

LAHIVE
&
COCKFIELD
 L L P

COUNSELLORS AT LAW
 28 STATE STREET
 BOSTON, MASSACHUSETTS 02109-1784
 TELEPHONE (617) 227-7400
 FAX (617) 742-4214
 lc@lahive.com

JOHN A. LARIVÉ, JR. (1928-1997)	CYNTHIA L. KANIK, Ph.D.	PATENT AGENTS
THOMAS V. SMURZYNSKI	MEGAN E. WILLIAMS, Ph.D.	THEODORE R. WEST
RALPH A. LOREN	RICHA NAND	SAYNAE Y. MUFF, Ph.D.
GIULIO A. DECINTI, JR.	MICHAEL PHILLIPS*	DANIEL B. KO
ANN LAMPORT HAMMITE	LISA M. DIROCCO	
ELIZABETH A. HANLEY	MATHAWAY P. RUSSELL**	TECHNICAL SPECIALISTS
AMY BAKER MANDRAGOURAS	MARIA LACOTTORE ZACHARAKIS, Ph.D.	CYNTHIA M. SOROCAS
ANTHONY A. LAURENTANO	PETER A. DMATTIA	PETER W. DINI, Ph.D.
KEVIN J. CANNING	VINCENT P. LOCCISANO	EUNHOON LEE
JANE E. REMILLARD	MERIDETH C. ARNOLD	JENNIFER K. ROSENFIELD
DOANN FORAN SMITH	SENIOR COUNSEL	ALLAN TAMESHTIT, Ph.D.
PETER C. LAURO	JAMES E. COCKFIELD	CATHERINE E. MCPHERSON
JEANNE M. D'GIORGIO	OF COUNSEL	ERIC F. WAGNER, Ph.D.
DEBRA J. MILASINCIC, Ph.D.	JEREMIAH LYNCH	SHAHID HASAN, Ph.D.
DAVID J. RIKKERS	WILLIAM A. SCOFIELD, JR.	JACOB G. WEINTRAUB
DAVID R. BURNS	SIBILEY P. REPPERT	JONATHAN M. SPARKS, Ph.D.
JOHN S. CURRAN		CHRISTIN E. HOWLEY, Ph.D.
SEAN D. DETWEILER		

* Admitted in NY only

** Admitted in TX only

Facsimile Cover Sheet

To: Examiner J. Seharaseyon
 Company: U.S.P.T.O./Group 1647
 Phone: 703-305-1112
 Fax: 703-746-5177

From: Cynthia L. Kanik, Ph.D.
 U.S.S.N. 09/554,933
 Attorney Docket No: GIN-6713CPUS
 Phone: (617) 227-7400
 Fax: (617) 742-4214
 Date: April 26, 2002
 Pages (incl. cover): 64

Dear Examiner Seharaseyon,

Further to our previous conversation, I am faxing you a copy of the English translation of Priority Document No. 9-323129 filed on November 25, 1997. Please call me at (617) 227-7400 Ext. 251, if I can be of further assistance.

Sincerely,

Cynthia L. Kanik, Ph.D.

The documents transmitted by this facsimile are intended for the use of the individual or the entity to which it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of the message is not the intended recipient, or the employee or agent responsible for delivering this document to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original facsimile to us at the above address via the U.S. Postal Service. Thank you.

Apr-26-02 10:23

From-LAHIVE & COCKFIELD, LLP

6177424214

T-604 P.02 F-964

CERTIFICATE OF VERIFICATION

I, Mitsuo TANAKA

of c/o IMP Building 16th floor, 3-7, Shiromi 1-chome, Chuo-ku,
Osaka 540-0001 Japan

state that the attached document is a true and complete
translation to the best of my knowledge of Japanese Patent
Application No. 9-323129 filed on November 25, 1997.

Dated this 12th day of April, 2002

Signature of translator:

PATENT OFFICE
JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of
the following application as filed with this Office.

Date of Application: November 25, 1997
Application Number: Patent Application No. 323129/1997
Applicant: SAGAMI CHEMICAL RESEARCH CENTER
PROTEGENE INC.

Date:
Commissioner,
Patent Office

(Seal)

Document Name: Application for Patent
Docket No.: S018128
Date of Application: November 25, 1997
Addressee: Commissioner, Patent Office
Title of the Invention: Human Proteins Having Transmembrane Domains and DNAs Encoding These Proteins
Number of Claim(s): 6
Inventor:
Address: 3-46-50, Wakamatsu,
Sagamihara-shi, Kanagawa
Name: Seishi KATO
Inventor:
Address: 5-13-11, Takasago,
Katsushika-ku, Tokyo
Name: Tomoko YAMAGUCHI
Inventor:
Address: 4-4-1, Nishi-Ohnuma,
Sagamihara-shi, Kanagawa
Name: Shingo SEKINE
Applicant:
Representative Applicant:
Identification No.: 000173762
Mail No.: 229
Address: 4-1, Nishi-Ohnuma 4-chome,

Sagamihara-shi, Kanagawa

Name: SAGAMI CHEMICAL RESEARCH
CENTER

Representative: Kiyoshi KONDO

Telephone No.: 0427 (42) 4791

Applicant:

Identification No.: 596134998

Mail No.: 153

Address: 2-20-3, Naka-cho, Meguro-ku,
Tokyo

Name: PROTEGENE INC.

Representative: Takeo TANAI

Telephone No.: 03 (3792) 1019

Payment of Fees:

Payment Book No.: 011501

Amount to be Paid: ¥21,000

Attached Document:

Item: Specification 1 copy

Item: Drawing 1 copy

Item: Abstract 1 copy

Request for proof transmission: Yes

Document Name: Specification

Title of the Invention: Human Proteins Having Transmembrane Domains and DNAs Encoding These Proteins

Claim(s):

5 1. A protein comprising any one of the amino acid sequences represented by Sequence Nos. 1 to 3.

2. A DNA coding for the protein according to Claim 1.

10 3. A cDNA comprising any one of the base sequences represented by Sequence Nos. 4 to 6.

4. The cDNA according to Claim 3 consisting of any one of the base sequences represented by Sequence Nos. 7 to 9.

15 5. An expression vector capable of expressing the DNA according to any one of Claims 2 to 4 by in vitro translation or in eucaryotic cells.

6. A transformed eucaryotic cell capable of expressing the DNA according to any one of Claims 2 to 4 and of producing the protein according to Claim 1.

20 Detailed Explanation of the Invention:

[0001]

Art Field Related:

The present invention relates to human proteins having transmembrane domains, cDNAs coding for these 25 proteins, and expression vectors of said cDNAs as well as

eucaryotic cells expressing said cDNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against said proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by said cDNAs. Cells, wherein these membrane protein genes are introduced and membrane proteins are expressed in large amounts, can be utilized for detection of the corresponding ligands, screening of novel low-molecular pharmaceuticals, and so on.

[0002]

Prior Art:

15 Membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation and the information transmission which are mediated by the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already.

[0003]

It has been clarified that abnormalities of these
25 membrane proteins are associated with a number of hitherto-

cryptogenic diseases. For instance, a gene of a membrane protein having twelve transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al., Science 245: 1059-1065 (1989)]. In addition, it has
5 been clarified that several membrane proteins act as receptors when a virus infects the cells. For instance, HIV-1 is revealed to infect into the cells through mediation of a membrane protein on the T-cell membrane, a CD-4 antigen, and a membrane protein having seven
10 transmembrane domains, fusin [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

15 [0004]

Heretofore, owing to difficulty in the purification, many membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a
20 cDNA library in eucaryotic cells to express cDNAs and then detection of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a physiological technique on the change in the membrane permeability. However, this method is
25 applicable only to cloning of a gene of a membrane protein

with a known function.

[0005]

In general, membrane proteins possess hydrophobic transmembrane domains inside the proteins, wherein, after synthesis thereof in the ribosome, these domains remain in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

[0006]

Problems to be Solved by the Invention:

The object of the present invention is to provide novel human proteins having transmembrane domains, DNAs coding for said proteins, and expression vectors of said cDNAs as well as transformed eucaryotic cells that are capable of expressing said cDNAs.

[0007]

20 Means to Solve the Problems:

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having transmembrane domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides

human proteins having transmembrane domains, namely proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 3. Moreover, the present invention provides DNAs coding for the above-mentioned 5 proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 4 to 9 as well as transformed eucaryotic cells that are capable of expressing said cDNAs.

[0008]

10 Mode for Carrying out the Invention

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis based on the amino acid 15 sequences of the present invention, or a method for production with the recombinant DNA technology using the DNAs coding for the transmembrane domains of the present invention, wherein the method for obtainment by the recombinant DNA technology is employed preferably. For 20 instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, recombination of the translation region 25 into a suitable expression vector by the method known in

the art leads to production of a large amount of the encoded protein by using prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5 [0009]

In the case in which a protein of the present invention is produced by expression of one of the DNAs by in vitro translation, recombination of the translation region in said cDNA into a vector having an RNA polymerase promoter, followed by addition into an in vitro translation system such as a rabbit reticulocyte lysate, a wheat germ extract or the like, which contains an RNA polymerase corresponding to the promoter, allows in vitro production of the protein of the present invention. Examples of the RNA polymerase promoter include T7, T3, SP6, and so on. Vectors containing such an RNA polymerase promoter are exemplified by pKAl, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Also, addition of the dog pancreas microsome etc. in the reaction system enables the membrane protein of the present invention to be expressed in a form integrated in the microsome membrane.

