Manipulação de Somas

Unidade I: Análise de Algoritmos

Agenda

- Introdução
- Regras Básicas de Transformação
- Propriedades

Introdução

PUC Minas Virtual

Frase de [GRAHAM, 95]

A chave do sucesso na manipulação de somas está na habilidade de transformar uma soma em outra mais simples ou mais perto de algum objetivo

Regras Básicas de Transformação

As Três Regras Básicas de Transformação

- Distributividade
- Associatividade
- Comutatividade

Distributividade

Permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Por exemplo, temos:

$$c.a_0 + c.a_1 + c.a_2 = c.(a_0 + a_1 + a_2)$$

Distributividade

Permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Outro exemplo (visto na Introdução aos Somatórios)

$$\sum_{1}^{5} 3i = 3.\sum_{1}^{5} i = 3.(1+2+3+4+5) = 3.15 = 45$$

Distributividade

Permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Também se aplica à divisão

$$\sum_{i \in I} a_i = \frac{1}{c} \cdot \sum_{i \in I} a_i$$

Associatividade

• Permite quebrar um somatório em partes ou unificá-las em um somatório

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Por exemplo, temos:

$$(a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2) = (a_0 + a_1 + a_2) + (b_0 + b_1 + b_2)$$

Associatividade

Permite quebrar um somatório em partes ou unificá-las em um somatório

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Outro exemplo (visto na Introdução aos Somatórios)

$$\sum_{1}^{5} (3-2i) = 3.\sum_{1}^{5} 1 - \sum_{1}^{5} 2i = 3(1+1+1+1+1) - [2.1+2.2+2.3+2.4+2.5]$$

$$= -15$$

Associatividade

• Permite quebrar um somatório em partes ou unificá-las em um somatório

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

• Também se aplica à subtração

$$\sum_{i \in I} (a_i - b_i) = \sum_{i \in I} a_i - \sum_{i \in I} b_i$$

Comutatividade

• Permite colocar os termos em qualquer ordem

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

• Por exemplo, temos:

$$a_0 + a_1 + a_2 = a_2 + a_0 + a_1$$

Exemplo de Aplicação da Comutatividade

O resultado dos programas abaixo é igual devido à regra de comutatividade

```
for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j++)
    soma += mat[i][j];</pre>
```

```
for(int j = 0; j < n; j++) //invertendo os fors
  for(int i = 0; i < n; i++)
    soma += mat[i][j];</pre>
```

```
for(int i = n-1; i >= 0; i--) //decrementando
  for(int j = n-1; j >= 0; j--)
     soma += mat[i][j];
```

Resumo das Regras Básicas de Transformação

Distributividade

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Associatividade

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Comutatividade

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) ()
$$\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3$$

c) ()
$$\sum_{l=1}^{3} 3l = 3.\sum_{l=1}^{3} l$$

a) ()
$$\sum_{k=0}^{\infty} k^3 = \sum_{k=1}^{\infty} k^3$$
 c) () $\sum_{l=1}^{\infty} 3l = 3 \cdot \sum_{l=1}^{\infty} l$ e) () $\sum_{t=8}^{\infty} (3+t) = 75 + \sum_{t=8}^{\infty} t$

b) ()
$$\sum_{p=0}^{1000} (3+p)=3+\sum_{p=0}^{1000}$$
 d) () $\sum_{k=0}^{12} k^p = (\sum_{k=0}^{12} k)^p$

d) ()
$$\sum_{k=0}^{12} k^p = (\sum_{k=0}^{12} k)^p$$

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) (
$$\checkmark$$
) $\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3$

c) (
$$\sqrt{}$$
) $\sum_{l=1}^{n} 3l = 3.\sum_{l=1}^{n} l$

a) (
$$\checkmark$$
) $\sum_{k=0}^{\infty} k^3 = \sum_{k=1}^{\infty} k^3$ c) (\checkmark) $\sum_{l=1}^{\infty} 3l = 3.\sum_{l=1}^{\infty} l$ e) (\checkmark) $\sum_{t=8}^{\infty} (3+t) = 75 + \sum_{t=8}^{\infty} t$

b) (x)
$$\sum_{p=0}^{1000} (3+p)=3+\sum_{p=0}^{1000}$$
 d) (x) $\sum_{k=0}^{12} k^p = (\sum_{k=0}^{12} k)^p$

