p	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
T	Т	Т	Т	Т	T
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Order of operations:

	Theorem 2.1.1 Logical Equivalences				
Give	Given any statement variables p , q and r , a tautology true and a contradiction false :				
1	Commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$		
2	Associative laws (same connector)	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$		
3	Distributive laws (2 diff connectors)	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$		
4	Identity laws	$p \wedge \mathbf{true} \equiv p$	$p \vee \mathbf{false} \equiv p$		
5	Negation laws	$p \lor \sim p \equiv \mathbf{true}$	$p \land \sim p \equiv \mathbf{false}$		
6	Double negative law	\sim (\sim p) \equiv p			
7	Idempotent laws	$p \wedge p \equiv p$	$p \lor p \equiv p$		
8	Universal bound laws	$p \lor \mathbf{true} \equiv \mathbf{true}$	$p \wedge \text{false} \equiv \text{false}$		
9	De Morgan's laws	$\sim (p \wedge q) \equiv \sim p \vee \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$		
10	Absorption laws	$p\vee (p\wedge q)\equiv p$	$p \wedge (p \vee q) \equiv p$		
11	Negation of true and false	~true ≡ false	~false ≡ true		

Conditional Statements			
Implication Law $p \to q \equiv \sim p \lor q$			
	$\sim (p \to q) \equiv p \land \sim q$		
Contrapositive	$p \to q \equiv \sim q \to \sim p$		
	$\forall x \in D \ (P(x) \to Q(x)) \equiv \forall x \in D \ (\sim Q(x) \to \sim P(x))$		
Converse and Inverse of $p \rightarrow q$	$q \to p \equiv \sim p \to \sim q$		
	(converse) (inverse)		

	$p \to q \text{ is NOT} \equiv q \to p$
	$\forall x \in D (Q(x) \to P(x)) \equiv \forall x \in D (\sim P(x) \to \sim Q(x))$
Sufficient Condition	r → s
(r is a sufficient condition for s,	$\forall x (r(x) \to s(x))$
r only if s)	
Necessary Condition	$s \rightarrow r$
	$\forall x (s(x) \to r(x))$
	\sim r \rightarrow \sim s (contrapositive)
	$\forall x (\sim r(x) \to \sim s(x))$

Universal Condition	$\forall x (P(x) \to Q(x)) \equiv P(x) \Longrightarrow Q(x)$
Statement	
	[every element in the truth set of $P(x)$ is in the truth set of $Q(x)$]
	$\forall x \ (P(x) \leftrightarrow Q(x)) \equiv P(x) \Leftrightarrow Q(x)$
	[identical truth sets]
Equivalent form of	$\forall x \in U (P(x) \to Q(x)) \equiv \forall x \in D, Q(x)$
universal statement	$\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \ldots \land Q(x_n)$
Equivalent form of	$\exists x \text{ s.t. } (P(x) \land Q(x)) \equiv \exists x \in D \text{ s.t. } Q(x),$
existential statement	where D is the set of all x for which $P(x)$ is true
	$\exists x \in D, Q(x) \equiv Q(x_1) \vee Q(x_2) \vee \ldots \vee Q(x_n)$
Vacuously True (True	$\forall x \in D (P(x) \to Q(x)) \text{ iff } P(x) \text{ is false for every } x \text{ in } D.$
by default)	$\forall a \in X, P(a)$ is vacuously true if X is an empty set.
Find an element in y	$\forall x \in D, \exists y \in E \text{ such that } P(x, y)$
that works for that	
particular x	$\sim (\forall x \in D, \exists y \in E \text{ such that } P(x, y)) \equiv \exists x \in D \text{ such that } \forall y \in E, \sim P(x, y)$
Find the particular x	$\exists \ x \in D \text{ such that } \forall \ y \in E, P(x, y)$
that will work on all y	
	$\sim (\exists x \in D \text{ such that } \forall y \in E, P(x, y)) \equiv \forall x \in D, \exists y \in E \text{ such that } \sim P(x, y)$
The rule of universal	If some property is true of <i>everything</i> in the set, then it is true of <i>any</i>
instantiation	particular thing in the set.

