

(11) (A) No. 1 128 881

(45) ISSUED 820803

(52) CLASS 195-86
C.R. CL. 260-128.1

(51) INT. CL. C12M 3/00, C07G 17/00

(19) (CA) **CANADIAN PATENT** (12)

(54) METHOD FOR PRODUCING SUBSTANCE CAPABLE OF
STIMULATING DIFFERENTIATION AND PROLIFERATION OF
HUMAN GRANULOCOPOIETIC STEM CELLS

(72) Takaku, Fumimaro;
Ogasa, Katsuhiro;
Kuboyama, Morio;
Yanai, Nobuya;
Yamada, Muneo;
Watanabe, Yoshiteru,
Japan

(73) Granted to Morinaga Milk Industry Co., Ltd.
Japan
Green Cross Corporation (The)
Japan

(21) APPLICATION No. 356,422

(22) FILED 800717

(30) PRIORITY DATE Japan (92355/79) 790720
Japan (64625/80) 800515

No. OF CLAIMS 13 ~ NO DRAWING

356422

ABSTRACT OF THE DISCLOSURE AUG 3 1982 **1128881**

A colony stimulating factor effective in treating human granulocytopenia is produced by cultivating monocytes and macrophages isolated from the human peripheral blood in a synthetic medium for tissue culture containing a glycoprotein isolated from human urine and capable of stimulating the formation of human granulocytes or mouse macrophages and granulocytes.

What is claimed is:

1. A method for producing a substance capable of stimulating the proliferation and differentiation of human granulopoietic stem cells, which comprises cultivating monocytes and macrophages, which are separated from the human peripheral blood, in a synthetic medium for tissue culture containing a glycoprotein separated from the human urine and capable of stimulating the formation of human granulocytes or mouse macrophages and granulocytes, thereby producing an active substance in the medium, and recovering the active substance from the medium.
2. A method according to Claim 1, wherein the glycoprotein is a glycoprotein capable of stimulating the formation of human granulocytes.
3. A method according to Claim 1, wherein the glycoprotein is a glycoprotein capable of stimulating the formation of mouse macrophages and granulocytes.
4. A method according to Claim 1, wherein the cultivation is carried out in the presence of serum.
5. A method according to Claim 4, wherein the serum present in the medium is human serum.
6. A method according to Claim 5, wherein the amount of the serum is at least 5% based on the volume of the medium.
7. A method according to Claim 2, wherein the glycoprotein content of the medium is at least 0.1 µg per ml of the medium.

8. A method according to Claim 3, wherein the glycoprotein content of the medium is at least 500 units per ml of the medium.
9. A method for producing a substance capable of stimulating the proliferation and differentiation of human granulopoietic stem cells according to Claim 1, wherein the glycoprotein is a partially purified material accompanied with urinary proteins.
10. A method according to Claim 1, wherein the number of cells of monocytes and macrophages inoculated into the medium is at least 10^5 per ml of the medium.
11. A substance capable of stimulating the proliferation and differentiation of human granulopoietic stem cells, which is produced by the method according to Claim 1.
12. A substance capable of stimulating the proliferation and differentiation of human granulopoietic stem cells, which is produced by the method according to Claim 2.
13. A substance capable of stimulating the proliferation and differentiation of human granulopoietic stem cells, which is produced by the method according to Claim 3.

Fetherstonhaugh & Co.,
Ottawa, Canada

Patent Agents

1. This invention relates to a curative for
human granulocytopenia and, more particularly, to a
method for producing a substance which directly acts
on human granulopoietic stem cells (hereinafter referred
5 to simply as stem cells), thereby stimulating the
proliferation and differentiation of said cells
[hereinafter such a substance is referred to as CSF
(colony stimulating factor)].

It has been widely known that CSF plays a
10 key role in the granulopoiesis and monocyte (cells
yet to grow to macrophages) and/or macrophage formation
in vivo and because CSF in the living human body
acts on the stem cells, which are the mother cells
for the said granulocyte, monocyte and macrophage,
15 to induce their proliferation and differentiation
[Metcalf, D., Experimental Haematology, Vol. 1, 185-201
(1973)]. The CSF having such a biological activity
has been expected to become useful as a medicament for
treating granulocytopenia [Fumimaro Takaku, Igaku no
20 Ayumi (Progress in Medical Science), Vol. 95, No. 2,
41-50 (1975)]. The actual use of CSF as a medicinal
agent, however, has not yet been realized for the
reasons such that the mechanism of formation of granulo-
cytes, monocytes and macrophages in vivo is complicated,
25 that there still remained unknown part in the behavior

1 of CSF in said mechanism, and that it was difficult
to produce large quantities of CSF of a pharmacologically
acceptable quality.

As for the use of CSF as a diagnostic reagent,
5 it was known that the measurement of the number of
CSF-responsive cells in bone marrow cells is of great
significance for the prognosis on a patient suffering
from myelogenous leukemia (Nakao and Takaku, Ed.:
"Proliferation and Differentiation of Blood Cells -
10 Fundamental and Clinical aspects - ", p. 29, Published
by Kagaku Hyoronsha Co., Japan, 1975) and CSF is useful
as a reagent (reference stimulator) for this purpose.
However, similarly to the case of above-noted pharma-
ceutical use, the use of CSF in diagnosis has not yet
15 been put into practice because of the difficulty in
producing large quantities of CSF having a quality
sufficient enough for the diagnostic use.

For the preparation of CSF which acts directly
on the stem cells, there have been known those methods
20 which involve cultivation of white blood cells of
the human peripheral blood [Price, G.B. et al., Bio-
chemical Journal, Vol. 148, 209-217 (1975)], human
placental cells [Burges, A.W. et al., Blood, Vol. 49,
No. 4, 573-583 (1977)] or a certain kind of cancer
25 cells called CSF-producing tumor [Nakaaki Osawa et al.,
Acta Hematologica Japonica, Vol. 42, No. 2, 237 (1979)].
Among these methods, those which may possibly produce
CSF suitable for pharmaceutical use are the former two.

1 However, the conventional methods utilizing the said
cells are experimental methods for the preparation
of small quantities of CSF and are unsuitable for
the large-scale production. Moreover, in preparing
5 CSF by the conventional methods serum is an indispens-
able constituent of the medium for cultivating the
cells (if the serum is absent in the medium, no CSF
will be produced) and bovine serum or fetal calf serum
has conventionally been used. In order to avoid the
10 side effects caused by the foreign proteins contained
in these media, it is necessary to remove said proteins
after cultivation of the cells or to use human serum.
The removal of such proteins from the CSF produced
in the medium requires a troublesome procedure and
15 is difficult, while the human serum has a disadvantage
of expensiveness which results in increased production
cost.

As described above, despite the fact that
the uses of CSF as a pharmaceutical and as a diagnostic
20 reagent were known, no method has heretofore been
developed for the large-scale, low-cost production
of a CSF product having no side effects.

An object of this invention is to provide
a method which permits a large-scale production of CSF
25 having no side effects and useful as a curative for
the human granulocytopenia and as a diagnostic reagent
for the myelogenous leukemia.

According to this invention, there is provided

- 1 a method for producing a substance capable of stimulating the proliferation and differentiation of human granulopoietic stem cells, which comprises cultivating monocytes and macrophages, which are isolated from
- 5 the human peripheral blood, in a synthetic medium for tissue culture containing a glycoprotein isolated from human urine and capable of stimulating the formation of human granulocytes or mouse macrophages and granulocytes, thereby producing an active substance
- 10 in the medium, and recovering the active substance from the medium.

The glycoprotein capable of stimulating the formation of human granulocytes [hereinafter referred to as glycoprotein (H)] which is isolated from human urine and used in this invention, is fully described in Japanese Patent Application Laid-open No. 140,707/79, West German Patent "Offenlegungsschrift 2,910,745" and U.K. Patent Application Publication No. 2,016,477. A glycoprotein capable of stimulating the formation of mouse macrophages and granulocytes [herein referred to as glycoprotein (M)], which was isolated from human urine, was described as a known sialic acid-containing glycoprotein by Stanley and Metcalf, Australian Journal of Experimental Biological Medical Science, 47, 20 467-483 (1969); Stanley et al., Federation Proceedings, 34, No. 13, 2272-2278 (1975); Laukel et al., Journal of Cellular Physiology, 94, 21-30 (1978) and others.

