Analysis 1B

Luc Veldhuis

29 November 2016

We gebruiken vaak $a_k > 0$ maar het geldt ook voor $a_k \neq 0$. En dit hoeft pas te gelden vanaf een bepaalde k*

Ratio test

$$\begin{array}{l} \frac{a_{k+1}}{a_k} \leq \alpha < 1 \Rightarrow \text{convergentie van } \sum a_k. \\ \frac{a_{k+1}}{a_k} \geq 1 \Rightarrow \text{divergentie van } \sum a_k. \\ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \Rightarrow \text{convergentie van } \sum a_k. \\ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \Rightarrow \text{divergentie van } \sum a_k. \end{array}$$

Voorbeeld

$$a_n = \frac{1}{2^{\frac{n+1}{2}}} \frac{1}{3^{\frac{n-1}{2}}}$$
 voor n oneven.

$$a_n = \frac{1}{2^{\frac{n}{2}}} \frac{1}{3^{\frac{n}{2}}}$$
 voor n even.

$$\frac{a_{n+1}}{a_n} = \frac{2^{\frac{n}{2}} \frac{3^{\frac{n}{2}}}{3^{\frac{n+1}{2}}} \frac{1}{3^{\frac{n+1}{2}}}}{2^{\frac{n+1}{2}} \frac{1}{3^{\frac{n+1}{2}}}} = \frac{1}{3}$$

$$\frac{a_{n+1}}{a_n} = \frac{2^{\frac{1}{2} \frac{1}{n}} \frac{1}{3^{\frac{n}{2}}}}{2^{\frac{n+1}{2}} \frac{1}{3^{\frac{n}{2}}}} = \frac{1}{2}$$

$$\frac{a_{n+1}}{a_n} = \frac{\frac{1}{2} \frac{1}{n+2} \frac{1}{n}}{\frac{1}{2} \frac{1}{3} \frac{1}{2}} = \frac{1}{2}$$

$$rac{a_{n+1}}{a_n} \leq rac{1}{2} orall n > 1 \Rightarrow \sum\limits_{k=1}^n a_k < \infty$$
 Maar $\lim_{n o \infty} rac{a_{n+1}}{a_n}$ bestaat niet!

Root test

$$\begin{array}{l} a_k \geq 0 \\ \sqrt[k]{a_k} \leq \alpha < 1 \Rightarrow \text{ convergentie van } \sum a_k. \\ \sqrt[k]{a_k} \geq 1 \Rightarrow \text{ divergentie van } \sum a_k. \\ \lim_{n \to \infty} \sqrt[n]{a_n} < 1 \Rightarrow \text{ convergentie van } \sum a_k. \\ \lim_{n \to \infty} \sqrt[n]{a_n} > 1 \Rightarrow \text{ divergentie van } \sum a_k. \end{array}$$

Voorbeeld

$$a_n = \frac{1}{2^{\frac{n+1}{2}}} = (\frac{1}{2})^{\frac{n+1}{2}}$$
 als n oneven $a_n = \frac{1}{3^{\frac{n}{2}}} = (3^{-\frac{1}{2}})^n$ als n even $\sqrt[n]{a_n} = \sqrt[n]{(\frac{1}{2})^{\frac{n+1}{2}}} = ((\frac{1}{2})^{\frac{n+1}{2}})^{\frac{1}{n}} = \frac{1}{2}^{\frac{n+1}{2n}} = \frac{1}{2}^{\frac{1}{2}}^{\frac{1}{2n}}$ als n oneven $\sqrt[n]{a_n} = \frac{1}{\sqrt{3}}$ als n even. $a_n \leq \frac{1}{\sqrt{2}} < 1$ dus convergeert, maar limiet bestaat niet!

Voorbeeld

$$\sum_{k=0}^{\infty} \frac{k(x-2)^{K}}{2^{k}} \text{ met } x \in \mathbb{R}$$

Neem x = 0

$$\sum_{k=0}^{\infty} \frac{k(-2)^k}{2^k} = \sum_{k=0}^{\infty} k(-1)^k$$

Divergent, term nooit kleiner dan 0

Neem
$$x = 1$$

$$\sum_{k=0}^{\infty} \frac{k(-1)^k}{2^k} = \sum_{k=0}^{\infty} k(\frac{-1}{2})^k$$
Convergeert! Maar hoe? Ratio test!

$$\frac{\frac{k+1}{2^k+1}}{\frac{k}{2^k}}=\frac{k+1}{k}\frac{1}{2}\to \frac{1}{2}$$
 vanaf $k\geq 2$ is deze rij kleiner dan een α .

