Analysis

Grundlagen:

- Binomische Formeln

 - $(a+b)(a-b) = a^2 b^2$
- Potenzengesetze

 - 1 $a^r \cdot b^r = (a \cdot b)^r$ und $\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r$ 2 $a^r \cdot a^s = a^{r+s}$ und $\frac{a^r}{a^s} = a^{r-s}$

 - 3 $(a^r)^s = a^{r \cdot s}$ 4 $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ 5 $a^{-r} = \frac{1}{a^r}$
- Logarithmengesetze

 - $2 \log_a(\frac{b}{c}) = \log_a(b) \log_a(c)$

 - $4 \ln(x) = \log_e(x) \longrightarrow \ln(e^x) = x$

Lineare Transformationen:

Wir erhalten aus dem Graphen G_f der Funktion f den Graphen der Funktion g mit:

- $\mathbf{1}$ g(x) = -f(x), indem man G_f an der x-Achse spiegelt
- g(x) = f(-x), indem man G_f an der y-Achse spiegelt
- $\mathbf{3}$ g(x) = f(x) + a indem man G_f in Richtung der y-Achse um a verschiebt
- 4 g(x) = f(x-a) indem man G_f in Richtung der x-Achse um a verschiebt
- $g(x) = a \cdot f(x)$ und a > 0, indem man G_f in Richtung der y-Achse mit dem Faktor a streckt bzw. staucht
- 6 $g(x) = f(a \cdot x)$ und a > 0, indem man G_f in Richtung der x-Achse mit dem Faktor $\frac{1}{a}$ staucht bzw. streckt.

Ableitungen:

1 jede Ableitung ist mit der h-Methode nachweisbar

1) Jede Ableitung ist mit der
$$n$$
-Methode hachweigen $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
2) $f(x) = c$ mit $c \in \mathbb{R} \to f'(x) = 0$
3) $f(x) = x \to f'(x) = 1$

- $3 f(x) = x \longrightarrow f'(x) = 1$
- 4 $f(x) = c \cdot x \text{ mit } c \in \mathbb{R} \longrightarrow f'(x) = c$
- **6** $f(x) = a \cdot g(x)$ mit $a \in \mathbb{R} \longrightarrow f'(x) = a \cdot g'(x)$
- $7 f(x) = g(x) \pm h(x) \longrightarrow f'(x) = g'(x) \pm h'(x)$

- 8 $f(x) = g(x) \pm h(x)$ $\longrightarrow f(x) = g(x) \pm h(x)$ 8 $f(x) = x^n \text{ mit } n \in \mathbb{Q} \longrightarrow f'(x) = n \cdot x^{n-1}$ 9 $f(x) = g(x) \cdot h(x) \longrightarrow f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$ 10 $f(x) = g(h(x)) \longrightarrow f'(x) = g'(h(x)) \cdot h'(x)$ 11 $f(x) = \frac{z(x)}{n(x)} \longrightarrow f'(x) = \frac{n(x) \cdot z'(x) z(x) \cdot n'(x)}{(n(x))^2}$ Eselsbrücke¹: $f'(x) = \frac{N \cdot AZ Z \cdot AN}{N^2}$

Ableitung spezieller Funktionen:

- Trigonometrische Funktionen
 - $1 f(x) = \sin x \longrightarrow f'(x) = \cos(x)$
 - $2 f(x) = \cos(x) \longrightarrow f'(x) = -\sin(x)$
- e-Funktion

 - 1 $f(x) = e^x \longrightarrow f'(x) = e^x$ 2 $f(x) = e^{h(x)} \longrightarrow f'(x) = h'(x) \cdot e^{h(x)}$
- $^1 \mbox{N-Nenner},$ Z-Zähler, AZ Ableitung Zähler, AN Ableitung Nenner

- \bullet ln-Funktion
 - 1 $f(x) = \ln(x)$ mit $x \in \mathbb{R}^+ \longrightarrow f'(x) = \frac{1}{x}$
- Wurzel
 - 1 $f(x) = \sqrt{x} = x^{\frac{1}{2}} \longrightarrow f'(x) = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$ 2 $f(x) = \sqrt[n]{x} = x^{\frac{1}{n}} \longrightarrow f'(x) = \frac{1}{n} \cdot x^{\frac{1}{n} 1} = \frac{1}{n \cdot \sqrt[n 1]{x}}$

