UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

0 The course	1	
1 Peano's Axioms	2	
2 Axioms of Set Theory (ZFC)	9	Lecture 01: Wed
0 The course		03 Jan '24
Instructor: Prof. Arvind Ayyer Office: X-15 Office hours: TBD Lecture hours: MWF 11:00-11:50 Tutorial hours: Tue 9:00-9:50		
80% attendance is mandatory.		
Prerequisites: UMA101 and UMA102 Texts: Several		

Grading

• Analysis I, Terence Tao.

- (20%) Quizzes on alternate Tuesdays, worst dropped. No makeup quizzes, but if a quiz is missed for a medical reason (with certificate), that quiz will be dropped.
- (30%) Midterm
- (50%) Final

Homeworks after every class, ungraded. Exams are closed book and closed notes, with no electronic devices allowed.

Aims of the Course

- Deal with formal mathematical structures.
- Learning the axiomatic method.
- See how more complicated structures arise from simpler ones.

1 Peano's Axioms

We try to formulate two fundamental quantities: 0 and the successor function $n \mapsto n_{++}$.

- (P1) 0 is a natural number.
- (P2) If n is a natural number, so is n_{++} .
- (P3) 0 is not the successor of any natural number.
- (P4) Different natural numbers have different successors.
- (P5) (Principle of mathematical induction) Let P(n) be any "property" for a natural number n. Suppose that P(0) is true, and that $P(n_{++})$ is true whenever P(n) is true. Then P is true for all natural numbers.

Denote the set of natural numbers by \mathbb{N} . (Any two sets satisfying the Peano axioms are isomorphic.) Note that \mathbb{N} is itself infinite, but all of its elements are finite.

Proof. 0 is finite. If n is finite, then n_{++} is finite. Thus, by induction, all natural numbers are finite. (But wtf is a finite number?)

Remarks.

- There exist number systems which admit infinite numbers. For example, cardinals, ordinals, etc.
- This way of thinking is *axiomatic*, but not constructive.

Definition 1.1 (Addition). Suppose $m, n \in \mathbb{N}$. We define the binary operation + by setting 0 + m = m. Suppose we have defined n + m. Then we inductively define $n_{++} + m = (n + m)_{++}$.

Lecture 02: Mon 08 Jan '24

For example, note that $1 + m = (0 + m)_{++} = m_{++}$.

Lemma 1.2. For $n \in \mathbb{N}$, we have n + 0 = n.

Proof.
$$0+0=0$$
. If $n+0=n$, then $n_{++}+0=(n+0)_{++}=n_{++}$.

Lemma 1.3. For $m, n \in \mathbb{N}$, we have $n + m_{++} = (n + m)_{++}$.

Proof. Fix m and induct on n. For n = 0, we have $0 + m_{++} = m_{++} = (0 + m)_{++}$. Suppose $n + m_{++} = (n + m)_{++}$. Then

$$n_{++} + m_{++} = (n + m_{++})_{++}$$
 (definition)
= $((n + m)_{++})_{++}$ (hypothesis)
= $(n_{++} + m)_{++}$ (definition)

as desired. \Box

Problem 0.1. (Commutativity) For $m, n \in \mathbb{N}$, we have n+m=m+n.

Proof. Fix m and induct on n. For n = 0, we have 0 + m = m = m + 0. Suppose n + m = m + n. Then

$$n_{++} + m = (n + m)_{++}$$
 (definition)
= $(m + n)_{++}$ (hypothesis)
= $m + n_{++}$

by the previous lemma.

Problem 0.2. (Associativity) For $m, n, p \in \mathbb{N}$, we have (m+n)+p=m+(n+p).

Proof. Induct on m. (0+n)+p=n+p=0+(n+p). Suppose (m+n)+p=m+(n+p). Then

$$(m_{++} + n) + p = (m + n)_{++} + p$$
 (definition)
= $((m + n) + p)_{++}$ (definition)
= $(m + (n + p))_{++}$ (hypothesis)
= $m_{++} + (n + p)$. (definition)

This closes the induction.

Problem 0.3. (Cancellation) For $m, n, p \in \mathbb{N}$, if m + n = m + p, then n = p.

Proof. Induct on m. 0 + n = 0 + p implies n = p.

Suppose m+n=m+p implies n=p. Then $m_{++}+n=m_{++}+p$ implies $(m+n)_{++}=(m+p)_{++}$ and so m+n=m+p by (P4). By the inductive hypothesis, n=p.

