

METODI ED ALGORITMI DI OTTIMIZZAZIONE PER IL PROBLEM SOLVING

Docente: Aristide Mingozzi Adattamento: Edoardo Rosa

CONTENTS

1	Mo	elli e formulazioni matematiche	1
	1.1	The Traveling Salesman Problem	1
		.1.1 Formulazioni Matematiche del TSP	1
		.1.2 Eliminazione subtours di Miller, Tucker, Zemlin (1960)	3
		1.3 Il Traveling salesman problem con time windows (TSPTW)	4
	1.2	Project scheduling with resource constraints (PSR)	6
		2.1 Esempio di PSR	6
		2.2 Formulazione del PSR	6
	1.3	Fixed Charge Transportation Problem (FCTP)	8
		3.1 Descrizione del FCTP	8
		3.2 Formulazione del FCTP	8
	1.4	Assegnamento dei veicoli alle baie di carico	9
		.4.1 Formulazione matematica F	9
2	Intr	duzione alla programmazione lineare a numeri interi	.1
	2.1		ι1
\mathbf{A}	Pro	1	2
	A.1	Pippo	12

LIST OF FIGURES

1.1	Grafo orientato	3
1.2	Grafo H delle precedenze	6

Copertina: http://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg

LIST OF TABLES

CHAPTER 1

MODELLI E FORMULAZIONI MATEMATICHE

1.1 The Traveling Salesman Problem

Il Traveling Salesman Problem (TSP) è il problema più noto dell'ottimizzazione combinatoria. Siano date n città e i costi c_{ij} per andare dalla città i alla città j. Si vuole determinare un cammino che parte da una città (diciamo i_1), visitare una ed una sola volta tutte le rimanenti città e terminare nella città di partenza i_1 . Inoltre si vuole che il costo di tale cammino sia minimo.

Ha molteplici applicazioni pratiche e teoriche perche è la struttura di molti problemi pratici. Si è soliti modella il TSP come segue:

• è dato un grafo orientato (o non orientato) G = (N, A) dove N è un insieme di n vertici e A è un insieme di m archi.

Ad ogni arco $(i,j) \in A$ è associato un costo c_{ij} .

Un circuito hamiltoniano di G è un circuito che passa per ogni vertice una ed una sola volta

Il costo di un circuito hamiltoniano di G è pari alla somma dei costi degli archi che compongono il circuito;

• il problema del TSP è di trovare un grafo G, con una data matrice dei costi $[c_{ij}]$, un circuito hamiltoniano di costo minimo.

1.1.1 Formulazioni Matematiche del TSP

In letteratura esistono molteplici (e a volte fantasiose) formulazioni del TSP. Presentiamo le due formulazioni più note e su cui si basano i metodi esatti più efficienti.

1.1.1.1 TSP asimmetrico

I costi c_{ij} non verificano $c_{ij} = c_{ji} \ \forall \ i, j \ \text{con} \ i < j$.

Sia x_{ij} una variabile (0-1) associata ad ogni arco $(i,j) \in A$ dove $x_{ij} = 1$ se l'arco (i,j) è nella soluzione ottima e $x_{ij} = 0$ altrimenti.

$$Min \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij} \tag{1.1}$$

$$s.t. \sum_{i \in N} x_{ij} = 1, \quad \forall j \in N$$
 (1.2)

$$\sum_{j \in N} x_{ij} = 1, \ \forall i \in N$$
 (1.3)

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N$$
 (1.4)

$$x_{ij} \in \{0,1\}, \ \forall (i,j) \in A$$
 (1.5)

