

Statistical Hypothesis Testing

– recap –

Thursday 1st December, 2016

Experimenting

perform an experiment - to discover something

setting	experiment	discovery
alarm system	check sensors	intruder
new treatment for illness	test treatment on people	treatment works
hacker attack detection	test network traffic	there is an attack
software testing	run tests	bug

Alarm System

discovery = intruder

	test output = negative	test output = positive
no intruder	true negative	false positive
intruder	false negative	true positive

New Treatment for Illness

discovery = treatment works

	test output = negative	test output = positive
treatment doesn't work	true negative	false positive
treatment works	false negative	true positive

Hacker Attack Detection

discovery = hacker attack

	test output = negative	test output = positive
no attack	true negative	false positive
attack	false negative	true positive

Software Testing

discovery = bug

	test output = negative	test output = positive
no bug true negative		false positive
bug	false negative	true positive

Israel<mark>lëch</mark> challenge

Alarm system

sensor readings X

no intruder	$0 \le X \le 4$
intruder	$5 \le X \le 8$

 $\text{decision rule } X \overset{?}{>} 4$

no	no intruder
yes	intruder

Israel<mark>lëch</mark> challenge

New Treatment

number of tails T

sick	T > 1
not sick	T = 0

decision rule (treatment works if) $T\stackrel{?}{\leq} 1$

no	doesn't work
yes	work

Hacker Attack Detection

average upload, idle computer U

no attack	$U < 30 \left[Kb/s \right]$
attack	$U > 50 \left[Kb/s \right]$

decision rule (attack if) $U \stackrel{?}{\geq} 30$

no	no attack
yes	attack

Israel<mark>lëch</mark> challenge

Software Testing

number of failed tests N_f

no bug	$N_f = 0$
bug	$N_f > 0$

decision rule (there is a bug if) $N_f \stackrel{?}{>} 0$

no	no bug
yes	bug

Israel<mark>lëch</mark> challenge

Alarm system

sensor readings X

no intruder
$$0 \le X \le 4$$

decision rule $X \stackrel{?}{>} 4$

no	no intruder
yes	intruder

New Treatment

number of tails T

sick
$$T > 1$$

decision rule (treatment works if) $T \stackrel{?}{\leq} 1$

no	doesn't work
yes	work

Hacker Attack Detection

average upload, idle computer U

no attack
$$U < 30 \, [Kb/s]$$

decision rule (attack if) $U \stackrel{?}{\geq} 30$

no	no attack
yes	attack

Software Testing

number of failed tests N_f

no bug
$$igg|N_f=0$$

decision rule (there is a bug if) $N_f \stackrel{?}{>} 0$

no	no bug
yes	bug

Experimenting with Distributions

- $ightharpoonup N_1 = \mathcal{N}(\mu, \sigma^2), \, \mu_0 \text{ constant}$
- ▶ Y fair coin

setting	experiment	discovery
is X not sampled fron N_1 ?	?	X not sampled from N_1
is Y unfair?	?	Y is unfair
is $\mu > \mu_0$?	?	$\mu > \mu_0$
X and Y are dependent?	?	X and Y are dependent

Is X not sampled from N_1

discovery = X not sampled from N_1

	test output = negative	test output = positive
$X \sim N_1$	true negative	false positive
$X \not\sim N_1$	false negative	true positive

Israel<mark>lëch</mark> challenge

discovery = Y is unfair

	test output = negative	test output = positive
Y is fair	true negative	false positive
Y is unfair	false negative	true positive

Israellëch challenge

$$\mathsf{discovery} = \mu > \mu_0$$

	test output = negative	test output = positive
$\mu \le \mu_0$	true negative	false positive
$\mu > \mu_0$	false negative	true positive

Are X and Y dependent?

${\sf discovery} = X \text{ and } Y \text{ are dependent}$

	test output = negative	test output = positive
indpendent	true negative	false positive
dependent	false negative	true positive

Is X not sampled from N_1 ?