Definition 1.4 (Positive). A natural number is positive if it is not 0.

Proposition 1.5. If a is positive and $b \in \mathbb{N}$, then a + b is positive.

Proof. Induct on b. a + 0 = a is positive. $a + b_{++} = (a + b)_{++}$ is positive since 0 is not the successor of any natural number.

Problem 0.4. If m, n in \mathbb{N} with m + n = 0, then m = n = 0.

Proof. Contrapositive of the previous proposition, with commutativity. \Box

Problem 0.5. Let a be positive. Then there exists a unique $b \in \mathbb{N}$ such that $a = b_{++}$.

Proof. Let P(n) be that n is zero or there exists a unique $b \in \mathbb{N}$ such that $n = b_{++}$. P(0) is true.

Suppose P(n) is true. n_{++} is non-zero, successor of n and only n, by (P3) and (P4). Thus $P(n_{++})$ is true.

Definition 1.6 (Order). Let $m, n \in \mathbb{N}$. We say that n is greater than or equal to m, written $n \geq m$ or $m \leq n$, if n = m + a for some $a \in \mathbb{N}$.

Similarly, we say that n is (strictly) greater than m, written n > m or m < n, if $n \ge m$ and $n \ne m$.

Note that $n_{++} > n$, so there is no largest natural number.

Proposition 1.7. Let $a, b, c \in \mathbb{N}$. Then

- 1) $a \ge a$ (reflexivity),
- 2) $a \ge b$ and $b \ge a$ implies a = b (antisymmetry),
- 3) $a \ge b$ and $b \ge c$ implies $a \ge c$ (transitivity),
- $4) \ a \ge b \iff a + c \ge b + c,$
- 5) $a > b \iff a \ge b_{++}$,
- 6) $a > b \iff a = b + c$ for some positive c.

Proof.

- 1) a = a + 0.
- 2) a = b + c and b = a + d implies a = a + (c + d). By cancellation, c + d = 0 and so c = d = 0.
- 3) a = b + m and b = c + n implies a = c + (m + n).
- 4) $a = b + m \iff (a + c) = (b + c) + m$.
- 5) From 6), $a > b \iff a = b + c$ for some positive c, iff $a = b + d_{++} = b_{++} + d$.
- 6) $a > b \iff a = b + c$ but $a \neq b$. Since $a \neq b$, c cannot be zero. Conversely, if c is positive, $a \neq b$.

Proposition 1.8 (Trichotomy). Let $a, b \in \mathbb{N}$. Then exactly one of the following holds: a > b, a = b, or a < b.

Proof. We first prove that no more than one of the three holds. a = b cannot hold simultaneously with a > b or a < b by their definitions. Suppose a > b and a < b. Then a = b + c and b = a + d for some positive c and d. Thus a = a + (c + d) and so c + d = 0, a contradiction.

We now prove that at least one of the three holds by induction on a. Since b = 0 + b, either 0 = b or b > 0. Suppose at least one of $a \ge b$ and a < b holds. If a = b + c, then $a_{++} = b + (c_{++})$ and so $a_{++} > b$. If a < b, then by proposition 1.7(5), $a_{++} \le b$. This completes the induction.

Proposition 1.9 (Strong induction). Let $m_0 \in \mathbb{N}$ and let P(m) be a property for all $m \in \mathbb{N}$. Suppose for all $m \geq m_0$, we have the following: if P(m') holds for all $m_0 \leq m' < m$, then P(m) holds. Then P(m) holds for all $m \geq m_0$.

Note that the inductive step is vacuously true for $m = m_0$.

Proof. Define Q(m) to be "P(m') holds for all $m_0 \le m' < m$ ". Q(0) holds vacuously, since there are no m' < 0.

Suppose Q(m) holds. If $m < m_0$, then $Q(m_{++})$ holds vacuously, since $m_{++} \le m_0$ and so no m' satisfies $m_0 \le m' < m_{++} \le m_0$.

Now if $m \ge m_0$, then Q(m) and the proposition imply P(m). Thus P(m') holds for all $m_0 \le m' \le m \iff m_0 \le m' < m_{++}$. Thus $Q(m_{++})$ holds. \square

Problem 0.6 (Backwards induction). Let $m_0 \in \mathbb{N}$, and let P(m) be a property pertaining to the natural numbers such that whenever $P(m_{++})$ is true, then P(m) is true. Suppose that $P(m_0)$ is also true. Prove that P(m) is true for all natural numbers $m \leq m_0$.

