

Physical Design (PD)

Day 29 Design for Testability (DFT-2)

Delivered by

Chandramohan P

Chandramohan@mirafra.com

Session Topics

- Controllability
- Sequential testing
- Ad-Hoc DFT
- Scan DFT
- DFT DRC rules

Objective of DFT

- The main objective of Design for testability where in extra circuitry is inserted is to achieve the two goals of
- Controllability
 - The ability to establish a specific signal value at each node in a circuit by setting values on the circuit's inputs
- Observability
 - The ability to determine the signal value at any node in a circuit by controlling the circuit's inputs and observing its outputs

Design for Testability

- DFT is defined as changing a given circuit to decrease the overall difficulty of testing
 - Changing refers to addition of new logic or modification of existing circuit
- As a result the new circuit will have two modes of operation
 - Test mode in which circuit is configured only for testing purpose
 - Normal Mode in which circuit behaviour is same as that of original design
- DFT though may not always be used as it introduces overhead such as timing, power, area, package cost, design time, yield, manufacturing cost

Need for DFT

- Key objective is to reduce the difficulty of testing
- Difficulty arises from the fact that state inputs and state outputs can not be directly controlled and observed
- Modification of circuit leads to creation of certain modes where controlling and observing the internal flip-flops is possible
 - Leads to reduction of test development cost
- DFT not only reduces Test Development and Application cost but makes high test quality achievable

Relevance of DFT

- Consider a typical board manufacturing scenario where pre-tested chips are assembled onto a printed circuit board
 - One possible way to test the interconnects is via application of test at primary inputs and observation of responses at outputs of the board
 - In this method CUT is the aggregate of the circuitry in each chip on the board and all inter chip interconnections
 - In such scenario
 - Test development is expensive
 - Test development is impossible due to unavailability of details of the circuit within each chip

Relevance of DFT

- Alternative is to use physical probes to connect chip I/O pins to check for interconnect
 - First difficulty is that a value must be applied to a pin via probe
 - Second, cost of such physical probing can be very high
 - Finally in BGA packaging technology many of the pins are located across bottom surface of the chip and can't be probed
- Best alternative is DFT
 - Reduces test cost
 - Reduces test pattern generation effort
 - Improves test quality
 - Achieve higher fault coverage
 - Reduces chip re-spins

DFT Techniques

- Many DFT techniques available such as
- Ad-Hoc DFT
 - DFT technique for a particular design
 - Not applicable to all designs
 - Relies on 'good' design practice learned from experience
 - Testability Measures can be used to identify circuit areas that are difficult to test
 - Once identified circuit is modified or test points are inserted

Ad-Hoc DFT

Shortcomings

- This type of strategy is difficult to use in large circuits
- Testability measures are approximations and don't always work
- Good fault coverage is not guaranteed from ATPG even after circuit modifications and test point insertion is performed

Guidelines for DFT

- For Ad-Hoc DFT to be successful the basic requirements of a circuit are
- Avoid use of redundant logic
- Minimize asynchronous logic
- Isolate clock from the logic
- Partition large circuits to smaller sub-blocks
- Circuit should be easily initializable
- Separate analog and digital circuits physically
- Ensure that internal oscillators, PLL, memory can be disabled during testing

Structured DFT

- Structured DFT involves adding extra logic and signals dedicated for test according to some procedure
- Most common Structured DFT techniques are
 - Scan based DFT
 - Mux based Scan
 - Full
 - Partial
 - LSSD Based Scan
 - Built in Self Test
 - Logic BIST
 - Memory BIST

Sequential Circuit

- Sequential circuit comprises of a block of combinational circuit and a set of 'k' flip-flops.
- Primary inputs of the sequential circuit are x1,x2,....xn

Sequential Circuit

- Primary outputs of the sequential circuit are z1,z2,....zm
- Present state variables y1,y2,......yk form the state inputs of the combinational circuits

Scan Based DFT

- Test development for sequential circuit is difficult due to the inability to control and observe the state inputs and outputs.
- For many sequential circuits cost of test development is so high that fault coverage attained is low
- Scan DFT Methodology helps in
 - Reducing test development cost
 - Enabling high fault coverage

