# THE THEORY OF RELATIONAL DATABASES

## DAVID MAIER



COMPUTER SCIENCE PRESS

# TABLE OF CONTENTS

|     |                                |                                             | xiv |  |
|-----|--------------------------------|---------------------------------------------|-----|--|
| Ack | nowled                         | gements                                     | X   |  |
| 1.  | RELATIONS AND RELATION SCHEMES |                                             |     |  |
|     | 1.1.                           | Brass Tacks                                 | 1   |  |
|     | 1.2.                           | Formalization of Relations                  | 2   |  |
|     | 1.3.                           | Keys                                        | 4   |  |
|     | 1.4.                           | Updates to Relations                        | 5   |  |
|     | 1.5.                           | Exercises                                   | 8   |  |
|     | 1.6.                           | Bibliography and Comments                   | 10  |  |
| 2.  | RELA                           | RELATIONAL OPERATORS                        |     |  |
|     | 2.1.                           | Boolean Operations                          | 11  |  |
|     | 2.2.                           | The Select Operator                         | 13  |  |
|     | 2.3.                           | The Project Operator                        | 15  |  |
|     | 2.4.                           | The Join Operator                           | 16  |  |
|     | 2.5.                           | Properties of Join                          | 18  |  |
|     | 2.6.                           | Exercises                                   | 22  |  |
|     | 2.7.                           | Bibliography and Comments                   | 24  |  |
| 3.  | MOR                            | RE OPERATIONS ON RELATIONS                  | 25  |  |
|     | 3.1.                           | The Divide Operator                         | 25  |  |
|     | 3.2.                           | Constant Relations                          | 26  |  |
|     | 3.3.                           | Renaming Attributes                         | 27  |  |
|     | 3.4.                           | The Equijoin Operator                       | 29  |  |
|     | 3.5.                           | Extensions for Other Comparisons on Domains | 31  |  |
|     |                                | 3.5.1. Extending Selection                  | 32  |  |
|     |                                | 3.5.2. The Theta-Join Operator              | 33  |  |
|     | 3.6.                           | Relational Algebra                          | 34  |  |
|     |                                | 3.6.1. Algebraic Expressions as Mappings    | 35  |  |
|     |                                | 3.6.2. Restricting the Set of Operators     | 36  |  |

|    | 3.7.  | The Split Operator                     | 37  |  |  |  |  |
|----|-------|----------------------------------------|-----|--|--|--|--|
|    | 3.8.  | The Factor Operator                    |     |  |  |  |  |
|    | 3.9.  | Exercises                              | 39  |  |  |  |  |
|    | 3.10. | Bibliography and Comments              | 41  |  |  |  |  |
| 4. | FUNC  | TIONAL DEPENDENCIES                    | 42  |  |  |  |  |
|    | 4.1.  | Definitions                            | 42  |  |  |  |  |
|    | 4.2.  | Inference Axioms                       | 44  |  |  |  |  |
|    | 4.3.  | Applying the Inference Axioms          | 47  |  |  |  |  |
|    | 4.4.  | Completeness of the Inference Axioms   | 49  |  |  |  |  |
|    | 4.5.  | Derivations and Derivation DAGs        | 51  |  |  |  |  |
|    |       | 4.5.1. RAP-Derivation Sequences        | 53  |  |  |  |  |
|    |       | 4.5.2. Derivation DAGs                 | 56  |  |  |  |  |
|    |       | 4.5.3. More about Derivation DAGs      | 60  |  |  |  |  |
|    | 4.6.  | Testing Membership in F <sup>+</sup>   | 63  |  |  |  |  |
|    | 4.7.  | Exercises                              | 69  |  |  |  |  |
|    | 4.8.  | Bibliography and Comments              | 70  |  |  |  |  |
| 5. | COVE  | OVERS FOR FUNCTIONAL DEPENDENCIES      |     |  |  |  |  |
|    | 5.1.  | Covers and Equivalence                 | 71  |  |  |  |  |
|    | 5.2.  | Nonredundant Covers                    | 72  |  |  |  |  |
|    | 5.3.  | Extraneous Attributes                  | 74  |  |  |  |  |
|    | 5.4.  | Canonical Covers                       | 77  |  |  |  |  |
|    | 5.5.  | The Structure of Nonredundant Covers   | 78  |  |  |  |  |
|    | 5.6.  | Minimum Covers                         | 79  |  |  |  |  |
|    |       | 5.6.1. Direct Determination            | 79  |  |  |  |  |
|    |       | 5.6.2. Computing Minimum Covers        | 84  |  |  |  |  |
|    | 5.7.  | Optimal Covers                         | 86  |  |  |  |  |
|    | 5.8.  | Annular Covers and Compound Functional |     |  |  |  |  |
|    |       | Dependencies                           | 87  |  |  |  |  |
|    | 5.9.  | Exercises                              | 90  |  |  |  |  |
|    | 5.10. | Bibliography and Comments              | 92  |  |  |  |  |
| 6. | DATA  | BASES AND NORMAL FORMS                 | 93  |  |  |  |  |
|    | 6.1.  | Databases and Database Schemes         | 94  |  |  |  |  |
|    | 6.2.  | Normal Forms for Databases             | 96  |  |  |  |  |
|    |       | 6.2.1. First Normal Form               | 96  |  |  |  |  |
|    |       | 6.2.2. Anomalies and Data Redundancy   | 98  |  |  |  |  |
|    |       | 6.2.3. Second Normal Form              | 99  |  |  |  |  |
|    |       | 6.2.4. Third Normal Form               | 99  |  |  |  |  |
|    | 6.3.  | Normalization through Decomposition    | 101 |  |  |  |  |

