COMPLETE LIST OF ALL OF THE CLAIMS

1

2	1-2.	(canceled)
3	3.	(withdrawn):
4	4-5.	(canceled)
5 6	6.	(new) A method for objective measurement of video quality using a wavelet transform, comprising the steps of:
7		(a) producing source video wavelet coefficients for each frame of a source video
8		sequence by applying a 2-dimensional wavelet transform to each frame of said source
9		video sequence;
0		(b) producing processed video wavelet coefficients for each frame of a processed video
1		sequence by applying a 2-dimensional wavelet transform to each frame of said
2		processed video sequence;
3		(c) computing a difference vector for each frame, whose element represents a subband
4		difference, which is obtained by summing squared errors between said processed video
15		wavelet coefficients and said source video wavelet coefficients in said subband block,
16		thereby producing a sequence of difference vectors;
17		(d) producing a final difference vector by averaging said sequence of difference
18		vectors; and
19		(e) producing an objective video score by taking an inner product of said final
20		difference vector and a weight vector.

1	7.	(new) A method for objective measurement of video quality using a modified 3-
2		dimensional wavelet transform, comprising the steps of:
3		(a) producing source video wavelet coefficients for each frame of a source video
4		sequence by applying a 2-dimensional wavelet transform to each frame of said source
5		video sequence;
6		(b) producing processed video wavelet coefficients for each frame of a processed video
7		sequence by applying a 2-dimensional wavelet transform to each frame of said
8		processed video sequence;
9		(c) computing a difference vector for each frame, whose element represents a subband
10		difference, which is obtained by summing squared errors between said processed video
11		wavelet coefficients and said source video wavelet coefficients in said subband block,
12		thereby producing a sequence of difference vectors;
13		(d) producing a second sequence of difference vectors by applying a 1-dimensional
14		wavelet transform to said sequence of difference vectors in the temporal direction;
15		(d) producing a final difference vector by averaging said second sequence of difference
16		vectors; and
17		(e) producing an objective video score by taking the inner product of said final
18		difference vector and a weight vector.
19	8.	(new) A method for objective measurement of video quality using spatial and temporal
20		frequency differences, comprising the steps of:
21		(a) computing spatial and temporal frequency differences between a source video
22		sequence and a processed video sequence, thereby producing a spatial and temporal
23		frequency difference vector for said source video sequence and said processed video
24		goguenger and

- (b) producing an objective video score by taking the inner product of said spatial and
 temporal frequency difference vector and a weight vector.
- (new) The method in accordance with claim 4 wherein the step (a) is performed by
 applying a transform to said source video sequence and said processed video sequence
 in the spatial and temporal directions.