Abstract interpretation Mathematical Tools

Inspiré des notes de cours du MPRI d'Antoine Miné, CNRS/ENS Ulm

Introduction

Concrete semantics

$$(S_5) S_5 = \{(i+2,x): (i,x) \in S_4 \\ = F_5(S_4) \\ (S_6) S_6 = \{(i,x) \in S_3: i \ge x\}$$

$$S_6 = \{(t, x) \in S_3 \\ = F_6(S_3)$$

- smallest solution of a system of equations
- strongest invariant (and an inductive invariant)
- not computable in general

Abstract semantics

$$\mathcal{S}_i^\sharp \in \mathcal{D}^\sharp$$

- \mathcal{D}^{\sharp} subset of properties of interest (with a machine repr.))
- $F^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ over-approximates the effect of $F: \mathcal{D} \to \mathcal{D}$ in \mathcal{D}^{\sharp} (with effective algorithms).

Numeric abstract domain examples

concrete sets \mathcal{D} $\{(0,3),(5.5,0),(12,7),\dots\}$ not comp. $6X + 11Y > 33 \wedge \dots$ abs. polyhedra \mathcal{D}_n^{\sharp} exp. cost abs. octogons \mathcal{D}_{o}^{\sharp} $X + Y \ge 3 \land Y \land 0 \land \dots$ cubic cost abs. intervals \mathcal{D}_{z}^{\sharp} $X \in [0, 12] \land Y \in [0, 8]$ linear cost Trade-off between cost and expressiveness/precision.

Galois connection

$$\begin{array}{ccc} (\mathcal{D},\subseteq) & \stackrel{\checkmark}{\longleftarrow} & (\mathcal{D}^{\sharp},\subseteq^{\sharp}) \\ \\ \alpha(X)\subseteq^{\sharp}Y^{\sharp} & \Leftrightarrow & X\subseteq\gamma(Y^{\sharp}) \end{array}$$

- $\alpha(X)$ is the best abstraction of X in \mathcal{D}^{\sharp}
- $F^{\sharp} = \alpha \circ F \circ \gamma$ is the best abstraction of F in $\mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$

Example. (interval domain $\mathcal{D}_{\varepsilon}^{\sharp}$)

- $[l_1, h_1] \subseteq_i^{\sharp} [l_2, h_2] \Leftrightarrow l_1 \ge l_2 \land h_1 \le h_2$

$S_2 = \{(0,x) : \exists i, (i,x) \in S_1\}$ Resolution by iteration and extrapolation

Problem. the equation system is recursive : $\overrightarrow{\mathcal{S}}^{\sharp} = \overrightarrow{F}^{\sharp}(\overrightarrow{\mathcal{S}}^{\sharp})$

Solution. resolution by iteration: $\overrightarrow{S}^{\sharp 0} = \varnothing^{\sharp}$.

 $\overrightarrow{S}^{\sharp i+1} = \overrightarrow{F}^{\sharp} (\overrightarrow{S}^{\sharp i})$

e.g. S_3^{\wedge} : $I \in \emptyset$, I = 0, $I \in [0, 2]$, $I \in [0, 4]$, ..., $I \in [0, 1000]$ **Problem.** infinite or very long sequence of iterate in \mathcal{D}^{\sharp}

Solution. extrapolation operator ∇ e.g. $[0,2] \nabla [0,4] = [0,+\infty[$

- remove unstable bounds and constraits
- ensures the convergence in finite time
- inductive reasoning (through generalisation)

Order theory

Definition. Set X. $\subseteq \in X \times X$ is a partial order iff

- 1. reflexive: $\forall x \in X, x \sqsubseteq x$
- 2. antisymmetric: $\forall x, y \in X, x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$
- 3. transitive: $\forall x, y, z \in X, x \sqsubseteq y \land y \sqsubseteq x \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$

 (X, \square) is a **poset** (partially ordered set).

