Modellierung eines verallgemeinerten SEIR-Modells mit prävalenzabhängigen Kontaktraten

1 SEIDR-Modell

Das SEIDR-Modell wird durch das folgende System gewöhnlicher Differentialgleichungen beschrieben:

$$\begin{split} \frac{dS}{dt} &= -\beta \frac{SI}{N} \\ \frac{dE}{dt} &= \beta \frac{SI}{N} - \alpha E \\ \frac{dI}{dt} &= \alpha E - \gamma I - \delta I \\ \frac{dR}{dt} &= \gamma I + \gamma D \end{split}$$

$$\frac{dD}{dt} = \delta I - \gamma D$$

Übergangsrate α : Kehrwert der mittlere Latenzzeit

Transmissionsrate β : Übertragungen pro S-I Kontakt pro Zeit Erholungsrate γ : Kehrwert der mittleren infektiösen Zeit

Testrate δ : Testrate für positive Individuen \times Rate der positiven Testergebnisse

2 Simulation eines Lockdowns

Problemstellung:

- Kontakte werden nicht kontinuierlich, sondern zu einem bestimmten Zeitpunkt eingeschränkt.
- Der Zeitpunkt des Sprungs ist von der Inzidenz abhängig.

• Bedingung an
$$\beta$$
: $\beta(t) = \begin{cases} \phi \beta_0 \text{ falls } I(t) > \tau N \\ \beta_0 \text{ sonst} \end{cases}$, wobei $\phi \in (0,1)$ und $\tau \in (0,1)$

Auswirkung auf den Verlauf der Epidemie:

(a) Anzahl der Infektionen bei Lockdown für (b) Epidemieverlauf bei Lockdown für I(t)>0.05N I(t)>0.05N

weitere Beobachtungen:

- mehrstufiger Lockdown
- Lockdownkriterium anhand der Fallzahlen anstatt der tatsächlichen Infektionen
- adäquate Wahl der Schranke τN notwendig
- Zeitspannen zwischen Beginn des Lockdowns und Erreichen des Peaks

3 Fallbeispiel Xi'an

- Beispiel für Chinas strikte Null-Covid-Strategie
- Einmonatiger Lockdown ab dem 23. Dezember 2021
- Annahme: nicht immunisierte Bevölkerung (plausibel aufgrund relativ wirkungsloser Vakzine)

3.1 Strategie 1: Keine Intervention

Verbleibende nicht infizierte Individuen: $0.7649229\% \Rightarrow$ Durchseuchung

3.2 Strategie 2: Testen, testen, testen

- \Rightarrow Erst ab einer Steigerung der Testeffizienz um Faktor 2^5 ist eine Eindämmung der Epidemie möglich
- \Rightarrow Bei einer Steigerung der Testeffizienz um Faktor 2^6 müssten "nur" zwei Monate lang vermehrt getestet werden

3.3 Strategie 3: Kontaktreduktion

- \Rightarrow Kontaktreduktion verhindert Infektionen, zieht die Epidemie aber in die Länge
- \Rightarrow Um eine Durchseuchung zu verhindern, müssten die Kontakte fast drei Jahre lang reduziert werden

Abbildung 2: Verlauf mit $\delta = 0.01, \beta = \frac{5.5}{12}$

3.4 Strategie 4: Kontaktreduktion und Massentest

- \Rightarrow Bei extremer Kontaktreduktion wirkt sich die Testeffizienz kaum auf die Anzahl der Infektionen aus, dafür aber sehr stark auf die erforderliche Dauer der Beschränkungen
- \Rightarrow Die Testeffizienz müsste mindestens um Faktor 2^4 gesteigert werden, um die Dauer der Einschränkungen gering zu halten (ein bis zwei Monate)

3.5 Zusammenfassung

Literatur:

P. Yan, G. Chowell: Quantitative Methods for Investigating Infectious Disease Outbreaks, 2019

A. King: Ordinary differential equations in R, https://kinglab.eeb.lsa.umich.edu/480/nls/de.html, Zugriff: 03.02.2022

Tabelle 1: Verlauf mit verstärktem Testen

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{ur} \cdot 2^1$	1.252596	212 (+ 36)
$\delta_{ur} \cdot 2^2$	2.687945	196 (+ 36)
$\delta_{ur} \cdot 2^3$	7.447852	186 (+ 36)
$\delta_{ur} \cdot 2^4$	23.80182	211 (+ 36)
$\delta_{ur} \cdot 2^5$	76.87228	589 (+ 36)
$\delta_{ur} \cdot 2^6$	99.93514	60 (+ 36)

Tabelle 2: Verlauf mit Kontaktreduktion

β	Verbleibende S (in %)	I und E kleiner 1, ab
$\overline{\beta_{ur} * 2^{-1}}$	11.3365	338 (+ 36)
$\beta_{ur} * 2^{-2}$	65.28979	1184 (+ 36)
1/12	99.79345	898 (+ 36)

Abbildung 3: Verlauf mit $\delta=0.64, \beta=\frac{5.5}{12}$

Abbildung 4: Verlauf mit $\delta=0.0.1, \beta=\frac{1}{12}$

Tabelle 3: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{ur} \cdot 2^1$	99.88242	456 (+ 36)
$\delta_{ur} \cdot 2^2$	99.92746	230 (+ 36)
$\delta_{ur} \cdot 2^3$	99.95006	117 (+ 36)
$\delta_{ur} \cdot 2^4$	99.96137	60 (+ 36)
$\delta_{ur} \cdot 2^5$	99.96703	33 (+ 36)
$\delta_{ur} \cdot 2^6$	99.96986	20 (+ 36)

Tabelle 4: Zusammenfassung

Strategie	δ	β	Dauer	Verbleibende S (in %)
_	0.01	5.5/12	8.5 Monate	0.7649229
${ m T}$	0.64	5.5/12	2 Monate	99.93514
K	0.01	1/12	2.5 Jahre	99.79345
K + T	0.32	1/12	1 Monat	99.96703
K + T	0.64	1/12	3 Wochen	99.96986

Abbildung 5: Verlauf mit $\delta=0.64, \beta=\frac{1}{12}$