模意义下乘法群性质

huhao June 30, 2022

定义

- ・代数系统 $(A, O_1, O_2, \ldots, O_m)$: 若干元素组成的集合 A,以及若干元素间的运算 O_i ,满足定义域是 A^k ,值域是 A。
- ・半群 (A,\cdot) : 代数系统; $\cdot:A^2\to A$, 且 x(yz)=(xy)z。
- ・ 群的积: $(A, \cdot) \times (B, \cdot) = \{A \times B, \cdot\}$, 且 $(u, v) \cdot (a, b) = (u \cdot a, v \cdot b)$ 。
- ・含幺半群 (A,\cdot) : 半群; $\exists e, xe = x$ 。可以发现, ex = x。
- ・群 (A, \cdot) : 含幺半群; $\forall x, \exists y, yx = e$ 。可以证明,只要任意一个元素存在左逆元,那么它就有唯一的逆元。
- ・Abel 群 (A, \cdot) : 群: xy = yx。Abel 群一个很重要的性质是 $a^k b^k = (ab)^k$ 。
- ・循环群 (A,\cdot) :群 $; \exists x, \forall y, \exists k, x = y^k,$ 不难发现,循环群是 Abel 群。
- ・置换群 (A,\cdot) : A 中所有元素均为函数,由 $1\sim n$ 的排列 p 所确定: $f_p(i)=p_i$,且若 xy=z 则 $f_y(f_x(i))=f_z(i)$,不难发现,这是群。

1

同构与同态

若 $f: A \to B$, (A, \cdot) , (B, \cdot) 是代数系统,且 f(a) + f(b) = f(ab) 则称(f 是)A, B(的)同态。

如果 f 是双射,则称为同构。

容易验证,所有 n 维循环群是模 n 意义下加法群(下面简记为 Z_n)的同构。

容易证明,同态与同构会保留上一页中代数系统的性质。

生成元

在群中,定义 $\langle a \rangle = \{x|x=a^k\}$, $O\langle a \rangle = |\langle a \rangle|$ 称为 a 的阶,若 $O\langle x \rangle = |A|$,则称 x 为 A 的生成元。

不难发现。

- $x \in Z_n, O\langle x \rangle | n_\circ$
- $\cdot O\langle x \rangle = O\langle -x \rangle$.

Abel 群的性质

所有有限 Abel 群 (A,\cdot) 与 $Z_{i_1} \times Z_{i_2} \times \ldots Z_{i_n}$ (若干循环群的积) 同构。

记 |A|=n,取 $O\langle x\rangle$ 最大的 x,则 $\langle x\rangle$ 构成子群,且可以找出 $n/O\langle x\rangle$ 个大小为 $O\langle x\rangle$ 集合,使得集合中所有元素乘上 $\langle x\rangle$ 中的元素依然在这个集合中(这可以不断找一个元素 u,然后生成集合 $\{u^k\}$,这样不同集合肯定是不交的)。

若 $O\langle x \rangle \neq n$,则有多个集合,若将这些集合间的乘运算规定为各取一个元素相乘,得到的结果在的集合。则这些集合和乘法也构成群 (B,\cdot) 。

假如 (B, \cdot) 与 $C = Z_{i_1} \times Z_{i_2} \times \ldots Z_{i_n}$ 同构,若能证明 A 与 $C \times Z_{O(x)}$ 同构,则可根据归纳法证明。

不妨把 B 中的元素(一个集合),通过同构的函数映射至 C 中的元素,通过 $(j_1,j_2,\ldots j_n), 0 \leq j_k < i_k$ 表示。

对于群乘积的每一维 Z_{i_k} ,可以在 $(0,0,\ldots,1,\ldots 0)$ 对应集合 t_k 中(第k 位为 1)(暂时)任取一个元素 u_k 作为这个群的代表,假定 $u_k^{i_k}=e_A$ (否则下面将在 t_k 中找到一个代替这个 u_k 的元素),因为后续证明需要用到这一点。

如果 $u_k^{i_k} \neq e_A$,那么有 $u_k^{i_k} = x^y$,则(下式用到了 $u_k^r = e_A \Rightarrow i_k | r$,这个可以是根据 t_k 的定义得到的):

$$O\langle u_k x^l \rangle = i_k \frac{O\langle x \rangle}{(y + li_k, O\langle x \rangle)}$$

