

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы	управления»	>	
	* *	* *		

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №17 По предмету: «Функциональное и логическое программирование»

Преподаватель: Строганов Ю.В. Студент: Мирзоян С.А.,

Группа: ИУ7-65Б

Задание

В одной программе написать правила, позволяющие найти

- Максимум из двух чисел
 - без использования отсечения,
 - с использованием отсечения;
- Максимум из трех чисел
 - без использования отсечения,
 - с использованием отсечения;

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела.

Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: <u>вершина – сверху!</u> Новый шаг надо начинать с нового состояния резольвенты!

Теоретические вопросы.

Какое первое состояние резольвенты?

Исходный вопрос

В каком случае система запускает алгоритм унификации?

Если резольвента не пуста – запускается алгоритм унификации (когда есть что доказывать)

Каково назначение и результат использования алгоритма унификации?

Унификация – операция, которая позволяет формализовать процесс логического вывода. Результат – подстановка.

В каких пределах программы переменные уникальны?

Именованная переменная уникальна в пределах предложения ее использующего. Анонимные переменные уникальны везде.

Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм.

Как изменяется резольвента?

Резольвента изменяется с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью (в заголовке правила зафиксировано знания). Такие правила будем называть сопоставимыми с целью, и система подбирает нужные с помощью алгоритма унификации.

Новая резольвента образуется в два этапа

- 1. в текущей резольвенте выбирается одна из подцелей (по стековому принципу верхняя) и для неё выполняется редукция замена подцели на тело найденного (подобранного, если удалось) правила (а как подбирается правило?),
- 2. затем, к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели (выбранной) и заголовка сопоставленного с ней правила.

В каких случаях запускается механизм отката?

Если достигнут конец БЗ (тупиковая ситуация) или резольвента пуста. После этого происходит откат к предыдущему состоянию резольвенты.

ЛИСТИНГ

```
1.predicates
2. max2(integer, integer, integer).
      max2 cut(integer, integer, integer).
3.
4.
     max3(integer, integer, integer).
5.
6. max3 cut(integer, integer, integer, integer).
7.
8.clauses
      \max 2 \ \text{cut}(X, Y, X) := X >= Y, !.
10.
      max2 cut( , Y, Y).
11.
            max3 cut(X, Y, Z, X) :- X >= Y, X >= Z, !.
12.
            max3 cut(, Y, Z, Max): - max2(Y, Z, Max).
13.
14.
           \max 2(X, Y, X) :- X >= Y.
            \max 2(X, Y, Y) :- Y > X.
15.
            \max 3(X, Y, Z, \max) := \max 2(X, Y, \max), \max 2(Res, Z, \max).
16.
17.
        goal
18.
            %max2(4, 10, Max).
19.
            %max2 cut(4, 10, Max).
20.
            %max3(3, 2, 4, Max).
21.
            %max3 cut(3, 1, 2, Max).
```

ТАБЛИЦА

Вопрос: max3_cut(3, 1, 2, Max).

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	max3_cut(3, 1, 2, Max).	max3_cut(3, 1, 2, Max) = max2_cut(X, Y, X) Неудача	Переход к следующему предложению.
2	max3_cut(3, 1, 2, Max).	max3_cut(3, 1, 2, Max) = max3_cut(X, Y, Z, X) Удача. X = Max = 3 Y = 1 Z = 2	Прямой ход. Тело правила заносится в резольвенту.
3	X >= Y X >= Z !	Сравнение: 3 >= 1 Истина.	Прямой ход
4	X >= Z !	Сравнение: 3 >= 2 Истина.	Прямой ход
5	!		Найдено решение. Мах = 3 Ввиду отсечения не будет попыток найти другие решения max3_cut. Система завершит свою работу.

Вопрос: max3_cut(1, 2, 3, Max).

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1-3	max3_cut(1, 2, 3, Max)	Попытки найти начало процедуры max3_cut. Неудача	Переход к следующей процедуре.
4	max3_cut(1, 2, 3, Max)	max3_cut(1, 2, 3, Max) = max3_cut(X, Y, Z, Max) Успех X = 1 Y = 2 Z = 3 Res = Max	Прямой ход. Тело правила заносится в резольвенту.
5, 6	max2_cut(X, Y, Max) max2_cut(Res, Z, Max)	Попытки найти начало процедуры max2_cut.	Переход к следующей процедуре.

		Неудача	
7	max2_cut(X, Y, Max) max2_cut(Res, Z, Max)	max2_cut(1, 2, Max) = max2_cut(X, Y, X) Удача X = Res = 1 Y = 2	Прямой ход. Тело правила заносится в резольвенту.
8	A >= B max2_cut(Max, Z,Max)	Сравнение: 1 >= 2 Ложь	Откат к 7, переход к следующему правилу
9	max2_cut(X, Y, Max) max2_cut(Res, Z, Max)	max2_cut(1, 2, Max) = max2_cut(X, Y, Y) Удача X = 1 Y = Res = 2	Прямой ход. Тело правила заносится в резольвенту.
10	Y > X max2_cut(Res, Z, Max)	Сравнение: 2 > 1 Истина	Прямой ход.
11, 12	max2_cut(Res, Z,Max)	Попытки найти начало процедуры max2_cut. Неудача	Переход к следующей процедуре.
13	max2_cut(Res, Z,Max)	max2_cut(2, 3, Max) = max2_cut(X, Y, A) Удача A = Res = 2 B = 3	Прямой ход. Тело правила заносится в резольвенту.
14	X >= Y	Сравнение: 2 >= 3 Ложь	Откат к 13, переход к следующему правилу
15	max2_cut(Res, Z, Max)	max2_cut(2, 3, Max) = max2_cut(X, Y, B) Удача A = 2 B = Res = 3	Прямой ход. Тело правила заносится в резольвенту.
16	Y > X	Сравнение: 3 > 2 Истина	Прямой ход
17			Резольвента пуста. Мах = 3