Minutes: Speaker Diarization and Tech Talk

Some of Our Learnings on Transfer Learning

Dense Layer (Fully connected layer)

Each neuron in this layer is connected with every neuron in the last

Most basic form of a neural network

Pooling Layer

Each set of neurons is averaged out to form the new neuron

Reduces complexity

Fast to compute

max pool with 2x2 filters and stride 2

6	8
3	4

Convolution Layer

Similar to pooling

Instead of applying "average" onto the neurons, it applies a dense layer.

Good for identifying patterns

Base Model

Transfer Learning Basics

- Train your model on a big, general dataset, then pop off the last few layers, freeze the early layers, and retrain on a very specific dataset.
- Useful if you don't have a large enough dataset or you want to train your model faster.
- In our case, we wanted to train on pre-existing corpora of audio data (from the "LibriVox" audiobook archive), and then use transfer learning to "learn" features about new speakers (the users of our API).

Transfer Learning Architecture

Important Metrics in Transfer Learning

		Base Validation Accuracy The accuracy of the model when predicting <i>in-class</i> on the validation side of the training dataset.
Tra	ansf	Fer Validation Accuracy The validation accuracy of the model when predicting out-of-class on a new training dataset.
		Base Model Utilization The proportion of the base model <i>re-used</i> in generating the transfer model.

Model Results

97.90% Base Validation Accuracy 95.25% Transfer Validation Accuracy 46.91% Base Model Utilization

Results

<u>utilization</u>

Layer (type)	Output	Shape	Param #
conv2d_49 (Conv2D)	(None,	63, 8, 32)	12320
dropout_48 (Dropout)	(None,	63, 8, 32)	0
conv2d_50 (Conv2D)	(None,	14, 2, 64)	81984
dropout_49 (Dropout)	(None,	14, 2, 64)	0
conv2d_51 (Conv2D)	(None,	14, 2, 128)	8320
max_pooling2d_23 (MaxPooling	(None,	7, 1, 128)	0
dropout_50 (Dropout)	(None,	7, 1, 128)	0
flatten_16 (Flatten)	(None,	896)	0
dense_31 (Dense)	(None,	128)	114816
dense_2 (Dense)	(None,	10)	1290
Total params: 218,730			

Total params: 218,730
Trainable params: 116,106
Non-trainable params: 102,624

Dataset

- Librivox Corpus
- Split audiobooks into 1-sec spectrograms

Transfer Learning Summary

First iteration: Retrained 96% of the model (got 95% accuracy).

Second Iteration: Retrained 79% of the model (got 90% accuracy).

Final iteration: Retrained 53% of the model (got 95% accuracy)

NOTE: Less retraining means less time to train (and generally less accuracy).