The Network Layer
Graded Quiz • 1h 15m

Due Mar 1, 4:59 AM -03

Congratulations! You passed! TO PASS 80% or higher Keep Learning	100%
The Network Layer	
LATEST SUBMISSION GRADE 100%	
1. Question An ARP broadcast is sent to the special MAC address	1 / 1 point
FF:FF:FF:FF:FF00:00:00:00:00:00255.255.255.255	
① 255.255.255 ① 192.168.0.1	
✓ Correct	
You got it! ARP broadcasts are used to ask all devices on a local area network if they're associated with a specific IP address.	
2. Question	1 / 1 point
A network device that knows how to forward data along to other networks is known as a switch hub	
routerserver	
ν [™]	
✓ Correct Right on! A router allows devices on different networks to communicate with each other.	
3. Question	1 / 1 point
Interior gateway protocols are used by routers in order to share information within a single collision domain subnet	
autonomous system destination network	
✓ Correct Great job! An autonomous system is a group of networks all maintained by the same organization.	
4. Question	1 / 1 point
A is where one network ends and another begins. Subnet mask	17 I point
o routing table demarcation point	
orouting protocol	
✓ Correct	
You got it! It's important to know about demarcation points so that you understand where responsibility of the operation of a network begins and ends.	
5. Question Using logical operators, 1 AND 0 =	1/1 point
True False	
12	
∠ ^N	
✓ Correct Nice job! Using the AND operator, the result is only 1, or true, if both sides are also 1, or true.	
6. Question	1/1 point
Why do entries in a local Address Resolution Protocol (ARP) table expire after a short amount of time? To keep space in the table.	
 To account for network changes It only needs to be used one time. 	
It will use too much memory.	
✓ Correct Nice job! ARP table entries generally expire after a short amount of time to ensure changes in the network are	
Nice job! ARP table entries generally expire after a short amount of time to ensure changes in the network are accounted for.	
7. Question A router is performing basic routing functions. What will be the third step in the transmission of a	1/1 point
packet? The router looks up the destination network in its routing table. The router examines the destination IP.	
The router examines the destination in. The router forwards the packet. A router receives a packet of data.	
✓ Correct Great work! The router looks up the destination network of the IP address in its routing table in the third step.	
8. Question	1 / 1 point
What is eight bits of data called? Octuplet	
 Figure eight Octet Octoploid 	
L [™]	
✓ Correct You nailed it! Eight bits of data, or a single octet, can represent all decimal numbers from 0-255.	
9. Question	1 / 1 point
When dealing with IPv4, what is the minimum IP header length? 8 bits	
20 bytes 4 kilobytes	
○ 64 bytes	
✓ Correct Right on! An IP header is almost always 20 bytes in length when dealing with IPv4. 20 bytes is the minimum	
length of an IP header.	
10. Question What is the process of taking a single IP datagram and splitting it up into several smaller datagrams called?	1/1 point
called? Clustering NAT firewall	
Load balancing Fragmentation	
∠ [™]	
✓ Correct Great work! Fragmentation is the process of taking a single IP datagram and splitting it up into several smaller datagrams.	
11. Question	1 / 1 point
What is the purpose of an ARP response? To send an ACK message to the broadcasting computer	
To improve authentication security To let a computer broadcasting an ARP message know what MAC address to put into the destination hardware address field	
To prevent a flood of UDP packets	
✓ Correct	
Right on! The node that wants to send data sends a broadcast ARP message to the MAC broadcast address which is all F's. When the network interface receives this ARP broadcast, it sends back what's known as an ARP response. This response message will contain the MAC address for the network interface in question.	
12. Question	1/1 point
What does the subnet mask 255.255.255.0 tell a router? What the MAC address of a host is The static IP of the gateway router	
The next hop in the network route Which part of an IP address is the subnet ID and which is the host ID	
ν ^α	
Correct You nailed it! The purpose of the part of the mask that reads 255, or all 1s in binary, is to tell a router what part of an IP address is the subnet ID.	
13. Question	1/1 point
What is the term for the place one network ends and another begins? Subnet	
NAT firewall Demarcation point	
○ DMZ	
✓ Correct Nice job! To demarcate something means to set something off. When discussing computer networking you'll	
Nice job! To demarcate something means to set something off. When discussing computer networking you'll often hear the term demarcation point to describe where one network or system ends and another one begins.	
14. Question	1 / 1 point
How many possible host IDs do you always lose per network? 2 4	
4812	
∠ [™]	
✓ Correct Right on! You always lose two host IDs per network. So, if a /24 network has 2^8 or 256 potential hosts, you really only have 256 - 2 = 254 available IPs to assign.	
	1/1 point
15. Question How many bits long is a Autonomous System Number (ASN)? 8	1 / 1 point
0 8 0 4 0 64	
32	
✓ Correct	
Nice job! ASNs are numbers assigned to individual autonomous systems. Just like IP addresses, ASNs are 32-bit numbers. But, unlike IP addresses, they're normally referred to as just a single decimal number instead of being split out into readable bits.	