

Smart Mobile Platform Support Vector Machine (SVM)

Prof. Joongheon Kim Korea University, School of Electrical Engineering https://joongheon.github.io joongheon@korea.ac.kr

SVM (Outline)

Support Vector Machine (SVM)

- Main Idea
- Hyperplane in *n*-Dimensional Space
- Brief Introduction to Optimization for SVM
- SVM for Classification

Main Idea

How can we classify the give data?

Any of these would be fine. But which is the best?

Main Idea

Main Idea

- If linear decision surface does not exist, the data is mapped into a higher dimensional space (feature space) where the separating decision surface is found.
- The feature space is constructed via mathematical projection (kernel trick).

Classification (Outline)

Support Vector Machine (SVM)

- Main Idea
- Hyperplane in *n*-Dimensional Space
- Brief Introduction to Optimization for SVM
- SVM for Classification

Hyperplane in n-Dimensional Space

[Definition (Hyperplane)] A subspace of one dimension less than its ambient space, i.e., the hyperplane in n-dimensional space means the n-1 subspace.

Hyperplane in n-Dimensional Space

Equations of a Hyperplane

- An equation of a hyperplane is defined by a point (P_0) and a perpendicular vector to the plane (\vec{w}) at that point.
- Define vectors: \vec{x}_0 and \vec{x} where P is an arbitrary point on a hyperplane.
- A condition for P to be one the plane is that the vector $\vec{x} \vec{x}_0$ is perpendicular to \vec{w} :

• The above equations hold for \mathbb{R}^n when n > 3.

Hyperplane in n-Dimensional Space

Equations of a Hyperplane

$$\vec{x}_2 = \vec{x}_1 + t\vec{w}$$

$$D = ||t\vec{w}|| = |t|||\vec{w}||$$

$$\vec{w} \cdot \vec{x}_2 + b_2 = 0$$

$$\vec{w} \cdot (\vec{x}_1 + t\vec{w}) + b_2 = 0$$

$$\vec{w} \cdot \vec{x}_1 + t||\vec{w}||^2 + b_2 = 0$$

$$(\vec{w} \cdot \vec{x}_1 + b_1) - b_1 + t||\vec{w}||^2 + b_2 = 0$$

$$-b_1 + t||\vec{w}||^2 + b_2 = 0$$

$$t = (b_1 - b_2)/||\vec{w}||^2$$
Therefore, $D = |t|||\vec{w}|| = (b_1 - b_2)/||\vec{w}||$

Distance between two parallel hyperplanes $\vec{w} \cdot \vec{x} + b_1 = 0$ and $\vec{w} \cdot \vec{x} + b_2 = 0$ is equivalent to $D = \frac{|b_1 - b_2|}{||\vec{w}||}$.

Classification (Outline)

Support Vector Machine (SVM)

- Main Idea
- Hyperplane in *n*-Dimensional Space
- Brief Introduction to Optimization for SVM
- SVM for Classification

- Now, we understand
 - How to represent data (<u>vectors</u>)
 - How to define a linear decision surface (<u>hyperplane</u>)
- We need to understand
 - How to efficiently compute the hyperplane that separates two classes with the largest gap?

Convex Functions

- A function is called convex if the function lies below the straight line segment connecting two points, for any two points in the interval.
- Property: Any local minimum is a global minimum.

- Quadratic programming (QP)
 - Quadratic programming (QP) is a special optimization problem: the function to optimize (objective) is quadratic, subject to linear constraints.
 - Convex QP problems have convex objective functions.
 - These problems can be solved easily and efficiently by greedy algorithms (because every local minimum is a global minimum).

- Quadratic programming (QP)
 - [Example], Constrained Optimization, i.e., Lagrange Multiplier is required.

Consider
$$\vec{x}=(x_1,x_2)$$

Minimize $\frac{1}{2}||\vec{x}||_2^2$ subject to $x_1+x_2-1\geq 0$

Quadratic Objective Linear Constraints

Consider
$$\vec{x} = (x_1, x_2)$$

Minimize $\frac{1}{2}(x_1^2 + x_2^2)$ subject to $x_1 + x_2 - 1 \ge 0$

Quadratic Objective Linear Constraints

Classification (Outline)

Support Vector Machine (SVM)

- Main Idea
- Hyperplane in *n*-Dimensional Space
- Brief Introduction to Optimization for SVM
- SVM for Classification

- SVM for Classification
 - (Case 1) Linearly Separable Data; Hard-Margin Linear SVM
 - (Case 2) Not Linearly Separable Data; Soft-Margin Linear SVM
 - (Case 3) Not Linearly Separable Data; Kernel Trick

(Case 1) Linearly Separable Data; Hard-Margin Linear SVM

- Want to find a classifier (hyperplane) to separate negative instances from the positive ones.
- An infinite number of such hyperplanes exist.
- SVMs finds the hyperplane that maximizes the gap between data points on the boundaries (so-called support vectors).
- If the points on the boundaries are not informative (e.g., due to noise), SVMs will not do well.

• (Case 1) Linearly Separable Data; Hard-Margin Linear SVM

 The gap is distance between two parallel hyperplanes:

$$\vec{w} \cdot \vec{x} + b = -1$$
 and $\vec{w} \cdot \vec{x} + b = +1$

Now, we know that

$$D = \frac{|b_1 - b_2|}{\|\vec{w}\|}$$
, i.e., $D = \frac{2}{\|\vec{w}\|}$.

- Since we have to maximize the gap, we have to minimize $\|\vec{w}\|$.
- Or equivalently, we have to minimize $\frac{1}{2} ||\vec{w}||^2$.

(Case 1) Linearly Separable Data; Hard-Margin Linear SVM

• In addition, we need to impose constrains that all instances are correctly classified. In our case, $\vec{w} \cdot \vec{x}_i + b \le -1$ if $y_i = -1$ $\vec{w} \cdot \vec{x}_i + b \ge +1$ if $y_i = +1$., i.e., equivalently, $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$.

In summary,

• Minimize $\frac{1}{2} ||\vec{w}||^2$ subject to $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$, for $i = 1, \dots, N$

• (Case 2) Not Linearly Separable Data; Soft-Margin Linear SVM

 What if the data is not linearly separable? E.g., there are outliers or noisy measurements, or the data is slightly non-linear.

Approach

- Assign a <u>slack variable</u> to each instance $\xi_i \ge 0$, which can be thought of distance from the separating hyperplane if an instance is misclassified and 0 otherwise.
- Minimize $\frac{1}{2} ||\vec{w}||^2 + C \sum_{i=1}^{N} \xi_i$ subject to $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 \xi_i$, for $i = 1, \dots, N$

• (Case 3) Not Linearly Separable Data; Kernel Trick

Data is not linearly separable in the <u>input space</u>

Data is linearly separable in the <u>feature space</u> obtained by a kernel

