BML lecture #1: Bayesics

Rémi Bardenet

CNRS & CRIStAL, Univ. Lille, France

Outline

- 1 Introduction
- 2 ML as data-driven decision-making
- 3 Subjective expected utility
- 4 Specifying joint models
- 5 50 shades of Bayes

Outline

- 1 Introduction
- 2 ML as data-driven decision-making
- 3 Subjective expected utility
- 4 Specifying joint models
- 5 50 shades of Bayes

What comes to your mind when you hear "Bayesian ML"?

- Let N individuals evolve from Susceptible to Infected to Recovered, $x_n(t) \in \{S, I, R\}, 1 \le n \le N, t \in [0, T].$
- Each susceptible individual n moves to R according to a Poisson process with intensity

$$\sum_{:x_k(t)=I} \lambda_{nk}(x_{1:n}(t), \theta_{SI}).$$

- Each infected person recovers after a Gamma(a, b) time.
- ► This allows to express

$$p(x_1(t_{1,1}), \dots, x_1(t_{1,T_1}), \dots, x_n(t_{n,1}), \dots, x_1(t_{n,T_n})|\theta)$$

$$\theta = (\theta_{S_l}, a, b).$$

Now, consider $p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$

- Let N individuals evolve from Susceptible to Infected to Recovered, $x_n(t) \in \{S, I, R\}, 1 \le n \le N, t \in [0, T].$
- ► Each susceptible individual *n* moves to *R* according to a Poisson process with intensity

$$\sum_{k:x_k(t)=I} \lambda_{nk}(x_{1:n}(t),\theta_{SI}).$$

- Each infected person recovers after a Gamma(a, b) time.
- ► This allows to express

$$p(x_1(t_{1,1}), \dots, x_1(t_{1,T_1}), \dots, x_n(t_{n,1}), \dots, x_1(t_{n,T_n})|\theta)$$

$$\theta = (\theta_{SI}, a, b).$$

Now, consider $p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$

- Let N individuals evolve from Susceptible to Infected to Recovered, $x_n(t) \in \{S, I, R\}, 1 \le n \le N, t \in [0, T].$
- ► Each susceptible individual *n* moves to *R* according to a Poisson process with intensity

$$\sum_{k:x_k(t)=I} \lambda_{nk}(x_{1:n}(t),\theta_{SI}).$$

- Each infected person recovers after a Gamma(a, b) time.
- ► This allows to express

$$p(x_1(t_{1,1}), \ldots, x_1(t_{1,T_1}), \cdots, x_n(t_{n,1}), \ldots, x_1(t_{n,T_n})|\theta|$$
 $\theta = (\theta_{SI}, a, b).$

Now, consider $p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$.

- Let N individuals evolve from Susceptible to Infected to Recovered, $x_n(t) \in \{S, I, R\}, 1 \le n \le N, t \in [0, T].$
- ► Each susceptible individual *n* moves to *R* according to a Poisson process with intensity

$$\sum_{k:x_k(t)=I} \lambda_{nk}(x_{1:n}(t),\theta_{SI}).$$

- Each infected person recovers after a Gamma(a, b) time.
- ► This allows to express

$$p(x_1(t_{1,1}),\ldots,x_1(t_{1,T_1}),\cdots,x_n(t_{n,1}),\ldots,x_1(t_{n,T_n})|\theta).$$
 where $\theta=(\theta_{Sl},a,b).$

Now, consider $p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$

- Let N individuals evolve from Susceptible to Infected to Recovered, $x_n(t) \in \{S, I, R\}, 1 \le n \le N, t \in [0, T].$
- ► Each susceptible individual *n* moves to *R* according to a Poisson process with intensity

$$\sum_{k:x_k(t)=I} \lambda_{nk}(x_{1:n}(t),\theta_{SI}).$$

- ► Each infected person recovers after a Gamma(a, b) time.
- ► This allows to express

$$p(x_1(t_{1,1}),\ldots,x_1(t_{1,T_1}),\cdots,x_n(t_{n,1}),\ldots,x_1(t_{n,T_n})|\theta).$$
 where $\theta=(\theta_{SL},a,b).$

Now, consider $p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$.

