(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-220174

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl.⁶
H 0 1 L 33/00.
H 0 1 S 3/18

識別記号

673

٠.٠

∵**F**I

H01L 33/00 H01S 3/18

673

審査請求 有 請求項の数1 OL (全 6 頁)

(21)出願番号 (62)分割の表示

(22)出頭日

特願平10-330858

特顧平7-317848の分割 平成7年(1995)12月6日 (71)出顧人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72)発明者 中村 修二

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】 室化物半導体発光素子

(57)【要約】

【目的】 静電耐圧が大きい窒化物半導体発光素子を実現して、窒化物半導体発光素子の信頼性を向上させる。 【構成】 単一量子井戸もしくは多重量子井戸構造を有する活性層と、n型クラッド層との間に、インジウムを含むn型の窒化物半導体よりなる第二のn型クラッド層を有し、さらに前記活性層と、p型クラッド層との間に、少なくともインジウムを含むp型の窒化物半導体、またはp型のGaNよりなる第二のp型クラッド層が形成されている。

【特許請求の範囲】

【請求項1】 単一量子井戸もしくは多重量子井戸構造を有する活性層と、n型クラッド層との間に、インジウムを含むn型の窒化物半導体よりなる第二のn型クラッド層を有し、さらに前記活性層と、p型クラッド層との間に、少なくともインジウムを含むp型の窒化物半導体、またはp型のGaNよりなる第二のp型クラッド層が形成されていることを特徴とする窒化物半導体発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は発光ダイオード(LED)、レーザダイオード(LD)等に使用される窒化物 半導体($I_{n_a}A_{l_b}Ga_{1-a-b}N$ 、 $0 \le a$ 、 $0 \le b$ 、 $a+b \le 1$)よりなる発光素子に係り、特にダブルヘテロ構造を有する窒化物半導体発光素子に関する。

[0002]

【従来の技術】紫外~赤色に発光するLED、LD等の発光素子の材料として窒化物半導体($I_{n_a}Al_bGa_{1-a-b}N$ 、 $0 \le a$ 、 $0 \le b$ 、 $a+b \le 1$)が知られている。我々はこの半導体材料を用いて、1993年11月に光度1cdon青色LEDを発表し、1994年4月に光度2cdon青緑色LEDを発表し、1994年10月には光度2cdon青色LEDを発表した。これらのLEDは全て製品化されて、現在ディスプレイ、信号等の実用に供されている。

【0003】図2に窒化物半導体よりなる従来の青色、 青緑色LEDの発光チップの構造を示す。基本的には、 基板21の上に、GaNよりなるバッファ層22、n型 GaNよりなるn型コンタクト層23と、n型AlGa Nよりなるn型クラッド層24と、n型InGaNより なる活性層25と、p型AlGaNよりなるp型クラッ ド層26と、p型GaNよりなるp型コンタクト層27 とが順に積層された構造を有している。活性層25のn 型InGaNにはSi、Ge等のドナー不純物および/ またはZn、Mg等のアクセプター不純物がドープされ ており、LED素子の発光波長は、その活性層のInG aNのIn組成比を変更するか、若しくは活性層にドー プする不純物の種類を変更することで、紫外~赤色まで 変化させることが可能となっている。今のところ、活性 層にドナー不純物とアクセプター不純物とが同時にドー プされた発光波長510nm以下のLEDが実用化され ている。

[0004]

【発明が解決しようとする課題】従来のLEDは順方向電流20mAで発光出力は3mW近くあり、SiCよりなるLEDと比較して20倍以上の出力を有している。しかしながらこのLEDは静電耐圧が低く、例えば逆方向でバイアスして測定するとおよそ50~100Vしかないという欠点があった。静電耐圧が低いと乾燥した雰

囲気中でLEDを取り扱うと、容易に静電気により素子が破壊されるので、信頼性に乏しい。

【0005】従って、本発明はこのような事情を鑑みて成されたものであって、その目的とするところは静電耐圧が大きい窒化物半導体発光素子及び高出力な発光素子を実現して、窒化物半導体発光素子の信頼性を向上させることにある。

[0006]

【課題を解決するための手段】我々は従来のダブルへテロ構造の窒化物半導体発光素子について、種々の実験を重ねた結果、活性層の次に成長させるp型クラッド層に、その原因の多くがあることを突き止め、本発明を成すに至った。即ち、本発明の窒化物半導体発光素子は、単一量子井戸もしくは多重量子井戸構造を有する活性層と、n型クラッド層との間に、インジウムを含むn型の窒化物半導体よりなる第二のn型クラッド層を有し、さらに前記活性層と、p型クラッド層との間に、少なくともインジウムを含むp型の窒化物半導体、またはp型のGaNよりなる第二のp型クラッド層が形成されていることを特徴とする。

【0007】図1は本発明の一実施例に係る発光素子の構造を示す模式断面図である。この発光素子は基板1の上にバッファ層2、n型コンタクト層3、n型クラッド層4、活性層5、第二のp型クラッド層60、第一のp型クラッド層6、p型コンタクト層7を順に積層した構造を示している。

【0008】基板1にはサファイア(A面、C面、R面を含む)の他、SiC(6H、4Hを含む)、ZnO、Si、GaAsのような窒化物半導体と格子不整合の基板、またNGO(ネオジウムガレート)のような酸化物単結晶よりなる窒化物半導体と格子定数の近い基板等を使用することができる。

【0009】パッファ層2はGaN、AIN、GaA1 N等を例えば50オングストローム~0.1μmの膜厚 で成長させることが好ましく、例えばMOVPE法によ ると400℃~600℃の低温で成長させることにより 形成できる。

【0010】n型コンタクト層3は負電極8を形成する層であり、GaN、AlGaN、InAlGaN等を例えば 1μ m~ 10μ mの膜厚で成長させることが好ましく、その中でもGaNを選択することにより負電極の材料と好ましいオーミック接触を得ることができる。負電極8の材料としては例えばAl、Au、Ti 等を好ましく用いることができる。

【0011】n型クラッド層4はGaN、AIGaN、InAIGaN等を例えば500オングストローム~0.5μmの膜厚で成長させることが好ましく、その中でもGaN、AIGaNを選択することにより結晶性の良い層が得られる。また、n型クラッド層4、n型コンタクト層3のいずれかを省略することも可能である。ど

ちらかを省略すると、残った層が n型クラッド層および n型コンタクト層として作用する。

【0012】活性層5はクラッド層よりもバンドギャッ プエネルギーが小さいInGaN、InAIGaN、A IGaN等の窒化物半導体であれば良く、特に所望のバ ンドギャップによってインジウムの組成比を適宜変更し たInGaNにすることが好ましい。また活性層5を例 えばInGaN/GaN、InGaN/InGaN (組 成が異なる)等の組み合わせで、それぞれの薄膜を積層 した多重量子井戸構造としてもよい。単一量子井戸構 造、多重量子井戸構造いずれの活性層においても、活性 層はn型、p型いずれでもよいが、特にノンドープ(無 添加)とすることにより半値幅の狭いバンド間発光、励 起子発光、あるいは量子井戸準位発光が得られ、LED 素子、LD素子を実現する上で特に好ましい。活性層を 単一量子井戸(SQW:single quantum well)構造若 しくは多重量子井戸(MQW:multiquantum well)構 造とすると非常に出力の高い発光素子が得られる。SQ W、MQWとはノンドープのInGaNによる量子準位 間の発光が得られる活性層の構造を指し、例えばSQW では活性層を単一組成のInχGa_{1-ス}N(0≦X<1) で構成した層であり、 $I_{n_x}Ga_{1-x}N$ の膜厚を100オ ングストローム以下、さらに好ましくは70オングスト ローム以下とすることにより量子準位間の強い発光が得 られる。またMQWは組成比の異なるInxGa1-xN (この場合X=0、X=1を含む)の薄膜を複数積層した 多層膜とする。このように活性層をSQW、MQWとす ることにより量子準位間発光で、約365 nm~660 nmまでの発光が得られる。量子構造の井戸層の厚さと しては、前記のように70オングストローム以下が好ま しい。多重量子井戸構造では井戸層は $I_{n_x}Ga_{1-x}N$ で 構成し、障壁層は同じくInɣGaォ-ɣN(Y<X、この場 合Y=Oを含む)で構成することが望ましい。特に好ま しくは井戸層と障壁層をInGaNで形成すると同一温 度で成長できるので結晶性のよい活性層が得られる。障 壁層の膜厚は150オングストローム以下、さらに好ま しくは120オングストローム以下にすると高出力な発 光素子が得られる。また、活性層5にドナー不純物およ び/またはアクセプター不純物をドープしてもよい。不 純物をドープした活性層の結晶性がノンドープと同じで あれば、ドナー不純物をドープするとノンドープのもの に比べてバンド間発光強度をさらに強くすることができ る。アクセプター不純物をドープするとバンド間発光の ピーク波長よりも約0.5eV低エネルギー側にピーク 波長を持っていくことができるが、半値幅は広くなる。 アクセプター不純物とドナー不純物を同時にドープする と、アクセプター不純物のみドープした活性層の発光強 度をさらに大きくすることができる。特にアクセプター 不純物をドープした活性層を実現する場合、活性層の導 電型はSi等のドナー不純物を同時にドープしてn型と

