Appl. No. 09/885,959 Amdt. Dated: May 19, 2005

Reply to Office Action of: November 19, 2004

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of claims:

- 1. (currently amended) A method for multiplying an elliptic curve point Q(x,y) by a scalar ke to provide a point kQ, the method comprising the steps of
- a) selecting an elliptic curve of order n over a finite field F such that there exists an endomorphism ψ where $\psi(Q) = \lambda(Q)$ for all point Q(x,y) on the elliptic curve, and λ is an integer[[,]];
- b) establishing a representation of said scalar k as a combination of components k_i and said integer λ of the form $k_i = \sum_{i=0}^{r} k_i \lambda^i \mod n[[.]]$;
- c) combining said representation and said point Q to form a composite representation of a multiple of the form $k_0Q + k_1 \psi(Q) + \dots k_0Q + k_1 \psi(Q) + \dots$ corresponding to kQ; and d) computing a value corresponding to said point kQ from said composite representation of kQ.
- 2. (original) A method according to claim 1 wherein each of said components k_i is shorter than said scalar k.
- 3. (original) A method according to claim 1 wherein said components k_i are initially selected and subsequently combined to provide said scalar k.
- 4. (previously presented) A method according to claim 1 wherein said components k_i are selected at random.
- 5. (previously presented) A method according to claim 4 wherein said representation is of the form $k_0 + k_1 \lambda$.
- 6. (previously presented) A method according to claim 1 wherein said scalar k has a

Appl. No. 09/885,959 Amdt. Dated: May 19, 2005

Reply to Office Action of: November 19, 2004

predetermined value and said components k₀ and k₁ are one half size of said scalar k.

- 7. (original) A method according to claim 3 wherein said value of said multiple kQ is calculated using simultaneous multiple addition.
- 8. (currently amended) A method according to claim 7 wherein grouped terms G₁ utilized in said simultaneous multiple addition are precomputed includes precomputing a value G₁ representing a grouping of like elements, said value G₁ being used in said simultaneous multiple addition.
- 9. (currently amended) A method according to claim 6 wherein said components k_i are obtained by obtaining short basis vectors (u_0, u_i) of the field F, designating a vector v as (k,0), converting v from a standard, erthonormal orthonormal basis to the (u_0, u_i) basis, to obtain fractions f_0f_i representative of the vector v, applying said fractions to k to obtain a vector v, calculating an efficient equivalent v in the composite representation of v0.
- 10. (currently amended) A method of generating in an elliptic curve cryptosystem a key pair having a integer k providing a private key and a public key kQ, where Q is a point on the curve, the method comprising the steps of:
- a) selecting an elliptic curve over a finite filed F such that there exists an endomorphism ψ where $\psi(Q) = \lambda Q$ for all points Q (x,y) on the elliptic curve, λ is an integer,
- b) establishing a representation of said key k as a combination of components k; and said integer
- λ , of the form $k_i = \sum_{i=0}^{i=1} k_i \lambda^i \mod n$ where n is the number of points on the elliptic curve,
- c) combining said representation and said point Q to form a composite representation of a multiple of the form $k_0Q + k$, $\psi(Q) + \dots + k_1 \psi(Q) + \dots$ corresponding to the public key kQ; and
- d) computing a value corresponding to said public kQ from said composite representation of kQ.
- 11. (previously presented) A method according to claim 10 wherein each of said components

Appl. No. 09/885,959 Amdt. Dated: May 19, 2005

Reply to Office Action of: November 19, 2004

ki is shorter than said scalar k.

- 12. (previously presented) A method according to claim 11 wherein said components k_i are initially selected and subsequently combined to provide said scalar k.
- 13. (previously presented) A method according to claim 12 said components k_i are selected at random.
- 14. (previously presented) A method according to claim 13 wherein said representation is of the form $k_0 + k_1 \lambda$.
- 15. (previously presented) A method according to claim 10 wherein said scalar k has a predetermined value and said components k_0 and k_1 are selected to be one half the size of said scalar k.
- 16. (previously presented) A method according to claim 12 wherein said value of said multiple kQ is calculated using simultaneous multiple addition.
- 17. (currently amended) A method according to claim 16 wherein grouped terms G_1 utilized in said simultaneous multiple addition are precomputed includes precomputing a value G_i representing a grouping of like elements, said value G_i being used in said simultaneous multiple addition.
- 18. (currently amended) A method according to claim 15 wherein said components k_i are obtained by obtaining short basis vectors (u_0, u_i) of the field F, designating a vector v as (k,0), converting v from a standard, orthonormal orthonormal basis to the (u_0, u_i) basis, to obtain fractions f_0f_i representative of the vector v, applying said fractions to k to obtain a vector z, calculating an efficient equivalent v' in the composite representation of kQ.

8 1