	Theorem 5.3.5 Set Identities				
Identity Laws	$A\cup\varnothing=A$	$A \cap U = A$			
Universal Bound Law	$A \cup U = U$	$A\cap\varnothing=\varnothing$			
Idempotent Laws	$A \cup A = A$	$A \cap A = A$			
Double Complement	Law	$\overline{(\overline{A})} = A$			
Commutative Laws	$A \cup B = B \cup A$	$A\cap B=B\cap A$			
Associative Laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$			
Distributive Laws	$A \cup (B \cap C) = (A \cup B) \cap $	$A \cup C$) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			
De Morgan's Laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A\cap B}=\overline{A}\cup\overline{B}$			
Absorption Laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$			
Complement Laws	$A\cup \overline{A}=U$	$A\cap \overline{A}=\varnothing$			
Set Difference Law		$A \setminus B = A \cap \overline{B}$			
	$\overline{\varnothing}=U$	$\overline{U}=arnothing$			
One of De Morgan	's Laws. Work in the universe	ersal set U . For all sets A, B ,			
	$\overline{A \cup B} = \overline{A}$	$\cap \overline{B}.$			

	Rules of inference					
Modus Ponens (Universal Modus Ponens)	•	$p \to q$ p q				$\forall x (P(x) \to Q(x))$ $P(a) for a particular a$ $Q(a)$
Modus Tollens (Universal Modus Tollens)	•	$p \to q$ $\sim q$ $\sim p$				$\forall x, (P(x) \rightarrow Q(x))$ $\sim Q(a)$ for a particular a $\bullet \qquad \sim P(a)$
Generalization	•	p $p \lor q$		•	q $p \lor q$	
Specialization	•	$p \wedge q$ p		•	$p \wedge q$ q	
Conjunction		•	p q $p \wedge q$			
Elimination	•	$p \lor q$ $\sim q$ p		•	$p \lor q$ $\sim p$ q	
Transitivity		•	$p \to q$ $q \to r$ $p \to r$			
Proof by Division Into Cases		•	$p \lor q$ $p \to r$ $q \to r$ r			
Contradiction Rule		•	~p → p	false		

Algorithm	Examples
Algorithm 8.3.8 (for finding base- b representations). 1. input $n \in \mathbb{Z}^+$ 2. $q \coloneqq n$ 3. $\ell \coloneqq 0$ 4. while $q \neq 0$ do 5. $a_{\ell} \coloneqq q \bmod b$ 6. $q \coloneqq q \bmod b$ 7. $\ell \coloneqq \ell + \parallel$ 8. end do	Example 8.3.9. $(b,n) = (8,1511)$
9. output $(a_{\ell-1}a_{\ell-2}\dots a_1a_0)_b$	So $1511 = (2747)_8$.
	Example 8.3.10. $(b, n) = (16, 1511)$
	$ \begin{array}{c cccc} 16 & 1511 \\ 16 & 94 & -7 & \rightarrow a_0 \\ 16 & 5 & -14 = E & \rightarrow a_1 \\ 0 & -5 & \rightarrow a_2 \end{array} $
	So $1511 = (5E7)_{16}$.

by (3);

by (2);

Algorithm 8.4.8 (Euclidean Algorithm).

- 1. input $m, n \in \mathbb{Z}^+$ with $m \ge n > 0$
- 2. $x \coloneqq m$
- 3. y := n
- 4. while $y \neq 0$ do
- 5. $r \coloneqq x \bmod y$
- $x \coloneqq y$ 6.
- 7. y := r
- 8. end do
- 9. output x

Example 8.4.9. To find gcd(1076, 414):

Example 8.6.21. Find a multiplicative inverse of 7 modulo 12.

Solution. Apply the Euclidean Algorithm:

 $gcd(12,7) = 1 = 5 - 2 \times 2$ Hence $=5-(7-5\times1)\times2$ $= 7 \times (-2) + 5 \times 3$ $= 7 \times (-2) + (12 - 7 \times 1) \times 3$ by (1); $= 12 \times 3 + 7 \times (-5)$

Hence -5 is a multiplicative inverse of 7 modulo 12. In view of Proposition 8.6.16(2), this implies 7, 19, 31, . . . are all multiplicative inverses of 7 modulo 12.

 $\equiv 7 \times (-5) \pmod{12}$.

To solve the equation $ax \equiv c \pmod{n}$, where gcd(a, n) = 1.

(1) Check if gcd(a, n) = 1

- If yes \rightarrow proceed to steps 2&3
- If no → no solution (proof see tut 7 Q10)

(Tut 7 010)

- 1. Let $x \in \mathbb{Z}$ such that $4x \equiv 6 \pmod{48}$.
- 2. Use Lemma 8.6.2 to get $k \in \mathbb{Z}$ such that 4x = 48k + 6.
- 3. Note that 6 is an integer linear combination of 4 and 48 (as 6 = 4x + 48(-k)).
- 4. Therefore, $gcd(4, 48) \mid 6$. (by Tut 7 Q6: Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that an integer n is an integer linear combination of a and b if and only if $gcd(a, b) \mid n.$
- 5. However, we know gcd(4,48) = 4 and $4 \nmid 6$ (by lemma 8.1.5 as $6/4 = 1.5 \notin \mathbb{Z}$) which is the required contradiction.

