2021 届冲刺圆锥曲线选填 100 道

- 1. 已知点F(-c,0)(c>0)是双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 的左焦点,过F且平行于双曲线渐近线的直线与圆 x^2 $+y^2=c^2$ 交于点F和另一个点P,且点P在抛物线 $y^2=4cx$ 上,则该双曲线的离心率是($A.\sqrt{5}$
- 2. 已知P为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 上一个动点,过点P作圆 $(x-1)^2 + y^2 = 1$ 的两条切线,切点分别是A, B, 则 $\overrightarrow{PA} \cdot \overrightarrow{PB}$ 的取值范围为()
 - $A.\left[\frac{3}{2}, +\infty\right)$ $B.\left[\frac{3}{2}, \frac{56}{9}\right]$

- C. $\left[2\sqrt{2} 3, \frac{56}{9}\right]$ D. $\left[2\sqrt{2} 3, +\infty\right)$
- 3. 已知点 $F_1(-c,0)$, $F_2(c,0)$ (c>0) 是椭圆 $\frac{x^2}{c^2} + \frac{y^2}{b^2} = 1 (a>b>0)$ 的左、右焦点,点 P 是这个椭圆上位 于x轴上方的点,点G是 $\triangle PF_1F_2$ 的外心,若存在实数 λ ,使得 $\overrightarrow{GF_1}+\overrightarrow{GF_2}+\lambda \overrightarrow{GP}=\overrightarrow{0}$,则当 $\triangle PF_1F_2$ 的面 积为8时,a的最小值为()
 - A. 4

- B $4\sqrt{3}$
- $C 2\sqrt{6}$
- D. $4\sqrt{3} + 2$
- 4. 已知点 P 是焦点为 F 的抛物线 $C: y^2 = 2px(p > 0)$ 上的一点,且 |PF| = 10,点 Q 是直线 $l_1: 2x y + 3$ =0与 $l_0: x+2y-6=0$ 的交点,若 $PQ \perp QF$,则抛物线的方程为()
 - A. $u^2 = 4x$
- B. $y^2 = 4x \neq y^2 = 36x$ C. $y^2 = 12x$
- 5. 设椭圆 E 的两焦点分别为 F_1 , F_2 , 以 F_1 为圆心, $|F_1F_2|$ 为半径的圆与 E 交于 P, Q 两点, 若 $\triangle PF_1F_2$ 为 直角三角形,则E的离心率为()
 - A. $\frac{\sqrt{5}-1}{2}$
- B. $\sqrt{2} 1$
- C. $\frac{\sqrt{2}}{2}$
- D. $\sqrt{2} + 1$
- 6. 己知 F 是抛物线 $C: y^2 = 2px(p>0)$ 的焦点,抛物线 C 上动点 A, B 满足 $\overrightarrow{AF} = 4\overrightarrow{FB}$, 若 A, B 的准线 上的射影分别为M,N且 $\triangle MFN$ 的面积为5,则|AB|=(
 - A. $\frac{9}{4}$
- B. $\frac{13}{4}$

- 7. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点分别为 $F_1(-c, 0), F_2(c, 0), A$ 为双曲线 C 的右 支上一点,且 $|AF_1| = 2c$, AF_1 与 y 轴交于点 B,若 F_2B 是 $\angle AF_2F_1$ 的平分线,则双曲线 C 的离心率 $\frac{e}{c}$
 - A $\sqrt{5} 1$
- B. $\frac{1+\sqrt{5}}{2}$ C. $\frac{3+\sqrt{5}}{2}$

- 8. 已知椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,若此椭圆上存在不同的两点 A, B 关于直线 y = 4x + m 对称,则实数 m 的取

 - $A.\left(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{2}}{13}\right) \qquad B.\left(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13}\right) \qquad C.\left(-\frac{\sqrt{2}}{13},\frac{2\sqrt{13}}{13}\right) \qquad D.\left(-\frac{2\sqrt{3}}{13},\frac{2\sqrt{3}}{13}\right)$
- 9. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$, F_1, F_2 为其左、右焦点,P为椭圆C上除长轴端点外的任一点, G 为 $\triangle F_1 P F_2$ 内一点,满足 $3\overrightarrow{PG} = \overrightarrow{PF_1} + \overrightarrow{PF_2}$, $\triangle F_1 P F_2$ 的内心为 I,且有 $PM = \sqrt{(x-1)^2 + y^2} = \sqrt{x^2 - 2x + 1 + 4 - 2x^2} = \sqrt{6 - (x+1)^2}$ (其中 λ 为实数),则椭圆 C 的离心率 e 等于 ()
 - $A.\frac{1}{2}$

- D. $\frac{\sqrt{3}}{2}$
- 10. 己知双曲线: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左右焦点分别为 F_1, F_2 , 焦距为 2c, 直线 $y = \sqrt{3}(x+c)$ 与双 曲线的一个交点 M 满足 $\angle MF_1F_2=2\angle MF_2F_1$,则双曲线的离心率为()

