MASARYK UNIVERSITY

FACULTY OF INFORMATICS

Verification of binarised neural networks using ASP

Bachelor's Thesis

JINDŘICH MATUŠKA

Advisor: RNDr. Samuel Pastva, PhD.

Department of Computer Systems and Communications

Brno, Spring 2024

Declaration

Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

Jindřich Matuška

Advisor: RNDr. Samuel Pastva, PhD.

Acknowledgements

foo bar

Abstract

foo bar

Keywords

bnn, verification, binarized neural networks answer set programming, asp

Contents

1	Introduction	1
2	Used tools	3
	2.1 Answer set programming	3
	2.1.1 Syntax and semantics of ASP	3
	Used tools 2.1 Answer set programming	5
3	Můj přínos	7
	Můj přínos 3.1 Binary neural network	7
	3.2 Encoding of BNN in Clingo	10
	3.3 Encoding of input regions	10
4	Evaluation	11
5	Discussion	13
Bil	iography	15

List of Tables

List of Figures

1 Introduction

Deep neural networks (DNN) are state-of-the-art technology. They are used in many real-world applications e.g. medicine, self-driving cars, autonomous systems, many of which are critical. Deep neural networks used in natural language processing have up to hundreds of billions of parameters [1]. That is too many for people to comprehend. We need tools for the automation of verification of these.

Verification of neural networks is split into two categories. First, qualitative verification, searches through input space looking for any adversarial input, e.g. an input which results in wrong output. Second, quantitative verification, searches through input space determining the size part of the input space giving adversarial outputs.

For the qualitative disproving of the verity of general DNNs, many algorithms for finding adversarial inputs have been developed, using [programming paradigms][citations]. The DNN can be disproven simply by finding any adversarial input. Proving the nonexistence of adversarial input is usually made by generating constraints on adversarial inputs and then showing there can be no such input [2]. This is computationally much more difficult and prone to errors emerging from inaccuracies of floating point numbers operations. It is often made with the use of a simplex algorithm combined with the satisfiability modulo theories (SMT) paradigm [2, 3, 4]. As far as I know, there is no reasonably quick quantitative validator of general DNNs yet.

As DNNs generally base their computations on floating point numbers, the computation of output is hard. For this, quantization, a new branch of DNN development, where instead of 32 or 64-bit long floating point numbers, low-bit-width (eg. 4-bit) fixed point numbers are used. This mitigates the high cost of computation and the need for high-end devices. Extreme examples of quantization are Binary neural networks (BNN). These use binary parameters for their computations, resulting in much cheaper computational price, both when learning and in production, while maintaining near state-of-the-art results [5].

While both qualitative and quantitative BNN verificators exist, they scale only up to millions of parameters for qualitative verification [6] and tens of thousands of parameters for quantitative verification [7].

1. Introduction

These verificators can even compute on natural numbers only, without errors.

In this thesis, I have implemented a quantitative BNN validator using the ASP paradigm in the framework Clingo from Potassco. I have also evaluated the speed of this validator against the state-of-theart implementation BNNQuanalyst [7] on MNIST [8] and Fashion MNIST [9] datasets.

2 Used tools

2.1 Answer set programming

Answer set programming (ASP) is a form of declarative programming oriented towards difficult, primarily NP-hard, search problems [10]. ASP is particularly suited for solving difficult combinatorial search problems [11]. ASP is somewhat closely related to propositional satisfability checking (SAT) in sense that the problem is represented as logic program. Difference is in computational mechanism of finding solution.

2.1.1 Syntax and semantics of ASP

Logic program Π in ASP is a set of rules. Each rule $r_i \in \Pi$ has form of

$$head(r_i) \leftarrow body(r_i)$$
 (2.1)

head(r_i) is then a single atom p_0 , while body(r_i) is a set of zero or more atoms { p_1, \ldots, p_m , not p_{m+1}, \ldots not p_n }.

$$p_0 \leftarrow p_1, \dots, p_m, \text{not } p_{m+1}, \dots, \text{not } p_n$$
 (2.2)

Further the body(r_i) can be split between body⁺(r_i) = { $p_1, ..., p_m$ } and body⁻(r_i) = { $p_{m+1}...p_n$ }. If $\forall r_i \in \Pi$. body⁻(r_i) = \emptyset , then Π is called *basic*.

Semantically rule (2.2) means If all atoms from body⁺(r_i) are included in answer set and no atom from body⁻(r_i) is in answer set, then head(r_i) has to be in the set.