|    |       | Contents                                               | ix  |
|----|-------|--------------------------------------------------------|-----|
|    | 6.4.  | Shortcomings of Normalization through Decomposition    | 104 |
|    | 6.5.  | Normalization through Synthesis                        | 107 |
|    | 0.0.  | 6.5.1. Preliminary Results for the Synthesis Algorithm | 108 |
|    |       | 6.5.2. Developing the Synthesis Algorithm              | 108 |
|    |       | 6.5.3. Correctness and Other Properties of the         |     |
|    |       | Synthesis Algorithm                                    | 110 |
|    |       | 6.5.4. Refinements of the Synthesis Algorithm          | 113 |
|    | 6.6.  | Avoidable Attributes                                   | 115 |
|    | 6.7.  | Boyce-Codd Normal Form                                 | 117 |
|    | ••••  | 6.7.1. Problems with Boyce-Codd Normal Form            | 119 |
|    | 6.8.  | Exercises                                              | 119 |
|    | 6.9.  | Bibliography and Comments                              | 122 |
|    | 0.51  | 2.0.1.0g.up.uj 4                                       |     |
| 7. | MUL'  | TIVALUED DEPENDENCIES, JOIN                            |     |
| •  |       | ENDENCIES, AND FURTHER NORMAL FORMS                    | 123 |
|    | 7.1.  | Multivalued Dependencies                               | 124 |
|    | 7.2.  | Properties of Multivalued Dependencies                 | 126 |
|    | 7.3.  | Multivalued Dependencies and Functional                |     |
|    |       | Dependencies                                           | 127 |
|    | 7.4.  | Inference Axioms for Multivalued Dependencies          | 129 |
|    |       | 7.4.1. Multivalued Dependencies Alone                  | 129 |
|    |       | 7.4.2. Functional and Multivalued Dependencies         | 132 |
|    |       | 7.4.3. Completeness of the Axioms and Computing        |     |
|    |       | Implications                                           | 133 |
|    | 7.5.  | Fourth Normal Form                                     | 135 |
|    | 7.6.  | Fourth Normal Form and Enforceability of               |     |
|    |       | Dependencies                                           | 137 |
|    | 7.7.  | Join Dependencies                                      | 139 |
|    | 7.8.  | Project-Join Normal Form                               | 140 |
|    | 7.9.  | Embedded Join Dependencies                             | 142 |
|    | 7.10. | Exercises                                              | 143 |
|    | 7.11. | Bibliography and Comments                              | 144 |
|    |       |                                                        |     |
| 8. | PROJ  | ECT-JOIN MAPPINGS, TABLEAUX, AND                       |     |
|    | THE   | CHASE                                                  | 146 |
|    | 8.1.  | Project-Join Mappings                                  | 146 |
|    | 8.2.  | Tableaux                                               | 148 |
|    |       | 8.2.1. Tableaux as Mappings                            | 150 |
|    |       | 8.2.2. Representing Project-Join Mappings as           |     |
|    |       | Tableaux                                               | 151 |
|    | 83    | Tableaux Equivalence and Scheme Equivalence            | 152 |

