Projeto e Análise de Algoritmos Introdução

Antonio Luiz Basile

Faculdade de Computação e Informática Universidade Presbiteriana Mackenzie

February 19, 2018

Análise de Algoritmos

- Suponha que os computadores são infinitamente rápidos e de custo nenhum para memória.
- Será que ainda haveria algum motivo para estudar análise de algoritmos?
- A resposta é sim !
- Para demonstrar que sua solução termina e com a resposta certa.

Eficiência

- Algoritmos distintos para resolver o mesmo problema frequentemente diferem muito em eficiência.
- Estas diferenças podem ser muito mais significantes que diferenças de software e hardware.
- Por exemplo, para o problema de ordenação podemos comparar o insertion-sort com o mergesort.
- O primeiro demora tempo proporcional a n^2 .
- O segundo demora tempo proporcional a $n \log n$.

Exemplo Prático

- Suponha o computador A mais rápido rodando Insertion Sort e computador B mais lento rodando Mergesort.
- Suponha que estejam rodando sobre um vetor de 10 milhões de elementos.
- Suponha que o computador A execute 10 bilhões de operações por segundo e que o computador B execute 10 milhões de operações por segundo. Portanto o computador A é 1000 vezes mais rápido que o computador B.
- Suponha que o Insertion Sort escrito em A é o mais otimizado possível e que requeira apenas 2n² para ordenar n elementos. Por outro lado, suponha que um péssimo Mergesort esteja rodando em B e que demore 50n lg n instruções.
- O computador A demorará 5,5 horas e o computador B menos de 20 minutos (\sim 17 vezes mais rápido).

Problema de ordenação: Formalismo

- **Entrada:** Uma sequência de *n* números $< a_1, a_2, \cdots, a_n >$
- Saída: Uma permutação < $a_1^{'},$ $a_2^{'},$ \cdots , $a_n^{'}$ > da sequência de entrada tal que < $a_1^{'}$ \leq $a_2^{'}$ \leq \cdots \leq $a_n^{'}$ >

Insertion Sort (análogo ao jogo de cartas)

- Inicialmente não temos nenhuma carta na mão e todas as cartas viradas na mesa.
- A cada passo removemos uma carta por vez da mesa e a inserimos em sua posição correta entre as cartas que estão na mão.
- Para encontrar a posição correta de uma carta, comparamos esta carta com cada carta que já está na mão, da direita para a esquerda.
- Observe que durante todo o tempo as cartas que estão na mão estão ordenadas.

Figure: Jogo de cartas (from: CLR)

Insertion Sort

```
ORDENAÇÃO-POR-INSERÇÃO (A, n)

1 para j crescendo de 2 até n faça

2 x \leftarrow A[j]

3 i \leftarrow j-1

4 enquanto i > 0 e A[i] > x faça

5 A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow x
```

Figure: Insertion Sort (Feofiloff / CLR)

Insertion Sort

Figure: Insertion Sort (CLR)

Correção

Para sabermos se um algoritmo é correto, ou seja, se faz o que promete, usamos **invariantes de laço** para nos ajudar. Precisamos mostrar 3 pontos sobre invariantes de laço:

- Inicialização: É verdadeiro antes da primeira iteração do laço.
- Manutenção: Se é verdadeiro antes de uma iteração do laço, permanece verdadeiro antes da próxima iteração.
- **Término:** Quando o laço termina, o invariante nos dá uma propriedade útil que nos ajuda a mostrar que o algoritmo é correto.

Observe como o método acima é similar à indução matemática.

Insertion Sort - Correção

- **1 Inicialização:** Iniciamos mostrando que o invariante de laço vale antes da primeira iteração, quando j=2. O subvetor $A[1\cdots j-1]$, portanto, consiste de apenas um elemento A[1], trivialmente ordenado.
- Manutenção: Em seguida mostramos que cada iteração mantém o invariante de laço. Informalmente, o corpo do laço for trabalha movendo A[j-1], A[j-2], A[j-3], etc. uma posição para a direita até encontrar a posição correta para A[j]. O subvetor A[i..j] então consiste dos elementos originais em A[i..j], porém ordenados. Incrementando j para o próximo laço for preserva, então, o invariante de laço.
- **3 Término:** A condição que termina o laço **for** é j=n+1. O subvetor A[1..n] consiste dos elementos originais, mas ordenados. Como A[1..n] é o vetor inteiro, concluímos que o vetor todo está ordenado. Logo, o algoritmo é correto.

Insertion Sort - Análise

Analise o código abaixo.

Ordenação-Por-Inserção (A, n)		
1	para <i>j</i> crescendo de 2 até <i>n</i> faça	
2	$x \leftarrow A[j]$	
3	<i>i</i> ← <i>j</i> −1	
4	enquanto $i > 0$ e $A[i] > x$ faça	
5	$A[i+1] \leftarrow A[i]$	
6	<i>i</i> ← <i>i</i> −1	
7	$A[i+1] \leftarrow x$	

Quanto tempo o programa acima consome em número de operações?

Insertion Sort - Análise

Em geral, o tempo que leva um algoritmo cresce com o tamanho da entrada, logo é comum descrever o tempo do programa em função do tamanho de sua entrada.

Ordenação-Por-Inserção
$$(A, n)$$

1 para j crescendo de 2 até n faça n

2 $x \leftarrow A[j]$ $n-1$

3 $i \leftarrow j-1$ $n-1$

4 enquanto $i > 0$ e $A[i] > x$ faça $2+3+...+n$

5 $A[i+1] \leftarrow A[i]$ $1+2+3+...+n-1$

6 $i \leftarrow i-1$ $1+2+3+...+n-1$

7 $A[i+1] \leftarrow x$ $n-1$
 $T(n) = (3/2)n^2 + (7/2)n - 4$.

Figure: Insertion Sort (Feofiloff / CLR)

Insertion Sort - Análise

$$T(n) = (3/2)n^2 + (7/2)n - 4.$$

- A expressão de T(n) é da forma $an^2 + bn + c$.
- O coeficiente 3/2 de n^2 não é importante, pois não depende do algoritmo, mas de nossa hipótese 1 unidade de tempo por linha.
- Já o n² é fundamental, pois caracteriza o algoritmo em si e não depende nem do computador nem dos detalhes de implementação do algoritmo.
- Dizemos que o algoritmo é quadrático.

Intercalação

Problema: Dados A[p..q] e A[q+1..r] crescentes, rearranjar A[p..r] de modo que ele fique em ordem crescente.

Entra:

Sai:

Figure: Intercala (Coelho)

Intercalação

```
INTERCALA (A, p, q, r)
00
       \triangleright B[\mathbf{p} \dots \mathbf{r}] é um vetor auxiliar
01
     para i \leftarrow p até q faça
02
              B[i] \leftarrow A[i]
03
     para j \leftarrow q + 1 até r faça
04
              B[r+q+1-i] \leftarrow A[i]
05
       i \leftarrow p
06
       i \leftarrow r
07
       para k \leftarrow p até r faça
80
              se B[i] \leq B[j]
09
                     então A[k] \leftarrow B[i]
10
                               i \leftarrow i + 1
11
                     senão A[k] \leftarrow B[j]
12
                                i \leftarrow i - 1
```

Figure: Intercala (Coelho)

Intercalação

Se a execução de cada linha de código consome 1 unidade de tempo o consumo total será:

linha	todas as execuções da linha
1	?
2	?
3	?
4	?
5	?
6	?
7	?
8	?
9–12	?
total	?

Figure: Intercala (Coelho)