21.5 Resposta Transitória de Circuitos RL de Primeira Ordem

Serão analisados circuitos RL de primeira ordem com apenas uma resistência e apenas uma bobina ligados em série.

21.5.1 Ligação em Série de uma Resistência Ideal e uma Bobina Ideal

Seja qual for o circuito onde uma resistência ideal se insere, a relação entre a tensão $\mathbf{u}_R(t)$ que existe entre os seus terminais e a corrente $\mathbf{i}_R(t)$ que a percorre – conhecida por Lei de Ohm – é sempre traduzida pela seguinte expressão (assumindo os sentidos positivos de $\mathbf{u}_R(t)$ e $\mathbf{i}_R(t)$ indicados na figura):

$$i_R(t) = \frac{u_R(t)}{R}$$
 (Lei de Ohm)

Seja qual for o circuito onde uma bobina ideal se insere, a relação entre a tensão $\mathbf{u}_L(t)$ que existe entre os seus terminais e a corrente $\mathbf{i}_L(t)$ que a percorre é traduzida pela seguinte expressão (assumindo os sentidos positivos de $\mathbf{u}_L(t)$ e $\mathbf{i}_L(t)$ indicados na figura):

$$\mathbf{u}_{L}(t) = L \cdot \frac{\mathbf{d}[\mathbf{i}_{L}(t)]}{\mathbf{d}t}$$

 $\frac{d[i_L(t)]}{dt}$

Derivada em ordem ao tempo da corrente que atravessa a bobina (em A/s)

A corrente $i_R(t)$ que passa na resistência e a corrente $i_L(t)$ que passa na bobina são a mesma corrente, ou seja

$$i_R(t) = i_L(t)$$

$$u_R(t) = R \cdot i_L(t)$$

A tensão $\mathbf{u}(t)$ aplicada ao conjunto dos dois componentes é igual à **soma** da tensão $\mathbf{u}_{\mathbf{R}}(t)$ que existe entre os terminais da resistência com a tensão $\mathbf{u}_{\mathbf{L}}(t)$ que existe entre os terminais da bobina, ou seja:

$$u(t) = u_R(t) + u_L(t)$$

Assim sendo, é verdade que

$$L \cdot \frac{d[i_L(t)]}{dt} = u(t) - R \cdot i_L(t)$$

 $u_L(t) = u(t) - u_R(t)$

A última expressão pode reescrever-se desta forma

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Para completar o circuito falta definir u(t). Nos pontos seguintes apresentam-se exemplos com diferentes u(t).

u(t) pode ser vista como a tensão de entrada do circuito RL. Para reforçar esta ideia pode redesenhar-se o esquema inicialmente proposto...

21.5.2 Resposta Natural do Circuito RL de Primeira Ordem

R pode ser a Resistência de Thévenin de um circuito passivo mais complexo.

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente fechado, garantindo que a tensão entre os terminais da bobina u_L(t) é nula e a sua corrente i_L(t) permanece constante;
- A bobina é atravessada por uma corrente I_0 no instante t = 0, ou seja, $i_L(0) = I_0$;
- O interruptor K é aberto no instante t = 0 e permanece aberto a partir desse instante. Enquanto K estiver aberto, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que(u(t) = 0).

Como já se tinha visto no ponto 2.1,

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Assim, para se determinar a corrente na bobina para $t \ge 0$ é necessário resolver a seguinte **equação diferencial ordinária** de primeira ordem, na qual R e L são constantes e $i_L(t)$ é a incógnita:

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = 0$$

A solução desta equação é a seguinte:

$$i_{L}(t) = \underbrace{I_{0} \cdot e^{-\frac{R}{L}t}}_{\text{Estado}}$$
Transitório

