Adversarial Feature Matching for Text Generation

Presenter: Yizhe Zhang

Joint work with: Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, Lawrence Carin

Duke University

August 9, 2017

1 / 20

Background

Generative Adversarial Networks

- A game between:
 - Discriminative model D
 - Generative model G
- G: trained to maximize the probability of D making a mistake
- D: trained to estimate the probability that a sample came from data distribution rather than G

(Duke university)

August 9, 2017 2 / 20

Motivation & contributions

- Motivation: Generate realistic-looking text via adversarial training.
- Difficulties: (due to discrete nature of text)
 - Synthetic data is not directly differentiable.
 - \bullet Transitions in text are less smooth than in images. \rightarrow mode collapsing.
- Our approach:
 - Discretization approximations using Gumbel-softmax.
 - Ameliorating mode-collapsing issue via feature moment matching.

3 / 20

LSTM generator

- We specify an LSTM generator to translate a latent code vector, z, into a synthetic sentence \tilde{s} .
- All other words in the sentence are sequentially generated using the RNN, based on previously generated words, until the end-sentence symbol is generated.

Figure: LSTM generator

Gumbel-softmax approximation

- argmax operation is not differentiable.
- We consider a *Gumbel-softmax* approach to approximate argmax operation .

$$y_{t-1} = \mathbf{W_e} \operatorname{softmax}(\mathbf{V} h_{t-1} \odot 1/\tau).$$
 (1)

where \odot represents the element-wise product. $\mathbf{W_e} \in \mathbb{R}^{\mathbf{k} \times \mathbf{V}}$ is a word embedding matrix. \mathbf{V} is a weight matrix. Note that when $\tau \to 0$, this approximation approaches argmax operation.

5 / 20

CNN discriminator

- CNNs weight each word equally and are empirically better at abstracting features particularly with long sentences.
- A sentence is represented as a matrix $\mathbf{X} \in \mathbb{R}^{\mathbf{k} \times \mathbf{T}}$, followed by a convolution operation.
- A max-over-time pooling operation is then applied.

Figure: CNN discriminator

Overview

- The adversarial game is the following:
- $D(\cdot)$ attempts to select informative sentence features.
- $G(\cdot)$ aims to match these features.
- Features are selected according to syn/real discrimination ability, latent code reconstruction and moment matching precision.

Figure: Model scheme of TextGAN.

(Duke university) August 9, 2017 7 / 20

Feature moment matching (for G)

Optimization schemes:

$$\mathcal{L}_{G} = \mathcal{L}_{MMD^{2}}$$

$$\mathcal{L}_{D} = \mathcal{L}_{GAN} + \lambda_{r}\mathcal{L}_{recon} - \lambda_{m}\mathcal{L}_{MMD^{2}}$$

 For G, consider a moment matching loss over feature vector using maximum mean discrepancy (MMD).

$$\mathcal{L}_{MMD^{2}} = ||\mathbb{E}_{x \sim \mathcal{X}} \phi(x) - \mathbb{E}_{y \sim \mathcal{Y}} \phi(y)||_{\mathcal{H}}^{2}$$

$$= \mathbb{E}_{x \sim \mathcal{X}} \mathbb{E}_{x' \sim \mathcal{X}} [k(x, x')]$$

$$+ \mathbb{E}_{y \sim \mathcal{Y}} \mathbb{E}_{y' \sim \mathcal{Y}} [k(y, y')] - 2\mathbb{E}_{x \sim \mathcal{X}} \mathbb{E}_{y \sim \mathcal{Y}} [k(x, y)].$$
(2)

 With a Gaussian kernel, minimizing the MMD objective ⇔ minimizing all order of moments of two empirical distributions.

(Duke university)

August 9, 2017 8 / 20

Feature moment matching (for G)

- Vanilla GAN: D independently judge each syn/real data.
- The MMD loss for G: match distributions, enforce diversity.
- The gradient signal back-propagated from feature layer is more direct.

Feature moment matching (for D)

• Optimization schemes:

$$\mathcal{L}_{G} = \mathcal{L}_{MMD^{2}}$$

$$\mathcal{L}_{D} = \mathcal{L}_{GAN} + \lambda_{r} \mathcal{L}_{recon} - \lambda_{m} \mathcal{L}_{MMD^{2}}$$

$$\mathcal{L}_{GAN} = -\mathbb{E}_{s \sim \mathcal{S}} \log D(s) - \mathbb{E}_{z \sim p_{z}} \log[1 - D(G(z))]$$

$$\mathcal{L}_{recon} = ||\hat{z} - z||^{2},$$

- The reconstruction loss in D : select the most *representative* (information-preserving) features.
- The MMD loss in D: select the most *challenging* features.

(Duke university) August 9, 2017

10 / 20

Pre-training strategy

- For G, pretrained by using sequence-to-sequence language model.
- For D, permutation training strategy: randomly swap two words to construct a *tweaked* sentence counterpart.

