

#### **Chapter 16: Concurrency Control**

Version: Oct 5, 2006

**Database System Concepts 5th Ed.** 

© Silberschatz, Korth and Sudarshan, 2005 See www.db-book.com for conditions on re-use





#### **Chapter 16: Concurrency Control**

- Lock-Based Protocols
- Timestamp-Based Protocols
- Validation-Based Protocols
- Multiple Granularity
- Multiversion Schemes
- Insert and Delete Operations
- Concurrency in Index Structures





#### **Lock-Based Protocols**

- A lock is a mechanism to control concurrent access to a data item.
- Data items can be locked in two modes :
  - 1. exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using lock-X instruction.
  - 2. **shared** (S) mode. Data item can only be read. S-lock is requested using **lock-S** instruction.
- Lock requests are made to concurrency-control manager. Transaction can proceed only after request is granted.





#### **Lock-Based Protocols (Cont.)**

Lock-compatibility matrix

|   | S     | X     |  |
|---|-------|-------|--|
| S | true  | false |  |
| X | false | false |  |

- A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions
- Any number of transactions can hold shared locks on an item,
  - but if any transaction holds an exclusive on the item no other transaction may hold any lock on the item.
- If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.



#### **Lock-Based Protocols (Cont.)**

Example of a transaction performing locking:

```
T<sub>2</sub>: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)
```

- Locking as above is not sufficient to guarantee serializability if A and B get updated in-between the read of A and B, the displayed sum would be wrong.
- A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking protocols restrict the set of possible schedules.





#### Pitfalls of Lock-Based Protocols

Consider the partial schedule

| $T_3$       | $T_4$     |
|-------------|-----------|
| lock-X(B)   |           |
| read(B)     |           |
| B := B - 50 |           |
| write(B)    |           |
|             | lock-S(A) |
|             | read(A)   |
|             | lock-S(B) |
| lock-X(A)   |           |

- Neither  $T_3$  nor  $T_4$  can make progress executing **lock-S**(*B*) causes  $T_4$  to wait for  $T_3$  to release its lock on *B*, while executing **lock-X**(*A*) causes  $T_3$  to wait for  $T_4$  to release its lock on *A*.
- Such a situation is called a deadlock.
  - To handle a deadlock one of T<sub>3</sub> or T<sub>4</sub> must be rolled back and its locks released.



## Pitfalls of Lock-Based Protocols (Cont.)

- The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil.
- Starvation is also possible if concurrency control manager is badly designed. For example:
  - A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.
  - The same transaction is repeatedly rolled back due to deadlocks.
- Concurrency control manager can be designed to prevent starvation.





## **The Two-Phase Locking Protocol**

- This is a protocol which ensures conflict-serializable schedules.
- Phase 1: Growing Phase
  - transaction may obtain locks
  - transaction may not release locks
- Phase 2: Shrinking Phase
  - transaction may release locks
  - transaction may not obtain locks
- The protocol assures serializability. It can be proved that the transactions can be serialized in the order of their lock points (i.e. the point where a transaction acquired its final lock).





## The Two-Phase Locking Protocol (Cont.)

- Two-phase locking does not ensure freedom from deadlocks
- Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks till it commits/aborts.
- Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In this protocol transactions can be serialized in the order in which they commit.





## The Two-Phase Locking Protocol (Cont.)

- There can be conflict serializable schedules that cannot be obtained if two-phase locking is used.
- However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for conflict serializability in the following sense:

Given a transaction  $T_i$  that does not follow two-phase locking, we can find a transaction  $T_j$  that uses two-phase locking, and a schedule for  $T_i$  and  $T_j$  that is not conflict serializable.





#### **Lock Conversions**

- Two-phase locking with lock conversions:
  - First Phase:
    - can acquire a lock-S on item
    - can acquire a lock-X on item
    - can convert a lock-S to a lock-X (upgrade)
  - Second Phase:
    - can release a lock-S
    - can release a lock-X
    - can convert a lock-X to a lock-S (downgrade)
- This protocol assures serializability. But still relies on the programmer to insert the various locking instructions.



## **Automatic Acquisition of Locks**

- A transaction  $T_i$  issues the standard read/write instruction, without explicit locking calls.
- The operation read(D) is processed as:

```
if T_i has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant T_i a lock-S on D;

read(D)

end
```





## **Automatic Acquisition of Locks (Cont.)**

**write**(*D*) is processed as: if  $T_i$  has a lock-X on Dthen write(*D*) else begin if necessary wait until no other trans. has any lock on D, if  $T_i$  has a **lock-S** on Dthen **upgrade** lock on *D* to **lock-X** else grant  $T_i$  a **lock-X** on Dwrite(D)end:

All locks are released after commit or abort





#### Implementation of Locking

- A lock manager can be implemented as a separate process to which transactions send lock and unlock requests
- The lock manager replies to a lock request by sending a lock grant messages (or a message asking the transaction to roll back, in case of a deadlock)
- The requesting transaction waits until its request is answered
- The lock manager maintains a data-structure called a lock table to record granted locks and pending requests
- The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being locked