#### x Contents

|     | 8.4.  | Containment Mappings                                      | 150 |
|-----|-------|-----------------------------------------------------------|-----|
|     | 8.5.  | Equivalence with Constraints                              | 160 |
|     |       | 8.5.1. F-rules                                            | 162 |
|     |       | 8.5.2. J-rules                                            | 163 |
|     | 8.6.  | The Chase                                                 | 164 |
|     |       | 8.6.1. The Finite Church-Rosser Property                  | 168 |
|     |       | 8.6.2. Equivalence of Tableaux under Constraints          | 174 |
|     |       | 8.6.3. Testing Implication of Join Dependencies           | 175 |
|     |       | 8.6.4. Testing Implication of Functional Dependencies     | 177 |
|     |       | 8.6.5. Computing a Dependency Basis                       | 180 |
|     | 8.7.  | Tableaux as Templates                                     | 182 |
|     | 8.8.  | Computational Properties of the Chase Computation         | 186 |
|     | 8.9.  | Exercises                                                 | 189 |
|     | 8.10. | Bibliography and Comments                                 | 194 |
| 9.  | REPR  | RESENTATION THEORY                                        | 195 |
|     | 9.1.  | Notions of Adequate Representation                        | 195 |
|     | 9.2.  | Data-Equivalence of Database Schemes                      | 208 |
|     | 9.3.  | Testing Adequate Representation and Equivalence           |     |
|     |       | Under Constraints                                         | 210 |
|     |       | 9.3.1. <b>P</b> Specified by Functional Dependencies Only | 211 |
|     |       | 9.3.2. <b>P</b> Specified by Functional and Multivalued   |     |
|     |       | Dependencies                                              | 215 |
|     |       | 9.3.3. Testing Data-Equivalence                           | 217 |
|     | 9.4.  | Exercises                                                 | 221 |
|     | 9.5.  | Bibliography and Comments                                 | 223 |
| 10. | QUEI  | RY SYSTEMS                                                | 224 |
|     | 10.1. | Equivalence and Completeness                              | 225 |
|     | 10.2. | Tuple Relational Calculus                                 | 227 |
|     |       | 10.2.1. Tuple Calculus Formulas                           | 229 |
|     |       | 10.2.2. Types, and Free and Bound Occurrences             | 231 |
|     |       | 10.2.3. Tuple Calculus Expressions                        | 236 |
|     | 10.3. | Reducing Relational Algebra with Complement to Tuple      |     |
|     |       | Relational Calculus                                       | 242 |
|     | 10.4. | Limited Interpretation of Tuple Calculus Formulas         | 244 |
|     |       | 10.4.1. Reducing Relational Algebra to Tuple Calculus     |     |
|     |       | with Limited Evaluation                                   | 247 |
|     |       | 10.4.2 Safe Tuple Calculus Expressions                    | 247 |
|     | 10.5. | Domain Relational Calculus                                | 250 |
|     | 10.6. | Reduction of Tuple Calculus to Domain Calculus            | 255 |

