Al and Machine Learning Zhiyun Lin

Multi-class Classification

- Least Squares Regression
- Perceptron and Logistic Regression
- MLP
- *k*-NN
- Decision Trees

Discriminant Functions for K > 2 classes

- First idea: Use K classifiers, each solving a two class problem of separating point in a class C_k from points not in the class.
- Known as 1 vs all or 1 vs the rest classifier

66 PROBLEM: More than one good answer for green region!

Discriminant Functions for K > 2 classes

- Another simple idea: Introduce K(K-1)/2 two-way classifiers, one for each possible pair of classes
- Each point is classified according to majority vote amongst the disc. func.
- Known as the 1 vs 1 classifier

66 PROBLEM: Two-way preferences need not be transitive

K-Class Discriminant

We can avoid these problems by considering a single K-class discriminant comprising K functions of the form

$$y_k(x) = w_k^T x + b_k, \quad k = 1, \dots, K$$

and then assigning a point x to class C_k if

$$y_k(x) > y_j(x), \quad orall j
eq k$$

66 Note that w_k is now a vector, not the k-th coordinate

K-Class Discriminant

• The decision boundary between class C_i and class C_k is given by

$$y_j(x) = y_k(x)$$

• and thus it's a (D-1) dimensional hyperplane defined as

$$(w_k - w_j)^T x + (b_k - b_j) = 0$$

- **66** What about the binary case? Is this different?
- **66** What is the shape of the overall decision boundary?
- The decision regions of such a discriminant are always singly connected and convex

Convex Object

• In Euclidean space, an object is **convex** if for every pair of points within the object, every point on the straight line segment that joins the pair of points is also within the object

66 Which object is convex?

Decision Region

- The decision regions of such a discriminant are always singly connected and convex
- Consider 2 points x_A and x_B that lie inside decision region \mathcal{R}_k
- Any convex combination \hat{x} of those points also will be in \mathcal{R}_k

$$\hat{x} = \lambda x_A + (1 - \lambda) x_B$$

Proof

• A convex combination point, i.e., $\lambda \in [0, 1]$

$$\hat{x} = \lambda x_A + (1 - \lambda) x_B$$

• From the linearity of the classifier y(x)

$$y_k(\hat{x}) = \lambda y_k(x_A) + (1-\lambda) y_k(x_B)$$

• Since x_A and x_B are in \mathcal{R}_k it follows that

$$y_k(x_A) > y_j(x_A), \quad y_k(x_B) > y_j(x_B), \quad orall j
eq k$$

- Since λ and 1λ are positive, then \hat{x} is inside \mathcal{R}_k
- Thus \mathcal{R}_k is singly connected and convex

1-of-K Encoding

66 1-of-K encoding:

For multi-class problems (with K classes), instead of using t=k (target has label k) we often use a 1-of-K encoding, i.e., a vector of K target values containing a single 1 for the correct class and zeros elsewhere

- Example:
 - For a 4-class problem, we would write a target with class label 2 as:

$$t = egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix}$$

Linear Regression for MC Classification

From before we have:

$$y_k(x) = w_k^T x + b_k, \quad k = 1, \dots, K$$

which can be rewritten as:

$$y(x) = ar{W}^Tar{x}$$

where the k-th column of $ar{W}$ is $[b_k, w_k^T]$, and $ar{x} = [1, x]^T$

• Training: How can I find the weights \bar{W} with the standard sum-of-squares regression loss?

Least square solution

• Sum-of-least-squares loss:

$$egin{align} l(ar{W}) &= & \sum_{n=1}^N ||ar{W}^Tar{x}^{(n)} - t^{(n)}||^2 \ &= & ||X\,ar{W} - T||_F^2 \ \end{aligned}$$

where the *n*-th row of X is $\bar{x}^{(n)}$, and the *n*-th row of T is $t^{(n)}$.

• Setting derivative w.r.t. \overline{W} to 0, we get:

$$\tilde{W} = (X^T X)^{-1} X^T T$$

Logistic Regression for MC Classification

• Associate a set of weights with each class, then use a normalized exponential output

$$p(C_k|x) = y_k(x) = rac{\exp(z_k)}{\sum\limits_{j} \exp(z_j)}$$

where the activations are given on

$$z_k = w_k^T x + b_k$$

66 The functione $\frac{\exp(z_k)}{\sum\limits_{j} \exp(z_j)}$ is called a **softmax function**

Maximum Likelyhood Esitmation

The likelihood

$$L(T|x^{(1)},\dots,x^{(N)},ar{W}) = \prod_{n=1}^{N}\prod_{k=1}^{K}\left[p(C_{k}|x^{(n)})
ight]^{t_{k}^{(n)}} = \prod_{n=1}^{N}\prod_{k=1}^{K}\left[y_{k}(x^{(n)})
ight]^{t_{k}^{(n)}}$$

with

$$p(C_k|x) = y_k(x) = rac{\exp(z_k)}{\sum\limits_{j} \exp(z_j)}$$

where k-th row of T is 1-of-K encoding of example k and

$$z_k = w_k^T x^{(k)} + b_k$$

Multi-class Logistic Regression

• Derive the loss by computing the nagative log-likelihood:

$$E(ar{W}) = -\log L(T|ar{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_k^{(n)} \log \left[y_k(x^{(n)})
ight]$$

- 66 This is known as the **cross-entropy error** for multi-class classification
- How do we obtain the weights?

