Методы оптимизации

Михайлов Максим

24 февраля 2021 г.

Оглавление

Лекци	ия 1	10 февраля	2
1	Teop	рия погрешности	2
2	Зада	чи оптимизации. Вводное	6
3	Одн	омерная минимизация функций. Прямые методы	7
	3.1	Метод дихотомии	7
Лекци	ия 2	17 февраля	9
	3.2	Метод золотого сечения	9
	3.3	Метод Фибоначчи	
	3.4	Метод парабол	11
	3.5	Комбинированный метод Брента	12
Лекция 3		24 февраля	13
	3.6	Метод равномерного перебора	13
4	Мето	оды оптимизации, использующие производную	13
	4.1	Методы средней точки	13
	4.2	Метод хорд (метод секущей)	14
	4.3	Метод Ньютона (метод касательной)	15

Лекция 1

10 февраля

Этот курс — о минимизации (максимизации) функционалов. Кроме конкретных методов оптимизации, планируется рассмотреть форматы хранения матриц, о методах работы с ними и рассмотреть 1-2 (может быть 3) СЛАУ с использованием различных форматов.

Т.к. значения, получаемые компьютерами — не точные, нам требуется теория погрешности.

1 Теория погрешности

Все погрешности разделяются на два класса:

- 1. Неустранимая обусловлена неточностью исходных данных. Например, неточное знание физических констант или других параметров задачи. Тем не менее, необходимо знать эту погрешность, чтобы ставить рамки погрешности для решения.
- 2. Устранимая погрешность процесса решения задачи. Эту погрешность можно уменьшить выбором метода решения задачи.
 - (а) Погрешность модели
 - (b) Остаточная погрешность (погрешность аппроксимации)
 - Например, аппроксимация ряда первыми n его членами или аппроксимация по теореме Вейерштрасса квадратичной функцией.
 - (с) Погрешность округления
 - (d) Накапливаемая погрешность

2c и 2d часто объединяют в вычислительную погрешность.

Определение. Пусть X^* — точное решение, а X — найденное (приближенное) решение. Тогда X^* — X называется погрешностью, а её модуль $\Delta X = |X^* - X|$ — абсолютная погрешность.

Разумеется, ΔX представляет сугубо теоретический интерес, т.к. X^* неизвестна и ΔX нельзя вычислить.

Определение. В качестве требования к решению часто предоставляется предельная абсолютная погрешность $\Delta_X \geq |X^* - X|$.

Определение. Также существует относительная погрешность
$$\delta X = \left| \frac{X^* - X}{|X|} \right|$$

Относительная погрешность позволяет выражать погрешность относительно значений самой величины. Например, при измерении длины парты погрешность 1 см не очень хорошо, а при измерении расстояния между городами — приемлемо.

Определение. Предельная относительная погрешность
$$\delta_X \geq \left| \frac{X^* - X}{|X|} \right|$$

Определение. Значащие цифры некоторого числа — все цифры в его изображении, отличные от нуля, а также нули, если они содержатся между значащими цифрами или расположены в конце числа и указывают на сохранение разряда точности.

Определение. Если значащая цифра приближенного значения a, находящаяся в разряде, в котором выполняется условие $\Delta \leq 0.5 \cdot 10^k$, т.е. абсолютное значение погрешности не превосходит половину единицы этого разряда (k — номер этого разряда), то такая цифра называется верной в узком смысле.

Цифра называется верной в широком смысле, если в определении выше используется 1 вместо 0.5.

Пример. $a = 3.635, \Delta a = 0.003$

•
$$k = 0$$
 $\frac{1}{2} \cdot 10^0 = \frac{1}{2} \ge \Delta a$

•
$$k = -1$$
 $\frac{1}{2} \cdot 10^{-1} = 0.05 \ge \Delta a$

•
$$k = -2$$
 $\frac{1}{2} \cdot 10^{-2} = 0.005 \ge \Delta a$

•
$$k = -3$$
 $\frac{1}{2} \cdot 10^{-3} = 0.0005 < \Delta a$

Таким образом, цифра 5 является сомнительной, остальные — верные.

