Degree-based Outlier Detection within IP Traffic Modelled as a Link Stream

<u>Audrey Wilmet</u>¹, Tiphaine Viard¹, Matthieu Latapy¹, Robin Lamarche-Perrin²

¹Laboratoire d'informatique de Paris 6 (LIP6) - Complex Networks Team http://www.complexnetworks.fr/ ²Institut des Systèmes Complexes Paris Île de France (ISC-PIF)

TMA Conference 2018, Vienna, Austria June 26-29, 2018

Introduction Context and Goals

Link Stream
Degree

Our Approach

In theory In Practice

In Practice Difficulties

Our Method

Distributions
Similarity

Detection

Removal Validation

Conclusion

Context and Goals

Detect outliers, identify their cause, remove them from IP traffic:

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 1 / 25

Introduction Context and Goals

Link Stream Degree

Our Approach

In theory

In Practice

Our Method

Distribution Similarity

Detection Identificat

Removal

Conclusion

Context and Goals

Detect outliers, identify their cause, remove them from IP traffic:

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 1 / 25

Introduction
Context and Goals
Link Stream

Degree

Our Approach

In Practice
Difficulties

Our Method

Distributions
Similarity

Identification Removal

Conclusion

IP Traffic as a Link Stream

Link stream constructed from 1h of IP Traffic (MAWI):

- Nodes = IP addresses
- Interactions = packet exchanges
- Link stream construction:

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

Two nodes are linked together from time t_1 to time t_2 if they exchanged at least one packet every second within this time interval.

ex: nodes a and c interact from $t_1 = 3$ to $t_2 = 4$

→ M. Latapy *et al.*, 2017 ; T. Viard *et al.*, 2017.

Introduction Context and Goals

Context and Goa Link Stream Degree

Our Approach

In theory
In Practice

Our Method

Distribution Similarity Detection

Identificati Removal Validation

Conclusion

Degree of (v, t)

 $d_t(v)$ = Number of neighbours of node v at time t

Example: degree profile of b

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 3 / 25

Context and Goals Link Stream Degree

Our Approach

In theory In Practice

Difficulties

Our Method

Similarity

Identification

Removal

Validation

Our Approach

TMA 2018 4 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Practice

Our Method

Distribution Similarity

Detection

Identificat

Removal

Validation

Conclusion

① Detection: example

• Detection:

Find observations of the degree which deviate statistically from others.

TMA 2018 5 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Practi

Our Method

Similarity

Detection

D

Removai

Conclusion

① Detection: example

• Detection:

Find observations of the degree which deviate statistically from others.

Degree distribution on all couples (v, t):

TMA 2018 5 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Pract

Our Method

Distribution Similarity

Detection

Removal

Validati

Conclusion

① Detection: example

• Detection:

Find observations of the degree which deviate statistically from others.

Degree distribution on all couples (v, t):

Detected outlier:

 \Rightarrow outlying observation $d_t(v) = 7$

TMA 2018 5 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Pract

Difficulties

Our Method

Similarity

Identifica

Remova

Validatio

Conclusion

2 Identification: example

• Identification:

Find entities which are responsible for the outlying degree observation.

Detected outlier

 \Rightarrow outlying observation $d_t(v) = 7$

Identified outlier:

TMA 2018 6 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Pract

Dilliculties

Our Method

Similarity

Identifica

Remova

Conclusion

2 Identification: example

• Identification:

Find entities which are responsible for the outlying degree observation.

Detected outlier

 \Rightarrow outlying observation $d_t(v) = 7$

Identified outlier:

 \Rightarrow the set : {(e, t) | t \in [20, 21[}

TMA 2018 6 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Pract

Our Method

Distribution Similarity

Detection Identification

Removal

Validation

Conclusion

3 Removal : example

• Removal:

Remove identified entities from the link stream.