20 [0010]

In the case in which a protein of the present invention is produced by expression of a DNA in a microorganism such as *Escherichia coli* etc., a recombinant

expression vector bearing the translation region in the cDNA of the present invention is constructed in an expression vector having an origin, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator etc., which
5 can be replicated in the microorganism, and, after transformation of the host cells with said expression vector, the thus-obtained transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein
10 fragment containing an optional region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a
15 protein portion encoded by said cDNA can be obtained by cleavage of said fusion protein with a suitable protease. Examples of the expression vector for *Escherichia coli* include the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so on.

20 [0011]

In the case in which one of the proteins of the present invention is produced by expression of a DNA in eucaryotic cells, the protein of the present invention can be produced as a membrane protein on the cell-membrane
25 surface, when the translation region of said cDNA is

subjected to recombination to an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKAl, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, 10 *Xenopus laevis* egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins on the membrane surface. The expression vector can be introduced in the eucaryotic cells by methods known in the art such as the 15 electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method, and so on.

[0012]

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication, enzymatic digestion, 20 salting-out or solvent precipitation, dialysis, 25

centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

5 [0013]

The proteins of the present invention include peptide fragments (5 amino acid residues or more) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1 to 3. These 10 peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. 15 Therefore, these maturation proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come 20 within the scope of the protein of the present invention. 25 When sugar chain-binding sites are present in the amino

acid sequences, expression in appropriate eucaryotic cells affords proteins wherein sugar chains are added. Accordingly, such proteins or peptides wherein sugar chains are added shall come within the scope of the protein of the
5 present invention.

[0014]

The DNAs of the present invention include all DNAs coding for the above-mentioned proteins. Said DNAs can be obtained by using a method by chemical synthesis, a
10 method by cDNA cloning, and so on.

[0015]

The cDNAs of the present invention can be cloned, for example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A)⁺ RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 163: 193-196 (1995)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In
15 addition, commercially available, human cDNA libraries can
20
25

be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of an oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

[0016]

The cDNAs of the present invention are characterized by containing either of the base sequences represented by Sequence Nos. 4 to 6 or the base sequences represented by Sequence Nos. 7 to 9. Table 1 summarizes the clone number (HP number), the cells affording the cDNA clone, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

[0017]

[Table 1]

Table 1

	Sequence No.	HP No.	Cell	Number of bases	Number of amino acids
	1, 4, 7	HP01207	Stomach Cancer	2938	269
10	2, 5, 8	HP01862	Stomach Cancer	2290	311
	3, 6, 9	HP10493	PMA-U937	3705	383

[0018]

15 Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of 20 the cDNA base sequence described in any of Sequence Nos. 4 to 9.

[0019]

In general, the polymorphism due to the individual difference is frequently observed in human genes. 25 Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence Nos. 4 to 9 shall come within the scope of the present invention.

[0020]

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one or plural amino acids and/or substitution with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos. 1 to 3.

[0021]

The cDNAs of the present invention include cDNA fragments (10 bp or more) containing any partial base sequence in the base sequences represented by Sequence Nos. 4 to 6 or in the base sequences represented by Sequences No. 7 to 9. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

[0022]

Examples

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Cloning. A Laboratory Manual" , Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated,

restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

[0023]

(1) Preparation of Poly(A)' RNA

The histiocyte lymphoma cell line U937 (ATCC CRL 1593) stimulated by phorbol ester and tissues of stomach cancer delivered by the operation were used for human cells to extract mRNAs. The cell line was incubated by a conventional procedure.

[0024]

After about 1 g of the human cells was homogenized in 20 ml of a 5.5 M guanidium thiocyanate solution, a total mRNA was prepared according to the literature [Okayama, H. et al., "Method in Enzymology", Vol. 164, Academic Press, 1987]. This was subjected to chromatography on oligo(dT)-cellulose column washed with a 20 mM Tris-hydrochloride buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A)' RNA according to the above-described literature.

[0025]

(2) Construction of cDNA Library

Ten micrograms of the above-mentioned poly(A)⁺ RNA were dissolved in a 100 mM Tris-hydrochloride buffer solution (pH 8), one unit of an RNase-free, bacterial alkaline phosphatase was added, and the reaction was run at 37 °C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin acid pyrophosphatase (Epicentre Technologies) and a total 100 µl volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a solution of a decapped poly(A)⁺ RNA.

[0026]

The decapped poly(A)⁺ RNA and 3 nmol of a chimeric DNA-RNA oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') were dissolved in an aqueous solution containing 50 mM Tris-hydrochloride buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol, whereto was added 50 units of T4 RNA ligase and a total 30 µl volume of the resulting

mixture was reacted at 20 °C for 12 hours. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a chimeric-oligo-capped poly(A)⁺ RNA.

[0027]

After digestion of vector pKA1 (Japanese Patent Kokai Publication No. 1992-117292) developed by the present inventors with KpnI, about 60 dT tails were added using a terminal transferase. A vector primer to be used below was prepared by digestion of this product with EcoRV to remove a dT tail at one side.

[0028]

After 6 µg of the previously-prepared chimeric-oligo-capped poly(A)⁺ RNA was annealed with 1.2 µg of the vector primer, the resulting product was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), 200 units of a reverse transcriptase (GIBCO-BRL) were added, and the reaction in a total 20 µl volume was run at 42°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM Tris-hydrochloride buffer

solution (pH 7.5), 100 mM NaCl, 10 mM MgCl₂, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and a total 20 µl volume of the resulting mixture was reacted at 37 °C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 20 mM Tris-hydrochloride buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl₂, 10 mM (NH₄)₂SO₄, and 50 µg/ml of the bovine serum albumin. Thereto were added 60 units of an *Escherichia coli* DNA ligase and the resulting mixture was reacted at 16°C for 16 hours. To the reaction solution were added 2 µl of 2 mM dNTP, 4 units of *Escherichia coli* DNA polymerase I, and 0.1 unit of *Escherichia coli* RNase H and the resulting mixture was reacted at 12°C for one hour and then at 22°C for one hour.

[0029]

Next, the cDNA-synthesis reaction solution was used for transformation of *Escherichia coli* DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was spread on the 2xYT agar culture medium containing 100 µg/ml ampicillin and the medium was incubated at 37°C overnight. A colony formed on the agar medium was picked up at random and inoculated on 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin. After incubation at 37°C

overnight, the culture mixture was centrifuged to separate the cells, from which a plasmid DNA was prepared by the alkaline lysis method. The plasmid DNA was subjected to double digestion with EcoRI and NotI, followed by 0.8% agarose gel electrophoresis, to determine the size of the cDNA insert. Furthermore, using the thus-obtained plasmid as a template, the sequence reaction was carried out by using an M13 universal primer labeled with a fluorescent dye and a Taq polymerase (a kit of Applied Biosystems) and then the product was examined with a fluorescent DNA sequencer (Applied Biosystems) to determine an about 400-bp base sequence at the 5'-terminus of the cDNA. The sequence data were filed as the homo/protein cDNA bank database.

[0030]

15 (3) Selection of cDNAs Encoding Proteins Having Transmembrane Domains

A base sequence registered in the homo/protein cDNA bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon was examined. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the N-terminus of the portion encoded by the ORF. These clones were sequenced from the both 5' and 3' directions by the use of the deletion method using

exonuclease III to determine the whole base sequence. The hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by the ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of a putative transmembrane domain in the amino acid sequence of an encoded protein, this protein was judged as a membrane protein.

10 [0031]

(4) Functional Verification of Secretory Signal Sequence or Transmembrane Domains

It was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)] that the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the above-mentioned steps functions as a secretory signal sequence. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site existing at the downstream of the portion expected for encoding the secretory signal sequence. In the case in which this restriction site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the mung-bean nuclease. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 promoter

and a cDNA encoding the secretory signal sequence at the downstream of the promoter was separated by agarose gel electrophoresis. The resulting fragment was inserted between HindIII in pSSD3 (DDBJ/EMBL/GenBank Registration No. 5 AB007632) and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal sequence of the target cDNA and the urokinase protease domain.

10 [0032]

After *Escherichia coli* (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 µg/ml of ampicillin, the helper phage M13KO7 (50 µl) was 15 added and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there 20 were used as controls suspensions of single-stranded phage particles prepared in the same manner from pSSD3 and from the vector pKAl-UPA containing a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

25 [0033]

The culture cells originating from the simian kidney, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf serum. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 × 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 µl of TRANSFECTAM™ (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO₂.

20 [0034]

To 10 ml of a 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM calcium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the 25 resulting mixture was solidified in a plate of 9 cm in

diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the transfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. In the case in which a clear circle appears 5 on the fibrin plate, it is judged that the cDNA fragment codes for the amino acid sequence functioning as a secretory signal sequence. On the other hand, in case in which a clear circle is not formed, the cells were washed well, then the fibrin sheet was placed on the cells, and 10 incubation was carried out at 37°C for 15 hours. In case in which a clear portion is formed on the fibrin sheet, it indicates that the urokinase activity was expressed on the cell surface. In other words, the cDNA fragment is judged to code for the transmembrane domains.