$$(x) \sum_{k=0}^{12} k^p = (\sum_{k=0}^{12} k)^p$$

• Aplique associatividade para unificar os dois somatórios abaixo:

$$S_n = \sum_{3}^{n} a_i + \sum_{1}^{n} b_i$$

• Aplique associatividade para unificar os dois somatórios abaixo:

$$S_{n} = \sum_{3}^{n} a_{i} + \sum_{1}^{n} b_{i}$$

$$= (a_{3} + a_{4} + a_{5} + \dots + a_{n}) + (b_{1} + b_{2} + b_{3} + \dots + b_{n})$$

$$= b_{1} + b_{2} + \sum_{3}^{n} (a_{i} + b_{i})$$

$$= -a_{1} - a_{2} + \sum_{1}^{n} (a_{i} + b_{i})$$

• Usando a comutatividade, prove que os somatórios abaixo são iguais

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

Usando a comutatividade, prove que os somatórios abaixo são iguais

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

RESPOSTA:

Primeiro somatório: (3 + 2.0) + (3 + 2.1) + (3 + 2.2) + (3 + 2.3) + (3 + 2.4)

No segundo, temos: (3 + 2.[4-0]) + (3 + 2.[4-1]) + (3 + 2.[4-2]) + (3 + 2.[4-3]) + (3 + 2.[4-4])

Logo, por comutatividade, temos apenas a alteração da ordem dos elementos

Usando a comutatividade, prove que os somatórios abaixo são iguais

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

RESPOSTA:

Primeiro somatório: (3 + 2.0) + (3 + 2.1) + (3 + 2.2) + (3 + 2.3) + (3 + 2.4)

No segundo, temos: (3 + 2.[4-0]) + (3 + 2.[4-1]) + (3 + 2.[4-2]) + (3 + 2.[4-3]) + (3 + 2.[4-4])

Logo, por comutatividade, temos apenas a alteração da ordem dos elementos

OBSERVAÇÃO: (n-i) "simula" um decremento no valor de i

PUC Minas Virtual

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplique as regras de transformação para obter a fórmula fechada da soma S dos Recordando Progressão Aritmética

- Uma PA é uma sequência cuja razão (diferença) entre dois termos consecutivos é constante. Por exemplo, 5, 7, 9, 11, 13, ...
- Cada termo da PA será a_i = a + b.i, onde a é o termo inicial; b, a razão; e, i, a ordem do termo
- Na sequência acima, a e b são iguais a 5 e 2, respectivamente. Logo, temos: (5 + 2.0), (5 + 2.1), (5 + 2.2), (5 + 2.3), (5 + 2.4), ...

 Aplique as regras de transformação para obter a fórmula fechada da soma S dos Recordando Progressão Aritmética

Exercício: Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

Aplique as regras de transformação para obter a fórmula fechada da soma S dos

Recordando Progressão Aritmética

• Exercício: Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

Os valores a e b são 1 e 3, respectivamente, logo, temos:

$$1 + 3 \cdot 0 = 1$$

$$1 + 3 \cdot 1 = 4$$

$$1 + 3 \cdot 2 = 7$$

$$1 + 3 \cdot 3 = 10$$

$$1 + 3 \cdot 4 = 13$$

. . .

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplicando a comutatividade, podemos somar do maior para o menor, trocando i por (n-i):

$$S_n = \sum_{0 \le (n-i) \le n} [a + b.(n-i)]$$

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplicando a comutatividade, podemos somar do maior para o menor, trocando i por (n-i):

$$S_n = \sum_{0 \le (n-i) \le n} [a + b.(n-i)] = \sum_{0 \le i \le n} [a + b.(n-i)] = \sum_{0 \le i \le n} [a + bn - bi]$$

• Como $S_n = \sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$, podemos afirmar que:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como $S_n = \sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$, podemos afirmar que:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

Aplicando associatividade, podemos combinar os dois somatórios:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i]$$

• Como $S_n = \sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$, podemos afirmar que:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

Aplicando associatividade, podemos combinar os dois somatórios:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i] = \sum_{0 \le i \le n} [2.a + b.n]$$

Simplificando, temos:

Usando distributividade, temos:

$$2S_{n} = \sum_{0 \le i \le n} [2.a + b.n] = (2.a + b.n) \cdot \sum_{0 \le i \le n} 1$$

OBSERVAÇÃO:

Como [2.a + b.n] não depende de i, ele pode "sair" do somatório

Substituindo no somatório, temos:

matório, temos:

$$2S_n = \sum_{0 \le i \le n} [2.a + b.n] = (2.a + b.n) \cdot \sum_{0 \le i \le n} 1$$

(n+1)

Substituindo no somatório, temos:

$$2S_n = (2.a + b.n).(n+1)$$

Substituindo no somatório, temos:

$$2S_n = (2.a + b.n).(n+1)$$

Dividindo por dois, temos:

$$S_n = (2.a + b.n).(n+1)$$

• Finalmente, temos:

$$S_n = \sum_{0 \le i \le n} [a + b.i] = \underline{(2.a + b.n).(n+1)}$$

 Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula fechada para o somatório de Gauss

$$\sum_{0 \le i \le n} i = 0 + 1 + 2 + 3 + \dots + n$$

COLA

$$S_n = \sum_{0 \le i \le n} [a + b.i] = \frac{(2.a + b.n).(n+1)}{2}$$

 Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula fechada para o somatório de Gauss

$$\sum_{0 \le i \le n} i = 0 + 1 + 2 + 3 + \dots + n$$

RESPOSTA: Nesse caso, temos uma progressão cujos valores **a** e **b** são zero e um, respectivamente

$$S_{n} = \sum_{0 \le i \le n} [0 + 1.i] = \underline{(2.0 + 1.n).(n+1)} = \underline{n.(n+1)}$$

 Dada a fórmula fechada do somatório dos n primeiros números inteiros, mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
   int soma = 0;
   for(int i = 1; i <= n; i++){
       soma += i;
    return soma;
```

 Dada a fórmula fechada do somatório dos n primeiros números inteiros, mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
   int soma = 0;
   for(int i = 1; i <= n; i++){
       soma += i;
    return soma;
```

```
int somatorio(int n){
    return ((n * (n+1))/2);
}
```

• O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2}$ (n - i - 1) comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

- O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2} (n i 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório
- Aplicando associatividade, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = \sum_{0 \le i \le n-2} n - \sum_{0 \le i \le n-2} i - \sum_{0 \le i \le n-2} 1$$

• O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2}$ (n - i - 1) comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

$$\sum_{0 \le i \le n-2} (n - i - 1) = n.(n-1) - \left(\sum_{0 \le i \le n-2} i - 1.(n-1)\right)$$

Sabendo que:
$$\sum_{0 \le i \le n} i = \underbrace{n(n+1)}_{2} \Rightarrow \sum_{0 \le i \le n-2} i = \underbrace{(n-2)(n-1)}_{2}$$

• O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

$$\sum_{0 \le i \le n-2} (n - i - 1) = n.(n-1) - (n-2)(n-1) - 1.(n-1)$$

Sabendo que:
$$\sum_{0 \le i \le n} i = \underbrace{n(n+1)}_{2} \Rightarrow \sum_{0 \le i \le n-2} i = \underbrace{(n-2)(n-1)}_{2}$$

- O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2} (n i 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório
- Assim, temos:

$$\sum_{0 \le i \le n-2} (n - i - 1) = n.(n-1) - (\underline{n-2})(\underline{n-1}) - 1.(n-1)$$

- O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2}$ (n i 1) comparações entre registros. Agora, mostre a fórmula fechada para esse somatório
- Assim, temos:

$$\sum_{0 \le i \le n-2} (n - i - 1) = n.(n-1) - (\underline{n-2})(\underline{n-1}) - 1.(n-1)$$

$$= \underline{2n(n-1) - (n-2)(n-1) - 2(n-1)}$$
2

- O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2}$ (n i 1) comparações entre registros. Agora, mostre a fórmula fechada para esse somatório
- Assim, temos:

$$\sum_{0 \le i \le n-2} (n - i - 1) = n.(n-1) - (\underline{n-2})(\underline{n-1}) - 1.(n-1)$$

$$= 2 - 2\underline{n(n-1) - (n-2)(n-1) - 2(n-1)}$$

$$= 2n(-2) - 2n - [n - 3n + 2] - 2n + 2$$

- O Algoritmo de Seleção realiza $\sum_{0 \le i \le n-2} (n i 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório
- Assim, temos:

$$\sum_{0 \le i \le n-2} (n - i - 1) = n.(n-1) - (n-2)(n-1) - 1.(n-1)$$

$$= 2n(n-1) - (n-2)(n-1) - 2(n-1)$$

$$= 2n^{2} - 2n - [n^{2} - 3n + 2] - 2n + 2$$

$$= n^{2} - n = \Theta(n^{2})$$
Puc Minas Virtual

$$a)\sum_{1}^{n}i = \sum_{0}^{n}i$$

$$b)\sum_{1} a_{i} \neq \sum_{0} a_{i}$$

c)
$$\sum_{1}^{n} a_{i} = \sum_{0}^{n} a_{i+1}$$

$$a)\sum_{1}^{n}i = \sum_{0}^{n}i$$

Resposta: Os dois somatórios são iguais, entretanto, o segundo faz uma soma a mais que é com seu primeiro termo cujo valor é zero.

$$b)\sum_{1}^{n}a_{i} \neq \sum_{0}^{n}a_{i}$$

Resposta: Os somatórios são diferentes, porque, não necessariamente, o primeiro termo (a_0) é igual a zero

c)
$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Resposta: O resultado dos dois somatórios é $(a_1 + a_2 + a_3 + a_4 + ... + a_n)$

Propriedades

PUC Minas Virtual

Agenda - Propriedades

• P1: Combinando Conjuntos

P2: Base para a Perturbação

Propriedade P1: Combinando Conjuntos

Propriedade (P1): Combinando Conjuntos

 Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cup I'} a_i + \sum_{i \in I \cap I'} a_i$$

Propriedade (P1): Combinando Conjuntos

 Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cup I'} a_i + \sum_{i \in I \cap I'} a_i$$

Observe que a união garante todos os elementos e a interseção, os repetidos

Propriedade (P1): Combinando Conjuntos

• Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cup I'} a_i + \sum_{i \in I \cap I'} a_i$$

Observe que a união garante todos os elementos e a interseção, os repetidos

EXEMPLO: Se A = $\{1, 2, 3\}$ e B = $\{3, 5, 7\}$, então A \cup B = $\{1, 2, 3, 5, 7\}$ e A \cap B = $\{3\}$

$$\sum_{1}^{m} a_{i} + \sum_{m}^{n} a_{i} =$$

$$\sum_{1}^{m} a_{i} + \sum_{m}^{n} a_{i} = \sum_{1}^{n} a_{i} + a_{m}$$

$$\sum_{1}^{m-3} a_{i} + \sum_{m}^{n} a_{i} =$$

$$\sum_{1}^{m-3} a_{i} + \sum_{m}^{n} a_{i} = \sum_{1}^{n} a_{m-2} - a_{m-2}$$

• Dada uma soma genérica qualquer $S_n = \sum_{0 \le i \le n} a_i$, temos que:

$$S_{n+1} = a_0 + a_1 + a_2 + \dots + a_n + a_{(n+1)}$$

• Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i$$

• Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_i$$

• Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_i = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

• Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_i = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Em ambos:
$$a_1 + a_2 + a_3 + a_4 + ... + a_{n+1}$$

Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = a_i = a_0 + a_i = a_0 + \sum_{1 \le i \le n+1} a_i = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Propriedade (P2): Base para a Perturbação

• Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Propriedade (P2): Base para a Perturbação

Resumindo, temos as duas igualdades:

$$S_{n+1} = S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

1^a Forma

2^a Forma

Propriedade (P2): Base para a Perturbação

• Resumindo, temos as duas igualdades:

$$S_{n+1} = S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

1^a Forma

2^a Forma

Na prática, para perturbar, resolveremos a igualdade abaixo

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Isso, frequentemente, resulta na equação fechada para S_n PUC Minas Virtual

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2, temos:

PUC Minas Virtual

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2, temos:

$$S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$
Lembre que $x^{i+1} = x.x^i$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

$$\sum_{0 \le i \le n} (a.x^i x) = x. \sum_{0 \le i \le n} (a.x^i)$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

$$\sum_{0 \le i \le n} (a.x^{i}x) = x.\sum_{0 \le i \le n} (a.x^{i}) = x.S_{n}$$

Aplique P2 para obter a fórmula fechada da soma S, dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

$$\sum_{0 \le i \le n} (a.x^{i}x) = x.\sum_{0 \le i \le n} (a.x^{i}) = x.S_{n}$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + x.S_n$$

$$\sum_{0 \le i \le n} (a.x^{i}x) = x.\sum_{0 \le i \le n} (a.x^{i}) = x.S_{n}$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + x.S_n$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + x.S_n$$

$$x^0 = 1$$

Aplique P2 para obter a fórmula fechada da soma S_n dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a + x.S_n$$

$$x^0 = 1$$

$$S_n + a.x^{n+1} = a + x.S_n$$

Fazendo algebrismo, temos:

Invertendo o lado dos termos marcados

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n$$
 \Rightarrow

$$S_n - x.S_n = a - a.x^{n+1}$$
 \Rightarrow

$$(1 - x) S_n = a - a.x^{n+1}$$

Colocando S_n em evidência

$$S_n + a.x^{n+1} = a + x.S_n$$
 \Rightarrow

$$S_n - x.S_n = a - a.x^{n+1}$$
 \Rightarrow

$$S_n = \underbrace{a - a.x^{n+1}}, \text{ para } x \neq 1$$
 \Rightarrow

$$1 - x$$

$$S_n + a.x^{n+1} = a + x.S_n \implies$$

$$S_n - x.S_n = a - a.x^{n+1}$$
 \Rightarrow

$$(1 - x) S_n = a - a.x^{n+1}$$

$$S_n = \underline{a - a.x}^{n+1}$$
, para $x \neq 1 \implies 1 - x$

$$S_n = \sum_{0 \le i \le n} a.x^i = \underline{a - a.x}^{n+1}, \text{ para } x \ne 1$$

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n \implies$$

Observe que quando x = 1, temos:

$$S_n = \sum_{0 \le i \le n} (a.1^i) = \sum_{0 \le i \le n} a = (n+1).a$$

$$S_n = \sum_{0 \le i \le n} a.x^i = \underline{a - a.x}^{n+1}, \text{ para } x \ne 1$$

$$1 - x$$

Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i \cdot 2^i$$

$$S_{n} + a_{n+1} = a_{0} + \sum_{0 \le i \le n} a_{i+1}$$

• Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i \cdot 2^i$$

$$S_n = 0.2^0 + 1.2^1 + 2.2^2 + 3.2^3 + 4.2^4 + 5.2^5 + ... + n.2^n$$

$$S_{n+1} = 0.2^{0} + 1.2^{1} + 2.2^{2} + 3.2^{3} + 4.2^{4} + 5.2^{5} + ... + n.2^{n} + (n+1).2^{(n+1)}$$

$$S_{n} + a_{n+1} = a_{0} + \sum_{0 \le i \le n} a_{i+1}$$

Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i \cdot 2^i$$

$$S_n = 0.2^0 + 1.2^1 + 2.2^2 + 3.2^3 + 4.2^4 + 5.2^5 + ... + n.2^n$$

$$S_{n+1} = (0.2^{\circ}) + 1.2^{1} + 2.2^{2} + 3.2^{3} + 4.2^{4} + 5.2^{5} + ... + n.2^{n} + (n+1).2^{(n+1)}$$

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

• Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i \cdot 2^i$$

$$S_n = 0.2^0 + 1.2^1 + 2.2^2 + 3.2^3 + 4.2^4 + 5.2^5 + ... + n.2^n$$

$$S_{n+1} = (0.2^{\circ}) + 1.2^{1} + 2.2^{2} + 3.2^{3} + 4.2^{4} + 5.2^{5} + ... + n.2^{n} + (n+1).2^{(n+1)}$$

COLA

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} (i+1) \cdot 2^{(i+1)}$$

PUC Minas Virtual

Aplicando P2, temos:

$$S_n + (n+1).2^{n+1} = 0.2^0 + \sum_{0 \le i \le n} (i+1).2^{i+1}$$

COLA
$$a_i = i.2^i$$

$$S_n = \sum_{0 \le i \le n} i.2^i$$

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Aplicando P2, temos:

• Como 0.2⁰ = 0, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

Aplicando associatividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$\sum_{i+1} (i+1) \cdot 2^{i+1} = \sum_{i+1} (i \cdot 2^{i+1} + 1 \cdot 2^{i+1})$$

$$0 \le i \le n$$

$$0 \le i \le n$$

• Aplicando associatividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$\sum_{\substack{i+1\\0\leq i\leq n}} (i+1) \cdot 2^{i+1} = \sum_{\substack{i+1\\0\leq i\leq n}} (i\cdot 2^{i+1} + 1\cdot 2^{i+1})$$

$$\sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

Aplicando associatividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} i.2^{i+1}$$

$$= \sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

$$\sum_{\substack{i+1\\0\leq i\leq n}} (i+1) \cdot 2^{i+1} = \sum_{\substack{i+1\\0\leq i\leq n}} (i\cdot 2^{i+1} + 1\cdot 2^{i+1})$$

$$\sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

Lembre que $2^{i+1} = 2 \times 2^{i}$

PUC Minas Virtual

$$S_n + (n+1).2^{n+1} = 2.\sum_{0 \le i \le n} i.2^i + 2.\sum_{0 \le i \le n} 2^i$$

