```
Minclude <string.h>
Fdefine MAXPAROLA 30
#define MAXRIGA 80
   int treq[MAXPAROLA]; /* vettore di containti
delle frequenze delle lunghazze delle pitrole
   char riga[MAXRIGA] ;
lint i, inizio, lunghezza ;
```

Dynamic Programming

Dynamic Programming

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

A divide-and-conquer algorithm

- > Partition the problem into disjoint subproblems
- Solve the subproblems recursively
- Combine their solutions to solve the original problem
- When a problem shares sub-problems a divideand-conquer algorithm does more work than necessary
 - It repeatedly solves the common sub-sub-problems over and over again

Dynamic programming

- Like the divide-and-conquer method, solves problems by combining the solutions to subproblems
- > Applies when sub-problems overlap, i.e., when sub-problems share sub-sub-problems
 - Solves each sub-sub-problem just once
 - Saves its result in a table
 - Uses such a result every time it encounters the same sub-sub-problem, thus avoiding the work of recomputing the answer

- Dynamic programming is typically applied to optimization problems
 - > These problems can have many possible solutions
 - Each solution is characterized by a "fitness" value
 - We wish to find a solution with the optimal (minimum or maximum) value
 - We call such a solution an optimal solution to the problem, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value

- ➤ Thus, to develop a dynamic-programming algorithm, we need to
 - Characterize the structure of an optimal solution
 - Recursively define its value
 - Compute this value (typically in a bottom-up fashion) and construct an optimal solution from it

A motivating example

Fibonacci numbers

$$\begin{cases} F(n) = F(n-2) + F(n-1) & n>1 \\ F(0) = 0 & & \\ F(1) = 1 & & \end{cases}$$

Divide-and-conquer approach

```
long int fib (long int n) {
  if (n == 0 || n == 1)
    return (n);
  return (fib(n-2) + fib(n-1));
}
```

A motivating example

```
long int fib (long int n) {
  if (n == 0 || n == 1)
    return (n);
  return (fib(n-2) + fib(n-1));
}
```


A motivating example

```
long int fib (long int n) {
  if (n == 0 || n == 1)
    return (n);
  return (fib(n-2) + fib(n-1));
}
```

Dynamic Programming

Fibonacci: Dynamic programming

- To get a more efficient solution, we must
 - Store solutions to subproblems as soon as they are found
 - Before solving a problem, check whether it has already been solved
 - > Reuse existing partial solutions
 - \triangleright In this way, we can improve the Fibonacci function from being $O(2^n)$ to O(n)

Fibonacci: Dynamic programming

```
int main (void) {
  int *known, i, n;
  fprintf(stdout, "Input n: ");
  scanf("%d", &n);
 known = (int *) malloc ((n+1)*sizeof(int));
  if (known==NULL) {
    fprintf (stderr, "Memory allocation error.\n");
    exit(EXIT FAILURE);
                                  We define an array
  for (i=0; i<=n; i++) {
                                       know
    known[i] = -1;
  fprintf(stdout, "Fibonacci %d-th term = %d\n",
    n, fib dp(n, known));
  free(known);
  return EXIT SUCCESS;
```

Fibonacci: Dynamic programming

```
int fib dp (int n, int *known) {
  if (known[n] < 0) {
                                             We avoid all
    if (n==0 || n==1) {
                                            recomputations
      known[n] = n;
    } else {
      known[n] = fib dp (n-1, known) +
                   fib dp (n-2, known);
                                    We store partial results
                                      into array know
  return known[n];
```

Dynamic programming

- Dynamic programming uses additional memory to save computation time
 - > Time-memory trade-off
 - Savings may be dramatic, i.e., exponential-time solution may be transformed into polynomial-time solutions
- There are usually two equivalent ways to implement a dynamic-programming approach

Memoization not memorization!

Approach 1

- Top-down with memoization
 - > We write the standard recursive procedure
 - We modify it to
 - Save the result of each subproblem (usually in an array or a hash table)
 - Check whether each problem has previously been solved
 - If so, we return the saved value, saving further computation at this level
 - If not, the procedure computes the value in the usual manner
 - The recursive procedure has been memorized, i.e., it "remembers" what results it has computed previously

Approach 2

Bottom-up

- As any sub-problem depends only on "smaller" sub-problems
 - We sort the sub-problems by size
 - We solve them in size order, smallest first
 - We solve each subproblem only once
 - When we encounter it, we have already solved all of its prerequisite sub-problems and we have saved their solutions

