Liucheng Xu 2012080173

College of Computer Science and Software Engineering Shenzhen University

April 20, 2016

- Adaptive Sampling Strategy
- 3 Content-Aware and Adaptive BPF
- 4 Experiment

- 2 Adaptive Sampling Strategy
- 3 Content-Aware and Adaptive BPF
- 4 Experiment

- 2 Adaptive Sampling Strategy
- 3 Content-Aware and Adaptive BPR
- 4 Experiment

- 2 Adaptive Sampling Strategy
- 3 Content-Aware and Adaptive BPR
- 4 Experiment

Table: Some notations

s	user number			
t	item number			
k	latent dimension (category number)			
$U, Y^u \in \mathbb{R}^{s \times k}$	user latent matrix			
$V, Y^v \in \mathbb{R}^{t \times k}$	item latent matrix			
$X \in \mathbb{R}^{t \times k}$	ranking scores under categories			
$x_c \in X$	ranking score vector under category c			
$y^v_{*,c} \in Y^v$	c-th column of Y^v			
$L \in \mathbb{R}^{t \times k}$	ranking lists under categories			
$ ho \in \mathbb{R}^k$	counters of category popularity			
$e \in \{u,v\}$	entity			
A^e	content feature of entities			
W^e	mapping matrix			
Y^e	entity latent matrix			

Pairwise Preference Assumption

user u prefers item v_i over v_i

• define the pairwise preference of user u as:

$$p(i \succ_{u} j) := f(x_{uij}), (1)$$

where

$$f(x) = 1/(1 + exp(-x)),$$

 $x_{uij} := \hat{r}_{uij} = \hat{r}_{ui} - \hat{r}_{uj}.$

Prediction Rule

Outline

• The predicted rating \hat{r}_{ui} of user u on item i:

$$\hat{r}_{ui} = U_{u} \cdot V_{i}^{T} + b_{i} \tag{2}$$

Likelihood of Pairwise Preference

Outline

• The random variable x with Bernoulli distribution :

$$Ber(x|p) = p^x (1-p)^{1-x}$$
 for $x \in \{0,1\}, p \in [0,1]$ (3)

• The Bernoulli distribution of binary random variable $x((u,i) \succ (u,j))$ is defined as follows:

$$LPP_{u} = \prod_{i,j \in \mathcal{I}} p(\hat{r}_{ui} > \hat{r}_{uj})^{x((u,i) \succ (u,j))} [1 - p(\hat{r}_{ui} > \hat{r}_{uj})]^{1-x((u,i) \succ (u,j))}$$

$$= \prod_{(u,i) \succ (u,j)} p(\hat{r}_{ui} > \hat{r}_{uj}) \prod_{(u,i) \preceq (u,j)} [1 - p(\hat{r}_{ui} > \hat{r}_{uj})]$$
(4)

where $(u, i) \succ (u, j)$ means that user u prefers item i to item j.

Ojective Function

Outline

• Given a set of pairwise preference D_S , the goal of BPR is to maximize the likelihood of all pairwise preference:

$$\arg \max_{\Theta} \prod_{(u,i,j)\in D_S} p(i\succ_u j), \qquad (5)$$

which is equivalent to minimize the negative log likelihood:

$$L_{feedback} = -\sum_{(u,i,j)\in D_S} \ln f\left(\hat{r}_{uij}\right) + \lambda \|\Theta\|^2, \tag{6}$$

where $\hat{r}_{uij} = \hat{r}_{ui} - \hat{r}_{uj}$, Θ denotes the set of all latent vectors and λ is a hyper-parameter

Ojective Function

• Specifically, Eq(6) is to minimize the following objective function :

$$\min_{\Theta} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}_u} \sum_{j \in \mathcal{I} \setminus \mathcal{I}_u} \Phi_{uij} \tag{7}$$

where
$$\Phi_{uij} = -\ln f(\hat{r}_{uij}) + \frac{\alpha_u}{2} ||U_{u \cdot}||^2 + \frac{\alpha_v}{2} ||V_{i \cdot}||^2 + \frac{\alpha_v}{2} ||V_{j \cdot}||^2 + \frac{\beta_v}{2} ||b_i||^2 + \frac{\beta_v}{2} ||b_j||^2$$
, $\Theta = \{U_{u \cdot}, V_{i \cdot}, b_i\}$ denotes the parameters to learn.

