Simulation Exercise: Temperature dependance

Part-1: Dark Forward Characteristics

- 1. Modify the netlist written for I/V characteristics of a solar cell in the previous section.
- 2. Run the simulation to measure the dark forward characteristics at $35^{0}C$, $45^{0}C$, $55^{0}C$, $65^{0}C$, and $75^{0}C$.
- 3. Note the values of V_D for $I_D=1$ mA, 2mA and 5mA.
- 4. Fill up in the observation table 1 below. Calculate η for low forward bias (1mA) and for high forward bias (5mA) at all the temperatures.

Sr.No	V_D for I_D =1mA	V_D for I_D =2mA	V_D for $I_D = 5$ mA	η for $I_D=1$ mA	η for I_D =5mA
$35^{0}\mathrm{C}$					
$45^{0}\mathrm{C}$					
$55^{0}\mathrm{C}$					
$65^{0}\mathrm{C}$					
$75^{0}\mathrm{C}$					

Table 1

Part-2: Lighted I/V Characteristics

In this part, we will plot the I/V characteristics of the solar cell when used as a power source. We will measure I/V characteristics at various temperatures when the solar cell is lighted at the intensity to generate I_L =8mA.

1. A load resistor R is connected across the solar cell. The value of R is varied from 1 to 500Ω and the values of I_L and V_L are recorded for the temperatures 35° C to 75° C in steps of 10° C.

Figure 1: Solar Cell used as power source operated at different temperatures

- 2. Plot I_D - V_D and P_L - V_D characteristics under lighted condition at all the temperatures. Note the values of Voc and Isc values for all temperatures.
- 3. Obtain Fill Factor (FF) for all the temperature and plot FF v/s temperature.
- 4. Plot V_D v/s Temp and V_oc v/s Temp. You will get three sets of V_D for $I_D=1 \mathrm{mA}, 2 \mathrm{mA}$ and $5 \mathrm{mA}$ obtained in Part-1.
- 5. Comment on the dependence of V_{oc} , I_{sc} , and FF.