Para $t \ge 0$ a tensão entre os terminais da bobina é dada por

$$\mathbf{u}_{L}(t) = \mathbf{u}(t) - \mathbf{u}_{R}(t) = 0 - R \cdot \mathbf{i}_{L}(t) = \underbrace{-R \cdot \mathbf{I}_{0} \cdot \mathbf{e}^{-\frac{R}{L} \cdot t}}_{\text{Estado}}$$
Transitório

$$\text{Valores iniciais:} \begin{cases} i_L(0) = I_0 \\ u_L(0) = -R \cdot I_0 \end{cases} \\ \text{Regime permanente:} \begin{cases} i_L(t \to \infty) = 0 \\ u_L(t \to \infty) = 0 \end{cases} \\ \text{Constante de tempo do circuito: } \tau = \frac{L}{R} \text{ (s)} \\ \tau \text{ \'e o tempo necess\'ario para a corrente que atravessa a bobina, de valor inicial } I_0, \\ \text{atingir 36,8\% de } I_0 \end{cases}$$

Resposta Natural do Circuito RL de Primeira Ordem:

$$i_{L}(t) = I_{0} \cdot e^{-\frac{R}{L} \cdot t}$$

$$u_{L}(t) = -R \cdot I_{0} \cdot e^{-\frac{R}{L} \cdot t}$$

$t = \tau$	$i_L(t) = I_0 \cdot e^{-1} = 0.368 \cdot I_0$
$t = 3\tau$	$i_L(t) = I_0 \cdot e^{-3} = 0.049 \cdot I_0$
$t = 5\tau$	$i_{L}(t) = I_{0} \cdot e^{-5} = 0,007 \cdot I_{0}$

$t = \tau$	$u_L(t) = -RI_0 \cdot e^{-1} = -0.368 \cdot RI_0$
$t = 3\tau$	$u_L(t) = -RI_0 \cdot e^{-3} = -0.049 \cdot RI_0$
$t = 5\tau$	$u_{L}(t) = -RI_{0} \cdot e^{-5} = -0.007 \cdot RI_{0}$

Se o interruptor K for aberto num instante $t = t_0$ em vez de ser aberto no instante t = 0 ...

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente fechado, garantindo que a tensão entre os terminais da bobina u_L(t) é nula e a sua corrente i_L(t) permanece constante;
- A bobina é atravessada por uma corrente I_0 no instante $t = t_0$, ou seja, $i_L(t_0) = I_0$;
- O interruptor K é aberto no instante $t = t_0$ e permanece aberto a partir desse instante. Enquanto K estiver aberto, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que(u(t) = 0).

Como já se tinha visto no ponto 2.1,

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Assim, para se determinar a corrente na bobina para $t \ge t_0$ é necessário resolver a seguinte **equação diferencial ordinária** de primeira ordem, na qual R e L são constantes e $i_L(t)$ é a incógnita:

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = 0$$

A solução desta equação é a seguinte:

$$i_{L}(t) = \underbrace{I_{0} \cdot e^{-\frac{R}{L}(t-t_{0})}}_{Estado}$$
Estado
Transitório

Para $t \ge t_0$ a tensão entre os terminais da bobina é dada por

$$u_{L}(t) = u(t) - u_{R}(t) = 0 - R \cdot i_{L}(t) = \underbrace{-R \cdot I_{0} \cdot e^{-\frac{R}{L}(t - t_{0})}}_{Estado}$$
Transitório

 $\text{Valores iniciais:} \begin{cases} \mathbf{i}_L(\mathbf{t}_0) = \mathbf{I}_0 \\ \mathbf{u}_L(\mathbf{t}_0) = -\mathbf{R} \cdot \mathbf{I}_0 \end{cases} \\ \text{Regime permanente:} \begin{cases} \mathbf{i}_L(\mathbf{t} \to \infty) = 0 \\ \mathbf{u}_L(\mathbf{t} \to \infty) = 0 \end{cases} \\ \text{Constante de tempo do circuito: } \boldsymbol{\tau} = \frac{L}{R} \quad (s) \\ \boldsymbol{\tau} \in \text{o tempo necessário para a corrente que atravessa a bobina, de valor inicial } \mathbf{I}_0, \\ \text{atingir 36,8\% de } \mathbf{I}_0 \end{cases}$