#2

- 1. Let $x \in \mathbb{Z}$ such that $4x \equiv 6 \pmod{48}$.
- 2. Use Lemma 8.6.2 to get $k \in \mathbb{Z}$ such that 4x = 48k + 6.
- 3. Then $x = 12k + \frac{3}{2}$.
- 4. Therefore, $x 12k = \frac{3}{2}$.
- 5. LHS is an integer but RHS is not, which is the required contradiction.
- (2) Find a multiplicative inverse b of a modulo n.
 - This can be done either by trial and error, or
 - by using the Euclidean Algorithm as in the proofs of Bezout's Lemma and Theorem 8.6.19.
- (3) The solution is $x \equiv bc \pmod{n}$.

Example 8.6.24. To solve $7x \equiv 2 \pmod{12}$:

- (1) We know from Example 8.6.21 that -5 is a multiplicative inverse of 7 modulo 12.
- $x \equiv -5 \times 2 \pmod{12}$ (2) The solution is = -10 $\equiv 2 \pmod{12}$.

Remark: derived from Corollary 8.6.23. Let $n \in \mathbb{Z}$ +. Suppose a, b, $c \in \mathbb{Z}$, where b is a multiplicative inverse of a modulo n. Then $ax \equiv c \pmod{n} \Leftrightarrow x \equiv$ bc (mod n).

Example 8.6.25. Solve $26x \equiv 9 \pmod{35}$.

Solution. Apply the Euclidean Algorithm:

 $gcd(35, 26) = 1 = 9 - 8 \times 1$ Hence by (3): $= 9 - (26 - 9 \times 2) \times 1$ by (2); $= 26 \times (-1) + 9 \times 3$

 $= 26 \times (-1) + (35 - 26 \times 1) \times 3$ by (1); $=35\times3+26\times(-4)$ $\equiv 26 \times (-4) \pmod{35}$.

Hence -4 is a multiplicative inverse of 26 modulo 35. Thus the solution to the congruence equation is

$$x \equiv -4 \times 9 \pmod{35}$$
$$= -36$$
$$\equiv 34 \pmod{35}.$$

Algorithm 10.7.1 Kruskal

Input: G [a connected weighted graph with n vertices] Algorithm:

- 1. Initialize T to have all the vertices of G and no edges.
- 2. Let E be the set of all edges of G, and let m = 0.
- 3. While (m < n 1)
 - 3a. Find an edge e in E of least weight.
 - 3b. Delete e from E.
 - 3c. If addition of e to the edge set of T does not produce a circuit, then add e to the edge set of T and set m = m + 1End while

Output: T[T is a minimum spanning tree for G]

- If some edges have the same weight as others, more than one minimum spanning tree can occur as output.
- To make the output unique, the edges of the graph can be placed in an array and edges having the same weight can be added in the order they appear in the array.

	Edge considered	Wt	Action taken
1	→ Chi – Mil	74	added
2	→ Lou – Cin	83	added
3	→ Lou – Nas	151	added
4	→ Cin – Det	230	added
5	→ StL – Lou	242	added
6	→ StL – Chi	262	added
7	→ Chi – Lou	269	not added
8	→ Lou – Det	306	not added
9	→ Lou – Mil	348	not added
10	→ Min – Chi	355	added

Figure 10.7.4

Als	ori	thm	10	.7.2	Prim
	,				

Input: G [a connected weighted graph with n vertices] Algorithm:

- 1. Pick a vertex v of G and let T be the graph with this vertex only.
- 2. Let V be the set of all vertices of G except v.
- 3. For i = 1 to n 1
 - 3a. Find an edge e of G such that (1) e connects T to one of the vertices in V, and (2) e has the least weight of all edges connecting T to a vertex in V. Let w be the endpoint of e that is in V.
 - 3b. Add e and w to the edge and vertex sets of T, and delete w

Output: T [T is a minimum spanning tree for G]

	Vertex added	Edge added	Weight
0	Minneapolis		
1	Chicago	Min – Chi	355
2	Milwaukee	Chi – Mil	74
3	St. Louis	Chi – StL	262
4	Louisville	StL – Lou	242
5	Cincinnati	Lou – Cin	83
6	Nashville	Lou – Nas	151
7	Detroit	Cin – Det	230
		Total weight:	= 1397

Formula			
No. of elements	Let m, n \in Z and $m \le n$, then there are		
	n-m+1		
	integers from <i>m</i> to <i>n</i> inclusive.		
Equally likely	$P(E) = \frac{The \ no. \ of \ outcomes \ in \ E}{The \ total \ no. \ of \ outcomes \ in \ S} = \frac{ E }{ S }$		
probability of an event	$F(E) = \frac{1}{The\ total\ no.\ of\ outcomes\ in\ S} = \frac{1}{ S }$		
E in a finite sample			
space S			

