Fiche d'exercices nº 2

Réduction des endomorphismes

Solution 2

- a) Facile
- **b)** Écrire $\det(A + \frac{1}{p}) = \chi_{-A}(\frac{1}{p})$, et remarquer que, puisque $\chi_{-A}(0) = 0$, $\chi_{-A}(t)$ est non nul pour t proche de 0.

Solution 3

écrire $\chi_f = X^{n-2}(X - \lambda)(X - \mu)$, constater que $\operatorname{tr}(f) = \lambda + \mu$ et $\operatorname{tr}(f^2) = \lambda^2 + \mu^2 = (\operatorname{tr} f)^2 - 2\lambda\mu$, et en déduire l'expression développée de $(X - \lambda)(X - \mu)$.

Solution 4

- a) Soit λ valeur propre commune à A et B. Alors il existe deux matrices colonnes X et Y telles que $AX = \lambda X$ et $B^TY = \lambda Y$ de sorte que $C = XY^T$ convient.
- b) on écrit $C = PJ_rQ$ avec P et Q inversible et l'égalité devient $A'J_r = J_rB'$ avec $A' \sim A$ et $B' \sim B$. Un calcul par bloc montre alors $A' = \begin{pmatrix} M & (*) \\ (0) & (*) \end{pmatrix}$ et $B' = \begin{pmatrix} M & (0) \\ (*) & (*) \end{pmatrix}$ avec $M \in \mathcal{M}_r(\mathbb{C})$. χ_M est donc un diviseur commun et on a en particulier $\operatorname{Sp}(M) \subset \operatorname{Sp}(A) \cap \operatorname{Sp}(B)$.

Solution 20

- Supposons f diagonalisable, et soit F un sous-espace. Considérons une base \mathcal{B} de vecteurs propres, et soit (e_1, \ldots, e_p) une base de F. On peut compléter cette base de F en une base (e_1, \ldots, e_n) de E en ajoutant uniquement des vecteurs parmi \mathcal{B} . On définit alors $G = \text{vect}(e_{p+1}, \ldots, e_n)$ qui est bien un supplémentaire de F stable par f.
- Supposons que tout sous-espace admet un supplémentaire et par l'absurde supposons f non diagonalisable, de sorte que la somme $F_1 \oplus \cdots \oplus F_q$ des sous-espaces propres n'est pas égale à E. Considérons un hyperplan H contenant cette somme. Il admet un supplémentaire stable par f qui est une droite contenant donc des vecteurs propres : absurde puisqu'ils sont tous dans H.

Solution 25

Remarquons déjà que si P(u) est inversible, alors son inverse est un polyhôme en P(u) (classique) donc un polyhôme en u. On a donc P(u) inversible ssi il existe $Q \in \mathbb{K}[X]$ tel que $P(u) \circ Q(u) = I_E$, ce qui est est équivalent à π_u divise PQ - 1. On a donc P(u) inversible ssi il existe une relation de Bézout $PQ + \pi_u V = 1$, donc ssi P et π_u premiers entre eux.

Solution 27

polynôme interpolateur de Lagrange.

Solution 28

On écrit $P = \alpha + XQ$ avec $\alpha \in \mathbb{K}^*$ et $Q \in \mathbb{K}[X]$ (éventuellement nul). Alors $AB = \alpha I_n + AQ(A)$ donc A inversible d'inverse $\frac{1}{\alpha}(B - Q(A))$. On a alors $B = \alpha A^{-1} + Q(A)$ et donc $BA = \alpha I_n + Q(A)A = \alpha I_n + AQ(A) = AB$.

Solution 29

On réduit u représenté par $A-I_n$ dans la base canonique. On a $u^2=0$ donc $\mathrm{Im}(u)\subset\mathrm{Ker}(u)$. On prend une base (e_1,\ldots,e_r) de $\mathrm{Im}(u)$ complétée en (e_1,\ldots,e_p) du noyau $(r\leqslant p)$. On peut écrire $e_j=u(\varepsilon_j)$ pour $1\leqslant j\leqslant r$. On a facilement $\mathrm{vect}(\varepsilon_j)\cap\mathrm{vect}(e_j)=\{0\}$ donc $(e_1,\varepsilon_1,\ldots,e_r,\varepsilon_r,e_{r+1},\ldots,e_p)$ libre et formée de $r+\dim(Ker(u))=n$ vecteurs : c'est une base dans laquelle u+Id à la forme voulue.

Solution 30

Si n impair, impossible, il doit y avoir une racine réelle. Si n pair, possible en prenant M diagonale par blocs avec des blocs égaux à $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$