

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Mechanics 1 (WME01) Paper 01

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2022
Publications Code P68783A
Publications Code WME01\_01\_2201\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
   Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### PEARSON EDEXCEL IAL MATHEMATICS

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

### 'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

# To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned.

e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

### 'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

## 'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

## 3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

### **General Principles for Mechanics Marking**

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
  - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
  - M(A) Taking moments about A.
  - N2L Newton's Second Law (Equation of Motion)
  - NEL Newton's Experimental Law (Newton's Law of Impact)
  - HL Hooke's Law
  - SHM Simple harmonic motion
  - PCLM Principle of conservation of linear momentum
  - RHS, LHS Right hand side, left hand side

| Question |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Number   | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks |
| 1(a)     | $F = 5\cos 30^{\circ}$ oe (Resolving perp to string or from triangle of forces or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1 A1 |
|          | $F = 5\cos 50^{\circ}$ of (Resolving perp to string or from triangle of forces of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|          | Lami's Theorem: $\frac{F}{\sin 120^{\circ}} = \frac{5}{\sin 90^{\circ}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|          | SIII 120 SIII 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|          | $OR \frac{F \sin 30^{\circ}}{\sin 60^{\circ}} \cos 60^{\circ} + F \cos 30^{\circ} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|          | $F = \frac{5\sqrt{3}}{2}$ 4.3 or better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1    |
|          | <b>N.B.</b> $F \sin 30^{\circ} = T \sin 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)   |
| 1(b)     | $T = 5 \sin 30^{\circ}$ oe (Resolving along string or from triangle of forces or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1 A1 |
|          | , and a second s |       |
|          | Lami's Theorem: $\frac{T}{\sin 150^{\circ}} = \frac{5}{\sin 90^{\circ}}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|          | $T \sin 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|          | <b>OR</b> $T\cos 60^{\circ} + \frac{T\sin 60^{\circ}}{\sin 30^{\circ}}\cos 30^{\circ} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|          | $T = \frac{5}{2} \text{ (N)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1    |
|          | <b>N.B.</b> $F \sin 30^{\circ} = T \sin 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6)   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 1(a)     | Notes for question 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 1(a)     | M1 Complete method to obtain equation in $F$ only - correct no. of terms, condone sign errors and $\sin/\cos$ confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|          | (If they resolve horizontally and vertically, they will need to eliminate T to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|          | obtain this M mark, with the usual rules applying to each equation they use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|          | <b>N.B.</b> If they do (b) first and find an incorrect value for $T$ and then use that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|          | value in (a), using an equation that would earn M1, with usual rules, to find $F$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|          | give M1A0A0 in (a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|          | M0 if using wrong angles e.g. 45° A1 Correct equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|          | A1 cao (4.3301)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 1(b)     | M1 Complete method to obtain equation in T only - correct no. of terms,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| (-)      | condone sign errors and sin/cos confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|          | (If they resolve horizontally and vertically, they will need to eliminate $F$ to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|          | obtain this M mark, with the usual rules applying to each equation they use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|          | <b>N.B.</b> If they find an incorrect value for $F$ in (a) and then use that value in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|          | (b), using an equation that would earn M1, with usual rules, to find T, give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|          | M1A0A0 in (b). M0 if using wrong angles e.g. 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|          | A1 Correct equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|          | A1 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

