Wydział	Dzien/godzina	Nr. zespołu	
EiTI	Wtorek 8.15-11.00	2	
	Data: 08.11.2011		
Nazwisko i Imię	Ocena z przygotowania	Ocena ze sprawozdania	Ocena
1. Król Jakub			
2. Obszański Grzegorz			
3. Zawiśla Mateusz			
Prowadzący		Podpis prowadzącego	
Jarosław Suszek:			

1 Wstęp teoretyczny

1.1 Hallotron

Hallotron, to cienka warstwa półprzewodnika naparowana na nieprzewodzące podłoże. Jej wymiary:

- $\bullet \ d$ grubość naparowanej warstwy
- $\bullet \ c$ długość naparowanej warstwy
- $\bullet \ l$ szerokość naparowanej warstwy

1.2 Efekt Halla

Jeżeli hallotron włączymy w obwód prądu stałego o natężeniu I_s (prąd sterujący) i umieścimy w polu magnetycznym, o indukcji B, to między punktami na bocznych powierzchniach płytki wytworzy się różnica potencjałów U_H , zwana napięciem Halla.

1.3 Wyjaśnienie efektu

Na ładunek elektryczny q poruszający się z prędkością v w tym polu magnetycznym działa siła Lorentza F_L :

$$\vec{F_L} = q\vec{v} \times \vec{B} \tag{1}$$

ze wzoru 1 wynika, że siła F_L jest prostopadła do obu wektorów. Siła Lorentza działająca na elektrony zakłóca ich ruch wzdłuż linii pola elektrycznego. Nośniki te odchylają się w kierunku działania siły Lorentza. Gromadzą się do momentu, kiedy działanie ich pola elektrycznego równoważy siłę Lorentza. Wspomniane pole elektryczne działa na ładunki nośników prądu I_s siłą

$$F_E = \frac{qU_h}{c} \tag{2}$$

Zatem w/w moment, następuje gdy $F_E = F_L$

$$\frac{qU_H}{c} = qvB \tag{3}$$

 Stad

$$U_H = vcd (4)$$

Niech n będzie liczbą nośników prądu a e ładunkiem elementarnym nośnika prądu. Z definicji natężenia prądu:

$$I_{s} = \frac{Q}{t}$$

$$Q = nVe = ncdle$$
(5)

$$I_s = \frac{ncdle}{t} = ncdev \tag{6}$$

$$v = \frac{I_s}{ncde} \tag{7}$$

Wstawiając wyliczone v do wzoru 4 otrzymujemy

$$U_H = \frac{BI_s}{ned} \tag{8}$$

Z prawa Ohma:

$$v = \mu \frac{U}{I} \tag{9}$$

Gdzie μ - ruchliwość nośników prądu, U - spadek napięcia wzdłuż hallotronu

Po wstawieniu do wzoru 6 dostajemy

$$I_s = ne\left(\mu \frac{U}{I}\right)dc\tag{10}$$

Dzięki pomiarowi napięcia Halla jesteśmy w stanie wyznaczyć koncentrację nośników oraz ich ruchliwość. Ze wzorów 8 i 10 wyprowadzamy ich zależności od łatwo mierzalnych wielkości.

$$n = \frac{I_s B}{e d U_H} \tag{11}$$

$$\mu = \frac{U_H I}{UcB} \tag{12}$$

$$R_H = \frac{I}{ne\mu cd} \tag{13}$$

2 Wykaz przyrządów i schemat pomiarowy

2.1 Wykaz przyrządów

- $\bullet\,$ Hallotron wymiary
 - $-d=0,2\mu m$
 - $-l = 40 \mu m$
 - $-c = 150 \mu m$
- \bullet elektromagnes
- zasilacz elektromagnesu i zasilacz stabilizowany
- 3 woltomierze i amperomierz (multimetry cyfrowe)
- ullet adapter hallotronu