- $A.\sqrt{2}$
- B. $\sqrt{3}$
- C. 2

- D. $\sqrt{3} + 1$
- 11. 若随机变量 $\xi \sim N(3,2019^2)$,且 $P(\xi \leq 1) = P(\xi \geq a)$. 已知 F 为抛物线 $y^2 = 4x$ 的焦点,O 为原点,点 P 是抛物线准线上一动点,若点 A 在抛物线上,且 |AF| = a,则 |PA| + |PO| 的最小值为 ()
 - $A.\sqrt{5}$
- B. $\sqrt{13}$
- C. $2\sqrt{5}$
- D. $2\sqrt{13}$
- 12. 过双曲线 X 的一个焦点 F 作双曲线 C 的一条渐近线的垂线,若垂足恰好在线段 OF 的垂直平分线上,则双曲线 C 的离心率是 ()
 - A. 3

- B. $\sqrt{3}$
- C. 2

- $D \sqrt{2}$
- 13. 已知梯形 ABCD满足 AB // CD, $\angle BAD = 45^\circ$, 以 A, D 为焦点的双曲线 Γ 经过 B, C 两点. 若 CD = 7AB,则双曲线 Γ 的离心率为 ()
 - A. $\frac{3\sqrt{2}}{4}$
- B. $\frac{3\sqrt{3}}{4}$
- C. $\frac{3\sqrt{5}}{4}$
- D. $\frac{3+\sqrt{5}}{4}$
- 14. 过抛物线 $y^2=2px(p>0)$ 的焦点 F 作直线与抛物线在第一象限交于点 A,与准线在第三象限交于点 B,过点 A 作准线的垂线,垂足为 H. 若 $\tan\angle AFH=2$,则 $\frac{|AF|}{|BF|}=($
 - A. $\frac{5}{4}$
- B. $\frac{4}{3}$
- C. $\frac{3}{2}$
- D. 2
- 15. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 的左、右焦点分别为 F_1 , F_2 , 以 F_1F_2 为直径的圆与双曲线的四个交点依次 连线恰好构成一个正方形,则双曲线的离心率为 ().
 - $A.\sqrt{2}$
- B. $2 + \sqrt{2}$
- C. 2

- $D.\sqrt{2+\sqrt{2}}$
- 16. 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左右焦点分别为 F_1 , F_2 , 过 F_1 的直线交曲线左支于 A, B 两点, $\triangle F_2 A B$ 是以 A 为直角顶点的直角三角形,且 $\angle A F_2 B = 30^\circ$. 若该双曲线的离心率为 e, 则 $e^2 =$ (
 - A. $11 + 4\sqrt{3}$
- B. $13 + 5\sqrt{3}$
- C. $16 6\sqrt{3}$
- D. $19 10\sqrt{3}$
- 17. 已知抛物线 C_1 : $y^2 = 2px(p > 0)$ 与圆 C_2 : $x^2 + y^2 12x + 11 = 0$ 交于 A, B, C, D 四点 . 若 $BC \perp x$ 轴,且线段 BC 恰为圆 C_2 的一条直径,则点 A的横坐标为()
 - A. $\frac{11}{6}$
- B. 3

- C. $\frac{11}{3}$
- D. 6
- 18. 过抛物线 $C: y^2 = 4x$ 焦点的直线交该抛物线 C 于点 A ,B ,与抛物线 C 的 准线交于点 B ,如图所示,则 $\overrightarrow{PA} \cdot \overrightarrow{PB}$ 的最小值是 ()
 - A. 8

- B. 12
- C 16

- D. 18
- 19. 已知双曲线 $\frac{x^2}{4} \frac{y^2}{b^2} = 1$ 的左、右焦点分别为 F_1 、 F_2 ,过 F_2 且与 x 轴垂直的直线 l 与双曲线的两条渐近线分别交于 A、B 两点, $|AB| = 3\sqrt{5}$,M(4,1),若双曲线上存在一点 P 使得 $|PM| + |PF_2| \leq t$,则 t 的最小值为 ()

- A. $5\sqrt{2}$
- B. $\sqrt{2}$
- C. $5\sqrt{2} + 4$
- D. $5\sqrt{2} 4$
- 20. 过抛物线 $y^2 = 2px(p>0)$ 的焦点 F 且倾斜角为 $\frac{\pi}{3}$ 的直线交抛物线于 A 、B 两点,若 |AF| > |BF|,则 $\frac{|AF|}{2} = ($
 - $\frac{|AF'|}{|BF|} = ($
 - $A \sqrt{2}$
- $B \sqrt{3}$
- C_2

- D. 3
- 21. 直线 l 与抛物线 $y^2 = 4x$ 相交与 A, B 两点,若 $OA \perp OB(O$ 是坐标原点),则 $\triangle AOB$ 面积的最小值为(

A. 32

B. 24

C. 16

22. 已知抛物线 Γ : $y^2 = 2px(p>0)$, 从点 M(4,a) (a>0) 发出, 平行于 x 轴的光线与 Γ 交于点 A, 经 Γ 反射 后过 Γ 的焦点N,交抛物线于点B,若反射光线的倾斜角为 $\frac{2\pi}{3}$, |AN|=2,则 $\triangle ABM$ 的重心坐标为(