Set of atoms X is closed under a basic program Π if for any $r_i \in \Pi$. body $(r_i) \subseteq X \implies \text{head}(r_i) \in X$. For general case the concept of reduct of a program Π relative to a set X of atoms is needed.

$$\Pi^{X} = \{ \text{head}(r_i) \leftarrow \text{body}^+(r_i) \mid r_i \in \Pi, \text{body}^-(r_i) \cap X = \emptyset \} \quad (2.3)$$

This program is always basic as it only contains positive atoms.

Let's denote $Cn(\Pi)$ the minimal set of atoms closed under a basic program Π , that is

$$Cn(\Pi) \supseteq \{ head(r_i) \mid r_i \in \Pi, body(r_i) \subseteq Cn(\Pi) \}$$
 (2.4)

such set is said to constitute program Π . Set X of atoms is said to be answer set of Π iff

$$Cn(\Pi^X) = X \tag{2.5}$$

In other words, the answer set is a model of Π such that its every atom is grounded in Π .

Let's illustrate this property on an example.

$$\Pi = \{ p \leftarrow p, q \leftarrow \text{not } p \}$$

There are 4 subsets of set of all atoms. First the reduct relative to the subset is made, on it the calculation of constituting set is made. If $X = \operatorname{Cn}(\Pi^X)$, then X is one of answer sets.

X	Π^X	$Cn(\Pi^X)$
{}	$p \leftarrow p$	{q}
	$q \leftarrow$	
{ <i>p</i> }	$p \leftarrow p$	{}
{ <i>q</i> }	$p \leftarrow p$	{q}
()	$q \leftarrow$	
$\{p,q\}$	$p \leftarrow p$	{}

There is only a single answer set of Π , that is $\{q\}$. Also, there is an interesting type of rule in the table, $p \leftarrow$. This type of rule is commonly reffered as *fact* and ensures that atom p is always included in the answer set.

Another toy example is $\Pi = \{ p \leftarrow \text{not } q, q \leftarrow \text{not } p \}$. Again, there are 4 subsets of set of all atoms.

X	Π^X	$Cn(\Pi^X)$
{}	<i>p</i> ←	{ <i>p</i> , <i>q</i> }
	$q \leftarrow$	
{ <i>p</i> }	$p \leftarrow$	{ <i>p</i> }
{ <i>q</i> }	$q \leftarrow$	$\{q\}$
{ <i>p</i> , <i>q</i> }		{}

This time there are two answer sets of Π , $\{p\}$ and $\{q\}$. As we can see, the double not forms a XOR — exactly one of atoms p,q has to be in the answer set.

2.1.2 Language extensions

Writing logic programs only using rules of form (2.2) would be very hard. For this, many language extensions have been developed to shorten programs, simplifying both readability and computation of stable models.

In the next part I will show definition of the extensions used in the implementation part of my thesis.

Constraint

$$\leftarrow p_1, \ldots, p_m, \text{not } p_{m+1}, \ldots, \text{not } p_n$$

Constraint is a type of language extension with semantics that its body can not be in the answer set. It can be rewritten as following rule [11]:

$$f \leftarrow \text{not } f, p_1, \dots, p_m, \text{not } p_{m+1}, \dots, \text{not } p_n$$

where f is a new atom (it is not used anywhere else).

Let's consider Π , $f \leftarrow \text{not } f$, p_1, \ldots, p_m , not $p_{m+1}, \ldots, \text{not } p_n = r \in \Pi$. Let X be any set of literals s.t. $\{p_1, \ldots, p_m\} \subseteq X$, $\{p_{m+1}, \ldots, p_n\} \cap X = \emptyset$. If $f \in X$, then the rule $f \leftarrow \text{body}^+(r)$ is not in Π^x , thus $f \notin \text{Cn}(\Pi^X)$ and $X \neq \text{Cn}(\Pi^X)$. If $f \notin X$, then the rule $f \leftarrow \text{body}^+(r)$ is in Π^X , thus $f \in \text{Cn}(\Pi^X)$ and $X \neq \text{Cn}(\Pi^X)$. This shows that no set consistent with constraint rule can be answer set.

If X is not consistent with rule r and $f \notin X$, then X contains some negative literal of r ($\exists x \in X. x \in \text{body}^-(r)$) and the rule r is not in the reduct Π^X , or X does not contain some positive literal of r, thus the rule r is not applied. Either way, $f \notin X$, $f \notin \text{Cn}(\Pi^X)$.

