CS 5785/ORIE 5750/ECE 5414 Applied Machine

Learning

Fall 2019 Nathan Kallus

TAs: Yichun Hu, Xiaojie Mao

hidden layer 2

output layer

https://cs5785-2019.github.io/

Lecture 1

Course Logistics

Learn and apply key concepts of modeling, analysis and validation from Machine Learning, Data Mining and Signal Processing to analyze and extract meaning from data. Implement algorithms and perform experiments on images, text, audio and mobile sensor measurements. Gain working knowledge of supervised and unsupervised techniques including classification, regression, clustering, feature selection, association rule mining and dimensionality reduction.

Prerequisites

CS 2800 or equivalent plus experience programming with Python or Matlab, or permission of the instructor.

Teaching staff

Instructor:

Prof. Nathan Kallus (www.nathankallus.com)

Office hours: Thursdays 12:20-13:20

TAs:

Yichun Hu, Xiaojie Mao

Office hours: Mondays 10–11AM, Tuesdays

1–2PM, Wednesdays 4–5PM

You?

Review Sessions

The first two TA office hours (Tuesday and Wednesday next week) will be (identical) review sessions, going over linear algebra, calculus, and probability.

Highly recommended!

Deep Learning Clinic

- Computer vision expert Jin Sun is holding a Deep Learning Clinic every Tuesday 9:30-10:45AM in 061
- https://cornelltech.github.io/deep-learning-cli nic-2019-Fall/
- Very complementary to AML
- Covers neural net engineering
- Highly recommended!
 - Even if you do not have time/preparation, you can just attend the lectures and absorb the material

Communications

Everyone must join the Slack:

https://cs5785-2019fa-kallus.slack.com/

Course Requirements and Grading

- Grade Breakdown: Your grade will be determined by the assignments (40%), one prelim (20%), a final exam (30%), and participation including in-class quizzes (10%).
- **Homework:** There will be four assignments and an "assignment 0" for environment setup. Each assignment will have a due date for completion. Half of the points of the lowest-scoring assignment will count as extra credit, meaning the points received for homeworks 1, 2, 3, and 4 is calculated as (sum of scores) / 3.5.
- Late Policy: Each student has a total of one slip day that may be used without penalty.
- External Code: Unless otherwise specified, you are allowed to use well known libraries such as *scikit-learn*, *scikit-image*, *numpy*, *scipy*, etc. in the assignments. Any reference or copy of public code repositories should be properly cited in your submission (examples include *Github*, *Wikipedia*, *Blogs*). In some assignment cases, you are NOT allowed to use any of the libraries above, please refer to individual HW instructions for more details.

- Collaboration: You are encouraged (but not required) to work in groups of no more than 2 students on each assignment. Please indicate the name of your collaborator at the top of each assignment and cite any references you used (including articles, books, code, websites, and personal communications). If you're not sure whether to cite a source, err on the side of caution and cite it. You may submit just one writeup for the group. Remember not to plagiarize: all solutions must be written by members of the group.
- Quizzes: There will be surprise in-class quizzes to make sure you attend and pay attention to the class.
- **Prelim: October 22** in class. The exam is closed book but you are allowed to bring one sheet of written notes (Letter size, two-sided). You are allowed to use a calculator.
- Final Exam: December 2 through December 9. The final exam is take-home, open-internet, but must be done by your own group with thorough citations of all references used.

How to do well in class?

- Go to the review sessions next week!
- Attend lectures
- Be on time
- Sit up front
- Ask questions
- Come to office hours
- Start on HW early
- Work with your partner
- Talk with your colleagues
- Read the additional reading

TA announcements about HW

Required:

(available for free online)

Recommended:

Machine Learning

ML = "Learning from data with computers" Why?