15 [0035]

(5) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_{NT} rabbit reticulocyte lysate kit (Promega). In this case, [³⁵S]methionine was 20 added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25 µl 25 volume of the reaction solution containing 12.5 µl of T_{NT}

rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to kit), 2 μ l of an amino acid mixture (methionine-free), 2 μ l of [35 S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin.

- 5 To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then
10 subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiograph.

[0036]

(6) Expression by COS7

- 15 *Escherichia coli* bearing the expression vector of the protein of the present invention was infected with helper phage M13KO7 and single-stranded phage particles were obtained by the above-mentioned procedure. The thus-obtained phage was used for introducing each expression
20 vector in the culture cells originating from the simian kidney, COS7 by the above-mentioned procedure. After incubation at 37°C for 2 days in the presence of 5% CO₂, the incubation was continued for one hour in the culture medium containing [35 S]cysteine or [35 S]methionine.
25 Collection and lysis of the cells, followed by subjecting

to SDS-PAGE, allowed to observe the presence of a band corresponding to the expression product of each protein, which did not exist in the COS7 cells.

[0037]

5 (7) Clone Examples

<HP01207> (Sequence Nos. 1, 4, and 7)

Determination of the whole base sequence of the cDNA insert of clone HP01207 obtained from cDNA libraries of human stomach cancer revealed the structure consisting 10 of a 100-bp 5'-nontranslation region, an 810-bp ORF, and a 2028-bp 3'-nontranslation region. The ORF codes for a protein consisting of 269 amino acid residues and there existed seven putative transmembrane domains. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained 15 by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a smear translation product of a high molecular weight.

[0038]

The search of the protein data base by using the 20 amino acid sequence of the present protein revealed that the protein was analogous to the mouse Surf-4 protein (PIR Accession No. A34727). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the mouse Surf-4 protein (MM). 25 Therein, the marks of * and . represent an amino acid

residue identical with the protein of the present invention and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 99.3% in the entire region.

5 [0039]

[Table 2]

Table 2

HS	MGQNNDLMGTAEDFADQFLRVTKQYLPHVARLCLISTFLEDGIRMWFWQWSEQRDYIDTTWN
10	*****
MM	MGQNNDLMGTAEDFADQFLRVTKQYLPHVARLCLISTFLEDGIRMWFWQWSEQRDYIDTTWS
HS	CGYLLASSSFVFLNLLGQLTCVVLVLSRNFVQYACFCGLFGIIALQTIAYSILWDLKFLMRN

MM	CGYLLASSSFVFLNLLGQLTCVVLVLSRNFVQYACFCGLFGIIALQTIAYSILWDLKFLMRN
15	HS LALGGGLLLLLAESRSEGKSMFAGVPTMRESSPKQYMQLGGRVLLVLMFMTLHFDASFF

MM	LALGGGLLLLLAESRSEGKSMFAGVPTMRESSPKQYMQLGGRVLLVLMFMTLHFDASFF
HS	SIVQNIVGTALMILVAIGFKTKLAALTIVVWLFAINVYFNAFWTIPVYKPMHDFLKYDFF
	. ***
20	MM SIIQNIVGTALMILVAIGFKTKLAALTIVVWLFAINVYFNAFWTIPVYKPMHDFLKYDFF
HS	QTMSVIGGLLVLVALGPGGVSMDEKKKEW

MM	QTMSVIGGLLVLVALGPGGVSMDEKKKEW

25

[0040]

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a base sequence that exhibited an analogy of 98.6% with a 762-bp part from position 122 up to

position 883 (GenBank Accession No. Y14820), which codes for the fragment of the present protein.

[0041]

The mouse Surf-4 protein is one of proteins which
5 are encoded in the mouse surfelt locus and has been
considered to a housekeeping protein that is essential to
the survival of cells [Huxley, C. et al., Mol. Cell. Biol.
10: 605-614 (1990)].

[0042]

10 <HP01862> (Sequence Nos. 2, 5 and 8)

Determination of the whole base sequence of the
cDNA insert of clone HP01862 obtained from cDNA libraries
of human stomach cancer revealed the structure consisting
of an 80-bp 5'-nontranslation region, a 936-bp ORF, and a
15 1274-bp 3'-nontranslation region. The ORF codes for a
protein consisting of 311 amino acid residues and there
existed seven transmembrane domains. Figure 2 depicts the
hydrophobicity/hydrophilicity profile, obtained by the
Kyte-Doolittle method, of the present protein. In vitro
20 translation resulted in formation of a smear translation
product of a high molecular weight.

[0043]

The search of the protein data base using the
amino acid sequence of the present protein has revealed the
25 presence of sequences that were analogous to the rat NMDA

receptor glutamate-binding subunit (GenBank Accession No. S19586). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the rat NMDA receptor glutamate-binding subunit (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 41.0%.

10 [0044]

[Table 3]

Table 3

***. *** *** ***. ***. . ***. ***. *** *** *** .. *

RN LGALLFTCFLAVDTQLLLGNKQLSLSPEEYVFAALNLYTDIINIFLYILTIIGRSQQGIGQ

5 [0045]

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. H06014) in EST, but any of 10 the sequences was shorter than the present cDNAs and was not found to contain the initiation codon.

[0046]

The rat NMDA receptor glutamate-binding subunit is one of subunits of an NMDA receptor complex which exist 15 specifically in the brain [Kumar, K. N. et al., Nature 354: 70-73 (1991)]. The protein of the present invention has seven transmembrane domains characteristic to channels and transporters and thereby is considered to play a role as a channel and a transporter.

20 [0047]

<HP10493> (Sequence Nos. 3, 6 and 9)

Determination of the whole base sequence of the cDNA insert of clone HP10493 obtained from cDNA libraries of the human lymphoma U937 revealed the structure 25 consisting of a 123-bp 5'-nontranslation region, a 1152-bp

ORF, and a 2430-bp 3'-nontranslation region. The ORF codes for a protein consisting of 383 amino acid residues and there existed one transmembrane domain at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, 5 obtained by the Kyte-Doolittle method, of the present protein. Introduction of an expression vector, wherein the HindIII-AccI fragment containing a cDNA portion coding for the N-terminal 44 amino acid residues of the present protein was inserted into the HindIII-PmaCI site of pSSD3, 10 into the COS7 cells revealed the urokinase activity on the cell surface to indicate that the present protein is the type-II membrane protein. In vitro translation resulted in formation of a translation product of 43 kDa that was almost consistent with the molecular weight of 43,001 15 predicted from the ORF.

[0048]

The search of the protein data base using the amino acid sequence of the present protein has not revealed the presence of any known protein having an analogy. The 20 search of the motif sequences has revealed a high probability that histidine at position 175 is an active site of the trypsin-type serine protease. Accordingly, the present protein is likely to be a membrane-type protease. Also, the search of the GenBank using the base sequences of 25 the present cDNA has revealed the presence of sequences

that possessed a homology of 90% or more (for example, Accession No. R81003) in EST, but many sequences were not distinct and the same ORF as that in the present cDNA was not found.

5 [0049]

Effects of the Invention:

The present invention provides human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as 10 eucaryotic cells expressing said cDNAs. All of the proteins of the present invention exist in the cell membrane, so that they are considered to be proteins controlling the proliferation and the differentiation of the cells. Accordingly, the proteins of the present invention can be 15 employed as pharmaceuticals such as carcinostatic agents relating to the control of the proliferation and the differentiation of the cells or as antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be utilized as probes for the gene diagnosis 20 and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized for large-scale expression of said proteins. Cells, wherein these membrane protein genes are introduced and membrane proteins are expressed in large amounts, can be utilized for detection of the corresponding 25 ligands, screening of novel low-molecular pharmaceuticals,

31

and so on.

[0050]

Sequence Listing:

SEQ ID NO: 1

5 LENGTH: 269

TYPE: Amino acid

TOPOLOGY: Linear

MOLECULE TYPE: Protein

HYPOTHETICAL: No

10 ORIGINAL SOURCE:

ORGANISM: *Homo sapiens*

CELL TYPE: Stomach cancer

CLONE: HP01207

SEQUENCE DESCRIPTION:

15 Met Gly Gln Asn Asp Leu Met Gly Thr Ala Glu Asp Phe Ala Asp Gln

1 5 10 15

Phe Leu Arg Val Thr Lys Gln Tyr Leu Pro His Val Ala Arg Leu Cys

20 25 30

Leu Ile Ser Thr Phe Leu Glu Asp Gly Ile Arg Met Trp Phe Gln Trp

20 35 40 45

. Ser Glu Gln Arg Asp Tyr Ile Asp Thr Thr Trp Asn Cys Gly Tyr Leu

50 55 60

Leu Ala Ser Ser Phe Val Phe Leu Asn Leu Leu Gly Gln Leu Thr Gly

32

65 70 75 80
Cys Val Leu Val Leu Ser Arg Asn Phe Val Gln Tyr Ala Cys Phe Gly
 85 90 95
Leu Phe Gly Ile Ile Ala Leu Gln Thr Ile Ala Tyr Ser Ile Leu Trp
5 100 105 110
Asp Leu Lys Phe Leu Met Arg Asn Leu Ala Leu Gly Gly Gly Leu Leu
 115 120 125
Leu Leu Leu Ala Glu Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly
 130 135 140
10 Val Pro Thr Met Arg Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly
 145 150 155 160
Gly Arg Val Leu Leu Val Leu Met Phe Met Thr Leu Leu His Phe Asp
 165 170 175
Ala Ser Phe Phe Ser Ile Val Gln Asn Ile Val Gly Thr Ala Leu Met
15 180 185 190
Ile Leu Val Ala Ile Gly Phe Lys Thr Lys Leu Ala Ala Leu Thr Leu
 195 200 205
Val Val Trp Leu Phe Ala Ile Asn Val Tyr Phe Asn Ala Phe Trp Thr
 210 215 220
20 Ile Pro Val Tyr Lys Pro Met His Asp Phe Leu Lys Tyr Asp Phe Phe
 225 230 235 240
Gln Thr Met Ser Val Ile Gly Gly Leu Leu Leu Val Val Ala Leu Gly
 245 250 255
Pro Gly Gly Val Ser Met Asp Glu Lys Lys Lys Glu Trp
25 260 265

33

(0051)

SEQ ID NO: 2

LENGTH: 311

TYPE: Amino acid

5 TOPOLOGY: Linear

MOLECULE TYPE: Protein

HYPOTHETICAL: No

ORIGINAL SOURCE:

ORGANISM: *Homo sapiens*

10 CELL TYPE: Stomach cancer

CLONE: MP01862

SEQUENCE DESCRIPTION:

Met Ser Asn Pro Ser Ala Pro Pro Pro Tyr Glu Asp Arg Asn Pro Leu

1 5 10 15

15 Tyr Pro Gly Pro Leu Pro Pro Gly Gly Tyr Gly Gln Pro Ser Val Leu

20 25 30

Pro Gly Gly Tyr Pro Ala Tyr Pro Gly Tyr Pro Gln Pro Gly Tyr Gly

35 40 45

His Pro Ala Gly Tyr Pro Gln Pro Met Pro Pro Thr His Pro Met Pro

20 50 55 60

Met Asn Tyr Gly Pro Gly His Gly Tyr Asp Gly Glu Glu Arg Ala Val

65 70 75 80

Ser Asp Ser Phe Gly Pro Gly Glu Trp Asp Asp Arg Lys Val Arg His

34

	85	90	95	
	Thr Phe Ile Arg Lys Val Tyr Ser Ile Ile Ser Val Gln Leu Leu Ile			
	100	105	110	
	Thr Val Ala Ile Ile Ala Ile Phe Thr Phe Val Glu Pro Val Ser Ala			
5	115	120	125	
	Phe Val Arg Arg Asn Val Ala Val Tyr Tyr Val Ser Tyr Ala Val Phe			
	130	135	140	
	Val Val Thr Tyr Leu Ile Leu Ala Cys Cys Gln Gly Pro Arg Arg Arg			
	145	150	155	160
10	Phe Pro Trp Asn Ile Ile Leu Leu Thr Leu Phe Thr Phe Ala Met Gly			
	165	170	175	
	Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln Thr Lys Ala Val Ile			
	180	185	190	
	Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile Ser Val Thr Ile Phe			
15	195	200	205	
	Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys Thr Gly Leu Phe Cys			
	210	215	220	
	Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile Val Thr Ser Ile Val			
	225	230	235	240
20	Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met Leu Tyr Ala Ala Leu			
	245	250	255	
	Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr Asp Thr Gln Leu Val			
	260	265	270	
	Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu Asp Tyr Ile Thr Gly			
25	275	280	285	

35

Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile Phe Thr Phe Val Leu

290

295

300

Gln Leu Met Gly Asp Arg Asn

305

310

5 [0052]

SEQ ID NO: 3

LENGTH: 383

TYPE: Amino acid

TOPOLOGY: Linear

10 MOLECULE TYPE: Protein

HYPOTHETICAL: No

ORIGINAL SOURCE:

ORGANISM: *Homo sapiens*

CELL TYPE: Lymphoma

15 CELL LINE: U937

CLONE: HP10493

SEQUENCE DESCRIPTION:

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu Cys

1

5

10

15

20 Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro Thr Trp

20

25

30

Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr Leu Asn Leu

35

40

45

Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu Val Ser Ser Ser
 50 55 60
 Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu Pro Thr Tyr Glu Glu
 65 70 75 80
 5 Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu Tyr Ala Asn Gly Ser Arg
 85 90 95
 Thr Glu Thr Gln Val Gly Ile Tyr Ile Leu Ser Ser Ser Gly Asp Gly
 100 105 110
 Ala Gln His Arg Asp Ser Gly Ser Ser Gly Lys Ser Arg Arg Lys Arg
 10 115 120 125
 Gln Ile Tyr Gly Tyr Asp Ser Arg Phe Ser Ile Phe Gly Lys Asp Phe
 130 135 140
 Leu Leu Asn Tyr Pro Phe Ser Thr Ser Val Lys Leu Ser Thr Gly Cys
 145 150 155 160
 15 Thr Gly Thr Leu Val Ala Glu Lys His Val Leu Thr Ala Ala His Cys
 165 170 175
 Ile His Asp Gly Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val
 180 185 190
 Gly Phe Leu Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp
 20 195 200 205
 Ser Thr Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val
 210 215 220
 Lys Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp
 225 230 235 240
 25 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro His

37

245 250 255
Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Gln Leu
260 265 270
Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp Arg Pro Gly
5 275 280 285
Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu Thr Tyr Asp Leu
290 295 300
Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala Ser Gly Ser Gly Val
305 310 315 320
10 Tyr Val Arg Met Trp Lys Arg Gln Gln Lys Trp Glu Arg Lys Ile
 325 330 335
Ile Gly Ile Phe Ser Gly His Gln Trp Val Asp Met Asn Gly Ser Pro
 340 345 350
Gln Asp Phe Asn Val Ala Val Arg Ile Thr Pro Leu Lys Tyr Ala Gln
15 355 360 365
Ile Cys Tyr Trp Ile Lys Gly Asn Tyr Leu Asp Cys Arg Glu Gly
 370 375 380

[0053]

SEQ ID NO: 4
20 LENGTH: 807

TYPE: Nucleic acid

STRANDEDNESS: Double

TOPOLOGY: Linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE:

ORGANISM: *Homo sapiens*

CELL TYPE: Stomach cancer

CLONE: HP01207

5 SEQUENCE DESCRIPTION:

ATGGGCCAGA	ACGACCTGAT	GGGCACGGCC	GAGGA ^{CTTCG} CCGACCAGTT	CCTCCGTGTC	60
ACAAAGCAGT	ACCTGCCCCA	CGTGGCGGCC	CTCTGTCTGA	T ^{CA} GCACCTT	120
GGCATCCGTA	TGTGGTTCCA	GTGGAGCGAG	CAGCGCGACT	ACATCGACAC	180
TGCGGCTACC	TGCTGGCCTC	GTCTTCGTC	TTCCTCACT	TGCTGGGACA	240
10	TGCGTCCTGG	TGTTGAGCAG	GAAC ^{TT} CGTG	CA ^T GTACGCC	300
ATAGCTCTGC	AGACGATTGC	CTACAGCATT	TTATGGACT	TGAAGTTTT	360
CTGGCCCTGG	GAGGAGCCCT	GTTGCTGCTC	CTAGCAGAAT	CCC ^G TCTGA	420
ATGTT ^T CGGG	GCGTCCCCAC	CATGGTGAG	AGCTCCCCCA	AACAGTACAT	480
GGCAGGGTCT	TGCTGGTTCT	GATGTTCATG	AC ^C CTCCTTC	ACTT ^T GACGC	540
15	TCTATTGTCC	AGAACATCGT	GGGCACAGCT	CTGATGATT	600
ACCAAGCTGG	CTGCTT ^T GAC	TCTTGTGTC	TGGCTTTG	CCATCAACGT	660
GCCTTCTGGA	CCATTCCAGT	CTACAAGCCC	ATGCATGACT	TCCTGAAATA	720
CAGACCATGT	CGCTGATTGG	GGGCTTGCTC	CTGGTGGTGG	CCCTGGGCC	780
TCCATGGATG	AGAAGAACAA	GGAGTGG			807

20 [0054]

SEQ ID NO: 5

LENGTH: 933

TYPE: Nucleic acid

STRANDEDNESS: Double

TOPOLOGY: Linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE:

5 ORGANISM: *Homo sapiens*

CELL TYPE: Stomach cancer

CLONE: HP01862

SEQUENCE DESCRIPTION:

ATGTCCAACC	CCAGCGCCCC	ACCAACCATAT	GAAGACCGCA	ACCCCCTGTA	CCCACGCCCT	60
10 CTGCCCCCTG	GGGGCTATGG	GCAGCCATCT	GTCCTGCCAG	GAGGGTATCC	TGCCTACCC	120
GGCTACCCGC	AGCCTGGCTA	CGGTACCCCT	GCTGGCTACC	CACAGCCCAT	GCCCCCCACC	180
CACCCGATGC	CCATGAACTA	CGGGCCAGGC	CATGGCTATG	ATGGGGAGGA	GAGACGGTG	240
AGTGATAGCT	TCGGGCCTGG	AGAGTGGGAT	GACCGGAAAG	TGGCACACAC	TTTATCCGA	300
AAGGTTACT	CCATCATCTC	CGTGCAGCTG	CTCATCACTG	TGGCCATCAT	TGCTATCTTC	360
15 ACCTTTGTGG	AACCTGTCAG	CGCCTTGTG	AGGAGAAATG	TGGCTGTCTA	CTACGTGTCC	420
TATGCTGTCT	TCGTTGTCAC	CTACCTGATC	CTTGCCTGCT	GCCAGGGACC	CAGACGCCGT	480
TTCCCATGGA	ACATCATTCT	GCTGACCCCT	TTTACTTTTG	CCATGGGCTT	CATGACGGGC	540
ACCATTCCA	GTATGTACCA	AACCAAAGCC	GTCATCAATTG	CAATGATCAT	CACTGCCGTG	600
GTATCCATT	CAGTCACCAT	CTTCTGCTT	CAGACCAAGG	TGGACTTCAC	CTCGTGCACA	660
20 GGCCTCTTCT	GTGTCCTGGG	AATTUTGCTC	CTGGTCACTG	GGATTGTAC	TAGCATTGTG	720
CTCTACTTCC	AATACGTTTA	CTGGCTCCAC	ATGCTCTATG	CTGCTCTGGG	GGCCATTG	780
TTCACCCCTGT	TCCCTGGCTTA	CGACACACAG	CTGGTCTGG	GGAACCCGAA	CCACACCATC	840
AGCCCCGAGG	ACTACATCAC	TGGGGCCCTG	CAGATTACA	CAGACATCAT	CTACATCTTC	900

40

ACCTTTGTGC TGCAGCTCAT GGGGGATCGC AAT

933

[0055]

SEQ ID NO: 6

LENGTH: 1149

5 TYPE: Nucleic acid

STRANDEDNESS: Double

TOPOLOGY: Linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE:

10 ORGANISM: *Homo sapiens*

CELL TYPE: Lymphoma

CELL LINE: U937

CLONE: HP10493

SEQUENCE DESCRIPTION:

15	ATGGCAGGGA TTCCAGGGCT CCTCTTCCTT CTCTTCTTC TGCTCTGTGC TGTTGGCAA	60
	GTGAGCCCTT ACAGTGCCCC CTGGAAACCC ACTTGGCTG CATAACGCCCT CCCTGTGTC	120
	TTGCCCCAGT CTACCCCTCAA TTTAGCCAAG CCAGACTTTG GAGCCGAAGC CAAATTAGAA	180
	GTATCTTCTT CATGTGGACC CCAGTGTCAAT AAGGGAACTC CACTGCCAC TTACGAAGAG	240
	GCCAAGCAAT ATCTGTCTTA TGAAACGCTC TATGCCAATG GCAGCCGCAC AGAGACGCAG	300
20	GTGGGCATCT ACATCCTCAG CAGTAGTGGA GATGGGGCCC AACACCGAGA CTCAGGGTCT	360
	TCACGAAAGT CTCGAAGGAA GCGGCAGATT TATGGCTATG ACAGCAGGTT CAGCATTGTT	420
	CGGAACGACT TCCTGCTCAA CTACCCCTTC TCAACATCAG TGAAGTTATC CACGGGCTGC	480

41

	ACCGGCACCC TGGTGGCAGA GAAGCATGTC CTCACAGCTG CCCACTGCAT ACACGATGGA	540
	AAAACCTATG TGAAAGGAAC CCAGAACGTT CGAGTGGGCT TCCTAAAGCC CAAGTTAAA	600
	GATGGTGGTC GAGGGGCCAA CGACTCCACT TCAGCCATGC CCGACCAAGAT GAAATTCAG	660
	TGGATCCGGG TGAAACGCAC CCATGTGCCA AAGGGTTGGA TCAAGGGCAA TGCCAATGAC	720
5	ATCGGCATGG ATTATGATTA TCCCCCTCCTG GAACTCAAAA AGCCCCACAA GAGAAAATT	780
	ATGAAGATTG GGGTGAGCCC TCCTGCTAAG CAGCTGCCAG GGGGCAGAAAT TCACTTCTCT	840
	GCTTATGACA ATGACCCACC AGGCAATTG GTGTATCGCT TCTGTGACGT CAAAGACGAG	900
	ACCTATGACT TGCTCTACCA GCAATGCCAT GCCCCAGCCAG GGGCCAGCGG GTCTGGGTC	960
	TATGTGAGGA TGTGGAAGAG ACAGCAGCAG AAGTGGGAGC GAAAAATTAT TGGCATT	1020
10	TCAGGGCACC ACTGGGTGGA CATGAATGGT TCCCCACAGG ATTTCAACGT GGCTGTCAGA	1080
	ATCACTCCTC TCAAATATGC CCAGATTGTC TATTGGATTA AAGGAAACTA CCTGGATTGT	1140
	ACGGAGGGG	1149

SEQ ID NO: 7

LENGTH: 2938

15 TYPE: Nucleic acid

STRANDEDNESS: Double

TOPOLOGY: Linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE:

20 ORGANISM: *Homo sapiens*

CELL TYPE: Stomach cancer

CLONE: HP01207

FEATURES:

NAME/KEY: CDS

LOCATION: 101..910

IDENTIFICATION METHOD: E

SEQUENCE DESCRIPTION:

5	AAAAAGGGCA CTTCCTGTGG AGGCCGCACC GGGTGCGGGC GCCGACGGGC GAGAGCCAGC	60
	GAGCGAGCGA GCGAGCCGAG CCGAGCCTCC CGCCGTCGCC ATG GGC CAG AAC GAC	115
	Met Gly Gln Asn Asp	
	1 5	
	CTG ATG GGC ACG GCC GAG GAC TTC CCC GAC CAG TTC CTC CGT GTC ACA	163
10	Leu Met Gly Thr Ala Glu Asp Phe Ala Asp Gln Phe Leu Arg Val Thr	
	10 15 20	
	AAG CAG TAC CTG CCC CAC GTG GCG CGC CTC TGT CTG ATC AGC ACC TTC	211
	Lys Gln Tyr Leu Pro His Val Ala Arg Leu Cys Leu Ile Ser Thr Phe	
	25 30 35	
15	CTG GAG GAC GGC ATC CGT ATG TGG TTC CAG TGG AGC GAG CAG CGC GAC	259
	Leu Glu Asp Gly Ile Arg Met Trp Phe Gln Trp Ser Glu Gln Arg Asp	
	40 45 50	
	TAC ATC GAC ACC ACC TGG AAC TGC GGC TAC CTG CTG GCC TCG TCC TTC	307
	Tyr Ile Asp Thr Thr Trp Asn Cys Gly Tyr Leu Leu Ala Ser Ser Phe	
20	55 60 65	
	GTC TTC CTC AAC TTG CTG GGA CAG CTC ACT GGC TGC GTC CTG GTG TTG	355
	Val Phe Leu Asn Leu Leu Gly Gln Leu Thr Gly Cys Val Leu Val Leu	
	70 75 80 85	
	AGC AGG AAC TTC GTG CAG TAC GCC TGC TTC GGG CTC TTT GGA ATC ATA	403

	Ser Arg Asn Phe Val Gln Tyr Ala Cys Phe Gly Leu Phe Gly Ile Ile			
	90	95	100	
	GCT CTG CAG ACG ATT GCC TAC AGC ATT TTA TGG GAC TTG AAG TTT TTG		451	
	Ala Leu Gln Thr Ile Ala Tyr Ser Ile Leu Trp Asp Leu Lys Phe Leu			
5	105	110	115	
	ATG AGG AAC CTG GCC CTG GGA GGA GGC CTG TTG CTG CTC CTA GCA GAA		499	
	Met Arg Asn Leu Ala Leu Gly Gly Leu Leu Leu Leu Ala Glu			
	120	125	130	
	TCC CGT TCT GAA GGG AAG AGC ATG TTT GCG GGC GTC CCC ACC ATG CGT		547	
10	Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly Val Pro Thr Met Arg			
	135	140	145	
	GAG AGC TCC CCC AAA CAG TAC ATG CAG CTC GGA GGC AGG GTC TTG CTG		595	
	Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly Gly Arg Val Leu Leu			
	150	155	160	165
15	GTT CTG ATG TTC ATG ACC CTC CTT CAC TTT GAC GCC AGC TTC TTT TCT		643	
	Val Leu Met Phe Met Thr Leu Leu His Phe Asp Ala Ser Phe Phe Ser			
	170	175	180	
	ATT GTC CAG AAC ATC GTG GGC ACA GCT CTG ATG ATT TTA GTG GCC ATT		691	
	Ile Val Gln Asn Ile Val Gly Thr Ala Leu Met Ile Leu Val Ala Ile			
20	185	190	195	
	GGT TTT AAA ACC AAG CTG GCT GCT TTG ACT CTT GTG TGG CTC TTT		739	
	Gly Phe Lys Thr Lys Leu Ala Ala Leu Thr Leu Val Val Trp Leu Phe			
	200	205	210	
	GCC ATC AAC GTA TAT TTC AAC GCC TTC TGG ACC ATT CCA GTC TAC AAG		787	
25	Ala Ile Asn Val Tyr Phe Asn Ala Phe Trp Thr Ile Pro Val Tyr Lys			

