Lecture 11 Molecular phylogenetics

Course: Practical Bioinformatics (BIOL 4220)

Instructor: Michael Landis

Email: michael.landis@wustl.edu

Lecture 11 outline

Last time: regex

This time: phylogenetics

- interpreting trees
- tree-thinking
- inferring trees
- inference methods

Phylogenetics

Phylogenetics studies the relationships among evolutionary lineages (often called **taxa**)

Phylogenies are useful for

- gene annotation
- tracking viral spread
- identifying zoonosis
- reconstructing tumorogenesis
- conservation biology assays
- inferring species relationships

I think

phylogeny sketch by Darwin

Phylogenetic relationships are hierarchical, and most often represented as bifurcating *trees*

Human and Chimp are more closely related to each other than to Gorilla or Orang

Phylogenetic relationships are hierarchical, and most often represented as bifurcating *trees*

Human, Chimp and Gorilla are more closely related to each other than to Orang

Phylogenetic relationships are hierarchical, and most often represented as bifurcating *trees*

Human, Chimp and Gorilla are more closely related to each other than to Orang

Taxa that are more closely related to one another, over any other taxa, are called *clades*

Clade 1: H+C

Clade 2: H+C+G

Clade 3: H+C+G+O

"Tree-thinking"

Taxon	Gene variant	Location
PT1	ACCGTG	Missouri
PT2	ACCGTG	Missouri
PT3	GAGGTA	Texas
PT4	GCGGTA	Texas

Four sequences, but no historical context

"Tree-thinking"

Phylogeny informs when and where variation arose, which can guide future research

Inferring phylogeny

How are taxa T1, T2, and T3 related?

Which phylogeny generated the observed pattern of molecular variation?

Inferring phylogeny

Phylogenetic inference methods take a matrix of characters (e.g. DNA alignment) as input

Measure how well any possible phylogenetic estimate explains the data matrix pattern by assigning a *cost* to each considered estimate

Methods generally **optimize** the cost to estimate the phylogeny with the lowest cost for the provided data matrix

Phylogenetic method types

Most methods used to infer phylogenies compute scores based on

- 1. pattern distances (e.g. neighbor joining)
- 2. event counting (*parsimony*)
- 3. event probabilities (*likelihood*)

Method choice often relates to concerns regarding accuracy, speed, scalability, etc.

Tree-space is large

A major challenge: how to efficiently search for trees with optimal scores?

Neighbor-joining

	Hu	Ch	Go	Or
Hu	0	1	3	5
Ch	1	0	3	5
Go	3	3	0	2
Or	5	5	2	0

distance matrix for sequence pairs

Select pairs of taxa with short sequence distances, and join them as neighbors

Neighbor-joining

distance matrix for sequence pairs Hu Hu and Ch form a cluster Or Go Hu Ch Go

Ch

Select pairs of taxa with short sequence distances, and join them as neighbors

Parsimony

What phylogeny requires the fewest character change events?

Parsimony

What phylogeny requires the fewest character change events?

Exploring tree space

Define stochastic "moves" that modify topology, prefer moves that improve tree score

Nearest neighbor interchange (NNI)

Exploring tree space

Define stochastic "moves" that modify topology, prefer moves that improve tree score

Subtree-prune-regraft (SPR)

Parsimony

What phylogeny requires the fewest character change events?

Parsimony

What phylogeny requires the fewest character change events?

DNA evolution on branch

A single DNA site for branch *k* at time *t* can be in one four discrete states: A, C, G, T

(possible evolutionary histories)

What is the probability that a DNA site in state *i* will end in state *j* after time *t* for branch *k*?

Using the *pruning algorithm* to move "backwards in time"; compute the *partial likelihood* for each ancestral node state based on its descendants' states

Compute partial likelihood ($L^{(k)}$) for each start state (s_k) against all end states (s_i , s_i)

Example for partial likelihood $L^{(k)}$ at node X_k for state $S_k = A$

$$L_A^{(k)} = \left(P_{AA}(t_i) L_A^{(i)} + P_{AC}(t_i) L_C^{(i)} + P_{AG}(t_i) L_G^{(i)} + P_{AT}(t_i) L_T^{(i)} \right)$$

$$\times \left(P_{AA}(t_j) L_A^{(j)} + P_{AC}(t_j) L_C^{(j)} + P_{AG}(t_j) L_G^{(j)} + P_{AT}(t_j) L_T^{(j)} \right)$$

Compute partial likelihood ($L^{(k)}$) for each start state (s_k) against all end states (s_i , s_i)

Example for partial likelihood $L^{(k)}$ at node X_k for state $s_k = C$

$$L_C^{(k)} = \left(P_{CA}(t_i) L_A^{(i)} + P_{CC}(t_i) L_C^{(i)} + P_{CG}(t_i) L_G^{(i)} + P_{CT}(t_i) L_T^{(i)} \right)$$

$$\times \left(P_{CA}(t_j) L_A^{(j)} + P_{CC}(t_j) L_C^{(j)} + P_{CG}(t_j) L_G^{(j)} + P_{CT}(t_j) L_T^{(j)} \right)$$

Compute partial likelihood ($L^{(k)}$) for each start state (s_k) against all end states (s_i , s_i)

Example for partial likelihood $L^{(k)}$ at node X_k for state $s_k = G$

$$L_G^{(k)} = \left(P_{GA}(t_i) L_A^{(i)} + P_{GC}(t_i) L_C^{(i)} + P_{GG}(t_i) L_G^{(i)} + P_{GT}(t_i) L_T^{(i)} \right)$$

$$\times \left(P_{GA}(t_j) L_A^{(j)} + P_{GC}(t_j) L_C^{(j)} + P_{GG}(t_j) L_G^{(j)} + P_{GT}(t_j) L_T^{(j)} \right)$$

Compute partial likelihood ($L^{(k)}$) for each start state (s_k) against all end states (s_i , s_i)

Example for partial likelihood $L^{(k)}$ at node X_k for state $s_k = \mathbf{T}$

$$L_T^{(k)} = \left(P_{TA}(t_i) L_A^{(i)} + P_{TC}(t_i) L_C^{(i)} + P_{TG}(t_i) L_G^{(i)} + P_{TT}(t_i) L_T^{(i)} \right)$$

$$\times \left(P_{TA}(t_j) L_A^{(j)} + P_{TC}(t_j) L_C^{(j)} + P_{TG}(t_j) L_G^{(j)} + P_{TT}(t_j) L_T^{(j)} \right)$$

Phylogenetic likelihood

Compute the total phylogenetic likelihood as the product of likelihoods across all sites

Clade support

Clade support measures our statistical confidence for each clade

Bootstrap support:

- 1. estimate a tree from the original dataset
- 2. simulate *K* replicate datasets by resampling sites *with replacement* from the original dataset
- 3. estimate a new tree for each of the *K* replicates
- 4. report the frequency (k/K %) for each clade in the original tree

Method comparison

Method	Pros	Cons
Neighbor-joining	Extremely fast Scalable	Does not use evolutionary events to infer tree
Parsimony	Intuitive Fairly fast	Assumes change is rare; Event costs are arbitrary
Likelihood	Most accurate Most realistic Can simulate data	Slower Complex theory + algorithms

Newick strings

Taxa in parentheses define clades; commas define divergence events

Newick strings

(((Human: 0.37, Chimp: 0.11) 0.99: 0.21, Gorilla: 0.46) 0.68: 0.24, Orang: 0.30);

Overview for Lab 11