1. 函数、极限、连续

1.1 函数

例题

求 $y = \ln \left(x + \sqrt{1 + x^2} \right)$ 的反函数

1.2 极限性质

极限基本性质

- 唯一性
- 有界性
- 保号性
 - 。 $\lim_{x o a}f(x)>0$,则去心邻域内 f(x)>0
 - 。 $f(x) \geq 0$,则 $\lim f(x) \geq 0$
 - 。 $f(x) \ge g(x)$,则 $\lim f(x) \ge \lim g(x)$
- 列与子列极限的关系

极限存在性质

- 夹逼定理
- 单调有界数列必有极限

无穷小性质

- $ullet x \sim \sin x \sim an x \sim rcsin x \sim rctan x \sim \ln(1+x) \sim e^x 1$
- $ullet \ 1-\cos x\sim rac{x^2}{2}, 1-\cos^a x\sim rac{a}{2}x^2$

1.3 极限证明

对任意的 arepsilon>0,总存在 N>0,当 n>N 时,有 $|a_n-A|<arepsilon$

对任意的 arepsilon>0,总存在 $\delta>0$,当 $0<|x-a|<\delta$ 时,有 $|f(x)-{
m A}|<arepsilon$

对任意的 arepsilon>0,存在 X>0,当 |x|>X 时,有 |f(x)-A|<arepsilon

解题方法

证明 $\lim_{x\to a} f(x) = A$

对任意的 $\varepsilon>0$,由 $|f(x)-\mathrm{A}|<\varepsilon$,化简得

- |x-a| < g(arepsilon),取 $\delta = g(arepsilon)$,则 (趋于有限值的极限定义.....)
- |x|>g(arepsilon),取 $\delta=g(arepsilon)$,则 (趋于无穷大的极限定义......)

1.4 连续函数性质

闭区间上连续函数的性质

- 最值定理
- 有界定理
- 零点定理
- 介值定理

介值定理

$$3f(c) = f(a) + 2f(b)$$

无限区间上连续函数的性质

全书 P33

1.5 间断点

间断点的分类

- 第一类间断点 (左右极限都存在)
 - 。 可去间断点 f(a-0) = f(a+0)
 - 。 跳跃间断点 $f(a-0) \neq f(a+0)$
- 第二类间断点 (左右极限至少一个不存在)

可疑点

$$\frac{1}{x}$$
, $e^{\frac{1}{x}}$, $\ln x$

$$\lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$$

$$\lim_{n o\infty}rac{x^{2n-1}+ax^2+bx}{x^{2n}+1}$$
 连续

$$f(x) = \frac{\ln|x|}{|x-1|}\sin x$$

$$f(x) = \lim_{x o \infty} rac{\ln(e^n + x^n)}{n} (x > 0)$$

1.6 极限存在性

单调

- $a_{n+1}-a_n \geq 0$, $\mathbb{I} a_n \uparrow$
- $a_{n+1}=f(a_n)$, 若 $f'(x)\geq 0$ 且 $a_2>a_1$, 则 $a_n\uparrow$
- $a_{n+1}=f(a_n), f(0)=0$, 则 $a_{n+1}=f(a_n)=f'(\xi)\cdot a_n$

有界

- 归纳法,已知 $\lim_{n o \infty} a_n = A, a_1 < A, a_k < A$,证明 $a_{k+1} < A$
- 公式法

$$\circ 2\sqrt{ab} \le a + b \le \left(\sqrt{a} + \sqrt{b}\right)^2$$

例题

$$a_1 = \sqrt{2}, a_{n+1} = \sqrt{2 + a_n}$$

$$a_1 = 4, a_{n+1} = \sqrt{2 + a_n}$$

$$a_1 > 0, a_{n+1} = 1 - e^{-a_n}$$

1.7 极限计算

$$1^{\infty}$$
, 1^{0} , 0^{∞} , ∞^{0}

解题方法

$$a^b = e^{b \ln a}$$

$$\lim_{x \to +\infty} rac{\left(1 + rac{1}{x}
ight)^{x^2}}{e^x}$$

$$\lim_{x o +\infty} (x + \sqrt{1+x^2})^{rac{1}{x}}$$

$$0-0$$
, $\infty-\infty$

解题方法

$$a - b = b \cdot (\frac{a}{b} - 1)$$

$$\frac{1}{a} - \frac{1}{b} = \frac{b - a}{ab}$$

例题

$$\lim_{x\to 0}\frac{e^x-e^{\arcsin x}}{x^3}$$

$$\sqrt{a} + \sqrt{b}$$

解题方法

分子(分母)有理化,注意正负号的讨论

例题

$$\lim_{x\to +\infty}(\sqrt{x+2\sqrt{x}}-\sqrt{x-\sqrt{x}})$$

$$\lim_{x\to -\infty}(\sqrt{x^2-2x+4}+x)$$

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\sum_{i=1}^n\frac{1}{\sqrt{i+1}+\sqrt{i}}$$

$$\lim_{x o 0}rac{\sqrt{1+ an x}-\sqrt{1+\sin x}}{x(1-\cos x)}$$

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^n b^n$$

$$\lim_{x \to \infty} \frac{x^{10}}{(x+1)^{11} - x^{11}}$$

n 项和积

解题方法

分子(分母)次数不齐夹逼定理,分子和分母次数都齐定积分

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f\left(\frac{i}{n}\right) = \int_0^1 f(x)\mathrm{d}x$$

$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\lim_{n\to\infty}\left(\frac{1}{n^2+n+1}+\frac{2}{n^2+n+2}+\cdots+\frac{n}{n^2+n+n}\right)$$

$$\lim_{n o\infty}\left(rac{n}{n^2+1^2}+rac{n}{n^2+2^2}+\cdots+rac{n}{n^2+n^2}
ight)$$

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x (t^2 + 1) e^{t^2 - x^2} dt$$