Resposta Natural do Circuito RL de Primeira Ordem:

$$\begin{split} \mathbf{i}_{L}(t) &= \mathbf{I}_{0} \cdot \mathbf{e}^{-\frac{R}{L}(t-t_{0})} \\ \mathbf{u}_{L}(t) &= -R \cdot \mathbf{I}_{0} \cdot \mathbf{e}^{-\frac{R}{L}(t-t_{0})} \end{split}$$

$t-t_0=\tau$	$i_L(t) = I_0 \cdot e^{-1} = 0.368 \cdot I_0$
$t - t_0 = 3\tau$	$i_{L}(t) = I_{0} \cdot e^{-3} = 0.049 \cdot I_{0}$
$t - t_0 = 5\tau$	$i_L(t) = I_0 \cdot e^{-5} = 0,007 \cdot I_0$

$t - t_0 = \tau$	$u_L(t) = -RI_0 \cdot e^{-1} = -0.368 \cdot RI_0$
$t - t_0 = 3\tau$	$u_{L}(t) = -RI_{0} \cdot e^{-3} = -0.049 \cdot RI_{0}$
$t - t_0 = 5\tau$	$u_L(t) = -RI_0 \cdot e^{-5} = -0.007 \cdot RI_0$

21.5.3 Resposta Forçada do Circuito RL de Primeira Ordem

E e R podem ser a Tensão de Thévenin e a Resistência de Thévenin de um circuito mais complexo.

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente fechado, garantindo que a tensão entre os terminais da bobina u_L(t) é nula e a sua corrente i_L(t) permanece constante;
- A corrente que atravessa a bobina é nula no instante t = 0, ou seja, $i_L(0) = 0$;
- O interruptor K é aberto no instante t = 0 e permanece aberto a partir desse instante. Enquanto K estiver aberto, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = E.

Como já se tinha visto no ponto 2.1,

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Assim, para se determinar a corrente na bobina para $t \ge 0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e L são constantes e $i_L(t)$ é a incógnita:

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{E}{L}$$

A solução desta equação é a seguinte:

$$i_{L}(t) = \underbrace{\frac{E}{R}}_{Estado} \underbrace{-\frac{E}{R} \cdot e^{-\frac{R}{L}t}}_{Transitório}$$

Para $t \ge 0$ a tensão entre os terminais da bobina é dada por

$$\mathbf{u}_{L}(t) = \mathbf{u}(t) - \mathbf{u}_{R}(t) = \mathbf{E} - \mathbf{R} \cdot \mathbf{i}_{L}(t) = \underbrace{\mathbf{E} \cdot \mathbf{e}^{-\frac{\mathbf{R}}{L}t}}_{\text{Estado}}$$

Resposta Forçada do Circuito RL de Primeira Ordem:

$$i_{L}(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{R}{L}t}$$

$$u_{L}(t) = E \cdot e^{-\frac{R}{L}t}$$

Se o interruptor K for aberto num instante $t = t_0$ em vez de ser aberto no instante t = 0 ...

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente fechado, garantindo que a tensão entre os terminais da bobina u_L(t) é nula e a sua corrente i_L(t) permanece constante;
- A corrente que atravessa a bobina é nula no instante $t = t_0$, ou seja, $i_L(t_0) = 0$;
- O interruptor K é aberto no instante $t = t_0$ e permanece aberto a partir desse instante. Enquanto K estiver aberto, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que(u(t) = E)

Como já se tinha visto no ponto 2.1,

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Assim, para se determinar a corrente na bobina para $t \ge t_0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e L são constantes e $i_L(t)$ é a incógnita:

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{E}{L}$$

A solução desta equação é a seguinte:

$$i_{L}(t) = \underbrace{\frac{E}{R}}_{\text{Estado}} \underbrace{-\frac{E}{R} \cdot e^{-\frac{R}{L}(t-t_{0})}}_{\text{Estado}}$$

$$\underbrace{\frac{E\text{stado}}{R}}_{\text{Transitório}}$$

Para $t \ge t_0$ a tensão entre os terminais da bobina é dada por

$$u_{L}(t) = u(t) - u_{R}(t) = E - R \cdot i_{L}(t) = \underbrace{E \cdot e^{-\frac{R}{L} \cdot (t - t_{0})}}_{\text{Estado}}$$
Estado
Transitório