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d} \theta \geqslant 0.95.$$

- If asked whether we should close universities, I would ask for
- ▶ Then I would recommend closing if and only if

$$p(R_0>1| ext{data})>rac{lpha}{lpha+eta}.$$

- Additionally, I would check that the decision doesn't change if change my prior $p(\theta)$ a little.
- ▶ If it did, then I would refine my likelihood and/or wait for more data

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d}\theta \geqslant 0.95.$$

- ▶ If asked whether we should close universities, I would ask for
 - ▶ the cost α of closing unis when $R_0 < 1$.
 - the cost β of keeping unis open while $R_0 > 1$
- ► Then I would recommend closing if and only if

$$p(R_0>1| ext{data})>rac{lpha}{lpha+eta}.$$

- Additionally, I would check that the decision doesn't change if I change my prior $p(\theta)$ a little.
- ▶ If it did, then I would refine my likelihood and/or wait for more data

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d}\theta \geqslant 0.95.$$

- ▶ If asked whether we should close universities, I would ask for
 - ▶ the cost α of closing unis when $R_0 < 1$,
 - ▶ the cost β of keeping unis open while $R_0 > 1$.
- ► Then I would recommend closing if and only if

$$p(R_0 > 1|\text{data}) > \frac{\alpha}{\alpha + \beta}$$

- Additionally, I would check that the decision doesn't change if I change my prior $p(\theta)$ a little.
- ▶ If it did, then I would refine my likelihood and/or wait for more data

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d}\theta \geqslant 0.95.$$

- ▶ If asked whether we should close universities, I would ask for
 - ▶ the cost α of closing unis when $R_0 < 1$,
 - the cost β of keeping unis open while $R_0 > 1$.
- ► Then I would recommend closing if and only if

$$p(R_0 > 1|\text{data}) > \frac{\alpha}{\alpha + \beta}$$

- Additionally, I would check that the decision doesn't change if I change my prior $p(\theta)$ a little.
- ▶ If it did, then I would refine my likelihood and/or wait for more data

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d}\theta \geqslant 0.95.$$

- ▶ If asked whether we should close universities, I would ask for
 - ▶ the cost α of closing unis when $R_0 < 1$,
 - the cost β of keeping unis open while $R_0 > 1$.
- ▶ Then I would recommend closing if and only if

$$p(R_0 > 1|\mathsf{data}) > rac{lpha}{lpha + eta}.$$

- Additionally, I would check that the decision doesn't change if I change my prior $p(\theta)$ a little.
- If it did, then I would refine my likelihood and/or wait for more data

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d}\theta \geqslant 0.95.$$

- ▶ If asked whether we should close universities, I would ask for
 - ▶ the cost α of closing unis when $R_0 < 1$,
 - the cost β of keeping unis open while $R_0 > 1$.
- ▶ Then I would recommend closing if and only if

$$p(R_0 > 1|\mathsf{data}) > rac{lpha}{lpha + eta}.$$

- Additionally, I would check that the decision doesn't change if I change my prior $p(\theta)$ a little.
- If it did, then I would refine my likelihood and/or wait for more data

$$\int_I p(\theta|\mathsf{data}) \,\mathrm{d}\theta \geqslant 0.95.$$

- ▶ If asked whether we should close universities, I would ask for
 - ▶ the cost α of closing unis when $R_0 < 1$,
 - the cost β of keeping unis open while $R_0 > 1$.
- ▶ Then I would recommend closing if and only if

$$p(R_0 > 1|\mathsf{data}) > \frac{\alpha}{\alpha + \beta}.$$

- Additionally, I would check that the decision doesn't change if I change my prior $p(\theta)$ a little.
- ▶ If it did, then I would refine my likelihood and/or wait for more data.

- ► [...] practical methods for making inferences from data, using probability models for quantities we observe and for quantities about which we wish to learn.
- ► The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis.
- Three steps:

- ► [...] practical methods for making inferences from data, using probability models for quantities we observe and for quantities about which we wish to learn.
- ► The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis.
- Three steps:

- ► [...] practical methods for making inferences from data, using probability models for quantities we observe and for quantities about which we wish to learn.
- ► The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis.