Matrix-chain multiplication

Given a sequence (chain) of matrices M_i (with i∈[1,n]) to be multiplied

$$M = M_1 \cdot M_2 \cdot ... \cdot M_n$$
(where matrix M_i has dimension r_i · c_i)

Fully parenthesize the product in a way that minimizes the number of scalar multiplications necessary to compute M

Number of

products

Please, remind that we know how to multiply two matrices

Let us suppose we need to compute

Matrix size for M₁, M₂, and M₃

We have two possible solutions

$$\rightarrow$$
 $(M_1 \cdot M_2) \cdot M_3$

• Cost =
$$r_1c_2c_1+r_1c_3c_2 = 10.5.100+10.50.5 = 7500$$

$$\rightarrow M_1 \cdot (M_2 \cdot M_3)$$

• Cost =
$$r_2c_3c_2+r_1c_3c_1 = 100.50.5+10.50.100 = 75000$$

Thus, computing the product according to the first parenthesization is 10 times faster

The standard algorithm

```
for (i=0; i<r1; i++) {
  for (j=0; j<c2; j++) {
    m[i][j] = 0;
    for (k=0; k<c1; k++) {
        m[i][j] += m1[i][k] * m2[k][j];
    }
  }
}</pre>
```

- How can we evaluate the product of n matrices?
 - We can use the **standard algorithm** for multiplying **pairs** of matrices

The standard algorithm

```
for (i=0; i<r1; i++) {
  for (j=0; j<c2; j++) {
    m[i][j] = 0;
    for (k=0; k<c1; k++) {
        m[i][j] += m1[i][k] * m2[k][j];
    }
}</pre>
```

Notice that, each matrix pair must be compatible, i.e., computing

$$M = M_1 \cdot M_2$$

■ Is feasible only if c1 = r2 and M will have size $(r \cdot c)$ such that r=r1 and c=c2

The standard algorithm

```
for (i=0; i<r1; i++) {
  for (j=0; j<c2; j++) {
    m[i][j] = 0;
    for (k=0; k<c1; k++) {
        m[i][j] += m1[i][k] * m2[k][j];
    }
  }
}</pre>
```

- Moreover, the time to compute M is dominated by the number of scalar multiplications
- > For each product pair, this number is equal to

$$\mathbf{r}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_1$$

Parenthesization

When we have n matrices, we need to resolve all ambiguities in how the matrices are multiplied together

> A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parenthesis

- We need to parenthesized the product
 - Matrix multiplication is associative, and so all parenthesizations yield the same product
 - ➤ As we have seen the **cost** in terms of the number of scalar multiplications is not always the same

Parenthesization

Given the product

$$M = M_1 \cdot M_2 \cdot M_3 \cdot M_4$$

- How many parenthesitazions are possible?
 - $\rightarrow (((M_1 \cdot M_2) \cdot M_3) \cdot M_4)$
 - $\rightarrow ((M_1 \cdot M_2) \cdot (M_3 \cdot M_4))$
 - $\rightarrow ((M_1 \cdot (M_2 \cdot M_3)) \cdot M_4)$
 - $\rightarrow (M_1 \cdot ((M_2 \cdot M_3) \cdot M_4))$
 - $\rightarrow (M_1 \cdot (M_2 \cdot (M_3 \cdot M_4)))$

Parenthesization

- It can be proved that given n matrices
 - The number of possible parethesization is $\Omega(2^n)$
 - The number of solutions is thus exponential in n
 - Exhaustively checking (brute-force) all possible parenthesizations does not yield an efficient algorithm

- The structure of an optimal parenthesization
 - > Let us suppose we need to optimize

$$\blacksquare M_i \cdot M_{i+1} \cdot M_{i+2} \cdot \dots \cdot M_i$$

- We can suppose to split the product for some value of k, i.e.,
 - $\bullet (M_i \cdot ... \cdot M_k) \cdot (M_{k+1} \cdot ... \cdot M_j)$
- ➤ If this product is optimum, the 2 subproducts must be optimum

A recursive solution

> Let us call m[i,j] the minimum cost to compute

$$\blacksquare M_i \cdot M_{i+1} \cdot M_{i+2} \cdot \dots \cdot M_j$$

> As we compute it as

$$\bullet (M_i \cdot ... \cdot M_k) \cdot (M_{k+1} \cdot ... \cdot M_j)$$

We have that

We define s[i,j] the value of k at which we split the product in optimal parenthesization

