ГЛАВА 2. НЕЛИНЕЙНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ

1.1. Фазовое пространство и фазовые портреты динамических систем

Рис. 1 Устойчивая система

Неустойчивая система

Любая электромеханическая система является динамической системой. Элементы, входящие в систему могут быть нелинейными, следовательно, дифференциальные уравнения, описывающие динамические системы являются нелинейными.

Для исследования нелинейных систем И наглядного представления, происходящих в них сложных динамических процессов использует фазовое пространство, в котором строятся фазовые портреты (см. рис. 2). Каждая динамическая система имеет свой фазовый портрет. На фазовом портрете изображаются особые точки – *точки положения равновесия*, которые помогают, без решая дифференциальных уравнений, предсказать поведение динамической системы. Эти точки равновесия могут быть устойчивыми или **неустойчивыми**. Если динамическая система находится в окрестности устойчивой точки равновесия, то малые возмущения не нарушат устойчивой работы системы (см рис). Если точка положения равновесия не устойчива, то возмущения будут прогрессировать что может привести к разрушению системы (см. рис/2).

Рассмотрим метод фазового пространства применительно к динамической системе второго порядка

$$\begin{cases} \frac{dx}{dt} = F_1(x, y) \\ \frac{dy}{dt} = F_2(x, y) \end{cases}, \tag{1}$$

здесь $F_1(x,y)$ и $F_2(x,y)$ нелинейные функции своих аргументов.

Чтобы получить фазовые траектории нужно исключить время для чего делим второе уравнение на первое

$$\frac{dy}{dx} = \frac{F_2(x,y)}{F_1(x,y)} \tag{2}$$

В точках положения равновесия производные по времени превращаются в нуль и тогда получаем отношение неопределенностей:

$$\frac{dy}{dx} = \frac{F_2(x, y)}{F_1(x, y)} = \frac{0}{0}$$
 (3)

Точки, в которых встречаются неопределенности, называются особыми точками. В особых точках на фазовой плоскости решения могут разветвляться.

Опишем алгоритм поиска точек положения равновесия.

В положении равновесия — при установившемся процессе искомые величины x и y не изменяются, поэтому производные равны нулю:

$$\begin{cases}
0 = F_1(x, y) \\
0 = F_2(x, y)
\end{cases}$$
(4)

Решая полученную систему нелинейных уравнений, находим точки положения равновесия x_0, y_0 . После определения координат точки положения равновесия нужно определить характер точки. Для определения характера точки, разложим функции $F_1(x,y)$ и $F_2(x,y)$ в окрестности точек положения равновесия x_0, y_0 , и ограничиваемся первыми тремя членами разложения:

$$\begin{cases}
F_1(x,y) = F_1(x_0, y_0) + \frac{\partial F_1}{\partial x} (x - x_0) + \frac{\partial F_1}{\partial y} (y - y_0) + \dots \\
F_2(x,y) = F_2(x_0, y_0) + \frac{\partial F_2}{\partial x} (x - x_0) + \frac{\partial F_2}{\partial y} (y - y_0) + \dots
\end{cases}$$
(5)

Выписываем коэффициенты при линейных членах и получаем матрицу Якоби или Якобиан:

$$\mathbf{A}(x_0, y_0) = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
(6)

Элементы матрицы Якоби $a_{i,j}$ являются постоянными величинами.

Следующий этап — определение характера точки. Для этого нужно найти собственные числа матрицы Якоби λ , решая характеристического уравнение.

$$\left|\mathbf{I} - \lambda \mathbf{A}\right| = 0. \tag{7}$$

Где **I** –единичная матрица.

Определять собственные числа удобно с помощью программы **MathCAD** с использованием функции **eigenvals**(A), при этом возможны несколько случаев.

1. Оба собственных числа вещественны и положительны:

$$\lambda_1 > 0, \lambda_2 > 0$$

Тогда, точка положения равновесия с координатами x_0, y_0 называется неустойчивый узел.

2. Оба собственных числа вещественны и отрицательны:

$$\lambda_1 < 0, \lambda_2 < 0$$

Тогда, точка положения равновесия с координатами x_0 , y_0 называется устойчивый узел.

3. Собственные числа вещественны и имеют разные знаки:

$$\lambda_1 < 0, \lambda_2 > 0$$
 или $\lambda_2 < 0, \lambda_1 > 0$

Тогда, точка положения равновесия с координатами x_0, y_0 называется *седло*, или *седловой точкой*.

4. Собственные числа комплексно сопряженные числа и имеют положительные действительные части:

$$\lambda_1 = \beta + j\omega, \lambda_2 = \beta - j\omega, \beta > 0$$

Тогда, точка положения равновесия с координатами x_0, y_0 называется неустойчивый фокус.

5. Собственные числа комплексно сопряженные числа и имеют отрицательные действительные части:

$$\lambda_1 = \beta + j\omega, \ \lambda_2 = \beta - j\omega, \quad \beta < 0$$

Тогда, точка положения равновесия с координатами x_0 , y_0 называется устойчивый фокус.

