Resumen Tema 1

Transformación de la variable independiente

Reflexión o giro	y(t)=x(-t)	y[n]=x[-n]
Escalado	y(t)=x(at)	y[n]=x[an] a entero>1
Desplazamiento	$y(t)=x(t-t_o)$	$y[n]=x[n-n_o]$

Señales básicas

Definiciones

Escalón unitario:	$u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$	$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$
Función signe:	$sign(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$	$sgn[n] = \begin{cases} 1 & n > 0 \\ 0 & n = 0 \\ -1 & n < 0 \end{cases}$
Pulso rectangular:	$\prod (t) = \begin{cases} 1 & t < \frac{1}{2} \\ 0 & \text{resto} \end{cases}$	$p_L[n] = \begin{cases} 1 & 0 \le n \le L - 1 \\ 0 & resto \end{cases}$
Pulso triangular:	$\Lambda(t) = \begin{cases} 1 - t & t < 1\\ 0 & \text{resto} \end{cases}$	
Función sinc:	$sinc(t) = \frac{sin(\pi t)}{\pi t}$	
Función delta de Dirac / Kronecker o impulso unitario:	$\int_{-\infty}^{\infty} x(t)\delta(t)dt = x(0)$	$egin{aligned} \delta[n] = egin{cases} 1 & n=0 \ 0 & resto \end{cases} \end{aligned}$
Exponencial compleja:	$e^{st} = e^{(\sigma + j2\pi f)t}$	

Propiedades

Señal par	x(-t)=x(t)	x[-n]=x[n]
Señal impar	x(-t) = -x(t)	x[-n] = -x[n]
Parte par	Par $\{x(t)\}=\frac{x(t)+x(-t)}{2}$	Par $\{x[n]\}=\frac{x[n]+x[-n]}{2}$
Parte Impar	Impar $\{x(t)\}=\frac{x(t)-x(-t)}{2}$	Impar $\{x[n]\}=\frac{x[n]-x[-n]}{2}$
Periodicidad	x(t) = x(t+T)	x[n]=x[n+N] N entero
Energía	$E_{x} = \int_{-\infty}^{\infty} x(t) ^{2} dt$	$E_x = \sum_{n=\infty}^{\infty} x[n] ^2$
Potencia media	$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) ^{2} dt$	$P_x = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=N/2}^{N/2} x[n] ^2$

Propiedades de la función delta

Definición	$\int_{-\infty}^{\infty} x(t)\delta(t)dt = x(0)$	$\delta[n] = egin{cases} 1 & n = 0 \ 0 & resto \end{cases}$
Área unitaria	$\int_{-\infty}^{\infty} \delta(t) . dt = 1$	
Escalado	$\delta(at) = \frac{1}{ a } \cdot \delta(t)$	
Simetría par	$\delta(-t) = \delta(t)$	
Representación de una señal	$x(t) = \int_{-\infty}^{\infty} x(\tau).\delta(t-\tau).d\tau = \int_{-\infty}^{\infty} x(\tau).\delta(\tau-t).d\tau$	$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$
Producto por una señal	$x(t).\delta(t-t_o) = x(t_o).\delta(t-t_o)$	$x[n].\mathcal{S}[n-n_o] = x[n_o].\mathcal{S}[n-n_o]$
Relación con la función escalón	$u(t) = \int_{-\infty}^{t} \delta(\tau) . d\tau = \int_{0}^{+\infty} \delta(t - \tau) . d\tau$ $\delta(t) = \frac{\partial}{\partial t} [u(t)]$	$u[n] = \sum_{k=-\infty}^{n} \delta[k] = \sum_{k=0}^{\infty} \delta[n-k]$ $\delta[n] = u[n] - u[n-1]$

Sistemas y sus propiedades

$$y(t) = T[x(t)]$$
$$y[n] = T[x[n]]$$

Propiedades

P1: Linealidad

$$T[a_1.x_1(t) + a_2.x_2(t)] = a_1T[x_1(t)] + a_2T[x_2(t)]$$

$$T[a_1.x_1[n] + a_2.x_2[n]] = a_1.T[x_1[n]] + a_2.T[x_2[n]]$$

P2: Invariancia

$$\begin{array}{ll} Si & T[x(t)] = y(t) & entonces & T[x(t-t_0)] = y(t-t_0) \\ Si & T[x[n]] = y[n] & entonces & T[x[n-n_0]] = y[n-n_0] \end{array}$$

P3: Causalidad

La salida no depende de valores futuros de la entrada

P4: Estabilidad

$$\begin{aligned} \forall \quad |x(t)| \leq B_1 \quad & \text{entonces} \quad |y(t)| \leq B_2 \\ \forall \quad |x[n]| \leq B_1 \quad & \text{entonces} \quad |y[n]| \leq B_2 \end{aligned}$$

P5: Memoria

Para calcular $y(t_0)$ ($y[n_0]$) con $t_0(n_0)$ arbitrario, se precisan valores de la entrada pasados o futuros

P6: Invertibilidad

Invertible si a partir de la salida y(t) (y[n]) se puede volver a obtener la entrada x(t) (x[n])

Sistemas lineales e invariantes

Respuesta impulsional h(t), h[n]

$$h(t) = T[\delta(t)]$$

$$h[n] = T[\delta[n]]$$

Ecuación de convolución

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t)*h(t)$$
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n]*h[n]$$

Propiedades de la convolución

Conmutativa	x(t) * h(t) = h(t) * x(t)	x[n] * h[n] = h[n] *x[n]
Asociativa	$x(t) * [h_1(t)*h_2(t)] = [x(t)*h_1(t)]*h_2(t)$	$x[n] * [h_1[n] * h_2[n]] = [x[n] * h_1[n]] * h_2[n]$
Distributiva respecto a la suma	$x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$	$x[n] * [h_1[n] + h_2[n]] = x[n] * h_1[n] + x[n] * h_2[n]$
Elemento neutro	$x(t) * \delta(t) = x(t)$	$x[n] * \mathcal{S}[n] = x[n]$

Relación entre las propiedades de los sistemas LI y su respuesta impulsional

Causalidad	h(t)=0 para $t<0$	h[n] = 0 para $n < 0$
Estabilidad	$\int_{-\infty}^{\infty} h(t) dt < \infty$	$\sum_{n=-\infty}^{\infty} h[n] < \infty$
Sistemas sin memoria	$h(t) = k\delta(t)$	$h[n] = k\delta[n]$
Invertibilidad de sistemas	$\exists h_i(t) \mid h(t)*h_i(t) = \delta(t)$	$\exists h_i[n] \mid h[n]*h_i[n] = \delta[n]$