The Maximum Facility Location Problem

Mitchell Jones

Supervisor: Julián Mestre

September 8, 2015

OVERVIEW

Problem Maximum Facility Location Example

Notation & Definition

Integer Program

Independent Rounding

Dependent Rounding

Conclusion

- ► Assign clients to facilities at certain cost
- ► Each facility has an interval
- ► Open facilities can not overlap
- Goal: Select a set of non-overlapping facilities to maximise cost of assignments

- ► Assign clients to facilities at certain cost
- ► Each facility has an interval
- Open facilities can not overlap
- ► Goal: Select a set of non-overlapping facilities to maximise cost of assignments

- ► Assign clients to facilities at certain cost
- ► Each facility has an interval
- ► Open facilities can not overlap
- Goal: Select a set of non-overlapping facilities to maximise cost of assignments

- ► Assign clients to facilities at certain cost
- Each facility has an interval
- ► Open facilities can not overlap
- Goal: Select a set of non-overlapping facilities to maximise cost of assignments

EXAMPLE

PROBLEM

000

EXAMPLE (CONT.)

PROBLEM

000

OVERVIEW

Problen

Notation & Definitions
Notation
Definitions
Submodular Functions

Integer Program

Independent Rounding

Dependent Rounding

Conclusion

Notation

- ► C is the set of clients
- \triangleright F is the set of facilities
- ► The function $w: C \times F \to \mathbb{R}$ is the weight of assigning a client to a facility
- ▶ Each facility $v \in F$ has an interval I_v on the real line
- ▶ *P* is the set of endpoints of all intervals

Notation

- ► C is the set of clients
- \triangleright F is the set of facilities
- ► The function $w: C \times F \to \mathbb{R}$ is the weight of assigning a client to a facility
- ▶ Each facility $v \in F$ has an interval I_v on the real line
- ▶ *P* is the set of endpoints of all intervals

NOTATION

- ► C is the set of clients
- \triangleright F is the set of facilities
- ► The function $w: C \times F \to \mathbb{R}$ is the weight of assigning a client to a facility
- ▶ Each facility $v \in F$ has an interval I_v on the real line
- ▶ *P* is the set of endpoints of all intervals

Notation

- ► C is the set of clients
- \triangleright F is the set of facilities
- ► The function $w: C \times F \to \mathbb{R}$ is the weight of assigning a client to a facility
- ▶ Each facility $v \in F$ has an interval I_v on the real line
- ► *P* is the set of endpoints of all intervals

DEFINITIONS

- ► A subset of facilities $S \subseteq F$ is *independent* if no two intervals in $\{I_v : v \in S\}$ overlap.
- ▶ Define a set function which produces a real value for any $S \subseteq F$

$$f(S) = \sum_{u \in C} \max_{v \in S} w_{uv} \tag{1}$$

- An instance of the *maximum facility location problem* is given by (C, F, w, I)
- ▶ Goal: Select an independent set $S \subseteq F$ maximising f(S)

DEFINITIONS

- ► A subset of facilities $S \subseteq F$ is *independent* if no two intervals in $\{I_v : v \in S\}$ overlap.
- ▶ Define a set function which produces a real value for any $S \subseteq F$

$$f(S) = \sum_{u \in C} \max_{v \in S} w_{uv} \tag{1}$$

- An instance of the *maximum facility location problem* is given by (C, F, w, I)
- ▶ Goal: Select an independent set $S \subseteq F$ maximising f(S)

DEFINITIONS

- ► A subset of facilities $S \subseteq F$ is *independent* if no two intervals in $\{I_v : v \in S\}$ overlap.
- ▶ Define a set function which produces a real value for any $S \subseteq F$

$$f(S) = \sum_{u \in C} \max_{v \in S} w_{uv} \tag{1}$$

- ► An instance of the *maximum facility location problem* is given by (*C*, *F*, *w*, *I*)
- ▶ Goal: Select an independent set $S \subseteq F$ maximising f(S)

► A subset of facilities $S \subseteq F$ is *independent* if no two intervals in $\{I_v : v \in S\}$ overlap.

