microstegium-elymus-model-summary

Amy Kendig 10/17/2019

Summary

Simulation of *Microstegium vimineum* and *Elymus virgincus* over time. *M. vimineum* is an invasive annual grass and *E. virginicus* is a native perennial grass. *E. virginicus* grows by itself for 100 years, and then *M. vimineum* is introduced. Disease effects arise 100 years later. Population dynamics are similar in the absence of disease and when both species are susceptible to disease. In both cases, *M. vimineum* reduces the size of the *E. virginicus* population. *M. vimineum* is able to recover population losses due to disease. *E. virginicus* seedlings are impacted more than adults. When only *M. vimineum* is susceptible to disease, its population crashes.

Set-up

```
# clear all existing data
rm(list = ls())
# open libraries
library(data.table)
library(plotly)
library(cowplot)
library(popbio)
library(tidyverse)
# plotting parameters
axisText = 10
axisTitle = 12
legendText = 10
legendTitle = 0
# import data
params <- read_csv("../data/mv_ev_model_parameters_101519.csv", col_types = cols())</pre>
aparams <- read_csv("../data/mv_ev_model_alt_parameters_101519.csv", col_types = cols())
```

Parameters

Formatting:

- subscripts follow "."
- p = perennial adult (at least 1 year old)
- s = perennial seedling (germinated that spring)
- a = annual
- L = annual litter

Edit:

```
# derive related parameters
dparams <- tibble(</pre>
 parameter = c("annual-adult competition",
                "seedling-adult competition",
                "adult-annual competition",
                "adult-seedling competition",
                "adult-adult competition",
                "seedling seed production"),
  symbol = c("alpha.pa",
             "alpha.ps",
             "alpha.ap",
             "alpha.sp",
             "alpha.pp",
             "lambda.s"),
 value = c(filter(params, symbol == "alpha.sa")$value/10,
            filter(params, symbol == "alpha.sa")$value/10,
            filter(params, symbol == "alpha.as")$value*10,
            filter(params, symbol == "alpha.as")$value*10,
            filter(params, symbol == "alpha.as")$value*10,
            filter(params, symbol == "lambda.p")$value/10)
) %>%
 mutate(units = c(rep("year^-1^", 5), "seeds year^-1^"),
         reference = "derived")
# merge with main parameters
params2 <- full_join(params,</pre>
                     by = c("parameter", "symbol", "value", "units", "reference"))
# simulation time
years = 500
```

Table 1: Model parameter values

parameter	symbol	value	units	reference
perennial adult survival	m.p	0.9500	year ⁻¹	Malmstrom et al. 2005
annual seed survival	s.a	0.7400	year ⁻¹	Huebner 2011
perennial seed survival	s.s	0.7600	year ⁻¹	Robocker et al. 1953
annual germination	gamma.a	0.7000	year ⁻¹	Warren et al. 2013
perennial germination	gamma.s	0.6600	year ⁻¹	Robocker et al. 1953
litter suppression of annual germination	alpha.aL	-0.0009	$g^{-1} year^{-1}$	Foster and Gross 1998
litter suppression of perennial germination	alpha.sL	-0.0009	$g^{-1} year^{-1}$	Foster and Gross 1998
litter decomposition rate	b	0.4400	year ⁻¹	Kourtev et al. 2002
annual summer survival	h.a	0.9500	year ⁻¹	Warren et al. 2013
perennial seedlingsummer survival	h.s	0.4000	year ⁻¹	Mottl et al. 2006
perennial adult summer survival	h.p	0.8300	year ⁻¹	Mottl et al. 2006
annual seed production	lambda.a	6500.0000	seeds $year^{-1}$	Wilson et al. 2015
perennial seed production	lambda.p	435.0000	seeds year ⁻¹	Stevens 1957
annual-annual competition	alpha.aa	0.1220	year ⁻¹	Leicht et al. 2005
seedling-annual competition	alpha.as	0.3570	year ⁻¹	Leicht et al. 2005
seedling-seedling competition	alpha.ss	0.0020	year ⁻¹	Leicht et al. 2005
annual-seedling competition	alpha.sa	0.7240	year ⁻¹	Leicht et al. 2005
biomass-seed conversion	c.a	0.0050	g seeds ⁻¹ year ⁻¹	Wilson et al. 2015