Probability Axiom	IS	Let S be a sample	e space. A probabil	lity function P from the s	et of all events
		in <i>S</i> to the set of real numbers satisfies the following axioms:			
		For all events A a	and B in S ,		
		1. $0 \le P(A) \le$	≤1		
		2. $P(\emptyset) = 0$	and $P(S) = 1$		
		3. If <i>A</i> and <i>B</i>	B are disjoint ($A \cap$	$B = \emptyset$), then $P(A \cup B) =$	= P(A) + P(B)
Probability of the			$P(\bar{A})$	=1-P(A)	
Complement					
Probability of a Ur				$) + P(B) - P(A \cap B).$	
Addition/Sum Rul	le	Suppose a finite set A equals the union of k distinct mutually disjoint			
		subsets A_1 , A_2 ,,			
	_		$ A = A_1 +$	$ A_2 + + A_k $	
The Difference Ru	le	If A is a finite set			
			$ A \setminus B $	= A - B	
The		If A , B , and C are	any finite sets, the		
Inclusion/Exclusion	on		$ A \cup B = A $	$+ B - A \cap B $ and	
Rule					
Permutations		$ A \cup B \cup C = A $	+ B + C - A	$\frac{\cap B - A\cap C - B\cap C }{n!}$	+ A ∩ B ∩ C
					_
r-permutation		$P(n,r) = n(n-1)(n-2) \dots (n-r+1) = \frac{n!}{(n-r)!}$ $\binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \dots \binom{n-n_1-n_2-\dots-n_{k-1}}{n_k}$			
Permutations with	h	$(n \setminus (n \setminus$	$\frac{1}{n_1 \cdot (n - n_1 - n_2)}$	$(n-n_1-n_2-\cdots-n_1-n_1-n_2-\cdots-n_1-n_1-n_2-\cdots-n_1-n_1-n_1-n_1-n_1-n_1-n_1-n_1-n_1-n_1$	$-n_{k-1}$
repetition		$\binom{n_1}{n_1}\binom{n_2}{n_2}\binom{n_1}{n_2}\cdots\binom{n_1}{n_2}\cdots\binom{n_1}{n_k}$			
repetition		•	_ 1	n!	
			$= \frac{1}{n_1! n_2! n_2! n_2! n_2! n_2! n_2! n_2! n_2$	$\overline{n_3!\cdots n_k!}$	
r-combination		$= \frac{n!}{n_1! n_2! n_3! \cdots n_k!}$ $\binom{n}{r} = \frac{P(n, r)}{r!} = \frac{n!}{r! (n-r)!}$			
		$\binom{r}{r} = \frac{r!}{r!} = \frac{r!(n-r)!}{r!(n-r)!}$			
Combinations with	h	This equals the number of ways <i>r</i> objects can be selected from <i>n</i> categories			
repetition		of objects with re	epetitions allowed		
			(**	$\begin{pmatrix} +n-1 \\ r \end{pmatrix}$	
			Order Matters	Order Does Not Matter	1
				(k+n-1)	
R	Repetitio	on Is Allowed	n^k	$\binom{k+n-1}{k}$	
				$\langle n \rangle$	
l B	Repetitio	on Is Not Allowed	P(n,k)	$\binom{k}{k}$	
Pascal's Formula		Let <i>n</i> and <i>r</i> be no	sitive integers, r <	n Then	
		Let n and r be positive integers, $r \le n$. Then $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$			
			$\begin{pmatrix} r \end{pmatrix} =$	$\binom{r-1}{r-1}$	
Binomial Theorem		Given any real numbers a and b and any non-negative integer n ,			
		$\int_{a}^{b} (a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^{k}$			
		$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$			
		$= a^{n} + {n \choose 1} a^{n-1} b^{1} + {n \choose 2} a^{n-2} b^{2} + \dots + {n \choose n-1} a^{1} b^{n-1} + b^{n}$			
		-u + (1)u	$v + (2)u + v^{-1}$	$(n-1)^{a b}$	U
Expected Value		1	n		
Lapected value			$\sum a_k p_k = a_1 p_1 + \cdots$	$a_2p_2 + a_3p_3 + \dots + a_np_r$	ı
Ì		<u> </u>	<u></u>		

