Homework 2

Tongji University 2022 Class Computer Science and Technology College Software Engineering Major Machine Intelligence Direction Computer Vision Course Assignment

Instructor: Zhang Lin

Semester: 2024-2025 Fall Semester

Student ID: 2251730 Liu Shuyi

Homogeneous Coordinates of the Point at Infinity

In the extended Euclidean plane (which can be regarded as a projective plane), points are represented by homogeneous coordinates (X,Y,Z), and lines are described by homogeneous equations of the form aX + bY + cZ = 0.

Consider the affine line x-3y+4=0. By introducing the homogeneous coordinate Z, it can be converted into its homogeneous form:

$$X - 3Y + 4Z = 0$$

Point at Infinity

Points at infinity lie on the line at infinity defined by Z=0. To find the point at infinity corresponding to the given line, substitute Z=0 into the homogeneous equation:

$$X - 3Y = 0$$

This simplifies to:

$$X = 3Y$$

Therefore, the point at infinity must satisfy X=3Y and Z=0. Introducing a nonzero constant k, the homogeneous coordinates can be represented as:

where $k \neq 0$. Since homogeneous coordinates are equivalent up to a nonzero scalar multiple, any nonzero scalar k represents the same projective point at infinity.

Final Answer

The homogeneous coordinates of the point at infinity can be expressed as:

$$(3k, k, 0)$$
 with $k \neq 0$

Jacobian Matrix of Distortion Mapping

Below is the detailed derivation of the Jacobian matrix $\frac{\partial \mathbf{p}_d}{\partial \mathbf{p}_n^T}$ for the mapping from $\mathbf{p}_n = (x,y)^T$ to $\mathbf{p}_d = (x_d,y_d)^T$.

Given:

$$x_d = x(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2
ho_1xy +
ho_2(r^2 + 2x^2)$$

$$y_d = y(1+k_1r^2+k_2r^4+k_3r^6) + 2
ho_2xy +
ho_1(r^2+2y^2)$$

where $r^2 = x^2 + y^2$.

Define:

$$A = 1 + k_1 r^2 + k_2 r^4 + k_3 r^6$$

Thus:

$$x_d=xA+2\rho_1xy+\rho_2(r^2+2x^2)$$

$$y_d=yA+2\rho_2xy+\rho_1(r^2+2y^2)$$

We need to calculate:

$$rac{\partial \mathbf{p}_d}{\partial \mathbf{p}_n^T} = egin{bmatrix} rac{\partial x_d}{\partial x} & rac{\partial x_d}{\partial y} \ rac{\partial y_d}{\partial x} & rac{\partial y_d}{\partial y} \end{bmatrix}$$

Calculate $\frac{\partial x_d}{\partial x}$

First, calculate $\frac{\partial A}{\partial x}$:

$$rac{\partial A}{\partial x}=2x(k_1+2k_2r^2+3k_3r^4)$$

Then:

$$rac{\partial x_d}{\partial x}=A+xrac{\partial A}{\partial x}+2
ho_1y+rac{\partial}{\partial x}[
ho_2(r^2+2x^2)]=A+2x^2(k_1+2k_2r^2+3k_3r^4)+2
ho_1y+6
ho_2x$$

Substituting A:

$$rac{\partial x_d}{\partial x} = (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + 2 x^2 (k_1 + 2 k_2 r^2 + 3 k_3 r^4) + 2
ho_1 y + 6
ho_2 x$$

Calculate $\frac{\partial x_d}{\partial y}$

First, calculate $\frac{\partial A}{\partial u}$:

$$rac{\partial A}{\partial y}=2y(k_1+2k_2r^2+3k_3r^4)$$

Then:

$$rac{\partial x_d}{\partial y}=xrac{\partial A}{\partial y}+2
ho_1x+rac{\partial}{\partial y}[
ho_2(r^2+2x^2)]=2xy(k_1+2k_2r^2+3k_3r^4)+2
ho_1x+2
ho_2y$$

Calculate $\frac{\partial y_d}{\partial x}$

$$rac{\partial y_d}{\partial x}=yrac{\partial A}{\partial x}+2
ho_2y+
ho_1(2x)=2xy(k_1+2k_2r^2+3k_3r^4)+2
ho_2y+2
ho_1x$$