A. $(2, -\sqrt{3})$

 $B.\left(\frac{3}{2},0\right)$

C. $(3, -\frac{\sqrt{3}}{3})$ D. $(2, -\frac{\sqrt{3}}{3})$

23. 已知点 P 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 右支上一点, F_1 , F_2 分别为双曲线的左右焦点,且 $|F_1F_2|$ $=rac{b^2}{a}$,G为三角形 PF_1F_2 的内心,若 $S_{\triangle GPF_1}=S_{\triangle GPF_2}+\lambda S_{\triangle GF1F_2}$ 成立,则 λ 的值为 ()

B $2\sqrt{3} - 1$

C. $\sqrt{2} + 1$

24. 在平面直角坐标系 xOy 中,已知椭圆 $C: \frac{x^2}{4} + y^2 = 1$,直线 l 与椭圆交于 A, B 两点,当 O 到直线 AB 的 距离为1时,则△OAB面积的最大值为()

A. $2\sqrt{3}$

B. $\frac{\sqrt{3}}{2}$

C. 1

D. $\frac{2\sqrt{6}}{5}$

25. 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的左右焦点为 F_1, F_2 ,一条渐近线方程为 $l: y = -\frac{b}{a}x$,过点 F_1 且与 l垂直的直线分别交双曲线的左支及右支于P,Q,满足 $\overrightarrow{OP} = \frac{1}{2}\overrightarrow{OF_1} + \frac{1}{2}\overrightarrow{OQ}$,则该双曲线的离心率为(

 $A.\sqrt{10}$

B. 3

26. 已知点 P 是椭圆 $\frac{x^2}{16} + \frac{y^2}{12} = 1(xy \neq 0)$ 上的动点, F_1 、 F_2 为椭圆的左、右焦点,O 为坐标原点,若 M 是 $\angle F_1 P F_2$ 的角平分线上的一点,且 $\overrightarrow{F_1 M} \cdot \overrightarrow{MP} = 0$,则 $|\overrightarrow{OM}|$ 的取值范围是(

A.(0,2)

C.(0,4)

27. 已知点P是椭圆 $\frac{x^2}{16} + \frac{y^2}{8} = 1$ 上非顶点的动点, F_1, F_2 分别是椭圆的左、右焦点,O为坐标原点,若M为 $\angle F_1PF_2$ 的平分线上一点,且 $\overrightarrow{F_1M} \cdot \overrightarrow{MP} = 0$,则 $|\overrightarrow{OM}|$ 的取值范围为()

A.(0.3]

B. $(0, 2\sqrt{2})$

C.(0,3)

D. $(0, 2\sqrt{2})$

28. 在平面直角坐标系 xOy 中,双曲线的 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 右支与焦点为 F 的抛物线 $x^2 = 2py(p)$ >0) 交于 A, B 两点, Ξ |AF| + |BF| = 4|OF|, 则该双曲线的渐近线方程为(

A. $y = \pm \frac{\sqrt{2}}{2}x$

B. $y = \pm \sqrt{2}x$ C. $y = \pm \frac{\sqrt{3}}{2}x$

29. 已知 P 为双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a>0,b>0)$ 上一点, F_1 , F_2 为双曲线 C 的左、右焦点,若 $|PF_1| = |F_1F_2|$,且直线 PF_2 与以 C 的实轴为直径的圆相切,则 C 的渐近线方程为()

A. $y = \pm \frac{4}{3}x$

B. $y = \pm \frac{3}{4}x$

C. $y = \pm \frac{3}{5}x$

30. 数学中有许多形状优美、寓意美好的曲线,曲线 $C: x^2 + y^2 = 1 + |x|y$ 就是其中之一 (如图). 给出下列 三个结论:

观而约取 厚积而薄发

- ①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
- ②曲线 C 上任意一点到原点的距离都不超过 $\sqrt{2}$;
- ③曲线 C 所围成的"心形"区域的面积小于 3.

其中,所有正确结论的序号是

		$\overline{}$	
۸	(1	١
\boldsymbol{H}	- (1	1

C(1)(2)

D. (1)(2)(3)

31. 已知P是抛物线 $x^2 = 4y$ 上的一个动点,则点P到直线 l_1 : 4x - 3y - 7 = 0 和 l_2 : y + 2 = 0 的距离之和 的最小值是()

A. 1

B. 2

C. 3

D. 4

32. 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 左支上一点 A 作相互垂直的两条直线分别经过两焦点 F_1, F_2 , 其 中一条与双曲线交于点B,若 $(\overrightarrow{AB} + \overrightarrow{AF_2}) \cdot \overrightarrow{BF_2} = 0$,则双曲线的离心率为()

