

amph.  
Econ.  
Pop.  
A.P.

31761 099527426

# VITAL AND MONETARY LOSSES DUE TO PREVENTABLE DEATHS

---

C. H. FORSYTH

---

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF  
THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHY  
IN THE UNIVERSITY OF MICHIGAN





## VITAL AND MONETARY LOSSES IN THE UNITED STATES DUE TO PREVENTABLE DEATHS.

By C. H. FORSYTH, PH. D., *Ann Arbor, Mich.*

The purpose of this paper is to set forth the results of a statistical investigation of the vital and monetary losses in this country due to the occurrence of preventable deaths; to show (a) to what extent the average length of human life is affected by the occurrence of such deaths; (b) the effect on the expectation of life, or average future life time, at any age; (c) the effect on the death rate, at any age; (d) how great a monetary loss is sustained through such a death, assuming that the life of every person has a value, or that during the most productive period of his life—say from the age of twenty to seventy years—every person contributes something annually to the wealth of the community in which he lives; and (e) the total value of these losses, estimated for each age for both males and females, for the whole country.

We have obtained the results set forth in this paper through the comparison of mortality tables which we have constructed and which are based upon the different sets of conditions and hypotheses that are to be introduced and discussed; and a familiarity with what is involved in a mortality table and the expectation of life is so essential to the complete understanding of what follows that we shall now explain briefly what these terms imply.

A mortality table is first of all a table of death rates computed for the different ages of human life. In addition it also exhibits the effects of these death rates upon an arbitrarily chosen community in the following manner. First, a large number of persons is assumed to be living at exactly the same age, usually at the age of birth; then the number of deaths for this age is ascertained by multiplying the number living at the age by the corresponding death rate; and, finally, the difference between the number living, or population, and the number of deaths gives the population at the next higher age. The populations at all the other and higher ages are

found successively in the same way. If we let  $l_x$  represent the population or the number of persons living at age  $x$ ,  $d_x$  the number of deaths and  $q_x$  the death rate, the mortality table would appear as follows:

| Age.  | Population. | Deaths.   | Death Rate. |
|-------|-------------|-----------|-------------|
| 0     | $l_0$       | $d_0$     | $q_0$       |
| 1     | $l_1$       | $d_1$     | $q_1$       |
| 2     | $l_2$       | $d_2$     | $q_2$       |
| $x$   | $l_x$       | $d_x$     | $q_x$       |
| $x+1$ | $l_{x+1}$   | $d_{x+1}$ | $q_{x+1}$   |

where, as explained above,  $l_{x+1} = l_x - d_x$

Such a table not only shows at what age the last survivor dies but also provides a means of computing the average future life time or expectation of life. Thus a mortality table based upon the death rates known to exist in a given community sets forth concisely and clearly the mortality conditions of that community, and the mortality conditions of any number of communities are very easily and readily compared by means of such tables.

Obviously, all those that survive from any year of age to the next have each lived one year; hence, if we add together the survivors of all ages beyond any particular age we shall obtain the total number of years lived by those at that age; and, finally, if we divide this total number of years by the population at the age considered we shall obtain the average future life time or expectation of life of persons at that age.

Since a death is just as apt to occur at one time in the year of death as another it is usually assumed that a person will, in the long run, live a half year in the year of death, and this one half of a year is added to the average future life time explained above to obtain what is called the complete expectation of life. Expressed symbolically, the complete expectation of life at age  $x$ , or

$$\mathring{\epsilon}_x = \frac{1}{2} + \frac{l_{x+1} + l_{x+2} + l_{x+3} + \dots}{l_x}$$

Some of the general though important aspects of the subject under discussion have been investigated by means of short-cut methods. The use of mortality tables, however, has two decided advantages over the short-cut methods; its accuracy insures greater confidence in the results; and the results are given for each age, whereas those of the short-cut methods are given only for the age of birth.

In preparing this paper we constructed a mortality table (Table I) based upon the actual death rates found to exist at the present time in those sections of the United States where reasonably accurate mortality statistics are available. We then constructed another mortality table (Table II) based upon mortality conditions that would exist if preventable deaths were actually prevented. A comparison of these mortality tables forms the basis of our discussion of the vital and monetary losses due to preventable deaths.

It is practically impossible to give a rigid definition of a preventable death. Even if it were possible to know all about the various causes of death, different viewpoints would lead to different decisions as to the preventability of most deaths. Instead of trying to define a preventable death in such a way, we have made use of a set of ratios or percentages collected and arranged by Professor Irving Fisher of Yale University, who sent a list of ninety diseases to each of a group of the most prominent medical authorities in this country and asked them to designate what per cent. of the deaths due to each disease they considered preventable.

To quote from Professor Fisher:<sup>\*</sup> "Since the word 'preventable' implies the hypothesis of different conditions from those which actually exist it is necessary to specify what hypothetical conditions shall be implied in the term. Doubtless tuberculosis would be over 99 per cent. preventable if we should conceive as our hypothetical conditions that every individual could live on the prairies of the west, out of doors, be provided with the best of food, most congenial of tasks, and free from overwork and worry. Needless to say, the figures in the table do not imply such Utopian conditions, nor do they imply new medical discoveries. . . . The hypothetical condition se-

\* Irving Fisher, Bulletin 30, Report on National Vitality.

lected for the meaning of the term 'preventable' is contained in the following definition: a ratio of preventability is the fraction of all deaths which would be avoided if knowledge now existing among well-informed men in the medical profession were actually applied in a reasonable way and to a reasonable extent. The term 'reasonable' is of course elastic, and will be somewhat differently interpreted by different persons, but, as in law, where 'reasonable care' is often used as a proviso, it is impossible to make any more specific condition."

In regard to the collection and preparation of the information, we quote also: "The estimates of preventability . . . need special explanation. In a few cases, these estimates are based on statistical experience. The great majority of them are based on clinical experience merely, without any exact statistics. They are thus in the nature of expert guesses. The experts in all cases are physicians. . . . Those who gave to the construction of these estimates the benefit of their experience, observations and reading were especially asked above all to be conservative. In order to avoid any possibility of exaggeration of their estimates in the table their average was taken, and then the estimate entered as below the average given. When, as was true in a large proportion of cases, the different estimates agreed fairly well, the average was employed, or rather the nearest figure ending in 0, or 5 next below the average. If the individual estimates diverged widely, an estimate was used below the average, favoring the conservative estimates rather than the optimistic. Also in cases where only a few estimates were obtainable, the estimate as entered was put below the average of those given." Because of the conservative way in which the ratios were prepared we shall often find it convenient in the future to speak of the corresponding prevention of deaths as "reasonable" to distinguish it from another plan to be considered later.

The ratios of preventability are given in the following table.

TABLE I.\*

SHOWING FISHER'S RATIOS OF PREVENTABILITY FOR THE DISEASES ENUMERATED IN THE MORTALITY STATISTICS OF THE UNITED STATES, TOGETHER WITH THE RELATIVE IMPORTANCE OF EACH DISEASE AS INDICATED BY THE PERCENTAGE THE NUMBER OF ITS DEATHS BEARS TO THE TOTAL NUMBER OF DEATHS.

|    | Causes of Death.                                                                                       | Prominence of Disease. Per Cent. of all Deaths. | Ratio of Preventability. Per Cent. |
|----|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|
| 1  | Premature birth.....                                                                                   | 2.0                                             | 40                                 |
| 2  | Congenital malformation of the heart.....                                                              | .55                                             | 0                                  |
| 3  | Other congenital malformations.....                                                                    | .3                                              | 0                                  |
| 4  | Congenital debility.....                                                                               | 2.3                                             | 40                                 |
| 5  | Hydrocephalus.....                                                                                     | .1                                              | 0                                  |
| 6  | Venerel diseases.....                                                                                  | .3                                              | 70                                 |
| 7  | Diarrhea and enteritis.....                                                                            | 7.74                                            | 60                                 |
| 8  | Measles.....                                                                                           | .8                                              | 40                                 |
| 9  | Acute bronchitis.....                                                                                  | 1.1                                             | 30                                 |
| 10 | Broncho-pneumonia.....                                                                                 | 2.4                                             | 50                                 |
| 11 | Whooping cough.....                                                                                    | .9                                              | 40                                 |
| 12 | Croup.....                                                                                             | .3                                              | 75                                 |
| 13 | Meningitis.....                                                                                        | 1.6                                             | 70                                 |
| 14 | Diseases of larynx—not laryngitis.....                                                                 | .07                                             | 40                                 |
| 15 | Laryngitis.....                                                                                        | .06                                             | 40                                 |
| 16 | Diphtheria.....                                                                                        | 1.4                                             | 70                                 |
| 17 | Scarlet fever.....                                                                                     | .5                                              | 50                                 |
| 18 | Diseases of lymphatics.....                                                                            | .01                                             | 20                                 |
| 19 | Tonsillitis.....                                                                                       | .05                                             | 45                                 |
| 20 | Tetanus.....                                                                                           | .19                                             | 80                                 |
| 21 | Tuberculosis—not of lungs.....                                                                         | .17                                             | 75                                 |
| 22 | Abscess.....                                                                                           | .08                                             | 60                                 |
| 23 | Appendicitis.....                                                                                      | .7                                              | 50                                 |
| 24 | Typhoid fever.....                                                                                     | 2.0                                             | 85                                 |
| 25 | Puerperal convulsions.....                                                                             | .2                                              | 30                                 |
| 26 | Puerperal septicemia.....                                                                              | .4                                              | 85                                 |
| 27 | Other diseases of childbirth.....                                                                      | .36                                             | 50                                 |
| 28 | Diseases of tubes.....                                                                                 | .1                                              | 65                                 |
| 29 | Peritonitis.....                                                                                       | .5                                              | 55                                 |
| 30 | Smallpox.....                                                                                          | .01                                             | 75                                 |
| 31 | Tuberculosis of lungs.....                                                                             | 9.9                                             | 75                                 |
| 32 | Violence.....                                                                                          | 7.5                                             | 35                                 |
| 33 | Malarial fever.....                                                                                    | .2                                              | 80                                 |
| 34 | Septicemia.....                                                                                        | .3                                              | 40                                 |
| 35 | Epilepsy.....                                                                                          | .29                                             | 0                                  |
| 36 | General, ill-defined, and unknown causes (including "heart failure," "dropsy," and "convulsions")..... | 9.2                                             | 30                                 |
| 37 | Erysipelas.....                                                                                        | .3                                              | 60                                 |
| 38 | Pneumonia (lobar and unqualified).....                                                                 | 7.0                                             | 45                                 |
| 39 | Acute nephritis.....                                                                                   | .6                                              | 30                                 |
| 40 | Pleurisy.....                                                                                          | .27                                             | 55                                 |
| 41 | Acute yellow atrophy of liver.....                                                                     | .02                                             | 0                                  |
| 42 | Obstructions of intestines.....                                                                        | .6                                              | 25                                 |
| 43 | Alcoholism.....                                                                                        | .4                                              | 85                                 |
| 44 | Hemorrhage of lungs.....                                                                               | .1                                              | 80                                 |
| 45 | Diseases of the thyroid body.....                                                                      | .02                                             | 10                                 |
| 46 | Ovarian tumor.....                                                                                     | .07                                             | 0                                  |
| 47 | Uterine tumor.....                                                                                     | .1                                              | 60                                 |
| 48 | Rheumatism.....                                                                                        | .5                                              | 10                                 |
| 49 | Gangrene of lungs.....                                                                                 | .03                                             | 0                                  |
| 50 | Anemia, leukemia.....                                                                                  | .4                                              | 50                                 |
| 51 | Chronic poisonings.....                                                                                | .05                                             | 70                                 |
| 52 | Congestion of lungs.....                                                                               | .4                                              | 50                                 |
| 53 | Ulcer of stomach.....                                                                                  | .2                                              | 50                                 |
| 54 | Carbuncle.....                                                                                         | .03                                             | 50                                 |
| 55 | Pericarditis.....                                                                                      | .1                                              | 10                                 |
| 56 | Cancer of female congenital organs.....                                                                | .6                                              | 0                                  |
| 57 | Dysentery.....                                                                                         | .5                                              | 80                                 |
| 58 | Gastritis.....                                                                                         | .65                                             | 50                                 |
| 59 | Cholera nostras.....                                                                                   | .09                                             | 50                                 |
| 60 | Cirrhosis of liver.....                                                                                | .9                                              | 60                                 |

\* Fisher's Report, p. 104.

