# VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ STUDIJŲ PROGRAMA

# Medžiagų maišymo modeliavimas cheminėse reakcijose

# Modelling the mixing of reagents in chemical reactions

Kursinis darbas

Atliko: 4 kurso 3 grupės studentas

Arnas Vaicekauskas

Darbo vadovas: Asist. Dr. Rokas Astrauskas

# **Turinys**

| ĮV | ADAS                                                                                                                                                     | 3      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. | YAG REAKCIJOS MATEMATINIS MODELIAVIMAS  1.1. YAG sintezė.  1.2. Kietafazė reakcija                                                                       | 4      |
| 2. | MATEMATINIS MODELIS                                                                                                                                      | 5      |
| 3. | SKAITINIS MODELIS  3.1. Erdvės diskretizavimas  3.2. Dviejų dimensijų skaitinis modelis Dekarto koordinačių sistemoje  3.3. Modelio skaitinis stabilumas | 7<br>8 |
| 4. | PROGRAMOS SUDARYMAS IR REZULTATAI 4.1. Programos korektiškumo tikrinimas 4.2. Palyginimas su eksperimentiniais duomenimis.                               | 13     |
| 5. | MAIŠYMO MODELIAVIMAS                                                                                                                                     | 16     |
| RE | ZZULTATAI IR IŠVADOS                                                                                                                                     | 17     |
| čΔ | ITINIAI                                                                                                                                                  | 1 Q    |

# Įvadas

Itrio aliuminio granato YAG kristalai legiruoti su neodimiu arba kitais lantanoidais yra naudojami kaip kietakūnių lazerių aktyviosios terpės dėl savo geidžiamų optinių savybių. Šios medžiagos lazeriai yra dažnai taikomi gamybos ir medicinos srityse [DY08; VPB+21]. Šiai medžiagai sintezuoti yra žinoma keletas būdų, tačiau kietafazės reakcijos metodas yra lengviausiai pritaikomas pramoninei gamybai [BG07]. Praktikoje, YAG sintezė, kietafazės reakcijos metodu, užtrunka mažiausiai kelias valandas priklausomai nuo temperatūros, kurioje vykdomas atkaitinimo procesas [MIK+12]. Dėl šios priežasties kompiuterinis modelis galėtų padėti efektyviau suprasti kokią įtaką maišymas turi šiam procesui ir kaip jį galima būtų paspartinti.

Šio **darbo tikslas** yra sukurti kompiuterinį YAG reakcijos maišymo modelį ir jį ištirti. Iškelti darbo uždaviniai:

- 1. Sukurti kompiuterinį YAG reakcijos modelį
- 2. Patikrinti kompiuterinio modelio rezultatų korektiškumą ir palyginti juos su eksperimentiniais rezultatais
- 3. Papildyti kompiuterinį modelį su maišymo procesu
- 4. Ištirti kompiuterinio modelio rezultatus

## 1. YAG reakcijos matematinis modeliavimas

#### 1.1. YAG sintezė

YAG milteliai gali būti sintezuojami keleta skirtingų būdų: Zolis-Gelis procesu, nusodinimu, solvoterminiu procesu, terminio purškimo procesu bei kietafaze reakcija, kuri lieka viena dažniausiai taikomų dėl savo paprastumo bei galimybės pritaikyti masinei gamybai [ZLH+05].

#### 1.2. Kietafazė reakcija

Šiame darbe yra modeliuojama paskutinė kietafazės reakcijos stadija, kurios metu reaguodami itrio ir aliuminio oksidai sudaro itrio aliuminio granato kristalus arba tiesiog YAG:

$$3 Y_2 O_3 + 5 Al_2 O_3 \longrightarrow 2 Y_3 Al_5 O_{12}$$

Prieš pradedant reakciją metalų oksidai yra sutrinami iki smulkiagrūdžių miltelių. Metalų oksidų mišinys yra nuolat kaitinamas  $1600^{\circ}$ C laipsnių temperatūroje ir periodiškai maišomas. Eksperimentiniu būdu išmatuota,kad individualių dalelių turiai prie  $1600^{\circ}$ C temperatūros siekia apie  $\sqrt{10}\mu\text{m}^3$  [IKL09].



