Apprentissage automatique

- Algorithme du percpetron et machines à vecteurs de support -

Hachem Kadri

Université Aix-Marseille - LIS (Equipe Qarma)

http://qarma.lis-lab.fr/

Perceptron

Plan

Perceptron

SVI

Classification linéaire binaire

$$X \subset \mathbb{R}^n$$
, $Y = \{-1, 1\}$

Définition. Un classifieur linéaire est une fonction de la forme

$$f(x) = \begin{cases} 1 \text{ si } \langle w, x \rangle + b \ge 0 \\ -1 \text{ sinon.} \end{cases}$$

où $w \in \mathbb{R}^n$, $b \in \mathbb{R}$, $\langle w, x \rangle$ désigne le produit scalaire entre w et x: si $w = (w_1, \dots, w_n)$ et $x = (x_1, \dots, x_n)$, $\langle w, x \rangle = \sum_{i=1}^n w_i x_i$.

Interprétation géométrique : $\langle w, x \rangle + b = 0$ est l'équation d'un hyperplan qui sépare X en deux demi-espaces correspondant aux deux classes.

Exemple

$$X = \mathbb{R}^2$$

Classifieur linéaire défini par w = (1,2) et b = -1:

$$f(x_1, x_2) = \begin{cases} 1 & \text{si } x_1 + 2x_2 - 1 \ge 0 \\ -1 & \text{sinon.} \end{cases}$$

Par exemple, f(0,0) = -1 et f(1,1) = 1.

Hyperplan d'équation $x_1 + 2x_2 - 1 = 0$

Expressivité des perceptrons

- Les classifieurs linéaires peuvent sembler a priori très peu expressifs : pourquoi des données naturelles se répartiraient-elles de part et d'autres d'un hyperplan?
- Cette intuition n'est pas forcément vérifiée en très grande dimension (cas de classification de textes, par exemple).
- Cela suggère de plonger les données initiales dans un espace de grande dimension (voir chapitre 5).

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated. (T.M. Cover, 1965)

Données linéairement séparables

Un échantillon $S = \{(x_1, y_1), \dots, (x_l, y_l)\} \subset (X \times Y)^l$ est *linéairement séparable* s'il existe un classifieur linéaire qui classe correctement tous les exemples de S.

Exemples:

$$S = \{((0,0),-1),((1,0),1),((0,1),-1)\} \text{ est linéairement séparable}.$$

 $\mathcal{S} = \{((0,0),-1),((1,0),1),((0,1),1),((1,1),-1)\}$ n'est pas linéairement séparable (XOR).

Perceptrons

- ▶ Perceptrons (Rosenblatt 1958, Minsky/Papert 1969) : généralisation d'un modèle plus simple proposé par (McCulloch/Pitts neurons, 1942)
- un perceptron à n entrées est décrit par un vecteur de pondération $\overrightarrow{w} = (w_1, \dots, w_n)^{\top} \in \mathbb{R}^n$, un seuil $\theta \in \mathbb{R}$ et permet de calculer la fonction suivante :

$$(x_1,...,x_n)\longmapsto y=\begin{cases} 1 & \text{if } x_1w_1+x_2w_2+...+x_nw_n\geq \theta\\ 0 & \text{if } x_1w_1+x_2w_2+...+x_nw_n<\theta \end{cases}$$

Perceptrons

- ▶ pour plus de commodité : remplacer le seuil par un poids supplémentaire (biais) $w_0 = -\theta$
- un perceptron avec un vecteur de pondération \overrightarrow{w} et un biais w_0 effectue le calcul suivant :

$$(x_1, \dots, x_n) \longmapsto y = f(w_0 + \sum_{i=1}^n (w_i x_i)) = f(w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle)$$
avec
$$f(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Perceptrons : interprétation géométrique

- ► données (x₁,...,x_n)
 - \longrightarrow \in un espace de dimension n
- ▶ points vérifiants $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle = 0$ → hyperplan défini par w_0 et \overrightarrow{w}
- ▶ points vérifiants $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle > 0$ → points d'un coté de l'hyperplan
- ▶ points vérifiants $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle < 0$ → points de l'autre coté de l'hyperplan
- un perceptron divise l'espace des données en deux demi-espaces
 situés de part et d'autre de l'hyperplan

- ▶ les perceptrons peuvent être automatiquement adaptés à des taches d'apprentissage ⇒ Apprentissage supervisé : Classification
- algorithme d'apprentissage du perceptron :

données:

- un ensemble de données $\mathcal{P} \subseteq \mathbb{R}^n$: exemples positifs
- \bullet un autre ensemble $\mathcal{N}\subseteq\mathbb{R}^n$: exemples négatifs

tache:

- \bullet générer un perceptron qui retourne 1 pour tous les exemples de $\mathcal P$ et 0 pour les exemples de $\mathcal N$
- évidemment, il y a des cas dans lesquels l'algo d'apprentissage du perceptron n'est pas capable de résoudre le problème de classification
 - \longrightarrow exemple : $\mathcal{P} \cap \mathcal{N} \neq \emptyset$
 - --- données non linéairement séparables
 - → solution potentielle : transférer les données dans un autre espace dans lequel les données sont linéairement séparables (plus de détail, Chap. 5 : Méthodes à noyau)

► Lemme (séparabilité stricte) :

Si \exists un perceptron qui classe parfaitement les données d'apprentissage, alors \exists un perceptron qui classe ces données sans qu'aucune ne soit sur la frontière de décision, $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle \neq 0$

Preuve :

Soit $(w_0, \overrightarrow{w})$ un perceptron qui classe parfaitement toutes les données d'apprentissage. D'où

$$w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle \begin{cases} \geq 0 \ \forall \ \overrightarrow{x} \in \mathcal{P} \\ < 0 \ \forall \ \overrightarrow{x} \in \mathcal{N} \end{cases}$$

Soit $\epsilon = \min\{-(\textit{w}_0 + \langle \overrightarrow{\textit{w}}, \overrightarrow{\textit{x}} \rangle) | \overrightarrow{\textit{x}} \in \mathcal{N}\}$. Alors :

$$w_0 + \frac{\epsilon}{2} + \langle \overrightarrow{w}, \overrightarrow{x} \rangle \begin{cases} \geq \frac{\epsilon}{2} > 0 \ \forall \ \overrightarrow{x} \in \mathcal{P} \\ \leq -\frac{\epsilon}{2} < 0 \ \forall \ \overrightarrow{x} \in \mathcal{N} \end{cases}$$

Ainsi le perceptron $(w_0 + \frac{\epsilon}{2}, \overrightarrow{w})$ prouve le lemme.

- ► Erreur de classification de $\overrightarrow{x} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle < 0$
- Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle$
 - augmenter w₀
 - Si x_i > 0 augmenter w_i
 - Si $x_i < 0$ diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 \longrightarrow Procéder par analogie pour les exemples négatifs $\overrightarrow{x} \in \mathcal{N}$

- ▶ Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle$
 - augmenter w₀
 - Si $x_i > 0$ augmenter w_i
 - Si x_i < 0 diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 exemples négatifs $\overrightarrow{X} \in \mathcal{N}$

augmenter w₀

- ▶ Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle$
 - augmenter w₀
 - Si $x_i > 0$ augmenter w_i
 - Si x_i < 0 diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 exemples négatifs $\overrightarrow{X} \in \mathcal{N}$

- ► Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle$
 - augmenter w₀
 - Si $x_i > 0$ augmenter w_i
 - Si $x_i < 0$ diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 \longrightarrow Procéder par analogie pour les exemples négatifs $\overrightarrow{X} \in \mathcal{N}$

augmenter w₀

- ► Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle$
 - augmenter w₀
 - Si x_i > 0 augmenter w_i
 - Si $x_i < 0$ diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 → Procéder par analogie pour les exemples négatifs $\overrightarrow{x} \in \mathcal{N}$

- ► Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle$
 - augmenter w₀
 - Si $x_i > 0$ augmenter w_i
 - Si $x_i < 0$ diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 \longrightarrow Procéder par analogie pour les exemples négatifs $\overrightarrow{X} \in \mathcal{N}$

augmenter w

- ► Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{x} \rangle$
 - augmenter w₀
 - Si $x_i > 0$ augmenter w_i
 - Si $x_i < 0$ diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 \longrightarrow Procéder par analogie pour les exemples négatifs $\overrightarrow{X} \in \mathcal{N}$

augmenter w

- ► Erreur de classification de $\overrightarrow{X} \in \mathcal{P}$ $\longrightarrow w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle < 0$
- ► Comment peut-on modifier w_0 et \overrightarrow{w} pour remédier à cette erreur \longrightarrow augmenter $w_0 + \langle \overrightarrow{w}, \overrightarrow{X} \rangle$
 - augmenter w₀
 - Si $x_i > 0$ augmenter w_i
 - Si $x_i < 0$ diminuer w_i
- ► Algorithme : ajouter \overrightarrow{x} à \overrightarrow{w} et 1 à w_0 \longrightarrow Procéder par analogie pour les exemples négatifs $\overrightarrow{x} \in \mathcal{N}$

augmenter w

Entrées : données d'apprentissage positives $\mathcal P$ et négatives $\mathcal N$ **Retourne :** un perceptron, si existe, qui classe parfaitement toutes les données d'apprentissage

- 1. initialiser arbitrairement le vecteur de pondération \overrightarrow{w} et le biais w_0
- 2. Tant que il existe une donnée mal-classée $\overrightarrow{x} \in \mathcal{P} \bigcup \mathcal{N}$ faire
- 3. Si $\overrightarrow{x} \in \mathcal{P}$ alors
- 4. $\overrightarrow{w} \leftarrow \overrightarrow{w} + \overrightarrow{x}$
- 5. $w_0 = w_0 + 1$
- 6. Sinon
- 7. $\overrightarrow{w} \leftarrow \overrightarrow{w} \overrightarrow{x}$
- 8. $w_0 = w_0 1$
- 9. Fin si
- 10. Fin tant que
- 11. Retourner w_0 et \overrightarrow{w}

