Познакомимся с возможностями ТЕХа по набору формул

Любые формулы в ТеХе должны заключаться в значки \$. Даже одна греческая буква считается в ТеХе формулой! При этом пустые строки в формулах недопустимы, а все пробелы — игнорируются.

1. Греческие и латинские буквы

Латинские буквы вводятся непосредственно.

Вид	Название	Команда	Прописная	Команда
α	Альфа	\alpha	A	A
β	Бета	\beta	B	В
γ	Гамма	\gamma	Γ	\Gamma
δ	Дельта	\delta	Δ	\Delta
ϵ, ϵ	Эпсилон	\epsilon, \varepsilon	E	E
ζ	Дзета	\zeta	Z	Z
η	Эта	\eta	H	Н
θ , ϑ	Тета	\theta, \vartheta	Θ	\Theta
ι	Йота	\iota	I	I
κ, \varkappa	Каппа	\kappa, \varkappa	K	K
λ	Лямбда	\lambda	Λ	\Lambda
μ	Мю	\mu	M	M
ν	Ню	\nu	N	N
ξ	Кси	\xi	Ξ	\Xi
0	Омикрон	0	O	0
π , ϖ	Пи	\pi, \varpi	П	\Pi
ρ , ϱ	Po	\rho, \varrho	P	P
σ , ς	Сигма	\sigma, \varsigma	Σ	\Sigma
τ	Tay	\tau	Т	T
v	Ипсилон	\upsilon	Υ	\Upsilon
ϕ, φ	Фи	\phi, \varphi	Φ	\Phi
χ	Хи	\chi	X	Х
ψ	Пси	\psi	Ψ	\Psi
ω	Омега	\omega	Ω	\Omega

Как видите, легко запомнить! Чтобы вставить заглавную букву, команду нужно писать с большой буквы, либо, если она по начертанию совпадает с латинской, то специальной команды вообще нет. *Чтобы использовать команду* \varkappa *нужно подключить пакет* amssymb.

2. Символы различных математических операций

Вид	Команда	Вид	Команда
=	=	/	\ne
<	<	>	>
≤ ≤	\le	> ≥ ≥ ∓	\ge
≤	\leqslant	>	\geqslant
±	\pm	∓	\mp
×	\times	•	\cdot
U	\cup	\cap	\cap
\approx	\approx	÷	\div
	\parallel		\perp
\in	\in	⊥ ∉ ⊃	\notin
	\subset		\supset
\triangle	\bigtriangleup		\bigtriangledown
∇	\nabla	∇ ∠ ≡ ∃	\angle
~	\sim	≡	\equiv
\forall	\forall	∃	\exists
Ø	\emptyset	Ø	\varnothing
∂	\partial	∞	\infty
\cong	\cong	\rightarrow	\to
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow
	\neg		\parallel

Разумеется, это не все символы; их гораздо больше (см. help).

Кстати, nno60й символ можно перечеркнуть, поставив перед ним команду not; например, перечеркнем стрелку и знак перпендикулярности:

$$\begin{array}{ccc} \texttt{\not\to} & \texttt{\not\perp} \\ & & & & & & \\ & & & & & \\ \end{array}$$

Символы можно не только перечеркивать, но и ставить над ними «крышечки», «черточки» и прочие значки:

Некоторые эти символы могут стоять сразу над несколькими буквами; для таких значков зарезервированы специальные команды:

Цифры — это цифры, буквы — это буквы, а вот для названий функций зарезервированы отдельные команды! (Это нужно для того, чтобы они писались не курсивом, а «прямо»). Как правило, имя команды совпадает с названием самой функции, например:

Все эти команды не имеют никаких аргументов! То есть аргументы функций нужно писать как обычный текст.

С учетом выше сказанного, мы можем написать, скажем, такую формулу, знакомую нам со школы:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta.$$

Такую же формулу можно использовать для косинуса.

3. Верхние и нижние индексы

Теперь разберемся с верхними (степенями) и нижними индексами. Для верхних используется символ «каретка» ^, для нижних — символ подчеркивания _). Если индекс состоит из более чем одного символа, его надо заключать в группу (фигурные скобки). Примеры:

$$egin{array}{cccc} { t a}^2 & { t b}_-{ t ij} & { t C}^n_-{ t k} \ a^2 & b_{ij} & C^n_k \end{array}$$

Кстати, при наборе формул для групп действуют обычные правила для скобок:

a^{x^2}
$$a^{x^2}$$

4. Дроби

Дроби записываются с помощью команды \frac , которая имеет два обязательных аргумента: первый — числитель, второй — знаменатель. При этом, если числитель и/или знаменатель состоят из одного символа, в скобки их брать не обязательно.

$$\frac{x}{2} = \frac{1+x}{2}$$

$$\frac{1}{2} + \frac{x}{2} = \frac{1+x}{2}$$

Скобки в формулах набираются непосредственным образом. Для набора фигурных скобок используются комбинации \{ и \}, например, $\{a_i\}_{i=1}^{\infty}$; а для набора двух вертикальных прямых линий — команда \|, например, $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$,

Чтобы сделать скобки размерными, нужно указывать перед ними команды \left и \right соответственно:

$$\left(x+\frac{1}{x}\right)^2, \qquad \|\hat{\varepsilon}^{(p)}\| = \|\hat{\varepsilon}^{(p)}\| = \|\hat{\varepsilon}^{(p)}\| = \|\frac{\partial u_i}{\partial x_j}\|.$$

