Digital Logic

CS207 2023 Fall Assignment 1

- Write neatly and submit an e-copy to Blackboard on time.
- Do write down all procedures. Only presenting the final answer will lead to a zero, even the answer is correct.
- Box answers when applicable.
 - 1. (10 points) Convert the following numbers with the source bases to destination bases, retain maximum two digits after the radix point if necessary (no need to round):
 - a) $(234.5)_{10} = ($
-)3

c) $(435)_6 = ($ $)_{10}$

- b) $(234.5)_{10} = ($
 - $(4.5)_{10} = ()_{12}$

- d) $(10110.0101)_2 = ($)₈
- 2. (10 points) Each of the following arithmetic operations is correct in at least one number system. Determine possible radices of the numbers in each operation.
- a) 1234 + 5432 = 6666
- b) 302/20 = 12.1
- 3. (10 points) Simplify the following Boolean expressions to the **indicated** number of literals algebraically:
- a) (a'+c)(a'+c')(a+b+c'd)

to 4 literals

b) abc'd + a'bd + abcd

to 2 literals

- 4. (10 points) Simplify the following Boolean expressions to a **minimum** number of literals algebraically:
- a) (a + c)(a' + b + c)(a' + b' + c)
- b) $F(a,b,c) = \sum (0, 1, 2, 3, 5)$
- 5. (10 points) Convert each of the following boolean functions into sum of minterm, and product of maxterm form algebracally.
- a) F(a,b,c,d) = bd'+acd'+ab'c+a'c'
- b) F(x,y,z) = (x'+z)(y+x')
- 6. (10 points) Simplify the following Boolean functions $F_1(A,B,C)$ and $F_2(A,B,C)$ to
- a) Expressions having $3(\text{for } F_1)$ and $2(\text{for } F_2)$ literals respectively using algebraic method.
- b) and then by using K map in sum of product form:

А	В	С	F ₁	F ₂
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

- 7. (10 points) Using K maps, find a simplest sum-of-products expression for each of the following logic functions.
- a) $F(W,X,Y,Z) = \sum (0, 2, 3, 6, 7, 10, 11, 12, 13, 15)$
- b) $F(A,B,C,D) = \prod (1, 3, 4, 5, 6, 7, 9, 12, 13, 14)$
- 8. (15 points) With the use of maps, find the simplest sum-of-products form of the function F = fg, where f = abd' + c'd + a'cd' + b'cd' and g = (a + b + d')(b' + c' + d)(a' + c + d').
- 9. (15 points) Obtain the simplest sum-of-products expression for $F(A, B, C, D) = \sum (1, 2, 4, 7, 8, 9, 11) + d(0, 3, 5)$ and implement it with
- a) NAND gates only,
- b) And NOR gates only.
- c) Draw the two logic diagrams

= a'b'c' + a'b'c + a'bc' + a'bct ab'c

2.) = 5x2.0

1.5

0.5×3= 1.5

0.5×3=

[. α] (234.5)₁₀ = (22200.1)₃.

0

234/3= 78

78/3= 26

= c

b) F(arb,c)= \(\subseteq (0, 1, 2, 3, 5)

- ab +abt b'c

= a'+ b'c

9.

F = A'C' + A'D + B'C' + B'D + A'B'

