Foncteurs, Monades et Zippers

Jérémy Cochoy

Paris RB

Février 2018

- Foncteurs applicatifs
 - Fonctions
 - Types
 - Foncteurs
- Monades
 - Construction
 - Théorie
 - The List Monade
 - Ruby's Maybe Monade
- Automates Cellulaires
 - Qu'est-ce que c'est?
 - Le jeu de la vie
 - Algorithme 1D

- Comonades
 Evaluer un automate est
 comonadique
 - Un univers
 - Un foncteur
 - Une comonade
 - Evaluation

Les fonctions

On considère des fonctions pures :

- déterministe
- sans effet de bord

add2 了

Les fonctions

On considère des fonctions pures :

- déterministe
- sans effet de bord

add2 🕉


```
def add2(n)
end
```

Les types

Qu'appelons nous un type?

Pour nous, c'est un ensemble de valeurs.

- $Integer = \{-2147483648, \dots, 2147483647\}$
- $NilClass = \{nil\}$
- Boolean = $\{True, False\}$
- \bullet [Nilclass] = {[], [True], [False], [True, False], [False, True], . . .}

Les types

Qu'appelons nous un type?

Pour nous, c'est un ensemble de valeurs.

Exemples:

- $Integer = \{-2147483648, \dots, 2147483647\}$
- $NilClass = \{nil\}$
- $Boolean = \{True, False\}$
- $[Nilclass] = \{[], [True], [False], [True, False], [False, True], \ldots \}$

Les types

Qu'appelons nous un type?

Pour nous, c'est un ensemble de valeurs.

Exemples:

- $Integer = \{-2147483648, \dots, 2147483647\}$
- $NilClass = \{nil\}$
- $Boolean = \{True, False\}$
- $[Nilclass] = \{[], [True], [False], [True, False], [False, True], \ldots \}$

Les fonctions sont de type : a -> b

- floor : : Float -> Integer
- 2.method(:+)::Integer-> Integer

Les fonctions se composent

- f1::a->b
- f2::b->c
- $\{ |x| f2(f1(x)) \} : : a -> c \}$

```
sum = ->(a, b) do
a + b
end
```

```
sum = ->(a, b) do
a + b
end
```

```
irb > sum.(2,3)
=> 5
```

```
sum = ->(a, b) do
a + b
end
```

```
irb > sum.(2,3)
=> 5
```

```
irb > sum.curry.(1)
=> #<Proc:0x00000000288c3c0 (lambda)>
irb > sum.curry.(1).(2)
=> 3
```

```
sum = ->(a, b) do
  a + b
end
```

Curryfication

- sum :: (a, b) -> c
- sum.curry : : a -> (b -> c)

```
sum = ->(a, b) do
 a + b
end
```

Curryfication

- sum :: (a, b) -> c
- sum.curry : : a -> b -> c


```
sum = ->(a, b) do
  a + b
end
```

Curryfication

- sum :: (a, b) -> c
- sum.curry : : a -> b -> c

Exercice

compose : : (a -> b) -> (b -> c) -> (a -> c)

Les foncteurs applicatifs

Un foncteur F agit sur les types ...

- a => F a
- a => [a]
- a => Tree a
- a => Maybe a

... et sur les fonctions

•
$$a -> b => Fa -> Fb$$

- fmap 2.method(:+2):: F Int -> F Int
- fmap floor : : F Float -> F Int

Les foncteurs applicatifs

Un foncteur F agit sur les types ...

- a => F a
- a => [a]
- a => Tree a
- \bullet a => Maybe a

... et sur les fonctions

- a -> b => F a -> F b
- fmap 2.method(:+2):: F Int -> F Int
- fmap floor : : F Float -> F Int

Donnée dans un contexte

Un foncteur permet de passer d'un monde (les types a) vers un autre (les types F a).

Maybe: Une implémentation


```
class Just < Maybe
  def self.call(value)
    new [value]
  end
end
```

```
irb > Just.(3)
=> #<Just:0x00000000359c010 @content=[3]>
```

Maybe: Une implémentation


```
class Nothing < Maybe</pre>
  def self.call()
    new []
  end
end
```

```
irb> Nothing.()
=> #<Nothing:0x000000002d97d38 @content=[]>
```

Maybe: Une implémentation

```
class Maybe
  private_class_method :new
 def initialize(content)
    @content = content
 end
 def from_maybe(default_value)
    return default_value if @content.empty?
    @content.first
 end
end
```



```
irb > Just.(3).from_maybe
=> 3
irb > Nothing.().from_maybe
=> nil
```

Functorial mapping

On ne peut plus appliquer la fonction telle quelle :

Functorial mapping

Mais le foncteur nous donne une nouvelle flèche.