Scan Methodology

- In this Methodology flip-flops are designed and connected in a manner that enables two modes of operation
 - Normal Mode
 - Test Mode
- In test mode, flip-flops are configured as one or more shift registers called Scan Registers or Scan Chain
- In normal mode, response at the state outputs is captured in the flipflops

Scan Methodology

- The obtained values are observed by switching the circuit back to test mode and observing the output of the last flip-flop in each chain
- For the purpose of Test development, the state inputs and state outputs can be treated as similar to primary inputs and primary outputs

Scan Methodology

- The combinational logic block with inputs x1, x2, xn and y1,y2,.....yk and outputs z1,z2,.....zm and Y1,Y2,......Yk need to be considered for the purpose of test development
- By reducing the problem of generating tests for a sequential circuit to one of generating tests for a combinational circuit, scan DFT methodology reduces the test development cost.
- In many cases it enables the attainment of acceptable fault coverage

Scan Techniques

Scan based DFT can be achieved through 2 techniques

- Mux Based Scan Multiplexer Based
 - Replaces every flip-flop with a mux-based flip-flop
- LSSD based Scan Level Sensitive Scan Device

Mux Based Scan

- The flops have two modes of operation
 - Test Mode in which flops are connected in a serial shift register like structure
 - Normal Mode in which flops are connected to their respective combo blocks

Mux Based Scan

- Penalties include
 - Scan hardware occupies between 5-20% of silicon area
 - Performance impact
 - Additional Pins , e.g scan_in , scan_out

Muxed Scan Methodology

- Test control is added as primary Input
- All flops are replaced with scan flip-flops and connected serially through multiplexers
- Each flip-flop is controllable and observable from the primary input/ primary output
- Combinational ATPG methodology is used to test all the combinational logic in between the flops

Scan Chain

- Figure of Generic Scan Chain in various modes is as shown below
 - (a) Structure (b) Configuration in Normal Mode (c) Configuration in Test Mode

Scan Based Testing

- Design works in two modes
 - Scan Mode when SE = 1
 - Normal Mode when SE = 0
- The following steps are carried out for system with N flops
 - SE =1, now all flip-flops are connected in serial fashion
 - Apply the scan clock
 - Apply test patterns at the input serially through scan_in
 - one bit of the test pattern per clock cycle
 - Clock the system N times, called shift cycle
 - Now every flop is filled with the test patterns

Scan Based Testing

- SE = 0, now all flops are connected in normal mode
- Clock applied to circuit which works in normal mode
- Called Capture Cycle
- Combinational output is evaluated and stored in flops
- SE = 1, flops again rigged up in serial fashion
- System again clocked for N clock cycles, again shift cycle

Scan Based Testing

- Output is shifted out serially and observed through scan_out pin
- Total procedure takes 2N + 1 clock cycles

Scan Design Approach

There are two approaches to scan design

- Full Scan
 - The most predictable DFT methodology
 - All the flip-flops in the design become controllable and observable
 - Most widely adopted methodology in industry
 - Extensively researched and used for over 25 years
 - Enable faster ATPG (combinational ATPG)
 - Compatible with, and supported by all commercial ATPG/fault simulation tools
 - Achieve the highest fault coverage

Scan Design Approach

- Full Scan Drawbacks
 - Extra Pins
 - Extra Mux
 - Extra Routing
 - Mux Delay
 - Flop Delay due to extra load
- Partial Scan
 - Not all flip-flops are converted to be scannable
 - Not all flip-flops are controllable and observable
 - Partial Scan may be required for performance and area sensitive designs
 - Requires expensive computations (sequential ATPG)
 - Fault coverage is not predictable

Scan Design Rules

- For efficient scan design the circuit should follow certain rules, such as
 - Use only clocked D-type of flip-flops for all state variables
 - At least one PI pin must be available for test; more pins, if available, can be used
 - All clocks must be controlled from PIs
 - Clocks must not feed data inputs of flip-flops
- A set of design rules need to be satisfied for scan insertion to take place generally known as DFT DRC rules

