Especificação do Primeiro Trabalho Prático

1) Tarefas

Utilizando o simulador *SimpleScalar Sim-Outorder* e os benchmarks disponibilizados (ver abaixo), simular a execução de cada uma das aplicações (com as entradas fornecidas) sobre diversas configurações de organizações indicadas. Irá ser parametrizado o número de unidades funcionais (ALUs de inteiros) e o preditor de desvios. A partir da simulação da execução das aplicações sobre as organizações, verificar o comportamento da aplicação frente a essas mudanças, realizando as seguintes análises:

- a. Simular a execução das aplicações conforme as seguintes configurações :
 - Com uma ULA para inteiros (-res:ialu 1)
 - Preditor de desvios:
 - Not taken, Bimodal (tabela de 2 entradas), Bimodal (tabela de 64 entradas), Bimodal (tabela de 256 entradas) e Perfeito
 - Com duas ULAs para inteiros (-res:ialu 2)
 - Preditor de desvios:
 - Not taken, Bimodal (tabela de 2 entradas), Bimodal (tabela de 64 entradas), Bimodal (tabela de 256 entradas) e Perfeito
 - Com quatro ULAs para inteiros (-res:ialu 4)
 - Preditor de desvios:
 - Not taken, Bimodal (tabela de 2 entradas), Bimodal (tabela de 64 entradas), Bimodal (tabela de 256 entradas) e Perfeito
 - Com seis ULAs para inteiros (-res:ialu 6)
 - Preditor de desvios:
 - Not taken, Bimodal (tabela de 2 entradas), Bimodal (tabela de 64 entradas), Bimodal (tabela de 256 entradas) e Perfeito

Para cada aplicação, inserir no relatório uma tabela contendo o nº de ciclos, o IPC (nº de instruções por ciclo) e o CPI (nº de ciclos por instrução) obtidos para cada uma das simulações realizadas, segundo o modelo apresentado abaixo:

Nome da aplicação / Preditor			
ULAs	N° de ciclos	IPC	CPI
1			
2			
4			
6			

- b. Justificar o porquê dos resultados obtidos.
 - i. Apresente os gráficos com os resultados obtidos (IPC) nas simulações com o preditor de desvios "perfect" e relacione os resultados obtidos a partir da variação da quantidade de unidades funcionais com as características do programa.
 - ii. Apresente os gráficos com os resultados obtidos (IPC) nas simulações e avalie o impacto dos diferentes preditores de desvios nas aplicações executadas.
 - iii. Verificando os IPC obtidos nas simulações, qual a melhor organização do processador, em termos de número de unidades funcionais e preditor de desvios (excluindo o preditor "perfect") para as 3 aplicações acima? (Leve em conta o custo do hardware)

2) Benchmarks

Para a execução do trabalho, os seguintes benchmarks devem ser utilizados:

Benchmark	Descrição	Característica Principal
mm	Multiplicação de matrizes	Orientado a Dados (DataFlow)
fft1	Transformada rápida de Fourier	Orientado a Controle (ControlFlow)
crc	Cyclic Redundancy Check – função de validação de dados	Comportamento Misto

Os benchmarks estão disponíveis junto com a especificação do trabalho no Moodle da disciplina na seção da especificação deste trabalho.

3) Prazo de Entrega:

14/06/2015, 23:55.

4) Material a ser entregue

Submeter, unicamente através do MOODLE (Não serão considerados os trabalhos enviados por email),

contendo o nome do aluno, juntamente com seu número de matrícula.

Exemplo:

Borges_de_Medeiros-99999999.pdf

Esse arquivo deve conter:

- a. As tabelas com os resultados da simulação segundo o modelo apresentado no item 1.a;
- b. Os gráficos comparativos dos resultados obtidos através das simulações, juntamente com um texto justificando os resultados obtidos e as devidas comparações exigidas no item 1.b

5) Instruções para execução da simulação (Linux e Windows/Cygwin)

Para utilizar o simulador, utilize o seguinte comando (esteja dentro do diretório onde o simulador foi compilado):

```
./sim-outorder -bpred nome_do_preditor -res:ialu num_alu -redir:sim benchs/nome bench/nome bench.txt benchs/nome bench/nome bench.ss
```

onde:

- -bpred nome_do_preditor = indica o tipo de preditor de desvios utilizado (default: bimod);
- -redir:sim = redireciona os resultados da simulação para o arquivo txt indicado;
- **-res:ialu** *num_alu* = indica o número de unidades funcionais para inteiros (1, 2 ou 4); **nome_bench** = nome do benchmark (mm,fft1,crc)

Ex:

```
./sim-outorder.exe -bpred:bimod 2048 -res:ialu 4 -redir:sim ./results/mm4_bimod.txt ./benchs/mm/mm.ss
```

DICA:

- 1. Para visualizar os resultados contidos em nome_bench.txt, utilize um editor de textos do tipo WordPad ou similar, que permite visualizar o texto formatado.
- 2. No arquivo com as instruções de instalação é encontrado um conjunto de informações sobre a instalação do SimpleScalar no Linux e no Windows utilizando o Cygwin.

IMPORTANTE:

Tanto o Linux como o Cygwin são sensíveis à caixa, ou seja, diferenciam letras maiúsculas de minúsculas. Não faça Ctrl C, Ctr V das linhas de comando deste arquivo no console de Cygwin, não irá funcionar.

IMPORTANTE2:

Metodologia do Professor com Cópias de Trabalhos, a seguinte fórmula será utilizada:

Nota individual do aluno = Nota do trabalho / número de cópias;

Obs: Segunda chance: o aluno que realizou o trabalho pode requisitar nota integral, assim o restante receberá zero. Para isto, deverá fornecer o nome dos alunos para quem repassou o trabalho.