6. Собственные числа чисто мнимые

сопряженные числа:

устойчивого фокуса

$$\lambda_1 = j\omega, \lambda_2 = -j\omega$$

Тогда точка положения равновесия с координатами x_0 , y_0 называется *центр*.

Приведем несколько примеров определения точек положения равновесия и определим их характер, используя **MathCAD**.

ORIGIN:= 1

Пример 1. Дана динамическая система

$$\frac{d}{dt}x = x^2 + y^2 - 17$$

$$\frac{d}{dt}y = x \cdot y + 4$$

$$\frac{\mathrm{d}}{\mathrm{d}t}y = x \cdot y + 4$$

Находим точки равновесия динамической системы

$$x^2 + y^2 - 17 = 0$$

$$z := \begin{pmatrix} x^2 + y^2 - 17 \\ x \cdot y + 4 \end{pmatrix} \text{ solve }, \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 1 \\ -1 & 4 \\ 1 & -4 \\ 4 & -1 \end{pmatrix}$$

$$xo := \frac{\langle 1 \rangle}{z}$$
 $yo := z \stackrel{\langle 2 \rangle}{z}$ $I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Разложим нелинейные функции в окрестности точек положения равновесия

$$x^{2} + y^{2}$$
 series, $x = -4$, $y = 1, 2 \rightarrow (-17) - 8 \cdot x + 2 \cdot y$

$$a := \begin{pmatrix} -8 & 2 \\ 1 & -4 \end{pmatrix}$$

eigenvals (a) = $\begin{pmatrix} -8.449 \\ -3.551 \end{pmatrix}$ точка с координатами x=-4 и y=1 является

устойчивым узлом

$$x \cdot y \text{ series }, x = -4, y = 1, 2 \rightarrow 4 - 4 \cdot y + x$$

$$|a - \lambda \cdot I| \rightarrow 30 + 12 \cdot \lambda + \lambda^2$$

$$x^{2} + y^{2}$$
 series, $x = -1, y = 4, 2 \rightarrow (-17) - 2 \cdot x + 8 \cdot y$

$$a := \begin{pmatrix} -2 & 8 \\ 4 & -1 \end{pmatrix}$$

 $eigenvals(a) = {-7.179 \choose 4.179}$ точка с координатами x = -1 и y = 4 является *седлом*

 $x \cdot y \text{ series }, x = -1, y = 4, 2 \rightarrow 4 - y + 4 \cdot x$

$$|a - \lambda \cdot I| \rightarrow (-30) + 3 \cdot \lambda + \lambda^2$$

$$x^{2} + y^{2}$$
 series, $x = 1, y = -4, 2 \rightarrow (-17) + 2 \cdot x - 8 \cdot y$

$$a := \begin{pmatrix} 2 & -8 \\ -4 & 1 \end{pmatrix}$$

 $eigenvals(a) = \begin{pmatrix} 7.179 \\ -4.179 \end{pmatrix}$ точка с координатами x=1 и y=-4 является *седлом*

 $x \cdot y \text{ series }, x = 1, y = -4, 2 \rightarrow 4 + y - 4 \cdot x$

$$|a - \lambda \cdot I| \rightarrow (-30) - 3 \cdot \lambda + \lambda^2$$

$$x^{2} + y^{2}$$
 series, $x = 4, y = -1, 2 \rightarrow (-17) + 8 \cdot x - 2 \cdot y$

 $x \cdot y \text{ series }, x = 4, y = -1, 2 \rightarrow 4 + 4 \cdot y - x$

$$a := \begin{pmatrix} 8 & -2 \\ -1 & 4 \end{pmatrix}$$

 $eigenvals(a) = \binom{8.449}{3.551}$ точка с координатами x=4 и y=-1 является

неустойчивым узлом

$$|a - \lambda \cdot I| \rightarrow 30 - 12 \cdot \lambda + \lambda^2$$

Фазовый портрет динамической системы

Пример 2. Дана динамическая система

$$\frac{d}{dt}x = x^2 - y^2 - 5$$
 $\frac{d}{dt}y = x^2 + y^2 - 13$

Находим точки положения равновесия динамической системы

$$x^2 - y^2 - 5 = 0$$
 $x^2 + y^2 - 13 = 0$

$$z := \begin{pmatrix} x^2 - y^2 - 5 = 0 & x^2 + y^2 - 13 = 0 \\ z := \begin{pmatrix} x^2 - y^2 - 5 \\ 2 & y^2 - 13 \end{pmatrix} \text{ solve }, \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 2 \\ -3 & 2 \\ 3 & -2 \\ -3 & -2 \end{pmatrix}$$

$$xo := z$$
 $yo := z$ $I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Разложим нелинейные уравнения системы в окрестности точки положения равновесия динамической системы

$$x^{2} - y^{2}$$
 series, $x = 3, y = 2, 2 \rightarrow (-5) + 6 \cdot x - 4 \cdot y$

$$x^{2} + y^{2}$$
 series, $x = 3, y = 2, 2 \rightarrow (-13) + 6 \cdot x + 4 \cdot y$

$$a := \begin{pmatrix} 6 & -4 \\ 6 & 4 \end{pmatrix} \quad |a - \lambda \cdot I| \rightarrow 48 - 10 \cdot \lambda + \lambda^2$$

