Module-04, Python for Machine Learning Classification Algorithms (Logistic Regression)

Dostdar Ali Instructor

Data science and Artificial Intelligence
3-Months Course
at
Karakaroum international University

January 31, 2024

Table of Contents

1 Logistic Regression

Mathematical Formulation

Model Evaluating accuracy

4 Python code for Logistic Regression

Logistic Regression

Definition

Logistic Regression is a statistical method used for binary classification. It models the probability of a binary outcome.

- We want to learn about Logistic Regression as a method for Classification.
- Some examples of classification problems,
 Spam versus "Ham" emails
 Loan Default (yes/no)
 Disease Diagnosis
- Above were all examples of Binary Classification

Logistic Regression

Definition

Logistic Regression is a statistical method used for binary classification. It models the probability of a binary outcome.

- We want to learn about Logistic Regression as a method for Classification.
- Some examples of classification problems,
 Spam versus "Ham" emails
 Loan Default (yes/no)
 Disease Diagnosis
- Above were all examples of Binary Classification

Logistic Regression

Definition

Logistic Regression is a statistical method used for binary classification. It models the probability of a binary outcome.

- We want to learn about Logistic Regression as a method for Classification.
- Some examples of classification problems,
 Spam versus "Ham" emails
 Loan Default (yes/no)
 Disease Diagnosis
- Above were all examples of Binary Classification

Sigmoid Function

Definition

The Sigmoid Function takes in any value and outputs it to be between 0 and 1.

Mathematical Formulation

• Mathematical Formulation:

$$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$
(1)

- History: Originated in statistics, widely used in economics. Applied to machine learning for binary classification tasks.
- Working Principle: Fits a logistic curve to the data, mapping input features to probabilities. A threshold is applied for classification.

Mathematical Formulation

Mathematical Formulation:

$$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$
(1)

- History: Originated in statistics, widely used in economics. Applied to machine learning for binary classification tasks.
- Working Principle: Fits a logistic curve to the data, mapping input features to probabilities. A threshold is applied for classification.

Mathematical Formulation

• Mathematical Formulation:

$$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$
(1)

- History: Originated in statistics, widely used in economics. Applied to machine learning for binary classification tasks.
- Working Principle: Fits a logistic curve to the data, mapping input features to probabilities. A threshold is applied for classification.

- Problem: Predict whether an email is spam or not.
- Mathematical Formulation:

$$P(Y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_n \cdot X_n)}}$$

• Parameters:

$$P(Y=1)$$
: Probability of email being spam X_1, X_2, \ldots, X_n : Features of the email $\beta_0, \beta_1, \ldots, \beta_n$: Model coefficients

 Training: Adjust coefficients using training data to maximize likelihood.

- Problem: Predict whether an email is spam or not.
- Mathematical Formulation:

$$P(Y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + ... + \beta_n \cdot X_n)}}$$

• Parameters:

$$P(Y=1)$$
: Probability of email being spam X_1, X_2, \ldots, X_n : Features of the email $\beta_0, \beta_1, \ldots, \beta_n$: Model coefficients

 Training: Adjust coefficients using training data to maximize likelihood.

- Problem: Predict whether an email is spam or not.
- Mathematical Formulation:

$$P(Y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + ... + \beta_n \cdot X_n)}}$$

Parameters:

$$P(Y=1)$$
: Probability of email being spam X_1, X_2, \ldots, X_n : Features of the email $\beta_0, \beta_1, \ldots, \beta_n$: Model coefficients

 Training: Adjust coefficients using training data to maximize likelihood.

- **Problem:** Predict whether an email is spam or not.
- Mathematical Formulation:

$$P(Y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + ... + \beta_n \cdot X_n)}}$$

Parameters:

$$P(Y=1)$$
: Probability of email being spam X_1, X_2, \ldots, X_n : Features of the email $\beta_0, \beta_1, \ldots, \beta_n$: Model coefficients

• **Training:** Adjust coefficients using training data to maximize likelihood.

• Example:

- $\beta_0 = -5$
- $\beta_1 = 0.1$ (positive coefficient for the presence of a certain word)
- $\beta_2 = 0.2$ (negative coefficient for the absence of another word)
- Prediction:

$$P(Y=1) = \frac{1}{1 + e^{-(\cdots)}}$$

If P(Y = 1) > 0.5, classify as spam.

• Example:

- $\beta_0 = -5$
- $\beta_1 = 0.1$ (positive coefficient for the presence of a certain word)
- $\beta_2 = 0.2$ (negative coefficient for the absence of another word)

• Prediction:

$$P(Y=1) = \frac{1}{1 + e^{-(...)}}$$

If P(Y = 1) > 0.5, classify as spam.

• **Problem:** Predict whether a student passes (y = 1) or fails (y = 0) based on the number of hours studied.

