Instructions

- Classroom Problems C1.1–C1.3 will be discussed and solved at the tutorial session on Wed 15 Jan, 14–16, Room T4 (A238). No credit is given for these problems.
- Homework Problems H1.1–H1.3 you should solve on your own, and submit your solutions via the MyCourses interface by the deadline of Tue 21 Jan, 23:59, These problems will be individually graded on a scale of 0–2 points per problem.
- In preparing your solutions to the Homework Problems:
 - 1. Justify your solutions, be precise, and provide sufficient detail so that it is easy to follow your reasoning.
 - 2. Submit your solutions as an easily readable, single pdf file, which is either typeset or written in full sentences and clean handwriting.
 - 3. [Code of Conduct] You can discuss the problems with your colleagues and the course's teaching staff, but you must write the presentations of your solutions *independently* and *individually*, without any notes from such discussions.

Classroom Problems

C1.1 Prove the following statements:

- (i) For any r < s, $n^r = o(n^s)$, i.e. $n^r = \mathcal{O}(n^s)$ but $n^s \neq \mathcal{O}(n^r)$.
- (ii) For any r, c > 1, $n^r = o(c^n)$, i.e. $n^r = \mathcal{O}(c^n)$ but $c^n \neq \mathcal{O}(n^r)$.
- (iii) For all a, b > 1, $\log_a n = \Theta(\log_b n)$.
- C1.2 Prove that the family \mathcal{L} of all languages over the alphabet $\Sigma = \{0, 1\}$ is uncountable ("nondenumerable"), i.e. that there cannot be any enumeration of such languages by integer indices L_1, L_2, \ldots so that

$$\mathcal{L} = \{ L_i \subseteq \Sigma^* \mid i = 1, 2, \dots \}.$$

(*Hint*: Identify each binary string x with the integer whose binary representation is 1x, i.e. $\epsilon \sim \#(1) = 1$, $0 \sim \#(10) = 2$, $1 \sim \#(11) = 3$, $00 \sim \#(100) = 4$, etc. Assume such an enumeration exists and consider the language $D = \{x \in \Sigma^* \mid x \not\in L_x\}$.)

C1.3 Design (i.e. give the transition diagram for) a Turing machine M that computes the following function $f: \{1\}^* \longrightarrow \{1\}^*$:

$$f(x) = \begin{cases} 1^{n-1} & \text{if } x = 1^n \text{ and } n \text{ is odd} \\ \varepsilon & \text{otherwise} \end{cases}$$

where ε denotes the empty string. Thus, for instance, f(111) = 11 and $f(11) = \varepsilon$.

Homework Problems

H1.1 Prove the following statements:

- (i) For any r, s > 1, $(\log_2 n)^s = o(n^r)$, i.e. $(\log_2 n)^s = \mathcal{O}(n^r)$ but $n^r \neq \mathcal{O}(\log_2 n)^s$.
- (ii) Show that

$$\log_2 n! = \sum_{i=1}^n \log_2 i = \Theta(n \log_2 n).$$

(*Hint:* Construct an upper bound for the value of the sum using the $\log_2 n$ term, and a lower bound using the term $\log_2 \frac{n}{2}$.) (2 points)

H1.2 Design (i.e. give the transition diagram for) a Turing machine M that computes the following function $f: \{1\}^* \longrightarrow \{1\}^*$:

$$f(x) = \begin{cases} 1^{n-2} & \text{if } x = 1^n \text{ and } n \ge 2, \\ 1^{n+1} & \text{if } x = 1^n \text{ and } n < 2. \end{cases}$$

(For instance, f(111) = 1 and f(1) = 11).

Give the computation sequences of your machine, i.e. the lists of configurations the machine passes through until it halts, on inputs 11 and ε (the empty input string). (2 points)

H1.3 Consider languages over the binary alphabet $\Sigma = \{0, 1\}$.

- (i) Prove that if a language $L \subseteq \Sigma^*$ is decided by some Turing machine, then so is its complement $\bar{L} = \Sigma^* \setminus L = \{x \in \Sigma^* \mid x \notin L\}$. Would the same argument prove the claim for accepting rather than deciding Turing machines? Why not?
- (ii) Prove that if a language $L \subseteq \{0,1\}^*$ is accepted by some Turing machine M_1 , and also its complement \bar{L} is accepted by some Turing machine M_2 , then L is actually decided by some Turing machine M. (No need to present a detailed construction for the machine M. Just explain at a high level how one could combine an acceptor for L and an acceptor for L into a decider for L.) (2 points)