Discretionary Note

Anish Krishna Lakkapragada

IF YOU USE THIS FILE TO CHEAT, YOU ARE NOT ONLY STUPID BUT YOU ARE CHEATING YOURSELF OUT OF THE ABILITY TO FALL IN LOVE WITH MATH. Furthermore, I am not smarter than you and my solutions did not always get a perfect score.

CONTENT STARTS ON NEXT PAGE.

To access the general instructions for this repository head **here**.

Math 225- HW 9 Due: December 8 by Midnight

- 1. (13 points) Let $T: V \to V$, be a linear operator and V finite dimensional vector space. Recall that $\det(T) = \det[T]_{\beta}$ for some β ordered basis for V. Prove that
 - a) (4 points) The definition of $\det(T)$ is well-defined, i.e., if γ is another ordered basis for V then $\det[T]_{\beta} = \det[T]_{\gamma}$.
 - b) (2 points) Show that $\det([T]_{\gamma} \lambda I) = \det([T]_{\beta} \lambda I)$.
 - c) (2 points) Use part b) to deduce that similar matrices have the same characteristic polynomial. (Definition of similar matrices is given in the remark)
 - d) (5 points) If g(t) be polynomial with coefficient from \mathbb{R} , then if x is an eigenvector for T with corresponding eigenvalue λ , then x is an eigenvector for g(T) with corresponding eigenvalue $g(\lambda)$. Use definition of eigenvalue.
- 2. (10 points) Let A be an upper(lower) triangular matrix, and has the distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$ with corresponding multiplicities $m_1, m_2, ..., m_k$.
 - a) Prove that $\operatorname{tr}(A) = \sum_{i=1}^{k} m_i \lambda_i$
 - b) Prove that $det(A) = \prod_{i=1}^{k} (\lambda_i)^{m_i}$.

Remark: We say $A, B \in M_{n \times n}(\mathbb{R})$ are *similar matrices* if there exist $P \in M_{n \times n}(\mathbb{R})$ invertible such that $PAP^{-1} = B$. Recall that if A is similar to B then tr(A) = tr(B), and det(A) = det(B). Therefore, the statement of this problem is true for any matrix that is similar to upper (lower) triangle matrix.

- 3. (31 points) Consider the following matrices $A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 4 & 7 & -5 \\ -4 & 5 & 0 \\ 1 & 9 & -4 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$
 - a) (9 points) Decide if they are diagonalizable in \mathbb{R} .
 - b) (2 points) Decide if they are diagonalizable in \mathbb{C} .
 - c) (5 points) Find Q and D matrix such that $A = Q^{-1}DQ$.
 - d) (5 points) Use part c) to find A^k for k = 0, 1, 2, ...Hint: $(Q^{-1}DQ)^k = \underbrace{(Q^{-1}DQ)(Q^{-1}DQ), ...(Q^{-1}DQ)}_{\text{k times}}$.
 - e) (10 points) Find e^A . Hint: Use the Taylor expansion of $e^x = \sum_{n=0}^{\infty} (x^n/n!)$ and part d).

I think it is so cool to be able to define exponential of a matrix. You can do it for any function that has Taylor expansion in its radius of convergence. We will define the norm of a matrix in the coming weeks.

- 4. (23 points)
 - a) (5 points) Let A be a matrix whose characteristic polynomial split over its field \mathbb{F} . Prove that the determinant of A is the product of its eigenvalues, each counted with its multiplicity. (that is if the algebraic multiplicity of an eigenvalue if m then it is multiplied m times.)
 - b) (3 points) Use part a to conclude that if A is defined over \mathbb{C} , the complex numbers, then the determinant of A is always the product of its eigenvalues, each counted with its multiplicity.

c) (15 points) Suppose A is a real $n \times n$ matrix which satisfies $A^3 = A + I_n$. Show that A has a positive determinant.

Hint: Even though A is real valued you can consider its eigenvalues in \mathbb{C} . So, try to find an equation that the eigenvalues satisfy. Here the fact that A is real must give you hint about complex eigenvalues.