Пример. Рассмотрим следующие способы записи одного и того же выражения:

$$\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)^3 = (\sqrt{2}-1)^6 = (3-2\sqrt{2})^3 = 99-70\sqrt{2}$$

Посчитаем все выражения с различными приближениями $\sqrt{2}$:

•
$$\frac{7}{5} = 1.4$$

•
$$\frac{17}{12} = 1.41666$$

•
$$\frac{707}{500} = 1.414$$

•
$$\sqrt{2} = 1.4142135624$$

$\sqrt{2}$	$\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)^3$	$(\sqrt{2}-1)^6$	$(3-2\sqrt{2})^3$	$99 - 70\sqrt{2}$
$\frac{7}{5}$	$\frac{1}{216} \approx 0.00\underline{4}6$	$\frac{64}{15625} \approx 0.00\underline{5}1$	$\frac{1}{125} = 0.008$	1
$\frac{17}{12}$	$\frac{125}{24389} \approx 0.00513$	$\frac{15625}{2985354} \approx 0.00\underline{5}2$	$\frac{1}{216} \approx 0.00\underline{4}6$	$-\frac{1}{6} = -0.6(6)$
$\frac{707}{500}$	$\frac{8869743}{1758416743} \approx 0.005044$	$\frac{78672340886049}{15625 \cdot 10^{12}} \approx 0.00\underline{50}4$	$\frac{636056}{125000000} \approx 0.00\underline{50}9$	0.02

$$\Delta_{(X\pm Y)} = \Delta_X + \Delta_Y$$

$$\Delta_{(X\cdot Y)} \approx |Y|\Delta_X + |X|\Delta_Y$$

$$\Delta_{(X/Y)} \approx \left|\frac{1}{Y}\right| \Delta_X + \left|\frac{X}{Y^2}\right| \Delta_Y$$

$$|\Delta u| = |f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1 \dots x_n)|$$

$$|\Delta u| \approx |df(x_1 \dots x_n)| = \left|\sum_{i=1}^n \frac{\partial u}{\partial x_i} \Delta x_i\right| \le \sum_{i=1}^n \left|\frac{\partial u}{\partial x_i}\right| |\Delta x_i|$$

$$\Delta_u = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| \Delta x_i$$

$$|\delta u| = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| |\Delta x_i|$$

$$\delta_u = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| |\Delta x_i|$$

$$\delta_{(X\pm Y)} = \left|\frac{X}{X\pm Y}\right| \delta_X + \left|\frac{Y}{X\pm Y}\right| \delta_Y$$

$$\delta_{(X\cdot Y)} = \delta_X + \delta_Y$$

$$\delta_{(X\cdot Y)} = \delta_X + \delta_Y$$

Вернемся к прошлому примеру и посчитаем относительную погрешность.

$$\triangleleft x = \frac{7}{5}$$

$$\delta_{f_1} = 3 \left| \frac{1}{x - 1} - \frac{1}{x + 1} \right| \cdot |\delta x| = 6.25 |\delta x|$$

$$\delta_{f_2} = 6 \left| \frac{1}{x - 1} \right| \cdot |\delta x| = 15 |\delta x|$$

$$\delta_{f_3} = 6 \left| \frac{1}{3 - 2x} \right| \cdot |\delta x| = 30 |\delta x|$$

$$\delta_{f_4} = \left| \frac{90}{99 - 70x} \right| \cdot |\delta x| = 70 |\delta x|$$

Таким образом, наибольшую погрешность даёт f_4 , наименьшую — f_1 .

Пример.

$$y^{2} - 140y + 1 = 0$$
$$y = 70 - \sqrt{4899}$$
$$\sqrt{4899} \approx 69.99$$
$$y \approx 70 - 69.99 = 0.01$$

Посчитаем другим методом — избавимся от вычитания похожих чисел.

$$y = \frac{1}{70 + \sqrt{4899}}$$
$$y = \frac{1}{139.99} \approx \frac{1}{140} = 0.00714285 \approx 0.007143$$

Можно заметить, что результат весьма точнее.

Пример. Рассмотрим задачу вычисления суммы $S = \sum_{j=1}^{10^6} \frac{1}{j^2}$.

