Chapter 5

Functions

Discrete Structures for Computing

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le Faculty of Computer Science and Engineering University of Technology - VNUHCM {htnguyen;trtanh}@hcmut.edu.vn

Contents

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

1 Functions

4 Recursion

2 One-to-one and Onto Functions

3 Sequences and Summation

Functions

One-to-one and Onto Functions

Sequences and Summation

Course outcomes

	Course learning outcomes
L.O.1	Understanding of logic and discrete structures
•	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 – Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 - Compute probabilities of various events, conditional
	ones, Bayes theorem

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Introduction

- Each student is assigned a grade from set $\{0, 0.1, 0.2, 0.3, \dots, 9.9, 10.0\}$ at the end of semester
- Function is extremely important in mathematics and computer science
 - linear, polynomial, exponential, logarithmic,...
- Don't worry! For discrete mathematics, we need to understand functions at a basic set theoretic level

Functions

Huvnh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Contents

One-to-one and Onto Functions

Sequences and Summation

Function

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

- $f: A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if f(a) = b
 - b is an image (anh) of a
 - a is pre-image (nghịch ảnh) of f(a)
- ullet Range of f is the set of all images of elements of A
- f maps (ánh xa) A to B

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Function

One-to-one and Onto Functions

Sequences and Summation

Recursion

5.5

Example

Example:

- y is an image of d
- c is a pre-image of z

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Example

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

One-to-one and Onto Functions

Sequences and Summation

Recursion

Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2. E: 4.9?

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the the square of an integer to this integer. What is f(x)? Domain, codomain, range of f?

- $f(x) = x^2$
- Domain: set of all integers
- Codomain: Set of all integers
- Range of $f: \{0, 1, 4, 9, \ldots\}$

Add and multiply real-valued functions

Definition

Let f_1 and f_2 be functions from A to \mathbb{R} . Then f_1+f_2 and f_1f_2 are also functions from A to \mathbb{R} defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example

Let $f_1(x)=x^2$ and $f_2(x)=x-x^2$. What are the functions f_1+f_2 and f_1f_2 ?

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + x - x^2 = x$$
$$(f_1 f_2)(x) = f_1(x) f_2(x) = x^2 (x - x^2) = x^3 - x^4$$

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functio

One-to-one and Onto Functions

Sequences and Summation

Image of a subset

Definition

Let $f: A \to B$ and $S \subseteq A$. The image of S:

$$f(S) = \{ f(s) \mid s \in S \}$$

$$f(\{a, b, c, d\}) = \{x, y, z\}$$

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

One-to-one

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Sequences and Summation

Definition

A function f is one-to-one or injective ($don \ anh$) if and only if

$$\forall a \forall b \ (f(a) = f(b) \rightarrow a = b)$$

- Is $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1one-to-one?
- Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ one-to-one?

Onto

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Sequences and

Definition

 $f: A \to B$ is onto or surjective (toàn ánh) if and only if

$$\forall b \in B, \exists a \in A: \ f(a) = b$$

- Is $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1onto?
- Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ onto?

One-to-one and onto (bijection)

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto

Sequences and Summation

Recursion

Definition

 $f:A\to B$ is bijective (one-to-one correspondence) (song ánh) if and only if f is injective and surjective

• Let f be the function from $\{a,bc,d\}$ to $\{1,2,3,4\}$ with f(a)=4, f(b)=2, f(c)=1, f(d)=3. Is f a bijection?

Example

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto

Sequences and Summation

Inverse function (Hàm ngược)

Definition

Let $f:A\to B$ be a bijection then the inverse of f is the function $f^{-1}:B\to A$ defined by

if
$$f(a) = b$$
 then $f^{-1}(b) = a$

A one-to-one correspondence is call invertible (khả nghịch) because we can define the inverse of this function.

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Example

Huynh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Example

$$A = \{a, b, c\}$$
 and $B = \{1, 2, 3\}$ with

$$f(a) = 2$$
 $f(b) = 3$ $f(c) = 1$

f is invertible and its inverse is

$$f^{-1}(1) = c$$
 $f^{-1}(2) = a$ $f^{-1}(3) = b$

Example

Let $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. If f invertible?