Anwendung der 1. Ableitung

- Zusammenhang Steigung m des Graphen G_f einer Funktion f an der Stelle $x_0 \in G_f$ mit der 1. Ableitung:
 - $1 f'(x_0) = m$
 - $2 \tan{(\alpha)} = m \longrightarrow \alpha = \tan^{-1}{(m)}$
- Tangentengleichung y_T durch den Punkt $P(x_0|f(x_0)) \in G_f$ $y_T = f'(x_0) \cdot (x - x_0) + f(x_0)$

Grenzwerte spezieller Funktionen:

- Ist p(x) ein Polynom, so gilt $\lim_{x \to \infty} \frac{p(x)}{e^x} = 0 \longrightarrow e$ -Funktion.
- Ist p(x) ein nicht konstantes Polynom, so gilt $\lim_{x \to \infty} \frac{\ln(x)}{p(x)} = 0 \longrightarrow ln - \text{Funktion}.$
- Ist p(x) ein Polynom ohne konstanten Summanden , so gilt $\lim_{x \to 0} (p(x) \cdot \ln(x)) = 0 \longrightarrow ln - \text{Funktion}.$

Funktionsklassen:

Lineare Funktionen

- Funktionsterm: $f(x) = m \cdot x + t$ mit $m \in \mathbb{R} \setminus \{0\}$ und $t \in \mathbb{R}$ 1 m - Steigung der Geraden 2 t - y-Achsenabschnitt
- Graph einer linearen Funktion ist eine Gerade
- Berechnung der Steigung $m = \frac{\Delta y}{\Delta x}$
- Berechnung des y-Achsenabschnittes t \longrightarrow die Steigung mund die Koordinaten eines Punktes $P(x_0|y_0)$ einsetzen und nach t auflösen

Quadratische Funktionen:

• allgemeine Form: $f(x) = a \cdot x^2 + b \cdot x + c$ mit $a \in \mathbb{R} \setminus \{0\}$ und $b, c \in \mathbb{R}$

- Graph:
- Scheitelpunktform: $f(x) = a \cdot (x x_s)^2 + y_s$ mit $S(x_s|y_s)$ den Koordinaten des Scheitelpunktes
- Faktorisierte Form: $f(x) = a \cdot (x x_1) \cdot (x x_2)$ mit $f(x_1) = 0$ und $f(x_2) = 0$ als Nullstellen der Funktion
- Nullstellen als Lösung der Gleichung $0 = a \cdot x^2 + b \cdot x + c \longrightarrow x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$
- Für a>0 ist die Parabel nach oben geöffnet \longrightarrow Scheitelpunkt ist Tiefpunkt und es gilt $\lim_{x \to \pm \infty} f(x) = \infty$
- Für a < 0 ist die Parabel nach unten geöffnet \longrightarrow Scheitelpunkt ist Hochpunkt und es gilt $\lim_{x \to \pm \infty} f(x) = -\infty$

Polynome:

- $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0 = \sum_{i=0}^n a_i x^i$ mit $a_n \in \mathbb{R} \setminus \{0\}$ und die restlichen $a_i \in \mathbb{R}$
- höchster Exponent legt den Grad des Polynoms fest \longrightarrow hier n—ten Grades
- Beispielgraphen in Abhängigkeit des Grades:

- 1 a gerade:
- 2 a ungerade:
- 3 n gerade und $a_n > 0 \longrightarrow \lim_{x \to \pm \infty} f(x) = \infty$
- 4 n gerade und $a_n < 0 \longrightarrow \lim_{x \to \pm \infty} f(x) = -\infty$ 5 n ungerade und $a_n > 0 \longrightarrow \lim_{x \to -\infty} f(x) = -\infty$ und
- $\lim f(x) = \infty$
- 6 n ungerade und $a_n < 0 \longrightarrow \lim_{x \to -\infty} f(x) = \infty$ und $\lim_{x \to \infty} f(x) = -\infty$
- ab Grad n > 2 kennen wir keine Lösungsformel zur Berechnung der Nullstellen $^2 \longrightarrow \text{ausklammern bzw.}$ Newton-Verfahren zur Näherung der Nullstellen