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{4} \cdots \cos \frac{x}{2^n} (x \neq 0)$$

$$\lim_{n \to \infty} \sqrt{1 + 2 + \dots + n} - \sqrt{1 + 2 + \dots + (n-1)}$$

$$\lim_{n o\infty}rac{\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}{n}$$

$$\lim_{n\to\infty}\left[\frac{\sin\frac{\pi}{n}}{n+1}+\frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin\pi}{n+\frac{1}{n}}\right]$$

$$\lim_{x o 0}rac{1-\cos x\sqrt{\cos 2x}\cdots\sqrt[n]{\cos nx}}{x^2}$$

$$\lim_{n o\infty}\left(rac{n}{(n+1)^2}+rac{n}{(n+2)^2}+\cdots+rac{n}{(n+n)^2}
ight)$$

$$\lim_{n o\infty}rac{1\cdot 2+2\cdot 3+\cdots+n(n+1)}{n^3}$$

$$x \to n \quad (n \neq 0, \infty)$$

解题方法

$$t = x - n$$

例题

$$\lim_{x o\pi}rac{\sin x}{x^2-\pi x}e^{rac{1}{x-1}}$$

多项式

解题方法

$$\lim(u+v) = \lim u + \lim v$$

$$\lim_{n\to\infty}f\left(x,\frac{1}{x}\right)=\lim_{x\to\infty}f\left(\frac{1}{x}\right)$$

$$\lim_{x o \infty} rac{a_1 x^n + a_2 x^{n-1} + \cdots}{b_1 x^n + b_2 x^{n-1} + \cdots} = \lim_{x o \infty} rac{a_1 + rac{a_2}{x} + \cdots}{b_1 + rac{b_2}{x} + \cdots} = rac{a_1}{b_1}$$

例题

$$\lim_{n\to\infty}(2^n+3^n+4^n)^{\frac{1}{n}}$$

$$\lim_{x\to-\infty}\frac{-4x+6}{\sqrt{x^2-4x+6}-x}$$

$$\lim_{x o\infty}rac{3x^2+x\sin x}{x^2-3x\cosrac{1}{x}}$$

$$\text{if } f(x)=\int_0^{1-\cos x}\sin t^2\mathrm{d}t, g(x)=\frac{x^5}{5}+\frac{x^6}{6}, \text{then } \frac{f(x)}{g(x)}=$$

$$\lim_{x o -\infty}rac{\ln(ae^{-x}+x^2+\sin x)}{\sqrt{bx^2+x\cos x-1}}=2, ext{then }b=$$

三角代换

解题方法

$$\sin(x + \frac{\pi}{2}) = \cos x, \quad \cos(x + \frac{\pi}{2}) = -\sin x$$

例题

$$\lim_{x o 1}(x-1) anrac{\pi}{2}x$$

等价无穷小

解题方法

乘除可任意替换,加减需保证齐次

例题

$$f(0) = 0, f'(0) = 2, \quad \lim_{x \to 0} rac{\int_0^x f(x-t) dt}{e^{x^2} - \cos x}$$

$$\lim_{x o 0}rac{f(x)}{x}=2,\quad g(x)=egin{cases} x\int_0^xf(t)\mathrm{d}t\ rac{x-rctan x}{a},\quad x
eq 0 \end{cases}$$

分组 (分母齐,分子不齐)

解题方法

 $\text{if } a,b \in \{x,\sin x,\tan x,\arcsin x,\arctan x\}, \text{then } \forall a-b \sim x^3$

$$\frac{a^2 - b^2}{x^4} = \frac{a+b}{x} \cdot \frac{a-b}{x^3}$$

$$\lim_{x\to 0}\frac{\sin(\sin x)-x}{x^3}$$

$$\lim_{x o 0}rac{xe^x-\ln(1+x)}{x^2}$$

$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \arctan x}}{x - \sin x}$$

$$\text{if }\lim_{x\rightarrow 0}\frac{\tan2x+xf(x)}{x^3}=\frac{2}{3}, \text{then }\lim_{x\rightarrow 0}\frac{2+f(x)}{x^2}=$$

$$\lim_{x\to 0}\frac{\cos(\sin x)-\cos x}{x^4}$$

洛必达 (降次)

麦克劳林 (齐次)

例题

$$ext{if } x o 0, ext{then } e^x - rac{1+ax}{1+bx}$$

$$\lim_{x o 0}rac{\int_0^x(e^t-1-t)^2\mathrm{d}t}{x^2(x-rctan x)}$$

柯西

例题

$$\lim_{n o\infty}n^2\left[\ln\left(1+rac{1}{n}
ight)-\ln\left(1+rac{1}{n+1}
ight)
ight]$$

构造等价无穷小, 拆成多项

例题

$$\lim_{x\to\infty}\left(\frac{x^2+1}{x+1}\mathrm{e}^{\frac{1}{x-1}}-x\right)$$

含参

$$\lim_{x \to 0} \frac{x^2}{(b - \cos x)\sqrt{a + x^2}} = 1$$

$$egin{aligned} ext{if } x o rac{1}{2}^+, ext{then } \pi - 3 rccos x \sim a \left(x - rac{1}{2}
ight)^b \ &\lim_{x o 0} x - (a + b\cos x) \sin x = lpha + o(x^5) \ & ext{if } x o 0, ext{then } e^x (1 + bx + cx^2) = 1 + ax + o(x^3) \end{aligned}$$

1.x 做题数据

P23 7, 8(1)

P24 8(2), 11(1), 11(2), 17(2), 18, 19, 20

2. 导数

2.1 概念

导数的定义

在定义域内可导
$$\lim_{\Delta x o 0} rac{f(x+\Delta x)-f(x)}{\Delta x}$$

在
$$x_0$$
处可导 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

左右导数

若 $\Delta x < 0$ 存在 $f'_{-}(x)$,若 $\Delta x > 0$ 存在 $f'_{+}(x)$

【注】一元函数可导的充分必要条件:左右导数都存在且相等

判别不可导点

- 无定义
- 左右导数不相等
- 不连续

连续、可导、可微的联系

可导 (可微) 必连续,连续不一定可导 (可微)

