Evolution of gene family size change in fungi

Jason Stajich
University of California, Berkeley

Outline

- Gene family size change a model
- Cornucopia of fungal genomes
- Methodology for comparing family size
- Lineage specific expansions

Gene family evolution

- Gene duplications are the crucible of new genes and thus new functions
- Many comparative approaches focus only on identifiable one-to-one orthologs.
 - Signature of adaptive evolution can be confounded in multi-gene families
- How important is lineage-specific expansion in adaptive changes?

Identifying family expansions

- Previous work only considered pairwise
- Ad hoc comparison of gene family sizes
 - C.elegans-C.briggsae GPCR family expansions (Stein et al, PLOS Biology 2004)
 - A. gambiae-D. melanogaster Mosquito specific family expansions related to symbiotic bacteria (Holt et el, Science 2002).
- Need a null model

Gene family sizes follow power law distribution

Phylogenetic evaluation of gene family size change

- Previous methods only used ad hoc statistics
- Explicit model for gene family size change according to a Birth-Death models
- Apply BD to family size along phylogeny using probabilistic graph models
- CAFE Computational Analysis of gene <u>Family Evolution</u>

 Hahn et al. Geno

Hahn et al, Genome Res 2005 De Bie, et al Bioinformatics 2006 Demuth et al, submitted

CAFE

- Use a Probabilistic Graph Model for:
- Ancestral states
- Birth and Death rate (lamda)
- Per branch changes
- P-values

37 Fully sequenced fungal genomes

50+ More funded and in progress world-wide

Sequencing In-Progress*

Species	Clade	Sequencing center
$Schizosaccharomyces\ japonicus$	Archaeascomycta	Broad-FGI
Schizosaccharomyces octosporus	Archaeascomycta	Broad-FGI
Pneumocystis carinii	Archaeascomycta	Sanger, UC, Broad-FGI
Pneumocystis carinii hominis	Archaeascomycta	UC, Broad-FGI, UC
Amanita bisporigera	Basidiomycota: Homobasidiomycota	MSU
Crinipellis perniciosa	Basidiomycota: Homobasidiomycota	Univ Campinas
Ganoderma lucidum	Basidiomycota: Homobasidiomycota	Yang-Ming Univ
Hebeloma cylindrosporum	Basidiomycota: Homobasidiomycota	INRA
Laccaria bicolor	Basidiomycota: Homobasidiomycota	JGI-DOE R
Phakopsora pachyrhizi	Basidiomycota: Homobasidiomycota	JGI-DOE
Postia placenta	Basidiomycota: Homobasidiomycota	JGI-DOE
Schizophyllum commune	Basidiomycota: Homobasidiomycota	JGI-DOE
Sporobolomyces roseus	Basidiomycota: Urediniomycota	JGI-DOE
Phakopsora meibomiae	Basidiomycota: Urediniomycota	JGI-DOE
$Batrachochytrium\ dendrobatidis$	Chytridiomycota	Broad-FGI & JGI-DOE
Piromyces sp.	Chytridiomycota	JGI-DOE
Glomus intraradices	Glomeromycota	JGI-DOE
Phycomyces blakesleeanus	Zygomycota	JGI-DOE R
Brachiola algerae	Microsporidia	Genoscope
Nosema (Antonospora) locustae	Microsporidia	MBL R
Enterocytozoon bieneusi	Microsporidia	Tufts Univ

Sequencing In-Progress*

Species	Clade	Sequencing center
Aspergillus niger	Euascomycota: Eurotiomycota	DOE-JGI R
Aspergillus flavus	Euascomycota: Eurotiomycota	NCSU
Aspergillus clavatus	Euascomycota: Eurotiomycota	OU
Neosartorya fischeri	Euascomycota: Eurotiomycetes	TIGR
Histoplasma capsulatum WU24	Euascomycota: Eurotiomycota	Broad-FGI P
Histoplasma capsulatum 186R,217B	Euascomycota: Eurotiomycota	WUSTL
$Coccidioides\ posadas ii$	Euascomycota: Eurotiomycota	TIGR
Coccidioides immitis 10 strains	Euascomycota: Eurotiomycota	Broad-FGI & TIGR
$Paracoccidio ides\ brasiliens is$	Euascomycota: Eurotiomycota	Univ of Brazil
Ascosphaera apis	Euascomycota: Eurotiomycota	BCM
Epichloe festucae	Euascomycota: Sordariomycetes	UK
Podospora anserina	Euascomycota: Sordariomycetes	Broad-FGI
$Trichoderma\ atroviride$	Euascomycota: Sordariomycetes	DOE-JGI
Trichoderma virens	Euascomycota: Sordariomycetes	DOE-JGI
Leptosphaeria maculans	Euascomycota: Dothideomycetes	Genoscope
Alternaria brassicicola	Euascomycota: Dothideomycetes	VPI & WUSTL
Xanthoria parietina (lichen)	Euascomycota: Lecanoromycetes	DOE-JGI
Candida albicans WO-1	Hemiascomycota	Broad-FGI
$Lodderomyces\ elongisporus$	Hemiascomycota	Broad-FGI K
Pichia stipitis	Hemiascomycota	JGI-DOE
Saccharomces bayanus	Hemiascomycota	(49, 167)
Saccharomces castellii	Hemiascomycota	(49)
Saccharomces cerevevisiae RM11-1A	Hemiascomycota	Broad-FGI
Saccharomces cerevevisiae YJM789	Hemiascomycota	(113) +++
Saccharomyces kluyeri	Hemiascomycota	WUSTL (finishing)
Saccharomces kudriavzevii	Hemiascomycota	(49)
Saccharomces mikatae	Hemiascomycota	(49, 167)
Saccharomces paradoxus	Hemiascomycota	(167)
Saccharomyces pastorianus	Hemiascomycota	Kitasato Univ
Zygosaccharomyces rouxii	Hemiascomycota	CNRS-Genoscope

