Note T	Cache mapping schemes
	Necall from last time, have heirarchy of nemony andlar storage
	Necall from last time, have heirarchy of nemony and ar storage types:
	types: Small, fast storage large, slower storage
	For simplicity, consider just 2 levels. Call them "upper" and "lower".
	The storage is divided who fixed-size blocks. (e.g. might have I KB or 4KB blocks).
	frey fine a block on the lover level is accessed (i.e. read or written), a copy of that block is stored somewhere in the upper level. When access to a block is requested, the upper level is searched first.) we say it is "cached"
	block is stored somewhere in the upper level.
	When access to a block is requested, the upper lovel is
	searched first.) we say it is "cacheel"
	Why do this? Because of locality: after a given byte is accessed, it's likely that other nearby bytes will also be accessed soon - so store them on the upper level where we can get them quickly.
	be accessed soon - so store them on the upper level
	where we can get them quidely.
	More specifically, there are three types of locality:
	spatial: nearby bytes are often accessed together
	temporal: a given byte is often accessed repeatedly in a short time sequence:
	in a shot line
	sequential: bytes are often accessed in sequence.

To implement caching, we need to answer two questions:
(A) When copying a block from lower to upper level, where do we put it?
(B) When looking for a copy of a lover level block in the upper level, how do we know if it is there?

exception: fully accountive does uniquely identify Slocky

but not uniquely rellectify:
Tog is first few bits
Tog of block address

We examine 3 possible answers: direct mapped, fully associative and N-way set associative.

In all schomes, the system uses a tag to identify each lower-level block, and the upper level stores a valid bit for each block to tell us if data is valid.

Summary of the 3 Strategies:

	where do	how do ne know it it's thee?
direct mapper	in the block given by the block field	chelle tag ih relevant block
fully associative	anywherex	special hardware finds the block it it's there
N-way set associative tag set word	grywheret in the set given by the set field	set field determines the set; special hardware finds tag if it's in that set

If no space left, need to evict a black from the cache Use an eviction strategy to choose a victim for eviction. Least recently used (LRU) is one possible eviction

	strategy - but LRU is too expensive to implement in practice, so approximate LRU algorithms are used
	instead.
	See hardout for worked examples of each scheme.
_	Thre are too different strategies for hardling winter:
	- write through: He change is written in both upper and lower levels.
	- write back: the charge is written in upper level only; block is maked diffy. When a diffy block is existed, it is first copied back
	to the lower level.
<u> </u>	Modern processors often have 2 separate caches: one for dota and one for instructions.
	Note: we can now explain the 2D aray paradox from the first lecture in this course:
	Sequential access to memory is faster than staggered access, because sequential has a higher hit rate.