Post-processing Tools

Cindy Bruyère

Graphical Packages

NCL

UG: 9-2

- Graphical package

ARWpost

UG: 9-28

Converter (GrADS & vis5d)

RIP4

UG: 9-19

Converter and interface to graphical package NCAR Graphics

WPP

UG: 9-35

Converter (GrADS & GEMPAK) VAPOR

UG: 9-50

- Converter and graphical package
- Support: VAPOR

unidata.ucar.edu

- IDV
 - GRIB (from WPP)
 - GEMPAK (from wrf2gem)
 - vis5d (from ARWpost)
 - CF complaint data (from wrf_to_cf)
 - Support: unidata
- GEMPAK
 - Data from wrf2gem or WPP
 - Sampantawidakol

Graphical Packages

	NCL	RIP4	ARWpost (GrADS / Vis5D)	WPP	VAPOR
Directly ingest WRF data	Y	N converter	N / (Y) converter	N converter	N converter
Intermediate files	N	lots	large file	Υ	large file
WPS DATA	Y	Υ	Y	N	N
wrfinput data	Y	Y	Y	N	N
I dealized data files	Y	Y	Y	N	N
Input format	netCDF	netCDF	netCDF / GRIB1	netCDF / binary	netCDF
Vertical Output Coordinate	eta pressure height	eta pressure height	eta pressure height	pressure	eta
Software required (All binaries are free)	NCL	NCARG	GrADS/vis5d	GrADS / GEMPAK	VAPOR
Diagnostics	some	> 100	some	some	limited

ARWpost / RIP4 / WPP

Download code

./configure & ./compile

- Edit namelist
 - Namelist format differ between these three programs
- Obtain a graphical display package

Run code and display output

NCL

NCAR Command Language

http://www.ncl.ucar.edu

Read WRF model data directly

- Generate a number of graphical plots
 - Horizontal, cross-section, skewT, meteogram, panel

NCL & WRF

User Modifiable

Maintain/support MMM

Download NCL

- http://www.ncl.ucar.edu/Download
 - Fill out short registration form (there is a short waiting period)
 - Read and agree to OSI-based license
 - Download binaries
- NCARG_ROOT environment variable
 - setenv NCARG_ROOT /usr/local/ncl
- NCL version 5.1.0 or later

- Required by NCL libraries
- Must be in your "~/" directory (home directory)
- Control
 - color table ; font
 - white/black background
 - size of plot
 - control characters
- <u>http://www.ncl.ucar.edu/Document/Graphics/</u> hlures.shtml

~/.hluresfile

*wkColorMap : BlAqGrYeOrReVi200

*wkBackgroundColor : white

*wkForegroundColor : black

*FuncCode : ~

*TextFuncCode : ~

*Font : helvetica

*wkWidth : 900

*wkHeight : 900

http://www.mmm.ucar.edu/wrf/
OnLineTutorial/
Graphics/NCL/.hluresfile

- Create a script
 - wrf_real.ncl
 (start with a sample script)
- Set NCARG_ROOT environment variable:
 - setenv NCARG_ROOT /usr/local/ncl
- Ensure you have an ~/.hluresfile file
- Run NCL script
 - ncl wrf_real.ncl

Generate Plots: A good start - OnLine Tutorial

http://www.mmm.ucar.e
wrf/OnLineTutorial/
Graphics/
NCL/index.html

Creating a Plot: NCL script

```
load ncl library scripts
begin
 ; Open graphical output
 ; Open input file(s)
 ; Read variables
 ; Set up plot resources & Create plots
 ; Output graphics
end
```



```
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
begin
```

```
a = addfile("./geo_em.d01.nc","r")
wks = gsn_open_wks("pdf","plt_ter1")
ter = a->HGT_M(0,:,:)
plot = gsn_contour(wks,ter,True)
end
```


load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

```
begin
  a = addfile("./geo em.d01.nc","r")
  wks = gsn_open_wks("pdf","plt_ter1")
  ter = a \rightarrow HGT M(0,:,:)
  res = True
  res@cnFillOn = True
  res@gsnSpreadColors = True
  res@cnLevelSelectionMode = \
     "ManualLevels"
  res@cnMinLevelValF = 0.
  res@cnMaxLevelValF = 1000.
  res@cnLevelSpacingF = 50.
  plot = gsn_contour(wks,ter,res)
end
```