Count aggregate

3 Můj přínos

3.1 Binary neural network

I have been working with deterministic binarized neural networks (BNN) as defined in [12] and [7]. For convinience I have rewritten the output as a natural number instead of one-hot vector. This article defines deterministic BNN as a convolution of layers. The input is encoded as vector $\mathbb{B}_{\pm 1}^{n_1}$. The BNN is then encoded as tuple of blocks $(t_1, t_2, \ldots, t_d, t_{d+1})$.

$$\mathcal{N}: \mathbb{B}^{n_1}_{\pm 1} \to \mathbb{N}_0$$

$$\mathcal{N} = t_{d+1} \circ t_d \circ \cdots \circ t_1, \tag{3.1}$$

where for each $i \in \{1, 2, ... d\}$ t_i is inner block consisting of LIN layer t_i^{lin} , BN layer t_i^{bn} and BIN layer t_i^{bin} .

$$t_i: \mathbb{B}^{n_i}_{\pm 1} \to \mathbb{B}^{n_{i+1}}_{\pm 1}$$

$$t_i = t_i^{bin} \circ t_i^{bn} \circ t_i^{lin}$$
(3.2)

Output block t_{d+1} then consists of LIN layer t_{d+1}^{lin} and ARGMAX layer t_{d+1}^{am} .

$$t_{d+1}: \mathbb{B}^{n_{d+1}}_{\pm 1} \to \mathbb{N}_0$$

 $t_{d+1} = t^{am}_{d+1} \circ t^{lin}_{d+1}$ (3.3)

Each layer is a function with parameters defined in table 3.1.

I have transformed the parameters to lower their count and make them integer only.

$$t_i(\vec{x}) = (t_i^{bin} \circ t_i^{bn} \circ t_i^{lin})(\vec{x}) = y$$
$$y_j = \operatorname{sign}_{\pm 1} \left(\alpha_j \cdot \frac{\langle \vec{x}, \mathbf{W}_{:,j} \rangle + b_j - \vec{\mu}_j}{\vec{\sigma}_j} - \vec{\gamma}_j \right)$$

The argument of $sign_{\pm 1}$ can be further analysed.

$$\vec{\alpha}_j \cdot \frac{\langle \vec{x}, \mathbf{W}_{:,j} \rangle + \vec{b}_j - \vec{\mu}_j}{\vec{\sigma}_j} - \vec{\gamma}_j \ge 0$$

3. Můj přínos

Table 3.1: Definition of BNN layers [7]

Layer	Function	Parameters	Definition
LIN	$t_i^{lin}:\mathbb{B}_{\pm 1}^{n_i} o \mathbb{R}^{n_{i+1}}$	Weight matrix: $\mathbf{W} \in \mathbb{B}_{\pm 1}^{n_i \times n_{i+1}}$ Bias (row) vector: $\vec{b} \in \mathbb{R}^{n_{i+1}}$	$t_i^{bn}(\vec{x}) = \vec{y}$, where $\forall j \in [n_{i+1}]$ $\vec{y_j} = \langle \vec{x}, \mathbf{W}_{:,j} \rangle + \vec{b_j}$
BN	$t_i^{bn}: \mathbb{R}^{n_{i+1}} ightarrow \mathbb{R}^{n_{i+1}}$	Weight vector: $\vec{\alpha} \in \mathbb{R}^{n_{i+1}}$ Bias vector: $\vec{\gamma} \in \mathbb{R}^{n_{i+1}}$ Mean vector: $\vec{\mu} \in \mathbb{R}^{n_{i+1}}$ Std. dev. vector: $\vec{\sigma} \in \mathbb{R}^{n_{i+1}}$	$t_i^{bn}(\vec{x}) = \vec{y}$, where $\forall j \in [n_{i+1}]$ $\vec{y}_j = \vec{\alpha}_j \cdot \frac{\vec{x}_j - \vec{\mu}_j}{\vec{\sigma}_j} + \vec{\gamma}_j$
BIN	$t_i^{bin}: \mathbb{R}^{n_{i+1}} o \mathbb{B}_{\pm 1}^{n_{i+1}}$	-	$t_i^{bin}(\vec{x}) = \vec{y}$, where $\forall j \in [n_{i+1}]$, $\vec{y_j} = \begin{cases} +1, & \text{if } \vec{x_j} \geq 0; \\ -1, & \text{otherwise} \end{cases}$
ARGMAX	$t_{d+1}^{am}: \mathbb{R}^{n_{d+1}} o \mathbb{N}_0$	-	$t_{d+1}^{am}(\vec{x}) = \arg\max(\vec{x})$