Example

$f: \mathbb{R} o \mathbb{R}$

$$f(x) = 2x + 1$$

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$f^{-1}(x) = \frac{x-1}{2}$$

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto

Sequences and Summation

Function Composition

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and

Recursion

Definition

Given a pair of functions $g:A\to B$ and $f:B\to C$. Then the composition ($h \not\circ p$ thành) of f and g, denoted $f\circ g$ is defined by

$$f \circ g : A \to C$$

$$f\circ g(a)=f(g(a))$$

Example

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Graphs of Functions

nctions

Example

The graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z} .

BK TP.HCM

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Important Functions

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Bång: Properties (n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n \text{ iff } n \leq x < n+1$$

(1b)
$$[x] = n \text{ iff } n - 1 < x \le n$$

(1c)
$$\lfloor x \rfloor = n \text{ iff } x - 1 < n \le x$$

(1d)
$$\lceil x \rceil = n \text{ iff } x \le n < x+1$$

$$(2) x-1 < \lfloor x \rfloor \le \lceil x \rceil < x+1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

$$(3b) \quad \lceil -x \rceil = -\lfloor x \rfloor$$

$$\begin{array}{ll} \textbf{(4a)} & \lfloor x+n \rfloor = \lfloor x \rfloor + n \\ \textbf{(4b)} & \lceil x+n \rceil = \lceil x \rceil + n \end{array}$$

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Sequences

Functions Huvnh Tuong Nguyen Tran Tuan Anh. Nguye Ngoc Le

What are the rule of these sequences $(d\tilde{a}y)$?

Example

$$1, 3, 5, 7, 9, \dots$$
 $a_n = 2n - 1$

Arithmetic sequence (cấp số công)

Example

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$
 $a_n = \frac{1}{2^{n-1}}$

Geometric sequence (cấp số nhân)

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n = 6n - 1$
 $\{b_n\}$ 1, 7, 25, 79, 241, 727, 2185, ... $b_n = 3^n - 2$

Functions

One-to-one and Onto Functions

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n=a_{n-1}+6$ for $n=2,3,4,\ldots$ and $a_1=5$

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition:
$$f_0 = 0$$
 and $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4, ...$

Example

Find the Fibonacci numbers f_2, f_3, f_4, f_5 and f_6

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

$$f_3 = f_2 + f_1 = 1 + 1 = 2$$

$$f_4 = f_3 + f_2 = 2 + 1 = 3$$

$$f_5 = f_4 + f_3 = 3 + 2 = 5$$

$$f_6 = f_5 + f_4 = 5 + 3 = 8$$

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Functions

One-to-one and Onto Functions

mmation

Exercise (1)

Initial deposit: \$10,000

Interest: 11%/year, compounded annually ($l\tilde{a}i su\hat{a}t k\acute{e}p$)

After 30 years, how much do you have in your account?

Solution:

Let P_n be the amount in the account after n years. The sequence $\{P_n\}$ satisfies the recurrence relation

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.$$

The initial condition is $P_0 = 10,000$

Step 1. Solve the recurrence relation (iteration technique)

$$P_1 = (1.11)P_0$$

$$P_2 = (1.11)P_1 = (1.11)^2 P_0$$

$$P_3 = (1.11)P_2 = (1.11)^3 P_0$$

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0.$$

Step 2. Calculate

$$P_{30} = (1.11)^{30}10,000 = $228,922.97.$$

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

quences and

Recursion

One-to-one and Onto Functions

Contents

Functions

Exercise (2)

What is the 2012th number in the sequence $\{x_n\}$: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6....

Solution:

In this sequence, integer 1 appears once, the integer 2 appears twice, the integer 3 appears three times, and so on. Therefore integer n appears n times in the sequence.

We can prove that (try it!)

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

and can easily calculate that

$$\sum_{i=1}^{62} i = 1953$$

so the next 63 numbers (until 2016) is 63.

Therefore, 2012th number in the sequence is 63.

Theorem

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & if \ r \neq 1\\ (n+1)a & if \ r = 1. \end{cases}$$

Chứng minh.

