Exercício 9: Análise de dados (parte II)

Deve ser entregue relatório até a próxima aula.

1. Metabolismo animal: a tabela seguinte indica o valor da massa e da taxa do metabolismo de vários animais:

Animal	Massa (kg)	Metabolismo (W)
Vaca	400	270
Humano	70	82
Carneiro	45	50
Galinha	2	4,8
Rato	0,3	1,45
Pomba	0.16	0.97

- a. A partir de uma regressão linear, usando o método dos mínimos quadrados, escreva a lei de potência correspondente ao metabolismo em função da massa. Use a função LinearModelFit no Mathematica para comparar.
- b. Trace o gráfico dos pontos dados e da função calculada.
- c. Use o método do gradiente para fazer os mínimos quadrados destes dados. Apresente uma tabela com os coeficientes da equação da reta no final de 100 iterações (precisão 10^{-6}) e com $\lambda = \{0.01, 0.05, 0.1\}$.
- d. **(Opcional)** Aplique o método do gradiente diretamente a função da lei de potência e compare os expoentes.
- 2. Análise porosidade de um material: considere a imagem dada em anexo (rocks.jpg):
 - a. Importe a imagem em formato RGB e converta para a escala de cinzentos. Apresente uma figura com as duas imagens uma ao lado da outra.
 - b. Faça o histograma de intensidade da imagem em escala de cinzentos e aplique um threshold à imagem (no mínimo do histograma entre os dois picos), transformando numa imagem binária. Apresente uma figura com o histograma e a imagem binaria resultante.
 - c. Calcule a porosidade do material sabendo que esta é dada por $n=\frac{V_{vazios}}{V_{total}} \times 100$. Onde V_{vazios} é o volume de espaços vazios e V_{total} é o volume total.
 - d. **(Opcional)**. Detete os contornos desta imagem aplicando o Filtro de Sobel. Pode aplicar filtros Gaussianos para melhorar o resultado. Apresente a imagem resultante.