Homework Assignment 4

Due: 10/5

• You must show all intermediate calculations/results.

Problem 1 (10 points). Consider the following dataset:

ID	A1	A2	A3	Class
1	Hot	East	Low	N
2	Mild	West	High	Y
3	Cool	East	Middle	N
4	Mild	West	Low	Y
5	Hot	East	Middle	Y
6	Cool	West	Middle	N
7	Hot	East	High	Y
8	Mild	West	Low	N
9	Hot	East	Low	N
10	Cool	West	High	N
11	Mild	West	Middle	Y

Classify a new object $O = \langle A1 = Cool, A2 = East, A3 = Low \rangle$ using the Naïve Bayes algorithm we discussed in the class.

problem 2 (10 points). Info gain calculation

Consider the following dataset:

ID	A1	A2	Class
1	Hot	East	N
2	Mild	West	Y
3	Cool	East	N
4	Mild	West	Y
5	Hot	East	Y
6	Cool	West	N
7	Hot	East	Y
8	Mild	West	N
9	Hot	East	N
10	Cool	West	N
11	Mild	West	Y

- (1). Calculate the information gain of attribute A1.
- (2). Calculate the information gain of attribute A2.
- (3). Which is better as the test attribute at the root level?

Problem 3 (10 points). Consider a dataset that has two predictor variables, *age* and *bp*, and the class attribute *class*. The class attribute values are *Yes* and *No*. Suppose that you ran a logistic regression algorithm and obtained the following coefficients for the class *Yes*:

```
intercept = -5.5461, age = 0.0418, bp = 0.0517
```

Calculate the probability that a new object $O = \langle age = 68, bp = 145 \rangle$ belongs to the class *Yes* using the method we discussed in the class. You must show all intermediate steps and calculations.

Problem 4 (10 points). This question is about the discriminant analysis method that we discussed in the class. Suppose that you have a dataset with two classes, Class 1 and Class 2, and that you are trying to classify an object *O* using the method and you calculated the distance between *O* and the centroids of the two classes and obtained the following:

Squared distance to Class 1: 1.3871 Squared distance to Class 2: 3.7342

Calculate the probability that the object *O* belongs to Class 1 and the probability that the object *O* belongs to Class 2.

Problem 5 (10 points). Use the *heart_failure.csv* dataset and use R. The dataset was downloaded from the UCI Machine Learning Repository and modified for this assignment. In the dataset:

- Each tuple represents a patient.
- DEATH EVENT is the class attribute; 1 means the patient died and 0 means survived.
- (1). Convert the data type of the class attribute to factor.
- (2). Split the dataset into training and test sets with the 66%-34% ratio. Make sure that you use a stratified splitting method.
- (3). Build a Naïve Bayes model from the training dataset.
- (4). Test the model on the test dataset.
- (5). In your submission file, include the confusion matrix and the prediction accuracy of each class.
- (6). Build a decision tree model using the *rpart* algorithm from the training dataset. Use *information gain* as the purity measure.
- (7). Plot the tree of the model.
- (8). Test the model on the test dataset.
- (9). In your submission file, include the screenshot of the tree, confusion matrix and the prediction accuracy of each class.

Submission:

Name your file *LastName_FirstName_*HW4.doc or *LastName_FirstName_*HW4.pdf. If you have multiple files, then combine all files into a single archive file. Name the archive file as *LastName_FirstName_*HW4.EXT. Here, "EXT" is an appropriate archive file extension (e.g., zip or rar). Upload this archive file to Blackboard.