Exercice 012

GSF-6053

Hiver 2025

Énoncé

Considérez le modèle de régression linéaire suivant :

$$y = X\beta + \epsilon$$

où y est un vecteur 3×1 , X est une matrice 3×2 de variables explicatives, β est un vecteur 2×1 de coefficients à estimer, et $\epsilon \sim N(0, \sigma^2\Omega)$.

Supposons que la matrice de variance-covariance Ω est diagonale et connue, définie par :

$$\Omega = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Données:

$$X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}, \quad y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Questions:

- 1. a) Calculer l'estimateur GLS $\hat{\beta}_{GLS}$.
- 2. b) Calculer la matrice de variance de $\hat{\beta}_{GLS}$.
- 3. c) Comparer $\hat{\beta}_{GLS}$ avec l'estimateur des Moindres Carrés Ordinaires (MCO) $\hat{\beta}_{OLS}$. Quelle est la différence entre les deux estimateurs dans ce contexte?