



# **ADVANCED**DATA SCIENCE

### Métodos No Supervisados

SESIÓN I

Docente: Jimmy Salazar



#### **REGLAS**



Se requiere **puntualidad** para un mejor desarrollo del curso.



Para una mayor concentración **mantener silenciado el micrófono** durante la sesión.



Las preguntas se realizarán **a través del cha**t y en caso de que lo requieran **podrán activar el micrófono**.



Realizar las actividades y/o tareas encomendadas en los plazos determinados.



Identificarse en la sala Zoom con el primer nombre y primer apellido.





### **ITINERARIO**

*07:00 PM - 07:30 PM* **Soporte técnico DMC** 

*07:30 PM – 08:30 PM* **Módulo 1** 

*08:30 PM - 09:30 PM* **Módulo 2** 

Horario de Atención Área Académica 09:00 am a 10:00 pm





#### **SILABO**

## Agenda

- 1. Introducción Métodos No Supervisados
- 2. 'Segmentación Jerárquica
- 3. Segmentación K-Means
  - Metodología
  - Caso práctico real





### **EVALUACIÓN**

Asistencia (Curso):

mínimo 80% sesiones para recibir la certificación

Examen Final (30%)

+

Trabajo

(70%)





# Aprendizaje No Supervisado







### Características



Pizarra 1







## Características

Pizarra 2

- ✓ En el **Aprendizaje NO Supervisado**, los datos de entrenamiento no están etiquetados con una **salida Y** (variable objetivo, target, etc.).
- ✓ A diferencia del aprendizaje supervisado, en el no supervisado no hay forma determinística de verificar el performance del modelo. Sólo se puede evaluar con conocimiento del negocio.
- ✓ Algunas aplicaciones típicas del aprendizaje no supervisado son:
  - Segmentación de clientes.
  - Detección de fraude o anomalías.
- ✓ Otra aplicación importante es la reducción de dimensionalidad.





# Metodología

### Proceso de Segmentación

| Análisis y<br>Exploración                                                                             | Transformación                                                                                                                               | Outliers                                                                                   | Reducción de<br>dimensión                                                                                                                | Modelamiento                                                                                                                                      | Evaluación                                                                                                                              | Perfil y<br>Visualización |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| <ul> <li>Construcción de matriz.</li> <li>Filtro de negocio.</li> <li>Estudio de variables</li> </ul> | <ul> <li>Dimensión de<br/>variables.</li> <li>Se transforma en<br/>una única<br/>dimensión para las<br/>variables en<br/>estudio.</li> </ul> | <ul> <li>Análisis de outliers.</li> <li>Eliminación o agrupamiento de outliers.</li> </ul> | <ul> <li>Análisis de reducción de dimensión de variables.</li> <li>Método <i>PCA</i></li> <li>Características de componentes.</li> </ul> | <ul> <li>Modelo de segmentación.</li> <li>Análisis de indicadores de segmentación.</li> <li>Segmento K-Means.</li> <li>Segmento DBSCAN</li> </ul> | <ul> <li>Análisis de distribución de segmentos.</li> <li>Correlación de Segmentos.</li> <li>Elección del Segmento apropiado.</li> </ul> |                           |





# Segmentación Jerárquico





### Agrupación Jerárquica

- ✓ Vinculación entre grupos
- ✓ La distancia es el promedio de las distancias de todos los pares de los dos conglomerados.
- ✓ La distancia es el promedio de las distancias de todos los pares de los dos conglomerados.
- ✓ Para determiner el número de cluster se analiza el histórico de agrupaciones (dendograma).







### Ventaja:

- ✓ No require hacer inferencias sobre el número de clúster
- ✓ Permite visualizar las agrupaciones contínuas en forma de árbol (Dendograma)

### Desventaja:

- ✓ Alto costo computacional
- ✓ Sensible respecto a las primeras agrupaciones
- ✓ Complicado de interpretar cuando el número de elementos es grande.





# Segmentación K-Means





### K-means

- ✓ En K-means el objetivo es agrupar las observaciones de un dataset en un número K de clústeres.
- ✓ En número K es **hiperparámetro** que hay que darle al algorirtmo.

Ejemplo: para el caso de dos predictores para distintos valores de K







K-means Pizarra 3

- ✓ Al igual que el caso del PCA, las variables predictoras deben ser normalizadas antes de hacer el clustering.
- ✓ Los atributos han de ser numéricos (pues se computa la media de los mismos para reasignar los centroides).
- ✓ El **método de la silueta** suele ser un indicador para medir cómo de bien una observación se adapta a su cluster.
- ✓ Es muy sensible a los valores anómalo (outliers).





### K-means

El algoritmo K-means se explica de la siguiente manera:

- ✓ De manera aleatoria asignar un número de 1 a K a cada observación. Esto será la asignación inicial a los clústeres de cada observación.
- ✓ Iterar sobre los siguientes pasos hasta que las asignaciones a los clústeres deje de cambiar:
  - a. Para cada clúster, calcule el centroide será un vector compuesto por la media de los **p** predictores de las observaciones del mismo cluster.
  - b. Reasigne cada observación al clúster cuyo centroide esté más cercano a la observación.





### El siguiente gráfico ilustra el algoritmo K-means:







#### **REFERENCIAS**

- "Three ways to detect outliers" (Blog)
  - http://colingorrie.github.io/outlier-detection.html
- Anomaly detection with Local Outlier Factor (LOF)
  - <a href="http://scikit-learn.org/stable/auto\_examples/neighbors/plot\_lof.html">http://scikit-learn.org/stable/auto\_examples/neighbors/plot\_lof.html</a>
- How to Identify Outliers in your Data (Blog)
  - https://machinelearningmastery.com/how-toidentify-outliers-inyour-data/

#### — PROGRAMA DE — ESPECIALIZACIÓN ANALÍTICA

# **ADVANCED**DATA SCIENCE

