TRANSPORT : BASICS.

I. The kubo formula

Recall basics from linear response theory:

$$\frac{\hat{H}(t) = \hat{H}_0 - \alpha(t) \hat{A}}{\hat{\rho}(t) = \hat{\rho}_0 + \delta \hat{\rho}(t)} = \frac{\hat{h}_0}{\hat{h}_0} \int_{-\infty}^{\infty} \delta \hat{\rho}(t) dt$$

(Recall interaction representation: $\hat{A}^{(I)}(t') = e^{iH_0t''}\hat{A}e^{-iH_0t''}$)

Then
$$\langle B(t) \rangle_a = Tr(\beta(t)B) = \int_{-\infty}^{\infty} (X_{BA}(t-t') a(t') dt')$$
where:

Kuloo formula:
$$\left[\widetilde{X}_{\text{M}}(t) = \frac{1}{h} \Theta(t) \left([B(t), A] \right) \right]$$

Tr (po)

$$\hat{p}_{o} = e^{-i\beta \hat{H}_{o}}$$

it $\hat{A} = [A, H_{o}]$

e this order

$$\Rightarrow = \beta \Theta(t) | K_{BA}(t) = \frac{1}{\beta} \int_{0}^{\infty} (\hat{A}(-it\lambda) B(t)) d\lambda$$

-> response function = correlations (cf also fluchuation-dissipation etc)

this latter version is the Green-Kulos Jermula".

$$\Rightarrow$$
 if $B = current$ then X is a current-current correlation.

I Two applications

1) The Onsager relations conjujate extensive Ji (F,t) = E Li Fi(F,t)

"generalized force" (intensive) variable: X; (Fit). Consujate" (>> "Equipartition": (SX; F;) = - ke 8; First arrumpton: $\langle SX_i SX_j(t) \rangle = \langle SX_i(t) SX_i \rangle$ (time-translation + time reversal)

(so comproved by Casimir) Then $\langle \delta X_i \delta X_j \rangle = \langle \delta X_i \delta X_j \rangle$ that's Onsager's "repression hypothesis" = \frac{\infty}{k} \fra which implies: [Lij = Lij] -> Onsager relations. NB, in particular, no Hall effect when TR is not broken. 2) The Kubo-Nakano formula. That's a special case of Green-Kubo with electronic transport.

That's a special case of Green-Kulso with electronic transport. $\widehat{H}_{1}(t) = -e \sum_{i} \widehat{\pi}_{i,p} E_{p}(t) \quad \text{and the response is } \widehat{B} = \widehat{J}_{a},$ thus $\widehat{A} = e \sum_{i} \widehat{\pi}_{i,p} \quad = \sum_{i} \widehat{X}_{BA}(t) = \Theta(t) \int_{S} \langle J_{p}(-it_{i}\lambda) J_{a}(t) \rangle d\lambda$

 $A = e \sum_{i,j} \hat{\eta}_{i,j}$ => $\hat{\chi}_{BA}(t) = \Theta(t) \int_{\mathcal{A}} \langle J_{\beta}(-i\pi\lambda) J_{\alpha}(t) \rangle d\lambda$ $a(t) = -E_{\beta}(t)$ and by def, $J_{\alpha\beta}(\omega) = \int_{\mathcal{A}} dt \ e^{i\omega t} \hat{\chi}_{BA}(t)$

Kubo-Nakano farmula fos T.

III the London approach

 $H = \int d^3\vec{x} \int \frac{1}{2m} \Upsilon(\vec{x}) \left(-i \vec{x} \vec{\nabla} - e \vec{A}\right)^2 \Upsilon(\vec{x})$ - e +(x) + (x) +(x) }

 $=) \vec{\beta}(\vec{x}) = -\frac{SH}{\delta \vec{A}(\vec{x})} = \frac{-ie\hbar}{2m} + \vec{\nabla} + (\vec{x})$ + $\frac{-e^2}{m}$ $\tilde{A}(x)p(x)$

 $=\vec{J}_{p}$ "paramagnetie" $=\vec{J}_{D}$ "diamagnetie"

Rq: decomposition not gauge-invariant under $(4(\vec{x}) \rightarrow e^{ie \chi(\vec{x})} \psi(\vec{x})$ $A(\vec{x}) \rightarrow A(\vec{x}) + \hbar \vec{\nabla} \chi(\vec{x})$