- Automation of human tasks
 - AKA "AI"
 - For speed: handwriting & face recognition
 - For ease: self-driving cars
- Find complex patterns in big and complex data beyond human capacities
 - AKA "data science"
 - Can learn from very many examples
 - Can learn from very rich data

Machine Learning

Problems/methods we cover in this class will fall into two broad categories

- Supervised learning
 - Mostly predictive
 - Learning from examples
 - Regression, classification
- Unsupervised learning
 - Mostly descriptive
 - Understanding data without a target
 - Clustering, dimensionality reduction

Coding ML

- We'll use python+matplotlib+pandas+sklearn
 - Best compromise of powerful scripting language and most common data wrangling and ML tools
- Other languages/packages of note:
 - TensorFlow, PyTorch, Keras -- graph computation for easily coding neural networks
 - R -- the scripting language of true data scientists
 - StatsModels -- core R functionality for python
 - Julia -- ease of python with speed of C but less ML
 - Stan -- scripting language for Bayesian inference
 - Tons of other stuff that you should never touch:
 Weka, anything matlab, SPSS, Stata

How is this section different?

- For the most part it really isn't
 - Most of the material is the same
 - Both sections are an intro to ML with a complete practitioner's toolkit
- In terms of methodology and examples, we'll have a bit more emphasis on ML for data science
 - E.g., inference, regularized regression, causality, ...

Dat	te	No. Topic		Readings			Assignments	
8/29	Thu	1 Class introduction		Ch. 1-2		#0: Setup Environment;		
9/3	Tue	2 Bayes rate, Confusion matrix, ROC curve		Ch. 2		#1: kNN, Linear		
9/5	Thu	3	Linear regression	Sec. 3.1-3.2		Regression, Logistic Regression		
9/10	Tue	4	Logistic regression		Sec. 4.4	Regression		
9/12	Thu	6	Shrinkage, subset selection, cross validation		Sec. 3.3-3.4		Due 9/19 12:01AM	
9/17	Tue	8	Histograms, kernel smoothing	S	ec. 6.6.1-6.6.2		#2: Shrinkage, Naive	
9/19	Thu	9	Naive Bayes, bag of words		Sec. 6.6.3		Bayes, SVD, PCA	
9/24	Tue	10	SVD, PCA	Se	ec. 14.5.1, 14.6			
9/26	Thu	11	Similarities, multidimensional scaling		Sec. 14.8		Due 10/3 12:01AM	
10/1	Tue	12	k-means, Gaussian mixture model, EM Algorithm	8	Sec. 13.2, 14.3		#3: Dimensionality	
10/3	Thu	13	k-medoids, hierarchical clustering	S	Sec. 8.5.0, 8.5.1		reduction, Clustering	
10/8	Tue	14	Guest lecture, Xiaojie Mao: Causality and Machine Learning	<u>Spirtes</u>	AoS Ch 16			
10/10	Thu	15	Guest lecture: Angela Zhou, Ethics and Fairness in Machine Learning	Kleinberg et al	<u>ProPublica</u>	WashPost	Due 10/17 12:01AM	
10/15	Tue	Fall break						
10/17	Thu	Prelim review				Practice prelim		
10/22	Tue		Prelim (in class) covers up to 10/3	3/2018			released 10/10	
10/24	Thu	16 Classification and Regression Trees Sec. 9.2						
10/29	Tue	17 Bagging, Random Forests, AdaBoost Ch. 15		#4: Ensembles, SVM,				
10/31	Thu	18 Support Vector Machines Sec. 4.5, Ch. 12		Nerual Nets				
11/5	Tue	e 19 Kernel Machines Sec. 12.3.3, Sec. 14.5.4		4				
11/7	Thu	Thu 21 Neural Networks		Sec. 11.3-11.6				
11/12	Tue	22 Optimization, SGD, back-propagation						
11/14	Thu	hu 22 Convolutional Networks			Sec. 11.7			
11/19	Tue	ue 23 Advanced neural net topics I					Due 12/26 12:01AM	
11/21	Thu	Advanced neural net topics II						
11/26	Tue	20 Guest lecture: Andrew Bennett, Reinforcement Learning						
11/28	Thu		Thanksgiving Break					
12/3	Tue Final Exam (take home) released 12/2; report due 12/10 12:01AM; reviews due 12/12 12:01AM							
12/5	Thu Course Review Session							
12/10	710 Tue NeurlPS conference: no classes							

