### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ЛАБОРАТОРНАЯ РАБОТА по дисциплине «Математический анализ»

по теме: ИНТЕГРАЛ РИМАНА

Студент:

Группа R3135 Д.А. Возжаева

Предподаватель:

Доцент, научно-образовательный центр математики А.А. Бойцев

# СОДЕРЖАНИЕ

| 1 | АНАЛИТИЧЕСКАЯ ЧАСТЬ               |                                                            |    |  |  |
|---|-----------------------------------|------------------------------------------------------------|----|--|--|
|   | 1.1                               | Интегральная сумма                                         | 3  |  |  |
|   | 1.2                               | Предел интегральной суммы                                  | 3  |  |  |
|   | 1.3                               | Вычисления с использованием формулы Ньютона-Лейбница       | 3  |  |  |
| 2 | ПРОГРАММА, ВЫЧИСЛЯЮЩАЕ И РИСУЮЩАЯ |                                                            |    |  |  |
|   | ИНТЕГРАЛЬНЫЕ СУММЫ                |                                                            |    |  |  |
|   | 2.1                               | Код на языке Python с использованием библиотеки matplotlib | 5  |  |  |
|   | 2.2                               | Ввод и вывод программы                                     | 6  |  |  |
| 3 | ОЦЕНКА ПОГРЕШНОСТИ                |                                                            |    |  |  |
|   | 3.1                               | Центральное оснащение                                      | 9  |  |  |
|   | 3.2                               | Граничное оснащение                                        | 10 |  |  |
|   | 3.3                               | Расчет погречностей                                        | 10 |  |  |

#### 1 АНАЛИТИЧЕСКАЯ ЧАСТЬ

Задание: Составьте интегральную сумму для интеграла Римана функции  $f(x) = 2^x$  по промежутку [0, 2]. Вычислите интеграл через предел интегральных сумм. Докажите, что соответствующий интеграл существует. Проверьте с помощью формулы Ньютона—Лейбница.

#### 1.1 Интегральная сумма

В качестве разбиения выберем равномерное, где  $x_i=\frac{2i}{n}$ . Тогда  $\forall i\in\{1,\dots,n\}\Delta_i=\frac{2}{n}$ . Оснаещние положим правым, а значит  $f(\xi^i)=2^{\frac{2i}{n}}$ . В этом случае интегральная сумма выглядит так:

$$\sigma_{\tau}(f,\xi) = \sum_{i=1}^{n} (\frac{2}{n} \cdot 2^{\frac{2i}{n}})$$

Посчитаем сумму с помощью формулы суммы первых п челонов геометрической прогрессии:

$$\sigma_{\tau}(f,\xi) = \frac{2}{n} \cdot \frac{2^{\frac{2}{n}} \cdot (1-4)}{1-2^{\frac{2}{n}}}$$

# 1.2 Предел интегральной суммы

Поскольку при  $n \to +\infty$   $\Delta_i = \frac{2}{n} \to 0$ , значит  $\lambda(\tau) \to 0$ .

$$I = \lim_{\lambda(\tau) \to 0} \sigma_{\tau(f,\xi)} = \lim_{n \to +\infty} (-6)^{\frac{2}{n}} \cdot \frac{2^{\frac{2}{n}} \cdot (1-4)}{1-2^{\frac{2}{n}}}$$

Воспользуемся эквивалентностью  $a^{\alpha}-1\sim \alpha\cdot lna$  и непрерывностью показательной функции:

$$I = \lim_{n \to +\infty} \frac{6 \cdot 2^{\frac{2}{n}}}{n \cdot \frac{2}{n} \cdot ln2} = \frac{3}{ln2}$$

# 1.3 Вычисления с использованием формулы Ньютона-Лейбница

Поскольку  $f(x) = 2^x$  непрерывная на  $\mathbb{R}$  функция, можем применить формулу Ньютона-Лейбница для непрерывных функций:

$$\int_0^2 2^x dx = \frac{2^x}{\ln 2} \Big|_0^2 = \frac{4}{\ln 2} - \frac{1}{\ln 2} = \frac{3}{\ln 2}$$

# 2 ПРОГРАММА, ВЫЧИСЛЯЮЩАЕ И РИСУЮЩАЯ ИНТЕГРАЛЬНЫЕ СУММЫ

Задание: Напишите программу (язык любой), вычисляющую и рисующую интегральные суммы для данной функции на данном отрезке. Входные данные для программы: число точек разбиения, способ выбора оснащения (левые, правые, средние).

#### 2.1 Код на языке Python с использованием библиотеки matplotlib

```
import matplotlib.pyplot as plt
|def get_data():
                pos_str = "Среднее"
                pos_str = "Правое"
def my_exp(x):
|def get_equipment(n, pos, func):
    return [func((2/n)*(i+pos)) for i in range(n)]
|def integral_s(equipment):
    return sum([(2/len(equipment))*k for k in equipment])
```

```
| def make_plot(equipment, summ, pos_str):
| a, fig = plt.subplots()
| n = len(equipment)
| for i in range(n):
| fig.add_patch(Rectangle(((2/n)*i, 0), 2/n, equipment[i], color = [(1-i/n), 1, 0, 0.5]))
| ar = [i/10 for i in range(21)]
| fig.plot(ar, [2**i for i in ar], color = [0, 0.5, 0, 1])
| fig.text(0.5, 3.5, 'S = ' + str(summ), color = [0, 0.5, 0, 1])
| fig.text(0.5, 3, pos_str[0].upper() + pos_str[1:] + ' paa6иение', color = [0, 0.5, 0, 1])
| fig.text(0.5, 2.5, "Kon-во точек: " + str(len(equipment)), color = [0, 0.5, 0, 1])
| plt.show()
| return
| def make_laboratornaya():
| n, pos, pos_str = get_data()
| equipment = get_equipment(n, pos, my_exp)
| my_summ = integral_s(equipment)
| make_plot(equipment, my_summ, pos_str)
| return "success!"
| for i in range(4):
| make_laboratornaya():
| make_laboratornaya(
```