 $eigenvals(a) = \begin{pmatrix} 5 + 4.796i \\ 5 - 4.796i \end{pmatrix}$ точка с координатами x=3 и y=2 является

неустойчивым фокусом

$$x^2 - y^2$$
 series, $x = -3$, $y = 2$, $2 \rightarrow (-5) - 6 \cdot x - 4 \cdot y$

$$x^{2} + y^{2}$$
 series, $x = -3, y = 2, 2 \rightarrow (-13) - 6 \cdot x + 4 \cdot y$

$$a := \begin{pmatrix} -6 & -4 \\ -6 & 4 \end{pmatrix} \qquad |a - \lambda \cdot I| \rightarrow (-48) + 2 \cdot \lambda + \lambda^2$$

 $eigenvals(a) = {-8 \choose 6}$ точка с координатами x=-3 и y=2 является **седлом**

$$x^{2} - y^{2}$$
 series, $x = 3, y = -2, 2 \rightarrow (-5) + 6 \cdot x + 4 \cdot y$

$$x^{2} + y^{2}$$
 series, $x = 3, y = -2, 2 \rightarrow (-13) + 6 \cdot x - 4 \cdot y$

$$a := \begin{pmatrix} 6 & 4 \\ 6 & -4 \end{pmatrix} \quad |a - \lambda \cdot I| \rightarrow (-48) - 2 \cdot \lambda + \lambda^2$$

eigenvals(a) = $\begin{pmatrix} 8 \\ -6 \end{pmatrix}$ точка с координатами x=3 и y=-2 является *седлом*

$$x^{2} - y^{2}$$
 series, $x = -3, y = -2, 2 \rightarrow (-5) - 6 \cdot x + 4 \cdot y$

$$x^{2} + y^{2}$$
 series, $x = -3$, $y = -2$, $y = -2$, $y = -2$

$$a := \begin{pmatrix} -6 & 4 \\ -6 & -4 \end{pmatrix} \quad |a - \lambda \cdot I| \rightarrow 48 + 10 \cdot \lambda + \lambda^2$$

eigenvals (a) = $\begin{pmatrix} -5 + 4.796i \\ -5 - 4.796i \end{pmatrix}$ точка с координатами x=3 и y=2 является

устойчивым фокусом

Фазовый портрет динамической системы

Пример 3. Определить тип точки положения равновесия линеаризованной динамической системы

$$\frac{d}{dt}x = -x - 4y \qquad \frac{d}{dt}y = 2x + 5y$$

$$A := \begin{pmatrix} -1 & -4 \\ 2 & 5 \end{pmatrix}$$
 $\lambda := eigenvals(A)$ $\lambda = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ Тип точки $x = 0$, $y = 0$ неустойчивый

узел

Пример 4. Определить тип точки положения равновесия линеаризованной динамической системы

$$\frac{d}{dt}x = -x - y \qquad \frac{d}{dt}y = x - 3y$$

$$A := \begin{pmatrix} -1 & -1 \\ 1 & -3 \end{pmatrix}$$
 $\lambda := eigenvals(A)$ $\lambda = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$ Тип точки $x = 0$, $y = 0$ *устойчивый узел*

2.1.1. Построение фазовых портретов с использованием поверхностей

Приведем еще пару примеров с построением поверхностей, позволяющих установить структуру разбиения фазовой плоскости на траектории. Предварительно проделаем некоторые полезные вспомогательные вычисления. Запишем уравнение движения Ньютона для тела с единичной массой, на которое действует сила F(x):

$$\frac{d^2x}{dt^2} = F(x) \tag{8}$$

Учитывая, что сила равняется градиенту потенциальной функции с отрицательным знаком, уравнение можно переписать в виде:

$$F(x) = -\frac{dU(x)}{dx} \rightarrow \frac{d^2x}{dt^2} = -\frac{dU(x)}{dx}$$
 (9)

Это уравнение можно преобразовать умножением каждой стороны на скорость v = dx / dt

$$v\frac{dv}{dt} = -\frac{dU}{dx}\frac{dx}{dt} \rightarrow \frac{1}{2}\frac{dv^2}{dt} + \frac{dU}{dt} = 0 \rightarrow \frac{d}{dt}\left(\frac{v^2}{2} + U\right) = 0$$

Из полученного соотношения следует, что выражение в скобках равно некой константе E

$$\frac{v^2}{2} + U(x) = E(x, v)$$
 где $U(x) = -\int_0^x F(x)dx$ (10)

