

LEY DE RECIPROCIDAD CUADRÁTICA

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 19) 06.SEPTIEMBRE.2024

Símbolo de Legendre

Hasta ahora, hemos probado las siguientes propieades del símbolo de Legendre:

- 1. Si $a \equiv b \pmod{p}$, entonces $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- **2.** $(\frac{a^2}{p}) = 1$, si $p \nmid a$.
- 3. -1 es residuo cuadrático módulo $p \Leftrightarrow p \equiv 1 \pmod{4}$.
- 4. $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Además, del Criterio de Euler, tenemos para p primo impar:

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1, & \text{si } p \equiv 1 \pmod{4}; \\ -1, & \text{si } p \equiv 3 \pmod{4}. \end{cases}$$

Y del Lema de Gauss, para p primo impar:

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1, & \text{si } p \equiv \pm 1 \pmod{8}; \\ -1, & \text{si } p \equiv \pm 3 \pmod{8}. \end{cases}$$

El Criterio de Euler ya produce un mecanismo para identificar residuos cuadráticos. Vamos a mostrar ahora un resultado más general.

Teorema (Ley de Reciprocidad Cuadrática)

Sean p, a primos impares distintos. Entonces

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=\left(-1\right)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Prueba: Vamos a mostrar que

$$\frac{p-1}{2} \cdot \frac{q-1}{2} = \sum_{1 \le i \le \frac{q-1}{q}} \left\lfloor \frac{ip}{q} \right\rfloor + \sum_{1 \le i \le \frac{p-1}{p}} \left\lfloor \frac{iq}{p} \right\rfloor. \tag{1}$$

y que

$$\left(\frac{p}{q}\right) = (-1)^{\sum_{1 \le i \le \frac{q-1}{2}} \left\lfloor \frac{ip}{q} \right\rfloor}, \quad y \quad \left(\frac{q}{p}\right) = (-1)^{\sum_{1 \le i \le \frac{p-1}{2}} \left\lfloor \frac{iq}{p} \right\rfloor}. \tag{2}$$

Conteo de puntos enteros en la Ley de Reciprocidad Cuadrática.

La fórmula (1) es un conteo: el lado izquierdo es el número de puntos con coordenadas enteras, en el interior del rectángulo con vértices $(O,O),(\frac{p}{2},O),(O,\frac{q}{2})$ y $(\frac{p}{2},\frac{q}{2})$.

La primer suma del lado derecho

$$\sum_{1 \le i \le \frac{q-1}{2}} \left\lfloor \frac{ip}{q} \right\rfloor$$

cuenta el número de tales puntos que están arriba de la diagonal $y=\frac{p}{q}x$ en dicho rectángulo. La segunda suma $\sum_{1\leq i\leq \frac{p-1}{p}}\left\lfloor\frac{iq}{p}\right\rfloor$

cuenta el número de puntos debajo de esta diagonal.

Obs! Como p y q son primos distintos, no hay puntos con coordenadas enteras sobre la diagonal. La cantidad $\lfloor \frac{ip}{q} \rfloor$ representa la cantidad de puntos sobre la recta y = i, arriba de la diagonal $y = \frac{p}{q}x$.

El número de puntos enteros en el intervalo $0 < x < \frac{iq}{p}$ es $\lfloor \frac{iq}{p} \rfloor$. Así, hay $\lfloor \frac{iq}{p} \rfloor$ puntos sobre y = i, arriba de la diagonal (en la región T_2 . La otra cuenta es similar.

Finalmente, para mostrar (2), basta verificar que $\sum_{1 \le i \le \frac{p-1}{2}} \left\lfloor \frac{iq}{p} \right\rfloor \equiv s \pmod{2}$, donde s es como en el lema de Gauss, aplicado para a = q.

Sea r_i el residuo de la división de iq entre p, de modo que $iq = \lfloor \frac{iq}{p} \rfloor p + r_i$. Sumando y usando la notación en el Lema de Gauss, obtenemos

$$q\sum_{1\leq i\leq \frac{p-1}{2}}i=p\sum_{1\leq i\leq \frac{p-1}{2}}\left\lfloor\frac{iq}{p}\right\rfloor+\sum_{r_i< p/2}m_i+\sum_{r_i> p/2}(p-m_i).$$

Como p y q son impares, módulo 2 tenemos

$$\sum_{1 \leq i \leq \frac{p-1}{2}}^{\cdot} i \equiv \sum_{1 \leq i \leq \frac{p-1}{2}} \left\lfloor \frac{iq}{p} \right\rfloor + \sum_{r_i < p/2}^{\cdot} m_i + \sum_{r_i > p/2}^{\cdot} (1 - m_i) \pmod{2},$$

y como $\{m_1, m_2, \dots, m_{\frac{p-1}{2}}\} = \{1, 2, \dots, \frac{p-1}{2}\}$, se concluye que

$$\sum_{1 \le i \le \frac{p-1}{2}} i \equiv \sum_{1 \le i \le \frac{p-1}{2}} \left\lfloor \frac{iq}{p} \right\rfloor^2 + \sum_{1 \le i \le \frac{p-1}{2}} i + \sum_{r_i > p/2} 1 \pmod{2} \iff \sum_{1 \le i \le \frac{p-1}{2}} \left\lfloor \frac{iq}{p} \right\rfloor \equiv s \pmod{2}. \square$$

