Masterscriptie Business Analytics

Op tijd vertrekken

Verklaringen voor ADC dispunctualiteit op ICA vluchten

Nivard van Wijk

Begeleiders:

dr. Evert Haasdijk drs. Simone van Neerven dr. Fetsje Moné–Bijma

Juli 2013

PUBLIEKE VERSIE

KLM Tactical Planning Havenmeesterweg 1 1118 BG Luchthaven Schiphol

Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen De Boelelaan 1081a 1081 HV Amsterdam

Voorwoord

De masteropleiding Business Analytics aan de Vrije Universiteit van Amsterdam wordt afgesloten met een afstudeerstage. Het doel van deze stage is om de verschillende onderdelen van de opleiding, namelijk bedrijfskunde, informatica en wiskunde, terug te laten komen in een onderzoek naar een specifiek bedrijfsprobleem. Deze masterscriptie is geschreven in opdracht van de business unit Hub Operations van de KLM.

In eerste instantie wil ik graag de KLM bedanken voor de mogelijkheid die zij mij hebben geboden om mijn afstudeeronderzoek uit te voeren. In het bijzonder gaat mijn dank uit naar mijn begeleidster Simone van Neerven en de (ex-)medewerkers van de afdeling Tactical Analysis: Ben Versteege, Serdar Cifoglu, Ineke Robertus, Atilla Selçuk en Richard Hofman, voor de vrijheid en adviezen die zij tijdens mijn onderzoek hebben gegeven.

Vanuit de VU wil ik graag mijn begeleider Evert Haasdijk bedanken. Zijn aanwijzingen en enthousiasme zijn van zeer groot belang geweest voor het slagen van dit onderzoek. Verder gaat mijn dank uit naar Fetsje Moné–Bijma, die de taak van tweede lezer op haar heeft genomen. Mijn mede-studenten en in het bijzonder Nick Groen, wil ik danken voor het meedenken bij alle problemen die tijdens dit onderzoek opkwamen.

Nivard van Wijk

- Amsterdam, 2013

Inhoudsopgave

1	Inlei	siding 1				
	1.1	Probleemstelling	1			
	1.2	Literatuuronderzoek	2			
		1.2.1 Wetenschappelijk onderzoek	2			
		1.2.2 Intern KLM onderzoek	3			
	1.3	Structuur	3			
2	Afha	andelingsproces van vluchten	5			
	2.1	Type vluchten	5			
	2.2	Losse aankomst	6			
	2.3	Los vertrek	7			
	2.4	Omdraai	7			
3	Data	a beschrijving	9			
	3.1	Data voorbereiding	9			
	3.2	Vluchteigenschappen	10			
	3.3	Kritieke subprocessen	10			
	3.4	Verband ADC en kritieke subprocessen	12			
4	Data	a mining methoden	13			
	4.1	Performance meting	13			
	4.2	Decision tree	14			
		4.2.1 C4.5 algoritme	15			
		4.2.2 Ongebalanceerde data in C4.5	15			
	4.3	Subgroup discovery	16			
		4.3.1 Pattern team	17			
		4.3.2 Verschil tussen subgroup discovery en decision trees	17			
	4.4	Support vector machines	18			
		4.4.1 Soft-margin SVM	18			
		4.4.2 Non-linear SVM	19			
		4.4.3 Ongebalanceerde data in SVM	20			
		4.4.4 Belangrijkste variabelen	20			
		4.4.5 Versnellen van het SVM-RFE algoritme	20			
	4.5	Implementatie	21			
		4.5.1 J48 in WEKA	21			

		4.5.3 LIDSVM	22			
5	Resultaten					
	5.1	Decision tree met resampling	23			
	5.2	Decision tree unsampled	24			
	5.3	Subgroup discovery	25			
	5.4	Support vector machines	26			
	5.5	Vergelijking boarding patronen	26			
	5.6	Vergelijking data mining methoden	27			
6	Con	clusie	29			
	6.1	Discussie	30			
	6.2	Aanbevelingen	31			
A Empirische verdeling doorlooptijd						
В	Varia	abelen per vlucht	35			
С	Con	structie van SVM	39			
	C.1	Optimale hypervlak methode	39			
	C.2	Soft-margin SVM methode	40			
	C.3	Non-linear SVM methode	41			
	C.4	Kernel functies	42			
D	Aan	gepast SVM-RFE algoritme	43			
E	Bear	m-search Subgroup Discovery	45			
F	F Gevonden patronen					
G	G Belangrijkste variabelen per subproces					
Lit	iteratuurliist					

