

Ayudantía 7

Introducción al Machine Learning

Por Martín Vial y Rodrigo Figueroa

13 de mayo 2024

Aprendizaje Supervisado

Definición

Algoritmos entrenados para **predecir** o **clasificar** datos basándose en el aprendizaje previo sobre ejemplos **etiquetados**.

Necesita un conjunto de datos de entrenamiento que consta de entradas (características) y las salidas deseadas (etiquetas).

Set de datos (pera o manzana)

id	Color	Volumen	Área	••••	Peso
1	Verde	2	2		200
2	Verde	3	1		300
3	Café	4	3		250
4	Verde	5	2		210
5	Roja	2	2		280
6	Roja	3	1		350
7	Verde	4	3		100

Etiqueta
pera
manzana
pera
pera
manzana
manzana
pera

Set de entrenamiento

id	Color	Volumen	Área	••••	Peso
1	Verde	2	2		200
2	Verde	3	1		300
3	Café	4	3		250
4	Verde	5	2		210

Set de testeo

id	Color	Volumen	Área	••••	Peso
5	Roja	2	2		280
6	Roja	3	1		350
7	Verde	4	3		100

Preprocesamiento

Métodos, técnicas o algoritmos para **limpiar** y **ordenar** los datos antes de realizar la

- Representación de características categóricas
- Normalización para dejar en misma escala
- Extracción de características relevantes
- Manejo de datos faltantes

Preprocesamiento (normalización)

	Muestra	Α
	1	13234
Peras -	:	12129
	50	11957
	51	12911
Manzanas -	:	
	125	17288

Columna original

Preprocesamiento (normalización)

	Muestra	Α
	1	0.4981
Peras -	:	0.3681
	50	0.3479
Ì	51	0.4601
Manzanas -	:	
	125	0.9751

Columna normalizada

Diseño y entrenamiento del clasificador

- **Selección de algoritmo:** Se elige un algoritmo de clasificación según el tipo de problema y los datos disponibles.

- **Entrenamiento del algoritmo:** El algoritmo se entrena con el set de entrenamiento y sus etiquetas para saber cómo realizar las clasificaciones.

Entrenamiento del clasificador

Aprende relaciones y cálculos entre los atributos y las etiquetas:

Clasificación y predicciones

Entregamos al algoritmo ya entrenado los **nuevos datos** de testeo para que haga las **predicciones** de la etiqueta de esos datos.

Evaluación

Comparamos la **predicción** de la clasificación del algoritmo con los **valores reales** de la etiqueta del conjunto de testeo y obtenemos distintas **métricas de rendimiento**.

Matriz de Confusión

Accuracy

Proporción de predicciones correctas que realiza un modelo en relación con el número total de predicciones.

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Útil como una métrica general de la calidad de nuestro modelo sobre la tarea.

Precisión

Mide la **capacidad de un modelo para hacer predicciones positivas correctas** en relación con todas las predicciones positivas realizadas.

Útil cuando se desean minimizar los falsos positivos, ya que se enfoca en la calidad de las predicciones positivas.

Recall o sensibilidad

Mide la capacidad de un modelo para **identificar todos los ejemplos positivos** en un conjunto de datos.

Útil cuando se trata de problemas en los que los falsos negativos (omisiones) son costosos o críticos.

Clasificación multiclase

Problema de clasificación de datos con **varias clases distintas**. Le asignamos un número a cada categoría o creamos varias columnas de etiquetas y poner 1 si pertenece o 0 si no.

id	Color	Volumen	Área	 Peso
1	Verde	2	2	200
2	Verde	3	1	300
3	Café	4	3	250
4	Verde	5	2	210
5	Roja	2	2	280
6	Roja	3	1	350
7	Verde	4	3	100

Etiqueta
pera
manzana
plátano
melón
melón
manzana
plátano

У

Clasificación multiclase

Problema de clasificación de datos con **varias clases distintas**. Le asignamos un número a cada categoría o creamos varias columnas de etiquetas y poner 1 si pertenece o 0 si no.

Etiqueta	
pera	
manzana	
plátano	
melón	
melón	
manzana	
plátano	

Etiqueta
0
1
2
3
3
1
2

Pera	Manzana	Plátano	Melón
		- 10.00.10	
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
0	0	0	1
0	1	0	0
0	0	1	0

Clasificación multiclase

Micro/Macro promedios

Los **micro-promedios** son dominados por las clases más **frecuentes**Los **macro-promedios** pueden sobre-representar a más clases **minoritarias**

Class 1: Urgent		Cl	Class 2: Normal		Class 3: Spam		Pooled			
World have been search in	true not		true normal	true		true spam	true		true	true
system urgent 8	11	system normal	60	55	system spam	200	33	system yes	268	99
system 8	340	system	40	212	system	51	83	system no	99	635
$ext{precision} = \frac{8}{8+11}$	= .42	precision =	60+5	= .52	precision =	200+	- = .86	microaverage precision		68 = .
		roaverage	.42+.	3	= .60					