2.2 Schemat pomiarowy

3 Prezentacja wyników pomiarów

N	$U_H[V]$	$u(U_H)$	U[V]	u(U)	$I_s[mA]$	$u(I_s)$	$U_{100\Omega}[V]$	$u(U_{100\Omega})$
1	0,0010	0,0010	0,0158	0,0012	0,0400	0,0015		
2	0,0075	0,0011	0,1229	0,0025	0,3200	0,0048		
3	0,0141	0,0012	0,2310	0,0038	0,6100	0,0083		
4	0,0176	0,0012	0,2860	0,0044	0,7600	0,0101		
5	0,0227	0,0013	0,3690	0,0054	0,9800	0,0128		
6	0,0279	0,0013	0,4560	0,0065	1,2100	0,0155		
7	0,0325	0,0014	0,5300	0,0074	1,4100	0,0179		
8	0,0375	0,0015	0,6110	0,0083	1,6400	0,0207		
9	0,0423	0,0015	0,6910	0,0093	1,8600	0,0233		
10	0,0473	0,0016	0,7720	0,0103	2,0900	0,0261		
11	0,0520	0,0016	0,8490	0,0112	2,3100	0,0287		
12	0,0567	0,0017	0,9260	0,0121	2,5300	0,0314		
13	0,0612	0,0017	1,0000	0,0130	2,7500	0,0340		
14	0,0659	0,0018	1,0700	0,0138	2,9800	0,0368		
15	0,0703	0,0018	1,1400	0,0147	3,2000	0,0394	0,3130	0,0048
16	0,0745	0,0019	1,2100	0,0155	3,4200	0,0420		
17	0,0790	0,0019	1,2900	0,0165	3,6500	0,0448		
18	0,0830	0,0020	1,3600	0,0173	3,8700	0,0474		
19	0,0870	0,0020	1,4200	0,0180	4,0900	0,0501		
20	0,0909	0,0021	1,4800	0,0188	4,3100	0,0527		
21	0,0946	0,0021	1,5500	0,0196	4,5300	0,0554		
22	0,0986	0,0022	1,6100	0,0203	4,7600	0,0581		
23	0,1021	0,0022	1,6700	0,0210	4,9800	0,0608		
24	0,1056	0,0023	1,7300	0,0218	5,2100	0,0635		
25	0,1090	0,0023	1,7900	0,0225	5,4300	0,0662		
26	0,1123	0,0023	1,8400	0,0231	5,6600	0,0689		
27	0,1155	0,0024	1,9000	0,0238	5,8800	0,0716		
28	0,1185	0,0024	1,9500	0,0244	6,1100	0,0743		
29	0,1216	0,0025	2,0000	0,0250	6,3300	0,0770		
30	0,1246	0,0025	2,0500	0,0256	6,5600	0,0797		