Теперь перейдем к исследованию динамической системы, имеющей вид

$$\begin{cases} \frac{dx}{dt} = 2y \\ \frac{dy}{dt} = 4x - 4x^3 \end{cases}$$

Если в первом выражении системы скорость обозначить через 2y, а во втором уравнении правую часть считать за силу, действующую на частицу с единичной массой, тогда можно записать вспомогательную потенциальную функцию U(x) в виде:

$$U(x) = -\int_{0}^{x} (4x - 4x^{3}) dx = -2x^{2} + x^{4}$$

Тогда выражение поверхности постоянной энергии будет иметь вид:

$$U(x) + 2y^2 = E \rightarrow (-2x^2 + x^4 + 2y^2) = E$$

Для построения фазового портрета строим поверхность постоянной энергии

Для решения этой задачи будем использовать MathCAD

$$\frac{d}{dt}x = 2y$$

$$\frac{d}{dt}y = 4x - 4x^{3}$$

$$F_{1}(x,y) := 2 \cdot y \quad F_{2}(x,y) := 4 \cdot x - 4 \cdot x^{3}$$

Находим точки положения равновесия

$$z := \begin{pmatrix} F_1(x,y) \\ F_2(x,y) \end{pmatrix} \begin{vmatrix} solve, \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \quad x := z^{\langle 0 \rangle} \quad y := z^{\langle 1 \rangle}$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Находим Якобиан

$$\underline{A}(x,y) := \begin{pmatrix} \frac{\partial}{\partial x} F_1(x,y) & \frac{\partial}{\partial y} F_1(x,y) \\ \frac{\partial}{\partial x} F_2(x,y) & \frac{\partial}{\partial y} F_2(x,y) \end{pmatrix} \quad A(x,y) \to \begin{pmatrix} 0 & 2 \\ 4 - 12 \cdot x^2 & 0 \end{pmatrix}$$

Определяем характер точки с координатами 0, 0

$$A_1 := A(x_0, y_0)$$
 $A_1 = \begin{pmatrix} 0 & 2 \\ 4 & 0 \end{pmatrix}$ $\lambda := eigenvals(A_1)$

$$\lambda = \begin{pmatrix} 2.828 \\ -2.828 \end{pmatrix}$$
 Седловая точка

Определяем характер точки с координатами 1, 0

$$A_2 := A(x_1, y_1)$$
 $A_2 = \begin{pmatrix} 0 & 2 \\ -8 & 0 \end{pmatrix}$ $\lambda := eigenvals(A_2)$

$$\lambda = \begin{pmatrix} 4i \\ -4i \end{pmatrix} \qquad \mathbf{LJehmp}$$

Определяем характер точки с координатами -1, 0

$$A_3 := A(x_2, y_2)$$
 $A_3 = \begin{pmatrix} 0 & 2 \\ -8 & 0 \end{pmatrix}$ $\lambda := eigenvals(A_3)$

$$\lambda = \begin{pmatrix} 4i \\ -4i \end{pmatrix} \quad \mathbf{Llehmp}$$

Записываем вспомогательную потенциальную функцию $U(\mathbf{x})$

$$U(x) := -\int_0^x 4 \cdot x - 4 \cdot x^3 dx \to (-2) \cdot x^2 + x^4$$

$$x := -1.5, -1.5 + 0.01.. 1.5$$

Записываем вспомогательную функцию энергии Е(x,y)

$$E(x,y) := y^2 \cdot 2 + U(x)$$

Рисуем фазовый портрет

$$N_i := 251$$
 $i := 0..$ N $j := i$ $x_1 := -1.5 + \frac{3}{N} \cdot i$ $y_j := -1 + \frac{2}{N} \cdot j$

Поверхность $E_{\hat{x}, j} := E(x_i, y_j)$

Поверхность ограниченная сепаратрисой $E1_{i,\,j}:=if\left(E_{i,\,j}<0,E_{i,\,j},0\right)$

Поверхность за сепаратрисой $E2_{i,\,j} := if(E_{i,\,j} > 0, E_{i,\,j}, 0)$

Сепаратриса $\delta_{i,j} := if(E_{i,j} > 0, \delta, 0)$

Для сравнения приведем непосредственное решение уравнений

Все кривые на фазовой плоскости замкнутые кривые, значит, решения будут периодическими

Исследование динамической устойчивости

Уравнение движения ротора генератора при малом изменении частоты можно записать в виде:

$$\tau \frac{d^2 \delta}{dt^2} = P_T - P_T \tag{11}$$

Перепишем уравнение в виде системы уравнений первого порядка , нормируя уравнения на τ и учитывая , что $P_{\Gamma} = P_m \sin(\delta)$:

$$\frac{d\omega}{dt} = P_T - P_m \sin(\delta)$$

$$\frac{d\delta}{dt} = \omega$$
(12)