Algorithme d'apprentissage du perceptron : Exemple

$$\mathcal{N} = \{(1,0)^\top, (1,1)^\top\}, \mathcal{P} = \{(0,1)^\top\}$$

 \longrightarrow exercice

Algorithme d'apprentissage du perceptron : Convergence

▶ Lemme :

Si l'algorithme du perceptron converge, alors le perceptron $(w_0, \overrightarrow{w})$ obtenu classe parfaitement tous les exemples d'apprentissage.

► Théorème (Convergence) :

Si \exists un perceptron qui classe correctement toutes les données d'apprentissage, alors l'algorithme du perceptron converge.

► Lemme :

Si au cours de l'exécution de l'algorithme du perceptron on rencontre deux fois le même vecteur de pondération, alors les données d'apprentissage utilisées ne sont pas linéairement séparables.

► Lemme :

Si l'algorithme du perceptron avec un biais $w_0=0$ est exécuté sur un jeu de données non linéairement séparable, alors le vecteur de pondération se produira au moins deux fois .

Algorithme d'apprentissage du perceptron : Convergence

► Lemme (Complexité) :

Si les données d'apprentissage sont linéairement séparables, alors le nombre d'itérations maximal de l'algorithme du perceptron est égale à $(n+1)^2 2^{(n+1)\log(n+1)}$

- temps d'exécution : complexité exponentielle
 - \rightarrow autres implémentations complexité $O(n^{\frac{7}{2}})$ -

- comment peut-on déterminer un "bon" perceptron si la tâche d'apprentissage ne peut pas être résolu parfaitement
- "bon" dans le sens d'un perceptron avec un nombre d'erreurs minimal
- l'algorithme du perceptron : le nombre d'erreurs ne décroit pas de façon monotone durant la phase d'apprentissage
- idée : mémoriser le meilleur vecteur de pondération rencontré au cours de l'exécution
- les perceptrons peuvent apprendre que des problèmes linéairement séparables
- ► contre-exemple : $XOR(x_1, x_2)$ $\mathcal{P} = \{(0, 1)^\top, (1, 0)^\top\}, \mathcal{N} = \{(0, 0)^\top, (1, 1)^\top\}$
- un réseau de neurone associant plusieurs perceptrons est plus puissant

Perceptron

Entre ces deux solutions, laquelle est la meilleure?

Algorithme d'apprentissage du Perceptron (Rosenblatt, 1958)

Soit $S = S_P \cup S_N \subset \mathbb{R}^{n+1} \times \{-1,1\}$ un échantillon complété linéairement séparable.

Soit w le classifieur linéaire courant.

- ▶ Si $(x, y) \in S_P$ est mal classé, $\langle w, x \rangle < 0$ et il faudrait augmenter $\langle w, x \rangle$,
- ▶ si $(x,y) \in S_N$ est mal classé, $\langle w, x \rangle \ge 0$ et il faudrait diminuer $\langle w, x \rangle$,

Idée : prendre $w_{new}=w+xy$. Dans le premier cas, on a $\langle w_{new},x\rangle=\langle w,x\rangle+||x||^2$; dans le second cas, on a $\langle w_{new},x\rangle=\langle w,x\rangle-||x||^2$.

```
Algorithme d'apprentissage du Perceptron Entrée : S = \{(x_1, y_1), \dots, (x_l, y_l)\}, un échantillon complété linéairement séparable de \mathbb{R}^{n+1} \times \{-1, 1\} w_0 = 0 \in \mathbb{R}^{n+1}, k = 0 Répéter Pour i = 1 à l Si y_i \langle w_k, x_i \rangle \leq 0 alors w_{k+1} = w_k + y_i x_i k = k + 1 FinPour Jusqu'à ce qu'il n'y ait plus d'erreurs Sortie : w_k
```

Exercice

Utilisez l'algorithme du perceptron pour séparer l'échantillon $\{((0,0),-1),((0,1),1),((1,0),1),((1,1),1)\}$. Dessinez l'hyperplan obtenu.

k	W_k	x_k mal classé	y _k
0	000	0 0 1	-1
1	0 0 -1		

Propriétés

- L'algorithme du Perceptron est une procédure *on-line*, par *correction* d'erreurs (error-driven).
- L'algorithme est correct : lorsqu'il converge, l'hyperplan retourné sépare les données fournies en entrée
- L'algorithme est complet : si S est linéairement séparable, l'algorithme converge.
- ▶ Dans le pire des cas, le nombre d'itérations est égal à $(n+1)^2 2^{(n+1)\log(n+1)}$. Complexité exponentielle!
- Très mauvaise tolérance au bruit.

