SiO Molecular Jets around young stars - A numerical perspective

B. Vaidya^{1*}, Tom Douglas¹, Paola Caselli¹, Tom Hartquist¹

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT

11 August 2013

ABSTRACT

A bipolar, violent, collimated outflow is one of the first signpost of star formation. Such an outflow is believed to be launched magnetically from underlying accretion disk. As it propagates through the molecular cloud, it injects energy and momentum via shocks and fosters chemical evolution by forming, destroying and entraining molecules along its path. High velocity molecular outflows are extensively studied for both low mass and high mass stars. They are usually observed using standard sub-mm outflow and shocks tracers like CO and SiO respectively. However, the exact nature of excitation of these molecules is not yet clear due to lack of models that simultaneously study the dynamics along with complex molecular chemistry. For such a study, we have perfomed MHD simulations of jet propagation into a molecular cloud using the PLUTO code. Firstly, we evolve the jet dynamical quantities in conjunction with different nonequilibrium cooling prescriptions of varying complexities. The most complex is that of molecular cooling along with H₂ chemistry. This prescription allows us to track the formation and destruction of HI, HII and H₂ along with the flow dynamics. The final state of the jet obtained for each cooling model is then post-processed using a non-LTE radiative line transfer code, LIME, to obtain SiO emission maps, spectra and PV digram. We find that the strength of SiO emission depends strongly on the cooling prescription and SiO fractional abundance profile. We find that the bulk of SiO emission comes from the interface between the jet and the ambient molecular medium mainly excited to due to shocks. Further, we see that some SiO can be produced within the jet specially close to the bow shock due to instabilities associated with cooling. We have used these emission maps to give predictions for ALMA observations. Also, our model can very well reproduce the observed spectra, line ratios and PV diagrams of young outflows from Class 0 sources.

Key words: MHD - methods:numerical - ISM: jets and outflows

1 INTRODUCTION

Jets are one of the first manifestations of star formation in dense molecular cores. They are ubiquitous in both massive and low star forming regions. These supersonic flows perpendicular to the underlying accertion disk plays a vital role in removing excess angular momentum and thereby aiding in the accretion. For low mass stars, they are believed to be launched by magneto-centrifugally forces and further collimated by magnetic hoop stress (Blandford & Payne 1982; Konigl & Pudritz 2000). However, in case of high mass stars, radiative forces also contribute to flow dynamics during the later evolutionary stages Vaidya et al. (2011). Typically, these jets are few parsec size long and can

be divided into three length-scale domains viz. source and disk scales ($1 \cdot 10^2 \text{ AU}$), envelope scales ($10^2 - 10^5 \text{ AU}$) and parent cloud scales ($10^5 - 10^6 \text{ AU}$) REFERENCE. Among them, the envelope scales are the ones where rich chemical evolution occurs as the jet interacts with the molecular medium. In this region, the jet propagates into a relatively static medium inducing shocks that are interesting from the physical and chemical point of view. In addition to shocks, molecular material from the surrounding is entrained and accelerated to high velocities giving rise to molecular outflows.

Bipolar molecular outflows from low and high mass stars have been studied in details over the past decade (see reviews by Bachiller 1996; Arce et al. 2007; Tafalla & Bachiller 2011). Advancement in millimeter interferometers have allowed to observe these outflows with high spatial res-

olution of few arc seconds. A large number of studies related to young outflows are done using standard outflow and shock tracer like CO and SiO respectively. In addition to these molecular tracers, shocks from these outflows are detected in molecular hydrogen using infra-red telescopes. Based on these observational studies, various empirical properties for these outflows have been discovered. For example, the CO outflows from single dish studies are seen to be highly collimated for both low and high mass stars (for e.g., Gueth & Guilloteau 1999; Beuther et al. 2002) they are referred to as molecular jets. These outflows also exhibit a mass-velocity relation with a power law form $dM(v)/dv \propto v^{-\gamma}$, where values of γ range from 1 to 3 Downes & Cabrit (2003). Episodic knots belived to be caused by variable accretion events are a common property of young molecular outflows (for e.g. in L1577: Gueth et al. 1998, in HH300: Arce & Goodman 2001a). These knots show their signatures as wedges in the position-velocity (PV) diagrams Arce & Goodman (2001b). Also, most commonly observed in these outflows are signatures of rotation and precision (for e.g., in DG Tau: Bacciotti et al. 2002).

