# 质点运动的描述

#### 一、理想模型---质点

- 1. 参考系: 为描述物体运动而选的标准物。
- 2. 质点: 物体只有质量而没有大小、形状的几何抽象。 理想模型
- 3. 坐标系:参照系的数学抽象,用于对运动定量描述。



# 二、质点运动的描述

#### 1. 位置矢量(位矢):

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

大小: 
$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

#### 2. 运动方程、轨道方程

运动方程:位置(矢量)与时间的函数关系



轨道方程:质点位置坐标间的函数关系

$$f(x,y,z)=0$$

# 3. 位移

$$\vec{r}_A = x_A \vec{i} + y_A \vec{j}$$

$$\vec{r}_B = x_B \vec{i} + y_B \vec{j}$$

位移: 
$$\Delta \vec{r} = \vec{r}_B - \vec{r}_A$$



$$= (x_B - x_A)\vec{i} + (y_B - y_A)\vec{j}$$
$$= \Delta x\vec{i} + \Delta y\vec{j}$$

大小:
$$|\Delta \vec{r}| = \sqrt{\Delta x^2 + \Delta y^2}$$

#### 4. 路程

从 $P_1$ 到 $P_2$ : 路程  $\Delta S = P_1 P_2$ 

#### 位移与路程的区别

- (1) 两点间位移是唯一的.
- (2) 一般情况  $|\Delta \vec{r}| \neq \Delta S$ . 什么情况  $|\Delta \vec{r}| = \Delta S$ ?



不改变方向的直线运动; 当  $\Delta t \rightarrow 0$  时.

(3) 位移是矢量, 路程是标量.

# 注意

 $\Delta \vec{r}$ ,  $|\Delta \vec{r}|$ ,  $\Delta r$ 的物理意义不同。

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$

$$= \Delta x \vec{i} + \Delta y \vec{j} + \Delta z \vec{k}$$

$$|\Delta \vec{r}| = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$$



$$\Delta r = r_2 - r_1 = \sqrt{x_2^2 + y_2^2 + z_2^2} - \sqrt{x_1^2 + y_1^2 + z_1^2}$$

# 二、速度

# 1. 平均速度

 $\Delta t$  时间内, 质点位移为

$$\Delta \vec{r} = \vec{r}(t + \Delta t) - \vec{r}(t)$$
$$= \Delta x \vec{i} + \Delta y \vec{j}$$

$$\overline{\overline{v}} = \frac{\Delta \overline{r}}{\Delta t} = \frac{\Delta x}{\Delta t} \overline{i} + \frac{\Delta y}{\Delta t} \overline{j} = \overline{v}_x \overline{i} + \overline{v}_y \overline{j}$$



# 2. 瞬时速度(简称速度)

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j}$$
$$= v_x \vec{i} + v_y \vec{j}$$



当
$$\Delta t \rightarrow 0$$
时,

$$|d\vec{r}| = ds$$

$$\vec{v} = \frac{ds}{dt}\vec{e}$$

速度方向 切线向前

$$v = \frac{\mathrm{d}s}{\mathrm{d}t}$$

速度7的值 速率

# 讨论

一运动质点在某瞬时位于 位矢 $\vec{r}(x,y)$ 的端点处, 其速 度大小为

(B)



 $(\mathbf{C})$ 



$$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$$

$$\left| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \right| \neq \frac{\mathrm{d}r}{\mathrm{d}t}, \left| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \right| \neq \frac{\mathrm{d}\left|\vec{r}\right|}{\mathrm{d}t}$$

# 物理量

位置矢量(位矢): 
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

位移: 
$$\Delta \vec{r} = \vec{r}_B - \vec{r}_A$$
  $\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$ 

二个方程 运动方程: 
$$r = r(t) \Longrightarrow \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

轨道方程: f(x,y,z)=0 (轨迹方程)