Pracovní úkoly

- 1. Proveď te energetickou kalibraci α -spektrometru a určete jeho rozlišení.
- 2. Určete absolutní aktivitu kalibračního radioizotopu ²⁴¹Am.
- 3. Změřte závislost ionizačních ztrát α -částic na tlaku vzduchu $\Delta T = \Delta T(P)$.
- 4. Určete specifické ionizační ztráty α -částic ve vzduchu při normálním tlaku dT/dx = f(T). Srovnejte tuto závislost se závislostí získanou pomocí empirické formule pro dolet α -částic ve vzduchu za normálních podmínek.
- 5. Určete energie α -částic vyletujících ze vzorku obsahujícím izotop ²³⁹Pu a příměs izotopu ²³⁸Pu a porovnejte je s tabelovanými hodnotami. Stanovte relativní zastoupení izotopu ²³⁸Pu ve vzorku s přesností lepší než 10%, jsou-li $T_{1/2}(^{238}Pu) = 87.71$ yr a $T_{1/2}(^{239}Pu) = 24.13 \cdot 10^3$ yr.

Teoretická část

Záření alfa je tvořeno jádry helia, které při průchodu látkou ztrácejí svou energii ionizováním látky, přičemž energetické ztráty jsou úměrné dráze uražené v látce [1]. Tuto energetickou ztrátu můžeme popsat specifickou ionizační ztrátou [1]:

$$f(T) = -\frac{\mathrm{d}T}{\mathrm{d}x} \tag{1}$$

Kde *T* je kinetická energie částice a *x* je uražená dráha v látce. Vzdálenost, na které částice ztratí veškerou počáteční energii a zastaví se, se nazývá zbytkový dolet *R*. Dolet alfa částic s počáteční kinetickou energií mezi 4 a 7 MeV ve vzduchu lze přibližně popsat empirickým vzorcem [1]:

$$R = \xi T_0^{\frac{3}{2}} \tag{2}$$

Kde $\xi = 0.31 \,\mathrm{cm} \cdot \mathrm{MeV}^{-\frac{3}{2}}$ a T_0 je počáteční kinetická energie. Ze vztahu (2) lze odvodit empirickou závislost specifických ionizačních ztrát na počáteční energii podle [1]:

$$f(T) = \frac{2}{3} \frac{1}{\xi \sqrt{T}} \tag{3}$$

Změnou tlaku vzduchu lze měnit efektivní dráhu částice ve vzduchu. Pokud je detektor umístěn ve vzdálenosti *l* od vzorku, pak pro efektivní vzdálenost *x* platí:

$$x = \frac{p}{p_a} \cdot l \tag{4}$$

Kde p je tlak vzduchu a p_a je atmosférický tlak.

Protože detektor má konečné rozměry, zachytí pouze část dopadajících částic. Absolutní aktivitu vzorku určíme z naměřené aktivity detektorem A_d pomocí následujícího vzorce:

$$A = 16\frac{l^2}{d^2}A_d \tag{5}$$

Kde *d* je průměr kruhového detektoru.

Pokud jsou ve vzorku přítomné dva různé izotopy, můžeme jejich poměr určit podle následujícího vzorce:

$$\frac{p_1}{p_2} = \frac{A_1 t_1}{A_2 t_2} \tag{6}$$

Kde p_1 je procentuální zastoupení prvního izotopu ve vzorku, p_2 je procentuální zastoupení druhého izotopu ve vzorku, A_1 je aktivita prvního izotopu, A_2 aktivita druhého, t_1 je poločas rozpadu prvního izotopu a t_2 je poločas druhého izotopu.

Výsledky měření

Tabulka 1: Energetické rozlišení

E [keV]	5485.74
Γ [keV]	98.66
⊿ [%]	1.8

Spektrometr jsme kalibrovali pomocí vzorku ²⁴¹Am při nulovém tlaku, přičemž jsme znali velikost energie nejvýraznějšího peaku. Jako druhý kalibrační bod jsme použili nulovou hodnotu energie v nulovém kanále. Energetické rozlišení jsme určili jako pološířku energetického píku ²⁴¹Am. Tabulka č. 1 obsahuje energii nejvýraznějšího píku vzorku, jeho pološířku a energetické rozlišení Δ vyjádřené v procentech.

Absolutní aktivitu vzorku jsme určili pomocí vzorce (5). Kde poloměr detektoru byl $d=(1.16\pm0.01)$ cm a vzdálenost vzorku od detektoru byla $l=(2.23\pm0.01)$ cm. V tabulce č. 2 je uvedena absolutní aktivita vzorku A, detekovaná aktivita A_d a chyba detekované aktivity. Chybu měření absolutní aktivity jsme určili metodou přenosu chyby při nepřímém měření.

