COMP755-Lect11

October 1, 2018

1 COMP 755

Plan for today

- 1. Unsupervised learning
- 2. Mixture models
- 3. EM algorithm

2 Unsupervised learning

In supervised learning, data is given in form

Data =
$$\{(\mathbf{x}_t, \mathbf{y}_t) \mid t = 1, ...T\}$$

There is a feature/predictor vector **x** and a target variable **y**. In unsupervised learning this distinction disappeares

Data =
$$\{ \mathbf{x}_t \mid t = 1, ... T \}$$

3 Examples of unsupervised learning

- Dimensionality reduction -- lossy compression
- Clustering -- assigning each point to a representative cluster
- Note: in classification groups are known, in clustering they are learned
- Deconvolution -- splitting mixed signals such as instruments or speakers in sound signal

Applications * Data summarization/compression * Denoising, outlier detection * Feature construction

4 Clustering

We will first look at a very simple -- and popular -- clustering algorithm called *K-means*The algorithm iterates 1. assignment of samples to the closest of the **K** clusters 2. updates to clusters' **means**

```
In [1]: import numpy
        import matplotlib.pyplot as plt
        %matplotlib inline
        def generate_data(N,d,K,proby,mus,A=None):
            if A is None:
                A = numpy.eye(d)
            vs = [0]*N
            xs = numpy.zeros((d,N))
            for i in range(N):
                # Sample class according to the prior p(y)
                # in this case it is uniform
                ys[i] = numpy.random.choice(K,1)
                # Sample feature values according to p(x|y)
                # In this case, x \sim N(mmu[y[i]], sigma2*I)
                # To accomplish this, draw z1,z2 \tilde{\ } N(0,I)
                z = numpy.random.randn(2,1)
                # transform by matrix A and shift by class mean
                x = numpy.dot(A,z) + mus[:,ys[i]]
                xs[:,i] = x[:,0]
            return xs, ys
        def plot_samples(xs,ys,mus=None,colors=['r','g','b','k','c','m']):
            if not ys is None:
                K = numpy.max(ys)+1
                for c in range(K):
                # indices of samples assigned to class c
                    ind = [i for i in range(N) if ys[i] == c]
                    plt.plot(xs[0,ind],xs[1,ind],colors[c]+'.',label='Samples in cluster '+str(c
                    if not mus is None:
                        plt.plot(mus[0,c],mus[1,c],'kx',markersize=9,markeredgewidth=5)
                        plt.plot(mus[0,c],mus[1,c],'wx',markersize=7,markeredgewidth=3)
                plt.legend(loc=2, bbox_to_anchor=(1,1))
            else:
                plt.plot(xs[0,:],xs[1,:],'.')
        def plot_samples_post(xs,qs,mus=None,colors=['r','g','b','k','c','m']):
            K,N = qs.shape
            for i in range(N):
                plt.plot(xs[0,i],xs[1,i],'o',color=qs[:,i])
            for c in range(K):
            # indices of samples assigned to class c
                if not mus is None:
                    plt.plot(mus[0,c],mus[1,c],'kx',markersize=9,markeredgewidth=5)
                    plt.plot(mus[0,c],mus[1,c],'wx',markersize=7,markeredgewidth=3)
```

```
N = 1000 # 100 samples
K = 3  # 3 classes
d = 2  # x is 2d
proby = [1.0/K]*K # [1./3. , 1./3., 1./3.]
mus = 2.0*numpy.asarray([[-1.0,1.0,2],[1.0,-1.0,2.0]])
numpy.random.seed(1)
xs,ys = generate_data(N,d,K,proby,mus)
plot_samples(xs,None,mus)
plt.title('Data')
```

