Computational Intelligence Definition Sheet

Thomas Gabor LMU Munich Maximilian Zorn LMU Munich

Claudia Linnhoff-Popien LMU Munich

winter term 2023/2024

Notation. \mathbb{B} is the set of truth values or Booleans, i.e., $\mathbb{B} = \{0,1\}$. \mathbb{N} is the set of natural numbers starting from zero, i.e., $\mathbb{N} = \{0,1,2,...\}$ so that it holds that $\mathbb{B} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{R} \subset \mathbb{C}$. \mathbb{P} denotes the space of probabilities and \mathbb{F} denotes the space of fuzzy values with $\mathbb{P} = \mathbb{F} = [0;1] \subset \mathbb{R}$ being only discerned for semantic but not mathematical reasons.

 $\wp(X)$ denotes the power set of X. $\mathbb E$ denotes the expected value. + denotes vector or sequence concatenation, i.e., given two vectors $\mathbf x = \langle x_1,...,x_{|\mathbf x|} \rangle$ and $\mathbf y = \langle y_1,...,y_{|\mathbf y|} \rangle$, $\mathbf x + \mathbf y = \langle x_1,...,x_{|\mathbf x|},y_1,...,y_{|\mathbf y|} \rangle$. A vector $\langle x_0,...,x_{n-1} \rangle$ with length $n \in \mathbb N$ can also be written as $\langle x_i \rangle_{0 \leq i \leq n-1}$ for a new iteration variable i. denotes unspecified function arguments $(f(\cdot) = 0)$ is the constant function that always returns zero, e.g.). For any finite set $X = \{x_0,...,x_n\}$, |X| = n denotes the number of elements in X. For infinite sets, $|X| = \infty$.

Definition 1 (agent). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. An agent A can be given via a policy function $\pi: \mathcal{O} \to \mathcal{A}$. Given a time series of observations $\langle o_t \rangle_{t \in \mathcal{Z}}$ for some time space \mathcal{Z} the agent can thus generate a time series of actions $\langle a_t \rangle_{t \in \mathcal{Z}}$ by applying $a_t = \pi(o_t)$.

Algorithm 1 (brute force (policy)). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. Let $\Gamma \subseteq (\mathcal{O} \to \mathcal{A}) \to \mathbb{B}$ be a space of goal predicates on policy functions. Let $\gamma \in \Gamma$ be a goal predicate. We assume that the policy space $\Pi \subseteq \mathcal{O} \to \mathcal{A}$ is enumerable, i.e., $\Pi = \langle \pi_i \rangle_{i \in \mathbb{N}}$. Brute force starting from i is given via the function

$$b(i) = \begin{cases} \pi_i & \text{if } \gamma(\pi_i), \\ b(i+1) & \text{otherwise.} \end{cases}$$

If not further specified, the call to b(0) is called brute force search for an agent policy. Usually, an additional termination condition is specified.

Algorithm 2 (random search (policy)). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. Let $\Gamma \subseteq (\mathcal{O} \to \mathcal{A}) \to \mathbb{B}$ be a space of goal predicates on policy functions. Let $\gamma \in \Gamma$ be a goal predicate. We assume that the policy space $\Pi \subseteq \mathcal{O} \to \mathcal{A}$ can be sampled from, i.e., $\pi \sim \Pi$ returns a random element from Π . Random search for n samples is given via the function

$$\rho(n) = \begin{cases} \emptyset & \text{if } n = 0, \\ \pi & \text{if } n > 0 \text{ and } \gamma(\pi) \text{ where } \pi \sim \Pi, \\ \rho(n-1) & \text{otherwise.} \end{cases}$$

Definition 2 (optimization). Let \mathcal{X} be an arbitrary state space. Let \mathcal{T} be an arbitrary set called target space and let \leq be a total order on \mathcal{T} . A total function $\tau: \mathcal{X} \to \mathcal{T}$ is called target function. Optimization (minimization/maximization) is the procedure of searching for an $x \in \mathcal{X}$ so that $\tau(x)$ is optimal (minimal/maximal). Unless stated otherwise, we assume minimization. An optimization run of length g+1 is a sequence of states $\langle x_t \rangle_{0 \leq t \leq g}$ with $x_t \in \mathcal{X}$ for all t.

Let $e: \langle \mathcal{X} \rangle \times (\mathcal{X} \to \mathcal{T}) \to \mathcal{X}$ be a possibly randomized or non-deterministic function so that the optimization run $\langle x_t \rangle_{0 \leq t \leq g}$ is produced by calling e repeatedly, i.e., $x_{t+1} = e(\langle x_u \rangle_{0 \leq u \leq t}, \tau)$ for all $t, 1 \leq t \leq g$, where x_0 is given externally (e.g., $x_0 =_{def} 42$) or chosen randomly (e.g., $x_0 \sim \mathcal{X}$). An optimization process is a tuple $(\mathcal{X}, \mathcal{T}, \tau, e, \langle x_t \rangle_{0 \leq t \leq g})$.

Definition 3 (optimization (policy)). Let $\mathcal{X} = \Pi$ be a policy space. Let $\mathcal{D} = (\Pi, \mathcal{T}, \tau, e, \langle x_t \rangle_{0 \leq t \leq g})$ be an optimization process according to Definition 2. \mathcal{D} is called a policy optimization process.