Calculate $\frac{\partial y_d}{\partial y}$

$$rac{\partial y_d}{\partial y}=A+yrac{\partial A}{\partial y}+2
ho_2x+rac{\partial}{\partial y}[
ho_1(r^2+2y^2)]=A+2y^2(k_1+2k_2r^2+3k_3r^4)+2
ho_2x+6
ho_1y$$

Substituting A:

$$rac{\partial y_d}{\partial y} = (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + 2 y^2 (k_1 + 2 k_2 r^2 + 3 k_3 r^4) + 2
ho_2 x + 6
ho_1 y$$

Final Jacobian Matrix

Combining the above results, we have:

$$\frac{\partial \mathbf{p}_d}{\partial \mathbf{p}_n^T} = \begin{bmatrix} 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 + 2 x^2 (k_1 + 2 k_2 r^2 + 3 k_3 r^4) + 2 \rho_1 y + 6 \rho_2 x & 2 x y (k_1 + 2 k_2 r^2 + 3 k_3 r^4) + 2 (\rho_1 x + \rho_2 y) \\ 2 x y (k_1 + 2 k_2 r^2 + 3 k_3 r^4) + 2 (\rho_1 x + \rho_2 y) & 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 + 2 y^2 (k_1 + 2 k_2 r^2 + 3 k_3 r^4) + 2 \rho_2 x + 6 \rho_1 y \end{bmatrix}$$

Jacobian Matrix of Rotation Matrix

Rodrigues' Rotation Formula

Given the axis-angle representation $\mathbf{d} = \theta \mathbf{n}$, where θ is the rotation angle and \mathbf{n} is the unit rotation axis, the rotation matrix R can be expressed using Rodrigues' rotation formula:

$$R = \cos \theta I + (1 - \cos \theta) \mathbf{n} \mathbf{n}^T + \sin \theta \mathbf{n}^\wedge$$

where:

- I is the 3×3 identity matrix.
- \mathbf{n}^{\wedge} is the skew-symmetric matrix of \mathbf{n} :

$$\mathbf{n}^\wedge = egin{bmatrix} 0 & -n_3 & n_2 \ n_3 & 0 & -n_1 \ -n_2 & n_1 & 0 \end{bmatrix}$$

- $\alpha = \sin \theta$
- $\beta = \cos \theta$
- $\gamma = 1 \cos \theta$

Substituting these notations, the rotation matrix simplifies to:

$$R = \beta I + \gamma \mathbf{n} \mathbf{n}^T + \alpha \mathbf{n}^\wedge$$

Vectorizing the Rotation Matrix

The rotation matrix R is a 3×3 matrix. To facilitate differentiation, we vectorize R into a 9×1 vector \mathbf{r} in row-major order:

$$\mathbf{r} = egin{bmatrix} r_{11} & r_{12} & r_{13} & r_{21} & r_{22} & r_{23} & r_{31} & r_{32} & r_{33} \end{bmatrix}^T$$

Detailed Calculation of r

Expanding R using Rodrigues' formula:

$$R = \beta I + \gamma \mathbf{n} \mathbf{n}^T + \alpha \mathbf{n}^{\wedge}$$

Breaking it down element-wise, we obtain:

$$R = egin{bmatrix} eta + \gamma n_1^2 & \gamma n_1 n_2 - lpha n_3 & \gamma n_1 n_3 + lpha n_2 \ \gamma n_2 n_1 + lpha n_3 & eta + \gamma n_2^2 & \gamma n_2 n_3 - lpha n_1 \ \gamma n_3 n_1 - lpha n_2 & \gamma n_3 n_2 + lpha n_1 & eta + \gamma n_3^2 \end{bmatrix}$$

Vectorizing R:

$$\mathbf{r} = egin{bmatrix} eta + \gamma n_1^2 \ \gamma n_1 n_2 - lpha n_3 \ \gamma n_1 n_3 + lpha n_2 \ \gamma n_2 n_1 + lpha n_3 \ eta + \gamma n_2^2 \ \gamma n_2 n_3 - lpha n_1 \ \gamma n_3 n_1 - lpha n_2 \ \gamma n_3 n_2 + lpha n_1 \ eta + \gamma n_3^2 \ \end{pmatrix}$$

Calculating the Jacobian $\frac{d\mathbf{r}}{d\mathbf{n}^T}$

The Jacobian matrix $\frac{d\mathbf{r}}{d\mathbf{n}^T}$ is a 9×3 matrix where each element $\frac{\partial r_i}{\partial n_j}$ represents the partial derivative of the i-th component of \mathbf{r} with respect to the j-th component of \mathbf{n} .