TABLE I—Continued.

| Cause of Death.                     | Prominence of Disease. Per Cent. of all Deaths. | Ratio of Preventability. Per Cent. |
|-------------------------------------|-------------------------------------------------|------------------------------------|
| 61 General paralysis of insane..... | .3                                              | 75                                 |
| 62 Hyatid tumors of liver.....      | .002                                            | 75                                 |
| 63 Endocarditis.....                | .8                                              | 25                                 |
| 64 Locomotor ataxia.....            | .17                                             | 35                                 |
| 65 Diseases of veins.....           | .04                                             | 40                                 |
| 66 Cancer of breast.....            | .4                                              | 0                                  |
| 67 Diabetes.....                    | .8                                              | 10                                 |
| 68 Biliary calculi.....             | .17                                             | 40                                 |
| 69 Hernia.....                      | .27                                             | 70                                 |
| 70 Cancer not specified.....        | .9                                              | 0                                  |
| 71 Tumor.....                       | .08                                             | 0                                  |
| 72 Bright's disease.....            | 5.6                                             | 40                                 |
| 73 Embolism and thrombosis.....     | .26                                             | 0                                  |
| 74 Cancer of intestines.....        | .55                                             | 0                                  |
| 75 Cancer of stomach and liver..... | 1.7                                             | 0                                  |
| 76 Calculi of urinary tract.....    | .03                                             | 10                                 |
| 77 Cancer of mouth.....             | .1                                              | 0                                  |
| 78 Heart disease.....               | 8.1                                             | 25                                 |
| 79 Influenza.....                   | .7                                              | 50                                 |
| 80 Asthma and emphysema.....        | .23                                             | 30                                 |
| 81 Angina pectoris.....             | .4                                              | 25                                 |
| 82 Apoplexy.....                    | 4.4                                             | 35                                 |
| 83 Cancer of skin.....              | .2                                              | 0                                  |
| 84 Chronic bronchitis.....          | .8                                              | 30                                 |
| 85 Paralysis.....                   | 1.0                                             | 50                                 |
| 86 Softening of brain.....          | .2                                              | 0                                  |
| 87 Diseases of arteries.....        | .83                                             | 10                                 |
| 88 Diseases of bladder.....         | .2                                              | 45                                 |
| 89 Gangrene.....                    | .25                                             | 60                                 |
| 90 Old age.....                     | 2.0                                             | 0                                  |

The area used as a basis of the investigation comprises the states Connecticut, Indiana, Maine, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and the District of Columbia. These states, together with several cities in other states formed, in the years 1900-5, what is known as the "registration area." The essential and distinctive characteristic of the registration area is that its annual registration of deaths is regarded officially as having an error of less than 10 per cent. Additions have been made to this area since 1905 but it was thought best to limit the area under observation to the 11 registration states enumerated above, as these states were the only registration states to continue as such throughout the period considered—the 11 years 1900-10.

The plans for the construction of the mortality tables are merely plans for the computation of the corresponding death rates for each age. Once the death rates are computed, the rest of the mortality table is set up very easily.

The data necessary for this computation comprise the deaths for each year of age and the population at the beginning of that year.

The deaths are given directly in the government mortality statistics, but the population data given in the census reports do not pertain to the population at the beginning any more than they do at the end of the year. We usually assume the population data to refer to the population at the middle of the year and that to determine the population at the beginning of the year the ordinary population data must be increased by the number of deaths (usually one half of the total number) that have occurred since the beginning of the year.

The quotient of the deaths by the population at the beginning of the year for each age gives the death rate required. More refined methods would be necessary to compute death rates at ages in the neighborhood of the age of birth if much emphasis were to be placed upon the direct discussion of the several mortality tables, but as we are concerned here only with differences in corresponding results of two such tables, such methods are regarded as unnecessary.

From now on we shall often refer to those whose deaths are prevented as "restored" or as "restorations;" we shall refer also to those diseases which have the ratio "zero" in Table I as "unpreventable" instead of using the longer expression "diseases whose deaths are unpreventable."

The computation of the death rates of Table I which is based upon actual deaths is straightforward and involves no particular difficulty.

The plan for computing the death rates based upon mortality conditions wherein preventable deaths are prevented requires special explanation. As a concrete illustration, let us assume 1,000,000 persons to be living in a given community all at exactly the same age and that 50,000 of that number die during the succeeding year. We say that the death rate for that age is .05000. Assuming also that 5,000 of the 50,000 deaths are due, say to pneumonia, what would be the death rate for that age if 60 per cent., or 3,000 of the deaths due to pneumonia were prevented? In other words, how many deaths would now occur among the 1,000,000? Evidently,

the number of deaths would be 50,000 minus 3,000 plus whatever deaths would occur among the 3,000 restored, due to other diseases than pneumonia. The only way to determine how many deaths would occur among the restored is to assume the restored to be normal persons again and hence subject to ordinary diseases just as normal persons, in which case it is necessary merely to multiply the 3,000 by the probability of dying from the effects of diseases other than pneumonia. This probability is identically the death rate based upon the total number of actual deaths (as given by the government mortality statistics) diminished by the number of deaths due to pneumonia.

The method of computing death rates wherein the deaths from a large number of diseases are prevented, is exactly analogous to the above case of a single disease. The number of deaths that will occur among the restored is ascertained by multiplying the number of restored by the probability of dying from the effects of unpreventable diseases. We obtain this probability for each age by entering Fisher's table of ratios and ascertaining just what diseases are unpreventable at all (have the ratio "zero") and then divide the total number of deaths due to these diseases by the corresponding population.

If we let  $q'_x$  represent this probability or death rate based upon deaths due to unpreventable diseases, and  $r_x$  the number of restorations, the death rate for any age  $x$ , when preventable deaths are prevented, becomes

$$q_x = \frac{d_x - r_x + q'_x r_x}{l_x} = \frac{d_x - (1 - q'_x) r_x}{l_x} \quad (a)$$

which, for the numerical example given above, becomes

$$q_x = \frac{50,000 - 3,000 + q'_x \cdot 3,000}{1,000,000} = \frac{50,000 - (1 - q'_x) 3,000}{1,000,000}$$

We have used the death rates represented by  $q'_x$  also to construct a third mortality table (Table III) whose use and importance will be explained later.

After the three sets of death rates were recomputed, the three mortality tables themselves were constructed in accordance with the definition of such a table, given previously.

The data used in this investigation comprise the deaths and population by ages for the area considered. In other words, the data comprise the essential material for computing the death rates for the different ages.

The population for 1900 of the 11 registration states enumerated above is given for each age, but, as is well known, there is a great concentration at ages which are a multiple of 5, particularly those ending in 0; so the data were first combined into quinquennial age groups and then the values for each age were interpolated. The population data for 1910 were available only in quinquennial age groups.

The different processes of interpolation used are described in the section devoted to the mathematical computation of the death rates.

The population data for the years 1900 and 1910 by quinquennial age groups are as follows:

TABLE II.

POPULATION BY AGE GROUPS FOR YEARS 1900 AND 1910 FOR ELEVEN REGISTRATION STATES.

| Ages.      | 1900.     | 1910.     | Ages.      | 1900.     | 1910.     |
|------------|-----------|-----------|------------|-----------|-----------|
| 0.....     | 437,944   | 508,615   | 40-44..... | 1,247,880 | 1,563,163 |
| 0-4.....   | 2,072,797 | 2,407,441 | 45-49..... | 1,013,403 | 1,324,060 |
| 5-9.....   | 1,984,846 | 2,192,715 | 50-54..... | 872,741   | 1,132,970 |
| 10-14..... | 1,819,115 | 2,112,774 | 55-59..... | 685,469   | 821,327   |
| 15-19..... | 1,804,950 | 2,216,868 | 60-64..... | 562,777   | 672,483   |
| 20-24..... | 1,905,779 | 2,354,725 | 65-74..... | 702,679   | 864,675   |
| 25-29..... | 1,839,826 | 2,203,961 | 75-84..... | 263,124   | 314,937   |
| 30-34..... | 1,630,050 | 1,948,886 | 85-94..... | 30,547    | 50,504    |
| 35-39..... | 1,474,697 | 1,831,043 | 95-.....   | 1,919     | 2,163     |

The deaths are given for the age groups 0, 1, 2, 3, 4, 5-9, 10-19, 20-29,—“90 and above,” and are given by single and total years from 1900 to 1910 inclusive as follows:

TABLE III.

DEATHS BY AGE GROUPS FOR EACH YEAR OF 1900-1910 AND THE TOTAL, FOR ELEVEN REGISTRATION STATES.

| Years.     | 0.      | 1.      | 2.      | 3.      | 4.      | 5-9.    | 10-19.  | 20-29.  |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1900.....  | 71,117  | 16,866  | 7,439   | 4,691   | 3,416   | 9,242   | 14,169  | 27,546  |
| 1901.....  | 62,759  | 14,389  | 6,333   | 4,136   | 3,159   | 8,535   | 13,354  | 26,853  |
| 1902.....  | 62,634  | 14,367  | 6,523   | 3,912   | 2,954   | 8,121   | 12,570  | 25,198  |
| 1903.....  | 60,751  | 13,422  | 6,115   | 3,936   | 2,747   | 8,422   | 13,325  | 25,686  |
| 1904.....  | 64,805  | 14,213  | 6,242   | 4,030   | 2,982   | 8,712   | 15,009  | 27,198  |
| 1905.....  | 66,894  | 13,806  | 6,073   | 3,757   | 2,660   | 8,197   | 14,174  | 26,387  |
| 1906.....  | 70,750  | 15,416  | 6,513   | 3,990   | 2,816   | 7,938   | 13,860  | 26,188  |
| 1907.....  | 68,962  | 14,114  | 6,057   | 3,891   | 2,755   | 7,788   | 14,002  | 26,576  |
| 1908.....  | 68,881  | 14,003  | 6,093   | 3,821   | 2,653   | 7,546   | 13,144  | 24,958  |
| 1909.....  | 67,681  | 14,870  | 6,208   | 3,717   | 2,679   | 7,412   | 12,752  | 24,214  |
| 1910.....  | 72,096  | 15,041  | 6,643   | 4,084   | 2,785   | 7,972   | 13,320  | 25,874  |
| Total..... | 730,330 | 160,557 | 70,230  | 43,875  | 31,606  | 89,885  | 149,679 | 286,678 |
| Years.     | 30-39.  | 40-49.  | 50-59.  | 60-69.  | 70-79.  | 80-89.  | 90- .   |         |
| 1900.....  | 28,322  | 27,152  | 30,987  | 37,556  | 38,631  | 21,471  | 3,424   |         |
| 1901.....  | 28,378  | 28,042  | 31,737  | 38,755  | 38,958  | 22,001  | 3,490   |         |
| 1902.....  | 27,075  | 26,707  | 30,236  | 36,789  | 37,030  | 20,147  | 3,247   |         |
| 1903.....  | 27,833  | 27,858  | 31,893  | 39,197  | 39,468  | 21,746  | 3,530   |         |
| 1904.....  | 29,935  | 29,773  | 33,939  | 42,050  | 42,515  | 23,471  | 3,775   |         |
| 1905.....  | 29,209  | 29,959  | 33,356  | 42,060  | 42,025  | 23,009  | 3,619   |         |
| 1906.....  | 29,923  | 30,639  | 34,173  | 42,485  | 41,712  | 23,286  | 3,633   |         |
| 1907.....  | 31,343  | 32,569  | 36,637  | 45,983  | 45,751  | 25,727  | 3,950   |         |
| 1908.....  | 28,684  | 30,705  | 35,151  | 43,530  | 43,662  | 24,124  | 3,878   |         |
| 1909.....  | 28,768  | 31,126  | 35,396  | 45,249  | 45,183  | 24,148  | 3,875   |         |
| 1910.....  | 30,014  | 33,211  | 38,539  | 48,067  | 48,672  | 26,178  | 4,223   |         |
| Total..... | 319,384 | 327,741 | 372,044 | 461,721 | 463,607 | 255,306 | 40,646  |         |

After the total deaths for each of the 145 diseases listed in the mortality statistics (by age groups) for all the area considered, and the 11 years 1900-10 were determined, these totals were multiplied by the appropriate ratios of preventability given by Professor Fisher, to obtain the number of deaths that are preventable. The following table gives the total number of preventable deaths:

TABLE IV.  
TOTAL NUMBER OF PREVENTABLE DEATHS FOR THE NUMBER OF YEARS AND AREA GIVEN.

| Ages.      | rx.     | Ages.      | rx.     |
|------------|---------|------------|---------|
| 0.....     | 312,742 | 30-39..... | 163,897 |
| 1.....     | 83,175  | 40-49..... | 144,721 |
| 2.....     | 41,467  | 50-59..... | 138,239 |
| 3.....     | 23,438  | 60-69..... | 159,062 |
| 4.....     | 17,041  | 70-79..... | 162,301 |
| 5-9.....   | 46,658  | 80-89..... | 73,501  |
| 10-19..... | 79,350  | 90- .      | 9,320   |
| 20-29..... | 160,177 |            |         |

The following table gives the total number of deaths due only to unpreventable diseases (those that have the ratio "zero" in Table I:

TABLE V.

