DS4 : Électricité et Chimie - corrigé

Durée 4h, calculatrices interdites. Le DS est probablement trop long pour que vous puissiez tout faire, c'est normal, faites-en le maximum.

Exercice 1: LE LITHIUM

L'isotope le plus abondant (92,5 %) sur Terre est ${}^{7}_{3}$ Li.

- 1. Un atome de lithium contient 3 protons, 4 neutrons et 3 électrons.
- 2. La masse d'un atome de lithium est environ $m_{\rm Li} \simeq 7 m_n = 11.9 \cdot 10^{-27} \, {\rm kg}$
- 3. Un isotope est un atome qui possède le même nombre de protons mais un nombre de neutrons différent
- 4. Le lithium se trouve dans la première colonne de la classification périodique, il s'agit de la famille des métaux alcalins. Dans la même colonne il y a la sodium, potassium.
- 5. La configuration électronique du lithium est $[Li] = 1s^2 2s^1$
- 6. Le lithium peut perdre un électron pour atteindre la configuration électronique du gaz noble le plus proche qui est l'hélium. Il forme donc l'ion Li⁺.

À une température ordinaire, le lithium cristallise dans un système cubique centré. Il y a un atome de lithium à chaque coin d'un cube et un atome au centre du cube.

7. Maille du lithium:

- 8. Le nombre d'atomes de lithium dans une maille est $n=8 imes \frac{1}{8}+1=2$
- 9. La longueur d'une diagonale du cube est $l=\sqrt{3}a$ et elle contient 4 rayons atomiques. Donc $r=a\frac{\sqrt{3}}{4}$

Données :

— Masse d'un proton : $m_p \simeq 1.7 \cdot 10^{-27} \, \mathrm{kg}$

Exercice 2 : LE MONOXYDE DE CARBONE

- 1. La configuration électronique du carbone est : $[{}_{\epsilon}C] = 1s^22s^22p^2$.
- 2. Pour établir la configuration électronique on utilise les 3 règles suivantes :
 - principe d'exclusion de Pauli : Une orbitale ne peut accepter au maximum que 2 électrons.
 - **règle de Klechkowski :** Les orbitales sont remplies à n+l croissant et pour la même valeur de n+l à n croissant.
 - règle de Hund : Une sous couche est remplie avec un maximum de spins identiques avant de former des doublets.
- 3. Les deux isotopes les plus fréquents sont le carbone 12 ¹²C et le carbone 14 ¹⁴C.
- 4. Classification périodique :

1s		1s
2s		C 2 O
3s		3p
4s	3d	4p
5s	4d	5p
6s	5d	6p
7s /	6d	7p
/*	4f	
¥	5f	

Exercice 3: LA CHROMITE

- 1. La chromite est un cristal ionique tout comme le sel de cuisine (chlorure de sodium)
- 2. Maille cristalline :

3.
$$- n(Cr^{3+})=1 + 4 \times \frac{1}{4} = 2$$
$$- n(O^{2-})=8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$
$$- n(Fe^{q+})=1$$

- 4. La formule de la chromite est donc FeCr₂O₄.
- 5. Un cristal ne possède pas de charge électrique, il est neutre donc la charge d'une maille doit être nulle. C'est à dire $(-2) \times 4 + 3 \times 2 + q = 0$, soit q = 2

Exercice 4 : Ordres de grandeur (TD7)

