

PLSP — Ein Mikroperioden-Modell für das dynamische einstufige Mehrprodukt-Losgrößenproblem

Annahmen:

- ▶ Der Rüstzustand kann übernommen werden.
- Es kann in einer Periode maximal einmal umgerüstet werden.
- ► Es können maximal zwei verschiedene Erzeugnisse in einer Periode produziert werden.

Modell CLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Kapazität in Periode t:

$$\sum_{k \in \mathcal{K}} (\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt}) \le b_t$$

für alle $t = 1, 2, \ldots, T$

Es muss gerüstet werden, wenn $q_t > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell CLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

$$\begin{aligned} y_{k,t-1} + q_{kt} - y_{kt} &= d_{kt} & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \\ \sum_{k \in \mathcal{K}} \left(\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt} \right) &\leq b_t & \text{für alle } t = 1, 2, \dots, T \\ q_{kt} - M \cdot \gamma_{kt} &\leq 0 & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \\ q_{kt} &\geq 0; \ y_{kt} \geq 0; \ y_{k0} = 0; \ y_{kT} = 0; \ \gamma_{kt} \in \{0, 1\} \text{ für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \end{aligned}$$

Modell PLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

$$\begin{aligned} y_{k,t-1} + q_{kt} - y_{kt} &= d_{kt} & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \\ \sum_{k \in \mathcal{K}} \left(\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt} \right) &\leq b_t & \text{für alle } t = 1, 2, \dots, T \\ q_{kt} - M \cdot \gamma_{kt} &\leq 0 & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \end{aligned}$$

Übernahme des Rüstzustands: $q_{kt} \ge 0$; $y_{kt} \ge 0$; $\gamma_{kt} \in \{0,1\}$

Modell PLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$
 für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$
$$\sum_{k \in \mathcal{K}} (\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt}) \le b_t$$
 für alle $t = 1, 2, \dots, T$

Übernahme des Rüstzustands: $q_{kt} \ge 0$; $y_{kt} \ge 0$; $\gamma_{kt} \in \{0,1\}$; $\omega_{kt} \in \{0,1\}$

$$\omega_{k0}=0$$
 für alle $k\in\mathcal{K}$

 $q_{kt} - M \cdot \gamma_{kt} \leq 0$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell PLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

$$\begin{aligned} y_{k,t-1} + q_{kt} - y_{kt} &= d_{kt} & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \\ \sum_{k \in \mathcal{K}} \left(\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt} \right) \leq b_t & \text{für alle } t = 1, 2, \dots, T \end{aligned}$$

$$q_{kt}-M\cdot\gamma_{kt}\leq 0$$
 für alle $k\in\mathcal{K}$ und $t=1,2,\ldots,T$

Übernahme des Rüstzustands: $q_{kt} \ge 0$; $y_{kt} \ge 0$; $\gamma_{kt} \in \{0,1\}$; $\omega_{kt} \in \{0,1\}$

$$\sum_{k \in \mathcal{K}} \omega_{kt} \leq 1 \qquad \qquad \text{für alle } t = 1, 2, \dots, T$$

Modell PLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

$$\begin{aligned} y_{k,t-1} + q_{kt} - y_{kt} &= d_{kt} & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \\ \sum_{k \in \mathcal{K}} \left(\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt} \right) \leq b_t & \text{für alle } t = 1, 2, \dots, T \end{aligned}$$

