EE2002 2014/2015

TUTORIAL 3 (with answers at the back)

- 1.a) The op-amp in Fig. T 3.1 has a unity-gain frequency of 1.2MHz.
 - i) What is the closed loop BW?
 - ii) What is the closed-loop gain at 600kHz?

Fig. T3-1

1.b) The op-amp shown in Fig. T3-2 has a SR of 4 V/μS and a unity-gain frequency of 2MHz. Determine whether the amplifier will distort the input signal shown.

Fig. T3-2

2. The op-amp in Fig T3-3 has a slew rate of $0.50V/\mu S$. The amplifier must be capable of amplifying the following input signals:

 $v_1 = 0.01\sin(10^6 t)$

 $v_2 = 0.05\sin(350x10^3t)$

 $v_3 = 0.10\sin(200x10^3t)$

 $v_4 = 0.20\sin(50x10^3t)$

- Determine whether the output will be distorted due to slew-rate limitations on
- b) If so, find a remedy (other than changing the input signals).

Fig. T3-3

3.a) What minimum SR is necessary for a unity-gain amplifier that must pass, without distortion, the input waveform shown in Fig T3-4.

- 3.b)Repeat (a), if the amplifier is in a noninverting configuration with $R_l\!\!=\!\!50k\Omega$ and $R_f\!\!=\!\!100k\Omega.$
- 4. In a certain application, a signal source having $60k\Omega$ of source resistance produces a 1-V-rms signal. The signal must be amplified to 2.5V rms and drive a $1k\Omega$ load. Assuming that the phase of the load voltage is of no concern, design an op-amp circuit for the application.

Answers to Tutorial 3

- 1. (a)
 - (i) $BW_{CL} = 60 \text{ kHz}$

(ii)
$$\frac{v_o}{v_{in}}$$
 (600kHz) = 2.0 $\frac{v_v}{v}$

- (b) No distortion will occur
- 2. (a) The output due to v_2 and v_3 will be distorted.
 - (b) There are only two remedies:
 - (i) find an amp with greater SR, a SR of at least 0.66 $V/\mu s$
 - (ii) reduce the A_{CL} of the present amplifier to 25 V/V.
- 3. (a) The minimum SR is $3.0 \text{ V/}\mu\text{s}$
 - (b) The $(SR)_{min} = 9 \text{ V/}\mu\text{s}$
- 4. Many right answers.