► Three steps:

- Setting up a full probability model.
- Conditioning on observed data, calculating and interpreting the appropriate "posterior distribution",
- Evaluating the fit of the model and the implications of the resulting posterior distribution. In response, one can alter or expand the model and repeat the three steps.

- ► [...] practical methods for making inferences from data, using probability models for quantities we observe and for quantities about which we wish to learn.
- ► The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis.
- Three steps:
 - 1 Setting up a full probability model,
 - Conditioning on observed data, calculating and interpreting the appropriate "posterior distribution",
 - 3 Evaluating the fit of the model and the implications of the resulting posterior distribution. In response, one can alter or expand the model and repeat the three steps.

- ► [...] practical methods for making inferences from data, using probability models for quantities we observe and for quantities about which we wish to learn.
- ► The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis.
- Three steps:
 - 1 Setting up a full probability model,
 - 2 Conditioning on observed data, calculating and interpreting the appropriate "posterior distribution",
 - 3 Evaluating the fit of the model and the implications of the resulting posterior distribution. In response, one can alter or expand the model and repeat the three steps.

- ► [...] practical methods for making inferences from data, using probability models for quantities we observe and for quantities about which we wish to learn.
- ► The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis.
- Three steps:
 - 1 Setting up a full probability model,
 - 2 Conditioning on observed data, calculating and interpreting the appropriate "posterior distribution",
 - 3 Evaluating the fit of the model and the implications of the resulting posterior distribution. In response, one can alter or expand the model and repeat the three steps.

- \triangleright $y_{1:n} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ denote observable data/labels.
- \triangleright $x_{1:n} \in \mathcal{X}^n$ denote covariates/features/hidden states.
- $ightharpoonup z_{1:n} \in \mathbb{Z}^n$ denote hidden variables.
- $hline heta \in \Theta$ denote parameters.
- ightharpoonup X denotes an \mathcal{X} -valued random variable. Lowercase x denotes either a point in \mathcal{X} or an \mathcal{X} -valued random variable.

- $\bigvee y_{1:n} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ denote observable data/labels.
- ▶ $x_{1:n} \in \mathcal{X}^n$ denote covariates/features/hidden states.
- $z_{1:n} \in \mathbb{Z}^n$ denote hidden variables.
- $hline heta \in \Theta$ denote parameters.
- ightharpoonup X denotes an \mathcal{X} -valued random variable. Lowercase x denotes either a point in \mathcal{X} or an \mathcal{X} -valued random variable.

- $\bigvee y_{1:n} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ denote observable data/labels.
- ▶ $x_{1:n} \in \mathcal{X}^n$ denote covariates/features/hidden states.
- $ightharpoonup z_{1:n} \in \mathbb{Z}^n$ denote hidden variables.
- $hline heta \in \Theta$ denote parameters.
- ightharpoonup X denotes an \mathcal{X} -valued random variable. Lowercase x denotes either a point in \mathcal{X} or an \mathcal{X} -valued random variable.

- \triangleright $y_{1:n} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ denote observable data/labels.
- ▶ $x_{1:n} \in \mathcal{X}^n$ denote covariates/features/hidden states.
- ▶ $z_{1:n} \in \mathbb{Z}^n$ denote hidden variables.
- ▶ θ ∈ Θ denote parameters.
- ightharpoonup X denotes an \mathcal{X} -valued random variable. Lowercase x denotes either a point in \mathcal{X} or an \mathcal{X} -valued random variable.

- ▶ $y_{1:n} = (y_1, ..., y_n) \in \mathcal{Y}^n$ denote observable data/labels.
- ▶ $x_{1:n} \in \mathcal{X}^n$ denote covariates/features/hidden states.
- ▶ $z_{1:n} \in \mathbb{Z}^n$ denote hidden variables.
- ▶ θ ∈ Θ denote parameters.
- ightharpoonup X denotes an \mathcal{X} -valued random variable. Lowercase x denotes either a point in \mathcal{X} or an \mathcal{X} -valued random variable.

