Suites numériques

Idée. Une suite est une liste ordonnée et infinie de nombres, par exemple (1; 3; 5; 7; 9; 11; ...).

Exemple. La liste des entiers naturels (0; 1; 2; 3; 4; ...) est une suite.

Exemple. La liste des multiples de 3 supérieurs à 6 : (6; 9; 12; 15; ...) est une suite.

Contre-Exemple. (1; 2; 3; 4) n'est pas une suite car c'est une liste finie.

Notation. On note u_n le terme de rang n d'une suite u

Exemple. Si u = (1; 3; 5; 7; ...) est la suite des entiers impairs, alors $u_0 = 1$; $u_1 = 3$; $u_2 = 5$; $u_3 = 7$; ...

Attention: Ne pas confondre u_n qui est un simple nombre et (u_n) qui désigne toute la suite u.

Remarque. Le rang initial est souvent 0. Mais on peut définir une suite $(u_n)_{n\geq k}$ avec un rang initial $k\geq 1$.

Vocabulaire. Une suite (u_n) est **définie explicitement** si on peut écrire u_n en fonction du *rang* n

Exemples. Soit la suite (u_n) définie par $u_n = n^2 - 1$ pour tout $n \in \mathbb{N}$. On a u = (-1; 0; 3; 8; 15; 24; ...) Soit la suite $(u_n)_{n \ge 6}$ définie à partir du rang 6 par $u_n = \frac{1}{n-5}$. On a $u = (u_6; u_7; u_8; ...) = \left(1; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; ...\right)$

Vocabulaire. Une suite (u_n) est **définie par récurrence** si :

- On donne une formule exprimant tout terme, en fonction d'un ou plusieurs termes précédents
- On donne un premier terme de la suite (voire plusieurs premiers termes)

Exemple. Soit la suite (u_n) définie par $\begin{cases} u_0 = -6 \\ u_{n+1} = 3u_n + 15 \text{ pour } n \in \mathbb{N} \end{cases}$ (suivant = 3 × courant + 15)

 $u_1=3\times (-6)+15=-3$ (autrement dit, on a remplacé n par $0: u_1=u_{0+1}=3u_0+15$)

 $u_2 = 3 \times (-3) + 15 = 6$ (autrement dit, on a remplacé *n* par 1 : $u_2 = u_{1+1} = 3u_1 + 15$)

 $u_3 = 3 \times (6) + 15 = 33$

Etc... u = (-6; -3; 6; 33; ...) Pour calculer chaque terme, on doit connaître le précédent.

Vocabulaire. Si le terme <u>courant</u> est u_n , alors u_{n+1} est le terme <u>suivant</u>. u_{n-1} est le terme <u>précédent</u>. Remarque. <u>Attention</u> à ne jamais confondre u_{n+1} (le terme suivant) et $u_n + 1$ (le terme courant + 1)

Exemple. Soit la suite (u_n) définie par $u_n = n^2 - 1$ pour tout $n \in \mathbb{N}$.

Alors $u_{n+1} = (n+1)^2 - 1 = n^2 + 2n + 1 - 1 = n^2 + 2n$ mais $u_n + 1 = (n^2 - 1) + 1 = n^2$

Méthode. Pour représenter une suite dans un repère (voir 1.), on place les points de coordonnées $(n; u_n)$.

Méthode. Si la suite (u_n) est définie par récurrence, $(u_0 \in \mathbb{R} \text{ et } u_{n+1} = f(u_n))$, alors (voir 2.) on peut construire les termes à l'aide de la courbe représentative de la fonction f et de la droite d'équation f et de la droit

1 On considère la suite (u_n) définie par $u_n = 2n - 1$. 2 On considère la suite (u_n) définie par $u_{n+1} = f(u_n)$.

Suites arithmétiques et géométriques

Idée. Une suite (u_n) est **arithmétique** si on ajoute toujours le <u>même</u> nombre pour passer au terme suivant.

Exemple *a.* (6; 11; 16; 21; 26; 31; ...) est le début d'une suite arithmétique u, car on ajoute 5 à chaque fois. **Exemple** *b.* (7; 4; 1; -2; -5; -8; ...) est le début d'une suite arithmétique v, car on ajoute -3 à chaque fois.

Définition. Une suite (u_n) est **arithmétique** s'il existe un réel r, tel que pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + r$ est appelé **raison de la suite arithmétique** (u_n) .

Exemple. Dans l'exemple a, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 5$. La raison de cette suite est r = 5. **Exemple.** Dans l'exemple b, pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n - 3$. La raison de cette suite est r = -3.

Propriété. Soit (u_n) une suite <u>arithmétique</u> de raison r.

Pour tout
$$n \in \mathbb{N}$$
, $u_n = u_0 + r \times n$

Exemple. Dans l'exemple a, (u_n) est arithmétique de raison r=5, donc pour tout $n\in\mathbb{N}$, $u_n=6+5n$ **Exemple.** Dans l'exemple b, (v_n) est arithmétique de raison r=-3, donc pour tout $n\in\mathbb{N}$, $u_n=7-3n$

Remarque. Si le rang initial est 1 il faut adapter la formule. Pour tout $n \in \mathbb{N}$, $u_n = u_1 + r(n-1)$ **Remarque**. Si le rang initial est $p \in \mathbb{N}$ il faut adapter la formule. Pour tout $n \in \mathbb{N}$, $u_n = u_p + r(n-p)$

Idée. (u_n) est **géométrique** si on multiplie toujours par le <u>même</u> nombre pour passer au terme suivant.

Exemple c. (3; 6; 12; 24; 48; 96; ...) est le début d'une suite géométrique u, car on \times 2 à chaque fois. **Exemple d.** (900; 90; 9; 0,9; 0,09; ...) est le début d'une suite géométrique v, car on $\times \frac{1}{10}$ à chaque fois.

Définition. Une suite (u_n) est **géométrique** s'il existe un réel q, tel que pour tout $n \in \mathbb{N}$, $u_{n+1} = q \times u_n$ q est appelé **raison de la suite géométrique** (u_n) .

Exemple. Dans l'exemple c, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2 \times u_n$. La raison de cette suite est q = 2. **Exemple.** Dans l'exemple d, pour tout $n \in \mathbb{N}$, $v_{n+1} = \frac{1}{10} \times v_n$. La raison de cette suite est $q = \frac{1}{10}$.

Propriété. Soit (u_n) une suite <u>géométrique</u> de raison q.

Pour tout
$$n \in \mathbb{N}$$
, $u_n = u_0 \times q^n$

Exemple. Dans l'exemple $a, (u_n)$ est géométrique de raison q=2, donc pour tout $n\in\mathbb{N}, u_n=3\times 2^n$

Exemple. Dans l'exemple b, on a $q=\frac{1}{10}$, donc pour tout $n \in \mathbb{N}$, $v_n=900 \times \left(\frac{1}{10}\right)^n=\frac{900}{10^n}$

Remarque. Si le rang initial est 1 il faut adapter la formule. Pour tout $n \in \mathbb{N}$, $u_n = u_1 q^{n-1}$ **Remarque**. Si le rang initial est $p \in \mathbb{N}$ il faut adapter la formule. Pour tout $n \in \mathbb{N}$, $u_n = u_p q^{n-p}$