COMP 105, Fall 2022 Page 1

Exercise 22

```
Inductive hypothesis: (append (append xs ys) zs) = (append xs (append ys zs))
Case 1, when xs = '()
(append (append xs ys) zs)
= \{ \text{by assumption, that } xs = '() \}
(append (append '() ys) zs)
= \{append-nil\}
(append ys zs)
= \{ append-nil, by assumption that xs = '() \}
(append xs (append ys zs))
Case 2, when xs = (\cos x \, gs)
(append (append xs ys) zs)
= {by assumption that xs = (cons x qs)
(append (append (cons x qs) ys) zs)
= \{ append-cons \}
(append (cons x (append qs ys)) zs)
= \{append-cons\}
(cons x (append (append qs ys) zs))
= {by inductive hypothesis}
(cons x (append qs (append ys zs)))
= \{append-cons\}
(append (cons x qs) (append ys zs))
\{\text{by assumption that } xs = (\cos x \ qs)\}
(append xs (append ys zs))
```

COMP 105, Fall 2022 Page 2

Exercise A

a)

(cons, p, σ_2) | (frim Tive (cons), σ_4) (x, p, σ_4) | (v, σ_5) (xs, p, σ_5) | (vz, p, σ_6)

(cons , p, σ_2) | (frim Tive (cons), σ_4) (x, p, σ_4) | (v, σ_5) (xs, p, σ_5) | (vz, p, σ_6) | (frim Tive (cons), σ_6) | (frim Tiv

b) $e_{1} = (iF 1 (iS_{8}T /s X_{5}))$ $e_{2} = y_{5}$ $f = \{(x_{5} + y_{1}), (y_{5} + y_{2})\}$ $O = \{(x_{5} + y_{1}), (y_{5} + y_{2})\}$ $AT FiRST, e_{2} = y_{5} = (y_{5})$ $However, AFTER EVALUATION BOTH EXPRESSIONS,
<math display="block">e_{2} = y_{5} = (12)$