		te	No.	Торіс		
Fundamentals of supervised learning	8/29	Thu	1	Class introduction		
Topics: classification, regression, regularization Methods: kNN, linear regression, logistic	9/3	Tue	2	Bayes rate, Confusion matrix, ROC curve		
regression, LASSO, Ridge regression	9/5	Thu	3	Linear regression		
. cg. ccc.c., <u> </u>	9/10	Tue	4	Logistic regression		
Probabilistic ML	9/12	Thu	6	Shrinkage, subset selection, cross validation		
Topics: inference, smoothing, Bayes law	9/17	Tue	8	Histograms, kernel smoothing		
Methods: OLS inference, bootstrap, kernel density	9/19	Thu	9	Naive Bayes, bag of words		
estimation, kernel regression, Naive Bayes	9/24	Tue	10	SVD, PCA		
Unsupervised learning	9/26	Thu	11	Similarities, multidimensional scaling		
Topics: dimensionality reduction, clustering	10/1	Tue	12	k-means, Gaussian mixture model, EM Algorithm		
Methods: SVD, PCA, NMF, MDS, k-means, EM,	10/3	Thu	13	k-medoids, hierarchical clustering		
k-medoids, Ward's clustering	10/8	Tue	14	Guest lecture, Xiaojie Mao: Causality and Machine Learning		
Cautionary tales in ML	10/10	Thu	15	Guest lecture: Angela Zhou, Ethics and Fairness in Machine Learning		
•	10/15	Tue		Fall break		
	10/17	Thu		Prelim review		
Advanced supervised learning		Tue		Prelim (in class) covers up to 10		
		Thu	16	Classification and Regression Trees		
		Tue	17	Bagging, Random Forests, AdaBoost		
Topics: trees, ensembles, kernels, neural nets	10/31	Thu	18	Support Vector Machines		
Methods: CART, RF, AdaBoost, SVM, kernel	11/5	Tue	19	Kernel Machines		
SVM, kernel PCA, neural networks, CNNs,	11/7	Thu	21	Neural Networks		
autoencoders, GANs, RNNS	11/12	Tue	22	Optimization, SGD, back-propagation		
		Thu	22	Convolutional Networks		
		Tue	23	Advanced neural net topics I		
	11/21	Thu	23	Advanced neural net topics II		
	11/26	Tue	20	Guest lecture: Andrew Bennett, Reinforcement Learning		
	11/28	Thu		Thanksgiving Break		
	12/3	Tue		Final Exam (take home) released 12/2; report du		
	12/5	Thu		Course Revie		
	12/10	Tue		NeurIPS conferer		

Basics of probability

- P(A | B) = P(A,B) / P(B)
- RV X is assignment of probabilities to values
- E[X] = Sum(P(X=x) x) for discrete RV X
- E[X] = Int(p(x) x) for continuous RV X with density p
- $f(x) = E[Y \mid X=x] = Sum(P(Y=y \mid X=x) y)$
- $E[Y \mid X] = f(X)$ (a transform of RV X)
- E[Y] = E[E[Y | X]] (iterated expectations)
- $Var(X) = E[X^2] E[X]^2$
- Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) (total var)

Basics of linear algebra

- Matrix A: m by n real values
- Vector v: n by 1 real values
- Av: m-dim vector with (Av)_j=Sum_i(A_ji v_i)
- Similarly, if B is n by k then AB is m by k
- λ and v are eigenvalue/eigenvector of n by n square matrix A if Av = λv

Go to review sessions!!!

Supervised Learning

MNIST Handwritten Digits

```
3681796691
6757863485
2179712845
4819018894
7618641560
7592658197
1222234480
0 2 3 8 0 7 3 8 5 7
0146460243
7128169861
```

Y = 10 classes (0-9) X = 28x28 pixels in grayscale (vector of 784 positive numbers denoting brightness)

60k training examples 10k testing examples

http://yann.lecun.com/exdb/mnist

Sign Up About Hosting Center All Competitions Users Forums Wiki Blog Data Science Jobs

Digit Recognizer

9 months to go

Wednesday, July 25, 2012

Knowledge • 478 teams Friday, July 26, 2013

Public Leaderboard

This leaderboard is calculated on approximately 25% of the test data.