#### **Lock Table**



- Black rectangles indicate granted locks, white ones indicate waiting requests
- Lock table also records the type of lock granted or requested
- New request is added to the end of the queue of requests for the data item, and granted if it is compatible with all earlier locks
- Unlock requests result in the request being deleted, and later requests are checked to see if they can now be granted
- If transaction aborts, all waiting or granted requests of the transaction are deleted
  - lock manager may keep a list of locks held by each transaction, to implement this efficiently





#### **Graph-Based Protocols**

- Graph-based protocols are an alternative to two-phase locking
- Impose a partial ordering  $\rightarrow$  on the set  $\mathbf{D} = \{d_1, d_2, ..., d_h\}$  of all data items.
  - If  $d_i \rightarrow d_j$  then any transaction accessing both  $d_i$  and  $d_j$  must access  $d_i$  before accessing  $d_i$ .
  - Implies that the set **D** may now be viewed as a directed acyclic graph, called a *database graph*.
- The *tree-protocol* is a simple kind of graph protocol.





#### **Tree Protocol**



- 1. Only exclusive locks are allowed.
- 2. The first lock by  $T_i$  may be on any data item. Subsequently, a data Q can be locked by  $T_i$  only if the parent of Q is currently locked by  $T_i$ .
- 3. Data items may be unlocked at any time.
- 4. A data item that has been locked and unlocked by  $T_i$  cannot subsequently be relocked by  $T_i$





#### **Graph-Based Protocols (Cont.)**

- The tree protocol ensures conflict serializability as well as freedom from deadlock.
- Unlocking may occur earlier in the tree-locking protocol than in the twophase locking protocol.
  - shorter waiting times, and increase in concurrency
  - protocol is deadlock-free, no rollbacks are required
- Drawbacks
  - Protocol does not guarantee recoverability or cascade freedom
    - Need to introduce commit dependencies to ensure recoverability
  - Transactions may have to lock data items that they do not access.
    - increased locking overhead, and additional waiting time
    - potential decrease in concurrency
- Schedules not possible under two-phase locking are possible under tree protocol, and vice versa.





#### **Multiple Granularity**

- Allow data items to be of various sizes and define a hierarchy of data granularities, where the small granularities are nested within larger ones
- Can be represented graphically as a tree (but don't confuse with treelocking protocol)
- When a transaction locks a node in the tree *explicitly*, it *implicitly* locks all the node's descendents in the same mode.
- Granularity of locking (level in tree where locking is done):
  - fine granularity (lower in tree): high concurrency, high locking overhead
  - coarse granularity (higher in tree): low locking overhead, low concurrency





#### **Example of Granularity Hierarchy**



The levels, starting from the coarsest (top) level are

- database
- area
- file
- record





#### **Intention Lock Modes**

- In addition to S and X lock modes, there are three additional lock modes with multiple granularity:
  - *intention-shared* (IS): indicates explicit locking at a lower level of the tree but only with shared locks.
  - intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks
  - shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in shared mode and explicit locking is being done at a lower level with exclusive-mode locks.
- intention locks allow a higher level node to be locked in S or X mode without having to check all descendent nodes.





## **Compatibility Matrix with Intention Lock Modes**

The compatibility matrix for all lock modes is:

|     | IS       | IX       | S        | SIX | X |
|-----|----------|----------|----------|-----|---|
| IS  | ✓        | ✓        | ✓        | ✓   | × |
| IX  | ✓        | <b>✓</b> | ×        | ×   | × |
| S   | <b>√</b> | ×        | <b>√</b> | ×   | × |
| SIX | <b>√</b> | ×        | ×        | ×   | × |
| X   | ×        | ×        | ×        | ×   | × |



## **Multiple Granularity Locking Scheme**

- Transaction  $T_i$  can lock a node  $Q_i$ , using the following rules:
  - 1. The lock compatibility matrix must be observed.
  - 2. The root of the tree must be locked first, and may be locked in any mode.
  - 3. A node Q can be locked by  $T_i$  in S or IS mode only if the parent of Q is currently locked by  $T_i$  in either IX or IS mode.
  - 4. A node Q can be locked by  $T_i$  in X, SIX, or IX mode only if the parent of Q is currently locked by  $T_i$  in either IX or SIX mode.
  - 5.  $T_i$  can lock a node only if it has not previously unlocked any node (that is,  $T_i$  is two-phase).
  - 6.  $T_i$  can unlock a node Q only if none of the children of Q are currently locked by  $T_i$ .
- Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root order.





#### **Deadlock Handling**

Consider the following two transactions:

 $T_1$ : write (X)  $T_2$ : write (Y)

write(Y) write(X)

Schedule with deadlock

| $T_1$                                      | $T_2$                                      |
|--------------------------------------------|--------------------------------------------|
| lock-X on X write (X) wait for lock-X on Y | lock-X on Y write (X) wait for lock-X on X |





#### **Deadlock Handling**

- System is deadlocked if there is a set of transactions such that every transaction in the set is waiting for another transaction in the set.
- **Deadlock prevention** protocols ensure that the system will *never* enter into a deadlock state. Some prevention strategies :
  - Require that each transaction locks all its data items before it begins execution (predeclaration).
  - Impose partial ordering of all data items and require that a transaction can lock data items only in the order specified by the partial order (graph-based protocol).





