

 $f_{4MHII\Phi} = (\overline{X}4\overline{X}3X2\overline{X}1) \ v \ (\overline{X}2X1) \ v \ (X3X1) \ v \ (X4X3)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

KO	K1	<i>K2</i>
0000 (1,2)	000X (1,2)	OXXO (1)
0001 (1,2,3)	00X0 (1,2)	OXXO (1)
0010 (1,2,3)	0X00 (1)	XX00 (1)
0100 (-1)	X000 (1)	XX00 (1)
0101 (3)	OXO1 (3)	XX01 (3)
0110 (1,–2)	X001 (3)	XX01 (3)
0111 (-1,-2,3)	OX10 (1,2)	X1X0 (1)
1000 (1)	01X0 (1)	X1X0 (1)
1001 (3)	X100 (1)	X1X1 (3)
1011 (1)	01X1 (3)	X1X1 (3)
1100 (1,-2,3)	X101 (3)	X11X (1,2)
1101 (2,3)	011X (1,2)	X11X (1,2)
1110 (1,2,3)	X110 (1,2)	11XX (2,3)
1111 (1,2,3)	X111 (1,2,3)	11XX (2,3)
	1X00 (1)	•
	1X01 (3)	_
	1X11 (1)	
	110X (2,3)	•
	11X0 (1,2,3)	
	11X1 (2,3)	-
	111X (1,2,3)	

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.6 Склеювання і поглинання термів системи

	0000(F1)	0001/F1/	0010 F1	0110/F1/	1000lF1)	1011/F1/	1100/F1/	1110/F1/	1111/F1)	0000lF2/	0001/F2/	0010(F2)	1101/F2J	1110/F2/	1111/F2/	0001/F3/	0010IF3J	0101(F3)	0111/F3J	1001(F3)	1100/F3/	1101/F3/	1110IF3J	1111F3J
0001 (1,2,3)																								
0001 (1,2,3) 0010 (1,2,3) 000X (1,2) 00X0 (1,2)			+									+					+							
000X (1,2)		+								+	+													
00X0 (1,2)																								
0X10 (1,2) X111 (1,2,3)																								
X111 (1,2,3)									+										+					
1X11 (1)						+																		
11X0 (1,2,3)																								
111X (1,2,3)																								
OXXO (1)																								
XX00 (1)	+				+		+																	
XX01 (3)																+		+		+				
X1X0 (1)				+				+																
X1X1 [3]																								
X11X (1,2)																								
11XX (2,3)													+	+	+						+	+	+	+

3M.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.5 Таблиця покриття системи

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (X4X2X1) \ v \ (\overline{X2}\overline{X1}) \ v \ (X3\overline{X1})$

 $f2_{MJH\phi} = (\overline{X}4\overline{X}3X2\overline{X}1) \ v \ (\overline{X}4\overline{X}3\overline{X}2) \ v \ (X4X3)$

 $f3_{MBH\Phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3)$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

KO	K1	<i>K2</i>
0000 (3)	0X00 (3)	01XX (2)
0011 (1,2,3)	X000 (3)	01XX (2)
0100 (-1,2,3)	OX11 (1,2)	10XX (2)
0101 (1,2)	X011 (2,3)	10XX (2)
0110 (-2,3)	010X (1,2)	
0111 (-1,-2)	01X0 (2,3)	
1000 (2,3)	X100 (2)	
1001 (1,2)	01X1 (1,2)	
1010 (1,2,3)	X101 (1)	
1011 (2,3)	011X (2)	
-1100 (-2)	100X (2)	_
-1101 (1)	10X0 (2,3)	
	1X00 (2)	
	10X1 (2)	
	1X01 (1)	
	101X (2,3)	

Рисунок 4.7 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 Таблиця покриття системи

	0011/F1/	0101/F1/	1001/F1/	1010IF1)	1101/F1)	0011/F2/	0100lF2J	0101/F2/	1000(F2)	1001/F2/	1010/F2/	1011/F2J	0000(F3)	0011/F3/	0100IF3J	0110IF3J	1000(F3)	1010IF3/	1011/F3/
0011 (1,2,3)																			
0100 (-1,2,3)																			
1001 (1,2)																			
1010 (1,2,3)				+														+	
OXOO (3)																			
X000 (3)													4				+		
OX11 (1,2)	+					+													
X011 (2,3)														+					+
010X (1,2)		+						+											
01X0 (2,3)							+								+	+			
X100 (2)																			
01X1 (1,2)																			
X101 (1)																			
10X0 (2,3)																			
1X00 (2)																			
1X01 (1)			+		+														
101X (2,3)																			
01XX (2)																			
10XX (2)									+	+	+	4							

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MDH\phi}=(X4\overline{X}3X2\overline{X}1) \ v \ (\overline{X}4X2X1) \ v \ (\overline{X}4X3\overline{X}2) \ v \ (X4\overline{X}2X1)$

 $f2_{MJH\phi}=(\overline{X3}X2X1) \ v \ (\overline{X4}X3\overline{X2}) \ v \ (\overline{X4}X3\overline{X1}) \ v \ (X4\overline{X3})$

 $f3_{MJH\phi}=(\overline{X3}\overline{X2}\overline{X1}) \ v \ (\overline{X3}X2X1) \ v \ (\overline{X4}X3\overline{X1}) \ v \ (X4\overline{X2}\overline{X1})$

3M.	Арк.	№ докум.	Підп.	Дата

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (X4X2X1) \ v \ (\overline{X2}\overline{X1}) \ v \ (X3\overline{X1})$

 $f2_{M\Pi H \phi} = (\overline{X} 4 \overline{X} 3 X 2 \overline{X} 1) \ v \ (\overline{X} 4 \overline{X} 3 \overline{X} 2) \ v \ (X 4 X 3)$

 $f3_{MJH\phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3)$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}X2\overline{X1}$

 $P2 = \overline{X3}\overline{X2}\overline{X1}$

P3 = X3X2X1

P4 = X4X2X1

P5 = \(\overline{X2X1}\)

P6 = X3\overline{X1}

 $P7 = \overline{X4}\overline{X3}\overline{X2}$

P8 = X4X3

Тоді функції виходів описуються системою:

 $f1_{MDH\phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (X4X2X1) \ v \ (\overline{X2}\overline{X1}) \ v \ (X3\overline{X1}) = P1 \ v$ $P2 \ v \ P3 \ v \ P4 \ v \ P5 \ v \ P6$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X4X3) = P1 \ v \ P7 \ v \ P8$

 $f3_{M\Pi H\phi} = (\overline{X4}\overline{X3}X2\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3) = P1 \ v \ P3 \ v \ P5 \ v \ P8$

<i>3</i> M.	Арк.	№ докум.	Підп.	Дата

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

p = 8 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,8,3) (рисунок 4.8).

Рисунок 4.8 Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,8,3) (таблиця 4.7).

3M.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7 Карта програмування ПЛМ

No		Вх	оди			Виход	של
ШИНИ	<i>X1</i>	<i>X2</i>	<i>X3</i>	<i>X</i> 4	f1	<i>f2</i>	f3
P1	0	1	0	0	1	1	1
<i>P2</i>	0	0	0	-	1	0	0
<i>P3</i>	1	1	1	-	1	0	1
P4	1	1	-	1	1	0	0
<i>P5</i>	0	0	_	-	1	0	1
<i>P6</i>	0	1	1	-	1	0	0
<i>P7</i>	-	0	0	0	0	1	0
<i>P8</i>	-	-	0	0	0	1	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

3M.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2014р.

Зм.	Арк.	№ докум.	Підп.	Дата