Exercice 1 - (Exponentielle de matrice)

On définit l'exponentielle d'une matrice A de $\mathcal{M}_n(\mathbb{K})$ comme la matrice, notée \mathbf{e}^A , ou bien $\exp(A)$, définie par

$$\mathbf{e}^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

On introduit, pour tout $A \in \mathcal{M}_n(\mathbb{K})$, l'application

$$f_A: \mathbb{R} \to \mathcal{M}_n(\mathbb{K}), \quad t \mapsto f_A(t) = \mathbf{e}^{tA}$$

est de classe \mathcal{C}^1 sur \mathbb{R} , avec

$$\forall t \in \mathbb{R} \quad f'_{A}(t) = A\mathbf{e}^{tA} = \mathbf{e}^{tA}A.$$

On se donne deux matrices A et B dans $\mathcal{M}_n(\mathbb{K})$. On suppose que A et B commutent.

1. Montrer que les matrices A et \mathbf{e}^B commutent. On définit une application

$$g: \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{K})$$

$$t \longmapsto \mathbf{e}^{t(A+B)} \mathbf{e}^{-tB}$$

- 2. Montrer que l'application g, et l'application f_A définie en préambule, sont solutions d'un même problème de Cauchy.
- 3. En déduire une démonstration de la relation

$$\forall t \in \mathbb{R} \quad \mathbf{e}^{t(A+B)} = \mathbf{e}^{tA} \mathbf{e}^{tB} \tag{1}$$

Exercice 2 - (CVD et suite)

Soit d > 0. Soit $g \in C^0([0, d])$ telle que $g(0) \neq 0$

- 1. Rappeler la caractérisation séquentielle de la limite.
- 2. Construire une fonction g_t continue par morceaux sur $[0, +\infty[$, bornée, telle que $\int_0^d e^{-tx} g(x) dx = \frac{1}{t} \int_0^{+\infty} e^{-x} g_t(x) dx$
- 3. Montrer que $\int_0^d e^{-tx} g(x) dx \underset{t \mapsto +\infty}{\sim} \frac{g(0)}{t}$

Exercice 3 - (Wronskien)

On considère sur $]0, +\infty[$ l'équation différentielle

(E):
$$ty'' + (1-2t)y' + (t-1)y = 0$$

1. Vérifier que $\phi(t) = e^t$ est une solution de (E).

Si y_1 et y_2 sont deux solutions de (E), on définit le wronskien par le déterminant $w(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix}$

- 2. Déterminer une expression du wronskien w(t), de deux solutions y_1 et y_2 de (E)
- 3. En déduire qu'il existe une solution de (E) indépendante de ϕ et exprimer la solution générale de (E).

Exercice 4 - (Absolument!)

Soit $n \in \mathbb{N}$.

1. Résoudre l'équation différentielle

$$y'' + y = \cos(nt)$$

2. Soit $\sum a_n$ une série absolument convergente. Résoudre l'équation différentielle

$$y'' + y = \sum_{n=0}^{+\infty} a_n \cos(nt)$$

Exercice 5 - (Raccord)

On considère l'équation différentielle

$$(E): \quad \ln(x)y' + \frac{y}{x} = 1$$

1. Résoudre (E) sur]0,1[et sur $]1,+\infty[$.

Soit g la fonction définie sur $]-1,+\infty[\setminus\{0\}]$ par $g(x)=\frac{\ln(1+x)}{x}$

- 2. Montrer que g se prolonge sur $]-1,+\infty[$ par une fonction de classe C^{∞} .
- 3. Démontrer que (E) admet une solution de classe C^{∞} sur $]0,+\infty[.$

Exercice 6 - (Où est l'équa diff?)

Soit f une fonction réelle continue sur [0,1] et λ un réel. Trouver u, une fonction réelle continue sur [0,1] telle que

$$u(x) = \lambda \int_0^x u(t) dt + f(x)$$