• Data:

Hours Studied	Pass (1) / Fail (0)
2	
3	
4	
5	1
6	1

• Model:

$$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot \text{Hours Studied})}}$$

- Parameters: $\beta_0 = 0.5, \beta_1 = 0.4$
- Prediction:

$$P(Y=1) = \frac{1}{1 + e^{-(-0.5 + 0.4 \cdot \text{Hours Studied})}}$$

• **Problem:** Predict whether a student passes (y = 1) or fails (y = 0) based on the number of hours studied.

Data:

Hours Studied	Pass (1) / Fail (0)
2	0
3	0
4	0
5	1
6	1

• Model:

$$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot \text{Hours Studied})}}$$

- Parameters: $\beta_0 = 0.5, \beta_1 = 0.4$
- Prediction:

$$P(Y=1) = \frac{1}{1 + e^{-(-0.5 + 0.4 \cdot \text{Hours Studied})}}$$

• **Problem:** Predict whether a student passes (y = 1) or fails (y = 0) based on the number of hours studied.

Data:

Hours Studied	Pass (1) / Fail (0)
2	0
3	0
4	0
5	1
6	1

Model:

$$P(Y=1) = rac{1}{1 + e^{-(eta_0 + eta_1 \cdot \mathsf{Hours} \; \mathsf{Studied})}}$$

- Parameters: $\beta_0 = 0.5, \beta_1 = 0.4$
- Prediction:

$$P(Y=1) = \frac{1}{1 + e^{-(-0.5 + 0.4 \cdot \text{Hours Studied})}}$$

• **Problem:** Predict whether a student passes (y = 1) or fails (y = 0) based on the number of hours studied.

Data:

Hours Studied	Pass (1) / Fail (0)	
2	0	
3	0	
4	0	
5	1	
6	1	

• Model:

$$P(Y=1) = rac{1}{1 + e^{-(eta_0 + eta_1 \cdot \mathsf{Hours\ Studied})}}$$

- Parameters: $\beta_0 = 0.5, \beta_1 = 0.4$
- Prediction:

$$P(Y=1) = \frac{1}{1 + e^{-(-0.5 + 0.4 \cdot \text{Hours Studied})}}$$

• **Problem:** Predict whether a student passes (y = 1) or fails (y = 0) based on the number of hours studied.

Data:

Hours Studied	Pass (1) / Fail (0)	
2	0	
3	0	
4	0	
5	1	
6	1	

Model:

$$P(Y=1) = rac{1}{1 + e^{-(eta_0 + eta_1 \cdot \mathsf{Hours} \; \mathsf{Studied})}}$$

- Parameters: $\beta_0 = 0.5, \beta_1 = 0.4$
- Prediction:

- After we train a logistic regression model on some training data, we will evaluate our model's performance on some test data.
- We can use a confusion matrix to evaluate classification models.
- We can use a confusion matrix to evaluate our model.
- For example, imagine testing for disease
- Example:

```
Test for presence of disease
```

$$NO = negative test = False = 0$$

$$YES = positive test = True = 1.$$

- After we train a logistic regression model on some training data, we will evaluate our model's performance on some test data.
- We can use a confusion matrix to evaluate classification models.
- We can use a confusion matrix to evaluate our model.
- For example, imagine testing for disease
- Example:

```
Test for presence of disease
```

$$NO = negative test = False = 0$$

$$YES = positive test = True = 1.$$

- After we train a logistic regression model on some training data, we will evaluate our model's performance on some test data.
- We can use a confusion matrix to evaluate classification models.
- We can use a confusion matrix to evaluate our model.
- For example, imagine testing for disease
- Example:

```
Test for presence of disease
```

$$NO = negative test = False = 0$$

$$YES = positive test = True = 1.$$

- After we train a logistic regression model on some training data, we will evaluate our model's performance on some test data.
- We can use a confusion matrix to evaluate classification models.
- We can use a confusion matrix to evaluate our model.
- For example, imagine testing for disease
- Example:

```
Test for presence of disease

NO = negative test = False = 0

YES = positive test = True = 1.
```


- After we train a logistic regression model on some training data, we will evaluate our model's performance on some test data.
- We can use a confusion matrix to evaluate classification models.
- We can use a confusion matrix to evaluate our model.
- For example, imagine testing for disease
- Example:

```
Test for presence of disease
```

$$NO = negative test = False = 0$$

$$YES = positive test = True = 1.$$

Confusion Matrix

Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Python Code: Logistic Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Assuming 'X' is feature matrix and 'y' is target variations.
X_train, X_test, y_train, y_test = train_test_split(X, y
# Creating and training the model
model = LogisticRegression()
model.fit(X_train, y_train)
# Making predictions
predictions = model.predict(X_test)
# Evaluating accuracy
accuracy = accuracy_score(y_test, predictions)
```


Great Job Thank yo