There are three possible cases of value $\frac{\vec{\alpha}_j}{\vec{\sigma}_j}$:

$$\begin{split} \frac{\vec{\alpha}_{j}}{\vec{\sigma}_{j}} \geq 0: \\ \langle \vec{x}, \mathbf{W}_{:,j} \rangle + \vec{b}_{j} - \vec{\mu}_{j} - \frac{\vec{\sigma}_{j}}{\vec{\alpha}_{j}} \cdot \vec{\gamma}_{j} \geq 0 \\ \mathbf{W}'_{:,j} = \mathbf{W}_{:,j}, \ \vec{b}'_{j} = \vec{b}_{j} - \vec{\mu}_{j} - \frac{\vec{\sigma}_{j}}{\vec{\alpha}_{j}} \cdot \vec{\gamma}_{j} \\ \langle \vec{x}, \mathbf{W}'_{:,j} \rangle + \vec{b}'_{j} \geq 0 \end{split}$$

$$\begin{split} \frac{\vec{\alpha}_{j}}{\vec{\sigma}_{j}} &\leq 0: \\ \langle \vec{x}, \mathbf{W}_{:,j} \rangle + \vec{b}_{j} - \vec{\mu}_{j} - \frac{\vec{\sigma}_{j}}{\vec{\alpha}_{j}} \cdot \vec{\gamma}_{j} &\leq 0 \\ \langle \vec{x}, -\mathbf{W}_{:,j} \rangle - \vec{b}_{j} + \vec{\mu}_{j} + \frac{\vec{\sigma}_{j}}{\vec{\alpha}_{j}} \cdot \vec{\gamma}_{j} &\geq 0 \\ \mathbf{W}'_{:,j} &= -\mathbf{W}_{:,j}, \ \vec{b}'_{j} &= -\vec{b}_{j} + \vec{\mu}_{j} + \frac{\vec{\sigma}_{j}}{\vec{\alpha}_{j}} \cdot \vec{\gamma}_{j} \\ \langle \vec{x}, \mathbf{W}'_{:,j} \rangle + \vec{b}'_{j} &\geq 0 \end{split}$$

$$ec{lpha}_{j} = 0: \ -ec{\gamma}_{j} \geq 0 \ \mathbf{W}'_{:,j} = ec{0}, \ ec{b}'_{j} = -ec{\gamma}_{j} \ \langle ec{x}, \mathbf{W}'_{:,j}
angle + ec{b}'_{j} \geq 0$$

This shows that each inner layer can be computed using weight matrix and one bias parameter. However if there were some parameter $\alpha_j = 0$, \mathbf{W}' would not have values only from ± 1 but from $\{-1,0,1\}$. This is not an issue as Clingo works by default above integers. If 0-values were issue, they could be removed either by offsetting bias parameter or by modifying the BNN structure to remove the constant node. (This has not been implemented in my work.)

$$\vec{\alpha}_j = 0: W'_{:,j} = W_{:,j}, \ \vec{b}'_j = \begin{cases} \langle \vec{1}, \vec{1} \rangle + 1 & \text{if } -\vec{\gamma}_j \ge 0; \\ -\langle \vec{1}, \vec{1} \rangle - 1 & \text{otherwise} \end{cases}$$

In my implementation I am also encoding inputs as binary values $\{0,1\}$.

$$ec{x} = 2ec{x}^{(b)} - ec{1} \ \langle ec{x}, \mathbf{W}'_{:,j}
angle + ec{b}'_j \ge 0 \ \langle 2ec{x}^{(b)} - ec{1}, \mathbf{W}'_{:,j}
angle + ec{b}'_j \ge 0 \ 2\langle ec{x}^{(b)}, \mathbf{W}'_{:,j}
angle - \langle ec{1}, \mathbf{W}'_{:,j}
angle + ec{b}'_j \ge 0 \ \langle ec{x}^{(b)}, \mathbf{W}'_{:,j}
angle + rac{-\langle ec{1}, \mathbf{W}'_{:,j}
angle + ec{b}'_j}{2} \ge 0$$

Still each block could be computed using one weight matrix and one bias vector. Additionally, as $\langle \vec{x}^{(b)}, \mathbf{W}'_{:,j} \rangle$ is an integer value, equation is equivalent to

$$\langle \vec{x}^{(b)}, \mathbf{W}'_{:,j} \rangle + \left| \frac{-\langle \vec{1}, \mathbf{W}'_{:,j} \rangle + \vec{b}'_j}{2} \right| \geq 0$$

As for the output block, it has already just one weight matrix and one bias vector. The implementation of ARGMAX layer is mainly Clingo-based. The only needed transformation is to split bias to whole and decimal part.

$$\vec{b} = \vec{b}' + \vec{p}, \ \vec{b}'_j = \lfloor \vec{b}_j \rfloor$$

 \vec{p} is then used as main order of outputs.