することが好ましい。活性層与は例えば数オングストローム \sim 0.5 μ mの膜厚で成長させることができる。但し、活性層をSQW、若しくはMQWとするときは、n型クラッド層4と活性層5との間にInを含むn型の登化物半導体、またはn型GaNよりなる第二のn型クラッド層を形成することが望ましい。

【0013】次に本発明の最も特徴である第二のp型クラッド層60は少なくともインジウムを含むp型の窒化物半導体($I_{n_X}A_{1_Y}G_{a_{1-X-Y}}N$ 、0 < X 、 Y ≤ 0 、 X + Y < 1)またはp型の $G_{a_1}N$ で形成する必要がある。その中でも $I_{n_G}G_{a_1}N$ で形成する必要がある。その中でも $I_{n_G}G_{a_1}N$ または $G_{a_1}N$ 等の A_1 を含まない窒化物半導体で形成することが特に好ましい。さらに第二のp型クラッド層60の膜厚は200オングストローム以下、ウルストローム以下の膜厚に調整することにより、発光素子の発光出力をほとんど維持したまま、発光素子の静電所圧を上げることが可能となるからである。逆にその膜厚が200オングストロームよりも厚いと、発光素子の出力が低下する傾向にある。

【0014】第一のp型クラッド層6はGaN、A1GaN、InA1GaN等を例えば500オングストローム~0.5μmの膜厚で成長させることが好ましく、その中でもGaN、A1GaNを選択することにより結晶性の良い層が得られる。また、第二のp型クラッド層6の組成と第一のp型クラッド層6の組成比を変化させて、バンドギャップエネルギーを第二のp型クラッド層60と同じとするか、または大きくする。

【0015】p型コンタクト層7は正電極9を形成する層であり、例えばGaN、A1GaN、InA1GaN等を成長させることが好ましく、その中でもGaNを選択することにより正電極の材料と好ましいオーミック接触を得ることができる。正電極材料としてはNi、Au等を好ましく用いることができる。また、p型コンタクト層7、第一のp型クラッド層6のいずれかを省略することも可能である。どちらかを省略すると、残った層が第一のp型クラッド層およびp型コンタクト層として作用する。

のアクセプター不純物を同じく結晶成長中に半導体層中に導入するか、または導入後400℃以上でアニーリングを行うことにより得られる。同様にこれらアクセプター不純物濃度を調整することにより、p型層のキャリア濃度を調整することができる。バッファ層2は基板1と窒化物半導体との格子不整合を緩和するために設けられるが、SiC、ZnOのような窒化物半導体と格子定数が近い基板、窒化物半導体と格子整合した基板を使用する際にはバッファ層が形成されないこともある。【0017】

【作用】従来のLEDでは例えば Inを含む活性層の上 にA 1 を含む第一のp型クラッド層を成長させていた。 一方、本発明では新たに活性層と第一のp型クラッド層 との間にGaNまたはInを含む窒化物半導体よりなる 第二のp型クラッド層を成長させている。この構成によ り発光素子の静電耐圧を向上させることができる。これ は活性層の上の第二のp型クラッド層がバッファ層の作 用をして、第一のp型クラッド層の結晶性を良くして素 子の静電耐圧を向上させている。窒化物半導体はバンド ギャップエネルギーの大きい順、AIN>GaN>In Nの順に結晶自体が柔らかい性質を持っている。つま り、Inを含む窒化物半導体、またはGaNよりなる第 二のp型クラッド層は、第二のp型クラッド層よりもバ ンドギャップエネルギーが大きい第一のp型クラッド層 に比べて結晶自体が柔らかい。この柔らかい結晶である 第二のp型クラッド層がバッファ層の作用をすることに より、その第二のp型クラッド層の上に成長させる第一 のp型クラッド層の結晶性が良くなり、格子欠陥が少な くなるので、素子全体の静電耐圧が向上するのである。 【0018】バッファ層として好適に作用する第二のp 型クラッド層の膜厚は200オングストローム以下が好 ましい。第二のp型クラッド層を厚く積むほど静電耐圧 は向上する傾向にあるが、膜厚が厚すぎると、その第二 のp型クラッド層自体に結晶欠陥が多く発生してしまい バッファ層として作用しにくくなる傾向にある。結晶欠 陥の多い第二のp型クラッド層の上に第一のp型クラッ ド層を成長させると、結晶欠陥が第一のp型クラッド層 にまで伝わってしまうので、結晶性の良い第一のp型ク ラッド層が成長しにくくなる。このため第二のp型クラ ッド層の膜厚が厚すぎると、発光素子の出力が低下する 傾向にある。第二のp型クラッド層の膜厚の下限は特に 限定するものではなく、例えば1原子層、2原子層にあ たるような数オングストロームの膜厚で形成してもよ 11

[0019]

【実施例】以下本発明を具体的な実施例に基づいて説明 する、以下の実施例はMOVPE法による成長方法を示 している。

【0020】 [実施例1] 図1を元に実施例1について説明する。まず、TMG (トリメチルガリウム) とNH

3とを用い、反応容器にセットしたサファイア基板1の C面に500℃でGaNよりなるバッファ層2を500 オングストロームの膜厚で成長させる。

【0021】次に温度を1050℃まで上げ、TMG、NH3に加えシランガスを用い、Siドーアn型GaNよりなるn型コンタクト層23を4μmの膜厚で成長させる。

【0022】続いて原料ガスにTMA(トリメチルアルミニウム)を加え、同じく1050℃でSiドーアn型A10.3Ga0.7N層よりなるn型クラッド層4を0.1μmの膜厚で成長させる。

【0023】次に温度を800℃に下げ、TMG、TM I (トリメチルインジウム)、NH₃、シランガス、D EZ (ジエチルジンク)を用い、Si+Znドープn型 I n0.05G a0.95Nよりなる活性層5を0.1μmの膜厚で成長させる。

【0024】続いて800℃にて、TMG、TMI(トリメチルインジウム)、NH₃、Cp2Mg(シクロペンタジエニルマグネシウム)ガスを用い、Mgドープp型In0.01Ga0.99Nよりなる第二のp型クラッド層60を50オングストローム成長させる。

【0025】次に温度を1050℃に上げ、TMG、TMA、 NH_3 、Cp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgドープp型A10.3Ga0.7Nよりなる第一のp型クラッド<math>B6を0.1 μ mの \hbar μ μ で成長させる。

【0026】続いて1050℃でTMG、NH₃、Cp2 Mgを用い、Mgドープp型GaNよりなるp型コンタ クト層7を0.5μmの膜厚で成長させる。

【0027】反応終了後、温度を室温まで下げてウェーハを反応容器から取り出し、700℃でウェーハのアニーリングを行い、p型層をさらに低抵抗化する。次に最上層のp型コンタクト層7の表面に所定の形状のマスクを形成し、n型コンタクト層3の表面が露出するまで、ッチングする。エッチング後、n型コンタクト層3の表面に下すとA1よりなる負電極8、p型コンタクト層7の表面にNiとAuよりなる正電極9を形成する。層ででは1とAuよりなる正電極9を形成する。では1とAuよりなる正電極9を形成する。では1を1と20m角のチップに分離したの表面にNiとAuよりなる正電極9を形成する。ででは13.6℃、発光ピーク波長450nm、半値幅70nmの青色発光を示し、発光出力は3mWであった。さらに、このLEDの両電極に逆バイアスをかけて静電耐圧を測定したところ、400℃まで素子が破壊しなかった。

【0028】[実施例2]第二のp型クラッド層60の 膜厚を100オングストロームとする他は実施例1と同様にしてLED素子を得たところ、発光出力は3mWと同一で、静電耐圧は450Vまで向上していた。

【0029】[実施例3]第二のp型クラッド層60の 膜厚を200オングストロームとする他は実施例1と同 様にしてLED素子を得たところ、発光出力は2.5m W、静電耐圧は550Vまで向上していた。

【0030】[実施例4]第二のp型クラッド層60の 膜厚を300オングストロームとする他は実施例1と同様にしてLED素子を得たところ、静電耐圧は650V まで向上したが、発光出力は1mWまで低下した。

【0031】 [実施例5] 第二のp型クラッド層60に Mgドープp型GaNを10オングストロームの膜厚で形成する他は実施例1と同様にしてLED素子を得たところ、発光出力は実施例1と同じ3mW、静電耐圧は360Vであった。

