Topology, Spring 2005

Homework 1 [Flagg/Blecher]

- 1. We show that the quotient topology on R/Q is the 'indiscrete topology' of 1.2.1. Indeed suppose that U was a nonempty open set in the quotient topology on R/Q, and let $p:R\to R/Q$ be the 'quotient map', i.e. the map taking $x\in R$ to its equivalence class $[x]\in R/Q$. Let $[x]\in U$. Then $p^{-1}(U)$ is an open set in R containing x. Thus there is an open interval (a,b) inside $p^{-1}(U)$. Clearly for every $x\in p^{-1}(U)$ and $r\in Q$, we have $x+r\in p^{-1}(U)$ (since p(x+r)=p(x)). Thus $p^{-1}(U)$ contains $\cup_{r\in Q}(a+r,b+r)$. Thus $p^{-1}(U)=R$, so that $U=p(p^{-1}(U))=p(R)=R/Q$.
- 2. Text p. 144, 2(a): If $p \circ f = I_Y$ then p is onto. Since p is continuous, if U is open then $p^{-1}(U)$ is open. Conversely, if $p^{-1}(U)$ is open then $f^{-1}(p^{-1}(U))$ is open. But $f^{-1}(p^{-1}(U)) = (p \circ f)^{-1}(U) = U$. Thus p satisfies the definition of a quotient map.
- Text p. 144, 2(b): Follows from 2(a), taking p = r, and f the inclusion map from A into X.
- Text p. 144, 3: Certainly q is onto, and continuous (since it is the restriction of a continuous function). Let $f:R\to A$ be the function f(x)=(x,0); clearly f is continuous, and $p\circ f=I_R$. So by 2(a) above, q is a quotient map. Let $U=\{(x,y):y>0\}\cap A$. This is open in A, but $q(U)=[0,\infty)$ which is not open in R. Let $C=\{(x,y):y=\frac{1}{x}\}$. This is closed in A, but q(C) is not closed.
- 3-5. Discussed in 'workshop'—I have notes from the workshop if you want to zerox them. Be sure you know why, for example, the torus in R^3 is homeomorphic to $S^1 \times S^1 \subset R^4$.
- 6. Let R be the real line with its usual topology, and define an equivalence relation on R by $x \sim y$ if and only if x = y or x and y are both integers. Show that the projection of R onto the quotient topological space R/\sim is closed, but that R/\sim is not locally compact, nor first or second countable.

Proof: Let us write Z for the integers, and β for the equivalence class in R/\sim consisting of the integers. Let $R_0=R\setminus Z$. We may identify R/\sim with the set $R_0\cup\{\beta\}$, and then the quotient map $q:R\to R/\sim$ is the function taking Z to β , and otherwise is the 'identity map' on R_0 . We will write this function as p. The quotient topology on R/\sim then corresponds to the following topology on $R_0\cup\{\beta\}$, namely the usual open sets in R_0 , together with sets of the form $(U\setminus Z)\cup\{\beta\}$, for an open set U in R which contains Z. This is easy to see (divide the open sets V in $R_0\cup\{\beta\}$ into two classes, the ones containing β and the ones not containing β . An open set in $R_0\cup\{\beta\}$ not containing β is just an open set

in R which contains no integers. If V is an open set in $R_0 \cup \{\beta\}$ containing β , then $U = p^{-1}(V)$ is open set in R containing Z. Write $U = (U \setminus Z) \cup Z$, then $V = p(p^{-1}(V)) = p(U \setminus Z) \cup Z = p(U \setminus Z) \cup \{\beta\} = (U \setminus Z) \cup \{\beta\}$.)

It is now easy to argue that p is closed: let C be a closed subset of R. Case 1: $C \cap Z = \emptyset$. In this case, p(C) = C, and the complement of C in $R_0 \cup \{\beta\}$ is $\{\beta\} \cup (R_0 \setminus C) = \{\beta\} \cup ((R \setminus C) \setminus Z)$, which is open according to the last paragraph. Case 2: $C \cap Z \neq \emptyset$. In this case, $p(C) = (C \setminus Z) \cup \{\beta\}$, whose complement is easily seen to be $(R \setminus C) \setminus Z$, which is an open set in the usual sense in R_0 . In either case, p(C) is closed in $R_0 \cup \{\beta\}$.