## **More Deadlock Prevention Strategies**

- Following schemes use transaction timestamps for the sake of deadlock prevention alone.
- wait-die scheme non-preemptive
  - older transaction may wait for younger one to release data item.
     Younger transactions never wait for older ones; they are rolled back instead.
  - a transaction may die several times before acquiring needed data item
- wound-wait scheme preemptive
  - older transaction wounds (forces rollback) of younger transaction instead of waiting for it. Younger transactions may wait for older ones.
  - may be fewer rollbacks than wait-die scheme.





#### **Deadlock prevention (Cont.)**

- Both in *wait-die* and in *wound-wait* schemes, a rolled back transactions is restarted with its original timestamp. Older transactions thus have precedence over newer ones, and starvation is hence avoided.
- Timeout-Based Schemes :
  - a transaction waits for a lock only for a specified amount of time.
     After that, the wait times out and the transaction is rolled back.
  - thus deadlocks are not possible
  - simple to implement; but starvation is possible. Also difficult to determine good value of the timeout interval.





#### **Deadlock Detection**

- Deadlocks can be described as a *wait-for graph*, which consists of a pair G = (V, E),
  - V is a set of vertices (all the transactions in the system)
  - E is a set of edges; each element is an ordered pair  $T_i \rightarrow T_j$ .
- If  $T_i \rightarrow T_j$  is in E, then there is a directed edge from  $T_i$  to  $T_j$ , implying that  $T_i$  is waiting for  $T_i$  to release a data item.
- When  $T_i$  requests a data item currently being held by  $T_j$ , then the edge  $T_i$   $T_j$  is inserted in the wait-for graph. This edge is removed only when  $T_i$  is no longer holding a data item needed by  $T_i$ .
- The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a deadlock-detection algorithm periodically to look for cycles.



#### **Deadlock Detection (Cont.)**



Wait-for graph without a cycle



Wait-for graph with a cycle





#### **Deadlock Recovery**

- When deadlock is detected :
  - Some transaction will have to rolled back (made a victim) to break deadlock. Select that transaction as victim that will incur minimum cost.
  - Rollback -- determine how far to roll back transaction.
    - Total rollback: Abort the transaction and then restart it.
    - More effective to roll back transaction only as far as necessary to break deadlock.
  - Starvation happens if same transaction is always chosen as victim. Include the number of rollbacks in the cost factor to avoid starvation





# Other Approaches to Concurrency Control

Database System Concepts 5th Ed.

© Silberschatz, Korth and Sudarshan, 2005 See www.db-book.com for conditions on re-use





#### **Timestamp-Based Protocols**

- Each transaction is issued a timestamp when it enters the system. If an old transaction  $T_i$  has time-stamp  $TS(T_i)$ , a new transaction  $T_j$  is assigned timestamp  $TS(T_i)$  such that  $TS(T_i) < TS(T_i)$ .
- The protocol manages concurrent execution such that the time-stamps determine the serializability order.
- In order to assure such behavior, the protocol maintains for each data Q two timestamp values:
  - W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.
  - $\mathbf{R}$ -timestamp(Q) is the largest time-stamp of any transaction that executed  $\mathbf{read}(Q)$  successfully.





#### Timestamp-Based Protocols (Cont.)

- The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp order.
- Suppose a transaction  $T_i$  issues a **read**(Q)
  - 1. If  $TS(T_i) \leq W$ -timestamp(Q), then  $T_i$  needs to read a value of Q that was already overwritten.
    - $\blacksquare$  Hence, the **read** operation is rejected, and  $T_i$  is rolled back.
  - 2. If  $TS(T_i) \ge W$ -timestamp(Q), then the **read** operation is executed, and R-timestamp(Q) is set to **max**(R-timestamp(Q),  $TS(T_i)$ ).





## **Timestamp-Based Protocols (Cont.)**

- Suppose that transaction  $T_i$  issues write(Q).
  - 1. If  $TS(T_i) < R$ -timestamp(Q), then the value of Q that  $T_i$  is producing was needed previously, and the system assumed that that value would never be produced.
    - Hence, the **write** operation is rejected, and  $T_i$  is rolled back.
  - 2. If  $TS(T_i) < W$ -timestamp(Q), then  $T_i$  is attempting to write an obsolete value of Q.
    - Hence, this **write** operation is rejected, and  $T_i$  is rolled back.
  - Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(T<sub>i</sub>).





#### **Example Use of the Protocol**

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

| $T_1$   | $T_2$                     | $T_3$                                  | $T_4$ | $T_5$                                  |
|---------|---------------------------|----------------------------------------|-------|----------------------------------------|
| read(Y) | read(Y)                   |                                        |       | read(X)                                |
|         |                           | write( <i>Y</i> )<br>write( <i>Z</i> ) |       |                                        |
|         | read( <i>X</i> )<br>abort |                                        |       | read( <i>Z</i> )                       |
| read(X) | abort                     | write( <i>Z</i> )<br>abort             |       |                                        |
|         |                           | abort                                  |       | write( <i>Y</i> )<br>write( <i>Z</i> ) |





#### **Correctness of Timestamp-Ordering Protocol**

The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of the form:



Thus, there will be no cycles in the precedence graph

- Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
- But the schedule may not be cascade-free, and may not even be recoverable.





