DEPENDABLE AND SECURE AI-ML

(Al60006)

Course Overview & Basic Introduction

https://portswigger.net/daily-swig/trojannet-a-simple-yet-effective-attack-on-machine-learning-models

https://portswigger.net/daily-swig/machine-learning

Course Structure

- Introduction to dependable AI:
 - Resilience, robustness, safety and security
- Reliable Neural Networks:
 - Fault Models, Assessing Fault Tolerance, Redundancy,
 - Reliability during the Learning Phase.
- Methodology for Fault Tolerance:
 - Fault Locations, Fault Manifestations, Fault Coverage.
- Low-cost fault-mitigation techniques:
 - improving the dependability through software testing
 - Accelerators against Soft Errors and Permanent Faults.
- Measuring the Reliability of Reinforcement Learning Algorithms,
- Generative adversarial networks (GAN)

Advanced Topic (if time permits):

Game-Theoretic Methods for Robustness, Security, and Resilience

Fuzzing for vulnerability detection

Integrity checks and monitoring

Provable safety and provable Defense

Formal Scenario Based Testing of Autonomous Vehicles:From Simulation to the Real World

Study Material:

https://drive.google.com/drive/folders/1at__tMA7NzkD No3xCnCZHu-L4OQI8db2?usp=sharing

Course Structure

- Secure AI: Privacy concerns in ML and DL,
- Adversarial models:
 - Honest-but-curious adversary model, semihonest entity, active adversary model.
- Attacks against ML/DL:
 - Evasion/Adversarial attack, Poisoning, Inference, Trojans, Backdoor attacks with Case Study
- Differential Privacy basics:
 - Properties of Differential Privacy: privacy preservation,
 - Sensitivity, randomization, composition, and stability;
- Differential Privacy in Supervised Learning, Differential Privacy in Unsupervised Learning

- Federated machine learning:
 - Model Training in Federated Learning and optimisation,
- Privacy-Preservation in centralised FL framework:
 - Attack Models on FL, Privacypreservation solutions
- Homomorphic encryption and machine learning :
 - Basics of homomorphic encryption, Secure hyperplane decision, Naïve Bayes, and decision trees-polynomial approximations,
 - Division-Free Integer Algorithms for Classification,
 - Homomorphic evaluation of deep neural networks,
 - Case study on medical data

- Assignment 1: Adversarial Robustness Toolbox (ART) for TrustedAI (IBM) (Python)
- Assignment 2: Pydp (Python), IBM differential privacy tool (Python), Google DP (Java/C)
- Assignment 3: Encrypted ML with homomorphic library

Grading plan (Tentative):

- Class Test 1, 2: 20/100
- Assignments: 20/100
- MidSem & EndSem : 60/100

Dependable NN

Accuracy: The prediction accuracy is the basic ability of a trustworthy model. Trustworthy NNs are expected to generate accurate output, consistent with the ground truth, as much as possible;

Reliability: Trustworthy NNs should be resilient and secure. In other words, they must be robust against different potential threats, such as inherent noise, distribution shift, and adversarial attacks;

Explainability: The model itself must allow explainable for the prediction, which can

help humans to enhance understanding, make decisions and take further actions;

Privacy protection: Trustworthy NNs are required to ensure full privacy of

the models as well as data privacy.

Pillars of Security

- Confidentiality is satisfied if data or objects are not read by an unauthorized party.
- Integrity is satisfied if data or objects are not changed (written) or generated by an unauthorized party.
- Authenticity is satisfied if an author of data or an object is who it claims to be.
- Availability is satisfied if data, objects, or services are available.

Can Al-based Components be Part of Dependable Systems?

Dependable Systems

Dependable Systems can be found in many forms and application domains, but especially in transportation systems, medical systems and recently in the domain of IoT and Industry 4.0.*

*Industry 4.0 has been defined as "a name for the current trend of automation and data exchange in manufacturing technologies, including cyber-physical systems, the Internet of things, cloud computing and cognitive computing and creating the smart factory"

"Dependability"

- Reliability how often is the system allowed to fail
- Availability to which extend is the system usable, when it is needed
- Maintainability how intense is the maintenance of the system
- Safety how much the environment be secured against the system
- **Security** how much the system be protected against the environment

Safety Integrity Level: Standard

- Safety Integrity Levels (SIL) define the criticality of the component,
- Each SIL requires different development techniques as well as testing or verification methods and techniques.
- The SILs are defined by the probability of failure, a risk reduction factor (can the risk of failure be reduced by a certain amount, using multiple instances, redundancy, etc), probability of failure per hour and the meantime between failure.