Even with myriad of empirical evidences, the exact nature of SiO and CO outflow is not clear. For a complete understanding it is imperative to compliment these observations with theoretical models. Many models based on hydrosimulations and steady state shock calculations were proposed to explain the observational signatures of molecular outflows. Among them the two main models are that of wide-angled wind driven Shu et al. (1991) and jet driven outflow Canto & Raga (1991). The most popular among them is the jet driven model as wind driven molecular outflows not only fail to match observed PV digarams Cabrit & Bertout (1992) but also tend to sweep large quantitity of material at the extermities of the lobes Masson & Chernin (1992). While the jet driven models could sucessfully derive the global outflow shapes and mass velocity relations of CO outflows (Raga & Cabrit 1993; Masson & Chernin 1993). There have also been some attempts to combine these two models into one Shang et al. (2006) to explain the global observational features. However, most of these dynamical models do not account for shock chemsitry. Instead, shock chemistry is studied independently using steady state nondissociative C-type and dissociative J-type shocks models (Neufeld & Dalgarno 1989; Schilke et al. 1997; Flower et al. 2003). The magneto-hydrodynamic (MHD) calculations by Glassgold et al. (1991) suggested that molecules like SiO and CO could as form within the jet. Similar conclusions of molecules surving in steady state disk winds have also been shown Panoglou et al. (2012). Very limited simulations have modelled the outflow dynamics including molecular chemistry but in absence of magnetic fields (Raga et al. 1995; Smith & Rosen 2003).

In the present work, our goal is to take a step further in modelling of jet driven molecular outflows. The present model aims to consistently derive observed emission properties of molecular outflows, specifically various SiO line transitions, by combining axisymmetric MHD simulations of radiative jet propogation. In particular, we evolve the jet dynamical quantities in conjunction with different non-equilibrium cooling prescriptions of varying complexities. The most complex is that of molecular cooling along with $\rm H_2$ chemistry. This prescription allows us to track the for-

mation and destruction of HI, HII and H2 along with the flow dynamics. The final state of the jet obtained for each cooling model is then post-processed using a non-LTE radiative line transfer code to obtain emission maps, spectra and PV digram. These emission maps are further processed using ALMA-CASA pipeline to obtain synthetic images of molecular outflows.

In the next three section we describe our numerical setup, cooling presecriptions and radiative transfer line code respectively. In Sect. 5, we will present results from the parameter survey and the discussions along with predicted ALMA maps will be presented in Section 6 and 7, followed by conclusions.

2 NUMERICAL SETUP

2.1 Numerical code and Equations

For our study, we carry out axisymmetric numerical ideal MHD simulations using the PLUTO code (Mignone et al. 2007) which is based on a conservative scheme of Godunov type. We have modified the original code to incorporate molecular cooling from self-consistent evolution of hydrogen chemistry (see Sect. 3).

In general, the MHD code considers the following set of equations. The conservation of the mass and the momentum,

$$\frac{\partial \rho}{\partial t} + (\vec{v} \cdot \nabla)\rho + \rho \nabla \cdot \vec{v} = 0 \tag{1}$$

$$\rho(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v}) = -\nabla P + \frac{1}{4\pi}(\nabla \times \vec{B}) \times \vec{B} \qquad (2)$$

where ρ is gas density, \vec{v} the velocity vector, P the gas pressure, and \vec{B} the magnetic field vector with the poloidal and toroidal components - $\vec{B}_{\rm p}$, B_{ϕ} . Note that the forces due to gravity are neglected for this problem as the domain of interest is far away from the central object (i.e., star).

The cooling function Λ which dependents on temperature T, mass density ρ and chemical abundances \mathbf{X} , appears in the energy equation as a source term.