Tabela 1: Dla I = 0, 1A, B = 0, 0125T

N	$U_H[V]$	$u(U_H)$	U[V]	u(U)	$I_s[mA]$	$u(I_s)$	$U_{100\Omega}[V]$	$u(U_{100\Omega})$
1	0,0023	0,0010	0,0160	0,0012	0,0400	0,0015		
2	0,0181	0,0012	0,1230	0,0025	0,3150	0,0048		
3	0,0348	0,0014	0,2380	0,0039	0,6130	0,0084		
4	0,0435	0,0015	0,2980	0,0046	0,7680	0,0102		
5	0,0553	0,0017	0,3770	0,0055	0,9750	0,0127		
6	0,0680	0,0018	0,4660	0,0066	1,2080	0,0155		
7	0,0796	0,0020	0,5460	0,0076	1,4180	0,0180		
8	0,0922	0,0021	0,6310	0,0086	1,6450	0,0207		
9	0,1037	0,0022	0,7100	0,0095	1,8590	0,0233		
10	0,1156	0,0024	0,7930	0,0105	2,0900	0,0261		
11	0,1270	0,0025	0,8720	0,0115	2,3100	0,0287		
12	0,1386	0,0027	0,9510	0,0124	2,5300	0,0314		
13	0,1496	0,0028	1,0280	0,0133	2,7500	0,0340		
14	0,1610	0,0029	1,1080	0,0143	2,9800	0,0368		
15	0,1714	0,0031	1,1800	0,0152	3,2000	0,0394	0,3140	0,0048
16	0,1816	0,0032	1,2490	0,0160	3,4200	0,0420		
17	0,1922	0,0033	1,3250	0,0169	3,6500	0,0448		
18	0,2010	0,0034	1,3910	0,0177	3,8600	0,0473		
19	0,2120	0,0035	1,4650	0,0186	4,1000	0,0502		
20	0,2220	0,0037	1,5310	0,0194	4,3200	0,0528		
21	0,2300	0,0038	1,5900	0,0201	4,5400	0,0555		
22	0,2390	0,0039	1,6530	0,0208	4,7600	0,0581		
23	0,2470	0,0040	1,7180	0,0216	4,9900	0,0609		
24	0,2550	0,0041	1,7740	0,0223	5,2000	0,0634		
25	0,2650	0,0042	1,8400	0,0231	5,4400	0,0663		
26	0,2710	0,0043	1,8890	0,0237	5,6500	0,0688		
27	0,2810	0,0044	1,9450	0,0243	5,8800	0,0716		
28	0,2880	0,0045	2,0000	0,0250	6,1100	0,0743		
29	0,2960	0,0046	2,0500	0,0256	6,3400	0,0771		
30	0,3020	0,0046	2,1000	0,0262	6,5500	0,0796		

Tabela 2: Dla $I=0,2A,\,B=0,025T$

N	$U_H[V]$	$u(U_H)$	U[V]	u(U)	$I_s[mA]$	$u(I_s)$	$U_{100\Omega}[V]$	$u(U_{100\Omega})$
1	0,0037	0,0010	0,0179	0,0012	0,0440	0,0015		
2	0,0281	0,0013	0,1345	0,0026	0,3320	0,0050		
3	0,0517	0,0016	0,2460	0,0040	0,6100	0,0083		
4	0,0650	0,0018	0,3050	0,0047	0,7560	0,0101		
5	0,0828	0,0020	0,3930	0,0057	0,9770	0,0127		
6	0,1017	0,0022	0,4840	0,0068	1,2050	0,0155		
7	0,1193	0,0024	0,5680	0,0078	1,4200	0,0180		
8	0,1370	0,0026	0,6520	0,0088	1,6420	0,0207		
9	0,1548	0,0029	0,7400	0,0099	1,8640	0,0234		
10	0,1734	0,0031	0,8280	0,0109	2,1000	0,0262		
11	0,1898	0,0033	0,9050	0,0119	2,3000	0,0286		
12	0,2070	0,0035	0,9890	0,0129	2,5300	0,0314		
13	0,2240	0,0037	1,0680	0,0138	2,7500	0,0340		
14	0,2410	0,0039	1,1470	0,0148	2,9800	0,0368		
15	0,2560	0,0041	1,2230	0,0157	3,1900	0,0393	0,3130	0,0048
16	0,2710	0,0043	1,2990	0,0166	3,4300	0,0422		
17	0,2870	0,0044	1,3690	0,0174	3,6400	0,0447		
18	0,3020	0,0046	1,4450	0,0183	3,8700	0,0474		
19	0,3170	0,0048	1,5130	0,0192	4,0800	0,0500		
20	0,3310	0,0050	1,5830	0,0200	4,3200	0,0528		
21	0,3440	0,0051	1,6480	0,0208	4,5400	0,0555		
22	0,3570	0,0053	1,7170	0,0216	4,7700	0,0582		
23	0,3700	0,0054	1,7750	0,0223	4,9700	0,0606		
24	0,3830	0,0056	1,8350	0,0230	5,2000	0,0634		
25	0,3960	0,0058	1,8990	0,0238	5,4300	0,0662		
26	0,4080	0,0059	1,9570	0,0245	5,6600	0,0689		
27	0,4180	0,0060	2,0100	0,0251	5,8900	0,0717		
28	0,4290	0,0061	2,0600	0,0257	6,1100	0,0743		
29	0,4390	0,0063	2,1200	0,0264	6,3400	0,0771		
30	0,4500	0,0064	2,1700	0,0270	6,5700	0,0798		

