La formule d'Itô

Lucas Lejeune, BA3-MATH-I

21 novembre 2023

Table des matières

- 1 Introduction au concept d'option call et posons le problème
- Mouvement brownien et processus stochastique
- Modèle de Black-Scholes
- Retour au problème
- Intégrale d'Itô
- Formule d'Itô

Option

Definition

Une **option call** est un produit dérivé, contrat entre deux parties, qui donne à l'acheteur le droit (le vendeur est en revanche tenu de se plier à la décision de l'acheteur) d'acheter une quantité donnée d'un actif sous-jacent à un prix précisé à l'avant (ce prix est appelé le *strike*) (source : wikipedia.org)

Option

Definition

Une **option call** est un produit dérivé, contrat entre deux parties, qui donne à l'acheteur le droit (le vendeur est en revanche tenu de se plier à la décision de l'acheteur) d'acheter une quantité donnée d'un actif sous-jacent à un prix précisé à l'avant (ce prix est appelé le *strike*) (source : wikipedia.org)

On ne s'intéressera ici qu'aux options ayant une date d'échéance donnée, et où il n'est possible de les utiliser que le jour de la date d'échéance. Dans la suite, on notera K le strike Enfin, on définit le **payoff** comme étant le rendement intrinsèque d'une option

Option Call

Exemple où l'on fait valoir l'option

Option Call

Exemple où l'on ne fait pas valoir l'option

Processus Stochastique

Définition

On appelle processus stochastique la donnée

$$X = (\Omega, \mathcal{F}, (X_t)_{t \in \mathcal{T}}, \mathbb{P})$$
(1)

où Ω est un ensemble, \mathcal{F} est une σ -algèbre sur Ω , \mathbb{P} est une mesure de probabilité sur (Ω,\mathcal{F}) et $\mathcal{T}\subset\mathbb{R}^+$ (représente le temps). Enfin, $(X_t)_{t\in\mathcal{T}}$ est une famille de variable aléatoire indexée par \mathcal{T} .

Mouvement Brownien

Définition

Un processus $B = (\Omega, \mathcal{F}, (X_t)_{t \in \mathcal{T}}, \mathbb{P})$ à valeurs réelles est un mouvement brownien si

$$B_0 = 0 \qquad \mathbb{P} - p.s \tag{2a}$$

$$\forall s \in [0, t], \qquad B_t - B_s \perp \!\!\!\perp \mathcal{F}_s \qquad (2b)$$

$$\forall s \in [0, t], \qquad B_t - B_s \sim \mathcal{N}(0, t - s)$$
 (2c)

Le mouvement brownien est donc un type particulier de marche aléatoire.

Le modèle de Black-Scholes

Définition

On va choisir de modéliser le marché en utilisant le processus stochastique satisfaisant l'équation stochastique suivante

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dB_s \\ X_0 = 0 \end{cases}$$
 (3)

est l'équation de Black-Scholes.

Le modèle de Black-Scholes

Définition

On va choisir de modéliser le marché en utilisant le processus stochastique satisfaisant l'équation stochastique suivante

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dB_s \\ X_0 = 0 \end{cases}$$
 (3)

est l'équation de Black-Scholes.

Le but va donc être de comprendre ce processus de manière plus globale, il nous faut donc une intégrale de la forme

$$\int_0^T dX_t = \int_0^T \mu X_t dt + \int_0^T \sigma X_T dB_t$$

Le modèle de Black-Scholes

Définition

On va choisir de modéliser le marché en utilisant le processus stochastique satisfaisant l'équation stochastique suivante

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dB_s \\ X_0 = 0 \end{cases}$$
 (3)

est l'équation de Black-Scholes.

Le but va donc être de comprendre ce processus de manière plus globale, il nous faut donc une intégrale de la forme

$$\int_0^T dX_t = \int_0^T \mu X_t dt + \int_0^T \sigma X_T dB_t$$

Le but va donc maintenant être de définir cette intégrale

Représentation de cinq X_t résolvant cette équation

Construction de l'intégrale d'Itô

Définition

On définit \mathcal{H}^2 comme étant l'espace des fonctions mesurables et adaptées respectant la condition d'intégrabilité

$$\mathbb{E}\left[\int_0^T f^2(\omega,t)dt\right] < \infty$$

Propriété de base de l'intégrale

On aimerait que notre intégrale aient les propriétés suivantes, D'abord, si $f(\omega,t)=\mathbb{1}_{]a;b]}$ on aimerait

$$I(f)(\omega) = \int_a^b f(\omega, t) dB_t = B_b - B_a$$

Définition de l'intégrale d'Itô sur \mathcal{H}_0^2

Définition

On définit maintenant \mathcal{H}_0^2 comme le sous-ensemble des fonctions dans \mathcal{H}^2 telles que celles-ci soient de la forme

$$f(\omega,t) = \sum_{i=0}^{n-1} a_i(\omega) \mathbb{1}_{]t_i;t_{i+1}]}$$

Définition de l'intégrale d'Itô sur \mathcal{H}_0^2

Définition

On définit maintenant \mathcal{H}_0^2 comme le sous-ensemble des fonctions dans \mathcal{H}^2 telles que celles-ci soient de la forme

$$f(\omega,t) = \sum_{i=0}^{n-1} a_i(\omega) \mathbb{1}_{]t_i;t_{i+1}]}$$

Définition

Soit $f \in \mathcal{H}^2_0$ on va définir l'intégrale d'Itô comme étant

$$I(f)(\omega) = \sum_{i=0}^{n-1} a_i(\omega) \left(B_{t_{i+1}} - B_{t_i} \right)$$

