAEs: Encode data into probabilistic latent space and decode samples.
 - --- Recent Architecture (e.g., Transformers): Attention-based networks excelling in NLP and vision.

- --- Probabilistic Models: Use probability distributions for predictions.
 - --- Naive Bayes: Assumes feature independence for fast probabilistic classification.
 - --- Hidden Markov Models (HMMs): Model sequences with hidden states emitting observations.
- --- Clustering Algorithms: Group unlabeled data based on similarity.
 - --- k-Means: Minimize intra-cluster distances.
 - --- Hierarchical Clustering: Build nested clusters in a tree-like structure.

--- 4) Tasks / Applications

- --- Computer Vision: Understand and analyze images and videos.
 - --- Image Classification: Assign labels to entire images.
 - --- Object Detection: Locate and classify objects within images.
 - --- Image Segmentation: Partition images into labeled regions.
- --- Natural Language Processing (NLP): Analyze and generate human language.
 - --- Text Classification: Assign categories to text (e.g., spam detection).
 - --- Machine Translation: Translate text between languages.
 - --- Named Entity Recognition: Identify proper names in text.
- --- Speech Recognition: Convert spoken language to text.
 - --- Speech-to-Text: Transcribe audio recordings into written words.
- --- Recommendation Systems: Suggest items based on user preferences.
 - --- Collaborative Filtering: Predict interests by similarities between users/items.
 - --- Content-Based Filtering: Recommend based on item features.
- --- Time Series Forecasting: Predict future values from historical sequential data.
 - --- ARIMA, LSTM Models: Capture temporal patterns for forecasting.
- --- Anomaly Detection: Identify unusual patterns deviating from normal behavior.
 - --- One-Class SVM, Isolation Forest: Algorithms for outlier detection.

--- 5) Evaluation Metrics

- --- Classification Metrics: Measure classification performance.
 - --- Accuracy: Proportion of correct predictions.
 - --- Precision, Recall, F1-Score: Trade-offs between false positives/negatives.
 - --- ROC AUC: Measure of classifier separability.
 - --- Log Loss: Penalizes confident wrong predictions.
- --- Regression Metrics: Measure numeric prediction performance.
 - --- Mean Squared Error (MSE): Average squared prediction error.
 - --- Mean Absolute Error (MAE): Average absolute prediction error.
 - --- R-squared (R²): Proportion of variance explained by the model.