

ADA 086654

AD

DETERMINATION OF AROMATICITY
OF FUELS AND LUBRICANT BASESTOCKS
BY ULTRAVIOLET SPECTROSCOPY

INTERIM REPORT AFLRL No. 103

Ьy

Frank M. Newman Marvin K. Greenberg

Under contract to

U. S. Army Mobility Equipment Research and Development Command Fort Belvoir, Virginia

Contract No DAAK70-80-C-0001

Approved for public release; distribution unlimited

February 1980

SE FILE COPY

80 7 7 128

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DDC Availability Notice

Qualified requestors may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 1. REPORT NUMBER 1. REPORT NUMBER 1. REPORT NUMBER	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
	1
	14
DETERMINATION OF AROMATICITY OF FUELS AND 9	Interim PEPT
LUBRICANT BASESTOCKS BY ULTRAVIOLET	
SPECTROSCOPY 2	Jan 77-Feb
JECTROSCOTT /	AFLRL No. 103
2- AUTHOR(s)	8. CONTRACT OR GRAND NUMBER
Frank M./ Newman	DAAK70-78-C-0001
Marvin K./Greenberg / (/3)	DAAK70-80-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESSES	10. PROGRAM ELEMENT, PROJECT, TA
U.S. Army Fuels and Lubricants Research Lab	AREA & WORK UNIT NUMBERS
Southwest Research Institute	(II) P. I ON
San Antonio, TX 78284	Teb 80
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Mobility Equipment Research and	February 1980
Development Command, Energy and Water	13. NUMBER OF PAGES
Resources Lab, Ft. Belvoir, VA 22060	
(i) different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
(12, 12, 6)	15a. DECLASSIFICATION/DOWNGRADI
(11)	SCHEDULE
	1
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin	nited
	14 AFL RL-103
Approved for public release; distribution unlin	14 AFL RL-103
Approved for public release; distribution unlin	14 AFL RL-103
Approved for public release; distribution unling the provided for public release; distribution unling the second second for the second second second for the second s	14 AFL RL-103
Approved for public release; distribution unling the abstract entered in Block 20, if different to the abstract entered in Block 20, if different entered in Block 20,	14 AFL RL-103
Approved for public release; distribution unling the abstract entered in Block 20, if different to the abstract entered in Block 20, if different entered in Block 20,	14 AFL RL-103
Approved for public release; distribution unling the abstract entered in Block 20, if different to the abstract entered in Block 20, if different entered in Block 20,	14 AFL RL-103
Approved for public release; distribution unling 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference	14 AFL RL-103
Approved for public release; distribution unling 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978.	e on Analytical Chemistry
Approved for public release; distribution unling 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block num	14 AFL RL-103 it from Report) e on Analytical Chemistry
Approved for public release; distribution unling 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block num	e on Analytical Chemistry
Approved for public release; distribution unling 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block numerically and identify by block numerically units 1978.	e on Analytical Chemistry
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block num Aromaticity Ultraviolety Fuels Lubricant	e on Analytical Chemistry
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block num Aromaticity Ultraviolet Fuels Lubricant Lubricant Basestock Aromatics	中本人 R人-ユダニ it from Report) e on Analytical Chemistry ber) Spectroscopy
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number of the property of the public of the publ	中女子人 R人-ユタラロ from Report) e on Analytical Chemistry ber) Spectroscopy
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number of the property of the public of the publ	中女子人 R人-ユタラロ from Report) e on Analytical Chemistry ber) Spectroscopy
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block num Aromaticity Ultraviolet Fuels Lubricant Lubricant Basestock Aromatics	er) oit from Report) e on Analytical Chemistry ber) Spectroscopy
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block numbers of the conference of the con	e on Analytical Chemistry ber) Spectroscopy er) oic method for determining i of lubricant basestocks
Approved for public release; distribution unline 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Paper presented at the 1978 Pittsburgh Conference and Applied Spectroscopy, March 1978. 19. KEY WORDS (Continue on reverse side if necessary and identify by block num Aromaticity Ultraviolet Fuels Lubricant Lubricant Basestock Aromatics A rapid and inexpensive ultraviolet spectroscop the aromaticity of turbine and diesel fuels and	e on Analytical Chemistry ber) Spectroscopy er) oic method for determining of lubricant basestocks cells of 0.010, 0.10, and 1

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT (Cont'd)

of the method are good for both standards and fuel blends. The method is currently in use for correlation work in both turbine combustors and diesel engines. A large number of virgin and re-refined lubricant basestocks have been analyzed and the results compared to those from other methods. The UV data are more detailed and are believed to be more reliable, and accurate.

FOREWORD

The work reported herein was conducted at the U.S. Army Fuels and Lubricants Research Laboratory (AFLRL), Southwest Research Institute, San Antonio, Texas, under Contracts DAAK70-78-C-0001 and DAAK70-80-C-0001. The work was funded by the U.S. Army Mobility Equipment Research and Development Command (MERADCOM), Ft. Belvoir, VA. Contracting Officer's representative was Mr. F.W. Schaekel, Fuels and Lubricants Division, Energy and Water Resources Laboratory (DRDME-GL).

The authors acknowledge the assistance provided by AFLRL staff members. Special recognition is given to Ms. Tanu'e F. White for her close attention to detail in the method refinement phase of the program.

TABLE OF CONTENTS

Section	<u>on</u>	age
ı.	INTRODUCTION	.5
II.	APPROACH	.6
III.	EXPERIMENTAL	.9
IV.	STANDARDIZATION	11
V.	APPLICATION	11
VI.	DISCUSSION	12
VII.	CONCLUSIONS	16
VIII.	REFERENCES	16

Acces	sion For	
NTIS	GRALI	
DDC I	'AB	7
Unam	ounced	
Justi	fiction_	
Ву		
Distr	ibutier/	
Arrod.	habihit <u>y</u>	Codes
	Atailan	d/or
Mist	specia	1
•	1 1	Í
1)	1	
	1	

LIST OF ILLUSTRATIONS

FIRGLE	1 age
1	Typical Ultraviolet Absorption Spectra for Substituted Benzenes, Naphthalenes, and Anthracenes8
2	Typical Ultraviolet Spectrophotometer Recorder Tracing10
3	Comparison of Aromaticity Data From Several Methods15
-	
	LIST OF TABLES
Table	Page
1	Aromaticity for Lubricating Oile

I. INTRODUCTION

Many approaches and methods have been applied to determine the aromatic content of fuels and lubricants. Correlations of data from the various methods have been made to some of the physical properties of fuels and lubricants, but more importantly, to the performance in engines. Some such methods and properties are aniline point, smoke point, index of refraction, density, aromatics by fluorescent indicator analysis, mass spectrometry, nuclear magnetic resonance (NMR), infrared spectroscopy, specific dispersion, and heat of combustion. Relationships exist between a sample's aromaticity, that is, the amount of aromatic ring carbon, and its physical property or the results of the analytical technique applied. However, the correlations are not clear in many cases and are subject to many interferences or, in some cases, are very arbitrary. The lack of a direct method for the determination of aromaticity has demanded a new look at the need and the really significant areas of interest.

