		ALGORITHM	DESCRIPTION	APPLICATIONS	ADVANTAGES D	ISADVANTAGES
pervised Learning	Linear Models	Linear Regression	A simple algorithm that models a linear relationship between inputs and a continuous numerical output variable	USE CASES1. Stock price prediction2. Predicting housing prices3. Predicting customer lifetime value	 Explainable method Interpretable results by its output coefficients Faster to train than other machine learning models 	 Assumes linearity between inputs and output Sensitive to outliers Can underfit with small, high-dimensional data
		Logistic Regression	A simple algorithm that models a linear relationship between inputs and a categorical output (1 or 0)	USE CASES1. Credit risk score prediction2. Customer churn prediction	 Interpretable and explainable Less prone to overfitting when using regularization Applicable for multi-class predictions 	 Assumes linearity between inputs and outputs Can overfit with small, high-dimensional data
		Ridge Regression	Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients closer to zero. Can be used for classification or regression	USE CASES1. Predictive maintenance for automobiles2. Sales revenue prediction	 Less prone to overfitting Best suited where data suffer from multicollinearity Explainable & interpretable 	 All the predictors are kept in the final model Doesn't perform feature selection
		Lasso Regression	Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients to zero. Can be used for classification or regression	USE CASES1. Predicting housing prices2. Predicting clinical outcomes based on health data	 Less prone to overfitting Can handle high-dimensional data No need for feature selection 	1. Can lead to poor interpretability as it can keep highly correlated variables
	Tree-Based Models	Decision Tree	Decision Tree models make decision rules on the features to produce predictions. It can be used for classification or regression	USE CASES 1. Customer churn prediction 2. Credit score modeling 3. Disease prediction	 Explainable and interpretable Can handle missing values 	1. Prone to overfitting2. Sensitive to outliers
		Random Forests	An ensemble learning method that combines the output of multiple decision trees	USE CASES1. Credit score modeling2. Predicting housing prices	 Reduces overfitting Higher accuracy compared to other models 	 Training complexity can be high Not very interpretable
		Gradient Boosting Regression	Gradient Boosting Regression employs boosting to make predictive models from an ensemble of weak predictive learners	USE CASES 1. Predicting car emissions 2. Predicting ride hailing fare amount	 Better accuracy compared to other regression models It can handle multicollinearity It can handle non-linear relationships 	 Sensitive to outliers and can therefore cause overfitting Computationally expensive and has high complexity
		XGBoost	Gradient Boosting algorithm that is efficient & flexible. Can be used for both classification and regression tasks	USE CASES1. Churn prediction2. Claims processing in insurance	 Provides accurate results Captures non linear relationships 	 Hyperparameter tuning can be complex Does not perform well on sparse datasets
dns <		LightGBM Regressor	A gradient boosting framework that is designed to be more efficient than other implementations	USE CASES1. Predicting flight time for airlines2. Predicting cholesterol levels based on health data	 Can handle large amounts of data Computational efficient & fast training speed Low memory usage 	 Can overfit due to leaf-wise splitting and high sensitivity Hyperparameter tuning can be complex
			K-Means is the most widely used clustering	USE CASES	1. Scales to large datasets	1. Requires the expected number of clusters
	Clustering	K-Means	approach—it determines K clusters based on euclidean distances	 Customer segmentation Recommendation systems 	2. Simple to implement and interpret3. Results in tight clusters	from the beginning 2. Has troubles with varying cluster sizes and densities
Learning		Hierarchical Clustering	A "bottom-up" approach where each data point is treated as its own cluster—and then the closest two clusters are merged together iteratively	USE CASES1. Fraud detection2. Document clustering based on similarity	 There is no need to specify the number of clusters The resulting dendrogram is informative 	 Doesn't always result in the best clustering Not suitable for large datasets due to high complexity
> Unsupervised		Gaussian Mixture Models	A probabilistic model for modeling normally distributed clusters within a dataset	USE CASES 1. Customer segmentation 2. Recommendation systems	 Computes a probability for an observation belonging to a cluster Can identify overlapping clusters More accurate results compared to K-means 	 Requires complex tuning Requires setting the number of expected mixture components or clusters
	Association	Apriori algorithm	Rule based approach that identifies the most frequent itemset in a given dataset where prior knowledge of frequent itemset properties is used	USE CASES 1. Product placements 2. Recommendation engines 3. Promotion optimization	 Results are intuitive and Interpretable Exhaustive approach as it finds all rules based on the confidence and support 	 Generates many uninteresting itemsets Computationally and memory intensive. Results in many overlapping item sets