Если суммировать по формуле $S_n=S_{n-1}+\frac{1}{n^2}$, то из-за того, что сначала суммируются большие числа, а потом малые, погрешность велика: $\Delta=10^6\cdot 2^{-1}\approx 2\cdot 10^{-4}$

Если же суммировать с конца, то $\Delta = \mathcal{O}\left(\frac{1}{n}\right) \approx 6 \cdot 10^{-8}$

Рекомендации для увеличения точности вычислений:

- 1. Если складывать или вычитать последовательность чисел, то лучше начинать с малых членов.
- 2. Желательно избавляться от вычитания двух почти равных чисел, по возможности преобразую формулу.
- 3. Необходимо сводить к минимуму число математических операций. Это также способствует ускорению работы алгоритма.

4. Если ЯП и компьютер позволяют использовать числа разных типов, то числа с большим числом разрядов всегда повышают точность вычислений (в ущерб памяти).

Дробные числа нужно сравнивать с помощью ε , т.е. $|a-b| \le \varepsilon$

2 Задачи оптимизации. Вводное.

Здесь и далее целевая функция — функция, которую мы минимизируем.

Обозначение. Пусть целевая функция — f(x). Это обозначается как $f(x) \xrightarrow{x \in U} \min.$

 $f(x)\to \max \Rightarrow -f(x)\to \min$. Таким образом, мы без потери общности рассматриваем задачу минимизации.

Определение. Если $\exists x^* \in U \ f(x^*) \leq f(x) \ \forall x \in U$, то такой x^* называется точкой (глобального) минимума

Обозначение. Множество всех точек минимума обозначается $U^* = \{x_i^* \mid i = 1 \dots k\}$

Мы рассматриваем класс функций таких, что $U^* \neq \varnothing$

Определение. Функция f(x) называется унимодальной на [a,b], если она:

- 1. Непрерывна на [a, b]
- 2. $\exists \alpha, \beta : a \leq \alpha \leq \beta \leq b$, такие что:
 - (a) Если $a < \alpha$, то на $[a, \alpha] f(x)$ строго монотонно убывает.
 - (b) Если $\beta < b$, то на $[\beta,b]$ f(x) строго монотонно возрастает.
 - (c) $\forall x \in [\alpha, \beta]$ $f(x) = f_* = \min_{[a,b]} f(x)$

Свойства.

- 1. Если функция унимодальна на [a,b], то она унимодальна и на $[c,d] \subset [a,b]$
- 2. Если f унимодальна на $[a,b], a \leq x_1 < x_2 \leq b$, тогда:
 - (a) Если $f(x_1) \leq f(x_2)$, то $x^* \in [a, x_2]$
 - (b) Если $f(x_1) > f(x_2)$, то $x^* \in [x_1, b]$

Определение. f(x), заданная на [a,b], называется выпуклой на этом отрезке, если

$$\forall x', x'' \in [a, b], \alpha \in [0, 1] \quad f(\alpha x' + (1 - \alpha)x'') \le \alpha f(x') + (1 - \alpha)f(x'')$$

Свойства.

- 1. Если f(x) выпукло на [a,b], то $\forall [x',x''] \subset [a,b]$, то её график расположен ниже хорды между x' и x''
- 2. Всякая выпуклая функция на отрезке является унимодальной на нём.

Определение. Стационарные точки — точки x, для которых f'(x) = 0.

Мы будем рассматривать одномерные задачи оптимизации, т.к. многомерные задачи часто сводятся к одномерным.

3 Одномерная минимизация функций. Прямые методы.

Прямые методы — методы, не использующие производные целевой функции.

3.1 Метод дихотомии

Этот метод — тернарный поиск.

$$x_1 = \frac{b+a-\delta}{2} \quad x_2 = \frac{b+a+\delta}{2}$$
$$\tau = \frac{b-x_1}{b-a} = \frac{x_2-a}{b-a} \to \frac{1}{2}$$
$$x^* \in [a_i, b_i] \ \forall i$$

Шаг 1: Находим x_1 и x_2 , вычисляем $f(x_1)$ и $f(x_2)$

Шаг 2: Сравниваем $f(x_1)$ и $f(x_2)$.