No Generated Clocks

All internal clocks must be controlled by port level CLK signal (primary input) in scan test mode

No Generated Clocks

Rectification

Mux the generated clock with the primary clock input

No Combinational Feedback

- Implementation of combination feedback circuit makes the combinational system to mimic sequential logic
 - Output depends on input and previous value

No Combinational Feedback

- Rectification
 - Break the feedback loop by means of and/or gate

- Feedback signal is not testable
- Gate output is not testable

No Combinational Feedback

Rectification

Break feedback loop by means of flop and mux

Increases controllability, observability and complexity

Avoid Asynchronous Reset

- No Internally generated asynchronous reset
 - Asynchronous controls if required should not be internally generated

Avoid Asynchronous Reset

Rectification

- Make asynchronous control signal controllable from input port

Solution 1

Solution 2

No Gated Clocks

- Gated Clocks may not be enabled during the scan shift cycle
 - No controllability on the gated clock

No Gated Clocks

- Rectification
 - Gated clock should be enabled in the scan mode
 - Mux the gated clock with the master clock

No Latches

- NO Latches
 - Latches have to be avoided
 - In an edge triggered design, it is difficult to replace latches while stitching scan chain
 - There exists no edge triggered scan equivalent to latch

always @ (data, enable, test)
if(enable || test)
latch_signal = data

- Rectification
 - Latches have to be enabled for test to be successful

Shift Registers

- DO NOT replace shift registers
 - Shift registers are already connected serially
 - Need not be replaced by scan equivalents

```
— Add Scan_Enable_signal_in_the code
    always@(posedge clock)
    if (RESET && !SCAN_EN)
        shifter_bus <= 0;
    else
        if (ACTIVE_SHIFT || SCAN_EN)
            begin
            shifter_bus[16:1] <= shifter_bus[15:0];
        shifter_bus[0] <= DATA_IN;
        end</pre>
```


Clock Used as Data

- Clock should not be used in the data path
 - For ATPG to be successful there should be minimal mixing of clock and data
 - Clock shared by data leads to lesser fault coverage

Bypass Memory

- Paths ending at memories are not observable
- Paths starting from Memory are not controllable
- Rectification
 - Bypass memory
 - Build a shadow logic around memory

Mixed Edge Triggering

- Do not mix +ve edge triggered flops with –ve edge triggered flops in same scan chain
 - For ATPG to work in a clock cycle only one capture / shift should happen
 - Hence -ve edge flops should be triggered at the same time as +ve edge flops

Mixed Edge Triggering

- Rectification
 - Invert the clock of –ve edge triggered flops in the test mode

Scan Enable Buffering

- The Scan enable signal should be adequately buffered
- The scan enable signal feeds all the flip-flops in the design
 - Which makes the signal heavily loaded
- Scan enable can be considered equivalent to clock but without the same kind of switching activity
- The drive strength of the scan_enable port should be sufficiently high
 - Which needs to be taken care of during synthesis

Affect of DFT

- DFT increases Time to market as well as fault coverage
- Balance has to be stricken

Time to Develop Test Patterns

Cons of Scan

- Disadvantages
 - Additional Pins
 - Scan Input, Scan Output, Scan Enable, Test Enable
 - Packaging cost increases
 - Performance Penalty
 - Longer setup Time
 - Area Overhead
 - FF without mux 4/5 nand gates
 - FF with mux 7/8 nand gates
 - But proven to increase area by about 7%
 - Area increases yield decreases
 - Silicon Cost increases
 - More Design Effort
 - Scan stitching, scan routing
 - High power when scan shifting

Pros of Scan

- Improves Confidence in the design
- Reliability and quality Increases
- Test application time and fault coverage increases
- Controllability and Observability of internal nodes increases
- Makes possible use of simpler ATPG algorithms
- Reduces failure rate and hence COST !!

Summary

- Test development cost has been understood
- Scan based DFT has been found suitable for sequential designs
- Objective of DFT has been identified
- Various DFT DRC rules have been studied
- Methods to overcome DFT DRC violations have been understood