| Question<br>Number | Scheme                                                                                                                                                                       | Marks    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2(a)               | $P(km) \longrightarrow Q(m)$ $\frac{3}{2}u \qquad \frac{1}{2}u$ $CLM: km \times 3u - mu = -km \times \frac{3}{2}u + m \times \frac{1}{2}u$                                   |          |
|                    | CLM: $km \times 3u - mu = -km \times \frac{3}{2}u + m \times \frac{1}{2}u$                                                                                                   | M1 A1 A1 |
|                    | $k = \frac{1}{3}$                                                                                                                                                            | A1       |
|                    | (1) 1 (2)                                                                                                                                                                    | (4)      |
| 2(b)               | $I = m\left(\frac{1}{2}uu\right) \qquad \mathbf{OR} \qquad I = \frac{1}{3}m\left(\frac{3}{2}u3u\right)$                                                                      | M1 A1    |
|                    | $I = \frac{3}{2}mu$ must be positive                                                                                                                                         | A1       |
|                    |                                                                                                                                                                              | (3)      |
|                    |                                                                                                                                                                              | (7)      |
|                    | Notes for question 2                                                                                                                                                         |          |
| 2(a)               | M1 Correct no. of terms, dim correct, condone sign errors but structure must be correct – allow consistently cancelled <i>m</i> 's or extra <i>g</i> 's                      |          |
|                    | A1 Correct equation with one error                                                                                                                                           |          |
|                    | A1 Correct equation A1 Allow 0.33 or better                                                                                                                                  |          |
| 2(b)               | M1 Condone sign errors but must have masses and speeds paired correctly and must be attempting a difference of momenta.  Allow M1 if k is not substituted.  M0 if g included |          |
|                    | A1 Allow $\pm m \left( \frac{1}{2}uu \right)$ <b>OR</b> $\pm \frac{1}{3} m \left( \frac{3}{2}u3u \right)$ (no ft on $k$ )                                                    |          |
|                    | A1 cao Allow them to change a negative expression into a positve one                                                                                                         |          |
|                    | <b>N.B.</b> If they do (b) first, and obtain an impulse of magnitude $I$ , then they do (a) : $I = km(\frac{3u}{2}3u)$ , apply CLM scheme to their equation.                 |          |

