Abstract Algebra

: Lecture 16

Leo

2024.11.21

Theorem 1. If D is UFD, then D[x] is also UFD.

延男. Finite factor chain condition is trivial. We want to prove if $f(x) = p_1(x) \dots p_s(x) = q_1(x) \dots q_t(x)$ then s = t and $p_i(x) = q_j(x)$ for some i, j. This is equivalent to if f(x) is irreducible, then f(x) is prime.

Let $f(x) \in D[x]$ be irreducible. Assume f|gh. If degf = 0, we are done. Suppose degf = n > 0. Then fq = gh for some $q \in D[x]$. Let K be fraction foeld of D. Then f(x) is irreducible in K[x], and so f is prime. Thus f|g or f|h. Say f|g i.e. g(x) = f(x)d(x) in K[x]. Let f be the product of the denominators of the coefficients of f(x). Then f(x) = f(x)f(x) in f(x) = f(x)f(x). Let f(x) = f(x)f(x) be f(x) = f(x)f(x). Then f(x) = f(x)f(x), where f(x) = f(x)f(x) are primitive. Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) in f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x)f(x). Then f(x) = f(x)f(x) is irreducible in f(x) = f(x) is irreducible in f(x) = f(x) in f(x) = f(x) is irreducible in f(x) = f(x) in f(x) = f(x) is irreducible in f(x) = f(x) in f(x) = f(x) in f(x) = f(x) in f(x) = f(x) is irreducible in f(x) = f(x) in f(x) =

Now we begin with Field Theory.

Definition 2. Let F be a field. If F < E then F is a subfield of E, E is a extension of F.

Definition 3. Let F < E, let $S \subseteq E$, and let F(S) be the intersection of all subfields of E containing S. F(S) is called the field generated by S over F. In particular, if $S = \{a\}$ then F(S) = F(a).

Definition 4. α is called algebraic element over F if $f(\alpha) = 0$ for some polonomial $f(x) \in F[x]$. Otherwise α is called transcendental element over F.

Proposition 5. Let F < E and $\alpha \in E \setminus F$.

- (1). If α is transcendental, then $F(\alpha) = \{\frac{f(\alpha)}{g(\alpha)} | f, g \in F[x], g \neq 0\}$.
- (2). If α is algebraic, then $F(\alpha) \simeq F[x]/(m(x))$, where $m(\alpha) = 0$ and m|f if $f(\alpha) = 0$.

证明. Let $\sigma: F[x] \to F(\alpha)$ be the evaluation homomorphism. Let I be the kernel of σ . Then $F[x]/I \simeq F(\alpha)$. $I = \{f \in F[x] | f(\alpha) = 0\}$.

If α is transcendental, then $I = \{0\}$ and $F(\alpha) \simeq F[x]$.

If α is algebraic, then I = (m(x)), where m(x) is the minimal polynomial of α over F.

Example 6. Find $\mathbb{F}_{p^2} > \mathbb{F}_p$, we need to find $x^2 - r$ and $x^2 - r$ irre. with $r \in \mathbb{F}_p$, then $\mathbb{F}_{p^2} \simeq \mathbb{F}_p[x]/(x^2 - r)$.

Theorem 7. For any $n \in \mathbb{Z}^+$, there exist irreducible polynommial of deg n in $\mathbb{F}_p[x]$.

证明. Just consider n=2 There are exactly p^2 poly. with form $a+bx+x^2$. Among them, reducible ones are either $(a_0+x)(a_0+x)$ or $(a_0+x)(a_1+x)$, where $a_0 \neq a_1$. In total $p+\frac{1}{2}p(p-1)=\frac{1}{2}p(+1)< p^2$.

Exercise 8. $\mathbb{F}_3[x]/(x^2+1)\simeq \mathbb{F}_3[x]/(x^2+x+2)$