MySQL Expert Group

http://meg.imysql.cn

Linux下的MySQL数据库监控

吴诗展

MySQL专家组核心成员

http://mysqlmeg.cn

2008-11-1

Email:cnwsz#QQ.com

Blog: http://www.dbaview.cn

主要内容

- 概述
- 服务器层面
 - ●被动监控
 - ●健康监控
- 数据库层面
 - ●被动监控
 - ●健康监控
 - ●同步监控
- 监控工具

概述

- 监控的重要性
 - ●那在黑暗里行走的,不知道往何处去--《新约》
 - 监控是一个大而复杂的任务,不同的应用有不同的环境
 - ●而且关注点不同,监控项也不同,所以会有很多不同的监控侧重点
 - ●今天所讲侧重于故障监控和性能监控
- 监控思想
 - ●工具会很快过时,思想远比工具重要
 - ●知道花费了什么/获得了什么/投资回报率?
 - 用户体验被赋予最高优先权

服务器层面

- 被动监控
 - ●树倒猢狲散
 - ●如何监控?
 - ●事后监控/sms/需立刻处理
- 健康监控
 - ●预警型监控/如何敲定报警阈值
 - Memory:Free (关swap)
 - CPU:vmstat 1 ; load average
 - ●IO:iostat -x 1 (关注IOPS)

健康监控

```
http://www.dbaview.cn
                 %nice
                          %sys %iowait
                                         %idle
avq-cpu:
         %user
          2.31
                   0.00
                          0.82
                                  3.48
                                         93.39
Device:
          rrqm/s wrqm/s
                                                                wkB/s avgrq-sz avgqu-sz
                                                                                          await svctm %util
                          r/5
                                w/s rsec/s wsec/s
                                                       rkB/s
cciss/c0d0
             0.64
                    0.73 41.34 101.29 108.03
                                               90.04
                                                        54.02
                                                                 45.02
                                                                           1.39
                                                                                    0.09
                                                                                            0.63
                                                                                                   0.17
                                                                                                        2.47
```

```
---swap-- ----io---- --system-- ---cpu----
procs
      -----memory-----
r b
               free
                      buff cache
                                               bi
                                                          in
                                                                cs us sy id wa
       swpd
                                         50
                                                     bo
       1728
             25256
                                               586
                                                    1024
                                           0
 0 0
                     44004 5751272
                                      0
                                                            9
                                                                  0 2 1 93 3
       1728
                     44004 5751340
 0 0
              25120
                                      0
                                           0
                                                     284 1231
                                                                461
                                                                        0 99
       1728
             25120
                     44004 5751340
                                           B
                                                     144 1123
                                      0
                                                                234
                                                                        0 100
       1728
   9
             25120
                    44004 5751340
                                      0
                                                     172 1137
                                                                283
                                                                        0 99
       1728
                     44008 5751336
                                                     172 1132
   0
             25056
                                      0
                                                36
                                                                272
                                                                        0 99
       1728
             25056
                     44008 5751336
                                                12
                                                     304 1236
                                                                474
                                      0
                                           0
                                                                        0 99
                                                                256 1 0 0 100
       1728
              25056
                     44008 5751336
   9
                                      0
                                           0
                                                     168 1125
                                                     212 1157
                                                                341 0 0 100 0
             25056
                     44008 5751336
    9
        1728
                                      0
                                           0
```

数据库层面

- 被动监控
 - ●如何监控Mysql Crash?
 - ●端口?语义? Mysql pid?

- 注:端口监控引起的连接出错问题?
 - 调大max_connect_errors=10000

数据库层面

- 数据库健康监控
 - ●总体情况
 - ●一些关注项
 - ●同步监控

总体情况

- mysql >SHOW /*!50000 GLOBAL */ VARIABLES;
 - SHOW /*!50000 GLOBAL */ VARIABLES like "key%"
 - ●为什么加/*!50000 GLOBAL */? MySQL4和MySQL5区别. 即MySQL4: SHOW VARIABLES; MySQL5: SHOW GLOBAL VARIABLES;
 - ●后继默认为MySQL 5
- mysql> SHOW /*!50000 GLOBAL */ STATUS;
 - •]\$ mysqladmin extended (绝对值,全局)
 - •]\$ mysqladmin extended -i10 -r (相对值,每隔10秒)
- mysql> SHOW FULL PROCESSLIST;
 - •]\$ mysqladmin processlist
 - ●Tcpdump 抓包
- mysql> SHOW ENGINE INNODB STATUS;
 - •mysql> SHOW /*!50000 GLOBAL */ STATUS LIKE 'innodb%';
 - •]\$ mysql -e "show innodb status"
- mysql> SHOW MASTER STATUS; SHOW SLAVE STATUS;

