CS492: Probabilistic Programming Markov Chain Monte Carlo

Hongseok Yang KAIST

CS492: Probabilistic Programming Markov Chain Monte Carlo

Hongseok Yang KAIST

Really about: Metropolis-Hastings algorithm

(doquery:lmh induce-fn [ints2 outs2])

(doquery: lmh induce-fn [ints2 outs2])

Lightweight Metropolis Hastings algorithm* (LMH).

Learning outcome

- Can explain Metropolis-Hastings algorithm.
- Can say when and why this algo. is correct.
- Can develop an instance of the algorithm.

Markov rules 10 islands.

100i people live in island i.

Markov rules 10 islands.

100i people live in island i.

King loves his people and wants to visit each island in proportion to its population size.

Markov rules 10 islands.

100i people live in island i.

King loves his people and wants to visit each island in proportion to its population size.

Markov rules 10 islands.

100i people live in island i.

i ~ discrete(1,2,...,10).Visit i.Repeat.

King loves his people and wants to visit each island in proportion to its population size.

Markov rules 10 islands.

100i people live in island i.

King loves his people and wants to visit each island in proportion to its population size.

Solution

k_n — island that the king visits at step n.

Repeat the following steps:

- I. Flip a coin with prob. 0.5. If head, pick next k' clockwise. If tail, use k' counterclockwise.
- 2. $\alpha := \min(1,k'/k_n)$.
- 3. Flip a coin with prob. α . If head, $k_{n+1} := k'$. Otherwise, $k_{n+1} := k_n$.

Solution

k_n — island that the king visits at step n.

Repeat the following steps:

- I. Flip a coin with prob. 0.5. If head, pick next k' clockwise. If tail, use k' counterclockwise.
- 2. $\alpha := \min(1,k'/k_n)$.
- 3. Flip a coin with prob. α . If head, $k_{n+1} := k'$. Otherwise, $k_{n+1} := k_n$.

[Q] Why correct? What does correctness even mean?

Sequence by the algo.: k_1 , k_2 , ..., k_n , ...

Corr. informally: Frequency represents probability.

Corr. informally: Frequency represents probability.

Corr. formally: For any $f:\{1,..,10\} \rightarrow \mathbb{R}$, $(\sum_{j\leq n}f(k_j))/n \longrightarrow \mathbb{E}_{p(i)}[f(i)]$ as $n\longrightarrow \infty$ with prob. I, where p(i)=i/55, target prob. for visiting island i.

Corr. informally: Frequency represents probability.

Corr. formally: For any $f:\{1,..,10\} \rightarrow \mathbb{R}$, $(\sum_{j\leq n}f(k_j))/n \longrightarrow \mathbb{E}_{p(i)}[f(i)]$ as $n\longrightarrow \infty$ with prob. I, where p(i)=i/55, target prob. for visiting island i.

Corr. informally: Frequency represents probability.

Corr. formally: For any $f:\{1,..,10\} \rightarrow \mathbb{R}$, $(\sum_{j \leq n} f(k_j))/n \longrightarrow \mathbb{E}_{p(i)}[f(i)]$ as $n \longrightarrow \infty$ with prob. I, where p(i)=i/55, target prob. for visiting island i.

Sequence by the algo.: k_1 , k_2 , ..., k_n , ...

Corr. informally: Frequency represents probability.

Corr. formally: For any $f:\{1,..,10\} \rightarrow \mathbb{R}$, $(\sum_{j\leq n}f(k_j))/n \longrightarrow \mathbb{E}_{p(i)}[f(i)]$ as $n\longrightarrow \infty$ with prob. I, where p(i)=i/55, target prob. for visiting island i.

Holds because I) the random move of the algo. has p as invariant; 2) the algo. can move between any two islands in finitely many (>0) steps.

Corr. informally: Frequency represents probability.

Corr. formally: For any $f:\{1,..,10\} \rightarrow \mathbb{R}$, $(\sum_{j\leq n}f(k_j))/n \longrightarrow \mathbb{E}_{p(i)}[f(i)]$ as $n\longrightarrow \infty$ with prob. I, where p(i)=i/55, target prob. for visiting island i.

Holds because I) the random move of the algo. has p as invariant; 2) the algo. can move between any two islands in finitely many (>0) steps.

[Q] Prove 1) and 2).

Metropolis algorithm

Goal: Generate samples from target r(x)/Z, where $Z=\int r(x)dx$, the normalising constant.

Parameter: Conditional distribution q(x'|x).

- Should be symmetric: q(x'|x) = q(x|x').
- Represents a random move.
- Called proposal kernel.

E.g.
$$r(i)=i$$
, $Z=55$, $q(j|i)=0.5\times[(j-i) \mod 10 \in \{1,0,-1\}]$

Metropolis algorithm

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Metropolis Noisy greedy exploration.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, 1)$

- \geq I for better x'
- < I for worse x'
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, 1)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

May use flip(α) instead, as in our sol. for King Markov

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[QI] Does each step preserve r(x)/Z as invariant?

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Posterior inference. Latent $x \in \mathbb{R}^2$. Observed $y \in \mathbb{R}$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Posterior inference. Latent $x \in \mathbb{R}^2$. Observed $y \in \mathbb{R}$

```
r(x) = p(y|x)p(x), Noisy greedy exploration.

q(x'|x) = normal(x'_1|x_1,\epsilon_1) No need to know Z.
               \times normal(x'_2|x_2, \varepsilon_2)
```

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Posterior inference. Latent $x \in \mathbb{R}^2$. Observed $y \in \mathbb{R}$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q3] How to instantiate this algo. for Anglican prog.?