Out[1]: Text(0.5,1,'Data')


```
In [2]: def kmeans(xs,K,iterations,tolerance=1e-7, just_last=False):
    # dimensions of data
    d,N = xs.shape

# random initialization of centers
    data_mean = numpy.mean(xs,axis=1)[:,numpy.newaxis]
    mus = 0.01*numpy.random.randn(d,K) + data_mean

# cluster assignments using 1-hot representation
    ph = numpy.zeros((K,N))
    # distance from each cluster center to each point
    last_objective = numpy.finfo('d').max
```

```
# compute distance between samples and cluster centers (mus)
        # recognize this as vectorized form of
        \# x'x - 2.0 x'mu
        mus_sq = numpy.asmatrix(numpy.sum(mus**2.0,axis=0)).transpose()
        mus_xs = numpy.dot(mus.transpose(),xs)
        xs_sq = numpy.sum(xs**2.0,axis=0)
        distance = mus_sq - 2.0*mus_xs + xs_sq
        # objective is sum of distances from each sample
        # to its closest cluster
        objective = numpy.sum(numpy.min(distance,axis=0))
        # find closest clusters all at once
        h = numpy.argmin(distance,axis=0).transpose()
        # convert the closest cluster id to one-hot
        # representation
        ph[:] = 0
        for (i,v) in enumerate(h):
            ph[v,i] = 1.0
        # visualization
        if not just_last:
           plt.figure()
            plot_samples(xs,h,mus)
            plt.title('Iteration: {} Objective: {}'.format(it,objective))
        # check whether sufficient change has occurred
        if last_objective - objective < tolerance:</pre>
            break
        else:
            last_objective = objective
        # update each cluster center with mean of samples in that cluster
        # make sure not to divide by 0 -- in case of an empty cluster
        mus = numpy.dot(xs,ph.transpose())/(1e-5 + numpy.sum(ph,axis=1))
    if just_last:
        plt.figure()
        plot_samples(xs,h,mus)
        plt.title('Final after {} iterations with objective {}'.format(it,objective))
    return h, mus
numpy.random.seed(1)
xs,ys = generate_data(N,d,K,proby,mus)
numpy.random.seed(1)
```

for it in range(iterations):


```
In [3]: N = 1000 # 100 samples
    K = 3  # 3 classes
    d = 2  # x is 2d
    proby = [1.0/K]*K # [1./3. , 1./3., 1./3.]
    mus = 2.0*numpy.asarray([[-1.0,1.0,2],[1.0,-1.0,2.0]])

    numpy.random.seed(6)
    xs,ys = generate_data(N,d,K,proby,mus=mus)
    kmeans(xs,K=6,iterations=30,tolerance=1e-7,just_last = True);
    plt.title('Poor initialization')
```

Out[3]: Text(0.5,1,'Poor initialization')


```
In [4]: numpy.random.seed(7)
    A = 1.4*numpy.random.randn(2,2)
    xs,ys = generate_data(N,d,K,proby,mus,A)
    kmeans(xs,K=3,iterations=10,tolerance=1e-3,just_last = True);
    plt.title('True clusters are not spherical');
```


5 K-means observations

- 1. Initialization is random -- means of the clusters are slightly preturbed versions of data mean.
- 2. Clusters are assumed to be spherical
- 3. Clusters can have zero members -- make sure there is no division with zero

```
mus = numpy.dot(xs,ph.transpose())/(1e-5 + numpy.sum(ph,axis=1))
```

- 4. There are local minima
- Trivial: renaming of clusters
- Non-trivial: poor initialization, too small or too large K
- 5. Multiple restarts -- from different initializations -- can lead to better solutions

6 How do we come up with an algorithm such as K-means?

We will: 1. Write out a generative model for the data 2. Write out log-likelihood 3. Optimize log-likelihood

The twist compared to our previous model learning is in the fact that not all the variables are observed.

Labels, indicating cluster membership, are hidden from us.

7 Mixture models

Mixture models are suited to the data exhibit clusters.

Each cluster is called **mixture component**

Data is given to us as Data = $\{x_t \mid t = 1, ... T\}$

We introduce a random variable *h* that tells us which cluster or mixture component the sample came from.

8 Mixture models -- generative story

Each sample **x** is generated by: 1. Selecting a cluster, according to some distribution $\pi = (\pi_1, ..., \pi_K)$

$$p(h) = \pi_h$$

2. Using parameters of cluster h generate the sample x

$$p(\mathbf{x} \mid h, \theta) = p(\mathbf{x} \mid \theta_h)$$

For example, you can think of θ_h as the mean of the cluster h

$$p(\mathbf{x} \mid \theta_h) = \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x_i - \theta_{h,i})^2\right\}$$

Out[5]: Text(0.5,1,'\$h\$ indicates cluster membership,\n\$\\theta\$ are cluster centers')

h indicates cluster membership,

9 Mixture models -- generative story

Note that generative model talks about how data might have been generated.

We want to fit a model under which that data is most probable.

To do so, we must write out log-likelihood

$$\mathcal{LL}(\Theta) = \sum_{t} \log p(\mathbf{x}_{t} \mid \Theta)$$

and maximize it with respect to parameters Θ .