根据 x 的定义,有: $i_k \leq (y + li_k, O\langle x\rangle)$

取 $l = \lfloor \frac{y}{i_k} \rfloor$ 即可得到 $i_k | y$ 。

则 $u_k'=u_kx^{-\frac{y}{i_k}}$ 满足 $u_k'^{i_k}=e_A$,用 u_k' 代替任取的 u_k 即可。

5

对于集合 $(j_1,\ldots j_n)$,不妨用 $r_{j_1,\ldots j_n}=\prod_k u_k^{j_k}$ 代表(根据定义,则个元素一定在集合内)。

所以 $(\{r\},\cdot)$ 对运算封闭,它是一个群。可以将 A 中的元素表示为 $(u,v),u\in\{r\},v\in\langle x\rangle$,这样可以唯一的表示出 $|A|=|\{r\}|O\langle x\rangle$ 个元素,如果将这样的——对应关系记为函数 f,则 f 是 (A,\cdot) 与 $(\{r\},\cdot)\times(\langle x\rangle,\cdot)$ 的同构。

所以 $A \to C \times Z_{O(x)}$ 同构(这里没有证明 $\{r\}$ 与 C 同构,可以尝试自行证明。同时可以发现此部分可以不证明,因为已经可以归纳地找到与 r 同构的若干循环群的积了),证明完毕。

更进一步,我们知道了 A 与 $\prod_{i} Z_{i}$ 同构,则有: $|Z_{i}| \mid |A|$ 。

则对于 A 中的元素 x,通过同构映射至 $\prod_j Z_{i_j}$ 中的元素 $(x_1 \dots x_k)$,则 $x^{|A|}$ 可以映射至 $(x_1 \dots x_k)^{|A|} = (x_1^{|A|} \dots x_k^{|A|}) = (e_1 \dots e_k)$,即 $x^{|A|} = e$ 。

将 Abel 群分解为循环群

和证明中的构造方式一致:

不妨记要分解的 Abel 群为 A,遍历 A 中元素,找到 $O\langle x \rangle$ 最大的 x,提出所有 x^k 。

然后将 A 划分为 $\frac{|A|}{O\langle x\rangle}$ 个集合,递归的将这些集合划分为循环群。

然后找出每个集合的代表元,这些代表元组成集合 B,就将 A 划分为了 $B \times \langle x \rangle$,B 划分为循环群方式在上一步已经计算出来了。

这样每一次都会使要划分为循环群的元素个数除以 2,这样就可以 $O(n\log n)$ 的时间复杂度内划分开。

循环群性质

 Z_{xy} 与 $Z_x \times Z_y$ 同构, 其中 (x, y) = 1.

如果今 1_A 为 A 的生成元. 则:

- $\cdot 1_{xy} = (1_x, 1_y)$
- $\cdot (1_x, 1_y) = (1_{xy}^y, 1_{xy}^x)$

上面分别给出了双向的构造。

循环群 Z_n 生成元个数为 $\varphi(n)$ 。

考虑一个生成元 g,则可以将其它元素写成 g^k 的形式, $O\langle g^k \rangle = \frac{n}{(n,k)}$,

则满足 (n,k) = 1 的 g^k 是生成元,则一共是 $\varphi(n)$ 个。

模意义下乘法(半)群

对于模 n 意义下的乘法半群,如果仅考虑 $Z_n^* = \{x | (n,x) = 1\}$,那么这就是一个 Able 群(可以通过裴蜀定理证明),可以用 $\varphi(n)$ 来表示出它的元素个数。

由 Abel 群的性质可知: $(n,x)=1\Rightarrow x^{\varphi(n)}=1$.