Aromaticity is the primary factor that alters the carbon-hydrogen ratio of a fuel and, as a result, the air-fuel ratio required to obtain stoichiometric combustion for maximum engine efficiency. Aromaticity is the major factor that influences the production of smoke in turbine engine exhaust. The soot particles produced cause radiation overheating of critical engine components, reducing engine life. Increased aromaticity can produce increased unburned hydrocarbons in engine exhaust, thus polluting the atmosphere. Recent work indicates polynuclear aromatic hydrocarbons and particulates in diesel engine exhaust may be directly related to diesel fuel aromaticity.

Aromaticity in lubricant basestocks has been correlated to sludge and varnish formation. There has also been considerable interest in correlating aromaticity of lubricants to polynuclear aromatic hydrocarbons in engine exhaust.

Most of the current methods for aromatics are troubled by interferences or by other molecular structures being measured as well. For example, liquid chromatography can accurately determine the aromatic content of a fuel or lubricant, but in so doing, determines the total amount of molecules that include any aromaticity. In order to correlate aromaticity to fuel and lubricant performance, only the aromatic portion of the sample molecules must be

determined. Other methods which give more specific data about the aromaticity of fuels or lubricants are subject to interferences and errors, or require expensive and not always available instrumentation. mass and NMR spectroscopy, are capable of measuring either the aromatic ring structure or the amount of hydrogen bound to the aromatic ring. However, both methods require specially trained personnel and very expensive Gas chromatography (GC) has been used successfully by Stavinoha and Newman (1)* to determine aromatic compounds in gasoline but is limited to compounds boiling below 250°C. Higher boiling aromatic compounds found in diesel fuels and lubricant base stocks are not candidates for this method. Capillary GC methods are not adequate for the higher boiling ranges because of complexity of composition and lack of adequate standards. Some special applications of GC to the analysis of polynuclear aromatics (2) are specific for certain unique compounds but such methods are limited and not capable of defining the many compounds present in middle distillates and lubricant basestocks. Mengenhauser (3), in his work on a NMR method, has prepared an excellent review and summary of the available methods for aromatics, and has indicated the strengths and weaknesses of each. In his review of ASTM Method D 1017, an ultraviolet method, he points out the boiling range limitation of the method. Since only the 245 to 275 nanometer(nm) region of the ultraviolet spectrum is used, this method is limited in its application. The method described in this report utilizes the 190 to 350nm range and will be shown to be broad in scope and application.

II. APPROACH

Ultraviolet (UV) spectroscopy was selected as a candidate method to determine aromaticity since absorption in the ultraviolet region of the spectrum is relatively free from alkyl substituent effects, it can be selective as to the number of fused rings and is rapidly performed on readily available equipment. Also, aromaticity can be determined in the UV region without having to determine the molecular weight of the sample or any of its components.

^{*} Superscript numbers in parentheses refer to the list of references at the end of this report.

The unique advantage of ultraviolet absorption spectroscopy in analyzing for aromaticity is that substituted benzenes, naphthalenes, and anthracenes each have absorption maxima at different wavelengths. The absorption maximum for substituted benzenes occurs at 195nm ± 5nm, substituted naphthalenes at 225nm ± 5nm, and anthracenes at 255nm ± 5nm. Figure 1 shows typical absorption spectra of these three types of compounds. To take advantage of these unique absorption properties and analyze for the three types of components simultaneously, it is necessary to determine response factors from the absorption coefficients of pure samples of each type of aromatic compound at each of the three wavelengths, and establish matrix inversion procedures to solve three equations in three unknowns.

From Figure 1, one can see that for the substituted benzenes, the k band absorption at 195nm is approximately two orders of magnitude greater than the b band absorption at 255nm. A sample concentration in solvent producing an optimum absorbance of 0.2-0.7 for the b bands will be totally opaque for the k bands. From the Beer-Lambert equation,

A = abc

where

A = absorbance at the wavelength in question

a = absorptivity constant at that wavelength

b = optical pathlength

c = concentration of absorbing component,

it is apparent that the only means to reduce absorbance at a given wavelength is either to reduce the concentration by dilution, or to shorten the optical pathlength. Sample dilution is time consuming and introduces errors. Retaining long pathlengths allows trace solvent impurities to increase solvent absorption at wavelengths below 210nm until severe energy limitations occur.

Based on these considerations, it is advantageous to reduce the optical pathlength as the absorbance increases at shorter wavelengths. Thus dilution is avoided and standard spectroscopic grade paraffinic or cycloparaffinic solvents may be used without further purification because proper sample concentration will require pathlengths of 0.010cm near 200nm and such solvents have minimal absorbance at such pathlengths.

FIGURE 1. TYPICAL ULTRAVIOLET ABSORPTION SPECTRA FOR SUBSTITUTED BENZENES, NAPHTHALENES, AND ANTHRACENES

Earlier work employed variable pathlength micrometer cells for incrementally reducing pathlength as sample absorbance increased at the shorter wavelengths. This approach was effective and used for some time, but the precision of the technique was greater than 5% and improvement was desirable for most applications. Matched pairs of fixed pathlength cells of 0.010cm and 0.10cm were obtained. They are accurate in pathlength and meet the requirements of the method.