Tabela 3: Dla $I=0,3A,\,B=0,04T$

N	$U_H[V]$	$u(U_H)$	U[V]	u(U)	$I_s[mA]$	$u(I_s)$	$U_{100\Omega}[V]$	$u(U_{100\Omega})$
1	0,0048	0,0011	0,0178	0,0012	0,0420	0,0015		
2	0,0385	0,0015	0,1435	0,0027	0,3360	0,0050		
3	0,0697	0,0018	0,2600	0,0041	0,6100	0,0083		
4	0,0863	0,0020	0,3210	0,0049	0,7560	0,0101		
5	0,1109	0,0023	0,4130	0,0060	0,9750	0,0127		
6	0,1358	0,0026	0,5060	0,0071	1,1980	0,0154		
7	0,1632	0,0030	0,5980	0,0082	1,4190	0,0180		
8	0,1857	0,0032	0,6930	0,0093	1,6510	0,0208		
9	0,2080	0,0035	0,7770	0,0103	1,8610	0,0233		
10	0,2320	0,0038	0,8650	0,0114	2,0800	0,0260		
11	0,2570	0,0041	0,9580	0,0125	2,3200	0,0288		
12	0,2780	0,0043	1,0380	0,0135	2,5300	0,0314		
13	0,3000	0,0046	1,1200	0,0144	2,7400	0,0339		
14	0,3220	0,0049	1,2030	0,0154	2,9700	0,0366		
15	0,3440	0,0051	1,2850	0,0164	3,2000	0,0394	0,3140	0,0048
16	0,3640	0,0054	1,3620	0,0173	3,4200	0,0420		
17	0,3850	0,0056	1,4380	0,0183	3,6400	0,0447		
18	0,4040	0,0058	1,5110	0,0191	3,8600	0,0473		
19	0,4240	0,0061	1,5860	0,0200	4,0900	0,0501		
20	0,4460	0,0064	1,6570	0,0209	4,3100	0,0527		
21	0,4620	0,0065	1,7260	0,0217	4,5300	0,0554		
22	0,4800	0,0068	1,7960	0,0226	4,7600	0,0581		
23	0,4960	0,0070	1,8580	0,0233	4,9700	0,0606		
24	0,5130	0,0072	1,9240	0,0241	5,2100	0,0635		
25	0,5280	0,0073	1,9810	0,0248	5,4200	0,0660		
26	0,5440	0,0075	2,0400	0,0255	5,6500	0,0688		
27	0,5580	0,0077	2,1000	0,0262	5,8800	0,0716		
28	0,5740	0,0079	2,1500	0,0268	6,1000	0,0742		
29	0,5870	0,0080	2,2100	0,0275	6,3200	0,0768		
30	0,6000	0,0082	2,2600	0,0281	6,5500	0,0796		

Tabela 4: Dla $I=0,4A,\,B=0,05T$

4 Obliczenia i wykresy

Obliczeń dokonaliśmy metodą najmniejszych kwadratów. Wykresy sporządzone za pomocą tych obliczeń znajdują się poniżej. Niepewność miernika liczyliśmy według wzoru

$$1,2\% \cdot \operatorname{wartość} + 0,001[V] \tag{14}$$

 R_h liczyliśmy dwoma sposobami: z proporcji

$$R_h = \frac{U \cdot 100\Omega}{U_{w100\Omega}} \tag{15}$$

i ze wzoru 13. Wartości policzone dwoma sposobami dla każdego podpunktu są do siebie zbliżone.