易混淆极限与导数什么时候使用

如何解读 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在

- 1. 由极限定义,分子与分母是同阶无穷小,则 f(0)=0
- 2. 由导数定义 f'(0) = 0

如何解读 $\lim_{x o a}rac{f^{(n)}(x)}{x-a}=A(A>0)$

1. 由极限定义, $f^{(n)}x = 0$

2. 由极限保号性,存在
$$\delta>0$$
 当 $0<|x-a|<\delta$ 时 $\frac{f^{(n)}(x)}{x-a}>0$,于是
$$\left\{\begin{array}{l} f^{(n)}(x)<0, x\in(a-\delta,a)\\ f^{(n)}(x)>0, x\in(a,a+\delta) \end{array}\right.$$

. ((()) = 10

ii. (a,f(a)) 是拐点

例题

设 f(0) = 0,则 f(x) 在 x = 0 处可导的充要条件是()存在

•
$$\lim_{h\to 0}\frac{1}{h^2}f(1-\cos h)$$

•
$$\lim_{h\to 0} \frac{1}{h} f\left(1-\mathrm{e}^h\right)$$

•
$$\lim_{h\to 0}\frac{1}{h^2}f(h-\sin h)$$

•
$$\lim_{h\to 0} \frac{f(2h) - f(h)}{h}$$

设 f(x) 在 x=0 处连续,下列命题错误的是()

• 若
$$\lim_{x \to 0} rac{f(x)}{x}$$
存在,则 $f(0) = 0$

• 若
$$\lim_{x \to 0} rac{f(x) + f(-x)}{x}$$
存在,则 $f(0) = 0$

• 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
存在,则 $f'(0)$ 存在

• 若
$$\lim_{x\to 0}rac{f(x)-f(-x)}{x}$$
存在,则 $f'(0)$ 存在

2.2 求导方法

公式

$$C$$
, x^a , a^x , $\log_a x$

 $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$

 $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arccot} x$

$$(\sin x)^{(n)}$$
 , $(\cos x)^{(n)}$, $\left(\frac{1}{ax+b}\right)^{(n)}$

法则

- (uv)', (uvw)', $\left(\frac{u}{v}\right)'$
- 链式法则
- 反函数求导
- 隐函数求导
- 参数函数求导
- 极坐标函数求导

【注】奇函数求导得偶函数,偶函数求导得奇函数

2.3 求导计算

隐函数

例题

$$\int_{x}^{x+x^2+y} \mathrm{e}^{-(t-x)^2} \mathrm{d}t = xy$$

分段函数

解题思路

- 证明分段点连续
- 对分段区间求导
- 分段点求导,即证明分段点左右导数相等

例题

$$f(x) = \left\{ egin{array}{ll} rac{1}{x} \int_0^x \cos t^2 \mathrm{d}t, & x > 0 \ 1, & x = 0 \ rac{2(1 - \cos x)}{x^2}, & x < 0 \end{array}
ight.$$

设 f(x) 在 x=a 处可导且 f(a)=0,证明 |f(x)| 在 x=a 处可导的充要条件是 f'(a)=0

2.5 高阶导数

- 公式法
- 归纳法
- 泰勒展开

2.x 几何应用

2.x 做题数据

基础 42.

 $f^{(n)}(x)$

• 分母是 $f(x) \cdot g(x)$ 的形式,对分母进行拆项 P16 31.

f'(a)

- 导数定义 P16 34.
- 求 f'(x) 后代入 a

 $f_-^\prime(a), f_+^\prime(a)$

• $e^{h(x)}$, 其中 h(x) o 0

3. 一元函数微分

3.1 中值定理

罗尔

闭区间连续,开区间可导,f(a)=f(b),则存在 $f'(\xi)=0$

拉格朗日

闭区间连续,开区间可导,则存在 $f'(\xi) = \frac{f(b) - f(a)}{b-a}$

柯西

闭区间连续,开区间可导,且
$$g'(x) \neq 0 (a < x < b)$$
,则存在 $\dfrac{f(b) - f(a)}{g(b) - g(a)} = \dfrac{f'(\xi)}{g'(\xi)}$

泰勒

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + rac{f''(x_0)}{2!}(x - x_0)^2 + \dots + rac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

- 拉格朗日型余项 $R_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} \left(x-x_0
 ight)^{n+1}$
- 佩亚诺型余项 $R_n(x) = o\left(\left(x x_0\right)^n\right)$

积分中值定理

闭区间连续,则存在
$$\xi \in [a,b]$$
 使 $\int_a^b f(x) \mathrm{d}x = f(\xi)(b-a)$

积分中值定理的推广

闭区间连续,则存在
$$\xi \in (a,b)$$
 使 $\int_a^b f(x) \mathrm{d}x = f(\xi)(b-a)$

令
$$F(x) = \int_0^x f(t) \mathrm{d}t$$
,则 $\int_a^b f(x) \mathrm{d}x = F(b) - F(a) = f(\xi)(b-a)$

3.2 极值、最值

求极值

- 1. 函数定义域
- 2. 驻点、不可导点
- 3. 判别法

判别法

• 第一充分条件,左右去心邻域内 f'(x) 的正负

- 第二充分条件, f'(x) = 0 条件下 f''(x) 的正负
- 泰勒公式判别法, $f'(x),f''(x),\cdots,f(x)^{(n-1)}$ 都为 0 条件下 $f(x)^{(n)}$ 的正负,n 只能为偶数

最值问题

有限闭区间:驻点、不可导点、端点的 Min 或 Max

无限区间: 唯一驻点, 且是极值点

不能是不可导的点嘛??