1 The synthetic medium for tissue culture
used in this invention can be a commerical synthetic
medium for use in tissue culture or cell culture such
as, for example, McCoy's SA medium [McCoy, T.A.,
5 Maxwell, M., and Kruse, P.F.: Proc. Soc. Exper. Biol.
and Med., 100: 115-118 (1959), sold by Gibco Co.],
Nutrient Mixture HAMF-10 [Ham, R.G., Exp. Cell Res.,
29: 515-526, sold by Gibco Co.], RPMI-1640 [Iwakata,
S., Grace J.T.Jr., N.Y.J. of Med., 64/18: 2279-2282
10 (September 15, 1964), sold by Nissui Seiyaku Co.], or
amino acid-supplemented Eagle's MEM medium [Eagle, H.,
Science 130: 432 (1959), sold by Nissui Seiyaku Co.].

The method of this invention is described
below in detail.

15 (1) Isolation of monocytes and macrophages.

Blood collected from the vein of healthy
individuals by means of a heparinized syringe is
placed in a sterile test tube and left standing at room
temperature for 1 to 2 hours. Subsequent procedures
20 are all conducted under aseptic conditions. After
standing, the upper leukocyte layer is collected, washed
once with a synthetic medium for tissue culture, and
subjected to the density gradient centrifugal precipita-
tion [Mahmood, T. and W.A. Robinson, Blood, 51,
25 No. 5,879-887 (1978)] to fractionate into a layer
containing monocytes, macrophages and lymphocytes and
another layer containing granulocytes. The former layer
is collected to obtain a cell fraction. The cell

1 fraction is suspended in a commercial synthetic medium
for tissue culture (hereinafter referred to simply
as medium) and centrifuged to remove and reject the
supernatant. The cells thus collected are washed
5 by adding the same medium as used above. The washing
is repeated at least twice. The washed cells are
suspended in a small volume of the same medium. A
portion of the resulting suspension is withdrawn and
the number of cells is measured with an automatic blood
10 cell counter. The ratio in number of monocytes and
macrophages to lymphocytes is determined by the micro-
scopic examination of a smear specimen treated with
a Wright-Giemsa's stain. The cell suspension is spread
over a Petri dish made of glass or a plastic so that
15 the number of inocula (monocytes and macrophages) may
amount to the prescribed value, preferably 10^5 to 10^7
per dish, then added with a commercial synthetic
medium for tissue culture supplemented with 5 to 20%
(volume % based on the medium; the same applies herein-
20 after) of serum, and allowed to stand at 37°C in a
humidified atmosphere of 5% CO₂ in air for 1 to 2 hours.
During the period of standing, monocytes and macro-
phages are adhered onto the bottom surface of the dish,
while lymphocytes remain suspended in the medium. The
25 medium is then discarded and the dish is washed several
times by adding a medium containing no serum or a
physiological saline. After the treatment, most of
the lymphocytes are removed, whereas monocytes and

1 macrophages remain adhered onto the bottom surface of
the dish. On microscopic examination, it will be
found that 95% or more of the cells adhered onto the
bottom surface are monocytes and macrophages and the
5 number amounts to 10^5 - 10^7 per dish.

(2) Cultivation of monocytes and macrophages.

To the above culture dish, is added a synthetic medium with or without supplemented serum and containing at least 0.1 $\mu\text{g}/\text{ml}$ (medium) of glycoprotein (H) or glycoprotein (H)-containing fraction, or at least 500 units/ml (medium) of glycoprotein (M) or a glycoprotein (M)-containing fraction (the glycoprotein unit is described later) so that the population density of monocytes and macrophages may become at 15 least $10^5/\text{ml}$ (medium). The inoculated medium is incubated at 37°C in a humidified atmosphere of 5% CO_2 in air for 1 to 7 days to produce CSF in the medium. The synthetic medium used above is the aforementioned commercial medium for tissue culture.

20 The optimal conditions for the production of CSF according to this invention with respect to the duration of cultivation, amount of the glycoprotein to be added, amount of cells to be inoculated, amount of serum to be incorporated, and the type of medium are 25 described later in the Experimental Examples.

In preparing CSF for the pharmaceutical use according to this invention, a medium with supplemented human serum or a serum-free medium is used in order to

1 avoide side effects caused by foreign proteins. In
preparing CSF for use as a diagnostic reagent, on the
other hand, a medium added with bovine serum or fetal
calf serum may be used. It is also possible to use
5 a culture bottle in place of the culture dish. Further,
those monocytes and macrophages which have undergone
cultivation may repeatedly used.

(3) Glycoprotein to be added to a medium.

The glycoprotein used in the method of this
10 invention is that isolated from human urine and capable
of stimulating the formation of human granulocytes
or mouse macrophages and granulocytes or a fraction
containing such glycoprotein.

The glycoprotein capable of stimulating the
15 formation of human granulocytes may be obtained according
to the description in the Japanese Patent Application
Laid-open No. 140,707/79 and the other patent publications,
as outlined below.

Fresh urine collected from healthy individuals
20 is adjusted to pH 6 - 9, preferably 7 - 8, with dilute
acid or alkaline solutions and centrifuged to remove
the impurities contained in the urine. The supernatant
thus obtained is contacted with a silicon-containing
adsorbent such as, for example, silica gel, silica gel-
25 magnesium silicate, diatomaceous earth, silica glass
or bentonite and the adsorbed components are eluted with
an alkaline solution of preferably pH 9 or higher.
The alkaline solution used for the elution is not

1 specific but is preferably an aqueous solution of
ammonium hydroxide, sodium hydroxide or the like in
a concentration of 0.3 to 1.5 M. The eluate thus
obtained is adjusted to pH 7~8 and added with a neutral
5 salt such as, for example, ammonium sulfate to 70%
saturation to salt out the active substance, whereby
a crude fraction containing glycoprotein is obtained.

The above crude fraction is redissolved in
a small portion of an alkaline solution, freed from
10 low molecular substances having a molecular weight of
10,000 or less by ultrafiltration and contacted with
a cation exchanger (for example, carboxymethyldextran,
carboxymethylcellulose or phosphocellulose) to remove
the impurities contained in the solution. Before the
15 above contact, both the crude fraction containing
glycoprotein and the ion exchanger are equilibrated to
pH 6~8 with preferably 0.01~0.15 M buffer solution
so that the contact may be carried out under the condi-
tions of nearly neutral pH. Most of the glycoprotein
20 passes through the ion exchanger unadsorbed. After
concentration, the concentrated effluent is equilibrated
with a dilute buffer solution of pH 6~8 and applied to
anion exchanger column (for example, DEAE-cellulose)
equilibrated with same buffer as above to adsorb the
25 glycoprotein on the column. The adsorbed glycoprotein
is eluted by the so-called linear concentration gradient
elution by using a 0.1 to 0.3 M saline solution, e.g.
a sodium chloride solution. The glycoprotein is eluted

1 at a salt concentration of 0.1 M or higher, but a
perfect separation is difficult. The effluent fractions
at 0.1 - 0.3 M salt concentrations are pooled and,
if necessary, the pooled fraction is desalted and
5 concentrated (this fraction is designated fraction A).

The fraction A may be used as such in the method of
this invention.

It is also possible that before being sub-
jected to the linear concentration gradient elution,

10 the glycoprotein fraction is purified by the adsorption
on an anion exchanger and step-wise elution with 0.1 -
0.3 M saline solution.

For the purpose of further purification,
the fraction A obtained above is subjected to gel
15 filtration chromatography on a highly crosslinked
polymer gel having a water regain value of 10 - 20 ml/g
such as, for example, Sephadex® G-150 or Biogel®
P-100; the active substances are developed with a 0.05 -
0.1 M saline buffer and fractions having a relative
20 effluent value of 1.11 - 1.60, preferably 1.11 - 1.45,
are collected, desalted and concentrated or lyophilized
(this fraction is designated fraction B).

