Preliminary Research Exam

Ronak Mehta

Spring 2022

Contents

A	Foundations	2
	A.1 Measure Theory	2
	A.2 Conditional Probability	2

A Foundations

A.1 Measure Theory

Here, we state fundamental definitions and results of measure theory without proof, to be used primarily in Section A.2.

Notation We write $f:(\Omega,\mathcal{F})\to (S,\mathcal{S})$ to mean $f:\Omega\to S$ is an $(\mathcal{F},\mathcal{S})$ -measurable function. We say f is \mathcal{F} -measurable if the codomain's σ -algebra \mathcal{S} is understood from context. When no such \mathcal{S} is specified, we understand it to be \mathcal{R} , the Borel σ -algebra.

Proposition A.1. Given any measurable nonnegative function $f: \Omega \to [0, \infty]$, there is a sequence of nonnegative simple functions $(f_n)_n$ with $f_n \uparrow f$ pointwise.

Theorem A.2 (Monotone convergence theorem). Let $(\Omega, \mathcal{F}, \mu)$ be a common measure space, $(f_n)_{n\geq 0}$ be a sequence of measurable functions from Ω into $[0, \infty]$, which are increasing pointwise to limit function $f: \Omega \to \mathbb{R}$. Then, f is measurable, and

$$\int f_n d\mu \uparrow \int f d\mu$$
.

Theorem A.3 (Dominated convergence theorem). Let $(\Omega, \mathcal{F}, \mu)$ be a common measure space, $(f_n)_{n\geq 0}$ be a sequence of measurable functions from Ω into $[-\infty, \infty]$, which converge pointwise to limit function $f: \Omega \to \mathbb{R}$. Suppose that there exists an integrable function h such that for each h, $|f_n| \leq h$ everywhere. Then,

$$lim_{n\to\infty}\int f_n d\mu = \int f d\mu.$$

Definition A.4 (Generated σ -algebra). For a measurable function $Z:\Omega\to\mathbb{R}$, we define $\sigma(Z)$ as the smallest σ -algebra (in the sense of inclusion) \mathcal{F} on Ω such that Z is \mathcal{F} -measurable.

Definition A.5 (Absolute continuity). Let ν and μ be measures defined on the same measurable space. Then, ν is absolutely continuous with respect to μ (written $\nu \ll \mu$), if $\mu(A) = 0$ implies $\nu(A) = 0$ for all measurable sets A.

Definition A.6 (σ -finite measure). A measure μ on measurable space (Ω, \mathcal{F}) is called σ -finite is there exists a sequence $A_1, A_2, ... \in \mathcal{F}$ such that

- $\mu(A_i) < \infty$ for each i = 1, 2, ..., and
- $\bigcup_{i=1}^{\infty} A_i = \Omega$.

In other words, the entire set can be written as a countable union of sets of finite measure.

Theorem A.7 (Radon-Nokodym theorem). Let ν and μ be two σ -finite measures on (Ω, \mathcal{F}) . If $\nu \ll \mu$, then there is a $(\mathcal{F}, \mathcal{R})$ -function $f : \Omega \to \mathbb{R}$ such that for all $A \in \mathcal{F}$,

$$\int_A f d\mu = \nu(A).$$

THe function f is written $\frac{d\nu}{d\mu}$ and called the Radon-Nikodym derivative.

A.2 Conditional Probability

In this section, we define conditional probability in the language of measure theory. Let $(\Omega, \mathcal{F}_0, P)$ be a probability space, $\mathcal{F} \subseteq \mathcal{F}_0$ be a σ -algebra, $(\mathbb{R}, \mathcal{R})$ be the real line equipped with the Borel σ -algebra, and $X : \Omega \to \mathcal{R}$ be a $(\mathcal{F}_0, \mathcal{R})$ -measurable random variable.

Definition A.8 (Conditional expectation). Let $\mathbb{E}[|X|] < \infty$. We define the *conditional expectation of* X *given* \mathcal{F} , or $\mathbb{E}[X|\mathcal{F}]$, to be any random variable Y that satisfies

- (i) Y is $(\mathcal{F}, \mathcal{R})$ -measurable, and
- (ii) for all $A \in \mathcal{F}$, $\int_A X dP = \int_A Y dP$.

Such a *Y* is called a version of $\mathbb{E}[X|\mathcal{F}]$.