Algorithm 3 (simulated annealing). Let $\mathcal{D} = (\mathcal{X}, \mathcal{T}, \tau, e, \langle x_u \rangle_{0 \leq u \leq t})$ be an optimization process. Let *neighbors* : $\mathcal{X} \to \wp(\mathcal{X})$ be a function that returns a set of neighbors of a given state $x \in \mathcal{X}$. Let $\kappa : \mathbb{N} \to \mathbb{R}$ be a temperature schedule, i.e., a function that returns a temperature value for each time step. Let $A : \mathcal{T} \times \mathcal{T} \times \mathbb{R} \to \mathbb{P}$ with $\mathbb{P} = [0;1] \subset \mathbb{R}$ be a function that returns an acceptance probability given two target values and a temperature. Commonly, we use

$$A(Q, Q', K) = e^{\frac{-(Q'-Q)}{K}}$$

for $\mathcal{T} \subseteq \mathbb{R}$. The process \mathcal{D} continues via simulated annealing if e is of the form

$$e(\langle x_u \rangle_{0 \le u \le t}, \tau) = x_{t+1} = \begin{cases} x'_t & \text{if } \tau(x'_t) \le \tau(x_t) \text{ or } r \le A(\tau(x_t), \tau(x'_t), \kappa(t)), \\ x_t & \text{otherwise,} \end{cases}$$

where $x'_t \sim neighbors(x_t)$ and $r \sim \mathbb{P}$ are drawn at random for each call to e.

Definition 4 (population-based optimization). Let \mathcal{X} be a state space. Let \mathcal{T} be a target space with total order \leq . Let $\tau: \mathcal{X} \to \mathcal{T}$ be a target function. A tuple $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_t \rangle_{0 \leq t \leq g})$ is a population-based optimization process iff $X_t \in \wp^*(\mathcal{X})$ for all t and $E: \langle \wp^*(\mathcal{X}) \rangle \times (\mathcal{X} \to \mathcal{T}) \to \wp^*(\mathcal{X})$ is a possibly randomized, non-deterministic, or further parametrized function so that the population-based optimization run is produced by calling E repeatedly, i.e., $X_{t+1} = E(\langle X_u \rangle_{0 \leq u \leq t}, \tau)$ where X_0 is given externally or chosen randomly.

Definition 5 (population-based optimization (alternate)). An optimization process $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_t \rangle_{0 \leq t \leq g})$ is called population-based iff \mathcal{X} has the form $\mathcal{X} = \wp^*(\mathcal{Y})$ for some other state space \mathcal{Y} .

Algorithm 4 (basic evolutionary algorithm). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_u \rangle_{0 \leq u \leq t})$ be a population-based optimization process. The process \mathcal{E} continues via an evolutionary algorithm if E has the form

$$E(\langle X_u \rangle_{0 \le u \le t}, \tau) = X_{t+1} = selection(X_t \uplus variation(X_t))$$

where selection and variation are possibly randomized or non-deterministic functions so that for any $X \in \wp^*(\mathcal{X})$ it holds that $|selection(X)| \leq |X|$ and $|selection(X \uplus variation(X))| = |X|$.

Theorem 1 (no free lunch [1, 5]). As measured by sample efficiency, i.e., the achieved minimal value of τ per evaluations of $\tau(x)$ for some new $x \in \mathcal{X}$ for finite \mathcal{X} , all optimization algorithms perform the same when averaged over all possible target functions τ . So, for any search/optimization algorithm, any elevated performance over one class of problems is exactly paid for in performance over another class.

Definition 6 (multi-objective optimization). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_u \rangle_{0 \leq u \leq t})$ be an optimization process. \mathcal{E} is a multi-objective optimization process iff the target space \mathcal{T} has the form $\mathcal{T} = \mathcal{T}_0 \times \cdots \times \mathcal{T}_{N-1}$ for some $N \in \mathbb{N}$ with $<_i$ being a total order on \mathcal{T}_i for any $i \in [0; N-1] \subset \mathbb{N}$. Unless stated otherwise, we assume that no single total order on \mathcal{T} is available. However, we can construct a partial order \prec between target values $g, g' \in \mathcal{T}$ so that

$$(g_0, ..., g_{N-1}) \prec (g'_0, ..., g'_{N-1}) \iff \forall i \in [0; N-1] \subset \mathbb{N} : g_i < g'_i,$$

which is sufficient to adapt many standard optimization algorithms.

Definition 7 (Pareto front for optimization). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, E, \langle X_u \rangle_{0 \leq u \leq t})$ be a multi-objective optimization process with \prec being a partial order on the multi-objective target space \mathcal{T} .

- A solution candidate x Pareto-dominates a solution candidate x', written $x \prec x'$ (assuming minimization), iff $\tau(x) \prec \tau(x')$.
- A solution candidate x is Pareto-optimal if there exists no other solution candidate $x' \in \mathcal{X}$ so that $x' \prec x$.
- The set of all Pareto-optimal solution candidates in \mathcal{X} is called the Pareto front of \mathcal{X} (w.r.t. \prec).