The glycoprotein-containing fraction B thus
obtained can also be used in the method of this invention.

25 The relative effluent volume as herein referred to is
a volume expressed by the ratio V_e/V_o (where V_e represents
the volume of solvent necessary to elute the substance
in the column and V_o represents the void volume of

1 the gel column).

For further purification, the semi-purified substance obtained above is dissolved in a dilute buffer solution containing 1.0 - 2.0 M salt such as, for example, a phosphate buffer solution at pH 6.0 - 8.0, preferably 6.0 - 7.0, containing 1.0 - 2.0 M sodium chloride and subjected to affinity chromatography with a sugar affinitive adsorbent such as, for example, concanavalin A - Sepharose 4B (supplied by Pharmacia Fine Chemical) which has been equilibrated with the same buffer solution. The glycoprotein adsorbed on the affinity column is eluted with a 1.0 - 2.0 M saline in dilute buffer at pH 6.0 - 8.0, preferably 6.0 - 7.0, containing 20 - 100 mM saccharide (for example, α -methyl-D-glucoside). The fractions containing glycoprotein are combined and, if necessary, desalting and concentrated or lyophilized. This fraction can also be used in the present method.

For still further purification, the above fraction is subjected to preparative zone electrophoresis using as the supporting medium, for example a polyacrylamide gel or agar gel, pH 7.0 - 9.0, and a highly purified glycoprotein fraction is recovered from the supporting medium with a dilute saline solution under cooling. This fraction is desalting and concentrated or lyophilized. The purified glycoprotein can also be used in the method of this invention.

The glycoprotein used in the present method,

1 which stimulates the formation of mouse granulocytes
 and macrophages has been described in the afore-mentioned
 literature. The preparative method of Stanley and
 Metcalf, that of Stanley et al. and that of Laukel et al.
 5 are described in detail in Examples 6, 5 and 7, respectively,
 in this specification.

The biological activity of the glycoprotein
 preparations to mouse bone marrow cells is assayed
 in the following way and expressed in terms of "unit."

10 To 1 ml of McCoy's 5A medium supplemented with 20% of
 fetal calf serum, 0.3% of agar and 1×10^5 bone marrow
 cells of $C_{57}Bl/6J$ mice, is added with 0.1 ml of glyco-
 protein being assayed or a fraction containing same.
 The glycoprotein-containing medium thus prepared is placed
 15 in a plastic Petri dish, 35 mm in diameter, and incubated
 at 37°C in a humidified atmosphere of 5% CO_2 in air for 7
 days. After completion of the incubation, the number of
 discrete colonies containing each 50 or more cells is
 counted with an inverted microscope. The biological
 20 activity of a sample forming one colony is assumed to
 be one unit. To evaluate the purification degree of a
 glycoprotein sample, the specific activity is calculated
 by the following equation:

$$\text{Specific activity} = \frac{\text{Unit of the sample}}{\text{Quantity of glycoprotein or fraction containing glycoprotein (mg)}}$$

1 The specific activity increases with the
progress of purification. The glycoprotein or glyco-
protein-containing fraction being added to the medium
in the method of this invention can be purified one
5 having a high specific activity but is preferably
one having a rather lower activity obtained in the
course of purification. The quantities of glycoprotein(H)
and (M) to be added to the medium are at least 0.1 μ g,
preferably 10 - 100 μ g per 1 ml of medium, and at least
10 500 units, preferably 1000 units or more per 1 ml of
medium, respectively.

(4) Recovery of the active substance from the
conditioned medium.

The conditioned medium containing CSF prepared
15 as described above is collected from the Petri dish
and centrifuged at 1,000 - 2,000 x g for 5 to 10 minutes
to obtain a supernatant which contains highly active
CSF.

The above supernatant is useful for the
20 preparation of a clinical diagnostic reagent or a
reference reagent for testing the formation of colonies
by human granulopoietic stem cells. For this purpose,
the activity of the supernatant is adjusted so that
0.1 ml of the supernatant may contain a CSF activity
25 sufficient for forming at least 100 human granulocyte
colonies, filtered through a membrane filter, aseptically
filled in a container and hermetically sealed to obtain
a liquid reagent. A reagent in powder form can be

1 prepared by the aseptic lyophilization of the above
sterile filtrate.

For the pharmaceutical use, a conditioned
medium obtained by using a serum-free medium or a
5 human serum supplemented medium is dialyzed against
water to remove medium constituents, and sterilized
by membrane filtration. If necessary, the filtrate
is concentrated, aseptically filled in a container and
hermetically sealed to obtain a pharmaceutical in
10 liquid form. It is also possible to obtain a pharma-
ceutical in powder form by sterilizing the dialyzed
solution by membrane filtration and lyophilizing
aseptically.

For further purification of CSF for the
15 pharmaceutical use, the aforementioned supernatant is
separated into a high molecular fraction (molecular
weight above 5,000 or 10,000) and a low molecular
fraction (molecular weight below 5,000 or 10,000) by
means of an ultrafiltration membrane (molar weight cut-
20 off 5,000 or 10,000). Although both fractions contain
CSF, 90% or more of CSF exist in the high molecular
fraction.

A pharmaceutical product can be obtained
by concentrating the low molecular fraction in vacuo.
25 The concentrate of high molecular fraction is dissolved
in 0.01 - 0.1 M buffer solution (pH 6.0 ~ 8.0) and contacted
with an anion exchange resin such as, for example,
DEAE-cellulose, DEAE-Sephadex or QAE-Sephadex, which

1 has been equilibrated with the said buffer solution,
to adsorb CSF on the resin. The CSF adsorbed on the
resin is eluted with 0.1 - 0.3 M buffer solution (pH 6.0 -
8.0) to obtain a purified product.

5 The above eluate can be further purified by
concentration and subsequent molecular sieve chromatog-
raphy by gel filtration. The gel for the gel filtra-
tion can be any of commercial Sephadex[®] G-150,
Biogel[®] P-100 and Ultrogel[®] ACA-44.

10 When the CSF activity is produced by using
a serum-free medium, the treatment with an anion exchange
resin can be omitted and the purification is performed
directly by the gel filtration chromatography. A
suitable developing buffer solution in the gel filtration
15 chromatography is 0.01 - 0.3 M buffer solution (pH 6.0 -
8.0). The CSF activity fractions obtained by gel
filtration are pooled and the pooled fraction is
concentrated, desalting and lyophilized to yield a
purified CSF product.

20 The purified CSF products obtained above
are analyzed for the contaminant proteins by immuno-
electrophoresis using human antiserum and bovine
antiserum. Trace amounts of human globulin-like
proteins and serum albumin and globulin-like proteins
25 both originated presumably from fetal calf serum are
detected in the CSF products obtained from a fetal calf
serum supplemented medium. On the other hand, since
absolutely none of such proteinic substances is detectable

1 in the CSF produced in the serum-free medium, it may
be used as a pharmaceutical which is free from side
effects.

For injections, the liquid pharmaceutical
5 products are used as such and the powder products
are suitably dissolved in sterile water, sterile
physiological saline, or the like before use.

The pharmaceutical product prepared by the
present method is administered to a patient with
10 granulocytopenia at an effective dose larger than 77.8
mg/kg body weight/day.

Experimental Example 1

Experiment on incubation period.

(1) Isolation of monocytes and macrophages and
15 preparation of glycoprotein.

Monocytes and macrophages were isolated as
described later in Example 1 - (1). The glycoproteins
used in the experiment were prepared as described later
in Example 1 - (2) and Example 5 - (2). The glycoprotein
20 (H) prepared as in Example 1 - (2) was a highly purified
product in the final purification stage and the glyco-
protein (M) prepared as in Example 5 - (2) was a standard
purity product (specific activity: 180,000).

(2) Incubation of monocytes and macrophages.
25 Two media each containing 100 µg/ml of
glycoprotein (H) and two glycoprotein-free media were
prepared. For the media, were used serum-free McCoy's 5A

1 medium and supplemented McCoy's 5A medium containing
20% of fetal calf serum.