| Question<br>Number | Scheme                                                                                                    | Marks          |            |
|--------------------|-----------------------------------------------------------------------------------------------------------|----------------|------------|
| 3(a)               | $M(D)$ , $mg \times 1.2 = 30g \times 0.8$                                                                 | M1 A1          |            |
|                    | Other possible equations:                                                                                 |                |            |
|                    | $(\uparrow) R = mg + 30g$                                                                                 |                |            |
|                    | $M(A) 2.5mg + 30g \times 4.5 = 3.7R$                                                                      |                |            |
|                    | $M(G) 30g \times 2 = 1.2R$                                                                                |                |            |
|                    | $M(C) mg \times 2 = 0.8R$                                                                                 |                |            |
|                    | $M(B) 2.5mg + 30g \times 0.5 = 1.3R$                                                                      |                |            |
|                    | m = 20  (kg)                                                                                              | A1             |            |
|                    | <b>N.B.</b> Allow an inequality if they state $m = 20$ (kg) at the end                                    |                | (3)        |
| <b>3(b)</b>        | $M(D)$ , $Xg \times 3.7 + 20g \times 1.2 = 30g \times 1.3$                                                | M1A1 <b>ft</b> |            |
| - (~)              | <b>N.B.</b> Allow inequality ≥the correct way round for M1A1ft                                            | 1,1111111      |            |
|                    | Other possible equations:                                                                                 |                |            |
|                    | $(\uparrow) S = mg + 30g + Xg$                                                                            |                |            |
|                    | $M(A)$ 2.5 $mg + 30g \times 5 = 3.7S$ where $m$ is their answer from (a).                                 |                |            |
|                    | $M(G) \ \ 30g \times 2.5 = 1.2S + Xg \times 2.5$                                                          |                |            |
|                    | $M(B) 2.5mg + Xg \times 5 = 1.3S$                                                                         |                |            |
|                    | $X = \frac{150}{37}$ , 4.1 or better (4.05405)                                                            | A1             |            |
|                    | 37                                                                                                        | 111            | (2)        |
| 3(c)               | The mass of the block is concentrated at a point. oe                                                      | B1             | (3)        |
| - (-)              | N.B. Must mention either mass or weight and 'acting at a point' or                                        |                | (1)        |
|                    | 'concentrated at a point'.                                                                                |                | (1)        |
|                    |                                                                                                           |                | <b>(7)</b> |
| 2( )               | Notes for question 3                                                                                      |                |            |
| 3(a)               | M1 Complete method to give an equation in <i>m</i> only. Allow M1 if they use weight instead of <i>mg</i> |                |            |
|                    | <b>N.B.</b> If they don't use $M(D)$ , e.g. $(\uparrow)$ and $M(A)$ , they will need to eliminate the     |                |            |
|                    | reaction at D to obtain the M mark.                                                                       |                |            |
|                    | Each equation used must have the correct no. of terms and be dimensionally                                |                |            |
|                    | correct.                                                                                                  |                |            |
|                    | M0 if they don't have the reaction acting at D.                                                           |                |            |
|                    | A1 Correct equation                                                                                       |                |            |
| 3(b)               | A1 cao M1 Complete method to give an equation in <i>X</i> only.                                           |                |            |
| 3(b)               | Allow M1 if they use weight instead of $Xg$                                                               |                |            |
|                    | <b>N.B.</b> If they don't use $M(D)$ , e.g. $(\uparrow)$ and $M(A)$ , they will need to eliminate the     |                |            |
|                    | reaction at D to obtain the M mark.                                                                       |                |            |
|                    | Each equation used must have the correct no. of terms and be dimensionally                                |                |            |
|                    | correct.                                                                                                  |                |            |
|                    | M0 if they don't have the reaction acting at D.                                                           |                |            |
|                    | A1 ft Correct equation. Follow through on their 20                                                        |                |            |
| 3(c)               | A1 cao B1 Any equivalent statement.                                                                       |                |            |
| <i>3(t)</i>        | Di miy equivalent statement.                                                                              | L              |            |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                    | Marks                                                                                          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 4(a)               | $0^2 = u^2 - 2 \times g \times 19.6$                                                                                                                                                                                                                                      | M1 A1                                                                                          |
|                    | $-24.5 = uT - \frac{1}{2}gT^2$                                                                                                                                                                                                                                            | M1 A1                                                                                          |
|                    | Produce an equation in <i>T only</i> and solve for <i>T</i>                                                                                                                                                                                                               | DM1                                                                                            |
|                    | T=5                                                                                                                                                                                                                                                                       | A1                                                                                             |
| 4(b)               |                                                                                                                                                                                                                                                                           | B1 Shape                                                                                       |
|                    | speed  T  t                                                                                                                                                                                                                                                               | DB1 Second line longer than the first, approx. equal angles and T or their answer for T marked |
| <u> </u>           |                                                                                                                                                                                                                                                                           | (2)                                                                                            |
|                    |                                                                                                                                                                                                                                                                           | (8)                                                                                            |
|                    |                                                                                                                                                                                                                                                                           |                                                                                                |
|                    | Notes for question 4                                                                                                                                                                                                                                                      |                                                                                                |
| 4(a)               | M1 Attempt at a relevant <i>suvat</i> equation which uses $s = 19.6$ (or $-19.6$ ), with correct no. of terms but condone sign errors.                                                                                                                                    |                                                                                                |
|                    | A1 A correct equation ( <i>g</i> does not need to be substituted)  M1 Attempt at another relevant <i>suvat</i> equation which uses 24.5 or 44.1 e.g. finding time from <i>B</i> to the ground, with correct no. of terms but condone sign errors,                         |                                                                                                |
|                    | A1 A correct equation (neither $u$ nor $g$ need to be substituted)                                                                                                                                                                                                        |                                                                                                |
|                    | DM1 dependent on both M marks, for finding an equation in $T$ only and solving for $T$ i.e. for a complete method to find $T$                                                                                                                                             |                                                                                                |
|                    | <b>N.B</b> . This mark cannot be awarded if their equation has NO solutions.                                                                                                                                                                                              |                                                                                                |
|                    | A1 $T=5$ N.B. If $g=9.8$ has not been used, A0                                                                                                                                                                                                                            |                                                                                                |
| 4(b)               | B1 A V-shape ( <i>and nothing else</i> ) starting on the speed axis, with point on the <i>t</i> -axis                                                                                                                                                                     |                                                                                                |
|                    | <b>DB</b> 1 Dependent on the first B1, for approximately equal angles between the 2 lines and the <i>t</i> -axis, second line longer than the first, <i>T</i> or their <i>T</i> marked correctly.  B0 if clearly unequal angles. <b>N.B</b> . If graph reflected, B0 DB0. |                                                                                                |
|                    |                                                                                                                                                                                                                                                                           |                                                                                                |

