Symbols index and Erratum for the book of GV[1]

Zhipeng Song February 19, 2025

The following table is made to help readers find the location of symbols in the book [1] more efficiently.

Symbol	Definition	Page
\overline{V}	a Hausdorff locally convex topological vector space	1
$\mathscr{B}(V)$	the algebra of all continuous linear operators on V	2
$M_c(G)$	the vector space of all complex-valued compactly supported Borel measures on ${\cal G}$	3
$C_c(G)$	the space of continuous compactly supported complex functions on G	3
$\pi(\mu)$	$\int_G \pi(x) d\mu(x)$	3
$\pi(f)$	$\pi(fdx) = \int_G \pi(x)f(x)dx$	3
†	denotes Hilbert space adjoint	4
\widetilde{f}	$f(x^{-1})^{\operatorname{conj}}$	4
$U(\mathfrak{g}_c)$	the universal enveloping algebra of \mathfrak{g}_c	4
$\mathscr{E}'(G)$	the algebra of distributions on G with compact support	4
f(x; a)	$(af)(x) := \frac{\partial^r}{\partial t_1 \cdots \partial t_r} _0 f(x \exp t_1 X_1 \cdots \exp t_r X_r) \text{ where } a = X_1 \cdots X_r$	5
f(a;x)	$(fa)(x) := \frac{\partial^r}{\partial t_1 \cdots \partial t_r} _0 f(\exp t_1 X_1 \cdots \exp t_r X_r x) \text{ where } a = X_1 \cdots X_r$	5
$f_1(x,y)$	f(xy)	5
$f_{\pi,v}(x)$	$\pi(x)v$	5
$\pi(a)v$	$f_{\pi,v}(1;a)$	5
$\pi(X_1\cdots X_r)$	$\frac{\partial^r}{\partial t_1 \cdots \partial t_r} _{0} \pi(x \exp t_1 X_1 \cdots \exp t_r X_r)$	5
V^{∞}	the subspace of differentiable vectors	6
V^{ω}	the space of weakly analytic vectors	6
$\mathfrak{Z} = U(\mathfrak{g}_c)^G$	centralizer of G in $U(\mathfrak{g}_c)$	6
$\chi_{\pi}(\mathfrak{Z} o \mathbb{C})$	a homomorphism such that $\pi(z)v=\chi_{\pi}(z)v,v\in V^{\infty}$	6
(G,K)	a pair where G is a second countable locally compact group, unimodular and K is a compact subgroup	9
$\mathscr{E}(K)$	the set of equivalence of the irreducible representations of K	9
$\mathrm{ch}_{\mathfrak{d}}$	the character of $\mathfrak{d} \in \mathscr{E}(K)$	9

Symbols	Definitions	Pages
$\xi_{\mathfrak{d}}(k)$	$\dim(\mathfrak{d})\operatorname{ch}_{\mathfrak{d}}(k^{-1}), k \in K$	9
$E_{\mathfrak{d}}$	$\pi(\xi_{\mathfrak{d}})$	9
$V_{\mathfrak{d}} = E_{\mathfrak{d}}V$	the isotypical subspace of V corresponding to $\mathfrak d$	10
$F \subset \mathscr{E}(K)$	finite set	10
E_F	$\sum_{\mathfrak{d}\in F} E_{\mathfrak{d}}$	10
V_F	$E_F V = \bigoplus_{\mathfrak{d} \in F} V_{\mathfrak{d}}$	10
$v_{\mathfrak{d}} = E_{\mathfrak{d}} v$	the Fourier coefficient of $v \in V$	10
$E_{l \times r, (\mathfrak{d}_1, \mathfrak{d}_2)} f$	$\xi_{\mathfrak{d}_1} * f * \xi_{\mathfrak{d}_2}$	11
$C_{\mathfrak{d}}(G)$	$E_{\mathfrak{d},\bar{\mathfrak{d}}}(C(G)) = \xi_{\mathfrak{d}} * C(G) * \xi_{\mathfrak{d}}$	11
$C_{c,\mathfrak{d}}(G)$	$C_c(G) \cap C_{\mathfrak{d}}(G) = \xi_{\mathfrak{d}} * C_c(G) * \xi_{\mathfrak{d}}$	11
C(G//K)	$C_1(G)$	11
$C_c(G//K)$	$C_{c,1}(G)$	11
$C_{c,F}(G)$	$\xi_F * C_c(G) * \xi_F$	11
$C_{c,F}^{\infty}(G)$	$\xi_F * C_c^{\infty}(G) * \xi_F$	11
ξ_F	$\sum_{\mathfrak{d}\in F} \xi_{\mathfrak{d}}$	11
$I_c(G)$	the subalgebra of $C_c(G)$ of elements invariant under inner automorphisms	11
$I_{c,F}(G)$	$\xi_F * I_c(G) * \xi_F$	11
$\pi_F(f)$	$\pi(f) _{V_F}, f \in C_{c,F}(G)$	12
V^0	$\sum_{\mathfrak{d}\in\mathscr{E}(K)} V_{\mathfrak{d}}$ (algebraic sum)	13
$\mathfrak Q$	$U(\mathfrak{g}_c)^K$ =centralizer of K in $U(\mathfrak{g}_c)$	13
$\Theta_{\pi}(C_c^{\infty}(G) \to \mathbb{C})$	$f \mapsto \operatorname{tr}(\pi(f))$ the character of π	13
$\Phi_{\pi,F}(x)$	$E_F\pi(x)E_F$ the spherical function of type $F\subset\mathscr{E}(K)$ associated with π	22
$\pi_F(f)$	$\langle f, \Phi_{\pi,F} \rangle = \int_G f(x) \Phi_{\pi,F}(x) dx$	22
γ	a representation of $C_{c,F}(G)$ in U where U is finite-dimensional	22
Ψ	$(G \to \operatorname{Hom}_{\mathbb{C}}(U, U))$ such that $\gamma(f) = \langle f, \Psi \rangle$ and $\Psi = \bar{\xi}_F * \Psi * \bar{\xi}_F$	22
$I_{c,\mathfrak{d}}(G)$	the subalgebra of elements invariant under the inner automorphisms	29
Φ^{\sharp}	$G \to \operatorname{Hom}_{\mathbb{C}}(W, W)$	30
σ_{Σ}	an irreducible representations of $I_{2,2}(G)$ in some space W_2	30

