Introduction to Kähler geometry

Exercise sheet 6

In all exercises below we work in the category of \mathbb{Q} -Hodge structures, i.e. all Hodge structures are assumed rational.

Exercise 6.1. Prove that there exists a unique Hodge structure of weight 2 whose underlying vector space is one-dimensional. Denote this Hodge structure by $\mathbb{Q}(-1)$ and let $\mathbb{Q}(-k) = \mathbb{Q}(-1)^{\otimes k}$, $\mathbb{Q}(k) = (\mathbb{Q}(-1)^*)^{\otimes k}$ for $k \geq 0$. Find Hodge numbers of $\mathbb{Q}(k)$ for all k.

Exercise 6.2. Let H be a Hodge structure of weight k. Let $Q: H \otimes H \to \mathbb{Q}(-k)$ be a morphism of Hodge structures. It is called a polarization if:

- 1. For k even Q is symmetric and for k odd Q is skew-symmetric;
- 2. For any non-zero $v \in H^{p,q}$ we have $\sqrt{-1}^{p-q}Q(v,\bar{v}) > 0$.

A Hodge structure is called polarizable if it admits a polarization. A Hodge structure is called simple if it contains no non-trivial sub-Hodge structures. Prove that a polarizable Hodge structure is a direct sum of simple Hodge structures.

Exercise 6.3. Construct an example of a Hodge structure that is neither simple nor a direct sum of two proper sub-Hodge structures.

Exercise 6.4. Prove that Hodge structures on the cohomology groups of complex projective manifolds are polarizable.

Exercise 6.5. Let $\mathcal{K} \subset H^{1,1}(M)$ be the Kähler cone of a compact Kähler manifold M. Prove that a line bundle $L \in \text{Pic}(M)$ is positive (i.e. admits a Hermitian metric whose curvature form is positive) if and only if $c_1(L) \in \mathcal{K}$.

Exercise 6.6. Find an example of a compact Kähler manifold and a complex line bundle that does not admit a holomorphic structure.

Exercise 6.7. Let E be a holomorphic vector bundle over a compact Kähler manifold M. Consider an arbitrary Hermitian metric on E and construct an analogue of the Hodge *-operator for E-valued differential forms

$$*: \Lambda^{p,q}M \otimes E \to \Lambda^{n-q,n-p}M \otimes \overline{E}^*.$$

Construct a natural pairing between $\Lambda^{p,q}M\otimes E$ and $\Lambda^{n-p,n-q}M\otimes E^*$ and use the *-operator to prove that the pairing is non-degenerate. Deduce the Serre duality isomorphism: $H^q(M,\Omega^p_M\otimes E)\simeq H^{n-q}(M,\Omega^{n-p}_M\otimes E^*)^*$.