Отчет по лабораторной работе №1

Оценивание параметров случайного процесса

Работу выполнили студенты 440 группы радиофизического факультата **Сарафанов Ф.Г., Платонова М.В.**

Содержание

В	веден	ние
1.	Лаб	бораторный эксперимент
		Реализации случайных процессов и их спектров
		Зависимость $\langle x \rangle$ от ширины окна усреднения N
	1.3.	Зависимость σ_x от ширины окна усреднения N
		Зависимость σ_x от времени дискретизации Δt
	1.5.	Определение $\langle x \rangle$ и σ_x по СПМ процесса
		1.5.1. Параметры исходного процесса
		1.5.2. Параметры усредненного процесса
	1.6.	Доверительный интервал
		1.6.1. Анализ гистограммы
		1.6.2. Влияние доверительной вероятности
За	клю	очение

Введение

В настоящей работе изучаются вопросы, связанные с оценкой параметров случайных процессов, на примере оценки среднего значения (матожидания) случайного процесса.

1. Лабораторный эксперимент

Для выполнения лабораторной работы использовалась вспомогательная программа, предоставляющая возможность сгенерировать гауссов шум с заданным временем корреляции $\tau_{\text{корр}}$, усреднить M реализаций скользящим средним с регулируемыми шириной окна N, периодом дискретизации Δt .

Для сгенерированного сигнала программа позволяет рассчитать среднее значение, СКО и доверительный интервал, получить графики зависимостей СКО от параметров усреднения, графики реализаций и спектров, гистограммы оценок среднего значения.

1.1. Реализации случайных процессов и их спектров

Для иллюстрации случайных процессов были сгенерированы реализации дискретного гауссова шума для разных времен корреляции $\tau_{\text{корр}}$ (10,30,100) и построены графики как самих реализаций, так и их СПМ¹.

Рис. 1. Реализация случайного процесса с $au_{\mathrm{kopp}}=10$

¹СПМ – здесь и далее – спектральная плотность мощности

Рис. 2. Реализация случайного процесса с $au_{\text{корр}} = 30$

Рис. 3. Реализация случайного процесса с $\tau_{\rm kopp}=100$

Рис. 4. СПМ случайного процесса с $au_{\mathrm{kopp}}=10$

Рис. 5. СПМ случайного процесса с $au_{\text{корр}} = 30$

Рис. 6. СПМ случайного процесса с $\tau_{\rm kopp}=100$

На графиках СПМ (см. рис. 4, 5, 6) хорошо видно, что ширина спектра обратно пропорциональна времени корреляции². Это объясняется тем, что при больших временах корреляции два близких во времени отсчета сигнала отличаются слабо и сигнал меняется медленно, следовательно, имеет меньшую ширину спектра. Для малых времен применимы аналогичные рассуждения.

1.2. Зависимость $\langle x \rangle$ от ширины окна усреднения N

При заданных времени корреляции генерируемого сигнала $t_{\text{корр}}=10$, числе реализаций M=128, времени дискретизации $\Delta t=1$, ширине окна усреднения (количество усредняемых отсчетов) N=1 с помощью программы определены оценки среднего и СКО:

$$\langle x \rangle = 4.68, \quad \sigma_x = 14.74$$

Также при времени корреляции генерируемого сигнала $t_{\text{корр}} = 10$, числе реализаций M = 8, времени дискретизации $\Delta t = 1$ определена зависимость оценки от ширины окна усреднения (N):

Рис. 7. Оценка среднего в зависимости от числа усредняемых отсчетов

Разброс среднего от вертикали определяет собой дисперсию. Разброс при N=1 составляет $\delta\langle x\rangle\approx 15$, при N=40 соответственно $\delta\langle x\rangle\approx 8$, и при N=128, наконец, $\delta\langle x\rangle\approx 5$.

 $^{^2 \}text{Время}$ корреляции $\tau_{\text{кор}}$ – это время, при котором функция корреляции $\text{B}[\tau]$ спадает в e раз

1.3. Зависимость σ_x от ширины окна усреднения N

При заданных времени корреляции генерируемого сигнала $t_{\text{корр}}=10$, числе реализаций M=256, найдена серия зависимостей зависимость оценки от ширины окна усреднения (N) при разных временах дискретизации:

Рис. 8. Зависимость СКО от числа усредняемых отсчетов

На графике видно, что с ростом времени корреляции СКО уменьшается. Действительно, так как оценка среднего совпадет 3 с истинным значением при $T \to \infty$, то увеличивая время корреляции, мы приближаемся к условию $T \to \infty$, а значит, уменьшаем СКО.

$$\tilde{x}(t) = \lim_{T \to \infty} \int_{0}^{T = n \cdot \tau_{\text{kop}}} x(t) dt$$

³Оценка среднего случайного процесса определяется как

Аналогичная серия при тех же параметрах, но времени корреляции 100:

Рис. 9. Зависимость СКО от числа усредняемых отсчетов

Заметим, что можно оценить время корреляции процесса по графику. Так как в случае $\Delta t \cdot N^* \geq au_{\text{кор}}$

$$D[\tilde{x}] = \frac{D[x]}{N},$$

то график $\sigma_x(N)$ после $\Delta t \cdot N^* = \tau_{\text{кор}}$ будет вести себя как гипербола. По точке перехода графика в гиперболу N^* можно определить $\tau_{\text{кор}}$.