| Question<br>Number | Scheme                                                                                                                                                        | Marks |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5.                 | Resolve perp to the plane: $R = mg \cos \alpha$                                                                                                               | M1A1  |
|                    | Resolve parallel to the plane:                                                                                                                                | M1    |
|                    | $mg\sin\alpha + F = 2P$                                                                                                                                       | A1    |
|                    | $mg\sin\alpha - F = P$                                                                                                                                        | A1    |
|                    | Use of $F = \mu R$                                                                                                                                            | M1    |
|                    | Substitute correctly for trig, eliminate P and F and solve for $\mu$                                                                                          | M1    |
|                    | $\mu$ = 0.25                                                                                                                                                  | Al    |
|                    | <b>N.B.</b> If they consistently omit $g$ and obtain the correct answer, max marks are: M1A0M1A0A0M1M1A1                                                      | (8    |
|                    |                                                                                                                                                               | 3)    |
|                    | Notes for question 5                                                                                                                                          |       |
|                    | M1 First resolution, correct no. of terms, condone sign errors and sin/cos confusion  N.B. If they use cos (4/5) etc, treat as an A error but allow recovery. |       |
|                    | A1 Correct equation  M1 Second (or third) resolution, correct no. of terms, condone sign errors and sin/cos confusion                                         |       |
|                    | <b>N.B.</b> M0 if they don't substitute for $X$ , but full marks is possible if they use $X$ and $2X$ oe.                                                     |       |
|                    | If they use sin (3/5) etc, treat as an A error but allow recovery.  A1 Correct equation (A0 if they use different <i>R</i> 's or <i>F</i> 's)                 |       |
|                    | A1 Correct equation (A0 if they use different $R$ 's or $F$ 's)                                                                                               |       |
|                    | M1 Use of $F = \mu R$                                                                                                                                         |       |
|                    | M1 Substitute for trig, eliminate P and F and solve for $\mu$                                                                                                 |       |
|                    | A1 cao                                                                                                                                                        |       |
|                    |                                                                                                                                                               |       |
|                    | Other possible equations:                                                                                                                                     |       |
|                    | $(\rightarrow)2P\cos\alpha = R\sin\alpha + F\cos\alpha \tag{1}$                                                                                               |       |
|                    | $(\rightarrow) P\cos\alpha = R\sin\alpha - F\cos\alpha \qquad (2)$                                                                                            |       |
|                    | $(\uparrow)mg - 2P\sin\alpha = R\cos\alpha - F\sin\alpha  (3)$                                                                                                |       |
|                    | $(\uparrow)mg - P\sin\alpha = R\cos\alpha + F\sin\alpha  (4)$                                                                                                 |       |
|                    | SC: (Only needs 2 equations)                                                                                                                                  |       |
|                    | Equation (1): M1A1                                                                                                                                            |       |
|                    | Equation (2): M1A1                                                                                                                                            |       |
|                    | $(1) + (2): 3P\cos\alpha = 2R\sin\alpha$                                                                                                                      |       |
|                    | $(1)-(2): P\cos\alpha = 2F\cos\alpha$                                                                                                                         |       |
|                    | Divide $\frac{1}{3} = \frac{F}{R} \cot \alpha$ . A1                                                                                                           |       |
|                    | Use of $F = \mu R$ M1                                                                                                                                         |       |
|                    | Substitute for trig and solve for $\mu$ M1                                                                                                                    |       |
|                    | $\mu = 0.25$ A1                                                                                                                                               |       |
|                    | ·                                                                                                                                                             |       |
|                    |                                                                                                                                                               |       |

