

HOL based First-order Modal Logic Provers

Christoph Benzmüller and Thomas Raths

Freie Universität Berlin and University of Potsdam

LPAR-19, Stellenbosch, South Africa, December 2013

Introduction


```
First-order (Multi-)Modal Logics (FMLs) . . . . . . are just fragments of Classical Higher-Order Logic (HOL) . . . and they can be automated with HOL ATPs.
```

[BenzmüllerPaulson, LogicaUniversalis, 2013]

Contribution of this paper

- ► FMLtoHOL tool: converts FML problems in qmf-syntax [RathsOtten, IJCAR, 2012] (which extends the TPTP fol-syntax with #box and #dia), into HOL problems in TPTP thf0-syntax.
- ► FMLtoHOL tool is exemplarily applied in combination with a metaprover for HOL, called HOL-P.
- ► Evaluation and comparison with other (direct) FML ATPs.
- Evaluation of different options wrt. to FMLtoHOL.

Simple Types

$$\alpha ::= \iota \mid o \mid \alpha_1 \rightarrow \alpha_2$$

$$\mathsf{HOL} \qquad \begin{array}{ll} s,t & ::= & c_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} \, s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} \, t_{\alpha})_{\beta} \mid \\ & & (\neg_{o \to o} \, s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} \, t_{o})_{o} \mid (\forall x_{\alpha} \, t_{o})_{o} \end{array}$$

$$s,t ::= c_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid (\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall x_{\alpha} t_{o})_{o}$$

HOL
$$s, t ::= C |x| (\lambda x s) |(s t)| (\neg s) |(s \lor t)| (\forall x t)$$

HOL
$$s, t ::= C |x| (\lambda x s) |(s t)| (\neg s) |(s \lor t)| (\forall x t)$$

HOL (with Henkin semantics) is meanwhile very well understood

- Origin
- Henkin-Semantics

- [Church, J.Symb.Log., 1940]
- [Henkin, J.Symb.Log., 1950]
- [Andrews, J.Symb.Log., 1971, 1972]

- Extensionality/Intensionality
- [BenzmüllerBrownKohlhase, J.Symb.Log., 2004] [Muskens, J.Symb.Log., 2007]

HOL
$$s, t ::= C |x| (\lambda x s) |(s t)| (\neg s) |(s \lor t)| (\forall x t)$$

HOL
$$s,t ::= C \mid x \mid (\lambda x \, s) \mid (s \, t) \mid (\neg s) \mid (s \lor t) \mid (\forall x \, t)$$

FML $\varphi,\psi ::= P(t_1,\ldots,t_n) \mid (\neg \varphi) \mid (\varphi \lor \psi) \mid \Box \varphi \mid (\forall x \, \varphi)$
 $M,g,s \models \neg \varphi \quad \text{iff} \quad \text{not} \ M,g,s \models \varphi \quad M,g,s \models \varphi \quad \text{or} \ M,g,s \models \psi$
 $M,g,s \models \Box \varphi \quad \text{iff} \quad M,g,u \models \varphi \text{ for all} \ u \text{ with} \ r(s,u)$
 $M,g,s \models \forall x \, \varphi \quad \text{iff} \quad M,[d/x]g,s \models \varphi \quad \text{for all} \ d \in D$

HOL
$$s,t ::= C \mid x \mid (\lambda x s) \mid (s t) \mid (\neg s) \mid (s \lor t) \mid (\forall x t)$$

FML $\varphi, \psi ::= P(t_1, \ldots, t_n) \mid (\neg \varphi) \mid (\varphi \lor \psi) \mid \Box \varphi \mid (\forall x \varphi)$
 $M,g,s \models \neg \varphi$ iff not $M,g,s \models \varphi$
 $M,g,s \models \varphi \lor \psi$ iff $M,g,s \models \varphi$ or $M,g,s \models \psi$
 $M,g,s \models \Box \varphi$ iff $M,g,u \models \varphi$ for all u with $r(s,u)$
 $M,g,s \models \forall x \varphi$ iff $M,[d/x]g,s \models \varphi$ for all $d \in D$

