

Winning Space Race with Data Science

Prathmesh Pandey

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data was collected from the SpaceX public API
- **Utilized SQL queries** and various data visualizations to uncover insights within the dataset
- Use **Grid Search method** to find the best Machine Learning Model to predict the classification of next landing

Summary of all results

- Exploratory Data Analysis result
- **Predictive Analytics** result

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Problems to Research

- Can the historical launch data be used to predict the success of a new launch's first stage landing?
- What operational conditions are necessary to guarantee a successful landing program?

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - Encoded using one-hot encoding.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Using GridSearchCV to find best fit model.

Data Collection

- To analyze the Falcon 9 rocket launches, data was gathered from multiple sources and processed accordingly:
 - 1. SpaceX API
 - 2. Web Scraping from Wikipedia

Data Collection - SpaceX API

- SpaceX API:
- The primary data source is the SpaceX API at https://api.spacexdata.com/v4/rockets/, filtered specifically for Falcon 9 launches.
- Missing values in the dataset were replaced with the mean of their respective columns.
- https://github.com/llouislouis/iBM_Data Science_Capstone_SPACE_X/blob/main/ Lab1_Data%20Collection%20API.ipynb

Data Collection - Scraping

- Web Scraping from Wikipedia:
- Additional data was scraped from Wikipedia using the URL https://en.wikipedia.org/w/index.php
 ?title=List of Falcon 9 and Falcon
 Heavy launches&oldid=1027686922
- https://github.com/llouislouis/iBM_ DataScience_Capstone_SPACE_X/bl ob/main/Lab2_Data%20Collection %20with%20Web%20Scraping.ipy nb

```
# Use BeautifulSoup() to create a BeautifulSoup object from a response text content
          soup = BeautifulSoup(html_data.text, 'html5lib')
         Print the page title to verify if the BeautifulSoup object was created properly
In [7]:
         # Use soup.title attribute
          soup.title
Out[7]: <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
         # Use the find_all function in the BeautifulSoup object, with element type 'table'
         # Assign the result to a list called 'html_tables'
         html_tables = soup.find_all('table')
        Starting from the third table is our target table contains the actual launch records.
In [9]:
         # Let's print the third table and check its content
         first_launch_table = html_tables[2]
         print(first_launch_table)
```

Data Wrangling

- conducted exploratory data analysis to identify the training labels.
- analyzed the number of launches at each site and examined the frequency and types of orbits
- Derived the landing outcome labels from the outcome column and exported the results to a CSV file
- https://github.com/llouislouis/iBM_DataScience_Capstone_SPACE_X/blob/main/Lab3_Data%20Wrangling.ipynb

10

EDA with Data Visualization

- The total success launches from each launch site
- The correlation between payload mass and mission outcome (success or failure) for each launch site
- Trend by year
- https://github.com/llouislouis/iBM_DataScience_Capsto ne_SPACE_X/blob/main/Lab5_Data_visual.ipynb

EDA with SQL

- Retrieve the names of the unique launch sites used in the space missions.
- Identify the booster versions that have carried the maximum payload mass.
- Count the total number of successful and failed mission outcomes.
- List the names of the boosters that have successfully landed on a drone ship and have a payload mass within a specific range.
- Rank the successful landing outcomes within a given date range in descending order.
- https://github.com/llouislouis/iBM_DataScience_Capstone_SPACE_X/blob/main/Lab4_EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map

- Markers were added for launch sites and for the NASA Johnson Space Center
- Circles were added for the launch sites.
- Lines were added to show the distance
- https://github.com/llouislouis/iBM _DataScience_Capstone_SPACE_X/ blob/main/Lab6_site_location_foli um.ipynb

Build a Dashboard with Plotly Dash

- developed an interactive dashboard using Plotly Dash.
- Created pie charts displaying the total number of launches by specific sites.
- generated scatter plots illustrating the relationship between Outcome and Payload Mass (kg) for different booster versions.
- https://github.com/llouislouis/iBM_DataScience_Capstone_SPACE_X/blob/main/d ash_app.py

Predictive Analysis (Classification)

- Loaded and transformed data using numpy and pandas, then split into training and testing sets.
- Built various machine learning models and tuned hyperparameters with GridSearchCV.
- Identified the best-performing classification model.
- https://github.com/llouislouis/iBM_DataScience_Capstone_SPACE_X/blob/main/Lab7_ML.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• **Explanation**: We can see from the scatter plot that as flight number increases, there are more successful first stage landing. With small flight numbers, launches happens more in the site CCAFS SLC 40 and with much lower success rate. Although there are less launches in VAFB SLC 4E and KSC LC 39A, higher success rate can be seen in these two sites.

Payload vs. Launch Site

• **Explanation:** With higher Payload the success rate is much higher. And in KSC LC39A launchsite we can see much higher success rate with low Payload whereas this rate is mucher lower in CCAFS SLC 40 launchsite. Besides, there no rockets launched in VAFB-SLC for Payload greater than 10000. Furthermore, with Payload more than 9500, we can see very high success rate overall.

Success Rate vs. Orbit Type

 From the Bar Plot we can see for Orbit type ES-L1, GEO, HEO, and SSO have the highest success rate, which is 100%. And we also find in SO orbit, the rate is zero.

Flight Number vs. Orbit Type

• **Explanation:** In ES-L1, GEO, HEO, and SSO orbits, all launches are successful. There is clear relationship between flight number and success rate in LEO orbit since as flightnumber increases, the success rate increases. In contrast, there is no such obvious relationship in GTO orbit.

