Session 4: Performance measurements

COMP52315: performance engineering

Lawrence Mitchell*

^{*}lawrence.mitchell@durham.ac.uk

Roofline dense matrix-vector product

How and what to measure

- Roofline gives us a high-level overview of what to try next.
- How to drill down and get more information about what is causing the bottleneck?
- How to confirm the hypothesis formed through the roofline analysis?
- ⇒ *Measure* things about the code.

Performance measurements

- Modern hardware comes with some special purpose *registers* that you can prod to measure low level performance events.
- · Can use this to characterise performance of a piece of code

Caveats

- Measurements can only tell you about the algorithm you're using
- e.g. Counts the data you moved, not the data you could have moved.
- Do not tell you about potential better algorithms
- Need to work hand in hand with models.

Recognise exploit high level smuchere

i the problem. this cores from

COMP52315—Session 4: Performance measurements

Since 1960.

1021 in creax i size of

PDE problems we can

solve.

100 has care from hodored

100 has care from hodored

1000 has care from hodored

What kind of things can we measure?

- An almost overwhelming number of different things like:
 - Number of floating point instructions of different type (scalar, sse, avx)
 - Cache miss/hit counts at various levels
 - Branch prediction success rate
 - ...
- ⇒ Best used to confirm hypothesis from some model

Abstract metrics

- Can read low-level hardware counters directly (e.g. how many floating point instructions were executed?)
- More useful to group into abstract metrices
- ⇒ easier to compare across hardware, easier to interpret.
 - · For example, measure "Instructions per cycle" rather than instructions.

How do we measure them?

prods kenel-kevel shift 7 10 reeds to be installed as not.

- Use likwid-perfctr (installed on Hamilton via the likwid module).
- Offers a reasonably friendly command-line interface.
- Provides access both to counters directly, and many useful predefined "groups".

module load likevid /5.8.1

Example: STREAM

• Will use likwid-perfctr to measure memory references in different cli) = ali) + ali) + bl). implementations of the same loop.

pseudo assembly for

```
Scalar
for i from 0 to n:
 load a[i:i+1] reg1
 load b[i:i+1] reg2
 load c[i:i+1] reg4
 mul reg1 reg2 reg3
 add reg4 reg3 reg4
 store reg4 c[i:i+1]
    3x106 cont
```


Measurement

Model

For each loop choice, if we choose $n=10^6$, how many load and store instructions do we expect to measure?

Measurement

Model

For each loop choice, if we choose $n = 10^6$, how many load and store instructions do we expect to measure?

Answer

Each loop iteration has 3 loads and 1 store.

Vector width v and n iterations we need $\frac{3n}{v}$ loads and $\frac{n}{v}$ stores.

 \Rightarrow let's attempt to verify this with measurements.

Exercise

- Goal is to convince ourselves that measurement works!
- \Rightarrow Exercise 5 from the usual place.

Larger code

Problem

What if you don't know which part of the code takes all the time?

Answer

Use *profiling* to determine hotspots (regions of code where all the time is spent).

 \Rightarrow allows us to focus in on important parts.

Profiling: types

- Goal is to gather information about what a code is doing
 - Sampling
 - or code instrumentation

Sampling

- Works with unmodified executables
- Only a statistical model of code execution
- ⇒ not very detailed for volatile metrics
- ⇒ needs long-running application

eny to be some front rue

Con get Is et la results detiled informations

Instrumentation

- Requires source code annotations to capture "interesting" information
- Much more details and focused
- ⇒ Preprocessing of source required
- ⇒ Can have large *overheads* for small functions.

Sampling

- Running program is periodically interrupted to take a measurement.
- Records which function we are in.

Tracing

· Measurement code is inserted to capture all the events we care about

Sampling profiles with gprof

renew bes races

Workflow

- 1. Compile and link code with symbols (add -g) and profile information
 - -> instructs progra to record
- 2. Run code ⇒ produces file gmon.out
 3. Postprocess data with gprof
- 4. Look at results

gprof "flat profile"

Flat profile:

Each sample counts as 0.01 seconds.				Sam	and of	/
% с	umulative	self		self	total	5
time	seconds	seconds	calls	s/call	s/call	name
76.14	5.71	5.71	102	0.06	0.06	ForceLJ::compute(Atom&, Neigh
17.07	6.99	1.28	6	0.21	0.22	Neighbor::build(Atom&)
2.80	7.20	0.21	3	0.07	0.07	<pre>void ForceLJ::compute_halfneig</pre>
1.47	7.31	0.11	1	0.11	7.05	<pre>Integrate::run(Atom&, Force*,</pre>
0.93	7.38	0.07				intel_avx_rep_memcpy
0.40	7.41	0.03	11	0.00	0.00	Neighbor::binatoms(Atom&, int
0.40	7.44	0.03	6	0.01	0.01	Comm::borders(Atom&)
0.40	7.47	0.03	1	0.03	0.04	create_atoms(Atom&, int, int,
0.13	7.48	0.01	285585	0.00	0.00	Atom::unpack_border(int, doub

Duild 129

gprof "flat profile"

- Code is instrumented (instructions inserted so we know which function we're in), triggering of measurement is sampling based (not every call).
- GProf provides profile with some tracing information
- · Gives both inclusive and exclusive timings.
 - · Blue box shows "inclusive" time for main
 - foo and bar calls (orange)
 excluded for "exclusive" time.
- ⇒ exclusive time measures execution in function that is not attributable to some other function.

```
int main(void) {
    for (i = 0; i < N; i++) {
        if (i % 3 == 0) {
            bar(...);
        } else {
            foo(...);
        }
        ...
    }
}</pre>
```

Continued workflow

- After we have identified the hotspot that takes all the time, we'd like to of his should be inted? determine if it is optimised
- ⇒ need more detailed insights.
- 1. Find relevant bit of code
- 2. Determine algorithm

 fywe at mul's gains
- 3. Add instrumentation markers (see exercise) —
- 4. Profile with more detail/use performance models.
- ⇒ guidance for appropriate optimisation.

Exercise: finding the hotspot

- So far, we've looked at very simple code. Now, your task will be to find the hotspot and do some exploration in a larger one.
- \Rightarrow Exercise 6 from the usual place.