Ссылка на репозиторий на github:

https://github.com/VozzhayevaDaria/IntegralSums

#### 2.2 Ввод и вывод программы

Введенные данные:

```
Введите количество точек разбиения: 10
Введите оснащение (левое, среднее или правое): левое
Введите количество точек разбиения: 10
Введите оснащение (левое, среднее или правое): среднее
Введите количество точек разбиения: 100
Введите оснащение (левое, среднее или правое): право
Оснащение не найдено, пожалуйста, попробуйте еще раз
Введите оснащение (левое, среднее или правое): правое
Введите количество точек разбиения: 100.0
Что-то пошло не так. Пожалуйста, введите целое число
Введите количество точек разбиения: 1000
Введите оснащение (левое, среднее или правое): правое
Ргосеss finished with exit code 0
```

Вывод программы:









#### **3** ОЦЕНКА ПОГРЕШНОСТИ

Вычисляя значения интеграла мы полагали значение площади под графиком функции, заключенной между  $x=x_i$  и  $x=x_{i+1}$  равным  $f(\xi^i)\cdot \Delta_i$ :

$$\int_{x_i}^{x_{i+1}} f(x)dx \approx f(\xi^i) \cdot \Delta_i$$

Таким образом наш остаток представим в следующем виде:

$$R_{i} = \int_{x_{i}}^{x_{i+1}} f(x)dx - f(\xi^{i}) \cdot \Delta_{i} = \int_{x_{i}}^{x_{i+1}} (f(x) - f(\xi^{i}))dx$$

Воспользуемся формулой Тейлора:

$$f(x) = f(\xi^i) + \frac{f'(\xi^i) \cdot (x - \xi^i)}{1!} + \frac{f''(\xi_0^i) \cdot (x - \xi^i)^2}{2!}, \xi_0^i \in [x_i; x_{i+1}]$$

Рассмотри центральное и левое/правое оснащения отедльно

#### 3.1 Центральное оснащение

Остаток для центральных точек оснащения имеет вид:

$$R_{i} = \int_{x_{i}}^{x_{i+1}} \frac{(x - \xi^{i})^{2} \cdot f''(\xi^{i})}{2} dx$$

Замеитм, что в случае центрального оснащения  $x-\xi^i=\frac{\Delta_i}{2}$ . Очевидно, что  $f''(\xi^i)\leq max(f''(x)), x\in [x_i;x_{i+1}]=M_i$ . Тогда остаток можно оцентить так:

$$R_i \le M_i \cdot \int_{x_i}^{x_{i+1}} \frac{(\frac{\Delta_i}{2})^2}{2} dx = M_i \cdot \frac{\Delta_i^3}{24}$$

Проссумируем по і:

$$R_n = \sum_{i=1}^n M_i \cdot \frac{\Delta_i^3}{24} \le M_0 \cdot \frac{n \cdot \Delta_i^3}{24}, M_0 = \max(\{M_i\}_{i=1}^n)$$

Поскольку  $\Delta_i = \frac{(b-a)}{n}$ , остаток при центральном оснащении имеет вид:

$$R_n \le \frac{(b-a)^3}{24n^2} \cdot max(f''(x)), x \in [a,b]$$

#### 3.2 Граничное оснащение

Остаток для левых/правых точек оснащения имеет вид:

$$R_i = \int_{x_i}^{x_{i+1}} (x - \xi^i) \cdot f'(\xi^i) dx$$

Замеитм, что в случае центрального оснащения  $x-\xi^i=\Delta_i$ . Очевидно, что  $f'(\xi^i)\leq max(f'(x)), x\in [x_i;x_{i+1}]=M_i$ . Тогда остаток можно оцентить так:

$$R_i \le M_i \cdot \int_{x_i}^{x_{i+1}} \Delta_i dx = M_i \cdot \frac{\Delta_i^2}{2}$$

Проссумируем по і:

$$R_n = \sum_{i=1}^n M_i \cdot \frac{\Delta_i^2}{2} \le M_0 \cdot \frac{n \cdot \Delta_i^2}{2}, M_0 = \max(\{M_i\}_{i=1}^n)$$

Поскольку  $\Delta_i = \frac{(b-a)}{n}$ , остаток при центральном оснащении имеет вид:

$$R_n \le \frac{(b-a)^2}{2n} \cdot \max(f'(x)), x \in [a,b]$$

# 3.3 Расчет погречностей

| Количество | Оснащение   | Теоретическая | Полученная   |
|------------|-------------|---------------|--------------|
| точек      |             | огрешность    | погрешность  |
| разбиения  |             |               |              |
| 10         | Левое       | 0.5545177444  | 0.2930707473 |
| 10         | Центральное | 0.0640604018  | 0.0034637942 |
| 100        | Правое      | 0.0554517744  | 0.0300693144 |
| 1000       | Правое      | 0.0055451774  | 0.0300693144 |

Из таблицы видно, что численно посчитанный интеграл не превышает теоретическую погрешность.