1 pav. Priartinto metalų oksidų mišinio iliustracija

Tokioje temperatūroje metalų oksidai lydosi ir vyksta difuzija, dėl šios priežasties cheminei reakcija yra modeliuojama su difuzijos-reakcijos sistema.

#### 2. Matematinis modelis

Šiame darbe yra naudojamas YAG reakcijos modelis, kurį pasiūlė Ivanauskas et al [IKL05]. Yra žinoma, kad reakcijos produktas yra kristalas ir nedifunduoja, todėl difuzijos dėmens trečioje lygtyje nėra. Šis matematinis modelis yra reakcijos-difuzijos sistema, kuriai spręsti naudojamas išreikštinių baigtinių skirtumų metodas [PTV<sup>+</sup>07]. Procesas yra modeliuojamas dviejose dimensijose - stačiakampio srityje.

$$\frac{\partial c_1}{\partial t} = -3kc_1c_2 + D\left(\frac{\partial^2 c_1}{\partial x^2} + \frac{\partial^2 c_1}{\partial y^2}\right) \qquad \qquad \Omega = (0, W) \times (0, H)$$
 (1a)

$$\frac{\partial c_2}{\partial t} = -5kc_1c_2 + D\left(\frac{\partial^2 c_2}{\partial x^2} + \frac{\partial^2 c_2}{\partial y^2}\right) \qquad (x,y) \in \Omega$$
 (1b)

$$\frac{\partial c_3}{\partial t} = 2kc_1c_2 \qquad \qquad t \in [0, T] \tag{1c}$$

Čia  $c_1,c_2,c_3$  yra medžiagų koncentracija, t – laikas, T – bedimensė proceso trukmė, W – bedimensis stačiakampio plotis, H – bedimensis stačiakampio aukštis, D – bedimensė medžiagų  $c_1$  ir  $c_2$  difuzijos konstanta, k – bedimensė reakcijos greičio konstanta,  $\Omega$  – stačiakampio sritis, kurioje vyksta reakcija. Srities  $\Omega$  kraštinę žymėsime  $\partial\Omega$ :

$$\partial\Omega = \{0, W\} \times [0, H] \cup [0, W] \times \{0, H\}$$

Šios sistemos modelis yra uždaras – medžiagos neprateka pro stačiakampio srities kraštinę  $\partial\Omega$ , t. y. taikoma Neumano kraštinė sąlygą:

$$\nabla c_m(x, y, t) \cdot \vec{n} = 0, \qquad (x, y) \in \partial \Omega \qquad t \in [0, T] \qquad m = 1, 2, 3 \qquad (2)$$

Čia  $\nabla c_m$  yra medžiagos  $c_m$  gradientas, o  $\vec{n}$  – paviršiaus  $\partial \Omega$  normalė. Išskleidus kraštinės sąlygas (2) dviejose dimensijose gauname:

$$\frac{\partial c_m}{\partial x}\Big|_{x=0} = \frac{\partial c_m}{\partial x}\Big|_{x=W} = 0 \quad y \in [0, H] \quad t \in [0, T] \quad m = 1, 2, 3$$

$$\frac{\partial c_m}{\partial y}\Big|_{y=0} = \frac{\partial c_m}{\partial y}\Big|_{y=H} = 0 \quad x \in [0, W] \quad t \in [0, T] \quad m = 1, 2, 3$$
(3)

