

Sowohl die Mikro- als auch die Makrosimulation betrachten verschiedene Infektions*phasen* und deren Übergänge

Sowohl die Mikro- als auch die Makrosimulation betrachten verschiedene Infektions*phasen* und deren Übergänge

1. Infizierbar (Susceptible, S)

Susceptible (S)

Sowohl die Mikro- als auch die Makrosimulation betrachten verschiedene Infektions*phasen* und deren *Übergänge*

- 1. Infizierbar (Susceptible, S)
- 2. Infiziert, noch nicht ansteckend (Exposed, E)

Sowohl die Mikro- als auch die Makrosimulation Betrachten verschiedene Infektions*phasen* und deren Übergänge

- 1. Infizierbar (Susceptible, S)
- 2. Infiziert, noch nicht ansteckend (Exposed, E)
- 3. Infiziert, ansteckend (Infected, I)

Sowohl die Mikro- als auch die Makrosimulation Betrachten verschiedene Infektions*phasen* und deren Übergänge

- 1. Infizierbar (Susceptible, S)
- 2. Infiziert, noch nicht ansteckend (Exposed, E)
- 3. Infiziert, ansteckend (*Infected, I*)

- Zeit t: Superspreading-Ereignis
- ightharpoonup Zeit $t + \tau$: Drei Infizierte, noch nicht Ansteckende in der mittleren Gruppe
- ightharpoonup Zeit $t+2\tau$: Einer der Infizierten bewegt sich zur anderen Gruppe
- ightharpoonup Zeit $t+3\tau$: Alle 6 Infizierten werden ansteckend
- ightharpoonup Zeit $t+4\tau$: neue Ansteckungen in beiden Gruppen

- ► Zeit *t*: *Superspreading*-Ereignis
- lacktriangle Zeit t+ au: Drei Infizierte, noch nicht Ansteckende in der mittleren Gruppe
- ightharpoonup Zeit $t+2\tau$: Einer der Infizierten bewegt sich zur anderen Gruppe
- ightharpoonup Zeit $t+3\tau$: Alle 6 Infizierten werden ansteckend
- ightharpoonup Zeit $t + 4\tau$: neue Ansteckungen in beiden Gruppen

Recovered

- Zeit t: Superspreading-Ereignis
- ightharpoonup Zeit $t + \tau$: Drei Infizierte, noch nicht Ansteckende in der mittleren Gruppe
- ▶ Zeit $t + 2\tau$: Einer der Infizierten bewegt sich zur anderen Gruppe
- ightharpoonup Zeit $t+3\tau$: Alle 6 Infizierten werden ansteckend
- ightharpoonup Zeit $t + 4\tau$: neue Ansteckungen in beiden Gruppen

- Zeit t: Superspreading-Ereignis
- ightharpoonup Zeit $t + \tau$: Drei Infizierte, noch nicht Ansteckende in der mittleren Gruppe
- ightharpoonup Zeit $t + 2\tau$: Einer der Infizierten bewegt sich zur anderen Gruppe
- ightharpoonup Zeit $t+3\tau$: Alle 6 Infizierten werden ansteckend
- ightharpoonup Zeit $t + 4\tau$: neue Ansteckungen in beiden Gruppen

- Zeit t: Superspreading-Ereignis
- lacktriangle Zeit t+ au: Drei Infizierte, noch nicht Ansteckende in der mittleren Gruppe
- ightharpoonup Zeit $t + 2\tau$: Einer der Infizierten bewegt sich zur anderen Gruppe
- ightharpoonup Zeit $t+3\tau$: Alle 6 Infizierten werden ansteckend
- ightharpoonup Zeit $t + 4\tau$: neue Ansteckungen in beiden Gruppen

Recovered

▶ Jeder Ansteckende infiziert nach 2-10 Tagen R_0 andere Personen falls alle anderen noch ansteckbar (S) sind

- ▶ Jeder Ansteckende infiziert nach 2-10 Tagen R_0 andere Personen falls alle anderen noch ansteckbar (S) sind
- ▶ Bereits infizierte, ansteckende, geheilte *oder geimpfte* Personen sind nicht ansteckbar (Annahme!), so dass der *effektive* Reproduktionsfaktor R u.U. deutlich geringer ist

- ▶ Jeder Ansteckende infiziert nach 2-10 Tagen R_0 andere Personen falls alle anderen noch ansteckbar (S) sind
- ▶ Bereits infizierte, ansteckende, geheilte *oder geimpfte* Personen sind nicht ansteckbar (Annahme!), so dass der *effektive* Reproduktionsfaktor R u.U. deutlich geringer ist
- Sobald ein Infizierter nicht mehr ansteckend ist, ist er aus der Infektionsdynamik raus, die weiteren Phasen sind nicht relevant

- Das illiektionsgeschehen. Was ist beobachtbar
- Prinzipiell E- und I-Zustand mit PCR oder Antigentests, R mit Anikörpertest (und natürlich Todesfälle)

- Das Infektionsgeschehen: Was ist beobachtbar?
- Prinzipiell E- und I-Zustand mit PCR oder Antigentests, R mit Anikörpertest (und natürlich Todesfälle)
- ► Test-Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$

- Das Infektionsgeschehen: Was ist beobachtbar?
- Prinzipiell E- und I-Zustand mit PCR oder Antigentests, R mit Anikörpertest (und natürlich Todesfälle)
- ► Test-Sensitivität $1 \alpha = \text{Prob}$ (positiv | infiziert)
- ▶ Test-Spezifizität 1β =Prob (negativ | nicht infiziert); zwischen 80 % und 99 % der Getesteten sind *nicht* infiziert!

- ▶ Prinzipiell E- und I-Zustand mit PCR oder Antigentests, R mit Anikörpertest (und
- natürlich Todesfälle)
- ► Test-Sensitivität $1 \alpha = \text{Prob}$ (positiv | infiziert)
- ▶ Test-Spezifizität 1β =Prob (negativ | nicht infiziert); zwischen 80 % und 99 % der Getesteten sind *nicht* infiziert!

- Prinzipiell E- und I-Zustand mit PCR oder Antigentests, R mit Anikörpertest (und natürlich Todesfälle)
- ► Test-Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$
- ► Test-Spezifizität 1β =Prob (negativ | nicht infiziert); zwischen 80 % und 99 % der Getesteten sind *nicht* infiziert!

- ▶ Prinzipiell E- und I-Zustand mit PCR oder Antigentests, R mit Anikörpertest (und natürlich Todesfälle)
- ► Test-Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$
- ► Test-Spezifizität 1β =Prob (negativ | nicht infiziert); zwischen 80 % und 99 % der Getesteten sind *nicht* infiziert!

4. Anwendung: Szenarienprojektion