III. EXPERIMENTAL

When an appropriate concentration of sample is prepared in spectrograde cyclohexane, placed in the 1.00, 0.10, and 0.010cm path sample cells with cyclohexane in the matching reference cells, the spectrum from 350 to 190nm may be recorded without futher dilution if the pathlength is reduced by changing cells at appropriate points. A practical sample concentration has been found to be in the range of 8 to 10mg/25ml cyclohexane. In the case of heavy fuels or lubricant basestocks, the sample may be weighed into the volumetric dilution flask. In the case of more volatile fuels, 10.0 microliters of fuel are added to the dilution solvent in the flask with a 10 microliter syringe and the specific gravity of the fuel, determined separately, is used to calculate the sample weight. A typical UV spectrophotometer recorder tracing is shown in Figure 2. As the spectrum is scanned toward lower wavelengths, the absorptivity of the aromatics increases to such a point that the absorbance of the solution will, at some point, exceed 1.0. The scan is stopped at this point, wherever it may occur, and the 1.00cm cells in both the sample and reference beam are replaced by the 0.10cm cells. This procedure reduces the absorbance to 0.1, and the scan is continued. This process is repeated when the absorbance reaches 1.0 again by replacing the 0.10cm cells with the 0.010cm cells. Usually, pathlengths of 0.010cm are short enough to obtain the full spectrum to 190nm without dilution of the sample. The short pathlengths of solvent in both the reference and the sample beams allow scanning to low wavelengths such as 190nm without purification of solvents or operation under limited energy conditions. The absorbance values at maxima near 195, 225, and 255nm are read from the spectrum tracing, factor corrected for the pathlength, and inserted into a matrix inversion calculation to determine the concentration of mono-, di-, and tri-aromatic ring carbon in the sample.

FIGURE 2. TYPICAL UV SPECTROPHOTOMETER RECORDER TRACING

IV. STANDARDIZATION

Determination of absorptivity coefficients was determined by recording the absorption spectra of numerous pure compounds. The previously described procedure was followed in each case. The cells must be carefully cleaned and matched so that no errors are introduced by the cells themselves. Cleanliness must be rigorously maintained, and blank and standard runs must be performed regularly to assure continued quality and accuracy. Average absorptivity for each type of ring carbon at 195, 225, and 255nm was calculated. These average values are employed in the matrix calculation for weight percent of one-, two-, and three-ring carbon.

V. APPLICATION

More than 30 lubricant basestock samples were analyzed by this technique. The samples were both virgin basestocks and re-refined basestocks from a wide variety of sources. The data obtained appeared to be reasonable, but no standard of comparison was available. The method was also applied to middle distillate fuels where good correlation was obtained to smoke point and combustion data. (4) However, some comparison was needed for the lubricants.

Methods which have been used for the determination of aromaticity by other workers are the specific dispersion method and the infrared method of Brandes. The specific dispersion method involves measuring the refractive index of the sample at two different wavelengths in the visible light spectrum and determining the sample's specific gravity. The specific dispersion is calculated as follows:

S.D. =
$$\frac{(n_{\lambda_1} - n_{\lambda_2})}{2} \times 10^4$$

where

 n_{λ_1} = index of refraction of sample at first wavelength, λ_1

 n_{λ_2} = index of refraction of sample at second wavelength, λ_2

d = specific gravity of the sample

Correlation of specific dispersion values to lubricant performance has been shown. (5) However, specific dispersion is only a relative value and cannot be employed to determine true aromatic content.

The infrared method by Brandes involves the measurement of the infrared absorbance of a sample at the 1610 cm⁻¹ produced by the conjugated carbon-carbon double bonds. The Brandes method is designed to produce correlating data to the ndm method (7) which is based on index of refraction, density, and molecular weight data. In order to obtain correlation, the calculation contains certain terms which gives a positive value for weight & aromatic carbon even when the IR absorbance at 1610 cm⁻¹ is zero. This obvious error cannot be accepted for a modern analytical method.

As an alternative, a series of known aromatic compounds were used to recalibrate the basically sound approach of an infrared method. Classical methodology was employed to obtain absorptivity coefficients for weight % ring carbon at 1610 cm⁻¹. All lubricant samples were then recalculated using these coefficients.

VI. DISCUSSION

All lube oil data obtained are shown in Table 1. For clarity and simplicity, summarized data are illustrated in Figure 3, entitled "Comparison of Aromaticity Data From Several Methods."

All data are plotted and compared to the sum of the one-, two-, and three-ring weight & carbon found by UV. Thus, the better the agreement between the compared method data and the UV data, the closer the data points approach the line. Since the specific dispersion data form an arbitrary scale and do not directly correlate numerically, they are not expected to coincide with any of the other data. However, the trend of the specific dispersion data is indicative of the general merit of each of the methods. Only a limited number of samples could be analyzed by this method because the method is not applicable to samples which are highly colored. The majority of the re-refined oil samples were too highly colored to measure refractive index.