|     |                     | Contents                                               | хi             |
|-----|---------------------|--------------------------------------------------------|----------------|
|     | 10.7.               | Reduction of Domain Calculus to Relational Algebra     | 257            |
|     | 10.8.               | Tableau Queries                                        | 262            |
|     | 10.0.               | 10.8.1. Single Relation Tableau Queries                | 262            |
|     |                     | 10.8.2. Tableau Queries for Restricted Algebraic       |                |
|     |                     | Expressions                                            | 268            |
|     |                     | 10.8.3. Tableau Queries that Come from Algebraic       |                |
|     |                     | Expressions                                            | 272            |
|     |                     | 10.8.4. Tableau Queries for Multirelation Databases    | 274            |
|     |                     | 10.8.5. Tableau Set Queries                            | 276            |
|     | 10.9.               | Conjunctive Queries                                    | 278            |
|     |                     | Exercises                                              | 278            |
|     | 10.10.              | Bibliography and Comments                              | 286            |
|     | 10.11.              | Dionography and Commonto                               |                |
| 11. | OTTER               | RY MODIFICATION                                        | 287            |
| 11. | 11.1.               | Levels of Information in Query Modification            | 293            |
|     | 11.2.               | Simplifications and Common Subexpressions in Algebraic |                |
|     | 11.2.               | Expressions                                            | 295            |
|     | 11.3.               | Optimizing Algebraic Expressions                       | 301            |
|     | 11.4.               | Query Decomposition                                    | 307            |
|     | 11.7.               | 11.4.1. Instantiation                                  | 311            |
|     |                     | 11.4.2. Iteration                                      | 313            |
|     |                     | 11.4.3. The Query Decomposition Algorithm              | 315            |
|     | 11.5.               | Tableau Query Optimization                             | 323            |
|     | 11.5.               | 11.5.1. Tableau Query Equivalence                      | 323            |
|     |                     | 11.5.2. Simple Tableau Queries                         | 327            |
|     |                     | 11.5.2. Shiple Tableau Queries                         | 335            |
|     |                     | 11.5.4. Extensions for Multiple-Relation Databases     | 339            |
|     |                     | 11.5.5. Tableau Set Query Equivalence                  | 348            |
|     | 11.6.               | Optimizing Conjunctive Queries                         | 350            |
|     |                     | Query Modification for Distributed Databases           | 353            |
|     | 11.7.               | 11.7.1. Semijoins                                      | 354            |
|     |                     | 11.7.2. Fragments of Relations                         | 359            |
|     | 11 0                | Exercises                                              | 361            |
|     | 11.8.               | Bibliography and Index                                 | 369            |
|     | 11.9.               | Biolography and index                                  | 30)            |
| 10  | MITITI              | VALUES, PARTIAL INFORMATION AND                        |                |
| 12. | DATABASES SEMANTICS |                                                        |                |
|     |                     | Nulls                                                  | <b>371</b> 372 |
|     | 12.1.               | Functional Dependencies and Nulls                      | 377            |
|     | 12.2.               | Constraints on Nulls                                   | 384            |
|     | 12.3.               |                                                        | 386            |
|     | 12.4.               | Relational Algebra and Partial Relations               | 500            |

#### xii Contents

|     |                             | 12.4.1.                   | Possibility Functions                        | 386 |  |
|-----|-----------------------------|---------------------------|----------------------------------------------|-----|--|
|     |                             | 12.4.2.                   | Generalizing the Relational Operators        | 389 |  |
|     |                             | 12.4.3.                   | Specific Possibility Functions               | 394 |  |
|     | 12.5.                       | Partial 1                 | Information and Database Semantics           | 406 |  |
|     |                             | 12.5.1.                   | Universal Relation Assumptions               | 406 |  |
|     |                             | 12.5.2.                   | Placeholders and Subscheme Relations         | 408 |  |
|     |                             | 12.5.3.                   | Database Semantics and Window Functions      | 410 |  |
|     |                             | 12.5.4.                   | A Window Function Based on Joins             | 413 |  |
|     |                             | 12.5.5.                   | Weak Instances                               | 416 |  |
|     |                             | 12.5.6.                   | Independence                                 | 422 |  |
|     |                             | 12.5.7.                   | A Further Condition on Window Functions      | 427 |  |
|     | 12.6.                       | Exercise                  | es                                           | 432 |  |
|     | 12.7.                       | Bibliogr                  | raphy and Comments                           | 437 |  |
| 13. | ACYCYLIC DATABASE SCHEMES 4 |                           |                                              |     |  |
|     | 13.1.                       | Propert                   | ies of Database Schemes                      | 439 |  |
|     |                             | 13.1.1.                   | Existence of a Full Reducer                  | 439 |  |
|     |                             | 13.1.2.                   | Equivalence of a Join Dependency to          |     |  |
|     |                             |                           | Multivalued Dependencies                     | 442 |  |
|     |                             | 13.1.3.                   | Unique 4NF Decomposition                     | 443 |  |
|     |                             | 13.1.4.                   | Pairwise Consistency Implies Total           |     |  |
|     |                             |                           | Consistency                                  | 444 |  |
|     |                             | 13.1.5.                   | Small Intermediate Joins                     | 445 |  |
|     | 13.2.                       | Syntacti                  | ic Conditions on Database Schemes            | 447 |  |
|     |                             | 13.2.1.                   | Acyclic Hypergraphs                          | 447 |  |
|     |                             | 13.2.2.                   | Join Trees                                   | 452 |  |
|     |                             | 13.2.3.                   | The Running Intersection Property            | 455 |  |
|     | 13.3.                       |                           | ence of Conditions                           | 455 |  |
|     |                             | 13.3.1.                   | Graham Reduction                             | 456 |  |
|     |                             | 13.3.2.                   | Finding Join Trees                           | 457 |  |
|     |                             | 13.3.3.                   | The Equivalence Theorem for Acyclic Database |     |  |
|     |                             |                           | Schemes                                      | 460 |  |
|     |                             | 13.3.4.                   | Conclusions                                  | 477 |  |
|     | 13.4.                       | Exercise                  | s                                            | 478 |  |
|     | 13.5.                       | Bibliography and Comments |                                              | 482 |  |
| 14. | ASSORTED TOPICS             |                           |                                              |     |  |
|     | 14.1.                       | Logic an                  | d Data Dependencies                          | 485 |  |
|     |                             | 14.1.1.                   | The World of Two-Tuple Relations             | 486 |  |
|     |                             | 14.1.2.                   | Equivalence of Implication for Logic and     |     |  |
|     |                             |                           | Functional Dependencies                      | 488 |  |