Linearity of	For random variables <i>X</i> and <i>Y</i> ,
Expectation	E[X + Y] = E[X] + E[Y]
пирестион	B[X+Y] = B[X] + B[Y]
	For random variables X_1, X_2, \dots, X_n and constants c_1, c_2, \dots, c_n ,
	$E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X_i])$
Conditional Probability	Let <i>A</i> and <i>B</i> be events in a sample space <i>S</i> . If $P(A) \neq 0$, then the conditional
	probability of B given A , denoted $P(B A)$, is
	$P(B A) = P(A \cap B)$
	$P(B A) = \frac{P(A \cap B)}{P(A)}$
	$P(A \cap B) = P(B A) \cdot P(A)$
	$P(A) = \frac{P(A \cap B)}{P(B A)}$
	(1)
Bayes' Theorem	Suppose that a sample space S is a union of mutually disjoint events B_1 , B_2 ,
	$B_3,, B_n$.
	Suppose A is an event in S , and suppose A and all the B_i have non-zero
	probabilities. If k is an integer with $1 \le k \le n$, then
	$P(B_k A) = \frac{P(A B_k) \cdot P(B_k)}{P(A B_1) \cdot P(B_1) + P(A B_2) \cdot P(B_2) + \dots + P(A B_n) \cdot P(B_n)}$
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Independent Events	If <i>A</i> and <i>B</i> are events in a sample space <i>S</i> , then <i>A</i> and <i>B</i> are independent , if
	and only if,
Daiwwiga Indonandant	$P(A \cap B) = P(A) \cdot P(B)$ Let A, B and C be events in a sample space S. A, B and C are pairwise
Pairwise Independent and Mutually	independent , if and only if, they satisfy conditions 1 – 3 below.
Independent	independent, if and only if, they satisfy conditions 1 – 3 below.
muepenuem	They are mutually independent if, and only if, they satisfy all four
	conditions below.
	1. $P(A \cap B) = P(A) \cdot P(B)$
	$2. P(A \cap C) = P(A) \cdot P(C)$
	3. $P(B \cap C) = P(B) \cdot P(C)$
	4. $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$
Euler's formula	For a connected planar simple graph $G = (V, E)$ with $e = E $ and $v = V $, if
	we let f be the number of faces, then $f = e - v + 2$.
Full BT Theorem	If <i>T</i> is a full binary tree with <i>k</i> internal vertices, then <i>T</i> has a total of $2k + 1$
	vertices and has $k + 1$ terminal vertices (leaves).
Height of a BT & no. of	Height is the highest level (root is level 0).
vertices	
	For non-negative integers h , if T is any binary tree with height h and t
	terminal vertices (leaves), then $t \le 2^h$
	Equivalently, $\log_2 t \le h$

	Commonly used definitions and theorems
	Sets
Theorem	(No. of elements in a Power Set)
5.2.4.	If a set <i>X</i> has $n (n \ge 0)$ elements, then $\wp(X)$ has 2^n elements.
Function	

Terminol ogy 6.1.18	Well-defined function	A function is well-defined if its definition ensures that every element of the domain is assigned exactly one element of the codomain.	
Definition	Composite Function	Let $f: A \to B$ and $g: B \to C$. Then $g \circ f: A \to C$ such that for every $x \in A$	
6.1.22	g° f (composed with or circle)	 ∈ A, • (g∘ f)(x) = g(f(x)) • For g∘ f to be well-defined, the codomain of f must equal the domain of g 	
Definition	Surjection,	Let $f: A \to B$.	
6.2.5	Injection,	(1) f is surjective or onto if	
	Bijection (bijective	$\forall y \in B \exists x \in A \ (y = f(x)).$	
	function)	(2) f is injective or one-to-one if $\forall x, x' \in A (f(x) = f(x') \Rightarrow x = x')$	
		(3) f is bijective if it is both surjective and injective, i.e.,	
		$\forall y \in B \exists ! x \in A \ (y = f(x)).$	
		A function is surjective if and only if its codomain is equal to its range	
		• A function $f : A \to B$ is not surjective if and only if $\exists y \in B$ $\forall x \in A \ (y \neq f(x)).$	
		• A function $f: A \to B$ is not injective if and only if $\exists x, x' \in A$ $(f(x) = f(x') \land x \neq x')$	
Definition	Inverse	Let $f: A \to B$. Then $g: B \to A$ is an inverse of f if	
6.2.13		• $\forall x \in A \ \forall y \in B \ (y = f(x) \Leftrightarrow x = g(y))$	
Theorem	A function $f: A \rightarrow B$ is bijective if and only if it has an inverse.		
6.2.17			
Note to		the negative values of y in the codomain to determine if the	
self	function is surjective. (not surjective as negative values have no preimages)		
	E.g. $f(x) = x^2$ or $f(x) = x $		
Induction			

1. Prove by induction that for all $n \in \mathbb{Z}_{\geq 1}$,

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6} n(n+1)(2n+1).$$

Solution.

1. For each $n \in \mathbb{Z}_{\geqslant 1}$, let P(n) be the proposition

"
$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6} n(n+1)(2n+1)$$
".