Without antisymmetry, \square is a **preorder**.

Examples. $(\mathbb{Z}, \leq), (\mathcal{P}(X), \subseteq), \forall S, (S, =).$

Usage.

- logic: ordered by implication \Rightarrow
- approximations: □ is an information order
- program verification: program semantics □ specification

Definitions.

- c is an upper bound of a and b if $a \sqsubseteq c$ and $b \sqsubseteq c$
- c is an least upper bound of a and b (lub or join) if
 - -c is and upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$

Unique and noted $a \sqcup b$.

Generalized to upper bounds of arbitrary sets : $\sqcup Y$, $Y \subseteq X$. $a \sqcap b$, $\sqcap Y$ are greatest lower bounds (glb or meet) if $a \sqcap b \sqsubseteq a, b \text{ and } \forall c, c \sqsubseteq a, b \Rightarrow c \sqsubseteq a \sqcap b.$

 $C \subseteq X$ is a **chain in** (X, \sqsubseteq) if it is totally ordered: $\forall x, y \in C, x \sqsubseteq y \lor y \sqsubseteq x.$

Poset (X, \square) is a **complete partial order** (**CPO**) if every chain C (incl. \varnothing) has a least upper bound $\sqcup C$. A CPO has a **least element** $\sqcup \emptyset$, denoted \perp .

Examples. • $(\mathbb{N}, <)$ not complete, $(\mathbb{N} \cup {\infty}, <)$ compl.

- $(\{x \in \mathbb{Q} : 0 \le x \le 1\}, \le)$ not compl. but $(\{x \in \mathbb{R} : 0 \le x \le 1\}, \le)$ compl.
- $\forall Y, (\mathcal{P}(Y), \subseteq)$ compl.

Definition. Poset $(X, \square, \sqcup, \sqcap)$ is a **lattice** with

- 1. a lub $a \sqcup b$ for every pair of a and b
- 2. a glb $a \sqcap b$ for every pair of a and b

Examples.

- integer intervals: $(\{[a,b]: a,b \in \mathbb{Z}, a < b\} \cup \{\emptyset\}, \subset, \sqcup, \cap)$ where $[a, b] \sqcup [c, d] = [\min(a, a'), \max(b, b')].$
- divisibility: (N*, |, gcd, lcm)

Definition. Poset $(X, \square, \sqcup, \sqcap, \bot, \top)$ is a **complete lattice**

- 1. a lub $\sqcup S$ for every set $S \subseteq X$
- 2. a glb $\sqcap S$ for every set $S \subseteq X$
- 3. a least element \perp
- 4. a greatest element \top

Examples.

- real segment [0,1]: $([0,1], \leq, \max, \min)$
- powersets: $(\mathcal{P}(S), \subseteq, \cup, \cap, \varnothing, S)$
- finite lattices
- integer intervals with finite and infinite bounds

Derivation

Complete posets or lattices $(X, \sqsubseteq_X, \dots)$ and $(Y, \sqsubseteq_Y, \dots)$, we can derive new ones by: duality, adding a least element \perp (lifting), product, point-wise lifting by some set S, sublattice.

Fixpoints

Definition. A function $f:(X, \sqsubseteq_X, \dots) \to (Y, \sqsubseteq_Y, \dots)$ is

- monotonic if $\forall x, x', x \sqsubseteq_X x' \Rightarrow f(x) \sqsubseteq_Y f(x')$
- strict if $f(\perp_X) = \perp_Y$
- continuous between CPOs if C chain $\subseteq X$, $\{f(c): c \in C\}$ is a chain in Y and $f(\sqcup_X C) = \sqcup_Y \{ f(c) : c \in C \}$
- a complete ⊔-morphism between complete **lattices** if $\forall S \subseteq X, f(\sqcup_X S) = \sqcup_Y \{f(s) : s \in S\}$
- extensive if X = Y and $\forall x, x \sqsubseteq_X f(x)$