## Recoverability and Cascade Freedom

- Problem with timestamp-ordering protocol:
  - Suppose  $T_i$  aborts, but  $T_i$  has read a data item written by  $T_i$
  - Then  $T_j$  must abort; if  $T_j$  had been allowed to commit earlier, the schedule is not recoverable.
  - Further, any transaction that has read a data item written by  $T_j$  must abort
  - This can lead to cascading rollback --- that is, a chain of rollbacks
- Solution 1:
  - A transaction is structured such that its writes are all performed at the end of its processing
  - All writes of a transaction form an atomic action; no transaction may execute while a transaction is being written
  - A transaction that aborts is restarted with a new timestamp
- Solution 2: Limited form of locking: wait for data to be committed before reading it
- Solution 3: Use commit dependencies to ensure recoverability





#### **Thomas' Write Rule**

- Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances.
- When  $T_i$  attempts to write data item Q, if  $TS(T_i) < W$ -timestamp(Q), then  $T_i$  is attempting to write an obsolete value of  $\{Q\}$ .
  - Rather than rolling back  $T_i$  as the timestamp ordering protocol would have done, this {write} operation can be ignored.
- Otherwise this protocol is the same as the timestamp ordering protocol.
- Thomas' Write Rule allows greater potential concurrency.
  - Allows some view-serializable schedules that are not conflictserializable.



### **Validation-Based Protocol**

- Execution of transaction  $T_i$  is done in three phases.
  - **1. Read and execution phase**: Transaction  $T_i$  writes only to temporary local variables
- **2. Validation phase**: Transaction  $T_i$  performs a ``validation test" to determine if local variables can be written without violating serializability.
- **3. Write phase**: If  $T_i$  is validated, the updates are applied to the database; otherwise,  $T_i$  is rolled back.
- The three phases of concurrently executing transactions can be interleaved, but each transaction must go through the three phases in that order.
  - Assume for simplicity that the validation and write phase occur together, atomically and serially
    - I.e., only one transaction executes validation/write at a time.
- Also called as optimistic concurrency control since transaction executes fully in the hope that all will go well during validation





## Validation-Based Protocol (Cont.)

- Each transaction T<sub>i</sub> has 3 timestamps
  - Start(T<sub>i</sub>): the time when T<sub>i</sub> started its execution
  - Validation(T<sub>i</sub>): the time when T<sub>i</sub> entered its validation phase
  - Finish(T<sub>i</sub>): the time when T<sub>i</sub> finished its write phase
- Serializability order is determined by timestamp given at validation time, to increase concurrency.
  - Thus TS(T<sub>i</sub>) is given the value of Validation(T<sub>i</sub>).
- This protocol is useful and gives greater degree of concurrency if probability of conflicts is low.
  - because the serializability order is not pre-decided, and
  - relatively few transactions will have to be rolled back.





## Validation Test for Transaction $T_i$

- If for all  $T_i$  with TS  $(T_i)$  < TS  $(T_j)$  either one of the following condition holds:
  - finish( $T_i$ ) < start( $T_i$ )
  - $\mathbf{start}(T_j) < \mathbf{finish}(T_i) < \mathbf{validation}(T_j)$  and the set of data items written by  $T_i$  does not intersect with the set of data items read by  $T_i$ .

then validation succeeds and  $T_j$  can be committed. Otherwise, validation fails and  $T_j$  is aborted.

- Justification: Either the first condition is satisfied, and there is no overlapped execution, or the second condition is satisfied and
  - the writes of  $T_j$  do not affect reads of  $T_i$  since they occur after  $T_i$  has finished its reads.
  - the writes of  $T_i$  do not affect reads of  $T_j$  since  $T_j$  does not read any item written by  $T_i$ .





## Schedule Produced by Validation

Example of schedule produced using validation

| $T_{14}$                                                                   | $T_{15}$                                                   |
|----------------------------------------------------------------------------|------------------------------------------------------------|
| read( <i>B</i> )                                                           | read( <i>B</i> ) <i>B</i> := <i>B</i> -50 read( <i>A</i> ) |
| read( <i>A</i> )<br>( <i>validate</i> )<br>display ( <i>A</i> + <i>B</i> ) | A:= A+50  (validate) write (B) write (A)                   |





#### **Multiversion Schemes**

- Multiversion schemes keep old versions of data item to increase concurrency.
  - Multiversion Timestamp Ordering
  - Multiversion Two-Phase Locking
- Each successful write results in the creation of a new version of the data item written.
- Use timestamps to label versions.
- When a **read**(*Q*) operation is issued, select an appropriate version of *Q* based on the timestamp of the transaction, and return the value of the selected version.
- reads never have to wait as an appropriate version is returned immediately.





