Теория вероятностей и математическая статистика Лектор А.А. Лобузов

Семестр 6

Лекция 9

Критерии однородности двух выборок

Рассматриваются случайные выборки

 $\mathbf{X} = (X_1 \; , X_2 \; , ..., \; X_N),$ полученная при независимых наблюдениях случайной величины ξ с функцией распределения $F_{\xi}(x)$;

 $\mathbf{Y} = (Y_1 \;, Y_2 \;, ..., \; Y_M)$, полученная при независимых наблюдениях случайной величины η с функцией распределения $F_n(x)$.

Пусть $F_N(x)$ — эмпирическая функция распределения для выборки $\mathbf{X}\!=\!(X_1\,,X_2\,,...,\,X_N),\; F_M(x)$ — эмпирическая функция распределения для выборки $\mathbf{Y}\!=\!(Y_1\,,Y_2\,,...,\,Y_M).$

Основная гипотеза: $\mathbf{H}_{_{0}}=\!\!\{F_{_{\xi}}(x)\!\!=F_{_{\eta}}(x)\}$.

В качестве конкурирующей гипотезы чаще всего берётся: $\mathbf{H}_{_1} = \!\! \{ F_{_{\mathcal{E}}}(x) \! \neq F_{_{\!\!\!\!\eta}}(x) \}.$

Критерий однородности Колмогорова-Смирнова

Критерий Колмогорова-Смирнова для проверки однородности двух случайных выборок применяется в случае, когда функции распределения наблюдаемых случайных величины ξ и η непрерывны.

При проверке гипотезы $\mathbf{H}_0 = \{F_\xi(x) = F_\eta(x)\}$ против гипотезы $\mathbf{H}_1 = \{F_\xi(x) \neq F_\eta(x)\}$ в критерии Колмогорова-Смирнова рассматривается статистика

$$D_{N,M}({\bf X},{\bf Y})\!=\!\sup\{|F_N(x,{\bf X})\!-\!F_M(x,{\bf Y})|\!:\!-\infty\!<\!x\!<\!+\infty\},$$
для которой выполняется свойство

$$P(D_{N,M}(\mathbf{X},\mathbf{Y})\sqrt{\frac{NM}{N+M}} \le z) \xrightarrow{N \to \infty} K(z),$$

где

$$K(z) = \begin{cases} 0, & z \le 0; \\ \sum_{j=-\infty}^{+\infty} (-1)^j e^{-2j^2 z^2}, & z > 0. \end{cases}$$

Схема проверки гипотезы \mathbf{H}_0 при конкурирующей гипотезе \mathbf{H}_1 по выборкам $\mathbf{x}\!=\!(x_1,x_2,...,x_N)$ и $\mathbf{y}\!=\!(y_1,y_2,...,y_M)$, полученных при наблюдениях случайных величин ξ и η соответственно, при уровне значимости α :

1. По числовым выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$ строим вариационные ряды $x_{(1)} \le x_{(2)} \le ... \le x_{(N-1)} \le x_{(N)}$ и $y_{(1)} \le y_{(2)} \le ... \le y_{(M-1)} \le y_{(M)}$ соответственно.

2. Находим значение

$$\begin{split} D_{N,M} = \max_{j,k} \{|F_N(x_{(j)}) - F_M(x_{(j)})|, |F_N(x_{(j)} - 0) - F_M(x_{(j)})|, \\ |F_N(y_{(k)}) - F_M(y_{(k)})|, |F_N(y_{(k)}) - F_M(y_{(k)} - 0)|\}, \end{split}$$
 где $F_N(x_{(j)}) = \frac{j}{N}$, $F_N(x_{(j)} - 0) = \frac{j-1}{N}$, $F_M(y_{(k)}) = \frac{k}{M}$, $F_M(y_{(k)} - 0) = \frac{k-1}{M}$;

$$F_{M}(x_{(j)}) = \begin{cases} 0, x_{(j)} < y_{(1)}; \\ \frac{k}{M}, y_{(k)} \le x_{(j)} < y_{(k+1)}; \end{cases} F_{N}(y_{(k)}) = \begin{cases} 0, y_{(k)} < x_{(1)}; \\ \frac{j}{N}, x_{(j)} \le y_{(k)} < x_{(j+1)}; \\ 1, y_{(k)} \ge x_{(N)}. \end{cases}$$

Затем находим $K_{N,M} = D_{N,M} \sqrt{\frac{NM}{N+M}}$.

