1 Linearkombination

Drücken Sie das Polynom $a=x^2-4x-3$ als Linearkombination der Vektoren $a_1=x^2-2x+5, a_2=2x^2-3x, a_3=x+1$ aus.

2 Matrizenrechnung

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 6 \\ 0 & 3 & 5 \\ 1 & 0 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

- a) Überprüfen Sie die Invertierbarkeit der Matrizen A, B und C
- b) Bestimmen Sie die transponierte Matrix A^T
- c) Invertieren Sie die Matrix B zu B^{-1} und die Matrix C zu C^{-1}
- d) Bestimmen Sie das Matrixprodukt A · B

3 Darstellungsmatrix

Sei $F = span_{\mathbb{R}}(cos, e, 1)$, wobei

$$cos : \mathbb{R} \to \mathbb{R}, x \mapsto cos(x),$$

 $e : \mathbb{R} \to \mathbb{R}, x \mapsto e^x,$
 $1 : \mathbb{R} \to \mathbb{R}, x \mapsto 1.$

F ist ein Untervektorraum $U = \{f : \mathbb{R} \to \mathbb{R}\}.$

Ferner sei

$$\phi: F \to \mathbb{R}, f \mapsto f(0).$$

- a) Zeigen Sie, dass $B = (\cos, e, 1)$ eine Basis von F ist.
- b) Zeigen Sie, dass ϕ linear ist.
- c) Betrachten Sie die Basen B von F und A=(1) von \mathbb{R} und berechnen Sie die darstellende Matrix $M_{BA}(\phi)$.

4 Untervektorraum

Die Menge M im \mathbb{R}^3 ist gegeben durch

$$M := \{(x_1, x_2, x_3)^T : x_1 + x_2 + x_3 = 0\}.$$

- a) Zeigen Sie, dass M ein Untervektorraum von \mathbb{R}^3 ist.
- b) Bestimmen Sie eine Basis von M.

Probeklausur zum Ferienkurs Lineare Algebra 2015/2016

5 Determinanten

Eine Matrix A heißt antisymmetrisch, wenn gilt: $A^t = -A$.

a) Betrachten Sie die Matrix

$$A = \begin{pmatrix} 0 & 1 & -3 & 0 \\ -1 & 0 & -2 & 0 \\ 3 & 2 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

Berechnen Sie det A.

b) Sei A antisymmetrisch und n ungerade. Zeigen Sie, dass dann det A = 0 gilt.

6 Eigenwerte

6.1 Eigenwerte und Eigenvektoren

Gegeben Sei die Matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) Zeigen Sie, dass $\lambda_1=1,\,\lambda_2=2$ die einzigen Eigenwerte von A sind.
- b) Finden Sie je eine Basis von $Ker(A \lambda_i E_3)$ für i = 1, 2.
- c) Begründen Sie, warum die Matrix A diagonalisierbar ist.
- d) Geben Sie eine Diagonalmatrix D und eine Transformationsmatrix S an, so dass

$$D = S^{-1}AS$$

gilt.

6.2 Matrixeponential

Berechnen Sie das Matrixeponential e^A

7 Gram-Schmidt-Verfahren

Bestimmen Sie die orthonormale Basis zu den Vektoren $\overrightarrow{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \overrightarrow{b} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$ und $\overrightarrow{c} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$