算法分析与设计 第二讲

排序算法及分析

本次课主要内容

- ●排序问题
- ●插入排序
- ●合并排序
- ●递归式
- ●算法分析

排序问题

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers. *Output*: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ Such that $a'_1 \le a'_2 \le ... \le a'_n$.

Example:

Input. 8 2 4 9 3 6

Output. 2 3 4 6 8 9

排序算法

- ●插入排序
- ●合并排序
- ●冒泡排序
- ●堆排序
- ●快速排序
- ●选择排序
- •.....

插入排序(INSERTION-SORT)

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]
     for j \leftarrow 2 to n
       do key \leftarrow A[j]
            i \leftarrow j-1
                                                         "pseudocode"
            while i > 0 and A[i] > key
                    do A[i+1] \leftarrow A[i]
                        i \leftarrow i-1
             A[i+1] = key
```

插入排序(INSERTION-SORT)

INSERTION-SORT
$$(A, n)$$
 $\triangleright A[1 ... n]$ for $j \leftarrow 2$ to n do $key \leftarrow A[j]$ $i \leftarrow j - 1$ while $i > 0$ and $A[i] > key$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ $A[i+1] = key$ A:

8 2 4 9 3 6

- ●插入排序的时间开销
 - ▶与输入规模有关
 - ▶与输入序列的特性有关

- ●最佳情况运行时间
 - ▶输入数组已经排好序
- ●最坏情况运行时间
 - ▶问题要求最终按递增的顺序排列
 - ▶但输入数组按递减顺序排列

```
INSERTION-SORT (A, n)
     for i \leftarrow 2 to n
       do key \leftarrow A[j]
            \triangleright Insert A[j]
            i \leftarrow j-1
            while i > 0 and A[i] > key
                    do A[i+1] \leftarrow A[i]
                        i \leftarrow i - 1
            A[i+1] = key
```

- ●为分析做的简化
 - ▶忽略每条语句的真实代价
 - ▶只考虑最高次项
 - ▶忽略最高次项的系数
- ●插入排序的最坏情况时间复杂度
 - $\triangleright \Theta(n^2)$

插入排序的C++示例代码

```
void InsertSort(int * Array,int Size)
         int j,t;
         for(int i = 1;i < Size;i++)
                   for(j = 0; j < i; j++)
                             if(Array[j] > Array[i])
                                       break;
                   t = Array[i];
                   for(int k = i-1 ; k >= j;k--)
                             Array[k+1] = Array[k];
                   Array[j] = t;
                                         22
```

插入排序示例

●请对 "3 23 25 8 1 23 16 15" 应用插入排序算法进行排序,并给出排序过程

合并排序(Merge Sort)

MERGE-SORT A[1 ... n]

- 1. If n=1, done.
- 2.Recursively sort A[1 . . .n/2.]and A[[n/2]+1 . . n] .
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

Time = $\Theta(n)$ to merge a total of n elements (linear time).

合并排序举例

●5, 2, 4, 7, 1, 3, 2, 6

合并排序分析

```
T(n)
\Theta(1) \qquad MERGE-SORTA[1 ... n]
1.lf n= 1, done.
2T(n/2) \qquad 2.Recursively sort A[1 ... n/2]
and A[n/2]+1...n].
\Theta(n) \qquad 3."Merge"the 2sorted lists
```

Recursion tree

- Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
- ●Θ(n lg n)
- $\Theta(n \mid g \mid n)$ grows more slowly than $\Theta(n^2)$
- Merge sort asymptotically beats insertion sort in the worst case
- In practice, merge sort beats insertion sort for n> 30 or so

渐近记号

- •0
- ΦΩ
- (-)

O

●上界

$$f(n) = O(g(n))$$
, 存在 $c>0$, $n_0>0$, 使得对所有 $n\ge n_0$, 都有 $0\le f(n)\le cg(n)$

- $\bullet 2n^2 = O(n^3)$?
 - $> c = 1, n_0 = 2$
- $6n^3 = O(n^2)$?
- $f(n) = n^3 + O(n^2)$?

Ω

- ●下界
- $\bullet n^2 = \Omega(n^2)?$
- $\bullet n^2 = \Omega(n)$?
- $n^2 = \Omega(\operatorname{lgn})$?

Θ

●确界

$$\bullet$$
 n^2 -2 n = $\Theta(n^2)$?