Outline

Notations

00000000

• For a randomly sampled triple (u, i, j), calculate the partial derivative for U_{u} :

$$\nabla U_{u\cdot} = \frac{\partial \Phi_{uij}}{\partial U_{u\cdot}} = -\frac{\partial \ln f\left(\hat{r}_{uij}\right)}{\partial f\left(\hat{r}_{uij}\right)} \frac{\partial f\left(\hat{r}_{uij}\right)}{\partial \hat{r}_{uij}} \frac{\partial \hat{r}_{uij}}{\partial U_{u\cdot}} + \alpha_{u}U_{u\cdot}$$

$$= -\frac{1}{f\left(\hat{r}_{uij}\right)} \frac{\partial f\left(\hat{r}_{uij}\right)}{\partial \hat{r}_{uij}} \frac{\partial \hat{r}_{uij}}{\partial U_{u\cdot}} + \alpha_{u}U_{u\cdot}$$

$$= -\frac{1}{f\left(\hat{r}_{uij}\right)} f\left(\hat{r}_{uij}\right) f\left(-\hat{r}_{uij}\right) \frac{\partial f\left(\hat{r}_{ui}-\hat{r}_{uj}\right)}{\partial U_{u\cdot}} + \alpha_{u}U_{u\cdot}$$

$$= -f\left(-\hat{r}_{uij}\right) \frac{\partial f\left[\left(U_{u\cdot}V_{i\cdot}^T + b_i\right) - \left(U_{u\cdot}V_{j\cdot}^T + b_j\right)\right]}{\partial U_{u\cdot}} + \alpha_{u}U_{u\cdot}$$

$$= -f\left(-\hat{r}_{uij}\right) (V_{i\cdot} - V_{j\cdot}) + \alpha_{u}U_{u\cdot}$$

$$= -f\left(-\hat{r}_{uij}\right) (V_{i\cdot} - V_{j\cdot}) + \alpha_{u}U_{u\cdot}$$

Outline

• For the rest of parameters, we have the partial derivatives:

$$\nabla V_{i\cdot} = \frac{\partial \Phi_{uij}}{\partial V_{i\cdot}} = -f(-\hat{r}_{uij}) U_{u\cdot} + \alpha_v V_{i\cdot}$$
 (9)

$$\nabla V_{j\cdot} = \frac{\partial \Phi_{uij}}{\partial V_{j\cdot}} = -f(-\hat{r}_{uij})(-U_{u\cdot}) + \alpha_v V_{j\cdot}$$
 (10)

$$\nabla b_i = \frac{\partial \Phi_{uij}}{\partial b_i} = -f(-\hat{r}_{uij}) + \beta_v b_i \tag{11}$$

$$\nabla b_j = \frac{\partial \Phi_{uij}}{\partial b_j} = -f(-\hat{r}_{uij})(-1) + \beta_v b_j$$
 (12)

where $\hat{r}_{uij} = \hat{r}_{ui} - \hat{r}_{uj}$.

Update Rules

Outline

• For a randomly sampled triple (u, i, j), we have the update rules,

$$U_{u\cdot} = U_{u\cdot} - \gamma \bigtriangledown U_{u\cdot} \tag{13}$$

$$V_{i.} = V_{i.} - \gamma \bigtriangledown V_{i.} \tag{14}$$

$$V_{j.} = V_{i.} - \gamma \nabla V_{j.} \tag{15}$$

$$b_{i.} = b_{i} - \gamma \bigtriangledown b_{i} \tag{16}$$

$$b_{j.} = b_j - \gamma \bigtriangledown b_j \tag{17}$$

where γ is the learning rate.

