Lecture 1 **Graphical Models**

Prof. Dahua Lin dhlin@ie.cuhk.edu.hk

Roadmap

- Basic Concepts
 - Bayesian Networks
 - Markov Random Fields
- 2 Analysis of Conditional Independence
- Factor Graphs

Graphical Models

- The key idea behind *graphical models* is **factorization**.
- A graphical model generally refers to a family of joint distributions over multiple variables that factorize according to the structure of the underlying graph.

Graphical Models

A graphical model can be viewed in two ways:

- A data structure that provides the skeleton for representing a joint distribution in a factorized manner.
- A compact representation of a set of conditional independencies about a family of distributions.

These two views are equivalent in a strict sense.

Distributions on a Graph

Consider a graph G = (V, E), where edges can be directed or undirected.

- Attach a random variable X_s to each vertex $s \in V$.
- The state space for X_s is denoted by \mathcal{X}_s .
- A particular instance of X_s is denoted by x_s .
- We can also consider a set of variables: X_A and x_A .

Categories of Graphical Models

- Bayesian Networks (Directed Acyclic Graphs)
- Markov Random Fields (Undirected Graphs)
- Chain Graphs (Directed acyclic graphs over undirected components)
- Factor Graphs

Directed Acyclic Graph

- Consider a directed graph G = (V, E), G is called a directed acyclic graph (DAG) if it has no directed cycles.
- Given an edge $(s,t) \in E$, s is called a **parent** of t, and t is called a **child** of s.
- A vertex s is called an ancestor
 of t and t an descendant of s,
 denoted as s ≺ t, if there exists
 a directed path from s to t.

Topological Ordering

- A topological ordering of a directed graph G=(V,E) is a linear ordering of vertices such that for each edge $(s,t) \in E$, s always comes before t.
- A finite directed graph is acyclic if and only if it has a topological ordering.

Bayesian Networks

Given a DAG G=(V,E), we say a joint distribution over X_V factorizes according to G, if its density p can be expressed as:

$$p(x_V) = \prod_{s \in V} p_s(x_s | x_{\pi(s)})$$

- Such a model is called a **Bayesian Network** over G.
- $\pi(s)$ is the set of s's parents, which can be empty.

Bayesian Networks: Example

$$p(x) \cdot p(y) \cdot p(z|x,y) \cdot p(v|y,z) \cdot p(u|z,v)$$

Undirected Graphs and Cliques

Consider an undirected graph G = (V, E)

- A clique is a fully connected subset of vertices
- A clique is called maximal if it is not properly contained in another clique.
- C(G) denotes the set of all **maximal cliques**.

Undirected Graphs and Cliques (cont'd)

Markov Random Fields

Consider an undirected graph G=(V,E), we say a joint distribution of X_V factorizes according to G if its density p can be expressed as:

$$p(x_V) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

- This is called a *Markov Random Field* over G.
- $\psi_C: \mathcal{X}_C \to \mathbb{R}_+$ are called *factors*.

Markov Random Fields (cont'd)

 The normalizing constant Z is usually needed to ensure the distribution is properly normalized:

$$Z = \int \prod_{C \in \mathcal{C}(G)} \psi_C(x_C) \mu(dx).$$

• Generally, the compatibility functions ψ_C need not have any obvious relations with the marginal or conditional distributions over the cliques.

MRF Parameterization

All MRFs can be parameterized in terms of *maximal cliques*. In practice, this is not necessarily the most natural way.

- Natural parameterization: $\frac{1}{Z}\psi_{ab}(x_a,x_b)\psi_{bc}(x_b,x_c)\psi_{ac}(x_a,x_c)$
- Maximal-clique based: $\frac{1}{Z}\psi'(x_a,x_b,x_c)$ with $\psi'(x_a,x_b,x_c)=\psi_{ab}(x_a,x_b)\psi_{bc}(x_b,x_c)\psi_{ac}(x_a,x_c)$

←□▶ ←□▶ ←□▶ ←□▶ □ ● ●

The graphical structure also encodes a set of conditional independencies among the variables.

Conditional Independence

• Consider a joint distribution over (X,Y,Z), X and Y are called conditionally independent given Z, denoted by $X \perp Y|Z$ iff

$$\Pr(X \in A \& Y \in B \mid Z) = \Pr(X \in A \mid Z)\Pr(Y \in B \mid Z) \ a.s.$$

More generally,

$$E_{X,Y|Z}[f(X)g(Y)] = E_{X|Z}[f(X)]E_{Y|Z}[g(Y)] \ a.s.$$

• Suppose the conditional distributions X|Z and Y|Z have densities $p_{X|z}$ and $p_{Y|z}$, then $X \perp Y \mid Z$, if the following equality holds almost surely:

$$p_{(X,Y)|z}(x,y) = p_{X|z}(x) \cdot p_{Y|z}(y).$$

I-map

- Let $\mathcal P$ be a family of distributions (e.g. a graphical model). We define $\mathcal I(\mathcal P)$ to be the set of *conditional independencies* in the form of $(X \perp Y \mid Z)$ that hold for all distributions in $\mathcal P$.
- Given a graph G associated with a set of conditional independencies $\mathcal{I}(G)$, then G is called an *I-map* of \mathcal{P} if $\mathcal{I}(G) \subset \mathcal{I}(\mathcal{P})$.
- An I-map is a graph that captures (part of) the conditional independencies of a distribution family.

Conditional Independencies of MRFs

The conditional independencies of an MRF can be characterized in three ways:

- Local independencies
- Pairwise independencies
- Global independencies

In the sequel, we consider an undirected graph G = (V, E).

Local Independencies

Local independencies: For each $s \in V$, X_s is *independent* of the rest given its neighbors $\mathcal{N}_G(s)$.

$$\mathcal{I}_{l}(G) = \left\{ X_{s} \perp X_{V \setminus (\{s\} \cup \mathcal{N}_{G}(s))} \mid X_{\mathcal{N}_{G}(s)} : s \in V \right\}$$

Pairwise Independencies

Pairwise independencies: Given two disjoint sets $A, B \subset V$ with no direct edges between them, X_A is *independent* of X_B given the rest.

$$\mathcal{I}_p(G) = \left\{ X_A \perp X_B \mid X_{V \setminus (A \cup B)} : A - B \notin G \right\}$$

Global Independencies

Global independencies: We say C separates A and B, denoted by $\operatorname{sep}(A, B \mid C)$, if all paths between A and B go through C. If C separates A and B, then X_A is independent of X_B given X_C .

$$\mathcal{I}_g(G) = \{ X_A \perp X_B \mid X_C : \operatorname{sep}(A, B \mid C) \}$$

Relations between Independencies

- $\mathcal{I}_l(G) \subset \mathcal{I}_p(G) \subset \mathcal{I}_g(G)$
- Given a distribution or a family of distribution \mathcal{P} , we say \mathcal{P} satisfies \mathcal{I} if it satisfies all conditional independencies in \mathcal{I} , denoted by $\mathcal{P} \models \mathcal{I}$.
- Generally,

$$\mathcal{P} \models \mathcal{I}_g(G) \Rightarrow \mathcal{P} \models \mathcal{I}_p(G) \Rightarrow \mathcal{P} \models \mathcal{I}_l(G)$$

ullet If ${\mathcal P}$ is a family of *positive distributions*, then

$$\mathcal{P} \models \mathcal{I}_q(G) \Leftrightarrow \mathcal{P} \models \mathcal{I}_p(G) \Leftrightarrow \mathcal{P} \models \mathcal{I}_l(G)$$

Soundness

- Let P be a distribution that factorizes according to an undirected graph G, then $P \models \mathcal{I}(G)$, or in other words, G is an I-map of P.
- $P \models \mathcal{I}_p(G)$ and $P \models \mathcal{I}_l(G)$.
- How to prove?
 - How is the separation assumption related to the maximal cliques?

We have shown that if P factorizes according to G, then G is an I-map for P. Is the converse also true?

Hammersley-Clifford

- Hammersley-Clifford Theorem: Let P be a positive distribution over X_V and G=(V,E) be an I-map of P, then P factorizes according to G.
- Combining Soundness and Hammersley-Clifford:

A positive distribution P factorizes according to G if and only if G is an I-map of P, i.e. $P \models \mathcal{I}(G)$.

Conditional Independencies of BN

Conditional independencies of a *Bayesian network* can be characterized in two ways:

- Local independencies
- Global independencies (via *d-separation*)

In the sequel, we consider a directed graph G = (V, E).

Local Independencies for BN

Given $s \in V$, X_s is independent of its *non-descendants* given its *parents*:

$$\{X_s \perp X_{\text{NonDesc}(s)} \mid X_{\pi(s)} : s \in V\}$$
.

d-separation

- When "influence" can flow from X to Y via Z, we say that the trail $X \rightleftharpoons Z \rightleftharpoons Y$ is **active**:
 - $X \to Z \to Y$ is active iff Z is not observed.
 - $X \leftarrow Z \leftarrow Y$ is active iff Z is not observed.
 - $X \leftarrow Z \rightarrow Y$ is active iff Z is not observed.
 - (V-structure) $X \to Z \leftarrow Y$ is active iff either Z or some of Z's descendants is observed.
- A trail $X_1 \rightleftharpoons \cdots \rightleftharpoons X_n$ is called **active** when all sub-trails $X_{i-1} \rightleftharpoons X_i \rightleftharpoons X_{i+1}$ are *active*.
- Let A,B,C be three sets of vertices of G. A and B are **d-separated** by C, denoted by $\operatorname{dsep}(A,B\mid C)$, if there is neither direct link nor active trail between A and B when X_C are observed.

Global Independencies for BN

Given $A,B,C\subset V$, X_A is independent of X_B given X_C if A and B is d-separated by C on the graph G:

$$\mathcal{I}_g(G) = \{ X_A \perp X_B \mid X_C : \operatorname{dsep}(A, B \mid C) \}$$

 $\mathcal{I}_l(G) \subset \mathcal{I}_g(G)$. Also, if P factorize according to G, then $P \models \mathcal{I}_g(G)$, or we say G is an I-map of P, i.e. $P \models \mathcal{I}_g(G)$.

Moralized Graphs

- Given a directed graph G=(V,E), we can construct a **moralized** graph, denoted by $\mathcal{M}[G]$ by adding edges between each node and its parents and between each node's parents.
- In $\mathcal{M}[G]$, the subgraph that spans $\{s\} \cup \pi(s)$ forms a *clique*, denoted by C_s .
- ullet The procedure of constructing $\mathcal{M}[G]$ from G is called **moralization**.

Moralized Graphs (Illustration)

From BN to MRF

ullet If p factorizes according to G as

$$p(x_V) = \prod_{s \in V} p_s(x_s | x_{\pi(s)})$$

then p factorizes according to $\mathcal{M}[G]$:

$$p(x_V) = \prod_{s \in V} \psi_s(x_{C_s}), \text{ with } \psi_s(x_{C_s}) = p_s(x_s | x_{\pi(s)})$$

• $\mathcal{I}(\mathcal{M}[G]) \subset \mathcal{I}(G)$. Is the opposite true?

Factor Graphs

- An MRF does not always fully reveal the factorized structure of a distribution.
- A factor graph can sometimes give a more accurate characterization of a family of distributions.
- A factor graph is a bipartite graph with links between two types of nodes: variables and factors.
- A variable x and a factor f is linked in a factor graph, if the factor involves x as an argument.

Factor Graphs (Illustration)

$$p(x,y,z) = \frac{1}{Z}\phi_a(x,y)\phi_b(x,y,z)\phi_c(y,z)\phi_d(z).$$