TABLE 1. AROMATICITY FOR LUBRICATING OILS

Number Value Mono-Ring Di-Ring Tri-Ring Total IR IR 6755 2.20 0.33 0.02 2.55 4.11 1.88 6791 2.13 0.40 0.03 2.56 4.01 1.7 6792 3.18 0.69 0.11 3.98 4.30 1.99 6793 2.69 0.59 0.07 3.35 4.50 2.01 6794 3.71 0.73 0.09 4.53 5.86 2.91 6795 3.13 0.68 0.04 3.85 5.47 2.66 6796 3.11 0.71 0.09 3.91 5.18 2.56 6799 2.19 0.33 0.02 2.54 3.82 1.69 6810 3.29 0.93 0.18 4.40 6.44 3.29 6811 1.88 0.30 </th <th></th> <th>Specific Dispersion</th> <th></th> <th>U1tra</th> <th>aviolet</th> <th></th> <th></th> <th></th>		Specific Dispersion		U1tra	aviolet			
6755 2.20 0.33 0.02 2.55 4.11 1.85 6791 2.13 0.40 0.03 2.56 4.01 1.7 6792 3.18 0.69 0.11 3.98 4.30 1.99 6793 2.69 0.59 0.07 3.35 4.50 2.00 6794 3.71 0.73 0.09 4.53 5.86 2.99 6795 3.13 0.68 0.04 3.85 5.47 2.66 6796 3.11 0.71 0.09 3.91 5.18 2.56 6798 2.19 0.33 0.02 2.54 3.82 1.66 6799 2.28 0.36 0.02 2.66 3.82 1.59 6800 3.29 0.93 0.18 4.40 6.44 3.29 6810 1.88 0.30 0.03 2.21 3.63 1.55 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.11 6813 3.56 1.16 0.37 5.09 7.99 4.22 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.56 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.00 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.66 6782 3.50 1.20 0.29 4.99 7.70 4.00 6784 132 2.60 0.58 0.03 3.21 4.60 2.11 6785 3.20 1.10 0.23 4.53 6.63 3.44			Mono-Ring			Total	<u>IR¹</u>	IR ²
6791 2.13 0.40 0.03 2.56 4.01 1.77 6792 3.18 0.69 0.11 3.98 4.30 1.99 6793 2.69 0.59 0.07 3.35 4.50 2.00 6794 3.71 0.73 0.09 4.53 5.86 2.99 6795 3.13 0.68 0.04 3.85 5.47 2.66 6796 3.11 0.71 0.09 3.91 5.18 2.56 6798 2.19 0.33 0.02 2.54 3.82 1.69 6799 2.28 0.36 0.02 2.66 3.82 1.59 6810 3.29 0.93 0.18 4.40 6.44 3.29 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 <td< td=""><td></td><td>·</td><td>2 20</td><td>U 33</td><td>0.02</td><td>2 55</td><td>4 11</td><td></td></td<>		·	2 20	U 33	0.02	2 55	4 11	
6792 3.18 0.69 0.11 3.98 4.30 1.99 6793 2.69 0.59 0.07 3.35 4.50 2.01 6794 3.71 0.73 0.09 4.53 5.86 2.91 6795 3.13 0.68 0.04 3.85 5.47 2.66 6796 3.11 0.71 0.09 3.91 5.18 2.50 6798 2.19 0.33 0.02 2.54 3.82 1.65 6799 2.28 0.36 0.02 2.66 3.82 1.55 6810 1.88 0.30 0.03 2.21 3.63 1.55 6811 1.49 0.24 0.02 1.75 3.72 1.55 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 1.16 0.37 5.09 7.99 4.22 6924 183 6.14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
6793 2.69 0.59 0.07 3.35 4.50 2.07 6794 3.71 0.73 0.09 4.53 5.86 2.93 6795 3.13 0.68 0.04 3.85 5.47 2.66 6796 3.11 0.71 0.09 3.91 5.18 2.50 6798 2.19 0.33 0.02 2.54 3.82 1.65 6799 2.28 0.36 0.02 2.66 3.82 1.55 6800 3.29 0.93 0.18 4.40 6.44 3.29 6810 1.88 0.30 0.03 2.21 3.63 1.55 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 1.16 0.37 5.09 7.99 4.22 6924 183 6.14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
6794 3.71 0.73 0.09 4.53 5.86 2.92 6795 3.13 0.68 0.04 3.85 5.47 2.68 6796 3.11 0.71 0.09 3.91 5.18 2.56 6798 2.19 0.33 0.02 2.54 3.82 1.66 6799 2.28 0.36 0.02 2.66 3.82 1.56 6800 3.29 0.93 0.18 4.40 6.44 3.22 6810 1.88 0.30 0.03 2.21 3.63 1.55 6811 1.49 0.24 0.02 1.75 3.72 1.55 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 1.16 0.37 5.09 7.99 4.22 6924 183 6.14 2.96 0.56 9.66 15.66 9.03 6775 131 2.40 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.07</td></t<>								2.07
6795 —— 3.13 0.68 0.04 3.85 5.47 2.66 6796 —— 3.11 0.71 0.09 3.91 5.18 2.56 6798 —— 2.19 0.33 0.02 2.54 3.82 1.65 6799 —— 2.28 0.36 0.02 2.66 3.82 1.56 6800 —— 3.29 0.93 0.18 4.40 6.44 3.22 6810 —— 1.88 0.30 0.03 2.21 3.63 1.55 6811 —— 1.49 0.24 0.02 1.75 3.72 1.55 6812 —— 3.11 0.99 0.26 4.36 6.15 3.11 6813 —— 3.56 1.16 0.37 5.09 7.99 4.22 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.93</td>								2.93
6798 2.19 0.33 0.02 2.54 3.82 1.62 6799 2.28 0.36 0.02 2.66 3.82 1.59 6800 3.29 0.93 0.18 4.40 6.44 3.29 6810 1.88 0.30 0.03 2.21 3.63 1.55 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 1.16 0.37 5.09 7.99 4.2 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 <td< td=""><td></td><td></td><td></td><td>0.68</td><td>0.04</td><td></td><td>5.47</td><td>2.68</td></td<>				0.68	0.04		5.47	2.68
6799 2.28 0.36 0.02 2.66 3.82 1.59 6800 3.29 0.93 0.18 4.40 6.44 3.29 6810 1.88 0.30 0.03 2.21 3.63 1.53 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.11 6813 3.56 1.16 0.37 5.09 7.99 4.22 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6780 187 6.00 <			3.11	0.71	0.09	3.91	5.18	2.50
6800 3.29 0.93 0.18 4.40 6.44 3.29 6810 1.88 0.30 0.03 2.21 3.63 1.53 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.11 6813 3.56 1.16 0.37 5.09 7.99 4.21 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00	6798							1.65
6810 1.88 0.30 0.03 2.21 3.63 1.52 6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 1.16 0.37 5.09 7.99 4.2 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.00 6780 187 6.00 3.10 0.63 9.73 16.63 9.70 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50								1.59
6811 1.49 0.24 0.02 1.75 3.72 1.59 6812 3.11 0.99 0.26 4.36 6.15 3.1 6813 3.56 1.16 0.37 5.09 7.99 4.2 6924 183 6.14 2.96 0.56 9.66 15.66 9.06 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.01 6780 187 6.00 3.10 0.63 9.73 16.63 9.70 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50								3.29
6812 3.11 0.99 0.26 4.36 6.15 3.11 6813 3.56 1.16 0.37 5.09 7.99 4.27 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.09 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00								1.52
6813 — 3.56 1.16 0.37 5.09 7.99 4.27 6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.03 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 — 12.00 7.00 6.00 25.00 54.66 33.60 6782 — 3.50 1.20 0.29 4.99 7.70 4.09 6783 — 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60								
6924 183 6.14 2.96 0.56 9.66 15.66 9.09 6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.03 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20								
6775 131 2.40 0.35 0.03 2.78 5.18 2.50 6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.01 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6776 128 1.40 0.17 0.01 1.58 3.72 1.59 6777 124 1.20 0.15 0.02 1.37 3.72 1.59 6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.05 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6777 124 1,20 0.15 0.02 1,37 3,72 1.59 6778 127 1,50 0.23 0.11 1,84 2,85 1,04 6779 111 2,20 0.58 0.11 2,89 4,40 2,05 6780 187 6,00 3,10 0,63 9,73 16,63 9,76 6781 12,00 7,00 6,00 25,00 54,66 33,60 6782 3,50 1,20 0,29 4,99 7,70 4,09 6783 3,00 0,88 0,19 4,07 6,05 3,09 6784 132 2,60 0,58 0,03 3,21 4,60 2,13 6785 3,20 1,10 0,23 4,53 6,63 3,43								
6778 127 1.50 0.23 0.11 1.84 2.85 1.04 6779 111 2.20 0.58 0.11 2.89 4.40 2.05 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6779 111 2.20 0.58 0.11 2.89 4.40 2.03 6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.66 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6780 187 6.00 3.10 0.63 9.73 16.63 9.76 6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6781 12.00 7.00 6.00 25.00 54.66 33.60 6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6782 3.50 1.20 0.29 4.99 7.70 4.09 6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43		107 707						
6783 3.00 0.88 0.19 4.07 6.05 3.09 6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6784 132 2.60 0.58 0.03 3.21 4.60 2.13 6785 3.20 1.10 0.23 4.53 6.63 3.43								
6785 3,20 1,10 0,23 4,53 6,63 3,43		132						2.13
								3.41
6786 85 2.60 0.74 0.17 3.51 4.60 2.13		85						2.13
6787 150 4.40 1.90 0.33 6.63 9.16 5.00	6787	150	4.40	1.90	0.33	6.63	9.16	5.00
		161						10.61
								2.99
								3.17
								4.27
								3.54
								3.66
								2.87
		****						3.11
								2.44 3.17
								2.93
								3.17
								2.93
								3.29
								3.35