## **Multiversion Timestamp Ordering**

- Each data item Q has a sequence of versions  $\langle Q_1, Q_2, ..., Q_m \rangle$ . Each version  $Q_k$  contains three data fields:
  - Content -- the value of version  $Q_k$ .
  - **W-timestamp**( $Q_k$ ) -- timestamp of the transaction that created (wrote) version  $Q_k$
  - **R-timestamp**( $Q_k$ ) -- largest timestamp of a transaction that successfully read version  $Q_k$
- when a transaction  $T_i$  creates a new version  $Q_k$  of  $Q_i$ ,  $Q_k$ 's W-timestamp and R-timestamp are initialized to  $TS(T_i)$ .
- R-timestamp of  $Q_k$  is updated whenever a transaction  $T_j$  reads  $Q_k$ , and  $TS(T_j) > R$ -timestamp( $Q_k$ ).





## **Multiversion Timestamp Ordering (Cont)**

- Suppose that transaction  $T_i$  issues a **read**(Q) or **write**(Q) operation. Let  $Q_k$  denote the version of Q whose write timestamp is the largest write timestamp less than or equal to  $TS(T_i)$ .
  - 1. If transaction  $T_i$  issues a **read**(Q), then the value returned is the content of version  $Q_k$ .
  - 2. If transaction  $T_i$  issues a **write**(Q)
    - 1. if  $TS(T_i) < R$ -timestamp( $Q_k$ ), then transaction  $T_i$  is rolled back.
    - 2. if  $TS(T_i) = W$ -timestamp( $Q_k$ ), the contents of  $Q_k$  are overwritten
    - 3. else a new version of Q is created.
- Observe that
  - Reads always succeed
  - A write by T<sub>i</sub> is rejected if some other transaction T<sub>j</sub> that (in the serialization order defined by the timestamp values) should read T<sub>i</sub>'s write, has already read a version created by a transaction older than T<sub>i</sub>.



## **Multiversion Two-Phase Locking**

- Differentiates between read-only transactions and update transactions
- Update transactions acquire read and write locks, and hold all locks up to the end of the transaction. That is, update transactions follow rigorous two-phase locking.
  - Each successful write results in the creation of a new version of the data item written.
  - each version of a data item has a single timestamp whose value is obtained from a counter ts-counter that is incremented during commit processing.
- Read-only transactions are assigned a timestamp by reading the current value of **ts-counter** before they start execution; they follow the multiversion timestamp-ordering protocol for performing reads.



## **Multiversion Two-Phase Locking (Cont.)**

- When an update transaction wants to read a data item:
  - it obtains a shared lock on it, and reads the latest version.
- When it wants to write an item
  - it obtains X lock on; it then creates a new version of the item and sets this version's timestamp to ∞.
- When update transaction  $T_i$  completes, commit processing occurs:
  - T<sub>i</sub> sets timestamp on the versions it has created to ts-counter + 1
  - T<sub>i</sub> increments ts-counter by 1
- Read-only transactions that start after  $T_i$  increments **ts-counter** will see the values updated by  $T_i$ .
- Read-only transactions that start before  $T_i$  increments the **ts-counter** will see the value before the updates by  $T_i$ .
- Only serializable schedules are produced.





## **MVCC: Implementation Issues**

- Creation of multiple versions increases storage overhead
  - Extra tuples
  - Extra space in each tuple for storing version information
- Versions can, however, be garbage collected
  - E.g. if Q has two versions Q5 and Q9, and the oldest active transaction has timestamp > 9, than Q5 will never be required again



## **Insert and Delete Operations**

- If two-phase locking is used :
  - A delete operation may be performed only if the transaction deleting the tuple has an exclusive lock on the tuple to be deleted.
  - A transaction that inserts a new tuple into the database is given an X-mode lock on the tuple
- Insertions and deletions can lead to the phantom phenomenon.
  - A transaction that scans a relation
    - (e.g., find sum of balances of all accounts in Perryridge) and a transaction that inserts a tuple in the relation
    - (e.g., insert a new account at Perryridge)
       (conceptually) conflict in spite of not accessing any tuple in common.
  - If only tuple locks are used, non-serializable schedules can result
    - E.g. the scan transaction does not see the new account, but reads some other tuple written by the update transaction





## **Insert and Delete Operations (Cont.)**

- The transaction scanning the relation is reading information that indicates what tuples the relation contains, while a transaction inserting a tuple updates the same information.
  - The information should be locked.
- One solution:
  - Associate a data item with the relation, to represent the information about what tuples the relation contains.
  - Transactions scanning the relation acquire a shared lock in the data item,
  - Transactions inserting or deleting a tuple acquire an exclusive lock on the data item. (Note: locks on the data item do not conflict with locks on individual tuples.)
- Above protocol provides very low concurrency for insertions/deletions.
- Index locking protocols provide higher concurrency while preventing the phantom phenomenon, by requiring locks on certain index buckets.