10 Marginal Log-likelihood

For a single sample x, we know how to compute p(h) and $p(x \mid h, \Theta)$ so we can obtain joint

$$p(\mathbf{x}, h \mid \Theta) = p(h)p(\mathbf{x} \mid h, \Theta).$$

This is probability of the full configuration **x** and cluster membership *h*.

Our data does not contain information about cluster membership, just vectors \mathbf{x} .

How do we compute $p(\mathbf{x} \mid \Theta)$?

11 Marginal Log-likelihood

We can use the fact that

$$p(\mathbf{x} \mid \Theta) = \sum_{h} p(\mathbf{x}, h \mid \Theta) = \sum_{h} p(h)p(\mathbf{x} \mid h, \Theta).$$

What is the interpretation of this sum?

12 Marginal Log-likelihood

Now, we can express log-likelihood in terms of probabilities in our model

$$\mathcal{LL}(\Theta) = \sum_{t} \log p(\mathbf{x}_t \mid \Theta) = \sum_{t=1}^{T} \log \sum_{h_t} p(\mathbf{x}_t, h_t \mid \Theta).$$

Observations 1. For each sample x_t , we have corresponding cluster membership variable h_t 2. There is a sum under the log so we cannot push the log to probability terms

13 Dealing with difficult objectives

Typically, when we run into an objective that is difficult to work with (for example log of sums above), we seek a closely related objective that is easier.

Hence, we will not directly optimize the log-likelihood instead we will introduce a lower-bound on the log-likelihood which we will show is tight at the optimum.

To accomplish this we a bit of math that you may not be familiar with 1. Convex and concave functions 2. Jensen's inequality

14 Concave functions

A function f(x) is concave if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

for any $\lambda \in [0,1]$ Examples of concave functions are log, exp, square, etc.

15 Jensen's inequality

Jensen's inequality

$$f(\mathbb{E}[H]) \geq \mathbb{E}[f(H)]$$

where

$$\mathbb{E}[H] = \sum_{h} p(H = h)h.$$

and f is concave.

16 Bounding log-likelihood

Starting with log-likelihood

$$\mathcal{LL}(\Theta) = \sum_{t} \log p(\mathbf{x}_t \mid \Theta) = \sum_{t=1}^{T} \log \sum_{h_t} p(\mathbf{x}_t, h_t \mid \Theta).$$

we introduce distributions $q_t(h_t)$ and multiply and divide by them

$$\mathcal{LL}(\Theta) = \sum_{t} \log p(\mathbf{x}_{t} \mid \Theta) = \sum_{t=1}^{T} \log \sum_{h_{t}} \frac{q_{t}(h_{t})}{q_{t}(h_{t})} p(\mathbf{x}_{t}, h_{t} \mid \Theta)$$

$$= \sum_{t=1}^{T} \log \sum_{h_{t}} q_{t}(h_{t}) \frac{p(\mathbf{x}_{t}, h_{t} \mid \Theta)}{q_{t}(h_{t})}$$

$$= \sum_{t=1}^{T} \log \mathbb{E}_{q_{t}} \left[\frac{p(\mathbf{x}_{t}, h_{t} \mid \Theta)}{q_{t}(h_{t})} \right]$$

$$\geq \sum_{t=1}^{T} \mathbb{E}_{q_{t}} \left[\log \frac{p(\mathbf{x}_{t}, h_{t} \mid \Theta)}{q_{t}(h_{t})} \right]$$

$$= \sum_{t=1}^{T} \sum_{h_{t}} q_{t}(h_{t}) \log \frac{p(\mathbf{x}_{t}, h_{t} \mid \Theta)}{q_{t}(h_{t})}$$

17 Bounding log-likelihood

Starting with log-likelihood

$$\mathcal{LL}(\Theta) = \sum_{t} \log p(\mathbf{x}_t \mid \Theta) \ge \sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \log \frac{p(\mathbf{x}_t, h_t \mid \Theta)}{q_t(h_t)} = \mathcal{B}(\Theta, q)$$

Natural questions that arise: 1. Where do we get q_t s? 2. Does optimizing bound result in the same Θ ?

$$\underset{\Theta}{\operatorname{argmax}} \ \mathcal{LL}(\Theta) \stackrel{?}{=} \underset{\Theta}{\operatorname{argmax}} \ \mathcal{B}(\Theta, q)$$

