# OVERVIEW: CLASSIFICATION WITH HYPERSPECTRAL REMOTE SENSING DATA

- ภาพถ่ายทางดาวเทียมบันทึกภาพในหลายช่วงคลื่น
  - ตัวอย่างภาพที่แคนาดามาจาก LANDSAT มี 7 แบนด์ เป็น MULTISPECTRAL
  - ตัวอย่างภาพที่แหลมตะลุมพุกมาจาก HYPERION มี 155 แบนด์ เป็น HYPERSPECTRAL
  - ตัวอย่างภาพจาก PRISMA (ที่พี่ฝ้ายจะใช้แยกหลุมพี) มี 240 แบนด์ เป็น HYPERSPECTRAL
- 🕨 การจำแนกภาพถ่ายทางดาวเทียมแบบมีการควบคุม (SUPERVISED CLASSIFICATION)
  - TRAINING ด้วยข้อมูล REGION OF INTEREST ที่ไปเก็บข้อมูลในพื้นที่
  - CLASSIFICATION
    - เลือกชุดช่วงคลื่นที่เหมาะสมด้วย FEATURE TRANSFORMATION หรือ FEATURE SELECTION
    - เลือกวิธีการจำแนกที่เหมาะสมอย่าง SPECTRAL ANGLE MAPPING, MINIMUM DISTANCE
  - TEST ด้วยข้อมูล REGION OF INTEREST อีกชุด (อย่างไม่ลำเอียง) ประเมินผลด้วย CONFUSION MATRIX ซึ่งระบุ PRODUCER's ACCURACY, USER's ACCURACY and OVERALL ACCURACY

## WELCOME TO HYPERSPECTRAL REMOTE SENSING

- วัตถุทั้งหลายจะมีลายเซ็น (Spectral Signature) เป็น ของตนเอง เป็นค่าการสะท้อนเชิงช่วงคลื่น (Spectral Reflectance) ของวัตถุในแต่ละช่วงคลื่นต่างๆ ทั้ง ในช่วงคลื่น Ultraviolet, Visible Light และ Infrared
- การเลือกช่วงคลื่นที่เหมาะสมจะสามารถแยกประเภท ของวัตถุบนพื้นโลกได้อย่างเหมาะสม อย่างการแยก ระหว่างพื้นดินและพื้นน้ำในช่วงอินฟราเรดใกล้
- > เราสามารถจำแนกประเภทพืชชนิดต่างๆได้โดยศึกษา จาก Spectral Reflectance ของพืชแต่ละชนิด นอกจากนี้ยังศึกษาสุขภาพของพืชได้ด้วย





#### LANDSAT 4

| Band No. | Wavelength Interval (µm) | Spectral Response | Resolution (m) |
|----------|--------------------------|-------------------|----------------|
| 1        | 0.45 - 0.52              | Blue Green        | 30             |
| 2        | 0.52 - 0.60              | Green             | 30             |
| 3        | 0.63 - 0.69              | Red               | 30             |
| 4        | 0.76 - 0.90              | Near IR           | 30             |
| 5        | 1.55 - 1.75              | Mid-IR            | 30             |
| 6        | 10.40 - 12.50            | Thermal IR        | 120            |
| 7        | 2.08 - 2.35              | Mid-IR            | 30             |



## **VEGETATION INDEX AND FRIENDS ...**





| Vegetation index                                        | Formula                                                             | Reference |
|---------------------------------------------------------|---------------------------------------------------------------------|-----------|
| Simple ratio (SR)                                       | SR = NIR/R                                                          | [5]       |
| Normalized difference vegetation index (NDVI)           | NDVI = (NIR-R)/(NIR+R)                                              | [6]       |
| Perpendicular vegetation index (PVI)                    | $PVI = (NIR-aR-b)/(a^2+1)^{1/2}$                                    | [11]      |
| Soil adjusted vegetation index (SAVI)                   | SAVI = (NIR-R)/(NIR+R+L)(1+L)                                       | [12]      |
| Weighted difference vegetation index (WDVI)             | WDVI = NIR-aR                                                       | [2]       |
| Transformed soil adjusted vegetation index (TSAVI)      | $TSAVI = a(NIR-aR-b)/(R+a(NIR-b)+X(1+a^2))$                         | [13]      |
| Modified soil adjusted vegetation index (MSAVI)         | $MSAVI = (2NIR+1-((2NIR+1)^2-8(NIR-R))^{1/2})/2$                    | [14]      |
| Optimized soil adjusted vegetation index (OSAVI)        | OSAVI = (NIR-R)/(NIR+R+Y)                                           | [8]       |
| Generalized soil adjusted vegetation index (GESAVI)     | GESAVI = (NIR-aR-b)/(R+Z)                                           | [15]      |
| Atmospherically resistant vegetation index (ARVI)       | $ARVI = (NIR-RB)/(NIR+RB), RB = R-\gamma(B-R)$                      | [16]      |
| Modified normalized difference vegetation index (MNDVI) | $MNDVI = NDVI \times (SWIR_{max} - SWIR)/(SWIR_{max} - SWIR_{min})$ | [18]      |
| Enhanced vegetation index (EVI)                         | $EVI = 2.5 \times ((NIR-R)/(NIR+6R-7.5B+1))$                        | [17]      |
| Reduced simple ratio (RSR)                              | $RSR = SR \times (SWIR_{max} - SWIR)/(SWIR_{max} - SWIR_{min})$     | [10]      |
| Moisture adjusted vegetation index (MAVI)               | MAVI = (NIR-R)/(NIR+R+SWIR)                                         | INAAT     |