Algorithm 5 (gradient descent). Let $\mathcal{E} = (\mathcal{X}, \mathcal{T}, \tau, e, \langle x_u \rangle_{0 \leq u \leq t})$ be an optimization process. Let \mathcal{T} be continuous ($\mathcal{T} = \mathbb{R}$, e.g.) and let $\tau' : \mathcal{X} \to \mathcal{T}$ be the first derivative of τ . The process \mathcal{E} continues via gradient descent (with learning rate $\alpha \in \mathbb{R}^+$) if e is of the form

$$e(\langle x_u \rangle_{0 \le u \le t}, \tau) = x_{t+1} = x_t - \alpha \cdot \tau'(x_t).$$

The learning rate α can also be given as a function, usually $\alpha : \mathbb{N} \to \mathbb{R}$, so that $e(\langle x_u \rangle_{0 \le u \le t}, \tau) = x_{t+1} = x_t - \alpha(t) \cdot \tau'(x_t)$.

If the computation of τ' is stochastic, usually because it is derived from a stochastic sampling of data points, this process is called stochastic gradient descent (SGD).

Algorithm 6 (gradient descent (policy)). Let π_{θ} be a policy π that depends on a vector of continuous parameters $\theta \in \Theta$, usually with $\Theta = \mathbb{R}^N$ for some N. Let $\tau : \Theta \to \mathcal{T}$ be a target function on the parameters θ of a policy π_{θ} . Let \mathcal{T} be continuous ($\mathcal{T} = \mathbb{R}$, e.g.) and let $\tau' : \Theta \to \mathcal{T}$ be the first derivative of τ , i.e., $\tau'(\theta) = \frac{\partial \tau(\theta)}{\partial \theta}$. If $\mathcal{E} = (\Theta, \mathcal{T}, \tau, e, \langle x_u \rangle_{0 \leq u \leq t})$ is an optimization process that continues via gradient descent, \mathcal{E} is a process of policy optimization via gradient descent.

Definition 8 (neural network). A neural network (NN) is a function $\mathcal{N}: \mathbb{R}^p \to \mathbb{R}^q$ with p inputs and q outputs. This function is defined via a graph made up of r layers $L_1, ..., L_r$ where each layer L_l consists of $|L_l|$ cells $C_{l,1}, ..., C_{l,|L_l|}$, which make up the graph's vertices, and each cell $C_{l,c}$ of the layer L_l is connected to all cells of the previous layer, i.e., $C_{l-1,d}$ for $d=1,...,|L_{l-1}|$, via the graph's edges. Each edge of a cell $C_{l,c}$ is assigned an edge weight $E_{l,c,e} \in \mathbb{R}, e=1,...,|L_{l-1}|$. Given a fixed graph structure and activation function $f:\mathbb{R}\to\mathbb{R}$, the vector of all edge weights

$$\mathbf{w} = \langle E_{l,c,e} \rangle_{l=1,...,r, c=1,...,|L_l|, e=1,...,|L_{l-1}|}$$

and the vector of all cell biases

$$\mathbf{b} = \langle B_{l,c} \rangle_{l=1,...,r, c=1,...,|L_l|}$$

with $B_{l,c} \in \mathbb{R}$ define the network's functionality. The combined vector $\overline{\mathcal{N}} = \mathbf{w} + \mathbf{b}$ is called the network \mathcal{N} 's parameters.

A network's output given an input $\mathbf{x} \in \mathbb{R}^p$ is given via

$$\mathbf{y} = \mathcal{N}(\mathbf{x}) = \langle O(r,c) \rangle_{c=1,\dots,|L_r|} \in \mathbb{R}^q$$
where $O(l,c) = \begin{cases} x_c & \text{if } l = 0, \\ f(B_{l,c} + \sum_{i=1}^{|L_{l-1}|} E_{l,c,i} \cdot O(l-1,i)) & \text{otherwise.} \end{cases}$

Theorem 2 (Kolmogorov-Arnold representation [4]). Any continuous function $f: \mathbb{R}^n \to \mathbb{R}$ for some $n \in \mathbb{N}$ can be written as a finite composition of continuous functions of a single variable $(f_i: \mathbb{R} \to \mathbb{R} \text{ for } i \in \mathbb{R}, 1 \leq i \leq n \text{ for some } n \in \mathbb{N})$ and addition $(\underline{\ } + \underline{\ } : \mathbb{R} \times \mathbb{R} \to \mathbb{R})$.

Definition 9 (decision process). Let \mathcal{A} be a set of actions. Let \mathcal{O} be a set of observations. Let A be an agent given via a policy function $\pi: \mathcal{O} \to \mathcal{A}$. Let $R: \mathcal{A} \to \mathcal{T}$ be a possibly randomized, non-deterministic, or hidden-state cost (reward) function. A decision process is given by a tuple $(\mathcal{O}, \mathcal{A}, \mathcal{T}, e, R)$ where e generates new observations given the agent's previous actions.

A decision process run for policy π is a tuple $(\mathcal{O}, \mathcal{A}, \mathcal{T}, \tau, \pi, \langle o_t \rangle_{t \in \mathcal{Z}}, \langle a_t \rangle_{t \in \mathcal{Z}})$ where τ is to be minimized (maximized) and usually has a form similar to

$$accumulated\ cost\ (reward)\ \tau(\pi) =_{def}\ \sum_{t\in\mathcal{Z}} R(a_t)$$
 or discounted expected cost (reward)
$$\tau(\pi) =_{def}\ \mathbb{E}\Big[\sum_{t\in\mathcal{Z}} \gamma^t \cdot R(a_t)\Big]$$

where $\gamma \in [0; 1] \subset \mathbb{R}$ is called a discount factor.

