Макроэкономика-2, 2024-2025 Блок №2

Дедлайн: 25 ноября 2024 в 23.50 вечера. После дедлайна задание не принимается. Как и куда сдавать: загрузка осуществляется в смартЛМС, раздел «Творческое задание Блок№2_Основной файл». Загрузку осуществляет один студент из группы из 3 человек (по договоренности внутри группы).

Коды, дополнительные расчеты и любые другие файлы загружается так же через смартЛМС ответственным студентом, раздел «Творческое задание_коды и расчеты».

Резервная почта: если у Вас завис ЛМС за минуту до конца дедайна ⊕, Вы можете прислать файлы на olga.a.osotova@gmail.com . После дедлайна задание на почте так же не принимается.

Что сдавать: единый файл WORD загрузить в раздел «Творческое задание Блок№2_Основной файл» Страницы должны быть пронумерованы! Как назвать файл: строго «Фамилия 1 Фамилия 2 Фамилия 3»

Важно: 1) если у проверяющих возникнут вопросы в отношении самостоятельности выполнения задания, любой студент из группы может быть вызван на защиту; 2) работа без Приложения (с результатами оценки) и кодов/расчетов не принимается: оценивается как «0».

Preface: в Модуле №1 в расчетном задании Вы использовали теоретическое моделирование для анализа экономических процессов. Это один из подходов, использующихся макроэкономистами. Другой подход — эмпирическое моделирование. Эмпирическое моделирование — симбиоз эконометрики и макроэкономики: то есть, Вы используете эконометрические методы для анализа макроэкономических процессов. В Модуле №2 попробуем построить прогнозы для инфляции в выбранной Вами стране. Используемая методология — МНК, так как пока Вы знакомы только с этой методологией. **Важно:** это задание **творческое** и не привязано к конкретным лекциям и семинарам на курсе Макроэкономика-2.

Подготовка к выполнению задания

- 1. Самостоятельно разбейтесь на группы по 3 человека. В смартЛМС задание загружает только один студент из группы, это определяется студентами самостоятельно.
- 2. Прочитайте статью «Simple Ways to Forecast Inflation: What Works Best?» В.Н. Мeyer, M. Pasaogullari (2010).
- 3. Разберите статью, обратите внимание на Приложение (Footnotes): там приведены спецификации тестируемых моделей.
- 4. Выберите страну для исследования (кроме США: это не будет оценено). Руководствуйтесь наличием данных, их частотностью, длиной доступного диапазона временных рядов: старайтесь найти как можно более длинные временные ряды квартальной частотности. Вам понадобятся следующие данные:
 - Темп совокупной (*headline*) инфляции аннуализированный , измеренный на основе ИПЦ (желательно квартальной частотности);

¹ Не всегда в статистике даны аннуализированные показатели. В этом случае рассчитываем самостоятельно. Если расчет произведен самостоятельно, это должно быть отражено в тексте и в Приложении к Вашей работе (предоставлены все расчеты). Если Вы не знаете, что такое аннуализированный темп инфляции – узнать это есть Ваша задача, в сети Интернет определение и формула легко находятся.

- Темп базовой (core) инфляции аннуализированный², измеренный на основе ИПЦ (желательно квартальной частотности);
- Инфляционные ожидания аннуализированные (желательно квартальной частотности);
- 3 меры экономической активности (аннуализированный квартальный темп прироста реального ВВП; разрыв выпуска (реального ВВП); индексы экономической активности)³;

Задание

1. (10 баллов) Заполните следующую таблицу:

Страна	Великобритания
Период исследования	1999 - 2024
Частотность данных	Квартальную частотность
Среда (где выполнены расчеты, оценка	Python
модели: R, Eviews, Stata, Excel)	
Источник данных: темп инфляции (ИПЦ) –	Совокупная инфляция
ссылка	
Источник данных: инфляционные	Инфляционные ождания
ожидания – ссылка	
Источник данных: меры экономической	<u>Уровень занятости</u>
активности – ссылка(и)	
	Аннуализированный квартальный темп
	прироста реального ВВП
Источник данных: темп базовой инфляции	<u>Базовая инфляция</u>
– ссылка	

Отсутствие ссылок или наличие неработающих/фейковых ссылок автоматически означает обнуление всей работы.