## **Index Locking Protocol**

- Index locking protocol:
  - Every relation must have at least one index.
  - A transaction can access tuples only after finding them through one or more indices on the relation
  - A transaction  $T_i$  that performs a lookup must lock all the index leaf nodes that it accesses, in S-mode
    - Even if the leaf node does not contain any tuple satisfying the index lookup (e.g. for a range query, no tuple in a leaf is in the range)
  - A transaction  $T_i$  that inserts, updates or deletes a tuple  $t_i$  in a relation r
    - must update all indices to r
    - must obtain exclusive locks on all index leaf nodes affected by the insert/update/delete
  - The rules of the two-phase locking protocol must be observed
- Guarantees that phantom phenomenon won't occur





## **Weak Levels of Consistency**

- Degree-two consistency: differs from two-phase locking in that S-locks may be released at any time, and locks may be acquired at any time
  - X-locks must be held till end of transaction.
  - Serializability is not guaranteed, programmer must ensure that no erroneous database state will occur]

#### Cursor stability:

- For reads, each tuple is locked, read, and lock is immediately released
- X-locks are held till end of transaction
- Special case of degree-two consistency





## Weak Levels of Consistency in SQL

- SQL allows non-serializable executions
  - Serializable: is the default
  - Repeatable read: allows only committed records to be read, and repeating a read should return the same value (so read locks should be retained)
    - However, the phantom phenomenon need not be prevented
      - T1 may see some records inserted by T2, but may not see others inserted by T2
  - Read committed: same as degree two consistency, but most systems implement it as cursor-stability
  - Read uncommitted: allows even uncommitted data to be read
- In many database systems, read committed is the default consistency level
  - has to be explicitly changed to serializable when required
    - set isolation level serializable





## **Concurrency in Index Structures**

- Indices are unlike other database items in that their only job is to help in accessing data.
- Index-structures are typically accessed very often, much more than other database items.
  - Treating index-structures like other database items, e.g. by 2-phase locking of index nodes can lead to low concurrency.
- There are several index concurrency protocols where locks on internal nodes are released early, and not in a two-phase fashion.
  - It is acceptable to have nonserializable concurrent access to an index as long as the accuracy of the index is maintained.
    - In particular, the exact values read in an internal node of a B+-tree are irrelevant so long as we land up in the correct leaf node.





## **Concurrency in Index Structures (Cont.)**

- Example of index concurrency protocol:
- Use **crabbing** instead of two-phase locking on the nodes of the B+-tree, as follows. During search/insertion/deletion:
  - First lock the root node in shared mode.
  - After locking all required children of a node in shared mode, release the lock on the node.
  - During insertion/deletion, upgrade leaf node locks to exclusive mode.
  - When splitting or coalescing requires changes to a parent, lock the parent in exclusive mode.
- Above protocol can cause excessive deadlocks
  - Searches coming down the tree deadlock with updates going up the tree
  - Can abort and restart search, without affecting transaction
- Better protocols are available; see Section 16.9 for one such protocol, the B-link tree protocol
  - Intuition: release lock on parent before acquiring lock on child
    - And deal with changes that may have happened between lock release and acquire





## **Next-Key Locking**

- Index-locking protocol to prevent phantoms required locking entire leaf
  - Can result in poor concurrency if there are many inserts
- Alternative: for an index lookup
  - Lock all values that satisfy index lookup (match lookup value, or fall in lookup range)
  - Also lock next key value in index
  - Lock mode: S for lookups, X for insert/delete/update
- Ensures that range queries will conflict with inserts/deletes/updates
  - Regardless of which happens first, as long as both are concurrent





## **Extra Slides**

**Database System Concepts 5th Ed.** 

© Silberschatz, Korth and Sudarshan, 2005 See www.db-book.com for conditions on re-use





## **Snapshot Isolation**

- Motivation: Decision support queries that read large amounts of data have concurrency conflicts with OLTP transactions that update a few rows
  - Poor performance results
- Solution 1: Give logical "snapshot" of database state to read only transactions, read-write transactions use normal locking
  - Multiversion 2-phase locking
  - Works well, but how does system know a transaction is read only?
- Solution 2: Give snapshot of database state to every transaction, updates alone use 2-phase locking to guard against concurrent updates
  - Problem: variety of anomalies such as lost update can result
  - Partial solution: snapshot isolation level (next slide)
    - Proposed by Berenson et al, SIGMOD 1995
    - Variants implemented in many database systems
      - E.g. Oracle, PostgreSQL, SQL Server 2005





## **Snapshot Isolation**

- A transaction T1 executing with Snapshot Isolation
  - takes snapshot of committed data at start
  - always reads/modifies data in its own snapshot
  - updates of concurrent transactions are not visible to T1
  - writes of T1 complete when it commits
  - First-committer-wins rule:
    - Commits only if no other concurrent transaction has already written data that T1 intends to write.