A decision process run generates a (possibly infinite) series of rewards $\langle r_t \rangle_{t \in \mathbb{Z}}$ with $r_t = R(a_t)$.

Definition 10 (Markov decision process (MDP)). Let \mathcal{A} be a set of actions. Let \mathcal{S} be a set of states. Let A be an agent given via a policy function $\pi : \mathcal{S} \to \mathcal{A}$. Let $R : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathcal{T}$ be a possibly randomized *cost* (*reward*) function. A Markov decision process is a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{T}, P, R)$ where $P : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{P}$ is the *transition probability function* often written as $P(s'|s, a) = \Pr(s_{t+1} = s' \mid s_t = s \land a_t = a)$.

A Markov decision process run for policy π is a tuple $(S, A, T, \tau, \pi, \langle s_t \rangle_{t \in Z}, \langle a_t \rangle_{t \in Z})$ where

$$s_{t+1} \sim P(s_{t+1}|s_t, a_t)$$

and where τ is to be minimized (maximized) and usually has a form similar to

$$accumulated\ cost\ (reward)\ \tau(\pi) =_{def}\ \sum_{t\in\mathcal{Z}} R(s_t,a_t,s_{t+1})$$
 or discounted expected cost (reward)
$$\tau(\pi) =_{def}\ \mathbb{E}\Big[\sum_{t\in\mathcal{Z}} \gamma^t \cdot R(s_t,a_t,s_{t+1})\Big]$$

where $\gamma \in [0; 1] \subset \mathbb{R}$ is called a discount factor.

A decision process generates a (possibly infinite) series of rewards $\langle r_t \rangle_{t \in \mathcal{Z}}$ with $r_t = R(s_t, a_t, s_{t+1})$.

Algorithm 7 (optimal policy). Let $V^*: \mathcal{S} \to \mathcal{T}$ be the *true value function* of a Markov decision process $(\mathcal{S}, \mathcal{A}, \mathcal{T}, P, R)$. The optimal policy $\pi^*: \mathcal{S} \to \mathcal{A}$ is given via

$$\pi^*(s_t) = \operatorname*{arg\,max}_{a \in \mathcal{A}} V^*(s')$$

where $s' \sim P(s'|s_t, a)$ is the follow-up state when executing action a in state s_t .

Theorem 3 (Bellman equation). Let (S, A, T, P, R) be a Markov decision process. Let $R: S \times A \to T$ be the expected reward of executing an action in a given state, i.e., $R(s, a) = \mathbb{E}[R(s, a, s')]$ where $s' \sim P(s'|s, a)$. Let $\gamma \in [0; 1) \subseteq \mathbb{R}$ be a temporal discount factor.

The expected reward of a policy π being executed starting from state s is given via π 's value function

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \cdot \sum_{s' \in S} P(s'|s, \pi(s)) \cdot V^{\pi}(s').$$

The value function of the optimal policy π^* is given via

$$V^{\pi^*}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \cdot \sum_{s' \in S} P(s'|s, a) \cdot V^{\pi^*}(s') \right).$$

Definition 11 (training of a neural network). Let $\mathcal{N}: \mathbb{R}^p \to \mathbb{R}^q$ be a neural network with n weights $\overline{\mathcal{N}} = \mathbf{w} + \mathbf{b} \in \mathbb{R}^n$ as in Definition 8. Note that thus $|\overline{\mathcal{N}}| = n$. Let $\tau: \mathbb{R}^n \to \mathbb{R}$ be a target function as in Definition 2. Note that thus $\mathcal{T} = \mathbb{R}$. The process of optimizing the network weights $\overline{\mathcal{N}}$ so that $\tau(\overline{\mathcal{N}})$ becomes minimal is called training.

• Let $\mathbb{T} = \{(\mathbf{x}_i, \mathbf{y}_i) : i = 1, ..., N\}$ be a set of N points of training data, where $\mathbf{x}_i \in \mathbb{R}^p, \mathbf{y}_i \in \mathbb{R}^q$ for all i. If τ is of the form

$$au(\overline{\mathcal{N}}) = \sum_{i=1}^{N} (\mathcal{N}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

or a similar form, the process of training \mathcal{N} is called supervised learning.

• Let $(\mathcal{O}, \mathcal{A}, \mathcal{T}, e, R)$ be a decision process (cf. Definition 9) for which policy $\pi_{\overline{\mathcal{N}}}: \mathcal{O} \to \mathcal{A}$ yields (possibly randomized or non-deterministic) rewards $\langle r_t \rangle_{t \in \mathcal{Z}}$. Note that $\pi_{\overline{\mathcal{N}}}$ in some way calls \mathcal{N} to produce its output, for example

$$\pi_{\overline{\mathcal{N}}}(o) = \mathcal{N}(o)$$

for $\mathcal{O} \subseteq \mathbb{R}^p$, $\mathcal{A} \subseteq \mathbb{R}^q$ or if suitable translations exist.

If τ is of the form

$$\tau(\overline{\mathcal{N}}) = -\mathbb{E}\Big[\sum_{t \in \mathcal{Z}} \gamma^t \cdot r_t\Big]$$

or a similar form, the process of training \mathcal{N} is called policy-based reinforcement learning.