- 2. (Base step) P(1) is true because $1^2 = 1 = \frac{1}{6} \times 1 \times (1+1) \times (2 \times 1+1)$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 1}$ such that P(k) is true, i.e., that

"
$$1^2 + 2^2 + \dots + k^2 = \frac{1}{6} k(k+1)(2k+1)$$
".

3.2. Then
$$1^2 + 2^2 + \cdots + k^2 + (k+1)^2$$

3.3.
$$= \frac{1}{6} k(k+1)(2k+1) + (k+1)^2 \qquad \text{by the induction hypothesis;}$$

3.4.
$$= \frac{1}{6}(k+1)(k(2k+1) + 6(k+1))$$

3.5.
$$= \frac{1}{6}(k+1)(2k^2+7k+6)$$

3.6.
$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

3.7.
$$= \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1).$$

- 3.8. Thus P(k+1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

5. Prove by induction that

$$\forall n \in \mathbb{Z}_{\geqslant 8} \ \exists x, y \in \mathbb{Z}_{\geqslant 0} \ (n = 3x + 5y).$$

(As a consequence, any integer-valued transaction over 8 dollars can be carried out using only 3-dollar and 5-dollar coins.)

Solution.

- 1. For each $n \in \mathbb{Z}_{\geq 8}$, let P(n) be the proposition " $\exists x, y \in \mathbb{Z}_{\geq 0}$ (n = 3x + 5y)".
- 2. (Base step) P(8) is true because $8 = 3 \times 1 + 5 \times 1$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geq 8}$ such that P(k) is true.
 - 3.2. Find $x, y \in \mathbb{Z}_{\geqslant 0}$ such that k = 3x + 5y.
 - 3.3. Case 1: y > 0.

3.3.1. Then
$$k+1=(3x+5y)+1$$
 by the choice of x, y ;

3.3.2.
$$= 3(x+2) + 5(y-1)$$
 where $x+2 \in \mathbb{Z}_{\geq 0}$.

- 3.3.3. As y > 0, we know $y 1 \in \mathbb{Z}_{\geq 0}$.
- 3.3.4. So P(k+1) is true.
- 3.4. Case 2: y = 0.

3.4.1. Then
$$k = 3x + 3 \times 0 = 3x$$

3.4.2.
$$\therefore x = k/3 \ge 8/3$$
 as $k \ge 8$; $x \ge \lceil 8/3 \rceil = 3$ as $x \in \mathbb{Z}$

3.4.3.
$$\therefore x \geqslant \lceil 8/3 \rceil = 3$$
 as $x \in \mathbb{Z}$.

- 3.4.4. Thus $k+1 = 3x+1 = 3(x-3)+5\times 2$, where $x-3\in\mathbb{Z}_{\geq 0}$.
- 3.4.5. So P(k+1) is true.
- 3.5. Thus P(k+1) is true in all cases.
- 4. Hence $\forall n \in \mathbb{Z}_{\geqslant 1} \ P(n)$ is true by MI.

Alternative solution.

- 1. For each $n \in \mathbb{Z}_{\geq 0}$, let P(n) be the proposition " $\exists x, y \in \mathbb{Z}_{\geq 0} \ (n+8=3x+5y)$ ".
- 2. (Base step)
- 2.1. P(0) is true because $0 + 8 = 8 = 3 \times 1 + 5 \times 1$.
- 2.2. P(1) is true because $1 + 8 = 9 = 3 \times 3 + 5 \times 0$.
- 2.3. P(2) is true because $2 + 8 = 10 = 3 \times 0 + 5 \times 2$.
- 3. (Induction step)
 - 3.1. Let $k \in \mathbb{Z}_{\geqslant 0}$ such that $P(0), P(1), \dots, P(k+2)$ is true.
 - 3.2. Apply P(k) to find $x, y \in \mathbb{Z}_{\geqslant 0}$ such that k + 8 = 3x + 5y.
 - 3.3. Then (k+3) + 8 = (k+8) + 3
 - =(3x+5y)+3 by the choice of x, y;
 - 3.5 =3(x+1)+5y where $x+1,y\in\mathbb{Z}_{\geqslant 0}$.
 - 3.6. Thus P(k+3) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 0} \ P(n)$ is true by Strong MI.

