Projet Optimisation : Support Vector Machine

K. Kamtue & Cl. Réda

ENS Cachan

January 4, 2017

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation

- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification

3 Extensions

Sujet

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions

Sujet Support Machine Vector

Objectif : Faire de l'apprentissage supervisé

Appliqué à la classification binaire

Figure: Exemple avec deux classes (rouge et bleue)

Le problème d'optimisation

Recherche du problème d'optimisation

Naïvement

$$\gamma$$
 est la distance entre les droites $f(x) = 1$ et $f(x) = -1$.

$$max_w \ \gamma = rac{2}{\|w\|}$$
 avec $\forall i, y_i f(x_i) \geq 1$

$$\Leftrightarrow \min_{w} \|w\|$$
 avec $\forall i, y_i f(x_i) \geq 1$

$$\Leftrightarrow \min_{w} \frac{1}{2} ||w||^2$$

avec $\forall i, y_i f(x_i) \geq 1$

Le problème d'optimisation Amélioration

En rendant le problème toujours faisable

Pénaliser les erreurs de classification avec les $(z_i)_i$ et C:

$$\min_{w} \frac{1}{2} ||w|| + C \sum_{i \leq m} z_i$$

$$\text{avec } \forall i, z_i \geq 0$$

$$\forall i, y_i (\omega^T x_i) \geq 1 - z_i$$

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions

Résolution du problème d'optimisation

Utilisation de la méthode de Newton :

Rappel : Mise à jour du vecteur x avec la méthode de Newton

$$x_{n+1} \leftarrow x_n + size \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(ici, en cherchant size par backtracking line search)

- Rendre le problème indépendant de la dimension (dépendant du nombre d'échantillons!) en résolvant le problème dual;
- Utiliser la méthode de la barrière logarithmique.

Le problème dual

Après calcul du lagrangien, minimisation en ω et z (λ multiplicateur de Lagrange) :

Problème dual

$$\max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda$$

avec $\forall i, 0 \leq \lambda_{i} \leq C$ si $z_{i} > 0$

Obtenir la solution du primal à partir de celle du dual

$$\omega^* = \sum_i \lambda_i^* y_i x_i$$

Rendre le problème indépendant de la dimension

Utilisation de l'astuce du noyau :

Problème dual

Soit
$$K = X^T X$$
 (noyau). Alors :

$$\max -\frac{1}{2}\lambda^T \operatorname{diag}(y) K \operatorname{diag}(y) \lambda + \mathbf{1}^T \lambda$$
$$\operatorname{avec} \forall i, 0 \leq \lambda_i \leq C$$

Supprimer les contraintes d'inégalité

Utilisation de la méthode de la barrière logarithmique :

Fonction barrière pour éliminer les contraintes d'inégalité

$$\begin{aligned} \Phi(\lambda) &= \sum_{i} (-log(C - \lambda_{i}) - log(\lambda_{i})) \\ &= \sum_{i} log(\frac{1}{(C - \lambda_{i})\lambda_{i}}) \\ &= -\sum_{i} log((C - \lambda_{i})\lambda_{i}) \end{aligned}$$

Problème d'optimisation final

$$\max -\frac{1}{2}\lambda^T \operatorname{diag}(y) K \operatorname{diag}(y) \lambda + \mathbf{1}^T \lambda + \Phi(\lambda)$$

1 Description du projet

- Sujet
- Le problème d'optimisation
- Implémentation

2 Résultats

- Détails de l'implémentation
- Tracé de la frontière de classification
- 3 Extensions

Détails de l'implémentation

Tracé de la convergence de la méthode de Newton

Détails de l'implémentation

Dépendance en la taille de l'échantillon

Figure: Tableau récapitulatif

Test	С	D	N	N IT.	Temps (s)	Meilleur C	Echec (%)
1	1	40	10	11	25,414	1	0 (*)
1	5	40	10	11	0,177	1	0 (*)
1	10	40	10	11	0,168	1	0 (*)

Détails de l'implémentation

Accélération de la convergence quand C augmente

Figure: Tableau récapitulatif

1	5	40000	10	11	0,315
1	5	40	100	12	0,715
1	5	40	1000	?	į 10

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions

La Tracé de la frontière de classification

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Points centrés réduits avec des fonctions gaussiennes (2D) :

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Points centrés réduits avec des fonctions gaussiennes (3D) :

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Génération avec des fonctions gaussiennes (2D) :

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Génération avec des fonctions gaussiennes (3D) :

Extensions

Ajouts au projet

- Validation croisée (choix de la meilleure valeur de C);
- Implémentation de Coordinate Descent;
- Implémentation de ACCPM;