

3rd list of excercices April 4^{th} , 2024

Student: Jaider Torres

RA: 241343

Notation: Again, $[n] := \mathbb{N} \cap [0, n]$ and, if $X = (X, \tau_X)$ is a topological space, we denote $\mathcal{N}(x)$ as the system of neighborhoods of $x \in X$.

1) a) Para $x, y \in \mathcal{O}$, temos que

$$d(f(x), f(y)) = ||x + \varphi(x) - y - \varphi(y)||$$

$$\leq ||x - y|| + c||x - y||$$

$$= (1 + c)d(x, y).$$

Isso nos diz que f é (1+c)—Lipschitz e assim é continua.

Agora, dado $x,y\in\mathcal{O}$ tais que f(x)=f(y), i.e., $x+\varphi(x)=y+\varphi(y)$, então $x-y=\varphi(y)-\varphi(x)$. Isso implica que $d(x,y)=d(\varphi(x),\varphi(y))$, e assim $(1-c)d(x,y)\leq 0$. Já que 1-c>0 e $d(x,y)\geq 0$, então d(x,y)=0 e assim x=y, i.e., f é injetora. Como o contradomínio de f é $f(\mathcal{O})$, f é sobrejetora e assim uma bijeção com inversa $f^{-1}:f(\mathcal{O})\to\mathcal{O}$ definida da seguente forma: se $y\in f(\mathcal{O})$, então existe $a\in\mathcal{O}$ tal que $y=a+\varphi(a)$. Assim, $f^{-1}(y)=f^{-1}(a+\varphi(a))=a$. Como $f\circ f^{-1}=Id_{f(\mathcal{O})}$ e $f^{-1}\circ f=Id_{\mathcal{O}}$, f^{-1} é a inversa de f.

Além disso, dado $z=a+\varphi(a), w=b+\varphi(b)\in f(\mathcal{O})$, temos que

$$d(f^{-1}(z), f^{-1}(w)) = d(f^{-1}(a + \varphi(a)), f^{-1}(b + \varphi(b)))$$
$$= d(a, b)$$
$$\leq \frac{1}{1 - c} d(z, w),$$

pois

$$||f(a) - f(b)|| = ||a - b - (\varphi(b) - \varphi(a))||$$

$$\ge ||a - b|| - ||(\varphi(b) - \varphi(a))||$$

$$\ge d(a, b) - cd(a, b)$$

$$= (1 - c)d(a, b).$$

Isso implica que f^{-1} é $\left(\frac{1}{1-c}\right)$ —Lipschitz e portanto continua. Assim, $f:\mathcal{O}\to f(\mathcal{O})$ é um homeomorfismo entre $\mathcal{O}\in\tau_{\mathbb{R}^n}$ e $f(\mathcal{O})\subseteq\mathbb{R}^n$.

b) Seja $y \in f(\mathcal{O}) = \mathcal{J}$. Queremos provar que $b \in int(\mathcal{J})$.

Como $b\in\mathscr{J}$, existe $a\in\mathcal{O}$ tal que b=f(a). Podemos usar argumentos de contrações para provar que y=f(x) tem una solução para y próximo a b. Como $\mathcal{O}\in\tau_{\mathbb{R}^n}$ (i.e., $\mathcal{O}\subseteq\mathbb{R}^n$ é aberto), para todo $x\in\mathcal{O}$ existe $r\in\mathbb{R}^+$ tal que $\overline{B_r(x)}=:B_r[x]\subset\mathcal{O}$. Defina $\zeta_y:B_r[a]\to\mathbb{R}^n$ por $x\mapsto y-\varphi(x)$.

Observe que dado $z,w\in B_r[a]$, temos que

$$d(\zeta_y(z), \zeta_y(w)) = ||y - \varphi(z) - y + \varphi(w)||$$

$$\leq cd(z, w),$$

e

$$d(\zeta_y(a), a) = ||y - \varphi(a) - a||$$

= $||y - (\varphi(a) + a)||$
= $||y - b||$.

Assim, ζ_y é uma c—contração e vai ter um punto fixo se $d(\zeta_y(a),a) = \|y-b\| \le (1-c)r$, pois, já que $B_r[a]$ é completo, se esto é satisfeito, dado $z \in B_r[a]$, i.e., $\|x-z\| \le r$, temos que

$$\|\zeta_y(z) - a\| \le \|\zeta_y(z) - \zeta_y(a)\| + \|\zeta_y(a) - a\|$$

$$\le cd(a, z) + r(1 - c)$$

$$\le cr + r(1 - c) = r,$$

i.e., $f(z) \in B_r[a]$ ou $f(B_r[a]) \subset B_r[a]$.

Se ζ_y tem um punto fixo $x\in B_r[a]$, então $\zeta_y(x)=x$, ou, f(x)=y, i.e., se ζ_y tem um punto fixo, a acuação y=f(x) tem uma solução.

Assim, $B_{r(1-c)} \subset f(B_r[a]) \subset \mathscr{J}$. Como $b \in \mathscr{J}$ é arbitrário e $j \in int(\mathscr{J})$, temos que $\mathscr{J} \in \tau_{\mathbb{R}^n}$, i.e., é aberto.

c) Se $\mathcal{O}=\mathbb{R}^n$, para cada $r\in\mathbb{R}^+$ e $a\in\mathbb{R}^n$ temos que se $B_r[a]\subset\mathcal{O}$ então $B_{r(1-c)}[f(a)]]\subset f(\mathcal{O})=:\mathscr{J}.$ Tomando $r_k=\frac{k}{1-c},\,k\in\mathbb{N}$, então $B_k[f(a)]\subset\mathscr{J}$ e

$$\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} B_k[f(a)] \subseteq \mathscr{J},$$

ou seja, $\mathscr{J} = \mathbb{R}^n$.

2) Seja $f:M_n(\mathbb{R}) o M_n(\mathbb{R})$ definida por $A \mapsto AA^T$ e escolha $(A_k=(a^k_{ij}))_{k\in\mathbb{N}} \subset M_n(\mathbb{R})$ tal que $\lim_{kl\to\infty} A_k=A\in M_n(\mathbb{R})$. Então $AA^T=\left(\sum_{m\in[n]}a^k_{im}a^k_{jm}\right)$ para cada $k\in\mathbb{N}$. Agora, para cada $m,i,j\in[n]$ temos que $a^k_{im}a^k_{jm} \to a_{im}a_{jm}$ pois $a^k_{im} \to a_{im}$ e $a^k_{jm} \to a_{jm}$, e assim $\sum_{m\in[n]}a^k_{im}a^k_{jm} \to \sum_{m\in[n]}a_{im}a_{jm}$. Isso implica que $A_kA^T_k \to AA^T$. Portanto, f é contínua.

Observe que $\mathcal{O}_n(\mathbb{R})=f^{-1}(I_n)$ e assim $\mathcal{O}_n(\mathbb{R})\subset M_n(\mathbb{R})$ é fechado. Agora, observe que $(a_{ij})i,j\in[n]\in M_n(R)$ é equivalente ao $(a_{11},\ldots,a_{n1},\ldots,a_{1n},\ldots,a_{nn})\in\mathbb{R}^{n^2}$. Usando a métrica $\|A\|=\sum i,j\in[n]|a_{ij}|$ em $\mathbb{R}^{n^2}\cong M_n(\mathbb{R})$, temos que, para $O\in\mathcal{O}_n(\mathbb{R})$, $O_{ij}^2\leq\sum_{m\in[n]}O_{mj}^2=(OO^T)_{jj}=1$ já que $OO^T=I_n$ e assim $\|O\|\leq n^2$. Outra forma, usando a métrica euclídea de \mathbb{R}^{n^2} e o fato anterior, é notar que $\|O\|=n^{\frac{1}{2}}$. Portanto, $\mathcal{O}_n(\mathbb{R})$ é limitado e assim compacto pois \mathbb{R}^{n^2} é um espacio métrico.

3) Observe que, dada

$$X = \begin{pmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nn} \end{pmatrix} \in M_n(\mathbb{R}),$$

temos que

$$\det X =: f_{\det}(x_{11}, \dots, x_{n1}, \dots, x_{1n}, \dots, x_{nn}) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}.$$

Assim, $\det(\cdot): M_n(\mathbb{R}) \to \mathbb{R}$ pode ser visto como $f_{\det} \in \mathbb{R}[x_{11}, \dots, x_{n1}, \dots, x_{1n}, \dots, x_{nn}]$.

Como $f_{\det}:\mathbb{R}^{n^2} \to \mathbb{R}$ é polinomial, ela é contínua. Já que $f_{\det}^{-1}(1) = SL_n(\mathbb{R})$, temos que $SL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ é fechado.

Seja $O \in SL_n(\mathbb{R})$, para $n \geq 2$, onde

$$O = \begin{pmatrix} \mathbf{I} & & & & \mathbf{0} \\ \ddots & & & & & \\ & \ddots & & & & \\ & & \ddots & & & \\ & & & \frac{1}{a} & & \\ & & & \ddots & & \\ \mathbf{0} & & & & \mathbf{I} & \end{pmatrix},$$

i.e., 1 na diagonal principal exceto dois elementos, $a, \frac{1}{a}$, e 0 em las as outras entradas. Observe que para cada $k \in \mathbb{N}$ temos que $O^k \in SL_n(\mathbb{R})$, mas

$$\lim_{k \to \infty} \left\| O^k \right\| = \lim_{k \to \infty} \sqrt{a^{2k} + \frac{1}{a^{2k}} + n - 2}$$

Assim, descobrimos $A \in SL_n(\mathbb{R})$ tal que ||A|| > R para cada $R \in \mathbb{R}^+$. Portanto, $SL_n(\mathbb{R})$ não é compacto.

4) a) Seja $x_i \in \mathbb{R}$ e considere $U_i = (x_i - \pi, x_i + \pi) \in \tau_{\mathbb{R}}$. Queremos provar que $\xi|_{U_i}: U_i \to \xi(U_i)$ é um homeomorfismo. Note que dado $x,y \in U_i$ tais que $x \neq y$, então $\xi|_{U_i}(x) = (\cos(x),\sin(x)) \neq (\cos(y),\sin(y)) = \xi|_{U_i}(y)$, e assim $\xi|_{U_i}$ é injetora. Além disso, já que $\mathbb{S}^1 \cong \mathbb{R}/\mathbb{Z}$, temos que para cada $y \in \xi(U_i)$ existe $t_0 \in U_i$ na classe de equivalência de $y \in \mathbb{R}/\mathbb{Z}$ tal que $\xi|_{U_i}(t_0) = y$. Dessa forma, $\xi|_{U_i}$ é uma bijecção. Para a inversa, defina $\gamma: \mathbb{S}^1 \to (0,2\pi]: (\cos(\theta),\sin(\theta)) \mapsto \theta$ e $T_{2k\pi}: \mathbb{R} \to \mathbb{R}: x + 2k\pi$, onde $k \in \mathbb{Z}$ e tal que $t + 2k\pi \in U_i$. Então $T_{2k\pi} \circ \gamma = \xi|_{U_i}^{-1}: \xi(U_i) \to U_i$ é

2

a inversa de $\xi|_{U_i}$ pois $\xi|_{U_i}\circ\xi|_{U_i}^{-1}=Id_{\mathbb{S}^1}$ e $\xi|_{U_i}^{-1}\circ\xi|_{U_i}=Id_{U_i}$. Como as funções componente da curva $\xi|_{U_i}$ são contínuas, $\xi|_{U_i}$ é contínua. Agora, seja $\{X_n=(\cos(x_n),\sin(x_n))\}_{n\in\mathbb{N}}\subset\mathbb{S}^1$ tal que $X_n\to X\in\mathbb{S}^1\setminus\{(\sin(0),\cos(0)),(\sin(2\pi),\cos(2\pi))\}$. Então $x_n\to x$ e portanto γ é contínua. Assim, $\xi|_{U_i}^{-1}$ é continua pois é a composição de fincões contínuas. Portanto, $\xi|_{U_i}$ é um homeomorfismo e ξ é um homeomorfismo local.

- b) Seja $A \in \tau_X$ e tome $y \in f(A)$. Existe $x \in A$ tal que f(x) = y. Como f é um homeomorfismo local, então existe um aberto $V \in \mathcal{N}(x)$ tal que $f|_V : V \to f(V)$ é um homeomorfismo. Agora, como $V \supseteq V \cap A \in \tau_X$ (pois $V, A \in \tau_X$), temos que $f|_V(A \cap V) \in \tau_Y$ e assim $f(A \cap V) \in \tau_Y$. Dessa forma $y \in int(f(A))$. Como $y \in f(A)$ é arbitrário, temos que $f(A) \in \tau_Y$ e assim f é uma aplicação aberta.
- c) Sejam $y\in Y$ e $x\in f^{-1}(y)$. Por contradição, suponha que $x\in f^{-1}(y)$ é um punto de acumulação. Então para cada $\varepsilon>0$ temos que $B_\varepsilon(x)\backslash\{x\}\cap f^{-1}(y)\neq\emptyset$. Assim, existe $(x_n)_{n\in\mathbb{N}}\subset f^{-1}(y)$ tal que $x_n\to x$, com $x_n\neq x$ para cada $n\in\mathbb{N}$. Observe que $f(x_n)=y$ para cada $n\in\mathbb{N}$. Como f é um homeomorfismo local, existe $V\in\mathcal{N}(x)$ tal que $f|_V:V\to f(V)$ é homeomorfismo. Assim, dado $\varepsilon_0\in\mathbb{R}^+$ tal que $B_{\varepsilon_0}(x)\subset V$, existe $N\in\mathbb{N}$ tal que $x_n\in B_{\varepsilon_0}(x)\subset V$ para cada $n\geq N$ natural. Então $f(x_n)=f(x)=y$, porém $x_n\neq x$, contradizendo a injetividade de $f|_V$. Portanto, $f^{-1}(y)$ é discreto.
- 5) a) Suponha por contradição que $int \cup_i F_i = F \neq \emptyset$. Seja $A_0 \in \tau_{\mathbb{R}^n}$ tal que $A_0 \subset F$. Como $intF_1 = \emptyset$, $A_0 \not\subset F_1$. Assim, podemos escolher $a_1 \in A_0 \backslash F_1$. Como F é Hausdorff (usando a topologia do subespaço, com a qual F também é compacto), podemos encontrar uma vicindade aberta $A_1 \in \mathcal{N}(a_1)$ tal que $\overline{A_1} \subset A_0$ e $\overline{A_1} \cap F_1 = \emptyset$. Mantendo a construção dessa forma, ou seja, obtendo um aberto $A_{n-1} \not\subset F_n$, escolhemos $a_n \in A_{n-1} \backslash F_n$ e então escolhemos um aberto $A_n \in \mathcal{N}(a_n)$ tal que $\overline{A_n} \cap F_n = \emptyset$ e $\overline{A_n} \subset A_{n-1}$. Como F é compacto, $\bigcap_{n \in \mathbb{N}} \overline{A_n} = \overline{A} \neq \emptyset$. Seja $w \in \overline{A}$. Assim, notamos que $w \not\in F_n$ para cada $n \in \mathbb{N}$ e então $w \not\in F$. Isso significa que todo aberto de \mathbb{R}^n contém elementos que não estão em F. Assim, F não pode conter conjuntos abertos, contradizendo a suposição. Portanto, $intF = \emptyset$.
 - b) Seja $U \in \tau_{\mathbb{R}^n}$ e $A = \cap_{n \in \mathbb{N}} A_n$. Queremos provar que $U \cap A \neq \emptyset$. Como $A_1 \subset \mathbb{R}^n$ é denso e U é aberto, existe $x_1 \in U \cap A_1 = U_1$. Como $U_1 \neq \emptyset$ é aberto, existe $U_2 \in \mathcal{N}(x_1)$ tal que $\overline{U_2} \subset U \cap A_1$. Repetimos essa construção com U_2 e o conjunto aberto denso A_2 para obter $x_2 \in U_2 \cap A_2$. Novamente, podemos escolher $U_3 \in \mathcal{N}(x_2)$ tal que $\overline{U_3} \subset U_2 \cap A_2$, já que $U_2 \cap A_2 \in \tau_{\mathbb{R}^n}$. Procedendo dessa forma, obtemos para cada $n \in \mathbb{N}$ um $x_n \in U_n \cap A_n$ e assim podemos escolher $U_{n+1} \in \mathcal{N}(x_n)$ tal que $\overline{U_{n+1}} \subset U_n \cap A_n$. Dessa forma, obtemos a coleção decrescente de conjuntos fechados aninhados $\{\overline{U_n}\}_{n \in \mathbb{N}}$ que satisfaz que $\bigcap_{n \in \mathbb{N}} \overline{U_n} = \underline{U} \neq \emptyset$. Como $\underline{U} \subset U_k \cap A_k$ para todo $k \in \mathbb{N}$, ou seja, $\emptyset \neq \underline{U} \subset U \cap \bigcap_{n \in \mathbb{N}} A_n = U \cap A$, deduzimos que A é denso já que $U \in \tau_{\mathbb{R}^n}$ é arbitrário.
- 6) Sejam $A=(A_{ij})_{i,j\in[n]}$ e $B=(b_{ij})_{i,j\in[n]}$ e vamos assumir que $\|A-B\|_{\mathbf{F}}\leq 1$. Então,

$$|\det A - \det B| = \left| \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i \in [n]} a_{i\sigma(i)} - \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i \in [n]} b_{i\sigma(i)} \right|$$

$$= \left| \sum_{\sigma \in S_n} sgn(\sigma) \left(\prod_{i \in [n]} a_{i\sigma(i)} - \prod_{i \in [n]} b_{i\sigma(i)} \right) \right|$$

$$\leq \sum_{\sigma \in S_n} \left| \prod_{i \in [n]} a_{i\sigma(i)} - \prod_{i \in [n]} b_{i\sigma(i)} \right|$$

$$= \sum_{\sigma \in S_n} \left| \prod_{i \in [n]} (b_{i\sigma(i)} + l_{i\sigma(i)}) - \prod_{i \in [n]} b_{i\sigma(i)} \right|$$

Onde $l_{i\sigma(i)}\in\mathbb{R}$ são tais que $a_{i\sigma(i)}=b_{i\sigma(i)}+l_{i\sigma(i)}$, i.e., $A-B=L=(l_{ij})_{i,j\in[n]}\in M_n(\mathbb{R})$. Lembremos que, dado $\{x_i,y_i\}_{i\in[n]}\subset\mathbb{R}$ e $\{n_i\}_{i\in[n]}\subset\mathbb{N}$, pelo teorema multi-binomial tem que

$$\prod_{i \in [n]} (x_i + y_i)^{n_i} = \sum_{k_1 \in [n_1]} \cdots \sum_{k_n \in [n_n]} \prod_{i \in [n]} \binom{n_i}{k_i} x_i^{k_i} y_i^{n_i - k_i}.$$

