Legyen

- $L_1 = \{a\}^*$,
- $L_2 = \{ w \in \{a, b\}^* \mid w$ -ben páros számú b betű van $\}$ és
- L₃ = {w ∈ {a, b}* | w-ben páratlan számú b betű van }.

Igazak vagy hamisak a következő állítások. Ha igen, indokolja minél meggyőzőbben, ha nem, mutasson ellenpéldát. (A 0 páros szám)

I. $L_1 * L_2 = L_2 * L_1$

Az L_1 nyelvben szerepelhet végtelen számú a vagy λ . Az L_2 nyelvben szerepelhet végtelen számú a és páros számú b vagy λ . Az L_1 * L_2 esetén a konkatenáció végtelen számú a-val kezdődhet után jöhet akár a akár b, akár semmi.

 $Az L_2 * L_1$ esetében, mivel L_1L_2 részhalmaza L_2L_1 -nek így az állítás igaz

II. $L_1 * L_3 = L_3$

Ebben az esetben L₁ * L₃ azokat a szavakat tartalmazza amik végtelen mennyiségű a-val kezdődnek és ezután a-k vagy b-k követik, azzal a kikötéssel hogy a b-k számának páratlannak kell lennie, tehát minimum egy elemet tartalmaznia kell.

Az L_3 nyelvben kezdhetünk b-vel is, de mivel L_1 részhalmaza az L_3 -nak így ez az állítás igaz lesz, mert a kettő összes kombinációja kihozható L_3 -ból

III. $L_2 * L_3 = L_2$

A különbség a két halmaz között, hogy az egyikben páros, a másikban viszont páratlan számú b betű szerepel. Ezért a kettő szorzatánál a pl. ha L_2 eleme aabb és L_3 eleme aab akkor a kettő konkatenációja aabbaab lesz, amiben páratlan számú b található, ami nem felel meg az L_2 feltételének

IV. L_2^* unió $L_3 = L_2$ unió L_3

Mivel az L_2 -ből minden kombinációt meg tudunk adni, ezért az L_2 * = L_2 -vel ezért a két nyelv meg fog egyezni

Legyen L az a nyelv, melynek szavai a, b és c betűkből állhatnak, c betűvel kezdődnek, valamint pontosan 1 darab a betűt, és pontosan 1 db b betűt tartalmaznak

- Adjon meg olyan reguláris kifejezést, ami az L nyelvet írja le
- Konstruáljon determinisztikus véges automatát amely az L nyelvet fogadja el

I. Reguláris kifejezés

Adottak számunkra a következő feltételek

- c betűvel kezdődik
- 1 db a betű szerep
- 1 db b betű szerepel

Melyik szavak lehetnek ezek? cabc, cabcc, ..., cbac, cbacc, ..., ccba, cccba, ... $L = c(c^*)a(c^*)b(c^*)+c(c^*)b(c^*)a(c^*)$

II. Determinisztikus véges automata

Legyen M = $(\{q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{0, 1\}, q_1, \{q_4\}, delta)$ egy determinisztikus véges automata $(q_1 \text{ a kezdőállapot és } q_4 \text{ az egyetlen elfogadó állapot})$, ahol delta az alábbi táblázattal adott

	0	1		
q1	q_2	q_5		
q2	q_3	q_4		
q3	q_3	q_4		
q4	q_6	q_7		
q5	q_6	q ₇		
q6	q_3	q_4		
q7	q_6	q_7		

- Konstruálja meg az M-mel ekvivalens, minimális állapot számú determinisztikus véges automatát, és
- rajzolja meg a minimális automata állapot-átmenet gráfját
- I. Minimalizálás

	I					II	
	1	2	3	5	6	7	4
0	I	I	I	Ι	I	Ι	I
1	I	II	II	Ι	II	Ι	I

II. Az előbb létrejött új kategóriákkal újra megcsináljuk

	I		II			III	
	1	5	7	2	3	6	4
0	II	II	II	II	II	II	II
1	I	I	I	III	III	III	I

III. Felrajzoljuk az így létrejött csoportokat

Legyen M = $(\{q_1, q_2, q_3, q_4\}, \{0, 1\}, q_1, \{q_4\}, delta)$ egy nem determinisztikus véges automata $(q_1$ a kezdőállapot és q_4 az egyetlen elfogadó állapot), ahol delta az alábbi táblázattal adott (λ az üresszót jelöli)

	0	1	λ
q1	q_1	q_1, q_2	-
q2	q_3	-	q_3
q3	-	q_4	-
q4	q_4	q_4	-

- Adjon meg az M által elfogadott nyelvet. (Fogalmazza meg, hogy milyen típusú szavakat tartalmaz a nyelv, vagy adjon a nyelvet leíró reguláris kifejezést).
- Rajzolja meg M állapot-átmenet gráfját, majd
- konstruáljon egy M-mel ekvivalens determinisztikus automatát

I. M által elfogadott nyelv

Először választhatunk végtelen számú 1-est vagy 0-át, ezután választani kell egy 1-est, ezután választhatunk vagy 0-át vagy lambdát, ezután egy 1-es jön, majd végtelen számú 0 vagy 1 $L = (1+0)^*1(0+\lambda)1(0+1)^*$

II. Állapot-átmenet gráf

III. Determinisztikus automata

	0	1
q1	q_1	q_1, q_2, q_3
q_1, q_2, q_3	q ₁ ,q ₃	q_1, q_2, q_3, q_4
q_1, q_2, q_3, q_4	q_1, q_3, q_4	q_1, q_2, q_3, q_4
q ₁ , q ₃ , q ₄	q ₁ , q ₄	q_1, q_2, q_3, q_4
q_{1}, q_{4}	q ₁ , q ₄	q_1, q_2, q_3, q_4

q₁-ből

- 0-val mehetünk q₁-be
- q_1 -ből 1-essel mehetünk q_1 -be, q_2 -be és q_3 -ba is, mivel ha q_2 -nél lambdát választunk, akkor az előtte lévő választásunk az 1-es volt

Létrehozunk egy új állapotot, ami a q_1 , q_2 , q_3 állapot lesz itt meg kell néznünk, egyesével, hogy melyik állapotból a számokkal hova jutunk

- q₁-ből
 - o 0-val mehetünk q₁-be
 - o q_1 -ből 1-essel mehetünk q_1 -be, q_2 -be és q_3 -ba is, mivel ha q_2 -nél lambdát választunk, akkor az előtte lévő választásunk az 1-es volt
- q₂-ből
 - o 0-val mehetünk q3-ba
 - o 1-essel pedig mehetünk q3-ba, ha itt lambdát választunk
- q₃-ból
 - o 0-val nem mehetünk sehová
 - o 1-essel pedig q₄-be mehetünk

Ha ezeket össze írjuk akkor azt kapjuk, hogy a q1, q2, q3 állapotból a

- 0-val mehetünk: q₁,q₃
- 1-essel mehetünk: q1, q2, q3, q4

És ezt addig folytatjuk, ameddig az összes állapot nem lesz definiálva 😌

A reguláris nyelvekre vonatkozó pumpálási lemma segítségével mutassa meg, hogy nincsen olyan véges automata, amelyik az L = $\{a^ib^{2i}a^i\mid i>=0\}$ nyelvet fogadja el