Resposta Forçada do Circuito RL de Primeira Ordem:

$$i_{L}(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{R}{L}(t-t_{0})}$$

$$u_{L}(t) = E \cdot e^{-\frac{R}{L}(t-t_{0})}$$

$t - t_0 = \tau$	$i_{L}(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-1} = 0,632 \cdot \frac{E}{R}$
$t - t_0 = 3\tau$	$i_{L}(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-3} = 0,950 \cdot \frac{E}{R}$
$t - t_0 = 5\tau$	$i_{L}(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-5} = 0,993 \cdot \frac{E}{R}$

João Sena Esteves

Universidade do Minho

 $t - t_0 = 3\tau$

 $t-t_0=5\tau$

 $u_L(t) = E \cdot e^{-3} = 0.049 \cdot E$

 $u_L(t) = E \cdot e^{-5} = 0,007 \cdot E$

21.5.4 Resposta Total do Circuito RL de Primeira Ordem

E e R podem ser a Tensão de Thévenin e a Resistência de Thévenin de um circuito mais complexo.

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente fechado, garantindo que a tensão entre os terminais da bobina u_L(t) é nula e a sua corrente i_L(t) permanece constante;
- A bobina é atravessada por uma corrente I_0 no instante t = 0, ou seja, $i_L(0) = I_0$;
- O interruptor K é aberto no instante t = 0 e permanece aberto a partir desse instante. Enquanto K estiver aberto, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = E.)

Como já se tinha visto no ponto 2.1,

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Assim, para se determinar a corrente na bobina para $t \ge 0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e L são constantes e $i_L(t)$ é a incógnita:

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{E}{L}$$

A solução desta equação é a seguinte:

$$i_{L}(t) = \underbrace{\frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{R}{L}t}}_{Estado} + \underbrace{\frac{E}{I_{0}} \cdot e^{-\frac{R}{L}t}}_{Transit\acute{o}rio}$$

Para $t \ge 0$ a tensão entre os terminais da bobina é dada por

terminais da bobina e dada por Resposta Forçada Resposta Natural
$$u_L(t) = u(t) - u_R(t) = E - R \cdot i_L(t) = \underbrace{E \cdot e^{-\frac{R}{L} \cdot t}}_{Estado} - \underbrace{Resposta Natural}_{Estado}$$

Resposta Total do Circuito RL de Primeira Ordem:

$$\begin{split} &i_L(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{R}{L}t} + I_0 \cdot e^{-\frac{R}{L}t} = \left(\frac{E}{R} - I_0\right) \cdot \left(1 - e^{-\frac{R}{L}t}\right) + I_0 \\ &u_L(t) = E \cdot e^{-\frac{R}{L}t} - R \cdot I_0 \cdot e^{-\frac{R}{L}t} = \left(E - R \cdot I_0\right) \cdot e^{-\frac{R}{L}t} \end{split}$$

	$u_{L}(t) = (E - R \cdot I_{0}) \cdot e^{-1} = 0.368 \cdot (E - R \cdot I_{0})$
$t = 3\tau$	$u_L(t) = (E - R \cdot I_0) \cdot e^{-3} = 0,049 \cdot (E - R \cdot I_0)$
$t = 5\tau$	$\mathbf{u}_{L}(\mathbf{t}) = (\mathbf{E} - \mathbf{R} \cdot \mathbf{I}_{0}) \cdot \mathbf{e}^{-5} = 0,007 \cdot (\mathbf{E} - \mathbf{R} \cdot \mathbf{I}_{0})$

0,049(E-RI₀)

4τ

 $0,007(E-RI_0)$

5τ

João Sena Esteves

Universidade do Minho

 3τ

0,368(E-RI₀)

2τ

Se o interruptor K for aberto num instante $t = t_0$ em vez de ser aberto no instante t = 0 ...

