- Simple Linear Regression Model
- Least Squares Method

- Managerial decisions often are based on the relationship between two or more variables.
- Regression analysis can be used to develop an equation showing how the variables are related.
- The variable being predicted is called the <u>dependent</u> <u>variable</u> and is denoted by *y*.
- The variables being used to predict the value of the dependent variable are called the <u>independent</u> <u>variables</u> and are denoted by *x*.

- Simple linear regression involves one independent variable and one dependent variable.
- The relationship between the two variables is approximated by a straight line.
- Regression analysis involving two or more independent variables is called <u>multiple regression</u>.

Simple Linear Regression Model

- The equation that describes how y is related to x and an error term is called the <u>regression model</u>.
- The <u>simple linear regression model</u> is:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where:

 β_0 and β_1 are called <u>parameters of the model</u>, ε is a random variable called the <u>error term</u>.

• The simple linear regression equation is:

$$E(y) = \beta_0 + \beta_1 x$$

- Graph of the regression equation is a straight line.
- β_0 is the y intercept of the regression line.
- β_1 is the slope of the regression line.
- E(y) is the expected value of y for a given x value.

• Positive Linear Relationship

^{© 2014} Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• Negative Linear Relationship

No Relationship

Estimated Simple Linear Regression Equation

• The <u>estimated simple linear regression equation</u>

$$\hat{y} = b_0 + b_1 x$$

- The graph is called the estimated regression line.
- b_0 is the y intercept of the line.
- b_1 is the slope of the line.
- ys the estimated value of y for a given x value.

Estimation Process

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Least Squares Method

• Least Squares Criterion

where:

 $y_i = \underline{\text{observed}}$ value of the dependent variable for the *i*th observation

 $\hat{y}_i = \underline{\text{estimated}}$ value of the dependent variable for the *i*th observation

Least Squares Method

Slope for the Estimated Regression Equation

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

where:

 x_i = value of independent variable for *i*th observation

 y_i = value of dependent variable for *i*th observation

 \overline{x} = mean value for independent variable

 \overline{y} = mean value for dependent variable

Least Squares Method

• y-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x}$$

- Example: Reed Auto Sales
- As part of the advertising campaign Reed runs one or more television commercials during the weekend preceding the sale. Data from a sample of 5 previous sales are shown on the next slide.

• Example: Reed Auto Sales

>	Number of TV Ads (x)	Number of Cars Sold (y)	
	1	14	
	3	24	
	2	18	
	1	17	
	3	27	
	$\Sigma x = 10$	$\Sigma y = \overline{100}$	•
	$\overline{x} = 2$	$\overline{y} = 20$	

^{© 2014} Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Estimated Regression Equation

Slope for the Estimated Regression Equation

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{20}{4} = 5$$

• y-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x} = 20 - 5(2) = 10$$

Estimated Regression Equation

$$\hat{y} = 10 + 5x$$