Найдем точки положения равновесия динамической системы и нарисуем фазовый портрет, используя **MathCAD**

$$P_{T} := 0.7 \quad P_{m} := 1$$

$$\frac{d}{dt} \delta = \omega \qquad F_{1}(x, y) := y \quad F_{2}(x, y) := 0.7 - \sin(x)$$

$$\frac{d}{dt} \omega = P_{T} - P_{m} \cdot \sin(\delta)$$

Находим точки положения равновесия

$$z := \begin{pmatrix} F_1(x,y) \\ F_2(x,y) \end{pmatrix} \begin{vmatrix} \text{solve}, \begin{pmatrix} x \\ y \end{pmatrix} \\ \text{float}, 5 \end{vmatrix} \rightarrow (.77540 \ 0) \qquad \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} := z^T \qquad x_1 := \pi - x_0 \qquad y_1 := y_0 \quad x = \begin{pmatrix} 0.775 \\ 2.366 \end{pmatrix}$$
$$y = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Находим Якобиан

$$A(x,y) := \begin{pmatrix} \frac{\partial}{\partial x} F_1(x,y) & \frac{\partial}{\partial y} F_1(x,y) \\ \frac{\partial}{\partial x} F_2(x,y) & \frac{\partial}{\partial y} F_2(x,y) \end{pmatrix} A(x,y) \rightarrow \begin{pmatrix} 0 & 1 \\ -\cos(x) & 0 \end{pmatrix}$$

Определяем характер точки с координатами 0.775, 0

$$A_1 := A(x_0, y_0)$$
 $A_1 = \begin{pmatrix} 0 & 1 \\ -0.714 & 0 \end{pmatrix}$ $\lambda := eigenvals(A_1)$

$$\lambda = \begin{pmatrix} 0.845i \\ -0.845i \end{pmatrix} \quad \textbf{LJehmp}$$

Определяем характер точки с координатами 2.366, 0

$$A_2 := A(x_1, y_1)$$
 $A_2 = \begin{pmatrix} 0 & 1 \\ 0.714 & 0 \end{pmatrix}$ $\lambda := eigenvals(A_2)$

$$\lambda = \begin{pmatrix} 0.845 \\ -0.845 \end{pmatrix}$$
 Седловая точка

Записываем вспомогательную потенциальную функцию U(x)

$$U(x) := -\int_0^x (0.7 - \sin(x)) dx \text{ float, 5} \rightarrow (-.70000) \cdot x - 1. \cdot \cos(x) + 1.$$

$$x := -0.1, -0.1 + 0.01 \cdot \pi ... \pi$$

Записываем вспомогательную функцию энергии Е(x,y)

$$E(x,y) := y^2 + U(x)$$

Рисуем фазовый портрет

$$N_i = 251$$
 $i := 0..$ $N_j := i$ $x_1 := -0.2 + \frac{3.2}{N} \cdot i$ $y_j := -0.8 + \frac{1.6}{N} \cdot j$

Поверхность $E_{i,j} := E(x_i, y_j)$

Поверхность ограниченная сепаратрисой $E1_{i,j} := if(E_{i,j} < 0.058, E_{i,j}, 0.058)$

Поверхность за сепаратрисой $E2_{i,j} := if(E_{i,j} \ge 0.06, E_{i,j}, 0.06)$

Сепаратриса $\delta := 10^{-3}$ $\text{Es}_{i, j} := \text{if} \left(E_{i, j} \ge 0.058, \delta, 0 \right)$

Для сравнения приведем непосредственное решение уравнений

Замкнутые кривые на фазовой плоскости это периодические решения, не замкнутые кривые это неустойчивые решения.

Неустойчивое движение за сепаратрисой

2.2. Метод фазовой плоскости

2.2.1. Уравнение сервомотора с идеальной релейной характеристикой

Применим метод фазовой плоскости для выявления важных черт процесса, происходящего в нелинейной системе регулирования частоты вращения турбины сервомотором постоянной скорости, описываемой уравнениями [5]:

ротора

$$T_{\phi} \frac{d\phi}{dt} = \mu \,; \tag{13}$$

управляющего элемента

$$\sigma = -\phi - \mu; \tag{14}$$

сервомотора постоянной скорости

$$\frac{d\mu}{dt} = F(\sigma). \tag{15}$$

Где $F(\sigma)$:

$$F(\sigma) = c \cdot sign(\sigma). \tag{16}$$

В качестве координат фазовой плоскости (x, y) выберем

$$x = \phi$$
, $y = \frac{d\phi}{dt}$.