Il vincolo 1.4 impone che ogni soluzione ammissibile debba contenere almeno un arco (i, j) con $i \in S$ e $j \in N \setminus S$ per ogni sottoinsieme S di N. Un'alternativa al vincolo 1.4 è:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \quad \forall S \subset N$$

$$\tag{1.4'}$$

1.1.1.2 TSP simmetrico

Sia dato un grafo non-orientato G = (N, A) con $c_{ij} = c_{ji}$, $\forall i, j \in N$. Gli archi di A sono numerati da 1 a m. L'arco di indice l corrisponde a (α_l, β_l) con $\alpha_l < \beta_l$. A_i è il sottoinsieme degli indici degli archi che incidono sul vertice i:

$$A_i = \{l : l = 1, m \text{ s.t. } \alpha_l = i \text{ or } \beta_l = i\}$$

Per una dato $S \in N$ e $\bar{S} = N \setminus S$ indichiamo con (S, \bar{S}) il sottoinsieme degli indici degli archi per cui $\alpha_l \in S$ e $\beta_l \in \bar{S}$ oppure $\alpha_l \in \bar{S}$ e $\beta_l \in S$.

Ad ogni arco di incide l è associato un costo $d_l = c_{\alpha_l \beta_l}$ e $x_l \in \{0,1\}$ è una variabile che vale 1 se e solo se l'arco di indice l è nella soluzione ottima.

$$Min \sum_{l=1}^{\infty} d_l x_l \tag{1.6}$$

$$s.t. \sum_{l \in A_i} x_l = 2, \ \forall i \in N$$
 (1.7)

$$\sum_{l \in (S,\bar{S})} x_l \ge 1, \ \forall S \subset N \tag{1.8}$$

$$x_l \in \{0, 1\}, \quad l = 1, ..., m$$
 (1.9)

1.1.2 Eliminazione subtours di Miller, Tucker, Zemlin (1960)

Sia u_i una variabile intera il cui valore sappresenta la posizione che il vertice i occupa nel tour.

Es. tour (1,4,5,3,2,1) per TSP con n=5 vertici, si ha $u_1=1,\ u_2=5,\ u_3=4,\ u_4=2,\ u_5=3$

Miller, Tucker e Zemlin propongono in alternativa a:

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N$$
 (*)

hanno imposto i seguenti vincoli:

$$u_i - u_j + nx_{ij} \le n - 1, \quad i = 1, ..., n, \quad j = 2, ..., n$$
 (1.10)

Ogni tour hamiltoniano soddisfa questi vincoli e ogni subtour li viola.

Figure 1.1: Grafo orientato

$$u_2 - u_6 + n \cdot x_{2,6} \le n - 1$$

 $u_6 - u_3 + n \cdot x_{6,3} \le n - 1$
 $u_3 - u_2 + n \cdot x_{3,2} \le n - 1$
 \downarrow
 $3n \le 3(n - 1)$

1.1.3 Il Traveling salesman problem con time windows (TSPTW)

È una variante del TSP che ha molte applicazioni.

Sia dato un grafo orientato G = (V, A) di n + 1 vertici $(V = \{0, 1, ..., n\})$. Ad ogni arco $(i, j) \in A$ sono associati

- un costo $c_{ij} \geq 0$
- un tempo di percorrenza $\theta_{ij} \geq 0$

Ad ogni vertice è associato un intervallo $[r_i, d_i]$ chiamato "time window" che rappresenta l'orario in cui il vertice i può essere vistato dal "salesman".

Ovvero il salesman può visitare i ad ogni tempo $t \in \mathbb{Z}^+$ con $r_i \leq t \leq d_i$.

Il problema consiste nel trovare una sequenza dei vertici di G che parte dal vertice 0 al tempo 0 e finisce al nodo 0 tale che sia il minimo il costo del circuito e il tempo di arrivo al nodo i sia nell'intervallo $[r_i, d_i]$, $\forall i \in V$.

Si consideri la sequenza $(0, i, ..., i_{k-1}, i_k, ..., i_n, 0)$ e sia t_{i_k} il tempo di arrivo al vertice i_k , k = 0, 1, ..., n + 1.