【0032】[実施例6]図3は実施例6に係る発光素 子の構造を示す模式的な断面図である。この発光素子が 図1の発光素子と異なるところは、 n型クラッド層4と 活性層5との間に新たなバッファ層としてInを含むn 型の窒化物半導体、またはn型GaNよりなる第二のn 型クラッド層40を形成しているところである。この第 二のクラッド層40は10オングストローム以上、0. 1μm以下の膜厚で形成することが望ましく、さらに第 二のn型クラッド層40と活性層5の膜厚を300オン グストローム以上にすると、Inを含む第一のn型クラ ッド層40とInを含む活性層5とがバッファ層として 作用し、n型クラッド層4、p型クラッド層6にクラッ クが入らず結晶性良く成長できる。さらに、この第二の n型クラッド層40を成長させることにより、不純物を ドープしない活性層が実現でき、半値幅が狭く、出力の 高い発光を得ることができる。

【0033】この第二のn型クラッド層40は、活性層 5とAIとGaとを含むn型クラッド層4との間のバッ ファ層として作用する。つまりInとGaとを含む第二 のn型クラッド層40が結晶の性質として柔らかい性質 を有しているので、AlとGaとを含むn型クラッド層 4と活性層5との格子定数不整と熱膨張係数差によって 生じる歪を吸収する働きがある。従って活性層与を膜厚 が薄い量子構造を有するSQW、MQWとしても、活性 層5、n型クラッド層4にクラックが入らないので、活 性層を量子構造にしても活性層が弾性的に変形し、活性 層の結晶欠陥が少なくなる。つまり活性層の膜厚が薄い 状態においても、活性層の結晶性が良くなるので発光出 力が増大する。さらに、活性層は膜厚を薄くしたことに より量子効果および励起子効果により発光出力が増大す る。言い換えると、従来の発光素子では単一の活性層の 膜厚を例えば1000オングストローム以上と厚くする ことにより、クラッド層、活性層にクラックが入るのを 防止していた。しかしながら活性層には常に熱膨張係数 差、格子不整による歪が係っており、従来の発光素子で は活性層の厚さが弾性的に変形可能な臨界膜厚を超えて いるので、弾性的に変形することができず、活性層中に 多数の結晶欠陥を生じ、バンド間発光ではあまり光らなる い。この第二のn型クラッド層40を形成することによ

り、量子構造の活性層において、発光素子の発光出力を 飛躍的に向上させることが可能である。

【0034】具体的には、実施例1においてn型クラッド層4を成長させた後、温度を800 Cに下げ、TMG、TMI(トリメチルインジウム)、NH3、シランガスを用い、Siドープn型In0.01Ga0.99Nよりなる第二のn型クラッド層40を500オングストロームの膜厚で成長させる。

【0035】続いてTMG、TMI、NH3を用い800℃でノンドープn型In0.05Ga0.95Nよりなる単一量子井戸構造の活性層5を80オングストロームの膜厚で成長させる。後は実施例1と同様にして、第二のp型クラッド層60と、第一のp型クラッド層6、p型コンタクト層7を成長させてLED素子としたところ、このLED素子は、If20mAでVf3.2V、発光ピーク波長400nmの青色発光を示し、発光出力は12mWであった。さらに、発光スペクトルの半値幅は20nmであり、非常に色純度の良い発光を示した。また静電耐圧も実施例1と同様に400Vであった。

【0036】[実施例7]実施例6において、活性層5 の組成をノンドープ I n0.05G a0.95Nよりなる井戸層 を25オングストロームと、ノンドープ I n0.01G a'0. 99Nよりなる障壁層を50オングストロームの膜厚で成 長させる。この操作を13回繰り返し、最後に井戸層を 積層して総厚1000オングストロームの活性層6を成 長させた。後は実施例1と同様にして、第二のp型クラ ッド層60と、第一のp型クラッド層6、p型コンタク ト層7を成長させてLED素子としたところ、このLE D素子は、If20mAでVf3.2V、発光ピーク波 長400nmの青色発光を示し、発光出力は12mWで あった。さらに、発光スペクトルの半値幅は20nmで あり、非常に色純度の良い発光を示した。また静電耐圧 は500Vであった。これは単一量子井戸構造の活性層 よりも、多重量子井戸構造の活性層を有する素子の方が 静電耐圧が高いことを示している。

【0037】 [実施例8] 活性層5の膜厚を500オングストロームとする他は実施例6と同様にしてLED素子を得たところ、このLED素子は活性層の膜厚が厚くなったので、発光出力は3mWまで低下したが、発光ピーク波長390nmで、半値幅20nmの青色発光を示し、静電耐圧は400Vであった。

【0038】[実施例9]第二のp型クラッド層60の膜厚を200オングストロームとする他は実施例6と同様にしてLED素子を得たところ、実施例6と同じく発光ビーク波長400nm、半値幅20nmの青色発光を示し、発光出力は10mW、静電耐圧は550Vまで向上していた。

[0039]

【発明の効果】従来の窒化物半導体発光素子では静電耐 圧に弱く、特に乾燥した環境中では静電気により容易に

素子が破壊してしまい信頼性に乏しかった。しかし本発 明により発光素子の静電耐圧が向上するので、素子が容 2・・・バッファ層 易に破壊されにくくなり信頼性が極めて向上した。

【図面の簡単な説明】

【図1】 本発明の一実施例に係る発光素子の構造を示 す模式断面図。

【図2】 従来の発光素子の構造を示す模式断面図。

【図3】 本発明の他の実施例に係る発光素子の構造を 7・・・・p型コンタクト層 示す模式断面図。

【符号の説明】

3・・・・n型コンタクト層

4・・・・n型クラッド層

5・・・・活性層

6.0 - 第二のp型クラッド層

6···第一のp型クラッド層

8・・・・負電極

9・・・正電極

【図1】

【図2】

【図3】

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11220174 A

(43) Date of publication of application: 10.08.99

(51) Int. CI

H01L 33/00 H01S 3/18

(21) Application number: 10330858

(71) Applicant:

NICHIA CHEM IND LTD

(22) Date of filing: 20.11.98

(72) Inventor:

NAKAMURA SHUJI

(62) Division of application: 07317848

(54) NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the reliability of a nitride semiconductor light-emitting element by realizing the nitride semiconductor light-emitting element having a large electrostatic breakdown voltage.

SOLUTION: A second n-type clad layer 40 containing indium and consisting of an n-type nitride semiconductor is formed between an active layer 5 which has single quantum well or multiple quantum well structure and an n-type clad layer 4, and a second p-type clad layer 60 composed of a p-type nitride semiconductor containing at least indium or p-type GaN is formed between the active layer 5 and the p-type clad layer 6.

COPYRIGHT: (C)1999,JPO

JP 11-220174 A

(11) Publication number:

11-220174

(51) Int.CI. H01L 33/00

(43) Date of publication of application: 10.08.1999

H01S 3/18

(21) Application number : 10-330858

(71) Applicant : NICHIA CHEM IND LTD

(22) Date of filing : 20.11.1998

(72) Inventor : NAKAMURA SHUJI

(54) NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the reliability of a nitride semiconductor light-emitting element by realizing the nitride semiconductor light-emitting element having a large electrostatic breakdown voltage.

SOLUTION: A second n-type clad layer 40 containing indium and consisting of an n-type nitride semiconductor is formed between an active layer 5 which has single quantum well or multiple quantum well structure and an n-type clad layer 4, and a second p-type clad layer 60 composed of a p-type nitride semiconductor containing. at least indium or p-type GaN is formed between the active layer 5 and the p-type

Disclaimer

This is a machine translation performed by JPO (http://www.ipdl.jpo.go.jp) and received and compiled with PatBot (http://www.patbot.de). PatBot can't make any guarantees that this translation is received and displayed completely!

Notices from JPO

Copyright (C) Japanese Patent Office The Japanese Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

-[Claim(s)]

[Claim 1] The p type nitride semiconductor characterized by providing the following, or the nitride semiconductor light emitting device characterized by forming second p type clad layer which consists of p type GaN. The barrier layer which has a single quantum well or multiplex quantum well structure. It has second n type clad layer which consists of an n type nitride semiconductor which contains an indium between n type clad layers, and is the aforementioned barrier layer further. Between p type clad layers, it is an indium at least.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] this invention relates to the nitride semiconductor light emitting device which starts the light emitting device which consists of a emitting diode (Light Emitting Diode), a laser diode (LD), etc., especially has [0002]

[Description of the Prior Art] The nitride semiconductor (InaAlbGa1-a-bN, 0<=a, 0<=b, a+b<=1) is known as a material of light emitting devices, such as Light Emitting Diode, LD, etc. which emit light in ultraviolet - red. Using this semiconductor material, we announced blue Light Emitting Diode with a luminous intensity of 1 cd in November, 1993, announced the bluish green color Light Emitting Diode with a luminous intensity of 2 cds in April, 1994, and announced blue Light Emitting Diode with a luminous intensity of 2 cds in October, 1994. All of these Light Emitting Diodes are produced commercially, and practical them.