Gebrochen-rationale Funktionen

- $f(x) = \frac{z(x)}{n(x)}$ und $\mathbb{D}_f = \mathbb{R} \setminus \{x_i\}$ mit $n(x_i) = 0$
- Definitionslücken sind die Nullstellen des Nennerpolynoms
- Nullstellen berechnen sich durch 0 = z(x) sind also die Nullstellen des Zählerpolynoms
- Graph $f(x) = \frac{x^2+1}{x-1} = x+1+\frac{2}{x-1}$

Hinweis: Bei der Monotonie- und Krümmungsuntersuchung muss die Definitionslücke explizit betrachtet werden, an der Definitionslücke kann sich das Monotonie- und Krümmungsverhalten ändern

- Asymptoten: Die Art der Asymptote einer gebrochenrationalen Funktion $f(x) = \frac{z(x)}{n(x)}$ mit $\mathbb{D} = \mathbb{D}_{\text{max}}$ hängt vom Grad der Polynome des Zählers als auch des Nenners ab³.
 - 1 z < n: die x-Achse ist waagerechte Asymptote $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$
 - 2 z = n: waagerechte Asymptote die parallel zur x-Achse verläuft $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = a \in \mathbb{R}$
 - 3 z = n+1: schräge Asymptote die direkt aus der Summenform ablesbar ist

Hinweis: f(x) =

Gleichung der schrägen Asymptote

 $\boxed{4}$ z > n +1: Näherungskurve

2 Für n=2 eist das Polynom eine Quadratischen Funktion $^3\mathbf{z}\text{-}\mathbf{Grad}$ des Zählers; n
 - Grad des Nenners

e-Funktion:

- $f(x) = e^x$
- Graph der Funktion $f(x) = e^x$

- Ableitung: $f'(x) = e^x$
- Grenzwerte:
 - $\lim_{x \to -\infty} f(x) = 0$
 - $\lim_{x \to \infty} f(x) = \infty$
- f(x) > 0: für alle $x \in \mathbb{R}$

Hinweis: Die e-Funktion wächst schneller als jede Potenzfunktion $g(x) = x^n$ mit $n \in \mathbb{N}$

Hinweis: Eselsbrücke: e gewinnt!

Bei der Kurvendiskussion wird die e-Funktion meistens als Produkt mit einer anderen Funktion betrachtet.⁴

ln-Funktion:

- $f(x) = \ln(x)$ mit $x \in \mathbb{R}^+$
- Graph der Funktion $f(x) = \ln(x)$

- Ableitung $f'(x) = \frac{1}{x}$
- Grenzwerte:
 - $\lim_{x \to 0^+} f(x) = -\infty$
 - $2 \lim_{x \to \infty} f(x) = \infty$
- Hinweis: Die ln-Funktion wächst langsamer als jede Potenzfunktion $g(x) = x^n$ mit $n \in \mathbb{N}$,

Hinweis: Eselsbrücke: ln ist der Loser!

• Bei der Kurvendiskussion wird die ln-Funktion meistens in Kombination mit einer anderen Funktion betrachtet.⁵

Wurzelfunktion:

- $f(x) = a \cdot \sqrt{x-b} + c$ und $x \ge b$ ist eine Halbparabel und ergibt sich durch folgende lineare Transformationen aus der allgemeinen Wurzelfunktion $g(x) = \sqrt{x}$ wie folgt:
 - 1 Verschiebung um b in x-Richtung
 - 2 Strecken bzw. Stauchen mit dem Faktor a in y-Richtung
 - 3 Verschiebung um c in y-Richtung

$$\frac{{}^{4}f(x) = g(x) \cdot e^{h(x)} \longrightarrow f'(x)}{} = g'(x) \cdot e^{h(x)} + g(x) \cdot h'(x) \cdot e^{h(x)}$$

$$^{5}f(x) = \ln(g(x)) \longrightarrow f'(x) = \frac{1}{g(x)} \cdot g'(x) = \frac{g'(x)}{g(x)}$$

$$^{5}f(x) = \ln(g(x)) \longrightarrow f'(x) = \frac{1}{g(x)} \cdot g'(x) = \frac{g(x)}{g(x)}$$