▶ Define a set function which produces a real value for any $S \subseteq F$

$$f(S) = \sum_{u \in C} \max_{v \in S} w_{uv} \tag{1}$$

- ► An instance of the *maximum facility location problem* is given by (C, F, w, I)
- ▶ Goal: Select an independent set $S \subseteq F$ maximising f(S)

SUBMODULAR FUNCTIONS

Definition

PROBLEM

A set function f is submodular if $\forall A \subseteq B \subseteq F$ and $\forall v \in F \setminus B$

$$f(A+\nu)-f(A) \ge f(B+\nu)-f(B).$$

Definition

A set function f is non-decreasing if for any $A \subseteq B \subseteq F$

$$f(B) \ge f(A)$$
.

Lemma

The function f in Equation 1 is non-decreasing and submodular.

OVERVIEW

PROBLEM

Problen

Notation & Definition

Integer Program

Modelling Constraints
Linear Program

Independent Rounding

Dependent Rounding

Conclusion

Modelling Constraints

PROBLEM

► Create two variables:

- 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
- 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise

▶ Three constraints that we need to model:

- 1. A client can be assigned to at most one facility
- 2. If we assign a client to a facility, the facility must be open
- 3. Open facilities cannot overlap

Modelling Constraints

PROBLEM

► Create two variables:

- 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
- 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise
- ► Three constraints that we need to model:
 - 1. A client can be assigned to at most one facility
 - 2. If we assign a client to a facility, the facility must be open
 - 3. Open facilities cannot overlage

Modelling Constraints

PROBLEM

► Create two variables:

- 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
- 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise
- ► Three constraints that we need to model:

Modelling Constraints

► Create two variables:

- 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
- 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise

► Three constraints that we need to model:

- 1. A client can be assigned to at most one facility
- 2. If we assign a client to a facility, the facility must be open
- 3. Open facilities cannot overlap

Modelling Constraints

- ► Create two variables:
 - 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
 - 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise
- ► Three constraints that we need to model:
 - 1. A client can be assigned to at most one facility
 - 2. If we assign a client to a facility, the facility must be open
 - 3. Open facilities cannot overlap

MODELLING CONSTRAINTS

► Create two variables:

- 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
- 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise
- ► Three constraints that we need to model:
 - 1. A client can be assigned to at most one facility
 - 2. If we assign a client to a facility, the facility must be open
 - 3. Open facilities cannot overlap

MODELLING CONSTRAINTS

► Create two variables:

- 1. A client-facility variable $x_{uv} = 1$ if we assign a client $u \in C$ to a facility $v \in F$ and 0 otherwise
- 2. A facility variable $y_v = 1$ for a facility $v \in F$ if we open v and 0 otherwise
- ► Three constraints that we need to model:
 - 1. A client can be assigned to at most one facility
 - 2. If we assign a client to a facility, the facility must be open
 - 3. Open facilities cannot overlap

1. A CLIENT CAN BE ASSIGNED TO AT MOST ONE FACILITY

2. If we assign a client to a facility, the facility must be **OPEN**

- ► If we want to assign *u* to *v*, then $x_{uv} = 1$
- But *v* must be open, therefore $y_v = 1$
- ► Therefore: $x_{uv} \le y_v$

3. Open facilities cannot overlap

$$p_1$$
 p_2 p_3 p_4 p_5 p_6
 I_{v_1} I_{v_3}

- ► We require $y_{\nu_1} + y_{\nu_2} \le 1$ and $y_{\nu_2} + y_{\nu_3} \le 1$
- ► In general, for each endpoint $p \in P$

$$\sum_{v \in F: p \in I_v} y_v \le 1$$

INTEGER PROGRAM

maximise
$$\sum_{u \in C, v \in F} w_{uv} x_{uv}$$
subject to
$$\sum_{v \in F} x_{uv} \leq 1 \qquad \forall u \in C$$

