

Let C be a clique and the vor's in that
clique are x_c , then the joint dist is written
as a product of pot fracis to (\$\hat{x}_c) over the wax
cliques of the graph.
J. V.
$P(\dot{x}) = \frac{1}{2} \int_{c}^{c} \psi_{c}(\dot{x}_{c})$
where 2, the "partition function" is a normalizing
C0-5tavt
$z = \sum_{x} \frac{1}{c} \psi_{c}(\vec{x}_{c})$
we will consider only potential function 4c(xc) 20
-Note 4c (xc) need not be a prob. Euction!
<u> </u>
- 7 is a problem in model with M discuss
- Z is a problem, i'm model with M discrete C state modes & involves K states
X (see the see
- partition function is usually needed for learning because it will be a function of whetever parameters the potential functions have.
because it will a function of whatever
parameters the softential for the solone
(sie e) (g 25 - 1201)
- to co-pute local co-ditionals the pourhitie-
Fire to the control of the control of
func is not needed because the co-d is a ratio of terms that cancel.
a response that cance.
- local warginals can be locally worner lited
- local warsiness can be locally workers thes
Co-ditionel l'adepende ec
Requires 4(xi,)>0
I'mt ge

	Bayond scope for the class. the Hamarolay-
	Clifford theorem states that the set of
	distributions that can be factorized into the
	product of maximal diques is the same as the
	set of distributions whose conditional independence
	Structure can be read off of the graph
	separa bility
	Often potentials are expressed as exponentials
	19
	$f_c(\vec{x}_c) = e \times p(-E(x_c))$ where
	E(xc) is called on energy function.
	Example application, Image demoising
	Bi\ary i-ages 4: € {-1 +1} pixels observed
	c= 1., 1)
	ν, ΕΣ 1 17 ° 1 1 1
	xi ∈ [-1, +1] noisy observed
	noise = flipping a bit w.p. 10%
	$\omega_{0,3e} = flippi_{-g} = b_1 + \omega_1 p_1 + lo 2s$
	assue s-10-9 correlation btwo X; e Y;
	and between weighboring pixels xi +x;
	Sexure Leighboring privers Xix
	$E(\vec{x}, \vec{y}) = L \leq x_1 \times x_2 - n \leq x_1 \times y_2$
	$E(\vec{x}, \vec{Y}) = L \leq_{x_i} - \beta \leq_{x_i \times_j} - \gamma \leq_{x_i Y_i}$
	agreement agreement
	bias agreeat w/ obsuntin
	b fur very hors
	- explair signs
L	- · · · · · · · · · · · · · · · · · · ·

this defines a co-ditional dist. $p(\vec{x}|\vec{y})$ over hoise-free reses. A soul is to fred an \vec{x} what has high probability.

One approach, Iterated Co-ditional Modes

- basically coordinate-wise gradicat ascent

- intialize all x= To evaluate

- conditionals for single x; and set

- repeat

1 0 west every

Relationship to directed graphs

Directed graph -> undirected
exaple

to co-vert this to war cliques sr-ply write

where

$$\Upsilon_{1,2}(x_1x_2) = P(x_1) P(x_2|x_2)$$

a-2

	Moral; zation
	More generally this co-version requires "warrying the parents". In this chair ple the noval
	"warrying the parents". In this comple the woral
	graph is co-plate.
	Recipe: directed 6.M -> undirected 6.M.
	i) Add links between all pairs of
	parents for all modes in sraph
	2) Drop arrows
	3) Initial clique potentials to I
	a) Multiply in all co-difional distir
	associated with each clique.
	4) 7 =1
*	Inference in Graphical Models X = (ET
	Idea: exploit graphical structure in algorithms for inference.
	inference.
	First graphical Bayes Theorem
	$Joint P(x, Y) = P(x) \cdot P(T X)$
	If we obs. 4 then p(x) can be see as
	the area of the area of the
	a prior o- x, and interring the post dist st x can be the goal. To do this note
	x cas be the god (, to so wis 2018
	0(4) = 50(2/2) = 50(2) 2(4)
	$P(Y) = \sum_{x'} P(x', Y) = \sum_{x'} P(x') P(Y x')$
	$P(x Y) = \frac{P(Y x) P(x)}{P(Y)}, reversi's the arrow$
	PINITY P(Y)