Álgebra Universal e Categorias

Exame Época especial (25 de julho de 2016) — duração: 2 horas — duraçõo: 2 horas — duraçõ

1. (a) Seja $\mathcal{R} = (R; \wedge, \vee)$ o reticulado representado pelo diagrama de Hasse seguinte

Dê exemplo de subuniversos S_1 e S_2 de \mathcal{R} , cada qual com dois elementos e tais que $S_1 \cup S_2$ não é subuniverso de \mathcal{R} . Determine $Sg^{\mathcal{R}}(S_1 \cup S_2)$.

- (b) Sejam $\mathcal{R}_1=(R_1;\wedge_1,\vee_1)$, $\mathcal{R}_2=(R_2;\wedge_2,\vee_2)$ e $\mathcal{R}_3=(R_3;\wedge_3,\vee_3)$ reticulados e $\alpha:\mathcal{R}_1\to\mathcal{R}_2$ e $\beta:\mathcal{R}_2\to\mathcal{R}_3$ homomorfismos.
 - i. Mostre que se S é um subuniverso de \mathcal{R}_1 , então $\alpha(S)$ é um subuniverso de \mathcal{R}_2 .
 - ii. Mostre que $\beta\circ\alpha$ é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_3 .
- 2. Seja $\mathcal{A}=(\{a,b,c,d\};f^{\mathcal{A}})$ a álgebra de tipo (1) onde $f^{\mathcal{A}}:\{a,b,c,d\}\to\{a,b,c,d\}$ é a operação definida por

- (a) Determine $\theta(a,b)$ e $\theta(a,d)$. Justifique que $(\theta(a,b),\theta(a,d))$ é um par de congruências fator.
- (b) Justifique que existem álgebras \mathcal{A}_1 e \mathcal{A}_2 não triviais tais que $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$. Dê exemplo de álgebras \mathcal{A}_1 e \mathcal{A}_2 nas condições indicadas e determine a álgebra $\mathcal{A}_1 \times \mathcal{A}_2$.
- 3. Considere os operadores H, I e P. Mostre que HIP é um operador de fecho.
- 4. Seja C a categoria definida pelo diagrama seguinte

Indique, caso exista, um igualizador de u e v.

- 5. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que se $g\circ f$ é invertível à esquerda, então f é um monomorfismo.
- 6. Seja ${f C}$ uma categoria com um objeto inicial I. Mostre que todo o ${f C}$ -morfismo $h:X \to I$ é invertível à direita.
- 7. Sejam \mathbf{C} uma categoria e $f:A\to B$ um morfismo em \mathbf{C} . Mostre que se f é um epimorfismo, então $(B,(\mathrm{id}_B,\mathrm{id}_B))$ é uma soma amalgamada de (f,f).
- 8. Sejam C e D categorias e $F: C \to D$ um funtor. Mostre que se F é fiel, então F reflete epimorfismos.

 $\textbf{Cotação:} \ \ 1. (1,5+2.0+2.0); \ \ 2. (1.75+1.75); \ \ 3. (1.75); \ \ 4. (1.5); \ \ 5. (1.75); \ \ 6. (2.0); \ \ 7. (2.0); \ \ 8. (2.0);$