 $C \sqrt{4 + 2\sqrt{2}}$

33. 已知抛物线 $y^2 = 2px(p > 0)$ 上一点 M(1,m) (m > 0) 到其焦点的距离为 5,双曲线 $\frac{x^2}{a} - y^2 = 1$ 的左顶 点为A,若双曲线一条渐近线与直线AM平行,则实数a等于()

B. $\frac{1}{4}$

34. 设 F_1 , F_2 为双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左、右焦点,过坐标原点 O 的直线与双曲线 C 在 第一象限内交于点P,若 $|PF_1| + |PF_2| = 6a$,且 $\triangle PF_1F_2$ 为锐角三角形,则直线OP斜率的取值范围是

A. $\left(\frac{2\sqrt{3}}{3}, \frac{4}{3}\right)$ B. $\left(\frac{4}{3}, \sqrt{3}\right)$ C. $\left(1, \frac{2\sqrt{3}}{3}\right)$ D. $\left(\frac{2\sqrt{3}}{3}, \sqrt{2}\right)$

35. 已知双曲线的顶点与焦点分别是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的焦点与顶点,若双曲线的两条渐近线 与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为()

A. $\frac{1}{2}$

B. $\frac{1}{2}$

C. $\frac{\sqrt{3}}{2}$

36. 设 F 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点,O 为坐标原点,点 A, B 分别在双曲线的两条渐近 线上, $AF \perp x$ 轴, $BF \parallel OA$, $\overrightarrow{AB} \cdot \overrightarrow{OB} = 0$, 则该双曲线的离心率为()

 $A.\sqrt{2}$

C. $\frac{3\sqrt{2}}{2}$

D. $\frac{2\sqrt{3}}{2}$

37. 已知 F 是抛物线 $C: y^2 = 2px(q > 0)$ 的焦点,过点 R(2,1) 的直线 l 与抛物线 C 交于 A,B 两点,R 为线 段 AB 的中点,若 |FA| + |FB| = 5,则直线 l 的斜率为()

B 1

38. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的右顶点为 A, O 为原点,以 A 为圆心与双曲线 C 的一条渐

	近线交于两点 P , Q , 若 $\angle PAQ=60^{\circ}$ 且 $\overrightarrow{OQ}=2\overrightarrow{OP}$, 则双曲线 C 的离心率为 ()					
	$A. \frac{\sqrt{39}}{6}$	B. $\frac{2\sqrt{3}}{3}$	$C. \frac{\sqrt{7}}{2}$	$D.\sqrt{3}$		
39.	u					
	A. $\frac{x^2}{a^2} - \frac{y^2}{a^2 + b^2} = 1$	$B. \frac{x^2}{a^2} - \frac{y^2}{a^2 - b^2} = 1$	$C. \frac{x^2}{a^2 + b^2} - \frac{y^2}{b^2} = 1$	D. $\frac{x^2}{a^2 - b^2} - \frac{y^2}{b^2} = 1$		
40.	U	E右焦点分别为 F_1, F_2, P	为右支上一点,且 $ \overrightarrow{PF_1} $ =	$=8$, $\overrightarrow{PF_1}$ • $\overrightarrow{PF_2}$ =0,则双曲线		
	的渐近线方程是()		9		
	$A. y = \pm 2\sqrt{2}x$	$B. y = \pm 2\sqrt{6}x$	$C. y = \pm 5x$	$D. y = \pm \frac{3}{4}x$		
41.		以 F 为焦点的抛物线 y^2 = OM 的斜率的最大值为		\mathfrak{g}_{1},M 是线段 PF 上的点,且		
	A. $\frac{\sqrt{3}}{3}$	B. $\frac{2}{3}$	$C. \frac{\sqrt{2}}{2}$	D.1		
42.	已知过双曲线 $C: \frac{x^2}{a^2}$ —	$\frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的目	中心的直线交双曲线于点	A,B,在双曲线 C 上任取与		
	ω	U		$_{2}>k$ 恒成立,则离心率 e 的取		
	值范围为()					
	A. $1 < e < \sqrt{2}$	B. $1 < e \le \sqrt{2}$	C. $e > \sqrt{2}$	$D. e \geqslant \sqrt{2}$		
43.	已知抛物线 $y^2 = 2px(p)$	> 0) 与椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(a>b>0)有相同的焦,	点 F ,点 A 是两曲线的一个公		
	共点,且 $AF \perp x$ 轴,则	椭圆的离心率为()				
	A. $\sqrt{3} - 1$	B. $\sqrt{2} - 1$	C. $\frac{\sqrt{5}-1}{2}$	$D.\frac{2\sqrt{2}-1}{2}$		
44.		; 的焦点为 <i>F</i> , <i>A</i> 为 <i>C</i> 上- <i>A</i> , <i>F</i> , <i>B</i> 三点共线 ,则 [为圆心, FA 为半径的圆交 C		
	A. 16	B. 10	C. 12	D. 8		
45.	设双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	a > 0, b > 0) 的右焦点为	$_{1}F$,过点 $_{1}F$ 作与 $_{2}$ 轴垂直	[的直线 <i>l</i> 交两渐近线于 <i>A、B</i>		
	两点,且与双曲线在第一	一象限的交点为 P ,设 O	为坐标原点,若 $\overrightarrow{OP} = \lambda \overrightarrow{O}$	$\overrightarrow{A} + \mu \overrightarrow{OB}(\lambda, \mu \in R), \lambda \mu = \frac{3}{16}$		
	则该双曲线的离心率为	` _	_			
	$A. \frac{3\sqrt{2}}{2}$	B. $\frac{3\sqrt{5}}{5}$	C. $\frac{2\sqrt{3}}{3}$	D. $\frac{9}{8}$		
46.	抛物线 $y^2 = 2px(p > 0)$	的焦点为 F ,已知点 A 和	<i>B</i> 分别为抛物线上的两	个动点,且满足∠AFB=		
	抛物线 $y^2 = 2px(p > 0)$ 的焦点为 F ,已知点 A 和 B 分别为抛物线上的两个动点,且满足 $\angle AFB = 120^{\circ}$,过弦 AB 的中点 M 作抛物线准线的垂线 MN ,垂足为 N ,则 $\left \frac{MN}{AB} \right $ 的最大值为 ()					
	$A.\sqrt{3}$	B. 1	$C. \frac{2\sqrt{3}}{3}$	$D.\frac{\sqrt{3}}{3}$		
47.	已知抛物线 $C: y^2 = 8x$	的焦点为 F ,直线 $y = \sqrt{3}$	(x-2) 与抛物线 C 交于	$A \setminus B(A \in x$ 轴上方) 两点,		
	7. 已知抛物线 C : $y^2=8x$ 的焦点为 F ,直线 $y=\sqrt{3}(x-2)$ 与抛物线 C 交于 A 、 $B(A$ 在 x 轴上方) 两 若 $\overrightarrow{AF}=m\overrightarrow{FB}$,则实数 m 的值为 ()					
	$A.\sqrt{3}$	B. 3	C. 2	D. $\frac{3}{2}$		
48.			AE,则以 A 、 B 为焦点,	且过 D 、 E 的椭圆与双曲线的		
	离心率分别为 e_1 , e_2 ,则	$\frac{1}{e_1} + \frac{1}{e_2}$ 的值为()			
	$A.\sqrt{3}$	$\mathbf{e}_1 \mathbf{e}_2$ $\mathbf{B}. 1$	$C. 2\sqrt{3}$	D. 2		