## DEATHS DUE TO DISEASES REGARDED AS ABSOLUTELY UNPREVENTABLE.

| Ages.      | Deaths. | Ages.      | Deaths. |
|------------|---------|------------|---------|
| 0.....     | 32,748  | 30-39..... | 15,109  |
| 1.....     | 1,396   | 40-49..... | 32,111  |
| 2.....     | 702     | 50-59..... | 46,415  |
| 3.....     | 411     | 60-69..... | 56,755  |
| 4.....     | 339     | 70-79..... | 63,779  |
| 5-9.....   | 1,071   | 80-89..... | 58,794  |
| 10-19..... | 2,902   | 90-.....   | 16,845  |
| 20-29..... | 6,311   |            |         |

After the populations for 1900 and 1910, as given in Table II, were averaged, and this average multiplied by the number 11 (as explained later), the final data, also the totals of Table III and the data of Tables IV and V were expressed in quinquennial age groups (as explained later), as follows:

| Age.       | Table II.  | Age.       | Table III. | Table IV. | Table V. |
|------------|------------|------------|------------|-----------|----------|
| 0.....     | 5,206,075  | 0.....     | 730,330    | 312,742   | 32,748   |
| 0-4.....   | 24,641,309 | 1.....     | 160,557    | 83,175    | 1,396    |
| 5-9.....   | 22,976,586 | 2.....     | 70,230     | 41,467    | 702      |
| 10-14..... | 21,625,390 | 3.....     | 43,875     | 23,438    | 411      |
| 15-19..... | 22,119,999 | 4.....     | 31,606     | 17,041    | 339      |
| 20-24..... | 23,432,772 | 5-9.....   | 89,885     | 46,658    | 1,071    |
| 25-29..... | 22,240,829 | 10-14..... | 51,197     | 24,753    | 1,356    |
| 30-34..... | 19,684,148 | 15-19..... | 98,482     | 54,597    | 1,546    |
| 35-39..... | 18,181,570 | 20-24..... | 132,733    | 74,805    | 2,386    |
| 40-44..... | 15,460,737 | 25-29..... | 153,945    | 85,372    | 3,925    |
| 45-49..... | 12,856,047 | 30-34..... | 157,125    | 82,914    | 5,942    |
| 50-54..... | 11,036,911 | 35-39..... | 162,259    | 80,983    | 9,167    |
| 55-59..... | 8,287,378  | 40-44..... | 160,579    | 73,965    | 14,098   |
| 60-64..... | 6,793,930  | 45-49..... | 167,162    | 70,756    | 18,013   |
| 65-69..... | 5,162,683  | 50-54..... | 177,648    | 68,224    | 21,668   |
| 70-74..... | 3,457,764  | 55-59..... | 194,396    | 70,015    | 24,747   |
| 75-79..... | 2,097,494  | 60-64..... | 225,175    | 78,064    | 27,292   |
| 80-84..... | 1,081,842  | 65-69..... | 236,546    | 80,998    | 29,463   |
| 85-89..... | 410,827    | 70-74..... | 244,698    | 86,492    | 31,762   |
| 90-94..... | 84,454     | 75-79..... | 218,909    | 75,809    | 32,017   |
| 95-.....   | 22,451     | 80-84..... | 166,834    | 53,610    | 30,772   |
|            |            | 85-89..... | 88,472     | 19,891    | 28,022   |
|            |            | 90-.....   | 40,646     | 9,320     | 16,845   |

We shall now show more in detail the methods used in computing the three sets of death rates for mortality Tables 1, 2, and 3.

In all three cases we averaged the data for the 11 years in order to obtain results based upon an average year. However,

this plan of averaging the data was carried out by assuming as our average year that one whose population and whose deaths were equal in number to the corresponding totals of the 11 years.

Since the population data are issued only once in 10 years, we assumed that the population increased in arithmetical progression from the year 1900 to the year 1910. That is, we averaged the populations for 1900 and 1910, and multiplied the average by 11 to obtain the population for the 11 years. Perhaps a more satisfactory plan would be to assume that the population increased in geometrical progression, but as we are not concerned with values given directly in the mortality tables but rather with differences of such values, the extra work required to carry through such a plan was considered unnecessary.

From the data given by age groups in Tables II, III, IV, and V, the population, deaths, and restorations for each age were obtained by methods of interpolation to be explained later; then the populations at the beginning of the year for each age were found in accordance with the explanation given above.

The death rates of Table 1, which is based upon actual deaths, were then found by dividing the number of deaths (given in Table III) by the population at the beginning of the year (obtained from the data of Table II), for each age.

The death rates of Table 3 which is based upon deaths due only to unpreventable diseases, were found by dividing the number of deaths due only to unpreventable diseases (given in Table V) by the same population which was used to compute the death rates of Table 1.

The death rates of Table 2 which is based upon deaths that would occur if unnecessary deaths were prevented, were found through the use of the formula

$$q_x = \frac{d_x - (1 - q'_x)r_x}{l_x} \quad (a)$$

given above, where  $d_x$  refers to the deaths of Table III,  $q'_x$  the death rates of Table 3,  $r_x$  the restorations of Table IV

and  $l_x$  the populations which were used to compute the death rates of Tables 1 and 2, for the different ages.

TABLE 1.

MORTALITY TABLE BASED UPON THE ACTUAL DEATHS OF ELEVEN REGISTRATION STATES FOR THE YEARS 1900-1910.

| Age.    | $l_x$   | $d_x$  | $q_x$   | $\frac{\circ}{\circ} ex.$ | Age.     | $l_x$  | $d_x$ | $q_x$   | $\frac{\circ}{\circ} ex.$ |
|---------|---------|--------|---------|---------------------------|----------|--------|-------|---------|---------------------------|
| 0.....  | 125,325 | 16,831 | .134300 | 49.44                     | 55.....  | 68,399 | 1,350 | .019739 | 17.74                     |
| 1.....  | 108,494 | 3,431  | 31622   | 56.03                     | 56.....  | 67,049 | 1,443 | 21527   | 17.08                     |
| 2.....  | 105,063 | 1,488  | 14165   | 56.84                     | 57.....  | 65,606 | 1,538 | 23436   | 16.45                     |
| 3.....  | 103,575 | 933    | 9001    | 56.64                     | 58.....  | 64,068 | 1,617 | 25241   | 15.83                     |
| 4.....  | 102,642 | 676    | 6585    | 56.15                     | 59.....  | 62,451 | 1,682 | 26929   | 15.23                     |
| 5.....  | 101,966 | 543    | .005237 | 55.51                     | 60.....  | 60,769 | 1,746 | .028729 | 14.63                     |
| 6.....  | 101,423 | 454    | 4481    | 54.81                     | 61.....  | 59,023 | 1,807 | 30610   | 14.05                     |
| 7.....  | 100,969 | 380    | 3757    | 54.06                     | 62.....  | 57,216 | 1,864 | 32575   | 13.48                     |
| 8.....  | 100,589 | 318    | 3164    | 53.26                     | 63.....  | 55,352 | 1,923 | 34749   | 12.92                     |
| 9.....  | 100,271 | 271    | 2706    | 52.43                     | 64.....  | 53,429 | 1,987 | 37193   | 12.36                     |
| 10..... | 100,000 | 241    | .002407 | 51.57                     | 65.....  | 51,442 | 2,047 | .039790 | 11.82                     |
| 11..... | 99,759  | 223    | 2244    | 50.69                     | 66.....  | 49,395 | 2,102 | 42556   | 11.29                     |
| 12..... | 99,536  | 224    | 2246    | 49.80                     | 67.....  | 47,293 | 2,161 | 45688   | 10.79                     |
| 13..... | 99,312  | 233    | 2342    | 49.91                     | 68.....  | 45,132 | 2,222 | 49240   | 10.26                     |
| 14..... | 99,079  | 258    | 2605    | 48.03                     | 69.....  | 42,910 | 2,281 | 53151   | 9.77                      |
| 15..... | 98,821  | 342    | .003459 | 47.15                     | 70.....  | 40,629 | 2,330 | .057337 | 9.29                      |
| 16..... | 98,479  | 404    | 4098    | 46.31                     | 71.....  | 38,299 | 2,339 | 61074   | 8.82                      |
| 17..... | 98,075  | 453    | 4616    | 45.50                     | 72.....  | 35,960 | 2,397 | 66668   | 8.36                      |
| 18..... | 97,622  | 478    | 4900    | 44.71                     | 73.....  | 33,563 | 2,415 | 71941   | 7.93                      |
| 19..... | 97,144  | 490    | 5039    | 43.93                     | 74.....  | 31,148 | 2,424 | 77817   | 7.50                      |
| 20..... | 96,654  | 505    | .005222 | 43.15                     | 75.....  | 28,724 | 2,425 | .084409 | 7.09                      |
| 21..... | 96,149  | 520    | 5406    | 42.37                     | 76.....  | 26,299 | 2,418 | 91945   | 6.70                      |
| 22..... | 95,629  | 536    | 5608    | 41.60                     | 77.....  | 23,881 | 2,391 | 10010   | 6.31                      |
| 23..... | 95,093  | 557    | 5860    | 40.83                     | 78.....  | 21,490 | 2,330 | 10844   | 5.98                      |
| 24..... | 94,536  | 581    | 6144    | 40.07                     | 79.....  | 19,160 | 2,241 | 11693   | 5.64                      |
| 25..... | 93,955  | 603    | .006415 | 39.31                     | 80.....  | 16,919 | 2,138 | 12638   | 5.32                      |
| 26..... | 93,352  | 624    | 6685    | 38.56                     | 81.....  | 14,781 | 2,021 | 13675   | 5.02                      |
| 27..... | 92,728  | 643    | 6935    | 37.82                     | 82.....  | 12,760 | 1,888 | 14796   | 4.74                      |
| 28..... | 92,085  | 659    | 7152    | 37.08                     | 83.....  | 10,872 | 1,741 | 16009   | 4.47                      |
| 29..... | 91,426  | 672    | 7347    | 36.34                     | 84.....  | 9,131  | 1,580 | 17302   | 4.23                      |
| 30..... | 90,754  | 686    | .007554 | 35.61                     | 85.....  | 7,551  | 1,364 | .18067  | 4.01                      |
| 31..... | 90,068  | 700    | 7772    | 34.88                     | 86.....  | 6,187  | 1,201 | 19413   | 3.79                      |
| 32..... | 89,368  | 713    | 7980    | 34.15                     | 87.....  | 4,986  | 1,037 | 20792   | 3.58                      |
| 33..... | 88,655  | 724    | 8165    | 33.42                     | 88.....  | 3,949  | 879   | 22262   | 3.39                      |
| 34..... | 87,931  | 733    | 8331    | 32.69                     | 89.....  | 3,070  | 728   | 23699   | 3.22                      |
| 35..... | 87,198  | 741    | .008501 | 31.96                     | 90.....  | 2,342  | 578   | .24684  | 3.06                      |
| 36..... | 86,457  | 750    | 8672    | 31.23                     | 91.....  | 1,764  | 461   | 26134   | 2.90                      |
| 37..... | 85,707  | 759    | 8861    | 30.50                     | 92.....  | 1,303  | 360   | 27619   | 2.75                      |
| 38..... | 84,948  | 772    | 9086    | 29.77                     | 93.....  | 943    | 276   | 29138   | 2.61                      |
| 39..... | 84,176  | 787    | 9350    | 29.03                     | 94.....  | 668    | 205   | 30686   | 2.48                      |
| 40..... | 83,389  | 803    | .009631 | 28.30                     | 95.....  | 463    | 149   | .32260  | 2.36                      |
| 41..... | 82,586  | 820    | 9930    | 27.57                     | 96.....  | 314    | 106   | 33856   | 2.24                      |
| 42..... | 81,766  | 841    | 10288   | 26.85                     | 97.....  | 208    | 74    | 35470   | 2.12                      |
| 43..... | 80,925  | 868    | 10727   | 26.12                     | 98.....  | 134    | 50    | 37097   | 2.02                      |
| 44..... | 80,057  | 899    | 11232   | 25.40                     | 99.....  | 84     | 33    | 38731   | 1.92                      |
| 45..... | 79,158  | 930    | .011748 | 24.68                     | 100..... | 51     | 21    | .40369  | 1.83                      |
| 46..... | 78,228  | 972    | 12421   | 23.97                     | 101..... | 30     | 13    | 42003   | 1.77                      |
| 47..... | 77,256  | 1,007  | 13034   | 23.26                     | 102..... | 17     | 7     | 43630   | 1.74                      |
| 48..... | 76,249  | 1,033  | 13543   | 22.56                     | 103..... | 10     | 5     | 45243   | 1.60                      |
| 49..... | 75,216  | 1,053  | 13995   | 21.87                     | 104..... | 5      | 2     | 46839   | 1.70                      |
| 50..... | 74,163  | 1,075  | .014501 | 21.17                     | 105..... | 3      | 1     | .48409  | 1.40                      |
| 51..... | 73,088  | 1,098  | 15020   | 20.47                     | 106..... | 2      | 1     | 49949   | 1.00                      |
| 52..... | 71,990  | 1,134  | 15745   | 19.78                     | 107..... | 1      | 1     | 51452   | .50                       |
| 53..... | 70,856  | 1,190  | 16792   | 19.09                     | 108..... | 0      |       |         |                           |
| 54..... | 69,666  | 1,267  | 18191   | 18.40                     |          |        |       |         |                           |

We shall now explain the methods of interpolation. As all the deaths are available in the age groups 0, 1, 2, 3, 4, 5-9,

10-19, 20-29,—“90 and above,” and the population in the age groups 0, 0-4, 5-9, 10-14,—60-64, 65-74,—85-94, “95 and above,” columns of  $T_x$  were formed in each case by successive additions of the numbers at the different ages, such that,  $T_x$  represents the total number at ages  $x$  and above. For example, in the case of the deaths,  $T_{40}$  means the total number of deaths at ages 40 and above. This change into columns of  $T_x$  is seen to be necessary from the character of the original data.

Ordinary fifth differences were used to interpolate single values to form quinquennial age groups out of the decennial age groups.

The four values of  $T_x$  within each quinquennial age group (except, of course, the two at each end) were interpolated by what is known as Sprague's osculatory method. This method is so well explained in so many places that we deem it sufficient to state merely that its use has the advantage over ordinary differences in that not only the slope but also the curvature of the curve (representing the values considered) at the points of intersection of the different partial interpolation curves is considered. As a result, the curve representing the completed series of values becomes much less undulating in form and hence more smooth throughout.

The final leading differences for interpolating four values between  $u_2$  and  $u_3$  of the series of equidistant values  $u_0, u_1, u_2, u_3, u_4$ , and  $u_5$  are as follows:

$$(1) \quad \frac{\Delta u_0}{5} + 8 \frac{\Delta^2 u_0}{5^2} + 11 \frac{\Delta^3 u_0}{5^3} - 11 \frac{\Delta^4 u_0}{5^4} + \frac{\Delta^5 u_0}{5^4}$$

$$(2) \quad 1 \text{ " } + 6 \text{ " } + 1 \text{ " } + 3 \text{ " }$$

$$(3) \quad 1 \text{ " } + 4 \text{ " } - 3 \text{ " }$$

$$(4) \quad 1 \text{ " } - 2 \text{ " }$$

$$(5) \quad 5 \text{ " }$$

TABLE 2.

MORTALITY TABLE SHOWING THE DEATH RATES AND EXPECTATIONS OF LIFE ASSUMING DEATHS TO BE PREVENTED ACCORDING TO THE RATIOS GIVEN IN TABLE I.

| Age.    | lx.     | dx.   | qx.     | $\overset{\circ}{e}_x$ | Age.     | lx.    | dx.   | qx.     | $\overset{\circ}{e}_x$ |
|---------|---------|-------|---------|------------------------|----------|--------|-------|---------|------------------------|
| 0.....  | 112,537 | 8,686 | .077188 | 62.11                  | 57.....  | 81,845 | 1,028 | .012493 | 21.46                  |
| 1.....  | 103,851 | 1,583 | 15246   | 66.26                  | 56.....  | 80,822 | 1,108 | .13714  | 20.72                  |
| 2.....  | 102,268 | 594   | 5022    | 66.28                  | 57.....  | 79,714 | 1,197 | .15020  | 20.00                  |
| 3.....  | 101,674 | 426   | 4193    | 65.67                  | 58.....  | 78,517 | 1,278 | .16272  | 19.30                  |
| 4.....  | 101,248 | 307   | 3035    | 64.94                  | 59.....  | 77,239 | 1,348 | .17453  | 18.61                  |
| 5.....  | 100,941 | 249   | .002459 | 64.13                  | 60.....  | 75,891 | 1,419 | .018698 | 17.93                  |
| 6.....  | 100,692 | 213   | 2115    | 63.27                  | 61.....  | 74,472 | 1,489 | .19988  | 17.27                  |
| 7.....  | 100,479 | 182   | 1819    | 62.42                  | 62.....  | 72,983 | 1,557 | .21332  | 16.61                  |
| 8.....  | 100,297 | 158   | 1575    | 61.54                  | 63.....  | 71,426 | 1,630 | .22821  | 15.96                  |
| 9.....  | 100,139 | 139   | 1385    | 60.63                  | 64.....  | 69,796 | 1,709 | .24487  | 15.32                  |
| 10..... | 100,000 | 126   | .001259 | 59.72                  | 65.....  | 68,087 | 1,788 | .026255 | 14.69                  |
| 11..... | 99,874  | 118   | 1186    | 58.79                  | 64.....  | 66,299 | 1,866 | .28148  | 14.07                  |
| 12..... | 99,756  | 116   | 1167    | 57.86                  | 67.....  | 64,433 | 1,947 | .30222  | 13.47                  |
| 13..... | 99,640  | 120   | 1202    | 56.80                  | 68.....  | 62,486 | 2,028 | .32462  | 12.87                  |
| 14..... | 99,520  | 129   | 1292    | 56.00                  | 69.....  | 60,458 | 2,107 | .34855  | 12.29                  |
| 15..... | 99,391  | 160   | .001610 | 55.07                  | 70.....  | 58,351 | 2,184 | .037423 | 11.71                  |
| 16..... | 99,231  | 183   | 1849    | 54.16                  | 71.....  | 56,167 | 2,228 | .39669  | 11.15                  |
| 17..... | 99,048  | 202   | 2043    | 53.26                  | 72.....  | 53,939 | 2,330 | .43189  | 10.59                  |
| 18..... | 98,846  | 213   | 2151    | 52.36                  | 73.....  | 51,609 | 2,407 | .46645  | 10.04                  |
| 19..... | 98,633  | 217   | 2205    | 51.48                  | 74.....  | 49,202 | 2,491 | .50628  | 9.51                   |
| 20..... | 98,416  | 224   | .002279 | 50.59                  | 75.....  | 46,711 | 2,574 | .055109 | 8.99                   |
| 21..... | 98,192  | 231   | 2356    | 49.70                  | 76.....  | 44,137 | 2,661 | .60294  | 8.49                   |
| 22..... | 97,961  | 240   | 2445    | 48.82                  | 77.....  | 41,476 | 2,737 | .65981  | 8.00                   |
| 23..... | 97,721  | 250   | 2558    | 47.94                  | 78.....  | 38,739 | 2,784 | .71872  | 7.53                   |
| 24..... | 97,471  | 262   | 2639    | 47.06                  | 79.....  | 35,955 | 2,805 | .78005  | 7.07                   |
| 25..... | 97,209  | 274   | .002817 | 46.18                  | 80.....  | 33,150 | 2,818 | .084998 | 6.63                   |
| 26..... | 96,935  | 286   | 2949    | 45.31                  | 81.....  | 30,332 | 2,818 | .92901  | 6.20                   |
| 27..... | 96,649  | 298   | 3080    | 44.45                  | 82.....  | 27,514 | 2,801 | .10179  | 5.78                   |
| 28..... | 96,351  | 309   | 3208    | 43.58                  | 83.....  | 24,713 | 2,764 | .11184  | 5.38                   |
| 29..... | 96,042  | 321   | 3337    | 42.72                  | 84.....  | 21,949 | 2,706 | .12328  | 4.99                   |
| 30..... | 95,721  | 333   | .003476 | 41.86                  | 85.....  | 19,243 | 2,538 | .13192  | 4.62                   |
| 31..... | 95,388  | 346   | 3628    | 41.01                  | 86.....  | 16,705 | 2,447 | .14650  | 4.25                   |
| 32..... | 95,042  | 359   | 3776    | 40.15                  | 87.....  | 14,258 | 2,342 | .16427  | 3.89                   |
| 33..... | 94,683  | 370   | 3907    | 39.30                  | 88.....  | 11,916 | 2,239 | .18792  | 3.56                   |
| 34..... | 94,313  | 380   | 4027    | 38.46                  | 89.....  | 9,677  | 2,152 | .22235  | 3.27                   |
| 35..... | 93,933  | 390   | .004154 | 37.61                  | 90.....  | 7,525  | 1,858 | .24684  | 3.06                   |
| 36..... | 93,543  | 401   | 4286    | 36.76                  | 91.....  | 5,667  | 1,481 | .26134  | 2.90                   |
| 37..... | 93,142  | 413   | 4433    | 35.92                  | 92.....  | 4,186  | 1,156 | .27619  | 2.75                   |
| 38..... | 92,729  | 427   | 4610    | 35.08                  | 93.....  | 3,030  | 883   | .29138  | 2.61                   |
| 39..... | 92,302  | 445   | 4818    | 34.24                  | 94.....  | 2,147  | 659   | .30686  | 2.48                   |
| 40..... | 91,857  | 460   | .005007 | 33.40                  | 95.....  | 1,488  | 480   | .32260  | 2.36                   |
| 41..... | 91,397  | 482   | 5277    | 32.57                  | 96.....  | 1,008  | 341   | .33856  | 2.24                   |
| 42..... | 90,915  | 507   | 5574    | 31.74                  | 97.....  | 667    | 237   | .35470  | 2.13                   |
| 43..... | 90,408  | 533   | 5897    | 30.91                  | 98.....  | 430    | 160   | .37097  | 2.03                   |
| 44..... | 89,875  | 561   | 6247    | 30.09                  | 99.....  | 270    | 105   | .38731  | 1.94                   |
| 45..... | 89,314  | 592   | .006633 | 29.28                  | 100..... | 165    | 67    | .40369  | 1.86                   |
| 46..... | 88,722  | 627   | 7088    | 28.47                  | 101..... | 98     | 41    | .42003  | 1.79                   |
| 47..... | 88,095  | 661   | 7507    | 27.67                  | 102..... | 57     | 25    | .43630  | 1.71                   |
| 48..... | 87,434  | 692   | 7914    | 26.87                  | 103..... | 32     | 14    | .45243  | 1.66                   |
| 49..... | 86,742  | 721   | 8308    | 26.09                  | 104..... | 18     | 8     | .46839  | 1.56                   |
| 50..... | 86,021  | 751   | .008734 | 25.30                  | 105..... | 10     | 5     | .48409  | 1.40                   |
| 51..... | 85,271  | 782   | 9171    | 24.52                  | 106..... | 5      | 2     | .49949  | 1.30                   |
| 52..... | 84,489  | 822   | 9728    | 23.74                  | 107..... | 3      | 2     | .51452  | .83                    |
| 53..... | 83,667  | 876   | 10471   | 22.97                  | 108..... | 1      | 1     | .52912  | .50                    |
| 54..... | 82,791  | 946   | 11431   | 22.21                  | 109..... | 0      |       |         |                        |

To apply this method of interpolation, the observed values of  $T_x$  are differenced, the differences divided by the appropriate power of 5 (or multiplied by the corresponding decimal)

as indicated above, and then the leading differences themselves formed in accordance with the above scheme.

The interpolated values of  $T_x$  for each interval are formed by the continued addition of the differences in the usual way, and there is a good check on the computation because the next higher quinquennial value of  $T_x$  given in the original or observed data must be reproduced at each stage.

Each quinquennial interval will have its own set of differences derived from the differences of an age ten years younger, but the easiest plan is to compute the successive fifth differences which by a continued addition to the lower differences of the preceding sub-interval (in each case) will lead to the desired interpolated values of the next interval. This plan avoids the separate computation of the leading differences for each interval to be interpolated.

The scheme of computing successive fifth differences has been suggested before but we were unable to find anywhere the formulas for computing these fifth differences, so we have derived them ourselves to be as follows:

$$4\Delta^5 + \Delta^6, -6\Delta^5, -6\Delta^5 - 6\Delta^6, 4\Delta^5 + 3\Delta^6, 5\Delta^5 + 5\Delta^6,$$

$$\text{where } \Delta^n = \frac{\Delta^n u_0}{5^4}$$

After the interpolation itself is completed the subtraction of each value of  $T_x$  from the one at the age next below will give the desired column (of deaths or population) of values for each age.

