Лекция6

- Общее уравнение алгебраической кривой второго порядка.
- Преобразование декартовых координат точки при параллельном переносе.
- Приведение к каноническому виду уравнений алгебраических кривых второго порядка, не содержащих произведения переменных.

Общее уравнение алгебраической кривой второго порядка. Параллельный перенос системы координат. Классификация кривых 2-го порядка

В астрономии, физике, теории упругости и других отраслях науки встречаются линии, описываемые уравнениями второй степени. Например, по параболе движется тело в однородном поле силы тяжести, брошенное под углом к горизонту. Движение планет, комет в поле тяготения Солнца происходит по эллиптическим орбитам. При вращении двух пересекающиеся прямых вокруг биссектрисы образованного ими угла, получается коническая поверхность. Если пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры – эллипс, гипербола, парабола, пересекающиеся прямые

Кривые второго порядка имеют большое применение в различных отраслях науки. В этой связи изучение кривых второго порядка имеет важное прикладное значение.

Общее уравнение алгебраической кривой второго порядка.

Алгебраической кривой второго порядка на плоскости называется множество всех точек плоскости, координаты которых удовлетворяют уравнению

$$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$
, rge $A^2 + B^2 + C^2 > 0$

Это уравнение может задавать окружность, эллипс, гиперболу, параболу (невырожденные случаи), а также пустое множество, точку, прямую, пару прямых (вырожденные случаи).

Одна и та же кривая в зависимости от выбора декартовой прямоугольной системы координат, может иметь разные уравнения. Возникает закономерный вопрос, каким образом понять какая кривая задана данным уравнением.

В дальнейшем при изучении квадратичных форм покажем, что для любой кривой, заданной данным уравнением, всегда можно подобрать такую новую систему координат, которая получается поворотом старой системы координат на некоторый угол φ , и в которой в уравнении кривой коэффициент перед xy равен 0.

Классификация кривых 2-го порядка

Для любой кривой 2-го порядка всегда можно подобрать такую новую декартову прямоугольную систему координат, в которой уравнение $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$ примет вид канонического уравнения кривой. Система координат, в которой уравнение кривой имеет канонический вид, называется канонической системой координат.

Перечислим канонические уравнения кривых 2-го порядка.

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a \ge b > 0$ - эллипс

Для построения эллипса откладываем вдоль оси OX вправо и влево a единиц, вдоль оси OY вверх и вниз откладываем b единиц. Через полученные точки проводим линии параллельные осям координат, а затем вписываем эллипс в получившийся прямоугольник.

2.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $a, b > 0$ -гипербола

Для построения гиперболы откладываем вдоль оси OX вправо и влево a единиц, вдоль оси OY вверх и вниз откладываем b единиц. Через полученные точки проводим линии параллельные осям координат. Через вершины получившегося прямоугольника проводим прямые. Эти прямые являются асимптотами гиперболы. Веточки гиперболы проходят через точки (a;0) и (-a;0) и приближаются к асимптотам.

$$3. y^2 = 2px (p > 0) - парабола.$$

Вершина параболы находится в начале координат. Ось симметрии параболы – ось ОХ.

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, которое приводится к такому каноническому виду, называется мнимым эллипсом.

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

Этому уравнению удовлетворяет одна точка с координатами (0, 0). Каноническое уравнение данного вида называется уравнением пары мнимых пересекающихся прямых.

6.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

Левую часть данного уравнения можно разложить на множители: $\left(\frac{x}{a} - \frac{y}{b}\right) \left(\frac{x}{a} + \frac{y}{b}\right) = 0$.

Так как произведение равно нулю тогда и только тогда, когда равен нулю хотя бы один из сомножителей, то приравняв каждую из скобок к нулю и выразив y, получим $y = \pm \frac{b}{a}x$. Эти 2 уравнения задают пару пересекающихся прямых. Точка пересечения прямых- начало координат.

7.
$$v^2 = b^2$$

Данное уравнение представляет собой пару параллельных прямых: $y = \pm b$.

8.
$$y^2 = -b^2$$

Этому уравнению не удовлетворяет ни одна точка. Каноническое уравнение данного вида называется уравнением пары мнимых параллельных прямых.

9.
$$v^2 = 0$$

Линия второго порядка представляет собой прямую, совпадающую с осью OX. Такое уравнение называется парой совпадающих прямых.