Эти же команды используются, чтобы увеличить, например, косую черту дроби. Тогда после команды \left ставится точка (она напечатана не будет), а после \right — косая черта (или другой ограничитель, вроде прямой черты или квадратной скобки и других). Например:

$$\frac{(a+b)}{(b+c)} / (a+c).$$

5. Установка размера скобок вручную

Размер ограничителей (скобок, черточек и т.п.) можно указывать и явно. Для этого вместо \left и \right используются пары \bigl-\bigr, \Biggr, \Biggr, \Biggr (в порядке увеличения размера). Вот так они выглядят применительно к прямой черте:

$$\left|\left|\left|\left|x\right|\right|\right|\right|$$

6. Радикалы

Для задания корней используется команда \sqrt. Необязательный аргумент в квадратных скобках указывает степень корня:

\sqrt x \sqrt{1+x^2} \sqrt[3]{x+\sin x}
$$\sqrt{x} \qquad \sqrt{1+x^2} \qquad \sqrt[3]{x+\sin x}$$

Штрихи производных обозначаются апострофами:

f''(x) g'(x)
$$\{x'\}^2$$

 $f''(x)$ $g'(x)$ x'^2

7. Сумма и произведение

Вот так описываются «сумма» и «произведение»:

$$\sum_{i=1}^n n^2 \pmod{i=1}^n n^2$$

$$\sum_{i=1}^{n} n^2 \quad \prod_{i=1}^{n} n^2$$

Если формула будет в строке, то пределы суммирования будут сбоку, вот так: $\sum_{i=1}^n n^2, \, \prod_{i=1}^n n^2$ В этом случае, чтобы пределы суммирования писались не рядом, а над

и под знаком суммирования, нужно добавить

команду \limits:
$$\sum_{i=1}^n n^2$$
 (\sum\limits_{i=1}^n n^2).

Komanдa \nolimits дает обратную директиву.

То же самое для интегралов:

$$\int f(x)dx$$

$$\oint f(x)dx$$

$$\iiint f(x)dx$$

$$\iiint f(x)dx$$

$$\int_{0}^{1} f(x)dx$$

$$\int_{0}^{1} f(x)dx$$

...и произведений:

$$\prod_{i=1}^{n} i = n!$$

...а также пределов:

$$\lim_{n\to\infty} f_n(x)$$

Важно отметить, что команды рисования двойных и тройных интегралов становятся доступными лишь при подключении пакета amsmath, в котором содержится огромное количество математических значков.

Наконец, Тъх автоматически нумерует выключенные формулы. Для этого их необходимо обозначать как окружения:

$$ax^2 + bx + c = 0 (1)$$

$$D = \sqrt{b^2 - 4ac} \tag{2}$$

Формулы можно нумеровать и вручную. Для этого предназначена команда \eqno. Эта команда не может быть использована в окружении!

$$x = \frac{-b \pm D}{2a} \tag{*}$$

Ссылки на формулы даются командами \ref и \pageref. Пример: Формула (1) на с. 5

...согласно формуле (2) на с. 5, корень из дискриминанта равен... И напоследок, горизонтальные фигурные скобки:

$$\underbrace{1 + 3 + 5 + 7 + \ldots + (2n - 1)}_{n} = n^{2}$$

Оформление текста в формулах

По умолчанию весь текст в формулах пишется курсивом. Чтобы вставить в формулу текстовый комментарий, используется команда \mbox:

$$a^n + b^n = c^n$$
 имеет решение в целых числах только для $n=2$

Действие команды \text, входящей в пакет amsmath, может показаться аналогичным, но только на первый взгляд:

$$a^n+b^n=c^n$$
 имеет решение в целых числах только для $n=2$

Существенная разница между ними проявляется при попытке написать текст, например, в индексе:

$$a_{\mbox{\scriptsize центростремительноe}} = \frac{v^2}{r} \qquad a_{\mbox{\scriptsize центростремительноe}} = \frac{v^2}{r}$$

Смена шрифта при наборе формул

Чтобы изменить написание символов в формулах, используются специальные команды (для последних двух необходимо подключить пакет amsfonts):

Жирный шрифт	 $P \rightarrow \mathbf{P}$
Прямой шрифт	 H o H
Равноразмерный шрифт	 $M o \mathtt{M}$
Шрифт без засечек	 $S \to S$
Калиграфический шрифт (англ.)	 $X \to \mathcal{X}$
Ажурный шрифт (англ)	 $R \to \mathbb{R}$
Готический шрифт (англ.)	 $G o \mathfrak{G}$

Теперь несколько важных тонкостей. Выравнивание высоты корней в одной строке делается с помощью невидимых символов, называемых «фантомами». В частности, команда \mathstrut вставляет пробел нулевой толщины и высотой со скобку.

$$\sqrt{a} + \sqrt{d}$$
 \rightarrow $\sqrt{a} + \sqrt{d}$

Чтобы спрятать часть формулы, используется команда $phantom\{...\}$. Например, знак радикала выглядит так: $\sqrt{\ }$. Есть еще команды $\vphantom\$ и

\hphantom, которые занимают место monbko по вертикали или горизонтали соответственно.

Еще одна замечательная команда — это \lefteqn{...}. ТеХ будет считать, что аргумент этой команды места не занимает и дальнейший текст напечатает с того же места. То есть, с ее помощью можно накладывать символы друг на друга! Например, можно сделать так:

Ø

С помощью такого наложения и фантомов можно делать, например, вот такие вещи:

$$1 + 2 + 3 + 4$$

Отметим, что ТеХ не всегда правильно оформляет формулы и текст в них — в результате получаются пробелы неправильной длины. Чтобы добиться нужного результата, приходится прибегать к хитростям.

$$\int f(\frac{1}{x})dx$$

$$\int f(\frac{1}{x})dx$$

$$\int f(\frac{1}{x})dx$$

$$\int f(\frac{1}{x})dx$$

$$\left(\frac{1}{2}\right)^2$$

$$f(x_1, \dots, x_n)$$

$$f(x_1, \dots, x_n)$$