18 Bounding log-likelihood

Before we start answering the questions we note that

$$\mathcal{LL}(\Theta) \geq \mathcal{B}(\Theta, q)$$

no matter which q_t s we choose so we can seek maximum of $\mathcal{B}(\Theta, q)$ with respect to a particular q_s and see what that gets us.

$$\underset{q_s}{\operatorname{argmax}} \sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \log \frac{p(\mathbf{x}_t, h_t \mid \Theta)}{q_t(h_t)} = \underset{q_s}{\operatorname{argmax}} \underbrace{\sum_{h_s} q_s(h_s) \log \frac{p(h_s \mid \mathbf{x}_s, \Theta)}{q_s(h_s)}}_{KL(q(h_s \mid |p(h_s \mid \mathbf{x}_s, \Theta))}$$

In words, optimal q_s is equal to $p(h_s \mid \mathbf{x}_s, \Theta)$, posterior probability of sample s's cluster membership.

19 Bounding log-likelihood

Further if we use optimal q_t s denoted by q_t^*

$$\mathcal{B}(\Theta, q^*) = \sum_{t=1}^{T} \sum_{h_t} p(h_t \mid \mathbf{x}_s, \Theta) \log \frac{p(\mathbf{x}_t, h_t \mid \Theta)}{p(h_t \mid \mathbf{x}_s, \Theta)} = \sum_{t=1}^{T} \log p(\mathbf{x}_t \mid \Theta) = \mathcal{LL}(\Theta)$$

Hence, if

$$q_t(h_t) = p(h_t \mid \mathbf{x}_t, \Theta)$$

the bound is tight.

20 Bounding log-likelihood

Natural questions that arise: * Where do we get q_t s? * A: We use posterior probabilities $p(h_t \mid \mathbf{x}_t, \Theta)$

- $\operatorname{argmax}_{\Theta} \mathcal{LL}(\Theta) \stackrel{?}{=} \operatorname{argmax}_{\Theta} \mathcal{B}(\Theta, q)$?
- A: Yes, if we use exact posterior probabilities in place of q_t s the two objectives coincide and optimal Θ s are the same.

21 Expectation-Maximization (EM) algorithm

Hence we can maximize the bound $\mathcal{B}(\Theta)$ by iterating 1. (E-step) Computing the optimal

$$q_t^{\text{new}} = \underset{q_t}{\operatorname{argmax}} \mathcal{B}(\Theta^{\text{old}}, q)$$

2. (M-step) Updating Θ given current $q_t(h_T)$

$$\Theta^{\text{new}} = \operatorname*{argmax}_{\Theta} \mathcal{B}(\Theta, q^{\text{new}})$$

Recall for a moment the K-means algorithm. It alternated analogous two steps: 1. Assigning each sample to a cluster 2. Cluster center computation based on assignments

22 Our first EM algorithm from scratch

The model

$$p(h) = \alpha_h$$

$$p(\mathbf{x} \mid h, \mu) = (2\pi)^{-\frac{d}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu_h)^T(\mathbf{x} - \mu_h)\right\}$$

is a variant of ** Mixture of Gaussians. **

The bound

$$\begin{split} \mathcal{B}(\Theta, q) &= \sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \log \frac{p(\mathbf{x}_t, h_t \mid \Theta)}{q_t(h_t)} \\ &= \sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \left[\log \alpha_{h_t} - \frac{d}{2} \log(2\pi) - \frac{1}{2} (\mathbf{x} - \mu_h)^T (\mathbf{x} - \mu_h) \right] \\ &- \sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \log q_t(h_t) \end{split}$$

In this case $\Theta = (\alpha_1, ..., \alpha_K, \mu_1, ..., \mu_K)$

23 Our first EM algorithm from scratch - E-step

The E-step

$$q_t(h_t = k) = p(h_t = k \mid \mathbf{x}_t, \mu) = \underbrace{\frac{p(\mathbf{x}_t, h_t = k \mid \mu)}{\sum_{c} p(\mathbf{x}_t, h_t = c \mid \mu)}}_{\text{same for all values of } k}$$

$$\propto p(\mathbf{x}_t, h_t = k \mid \mu)$$

$$= \alpha_{h_t} (2\pi)^{-\frac{d}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu_h)^T (\mathbf{x} - \mu_h)\right\}$$

