Wstęp do Fizyki Ciała Stałego

2015/2016 - projekt #1

Zadanie #1 - Analiza termiczna (6 pkt.)

Przedstaw na estetycznym wykresie krzywą DTA materiału szklistego (plik zad1_dta_n.txt, gdzie n – nr zestawu): przepływ ciepła (HF – heat flow) w funkcji temperatury. Oznacz i zidentyfikuj występujące w materiale przemiany. W tabeli zestaw charakterystyczne dla zaobserwowanych przemian temperatury. Pokrótce opisz sposób ich oszacowania/wyznaczenia.

Zadanie #2 – Testy ogniwa litowego (7 pkt.)

Przedstaw na estetycznym wykresie krzywą rozładowania baterii litowej z katodą z nanokrystalicznego $90V_2O_5\cdot 10P_2O_5$ (plik zad2_bat_n.txt, gdzie n-nr zestawu): mierzone napięcie w funkcji pojemności grawimetrycznej. Natężenia prądu oraz masy materiału aktywnego zostały podane w poniższej tabeli. Ile wynosi pojemność grawimetryczna badanej katody? Jaką część teoretycznej pojemności grawimetrycznej ona stanowi? Zakładamy, że procesie rozładowania ogniwa interkalowane są 3 mole jonów litu na jeden mol V_2O_5 .

Zestaw	1	2	3	4	5	6	7
Prąd / μA	8,89	15,80	37,72	94,80	170,64	355,50	663,60
Masa / mg	2,25	2,00	1,91	2,40	2,16	1,80	1,68

Przedstaw na drugim wykresie zróżniczkowaną pojemność baterii (w jednostkach umownych) w funkcji napięcia. Zaznacz ekstrema odpowiadające interkalacji litu w materiale katodowym.

Zadanie #3 – Dyfraktometria rentgenowska (7 pkt.)

Dla struktury krystalicznej wskazanego materiału (patrz tab.) oblicz położenie maksimów dyfrakcyjnych w zakresie kątów $20^{\circ} \le 2\Theta \le 90^{\circ}$ C dla źródła $\lambda_W = 1,4767$ Å. Uwzględnij wpływ czynnika struktury na występowanie maksimum dyfrakcyjnego. Wyniki (dla rodzin płaszczyzn) przedstaw w tabeli o polach: h, k, l, d_{hkl} , 2Θ , F (uwzględnij także te maksima, które są wygaszane). Spośród dyfraktogramów zawartych w plikach zad3_xrd_n.txt wskaż to, które jest dyfraktogramem "Twojego" kryształu. Odpowiedź uzasadnij (np. rysunkiem z zaznaczonymi pasującymi maksimami dyfrakcyjnymi).

Zestaw	Pierwiastek	Struktura	Stała sieciowa / Å
1	Wanad (V)	bcc	3,02
2	Molibden (Mo)	bcc	3,15
3	Niob (Nb)	bcc	3,30
4	Platyna (Pt)	fcc	3,92
5	Glin (Al)	fcc	4,09
6	Nikiel (Ni)	fcc	3,52
7	Pallad (Pd)	fcc	3,89

Szczegółowa punktacja

Lp.	Opis	Pkt.		
	Zadanie #1	6		
1	Wykreślenie krzywej DSC			
2	Oznaczenie wykresu (jednostki i opisy osi)	0,5		
3	Zidentyfikowanie na wykresie przemian termicznych	1		
4	Wyznaczenie charakterystycznych temperatur i zwięzły opis ich wyznaczenia	3		
5	Zaznaczenie charakterystycznych temperatur na wykresie	0,5		
	Zadanie #2	7		
1	Przeliczenie danych na pojemność grawimetryczną baterii (wzór)	1		
2	Wykreślenie krzywej rozładowania w żądanych współrzędnych	1		
3	Oznaczenie wykresu (jednostki i opisy osi)	0,5		
4	Obliczenie teoretycznej i doświadczalnej pojemności grawimetrycznej katody	1,5		
5	Wykreślenie krzywej różniczkowej	2		
6	Wyróżnienie ekstremów na krzywej	0,5		
7	Oznaczenie wykresu (jednostki i opisy osi)	0,5		
	Zadanie #3			
1	Wskazanie (wraz ze zwięzłym opisem) używanych wzorów	1		
2	Określenie ogólnego wzoru na czynnik struktury dla danej struktury	1,5		
3	Obliczenie i zestawienie w tabeli położenia maksimów interferencyjnych	2		
4	Obliczenie dla danych z tabeli czynnika struktury i wyróżnienie niewygaszonych "prążków"	1		
5	Estetyczne wykreślenie "doświadczalnego" dyfraktogramów pierwiastka odpowiadającego powyższym obliczeniom	1		
6	Wykazanie zgodności poprzez naniesienie na wykres położeń obliczonych maksimów dyfrakcyjnych	0,5		