• Graph der Funktion $f(x) = \frac{1}{2}\sqrt{x-2} + 2$

• Ableitung $f(x) = \sqrt{g(x)} \longrightarrow f'(x) = \frac{g'(x)}{2 \cdot \sqrt{g(x)}}$

allgemeine Sinusfunktion:

• $f(x) = a \cdot \sin(b \cdot (x - c)) + d$ mit $a \in \mathbb{R} \setminus \{0\}$ und $b, c, d \in \mathbb{R}$ 1 Der Parameter a ändert die Amplitute, also die maximale Auslenkung der Kurve.

2 Der Parameter b streckt bzw. staucht die Kurve in Richtung der x-Achse. Durch den Faktor b wird damit die Periode p verändert $p=\frac{2\cdot\pi}{b}$.

3 Der Parameter c verschiebt die Kurve in Richtung der x-Achse.

4 Der Parameter d verschiebt die Kurve in Richtung der y-Achse.

- Ableitung: $f'(x) = a \cdot \cos(b \cdot (x c)) \cdot b$
- Bei der Kurvendiskussion wird die sin Funktion meistens in Kombination mit einer anderen Funktion betrachtet. 6

Betragsfunktionen:

• Wird eine Funktion g linaren Transformationnen in Form des Betrags unterworfen ergeben sich unterschiedliche Graphen. Diese Graphen haben allerdings gemeinsam, dass die Nicht-Differenzierbarkeit an bestimmten Stellen sich nicht ändert.

• $g_1(x) = |f(x)|$: Die Punkte mit negativen Funktionswerten werden an der x - Achse gespiegelt. Die Spiegelung erfolgt damit an den Nullstellen.

• $g_2(x) = f(|x|)$: Der im positive Teil der x - Achse liegende Graaph wird an der y - Achse gespiegelt.

• $g_3(x) = |f(|x|)|$: Wird sowohl der Betrag der x - Werte als auch der Betrag der Funktionswerte gebildet, werden zunächst die Punkte mit positiven x-Werten an der y-Achse

 $^{6}f(x) = \sin(g(x)) \longrightarrow f'(x) = \cos(g(x)) \cdot g'(x)$

gespiegelt um anschließend die Punkte mit negativen Funktionswerten an der x-Achse zu spiegeln.

• Betragsfunktionen sind an Knickstellen nicht differenzierbar \longrightarrow Nachweis über die h-Methode.

Kurvendiskussion:

Bei der Kurvendiskussion werden Eigenschaften des Graphen G_f einer Funktion f analytisch untersucht

Untersuchung der Ausgangsfunktion:

• Untersuchung folgender Eigenschaften:

 \blacksquare Definitionsbereich \longrightarrow bei gebrochen-rationalen Funktion z.B. Berechnung der Definitionslücken

2 Schnittpunkte mit den Koordinatenachsen \longrightarrow Nullstellen und Schnittpunkt mit der y-Achse

3 Symmetrie zum Ursprung bzw. zur y-Achse

4 Verhalten an den Rändern des Definitionsbereichs \longrightarrow Grenzwerte und Verhalten an Definitionslücken

5 Asymptoten

• je nach Funktionsklasse sind die Rechnungen unterschiedlich

Monotonie:

• Ist die Funktion f im Intervall I differenzierbar dann ist G_f für

$$f'(x) > 0$$

 $f'(x) < 0$ streng monoton $\begin{cases} \text{wachsend} \\ \text{fallend} \end{cases}$

• Hinweis: Für die Existenz einer Extremstellen $x_0 \in G_f$ sind zwei Bedingungen notwendig:

 $f'(x_0) = 0$ 2 $f''(x_0) \neq 0$

• Die Art der einzelnen Extremstellen läßt sich leicht durch die Vorzeichenwechsel (VZW) der Ableitung an der Stelle x_0 mit $f'(x_0) = 0$ bestimmen.

- Hochpunkt (HoP) $HoP(x_0|f(x_0))$ genau dann, wenn es einen VZW der Ableitung von positiv nach negativ gibt.