[0003] The structure of the luminescence chip of the conventional blue and the bluish green color Light Emitting Diode which become drawing 2 from a nitride semiconductor is shown. It has the structure where the laminating of the buffer layer 22 which consists of GaN on a substrate 21, n type contact layer 23 which consists of n type GaN, n type clad layer 24 which consists of n type AlGaN, the barrier layer 25 which consists of n type InGaN, p type clad layer 26 which consists of p type AlGaN, and the p type contact layer 27 which consists of p type GaN was fundamentally carried out to order. Acceptor impurity, such as donor impurities, such as Si and germanium, and/or Zn, Mg, is doped by n type InGaN of a barrier layer 25, the luminescence wavelength of a Light Emitting Diode element is changing the kind of impurity which changes In composition ratio of InGaN of the barrier layer, or is doped to a barrier layer, and it is possible to make it change to ultraviolet - red. For the moment, Light Emitting Diode with a luminescence wavelength of 510nm or less on which a donor impurity and acceptor impurity were simultaneously doped by the barrier layer is put in practical use.

[0004]

[Problem(s) to be Solved by the Invention] A radiant power output has about 3mW of the conventional Light Emitting Diodes by 20mA of forward currents, and they have the output of 20 times or more as compared with Light Emitting Diode which consists of SiC. However, when this Light Emitting Diode was low, for example, electrostatic pressure-proofing carried out bias of it and measured in the opposite direction, it had the fault that there were only 50-100V about. If Light

Emitting Diode is dealt with in the atmosphere dried when electrostatic pressure-proofing was low, since an element will be easily destroyed by static electricity, it is lacking in reliability.

[0005] Therefore, it is in accomplishing this invention in view of such a situation, and as for the place made into the purpose, electrostatic pressure-proofing realizing a large nitride semiconductor light emitting device and a high power light emitting device, and raising the reliability of a nitride [0006]

[Means for Solving the Problem] As a result of repeating various experiments about the nitride semiconductor light emitting device of terrorism structure to the conventional double, we trace that many of the causes are in p type clad layer grown up into the degree of a barrier layer, and came to accomplish this invention. The nitride semiconductor light emitting device of this invention namely, between the barrier layer which has a single quantum well or multiplex quantum well structure, and n type clad layer It has second n type clad layer which consists of an n type nitride semiconductor containing an indium, and is characterized by forming second p type clad layer which consists of a p type nitride semiconductor which contains an indium at least between the aforementioned barrier layer and p type clad layer, or p type GaN

[0007] Drawing 1 is the type section view showing the structure of the light emitting device concerning one example of this invention. This light emitting device shows the structure which carried out the laminating of a buffer layer 2, n type contact layer 3, n type clad layer 4, a barrier layer 5, second p type clad layer 60, first p type clad layer 6, and the p type contact layer 7 to order on the substrate 1.

[0008] The substrate of the nitride semiconductor and grid mismatching like SiC (6H and 4H are included), ZnO and Si besides sapphire (the Ath page, the Cth page, and the Rth page are included), and GaAs, a substrate with near nitride semiconductor which consists of an oxide single crystal like NGO (neodium gallate) and lattice constant, etc. can be used for a substrate 1. [0009] As for a buffer layer 2, it is desirable to grow up GaN, AlN, GaAlN, etc. by 50A - 0.1 micrometers thickness, for example, according to the MOVPE method, it can be formed by making it grow up at 400 degrees C - 600 degrees C low temperature.

[0010] n type contact layer 3 is a layer which forms a negative electrode 8, it is desirable to grow up GaN, AlGaN, InAlGaN, etc. by 1 micrometer - 10 micrometers thickness, and the material of a negative electrode and desirable ohmic contact can be obtained by choosing GaN also in it. As a material of a negative electrode 8, aluminum, Au, Ti, etc. can be used preferably.

[0011] As for n type clad layer 4, it is desirable to grow up GaN, AlGaN, InAlGaN, etc. by 500A - 0.5 micrometers thickness, and a crystalline good layer is obtained by choosing GaN and AlGaN also in it. Moreover, it is also possible to omit n type clad layer 4 or n type contact layer 3. If either is omitted, the layer which remained will act as n type clad layer and an n type contact layer.

[0012] As for a barrier layer 5, it is more desirable than a clad layer that bandgap energy sets the composition ratio of an indium to InGaN changed suitably by the desired band gap especially that what is necessary is just nitride semiconductors, such as small InGaN, InAlGaN, and AlGaN. Moreover, it is good also as multiplex quantum well structure which carried out the laminating of each thin film for the barrier layer 5 in combination, such as InGaN/GaN and InGaN/InGaN (composition differs). single quantum well structure and multiplex quantum well structure -- which barrier layer -- also setting -- a barrier layer -- n type and p type -- although any are sufficient, it is desirable, especially when luminescence between bands with narrow half-value width, exciton luminescence, or quantum well level luminescence is obtained and a Light Emitting

Diode element and LD element are realized by considering especially as a non dope (additive-free) If a barrier layer is made into single quantum well (SQW:single quantum well) structure or multiplex quantum well (MQW:multiquantum well) structure, a light emitting device with a very high output will be obtained. It is the layer which pointed out the structure of a barrier layer where luminescence between the quantum level by InGaN of a non dope was obtained, in SQW and MQW, for example, constituted the barrier layer from InXGal-XN (0<=X<1) of single composition at SQW, and strong luminescence between quantum level is obtained by making still more preferably 100A or less of thickness of InXGa1-XN into 70A or less. Moreover, MQW is taken as the multilayer which carried out two or more laminatings of the thin film of InXGa1-XN (X= 0 and X= 1 are included in this case) from which a composition ratio differs. Thus, luminescence to about 365nm - 660nm is obtained by luminescence between quantum level by setting a barrier layer to SQW and MQW. As well layer thickness of quantum structure, 70A or less is desirable as mentioned above. Multiplex quantum well structure constitutes a well layer from InXGal-XN, and, as for a barrier layer, it is desirable to constitute by InYGal-YN (for Y= 0 to be included in Y<X and this case) similarly. Since it can grow up at the same temperature if a well layer and a barrier layer are especially formed by InGaN preferably, a crystalline good barrier layer is obtained. If 150A or less of thickness of a barrier layer is made into 120A or less still more preferably, a high power light emitting device will be obtained. Moreover, you may dope a donor impurity and/or acceptor impurity to a barrier layer 5. If the crystallinity of the barrier layer which doped the impurity is the same as a non dope and a donor impurity will be doped, compared with the thing of a non dope, band luminescence intensity can be strengthened further. Although peak wavelength can be brought to about 0.5eV low energy side rather than the peak wavelength of luminescence between bands if acceptor impurity is doped, half-value width becomes large. If acceptor impurity and a donor impurity are doped simultaneously, luminescence intensity of the barrier layer which doped only acceptor impurity can be enlarged further. When realizing the barrier layer which doped especially acceptor impurity, as for the conductivity type of a barrier layer, it is desirable to dope donor impurities, such as Si, simultaneously and to consider as n type. A barrier layer 5 can be grown up by several angstroms - 0.5 micrometers thickness. However, when setting a barrier layer to SQW or MQW, it is desirable to form the n type nitride semiconductor containing In or second n type clad layer which consists of n type GaN between n type clad layer 4 and a barrier layer 5. [0013] Next, it is necessary to form second p type clad layer 60 of this invention which is the feature most by the p type nitride semiconductor (InXAlYGal-X-YN, 0<X, Y<=0, X+Y<1) which contains an indium at least, or p type GaN. Especially the thing to form with the nitride semiconductor which does not contain aluminum, such as InGaN or GaN, in it is desirable. As for the thickness of second p type clad layer 60, it is still more desirable still more preferably to form by thickness 100A or less 200A or less. It is because it becomes possible to raise electrostatic pressure-proofing of a light emitting device, maintaining most radiant power outputs of a light emitting device by adjusting to thickness 200A or less. Conversely, when the thickness is thicker than 200A, it is in the inclination for the output of a light emitting device to decline. [0014] As for first p type clad layer 6, it is desirable to grow up GaN, AlGaN, InAlGaN, etc. by 500A - 0.5 micrometers thickness, and a crystalline good layer is obtained by choosing GaN and AlGaN also in it. Moreover, when the composition of first p type clad layer 6 is the same as composition of second p type clad layer 60, the composition ratio of first p type clad layer 6 is changed, and bandgap energy is made the same as second p type clad layer 60, or it enlarges.