To each Petri dish containing monocytes
and macrophages adhered onto the bottom, was added
5 each one of the four media at a rate of 10^6 monocytes
and macrophages per ml medium. Each medium was in-
cubated in the same manner as in Example 1-(3).

A predetermined volume of the medium was withdrawn from
each dish before incubation and after incubation periods
10 of 1, 3, 5 and 7 days.

On the other hand, the above procedure was
repeated, except that the glycoprotein (M) was used at
a rate of 1,000 units/ml medium in place of the said
amount of the glycoprotein (H).

15 (3) Assay of CSF in the conditioned medium.

The CSF activity of each conditioned medium
was assayed by the formation of colonies of human bone
marrow cells. The bone marrow was withdrawn from the
sternum of a healthy individual by means of a heparinized
20 syringes after sternal puncture. The withdrawn bone
marrow was centrifuged at 1,000 x g for 10 minutes to
collect the buffy coat. The buffy coat was washed
with McCoy's 5A medium, suspended in McCoy's 5A medium
containing 20% of serum, spread over a Petri dish,
25 added with several mg/ml medium of a powdered carbonyl-
iron which had been subjected to dry air sterilization,
and allowed to stand in an incubator at 37°C for 1 to
2 hours. After standing, the phagocytic cells which

1 phagocytized the particles of carbonyl-iron were fixed
to the bottom of Petri dish by means of a magnet and
the supernatant cell suspension was collected. The
suspended cells are non adherent, non-phagocytic bone
5 marrow cells and are used for the assay of CSF activity.
These bone marrow cells were washed by centrifugation
and suspended in a small volume of the medium. The
number of nucleated cells in the suspension was counted
after treating with an acetic acid-gentain stain.

10 The non adherent, non-phagocytic nucleated
cells were added to McCoy's 5A medium containing 0.3%
of agar and 20% of fetal calf serum so that the medium
may contain 2×10^5 said cells per ml of the medium.
After addition of the conditioned medium at a rate of
15 0.1 ml/ml medium, the inoculated medium was incubated
at 37°C in a humidified atmosphere of 5% CO₂ in air
for 10 days. After incubation the number of colonies
among the cell aggregates which were formed was counted
under a microscope (the term "colony", as herein used,
20 means a cell aggregate containing 40 or more cells). The
CSF activity was expressed in terms of the number of
colonies and used as a measure for the production of
CSF. The results were as shown in Table I.

1128881

Table 1

Cultivation conditions		CSF activity (number of colonies) per 0.1 ml			
		Medium containing 20% of fetal calf serum		Serum-free medium	
Period of incubation (day)	Glycoprotein (H)	Glycoprotein added	Glycoprotein not added	Glycoprotein added	Glycoprotein not added
	Before incubation	0	0	0	0
1		13 ± 3	3 ± 1	2 ± 1	0
3		116 ± 4	24 ± 3	25 ± 2	1 ± 1
5		117 ± 3	23 ± 1	20 ± 1	0
7		98 ± 1	16 ± 8	18 ± 1	0
Glycoprotein (N)					
Before incubation		0	0	0	0
1		20 ± 8	6 ± 4	0	0
3		89 ± 6	29 ± 8	35 ± 4	3 ± 1
5		86 ± 3	30 ± 4	30 ± 6	4 ± 1
7		69 ± 4	16 ± 2	23 ± 4	2 ± 1

1 As shown in Table 1, it was found that by
the addition of either glycoprotein the CSF production
became nearly maximum on the third day of incubation
in every medium. In the medium containing 20% of fetal
5 calf serum, the CSF production was markedly larger
in the presence of glycoprotein than in the absence of
glycoprotein (conventional method). In the serum-free
medium CSF was produced when glycoprotein was added,
while CSF was scarcely produced when glycoprotein was
10 not added.

From the above results, it is evident that
in producing CSF by the cultivation of monocytes and
macrophages in vitro, these glycoproteins stimulate
the production of CSF, whether the medium contains
15 serum or not. It was also found that a suitable
incubation period is 3 to 7 days, preferably 3 days.
It is to be noted that when monocytes and macrophages
were not seeded, no CSF activity was detected in the
conditioned medium, whether glycoprotein was present
20 or not.

Experimental Example 2

Experiment on the amount of glycoprotein
added to the medium.

Media were prepared by adding the same
25 glycoproteins (H) and (M) as used in Experimental Example
1 to McCoy's 5A medium supplemented with 20% of fetal
calf serum and serum-free McCoy's 5A medium. In the case

- 1 of glycoprotein (H), the amount added to the medium
was 0.1, 1.0, 10.0 or 100 $\mu\text{g}/\text{ml}$ medium. In the case
of glycoprotein (M), the added amount was 100, 500,
1,000 or 2,000 units/ml medium. Each prepared medium
5 was poured into the Petri dish containing adhered
monocytes and macrophages and incubated for 3 days in
the same manner as in Experimental Example 1. The CSF
activity of each conditioned medium was assayed as
in Experimental Example 1 to examine the CSF production.
- 10 Samples obtained by incubating each medium without the
addition of glycoprotein were used as control. The
results obtained were as shown in Table 2.

Table 2

Added amount of glycoprotein	CSF activity (number of colonies) per 0.1 ml of conditioned medium	
	Medium contain- ing 20% of fetal calf serum	Serum-free medium
Glycoprotein (H) (μ g/ml)		
0 (control)	24 \pm 3	1 \pm 1
0.1	51 \pm 2	9 \pm 1
1.0	116 \pm 4	25 \pm 2
10.0	166 \pm 10	53 \pm 3
100.0	170 \pm 8	80 \pm 4
Glycoprotein (M) (unit/ml)		
0 (control)	21 \pm 6	2 \pm 1
100	28 \pm 3	6 \pm 3
500	96 \pm 10	13 \pm 6
1000	129 \pm 8	49 \pm 6
2000	170 \pm 6	85 \pm 8

As is seen from Table 2, by the addition of either glycoprotein the CSF production increased with the increase in the added amount of glycoprotein. In view of the above results as well as the previous results shown in Table 1 (results obtained by 3 days incubation), it is acceptable that CSF production is markedly increased by the presence of 0.1 μ g of glycoprotein (H) or 500 units of glycoprotein (M) in 1 ml

1 of the medium. In the present method, therefore,
the amount of glycoprotein to be added to 1 ml of
the medium is at least 0.1 μ g, preferably 10 to 100 μ g
for glycoprotein (H) and at least 500 units, preferably
5 1,000 units or more for glycoprotein (M).

Experimental Example 3

Experiment on the amount of monocytes and
macrophages to be inoculated into the medium.

A series of conditioned media were obtained
10 by repeating the procedure of Experimental Example 1,
except that the number of monocytes and macrophages
inoculated into 1 ml of the medium was 0, 10^3 , 10^4 , 10^5
or 10^6 ; 1 μ g of the glycoprotein (H) or 500 units of
the glycoprotein (M) was added to 1 ml of McCoy's
15 5A medium supplemented with 20% of fetal calf serum
or serum-free McCoy's 5A medium; and the incubation
period was 3 days. The conditioned media obtained were
assayed for the CSF activity to examine the production
of CSF in the same manner as in Experimental Example 1.
20 The experimental results were as shown in Table 3.

Table 3

Number of cells inoculated (number/ml)	CSF activity (number of colonies) per 0.1 ml of conditioned medium	
	Medium containing 20% of fetal calf serum	Serum-free medium
Medium containing glycoprotein (H)		
0	0	0
10^3	13 ± 1	0
10^4	20 ± 2	6 ± 1
10^5	116 ± 4	25 ± 2
10^6	185 ± 7	69 ± 5
Medium containing glycoprotein (M)		
0	0	0
10^3	19 ± 6	0
10^4	29 ± 10	8 ± 4
10^5	98 ± 6	31 ± 3
10^6	169 ± 9	74 ± 2

As is evident from Table 3, in any of the media used in the experiment, a large quantity of CSF were produced when at least 10^5 cells were present in 1 ml of the medium. In the method of this invention, therefore, it is desirable to inoculate at least 10^5 monocytes and macrophages into 1 ml of the medium.

