Basic EC Lab Exam

Name:	Keerti P. Charantimath
Roll Number:	19MA20059

1. Problem Statement:

Experiment No. 1

Design a CR filter given below. Apply a sinusoidal signal at the input of 2 Vp-p. Vary the frequency in appropriate steps by keeping the amplitude of input signal fixed. Plot the gain vs. frequency graph. Determine the type of filter. Find the 3 dB cut-off frequency from the graph and compare it with the theoretical cut-off frequency.

2. Aim of the experiment:

- To analyse the frequency response of the given circuit (low pass filters).
- To verify the theoretical and experimental values of 3dB cutoff frequency for the given circuit.

3. Software Used: LtSpice

4. Tools used:

- 4700 ohm resistor
- 47 nF capacitor
- Wires
- AC voltage source with amplitude 1 V and variable frequency

5. Circuit:

6. **Graph**:

💯 Dra	aft1			×
Cursor		(vout)		
Freq:	721.81677Hz	Mag:	-3.0048398dB	•
		Phase:	-44.869947°	_ C
Group Delay:		110.65339µs		
Cursor	2			
Freq:	N/A	Mag:	N/A	
		Phase:	N/A	
Group Delay:		N/A		
	Ratio	(Cursor2 / C	Cursor1)	
Freq:	N/A	Mag:	N/A	
		Phase:	N/A	
	Gro	up Delay:	N/A	

7. Calculation:

8. Conclusion:

- The given RC filter is a **low pass filter**. It filters out high frequency inputs and alloes only low frequency inputs to pass through it.
- The 3 dB cutoff frequency according to the graph is approximately 721.81 Hz.
- The calculated value of 3dB cutoff frequency is 720.48 Hz.
- Hence, the experimental and the theoretical values of cutoff frequency are are approximately of the same value.

9. <u>Discussions:</u>

- While performing the experiment, I observed that there were jumps in the graph initially as the data points I was plotting were far apart from each other. I finally got a smooth frequency response graph as when I increased the number of data points plotted in any frequency interval. In other words I plotted points that were close enough to give a smooth output graph.
- Low pass filters are used as noise filters. Noise has high frequency that is filtered out by low pass filters.
- Ideally we need to observe a phase shift of 90° but we see that this doesn't happen suddenly. The phase shift happens gradually and finally reaches –90° from 0° at high frequencies.