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente fechado, garantindo que a tensão entre os terminais da bobina u_L(t) é nula e a sua corrente i_L(t) permanece constante;
- A bobina é atravessada por uma corrente I_0 no instante $t = t_0$, ou seja, $i_L(t_0) = I_0$;
- O interruptor K é aberto no instante $t = t_0$ e permanece aberto a partir desse instante. Enquanto K estiver aberto, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que(u(t) = E)

Como já se tinha visto no ponto 2.1,

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{u(t)}{L}$$

Assim, para se determinar a corrente na bobina para $t \ge t_0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e L são constantes e $i_L(t)$ é a incógnita:

$$\frac{d[i_L(t)]}{dt} + \frac{R}{L} \cdot i_L(t) = \frac{E}{L}$$

A solução desta equação é a seguinte:

$$i_{L}(t) = \underbrace{\frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{R}{L}(t-t_{0})}}_{Estado} + \underbrace{\frac{Resposta Natural}{L_{0} \cdot e^{-\frac{R}{L}(t-t_{0})}}_{Estado}}_{Permanente}$$

Para $t \ge t_0$ a tensão entre os terminais da bobina é dada por

$$\mathbf{u}_{L}(t) = \mathbf{u}(t) - \mathbf{u}_{R}(t) = \mathbf{E} - \mathbf{R} \cdot \mathbf{i}_{L}(t) = \underbrace{\mathbf{E} \cdot \mathbf{e}^{-\frac{\mathbf{R}}{L}(t-t_{0})}}_{\text{Estado}} - \underbrace{\mathbf{R} \cdot \mathbf{I}_{0} \cdot \mathbf{e}^{-\frac{\mathbf{R}}{L}(t-t_{0})}}_{\text{Estado}}$$

Resposta Total do Circuito RL de Primeira Ordem:

$$\begin{split} i_L(t) &= \frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{R}{L}(t-t_0)} + I_0 \cdot e^{-\frac{R}{L}(t-t_0)} = \left(\frac{E}{R} - I_0\right) \cdot \left[1 - e^{-\frac{R}{L}(t-t_0)}\right] + I_0 \\ u_L(t) &= E \cdot e^{-\frac{R}{L}(t-t_0)} - R \cdot I_0 \cdot e^{-\frac{R}{L}(t-t_0)} = \left(E - R \cdot I_0\right) \cdot e^{-\frac{R}{L}(t-t_0)} \end{split}$$

$$\begin{aligned} t - t_0 &= \tau & i_L(t) = \left(\frac{E}{R} - I_0\right) \cdot \left(1 - e^{-1}\right) + I_0 = 0,632 \cdot \left(\frac{E}{R} - I_0\right) + I_0 \\ t - t_0 &= 3\tau & i_L(t) = \left(\frac{E}{R} - I_0\right) \cdot \left(1 - e^{-3}\right) + I_0 = 0,950 \cdot \left(\frac{E}{R} - I_0\right) + I_0 \\ t - t_0 &= 5\tau & i_L(t) = \left(\frac{E}{R} - I_0\right) \cdot \left(1 - e^{-5}\right) + I_0 = 0,993 \cdot \left(\frac{E}{R} - I_0\right) + I_0 \end{aligned}$$

João Sena Esteves

Universidade do Minho

 $t - t_0 = 3\tau$

 $t - t_0 = 5\tau$

 $\mathbf{u}_{L}(t) = (\mathbf{E} - \mathbf{R} \cdot \mathbf{I}_{0}) \cdot \mathbf{e}^{-3} = 0,049 \cdot (\mathbf{E} - \mathbf{R} \cdot \mathbf{I}_{0})$

 $\mathbf{u}_{\mathrm{L}}(\mathbf{t}) = (\mathbf{E} - \mathbf{R} \cdot \mathbf{I}_0) \cdot \mathbf{e}^{-5} = 0,007 \cdot (\mathbf{E} - \mathbf{R} \cdot \mathbf{I}_0)$