Basic NCL resources there are over 1400 controlling contours, labelbars, legends, maps, etc.


```
load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn code.ncl"
load "$NCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
begin
                                                              GEOGRID FIELDS
                                                                                    Init: 0000-00-00_00:00:00
  a = addfile("./geo_em.d01.nc","r")
                                                               Topography height (meters MSL)
  wks = gsn open wks("pdf","plt ter5")
  opts = True
  opts@MainTitle = "GEOGRID FIELDS"
  ter = wrf user getvar(a, "HGT M", 0)
  res = opts
  res@cnFillOn = True
  res@ContourParameters = (/0.,1000.,50./)
  contour = wrf contour(a, wks, ter, res)
                                                                         85°W
                                                                                       75°W
  pltres = True
                                                                        Topography height (meters MSL)
                                                                    100 200 300 400 500 600 700 800 900 1000
  mpres = True
  plot = wrf map overlays(a, wks, (/contour/), \
    pltres, mpres)
end
```



```
slp = wrf user getvar(a, "slp", 5)
    = wrf user getvar(a,"T2",5)
u10 = wrf user getvar(a, "U10",5)
v10 = wrf_user_getvar(a,"V10",5)
os@cnLineColor = "NavyBlue"
c slp = wrf contour(a, wks, slp, os)
ot@cnFillOn = True
c_tc = wrf_contour(a, wks, t2, ot)
ov@NumVectors = 47
vec = wrf vector(a, wks, u10, v10, ov)
plot = wrf map overlays(a, wks, \
      (/c tc,c slp,vec/), pltres, mpres)
```


Special WRF Functions

wrf_user_getvar
 Get fields from input file

```
ter = wrf_user_getvar(a,"HGT",0)
t2 = wrf_user_getvar(a,"T2",-1)
slp = wrf_user_getvar(a,"slp",1)
```

avo/pvo: Absolute/Potential Vorticity,
cape_2d: 2D mcape/mcin/lcl/lfc, cape_3d: 3D cape/cin,
dbz/mdbz: Reflectivity, geopt/geopotential: Geopotential,
p/pres/pressure: Pressure, rh/rh2: Relative Humidity,
slp: Sea Level Pressure, td/td2: Dew Point Temperature,
tc/tk: Temperature, th/theta: Potential Temperature,
z/height: Height, ua/va/wa: wind on mass points,
uvmet/uvmet10: wind rotated to earth coordinates

Special WRF Functions

- wrf_contour / wrf_vector
 Create line/shaded & vector plots
- wrf_map_overlays / wrf_overlays
 Overlay plots created with wrf_contour and wrf_vector
- wrf_map

 Create a map background not used often
- wrf_user_intrp3d / wrf_user_intrp2d

 Interpolate horizontally to a given pressure or height level (3d data only)

 Interpolate vertically along a given line
- wrf_user_ll_to_ij / wrf_user_ij_to_ll
 Convert: lat/lon ij
- wrf_user_list_times
 Get list if times available in input file
- wrf_user_unstagger
 Unstaggers an array

Resources

 The special WRF functions have unique resources:

http://www.mmm.ucar.edu/wrf/OnLineTut
orial/

Graphics/NCL/NCL_functions.htm

 All general NCL resources can also be used to control the plot:

http://www.ncl.ucar.edu/Document/Graphi

cs/

Resources

Calling FORTRAN code from NCL

- Easier to use F77 code, but works with F90 code
- Need to isolate definition of input variables and wrap it with special comment statements:
 - C NCLFORTSTART
 - C NCLEND
- Use a tool called WRAPIT to create a * . so file
- Load *.so file in NCL script with "external" statement
- Call Fortran function with special "::" syntax
- Must preallocate arrays!

myTK.f

```
C NCLFORTSTART
   subroutine compute tk (tk,pressure,theta, nx, ny, nz)
     implicit none
     integer nx,ny,nz
     real pi, tk(nx,ny,nz)
     real pressure(nx,ny,nz), theta(nx,ny,nz)
C NCLEND
     integer i,j,k
     do k=1,nz
       do j=1,ny
       do i=1,nx
          pi=(pressure(i,j,k) / 1000.)**(287./1004.)
          tk(i,j,k) = pi*theta(i,j,k)
       enddo
       enddo
     enddo
```


end

myTK.so - Create & use in NCL script

% WRAPIT myTK.f

This will create a "myTK.so" file

```
load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn code.ncl"
load "$NCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
external myTK "./myTK.so"
begin
   t = wrf user getvar(a,"T",5)
   t = t + 300
   p = wrf user getvar(a,"pressure",5)
    ; Must preallocate space for output arrays
   dim = dimsizes(t)
   tk = new( dimsizes(t), typeof(t) )
    ; Remember, Fortran/NCL arrays are ordered differently
       myTK :: compute_tk (tk,p,t,dim(2),dim(1),dim(0))
end
```


FORTRAN 90 code

Can use simple FORTRAN 90 code

 Your FORTRAN 90 program may not contain any of the following features:

- pointers or structures as arguments,
- missing/optional arguments,
- keyword arguments, or
- recursive procedure.