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$
 für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Übernahme des Rüstzustands: $q_{kt} \ge 0$; $y_{kt} \ge 0$; $\gamma_{kt} \in \{0,1\}$; $\omega_{kt} \in \{0,1\}$

$$\sum_{k \in \mathcal{K}} \omega_{kt} \leq 1$$
 für alle $t = 1, 2, \dots, T$

$$\gamma_{kt} \geq \omega_{kt} - \omega_{k,t-1}$$
 für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell PLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

$$\begin{aligned} y_{k,t-1} + q_{kt} - y_{kt} &= d_{kt} & \text{für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T \\ \sum_{k \in \mathcal{K}} \left(\mathsf{tb}_k \cdot q_{kt} + \mathsf{tr}_k \cdot \gamma_{kt} \right) \leq b_t & \text{für alle } t = 1, 2, \dots, T \end{aligned}$$

$$q_{kt} - M \cdot (\omega_{k,t-1} + \omega_{kt}) \le 0$$
 für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Übernahme des Rüstzustands: $q_{kt} \ge 0$; $y_{kt} \ge 0$; $\gamma_{kt} \in \{0,1\}$; $\omega_{kt} \in \{0,1\}$

$$\sum_{k \in \mathcal{K}} \omega_{kt} \leq 1$$
 für alle $t = 1, 2, \dots, T$

$$\gamma_{kt} \ge \omega_{kt} - \omega_{k,t-1}$$
 für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Beispiel PLSP

Bedarfsn	Parameter								
Periode t									
Erzeugnis k						h_k	s_k	tb_k	tr_k
1	30	_	80	_	40	1	100	1	10
2	_	_	30	_	70	1	100	1	10
3	_	_	40	_	60	1	100	1	10

Beispiel PLSP

Bedarfsn	Parameter								
Periode t	1	2	3	4	5				
Erzeugnis k						h_k	s_k	tb_k	tr_k
1	30	_	80	_	40	1	100	1	10
2	_	_	30	_	70	1	100	1	10
3	_	_	40		60	1	100	1	10
Produktion									
Erzeugnis k									
1	30	80	_	20	20				
2	_	_	30	_	70				
3									

Beispiel PLSP

Bedarfsn	Parameter								
Periode t	1	2	3	4	5				
Erzeugnis k						h_k	s_k	tb_k	tr_k
1	30		80		40	1	100	1	10
2	_	_	30	_	70	1	100	1	10
3			40		60	1	100	1	10
Produktion									
Erzeugnis k									
1	30	80	_	20	20				
2	_	_	30	_	70				
3	—	—	40	60					

Optimale Lösung:

Annahmen:

- ▶ Der Rüstzustand kann übernommen werden.
- Es kann in einer Periode maximal einmal umgerüstet werden.
- ► Es können maximal zwei verschiedene Erzeugnisse in einer Periode produziert werden.

MLCLSP — Ein Makroperioden-Modell für das dynamische mehrstufige Mehrprodukt-Losgrößenproblem

wegen Ressourcenkonkurrenz

- ▶ arbeitsgangbezogene Betrachtung (Production Process Model (PPM)) zur Erfassung aller Ressourcenverbräuche, d. h., nach jedem Arbeitsgang gilt eine neue Erzeugnisstufe als erreicht, und es wird ein neues (Zwischen-)Produkt identifiziert
- mehrstufige Betrachtung zur Erfassung der Erzeugnisstruktur
- simultane Betrachtung aller Werkstätten auf Grund der Materialflussbeziehungen

Modell CLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Kapazitäten in Periode *t*:

$$\sum_{k \in \mathcal{K}} \left(\mathsf{tb}_{kj} \cdot q_{kt} + \mathsf{tr}_{kj} \cdot \gamma_{kt} \right) \le b_{jt}$$

für alle $j \in \mathcal{J}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell MLCLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - y_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Kapazitäten in Periode t:

$$\sum_{k \in \mathcal{K}} \left(\mathsf{tb}_{kj} \cdot q_{kt} + \mathsf{tr}_{kj} \cdot \gamma_{kt} \right) \le b_{jt}$$

für alle $j \in \mathcal{J}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Modell MLCLSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Kapazitäten in Periode t:

$$\sum_{k \in \mathcal{K}} \left(\mathsf{tb}_{kj} \cdot q_{kt} + \mathsf{tr}_{kj} \cdot \gamma_{kt} \right) \le b_{jt}$$

für alle $j \in \mathcal{J}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$q_{kt} \ge 0$$
; $y_{kt} \ge 0$; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$ für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Erzeugnisstruktur