X values

sampled from N_1	$X \sim N_1$
sampled from $N_2 = \mathcal{N}\left(\mu_2, \sigma^2\right)$	$X \sim N_2$

decision rule (MLE) $|X - \mu|^2 \stackrel{?}{>} |X - \mu_2|^2$

no	sampled from N_1
yes	not sampled from N_1

Israel<mark>lëch</mark> challenge

Is Y unfair?

coin tosses Y_1, \ldots, Y_n , $[\sum_{i=1}^n Y_i] = c$

fair	$P([\sum_{i=1}^{n} Y_i] = c) = \binom{n}{c} 0.5^n$
P(Y=1) = 0.8	$P([\sum_{i=1}^{n} Y_i] = c) = \binom{n}{c} 0.8^{c} 0.2^{n-c}$

decision rule (MLE) $\binom{n}{c} 0.8^{c} 0.2^{n-c} > \binom{n}{c} 0.5^{n}$

no	fair
yes	unfair

Israellëch challenge

Is $\mu > \mu_0$?

sample mean $\overline{X} = \sum_{i=1}^{n} X_i/n$

$$\mu = \mu_0 \qquad \overline{X} \sim \mathcal{N} \left(\mu_0, \sigma^2 / n \right)$$

$$\mu = \mu_1 > \mu_0 \qquad \overline{X} \sim \mathcal{N} \left(\mu_1, \sigma^2 / n \right)$$

decision rule (MLE) $P\left(\overline{X} \mid \mu_1\right) > \overline{P\left(\overline{X} \mid \mu_0\right)}$

no	$\mu = \mu_0$
yes	$\mu > \mu_0$

Logical Acrobatics

If we know what a discovery looks like

- we know the "normal" explanation
- we know the alternative explanation

hypothesis

hypothesis

decision rule:

probability of results given the "normal" explanation

probability of results given the alternative explanation

hypothesis

hypothesis

Logical Acrobatics

If we know what a discovery looks like

- we know the "normal" explanation
- we know the alternative explanation
- decision rule:

improbability of results given the "normal" explanation improbability of results given the alternative explanation

Logical Acrobatics

If we don't know what a discovery looks like

- we know the "normal" explanation hypothesis
- we don't know the alternative explanation hypothesis
- decision rule:

```
improbability of
results given the
"normal"
explanation
```

> threshold th^\prime

Logical Acrobatics

If we don't know what a discovery looks like

- we know the "normal" explanation hypothesis
- we don't know the alternative explanation hypothesis
- decision rule:

probability of results given the "normal" explanation

 $< \ \ {\rm threshold} \ th$

a false positive

 \triangleright "normal" explanation - H_0 reject "normal"

explanation

but

"normal" explanation is true

a false positive

 \triangleright "normal" explanation - H_0

reject "normal" explanation

but

"normal" explanation is true

alarm system

reject -"no intruder"

but there is no intruder

a false positive

```
lacktriangleright normal" explanation - H_0 reject "normal" \underline{\text{but}} "normal" explanation is true
```

testing new treatment

```
reject - <u>but</u> treatment
"treatment doesn't work" doesn't work
```


a false positive

ightharpoonup "normal" explanation - H_0

reject "normal" explanation

but "normal" explanation is true

hacker attack detection

reject -"no attack"

but

there is no attack

a false positive

```
ightharpoonup "normal" explanation - H_0
```

```
reject "normal" explanation
```

<u>but</u>

"normal" explanation is true

software testing

```
reject -
"no bug"
```

<u>but</u>

there is no bug

Israellëch challenge

a false positive

```
lacktriangleright "normal" explanation - H_0 "normal" explanation \underline{\text{but}} explanation is true
```

▶ Is X not sampled from N_1 ?

```
\begin{array}{ccc} \text{reject -} & & \underline{\text{but}} & X \text{ is sampled from} \\ X \text{ sampled from } N_1 & & \underline{\text{but}} & N_1 \end{array}
```

double negative - board

a false positive

```
lacktriangleright normal" explanation - H_0 reject "normal" \underline{\text{but}} "normal" explanation is true
```

▶ is Y unfair?

```
reject - Y is fair Y is fair
```

double negative

a false positive

 \triangleright "normal" explanation - H_0

reject "normal" explanation

but

"normal" explanation is true

• Is $\mu > \mu_0$?

reject -
$$\mu < \mu_0$$
 $\underline{\mathsf{b}}$

$$\underline{\mathsf{but}} \quad \mu \le \mu_0$$

a false positive

```
"normal" explanation - H_0
reject "normal" but explanation is true
```

X and Y are dependent?

```
\begin{array}{cccc} \text{reject -} & & X \text{ and } Y \text{ are} \\ X \text{ and } Y \text{ are} & \underline{\text{but}} & \text{independent} \end{array}
```