СКО оценки при N=1 определяется числом реализаций сигнала M. В таком случае для каждой реализации среднее значение - это значение единственного элемента в реализации. Другими словами, СКО оценки при N=1 определяется как дисперсия исходного процесса D[x].

1.4. Зависимость σ_x от времени дискретизации Δt

Рис. 10. N=4

Рис. 11. N = 32

1.5. Определение $\langle x \rangle$ и σ_x по СПМ процесса

1.5.1. Параметры исходного процесса

Рис. 12. N = 32

С помощью лабораторной программы строится график СПМ при N=32, $\tau_{\text{корр}}=10.$ Из графика находится значение СПМ в нуле

$$S_x(0) = 1.2 \cdot 10^4$$

Так как полная мощность в полосе $\Delta\omega=\frac{1}{2048}$ на нулевой частоте равна (с некоторой погрешностью) $\langle x \rangle^2=S_x(0)\cdot\frac{1}{2048}$, то

$$\langle x \rangle^2 = 1.2 \cdot 10^4 \cdot \frac{1}{2048} = 5.86 \quad \Rightarrow \quad \langle x \rangle = 2.42$$

Из графика СПМ также можно найти дисперсию как произведение эффективной ширины спектра на эффективное значение СПМ:

$$D[\tilde{x}] = S_x(0) \cdot \Delta f_{\tilde{x}} = \frac{\langle x \rangle^2}{2} = 2.93 \quad \Rightarrow \quad \sigma_{\tilde{x}} = \sqrt{D[\tilde{x}]} \approx 1.71$$

1.5.2. Параметры усредненного процесса

Рис. 13. N = 4

Аналогично операциям с исходным процессом, из графика при ширине окна усреднения N=4 находится величина СПМ в нуле, и простым расчетом находится среднее и дисперсия:

$$S_x(0) = 1.25 \cdot 10^4 \quad \Rightarrow \quad \langle x \rangle = 2.43, \quad \sigma_{\tilde{x}} = 1.72$$

Рис. 14. N = 32

При усреднении с шириной окна N=32 получаются следующие параметры:

$$S_x(0) = 1 \cdot 10^4 \quad \Rightarrow \quad \langle x \rangle = 1.99, \quad \sigma_{\tilde{x}} = 1.41$$

1.6. Доверительный интервал

Можно исследовать влияние времени усреднения и доверительной вероятности на доверительный интервал. Для этого с помощью лабораторной программы построены гистограммы, иллюстрирующие распределение значений ансамбля из M=256 оценок среднего.

1.6.1. Анализ гистограммы

При заданных времени корреляции $\tau=10$ и доверительной вероятности $\beta=0.95$, времени дискретизации $\Delta t=1$ получена серия гистограмм при разных ширинах окна усреднения N=1,4,32, отображенная на рисунках 15, 16, 17:

Рис. 17. N = 32

1.6.2. Влияние доверительной вероятности

При заданных времени корреляции $\tau=10$, времени дискретизации $\Delta t=1$ получена серия 3×3 гистограмм при разных ширинах окна усреднения N=1,4,32 и разных доверительных вероятностях $\beta=0.8,0.95,0.98$:

Серия при N=1.

Рис. 18. $\beta = 0.8$

Рис. 19. $\beta = 0.95$

Рис. 20. $\beta = 0.98$

Серия при N=4.

Рис. 21. $\beta = 0.8$

Рис. 22. $\beta = 0.95$

Рис. 23. $\beta = 0.98$

Серия при N=32.

Рис. 24. $\beta = 0.8$

Рис. 25. $\beta = 0.95$

Рис. 26. $\beta = 0.98$

По результатам серии измерений получена зависимость доверительного интервала I от β для разных значений N:

Рис. 27. График зависимости доверительного интервала I от β

Из графика видно, что доверительный интервал растет с ростом β и уменьшается при увеличении окна усреднения $(N\uparrow)$.

Заключение

В результате выполнения данной работы мы изучили вёопросы, связанные с оценкой параметров случайных процессов на примере оценки их средних значений В ходе выполнения 1-го задания мы установили, что вид реализации с ростом времени корреляции становится более плавным, а спектральная плотность мощности смещается ближе к нулевой частоте. Так же мы установили, что значения разброса $\langle x \rangle$ по вертикали во втором задании больше значений $\langle x \rangle$ из задания 5 при любых N. В результате выполнения 6-го задания было установлено, что доверительный интервал увеличивается при увеличении β и уменьшается при увеличении количества отсчетов усреднения N.