The final results will be based on the other 75%, so the final standings may be different.

See someone using multiple accounts?

Let us know.

Δ	1w	Team Name * in the money	Score ②	Entries	Last Submission UTC (Best Submission - Last)
	23	Mikalai Drabovich *	0.99614	9	Fri, 28 Sep 2012 17:28:46
		Mathew Monfort	0.99471	3	Mon, 03 Sep 2012 03:00:18
	+	Xing Xu	0.99271	1	Fri, 10 Aug 2012 18:17:47
	-	Analyst	0.99086	11	Sun, 30 Sep 2012 15:11:58
	21	waronzevon	0.98857	21	Sat, 06 Oct 2012 00:46:22 (-3.5d)
	-	Josef Slavicek	0.98700	1	Thu, 20 Sep 2012 17:03:22

276	120	вк	0.96614	3	Wed, 01 Aug 2012 07:17:04 (-44.3h)
276	120	Amit £	0.96614	15	Thu, 11 Oct 2012 09:46:06
278	↓20	rippy	0.96586	1	Sun, 07 Oct 2012 17:00:34
278	new	Chris Kennedy	0.96586	2	Mon, 22 Oct 2012 03:58:07 (-1h)
280	↓21	Katalyst	0.96571	7	Sat, 06 Oct 2012 15:50:35 (-45.1d)
280	↓21	Jeremy Miller	0.96571	1	Mon, 01 Oct 2012 10:41:16
280	↓21	ross mckinlay	0.96571	2	Tue, 16 Oct 2012 18:09:39 (-3.8h)
A	↓21	KNN, K=10	0.96557		
283	↓21	Tomato	0.96557	1	Fri, 27 Jul 2012 09:15:45
283	121	Michael Schwab	0.96557	1	Fri, 27 Jul 2012 18:52:37
283	↓21	Sergey Dolgopolov	0.96557	1	Sat, 28 Jul 2012 06:43:48
283	↓21	kudzai	0.96557	2	Sat, 28 Jul 2012 08:46:49 (-0h)
283	↓21	garcimore	0.96557	2	Sun, 29 Jul 2012 23:32:57 (-5.5h)
283	↓21	geekmarcus	0.96557	2	Wed, 05 Sep 2012 12:14:03 (-36.7d)
283	121	tcamolesi	0.96557	1	Tue, 31 Jul 2012 16:51:25

276	↓20	вк	0.96614	3	Wed, 01 Aug 2012 07:17:04 (-44.3h)
276	120	Amit 48	0.96614	15	Thu, 11 Oct 2012 09:46:06
278	120	rippy	0.96586	1	Sun, 07 Oct 2012 17:00:34
278	new	Chris Kennedy	0.96586	2	Mon, 22 Oct 2012 03:58:07 (-1h)
280	↓21	Katalyst	0.96571	7	Sat, 06 Oct 2012 15:50:35 (-45.1d)
280	121	Jeremy Miller	0.96571	1	Mon, 01 Oct 2012 10:41:16
280	J21	ross mckinlay	0.96571	2	Tue, 16 Oct 2012 18:09:39 (-3.8h)
9	↓21	KNN, K=10	0.98557		
283	↓21	BENCHMARK INFO	0.96557	1	Fri, 27 Jul 2012 09:15:45
283	121	Treating the images as 784-dimensional vectors, for each test image we find the 10 nearest training	0.96557	1	Fri, 27 Jul 2012 18:52:37
283	↓21	images (in Euclidean distance). Then we have these 10 "nearest neighbors" vote on what digit the test	0.96557	1	Sat, 28 Jul 2012 06:43:48
283	121	image is.	0.96557	2	Sat, 28 Jul 2012 08:46:49 (-0h)
283	↓21	garcimore	0.96557	2	Sun, 29 Jul 2012 23:32:57 (-5.5h)
283	121	geekmarcus	0.96557	2	Wed, 05 Sep 2012 12:14:03 (-36.7d)
283	↓21	tcamolesi	0.96557	1	Tue, 31 Jul 2012 16:51:25