	Number Theory			
Definition	divides	Let n, $d \in Z$. Then d is said to divide n if		
8.1.1	d n	• $n = dk$ for some $k \in \mathbb{Z}$.		
		• $d \mid n$ for " d divides n ", and $d \nmid n$ for " d does not divide n ".		
Propositi on 8.1.10	Let d, $n \in \mathbb{Z}$. If d n and $n \neq 0$, then $ d \leq n $.			
Lemma	(Closure Lemma (non-			
8.1.14	Let a, b, d, m, $n \in Z$. If d	m and d n, then d am + bn.		
Theorem	(Division Theorem).			
8.1.16		+, there exist unique q, $r \in Z$ such that		
6 V	$n = dq + r \text{ and } 0 \le r < d.$			
Corollary	Let $n \in \mathbb{Z}$. Then n is eith	ner even or odd, but not both.		
8.1.22	I at a h C 77 with a + 0	as h O Drove that an integran is an integran linear combination		
Tut 7 Q6	of a and b if and only if	or $b \neq 0$. Prove that an integer n is an integer linear combination		
Definition	Let m, $n \in \mathbb{Z}$.	$gcu(u, b) \mid n$.		
8.4.1.	· ·	of m and n is divisor of both m and n.		
0.1.1.		on divisor of m and n is denoted gcd(m, n)		
	Hence, $gcd(a, b) \mid a$ and $gcd(a, b) \mid b$.			
8.5.2.	(Bezout's Lemma).			
	Let m, $n \in \mathbb{Z}$ with $n \neq 0$. Then gcd(m, n) is an integer linear combination of m and n.			
Lemma	(alternative definitions			
8.6.2.	The following are equiv	valent for all $a, b \in Z$ and all $n \in Z +$		
	(i) $a \equiv b \pmod{n}$.			
	(ii) $a = nk + b$ for	or some k ∈ Z.		
	(iii) n (a – b).			
Lemma	Let a, b, $c \in Z$ and $n \in Z$			
8.6.5.	(1) (Reflexivity) a			
		$a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.		
Definition	(3) (Transitivity) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. Two integers a, n are coprime if $gcd(a, n) = 1$.			
Definition 8.6.18	Two integers a, n are co	oprime if $gca(a, n) = 1$.		
Theorem	Let $a \in Z$ and $n \in Z +$.			
8.6.19.	Then a has a multiplicative inverse modulo n if and only if a and n are coprime			
0101171	Then a has a materphea	Relations		
Definition	Reflexive,	Let A be a set and R be a relation on A.		
9.2.2.	Symmetric,	(1) R is reflexive if $\forall x \in A (x R x)$.		
	Transitive	(2) R is symmetric if $\forall x, y \in A (x R y \Rightarrow y R x)$.		
		(3) R is transitive if $\forall x, y, z \in A (x R y \land y R z \Rightarrow x R z)$.		
	(combine 3			
	properties to get	Note:		
	equivalence relation)	• It is wrong to say that "a is reflexive", "b is reflexive", "c is not reflexive".		
		• We either say the relation <i>R</i> is reflexive or not reflexive.		
		• We don't say an element of A is reflexive or not reflexive.		
		Reflexivity, symmetry and transitivity are properties of relations,		
		not individual elements of A.		

Definition	Equivalence Class	Let A be a set and R be an equivalence relation on A.	
9.2.10.	$[x]_R$ or simply $[x]$	For each $x \in A$, the equivalence class of x with respect to R,	
)121101		denoted $[x]_R$, is defined by $[x]_R = \{y \in A: x R y\}$.	
		• Define A/R = { $[x]_R$: $x \in A$ }.	
		Example 9.2.12. Fix $n \in \mathbb{Z}^+$. The congruence-mod- n relation R_n on \mathbb{Z} is an equivalence relation. The equivalence classes are of the form	
		$[x] = \{ y \in \mathbb{Z} : x \equiv y \pmod{n} \} = \{ x + nk : k \in \mathbb{Z} \},$	
		where $x \in \mathbb{Z}$. So $\mathbb{Z}/R_n = \{\{x + nk : k \in \mathbb{Z}\} : x \in \mathbb{Z}\} = \{[0], [1], \dots, [n-1]\}$. If $n = 2$, then there are two equivalence classes:	
		$\{2k: k \in \mathbb{Z}\}$ and $\{2k+1: k \in \mathbb{Z}\}.$	
Definition	Partition (C)	A partition of a set A is a set C of nonempty subsets of A such that	
9.3.1.		$(\geq 1) \forall x \in A \exists S \in C (x \in S); and$	
		$(\leq 1) \forall x \in A \forall S, S' \in C (x \in S \land x \in S' \Rightarrow S = S')$	
		Elements of a partition are called components of the partition.	
		e.g. The set $A = \{1, 2, 3\}$ has the following partitions:	
		• {{1}, {2}, {3}},	
		• {{1}, {2, 3}},	
		• {{2}, {1, 3}},	
		• {{3}, {1, 2}},	
		• {{1, 2, 3}}	
		e.g. The congruence-mod-2 relation gives rise to the following	
		partition of Z	
		$\{\{2k: k \in Z\}, \{2k+1: k \in Z\}\}$	
Definition	Partial order	Let A be a set and R be a relation on A.	
9.4.1.	≤	(1) R is antisymmetric if $\forall x, y \in A (x R y \land y R x \Rightarrow x = y)$.	
	\prec (for $x \leq y \land x \neq y$.)	(2) R is a (non-strict) partial order if R is reflexive,	
		antisymmetric, and transitive.	
		(3) Suppose R is a partial order. Let $x, y \in A$. Then x, y are	
		comparable (under R) if x R y or y R x.	
		(4) R is a (non-strict) total order if R is a partial order and $\forall x, y \in$	
		A (x R y V y R x). (connex)	
		Note 9.4.2. A total order is always a partial order	
		Note: "divides" relation on integers is a partial order	
Theorem	(Inclusion Evaluation D	Counting and Probability	
Theorem	(Inclusion–Exclusion Principle). For all finite sets A, B		
5.3.12 (Epp.)	$ A \cup B = A + B - A \cap B .$		
(Epp) Pigeonhol	A function from one finite get to a smaller finite set councilled to the		
e		A function from one finite set to a smaller finite set cannot be one-to-one:	
Principle	There must be at least 2 elements in the domain that have the same image in the codomain.		
(PHP)	uomam.		
Generaliz	For any function	n f from a finite set X with n elements to a finite set Y with m	
ed PHP	elements and for any positive integer k , if $k < n/m$, then there is some $y \in Y$ such		
		age of at least $k + 1$ distinct elements of X .	
	chacy is the line	20 of actional R. I distilled cicilicity of A.	

	• (Contrapositive) For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k , if for each $y \in Y$, $f^{-1}(\{y\})$ has
	at most k elements, then X has at most km elements; in other words, $n \le km$. Graphs and Trees
Edges	-
_	Max no. of edges = $\binom{n}{2} = \frac{n(n-1)}{2}$
No. of simple graphs	No. of simple graphs on n vertices = $2^{\binom{n}{2}} = 2^{\frac{n(n-1)}{2}}$
Spanning Tree	A spanning tree for a graph <i>G</i> is a subgraph of <i>G</i> that contains every vertex of <i>G</i> and is a tree.
	(tut 11 Q8) The number of spanning trees in a complete graph K_n is n^{n-2} . Find all spanning trees for the graph G below.
	v_5 v_4 v_3 v_0 v_1 v_2
	The graph G has one circuit $v_2v_1v_4v_2$ and removal of any edge of the circuit gives a tree. Hence there are three spanning trees for G .
	v_5 v_4 v_3 v_5 v_4 v_5 v_5 v_4 v_5 v_5 v_4 v_5 v_5 v_6 v_7
Theorem	(The Handshake Theorem)
10.1.1.	If the vertices of <i>G</i> are v_1 , v_2 ,, v_n , where $n \ge 0$, then the total degree of <i>G</i>
	$= \deg(v_1) + \deg(v_2) + + \deg(v_n)$
m)	$= 2 \times \text{(the number of edges of } G\text{)}.$
Theorem 10.2.4.	(combining 10.2.2. and 10.2.3.)
10.2.4.	A graph <i>G</i> has an Euler circuit iff <i>G</i> is connected and every vertex of <i>G</i> has positive even degree.
Corollary	Let G be a graph, and let v and w be two distinct vertices of G .
10.2.5	There is an Euler trail from v to w if and only if G is connected, v and w have odd degree, and all other vertices of G have positive even degree.
Propositi on 10.2.6.	 If a graph <i>G</i> has a Hamiltonian circuit, then <i>G</i> has a subgraph <i>H</i> with the following properties: 1. <i>H</i> contains every vertex of <i>G</i>. 2. <i>H</i> is connected. 3. <i>H</i> has the same number of edges as vertices. Every vertex of <i>H</i> has degree 2.
10.3.2.	If G is a graph with vertices v_1 , v_2 ,, v_m and \mathbf{A} is the adjacency matrix of G , then for each positive integer n and for all integers $i, j = 1, 2,, m$, the ij -th entry of \mathbf{A}^n = the number of walks of length n from v_i to v_j .

Wu Xiaoyun AY20/21 Sem 1

	Consider the adjacency matrix A of the graph G. $A = \begin{bmatrix} v_1 & v_2 & v_3 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}.$ $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix}.$ $v_1 = \begin{bmatrix} v_1 & v_2 & v_3 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}.$
	Note that the entry in row 2 and column 2 is 6, which equals the number of walks of length 2 from v_2 to v_2 .
	To compute a_{22} , you multiply row 2 of A with column 2 of A to obtain a sum of three terms: $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2.$
Theorem	Any tree with n vertices ($n > 0$) has $n - 1$ edges.
10.5.2.	