- 1. Un atome mesure de l'ordre de 10^{-10} m et le noyau mesure de l'ordre de 10^{-15} m
- 2. Un terrain de football mesure environ $100 = 10^2$ m, c'est à dire 10^{12} fois plus grand qu'un atome. Le noyau mesurerait alors $10^{-15} \times 10^{12} = 10^{-3}$ m soit environ 1 mm.
- 3. Presque toute la masse de l'atome est contenue dans le noyau, entre le noyau et les électrons il n'y a que du vide!
- 4. Une bille mesure environ 1 cm = 10^{-2} m, la planète Terre a un diamètre d'environ 12 000 km soit environ 10^7 m. Il faut donc grossir la bille 10^9 fois, un atome mesurerait alors $10^9 \times 10^{-10} = 10^{-1}$ m soit environ 10 cm.
- 5. Un grain de sable a un diamètre d'environ $d=0,1\,\mathrm{mm}=10^{-4}\,\mathrm{m}$. Donc son volume est d'environ $V\simeq d^3=10^{-12}\,\mathrm{m}^3$. Le diamètre d'un atome est d'environ $d_a=10^{-10}\,\mathrm{m}$ donc son volume d'environ $V_a=d_a^3=10^{-30}\,\mathrm{m}^3$. Dans un grain de sable il y a environ $n=V/V_a=10^{18}$. Soit un milliard de milliards d'atomes dans un grain de sable.
- 6. Prenons une plage longue de 1 km, large de 100 m et profonde de 10 m, son volume est donc d'environ $V_p=10^3\times 10^2\times 10=10^6$ m³. On a vu que le volume d'un grain de sable est d'environ $V_g=10^{-12}$ m³ donc la plage en contient $n_g=V_p/V_g=10^{18}$. C'est exactement le nombre d'atomes contenus dans un grain de sable obtenu plus haut.

Calcule : Le volume d'un atome est d'environ $V_a=10^{-30}~\rm m^3$ donc le volume occupé par n_g atome est d'environ $V=n_g\times V_a=10^{18}\times 10^{-30}=10^{-12}~\rm m^3$ soit le volume du grain de sable !

Si tous les grains de sable d'une plage avaient la taille d'un atome, ils occuperaient le volume d'un grain de sable!

Exercice 5 : Quartz piezo-électrique

1. En régime permanent, le condensateur se comporte comme un interrupteur ouvert et la bobine comme un fil. Le quartz est donc équivalent à un interrupteur ouvert en régime permanent.

2. L'impédance $\underline{Z_1}$ équivalente au dipôle formé par L et C est : $\underline{Z_1} = \frac{1}{jC\omega} + jL\omega$. L'impédance \underline{Z} équivalente à C_0 et Z_1 en parallèle est :

$$\frac{1}{\underline{Z}} = \frac{1}{\underline{Z_1}} + jC_0\omega = \frac{1}{jL\omega + \frac{1}{jC\omega}} + jC_0\omega = \frac{jC\omega}{1 - LC\omega^2} + jC_0\omega \tag{1}$$

$$= j\frac{(C+C_0)\omega - LC\omega^2}{1 - LCC_0\omega^2} = j\frac{(a+1)C_0\omega - aLC_0^2\omega^3}{1 - aLC_0^2\omega^2}$$
(2)

En prenant l'inverse, on trouve finalement l'expression de mandée de l'impédance ${\cal Z}$:

$$\underline{Z} = j \frac{aLC_0\omega^2 - 1}{(a+1)C_0\omega - aLC_0^2\omega^3}$$
(3)

- $3. \ |\underline{Z}| = \frac{|aLC_0\omega^2 1|}{|(a+1)C_0\omega aLC_0^2\omega^3|} \text{ et } \varphi = \pm \frac{\pi}{2} \text{ selon le signe de } \frac{aLC_0\omega^2 1}{(a+1)C_0\omega aLC_0^2\omega^3}$ (S'il est positif, $\varphi = \frac{\pi}{2} \sin \varphi = -\frac{\pi}{2}$)
- 4. $\lim_{\omega \to 0} Z = \infty$ et $\lim_{\omega \to \infty} Z = 0$.
- 5. Z s'annule pour $1-aLC_0\omega_1^2=0$ soit $\omega_1=\frac{1}{\sqrt{aLC_0}}$ et $Z\to\infty$ lorsque le dénominateur s'annule donc pour $(a+1)C_0\omega_2-aLC_0^2\omega_2^3=0$ soit $\omega_2=\sqrt{(a+1)\frac{1}{aLC_0}}=\sqrt{a+1}~\omega_1$

Pour $\omega=\omega_1$, le quartz se comporte comme un fil, et pour $\omega=\omega_2$ il se comporte comme un interrupteur ouvert.