$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot \left[\rho E \vec{v} + (P + \frac{B^2}{8\pi}) \vec{v} \right] - \vec{B}(\vec{v} \cdot \vec{B}) = \Lambda(\rho, T, \mathbf{X}), \tag{3}$$

where the total energy density of the flow E comprises contributions from the internal energy ϵ , the mechanical energy and the magnetic energy,

$$E = \epsilon + \frac{v^2}{2} + \frac{B^2}{8\pi\rho}.\tag{4}$$

The gas pressure in the flow is related to the density assuming an equation of state with the adiabatic index γ ,

$$P = (\gamma - 1)\rho\epsilon. \tag{5}$$

The evolution of chemical abundances for each species is solved via,

$$\frac{\partial \rho \mathbf{X}_i}{\partial t} + \nabla \cdot (\rho \mathbf{X}_i \vec{v}) = \rho \mathbf{S}_i, \tag{6}$$

where S_i represents the net creation or destruction of a given species through chemical reactions (see Sect. 3).

The evolution of the magnetic field is governed by induction equation,

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{v} \times \vec{B} \right). \tag{7}$$

In addition to the above set of equations the code obeys the condition of divergence-free magnetic fields, $\nabla \cdot \vec{B} = 0$, which is numerically achieved by construction since using the Powell's eight wave formulation.

2.2 Initial Condition

We model the propagation of jet as it interacts with the molecular cloud core much further from the central object, i.e., $> 1000\,\mathrm{AU}$. Further away from the central source, the downward pull of gravity plays a negligible role and the dynamics of jet is primarily governed by magnetic fields. The total magnetic field in jet is dominated by the toroidal component. This is because the poloidal field decays as z^{-2} as compared to z^{-1} for toroidal field to maintain the force balance (z is the vertical distance from source). The hoop stress due to pinch force from toroidal magnetic fields maintains the a highly collimated beam like structure for the jet.

The ambient medium with which the jet interacts primarily represents the molecular cloud core. The numerical domain is axi-symmetric and in (r,z,ϕ) cylindrical coordinates. Its extent in radial direction is 20 R_i and 100 R_i along the vertical axis, R_i being the radius of the jet. The domain is resolved by an uniform grid with 200 cells in radial and 1000 cells in vertical direction. For simplicity, we choose this medium to be unmagnetized and non-turbulent. The density in the ambient medium varies with vertical height z as, $\rho_{\rm amb} \sim (\rho_0/z^2)$ consistent with observations (Caselli 2011). The value of ρ_0 depends upon the density contrast, η , between the jet and the ambient medium. The number density in the jet is kept fixed such that the density in ambient medium lies within a range of $10^4 - 10^5 \text{cm}^{-3}$. The pressure in the ambient molecular medium is set so to maintain a constant temperature of 50 K.

The jet enters into the medium through a nozzle of radius $R_{\rm jet}$ from the lower boundary (z = 0). The jet density is fixed to be $10^5 \, {\rm cm}^{-3}$ and it has a radius of $2.5 \times 10^{15} \, {\rm cm} \sim 167 \, {\rm AU}$. The jet is injected into the domain with a typical velocity of $v_{\rm jet,0} = 100 \, {\rm km/s}$ as is the case for most low mass stellar jets specially the low velocity component. The constant jet velocity is superimposed with periodic pulsation of the form,

$$v_{\rm jet} = v_{\rm jet,0}(1.0 + A\sin(2.0\pi t/T_{\rm p}))$$
 (8)

where the amplitude A is 0.25 and time period $T_{\rm p}=70$ years. The pressure at the surface of the jet is $10^{-10}{\rm dyne~cm^{-2}}$ corresponding to a temperature of $T_{\rm jet}\sim 4\times 10^3~K$. Inside the jet beam, a radial variation of thermal and magnetic pressure is adopted to maintain a magnetostatic equilibrium. We adopt the same radial profiles used by Stone & Hardee (2000) for all our runs. Based on these profiles, the toroidal magnetic field is assumed to be zero at the axis and achieves a maximum at some radius, $r_{\rm m}$ inside the jet. The maximum value, $B_{\phi,\rm m}$, depends on the plasma β which is kept fixed for all our runs to be at a value of 10.0. This corresponds to the maximum field strength, $B_{\phi,\rm m}\sim 16\mu\,G$.