| Question<br>Number | Scheme                                                                                                                 | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)               | $(p\mathbf{i} + q\mathbf{j}) + (2q\mathbf{i} + p\mathbf{j}) = 2(\mathbf{i} - \mathbf{j})  \text{(allow 2g)}$           | M1    |
|                    | Equating coefficients of i or j                                                                                        | M1    |
|                    | p+2q=2                                                                                                                 | A1    |
|                    | q+p=-2                                                                                                                 | A1    |
|                    | q+p = -2 $p = -6; q = 4$                                                                                               | A1    |
|                    |                                                                                                                        | (5)   |
| 6(b)               | $\tan \alpha = \pm 1$ ; e.g. 45° or $\frac{\pi}{4}$                                                                    | M1    |
|                    | $\tan \alpha = \pm 1$ ; e.g. 45° or $\frac{\pi}{4}$ Angle is 135° or 225° or $\frac{3\pi}{4}$ or $\frac{5\pi}{4}$      | A1    |
|                    |                                                                                                                        | (2)   |
| 6(c)               | $\mathbf{v} = (3\mathbf{i} - 4\mathbf{j}) + T(\mathbf{i} - \mathbf{j})$                                                | M1    |
|                    | $\frac{3+T}{-4-T} = \frac{11}{-13}$                                                                                    | M1A1  |
|                    | Solve for T                                                                                                            | DM1   |
|                    | T=2.5                                                                                                                  | A1    |
|                    |                                                                                                                        | (5)   |
|                    |                                                                                                                        | (12)  |
|                    | Notes for question 6                                                                                                   | ,     |
| 6(a)               | M1 Use of $\mathbf{F} = m\mathbf{a}$ with $m = 2$ . Correct no. of terms and must be attempting to add the two forces. |       |
|                    | M1 Must have an equation in p and q only (no vectors)                                                                  |       |
|                    | This mark is available if <i>m</i> has been omitted.                                                                   |       |
|                    | M0 if they use a ratio i.e. $\frac{p+2q}{2} = \frac{q+p}{-2}$ but never equate coefficients.                           |       |
|                    | A1 A correct equation in any form                                                                                      |       |
|                    | A1 Two correct equations in any form                                                                                   |       |
|                    | A1 cao                                                                                                                 |       |
| 6(b)               | M1 (Use of trig.) to find a relevant angle                                                                             |       |
|                    | A1 cao accept radians or degrees                                                                                       |       |
| 6(c)               | M1 Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}T$ to obtain a velocity vector.                                         |       |
| - (-)              | M1 Use of ratios using <i>their</i> v (must be a velocity) to produce an equation in T                                 |       |
|                    | (allow t) only                                                                                                         |       |
|                    | Condone sign error but must be the correct way up.                                                                     |       |
|                    | A1 Correct equation                                                                                                    |       |
|                    | <b>DM</b> 1 Dependent on previous M mark for solving for T                                                             |       |
|                    | Al cao                                                                                                                 |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |
|                    |                                                                                                                        |       |