I tempi di arrivo sono calcolati come:

$$t_0 = 0 \tag{1.11}$$

$$t_{i_k} = \max\{t_{i_{k-1}} + \theta_{i_{k-1}} \cdot i_k, \ r_{i_k}\}$$
(1.12)

1.1.3.1 Formulazione del TSPTW

Sia x_{ij} una variabile binaria intera che assume il valore 1 se il vertice i è visitato immediatamente prima di i e $x_{ij} = 0$ altrimenti.

$$Min \sum_{(i,j)\in A} c_{ik} x_{ij} \tag{1.13}$$

$$s.t. \quad \sum_{i \in A_j^-} x_{ij} = 1, \quad \forall j \in V$$
 (1.14)

$$\sum_{j \in A_i^+} x_{ij} = 1, \quad \forall i \in V \tag{1.15}$$

$$t_i + \theta_{ij} - t_j \le M(1 - x_{ij}, \ \forall (i, j) \in A, \ j \ne 0)$$
 (1.16)

$$t_i \le d_i, \ \forall i \in V \tag{1.17}$$

$$t_i \ge r_i, \ \forall i \in V \tag{1.18}$$

$$x_{ij} \in \{0, 1\}, \ \forall \in A$$
 (1.19)

$$t_i \in \mathbb{N}^+, \ \forall i \in V$$
 (1.20)

dove

$$A_i^+ = \{j \in V : (i, j) \in A\}$$

$$A_i^- = \{j \in V : (i, j) \in A\}$$

$$M \text{ un intero grande a piacere}$$

$$r_0 = d_0 = 0$$

1.2 Project scheduling with resource constraints (PSR)

È dato un insieme $\mathbb{X} = \{1, ..., n\}$ di n jobs.

Sono disponibili m risorse dove ogni risorsa k ha una disponibilità b_k ad ogni istante del periodo di scheduling.

Ogni job i ha un tempo di processo d_i e la sua esecuzione, una volta iniziata, non può essere interrotta

Il job i per essere eseguito richiede b_{ik} unità della risorsa k per ciascun intervallo di tempo in cui rimane in esecuzione.

È dato un grafo G = (X, H) di precedenze, dove ogni arco $(i, j) \in H$ impone che il job j può iniziare solo dopo che il job i è stato completato.

• Si vuole determinare il tempo di inizio di processo di ogni job in modo che siano soddisfatti i vincoli di precedenza, i vincoli sulle risorse e sia minima la durata complessiva del progetto

1.2.1 Esempio di PSR

Siano dati n=11 jobs e m=3 risorse con $b_1=b_2=b_3=4$ e un grafo H delle precedenze corrispondenti agli archi della figura 1.2.

Si osservi che i jobs 2 e 3 non possono essere eseguiti in parallelo poiché $r_{2,1} + r_{3,1} = 5 > b_1!$

Figure 1.2: Grafo H delle precedenze

1.2.2 Formulazione del PSR

Sia ξ_{it} una variabile binaria 0-1 che vale 1 se e solo se il job i viene messo in esecuzione al tempo t.

Sia T_{max} un upper bound sulla durata del progetto.

$$Min\sum_{t=1}^{T_{max}} t \, \xi_{nt} \tag{1.21}$$

$$s.t. \sum_{t=1}^{T_{max}} t \, \xi_{it} = 1, \quad i = 1, ..., n$$
 (1.22)

$$\sum_{t=1}^{T_{max}} t \, \xi_{jt} - \sum_{t=1}^{T_{max}} t \, \xi_{it} \ge d_i, \quad \forall (i,j) \in H$$
 (1.23)

$$\sum_{i=1}^{n} r_{ik} \sum_{\tau=t-d_{i}+1}^{t} \xi_{i\tau} \le b_{k}, \quad t = 1, ..., T_{max} \ e \ k = 1, ..., m$$
(1.24)

$$\xi_{it} \in \{0, 1\}, \quad i = 1, ..., n \ e \ t = 1, ..., T_{max}$$
 (1.25)

Si osservi che:

$$\sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 1 \quad se \ il \ job \ i \quad in \ esecuzione \ al \ tempo \ t$$

1.2.2.1Esempio

Sia $d_i = 4$.