Substituindo S_n, temos:

$$S_n + (n+1).2^{n+1} = 2.2 i.2^i + 2.3 i.3^i + 3.3 i.$$

COLA

$$S_n = \sum_{0 \le i \le r} i \cdot 2^i$$

PUC Minas Virtual

Substituindo S_n, temos:

Substituindo S_n, temos:

$$S_n + (n+1).2^{n+1} = 2S_n + 2.\sum_{0 \le i \le n} 2^{i}$$

• E agora José?

$$S_n + (n+1).2^{n+1} = 2S_n + 2 \sum_{0 \le i \le n} 2^i$$

E agora José?

• Vimos que:

$$S_n + (n+1).2^{n+1} = 2S_n + 2 \sum_{0 \le i \le n} 2^i$$

• Logo:

$$S_n + (n+1).2^{n+1} = 2S_n + 2 \sum_{0 \le i \le n} 2^i$$

Fazendo a = 1 e x = 2, temos
$$\sum_{0 \le i \le n} 1.2^i$$

• Logo:

$$S_n + (n+1).2^{n+1} = 2S_n + 2\sum_{0 \le i \le n} 2^i$$

Fazendo a = 1 e x = 2, temos
$$\sum_{0 \le i \le n} 2^i$$

• Logo:

$$S_n + (n+1).2^{n+1} = 2S_n + 2 \sum_{0 \le i \le n} 2^i$$

Fazendo a = 1 e x = 2, temos
$$\sum_{0 \le i \le n} 2^i = \underbrace{1 - 2^{n+1}}_{1 - 2}$$

Logo:

$$S_n + (n+1).2^{n+1} = 2S_n + 2\sum_{0 \le i \le n} 2^i$$

Fazendo a = 1 e x = 2, temos
$$\sum_{0 \le i \le n} 2^i = \underbrace{1 - 2^{n+1}}_{1 - 2} = \underbrace{1 - 2^{n+1}}_{-1}$$

• Logo:

$$S_n + (n+1).2^{n+1} = 2S_n + 2 \sum_{0 \le i \le n} 2^i$$

Fazendo a = 1 e x = 2, temos
$$\sum_{0 \le i \le n} 2^i = 1 - 2^{n+1} = 1 - 2^{n+1} = 2^{n+1} - 2^{n+1}$$

 $S_n + (n+1).2^{n+1} = 2S_n$

• Logo:

E agora José?
$$\sum_{0 \le i \le n} a.x^{i} = \underline{a - a.x^{n+1}}, \text{ para } x \ne 1$$

$$1 - x$$
Fazendo $a = 1 \text{ e } x = 2, \text{ temos } \sum_{0 \le i \le n} 2^{i} = \underline{1 - 2^{n+1}} = \underline{1 - 2^{n+1}} = \underline{2^{n+1}}$

 $0 \le i \le n$

Fazendo algebrismo, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1)$$

Fazendo algebrismo, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n$$

Invertendo os termos em vermelho de lado

Fazendo algebrismo, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n = S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2$$

Invertendo S_n de lado

Fazendo algebrismo, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n =$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2$$

Fazendo algebrismo, temos:

$$S_{n} + (n+1).2^{n+1} = 2.S_{n} + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_{n} - S_{n} \Rightarrow$$

$$S_{n} = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n} = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n} = n2^{n+1} - 2^{n+1} + 2$$

• Fazendo algebrismo, temos:

$$S_{n} + (n+1).2^{n+1} = 2.S_{n} + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_{n} - S_{n} \Rightarrow$$

$$S_{n} = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n} = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n} = n2^{n+1} - 2^{n+1} + 2 \Rightarrow$$

$$S_{n} = (n-1).2^{n+1} + 2 \Rightarrow$$

Colocando 2ⁿ⁺¹ em evidência

• Finalmente:

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$