La notion de marge

On peut multiplier l'équation $\langle w, x \rangle + b = 0$ d'un hyperplan par un réel non nul sans modifier l'hyperplan qu'elle définit.

On peut donc supposer que w vérifie ||w|| = 1.

Dans ce cas, la distance d'un exemple (x, y) à un hyperplan séparateur est égal à $y(\langle w, x \rangle + b)$.

Complexité de l'algorithme et marge (suite)

Théorème (Novikoff) : Soit $S = \{(x_1, y_1), \dots, (x_l, y_l)\}$ un échantillon d'apprentissage non trivial (i.e. $\exists i, j \ y_l y_j = -1$). Supposons que

- $ightharpoonup \forall i, ||x_i|| < 1 \text{ et}$
- ▶ $\exists w, b, \gamma > 0$ tels que $\forall i, y_i(\langle w, x_i \rangle + b) \geq \gamma$.

Alors, le nombre d'erreurs $(y_i(\langle w_k, x_i \rangle + b_k) \leq 0)$ commises pendant l'exécution de l'algorithme est au plus égal à $(2/\gamma)^2$.

Remarques:

- $ightharpoonup \gamma$ est une borne inférieure de la *marge* du problème
- Quelles que soient les données, on peut toujours se ramener au moyen d'une homothétie-translation au cas où Max||x_i|| = 1.

Complexité de l'algorithme et marge

$$S = \{((0,0),-1),((0,1),1),((1,0),1),((1,1),1)\}.$$

Au moyen d'une translation de vecteur (-1/2, -1/2) suivie d'une homothétie de rapport $\sqrt{2}$, on obtient l'échantillon équivalent

$$S=\{((-\tfrac{\sqrt{2}}{2},-\tfrac{\sqrt{2}}{2}),-1),((-\tfrac{\sqrt{2}}{2},\tfrac{\sqrt{2}}{2}),1),((\tfrac{\sqrt{2}}{2},-\tfrac{\sqrt{2}}{2}),1),((\tfrac{\sqrt{2}}{2},\tfrac{\sqrt{2}}{2}),1)\}.$$

On a bien $Max||x_i|| = 1$. On vérifie que la marge du problème est égale à 1/2.

Le théorème prédit que le nombre de corrections de l'algorithme est inférieur ou égal à 8.

Forme duale de l'algorithme du perceptron

Remarque: l'hypothèse finale est une combinaison linéaire des exemples d'apprentissage.

$$w = \sum_{i=1}^{l} \alpha_i y_i x_i.$$

Les nombres α_i sont positifs et égaux au nombre de fois où une mauvaise classification de x_i a entraîné une mise à jour du perceptron. Ils peuvent être vus comme une représentation duale de la solution :

$$f(x) = sgn(\langle w, x \rangle + b) = sgn\left(\sum_{i=1}^{l} \alpha_i y_i \langle x_i, x \rangle + b\right).$$

Forme duale de l'algorithme du perceptron

```
entrée : S = \{(x_1, y_1), \dots, (x_l, y_l)\}, un échantillon complété linéairement séparable \alpha = 0 \in \mathbb{R}^l répéter

Pour i = 1 à l
Si y_i(\sum_{j=1}^l \alpha_j \langle x_j, x_i \rangle) \leq 0 alors \alpha_i = \alpha_i + 1
k = k + 1
FinSi
FinPour
Jusqu'à ce qu'il n'y ait plus d'erreurs
Sortie : \alpha
```

Exercice

Utilisez l'algorithme du perceptron pour séparer l'échantillon $\{((0,0),-1),((0,1),1),((1,0),1),((1,1),1)\}$. Dessinez l'hyperplan obtenu.

k	α_{k}	x_k mal classé	y _k
0	0000	0 0 1	-1
1	1000		

Propriétés de l'algorithme dual

- dans la représentation duale, le nombre de paramètres de la solution ne dépend pas de la dimension de l'espace dans lequel les x_i sont plongés,
- les exemples d'apprentissage ne sont pris en compte par l'algorithme que par l'intermédiaire de leurs produits scalaires.
- ▶ On appelle **Matrice de Gram** la matrice $G = (\langle x_i, x_j \rangle)_{1 \le i,j \le l}$: elle suffit à trouver une solution.