求解最值的技巧

函数的奇偶性

3.3 凹凸性、拐点

凹凸性判别

 $x \in I$ 时,f''(x) > 0(个别点除外),则 y = f(x) 在 I 内为凹函数

 $x \in I$ 时, f''(x) < 0 (个别点除外),则 y = f(x) 在 I 内为凸函数

拐点判别

 $f''(x_0) = 0, f'''(x_0) \neq 0$,则 $(x_0, f(x_0))$ 为f(x)的拐点

3.4 二阶导

若 f''(x) > 0,则 f'(x) 单调增加

若 f''(x) > 0,则 $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$ (泰勒公式展开)

【注】证明的不等式中含有等号,才考虑用泰勒

3.5 渐近线、弧微分、曲率

渐近线

水平渐近线 $\lim_{x \to \infty} f(x) = b$

铅直渐近线 $\lim_{x o a} f(x) = \infty$,其中 f(a-0), f(a+0) 某个无穷大也可

斜渐近线
$$\lim_{x o\infty}rac{f(x)}{x}=a$$
 , $\lim_{x o\infty}[f(x)-ax]=b$

弧微分

$$(\mathrm{d}s)^2 = (\mathrm{d}x)^2 + (\mathrm{d}y)^2$$

曲率

曲率
$$k=rac{|y''|}{\left(1+y'^2
ight)^{rac{3}{2}}}$$

曲率半径
$$R=\frac{1}{k}$$

圆心坐标 汤家凤复习全书 P69

3.6 中值定理应用

$$f^{(n)}(\xi) = 0$$

解题方法

构造 f(a) = f(b), 罗尔定理

零点定理

例题

设
$$f(x)$$
 在 $[0,1]$ 上连续,在 $(0,1)$ 内可导,且 $f(0)=-1, f(\frac{1}{2})=1, f(1)=\frac{1}{2}$,证存在 $\xi\in(0,1)$,使得 $f'(\xi)=0$

只含一个中值 ξ

解题方法

构造 arphi'(x)=0 和相等的点,罗尔定理

$$\bullet \ \frac{f'(x)}{f(x)} + \dots = 0$$

•
$$[f'(x) + \cdots]' + [f'(x) + \cdots] = 0$$

• (uv)' = u'v + uv'

【注】等式左右同除以要说明除数不为零

例题

含一个中值 ξ 和其他点 a, b, \cdots

解题方法

- 仅含 a, b 的项构造拉格朗日、柯西的形式
- 将 a, b, \cdots 作为常数, 求原函数

例题

含中值 ξ, η, \cdots

解题方法

- 若 ξ, η, \cdots 都为 $f^{(n)}(\xi), f^{(n)}(\eta), \cdots$ 形式,拉格朗日定理
- ξ, η 对应项复杂度不同,处理复杂项
- ξ, η 对应项对等,处理两项

例题

3.7 中值定理思维

拉格朗日

- f(b) f(a), 对 f(b) f(a) 用拉格朗日
- f(a), f(c), f(b) 其中 $c \in (a,b)$, 对 f(c) f(a), f(b) f(c) 用两次拉格朗日
- f(x), f'(x) 未总结

泰勒(拉格朗日型余项)

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + rac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + rac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_0
ight)^{n+1}$$

 x_0, x 的选取

- 导数相关的点 $f^{(n)}(a)$
- 函数值相关的点 f(a)
- 区间中点
- 区间端点

一般选取 3 个点,用两次泰勒公式

- $f^{(n)}(c) = f(a), f(b)$
- $f^{(n)}(a), f^{(n)}(b) = f(c)$

3.8 函数零点、方程的根

存在(唯一)零点

- 零点定理
- 罗尔定理, f(x) 原函数为 F(x), 若 F(a) = F(b) = 0, 则存在 f(c) = 0

方程有两个(以上)根,方程有几个根(可能含参数)

- 1. 移项构造 f(x,a) = 0
- 2. 求解驻点、不可导点、极值点、最值点, 绘图分析零点情况
- 3. 分类说明参数 a 取何值时,方程根的个数

例题

方程 f(x)=a 存在唯一正根,即函数 f(x)-a 在 $(0,+\infty]$ 有唯一零点

设在 $[0,+\infty)$ 内有 $f''(x)\geqslant 0$,且 f(0)=-1,f'(0)=2,证明 f(x)=0 在 $(0,+\infty)$ 内有且仅有一个根

3.x 不等式证明

3.x 做题数据

P21 22, 25, 28, 32 **P22** 36, 37, 42, 43, 45, 50, 51, 49 极限保号性 P72 例2, 3

不等式证明

• 已知某个特殊点

以特殊点分左右区间讨论

• 无特殊点

构造 $f(x) \uparrow$,则 f(x+c) > f(x)

构造
$$F(x)$$
 不含分母,证 $\begin{cases} F(a)=0 \\ F'(a) \neq 0 \end{cases}$, $\begin{cases} F'(a)=0 \\ F''(a) \neq 0 \end{cases}$

若 $F(x)\downarrow$,要证 F(x)>0,则证 $\lim_{x\to +\infty}F(x)>0$

若
$$\begin{cases} F(a) = F(b) = 0 \\ F''(x) > 0 \end{cases}$$
,证 $a < x < b$ 有 $F(x) > 0$

4. 不定积分

4.0 回顾整理

连续必可积, 可积未必连续

可积不一定存在原函数, 存在原函数不一定可积

可积是指在区间上有界且连续(可以忽略不连续的点)

可积是对于定积分而言的

连续必有原函数

有第一类间断点一定不存在原函数, 第二类间断点可能存在原函数

4.1 积分法

积分公式

$$k$$
, x^a , $\frac{1}{x}$, a^x , e^x

 $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$, $\sec^2 x$, $\csc^2 x$, $\sec x \tan x$, $\csc x \cot x$

$$\frac{1}{\sqrt{1-x^2}}$$
, $\frac{1}{\sqrt{a^2-x^2}}$, $\frac{1}{1+x^2}$, $\frac{1}{a^2+x^2}$, $\frac{1}{x^2-a^2}$

$$rac{1}{\sqrt{x^2+a^2}}$$
 , $rac{1}{\sqrt{x^2-a^2}}$, $\sqrt{a^2-x^2}$

第一类换元法

$$x^{n-1} dx = d(x^n)$$

$$\frac{1}{2\sqrt{x}}\,\mathrm{d}x = \mathrm{d}(\sqrt{x})$$

$$\frac{1}{x^2} \, \mathrm{d}x = -\mathrm{d}\left(\frac{1}{x}\right)$$

$$\frac{1}{x} \, \mathrm{d}x = \mathrm{d}(\ln x)$$

$$\left(1 - \frac{1}{x^2}\right) \mathrm{d}x = \mathrm{d}\left(x + \frac{1}{x}\right)$$

