模拟试题

${\bf KuribohG}$

December 29, 2015

题目名称	基因合成	染色	圈地游戏
目录	dna	color	land
可执行文件名	dna	color	land
输入文件名	dna.in	color.in	land.in
输出文件名	dna.out	color.out	land.out
每个测试点时限	1s	2s	1s
内存限制	256MB	256MB	256MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	否	否
题目类型	传统	传统	传统
是否有附加文件	否	否	否

提交源程序需加后缀

对于Pascal语言	dna.pas	color.pas	land.pas
对于C语言	dna.c	color.c	land.c
对于C++语言	dna.cpp	color.cpp	land.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关。

1 基因合成

1.1 题目描述

生物科学家打算用具有特定基因的病毒来治疗一些疾病,他们需要尽快生成他们想要的DNA序列。 我们可以将一个DNA序列看做一个字符串,这个字符串中只含有ATCG四种字母。

科学家制造了一种机器,这个机器可以从一个空串开始,每次进行以下两种操作之一:

- 在串的头部或尾部插入一个字符
- 将整个串复制一遍,再反序接到原来串的后面

科学家想知道最少让机器操作几次可以获得他想要的字符串。

1.2 输入格式

第一行一个整数T,表示数据组数。

接下来每行一个字符串S,表示科学家想知道要获得S机器最少操作的次数。

1.3 输出格式

输出共T行,第i行有一个整数,代表获得第i个字符串需要最少的操作次数。

1.4 样例输入

4

1.5 样例输出

3

8

6

18

1.6 数据范围与约定

对于30%的数据, $|S| \le 10$ 。

对于60%的数据, $|S| \leq 200$ 。

对于100%的数据, $T \le 10$, $|S| \le 100000$ 。

2 染色

2.1 题目描述

给定一棵*n*个节点的树,树的节点标号从0开始。每个节点可以是白色或黑色,初始时每个节点的颜色为白色。要求支持以下两种操作:

- 将节点x涂黑
- 查询节点 x 到所有黑点的距离之和

2.2 输入格式

第一行包含一个整数n, m。

第二行包含n-1个整数,第i个整数表示节点i的父亲 f_i 。

第三行包含n-1个整数,第i个整数表示节点i到节点 f_i 边的长度 d_i 。

接下来m行,每行包含两个整数t,x,如果t=1,代表第一个操作,如果t=2,代表第二个操作。

2.3 输出格式

对于每一个t=2的询问,输出一个答案,答案之间用换行隔开。

2.4 样例输入

- 4 6
- 0 1 2
- 2 1 3
- 2 2
- 1 3
- 2 2
- 2 3
- 2 1
- 1 3

2.5 样例输出

- 0
- 3
- 0
- 4

2.6 数据范围与约定

对于30%的数据, $n \le 1000$, $m \le 1000$ 。 对于100%的数据, $n \le 10^5$, $m \le 10^5$, $0 \le d_i \le 10^6$ 。

3 圈地游戏

3.1 题目描述

小K有一天捡到了一张藏宝图,他打算去藏宝图标示的位置探索一番。

藏宝图实际上表示了一个 $n \times m$ 的方格形地图,小K现在所在的位置已经在藏宝图上标出。 藏宝图上标有所有宝藏、陷阱和障碍的位置。 每次小K可以向周围的格子(有公共边的格子)移动,移动的格子中不能含有宝藏、陷阱和障碍。 小K需要走出一个闭合的路径,这个路径封住的区域不能含有陷阱,且如果他的路径中包含i号宝藏,他 将获得 v_i 的收益。设所有宝藏提供的收益为v,他一共行走了k步,那么他就可以获得 v_i 一格的总收益。

小K当然希望自己获得的总收益最大,于是他来问你最大的总收益是多少。

注意小K可以走过一个格子多次,而且路径是可以自交的,我们利用下述方法判断一个格子p是否在闭合路径中:

- 将第i行第j列的格子看成平面上的点(i,j),那么小K走的路径就是一个平面上的闭合多边形
- 此时点p不应该在这个闭合多边形边界上
- 从点*p*画一条射线,使之不穿过这个多边形的任何顶点(这样的射线一定 存在)
- 计算这个射线与多边形的多少条边有交点,如果共有奇数个交点,就认为p在路径内部,否则认为p在路径外部

3.2 输入格式

第一行两个整数,n,m。

接下来n行,每行包含一个长度为m的字符串,其中第i行第j个字符表示藏宝图上第i行第j个格子的信息,有如下几种可能:

- 字母B: 表示这个格子是一个陷阱
- 字母S: 表示这是小K起始所在位置,这个格子没有宝藏、陷阱和障碍
- 一个1-8的数字c: 表示这个格子内含有c号宝藏
- 字符.: 表示这是一个空格子
- 字符#: 表示这个格子是一个障碍

假设地图中共有t个宝藏,接下来的t行每行一个整数,第i行的整数表示 v_i ,注意 v_i 可以为负数。

3.3 输出格式

一行一个整数,表示小K可能获得的最大总收益。

3.4 样例输入

7 7

.

.1###2.

.#...#.

.#.B.#.

.3..4

..##...

.....S

100

100

100

100

3.5 样例输出

364

3.6 样例解释

这是一种能够获得样例最优解的方案。

3.7 数据范围与约定

对于30%的数据, $n \le 5$, $m \le 5$ 。

对于100%的数据, $n \leq 20$, $m \leq 20$, $-200 \leq v_i \leq 200$,保证陷阱和宝藏的数量加起来不超过8。