Erzeugnisstruktur

Ressourcenbelegung

Erzeugnisstruktur

Ressourcenbelegung

Erzeugnisstruktur Ressourcenbelegung Schichtlänge = 480 Minuten Ressource A 270 min Ressource B 100 min Ressource A 200 min

Mehrstufige Losgrößenplanung

Bewertung der Lagerbestände:

physische Lagerbestände mit vollen Lagerkosten

$$Lagerkosten_{kt} = y_{kt} \cdot h_k$$

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

systemweite Lagerbestände mit marginalen Lagerkosten

$$Lagerkosten_{kt} = E_{kt} \cdot e_k$$

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

$$E_{kt} = y_{kt} + \sum_{j \in \mathcal{N}_k^*} v_{kj} \cdot y_{jt}$$

$$(k \in \mathcal{K}, t = 1, 2, \dots, T)$$

bechelon holding costs

$$e_k = h_k - \sum_{j \in \mathcal{V}_k} a_{jk} \cdot h_j$$

$$(k \in \mathcal{K})$$

Mehrstufige Losgrößenplanung

Beispiel Erzeugnisstruktur E1 $\stackrel{1}{\longrightarrow}$ P1 $(h_{\text{E1}}=6,\ h_{\text{P1}}=10)$

physische Lagerbestände mit vollen Lagerkosten

		Bestand am	Lager-	Bestand am	Lager-	Anstieg der
k	h_k	Periodenanfang	kosten	Periodenende	kosten	Lagerkosten
		(physisch)		(physisch)		
P1	10	0	0	1	10	10
E1	6	1	6	0	0	- 6
<u> </u>					Summe	4

systemweite Lagerbestände mit marginalen Lagerkosten

		Bestand am	Lager-	Bestand am	Lager-	Anstieg der
k	e_k	Periodenanfang	kosten	Periodenende	kosten	Lagerkosten
		(systemweit)		(systemweit)		
P1	4	0	0	1	4	4
E1	6	1	6	1	6	0
					Summe	4

Lösungsverfahren für mehrstufige Mehrprodukt-Losgrößenprobleme

Meta-Heuristiken

Modell MLULSP

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + s_k \cdot \gamma_{kt} + p_{kt} \cdot q_{kt} \right)$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$0 \le q_{kt} \le \widehat{q}_{kt}$$

$$y_{kt} \ge 0$$
; $y_{k0} = 0$; $y_{kT} = 0$; $\gamma_{kt} \in \{0, 1\}$

für alle
$$k \in \mathcal{K}$$
 und $t = 1, 2, \dots, T$

für alle
$$k \in \mathcal{K}$$
 und $t = 1, 2, \dots, T$

Modell MLULSP bei gegebenem Rüstmuster

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + p_{kt} \cdot q_{kt} \right) + \text{R\"{u}stkosten}$$

u. B. d. R.:

Bedarf in Periode t:

$$y_{k,t-1} + q_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Es muss gerüstet werden, wenn $q_{kt} > 0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$0 \le q_{kt} \le \widehat{q}_{kt}$$

für alle
$$k \in \mathcal{K}$$
 und $t = 1, 2, \dots, T$

$$y_{kt} \ge 0; \ y_{k0} = 0; \ y_{kT} = 0; \ \gamma_{kt} \ \text{gegeben}$$

für alle
$$k \in \mathcal{K}$$
 und $t = 1, 2, \dots, T$

Modell MLULSP bei gegebenem Rüstmuster

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + p_{kt} \cdot q_{kt} \right) + \text{R\"{u}stkosten}$$

u. B. d. R.:

Bedarf in Periode t:

$$y_{k,t-1} + q_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

Es darf nicht produziert werden, wenn $\gamma_{kt}=0$ ist:

$$q_{kt} - M \cdot \gamma_{kt} \le 0$$

für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

$$0 \le q_{kt} \le \widehat{q}_{kt}$$

für alle
$$k \in \mathcal{K}$$
 und $t = 1, 2, \dots, T$

$$y_{kt} \ge 0; \ y_{k0} = 0; \ y_{kT} = 0; \ \gamma_{kt} \ \text{gegeben}$$

für alle
$$k \in \mathcal{K}$$
 und $t = 1, 2, \dots, T$

Modell MLULSP bei gegebenem Rüstmuster

Minimiere die Summe aus Rüstkosten und Lagerkosten:

$$Z = \sum_{k \in \mathcal{K}} \sum_{t=1}^{T} \left(h_k \cdot y_{kt} + p_{kt} \cdot q_{kt} \right) + \text{R\"{u}stkosten}$$

u. B. d. R.:

Bedarf in Periode *t*:

$$y_{k,t-1} + q_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \text{ für alle } k \in \mathcal{K} \text{ und } t = 1, 2, \dots, T$$

Es darf nicht produziert werden, wenn $\gamma_{kt} = 0$ ist:

$$\widehat{q}_{kt} = 0 \text{ für alle } k \in \{1, 2, \dots, K | \gamma_{kt} = 0\}$$
 $(t = 1, 2, \dots, T)$

$$0 \le q_{kt} \le \widehat{q}_{kt}$$
 für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$ $y_{kt} \ge 0; \ y_{k0} = 0; \ y_{kT} = 0; \ \gamma_{kt}$ gegeben für alle $k \in \mathcal{K}$ und $t = 1, 2, \dots, T$

- deterministische Suchstrategie
- vorübergehendes Zulassen einer Lösungsverschlechterung
 - ▷ Simulated Annealing
 - □ genetische Algorithmen

Lösungsverfahren für mehrstufige
MehrproduktLosgrößenplanungsprobleme unter
Beachtung von
Kapazitätsbeschränkungen

Eine Relax&Fix-Heuristik von Maes und van Wassenhove

MLCLSP — Verfahren von Maes

- 1. Vollständige Relaxation der Ganzzahligkeitsbedingungen
- 2. Fixierung von einzelnen Rüstvariablen
 - ▶ isoliert einzeln
 - periodenbezogen vorwärts
 - periodenbezogen rückwärts

 - maximumorientiert
 - ▶ simultan
- 3. Lösung des resultierenden LPs
 - ► Wenn alle binären Rüstvariablen ganzzahling sind, Stop!

Eine Fix&Optimize-Heuristik von Sahling

MLCLSP — Verfahren von Sahling

Fix-and-Optimize-Heuristik in bezug auf Subprobleme:

- ▶ Produktorientierte Identifikation von Subproblemen:
 Die Rüstvariablen für ein Produkt über alle Perioden werden optimiert.
- ► Ressourcenorientierte Identifikation von Subproblemen: Alle Rüstvariablen, die sich auf eine Ressource beziehen, – ggf. reduziert auf verschiedene, sich überlappende Zeitfenster – werden optimiert.
- ▶ Prozessorientierte Identifikation von Subproblemen: Die Rüstvariablen für Produkte, die durch direkte Vorgänger-Nachfolger-Beziehungen miteinander verbunden sind, – ggf. reduziert auf einzelne Zeitfenster – werden optimiert.

Alle nicht betrachteten Produkte und Perioden werden mit den besten gefundenen Werten für die binären Rüstvariablen vorbesetzt. Im Unterschied zu den Relax-and-Fix-Heuristiken gibt es nur ganzzahlige Lösungen für die Rüstvariablen.