FML in HOL: $\neg = \lambda \varphi_{\iota \to o} \lambda s_{\iota} \neg \varphi s$
 $\lor = \lambda \varphi_{\iota \to o} \lambda \psi_{\iota \to o} \lambda s_{\iota} (\varphi s \lor \psi s)$
 $\Box_r = \lambda \varphi_{\iota \to o} \lambda s_{\iota} \forall u_{\iota} (\neg r s u \lor \varphi u)$
 $\Box = \lambda h_{\mu \to (\iota \to o)} \lambda s_{\iota} \forall d_{\mu} h ds$
 $(\forall x \varphi \text{ stands for } \Box \lambda x \varphi)$

HOL
$$s,t ::= C \mid x \mid (\lambda x s) \mid (s t) \mid (\neg s) \mid (s \lor t) \mid (\forall x t)$$

FML $\varphi, \psi ::= P(t_1, \dots, t_n) \mid (\neg \varphi) \mid (\varphi \lor \psi) \mid \Box \varphi \mid (\forall x \varphi)$
 $M,g,s \models \neg \varphi$ iff not $M,g,s \models \varphi$
 $M,g,s \models \varphi \lor \psi$ iff $M,g,s \models \varphi$ or $M,g,s \models \psi$
 $M,g,s \models \Box \varphi$ iff $M,g,u \models \varphi$ for all u with $r(s,u)$
 $M,g,s \models \forall x \varphi$ iff $M,[d/x]g,s \models \varphi$ for all $d \in D$

FML in HOL: $\neg = \lambda \varphi_{\iota \to o} \lambda s_{\iota} \neg \varphi s$
 $\lor = \lambda \varphi_{\iota \to o} \lambda \psi_{\iota \to o} \lambda s_{\iota} (\varphi s \lor \psi s)$
 $\Box = \lambda r_{\iota \to \iota \to o} \lambda \varphi_{\iota \to o} \lambda s_{\iota} \forall u_{\iota} (\neg r s u \lor \varphi u)$
 $\Box = \lambda h_{\mu \to (\iota \to o)} \lambda s_{\iota} \forall d_{\mu} h ds$
 $(\forall x \varphi \text{ stands for } \Box \lambda x \varphi)$

HOL
$$s,t ::= C \mid x \mid (\lambda x s) \mid (s t) \mid (\neg s) \mid (s \lor t) \mid (\forall x t)$$

FML $\varphi,\psi ::= P(t_1,\ldots,t_n) \mid (\neg \varphi) \mid (\varphi \lor \psi) \mid \Box \varphi \mid (\forall x \varphi)$
 $M,g,s \models \neg \varphi \quad \text{iff} \quad \text{not} \ M,g,s \models \varphi \quad M,g,s \models \varphi \quad \text{iff} \quad M,g,s \models \varphi \text{ or} \ M,g,s \models \psi \quad M,g,s \models \Box \varphi \quad \text{iff} \quad M,g,u \models \varphi \text{ for all} \ u \text{ with} \ r(s,u) \quad M,g,s \models \forall x \varphi \quad \text{iff} \quad M,[d/x]g,s \models \varphi \text{ for all} \ d \in D$

Idea: Lifting of modal formulas to predicates on worlds

Metalevel notions: valid = $\lambda \varphi_{\iota \to o} \forall s_{\iota} \varphi s$

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall^{P} p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$ (P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL

$$\Pi^{p} = \lambda h_{(\iota \to o) \to (\iota \to o)} \lambda s_{\iota} \forall v_{\mu} hvs \qquad (\forall \varphi \psi \text{ stands for } \Pi^{p} \lambda \varphi \psi)$$

Semantical Condition
$$\forall x \exists y (rxy)$$

Bridge rules
valid
$$\forall^p \omega (\Box_* \omega \supset \Box_*)$$

Semantical Condition
$$\forall x \forall y (rxy \supset sxy)$$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .

$$M, g, s \models \forall^p p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$ (P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL

. . .

$$\Pi^{p} = \lambda h_{(\iota \to o) \to (\iota \to o)} \lambda s_{\iota} \forall v_{\mu} hvs \qquad (\forall \varphi \psi \text{ stands for } \Pi^{p} \lambda \varphi \psi)$$

Modal logic axioms valid $\forall^p \omega (\Box \omega \supset \Diamond)$

Semantical Condition
$$\forall x \exists y (rxy)$$

Bridge rules valid $\forall^p \varphi(\Box_r \varphi \supset \Box_s \varphi)$

Semantical Condition
$$\forall x \forall y (rxy \supset sxy)$$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall^{P} p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$ (P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL

$$\Pi^{p} = \lambda h_{(\iota \to o) \to (\iota \to o)} \lambda s_{\iota} \forall v_{\mu} hvs \qquad (\forall \varphi \psi \text{ stands for } \Pi^{p} \lambda \varphi \psi)$$

Modal logic axioms

valid
$$\forall^p \varphi (\Box \varphi \supset \Diamond \varphi)$$

Semantical Condition $\forall x \exists y (rxy)$

Bridge rules valid
$$\forall^p \varphi (\Box_r \varphi \supset \Box_s \varphi)$$

Semantical Condition
$$\forall x \forall y (rxy \supset sxy)$$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall^p p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$ (P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL

$$\Pi^{p} = \lambda h_{(\iota \to o) \to (\iota \to o)} \lambda s_{\iota} \forall v_{\mu} hvs \qquad (\forall \varphi \psi \text{ stands for } \Pi^{p} \lambda \varphi \psi)$$

Modal logic axioms

valid
$$\forall^p \varphi (\Box \varphi \supset \Diamond \varphi)$$

Semantical Condition $\forall x \exists y (rxy)$

Bridge rules

valid
$$\forall^p \varphi (\Box_r \varphi \supset \Box_s \varphi)$$

Semantical Condition
$$\forall x \forall y (rxy \supset sxy)$$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013]

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall^p p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$ (P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL

$$\Pi^{p} = \lambda h_{(\iota \to o) \to (\iota \to o)} \lambda s_{\iota} \forall v_{\mu} hvs \qquad (\forall \varphi \psi \text{ stands for } \Pi^{p} \lambda \varphi \psi)$$

Modal logic axioms

valid
$$\forall^p \varphi (\Box \varphi \supset \Diamond \varphi)$$

Semantical Condition
$$\forall x \exists y (rxy)$$

Bridge rules

valid
$$\forall^p \varphi (\Box_r \varphi \supset \Box_s \varphi)$$

Semantical Condition
$$\forall x \forall y (rxy \supset sxy)$$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013]

Constant Domain

$$\Pi = \lambda h \, \lambda w_{\iota} \, \forall x_{\mu} \, hxw$$

Constant Domain

$\Pi = \lambda h \, \lambda w_{\iota} \, \forall x_{\mu} \, hxw$

Varying and Cumulative Domain

$$\Pi^{\mathsf{va}} = \lambda h \, \lambda w_{\iota} \, \forall x_{\mu} \, (\neg \mathsf{exInW} x w \vee h x w)$$

Constant Domain

Varying and Cumulative Domain

$$\Pi^{va} = \lambda h \lambda w_{\iota} \forall x_{\mu} hxw \qquad \Pi^{va} = \lambda h \lambda w_{\iota} \forall x_{\mu} (\neg exlnWxw \lor hxw)$$
domains are non-empty
$$\forall w_{\iota} \exists x_{\mu} exlnWxw \\
\forall w_{\iota} exlnWcw$$
denotation (constants & functions)
$$\forall w_{\iota} (exlnWt^{1}w \land \dots \land exlnWt^{n}w)$$

$$\supseteq exlnW(f t^{1} \dots t^{n})w)$$

Constant Domain

Varying and Cumulative Domain

Automated Theorem Provers and Model Finders for HOE eleversität Perlin

- all accept TPTP THF Syntax [SutcliffeBenzmüller, J.Form.Reas, 2009]
 - can be called remotely via SystemOnTPTP at Miami
 - they significantly gained in strength over the last years
 - they can be bundled into a combined prover HOL-P