Definition. Given $f:(X, \sqsubset) \to (X, \sqsubset)$

- x is a fixpoint of f if f(x) = x
- x is a **prefixpoint** of f if $x \sqsubseteq f(x)$ • x is a **postfixpoint** of f if $f(x) \sqsubseteq x$

$$\begin{array}{lcl} \operatorname{fp}(f) & = & \{x \in X : f(x) = x\} \\ \operatorname{lfp}_x f & = & \min_{\sqsubseteq} \{y \in \operatorname{fp}(f) : x \sqsubseteq y\} \text{ if exists} \\ \operatorname{lfp} f & = & \operatorname{lfp}_{\bot} f \end{array}$$

Tarski's fixpoint theorem. If $f: X \to X$ is monotonic in a complete lattice X then fp(f) is a complete lattice.

Kleene fixpoint theorem. If $f: X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $fp_a(f)$ exists.

Definition. (S, \Box) is a well-ordered set if:

- \square is a total-order on S
- every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\sqcap X \in X$

Consequence.

- Any elt $x \in S$ has a succesor $x + 1 = \sqcap \{y : x \sqsubset y\}$
- If $\exists y, x = y + 1$, x is a **limit** and $x = \sqcup \{y : y \sqsubseteq x\}$

Examples. $(\mathbb{N}, <), (\mathbb{N} \cup {\infty}, <)$

Definition. Given $f: X \to X$ and $a \in X$, the transfinite iterates of f are:

$$\begin{cases} x_0 &= a \\ x_n &= f(x_{n-1}) \text{if } n \text{ is a succesor ordinal} \\ x_n &= \bigcup \{x_m : m < n\} \text{if } n \text{ is a limit ordinal} \end{cases}$$

Tarski's fixpoint theorem. If $f: X \to X$ is monotonic in a complete lattice X and $a \sqsubseteq f(a)$ then $fp_a(f) = x_{\delta}$ for some ordinal δ .

Definition. An ascending chain C in (X, \square) is a sequence $c_i \in X$ such that $i \leq j \Rightarrow c_i \leq c_i$.

A poset (X, \square) satisfies the ascending chain condition (ACC) iff for every ascending chain $C, \exists i \in \mathbb{N}, \forall j \geq i, c_i = c_i$ (similar definition for the **descending chain condition**). **Examples.** $(\mathcal{P}(X), \subseteq)$ is ACC/DCC iff X is finite, $(\mathbb{Z} \cup \{\bot\}, \sqsubseteq)$ where $x \sqsubseteq y \Leftrightarrow x = \bot \lor x = y$ is ACC/DCC. $(\mathbb{N}^*, |)$ is DCC but not ACC.

Kleene finite fixpoint theorem. If $f: X \leftarrow X$ is monotonic in an AAC poset X and $a \sqsubseteq f(a)$ then $lfp_a f$ exists. **Definition.** Given posets (C, \leq) and (A, \Box) . $(\alpha: C \to A, \gamma: A \to C)$ is a Galois connection iff

$$\forall a \in A, c \in C, \alpha(c) \sqsubseteq a \Leftrightarrow c < \gamma(a)$$

denoted
$$(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$$

 α is the upper adjoint or abstraction; A is the abstract domain.

 γ is the lower adjoint or concretization; C is the concrete domain.

