Nome: Gabriel Vitor da Fonseca Miranda

Matrícula:3857

Trabalho Prático 1

Execícios:

1) O conjunto das palavras de tamanho maior do que 3.

Input	Result
1010	Accept
1001	Accept
1011	Accept
111	Reject
001	Reject
101	Reject

2) $\{w \in (0,1)^* \mid |w| \ge 5$, e cujos dois primeiros símbolos sejam sempre diferentes um do outro.

Input	Result
01011	Accept
10010	Accept
10001	Accept
0110	Reject
001	Reject
11011	Reject

3) $\{w \in (0,1)^* \mid \text{cada } 0 \text{ de } w \text{ \'e imediatamente seguido de, no mínimo, dois 1's} \}$

Input	Result
11011	Accept
011011	Accept
111110110110111110111	Accept
0110	Reject
11001100	Reject
01101100	Reject

4) $\{w \in (0,1)^* \mid |w| > 3 \text{ e os primeiros } 3 \text{ símbolos de } w \text{ contêm, no mínimo, dois } 1's\}$

Input	Result
1100	Accept
0111	Accept
1011010	Accept
101	Reject
00101	Reject
010	Reject

5) $\{w \in (0,1)^* \mid w \text{ não possui a subpalavra } 110 \text{ e nem a subpalavra } 001\}$

	Input	Result
100		Accept
1010		Accept
0000		Accept
1100		Reject
001		Reject
110001		Reject

6) $\{w \in (a,b)^* \mid w \text{ sempre começa com dois símbolos diferentes e } |w| > 1\}$

Input	Result
ab	Accept
abbbbbb	Accept
baaaa	Accept
bb	Reject
aa	Reject
a	Reject
	Reject

7) $\{w \in (a,b,c)^* \mid o \text{ primeiro símbolo de } w \text{ é sempre diferente do último}\}\$

Input	Result
abc	Accept
ababacbabcbab	Accept
baaaa	Accept
bababcabcabb	Reject
cccccbaac	Reject
aaaaaabacba	Reject

8) $\{w \in (0,1)^* \mid w \text{ tem como prefixo } 00 \text{ ou } 111\}$

Input	Result
00	Accept
11101	Accept
00101010	Accept
01	Reject
101	Reject
110	Reject

9) $\{w \in (0,1)^* \mid w \text{ tem no mínimo dois 0's consecutivos após cada 1}\}$

Input	Result
0100100	Accept
001000	Accept
100100	Accept
0010	Reject
101	Reject
00010011	Reject

10) $\{w \in \{0,1\}^* \mid w \text{ possui um único } 1 \text{ e um número ímpar de 0's antes deste } 1 \text{ e um número par de 0's após este } 1\}$

Input	Result
000100	Accept
0100	Accept
00000010000000	Accept
001000	Reject
00001000	Reject
11001	Reject

- 11) Três linguagens regulares quaisquer, **definidas por você**. Você deverá escrever também em português, a definição da linguagem, escrever da forma como foi feito nos dez primeiros itens aqui, fazer a máquina e fazer os testes de aceitação.
 - 1) Construa um AFD para a seguinte linguagem abaixo: a)b(ab)*(ab)b+

Input	Result
babababb	Accept
babbbbbb	Accept
bababababbbb	Accept
baccbc	Reject
cccca	Reject
bac	Reject

Este AFD tem como principal objetivo a leitura de uma palavra cujo seu prefixo será sempre a letra b, e seu sufixo b+ fecho positivo de Kleene. Ou seja, o conjuntos das palavras que começam com b e tem pelo menos uma ocorrência de ab, tendo seu sufixo b.

- 2) Obtenha a gramática regular sobre a linguagem {a,b,c}, construa o AF e depois obtenha a gramática a parti dele:
 - a) O conjunto das palavras que tem o sufixo e o prefixo iguais.

Input	Result
ababcaba	Accept
babacab	Accept
cbabc	Accept
baccbc	Reject
cccca	Reject
bac	Reject

R:

$$q0 \Rightarrow a (q1) | b (q2) | c (q3)$$

 $q1 \Rightarrow a (q1) | b (q1) | c (q1) | a (q5)$
 $q2 \Rightarrow a (q2) | b (q2) | c (q2) | b (q5)$
 $q3 \Rightarrow a (q3) | b (q3) | c (q3) | c (q5)$
 $q5 \Rightarrow \lambda$

GR G = $(\{q0, q1, q2, q3, q5\}, \{a,b,c\}, R, \{q5\})$

Está maquina de estados permite a entrada de uma letra, e a mesma entrada deve ser a saída.

Ou seja, o conjunto das palavras em que o primeiro simbolo é sempre o último.

3) Seja GR G = $({D, B A, V}, {a,b}, R, D)$, em que R consta das regras:

$$D \Rightarrow aA \mid bB$$

$$B \Rightarrow aV \mid bA$$

$$A \Rightarrow aV \mid bB$$

$$V => a$$

Input	Result
abbbbaa	Accept
bbbbaa	Accept
baa	Accept
abc	Reject
cccca	Reject
bac	Reject

$$L(G) = (a+b)b*aa$$

O conjunto das palavras que iniciam em a ou b como pelo menos uma ocorrência de b, e terminam com aa.