NMS izlase, 2020-08-17

1.uzdevums.

Pierādīt, ka jebkuram naturālam n, eksistē n+1 savstarpēji pirmskaitļi k_0, k_1, \ldots, k_n , kas visi lielāki par 1, kuriem $k_0 \cdot k_1 \cdot \ldots \cdot k_n - 1$ ir divu pēc kārtas sekojošu naturālu skaitļu reizinājums.

2.uzdevums.

Definējam polinomu $P(n) = n^2 + n + 1$. Aplūkojam m pēc kārtas nemtas šī polinoma vērtības:

$$S = \{P(n), P(n+1), P(n+2), \dots, P(n+(m-1))\}.$$

Kādai mazākajai m vērtībai var atrast tādu n, ka ikvienam skaitlim $a \in S$ atrodas $b \in S$, ka $a \neq b$ un a, b nav savstarpēji pirmskaitļi.

3.uzdevums.

Veselu skaitļu kopu S sauksim par saknisku, ja katram naturālam skaitlim n un koeficientiem

$$a_0, a_1, \ldots, a_n \in S$$
,

polinoma $a_0 + a_1 + \ldots + a_n x^n$ visas tās saknes, kas ir veseli skaitļi, arī pieder S. Atrast visas sakniskās veselu skaitļu kopas, kas satur visus skaitļus formā $2^a - 2^b$ (a un b ir jebkuras naturālas vērtības).

4.uzdevums.

Apzīmējam virkni:

$$x_n = \prod_{j=1}^n \left(2^j - 1\right).$$

- (A) Atrast $\nu_5(x_{100})$ lielāko kāpinātāju m, kuram x_{100} dalās ar 5^m .
- **(B)** Atrast $\nu_5(100!)$.
- (C) Atrast $\nu_7(x_{100})$.
- **(D)** Atrast $\nu_7(100!)$.
- (\mathbf{E}) Atrast visus naturālo skaitļu (k,n) pārus, kuriem izpildās

$$k! = (2^n - 1)(2^n - 2)...(2^n - 2^{n-1}).$$

5.uzdevums.

Ar n apzīmējam naturālu skaitli. Katrā tabulas $n \times n$ šūnā ierakstīts pa veselam skaitlim. Pieņemsim, ka izpildās divi nosacījumi:

- Katrs skaitlis tabulā ir kongruents ar 1 pēc n modula.
- Skaitļu summa katrā rindiņā un arī katrā kolonnā ir kongruenta n pēc n² moduļa.

Ar R_i apzīmējam i-tās rindas skaitļu reizinājumu, un C_j apzīmē j-tās kolonnas skaitļu reizinājumu.

Pierādīt, ka summas $R_1 + \ldots + R_n$ un $C_1 + \ldots + C_n$ ir kongruentas pēc moduļa n^4 .

6.uzdevums.

Ar $a_1 < a_2 < \ldots < a_n$ apzīmējam naturālus skaitļus, kuri ir savstarpēji pirmskaitļi. Zināms, ka a_1 ir pirmskaitlis un $a_1 \geq n+2$. Reālu skaitļu intervālā $I=[0;\,a_1\cdot a_2\cdot\ldots\cdot a_n]$ atzīmējam visus veselos skaitļus, kuri dalās vismaz ar vienu no skaitļiem a_1,\ldots,a_n . Šie punkti sadala I vairākos mazākos nogriežņos. Pierādīt, ka visu šo nogriežņu garumu kvadrātu summa dalās ar a_1 .