Matematika 4 – Logika pre informatikov: Cvičenie 11

Úloha 1. Dokážte v tablovom kalkule pre logiku prvého rádu s rovnosťou:

a) V jazyku s binárnym funkčným symbolom \circ z teórie $\{A_1, A_2, A_3\}$ vyplýva X, kde

 $A_1: \forall x \forall y \forall z (x \circ (y \circ z)) \doteq ((x \circ y) \circ z)$ $A_3: \exists w \forall x (x \circ w) \doteq x$

$$A_2: \exists v \forall x (v \circ x) \doteq x$$
 $X: \exists u \forall x ((u \circ x) \doteq x \land (x \circ u) \doteq x)$

Neformálne: A_2 a A_3 hovoria, že existujú v a w, ktoré sú ľavým, resp. pravým neutrálnym prvkom operácie \circ (ako napr. 0 pre sčítanie, 1 pre násobenie, "" pre zreťazenie reťazcov). X hovorí, že existuje neutrálny prvok (je súčasne ľavým aj pravým neutrálnym prvkom).

Pomôcka: Odvodte, že ľavý a pravý neutrálny prvok sú si rovné.

b) V jazyku s binárnym funkčným symbolom \circ a symbolom konštanty e z teórie $\{B_1, \ldots, B_4\}$ vyplýva Y, kde

 $B_1: \forall x \forall y \forall z (x \circ (y \circ z)) \doteq ((x \circ y) \circ z)$

$$B_3$$
: $\forall x \exists u (u \circ x) \doteq e$

 B_2 : $\forall x (x \circ e) \doteq x$

$$B_4$$
: $\forall x \exists v (x \circ v) \doteq e$

$$Y : \forall x \exists y ((y \circ x) \doteq e \land (x \circ y) \doteq e)$$

Neformálne: B_2 hovorí, že e je pravý neutrálny prvok operácie \circ . B_3 a B_4 hovoria, že ku každému prvku x existuje ľavý, resp. pravý inverzný prvok (ako napr. -x pre sčítanie celých čísel, 1/x pre násobenie racionálnych čísel). Y hovorí, že ku každému prvku x existuje inverzný prvok (je súčasne ľavým aj pravým inverzným prvkom pre x).

Pomôcka: Odvoďte najprv využitím asociativity (B_1) , že pre zvolený prvok x, jeho ľavý inverzný prvok u a pravý inverzný prvok v platí $u \doteq (e \circ v)$. Odtiaľ ľahko dostanete, že u je aj pravým inverzným prvkom pre x.

c) V jazyku s binárnym funkčným symbolom o a symbolom konštanty e z teórie $\{C_1,C_2,C_3\}$ vyplýva Z, kde

 $C_1: \forall x \forall y \forall z (x \circ (y \circ z)) \doteq ((x \circ y) \circ z)$

$$C_3$$
: $\forall x \exists y ((x \circ y) \doteq e \land (y \circ x) \doteq e)$

 C_2 : $\forall x (x \circ e) \doteq x$

$$Z: \ \forall x \forall y \forall z ((x \circ z) \doteq (y \circ z) \rightarrow x \doteq y)$$

Neformálne: Z je zákon pravého krátenia.

 $Pom\^ocka:$ Pravidlom (Fsub) "vynásobte" obe strany rovnosti v antecedente Z vhodným prvkom.

Úloha 2. Majme nasledujúcu množinu formúl v CNF:

$$A_1: \neg L(z) \lor \neg I(y,z) \lor P(f(z,y),y) \lor K(f(z,y),y)$$

$$A_2$$
: $\neg L(z) \lor \neg I(y,z) \lor G(f(z,y))$

$$A_3$$
: $\neg L(z) \lor \neg I(y,z) \lor R(y)$

$$A_4$$
: $\neg G(x) \lor \neg K(x,y) \lor E(y,x)$

$$A_5$$
: $\neg G(x) \lor \neg K(x,y) \lor A(y,x)$

$$A_6: \neg G(x) \lor \neg E(y,x) \lor \neg A(y,x) \lor K(x,y)$$

$$A_7$$
: $\neg G(x) \lor \neg R(y) \lor E(y,x)$

 A_8 : L(a)

 A_9 : I(b,a)

 A_{10} : G(c)

 A_{11} : A(b,c).

Dokážte pomocou rezolvencie, že z teórie $\{A_1, \ldots, A_{11}\}$ vyplýva:

- a) K(c,b),
- b) P(c,b).