博观而约取 厚积而薄发

- 49. 阿基米德不仅是著名的物理学家,也是著名的数学家,他利用"逼近法"得到椭圆的面积公式,设椭圆 的长半轴长、短半轴长分别为a,b,则椭圆的面积公式为 $S=\pi ab$. 若椭圆C的离心率为 $\frac{\sqrt{3}}{2}$,面积为 8π,则椭圆的C的标准方程为(
 - A. $\frac{x^2}{16} + \frac{y^2}{4} = 1$ $\overrightarrow{x} + \frac{y^2}{16} + \frac{x^2}{4} = 1$
- B. $\frac{x^2}{16} + \frac{y^2}{12} = 1$ $\stackrel{\bigcirc}{\boxtimes} \frac{y^2}{16} + \frac{x^2}{12} = 1$
- C. $\frac{x^2}{12} + \frac{y^2}{4} = 1$ \vec{x} $\frac{y^2}{12} + \frac{x^2}{4} = 1$
- D. $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\vec{\boxtimes} \frac{x^2}{9} + \frac{y^2}{16} = 1$
- 50. 已知 $\triangle ABC$ 的顶点 B,C 在椭圆 $\frac{x^2}{25}+\frac{y^2}{16}=1$ 上,顶点 A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC边上,则 $\triangle ABC$ 的周长是()

- 51. 已知 $A \setminus B$ 分别为双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左右顶点,两个不同动点 $P \setminus Q$ 在双曲线上且关 于x轴对称,设直线AP、BQ的斜率分别为m、n,则当 $\frac{4b}{a}+\frac{2a}{b}+\ln|mn|$ 取最小值时,双曲线的离
 - $A.\sqrt{3}$
- B. $\frac{\sqrt{5}}{2}$

- D. $\frac{\sqrt{6}}{2}$
- 52. 已知椭圆E的中心为坐标原点,离心率为 $\frac{1}{2}$,E的右焦点与抛物线 $C:y^2=8x$ 的焦点
 - 重合, $A, B \in C$ 的准线与 E 的两个交点,则 |AB| = (
 - A. 3

B. 6

- 53. 已知 F_1 , F_2 是双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左,右焦点,P是双曲线右支上任意一点,则以 PF_2 为直径的圆与圆 $x^2 + y^2 = a^2$ 的位置关系是(

- 54. 如图,已知 F_1 、 F_2 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的左、右焦点,A、B为双曲线上关于原点对称的两 点,且满足 $AF_1 \perp BF_1$, $\angle ABF_1 = \frac{\pi}{12}$,则双曲线的离心率为()

