Eigenvalues and Eigenvectors

Definition: Eigenvalue

Let E be a complex vector space and let A be an operator on E. To say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A means $\exists \vec{x} \in E$ such that $\vec{x} \neq \vec{0}$ and:

$$A\vec{x} = \lambda \vec{x}$$

All such \vec{x} are called the *eigenvectors* of A corresponding to λ .

When E is a function space the eigenvectors are referred to as *eigenfunctions*.

The *eigenspace* corresponding to λ , denoted E_{λ} , is given by:

$$E_{\lambda} = \{ \vec{x} \in H - \{ \vec{0} \} \mid A\vec{x} = \lambda \vec{x} \}$$

Theorem

Let E be a complex vector space and let A be an operator on E with an eigenvalue λ :

 E_{λ} is a vector space.

Proof

Assume $\vec{x} \in E_{\lambda}$.

$$A\vec{x} = \lambda \vec{x}$$

$$A\vec{x} - \lambda \vec{x} = \vec{0}$$

$$(A - \lambda I)\vec{x} = \vec{0}$$

Therefore $E_{\lambda} = \ker(A - \lambda I)$, which is a subspace of H.

Thus, λ is an eigenvalue of A iff $\ker(A - \lambda I)$ is nontrivial.

Definition: Multiplicity

Let E be a complex vector space and let A be an operator on E with an eigenvalue λ . The *multiplicity* of λ is the dimension of the corresponding eigenspace E_{λ} .

An eigenvalue with a multiplicity of 1 is called *simple*.

Example

Let $E=L^2[0,2\pi]$ and let A be an operator on E defined by:

$$Au = \cos \star u$$

and so:

$$(Au)(t)\int_0^{2\pi}\cos(t-x)u(x)dx$$

First, assume $\lambda \neq 0$:

$$Au = \lambda u$$

$$\int_0^{2\pi} \cos(t - x)u(x)dx = \lambda u(t)$$

$$\int_0^{2\pi} [\cos(t)\cos(x) + \sin(t)\sin(x)]u(x)dx = \lambda u(t)$$

$$\left[\int_0^{2\pi} \cos(x)u(x)dx\right]\cos(t) + \left[\int_0^{2\pi} \sin(x)u(x)dx\right]\sin(t) = \lambda u(t)$$

And so $u(t) = \alpha \cos(t) + \beta \sin(t) \in \text{Span}\{\cos, \sin\}$ and $\dim E_{\lambda} = 2$.

Let:

$$a = \int_0^{2\pi} \cos(x)u(x)dx$$
$$b = \int_0^{2\pi} \sin(x)u(x)dx$$

Now solve for *a* and *b*:

$$a = \int_{0}^{2\pi} \cos(x) [\alpha \cos(x) + \beta \sin(x)] dx$$

$$= \alpha \int_{0}^{2\pi} \cos^{2}(x) dx + \beta \int_{0}^{2\pi} \cos(x) \sin(x) dx$$

$$= \frac{\alpha}{2} \int_{0}^{2\pi} [1 + \cos(2x)] dx + \frac{\beta}{2} \int_{0}^{2\pi} \sin(2x) dx$$

$$= \frac{\alpha}{2} \int_{0}^{2\pi} [1 + \cos(2x)] dx + 0$$

$$= \frac{\alpha}{2} \left[\int_{0}^{2\pi} dx + \int_{0}^{2\pi} \cos(2x) dx \right]$$

$$= \frac{\alpha}{2} (2\pi + 0)$$

$$= \alpha \pi$$

$$b = \int_{0}^{2\pi} \sin(x) [\alpha \cos(x) + \beta \sin(x)] dx$$

$$= \alpha \int_{0}^{2\pi} \sin(x) \cos(x) dx + \beta \int_{0}^{2\pi} \sin^{2}(x) dx$$

$$= \frac{\alpha}{2} \int_{0}^{2\pi} \sin(2x) dx + \frac{\beta}{2} \int_{0}^{2\pi} [1 - \cos(2x)] dx$$

$$= 0 + \frac{\beta}{2} \int_{0}^{2\pi} [1 - \cos(2x)] dx$$

$$= \frac{\beta}{2} \left[\int_0^{2\pi} dx - \int_0^{2\pi} \cos(2x) dx \right]$$
$$= \frac{\beta}{2} (2\pi + 0)$$
$$= \beta \pi$$

And so:

$$\alpha\pi\cos(t) + \beta\pi\sin(t) = \lambda(\alpha\cos(t) + \beta\sin(t))$$

and: $\alpha\pi=\lambda\alpha$ and $\beta\pi=\lambda\beta$ And therefore $\lambda=\pi$.

Now assume $\lambda = 0$.

$$a\cos(t)+b\sin(t)=0\iff a=b=0$$
 and so:

$$E_0 = \{u \in E \mid u \perp \cos \text{ and } u \perp \sin\} = \{\cos, \sin\}^{\perp}$$

and $\dim E_0 = \infty$.

And so $L^2[0,2\pi]=E_\pi\oplus E_0$.