^{1 =} Brandes method.
2 = Recalibrated IR method.

TABLE 1. AROMATICITY FOR LUBRICATING OILS (Cont'd)

	Specific Dispersion		111 + m	aviolet			
1	-	V Diag			Taka1	IR^1	IR^2
Number	<u>Value</u>	Mono-Ring	Di-Ring	Tri-Ring	Total	<u>IK</u>	TK
AL-		2.7	1.30	0.27	5.27	7.80	. 15
6702		3.7					4.15
6797		2.83	0.78	0.17	3.78	5.95	2.99
6801		2.89	0.79	0.17	3.85	5.76	2.87
6802		2.97	0.77	0.15	3.89	5.57	2.74
6803	·	2.72	0.67	0.11	3.50	5.08	2.44
6804		2,60	0.64	0.10	3.34	4.98	2.38
6805		3.07	1.03	0.23	4.33	6.25	3.17
6806		5.71	3.30	1.24	10.25	24.10	14.39
6307		2.88	0.80	0.19	3.87	5.86	2.93
6808		3.13	0.49	0.05	3.67	5.08	2.44
6309		2.99	0.82	0.19	4.00	5.66	2.80
6314		3.14	0.98	0.26	4.38	6.25	3.17
6815		2.94	0.79	0.18	3.91	5.57	2.74
6316		2.95	0.89	0.17	4.01	5.95	2.99
6817		2.85	0.82	0.17	3.84	5.66	2.80
6918	130	3.48	1.13	0.27	4.88	6.83	3.54
6919		5.34	2.45	0.63	8.42	12.84	7.32
6929		3.55	1.01	0.15	4.71	5.95	2.99
6930		3.1	1.03	0.19	4.41	6.83	3.54
6931		3.16	1.02	0.19	4.37	6.73	3.48
6932		3.19	1.07	0.20	4.46	6.44	3.29
6920		6.28	3.12	0.58	9.98	16.63	9.70
6921		5.20	1.82	0.36	7.38	10.51	5.85
6922		2.93	0.88	0.18	3.99	5.95	2.99
6925		5.88	3.15	1.14	10.17	18.76	11.04
6926	~~	5.56	2.79	0.95	9.30	13.81	7.93
6927		4.90	1.85	0.55	7.30	12.84	7.32
6928		4.99	1.95	0.42	7.36	11.39	6.40
0720		7077	4073	0.72	7 . 30	41037	0.40

^{1 =} Brandes method.

The Brandes method data are consistently high as expected since the equation has a 1.2 weight & ring carbon intercept term. The slope of the curve appears to be slightly greater than it should be.

The recalibrated IR data are somewhat closer to the expected values, although generally low. Some of these data actually agree well with the UV data. The disagreement of the IR data can be expected since substitution on the ring, geometry, and symmetry will all affect the IR absorptivity of the ring struc-

^{2 =} Recalibrated IR method.

FIGURE 3. COMPARISON OF AROMATICITY DATA FROM SEVERAL METHODS

ture. The surprisingly good agreement is an indication of the validity of the UV method.

It should be pointed out that, for the sake of clarity, all data points have not been plotted. Many other data points occur among those which are illustrated.

VII. CONCLUSIONS

It may be concluded from the data shown and the experience gained in obtaining these data, that a very powerful and meaningful method has been developed and applied. The UV method not only gives weight \(\frac{1}{2} \) ring carbon, but also gives the configuration of the rings. These data are being correlated to practical performance data and should form a base for a better understanding of fuel and lubricant technology.

VIII. REFERENCES

- 1. Stavinoha, L.L. and Newman, F.M., "The Isolation and Determination of Aromatics in Gasoline by Gas Chromatography," AFLRL Interim Report No. 13, AD 739450, prepared by U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, April 1972.
- 2. Burchfield, H.P., et al., "Polynuclear Aromatic Hydrocarbons," J. Chromatography, 99, p 697, 1974.
- 3. Mengenhauser, J.V., "Proposed Nuclear Magnetic Resonance Method of Determining the Aromaticity of Hydrocarbon Fuels," MEDC Technical Report No. 1983, Government Accession No. 711892, Fort Belvoir, VA, 1970.
- 4. Moses, C.A. and Naegeli, D.W., "Effect of High Availability Fuels on Combustor Properties," AFLRL Interim Report No. 101, Government Accession No. A054229, prepared by U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, 1978.

