CIRCLE: LAST NAME: FIRST NAME: Martynova Martynova SOLUTIONS 8:30am 1pm /12/12/10|5/12/12 \mathbf{T} /752 /10| 3 MATH 2415 (Spring 2017) Exam II, Mar 31st No books or notes! NO CALCULATORS! Show all work and give complete explanations. Don't spend too much time on any one problem. This 90 minute exam is worth 75 points. (1) [7 pts] Find the equation of the tangent plane to the surface $z = e^x \cos(xy)$ at $(x, y, z) = (1, \pi/2, 0)$. 46(y) = e ces(2(y) e cos(xg) - oyan(xy) e cos (Th) - e T/2 on Th = -eT at (I Th)

$$\frac{\partial f}{\partial y} = - xe^{2x} sun(xy) = - e^{-x} e^{x} (! Th)$$

Equation of Torget Place us $Z = f(1, \sqrt{72}) + \frac{1}{50}(1, \sqrt{6}(-1)) + \frac{1}{50}(1, \sqrt{6}(-1))$

(2) [10 pts] Let
$$f(x,y) = xy^2$$
.

(a) Find the direction in which f increases most rapidly at the point (x, y) = (2, 3). What is the rate of change of f in this direction?

NOW

$$\nabla f = (\frac{2f}{2x}, \frac{2f}{2y}) = (\frac{2}{3}, 2xy)$$

$$= (\frac{2}{3}, \frac{2}{3}) \otimes (\frac{2}{3})$$

$$S_0 \vec{V} = \frac{(9,12)}{\sqrt{9^2+12^2}} = \frac{(9,12)}{(5,15)}$$

Rate of Change of for This direction is $|\nabla f(2,3)| = 15$.

(b) In what directions is the rate of change of f equal to zero at the point (2,3)?

We know

We want $\vec{u} = (a,b)$ so that $P_{\vec{u}}f(2,3) = 0$.

So

$$0 = (9, 12) \cdot (9, 1)$$

$$S_0$$
 $(a.b) = \frac{(-12.9)}{15}$ or $\frac{(12.-9)}{15}$

(4) [10 pts] Find the volume of the solid under the surface z = xy + 1 and above the region in the (x, y)-plane bounded by the curves $y = \sqrt{x}$, y = 0, and x = 4.

$$VOL = \int \int b(y+1) df$$

Lee Des domain

$$\int_{0}^{4} \int_{0}^{2} \frac{3y^{2}}{2} + y \int_{0}^{2} y = \sqrt{3}$$

$$=\int_0^T \frac{x^2}{2} + \sqrt{\alpha} dx$$

$$= \left[\frac{5i^3}{5} + \frac{2}{3} \right]_{5}^{3/2}$$

(5) [12 pts] Let S be the surface with parametrization

$$(x, y, z) = \mathbf{r}(u, v) = u \cos v \mathbf{i} + 2u \sin v \mathbf{j} + u \mathbf{k}$$
 for $0 \le u \le 2$ and $0 \le v \le \pi/2$.

(a) Find an equation of the form F(x, y, z) = 0 for this surface.

$$SC = UCOSV \Rightarrow COSV = \frac{SC}{U} = \frac{SC}{Z}$$

So
$$1 = eos^2 V + ou^2 V = \left(\frac{x}{z}\right)^2 + \left(\frac{y}{2z}\right)^2$$

or
$$z^2 = s^2 + (\frac{y}{2})^2$$
, $o = F(x, y, z) = z^2 - x^2 - (\frac{y}{2})^2$

(b) Sketch the surface, S, together with the "grid" curves on S where (i) u = 1 and (ii) $v = \pi/4$.

(c) Calculate the tangent vector to the grid curve u=1 at the point where $(u,v)=(1,\pi/4)$.

Grid Cerve u= 1 has paronetysatur

So target reator is

(6) [12 pts] Find and classify all critical points of $f(x,y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$.

$$0 = \frac{3f}{3x} = 6xy - 6x = 6x(9-1)$$

$$0 = \frac{3f}{4} = 3x^2 + 3^2 - 6y(3)$$

$$5 = 3y^2 - 6y = 3y(y-2)$$

$$[y=1]$$
 By (3) (3) (3) (4)

CPT	21EN(D)	Sitn (fxx)	CLASS IFICATION
(0,0)	+		VIAV
(0,2)	+	+	MIN
((, 1)	- Street,		SAPOLE
(0000-1)	AND CONTRACTOR OF THE PROPERTY	(page-19-19-19-19-19-19-19-19-19-19-19-19-19-	SADDIE

(7) [12 pts] Use the method of Lagrange multipliers to find the absolute maximum and absolute minimum of the function $f(x,y) = x^2 + y^2$ on the ellipse $x^2 + 2(y+1)^2 = 8$.

$$\frac{2f}{3n} = \lambda \frac{2f}{3n} \implies 2n = \lambda 2n \mathbb{O}$$

$$\frac{2f}{2f} = \lambda \frac{2f}{3n} \implies 2g = \lambda (4g+4) \mathbb{O}$$

$$9 = k \implies x^2 + 2(g+n)^2 = 8 \mathbb{O}$$

[CASE SCEO] By (1)
$$(y+1)^2 = 4$$

 $y+1 = \pm 2$
 $y = 1$ or $y = -3$.

$$[cASE] = 1$$
 By (2) $2y = 4y + 4 \Rightarrow y = -2$
By (3) $x^2 = 8 - 2 = 6 \Rightarrow x = \pm \sqrt{6}$

CPT	\$(x,y)	CLASSIFICATION
(0,1)		ARS MIN
(0,-3)	9	generation.
(16, -2)	10	ARS MAX