As Sprague's method of interpolation requires two quinquennial periods on each side of the interval into which five sub-intervals are to be introduced, the interpolation at the ends of each set of data were performed by using ordinary third differences. For the inner of the two quinquennial periods at the ends of each set of data the interpolations were applied centrally. Thus the ordinates of the curve through the points  $u_0, u_1, u_2$ , and  $u_3$  or

$$u_x = u_0 + x\Delta u_0 + \frac{x(x-1)}{2!} \Delta^2 u_0 + \frac{x(x-1)(x-2)}{3!} \Delta^3 u_0$$

for  $x = 5/5, 6/5-10/5$  were differenced five times to form the

leading differences to interpolate four values between  $u_1$  and  $u_2$ . The leading differences are as follows:

$$\begin{aligned} (1) \quad & \frac{\Delta u_0}{5} + 3 \frac{\Delta^2 u_0}{5^2} - 4 \frac{\Delta^3 u_0}{5^3} \\ (2) \quad & 1 \text{ " } + 1 \text{ " } \\ (3) \quad & 1 \text{ " } \\ (4 \text{ and } 5) \quad & 0 \end{aligned}$$

The ordinates of the same curve for  $x = 0/5—1/5, 5/5$  were differenced five times also to form the leading differences for interpolating four intermediate values in the outer quinquennial periods. Thus, these interpolations are not applied centrally. The leading differences are as follows:

$$\begin{aligned} (1) \quad & \frac{\Delta u_0}{5} - 2 \frac{\Delta^2 u_0}{5^2} + 6 \frac{\Delta^3 u_0}{5^3} \\ (2) \quad & 1 \text{ " } - 4 \text{ " } \\ (3) \quad & 1 \text{ " } \\ (4 \text{ and } 5) \quad & 0 \end{aligned}$$

The main advantage in using the above tables of leading differences, besides convenience and system, is the accompanying check upon the accuracy of the computation, just as in the application of Sprague's method.

A very little investigation will reveal the fact that the part of the mortality table at and beyond age 90 is very flexible as far as the data are concerned, but that the difference in the expectation of life at birth on two plans, even though they differ widely, is insignificant, because at the ulterior end of the table we are dealing not only with very small populations in comparison with the radix (or population at the beginning of the table), but also with the difference of two such small populations.

This fact is very important, for we tested, in various ways the possibility of lengthening the mortality tables, and concluded in every case that any significant lengthening of the table would require quite unreasonable assumptions. For

example, an assumption that the death rate shall remain constantly equal to that of age 89 after that age, lengthens the table itself scarcely a year and has no significant effect upon the expectation of life. We wish to emphasize this fact in order to make it clear that we have no choice worth while in dealing with the ulterior end of the mortality table.

TABLE 3.

MORTALITY TABLE SHOWING MORTALITY CONDITIONS UNDER THE MORE EXTREME OF ASSUMPTIONS CONSIDERED IN THIS PAPER IN REGARD TO THE PREVENTION OF DEATHS.

| Age.    | $l_x$ . | $d_x$ . | $q_x$ . | $\ddot{e}_x$ . | Age.     | $l_x$ . | $d_x$ . | $q_x$ . | $\ddot{e}_x$ . |
|---------|---------|---------|---------|----------------|----------|---------|---------|---------|----------------|
| 0.....  | 100,778 | 696     | .006908 | 84.89          | 55.....  | 97,260  | 248     | .002553 | 31.69          |
| 1.....  | 100,082 | 29      | 284     | 84.49          | 56.....  | 97,012  | 273     | 2819    | 30.77          |
| 2.....  | 100,053 | 14      | 144     | 83.51          | 57.....  | 96,739  | 298     | 3079    | 29.86          |
| 3.....  | 100,039 | 8       | 85      | 82.52          | 58.....  | 96,441  | 319     | 3307    | 28.95          |
| 4.....  | 100,031 | 8       | 71      | 81.53          | 59.....  | 96,122  | 332     | 3451    | 28.04          |
| 5.....  | 100,023 | 4       | .000040 | 80.53          | 60.....  | 95,790  | 348     | .003630 | 27.14          |
| 6.....  | 100,019 | 4       | 43      | 79.53          | 61.....  | 95,442  | 364     | 3811    | 26.23          |
| 7.....  | 100,015 | 4       | 47      | 78.54          | 62.....  | 95,078  | 383     | 4027    | 25.33          |
| 8.....  | 100,011 | 6       | 51      | 77.54          | 63.....  | 94,695  | 409     | 4314    | 24.43          |
| 9.....  | 100,005 | 5       | 54      | 76.54          | 64.....  | 94,286  | 440     | 4670    | 23.54          |
| 10..... | 100,000 | 6       | .000058 | 75.55          | 65.....  | 93,846  | 474     | .005052 | 22.65          |
| 11..... | 99,994  | 6       | 61      | 74.55          | 66.....  | 93,372  | 511     | 5472    | 21.76          |
| 12..... | 99,988  | 6       | 64      | 73.56          | 67.....  | 92,861  | 552     | 5943    | 21.88          |
| 13..... | 99,982  | 7       | 66      | 72.56          | 68.....  | 92,309  | 596     | 6457    | 20.00          |
| 14..... | 99,975  | 7       | 67      | 71.57          | 69.....  | 91,713  | 644     | 7017    | 19.12          |
| 15..... | 99,968  | 6       | .000065 | 70.57          | 70.....  | 91,069  | 696     | .007646 | 18.25          |
| 16..... | 99,962  | 7       | 66      | 69.58          | 71.....  | 90,373  | 744     | 8235    | 17.39          |
| 17..... | 99,955  | 7       | 68      | 68.58          | 72.....  | 89,629  | 819     | 9139    | 16.53          |
| 18..... | 99,948  | 7       | 72      | 67.59          | 73.....  | 88,810  | 895     | 11080   | 15.68          |
| 19..... | 99,941  | 8       | 78      | 66.59          | 74.....  | 87,915  | 985     | 11207   | 14.83          |
| 20..... | 99,933  | 8       | .000084 | 65.60          | 75.....  | 86,930  | 1,089   | .012528 | 14.00          |
| 21..... | 99,925  | 9       | 91      | 64.60          | 76.....  | 85,841  | 1,214   | 14143   | 13.17          |
| 22..... | 99,916  | 10      | 100     | 63.61          | 77.....  | 84,627  | 1,352   | 15973   | 12.35          |
| 23..... | 99,906  | 11      | 111     | 62.61          | 78.....  | 83,275  | 1,502   | 18038   | 11.54          |
| 24..... | 99,895  | 12      | 125     | 61.62          | 79.....  | 81,773  | 1,666   | 20370   | 10.74          |
| 25..... | 99,883  | 14      | .000140 | 60.63          | 80.....  | 80,107  | 1,859   | .023208 | 9.96           |
| 26..... | 99,869  | 16      | 158     | 59.63          | 81.....  | 78,248  | 2,087   | 26666   | 9.18           |
| 27..... | 99,853  | 18      | 177     | 58.64          | 82.....  | 76,161  | 2,354   | 30906   | 8.42           |
| 28..... | 99,835  | 20      | 196     | 57.66          | 83.....  | 73,807  | 2,671   | 36194   | 7.67           |
| 29..... | 99,815  | 22      | 217     | 56.67          | 84.....  | 71,136  | 3,050   | 42877   | 6.94           |
| 30..... | 99,793  | 24      | .000242 | 55.68          | 85.....  | 68,086  | 3,379   | .049624 | 6.23           |
| 31..... | 99,769  | 27      | 272     | 54.69          | 86.....  | 64,707  | 3,923   | 60632   | 5.53           |
| 32..... | 99,742  | 30      | 303     | 53.71          | 87.....  | 60,784  | 4,625   | 76085   | 4.86           |
| 33..... | 99,712  | 33      | 336     | 52.72          | 88.....  | 56,159  | 5,600   | 99715   | 4.21           |
| 34..... | 99,679  | 37      | 369     | 51.74          | 89.....  | 50,559  | 7,061   | 13966   | 3.62           |
| 35..... | 99,642  | 40      | .000406 | 50.76          | 90.....  | 43,498  | 9,573   | .22008  | 3.15           |
| 36..... | 99,602  | 44      | 443     | 49.78          | 91.....  | 33,925  | 8,866   | 26134   | 2.90           |
| 37..... | 99,558  | 49      | 492     | 48.80          | 92.....  | 25,059  | 6,921   | 27619   | 2.75           |
| 38..... | 99,509  | 56      | 560     | 47.82          | 93.....  | 18,138  | 5,285   | 29138   | 2.61           |
| 39..... | 99,453  | 64      | 643     | 46.85          | 94.....  | 12,853  | 3,944   | 30686   | 2.48           |
| 40..... | 99,389  | 73      | .000732 | 45.88          | 95.....  | 8,909   | 2,874   | .32260  | 2.36           |
| 41..... | 99,316  | 82      | 830     | 44.92          | 96.....  | 6,035   | 2,043   | 33856   | 2.24           |
| 42..... | 99,234  | 92      | 927     | 43.95          | 97.....  | 3,992   | 1,416   | 35470   | 2.14           |
| 43..... | 99,142  | 101     | 1018    | 42.99          | 98.....  | 2,576   | 956     | 37097   | 2.04           |
| 44..... | 99,041  | 110     | 1106    | 42.04          | 99.....  | 1,620   | 627     | 38731   | 1.94           |
| 45..... | 98,931  | 119     | .001204 | 41.08          | 100..... | 993     | 401     | .40369  | 1.85           |
| 46..... | 98,812  | 129     | 1310    | 40.13          | 101..... | 592     | 249     | 42003   | 1.77           |
| 47..... | 98,683  | 140     | 1419    | 39.18          | 102..... | 343     | 150     | 43630   | 1.70           |
| 48..... | 98,543  | 150     | 1522    | 38.24          | 103..... | 193     | 87      | 45243   | 1.62           |
| 49..... | 98,393  | 160     | 1622    | 37.29          | 104..... | 106     | 50      | 46839   | 1.55           |
| 50..... | 98,233  | 169     | .001725 | 36.38          | 105..... | 56      | 27      | .48409  | 1.48           |
| 51..... | 98,069  | 179     | 1826    | 35.42          | 106..... | 29      | 14      | 49949   | 1.40           |
| 52..... | 97,885  | 191     | 1949    | 34.48          | 107..... | 15      | 8       | 51452   | 1.23           |
| 53..... | 97,694  | 207     | 2116    | 33.55          | 108..... | 7       | 4       | 52912   | 1.07           |
| 54..... | 97,487  | 227     | 2324    | 32.62          | 109..... | 3       | 2       |         | .83            |
|         |         |         |         |                | 110..... | 1       | 1       |         | .50            |

The tables were completed, however, for the purpose of computing the expectations of life at the earlier ages.

The death rates for Tables 2 and 3 are, of course, less than the corresponding rates for Table 1 below age 90, but the curves representing the rates for Tables 2 and 3 are much steeper at the higher ages than that of Table 1; hence, any effort to interpolate in the two tables beyond age 90 results in death rates greater instead of less than those found in the same way for Table 1, a result which, of course, is not tenable.

As the best estimate of the death rates at the extreme ages, we assumed the same values in Tables 2 and 3 as in Table 1. Any systematic effort to obtain values less than those thus chosen resulted in absurd values. For example, the assumption of a longer mortality table for Tables 2 and 3 than for Table 1 leads to intermediate values of the death rates in the neighborhood of age 90 and beyond, in excess of unity.

The tables of deaths and restorations afford abundant material for profitable discussion and therefore merit careful and intelligent interpretation. Most of such discussion, however important and valuable, would prove only distantly related to the purpose of this paper, and so must be passed over for the present. We shall enumerate a few of the most important facts which are closely related to the subject under consideration.

(a) A careful comparison of the number of deaths given in Table III\* for each year shows that although mortality conditions on the whole are gradually improving from year to year, they are improving only because the decrease in the death rates at the ages preceding age 40, except at the age of birth, exceeds the increase at ages beyond age 40. In other words, while diseases operative at the younger ages are show-

\*It should be kept in mind that the population increased about 20 per cent. from year 1900 to year 1910.

ing wonderful improvement, those operative at the more advanced ages are actually growing more destructive.

(b) Comparison of the number of restorations in Table IV with the total number of deaths of Table III indicates that most of the preventable diseases are operative principally at the earlier ages. In fact, many diseases were found, in connection with the preparation of Table IV, which showed improvement at the earlier ages and a deterioration at the more advanced ages. It is apparent that most attention has been paid by scientists to the ills and weaknesses of youth rather than those of the older ages.

(c) If we assume the ratios of preventable deaths to all deaths by ages, as indicated by Tables III and IV covering the area composed of the 11 registration states considered in this paper, to hold for the whole of the United States, we find that about 6,000,000 deaths out of a total of 14,000,000 deaths that occurred in the United States during the eleven years 1900-10, were wholly unnecessary.

It has been noted that relatively few deaths at the older ages are preventable; we believe, however, that if scientists could be made to realize fully the importance of improving mortality conditions at the higher ages, just as great an improvement is possible at these ages as is exhibited at present at the younger ages.