The SGD algorithm for BPR

Algorithm 1: The SGD algorithm for BPR

```
1 initialize the model parameter \Theta;
  for t_1 = 1, \dots, T do
       for t_2 = 1, \dots, |\mathcal{P}| do
3
           Randomly pick up a pair (u, v_i) \in \mathcal{P};
4
           Randomly pick up an item v_i from \mathcal{I} \setminus \mathcal{I}_{i}^+;
5
           Calculate the gradients via Eq.(8-12);
6
           Update the model parameters via Eq.(13-17);
7
       end
8
9 end
```

Discussion about Randomly Sampling

• For a given training sample $(u, i, j) \in D_s$, the stochastic gradient of an arbitrary parameter $\theta \in \Theta$ is:

$$\frac{\partial L_{feedback}}{\partial \theta} = -f\left(-r_{uij}\right) \frac{\partial \left(r_{uij}\right)}{\partial \theta} = \left(f\left(r_{uij}\right) - 1\right) \frac{\partial \left(r_{uij}\right)}{\partial \theta} \tag{18}$$

• The massive training samples are inefficient to SGD.

how to select a reasonable negative item v_i ?

First ster

Outline

infer the event that user u_n selected item v_i happens on which category by the categorical distributions

Second step

select an item v_j with a high probability to be browsed by user u_m under the selected category.

how to select a reasonable negative item v_i ?

First step

Outline

infer the event that user u_m selected item v_i happens on which category by the categorical distributions.

Second step

select an item v_j with a high probability to be browsed by user u_m under the selected category.

how to select a reasonable negative item v_i ?

First step

Outline

infer the event that user u_m selected item v_i happens on which category by the categorical distributions.

Second step

select an item v_j with a high probability to be browsed by user u_m under the selected category.

Categorical Distribution

• The probability that the entity e_i belongs to the category $c \in C$:

$$p(c|e_i) \propto exp\left(\frac{y_{i,c}^e - \mu_c}{\sigma_c}\right)$$
 (19)

where $\mu_c = E\left(y_{*,c}^e\right)$ and $\sigma_c = Var\left(y_{*,c}^e\right)$ denote the empirical mean and variance over all entity factors, respectively.

Categorical Distribution

Outline

- It is assumed that the categorical distributions of users and items are independent.
- Then, the probability of observed user-item pair (u_m, v_i) associating with the category c could be derived to be a joint probability:

$$p(c|u_m, v_i) = p(c|u_m) p(c|v_i)$$
(20)

Rank-Invariant of Item List

Outline

• We adopt Geometric distribution to draw the item v_j from the ranking list of the category c:

$$p(v_j|c) \propto exp(-r(j)/\lambda), \lambda \in \mathbb{R}^+$$
 (21)

where r(j) denotes the ranking place of the item v_j , λ is a hyper-parameter which tunes the probability density.

Outline

• Based on the study of subspace learning, we can initialize the ranking lists according to content information of items.

Select a popular category

- According to Eq(20), user-item pairs could be arranged into categories.
- We further count the number of **observed user-item** pairs under each category, and update the category popularity indicator ρ .

Update the popular category

Outline

• In each iteration, we first sample a popular category c according to its popularity:

$$p(c|\rho) \propto exp\left(\frac{\rho_c - \mu}{\sigma}\right)$$
 (22)

where μ and σ denote the empirical mean and variance over the variable ρ , respectively.

• If the change of ranking score vector under category c is over given threshold δ , we update x_c by $y_{*,c}^v$.

Experiment

Figure: Adaptive sampling algorithm

Y۷

Experiment

Notations

Adaptive sampling algorithm

BPR

Algorithm 2: Content-aware and Adaptive sampling

- 1 Draw a popular category c from $p(c|\rho)$;
- 2 if $sim(x_c, y_{*c}^v) > \delta$ then
- Update x_c by y_{*c}^v ;
- Reorder items under c and update l_c ;
- 5 end
- 6 Draw $(u_m, v_i) \in \mathcal{P}$ uniformly;
- 7 Draw a category c from $p(c|u_m, v_i), (1 \le c \le k)$;
- 8 $\rho_c + +;$
- 9 Draw a rank r from $p(r) \propto exp(-r/\lambda), (1 \le c \le k);$

10
$$v_j \leftarrow \begin{cases} index\left(c,r\right) & if \ sgn\left(y_{m,c}^u\right) = 1\\ index\left(c,n-r-1\right) & else \end{cases}$$
;

Outline

• We present the objective function to learn the content-aware mappings:

$$L_{content} = ||A^e W^e - Y^e||_F^2 \tag{23}$$

where the matrix $A^e = [a_1^e, a_2^e, a_3^e, \dots]$ denotes the content features of entities, $W^e \in \mathbb{R}^{d^e \times k}$ denotes a mapping matrix, and k is the dimension of latent vectors.