Exploit HOL with Henkin semantics as metalogic

Automate other logics (& combinations) via semantic embeddings

— HOL-P becomes a Universal Reasoner —

FMLtoHOL

- ▶ implemented as part of Sutcliffe's TPTP2X tool
- ▶ included in the QMLTP—v1.1 package available at: http://www.iltp.de/qmltp/problems.html
- written in Prolog, can be easily modified and extended
- ▶ invoked as

```
./tptp2X -f thf:<logic>:<domain> <qmf-file> where <logic> \in {k,k4,d,d4,t,s4,s5} and <domain> \in {const, vary, cumul}.
```

- ▶ generates TPTP thf0-files; employs include-mechanism
- ► can easily be combined (shell script) with HOL-P metaprover

FO Modal Logic example:
$$(\lozenge \exists x Pfx \land \Box \forall y (\lozenge Py \Rightarrow Qy)) \Rightarrow \lozenge \exists z Qz$$

FO Modal Logic example: $(\lozenge \exists x Pfx \land \Box \forall y (\lozenge Py \Rightarrow Qy)) \Rightarrow \lozenge \exists z Qz$

```
%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
 qmf(con,conjecture,
      ((\#dia: ? [X] : p(f(X))) \& (\#box: ! [Y]: ((\#dia: p(Y)) => q(Y))))
       => #dia: ? [Z] : q(Z) )).
\longrightarrow
 %----Include axioms for modal logic D under constant domains
 include('Axioms/LCL013^0.ax.const').
 include('Axioms/LCL013^2.ax').
 %-----
 thf(q_type,type,(q:mu > $i > $o)).
 thf(p_type,type,(p:mu > $i > $o)).
 thf(f_type,type,(f: mu > mu )).
 thf(con,conjecture, ( mvalid @
     ( mimplies @
       ( mand @
         ( mdia_d @ ( mexists_ind @ ^ [X: mu] : ( p @ ( f @ X ) ) ) ) @
         ( mbox d @ ( mforall ind @ ^ [Y: mu] :
             ( mimplies @ ( mdia_d @ ( p @ Y ) ) @ ( q @ Y ) ) ) ) @
       ( mdia_d @ ( mexists_ind @ ^ [Z: mu] : ( q @ Z ) ) ) )).
```


FO Modal Logic example:

$$(\Diamond \exists x P f x \land \Box \forall y (\Diamond P y \Rightarrow Q y)) \Rightarrow \Diamond \exists z Q z$$

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe

- LEO-II says Theorem CPU 0.08s
- Satallax says Theorem CPU 0.03s
- Isabelle says Unknown CPU 11.93s
- Nitpick says Unknown CPU 10.62s
- agsyHOL says Theorem CPU 0.55s

FO Modal Logic example:

 $(\Diamond \exists x P f x \land \Box \forall y (\Diamond P y \Rightarrow Q y)) \Rightarrow \Diamond \exists z Q z$

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe

- LEO-II says Theorem CPU 0.08s
- Satallax says Theorem CPU 0.03s
- Isabelle says Unknown CPU 11.93s
- Nitpick says Unknown CPU 10.62s
- agsyHOL says Theorem CPU 0.55s

%> ./FMLtHOL-P example.thf -timeout 20 -logic k -domain constant

FO Modal Logic example: (♦∃

 $(\Diamond \exists x P f x \land \Box \forall y (\Diamond P y \Rightarrow Q y)) \Rightarrow \Diamond \exists z Q z$

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe

- LEO-II says Theorem CPU 0.08s
- Satallax says Theorem CPU 0.03s
- Isabelle says Unknown CPU 11.93s
- Nitpick says Unknown CPU 10.62s
- agsyHOL says Theorem CPU 0.55s