Proof. Define Q(m) to be "if P(m) is true, then P(m') is true for all $m' \leq m$ ". Q(0) holds vacuously, since $m' \leq 0$ implies m' = 0.

Suppose Q(m) holds. Then if $P(m_{++})$ is true, so is P(m), and by the inductive hypothesis, P(m') is true for all $m' \leq m$. Thus $Q(m_{++})$ holds. Thus Q(m) holds for all $m \in \mathbb{N}$.

In particular, $Q(m_0)$ holds, and so P(m') is true for all $m' \leq m_0$.

From now on, we will assume the usual laws of addition.

Definition 1.10 (Multiplication). Let $m \in \mathbb{N}$. The binary operation multiplication, denoted by *, is defined as follows. Set 0 * m = 0. Then define it inductively as follows. If we know n*m, set $n_{++}*m = (n*m) + m$.

Lemma 1.11. Let $m, n \in \mathbb{N}$, Then m * n = n * m.

Proof. First note that m*0 = 0, since 0*0 = 0 and $m_{++}*0 = m*0+0 = m*0$.

Next note that $n * m_{++} = (n * m) + n$, since $0 * m_{++} = 0 = (0 * m) + 0$, and $n_{++} * m_{++} = (n * m_{++}) + m_{++}$ which is equal to $(n * m) + n + m_{++} = (n * m) + m + n_{++} = (n_{++} * m) + n_{++}$ by the inductive hypothesis.

Finally, 0 * n = n * 0, and $m_{++} * n = n * m_{++}$ gives m * n = n * m by induction on m.

We use the notation mn for m*n and also employ the usual convention for precedence, so that mn + p means (m*n) + p and not m*(n+p).

Lemma 1.12. Let $m, n \in \mathbb{N}$. Then mn = 0 iff at least one of m and n is 0.

Proof. The 'if' direction is clear. Suppose m, n are positive. Then $m = \tilde{m}_{++}$ for some $\tilde{m} \in \mathbb{N}$.

$$mn = (\tilde{m}_{++})n$$
$$= (\tilde{m}n) + n$$

which is positive since n is positive.

Proposition 1.13 (Distributivity). For $a, b, c \in \mathbb{N}$, we have a(b+c) = ab + ac and (b+c)a = ba + ca.

Proof. Prove the first by induction on a. 0(b+c)=0=0+0=0b+0c.

Suppose a(b+c) = ab + ac. Then

$$a_{++}(b+c) = a(b+c) + (b+c)$$
 (definition)
= $(ab+ac) + (b+c)$ (hypothesis)
= $(ab+b) + (ac+c)$
= $a_{++}b + a_{++}c$. (definition)

The second equality follows from the first by commutativity.

Problem 0.7. (Associativity) For $a, b, c \in \mathbb{N}$, we have (ab)c = a(bc).

Proof. Induct on a. (0b)c = 0c = 0 = 0(bc).

Suppose (ab)c = a(bc). Then

$$(a_{++}b)c = (ab+b)c$$
 (definition)
 $= (ab)c + bc$ (distributivity)
 $= a(bc) + bc$ (hypothesis)
 $= a_{++}(bc)$

by definition.

Problem 0.8. (Order preservation) For $a, b, c \in \mathbb{N}$ with a < b and $c \neq 0$, we have ac < bc.

Proof. Induct on c with base case c = 1. If ac < bc, then ac + a < bc + a but bc + a < bc + b, both by order preservation under addition. By transitivity, ac + a < bc + b and so $ac_{++} < bc_{++}$.

Problem 0.9. (Cancellation) For $a, b, c \in \mathbb{N}$ with ac = bc and $c \neq 0$, we have a = b.

Proof. From trichotomy and order preservation.

Proposition 1.14 (Euclidean algorithm). Let $n \in \mathbb{N}$ and m be positive. Then there exist unique $q, r \in \mathbb{N}$ such that n = qm + r and r < m. We call q the quotient and r the remainder.

Proof. We first prove uniqueness. Suppose n = qm + r = q'm + r'. If $q < q' \iff q_{++} \le q'$, then $qm + r < qm + m = q_{++}m \le q'm \le q'm + r'$, a contradiction. Similarly, q' < q is impossible. This leaves q = q'. Then qm + r = q'm + r' gives r = r' by cancellation.

