

Bloque I: Electricidad

Bloque II: Magnetismo

Bloque III: Ondas y Óptica

Tema 4. Magnetostática en el vacío

- 4.1. Fenómenos magnéticos. El campo magnético
- 4.2. Fuerza de Lorentz
- 4.3. Acción del campo magnético sobre una espira. Momento magnético
- 4.4. Fuentes de campo magnético: Ley de Biot-Savart
- 4.5. Flujo magnético
- 4.6. Ley de Ampère

Tema 5. Magnetostática en la materia

- 5.1. Imanación y susceptibilidad magnética
- 5.2. Paramagnetismo, ferromagnetismo y diamagnetismo

Tema 6. Inducción electromagnética

- 6.1. Ley de Faraday-Lenz
- 6.2. Autoinducción e inducción mutua
- 6.3. Energía magnética
- 6.4. Corriente de desplazamiento. Ecuaciones de Maxwell

¿Por qué un imán atrae a unas monedas y a otras no?

TEMA 5: Magnetostática en la materia

5.1 Imanación y susceptibilidad

1/5

Propiedades magnéticas de los materiales

Muchas aplicaciones

¿Cómo funciona un transformador?

¿Cómo funciona una resonancia?

Electrones alrededor del núcleo

Spin de electrones

Momentos dipolares magnéticos atómicos

Dipolos magnéticos VS Dipolos eléctricos

Los dipolos se alinean con campos externos

Campo contrario al campo externo

Al alinearse, disminuye el campo

Campo a favor del campo externo

Al alinearse, aumenta el campo

TEMA 5: Magnetostática en la materia

5.1 Imanación y susceptibilidad

3/5

Respuesta a campo magnéticos externo

Paramagnéticos

- "Junto a" e.g. paralelo
- **Tienen** momentos dipolares magnéticos propios
- Campo externo produce alineación parcial
- Pequeño incremento del campo

Ferro magnéticos :

Hierro

- **Tienen** momentos dipolares magnéticos propios
- Campo externo produce una GRAN alineación
- **GRAN** incremento del campo

Diamagnéticos

"Opuesto a" e.g. diagonal

- **NO Tienen** momentos dipolares magnéticos propios
- Campo externo induce momentos, pero contrarios a él
- Pequeño campo contrario

Imanación

Definición: Imanación: Momento dipolar magnético neto por unidad de

$$\vec{M} = \frac{d\vec{\mu}}{dV}$$

Vamos a relacionar la imanación de un material con el campo magnético que se le tiene que aplicar para imantarlo, y con el que produce:

Definición: Campo que produce un material imantado:

$$\vec{B}_m = \mu_0 \vec{M}$$

Definición: **Intensidad magnética**: Campo auxiliar \vec{H} que cumple que

$$\vec{B}_{ap} = \mu_0 \vec{H}$$

Donde $B_{\it ap}$ es el campo externo aplicado sobre el material, es decir, el que causa la imantación

Uniéndolo todo: CAMPO TOTAL = CAMPO APLICADO + CAMPO DE LA IMANACIÓN

$$\vec{B} = \vec{B}_{ap} + \vec{B}_{m} = \mu_{0}\vec{H} + \mu_{0}\vec{M} = \mu_{0}(\vec{H} + \vec{M})$$

TEMA 5: Magnetostática en la materia 5.1 Imanación y susceptibilidad

5/5

Susceptibilidad

$$ec{H}$$
 y $ec{M}$ con misma dirección y sentido

Diamagnéticos $\longrightarrow \vec{H} \vee \vec{M}$ con misma dirección y sentidos opuestos

Definición: **Susceptibilidad magnética**: Magnitud que relaciona \vec{H} y \vec{M}

$$ec{M}=\chi_{_{m}}ec{H}$$

$$\vec{B} = \vec{B}_{ap} + \vec{B}_{m} = \mu_{0}\vec{H} + \mu_{0}\vec{M} = \mu_{0}(\vec{H} + \vec{M}) = \mu_{0}(1 + \chi_{m})\vec{H} = \mu_{0}\mu_{m}\vec{H} = \mu\vec{H}$$

Definición: Permeabilidad relativa: $\mu_m = 1 + \chi_m$

 $\mu = \mu_0 \mu_m$ **Definición**: Permeabilidad:

PENSAR: ¿Qué pasa si el material no es magnético?