Ruošiant medžiagas reakcijai yra sudaromas stoichiometrinis medžiagų mišinys, todėl matematiniam modeliui yra taikomos šios pradinės sąlygos:

$$c_{1}(x,y,0) = \begin{cases} 3c_{0}, & \text{jei } (x,y) \in \Omega_{1} \\ 0, & \text{kitaip} \end{cases} \qquad \Omega_{1} = \left(0, \frac{W}{2}\right] \times \left(0, \frac{H}{2}\right] \cup \left[\frac{W}{2}, W\right) \times \left[\frac{H}{2}, H\right)$$

$$c_{2}(x,y,0) = \begin{cases} 5c_{0}, & \text{jei } (x,y) \in \Omega_{2} \\ 0, & \text{kitaip} \end{cases} \qquad \Omega_{2} = \left(0, \frac{W}{2}\right) \times \left(\frac{H}{2}, H\right) \cup \left(\frac{W}{2}, W\right) \times \left(0, \frac{H}{2}\right) \qquad (4)$$

$$c_{3}(x,y,0) = 0 \qquad (x,y) \in \overline{\Omega} = \Omega \cup \partial\Omega$$

Čia  $3c_0$  ir  $5c_0$  atitinkamai yra medžiagų  $c_1$  ir  $c_2$  dalelių tankiai.



2 pav. Sistemos pradinės sąlygos srityje  $\Omega$ . Tamsesnė spalva žymį sritį  $\Omega_2$ , o šviesesnė  $\Omega_1$ 

## 3. Skaitinis modelis

#### 3.1. Erdvės diskretizavimas

Sudarydami tinklelį skaitiniam modeliui, padaliname stačiakampę erdvę  $\Omega$  į  $N \times M$  taškų, kurie yra nutolę vienas nuo kito fiksuotais atstumais  $\Delta x$  ir  $\Delta y$  atitinkamomis ašimis. Analogiškai, laiko erdvę [0,T] padalinsime į  $\tau+1$  taškų, kurie vienas nuo kito yra nutolę tolygiais  $\Delta t$  atstumais. Apibūdinta diskretų tinklelį galima užrašyti taip:

$$\omega_W = \{x_i : x_i = i\Delta x, \quad i = 0, 1, \dots, N - 1\}$$
  $(N - 1)\Delta x = W$  (5)

$$\omega_H = \{ y_j : y_j = j\Delta y, \quad j = 0, 1, \dots, M - 1 \}$$
  $(M - 1)\Delta y = H$  (6)

$$\omega_{\tau} = \{ t_n : t_n = n\Delta t, \quad n = 0, 1, \dots, \tau \}$$

$$\tau \Delta t = T$$
(7)

$$\omega = \omega_W \times \omega_H \times \omega_\tau \tag{8}$$



3 pav. Diskretizuota erdvė

#### 3.2. Dviejų dimensijų skaitinis modelis Dekarto koordinačių sistemoje

Remiantis išreikštiniu baigtinių skirtumų metodu pakeisime sistemos (1) lygtis su išvestinių aproksimacijomis gautomis skleidžiant išvestines pagal Teiloro eilutę.

$$\left. \frac{\partial c}{\partial t} \right|_{x=x_i, y=y_j, t=t_n} = \frac{c_{i,j}^{n+1} - c_{i,j}^n}{\Delta t} + \mathcal{O}(\Delta t)$$
(9a)

$$\frac{\partial^2 c}{\partial x^2}\Big|_{x=x_i, y=y_j, t=t_n} = \frac{c_{i-1,j}^n - 2c_{i,j}^n + c_{i+1,j}^n}{(\Delta x)^2} + \mathcal{O}((\Delta x)^2)$$
(9b)

$$\left. \frac{\partial^2 c}{\partial y^2} \right|_{x=x_i, y=y_j, t=t_n} = \frac{c_{i,j-1}^n - 2c_{i,j}^n + c_{i,j+1}^n}{(\Delta y)^2} + \mathcal{O}((\Delta y)^2)$$
(9c)