Corolario

Si p y q son primos impares distintos, entonces

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = \begin{cases} 1, & \text{si } p \equiv 1 \pmod{4}, \acute{o} \ q \equiv 1 \pmod{4}; \\ -1, & \text{si } p \equiv q \equiv 3 \pmod{4}. \end{cases}$$

<u>Prueba</u>: Basta ver que si p=4k+1, el exponente $\frac{p-1}{2}=2k$ es par. Similarmente para el caso q=4k+1. Por el contrario, si p=4k+3 y q=4j+3, ambos exponentes son impares. \square

Corolario

Si p y q son primos impares distintos, entonces

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right), & \text{si } p \equiv 1 \pmod{4}, \acute{o} \ q \equiv 1 \pmod{4}; \\ -\left(\frac{q}{p}\right), & \text{si } p \equiv q \equiv 3 \pmod{4}. \end{cases}$$

Ejemplo: Calcular $\left(\frac{29}{53}\right)$.

De la Ley de Reciprocidad Cuadrática, tenemos

$$\begin{split} \left(\frac{29}{53}\right) &= \left(\frac{53}{29}\right)(-1)^{\frac{29-1}{2}\cdot\frac{53-1}{2}} = \left(\frac{53}{29}\right)(-1)^{14\cdot26} = \left(\frac{53}{29}\right) \\ &= \left(\frac{24}{29}\right) = \left(\frac{2^3\cdot3}{29}\right) = \left(\frac{2}{29}\right)^3 \left(\frac{3}{29}\right) = \underbrace{\left(\frac{2}{29}\right)^2 \left(\frac{2}{29}\right) \left(\frac{3}{29}\right)}_{=1} \\ &= \left(\frac{2}{29}\right) \left(\frac{3}{29}\right) = \left(\frac{2}{29}\right) \left(\frac{29}{3}\right)(-1)^{\frac{3-1}{2}\cdot\frac{29-1}{2}} = \left(\frac{2}{29}\right) \left(\frac{29}{3}\right)(-1)^{1\cdot14} \\ &= \left(\frac{2}{29}\right) \left(\frac{29}{3}\right) = \left(\frac{2}{29}\right) \left(\frac{2}{3}\right) = (-1)^{\frac{29^2-1}{8}}(-1)^{\frac{3^2-1}{2}} \\ &= (-1)^{105}(-1)^1 = (-1)^{106} = 1. \end{split}$$

Esto muestra que 29 es residuo cuadrático módulo 53.

Ejemplo: Determinar si 90 es residuo cuadrático módulo 1019.

Como 90 = $2 \cdot 3^2 \cdot 5$, tenemos que

$$\left(\frac{90}{1019}\right) = \left(\frac{2 \cdot 3^2 \cdot 5}{1019}\right) = \left(\frac{2}{1019}\right) \underbrace{\left(\frac{3^2}{1019}\right)}_{=1} \left(\frac{5}{1019}\right) \\
= \left(\frac{2}{1019}\right) \left(\frac{5}{1019}\right) = \left(\frac{2}{1019}\right) \left(\frac{1019}{5}\right) (-1)^{\frac{5-1}{2} \cdot \frac{1019-1}{2}} \\
= \left(\frac{2}{1019}\right) \left(\frac{1019}{5}\right) (-1)^{2 \cdot 509} = \left(\frac{2}{1019}\right) \left(\frac{1019}{5}\right) = \left(\frac{2}{1019}\right) \left(\frac{4}{5}\right) \\
= \left(\frac{2}{1019}\right) \underbrace{\left(\frac{2^2}{5}\right)}_{=1} = \left(\frac{2}{1019}\right) = (-1)^{\frac{1019^2 - 1}{8}} = (-1)^{\frac{129,795}{129}} \\
= -1.$$

Esto muestra que 90 no es residuo cuadrático módulo 1019.

Solución de Congruencias Cuadráticas

Ejemplo: Resolver la ecuación $x^2 + x \equiv 0 \pmod{13}$.

Ejemplo: Resolver la ecuación $x^2 - 3x + 2 \equiv 8 \pmod{17}$.

Ejemplo: Resolver la ecuación $x^2 \equiv 196 \pmod{1357}$.

Ejemplo: Resolver la ecuación $x^2 + x + 7 \equiv 0 \pmod{189}$. Hay 6 soluciones. ¿Cómo encontrarlas?