Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабараторная работа №3

Синтез последовательностных схем. Счетчики. по дисциплинне «Архитуктуры вычислительных систем»

Выполнил студент:

Крутецкий Семен Павлович Группа: з3530903/00301

Руководитель:

доцент, к.т.н Вербова Наталья Михайловна

Содержание

Синтез недвоичного вычитающего счетчика	2
Построение аналитической модели	2
Построение счетчика в Multisim	4
К155ИЕ6	5
Построение деманстрационной модели К155ИЕ6	5
Исследование счетчика при суммирование в динамике	
К155ИЕ6	9
Построение счетчика	9
Вывод	10

Синтез недвоичного вычитающего счетчика

Построение аналитической модели

Исходя из условия необходимо построить недвоичный вычитающий счетчик с $K_{\rm CY}=5$. Первоначально определим количество триггеров необходимых для построения. Для расчета воспользуемся следующим соотношением:

$$m \ge |\log_2 M| \approx 2.32 \Rightarrow m = 3$$

Далее производем рассчет избыточных состояний счетчика:

$$N=2^m-K_{\sim}=8-5=3$$

Имеем 3 избыточных состояния, которые необходимо исключить из возможных состояний счетчика. Исключим следующие состояния: $\overline{Q_1}$ $\overline{Q_2}$ $\overline{Q_3}$, $\overline{Q_1}$ $\overline{Q_2}$ $\overline{Q_3}$, $\overline{Q_1}$ $\overline{Q_2}$ $\overline{Q_3}$.

Затем необходимо определить порядок изменения состояний счетчика. При состовление порядка необходимо учесть, что необходимо построить *вычитающий* счетчик, а значит номер каждого последующего состояние должнен быть на единицу меньше предшествующего. Имеем итоговый порядок состояний:

$$Q_1Q_2Q_3 \to \overline{Q_1}Q_2Q_3 \to Q_1\overline{Q_2}Q_3 \to \overline{Q_1}\ \overline{Q_2}Q_3 \to Q_1Q_2\overline{Q_3} \to Q_1Q_2Q_3 \to \dots$$

На основании построенного порядка переходов состояния счетка построим таблицу функционирования:

$N_{ar{0}}$	Q_1^t	Q_2^t	Q_3^t	Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}
0	1	1	1	0	1	1
1	0	1	1	1	0	1
2	1	0	1	0	0	1
3	0	0	1	1	1	0
4	1	1	0	1	1	1

Таблица 1: Таблица функционирования счетчика

На основании таблицы функционирования счетчика были составлены прикладные таблицы для каждого триггера счетчика. Данные таблицы отражают переход конкретного триггера из предыдущего состояния в следующее. В составленных таблицах, в клетках пересечения указаны двоичные числа, отражающие переход триггера при изменении состояния автомата. Пустые клетки соответвуют исключенным состояниям.

$Q_1^t \to Q_1^{t+1}$	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	01	10	10	01
$\overline{Q_3}$	-	11	_	-
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 2: Прикладная таблица Q_1

$Q_2^t \to Q_2^{t+1}$	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	10	11	00	01
$\overline{Q_3}$	-	11	_	-
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 3: Прикладная таблица Q_2

$Q_3^t \to Q_3^{t+1}$	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	11	11	11	10
$\overline{Q_3}$	-	01	_	-
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 4: Прикладная таблица Q_3

В качестве элементной базы выберем триггеры J-K типа K155TB1, в виду их универсальности. Характеристическая таблица J-K триггера:

$Q^t \to Q^{t+1}$	J^t	K^t
00	0	*
01	1	*
10	*	1
11	*	0

Таблица 5: Характеристическая таблица для Ј-К-триггера

Опираясь на характеристическую таблицу триггера построим карты Карно для J и K входов заменив двоичные значения на пересечениях соответствующими значениями из характерестической таблицы.

J_1	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	1	*	*	1
$\overline{Q_3}$	_	*	_	-
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 6: Карта Карно для J_1

J_2	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	*	*	0	1
$\overline{Q_3}$	_	*	_	_
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 8: Карта Карно для J_2

J_3	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	*	*	*	*
$\overline{Q_3}$	_	1	_	_
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 10: Карта Карно для J_3

K_1	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	*	1	1	*
$\overline{Q_3}$	_	0	_	_
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 7: Карта Карно для K_1

K_2	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	1	0	*	*
$\overline{Q_3}$	-	0	_	_
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 9: Карта Карно для K_2

K_3	Q_2	Q_2	$\overline{Q_2}$	$\overline{Q_2}$
Q_3	0	0	0	1
$\overline{Q_3}$	_	*	_	_
	$\overline{Q_1}$	Q_1	Q_1	$\overline{Q_1}$

Таблица 11: Карта Карно для K_3

Ниже приведены полученные логические функции входов всех трех тригеров:

$$J_1^t = 1 \qquad \qquad K_1^t = Q_3$$

$$J_2^t = \overline{Q}_1 \qquad \qquad K_2^t = \overline{Q}_1$$

$$J_3^t = 1 \qquad \qquad K_3^t = \overline{Q}_1 \ \overline{Q}_2$$

При построение логических функций было учтено, что в клетках с * функция неопределенна, а значит данные клетки можно интерпретировать по своему усмотрению.