- Graphics
- Designing a model domain
- Data

grib 1&2	intermediate format	netcdf
netcdf		

- netCDF tools
- Other utilities

Graphics: ImageMagick

- Convert graphical files from one format to another
 - Many options available (rotate frames, trim white space, etc.)
 - Can be used for files with single or multiple frames
 - Cannot deal with .ncgm files
 - http://www.imagemagick.org

```
convert file.pdf file.png
convert file.png file.bmp
convert file.pdf file.gif
convert file.ras file.png
```


WRF Model Domain Design

- WPS util/ directory
 - plotgrids.exe
 - reads namelist information to generate plot
 - create an NCAR Graphics file called 'gmeta'

NCL

mp =

```
wrf_wps_dom (wks, mpres, lnres,
txres)

mpres@max_dom = 3
mpres@ref_lat = 34.83
mpres@ref_lon = -81.03
mpres@dx = 30000.
mpres@dy = 30000.
mpres@map proj = "lambert"
```


GRIB

- http://dss.ucar.edu/docs/formats/grib/gribdoc/
- g1print.exe & g2print.exe
 - Show data available in GRIB1 & GRIB2 files
 - Available from util/ directory in WPS
- grib2ctl.pl
 - Create .ctl and .idx files, so one can plot GRIB files with GrADS (available on web)
- wgrib (for GRIB 1 data files)

wgrib -v file

wgrib -V file

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

GRIB2

Documentation

<u>http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_do</u> <u>c.shtml</u>

 GRIB2 – GRIB1 parameter conversion table <u>http://www.nco.ncep.noaa.gov/pmb/docs/grib2/GRIB2_p</u> armeter_conversion_table.html

Product	Category	Parameter		Parameter
0	2	2	U	33
0	2	3	V	34

wgrib2

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/

Utility: g1print and g2print

The *g1print* and *g2print* programs list the contents of a GRIB1 or GRIB2 file:

	Prod Disc	Cat	Param num	Lvl code	Lvl one	Lvl two	Name	Time	Fcst hour
1	0	3	5	100	100000	0	HGT	2006-08-16_12:00:00	00
2	0	3	5	100	97500	0	HGT	2006-08-16_12:00:00	00
3	0	3	5	100	95000	0	HGT	2006-08-16_12:00:00	00
4	0	3	5	100	92500	0	HGT	2006-08-16_12:00:00	00
5	0	3	5	100	90000	0	HGT	2006-08-16_12:00:00	00
6	0	3	5	100	85000	0	HGT	2006-08-16_12:00:00	00
7	0	3	5	100	80000	0	HGT	2006-08-16_12:00:00	00
8	0	3	5	100	75000	0	HGT	2006-08-16_12:00:00	00
9	0	3	5	100	70000	0	HGT	2006-08-16_12:00:00	00
10	0	3	5	100	65000	0	HGT	2006-08-16_12:00:00	00

WPS Intermediate Files

Output format of ungrid

- WPS util/ directory
 - plotfmt.exe (graphical interface to view intermediate file)
 - rd_intermediate.exe
- Create your own intermediate files
 - example if you have input data in netCDF format
 - <u>http://www.mmm.ucar.edu/wrf/OnLineTutorial/</u> *WPS/IM_files.htm*

Utility: rd_intermediate

The rd_intermediate lists information about the fields found in an intermediate-format file

```
FIELD = TT
UNITS = K DESCRIPTION = Temperature
DATE = 2000-01-24 12:00:00 FCST = 0.000000
SOURCE = unknown model from NCEP GRID 212
LEVEL = 200100.000000
I,J DIMS = 185, 129
IPROJ = 1
  REF X, REF Y = 1.000000, 1.000000
  REF_LAT, REF_LON = 12.190000, -133.459000
  DX, DY = 40.635250, 40.635250
  TRUELAT1 = 25.000002
DATA(1,1)=295.910950
```


Utility: plotfmt

The plotfmt program plots the fields in the ungrib intermediate-formatted files

Pa

Sea-level Pressure WPS intermediate format unknown model from NCEP GRID 212

Height

WPS intermediate format

unknown model from NCEP GRID 212

netCDF

- netCDF stands for <u>network Common Data Form</u>
- netCDF is one of the current supported data formats chosen for WRF I/O API
 - WRF I/O supports netCDF (not fully CF compliant Climate and Forecast Metadata Convention)/ binary/GRIB/HDF
 - Most support graphical packages currently only support netCDF file format
- <u>http://www.unidata.ucar.edu</u> (documentation)
- http://www.unidata.ucar.edu/software/netcdf/
 fguide.pdf (writing Fortran programs to read/write netCDF files)

netCDF

- Advantages of using netCDF?
 - Platform-independent (big_endian / little_endian)
 - A lot of software already exist which can be used to process netCDF data