Параллельный перенос системы координат.

В задачах аналитической геометрии положение заданных объектов определяется относительно некоторой системы координат. Может, однако, возникнуть необходимость в замене системы координат другой системой, по каким-либо соображениям более удобной. Прежде всего найдем формулы преобразования координат при параллельном переносе осей, то есть при таком изменении декартовой системы координат, когда меняется положение начала координат, а направление осей и масштаб остаются неизменными.

Пусть на плоскости заданы две декартовы системы координат ОХҮ и О'Х'Ү', у которых направления координатных осей совпадают, но начальные точки О и О' разные. То есть вторая система координат получена из первой переносом начала координат в точку О'. Пусть известны координаты точки О' относительно первой системы координат: О'(a, b). Число a будем называть величиной сдвига по направлению оси ОХ, а число b — величиной сдвига по направлению оси ОҮ. Произвольная точка М плоскости имеет относительно старых осей некоторые координаты (x,y). Эта же точка в новой системе координат имеет координаты: (x',y'). Тогда

$$x = x' + a; y = y' + b$$
 -

формулы, выражающие старые координаты через новые.

Приведение к каноническому виду уравнений алгебраических кривых второго порядка, не содержащих произведения переменных

Пусть в некоторой декартовой прямоугольной системе координат задано уравнение второго порядка вида

$$Ax^2 + By^2 + Dx + Ey + F = 0$$
, где $A^2 + B^2 > 0$.

Вид кривой, определяемой данным уравнением, зависит от коэффициентов A, B, D, E и F. Проведем подробный анализ возможных случаев.

1. Рассмотрим случай, когда уравнение кривой содержит оба старших члена, то есть $A \neq 0$ и $B \neq 0$. Тогда можно провести следующие алгебраические преобразования, сводящиеся к выделению полного квадрата. Сгруппируем слагаемые, содержащие переменную x и слагаемые, содержащие переменную y. Вынесем коэффициенты A и B за скобки.

$$Ax^{2} + By^{2} + Dx + Ey + F = A(x^{2} + \frac{D}{A}x) + B(y^{2} + \frac{E}{B}y) + F$$

Заметим, что в первой скобке до полного квадрата не хватает слагаемого $\left(\frac{D}{2A}\right)^2$, во второй

 $-\left(\frac{E}{2B}\right)^2$. Добавим их и вычтем.

$$A\left(x^2 + \frac{D}{A}x + \left(\frac{D}{2A}\right)^2 - \left(\frac{D}{2A}\right)^2\right) + B\left(y^2 + \frac{E}{B}y + \left(\frac{E}{2B}\right)^2 - \left(\frac{E}{2B}\right)^2\right) + F =$$

Тогда первые три слагаемые в каждой из скобок сворачиваем по формуле квадрата суммы.

$$=A\left(x+\frac{D}{2A}\right)^2+B\left(y+\frac{E}{2B}\right)^2+F-A\left(\frac{D}{2A}\right)^2-B\left(\frac{E}{2B}\right)^2$$

Обозначим
$$G = F - A \left(\frac{D}{2A}\right)^2 - B \left(\frac{E}{2B}\right)^2$$
и сделаем замену $x' = x + \frac{D}{2A}$; $y' = y + \frac{E}{2B}$. Такая

замена соответствует параллельному переносу системы координат на вектор $\vec{r} \left(-\frac{D}{2A}; -\frac{E}{2B} \right)$.

Тогда в новой системе координат уравнение кривой приобретет вид $A(x')^2 + B(y')^2 + G = 0$. Определим вид кривой в зависимости от коэффициентов A, B и G.

- $1.1.\ \Pi$ усть коэффициенты A и B имеют один и тот же знак. Тогда для коэффициента G есть три возможности.
- Знак коэффициента G противоположен знаку коэффициентов A и C. Перенесем G в правую часть равенства и разделим на него обе части полученного выражения. Уравнение примет вид:

$$\frac{\left(x'\right)^{2}}{a^{2}} + \frac{\left(y'\right)^{2}}{b^{2}} = 1$$
, где $a^{2} = -\frac{G}{A}$, $b^{2} = -\frac{G}{B}$. Получили каноническое уравнение эллипса. В этом

уравнении, не нарушая общности, можно считать $a \ge b$, в противном случае нужно просто повернуть систему координат на 90° .