1 Experimental Example 4

Comparative experiments of CSF production on several media.

With respect to the CSF production, four commercially available media for tissue culture or cell culture were compared with one another. The media used in the experiment included McCoy's 5A medium (Gibco Co.), nutrient mixture HAME-10 (Gibco Co.), RPMI-1640 (Nissui Seiyaku Co.), and Eagle's MEM medium supplemented with amino acids (Nissui Seiyaku Co.).

To each of the media containing no supplemented serum, was added 1.0 μ g/ml medium of the glycoprotein (H) or 500 units/ml medium of the glycoprotein (M). The prepared media were incubated for 15 3 days in the same manner as in Experimental Example 1. The conditioned media were assayed for CSF activity in the same manner as in Experimental Example 1 to examine the CSF production. The results obtained were as shown in Table 4.

Table 4

Medium	CSF activity (number of colonies) per 0.1 ml of conditioned medium	
	Added with glyco- protein (H)	Added with glyco- protein (M)
McCoy's 5A	69 ± 5	83 ± 6
HAMF - 10	71 ± 3	76 ± 8
RPML - 1640	75 ± 3	81 ± 1
MEM	48 ± 1	46 ± 5

1 As is evident from Table 4, any of the above
 four media can be used in carrying out the method of
 this invention, though the CSF production is somewhat
 lower in the MEM medium.

5 Experimental Example 5

Experiment on the amount of serum added to
 the medium.

Conditioned media were obtained in the same
 manner as in Experimental Example 1, except that use
 10 was made of those media which had been prepared by
 adding to McCoy's 5A medium 0, 5, 10, 20 or 30% of
 human serum (Green Cross Co.) or fetal calf serum
 (Flow Laboratory Co.), both of which had been heated
 at 56°C for 30 minutes, followed by 1 µg/ml medium of
 15 the glycoprotein (H) or 500 units/ml medium of the
 glycoprotein (M); the number of monocytes and macrophages

1128881

1 inoculated into each medium was 10^5 /ml; and the period
of incubation was 3 days. The conditioned media obtained
were assayed for CSF activity in the same manner as
in Experimental Example 1 to examine the production
5 of CSF. The results were as shown in Table 5.

Table 5

Added amount of serum (%)	CSF activity (number of colonies) per 0.1 ml of conditioned medium	
	Added with human serum	Added with fetal calf serum
Medium containing glycoprotein (H)		
None	25 ± 2	25 ± 2
5	55 ± 1	43 ± 1
10	120 ± 5	98 ± 3
20	150 ± 3	116 ± 4
30	141 ± 2	108 ± 2
Medium containing glycoprotein (M)		
None	21 ± 8	21 ± 8
5	49 ± 6	51 ± 4
10	109 ± 5	89 ± 2
20	124 ± 7	102 ± 6
30	123 ± 8	92 ± 5

1 As is apparent from Table 5, with the increase
in the amount of either serum added to the medium,
the production of CSF was found to increase. Although
according to this invention CSF is produced in a
5 serum-free medium, bovine serum or fetal calf serum
can be added to the medium when the production of a
large amount of CSF is required for use as a reagent.
The effective amount of serum to be added for such
a purpose is at least 5%, preferably 10% or more.

10 Experimental Example 6

Experiment on the addition of a glycoprotein-containing fraction and a highly purified fraction.

In Experimental Examples 1 to 5, purified glycoprotein was used as the active substance having a stimulating effect on the formation of human granulocytes (Case I) and, on the other hand, standard purity glycoprotein (specific activity: 180,000) was used as the active substance having a stimulating effect on the formation of mouse macrophages and granulocytes (Case II). The present experiment was carried out, as described below, to demonstrate that in the method of this invention a semi-purified material can be used in place of the purified glycoprotein in Case I and that a less purified fraction as well as 25 a highly purified material can be used in place of the standard purity glycoprotein in Case II.

The glycoprotein-containing fractions used in

1 the experiment corresponding to Case I were the
fractions A and B prepared as described later in Example
1. These fractions were each added to serum-free
McCoy's 5A medium in varied amounts of 0, 0.5, 1.0,
5 5.0 and 10 mg/ml corresponding, respectively, to 0,
8.3, 16.6, 83.3 and 166.6 μ g/ml medium in terms of
active glycoprotein in fraction A and 0, 41.7, 83.4,
417 and 834 μ g/ml medium in terms of active glycoprotein
in fraction B. The number of monocytes and macro-
10 phages inoculated into each medium was 10^5 /ml and
the incubation period was 3 days. Conditioned media
were obtained by incubating under otherwise the same
conditions as in Experimental Example 1.

Since the fractions A and B contained human
15 serum albumin excreted into the urine, control samples
were prepared by adding human serum albumin (Sigma
Co.) to McCoy's 5A medium in an amount corresponding
to that contained in the media prepared above; incuba-
tion conditions were the same as described above.

20 Each conditioned medium was assayed for
the CSF activity in the same manner as in Experimental
Example 1 to examine the production of CSF. The
results obtained were as shown in Table 6.

As for the Case II, the glycoprotein
25 materials used in the present experiment were the
fraction C (specific activity: 21,000), fraction D
(specific activity: 54,000) and the highly purified
material (specific activity: 1,240,000) described in

1 Example 5 and prepared as in Example 5. Conditioned
media were obtained by repeating the experimental
procedure described above in connection with Case I,
except that the fractions C and D and the highly purified
5 material (see Example 5) were each added to the media
in varied amounts of 0, 100, 500, 1,000 and 2,000
units/ml medium in place of the described amounts of
the fractions A and B (see Example 1) and the control
tests using human serum albumin were omitted. The
10 results obtained were as shown in Table 6.

Table 6

Added amount	CSF activity (number of colonies) per 0.1 ml of conditioned medium		
Glycoprotein of Example 1 (mg/ml)	Fraction A	Fraction B	Control
None	0	0	0
0.5	60 ± 1	39 ± 1	4 ± 1
1.0	121 ± 1	114 ± 1	6 ± 2
5.0	170 ± 3	103 ± 3	14 ± 2
10.0	148 ± 2	98 ± 4	26 ± 1
Glycoprotein of Example 5 (units/ml)	Fraction C	Fraction D	Highly purified material
None	2 ± 1	2 ± 1	2 ± 1
100	8 ± 2	10 ± 4	5 ± 2
500	36 ± 6	37 ± 4	10 ± 3
1000	74 ± 5	66 ± 5	21 ± 4
2000	122 ± 8	113 ± 6	44 ± 9

1 Effect of the purification degree of the
 glycoprotein having a stimulating effect on the formation
 of human granulocytes: The CSF production in a medium
 added with fraction A or B was higher than that in
 5 the control medium, indicating that glycoprotein
 stimulates the CSF production. As compared with the
 example shown in Table 2, wherein 10 µg/ml of glyco-
 protein was added to the serum-free medium, CSF production

1 was higher in the example shown in Table 6, wherein
0.5 mg/ml of the fraction A (8.3 μ g/ml in terms of
glycoprotein) was added, though a small amount of
glycoprotein was added in the latter example. This
5 seems to be due to the influence of serum albumin
and other unknown ingredients of the human urine contained
in the fraction A.

By comparison of the medium added with fraction
A with that added with fraction B with respect to CSF
10 production, it is seen that when the added amount is
at a level of 0.5 or 1.0 mg/ml, both fractions are
comparable to each other, but at higher levels the
fraction B shows lower CSF production. This is probably
because the human urinary serum albumin content of A
15 is larger than that of B and because the addition of
fraction B in an amount larger than 5 mg/ml results in
excessive addition of glycoprotein. By taking these
results collectively into account, it is presumable
that the serum alubumin and the like contained in
20 human urine and the glycoprotein act synergetically
in promoting the CSF production and that a maximum CSF
production is attained when about 100 μ g/ml of glyco-
protein is added to the medium.