%> ./FMLtHOL-P example.thf -timeout 20 -logic k -domain constant

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe

- LEO-II says Unknown CPU 11.93s
- Satallax says CounterSatisfiable CPU 0.04s
- Isabelle says Unknown CPU 16.19s
- Nitpick says CounterSatisfiable CPU 8.19s
- agsyHOL says Unknown CPU 10.82s

Evaluation: FML's (S4— constant/varying/cumulative)

No. of solved monomodal problems (out of 580, 600sec timeout)

	MleanSeP labelled sequents	MleanTAP labelled tableaux	f2p-MSPASS instant. & transform.	MleanCoP labelled connections	HOL-P
Logic S4, constant domains					
Theorem	197	220	111	352	300
Non-Theorem	1	4	36	82	132
Solved	198	224	147	434	432
Logic S4, cumulative domains					
Theorem	197	205	121	338	278
Non-Theorem	4	4	41	94	146
Solved	201	209	162	432	424
Logic S4, varying domains					
Theorem	-	169	-	274	245
Non-Theorem	-	4	-	119	184
Solved	-	173	-	393	429

Evaluation: FML's (D — constant/varying/cumulative)

No. of solved monomodal problems (out of 580 problems, 600sec timeout, inHOL-P a timeout of 120s was given to each of the 5 subprovers.)

	MleanSeP labelled sequents	MleanTAP labelled tableaux	f2p-MSPASS instant. & transform.	MleanCoP labelled connections	HOL-P
Logic D, constant domains					
Theorem	135	134	76	217	208
Non-Theorem	1	4	107	209	250
Solved	136	138	183	426	458
Logic D, cumulative domains					
Theorem	130	120	79	200	184
Non-Theorem	4	4	108	224	269
Solved	134	124	187	424	453
Logic D, varying domains					
Theorem	-	100	-	170	163
Non-Theorem	-	4	-	243	295
Solved	-	104	-	413	458

Evaluation: FML's (S4— constant/varying/cumulative)

Table : Individual performances of the subprovers of HOL-P in the Theorem-category with respect to the experiments for S4. Results are presented for constant domain (const), cumulative domain (cum) and varying domain (vary) semantics.

Logic S4	Isabelle	LEO-II	agsyHOL	Satallax
Theorem	const/cum/vary	const/cum/vary	const/cum/vary	const/cum/vary
syn	177/126/120	213/187/163	231/192/171	244/233/207
sem	252/215/192	227/203/183	247/206/183	257/239/214
total	1082	1176	1230	1394

Table : Individual performances of the subprovers of HOL-P in the Non-Theorem-category with respect to the experiments for S4.

Logic S4		Satallax	Nitpick	
	Non-Theorem	const/cum/vary	const/cum/vary	
	syn	0/0/0	132/145/185	
	sem	48/56/68	132/146/185	
Г	total	172	925	

ATP system	supported modal logics	supported domain cond.
MleanSeP 1.2	K,K4,D,D4,T,S4	constant,cumulative
MleanTAP 1.3	D,T,S4,S5	constant,cumulative,varying
MleanCoP 1.2	D,T,S4,S5	constant,cumulative,varying
f2p-MSPASS 3.0	K,K4,K5,B,D,T,S4,S5	constant,cumulative
HOL-P	K,K4,K5,B,D,D4,T,S4,S5,	constant,cumulative,varying

HOL-P directly applicable also for multi-modal logics.

Conclusion

Presented a HOL based ATP and Model Finder for First-order Modal Logics

- covers arbitrary logics extending base logic K
- ▶ is very competitive (strongest 'solver' to date)
- semantic axioms should be preferred over syntactic ones
- ► simple, lean, and elegant approach
- most importantly: the presented approach
 - is applicable to many other non-classical logics
 - supports multi-modal logics and logic combinations
 - supports meta-level reasoning
 - ► has many interesting applications . . .

Some Recent Related Work

Automation of Kurt Ködel's Ontological Argument in Second-order Modal Logic (KB)