Genome annotation

- Many of the fungal genomes were only assembled genomic sequence.
- Automated annotation pipeline was built to generate to get systematic gene prediction.
- Several gene prediction programs were trained and results were combined with GLEAN (Liu, Mackey, Roo, et al unpublished) to produce composite gene calls.

Intron frequency varies among the fungi

http://fungal.genome.duke.edu

Generic Genome Browser

Methods: gene family identification

- All-vs-All pairwise sequence searches (FASTP)
- Cluster genes by similarity using Markov
 CLustering (MCL) algorithm
- Identify families with unusually large size changes along phylogeny with CAFE
- Use 37 fungal genomes from 5 major clades

Families with significant expansions

49 significant families

Transporters
Kinases
P450
Oxidation

Vitamin & Cofactor transport				
Lactose & sugar transport				
Amine transport				
Myo-instol, quinate, and glucose transport				
Oligopeptide transport				
ABC transporter				
MFS, drug pump, & sugar transport				
Transport				
Monocarboxylate & sugar transport				
ABC transport				
Amino acid permease				

Transporters

- Of 45 significant families, 22 were related to transport
- Vitamin and amino acid transport
- Sugar and sugar-like transporters
- Multidrug and efflux pumps
- ABC transporters (ATP Binding Cassette)

Vitamin & Cofactor Transporters

Marked branches with significant (P<0.05)

expansions or contractions

Transporter expansions

- Sugar related, Drug pump, and Major Facilitator Superfamily
 - Aspergillus spp, Fusarium spp, S. nodorum
 - Euascomycota
- Vitamin transport
 - C. neoformans, Fusarium
 - A. nidulans (Biotin)
- Saccharomyces expansions independent!

C. neoformans

Sugar transporter use in phytopathogens

- Sugar transporters are used to extract nutrients from host
 - Haustorium: specialized structure for plant parasitism
 - Many sugar transporters highly and specifically expressed in haustoria

Basidiomycota changes

C.neoformans P.chrysosporium

C.cinereus

U.maydis

P450 CYP64

P450 enzymes involved in synthesis and cleavage of chemical bonds. Drug metabolism in animals.

CYP64: Step in Aspergillus spp aflatoxin pathway *P. chrysosporium* implicated in lignin and hydrocarbon degradation.

CYP64 was from independent duplication

C. cinereus expansion

P. chrysosporium expansion

Local duplications created CYP64 expansion

Interpretation of CYP64 expansion

Hydrophobin Family

P.chr	C.cin	C.neo	U.may
21	33	0	2

- Self assembling proteins involved in fungal cell wall
- Part of what makes a mushroom
- 8 Cysteine residues critical to function
- Help spores stay airborne resisting water

Local Duplications

Cryptococcus sugar transporters expansion

Cryptococcus sugar transporters

- 3x as many sugar transporters in C.
 neoformans (~50) than other basidiomycetes
- "sugar coated killer"
- Capsule is a mixture of glucose, xylose, and mannose.
- Transporters could be important in capsule synthesis

Zerpa et al, 1996

Conclusions

- Transporters are highly expanded in independent lineages
 - Saprophytic and phytopathogenic lifestyles
- Adaptive Homobasidiomycete (mushroom) expansions
 - Lignin degradation saprophytic lifestyles
 - Hydrophobins cell wall structures

Acknowledgments

Matthew Hahn (Indiana)

Jeff Demuth

Sang-Gook Han

Tijl De Bie Nello Cristianini

Aaron Mackey Ian Korf Mario Stanke

Fred Dietrich (Duke)

Sequencing centers
Broad Institute
Joint Genome Institute
Génolevures
Stanford University
TIGR
Welcome Trust Sanger Centre
(NIH and NSF)

