1.	Surfaces	$\phi_1(x,y,z)$	$=C_1$	and

 $\phi_2(x, y, z) = C_2$ are orthogonal if:

(A)
$$\phi_1 \cdot \phi_2 = 0$$

(B)
$$\nabla \cdot (\phi_1 + \phi_2) = 0$$

(C)
$$\nabla \phi_1 \cdot \nabla \phi_2 = 0$$

(D)
$$\nabla \phi_1 \times \nabla \phi_2 = 0$$

2. Gradient of a scalar function
$$\phi(x, y, z)$$

is :

(A)
$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z}$$

(B)
$$\frac{\partial \phi}{\partial x}\hat{i} + \frac{\partial \phi}{\partial y}\hat{j} + \frac{\partial \phi}{\partial z}\hat{k}$$

(C)
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$

(D) None of the above

3. Let
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $r = |\vec{r}|$,

(A)
$$\nabla e^r = \frac{e^r}{r}$$

(B)
$$\nabla e^r = e^r \vec{r}$$

(C)
$$\nabla e^r = \frac{e^r}{r} \vec{r}$$

(D)
$$\nabla e^r = e^{-r} r \, \vec{r}$$

4. Divergence of vector field

$$F = (x^2y, y^2, z^2x)$$
 at a point

$$(-1,2,3)$$
 is:

$$(A) -5$$

Z200100T-B/1360

$$(D) -6$$

5. For the scalar function f, div [grad f] is equal to:

(A)
$$\frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$$

(B) 0

(C)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

(D) None of the above

6. If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, then $\nabla \cdot \vec{r} =$

- (A) (
- (B) 3
- (C) -3
- (D) 1

$$\vec{F} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+mz)\hat{k}$$

is solenoidal, then the value of m is:

- (A) 2
- (B) 3
- (C) -2
- (D) 0

$$\vec{F} = x^2 \hat{i} + 2z \hat{j} - y \hat{k} \text{ is :}$$

- (A) $-3\hat{k}$
- (B) $-3\hat{i}$
- (C) 0

(3)

(D) $-3\hat{i}$

•	dy_	x+y+1	
9.	If $\frac{1}{dx}$	$\frac{x+y-1}{x+y-1}$, then it	is reduced to

homogeneous by:

$$(A) x+y=v+1$$

(B)
$$x + y = v$$

(C)
$$x-y=v$$

(D)
$$x + y + 1 = v$$

10.
$$\frac{dx}{dy} + xy = y^2 \text{ is :}$$

- (A) linear in x
- (B) linear in y
- (C) non-linear in x
- (D) none of the above

11. If
$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$, then real part of z_1z_2 is:

- (A) $x_1y_2 + x_2y_1$
- (B) $x_1y_1 + x_2y_2$
- (C) $x_1x_2 y_1y_2$
- (D) $x_1x_2 + y_1y_2$

12. Arg
$$(z)$$
 at $z = 0$ is:

- (A) (
- (B) not defined

(C)
$$\frac{\pi}{2}$$

(D)
$$\frac{-\pi}{2}$$

13. If
$$z=1-i$$
, then conjugate of conjugate of z is:

- (A) 1+i
- (B) 1-i

(C)
$$-1+i$$

(D)
$$-1-i$$

14. If
$$z = x + iy$$
, then $z + \overline{z}$ is equal to:

- (A) x
- (B) 2x
- (C) 2y

(D)
$$2x + i2y$$

15. If
$$z = 2 + 3i$$
, then modulus of z is:

- (A) 13
- (B) 5
- (C) $\sqrt{13}$
- (D) 15

16. Imaginary part of
$$\frac{z_1}{z_2}$$
 is, where

$$z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$$
:

(A)
$$\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$$

(B)
$$\frac{x_2y_1 - x_1y_2}{x_1^2 + y_1^2}$$

(C)
$$\frac{x_2y_1 - x_1y_2}{x_1^2 + y_2^2}$$

(D)
$$\frac{x_2y_1 - x_1y_2}{x_1^2 + x_2^2}$$

17. If
$$x + iy = \frac{2 - 3i}{4 + 7i}$$
, then:

(A)
$$x = \frac{1}{5}, y = \frac{-2}{5}$$

(B)
$$x = \frac{-1}{5}, y = \frac{2}{5}$$

(C)
$$x = \frac{-1}{5}, y = \frac{-2}{5}$$

(D)
$$x = \frac{1}{5}, y = \frac{2}{5}$$

18. The differential equation

$$\frac{2dy}{dx} + x^2y = 2x + 3$$
 is:

- (A) linear
- (B) non-linear
- (C) linear with constant coefficients
- (D) none of the above

19. A differential equation is ordinary if it has:

- (A) one dependent variable
- (B) one independent variable
- (C) both (A) and (B)
- (D) none of the above

20. Differential equation Mdx + Ndy is exact iff:

(A)
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

(B)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

(C)
$$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$$

(D)
$$\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$$

21. Fourier series uses which domain representation of signals?

- (A) Time domain
- (B) Frequency domain
- (C) Both (A) and (B)
- (D) None of the above

22. General solution of $(x^2 + 1)\frac{dy}{dx} = y$

is:

(A)
$$y = \frac{x^3}{3} + x + c$$

(B)
$$y = c\left(x^2 + 1\right)$$

(C)
$$y = ce^{x^2+1}$$

(D)
$$y = ce^{\tan^{-1}x}$$

23. Integrating factor of $\frac{dy}{dx} + Py = Q$ is:

(A)
$$\int_{e}^{Pdy}$$

(B)
$$\int_{e}^{Pdx}$$

(C)
$$\int e^P dx$$

(D) None of the above

24.
$$(y - \cos x) + (x + \sin y) \frac{dy}{dx} = 0$$
 is:

- (A) exact ODE
- (B) not exact ODE
- (C) linear in y
- (D) linear in x

25. Directional derivative of f in the direction of unit vector \hat{u} is:

- (A) $\nabla f \cdot \vec{u}$
- (B) $\nabla f \hat{u}$
- (C) $\nabla f \cdot \hat{u}$
- (D) None of the above

- 26. Solution of $\frac{dy}{dx} = \frac{x}{y}$ is:
 - $(A) \qquad y^2 = x^2 + y$
 - (B) $y = x^3$
 - $(C) y^2 = x^2 + c$
 - (D) $y = e^x$
- 27. If $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$, then its solution is:
 - (A) $\tan^{-1} y = \tan^{-1} x + c$
 - (B) $\tan^{-1} y = 2$
 - (C) $y = 1 + x^2$
 - (D) $1+v^2=1+x^2+c$
- 28. If $f(x,y) = x^3 + y^3 + 2$, then f(x,y) is:
 - (A) homogeneous f^n of degree 3
 - (B) homogeneous f^n of degree 0
 - (C) non-homogeneous of degree 2
 - (D) non-homogeneous f^n
- 29. $\frac{dy}{dx} + Py = Qy^n$ is linear if:
 - (A) n=2
 - (B) n=1
 - (C) n=0
 - (D) n = 0,1
- 30. For equation $\frac{dv}{dx} + \frac{2}{x+1}v = x^3$,

integrating factor is:

- (A) x+1
- (B) $(x+1)^2$

- (C) $(x+1)^3$
- (D) $(x+1)^4$
- 31. $(1-x^2)\frac{dy}{dx} + xy = xy^2$

can be transformed to linear by rule:

- $(A) \qquad \frac{1}{y^2} = v$
- (B) $\frac{1}{y} = v$
- (C) $y^2 = v$
- (D) y = v
- 32. $\frac{dy}{dx} = \frac{x+2y+3}{2x+3y+4}$ is reducible to

homogeneous if:

- (A) x = X + 1, y = Y + 2
- (B) x = X 1, y = Y 2
- (C) x = X + 1, y = Y 2
- (D) None of the above
- 33. Integrating factor of $\frac{dv}{dx} + 2xv = x^3$

is:

- (A) e^x
- (B) x^2
- (C) e^{x^2}
- (D) x^2

24			C 11		irrotationa	1 . C	
34.	A	vector	rieid	15	irrotationa	11 1T	•
J	4 1	1 CCLOI	TICIG		TIT O CCCCTOTIC	PT TT	•

- (A) $\nabla \times \vec{F} = 0$
- (B) $\nabla \cdot \vec{F} = 0$
- (C) $\nabla^2 \vec{F} = 0$
- (D) None of the above

35. If
$$\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$$
 and $\vec{F} = \nabla \phi$ then ϕ is:

- (A) x+y+z+c
- (B) $x^2 + y^2 + z^2 + c$
- (C) xyz + c
- (D) $x^2 + y + z + c$

36. Conjugate of the complex number
$$(6+5i)^2$$
 is:

- (A) 10 + 60i
- (B) 11-60i
- (C) 11+60i
- (D) 6-5i

37. Value of
$$\frac{(1+i)^{20}}{(1-i)^{20}}$$
 is:

- (A) -1
- (B) -i
- (C)
- (D) 1

38. Value of
$$(i)^{19}$$
 is equal to:

- (A) -1
- (B) -i
- (C) i
- (D) 1

39. Find the particular integral of
$$(D^2-4)y=1$$
:

- (A) $\frac{-1}{6}$
- (B) $\frac{-1}{5}$
- (C) $\frac{-1}{4}$
- (D) $\frac{1}{4}$

40. Find the P.I. of
$$(D^2 + 4)y = \cos 2x$$
:

- (A) $\frac{x}{4}\sin 2x$
- (B) $\frac{x}{4}\cos 2x$
- (C) $\frac{x}{2}\sin 2x$
- (D) $x\sin 2x$

41. Particular integral of
$$(D^2 - 1)y = x$$

- is:
- (A) x
- (B) x^2
- (C) -x
- (D) -1

42. Solution of
$$(D^2 + 1)y = 0$$
 is:

- (A) $c_1 e^x + c_2 e^{-x}$
- (B) $c_1 \cos x + c_2 \sin x$
- (C) $c_1 \cos x c_2 \sin x$
- (D) Both (B) and (C)

43. If f(x) is discontinuous at x = l in [a,b] then f(l) is:

(A)
$$\frac{\lim_{h\to 0} f(l-h) + \lim_{h\to 0} f(l+h)}{2}$$

(B)
$$\lim_{h\to 0} f(l+h)$$

(C)
$$\lim_{h\to 0} f(x)$$

(D) None of the above

44. $\frac{dy}{dx} = x$, then general solution is:

(A)
$$y = \frac{x^2}{2}$$

(B)
$$y = \frac{x^2}{2} + c$$

$$(C) y = x^2 + c$$

(D)
$$y = \left(\frac{x}{2}\right)^2 + c$$

45. If $y = ce^x$, then corresponding differential equation is:

(A)
$$\frac{dy}{dx} = y$$

(B)
$$\frac{dy}{dx} = cy$$

(C)
$$\frac{dx}{dy} = y$$

(D)
$$\frac{dx}{dy} = cy$$

46. Which of the following is ODE?

(A)
$$y = dx$$

(B)
$$dy = dx$$

(C)
$$x = y$$

(D)
$$y = x^2$$

47. Order of differential equation

$$\frac{d^2y}{dx^2} + y^2 = 0$$
 is:

- (A) 2
- (B) 1
- (C) not defined

(D) None of the above

48.
$$\frac{dy}{dx} + y = y^2 \text{ is :}$$

- (A) linear ODE
- (B) non-linear ODE
- (C) homogeneous ODE
- (D) linear PDE

49. Degree of ODE

$$\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0 \text{ is :}$$

- (A) 2
- (B) 3
- (C) $\frac{1}{2}$
- (D) 1

50. If $\frac{dy}{dx} = \cot x$, then it is linear in

variable:

- (A) x only
- (B) both x and y
- (C) y only
- (D) none of the above

is

(A)
$$2\sqrt{3} - 2i$$

(B)
$$2\sqrt{3} + 2i$$

(C)
$$-2\sqrt{3} + 2i$$

(D) None of the above

52. Operator form of
$$\frac{d^3y}{dx^3} + \frac{dy}{dx} + y = 0$$

is:

(A)
$$D^3 + D + 1 = 0$$

(B)
$$(D^3 + D + 1)y = 0$$

(C)
$$D^3 + D + y = 0$$

(D) None of the above

53. If
$$z_1 = 1 + i$$
, $z_2 = 1 - i$, then $z_1 z_2$ is:

- (A)
- (B) 1-i
- (C) i
- (D) 2

54. Euler's formula for
$$b_n$$
 in Fourier series in $[a,b]$ is:

- (A) $\int_{a}^{b} f(n) \cos nx dx$
- (B) $\int_a^b f(n) \sin nx dx$

Z200100T-B/1360

(C)
$$\int_a^b f(n) dx$$

(D)
$$\frac{2}{b-a} \int_{a}^{b} f(n) \sin\left(\frac{2n\pi x}{b-a}\right) dx$$

55. If f(n) is periodic in -l < x < l, then Fourier coefficient a_0 is:

(A)
$$\frac{1}{2l} \int_{-l}^{l} f(n) dx$$

(B)
$$\frac{1}{l} \int_{-l}^{l} f(n) dx$$

(C)
$$\int_{-l}^{l} f(n) dx$$

(D) None of the above

56.
$$\frac{dy}{dx} = x + y$$
, then integrating factor

is

$$(A)$$
 e^x

(B)
$$e^y$$

$$(C)$$
 e^{-x}

(D)
$$e^{-y}$$

57. If z = -2 + 3i, then principal argument is:

(A)
$$\pi - \tan^{-1} \left| \frac{3}{2} \right|$$

(C)
$$\frac{\pi}{2}$$

(D)
$$\tan^{-1}\left(\frac{3}{2}\right)$$

[P.T.O.]

- (A) -12
- (B) 6
- (C) 12
- (D) 15
- 59. Function $f(x) = \cos x$ is periodic with period:
 - (A) π
 - (B) 2π
 - (C) 4π
 - (D) 6π
- 60. In the expansion of Fourier series of f(x) in [a,b] a_0 is:
 - (A) $a_0 = \frac{1}{b-a} \int_a^b f(x) dx$
 - (B) $a_0 = \frac{1}{b} \int_a^b f(x) dx$
 - (C) $a_0 = \frac{1}{a} \int_a^b f(x) dx$
 - (D) $a_0 = \frac{1}{a-b} \int_a^b f(x) dx$
- 61. If f(n) = x, $0 < x < 2\pi$ then Fourier 65. coefficient a_n is equal to:
 - (A) 2π
 - (B) 0
 - (C) π
 - (D) $\frac{-2}{n}$

Z200100T-B/1360

(10)

62. If
$$f(n) = x^2, -\pi < x < \pi$$
, then Euler formula gives:

- (A) $a_n = 0$
- (B) $a_n = 2$
- (C) $b_n = 0$
- (D) $b_n = 2$
- If f(x) is periodic in interval $[-\pi, \pi]$ then time period w is equal to:
 - (A) π

63.

- (B) $-\pi$
- (C) 2π
- (D) None of the above
- 64. If $f(n) = x^3, -\pi < x < \pi$ then constant term a_0 is equal to:
 - $(A) \quad 2(-1)^n$
 - (B) 0
 - (C) 2
 - (D) $\left(-1\right)^n$
 - If $f(t) = \begin{cases} 0, -5 < t < 0 \\ 3, 0 < t < 5 \end{cases}$ is periodic then time period T is:
 - (A) 0
 - (B) 5
 - (C) -5 < t < 5
 - (D) 10

66.	Normal	vector	to	the	surface
	$\phi(x,y,z)$	=c is:			

- (A) $\nabla \cdot \phi$
- (B) $\nabla \phi$
- (C) $\nabla \times \phi$
- (D) None of the above