In order to consistently model the SiO emission arising from shocks as this jet interacts with the medium, we evolve the dynamics along with chemistry and cooling prescribtions. They are described in details in the next section.

3 CHEMISTRY AND COOLING

- 3.1 Power law cooling
- 3.2 Atomic Cooling
- 3.3 Tabulated Cooling

3.4 Molecular Cooling

The evolution of molecular, atomic and ionized hydrogen is governed by equations listed in Table 1. In this cooling mode, these equations are evolved at each times using temperature dependent rates mentioned in the table along with their source. The code tracks the formation and destruction of three quantities viz., X(HI), $X(H_2)$ and X(HII) with a constraint that sum of all three should be unity. Further, these abundances are used to update the cooling function $\Lambda(n,T,\mathbf{X})$ to consistently derive the temperature for next advection step.

4 RADIATIVE TRANSFER

Radiative transfer modeling used for post processing.

4.1 The radiative transfer code

The radiative transfer program used is LIME (LIne Modeling Engine; Brinch & Hogerheijde 2010), which calculates line intensities based on a weighted sample of randomly chosen points in a continuous 3D model. The method of selecting these points is given in section 4.2. At each of these points, the density of the main collision partner (equivalent amount of H_2 , given by $n(H_2)+0.5 n(H)$, gas and dust temperatures, velocity, molecular abundances and unresolved turbulent velocity are specified. These points are then smoothed by Lloyd's algorithm (Lloyd 1982) in order to minimise the variation in distance between points whilst keeping the same underlying distribution. These points are then connected by Delaunay triangulation and it is between the points connected by this method that photon are allowed to propagate (fig. 14). The level populations of the selected molecules are calculated at each of these points from collisional and radiative (de)excitation and the local radiation field is calculated. This is repeated 20 times with the populations of each level converging towards a single value. This number of iterations is sufficient for the signal to noise ratio of the level populations (as defined in Brinch & Hogerheijde 2010) to exceed 1000 for 99% of the points, ensuring that the simulation has converged on a stable level population. After 20 iterations the model is ray-traced in order to produce synthetic brightness maps. The average of ten separate runs was taken to minimise the artefacts in the output images, resulting from the grid construction.

Figure 1. Variation of H_2 chemistry reaction rates, k_i and cooling function $\Lambda(n, T, \mathbf{X})$ with temperature for the initial state (see Sect. 3.4)

Table 1. Summary of the chemistry reaction set. T is the temperature in Kelvin, $T_{\rm eV}$ is the temperature in electron-volts, $T_5 = T/1 \times 10^5$ and $T_2 = T/100$

No.	Reaction	Rate Coefficient (cm ³ s ⁻¹)	Reference ^a
1.	$\mathrm{H} + \mathrm{e}^- \rightarrow \mathrm{H}^+ + 2\mathrm{e}^-$	$k_1 = 5.85 \times 10^{-11} \ T^{0.5} \ \exp(-157,809.1/T)/(1.0 + T_5^{0.5})$	1
2.	$\mathrm{H^+} + \mathrm{e^-} \rightarrow \mathrm{H} + \mathrm{h}\nu$	$k_2 = 3.5 \times 10^{-12} (T/300.0)^{-0.8}$	2
3.	$\mathrm{H_2} + \mathrm{e^-} \rightarrow 2\mathrm{H} + \mathrm{e^-}$	$k_3 = 4.4 \times 10^{-10} T^{0.35} \exp(-102,000.0/T)$	3
4.	$H_2 + H \rightarrow 3H$	$k_4 = 1.067 \times 10^{-10} T_{\rm eV}^{2.012} (\exp(4.463/T_{\rm eV})^{-1} ((1.+0.2472T_{\rm eV})^{3.512})^{-1}$	4
5.	$\mathrm{H_2}+\mathrm{H_2}\rightarrow\mathrm{H_2}+\mathrm{2H}$	$k_5 = 1.0 \times 10^{-8} \exp(-84, 100/T)$	2
6.	$H + H \xrightarrow{dust} H_2$	$k_6 = 3.0 \times 10^{-17} \sqrt{T_2} (1.0 + 0.4 \sqrt{T_2 + 0.15} + 0.2T_2 + 0.8T_2^2)$	5