2. (10 баллов) Приведите основные описательные статистики найденных временных рядов (минимум, максимум, медиана, мода, среднее, стандартное отклонение, асимметрия). Для этого создайте и заполните необходимую таблицу.

Method	min	max	media	mode	mean	std	skew
			n				
INFLATION_diff	-	2.95652	0.0565	0.03254	0.0147	0.74296	0.2590
	2.47395	2	22	1	68	5	27
	8						
CORE_INFLATION_	-	1.29401	-	-	0.0349	0.39101	0.4971
diff	1.06599	0	0.0059	0.00039	44	0	44
	0		90	2			
EXP_INFLATION_dif	-	1.37369	0.0036	-	0.0051	0.44636	-
f	2.81500	8	98	0.14612	95	9	2.2109
	0			8			27

² Не всегда в статистике даны аннуализированные показатели. В этом случае рассчитываем самостоятельно. Если расчет произведен самостоятельно, это должно быть отражено в тексте и в Приложении к Вашей работе (предоставлены все расчеты).

³ Разрыв выпуска нужно рассчитывать самим, с использованием фильтра Ходрика-Прескотта. Расчеты приведите в Приложении, код прикрепите в ЛМС, в тексте в WORD опишите процедуру и полученные результаты.

ANNUALIZED_GDP	_	140.674	0.3313	-	-	18.1617	3.9267
_diff	76.5740	375	40	5.89935	0.0774	06	58
	97			1	87		
EMPLOYMENT_RA	_	0.50520	0.0659	0.10520	0.0243	0.26078	-
TE_diff	0.90973	8	87	8	92	8	0.9668
	7						01
OUTPUT_GAP_diff	-	140.454	0.5599	-	-	18.1561	3.8970
	76.7300	387	22	76.7300	0.0584	21	57
	48			48	50		

При выполнении пунктов (3)-(6) Вам необходимо копировать результаты оценки регрессий из используемой программы и вставить их в Приложение к основной работе (после текста и требуемых таблиц).

- 3. (10 баллов) Используя простое МНК, оцените следующие спецификации:
 - Спецификация 1 (regression forecast): $\pi_{t+4}^4 \pi_t = \alpha + \beta_1(\pi_t \pi_{t-1}) + \beta_2(\pi_{t-1} \pi_{t-2}) + \beta_3(\pi_{t-2} \pi_{t-3}) + \beta_4(\pi_{t-3} \pi_{t-4}) + \varepsilon_t$, где π_{t+4}^4 фактический темп инфляции на 4 квартала вперед, π_t аннуализированная квартальная инфляция в квартале t (тогда разница между двумя показателями есть изменение квартальной инфляции за год).
 - Спецификация 2 (naïve forecast): прогноз инфляции на год вперед это есть (равен) темп(у) прироста ИПЦ за последние 4 квартала (стр. 3 указанной статьи).

Результаты оценки представьте в виде сводной таблицы (это может быть сделано как у авторов статьи, можете предложить свой вариант, если он Вам кажется разумным).

Period	Regression with CPI	Naïve forecast with CPI
	inflation	inflation
2000:Q1 - 2005:Q4	0.252869	0.436945
2006:Q1 - 2011:Q4	0.834695	1.002409
2012:Q1 – 2017:Q4	0.478124	0.563530
2018:Q1 – 2024:Q3	1.896928	1.103247

Method	RMSE
Regression with CPI inflation	1.028649
Naïve forecast with CPI inflation	0.989357

4. (10 баллов) Повторите пункт (2), однако вместо показателя совокупного ИПЦ (headline *CPI*), используйте показатель базовый ИПЦ (core *CPI*). Результаты оценки представьте в виде сводной таблицы. Можете продлить таблицу из пункта (2) или составить новую.