Detected outlier

 \Rightarrow outlying observation $d_t(v) = 7$

Identified outlier

 \Rightarrow the set : {(e, t) | t \in [20, 21[}

Removed outlier:

TMA 2018 7 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Pract

Our Method

Dietributions

Similarity

Identificat

Validation

Conclusion

3 Removal : example

• Removal:

Remove identified entities from the link stream.

Detected outlier

 \Rightarrow outlying observation $d_t(v) = 7$

Identified outlier

$$\Rightarrow$$
 the set : $\{(e, t) | t \in [20, 21[\}$

Removed outlier:

$$\Rightarrow \{(e,t) \mid t \in [20,21[$$

TMA 2018 7 / 25

Context and Goals Link Stream Degree

Our Approach

In Practice

Our Method

Conclusion

① Detection in our data

Link stream constructed from 1h of IP Traffic (MAWI)

Degree distribution on all couples (v, t):

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 8 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

Difficulties

Our Method

Validation

Conclusion

Difficulties

Outlier = Activity that deviates from the usual one

Find an outlier \iff Find the normality

Homogeneous with outliers

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 9/25

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Difficultion

Our Method

Similarity

Identification

Removal

Validation

Conclusion

Our Method

TMA 2018 10 / 25

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice
Difficulties

Our Method

Distributions Similarity

Identification Removal Validation

Conclusion

Local Degree Distributions

Degree observation on substreams with a duration of 2 seconds.

TMA 2018 11 / 25

Context and Goals Link Stream Degree

Our Approach

In theory In Practice

Our Method

Distribution Similarity

Detection Identification Removal Validation

Conclusion

Local Distributions Similarity

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 12 / 25

Context and Goals Link Stream Degree

Our Approach

Our Approac

In Practice

Our Method

Distribut

Detection

Identifica

Validation

Conclusion

Comparison of Local Distributions

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 13 / 25

Degree Class C_j

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Our Method

Distribut Similarit

Detection Identification

Removal Validation

Conclusion

Comparison of Local Distributions

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 13 / 25

Introduction Context and Goals

Context and Goals Link Stream Degree

Our Approach

In Practi

Our Method

Distribution Similarity Detection

Removal Validation

Conclusion

Results: Homogeneous Distributions

TMA 2018 14 / 25

Context and Goals Link Stream Degree

Our Approach

In theory In Practic

Our Method

Distribut Similarity

Detection

Removal

Conclusion

Results: Homogeneous Distributions

There are a lot more couples (v, t) for which $d_t(v) \in C_2$ during T_9 than during the majority of other time slices.

TMA 2018 14 / 25

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Difficulties

Our Method

Similarity

Detection

Identificatio

Removal Validation

Conclusion

Overview of our method

Comparison of local distributions

Detection of outliers

TMA 2018 15 / 25

Context and Goals Link Stream Degree

Our Approach

In theory In Practice

Our Method

Distribution Similarity

Identification

Removal

_

Conclusion

Identification: difficulties

Detected Outlier = 2 informations

 \Rightarrow time slice T_i + degree class C_j

How to find responsible entities?

How to identify detected outliers?

Previous example:

Detected Outlier $\Rightarrow T_9$ and C_2

Difficulty: there are numerous (v, t) within C_2 during T_9

Which of them are abnormal?

TMA 2018 16 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Pract Difficulti

Our Method

Distribution Similarity Detection

Identification Removal

Validation

Conclusion

Identification

Low degree classes:

outlier = normal + abnormal traffic

outlier = abnormal traffic only

→ Direct identification possible in high degree classes only

TMA 2018 17 / 25

Context and Goal Link Stream Degree

Our Approach

Our Approac

In Pract

Our Method

Distribution

Identification

Kemovai

Conclusion

Identification in High Degree Classes

Identified outlier: $\{(v_1, t) \mid t \in [710.3, 713.1[\}$

 v_1 is the only node having a degree within C_{41} during T_{335}

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 18 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Practice Difficulties