[0015] p type contact layer 7 is a layer which forms a positive electrode 9, for example, it is desirable to grow up GaN, AlGaN, InAlGaN, etc., and the material of a positive electrode and desirable ohmic contact can be obtained by choosing GaN also in it. As a positive-electrode material, nickel, Au, etc. can be used

preferably. Moreover, it is also possible to omit p type contact layer 7 or first p type clad layer 6. If either is omitted, the layer which remained will act as first p type clad layer and a p type contact layer.

[0016] The light emitting device of this invention is obtained using vapor growths, such as MOVPE (organic-metal vapor growth), MBE (molecular-beam vapor growth), and HDVPE (hydride vapor growth), by carrying out the laminating of InaAlbGa1-a-bN $(0 \le a, 0 \le b, a+b \le 1)$ by conductivity types, such as n type and p type, on a substrate. Although an n type nitride semiconductor is obtained also in the state of a non dope, it is obtained by introducing donor impurities, such as Si, germanium, and S, into a semiconductor layer into a crystal growth. The carrier concentration of n type layer can be adjusted by adjusting such donor impurity concentration. On the other hand, a p type nitride semiconductor layer is obtained by introducing acceptor impurity, such as Mg, Zn, Cd, calcium, Be, and C, into a semiconductor layer into a crystal growth similarly, or performing annealing above 400 degrees C after introduction. The carrier concentration of p type layer can be adjusted by adjusting these acceptor impurity concentration similarly. Although it is prepared in order that a buffer layer 2 may ease the grid mismatching of a substrate 1 and a nitride semiconductor, a buffer layer may not be formed in case the substrate which carried out grid adjustment with a nitride semiconductor like SiC and ZnO, and a substrate with a near lattice constant and a nitride semiconductor is used. [0017]

[Function] In the conventional Light Emitting Diode, first p type clad layer containing aluminum was grown up on the barrier layer containing In. On the other hard, in this invention, second p type clad layer which consists of a nitride semiconductor which newly contains GaN or In between a barrier layer and first p type clad layer is grown up. Electrostatic pressure-proofing of a light emitting device can be raised by this composition. Second p type clad layer on a barrier layer carries out an operation of a buffer layer, and this improves the crystallinity of first p type clad layer, and is raising electrostatic pressure-proofing of an element. The nitride semiconductor has a property with the soft crystal itself in order of descending of bandgap energy, and AlN>GaN>InN. That is, compared with first p type clad layer with large bandgap energy, the crystal of the nitride semiconductor containing In or second p type clad layer which consists of GaN itself is softer than second p type clad layer. Since the crystallinity of first p type clad layer grown up on the second p type clad layer when second p type clad layer which is this soft crystal carries out an operation of a buffer layer becomes good and a lattice defect decreases, electrostatic pressure-proofing of the whole element improves.

[0018] The thickness of second p type clad layer which acts suitably as a buffer layer has desirable 200A or less. Although electrostatic pressure-proofing tends to improve, when thickness is too thick, it is in the inclination for a crystal defect to occur mostly in the second p type clad layer itself, and to stop being able to act on it easily as a buffer layer, so that second p type clad layer is stacked thickly. If first p type clad layer is grown up on second p type clad layer with many crystal defects, since a crystal defect will get across even to first p type clad layer, first crystalline good p type clad layer stops being able to grow up easily. For this reason, when the thickness of second p type clad layer is too thick, it is in the inclination for the output of a light emitting device to decline. Especially the minimum of the thickness of second p type clad layer may not limit, and may be formed by several angstroms thickness which hits one atomic layer and two atomic layers.

[0019]

[Example] this invention is explained based on a concrete example below. The following examples show the growth method by the MOVPE method.

[0020] An example 1 is explained based on [example 1] drawing 1 . First, the buffer layer 2 which becomes the Cth page of the silicon on sapphire 1 set to the reaction container from GaN at 500 degrees C is grown up by 500A thickness using

TMG (trimethylgallium) and NH3.

[0021] Next, temperature is raised to 1050 degrees C and TMG and n type contact layer 23 which consists of Si dope n type GaN using silane gas in addition to NH3

[0022] Then, TMA (trimethylaluminum) is added to material gas and n type clad layer 4 which similarly consists of Si dope n mold aluminum0.3Ga0.7N layer at 1050 degrees C is grown up by 0.1-micrometer thickness.

[0023] Next, temperature is lowered to 800 degrees C and the barrier layer 5 which consists of Si+Zn dope n type In0.05Ga0.95N is grown up by 0.1-micrometer thickness using TMG, TMI (trimethylindium), NH3, silane gas, and DEZ (diethyl

[0024] Then, 50A of second p type clad layer 60 which consists of Mg dope p type In0.01Ga0.99N at 800 degrees C using TMG, TMI (trimethylindium), NH3, and Cp2Mg (magnesium cyclopentadienyl) gas is grown up.

[0025] Next, temperature is raised to 1050 degrees C and first p type clad layer 6 which consists of Mg dope p type aluminum0.3Ga0.7N is grown up by 0.1-micrometer thickness using TMG, TMA, NH3, and Cp2Mg (magnesium cyclopentadienyl).

[0026] Then, p type contact layer 7 which consists of Mg dope p type GaN using TMG, NH3, and Cp2Mg at 1050 degrees C is grown up by 0.5-micrometer

[0027] After a reaction end, temperature is lowered to a room temperature, a wafer is picked out from a reaction container, annealing of a wafer is performed at 700 degrees C, and p type layer is further formed into low resistance. Next, the mask of a predetermined configuration is formed in the front face of p type contact layer 7 of the best layer, and it ********** until the front face of n type contact layer 3 is exposed. The negative electrode 8 which becomes the front face of n type contact layer 3 from Ti and aluminum, and the positive electrode 9 which becomes the front face of p type contact layer 7 from nickel and Au are formed after etching. After electrode formation, after dividing a wafer into the chip of 350-micrometer angle, it considered as the Light Emitting Diode element. This Light Emitting Diode element showed with Vf3.6V, 450nm of emission peak wavelengths, and a half-value width [of 70nm] blue luminescence by If20mA, and the radiant power output was 3mW. Furthermore, when electrostatic pressure-proofing was measured having applied the reverse bias to the two electrodes of this Light Emitting Diode, an element did not break to

[0028] [Example 2] When thickness of second p type clad layer 60 was made into 100A and also the Light Emitting Diode element was obtained like the example 1, the radiant power output was the same as that of 3mW, and electrostatic pressure-proofing was improving to 450V.

[0029] [Example 3] When thickness of second p type clad layer 60 was made into 200A and also the Light Emitting Diode element was obtained like the example 1, improving to 550V.

[0030] [Example 4] Although electrostatic pressure-proofing improved to 650V when thickness of second p type clad layer 60 was made into 300A and also the Diode element was obtained like the example 1, the radiant power output declined to 1mW:

[0031] [Example 5] When Mg dope p type GaN was formed in second p type clad layer 60 by 10A thickness and also the Light Emitting Diode element was obtained like the example 1, the 3mW as an example 1 with the same radiant power output [0032].

[0032] [Example 6] drawing 3 is the typical cross section showing the structure of the light emitting device concerning an example 6. The place where this light emitting device differs from the light emitting device of drawing 1 is just going to form the n type nitride semiconductor which contains In as a new buffer layer, or second n type clad layer 40 which consists of n type GaN between n type clad layer 4 and a barrier layer 5. First n type clad layer 40

containing In and the barrier layer 5 containing In act as a buffer layer, and a crack does not go into n type clad layer 4 and p type clad layer 6, but this second clad layer 40 can grow with sufficient crystallinity, if it is desirable to form by thickness (10A or more and 0.1 micrometers or less) and it makes thickness of second n type clad layer 40 and a barrier layer 5 300A or more further. Furthermore, by growing up this second n type clad layer 40, the barrier layer which does not dope an impurity is realizable, half-value width is narrow and high luminescence of an output can be obtained.

