

Portable High Energy Experiment (PHEE) DAQ

Team Members: Ethan Barnes
John Sabra
Sang Hoon Chung

Sponsor: Michelle Chatter

Sandia National Laboratories

TA: Max Lesser

System Overview

Execution and Validation

Currently: Outlined needs for each system

	March 20th	March 27th	April 3rd	April 10	April 17
Power Supply	3 V output from DC/DC Buck Converter	Buck Converter steps down the Power Path IC's output	5 V output from Power Path IC	Power Path IC can take DC input via USB charging	Battery charges at 1C rate
Microcontroller	Sample at 2 kHz 100 kHz and get signal to noise ratio above 40 dB	Detection algorithm is 90% accurate* (Unverifiable)	Write data to SD card in specified format	Functioning prototype using dev board	PCB design interfaces MCU with sensors and SD card port
Android Application	Develop GUI for users to interact with app	Read data from SD card and compute metrics on data	Set up the cloud server account and file directory	Connect from the cloud server to app	Upload and download the data to and from cloud server

Power Supply Subsystem

John Sabra

Accomplishments since the last presentation	Ongoing progress/problems and plans until the next presentation
 Completed buck converter design and simulation Completed buck converter validation circuit Began PCB design for buck converter and battery charger Completed external part footprints for both battery charger and buck converter Began battery charger design 	 Completing Battery charger Design Measure a voltage output between 4.5 and 5.5V from the battery charger Complete PCB footprint Adjusting battery charger design for 3-cell battery

	VOut			IOut	
			1.1		
	A		1.0		
			0.9		
			0.8		
			5 0.6 0.5		
			0.4		
			0.3		
	V		0.2		
			0.1		
EO	1E-4 2E-4 Time(Sec	3E-4 4E-4	5E-4 0E0 1	E-4 2E-4 3E-4 Time(Second)	4E-4 5E-

	Simulation	Validation
Rpgg	499kOhm	500kOhm
Rfbt, Rfbb	453kOhm, 100kOhm	400kOhm, 100kOhm
Cin, Cout	15uF,15uF	10uF, 10uF
Vin	5.5 V	5.07 V
Vout	3.318 V	3.081 V

Table. Simulation vs. Verification Results

Microcontroller Subsystem

Ethan Barnes

Accomplishments since the last presentation	Ongoing progress/problems and plans until the next presentation
 Able to read data from all 5 channels of ADC at 100 kHz Code implemented to mount SD card every time the program is run and save test files 	 Can't output through serial monitor for debugging Need to interface SD card reader with MCU to confirm code works Still don't have signal conditioner from Sandia to power sensors Need to begin PCB design

Starter code to save to SD card for proof of concept

```
// Mount SD card
205
      fresult = f mount(&fs, " ", 0);
206
207
      if(fresult != FR OK) {
208
          send uart ("error in mounting SD card...\n");
209
210
     else{
211
          send uart ("SD card mounted successfully...\n");
212
213
214
     // Check free space on card
215
      f getfree("", &fre clust, &pfs);
216
217
      total = (uint32 t) ((pfs->n fatent - 2) * (pfs->csize * 0.5));
218
      sprintf(buffer, "SD card total size: \t%lu\n", total);
      send uart (buffer);
      bufclear();
221
      free space = (uint32 t) (fre clust * pfs->csize * 0.5);
222
      sprintf(buffer, "SD card free space: \t%lu\n", free space);
223
      send uart (buffer);
224
225
     // Create and open file, then close file
226
      fresult = f open(&fil, "file2.txt", FA OPEN ALWAYS | FA READ | FA WRITE);
227
      fresult = f puts("This data is from the first file\n\n", &fil);
228
      fresult = f close(&fil);
229
230
      send uart("file1.txt created and the data is written\n");
      fresult = f open(&fil, "file1.txt", FA READ);
232
     // Everything worked good except the "file.size" reference
233
234
     // This has been replaced in ChaN's FatFs R0.12c version with f size(&fil)
235 f gets(buffer, f size(&fil), &fil);
236
     send uart (buffer);
237
     f close (&fil);
238
     bufclear();
```

Signal conditioner to power sensors will be provided by Sandia

(x)= Variables × 🙀 Live Express	ions 🤏 Breakpoint	s 🕰 Expressions 🚻 Registers
Name	Type	Value
⇔ UART_counter	int	134241721
⇔ previous_audio	uint32_t	2477
⇔ previous_pressure	uint32_t	2073
🕪 previous_acc	uint32_t	5309
🕪 previous_acc_x	uint32_t	1707
(x)= previous_acc_y	uint32_t	4081
(x)= previous_acc_z	uint32_t	2937
⇔ current_audio	uint32_t	134218229
current_pressure	uint32_t	0
🕪 current_acc	uint32_t	134249928
<pre>current_acc_x</pre>	uint32_t	134249932
<pre>current_acc_y</pre>	uint32_t	15728640
(x)= current_acc_z	uint32_t	0

Expression	Туре	Value
(x)= count	uint8_t	28 '\034'
(x)= adc_buf_max	uint32_t	2521
(x)= adc_value[0]	uint32_t	2437
⇔ adc_value[1]	uint32_t	2021
(x)= adc_value[2]	uint32_t	4095
(x)= adc_value[3]	uint32_t	4061
⇔ adc_value[4]	uint32_t	2901

Values for current and previous ADC samples for each channel

Raw ADC readings for each channel

Android Application Subsystem

Sang Hoon Chung

Accomplishments since the last presentation	Ongoing progress/problems and plans until the next presentation
 Develop GUI for users to interact with app using KIVY Framework Read data from SD card and compute metrics on data (Max, Min, Avg, FFT, and presence or absence of explosion) Upload and download the data 	 Deploy the app to computer and smartphone Set up the cloud server account and file directory Connect from the cloud server to app

Code to develop GUI for analyzing the signal

The app shows:

- Open and Save file button
- The figure of the signal
- The information value from the signal
- Time adjustment button

