# Criptografia Aplicada

Criptografia assimétrica - RSA





### Sumário

- Definições básicas de criptografia de chave pública
- Criptossistema RSA
- Corretude, Eficiência e Segurança
- RSA na prática





# Criptografia de chave pública (assimétrica)

- Uma das maiores evoluções na história da criptografia
- Baseada em funções matemáticas ao invés de substituições e permutações
- São assimétricas: utilizam duas chaves diferentes, o que tem consequências profundas nas áreas de confidencialidade, distribuição de chaves, autenticação, etc.





#### Características

Um criptossistema de chave pública possui os seguintes ingredientes:

- texto claro
- algoritmo de cifragem
- par de chaves (uma pública (pk) e outra privada (sk) ) 3.



- texto cifrado
- algoritmo de decifragem





#### Características

- Cada usuário gera um par de chaves
  - Uma pública, disponibilizada em algum local público
  - Uma privada, que nunca deve ser compartilhada
- Se Bob quer enviar uma mensagem **confidencial** para Alice:
  - ele cifra a mensagem com a chave pública da Alice,
  - o ao receber a mensagem, Alice decifra com sua chave privada.
  - Ela é a única que tem acesso à chave e pode decifrar a mensagem.





#### Confidencialidade







#### Características

- Alguns algoritmos permitem que qualquer uma das chaves seja usada para cifragem, enquanto a outra é usada para a decifragem
- Podemos atingir outros objetivos, como a autenticidade.
  - A mensagem cifrada nesse caso serve como uma assinatura digital
- Além disso, alguns algoritmos permitem que emissor e receptor cooperem para executar um protocolo de troca de chaves.

- Se Alice quer convencer Bob da autenticidade de sua mensagem:
  - ela cifra a mensagem com sua chave privada,
  - Bob decifra com a chave pública da Alice.
  - Alice é a única que tem acesso à sua chave privada, então temos a certeza de que a mensagem veio dela.
  - É impossível alterar a mensagem sem ter acesso à chave privada da Alice, portanto garantimos também a integridade da mensagem.





#### Autenticidade







# Aplicações

- Podemos classificar criptossistemas de chaves públicas em três categorias:
  - Cifragem/decifragem
  - Assinatura digital
  - Troca de chaves
- Alguns algoritmos servem para os três propósitos, outros apenas para um ou dois deles.

Table 9.3 Applications for Public-Key Cryptosystems

| Algorithm      | Encryption/Decryption | Digital Signature | Key Exchange |
|----------------|-----------------------|-------------------|--------------|
| RSA            | Yes                   | Yes               | Yes          |
| Elliptic Curve | Yes                   | Yes               | Yes          |
| Diffie-Hellman | No                    | No                | Yes          |
| DSS            | No                    | Yes               | No           |





#### Requisitos

- Computacionalmente fácil gerar um par de chaves
- Computacionalmente fácil para o remetente operar com a chave pública (pk)
  - $\circ$  c = E(m, pk)
- Fácil para o destinatário operar com a chave privada (sk)
  - $\circ \quad m = D(c, sk) = D(E(m, pk), sk)$
- Computacionalmente inviável que um adversário determine sk a partir de pk
- Computacionalmente inviável que um adversário recupere a m conhecendo pk e c
- Impossível forjar uma assinatura conhecendo a mensagem e pk





### Sumário

- Definições básicas de criptografia de chave pública
- Criptossistema RSA
- Corretude, Eficiência e Segurança
- RSA na prática





### O criptossistema RSA

- 1976: Diffie e Hellman desafiaram a comunidade científica a criar um algoritmo que atendesse aos requisitos da criptografia de chave pública (assimétrica)
- 1977-1978: Um dos primeiros criptossistemas foi desenvolvido por Rivest, Shamir, e Adleman, o RSA.
- Hoje: o RSA é a abordagem de propósito geral mais amplamente aceita e implementada para criptografia de chave pública







Ronald L. Rivest

**Adi Shamir** 

Leonard M. Adleman

Imagem: http://www.ams.org/notices/200307/comm-turing.pdf





#### Overview

- Necessidade de teoria de números
  - Utiliza números primos p e q
  - Cálculos em  $\mathbb{Z}_n$ , onde n = pq
  - o uma chave é a inversa multiplicativa da outra
    - chave pública = {e,n}, chave privada = {d,n}
  - o segurança baseada na dificuldade de fatorar n
- Cifragem e decifragem
  - o  $c = E(m, e) = m^e \mod n$  (ou seja,  $c \in \mathbb{Z}_n$ )
  - o  $m = D(c, d) = c^d \mod n$
- Tamanho das chaves
  - o valor *n* tem entre 1024 e 2048 bits
  - o cada primo tem entre 512 e 1024 bits





