

UJIAN AKHIR SEMESTER GASAL TA 2019/2020 DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN FAKULTAS TEKNIK UNIVERSITAS GADJAH MADA

Matakuliah

: Fisika Dasar

Hari, Tanggal

: Selasa, 10 Desember 2019

Dosen

: Dr. Moh. Adhib Ulil Abshor, Dr. Ahmad Kusumaatmaja, Dra.

Eko Tri Sulistyani

Waktu

: 120 menit

Sifat Ujian

: Buku Tertutup

Kerjakanlah soal-soal di bawah ini!

Soal Pilihan Ganda (Bobot 40% (SO-a1, a2, a3))

1. Gaya interaksi antara partikel bermuatan q_1 dan q_2 yang terpisah sejauh r adalah F. Jika jarak antara partikel tiga kali jarak semula maka gayanya menjadi :

a.
$$\frac{1}{9}F$$

b. 3*F*

c. $\frac{9}{2}F$

d. 9*F*

2. Di dalam segi empat siku-siku seperti gambar di bawah.

Berapakah potensial listrik di titik B?

c. - 0,6. 10⁵ Volt

d. 7,8 . 10⁵ Volt

3. Hitunglah E (arah dan besarnya) pada titik P dalam gambar berikut ini.(muatan penguji di P dianggap 1) +a k

$$\Theta = 45^{\circ}$$

a.
$$\frac{q}{4\pi \in a^2}$$

b.
$$\frac{q}{\sqrt{2}\pi \in_o a^2}$$

c.
$$\frac{2q}{4\pi \in a^2}$$

d.
$$\frac{q}{\pi \in a^2}$$

- 4. Suatu kapasitor/penghantar dengan jarak antar plat d dan beda potensial V. Kemudian disisipkan suatu dielektrik dengan konstanta κ , maka:
 - a. Kapasitan yang diperoleh lebih besar dari kapasitan semula/tanpa dielektrik dengan faktor perbedaan sebesar κ.
 - b. Beda potensial dengan dielektrik akan lebih besar dengan perbedaan κ dari beda potensial semula.
 - c. Beda potensial dengan dielektrik akan lebih kecil dari beda potensial semula dengan faktor $\frac{1}{r}$
 - d. Kapasitan yang diperoleh sebanding dengan jarak kedua plat.
- 6. Dua kapasitor silinder koaksial jari-jarinya a dan b, dan panjangnya 1 (l >> b) . Dengan menggunakan hukum Gauss nilai kapasitannya adalah :
 - a. $\frac{2\pi \in_{o} l}{\ln \frac{b}{a}}$

b. $\frac{q}{2\pi \epsilon_o l} \ln \frac{b}{a}$

c. $\frac{2\pi \epsilon_o l}{\ln \frac{a}{b}}$

- $d. \quad \frac{2\pi \in_o ql}{\ln \frac{b}{a}}$
- 5. Dua buah penghantar mempunyai luas dan panjang sama. Penghantar A, kawat padat mempunyai konduktivitas $0,23 \, (\Omega \text{m})^{-1}$. Jika ratio hambatan $\frac{R_A}{R_B}$ sebesar 3, maka penghantar B mempunyai resistivitas sebesar :
 - a. $0,076 \Omega m$

b. 1,45 Ωm

c. $0,69 \Omega m$

- d. $13 \Omega m$
- 6. Sebuah kawat dibengkokkan seperti gambar, mengangkut arus 1,2 Ampere di dalam medan magnet uniform B.

Jika gaya yang bekerja pada kawat 10 N maka B sebesar :

a. 0,32 T

c. 32 T

b. 0,46 T

- d. 46 T
- 7. Dalam rangkaian induktif berlaku:
 - a. V_L mendahului i_L sebesar 90⁰
- c. V_L dan i_L sama-sama berbentuk sinus
- b. V_L ketinggalan dari i_L sebesar 90^0
- d. i_L bernilai positif.
- 8. Jika terjadi reaktan induktif lebih kecil dari reaktan kapasitif berarti :
 - a. ϵ_m mendahului i_m

c. $\epsilon_{\,m}$ ketinggalan dari i_{m}

b. Sudut θ positif

d. Beban hambat murni.

Soal Uraian

11. **Bobot 20% (SO-a1, a2, a3)** Tinjau sebuah kawat berarus dibentuk sebagaimana diberikan pada Gambar di bawah ini.

Jika arus yang mengalir pada kawat adalah I dan jari-jari lingkaran adalah R, hitunglah arah dan besar medan magnetik di titik P.

12. Bobot 20% (SO-a1, a2, a3) Berapa hambatan total dan arus pada tiap resistor?

Gambar untuk soal no 12.

13. **Bobot 20% (SO-a1, a2, a3)** Sebuah pembangkit listrik tenaga air terletak di dasar sebuah bendungan. Air mengalir melalui *intake* di dekat dasar bendungan pada kedalaman 100 m dari atas bendungan. Air mengalir melalui 10 buah turbin generator dan keluar dari pembangkit pada kedalaman 120 m dari atas bendungan dengan kelajuan 10 m/s (tekanan 1 atm). Rerata debit air yang keluar dari setiap generator adalah 100 m³/s. Setiap generator memproduksi tegangan puncak 10 kV dan beroperasi dengan efisiensi energi sebesar 80%. Estimasikan arus puncak maksimum yang mungkin dicapai oleh sebuah generator!

Dibuat oleh Dosen Pengampu Mata Kuliah			Diperiksa oleh Koordinator MK	Mengetahui Kaprodi S T. Sipil
	. The	THE	Sla	An.
Dr. Moh. Adhib UA	Dr. Ahmad K	Dra. Eko Tri S	Dr. Ahmad K	Ir. Rachmad Jayadi, M.Eng., Ph.D