Įstate aproksimacijų išraiškas gauname dvimatį skaitini modelį:

$$\frac{c_{1,i,j}^{n+1} - c_{1,i,j}^n}{\Delta t} = -3kc_{1,i,j}^n c_{2,i,j}^n + D\left(\frac{c_{1,i-1,j}^n - 2c_{1,i,j}^n + c_{1,i+1,j}^n}{(\Delta x)^2} + \frac{c_{1,i,j-1}^n - 2c_{1,i,j}^n + c_{1,i,j+1}^n}{(\Delta y)^2}\right) \tag{10a}$$

$$\frac{c_{2,i,j}^{n+1} - c_{2,i,j}^n}{\Delta t} = -5kc_{1,i,j}^n c_{2,i,j}^n$$

$$+D\left(\frac{c_{2,i-1,j}^{n}-2c_{2,i,j}^{n}+c_{2,i+1,j}^{n}}{(\Delta x)^{2}}+\frac{c_{2,i,j-1}^{n}-2c_{2,i,j}^{n}+c_{2,i,j+1}^{n}}{(\Delta y)^{2}}\right)$$
(10b)

$$\frac{c_{3,i,j}^{n+1} - c_{3,i,j}^n}{\Delta t} = 2kc_{1,i,j}^n c_{2,i,j}^n, \tag{10c}$$

Čia  $\Delta t$  – laiko žingsnis,  $\Delta x$  – diskrečios erdvės žingsnis x ašimi,  $\Delta y$  – diskrečios erdvės žingsnis y ašimi.  $c_{1,i,j}^n$ ,  $c_{2,i,j}^n$ ,  $c_{3,i,j}^n$  – atitinkamai pirmos, antros ir trečios medžiagų koncentracijos diskretizuotos erdvės tinklelio taške  $(x_i,y_i,t_n)\in\omega$ .

#### 3.3. Modelio skaitinis stabilumas

Norint užtikrinti skaitinį programos stabilumą, reikia užtikrinti, kad visais laiko momentais, visuose diskretizuotos erdvės taškuose, visų medžiagų koncentracijos išliktų ne neigiamos. Šiai sąlygai išpildyti, užtenka pasirinkti pakankamai mažą laiko žingsnį  $\Delta t$ . Pirmiausia įvedame porą konstantų:

$$\mu_x = \frac{D\Delta t}{(\Delta x)^2}, \quad \mu_y = \frac{D\Delta t}{(\Delta y)^2}$$

Tada pertvarkome dviejų dimensijų skaitinį modelį (10) taip, kad kairėse lygčių pusėse liktų medžiagų koncentracija laiko momentu n+1, o dešinėse lygčių pusėse sugrupuojame narius pagal medžiagų koncentraciją skirtinguose diskretizuotos erdvės taškuose:

$$c_{1,i,j}^{n+1} = \underbrace{(1 - 3k\Delta t c_{2,i,j}^{n} - 2(\mu_x + \mu_y))}_{R_1} c_{1,i,j}^{n} + \mu_x c_{1,i-1,j}^{n} + \mu_x c_{1,i+1,j}^{n} + \mu_y c_{1,i,j-1}^{n} + \mu_y c_{1,i,j+1}^{n}$$
(11a)

$$c_{2,i,j}^{n+1} = \underbrace{\left(1 - 5k\Delta t c_{1,i,j}^{n} - 2(\mu_x + \mu_y)\right)}_{R_2} c_{2,i,j}^{n} + \mu_x c_{2,i-1,j}^{n} + \mu_x c_{2,i+1,j}^{n} + \mu_y c_{2,i,j-1}^{n} + \mu_y c_{2,i,j+1}^{n}$$
(11b)

$$c_{3,i,j}^{n+1} = c_{3,i,j}^n + 2k\Delta t c_{1,i,j}^n c_{2,i,j}^n$$
(11c)

Baziniu atveju, kai n=0, medžiagų koncentracija visuose taškuose yra ne neigiama, kaip numatyta pradinėje sąlygoje (4). Darome indukcijos hipotezės prielaidą, kad medžiagų koncentracija visuose diskretizuotos erdvės taškuose, laiko momentu n bus ne neigiama:

$$c_{m,i,j}^n \ge 0, \quad m = 1,2,3, \quad i = 0,1,\dots,N-1, \quad j = 0,1,\dots,M-1$$
 (12)