Apply linear response with $H_1 = -\int d^3x \, \bar{J}_p(x) \, \bar{A}(x)$ minimal coupling. This gields: (only this one is not trivial)

 $\langle \tilde{J}_{p}^{x}(t) \rangle = \int dt' d^{3}x' i \langle (\tilde{J}_{p}^{x}(x), \tilde{J}_{p}^{x}(x')) \rangle A^{\beta}(x')$ $= \int \tilde{J}(1) = -\int d2 \, Q(1-2) \, \tilde{A}(2)$ (Same here)

where $Q^{\gamma\beta}(1-2) = \frac{me^2}{m} S^{\alpha\beta}S(1-2) - i \langle [j^{\alpha}_{\beta}(1), j^{\beta}_{\beta}(2)] \rangle \theta(t, t_2)$ "diamognetic paramognetic response"

Now conductivity.

Now conductivity:

 $\begin{array}{c}
\nabla^{A\beta} = \frac{1}{-i\nu} Q^{A\beta} \\
Q(\nu = 0) \stackrel{!}{=} 0
\end{array}$ $\begin{array}{c}
\nabla^{A\beta} = \frac{1}{-i\nu} Q^{A\beta} \\
(\nu) = \frac{1}{-i\nu} (-i \langle j^{2}(\omega) j^{3}(\omega) \rangle) |_{\omega=0} \\
(\omega = 0) \stackrel{!}{=} 0
\end{array}$ Kubo-Nakano recovered!

Two very different behaviours:

- · J < A: in SC, plasma, metal@highw. L> a "Higgsed" phase, KG equation, diamagnetic.
- Ja dA : in a metal@loww, dielectrics.
- -> Now how does one actually compute the London Kernel?

IV. A hint of diagrams

1) Electron scattering on disorder

V= Jdr U(x) 4 (x) 4(x) white noise

Resic block after averaging over the disorder:

| K | K-q |

$$= \mathcal{C}(\mathbf{k}, i\omega_{m}) = \frac{\Lambda}{i\omega_{m} - \mathbf{E}_{\mathbf{k}} - \mathbf{\Sigma}(i\omega_{m})}$$

$$(\tau = \pi m, U_0^2)$$

where
$$\Sigma(i\omega_m) \approx \int dq \frac{i^2 \cdot 9}{k^2 \cdot q} = m_i \sum_{k'} \frac{|u(k-k')|^2}{i\omega_m - \varepsilon_{k'}} = -\frac{i}{2\tau} \text{ sign } (\omega_m)$$

Spectral function:
$$A(k, \omega) = \frac{1}{\pi} Im G(k, \omega - i\delta) =$$

The current vertex is
$$a \le \frac{e^{kd}}{m}$$

$$\langle \chi^{\prime}(iv_{m}) \chi^{\beta}(iv_{m}) \rangle = \chi^{\prime}(iv_{m})$$

$$\beta = -2T \sum_{k_i \in \mathcal{N}} \beta_{ij} = -2T \sum_{k_i \in \mathcal{N}} \beta_{ij$$

$$\langle 3^{\kappa}(i\partial_{m}) 3^{\kappa}(i\partial_{m}) \rangle = \langle \omega_{r} \rangle^{\kappa} = -2 + \sum_{k,i\omega_{r}} \frac{k^{\kappa}k^{\beta}}{m^{2}} e^{2} G(k_{i}i\omega_{r} + i\partial_{m}) G(k_{i}i\omega_{r})$$

Matribaia sum: see textbook. Republ:

$$\sigma^{\alpha\beta}(\nu+i\delta) = \frac{me^2}{m} \frac{1}{-i\nu + \tau^{\alpha}}$$

ARK: this is all about transverse conductivity. i.e. $\partial_t p = -\operatorname{div} j = 0$ i.e. "fast response" \neq diffusive (see later).

Dreude.

I. Electronic diffusion.

Now we are considering the other case: $\partial_{\xi} p = -\text{div}j \neq 0$. Is Apply $\phi(q)$ -> response $\delta p(q)$. "Slow response"

$$\langle \delta p(q) \rangle = i \langle [p(q_1 i \nu_m), p(-q_1 - i \nu_m)] \rangle (-e \phi(q))$$

= -2TG(k+q)G(k). $\Lambda_c(k, k+q)$.