- 5. Watson, H.J., Correspondence to Mr. C.F. Schwarz of Aberdeen Proving Ground, Maryland, Atlantic Richfield Co., April 1973.
- 6. Hitchcox, H.F., Communication to Mr. J.P. Doner of MERDC, Fort Belvoir, VA, Exxon Research and Engineering Co., December 1976.
- 7. Van Nes, K. and Van Weston, H.A., Aspects of the Constitution of Mineral Oils, Elsevier Publishing Co., Inc., New York, NY, 1951.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE		COMMANDER ATTN DADAR-TST-S	1
DEFENSE DOCUMENTATION CTR			ī
CAMERON STATION	12	US ARMY ARMAMENT R&D CMD	
ALEXANDRIA VA 22314		PICATINNY ARSENAL	
ADDARGONIA VII 22324	,	DOVER NJ 07801	
DEFENSE FUEL SUPPLY CTR		Doving the Order	
ATTN DFSC-T	3	COMMANDER	
OFC OF TECH SERVICES			1
CAMERON STATION		US ARMY MISSILE R&D CMD	
ALEXANDRIA VA 22314		REDSTNE ARSNL AL 35809	
DIR. OF DEFENSE RESŊ (OSD)		COMMANDER	
ATTN DEPUTY DIRECTOR/RES & TECH	1		1
WASHINGTON DC 20301	•		1
WASHINGION DO 20301		US ARMY TROOP SUPPORTS&AVIATION	
OFC OF THE ASST SEC OF DEFENSE		MATERIEL READINESS CMD	
ATTN TECH ADVISTORY PANEL ON		4300 GOODFELLOW BLVD	
FUELS & LUBRICANTS	1	ST LOUIS MO 63120	
WASHINGTON DC 20301	_		
MUDITIOION NO MOJOT		COMMANDER	
DEPARTMENT OF DEFENSE		***************************************	1
	1	US ARMY TROOP SUPPORTS & AVIATIO	N
WASHINGTON DC 20301		MATERIEL READINESS CMD	
		4300 GOODFELLOW BLVD	
DEPARTMENT OF THE ARMY - TECHNICAL SERVICES		ST LOUIS MO 63120	
		COMMANDER	
HQDA			1
ATTN: DAMO-ZD (MR VANDIVER)	1	US ARMY AVIATION R&D CMD	
DAMA-CSS-P(DR J BRYANT)	1 .	BOX 209	
WASHINGTON DC 20310		ST LOUIS MO 63166	
HQDA		COMMANDER	
ATTN: DALO-TSE	1		1
DALO-SMZ-A	i	US ARMY ORDNANCE CTR AND SCHOOL	_
WASHINGTON DC 20310	-	ABDEEN PVG GD MD 21005	
COMMANDER	_	COMMANDER	
ATTN: DAVDL-ATL-TAP(MR MORROW)			I
DAVDL-ATL-MOR	1		1
US ARMY APPLIED TECH LAB		US ARMY MATERIEL R&D CMD 5001 EISENHOWER AVENUE	
FORT EUSTIS VA 23604		ALEXANDRIA VA 22333	
COMMANDER		AMURADULA VA ELJJJ	
ATTN: DRDME-GL	10	COMMANDER	
US ARMY MOBILITY EQUIPMENT R&D	10		1
CMD		US ARMY MATERIEL R&D CMD	Ī
FORT BELVOIR VA 22060		5001 EISENHOWER AVENUE	
- The Manager of the Manager		ALEXANDRIA VA 22333	
COMMANDER			
ATTN ATCL-MS (MR A MARSHALL)	1		
ARMY LOGISTICS MGMT CTR			
FORT LEE VA 23801			

DEPARTMENT OF THE ARMY -		COMMANDER	
TECHNICAL SERVICES (CONT'D)		ATTN STSGP-FT STSGP-PE	1 1
COMMANDER		US ARMY GENERAL MATERIAL &	_
ATTN MR T BAUML ACO	2	PETROLEUM ACTIVITY	
DCASMA-SAN ANTONIO		NEW CUMBERLAND ARMY DEPOT	
615 EAST HOUSTON STREET		NEW CUMBERLAND PA 17070	
BOX 1040			
SAN ANTONIO TX 78294		COMMANDER	
		US ARMY LEA	
HQ, 172D INFANTRY BRIGADE		ATTN DALO-LEP (LTS HESTER)	1
(ALASKA)		NEW CUMBERLAND ARMY DEPOT	
ATTN AFZT-DI-L	1	NEW CUMBERLAND PA 17070	
AFZT-DI-M	1		
DIRECTORATE OF INDUSTRIAL OPER		COMMANDER	
FT RICHARDSON AK 99505		ATTN STSGP-PW	1
COMMANDED		US ARMY GENERAL MATERIALS &	
COMMANDER		PETROL ACTIVITY	
US ARMY COLD REGION TEST CTR	1	SHARPE ARMY DEPOT	
ATTN STECR-TA (MR HASLEM) APO SEATTLE 98733	1	LATHROP CA 95330	
		DIR, US ARMY RES & TECH LAB	
COMMANDER		ADVANCED SYS RSCH OFC	
ATTN TECH LIBRARY	1	ATTN MR D WILSTED	ı
US ARMY MATERIELS & MECHANICS		AMES RSCH CTR	
RES CTR		MOFFITT FIELD CA 94035	
WATERTOWN MA 02172			
		COMMANDER	
COMMANDER		ATTN DRDTA-RG	2
US ARMY NATICK R&D CMD		DRDTA-R	1
ATTN DRDNA-YEP(DR KAPLAN)	1	DRDTA-NS (DR PETRICK)	1
NATICK MA 01760		DRDTA-RT	1
		DRDTA-RC	1
COMMANDER		DRDTA-J	l
ATTN DRSTS-MEE1-S467	1	DRDTA-Z	1
US ARMY TSARCOM		US ARMY TANK-AUTOMOTIVE R&D CMD	
ENGR SUPPORT BRANCH		WARREN MI 48090	
CORPUS CHRISTI ARMY DEPOT			
CORPUS CHRISTI TX 78419		COMMANDER	
		US ARMY TANK-AUTOMOTIVE MATERIE	
DIRECTOR		READINESS CMD	
ATTN DRDAR-BLB	2	ATTN DRSTA-G	1
BALLISTIC RES LAB		DRSTA-W	1
ABDEEN PVG GD MD 21005		WARREN MI 48090	
COMMANDER		COMMANDER	
CHEMICAL & BIOLOGICAL DIV		US ARMY TANK-AUTOMOTIVE MATERIES	
ATTN DR DAVID R SQUIRE	1	READINESS CMD	
US ARMY RES OFC		ATTN: DRSTA-M	1
BOX 12211		DRSTA-GBP (MR MC CARTNEY)	1
RESRCH TRI PRK NC 27009		DRSTA-F	
		WARREN MI 48090	