Functorial mapping

$$add2 = ->(x) \{x + 2\}$$

```
add2.call Just.(3)
# NoMethodError (undefined method '+' for
    \# < \text{Just} : 0 \times 0000000003485280 \ \text{@content} = [3] > )
(fmap add2).call Just.(3)
\# = \# \{Just: 0x0000000036f8ff8 @content = [5] \}
```

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- fmap $(p \circ q) = (fmap p) \circ (fmap q)$

id =
$$->(x)$$
 {x}
(p o q) = $->(x)$ { p.(q.(x)) }

Un foncteur doit respecter des lois

- fmap id = id
- fmap $(p \circ q) = (fmap p) \circ (fmap q)$

id =
$$->(x)$$
 {x}
(p o q) = $->(x)$ { p.(q.(x)) }

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- fmap $(p \circ q) = (fmap p) \circ (fmap q)$

id =
$$->(x)$$
 {x}
(p o q) = $->(x)$ { p.(q.(x)) }

Un foncteur est un endofoncteur de la catégorie des types.

Monades

Donnée dans un contexte

Une monade place une valeur dans un contexte.

L'exemple de Maybe : Just 3

Donnée dans un contexte

Un contexte peut aussi ne pas contenir de valeur.

L'exemple de Maybe : Nothing

Placer une donnée dans un contexte

L'opérateur pure

pure :: a -> F a

Quelques cas particuliers

- Just
- [] <<

D'autres types

- Maybe = Nothing | Just a
- Tree = Leaf | Node a (Tree a) (Tree a)
- Either = Left a | Right b

Un traitement qui peut échouer,

Une fonction de type Int -> Maybe Int.

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```


Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f::a \rightarrow M b avec f map g::
M b \rightarrow M (M c).
```

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f::a \rightarrow M b avec f map g::
M b \rightarrow M (M c).
```

```
Que faire d'un M (M c)?
```


join :: M (M a) -> M a

join :: M (M a) -> M a

join Just.(Just.(3)).

join :: M (M a) -> M a

join :: M (M a) -> M a

join Just.(Nothing.()).

Une implémentation de join :

```
def join(bbox)
  case bbox
  when Nothing
    Nothing.()
  when Just
    bbox.from_maybe
  end
end
```

L'opérateur bind

On cherche à définir la composition.

```
bind :: (a -> M b) -> (b -> M c) -> (a -> M c)
```

```
• (fmap g) o f :: a -> M (M c)
```

• join :: M (M a) -> M a

L'opérateur bind

On cherche à définir la composition.

```
bind :: (a -> M b) -> (b -> M c) -> (a -> M c)
```

Nous avons:

- (fmap g) o f :: a -> M (M c)
- join :: M (M a) -> M a

L'opérateur bind

On cherche à définir la composition.

```
bind :: (a -> M b) -> (b -> M c) -> (a -> M c)
```

Nous avons:

- (fmap g) o f :: a -> M (M c)
- join :: M (M a) -> M a

On peut maintenant composer f et g.

```
def bind(f, g)
  ->(x) do
    join (fmap g).(f.(x))
  end
end
```

Récapitul<u>atif</u>

Une monade, c'est

- pure : : a -> M a
- fmap : : (a -> b) -> (M a -> M b)
- join :: M (M a) -> M a

A must read

Haskell

The understandable parts

Une monade doit respecter des lois

- pure o f \equiv (fmap f) o pure
- ullet join o fmap (fmap f) \equiv (fmap f) o join
- join o fmap join ≡ join o join
- join o fmap pure ≡ join o pure = id

Monades - Catégories

Une monade (T, μ, η) est la donnée d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_C \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu_T$ et $\mu \circ T\eta = \mu \circ \eta_T = id_T$.

Dans notre cas C la catégorie des types.

Monades - Catégories

Une monade (T, μ, η) est la donnée d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_C \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu_T$ et $\mu \circ T\eta = \mu \circ \eta_T = id_T$.