To see that $R_0 \cup \{\beta\}$ is not locally compact, suppose that V was an open set in $R_0 \cup \{\beta\}$ containing β , and that K is a compact set in $R_0 \cup \{\beta\}$ containing V. By the facts above, $V = (U \setminus Z) \cup \{\beta\}$, for an open set U in R containing Z. For each integer n, we can pick $t_n \in (0,1)$ such that $(n-t_n, n+t_n) \subset U$. Let $U_1 = \bigcup_{n \in Z} (n - \frac{t_n}{2}, n + \frac{t_n}{2})$, then $U_0 = (U_1 \setminus Z) \cup \{\beta\}$ is open in $R_0 \cup \{\beta\}$. Also $\{U_0\} \cup \{(n, n+1) : n \in Z\}$ is an open cover of K. Since K is compact, there is a finite subcover, $\{U_0\} \cup \{(n, n+1) : n \in Z, |n| \le M\}$ say. But the latter does not cover V, and hence cannot cover K. This is a contradiction.

To see that $R_0 \cup \{\beta\}$ is not second countable, it is enough to show it is not first countable, since any second countable space is first countable (see 2.3.1). By way of contradiction, suppose that $\{B_1, B_2, \dots\}$ was a countable set of open sets in $R_0 \cup \{\beta\}$ containing β such that for any open set V in $R_0 \cup \{\beta\}$ containing β , there exists an n with $\beta \in B_n \subset V$ (or equivalently, that $Z \subset p^{-1}(B_n) \subset p^{-1}(V)$). By intersecting each B_n with $p(\bigcup_{n \in \mathbb{Z}}(n-\frac{1}{2},n+\frac{1}{2}))$, we may assume without loss of generality that $p^{-1}(B_n)$ contains no subinterval of length $\geq \frac{1}{2}$. Fix $n \in \mathbb{Z}$. As in the last paragraph, for any positive integer k, let t_n^k be the supremum of the numbers $t \in (0,1)$ such that $(n-t,n+t) \subset p^{-1}(B_k)$. In particular, $(n-2t_n^n,n+2t_n^n)$ is not contained in $p^{-1}(B_n)$ for any positive integer n. Let $U = \bigcup_{n \in \mathbb{Z}}(n-2t|n|_n,n+2t|n|_n)$. Then $V = (U \setminus \mathbb{Z}) \cup \{\beta\}$ is an open neighborhood of β in $R_0 \cup \{\beta\}$. However V is not contained in B_n since $p^{-1}(V) = U$ contains $(n-2t_n^n,n+2t_n^n)$. This contradicts the hypothesis towards the start of this paragraph. Thus $R_0 \cup \{\beta\}$ is not first countable.

7. Let B^2 be the closed unit disk in R^2 , with boundary the unit circle $S^1 = \{(x,y): x^2 + y^2 = 1\}$. Show that the unit sphere S^2 is homeomorphic to the attachment space $B^2 \cup_f X$, if either (a) X is a singleton set and $f: S^1 \to X$ is constant; or (b) X = [-1,1] and $f: S^1 \to X$ is the function f(x,y) = x.

Proof (Linsenmann): By the Proposition after the definition of $X \cup_f Y$ in the notes, it suffices to define a continuous surjective $g: B^2 \cup X \to S^2$ such that for every $w \in S^2$, $g^{-1}(\{w\})$ is one of the equivalence classes in $B^2 \cup_f X$. In (a) it is easy to see that there exists such a function by drawing pictures. Namely, let g take X to the north pole (0,0,1); and on B^2 let g be a function taking the center of the disk, the origin (0,0), to the south pole (0,0,-1), and taking the circle of radius r center the origin (0,0) to the circle which is the intersection of the plane z=c with the sphere $x^2+y^2+z^2=1$. This should be done in such a way that c increases as r increases, and that c=1 when r=1. It is easy to