Payload vs. Orbit Type

Explanation: With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

Launch Success Yearly Trend

• **Explanation**: The observe show that the success rate since 2013 kept increasing till 2020

All Launch Site Names

Display the names of the unique launch sites in the space mission %sql select distinct Launch_Site from SPACEXTBL * sqlite:///my_data1.db Done. Launch_Site CCAFS LC-40 VAFB SLC-4E KSC LC-39A CCAFS SLC-40

Utilized the key word **DISTINCT** to show only
unique launch sites from
the SpaceX data.

Launch Site Names Begin with 'CCA'

<pre>*sql select * from SPACEXTBL where Launch_Site like 'CCA%' LIMIT 5 * sqlite://my_datal.db Done.</pre>									
04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute
08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute
22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp
08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attemp
01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attemp

Explanation: these 5 launches happened in LEO orbit, and four of them were from customer NASA.

Total Payload Mass

```
[9] %sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where Customer like 'NASA%'
    * sqlite://my_datal.db
    Done.
    sum(PAYLOAD_MASS__KG_)
    99980
```

Explanation: The total payload carried by boosters from NASA is 99980.

Average Payload Mass by F9 v1.1

```
[ ] %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where Booster_Version like 'F9 v1.1%'
     * sqlite://my_data1.db
     Done.
     avg(PAYLOAD_MASS__KG_)
     2534.666666666666
```

Explanation: the average payload mass carried by booster version F9 v1.1 is **2534.67**.

First Successful Ground Landing Date

```
%sql select min(Date) from SPACEXTBL where "Landing _Outcome" = "Success (ground pad)"

* sqlite://my_datal.db
Done.
min(Date)

01-05-2017
```

Explanation: the first successful landing outcome on ground pad is 01-05-2017.

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
  select Booster Version from SPACEXTBL
  where "Landing _Outcome" = "Success (drone ship)"
      and PAYLOAD MASS KG >4000
      and PAYLOAD_MASS__KG_ < 6000
* sqlite:///my_data1.db
Done.
 Booster_Version
     F9 FT B1022
     F9 FT B1026
    F9 FT B1021.2
   F9 FT B1031.2
```

Explanation: names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

```
%%sql
 select distinct "Mission_Outcome" from SPACEXTBL
* sqlite:///my_data1.db
Done.
            Mission_Outcome
                     Success
               Failure (in flight)
 Success (payload status unclear)
                     Success
 %%sql
  select count(*) from SPACEXTBL
 where "Mission_Outcome" like "Success%"
* sqlite:///my_data1.db
Done.
 count(*)
     100
  **sql
  select count(*) from SPACEXTBL
 where "Mission_Outcome" like "Failure%"
* sqlite:///my_data1.db
Done.
 count(*)
```

Explanation:

- the total number of successful mission outcomes is 100
- the total number of failure mission outcomes is 1

Boosters Carried Maximum Payload

```
%%sql
 select Booster Version from SPACEXTBL
 where PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL)
* sqlite:///my_data1.db
Done.
 Booster_Version
   F9 B5 B1048.4
   F9 B5 B1049.4
   F9 B5 B1051.3
   F9 B5 B1056.4
   F9 B5 B1048.5
   F9 B5 B1051.4
   F9 B5 B1049.5
   F9 B5 B1060.2
   F9 B5 B1058.3
   F9 B5 B1051.6
   F9 B5 B1060.3
   F9 B5 B1049.7
```

Names of the booster which have carried the maximum payload mass

2015 Launch Records

```
select substr(Date, 4, 2) as Month, Booster_Version, Launch_Site from SPACEXTBL
where substr(Date,7,4)='2015' and "Landing _Outcome" = "Failure (drone ship)"

* sqlite://my_data1.db
Done.

Month Booster_Version Launch_Site

01    F9 v1.1 B1012    CCAFS LC-40

04    F9 v1.1 B1015    CCAFS LC-40
```

List the records which will display the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
%%sql
  select "Landing Outcome",
      count("Landing _Outcome") as landings
 from SPACEXTBL
  where Date >= "04-06-2010" and Date <= "20-03-2017"
 group by "Landing _Outcome"
 order by landings desc
* sqlite:///my_data1.db
Done.
   Landing_Outcome landings
                          20
            Success
          No attempt
                           10
 Success (drone ship)
 Success (ground pad)
   Failure (drone ship)
                           4
    Controlled (ocean)
                           3
              Failure
                            3
   Failure (parachute)
          No attempt
```

Rank the count of successful landing outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

<Folium Map Screenshot 1>

The SpaceX launch sites are show in the USA coasts.

<Folium Map Screenshot 2>

<Folium Map Screenshot 3>

Pie chart showing the success percentage achieved by each launch site

Total Success Launches for All Sites is

> CCAFS LC-40: 29.2%

> VAFB SLC-4E: 16.7%

> KSC LC-39A: 41.7%

> CCAFS SLC-40: 12.5%

Pie chart showing the Launch site with the highest launch success ratio

Payload vs. Launch Outcome

Classification Accuracy

Confusion Matrix

Conclusions

- We trained four models using GridSearchCV, with the Decision Tree model performing best on the test dataset, though it may have issues with false positives affecting bid estimations for rocket launches.
- The dataset comprises 90 rows and 83 columns, split 80/20 into 72 training rows and 18 testing rows.
- Key findings includes higher flight amounts at a launch site correlate with greater success rates; launch success rates increased from 2013 to 2020; orbits ES-L1, GEO, HEO, SSO, and VLEO had the highest success rates; and KSC LC-39A had the most successful launches.
- The project aimed to predict Falcon 9 first stage landing outcomes to determine launch costs, with features like payload mass and orbit type influencing mission outcomes; the Decision Tree classifier was the best predictive model among those tested.