- A $\sqrt{2}$
- $B\sqrt{3}$
- $C.\sqrt{6}$
- 55. 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,点 $A(\frac{p}{4}, a)$ (a > 0) 在 C 上,|AF| = 3. 若直线 AF 与 C 交 于另一点B,则|AB|的值是(

- C. 9

- D. 4.5
- 56. 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 中,F 为右焦点,B 为上顶点,O 为坐标原点,直线 $y = \frac{b}{a}x$ 交椭圆于点 C(点C位于第一象限),若 $S_{\triangle BFO} = S_{\triangle BFC}$,则该椭圆的离心率等于(A. $\frac{2\sqrt{2}+1}{7}$ B. $\frac{2\sqrt{2}-1}{7}$ C. $\frac{2\sqrt{2}-1}{2}$

- D. $\sqrt{2} 1$

临渊差鱼石如泥市结网

			W.				
57.		线 $rac{x^2}{4}-rac{y^2}{3}=1$ 的左、右 f_2 的对称点为 N ,则当 f_2	MN 最小时, $\angle F_1PF_2$ 的力	一点, F ₂ 关于直线 PF ₁ 的对称 大小为 () D. 60°			
F 0							
58.	$(8.$ 直线 $y=x-1$ 与抛物线 $y^2=4x$ 相交于 M 、 N 两点,抛物线的焦点为 F ,设 $ \overrightarrow{FM} =\lambda \overrightarrow{FN} $,则 λ 的值						
	$A. 3 \pm 2\sqrt{2}$	$B.\ 2 \pm \sqrt{2}$	$C.\sqrt{2}\pm 1$	$D. 2\sqrt{2}$			
59.		ω σ		率为 $\sqrt{2}$,双曲线 C 的一个焦			
		为 2 ,函数 $y = \sin(2x + \frac{7}{6})$ 曲线 D 上,则线段 AB 长	0	单位后得到曲线 D ,点 A , B 分			
	A. 2	B. $\sqrt{3}$	$C.\sqrt{2}$	D.1			
60.	. 已知过抛物线 $y^2 = x$ 的焦点的直线交抛物线于 A , B 两点,若 O 为坐标原点,则 $\overrightarrow{OA} \cdot \overrightarrow{OB} = ($						
	A. $-\frac{3}{16}$	B. $\frac{3}{16}$	C. 0	D. – 1			
61.	在平面直角坐标系 xoy $2 PA $,则 $\cos \angle APB =$		$-\sqrt{2}$), P 为函数 $y = \sqrt{x^2}$	+1 图象上一点,若 PB =			
	A. $\frac{1}{3}$	· /5	$C. \frac{3}{4}$	D. $\frac{3}{5}$			
62.	2. 过双曲线 $x^2 - \frac{y^2}{3} = 1$ 的右支上一点 P 分别向圆 C_1 : $(x+2)^2 + y^2 = 4$ 和圆 C_2 : $(x-2)^2 + y^2 = 1$ 作切线,切点分别为 M, N ,则 $ PM ^2 - PN ^2$ 的最小值为()						
	A. 5	B. 4	C. 3	D. 2			
63.	- ·	。 -=1的左、右顶点分别为 则直线 <i>PA</i> ₁ 的斜率的取值		一动点且直线 PA ₂ 的斜率的			
		B. $\left[\frac{7}{8}, \frac{7}{4}\right]$		$D.\left[\frac{7}{40}, \frac{7}{20}\right]$			
64.	•	• /		交于 A , B 两点 $($ 设点 A 位于 $,B_{1}$,抛物线 C 的准线交 x 轴			
	于点 K ,若 $\frac{ A_1K }{ B_1K }$ =2,月)				
	A.1	$B.\sqrt{2}$	$C. 2\sqrt{2}$	$D.\sqrt{3}$			
65.	5. 已知点 A 是抛物线 C : $x^2=2py(p>0)$ 的对称轴与准线的交点,点 F 为抛物线的焦点,过 A 作抛物约的一条切线,切点为 P ,且满足 $ PA =\sqrt{2}$,则抛物线 C 的方程为 $($						
	$A. x^2 = 8y$	$B. x^2 = 4y$	$C. x^2 = 2y$	$D. x^2 = y$			
66.	₩	O .		$F_1F_2 =4$, P 是双曲线右支上 $F_2 =1$,则双曲线的离心			

观而约取

A. 2

 $B.\sqrt{2}$

 $C.\sqrt{3}$

D. 3

67. 己知点 A 是抛物线 C_1 : $y^2 = 2px(p>0)$ 与双曲线 C_2 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a>0, b>0)$ 的一条渐近线的交 点,若点A到抛物线 C_1 的准线的距离为p,则双曲线的离心率为(

68. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左焦点为 F,过点 F 的直线 $x - y + \sqrt{3} = 0$ 与椭圆 C 相交于不 同的两点 A,B. 若 P 为线段 AB 的中点,O 为坐标原点,直线 OP 的斜率为 $-\frac{1}{2}$,则椭圆 C 的方程为 (

A. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ B. $\frac{x^2}{4} + \frac{y^2}{3} = 1$ C. $\frac{x^2}{5} + \frac{y^2}{2} = 1$ D. $\frac{x^2}{6} + \frac{y^2}{3} = 1$

69. 已知抛物线 $C: y^2 = 8x$ 的焦点为 F 准线为 l,p 为抛物线上一点, $PA \perp l,A$ 为垂足,若直线 AF 的斜率 为 $-\sqrt{3}$,则|PF|=(

A. 4

B. 6

70. 已知焦点在x轴上的椭圆的离心率为 $\frac{1}{2}$,它的长轴长等于圆 $x^2 + y^2 - 2x - 15 = 0$ 的半径,则椭圆的标 准方程是(

A. $\frac{x^2}{16} + \frac{y^2}{12} = 1$ B. $\frac{x^2}{4} + \frac{y^2}{3} = 1$ C. $\frac{x^2}{16} + \frac{y^2}{4} = 1$ D. $\frac{x^2}{4} + y^2 = 1$

71. 椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的长轴端点为 M 、 N , 不同于 M 、 N 的点 P 在此椭圆上, 那么 PM 、 PN 的斜率之积

B. $-\frac{4}{2}$

C. $\frac{3}{4}$

D. $\frac{4}{3}$

72. 如图,设抛物线 $y^2 = 4x$ 的焦点为 F,不经过焦点的直线上有三个不同的点 A, B, C,其中点 A, B抛物线上,点 C 在 y 轴上,则 $\triangle BCF$ 与 $\triangle ACF$ 的面积之比是()

临渊差鱼石如泥而结网

$$A. \frac{|BF| - 1}{|AF| - 1}$$

A.
$$\frac{|BF|-1}{|AF|-1}$$
 B. $\frac{|BF|^2-1}{|AF|^2-1}$ C. $\frac{|BF|+1}{|AF|+1}$

$$C. \frac{|BF| + 1}{|AF| + 1}$$

D.
$$\frac{|BF|^2 + 1}{|AF|^2 + 1}$$

- 73. 已知抛物线 $C: y^2 = -4x$ 的焦点为 F, A(-2,1), P 为抛物线 C 上的动点,则 |PF| + |PA| 的最小值为
- 74. 过点 P(1,1) 的直线 l 与椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 交于点 A 和 B,且 $\overrightarrow{AP} = \lambda \overrightarrow{PB}$. 点 Q 满足 $\overrightarrow{AQ} = -\lambda \overrightarrow{QB}$,若 O
- 75. 若 A, B 是双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 上的任意两点,且满足 $\overrightarrow{AO} = \frac{1}{2} \overrightarrow{AB}, O$ 为坐标原点,点 M是该双曲线上异于点 A,B 的任意一点,且直线 MA,MB 的斜率之积为 $\frac{1}{2}$,则双曲线的渐近线方程为
- 76. 设 F_1 , F_2 分别是椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的左、右焦点,P 为椭圆上任一点,点 M 的坐标为 (6,4),则 PM + PF₁的最大值为
- 77. 已知椭圆和双曲线有共同焦点 F_1 , F_2 , P 是它们的一个交点,且 $\angle F_1 P F_2 = \frac{\pi}{3}$,记椭圆和双曲线的离心率 分别为 e_1, e_2 ,则 $\frac{1}{e_1e_2}$ 的最大值是_____.
- 78. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{12} = 1 (a > 0)$ 的一条渐近线方程为 $\sqrt{3}x y = 0$,左焦点为F,当点M在双曲线右 支上,点N在圆 $x^2+(y-3)^2=4$ 上运动时,则|MN|+|MF|的最小值为______.
- 79. 椭圆 $\frac{x^2}{12} + \frac{y^2}{9} = 1$,点 $A\left(0, \frac{1}{2}\right)$,点 P 为椭圆上一动点,则 |PA| 的最大值为 _______.
- 80. 双曲线 $\frac{x^2}{c^2} \frac{y^2}{b^2} = 1$ 的离心率为 e_1 , 双曲线 $\frac{x^2}{b^2} \frac{y^2}{c^2} = 1$ 的离心率为 e_2 , 则 $e_1 + e_2$ 的最小值为 ______
- 81. 设抛物线 $y^2 = 2px$ (p > 0) 的焦点为 F,准线为 l. 过焦点的直线分别交抛物线于 A, B 两点,分别过 A,B 作 l 的垂线,垂足为 C,D. 若 |AF|=3|BF|,且三角形 CDF 的面积为 $\sqrt{3}$,则 p 的值为
- 82. 已知直线 y = -x + 1 与椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 相交于 A, B 两点,且线段 AB 的中点 M 在直 线 l: x-2y=0 上, 椭圆 C 的右焦点 F 关于直线 l 的对称点在圆 $x^2+y^2=4$ 上, 则椭圆 C 的方程是
- 83. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左集点为 F,过 F 且与 C 的一条渐近线垂直的直线 l 与 C的右支交于点P,若A为PF的中点,且 $|OA| = \frac{3b}{2} - a(O$ 为坐标原点),则C的离心率为______.
- 84. 设P为方程 $\sqrt{(x+4)^2+y^2}+\sqrt{(x-4)^2+y^2}=12$ 表示的曲线上的点,M、N分别为圆 $(x+4)^2+y^2=4$ 和圆 $(x-4)^2+y^2=1$ 上的点,则 |PM|+|PN| 的最小值为 _____.
- 85. 已知斜率 $k=\frac{3}{4}$ 的直线 l 过抛物线 $x^2=4y$ 的焦点,且与抛物线相交于 A、B 两点,分别过点 A、B 若作 抛物线的两条切线相交于点M,则 $\triangle MAB$ 的面积为
- 86. 已知双曲线 $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1 (a > 0, b > 0)$ 的上焦点、下顶点、上顶点分别为 F、A、B,过点 F 作 y 轴的垂 线与双曲线交于点P、Q,线段FQ的中点为M,直线AP与x轴交于点N. 若M、B、N 三点共线,则 该双曲线的离心率为____