 $\begin{array}{ccc}
1 & f'(x_0) = 0 \\
2 & f''(x_0) < 0
\end{array}$

- Tiefpunkt (TiP) $TiP(x_0|f(x_0))$ genau dann, wenn es einen VZW der Ableitung von negativ nach positiv gibt.

 $\begin{array}{ccc}
1 & f'(x_0) = 0 \\
2 & f''(x_0) > 0
\end{array}$

• Untersuchung der Monotonie und der Extremstellen

1 Bestimmung der Nullstelle der 1. Ableitung

2 Untersuchung der Monotonie mit Hilfe der Monotonietabelle

3 Entscheidungen zu möglichen Extremstellen

• Monotonietabelle: Eintragung der Intervalle die durch die Nullstellen von $f'(x_1) = 0$ und $f'(x_2) = 0$ festgelegt werden. Hinweis: Beispiel mit zwei Nullstellen:

wenn sich das Monotonieverhalten nicht ändert, liegt ein Terrassenpunkt vor

• Bei gebrochen-rationalen Funktionen muss die Definitionslücke in der Monotonietabelle ebenfalls betrachtet werden.

Krümmungsverhalten:

- Der Punkt, an dem sich die Krümmung des Graphen der Funktion f ändert, heißt Wendepunkt.
- Am Wendepunkt des Graphen liegt ein Extremwert der lokalen Änderungsrate vor.
- Terrassenpunkt ist ein Wendepunkt mit einer waagerechten Tangente.
- Zusammenhang der lokalen Änderungsrate und der Krüm-
 - 1 Ist die Funktion f im Intervall I zweimal stetig differenzierbar und ist für alle $x \in I$ der Funktionswert f''(x) positiv, dann ist der Graph der Funktion f linksgekrümmt.
 - 2 Ist die Funktion f im Intervall I zweimal stetig differenzierbar und ist für alle $x \in I$ der Funktionswert f''(x) negativ, dann ist der Graph der Funktion f rechtsgekrümmt.
- Untersuchung der Krümmung und der Wendestellen
 - 1 Bestimmung der Nullstelle der 2. Ableitung
 - 2 Untersuchung der Krümmung mit Hilfe der Krümmungstabelle
 - 3 Entscheidungen zu möglichen Wendestellen
- Ein Wendepunkt liegt nur vor, wenn sich das Krümmungsverhalten ändert.
- Krümmungstabelle: Eintragung der Intervalle die durch die Nullstelle von $f''(x_1) = 0$ festgelegt werden.

Hinweis: Beispiel mit einer Nullstellen:

x	$-\infty < x < x_1$	$x = x_1$	$x_1 < x < \infty$
f''(x)	-	0	+
G_f	rechtsgekrümmt	Wendepunkt WP	linksgekrümmt

Graph:

• alle berechneten Punkte werden jetzt im Koordinatensystem markiert um dann einen Graphen zu skizzieren

Beispiel
$$f(x) = \frac{1}{16}x^4 + \frac{1}{4}x^3 \text{ mit } \mathbb{D}_f = \mathbb{D}_{max}$$

- Bestimmung des maximalen Definitionsbereichs: $\mathbb{D}_f = \mathbb{R}$

• Untersuchungen der Symmetrie:
$$f(-x) = \frac{1}{16} \cdot (-x)^4 + \frac{1}{4} \cdot (-x)^3 = \frac{1}{16} \cdot x^4 - \frac{1}{4} \cdot x^3 \neq \pm f(x)$$
 Damit ist der Graph G_f weder punktsymmetrisch zum Ursprung noch achsensymmetrisch zur y-Achse.

