Simple Linear Regression

Inference

Dr. Maria Tackett

Topics

Topics

• Conduct a hypothesis test for β_1

Topics

- Conduct a hypothesis test for β_1
- Calculate a confidence interval for β_1

Movie ratings data

The data set contains the "Tomatometer" score (critics) and audience score (audience) for 146 movies rated on rottentomatoes.com.

The model

audience =
$$32.316 + 0.519 \times \text{critics}$$

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

Does the data provide sufficient evidence that β_1 is significantly different from 0?

State the hypotheses.

- State the hypotheses.
- 2 Calculate the test statistic.

- State the hypotheses.
- 2 Calculate the test statistic.
- Calculate the p-value.

- State the hypotheses.
- 2 Calculate the test statistic.
- Calculate the p-value.
- 4 State the conclusion.

State the hypotheses

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

State the hypotheses

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Null hypothesis

State the hypotheses

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Null hypothesis

Alternative hypothesis

Calculate the test statistic

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

test statistic =
$$\frac{\text{Estimate - Hypothesized}}{\text{Standard error}}$$

Calculate the test statistic

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$t = \frac{\hat{\beta}_1 - 0}{SE_{\hat{\beta}_1}}$$

Calculate the test statistic

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$t = \frac{\beta_1 - 0}{SE_{\hat{\beta}_1}}$$

$$t = \frac{0.5187 - 0}{0.0345}$$
$$= 15.03$$

Calculate the p-value

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

p-value =
$$P(t \ge |\text{test statistic}|)$$

Calculated from a t distribution with n-2 degrees of freedom

Calculate the p-value

Understanding the p-value

Magnitude of p-value	Interpretation
p-value < 0.01	strong evidence against H_0
0.01 < p-value < 0.05	moderate evidence against H_0
0.05 < p-value < 0.1	weak evidence against H_0
p-value > 0.1	effectively no evidence against $H_{ m 0}$

These are general guidelines. The strength of evidence depends on the context of the problem.

State the conclusion

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

State the conclusion

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

The data provide sufficient evidence that the population slope β_0 is different from 0.

There is a linear relationship between the critics score and audience score for movies on rottentomatoes.com.

What is a plausible range of values of values for the population slope β_1 ?

What is a plausible range of values of values for the population slope β_1 ?

Confidence interval

Estimate \pm (critical value) \times SE

Confidence interval for β_1

Estimate \pm (critical value) \times SE

Confidence interval for β_1

Estimate \pm (critical value) \times SE

$$\hat{\beta}_1 \pm t^* \times SE_{\hat{\beta}_1}$$

\$t^*\$ is calculated from a (t) distribution with (n-2) degrees of freedom

Calculating the 95% CI for β_1

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$\hat{\beta}_1 = 0.519$$
 $t^* = 1.977$ $SE_{\hat{\beta}_1} = 0.035$

Calculating the 95% CI for β_1

term	estimate	std.error	statistic	p.value
(Intercept)	32.316	2.343	13.795	0
critics	0.519	0.035	15.028	0

$$\hat{\beta}_1 = 0.519$$
 $t^* = 1.977$ $SE_{\hat{\beta}_1} = 0.035$

$$0.519 \pm 1.977 \times 0.035$$

[0.450, 0.588]

Interpretation

[0.450, 0.588]

Interpretation

[0.450, 0.588]

We are 95% confident that for every one percent increase in the critics score, the audience score is predicted to increase between 0.450% and 0.588%.

Recap

Recap

• Conducted a hypothesis test for β_1

Recap

- Conducted a hypothesis test for β_1
- Calculated a confidence interval for β_1