

Теория вероятностей и математическая статистика

Вебинары

Теория вероятностей и математическая статистика

Непрерывные случайные величины. Функция распределения и плотность распределения вероятностей. Равномерное и нормальное распределение. Центральная предельная теорема

На этом уроке мы изучим:

- 1. Непрерывные случайные величины.
- 2. Функцию и плотность распределения вероятностей.
- 3. Равномерное распределение.
- 4. Нормальное распределение.
- 5. Центральную предельную теорему.

Функция распределения вероятностей —

функция *F***(x)**, которая для каждого значения **x** показывает, какова вероятность того, что случайная величина меньше **x**.

Плотность распределения вероятностей — это функция *f(x)*, которая равна производной функции распределения вероятностей:

$$f(x) = F'(x)$$

Равномерное распределение

Распределение вероятностей случайной величины **X** в зависимости от плотности:

$$f(x) = \begin{cases} 0, \text{ если } x \le a; \\ \frac{1}{b-a}, \text{ если } a < x \le b; \\ 0, \text{ если } x > b. \end{cases}$$

Равномерное распределение

График плотности равномерного распределения:

Равномерное распределение

График функции равномерного распределения:

Это распределение вероятностей непрерывной случайной величины **Х**, плотность вероятности которой подчиняется формуле:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}},$$

где
$$a = M(X), \ \sigma^2 = D(X).$$

График плотности нормального распределения имеет колоколообразную форму:

Примеры нормально распределенных величин: рост и вес людей, скорость движения молекул в газах и жидкостях, показатели IQ.

Одним из свойств нормального распределения является то, что значения среднего, медианы и моды совпадают.

На отрезке от $-\sigma$ до $+\sigma$ расположено около 68 % наблюдений, от -2σ до $+2\sigma$ — 95.4 %, и от -3σ до $+3\sigma$ — 99.72 %.

Центральная предельная теорема

Центральные предельные теоремы — класс теорем в теории вероятностей. Они утверждают, что сумма достаточно большого количества слабо зависимых случайных величин, у которых примерно одинаковые масштабы, имеет распределение, близкое к нормальному.

Центральная предельная теорема

Если у нас есть несколько выборок из генеральной совокупности (то есть из совокупности всех возможных объектов исследования), то среднее по этим выборкам также будет иметь нормальное распределение.

Центральная предельная теорема

Среднее достаточно большого числа независимых и нормально распределенных случайных величин также является приблизительно нормально распределенным.

Итоги

- 1. Непрерывная случайная величина.
- 2. Функция и плотность распределения вероятностей.
- 3. Равномерное распределение.
- 4. Нормальное распределение.
- Центральная предельная теорема.