Akivaizdu, kad lygtyje (11c), medžiagos koncentracija  $c_{3,i,j}^{n+1}$  bus ne neigiama:

$$\Delta t > 0 \wedge c_{m,i,j}^n \geqslant 0 \implies c_{3,i,j}^{n+1} = c_{3,i,j}^n + 2\Delta t c_{1,i,j}^n c_{2,i,j}^n \geqslant 0$$

Pirmos medžiagos lygtyje (11a), galima pastebėti, kad dėmenys su medžiagų koncentracijomis iš aplinkinių diskretizuotos erdvės taškų visada bus ne neigiami dėl prielaidos (12) ir fakto, kad  $\mu_x > 0$  ir  $\mu_y > 0$ :

$$\mu_x c_{1,i-1,j}^n + \mu_x c_{1,i+1,j}^n + \mu_y c_{1,i,j-1}^n + \mu_y c_{1,i,j+1}^n \geqslant 0$$

Taigi,  $c_{1,i,j}^{n+1}$  ženklą lemia tik koeficientas  $R_1$ , todėl įvedame ribojimą, kad  $R_1 \geqslant 0$ . Analogiškai, iš antros medžiagos lygties (11b) gauname, kad  $R_2 \geqslant 0$  ir turime nelygybių sistemą:

$$\begin{cases} 1 - 3k\Delta t c_{2,i,j}^n - 2(\mu_x + \mu_y) \geqslant 0\\ 1 - 5k\Delta t c_{1,i,j}^n - 2(\mu_x + \mu_y) \geqslant 0 \end{cases}, \quad i = 0, 1, \dots, N - 1, \quad j = 0, 1, \dots, M - 1$$
 (13)

Išreiškę nelygybes (13) per laiko žingsnį  $\Delta t$  gauname:

$$\begin{cases}
\Delta t \leqslant (3kc_{2,i,j}^n + 2D((\Delta x)^{-2} + (\Delta y)^{-2}))^{-1} \\
\Delta t \leqslant (5kc_{1,i,j}^n + 2D((\Delta x)^{-2} + (\Delta y)^{-2}))^{-1}
\end{cases}$$
(14)

Gautas nelygybės galima apjungti dėl jų panašios struktūros. Norint, kad apjungta nelygybė tenkintų sistemą (14), reikia išrinkti mažiausią įmanomą laiko žingsnį  $\Delta t$ , o taip bus tada, kai trupmenos vardiklis bus kuo įmanoma didesnis. Dėl to gauta nelygybė įgaus formą:

$$\Delta t \leqslant \left( \max(3kc_{1,i,j}^n, 5kc_{1,i,j}^n) + 2D\left( (\Delta x)^{-2} + (\Delta y)^{-2} \right) \right)^{-1}$$
 (15)

Taigi, parodėme, kad su pakankamai mažu laiko žingsniu  $\Delta t$  išvengiame neigiamų sprendinio reikšmių. Tačiau čia sustoti būtų nenaudinga, nes turime rekursyvią priklausomybę – norint pasirinkti  $\Delta t$ , reikia žinoti maksimalią medžiagų reikšmę simuliacijoje, o jai sužinoti reikia atlikti simuliaciją su pasirinktu laiko žingsniu  $\Delta t$ .

Parodysime, kad galima panaikinti laiko žingsnio priklausomybę nuo laiko momento n ir kad  $\Delta t$  priklauso tik nuo pradinių sąlygų  $c_{1,i,j}^0$  ir  $c_{2,i,j}^0$ . Medžiagos kiekį sistemoje galima gauti integravus medžiagos koncentraciją erdvėje:

$$q = \int_{\Omega} cdV \tag{16}$$

Iš čia galime išvesti išraišką medžiagos kiekio pokyčiui per laiką:

$$\frac{\partial q}{\partial t} = \frac{\partial}{\partial t} \int_{\Omega} c dV = \int_{\Omega} \frac{\partial c}{\partial t} dV, \tag{17}$$

