

EXHIBIT B

Page 1 of 2

निज्ञाम्ब्र Form PTO-1449 U.S. Department of Commerce Atty. Docket No. Serial No. Patent and Trademark Office 57005-A-PCT-09/773,876 US/JPW/AJM/MML INFORMATION DISCLOSURE CITATION **Applicants:** (Use several sheets if necessary) Filing Date Group 1644 January 31, 2001 **U.S. PATENT DOCUMENTS** Examiner Document Number Date Class Filing Date Name Subclass Initial if Appropriate US 8 10/8/96 Honjo, et al. 435 69.1 US 6/4/91 Murrer et al. 514 183 FOREIGN PATENT DOCUMENTS Document Number Date Country Class Subclass Translation Yes No OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.) Bleul C.C. et al., A Highly Efficacious Lymphocyte Chemoattractant, Stromal Cell-Derived Factor 1 (SDF-1), J. Exp. Med. (1996) 184:1101-9; Bombara, M.P. et al., Cell Contact Between T Cells and Synovial Fibroblasts Causes Induction of Adhesion Molecules and Cytokines, J. Leukoc. Biol. (1993) 54(5):399-406; Datema, R. et al., Antiviral Efficacy in vivo of the Anti-Human Immunodeficiency Virus Bicyclam SDZ SID 791 (JM 3100), an Inhibitor of Infectious Cell Entry, Antimicrobial Agents and Chemo. (1996) 40:750-754; De Vreese, K. et al. The Bicyclams, a New Class of Potent Human Immunodeficiency Virus Inhibitors, Block Viral Entry after Binding, Antiviral Res. (1996) 29:209-19; Delgado, E., et al., Mature Dendritic Cells Respond to SDF-1, but Not to Several Beta Chemokines, Immunobiology (1998) 198:490-500; Dinant, H.J. and Dijkmans, B.A., New Therapeutic Targets for Rheumatoid Arthritis, Pharm. World. Sci. (April 1999); D'Apuzzo M. et al., The Chemokine SDF-1, Stromal Cell-Derived Factor 1, Attracts Early Stage B Cell Precursors via the Chemokine Receptor CXCR4, Eur. J. Immunol. (1997) 27:1788-1793; Goddard D.H. et al., Autocrine Regulation of Rheumatoid Arthritis Synovial Cell Growth in vitro, Cytokine (1990) 2:149-155; Iacobelli S. et al., Detection of Antigen Recognized by a Novel Monoclonal Antibody in Tissue and Serum from Patients with Breast Cancer, Cancer Res. (1986) 46(6):3005-3010; Nagasawa T., et al., Defects Of B-Cell Lymphopoiesis and Bone-Marrow Myelopoiesis in Mice Lacking the CXC Chemokine PBSF/SDF-1, Nature (1996) 382:635-8; Ponteziere C., et al., Comparative Proliferation of Non-Rheumatoid Human Synovial Cells, Int. J. Tissue React. (1990) 12(4):229-236;

EXAMINER

DATE CONSIDERED

*EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609: Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Form PTO-1449

U.S. Department of Commerce Patent and Trademark Office

Atty. Docket No. 57005-A-PCT-US/JPW/AJM/MML

Applicants:

Serial No. 09/773,876

INFORMATION DISCLOSURE CITATION
(Use several sheets if necessary)

	(Use several sheets if necessary)	1		
		Filing Date January 31, 2001	Group 1644	
	OTHER DOCUMENTS (Including Author, Title, Date	Pertinent Pages, Etc.)		
	Ritchlin C.T. et al., Sustained and Distinctive Patt Fibroblasts and Whole Synovial Tissue Obtained from Immunol. (1994) 40(3):292-9;	chlin C.T. et al., Sustained and Distinctive Patterns of Gene Activation in Synovial roblasts and Whole Synovial Tissue Obtained from Inflammatory Synovitis, Scand. J. unol. (1994) 40(3):292-9;		
	Ritchlin C.T., and Winchester R.J., Potential Mechanisms for Coordinate Gene Activation in the Rheumatoid Synoviocyte: Implications and Hypotheses, Springer Semin. Immunopathol. (1989) 11:219-234;			
	Schols et al., Bicyclams, A Class of Potent Anti-H. Coreceptor Fusin/CXCR-4, Antiviral Research (1997) 35	ols et al., Bicyclams, A Class of Potent Anti-HIV Agents, Are Targeted at the HIV eceptor Fusin/CXCR-4, Antiviral Research (1997) 35:147-156;		
,	Shirozu M. et al., Structure and Chromosomal Loacalization of the Human S Derived Factor 1 (SDF-1) Gene, Genomics (1995) 28(3):495-500;		Stromal Cell-	
	Smith C.A., Properties of Synovial Cells in Culture 312s;	, J. Exp. Med. (1971) 134(3):306s-	
	Winchester, R. et al., Alteration of Synoviocytes Persistent Non-Immunologic Drive in Synovitis: Analys a Simple Multi-Gene Assay, Clin. Exp. Rheumatol. (199	sis of Levels of mRNA	Expression by	
	Zou, Y.R. et al., Function of the Chemokine Recept Cerebellar Development, Nature (1998) 393:595-9.	or CXCR4 in Haematop	oiesis and in	
			· · · · · · · · · · · · · · · · · · ·	
				

*EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609: Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.