Se
$$\xi_{i3} = 1$$
, allora i è in esecuzione nei tempi 3,4,5 e 6. Infatti avremo:
$$\sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 1 \text{ per } t = 3,4,5,6 \text{ e} \sum_{\tau=t-d_i+1}^{t} \xi_{i\tau} = 0 \text{ per } t < 3 \text{ e } t > 6$$

1.3 Fixed Charge Transportation Problem (FCTP)

Il Problema del Trasporto di Carico Fisso è una generalizzazione del classico Problema del Trasporto.

Si differenzia nel definire che il costo per la spedizione di una quantità non-zero di beni, da ogni origine alla sua destinazione, è composto da un costo proporzionale all'ammontare dei beni inviati più un costo fisso.

1.3.1 Descrizione del FCTP

Il FCTP è definito su un grafo completo e bipartito G = (S, T, A) dove S = 1, 2, ..., m è un insieme di m sorgenti e T = 1, 2, ..., n è un insieme di n destinazioni.

Per ogni sorgente $i \in S$ è disponibile è una quantità intera $a_i > 0$ di merce e per ogni destinazione $j \in T$ è necessaria una quantità intera $b_i > 0$ di merce dalle sorgenti.

L'insieme A degli archi è definito come: $A = \{(i,j) : i \in S, j \in T\}$; ogni arco $(i,j) \in A$ è associato ad un costo unitario c_{ij} per il trasporto di una unità della merce dalla sorgente i alla destinazione j più un costo fisso f_{ij} for usare l'arco (i,j).

Senza perdere di generalità si assume che:

$$\sum_{i \in S} a_i = \sum_{j \in T} b_j$$

1.3.2 Formulazione del FCTP

Sia x_{ij} una variabile rappresentante la quantità di merce trasportata dalla sorgente i alla destinazione j e y_{ij} una variabile (0-1) che vale 1 se e solo se $x_{ij} > 0$.

Sia $m_{ij} = mina_i, b_j, (i, j) \in A$.

Una semplice formulazione matematiche del FCTP è:

$$z(F0) = \min \sum_{i \in S} \sum_{j \in T} (c_{ij} x_{ij} + f_{ij} y_{ij})$$
(1.26)

$$s.t. \quad \sum_{i \in T} x_{ij} = a_i, \quad i \in S$$
 (1.27)

$$\sum_{i \in S} x_{ij} = b_j, \quad j \in T \tag{1.28}$$

$$x_{ij} \le m_{ij} y_{ij}, \quad (i,j) \in A \tag{1.29}$$

$$x_{ij} \ge 0, \qquad (i,j) \in A \tag{1.30}$$

$$y_{ij} \in \{0, 1\} \tag{1.31}$$

Si denota con LF0 il rilassamento lineare del problema F0 e con z(LF0) il costo della soluzione ottima. Notare che, per ogni soluzione ottima di LF0, le variabili $x_{ij} > 0$ corrispondono ad una soluzione base fattibile dei vincoli 1.27 e 1.28, e $y_{ij} = x_{ij}/m_{ij}$ con $(i, j) \in A$.

1.4 Assegnamento dei veicoli alle baie di carico

Sia dato un insieme N di veicoli che devono scaricare presso un deposito che ha un insieme L di linee di scarico.

Per ogni linea di scarico $j \in L$ è definito l'insieme degli istanti di tempo T_i in cui è operativa. Per ogni veicolo $i \in N$ sono noti:

- il sottoinsieme di linee $L_i \subseteq L$ compatibili con le operazioni di scarico richieste dal veicolo;
- iltempo di arrivo a_i del veicolo al deposito;
- la durata dello scarico d_{ij} sulla linea $j \in L_i$.