Implementation of these transformations in Python is added as [appendix]

3.2 Encoding of BNN in Clingo

Implementation of BNN computation is avalible as [appendix]

3.3 Encoding of input regions

An input region of BNN is some subset of inputs on which the analysis is performed. I have implemented both of input region types from [7], that is input region based on Hamming distance (R_H) and input region with fixed indices (R_I) .

The quantitative analysis of said BNN is a problem to say how many inputs

4 Evaluation

5 Discussion

Bibliography

- 1. WEI, Jason; BOSMA, Maarten; ZHAO, Vincent Y.; GUU, Kelvin; YU, Adams Wei; LESTER, Brian; DU, Nan; DAI, Andrew M.; LE, Quoc V. Finetuned Language Models Are Zero-Shot Learners. *arXiv e-prints*. 2021, arXiv:2109.01652. Available from DOI: 10. 48550/arXiv.2109.01652.
- ISAC, Omri; BARRETT, Clark W.; ZHANG, M.; KATZ, Guy. Neural Network Verification with Proof Production. 2022 Formal Methods in Computer-Aided Design (FMCAD). 2022, pp. 38–48. Available also from: https://api.semanticscholar.org/CorpusID: 249240518.
- 3. KATZ, Guy; HUANG, Derek A.; IBELING, Duligur; JULIAN, Kyle; LAZARUS, Christopher; LIM, Rachel; SHAH, Parth; THAKOOR, Shantanu; WU, Haoze; ZELJIĆ, Aleksandar; DILL, David L.; KOCHENDERFER, Mykel J.; BARRETT, Clark. The Marabou Framework for Verification and Analysis of Deep Neural Networks. In: DILLIG, Isil; TASIRAN, Serdar (eds.). Computer Aided Verification. Cham: Springer International Publishing, 2019, pp. 443–452. ISBN 978-3-030-25540-4.
- KATZ, Guy; BARRETT, Clark; DILL, David L.; JULIAN, Kyle; KOCHENDERFER, Mykel J. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In: MAJUMDAR, Rupak; KUNČAK, Viktor (eds.). Computer Aided Verification. Cham: Springer International Publishing, 2017, pp. 97–117. ISBN 978-3-319-63387-9.
- 5. AGRAWAL, Tanay. Binarized Neural Network (BNN) and its implementation in machine learning [online]. 2023-08. [visited on 2024-04-11]. Available from: https://neptune.ai/blog/binarized-neural-network-bnn-and-its-implementation-in-ml.
- CHENG, Chih-Hong; NÜHRENBERG, Georg; HUANG, Chung-Hao; RUESS, Harald. Verification of Binarized Neural Networks via Inter-neuron Factoring. In: PISKAC, Ruzica; RÜMMER, Philipp (eds.). Verified Software. Theories, Tools, and Experiments. Cham: Springer International Publishing, 2018, pp. 279–290. ISBN 978-3-030-03592-1.

BIBLIOGRAPHY

- 7. ZHANG, Yedi; ZHAO, Zhe; CHEN, Guangke; SONG, Fu; CHEN, Taolue. Precise Quantitative Analysis of Binarized Neural Networks: A BDD-based Approach. *ACM Trans. Softw. Eng. Methodol.* 2023, vol. 32, no. 3. ISSN 1049-331X. Available from DOI: 10.1145/3563212.
- 8. LECUN, Yann. THE MNIST DATABASE of handwritten digits [online]. [visited on 2024-04-11]. Available from: http://yann.lecun.com/exdb/mnist/.
- 9. XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*. 2017.
- 10. LIFSCHITZ, V. What is answer set programming? In: *Proc.* 23rd *AAAI Conf. on Artificial Intelligence*, 2008. 2008, pp. 1594–1597.
- 11. ANGER, Christian; KONCZAK, Kathrin; LINKE, Thomas; SCHAUB, Torsten. A Glimpse of Answer Set Programming. *Künstliche Intell.* 2005, vol. 19, no. 1, p. 12.
- 12. HUBARA, Itay; COURBARIAUX, Matthieu; SOUDRY, Daniel; EL-YANIV, Ran; BENGIO, Yoshua. Binarized Neural Networks. *ArXiv*. 2016, vol. abs/1602.02505. Available also from: https://api.semanticscholar.org/CorpusID:6453539.