• Let (S, A, T, P, R) be a Markov decision process (cf. Definition 10) for which we run policy $\pi_{\overline{\mathcal{N}}}: S \to A$. Note that $\pi_{\overline{\mathcal{N}}}$ in some way calls \mathcal{N} to produce its output, for example

$$\pi_{\overline{\mathcal{N}}}(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{E}_{s' \sim P(s'|s,a)} \left[\mathcal{N}(s') \right]$$

for $S \times A \subseteq \mathbb{R}^p$ with q = 1 or if suitable translations exist.

Let $R: \mathcal{S} \times \mathcal{A} \to \mathcal{T}$ be the expected reward of executing an action in a given state, i.e., $R(s, a) = \mathbb{E}[R(s, a, s')]$ where $s' \sim P(s'|s, a)$. Let $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ be a (possibly randomized or non-deterministic) transition function, i.e., T(s, a) = s' where $s' \sim P(s'|s, a)$. Let $\gamma \in [0; 1]$ be a discount factor. Let $V_{\pi_{\overline{\mathcal{N}}}}: \mathcal{S} \to \mathbb{R}$ be the total discounted reward that policy $\pi_{\overline{\mathcal{N}}}$ generates when starting in state s, i.e.,

$$V_{\pi_{\overline{\mathcal{N}}}}(s) = R(s, \pi_{\overline{\mathcal{N}}}(s)) + \gamma \cdot V_{\pi_{\overline{\mathcal{N}}}}(T(s, \pi_{\overline{\mathcal{N}}}(s))).$$

Note that for $\gamma < 1$ we can abort this recursive computation once the effect of the further recursive part is sufficiently small. Note that we may also have a fixed recursion depth or that $T(s^{\dagger}, \bot)$ might not be defined for all $s^{\dagger} \in \mathcal{S}$, which are then called terminal states and also cause the recursion to end.

Let $\mathbb{S} = \{\mathbf{s}_i : i = 1, ..., N\} \subseteq S$ be a set of training states. If τ is of the form

$$\tau(\overline{\mathcal{N}}) = -\frac{1}{N} \cdot \sum_{i=1}^{N} V_{\pi_{\overline{\mathcal{N}}}}(\mathbf{s}_i)$$

or a similar form, the process of training ${\mathcal N}$ is called value-based reinforcement learning.

Example 1. Various methods for reinforcement learning in an MDP setting with neural networks.

method name	network type	policy
policy-based	$\mathcal{N}:\mathcal{S} ightarrow\mathcal{A}$	$\pi_{\overline{\mathcal{N}}}(s) = \mathcal{N}(s)$
value-based (V)	$\mathcal{N}:\mathcal{S} o\mathbb{R}$	$\pi_{\overline{\mathcal{N}}}(s) = \arg\max_{a \in \mathcal{A}} \mathbb{E}_{s' \sim P(s' s,a)} [R(s,a) + \mathcal{N}(s')]$
value-based (Q)	$\mathcal{N}:\mathcal{S} imes\mathcal{A} o\mathbb{R}$	$\pi_{\overline{\mathcal{N}}}(s) = \arg\max_{a \in \mathcal{A}} \mathcal{N}(s, a)$

Definition 12 (multi-agent system). Let $G = \{G^{[1]}, ..., G^{[N]}\}$ be a set of |G| = N agents with observation spaces $\mathcal{O}^{[i]}$ and action spaces $\mathcal{A}^{[i]}$ controlled by policies $\pi^{[i]}$ for all i = 1, ..., N, respectively. The multi-agent system G then takes a joint action $a \in \mathcal{A}$ with $\mathcal{A} = \mathcal{A}^{[1]} \times ... \times \mathcal{A}^{[N]}$ after making a joint observation $o \in \mathcal{O}$ with $\mathcal{O} = \mathcal{O}^{[1]} \times ... \times \mathcal{O}^{[N]}$ based on the joint policy $\pi(o^{[1]}, ..., o^{[N]}) = (a^{[1]}, ..., a^{[N]})$ where $a^{[i]} = \pi^{[i]}(o^{[i]})$ for all i.

Definition 13 (normal-form game). Let $G = \{G^{[1]}, ..., G^{[N]}\}$ be a set of |G| = N agents. Let $\mathcal{A} = \mathcal{A}^{[1]} \times ... \times \mathcal{A}^{[N]}$ be the space of joint actions where $\mathcal{A}^{[i]}$ is the set of actions available to agent $G^{[i]}$ for all i. Let $\chi : \mathcal{A} \to \mathcal{T}$ be a utility function for the joint action space \mathcal{A} and the joint target space $\mathcal{T} = \mathcal{T}^{[1]} \times ... \times \mathcal{T}^{[N]}$ where $\mathcal{T}^{[i]}$ is the target space of agent $G^{[i]}$ for all i. Unless stated otherwise, the utility χ is to be maximized. From χ we can derive a set of single-agent utility functions $\chi^{[i]} : \mathcal{A} \to \mathcal{T}^{[i]}$ for all i. A tuple $(G, \mathcal{A}, \mathcal{T}, \chi)$ is called a *normal-form game*.