- we reject "normal" explanation H_0 for some results
 - testing treatment 95% of patients cured
 - software testing 8/10 tests fail
 - testing a coin 9/10 heads
- we do not reject for others
 - testing treatment 0.5% of patients cured
 - software testing no tests fail
 - testing a coin 6/10 heads

- \blacktriangleright we reject "normal" explanation H_0 for some results
- we do not reject for others
- results we reject
 - lacksquare are possible given "normal" explanation H_0
 - just unlikely

- \blacktriangleright we reject "normal" explanation H_0 for some results
- we do not reject for others
- results we reject
 - lacksquare are possible given "normal" explanation H_0
 - just unlikely

Rejected Results

- ▶ if we reject for
 - testing treatment 95% of patients cured
 - software testing 8/10 tests fail
 - testing a coin 9/10 heads
- we will also reject for
 - testing treatment 99% of patients cured
 - $lue{}$ software testing 9/10 tests fail
 - testing a coin 10/10 heads

Rejected Results

- if we consider
 - testing a coin 9/10 heads
- lacktriangle unlikely enough to reject "normal" explanation H_0
- we would also consider
 - 10/10 heads
 - 1/10 heads
 - 0/10 heads
- unlikely enough to reject

▶ this value for 9/10 heads

$$f(9/10) = P(9/10 \mid H_0) + P(10/10 \mid H_0) + P(1/10 \mid H_0) + P(0/10 \mid H_0)$$

▶ is the P-Value for 9/10 heads

- result X
- ▶ all results at least as unlikely (improbable)

$$R(X) = \{Z : P(Z \mid H_0) \le P(X \mid H_0)\}$$

Israel<mark>tëch</mark> challenge

- result X
- all results at least as unlikely (improbable)

$$R(X) = \{Z : P(Z \mid H_0) \le P(X \mid H_0)\}$$

P-Value

$$Pval(X) = \sum_{Z \in R(X)} P(Z \mid H_0)$$
$$= P(R(X) \mid H_0)$$

How do we choose a threshold?

we are willing to allow 5% false positives

- if Pval(X)
 - lacktriangle reject "normal" explanation H_0 for result X
- else
 - do no reject

Israellëch challenge

lacksquare X_{th} the most likely result we consider unlikely multiple possible

example: 9/10 heads

- lacksquare X_{th} the most likely result we consider unlikely multiple possible
 - example: 9/10 heads
- ightharpoonup we reject anything at least as unlikely as X_{th}
 - 9/10 heads, 10/10 heads, 1/10 heads, 0/10 heads

- lacksquare X_{th} the most likely result we consider unlikely multiple possible
 - example: 9/10 heads
- ightharpoonup we reject anything at least as unlikely as X_{th}
 - 9/10 heads, 10/10 heads, 1/10 heads, 0/10 heads
- probability of false positive
 - lacksquare probability of anything at least as unlikely as X_{th}

Israellëch challenge

- lacksquare X_{th} the most likely result we consider unlikely multiple possible
 - example: 9/10 heads
- ightharpoonup we reject anything at least as unlikely as X_{th}
 - 9/10 heads, 10/10 heads, 1/10 heads, 0/10 heads
- probability of false positive
 - lacktriangle probability of anything at least as unlikely as X_{th}
 - $Pval(X_{th})$ P-Value of X_{th}

Israel<mark>lëch</mark> challenge

- lacksquare X_{th} the most likely result we consider unlikely multiple possible
 - example: 9/10 heads
- lacktriangle we reject anything at least as unlikely as X_{th}
 - 9/10 heads, 10/10 heads, 1/10 heads, 0/10 heads
- probability of false positive
 - lacktriangle probability of anything at least as unlikely as X_{th}
 - $Pval(X_{th})$ P-Value of X_{th}

$$Pval(X_{th}) = P(\text{reject } H_0 \mid H_0) < th$$

How do we choose the null hypothesis H_0

- usually stands for "normality"
 - no surprise
 - no change
 - treatment doesn't work
 - no intruder
 - · ...