Extensions

- 1. Plongements non linéaires
- 2. Perceptrons linéaires avec couches cachées
- 3. Perceptrons non linéaires (avec couches cachées)
- Séparateurs linéaires optimaux Machines à Vecteurs Supports ou Séparateurs à vaste Marge (SVM)
- 5. Méthodes à noyaux

Plongements non linéaires

$$(x,y) ---> (x,y,xy)$$
 C: $-x-y+2xy+1/3=0$ <--- P: $-x-y+2z+1/3=0$

Séparation linéaire après plongement non linéaire

Soit
$$S = \{(0,0), -1; (0,1), 1; (1,0), 1; (1,1), -1\}.$$

On considère le plongement ϕ de \mathbb{R}^2 dans \mathbb{R}^3 défini par

$$\phi(X^{(1)},X^{(2)})=(X^{(1)},X^{(2)},X^{(1)}X^{(2)}).$$

$$S_{\phi} = \{ (\phi(x), y) | (x, y) \in S \} = \{ (0, 0, 0), -1; (1, 0, 0), 1; (0, 1, 0), 1; (1, 1, 1), -1 \}.$$

$$\overline{S}_{\phi} = \{ (0, 0, 0, 1), -1; (1, 0, 0, 1), 1; (0, 1, 0, 1), 1; (1, 1, 1, 1), -1 \}.$$

Algorithme du perceptron

k	\mathbf{w}_k	\mathbf{x}_k mal classé	Уk
0	0000	0001	-1
1	0 0 0 -1	1001	1
2	1000	1111	-1
3	0 -1 -1 -1	1001	1
 17	11-3-1		

ce qui conduit

- au plan séparateur d'équation $x^{(1)} + x^{(2)} 3x^{(3)} 1 = 0$ dans \mathbb{R}^3 et
- ▶ à la courbe séparatrice d'équation $x^{(1)} + x^{(2)} 3x^{(1)}x^{(2)} 1 = 0$ dans \mathbb{R}^2 .

Séparation linéaire après plongement non linéaire (suite)

On considère un plongement ϕ de \mathbb{R}^2 dans \mathcal{H} , espace muni d'un produit scalaire, vérifiant

$$\langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = 1 + x^{(1)}y^{(1)} + x^{(2)}y^{(2)} + x^{(1)}y^{(1)}x^{(2)}y^{(2)}.$$

Matrice de Gram de S_{ϕ} :

$$(\langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}})_{1 \leq i,j \leq |S|} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix}$$

Algorithme dual du perceptron

k	\mathbf{n}_k	$\phi(\mathbf{x}_k)$ mal classé	Уk
0	0000	X ₁	-1
1	1000	X ₂	1
2	1100	\mathbf{x}_4	-1
3	1101	x ₂	1
 17	6443		

$$f(x) = sgn(\sum_{i=1}^{4} n_i y_i \langle \phi(x_i), \phi(x) \rangle_{\mathcal{H}})$$

= $sgn(-6 + 4(1 + x^{(1)}) + 4(1 + x^{(2)}) - 3(1 + x^{(1)} + x^{(2)} + x^{(1)} + x^{(2)}))$

Kernel trick

On appelle **noyau** toute fonction $k: X \times X \to \mathbb{R}$ qui peut être interprétée comme un produit scalaire dans un plongement Φ :

$$k(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

Tout algorithme d'apprentissage qui n'utilise que les produits scalaires des données (matrice de Gram) peut être *kernelisé*. Le perceptron à noyau est un classifieur

$$f: x \mapsto signe(\sum_{i=1}^{l} \alpha_i y_i k(x, x_i))$$

qui est

- linéaire dans l'espace de plongement (avec toutes les garanties associées) et
- non linéaire dans l'espace initial.

Perceptron à noyau

```
entrée : S = \{(x_1, y_1), \dots, (x_l, y_l)\}, un échantillon complété \alpha = 0 \in \mathbb{R}^l répéter

Pour i = 1 à l
Si y_i(\sum_{j=1}^l \alpha_j y_j k(x_j, x_l)) \leq 0 alors \alpha_i = \alpha_l + 1
FinSi
FinPour

Jusqu'à ce qu'il n'y ait plus d'erreurs
Sortie : x \mapsto signe(\sum_i \alpha_i y_i k(x, x_i))
```

Exemples de noyaux :

Noyau polynomial homogène

$$X = \mathbb{R}^n, k(x, y) = \left(\sum_{i=1}^n x_i y_i\right)^d$$

Noyau polynomial

$$X = \mathbb{R}^n, k(x, y) = \left(1 + \sum_{i=1}^n x_i y_i\right)^d.$$

Noyau gaussien:

$$k(x,y) = exp\left(-\frac{||x-y||^2}{2\sigma^2}\right)$$

La dimension de l'espace de plongement est finie pour les noyaux polynomiaux et infini (espace de Hilbert) pour le noyau gaussien ... mais le plongement est virtuel.

Caractérisation des noyaux

Théorème : une fonction $k: X \times X \to \mathbb{R}$ est un noyau ssi pour tout m-uplet x_1, \ldots, x_m d'éléments de X, la matrice de Gram $k(x_i, x_j)_{1 \le i, j \le m}$ est définie positive, c'est-à-dire que pour tous réels c_1, \ldots, c_m ,

$$\sum_{i,j} c_i c_j k(x_i,x_j) \geq 0.$$

A retenir : on sait (théoriquement) caractériser les fonctions noyaux et déterminer un plongement correspondant.