Įstatome pirmų dviejų medžiagų lygtis iš matematinio modelio (1) ir gauname lygtis pirmos  $q_1$  ir antros  $q_2$  medžiagos kiekio pokyčiams per laiką:

$$\frac{\partial q_1}{\partial t} = -3k \int_{\Omega} c_1 c_2 \, dV + D \int_{\Omega} \Delta c_1 \, dV = -3k \int_{\Omega} c_1 c_2 \, dV + D \int_{\Omega} \nabla \cdot (\nabla c_1) \, dV \tag{18}$$

$$\frac{\partial q_2}{\partial t} = -5k \int_{\Omega} c_1 c_2 dV + D \int_{\Omega} \Delta c_2 dV = -5k \int_{\Omega} c_1 c_2 dV + D \int_{\Omega} \nabla \cdot (\nabla c_2) dV \qquad (19)$$

Pagal Gauso-Ostrogradskio divergencijos teoremą ir kraštinę sąlygą (2) gauname, kad:

$$\int_{\Omega} \nabla \cdot (\nabla c_m) dV = \int_{\partial \Omega} \nabla c_k \cdot \vec{n} \, dS = 0, \quad m = 1,2$$
(20)

Todėl pirmos ir antros medžiagų kiekio pokytis per laiką bus ne teigiamas:

$$\frac{\partial q_1}{\partial t} = -3k \int_{\Omega} c_1 c_2 \, dV \leqslant 0 \tag{21a}$$

$$\frac{\partial q_2}{\partial t} = -5k \int_{\Omega} c_1 c_2 \, dV \leqslant 0 \tag{21b}$$

Tai reiškia, kad maksimalios pirmos ir antros medžiagų reikšmės bus laiko momente n=0, tad nelygybę galime suprastinti iki šios formos:

$$\Delta t \leqslant \left( \max(3kc_{1,i,j}^0, 5kc_{1,i,j}^0) + 2D\left( (\Delta x)^{-2} + (\Delta y)^{-2} \right) \right)^{-1}$$
 (22)

Laiko žingsnis čia vis dar priklauso nuo diskretizuotos erdvės koordinatės (i, j), tačiau tai nesunku pastebėti, kad užtenka parinkti didžiausią reikšmę iš kiekvienos pradinės sąlygos – tokiu būdu laiko žingsnis gausis mažiausias. Iš pradinės sąlygos (4) turime:

$$\max c_{1,i,j}^0 = 3c_0, \quad i = 0,1,\dots,N-1, \quad j = 0,1,\dots,M-1$$

$$\max c_{2,i,j}^0 = 5c_0, \quad i = 0,1,\dots,N-1, \quad j = 0,1,\dots,M-1$$

Taigi, kad simuliacija išliktų skaitiškai stabili, reikia, kad laiko žingsnis  $\Delta t$  tenkintų šią nelygybę.

$$\Delta t \le \left(15kc_0 + 2D\left((\Delta x)^{-2} + (\Delta y)^{-2}\right)\right)^{-1}$$
 (23)

## 4. Programos sudarymas ir rezultatai

Pagal dviejų dimensijų skaitinį modelį (10) sudarytas uždavinį sprendžiantis skriptas ir kiti pagalbiniai skriptai duomenims vaizduoti ir tikrinti. Skriptai rašomi *Python* programavimo kalba, naudojant *NumPy*, *SciPy*, *Matplotlib* paketus.

Modelio rezultatai yra saugomi kaip atskiri .npy formato failai, kurie yra skirti saugoti NumPy masyvus. Dėl praktinių rezultatų panaudojimo ir tyrimo nebūtina saugoti informacijos apie visus laiko žingsnius, todėl išsaugotuose rezultatų failuose, simuliacijos kadrai laiko kryptimi gali būti praretinti iki tūkstančio kartų, priklausomai nuo pasirinktų parametrų. Pagalbiniai duomenų vaizdavimo skriptai šiuos duomenis agreguoja į grafikus, kurie išsaugomi .png formatu.