4.1 $I_m = 0, 1 \Rightarrow B = 0,0125$

$$n = \frac{51,997 \cdot 10^{-3} \cdot 0,0125T}{0,2\mu m \cdot 1,602 \cdot 10^{-19}C} = 2,029(0,032) \cdot 10^{22} [\mu^{-1}]$$
(16)

$$\mu = \frac{0,0609 \cdot 0,1A}{40 \cdot 10^{-6}m \cdot 0,0125T} = 12180(19) \frac{A}{mT}$$
 (17)

Z proporcji

$$R_h = \frac{1,14V * 100\Omega}{0,313V} = 364,22(3,38)\Omega \tag{18}$$

$$R_h = \frac{l}{ne\mu cd} \tag{19}$$

$$R_h = \frac{0.1}{2,029 \cdot 10^{22} \cdot 1,602 \cdot 10^{-19} \cdot 12180 \cdot 40 \cdot 0, 2 \cdot 10^{-12}} = 315,73(2,96)\Omega$$
 (20)

$$u(R_H) = \sqrt{\left(\frac{\delta f(n,\mu)}{\delta n}\right)^2 u^2(n) + \left(\frac{\delta f(n,\mu)}{\delta \mu}\right)^2 u^2(\mu)}$$
 (21)

Rysunek 1: Wykres $U_H(I_S)$ dla $I_m = 0, 1$

Rysunek 2: Wykres $U_H(U)$ dla $I_m=0,1$

4.2 $I_m = 0, 2 \Rightarrow B = 0,025$

$$n = 1,675(0,027) \cdot 10^{22} [\mu^{-1}]$$
 (22)

$$\mu = 28720(42) \frac{A}{mT} \tag{23}$$

Z proporcji:

$$R_h = 375, 80(3, 52)\Omega \tag{24}$$

$$R_h = 324, 3981(3,06)\Omega \tag{25}$$

Rysunek 3: Wykres $U_H(I_S)$ dla $I_m=0,2$

4.3 $I_m = 0, 3 \Rightarrow B = 0,04T$

$$n = 1,796(0,023) \cdot 10^{22} [\mu^{-1}]$$
 (26)

$$\mu = 38925(51)\frac{A}{mT} \tag{27}$$

Z proporcji:

$$R_h = 390, 73(3, 66)\Omega \tag{28}$$

$$R_h = 334,8373(3,12)\Omega \tag{29}$$

Rysunek 5: Wykres $U_H(I_S)$ dla $I_m = 0, 3$

Rysunek 6: Wykres $U_H(U)$ dla $I_m=0,3$

4.4 $I_m = 0, 4 \Rightarrow B = 0, 05$

$$n = 1,678(0,024) \cdot 10^{22} [\mu^{-1}] \tag{30}$$

$$\mu = 53194(73) \frac{A}{mT} \tag{31}$$

Z proporcji:

$$R_h = 409, 24(4,02)\Omega \tag{32}$$

$$R_h = 349,6656(3,21)\Omega \tag{33}$$

Rysunek 7: Wykres $U_H(I_S)$ dla $I_m = 0, 4$

Rysunek 8: Wykres $U_H(U)$ dla $I_m = 0, 4$

5 Wnioski

W ćwiczeniu zapoznaliśmy się ze zjawiskiem efektu Halla. Zgodnie z przewidywaniami teoretycznymi, napięcie Halla U_H w naszych pomiarach jest proporcjonalne do wielkości indukcji magnetycznej oraz natężenia prądu sterującego.

Wyznaczona przez nas koncentracja elektronów swobodnych n=wstawic daje nam możliwość ustalenia właściwości elektrycznych metalu, z którego wykonana została płytka hallotronu. Zajęcia laboratoryjne dały nam odpowiedź na pytnie o powód tak szerokiego zastosowania hallotronu w praktyce.

Przeprowadzone ćwiczenia potwierdziły liniowość zależności (wykresy niemalże liniowe), a więc zgodność z założeniami teoretycznymi.