Definition 14 (common-payoff game). A normal-form game $(G, \mathcal{A}, \mathcal{T}, \chi)$ is a common-payoff game iff for any two agents $G^{[i]}, G^{[j]}$ and for any joint action $a = (a^{[1]}, ..., a^{[N]}) \in \mathcal{A}$ it holds that $\chi^{[i]}(a) = \chi^{[j]}(a)$.

Definition 15 (zero-sum game). A normal-form game $(G, \mathcal{A}, \mathcal{T}, \chi)$ is a zero-sum game iff for any joint action $a = (a^{[1]}, ..., a^{[N]}) \in \mathcal{A}$ it holds that

$$\sum_{i=1}^{|G|} \chi^{[i]}(a) = 0.$$

Definition 16 (strategy). Let $(G, \mathcal{A}, \mathcal{T}, \chi)$ be a normal-form game. In a single iteration of the game, an agent $G^{[i]}$'s behavior is given by a (possibly randomized) policy $\pi^{[i]}:()\to \mathcal{A}^{[i]}$. Then, $\pi^{[i]}$ is also called $G^{[i]}$'s strategy. If multiple iterations of the game are played, an agent $G^{[i]}$'s behavior can be given by a (possibly randomized) policy $\pi^{[i]}:\mathcal{A}^n\to\mathcal{A}^{[i]}$ where n is a number of previous iterations. The agent's strategy is then conditioned on a list of previous joint actions.

An agent $G^{[i]}$ whose actions are given via a policy $\pi^{[i]}$ of the form $\pi^{[i]}(\underline{\ }) = a^{[i]}$ for some action $a^{[i]} \in \mathcal{A}^{[i]}$ is playing a pure strategy.

An agent $G^{[i]}$ whose actions are given via a policy $\pi^{[i]}$ of the form $\pi^{[i]}(\cdot) \sim A^{[i]}$ according to some distribution over $A^{[i]} \subseteq \mathcal{A}^{[i]}$ is playing a mixed strategy. If a mixed strategy is based on a uniform distribution over actions $A^{[i]} \subseteq \mathcal{A}^{[i]}$, we write $\pi^{[i]} = A^{[i]}$ as a shorthand.

Definition 17 (Pareto front for strategies). Let $(G, \mathcal{A}, \mathcal{T}, \chi)$ be a normal-form game. A joint strategy $\pi(_) = (\pi^{[1]}(_), ..., \pi^{[|G|]}(_))$ Pareto-dominates another joint strategy $\pi'(_) = (\pi'^{[1]}(_), ..., \pi'^{[|G|]}(_))$ iff for all agents $G^{[i]}$ it holds that

$$\chi^{[i]}(\pi(_)) \ge \chi^{[i]}(\pi'(_))$$

and there exists some agent $G^{[j]}$ so that

$$\chi^{[j]}(\pi(\underline{\ })) > \chi^{[j]}(\pi'(\underline{\ })).$$

A joint strategy π is Pareto-optimal iff there is no other strategy π' so that π' Pareto-dominates π .

The set of all Pareto-optimal strategies is called the Pareto front.

Definition 18 (best response). Let $(G, \mathcal{A}, \mathcal{T}, \chi)$ be a normal-form game. Let $\pi^{[-i]}$ be a joint strategy of agents $G^{[1]}, ..., G^{[i-1]}, G^{[i+1]}, ..., G^{[N]}$, i.e., all agents except $G^{[i]}$. Let $\pi^{[i]} \oplus \pi^{[-i]}$ be a joint strategy of all agents then. Given a strategy $\pi^{[-i]}$ for all agents except $G^{[i]}, G^{[i]}$'s best response is the strategy $\pi^{*[i]}$ so that for all strategies $\pi'^{[i]}$ it holds that

$$\chi^{[i]}((\pi^{*[i]} \oplus \pi^{[-i]})(\underline{\ })) \ge \chi^{[i]}((\pi'^{[i]} \oplus \pi^{[-i]})(\underline{\ })).$$

Definition 19 (Nash equilibrium). Let $(G, \mathcal{A}, \mathcal{T}, \chi)$ be a normal-form game played for a single iteration. A joint strategy π is a *Nash equilibrium* iff for all agents $G^{[i]}$ it holds that $\pi^{[i]}$ is the best response to $\pi^{[-i]}$.

Theorem 4 (Nash's theorem). Every game $(G, \mathcal{A}, \mathcal{T}, \chi)$ with |G| and $|\mathcal{A}|$ finite has a Nash equilibrium.

Definition 20 (evolutionary stable strategy [3]). Let $(G, \mathcal{A}, \mathcal{T}, \chi)$ be a normal-form game played by two players i, -i with the same action space $\mathcal{A}^{[i]} = \mathcal{A}^{[-i]}$. A strategy $\pi^{[i]}$ for agent $G^{[i]}$ is an evolutionary stable strategy iff

- $\pi = \pi^{[i]} \oplus \pi^{[-i]}$ with $\pi^{[-i]} = \pi^{[i]}$ is a Nash equilibrium and
- for every other strategy $\pi'^{[i]} = \pi'^{[-i]} \neq \pi^{[i]}$ it holds that

$$\chi^{[i]}((\pi^{[i]} \oplus \pi'^{[-i]})(\underline{\ })) > \chi^{[i]}((\pi'^{[i]} \oplus \pi'^{[-i]})(\underline{\ })).$$