24 E-step: Working in log-domain

If the data vectors are long, the computation of joint probabilities can yield very tiny probabilities. Rather than working with probabilities we work with log-probabilities. Hence we store

$$\log q_t(h_t = k) = \log p(\mathbf{x}_t, h_t = k \mid \mu) - \log \sum_c p(\mathbf{x}_t, h_t = c \mid \mu)$$

If all the probabilities are stored in log-domain, then computation of their sum requires exponentation.

$$\log \sum_{c} p(\mathbf{x}_{t}, h_{t} = c \mid \mu) = \log \sum_{c} \exp \underbrace{\log p(\mathbf{x}_{t}, h_{t} = c \mid \mu)}_{\text{stored log-probability}}$$

```
In [7]: # Naive normalization
        # unnormalized log probability
        logp = numpy.array([-1000, -1000])
        # both should be equal to log(0.5) = -0.6931
        print("Incorrectly normalized probabilities:", logp - numpy.log(numpy.sum(numpy.exp(logp
        def logsumexp(vec):
            m = numpy.max(vec,axis=0)
            return numpy.log(numpy.sum(numpy.exp(vec-m),axis=0))+m
        # both should be equal to log(0.5) = -0.6931
        print("Correctly normalized probabilities:", logp - logsumexp(logp))
        \#\ 2 x\ 3 , normalizing across the first dimension
        # all should be -0.69314
        logp = numpy.array([[-1000,+1000,-1000],[-1000,+1000,-1000]])
        print("Before column normalization:")
        print(logp)
        print("After column normalization:")
        print(logp - logsumexp(logp))
```

```
Incorrectly normalized probabilities: [ inf inf]
Correctly normalized probabilities: [-0.69314718 -0.69314718]
Before column normalization:
[[-1000 1000 -1000]
  [-1000 1000 -1000]]
After column normalization:
[[-0.69314718 -0.69314718]
  [-0.69314718 -0.69314718]]
```

/Users/jgs/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: RuntimeWarning: divide

25 E-step: Implementation

Given a function that computes $\log p(\mathbf{x}, h|\Theta)$ for all samples and all classes called logjointp(x,Theta)

```
q = numpy.zeros((K,N)) # clusters x samples
q = logjointp(x,Theta) # compute all joints at once
q = q - logsumexp(q) # normalizing across clusters
```

26 M-step: Deriving updates

In M-step we optimize Θ given qs

$$\Theta^{\text{new}} = \operatorname*{argmax}_{\Theta} \mathcal{B}(\Theta, q^{\text{new}})$$

In general, we can take derivatives, equate them to zero, and solve:

$$\nabla_{\Theta} \mathcal{B}(\Theta, q^{\text{new}}) = 0$$

Relevant parts of the bound are

$$\sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \left[\log \alpha_{h_t} - \frac{1}{2} (\mathbf{x} - \mu_h)^T (\mathbf{x} - \mu_h) \right]$$

In case of α s we need to enforce the constraint that

$$\sum_{c} \alpha_{c} - 1 = 0.$$

27 M-step: Details of deriving α update

We need to solve the problem

$$\underset{\alpha, \sum_{c} \alpha_{c} - 1 = 0}{\operatorname{argmax}} \sum_{t=1}^{T} \sum_{h_{t}} q_{t}(h_{t}) \left[\log \alpha_{h_{t}} - \frac{1}{2} (\mathbf{x} - \mu_{h})^{T} (\mathbf{x} - \mu_{h}) \right]$$

This is acomplished by formulating a {Lagrangian}

$$L(\alpha, \lambda) = \sum_{t=1}^{T} \sum_{h_t} q_t(h_t) \left[\log \alpha_{h_t} - \frac{1}{2} (\mathbf{x} - \mu_h)^T (\mathbf{x} - \mu_h) \right] - \lambda \left(\underbrace{\sum_{c} \alpha_c - 1}_{\text{constraint}} \right).$$

We call λ Lagrange multiplier. It The optimality conditions for this problem are given by

$$\frac{\partial}{\partial_{\alpha_c}} L(\alpha, \lambda) = 0 \quad c \in \{1, ..., K\}$$
 $\frac{\partial}{\partial_{\lambda}} L(\alpha, \lambda) = 0$

We will work this out on the board.

$$\alpha_c^* = \frac{\sum_t q_t(h_t = c)}{N}$$

28 An aside: Interpretation of the Lagrange multiplier

Constrainted optimization problems such as

maximize_x
$$f(x)$$

subject to $Ax = b$

are solved by constructing a Lagrangian function

$$L(x,\lambda) = f(x) - \lambda^{T}(Ax - b)$$

 λ is a vector of multipliers which are adjusted so that the optimal solution of $L(x,\lambda)$ satisfies the constraint.