Séparation linéaire après plongement non linéaire (suite)

Sur l'exemple précédent, on considère le noyau Gaussien

$$k(x,y) = exp\left(-\frac{||x-y||^2}{2\sigma^2}\right).$$

Matrice de Gram de S_{ϕ} :

$$(\langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}})_{1 \leq i,j \leq |\mathcal{S}|} = \begin{pmatrix} 1.00 & 0.61 & 0.61 & 0.37 \\ 0.61 & 1.00 & 0.37 & 0.61 \\ 0.61 & 0.37 & 1.00 & 0.61 \\ 0.37 & 0.61 & 0.61 & 1.00 \end{pmatrix}$$

Algorithme du perceptron à noyau : n = [1, 1, 1, 1]

- convergence en 4 étapes
- chaque exemple a été mal classé une et une seule fois ce qui conduit au classifieur

$$f(x) = sg(-e^{-||x||^2/2} + e^{-((x^{(1)}-1)^2 + (x^{(2)})^2)/2} + e^{-((x^{(2)}-1)^2 + (x^{(1)})^2)/2} - e^{-((x^{(1)}-1)^2 + (x^{(2)}-1)^2)/2}$$

Exercice

Soit

$$\mathcal{S} = \{(-1,0),1;(0,1),1;(1,0),1;(0,0),-1\}$$

et

$$k(x,y) = 1 + x^{(1)}y^{(1)} + x^{(2)}y^{(2)} + (x^{(1)}y^{(1)})^{2}.$$

- 1. Dessinez S,
- 2. Appliquez le perceptron à noyau à ce jeu de données,
- 3. Dessinez la courbe séparatrice dans l'espace initial.

L_{SVM}

Plan

Perceptron

SVM

Retour sur la notion de marge

Soit S un échantillon linéairement séparable et soit H un hyperplan séparateur, d'équation $\langle w, x \rangle + b = 0$.

On peut choisir w et b tel que le point M le plus proche de H satisfasse :

$$f(x_M) = \langle w, x_M \rangle + b = \left\{ egin{array}{ll} 1 & ext{si M est positif} \\ -1 & ext{sinon.} \end{array}
ight.$$

Dans ce cas,

- ▶ la marge de *H* est égale à 1/||w|| et
- ▶ tous les points de S vérifient $yf(x) \ge 1$.

Calcul de la marge (exemple)

Soit $S = \{((0,1), +), ((2,0), -)\}.$

La droite d'équation f(x, y) = -x + y - 1/2 = 0 sépare S.

On a f(0,1) = 1/2 et f(2,0) = -5/2.

On normalise l'équation en la multipliant par 2: -2x + 2y - 1 = 0.

$$w = (-2, 2)^T, ||w|| = \sqrt{8} = 2\sqrt{2}$$

et la marge est égale à $\frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$.

SVM: Hyperplan optimal

Soit $S = \{(x_1, y_1), \dots, (x_l, y_l)\} \subset \mathbb{R}^n \times \{-1, 1\}$ un échantillon linéairement séparable.

Il existe un unique hyperplan de marge maximale qui est solution du problème d'optimisation suivant :

$$\begin{cases} f(x) = \langle w, x \rangle + b \\ y_i f(x_i) \ge 1 \text{ pour tout } i = 1 \dots I \\ \text{Minimiser } ||w||^2. \end{cases}$$

Optimisation quadratique sous contraintes linéaires (convexes)

Hyperplan optimal (exemple)

Soit $S = \{((4,3),1),((0,2),1),((0,0),-1)\}$. Le problème d'optimisation à résoudre est :

Minimiser $w_1^2 + w_2^2$ sous les contraintes

$$4w_1 + 3w_2 + b \ge 1, 2w_2 + b \ge 1, -b \ge 1.$$

Les deux dernières équations impliquent $w_2 \ge 1$ et donc $w_1^2 + w_2^2 \ge 1$. On en déduit la solution optimale : $w_1 = 0$, $w_2 = 1$, b = -1.

Équation de l'hyperplan optimal : y = 1

Hyperplan optimal (cas général)

Minimiser

$$||w||^{2}$$

sous les contraintes

$$y_i(\langle w, x_i \rangle + b) \ge 1$$
 pour tout $i = 1 \dots I$

Nouvelles variables (multiplicateurs de Lagrange) : $\alpha_i \ge 0$ Nouvelle fonction : le Lagrangien

$$L(w,b,\alpha) = \frac{1}{2}w^2 - \sum_{i=1}^{l} \alpha_i [y_i(\langle w, x_i \rangle + b) - 1]$$

La solution (*unique* grâce à la convexité) (w^*, b^*, α^*) est un *point selle* du Lagrangien : $L(w, b, \alpha^*)$ est minimal en (w^*, b^*) et $L(w^*, b^*, \alpha)$ est maximal en α^* .

