Supplementary Material

S1 Small N, large T

Parameters:

- N=20
- T=30

Figure S1: Simulated bias of RE, FE and FEIS estimators and rejection rates of ART (B,E) and BSHT (C, F) tests for $\theta=0$ (A, B, C) and $\theta=1$ (D, E, F). $\theta=$ effect of time-constant unobserved heterogeneity α_1 on covariate $\boldsymbol{x};\ \phi=\text{Cov}(\boldsymbol{\delta},\alpha_2);\ \boldsymbol{\delta}=$ effect of slope variable \boldsymbol{w} on covariate $\boldsymbol{x};\ \alpha_2=$ effect of slope variable \boldsymbol{w} on outcome $\boldsymbol{y};\ N=20,\ T=30,\ R=1000,\ R_b=100.$

Figure S2: Rejection rates of Artificial Regression Test with robust standard errors. δ = effect of slope variable \boldsymbol{w} on covariate \boldsymbol{x} ; α_2 = effect of slope variable \boldsymbol{w} on outcome \boldsymbol{y} ; \boldsymbol{v} = independent random vector in covariate \boldsymbol{x} ; σ^2 = variance of δ , \boldsymbol{w} , \boldsymbol{v} respectively; $N=20,\,T=30,\,R=1000,\,R_b=100$.

Figure S3: Rejection rates of Bootstrapped Hausman Test. δ = effect of slope variable w on covariate x; α_2 = effect of slope variable w on outcome y; v = independent random vector in covariate x; σ^2 = variance of δ , w, v respectively; N = 20, T = 30, R = 1000, $R_b = 100$.

S2 Lagged treatment effects

- DGP: $y_{in} = x_{in}\beta + x_{in-1}\beta\zeta + x_{in-2}\beta\zeta + \alpha_{1i} + w_{in}\alpha_{2i} + \epsilon_n$, with data sorted ascending based on the slope variable w. Everything else equal to setting 1 in the main text.
- Estimation model includes only x_{in} .

Figure S4: Simulated bias of RE, FE and FEIS estimators for x_n under different scenarios of lagged treatment effects $(x_{n-1}, x_{n-2} \neq 0)$, where data is sorted according to slope w). $\theta =$ effect of time-constant unobserved heterogeneity α_1 on covariate x; $\phi = \text{Cov}(\delta, \alpha_2)$; $\delta =$ effect of slope variable w on covariate x; $\alpha_2 =$ effect of slope variable w on outcome y; $\theta = 1$, N = 300, T = 10, R = 1000.

Figure S5: Simulated rejection rate of robust ART for x_n under different scenarios of lagged treatment effects $(x_{n-1},x_{n-2}\neq 0)$, where data is sorted according to slope w). $\theta=$ effect of time-constant unobserved heterogeneity α_1 on covariate x; $\phi={\rm Cov}(\delta,\alpha_2)$; $\delta=$ effect of slope variable w on covariate x; $\alpha_2=$ effect of slope variable w on outcome y; $\theta=1$, N=300, T=10, R=1000.

S3 Lagged treatment effects (specified in estimation model)

- DGP: $y_{in} = x_{in}\beta + x_{in-1}\beta\zeta + x_{in-2}\beta\zeta + \alpha_{1i} + w_{in}\alpha_{2i} + \epsilon_n$, with data sorted ascending based on the slope variable w. Everything else equal to setting 1 in the main text.
- Estimation model includes $x_{in} + x_{in-1} + x_{in-2}$.
- Note: Bias is shown in % of true $\beta\zeta$, as $\beta\zeta \neq 1$ for panels B, C in Figure S6.

Figure S6: Simulated bias in % of RE, FE and FEIS estimators for x_n, x_{n-1}, x_{n-2} for different strength of ζ , where data is sorted according to slope w. $\theta =$ effect of time-constant unobserved heterogeneity α_1 on covariate x; $\phi = \text{Cov}(\delta, \alpha_2)$; $\delta =$ effect of slope variable w on covariate x; $\alpha_2 =$ effect of slope variable w on outcome y; $\theta = 1$, N = 300, T = 10, R = 1000.

Figure S7: Simulated rejection rate of robust ART for x_n under different scenarios of lagged treatment effects $(x_{n-1},x_{n-2}\neq 0)$, where data is sorted according to slope \boldsymbol{w}). $\boldsymbol{\theta}=$ effect of time-constant unobserved heterogeneity $\boldsymbol{\alpha}_1$ on covariate $\boldsymbol{x};$ $\boldsymbol{\phi}=$ Cov $(\boldsymbol{\delta},\boldsymbol{\alpha}_2);$ $\boldsymbol{\delta}=$ effect of slope variable \boldsymbol{w} on covariate $\boldsymbol{x};$ $\boldsymbol{\alpha}_2=$ effect of slope variable \boldsymbol{w} on outcome $\boldsymbol{y};$ $\boldsymbol{\theta}=1,$ N=300, T=10, R=1000.

S4 Panel selection / attrition

- A) and B) Panel selection based on response: $s = 1[p(\ddot{Y}/\sigma_{\dot{Y}}) + (1-p)\varepsilon > 0]$ and s = 0 otherwise, where $\sigma_{\ddot{Y}}^2$ is the variance of \ddot{Y} and $\varepsilon \sim N(0,1)$. p indicates the proportion of the variance in the selection indicator s which comes from the response variable Y.
- C) and D) Panel selection based on heterogeneous treatment groups: sample units are randomly allocated to group g_1 or g_2 with heterogeneous treatment effects $\beta_{g1} = 2\beta_{g2}$, while we still keep $(\beta_{g1} + \beta_{g2})/2 = 1$. Likewise we specify diverging parameters for the probability of contributing only two observations / time periods for each unit: $P(T_i = 2|g_1) = q$ and $P(T_i = 2|g_2) = (1 q)$, $T_i = 10$ otherwise. Subsequently, for each selected unit, 2 observations / time periods are randomly drawn to remain in the estimation sample.

Figure S8: Simulated bias of RE, FE and FEIS estimators under different scenarios of panel selection as a function of \ddot{Y}_t (A, B), and as a function of heterogeneous treatment groups, where $\beta_{g1}=2\beta_{g2}$ and $s_{g1}>s_{g2}$ (C, D). $\theta=$ effect of time-constant unobserved heterogeneity α_1 on covariate x; $\phi=$ Cov (δ,α_2) ; $\delta=$ effect of slope variable w on covariate x; $\alpha_2=$ effect of slope variable w on outcome y; $\theta=1$, $N_{total}=300$, T=1-10, R=1000.

Figure S9: Simulated rejection rate of robust ART under different scenarios of panel selection as a function of \ddot{Y}_t (A, B), and as a function of heterogeneous treatment groups, where $\beta_{g1}=2\beta_{g2}$ and $s_{g1}>s_{g2}$ (C, D). $\theta=$ effect of time-constant unobserved heterogeneity α_1 on covariate $x; \phi=\text{Cov}(\delta,\alpha_2); \delta=$ effect of slope variable w on covariate $x; \alpha_2=$ effect of slope variable w on outcome $y; \theta=1, N_{total}=300, T=1-10, R=1000.$