Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representation

Honglak Lee, Roger Grosse, Rajesh Raganath, and Andrew Y. Ng

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representation

Honglak Lee, Roger Grosse, Rajesh Raganath, and Andrew Y. Ng

Motivation

- DBN's don't scale well to realistically sized images:
 - Images are high dimensional
 - Objects can appear anywhere in an image
- Both of these problems can be addressed by introducing a degree of translation invariance

Convolutional RBM (CRBM)

•Two layers:

- Input layer V
 - N_v X N_v array of real-valued units
- Hidden layer H
 - K "groups"
 - $N_{_{\! H}}$ X $N_{_{\! H}}$ arrays of real-valued units

Convolutional RBM (CRBM)

- Like DBNs, stack several max-pooling CRBM on top of each other
- Train with efficient greedy, layer-wise algorithm

Probabilistic Max-Pooling

- In general, each layer requires progressively larger inputs
- Add a third layer to reduce complexity shrinking representation, without sacrificing significant features
- Feed forward only the "best match" by adding the constraint that only one unit in each C X C block is activated

Hierarchical probabilistic inference

- Lee and Mumford proposed that visual cortex performs hierarchical Bayesian inference
 - Use posterior computed at each layer to improve feature detection (especially disambiguation) in lower layers
 - This extends to feature inference
- e.g, from an observation of half of a face, we can infer the rest of the face by combining observation with prior knowledge of faces

Experiment

- 1) Learning hierarchical representations from natural images
- 2) Self-taught learning for object recognition
- 3) Handwritten digit classification
- 4) Unsupervised learning of object parts
- 5) Hierarchical probabilistic inference

Experiment

- 1) Learning hierarchical representations from natural images
- 2) Self-taught learning for object recognition
- 3) Handwritten digit classification
- 4) Unsupervised learning of object parts
- 5) Hierarchical probabilistic inference

Unsupervised learning of object parts

Features	Faces	Motorbikes	Cars
First layer	0.39 ± 0.17	0.44 ± 0.21	0.43 ± 0.19
Second layer	0.86 ± 0.13	0.69 ± 0.22	0.72 ± 0.23
Third layer	0.95 ± 0.03	0.81 ± 0.13	0.87 ± 0.15

Unsupervised learning of object parts

Hierarchical probabilistic inference

- Original image
- Control (bottom-up)
- Top-down and Bottom-up

Conclusions

- Probabilistic Max-Pooling significantly reduces computational overhead
- Incorporating top-down information flow reduces stimulus ambiguity and allows inference of unobserved stimulus
 - Similar to hierarchical Bayesian inference