$$\left(1+rac{1}{x^2}
ight)\mathrm{d}x=\mathrm{d}\left(x-rac{1}{x}
ight)$$

$$(1 + \ln x) \, \mathrm{d} x = \mathrm{d}(x \ln x)$$

$$\frac{1}{\sqrt{(x^2+1)^3}} dx = d\left(\frac{x}{\sqrt{x^2+1}}\right)$$

第二类换元法

$$a^2 - x^2, x = a\sin t$$

$$x^2 - a^2, x = a \sec t$$

$$x^2 + a^2, x = a \tan t$$

$$x = \frac{1}{t}$$

4.2 换元积分

仅含 $1, x^2, x^4, \cdots, x^{2n}$ 差二阶

解题思路

凑
$$1 - \frac{1}{x^2}$$
, $1 + \frac{1}{x^2}$ 的形式

仅含 $1, e^x, e^{-x}, \cdots$ 差二阶

解题思路

$$e^x \pm e^{-x} dx = d(e^x \mp e^{-x})$$

例题

$$\int \frac{\mathrm{e}^{3x} + \mathrm{e}^x}{\mathrm{e}^{4x} + \mathrm{e}^{2x} + 1} \, \mathrm{d}x$$

含根号

解题思路

- 分子分母有理化
- 换元有理化

例题

讲义 P82 例4

4.3 分式积分

解题思路

- 1. 判断真 (假) 分式
 - i. 假分式, 转为多个真分式的和
 - ii. 真分式,下一步
- 2. 分母是否可因式分解
 - i. 可分解, 待定系数法
 - ii. 不可分解,下一步
- 3. 分子是否可拆项
 - i. 仅含一项,对分母配方
 - ii. 含多项
 - a. 构造 $\frac{f'(x)}{f(x)}$ 形式

b. 拆成多个真分式

【注】待定系数法对n次方项的处理

例题

讲义 P79 例2 (2)

讲义 P88 例3

讲义 P84 例1 (6)

4.4 三角积分

$$1+\cos x$$
 转为 $2\cos^2rac{x}{2}$

 $\sin^2 x, \cos^2 x, \sin x \cos x$ 同除 $\cos^2 x$

$$\sin x + \cos x, \sqrt{2}$$
 转为 $\cos \left(x - \frac{\pi}{4} \right)$

$$\frac{a\sin x + b\cos x}{c\sin x + d\cos x}$$
, $\Rightarrow a\sin x + b\cos x = A(c\sin x + d\cos x) + B(c\sin x + d\cos x)'$

1 拆成 $\sin^2 x + \cos^2 x$

$$\sin^2 x, \cos^2 x, \sin 2x$$
, $\mathbb{H}\left(\sin^2 x\right)' = \sin 2x, \left(\cos^2 x\right)' = -\sin 2x$

$$\sin x, \cos x$$
 可互換, $\sin x = \cos(x - \frac{\pi}{2}), \cos x = \sin(x + \frac{\pi}{2})$

例题

讲义 P86 (7)

4.5 分部积分

反对幂指三

例题

讲义 P83 例1 (3)(4)

讲义 P83 例2 (1)(2)(3)

4.6 分段函数积分

解题思路

- 1. 找分段点
- 2. 求各段的积分
- 3. 保证分段点处的连续性,统一常数

4.x 做题数据

P25 1, 2(3), 3, 5, 6, 7, 8 **P26** 11(9), 11(10), 17, 18, 19, 20, 22, 23, 24, 25 **P27** 28, 29, 30, 32, 33, 34, 35

5. 定积分

5.0 回顾整理

闭区间上连续或只含有限个一类间断点,在闭区间上可积可积必有界

5.1 性质

性质

- 元素法求极限
- 对称区间性质
- 三角函数性质
- 周期函数性质

含定积分的方程

- 1. 令定积分为常数
- 2. 凑成定积分内的表达式
- 3. 两边求定积分

例题

讲义 P100 例3

5.2 广义积分

积分限含 ∞ ,构造 $\lim x^k f(x)$

- k > 1 极限存在,则收敛
- k < 1 极限存在且不为零,则发散

积分限含无定义点 a,构造 $\lim (x-a)^k f(x)$

- k < 1 极限存在,则收敛
- $k \geq 1$ 极限存在,则发散

Gamma 函数

$$\Gamma(n) = \int_0^{+\infty} x^{n-1} \mathrm{e}^{-x} \; \mathrm{d}x$$

$$\Gamma\left(rac{1}{2}
ight)=\sqrt{\pi}$$
 , $\Gamma(n+1)=n!$

解题思路

- 表达式含 x^k 且积分限含无穷、间断点,或积分区间跨间断点才需要构造
- 若 a,b 都是间断点,则 \int_a^b 只需说明 $\lim_{x\to a^+}, \lim_{x\to b^-}$ 存在

例题

讲义 P115 例1 (4) 讲义 P115 例2

5.3 几何、物理应用

极坐标面积

$$\mathrm{d}A=\pi r^2rac{\mathrm{d} heta}{2\pi}$$

$$A=rac{1}{2}\int_{a}^{eta}r^{2}(heta)\mathrm{d} heta$$

绕 x 轴旋转体的侧面积

$$A=2\pi\int_a^b|f(x)|\mathrm{d}s$$

特殊曲线

摆线

心形线

双纽线

星形线

常见物理公式

$$rac{kq_1q_2}{r^2}$$

 $\rho gh \cdot S$

例题

讲义 P116 略

5.4 变积分限函数

解题思路

- 尽量构造出对变积分限函数求导
- 若 f(x) 可导性未知,则求导时不能含有 f(x)
- $\int_a^x f(x,t) \mathrm{d}t + x$ 相同, $\int_a^x f(x) \mathrm{d}x$ 的不同,所以应把 f(x,t) 转为 f(t)