#### Geração de chaves

- p, q primos (valores secretos e escolhidos)
- n = p.q (valor público e calculado)
- $\phi(n) = \phi(pq) = \phi(p)\phi(q) = (p-1)(q-1)$  (valor secreto, só quem sabe  $p \in q$  consegue calcular)
- As chaves e e d são inversas multiplicativas módulo φ(n)
  - $\circ$  Escolhemos o e tal que mdc( $\phi(n)$ ,e) = 1 e 1 < e <  $\phi(n)$  (garantimos que e terá inversa)
  - Calculamos d tal que ed = 1 (mod  $\phi(n)$ ) (ou seja, ed mod  $\phi(n) = 1$  ou ainda ed =  $k\phi(n) + 1$ )
  - Ou seja, d é a inversa multiplicativa de e módulo φ(n) (encontramos com Algoritmo de Euclides Estendido)









# Cifragem e Decifragem







### Exemplo

#### Geração de Chaves

- p = 17 e q = 11
- $n = p \times q = 17 \times 11 = 187$
- $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$
- Escolhemos e = 7
  - $\circ$  mdc(160, 7) = 1
  - 0 1 < 7 < 160
- Calculamos d = 23 (euclides estendido)
  - $\circ$  ed = 161 = 1 (mod 160)
- Chave Pública = {7, 187}
- Chave Privada = {23, 187}

#### Cifragem

- Texto Claro = 88
- $\circ$  c = m<sup>e</sup> = 88<sup>7</sup> mod 187 = 11
- Decifragem
  - $\circ$  c<sup>d</sup> mod 187 = 11<sup>23</sup> mod 187 = 88





### Sumário

- Definições básicas de criptografia de chave pública
- Criptossistema RSA
- Corretude, Eficiência e Segurança
- RSA na prática





#### Requisitos

- 1. É possível encontrar valores para e, d, n tal que  $m^{ed}$  mod n = m para todo m < n.
- 2. É relativamente fácil calcular m<sup>e</sup> mod n e c<sup>d</sup> mod n para para todo m<n.
- 3. É inviável determinar d dados e e n.





#### Corretude (requisito 1)

Utilizando o teorema de Euler e inversas multiplicativas.

#### Lembrete:

- Cifragem: c = m<sup>e</sup> mod n
- Decifragem: m = c<sup>d</sup> mod n
- o note que  $c^d = (m^e)^d$

#### Detalhes matemáticos:

- $\circ$  como e.d mod  $\phi(n) = 1$ , podemos escrever como e.d =  $k\phi(n) + 1$  (inversa multiplicativa módulo  $\phi(n)$ )
- o então,  $c^d = (m^e)^d = m^{k\phi(n)+1} = (m^{\phi(n)})^k \times m$
- Pelo **teorema de Euler**, temos  $m^{\phi(n)} \equiv 1 \pmod{n}$
- então,  $c^d \equiv (m^{\phi(n)})^k \times m \equiv m \pmod{n}$
- portanto, a decifragem m<sup>ed</sup> mod n é capaz de corretamente obter a mensagem original para qualquer m < n.</li>





#### Aspectos computacionais (requisito 2)

- Cifragem e Decifragem utilizam exponenciação modular
- Opção 1: exponenciação feita nos inteiros e depois aplicar o módulo
  - o valores intermediários **muito** grandes
- Opção 2: utilizar a propriedade [(a mod n)  $\times$  (b mod n)] mod n = (a  $\times$  b) mod n
  - valores intermediários reduzidos
  - o calcular a exponenciação utilizando *repeated squares* 
    - $\mathbf{x}^{11} = \mathbf{x} \times \mathbf{x}^2 \times \mathbf{x}^8$  (note que  $\mathbf{x}^2 = \mathbf{x} \times \mathbf{x}$ ,  $\mathbf{x}^4 = \mathbf{x}^2 \times \mathbf{x}^2$  e  $\mathbf{x}^8 = \mathbf{x}^4 \times \mathbf{x}^4$ )
  - $\circ$  calculamos x mod n,  $x^2$  mod n,  $x^4$  mod n,  $x^8$  mod n
  - o depois calculamos [(x mod n) x ( $x^2$  mod n) x ( $x^8$  mod n)] mod n





#### Aspectos computacionais (requisito 2)

- Escolhas de e para eficiência:
  - $\circ$  65537 =  $2^{16}$ +1 ou 17 ou 3
  - Valores com apenas dois bits "1"
  - o garantem aceleração na multiplicação
- d precisa ser grande para evitar força bruta
- Gerar chaves pode ser demorado
  - o precisamos do teste de primalidade várias vezes em um número muito grande
  - Ao fixar e, podemos precisar recalcular p,q algumas vezes





#### Segurança (requisito 3)

- Força bruta: tentar todas as possibilidades de chave privada
- Ataques matemáticos: diversas técnicas, com objetivo de, por exemplo, fatorar n de maneira mais eficiente
- Timming attacks: explora variações de tempo na execução de uma operação criptográfica
- Ataques e hardware: induzir erros de hardware em um módulo criptográfico para descobrir informações sobre a chave
- Chosen ciphertext attack: o atacante consegue acesso à mensagem original correspondente a uma cifra para descobrir informações sobre a chave

A chance de sucesso depende da implementação do algoritmo e da escolha dos parâmetros vulneráveis.