Partial Derivatives

1. First Component $r_1=eta+\gamma n_1^2$

$$rac{\partial r_1}{\partial \mathbf{n}} = egin{bmatrix} 2\gamma n_1 \ 0 \ 0 \end{bmatrix}$$

2. Second Component $r_2 = \gamma n_1 n_2 - \alpha n_3$

$$rac{\partial r_2}{\partial \mathbf{n}} = egin{bmatrix} \gamma n_2 \ \gamma n_1 \ -lpha \end{bmatrix}$$

3. Third Component $r_3 = \gamma n_1 n_3 + lpha n_2$

$$rac{\partial r_3}{\partial \mathbf{n}} = egin{bmatrix} \gamma n_3 \ lpha \ \gamma n_1 \end{bmatrix}$$

4. Fourth Component $r_4 = \gamma n_2 n_1 + lpha n_3$

$$rac{\partial r_4}{\partial \mathbf{n}} = egin{bmatrix} \gamma n_1 \ \gamma n_1 \ lpha \end{bmatrix}$$

5. Fifth Component $r_5=eta+\gamma n_2^2$

$$rac{\partial r_5}{\partial \mathbf{n}} = egin{bmatrix} 0 \ 2\gamma n_2 \ 0 \end{bmatrix}$$

6. Sixth Component $r_6 = \gamma n_2 n_3 - lpha n_1$

$$rac{\partial r_6}{\partial \mathbf{n}} = egin{bmatrix} -lpha \ \gamma n_3 \ \gamma n_2 \end{bmatrix}$$

7. Seventh Component $r_7 = \gamma n_3 n_1 - \alpha n_2$

$$rac{\partial r_7}{\partial \mathbf{n}} = egin{bmatrix} \gamma n_3 \ -lpha \ \gamma n_1 \end{bmatrix}$$

8. Eighth Component $r_8 = \gamma n_3 n_2 + \alpha n_1$

$$rac{\partial r_8}{\partial \mathbf{n}} = egin{bmatrix} lpha \ \gamma n_3 \ \gamma n_2 \end{bmatrix}$$

9. Ninth Component $r_9=eta+\gamma n_3^2$

$$rac{\partial r_9}{\partial \mathbf{n}} = egin{bmatrix} 0 \ 0 \ 2 \gamma n_3 \end{bmatrix}$$

Assembling the Jacobian Matrix

Combining all the partial derivatives, the Jacobian matrix $\frac{d\mathbf{r}}{d\mathbf{n}^T}$ is:

$$rac{d\mathbf{r}}{d\mathbf{n}^T} = egin{bmatrix} 2\gamma n_1 & 0 & 0 \ \gamma n_2 & \gamma n_1 & -lpha \ \gamma n_3 & lpha & \gamma n_1 \ \gamma n_2 & \gamma n_1 & lpha \ 0 & 2\gamma n_2 & 0 \ -lpha & \gamma n_3 & \gamma n_2 \ \gamma n_3 & -lpha & \gamma n_1 \ lpha & \gamma n_3 & \gamma n_2 \ 0 & 0 & 2\gamma n_3 \end{bmatrix}$$

Calculating the Jacobian Matrix of ${f r}$ with Respect to ${f d}$ ($rac{\partial {f r}}{\partial {f d}^T}$)