	Spec1_core_RMSE	Spec2_core_RMSE
Period		
2000:Q1 – 2005:Q4	0.259775	0.360717
2006:Q1 – 2011:Q4	0.319736	0.477538
2012:Q1 – 2017:Q4	0.209258	0.353971
2018:Q1 – 2024:Q3	0.880518	0.653391

Method	RMSE
Spec1_core_RMSE	0.490314
Spec2_core_RMSE	0.489502

- 5. (10 баллов) Используя простое МНК, оцените следующие спецификации:
 - Спецификация 3: $\pi_{t+4}^4 = \alpha + \beta \pi_{t+4/t}^e$, где $\pi_{t+4/t}^e$ инфляционные ожидания в квартале t на 4 квартала (на год) вперед.

Period	Spec 3 RMSE
2000:Q1 – 2005:Q4	0.299037
2006:Q1 – 2011:Q4	0.680130
2012:Q1 – 2017:Q4	0.414272
2018:Q1 – 2024:Q3	1.351289

- Спецификация 4: прогноз инфляции на год вперед — это есть (равен) темп(у) прироста квартальных инфляционных ожиданий за последние 4 квартала. Результаты оценки представьте в виде сводной таблицы. Можете продлить таблицу из пункта (2) или составить новую.

Period	Spec 4 RMSE
2000:Q1 – 2005:Q4	0.232775
2006:Q1 – 2011:Q4	0.744408
2012:Q1 – 2017:Q4	0.412442
2018:Q1 – 2024:Q3	1.515112

Method	RMSE
Spec 3 RMSE	0.758500
Spec 4 RMSE	0.769500

- 6. (25 баллов) Используя простое МНК, оцените следующие спецификации кривой Филлипса:
 - Спецификация 5: $\pi_{t+4}^4 \pi_t = \alpha + \beta_1(\pi_t \pi_{t-1}) + \beta_2(\pi_{t-1} \pi_{t-2}) + \beta_3(\pi_{t-2} \pi_{t-3}) + \beta_4(\pi_{t-3} \pi_{t-4}) + \gamma \chi_{t-1} + \varepsilon_t$, где χ_{t-1} мера экономической активности в предыдущем квартале. За меру экономической активности примите разрыв выпуска реального ВВП. Разрыв выпуска рассчитайте с помощью фильтра Ходрика-Прескотта. Самостоятельно ознакомьтесь с процедурой расчета разрыва выпуска при помощи ХП фильтра, найдите соответствующий код в сети Интернет. Дайте ссылку.

Period	RMSE
2000:Q1 – 2005:Q4	0.267648
2006:Q1 – 2011:Q4	0.842061
2012:Q1 – 2017:Q4	0.499953
2018:Q1 – 2024:Q3	1.925595

- Спецификация 6: $\pi_{t+4}^4 - \pi_t = \alpha + \beta_1(\pi_t - \pi_{t-1}) + \beta_2(\pi_{t-1} - \pi_{t-2}) + \beta_3(\pi_{t-2} - \pi_{t-3}) + \beta_4(\pi_{t-3} - \pi_{t-4}) + \gamma \chi_{t-1} + \varepsilon_t$, где χ_{t-1} – мера экономической активности в предыдущем квартале. За меру экономической активности примите аннуализированный квартальный темп прироста реального ВВП.

Period	RMSE
2000:Q1 – 2005:Q4	0.267630
2006:Q1 – 2011:Q4	0.840779
2012:Q1 – 2017:Q4	0.500270
2018:Q1 – 2024:Q3	1.926843

- Спецификация 7: $\pi_{t+4}^4 - \pi_t = \alpha + \beta_1(\pi_t - \pi_{t-1}) + \beta_2(\pi_{t-1} - \pi_{t-2}) + \beta_3(\pi_{t-2} - \pi_{t-3}) + \beta_4(\pi_{t-3} - \pi_{t-4}) + \gamma x_{t-1} + \varepsilon_t$, где x_{t-1} – мера экономической активности в предыдущем квартале. За меру экономической активности примите какой-либо индекс экономической активности. Для этого необходимо поискать в экономической литературе примеры таких индексов. Обоснуйте использование выбранного Вами индекса, дайте ссылку на статью.

