Combinatoria 5

Temas:

- 1. Recurrencia lineal homogénea
- 2. Recurrencia lineal no homogénea

Recurrencia homogénea

Se dice que una recurrencia lineal es homogénea de orden k si existen $c_1, c_2, \ldots c_k \in \mathbb{R}$ y valores iniciales para a_1, a_2, \ldots, a_k tal que $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$

Analicemos con orden 2 la receta para a partir de una fórmula de recurrencia hallar su forma cerrada, luego esto se puede hacer para orden k.

Ecuación característica

Sea $q=0 \in \mathbb{R}$. La sucesión q^n satisface la recurrencia $a_n=c_1a_{n-1}+c_2a_{n-2} \iff q$ es raíz de $x^2-c_1x-c_2=0$ la cual es conocida como ecuación característica de la recurrencia.

Por qué funciona?

Si evaluamos q^n en la recurrencia tenemos que $q^n=c_1q^{n-1}+c_2q^{n-2}$, luego, al dividir por q^{n-2} y llevar todo al miembro izquierdo resulta en $q^2-c_1q-c_2=0$ lo cual q cumple por ser solución de la ecuación característica.

Generar infinitas soluciones

Si q y p son soluciones de la recurrencia $\implies Aq + Bp$ es solución para cualquier $A, B \in R$, lo cual simpre genera una solución y genera infinitas soluciones, pero, serán todas?

Todas las soluciones son generadas

Vamos a probar que toda solución de la recurrencia puede ser expresada como combinación lineal de las soluciones de la ecuación característica si q y p

$$Aq + Bp = a_1$$
$$Aq^2 + Bp^2 = a_2$$

Para que este sistema tenga solución el siguiente determinante debe ser distinto de cero, lo cual se cumple porque q=p

$$\begin{vmatrix} q & p \\ q^2 & p^2 \end{vmatrix} = 0$$

Pero que ocurriría si la solución de la ecuación característica es doble? En ese caso una solución es q^n y otra es nq^n . Vamos a probar que esta última es solución evaluando en la recurrencia, por Vietta tenemos que se cumple lo siguiente:

$$x^2 - c_1 x - c_2 = 0$$

Como q es raíz doble entonces:

$$x_1 + x_2 = c_1 = 2q$$
$$-x_1x_2 = c_2 = -q^2$$

Y por tanto, al evaluar en la recurrencia resulta:

$$nq^{n} = 2q(n-1)q^{n-1} - q^{2}(n-2)q^{n-2}$$

Lo cual al realizar las multiplicaciones y reducir términos semejantes resulta en la igualdad.

Vamos a probar que toda solución de la recurrencia puede ser expresada como combinación lineal de las soluciones q^n y nq^n

$$Aq + Bq = a_1$$
$$Aq^2 + B2q^2 = a_2$$

Para que este sistema tenga solución el siguiente determinante debe ser distinto de cero, lo cual se cumple porque q=0

$$\begin{vmatrix} q & p \\ q^2 & 2q^2 \end{vmatrix} = q^3 = 0$$

Forma genérica

Sea la relación de recurrencia

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

Cuya ecuación característica es:

$$x^k - c_1 x^{k-1} - \dots - c_k = 0$$

Si esta tiene k reíces distintas la solución es de la forma:

$$A_1q_1^n + A_2q_2^n + \dots + A_kq_k^n$$

Si existe una raíz q_r con multiplicidad t entonces esta produce las soluciones $q_r^n, nq_r^n, n^2q_r^n, \dots, n^{t-1}q_r^n$

Recurrencia no homogénea

Sea P_n una solución particular de la recurrencia $a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k} + f(n)$ entonces la solución general es $P_n + H_n$ donde H_n es una solución de la homogénea.

Si el término no homogéneo de la recurrencia es de la forma $p(n)s^n$ donde p(n) es un polinomio de grado r y s es constante hay que analizar los siguientes casos:

- 1. Si s no es raíz de la ecuación característica hay una solución $q(n)s^n$ donde q(n) tiene a lo sumo grado r, el cual, comienza genérico y se obtiene el valor de los coeficientes evaluándolo en la recurrencia, reduciendo términos semejantes e igualándolos.
- 2. Si s es raíz de multiplicidad t hay una solución $n^t q(n) s^n$ donde q tiene grado a lo sumo r, aplicando luego el mismo procedimiento que el caso anterior.