It is difficult to imagine what a tremendous advance would be made if death rates at the older ages could be made to decrease instead of being allowed to increase. In other words, if in estimating the annual change in mortality conditions, we were allowed to register an improvement at the older ages and hence add a measure of this improvement to the measure of improvement at the younger ages, instead of allowing the effects of an improvement at the younger ages to be canceled to a large extent by the effects of a deterioration at the older ages, the results would be marvelous.

We are compelled to deal, in this paper, wholly with losses due to preventable deaths that can be expressed statistically; perhaps the greatest loss of all is one which we have no way of measuring numerically, and that is the wealth of experience, knowledge, and general wisdom of older persons much

the greater part of which is lost at the present time through premature loss of memory, intellectual and physical weakness, and all other characteristics of premature old age.

Some of the greatest authorities on the diseases of mankind believe the *average* length of life should be from 75 to 200 years. If such should be the length of life, it is evident that much must be done that has not, as yet, even been attempted, and the present discussion should make it clear at what point the main attack should be directed—at the diseases of the older ages.

We have already stated that a mortality table expresses concisely and clearly the mortality conditions based upon circumstances wherein the corresponding death rates are known and are used to construct the given mortality table. We shall now compare the mortality tables, (a) Table 1, which is based upon deaths as they occur at present, and (b) Table 2, in which preventable deaths are assumed to have been prevented, to ascertain the vital losses that are due to the occurrence of preventable deaths.

We have brought together the death rates of Tables 1 and 2, in Table 4 for purposes of readier comparison. We have also added a column of corresponding differences of these death rates, and a column of the percentages of these differences of the death rates based on actual deaths.

If we keep in mind that the general death rate for this country is about 14 per 1,000, this fact will help us to understand more completely a discussion of the two sets of death rates.

The excess in death rates, given in Table 4, due to the occurrence of preventable deaths begins at the maximum value of 57 per 1,000 and decreases very abruptly by ages to about 3 per 1,000 at age 1 and then on to the minimum value of 1 per 1,000 at age 10; the excess then increases about 5 or 6 per 10,000 each 5 years until at age 50 the excess has accumulated to about 6 per 1,000, or almost one half the general death rate. After age 50, the excess in the death rate about doubles itself every 5 years to the end of the table.

The percentage of this excess of the existing death rate starts in at zero at the highest ages and increases gradually, as age decreases, through 30 per cent. at age 80, 35 per cent.

at age 65, 40 per cent. at age 50, to over 50 per cent. from age 35 down to age 15, being a little over 56 per cent. between ages 20 and 25. For all ages below age 15, the percentage adheres closely to 50 per cent.

TABLE 4.

COMPARISON OF THE DEATH RATES UNDER THE TWO ASSUMPTIONS THAT DEATHS ARE AND ARE NOT PREVENTED ACCORDING TO THE RATIOS GIVEN IN TABLE I.

| Age.    | Deaths.    |                |             | Per Cent. | Age.    | Deaths.    |                |             | Per Cent. |
|---------|------------|----------------|-------------|-----------|---------|------------|----------------|-------------|-----------|
|         | Prevented. | Not Prevented. | Difference. |           |         | Prevented. | Not Prevented. | Difference. |           |
| (1)     | (2)        | (3)            | (4)         | (4)÷(3)   | (1)     | (2)        | (3)            | (4)         | (4)÷(3)   |
| 0.....  | .077188    | .134300        | .057112     | .426      | 45..... | .006633    | .011748        | .005115     | .437      |
| 1.....  | 15246      | 31622          | 16376       | .518      | 46..... | 7068       | 12421          | 5353        | .432      |
| 2.....  | 5022       | 14165          | 9143        | .644      | 47..... | 7507       | 13034          | 5527        | .422      |
| 3.....  | 4193       | 9001           | 4808        | .533      | 48..... | 7914       | 13543          | 5629        | .417      |
| 4.....  | 3035       | 6585           | 3550        | .539      | 49..... | 8308       | 13995          | 5687        | .409      |
| 5.....  | .002459    | .005327        | .002868     | .538      | 50..... | .008734    | .014501        | .005767     | .398      |
| 6.....  | 2115       | 4481           | 2366        | .528      | 51..... | 9171       | 15020          | 5849        | .387      |
| 7.....  | 1819       | 3757           | 1938        | .515      | 52..... | 9728       | 15745          | 6017        | .383      |
| 8.....  | 1575       | 3164           | 1589        | .503      | 53..... | 10471      | 16792          | 6321        | .376      |
| 9.....  | 1385       | 2706           | 1321        | .487      | 54..... | 11431      | 18191          | 6760        | .371      |
| 10..... | .001259    | .002407        | .001148     | .476      | 55..... | .012493    | .019739        | .007246     | .368      |
| 11..... | 1186       | 2244           | 1058        | .472      | 56..... | 13714      | 21527          | 7813        | .363      |
| 12..... | 1167       | 2246           | 1079        | .480      | 57..... | 15020      | 23436          | 8416        | .360      |
| 13..... | 1202       | 2342           | 1140        | .471      | 58..... | 16272      | 25241          | 8969        | .356      |
| 14..... | 1292       | 2605           | 1313        | .503      | 59..... | 17453      | 26929          | 9476        | .352      |
| 15..... | .001610    | .003459        | .001849     | .534      | 60..... | .018698    | .028729        | .010031     | .350      |
| 16..... | 1849       | 4098           | 2249        | .550      | 61..... | 19988      | 30610          | 10622       | .347      |
| 17..... | 2043       | 4616           | 2573        | .557      | 62..... | 21332      | 32575          | 11243       | .345      |
| 18..... | 2151       | 4900           | 2749        | .562      | 63..... | 22821      | 34749          | 11928       | .344      |
| 19..... | 2205       | 5039           | 2834        | .562      | 64..... | 24487      | 37193          | 12706       | .342      |
| 20..... | .002279    | .005222        | .002943     | .564      | 65..... | .026255    | .039790        | .013535     | .340      |
| 21..... | 2356       | 5406           | 3050        | .564      | 66..... | 28148      | 42556          | 14408       | .338      |
| 22..... | 2445       | 5608           | 3163        | .564      | 67..... | 30222      | 45688          | 15466       | .338      |
| 23..... | 2558       | 5860           | 3302        | .563      | 68..... | 32462      | 49240          | 16778       | .341      |
| 24..... | 2689       | 6144           | 3455        | .563      | 69..... | 34855      | 53151          | 18296       | .344      |
| 25..... | .002817    | .006415        | .003598     | .560      | 70..... | .037423    | .057337        | .019914     | .347      |
| 26..... | 2949       | 6685           | 3736        | .558      | 71..... | 39669      | 61074          | 21405       | .350      |
| 27..... | 3080       | 6935           | 3855        | .556      | 72..... | 43189      | 66668          | 23479       | .352      |
| 28..... | 3208       | 7152           | 3944        | .552      | 73..... | 46645      | 71941          | 25296       | .352      |
| 29..... | 3337       | 7347           | 4010        | .546      | 74..... | 50628      | 77817          | 27189       | .350      |
| 30..... | .003476    | .007554        | .004078     | .540      | 75..... | .055109    | .084409        | .029300     | .347      |
| 31..... | 3628       | 7772           | 4144        | .533      | 76..... | 60294      | 91945          | 31651       | .344      |
| 32..... | 3776       | 7980           | 4204        | .527      | 77..... | 65981      | 10010          | 34119       | .341      |
| 33..... | 3907       | 8165           | 4258        | .521      | 78..... | 71872      | 10844          | 36568       | .339      |
| 34..... | 4027       | 8331           | 4304        | .517      | 79..... | 78005      | 11693          | 38925       | .333      |
| 35..... | .004154    | .008501        | .004347     | .511      | 80..... | .084998    | .12638         | .041382     | .328      |
| 36..... | 4286       | 8672           | 4386        | .506      | 81..... | 92901      | .13675         | .43849      | .320      |
| 37..... | 4433       | 8861           | 4428        | .500      | 82..... | 10179      | 14796          | .4617       | .312      |
| 38..... | 4610       | 9086           | 4476        | .492      | 83..... | 11184      | 16009          | .4825       | .300      |
| 39..... | 4818       | 9350           | 4532        | .485      | 84..... | 12328      | 1730           | .4974       | .287      |
| 40..... | .005007    | .009631        | .004624     | .480      | 85..... | .13192     | .180627        | .04875      | .269      |
| 41..... | 5277       | 9930           | 4653        | .469      | 86..... | 14650      | 19413          | .4763       | .246      |
| 42..... | 5574       | 10288          | 4714        | .458      | 87..... | 16427      | 20792          | .4365       | .210      |
| 43..... | 5897       | 10727          | 4830        | .447      | 88..... | 18792      | 22262          | .3470       | .156      |
| 44..... | 6247       | 11232          | 4985        | .445      | 89..... | 22235      | 23699          | .1464       | .62       |
|         |            |                |             | 90.....   |         | .24684     | .24684         | .000000     | .000      |

The excess in death rates is the greatest at the age of birth, being over 57 per 1,000, or over four times the general death rate. The importance of the excess at this age is all the more enhanced by the fact that the population at this age is greater than for any other age in any community. Hence, the absolute loss in deaths at the age of birth is much greater than at any other age.

In examining the value of this excess in death rate at any age, the relative amount of population usually found at that age should be considered. For example, the excess in death rates at age 80 and beyond is 40 per 1,000 or greater, but the absolute loss measured in number of deaths is no wise as serious as this excess indicates, because the population at this age is always very small—a little over 6 per cent. of that at the age of birth in the United States.

We have constructed Table 5 giving approximate values of the losses in deaths for representative ages, together with corresponding approximate values of the excess in death rates, taken from Table 4. The populations for each age used to compute the losses in deaths are approximate values of those given in Table II. A comparison of these losses in deaths gives a good idea of the relative importance of the excess in death rates at each age.

TABLE 5.

| Age.    | Population<br>1910. | Loss in Death<br>Rates, per 1,000. | Loss in Deaths.  |
|---------|---------------------|------------------------------------|------------------|
| 0.....  | 509,000             | 57                                 | 29,013 (=509.57) |
| 1.....  | 481,000             | 16                                 | 7,696            |
| 10..... | 422,000             | 1                                  | 422              |
| 20..... | 471,000             | 3                                  | 1,413            |
| 30..... | 390,000             | 4                                  | 1,560            |
| 40..... | 313,000             | 4½                                 | 1,409            |
| 50..... | 227,000             | 5½                                 | 1,249            |
| 60..... | 124,000             | 10                                 | 1,240            |
| 70..... | 86,000              | 20                                 | 1,720            |
| 80..... | 30,000              | 41                                 | 1,230            |

With the exception of the first ten years the absolute losses in deaths in Table 5 are remarkably alike in value for each age; the losses for the first ten years, however, begin with a loss in deaths at the age of birth of almost 25 times the average loss at any following age, and decrease through a relatively large loss at age 1, to the minimum value at age 10, which is only about one fourth that of any succeeding age.

We have brought together also the expectations of life of Tables 1 and 2 in Table 6 for purposes of comparison and discussion. A third column gives the corresponding differences in these expectations, expressed in years and days.

TABLE 6.

