Homework 4

(Due: Friday February 21st, 2025 at 8 pm)

1. Parallelogram identity. For any Hilbert space \mathcal{H} show that

$$2(||x||^2 + ||y||^2) = ||x - y||^2 + ||x + y||^2,$$

holds for any $x, y \in \mathcal{H}$.

2. LU Decomposition. Find the solution $x \in \mathbb{R}^3$ for Ax = b by obtaining the LPA = U decomposition for the following matrix

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{bmatrix}, \tag{1}$$

where
$$b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

- 3. A numerical problem. Let $A = \begin{pmatrix} -1 & 0 \\ 1 & 3 \\ 1 & 2 \\ 0 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$, and $\bar{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Find the least-square solution for Ax = b.
 - (b) Find the least-norm solution for $A'x = \bar{b}$.
- 4. Almost orthonormal basis. Let u_1, u_2, \ldots, u_n form an orthonormal basis for an inner product space \mathcal{V} and let v_1, v_2, \ldots, v_n be a set of vectors in \mathcal{V} such that

$$||u_j - v_j|| < \frac{1}{\sqrt{n}}, \quad j = 1, 2, \dots, n.$$

Show that v_1, v_2, \ldots, v_n form a basis for \mathcal{V} .

5. Projection onto a halfspace. Let a be a nonzero vector in \mathbb{R}^n , $b \in \mathbb{R}$, and

$$\mathcal{S} = \{ x \in \mathbb{R}^n : a'x \ge b \}$$

be a halfspace. Find the projection of $x \in \mathbb{R}^n$ onto \mathcal{S} .

6. Inverse. Let $A \in \mathbb{F}^{m \times n}$. Show that if A has a unique left inverse, then A is square and non-singular.

1

7. A Matrix inversion lemmas. Let $A \in \mathbb{F}^{n \times n}$, $B \in \mathbb{F}^{n \times k}$, $C \in \mathbb{F}^{k \times n}$, and $D \in \mathbb{F}^{k \times k}$. Suppose that A, D, and $D - CA^{-1}B$ are invertible. Show that

$$A^{-1}B(D - CA^{-1}B)^{-1} = (A - BD^{-1}C)^{-1}BD^{-1}.$$

(Hint: Consider the block matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

and its inverse.)

8. Moore-Penrose pseudoinverse. A pseudoinverse of $A \in \mathbb{R}^{m \times n}$ is defined as a matrix $A^+ \in \mathbb{R}^{n \times m}$ that satisfies

$$AA^+A = A,$$
$$A^+AA^+ = A^+,$$

and AA^+ and A^+A are symmetric.

- (a) Find (with proof) the pseudoinverse of AA' in terms of A^+ . hint: Show that $(AA')^+ = (A^+)'A^+$ and $(A'A)^+ = A^+(A^+)'$.
- (b) Suppose that A has a rank decomposition A = BC, for example, $B = Q \in \mathbb{R}^{m \times r}$ and $C = R \in \mathbb{R}^{r \times n}$ as in the QR decomposition. Find A^+ in terms of B and C. hint: Show that $(BC)^+ := C'(CC')^{-1}(B'B)^{-1}B'$.
- (c) Show that $\mathcal{R}(A^+) = \mathcal{R}(A')$ and $\mathcal{N}(A^+) = \mathcal{N}(A')$.
- (d) Show that $y = AA^+x$ and $z = A^+Ax$ are the orthogonal projections of x onto $\mathcal{R}(A)$ and $\mathcal{R}(A')$, respectively.
- (e) Show that

$$A^{+} = \lim_{\delta \to 0} (A'A + \delta I)^{-1}A' = \lim_{\delta \to 0} A'(AA' + \delta I)^{-1}.$$

- (f) Show that $x^* = A^+b$ is a least-squares solution to the linear equation Ax = b, i.e., $||Ax^* b|| \le ||Ax b||$ for every other x.
- (g) Show that $x^* = A^+b$ is the least-norm solution to the linear equation Ax = b, i.e., $||x^*|| \le ||x||$ for every other solution x, provided that a solution exists.
- 9. Projection over convex set. Let V be a an inner-product vector space over \mathbb{R} with the inner-product $\langle \cdot, \cdot \rangle$ and let S be a convex set in V, i.e., a set such that for any two $x, y \in S$, any point $\alpha x + (1 \alpha)y$ in between x, y, where $\alpha \in [0, 1]$, belongs to S. Let $x \notin S$ be an arbitrary vector and suppose that for $\hat{x} \in S$, we have:

$$\langle x - \hat{x}, \hat{x} - v \rangle \ge 0$$
, for all $v \in S$.

2

Show that $||x - \hat{x}||^2 = \min_{v \in S} ||x - v||^2$. Is such an \hat{x} unique?