```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
import warnings
warnings.filterwarnings('ignore')
```

```
In [8]: data1 = pd.read_csv('../data.csv')
    data1 = data1.fillna(value = 0)
    X1 = data1.loc[:, ['Monthly Income', 'Purchasing Power Index']].values
    data1.head()
```

Out[8]:

Rank		Country/Region	Cost Index	Monthly Income	Purchasing Power Index
0	1	Bermuda *	157.9	10437.0	103.8
1	2	Cayman Islands *	138.3	5433.0	61.7
2	3	Switzerland	131.4	7454.0	89.1
3	4	Turks and Caicos Islands *	124.6	2013.0	25.4
4	5	Israel	123.1	4554.0	58.1

```
In [7]: wcss = []

for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init="k-means++")
    kmeans.fit(X1)
    wcss.append(kmeans.inertia_)

plt.figure(figsize=(12, 4))
plt.grid()
plt.plot(range(1, 11), wcss, linewidth=2, color="red", marker='8')
plt.xlabel('K value')
plt.ylabel('WCSS')
plt.show()
```



```
In [237]: n = 3
In [238]:
      kmeans = KMeans(n_clusters=n)
      label = kmeans.fit predict(X1)
      print(label)
       In [239]: print(kmeans.cluster_centers_)
      [[ 675.
                  23.05362319]
       [4248.08
                  77.816
                 101.12857143]]
       [7524.28571429
In [240]:
      plt.scatter(X1[:, 0], X1[:, 1], c=kmeans.labels_, cmap='rainbow')
      plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], cold
      plt.show()
       120
```