	215	220	225	
	CCC ATG CAT GAC TTC CTG AAA TAC GAC TTC TTC CAG ACC ATG TCG GTG			835
	Pro Met His Asp Phe Leu Lys Tyr Asp Phe Phe Gln Thr Met Ser Val			
	230	235	240	245
5	ATT GGG GGC TTG CTC CTG GTG GTG GCC CTG GGC CCT GGG GGT GTC TCC			883
	Ile Gly Gly Leu Leu Val Val Ala Leu Gly Pro Gly Gly Val Ser			
	250	255	260	
	ATG GAT GAG AAG AAG AAG GAG TGG TAA CAGTCACAGA TCCCTACCTG			930
	Met Asp Glu Lys Lys Glu Trp			
10	265			
	CCTGGCTAAG ACCCGTGGCC GTCAAGGACT GCTTCCGGGT GGATTCAACA AAAC TGCCAG			990
	CTTTTATGTA TCCTCTTCCC TTCCCCCTCCC TTGGTAAAGG CACAGATGTT TTGAGAACTT			1050
	TATTTGCAGA GACACCTGAG AATCGATGGC TCACTCTGCT CTGGAGCCAC AGTCTGGCT			1110
	CTGACCCTTC AGTGCAGGCC AGCCTGGCAG CTGGAAGCCT CCCCCACGCC GAGGCCTTGG			1170
15	AGTGAACAGC CCGCTTGGCT GTGGCATCTC AGTCCTATT TTGAGTTTT TTGTGGGGT			1230
	ACAGGAGGGG GCCTTCAAGC TGTACTGTGA GCAGACGCAT TGGTATTATC ATTCAAAGCA			1290
	GTCTCCCTCT TATTTGTAAG TTTACATTT TAGCGAAC TACTAAATTA TTTGGGTGG			1350
	TTCAGCCAAA CCTCAAAACA GTTAATCTCC CTGGTTAAA ATCACACCAAG TGGCTTGAT			1410
	GTTGTTCTG CCCCCGATTG TATTTTATAG GAATACTGAA AACATTAGG GACACCCAAA			1470
20	GAATGATGCA GTATTAAGG GCTGGTAGAA GCTGCTGTT ATGATAAAAG TCATCGGTC			1530
	GAAAATCAGC TTGGATTGGT GCCAAGTGT TTAATGGGTA ACACCCCTGGG AGTTTGTGA			1590
	GCTTGAGGCA AGGTGGAGGG GCAAGAAGTC CTTGGGAAAG CTGCTGGTCT GGGTGCTGCT			1650
	GGCCTCCAAG CTGGCAGTGC GAAGGGCTAG TGAGACCACA CAGGGGTAGC CCCAGCAGCA			1710
	GCACCCCTGCA AGCCAGCCTG GCCAGCTGCT CAGACCAGCT TCCAGAGCCG CAGCCGCTGT			1770
25	GGGCAGGGGG TGTGGCAGGA GCTCCCAGCA CTGGAGACCC ACGGACTCAA CCCAGTTACC			1830

45

	TCACATGGGG CCTTTCTGA GCAAGGTCTC GAAACCGCAG GCCGCCCTGG CTGAGCACCA	1890
	CCGCCCTTTC CCAGCTGCAC TCGCCCTGTG GACAGCCCCG ACACACCACT TTCTGAGGC	1950
	TGTCGCTCAC TCAGATTGTC CGTTGCTAT GCCGAATGCA GCCAAAATTC CTTTTACAA	2010
	TTTGTGATGC CTTACCGATT TGATCTTAAT CCTGTATTAA AAGTTTCTA ACACTGCCTT	2070
5	ATACTGTGTT TCTCTTTTG GGGGAGCTTA ACTGCTTGTG GCTCCCTGTC GTCTGCACCA	2130
	TAGTAAATGC CACAAGGGTA GTCGAACACC TCTCTGGCCC CTAGACCTAT CTGGGGACAG	2190
	GCTGGCTCAG CCTGTCTCCA GGGCTGCTGC GGCCCAGCCC CGAGCCTGCC TCCCTTTGG	2250
	CCTCTCATCC ATTGGCTCTG CAGGGCAGGG GTGAGGCAGG TTTCTGCTCA TAAGTGTGTT	2310
	TGGAAGTCAC CTACCTTTT AACACAGCCG AACTAGTCCC AACGCCTTIG CAAATATTCC	2370
10	CCTGGTAGCC TACTTCCTTA CCCCCGAATA TTGGTAAGAT CGATCAATGG CTTICAGGACA	2430
	TGGGTTCTCT TCTCCTGTGA TCATTCAAGT GCTCACTGCA TGAAGACTGG CTTGTCTCAG	2490
	TGTTTCAACC TCACCAGGGC TGTCTTTGG TCCACACCTC GCTCCCTGTT AGTCCGTAT	2550
	GACACCCCCC ATCAAATGAC CTTGGCCAAG TCACGGTTTC TCTGTGGTCA AGGTTGGTTG	2610
	GCTGATTGGT GGAAACTAGG GTGGACCAAA GGAGGCCAGG TGAGCAGTCA GCACCAGTTC	2670
15	TGCACCAGCA GCGCCTCCGT CCTAGTGGGT GTTCCTGTGTT CTCCCTGGCCC TGGGTGGGCT	2730
	AGGGCCTGAT TCGGGAAAGAT GCCTTGCAG GGAGGGGAGG ATAAGTGGGA TCTACCAATT	2790
	GATTCTGGCA AAACAATTTC TAAGATTTT TTGCTTTATG TGGGAAACAG ATCTAAATCT	2850
	CATTTATGC TGTATTTAT ATCTTAGTTG TGTGAAAA CGTTTGATT TTTGGAAACA	2910
	CATCAAATA AATAATGGCG TTTGTGT	2938

20 [0056]

SEQ ID NO: 8

LENGTH: 2290

TYPE: Nucleic acid

STRANDEDNESS: Double

46

TOPOLOGY: Linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE:

ORGANISM: *Homo sapiens*

5 CELL TYPE: Stomach cancer

CLONE: HP01862

FEATURES:

NAME/KEY: CDS

LOCATION: 81..1016

10 IDENTIFICATION METHOD: E

SEQUENCE DESCRIPTION:

ACACTCCGAG GCCAGGAACG CTCCGTCTGG AACGGCGCAG GTCCCAGCAG CTGGGGTTCC 60

CCCTCAGCCC GTGAGCAGCC ATG TCC AAC CCC AGC GCC CCA CCA CCA TAT GAA 113

Met Ser Asn Pro Ser Ala Pro Pro Pro Tyr Glu

15 1 5 10

GAC CGC AAC CCC CTG TAC CCA GGC CCT CTG CCC CCT GGG GGC TAT GGG 161

Asp Arg Asn Pro Leu Tyr Pro Gly Pro Leu Pro Pro Gly Gly Tyr Gly

15 20 25

CAG CCA TCT GTC CTG CCA GGA GGG TAT CCT GCC TAC CCT GGC TAC CCG 209

20 Gln Pro Ser Val Leu Pro Gly Gly Tyr Pro Ala Tyr Pro Gly Tyr Pro

30 35 40

CAG CCT GGC TAC GGT CAC CCT GCT GGC TAC CCA CAG CCC ATG CCC CCC 257

47

Gln Pro Gly Tyr Gly His Pro Ala Gly Tyr Pro Gln Pro Met Pro Pro
 45 50 55
 ACC CAC CCG ATG CCC ATG AAC TAC GGC CCA GGC CAT GGC TAT CAT GGG 305
 Thr His Pro Met Pro Met Asn Tyr Gly Pro Gly His Gly Tyr Asp Gly
 5 60 65 70 75
 GAG GAG AGA GCG GTG AGT CAT AGC TTC GGG CCT GGA GAG TGG GAT GAC 353
 Glu Glu Arg Ala Val Ser Asp Ser Phe Gly Pro Gly Glu Trp Asp Asp
 80 85 90
 CGG AAA GTG CGA CAC ACT TTT ATC CGA AAG GTT TAC TCC ATC ATC TCC 401
 10 Arg Lys Val Arg His Thr Phe Ile Arg Lys Val Tyr Ser Ile Ile Ser
 95 100 105
 GTG CAG CTG CTC ATC ACT GTG GCC ATC ATT GCT ATC TTC ACC TTT GTG 449
 Val Gln Leu Leu Ile Thr Val Ala Ile Ile Ala Ile Phe Thr Phe Val
 110 115 120
 15 GAA CCT GTC AGC GCC TTT GTG AGG AGA AAT GTG GCT GTC TAC TAC GTG 497
 Glu Pro Val Ser Ala Phe Val Arg Arg Asn Val Ala Val Tyr Tyr Val
 125 130 135
 TCC TAT GCT GTC TTC GTT GTC ACC TAC CTG ATC CTT GCC TGC TGC CAG 545
 Ser Tyr Ala Val Phe Val Val Thr Tyr Leu Ile Leu Ala Cys Cys Gln
 20 140 145 150 155
 GGA CCC AGA CGC CGT TTC CCA TGG AAC ATC ATT CTG CTG ACC CTT TTT 593
 Gly Pro Arg Arg Arg Phe Pro Trp Asn Ile Ile Leu Leu Thr Leu Phe
 160 165 170
 ACT TTT GCC ATG GGC TTC ATG ACC GGC ACC ATT TCC AGT ATG TAC CAA 641
 25 Thr Phe Ala Met Gly Phe Met Thr Gly Thr Ile Ser Ser Met Tyr Gln