As for the glycoprotein having a stimulating
25 effect on the formation of mouse macrophages and
granulocytes (Case II), it is apparent from Table 6
that in every case the CSF production increased
approximately in proportion to the amount of glycoprotein.

1 added to the medium. As compared with the results
shown in Table 2 obtained by using a serum-free medium,
the CSF production was higher in the case of the
present experiment, wherein fraction C or D was used,
5 although the amount of glycoprotein added to the
medium is the same as in the former case. This seems
to be caused by the influence of the serum albumin
and the like contained in the fractions C and D which
are originated from human urine. From the results
10 obtained by adding a highly purified glycoprotein
material, it is apparent that although the CSF produc-
tion is increased with the increase of said glycoprotein
material, the increment is less than that in the cases
of fractions C and D and the standard purity material
15 (Table 2). From the above results, it is presumable
that in serum-free media, serum albumin and other
substances originated from human urine play the same
role as that of serum with respect to CSF production.

In every case, therefore, in order to operate
20 advantageously the method of this invention, it is
preferable to add to the medium a crude glycoprotein
rather than to add a purified glycoprotein. In adding
a crude glycoprotein material, it is added in an amount
of at least 0.1 μ g/ml medium in Case I or at least
25 500 units/ml medium in Case II.

Experimental Example 7

Experiment on effective dose, etc.

1 The effective dose and the acute toxic dose
50) of CSF produced by the method of this invention
were determined by the following animal test.

A conditioned medium prepared in the same
5 manner as in Example 3 was sterilized by membrane
filtration, then filtered through an ultrafiltration
membrane (molecular weight cut off: 10,000), concent-
rated, desalted, and lyophilized to obtain CSF in powder
form. Upon testing by the same method as used in
10 Experimental Example 1, the number of colony formation
with human bone marrow cells was found to be 4,500/mg.
For comparison, the test was repeated using C3H/He
mouse bone marrow cells and the number of colony
formation with the mouse bone marrow cells was found
15 to be 7,000/mg.

Eighty C3H/He male mice (6 weeks old and
20 g of average body weight) were divided at random
into 16 subgroups of each 5 members. The subgroups were
assembled at random to form 4 groups of each 4 sub-
20 groups.

The CSF obtained above was dissolved in
sterile physiological saline solution to obtain 3
solutions of 1 mg/0.1 ml (for group I), 2 mg/0.1 ml
(for group II), and 4 mg/0.1 ml (for group III). Each
25 mouse was administered subcutaneously with the solution
in a dose of 0.1 ml/mouse/day, for 5 consecutive days.
After 1, 3, 7 and 11 days from the beginning of administ-
ration, blood samples were collected from five mice

1 of one subgroup of each group (the subgroups from which
the blood samples had been collected were exempted
from the futher test). The number of leukocytes in
the peripheral blood were counted by the automatic
5 blood cell counter and the number of granulocytes
were counted under microscope by Wright-Gimsa's stained
smears to determine the increase in the number of
leukocytes and granulocytes resulted from the administ-
ration of CSF. A group (group I) administered with
10 0.1 ml of a sterile physiological saline containing no
CSF was treated in the same manner as above and used
as the control group. The experimental results were
as shown in Table 7.

Table 7

Group No.	I (control)		II		III		IV	
	Leukocyte	Granulo- cyte	Leukocyte	Granulo- cyte	Leukocyte	Granulo- cyte	Leuko- cyte	Granulo- cyte
1	55 ± 20	14 ± 7	53 ± 4	13 ± 6	51 ± 5	16 ± 4	59 ± 8	20 ± 5
3	59 ± 7	12 ± 8	63 ± 9	18 ± 4	98 ± 10	40 ± 10	123 ± 6	60 ± 8
7	41 ± 8	12 ± 4	74 ± 8	28 ± 6	140 ± 8	60 ± 9	201 ± 5	102 ± 14
11	58 ± 8	15 ± 6	102 ± 9	45 ± 10	185 ± 14	75 ± 13	260 ± 19	121 ± 21

Note: 1. The numericals here present the values of (blood cell number per 1 mm³ of blood $\times 10^{-2}$).

2. Each experimental result, shown, is the average on 5 mice.

1 As compared with group I (control), among the
CSF administered groups group II showed a twice increase
in the number of leukocytes and a nearly three times
increase in the number of granulocytes after 11 days.
5 from the beginning of test (6 days after the termina-
tion of administration). As compared with group I,
group IV showed a remarkable increase of about 4.5 times
in the number of leukocytes and about 8 times in the
number of granulocytes. From the above results an
10 effective dose in mice may be assumed to be 50 mg/kg
body weight/day. Since the colony-forming activity
of the CSF employed in the above experiment is higher
in the mouse bone marrow cells than that in human
bone marrow cells by a factor of 1.556, an effective
15 dose for a patient with granulocytopenia which exhibits
on human bone marrow cells an effect equivalent to the
effect in mice is about 77.8 mg/kg body weight/day.

The acute toxicity of CSF prepared according
to this invention was tested by employing the same
20 CSF as used in the above test for administration dose
and C3H/He mice (6 - 8 weeks old and an average body
weight of 20.4 g). No fatal case was found in a
group (5 male and 5 female members) administered with
4.0 g of CSF/kg body weight. Accordingly, the acute
25 toxicity was too weak to be determined by the above
test.

1 Example 1

(1) Isolation of monocytes and macrophages.

Two hundred milliliters of periphery blood from normal humans were collected in a blood collecting bottle containing 1,000 units of heparin and allowed to mix together with gently movement. The heparinized blood was transferred to a sterile glass cylinder, 20 mm in diameter and 200 ml in volume, and allowed to stand for 2 hours at room temperature. After standing, the upper leukocyte layer was collected carefully with a pipet, diluted with serum-free McCoy's 5A medium to twice the original volume, centrifuged at 1,500 x g for 15 minutes. The supernatant was discarded and the sediment was suspended in 20 ml of McCoy's 5A medium, superposed over a sodium metrizoate solution (specific gravity, d = 1.077) in a centrifuge tube, and centrifuged at 400 x g for 30 minutes. The white layer containing monocytes, macrophages and lymphocytes at the bottom of the upper layer was collected with a pipet, washed by adding McCoy's 5A medium, centrifuged at 1,500 x g for 10 minutes, and the supernatant was discarded. This treatment was repeated twice more. The cells thus obtained were suspended in 20 ml of McCoy's 5A medium and a portion was used for counting the number of cells with an automatic blood cell counter (Toa manufacturing Co.). A smear specimen of the suspension was prepared, stained with Wright-Giemsa's stain, and the number of lymphocytes as well as

1 the number of monocytes and macrophages were morphologi-
cally counted to determine the cell ratio. The propor-
tion of monocytes and macrophages was found to be
25.5%.

5 A 5 ml aliquot of the suspension was placed
in each of the four Petri dishes, 15 cm in diameter,
added with 30 ml of McCoy's 5A medium supplemented
with 10% of fetal calf serum, and allowed to stand at
37°C for 2 hours in a humidified atmosphere of 5%
10 carbon dioxide in air. After standing the medium
was discarded and 30 ml of McCoy's 5A medium was added,
and after rather vigorously shaking, the medium was
discarded to remove lymphocytes. The proportion of
monocytes and macrophages remained was determined by
15 the same testing method as used above and found to
be 95% in every dish.

(2) Preparation of glycoprotein.

Glycoprotein was prepared in the following
manner according to the method disclosed in the Japanese
20 Patent Application Laid-open No. 14,707/79 and the
others, mentioned above.

Four hundred liters of fresh urine collected
from normal humans was adjusted to pH 8 with 10% sodium
hydroxide solution and centrifuged at 15,000 x g in a
25 continuous centrifugation at 0°C, whereby the insolubles
were removed and the supernatant was collected. The
supernatant was adjusted to pH 7 with 10% hydrochloric

1 acid and passed through a column (10 x 80 cm) packed
with silica gel. The components adsorbed on the silica
gel were eluted with 40 liters of 5% ammonia water.
The eluate thus obtained was adjusted to pH 7.5 with
5 1 N sulfuric acid, added with powdered ammonium
sulfate to 70% saturation, allowed to stand at 0°C
for overnight, and the formed precipitate was collected
by filtration.