例题

讲义 P101 例1 讲义 P102 例2,例5 讲义 P103 例6

5.5 定积分计算

解题思路

- 被积函数的奇偶性
- 积分区间的对称性
- 出现 $\int_0^{\frac{\pi}{2}} f(\sin x, \cos x) \, \mathrm{d}x$ 所有 $\sin x, \cos x$ 互换,两式相加
- f(x) 为变积分限函数,或没给出具体表达式,采用分部积分
- 变积分限函数的定积分若无法求出则保留,后面计算中会消去

【注】不换元时,积分上下限不变

讲义 P104 例4 (2) 讲义 P105 例2 讲义 P106 例2,例4

5.x 定积分证明

讲义 P107 略

5.x 做题数据

P29 13, 21 **P30** 2, 5, 7, 8, 10, 12 **P31** 15

6. 多元函数微分

6.1 概念

极限

多元函数的极限存在,则所有路径趋向该点的极限都相等

- 夹逼定理,证极限存在
- 举出反例,证极限不存在

【注】举反例时,指定x,y的关系式,换为单变量求极限(极限必须存在)

偏导数

$$egin{aligned} &\lim_{\Delta x o 0} rac{f\left(x_0 + \Delta x, y_0
ight) - f\left(x_0, y_0
ight)}{\Delta x} \ &\lim_{\Delta y o 0} rac{f\left(x_0, y_0 + \Delta y
ight) - f\left(x_0, y_0
ight)}{\Delta y} \end{aligned}$$

全微

若
$$\Delta z = A \Delta x + B \Delta y + o(
ho)$$
 其中 $ho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,则该点可全微

6.2 连续性、可偏导性、可微性

关系

可微必连续且可偏导两个偏导数连续则可微

连续性证明

$$\lim_{\stackrel{x o a}{y o b}}f(x,y)$$

可偏导性证明

$$\lim_{x\to a}\frac{f(x,b)-f(a,b)}{x}$$

$$\lim_{y o b}rac{f(a,y)-f(a,b)}{y}$$

可微性证明

$$ho=\sqrt{x^2+y^2}, \lim_{
ho o 0}rac{f(x,y)-f(a,b)-f_x'(a,b)x-f_y'(a,b)y}{
ho}$$

例题

讲义 P132 例2 讲义 P133 例6

6.3 偏导计算

函数求偏导

- 对某个变量求偏导时, 其他变量当常数
- 复合函数求偏导
 - 。 若 f(x) 未给出具体形式,可简写 $f_1', f_2', f_{11}'', f_{12}'', f_{22}'', \cdots$
 - 。 不要混淆 f', f'_1, f'_x 的使用场合
- 隐函数(组)求偏导
 - 。 确定自变量和函数的个数,有几个约束条件就有几个函数
 - 。 对约束条件两边同时求偏导, 然后解方程 (组)

例题

讲义 P135 例8 讲义 P136 例3

变换求偏导

- 1. 绘制树形图
- 2. 对叶子节点的变量求偏导
- 3. 变换为其他偏导

例题

讲义 P137 例2

偏导求原函数

- 1. 从高阶向低阶偏导求解
- 2. 结合已知条件,确定低阶偏导后带的未知项

例题

讲义 P137 例2, 例3

6.4 极值

无条件极值

- 1. 求定义域
- 2. 求解驻点
- 3. 判别极值点

$$\circ \ A=f_{xx}^{\prime\prime}\left(x_{0},y_{0}
ight),B=f_{xy}^{\prime\prime}\left(x_{0},y_{0}
ight),C=f_{yy}^{\prime\prime}\left(x_{0},y_{0}
ight)$$

- 。 $AB-C^2>0$ 是极值点
 - A > 0 极小值
 - A < 0 极大值
- 。 $AB-C^2<0$ 不是极值点

条件极值(拉格朗日乘数法)

$$F(x,y) = f(x,y) + \lambda \varphi(x,y)$$

$$F_x' = F_y' = F_\lambda' = 0$$

为什么无条件的判断,不需要说明是极值

讲义 P140 例5

6.5 几何应用

方向导数

$$\left. rac{\partial u}{\partial l}
ight|_{M_0} = \left. rac{\partial f}{\partial x}
ight|_{M_0} \cos lpha + \left. rac{\partial f}{\partial y}
ight|_{M_0} \cos eta + \left. rac{\partial f}{\partial z}
ight|_{M_0} \cos \gamma$$

梯度

$$\mathbf{grad}\; u = \left\{ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\}$$

切线与法平面

切平面与法线

6.x 做题数据

P39 9, 10, 11

P40 19, 20, 21, 23, 2

P41 15, 16, 18, 19, 23

7. 微分方程

- 一阶
 - 。线性
 - 齐次
 - 非齐次
 - 。非线性
 - 分离变量
 - 构造 $f(\frac{y}{x})$
 - 伯努利方程
 - 全微分方程
- 高阶

- 。 线性常系数
 - 齐次
 - 非齐次
- 。可降阶

$$y^{(n)} = f(x)$$

- 缺 x 型
- 缺 y 型
- 。 欧拉方程 (一定是二阶)

7.1 一阶微分方程

- 1. 若线性
 - i. 若齐次,则通解为 $C\mathrm{e}^{-\int P(x)\mathrm{d}x}$
 - ii. 若非齐次,则通解为 $\left[\int Q(x)\mathrm{e}^{\int P(x)\mathrm{d}x}\;\mathrm{d}x+C\right]\mathrm{e}^{-\int P(x)\mathrm{d}x}$
- 2. 若非线性
 - i. 伯努利 $\dfrac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)y^n$,则令 $z=y^{1-n}$
 - ii. 全微分 $P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=0$ 且满足 $\dfrac{\partial Q}{\partial x}=\dfrac{\partial P}{\partial y}$,根据偏导求原函数

7.2 可降阶的微分方程

1. 若二阶微分方程

i.
$$f(x,y',y'')=0$$
型,令 $p=y'$ 消去 y

ii.
$$f(y,y',y'')=0$$
型,令 $p=y'$ 消去 x

2. 若
$$y^{(n)} = f(x)$$
, 求原函数

7.3 高阶微分方程

- n 阶常系数齐次线性微分方程
 - 1. 求特征值
 - 2. 根据特征值写出通解

i. 不相等实根
$$y=C_1\mathrm{e}^{\lambda_1x}+C_2\mathrm{e}^{\lambda_2x}$$

ii. 相等实根
$$y=C_1\mathrm{e}^{\lambda_1x}+C_2x\mathrm{e}^{\lambda_1x}$$

iii. 共轭虚根
$$y=\mathrm{e}^{\alpha x}\left(C_{1}\cos\beta x+C_{2}\sin\beta x
ight)$$