48

	175	180	185	
	ACC AAA GCC GTC ATC ATT GCA ATG ATC ATC ACT GCG GTC GTA TCC ATT			689
	Thr Lys Ala Val Ile Ile Ala Met Ile Ile Thr Ala Val Val Ser Ile			
	190	195	200	
5	TCA GTC ACC ATC TTC TGC TTT CAG ACC AAC GTG GAC TTC ACC TCG TGC			737
	Ser Val Thr Ile Phe Cys Phe Gln Thr Lys Val Asp Phe Thr Ser Cys			
	205	210	215	
	ACA GGC CTC TTC TGT GTC CTG GGA ATT GTG CTC CTG GTG ACT GGG ATT			785
	Thr Gly Leu Phe Cys Val Leu Gly Ile Val Leu Leu Val Thr Gly Ile			
10	220	225	230	235
	GTC ACT AGC ATT GTG CTC TAC TTC CAA TAC GTT TAC TGG CTC CAC ATG			833
	Val Thr Ser Ile Val Leu Tyr Phe Gln Tyr Val Tyr Trp Leu His Met			
	240	245	250	
	CTC TAT GCT CTG GGG GCC ATT TGT TTC ACC CTG TTC CTG GCT TAC			881
15	Leu Tyr Ala Ala Leu Gly Ala Ile Cys Phe Thr Leu Phe Leu Ala Tyr			
	255	260	265	
	GAC ACA CAG CTG GTC CTG GGG AAC CGG AAG CAC ACC ATC AGC CCC GAG			929
	Asp Thr Gln Leu Val Leu Gly Asn Arg Lys His Thr Ile Ser Pro Glu			
	270	275	280	
20	GAC TAC ATC ACT GGC GCC CTG CAG ATT TAC ACA GAC ATC ATC TAC ATC			977
	Asp Tyr Ile Thr Gly Ala Leu Gln Ile Tyr Thr Asp Ile Ile Tyr Ile			
	285	290	295	
	TTC ACC TTT GTG CTC CAG CTG ATG GGG GAT CGC AAT TAAGGAG			1020
	Phe Thr Phe Val Leu Gln Leu Met Gly Asp Arg Asn			
25	300	305	310	

	CAAGCCCCCA TTTTACCCCG ATCCTGGGCT CTCCCTTCCA AGCTAGAGGG CTGGGCCCTA	1080
	TGACTGTGGT CTGGGCTTTA GGCCCCTTTC CTTCCCCTTG AGTAACATGC CCAGTTCCCT	1140
	TTCTGTCTTG GAGACAGGTG GCCTCTCTGG CTATGGATCT GTGGGTACTT GGTGGGGACG	1200
	GAGGAGCTAG GGACTAACTG TTGCTCTTGG TGCGCTTGGC AGGGACTAGG CTGAAGATGT	1260
5	GTCTTCTCCC CCCCACCTAC TGTATGACAC CACATTCTTC CTAACAGCTG GGGTTGTGAG	1320
	GAATATGAAA AGAGCCTATT CGATAGCTAG AAGGGAATAT GAAAGGTAGA AGTGAACCTCA	1380
	AGGTACCGAG CTTCCCCCTCC CACCTCTCTC ACAGGCTTCT TGACTACGTA GTTGGAGCTA	1440
	TTTCTTCCCC CAGCAAAGCC AGAGAGCTTT GTCCCCGGCC TCCTGGACAC ATAGGCCATT	1500
	ATCCTGTATT CCTTTGGCTT GGCACTTTT AGCTCAGGAA GGTAGAAGAG ATCTCTGCC	1560
10	ATGGGTCTCC TTGCTTCAT CCCTTCITGT TTCAGTGACA TATGTATTGT TTATCTGGGT	1620
	TAGGGATGGG GGACAGATAA TAGAACCGAGC AAAGTAACCT ATACAGGCCA GCATGGAACA	1680
	GCATCTCCCC TGGGCTTGCT CCTGGCTTGT GACGCTATAA GACAGACAG GCCACATGTG	1740
	CCCATCTGCT CCCCATCTT GAAAGCTGCT GGGGCCTCCT TGCAGGCTTC TGGATCTCTG	1800
	GTCAGAGTGA ACTCTTGCTT CCTGTATTCA GGCAGCTCAG ACCAGAAAGT AAGGGCAGA	1860
15	GTCATACGTG TGGCCAGGAA GTAGCCAGGG TGAAGAGAGA CTCGGTCCGG GCAGGGAGAA	1920
	TGCCTGGGGG TCCCTCACCT GGCTAGGGAG ATACCGAAGC CTACTCTGGT ACTGAAGACT	1980
	TCTGGGTCTT TTCCCTCTGC TAACCCAGGG AGGGTCTAA GAGGAAGGTG ACTTCTCTCT	2040
	GTTTGTCTTA AGTTGCACTG GGGGATTCTCT GACTTGAGGC CCATCTCTCC AGCCAGCCAC	2100
	TGCCCTCTTT GTAATATTAA CTGCCTTGAG CTGGAATGGG GAAGGGGGAC AAGGGTCAGT	2160
20	CTGTCGGGTG GGGGCAGAAA TCAAATCAGC CCAAGGATAT AGTTAGGATT AATTACTTAA	2220
	TAGAGAAATC CTAACATATAT CACACAAAGG GATACAACTA TAAATGTAAT AAAATTATG	2280
	TCTAGAAGTT	2290

[0057]

SEQ ID NO: 9

25 LENGTH: 3705

50

TYPE: Nucleic acid

STRANDEDNESS: Double

TOPOLOGY: Linear

MOLECULE TYPE: cDNA to mRNA

5 ORIGINAL SOURCE:

ORGANISM: *Homo sapiens*

CELL LINE: U937

CLONE: HP10493

FEATURES:

10 NAME/KEY: CDS

LOCATION: 124..1275

IDENTIFICATION METHOD: E

SEQUENCE DESCRIPTION:

ACTCTCGGCT GTGCCGCCGGG GCAGGCATCG GAGCCGCCCG CTCTCTCCCG CGGCCACAC 60

15 CTGTCTGAGC GGCGCAGCGA GCCGCCGCCG GGGCGGGCTG CTGGCGCGG AACAGTGCTC 120

GGC ATG GCA GGG ATT CCA GGG CTC CTC TTC CTT CTC TTC TTT CTG CTC 168

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu

1 5 10 15

TCT GCT GTT GGG CAA GTG AGC CCT TAC AGT GCC CCC TGG AAA CCC ACT 216

20 Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro Thr

20 25 30

TGG CCT GCA TAC CGC CTC CCT GTC GTC TTG CCC CAG TCT ACC CTC AAT 264

Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr Leu Asn
 35 40 45
 TTA GCC AAG CCA GAC TTT GGA GCC GAA GCC AAA TTA GAA GTA TCT TCT 312
 Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu Val Ser Ser
 5 50 55 60
 TCA TGT GGA CCC CAG TGT CAT AAG GGA ACT CCA CTG CCC ACT TAC GAA 360
 Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu Pro Thr Tyr Glu
 65 70 75
 GAG GCC AAG CAA TAT CTG TCT TAT GAA ACG CTC TAT GCC AAT GGC AGC 408
 10 Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu Tyr Ala Asn Gly Ser
 80 85 90 95
 CGC ACA GAG ACG CAG CTG GGC ATC TAC ATC CTC AGC AGT AGT GGA GAT 456
 Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile Leu Ser Ser Ser Gly Asp
 100 105 110
 15 GGG GCC CAA CAC CGA GAC TCA GGG TCT TCA GGA AAG TCT CGA AGG AAG 504
 Gly Ala Gln His Arg Asp Ser Gly Ser Ser Gly Lys Ser Arg Arg Lys
 115 120 125
 CGG CAG ATT TAT GGC TAT GAC AGC AGG TTC AGC ATT TTT GGG AAG GAC 552
 Arg Gln Ile Tyr Gly Tyr Asp Ser Arg Phe Ser Ile Phe Gly Lys Asp
 20 130 135 140
 TTC CTG CTC AAC TAC CCT TTC TCA ACA TCA GTG AAG TTA TCC ACG GGC 600
 Phe Leu Leu Asn Tyr Pro Phe Ser Thr Ser Val Lys Leu Ser Thr Gly
 145 150 155
 TGC ACC GGC ACC CTG GTG GCA GAG AAG CAT GTC CTC ACA GCT GCC CAC 648
 25 Cys Thr Gly Thr Leu Val Ala Glu Lys His Val Leu Thr Ala Ala His