Integration der Losgrößen- und Materialbedarfsplanung in ein PPS-System

MRP-Konzept: Grundstruktur

(vgl. Günther/Tempelmeier (2009)

(vgl. Günther/Tempelmeier (2009)

Materialdisposition in einem Konzept der rollierenden Planung

Rollierende Losgrößenplanung

(vgl. Tempelmeier (2006))

Beispiel Rollierende Planung (MLCLSP)

(vgl. Tempelmeier (2008))

Erzeugnisstruktur:

Primärbedarfsmengen:

t	1	2	3	4	5	6	7	8	9	10	11
d_{1t}	111	110	103	118	104	106	101	111	106	103	93
d_{2t}	166	152	148	156	125	116	139	153	131	154	139

Weitere Daten:

$$b_{At} = 350, b_{Bt} = 500$$

 $s_1 = s_2 = s_3 = 400; h_1 = h_2 = 2, h_3 = 1$
 $tb_1 = tb_2 = tb_3 = 1, tr_1 = tr_2 = tr_3 = 0$
 $z_1 = z_2 = 0, z_3 = 2$

Lagerbilanzgleichungen

$$y_{k,t-1} + q_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

$$\begin{pmatrix}
k \in \mathcal{K} \\
t = 1, \dots, T
\end{pmatrix}$$

Lagerbilanzgleichungen

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

$$\begin{pmatrix}
k \in \mathcal{K} \\
t = z_k + 1, \dots, T
\end{pmatrix}$$

Lagerbilanzgleichungen (im Planungslauf zum Zeitpunkt 0)

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \left(\begin{array}{c} k \in \mathcal{K} \\ t = 0 + z_k + 1, \dots, 0 + T \end{array} \right)$$

Lagerbilanzgleichungen (im Planungslauf am Ende von Periode τ)

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \left(\begin{array}{l} k \in \mathcal{K} \\ t = \tau + z_k + 1, \dots, \tau + T \end{array} \right)$$

Lagerbilanzgleichungen (im Planungslauf am Ende von Periode $\tau = n \cdot R$)

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \left(\begin{array}{l} k \in \mathcal{K} \\ t = \tau + z_k + 1, \dots, \tau + T \end{array} \right)$$

Lagerbilanzgleichungen (im Planungslauf am Ende von Periode $\tau = n \cdot R$)

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \left(\begin{array}{l} k \in \mathcal{K} \\ t = \tau + z_k + 1, \dots, \tau + T \end{array} \right)$$

Lagerbilanzgleichungen mit aus dem vorherigen Planungslauf übernommenen Zugangsmengen x_{kt}

$$y_{k,t-1} + x_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

$$\begin{pmatrix}
k \in \mathcal{K} \\
t = \tau + 1, \dots, \tau + z_k
\end{pmatrix}$$

Lagerbilanzgleichungen (im Planungslauf am Ende von Periode $\tau = n \cdot R$)

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \left(\begin{array}{l} k \in \mathcal{K} \\ t = \tau + z_k + 1, \dots, \tau + T \end{array} \right)$$

Lagerbilanzgleichungen mit aus dem vorherigen Planungslauf übernommenen Zugangsmengen x_{kt}

$$y_{k,t-1} + x_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

$$\begin{pmatrix} k \in \mathcal{K} \\ t = \tau + 1, \dots, \tau + z_k \end{pmatrix}$$

$$(n = 0, 1, 2, \dots)$$

Lagerbilanzgleichungen (im Planungslauf am Ende von Periode $\tau = n \cdot R$)

$$y_{k,t-1} + q_{k,t-z_k} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt} \qquad \left(\begin{array}{l} k \in \mathcal{K} \\ t = \tau + z_k + 1, \dots, \tau + T \end{array} \right)$$

Lagerbilanzgleichungen mit aus dem vorherigen Planungslauf übernommenen Zugangsmengen x_{kt}

$$y_{k,t-1} + x_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt} - y_{kt} = d_{kt}$$

$$\begin{pmatrix} k \in \mathcal{K} \\ t = \tau + 1, \dots, \tau + z_k \end{pmatrix}$$

$$(n = 0, 1, 2, \dots)$$

Beispiel Rollierende Planung zum Zeitpunkt $\tau=0$: $x_{31}=292$, $x_{32}=350$

$$y_{30} + 292 - q_{11} - q_{21} - y_{31} = 0 (t = 1)$$

$$y_{31} + 350 - q_{12} - q_{22} - y_{32} = 0 (t = 2)$$

$$y_{32} + q_{31} - q_{13} - q_{23} - y_{33} = 0 (t = 3)$$

usw.

