Conceptual Questions

- 1. What is Principal Component Analysis (PCA)?
- PCA is a dimensionality reduction technique used to reduce the number of features in a dataset while retaining as much variability as possible.
- 2. What is the goal of PCA?
- To find a set of uncorrelated principal components that maximize the variance in the dataset.
- 3. What are eigenvectors and eigenvalues in the context of PCA?
- Eigenvectors represent the direction of the principal components, while eigenvalues indicate the magnitude of variance explained by each principal component.
- 4. How is PCA different from linear regression?
- PCA focuses on reducing dimensionality and finding patterns in the data, while linear regression models the relationship between independent and dependent variables.
- 5. What is the covariance matrix, and why is it important in PCA?
- The covariance matrix represents the relationships (covariance) between features. PCA uses it to compute eigenvalues and eigenvectors.

Mathematical and Practical Questions

6. How are principal components calculated?
- Steps:
- Compute the covariance matrix of the data.
- Calculate eigenvalues and eigenvectors of the covariance matrix.
- Sort eigenvectors by decreasing eigenvalues.
- Select the top k eigenvectors to form the principal components.
7. What is the explained variance ratio?
- It indicates the proportion of total variance explained by each principal component.
8. How do you decide the number of components to retain in PCA?
- Use the explained variance ratio, scree plot, or cumulative variance threshold (e.g., 95%).
9. What happens if the original data is not standardized in PCA?
- Features with larger ranges may dominate the principal components, leading to biased results.
10. How does PCA handle correlated features?
- PCA creates uncorrelated principal components by projecting the data onto orthogonal axes.
Implementation Questions
• • • • • • • • • • • • • • • • • • • •
11. How would you implement PCA in Python?

- Steps:

- Import libraries: `from sklearn.decomposition import PCA`
- Standardize the data using `StandardScaler()`.
- Initialize PCA: `pca = PCA(n_components=k)`.
- Fit and transform the data using `pca.fit_transform()`.
12. What are some common applications of PCA?
- Noise reduction, feature extraction, data visualization, and speeding up machine learning models.
13. Can PCA be used for categorical data?
- Not directly; categorical data must first be encoded into numerical values.
14. How do you interpret the output of PCA?
- The principal components are linear combinations of the original features, and their coefficients indicate
feature contributions.
15. What is the role of the singular value decomposition (SVD) in PCA?
- PCA can be computed using SVD, which decomposes the data matrix into orthogonal components.
Limitations and Scenario-Based Questions
16. What are the limitations of PCA?
- Loss of interpretability of original features, assumption of linearity, sensitivity to outliers, and reliance on

mean-centered data.

- 17. How does PCA affect classification or regression tasks?
- PCA can improve performance by removing multicollinearity but may also lead to loss of important information if too many components are discarded.
- 18. How would you handle missing data in PCA?
- Impute missing values before applying PCA, using methods like mean imputation or KNN imputation.
- 19. How does PCA differ from t-SNE?
- PCA is linear and focuses on variance, while t-SNE is non-linear and focuses on preserving local structure for visualization.
- 20. In what scenarios would you not use PCA?
- When interpretability of features is critical or when the dataset is small and already has low-dimensional features.