COMPLETE EXPECTATIONS OF LIFE AS BASED UPON THE TWO ASSUMPTIONS THAT DEATHS ARE AND ARE NOT PREVENTED ACCORDING TO THE RATIOS GIVEN IN TABLE I.

| Age.    | Deaths         |            | Loss in |       | Age.    | Deaths         |            | Loss in |       |
|---------|----------------|------------|---------|-------|---------|----------------|------------|---------|-------|
|         | Not Prevented. | Prevented. | Years.  | Days. |         | Not Prevented. | Prevented. | Years.  | Days. |
| 0.....  | 49.44          | 62.11      | 12      | 245   | 45..... | 24.68          | 29.28      | 4       | 219   |
| 1.....  | 56.03          | 66.26      | 10      | 84    | 46..... | 23.97          | 28.47      | 4       | 183   |
| 2.....  | 56.84          | 66.28      | 9       | 161   | 47..... | 23.26          | 27.67      | 4       | 150   |
| 3.....  | 56.64          | 65.67      | 9       | 11    | 48..... | 22.56          | 26.87      | 4       | 113   |
| 4.....  | 56.15          | 64.94      | 8       | 288   | 49..... | 21.87          | 26.09      | 4       | 80    |
| 5.....  | 55.51          | 64.13      | 8       | 226   | 50..... | 21.17          | 25.30      | 4       | 47    |
| 6.....  | 54.81          | 63.27      | 8       | 168   | 51..... | 20.47          | 24.52      | 4       | 18    |
| 7.....  | 54.06          | 62.42      | 8       | 131   | 52..... | 19.78          | 23.74      | 3       | 350   |
| 8.....  | 53.26          | 61.54      | 8       | 102   | 53..... | 19.09          | 22.97      | 3       | 321   |
| 9.....  | 52.43          | 60.63      | 8       | 73    | 54..... | 18.40          | 22.21      | 3       | 296   |
| 10..... | 51.57          | 59.72      | 8       | 55    | 55..... | 17.74          | 21.46      | 3       | 263   |
| 11..... | 50.69          | 58.79      | 8       | 37    | 56..... | 17.08          | 20.72      | 3       | 234   |
| 12..... | 49.80          | 57.86      | 8       | 22    | 57..... | 16.45          | 20.00      | 3       | 201   |
| 13..... | 48.91          | 56.80      | 7       | 321   | 58..... | 15.83          | 19.30      | 3       | 193   |
| 14..... | 48.03          | 56.00      | 7       | 354   | 59..... | 15.23          | 18.61      | 3       | 139   |
| 15..... | 47.15          | 55.07      | 7       | 336   | 60..... | 14.63          | 17.93      | 3       | 110   |
| 16..... | 46.31          | 54.16      | 7       | 310   | 61..... | 14.05          | 17.27      | 3       | 80    |
| 17..... | 45.50          | 53.26      | 7       | 277   | 62..... | 13.48          | 16.61      | 3       | 47    |
| 18..... | 44.71          | 52.36      | 7       | 237   | 63..... | 12.92          | 15.96      | 3       | 15    |
| 19..... | 43.93          | 51.48      | 7       | 201   | 64..... | 12.36          | 15.32      | 2       | 350   |
| 20..... | 43.15          | 50.59      | 7       | 161   | 65..... | 11.82          | 14.69      | 2       | 318   |
| 21..... | 42.37          | 49.70      | 7       | 120   | 66..... | 11.29          | 14.07      | 2       | 285   |
| 22..... | 41.60          | 48.82      | 7       | 80    | 67..... | 10.77          | 13.47      | 2       | 256   |
| 23..... | 40.83          | 47.94      | 7       | 40    | 68..... | 10.26          | 12.87      | 2       | 223   |
| 24..... | 40.07          | 47.06      | 6       | 261   | 69..... | 9.77           | 12.29      | 2       | 190   |
| 25..... | 39.31          | 46.18      | 6       | 318   | 70..... | 9.29           | 11.71      | 2       | 153   |
| 26..... | 38.56          | 45.31      | 6       | 274   | 71..... | 8.82           | 11.15      | 2       | 120   |
| 27..... | 37.82          | 44.45      | 6       | 230   | 72..... | 8.36           | 10.59      | 2       | 84    |
| 28..... | 37.08          | 43.58      | 6       | 183   | 73..... | 7.93           | 10.04      | 2       | 40    |
| 29..... | 36.34          | 42.72      | 6       | 139   | 74..... | 7.50           | 9.51       | 2       | 4     |
| 30..... | 35.61          | 41.86      | 6       | 91    | 75..... | 7.09           | 8.99       | 1       | 329   |
| 31..... | 34.88          | 41.01      | 6       | 47    | 76..... | 6.70           | 8.49       | 1       | 288   |
| 32..... | 34.15          | 40.15      | 6       | 0     | 77..... | 6.31           | 8.00       | 1       | 252   |
| 33..... | 33.42          | 39.30      | 5       | 321   | 78..... | 5.98           | 7.53       | 1       | 201   |
| 34..... | 32.69          | 38.46      | 5       | 281   | 79..... | 5.64           | 7.07       | 1       | 157   |
| 35..... | 31.96          | 37.61      | 5       | 237   | 80..... | 5.32           | 6.63       | 1       | 113   |
| 36..... | 31.23          | 36.76      | 5       | 193   | 81..... | 5.02           | 6.20       | 1       | 66    |
| 37..... | 30.50          | 35.92      | 5       | 153   | 82..... | 4.74           | 5.78       | 1       | 15    |
| 38..... | 29.77          | 35.08      | 5       | 113   | 83..... | 4.47           | 5.38       |         | 332   |
| 39..... | 29.03          | 34.24      | 5       | 77    | 84..... | 4.23           | 4.99       |         | 277   |
| 40..... | 28.30          | 33.40      | 5       | 37    | 85..... | 4.01           | 4.62       |         | 223   |
| 41..... | 27.57          | 32.57      | 5       | 0     | 86..... | 3.79           | 4.25       |         | 168   |
| 42..... | 26.85          | 31.74      | 4       | 325   | 87..... | 3.58           | 3.89       |         | 113   |
| 43..... | 26.12          | 30.91      | 4       | 288   | 88..... | 3.39           | 3.56       |         | 62    |
| 44..... | 25.40          | 30.09      | 4       | 252   | 89..... | 3.22           | 3.27       |         | 18    |
|         |                |            |         |       | 90..... | 3.06           | 3.06       | 0       |       |

According to Table 6, the expectation of life at age 10 is, at present, 51.57 years; the expectation of life at age 10 would be 59.72 years, or a little over 8 years more than it is at present, if unnecessary deaths were prevented.

The greatest difference, however, occurs at the age of birth where it is almost 13 years. In other words, the average length of life would be 62 years or 13 years longer than it is now if it were not for the occurrence of unnecessary deaths.

Professor Fisher obtains between 14.02 and 16.2 years by means of his short-cut method; hence, we are inclined to believe that his method gives somewhat exaggerated results as a rule. We have confirmed this belief in our own mind by other examples which, however, are in no other way related to the subject of this paper and are, therefore, not given here.

We have no criticism of Professor Fisher's results themselves when we consider the conservatism used in the preparation of his table of ratios. In fact, we shall point out later that this loss in expectation of life due to preventable deaths may well be much larger than his largest value of 16.2 years.

It should be emphasized that our estimate of 12.67 years as the loss in the average length of life, due to preventable deaths, does not refer to the average person irrespective of age, but only to those at the age of birth. Professor Fisher's estimate of from 14 to 16 years upon the whole of life is the only estimate he can make by his short-cut method, and it is very easy for the average person to fall into the error indicated. The loss at any age is significant enough, but by far the greatest loss is sustained at the age of birth.

On reference to Table 6, we notice that even at age 10 the loss in expectation of life is 8.15 years, or very little over 60 per cent. of the loss at the age of birth. At age 40, the loss is a little over 5 years, or about 40 per cent. of the loss at the age of birth. The loss at each age higher than age 10 is approximately 1 year less than the loss for age 10, for each succeeding ten years.

For purposes of comparison, attention is called to the fact that it has been estimated elsewhere by means of the methods used in this paper,\* that the occurrence of deaths due to

\* J. W. Glover, "The Monetary Loss in the United States due to Tuberculosis, based on the Returns of the Twelfth Census," *Transactions of the Sixth International Congress on Tuberculosis*, 1908.

tuberculosis causes a loss of about  $2\frac{1}{2}$  years in the expectation of life at age 20, or about one third the loss due to preventable deaths at the same age. However, this estimate is based upon the total number of deaths due to tuberculosis instead of just the preventable deaths due to that disease.

Similarly, the loss in the average length of life due to the total number of deaths due to typhoid fever has been estimated elsewhere to be about one half of one year, or about one twenty-fifth of the loss due to preventable deaths at the same age (age of birth).\*

The important question naturally arises, would an assumed prevention of deaths less conservative in character than the one we have just considered lead to a little or to a much greater variation in estimates of vital losses due to preventable deaths? In other words, once we have actually decreased the number of annual deaths due to the different diseases to accord with Professor Fisher's ratios, have we accomplished all that is worth while, or have we merely begun? We shall attempt to answer these questions by the use of deductions made in connection with a discussion of Table 3.

It is to be remembered that Table 3 was constructed with death rates based upon deaths due only to unpreventable diseases. Thus, Table 3 reflects the mortality conditions of a community wherein occur no deaths due to diseases of which any percentage of deaths are at present preventable.

It is true that the assumption of such a community is too ideal to be realized for a long time in the future, but we believe this assumption can be replaced by others, less extreme in character, which would lead to results almost as remarkable. If Professor Fisher had tabulated the most radical or extreme estimates of the ratios of preventability that were given him, instead of the most conservative average of all, and if absolutely everything in the form of recent knowledge and discoveries in regard to diseases were used, we believe the results given in Table 3 would at least be approached very closely.

By the nature of the facts involved, it would be impossible to completely verify the above statement; the belief is based

\* W. C. Mendenhall and Earl W. Castle, "Vital and Monetary Losses in the United States due to Typhoid Fever," QUARTERLY PUBLICATION OF THE AMERICAN STATISTICAL ASSOCIATION, June, 1911.

solely upon a personal survey of all the data used in the preparation of this paper and we shall not take the time or space to attempt to substantiate it.

In order that the main features of Table 3 might be more clearly and readily comprehended, we have brought together in Table 7 representative values of the death rates and expectations of life of both Tables 1 and 3. Columns of corresponding differences and percentages are added.

TABLE 7.

| Age.    | (Table 1). | (Table 3). | Differ-<br>ences. | Percent-<br>ages. | (Table 1). | (Table 3). | Differ-<br>ences. | Percent-<br>ages. |
|---------|------------|------------|-------------------|-------------------|------------|------------|-------------------|-------------------|
| (1)     | (2)        | (3)        | (4)               | (4) ÷ (2)         | (2)'       | (3)'       | (4)'              | (4) ÷ (2)'        |
| 0.....  | .134300    | .006908    | .127392           | 95.1              | 49.44      | 84.89      | 35.45             | 71.8              |
| 10..... | .002407    | .000058    | .002349           | 97.5              | 51.57      | 75.55      | 23.98             | 46.5              |
| 20..... | .005222    | .000084    | .005138           | 98.4              | 43.15      | 65.60      | 22.45             | 52.0              |
| 30..... | .007554    | .000242    | .007312           | 96.8              | 35.61      | 55.68      | 20.07             | 56.4              |
| 40..... | .009631    | .000732    | .008899           | 92.4              | 28.30      | 45.88      | 17.58             | 62.1              |
| 50..... | .014501    | .001725    | .012776           | 88.2              | 21.17      | 36.36      | 15.19             | 71.7              |
| 60..... | .028729    | .003630    | .025099           | 87.5              | 14.63      | 27.14      | 12.51             | 85.7              |
| 70..... | .057337    | .007646    | .049691           | 86.7              | 9.29       | 18.25      | 8.96              | 96.4              |
| 80..... | .12638     | .02321     | .10317            | 82.0              | 5.32       | 9.96       | 4.64              | 87.2              |

It is not our purpose to discuss all the results indicated by Table 7, but merely to dwell briefly upon the most important results which will help us most to answer the questions raised at the beginning of this discussion.

According to Table 7, the average length of life should be about 85 years, or about  $35\frac{1}{2}$  years longer than it is at the present time; expressed differently, the average length of life should be about 70 per cent. longer than it is at present.

The expectation of life at age 10 should be about 76 years, or 24 years longer than it is at present.

We can now answer our very important questions by saying that the results given in Table 7 indicate that the results obtained by comparing Tables 1 and 2 are little more than marks of a beginning of what can be done in the way of improving general health conditions.

Such results at least suggest excellent goals toward which every effort should be made to advance; the results are certainly worthy of the greatest efforts.

## MONETARY LOSSES.

Our discussion of monetary losses is based primarily upon the assumption that the average person contributes something to the wealth of the community about him during the most productive period of his life.

Although practically no one will object to the above assumption, there seems to be no satisfactory way of estimating the average value of this contribution. There are many who not only contribute nothing, but are even a heavy expense to their community all during their lives; there are others whose contribution is immeasurably great. There are some who, because of ill health or poverty, are prevented from adding to the wealth of their community except at particular intervals of the period throughout which the average person is considered most productive. Only a systematic investigation into these various sets of conditions would give us any satisfactory results, and such an investigation seems never to have been made.

Many have constructed schedules of values of this contribution by ages, which are intended to fit the average set of circumstances; the fact that these schedules fail to agree very closely indicates that they are not altogether satisfactory.

We make no attempt in this paper to decide rigidly what the value of this contribution should be assumed to be; instead, we assume a purely arbitrary value and then discuss certain monetary losses in terms of this value. Those who have decided views as to what the value of the contribution should be assumed to be can then modify the results in exactly the same proportion that their choice of this value differs from the value used here.

We shall assume that the average person contributes \$100 annually to the wealth of the community about him between the ages 20 and 70. Hence, the death of such a person involves a loss equal to the present value of an annuity of \$100 per annum at his age for the period ending with the age 70.

The present values of such annuities for each age from 20 to 70, interest at 5 per cent., based upon Tables 1 and 2, are given in the following table:

TABLE 9.