Computing the optimal costs

- Instead of computing the solution to the previous recurrence recursively, we compute the optimal cost by using a tabular, bottom-up approach
- The procedure uses an auxiliary table m[1..n,1..n] to storing the cost to compute the product and and another auxiliary table s[1..n-1,2..n] to identify the value of k for such a cost

- In order to implement the bottom-up approach, we must determine which entries of the table we refer to when computing m[i,j]
 - ➤ The previous equation shows that the cost of computing a matrix-chain product depends only on the costs of computing matrix-chain products of fewer matrices
- Thus, the algorithm should fill in the table m in a manner that corresponds to solving the parenthesization problem on matrix chains of increasing length

 $M_1 \cdot M_2 \cdot M_3 \cdot M_4 \cdot M_5 \cdot M_6$

m[1,6] 15125

m[1,5] 11875 m[1,6] 10500

m[1,4] 9375 m[2,5]
7125

m[3,6] 10000

m[1,3] 7875 m[2,4] 4375 m[3,5] 2500 m[4,6] 3500

m[1,2] 15750 m[2,3] 2625

m[3,4] 750 m[4,5] 1000

m[5,6] 5000

 M_1

M₂
35,15

M₃
15, 5

M₄ 5,10

M₅
10,20

M₆
20,25

m[1][2] =	0+	0+	30x	35 x	15= 15750	MIN
m[2][3] =	0+	0+	35 x	15x	5= 2625	MIN
m[3][4] =	0+	0+	15 x	5 x	10= 750	MIN
m[4][5] =	0+	0+	5 x	10x	20= 1000	MIN
m[5][6] =	0+	0+	10x	20x	25= 5000	MIN
m[1][3] =	0+	2625+	30x	35x	5= 7875	MIN
	15750+	0+	30 x	15x	5= 18000	
m[2][4] =	0+	750+	35 x	15x	10= 6000	MIN
	2625+	0+	35x	5 x	10= 4375	MIN

m[3][5]	=	0+	1000+	15x	5 x	20=	2500	MIN
		750+	0+	15x	10x	20=	3750	
m[4][6]	=	0+	5000+	5 x	10x	25=	6250	MIN
		1000+	0+	5 x	20x	25=	3500	MIN
m[1][4]	=	0+	4375+	30 x	35 x	10=	14875	MIN
		15750+	750+	30 x	15x	10=	21000	
		7875+	0+	30 x	5 x	10=	9375	MIN
m[2][5]	=	0+	2500+	35 x	15x	20=	13000	MIN
		2625+	1000+	35x	5 x	20=	7125	MIN
		4375+	0+	35x	10x	20=	11375	
m[3][6]	=	0+	3500+	15x	5 x	25=	5375	MIN
		750+	5000+	15x	10x	25=	9500	
		2500+	0+	15x	20x	25=	10000	

m[1][5] =	: 0+	7125+	30x	35 x	20= 28125	
	15750+	2500+	30x	15x	20= 27250	
	7875+	1000+	30x	5x	20= 11875	MIN
	9375+	0+	30x	10x	20= 15375	
m[2][6] =	: 0+	5375+	35x	15x	25= 18500	
[2][0] -	2625+	3500+			25= 10500	MTN
			35x	5 x		MIN
	4375+	5000+	35 x	10x	25= 18125	
	7125+	0+	35 x	20x	25= 24625	
m[1][6] =	: 0+	10500+	30x	35x	25= 36750	
	15750+	5375+	30x	15x	25= 32375	
	7875+	3500+	30x	5 x	25= 15125	MIN
	9375+	5000+	30x	10x	25= 21875	
	11875+	0+	30 x	20 x	25= 26875	


```
p = readSizes (argv[1], &n);
m = (int **)util matrix alloc(n+1, n+1, sizeof(int));
for (i=0; i<=n; i++) {
  for (j=0; j<=n; j++) {
    m[i][j] = ((i==j) ? 0 : INT MAX);
best = matrixChainOrder (p, m, n);
matrixChainPrint (m, 1, n);
```

```
int *readSizes(char *filename, int *num) {
  int i, n, *p;
 FILE *fp;
  fp = util fopen(filename, "r");
  fscanf(fp, "%d", &n);
 p = (int *)util malloc((n+1)*sizeof(int));
  for (i=0; i<n; i++) {
    fscanf(fp, "%dx%d", &p[i], &p[i+1]);
  fclose(fp);
  *num = n;
  return p;
```

```
int matrixChainOrder(int *p, int **m, int n) {
  int i, j, k, l, cost;
  for (1=2; 1<=n; 1++) {
    for (i=1; i<=n-1+1; i++) {
      j = i+1-1;
      for (k=i; k<=j-1; k++) {
        cost = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
        if (cost < m[i][j]) {</pre>
          m[i][j] = cost;
          m[j][i] = k;
  return m[1][n];
```

```
void matrixChainPrint (int **m, int i, int j) {
  int k;
  if (i == j) {
   printf("A%d", i);
    return;
 k = m[j][i];
 printf("(");
 matrixChainPrint(m, i, k);
 printf(" * ");
 matrixChainPrint(m, k+1, j);
 printf(")");
```

