Ausgabe: 25. Mai 2022

Präsentation der Lösungen: 2. Juni 2022

Einführung in die angewandte Stochastik

4. Globalübung

Aufgabe 19

Es seien X, Y stochastisch unabhängige Zufallsvariablen, die beide eine geometrische Verteilung mit Parameter $\theta \in (0,1)$ besitzen. Berechnen Sie die folgenden Wahrscheinlichkeiten:

(i) P(X = Y),

(ii) P(X < Y), (iii) P(X > 2Y).

Aufgabe 20

Seien X und Y diskrete Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit $P(X = k) = \frac{1}{4}, P(Y = k + 1) = \frac{1}{4} \text{ für } k \in \{0, 1, 2, 3\}.$

(a) Bestimmen Sie die Verteilung von X + Y unter der Annahme, dass X und Y stochastisch unabhängig sind.

Hinweis: Faltungssatz C 1.13.

(b) Wie sieht die Verteilung von X + Y aus, falls X und Y nicht stochastisch unabhängig sind, sondern die gemeinsame Verteilung

$$P(X = k, Y = k + 1) = \frac{1}{4}, \quad k \in \{0, 1, 2, 3\},$$

besitzen?

Aufgabe 21

Seien X und Y zwei diskrete Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$, wobei X die Werte -1, 0 und 1 und Y die Werte 1, 2 und 3 annehme. Die zugehörigen Wahrscheinlichkeiten P(X = i, Y = j) für $i \in \{-1, 0, 1\}, j \in \{1, 2, 3\}$ sind in der folgenden Tabelle angegeben:

P(X=i,Y=j)		j		
		1	2	3
i	-1	$\frac{1}{20}$	$\frac{1}{5}$	0
	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{10}$
	1	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{20}$

(a) Bestimmen Sie die zugehörigen Rand-Zähldichten p^X von X und p^Y von Y für die in der gegebenen Situation gilt:

$$p^{X}(i) = P(X = i) = \sum_{j \in \{1,2,3\}} P(X = i, Y = j), \quad i \in \{-1,0,1\},$$

$$p^{Y}(j) = P(Y = j) = \sum_{i \in \{-1,0,1\}} P(X = i, Y = j), \quad j \in \{1,2,3\}.$$

Entscheiden Sie, ob die Zufallsvariablen X und Y stochastisch unabhängig sind.

- (b) Berechnen Sie die bedingte Wahrscheinlichkeit $P(X = 0 \mid Y \ge 2)$.
- (c) Bestimmen Sie die bedingte (Zähl-)Dichte von Y bei gegebenem X=1.

Aufgabe 22

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei für festes $c \in \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} c x (1-y^3), & \text{falls } x \in [0,2], \ y \in [0,1], \\ 0, & \text{sonst.} \end{cases}$$

- (a) Für welche $c \in \mathbb{R}$ ist f eine Riemann-Dichte über \mathbb{R}^2 ?
- (b) Sei nun $c=\frac{2}{3}$ und seien X und Y zwei Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω,\mathfrak{A},P) mit gemeinsamer Riemann-Dichtefunktion $f^{(X,Y)}:=f$.
 - (i) Bestimmen Sie die Randdichten f^X von X und f^Y von Y.
 - (ii) Sind X und Y stochastisch unabhängig? Begründen Sie Ihre Antwort!
 - (iii) Bestimmen Sie die gemeinsame Verteilungsfunktion der Zufallsvariablen X und Y.
 - (iv) Bestimmen Sie den Erwartungswert E(X).