Динамическая система будет описываться системой уравнений

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = \frac{F(\sigma)}{T_x} \end{cases}$$
 где $F(\sigma) = c \cdot sign(-x - yT_x), \ \sigma = -x - yT_x$ (17)

Находим уравнение линии переключения сервомотора (вертикальный отрезок на графике)

$$\sigma = -x - yT_x = 0, \ y = -x/T_x$$
 (18)

Находим уравнения линий фазового портрета

В области $\sigma < 0$ (отрицательные значения F на графике)

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -\frac{c}{T_x} \end{cases} \rightarrow \frac{dy}{dx} = -\frac{c}{T_x y} \rightarrow y^2 = -\frac{2cx}{T_x} + C_1$$
 (19)

В области $\sigma > 0$ (положительные значения F на графике)

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = \frac{c}{T_x} \end{cases} \rightarrow \frac{dy}{dx} = \frac{c}{T_x y} \rightarrow y^2 = \frac{2cx}{T_x} + C_2$$
 (20)

Запишем уравнение на вертикальном отрезке, приравнивая коэффициенты на прямой и в фазовой плоскости

$$\frac{dy}{dx} = -\frac{c}{T_x y}, \quad y = -\frac{x}{T_x} \to -\frac{c}{T_x y} = -\frac{1}{T_x} \to y = c$$
 (21)

Находим дифференциальное уравнение на отрезке

$$\frac{dx}{dt} = y , \quad y = -\frac{x}{T_x} \to \frac{dx}{dt} = -\frac{x}{T_x} \to x(t) = C_3 e^{-t/T_x}$$
 (22)

скользящий процесс.

Приведем решение с построением фазового портрета с использованием

MathCAD

2.2.2. Уравнение сервомотора с реальной релейной характеристикой

Теперь переключению сервомотора соответствуют два вертикальных отрезка

$$\sigma = -x - yT_x = -b \rightarrow x = -yT_x + b$$

 $\sigma = -x - yT_x = b \rightarrow x = -yT_x - b$

Рисуем их наклоны в фазовой плоскости (см. **MathCAD** документ ниже)

В отличие от предыдущего случая появляется еще одна область

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = 0 \end{cases} \rightarrow \frac{dy}{dx} = 0 \rightarrow y = const$$

Прямые параллельные оси x. Теперь положение равновесия не одна точка, а отрезок

$$y = 0$$
, $-b < x < b$

$$F(x) := sign(x) \cdot 1 \quad b := 0.02 \qquad F(x) := sign(x) \cdot if(-b \le x \le b, 0, 1) \quad T1 := 0.01 \quad M_{\infty} := 10^{3}$$

$$D(t, x) := \begin{pmatrix} x_{1} \\ F(-x_{0} - T1 \cdot x_{1}) \\ T1 \end{pmatrix} \quad T_{\infty} := 0.23 \quad x(x_{0}, x_{1}) := rkfixed \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix}, 0, T, N, D \quad t := x(0, 0)^{\langle 0 \rangle}$$

$$z := -0.1, -0.1 + 0.01...0.1 \quad y1(z) := -z \cdot \frac{1}{T1} + \frac{b}{T1} \quad y2(z) := -z \cdot \frac{1}{T1} - \frac{b}{T1}$$

$$p := -0.05, -0.05 + 0.00025...0.05$$

2.3. Прямой метод Ляпунова

Метод основан на использовании скалярных функций, обладающих на

решениях динамической системы некоторыми специальными свойствами и по-

лучивших название функций Ляпунова. Функции Ляпунова позволяют оценить

устойчивость и качество системы, а также синтезировать алгоритмы управле-

ния, обеспечивающие заданные качественные показатели процессов.

Для системы, описанной системой дифференциальных уравнений

$$\begin{cases} \frac{dx}{dt} = f_1(x, y) \\ \frac{dy}{dt} = f_2(x, y) \end{cases}$$
 (23)

где функции f_1 , f_2 произвольны и содержат любого вида нелинейности, но всегда удовлетворяют условию $f_1 = f_2 = 0$, при $x_1 = x_2 = 0$, так как в установившемся состоянии все отклонения переменных и их производные равны нулю, можно ввести некоторую функцию всех фазовых координат системы (23) V(x,y)где x, y представляют собой отклонения переменных от некоторых установившихся значений. Функцию можно представить в 2-мерном фазовом пространстве. Тогда в каждой точке фазового пространства V будет принимать определенное значение, а в начале координат будет равна нулю.

Функцию V будем называть **знакоопределенной** в некоторой области, если в любых точках внутри ее функция V – имеет определенный знак и в ноль обращается только в начале координат. Рассмотрим пример знакоопределенной положительной функции для системы второго порядка n=2

$$V(x,y) = x^2 + y^2 (24)$$

очевидно, что V > 0, и V = 0, только при x = y = 0.

Функция V называется знакопостоянной, если она сохраняет один и тот же знак, но может обращаться в нуль не только в начале координат, но и в других точках данной области.

Функция V называется **знакопеременной**, если она в данной области вокруг начала координат может иметь разные знаки.