Note: B, R, NIR, and SWIR are the surface reflectance in the blue, red, near infrared, and shortwave infrared bands, respectively. SWI. and minimum surface reflectance in the SWIR band, respectively. SWIRmax and SWIRmin are defined as the 1% minimum and maxin of the SWIR band reflectance here. a and b are the slope and intercept of the soil line, respectively. L, X, Y, and Z are soil background as self-correcting factor which depends on aerosol types. doi:10.1371/journal.pone.0102560.t001

SWI Band Math เอาไว้สกัดข้อมูล พีขออกมาจากภาพถ่าย

## **SMOOTHING CURVE**

## Consideration of smoothing techniques for hyperspectral remote sensing

#### Chaichoke Vaiphasa







Fig. 1. (a) An average spectral profile of plants before smoothing; (b) an average spectral profile after smoothing; and (c) a scatter plot of the two principal wavelengths (550 and 700 nm) before (triangle) and after (square) smoothing.



Fig. 3. The number of statistically disturbed locations ( $N_{p<0.01}$ ) caused by moving average and Savitzky–Golay filters.





#### FEATURE SPACE

- สำหรับลายเซ็นการสะท้อนเชิงช่วงคลื่นของวัตถุหนึ่งเราจะทราบค่าร้อยละการสะท้อนที่ความยาวคลื่นต่างๆ
- > เราเลือกช่วงคลื่นที่สนใจ นำค่าร้อยละการสะท้อน ในช่วงคลื่นที่สนใจมาลงจุดลงใน Feature Space
- เราอาจพบการเกาะกลุ่มของวัตถุเดียวกัน ด้วยวิธี
  เลือกช่วงคลื่น (Feature Selection) อย่างเหมาะสม
  หรือ เลือกมุมมองที่เหมาะสมผ่าน (Feature
  Transformation) ที่เหมาะสม จะสามารถแยกกลุ่ม
  ของวัตถุที่แตกต่างกันได้อย่างชัดเจน
- มีประโยชน์ต่อการเลือกตัวจำแนกที่เหมาะสมต่อไป



#### REGION OF INTEREST SEPARABILITY

- > บ่งบอกว่า ROI กลุ่มต่างๆมีระยะห่างจากกันเพียงใด
- > JEFFRIES-MATUSITA ใกล้กันจนซ้อน ค่าจะเป็น 0 ไกลกันมาก ค่าจะเป็น 2

```
Input File: Hyperspectral
    ROI Name: (Jeffries-Matusita, Transformed Divergence)
Hy-Train-RM1 [Red] 38 points:
    Hy-Train-RA1 [Green] 51 points: (0.83251291 1.06006359)
    Hy-Train-AM1 [Blue] 44 points: (1.98628670 1.99150502)
    Hy-Train-AA1 [Yellow] 30 points: (1.14031112 1.17327722)
    Hy-Train-BP1 [Cyan] 38 points: (1.66280429 1.77319747)
Hy-Train-RA1 [Green] 51 points:
    Hy-Train-RM1 [Red] 38 points: (0.83251291 1.06006359)
    Hy-Train-AM1 [Blue] 44 points: (1.97811210 1.99818831)
    Hy-Train-AA1 [Yellow] 30 points: (1.10430704 1.44978799)
    Hy-Train-BP1 [Cyan] 38 points: (1.30530599 1.32291686)
Hy-Train-AM1 [Blue] 44 points:
    Hy-Train-RM1 [Red] 38 points: (1.98628670 1.99150502)
    Hy-Train-RA1 [Green] 51 points: (1.97811210 1.99818831)
    Hy-Train-AA1 [Yellow] 30 points: (1.99705391 1.99998713)
    Hy-Train-BP1 [Cyan] 38 points: (1.77792125 1.87820862)
Hy-Train-AA1 [Yellow] 30 points:
    Hy-Train-RM1 [Red] 38 points: (1.14031112 1.17327722)
    Hy-Train-RA1 [Green] 51 points: (1.10430704 1.44978799)
    Hy-Train-AM1 [Blue] 44 points: (1.99705391 1.99998713)
    Hv-Train-BP1 [Cyan] 38 points: (1.46107877 1.62965849)
Hy-Train-BP1 [Cyan] 38 points:
    Hy-Train-RM1 [Red] 38 points: (1.66280429 1.77319747)
    Hy-Train-RA1 [Green] 51 points: (1.30530599 1.32291686)
    Hy-Train-AM1 [Blue] 44 points: (1.77792125 1.87820862)
    Hy-Train-AA1 [Yellow] 30 points: (1.46107877 1.62965849)
```