4 pav. Kompiuterinio modelio rezultato pavyzdys.  $D=0.05, W=1, H=1, \Delta x=\frac{1}{99}, \Delta y=\frac{1}{99}, k=1, c_0=1, \Delta t$  - pasirinktas pagal (23)

#### 4.1. Programos korektiškumo tikrinimas

Nagrinėjant programos korektiškumą naudosime modelio rezultatų duomenis. Dėl didelės rezultatų dimensijos būtų sunku interpretuoti grafiškai pavaizduotus sprendinio duomenis, kaip 7-ame pavyzdyje, todėl vietoje tokių grafikų, tyrinėsime medžiagų kiekius sistemoje. Galime išskleisti formulę medžiagos kiekiui bendru atveju (16) ir gausime formulę diskrečiam atvejui:

$$q(t) = \int_{\Omega} c \, dV = \int_{0}^{W} \int_{0}^{H} c(x, y, t) \, dy \, dx \tag{24}$$

Pakeičiam dvigubą integralą su Rymano suma ir gaunam, kad medžiagos  $c_m$  kiekis diskrečiu laiko momentu n yra:

$$q_{m,n} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} c_{m,i,j}^n \frac{W \cdot H}{N \cdot M} \quad m = 1, 2, 3$$
 (25)

Norint nustatyti, ar programa veikia korektiškai galima tikrinti, ar mažinant žingsnių dydį, skaitinis sprendinys artėja prie tikrojo sprendinio. Šiuo atveju mažinsime erdvės žingsnius  $\Delta x$  ir  $\Delta y$ . Tai lemia diskretaus tinklelio taškų kiekio padidėjimą, nes egzistuoja atvirkštinė priklausomybė tarp erdvinių žingsnių dydžio ir diskrečių taškų kiekio atitinkamomis ašimis (5, 6).



5 pav. Kompiuterinio modelio rezultatai – medžiagų kiekių priklausomybė nuo laiko. Čia  $\tau=3.6\times10^5,\,D=0.05,\,W=1,\,H=1,\,k=1,\,c_0=1,\,\Delta t=1\times10^{-5},\,\Delta x,\,\Delta y$  – kintami ir priklauso nuo N bei M

Iš grafiko galima matyti, kad eksponentiškai didinant diskrečių taškų skaičių sprendinių grafikai duoda vis tikslesnius rezultatus. Deja, kažkuriuo momentu diskrečios erdvės taškų didinimas nebeduoda ypatingai didelių rezultato pagerėjimų, taip yra todėl, išreikštinių skirtumų metodo paklaida yra antros eilės pagal erdvinius žingsnius  $\Delta x$  ir  $\Delta y$  (9). Grafikuose taip galima įžvelgti, kad pirmų dviejų medžiagų kiekiai per laiką griežtai ne mažėja – tai mes teoriškai parodėme (21), taip, žinoma, yra dėl medžiagų reakcijos.

Jei reakcijos koeficientas būtų lygus nuliui, vienintelis sistemoje vykstantis procesas būtų pirmų dviejų medžiagų difuzija. Jei skaitinis modelis veikia korektiškai, rezultatuose turėtų būti galima matyti, kad difuzijos metu medžiagos kiekis sistemoje nekinta, tai teoriškai parodėme skyriuje apie skaitinį stabilumą (20).



6 pav. Kompiuterinio modelio rezultatai – medžiagų kiekių priklausomybė nuo laiko, kai reakcija nevyksta.  $D=0.05,\,W=1,\,H=1,\,\Delta x=\frac{1}{79},\,\Delta y=\frac{1}{79},\,k=0,\,c_0=1,\,\Delta t=1\times 10^{-5}$ 

Šiuo atveju kompiuterinės programos rezultatai yra būtent tokie, kokių tikėjomės, tačiau iš šio grafiko negalime užtikrinti, kad simuliacijoje išvis kažkas vyksta. Norint patikrinti, ar medžiagos difunduoja korektiškai galime pabandyti pavaizduoti medžiagų kiekį visoje srityje  $\Omega$  kaip rezultatų pavyzdyje (7).