Example 2 (Hawk–Dove game in π -calculus). Let Game be an external function that returns the outcome for the first player given two strategies.

$$\label{eq:loss} \text{Let } \textit{Agent}^{[i]}(\textit{strategy}, \textit{total_payoff}) = \overline{\textit{play}}\langle \textit{strategy}, \textit{total_payoff}\rangle. \\ 0 \\ | \textit{play}(\textit{opponent_strategy}, \textit{opponent_total_payoff}). \\ \textit{Agent}^{[i]}(\textit{new_strategy}, \textit{new_total_payoff}) \\ \text{where } \textit{new_total_payoff} = \textit{total_payoff} + \mathsf{Game}(\textit{strategy}, \textit{opponent_strategy}) \\ \text{and } \textit{new_strategy} = \begin{cases} \textit{opponent_strategy} & \text{if } \textit{opponent_total_payoff} > \textit{total_payoff}, \\ \textit{strategy} & \text{otherwise}. \end{cases}$$

A Hawk–Dove game with a population of 20 can then be constructed as the process

$$\begin{split} Population &= Agent^{[1]}(\text{ "Hawk"}, 0) \mid ... \mid Agent^{[10]}(\text{ "Hawk"}, 0) \\ &\mid Agent^{[11]}(\text{ "Dove"}, 0) \mid ... \mid Agent^{[20]}(\text{ "Dove"}, 0). \end{split}$$

Definition 21 (π -process [2]). Let N be a set of names ($N = \{\text{``a''}, \text{``b''}, \text{``c''}, ...\}$, e.g.). \mathbb{L}_{π} is the set of valid processes in the π -calculus given inductively via:

(null process) $0 \in \mathbb{L}_{\pi}$,

(τ prefix) if $P \in \mathbb{L}_{\pi}$, then $\tau . P \in \mathbb{L}_{\pi}$,

(receiving prefix) if $a, x \in N$ and $P \in \mathbb{L}_{\pi}$, then $a(x).P \in \mathbb{L}_{\pi}$,

(sending prefix) if $a, x \in N$ and $P \in \mathbb{L}_{\pi}$, then $\overline{a}\langle x \rangle . P \in \mathbb{L}_{\pi}$,

(choice) if $P, Q \in \mathbb{L}_{\pi}$, then $(P+Q) \in \mathbb{L}_{\pi}$,

(concurrency) if $P, Q \in \mathbb{L}_{\pi}$, then $(P \mid Q) \in \mathbb{L}_{\pi}$,

(scoping) if $x \in N$, $P \in \mathbb{L}_{\pi}$, then $(\nu x) P \in \mathbb{L}_{\pi}$,

(replication) if $P \in \mathbb{L}_{\pi}$, then $!P \in \mathbb{L}_{\pi}$.

Any element $P \in \mathbb{L}_{\pi}$ is called a π -process. If the binding order is clear, we leave out parentheses.

The free names of a π -process $P \in \mathbb{L}_{\pi}$, written $\mathfrak{F}(P)$ with $\mathfrak{F}: \mathbb{L}_{\pi} \to \wp(N)$ are given inductively via:

- $\mathfrak{F}(0) = \emptyset$,
- $\mathfrak{F}(\tau.P) = \mathfrak{F}(P)$,
- $\mathfrak{F}(a(x).P) = \{a\} \cup (\mathfrak{F}(P) \setminus \{x\}),$
- $\mathfrak{F}(\overline{a}\langle x\rangle.P) = \{a, x\} \cup \mathfrak{F}(P),$
- $\mathfrak{F}(P+Q) = \mathfrak{F}(P) \cup \mathfrak{F}(Q)$,
- $\mathfrak{F}(P \mid Q) = \mathfrak{F}(P) \cup \mathfrak{F}(Q)$,
- $\mathfrak{F}((\nu x) P) = \mathfrak{F}(P) \setminus \{x\},\$
- $\mathfrak{F}(!P) = \mathfrak{F}(P)$,

for any $a, x \in N$ and any $P, Q \in \mathbb{L}_{\pi}$.

Definition 22 (π -congruence [2]). Two π -processes $P, Q \in \mathbb{L}_{\pi}$ are structurally congruent, written $P \equiv Q$, if they fulfill the predicate $\equiv : \mathbb{L}_{\pi} \times \mathbb{L}_{\pi} \to \mathbb{B}$. We define inductively:

(α -conversion) $P \equiv Q$ if both only differ by the choice of bound names,

(choice rules)
$$P+Q\equiv Q+P,$$
 and $(P+Q)+R\equiv P+(Q+R),$ and $P\equiv P+P$

(concurrency rules)
$$P \mid Q \equiv Q \mid P$$
, and $(P \mid Q) \mid R \equiv P \mid (Q \mid R)$, and $P \equiv P \mid 0$,

(scoping rules)
$$(\nu x)$$
 (νy) $P \equiv (\nu y)$ (νx) P , and (νx) $(P \mid Q) \equiv P \mid ((\nu x) \mid Q)$ if $x \notin \mathfrak{F}(P)$, and (νx) $0 \equiv 0$,

(replication rules) $!P \equiv P \mid !P$,

for any names $x, y \in N$ and processes $P, Q, R \in \mathbb{L}_{\pi}$.