Assim, temos que

$$\sum_{\sigma \in S_n} \left| \prod_{i \in [n]} (b_{i\sigma(i)} + l_{i\sigma(i)}) - \prod_{i \in [n]} b_{i\sigma(i)} \right| = \sum_{\sigma \in S_n} \left| \sum_{k_1 = 0}^1 \cdots \sum_{k_n = 0}^1 \prod_{i \in [n]} \binom{1}{k_i} b_{i\sigma(i)}^{k_i} l_{i\sigma(i)}^{1 - k_i} - \prod_{i \in [n]} b_{i\sigma(i)} \right|$$

Temos que o último termo é

$$\begin{split} & \sum_{\sigma \in S_n} \left| \sum_{k_1 = 0}^1 \cdots \sum_{k_n = 0}^1 \left(\prod_{i \in [n]} b_{i\sigma(i)}^{k_i} l_{i\sigma(i)}^{1 - k_i} - \frac{1}{2^n} \prod_{j \in [n]} b_{j\sigma(j)} \right) \right| \\ &= \sum_{\sigma \in S_n} \left| \sum_{k_1 = 0}^1 \cdots \sum_{k_n = 0}^1 \prod_{i \in [n]} b_{i\sigma(i)}^{k_i} \left(\prod_{j \in [n]} b_{j\sigma(j)}^{1 - k_j} l_{j\sigma(j)}^{1 - k_j} - \frac{1}{2^n} \right) \right| \\ &\leq \sum_{\sigma \in S_n} \left| \sum_{k_1 = 0}^1 \cdots \sum_{k_n = 0}^1 \prod_{i \in [n]} b_{i\sigma(i)}^{k_i} l_{i\sigma(i)}^{1 - k_i} \right| \\ &= \sum_{\sigma \in S_n} \left| \sum_{k_1 = 0}^1 \cdots \sum_{k_n = 0}^1 \prod_{i \in [n]} b_{i\sigma(i)}^{k_i} l_{i\sigma(i)}^{1 - k_i} \right|. \end{split}$$

Para $k\in\mathbb{N}$, seja $[n]_k=\{i_1,\ldots,i_n\in\{0,1\}:\sum_{j\in[n]}i_j=k\}$. Temos que o último termo da cadena é

$$\begin{split} \sum_{\sigma \in S_{n}} \left| \sum_{m \in [n-1]} \sum_{k \in [n]_{m}} \prod_{h \in [n]} \left(l_{h\sigma(h)}^{1-k_{h}} b_{h\sigma(h)}^{k_{h}} \right) \right| &\leq \sum_{\sigma \in S_{n}} \sum_{m \in [n-1]} \sum_{k \in [n]_{m}} \left| \prod_{h \in [n]} \left(l_{h\sigma(h)}^{1-k_{h}} \right) \right| \left| \prod_{h \in [n]} \left(b_{h\sigma(h)}^{k_{h}} \right) \right| \\ &\leq \sum_{\sigma \in S_{n}} \sum_{m \in [n-1]} \sum_{k j \in [m]} \left\| L \right\|_{F}^{n-(k_{1}+\cdots+k_{n})} \left\| B \right\|_{F}^{k_{1}+\cdots+k_{n}} \\ &= \sum_{\sigma \in S_{n}} \sum_{m \in [n-1]} \left| [n]_{m} \right| \left\| L \right\|_{F}^{n-m} \left\| B \right\|_{F}^{m} \\ &= \sum_{m \in [n-1]} n! \binom{n}{m} \|A - B\|_{F}^{n-m} \|B\|_{F}^{m} \end{split}$$

Logo, $\det(\cdot)$ é localmente contínua e portanto contínua, mas ela não é Lipschitz pois o coeficiente que limita a distancia de suas imagens depende da alguma de suas entradas.