^a REFERENCES – (1) Cen (1992) [Eq. 26a]; (2) Woodall et al. (2007) [UMIST Database] (3) Galli & Palla (1998) [Eq. H17]; (4) Abel et al. (1997) [Tab. 3 Eq. 13]; (5) Hollenbach & McKee (1979) [Eq. 3.8]

Figure 2. A plot of the points selected by the gridding process and the paths down which photons can propagate for points in the r,z plane. The points are color coded by the density distribution (in ${\rm m}^{-3}$, as used in LIME) and are more concentrated in the high density knots.

4.2 Grid construction

In order to construct the grid, candidate points are randomly selected from the volume to be simulated. These candidates

then have their equivalent H₂ number density, and the number density of SiO, compared against those of a reference point in order to decide if the candidate point is to be used in the grid or not. Candidate grid points are selected at random in a cylindrical coordinates that is linearly spaced in z and θ and logarithmically spaced in r. For each point to be selected, a random number α is drawn from the semi-open set [0,1) as a threshold. After selection of random coordinates, the H₂ density and SiO density at the candidate point (n and m, respectively) are compared against the densities of a reference point in the un-perturbed ambient medium multiplied by $\frac{4\eta}{5}$ (n₀ and m₀). If $\alpha < \left(\frac{n}{n_0}\right)^{0.3}$ or $\alpha < \left(\frac{m}{m_0}\right)^{0.3}$ then the point is selected for use. Otherwise another r, θ , z co-ordinate is selected and it becomes the candidate point. In addition to this method of selection, 5% of the points are linearly distributed in x, y and z with no bias with regards to density or abundance. This provides a minimum level of sampling for the large low density regions in the outer parts of the simulated volume. See fig. ?? for an example of the

Figure 3. The different fractional SiO abundances as a function of shock velocity, Vs.

points distribution in r, z. The function comparing the candidate point to the reference point and the candidate point distribution were selected empirically to sample all scales while ensuring that the majority of points are located in the inner disc where the density is higher.

4.3 SiO abundance

Need refs for this!!The amount of SiO is determined by the local velocity and temperature. The fractional abundance is given by the equation:

$$log(X) = -2.48 \times 10^{-8} v^5 + 5.50 \times 10^{-6} v^4$$

$$-4.28 \times 10^{-4} v^3 + 1.24 \times 10^{-2} v^2$$

$$+2.52 \times 10^{-2} v - 1.20 \times 10^1$$
(9)

where v is the shock velocity in kilometres per second. In addition to this if the temperature at the point is greater than 92,000K (the temperature of the Si-O bond disassociation energy) the abundance is reduced to 10^{-12} .

5 PARAMETER SURVEY

The results and analysis for the present work are divided in two parts, viz., the dynamical numerical simulations and the post-processing with radiative transfer code. For each part we have used certain parameters and the effect of changing them is studied. Ideally all these parameters should come from observational results. However, not all quantities needed for our study are well constraint by the observations, thus allowing us vary them as free parameters. Such a parameter survey provides better handle on the range of allowed values on qualitative comparison with observations.

For the first part of the study concerning the dynamical

Figure 5. A plot of the integrated SiO J2-1 emission from 5 models, each using a different method to calculate cooling and all with η =10 β =10.

numerical simulations, we will focus on two main parameters. They are the prescribtion of cooling and the density contrast between the jet and the ambient medium denoted by η . The various cooling prescribtions used for the present study are described in details in section 3. A value of $\eta > 1$, mean that that jet is overdense with respect to the medium. In all our runs with different cooling prescribtions, we have assumed the jet to be overdense by 10 times that of the ambient medium. Additionally, for the atomic, tabulated and molecular cooling runs we have used a value of η of the order of unity indicating similar densities in the jet and the medium. The magentic field strength is kept to be fixed using $\beta = 10.0$, for all our runs. Table 2 lists all the runs with varying η and cooling prescriptions, along with the peak intensity and line widths at the bow shock.