67. Greatest rate of increase of ϕ is:

- (A) grad ϕ
- (B) curl ϕ
- (C) div ϕ
- (D) None of the above

68. If
$$\vec{a} = i + j + k$$
, then unit vector \hat{a} is:

$$(A) \quad \frac{i+j+k}{3}$$

- (B) $\frac{i+j+k}{\sqrt{3}}$
- (C) i+j+k
- (D) None of the above

69. If
$$f(x)$$
 is odd function, then Fourier coefficient a_n is:

- (A) $a_n = 0$ for all intervals
- (B) $a_n = 0 \text{ in } -\pi < x < \pi$
- (C) $b_n = 0 \text{ in } -\pi < x < \pi$
- (D) None of the above

70. If
$$\vec{v} = (x - y)\hat{i} + (x + y)\hat{j} + z\hat{k}$$
, then curl \vec{v} is equal to:

- (A) 2î
- (B) $2\hat{j}$
- (C) $2\hat{k}$
- (D) \hat{k}

$$\frac{d^2y}{dx^2} - y = 0$$
 has solution as:

- (A) $c_1 \cos x + c_2 \sin x$
- (B) $c_1 e^{2x} + e^{-x}$
- (C) $c_1 e^x + c_2 e^{-x}$
- (D) $\left(c_1+c_2x\right)e^x$

72. Solution of ODE
$$\frac{dy}{dx} = xy$$
 is:

- (A) y = x + c
- (B) $\log y = \frac{x^2}{2} + c$
- (C) $\log y = x^2$
- (D) $y = e^{x^2} + c$

73. If
$$\vec{F}$$
 is conservative field then:

- (A) curl $\vec{F} = 0$
- (B) div $\vec{F} = 0$
- (C) grad $\vec{F} = 0$
- (D) None of the above

74. Multiplicative inverse of complex number
$$z=1+i$$
 is:

- (A) (
- (B) 1+i
- (C) $\frac{1-i}{2}$
- (D) None of the above

75.	Region	defined	by	z	≥1	is:
			-			

- $(A) x^2 + y^2 \ge 1$
- (B) $x^2 y^2 \ge 1$
- (C) $z \ge 1$
- (D) $x + iy \ge 1$

76. Vector normal to the surface
$$f(x,y,z)=c$$
 is:

- (A) ∇f
- (B) $\nabla^2 f$
- (C) ∇·f
- (D) $\nabla \times f$

77. If
$$\phi(x, y, z)$$
 is constant then gradient of ϕ is:

- (A) constant
- (B) 0
- (C) can not be 0
- (D) None of the above

78. Greatest rate of increase of
$$\phi = xyz^2$$
 at point (1, 0, 3) is:

- (A) $\sqrt{9}$
- (B) $9\hat{j}$
- (C) $9\hat{i}$
- (D) 9

79. Vector field
$$\vec{F}$$
 is solenoidal if:

- (A) divergence of $\vec{F} \neq 0$
- (B) divergence of $\vec{F} = 0$
- (C) curl $\vec{F} = 0$
- (D) curl $\vec{F} \neq 0$

Z200100T-B/1360

(A)
$$\operatorname{div}(A+B) = \operatorname{div}(A) + \operatorname{div}(B)$$

(B) Grad (constant) = 0

(C)
$$\nabla \cdot (A+B) = \nabla \cdot A + \nabla \cdot B$$

(D) Divergence
$$(i + j) = 2$$

81. grad
$$\left(\frac{1}{r}\right)$$
 is equal to:

- (A) 0
- (B) $\frac{1}{r^2}$
- (C) $\frac{-1}{r}$
- (D) None of the above

82. If
$$r^n r$$
 is solenoidal, then:

- (A) n = 3
- (B) n = -3
- (C) n=2
- (D) n = -2

83. Curl of
$$\vec{a} \times \vec{r}$$
 is:

- (A) 0
- (B) \vec{a}
- (C) \vec{r}
- (D) $2\vec{a}$

84. If
$$r = \sqrt{x^2 + y^2 + z^2}$$
, then:

- (A) $\nabla r^2 = 2\vec{r}$
- (B) $\nabla r^2 = 2r$

(12)