Properties. Assume $\forall a, c, \alpha(c) \sqsubseteq a \Leftrightarrow c \leq \gamma(a)$

- 1. $\gamma \circ \alpha$ is extensive : $\forall c, c < \gamma(\alpha(c))$
- 2. $\alpha \circ \gamma$ is **reductive** : $\forall a, \alpha(\gamma(c)) \sqsubseteq a$
- 3. α is monotonic
- 4. γ is monotonic

- 5. $\gamma \circ \alpha \circ \gamma = \gamma$
- 6. $\alpha \circ \gamma \circ \alpha = \alpha$
- 7. $\alpha \circ \gamma$ and $\gamma \circ \alpha$ are idempotent

Corollary/Definition. $(\alpha: C \to A, \gamma: A \to C)$ is a Galois connection if:

- 1. γ is monotonic
- 2. α is monotonic
- 3. $\gamma \circ \alpha$ is extensive
- 4. $\alpha \circ \gamma$ is reductive

Corollary. Given $(C, \leq) \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} (A, \sqsubseteq)$, each adjoint can be **uniquely defined** in term of the other:

- 1. $\alpha(c) = \bigcap \{a : c \le \gamma(a)\}$
- 2. $\gamma(c) = \bigvee \{c : \alpha(c) \sqsubseteq a\}$

Corollary. Given $(C, \leq) \stackrel{\gamma}{\longleftrightarrow} (A, \sqsubseteq)$, then

- 1. $\forall X \subseteq C$, if $\forall X$ exists, then $\alpha(\forall X) = \sqcup \{\alpha(x) : x \in X\}$ 2. $\forall X \subseteq C$, if \sqcap exists, then $\gamma(\sqcap) = \land \{\gamma(x) : x \in X\}$

Deriving Galois connections

Corollary. Given $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$ and

 $(C', \leq') \stackrel{\gamma}{ \stackrel{\alpha}{\longleftarrow}} (A', \sqsubseteq')$, we can construct new Galois connections by duality, composition, point-wise lifting by some set S, functional lifting of monotonic operators.

Galois embeddings

Definition. If $(C, \leq) \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} (A, \sqsubseteq)$, (α, γ) is a **Galois** embedding – denoted $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$ – if it satisfies one of the following properties:

- 1. α is surjective
- 2. γ is injective
- 3. $\alpha \circ \gamma = id$

Corollary. A Galois conn. can be made into an embedding by **quotienting** A by the equivalence relation $a \equiv a' \Leftrightarrow \gamma(a) = \gamma(a').$

Definition. $\rho: X \to X$ is an upper closure in the poset (X, \square) if it is monotonic, extensive and idempotent.

Corollary. Given $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq), \gamma \circ \alpha$ is an upper closure

Corollary. Given an upper closure ρ on (X, \sqsubseteq) , we have $(X, \sqsubseteq) \xrightarrow{id} (\rho(X), \sqsubseteq)$

Remark. We can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose: the notion of abstract representation and the ability to have several **distinct** abstract representations for a single concrete object.

Sound, best, and exact abstractions

Definitions. Given $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$

- $a \in A$ is a sound abstraction of $c \in C$ if $c \le \gamma(a)$ or
- Given $c \in C$, its **best abstraction** is $\alpha(c)$
- $q: A \to A$ is a sound abstraction of $f: C \to C$ if $\forall a \in A, (f \circ \gamma)(a) \le (\gamma \circ f)(a)$
- Given $f: C \stackrel{\leq}{\to} C$, its best abstraction is $\alpha \circ f \circ \gamma$
- $q:A\to A$ is an exact abstraction of $f:C\to C$ if $f \circ \gamma = \gamma \circ g$

Corollary. If q and q' abstract respectively f and f' then

- if f and f' are sound abstractions and f is monotonic then $g \circ g'$ is a sound abstraction of $f \circ f'$
- if q, q' are exact abstractions then $q \circ q'$ is an exact abstraction
- if q and q' are best abstractions, then $q \circ q'$ in **not** always a best abstraction

Fixpoint abstraction example theorem. Let

 $(C, \leq, \vee, \wedge, \perp, \top)$ be a complete lattice, $q: A \to A$ a sound abstraction of a monotonic $f: C \stackrel{\leq}{\to} C$ and a postfixpoint of q then a is a sound abstraction of lfp f.

Copyright © 2012 Winston Chang http://www.stdout.org/~winston/latex/