#### FEATURE SELECTION

- เราจะใช้กี่ช่วงคลื่นมาใช้ในการจำแนกวัตถุบนภาพถ่ายทางดาวเทียม ?
- ตัวตัดสินอยู่ที่ความถูกต้องของการจำแนก (Accuracy) ในภายหลัง
- การเลือกทุกช่วงคลื่นมาจำแนกอาจไม่ทำให้การจำแนกมีความถูกต้องสูงสุด



#### **GENETIC SEARCH ALGORITHM**

#### A hyperspectral band selector for plant species discrimination

Chaichoke Vaiphasa a,\*, Andrew K. Skidmore b, Willem F. de Boer c, Tanasak Vaiphasa d

33



Fig. 3. A flowchart showing the process of the genetic algorithm used in this study.





offspring chromosomes, and (c) An example of random mutation.

Each block alphabet represents a spectral band label.





|        |     |     | -          |       |       |       |          |         |                 |    |
|--------|-----|-----|------------|-------|-------|-------|----------|---------|-----------------|----|
| (a)    |     |     | Bands (nm) |       |       |       |          |         | 0.1 1           |    |
| Runs 1 | 2   | 3   | 4          | 5     | 6     | 6 7   | OA-Train | OA-Test | Stop Generation |    |
| 1      | 488 | 569 | 732        | 983   | 1,034 | 1,245 | 1,790    | 93      | 91              | 41 |
| 2      | 478 | 579 | 732        | 773   | 1,064 | 1,094 | 1,679    | 94      | 86              | 41 |
| 3      | 478 | 579 | 722        | 732   | 1,094 | 1,558 | 2,063    | 93      | 88              | 41 |
| 4      | 569 | 732 | 742        | 824   | 1,023 | 1,760 | 2,063    | 93      | 85              | 41 |
| 5      | 468 | 590 | 732        | 824   | 1,064 | 1,235 | 1,336    | 93      | 88              | 41 |
| 6      | 478 | 569 | 732        | 1,034 | 1,084 | 1,094 | 1,518    | 92      | 89              | 57 |
| 7      | 478 | 579 | 732        | 773   | 1,034 | 1,094 | 1,790    | 92      | 86              | 41 |
| 8      | 468 | 579 | 742        | 824   | 1,064 | 1,235 | 1,760    | 94      | 86              | 51 |
| 9      | 549 | 712 | 732        | 1,034 | 1,235 | 2,073 | 2,083    | 94      | 92              | 41 |
| 10     | 478 | 529 | 539        | 732   | 1,094 | 1,528 | 2,093    | 92      | 88              | 41 |
| 11     | 478 | 579 | 732        | 1,034 | 1,094 | 1,770 | 2,093    | 95      | 88              | 41 |
| 12     | 579 | 732 | 1,034      | 1,235 | 1,518 | 1,548 | 2,032    | 94      | 89              | 38 |
| 13     | 468 | 518 | 579        | 732   | 1,094 | 1,710 | 1,790    | 91      | 90              | 40 |
|        |     |     |            |       |       |       |          |         |                 |    |



### FEATURE TRANSFORMATION

- นำภาพถ่ายทางอากาศในหลายช่วงคลื่นมาทำการPrincipal Component Analysis (PCA)
- lon ได้ภาพที่มีจำนวนแบนด์น้อยกว่าเดิม แต่ละแบนด์มีค่า ความสำคัญ (EIGENVALUE) ลดหลั่นกันไป
- จำนวนแบนด์หลังการแปลงลดลงน้อยเพียงใดขึ้นกับ
   วัตถุประสงค์ในการจำแนก