Elements of dynamic programming

- When the method applies, i.e., when should we look for a dynamic-programming solution to a problem?
- Two key ingredients
 - Optimal substructure
 - Overlapping subproblems

Optimal substructure

- A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems
 - ➤ In dynamic programming, we build an optimal solution to the problem from optimal solutions to subproblems

Overlapping subproblems

- The space of subproblems must be "small" in the sense that a recursive algorithm for the problem solves the same subproblems over and over, rather than always generating new subproblems
 - > Typically, the total number of distinct subproblems is a polynomial in the input size

Longest common subsequence

- A subsequence of a given sequence is just the given sequence with zero or more elements left out
 - For example, {A, E, F, H} is a subsequence of {A, B, C, D, E, F, G, H}
- Given two sequences X and Y, we say that a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y
 - ➤ For example, {D, F, H} is a common subsequence of {A, B, C, D, E, F, G, H} and {D, F, G, H, I, L, M, N}

Longest common subsequence

In the longest-common-subsequence (LCS) problem, we are given two sequences

$$> X = \{x_1, x_2, ..., x_m\}$$

 $> Y = \{y_1, y_2, ..., y_n\}$

And wish to find a maximum-length common subsequence of X and Y

Brute-force solution

- ❖ In a brute-force approach to solving the LCS problem, we would enumerate all subsequences of X and check each subsequence to see whether it is also a subsequence of Y, keeping track of the longest subsequence we find
- ❖ Each subsequence of X corresponds to a subset of the indices {1, 2, ..., m} of X
- Because X has 2m subsequences, this approach requires exponential time, making it impractical for long sequences

```
... given strX and strY ...
1X = strlen(strX) + 1;
1 = strlen(strY) + 1;
b = (int **)2D malloc(lX, lY, sizeof(int));
c = (int **)2D malloc(lX, lY, sizeof(int));
1 = lcsLength(strX, strY, b, c);
printf("LCS length: %d\n", length);
printf("LCS: ");
lcsPrint(strX, b, c, lengthY-1, lengthY-1);
printf("\n");
2D dispose((void ***)b, lX, lY, NULL);
2D dispose((void ***)c, lX, lY, NULL);
```

```
int lcsLength (
  char *strX, char *strY, int **b, int **c) {
  int i, j, m = strlen(strX), n = strlen(strY);
  for (i=1; i<=m; i++) {
    for (j=1; j<=n; j++) {
      if (strX[i-1] == strY[j-1]) {
        c[i][j] = c[i-1][j-1] + 1; b[i][j] = DIAG;
      } else {
        if (c[i-1][j] >= c[i][j-1]) {
          c[i][j] = c[i-1][j]; b[i][j] = UP;
        } else {
          c[i][j] = c[i][j-1]; b[i][j] = LEFT;
  return c[m][n];
```

```
void lcsPrint (
  char *strX, int **b, int **c, int i, int j) {
  if (i!=0 && j!=0) {
    if (b[i][j] == DIAG) {
      lcsPrint(strX, b, c, i-1, j-1);
      printf("%c", strX[i-1]);
    } else {
      if (b[i][j] == UP) {
       lcsPrint(strX, b, c, i-1, j);
      } else {
       lcsPrint(strX, b, c, i, j-1);
```

Find the LCS between the two strings

$$> X = \{A, B, C, B, D, A, B\}$$

$$> Y = \{A, D, C, A, B, A\}$$

	j	0	1	2	3	4	5	6
i		yi	В	D	С	Α	В	Α
0	хi	0	0	0	0	0	0	0
1	Α	0	↑0	↑0	↑0	1	←1	1
2	В	0	1	←1	←1	1	2	←2
3	С	0	1	1	2	←2	† 2	↑2
4	В	0	1	1	↑2	↑2	† 3	† 3
5	D	0	1	2	↑2	↑2	† 3	† 3
6	Α	0	1	↑2	↑2	3	† 3	4
7	В	0	1	↑2	↑2	† 3	4	1 4