Parameter inference of CA-BPR

• The overall objective function of CA-BPR with latent vectors and content-aware mappings is expressed as:

$$arg \min_{\Theta,W} L_{feedback} + L_{content} = -\sum_{(m,i,j)\in D_s} \ln f(r_{mij}) + \lambda \|\theta\|^2 + \|A^e W^e - Y^e\|_F^2 + \frac{1}{2} \sum_{e\in\{u,v\}} \lambda^e \|W^e\|_F^2$$
(24)

• Given a latent factor matrix Y^e , we view Y^e as pseudo labels and treat $L_{feedback}$ as a constant. Thus, the derivative of objective is

$$\frac{\partial L}{\partial W^e} = (A^e)^T (A^e W^e - Y^e) + \lambda^e W^e \tag{25}$$

Let $\frac{\partial L}{\partial W^e} = 0$, the updating rule for W^e can be derived as:

$$W^e = \left((A^e)^T A^e + \lambda^e \mathbb{E} \right) A^e Y^e \tag{26}$$

where $\mathbb{E} \in \mathbb{R}^{k \times k}$ is an identity matrix.

Algorithm 3: Learning paramters for BPR

input:

The observed user-item pair set S;

The feature matrix of items F:

The content features entities $A := \{A^u, A^v\};$

output:

$$\Theta := \{Y^u, Y^v\};$$

 $W := \{W^u, W^v\};$

- 1 initialize the model parameter Θ and W with uniform $(-\sqrt{6}/k, \sqrt{6}/k)$;
- 2 standarized Θ ;
- Initialize the popularity of categories ρ randomly;
- 4 repeat
- Draw a triple (m, i, j) with Algorithm 2; 5
- for each latent vector $\theta \in \Theta$ do 6
- $\theta \leftarrow \theta \eta \frac{\partial L}{\partial \theta}$ 7
- end 8
- for each $W^e \in W$ do 9
- Update W^e with the rule defined in Eq.26; 10
- end 11
- 12 until convergence;

Experiment

Outline

BPR-MF[Rendle et al., 2009] and CA-BPR[Guo et al., 2015]

Table: Characteristics of compared methods

Method	Content	Sampling
BPR-MF	no	uniform
CA-BPR	yes	non-uniform

Experiment

Outline

Table: The performence of approaches by MAP and NDCG.

BPR-MF	k=10	k=20	k=30	k=40	k=50
MAP	0.0879	0.0877	0.1043	0.0888	0.1074
NDCG@3	0.3051	0.3545	0.3398	0.2491	0.3790
NDCG@5	0.3616	0.4296	0.3708	0.2984	0.4153
NDCG@10	0.4120	0.4632	0.4010	0.3163	0.4458
NDCG@20	0.4121	0.4575	0.4164	0.3415	0.4323

CA-BPR	k=10	k=20	k=30	k=40	k=50
MAP	0.1074	0.1072	0.1274	0.1016	0.1229
NDCG@3	0.3790	0.4336	0.4152	0.3044	0.4631
NDCG@5	0.4153	0.4752	0.4531	0.3646	0.5074
NDCG@10	0.4458	0.5101	0.4900	0.3865	0.5447
NDCG@20	0.4323	0.4946	0.5088	0.4173	0.5282

Experiment

Figure: CA-BPR indeed performs better than BPR-MF.

Outline

Thank you!

Guo, W., Wu, S., Wang, L., and Tan, T. (2015).

Adaptive pairwise learning for personalized ranking with content and implicit feedback.

In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015, Singapore, December 6-9, 2015 - Volume I, pages 369-376.

Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press.