Произвольная функция V = V(x, y), которая обращается в ноль только при x = y = 0, и где x, y- отклонения, в которых записано уравнение движения системы, называется функцией Ляпунова. Определим

производную функции V по времени. Для этого необходимо вспомнить, что такое оператор градиента ∇ :

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial x} \to \nabla V(x, y) = \mathbf{grad} V(x, y)$$

— направления наибольшего (быстрого) изменения функции. Теперь можно записать производную функции f(x,y) по времени, предполагая зависимость x,y от t:

$$\frac{dV}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}\frac{dx}{dt} + \frac{\partial V}{\partial y}\frac{dy}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f_1(x,y) + \frac{\partial V}{\partial y}f_2(x,y)$$

$$\frac{dV}{dt} = (\nabla V, \mathbf{v}), \mathbf{v} = (f_1, f_2)$$

Теорема Ляпунова об устойчивости нелинейных систем: если при заданных в форме (23) уравнениях системы можно подобрать такую знакоопределенную функцию Ляпунова V(x, y), чтобы ее производная по времени dV/dt тоже была знакоопределенной (или знакопостоянной), но имела знак, противоположный знаку V, то данная система устойчива.

Пример: Пусть нелинейная система описывается уравнениями

$$\begin{cases} \frac{dx}{dt} = -x - x^3 \\ \frac{dy}{dt} = -y^3 \end{cases}$$

Подберем знакоопределенную функцию Ляпунова

вида:
$$V(x, y) = x^2 + y^2$$

Находим производную по времени функции Ляпунова

$$\frac{dV}{dt} = \frac{\partial V}{\partial x}\frac{dx}{dt} + \frac{\partial V}{\partial y}\frac{dy}{dt} = \frac{\partial V}{\partial x}f_1(x,y) + \frac{\partial V}{\partial y}f_2(x,y)$$

$$\frac{dV}{dt} = 2x(-x-x^3) + 2y(-y^3) = -2(x^2 + x^4 + y^4)$$

Функции dV/dt является функцией знакопостоянной, но противоположна по знаку функции V(x,y), следовательно,

система устойчивая.

2.4. Метод гармонической линеаризации

Одним из основных методов исследования нелинейных систем высокого порядка в настоящее время является приближенный метод гармонической линеаризации. Рассмотрим применение метода, когда объект с линейной передаточной функцией управляется звеном с нелинейной характеристикой

$$y = F(x). (25)$$

Пусть на вход нелинейного звена поступает гармонический сигнал

$$x = A\sin(\omega t) \tag{26}$$

Выходной сигнал будет тоже периодическим и поэтому его можно разложить $y = F(A\sin(\omega t)) = q(A)\sin(\psi) + q'(A)\cos(\psi) + высшие гармоники ряд$ Фурье

$$y = F(A\sin(\omega t)) = \frac{1}{2\pi} \int_{0}^{2\pi} F(A\sin(\psi))d\psi$$

$$+ \left[\frac{1}{\pi} \int_{0}^{2\pi} F(A\sin(\psi))\sin(\psi)d\psi\right] \sin(\psi) + \left[\frac{1}{\pi} \int_{0}^{2\pi} F(A\sin(\psi))\cos(\psi)d\psi\right] \cos(\psi) +$$
 + высшие гармоники

При нечетной симметрии нелинейной характеристики (а именно такие мы и будем рассматривать) будет отсутствовать постоянная составляющая

$$\frac{1}{2\pi} \int_{0}^{2\pi} F(A\sin(\psi)) d\psi = 0$$
 (27)

Тогда выходной сигнал можно записать

$$y = q(A)x + q'(A)\frac{x}{\omega} + высшие гармоники$$
 (28)

Линейная часть замкнутой САР вследствие инерционности является фильтром низких частот, т.е. высокие гармоники проходят ее со значительно большим ослаблением, чем первая:

$$y = q(A)a + q'(A)\frac{x}{\omega} + \underline{\text{высшие-гармоники}}$$

$$= \left[q(A) + q'(A)\frac{p}{\omega} \right] x, \ p \to \frac{d}{dt}$$
(29)

Такое представление называется гармонической линеаризацией нелинейности, а величины, определяемые по формулам

$$q(A) = \frac{1}{\pi A} \int_{0}^{2\pi} F(A\sin(\psi))\sin(\psi)d\psi, \ q'(A) = \frac{1}{\pi A} \int_{0}^{2\pi} F(A\sin(\psi))\cos(\psi)d\psi,$$
(30)

называются коэффициентами гармонической линеаризации.

Передаточная функция эквивалентного линейного звена имеет вид

$$y = \left[q(A) + q'(A) \frac{p}{\omega} \right] x, \quad \rightarrow W(A, p) = q(A) + q'(A) \frac{p}{\omega}, \quad p = j\omega$$

$$W(A, j\omega) = q(A) + q'(A) \frac{j\omega}{\omega} = q(A) + q'(A)j$$
(31)

Передаточная функция не зависит от частоты. Она усиливаем амплитуду входного сигнала, и называется комплексным коэффициентом усиления.

Таким образом нелинейный элемент может быть заменен линейным. Частотная характеристика которого зависит от амплитуды входного сигнала.

