Learning to Rank using Linear Regression

Shraddha Dwivedi
UB Person Number: 50290266
Computer Science and Engineering
University at Buffalo
sdwivedi@buffalo.edu
1. Introduction
This report is about solving the Learning to Rank problem using
Linear Regression. We solved this problem using the two approaches
of Linear Regression.
1. Closed-form solution
2. Stochastic Gradient Descent.
Linear Regression
Linear regression is a linear approach to modelling the relationship
between a scalar response (or dependent variable) and one or
more explanatory variables (or independent variables).
Closed-form Solution
Closed-form solutions are non-iterative solution which gives the
equation to direct calculate the weight matrix.
Stochastic Gradient Descent
Stochastic gradient descent (often shortened to SGD), also known
as incremental gradient descent, is an iterative
method for optimizing a differentiable objective function, a stochastic
approximation of gradient descent optimization. In stochastic (or "on-
line") gradient descent, the true gradient of is approximated by a
gradient at a single example:
$w:=w-\eta abla Q_i(w).$
$\omega := \omega = \eta \vee \omega_i(\omega).$
As the algorithm sweeps through the training set, it performs the
above update for each training example.

2 Hyperparameters

Hyperparameter are the variable which determines the structure of the network. It also determines that how the network is trained. We set the hyperparameters before training the model. Hyperparameter varies for different model training algorithm.

41

42

36

2.1 Stochastic Gradient Descent

2.1.1 Learning Rate

Learning rate is the hyperparameter that controls how much we are

adjusting the weights of our neural network

Table 1. Varying Learning rate

Lambda (La)=2, initial weight scaling factor=220

48

47

S.no	Learning rate	E_rms Testing		
1	0.01	0.623		
2	0.1	0.656		

Error RMS

Fig 2.1.1.1: Learning rate: 0.01

Error RMS

5152

Fig 2.1.1.2: Learning rate: 0.1

53

54

55

56

57

2.1.2 Initial Weight Scaling Factor

Initially we will multiply the W(weight calculated in closed form solution) by some weight, which is called as initial scaling factor.

Table 2. Varying Weight Scaling Factor

Lambda(La): 2, Learning rate: 0.01

59

S.no	Initial weight Scaling factor	Testing Accuracy		
1	220	0.623		
2	800	0.623		

Fig 2.1.2.1: Initial weight scaling factor: 220

Fig 2.1.2.2: Initial weight scaling factor: 800

2.1.3 Lambda (λ)

Lambda is a hyperparameter that affects what hypothesis is chosen. Hypothesis is chosen that minimizes the cost. Lambda governs the

relative importance of the regularization term.

Table 3. Varying Lambda

Learning rate: 0.1, Initial weight scaling factor: 220

72 73

70

S.no	Lambda	Testing Accuracy		
1	1	0.634		
2	2	0.656		
3	4	30		

Error RMS

Fig 2.1.13.1: $\lambda = 1$

Fig 2.1.3.2: $\lambda = 2$

Fig 2.3.3: $\lambda = 4$

2.2 Closed-form Solution

2.2.1 Lambda

Lambda is a hyperparameter that affects what hypothesis is chosen.

Hypothesis is chosen that minimizes the cost. Lambda governs the relative importance of the regularization term.

Table 4. Varying Lambda

2

89 M: 10

88

90

95

96

97

98

99

100

101

102

103

104105

S.no Lambda Testing Accuracy
1 0.03 0.634

0.5

0.656

91 **2.2.1** M

M is the number of basis function we have in the .

93 **Table 5. Varying M**

94 Lambda: 0.03

 S.no
 M
 Testing Accuracy

 1
 10
 0.627

 2
 15
 0.627

 3
 25
 0.627

3. Conclusion

We can infer that stochastic gradient descent method is better than closed form solution for solving this Learning to Rank problem using Linear Regression. For stochastic gradient descent, we get the best result when the learning rate is 0.01, lambda is 2 and initial weight factor is 220. For closed form solution, result won't vary much by changing the hyper parameter. But we can infer that we get the better result when M is 10 and lambda is 0.03.

				initial				
Training	Validation	Test data		weight	Learning	E_rms	E_rms	E_rms
data set	data set	set	Lambda	factor	rate	Training	Validation	Testing
55699	6962	6962	2	220	.0.01	0.549	0.538	0.623
55699	6962	6962	2	220	0.1	0.572	0.56	0.656
55699	6962	6962	4	400	0.1	54.6	53.9	54.8
55699	6962	6962	4	220	0.1	29.9	29.5	30
55699	6962	6962	1	220	0.1	0.563	0.552	0.634
55699	6962	6962	2	220	0.1	0.566	0.556	0.636
55699	6962	6962	2	300	0.05	0.559	0.552	0.634

Fig 3.1 Summarized table when hyperparameters are changed for Stochastic Gradient Descent

Training	Validation		Lambda(C_Lamb	M(no of	E_rms	E_rms	E_rms
data set	data set	set	da)	clusters)	Training	Validation	Testing
55699	6962	6962	0.03	10	0.549	0.538	0.627
55699	6962	6962	0.5	· 10	0.549	0.538	0.628
55699	6962	6962	0.8	25	0.549	0.538	0.627
55699	6962	6962	0.03	10	0.549	0.538	0.627
55699	6962	6962	0.03	10	0.549	0.538	0.627
55699	6962	6962	0.03	10	0.549	0.538	0.627

Fig 3.1 Summarized table when hyperparameters are changed for Closed form solution

116 References

- [1] https://www.geeksforgeeks.org/
- 118 [2] https://medium.com/the-theory-of-everything/
- [3] https://en.wikipedia.org/