More notation

Nhenever it can easily be made formal, we write densities for our random variables and let the context indicate what is meant. So if $X \sim \mathcal{N}(0, \sigma^2)$, we write

$$\mathbb{E}h(X) = \int h(x) \frac{e^{-x^2/2\sigma^2}}{\sigma\sqrt{2\pi}} dx = \int h(x) p(x) dx.$$

Similarly, for $X \sim \mathcal{P}(\lambda)$, we write

$$\mathbb{E}h(X) = \sum_{k=0}^{\infty} h(k)e^{-\lambda} \frac{\lambda^k}{k!} = \int h(x)p(x) dx$$

ightharpoonup All pdfs are denoted by p, so that, e. g

$$\mathbb{E}h(Y,\theta) = \int h(y,\theta)p(y,\theta) \,dyd\theta$$
$$= \int h(y,\theta)p(y,x,\theta) \,dxdyd\theta$$
$$= \int h(y,\theta)p(y,\theta|x)p(x) \,dxdyd\theta$$

More notation

Nhenever it can easily be made formal, we write densities for our random variables and let the context indicate what is meant. So if $X \sim \mathcal{N}(0, \sigma^2)$, we write

$$\mathbb{E}h(X) = \int h(x) \frac{e^{-x^2/2\sigma^2}}{\sigma\sqrt{2\pi}} dx = \int h(x) p(x) dx.$$

Similarly, for $X \sim \mathcal{P}(\lambda)$, we write

$$\mathbb{E}h(X) = \sum_{k=0}^{\infty} h(k)e^{-\lambda} \frac{\lambda^k}{k!} = \int h(x)p(x) dx$$

ightharpoonup All pdfs are denoted by p, so that, e. g.

$$\mathbb{E}h(Y,\theta) = \int h(y,\theta)p(y,\theta) \,dyd\theta$$
$$= \int h(y,\theta)p(y,x,\theta) \,dxdyd\theta$$
$$= \int h(y,\theta)p(y,\theta|x)p(x) \,dxdyd\theta$$

Outline

- 1 Introduction
- 2 ML as data-driven decision-making
- 3 Subjective expected utility
- 4 Specifying joint models
- 5 50 shades of Bayes

Abraham Wald (1902–1950)

- ► A state space S, Every quantity you need to consider to make your decision.
- Actions $A \subset \mathcal{F}(S, \mathcal{Z})$,
 Making a decision means picking one of the available actions
- ▶ A reward space Z, Encodes how you feel about having picked a particular action
- ▶ A loss function $L: \mathcal{A} \times \mathcal{S} \to \mathbb{R}_+$. How much you would suffer from picking action a in state s. It is also customary to first define a utility $u: \mathcal{Z} \to \mathbb{R}_+$, and then let

$$L(a,s) = \sup_{a' \in \mathcal{A}} u(a'(s)) - u(a(s)) \in \mathbb{R}_+$$

- ► A state space S, Every quantity you need to consider to make your decision.
- Actions $A \subset \mathcal{F}(S, \mathcal{Z})$,
 Making a decision means picking one of the available actions.
- ▶ A reward space Z, Encodes how you feel about having picked a particular action
- ▶ A loss function $L: \mathcal{A} \times \mathcal{S} \to \mathbb{R}_+$. How much you would suffer from picking action a in state s. It is also customary to first define a utility $u: \mathcal{Z} \to \mathbb{R}_+$, and then let

$$L(a,s) = \sup_{a' \in \mathcal{A}} u(a'(s)) - u(a(s)) \in \mathbb{R}_{+}$$

- ▶ A state space S, Every quantity you need to consider to make your decision.
- Actions $A \subset \mathcal{F}(S, \mathcal{Z})$,
 Making a decision means picking one of the available actions.
- ► A reward space Z, Encodes how you feel about having picked a particular action.
- ▶ A loss function $L: \mathcal{A} \times \mathcal{S} \to \mathbb{R}_+$. How much you would suffer from picking action a in state s. It is also customary to first define a utility $u: \mathcal{Z} \to \mathbb{R}_+$, and then let