博观而约取 厚积而薄发

- 87. 己知 F_1 为椭圆 C: $\frac{x^2}{2} + y^2 = 1$ 的左焦点,直线 l: y = x 1 与椭圆 C 交于 A, B 两点,则 $|F_1A| + |F_1B|$ 的值为______.
- 88. 若抛物线 $y^2 = 2px(p > 0)$ 的准线与双曲线 $x^2 y^2 = 1$ 的一条准线重合,则 $p = ____.$
- 89. 设椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点分别为 F_1 、 F_2 ,过焦点 F_1 的直线交椭圆于 M、N 两点,若 $\triangle MNF_2$ 的内切圆的面积为 π ,则 $S_{\triangle MNF_2} =$
- 90. 以抛物线 $C: y^2 = 8x$ 上的一点 A 为圆心作圆,若该圆经过抛物线 C 的顶点和焦点,那么该圆的方程为______.
- 91. 已知点 $A\left(\frac{\sqrt{15}}{2},\frac{1}{2}\right)$ 是双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 上一点, F_1,F_2 是双曲线 C 的左、右焦点,若 $\overrightarrow{AF_1}\cdot\overrightarrow{AF_2}=0$,则双曲线 C 的离心率为______.
- 92. 已知椭圆 C 的两个焦点为 $F_1(-1,0)$, $F_2(1,0)$,过 F_1 的直线与椭圆 C 交于 A、B 两点,若 $|BF_1| = 3|AF_1|$, $AB \perp BF_2$,则 C 的方程为 ______.
- 93. 已知双曲线 $x^2 \frac{y^2}{m} = 1$ 的左右焦点分别为 F_1, F_2 ,过点 F_2 的直线交双曲线右支于 A, B 两点,若 $\triangle ABF_1$ 是以 A 为直角顶点的等腰三角形,则 $\triangle AF_1F_2$ 的面积为 ______.
- 94. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的渐近线与圆 $(x-2)^2 + y^2 = 1$ 相交,则双曲线的离心率的取值范围是 ______.
- 95. 设抛物线 $y^2=2x$ 的焦点为 F,过点 $M(\sqrt{3},0)$ 的直线与抛物线相交于 A,B 两点,与抛物线的准线相交于 C,|BF|=2,则 $\triangle BCF$ 与 $\triangle ACF$ 的面积之比 $\frac{S_{\triangle BCF}}{S_{\triangle ACF}}=$ ______;
- 96. 经过原点的直线交椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 于 P,Q 两点 (点 P在第一象限),若点 P关于 x 轴的 对称点称为 M,且 $\overrightarrow{PA} = \frac{1}{3} \overrightarrow{PM}$,直线 QA 与椭圆交于点 B,且满足 $BP \perp PQ$,则直线 BP 和 BQ 的斜率之积为 ______,椭圆的离心率为 ______.
- 98. 已知曲线 $C: \frac{x^2}{m} + y^2 = 1 (m > 0)$,A(0,1),B(0,-1),P 是曲线 C 上的动点. 当P 与A,B 不重合时,PA,PB 的斜率之积为 = ______;若 $|PB| \le 2$ 恒成立,则 m 的取值范围是 ______.
- 99. 点 P 是椭圆 $\frac{x^2}{a_1} + \frac{y^2}{b_1} = 1(a_1 > b_1 > 0)$ 和双曲线 $\frac{x^2}{a_2} \frac{y^2}{b_2} = 1 = 1(a_2 > 0, b_2 > 0)$ 的一个交点, F_1 , F_2 是 椭圆和双曲线的公共焦点, $\angle F_1 P F_2 = \frac{\pi}{3}$,则 $\frac{b_1}{b_2}$ 的值是 _____.
- 100. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左、右焦点分别为 F_1, F_2 ,过 F_1 的直线与 C 的两条渐近线分别交于 A,B 两点,若 $\overrightarrow{F_1A} = \overrightarrow{AB}$, $\overrightarrow{F_1B} \cdot \overrightarrow{F_2B} = 0$,则 C 的离心率为 _______.