We can think of Lagrange multipliers λ as a price that you need to pay if you violate the constraint.

29 M-step: Details of deriving μ update

$$\mu_c^* = \underset{\mu_c}{\operatorname{argmax}} \sum_{t=1}^T \sum_{h_t} q_t(h_t) \left[\log \alpha_{h_t} - \frac{1}{2} (\mathbf{x} - \mu_h)^T (\mathbf{x} - \mu_h) \right]$$

Take a gradient of the bound

$$\nabla_{\mu_c} \mathcal{B}(\Theta, q) = \sum_t q_t(c) (\mathbf{x}_t - \mu_c)$$

and equate it to zero

$$\sum_{t} q_t(c)(\mathbf{x}_t - \mu_c) = 0$$

to obtain

$$\mu_c^* = \frac{\sum_t q_t(c) \mathbf{x}_t}{\sum_t q_t(c)}$$

Reference: For all matrix calculus tricks http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

30 M-step: implementation

For our model -- mixture of Gaussians -- M-step updates μ s an α s, given current q

$$\mu_c^* = \frac{\sum_t q_t(c) \mathbf{x}_t}{\sum_t q_t(c)}$$
$$\alpha_c^* = \frac{\sum_t q_t(h_t = c)}{N}$$

```
mus = numpy.dot(xs,q.transpose())/(1e-5 + numpy.sum(q,axis=1))
alpha = numpy.sum(q,axis=1)/N
```

Note that xs is of size $d \times N$, q is of size $K \times N$, hence * numpy.dot(xs,q.tranpose()) computes $\sum_t q_t(c) \mathbf{x}_t$ * numpy.sum(q,axis=1) computes $\sum_t q_t(c)$

```
In [14]: def mog(xs,K,iterations=10, visualize=False):
             d,N = xs.shape
             # compute mean and std of data, and convert to
             # column vectors using numpy.newaxis trick.
             data_mean = numpy.mean(xs,axis=1)[:,numpy.newaxis]
             data_std = numpy.std(xs,axis=1)[:,numpy.newaxis]
             # initialize means around the data mean but
             # ensure they are not exactly the same by adding
             # small amount of noise
             mus = data_mean + 0.01*data_std*numpy.random.randn(d,K)
             xs_sq = numpy.sum(xs**2.0,axis=0)
             logalphas = numpy.array([-numpy.log(K)]*K)
             logconst = -(d/2.0)*numpy.log(2.0*numpy.pi)
             logliks = []
             for it in range(iterations):
                 #E-step:
                 mus_sq = numpy.sum(mus**2.0,axis=0)[:,numpy.newaxis]
                 mus_xs = numpy.dot(mus.transpose(),xs)
                 # compute log p(x,h) for all samples
                 q = logalphas[:,numpy.newaxis] + logconst - 0.5*(mus_sq - 2.0*mus_xs + xs_sq)
                 # loglikelihood is equal to sum(logsumexp(log(p(x,h))))
                 loglik = numpy.sum(logsumexp(q))
                 logliks.append(loglik)
                 # normalize columns to get log(p(h|x)) for all samples
                 q = numpy.exp(q - logsumexp(q))
                 # M-step:
                 mus = numpy.dot(xs,q.transpose())/(1e-5 + numpy.sum(q,axis=1))
                 logalphas = numpy.log(numpy.sum(q,axis=1)/N)
```

```
if visualize:
                     print("Iteration: {} Log-likelihood: {} ".format(it,loglik))
                     plt.figure()
                     plot_samples_post(xs,q,mus)
                     plt.title(('Iteration {} Log-likelihood {} \n '+
                                'Red intensity = p(h=1|x) nGreen intensity = p(h=2|x) nBlue
                                 multialignment='right')
             plt.figure()
             plt.plot(logliks)
             plt.xlabel('Iterations')
             plt.ylabel('Log-likelihood')
             alphas = numpy.exp(logalphas)
             return mus, alphas, q
         N = 300
         d = 2
         K = 3
         proby = [1./K]*K
         mus = 2.0*numpy.asarray([[-1.0,1.0,2],[1.0,-1.0,2.0]])
         numpy.random.seed(1)
         xs,ys = generate_data(N,d,K,proby,mus)
        mog(xs,3,iterations=5,visualize=True);
Iteration: 0 Log-likelihood: -2668.2486295383233
Iteration: 1 Log-likelihood: -2620.1354979737134
Iteration: 2 Log-likelihood: -2065.275983307732
Iteration: 3 Log-likelihood: -1239.1534427584647
Iteration: 4 Log-likelihood: -1167.6253597385519
```