Symbols	Definitions	Pages
$\pi_{\mathfrak{d}}$	$\theta \otimes \sigma_{\mathfrak{d}}$ the irreducible representation of $C_{c,\mathfrak{d}}(G)$ in $V_{\mathfrak{d}}$	30
$\Phi_{\pi,\mathfrak{d}}^{\sharp}$	the continuous map of G into $\operatorname{Hom}_{\mathbb{C}}(W_{\mathfrak{d}}, W_{\mathfrak{d}})$	31
$arphi_{\pi,\mathfrak{d}}$	$\operatorname{tr}(\Phi_{\pi,\mathfrak{d}}^{\sharp})$	31
U	the algebra of endomorphisms of V_F	31
$\Phi = \Phi_{\pi,F}$	a function from G to U	32
a^k	$\mathrm{Ad}(k)a$ where $a \in U(\mathfrak{g}_c)$	33
$\Psi(x:y)$	$\int_K \Phi^\sharp(xkyk^{-1})dk$	34
(G,K)	Gelfand pair if $L^1(G//K)$ is commutative	36
θ	an involutive automorphism of G	36
$G^{ heta}$	the subgroup of fixed points for θ	36
V^K	the space of vectors invariant under K	37
λ	$(G \to B(L^2(G/K))): y \mapsto \lambda(y)$	39
\mathfrak{H}	a separable Hilbert space	40
\mathfrak{U}	a commutative algebra of bounded operators in $\mathfrak H$	40
\mathfrak{U}_1	a dense self-adjoint algebra of $\mathfrak U$	41
$\sharp(f)$	$f^{\sharp} = \int_{K \times K} l(k_1) r(k_2) f dk_1 dk_2$	43
$\Sigma(G//K)$	the spectrum of $L^1(G//K)$	43
$arphi_ au$	uniquely determined elementary spherical function	43
$\pi_{ au}$	a completely irreducible uniformly bounded representation of class 1	43
$\Sigma_u(G//K)$	$\left\{\tau \in \Sigma(G//K) : \tau((f * \tilde{f})^{\sharp}) \ge 0, \forall f \in L^{1}(G)\right\}$	43
\hat{G}	the set of equivalence classes of irreducible unitary representations of G	43
\hat{G}_1	the set of classes of \hat{G} corresponding to class 1 representations	43
$H \subset G$	a closed subgroup	49
$E_G(G/H)$	the algebra of all G -invariant continuous endomorphisms of $C^{\infty}(G/H)$	49
$\operatorname{Diff}_G(G/H)$	the subalgebra of G -invariant differential operators on G/K	49
G^0	the component contained identity	58
$[G:G^0]$	the index of subgroup of G^0	58
^{0}H	$\bigcap_{X \in \operatorname{Hom}(H \mathbb{R}^{\times})} \ker(X)$	59

Symbols	Definitions	Pages
$C = \ker(\mathrm{Ad})$	the centralizer of $\mathfrak g$ in G	59
θ	the Cartan involution	60
$G^{ heta}$	the set of fixed points of G	60
$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{s}$	the Cartan decomposition of \mathfrak{g}	60
$G = K \exp \mathfrak{s}$	the Cartan decomposition of G	60
B	the Cartan-Killing form	61
(X, Y)	$B_{\theta}(X,Y) = -B(X,\theta Y)$	61
$\ X\ ^2$	$B_{\theta}(X,X)$	61
\mathfrak{a}	a maximal abelian subspaces of ${\mathfrak s}$	61
\mathfrak{m}_1	the centralizer of $\mathfrak a$ in $\mathfrak g$	62
\mathfrak{m}	$\mathfrak{m}_1 \cap \mathfrak{k}$	62
$M_1 \; (ilde{M}_1)$	the centralizer (normalizer) of $\mathfrak a$ in G	62
M	$M_1 \cap K$: the centralizer of \mathfrak{a} in K	62
$ ilde{M}$	$\tilde{M}_1 \cap K$: the normalizer of \mathfrak{a} in K	62
\mathfrak{g}_{λ}	$\{X \in \mathfrak{g}: [H,X] = \lambda(H)X, \forall H \in \mathfrak{a}\} \text{ for any } \lambda \in \mathfrak{a}^*$	62
$\Delta = \Delta(\mathfrak{g},\mathfrak{a})$	the set of all roots of $(\mathfrak{g}, \mathfrak{a})$	62
Δ^+	the set of all positive roots	62
S	$\{\alpha_i: 1 \leq i \leq r\}$, the simple system	62
\mathfrak{n}	$\sum_{\lambda\in\Delta^+}\mathfrak{g}_\lambda$	62
$\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}$	(resp. $G = KAN$) the Iwasawa decomposition of \mathfrak{g} (resp. G)	63
log	$A \to \mathfrak{a}$	63
s_{λ}	the reflection associated with λ	63
σ_{λ}	$\{\mu\in\mathfrak{a}_c^*:\langle\mu,\lambda\rangle=0\}$	63
w	the Weyl group of $(\mathfrak{g}, \mathfrak{a})$	64
$W = \tilde{M}/M$	the Weyl group of (G, A)	64
\mathfrak{a}^+	the positive Weyl chamber of $\mathfrak a$	64
A^+	$\exp(\mathfrak{a}^+)$	65
$\mathfrak{h}_c\subset\mathfrak{g}_c$	a CSA(Cartan subalgebra)	66

Symbols	Definitions	Pages
Q	a positive system of roots of $(\mathfrak{g}_c,\mathfrak{h}_c)$	66
$\mathfrak{g}_{c,lpha}$	the root subspaces	66
\mathfrak{b}_c	$\mathfrak{h}_c + \sum_{\lambda \in Q} \mathfrak{g}_{c,\alpha}$, a Borel subalgebra of \mathfrak{g}_c	66
$S \subset Q$	the set of simple roots	66
$F \subset S$	finite subset	66
Q_F	positive linear combinations of elements of ${\cal F}$	66
$\mathfrak{q}_{c,F}$	$\mathfrak{b}_c + \sum_{\alpha \in -Q_F} \mathfrak{g}_{c,\alpha}$, a subalgebra of \mathfrak{g}_c containing \mathfrak{b}_c	66
$\mathfrak{h}_{\mathfrak{m}}$	a CSA of \mathfrak{m}	66
$\mathfrak{h}:=\mathfrak{h}_{\mathfrak{m}}\oplus\mathfrak{a}$	a CSA of $\mathfrak{m} \oplus \mathfrak{a}$	66
$Q_{\mathfrak{m}}$	a positive system of roots for pair $(\mathfrak{m}_c, (\mathfrak{h} \cap \mathfrak{k})_c)$	66
Q^+	the set of all roots of $(\mathfrak{g}_c, \mathfrak{a}_c)$ whose restrictions to \mathfrak{a} lie in $\Delta^+(\mathfrak{g}, \mathfrak{a})$	66
Q	$Q_{\mathfrak{m}} \cup Q^+$	66
\mathfrak{n}_c	$\sum_{lpha \in Q^+} \mathfrak{g}_{c,lpha}$	66
$\mathfrak{m}+\mathfrak{a}+\mathfrak{n}$	a minimal parabolic subalgebra of $\mathfrak g$	66
Δ_F^+	posistive linear combinations of elements of F	66
\mathfrak{p}_F	$\mathfrak{p} + \sum_{\alpha \in -\Delta_F^+} \mathfrak{g}_{\lambda}$ the standard psalgebras with respect to \mathfrak{p} or S	66
\mathfrak{p}_0	a psalgebra of \mathfrak{g} (of course contains \mathfrak{p})	67
\mathfrak{n}_0	the nilradical (nilpotent radical) of $\mathfrak{p}_0\cap[\mathfrak{g},\mathfrak{g}]$	67
\mathfrak{m}_{10}	$\mathfrak{p}_0 \cap \theta(\mathfrak{p}_0)$	67
$\mathfrak{p}_0=\mathfrak{m}_{10}\oplus\mathfrak{n}_0$	the Levi decomposition of \mathfrak{p}_0	67
\mathfrak{a}_0	$\operatorname{center}(\mathfrak{m}_{10})\cap\mathfrak{s}$	67
\mathfrak{m}_0	$\mathfrak{m}_{10}\ominus\mathfrak{a}_0$	67
$\mathfrak{m}_0\oplus\mathfrak{a}_0\oplus\mathfrak{n}_0$	the Langlands decomposition of \mathfrak{p}_0	67
\mathfrak{a}_F	$\{H \in \mathfrak{a} : \alpha(H) = 0, \ \forall \alpha \in F\}$	67
Δ_F	$\Delta_F^+ \cup -\Delta_F^+$	67
\mathfrak{m}_{1F}	$\sum_{\lambda\in\Delta_F}\mathfrak{g}_\lambda\oplus\mathfrak{a}\oplus\mathfrak{m}$	67
\mathfrak{n}_F	$\sum_{\lambda \in \Delta^+ \setminus \Delta_F^+} \mathfrak{g}_{\lambda}$, the nilradical of $\mathfrak{p}_F \cap [\mathfrak{g}, \mathfrak{g}]$	67
M_{10}	the centralizer in G of \mathfrak{a}_0 (the reductive component of P_0)	68

Symbols	Definitions	Pages
M_0	$^{0}(M_{10})$	68
$K_{M_{10}}$	$K \cap M_{10} = K \cap M_{10}$	68
G	$KP_0 = KM_0 A_0 N_0$	68
$ heta_{M_{10}}$	$ heta _{M_{10}}$	68
$B_{M_{10}}$	$B _{(\mathfrak{m}_{10})_c imes (\mathfrak{m}_{10})_c}$	68
$M_{0\mathfrak s}$	$\exp(\mathfrak{m}_0 \cap \mathfrak{s})$	69
$\Delta(\mathfrak{g},\mathfrak{a}_0)$	$(=\Delta(P_0))$ the set of all $\lambda \neq 0$ in \mathfrak{a}_0^* for which $\mathfrak{g}_{\lambda} \neq 0$	70
\mathfrak{a}_0^+	a chamber of \mathfrak{a}_0	70
$\Delta(P_0:\mathfrak{a}_0^+)$	the set of roots in $\Delta(P_0)$ which are > 0 in \mathfrak{a}_0^+	70
$\rho(H)$	$\frac{1}{2}\operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}} = \frac{1}{2}\sum_{\alpha\in\Delta^{+}}n(\alpha)\alpha$	71
$ ho_{P_0}(H)$	$\frac{1}{2}\operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}_0}, \ H \in \mathfrak{a}_0$	71
d_P	$(MA \to \mathbb{R}_+^{\times}) : m_1 \mapsto \det \operatorname{Ad}(m_1)_{\mathfrak{n}} ^{1/2}$	71
d_{P_0}	$(M_0 A_0 \to \mathbb{R}_+^{\times}) : m_1 \mapsto \left \det \operatorname{Ad}(m_1)_{\mathfrak{n}_0} \right ^{1/2}$	72
J(a)	$\prod_{\alpha \in \Delta^+} (e^{\alpha(\log a)} - e^{-\alpha(\log a)})^{n(\alpha)} \text{ for all } a \in A$	73
G^*	G/A_0	74
a^{x^*}	xax^{-1} where $a \in A_0$ and $x \in G$	74
G/Q	flag manifolds of G where Q is a psgrp	76
G/P	the flag manifold of G if $P = MAN$ and $G = KAN$	76
$\operatorname{rk}(G)$	$\operatorname{rk}(G/K)$: the real rank of G	77
X	G/P	78
$\pi(x)$	$xP(x \in G)$	78
i	$(X \to K/M): x \mapsto \overline{k(x)}$ the natural identification	78
x_s	a representative of $s \in \tilde{M}$	78
$\bigcup_{x \in \mathfrak{w}} Nx_s P$	the Bruhat decomposition of G	78
NsP	Nx_sP	78
$\pi(x_s)$	$\underline{s}(s\in\mathfrak{w})$	78
$\bigcup_{s\in\mathfrak{w}}N\underline{s}$	the Bruhat decomposition of X	78
Δ_s^+	$\{\alpha \in \Delta^+ : s^{-1}\alpha \in \Delta^+\}$	78

Symbols	Definitions	Pages
$s\Delta^+$	$\{\alpha \in \Delta^+ : s^{-1}\alpha \in -\Delta^+\}$	78
\mathfrak{n}_s	$\sum_{lpha\in\Delta_s^+}\mathfrak{g}_lpha$	78
$_s\mathfrak{n}$	$\sum_{lpha \in_s \Delta^+} \mathfrak{g}_lpha$	78
N_s	$\exp(\mathfrak{n}_s)$	79
$_sN$	$\exp({}_s\mathfrak{n})$	79
\mathfrak{w}_F	the subgroup of \mathfrak{w} generated by the reflexion s_{α} for all $\alpha \in F$	80
Ω_1	$\pi(ar{N})$	80
Ω_s	$x_s \cdot \pi(\bar{N})$	80
$\gamma_s(ar{n})$	$\pi(x_sar{n})$	80
m(s)	$x_s^{-1}mx_s$	80
$\beta_s(X)$	$\pi(x_s \cdot \exp X)$	81
a(x:k)	a(xk)	81
H(x:k)	H(xk)	81
L	real Lie group with its Lie algebra $\mathfrak l$	84
$W \subset L$	open set	84
Diff(W)	the algebra of differential operators on ${\cal W}$	84
$D_x \in U(\mathfrak{l}_c)$	the local expression of D at $x \in W$	84
$R_a(f)$	$fa \text{ for all } a \in U(\mathfrak{l}_c)$	85
λ	$(S(\mathfrak{l}_c) \to U(\mathfrak{l}_c)) : X_1 \dots X_r \mapsto \frac{1}{r!} \sum_{\sigma} X_{\sigma(1)} \dots X_{\sigma(r)}$	86
I	$I(\mathfrak{g}_c) = S(\mathfrak{g}_c)^G$	86
$I_{\mathfrak{w}}=I_{\mathfrak{w}}(\mathfrak{h}_c)$	the algebra of \mathfrak{w} -invariant in $S(\mathfrak{h}_c)$	87
$eta_{\mathfrak{n}}$	$U(\mathfrak{g}_c) \to U(\mathfrak{a}_c)$: the projection	91
$\gamma_{\mathfrak{n}}$	$(= \gamma = \gamma_{\mathfrak{g}/\mathfrak{a}}) : \mathfrak{Q} \to U(\mathfrak{a}_c) \text{ such that } \gamma_{\mathfrak{n}}(a)(\lambda) = \beta(a)(\lambda - \rho)$	92
\mathfrak{k}_0	$\mathfrak{k}\cap\mathfrak{m}_{10}$	95
\mathfrak{s}_{10}	$\mathfrak{s}\cap\mathfrak{m}_{10}$	95
\mathfrak{s}_0	$\mathfrak{s}\cap\mathfrak{m}_0$	95
* a	$\mathfrak{a}\cap\mathfrak{m}_0$	96
* n	$\mathfrak{n}\cap\mathfrak{m}_0$	96

Symbols	Definitions	Pages
F	$\mathfrak{a}_\mathbb{C}^*$	101
${\mathscr F}_R$	\mathfrak{a}^*	101
${\mathscr F}_I$	$(-1)^{1/2} {\mathscr F}_R$	101
$\xi_{eta}(a)$	$e^{\beta \log a} (\beta \in \mathcal{F}, a \in A)$ the quasicharacter of A	101
σ	a f.d. unitary reps. of the compact group M in a Hilbert space $W(\sigma)$	101
$(\sigma,\lambda)(man)$	$\sigma(m)\xi_{\lambda+\rho}(a)$: the representation of $P=MAN$	101
$\mathfrak{B}(\sigma,\lambda)$	the space of Borel functions $f(G \to W(\sigma))$	102
f_K	$f _K$	102
$\mathfrak{B}(\sigma)$	the space of Borel functions $g(K \to W(\sigma))$	102
$\mathfrak{H}(\sigma)$	the Hilbert space of functions $g \in \mathfrak{B}(\sigma)$	102
$\mathfrak{H}(\sigma,\lambda)$	the Hilbert space of functions $f \in \mathfrak{B}(\sigma, \lambda)$	102
$\pi_{\sigma,\lambda}$	$(G \to B(\mathfrak{H}(\sigma))) : (\pi_{\sigma,\lambda}(x)g)(k) = e^{-(\lambda+\rho)(H(x^{-1}k))}g(x^{-1}[k])$	102
π_{λ}	$\pi_{1,\lambda}$ where $1 = \text{trivial representation of } M$	103
$arphi_{\lambda}$	the matrix coefficient of π_{λ}	103
$\varphi_{\lambda}(x)$	$\int_K e^{-(\lambda+\rho)(H(x^{-1}k))} dk$	104
$(\mathcal{H} f)(\lambda)$	the Harish-Chandra transform of $f \in C_c(G//K)$	106
$(\mathscr{A}f)(a)$	the Abel transform of $f \in C_c(G//K)$	107
$\hat{g}(\lambda)$	the Fourier transform of $g \in C_c(A)$	107
$\mathscr{P}(\mathscr{F})$	the space of all entire functions on ${\mathscr F}$ of Paley-Weiner type	107
$\mathscr{P}(\mathscr{F})^{\mathfrak{w}}$	the subspace of $\mathfrak w\text{-invariant}$ elements of $\mathscr P(\mathscr F)$	107
	$C_c^{\infty}(G//K) \xrightarrow{\mathscr{H}} \mathscr{P}(\mathscr{F})^{\mathfrak{w}}$ $\downarrow^{\mathscr{A}} \qquad \qquad \uparrow^{\infty}$ $C_c^{\infty}(A)^{\mathfrak{w}}$	107
$V(\pi_\Lambda)_{\mathfrak d}$	the corresponding isotypical space for any $\mathfrak{d} \in \mathscr{E}(K)$	111
$\Lambda \in \mathfrak{h}_c^*$		111
$\mathfrak{u}=\mathfrak{k}+i\mathfrak{s}$	a compact form of \mathfrak{g}_c	111
D	the set of all $\Lambda \in \mathfrak{h}_c^*$ which are dominant (relative to Q) and integral	112
${\mathscr D}_1$	the set of all $\Lambda \in \mathfrak{h}_c^*$ for which π_{Λ} are of class 1	112

Symbols	Definitions	Pages
L	the semilattice generated by $S \subset \Delta^+$	112
$Q_{\alpha}(X)$	$\frac{4\langle X, \theta X \rangle}{\langle \bar{H}_{\alpha}, \theta \bar{X}_{\alpha} \rangle} = \ \alpha\ ^2 \ X\ ^2$	117
H_1	the restriction of H to \bar{N}_1	117
$^+$ $\mathfrak a$	$\{H \in \mathfrak{a} : \langle H, H' \rangle \ge 0 \text{ for all } H' \in \mathfrak{a}^+\}$	119
a^*	$(a^{s_0})^{-1} = u_0 a^{-1} u_0^{-1}$	120
$\mathrm{Co}(H,\mathfrak{w})$	the convex hull of the elements H^s	121
$ ilde{D}$	the radial component of differential operator D	124
$ ilde{arphi}_{\lambda}$	the restriction of φ_{λ} on A^+	124
$\tilde{q}/\tilde{\varphi_{\lambda}} = \gamma(q)(\lambda)\tilde{\varphi_{\lambda}}$	the differential equations where $q \in \mathfrak{Q}, \gamma = \gamma_{\mathfrak{g}/\mathfrak{a}}$	124
$\Phi(\lambda:\cdot)$	$= e^{\lambda-\rho} + \sum_{\mu \in L_+} a_{\mu}(\lambda) e^{\lambda-\rho-\mu}$: the solutions of the above	124
ψ	$(K \times A \times K \to G) : (k_1, h, k_2) \mapsto k_1 h k_2$	125
G^+	KA^+K	125
A'	$=\bigcup_{s\in\mathfrak{w}}sA^+$: the regular subset of A	125
b	$(U(\mathfrak{g}_c) \to U(\mathfrak{a}_{\mathbb{C}})) : g \mapsto b(g)$	127
ξ_{λ}	$\mathrm{e}^{\lambda\circ\log}$	128
f_{lpha}	$(\xi_{\alpha} - \xi_{-\alpha})^{-1}$	128
g_{lpha}	$\xi_{-\alpha}(\xi_{\alpha}-\xi_{-\alpha})^{-1}$	128
\mathscr{R}_0	the algebra with unit generated over $\mathbb C$ by the f_{α} and $g_{\alpha}(\alpha>0)$	128
${\mathscr R}_{0,d}$	the span of monomials in these generators of degree d	128
\mathscr{R}_0^+	$\sum_{d\geq 1} \mathscr{R}_{0,d}$	128
${\mathscr R}_0^{(d)}$	$\sum_{1 \leq e \leq d} \mathscr{R}_{0,e}$	128
$\delta'(g)$	$b(g) + \sum_{1 \le i \le n} \psi_i u_i$	129
χ	$\mathfrak{Q} \to \mathbb{C}$	130
$A(U:\chi)$	$\{g \in C^{\infty}(U) : \delta'(q)f = \chi(q)f \text{ for all } q \in \mathfrak{Q}\}$	130
ω	Casimir operator	132
J(h)	$\prod_{\alpha>0} (e^{\alpha(\log h)} - e^{-\alpha(\log h)})^{n(\alpha)}$	133
$g_1(t)$	$e^{-2t}(1 - e^{-2t})^{-1}$	135

Symbols	Definitions	Pages
$g_2(t)$	$e^{-4t}(1 - e^{-4t})^{-1}$	135
$\Xi = \varphi_0$	the basic spherical function	200

•
$$\beta(q) = e^{-\rho} \circ \gamma(q) \circ e^{\rho}$$

0.1 Construction of the eigenfunctions on G^+

- $\psi(\lambda:t) = e^{t\rho} \varphi_{\lambda}(\exp tH_0), \ t \in \mathbb{R}$
- $\psi_{\lambda}(h) = e^{\rho(\log h)} \varphi_{\lambda}(h)$ for $h \in A^+$
- $L = \left\{ \sum_{1 \le i \le r} m_i \alpha_i : m_1, \cdots, m_r \text{ integers } \ge 0 \right\}$
- $L^+ = L \setminus \{0\}$
- $\mu \prec \mu'$ if $\mu' \mu \in L^+$
- $m(\mu) = m_1 + \cdots + m_r$ if $\mu = m_1\alpha_1 + \cdots + m_r\alpha_r$ the level of μ
- \bullet b a complex-valued function on L
- $f_b(H) = \sum_{\mu \in L} b(\mu) e^{-\mu(H)}, H_R \in \mathfrak{a}^+$
- \bullet \mathcal{R}_{00} the algebra of all functions f_b
- \mathscr{R}_{00}^+ the ideal in \mathscr{R}_{00} of all functions with b(0)=0
- $\tilde{f}(h) = f(\log h), h \in A^+$
- $\widetilde{\mathscr{R}}_{00}^+$ coressponding function in \mathscr{R}_{00}^+ defined on A^+
- $a_{\mu}(\lambda)$ the rational functions of λ
- $\sigma_{\mu} = \left\{ \lambda \in \mathscr{F} : \langle \mu, \lambda \rangle = \frac{1}{2} \langle \mu, \mu \rangle \right\}, \ \mu \in L^{+} \ \text{the hyperplane in } \mathscr{F}$
- $\mathscr{F}^{\vee} = \mathscr{F} \setminus \bigcup_{\mu \in L^+} \sigma_{\mu}$
- $\mathscr{F}_n = \{\lambda \in \mathscr{F} : \langle \lambda_{\mathbb{R}}, \alpha_i \rangle < \eta, 1 \le i \le r\} \subset \mathscr{F}^{\vee}$
- $\mathscr{F}_I(\varepsilon) = \{\lambda \in \mathscr{F} : \|\lambda_R\| \le \varepsilon\} \subset \mathscr{F}^{\vee}$
- $\bullet \ \mathscr{F}_{\mu}^{\vee} = \mathscr{F} \setminus \bigcup_{\nu \in L^+, \nu \leq \mu} \sigma_{\nu}$

0.2 The Harish-Chandra series for φ_{λ} and the c-function

- $\tau_{\nu}(s,t) = \{\lambda \in \mathfrak{a}_{\mathbb{C}}^* : s\lambda t\lambda = \nu\}$
- * $\mathscr{F} = \mathscr{F} \setminus \bigcup_{s \in \mathfrak{w}, \mu \in L^+} s\sigma_{\mu} \cup \bigcup_{s,t \in \mathfrak{w}, \nu \in L^+} \tau_{\nu}(s,t)$
- \mathfrak{w}_{λ} : the stabilizer of λ in \mathfrak{w}
- $c_s(\lambda) = \mathbf{c}(s\lambda)$

0.3 Estimates for the Harish-Chandra series when λ becomes unbounded

- $\Psi(\lambda:h) := J(h)^{1/2}\Phi(\lambda:h)$
- $\sigma(G \to \mathbb{R}) : x \mapsto d(K, Kx)$ where $d(\cdot, \cdot)$ is the geodesic distance on S.
- $c_{\mu}(\lambda)$ page 154, is of at most polynomial growth in μ

0.4 Estimates for the elementary spherical functions. The functions Ξ and σ

- λ_R : the components in \mathscr{F}_R for $\lambda \in \mathscr{F}$
- λ_I : the components in \mathscr{F}_I for $\lambda \in \mathscr{F}$
- \mathscr{F}_R^+ : the open chamber of elements $\nu \in \mathfrak{a}^*$ such that $H_{\nu} \in \mathfrak{a}^+$
- $\beta(\log a) = \min_{1 \le i \le r} \alpha_i(\log a)$ for $a \in A^+$
- $\pi(\lambda) = \prod_{\alpha \in \Delta^{++}} \langle \lambda, \alpha \rangle$
- $\mathbf{b} = \pi \cdot \mathbf{c}$
- $\mathscr{F}_{R,\varepsilon} = C_0(\varepsilon \rho : \mathfrak{w})$: the convex hull of the points $\varepsilon s \rho(\varepsilon > 0, s \in \mathfrak{w})$
- $\sigma(x) := d(K, Kx)$ where $S = K \setminus G$, and $d(\cdot, \cdot)$ is the geodesic distance on S

0.5 The c-function

- $\hat{T}(g) = T(\hat{g})$: the Fourier transform of tempered distribution T on A where $g \in \mathscr{S}(\mathscr{F}_I)$
- R: a set of roots having the following properties: (i) R is contained in some positive system of roots, (ii) $\alpha, \beta \in R, \alpha + \beta \in \Delta \Rightarrow \alpha + \beta \in R$
- $\mathfrak{g}_{-R} = \sum_{\alpha \in -R} \mathfrak{g}_{\alpha}$
- $\bar{\mathfrak{n}}_{-R} = \sum_{\alpha \in -R \cap -\Delta^+} \mathfrak{g}_{\alpha}$
- $\mathfrak{n}_{-R} = \sum_{\alpha \in -R \cap \Delta^+} \mathfrak{g}_{\alpha}$
- $J_R(\lambda) = \int_{\bar{N}_{-R}} e^{-(\lambda+\rho)(H(\bar{n}))} d\bar{N}_{-R}$ for all $\lambda \in \mathscr{F}$

- $\Omega = \left\{ \lambda \in \mathscr{F} : \frac{\langle \lambda_R, \alpha \rangle}{\langle \alpha, \alpha \rangle} > -\min(a, \frac{1}{2}n(\alpha)) \text{ for all } \alpha \in \Delta^{++} \right\}$
- $\bullet \ \mathscr{D}_{\lambda} = \left\{ f \in C^{\infty}(G) : f(xan) = \mathrm{e}^{-(\lambda + \rho)(\log a)} f(x) \text{ for all } x \in G, a \in A, n \in N \right\}$
- $\mathscr{S}(\mathscr{F}_I)$: the Schwartz space of \mathscr{F}_I

1 Asymptotic behavior of elementary spherical functions

1.1 The case when rank(G/K) = 1

- $\psi(\lambda:t) = e^{t\rho_0}\varphi(\lambda:\exp tH_0)$ where $\alpha(H_0) = 1$ and $\rho_0 = \rho(H_0) = \frac{1}{2}(p+2q)$
- $f = 2(pg_1 + 2qg_2)$ where g_1, g_2 is defined as before

•
$$\Psi(\lambda:t) = \begin{bmatrix} \psi(\lambda:t) \\ \frac{d}{dt}\psi(\lambda:t) \end{bmatrix}$$

$$\bullet \ \Gamma(\lambda) = \begin{bmatrix} 0 & 1 \\ \lambda^2 & 0 \end{bmatrix}$$

$$\bullet \ M(t) = \begin{bmatrix} 0 & 0 \\ \rho_0 f & f \end{bmatrix}$$

- $\Theta(\lambda : t) = \Theta(-\lambda : t) = \exp(-t\Gamma(\lambda))\Psi(\lambda : t)$
- $M(\lambda; t) = \exp(-t\Gamma(\lambda))M(t)\exp(t\Gamma(\lambda))$
- $\Theta(\lambda) = \lim_{t \to \infty} \Theta(\lambda : t)$

•
$$E(\lambda) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2\lambda} \\ \frac{\lambda}{2} & \frac{1}{2} \end{bmatrix}$$

1.2 The basic differential equations viewed as a perturbation of a linear system: the regular case

- $I = I_{\mathfrak{w}}(\mathfrak{a}_c)$: the subalgebra of \mathfrak{w} -invariant elements of $U(\mathfrak{a}_c)$
- $u_1 = 1, u_2, \dots, u_w(w = |\mathfrak{w}|)$ are homogeneous and such that $U(\mathfrak{a}_c) = \bigoplus_{1 \leq i \leq w} Iu_i$
- $p_{u:ij} \in I$ such that, for given $u \in U(\mathfrak{a}_c)$, $uu_j = \sum_{1 \leq i \leq w} p_{u,ij} u_i$, $i \leq j \leq w$
- $\bullet \ B(u) = (p_{u:ij})_{1 \le i,j \le w}$
- $\Gamma(u) = B(u)^t$ where t = transpose

•
$$\Gamma(\lambda : u) = \Gamma(u)(\lambda) = (p_{u:ij}(\lambda))_{1 \le i,j \le w}$$

•
$$\Phi_0(\lambda : h) = \begin{bmatrix} \varphi(\lambda : h_j; u_1 \circ e^{\rho}) \\ \vdots \\ \varphi(\lambda : h_j; u_w \circ e^{\rho}) \end{bmatrix}$$

- $\delta'(q)$: the radial component of $q \in \mathfrak{Q}$ on A^+
- $\delta(q) = e^{\rho} \circ \delta'(q) \circ e^{-\rho}$
- $g_{u:ijr} \in \mathcal{R}^+$, $q_{u:ijr} \in \mathfrak{Q}(1 \le i, \le w, 1 \le r \le w)$ such that for $i \le j \le w$,

$$uu_j = \sum_{1 \le i \le w} u_i \delta(q_{u:ij}) + \sum_{1 \le i \le w} \sum_{1 \le r \le m} g_{u:ijr} u_i \delta(q_{u:ijr})$$

- $\tau(H) = \min_{\alpha \in S} \alpha(H) \quad (H \in \mathfrak{a})$
- $(E_u(\lambda:h))_{jk} = \sum_{1 \le r \le m} \gamma(q_{u:kjr})(\lambda)g_{u:kjr}(h)$
- $S_{\eta} = \{ h \in A^+ : |\tau(\log h)| \ge \eta \|\log h\| \}$
- $H_0 \in \mathrm{Cl}(\mathfrak{a}^+)$ such that $H_0 \notin Z_{\mathfrak{g}}$
- G_{H_0} : the centralizer of H_0 in G
- \mathfrak{Q}_{H_0} : the analogue of \mathfrak{Q} for G_{H_0}

1.3 Radial components on M'_{10} and M^+_{10}

- F: the set of simple roots vanishing at H_0
- $P_0 = M_{10}N_0 = M_0A_0N_0$: standard psgrp associated to F
- Δ_0^+ : the set of roots in Δ^+ vanishing at H_0
- $\bullet \ \mathfrak{q} = \mathfrak{g} \ominus \mathfrak{m}_{10}$
- ullet ${\mathfrak q}_{\mathfrak k}={\mathfrak q}\cap{\mathfrak k}$
- ullet ${\mathfrak q}_{\mathfrak s}={\mathfrak q}\cap{\mathfrak s}$
- $K_0 = K \cap M_0 = K \cap M_{10}$: the maximal compact subgroup of M_{10}
- $M'_{10} = \{ m \in M_{10} : (\operatorname{Ad} m \operatorname{Ad}(\theta(m)))_{\mathfrak{n}_0} \text{ is invertible} \}$
- $\mathfrak{w}_0 = \mathfrak{w}(\mathfrak{m}_{10}, \mathfrak{a})$
- $\bullet \ G' = KM'_{10}K$
- $\bullet \ \mathfrak{Q}_0 = U(\mathfrak{s}_{10})^{K_0}$

•
$$\varepsilon_0(a) = \exp\left(-\min_{\alpha \in \Delta^+ \setminus \Delta_0^+} \alpha(\log a)\right), \ \forall a \in A$$

•
$$M_{10}^+ = \{ m \in M_{10} : \varepsilon_0(m) < 1 \}$$

•
$$A_{H_0}^+ = \left\{ a \in \operatorname{Cl}(A^+) : \alpha(\log a) > 0, \forall \alpha \in \Delta^+ \backslash \Delta_0^+ \right\}$$

- \bullet b: a linear subspace of \mathfrak{g}
- $U(\mathfrak{b}) = U(\mathfrak{b}_c) = \lambda(S(\mathfrak{b}))$ where $S(\mathfrak{b}) = S(\mathfrak{b}_c)$ is the symmetric algebra over \mathfrak{b}_c
- $S_d(\mathfrak{b})$: the homogeneous subspaces of $S(\mathfrak{g})$

•
$$U_d(\mathfrak{b}) = \lambda(S_d(\mathfrak{b}))$$

•
$$U^+(\mathfrak{b}) = \bigoplus_{d>1} U_d(\mathfrak{b})$$

•
$$\beta_0: U(\mathfrak{g}) \to U(\mathfrak{s}_{10})$$
: the projection such that $\beta_0(g^k) = \beta_0(g)^k$ for all $g \in U(\mathfrak{g}), k \in K_0$

1.4 The basic differential equations viewed as a perturbation of a linear system: the general case

•
$$\mathfrak{H} = \bigoplus_{d \geq 0} (\mathfrak{H} \cap U_d(\mathfrak{a}))$$

• $\mathfrak{H}_{\mathfrak{w}_0}$: the subspace of \mathfrak{w}_0 invariant elements on \mathfrak{H}

•
$$\dim \mathfrak{H}_{\mathfrak{w}_0} = [\mathfrak{w}, \mathfrak{w}_0] := k$$

•
$$\Phi_0(\lambda:m:v) = \Gamma_0(\lambda:v)\Phi_0(\lambda:m) + \Phi_0(\lambda:m:E_v)$$
 and $v \in \mathfrak{Q}_0, \lambda \in \mathscr{F}, m \in M'_{10}$

•
$$\Phi_0(\lambda : m) = \begin{bmatrix} \varphi(\lambda : m; u_1 \circ e^{\rho}) \\ \vdots \\ \varphi(\lambda : m; u_w \circ e^{\rho}) \end{bmatrix}$$

$$\bullet \ E_v = \begin{bmatrix} \sum_{1 \leq p \leq p_v} \psi_{v:1p} \mu_{v:1p}, & 0 \\ \vdots & & \\ \sum_{1 \leq p \leq p_v} \psi_{v:jp} \mu_{v:jp}, & 0 \\ \vdots & & \\ \sum_{1 \leq p \leq p_v} \psi_{v:kp} \mu_{v:kp}, & 0 \end{bmatrix} : \text{ a } k \times k \text{ matrix of differential operators on } M'_{10} \text{ with coefficients }$$

•
$$\Gamma_0(\lambda:v) := \Gamma_0(v)(\lambda) = (\gamma_{\mathfrak{g}/\mathfrak{a}}(q_{v:ij})(\lambda))_{1 \leq i,j \leq k}$$

1.5 Spectral theory of representations of polynomial rings associated to finite reflexion groups

- $F_{\mathbb{R}}$: a real vector space of finite dimension
- F: complexification of $F_{\mathbb{R}}$
- W: a finite reflexion group on $F_{\mathbb{R}}$
- P: the algebra of polynomials on F
- $P_d(d \ge 0)$: the homogeneous components
- $H \subset P$ is homogeneous if $H = \bigoplus_{d \geq 0} (H \cap P_d)$
- $I = I_W$: the algebra of W-invariant elements of P
- \bullet w = |W|
- $\lambda_{\sigma} \in F_{\mathbb{R}}^* \subset F^*$: associated to $\sigma \in W$
- $\pi = \prod_{\sigma} \lambda_{\sigma}$
- W_0 : arbitrary reflexion subgroup of W
- $I_0 = I_{W_0}$
- $\pi = \prod_{\sigma}^{0} \lambda_{\sigma}$ where the superfix 0 means the product is only over the reflexions in W_{0}
- $w_0 = |W_0|$
- $e(\lambda) = (u_1(\lambda) \cdots u_w(\lambda))^T$
- $e_s(\lambda) = e(s^{-1}\lambda)$
- $E(\lambda) := (e_{js}(\lambda))_{1 \le j \le w, s \in W}$

1.6 The initial estimates

- $\rho_0 = \frac{1}{2} \sum_{\alpha \in \Delta_0^+} m_\alpha \alpha$
- $d_{P_0}(h) = e^{(\rho \rho_0)(\log h)}$ for all $h \in A$
- H_1, \dots, H_p : a specific basis of \mathfrak{a}_0 such that: $\mathfrak{a}_0 = (\mathfrak{a}_0 \cap [\mathfrak{g}, \mathfrak{g}]) \oplus \mathfrak{v}$. $\alpha_1, \dots, \alpha_q$ is the set of simple roots not vanishing at H_0 , we have $q = \dim(\mathfrak{a}_0 \cap [\mathfrak{g}, \mathfrak{g}])$ and $\alpha_i = 0$ on \mathfrak{v} for all i. Choose H_i so that
 - 1. $H_1, \dots H_q$ the basis of $(\mathfrak{a}_0 \cap [\mathfrak{g}, \mathfrak{g}])$ dual to $\alpha_1, \dots, \alpha_q$
 - 2. H_{q+1}, \dots, H_p the basis of \mathfrak{v}
- $\mathfrak{a}_0^+ = \{H \in \mathfrak{a}_0^+ : \alpha_i(H) > 0, 1 \le i \le q\}$: a conical open set in \mathfrak{a}_0^+ when η is small enough.
- $\tau_0(H) = \min_{1 \le i \le q} |\alpha_i(H)|, H \in \mathfrak{a}_0$

1.7 Asymptotics of $\Phi_0(\lambda:\cdot)$ on M_{10}^+ . The function Θ

- $\mathfrak{a}_0^+(\eta) := \left\{ H \in \mathfrak{a}_0^+ : \tau_0(H) > \eta \, \|H\| \right\}$ for any $\eta > 0$
- $H \xrightarrow{P_0} \infty$ if for some $\eta > 0$, $H \in \mathfrak{a}_0^+(\eta)$ and $||H|| \to \infty$
- $\mathscr{F}_I(\kappa) = \{\lambda \in \mathscr{F} : ||\lambda_R|| < \kappa\}$ for some $\kappa > 0$
- $\Theta(\lambda:m) = \lim_{\substack{\mathfrak{a}_0^+ \ni H \xrightarrow{P_0} \\ \infty}} \exp(-\Gamma_0(\lambda:H)) \Phi_0(\lambda:m\exp H)$
- $\Theta(\lambda:m;\mu) = \lim_{\mathfrak{a}_0^+ \ni H \xrightarrow{P_0} \infty} \exp(-\Gamma_0(\lambda:H)) \Phi_0(\lambda:m\exp H;\mu)$ where $\mu \in U(\mathfrak{m}_{10})$
- $\Theta(\lambda : m; g) = \Gamma_0(\lambda : g)\Theta(\lambda : m)$
- $\theta(\lambda:m) = \int_{K_0} e^{(\lambda-\rho_0)(H(mk_0))} dk_0$
- $\theta(\lambda : ma) = e^{\lambda(\log a)}\theta(\lambda : m)$ for $m \in M, a \in A$ if H_0 is regular
- $\psi(\lambda:m) = \Theta_1(\lambda:m)$ where $\Theta_j(1 \leq j \leq k)$ are the components of Θ
- \mathbf{c}_0 : the Harish-Chandra \mathbf{c} -function on M_{10}
- $f_1 \sim f_2$ if $f_1(\exp tX) f_2(\exp tX) \to 0$ as $t \to +\infty$
- $S(\mathcal{F})$: the symmetric algebra over \mathcal{F}
- $\psi(\lambda:m) = |\mathfrak{w}_0|^{-1} \sum_{s \in \mathfrak{w}} (\mathbf{c}(s\lambda)/\mathbf{c}_0(s\lambda)) \theta(s\lambda:m)$ for all $m \in M_{10}$
- $\tau_0(H) = \min_{\alpha \in \Delta^+ \backslash \Delta_0^+} \alpha(H), H \in \mathfrak{a}$

1.8 Asymptotics of $\varphi(\lambda:\cdot)$

- $\gamma_0(b) = d_{P_0} \circ \beta_0(b) \circ d_{P_0}^{-1}$
- $A^+(H_0:\zeta) := \{a \in \mathrm{Cl}(A^+): \tau_0(\log a) > \zeta \|\log a\| \}$ for any $\zeta > 0$

2 The L_2 theory. The Harish-Chandra transform on the Schwartz space of G/K

2.1 The Schwartz spaces $\mathscr{C}(G)$ and $\mathscr{C}(G/K)$

- $\mathscr{C}(G)$: the space of all C^{∞} functions f on G such that, for each $a, b \in U(\mathfrak{g})$, the two-sided derivative afb satisfies the strong inequality
- $\mathscr{C}(G//K)$: the spherical Schwartz space which is the subspace of $\mathscr{C}(G)$ consisting of spherical functions

2.2 The Harish-Chandra transform on $\mathcal{C}(G//K)$

• $\mathcal{S}(A)$: the Schwartz space of the vector group A

2.3 Wave packets in $\mathcal{C}(G//K)$

- $\varphi_a'(x)=\varphi'(a:x)=\int_{\mathscr{F}_I}a(\lambda)\varphi(\lambda:x)d\lambda$ for any $a\in L^1(\mathscr{F}_I)$
- $\varphi_a(x) = \varphi(a:x) := \int_{\mathscr{F}_I} a(\lambda)\pi(\lambda)\varphi(\lambda:x)d\lambda$ for any $a \in \mathscr{S}(\mathscr{F}_I)$
- $\varphi_a(x;b) = \varphi(a:x;b) := \int_{\mathscr{F}_I} a(\lambda)\pi(\lambda)\varphi(\lambda:x;b)d\lambda$ for any $a \in \mathscr{S}(\mathscr{F}_I)$ and $b \in U(\mathfrak{g})$
- $\hat{a}(\lambda:y) = \hat{a}_y(\lambda) = \int_{L_I^*} a(\lambda:\nu) e^{\langle y,\nu \rangle} d\nu$: the partial Fourier transform of a, where $a \in \mathscr{S}(\mathscr{F}_I \times L_I^*)$ and L_I^* being the imaginary dual $(-1)^{1/2}L^*$ of L
- $E(\lambda:h)$: the "error term" is estimated by $|E(\lambda:h)| \leq C(1+||\lambda||)^{m_0}(1+\sigma(h))^{m_0}\mathrm{e}^{-2\tau_0(\log h)}$
- $E(\pi a : h) = \int_{\mathscr{F}_I} \pi(\lambda) a(\lambda) E(\lambda : h) d\lambda$
- $A^+(H_0:\zeta) = \{h \in \text{Cl}(A^+): \tau_0(\log h) > \zeta \sigma(h)\}$ where $H_0 \neq 0$
- $\psi_a(x) := \psi(a:x) = \int_{\mathscr{F}_I} a(\lambda) \varphi(\lambda:x) |\mathbf{c}(\lambda)|^{-2} d\lambda$

2.4 The method of Harish-Chandra

- $\theta^{(v)}(\lambda:x:h) = \sum_{s \in \mathfrak{m}} \mathbf{c}(s\lambda)v(s\lambda)e^{(s\lambda-\rho)(H(x)+(s\lambda)(\log h))}$ for any $v \in U(\mathfrak{a}), h \in A, \lambda \in \mathscr{F}_I$
- $\theta^{(v)}(a:x:h) = \int_{\mathscr{F}_I} a(\lambda)\theta^{(v)}(\lambda:x:h) \mathbf{c}(\lambda^{-1}) \mathbf{c}(-\lambda)^{-1} d\lambda$ for any $v \in U(\mathfrak{a}), h \in A, a \in C_c^{\infty}(\mathscr{F}_I')^{\mathfrak{w}}$
- $a^{(v)}(\lambda) = a(\lambda) \mathbf{c}(-\lambda)^{-1} v(\lambda)$
- $\widehat{a^{(v)}}(h) = \int_{\mathscr{F}_I} e^{\lambda(\log h)} a^{(v)}(\lambda) d\lambda$
- $F(\bar{n}:h) = F(\bar{n}h), \ (\bar{n} \in \bar{N}, h \in A)$ for any function F on G
- $\mathscr{J}(\mathscr{S}(\mathscr{F}_I)^{\mathfrak{w}} \to \mathscr{C}(G//K)) : \mathscr{J} a = |\mathfrak{w}|^{-1} \psi_{a^{\vee}}$
- $a^{\vee}(\lambda) = a(-\lambda)(\lambda \in \mathscr{F}_I)$

2.5 The method of Gangolli-Helgason-Rosenberg

- $A(r) = \{a \in A : \sigma(a) = ||\log a|| \le r\}$ for any r > 0
- $G(r) = \{x \in G : \sigma(x) = \leq r\}$
- $\mathscr{P}_r(\mathscr{F})$: the space of all entire functions f on \mathscr{F} with the following property: for any $N \geq 0$ there is a constant $C_N > 0$ such that $|f(\lambda)| \leq C_N (a + ||\lambda||)^{-N} \mathrm{e}^{r||\lambda_R||}$

Appendix A Errata in [1]

$\overline{{\rm Page}^{{\rm line}\downarrow}_{{\rm line}\uparrow}}$	instead of	Read
67 ₁₀	$\mathfrak{m}_{1F} = \sum_{\lambda \in \Delta_F} \mathfrak{g}_{\lambda}$	$\mathfrak{m}_{1F}=\mathfrak{m}\oplus\mathfrak{a}\oplus\sum_{\lambda\in\Delta_F}\mathfrak{g}_\lambda$
95^{7}	$-2\sum_{1\leq i\leq a}\rho(H_i)$	$-2\sum_{1\leq i\leq a}\rho(H_i)H_i$
103_{10}	$e^{(\lambda+\rho)(H(x^{-1}k))}f(x^{-1}[k])$	$e^{(\lambda+\rho)(H(x^{-1}k))}g(x^{-1}[k])$
152^{10}	$\sum_{s\in\mathfrak{w}}\mathbf{c}_s(\lambda)(s\lambda:h)$	$\sum_{s\in\mathfrak{w}}\mathbf{c}_s(\lambda)\Phi(s\lambda:h)$
156^{1}	$ \mathscr{F}_n $	${\mathscr F}_\eta$
183^{13}	1/2(n-r)	(1/2)(n-r)
198 ₁₀	$\Phi_0(\lambda : h) = \begin{bmatrix} \varphi(\lambda : h_j; u_1 \circ e^{\rho}) \\ \varphi(\lambda : h_j; u_w \circ e^{\rho}) \end{bmatrix}$	$\Phi_0(\lambda : h) = \begin{bmatrix} \varphi(\lambda : h_j; u_1 \circ e^{\rho}) \\ \vdots \\ \varphi(\lambda : h_j; u_w \circ e^{\rho}) \end{bmatrix}$
200_{18}	$n = n^0$	next section.
201^{10}	$K_0 = K_0 \cap M_0$	$K_0 = K \cap M_0$
204^{11}	(5.2.23)	(5.3.23)
212_{7}	$E_{v} = \begin{bmatrix} \sum_{1 \leq p \leq p_{v}} \psi_{v:1p} \mu_{v:1p}, & 0 \\ \sum_{1 \leq p \leq p_{v}} \psi_{v:jp} \mu_{v:jp}, & 0 \\ \sum_{1 \leq p \leq p_{v}} \psi_{v:kp} \mu_{v:kp}, & 0 \end{bmatrix}$	$E_v = \begin{bmatrix} \sum_{1 \le p \le p_v} \psi_{v:1p} \mu_{v:1p}, & 0 \\ \vdots & & \\ \sum_{1 \le p \le p_v} \psi_{v:jp} \mu_{v:jp}, & 0 \\ \vdots & & \\ \sum_{1 \le p \le p_v} \psi_{v:kp} \mu_{v:kp}, & 0 \end{bmatrix}$
243_{11}	$\varphi(\lambda:;b)$	$\varphi(\lambda:a;b)$
229_{7}	$-t_1T_1$	t_1T_1
227_{3}	$\int f(\mathbf{t})$	$\mathbf{f}(\mathbf{t})$
243_2	$s = s(b, \zeta) > 0$	$s = s(b, \zeta) \ge 0$

References

[1] R. Gangolli and V. S. Varadarajan, *Harmonic analysis of spherical functions on real reductive groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 101, Springer-Verlag, Berlin, 1988. MR 954385