5장 합성곱 신경망 1

① 생성일	@2024년 9월 22일 오후 4:06
∷ 주차	Week 3
☑ 완료여부	

5.1 합성곱 신경망

딥러닝 순전파 과정에서 계산된 오차 정보가 신경망의 모든 노드(출력층→은닉층→입력층) 으로 전송되는데 계산과정이 많고 시간문제를 해결하고자 함

이미지 전체를 한번에 계산하지 않고 국소적 부분을 계산함으로서 시간과 자원 절약

5.1.1 합성곱층의 필요성

합성곱 신경망은 이미지, 영상 처리하는데 유용함 이미지를 펼쳐서 분석하면 공간적인 정보 소실 → 합성곱층 도입

5.1.2 합성곱 신경망 구조 Convolutional Neural Network

1. 입력층

이미지: height, weight, channel의 3차원 데이터로 channel은 흑백이면 1, 컬러면 3임

2. 합성곱층

kernel이나 filter를 사용하여 입력데이터의 특성을 추출하는 역할 \rightarrow feature map 생성이때 커널의 일반적인 크기는 3x3, 5x5, 지정된 간격 stride에 따라 이동함

5장 합성곱 신경망 1 1

입력데이터: WxHxD 이때 D는 채널의 수

하이퍼파라미터: 필터개수 K, 필터크기 F, 스트라이드 S, 패딩 P

출력 데이터

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$
- $\cdot D_2 = K$

출력데이터 계산식

3. 풀링층 Pooling Layer

feature map의 차원을 다운 샘플링하여 연산량을 감소시키고 주요한 특성 벡터를 추출함 최대풀링 → 대상 영역에서 최댓값 추출, 주로 사용됨

평균풀링 → 대상 영역에서 평균값 추출

입력데이터: WxHxD 이때 D는 채널의 수

하이퍼파라미터: 필터크기 F, 스트라이드 S

출력 데이터

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$
- $D_2 = D_1$

출력 데이터 계산식

4. 완전연결층 Fully Connected Layer

이미지(3차원 벡터)가 1차원 벡터로 됨 flatten()

5.1.3 1D, 2D, 3D 합성곱 ← 출력 형태에 따라 분류

1. 1D 합성곱

필터가 시간을 기준으로 좌우로만 이동할 수 있는 합성곱 따라서 출력 형태는 1D 배열이 됨

2. 2D 합성곱

필터가 2개의 방향으로 움직임. 따라서 출력 형태는 2D 형태

3. 3D 합성곱

필터가 3개의 방향으로 움직임. 이때 필터의 깊이<입력의 길이가 되어야 함

4. 3D 입력을 갖는 2D

입력(W,H,L)에 필터(k,k,L)을 적용하면 출력은 (W,H)가 됨. 이때 필터는 두 방향으로 움직이고 출력형태는 2D 행렬이 됨

5. 1×1 합성곱

입력(W,H,L)에 필터 (1,1,L)을 적용하면 출력은 (W,H)로 3D 형태로 출력됨. 대표적인 사례는 Google Net으로 채널수를 조정해서 연산량이 감소되는 효과가 있음

5장 합성곱 신경망 1 4