- Если $f(x_1) \leq f(x_2)$, переходим к отрезку $[a,x_2]$, т.е. $b=x_2$
- Иначе переходим к $[x_1, b]$, т.е. $a = x_1$

Шаг 3: $\, \varepsilon_n = \frac{b-a}{2} ,$ где n- номер итерации.

- Если $\varepsilon_n>\varepsilon$, переходим к новой итерации.
- Если $\varepsilon_n \leq \varepsilon$, завершаем поиск и переходим к шагу 4.

III
ar 4:
$$X^* \approx \overline{X} = \frac{a+b}{2}$$

Примечание. δ выбирается на интервале $(0,2\varepsilon)$. Чем меньше δ , тем больше относительное уменьшение длины отрезка на каждой итерации. При черезмерно малом δ сравнение $f(x_1)$ и $f(x_2)$ будет затруднительно, т.к. они близки.

Мы можем оценить число необходимых итераций:

$$n \ge \log_2 \frac{b - a - \delta}{2\varepsilon - \delta}$$

Лекция 2

17 февраля

3.2 Метод золотого сечения

Рассмотрим отрезок [0,1]. Пусть $x_2=\tau$, тогда симметрично расположенная $x_1=1-\tau$. Пусть дальше был выбран отрезок $[0,\tau]$, тогда пусть $x_2'=1-\tau$. Чтобы новые точки делили отрезок в таком же соотношении, необходимо, чтобы $\frac{1}{\tau}=\frac{\tau}{1-\tau}\Rightarrow \tau^2=1-\tau\Rightarrow \tau=\frac{\sqrt{5}-1}{2}\approx 0.61803$. Таким образом, $x_1=1-\tau=\frac{3-\sqrt{5}}{2}, x_2=\tau=\frac{\sqrt{5}-1}{2}$

В общем случае для отрезка [a, b]:

$$x_1 = a + \frac{3 - \sqrt{5}}{2}(b - a), x_2 = a + \frac{\sqrt{5} - 1}{2}(b - a)$$
 (1)

Вычислим погрешность:

$$\Delta_n = \tau^n(b-a)$$
 $\varepsilon_n = \frac{\Delta_n}{2} = \frac{1}{2} \left(\frac{\sqrt{5}-1}{2}\right)^n (b-a)$

Для заданного ε условия окончания $\varepsilon_n \leq \varepsilon$.

Результат метода:

$$x^* = \frac{a_{(n)} + b_{(n)}}{2}$$

Оценка числа шагов для достижения искомой точности:

$$n \ge \ln\left(\frac{\frac{2\varepsilon}{b-a}}{\ln \tau}\right) \approx 2 \cdot 1 \cdot \ln\left(\frac{b-a}{2\varepsilon}\right)$$

Шаг 1: Находим x_1 и x_2 по формуле (1), вычисляем $f(x_1)$ и $f(x_2)$. $\varepsilon_n = \frac{b-a}{2}, \tau = \frac{\sqrt{5}-1}{2}$.

Шаг 2: — Если $\varepsilon_n > \varepsilon$, переходим к шагу 3.

– Если $\varepsilon_n \leq \varepsilon$, переходим к шагу 4.

Шаг 3: Сравниваем $f(x_1)$ и $f(x_2)$.

- Если $f(x_1) \le f(x_2)$, то $b=x_2, x_2=x_1, x_1=b-\tau(b-a)$. Мы запоминаем $f(x_2)$ для следующего шага, т.к. оно равно $f(x_1)$ на этом шаге.
- Иначе $a=x_1, x_1=x_2, f(x_1)=f(x_2)$. Мы запоминаем $f(x_1)$ для следующего шага, т.к. оно равно $f(x_2)$ на этом шаге.

