Design and Analysis of Algorithms

L10b: Bonus Exercises

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

 https://cs.stackexchange.com/questions/10960/ sort-array-of-5-integers-with-a-max-of-7compares

Sort K elements

- Minimum comparisons required
- With K elements, possible permutations K!
- Only 1 out K! is correct sorted order.
- Using binary partition, the minimum comparison required

```
log<sub>2</sub>K!
```

- Example:
 - K=4, Min comparisons: $log_224=5$
 - Develop a decision tree to sort 4 elems in 5 comparisons
 - K=5, Min comparisons: $log_2120=7$
 - Develop a decision tree to sort 5 elems in 7 comparisons

- Task: sort 4 elements in precisely 5 comparisons
 - Input: 4 elements (or their 24 permutations)
 - •a, b, c, d.
 - output: pick 1 correct out of 24 permutations
- Methodology
 - Ensure each comparison reduces the set by half
 - In ith comparison, the permutation sets size be
 set size <= 25-i
 - Thus, permutation set size should decrease with each comparison to be $\leq 16, 8, 4, 2, 1$
 - Devise a method where permutation set size decreases from 24 to 12, 6, 3, 2, 1

Sort 4 numbers

```
abcd
                cabd
  abdc badc cadb
  acbd <del>bead</del> <del>cbad</del> <del>dbac</del>
  acdb <del>bcda cbda dbca</del>
  adbe bdae cdab deab
 adch bdca cdba
                         dcha
 Consider two numbers a, b
   if a < b
     12 combinations goes out
   else
     other 12 combinations goes out
   if c < d
     6 combinations goes out
   if b < c
     ?? what happens. Can we use it?
DAA/Divide and Conquer
```

- C1: Compare a and b. For generality, assume a < b
- Given this condition, possible permutations = 24
 - c can be placed 3 ways
 - before a, i.e. (c a b)
 - between a and b (a c b)
 - after b. (a b c)
 - for each possible placement of c, d can be placed in 4 possible ways
 - •dcab, cdab, cadb, cabd
 - •dacb, adcb, acdb, acbd
 - dabc, adbc, abdc, abcd
 - Total permutations: 3*4 = 12 (<16).
 - This satisfies our division criteria.

- C2: Possible comparisons
 - compare c and d, or
 - c with a, or (even d can be taken in place of c)
 - c with b.
- Consider $C2_1$: compare C with d.
 - For generality, assume c < d.
 - This partitions the permutation set from 12 to 6.
 - •cdab, cadb, cabd
 - •acdb, acbd
 - abcd
 - Total permutations: 6 (<8).
 - Follows constraints a<b, and c<d
 - This satisfies our division criteria.

- Permutation set after 2 comparisons (a<b, c<d)
 - -cdab, cadb, cabd, acdb, acbd, abcd
- C3: it should divide the set into half i.e. size of 3
 - Comparing c and b, gives following division
 - (c<b): cdab, cadb, cabd, acdb, acbd
 - (b<c): abcd
 - Division divides into 5 and 1 and 5 >3. So this comparison will not work.
 - Similarly, comparing a and d divides the set into subset of size 5 and size 1.
 - Comparing b and d gives equal division of 3, and 3.
 - (b<d): cabd, acbd, abcd
 - (d<b): cdab, cadb, acdb

- Thus, C3: compare b and d to get following.
 - $-C_{3a}$: (b<d): cabd, acbd, abcd
 - $-C_{3b}$: (d<b): cdab, cadb, acdb
 - Both sets are size 3 (<4) and thus works fine.
- C_{3a}:a<b, c<d, b<d⇒a<b<d, c<d
 - We don't about order of (a<b) and c.</p>
- C4_{3a}: Compare a and c.
 - $-C_{4a}$: a < c \Rightarrow a c b d, a b c d
 - $-C_{4b}$: c<a \Rightarrow cabd. (Done)
- C5_{3a}: Compare b and c.
 - C5a: b < c ⇒ abcd (Done)
 - C5a: c<b \Rightarrow acbd (Done)
- We can similarly complete C_{3b} in 5 comparisons

Bonus exercise: Sort 5 elements

- Task: sort 5 elements in precisely 7 comparisons
 - Input: 5 elements (or their 120 permutations)

```
•a, b, c, d, e.
```

- output: pick 1 correct out of 120 permutations
- Methodology
 - Ensure each comparison reduces the set by half
 - In ith comparison, the permutation sets size be
 set size <= 2⁷⁻ⁱ
 - Thus, permutation set size should decrease with each comparison to be $\le 64, 32, 16, 8, 4, 2, 1$
 - Devise a method where permutation set size decreases from 120 to 60, 30, 15, 8, 4, 2, 1

- C1: Compare a and b. For generality, assume a < b
- Given this condition, possible permutations = 60
 - c can be placed 3 ways
 - (c a b), (a c b) or (a b c)
 - for each possible placement of c, d can be placed in 4 possible ways
 - •dcab, cdab, cadb, cabd
 - •dacb, adcb, acdb, acbd
 - •dabc, adbc, abdc, abcd
 - For each of these 12, e can be placed 5 ways.
 - Total permutations: 3*4*5 = 60 (<64).
 - This satisfies our division criteria.

- C2: compare c and d
- Consider for generality, assume c < d.
 - This partitions the permutation set from 60 to 30.
 - 30 is <32, satisfies the division criteria
- C3: Proceed further in this way to have a set division from 30 to 15
- C4: Set division from 15 to 8
- C5: set division from 8 to 4
- C6: set division from 4 to 2
- C7: set division from 2 to 1 (get the sorted set)
- Please work out the steps!!!
 - Write the sorting program to see the results.