The precipitate was dissolved in 2 liters
10 of 5% ammonia water, placed in a dialysis tube (Visking
Co.) and thoroughly dialyzed against 0.05 M phosphate
buffer solution (pH 6.5). The dialyzed solution was
made up to 10 liters with said buffer solution, and
passed through a CM Sephadex C-50 ion exchange column
15 (40 x 40 cm) which had been equilibrated with 0.05 M
phosphate buffer solution. The contaminants were
removed by adsorption on the ion exchange column and
the effluent was collected.

Ten liters of the above effluent was con-
20 centrated using Diaflow hollow fiber concentrator
(Type DC-30, Amicon Co.) and the concentrate was
dialyzed against 0.1 M tris-HCl buffer solution (pH 7.0)
for overnight at 5°C. The dialyzed solution was made
up to 1 liter with the same buffer solution and
25 passed through the DEAE-cellulose column (4.0 x 40 cm)
which had been equilibrated with the same buffer
solution. After washing with 0.1 M tris-HCl buffer
solution, the adsorbed components were eluted with

1 0.1 M tris-HCl buffer solution (pH 7.0) containing
0.3 M sodium chloride. The eluate was collected and
dialyzed against 0.1 M tris-HCl buffer solution
(pH 7.0).

5 The dialyzed solution was again passed
through the DEAE-cellulose column (4.0 x 40 cm) which
had been activated by equilibrating with the same
buffer solution and eluted by the linear concentration
gradient elution of NaCl (chloride ion concentration
10 gradient, 0.1 - 0.3 M) to collect the fractions eluted
at chloride ion concentrations covering from 0.15 to
0.25 M. The pooled fraction was added with powdered
ammonium sulfate to 70% saturation and the formed
precipitate was collected, dissolved in a small portion
15 of 0.1 M tris-HCl buffer solution (pH 7.0) and dialyzed
against the same buffer to collect the dialyzed
solution (fraction A).

Twenty milliliter of the above dialyzed
solution was developed on a Sephadex G-150 column
20 (4.0 x 60 cm) which had been equilibrated with 0.1 M
tris-HCl buffer (pH 7.0) and the fractions corresponding
to a relative effluent value of 1.11 - 1.45 were collected.
The combined fraction was thoroughly dialyzed against
distilled water and the dialyzed solution was lyophilized
25 to obtain about 500 mg of a powder (fraction B).

Two hundred milligrams of the above powder
was dissolved in a 0.02 M phosphate buffer solution
(pH 7.0) containing 1.0 M sodium chloride and applied to

1 a concanavalin A-Sepharose 4B affinity column (100 ml)
which had been equilibrated with the same buffer solution.
The column was washed thoroughly with a 0.02 M phosphate
buffer (pH 7.0) containing 1.0 M sodium chloride and
5 then eluted with a 0.02 M phosphate buffer (pH 7.0)
containing 50 mM α -methyl-D-glucoside and 1.0 M sodium
chloride. The eluate was dialyzed against distilled
water and the dialyzed solution was lyophilized.

Further, about 50 mg of the lyophilized
10 powder obtained above was dissolved in 1 ml of a 0.125 M
tris-glycine buffer (pH 6.8) containing 10% of glycerol
and electrophoresed at 10 mA under cooling by means of
a preparative electrophoresis apparatus (Fuji Kabara-II
of Fuji Riken Co.) employing 8% acrylamide gel (pH 8.9;
15 20 x 25 mm). The fraction with a relative mobility of
0.46 was recovered with a 0.025 M tris-glycin buffer
solution (pH 8.3), then dialyzed against distilled
water, and the dialyzed solution was lyophilized to
obtain about 10 mg of glycoprotein. By repeating the
20 above procedure, about 30 mg of glycoprotein were
obtained.

(3) Cultivation of monocytes and macrophages.

The glycoprotein obtained above was added to
30 ml of a supplemented McCoy's 5A medium containing
25 20% of fetal calf serum at a rate of 100 μ g/ml medium
and 30 ml of the prepared medium was poured into each
Petri dish which contained adhered macrophages and
monocytes as described in (1) of this example. The

1 number of monocytes and macrophages in the medium was
10⁶/ml medium. The prepared medium was incubated at
37°C for 3 days in a humidified atmosphere of 5%
CO₂ in air to obtain conditioned medium containing
5 CSF.

(4) Purification of CSF in the conditioned medium.

The collected medium was centrifuged (2,000 x g)
at 2°C for 10 minutes to collect about 120 ml of the
clear supernatant which was concentrated by ultra-
10 filtration membrane (Amicon Co.; molar weight cut-off
10,000). The concentrate was added with 100 ml of a
0.05 M tris-HCl buffer solution (pH 7.2) and again
concentrated to 5 ml.

The solution obtained above was applied to
15 a DEAE-cellulose column (2.0 x 60 cm) which had been
equilibrated with 0.05 M tris-HCl buffer (pH 7.0)
and the CSF was eluted with linear gradient concentra-
tion of NaCl (0 - 3 M). The eluted active fraction
was pooled and concentrated by means of the above-said
20 ultrafiltration membrane apparatus. The concentrated
solution was applied to a Sephadex G-150 column (2.0 x
90 cm) which had been equilibrated with a 0.05 M
tris-HCl buffer solution (pH 7.0) and then developed
with the same buffer solution to collect the fractions
25 corresponding to a molecular weight of 65,000 - 90,000
and the fractions corresponding to a molecular weight
of 30,000 - 60,000. These fractions were combined
and concentrated by the ultrafiltration membranes

1 apparatus. The concentrated solution was added with
distilled water, desalinated and concentrated to obtain
about 5 ml of a solution containing purified CSF.
This solution was found to have an activity of
5 forming 41,000 colonies of human granulocytes per ml,
as assayed in the same manner as in Experimental
Example 1.

Example 2

In a manner similar to that in Example 1,
10 monocytes and macrophages were isolated from human
peripheral blood and treated to prepare the purified
glycoprotein. By using a medium prepared by adding the
purified glycoprotein to serum-free McCoy's 5A medium
at a rate of 100 μ g/ml medium, about 5 ml of a solution
15 containing purified CSF was obtained in a manner similar
to that in Example 1. This solution showed an activity
of forming 16,000 human granulocyte colonies per ml
solution, as assayed in the same manner as in Experimental
Example 1.

20 Example 3

In a manner similar to that in Example 1,
monocytes and macrophages were separated from the human
peripheral blood and treated to prepare the glyco-
protein-containing fraction (fraction A). By using a
25 medium prepared by adding said fraction to serum-free
McCoy's 5A medium at a rate of 5 mg (83.3 mg in terms of

1 glycoprotein)/ml medium, about 120 ml of a conditioned
medium was obtained. The conditioned medium was
dialyzed against distilled water and the dialyzed
solution was concentrated by vacuum evaporation at
5 low temperatures to obtain about 5 ml of a CSF-contain-
ing solution. This solution showed an activity of
forming 36,700 human granulocyte colonies per ml
of the solution, as assayed in the same manner as in
Experimental Example 1.

10 Example 4

In a manner similar to that in Example 1,
monocytes and macrophages were separated from the
human peripheral blood and treated to prepare the
glycoprotein-containing fraction (fraction B). By using
15 a medium prepared by adding said fraction to McCoy's 5A
medium containing 10% of human serum at a rate of
1 mg (83.3 μ g in terms of glycoprotein)/ml medium,
about 5 ml of a purified CSF-containing solution was
obtained in a manner similar to that in Example 1.
20 This solution showed an activity of forming 43,200 human
granulocyte colonies per ml of the solution, as
assayed in the same manner as in Experimental Example 1.

Example 5

(1) Preparation of glycoprotein.
25 According to the method of Stanley et al.
described previously, glycoprotein and glycoprotein-

1 containing fractions were prepared in the following manner.