Er zit verschil in de uitkomst afhankelijk van de x.

Voorbeeld (vervolg)

$$\frac{a_{k+1}}{a_k} = \frac{\frac{(k+1)|x-2|^{k+1}}{2^{k+1}}}{\frac{k|x-2|^k}{a_k^k}} = \frac{k+1}{k}|x-2|\frac{1}{2}$$

$$\lim_{k \to \infty} \frac{k+1}{k} |x - 2| \frac{1}{2} = \frac{|x - 2|}{2} \lim_{k \to \infty} \frac{k+1}{k} \to \frac{|x - 2|}{2}$$

Dus convergent als |x-2| < 2

Dus 0 < x < 4 convergent.

Voor $x \le 0 \lor x \ge 4$ divergent.

$$(\leq \text{en} \geq, \text{ want voor } x = 0 \lor x = 4 \lim_{k \to \infty} \frac{k+1}{k} \geq 1)$$

Let op!

 $a_n = \frac{1}{2^{\frac{n+1}{2}}}$ als n oneven $a_n = \frac{1}{3^{\frac{n}{2}}}$ als n even

Dit geeft:

 $\sqrt[n]{a_n}$ convergent, maar $\frac{a_{n+1}}{a_n}$ bestaat niet, want *n* even > 1 *n* oneven < 1

Stelling

$$(a_n)$$
 rij, $a_n \geq 0$, dalend $a_{n+1 \leq a_n} \lim_{n \to \infty} a_n = 0$
 $\sum_{n=0}^{\infty} (-1)^n a_n$ convergeert

Voorbeeld

$$\begin{split} &\sum_{n=1}^{\infty} \frac{1}{n} \text{ divergeert.} \\ &a_n = \frac{1}{n}, \ \frac{1}{n+1} \leq \frac{1}{n}, \ a_n \to 0, \ a_n > 0 \\ &\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ convergeert.} \end{split}$$

Definitie

$$\begin{array}{l} \sum\limits_{k=1}^{\infty}|a_k|<\infty\Rightarrow\sum\limits_{k=1}^{\infty}a_k \text{ convergeert} \\ \text{Een reeks }\sum a_k \text{ heet absoluut convergent als }\sum|a_k| \text{ convergeert.} \end{array}$$

Definitie

Een reeks heet relatief convergent (conditioneel convergent) als $\sum a_k$ convergent is maar $\sum |a_k|$ divergent.

Voorbeeld

 $\sum \frac{(-1)^n}{n}$ is relatief convergent. $\sum \frac{(-1)^n}{n^2}$ is absolutt convergent.

$$1 - \tfrac{1}{2} + \tfrac{1}{3} + \tfrac{1}{4} - \dots = \ln(2)$$

Als een reeks absoluut convergent is kun je $\sum a_k$ herordenen (husselen).

Maak een bijectieve functie $k \mapsto f(k)$.

Lijkt op commutativiteit en associativiteit van natuurlijke getallen, maar . . .

Voor eindige reeksen hebben de getallen geen invloed op de som. Voor oneindige reeksen moet het naar dezelfde limiet convergeren, wat speciaal is, want dit staat niet in de axiomas.

Stelling

Als $\sum a_k$ relatief convergent is dan geldt dat via $k \mapsto f(k)$ $\sum a_{f(k)}$ gaat naar:

- Willekeurig getal $x \in \mathbb{R}$
- \bullet $\pm \infty$
- Convergeert niet meer

Voorbeeld

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots = \ln(2)$$

$$0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + 0 + \frac{1}{10} + 0 - \dots = \frac{1}{2}\ln(2)$$
Optellen:

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} \cdots = \frac{3}{2} \ln(2)$$

Maar deze bevat precies de termen uit de eerste reeks, maar de som is anders!