1강. Introduction

Contents

- RL Overview
 - What is Reinforcement Learning?
 - How RL is different from other machine learning?
 (w.r.t why Reinforcement Learning?)
 - What types of RL algorithms?
- Course Intro.
- MDP (w/ Code example)

Three paradigms of Machine Learning

What is RL?

• Mathematical formalism for learning-based decision-making

Approach for learning decision-making and control from experience

Branch of AI focused on solving control tasks.

What is RL?

decisions (actions)

consequences observations (states) rewards

Actions: muscle contractions Observations: sight, smell

Rewards: food

Actions: motor current or torque Observations: camera images Rewards: task success measure (e.g.,

running speed)

Actions: what to purchase Observations: inventory levels

Rewards: profit

Supervised vs. Reinforcement Learning

supervised learning

input: \mathbf{x}

output: y

data: $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{\mathbf{x}}$

goal: $f_{\theta}(\mathbf{x}_i) \approx \mathbf{y}_i$

someone gives this to you

reinforcement learning

Supervised vs. Reinforcement Learning

Standard (supervised) machine learning:

given
$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$$

learn to predict y from \mathbf{x} $f(\mathbf{x}) \approx y$

Usually assumes:

- i.i.d. data
- known ground truth outputs in training

Reinforcement learning:

- Data is not i.i.d.: previous outputs influence future inputs!
- Ground truth answer is not known, only know if we succeeded or failed
 - · more generally, we know the reward

Supervised vs. Reinforcement Learning

behavioral cloning

Data-Driven Al vs. RL

Explaining a joke

Prompt

Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for their TPU team? It showed them how to communicate between two different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses for deep learning. A "pod" is a group of TPUs. A "pod" is also a group of whales. The joke is that the whale is able to communicate between two groups of whales, but the speaker is pretending that the whale is able to communicate between two groups of TPUs.

$$p_{\theta}(\mathbf{x})$$

$$p_{\theta}(\mathbf{y}|\mathbf{x})$$

Data-Driven Al vs. RL

Impressive because no person had thought of it!

"Move 37" in Lee Sedol AlphaGo match: reinforcement learning "discovers" a move that surprises everyone

Impressive because it looks like something a person might draw!

Data-Driven Al vs. RL

Data-Driven Al

- + learns about the real world from data
- doesn't try to do better than the data

Reinforcement Learning

- + optimizes a goal with emergent behavior
- but need to figure out how to use at scale!

Data without optimization doesn't allow us to solve new problems in new ways

RL can discover new solutions

RL Algorithms Classification

RL Algorithms Classification

Types of algorithms

$$\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then...
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
 - Something else

The anatomy of RL algorithm

Value-based algorithms

Direct policy gradients

Actor-critic: value functions + policy gradients

Deep Reinforcement Learning

- Deep = scalable learning from large, complex datasets
- Reinforcement learning = optimization

Deep Reinforcement Learning

Prerequisites

Linear algebra

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{pmatrix}$$

Python

Calculus

$$\nabla L(\theta) = \left[\frac{\partial L(\theta)}{\partial w_1}, \cdots, \frac{\partial L(\theta)}{\partial w_n} \right]$$

Machine Learning

Schedule

주차	수업내용	교재범위 및 과제물	비고
1	강화학습 Overview		
2	강화학습 기본: Dynamic Programming	실습	
3	강화학습 기본: Monte-Carlo Methods	실습	
4	강화학습 기본: Temporal Difference Learning	실습	
5	가치기반 강화학습: Q-learning, Deep Q-learning	실습	
5	가치기반 강화학습: Q-learning, Deep Q-learning	실습	
6	심층강화학습 실습환경 소개: NN, Pytorch	실습	
7	가치기반 강화학습: DQN	실습	
8	중간시험		
9	가치기반 강화학습: Deep Q-learning (Continuous)	실습	
10	정책기반 강화학습: Policy Gradient	실습	
11	정책기반 강화학습: Actor Critic		
12	정책기반 강화학습: DDPG	실습, 팀과제	
13	정책기반 강화학습: SAC	실습, 팀과제	
14	정책기반 강화학습: HER	실습, 팀과제	
15	기말발표		

Markov Decision Process (MDP)

Markov Decision Process(MDP)

- Discrete-time stochastic control process
 - Time moves forward in finite intervals: t {1,2,3,4}
 - Future states depend only partially on the actions taken
 - It is based on decision making to reach the target state
- Formalism to define a control task problem

Agent interaction with Env.

(S,A,R,P)

• Set of possible **states** of the task

 \mathbf{o}_t – observation

- Set of actions that can be taken in each of the states
- Set of rewards for each (s, a) pair
- Probabilities of passing from one state to another when taking each possible action (Transition Probabilities)

Markov Property

The process has no memory:

$$P[S_{t+1} | S_t = S_t] = P[S_{t+1} | S_t = S_t, S_{t-1} = S_{t-1}, ..., S_0 = S_0]$$

- The next state depends only on the current state, not on the previous ones
- If a process meets this property, it is known as Markov process (would it be valid in the real world?)

Markov chain vs. MDP

Differences are actions and rewards

Example: Markov Process(MP)

Example: Markov Reward Process(MRP)

Example: Markov Decision Process(MDP)

Types of MDP

- Finite vs. Infinite
- Episodic vs Continuing

Trajectory and episode

Trajectory:

- Elements that are generated when the agent moves from one state to another
- $\{tau\} = S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3$

Reward vs Return

- The goals of the task are represented by the rewards(Rt)
 - We want to maximize the sum of rewards
- A short-term reward can worsen long-term results
 - We want to maximize the long-term sum of rewards
- Reward: R_t
- Return: $G_t = R_{t+1} + R_{t+2} + R_{t+3} + + R_T$
 - We want to maximize the episode's return

Discount factor

- We will multiply future rewards by a discount factor
 - $G_0 = R_1 + \gamma^* R_2 + \gamma^2 * R_2 + \gamma^3 R_3 + ... + \gamma^{T-t-1} R_T$, $\gamma \in [0,1]$ • $\begin{cases} \text{If } \gamma = 0 \text{, all future rewards will be 0} \\ \text{If } \gamma = 1 \text{, all future rewards will not be discounted} \end{cases}$
 - γ measures how far into the future the agent has to look when planning its actions
- We want to maximize the long-term sum of discounted rewards

Discount factor

 The agent has no incentive to go to the goal through the shortest route

$$G_0 = R_1 + R_2 + R_3 + ...$$

Policy $\pi(s)$

Function that decides what action to take in a particular state

$$\pi: S \to A$$

- Probability of taking an action a in state s: $\pi(a|s)$
 - Stochastic: $\pi(a|s) = [p(a_1), p(a_2), ..., p(a_n)]$ e.g.. $\pi(a|s) = [0.3, 0.2, 0.5]$
- Action a taken in state s: $\pi(s)$
 - Deterministic: $\pi(s) \rightarrow a$ e.g., $\pi(s) = a1$
- We must find the optimal policy π^*

Terminology(Overall)

MDP Code Example

Setup Code Env.

- Git download: https://git-scm.com/downloads
- Git clone https://github.com/parkjin-nim/rl_lecture.git
- Install Anaconda
- conda create -n <your env. name> -f environment.yml
- Open Jupyter notebook
- Open MDP_introduction.ipynb