#### Atacando o RSA matematicamente

- Existem 3 formas:
  - 1. Fatorar n e descobrir p e q
    - o permite o cálculo de  $\phi(n) = (p-1)(q-1)$  e a determinação de  $d \equiv e^{-1} \pmod{\phi(n)}$
  - 2. Determinar  $\phi(n)$  diretamente, sem a necessidade de p e q.
    - o assim como antes, permite a determinar d.
  - 3. Determinar d diretamente.
- Criptoanalistas tem focado na fatoração de n.
  - o que é muito difícil quando p e q são grandes o suficiente.
- RSA Laboratories lançou desafios de fatoração com tamanhos variados de n.
- Técnicas envolvem algoritmos elaborados
  - **Ex**: quadratic sieve, number field sieve.

Table 9.5 Progress in RSA Factorization

| Number of Decimal Digits | Number of Bits | Date Achieved |
|--------------------------|----------------|---------------|
| 100                      | 332            | April 1991    |
| 110                      | 365            | April 1992    |
| 120                      | 398            | June 1993     |
| 129                      | 428            | April 1994    |
| 130                      | 431            | April 1996    |
| 140                      | 465            | February 1999 |
| 155                      | 512            | August 1999   |
| 160                      | 530            | April 2003    |
| 174                      | 576            | December 2003 |
| 200                      | 663            | May 2005      |
| 193                      | 640            | November 2005 |
| 232                      | 768            | December 2009 |

Imagem: W. Stallings. *Cryptography* and network security. Cap 9.2





# RSA e os computadores quânticos

- O algoritmo de Shor é um algoritmo quântico desenvolvido em 1994, capaz de fatorar números inteiros grandes de forma eficiente
- Com ele, também seria possível calcular o logaritmo discreto eficientemente
- Se um computador quântico suficientemente grande for construído, esses algoritmos podem "quebrar" tanto o DH quando o RSA
- Em um <u>draft</u> sobre a transição para criptografia pós-quântica, o NIST recomenda o desuso do RSA de 2048 bits após 2030 e proíbe o uso após 2035.





### Sumário

- Definições básicas de criptografia de chave pública
- Criptossistema RSA
- Corretude, Eficiência e Segurança
- RSA na prática





# Aplicações do RSA

- SSL/TLS: usa RSA na autenticação da identidade de sites para o estabelecimento de conexões seguras;
- Assinaturas Digitais: Utilizadas para validar a autenticidade e integridade de documentos eletrônicos;
- **Distribuição Segura de Chaves**: usado em criptografia híbrida, para proteger a transmissão de chaves simétricas;
- entre muitas outras!





# Considerações importantes

- Criptografia de chave pública não tornou a criptografia simétrica obsoleta
  - o por causa do overhead computacional da criptografia de chave pública, a criptografia de chave simétrica muito dificilmente será abandonada
- Criptografia de chave pública não é mais segura que a simétrica
  - o segurança depende do tamanho da chave e do esforço computacional necessário para quebrar uma cifra. Um esquema não é superior que o outro
- Distribuição de chaves não se tornou trivial com criptografia de chaves públicas
  - o ainda são necessários protocolos que podem envolver uma autoridade central.





# Atividade: cifragem e decifragem RSA com openssl

Gere a chave privada RSA e salve ela cifrada com o AES (não esqueça a senha!)

```
openssl genrsa -aes256 -out seunome.privada.pem 2048
```

Visualize a chave gerada:

```
openssl pkey -in seunome.privada.pem -text
```

Derive a chave pública a partir da chave privada

```
openssl rsa -pubout -in seunome.privada.pem -out seunome.publica.pem
```

Visualize a chave gerada:

```
openssl pkey -pubin -in seunome.publica.pem -text
```

 Pergunta: qual a diferença de informações informadas ao visualizar a chave pública e a chave privada?





# Atividade: cifragem e decifragem RSA com openssl

Crie um arquivo de texto

```
echo "Esta é uma mensagem confidencial" > msg.txt
```

Cifre o arquivo de texto com a chave pública

```
openssl pkeyutl -encrypt -inkey thais.publica.pem -pubin -in msg.txt -out secretMsg.bin
```

Decifre o arquivo com a chave privada

```
openssl pkeyutl -decrypt -inkey thais.privada.pem -in secretMsg.bin -out msgDecifrada.txt
```

Pergunta: Quem pode cifrar mensagens? E quem pode decifrar?





#### Referências

- W. Stallings. Cryptography and network security. 7a edição.
  - o Princípios de criptossistemas de chave pública: 9.1
  - o RSA: 9.2
- D. Stinson e M. Paterson. Cryptography: Theory and Practice. 4a edição.
  - o Introdução a criptossistemas de chave pública: 6.1
  - o RSA: 6.3
- NIST Internal Report 8547
- imagens: Flaticon.com