|     |        |                           | Contents                                  | xiii |  |
|-----|--------|---------------------------|-------------------------------------------|------|--|
|     |        | 14.1.3.                   | Adding Multivalued Dependencies           | 489  |  |
|     |        | 14.1.4.                   | Nonextendability of Results               | 492  |  |
|     | 14.2.  |                           | ata Dependencies                          | 493  |  |
|     | 1 1.2. | 14.2.1.                   | Template Dependencies                     | 494  |  |
|     |        | 14.2.2.                   | Examples and Counterexamples for Template |      |  |
|     |        | 11.2.2.                   | Dependencies                              | 498  |  |
|     |        | 14.2.3.                   | A Graphical Representation for Template   |      |  |
|     |        | 11.2.0.                   | Dependencies                              | 500  |  |
|     |        | 14.2.4.                   | Testing Implication of Template           |      |  |
|     |        | 1 1.2                     | Dependencies                              | 506  |  |
|     |        | 14.2.5.                   | Generalized Functional Dependencies       | 516  |  |
|     |        | 14.2.6.                   | Closure of Satisfaction Classes Under     |      |  |
|     |        | 12.07                     | Projection                                | 524  |  |
|     | 14.3.  | Limitati                  | ons of Relational Algebra                 | 527  |  |
|     | 14.4.  | Comput                    | ted Relations                             | 533  |  |
|     | 1      | 14.4.1.                   | An Example                                | 533  |  |
|     |        | 14.4.2.                   | Testing Expressions Containing Computed   |      |  |
|     |        | 1                         | Relations                                 | 536  |  |
|     | 14.5.  | Exercise                  | es                                        | 542  |  |
|     | 14.6.  | Bibliography and Comments |                                           |      |  |
| 15. | RELA   | TIONAL                    | QUERY LANGUAGES                           | 550  |  |
|     | 15.1.  |                           |                                           | 551  |  |
|     | 15.2.  | OUEL                      |                                           | 556  |  |
|     | 15.3.  | SOL                       |                                           | 561  |  |
|     | 15.4.  |                           |                                           | 568  |  |
|     | 15.5.  | PIQUE                     |                                           | 583  |  |
|     | 15.6.  | Bibliogr                  | raphy and Comments                        | 591  |  |
| BIB | LIOGR  | APHY .                    |                                           | 593  |  |
| IND | EX     |                           |                                           | 611  |  |

### ABOUT THE AUTHOR

David Maier received his BA degree in mathematics and computer science from the University of Oregon in 1974 and his PhD from Princeton University in 1978. For four years he was assistant professor of computer science with the State University of New York at Stony Brook. He is currently assistant professor of computer science at the Oregon Graduate Center.

Dr. Maier's papers on database theory have appeared in JACM, ACM Transactions on Database Systems, and the SIAM Journal of Computing.

## ABOUT THE BOOK

This remarkably comprehensive new book assembles concepts and results in relational databases theory previously scattered through journals, books, conference proceedings, and technical memoranda in one convenient source, and introduces pertinent new material not found elsewhere. The book is intended for a second course in databases, but is an excellent reference for researchers in the field. The material covered includes relational algebra, functional dependencies, multivalued and join dependencies, normal forms, tableaux and the chase computation, representation theory, domain and tuple relational calculus, query modification, database semantics and null values, acyclic database schemes, template dependencies, and computed relations. The final chapter is a brief survey of query languages in existing relational systems. Each chapter contains numerous examples and exercises, along with bibliographic remarks.