The Capital Assets Pricing Model

- 3. Portfolio Mear
- 4. Portfolio Variance
- 5. Reducing Risk
- 6. Ouiz: Variance of a 3-Asset Portfolio
- ./ 7. The Covariance Matrix and Quadr...
- . / 8 Calculate a Covariance Matrix
- 9. Quiz: np.cov
- 10. The Efficient Frontier
- 11. Capital Market Line
- 12. The Sharpe Ratio
- ./ 13. Other Risk Measures
- √ 14. The Capital Assets Pricing Model
 - 15. Ouiz: Portfolio Return with a 3-As...
 - 16 Summan

Knowledge

Search project Q&A

Student Hub

Chat with peers and mentors

Capital Asset Pricing Model

In addition to the Capital Market Line, we will further introduce another import Asset Pricing Model which is also called CAPM and pronounced "cap M".

The CAPM is a model that describes the relationship between systematic risk at assets. The CAPM assumes that the excess return of a stock is determined by the stock's relationship with the market's movement. It is the foundation of the factor models used by portfolio managers for portfolio construction.

Ok, let's quickly recap: the systematic risk, or market risk, is undiversifiable risk entire market. In contrast, the idiosyncratic risk is the asset-specific risk.

Ok, let's take a look at CAPM. For a stock, the return of stock i equals the return plus β times the difference between the market return and the risk free return covariance of stock i and the market divided by the variance of the market.

$$r_i - r_f = eta imes (r_m - r_f)$$

 r_i = stock return

 r_f = risk free rate

 r_m = market return

$$\beta_i = \frac{cov(r_i, r_m)}{\sigma^2}$$

 β describes which direction and by how much a stock or portfolio moves relative example, if a stock has a β of 1, this indicates that if the market's excess return return would also be 5%. If a stock has a β of 1.1, this indicates that if the mark the stock's excess return would be 1.1 \times 5%, or 5.5%.

Compensating Investors for Risk

Generally speaking, investors need to be compensated in two ways: time value time value of money is represented by the risk free return. This is the compens putting down investments over a period of time. β times r_m-r_f represents the market. It is the additional excess return the investor would require for taking composure, β . r_m-r_f is the risk premium, and β reflects the exposure of an as market risk.

When the β_i for stock i equals 1, stock i moves up and down with the same match When β_i is greater than 1, stock i moves up and down more than the market. I less than 1, stock i moves up and down less than the market.

Let's look at a simple example. If the risk free return is 2%, β_i of stock i equals return is 10%. The return of stock i equals 2% + 1.2 \times (10% - 2%) = 11.6.

$$r_f = 2\%$$

$$\beta_i = 1.2$$

$$r_m$$
= 10%

$$r_i$$
 = 2% + 1.2× (10% - 2%) = 11.6%

Security Market Line

The Security Market Line is the graphical representation of CAPM and it represe between the risk and return of stocks. Please note that it is different from the c y-axis is expected returns but the x-axis is beta. (You may recall that for the cap learned earlier, the x-axis was standard deviation of a portfolio.) As beta increa increases. Hence, the investors demand higher returns to compensate risk.