По данным теории Филипса, существует обратная связь между уровнем безработицы и инфляцией. Более низкий уровень безработицы обычно приводит к росту инфляции, так как с увеличением занятости растет потребительский спрос. (https://cyberleninka.ru/article/n/relationship-between-inflation-and-unemployment-testing-philips-curve-hypotheses-and-investigating-the-causes-of-inflation-and)

Period	RMSE
2000:Q1 – 2005:Q4	0.250350
2006:Q1 – 2011:Q4	0.865910
2012:Q1 – 2017:Q4	0.501338
2018:Q1 – 2024:Q3	1.932124

Результаты оценки представьте в виде сводной таблицы. Можете продлить таблицу из пункта (2).

Method	RMSE
Spec 5 RMSE	1.0314
Spec 6 RMSE	1.0312
Spec 7 RMSE	1.0154

7. (5 баллов) Подробно опишите результаты оценки в тексте под сводной таблицей. Какая из моделей имеет наилучшее качество? Аргументируйте.

Запишем оценки всех спецификаций для четырех сгруппированных периодов по 6 лет:

Perio	Regres	Naïve	Spec1_core	Spec2_core	Spec	Spec	Spec	Spec	Spec
d	sion	forec	_RMSE	_RMSE	3	4	5	6	7
	with	ast			RMS	RMS	RMS	RMS	RMS
	CPI	with			Е	Е	Е	Е	Е
	inflati	CPI							
	on	inflati							
		on							
2000	0.2528	0.436	0.259775	0.360717	0.299	0.232	0.267	0.267	0.250
:Q1 –	69	945			037	775	648	630	350

2005									
:Q4									
2006	0.8346	1.002	0.319736	0.477538	0.680	0.744	0.842	0.840	0.865
:Q1 –	95	409			130	408	061	779	910
2011									
:Q4									
2012	0.4781	0.563	0.209258	0.353971	0.414	0.412	0.499	0.500	0.501
:Q1 -	24	530			272	442	953	270	338
2017									
:Q4									
2018	1.8969	1.103	0.880518	0.653391	1.351	1.515	1.925	1.926	1.932
:Q1 -	28	247			289	112	595	843	124
2024									
:Q3									

Запишем оценки спецификаций для одного периода длительностью 24 года:

` 1	· / · / · · · · · · · · · · · · · · · ·
Method	RMSE
Regression with CPI inflation	1.028649
Naïve forecast with CPI inflation	0.989357
Spec1_core_RMSE	0.490314
Spec2_core_RMSE	0.489502
Spec 3 RMSE	0.758500
Spec 4 RMSE	0.769500
Spec 5 RMSE	1.031400
Spec 6 RMSE	1.031200
Spec 7 RMSE	1.015400

- Spec2_core_RMSE (0.489502) является наилучшей моделью для всего временного диапазона в 24 года. Это подтверждает, что использование базовой инфляции как индикатора для долгосрочных прогнозов дает более точные результаты, чем использование совокупного ИПЦ или инфляционных ожиданий.
- Spec1_core_RMSE (0.490314) также показала хорошие результаты, что подчеркивает стабильность базовой инфляции.
- Naïve forecast (0.989357) уступает более сложным моделям, несмотря на свою простоту, и дает худшие результаты для длительного периода. Это также подтверждает, что простые модели (такие как Naïve forecast) могут не учитывать все важные экономические факторы и в таких случаях дают менее точные прогнозы.
- Regression with CPI inflation (1.028649) показала наибольшие ошибки, что указывает на проблемы с прогнозированием на более долгосрочные периоды, особенно в условиях экономической нестабильности.
- Spec 3 RMSE (0.758500) и Spec 4 RMSE (0.769500) показывают средние результаты. Это указывает на то, что инфляционные ожидания и простые модели инфляции с использованием инфляционных ожиданий могут быть полезными, но они уступают моделям, использующим базовую инфляцию. Могут работать лучше в стабильных экономических условиях, но не так хорошо в условиях высоких экономических колебаний.
- Модели с экономической активностью (Spec 5–7 RMSE) также не показали хороших результатов в периоды кризисов, что указывает на трудности их применения в условиях высокой неопределенности.