Random pluse opproximation: ((p,p)) = (+1) + (1) + (1) +...

$$\Lambda_{c}(k_{1}k_{1}q) = (\text{see } P. \text{ Columan}) = \frac{T^{-1}}{V_{m} + Dq^{2}}$$

$$= \chi(q, v + i\delta) = \chi_{0} \frac{Dq^{2}}{Dq^{2} - iv} = \text{differive pole } \neq \text{ Doude } !$$

$$\begin{aligned} \delta p(q) &= \chi(q) \in \varphi(q) \\ -i\tilde{q}\tilde{J}(q) &= e\tilde{p} = -i\nu \delta p(q) \end{aligned} \qquad \begin{aligned} \tilde{J}(q) &= \tilde{q}\tilde{E}(q) \\ \tilde{J}(q) &= \sigma_{\tilde{q}}\tilde{E}(q) \end{aligned} \qquad \begin{aligned} \tilde{J}(q) &= \tilde{e}\eta_0 D_{\frac{i\nu}{\nu \cdot Dq^2}} \\ \tilde{J}(q) &= \sigma_{\tilde{q}}\tilde{E}(q) \end{aligned} \qquad \end{aligned}$$
 Einstean's relation.

$$\begin{aligned} \tilde{U}(q) &= \tilde{e}\eta_0 D_{\frac{i\nu}{\nu \cdot Dq^2}} \\ \tilde{U}(q) &= \tilde{e}\eta_0 D_{\frac{i\nu}{\nu \cdot Dq^2}} \end{aligned}$$

$$\begin{aligned} \tilde{U}(q) &= \tilde{e}\eta_0 D_{\frac{i\nu}{\nu \cdot Dq^2}} \\ \tilde{U}(q) &= \tilde{e}\eta_0 D_{\frac{i\nu}{\nu \cdot Dq^2}} \end{aligned}$$

$$\begin{aligned} \tilde{U}(q) &= \tilde{e}\eta_0 D_{\frac{i\nu}{\nu \cdot Dq^2}} \end{aligned}$$

Of Luttinger 64 version: $\phi_q(t) = \phi_q e^{st}$, s=0.

$$\int \dot{p}(r) + D\ddot{p}(r) = 0$$

$$\int_{d\beta} b dh here!$$

$$\int_{d\beta} \langle p_{q} \rangle = \frac{-\vec{q} \cdot \vec{q}}{8 + \vec{q} \cdot \vec{p} \cdot \vec{q}} dq$$

$$\int_{d\beta} \langle r \rangle = \sqrt{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p} \cdot$$

• Rapid: lim lim: then $\langle \hat{J}_q \rangle = 0$, $\langle \hat{J}_q \rangle = \mathcal{I} \in \mathcal{E}_q$: transverse.
• Now: lim lim: then $\langle \hat{J}_q \rangle = \mathcal{J}$ and $\mathcal{I}_{\alpha\beta} = \frac{3\mathcal{I}_q}{3\mathcal{I}_{\alpha\beta}} \mathcal{I}_{\alpha\beta}$ relation again.

II Two remarks.

1) Other digrams are sometimes important.

Recall that to get Double we summed digrams like (!!! n) incheunt scattering home ta 405

(of mesoscopic physics etc).

Bout I "Larger-Neal" diagrams: (1)

Societion $NT \propto \int \frac{d^{6}q}{2\pi} \frac{1}{Dq^{2}-iv} = -\frac{1}{2\pi^{2}} \frac{e^{2}}{h} \ln(T^{6}/T)$.

-s For L= le 2714el one gets Ttot = June + DT = 0 Anderson localization 5 non perhabire wrt disorder (usual result of RB)

2) Thermal conductivity?

$$\int \vec{\partial} = \vec{\varphi} \vec{E} = -\vec{\nabla} \vec{\nabla} \vec{\partial} \vec{e} = 0$$

$$\int \vec{\partial}_{\xi} \rho_{e} + div \vec{\partial}_{e} = 0$$

$$\int \vec{\partial}_{\xi} h_{e} + div \vec{\partial}_{e} = 0$$

$$\int \vec{\partial}_{\xi} h_{e} + div \vec{\partial}_{e} = 0$$

Problem: T is not an external potential. No minimal coupling! So the transverse viewpoint (i.e. fast response) is fishy.

However, Hy=-especiotosdi & Hy= Shar) 4(2) di with 46) a gravitational field.

can be found. This is the difference viewpoint, from which Kyp More about this later maybe.