Hyperplan optimal (cas général)

$$L(w,b,\alpha) = \frac{1}{2}w^2 - \sum_{i=1}^{l} \alpha_i [y_i(\langle w, x_i \rangle + b) - 1]$$

La solution (*unique* grâce à la convexité) (w^*, b^*, α^*) est un *point selle* du Lagrangien :

 $L(w, b, \alpha^*)$ minimal en (w^*, b^*) ; $L(w^*, b^*, \alpha)$ maximal en α^* .

Hyperplan optimal : propriétés

On appelle vecteur support toute donnée x_i telle que $\alpha_i^* \neq 0$. Soit VS l'ensemble des vecteurs supports de S.

Propriétés

- ▶ Si $x_i \notin SV$, la contrainte correspondante n'est pas active,
- ▶ Les problèmes d'optimisation associés à *S* et à *VS* ont la même solution.
- ▶ Le rapport #SV/#S est une borne supérieure de l'estimateur leave-one-out de l'erreur en généralisation de la solution.
- $\sum_{i=1}^{I} \alpha_i^* y_i = 0$

La solution s'exprime en fonction des vecteurs supports

Exemple

Soit
$$S = \{((4,3),1),((0,2),1),((0,0),-1)\}$$
. On a trouvé

$$w^* = (0, 1)$$
 et $b^* = -1$.

Si l'on pose $\sum_{i=1}^{l} \alpha_i^* y_i = 0$ et $w^* = \sum_{i=1}^{l} \alpha_i^* y_i x_i$, on trouve

$$\begin{cases} \alpha_1 + \alpha_2 - \alpha_3 &= 0 \\ 4\alpha_1 &= 0 \\ 3\alpha_1 + 2\alpha_2 &= 1 \end{cases}$$

On trouve

$$\alpha_1 = 0, \alpha_2 = 1/2 \text{ et } \alpha_3 = 1/2$$

Les vecteurs supports sont x_2 et x_3 .

Hyperplan optimal : problème dual

Si l'on remplace w par $\sum_{i=1}^{l} \alpha_i y_i x_i$ dans le Lagrangien

$$L(w,b,\alpha) = \frac{1}{2}w^2 - \sum_{i=1}^{l} \alpha_i [y_i(\langle w, x_i \rangle + b) - 1]$$

on trouve

$$W(\alpha) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{l} y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle$$

qu'on doit maximiser sous les contraintes $\sum_{i=1}^{l} \alpha_i y_i = 0$ et $\alpha_i \ge 0$.

- Seuls les produits scalaires $\langle x_i, x_j \rangle$ sont nécessaires pour trouver l'hyperplan optimal.
- ▶ Retrouver w^* à partir des α_i^* : $w^* = \sum_{i=1}^l \alpha_i^* y_i x_i$
- ► Calcul de b^* à partir d'un vecteur support : $\langle w^*, x_i \rangle + b^* = y_i$.

Problème dual (exemple)

Soit
$$S = \{((4,3),1), ((0,2),1), ((0,0),-1)\}.$$

$$W(\alpha) = \sum_{i=1}^{I} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{I} y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle$$
$$= \alpha_1 + \alpha_2 + \alpha_3 - \frac{1}{2} (25\alpha_1^2 + 4\alpha_2^2 + 12\alpha_1 \alpha_2)$$

qu'on doit maximiser sous les contraintes

$$\alpha_1 + \alpha_2 - \alpha_3 = 0$$
 et $\alpha_i \ge 0$ pour $i = 1, 2, 3$.

Et lorsque les données ne sont pas séparables?

- Trouver le classifieur linéaire qui minimise le nombre d'erreurs est un problème NP-dur.
- L'algorithme du Perceptron oscille, changeant d'hypothèses à chaque présentation d'un contre-exemple sans se stabiliser sur une solution intéressante.

Idée : se soucier davantage de la confiance avec laquelle la plupart des exemples sont correctement classés plutôt que du nombre d'exemples mal classés.

→ maximiser la marge d'un séparateur linéaire en tolérant un nombre limité d'exceptions : notion de marge souple (soft margin).

Soft margin optimisation

On introduit des variables de relachement (slack variable). Minimiser

$$||w||^2 + C \sum_{i=1}^{l} \xi_i (\text{ou } ||w||^2 + C \sum_{i=1}^{l} \xi_i^2)$$

sous les contraintes

$$\begin{cases} y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \text{ pour tout } i = 1, \dots, I \\ \xi_i \ge 0 \text{ pour tout } i = 1, \dots, I \end{cases}$$

Idée : on paie une *pénalité C\xi_i* pour tout exemple x_i

- ▶ moins bien classé : $0 < \xi_i < 1$ ou
- ▶ mal classé : $\xi_i \ge 1$.

Comment réaliser un plongement des données?