7 pav. Kompiuterinio modelio rezultato pavyzdys, kai vyksta tik difuzija.  $D=0.05,~W=1,~H=1,~\Delta x=\frac{1}{79},~\Delta y=\frac{1}{79},~k=0,~c_0=1,~\Delta t=1\times 10^{-5}$ 

Čia akivaizdžiai galime matyti, kad medžiagų difuzija vyksta ir einant laikui medžiagos tolygiai pasiskirsto po erdvę.

4.2. Palyginimas su eksperimentiniais duomenimis

- 5. Maišymo modeliavimas
- 5.1. Maišymo proceso modelis
- 5.2. Maišymo procesu papildytos programos rezultatų analizė

# Rezultatai ir išvados

# Šaltiniai

- [BG07] S. Bhattacharyya, S. Ghatak. Methods of Synthesis of Y3AI5O12 (YAG)—A Review. Transactions of the Indian Ceramic Society. 2007, tomas 66, numeris 2, p.p. 77–84 [žiūrėta 2024–11–28]. ISSN 0371–750X. Prieiga per internetą: https://doi.org/10.1080/0371750X.2007.11012253.
- [DY08] A. K. Dubey, V. Yadava. Experimental Study of Nd:YAG Laser Beam Machining—An Overview. *Journal of Materials Processing Technology*. 2008, tomas 195, numeris 1, p.p. 15–26 [žiūrėta 2024–11–26]. ISSN 0924–0136. Prieiga per internetą: https://doi.org/10.1016/j.jmatprotec.2007.05.041.
- [IKL05] F. Ivanauskas, A. Kareiva, B. Lapcun. On the Modelling of Solid State Reactions.Synthesis of YAG. *Journal of Mathematical Chemistry*. 2005, tomas 37, numeris 4, p.p. 365–376 [žiūrėta 2024–10–20]. ISSN 1572–8897. Prieiga per internetą: https://doi.org/10.1007/s10910-004-1103-2.
- [IKL09] F. Ivanauskas, A. Kareiva, B. Lapcun. Computational Modelling of the YAG Synthesis. *Journal of Mathematical Chemistry*. 2009, tomas 46, numeris 2, p.p. 427–442 [žiūrėta 2024–10–20]. ISSN 1572–8897. Prieiga per internetą: https://doi.org/10.1007/s10910–008–9468–2.
- [MIK+12] M. Mackevičius, F. Ivanauskas, A. Kareiva, D. Jasaitis. A Closer Look at the Computer Modeling and Sintering Optimization in the Preparation of YAG. *Journal of Mathe-matical Chemistry*. 2012, tomas 50, numeris 8, p.p. 2291–2302 [žiūrėta 2024-10-17]. ISSN 1572-8897. Prieiga per internetą: https://doi.org/10.1007/s10910-012-0031-9.
- [PTV<sup>+</sup>07] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. *Numerical Recipes* 3rd Edition: The Art of Scientific Computing. 3 leidimas. USA: Cambridge University Press, 2007. ISBN 978-0-521-88068-8.
- [VPB+21] C. Valenti, S. Pagano, S. Bozza, E. Ciurnella, G. Lomurno, B. Capobianco, M. Coniglio, S. Cianetti, L. Marinucci. Use of the Er:YAG Laser in Conservative Dentistry: Evaluation of the Microbial Population in Carious Lesions. *Materials*. 2021, tomas 14, numeris 9, p. 2387 [žiūrėta 2024-11-26]. ISSN 1996-1944. Prieiga per interneta: https://doi.org/10.3390/ma14092387.
- [ZLH+05] X. Zhang, H. Liu, W. He, J. Wang, X. Li, R. I. Boughton. Novel Synthesis of YAG by Solvothermal Method. *Journal of Crystal Growth*. 2005, tomas 275, numeris 1, e1913—e1917 [žiūrėta 2024–11–03]. ISSN 0022–0248. Prieiga per internetą: https://doi.org/10.1016/j.jcrysgro.2004.11.274.