VE	ER S	SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODI	SHA
		Even Mid Semester Examination for session 2023-24	
COUL	OCE N	NAME: B.Tech SEMEST	TER: 2 nd
COOL	COED	BRANCH NAME: ALL (Sec: D,E.F.G,H,I,J)	
		SUBJECT NAME: BASIC ELECTRONICS	
FIII	MAI	RKS: 30	Minutes
TOLL	· IVIA	XXS. 30	
		Answer All Questions.	
		The figures in the right hand margin indicate Marks. Symbols carry usual meaning.	
			[2 × 3]
Q1.		Answer all Questions.	[2 ^ 3]
	a)	Write the difference between PIV and Knee voltage of a diode.	
	b)	Is BJT a bipolar or unipolar component? Justify.	
	c)	Convert (2436.672) ₈ into binary and decimal equivalent.	
			[8]
Q2.			
	(a)	A Si diode a has reverse saturation current of 10 nA at 25 °C. Calculate the current through the diode for a forward bias voltage of 1.2 V. Also compute the static and dynamic resistance of the diode.	[4]
	(b)	Discuss the current flow mechanism in semiconductors.	$\left\{\frac{1}{\epsilon}\right\}$
~4		OR	
	, (a)	A diode with forward resistance of 50Ω supplies power to a load resistance of 1200 Ω from a 20V rms source. Draw the circuit and calculate: (i) DC output voltage (ii) ripple factor of the diode (iii) PIV ratting of the diode (iv) Efficiency of the circuit.	[1]
	(b)	ripple factor of the diode (iii) PTV ratting of the diode (iv) Efficiency of the circuit. $ \begin{array}{c} + V_1 - \\ E_1 = 10 \text{ V} \\ 47 \text{ k}\Omega & \text{Si} & \text{T} \\ R_2 & \text{22 k}\Omega & \text{V}_2 \end{array} $	[4]
		$E_2 = -5V$ For the above circuit determine I, V ₁ , V ₂ , and V ₀ .	
Q3.			[8]
	(a)	Explain the working principle of transistor with neat sketch. Derive the relation between current amplification factor of common base and common emitter configuration.	[4]
	(b)	In a transistor if I_E is 8 mA and I_B is 1/100 of I_C Determine the value of I_B and I_C .	[4]
		OR	

	(a)	Write De-Morgan's theorem and verify by its truth table.	[4]
	(b)	(i) Divide $(1010101)_2$ by $(11)_2$ (ii) $(10110)_2 - (10011)_2$	[4]
Q4.			[8]
	(a)	Perform the following conversion: -	-
		(i) (7483) ₁₀ to hexadecimal.	[4]
		(ii) (F9A.D5) ₁₆ to decimal.	
		(iii) (1051.36) ₁₀ to octal.	
		(iv) $(53.625)_{10}$ to binary.	
	(b)	(i) Simplify the following logical equation and draw the logic circuit.	[4]
		$Y = \overline{(X.\overline{Y} + X.Y.Z)} + X.(Y + X.\overline{Y})$	
		(ii) If A=1,B=0 and C=1, find the value of Q for the following logic circuit.	
		$A \rightarrow C \rightarrow $	
		OR	
	(a)	Realize NOT, AND, OR, Ex-OR and Ex-NOR gates using NAND gates only.	[4]
1	(b)	Subtract 46 from 99 using 1's and 2's complement methods.	•