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

| T1        | T2                   | Т3      |
|-----------|----------------------|---------|
| W(Y := 1) |                      |         |
| Commit    |                      |         |
|           | Start                |         |
|           | $R(X) \rightarrow 0$ |         |
|           | R(Y)→ 1              |         |
|           |                      | W(X:=2) |
|           |                      | W(Z:=3) |
|           |                      | Commit  |
| <i></i>   | $R(Z) \rightarrow 0$ |         |
|           | $R(Y) \rightarrow 1$ |         |
|           | W(X:=3)              |         |
|           | Commit-Req           |         |
| ,         | Abort                |         |



#### **Benefits of SI**

- Reading is never blocked,
  - and also doesn't block other txns activities
- Performance similar to Read Committed
- Avoids the usual anomalies
  - No dirty read
  - No lost update
  - No non-repeatable read
  - Predicate based selects are repeatable (no phantoms)
- Problems with SI
  - SI does not always give serializable executions
    - Serializable: among two concurrent txns, one sees the effects of the other
    - In SI: neither sees the effects of the other
  - Result: Integrity constraints can be violated





## **Snapshot Isolation**

- E.g. of problem with SI
  - T1: x:=y
  - T2: y:= x
  - Initially x = 3 and y = 17
    - Serial execution: x = ??, y = ??
    - if both transactions start at the same time, with snapshot isolation: x = ??, y = ??
- Called skew write
- Skew also occurs with inserts
  - E.g:
    - Find max order number among all orders
    - Create a new order with order number = previous max + 1



## **Snapshot Isolation Anomalies**

- SI breaks serializability when txns modify different items, each based on a previous state of the item the other modified
  - Not very commin in practice
    - Eg. the TPC-C benchmark runs correctly under SI
    - when txns conflict due to modifying different data, there is usually also a shared item they both modify too (like a total quantity) so SI will abort one of them
  - But does occur
    - Application developers should be careful about write skew
- SI can also cause a read-only transaction anomaly, where read-only transaction may see an inconsistent state even if updaters are serializable
  - We omit details





## SI In Oracle and PostgreSQL

- Warning: SI used when isolation level is set to serializable, by Oracle and PostgreSQL
  - PostgreSQL's implementation of SI described in Section 26.4.1.3
  - Oracle implements "first updater wins" rule (variant of "first committer wins")
    - concurrent writer check is done at time of write, not at commit time
    - Allows transactions to be rolled back earlier.
  - Neither supports true serializable execution
- Can sidestep for specific queries by using select .. for update in Oracle and PostgreSQL
  - Locks the data which is read, preventing concurrent updates
  - E.g.
    - select max(orderno) from orders for update
    - 2. read value into local variable maxorder
    - insert into orders (maxorder+1, ...)





## **End of Chapter**

Thanks to Alan Fekete and Sudhir Jorwekar for Snapshot Isolation examples

**Database System Concepts 5th Ed.** 

© Silberschatz, Korth and Sudarshan, 2005 See www.db-book.com for conditions on re-use





## **Snapshot Read**

Concurrent updates invisible to snapshot read

| $X_0 = 100, Y_0 = 0$ |                                            |                                                 |  |  |
|----------------------|--------------------------------------------|-------------------------------------------------|--|--|
|                      | T <sub>1</sub> deposits 50 in Y            | T <sub>2</sub> withdraws 50 from X              |  |  |
|                      | $r_1(X_0, 100)$<br>$r_1(Y_0, 0)$           |                                                 |  |  |
|                      | $r_1(Y_0,0)$                               |                                                 |  |  |
|                      |                                            | $r_2(Y_0,0)$                                    |  |  |
|                      |                                            | $r_2(Y_0,0)$<br>$r_2(X_0,100)$<br>$w_2(X_2,50)$ |  |  |
|                      | $w_1(Y_1,50)$                              | W <sub>2</sub> (×2,30)                          |  |  |
|                      | $r_1(X_0, 100)$ (update by $T_2$ not seen) |                                                 |  |  |
|                      | $r_1(Y_1, 50)$ (can see its own updates)   |                                                 |  |  |
|                      |                                            | $r_2(Y_0,0)$ (update by $r_1$ not seen)         |  |  |

$$X_2 = 50, Y_1 = 50$$



## **Snapshot Write:** First Committer Wins

| $X_0 = 10$ | 0                               |                                                                         |  |
|------------|---------------------------------|-------------------------------------------------------------------------|--|
|            | T <sub>1</sub> deposits 50 in X | T <sub>2</sub> withdraws 50 from X                                      |  |
|            | $r_1(X_0, 100)$                 |                                                                         |  |
|            |                                 | $r_2(X_0, 100)$<br>$w_2(X_2, 50)$                                       |  |
|            |                                 | $w_2(X_2,50)$                                                           |  |
|            | $w_1(X_1, 150)$                 |                                                                         |  |
|            | commit <sub>1</sub>             |                                                                         |  |
|            |                                 | COmmit <sub>2</sub> (Serialization Error T <sub>2</sub> is rolled back) |  |
| $X_1 = 15$ | 0                               |                                                                         |  |

- Variant: "First-updater-wins"
  - Check for concurrent updates when write occurs
  - Oracle uses this plus some extra features)
  - Differs only in when abort occurs, otherwise equivalent





# SI Non-Serializability even for Read-Only Transactions

#### **Business Logic**

- X = checking account balance and
- Y= savings account balance.
- Withdrawal is covered (without penalty) as long as X + Y > 0.
- Penalty charge = 1, if X + Y < 0.
- A and B are joint account holders for X and Y.