[0033] This second n type clad layer 40 acts as a buffer layer between n type clad layers 4 containing a barrier layer 5, and aluminum and Ga. that is, the lattice constant of the n type clad layer 4 and the barrier layer 5 which contain aluminum and Ga since it has the property in which second n type clad layer 40 containing In and Ga is soft as a property of a crystal -- there is work which absorbs distortion produced according to a coefficient-of-thermal-expansion difference as it is irregular Therefore, since a crack does not go into a barrier layer 5 and n type clad layer 4 considering a barrier layer 5 as SQW and MQW in which thickness has thin quantum structure, even if it makes a barrier layer into quantum structure, a barrier layer deforms elastically, and the crystal defect of a barrier layer decreases. That is, also in the state where the thickness of a barrier layer is thin, since the crystallinity of a barrier layer becomes good, a radiant power output increases. Furthermore, when the barrier layer made thickness thin, a radiant power output increases according to the quantum effect and the exciton effect. In other words, by the conventional light emitting device, it had prevented that a crack went into a clad layer and a barrier layer by thickening thickness of a single barrier layer with 1000A or more. However, since distortion by the coefficient-of-thermal-expansion difference and the stacking fault has always started the barrier layer and the thickness of a barrier layer is over the critical thickness which can deform elastically in the conventional light emitting device, it cannot deform elastically, but many crystal defects are produced in a barrier layer, and it seldom shines in luminescence between bands. By forming this second n type clad layer 40, it is possible in the barrier layer of quantum structure to raise the radiant power output of a light emitting device by leaps and bounds.

[0034] Specifically, after growing up n type clad layer 4 in an example 1, temperature is lowered to 800 degrees C and second n type clad layer 40 which consists of Si dope n type In0.01Ga0.99N is grown up by 500A thickness using TMG, TMI (trimethylindium), NH3, and silane gas.

[0035] Then, the barrier layer 5 of the single quantum well structure which consists of non dope n type In0.05Ga0.95N at 800 degrees C using TMG, TMI, and NH3 is grown up by 80A thickness. When the rest grew up second p type clad layer 60, first p type clad layer 6, and p type contact layer 7 and was used as the Light Emitting Diode element like the example 1, this Light Emitting Diode element showed blue luminescence of Vf3.2V and 400nm of emission peak wavelengths by If20mA, and the radiant power output was 12mW. Furthermore, the half-value width of an emission spectrum is 20nm, and showed luminescence with very sufficient color purity. Moreover, it was 400V like [electrostatic pressure-proofing] the example 1.

[0036] In the [example 7] example 6, the barrier layer which becomes 25A from non dope In0.01Ga0.99N about the well layer which consists composition of a barrier layer 5 of non dope In0.05Ga0.95N is grown up by 50A thickness. This operation was repeated 13 times, the laminating of the well layer was carried out to the last, and the barrier layer 6 of 1000A of **** was grown up. When the rest grew up second p type clad layer 60, first p type clad layer 6, and p type contact layer 7 and was used as the Light Emitting Diode element like the example 1, this Light Emitting Diode element showed blue luminescence of Vf3.2V and 400nm of emission peak wavelengths by If20mA, and the radiant power output was 12mW. Furthermore, the half-value width of an emission spectrum is 20nm, and showed luminescence with very sufficient color purity. Moreover, electrostatic pressure-proofing was 500V. Rather than the barrier layer of single quantum well

structure, this shows that the direction of the element which has the barrier layer of multiplex quantum well structure has electrostatic high pressure-proofing.

[0037] Although the radiant power output declined to 3mW since, as for this Light Emitting Diode element, the thickness of a barrier layer became thick when thickness of the [example 8] barrier layer 5 was made into 500A and also the Light Emitting Diode element was obtained like the example 6, it was 390nm of emission peak wavelengths, and with a half-value width [of 20nm] blue luminescence was shown, and electrostatic pressure-proofing was 400V.

[0038] [Example 9] When thickness of second p type clad layer 60 was made into 200A and also the Light Emitting Diode element was obtained like the example 6, with 400nm of emission peak wavelengths and a half-value width [of 20nm] blue luminescence was shown as well as the example 6, and 10mW and the electrostatic pressure-proofing of a radiant power output were improving to 550V.

[0039]

[Effect of the Invention] In the conventional nitride semiconductor light emitting device, it was weak to electrostatic pressure-proofing, and in the environment dried especially, the element broke easily with static electricity, and it was lacking in reliability. However, since electrostatic pressure-proofing of a light emitting device improved by this invention, the element became that it is hard to be destroyed easily, and reliability improved extremely.

TECHNICAL FIELD

[Industrial Application] this invention relates to the nitride semiconductor light emitting device which starts the light emitting device which consists of a nitride semiconductor (InaAlbGa1-a-bN, 0<=a, 0<=b, a+b<=1) used for light emitting diode (Light Emitting Diode), a laser diode (LD), etc., especially has terrorism structure to double.

PRIOR ART

[Description of the Prior Art] The nitride semiconductor (InaAlbGa1-a-bN, 0<=a, 0<=b, a+b<=1) is known as a material of light emitting devices, such as Light Emitting Diode, LD, etc. which emit light in ultraviolet - red. Using this semiconductor material, we announced blue Light Emitting Diode with a luminous intensity of 1 cd in November, 1993, announced the bluish green color Light Emitting Diode with a luminous intensity of 2 cds in April, 1994, and announced blue Light Emitting Diode with a luminous intensity of 2 cds in October, 1994. All of these Light Emitting Diodes are produced commercially, and practical use of the present display, a signal, etc. is presented with them.

[0003] The structure of the luminescence chip of the conventional blue and the bluish green color Light Emitting Diode which become drawing 2 from a nitride semiconductor is shown. It has the structure where the laminating of the buffer layer 22 which consists of GaN on a substrate 21, n type contact layer 23 which consists of n type GaN, n type clad layer 24 which consists of n type AlGaN, the barrier layer 25 which consists of n type InGaN, p type clad layer 26 which consists of p type AlGaN, and the p type contact layer 27 which consists of p type GaN was fundamentally carried out to order. Acceptor impurity, such as donor impurities, such as Si and germanium, and/or Zn, Mg, is doped by n type InGaN of a barrier layer 25, the luminescence wavelength of a Light Emitting Diode element

is changing the kind of impurity which changes In composition ratio of InGaN of the barrier layer, or is doped to a barrier layer, and it is possible to make it change to ultraviolet - red. For the moment, Light Emitting Diode with a luminescence wavelength of 510nm or less on which a donor impurity and acceptor impurity were simultaneously doped by the barrier layer is put in practical use.

EFFECT OF THE INVENTION

[Effect of the Invention] In the conventional nitride semiconductor light emitting device, it was weak to electrostatic pressure-proofing, and in the environment dried especially, the element broke easily with static electricity, and it was lacking in reliability. However, since electrostatic pressure-proofing of a light emitting device improved by this invention, the element became that it is hard to be destroyed easily, and reliability improved extremely.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] A radiant power output has about 3mW of the conventional Light Emitting Diodes by 20mA of forward currents, and they have the output of 20 times or more as compared with Light Emitting Diode which consists of SiC. However, when this Light Emitting Diode was low, for example, electrostatic pressure-proofing carried out bias of it and measured in the opposite direction, it had the fault that there were only 50-100V about. If Light Emitting Diode is dealt with in the atmosphere dried when electrostatic pressure-proofing was low, since an element will be easily destroyed by static electricity, it is lacking in reliability.

[0005] Therefore, it is in accomplishing this invention in view of such a situation, and as for the place made into the purpose, electrostatic pressure-proofing realizing a large nitride semiconductor light emitting device and a high power light emitting device, and raising the reliability of a nitride semiconductor light emitting device.

MEANS

[Means for Solving the Problem] As a result of repeating various experiments about the nitride semiconductor light emitting device of terrorism structure to the conventional double, we trace that many of the causes are in p type clad layer grown up into the degree of a barrier layer, and came to accomplish this invention. The nitride semiconductor light emitting device of this invention namely, between the barrier layer which has a single quantum well or multiplex quantum well structure, and n type clad layer It has second n type clad layer which consists of an n type nitride semiconductor containing an indium, and is characterized by forming second p type clad layer which consists of a p type aforementioned barrier layer and p type clad layer, or p type GaN further.

[0007] Drawing 1 is the type section view showing the structure of the light emitting device concerning one example of this invention. This light emitting device shows the structure which carried out the laminating of a buffer layer 2, n type contact layer 3, n type clad layer 4, a barrier layer 5, second p type clad layer 60, first p type clad layer 6, and the p type contact layer 7 to order

on the substrate 1.

[0008] The substrate of the nitride semiconductor and grid mismatching like SiC (6H and 4H are included), ZnO and Si besides sapphire (the Ath page, the Cth page, and the Rth page are included), and GaAs, a substrate with near nitride semiconductor which consists of an oxide single crystal like NGO (neodium gallate) and lattice constant, etc. can be used for a substrate 1. [0009] As for a buffer layer 2, it is desirable to grow up GaN, AlN, GaAlN, etc. by 50A - 0.1 micrometers thickness, for example, according to the MOVPE method, it can be formed by making it grow up at 400 degrees C - 600 degrees C low temperature.

[0010] n type contact layer 3 is a layer which forms a negative electrode 8, it is desirable to grow up GaN, AlGaN, InAlGaN, etc. by 1 micrometer - 10 micrometers thickness, and the material of a negative electrode and desirable ohmic contact can be obtained by choosing GaN also in it. As a material of a negative electrode 8, aluminum, Au, Ti, etc. can be used preferably.