二阶常系数非齐次线性微分方程

- 1. 求齐次通解
- 2. 设非齐次特解带入方程
 - i. 若 $P_n(x)e^{kx}$ 型,一般特征值为实根
 - ii. 若 $e^{\alpha x} [P_l(x) \cos \beta x + P_s(x) \sin \beta x]$ 型,一般特征值为虚根
 - iii. 若复杂型,拆成多个非齐次方程
- 3. 写出非齐次通解

欧拉方程

$$x^{n}y^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + \cdots + a_{1}xy' + a_{0}y = f(x)$$

1.
$$x = e^t, D = \frac{\mathrm{d}}{\mathrm{d}t}$$

- 2. $xy' = Dy, x^2y'' = D(D-1)y, \cdots$
- 3. 求解常系数线性微分方程

7.x 微分计算

解题方法

- 可构造 $\frac{\mathrm{d}x}{\mathrm{d}y}$ 的微分方程
- 分母含 x,y,令 u=f(x,y) 转为 $\dfrac{\mathrm{d}u}{\mathrm{d}x}$ 的微分方程
- 求表达式要根据 $y'(a), y''(a), \cdots$ 确定系数 C_1, C_2, \cdots 的值

7.x 微分应用

略 P155

7.x 做题数据

P59 5, 8, 9, 12, 13, 14, 15

P60 4, 12

8. 重积分

8.1 二重积分

奇偶性和对称性

- 关于变量 x 对称
- 关于变量 y 对称
- 关于直线 y = x 对称
- 关于直线 y = -x 对称

【注】关于谁对称,就判断谁的奇偶性

二重积分的计算

- 1. 绘制积分区域
- 2. 对称性、奇偶性
- 3. x型、y型、极坐标、参数
- 4. 是否需要改变积分次序

8.2 三重积分

旋转体曲面方程

- 绕 x 旋转 $y^2 = y^2 + x^2$
- 绕 y 旋转 $x^2 = x^2 + y^2$

奇偶性和对称性

- 关于变量 x 对称
- 关于变量 y 对称
- 关于变量 z 对称

三重积分的计算

- 1. 绘制积分区域
- 2. 对称性、奇偶性
- 3. 投影法、切片法、柱面变换、球面变换

8.3 重积分应用

【注】求极限使用重积分中值定理

质心, 转动惯量

8.x 做题数据

P44 3, 5, 6, 10, 11, 12, 16, 173 **P45** 6, 11 **P46** 17, 19 **P47** 21, 22, 28, 30, 32

9. 无穷级数

P528

P53 10, 12, 15, 3

P54 7, 8, 13, 17, 18

P56 26, 27, 30, 31

P57 32, 33, 36, 39, 41, 44, 46

P58 47, 50, 54, 55

P59 65, 66, 67, 69

9.1 常数级数

p级数

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

调和级数

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

几何级数

$$\sum_{n=1}^{\infty}aq^n$$

•
$$S=rac{raketigned{5}}{1-q}$$

正项级数

• 比较法

$$\frac{a_n}{b_n}$$

1/n, 1/n^2

• 比值法

$$\frac{a_{n+1}}{a_n}$$

• 根值法

$$\sqrt[n]{a_n}$$

含阶乘用比值法,含n次幂用根值法,其他比较法

交错级数

$$\sum_{n=1}^{\infty} (-1)^n u_n$$

 u_n 单减且趋于零

绝对收敛

• 条件收敛

$$\sum_{n=1}^{\infty} a_n$$

• 绝对收敛

$$\sum_{n=1}^{\infty} |a_n|$$

添括号提高收敛性, 绝对值提高发散性

9.2 幂级数

收敛半径, 收敛域

(-R,R) 内绝对收敛,R 为收敛半径

$$\lim_{n o\infty}\left|rac{a_{n+1}}{a_n}
ight|=
ho,\lim_{n o\infty}\sqrt[n]{|a_n|}=
ho$$

若函数项含
$$x^a$$
 则 $R=\sqrt[a]{rac{1}{
ho}}$

逐项可导性

先求和再求导 = 先求导再求和

逐项可积性

先求和再积分 = 先积分再求和

常见函数的麦克劳林级数

P191 7个公式

收敛域

比值法

函数展开

- 展开
- 讨论端点,写x范围

和函数

- 收敛半径, 收敛域
- 构造公式、导数、积分形式

9.3 傅里叶级数

P53 9,10,71,72

9.4 NOTE

展开

$$f'(x), f(0) = 0, f(x) = f(x) - f(0) = \int_0^x f'(x) dx$$

和函数

分子有理化, 含根号

$$sin()=sin(n\pi+\ldots)=(-1)^n\ldots$$

$$\frac{x^a}{a} = \int_0^x x^{a-1}$$

$$ax^a = x(x^a)'$$

常数项级数出现 a^n , 用幂级数

判断敛散性

$$ab \leq \frac{1}{2}(a^2+b^2)$$

$$\sqrt{ab} \leq \frac{1}{2}(a+b)$$

等价无穷小

```
in + in = in
in + out = out
out + out = ?
in * in = ?
in * out = ?
out * out = ?
```

级数敛散性的相关条件

充分必要

充分

必要

$$\lim_{n o \infty} a_n = 0$$

注意咯

幂级数只有分母含有 n! 或 n 的情况

10. 空间解析几何

10.1 向量

概念

- 向量的摸
- 向量的坐标
- 向量的方向角、方向余弦
- 向量的投影

运算

• 数量积
$$ec{a}\cdotec{b}=a_1a_2+b_1b_2+c_1c_2=|ec{a}|\cdot|ec{b}|\cos(ec{a},ec{b})$$

