Analisis de Sistemas en LATEX

Nelson Castro

May 18, 2018

Método de Newton Modificado

$$P_{n+1} = P_n - \frac{f(P_n)}{\frac{f(P_n+h) - f(P_{n-1})}{(P_n+h) - P_{n-1}}}$$

Método Δ^2 de Aitken

$$\hat{P} = X_n - \frac{(X_{n+1} - X_n)^2}{X_{n+2} - 2X_{n+1} + X_n}$$

- Es un método de **extrapolación**, es decir, utiliza los estimaciones anteriores de b para predecir una mejor aproximación \hat{P} .
- Tiene efectos en cualquier sucesión linealmente convergente.
- No necesita de evaluaciones adicionales de g(x), simplemente trabaja sobre los que ya están calculados como cualquier interación de punto fijo.

$$S_n = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1}$$

\overline{n}	X_n	X_{n+1}	X_{n+2}	$\hat{\mathbf{P}}_n$	E_{abs}
0	X_0	$X_1 = g(X_0)$	$X_2 = g(X_1)$	\hat{P}_0	A
1	X_1	$X_2 = g(X_1)$	$X_3 = g(X_2)$	$\hat{\mathrm{P}}_1$	$ \hat{\mathbf{P}}_1 - \hat{\mathbf{P}}_0 $
2	X_2	$X_3 = g(X_2)$	$X_4 = g(X_3)$	$\hat{\mathrm{P}}_2$	$ \hat{P}_2 - \hat{P}_1 $
		•		•	•
•		•	•		•
	•	•	•	•	•
n	X_n	$X_{n+1} = g(X_n)$	$X_{n+2} = g(X_{n+1})$	$\hat{\mathbf{P}}_n$	$ \hat{\mathbf{P}}_n - \hat{\mathbf{P}}_{n-1} $

Table 1: Método iterativo basado en una iteración de punto fijo g(x)

- \bullet Valores iniciales: X_0 (dado por el ejercicio)
- Respuesta: \hat{P}_n
- Condición de paro: $E_{abs} \leq \epsilon$ (dado por el ejercicio)

Método de Steffensen

- $\bullet\,$ El método de Steffensen está basado en el método Δ^2 de Aitken.
- A diferencia del método de Aitken, esta vez introducimos la aproximación en el g(x). Para así obtener un mejor estiamdo.
- \hat{P} se considera un buen estimado para la raíz, por lo que introduce como valor inical X_n en la proxima ronda de iteraciones.
- Puede demostrarse que el método de Steffensen exhibe un **orden de convergencia cuadrático**.

\overline{n}	X_n	X_{n+1}	X_{n+2}	$\hat{\mathbf{P}}_n$	E_{abs}
0	X_0	$X_1 = g(X_0)$	$X_2 = g(X_1)$	\hat{P}_0	A
1	$X_1 = \hat{P}_0$	$X_2 = g(X_1)$	$X_3 = g(X_2)$	$\hat{\mathrm{P}}_1$	$ \hat{\mathbf{P}}_1 - \hat{\mathbf{P}}_0 $
2	$X_2 = \hat{P}_1$	$X_3 = g(X_2)$	$X_4 = g(X_3)$	$\hat{\mathrm{P}}_2$	$ \hat{\mathbf{P}}_2 - \hat{\mathbf{P}}_1 $
•	•				
•	•	•	•	•	•
	•	•	•		•
n	$X_n = \hat{P}_{n-1}$	$X_{n+1} = g(X_n)$	$X_{n+2} = g(X_{n+1})$	$\hat{\mathbf{P}}_n$	$ \hat{\mathbf{P}}_n - \hat{\mathbf{P}}_{n-1} $

Table 2: Método iterativo basado en una iteración de punto fijo g(x)

- Valores iniciales: X_0 (dado por el ejercicio)
- Respuesta: \hat{P}_n
- Condición de paro: $E_{abs} \leq \epsilon$ (dado por el ejercicio)

Método de Müller

- El método de Müller utiliza tres aproximaciones iniciales, X_0, X_1, X_2 , para determinar la siguiente aproximación X_3 utilizando un método de extrapolación con un polinomio grado 2.
- La parábola se genera a partir de los 3 puntos iniciales, y puede predecir donde estará la raz de la función f(x).
- El método de Müller suele ser bastante efectivo para encontrar las raíces complejas de cualquier función.

$$\begin{split} X_{n+3} &= X_{n+2} - \frac{2c}{b + signo(b)\sqrt{b^2 - 4ac}} \\ X_{n+3} &= X_{n+2} + h \\ h_1 &= X_{n+1} - X_n \\ h_2 &= X_{n+2} - X_{n+1} \\ \delta_1 &= (f(X_{n+1}) - f(X_n))/h_1 \\ \delta_2 &= (f(X_{n+2}) - f(X_{n+1}))/h_2 \\ a &= \frac{\delta_2 - \delta_1}{h_2 + h_1} \\ b &= \delta_2 + h_2 a \\ c &= f(X_{n+2}) \\ h &= -\frac{2c}{b + signo(b)\sqrt{b^2 - 4ac}} \\ signo(b) &= \left\{ \begin{array}{ll} 1 & \text{si } |b - \sqrt{b^2 - 4ac}| < |b + \sqrt{b^2 - 4ac}| \\ -1 & \text{si } |b - \sqrt{b^2 - 4ac}| \ge |b + \sqrt{b^2 - 4ac}| \end{array} \right\} \end{split}$$

\overline{n}	X_n	X_{n+1}	X_{n+2}	$\hat{\mathbf{P}}_n$	E_{abs}
0	X_0	$X_1 = g(X_0)$	$X_2 = g(X_1)$	\hat{P}_0	A
1	$X_1 = \hat{P}_0$	$X_2 = g(X_1)$	$X_3 = g(X_2)$	\hat{P}_1	$ \hat{\mathbf{P}}_1 - \hat{\mathbf{P}}_0 $
2	$X_2 = \hat{P}_1$	$X_3 = g(X_2)$	$X_4 = g(X_3)$	$\hat{\mathrm{P}}_2$	$ \hat{P}_2 - \hat{P}_1 $
•	•			•	
•	-		•	•	•
•					•
n	$X_n = \hat{P}_{n-1}$	$X_{n+1} = g(X_n)$	$X_{n+2} = g(X_{n+1})$	$\hat{\mathbf{P}}_n$	$ \hat{\mathbf{P}}_n - \hat{\mathbf{P}}_{n-1} $

Table 3: Método iterativo basado en una iteración de punto fijo g(x)