Final summary (From HF to DFT)

Yang Shen

January 16, 2022

From HF to DFT

- Basic idea: FC=SCE
- Direct calculation of three-dimensional integration: Unreasonable
- Reduce 3-D integration to a sum of one-center integrations in spherical polar coordinates.

$$\int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \rho(\mathbf{r}) r^2 \sin\theta dr d\theta d\phi = \int \int_0^{\infty} \rho(\mathbf{r}) r^2 dr d\Omega$$

Becke's scheme

- Reweight the contribution according to position
- $\mu_{ij} = \frac{r_i r_j}{R_{ij}}$, $f(\mu_{ij}) = \frac{3}{2}\mu_{ij} \frac{1}{2}\mu_{ij}^3$, $p_{ij} = f(f(f(\mu_{ij})))$, $P_i(\mathbf{r}) = \prod_{j \neq i} p_{ij}$
- \bullet Normalize the weight by $W_i({\bf r}) = \frac{P_i({\bf r})}{\sum_j P_j({\bf r})}$

FIG. 1. Cutoff profiles $s_k(\mu)$ of Eq. (21) for k=1 to 5.

Numerical calculation

- The spherical surface part: sphere Lebedev rule
- The radial part: Chebyshev Gauss Quadrature of the first case

$$\int_0^\infty \rho(\mathbf{r}) r^2 \mathrm{d}r = \frac{r = \frac{1+x}{1-x}p}{\prod_{i=1}^4 \rho(x,\theta,\phi)} \frac{(1+x)^2}{(1-x)^4} p^3 \mathrm{d}x$$

- Weight function: $\frac{1}{\sqrt{1-x^2}}$, x_i : $\cos{(\frac{2i-1}{2n}\pi)}$, weight: $\frac{\pi}{n}$
- In following calculation, n(chebyshev order)=40, p(expansion)=1, m(Lebedev order)=110.

Calculation of LDA (Xalpha)

- $V_x(\mathbf{r}) = -3\alpha [\frac{3}{4\pi}\rho(\mathbf{r})]^{1/3}$. Gaussian09's default number of α is 0.7.
- When trying to calculate the orbital energy of ammonia, SCF iteration fails to converge (although basis set used here is only STO-3G).

Iterations	Sum of orbital energy (plus background Coulomb repulsion)
1	-54.984166
2	-24.859824
3	-34.832507
4	-26.045267
5	-33.917869
6	-26.551132
7	-33.454861
8	-26.839427
9	-33.174086

Density mixing

$$\bullet \ \rho_{in}^{(i+1)} = \alpha \times \rho_{in}^{(i)} + (1-\alpha) \times \rho_{out}^{(i)}, \ \alpha = 0.5$$

• Self-consistent iteration reaches convergence after 8 hours.

My result	Gaussian09
-13.60799	-13.60794
-0.68302	-0.68304
-0.31226	-0.31221
-0.31225	-0.31221
-0.02984	-0.02982
0.38949	0.38953
0.45905	0.45910
0.45908	0.45910
	-13.60799 -0.68302 -0.31226 -0.31225 -0.02984 0.38949 0.45905

The necessity of smooth treatment

- Without smooth treatment, Xalpha/STO-3G calculation of H₂ converges slowly.
- n represents the Chebyshev order.

Orbital	smooth	n=40	n=100	n=250	n=500
1	-0.36135	-0.36368	-0.36391	-0.36091	-0.36061
2	0.58784	0.58785	0.58784	0.58784	0.58784

Acknowledgement

• Thanks for the guidance of Prof. Jiang and Yuhang Ai.