The post-processing phase is done in details for the molecular run with $\eta=3$. To obtain the SiO emission maps and corresponding spectra, two additional free parameters are required along with other inputs described in section 4 . They are the fractional abundance profile of SiO and the angle of inclination with respect to line of sight denoted by ϕ . Section 4.3 describes all the profiles used for the present study. The obivious choice for the inclination angle, ϕ is 90° indicating the outflow is in the plane of the sky. Additionally, we have used two other angles of inclination apart from the plane of the sky, i.e, $\phi=45^{\circ},60^{\circ}$ to compare results with observations. The runs with different fractional abundance profiles are described in table 3

6 RESULTS

6.1 Comparison of cooling prescription

Importance of cooling prescriptions

Bulk of emission comes from cooling instabilities. figure nos. 2 – Similuated images, emission maps for eta = 10.

6.2 Molecular cooling and H₂ Chemistry

In case of molecular outflows, the most appropiate form of cooling prescribtion among the ones described in sect. 3

Table 2. Summary from parameter runs.

Run	Cooling Mode	η	Peak Intensity [K]	$\Delta v \; [\rm km \; s^{-1}]$
adi1010 pow1010 atm1010 atm210 tab1010 tab210 mol1010 mol310	Nil (Adiabatic) Power law Atomic Atomic Tabulated Tabulated Molecular Molecular	10 10 10 2 10 2 10 3		

Table 3. Summary of radiative transfer runs with different SiO fractional abundance profiles for dynamical simulation with molecular cooling and $\eta = 3$.

Profile	$\rm v_j \ [km \ s^{-1}]$	$\delta^{-1} = v_j/v_s$	Peak Intensity [K]	$\Delta v \; [\mathrm{km} \; \mathrm{s}^{-1}]$
Top Hat Functional Functional Functional Functional Functional	100.0 100.0 100.0 100.0 125.0 150.0	1.0 1.0 $(1.0 + \eta^{-0.5})$ $(1.0 + \eta(z)^{-0.5})$ $(1.0 + \eta(z)^{-0.5})$ $(1.0 + \eta(z)^{-0.5})$		

is that which involves the evolution of H_2 chemistry along with contributions to cooling from fixed fractions of other molecules like CO, OH etc. First three panels of figure 6 shows the density of various hydrogen species in the outflow for the simulation run with $\eta=3$ and $\beta=10$. The jet is largely dominated by atmoic and molecular hydrogen, however, the fraction of these species have considerably changed from their initial values within the jet. Ionzied hydrogen is mainly formed at the tip of the bow as seen by the increase of fHII to 10% from an initial value of 1% within the jet.

The last two panels of figure 6 show the temperature and mean molecular weight μ . The highest tempeature of $\sim 50000\,\mathrm{K}$ is attained in our flow at the tip of the bow shock. While the temperature on the edges (i.e.,interface between jet and the ambient medium) is lower than $5000\,\mathrm{K}$. Also the relatively weaker shocks formed due to knots do not heat up the material beyond few $10^3\,\mathrm{K}$. The mean molecular weight, μ , gives an indication on which specie of hydrogen dominates in what regions of the flow. In particular, a value of $\mu > 2$. represents regions dominated by molecular hydrogen, regions with lowest values of μ are where most of the ionized hydrogen is present, while along the jet the value μ is close to 1.3 suggesting an atomic jet.

The distribution of fractions of different hydrogen species along with temperature suggests that there are essentially three regions where chemistry is evolved due to shocks. They are: (1) The tip of the jet, (2) The edges of the jet and (3) intermediate knots. As the atomic jet propgates from the lower boundary into the cold molecular medium, it forms a strong shock resulting in forming a density and temperature discontinuity. Such a jump in dynamical quantities play a crucial role in evolution of chemistry. For example, temperatures beyond few 1000 K produced in the shocks could disassociate the molecules and can also lead to ionization if temperature reaches above $10^4\,\mathrm{K}$.