Пример. Найти комплексный коэффициент усиления заданного нелинейного звена. Будем использовать **MathCAD**

$$F(\sigma) := if(\sigma < 0, -1, 1)$$
 b := 0.8

 $F_{-}(\sigma) := if(-b \le \sigma \le b, 0, F(\sigma))$ характеристика нелинейного звена

$$\sigma := -1, -1 + 10^{-4}..1$$

Характеристика нелинейного элемента и выходной сигнал

Находим коэффициент усиления **a** для разных амплитуд, **b**=0 т.к. функция четная

$$a(A) := \frac{1}{\pi \cdot A} \cdot \int_0^{2 \cdot \pi} F(A \cdot \sin(t)) \cdot \sin(t) dt$$

Находим коэффициенты усиления и эквивалентных синусоид при различных амплитудах

$$a(1) = 0.764$$
 $f1(t) := a(1) \cdot \sin(t)$

$$a(1.5) = 0.718$$
 $f15(t) := a(1.5) \cdot 1.5 \cdot \sin(t)$

$$a(3) = 0.409$$
 $f3(t) := a(3) \cdot 3 \cdot \sin(t)$

$$A_- := 1.5 \quad f(x) := xA_- - B \quad x := -1.5, -1.5 + 0.01.. 1.5 \quad f(x) := if(x > 0, f(x), -f(-x))$$
 $f(x) := if(-bb < x < bb, 0, f(x))$ $f(x) := if(-bb < x < bb, 0, f(x))$ $f(x) := if(x) = if$

2.5. Алгоритм анализа автоколебаний

С помощью гармонической линеаризации нелинейного элемента замкнутая система (рис. **a**), представленная на рисунке приводится к системе с линейным эквивалентным элементом (рис.**b**). Исследование системы с нелинейным элементом сводится к исследованию линейной системы.

Найдем характеристическое уравнение $W(p)W_H(A) = -1, \ \ W(p) = -1/W_H(A),$ $W(j\omega) = U(\omega) + jV(\omega), \ \ W_H(A) = q(A) + jq'(A)$

Из последнего уравнения следует что:

$$U(\omega)q(A) - q'(A)V(\omega) = 1$$

$$U(\omega)q'(A) + q(A)U(\omega) = 0$$
(32)

Где q(A), q'(A) коэффициента гармонической линеаризации. Решение уравнения дает нам точки положения равновесия ω_{Π} , A_{Π} .

При решении задачи удобно пользоваться графоаналитической схемой *Гольдфарба*, алгоритм которой приведен ниже.

Диаграмма Гольдфарба

- 1. Строим годограф $W(j\omega)$
- 2. Строим годограф $-1/W_H(A)$
- 3. Находим ω_{Π} , A_{Π} решая уравнение : $U(\omega)q(A) q'(A)V(\omega) = 1$ $U(\omega)q'(A) + q(A)U(\omega) = 0$
- 4. Если при движении по годографу $-1/W_H(A)$ в сторону увеличения A точка охватывается годографом $W(j\omega)$, то амплитуде A будут соответствовать неустойчивые автоколебания (точка 1). Если точка не охватывается годографом $W(j\omega)$, то при амплитуде A устойчивые автоколебания (точка 2)

Рассмотрим пример с использование MathCAD

Исследовать систему на наличие автоколебаний

$$q(a) := \frac{4}{\pi \cdot a}$$

Коэффициент гармонической линеаризации нелинейного звена

Находим току пересечения, частоту и амплитуду

$$W_H(a) := q(a)$$

$$w := \begin{pmatrix} U(\omega) \cdot q(a) = -1 \\ V(\omega) \cdot q(a) = 0 \\ \omega > 0 \end{pmatrix} \begin{vmatrix} solve, \begin{pmatrix} \omega \\ a \end{pmatrix} \\ float, 5 \end{vmatrix} \rightarrow (1. \ 1.2732)$$

$$(\omega_0, \omega_0) := w \quad \omega_0 = 1 \quad a_0 = 1.273$$

$$(\omega_0 \ a_{00}) := w \quad \omega_0 = 1 \quad a_0 = 1.273$$

$$\omega := 0,.01..10 \quad M(a) := \frac{-1}{W_H(a)} \quad U(1) = -1 \quad a := 0,0.1..2.3$$

Найденным значениям параметров $\omega_0 = 1$ и $a_0 = 1.273$ соответствует устойчивые автоколебания

так как при движении точки по годографу $_{M(a)}$ в сторону увеличения

амплитуды - а, точка не охватывается годографом

ЛИТЕРАТУРА

- 1. Е.И.Юревич Теория автоматического управления. СПб.: БХВ-Петербург, 2007. 560с.
- 2. А.В. Пантелеев, А.С. Бортаковский. Теория автоматического управления в примерах и задачах. М.: Высшая школа, 2003. 583 с.
- 3. В.Я. Ротач. Теория автоматического управления. М.: Издательский дом МЭИ, 2007. 400с.
- 4. Е.А. Никулин. Основы теория автоматического управления. СПб.: БХВ-Петербург, 2007. 640с.
- 5. А.Е. Булкин. Автоматическое регулирование энергоустановок. М. Издательский дом МЭИ, 2009, 508с.