Ejercicios: 12 de relación; 2 de 2º parcial 2018; 2 de 2º parcial del final de 2018; 3 del de septiembre 2018; 5 del final de 2019

Bloque I: Electricidad

Bloque II: Magnetismo

Bloque III: Ondas y Óptica

Tema 4. Magnetostática en el vacío

- 4.1. Fenómenos magnéticos. El campo magnético
- 4.2. Fuerza de Lorentz
- 4.3. Acción del campo magnético sobre una espira. Momento magnético
- 4.4. Fuentes de campo magnético: Ley de Biot-Savart
- 4.5. Flujo magnético
- 4.6. Ley de Ampère

Tema 5. Magnetostática en la materia

- 5.1. Imanación y susceptibilidad magnética
- 5.2. Paramagnetismo, ferromagnetismo y diamagnetismo

Tema 6. Inducción electromagnética

- 6.1. Ley de Faraday-Lenz
- 6.2. Autoinducción e inducción mutua
- 6.3. Energía magnética
- 6.4. Corriente de desplazamiento. Ecuaciones de Maxwell

TEMA 5: Magnetostática en la materia 5.2. Para-, ferro- y diamagnetismo

1/6

Paramagnetismo

- Tienen momentos dipolares magnéticos propios
- Pero los momentos no interactúan entre sí fuertemente (están orientados al azar)
- Campo externo produce alineación parcial

$$\vec{M} = \chi_m \vec{H} \qquad \chi_m \approx 10^{-5}$$

- Con la temperatura se rompe la alineación
- Pequeño incremento del campo (para T y B_{externo} normales)

Definición: Ley de Curie: Dependencia de la imanación con la temperatura

A baja temperatura aumenta la alineación de los momentos dipolares magnéticos

EJEMPLOS: Aluminio, tungsteno, cesio

Ferromagnetismo

- Tienen momentos dipolares magnéticos propios
- Los momentos vecinos están fuertemente ligados, y pueden estar alineados incluso sin B_{externo} , (imanes permanentes)
- **GRAN** incremento del campo con B_{externo}

$$\vec{M} \approx (10^3 - 10^5) \vec{H}$$

Causa:

Puede ser más favorable energéticamente que los electrones alineen sus momentos dipolares magnéticos (en este caso, de espín), creando dominios

EJEMPLOS: Hierro, cobalto, níquel (y aleaciones que los contengan, como acero). También tierras raras, como gadolinio, disprosio o neodimio.

Q TEMA 5: Magnetostática en la materia 5.2. Para-, ferro- y diamagnetismo

3/6

Ferromagnetismo: histéresis

Imaginemos un trozo de hierro dentro de un solenoide. El campo magnético total valdrá:

$$B = B_{ap} + B_m = \mu_0 H + \mu_0 M = \mu_0 (nI + M)$$

La imanación M depende del campo aplicado. Pero para ferromagnéticos no es tan sencillo como $\vec{M}=\chi_{_{m}}\vec{H}$

Mayoría de dominios ya alineados ($M_{\text{saturación}}$)

Alineación de dominios

$$H = B_{ap} / \mu_0 = nI$$

 $B_{\rm r}$: Campo remanente: Campo que queda aunque no haya campo aplicado. Hay imanación permanente.

 H_c : Campo coercitivo: Campo que hay que aplicar para contrarrestar la imanación en un material, de forma que el campo total es nulo.

Dominios alineados en sentido contrario

5/6

Ferromagnetismo: histéresis

El área del ciclo está relacionada con la energía disipada en la imanación y desimanación del material

Magnéticamente duro

Imanes permanentes, sartenes de inducción (acero al carbono)

Magnéticamente blando

Transformadores (hierro dulce)

Diamagnetismo

TEMA 5: Magnetostática en la materia 5.2. Para-, ferro- y diamagnetismo

- NO Tienen momentos dipolares magnéticos propios $\begin{cases} \vec{M} = \chi_m \vec{H} \\ \chi_m \approx -10^{-5} \end{cases}$ Campo externo induce momentos, pero contrarios a él (siempre repelidos por imanes)
- Este comportamiento está en todos los materiales (agua, madera, ranas...), pero en para- y ferromagnéticos no se aprecia

Diamagnetismo

 $B_{\rm im\acute{a}n}\sim 1~{\rm T}$

 $B_{experimento} \sim 16~\mathrm{T}$

Andre Geim, premio Ig Nobel (2000, rana), y premio Nobel (2010, grafeno)