En fait, comme \mathcal{H}_0^2 est dense dans \mathcal{H}^2 , on peut définir l'intégrale sur tout \mathcal{H}^2

Cas simple

Lemme d'Itô

Avec $f: \mathbb{R} \to \mathbb{R}$ est de classe \mathcal{C}^2 , alors

$$f(B_t) = f(0) + \int_0^t f'(B_S) dB_S + \frac{1}{2} \int_0^t f''(B_S) dS$$
 (4)

Cas simple

Lemme d'Itô

Avec $f: \mathbb{R} \to \mathbb{R}$ est de classe \mathcal{C}^2 , alors

$$f(B_t) = f(0) + \int_0^t f'(B_S) dB_S + \frac{1}{2} \int_0^t f''(B_S) ds$$
 (4)

On note la similarité entre cette équation et le théorème fondamental de l'analyse, à ceci près qu'une intégrale de la dérivée seconde de f s'invite dans l'équation

Cas simple

Lemme d'Itô

Avec $f: \mathbb{R} \to \mathbb{R}$ est de classe C^2 , alors

$$f(B_t) = f(0) + \int_0^t f'(B_S) dB_S + \frac{1}{2} \int_0^t f''(B_S) ds$$
 (4)

On note la similarité entre cette équation et le théorème fondamental de l'analyse, à ceci près qu'une intégrale de la dérivée seconde de f s'invite dans l'équation

Lemme d'Itô, avec plusieurs variables

Soit $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$, on a

$$f(t,B_t) = f(0,0) + \int_0^t \frac{\partial f}{\partial x}(s,B_s)dB_s + \int_0^t \frac{\partial f}{\partial t}(s,B_s)ds + \frac{1}{2}\int_0^t \frac{\partial^2 f}{\partial x^2}(s,B_s) ds$$
(5)

Lemme d'Itô, notation Shorthand

Lemme d'Itô (notation)

Soit $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$, et $X_t = f(t,B_t)$ un processus stochastique, on écrira

$$dX_{t} = \frac{\partial f}{\partial x}(t, B_{t})dB_{t} + \frac{\partial f}{\partial t}(t, B_{t})dt + \frac{1}{2}\frac{\partial^{2} f}{\partial x^{2}}(t, B_{t})dt$$
 (6)

Box-Calculus

Box-Calculus

	dt	dB _t
dt	0	0
dB _t	0	dt

Application à Black-Scholes

On reprend notre équation stochastique de Black-Scholes

$$dX_t = \mu X_t dt + \sigma X_t dB_s \tag{7}$$

Application à Black-Scholes

On reprend notre équation stochastique de Black-Scholes

$$dX_t = \mu X_t dt + \sigma X_t dB_s \tag{7}$$

et on s'intéresse à $d\ln X_t$ en y appliquant la formule d'Itô

$$d \ln X_t = \frac{1}{X_t} \left(\mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left(\mu X_t dt + \sigma X_t dB_t \right) \left(\mu X_t dt + \sigma X_t dB_t \right)$$

Application à Black-Scholes

On reprend notre équation stochastique de Black-Scholes

$$dX_t = \mu X_t dt + \sigma X_t dB_s \tag{7}$$

et on s'intéresse à $d \ln X_t$ en y appliquant la formule d'Itô

$$d \ln X_t = \frac{1}{X_t} \left(\mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left(\mu X_t dt + \sigma X_t dB_t \right) \left(\mu X_t dt + \sigma X_t dB_t \right)$$

ensuite, en appliquant le Box-Calculus, on voit qu'il est possible de simplifier cette dernière expression

$$d\ln X_t = \mu dt + \sigma dB_t - \frac{\sigma^2}{2} dt \tag{8}$$

Application à Black-Scholes (suite)

$$d\ln X_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$$

Application à Black-Scholes (suite)

$$d\ln X_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$$

On intègre ensuite de chaque côté de l'équation avec l'intégrale d'Itô

$$\int_{0}^{T} d \ln \left(X_{t} \right) = \int_{0}^{T} \left(\mu - \frac{\sigma^{2}}{2} \right) dt + \int_{0}^{T} \sigma dB_{t}$$

Application à Black-Scholes (suite)

$$d\ln X_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$$

On intègre ensuite de chaque côté de l'équation avec l'intégrale d'Itô

$$\int_{0}^{T} d \ln (X_{t}) = \int_{0}^{T} \left(\mu - \frac{\sigma^{2}}{2}\right) dt + \int_{0}^{T} \sigma dB_{t}$$

$$\ln \left(\frac{X_{t}}{X_{0}}\right) = \left(\mu - \frac{\sigma^{2}}{2}\right) T + \sigma B_{T}$$

Application à Black-Scholes (suite)

$$d\ln X_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$$

On intègre ensuite de chaque côté de l'équation avec l'intégrale d'Itô

$$\begin{split} \int_0^T d\ln\left(X_t\right) &= \int_0^T \left(\mu - \frac{\sigma^2}{2}\right) dt + \int_0^T \sigma dB_t \\ &\ln\left(\frac{X_t}{X_0}\right) = \left(\mu - \frac{\sigma^2}{2}\right) T + \sigma B_T \\ &X_t = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right) T + \sigma B_T\right) \end{split}$$

Déduction de la formule de Black-Scholes

Définition

Soit $Z \sim \mathcal{N}$ (0,1), et soient $\mu \in \mathbb{R}$ et $\sigma \in \mathbb{R}^+$, alors la variable définie par $X = e^{\mu + \sigma Z}$ suit une loi log-normale. De plus