SIL Safety Integrity Level	PFDavg Average probability of failure on demand per year (low demand mode)	RRF Risk Reduction Factor	Average probability of failure on demand per hour (high demand or continuous mode)
SIL 4	≥ 10 ⁻⁵ and < 10 ⁻⁴	100000 to 10000	≥ 10 ⁻⁹ and < 10 ⁻⁸
SIL 3	≥ 10 ⁻⁴ and < 10 ⁻³	10000 to 1000	≥ 10 ⁻⁸ and < 10 ⁻⁷
SIL 2	≥ 10 ⁻³ and < 10 ⁻²	1000 to 100	≥ 10 ⁻⁷ and < 10 ⁻⁶
SIL 1	≥ 10 ⁻² and < 10 ⁻¹	100 to 10	≥ 10 ⁻⁶ and < 10 ⁻⁵

IEC 61508
Automatic protection systems called safety-related system

Standards: Safety integrity level (SIL)

SIL1 being the lowest and SIL4 the highest severity level:

- For example in SIL4 :
 - high coverage of branches in the source code of a component
 - ensures adequate testing of the most critical components in the system.
 - standard procedure in avionic or automotive applications.

- Civil avionic systems : regulated by DO178c
- train applications DIN EN 50657
- Medical devices are certified under IEC 82304,
 2018 [4]
- Automotive under ISO 26262 [5].
- Each of these standards defines strict requirements with the goal to ensure the the functional safety of each component

Ensuring dependability in critical systems

- Analytical Approaches: strict and rigorous review of specification, design and implementation.
- Constructive Approaches: These techniques and patterns can be used as a guideline to ensure safety during the design and implementation phase of a project, for example safety cases. These scenarios can be used to directly derive the design or even parts of the implementation of the system.
- Fault tolerant system with redundancy concepts can be implemented to increase the reliability and availability of the system.
- In addition a fault containment strategy can be developed. If a fault occurs the consequences spread only to specific predefined boundaries, as a result, the system can stay intact.

Risk mitigation mechanisms

From a more technical point of view dependability properties of a system can be improved by adding risk mitigation mechanisms:

- watchdog or
- brownout detection.

Watchdog

- The hardware component of a watchdog is a counter:
 set to a certain value
 - set to a certain value
 then counts down towards zero.

 It is the responsibility of the software: to set the count to its original value so that it never reaches zero.

- If timer reaches zero:
 - o it is assumed that the software has failed in some manner
 - o CPU is reset.

Brownout Detection

- A "brown out" of a microcontroller is a partial and temporary reduction in the power supply voltage below the level required for reliable operation.
- Many microcontrollers have a protection circuit which detects when the supply voltage goes below this level
- puts the device into a reset state to ensure proper startup when power returns. This action is called a "Brown Out Reset" or BOR.

Brownout Detection

- V1: is the normal power supply voltage.
- V2: is the point where the microcontroller may not operate reliably.
- V3: a point where operation stops entirely.
- Between V2 and V3 is a "danger zone" where things can go wrong and operation is unreliable.
- The device could work correctly for years while the power supply goes in and out of the danger zone and then there is a failure.
- The BOR level is set above V2 and replaces the danger zone with a reset of the device.
- Reset is not good but (usually) better than uncertain.

Artificial
Intelligence
in Critical
Systems

- Autonomous driving: prominent example for systems incorporating critical components derived using ML.
- The capability of an AI system to react in complex scenarios in a short amount of time is unique
- Enables the system to identify pedestrians or traffic signs in a fraction of classic image recognition methods used before.

Problems with AI-ML

- ML methods are based on probabilities.
- They are **stochastic principles**, which can only estimate the correct answer with a specific certainty.
- Even though the ML algorithms might be 100% sure that the outcome is correct, the answer can still be wrong. This can e.g. happen if the **quality of the training** data is too low, or the data does not even contain all possible scenarios