$$x_{uv} \leq y_v \qquad \forall u \in C, v \in F$$

$$\sum_{v \in F: p \in I_v} y_v \leq 1 \qquad \forall p \in P$$

$$x_{uv} \in \{0,1\} \quad \forall u \in C, v \in F$$

$$y_v \in \{0,1\} \quad \forall v \in F$$

LINEAR PROGRAM

maximise
$$\sum_{u \in C, v \in F} w_{uv} x_{uv}$$
subject to
$$\sum_{v \in F} x_{uv} \leq 1 \quad \forall u \in C$$
$$\sum_{v \in F: p \in I_v} x_{uv} \leq y_v \quad \forall u \in C, v \in F$$
$$\sum_{v \in F: p \in I_v} y_v \leq 1 \quad \forall p \in P$$
$$x_{uv} \geq 0 \quad \forall u \in C, v \in F$$
$$y_v \geq 0 \quad \forall v \in F$$

OVERVIEW

Problen

Notation & Definition

Integer Program

Independent Rounding Algorithm Results Improvements

Dependent Rounding

Conclusion

ALGORITHM

PROBLEM

Algorithm 1 Independent rounding with alterations.

```
function SELECT-AND-FILTER(\alpha)
(x,y) \leftarrow \text{solve (LP)}
R \leftarrow \text{Select each } v \in F \text{ with probability } \alpha y_v
T \leftarrow \{ v \in R : \nexists v' \in R \text{ such that start point of } I_v \text{ lies in } I_{v'} \}
return T
end function
```

RESULTS

PROBLEM

Lemma

The set T returned by SELECT-AND-FILTER *is independent.*

Proof.

- ► Suppose *T* is not independent.
- ► Assume w.l.o.g. that I_{ν} lies to the left of $I_{\nu'}$.
- ▶ Since $v' \in T$, then $v' \in R$.
- ▶ Then ν' cannot be in T, since I_{ν} intersects the start point of $I_{\nu'}$.

RESULTS (CONT.)

Lemma

PROBLEM

Let R be the set sampled by SELECT-AND-FILTER, *then*

$$\mathbb{E}[f(R)] \ge (1 - e^{-\alpha}) \sum_{u \in C, v \in F} w_{uv} x_{uv}.$$

Lemma

Let R and T be the sets computed in Select-And-Filter then

$$\mathbb{E}[f(T)] \ge (1 - \alpha)\mathbb{E}[f(R)].$$

PROBLEM

Theorem

There is an LP-rounding 0.19-approximation for maximum facility location.

Proof.

We know T is independent. The expected value of T is

$$\mathbb{E}[f(T)] \ge (1 - \alpha)\mathbb{E}[f(R)] \ge (1 - \alpha)(1 - e^{-\alpha}) \sum_{u \in C, v \in F} w_{uv} x_{uv}.$$

The best approximation ratio is attained at $\alpha = 0.44$, where we get 0.199.

REMOVING CONFLICTS

PROBLEM

Consider the following scenario:

The current conflict resolution scheme selects two intervals:

But we can actually pick three!

REMOVING CONFLICTS

- 1. Split the intervals into disjoint subsets (compute the union of the intervals)
- 2. For each subset, select a maximal subset (greedily) starting with the left most

REMOVING CONFLICTS

PROBLEM

However we don't get a better guarantee...

OVERVIEW

PROBLEM

Problen

Notation & Definition

Integer Program

Independent Rounding

Dependent Rounding Algorithm Results

Conclusion

PROBLEM

► Gradually shift the fractional (LP) solution to an integral one

- ► Let $S = \{ v \in F : 0 < y_v < 1 \}$ be the set of facilities with a non-integral value
- ► For any $p \in P$, the slack(p) is the slack of the corresponding constraint in (LP)

$$\operatorname{slack}(p) = 1 - \sum_{v \in F: p \in I_v} y_v$$

► The point *p* is *tight* if slack(p) = 0

PROBLEM

- ► Gradually shift the fractional (LP) solution to an integral one
- ► Let $S = \{ v \in F : 0 < y_v < 1 \}$ be the set of facilities with a non-integral value
- ► For any $p \in P$, the slack(p) is the slack of the corresponding constraint in (LP)