Using the chain rule, the Jacobian matrix $\frac{\partial \mathbf{r}}{\partial \mathbf{d}^T}$ can be expressed as:

$$\frac{\partial \mathbf{r}}{\partial \mathbf{d}^T} = \frac{\partial \mathbf{r}}{\partial \theta} \frac{\partial \theta}{\partial \mathbf{d}^T} + \frac{\partial \mathbf{r}}{\partial \mathbf{n}^T} \frac{\partial \mathbf{n}}{\partial \mathbf{d}^T}$$

1. Calculate $\frac{\partial \theta}{\partial \mathbf{d}^T}$

Given $heta=\|\mathbf{d}\|=\sqrt{d_1^2+d_2^2+d_3^2}$, the partial derivative of heta with respect to \mathbf{d} is:

$$\frac{\partial \theta}{\partial \mathbf{d}^T} = \frac{\mathbf{d}^T}{\theta} = \mathbf{n}^T$$

2. Calculate $\frac{\partial \mathbf{n}}{\partial \mathbf{d}^T}$

Since $\mathbf{n}=\frac{\mathbf{d}}{\theta}$, differentiating with respect to \mathbf{d}^T yields:

$$rac{\partial \mathbf{n}}{\partial \mathbf{d}^T} = rac{1}{ heta} \left(I - \mathbf{n} \mathbf{n}^T
ight)$$

where I is the 3×3 identity matrix.

3. Calculate $\frac{\partial \mathbf{r}}{\partial \theta}$

From the expression of \mathbf{r} :

$$\mathbf{r} = egin{bmatrix} eta + \gamma n_1^2 \ \gamma n_1 n_2 - lpha n_3 \ \gamma n_1 n_3 + lpha n_2 \ \gamma n_2 n_1 + lpha n_3 \ eta + \gamma n_2^2 \ \gamma n_2 n_3 - lpha n_1 \ \gamma n_3 n_1 - lpha n_2 \ \gamma n_3 n_2 + lpha n_1 \ eta + \gamma n_3^2 \ \end{pmatrix}$$

Taking the derivative with respect to θ :

•
$$\frac{\partial \beta}{\partial \theta} = -\sin \theta = -\alpha$$

• $\frac{\partial \gamma}{\partial \theta} = \sin \theta = \alpha$

Thus, the derivative $\frac{\partial \mathbf{r}}{\partial \theta}$ is:

$$rac{\partial \mathbf{r}}{\partial heta} = egin{bmatrix} -lpha + lpha n_1^2 \ lpha n_1 n_2 - \cos heta n_3 \ lpha n_1 n_3 + \cos heta n_2 \ lpha n_2 n_1 + \cos heta n_3 \ -lpha + lpha n_2^2 \ lpha n_2 n_3 - \cos heta n_1 \ lpha n_3 n_1 - \cos heta n_2 \ lpha n_3 n_2 + \cos heta n_1 \ -lpha + lpha n_3^2 \end{bmatrix}$$

However, for simplification, if higher-order derivatives are negligible or specific assumptions are made, this term can be adjusted accordingly.

4. Substitute into the Chain Rule

Combining the above results, the Jacobian $\frac{\partial \mathbf{r}}{\partial \mathbf{d}^T}$ becomes:

$$rac{\partial \mathbf{r}}{\partial \mathbf{d}^T} = rac{\partial \mathbf{r}}{\partial heta} \mathbf{n}^T + rac{1}{ heta} rac{\partial \mathbf{r}}{\partial \mathbf{n}^T} \left(I - \mathbf{n} \mathbf{n}^T
ight)$$

Final Answer

The concrete form of the Jacobian matrix is:

$$\begin{bmatrix} \frac{2\gamma n_1 \left(1-n_1^2\right)}{\theta} + \alpha n_1 \left(n_1^2-1\right) & -\frac{2\gamma n_1^2 n_2}{\theta} + \alpha n_2 \left(n_1^2-1\right) & -\frac{2\gamma n_1^2 n_3}{\theta} + \alpha n_3 \left(n_1^2-1\right) \\ n_1 \left(\alpha n_1 n_2 - \beta n_3\right) + \frac{\gamma n_2 \left(1-2n_1^2\right) + \alpha n_1 n_3}{\theta} & n_2 \left(\alpha n_1 n_2 - \beta n_3\right) + \frac{\gamma n_1 \left(1-2n_2^2\right) + \alpha n_2 n_3}{\theta} & n_3 \left(\alpha n_1 n_2 - \beta n_3\right) + \frac{\alpha \left(n_3^2-1\right) - 2\gamma n_1 n_2 n_3}{\theta} \\ n_1 \left(\alpha n_1 n_3 + \beta n_2\right) + \frac{\gamma n_3 \left(1-2n_1^2\right) - \alpha n_1 n_2}{\theta} & n_2 \left(\alpha n_1 n_3 + \beta n_2\right) + \frac{\alpha \left(1-n_2^2\right) - 2\gamma n_1 n_2 n_3}{\theta} & n_3 \left(\alpha n_1 n_3 + \beta n_2\right) + \frac{\gamma n_1 \left(1-2n_3^2\right) - \alpha n_2 n_3}{\theta} \\ n_1 \left(\alpha n_1 n_2 + \beta n_3\right) + \frac{\gamma n_2 \left(1-2n_1^2\right) - \alpha n_1 n_3}{\theta} & n_2 \left(\alpha n_1 n_2 + \beta n_3\right) + \frac{\gamma n_1 \left(1-2n_2^2\right) - \alpha n_2 n_3}{\theta} & n_3 \left(\alpha n_1 n_2 + \beta n_3\right) + \frac{\alpha \left(1-n_3^2\right) - 2\gamma n_1 n_2 n_3}{\theta} \\ -\frac{2\gamma n_1 n_2^2}{\theta} + \alpha n_1 \left(n_2^2-1\right) & \frac{2\gamma n_2 \left(1-n_2^2\right)}{\theta} + \alpha n_2 \left(n_2^2-1\right) & -\frac{2\gamma n_2^2 n_3}{\theta} + \alpha n_3 \left(n_2^2-1\right) \\ n_1 \left(\alpha n_2 n_3 - \beta n_1\right) - \frac{\alpha \left(1-n_1^2\right) + 2\gamma n_1 n_2 n_3}{\theta} & n_2 \left(\alpha n_2 n_3 - \beta n_1\right) + \frac{\gamma n_3 \left(1-2n_2^2\right) + \alpha n_1 n_2}{\theta} & n_3 \left(\alpha n_1 n_3 - \beta n_1\right) + \frac{\alpha n_1 n_3 + \gamma n_2 \left(1-2n_3^2\right)}{\theta} \\ n_1 \left(\alpha n_1 n_3 - \beta n_2\right) + \frac{\alpha n_1 n_2 + \gamma n_3 \left(1-2n_1^2\right)}{\theta} & n_2 \left(\alpha n_1 n_3 - \beta n_2\right) - \frac{\alpha \left(1-n_2^2\right) + 2\gamma n_1 n_2 n_3}{\theta} & n_3 \left(\alpha n_1 n_3 - \beta n_2\right) + \frac{\alpha n_2 n_3 + \gamma n_1 \left(1-2n_3^2\right)}{\theta} \\ n_1 \left(\alpha n_2 n_3 + \beta n_1\right) + \frac{\alpha \left(1-n_1^2\right) - 2\gamma n_1 n_2 n_3}{\theta} & n_2 \left(\alpha n_2 n_3 + \beta n_1\right) + \frac{\gamma n_3 \left(1-2n_2^2\right) - \alpha n_1 n_2}{\theta} & n_3 \left(\alpha n_2 n_3 + \beta n_1\right) + \frac{\gamma n_2 \left(1-2n_3^2\right) - \alpha n_1 n_3}{\theta} \\ -\frac{2\gamma n_1 n_3^2}{\theta} + \alpha n_1 \left(n_3^2 - 1\right) & -\frac{2\gamma n_2 n_3^2}{\theta} + \alpha n_2 \left(n_3^2 - 1\right) & \frac{2\gamma n_3 \left(1-n_3^2\right)}{\theta} + \alpha n_3 \left(n_3^2 - 1\right) \end{bmatrix}$$

Bird's Eye View Generation

Environment: Windows 11

Platform: PyCharm Professional 2024.1.4

Python version: 3.12.4

Python libraries: numpy opency-Python

Results are as follows:

Camera calibration parameters

Reprojection Error

ret = 1.3526290383110415

Intrinsic Matrix

$$\mathrm{mtx} = egin{bmatrix} 1.06408820 imes 10^3 & 0.00000000 imes 10^0 & 6.97624043 imes 10^2 \ 0.00000000 imes 10^0 & 1.05884544 imes 10^3 & 3.67820618 imes 10^2 \ 0.000000000 imes 10^0 & 0.000000000 imes 10^0 & 1.000000000 imes 10^0 \ \end{bmatrix}$$

Distortion Coefficients

Rotation Vectors

$$\mathbf{rvecs} = \begin{pmatrix} \begin{bmatrix} -0.15060814 \\ 0.68259582 \\ -1.42548071 \end{bmatrix}, & \begin{bmatrix} -0.62169292 \\ 0.02379807 \\ -1.54327886 \end{bmatrix}, & \begin{bmatrix} -0.48797313 \\ 0.57757602 \\ -1.47210871 \end{bmatrix}, & \begin{bmatrix} -0.00730448 \\ 0.19318482 \\ -1.58085337 \end{bmatrix}, & \begin{bmatrix} 0.42666152 \\ 0.16677968 \\ -1.6343885 \end{bmatrix}, \\ \begin{bmatrix} 0.42971655 \\ -0.20436555 \\ -1.63009947 \end{bmatrix}, & \begin{bmatrix} 0.42919655 \\ -0.42919655 \\ -1.65266561 \end{bmatrix}, & \begin{bmatrix} -0.29258934 \\ -0.22613081 \\ -1.57129171 \end{bmatrix}, & \begin{bmatrix} 0.73023776 \\ 0.73023776 \\ -1.34886676 \end{bmatrix}, & \begin{bmatrix} 0.47889099 \\ -0.40162315 \\ -1.70266642 \end{bmatrix} \end{pmatrix}$$

Translation Vectors

$$\begin{pmatrix} \begin{bmatrix} -0.16131816 \\ 0.04315679 \\ 0.4099573 \end{bmatrix}, & \begin{bmatrix} -0.1625625 \\ 0.07084516 \\ 0.35582155 \end{bmatrix}, & \begin{bmatrix} -0.17356461 \\ 0.05434441 \\ 0.38696302 \end{bmatrix}, & \begin{bmatrix} -0.13625178 \\ 0.07758926 \\ 0.37540559 \end{bmatrix}, & \begin{bmatrix} -0.08729008 \\ 0.37540559 \end{bmatrix}, & \begin{bmatrix} -0.08729008 \\ 0.34406331 \end{bmatrix}, & \begin{bmatrix} -0.18402187 \\ 0.05972098 \\ 0.28404526 \end{bmatrix}, & \begin{bmatrix} -0.07216266 \\ 0.05521112 \\ 0.27942144 \end{bmatrix}, & \begin{bmatrix} -0.12059918 \\ 0.061236 \\ 0.32392025 \end{bmatrix}, & \begin{bmatrix} -0.18402187 \\ 0.03017638 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.04641674 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.07216266 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.37540559 \end{bmatrix}, & \begin{bmatrix} -0.18402187 \\ 0.03017638 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.04641674 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.07216266 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.37540559 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.34406331 \end{bmatrix}, & \begin{bmatrix} -0.18402187 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.04641674 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.34406331 \end{bmatrix}, & \begin{bmatrix} -0.18402187 \\ 0.03017638 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.04641674 \\ 0.05393896 \\ 0.27967062 \end{bmatrix}, & \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.38696302 \end{bmatrix}, & \begin{bmatrix} -0.08662375 \\ 0.08729008 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.34406331 \end{bmatrix}, & \begin{bmatrix} -0.08662375 \\ 0.08729008 \\ 0.38696302 \end{bmatrix}, & \begin{bmatrix} -0.18402187 \\ 0.0872908 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.08662375 \\ 0.08729008 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.08662375 \\ 0.08729008 \\ 0.39936983 \end{bmatrix}, & \begin{bmatrix} -0.08662375 \\ 0.08729008 \\ 0.08$$

Original Image

Undistorted Image

Bird's Eye View