Z_p^*

对于奇质数 p, $Z_p^* = ([1, p-1], \times)$ 是 Abel 群。在这个群中, $f(x) = a_n x^n + \cdots + a_0 = 0$ 的解的个数不超过 n:

若 x_n 是方程的解,那么 $f(x) = (x - x_n)g(x)$,而 g(x) 最多有 n-1 个解不在这 1 + (n-1) 个解中的元素 y 这会使 $(y - x_n)$ 和 g(y) 都不是 0。

根据这个定理(拉格朗日定理),可以证明上述群是循环群:

根据 Abel 群与若干循环群之积同构,可以得到:对于任意 $x\in [1,p-1]$,有 $O\langle x\rangle|p-1$,因为 $O\langle x\rangle$ 等于在每一个循环群上阶的最小公倍数。

所以不妨令 $S_d=\{x|O\langle x\rangle=d\}$,于是若 d 不是 p-1 的约数,一定有 $S_d=\emptyset$ 。

又如果 \mathbf{f} $O\langle x \rangle = d$,那么 $x^k = 1$ 就是 $x^d = 1$ 的解,根据拉格朗日定理,这 d 个数就是唯 d 解,如果 (k,d) = 1,那么 $O\langle x^k \rangle = d$,即 $|S_d| = \varphi(d)$ 。

于是有 $S_d=0$ 或 $S_d=\varphi(d)$ (前者是上一页中把红色的字换成"没有"的情况),又有:

$$p-1 = \sum_{i} |S_i| \le \sum_{d|p-1} \varphi(d) = p-1$$

所以 $|S_d|=arphi(d)[d|p-1]$ 。所以 $S_{p-1}\neq\emptyset$,于是就证明了上面讨论的群是循环群。称原根为满足 $O\langle x\rangle=p-1$ 的 x,即这个群的生成元。

不妨再看看模 p^2 下的情况,现在我们要证明的是存在 $x \in Z_{n^2}^*$, $O(x) = (p-1)p = \varphi(p^2)$ 。

不妨考虑 p 的原根 g, 对于 g + ip, $i \in \mathbb{Z}^+$, 有:

$$\varphi(p)|\mathit{O}\langle g+ip\rangle,\,\mathit{O}\langle g+ip\rangle|\varphi(p^2)\,,\;\;\textrm{fiu}\;\mathit{O}\langle g+ip\rangle\in\{\varphi(p),\varphi(p^2)\}\,.$$

假如 $Z_{p^2}^*$ 不是循环群,则 $O\langle g \rangle = O\langle g + p \rangle = \varphi(p)$,则:

$$1 = (g+p)^{\phi(p)} = \sum_{i=0}^{p-1} {p-1 \choose i} p^i g^{p-1-i} = 1 + g^{-1} p(p-1) + 0 + \dots + 0 = 1 - g^{-1} p$$

则 $p|g^{-1}$,矛盾,所以 g,g+p 一定有一个阶为 $\varphi(p^2)$ 。

 $Z_{p^c}^*$

考虑 g 为 $Z_{p^2}^*$ 的原根,则可以通过归纳法:假设 g 为 $Z_{p^{c-1}}^*$ 的原根,则在 $Z_{p^c}^*$ 中有 $O(g) \in \{\varphi(p^{c-1}), \varphi(p^c)\}$,不妨设:

$$g^{\varphi(p^{c-2})} = g^{(p-1)p^{c-3}} = 1 + p^{c-2}k \neq 1$$

则:

$$g^{\varphi(p^{c-1})} = (1 + p^{c-2}k)^p = 1 + p^{c-1}k$$

由于 $k \neq 0$,也就是说 $g^{\varphi(p^{c-1})} \neq 1$,所以 $O\langle g \rangle = \varphi(p^c)$

 $Z_{2p^c}^*$

类似的,考虑一下 $Z_{2p^c}^*$,不难证明: $f(x)=x \bmod p^c$ 是 $Z_{2p^c}^*$ 到 $Z_{p^c}^*$ 的 同构映射,所以它的性质和 $Z_{p^c}^*$ 一样。

总结

对于奇质数 p, $Z_{p^c}^*$, $Z_{2p^c}^*$ 都是循环群,即有原根,且恰有 $\varphi(\varphi(p^c))$ 个。不难验证, Z_2^* , Z_4^* 都有原根,分别是 1;1,3。

上述群中元素可以用一个正整数来代表,乘法操作就可以变为 $Z_{\varphi(p^c)}$ 上的加操作。

对于其它的整数 n, \mathbb{Z}_n^* 是 Abel 群,可以划分为若干循环群之积。群中元素可以用一个数组代表,乘法操作也可以变为若干循环群积上的加操作。

给定 n, a, b, 满足 $n \le 10^6, (b, n) = 1$, 求下式解的个数:

$$x^a \mod n = b$$

加强版: 没有 (b, n) = 1 的限制。