- netCDF operators
 - http://nco.sourceforge.net/
 - Stand alone programs to, which can be used to manipulate data (performing grid point averaging / file differencing / file 'appending')

NCO tools

http://nco.sourceforge.net/

- ncdiff
 - Difference two file ncdiff input1.nc input2.nc output.nc
- ncrcat (nc cat)
 - Write specified variables / times to a new file ncrcat -v RAINNC wrfout* RAINNC.nc ncrcat -d Time,0,231 -v RAINNC wrfout* RAINNC.nc
- ncra (nc average)
 - Average variables and write to a new file
 ncra -v OLR wrfout* OLR.nc
- ncks (nc kitchen sink)

Combination of NCO tools all in one (handy: one tool for multiple operations)

Change fields in netCDF file

```
load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn code.ncl"
Begin
 a = addfile("./met em.d01.2000-01-24 12:00:00.nc","w")
                  ; read a field
 sst = a->SST
 sst = sst + 10
                  ; change the field
 a->SST = sst
                  : write the field
```

end

netCDF: Utilities

ncdump

- reads a netCDF dataset and prints information from the dataset
- ncdump -h file
 print header (inc. list of variables in the file)
- ncdump -v VAR file
 print data of the variable VAR
 ncdump -v Times file

netCDF: ncdump -h

```
netcdf wrfinput_d01 {
dimensions:
        Time = UNLIMITED ; // (1 currently)
        DateStrLen = 19 ;
        west east = 73;
        south north = 60 :
        west east stag = 74;
        bottom top = 27;
        south north stag = 61;
        bottom top stag = 28;
variables:
        char Times(Time, DateStrLen) ;
        float LU INDEX(Time, south north, west east);
                LU INDEX:FieldType = 104;
                LU INDEX: MemoryOrder = "XY ";
        LU INDEX:description = "LAND USE CATEGORY" ;
                LU INDEX:units = "";
                LU INDEX:stagger = "";
•••••
global attributes:
                :TITLE = " OUTPUT FROM REAL EM V3.0 PREPROCESSOR";
                :START DATE = "2000-01-24 12:00:00";
                :SIMULATION START DATE = "2000-01-24 12:00:00";
                :WEST-EAST GRID DIMENSION = 74;
                :SOUTH-NORTH GRID DIMENSION = 61;
                :BOTTOM-TOP GRID DIMENSION = 28;
                :DX = 30000.f;
                :DY = 30000.f;
                :GRIDTYPE = "C" ; :MP PHYSICS = 3 ;
                :SF_SFCLAY_PHYSICS = 1;
                :SF SURFACE PHYSICS = 1 ;
                :BL PBL PHYSICS = 1 ;
                :CU PHYSICS = 1 ;
.....
```


netCDF: ncdump -v Times

```
netcdf wrfinput d01 {
dimensions:
        Time = UNLIMITED ; // (1 currently)
        DateStrLen = 19 ;
        west east = 73;
        south north = 60;
        west east stag = 74;
        bottom top = 27;
        south north stag = 61;
        bottom top stag = 28;
variables:
        char Times(Time, DateStrLen) ;
        float LU INDEX(Time, south north, west east);
                LU INDEX:FieldType = 104 ;
                LU INDEX: MemoryOrder = "XY ";
        LU INDEX:description = "LAND USE CATEGORY" ;
                LU INDEX:units = "";
                LU INDEX:stagger = "";
global attributes:
                :TITLE = " OUTPUT FROM REAL_EM V3.0 PREPROCESSOR";
                :START DATE = "2000-01-24 12:00:00";
                :SIMULATION START DATE = "2000-01-24 12:00:00";
                :WEST-EAST GRID DIMENSION = 74;
                :SOUTH-NORTH GRID DIMENSION = 61;
                :BOTTOM-TOP GRID DIMENSION = 28;
                :DX = 30000.f;
                :DY = 30000.f;
data:
 Times =
  "2000-01-24 12:00:00",
  "2000-01-24_18:00:00",
  "2000-01-25 00:00:00",
  "2000-01-25 06:00:00"
```


ncview

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

Other Utilities

Developed / Supported by NCAR

- FORTRAN program
 - Easy to use
 - Easy to add your own code
 - Only for netCDF datasets

 http://www.mmm.ucar.edu/wrf/users/ utilities/util.htm

Other Utilities

read_wrf_nc

- Display data inside a wrfout netCDF file
- Specific points; min/max of fields; time series;
 edit data in file

iowrf

Thinning of netCDF data;
 extracting a area;
 destaggering grid

p_interp

Interpolate to pressure levels

v_interp

- Add vertical levels in wrf input and boundary files
- For use with ndown

wrf_to_cf

User contributed code (not fully supported)

