COMP2005

Thresholding & Binary Image Processing

- 1. What is Thresholding
- 2. Adaptive Thresholding

Binary Image Processing

- Many image processing operations make a decision:
 - is this the colour/object/edge I'm interested in?
- The result is a binary image
 - Pixels can have only two values: 0 or 1
 - Binary images also need noise removal, enhancement, etc.

Binarisation: Thresholding

- A dark object on a light background in a grey-level image
- Choose a threshold value, T
- Consider each pixel in turn
 - If the brightness at a pixel is less than T, that pixel is object
 - Otherwise it is part of the background
- Basic idea extends to colour; define sets of colour values that correspond to objects

Threshold, T = 96

Too Simple?

- The value of the threshold is very important
 - If it is too high, background pixels will be classified as foreground
 - If it is too low, object pixels will be considered background
- Assumes there are exactly two regions, with no overlap in their brightness – is that true?

T = 128

T = 64

Adaptive Thresholds

- If the user chooses t for each of a set of images there is no guarantee the results will be consistent
- Automatic methods choose a threshold based on image properties: histograms are commonly used

Otsu Thresholding

- Assumes histograms are bimodal; two regions can be separated by one threshold
- Think of the histogram as made of two normal (Gaussian) distributions, described by their means and deviations
- If a threshold is wrong it will include histogram bins from peak A in peak B
 - Peak A's deviation will be too small
 - Peak B's deviation will be too big
 - Peak A's size (area) will be too small
 - Peak B's size will be too big

Otsu Thresholding

- Find the threshold which minimises a weighted sum of the variations of the two regions that threshold produces
 - Weights are the areas of the histogram assigned to each region

$$S_w^2(t) = q_1(t)S_1^2(t) + q_2(t)S_2^2(t)$$

$$q_1(t) = \mathop{a}_{i=1}^{t} P(i) \qquad q_2(t) = \mathop{a}_{i=t+1}^{l} P(i)$$

 This is small when the two regions are both physically small and have low deviations

Otsu Thresholding

- The Algorithm
 - consider all possible threshold values (0 255)
 - compute weighted sum
 - pick t with smallest value
- A recursive version exists that is very efficient

Unimodal Thresholding

- Many histograms are not bimodal, there is often only one peak e.g. text is mainly white, with a small amount of black
- Rosin's unimodal method
 - Finds the peak
 - Draws a line from there to the top of the furthest bin
 - Finds the top of the bin that

Unimodal Thresholding

- Many histograms are not bimodal, there is often only one peak e.g. text is mainly white, with a small amount of black
- Rosin's unimodal method
 - Finds the peak
 - Draws a line from there to the top of the furthest bin
 - Finds the top of the bin that
 - is furthest from this line; that bin value is the threshold
 - The threshold is selected at the point of the histogram that maximizes the perpendicular distance from the histogram to the straight line.

Unimodal Threshold

 Can be applied to any suitable image, e.g. intensity gradients

Unimodal Thresholding

Local Adaptive Methods

- Imaging conditions and object properties can vary within a single image as well as across sets of images
- Histograms can be too complex for any method's assumption to be true

Local Adaptive Methods

- Assumptions about histograms may, however, be true for local areas of the image
- Divide image into subregions, apply a threshold selection method independently to each

- The histograms of each vertical strip of this image are bimodal
- Otsu can be applied to each strip

Conclusion

- Binary images contain only two values, but they are still images and can be processed
- Thresholding is the most common way to produce them
 - fixed vs adaptive
 - global vs local

Next Week

Morphological Approaches