Definition 23 (π -substitution). For a π -process P we write P[y:=z] for the π -process where every free occurrence of name y is replaced by name z. Formally, we define:

- 0[y := z] = 0,
- $(\tau . P)[y := z] = \tau . (P[y := z]),$
- (a(x).P)[y := z] = z(x).P for a = y and x = y,
- (a(x).P)[y := z] = a(x).P for $a \neq y$ and x = y,
- (a(x).P)[y := z] = z(x).(P[y := z]) for a = y and $x \neq y$,
- (a(x).P)[y := z] = a(x).(P[y := z]) for $a \neq y$ and $x \neq y$,
- $(\overline{a}\langle x\rangle.P)[y:=z] = \overline{z}\langle z\rangle.(P[y:=z])$ for a=y and x=y,
- $(\overline{a}\langle x\rangle.P)[y:=z] = \overline{a}\langle z\rangle.(P[y:=z])$ for $a \neq y$ and x=y,
- $(\overline{a}\langle x\rangle.P)[y:=z] = \overline{z}\langle x\rangle.(P[y:=z])$ for a=y and $x\neq y,$
- $(\overline{a}\langle x\rangle.P)[y:=z] = \overline{a}\langle x\rangle.(P[y:=z])$ for $a \neq y$ and $x \neq y$,
- (P+Q)[y:=z] = (P[y:=z]) + (Q[y:=z]),
- $(P \mid Q)[y := z] = (P[y := z]) \mid (Q[y := z]),$
- $((\nu x) P)[y := z] = ((\nu x) P)$ for x = y,
- $((\nu x) P)[y := z] = (\nu x) (P[y := z]) \text{ for } x \neq y,$
- (!P)[y := z] = !(P[y := z]),

for any names $a, x, y, z \in N$ and processes $P, Q \in \mathbb{L}_{\pi}$.

Definition 24 (π -evaluation). An evaluation of a π -process P is a sequence of π -processes $P_0 \rightarrowtail ... \rightarrowtail P_n$ where $P_0 = P$ and P_{i+1} is generated from P_i via the application of an evaluation rule $\rightarrowtail : \mathbb{L}_{\pi} \to \mathbb{L}_{\pi}$ to any sub-term of P_i . We define the following evaluation rules:

(reaction) $(a(x).P + P') \mid (\overline{a}\langle y \rangle.Q + Q') \rightarrow_{REACT} (P[x := y]) \mid Q,$

(τ transition) $\tau . P + P' \rightarrowtail_{TAU} P$,

(parallel execution) $P \mid R \rightarrow_{PAR} Q \mid R$ if it holds that $P \rightarrow Q$,

(restricted execution) $(\nu x) P \rightarrow_{RES} (\nu x) Q \mid R$ if it holds that $P \rightarrow Q$,

(structural congruence) $P' \longrightarrow_{\text{STRUCT}} Q'$ if it holds that $P \rightarrowtail Q$ and $P \equiv P'$ and $Q \equiv Q'$,

for any names $a, x, y \in N$ and processes $P, P', Q, Q' \in \mathbb{L}_{\pi}$ where $\equiv : \mathbb{L}_{\pi} \times \mathbb{L}_{\pi} \to \mathbb{B}$ is the predicate for structural congruence.

```
Example 3 (vacuum world in \pi-calculus). We define:
```

```
Robot = is\_clean(True).(position(A).\overline{move\_to\_right\_room}.Robot
                                          + position(B).\overline{move\_to\_left\_room}.Robot)
                      + is\_clean(False).position(\_).\overline{clean}.Robot
Environment(robot\_position, left\_room\_clean, right\_room\_clean) =
                \overline{position} \langle robot\_position \rangle.
                     Environment(robot\_position, left\_room\_clean, right\_room\_clean)
                 +\overline{is\_clean}\langle \mathtt{check}(robot\_position, left\_room\_clean, right\_room\_clean)\rangle.
                     Environment(robot_position, left_room_clean, right_room_clean)
                 +\ move\_to\_left\_room.
                     Environment(A, left_room_clean, right_room_clean)
                 +\ move\_to\_right\_room.
                     Environment(B, left_room_clean, right_room_clean)
                 + clean.
                     Environment(
                            robot\_position,
                            check(robot_position, True, left_room_clean),
                            {\tt check}({\it robot\_position}, {\it right\_room\_clean}, {\it True})
                     )
                 +\tau. Environment(robot_position, False, right_room_clean)
                 +\tau. Environment(robot_position, left_room_clean, False)
where check(robot_position, robot_left_value, robot_right_value) =
                      \begin{cases} robot\_left\_value & \text{ if } robot\_position = \texttt{A}, \\ robot\_right\_value & \text{ otherwise}. \end{cases}
```

The vacuum world example can then be simulated via the π -process $VacuumWorld = Robot \mid Environment(A, False, False)$.

References

- [1] No free lunch theorems. http://www.no-free-lunch.org. Accessed 2022-05-10
- [2] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge university press, 1999.
- [3] Hans Peters. Game Theory: A Multi-Leveled Approach. Springer, 2015.
- [4] Wikipedia. Kolmogorov-Arnold representation theorem. https://en.wikipedia.org/wiki/KolmogorovArnold_representation_theorem. Accessed 2022-05-10.
- [5] David H Wolpert and William G Macready. No free lunch theorems for optimization. *IEEE transactions on evolutionary computation*, 1(1):67–82, 1997.