|                                                                    | <i>T</i> <sub>1</sub>         | $T_2$                        | <i>T</i> <sub>3</sub>         |
|--------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------|
| A starts withdrawal txn. Balance is low. A asks B to deposit money |                               | $r_2(X_0,0)$<br>$r_2(Y_0,0)$ |                               |
| B deposits money                                                   | $r_1(Y_0,0)$<br>$W_1(Y_1,20)$ |                              |                               |
| A queries the balance and                                          |                               |                              | $r_3(X_0,0)$<br>$r_2(Y_1,20)$ |
| finds the deposit is in                                            |                               |                              | $r_2(Y_1, 20)$                |
| still fined!                                                       |                               | $W_2(X_2,-11)$               |                               |

Balance query prints out X = 0 and Y = 20, while final values are Y = 20 and X = -11. This can not happen in any serializable execution.





# Partial Schedule Under Two-Phase Locking

| $T_5$                                                                                                                                                 | $T_6$                          | $T_7$               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|
| $\begin{array}{c} I_5 \\ \text{lock-X}(A) \\ \text{read}(A) \\ \text{lock-S}(B) \\ \text{read}(B) \\ \text{write}(A) \\ \text{unlock}(A) \end{array}$ | lock-x(A)                      | 17                  |
|                                                                                                                                                       | read(A) $write(A)$ $unlock(A)$ | lock-S(A) $read(A)$ |





## Incomplete Schedule With a Lock Conversion

| $T_8$               | $T_9$          |
|---------------------|----------------|
| $lock-S(a_1)$       |                |
|                     | lock- $S(a_1)$ |
| $lock-S(a_2)$       |                |
|                     | $lock-S(a_2)$  |
| $lock-S(a_3)$       |                |
| $lock-S(a_4)$       |                |
|                     | $unlock(a_1)$  |
|                     | $unlock(a_2)$  |
| $lock	ext{-}S(a_n)$ |                |
| upgrade $(a_1)$     |                |



## **Tree-Structured Database Graph**







## Serializable Schedule Under the Tree Protocol

| $T_{10}$                                                         | $T_{11}$                            | $T_{12}$               | $T_{13}$                                                                            |
|------------------------------------------------------------------|-------------------------------------|------------------------|-------------------------------------------------------------------------------------|
| lock-X(B)                                                        | lock-X(D)<br>lock-X(H)<br>unlock(D) |                        |                                                                                     |
| $lock	ext{-}X(E)$<br>$lock	ext{-}X(D)$<br>unlock(B)<br>unlock(E) |                                     |                        |                                                                                     |
| look V(C)                                                        | unlock(H)                           | lock-X(B)<br>lock-X(E) |                                                                                     |
| $lock	ext{-}X(G)$ $unlock(D)$                                    |                                     |                        | $egin{aligned} & lock-X(D) \ & lock-X(H) \ & unlock(D) \ & unlock(H) \end{aligned}$ |
| unlock (G)                                                       |                                     | unlock(E)<br>unlock(B) | 3                                                                                   |





## **Schedule 3**

| $T_{14}$       | $T_{15}$       |
|----------------|----------------|
| read(B)        |                |
|                | read (B)       |
|                | B := B - 50    |
|                | write(B)       |
| read(A)        |                |
|                | read(A)        |
| display(A + B) |                |
|                | A := A + 50    |
|                | write(A)       |
|                | display(A + B) |



## **Schedule 4**

| $T_{16}$ | $T_{17}$ |
|----------|----------|
| read(Q)  |          |
|          | write(Q) |
| write(Q) |          |



## Schedule 5, A Schedule Produced by Using Validation

| $T_{14}$          | $T_{15}$    |
|-------------------|-------------|
| read(B)           |             |
|                   | read(B)     |
|                   | B := B - 50 |
|                   | read(A)     |
|                   | A := A + 50 |
| read(A)           |             |
| ⟨validate⟩        |             |
| display $(A + B)$ |             |
| ,                 | ⟨validate⟩  |
|                   | write(B)    |
|                   | write(A)    |



## **Compatibility Matrix**

|     | IS    | IX    | S     | SIX   | X     |
|-----|-------|-------|-------|-------|-------|
| IS  | true  | true  | true  | true  | false |
| IX  | true  | true  | false | false | false |
| S   | true  | false | true  | false | false |
| SIX | true  | false | false | false | false |
| X   | false | false | false | false | false |



## Nonserializable Schedule with Degree-Two Consistency

| $T_3$     | $T_4$     |
|-----------|-----------|
| lock-S(Q) |           |
| read(Q)   |           |
| unlock(Q) |           |
|           | lock-X(Q) |
|           | read(Q)   |
|           | write(Q)  |
|           | unlock(Q) |
| lock-S(Q) |           |
| read(Q)   |           |
| unlock(Q) |           |





## B+-Tree For account File with n = 3.





# Insertion of "Clearview" Into the B+-Tree of Figure 16.21







## **Lock-Compatibility Matrix**

|   | S     | X     | I     |
|---|-------|-------|-------|
| S | true  | false | false |
| X | false | false | false |
| I | false | false | true  |