$$L(a,s) = \sup_{a' \in \mathcal{A}} u(a'(s)) - u(a(s)) \in \mathbb{R}_+$$

- ▶ A state space S, Every quantity you need to consider to make your decision.
- Actions $A \subset \mathcal{F}(S, \mathcal{Z})$,
 Making a decision means picking one of the available actions.
- ► A reward space Z, Encodes how you feel about having picked a particular action.
- ▶ A loss function $L: \mathcal{A} \times \mathcal{S} \to \mathbb{R}_+$. How much you would suffer from picking action a in state s. It is also customary to first define a utility $u: \mathcal{Z} \to \mathbb{R}_+$, and then let

$$L(a,s) = \sup_{a' \in \mathcal{A}} u(a'(s)) - u(a(s)) \in \mathbb{R}_+.$$

Classification as a decision problem

- \triangleright $S = \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{X} \times \mathcal{Y}$, i.e. $s = (x_{1:n}, y_{1:n}, x, y)$.
- $\mathbb{Z} = \{0,1\}$
- $L(a_g, s) = 1_{y=g(x; x_{1:n}, y_{1:n})}.$

PAC bounds; see e.g. (Shalev-Shwartz and Ben-David, 2014)

Let $(x_{1:n},y_{1:n}) \sim \mathbb{P}^{\otimes n}$, and independently $(x,y) \sim \mathbb{P}$, we want an algorithm $g(\cdot;x_{1:n},y_{1:n}) \in \mathcal{G}$ such that if $n \geqslant n(\delta,\varepsilon)$,

$$\mathbb{P}^{\otimes n}\left[\mathbb{E}_{(x,y)\sim\mathbb{P}}L(a_g,s)\leqslant\varepsilon\right]\geqslant 1-\delta.$$

- \triangleright $S = \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{X} \times \mathcal{Y}$, i.e. $s = (x_{1:n}, y_{1:n}, x, y)$.
- \triangleright $\mathcal{Z} = \{0, 1\}.$
- $L(a_g, s) = 1_{y=g(x; x_{1:n}, y_{1:n})}.$

PAC bounds; see e.g. (Shalev-Shwartz and Ben-David, 2014)

Let $(x_{1:n},y_{1:n}) \sim \mathbb{P}^{\otimes n}$, and independently $(x,y) \sim \mathbb{P}$, we want an algorithm $g(\cdot;x_{1:n},y_{1:n}) \in \mathcal{G}$ such that if $n \geqslant n(\delta,\varepsilon)$,

$$\mathbb{P}^{\otimes n}\left[\mathbb{E}_{(x,y)\sim\mathbb{P}}L(a_g,s)\leqslant\varepsilon\right]\geqslant 1-\delta.$$

- \triangleright $S = \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{X} \times \mathcal{Y}$, i.e. $s = (x_{1:n}, y_{1:n}, x, y)$.
- \triangleright $\mathcal{Z} = \{0, 1\}.$
- $L(a_g, s) = 1_{y=g(x; x_{1:n}, y_{1:n})}$

PAC bounds; see e.g. (Shalev-Shwartz and Ben-David, 2014)

Let $(x_{1:n},y_{1:n}) \sim \mathbb{P}^{\otimes n}$, and independently $(x,y) \sim \mathbb{P}$, we want an algorithm $g(\cdot;x_{1:n},y_{1:n}) \in \mathcal{G}$ such that if $n \geqslant n(\delta,\varepsilon)$,

$$\mathbb{P}^{\otimes n}\left[\mathbb{E}_{(x,y)\sim\mathbb{P}}L(a_g,s)\leqslant\varepsilon\right]\geqslant 1-\delta.$$

- \triangleright $S = \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{X} \times \mathcal{Y}$, i.e. $s = (x_{1:n}, y_{1:n}, x, y)$.
- \triangleright $\mathcal{Z} = \{0, 1\}.$
- $\blacktriangleright \mathcal{A} = \{a_g : s \mapsto 1_{v \neq g(x; X_{1:n}, V_{1:n})}, g \in \mathcal{G}\}.$
- $L(a_g, s) = 1_{y=g(x;x_{1:n},y_{1:n})}.$