How do we choose the null hypothesis H_0

- usually stands for "normality"
 - no surprise
 - no change
 - treatment doesn't work
 - no intruder
 - **...**
- always has a computable distribution
 - we can compute $P(X \mid H_0)$

setting	experiment	null hypothesis
alarm system	check sensors	
new treatment for illness	test treatment on people	
hacker attack detection	test network traffic	
software testing	run tests	

setting	experiment	null hypothesis
alarm system	check sensors	no intruder
new treatment for illness	test treatment on people	
hacker attack detection	test network traffic	
software testing	run tests	

setting	experiment	null hypothesis
alarm system	check sensors	no intruder
new treatment for illness	test treatment on people	treatment doesn't work
hacker attack detection	test network traffic	
software testing	run tests	

setting	experiment	null hypothesis
alarm system	check sensors	no intruder
new treatment for illness	test treatment on people	treatment doesn't work
hacker attack detection	test network traffic	no attack
software testing	run tests	

setting	experiment	null hypothesis
alarm system	check sensors	no intruder
new treatment for illness	test treatment on people	treatment doesn't work
hacker attack detection	test network traffic	no attack
software testing	run tests	no bug

setting	experiment	null hypothesis
is X not sampled fron N_1 ?	sample X	
is Y unfair?	toss coin	
is $\mu > \mu_0$?	sample X , calculate sample mean	
X and Y are dependent?	sample (X,Y)	

setting	experiment	null hypothesis
is X not sampled fron N_1 ?	sample X	$X \sim N_1$
is Y unfair?	toss coin	
is $\mu > \mu_0$?	sample X , calculate sample mean	
X and Y are dependent?	sample (X,Y)	

setting	experiment	null hypothesis
is X not sampled fron N_1 ?	sample X	$X \sim N_1$
is Y unfair?	toss coin	Y is fair $p=0.5$
is $\mu > \mu_0$?	sample X , calculate sample mean	
X and Y are dependent?	sample (X,Y)	

setting	experiment	null hypothesis
is X not sampled fron N_1 ?	sample X	$X \sim N_1$
is Y unfair?	toss coin	Y is fair $p=0.5$
is $\mu > \mu_0$?	$\begin{array}{c} \text{sample } X \text{, calculate} \\ \text{sample mean} \end{array}$	$\frac{\mu \le \mu_0}{\overline{X}} \sim N\left(\mu_0, \sigma^2/n\right)$
X and Y are dependent?	sample (X,Y)	

setting	experiment	null hypothesis
is X not sampled fron N_1 ?	sample X	$X \sim N_1$
is Y unfair?	toss coin	Y is fair $p=0.5$
is $\mu > \mu_0$?	sample X , calculate sample mean	$\frac{\mu \le \mu_0}{\overline{X}} \sim N\left(\mu_0, \sigma^2/n\right)$
X and Y are dependent?	sample (X,Y)	X and Y are independent

test statistic T

what we compute P-Value for

$$Pval(X) = P(T(X) \mid H_0)$$

test statistic T

what we compute P-Value for

setting	experiment	test statistic*
is X not sampled fron N_1 ?	sample X	
is Y unfair?	toss coin	
is $\mu > \mu_0$?	sample X , calculate sample mean	
X and Y are dependent?	sample (X,Y)	

test statistic T

what we compute P-Value for

setting	experiment	test statistic*
is X not sampled fron N_1 ?	sample X	X
is Y unfair?	toss coin	
is $\mu > \mu_0$?	sample X , calculate sample mean	
X and Y are dependent?	sample (X,Y)	

test statistic T

what we compute P-Value for

setting	experiment	test statistic*
is X not sampled fron N_1 ?	sample X	X
is Y unfair?	toss coin	$\sum_{i=1}^{n} Y_i$
is $\mu > \mu_0$?	sample X , calculate sample mean	
X and Y are dependent?	sample (X,Y)	

test statistic T

what we compute P-Value for

setting	experiment	test statistic*
is X not sampled fron N_1 ?	sample X	X
is Y unfair?	toss coin	$\sum_{i=1}^{n} Y_i$
is $\mu > \mu_0$?	sample X , calculate sample mean	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
X and Y are dependent?	sample (X,Y)	

test statistic T

what we compute P-Value for

setting	experiment	test statistic*
is X not sampled fron N_1 ?	sample X	X
is Y unfair?	toss coin	$\sum_{i=1}^{n} Y_i$
is $\mu > \mu_0$?	sample X , calculate sample mean	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
X and Y are dependent?	sample (X,Y)	$2\log\frac{P(X,Y)}{P(X)P(Y)}^*$

Questions?

Israellëch challenge