- Знак коэффициента G совпадает со знаком коэффициентов A и C. Тогда аналогично предыдущему можно привести уравнение к виду:

$$\frac{\left(x'\right)^2}{a^2} + \frac{\left(y'\right)^2}{b^2} = -1$$
, где $a^2 = \frac{G}{A}$, $b^2 = \frac{G}{B}$. Этому уравнению, которое называется мнимым эллипсом, не удовлетворяют координаты ни одной точки.

- Коэффициента G равен 0. В этом случае уравнение имеет вид: $A(x')^2 + B(y')^2 = 0$. Ему удовлетворяет только одна точка.
- 1.2. Пусть коэффициенты А и В имеют разные знаки. Относительно коэффициента G есть две возможности:
- -Коэффициент G отличен от 0. Перенесем G в правую часть равенства и разделим на него обе части полученного выражения. Уравнение примет вид:

$$\frac{\left(x'\right)^2}{a^2} - \frac{\left(y'\right)^2}{b^2} = 1$$
 или $\frac{\left(x'\right)^2}{a^2} - \frac{\left(y'\right)^2}{b^2} = -1$. Получили уравнение гиперболы.

Уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ - каноническое уравнение гиперболы. Уравнение $\frac{\left(x'\right)^2}{a^2} - \frac{\left(y'\right)^2}{b^2} = -1$ можно привести к каноническому уравнению поворотом системы координат на 90 0 .

-Коэффициент G равен 0.

В этом случае уравнение имеет вид: $A(x')^2 - B(y')^2 = 0$. Получили каноническое уравнение пары пересекающихся прямых.

2. Рассмотрим случай, когда один из старших коэффициентов равен нулю. Пусть, например, A=0. Заметим, что случай, когда коэффициент B = 0 сводится к случаю A=0 поворотом системы координат на 90° . Выделим полный квадрат:

$$By^{2} + Dx + Ey + F = B\left(y + \frac{E}{2B}\right)^{2} + Dx + F - B\left(\frac{E}{2B}\right)^{2}$$

Тогда параллельный перенос можно произвести только вдоль оси ОУ на вектор $\vec{r}\left(0; -\frac{E}{2B}\right)$. В

итоге в новой системе координат уравнение кривой будет выглядеть следующим образом:

$$B(y')^2 + Dx + G = 0$$

Далее рассмотрим 2 варианта.

2.1. Коэффициент D отличен от 0. Тогда перенесем второе и третье слагаемые вправо и разделим обе части получившегося тождества на B:

$$B(y')^2 = -(Dx + G)$$

$$(y')^2 = -\frac{D}{B}(x + \frac{G}{D})$$

Сделаем замену $x'' = x + \frac{G}{D}$; y'' = y'. Такая замена соответствует параллельному переносу

системы координат вдоль оси абсцисс на вектор $\vec{r} \left(-\frac{G}{D}; 0 \right)$. А также обозначим $p = -\frac{D}{B}$. Тогда в

новой системе координат уравнение кривой приобретет вид

 $(y'')^2 = px'$. Получили каноническое уравнение параболы.

Заметим, что можно считать p>0, так как в противном случае можно повернуть ДПСК на 180°

2.2. Коэффициент D равен 0. Тогда $B(y')^2 + G = 0$. Возможны следующие варианты.

-Если коэффициенты B и G имеют разные знаки, то $\left(y'\right)^2 = -\frac{G}{B} > 0$. Получим пару параллельных прямых.

-Если знаки коэффициентов B и G совпадают, то $(y')^2 = -\frac{G}{B} < 0$. Этому уравнению не удовлетворяет ни одна точка. Получим пару мнимых параллельных прямых.

-Если коэффициент G равен нулю, то $(y')^2 = 0$. Получим пару совпадающих прямых. Этому уравнению удовлетворяют координаты точек оси абсцисс.

Вывод.

Приведение кривых второго порядка к каноническому виду значительно упрощает их построение, а также исследование. Из всех алгебраических кривых второго порядка интерес представляют только эллипс, гипербола и парабола. Эти кривые обладают рядом замечательных свойств, которые мы рассмотрим на следующих занятиях.