Let $S_n = \sum_{j=0}^n ar^j$.

$$rS_n = r \sum_{j=0}^n ar^j$$

$$= \sum_{j=0}^n ar^{j+1}$$

$$= \sum_{k=1}^{n+1} ar^k$$

$$= \left(\sum_{k=0}^n ar^k\right) + (ar^{n+1} - a)$$

$$= S_n + (ar^{n+1} - a)$$

Solving for S_n shows that if $r \neq 1$, then $S_n = \frac{ar^{n+1}-a}{r-1}$ If r=1, then $S_n = \sum_{j=0}^n a = (n+1)a$

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

quences and

Recursion

Definition (Recurrence Relation)

An equation that recursively defines a sequence.

Definition (Recursion (đệ quy))

The act of defining an object (usually a function) in terms of that object itself.

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursive Algorithms

Functions

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Example

Definition

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

it to an instance of the same problem with smaller input.

An algorithm is called recursive if it solves a problem by reducing

Solution. We base on the recursive definition of n!: $n! = n \cdot (n-1)!$ and 0! = 1.

```
procedure factorial(n: nonnegative integer) if n=0 then return 1 else return n \cdot factorial(n-1) {output is n!}
```

```
Recursive Algorithm
```

```
procedure fibonacci(n: nonnegative integer)
if n=0 then return 0
else if n=1 then return 1
else return fibonacci(n-1) + fibonacci(n-2)
{output is fibonacci(n)}
```

Iterative Algorithm

```
procedure iterative fibonacci(n: nonnegative integer)
if n=0 then return 0
else
    r := 0
```

```
y := 1
for i := 1 to n - 1
    z := x + y
    x := y
    y := z
return y
```

{output is the *nth* Fibonacci number}

5.28

Tower of Hanoi

Functions

Huvnh Tuong Nguyen. Tran Tuan Anh. Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

The rules:

1 Move one at a time from one peg to another

together with 64 gold disks of different sizes.

with the largest on the borrom.

2 A disk is never placed on top of a smaller disk

Goals: all the disks on the third peg in order of size.

The myth says that the world will end when they finish the puzzle.

There is a tower in Hanoi that has three pegs mounted on a board

Initially, these disks are placed on the first peg in order of size,

Tower of Hanoi - 64 Discs

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Tower of Hanoi – 1 Disc

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Moved disc from peg 1 to peg 3.

Tower of Hanoi – 1 Disc

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Tower of Hanoi – 2 Discs

2

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Moved disc from peg 1 to peg 2.

Moved disc from peg 1 to peg 3.

Tower of Hanoi – 2 Discs

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and

Summation

Recursion

2

Tower of Hanoi – 3 Discs

3

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Moved disc from peg 2 to peg 1.

Moved disc from peg 2 to peg 3.

Tower of Hanoi – 3 Discs

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

3

Tower of Hanoi – 4 Discs

3

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Moved disc from peg 2 to peg 3.

Moved disc from peg 1 to peg 2.

Moved disc from peg 1 to peg 2.

Moved disc from peg 1 to peg 3.

Moved disc from peg 2 to peg 3.

Moved disc from peg 2 to peg 1.

Moved disc from peg 3 to peg 1.

Moved disc from peg 2 to peg 3.

Moved disc from peg 1 to peg 2.

Moved disc from peg 1 to peg 3.

Moved disc from peg 2 to peg 3.

Tower of Hanoi – 4 Discs

Functions

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Tower of Hanoi

Algorithm

procedure hanoi(n, A, B, C) if n = 1 then move the disk from A to C else

call hanoi(n-1, A, C, B) move disk n from A to C call hanoi(n-1, B, A, C)

Recurrence Relation

$$H(n) = \begin{cases} 1 & \text{if } n = 1\\ 2H(n-1) + 1 & \text{if } n > 1. \end{cases}$$

Recurrence Solving

$$H(n) = 2^n - 1$$

If one move takes 1 second, for $n = 64$

$$\begin{array}{ll} 2^{64}-1 & \approx 2\times 10^{19} \ {\rm sec} \\ & \approx 500 \ {\rm billion \ years!}. \end{array}$$

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation