

1. Basics of deep learning

2. Deep learning for graphs \checkmark

3. Graph Convolutional Networks

4. GNNs subsume CNNs and **Transformers**

Graph Convolutional Networks

Idea: Node's neighborhood defines a computation graph

Determine node computation graph

Propagate and transform information

Learn how to propagate information across the graph to compute node features

Idea: Aggregate Neighbors

 Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

computation graph Every node defines a computation graph based on its neighborhood! **INPUT GRAPH**

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node v is its input feature, x_v

• Layer-k embedding gets information from nodes that are k hops away

Neighborhood Aggregation

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

The Math: Deep Encoder

 Basic approach: Average neighbor messages and apply a neural network

Initial 0-th layer embeddings are equal to node features embedding of v at layer kTotal number Average of neighbor's of layers previous layer embeddings **Embedding after L**

layers of neighborhood aggregation Non-linearity (e.g., ReLU)

Notice summation is a permutation invariant pooling/aggregation.

Equivariant Property

Message passing and neighbor aggregation in graph convolution networks is permutation equivariant.

Shared NN weights

Equivariant Property

Message passing and neighbor aggregation in graph convolution networks is permutation equivariant.

Shared NN weights

Training the Model

How do we train the GCN to generate embeddings? \mathbf{z}_{A}

Need to define a loss function on the embeddings.

Model Parameters

We can feed these embeddings into any loss function and run SGD to train the weight parameters

 h_v^k : the hidden representation of node v at layer k

Final node embedding

- $\stackrel{\bullet}{\mathbf{W}_{k}}$: weight matrix for neighborhood aggregation
- B_k : weight matrix for transforming hidden vector of self

Matrix Formulation (1)

Many aggregations can be performed efficiently by (sparse) matrix operations

- Let $H^{(k)} = [h_{1k}^{(k)} ... h_{|V|}^{(k)}]^{T}$ Then: $\sum_{u \in N_{n}} h_{u}^{(k)} = A_{v,:} H^{(k)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$
- Therefore,

Matrix Formulation (2)

Re-writing update function in matrix form:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{T} + H^{(k)}B_k^{T})$$
 where $\tilde{A} = D^{-1}A$
$$H^{(k)} = [h_1^{(k)} \dots h_{|V|}^{(k)}]^T$$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

How to Train A GNN

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss
 L (see also Slide 15):

$$\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$$

- y: node label
- \mathcal{L} could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available
 - Use the graph structure as the supervision!

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

E.g., a drug-drug interaction network

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Use cross entropy loss (Slide 16)

Model Design: Overview

Model Design: Overview

(3) Train on a set of nodes, i.e., a batch of compute graphs

Model Design: Overview

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

Inductive node embedding — Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

- Many application settings constantly encounter previously unseen nodes:
 - E.g., Reddit, YouTube, Google Scholar
- Need to generate new embeddings "on the fly"