Inference

Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q=q|E_1=e_1\ldots)$$

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- $E_1 \dots E_k = e_1 \dots e_k \ \ \ X_1, X_2, \dots X_n$
 - $\left\langle All\ variables \right\rangle$
 - $H_1 \dots H_i$
- Step 2: Sum out H to get joint of Query and evidence

entries consistent with the evidence

Step 1: Select the

0.07

0

0.75

* Works fine with multiple query variables, too

 $P(Q|e_1 \dots e_k)$

Step 3: Normalize

- | N

$$Z = \sum P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z}P(Q, e_1 \cdots e_k)$$

 $X_1, X_2, \dots X_n$

Alarm Network

· Alari		Burglary	
bre	P(B)	0.001	0.999
	В	q+	q-
の ×			

E arthqk		\
Burglary		\(\)
Ι.	_	

Alarm

11/2

P(E)

ш

Mary calls

John calls

ימוע) ו	0.95	0.05	0.94	90.0	0.29	0.71	0.001	0.999
ζ	+a	-a	+a	-a	+a	-a	+a	-a
_	+e	+e	-e	-e	+e	+e	-e	-e
ם	q+	q+	q+	q+	q-	q-	q-	q-
Mary calls 0.7 0.3 0.03 0.09								

H +

+9

Σ

Ø

Ę

+9

A J P(J A) +a +j 0.9 +a -j 0.1 -a +j 0.05 -a -j 0.95					
	P(J A)	6.0	0.1	0.05	0.95
+a +a -a	J	+j	-j	+j	ij
	А	+a	+a	-a	-a

P(J A)	6.0	0.1	90.0	0.95
J	+j	-j	+j	-j
Α	+a	+a	-a	-a

Ę

٩

H +

٩

Inference by Enumeration in Bayes' Net

• Given unlimited time, inference in BNs is easy

E

• Reminder of inference by enumeration by example:

$$P(B \mid +j, +m) \propto_B P(B, +j, +m)$$

normalization

$$= \sum_{e,a} P(B,e,a,+j,+m) \quad \text{Sum-ou} \quad \text{variab}$$

Sum-out hidden variables

$$= \sum_{} P(B)P(a|B,e)P(+j|a)P(+m|a) \underbrace{ \text{Select entries consistent}}_{\text{with evidences}}$$

= P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)

