

CS 372 Lecture #23

Reliable data transfer with TCP

- connection setup/teardown
- fairness
- Wrap up TCP/UDP
- Wrap up transport layer

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

TCP segment structure

4-bit header size. Number of 32-bit "lines" (minimum=5, maximum=15)

> ACK SYN FIN

Internet checksum (as in UDP)

32 bits

application data (variable length) counting by <u>bytes</u> of data (not segments!)

bytes
receiver
is willing
to accept

TCP 3-way handshake

TCP: closing a connection

TCP Fairness

Fairness goal: if n TCP sessions share the same bottleneck link of bandwidth R, each should have average rate of R/n

- TCP is fair to each connection
- Not necessarily fair to each <u>host</u>
 - application can open multiple parallel connections between two hosts
 - web browsers do this

Compare UDP and TCP

- UDP provides
 - connectionless service
 - end-to-end best-effort (unreliable) delivery
- TCP provides
 - connection-oriented service
 - end-to-end reliable byte stream delivery
- Both
 - use IP (network layer) for delivery to destination
 - send to / receive from multiple applications
 - de-multiplex to destination application protocol ports

Compare UDP and TCP

- UDP is simple and fast
 - 8-byte header
- TCP is complicated
 - 20-byte header (minimum)
 - adds a huge amount of overhead to achieve reliability
 - especially for acknowledgements and congestion control
 - amazingly ... it works
 - depends on extremely fast and reliable hardware in the network core.

Summary

Lecture #23

- TCP connection setup/teardown
 - 3-way handshake
 - closing a connection
- TCP "fairness"
- Transport layer protocols
 - provide application-to-application delivery
 - accept data from: / deliver data to: application layer processes
 - depend on network layer protocols to carry segments through the network core