- 8. (10 баллов) Постройте прогнозы инфляции на основе оцененных моделей и сравните прогнозные значения с фактической инфляцией в выбранной Вами стране. Результаты представьте в виде графика. Кратко опишите полученные результаты в тексте под графиком.
- Regression with CPI inflation: Линия прогноза плавно повторяет тренд фактической инфляции, иногда показывая незначительные отклонения в периоды экономической нестабильности.
- Naïve forecast with CPI inflation: Линия прогноза сглажена и ближе к трендовым значениям инфляции, чем к её локальным скачкам.
- Spec1_core: Линия прогноза выглядит хорошо, совпадает с фактическими значениями на большей части временного ряда. В отдельных периодах возможны незначительные отклонения
- Spec2_core: Линия прогноза ближе к долгосрочным трендам, чем к краткосрочным скачкам фактической базовой инфляции
- Spec 3: Линия прогноза плоская, иногда близкая к нулю, что визуально значительно отличается от фактических данных
- Spec 4: Линия прогноза недостаточно динамична, плохо отражает изменения инфляции.
- Spec 5: Прогнозы устойчивы и динамичны, соответствуют изменениям фактической инфляции.
- Spec 6: Линия прогноза повторяет тренды фактической инфляции, но может сглаживать резкие изменения.
- Spec 7: Линия прогноза хорошо отражает фактические данные, но может немного отставать в условиях резких изменений.

Модель с низким RMSE может сглаживать свои прогнозы, избегая резких отклонений. Это приводит к тому, что график выглядит менее гибким и не повторяет резкие изменения фактической инфляции. Модель может иметь «хороший» RMSE, но плохо справляться с изменчивостью данных (особенно если ошибки сгруппированы в определённых временных периодах).

9. (10 баллов) Найдите в экономической литературе альтернативный метод прогнозирования инфляции. Приведите ссылку. Опишите его. Сравните с используемыми в данной работе методами.

Статья "Bayesian Regression as a Gaussian Process" объясняет метод Байесовской регрессии с использованием Гауссового процесса (GP), который позволяет более точно предсказывать инфляцию, учитывая неопределенность в данных. Вместо того, чтобы искать одно "оптимальное" значение параметров, как это делают в классической регрессии, байесовский подход анализирует все возможные значения параметров,

учитывая информацию и неопределенности. Это помогает улучшить точность прогнозов, особенно в условиях нестабильности.

Гауссовый процесс — это способ предсказания, который моделирует данные более гибко, чем традиционные методы. Он позволяет захватывать нелинейные связи между переменными, что делает его более точным в тех случаях, когда данные сложно поддаются линейному анализу.

Преимущества Гауссового процесса:

- Гибкость и точность: Гауссовые процессы могут справляться с более сложными зависимостями между переменными, что позволяет делать более точные прогнозы.
- Сравнение с традиционными методами: Методы, такие как СРІ инфляция или наивные прогнозы, часто не могут точно предсказать инфляцию, так как они не учитывают такие сложные зависимости и колебания в экономике.
- Spec3 дает хорошие результаты, но Гауссовые процессы все равно показывают лучшие результаты, особенно в периоды нестабильности.

Ссылка: http://gaussianprocess.org/gpml/chapters/RW2.pdf

10. **Бонус:** (15 баллов) Дополнительные баллы можно получить, если изначальные временные ряды очистить от сезонности, а так же проверить все ряды на наличие единичного корня (если ряд не стационарен, то рассчитать первые разности)⁴. В гугл-колабе

⁴ Это необязательный пункт, который требует самостоятельного изучения некоторых элементов работы с временными рядами. В сети Интернет много готовых, написанных кодов, которые позволяют очищать данные от сезонности, а так же проверять ряд на наличие единичного корня.