Dans notre cas C la catégorie des types.

pure est une T.N.

pure . $f \equiv (fmap f)$. pure

$$X \xrightarrow{f} Y$$

$$\downarrow^{\eta_X} \downarrow \qquad \qquad \downarrow^{\eta_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

join est une T.N.

join . fmap
$$(fmap f) \equiv (fmap f)$$
 . join

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$

$$\downarrow^{\mu_X} \qquad \qquad \downarrow^{\mu_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

Associativité

join . fmap join ≡ join . join

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$\mu \circ T\mu = \mu \circ \mu_T$$

Existence d'un neutre

join . fmap pure ≡ join . pure = id

$$T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$T(\eta_{X}) \downarrow \qquad \qquad \downarrow^{\mu_{X}}$$

$$T(T(X)) \xrightarrow{\mu_{X}} T(X)$$

$$\mu \circ T\eta = \mu \circ \eta_T = id_T$$

Et dans la vraie vie?

Tout ça, à quoi ça sert?

List : calcul non déterministe

Type UnionDisjointe nil

Automates cellulaires

Toison d'or

Qu'est-ce qu'un automate cellulaire?

Un automate cellulaire, c'est :

- Un nombre fini d'états S,
- Une grille de cellules,
- La notion de voisinage d'une cellule V_c ,
- Une fonction de transition qui à une cellule associe son nouvel état.

Combien d'automates cellulaires différents?

On a le choix:

- De la dimension de la grille,
- Des lois,
- Du nombres d'états (couleurs),
- De la forme du voisinages (boules de rayon r, etc.),
- De ne pas être déterministe.

The "Game of Life"

Jeu de la vie (J. H. Conway)

Étude d'un cas : Rule 30

La grille

La grille de l'automate

- Une grille 1D
- Deux états (Blanc / Noir)

Un voisinage de 3 cellules.

Ancien état	111	110	101	100	011	010	001	
Nouvel état				1	1	1	1	

Un voisinage de 3 cellules.

Les règles

Ancien état	111	110	101	100	011	010	001	
Nouvel état				1	1	1	1	

Les règles

On peut aussi écrire :

Ancien état	111	110	101	100	011	010	001	000
Nouvel état	0	0	0	1	1	1	1	0

Comonades

C'est le dual d'une monade

- C'est un foncteur M
- extract (copure) (co uinit) : : M a -> a
- duplicate (cojoin) (co product δ) : : M a -> M (M a)

Dura lex sed lex

Une comonade doit respecter des lois

- ullet (fmap (fmap f)) . duplicate \equiv duplicate . fmap f
- duplicate . duplicate = fmap duplicate . duplicate
- ullet duplicate \equiv fmap duplicate . duplicate (commut)
- ullet fmap extract . duplicate \equiv extract . duplicate \equiv id (counit)

Comonades - Catégories

Une comonade (T, δ, ϵ) est la donnée d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\Delta: T \to T \circ T$ et $\epsilon: T \to 1_C$ telles que :

$$T(X) \xrightarrow{\Delta_X} T(T(X)) \qquad T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_{T(X)} \qquad \Delta_X \downarrow \qquad \qquad \downarrow \epsilon_{T(X)}$$

$$T(T(X)) \xrightarrow{T(\Delta_X)} T(T(T(X))) \qquad T(T(X)) \xrightarrow{T(\epsilon_X)} T(X)$$

c'est à dire $\Delta_T \circ \Delta = T\Delta \circ \Delta$ et $T\epsilon \circ \Delta = \epsilon_T \circ \Delta = id$.

extract est une T.N.

f . extract \equiv extract . (fmap f)

duplicate est une T.N.

(fmap (fmap f)) . $duplicate \equiv duplicate$. fmap f

$$T(X) \xrightarrow{T(f)} T(Y)$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_Y$$

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$

Coassociativité

duplicate . duplicate = fmap duplicate . duplicate

$$T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_{T(X)}$$

$$T(T(X)) \xrightarrow{T(\Delta_X)} T(T(T(X)))$$

$$\Delta_{\tau} \circ \Delta = T\Delta \circ \Delta$$

A chaque loi son diagramme

Existence d'une counité

extract . duplicate = fmap extract . duplicate = id

$$T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\downarrow^{\epsilon_{T(X)}}$$

$$T(T(X)) \xrightarrow{T(\epsilon_X)} T(X)$$

$$\epsilon_{\mathcal{T}} \circ \Delta = T \epsilon \circ \Delta = i d_{\mathcal{T}}$$