Figure 8. Variation of 2->1 SiO emission for runs with molecular cooling having $\eta=3$ and $\beta=10$ and different abundance profiles.

6.3 SiO Abundance profile

figure nos. 2 – Comparison of three profiles for SiO Abundance, Contour maps for two transitions for top hat profile. Effects of varing abundance profile ... Crucial ingredient in modeling molecular bullets

6.4 Spectra and PV diagrams

figure nos. 1 – one transition 3 different angles, Comparison of spectra and line ratios Spectra and PV Digrams Line - withs $\sim 15\text{-}25~\mathrm{km\,s^{-1}}$. Wedge shaped PV diagrams a signature feature of jet driven molecular outflows. Counterparts in observations.

7 DISCUSSION

Here we compare the various results with SiO observation of young low mass and high mass outflows.

Figure 4. Jet Volume Density for different cooling modes with $\eta=10$ and $\beta=10$.

Figure 6. Fraction of hydrogen species in the run with molecular cooling having $\eta = 3$ and $\beta = 10$.

Figure 9. Contour maps of position-velocity diagram for the internal knots for 2->1 SiO emission for runs with molecular cooling having $\eta=3$ and $\beta=10$ and different abundance profiles. The contours mark different levels of emission in Kelvins, viz., 0.2,0.6,1.0,1.4,1.8,2.0,3.0,4.0.

7.1 Line transitions and ratio

Different line transition trace different components of SiO emission. The low level transitions trace the region where the jet interacts with molecular medium. The clumpy nature in its emission is from the turbulent nature of its interaction. The higher transitions trace a much more collimated region along with the terminal shock. As seen by Chandler & Richer (2001) and Hirano et al. (2006).

Advantage of non-LTE modeling over LVG Cabrit et al. (2007), Lee et al. (2008). Line ratios ~ 1 can be explained

well for low mass stars and Leurini et al. (2013) for high mass stars.

7.2 Shock Kinematics

C-type vs J-type shocks. Gueth et al. (1998) shows that SiO emission has counterparts to $\rm H_2$ emission and prefers the J-shock formation of SiO.

7.3 ALMA view

ALMA view of the reference run and stress of applying our synthetic techniques to study the molecular outflows in more details.

Figure 6. for ALMA -

8 CONCLUSION

We are the best in modelling SiO outflows.

REFERENCES

Abel T., Anninos P., Zhang Y., Norman M. L., 1997, New A, 2, 181

Arce H. G., Goodman A. A., 2001a, ApJ, 554, 132

Figure 7. Dependence of hydrogen fractions on the temperature at two points in the flow, viz. the interface of the knot with molecular medium and at the bow shock

Figure 13. Contours of SiO emission for different line transitions obtained for the run with molecular cooling with $\eta = 3$ using the functional form of the SiO fractional abundance with $\delta < 1$. The contour colors represent different intensities in Kelvins, i.e, 30.0(red), 10.0(green), 5.0(blue), 1.0(magenta), 0.5(cyan), 0.1(black).

Figure 10. Emission map (top left), PV diagram (top right and spectra (bottom for the 2->1 SiO transition for the run with molecular cooling with $\eta=3$ and fractional abunance of functional form is used along with $\delta<1$. The jet is assumed to be in the plane of sky implying an angle of inclination of 90°. The horizontal white dashed line marks the cuts where the spectra is taken while the vertical magenta dashed line represents the cut for the PV digram.

Arce H. G., Goodman A. A., 2001b, ApJ, 551, L171

Arce H. G., Shepherd D., Gueth F., Lee C.-F., Bachiller R., Rosen A., Beuther H., 2007, Protostars and Planets V, pp 245–260

Bacciotti F., Ray T. P., Mundt R., Eislöffel J., Solf J., 2002, ApJ, 576, 222

Bachiller R., 1996, ARA&A, 34, 111

Beuther H., Schilke P., Gueth F., McCaughrean M., Andersen M., Sridharan T. K., Menten K. M., 2002, A&A, 387, 931