parameter	symbol	value	units	reference
disease suppression of annual seed production	tol.a	0.1900	year ⁻¹	Flory et al. 2011
disease suppression of perennial seed production	tol.p	0.1900	year ⁻¹	Flory et al. 2011
annual-adult competition	alpha.pa	0.0724	year ⁻¹	derived
seedling-adult competition	alpha.ps	0.0724	year ⁻¹	derived
adult-annual competition	alpha.ap	3.5700	year ⁻¹	derived
adult-seedling competition	alpha.sp	3.5700	year ⁻¹	derived
adult-adult competition	alpha.pp	3.5700	year ⁻¹	derived
seedling seed production	lambda.s	43.5000	seeds year ⁻¹	derived

Table 2: Alternative model parameter values

parameter	symbol	value	units	reference
annual germination annual intraspecific seed competition annual interspecific competition perennial intraspecific competition perennial interspecific seed competition disease suppression of seed production	gamma.a alpha.aa alpha.as alpha.ss alpha.sa tol	0.29 0.001, 0.015, 0.054 0.054, 0.910, 17.919 0.006, 0.011, 0.049 1.347, 9.574, 23.070 0.6	year ⁻¹ year ⁻¹ year ⁻¹ year ⁻¹ year ⁻¹	Huebner 2011 Leicht et al. 2005 Leicht et al. 2005 Leicht et al. 2005 Leicht et al. 2005 Stricker et al. 2016

Model

Population equations:

Assume counts are being conducted in the fall

N.s[t+1] = s.s * (1-g.s) * N.s[t] + g.s * h.s * f.s * N.s[t] + m.p * f.p * N.p[t]perennial seeds = seed bank survival + seedling seed production + adult seed production

N.p[t+1] = m.p * N.p[t] + g.s * h. s * N.s[t]perennial adults = survival + seedling maturation

N.a[t+1] = s.a * (1-g.a) * N.a[t] + g.a * h.a * f.a * N.a[t]annual seeds = seed bank survival + seed production

L[t+1] = c.a * g.a * h.a * N.a[t] + (1-b) * L[t]annual litter = biomass from previous fall + decomposition

Density-dependence on fecundity

f.s = lam.s / (1 + alpha.ss * g.s * h.s * N.s[t] + alpha.sp * m.p * N.p[t] + alpha.sa * g.a * h.a * N.a[t]) perennial seedling fecundity = fecundity in the absence of competition / (perennial seedling competition + perennial adult competition + annual competition)

f.p = lam.p / (1 + alpha.ps * g.s * h.s * N.s[t] + alpha.pp * m.p * N.p[t] + alpha.pa * g.a * h.a * N.a[t]) perennial adult fecundity = fecundity in the absence of competition / (perennial seedling competition + perennial adult competition + annual competition)

 $f.a = lam.a \ / \ (1 + alpha.as * g.s * h.s * N.s[t] + alpha.ap * m.p * N.p[t] + alpha.aa * g.a * h.a * N.a[t]) \\ annual fecundity = fecundity in the absence of competition / (perennial seedling competition + perennial adult competition + annual competition)$

Litter suppression

```
g.s = gamma.s + (alpha.sL * L[t]) perennial seed germination = germination in the absence of litter + reduction due to litter (alpha.sL < 0, g.s constrained to >= 0) g.a = gamma.a + (alpha.aL * L[t]) annual seed germination = germination in the absence of litter + reduction due to litter (alpha.aL < 0, g.a constrained to >= 0)
```