$$\operatorname{slack}(p) = 1 - \sum_{v \in F: p \in I_v} y_v$$

► The point *p* is *tight* if slack(p) = 0

PROBLEM

- ► Gradually shift the fractional (LP) solution to an integral one
- ► Let $S = \{ v \in F : 0 < y_v < 1 \}$ be the set of facilities with a non-integral value
- ► For any $p \in P$, the slack(p) is the slack of the corresponding constraint in (LP)

$$\operatorname{slack}(p) = 1 - \sum_{v \in F: p \in I_v} y_v$$

▶ The point *p* is *tight* if slack(p) = 0

PROBLEM

- ► Gradually shift the fractional (LP) solution to an integral one
- ► Let $S = \{ v \in F : 0 < y_v < 1 \}$ be the set of facilities with a non-integral value
- ► For any $p \in P$, the slack(p) is the slack of the corresponding constraint in (LP)

$$\operatorname{slack}(p) = 1 - \sum_{v \in F: p \in I_v} y_v$$

► The point *p* is *tight* if slack(p) = 0

- 1. Select two disjoint independent subsets $M_1, M_2 \subset S$
- 2. Update the *y*-values of $M_1 \cup M_2$ randomly so that either:
 - ► A facility variable is integral; or
 - ► A point is tight
- 3. Repeat the procedure until all facility variables are integral

Selecting M_1 and M_2

- 1. Let \tilde{P} be the set of tight points from left to right
- 2. Let v_1 and v_2 be the first two facilities
- 3. Set $M_1 = \{ v_1 \}$ and $M_2 = \{ v_2 \}$
- 4. For every tight point $t \in \widetilde{P}$
 - 4.1 If I_{ν_1} contains t and I_{ν_2} contains t then do nothing
 - 4.2 Otherwise, let v be the facility starting at t
 - 4.3 Add v to M_1 (or M_2) if t stabs I_{v_2} (or I_{v_1})
 - 4.4 Update $v_1 = v$ (or $v_2 = v$)

EXAMPLE

$$\begin{array}{c|c}
e, 0.2 \\
 & \\
 & \\
\hline
 & a, 0.6 \\
 & \\
\hline
 & b, 0.2 \\
\hline
 & d, 0.1 \\
\hline
 & \\
M_1 = \{a\} \\
M_2 = \{b\}
\end{array}$$

 $M_2 = \{b\}, v_2 = b$

EXAMPLE

EXAMPLE

PROBLEM

$$M_1 = \{a, c\}, v_1 = v = c$$

 $M_2 = \{b\}, v_2 = b$

Intersects I_{ν_2} (I_b), add I_c to M_1 and update $\nu_1 = c$

$$M_1 = \{a, c\}, v_1 = c$$

 $M_2 = \{b\}, v_2 = b$

Neither I_{v_1} (I_c) or I_{v_2} (I_b) intersect the tight point, terminate

ROUNDING THE SOLUTION

- ► For i = 1, 2, let $P_i \subseteq P$ be the points that intersect an interval in M_i
- ► Compute the following

$$\varepsilon = \min\left(\min_{p \in P_1 \setminus P_2} \operatorname{slack}(p), \min_{v \in M_2} y_v\right) \qquad (\uparrow M_1 \downarrow M_2)$$

$$\delta = \min\left(\min_{p \in P_2 \setminus P_1} \operatorname{slack}(p), \min_{v \in M_1} y_v\right) \qquad (\downarrow M_1 \uparrow M_2)$$

ROUNDING THE SOLUTION

- ► For i = 1, 2, let $P_i \subseteq P$ be the points that intersect an interval in M_i
- ► Compute the following

$$\varepsilon = \min \left(\min_{p \in P_1 \setminus P_2} \operatorname{slack}(p), \min_{v \in M_2} y_v \right) \qquad (\uparrow M_1 \quad \downarrow M_2)$$

$$\delta = \min \left(\min_{p \in P_2 \setminus P_1} \operatorname{slack}(p), \min_{v \in M_1} y_v \right) \qquad (\downarrow M_1 \quad \uparrow M_2)$$