Iteration 0 Log-likelihood -2668.2486295383233

Red intensity = p(h = 1|x)

Green intensity = p(h = 2|x)

Iteration 1 Log-likelihood -2620.1354979737134

Red intensity = p(h = 1|x)

Green intensity = p(h = 2|x)

Iteration 2 Log-likelihood -2065.275983307732

Red intensity = p(h = 1|x)

Green intensity = p(h = 2|x)

Iteration 3 Log-likelihood -1239.1534427584647

Red intensity = p(h = 1|x)

Green intensity = p(h = 2|x)

Iteration 4 Log-likelihood -1167.6253597385519

Red intensity = p(h = 1|x)

Green intensity = p(h = 2|x)


```
In [15]: import os, struct
         from array import array as pyarray
         from numpy import append, array, int8, uint8, zeros
         def load_mnist(dataset="training", digits=numpy.arange(10), path="."):
             if dataset == "training":
                 fname_img = os.path.join(path, 'train-images-idx3-ubyte')
                 fname_lbl = os.path.join(path, 'train-labels-idx1-ubyte')
             elif dataset == "testing":
                 fname_img = os.path.join(path, 't10k-images-idx3-ubyte')
                 fname_lbl = os.path.join(path, 't10k-labels-idx1-ubyte')
             else:
                 raise ValueError("dataset must be 'testing' or 'training'")
             flbl = open(fname_lbl, 'rb')
             magic_nr, size = struct.unpack(">II", flbl.read(8))
             lbl = pyarray("b", flbl.read())
             flbl.close()
             fimg = open(fname_img, 'rb')
             magic_nr, size, rows, cols = struct.unpack(">IIII", fimg.read(16))
             img = pyarray("B", fimg.read())
             fimg.close()
             ind = [ k for k in range(size) if lbl[k] in digits ]
             N = len(ind)
             images = zeros((N, rows, cols), dtype=uint8)
             labels = zeros((N, 1), dtype=int8)
             for i in range(len(ind)):
                 images[i] = array(img[ ind[i]*rows*cols : (ind[i]+1)*rows*cols ]).reshape((rows
                 labels[i] = lbl[ind[i]]
             return images, labels
         images,_ = load_mnist()
In [17]: plt.imshow(images[1,:,:],interpolation='None',cmap='Greys_r')
         sz = images.shape
         xs = numpy.reshape(images,(sz[0],sz[1]*sz[2])).transpose()
         means, alphas, qs = mog(xs, 20, 100)
```



```
In [18]: def show_digit(x):
    im = numpy.reshape(x,[28,28])
```

```
plt.imshow(im,interpolation='None',cmap='Greys_r')
plt.axis('off')

plt.figure(figsize=(9,60))
for k in range(20):
   plt.subplot(20,6,k*6+1)
   show_digit(means[:,k])
   plt.title('Cluster center {}'.format(k))
   lst = numpy.argsort(qs[k,:])[-5:]
   for j in range(5):
        plt.subplot(20,6,k*6+j+2)
        show_digit(xs[:,lst[j]])
        plt.title('Id. {} '.format(lst[j]))
```

- 6 6 6 6 6
- 9 8 H 9 9
- 7 4 9 7 9
- Ouster center 3 to 11561 10 11576 10 11579 10 11765 10 29999
- 5 5 5 6 5 8
- O O O O O O
- Cluster center 7 Id 4374 Id 55383 Id 55377 Id 33239 Id 7642
- 9 4 4 4 6 9
- 9 4 9 9 4 4
- 10 January 10 January
- 10 3 5 3 5 3 5 3

- O O O O O O O
- 7 7 7 7 9 7
- Cluster center 16 | d 4920 | | d 35737 | | d 2970 | | d 31663 | | d 34334
- Cluster center 17 ld 17278 ld 23534 ld 31902 ld 49736 ld 46215
- 6 6 6 6 6 6
- 6 8 8 8 3 6 S

31 Video of parameter changes during learning

32 Covered

- Mixture models
- EM algorithm
- K-means