The Design and Analysis of Algorithms

Lecture 18 Intractability III

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Sequencing Problems

Traveling Salesperson Problem

Partitioning Problems and Graph Coloring

Numerical Problems

Theorem 1

- 3-SAT \leq_P DIR-HAM-CYCLE.
 - Pf. Given an instance Φ of 3-SAT with n variables x_i and k clauses, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. Create graph that has 2^n Hamilton cycles correspond to 2^n possible truth assignments.

Intuition: traverse path *i* from left to right \Leftrightarrow set variable x_i = true.

For each clause, add a node and 6 edges.

Lemma 2

Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow Suppose 3-SAT instance has satisfying assignment x^* .

Define Hamilton cycle in G as follows:

if $x_i^* = true$, traverse row *i* from left to right;

if $x_i^* =$ false, traverse row i from right to left.

For each clause C_j , there will be at least one row i in which we are going in "correct" direction to join clause node C_j into cycle (exactly once).

 \leftarrow Suppose *G* has a Hamilton cycle Γ.

If Γ enters clause node C_i , it must depart on mate edge.

Set $x_i^* = true$ iff Γ traverses row i left to right.

Since Γ visits each clause node C_j , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \square

3-SAT Reduces to Longest Path

• LONGEST-PATH. Given a directed graph G = (V, E), does there exists a simple path consisting of at least k edges?

Theorem 3 3-SAT \leq_P LONGEST-PATH.

Pf. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. \Box

Traveling Salesperson Problem

• TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

Hamilton Cycle Reduces to TSP

Theorem 4

HAM-CYCLE \leq_P TSP.

Pf. Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function

$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2 & \text{if } (u,v) \notin E \end{cases}$$

 TSP instance has tour of length ≤ n iff G has a Hamilton cycle. □

Remark. *TSP* instance satisfies triangle inequality: $d(u, w) \le d(u, v) + d(v, w)$.

3-Dimensional Matching

• 3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem 5

3-SAT ≤ $_P$ 3D-MATCHING.

Refer to the textbook.

3-Colorability

 3-COLOR. Given an undirected graph G, can the nodes be colored and blue so that no adjacent nodes have the same color?

Theorem 6

3-SAT $\leq_P 3$ -COLOR.

Refer to the textbook.

Subset Sum

• SUBSET-SUM. Given natural numbers w_1, \dots, w_n and an integer W, is there a subset that adds up to exactly W?

Ex. $\{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}, W = 3754.$

Yes.
$$1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754$$
.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Theorem 7

3-SAT ≤ $_P$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

3-Satisfiability Reduces to Subset Sum

• Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n + k digits:

dummies to get clause columns to sum to 4

	×	У	z	C_1	C2	C ₃	
×	1	0	0	0	1	0	100,010
$\neg x$	1	0	0	1	0	1	100,101
у	0	1	0	1	0	0	10,100
$\neg \ y$	0	1	0	0	1	1	10,011
z	0	0	1	1	1	0	1,110
$\neg \ \mathbf{z}$	0	0	1	0	0	1	1,001
(0	0	0	1	0	0	100
	0	0	0	2	0	0	200
t	0	0	0	0	1	0	10
1	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
W	1	1	1	4	4	4	111,444

3-Satisfiability Reduces to Subset Sum

Lemma 8

 Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose Φ is satisfiable.

Choose integers corresponding to each true literal.

Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i rows.

Choose dummy integers to make clause digits sum to 4.

 \leftarrow Suppose there is a subset that sums to W.

Digit x_i forces subset to select either row x_i or $\neg x_i$ (but not both).

Digit C_i forces subset to select at least one literal in clause.

Assign $x_i = true$ iff row x_i selected. \Box

Partition Problem

• *PARTITION*. Given natural numbers v_1, \dots, v_m , can they be partitioned into two subsets that add up to the same value $1/2 \sum_i v_i$?

Theorem 9 $SUBSET-SUM \leq_P PARTITION$.

Pf. Let W, w_1, \dots, w_n be an instance of SUBSET-SUM.

Create instance of *PARTITION* with m = n + 2 elements:

$$v_1 = w_1, v_2 = w_2, \dots, v_n = w_n, v_{n+1} = 2 \sum_i w_i - W, v_{n+2} = \sum_i w_i + W.$$

There exists a subset that sums to W iff there exists a partition since elements v_{n+1} and v_{n+2} cannot be in the same partition. \Box

Scheduling with Release Times

• SCHEDULE. Given a set of n jobs with processing time t_j , release time r_j , and deadline d_j , is it possible to schedule all jobs on a single machine such that job j is processed with a contiguous slot of t_j time units in the interval $[r_j, d_j]$?

Theorem 10

 $SUBSET-SUM \leq_P Scheduling.$

Pf. Let W, w_1, \dots, w_n be an instance of SUBSET-SUM.

Create instance of *Scheduling* that is feasible iff there exists a subset that sums to exactly *W*:

Create n jobs with processing time $t_j = w_j$, release time $r_j = 0$ and deadline $\sum_{i=1}^{n} w_i + 1$;

Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W + 1$.

Subset that sums to W iff there exists a feasible schedule. \Box

Polynomial-Time Reductions

 Observation. All these problems are NP-complete and polynomial reduce to one another!

Karp's 21 NP-Complete Problems

NP-complete Problems

M. R. Gary and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco, 1979.

P, NP and Beyond

- Practice. Most NP problems are known to be either in P or NP-complete.
- Notable exceptions. FACTOR, GRAPH-ISOMORPHISM, NASH-EQUILIBRIUM.

Theorem 11 (Ladner 1975)

Unless P = NP, there exist problems in NP that are neither in P nor NP-complete.

 Many complexity classes: co-NP, polynomial hierarchy, PSPACE, BPP, IP · · ·

Homework

- Read the proof on the reductions of 3-dimensional matching and 3-colorability.
- Exercises 7 & 27 in Chapter 8.