ROUNDING THE SOLUTION

With probability $\frac{\varepsilon}{\varepsilon + \delta}$, we update *y* to be

$$y_{\nu} = \begin{cases} y_{\nu} - \delta, \nu \in M_{1}, \\ y_{\nu} + \delta, \nu \in M_{2}, \\ y_{\nu}, \text{ otherwise.} \end{cases}$$

Otherwise with complimentary probability $\frac{\delta}{\varepsilon + \delta}$, replace y with

$$y_{\nu}'' = \begin{cases} y_{\nu} + \varepsilon, \nu \in M_{1}, \\ y_{\nu} - \varepsilon, \nu \in M_{2}, \\ y_{\nu}, \text{ otherwise.} \end{cases}$$

Example (cont.)

$$e, 0.2$$
 $A, 0.6$
 $C, 0.8$
 $f, 0.9$
 $b, 0.2$
 $A, 0.1$
 $M_1 = \{a, c\}$
 $M_2 = \{b\}$
 $M_2 = \{b\}$
 $S = 0.1, \delta = 0.6$
 $S = 0.6$
 S

EXAMPLE (CONT.)

PROBLEM

$$\begin{array}{c|c}
e, 0.2 \\
 & \\
\hline
 & a, 0 \\
\hline
 & b, 0.8 \\
\hline
 & d, 0.1
\end{array}$$

$$M_1 = \{a, c\}$$
$$M_2 = \{b\}$$

Finished iteration, *a* is now an integral value

RESULTS

PROBLEM

Lemma

 M_1 and M_2 are disjoint and both are independent. Furthermore, any tight point p either stabs both M_1 and M_2 , or none of them.

Lemma

In each iteration we either gain a new integral facility or new tight point.

Lemma

The new solution at the end of each iteration (y' or y'') obeys the independence and non-negativity constraints of (LP).

RESULTS

PROBLEM

Lemma

NOTATION & DEFINITIONS

Let y be the fractional solution at the beginning, and \hat{y} be the solution at the end of the iteration. Then for every $v \in F$ we have $\mathbb{E}[\hat{\gamma}_v] = \gamma_v$.

Proof.

- ▶ If a facility $v \in F$ is not in M_1 or M_2 , then the equality holds.
- ▶ For each facility $v \in M_1$ we have

$$\mathbb{E}[\hat{y}_{v}] = \left(\frac{\varepsilon}{\varepsilon + \delta}\right)(y_{v} - \delta) + \left(\frac{\delta}{\varepsilon + \delta}\right)(y_{v} + \varepsilon)$$
$$= \frac{\varepsilon y_{v} - \varepsilon \delta + \delta y_{v} + \varepsilon \delta}{\varepsilon + \delta} = y_{v}.$$

▶ A similar argument applies for facilities $v \in M_2$.

Theorem

Theorem

Let T be the set returned by the dependent rounding algorithm. Then T is independent and $\Pr[v \in T] = y_v$ for all $v \in F$.

- By the previous lemma, at each iteration we either gain an additional integral facility or tight point.
- After a finite amount of iterations, we terminate with an integral solution \hat{y} .
- ▶ We maintain feasibility at each iteration, therefore $T = \{ v \in F : \hat{v}_v = 1 \}.$
- ▶ By induction and the expectation of \hat{y} , we have that $Pr[v \in T] = y_v$ for all $v \in F$.

PROBLEM

Theorem

Let *T* be the set returned by the dependent rounding algorithm. Then *T* is independent and $Pr[v \in T] = y_v$ for all $v \in F$.