DEPARTMENT OF THE ARMY - TECHNICAL SERVICES (CONT'D)		COMMANDER ATTN OFC OF THE LIBRARIAN US ARMY AVIATION SCHOOL	1
DIRECTOR		FORT RUCKER AL 36362	
ATTN DRXSY-S	1		
DRSXY-CM (MR WOOMERT)	1	CORP OF ENGINEERS	
US ARMY MATERIAL SYS ANALYSIS		WASHINGTON AQUEDUCT DIV	1
AGENCYY		5900 MACARTHUR BLVD	
ABDEEN PVC GD MD 21005	•	WASHINGTON DC 20315	
COMMANDER		COMMANDER	
ATTN DRXST-MT1	1	US ARMY ARRCOM, LOG ENGR DIR	_
US ARMY FOREIGN SCI & TECH CTR		ATTN DRSAR-LEM (MR MENKE)	1
FEDERAL BLDG		ROCK ISLAND ARSENAL IL 61299	
CHARLTISVILLE VA 22901		COLOCALIDAD	
		COMMANDER	
DIRECTOR	•	ATTN DRXMD-MS	1
ATTN STEAP-MT	1	DARCOM MRSA LEXINGTON KY 40511	
US ARMY ABERDEEN PROVING GROUND		LEXINGTON KI 40311	
MATERIEL TEST DIRECTORATE BUILDING 400		COMMANDER	
ABDEEN PVG GD MD 21005		ATTN ATSM-CTD-MS (MAJ BREWSTER)	1
ADDEEN FVG GD FID 21005		ATSM-CD-M	i
PRESIDENT		ATSM-TNG-PT(LTC VOLPE)	ī
ATTN ATZK-AE	1	US ARMY QM SCHOOL	Ī
US ARMY ARMOR & ENG BOARD	_	FORT LEE VA 23801	
FORT KNOX KY 40121			
		COMMANDER	
COMMANDER		ATTN ATSH-I-MS	1
ATTN STEYP-MTS	1	ATSH-CD-MS-M	1
STEYP-MT-E	1	US ARMY INFANTRY SCHOOL	
US ARMY YUMA PROVING GROUND		FORT BENNING GA 31905	
YUMA PRVG GD AZ 85364			
		COMMANDER	
DIRECTOR ENG SERVICES DIV		US ARMY DEPOT SYS CMD	
ATTN MR J MURRAY	1	ATTN: DRSDS	1
US ARMY RES OFC		CHAMBERSBURG PA 17201	
BOX 12211 RESRCH TRI PRK NC 27009		COMMANDER	
RESKON IKI PKK NC 27009		ATTN ATSAR-CTD-M	1
CDR. US ARMY RES OFC		ATSB-TD	î
ATTN DRXRO-EG	1	US ARMY ARMOR SCHOOL	•
	1.	FORT KNOX KY 40121	
PO BOX 12211	-	70112 1111011 112 112 112	
RSCH TRI PRK NC 27709		HQ US ARMY TEST & EVALUATION CMI)
		ATTN DRSTE-TO-O	1
COMMANDER		ABDEEN PVG GD MD 21005	
ATTN STEWS	1		
WHITE SANDS MISSILE RANGE		COMMANDER	
WHITE SANDS NM 88002		DEPT OF THE ARMY	
		ATTN CERL-EM	1
		CONSTRUCTION ENG RES LAB	
		BOX 4005	
		CHAMPAIGN IL 61820	

DEPARTMENT OF THE ARMY - TECHNICAL SERVICES (CONT'D)		PROJ MGR M113/M113A1 FAMILY OF VEHICLES	
COMMANDER		ATTN DRCPM-M113 WARREN MI 48090	1
ATTN ATCD-SL (MAJ HARVEY)	1		
US ARMY TRAINING & DOCTRINE CMD FORT MONROE VA 23651		PROJ MGR MOBILE ELECTRIC POWER ATTN DRCPM-MEP-TM 7500 BACKLICK ROAD	1
DIRECTOR		SPRINGFIELD VA 22150	
	1	VINITION ENGLY VIII TELEVI	
US ARMY RES&TECH LABS (AVRADCOM) PROPULSION LAB)	OFC OF PROJ MGR IMPROVED TOW VEHICLE	
21000 BROOKPARK ROAD		ATTN DRCPM-ITV-T	1
CLEVELAND OH 44135		US ARMY TANK-AUTOMOTIVE R&D CMD WARREN MI 48090	
COMMANDER			
	1	PROJ MGR PATRIOT PROJ OFC	
AFLB-POP(MR COOK)	1	ATTN DRCPM-MD-T-G	I
US ARMY FORCES CMD		US ARMY DARCOM	
FT MCPHERSON GA 30330		REDSTNE ARSNL AL 35809	
COMMANDER		HQ, US ARMY AVIATION R&D CMD	
MICHIGAN ARMY MISSILE PLANT		ATTN DRDAV-N(MR BORGMAN)	1
	1	DRDAV-E (MR LONG)	1
OFC OF PROJ MGR XM-1 TANK SYS		PO BOX 209	
WARREN MI 48090		ST LOUIS MO 63166	
COMMANDER		OFC OF PROJ MGR FAMECE/UET	
MICHIGAN ARMY MISSILE PLANT		ATTN DRCPM-FM	1
	1	US ARMY MERADCOM	_
PROG MGR FIGHTING VEHICLE SYS		FORT BELVOIR VA 22060	
WARREN MI 48090			
		COMMANDER	
COMMANDER		ATTN ATSP-CD-MS	1
US ARMY RSCH&STDZN GRP (EUROPE)		US ARMY TRANS SCHOOL	
ATTN DRXSN-E-RA BOX 65	1	FORT EUSTIS VA 23604	
FPO NEW YORK 09510		COMMANDER	
		ATTN ATSF-CD	1
COMMANDER		US ARMY FIELD ARTILLERY SCHOOL	_
US ARMY EUROPE & SEVENTH ARMY		FORT SILL OK 73503	
ATTN AEAGC-FMD	1		
APO NY 09403		COMMANDER	
		ATTN ATSE-CDM	1
CDR, THEATER ARMY MATERIAL MGMT		US ARMY ENG SCHOOL	
CTR (200TH)		FORT BELVOIR VA 22060	
DIRECTORATE FOR PETROL MGMT ATTN AEAGD-MM-PT-Q(MR PINZOLA)	1	DEDARTMENT OF THE MAIN	
ZWEIBRUCKEN	•	DEPARTMENT OF THE NAVY	
APO NY 09052		COMMANDER	
		ATTN AIR 53645 (MR COLLEGEMAN)	1
PROJ MGR M60 TANK DEVELOPMENT		AIR 52032E(MR WEINBURG)	ī
	1	US NAVAL AIR SYS CMD	
WARREN MI 48090		WASHINGTON DC 20361	