• Verhalten an den Rändern des Definitionsbereichs
$$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{1}{16}x^4+\frac{1}{4}x^3=\infty$$

$$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\frac{1}{16}x^4+\frac{1}{4}x^3=\infty$$

- Gemeinsame Punkte mit den Koordinatenachsen: 1 Schnittpunkt mit der y-Achse $\longrightarrow f(0) = \frac{1}{16}0^4 + \frac{1}{4}0^3 = 0$
 - 2 Schnittpunkte mit der x-Achse $\longrightarrow 0 = \frac{1}{16}x^3(x+4)$ $\longrightarrow SP_{x_1} = SP_{x_2} = SP_{x_3}(0|0) \text{ und } SP_{x_4}(-4|0)$
- Monotonie des Graphen
 1 1. Ableitung f'(x) = ¹/₄x³ + ³/₄x²
 2 Berechnung der Nullstellen der 1. Ableitung
 3 0 = ¹/₄x³ + ³/₄x² → x₁ = x₂ = 0 und x₃ = -3

Wionotometabene.								
x	$-\infty < x < -3$	x = -3	-3 < x < 0	x = 0	$0 < x < \infty$			
f'(x)	-	0	+	0	+			
G_f	smf	$TiP(-3 -\frac{27}{16})$	smw	TP(0 0)	smw			

- Krümmungsuntersuchung: 1 2. Ableitung $f''(x) = \frac{3}{4}x^2 + \frac{3}{2}x$

 - 2 Berechnung der Nullstellen der 2. Ableitung 3 $0 = \frac{3}{4}x^2 + \frac{3}{2}x \longrightarrow x_1 = 0$ und $x_2 = -2$
 - 4 Krümmungstabelle

x	$-\infty < x < -2$	x = -2	-2 < x < 0	x = 0	$0 < x < \infty$
f''(x)	+	0	-	0	+
G_f	linksgekr.	WP(-2 -1)	rechtsgekr.	WP(0 0)	linksgekr.

- Berechnung der Wendetangente am Punkt P(-2|-1):
 - 1 Steigung an der Wendestelle $x_0 = -2$ durch f'(-2) = 1
- 2 einsetzen in $y_T = f'(x_0) \cdot (x x_0) + f(x_0)$ $\longrightarrow y_T = 1 \cdot (x (-2)) + (-1) = x + 1$

$$\longrightarrow y_T = 1 \cdot (x - (-2)) + (-1) = x + 1$$

- Wertemenge $W = \left[-\frac{27}{16} \mid \infty \right]$
- Graph:

Platz für eigene Notizen:

Analytische Geometrie

Elementargeometrische Grundlagen

- Flächeninhalt von ebenen Figuren

 - Parallelogramm $\longrightarrow A_P = g \cdot h$ Trapez $\longrightarrow A_T = \frac{1}{2} \cdot (a+c) \cdot h$ hierbei sind a und c die Längen der Parallelen
 - 4 Drachenviereck $\longrightarrow A_{\text{Drache}} = \frac{1}{2} \cdot e \cdot f$ hierbei sind e und
 - \overline{fe} die Längen der Diagonalen $5 \text{ Kreis} \longrightarrow A_K = \pi \cdot r^2 \text{ und } U_K = 2 \cdot \pi \cdot r \text{ hierbei ist } r \text{ der}$ Radius des Kreises
- Volumen und Oberfläche von Körpern⁷

 - $\begin{array}{|c|c|} \hline \textbf{1} \text{ Prisma} & \longrightarrow V_{\text{Prisma}} = A_G \cdot h \\ \hline \textbf{2} \text{ Pyramide} & \longrightarrow V_{\text{Pyramide}} = \frac{1}{3} \cdot A_G \cdot h \end{array}$
 - 3 Zylinder $\longrightarrow V_{\text{Zylinder}} = A_G \cdot h$ und der Oberflächeninhalt eines geraden Zylinders $A_O = 2 \cdot A_G + 2 \cdot \pi \cdot r \cdot h$
 - 4 Kegel $\longrightarrow V_{\text{Kegel}} = \frac{1}{3} \cdot A_G \cdot h$ und der Oberflächeninhalt eines geraden Kegels $A_O = A_G + \pi \cdot r \cdot m$ mit m als Länge
 - 5 Kugel $\longrightarrow V_{\rm Kugel} = \frac{4}{3} \cdot \pi \cdot r^3$ und der Oberflächeninhalt $A_O = 4 \cdot \pi \cdot r^2$

Vektoren

- Vektoren sind Pfeile im zwei bzw. dreidimensionalen Raum
- Jeder Vektor ist ein Repräsentant unendlich vieler, gleich langer, gleich gerichteter und paralleler Pfeile