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q3] How to instantiate this algo. for Anglican prog.?

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- (I) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

(1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$

Prob. distr. on result

- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

Execute all sample exprs. Prob. distr. on all samples.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

Execute all sample exprs. Prob. distr. on all samples.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

Prob. distr. on execution traces that record only sampled values.

(1)
$$x \in \mathbb{R}$$
, $y \in \mathbb{R}^2$

(2)
$$x \in \mathbb{R}^2$$
, $y \in \mathbb{R}^2$

(3)
$$x \in \mathbb{R} \cup \mathbb{R}^2$$
, $y \in \mathbb{R}^2$

Prob. distr. on execution traces that record only sampled values.

(1)
$$x \in \mathbb{R}$$
, $y \in \mathbb{R}^2$

(2)
$$x \in \mathbb{R}^2$$
, $y \in \mathbb{R}^2$

(3)
$$x \in \mathbb{R} \cup \mathbb{R}^2$$
, $y \in \mathbb{R}^2$

Prob. distr. on execution traces that record only sampled values.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- All correct.
- (3) used for the design of MCMC for Anglican.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- All correct.
- (3) used for the design of MCMC for Anglican.
- Difficult to find symm. q.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- All correct.
- (3) used for the design of MCMC for Anglican.
- Difficult to find symm. q.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- All correct.
- (3) used for the design of MCMC for Anglican.
- Difficult to find symm. q.

- (1) $x \in \mathbb{R}$, $y \in \mathbb{R}^2$
- (2) $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$
- (3) $x \in \mathbb{R} \cup \mathbb{R}^2$, $y \in \mathbb{R}^2$

- All correct.
- (3) used for the design of MCMC for Anglican.
- Difficult to find symm. q.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
- - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:

repeat:
$$\overline{r(x_n) \times q(x'|x_n)}$$
 a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \overline{r(x')/r(x_n)})$

- b) $u \sim uniform(0, I)$
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$ [QI] q by re-execution for Anglican. What is q(x'|x)?

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:

repeat:
$$\overline{r(x_n) \times q(x'|x_n)}$$
 a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \overline{r(x')/r(x_n)})$

- b) $u \sim uniform(0, I)$
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

 $r(x')\times q(x_n|x')$

[QI] q by re-execution for Anglican. What is q(x'|x)? [AI] q(x'|x) = p(x').

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
- a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \frac{r(x_n) \times q(x'|x_n)}{r(x_n)}$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Noisy greedy exploration. Find a (relative) obj.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:

- b) $u \sim uniform(0, I)$
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Noisy greedy exploration. Find a (relative) obj.

Target r(x)/Z. Symmetric pro

When independent proposal is used.

- I. initialise x_1 randomly; n:=1
- 2. repeat:

$$\frac{r(x) \times q(x_n)}{r(x_n) \times q(x')}$$

- a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \frac{r(x_n) \times q(x')}{r(x_n)})$
- b) $u \sim uniform(0, I)$
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Noisy greedy exploration. Find a (relative) obj.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \frac{r(x_n) \times q(x'|x_n)}{r(x_n)}$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q3] Does each step have r(x)/Z as invariant?

Recap of the MH algo.

- Generate samples from unnormalised r(x). No need to know $Z=\int r(x)dx$.
- Noisy greedy exploration using q(x'|x).

[Thm I] Each step of MH has r/Z as inv. dist.

```
MH samples: x_1, x_2, x_3, ..., x_n, ... [Thm2] For all f:X \to \mathbb{R} with \mathbb{E}_{r(x)/Z}[f(x)] defined, \sum_{i \le n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)] \text{ as } n \longrightarrow \infty \text{ with prob. I,} if the MH with q is r/Z-irreducible.
```

The estimate converges to the right value.

MH samples: x_1 , x_2 , x_3 , ..., x_n , ...

[Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined,

 $\sum_{i\leq n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)]$ as $n\longrightarrow \infty$ with prob. I,

if the MH with q is r/Z-irreducible.

The estimate converges to the right value.

MH samples: x_1 , x_2 , x_3 , ..., x_n , ...

[Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined,

 $\sum_{i\leq n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)]$ as $n\longrightarrow \infty$ with prob. I,

if the MH with q is r/Z-irreducible.

MH moves well. For any x,x' with r(x')>0, the MH can go from x to x' with non-zero prob.

The estimate converges to the right value.

MH samples: x_1 , x_2 , x_3 , ..., x_n , ...

[Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined,

 $\sum_{i\leq n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)]$ as $n\longrightarrow \infty$ with prob. I,

if the MH with q is r/Z-irreducible.

MH moves well. For any x,x' with r(x')>0, the MH can go from x to x' with non-zero prob.

```
MH samples: x_1, x_2, x_3, ..., x_n, ... [Thm2] For all f:X \to \mathbb{R} with \mathbb{E}_{r(x)/Z}[f(x)] defined, \sum_{i \le n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)] \text{ as } n \longrightarrow \infty \text{ with prob. I,} if the MH with q is r/Z-irreducible.
```

MH samples: $x_1, x_2, x_3, ..., x_n, ...$ [Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined, $\sum_{i \le n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)] \text{ as } n \longrightarrow \infty \text{ with prob. I,}$ if the MH with q is r/Z-irreducible.

Consequence of a general result in ergodic theory.

Thm I plays a crucial role in the proof.

Reference

I looked at Chapters 5 and 6 of Robert & Casella's "Monte Carlo Statistical Methods".

Not recommended for general reading.

But details and pointers can be found there.