\bigcirc	The formula to compute the work W	done on	a body i	f the	force	F	is
	parallel to the displacement d is:						

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathrm{B}} W = 2F.$$

$$\boxed{\mathbf{C}} W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = 2d.$$

(3) The formula to compute the work
$$W$$
 done on a body when the force F makes an angle with the displacement d is:

$$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d.$$

(4) The unit for work is J·m.

(5) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

⁽²⁾ The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.

D None of the other answers.

2
•

1 The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

 $\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$

 $\boxed{\mathbf{B}} \ W = F \cdot d.$

C None of the other answers.

 $\boxed{\mathbf{D}} \ W = F \cdot d \cdot \sin x.$

(2) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

A 600 J.

B 0 J.

C 200 J.

D None of the other answers.

(3) The unit for work is J·m.

A True.

B False.

 $\overbrace{4}$ The formula to compute the work W done on a body if the force F is parallel to the displacement d is:

 $\boxed{\mathbf{A}} \ W = m \cdot v.$

 $\boxed{\mathbf{B}} \ W = F \cdot d.$

 $\boxed{\mathbf{C}} W = 2F.$

 $\boxed{\mathbf{D}} \ W = 2d.$

(5) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 3 J.

- B 1 J.
- C 9 J.
- D 0 J.
- (6) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.
 - A True.
 - B False.

\bigcirc	The fo	rmula	to co	omput	e the	work	W	done	on	a bo	ody	when	the	force
	F mak	es an	angle	with	the d	isplac	eme	$\operatorname{ent} d$	is:					

A None of the other answers.

 $\boxed{\mathbf{B}} \ W = F \cdot d.$

C $W = F \cdot d \cdot \sin x$.

 $\boxed{\mathbf{D}} \ W = F \cdot d \cdot \cos x.$

(2) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.

A False.

B True.

 \bigcirc The unit for work is J·m.

A True.

B False.

(4) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 3 J.

B 9 J.

C 0 J.

D 1 J.

(5) The formula to compute the work W done on a body if the force F is parallel to the displacement d is:

 $\boxed{\mathbf{A}} \ W = 2F.$

 $\boxed{\mathbf{B}} \ W = 2d.$

 $\boxed{\mathbf{C}} W = F \cdot d.$

- $\boxed{\mathbf{D}} \ W = m \cdot v.$
- $\stackrel{\textstyle \frown}{0}$ When a weight lifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:
 - A 0 J.
 - B None of the other answers.
 - C 600 J.
 - D 200 J.

1	The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:
	$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$
	$\boxed{\mathbf{B}} \ W = F \cdot d.$
	C None of the other answers.
	$\boxed{\mathbf{D}} \ W = F \cdot d \cdot \sin x.$
2	The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d .
	A False.
	B True.
3	The unit for work is $J \cdot m$.
	A False.

(4) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

A None of the other answers.
B 0 J.

C 600 J.

B True.

D 200 J.

(5) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 1 J.

B 0 J.

C 9 J.

- D 3 J.
- \bigcirc The formula to compute the work W done on a body if the force F is parallel to the displacement d is:
 - $\boxed{\underline{\mathbf{A}}} \ W = m \cdot v.$
 - $\boxed{\mathbf{B}} \ W = F \cdot d.$
 - $\boxed{\mathbf{C}} \ W = 2d.$
 - $\boxed{\mathbf{D}} \ W = 2F.$