[0011] As for n type clad layer 4, it is desirable to grow up GaN, AlGaN, InAlGaN, etc. by 500A - 0.5 micrometers thickness, and a crystalline good layer is obtained by choosing GaN and AlGaN also in it. Moreover, it is also possible to omit n type clad layer 4 or n type contact layer 3. If either is omitted, the layer which remained will act as n type clad layer and an n type contact layer.

[0012] As for a barrier layer 5, it is more desirable than a clad layer that bandgap energy sets the composition ratio of an indium to InGaN changed suitably by the desired band gap especially that what is necessary is just nitride semiconductors, such as small InGaN, InAlGaN, and AlGaN. Moreover, it is good also as multiplex quantum well structure which carried out the laminating of each thin film for the barrier layer 5 in combination, such as InGaN/GaN and InGaN/InGaN (composition differs). single quantum well structure and multiplex quantum well structure -- which barrier layer -- also setting -- a barrier layer -- n type and p type -- although any are sufficient, it is desirable, especially when luminescence between bands with narrow half-value width, exciton luminescence, or quantum well level luminescence is obtained and a Light Emitting Diode element and LD element are realized by considering especially as a non dope (additive-free) If a barrier layer is made into single quantum well (SQW:single quantum well) structure or multiplex quantum well (MQW:multiquantum well) structure, a light emitting device with a very high output will be obtained. It is the layer which pointed out the structure of a barrier layer where luminescence between the quantum level by InGaN of a non dope was obtained, in SQW and MQW, for example, constituted the barrier layer from InXGa1-XN (0<=X<1) of single composition at SQW, and strong luminescence between quantum level is obtained by making still more preferably 100A or less of thickness of InXGal-XN into 70A or less. Moreover, MQW is taken as the multilayer which carried out two or more laminatings of the thin film of InXGal-XN (X= 0 and X= 1 are included in this case) from which a composition ratio differs. Thus, luminescence to about 365nm - 660nm is obtained by luminescence between quantum level by setting a barrier layer to SQW and MQW. As well layer thickness of quantum structure, 70A or less is desirable as mentioned above. Multiplex quantum well structure constitutes a well layer from InXGal-XN, and, as for a barrier layer, it is desirable to constitute by InYGal-YN (for Y= 0 to be included in Y<X and this case) similarly. Since it can grow up at the same temperature if a well layer and a barrier layer are especially formed by InGaN preferably, a crystalline good barrier layer is obtained. If 150A or less of thickness of a barrier layer is made into 120A or less still more preferably, a high power light emitting device will be obtained. Moreover, you may dope a donor impurity and/or acceptor impurity to a barrier layer 5. If the crystallinity of the barrier layer which doped the impurity is the same as a non dope and a donor impurity will be doped, compared with the thing of a non dope, band luminescence intensity can be strengthened further. Although peak wavelength can be brought to about 0.5eV low

energy side rather than the peak wavelength of luminescence between bands if acceptor impurity is doped, half-value width becomes large. If acceptor impurity and a donor impurity are doped simultaneously, luminescence intensity of the barrier layer which doped only acceptor impurity can be enlarged further. When realizing the barrier layer which doped especially acceptor impurity, as for the conductivity type of a barrier layer, it is desirable to dope donor impurities, such as Si, simultaneously and to consider as n type. A barrier layer 5 can be grown up by several angstroms - 0.5 micrometers thickness. However, when setting a barrier layer to SQW or MQW, it is desirable to form the n type nitride semiconductor containing In or second n type clad layer which consists of n type GaN between n type clad layer 4 and a barrier layer 5. [0013] Next, it is necessary to form second p type clad layer 60 of this invention which is the feature most by the p type nitride semiconductor (InXAlYGal-X-YN, 0<X, Y<=0, X+Y<1) which contains an indium at least, or p type GaN. Especially the thing to form with the nitride semiconductor which does not contain aluminum, such as InGaN or GaN, in it is desirable. As for the thickness of second p type clad layer 60, it is still more desirable still more preferably to form by thickness 100A or less 200A or less. It is because it becomes possible to raise electrostatic pressure-proofing of a light emitting device, maintaining most radiant power outputs of a light emitting device by adjusting to thickness 200A or less. Conversely, when the thickness is thicker than 200A, it is in the inclination for the output of a light emitting device to decline. [0014] As for first p type clad layer 6, it is desirable to grow up GaN, AlGaN, InAlGaN, etc. by 500A - 0.5 micrometers thickness, and a crystalline good layer is obtained by choosing GaN and AlGaN also in it. Moreover, when the composition of first p type clad layer 6 is the same as composition of second p type clad

enlarges.
[0015] p type contact layer 7 is a layer which forms a positive electrode 9, for example, it is desirable to grow up GaN, AlGaN, InAlGaN, etc., and the material of a positive electrode and desirable ohmic contact can be obtained by choosing GaN also in it. As a positive-electrode material, nickel, Au, etc. can be used preferably. Moreover, it is also possible to omit p type contact layer 7 or first p type clad layer 6. If either is omitted, the layer which remained will act as first p type clad layer and a p type contact layer.

layer 60, the composition ratio of first p type clad layer 6 is changed, and

bandgap energy is made the same as second p type clad layer 60, or it

[0016] The light emitting device of this invention is obtained using vapor growths, such as MOVPE (organic-metal vapor growth), MBE (molecular-beam vapor growth), and HDVPE (hydride vapor growth), by carrying out the laminating of InaAlbGa1-a-bN (0<=a, 0<=b, a+b<=1) by conductivity types, such as n type and p type, on a substrate. Although an n type nitride semiconductor is obtained also in the state of a non dope, it is obtained by introducing donor impurities, such as Si, germanium, and S, into a semiconductor layer into a crystal growth. The carrier concentration of n type layer can be adjusted by adjusting such donor impurity concentration. On the other hand, a p type nitride semiconductor layer is obtained by introducing acceptor impurity, such as Mg, Zn, Cd, calcium, Be, and C, into a semiconductor layer into a crystal growth similarly, or performing annealing above 400 degrees C after introduction. The carrier concentration of p type layer can be adjusted by adjusting these acceptor impurity concentration similarly. Although it is prepared in order that a buffer layer 2 may ease the grid mismatching of a substrate 1 and a nitride semiconductor, a buffer layer may not be formed in case the substrate which carried out grid adjustment with a nitride semiconductor like SiC and ZnO, and a substrate with a near lattice constant and a nitride semiconductor is used.

[Function] In the conventional Light Emitting Diode, first p type clad layer containing aluminum was grown up on the barrier layer containing In. On the other hand, in this invention, second p type clad layer which consists of a nitride semiconductor which newly contains GaN or In between a barrier layer and first p type clad layer is grown up. Electrostatic pressure-proofing of a light emitting device can be raised by this composition. Second p type clad layer on a barrier layer carries out an operation of a buffer layer, and this improves the crystallinity of first p type clad layer, and is raising electrostatic pressure-proofing of an element. The nitride semiconductor has a property with the soft crystal itself in order of descending of bandgap energy, and AlN>GaN>InN. That is, compared with first p type clad layer with large bandgap energy, the crystal of the nitride semiconductor containing In or second p type clad layer which consists of GaN itself is softer than second p type clad layer. Since the crystallinity of first p type clad layer grown up on the second p type clad layer when second p type clad layer which is this soft crystal carries out an operation of a buffer layer becomes good and a lattice defect decreases, electrostatic pressure-proofing of the whole element improves.

[0018] The thickness of second p type clad layer which acts suitably as a buffer layer has desirable 200A or less. Although electrostatic pressure-proofing tends to improve, when thickness is too thick, it is in the inclination for a crystal defect to occur mostly in the second p type clad layer itself, and to stop being able to act on it easily as a buffer layer, so that second p type clad layer is stacked thickly. If first p type clad layer is grown up on second p type clad layer with many crystal defects, since a crystal defect will get across even to first p type clad layer, first crystalline good p type clad layer stops being able to grow up easily. For this reason, when the thickness of second p type clad device to decline. Especially the minimum of the output of a light emitting layer may not limit, and may be formed by several angstroms thickness which hits one atomic layer and two atomic layers.

EXAMPLE

[Example] this invention is explained based on a concrete example below. The following examples show the growth method by the MOVPE method.

[0020] An example 1 is explained based on [example 1] drawing 1. First, the buffer layer 2 which becomes the Cth page of the silicon on sapphire 1 set to the reaction container from GaN at 500 degrees C is grown up by 500A thickness using TMG (trimethylgallium) and NH3.