Literatuurlijst

- [1] Alpaydin, E.: Introduction to Machine Learning. The MIT Press, 2010, ISBN 978-0-262-01243-0.
- [2] Atzmüller, M.: Knowledge-intensive Subgroup Mining: Techniques for Automatic and Interactive Discovery. proefschrift, Bayerischen Julius–Maximilians–Universität Würzburg, 2006.
- [3] Boser, B., I. Guyon, en V. Vapnik: A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, pag. 144–152. ACM, 1992.
- [4] Chawla, N. V.: C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In Proceedings of the ICML'03 Workshop on Class Imbalances, 2003.
- [5] Cortes, C. en V. Vapnik: Support-vector networks. Machine learning, 20(3):273-297, 1995.
- [6] Estabrooks, A., T. Jo, en N. Japkowicz: *A multiple resampling method for learning from imbalanced data sets.* Computational Intelligence, 20(1):18–36, 2004.
- [7] Gamberger, D. en N. Lavrač: *Expert-Guided Subgroup Discovery: Methodology and Application*. Journal of Artificial Intelligence Research, 17:501–527, 2002.
- [8] Ghattas, B. en A. B. Ishak: *An efficient method for variable selection using SVM based criteria*. Preprint IML, 2007.
- [9] Hsu, C. W., C. C. Chang, C. J. Lin, et al.: A practical guide to support vector classification, 2003.
- [10] Knobbe, A. J. en E. K. Ho: Pattern teams. In Knowledge Discovery in Databases: PKDD 2006, pag. 577–584. Springer, 2006.
- [11] Kruskal, W. H. en W. A. Wallis: *Use of ranks in one-criterion variance analysis*. Journal of the American statistical Association, 47(260):583–621, 1952.
- [12] Liu, X., J. Beltran, N. Mohanchandra, en G. Toussaint: *On speeding up support vector machines: proximity graphs versus random sampling for pre-selection condensation.* World Academy of Science, Engineering and Technology, 73:905 912, 2013.
- [13] Mitchell, T.: Machine learning. McGraw-Hill, 1997, ISBN 0-07-115467-1.
- [14] Mueller, E. R. en G. B. Chatterji: Analysis of aircraft arrival and departure delay characteristics. In Proceedings of the AIAA Aircraft Technology, Integration, and Operations (ATIO) Conference, Los Angeles, CA. Citeseer, 2002.
- [15] Neerven, S. van: A0 effecten op hub SPL: NOC, MHB, ADC. KLM intern, juli 2012.

- [16] Neerven, S. van: Boarding proces irt PDC: Nadere analyse tbv targetsetting. KLM intern, januari 2013.
- [17] Osuna, E., R. Freund, en F. Girosi: *Support vector machines: Training and applications*. A.I. Memo, (1602), 1997.
- [18] Quinlan, J. R.: *C4.5:* programs for machine learning. Morgan kaufmann, 1e druk, 1993, ISBN 1-55860-238-0.
- [19] Rakotomamonjy, A.: *Variable selection using svm based criteria*. The Journal of Machine Learning Research, 3:1357–1370, 2003.
- [20] Selçuk, A.: ADC-performance: EUR 73J-73H-73W. KLM intern.
- [21] Vapnik, V.: The nature of statistical learning theory. Springer, 1995, ISBN 0-387-98780-0.
- [22] Veropoulos, K., C. Campbell, en N. Cristianini: *Controlling the Sensitivity of Support Vector Machines*. In *Proceedings of the International Joint Conference on AI*, pag. 55–60, 1999.
- [23] Wang, J., P. Neskovic, en L. N. Cooper: *Selecting data for fast support vector machines training*. In *Trends in neural computation*, pag. 61–84. Springer, 2007.
- [24] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics bulletin, 1(6):80-83, 1945.
- [25] Wu, C. L.: *Inherent delays and operational reliability of airline schedules*. Journal of Air Transport Management, 11(4):273–282, 2005.
- [26] Wu, C. L. en R. E. Caves: *Aircraft operational costs and turnaround efficiency at airports*. Journal of Air Transport Management, 6(4):201–208, 2000.
- [27] Wu, C. L. en R. E. Caves: *Flight schedule punctuality control and management: A stochastic approach.* Transportation planning and technology, 26(4):313–330, 2003.
- [28] Wu, C. L. en R. E. Caves: *Modelling and simulation of aircraft turnaround operations at airports*. Transportation Planning and Technology, 27(1):25–46, 2004.