Шаг 4: $X^* pprox \overline{X} = \frac{a_{(n)} + b_{(n)}}{2}$

3.3 Метод Фибоначчи

Мы знаем, что $F_n=rac{\left(rac{1+\sqrt{5}}{2}
ight)^n-\left(rac{1-\sqrt{5}}{2}
ight)^n}{\sqrt{5}}$, а также при $n o+\infty$ $\ F_npproxrac{\left(rac{1+\sqrt{5}}{2}
ight)^n}{\sqrt{5}}$

Рассмотрим нулевую итерацию:

$$x_1 = a + \frac{F_n}{F_{n+2}}(b-a)$$
 $x_2 = a + \frac{F_{n+1}}{F_{n+2}}(b-a)$

Рассмотрим k-тую итерацию:

$$x_1 = a_{(k)} + \frac{F_{n-k+1}}{F_{n-k+3}}(b_k - a_k) = a_k + \frac{F_{n-k+1}}{F_{n+2}}(b_0 - a_0)$$

$$x_2 = a_{(k)} + \frac{F_{n-k+2}}{F_{n-k+3}}(b_k - a_k) = a_k + \frac{F_{n-k+2}}{F_{n+2}}(b_0 - a_0)$$

Пусть k = n, тогда:

$$x_1 = a_n + \frac{F_1}{F_{n+2}}(b_0 - a_0)$$
 $x_2 = a_n + \frac{F_2}{F_{n+2}}(b_0 - a_0)$

Условие на погрешность:

$$\frac{b_n - a_n}{2} = \frac{b_0 - a_0}{F_{n+2}} < \varepsilon$$

Какое брать n? Такое, что $\frac{b_0 - a_0}{\varepsilon} < F_{n+2}$

Есть проблема, при большом $n \, \frac{F_n}{F_{n+2}}$ есть бесконечная десятичная дробь, вследствие чего образуется погрешность.

Рис. 2.1: Функция f(x) и её приближение параболой.

Метод парабол

Пусть
$$\exists x_1, x_2, x_3 \in [a,b]$$
, такие что $\begin{cases} x_1 < x_2 < x_3 \\ f(x_1) \geq f(x_2) \leq f(x_3) \end{cases}$

Тогда приближающая парабола имеет вид $q(x)=a_0+a_1(x-x_1)+a_2(x-x_1)(x-x_2).$ Мы имеем условия на коэффициенты этой параболы: $\begin{cases} q(x_1)=f(x_1)=f_1\\ q(x_2)=f(x_2)=f_2\\ q(x_3)=f(x_3)=f_3 \end{cases}$

Коэффициенты можно найти следующим образом:

$$a_1 = f_1$$
 $a_2 = \frac{f_2 - f_1}{x_2 - x_1}$ $a_3 = \frac{1}{x_3 - x_2} \left(\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right)$

Тогда результат итерации есть $\overline{x}=\frac{1}{2}\left(x_1+x_2-\frac{a_1}{a_2}\right)$, на следующей лекции будет рассказан переход к следующей итерации.

Точки x_1, x_2, x_3 для новой итерации выбираются следующим образом:

1. (a) Если $x_1 < \overline{x} < x_2 < x_3$ и $f(\overline{x}) \geq f(x_2)$, то $x^* \in [\overline{x}, x_3], x_1 = \overline{x}$, точки x_2 и x_3 не меняются.

- (b) Если $x_1 < \overline{x} < x_2 < x_3$ и $f(\overline{x}) < f(x_2)$, то $x^* \in [x_1,x_2], x_3 = x_2, x_2 = \overline{x}$, точка x_1 не меняется.
- 2. (a) Если $x_1 < x_2 < \overline{x} < x_3$ и $f(\overline{x}) \le f(x_2)$, то $x^* \in [x_2,x_3], x_1 = x_2, x_2 = \overline{x}$, точка x_3 не меняется.
 - (b) Если $x_1 < x_2 < \overline{x} < x_3$ и $f(\overline{x}) > f(x_2)$, то $x^* \in [x_1, \overline{x}], x_3 = \overline{x}$, точки x_1 и x_2 не меняются.

Примечание. Метод парабол имеет квадратичную сходимость.

Примечание. Метод парабол требует гладкость функции, что неверно для предыдущих методов.

3.5 Комбинированный метод Брента

Для собственного изучения.

