$$(2.19)$$
 $\langle |h_1|, \phi_1 \rangle > 0$.

For arbitrary $f_1 \in E_1$, $\text{Re } \lambda > 0$ we have $\langle |R_1(\lambda)f_1|, \phi_1 \rangle \leq \langle R_1(\text{Re}\lambda)|f_1|, \phi_1 \rangle = \langle |f_1|, R_1(\text{Re}\lambda)|\phi_1 \rangle = (\text{Re}\lambda)^{-1} \langle |f_1|, \phi_1 \rangle$. Therefore the ideal $I := \{f_1 \in E_1 : \langle |f_1|, \phi_1 \rangle = 0\}$ is invariant under $\{(R_1(\lambda)\}_{\text{Re}\lambda > 0} : \text{Furthermore we have (see (2.17), (2.18)), } \langle |R_1(r)|h_1| - |h_1|, \phi_1 \rangle = \langle |R_1(r)|h_1| - |h_1|, \phi_1 \rangle = \langle |h_1|, R_1(r)|\phi_1 - \phi_1 \rangle = 0$ for r > 0

which implies

(2.20)
$$rR_1(r)|h_1| - |h_1| \in I (r > 0).$$

Denoting by E₂ the quotient space E₁/I and by $\{(R_2(\lambda))_{Re\lambda>0}\}$ the pseudo-resolvent on E₂ induced by $\{(R_1(\lambda))_{Re\lambda>0}\}$ in the canonical way, then h₂ := h₁ + I \neq 0 (by (2.19)). Moreover, $\lambda R_2(\lambda+i\beta)h_2 = h_2$ (by (2.16)) and $\lambda R_2(\lambda)|h_2| = |h_2|$ (by (2.20) and Prop.2.6(a)). Now we apply Prop.2.7(b) and obtain

(2.21)
$$\lambda R_2(\lambda + in\beta) h_2^{[n]} = h_2^{[n]}$$
 for Re $\lambda > 0$, $n \in \mathbb{Z}$.

In particular, we have $\|R_2(r+in\beta)\| \ge \frac{1}{r}$, thus $\|R(r+in\beta,A)\| = \|R_1(r+in\beta)\| \ge \|R_2(r+in\beta)\| \ge \frac{1}{r}$ for r>0. This finally implies that $in\beta \in \sigma(A)$ for $n\in \mathbb{Z}$.

To prove cyclicity of the boundary spectrum in case s(A) is a pole (of arbitrary order) one applies B-III, Lemma 2.8 to reduce the problem to the case of first order poles. Actually, B-III, Lemma 2.8 is true for arbitrary Banach lattices and the proof given in chapter B-III works in the general case as well. For completeness we recall this result.

<u>Proposition</u> 2.11. Let A be the generator of a positive semigroup \mathcal{T} on a Banach lattice E and suppose that the spectral bound s(A) is a pole of the resolvent of order k. Then there is a sequence

(2.22)
$$I_{-1} := \{0\} \subset I_0 \neq I_1 \neq \dots \neq I_k := E$$

of T-invariant closed ideals with the following properties: If A_n is the generator of the semigroup induced by T on the quotient I_n/I_{n-1} , then we have

- (a) $s(A_O) < s(A)$;
- (b) If $n \ge 1$ then $s(A_n) = s(A)$ is a first order pole of the resolvent $R(.,A_n)$. The corresponding residue is a strictly positive operator.