Построение счетчика в Multisim

На основание составленных ранее логических функций входов составим модель (рис. 1).

Рис. 1: Модель счетчика

Протестируем составленную схему. Для проверки будем последовательно подавать входные сигналы на триггеры, на выходе ожидаем последовательное переключение индикатора OUT $(Q_1Q_2Q_3$ сверху-вниз) в соответвие с порядком

$$Q_1Q_2Q_3 \to \overline{Q_1}Q_2Q_3 \to Q_1\overline{Q_2}Q_3 \to \overline{Q_1} \ \overline{Q_2}Q_3 \to Q_1Q_2\overline{Q_3} \to Q_1Q_2Q_3 \to \dots$$

Результат соответвует ожиданию.

К155ИЕ6

Построение деманстрационной модели К155ИЕ6

В данной части построим синхронный счетчик К155ИЕ6. Данный счетчик имеет несколько входов:

- А-В информационный численны вход
- \sim LOAD \sim при установленной логической 1 загружает значение из информационного входа
- CLR сбрасывает текущее значение счетчика при установленной логической единице
- UP и DOWN производит счет +1 и -1 соответсвтенно. Счет происходит по положительному перепаду входного сигнала $(0 \to 1)$

Рис. 2: Счетчик К155ИЕ6

Выше представлена деманстрационная модель с счетчиком К155ИЕ6. Протестируем работы счетчика на данной модели.

Загрузка значения в счетчик. Для загрузки значения выставим переключатели информационных входов, например, в значение 9. Затем на вход LOAD подадим логическую 1.

Рис. 3: Загрузка значения 9 в счетчик

На дисплее видим значение 9_{16} . Результата соответвует ожиданию.

Сброс установленного значения. Для сброса значения необходимо подать логичкую 1 на вход CLR. Сбросим ранее загруженную 9, ожидаем на дисплее значение 0_{16} .

Рис. 4: Сброс значения счетчика

Видим на дисплее значение 0_{16} . Результат соответвует ожиданию. К слову, вход сброса значения имеет приоритет над входом загрузки - нельзя загрузить значение, если на вход сброса подана 1.

Инкремент и дикремент значения. Загрузим в счетчик значение 5, на вход UP последовательно будем подавать перепад $0 \to 1$. Ожидаем увеличение значения на 1 при каждой интерации. Значение ожидаемо увеличивается на 1. Аналогично был проверен дикремент.

Исследование счетчика при суммирование в динамике

Подключим вход UP к переодичному источнику сигнала. Выходы подключим к логическому анализатору. Выставив частоту источника пронаблюдаем изменения значения на дисплее и в логическом анализаторе. Видоизменная схема счетчика представленна ниже.

Рис. 5: Счетчик с анализатором

В анализаторе видно порядок изменения сигналов на выходе. Изменения соответвуют изменниям значения на дисплее.

Рис. 6: Анализатор

Суммирующий счётчик с $K_{\text{CЧ}} = 6$

Построение счетчика

Для построение счетчика с коэффициентом пересчета на основе K155ИЕ6 необходимо определить условия сброса. Поскольку требуется построить коэффициент пересчета 6, то необходимо производить сброс, когда значение коэфициента равняется $6_{10} = 0110_2$.

Далее определим управвляющую функцию, которая при выходе счетчика равном 0110 будет передавать логическую 1 на вход сброса счетчика.

$$Y = \overline{X}_0 X_1 X_2 \overline{X}_3$$

Согласно управляющей функции построим модуль и подклюим его в выходам счетчика. Управляющий сигнал модуля подключим к входу сброса через логичское ИЛИ, чтобы сброс происходил либо по входному сигналу сброса, либо при выходе счетчика 0110.

Рис. 7: Суммирующий счетчик с $K_{\text{СЧ}} = 6$

Счетчик был протестирован. Коэффициент пересчета соответвует ожиданию.

Вывод

В ходе выполенения лабораторнойрабоыт были построены модели счетчика с коэфициентом пересчета равным 5; деманстрационная модель счетчика К155ИЕ6 и счетчик с коэфициентом пересчета равным 6.

Разобраны принципы работы счетчика и особенности работы счетчика К155ИЕ6.