Our Method

Identification

Validation

Conclusion

Overview of our method

classes

TMA 2018 19/25

Context and Goals Link Stream Degree

Our Approach

In theory In Practice

Our Method

Removal

Validation

Conclusion

Removals of identified outliers

Disappearance of the detected outlier in the C_{41} distribution:

TMA 2018 20/25

Context and Goals Link Stream Degree

Our Approach

In theory

In Practice Difficulties

Our Method

Similarity Detection

Removal

Validation

Conclusion

Removals of identified outliers

Disappearance of the detected outlier in the C_{41} distribution:

... as well as in a smaller degree class distribution:

⇒ Allows to identify low degree classes outliers among neighbours of the removed node.

TMA 2018 20 / 25

Degree

Our Approach

In theory

Difficulties

Our Method

Removal

Conclusion

Overview of our method

TMA 2018 21/25

Context and Goal Link Stream Degree

Our Approach

Our Appro

In Practice Difficulties

Our Method

Distribution Similarity

Detection

Removal

Conclusion

Overview of our method

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 21 / 25

Context and Goals Link Stream Degree

Our Approach

In Practice

Our Method

Validation

Conclusion

Degree Classes Distributions After Removals

Disappearance of most outliers without creation of negative outliers.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 22 / 25

Context and Goals Link Stream Degree

Our Approach

In theory In Practic

Our Method

Distribution Similarity Detection

Identification Removal

Conclusion

Degree Classes Distributions After Removals

Disappearance of most outliers without creation of negative outliers.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 22 / 25

Introduction

Context and Goals

Link Stream

Degree

Our Approach

In theory
In Practice

Our Method

Distributions Similarity

Identificat

Validation

Conclusion

Creation of normal traffic

Number of detected outliers: 1,358

Number of identified outliers: 1,163 = 85% of the detected outliers

 \Rightarrow Consequence on the number of distinct IP addresses per second.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 23 / 25

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Our Method

Distributions

Identification

Removal Validation

Conclusion

Creation of normal traffic

Number of detected outliers: 1,358

Number of identified outliers: 1,163 = 85% of the detected outliers

⇒ Consequence on the number of distinct IP addresses per second.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 23 / 25

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice
Difficulties

Our Method

Distributions Similarity

Detection Identificatio

Validation

Conclusion

Creation of normal traffic

Number of detected outliers: 1,358

Number of identified outliers: 1,163 = 85% of the detected outliers

⇒ Consequence on the number of distinct IP addresses per second.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 23 / 25

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Our Method

Distributions Similarity

Identification

Removal

Validation

Conclusion

Creation of normal traffic

Number of detected outliers: 1,358

Number of identified outliers: 1,163 = 85% of the detected outliers

⇒ Consequence on the number of distinct IP addresses per second.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

Introduction

Context and Goals

Link Stream

Degree

Our Approach

In theory
In Practice

Our Method

Distributions Similarity

Identification

Validation

Conclusion

Creation of normal traffic

Number of detected outliers: 1,358

Number of identified outliers: 1,163 = 85% of the detected outliers

 \Rightarrow Consequence on the number of distinct IP addresses per second.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

Introduction Context and Goals Link Stream Degree

Our Approach

In theory

Our Method

Validation

Conclusion

Creation of normal traffic

Number of detected outliers: 1,358

Number of identified outliers: 1.163 = 85% of the detected outliers

⇒ Consequence on the number of distinct IP addresses per second.

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

TMA 2018 23 / 25

Context and Goals Link Stream Degree

Our Approach

In theory

In Practice

Our Method

Similarity

Identification

Removal

Validation

Conclusion

Conclusion

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice
Difficulties

Our Method

Distributions Similarity

Identification Removal

Removal Validation

Conclusion

Conclusion

Design of a method to detect and precisely identify outliers in heterogeneous distributions:

- Structural and temporal similarity evaluation of distributions.
- Modelling of IP traffic as a link stream.
- \rightarrow IP with anomalous degree profile, network scans.

