Théorie des graphes - activité 2 Premiers pas avec les graphes

François Delbot

21 janvier 2019

Déterminer les propriétés d'un graphe (1/4)

Pour chacun des graphes donnés par la suite :

- 1. Déterminer si le graphe est orienté ou non.
- 2. Déterminer si le graphe contient des boucles.
- Déterminer si le graphe est un multi-graphe ou un graphe simple.
- 4. Donner le nombre de sommets |V|.
- 5. Donner les liste des arêtes *E*, ou arcs *A*.
- 6. Pour chaque sommet v, donner son degré d(v). Dans le cas d'un graphe orienté, donner aussi son degré entrant $d^+(v)$ et son degré sortant $d^-(v)$.
- 7. Déterminer si le graphe est connexe ou non.

Déterminer les propriétés d'un graphe (2/4)

Considérons les graphes suivants :

Déterminer les propriétés d'un graphe (3/4)

Considérons les graphes suivants :

Déterminer les propriétés d'un graphe (4/4)

Considérons les graphes suivants :

Construction de trois graphes

Pour chaque graphe, vous donnerez sa représentation graphique, son nombre de sommets et son nombre d'arêtes.

- 1. Graphe G_1 :
 - $V = \{1, 2, 3, 4, 5, 6\}$
 - $E = \{\{1,3\},\{1,4\},\{2,3\},\{3,4\},\{4,5\},\{5,6\}\}$
- 2. Graphe G_2 :
 - $V = \{1, 2, 3, 4, 5, 6\}$
 - $E = \{\{1,3\},\{2,3\},\{5,6\},$
- 3. Graphe G_3 :
 - $V = \{1, 2, 3, 4, 5, 6\}$
 - $E = \{\{1,3\}, \{1,4\}, \{2,3\}, \{5,6\}\}\$

Construction et voisinage

On considère le graphe orienté G = (V, A) tel que :

- $V = \{1, 2, 3, 4, 5\}$
- $A = \{(1,2), (1,4), (2,2), (2,3), (2,4), (3,5), (4,3), (5,3)\}$
- 1. Donner la représentation graphique de G = (V, A).
- 2. Pour chaque sommet, donner son degré entrant ainsi que son degré sortant.
- 3. Pour chaque sommet, donner la liste des prédécesseurs ainsi que des successeurs.

Graphe complet et nombre d'arêtes

Dessiner un graphe non-orienté complet à 4 sommets.

- 1. Quel est le degré des sommets de ce graphe?
- 2. Combien d'arêtes possède-t-il?

Généralisez ces résultats à un graphe non-orienté complet ayant n sommets.

Suite graphique (1/2)

Suite graphique:

Une suite décroissante (au sens large) d'entiers (d_1,d_2,\ldots,d_n) est dite graphique s'il existe un graphe simple, sans boucle et non-orienté à n sommets $\{v_1,v_2,\ldots,v_n\}$, dont les degrés des sommets correspondent à cette suite, c'est-à-dire que pour $i\in\{1,2,\ldots n\}$ le sommets v_i est de degré d_i .

Par exemple, un triangle correspond à la suite (2,2,2).

Suite graphique (2/2)

- 1. Les suites suivantes sont-elles graphiques?
 - a. (3,3,2,1,1)
 - b. (3,3,1,1)
 - c. (3,3,2,2)
 - d. (4,2,1,1,1,1)
 - e. (5,3,2,1,1,1)
- 2. Trouver deux graphes correspondant à la suite (3,2,2,2,1).
- 3. Montrer que si la suite $d = (d_1, d_2, \dots, d_n)$ est graphique, alors $\sum_{i=1}^{n} d(i)$ est pair.