Figure: Permutation training

(Duke university) August 9, 2017 11 / 20

Variants

- Problems: a minibatch of data points is not densely sampled in feature space with high dimension (900).
- Variants:
 - (MMD-L): Mapping feature space to lower dimension (by D).
 - (MM): Use accumulated batches, match first-order moment .

$$L_G = (\boldsymbol{\mu}_s - \boldsymbol{\mu}_r)^T (\boldsymbol{\mu}_s - \boldsymbol{\mu}_r)$$

 (CM): Use accumulated batches, match first-order and second-order moment, which can be interpreted as an lower-bound of JSD between two MVNs:

$$L_G = \operatorname{tr}(\boldsymbol{\Sigma}_s^{-1}\boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_r^{-1}\boldsymbol{\Sigma}_s) + (\boldsymbol{\mu}_s - \boldsymbol{\mu}_r)^T(\boldsymbol{\Sigma}_s^{-1} + \boldsymbol{\Sigma}_r^{-1})(\boldsymbol{\mu}_s - \boldsymbol{\mu}_r)$$

 $\Sigma_{(s/r)}$ and $\mu_{(s/r)}$ are (accumulated) covariance matrix and mean vector for syn/real feature vector.

(Duke university) August 9, 2017 12 / 20

Empirical evaluation

- **Dataset:** 0.5M Arxiv sentences + 0.5M BookCorpus sentences .
- Evaluation: Kernel density estimation (KDE) .
- Evaluation: Corpus-level BLEU score .
- Compared with baseline auto-encoder, variational auto-encoder and segGAN [Yu et. al. 2016]

13 / 20

Generated text

- Produce novel phrases by imagining concept combinations. (b)
- In general, the synthetic sentences seem syntactically reasonable.
- However, the semantic meaning is less well preserved with long sentences. (e)

Table: Sentences generated by textGAN.

- a we show the joint likelihood estimator (in a large number of estimating variables embedded on the subspace learning) .
- b this problem achieves less interesting choices of convergence guarantees on turing machine learning .
- in hidden markov relational spaces , the random walk feature decomposition is unique generalized parametric mappings.
- d i see those primitives specifying a deterministic probabilistic machine learning algorithm .
- e i wanted in alone in a gene expression dataset which do n't form phantom action values .
- f as opposite to a set of fuzzy modelling algorithm , pruning is performed using a template representing network structures .

(Duke university)

August 9, 2017 14 / 20

Moment Matching

Figure: Moment matching comparison. Left: expectations of latent features from real *vs.* synthetic data. Right: elements of covariance matrix for real and synthetic data, respectively.

(Duke university) August 9, 2017 15 / 20

Sentence transition

Table: Intermediate sentences produced from linear transition between two points.

	textGAN	AE			
Α	our methods apply novel approaches to solve modeling tasks .				
-	our methods apply novel approaches to solve	our methods apply to train UNK models			
	modeling .	involving complex .			
-	our methods apply two different approaches	our methods solve use to train) .			
	to solve computing .				
-	our methods achieves some different ap-	our approach show UNK to models exist .			
	proaches to solve computing .				
-	our methods achieves the best expert struc-	that supervised algorithms show to UNK			
	ture detection .	speed .			
-	the methods have been different related tasks	that address algorithms to handle) .			
-	the guy is the minimum of UNK .	that address versions to be used in .			
-	the guy is n't easy tonight .	i believe the means of this attempt to cope			
-	i believe the guy is n't smart okay?	i believe it 's we be used to get .			
-	i believe the guy is n't smart .	i believe it i 'm a way to belong .			
В	i believe i 'm going to get out .				

(Duke university) August 9, 2017 16 / 20

Quantitative evaluation

• Higher BLEU, lower KDE is better.

Table: Quantitative results using BLEU-2,3,4 and KDE.

	BLEU-4	BLEU-3	BLEU-2	KDE(nats)
AE	0.01 ± 0.01	0.11 ± 0.02	0.39 ± 0.02	2727±42
VAE	0.12 ± 0.06	0.40 ± 0.06	$0.61 {\pm} 0.07$	2025 ± 25
seqGAN	0.04 ± 0.04	0.30 ± 0.08	0.67 ± 0.04	2019 ± 53
textGAN(MM)	0.09 ± 0.04	0.42 ± 0.04	0.77 ± 0.03	1823 ± 50
textGAN(CM)	0.12 ± 0.03	0.49 ± 0.06	$0.84 {\pm} 0.02$	$1686 {\pm} 41$
textGAN(MMD)	$0.13 {\pm} 0.05$	0.49 ± 0.06	0.83 ± 0.04	1688 ± 38
$textGAN(\dot{M}MD-\dot{L})$	$0.11 {\pm} 0.05$	$0.52 {\pm} 0.07$	$0.85 {\pm} 0.04$	$\textbf{1684} {\pm} \textbf{44}$

Conclusion

- We introduced a novel approach for text generation using adversarial training
- We discussed several techniques to alleviate practical issues when training GAN on text domain.
- We demonstrated that the proposed model delivers superior performance compared to related approaches.

18 / 20

Q&A

paper: https://arxiv.org/abs/1706.03850

 $code:\ https://github.com/dreasysnail/textGAN_public$

poster: #89 Wednesday

19 / 20

CNN discriminator

- CNNs weight each word equally and are empirically better at abstracting features particularly with long sentences.
- \bullet A sentence is represented as a matrix $\mathbf{X} \in \mathbb{R}^{k \times T}$, by concatenating its word embeddings as columns.
- A convolution operation involves a filter $\mathbf{W_c} \in \mathbb{R}^{\mathbf{k} \times \mathbf{h}}$, applied to a window of h words to produce a new feature.
- A max-over-time pooling operation is then applied to the feature map.

Figure: CNN discriminator

(Duke university) August 9, 2017 20 / 20