12/09/22, 17:21

Esame scritto ALAN 21-07-2022, prima parte.

1) Data la matrice
$$A = \begin{pmatrix} -2 & -1 & 0 & 1 \\ 0 & 1 & -2 & -1 \\ 4 & -1 & 6 & -5 \end{pmatrix} \in M_{3,4}(\mathbb{R})$$

- b) determinare, se esiste, una soluzione di lunghezza $\sqrt{6}$ del sistema lineare omogeneo AX = 0.

2) Siano
$$\lambda \in \mathbb{R}$$
, $A = \begin{pmatrix} 1 & 0 & \lambda \\ 0 & 1 - \lambda & 1 \\ 1 & -1 & 0 \end{pmatrix} \in M_3(\mathbb{R}) \text{ e } B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \in M_{3,1}(\mathbb{R}).$ a) Dire per quali

- $\lambda \in \mathbb{R}$ la matrice A è invertibile
 - b) Esistono valori di $\lambda \in \mathbb{R}$ per i quali il sistema AX = B non ammette soluzioni?
 - c) Se esiste, esibire $\lambda \in \mathbb{R}$ tale che la lunghezza del vettore $A \cdot B \in \mathbb{R}^3$ sia 3.
- 3) Siano v_1, v_2, v_3, v_4, v_5 vettori non nulli di \mathbb{R}^3 e $A \in M_{5,3}(\mathbb{R})$ la matrice che ha i v_i come colonne. Giustificando la risposta, dire se le seguenti affermazioni sono vere o false.
 - a) Se $\nu_1=2\nu_2$, allora $\langle \nu_1,\nu_3,\nu_5\rangle=\langle \nu_2,\nu_3,\nu_5\rangle$.
- b) Se $v_1 \in \langle v_2, v_3 \rangle$, allora v_1, v_2, v_5 formano una base di \mathbb{R}^3 se e solo se v_1, v_3, v_5 formano una base di \mathbb{R}^3
- c) Se la terza riga di A è la somma delle prime due, allora non esiste alcun $U\subseteq$ $\{1, 2, 3, 4, 5\}$ tale che i vettori v_i con $i \in U$ formino una base di \mathbb{R}^3 .

4) Dati i vettori
$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$
:

a) stabilire se $\begin{pmatrix} 7 \\ -7 \\ 4 \end{pmatrix}$ appartiene a $\langle v_1, v_2 \rangle$.

- b) trovare un vettore $v \in \mathbb{R}^3$ ortogonale sia a v_1 che a v_2 . I vettori v_1, v_2, v formano una base di \mathbb{R}^3 ? Se si, si tratta di una base ortogonale?