| Question<br>Number | Scheme                                                                                                                                                 | Marks       |     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| 7(a)               | T = ma (allow -a)                                                                                                                                      | B1          |     |
|                    |                                                                                                                                                        | (           | (1) |
| 7(b)               | $4mg \sin \alpha - T - F = 4ma$ <b>OR</b> $4mg \sin \alpha - F = 5ma$ (allow -a)                                                                       | M1A1        |     |
|                    | $F = \frac{1}{4}R$                                                                                                                                     | B1          |     |
|                    | $R = 4mg\cos\alpha$                                                                                                                                    | M1A1        |     |
|                    | Solve for <i>T</i> in terms of <i>mg</i> only                                                                                                          | <b>D</b> M1 |     |
|                    | $T = \frac{8mg}{25} \text{ oe}$                                                                                                                        | A1          |     |
|                    |                                                                                                                                                        | (           | (7) |
| <b>7</b> ©         | $2T\sin\frac{1}{2}\alpha$ oe e.g. $\sqrt{T^2 + T^2 - 2T^2\cos\alpha}$ using cos rule                                                                   |             |     |
|                    | Or $\frac{T \sin \alpha}{\sin(90^{\circ} - \frac{1}{2}\alpha)}$ using sine rule                                                                        | M1 A1       |     |
|                    | Or $\sqrt{(T-T\cos\alpha)^2+(T\sin\alpha)^2}$ using components and Pythag.                                                                             |             |     |
|                    | Substitute for <i>T</i> and trig                                                                                                                       | M1          |     |
|                    | $\frac{8mg\sqrt{10}}{125}$ oe, $2m$ or $2.0m$ or $1.98m$ or $0.2mg$ or better                                                                          | A1          |     |
|                    |                                                                                                                                                        | (           | (4) |
| 7(d)               | e.g. Tension will be the same <u>throughout</u> a <b>section</b> of the string.                                                                        | B1 (1       | _   |
|                    | N. A. C                                                                                                                                                | (1          | 3)  |
| 7(a)               | Notes for question 7  B1 cao The equation must appear in (a) to earn the B1.                                                                           |             |     |
| 7(b)               | M1 Equation of motion for <i>P</i> parallel to the plane, correct no. of terms, condone sign errors and sin/cos confusion                              |             |     |
|                    | A1 Correct equation                                                                                                                                    |             |     |
|                    | B1 $F = \frac{1}{4}R$ seen – could just be on the diagram                                                                                              |             |     |
|                    | M1 Resolve perpendicular to the plane for <i>P</i> , correct no. of terms, condone sign errors and sin/cos confusion                                   |             |     |
|                    | A1 Correct equation  DM1 Dependent on both M marks, for solving for T – must be in terms of mg only (must be of form kmg)                              |             |     |
| 7©                 | A1 cao M1 If using resolving, condone cos/sin confusion and sign errors but must have correct angle                                                    |             | _   |
|                    | A1 Any correct unsimplified expression in terms of $T$ and $\alpha$ M1 For substituting in their $T$ (must be of form $kmg$ ) and $correct$ values for |             | _   |
|                    | their trig A1 cao                                                                                                                                      |             |     |
| 7(d)               | B1 B0 for 'tension is the same throughout the string' B0 if incorrect extras                                                                           |             |     |
|                    |                                                                                                                                                        |             | _   |