Function

```
simFun = function(params, NO.a, NO.s, NO.p, LO, Ni.a, simtime) {
    # define parameters
   m.p = filter(params, symbol == "m.p")$value
   s.a = filter(params, symbol == "s.a")$value
   s.s = filter(params, symbol == "s.s")$value
   gamma.a = filter(params, symbol == "gamma.a")$value
   gamma.s = filter(params, symbol == "gamma.s")$value
   alpha.aL = filter(params, symbol == "alpha.aL")$value
   alpha.sL = filter(params, symbol == "alpha.sL")$value
   b = filter(params, symbol == "b")$value
   h.a = filter(params, symbol == "h.a")$value
   h.s = filter(params, symbol == "h.s")$value
   h.p = filter(params, symbol == "h.p")$value
   lambda.a = filter(params, symbol == "lambda.a")$value
   lambda.p = filter(params, symbol == "lambda.p")$value
   lambda.s = filter(params, symbol == "lambda.s")$value
   alpha.aa = filter(params, symbol == "alpha.aa")$value
   alpha.as = filter(params, symbol == "alpha.as")$value
   alpha.ap = filter(params, symbol == "alpha.ap")$value
   alpha.sa = filter(params, symbol == "alpha.sa")$value
   alpha.ss = filter(params, symbol == "alpha.ss")$value
   alpha.sp = filter(params, symbol == "alpha.sp")$value
   alpha.pa = filter(params, symbol == "alpha.pa")$value
   alpha.ps = filter(params, symbol == "alpha.ps")$value
   alpha.pp = filter(params, symbol == "alpha.pp")$value
   c.a = filter(params, symbol == "c.a")$value
   tol.a = filter(params, symbol == "tol.a")$value
   tol.p = filter(params, symbol == "tol.p")$value
   # initialize populations
   N.a = rep(NA, simtime)
   N.s = rep(NA, simtime)
   N.p = rep(NA, simtime)
   L = rep(NA, simtime)
   N.a[1] = N0.a
   N.s[1] = N0.s
   N.p[1] = NO.p
   L[1] = L0
   # simulate population dynamics
   for (t in 1:(simtime - 1)) {
```

```
# introduce annual at t=100
    N.a[t] = ifelse(NO.a == 0 & t == 100, Ni.a, N.a[t])
    # calulate parameters to introduce disease at t=200
    lam.a = ifelse(t < 200, lambda.a, tol.a * lambda.a)</pre>
    lam.p = ifelse(t < 200, lambda.p, tol.p * lambda.p)</pre>
    lam.s = ifelse(t < 200, lambda.s, tol.p * lambda.s)</pre>
    # reduce germination due to litter
    g.s = gamma.s + (alpha.sL * L[t])
    g.s = ifelse(g.s < 0, 0, g.s)
    g.a = gamma.a + (alpha.aL * L[t])
    g.a = ifelse(g.a < 0, 0, g.a)
    # reduce fecundity due to competition
    f.s = lam.s/(1 + alpha.ss * g.s * h.s * N.s[t] + alpha.sp * m.p *
        N.p[t] + alpha.sa * g.a * h.a * N.a[t]
    f.p = lam.p/(1 + alpha.ps * g.s * h.s * N.s[t] + alpha.pp * m.p *
        N.p[t] + alpha.pa * g.a * h.a * N.a[t]
    f.a = lam.a/(1 + alpha.as * g.s * h.s * N.s[t] + alpha.ap * m.p *
        N.p[t] + alpha.aa * g.a * h.a * N.a[t])
    # population size
    N.s[t + 1] = s.s * (1 - g.s) * N.s[t] + g.s * h.s * f.s * N.s[t] +
        m.p * f.p * N.p[t]
    N.p[t + 1] = m.p * N.p[t] + g.s * h.s * N.s[t]
    N.a[t + 1] = s.a * (1 - g.a) * N.a[t] + g.a * h.a * f.a * N.a[t]
    L[t + 1] = c.a * g.a * h.a * N.a[t] + (1 - b) * L[t]
    # correct to prevent negative numbers
    N.s[t + 1] = ifelse(N.s[t + 1] < 1, 0, N.s[t + 1])
    N.p[t + 1] = ifelse(N.p[t + 1] < 1, 0, N.p[t + 1])
   N.a[t + 1] = ifelse(N.a[t + 1] < 1, 0, N.a[t + 1])
   L[t + 1] = ifelse(L[t + 1] < 0, 0, L[t + 1])
}
# save data
dfN = data.frame(time = rep(1:simtime, 4), N = c(N.s, N.p, N.a, L),
    species = rep(c("Elymus seedling", "Elymus adult", "Microstegium",
        "Microstegium litter"), each = simtime))
# return
return(dfN)
```

Simulations

Default parameters

```
simFun(params = params2,
    NO.a = 0,
    NO.s = 1,
```


Remove disease

```
axis.title = element_text(size = axisTitle),
legend.text = element_text(size = legendText),
legend.title = element_text(size = legendTitle))
```


Remove disease from perennial