Four hundred liters of fresh urine collected from normal humans was dialyzed against water through 5 an ultrafiltration membrane. The dialyzed solution was adjusted to pH 7.4 and passed through a DEAE-cellulose column (20 x 15 cm) which had been equilibrated with a 0.03 M tris-HCl buffer solution (pH 7.4), to allow the active substances to adsorb on the column.
10 The adsorbed active substances were washed with 20 liters of a 0.1 M tris-HCl buffer solution containing 0.04 M sodium chloride, then eluted with 20 liters of a 0.1 M tris-HCl buffer solution (pH 7.0) containing 0.15 M sodium chloride and the eluate was dialyzed
15 against distilled water (fraction C).

A calcium phosphate gel was added to the above dialyzed solution in a proportion of 58 ml gel/g protein to allow the active substances to adsorb to the gel. The calcium phosphate gel was collected by 20 filtration, washed twice with 20 liters of a 0.005 M phosphate buffer (pH 6.5), and eluted with 5 liters of a 0.025 M phosphate buffer. The eluate was centrifuged at 12,000 x g for 10 minutes to collect the supernatant. The supernatant was dialyzed against 25 distilled water and the dialyzed solution was concentrated to about 50 ml by vacuum evaporation. The concentrate was equilibrated with a 0.1 M tris-HCl buffer, applied to a DEAE-cellulose column (2.5 x 90 cm)

which had been equilibrated with the same buffer, and eluted with a 0.1 M tris-HCl buffer solution containing sodium chloride by the linear chloride concentration gradient elution technique (sodium chloride concentration gradient: 0 to 0.15 M). The fractions containing the glycoprotein were collected and concentrated by means of an ultrafiltration membrane (fraction D).

The concentrate obtained above was subjected to gel filtration using a Biogel P-100 column (2.5 x 110 cm), which had been equilibrated with a 0.03 M tris-HCl buffer solution, to obtain 10 230 mg of glycoprotein (standard purity product).

One hundred milligrams of the standard purity product was dissolved in 0.1 M acetate buffer solution (pH 6.0) containing 1.0 M NaCl, 0.001 M MgCl₂, 0.001 M MnCl₂ and 0.001 M CaCl₂, applied to a concanavalin A-Sepharose 4B column (36 x 1.0 cm) which had been equilibrated with the same buffer solution, and eluted with 0.1 M α-methyl-D-glucoside solution to obtain 8 mg of glycoprotein (highly purified product).

The biological activities on mouse bone marrow cells of various purity grades of glycoprotein were assayed by the aforementioned method. The results were as shown in Table 8.

Table 8

Sample	Specific activity
Semi-purified product	
Fraction A	21,000
Fraction B	54,000
Standard purity product	180,000
Highly purified product	1,240,000

1 (2) Cultivation of monocytes and macrophages; and
purification of CFS in the conditioned medium.

The procedures of Example 1-(3) and 1-(4)
were repeated, except that 1,000 units/ml medium of
5 the standard purity glycoprotein was used in place of
the highly purified glycoprotein. There were obtained
about 5 ml of a purified CSF-containing solution which
showed an activity of forming 35,000 human granulocyte
colonies per ml of the solution.

10 Example 6

About 5 ml of a purified CSF-containing solution
were obtained by repeating the procedure of Example 5,
except that a glycoprotein prepared in the following
manner by the method of Stanley and Metcalf was used
15 in place of the glycoprotein prepared by the method
of Stanley et al. The purified CSF-containing solution
obtained in the present Example showed an activity of

1 forming 9,800 human granulocyte colonies per ml of
the solution.

Twenty liters of human urine was dialyzed
against tap water at room temperature for 8-12 hours.

5 To the dialyzed solution were added 75 g of DEAE-
cellulose equilibrated with water and 100 ml of a
1.0 M tris-HCl buffer (pH 7.0). The resulting mixture
was thoroughly mixed to allow the glycoprotein to adsorb
to the DEAE-cellulose. After removing the supernatant,
10 the DEAE-cellulose was washed three times with 0.1 M
tris-HCl buffer (pH 7.0) containing 0.05 M sodium
chloride. Thereafter, the adsorbed glycoprotein was
eluted with 300 ml of 0.1 M tris-HCl buffer (pH 7.0)
containing 0.5 M sodium chloride (this procedure was
15 repeated six times). The eluate was concentrated by
vacuum evaporation at 40°C and dialyzed against 0.1 M
tris-HCl buffer (pH 7.0). The dialyzed solution was
applied to a DEAE-cellulose column (2.3 x 44 cm) which
had been equilibrated with 0.1 M tris-HCl buffer
20 (pH 7.0) to allow the glycoprotein to adsorb to the
DEAE-cellulose. After washing the column with the
same buffer containing 0.05 M sodium chloride, the
adsorbed glycoprotein was eluted by the sodium chloride
concentration gradient elution technique using 0.1 - 0.5 M
25 sodium chloride in the same buffer. The eluate was
dialyzed against water and the dialyzed solution was
concentrated by vacuum evaporation and lyophilized.
The lyophilized material was dissolved in 0.1 M tris-HCl

1 buffer (pH 7.0) and applied to a Sephadex G-150
column (2.3 x 150 cm), which had been equilibrated
with the same buffer, to collect the glycoprotein
fraction. This fraction was dialyzed and lyophilized
5 to obtain about 12 mg of a powder having a specific
activity of about 36,000 on mouse bone marrow cells.

Example 7

Monocytes and macrophages were separated from
the human periphery blood in the same manner as in
10 Example 1. A glycoprotein-containing fraction was
prepared in the manner as described below according to
the aforementioned method of Laukel et al. and added to
serum-free McCoy's 5A medium at a rate of 2,000 units/ml
medium. Using this medium, cultivation was carried out
15 in a similar manner to that in Example 5 to obtain
120 ml of a conditioned medium. The conditioned medium
was dialyzed against distilled water and the dialyzed
solution was concentrated by vacuum evaporation at a
low temperature, yielding about 5 ml of a CSF-containing
20 solution which showed an activity of forming 29,000
human granulocyte colonies per ml of the solution, as
assayed in the same manner as in Experimental Example 1.

Fifty liters of human urine was dialyzed
against running tap water by means of an ultrafiltration
25 membrane apparatus (CL-100 of Asahi Kasei Co.).
The dialyzed solution was passed through a DEAE-cellulose
column (10 x 30 cm) which had been equilibrated with

1 0.05 M tris-HCl buffer (pH 7.3) to allow the glyco-
protein to adsorb to the DEAE-cellulose. After washing
the column with 0.05 M tris-HCl buffer (pH 7.3) supple-
mented with 0.05 M sodium chloride, the glycoprotein
5 was eluted with the same buffer supplemented with
0.3 M sodium chloride. The eluate was dialyzed against
0.05 M tris-HCl buffer (pH 8.0) supplemented with
0.5 M NaCl, 2 mM CaCl₂ and 2 mM MgCl₂. The dialyzed
solution was applied to a concanavalin A-Sepharose 4B
10 column (2.6 x 40 cm) which had been equilibrated with
the same buffer to allow the glycoprotein to adsorb
to the column. After washing the column with the
same buffer, the glycoprotein was eluted with the same
buffer supplemented with 0.15 M α -methyl-D-mannoside.
15 The eluate was concentrated by ultrafiltration to obtain
about 7 ml of a fraction containing 6 mg in terms
of protein of glycoprotein in 1 ml. The specific
activity of this fraction was about 20,000 on mouse
bone marrow cells.

20 Example 8

Monocytes and macrophages were separated
from the human periphery blood in the same manner as
in Example 1. A glycoprotein-containing fraction
(fraction D) prepared in the same manner as in Example
25 5 was added to McCoy's 5A medium supplemented with 10%
of human serum at a rate of 2,000 units/ml medium.
Using this medium, about 5 ml of a purified CSF-

1 containing solution was obtained in a manner similar
to that in Example 5. This solution showed an activity
of forming 24,000 human granulocyte colonies per ml
of the solution, as assayed in the same manner as
5 in Experimental Example 1.