3. По заданному значению уровня значимости α берем по функции распределения Колмогорова критическое значение k_{α} .

Далее делается вывод о справедливости гипотезы: если $K_{N,M} \le k_{\alpha}$, то при уровне значимости α принимается основная гипотеза $\mathbf{H}_{_{0}}$;

если $K_{N,M} > k_{\alpha}$, то при уровне значимости α принимается альтернативная гипотеза $\mathbf{H}_{_1}$.

Иногда рассматривают конкурирующие гипотезы

$$\mathbf{H}_{1}^{+} = \{ \sup \{ M[F_{N}(x, \mathbf{X}) - F_{M}(x, \mathbf{Y})] : -\infty < x < +\infty \} > 0 \}$$
 и

$$\mathbf{H}_{1}^{-} = \{\inf\{M[F_{N}(x, \mathbf{X}) - F_{M}(x, \mathbf{Y})]: -\infty < x < +\infty\} < 0\}.$$

При проверке гипотезы $\mathbf{H}_{_0}$ против гипотезы $\mathbf{H}_{_1}^{_+}$ берут статистику

$$K_{N,M}^+(\mathbf{X},\mathbf{Y}) = D_{N,M}^+(\mathbf{X},\mathbf{Y})\sqrt{\frac{NM}{N+M}}$$

где
$$D_{N,M}^+(\mathbf{X},\mathbf{Y}) = \sup\{[F_N(x,\mathbf{X}) - F_M(x,\mathbf{Y})]: -\infty < x < +\infty\}.$$

При проверке гипотезы \mathbf{H}_0^- против гипотезы \mathbf{H}_1^- берут статистику

$$K_{N,M}^{-}(\mathbf{X},\mathbf{Y}) = D_{N,M}^{-}(\mathbf{X},\mathbf{Y})\sqrt{\frac{NM}{N+M}},$$

где
$$D_{NM}^{-}(\mathbf{X}, \mathbf{Y}) = -\inf\{[F_N(x, \mathbf{X}) - F_M(x, \mathbf{Y})]: -\infty < x < +\infty\}.$$

Статистики $K_{N,M}^+(\mathbf{X},\mathbf{Y}), K_{N,M}^-(\mathbf{X},\mathbf{Y}),$ а также $K_{M,N}^+(\mathbf{X},\mathbf{Y}), K_{M,N}^-(\mathbf{X},\mathbf{Y})$ имеют одинаковое распределение и для них выполняется свойство

$$\lim_{N \to \infty, M \to \infty} P(K_{N,M}^+(\mathbf{X}, \mathbf{Y}) \le z) = \lim_{N \to \infty, M \to \infty} P(K_{N,M}^-(\mathbf{X}, \mathbf{Y}) \le z) = ,$$

$$= \lim_{N \to \infty, M \to \infty} P(K_{M,N}^+(\mathbf{X}, \mathbf{Y}) \le z) = \lim_{N \to \infty, M \to \infty} P(K_{M,N}^-(\mathbf{X}, \mathbf{Y}) \le z) = 1 - e^{-2z^2}, \ 0 \le z < \infty.$$

Схема проверки гипотезы \mathbf{H}_0 при конкурирующей гипотезе \mathbf{H}_1^+ по выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$, полученных при наблюдениях случайных величин ξ и η соответственно, при уровне значимости α :

1. По числовым выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$ строим вариационные ряды $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(N-1)} \leq x_{(N)}$ и $y_{(1)} \leq y_{(2)} \leq ... \leq y_{(M-1)} \leq y_{(M)}$ соответственно.

