

Homework 1

Machine Learning and Deep Learning

Teaching Assistant:

Antonio D'Innocente

dinnocente@diag.uniroma1.it

Homework submission

- Individual work (no groups)
- **3** Homeworks
- Score \rightarrow [0,2] for each one
- Total score sufficient for the admission to the final exam→ [4,6]
 - 4 → no extra point
 5 → +1 point This holds ONLY if you submit the Project!
 6 → +2 points
- You can keep your homework till the last exam session before the next class beginning (1 year)

Homework submission

Deadline → 15 days before the <u>first</u> exam of the session

Sessions of June-July: 15 days before the June exam

Homework submission

Uploading: use the "Portale della didattica"

Submit a <u>zip</u> file named ID_MLDL_homework1.zip (ID = matricola)

It should contain

- the report: <u>a pdf file</u> briefly describing the data, the logic of the methods and results with discussions
- the code

Note: the report is *not* cut-and-paste the code in a pdf.

You can copy some code lines in the report but only if they are presented together with the method explanation.

Homework 1: Nearest Neighbors, Linear SVM, SVM with RBF Kernel

- Recap: NN, SVM, RBF Kernel
- Training procedure and Hyperparameter optimization
- Assignment

Recap: k-NN

- Given a training set $S = (x_1, y_1),...,(x_m, y_m)$, k-NN generates a classifier h_{k-NN} such that $h_{k-NN}(x)$ is the label y appearing in the majority of the k points $x_t \in S$ which are closest to x
- k-NN is a family of algorithms (one for each value of k)
- K ≤ M
 CARDINALITY
 OF THE TRAINING SET

K-NN - Hyper Parameter

K is the number of neighbors used for the voting.

ASSUMPTION:

(1)

• Given a linearly separable training set $S = (x_1, y_1),...,(x_m, y_m)$ with $y \in \{+1,-1\}$ SVM outputs the linear classifier corresponding to the unique solution of:

$$\min_{w,b} \frac{1}{2} ||w||^2$$
s.t. $y_i [\langle x_i, w \rangle + b] \ge 1$

Recap: Linear SVM - Hard margin problem

Recap: Linear SVM - Soft margin problem

LOADDA SLACK VARIABLE

Recap: Linear SVM - Soft margin problem

Recap: Linear SVM - Soft margin problem

Hard margin problem

$$\min_{w,b} \frac{1}{2} ||w||^2$$
s.t. $y_i [\langle x_i, w \rangle + b] \ge 1$

Soft margin problem

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i} \xi_i$$

$$s.t. \ y_i \left[\langle x_i, w \rangle + b \right] \ge 1 - \xi_i \text{ and } \xi_i \ge 0$$

Recap: RBF Kernel

RADIAL BASIS FUNCTION

SOME PROBLEM PRE NOT LINEARLY SEPARABLE BUT WE CAN TRY TO OSE KERVEL IN ERDER TO OBTHIN A DIVERNLY SEPARABLE PROBLEM IN A DIFFERENT DIHENGLON

We can separate each data point by projecting it into an higher dimension

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i} \xi_i$$
s.t. $y_i [\langle x_i, w \rangle + b] \ge 1 - \xi_i \text{ and } \xi_i \ge 0$

we start from the soft margin formulation:

$$\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i$$

$$s.t. \ y_i [(x_i, w) + b] \ge 1 - \xi_i \ and \ \xi_i \ge 0$$
each point of the training set is then mapped with a function ϕ into a point in an higher dimensional space

$$\Phi(x_i) \longrightarrow$$
 Hard to compute!

SO WE USE THE KERNEL TILICK

..so we use the dual soft margin problem

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$$
s.t.
$$\sum_i \alpha_i y_i = 0 \text{ and } \alpha_i \in [0, C]$$

to be able to use the **KERNEL function**

$$k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

..so we use the dual soft margin problem

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$$
s.t.
$$\sum_i \alpha_i y_i = 0 \text{ and } \alpha_i \in [0, C]$$

we will use the RBF Kernel

$$k(x_i, x_j) = e^{-\gamma(x_i - x_j)^2}$$

MARCE DANGER PROPORTIONAL T

THE DISTAN

Until now we have only considered binary classification problem, but what about the multiclass classification problem? we can consider a lot of binary classification problem of type one vs all.