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice
Difficulties

Our Method

Distributions Similarity Detection

Removal Validation

Conclusion

Conclusion

Design of a method to detect and precisely identify outliers in heterogeneous distributions:

- Structural and temporal similarity evaluation of distributions.
- Modelling of IP traffic as a link stream.
- ightarrow IP with anomalous degree profile, network scans.

Iterative removal of identified outliers

 \rightarrow Validation: Creation of normal traffic (w.r.t $d_t(v)$).

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice
Difficulties

Our Method

Distributions Similarity Detection

Removal

Conclusion

Conclusion

Design of a method to detect and precisely identify outliers in heterogeneous distributions:

- Structural and temporal similarity evaluation of distributions.
- Modelling of IP traffic as a link stream.
- ightarrow IP with anomalous degree profile, network scans.

Iterative removal of identified outliers

- \rightarrow Validation: Creation of normal traffic (w.r.t $d_t(v)$).
- ⇒ Method applicable over temporal interactions in general.

Introduction Context and Goals

Context and Goals Link Stream Degree

Our Approach

In theory

Our Method

Distributions Similarity Detection

Removal Validation

Conclusion

Conclusion

Design of a method to detect and precisely identify outliers in heterogeneous distributions:

- Structural and temporal similarity evaluation of distributions.
- Modelling of IP traffic as a link stream.
- ightarrow IP with anomalous degree profile, network scans.

Iterative removal of identified outliers

- \rightarrow Validation: Creation of normal traffic (w.r.t $d_t(v)$).
- ⇒ Method applicable over temporal interactions in general.

Thank you for your attention!

Link Stream Degree

Our Approach

In theory

Our Method

Conclusion

Identification: details

Detected Outlier = time slice
$$T_i$$
 + degree class C_j
= $\{(v, t) : v \in C_{41} \text{ and } t \in T_{504} = [1008, 1010[\}$

Nodes $\in C_{41}$:

Abnormal on $I_{v_2} = [628.8, 632.6]$

$$I_{v_1} \cap T_{504} = \emptyset$$

$$I_{v_2} \cap T_{504} = \emptyset$$

$$I_{v_3} \cap T_{504} \neq \emptyset$$

$$I_{v_4} \cap T_{504} = \emptyset$$

Identified outlier:

$$\{(v_3,t):t\in I_{v_3}\}$$

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Difficulties

Our Method

Distributions
Similarity

Detection

Identificati Removal

Validation

Degree Profiles of 4 identified nodes

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

Context and Goals Link Stream Degree

Our Approach

In theory
In Practice

Difficulties

Our Method

Distributions
Similarity

Detection Identificatio

Removal Validation

Conclusion

Degree Distribution: before and after

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin

Context and Goal Link Stream Degree

Our Approach

In theory
In Practice
Difficulties

Our Method

Distribution: Similarity Detection

Identification Removal

Conclusion

Classes construction

Need to respect the heterogeneous nature of the distribution:

- have low degree couples (v,t) which contains most of the traffic in isolated classes,
- take into account that the degree of nodes along time fluctuates and that generally: the larger the degree the larger the fluctuations.

⇒ logarithmic degree classes

In logarithmic scale: points spaced of the same distance represent values in the same ratio \emph{r}

lin:
$$k_j \longrightarrow k_{j+1} = k_j + r$$

log: $k_j \longrightarrow k_{j+1} = k_j \times r$ and $log(k_{j+1}) = log(k_j) + log(r)$

In our method:

$$log(k_{j+1}) = log(k_j) + 0.1$$

Other construction:

$$\{1\}, \{2\}, ... \{9\}, \{10, ..., 19\}, \{20, ..., 29\}, ..., \{90, ..., 99\}, \{100, ... 199\}, etc.$$

Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, Robin Lamarche-Perrin