| Question<br>Number | Scheme                                                                                                                                                                                  | Marks     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 8(a)               | $\mathbf{r} = (13\mathbf{i} + 5\mathbf{j}) + t(3\mathbf{i} - 10\mathbf{j})$                                                                                                             | M1 A1     |
|                    |                                                                                                                                                                                         | (2)       |
| 8(b)               | $\mathbf{s} = (3\mathbf{i} - 5\mathbf{j}) + t(15\mathbf{i} + 14\mathbf{j})$                                                                                                             | M1 A1     |
|                    | $AB = \mathbf{s} - \mathbf{r}$                                                                                                                                                          | M1        |
|                    |                                                                                                                                                                                         |           |
|                    | $AB = (12t - 10)\mathbf{i} + (24t - 10)\mathbf{j} \text{ km *}$                                                                                                                         | A1 *      |
| 8(c)               | $AB^{2} = (12t - 10)^{2} + (24t - 10)^{2}  (720t^{2} - 720t + 200)$                                                                                                                     | (4)<br>M1 |
| .,                 | Differentiate and equate to 0 <b>OR</b> Complete square <b>OR</b> use $t = \frac{-b}{2a}$                                                                                               | M1        |
|                    | $1440t - 720 = 0 \text{ oe} 	 720(t - \frac{1}{2})^2 + 20$                                                                                                                              | A1        |
|                    | Solve for $t$ Use $(t - \frac{1}{2})^2 \ge 0$ $t = \frac{720}{2 \times 720}$                                                                                                            | DM1       |
|                    | Substitute their value of t into their AB expression                                                                                                                                    | M1        |
|                    | $\sqrt{20}$ oe (km) 4.5 or better                                                                                                                                                       | A1        |
|                    |                                                                                                                                                                                         |           |
|                    | OR for last 5 marks: Complete method                                                                                                                                                    | M1        |
|                    | $720t^2 - 720t + 200 = D^2  \text{i.e. } 720t^2 - 720t + 200 - D^2 = 0$                                                                                                                 | Al        |
|                    | (For real t, $720^2 \ge 4 \times 720(200 - D^2)$                                                                                                                                        | DM1       |
|                    | † · · · · · · · · · · · · · · · · · · ·                                                                                                                                                 |           |
|                    | Solve for $D$ , $(D \ge \sqrt{20})$                                                                                                                                                     | M1        |
|                    | $\sqrt{20}$ oe (km) 4.5 or better                                                                                                                                                       | A1        |
|                    |                                                                                                                                                                                         | (6)       |
| 8(d)               | Use $\overrightarrow{AB} = -4\mathbf{i} + 2\mathbf{j}$ at $t = \frac{1}{2}$ to obtain a relevant angle e.g. 26.56°<br>Allow e.g. $\tan \alpha = \frac{1}{2}$ or $\tan^{-1} \frac{1}{2}$ | M1        |
|                    | Bearing is 297° or better                                                                                                                                                               | A1        |
|                    |                                                                                                                                                                                         | (2)       |
|                    |                                                                                                                                                                                         | (14)      |
|                    | Notes for question 8                                                                                                                                                                    |           |
| 8(a)               | Accept column vectors through out apart from the answer for (b)  M1 Expression with correct structure                                                                                   |           |
| o(a)               | A1 cao                                                                                                                                                                                  |           |
| 8(b)               | M1 Expression with correct structure                                                                                                                                                    |           |
|                    | A1 cao                                                                                                                                                                                  |           |
|                    | M1 Allow difference in either order                                                                                                                                                     |           |
|                    | A1* Correct given expression correctly obtained                                                                                                                                         |           |
| 0()                | <b>N.B.</b> $AB = (-10 + 12t)\mathbf{i} + (-10 + 24t)\mathbf{j}$ is A0                                                                                                                  |           |
| 8(c)               | M1 Attempt to differentiate (at least one power degreesing by 1) or to                                                                                                                  |           |
|                    | M1 Attempt to differentiate (at least one power decreasing by 1) or to complete the square                                                                                              |           |
|                    | A1 Correct equation or expression                                                                                                                                                       |           |
|                    | DM1 Dependent on previous M for finding the critical value for t                                                                                                                        |           |
|                    | <b>OR</b> For the completing the square method, for 'ignoring' the $(t-\frac{1}{2})^2$ term.                                                                                            |           |

| Question<br>Number | Scheme                                                                          | Marks |
|--------------------|---------------------------------------------------------------------------------|-------|
|                    | M1 Substitute their $t$ (it may not be clear where it has come from but it must |       |
|                    | be non-zero) into their AB expression (must have square root)                   |       |
|                    | Al cao                                                                          |       |
| 8(d)               | M1 Using their t value to obtain $\overrightarrow{AB}$ and a relevant angle     |       |
|                    | A1 cao                                                                          |       |