SVM - Multiclass: one vs all

SVM - Multiclass: one vs all

SVM - Multiclass: one vs all

SVM - Multiclass: one vs all

Hyperparameters

SVM - Hyper Parameters

Soft margin problem:

• C

$$\min_{w,b} \frac{1}{2} ||w||^2 + \underline{C} \sum_{i} \xi_i$$
s.t. $y_i [\langle x_i, w \rangle + b] \ge 1 - \xi_i \text{ and } \xi_i \ge 0$

C is the cost of misclassification

SVM - Hyper Parameters

THIGH -> ONLY SAMPLES THAT AME OLOSE WILL CONTINBUTE TO THE CLASSIFICATION
LOWERL VARIANCE

Y LOW => HIGHER VARIANCE -> HORE SAMPLES

y is inversely proportional to the variance of the Gaussian

• C

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) + \sum_i \alpha_i$$
s.t.
$$\sum_i \alpha_i y_i = 0 \text{ and } \alpha_i \in [0, \underline{C}]$$

$$k(x_i, x_j) = e^{-\underline{\gamma}(x_i - x_j)^2}$$

SVM - Hyper Parameters

Soft margin problem:

• C

Kernel RBF:

- (
- **y**

$$\min_{w,b} \frac{1}{2} ||w||^2 + \underline{C} \sum_{i} \xi_i$$
s.t. $y_i [\langle x_i, w \rangle + b] \ge 1 - \xi_i \text{ and } \xi_i \ge 0$

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) + \sum_{i} \alpha_i$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0$$
 and $\alpha_{i} \in [0, \underline{C}]$

$$k(x_{i}, x_{j}) = e^{-\underline{\gamma}(x_{i} - x_{j})^{2}}$$

How to choose the Hyper Parameters?

Training procedure

Dataset

To analyze the performance and evaluate a model you need to divide the dataset into **3 splits**

Training procedure

Train Val Test

- 1. Train the model using only the **training set** with the **parameters chosen**
- 2. Evaluate the performance of the model on the **validation set**
- 3. Choose others parameters and repeat 1. and 2. until you find the parameters that work best on the validation set.

At the end you can evaluate the model on the **testing set** but <u>you cannot change</u> the parameters in function of the performance on the testing set!

Training procedure - Example

Training procedure - Example

Optimization of **C**

Training procedure - Example

Optimization of **C**

Best C found!

Training procedure - Example - Grid Search

Optimization of **C** and **y**

Gamma \ C	10-2	10-1	10 ⁰	10 ¹
10 ⁻⁹	66%	75%	60%	60%
10 ⁻⁷	48%	67%	78%	79%
10 ⁻⁵	80%	82%	90%	85%
10-3	45%	66%	78%	74%

Training procedure - Example - Grid Search

Optimization of C and y

Best C and y found!

Gamma \ C	10-2	10-1	100	10 ¹
10 ⁻⁹	66%	75%	60%	60%
10 ⁻⁷	48%	67%	78%	79%
10-5	80%	82%	90%	85%
10 ⁻³	45%	66%	78%	74%

Training procedure - K-Fold Cross Validation

..for a more precise evaluation of the model.

Final Accuracy = Average(Round 1,Round 2, Round 3, Round 4)

Assignment

Homework - K-Nearest Neighbors

- Load Wine dataset (scikit library)
- 2. Select the first two attributes for a 2D representation of the image.
- 3. Randomly split data into train, validation and test sets in proportion 5:2:3
- 4. For **K** = [1,3, 5,7]:
 - a. Apply K-Nearest Neighbors
 - b. Plot the data and the decision boundaries
 - c. Evaluate the method on the validation set
- 5. Plot a graph showing how the accuracy on the validation set varies when changing **K**
- 6. How the boundaries change? Why?
- 7. Use the best value of **K** and evaluate the model on the **test set**. How well does it works?

Homework - Linear SVM

- 8. For **C** = **[0.001, 0.01, 0.1, 1, 10, 100, 1000]**:
 - a. Train a **linear SVM** on the training set
 - b. Plot the data and the decision boundaries
 - c. Evaluate the method on the validation set
- 9. Plot a graph showing how the accuracy on the validation set varies when changing **C**
- 10. How the boundaries change? Why?
- 11. Use the best value of **C** and evaluate the model on the **test set**. How well does it works?

Homework - RBF Kernel

- 12. Repeat point 8. (train, plot, etc..), but this time use an RBF kernel
- 13. Evaluate the best **C** on the **test set**
- 14. Are there any differences compared to the linear kernel? How are the boundaries different?
- 15. Perform a grid search of the best parameters for an RBF kernel: we will now tune both **gamma** and **C** at the same time. Select an appropriate range for both parameters. Train the model and score it on the validation set. Evaluate the best parameters on the test set. Plot the decision boundaries.

Homework - K-Fold

- 16. Merge the training and validation split. You should now have 70% training and 30% test data.
- 17. Repeat the grid search for **gamma** and **C** but this time perform 5-fold validation.
- 18. Evaluate the parameters on the test set. Is the final score different? Why?

Extra: only once you finish the main requests

- 19. Discuss the difference between KNN and SVM
- 20. Try also with different pairs of attributes (FALPHETERS)

In practice...

You should use the **scikit-learn** library:

https://scikit-learn.org/stable/

In particular, check these docs for some help:

- https://scikit-learn.org/stable/modules/neighbors.html #neighbors
- https://scikit-learn.org/stable/modules/svm.html
- https://scikit-learn.org/stable/modules/generated/sklearn.model selection.KFold.html