一些关注项:通用情况

- 每秒查询率QPS: questions增量/time
 - ●间隔时间参考: 10s,1h,24h
 - show status like "Questions":已经发送给服务器的查询个数(不单是select操作)
- com_xxx 计数器
 - ●Com_delete/Com_insert/Com_update/Com_delete等
 - ●show status like "Com_xxx": 表示xxx 语句执行的次数。例如,Com_delete统计DELETE 语句执行的次数
 - •show **global** status like 'com_insert'; & show status like 'com_insert'; (Mysql5下区分)

● 事务:

- •Com_rollback, Com_commit, Com_begin,等
- Com_rollback+Com_commit=?
- 读写比率:
 - •(select + qcache_hits) / (insert+update+delete+replace)
 - ●QCACHE_hits:查询缓存被访问的次数。

一些关注项:通用情况

● 表缓存:opened_tables增量/time

- ●时间间隔建议为1h或24h
- ●Opened_tables:已经打开的表的数量。如果Opened_tables较大,table_cache 值可能太小。
- ●高峰期查看:variable:table_cache status:open_tables

● 线程缓存:threads_created增量/time

- ●Threads_created:创建用来处理连接的线程数。如果Threads_created较大,你可能要增加thread_cache_size值。
- ●高峰期查看: variable:thread_cache_size status:threads_cached

● 连接数: Connections

- variable:max_connections -status:max_used_connections
- variable:max connections status:threads connected

一些关注项:查询缓存

- 查询缓存命中率
 - •Qcache_hits/(Com_select+Qcache_hits)
 - Qcache_hits:查询缓存命中的次数

- 查询缓存删除速率
 - •Qcache_lowmem_prunes / time
 - ●Qcache_lowmem_prunes:由于内存较少从缓存删除的查询数量。
 - ●增大查询缓存值query_cache_size ,以减小lowmem,增加缓存命中率

一些关注项:存储引擎MyISAM

Key 缓存命中率

- 1 (key_reads / key_read_requests)
- ●Key_reads从硬盘读取键的数据块的次数
- key_read_requests从缓存读键的数据块的请求数
- ●命中率低则调大Key_buffer_size

MylSAM 连接锁比率

- table_locks_waited / table_locks_immediate
- <1% 佳, 1% 需引起注意, >3% 性能问题
- table_locks_waited:不能立即获得的表的锁的次数
- Table_locks_immediate:立即获得的表的锁的次数

一些关注项:存储引擎Innodb

Cache命中率:

- 1 (Innodb_buffer_pool_reads / Innodb_buffer_pool_read_requests)
- Innodb_buffer_pool_reads:不能满足InnoDB必须单页读取的缓冲池中的逻辑读数量。
- Innodb_buffer_pool_read_requests:InnoDB已经完成的逻辑读请求数。
- ●变量innodb_buffer_pool_size

InnoDB缓冲池

- ●Innodb_buffer_pool_wait_free:向InnoDB缓冲池写时,如果需要读或创建页,并且没有干净的页可用,则需等待页面清空的次数。
- 该值应小,否则需调大缓冲池innodb_buffer_pool_size大小。

日志

- ●Innodb_log_waits:因为日志缓冲区太小,必须等待清空的时间
- 此值尽量小,否则需调大innodb_log_file_size,

一些关注项:慢查询和临时表

- 慢查询率:Slow_queries/time
 - ●Slow_queries:查询时间超过long_query_time秒的查询的个数
 - ●select_full_join:没有使用索引的联接的数量。如果该值不为0,应仔细检查表的索引
 - ●配置项中开启慢查询日志以便优化: log-slow-queries = slow.log

- 临时表创建率
 - created_tmp_tables/time
- 写硬盘的临时表:
 - created_disk_tmp_tables / created_tmp_tables
 - ●tmp_table_size是否足够大? 临时表目录考虑用内存替代? 查询blob/text多吗?

