In this assignment, you solve problems for Markov Decision Processes (MDP) - Discounted. You need to formulate the mathematical model and solve it by hand and with Python and Gurobi.

1. Submission Instructions

Submit <u>a PDF file</u> describing a Markov Decision Processes (MDP) <u>model</u> and reporting the <u>solution</u> to the problem instance. Also, submit <u>a program (a Python script or a Jupyter notebook)</u> using <u>Gurobi</u> to solve the problem instance. In the MDP formulation, clearly define the <u>stages</u>, <u>states</u>, and <u>actions</u> and formulate the <u>Bellman equations</u>. In the Linear Programming (LP) formulation, clearly define <u>decision variables</u> and state the <u>objective function</u> and <u>constraints</u>. For the problem instance, report the values of the <u>objective</u> and <u>soluions</u>.

2. Problem

Question 1: At the beginning of each year, an aircraft engine is in good, fair, or poor condition. It costs \$500,000 to run a good engine for a year, \$1 million to run a fair engine for a year, and \$2 million to run a poor engine for a year. A fair engine can be overhauled for \$2 million, and it immediately becomes a good engine. A poor engine can be replaced for \$3 million, and it immediately becomes a good engine. The transition probability matrix for an engine is as follows:

	Good	Fair	Poor
Good	Good 0.7		0.1
Fair	0.0	0.6	0.4
Poor	0.0	0.0	1.0

Suppose the discount rate $\beta = 0.9$. and our goal is to minimize expected discounted cost.

- a) Use the policy iteration method to determine an optimal policy.
- b) Use linear programming to determine an optimal policy.
- c) Perform two iterations of value iteration.
- d) Find a policy that minimizes average cost.

Question 2: At any time, the size of tree is 0, 1, 2, or 3. We must decide when to harvest the tree. Each year, it costs \$1 to maintain the tree. It costs \$5 to harvest a tree. The sales price for a tree of each size is as follows:

Tree Size	Sale Price		
0	\$20		
1	\$30		
2	\$45		
3	\$49		

The transition probability matrix for the size of the tree is as follows:

	0	1	2	3
0	0.8	0.2	0.0	0.0
1	0.0	0.0	0.9	0.1
2	0.0	0.0	0.7	0.3
3	0.0	0.0	0.0	1.0

For example, 80% of all size 0 trees begin the next year as size 0 trees, and 20% of all size 0 trees begin the next year as size 1 trees. Assuming the discount factor for cash flows is 0.9 per year, determine an optimal harvesting strategy.

- a) Use the policy iteration method to determine an optimal policy.
- b) Use linear programming to determine an optimal policy.
- c) Perform two iterations of value iteration.
- d) Find a policy that minimizes average cost.