[0021] Next, temperature is raised to 1050 degrees C and TMG and n type contact layer 23 which consists of Si dope n type GaN using silane gas in addition to NH3

[0022] Then, TMA (trimethylaluminum) is added to material gas and n type clad layer 4 which similarly consists of Si dope n mold aluminum0.3Ga0.7N layer at 1050 degrees C is grown up by 0.1-micrometer thickness.

[0023] Next, temperature is lowered to 800 degrees C and the barrier layer 5 which consists of Si+Zn dope n type In0.05Ga0.95N is grown up by 0.1-micrometer thickness using TMG, TMI (trimethylindium), NH3, silane gas, and DEZ (diethyl zinc).

[0024] Then, 50A of second p type clad layer 60 which consists of Mg dope p type In0.01Ga0.99N at 800 degrees C using TMG, TMI (trimethylindium), NH3, and Cp2Mg (magnesium cyclopentadienyl) gas is grown up.

[0025] Next, temperature is raised to 1050 degrees C and first p type clad layer 6 which consists of Mg dope p type aluminum0.3Ga0.7N is grown up by 0.1-micrometer thickness using TMG, TMA, NH3, and Cp2Mg (magnesium cyclopentadienyl).

[0026] Then, p type contact layer 7 which consists of Mg dope p type GaN using TMG, NH3, and Cp2Mg at 1050 degrees C is grown up by 0.5-micrometer thickness.

[0027] After a reaction end, temperature is lowered to a room temperature, a wafer is picked out from a reaction container, annealing of a wafer is performed at 700 degrees C, and p type layer is further formed into low resistance. Next, the mask of a predetermined configuration is formed in the front face of p type contact layer 7 of the best layer, and it ******** until the front face of n type contact layer 3 is exposed. The negative electrode 8 which becomes the front face of n type contact layer 3 from Ti and aluminum, and the positive electrode 9 which becomes the front face of p type contact layer 7 from nickel and Au are formed after etching. After electrode formation, after dividing a wafer into the chip of 350-micrometer angle, it considered as the Light Emitting Diode element. This Light Emitting Diode element showed with Vf3.6V, 450nm of emission peak wavelengths, and a half-value width [of 70nm] blue luminescence by If20mA, and the radiant power output was 3mW. Furthermore, when electrostatic pressure-proofing was measured having applied the reverse bias to the two electrodes of this Light Emitting Diode, an element did not break to 400V.

[0028] [Example 2] When thickness of second p type clad layer 60 was made into 100A and also the Light Emitting Diode element was obtained like the example 1, the radiant power output was the same as that of 3mW, and electrostatic pressure-proofing was improving to 450V.

[0029] [Example 3] When thickness of second p type clad layer 60 was made into 200A and also the Light Emitting Diode element was obtained like the example 1, 2.5mW and the electrostatic pressure-proofing of a radiant power output were improving to 550V.

[0030] [Example 4] Although electrostatic pressure-proofing improved to 650V when thickness of second p type clad layer 60 was made into 300A and also the Light Emitting Diode element was obtained like the example 1, the radiant power output declined to 1mW.

[0031] [Example 5] When Mg dope p type GaN was formed in second p type clad layer 60 by 10A thickness and also the Light Emitting Diode element was obtained like the example 1, the 3mW as an example 1 with the same radiant power output and electrostatic pressure-proofing were 360V.

[0032] [Example 6] drawing 3 is the typical cross section showing the structure of the light emitting device concerning an example 6. The place where this light emitting device differs from the light emitting device of drawing 1 is just going to form the n type nitride semiconductor which contains In as a new buffer layer, or second n type clad layer 40 which consists of n type GaN between n type clad layer 4 and a barrier layer 5. First n type clad layer 40 containing In and the barrier layer 5 containing In act as a buffer layer, and a crack does not go into n type clad layer 4 and p type clad layer 6, but this second clad layer 40 can grow with sufficient crystallinity, if it is desirable to form by thickness (10A or more and 0.1 micrometers or less) and it makes thickness of second n type clad layer 40 and a barrier layer 5 300A or more further. Furthermore, by growing up this second n type clad layer 40, the barrier layer which does not dope an impurity is realizable, half-value width is narrow and high luminescence of an output can be obtained.

[0033] This second n type clad layer 40 acts as a buffer layer between n type clad layers 4 containing a barrier layer 5, and aluminum and Ga. that is, the lattice constant of the n type clad layer 4 and the barrier layer 5 which contain aluminum and Ga since it has the property in which second n type clad layer 40 containing In and Ga is soft as a property of a crystal -- there is work which absorbs distortion produced according to a coefficient-of-thermal-expansion difference as it is irregular Therefore, since a crack does not go into a barrier layer 5 and n type clad layer 4 considering a barrier layer 5 as SQW and MQW in which thickness has thin quantum structure, even if it makes a barrier layer into quantum structure, a barrier layer deforms elastically, and the crystal defect of

a barrier layer decreases. That is, also in the state where the thickness of a barrier layer is thin, since the crystallinity of a barrier layer becomes good, a radiant power output increases. Furthermore, when the barrier layer made thickness thin, a radiant power output increases according to the quantum effect and the exciton effect. In other words, by the conventional light emitting device, it had prevented that a crack went into a clad layer and a barrier layer by thickening thickness of a single barrier layer with 1000A or more. However, since distortion by the coefficient-of-thermal-expansion difference and the stacking fault has always started the barrier layer and the thickness of a barrier layer is over the critical thickness which can deform elastically in the conventional light emitting device, it cannot deform elastically, but many crystal defects are produced in a barrier layer, and it seldom shines in luminescence between bands. By forming this second n type clad layer 40, it is possible in the barrier layer of quantum structure to raise the radiant power output of a light emitting device by leaps and bounds.

[0034] Specifically, after growing up n type clad layer 4 in an example 1, temperature is lowered to 800 degrees C and second n type clad layer 40 which consists of Si dope n type In0.01Ga0.99N is grown up by 500A thickness using TMG, TMI (trimethylindium), NH3, and silane gas.

[0035] Then, the barrier layer 5 of the single quantum well structure which consists of non dope n type In0.05Ga0.95N at 800 degrees C using TMG, TMI, and NH3 is grown up by 80A thickness. When the rest grew up second p type clad layer 60, first p type clad layer 6, and p type contact layer 7 and was used as the Light Emitting Diode element like the example 1, this Light Emitting Diode element showed blue luminescence of Vf3.2V and 400nm of emission peak wavelengths by If20mA, and the radiant power output was 12mW. Furthermore, the half-value width of an emission spectrum is 20nm, and showed luminescence with very sufficient color purity. Moreover, it was 400V like [electrostatic pressure-proofing] the example 1.

[0036] In the [example 7] example 6, the barrier layer which becomes 25A from non dope In0.01Ga0.99N about the well layer which consists composition of a barrier layer 5 of non dope In0.05Ga0.95N is grown up by 50A thickness. This operation was repeated 13 times, the laminating of the well layer was carried out to the last, and the barrier layer 6 of 1000A of **** was grown up. When the rest grew up second p type clad layer 60, first p type clad layer 6, and p type contact layer 7 and was used as the Light Emitting Diode element like the example 1, this Light Emitting Diode element showed blue luminescence of Vf3.2V and 400nm of emission peak wavelengths by If20mA, and the radiant power output was 12mW. Furthermore, the half-value width of an emission spectrum is 20nm, and showed luminescence with very sufficient color purity. Moreover, electrostatic pressure-proofing was 500V. Rather than the barrier layer of single quantum well structure, this shows that the direction of the element which has the barrier layer of multiplex quantum well structure has electrostatic high pressure-proofing.

[0037] Although the radiant power output declined to 3mW since, as for this Light Emitting Diode element, the thickness of a barrier layer became thick when thickness of the [example 8] barrier layer 5 was made into 500A and also the Light Emitting Diode element was obtained like the example 6, it was 390nm of emission peak wavelengths, and with a half-value width [of 20nm] blue luminescence was shown, and electrostatic pressure-proofing was 400V.

[0038] [Example 9] When thickness of second p type clad layer 60 was made into 200A and also the Light Emitting Diode element was obtained like the example 6, with 400nm of emission peak wavelengths and a half-value width [of 20nm] blue luminescence was shown as well as the example 6, and 10mW and the electrostatic pressure-proofing of a radiant power output were improving to 550V.

[Brief Description of the Drawings]

[Drawing 1] The type section view showing the structure of the light emitting device concerning one example of this invention.

[Drawing 2] The type section view showing the structure of the conventional light emitting device.

[Drawing 3] The type section view showing the structure of the light emitting device concerning other examples of this invention.

1 . . . Substrate

2 Buffer layer

3 n type contact layer

4 n type clad layer

5 Barrier layer

60 Second p type clad layer

6 First p type clad layer

7 p type contact layer

8 Negative electrode

9 Positive electrode

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 3]