The σ -algebra \mathcal{F} represents a subset of events which is analogous to the conditioning random variable in the undergraduate probability notion of conditional expectation.

Definition A.9 (Variants of conditional expectation). For conditional probability, we define the following function on \mathcal{R} :

$$A \mapsto \mathbb{P}\left[X \in A | \mathcal{F}\right] = \mathbb{E}\left[1_{X^{-1}(A)} | \mathcal{F}\right].$$

For an arbitrary measurable function $Z:\Omega\to\mathbb{R}$, we define

$$\mathbb{E}\left[X|Z\right] = \mathbb{E}\left[X|\sigma\left(Z\right)\right].$$

Next, we establish some properties of conditional expectation.

Lemma A.10 (Integrability). *If* $Y = \mathbb{E}[X|\mathcal{F}]$ (a.e.), then Y is integrable.

Proof. Let $A = \{\omega \in \Omega : Y(\omega) > 0\}$, which is a \mathcal{F} -measurable set, as $(0, \infty) \in \mathcal{R}$ and Y is a measurable function. Then, use property (ii) twice.

$$\int_A Y dP = \int_A X dP \le \int_A |X| dP.$$

$$\int_{A^c} -Y dP = \int_{A^c} -X dP \le \int_{A^c} |X| dP.$$

Then,

$$\mathbb{E}\left[\left|Y\right|\right] = \int_{A} Y \mathrm{d}P + \int_{A^{c}} -Y \mathrm{d}P \leq \int_{A} \left|X\right| \mathrm{d}P + \int_{A^{c}} \left|X\right| \mathrm{d}P = \mathbb{E}\left[\left|X\right|\right] < \infty.$$

Lemma A.11 (Uniqueness). If Y' also satisfies (i) and (ii),

$$\int_A Y dP = \int_A Y' dP \text{ for all } A \in \mathcal{F}.$$

Proof. Take any $\epsilon > 0$ and let $A = \{\omega \in \Omega : Y(\omega) - Y'(\omega) \le \epsilon\}$, which is \mathcal{F} measurable because Y - Y' is measurable and $[\epsilon, \infty) \in \mathcal{R}$. Then,

$$0 = \int_{A} X - X dP$$

$$= \int_{A} X dP - \int_{A} X dP$$

$$= \int_{A} Y dP - \int_{A} Y' dP$$

$$= \int_{A} Y - Y' dP$$

$$\geq \epsilon P(A),$$

indicating that $P(A) = P(Y - Y' \ge \epsilon) = 0$, or that $Y \ge Y'$ a.e.. Switching the roles of Y and Y' gives that Y = Y' a.e..

Lemma A.12 (Existence). There exists a Y that satisfies the defining properties of conditional expectation.

Proof. First, suppose that $X \geq 0$, let $\mu = P$, and define

$$\nu(A) := \int_A X dP$$
 for any $A \in \mathcal{F}$.

The monotone convergence theorem, along with a sequence of non-negative simple functions $X_n:\Omega\to [0,\infty)]$ that approach X pointwise, can be used to show that ν is a measure. Then, the definition clearly shows that $\mu(A)=0 \implies \nu(A)=0$, so $\nu\ll\mu$. Thus, by the Radon-Nikodym theorem,

$$\int_{A} X dP = \nu(A) = \int_{A} \frac{d\nu}{d\mu} dP.$$

Letting $A = \Omega$, we have that $Y := \frac{d\nu}{d\mu}$ is $(\mathcal{F}, \mathcal{R})$ -measurable and integrable, and because its non-negative, $\mathbb{E}[|Y|] < \infty$. Thus, both properties are satisfied, and Y is a version of $\mathbb{E}[X|\mathcal{F}]$.

For the general case, let X^+ and X^- be the nonnegative and nonpositive parts of X, and let $Y_1 = \mathbb{E}[X^+|\mathcal{F}]$ and $Y_2 = \mathbb{E}[X^-|\mathcal{F}]$. Now, $Y_1 - Y_2$ is integrable, and for all $A \in \mathcal{F}$, we have

$$\int_{A} X dP = \int_{A} X^{+} dP - \int_{A} X^{-} dP$$
$$= \int_{A} Y_{1} dP - \int_{A} Y_{2} dP$$
$$= \int_{A} (Y_{1} - Y_{2}) dP.$$

Thus, $Y_1 - Y_2$ is a version of $\mathbb{E}[X|\mathcal{F}]$.