同步监控

- Mysql > slave slave status\G
- 是否工作:
 - Slave_IO_running: YES
 - Slave_SQL_running: YES
- 延迟情况:
 - Seconds_behind_master
- 更新速率:
 - ●Read_Master_Log_Pos增量/sec, Exec_Master_Log_Pos增量/sec
- Binlog缓存:
 - binlog_cache_disk_use / binlog_cache_use
 - ●溢出后临时文件保存的事务数/二进制日志缓存的事务数
 - ●变量: binlog_cache_size
- 注:Log_Pos会hang住?数据导入期的同步监控屏蔽?

监控工具

- 分为交互式监控工具和非交互式监控工具
- 交互监控工具特性
 - ●实时的观察服务器状态
- 非交互式监控工具特性:
 - ●很多非交互式监控都不是专门为MySQL而单独设计的,而是多用途的
 - ●定期的检查系统状态值,对特定参数的衡量或预警,监控失败或是超过某安全值时报警或是触发某动作
 - ●持续性的自动记录和保留数据库状态,监控并在web端画图
 - ●在数据库越来越慢的时候,进行诊断,可以了解历史值以及以往的变化情况
 - ●好的监控会在灾难来临前给出警示,并帮助你确定问题关键所在

监控工具

- 交互性监控工具
 - •innotop:http://innotop.sourceforge.net
 - ●《High Performance MySQL Second Edition》作者之一
 - Mysqlreport: http://hackmysql.com/mysqlreport

- mtop:http://mtop.sourceforge.net
- mytop:http://jeremy.zawodny.com/mysql/mytop

非交互式监控工具

- Nagios:http://www.nagios.org
 - ●开源,定期检查并报警阈值
 - ●可做plug-in运行任何程序,有现成的mysql监控的外挂
 - ●缺点:有些复杂,不好管理
- Zabbix: http://www.zabbix.co
 - ●配置文件和数据都在数据库中
 - ●画图效果等都好于Nagios
 - ●更灵活且更容易配置

MySQL企业版监控

- ●企业版附带 不开源 收费
- ●优点是有很多预制的建议
- http://www.mysql.com/products/enterprise/advisors.html

非交互式监控工具

- Zenoss :http://www.zenoss.com
- Hyperic HQ http://www.hyperic.com
- OpenNMShttp://www.opennms.org
- Groundwork Open Source http://www.groundworkopensource.com
- MONyog http://www.webyog.com
- 基于RRDTool的监控系统
 - MRTG:http://oss.oetiker.ch/mrtg/
 - Munin:http://munin.projects.linpro.no
 - Cacti:http://www.cacti.net
 - Cricket:http://cricket.sourceforge.net
 - Ganglia:http://ganglia.sourceforge.net

Q&A?

http://www.mysqlmeg.cn

- 参考&推荐
 - ●《MySQL手册》
 - ●《深入浅出MySQL数据库开发、优化与管理维护》
 - ●《构建oracle高可用环境》
 - ●《SQL语言艺术》
 - 《Uderstanding MySQL Internals》
 - 《High Performance MySQL Second Edition》
 - 《Monitoring Mysql》
 - 《Expert MySQL》
- 联系方式: 吴诗展 Email:cnwsz#QQ.com blog:www.dbaview.cn

MySQL专家组介绍

MySQL专家组:

英文名称MySQL Expert Group,简称MEG。MEG是由知名MySQL DBA发起,各大互联网公司DBA、开发人员组成的MySQL组织;成员具有丰富的MySQL数据库开发、管理和优化经验,具备优秀的LAMP构架设计和规划能力。

组织的宗旨:

促进MySQL技术的交流和分享,提供企业MySQL培训;推广MySQL数据库的广泛使用,致力于为不同环境下的应用提供贴身全面的解决方案。

特邀顾问:

陈吉平(Piner.chen),淘宝网首席DBA,Oracle ACE,著有《构建Oracle 高可用环境》一书。Piner在大型高可用构架设计有着丰富的经验,并且能一直保持新技术的跟进

Email:mysqlmeg@mysqlmeg.cn

网站:http://mysqlmeg.cn