## FEATURE TRANSFORMATION EXAMPLE

- เลือกมา 7 ช่วงคลื่น ที่ให้ Accuracy 92% ค้นจากงานวิจัย
- แสดงผลการแปลงมาแค่ 3 ช่วงคลื่น (ใหม่) พอแล้ว
- พิจารณาจาก EIGENVALUE ดังภาพขวา



PC Eigenvalues

1.5×10<sup>7</sup>

1.0×10<sup>7</sup>

5.0×10<sup>6</sup>

File Edit Options Plot\_Function Help

PC File: Hyperspectral

## **CLASSIFICATION METHOD: PARAMETRIC CLASSIFIER**

#### MAXIMUM LIKELIHOOD (ความน่าจะเป็น)



Band 3 digital number Equiprobability contours Band 4 digital number

Figure 7.43 Equiprobability contours defined by a maximum likelihood classifier.

#### **CLASSIFICATION METHOD: NON-PARAMETRIC CLASSIFIER**

SPECTRAL ANGLE MAPPER (SAM)

: ตัวจำแนกเชิงมุม



MINIMUM DISTANCE (MINDIST)

: ตัวจำแนกเชิงเส้น

#### Minimum Distance to Means Classifier



Red reflectance

Adapted from Lillesand & Kiefer, 1994

## CLASSIFICATION RESULT AND ACCURACY

**Table 3.** (a) The confusion matrix, producer's and user's accuracy of the winning chromosome selected by the genetic search algorithm (Overall Accuracy = 92%), (b) The confusion matrix, producer's and user's accuracy of the band combination selected by the SFS feature selector (Overall Accuracy = 87%), and (c) The confusion matrix, producer's and user's accuracy of the all-spectral-band combination (Overall Accuracy = 86%).

| (a)                    |    |    |    |    |    |       |                     |                 |
|------------------------|----|----|----|----|----|-------|---------------------|-----------------|
| Class                  | RM | RA | AM | AA | BP | Total | Producer's Accuracy | User's Accuracy |
| RM                     | 34 | 3  | 0  | 1  | 0  | 38    | 89                  | 89              |
| RA                     | 3  | 43 | 0  | 0  | 1  | 47    | 84                  | 91              |
| $\mathbf{AM}$          | 0  | 0  | 43 | 0  | 0  | 43    | 98                  | 100             |
| $\mathbf{A}\mathbf{A}$ | 1  | 3  | 1  | 29 | 1  | 35    | 97                  | 83              |
| BP                     | 0  | 2  | 0  | 0  | 36 | 38    | 95                  | 95              |
| Total                  | 38 | 51 | 44 | 30 | 38 | 201   |                     |                 |
| (b)                    |    |    |    |    |    |       |                     |                 |
| Class                  | RM | RA | AM | AA | BP | Total | Producer's Accuracy | User's Accuracy |
| RM                     | 26 | 8  | 0  | 0  | 0  | 34    | 68                  | 76              |
| RA                     | 8  | 42 | 0  | 1  | 1  | 52    | 82                  | 80              |
| AM                     | 0  | 0  | 44 | 0  | 1  | 45    | 100                 | 97              |
| $\mathbf{A}\mathbf{A}$ | 4  | 0  | 0  | 27 | 0  | 31    | 90                  | 87              |
| BP                     | 0  | 1  | 0  | 2  | 36 | 39    | 94                  | 92              |
| Total                  | 38 | 51 | 44 | 30 | 38 | 201   |                     |                 |

**Figure 6.** (a) The classified image of the winning chromosome selected by the genetic search algorithm (Overall Accuracy = 92%) and (b) the classified image of the 7 spectral-band combination selected by the SFS feature selector (Overall Accuracy = 87%).



#### PRISMA HYPERSPECTRAL





PRISMA sensor summary

Remote sensing distanced measurement

Light and sensor

Electromagnetic spectrum

Visible - Near Infrared Others

**Electromagnetic radiation** 

Emitted Reflected Absorbed Spatial Resolution - Size of the field of view

High spatial resolution = smaller pixel size = higher in detail Low spatial resolution = larger pixel size = lower in detail

Pixel Size (Resolution)

Hyperspectral: 30 x 30  $\mu m$ 

Panchromatic PAN: 6.5 x 6.5 µm

**Spectral Resolution** 

Hyperspectral

VNIR: 400 – 1010 nm (66 bands) SWIR: 920 – 2500 nm (173 bands)

Spectral resolution = 240 Bands less than 10 nm

Panchromatic PAN: 400 - 700 nm

**Radiometric Resolution** 

The sensitivity of detectors to small differences in electromagnetic energy Determined by the number of discrete levels into which signal may be divided

12 bits = 4,096 (0 - 4,095)

Temporal Resolution
29 days