Proposition A.13 (Properties of condtional expectation). The following hold:

1. Linearity: For any $a \in \mathbb{R}$,

$$\mathbb{E}\left[aX + Y|\mathcal{F}\right] = a\mathbb{E}\left[X|\mathcal{F}\right] + \mathbb{E}\left[Y|\mathcal{F}\right].$$

2. Monotonicity: If $X \leq Y$ a.e., then

$$\mathbb{E}\left[X|\mathcal{F}\right] \leq \mathbb{E}\left[Y|\mathcal{F}\right] \text{ a.e..}$$

3. **Preservation of limits:** If $X_n \ge 0$ and $X_n \uparrow X$, then

$$\mathbb{E}\left[X_n|\mathcal{F}\right]\uparrow\mathbb{E}\left[X|\mathcal{F}\right].$$

Proof. 1. The RHS is \mathcal{F} -measurable, as it is a linear combination of \mathcal{F} -measurable functions. Then, for any $A \in \mathcal{F}$,

$$\begin{split} \int_A a \mathbb{E} \left[X | \mathcal{F} \right] + \mathbb{E} \left[Y | \mathcal{F} \right] \mathrm{d}P &= a \int_A \mathbb{E} \left[X | \mathcal{F} \right] \mathrm{d}P + \int_A \mathbb{E} \left[Y | \mathcal{F} \right] \mathrm{d}P \\ &= a \int_A X \mathrm{d}P + \int_A Y \mathrm{d}P \\ &= \int_A a X + Y \mathrm{d}P. \end{split}$$

2. Take any ϵ , and let $A = \{\omega : \mathbb{E}[X|\mathcal{F}](w) - \mathbb{E}[y|\mathcal{F}](w) \ge \epsilon\}$. Then,

$$\int_{A} \mathbb{E}\left[X|\mathcal{F}\right] dP = \int_{A} X dP \le \int_{A} Y dP = \int_{A} \mathbb{E}\left[Y|\mathcal{F}\right] dP.$$

Then,

$$0 \ge \int_A \mathbb{E} [X|\mathcal{F}] dP - \int_A \mathbb{E} [Y|\mathcal{F}] dP$$

$$\ge \epsilon P(A),$$

so the set set A has zero measure for all ϵ . This means that $\mathbb{E}[X|\mathcal{F}] \leq \mathbb{E}[Y|\mathcal{F}]$ a.e..

3. First, let $Y_n = X - X_n$. Due to linearity and monotonicity, it sufficies to show that $Z_n := \mathbb{E}\left[Y_n | \mathcal{F}\right] \downarrow 0$. Because $Y_n(\omega)$ in monotonically non-increasing in n, there exists a set Ω_0 of measure one such that for each $\omega \in \Omega_0$, we have that $Z_n(\omega)$ is bounded (within $[0, X(\omega)]$) and non-increasing, indicating convergence. String together these limits on Ω_0 to be the function Z_∞ , defined arbitrarily on Ω_0^c . Then, for any $A \in \mathcal{F}$,

$$\lim_{n\to\infty} \int_A Z_n dP = \lim_{n\to\infty} \int_A Y_n dP \stackrel{\mathrm{DCT}}{=} \int_A \lim_{n\to\infty} Y_n dP = 0.$$

The dominated convergence theorem applies because $0 \le Y_n(\omega) \le X(\omega)$, with X integrable by definition of conditional expectation.

Definition A.14 (Regular conditional distribution). Let $(\Omega, \mathcal{F}.P)$ be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra, $X:\Omega\to S$ be a $(\mathcal{F},\mathcal{S})$ -measurable map. The function $\mu:\Omega\times\mathcal{S}\to[0,1]$ is said to be a *regular conditional distribution (r.c.d.)* for X given \mathcal{G} if

(i) For each A, the function $\omega \mapsto \mu(\omega, A)$ is a version of $\mathbb{P}[X \in A|\mathcal{G}]$.

(ii) For a.e. ω , the function $A\mapsto \mu(\omega,A)$ is a probability measure on $(S,\mathcal{S}).$

Theorem A.15. If $(S, S) = (\mathbb{R}, \mathcal{R})$, that is that X is measurable with respect to F and the Borel σ -algebra, then there exists an r.c.d..

Proof. lol □