DEPARTMENT OF THE NAVY (CONT'D)		COMMANDANT	
		ATTN CODE AZ	1
COMMANDER		CODE AO4H	1
ATTN TECH LIBRARY (ORD 9132)	2	DEPT OF THE NAVY	
NAVAL ORDNANCE SYSTEMS COMMAND		US MARINE CORPS	
WASHINGTON DC 20360		WASHINGTON DC 20380	
COMMANDER		COMMANDANT	
ATTN CODE 60612 (MR L STALLINGS)	1	ATTN LMM(MAJ GRIGGS)	1
NAVAL AIR DEVELOPMENT CTR		LPP(MAJ SANBERG)	1
WARMINSTER PA 18974		DEPT OF THE NAVY	
		US MARINE CORPS	
COMMANDER		WASHINGTON DC 20380	
ATTN CODE 6200	1		
CODE 6180	1	COMMANDER	
NAVAL RES LAB		ATTN CODE 1032B(MR BURRIS)	1
WASHINGTON DC 20375		NAVAL FACILITIES ENG CMD	
		200 STONEWALL ST	
COMMANDER		WASHINGTON DC 22332	
ATTN CODE 6170 (MR H RAVNER)	1		
CODE 6110(DR HARVEY)	1	COMMANDER	
NAVAL RES LAB		JOINT OIL ANALYSIS PROGRAM-TECH	
WASHINGTON DC 23075		SUPPORT CTR	
		BLDG 780	1
COMMANDER	•	NAVAL AIR STATION	
ATTN CODE PE-72 (MR D'ORAZIO)		PENSACOLA FL 32508	
CODE PE-71(L MGAITTI)	1		
NAVAL AIR PROPULSION CTR		COMMANDER	
TRENTON NJ 08628		ATTN CODE 92727 (MR O'DONNEL)	1
OUT DED TARMENTS MAIN		NAVAL AIR ENG CTR	
SUPERINTENDENT ATTN TECH REPORTS SECTION	1	NAVAL AIR STATION	
US NAVAL POST GRADUATE SCHOOL	1	LAKEHURST NJ 08733	
MONTEREY CA 93940		CUTES OF MAUAY DEC	
MONTERET CA 93940		CHIEF OF NAVAL RES	,
CDR, NAVAL FACILITIES ENGRG CMD		ATTN CODE 473 (DR R MILLER) ARLINGTON VA 22217	ı
CIVIL ENGR SUPPORT OFC		ARLINGIUN VA 22217	
ATTN CODE 15312A(EOC COOK)	1	COMMANDER	
NAVAL CONSTRUCTION BATTALTION CT		ATTN AFML/MBT	1
PORT HUENEME CA 93043		· · · · · · · · · · · · · · · · · · ·	1
TONE HOLINIES OIL 75045		USAF MATERIALS LAB (AFSC)	•
COMMANDER		WRT-PTRSN AFB OH 45433	
ATTN CODE 6101F(MR R LAYNE)	1	WRI-FIRSH APD OR 43433	
NAVAL SHIP ENG CTR	•	HEADQUARTERS	
WASHINGTON DC 20362		ATTN RDPT (MR EAFFY)	1
		US AIR FORCE	•
COMMANDER		WASHINGTON DC 20330	
ATTN TECH LIBRARY	1		
CODE 2830 (MR G MOSMAJIAN)	ī	COMMANDER	
CODE 2831	1	ATTN SAAMA (SAOQ)	1
DAVID TAYLOR NAVAL SHIP R&D CTR		HEADQUARTERS	-
ANNAPOLIS MD 21402		SAN ANTONIO AIR MATERIAL AREA	
		KELLY AFR TX 78241	

DEPARTMENT OF THE NAVY (CONT'D)		OTHER GOVERNMENT AGENCIES	
COMMANDER ATTN CODE 92727 (MR O'DONNEL) NAVAL AIR ENG CTR NAVAL AIR STATION LAKEHURST NJ 08733	1	US DEPARTMENT OF TRANSPORTATION ATTN AIRCRAFT DESIGN CRITERIA BRANCH FEDERAL AVIATION ADMIN 2100 2ND ST SW WASHINGTON DC 20590	2
COMMANDER, NAVAL FAC ENGR CTR ATTN CODE 1202B (MR R BURRIS) CODE 120B (MR BUSCHELMAN) 200 STONEWALL ST ALEXANDRIA VA 22322 DEPARTMENT OF THE AIR FORCE	1	US DEPARTMENT OF ENERGY DIV OF TRANS ENERGY CONSERV ALTERNATIVE FUELS UTILIZATION BRANCH 20 MASSACHUSETTS AVENUE WASHINGTON DC 20545	2
COMMANDER ATTN AFML/MBT AFML/MXE USAF MATERIALS LAB (AFSC) WRT-PTRSN AFB OH 45433	1 1	DIRECTOR NATL MAINTENANCE TECH SUPPORT CTR US POSTAL SERVICE NORMAN OK 73069	2
HEADQUARTERS ATTN RDPT(MR EAFFY) US AIR FORCE WASHINGTON DC 20330	1	US DEPARTMENT OF ENERGY BARTLESVILLE ENERGY TECH CTR DIV OF PROCESSING & THERMO RES DIV OF UTILIZATION RES BOX 1398	1
COMMANDER ATTN SAAMA (SAOQ) HEADQUARTERS SAN ANTONIO AIR MATERIAL AREA KELLY AFB TX 78241	1	BARTLESVILLE OK 74003 SCI & TECH INFO FACILITY ATTN NASA REP (SAK/DL) BOX 33 COLLEGE PARK MD 20740	1
COMMANDER ATTN AFWAL/POSF (MR HOWARD JONES AFWAL/POSL (MR CHURCHILL) AFWAL/MLSE AFWAL/MLBT US AIR FORCE WRIGHT AERONAUTICA	1 1 1		
LAB WRT-PTRSN AFB OH 45433			
COMMANDER ATTN SAALC/SFQ(MR MAKRIS) SAALC/MMPRR(MR ELLIOT) USAF SAN ANTONIO AIR LOGISTIC C	1 I TR		
COMMANDER ATTN MMEAP WR-ALC/MMIRAB (MR GRAHAM) USAF WARNER ROBINS AIR LOGISTICS CTR	1 1 1		

ROBINS AFB GA 31098