Tabulka 2: Absolutní aktivita vzorku ²⁴¹Am

$A_{d} [s^{-1}]$	σ(A _d) [%]	A [s-1]	σ(A) [%]
115.31	0.54	6819	1.48

Graf č. 1 obsahuje závislost ionizačních ztrát na tlaku vzduchu $\Delta T = \Delta T(p)$. Graf č. 2 obsahuje závislost ionizačních ztrát na vzdálenosti, pro přepočet mezi tlakem a vzdálenosti jsme použili vzorec (4).

Graf 1: Ionizační ztráty v závislosti na tlaku vzduchu

Graf 2: Ionizační ztráty v závislosti na dráze

Tabulka 3: Fitování naměřených specifických ztrát

С	2.51
σ(C)	0.09
R	0.989

Specifické ionizační ztráty jsme spočetli numericky z naměřených dat. Následně jsme grafem proložili fit $y(x) = C \frac{1}{\sqrt{x}}$. Z konstanty C jsme určili hodnotu ξ . Tabulka č. 3 obsahuje konstantu C a její chybu, dále je v tabulce uveden koeficient věrohodnosti fitu. V grafu č. 3 jsou zjištěné hodnoty specifických ztrát proloženy našim fitem. V grafu je uvedena také teoretická závislost (3).

Graf 3: Specifické ionizační ztráty

Tabulka č. 4 obsahuje naměřené energie alfa částic z izotopů ²³⁸Pu a ²³⁹Pu a jejich tabulkové hodnoty zjištěné z [2, 3]. Pomocí (6) jsme zjistili, že ²³⁹Pu je ve vzorku 30509krát více než ²³⁸Pu. Poměr jsme určili s 5% nepřesností. Nepřesnost jsme určili metodou přenosu chyby při nepřímém měření.

Tabulka 4: Energie izotopů plutonia

T^{239} [keV]	$T_{tab}^{239} [\text{keV}]$	T ²³⁸ [keV]	T_{tab}^{238} [keV]
5268	5156	5622	5593

Diskuse

Největší problém při kalibraci spektrometru byl fakt, že pík vzorku ²⁴¹Am, který jsme použili pro kalibraci, byl složený z více píků, ale my jsme ho proložili jednou Gaussovou křivkou.

Pro určení absolutní aktivity bylo potřeba přesně změřit geometrické uspořádání experimentu, což se podařilo s dostatečnou přesností.

Závislost ionizačních ztrát na talku vzduchu je v souladu s teorií. S rostoucím tlakem ionizační ztráty rostou. Dále dochází ke zvětšování pološířky píku, což je způsobeno interakcemi alfa částic s látkou.

Specifické ionizační ztráty pro energii větší než 4 MeV v rámci přesnosti měření odpovídají empirické formuli. Pokud bychom použili pro fit v grafu 3 pouze data pro enrgie větší než 4 MeV získali bychom hodnotu $\xi = (0.287 \pm 0.003) \, \mathrm{cm} \cdot \mathrm{MeV}^{-\frac{3}{2}}$, což se liší od teoretické hodnoty o 7%.

Energie alfa částic z rozpadu izotopů plutonia se mírně liší od tabulkových, tento rozdíl může být způsoben chybou kalibrace.

Závěr

Spektrometr jsme okalibrovali pomocí alfa zářiče ²⁴¹Am a určili jeho energetické rozlišení jako 1.8%.

```
Absolutní aktivitu <sup>241</sup>Am jsme určili jako: A = (6818 \pm 100) \text{ s}^{-1}
```

Ionizační ztráty v závislosti na tlaku vzduchu odpovídají teoretickým předpokladům. Specifické ionizační ztráty jsou pro energie vyšší než 4 MeV dobře aproximované empirickou formulí (3).

Poměr mezi ²³⁹Pu a ²³⁸Pu jsme určili jako:
$$\frac{p_{239}}{p_{238}} = (30.5 \pm 1.4) \cdot 10^3$$

Literatura

- [1] Spektrometrie záření α. *Fyzikální praktikum* [online]. [cit. 21. 11. 2017]. Dostupné z: http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_405.pdf
- [2] Plutonium-238. *Wikipedia* [online]. [cit. 22. 11. 2017]. Dostupné z: https://en.wikipedia.org/wiki/Plutonium-238
- [3] Plutonium-239. *Wikipedia* [online]. [cit. 22. 11. 2017]. Dostupné z: https://en.wikipedia.org/wiki/Plutonium-239