Si el término no homogéneo de la recurrencia es de la forma $p_1(n)s_1^n+\cdots p_m(n)s_m^n$ entonces hay una solución particular de la forma $f_1(n)+\cdots+f_m(n)$ donde $f_i(n)$ es una solución particular de $a_n=c_1a_{n-1}+\cdots+c_ka_{n-k}+P_i(n)s_i^n$

Ejercicios

Problema 1

Encuentre la forma cerrada de las siguientes recurrencias:

1.
$$a_n = 5a_{n-1} + 8 - 6a_{n-2} \operatorname{con} a_0 = 1$$
, $a_1 = 2$

2.
$$a_n = 2a_{n-1} - a_{n-2} + 4 * 3^n + 4 \operatorname{con} a_0 = 10, a_1 = 35$$

1. Solución

Primeramente resolvamos la homogénea:

$$a_n = 5a_{n-1} - 6a_{n-2}$$

La ecuación característica sería la siguiente:

$$x^2 - 5x + 6 = 0$$

$$(x-2)(x-3)=0$$

La solución de la homogénea entonces está definida como $A2^n + B3^n$, pasemos ahora al término independiente de la no homogénea.

El término 8 analizándolo de la forma $p(n)s^n$ podemos verlo como $8*1^n$, de donde p(n)=8 y s=1, como 1 no es raíz de la ecuación característica la solución viene dada por $q(n)s^n$ y como q(n) tiene grado a lo sumo el de $p(n) \implies q(n)=c$. Luego, evaluando esta solución particular para hallar el valor de c resulta en:

$$c = 5c - 6c + 8$$

De donde c=4, y por tanto ya podemos decir que la solución particular de la recurrencia es $A2^n+B3^n+4$, y mediante la solución del sistema de ecuaciones con los valores iniciales obtenemos los valores de A y B

$$A + B + 4 = 1$$

$$2A + 3B + 4 = 2$$

De donde $B=4\ \mathrm{y}\ A=-7\ \mathrm{y}$ por tanto la forma cerrada de la recurrencia resulta:

$$a_n = -7 * 2^n + 4 * 3^n$$

2. Solución

Dada la recurrencia $a_n = 2a_{n-1} - a_{n-2} + 4 * 3^n + 4$ con $a_0 = 10$, $a_1 = 35$ vamos a empezar buscando la forma de la homogénea. La ecuación característica sería la siguiente:

$$x^2 - 2x + 1 = 0$$

Lo cual da como solución de multiplicidad dos a x=1, entonces, la forma de la homogénea sería $A*1^n+Bn*1^n=A+Bn$

Pasemos ahora a los términos de la no homogénea comenzando por $4*3^n$, como 3 no es raíz de la ecuación la solución tendrá la forma $c*3^n$, evaluémosla en la recurrencia:

$$c * 3^{n} = 2c * 3^{n-1} - c * 3^{n-2} + 4 * 3^{n}$$

$$9c * 3^{n-2} = 2 * 3c * 3^{n-2} - c * 3^{n-2} + 4 * 9 * 3^{n-2}$$

$$9c * 3^{n-2} - 6c * 3^{n-2} + c * 3^{n-2} = 36 * 3^{n-2}$$

$$(9c - 6c + c)3^{n-2} = 36 * 3^{n-2}$$

$$4c = 36$$

$$c = 9$$

El próximo término es 4, o sea, $4 * 1^n$, pero en este caso 1 si es raíz y de multiplicidad 2, por lo que la solución tendrá la forma n^2c porque el polinomio del término es de grado cero.

$$n^2c = 2(n-1)^2c - (n-2)^2c + 4$$

A través de trabajo algebraico llegamos a c=2, con lo cual la solución general de la recurrencia tiene la forma $A+Bn+9*3^n+2n^2$. Ahora pasemos a hallar los valores de A, B para la solución particular:

$$A + 9 = 10$$

 $A + B + 27 + 2 = 35$

Y resolviendo el sistema resulta en A=1, B=5, por lo que la forma cerrada de la recurrencia es:

$$$a_n = 1 + 5n + 9*3^n + 2n^2$$

Problema 2

Determine el número de cadenas de longitud n sobre el alfabeto $\{a,b,c,d\}$ tal que todas las a aparezcan antes que las b.

Solución

Problema 3

Prueba que $\forall a \in \mathbb{Z}$ y $b,n \in \mathbb{Z}_+^*$ se cumple que la siguiente expresión es entera siempre que $4 \div (b-a^2)$

$$\frac{1}{\sqrt{b}}[(\frac{a+\sqrt{b}}{2})^2-(\frac{a-\sqrt{b}}{2})^2]$$

Solución