- ► By the previous lemma, at each iteration we either gain an additional integral facility or tight point.
- After a finite amount of iterations, we terminate with an integral solution \hat{y} .
- ▶ We maintain feasibility at each iteration, therefore $T = \{ v \in F : \hat{v}_v = 1 \}.$
- ▶ By induction and the expectation of \hat{y} , we have that $Pr[v \in T] = y_v$ for all $v \in F$.

Theorem

Let T be the set returned by the dependent rounding algorithm. Then *T* is independent and $\Pr[v \in T] = y_v$ for all $v \in F$.

INDEPENDENT ROUNDING

- ▶ By the previous lemma, at each iteration we either gain an additional integral facility or tight point.
- ► After a finite amount of iterations, we terminate with an integral solution \hat{v} .
- ► We maintain feasibility at each iteration, therefore $T = \{ v \in F : \hat{v}_v = 1 \}.$
- ▶ By induction and the expectation of \hat{y} , we have that

NOTATION & DEFINITIONS

PROBLEM

Theorem

Let T be the set returned by the dependent rounding algorithm. Then *T* is independent and $\Pr[v \in T] = y_v$ for all $v \in F$.

- ▶ By the previous lemma, at each iteration we either gain an additional integral facility or tight point.
- ► After a finite amount of iterations, we terminate with an integral solution $\hat{\nu}$.
- ► We maintain feasibility at each iteration, therefore $T = \{ v \in F : \hat{v}_v = 1 \}.$
- ▶ By induction and the expectation of \hat{y} , we have that $\Pr[v \in T] = v_v \text{ for all } v \in F.$

OVERVIEW

PROBLEM

Problen

Notation & Definition

Integer Program

Independent Rounding

Dependent Rounding

Conclusion
Concluding Statements
Questions

- ► Modelled the maximum facility location problem as an integer/linear program
- ▶ Presented a 0.19-approximation algorithm
- Discussed a dependent rounding scheme
- ► Future work
 - ► Improving the 0.19-approximation algorithm's guarantee
 - ► Analysing the guarantee of the dependent rounding schemo
 - ► New conflict resolution heuristics

- ► Modelled the maximum facility location problem as an integer/linear program
- ► Presented a 0.19-approximation algorithm
- Discussed a dependent rounding scheme
- ► Future work
 - ► Improving the 0.19-approximation algorithm's guarantee
 - ► Analysing the guarantee of the dependent rounding schemo
 - New conflict resolution heuristics

- Modelled the maximum facility location problem as an integer/linear program
- ► Presented a 0.19-approximation algorithm
- Discussed a dependent rounding scheme
- Future work
 - ► Improving the 0.19-approximation algorithm's guarantee
 - Analysing the guarantee of the dependent rounding scheme
 - New conflict resolution heuristics

- ► Modelled the maximum facility location problem as an integer/linear program
- ► Presented a 0.19-approximation algorithm
- ► Discussed a dependent rounding scheme
- ► Future work:
 - ► Improving the 0.19-approximation algorithm's guarantee
 - ► Analysing the guarantee of the dependent rounding scheme
 - New conflict resolution heuristics

- Modelled the maximum facility location problem as an integer/linear program
- ► Presented a 0.19-approximation algorithm
- ► Discussed a dependent rounding scheme
- ► Future work:
 - ► Improving the 0.19-approximation algorithm's guarantee
 - ► Analysing the guarantee of the dependent rounding scheme
 - ▶ New conflict resolution heuristics

- ► Modelled the maximum facility location problem as an integer/linear program
- ► Presented a 0.19-approximation algorithm
- ► Discussed a dependent rounding scheme
- ► Future work:
 - ► Improving the 0.19-approximation algorithm's guarantee
 - ► Analysing the guarantee of the dependent rounding scheme
 - ▶ New conflict resolution heuristics

- Modelled the maximum facility location problem as an integer/linear program
- ► Presented a 0.19-approximation algorithm
- ► Discussed a dependent rounding scheme
- ► Future work:
 - ► Improving the 0.19-approximation algorithm's guarantee
 - ► Analysing the guarantee of the dependent rounding scheme
 - New conflict resolution heuristics

Questions?