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
y_{2t}		0	0	0	156	0	117	1	0	0

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
y_{2t}		0	0	0	156	0	117	1	0	0
Sekundärbedarf _{3t}			292	350	304	328	242	0	350	153

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
y_{2t}		0	0	0	156	0	117	1	0	0
Sekundärbedarf _{3t}			292	350	304	328	242	0	350	153
$x_{3,t+2}$	292	350								

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
y_{2t}		0	0	0	156	0	117	1	0	0
Sekundärbedarf _{3t}			292	350	304	328	242	0	350	153
$x_{3,t+2}$ bzw. q_{3t}	292	350	377	500	0	0	500	0	_	_

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
y_{2t}		0	0	0	156	0	117	1	0	0
Sekundärbedarf _{3t}			292	350	304	328	242	0	350	153
$x_{3,t+2}$ bzw. q_{3t}	292	350	377	500	0	0	500	0	_	_
<i>y</i> 3 <i>t</i>		0	0	0	73	245	3	3	153	0

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
y_{2t}		0	0	0	156	0	117	1	0	0
Sekundärbedarf _{3t}			292	350	304	328	242	0	350	153
$x_{3,t+2}$ bzw. q_{3t}	292	350	377	500	0	0	500	0	_	_
<i>y</i> 3 <i>t</i>		0	0	0	73	245	3	3	153	0

$$y_{31} = y_{30} + x_{31} - \text{Sekundärbedarf}_{31} = 0 + 292 - 292 = 0$$

$$y_{32} = y_{31} + x_{32} - \text{Sekundärbedarf}_{32} = 0 + 350 - 350 = 0$$

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	-1	0	1	2	3	4	5	6	7	8
d_{1t}			111	110	103	118	104	106	101	111
q_{1t}			126	198	0	328	0	0	212	0
y_{1t}		0	15	103	0	210	106	0	111	0
d_{2t}			166	152	148	156	125	116	139	153
q_{2t}			166	152	304	0	242	0	138	153
<i>y</i> 2 <i>t</i>		0	0	0	156	0	117	1	0	0
Sekundärbedarf _{3t}			292	350	304	328	242	0	350	153
$x_{3,t+2}$ bzw. q_{3t}	292	350	377	500	0	0	500	0		
<i>y</i> 3 <i>t</i>		0	0	0	73	245	3	3	153	0

$$y_{31}=y_{30}+x_{31}$$
 — Sekundärbedarf $_{31}=0+292-292=0$ $y_{32}=y_{31}+x_{32}$ — Sekundärbedarf $_{32}=0+350-350=0$ $y_{33}=y_{32}+q_{31}$ — Sekundärbedarf $_{33}=0+377-304=73$ $y_{34}=y_{33}+q_{32}$ — Sekundärbedarf $_{34}=73+500-328=245$ $y_{35}=y_{34}+q_{33}$ — Sekundärbedarf $_{35}=245+0-242=3$ uSW.

Beispiel MLCLSP für 8 Perioden (s. o.)

(vgl. Tempelmeier (2008))

t	2	3	4	5	6	7	8	9	10	11
t'	-1	0	1	2	3	4	5	6	7	8
d_{1t}			118	104	106	101	111	106	103	93
q_{1t}			328	0	0	212	0	209	0	93
y_{1t}		0	210	106	0	111	0	103	0	0
d_{2t}			156	125	116	139	153	131	154	139
q_{2t}			0	242	0	138	284	0	293	0
<i>y</i> 2 <i>t</i>		156	0	117	1	0	131	0	139	0
Sekundärbedarf _{3t}			328	242	0	350	284	209	293	93
$x_{3,t+2}$	500	0	_			_				
q_{3t}	_	_	0	347	493	0	386	0		
<i>y</i> 3 <i>t</i>		73	245	3	3	0	209	0	93	0