• Conisder one example.

$$E(ar{W}) = -\sum_{k=1}^K t_k \log\left[y_k(x)
ight]$$

• Then the derivate of E w.r.t. y_k is obtained

$$rac{\partial E}{\partial y_k} = -rac{t_k}{y_k}$$

Computer the gradient the softmax function:

$$y_k(z) = rac{\exp(z_k)}{\sum\limits_{j} \exp(z_j)}$$

where the derivatives are

$$(1) \; rac{\partial y_k}{\partial z_k} = rac{\exp(z_k)}{\sum\limits_j \exp(z_j)} - rac{\exp(z_k) \exp(z_k)}{\left[\sum\limits_j \exp(z_j)
ight]^2} = y_k - y_k^2$$

$$(2) \; rac{\partial y_k}{\partial z_m} = -rac{\exp(z_k) \exp(z_m)}{\left[\sum\limits_{j} \exp(z_j)
ight]^2} = -y_k \cdot y_m, \quad m
eq k$$

The overall form is

$$rac{\partial y_k}{\partial z_m} = \delta(k,m) y_k - y_k y_m$$

• Now move backward one more step:

$$egin{array}{ll} rac{\partial E}{\partial z_m} &= \sum_{k=1}^K rac{\partial E}{\partial y_k} \cdot rac{\partial y_k}{\partial z_m} \ &= -\sum_{k=1}^K rac{t_k}{y_k} [\delta(k,m) y_k - y_k y_m] \ &= -\sum_{k=1}^K t_k \delta(k,m) - \left[\sum_{k=1}^K t_k
ight] y_m \ &= y_m^{(n)} - t_m^{(n)} \end{array}$$

Thus, the gradient of E with respect to the parameter is given by

$$egin{aligned} rac{\partial E}{\partial w_{m,i}} &= rac{\partial E}{\partial z_m} rac{\partial z_m}{\partial w_{m,i}} = [y_m - t_m] \cdot x_i \ & rac{\partial E}{\partial b_m} &= rac{\partial E}{\partial z_m} rac{\partial z_m}{\partial b_m} = [y_m - t_m] \end{aligned}$$

66 The derivative is the error times the input

The gradient for a batch

• In a matrix form, the gradient for a batch becomes

$$\nabla E(\bar{W}) = -X^T (T - Y)$$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}, \quad T = \begin{bmatrix} t_1^{(1)} & \cdots & t_K^{(1)} \\ \vdots & \ddots & \vdots \\ t_1^{(N)} & \cdots & t_K^{(N)} \end{bmatrix}, \text{ and } Y = \text{softmax}(X\bar{W})$$

- **66** The softmax takes the *i*th row of $X\overline{W}$ and outputs the *i*th row of Y.
- This is all there is to learning in logistic regression for multi-class classification.

Softmax for 2 Classes

• Let's write the probability of one of the classes

$$p(C_1|x) = y_1(x) = rac{\exp(z_1)}{\sum\limits_{j} \exp(z_j)} = rac{\exp(z_1)}{\exp(z_1) + \exp(z_2)}$$

• I can equivalently write this as

$$p(C_1|x) = y_1(x) = rac{\exp(z_1)}{\sum\limits_{j} \exp(z_j)} = rac{\exp(z_1)}{\exp(z_1) + \exp(z_2)} = rac{1}{1 + \exp(-(z_1 - z_2))}$$

66 So the logistic is just a special case that avoids using redundant parameters

Softmax for 2 Classes

• Rather than having two separate set of weights for the two classes, combine into one

$$z'=z_1-z_2=(w_1^Tx+b_1)-(w_2^Tx+b_2)=w^Tx+b_2$$

66 The over-parameterization of the softmax is because the probabilities must add to 1.

MLP for MC Classification

- Foward propagation
- Backward propagation

MLP for MC Classification

- The only difference is at the output layer with softmax
- The K outputs correspond to the probability of belonging to these classes
- The K outputs are **fully connected** with the linear output at the output layer via softmax

Multi-class k-NN

• Can directly handle multi class problems

Multi-class Decision Trees

• Can directly handle multi class problems