Blandford R. D., Payne D. G., 1982, MNRAS, 199, 883

Brinch C., Hogerheijde M. R., 2010, A&A, 523, A25

Cabrit S., Bertout C., 1992, A&A, 261, 274

Cabrit S., Codella C., Gueth F., Nisini B., Gusdorf A., Dougados C., Bacciotti F., 2007, A&A, 468, L29

Canto J., Raga A. C., 1991, ApJ, 372, 646

Caselli P., 2011, in Cernicharo J., Bachiller R., eds, IAU Symposium Vol. 280 of IAU Symposium, Observational Studies of Pre-Stellar Cores and Infrared Dark Clouds. pp 19–32

Cen R., 1992, ApJS, 78, 341

Chandler C. J., Richer J. S., 2001, ApJ, 555, 139

Downes T. P., Cabrit S., 2003, A&A, 403, 135

Flower D. R., Le Bourlot J., Pineau des Forêts G., Cabrit S., 2003, MNRAS, 341, 70

Figure 11. Same as figure 10 but with angle of inclination of 60° .

Figure 12. Same as figure 10 but with angle of inclination of 45°

Figure 14. Top Line profiles in SiO J = 2-1, 5-4 and 8-7 at one the inner knot for the molecular cooling run with $\eta = 3$ and $\beta = 10$ using top hat abundance profile. The profiles are obtained when the angle of inclination is 60° with respect to line of sight. Bottom Line temperature ratios T(8-7)/T(5-4) and T(2-1)/T(5-4), as a function of velocity

Galli D., Palla F., 1998, A&A, 335, 403

Glassgold A. E., Mamon G. A., Huggins P. J., 1991, ApJ, 373, 254

Gueth F., Guilloteau S., 1999, A&A, 343, 571

Gueth F., Guilloteau S., Bachiller R., 1998, A&A, 333, 287 Hirano N., Liu S.-Y., Shang H., Ho P. T. P., Huang H.-C.,

Kuan Y.-J., McCaughrean M. J., Zhang Q., 2006, ApJ, 636, L141

Hollenbach D., McKee C. F., 1979, ApJS, 41, 555

Konigl A., Pudritz R. E., 2000, Protostars and Planets IV, p. 759

Lee C.-F., Ho P. T. P., Bourke T. L., Hirano N., Shang H., Zhang Q., 2008, ApJ, 685, 1026

Leurini S., Codella C., Gusdorf A., Zapata L., Gómez-Ruiz A., Testi L., Pillai T., 2013, A&A, 554, A35

Lloyd S., 1982, Information Theory, IEEE Transactions on, 28, 129

Masson C. R., Chernin L. M., 1992, ApJ, 387, L47

Masson C. R., Chernin L. M., 1993, ApJ, 414, 230

Mignone A., Bodo G., Massaglia S., Matsakos T., Tesileanu O., Zanni C., Ferrari A., 2007, ApJS, 170, 228

Neufeld D. A., Dalgarno A., 1989, ApJ, 340, 869

Panoglou D., Cabrit S., Pineau Des Forêts G., Garcia P. J. V., Ferreira J., Casse F., 2012, A&A, 538, A2

Raga A., Cabrit S., 1993, A&A, 278, 267

Raga A. C., Taylor S. D., Cabrit S., Biro S., 1995, A&A, 296, 833

Schilke P., Walmsley C. M., Pineau des Forets G., Flower D. R., 1997, A&A, 321, 293

Shang H., Allen A., Li Z.-Y., Liu C.-F., Chou M.-Y., Anderson J., 2006, ApJ, 649, 845

Shu F. H., Ruden S. P., Lada C. J., Lizano S., 1991, ApJ, 370, L31

Smith M. D., Rosen A., 2003, MNRAS, 339, 133

Stone J. M., Hardee P. E., 2000, ApJ, 540, 192

Tafalla M., Bachiller R., 2011, in Cernicharo J., Bachiller R., eds, IAU Symposium Vol. 280 of IAU Symposium, Molecules in Bipolar Outflows. pp 88–102

Vaidya B., Fendt C., Beuther H., Porth O., 2011, ApJ, 742,

56

Woodall J., Agúndez M., Markwick-Kemper A. J., Millar T. J., 2007, A&A, 466, 1197