Model Documentation of the 'NN4'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^4 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^3$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

G 1 1	17.1
Symbol	Value
A	0 1.0 0 0
	$\begin{bmatrix} 0 & -2.93 & -4.75 & -0.78 \end{bmatrix}$
	$\begin{bmatrix} 0.086 & 0 & -0.11 & -1.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & -0.042 & 2.59 & -0.39 \end{bmatrix}$
В	
	0 -3.91
	0.035 0
	-2.53 0.31
B_1	
	$\begin{vmatrix} 0 & -3.91 \end{vmatrix}$
	0.035 0
	-2.53 0.31
C_1	[1.0 0 0 0]
	0 1.0 0 0
	0 0 1.0 0
	$\begin{bmatrix} 0 & 0 & 0 & 1.0 \end{bmatrix}$
C	1.0 0 0 0]
	$\begin{bmatrix} 0 & 1.0 & 0 & 0 \end{bmatrix}$
	0 0 1.0 0
D_{11}	
D_{12}	
	$\begin{bmatrix} 0 & 0 \\ 1.0 & 0 \end{bmatrix}$
	1 1
D	_ L
	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
D_{21}	
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

 $\rm NN4~L.~F.~Miller,~R.~G.~Cochran and~J.~W.~Howze,~"Output feedback stabilization of a spectral radius functional", IJOC, Vol. 27, pp. 455-462, 1978$

4 Simulation

Figure 1: Simulation of the NN4.

References

[1] . F. Miller, R. G. Cochran and J. W. Howze, "Output feedback stabilization of a spectral radius functional", IJOC, Vol. 27, pp. 455-462, 1978