PRESENT VALUE, AT EACH AGE FROM 20 TO 70, COMPUTED WITH COMPOUND INTEREST AT 5 PER CENT., OF AN ANNUITY OR WEALTH INCREMENT OF \$100 PER ANNUM AT THE END OF EACH YEAR, UNTIL AGE 70, ACCORDING TO TABLES 1 AND 2.

| Age.    | Deaths         |            | Loss in Value. | Age.    | Deaths         |            | Loss in Value. |
|---------|----------------|------------|----------------|---------|----------------|------------|----------------|
|         | Not Prevented. | Prevented. |                |         | Not Prevented. | Prevented. |                |
| 20..... | \$1,601.00     | \$1,705.66 | \$104.66       | 45..... | \$1,189.61     | \$1,274.46 | \$84.85        |
| 21..... | 1,589.88       | 1,695.02   | 105.14         | 46..... | 1,163.94       | 1,247.11   | 83.17          |
| 22..... | 1,578.45       | 1,683.97   | 105.52         | 47..... | 1,137.51       | 1,218.79   | 81.28          |
| 23..... | 1,566.72       | 1,672.51   | 105.79         | 48..... | 1,110.16       | 1,189.40   | 79.24          |
| 24..... | 1,554.75       | 1,660.64   | 105.89         | 49..... | 1,081.68       | 1,158.83   | 77.15          |
| 25..... | 1,542.58       | 1,648.38   | 105.80         | 50..... | 1,051.89       | 1,126.97   | 75.08          |
| 26..... | 1,530.17       | 1,635.69   | 105.52         | 51..... | 1,020.73       | 1,093.73   | 73.00          |
| 27..... | 1,517.49       | 1,622.55   | 105.06         | 52..... | 988.11         | 1,059.05   | 70.94          |
| 28..... | 1,504.49       | 1,608.95   | 104.46         | 53..... | 954.13         | 1,022.92   | 68.79          |
| 29..... | 1,491.10       | 1,594.83   | 103.73         | 54..... | 918.94         | 985.43     | 66.49          |
| 30..... | 1,477.25       | 1,580.19   | 102.94         | 55..... | 882.76         | 946.67     | 63.91          |
| 31..... | 1,462.93       | 1,564.99   | 102.06         | 56..... | 845.57         | 906.58     | 61.01          |
| 32..... | 1,448.11       | 1,549.22   | 101.11         | 57..... | 807.37         | 865.14     | 57.77          |
| 33..... | 1,432.74       | 1,532.85   | 100.11         | 58..... | 768.09         | 822.25     | 54.16          |
| 34..... | 1,416.76       | 1,515.81   | 99.05          | 59..... | 727.38         | 777.64     | 50.26          |
| 35..... | 1,400.11       | 1,498.04   | 97.93          | 60..... | 684.89         | 731.03     | 46.14          |
| 36..... | 1,382.71       | 1,479.50   | 96.79          | 61..... | 640.40         | 682.21     | 41.81          |
| 37..... | 1,364.55       | 1,460.16   | 95.61          | 62..... | 593.66         | 630.93     | 37.27          |
| 38..... | 1,345.58       | 1,440.00   | 94.42          | 63..... | 544.33         | 576.92     | 32.59          |
| 39..... | 1,325.82       | 1,418.99   | 93.17          | 64..... | 492.12         | 519.91     | 27.79          |
| 40..... | 1,305.25       | 1,397.16   | 91.91          | 65..... | 436.69         | 459.16     | 22.92          |
| 41..... | 1,283.84       | 1,374.40   | 90.56          | 66..... | 377.52         | 395.60     | 18.08          |
| 42..... | 1,261.55       | 1,350.77   | 89.22          | 67..... | 314.02         | 327.44     | 13.39          |
| 43..... | 1,238.39       | 1,326.27   | 87.88          | 68..... | 245.51         | 254.50     | 8.99           |
| 44..... | 1,214.41       | 1,300.84   | 86.43          | 69..... | 171.13         | 176.18     | 5.05           |

With these present values as a basis we could compute the present value of the total losses sustained throughout the United States, if the number of deaths by causes and by ages were known for the whole country. Less than one half of our states, however, keep anything like an accurate record of deaths each year.

If these statistics of deaths were known for the whole country, we could use Professor Fisher's table of ratios to determine the number of deaths at each age that are preventable; this number multiplied by the present value of the corresponding annuity would give us a measure of the monetary loss for that age, due to the occurrence of preventable deaths.

Since these statistics are not available for the whole country, we are compelled to use another method to determine the monetary losses due to deaths that are preventable. We shall make use of the population instead of the number of deaths to determine the losses under consideration, because the population of the whole country is given every 10 years by the census.

Just as the second column in Table 9 gives the present values of the future contributions, as computed by the use of Table 1, the third column gives the present values of the same future contributions, as computed by the use of Table 2 which is based upon mortality conditions which would exist if preventable deaths were prevented.

Referring to Table 9, we see that the value of the average person aged 20 to his community is \$1,601.00, and that this value would be \$1,705.66 if preventable deaths were prevented. Hence, such a community suffers a loss of \$104.66 on every person living at the age 20, because of the occurrence of preventable deaths.

Column four of Table 9 gives values of these differences between the present values of persons for the different ages under the two sets of mortality conditions, which may therefore be regarded as measures of the effect of preventable deaths upon the value of persons to their community at different ages.

These differences, or "loss rates" increase slightly at first as age increases, due to the peculiar combination of the expectation of life and number of survivors of the mortality tables at these ages. After an interval of about ten years the loss rates start to diminish very gradually until about age 50 and then the decrease becomes more rapid toward zero.

Since we have a monetary measure of the effects of the occurrence of preventable deaths upon the value of each living person to his community, it remains merely to multiply the population of the United States for each age by the corresponding loss rate to determine the total losses at each age due to the occurrence of preventable deaths.

These populations for 1910 are given in Table 10 together with the corresponding loss rates, and finally the total losses

themselves. The population data were obtained in quinquennial age groups from the government mortality statistics, and the population for each age was determined by Sprague's method, discussed and used previously in this paper.

TABLE 10.

TABLE SHOWING THE PRESENT VALUE, COMPOUNDED ANNUALLY AT 5 PER CENT. OF THE LOSS DUE TO PREVENTABLE DEATHS, BASED UPON THE POPULATION OF THE UNITED STATES OF 1910, BOTH MALES AND FEMALES, FOR EACH AGE AND CERTAIN AGE GROUPS BETWEEN AGES 20 AND 70, ON THE BASIS OF AN ASSUMED PRODUCING CAPACITY OF \$100 PER ANNUM UNTIL AGE 70.

| Age.       | Population,<br>1910. | Loss<br>Rate. | Total<br>Loss. | Age.       | Population,<br>1910. | Loss<br>Rate. | Total<br>Loss. |
|------------|----------------------|---------------|----------------|------------|----------------------|---------------|----------------|
| 20.....    | 1,829,028            | 104.66        | \$191,426,070  | 45.....    | 947,320              | 84.85         | \$80,380,102   |
| 21.....    | 1,834,552            | 105.14        | 192,884,797    | 46.....    | 915,046              | 83.17         | 76,104,376     |
| 22.....    | 1,827,619            | 105.52        | 192,850,357    | 47.....    | 887,879              | 81.28         | 72,166,805     |
| 23.....    | 1,802,149            | 105.79        | 190,649,343    | 48.....    | 867,715              | 79.24         | 68,757,737     |
| 24.....    | 1,763,636            | 105.89        | 186,751,416    | 49.....    | 851,237              | 77.15         | 65,672,935     |
| 20-24..... | 9,056,984            |               | 954,561,983    | 20-49..... | 40,336,056           |               | 3,960,550,043  |
| 25.....    | 1,725,192            | 105.80        | 182,525,314    | 50.....    | 835,059              | 75.08         | 62,696,230     |
| 26.....    | 1,686,044            | 105.52        | 177,911,363    | 51.....    | 822,047              | 73.00         | 60,099,431     |
| 27.....    | 1,641,354            | 105.06        | 173,340,651    | 52.....    | 796,738              | 70.94         | 56,520,594     |
| 28.....    | 1,590,635            | 104.46        | 166,157,732    | 53.....    | 751,796              | 68.79         | 51,716,047     |
| 29.....    | 1,536,778            | 103.73        | 159,409,982    | 54.....    | 695,151              | 66.49         | 46,220,590     |
| 20-29..... | 17,236,987           |               | 1,813,907,025  | 20-54..... | 44,236,847           |               | 4,237,612,935  |
| 30.....    | 1,481,263            | 102.94        | 152,481,213    | 55.....    | 641,014              | 63.91         | 40,967,205     |
| 31.....    | 1,421,512            | 102.06        | 145,079,515    | 56.....    | 585,274              | 61.01         | 35,707,567     |
| 32.....    | 1,375,605            | 101.11        | 139,087,422    | 57.....    | 541,109              | 57.77         | 31,259,867     |
| 33.....    | 1,351,976            | 100.11        | 135,346,317    | 58.....    | 516,108              | 54.16         | 27,952,409     |
| 34.....    | 1,341,829            | 99.05         | 132,908,162    | 59.....    | 503,446              | 50.26         | 25,303,196     |
| 20-34..... | 24,209,172           |               | 2,517,809,654  | 20-59..... | 47,023,798           |               | 4,397,803,179  |
| 35.....    | 1,329,384            | 97.93         | 130,186,575    | 60.....    | 488,856              | 46.14         | 22,555,816     |
| 36.....    | 1,319,524            | 96.79         | 127,716,728    | 61.....    | 475,366              | 41.81         | 19,875,052     |
| 37.....    | 1,297,068            | 95.61         | 124,012,671    | 62.....    | 458,783              | 37.27         | 17,098,842     |
| 38.....    | 1,253,418            | 94.42         | 118,347,728    | 63.....    | 435,645              | 32.59         | 14,197,671     |
| 39.....    | 1,196,706            | 93.17         | 111,497,098    | 64.....    | 408,500              | 27.79         | 11,352,215     |
| 20-39..... | 30,605,272           |               | 3,128,570,454  | 20-64..... | 49,290,948           |               | 4,482,882,775  |
| 40.....    | 1,143,469            | 91.91         | 105,096,236    | 65.....    | 383,517              | 22.92         | 8,790,210      |
| 41.....    | 1,090,171            | 90.56         | 98,725,886     | 66.....    | 359,649              | 18.08         | 6,502,454      |
| 42.....    | 1,043,061            | 89.22         | 93,061,902     | 67.....    | 335,775              | 13.39         | 4,496,027      |
| 43.....    | 1,006,836            | 87.88         | 88,480,748     | 68.....    | 312,015              | 8.99          | 2,805,015      |
| 44.....    | 978,050              | 86.43         | 84,532,862     | 69.....    | 288,547              | 5.05          | 1,457,162      |
| 20-44..... | 35,866,859           |               | 3,597,468,088  | 20-69..... | 50,970,451           |               | 4,505,933,543  |

As in the case of the loss rates, the total monetary losses for the different ages increase slightly at first as age increases from about \$191,000,000 at age 20 to \$193,000,000 at age 22, but begin to decrease a little earlier than the loss rates. At age 23 the loss is again approximately that at age 20; from age 23 on, the decrease in the values of the losses is very gradual to the end of the table.

Besides the total losses for each age, the losses for the accumulative age groups 20-24, 20-29,—20-69 are given.

The grand total, or the loss for the total ages 20-69 is \$4,505,933,543. This amount may then be regarded as the total monetary loss in terms of the arbitrarily assumed contribution \$100, sustained by this country because of the occurrence of unnecessary deaths.

Just as in Table 9, we have the present value, at each age, of the future contributions of \$100 per annum, so we have in this grand total of \$4,505,933,543 the present value of an annuity of \$246,820,350 per annum to continue for 50 years, interest at 5 per cent. In other words, \$246,820,350 may, in the same connection, be regarded as the total annual loss sustained in this country because of preventable deaths. Perhaps it will help to visualize the value of this annual loss to state that it is about one fourth the value of our annual wheat crop and between two and three times the value of our annual product of gold which is approximately one fifth of that of the world.

A comparison of the mortality tables in this article leads to the following conclusions.

The losses in death rates sustained by this country due to preventable deaths run from as low as 1 per 1,000 at age 10 to as high as 57 per 1,000 at the age of birth. Expressed in percentages, these losses run from 30 per cent. of the actual death rates, or less, at age 90 and above, to over 50 per cent. at age 35 and all ages below, being over 55 per cent. between ages 15 and 20.

The losses in expectation of life or average future life time are about 13 years on the whole of life, 5 years less than that at the age of 10, and approximately 1 year less than that for each succeeding ten years.

If we assume that every person contributes \$100 annually to the wealth of the community about him during the most productive period of life, say from age 20 to age 70, we estimate the present value of the total future losses in this country to be about \$4,500,000,000 and the annual loss to be about \$250,000,000.

The estimates of corresponding monetary losses where a different value is assumed for the individual contribution are to be found by increasing or diminishing (as the case may be) the above values in the same proportion.