Pour tout algorithme d'apprentissage ne faisant intervenir que le produit scalaire des données

perceptron, séparateur optimal avec marges dures ou souples

il suffit de connaître la matrice de Gram $G = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq l}$ pour construire le classifieur linéaire correspondant :

$$f: x \mapsto signe(\sum_{i=1}^{l} \alpha_i \langle x, x_i \rangle).$$

Soit $\Phi: X \to Y$ une fonction de plongement dans un espace Y avec produit scalaire. On obtiendra un classifieur linéaire (dans l'espace de plongement) défini par :

$$f: x \mapsto signe(\sum_{i=1}^{l} \alpha_i \langle \Phi(x), \Phi(x_i) \rangle).$$

Kernel trick

On appelle **noyau** toute fonction $k: X \times X \to \mathbb{R}$ qui peut être interprétée comme un produit scalaire dans un plongement Φ :

$$k(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

On peut appliquer les algorithmes du perceptron et de séparation optimale avec marges souples ou dures en remplaçant

$$\langle x_i, x_j \rangle$$
 par $k(x_i, x_j)$.

On obtient alors un classifieur

$$f: x \mapsto signe(\sum_{i=1}^{l} \alpha_i k(x, x_i))$$

linéaire dans l'espace de plongement (avec toutes les garanties associées) et non linéaire dans l'espace initial.

Exemples de noyaux :

Noyau polynomial homogène

$$X = \mathbb{R}^n, k(x, y) = \left(\sum_{i=1}^n x_i y_i\right)^d$$

Noyau polynomial

$$X = \mathbb{R}^n, k(x, y) = \left(1 + \sum_{i=1}^n x_i y_i\right)^d.$$

Noyau gaussien:

$$k(x,y) = exp\left(-\frac{||x-y||^2}{2\sigma^2}\right)$$

La dimension de l'espace de plongement est finie pour les noyaux polynomiaux et infini (espace de Hilbert) pour le noyau gaussien ... mais le plongement est virtuel.

Caractérisation des noyaux

Théorème : une fonction $k: X \times X \to \mathbb{R}$ est un noyau ssi pour tout m-uplet x_1, \ldots, x_m d'éléments de X, la matrice de Gram $k(x_i, x_j)_{1 \le i, j \le m}$ est définie positive, c'est-à-dire que pour tous réels c_1, \ldots, c_m ,

$$\sum_{i,j} c_i c_j k(x_i,x_j) \geq 0.$$

A retenir : on sait (théoriquement) caractériser les fonctions noyaux et déterminer un plongement correspondant.

402 points générés à partir de 2 paraboles parallèles avec bruit Gaussien.

SVM

Séparateur linéaire optimal avec marges souples : 104 vecteurs supports.

Lsvm

Noyau quadratique: 38 vecteurs supports.

Noyau polynomial de degré 3 : 35 vecteurs supports.

Noyau Gaussien, $\sigma = 1$: 62 vecteurs supports.

Noyau Gaussien, $\sigma = 0.5$: 64 vecteurs supports.

Noyau Gaussien, $\sigma = 0.1$: 321 vecteurs supports.

Noyau Gaussien, $\sigma = 0.05$: 390 vecteurs supports.

The US Postal Service (USPS) database.

- 9298 chiffres manuscrits (7291 pour apprendre, 2007 pour tester) provenant d'enveloppes postées ou reçues à Buffalo;
- Chaque chiffre est une image 16 x 16 représenté par un vecteur de [-1,1]²⁵⁶;
- ▶ Les jeu de tests est difficile : 2,5% d'erreur en moyenne pour un humain ;
- ▶ Données disponibles à

http://www.kernel-machines.org.data.html.

Résultats (1) (Schölkopf, Smola)

Classification par SVMs sur les données USPS.

Noyau polynomial : $k(x, y) = (\langle x, y \rangle / 256)^d$.

Construction de 10 classifieurs (méthode un contre tous).

d	1	2	3	4	5	6	7
erreur %	8,9	4,7	4,0	4,2	4,5	4,5	4,7
Nb. moyen de VSs	282	237	274	321	374	422	491

Résultats (2) (Schölkopf, Smola)

Classification par SVMs sur les données USPS.

Noyau gaussien : $k(x, y) = exp(-||x - y||^2/(256c))$.

Construction de 10 classifieurs (méthode un contre tous).

С	4,0	2,0	1,2	0,8	0,5	0,2	0,1
erreur %	5,3	5,0	4,9	4,3	4,4	4,4	4,5
Nb. moyen de VSs	266	240	233	235	251	366	722

Comparaison des résultats (Schölkopf, Smola)

USPS+: USPS + un ensemble de chiffres imprimés.

Classifieur	Ens. d'App.	Erreur sur ens. test
Decision tree, C4.5	USPS	16,2
Best two layer neural network	USPS	5,9
Five-layer network	USPS	5,1
Linear SVM	USPS	8,9
Hard margin SVM	USPS	4,6
SVM	USPS	4,0
Virtual SVM	USPS	3,2
Virtual SV, local kernel	USPS	3,0
Nearest neighbor	USPS+	5,9
Boosted neural net	USPS+	2,6
Human performance		2,5