52

160	165	170	175	
TGC ATA CAC GAT GGA AAA ACC TAT GTG AAA CGA ACC CAG AAG CTT CGA				696
Cys Ile His Asp Gly Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg				
180	185	190		
GTG GGC TTC CTA AAG CCC AAG TTT AAA GAT GGT GGT CGA GGG GCC AAC				744
Val Gly Phe Leu Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn				
195	200	205		
GAC TCC ACT TCA GCC ATG CCC GAG CAG ATG AAA TTT CAG TGG ATC CGG				792
Asp Ser Thr Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg				
210	215	220		
GTG AAA CGC ACC CAT GTG CCC AAG GGT TGG ATC AAG GGC AAT GCC AAT				840
Val Lys Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn				
225	230	235		
GAC ATC GGC ATG GAT TAT GAT TAT GCC CTC CTG GAA CTC AAA AAG CCC				888
Asp Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro				
240	245	250	255	
CAC AAG AGA AAA TTT ATG AAG ATT GGG GTG AGC CCT CCT GCT AAG CAG				936
His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys Gln				
260	265	270		
CTG CCA GGG GGC AGA ATT CAC TTC TCT GGT TAT GAC AAT GAC CGA CCA				984
Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp Arg Pro				
275	280	285		
GGC AAT TTG GTG TAT CGC TTC TGT GAC GTC AAA GAC GAG ACC TAT GAC				1032
Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu Thr Tyr Asp				
290	295	300		

	TTG CTC TAC CAG CAA TGC GAT GCC CAG CCA GGG GCC AGC GGG TCT GGG	1080	
	Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala Ser Gly Ser Gly		
305	310	315	
	GTC TAT GTG AGG ATG TGG AAG AGA CAG CAG CAG AAG TGG GAG CGA AAA	1128	
5	Val Tyr Val Arg Met Trp Lys Arg Gln Gln Lys Trp Glu Arg Lys		
320	325	330	
	ATT ATT GGC ATT TTT TCA GGG CAC CAG TGG GTG GAC ATG AAT GGT TCC	1176	
	Ile Ile Gly Ile Phe Ser Gly His Gln Trp Val Asp Met Asn Gly Ser		
	340	345	350
10	CCA CAG GAT TTC AAC GTG GCT GTC AGA ATC ACT CCT CTC AAA TAT GCC	1224	
	Pro Gln Asp Phe Asn Val Ala Val Arg Ile Thr Pro Leu Lys Tyr Ala		
	355	360	365
	CAG ATT TGC TAT TGG ATT AAA GGA AAC TAC CTG GAT TGT AGG GAG GGG	1272	
	Gln Ile Cys Tyr Trp Ile Lys Gly Asn Tyr Leu Asp Cys Arg Glu Gly		
15	370	375	380
	TGACACAG TGTTCCCTCC TGGCAGCAAT TAAGGGTCTT CATGTTCTTA TTTTAGGAGA	1330	
	GGCCAAATTG TTTTTGTCA TTGGCGTGCA CACGTGTGTG TGTGTGTGTG TGTGTAAGGT	1390	
	GTCTTATAAT CTTTTACCTA TTCTTACAA TTGCAAGATG ACTGGCTTTA CTATTTGAAA	1450	
	ACTGGTTGT GTATCATATC ATATATCATT TAAGCAGTTT GAAGGCATAC TTTGCATAG	1510	
20	AAATAAAAAA AATACTGATT TCGGGCAATG AGGAATATTG GACAATTAAG TTAATCTTCA	1570	
	CGTTTTGCA AACTTGATT TTTATTICAT CTGAACTTGT TTCAAAGATT TATATTAAT	1630	
	ATTTGGCATA CAAGAGATAT GAATTCTTAT ATGTGTGCAT GTGTGTTTC TTCTGAGATT	1690	
	CATCTTGGTG GTGGGTTTT TTGTTTTT AATTCACTGC CTGATCTTAA ATGCTTCCAT	1750	
	AAGGCAGTGT TCCCATTAG GAACTTGAC AGCATTCTT AGGCAGAATA TTTGGATT	1810	
25	GGAGGCATTG GCATGGTAGT CTTGAACAG TAAAATGATG TGTGACTAT ACTGATACAC	1870	

	ATATTAAACT ATACCTTATA GTAAACCACT ATCCCAAGCT GCTTTAGTT CCAAAAATAG	1930
	TTTCTTTTCC AAAGGTGTT GCTCTACTTT GTAGGAAGTC ITTGCATATG GCCCTCCAA	1990
	CTTTAAAGTC ATACCAGAGT GGCCAAGAGT GTTTATCCTA ACCCTTCCAT TTAACAGGAT	2050
	TTCACTCACA TTTCTGGAAC TAGCTATTTT TCAGAAGACA ATAATCAGGG CTTAATTACA	2110
5	ACAGGCTGTA TTTCTCTCCA GCAAACAGTT GTGCCACAC TAAAAACAAT CATAAGCATT	2170
	TACCCCTGGA TTATAGCACA TCTCATGTT TATCATTTGG ATGGACTAAT TTAAAATGAA	2230
	TTAAATTCCA GAGAACAAATG GAAGCATTGC CTGGCAGATG TCACAACAGA ATAACCACTT	2290
	GTTTGCAGCC TGGCACAGTC CTCCAGCCTG ATCAAAATT ATTCTGCATA GTTTCAGTG	2350
	TGCTTCTGG GAGCTATGTA CTTCTCAAT TTGGAAACTT TTCTCTCTCA TTTATAGTGA	2410
10	AAATACTTGG AAGTTACTTT AAGAAAACCA GTGTGGCCTT TTTCCCTCTA GCTTTAAAAG	2470
	GGCCCGCTTT GCTGGAATGC TCTAGTTAT AGATAAACAA TTAGGTATAA TAGCAAAAAT	2530
	GAAAATTGGA AGAATGCAAATGAGATCAGA ATCATGCCCTT CCAATAAAGG CCTTTACACA	2590
	TGTTTTATCA ATATGATTAT CAAATCACAG CATATACAGA AAAGACTTGG ACTTATTGTA	2650
	TGTTTTTATT TTATGGCTCT CGGCCTAACGC ACTTCTTCTT AAATGTATCG GAGAAAAAT	2710
15	CAAATGGACT ACAAGCACGT GTTGCTGTC CTTGCACCCC AGGTAAACCT GCATTGTAGC	2770
	AATTGTAAAG GATATTCTAGA TGGAGCACTG TCACTTAGAC ATTCTCTGGG GGATTTCTG	2830
	CTTGTCTTTC TTGAGCTTIT TGGAAGGATA ATTCTGATAA GGCCTCAAG AACGTACAA	2890
	CCACAGTGCT TTCTTCAAAT CATATGAGAA ATACTATGCA TAGCAAGGAG ATGCAGAGCC	2950
	GCCAGGAAAA TTCTGAGTTC CAGCACAATT TTCTTGGAA TCTAACAGGA ATCTAGCCTG	3010
20	AGGAAGAAGG GAGGTCTCCA TTCTATGTC TGGTATTGTTGG GGGTTTGTT TGTTTTGCT	3070
	TTAGCTTGTT GAAAAAAAGT TCACTGAACA CCAAGACCAG AATGGATTTT TTTAAAAAAA	3130
	TAGATGTTCC TTTGTGAAG CACCTTGATT CCTTGATTTT GATTTTTGTC AAAGTTAGAC	3190
	AATGGCACAA AGTCAAATG AAATCAATGT TTAGTTCTACA AGTAGATGTA ATTTACTAAA	3250
	GAATGATACA CCCATATGCT ATATACAGCT TAACTCACAG AACTGTAAAA GAAAATTATA	3310
25	AAATAATTCA ACATGTCCAT CTTTTAGTG ATAATAAAAG AAAGCATGGT AATTAACATAT	3370

CATAGAAGTA GACAGAAAAA GAAAAAAGGA CTCATGGCAT TATTAATATA ATTAGTGCTT 3430
TACATGTGTT AGTTATACAT ATTAGAAGCA TATTTGCCTA GTAAGGCTAG TAGAACACAA 3490
TTTCCCAAAG TGTGCTCCTT AAACACTCAT GCCTTATGAT TTTCTACCAA AAGTAAAAAG 3550
GGTTGTATTA AGTCAGAGGA AGATGCTCT CCATTTCCC TCTCTTATC AGAGGTTCAC 3610
5 ATGCCTGTCT GCACATTAAA AGCTCTGGGA AGACCTGTTG TAAAGGGACA ACTTGAGGTT 3670
GTAAAATCTG CATTAAATA AACATCTTTG ATCAC 3705

[0058]

Brief Description of the Drawings:

Figure 1: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01207.

Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01862.

15 Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10493.

Document Name: Abstract

Abstract:

Problems to be Solved: To provide human proteins having transmembrane domains, cDNAs coding for these proteins,
5 expression vectors of said cDNAs and eucaryotic cells expressing said cDNAs.

Means to Solve the Problems: Proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 3, DNAs coding for these proteins, exemplified by cDNAs
10 containing any of the base sequences represented by Sequence Nos. 4 to 6, expression vectors of said cDNAs, as well as eucaryotic cells expressing said cDNAs. Said proteins and eucaryotic cells having said proteins on the surface of membrane can be provided by expressing cDNAs
15 encoding human proteins having transmembrane domains and recombinants of these human cDNAs.

Selected Figure: None

Document Name: Drawings

Fig. 1

Fig. 2

Fig. 3