see that this can be done in such a way that g is continuous. (If you try a bit harder one may explicitly write down the function:

$$g(x,y) = \left(\frac{x\sin(\pi\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}, \frac{y\sin(\pi\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}, -\cos(\pi\sqrt{x^2 + y^2})\right),$$

for $(x,y) \in B^2$, $(x,y) \neq (0,0)$, and g(0,0) = (0,0,-1) and g = (0,0,1) on X.) (b) is similar to (a) so we omit most details. As in (a) one can see that there exists such a function by drawing pictures. Basically it is the function that behaves like a zipper, the one half of the zipper sewed to the top semicircle of B^2 , the other half of the zipper sewed to the bottom semicircle, and then zipping it up. (Again, if you try a bit harder one may explicitly write such a function, as in (a), but I won't take the trouble to do so).

8. Prove that a locally Euclidean space is locally compact, locally connected, and locally path connected.

Proof: Let X be locally Euclidean and let $x \in X$. Choose an open neighborhood U of x such that U is homeomorphic to an open set $N \subset R^m$. Let $g: N \to U$ be the homeomorphism, and choose $p \in N$ such that g(p) = x. Since N is locally compact (why?), there exists an open V and compact K in R^m with $p \in V \subset K \subset N$. Since g is a homeomorphism, g(V) is open, g(K) is compact, and $x \in g(V) \subset g(K) \subset X$. So X is locally compact.

To see that X is locally connected (resp. locally path connected) at x, note that for every $T \in \tau$ with $x \in T$, $T \cap U$ is an open subset of U, so $g^{-1}(T \cap U)$ is open in N. There exists an open ball B with $p = g^{-1}(x) \in B \subset g^{-1}(T \cap U) \subset N$. The image of B under g is an open subset of T which is connected and path connected by 3.1.6. Therefore, X is locally (path) connected by definition.

9. Show that every compact m-manifold is the topological sum of a finite number of connected compact m-manifolds.

Proof: If X is a compact m-manifold then X is locally connected by the previous question. By 3.1.13 Prop 1, every component of X is clopen. Since X is compact, there must therefore be a finite number of components. Since each component of X is clopen, it is easy to see that X is homeomorphic to the topological sum of these components. Each component is clearly connected and compact, and is Hausdorff and second countable since these properties are hereditary. If x is a point in a component C of X, and if U is an open neighborhood of X in X homeomorphic via a function Y to an open set in X, then X is an open neighborhood of X in X homeomorphic via X is an open set in X. So X is an X-manifold. Thus X is the topological sum of a finite number of connected compact X-manifolds.

- 10. Text page 227
- 1. Prove that every manifold is regular and hence metrizable.

Proof: An m-manifold X is (by definition 3.2.5) second countable, Hausdorff, and m-locally Euclidean. By Question 5 above, X is locally compact, and hence is regular by 2.4.2. By 2.3.2, X is metrizable.

2. Let X be a compact Hausdorff space. Suppose that for each $x \in X$, there is a neighborhood U of x and a positive integer k such that U can be imbedded in \mathbb{R}^k . Show that X can be imbedded in \mathbb{R}^N for some positive integer N.

Proof: Since X is compact, we can cover X by a finite number of open sets $U_1, U_2, ..., U_n$ such that each U_i can be embedded in \mathbb{R}^{k_i} . Then use the proof of 3.3.3.

3. Let X be a Hausdorff space such that each point of X has a neighborhood that is homeomorphic with an open subset of \mathbb{R}^m . Show that if X is compact, then X is an m-manifold.

Proof: The space X is a compact Hausdorff space that is m-locally Euclidean by hypothesis. To be a manifold, X needs to be second countable. Also, note that X satisfies the hypothesis for question 2 above, so it can be imbedded in \mathbb{R}^n for some integer n. This means that X is homeomorphic to a subset of \mathbb{R}^n . By last semester's homework 7 problem 5 we know that \mathbb{R}^n is second countable and a subspace of a second countable space is also second countable. So, Xis homeomorphic to a second countable space. Since second countability is a topological property, X is second countable. Hence, X is an m-manifold.