- (C) $\nabla r^2 = 2r \nabla r$
- (D) None of the above

85. Polar form of $z = -1 + \sqrt{3}i$ is:

(A)
$$z = 2 \left[\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right]$$

(B)
$$z = 4 \left[\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right]$$

(C)
$$z = 2 \left[\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right]$$

(D)
$$z = 2e^{\frac{2\pi}{3}}$$

86. Find the real number B if

$$A + iB = \frac{3 - 2i}{7 + 4i}$$
:

$$(A) B = \frac{2}{5}$$

(B)
$$B = \frac{-2}{5}$$

(C)
$$B = \frac{1}{5}$$

(D)
$$B = \frac{-1}{5}$$

87. If $z = -1 - \sqrt{3} i$, then |z| is:

- (A) 4
- (B) 2
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{6}$

88. Argument of $z = \frac{1+7i}{(2-i)^2}$ is:

- (A) 2π
- (B) $\frac{3\pi}{2}$
- (C) $\frac{3\pi}{4}$
- (D) None of the above

89. If $\overline{r} = xi + yj + zk$, then ∇r is:

- (A) \vec{r}
- (B) r
- (C) $\frac{\vec{r}}{r}$
- (D) 2r

90. $\nabla \left[\frac{f}{g} \right]$ is equal to :

(A)
$$\frac{g\nabla f - f\nabla g}{g^2}, g \neq 0$$

(B)
$$\frac{g\nabla f + f\nabla g}{g^2}, g \neq 0$$

(C)
$$\frac{\nabla g}{\nabla f}$$

(D)
$$\frac{\nabla f}{\nabla g}$$

91. If $\vec{r} = xi + yj + zk$, then ∇r^n is:

- (A) nr^{n-1}
- (B) $nr^{n-2}\vec{r}$
- (C) $nr^{n-1}\vec{r}$
- (D) nr^{n-2}

92.	The locus of the points	z satisfying the
-----	-------------------------	------------------

condition
$$\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$$
 is a:

- (A) Parabola
- (B) Circle
- (C) Pair of straight lines
- (D) None of the above

93. If
$$z = re^{i\theta}$$
 then $|e^{iz}|$ is equal to:

- (A) $e^{-r\sin\theta}$
- (B) $re^{-r\sin\theta}$
- (C) $e^{-r\cos\theta}$
- (D) $re^{-r\cos\theta}$

94. If cube roots of unity are
$$1, w, w^2$$

then:

(A)
$$1+w+w^2=2$$

(B)
$$1+w+w^2=0$$

(C)
$$w^3 = -1$$

(D)
$$w^2 = 1$$

95. Let
$$z = i$$
, then arg z is equal to:

(A)
$$-\frac{\pi}{2}$$

(B)
$$\pi$$

(C)
$$\frac{\pi}{2}$$

(D)
$$-\pi$$

$$(A) \quad |z_1 z_2| \ge |z_1| |z_2|$$

(B)
$$|z_1 + z_2| \le |z_1| - |z_2|$$

(C)
$$|z_1 - z_2| = |z_1| - |z_2|$$

(D)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

97. Modulus of
$$z = x + iy$$
 is:

$$(A) x^2 + y^2$$

(B)
$$\sqrt{x^2 + y^2}$$

(C)
$$x+y$$

(D)
$$x-iy$$

98. Real part of
$$z = \frac{a+ib}{c+id}$$
 is:

(A)
$$\frac{ac + bd}{a^2 + b^2}$$

(B)
$$\frac{ac + bd}{c^2 + a^2}$$

(C)
$$\frac{ac + bd}{a^2 + d^2}$$

(D)
$$\frac{ac+bd}{c^2+d^2}$$

99. Modulus amplitude form of z = x + iy is:

(A)
$$re^{\theta}$$

(B)
$$re^{i\theta}$$

(C)
$$e^{i\theta}$$

100. Argument of z=1-i is:

(A)
$$\frac{\pi}{2}$$

(B)
$$\frac{\pi}{4}$$

(C)
$$\frac{-\pi}{4}$$

(D)
$$\frac{-\pi}{2}$$