Si assume che lo scarico di un veicolo non possa essere interrotto, ovvero, se lo scarico del veicolo i sulla linea $j \in L_i$ inizia al tempo t, allora la linea j deve essere disponibile per tutti gli istanti di tempo $\tau=t,...,t+d_{ij}-1$ (ovvero $\tau\in T_j$ per ogni $\tau=t,...,t+d_{ij}-1$). Indichiamo con I_{ij} l'insieme degli istanti di tempo in cui può iniziare lo scarico del veicolo i sulla linea $j \in L_i$, ovvero per ogni $t \in I_{ij}$ si assume che la linea j disponibile per ogni istante $\tau = i, ..., d_{ij} - 1$.

Sia c_{ijt} è il costo per iniziare lo scarico del veicolo $i \in N$ sulla linea $j \in Li$ al tempo $t \in I_{ij}$. Il problema richiede che ogni veicolo sia assegnato ad una linea di scarico compatibile in modo che ogni scarico sia fatto senza interruzioni e sia minimo il costo dell'assegnamento.

Formulazione matematica F 1.4.1

Per ogni $i\in N,\,j\in L_i$ e $t\in I_{ij}$ poniamo $\delta_{ijt\tau}=1$ per $\tau=t,...,t+d_{ij}-1$ e $\delta_{ijt\tau}=0$ per ogni $\tau \in T_i$ tale che $\tau < t$ oppure $\tau > t + d_{ij} - 1$.

Indichiamo con $N_j \subseteq N$ il sottoinsieme di veicoli che possono essere scaricati sulla linea j, ovvero $N_j = \{i \in N : j \in L_i\}.$

1.4.1.1 Variabili

 x_{ijt} è una variabile (0-1) che vale 1 se e solo se il veicolo $i \in N$ inizia lo scarico sulla linea $j \in L_i$ al tempo $t \in I_{ij}$.

 $s_{i\tau}$ è una variabile (0-1) che vale 1 se e solo se la linea j non viene utilizzata nell'istante di

La formulazione matematica F del problema è la seguente.

$$z(F) = \min \sum_{j \in L} \sum_{i \in N_j} \sum_{t \in I_{ij}} c_{ijt} + x_{ijt} + \sum_{j \in L} \sum_{\tau \in T_j} g_{j\tau} s_{j\tau}$$
 (1.32)

s.t.
$$\sum_{j \in L_i} \sum_{t \in I_{ij}} x_{ijt} = 1, \quad i \in N$$
 (1.33)

$$\sum_{i \in N_j} \sum_{t \in I_{ij}} \delta_{ijt\tau} x_{ijt} + s_{j\tau} = 1, \quad j \in L, \ \tau \in T_j$$

$$\tag{1.34}$$

$$x_{ijt} \in 0, 1, \qquad i \in N, \ j \in L_i, \ t \in I_{ij}$$
 (1.35)

$$x_{ijt} \in 0, 1,$$
 $i \in N, j \in L_i, t \in I_{ij}$ (1.35)
 $s_{j\tau} \in 0, 1,$ $j \in L, \tau \in T_j$ (1.36)

Il vincolo 1.33 impone che ad ogni veicolo venga assegnato una linea compatibile ed un tempo di scarico a sua volta compatibile sia con il veicolo stesso che con la linea a lui assegnata.

Il vincolo 1.34 impone che per ogni linea ed ogni istante di tempo compatibile con la linea vi sia in scarico al più un solo veicolo.

La formulazione \hat{F} richiede $\hat{n} = |N| \times |L| \times \hat{I}$ variabili, dove $\hat{I} = \max |I_{ij}| : i \in N, \ j \in L_i$ e al più $\hat{m} = |N| + |L| \times \hat{T}$ vincoli, dove

CHAPTER 2

INTRODUZIONE ALLA PROGRAMMAZIONE LINEARE A NUMERI INTERI

APPENDIX A

PROVA

A.1 Pippo