2. Находим значение

$$\begin{split} D_{N,M}^+ &= \max_{j,k} \{ (F_N(x_{(j)}) - F_M(x_{(j)})), \, (F_N(x_{(j)} - 0) - F_M(x_{(j)})), \\ & (F_N(y_{(k)}) - F_M(y_{(k)})), \, (F_N(y_{(k)}) - F_M(y_{(k)} - 0)) \}, \end{split}$$
 где $F_N(x_{(j)}) = \frac{j}{N}$, $F_N(x_{(j)} - 0) = \frac{j-1}{N}$, $F_M(y_{(k)}) = \frac{k}{M}$, $F_M(y_{(k)} - 0) = \frac{k-1}{M}$;
$$F_M(x_{(j)}) = \begin{cases} 0, x_{(j)} < y_{(1)}; \\ \frac{k}{M}, y_{(k)} \le x_{(j)} < y_{(k+1)}; \end{cases} \quad F_N(y_{(k)}) = \begin{cases} 0, y_{(k)} < x_{(1)}; \\ \frac{j}{N}, x_{(j)} \le y_{(k)} < x_{(j+1)}; \\ 1, x_{(j)} \ge y_{(M)}; \end{cases}$$

Затем находим $K_{N,M}^+ = D_{N,M}^+ \sqrt{\frac{NM}{N+M}}$.

3. По заданному значению уровня значимости α берем критическое значение $s_{\alpha} = \sqrt{-\frac{1}{2} \ln \alpha}$.

Далее делается вывод о справедливости гипотезы: если $K_{N,M}^+ \leq s_{\alpha}$, то при уровне значимости α принимается основная гипотеза $\mathbf{H}_{_{0}}$;

если $K_{N,M}^+ > s_{\alpha}^-$, то при уровне значимости α принимается альтернативная гипотеза $\mathbf{H}_{_1}^+$.

Схема проверки гипотезы \mathbf{H}_0^- при конкурирующей гипотезе \mathbf{H}_1^- проводится аналогично.

Критерий однородности χ^2

Когда наблюдаемые случайные величины ξ и η дискретны, можно применить критерий однородности, основанный на распределении χ^2 .

Пусть дискретные случайные величины ξ и η принимают значения $x_1^* < x_2^* < ...$

Схема проверки гипотезы $\mathbf{H}_0 = \{F_\xi(x) = F_\eta(x)\}$ против конкурирующей гипотезы $\mathbf{H}_1 = \{F_\xi(x) \neq F_\eta(x)\}$ по выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$, полученных при наблюдениях случайных величин ξ и η соответственно, при уровне значимости α :

1. По числовым выборкам $\mathbf{x} = (x_1, x_2, ..., x_N)$ и $\mathbf{y} = (y_1, y_2, ..., y_M)$ находим частоты n_{i1} и n_{i2} (n_{i1} – число значений x_i^* ,

встречающихся в выборке $\mathbf{x} = (x_1, x_2, ..., x_N)$, n_{i2} – число значений x_i^* , встречающихся в выборке $\mathbf{y} = (y_1, y_2, ..., y_M)$).

2. Находим выборочное значение критерия $\chi_B^2 = (N+M) \left[\sum_{i=1}^m \left(\frac{(n_{i1})^2}{N(n_{i1}+n_{i2})} + \frac{(n_{i2})^2}{M(n_{i1}+n_{i2})} \right) -1 \right].$

3. По заданному значению уровня значимости α берем по функции распределения $\chi^2(l)$ с число степеней свободы l=m-1 критическое значение $\chi^2_{\kappa p,\alpha}(l)$.

Далее делается вывод о справедливости гипотезы: если $\chi_B^2 \leq \chi_{\kappa p,\alpha}^2(l)$, то при уровне значимости α принимается основная гипотеза $\mathbf{H}_0 = \{F_\xi(x) = F_\eta(x)\}$;

если $\chi_B^2 > \chi_{\kappa p,\alpha}^2(l)$, то при уровне значимости α принимается $\mathbf{H}_1 = \{F_\xi(x) \neq F_\eta(x)\}.$

Критическое значение $\chi^2_{\kappa p,\alpha}(l) = F_{\chi^2(l)}(1-\alpha)$, где $F_{\chi^2(l)}(1-\alpha)$ – функция распределения закона $\chi^2(l)$ с плотностью

$$f(x) = \begin{cases} 0, x \le 0; \\ \frac{x^{\frac{l}{2} - 1}}{2^{\frac{l}{2}} \Gamma(\frac{l}{2})} e^{-\frac{x}{2}}, x > 0. \end{cases}$$