PAC bounds; see e.g. (Shalev-Shwartz and Ben-David, 2014)

Let $(x_{1:n},y_{1:n}) \sim \mathbb{P}^{\otimes n}$, and independently $(x,y) \sim \mathbb{P}$, we want an algorithm $g(\cdot;x_{1:n},y_{1:n}) \in \mathcal{G}$ such that if $n \geqslant n(\delta,\varepsilon)$,

$$\mathbb{P}^{\otimes n}\left[\mathbb{E}_{(x,y)\sim\mathbb{P}}L(a_g,s)\leqslant\varepsilon\right]\geqslant 1-\delta.$$

Regression as a decision problem

- **▶** S =
- $ightharpoonup \mathcal{Z} =$
- ▶ A =

Estimation as a decision problem

- **▶** S =
- $ightharpoonup \mathcal{Z} =$
- ▶ A =

Clustering as a decision problem

- **▶** S =
- $ightharpoonup \mathcal{Z} =$
- ▶ A =

Outline

- 1 Introduction
- 2 ML as data-driven decision-making
- 3 Subjective expected utility
- 4 Specifying joint models
- 5 50 shades of Bayes

SEU is what defines the Bayesian approach

The subjective expected utility principle

- **1** Choose $\mathcal{S}, \mathcal{Z}, \mathcal{A}$ and a loss function L(a, s),
- **2** Choose a distribution p over S,
- 3 Take the the corresponding Bayes action

$$a^* \in \arg\min_{a \in \mathcal{A}} \mathbb{E}_{s \sim p} L(a, s).$$
 (1)

Corollary: minimize the posterior expected loss

If we partition $s = (s_o, s_u)$, then

$$a^{\star} \in \arg\min_{a \in \mathcal{A}} \mathbb{E}_{s_{o}} \mathbb{E}_{s_{u}|s_{o}} L(a, S).$$

Equivalently to (1), given s_o , we choose

$$a^* = \delta(s_o) = \underset{a \in \mathcal{A}}{\arg \min} \mathbb{E}_{s_u|s_o} L(a, s).$$

Outline

- 1 Introduction
- 2 ML as data-driven decision-making
- 3 Subjective expected utility
- 4 Specifying joint models
- 5 50 shades of Bayes

A recap on probabilistic graphical models

- ▶ PGMs (aka "Bayesian" networks) represent the dependencies in a joint distribution p(y) by a directed graph G = (E, V).
- Two important properties:

$$p(y) = \prod_{v \in V} p(y|y_{\mathsf{pa}(v)}) \text{ and } y_v \perp y_{nd(v)}|y_{\mathsf{pa}(v)}.$$

▶ Also good to know how to determine whether $A \perp B \mid C$; see (Murphy, 2012, Section 10.5).

Choosing priors

Estimation as a decision problem

Dimensionality reduction as a decision problem

Clustering as a decision problem

Topic modelling as a decision problem

Image denoising as a decision problem

Figure: Taken from (Murphy, 2012, Chapter 21)

Outline

- 1 Introduction
- 2 ML as data-driven decision-making
- 3 Subjective expected utility
- 4 Specifying joint models
- 5 50 shades of Bayes

50 shades of Bayes

An issue (or is it?)

Depending on how they interpret and how they implement SEU, you will meet many types of Bayesians (46656, according to Good).

A few divisive questions

- ▶ Using data or the likelihood to choose your prior; see Lecture #5.
- Using MAP estimators for their computational tractability, like in inverse problems

$$\hat{x}_{\lambda} \in \arg\min \|y - Ax\| + \lambda \Omega(x).$$

- ▶ When and how should you revise your model (likelihood or prior)?
- ▶ MCMC vs variational Bayes (more in Lectures #2 and #3)

References I

- [1] A. Gelman et al. Bayesian data analysis. 3rd. CRC press, 2013.
- [2] K. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.
- [3] S. Shalev-Shwartz and S. Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.