For existence, we induct on n. 0 = 0m + 0. Suppose n = qm + r. Then $n_{++} = qm + r_{++}$. If $r_{++} < m$, we are done. Otherwise, $r_{++} = m$ (since $r < m \iff r_{++} \le m$) and so $n_{++} = (q_{++})m + 0$.

This proposition allows us to divide.

Definition 1.15 (Exponentiation). Let m be positive. The binary operation exponentiation can be defined inductively as $m^0 = 1$ and $m^{n_{++}} = m^n m$. We further define $0^k = 0$ for all positive k.

Lecture 03: Mon 08 Jan '24

2 Axioms of Set Theory (ZFC)

Definition 2.1 (Set). A set is a well-defined collection of objects, which we call elements. We will write $x \in A$ to say that x is an element of A.

Well-defined means that given any object, we can state without ambiguity whether it is an element of the set or not.

Axiom 2.1. Sets are themselves objects. If A and B are sets, it is meaningful to ask whether A is an element of B.

Axiom 2.2 (Extensionality). Two sets A and B are equal, written A = B, if every element of A is a member of B and vice versa.

Axiom 2.3 (Existence). There exists a set, denoted by \emptyset or $\{\}$, known as the empty set, which does not contain any elements, $i.e., x \notin \emptyset$ for all objects x.

Problem 0.10. \varnothing is unique.

Proof. Suppose \emptyset and \emptyset' are both empty sets. Then $x \in \emptyset \iff x \in \emptyset'$ since both are always false.

Lemma 2.2 (Single choice). Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Proof. If not, then $x \notin A$ for all objects x and so $A = \emptyset$.

Thus, we can choose an element of A to certify its non-emptiness.

Axiom 2.4 (Pairing). If a is an object, there exists a set, denoted $\{a\}$, whose only element is a. Similarly, if a and b are objects, there exists a set, denoted $\{a,b\}$, whose only elements are a and b.

For example, we can now construct \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}$, etc, all of which are distinct.

Axiom 2.5 (Unions). Given sets A and B, there exists a set, denoted $A \cup B$, called the union of A and B, which consists of exactly the elements in A, B, or both.

Problem 0.11. $A \cup B = B \cup A$.

Proof. By commutativity of \vee .

Problem 0.12. $(A \cup B) \cup C = A \cup (B \cup C)$.

Proof. By associativity of \vee .

Definition 2.3 (Subset). A is a subset of B if every element of A is also an element of B, denoted $A \subseteq B$.

Axiom 2.6 (Specification). (also called Separation). Let A be a set and let P(x) be a property for every $x \in A$. Then there exists a set $S = \{x \in A \mid P(x)\}$ where $x \in S$ iff $x \in A$ and P(x) is true.

We can now define the intersection, $A \cap B$, and difference, $A \setminus B$, of sets A and B.

Definition 2.4. Let A and B be sets. we define the intersection $A \cap B = \{x \in A \mid x \in B\}$ and the difference $A \setminus B = \{x \in A \mid x \notin B\}$. A and B are said to be disjoint if $A \cap B = \emptyset$.

Recall that sets form a Boolean algebra under the operations \cup , \cap , and \setminus . For example, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, de Morgan's laws, etc.

Axiom 2.7 (Replacement). Let A be a set and let P(x,y) be a property for every $x \in A$ and every object y, such that for every $x \in A$ there is at most one y for which P(x,y) is true. Then there exists a set $S = \{y \mid P(x,y) \text{ is true for some } x \in A\}$. That is, $y \in S$ iff P(x,y) is true for some $x \in A$.

Examples.

• Let $A = \{7, 9, 22\}$ and $P(x, y) \equiv y = x_{++}$. Then $S = \{8, 10, 23\}$.

• Let $A = \{7, 9, 22\}$ and $P(x, y) \equiv y = 1$. Then $S = \{1\}$.

Axiom 2.8 (Infinity). There exists a set, denoted \mathbb{N} , whose objects are called natural numbers, *i.e.*, an object $0 \in \mathbb{N}$, and n_{++} for every $n \in \mathbb{N}$, such that the Peano axioms hold.

Axiom 2.9 (Foundation). (also called Regularity). If A is a non-empty set, then there exists at least one $x \in A$ which is either not a set or is disjoint from A.

For example, if $A = \{\{1, 2\}, \{1, 2, \{1, 2\}\}\}\$, then $\{1, 2\}$ is an element of A which is disjoint from A.