Evaluer un automate est comonadique

L'univers

Un ruban

On représente l'univers dans lequel vit notre automate par un ruban, que l'on voit comme trois parties :

- La partie infinie à gauche
- La case observée
- La partie infinie à droite

data Universe a = Universe [a] a [a]

Quelques opérations sur notre univers

Voyageons

On s'autorise à effectuer quelques opérations raisonnables sur notre univers :

- Regarder à gauche (left shift)
- Regarder à droite (right shift)

Moralement, on translate notre ruban.

left, right : : Universe a -> Universe a

Quelques opérations sur notre univers

Voyageons

On s'autorise à effectuer quelques opérations raisonnables sur notre univers :

- Regarder à gauche (left shift)
- Regarder à droite (right shift)

Moralement, on translate notre ruban.

left, right : : Universe a -> Universe a

Quelques opérations sur notre univers

Voyageons

On s'autorise à effectuer quelques opérations raisonnables sur notre univers :

- Regarder à gauche (left shift)
- Regarder à droite (right shift)

Moralement, on translate notre ruban.

left, right : : Universe a -> Universe a

L'univers est fonctoriel

Un foncteur

Notre ruban est naturellement un foncteur : il suffit d'appliquer à notre Universe a une fonction a -> b sur chacune des cellules pour obtenir un Universe b.

fmap::(a->b)-> Universe a-> Universe b

Comonades, nous voilà : extract

Extraire une information

Depuis notre univers, on peut extraire une valeur : celle de la case que l'on est en train d'observer!

extract:: Universe a -> a

Comonades, nous voilà : duplicate

L'opération duplicate

On veut construire un univers où chaque case du ruban contient elle-même... un univers. Il s'agit de contenir tous les shift possible de notre univers de départ.

duplicate : : Universe a -> Universe (Universe a)

Loi de convolution

La loi de notre automate

Notre automate est décrit par une fonction qui, à un univers, associe l'état de la cellule observé à la prochaine itération. On a donc accès à tout l'univers.

Rule 30

Pour Rule 30, on a besoin de la cellule couramment observée, et de ses voisines de droite et de gauche.

rule · · Universe a - > a

Loi de convolution

La loi de notre automate

Notre automate est décrit par une fonction qui, à un univers, associe l'état de la cellule observé à la prochaine itération. On a donc accès à tout l'univers.

Rule 30

Pour Rule 30, on a besoin de la cellule couramment observée, et de ses voisines de droite et de gauche.

rule : : Universe a -> a

Loi de convolution

La loi de notre automate

Notre automate est décrit par une fonction qui, à un univers, associe l'état de la cellule observé à la prochaine itération. On a donc accès à tout l'univers.

Rule 30

Pour Rule 30, on a besoin de la cellule couramment observée, et de ses voisines de droite et de gauche.

rule:: Universe a -> a

L'évaluation est comonadique

Comment obtenir l'itération n+1 depuis l'itération n?

Nous disposons maintenant de tous les outils pour, en une ligne, décrire l'itération au rang n+1 depuis l'univers au rang n.

La pipeline :

- On duplique notre univers :
 - duplicate : : Universe a -> Universe (Universe a)
- On map notre règle sur chaque case :
 - fmap rule : : Universe (Universe a) -> Universe

fmap rule . duplicate : : Universe a -> Universe a

L'évaluation est comonadique

Comment obtenir l'itération n+1 depuis l'itération n?

Nous disposons maintenant de tous les outils pour, en une ligne, décrire l'itération au rang n+1 depuis l'univers au rang n.

La pipeline :

- On duplique notre univers :
 - duplicate : : Universe a -> Universe (Universe a)
- On map notre règle sur chaque case :
 - fmap rule : : Universe (Universe a) -> Universe a

fmap rule . duplicate : : Universe a -> Universe a

L'évaluation est comonadique

Comment obtenir l'itération n+1 depuis l'itération n?

Nous disposons maintenant de tous les outils pour, en une ligne, décrire l'itération au rang n+1 depuis l'univers au rang n.

La pipeline :

- On duplique notre univers :
 - duplicate : : Universe a -> Universe (Universe a)
- On map notre règle sur chaque case :
 - fmap rule : : Universe (Universe a) -> Universe a

fmap rule . duplicate : : Universe a -> Universe a

Live démo

Merci pour votre attention!