• 向量积
$$ec{a} imesec{b}=\left|egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \end{array}
ight|$$

。方向右手准则

。 长度
$$|ec{a} imesec{b}|=|ec{a}|\cdot|ec{b}|\sin(ec{a},ec{b})$$

10.2 向量应用

平面

• 点法式
$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

• 一般式
$$Ax + By + Cz + D = 0$$

• 截距式
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

直线

• 一般式
$$\begin{cases} A_1x + B_1y + C_1z + D = 0 \\ A_2x + B_2y + C_2z + D = 0 \end{cases}$$

• 点向式
$$\dfrac{x-x_0}{m}=\dfrac{y-y_0}{n}=\dfrac{z-z_0}{p}$$

・参数式
$$\left\{egin{aligned} x=x_0+mt\ y=y_0+nt\ z=z_0+pt \end{aligned}
ight.$$

旋转曲面

• 二维空间曲线
$$\begin{cases} f(x,y)=0 \\ z=0 \end{cases}$$

。 绕
$$x$$
 轴旋转 $\Sigma_x: f(x,\pm\sqrt{y^2+z^2})=0$

。 绕
$$y$$
 轴旋转 $\Sigma_y: f(\pm \sqrt{x^2+z^2},y)=0$

• 三维空间直线
$$L: \frac{x-a}{m} = \frac{y-b}{n} = \frac{z-c}{p}$$

。绕
$$z$$
 轴旋转 Σ : $\left\{egin{array}{l} rac{x_0-a}{m}=rac{y_0-b}{n}=rac{z-c}{p} \ x_0^2+y_0^2=x^2+y^2 \end{array}
ight.$,其中 $\left(x_0,y_0,z
ight)\in L$

柱面

• 母线平行于坐标轴的柱面

•
$$f(x,y) = 0$$
 为母线平行于 z 轴的柱面

。
$$f(y,z)=0$$
 为母线平行于 x 轴的柱面

。
$$f(x,z)=0$$
 为母线平行于 y 轴的柱面

• 投影柱面

。 空间曲线
$$\left\{ egin{array}{ll} F(x,y,z)=0 \\ G(x,y,z)=0 \end{array}
ight.$$
 消去 z 得到平行与 z 轴的柱面 $H(x,y)=0$

距离

• 两点间的距离
$$d = \sqrt{\left(x_2 - x_1
ight)^2 + \left(y_2 - y_1
ight)^2 + \left(z_2 - z_1
ight)^2}$$

• 点到面的距离
$$d=rac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}$$

• 点
$$M_0$$
 到直线 L 的距离 $d=\dfrac{\left|ec{s} imes \overline{M_0M_1'}
ight|}{\left|ec{s}
ight|}$, 其中 $M_1\in L$

• 两平行面间的距离
$$d=rac{|D_2-D_1|}{\sqrt{A^2+B^2+C^2}}$$

• 两异面直线
$$L_1,L_2$$
 间的距离 $d=rac{\left|\left(\overrightarrow{s_1} imes\overrightarrow{s_2}
ight)\cdot \overrightarrow{M_1M_2}
ight|}{\left|\overrightarrow{s_1} imes\overrightarrow{s_2}
ight|}$, 其中 $M_1\in L_1,M_2\in L_2$

夹角

• 两向量间的夹角

• 两直线间的夹角
$$heta=rccosrac{|ec{s_1}\cdotec{s_2}|}{|ec{s_1}|\,|ec{s_2}|}$$

• 两平面间的夹角
$$heta=rccosrac{|ec{n_1}\cdotec{n_2}|}{|ec{n_1}|\,|ec{n_2}|}$$

• 直线与平面间的夹角 $arphi=rcsinrac{|ec{s}\cdotec{n}|}{|ec{s}|\,|ec{n}|}$

10.3 NOTE

平面束

弹簧 $x = \omega t, y = \varphi t, z = \psi t$

曲面某点指向外侧的法向量

求偏导带入点坐标

曲线的切向量

偏导

10.x 做题数据

P36 6, 7, 9

P37 3, 4, 7

P38 19, 24, 27

11. 曲线积分、曲面积分

11.1 曲线积分

对弧长的曲线积分

- 1. 对称性、奇偶性
- 2. 曲线方程替换被积函数
- 3. 转为定积分

i.
$$\int_L f(x,y) \; \mathrm{d}s = \int_a^b f[x,\phi(x)] \sqrt{1+\phi'^2(x)} \; \mathrm{d}x$$

ii.
$$\int_L f(x,y) \,\mathrm{d}s = \int_{\alpha}^{\beta} f[\phi(x),\psi(x)] \sqrt{\phi'^2(t) + \psi'^2(t)} \,\mathrm{d}t$$

对坐标的曲线积分(有向曲线)

- 1. 是否与路径无关
- 2. 可用格林公式

3. 转为定积分

格林公式 (逆时针封闭可导的曲线)

$$\oint_L P(x,y) \mathrm{d}x + Q(x,y) \mathrm{d}y = \iint_D \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}
ight) \mathrm{d}x \ \mathrm{d}y$$

- 柯西黎曼条件 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$
- 曲线积分与路径无关
- 曲线积分值为 0
- 存在二元函数 u(x,y) 使得 du(x,y) = P(x,y)dx + Q(x,y)dy

在全微分方程的应用

$$egin{aligned} u(x,y) &= \int_{(x_0,y_0)}^{(x,y)} P(x,y) \mathrm{d}x + Q(x,y) \mathrm{d}y \ &= \int_{x_0}^x P\left(x,y_0
ight) \mathrm{d}x + \int_{y_0}^y Q(x,y) \mathrm{d}y \end{aligned}$$

11.2 曲面积分

对面积的曲面积分

对坐标的曲面积分

11.3 场论初步

梯度、旋度、散度

通量、环流量

11.x 做题数据

P48 7, 9, 10, 12

P49 16, 4, 10, 12

P50 16, 17, 20, 21, 22

P51 30, 31, 32, 33, 34, 38, 39

#临时随想

定积分中的积分区域可以替换是什么情况,如 sin cos 的,积分区域的替换与被积函数的替换