Лекция 3

24 февраля

3.6 Метод равномерного перебора

Шаг 1: Если $f(x_0)>f(x_0+\delta)$, то $k=1, x_1=x_0+\delta, h=\delta$ иначе $x_1=x_0, h=-\delta$

Шаг 2: $h = 2h, x_{k+1} = x_k + h$

Шаг 3: Если $f(x_k)>f(x_{k+1})$, то k=k+1 и переходим к шагу 2. Иначе прекращаем поиск и искомое лежит в $[x_{k-1},x_{k+1}]$

4 Методы оптимизации, использующие производную

В рамках этой главы f(x) — дифференцируемая или дважды дифференцируемая выпуклая функция.

Есть три классических метода, использующих производную:

- Средней точки
- Метод хорд
- Метод Ньютона

f'(x) = 0 — необходимое и достаточное условие глобального минимума. Таким образом, условие остановки вычислений — $f'(x) \approx 0$, т.е. $|f'(x)| \leq \varepsilon$

4.1 Методы средней точки

Средняя точка $\overline{x} = \frac{a+b}{2}$.

Общая идея алгоритма:

- Если f'(x)>0, то $\overline{x}\in$ участку монотонного возрастания f(x) и $x^*<\overline{x}$, т.е. минимум лежит на $[a,\overline{x}]$
- Если f'(x) < 0, то аналогично можем вывести, что минимум лежит на $[\overline{x}, b]$
- Если f'(x) = 0, то мы нашли решение.

Перепишем это в виде алгоритма:

Шаг 1: $\overline{x} = \frac{a+b}{2}$, вычислим $f'(\overline{x})$

Шаг 2: Если $|f'(x)| \leq \varepsilon$, то $x^* = \overline{x}$ и завершаем вычисление.

Шаг 3: Сравниваем f'(x) с нулём:

- Если f'(x)>0, то $x^*\in [a,\overline{x}]$ и $b=\overline{x}$
- Иначе $x^* \in [\overline{x}, b]$ и $a = \overline{x}$

Длина отрезка после n итераций есть $\Delta_n = \frac{b-a}{2^n}$

4.2 Метод хорд (метод секущей)

Если $\exists f'(x)$ на [a,b], $f'(a)\cdot f'(b)<0$ и f'(x) непрерывна на [a,b], то $\exists x\in(a,b):f'(x)=0.$ F(x)=f'(x). Пусть $\tilde{x}-$ точка пересечения хорды F(x) с осью Ox на [a,b]

Можем тривиально вывести \tilde{x} из уравнения прямой по двум точками:

$$\tilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)}(a - b)$$
 (2)

Шаг 1: Считаем \tilde{x} по (2)

Шаг 2: Если $|f'(\tilde{x})| \leq \varepsilon$, то $x^* = \tilde{x}$ и мы заканчиваем вычисление.

Иначе шаг 3.

Шаг 3: Переходим к новому отрезку:

- Если $f'(\tilde{x})>0$, то $x^*\in[a,\tilde{x}], b=\tilde{x}, f'(b)=f'(\tilde{x})$, переходим к шагу 1
- иначе $x^* \in [\tilde{x},b], a = \tilde{x}, f'(a) = f'(\tilde{x})$, переходим к шагу 1

Примечание. Если $f'(a) \cdot f'(b) \ge 0$, то $x^* = a$ или $x^* = b$.

4.3 Метод Ньютона (метод касательной)

Если f выпуклая на [a,b] и дважды непрерывно дифференцируемая, то уравнение f'(x)=0 решается методом Ньютона.

Пусть $x_0 \in [a, b]$ — начальное приближение x^* . F(x) = f'(x) линеаризуема в окрестности x_0 , т.е.

$$F(x) \approx F(x_0) + F'(x_0)(x - x_0)$$

Пусть x_1 — следующее приближение к x^* . Это будет пересечение касательной с Ox. Найдём эту точку.

$$F(x_0) + F'(x_0)(x_1 - x_0) = 0$$
$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)}$$

Таким образом, мы можем получить $\{x_k\}_{k=1}^n$ — итерационную последовательность.

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Условие остановки такое же, как в предыдущих методах: $|f'(x_k)| \leq \varepsilon$