6. Représentation schématique de $Z(\omega)$ et de $\varphi(\omega)$

7. - Lorsque $\omega < \omega_1, \varphi = -\frac{\pi}{2}$ - Lorsque $\omega_1 < \omega < \omega_2, \varphi = \frac{\pi}{2}$ - Lorsque $\omega > \omega_2, \varphi = -\frac{\pi}{2}$

8. Voir figure ci-dessus.

Exercice 6 : Caractéristique d'une bobine réelle

Étude rapide du bobinage

1. La longueur de fil utilisée est $\ell = \sigma RS = 480\,\mathrm{m}$

2.
$$\underline{Z} = R + jL\omega + \frac{1}{iC\omega} = R + j\left(L\omega - \frac{1}{C\omega}\right)$$

3. On a
$$\underline{i} = \frac{\underline{e}}{\underline{Z}} = \frac{\underline{e}}{R+j(L\omega - \frac{1}{C\omega})}$$

4. L'amplitude I_0 du courant est $I_0 = |\underline{i}|$. En utilisant $|\underline{e}| = E_0$ on obtient bien :

$$I_0 = \frac{E_0}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$

- 5. Lorsque $\omega \to 0$, $I_0 \to 0$ et lorsque $\omega \to \infty$, $I_0 \to 0$. Entre les deux, I_0 présente un maximum, donc un phénomène de résonance en intensité. La pulsation pour laquelle I_0 est maximum est $\omega_0 = \frac{1}{\sqrt{LC}}$. La présence d'une résistance r ne modifie pas cette fréquence car elle ne dépend pas de R.
- 6. À la pulsation de résonance, on a $\underline{Z} = R$. Donc \underline{Z} est un nombre réel et l'intensité est en phase avec la tension ($\arg(\underline{Z}) = 0$).

Mise en pratique

7. On ne pourra pas visualiser les deux tensions avec le circuit ci-dessus car la résistance R n'est pas connectée au GBF. La masse de l'oscilloscope ne pourra donc pas être connectée à celle de l'oscilloscope. Pour faire cette mesure on pourra utiliser le circuit ci-dessous :

- 8. Pour déterminer rapidement la fréquence de résonance à l'oscilloscope on peut :
 - Modifier progressivement la fréquence et repérer le maximum de la tension sur la voie 1.
 - Modifier progressivement la fréquence et repérer la fréquence pour laquelle les tensions des voies 1 et 2 sont en phase. On peut utiliser l'oscilloscope en mode XY et repérer le moment ou la courbe affichée est une droite.

9. On a
$$\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{LC}}$$
. Donc $L = \frac{1}{4\pi^2 f_0^2 C} = 0.1 \, \mathrm{H}$

Comportement du bobinage à basse fréquence

10. La valeur efficace S d'un signal périodique s(t) de période T est :

$$S = \sqrt{\frac{1}{T} \int_{0}^{T} s(t)^2 dt}$$

L'intérêt de mesurer la tension aux bornes de R est d'avoir accès à l'intensité du courant électrique.

11. On a $Z=R\frac{V_A}{V_B}$.

- 12. On modélise la bobine par $\underline{Z}=r+jL\omega$ donc on a $Z=\sqrt{r^2+L^2\omega^2}$ et $Z^2=r^2+4\pi^2f^2L^2$. D'après l'équation de la droite sur le graphique on en déduit que $r^2\simeq 64$ soit $r\simeq 8$ Ω et $4\pi^2L^2=0.4$, soit $L^2\simeq 0.01$ et donc $L\simeq 0.1$ H Ces résultats sont en en bon accord avec ceux obtenus dans la partie précédente.
- 13. Lorsqu'on utilise la bobine en régime sinusoïdal avec des fréquences pas trop basses, la partie inductive $L\omega$ de l'impédance est beaucoup plus grande que la partie résistive r. Plus précisément on pourra négliger r lorsque $L\omega\gg r$ soit $2\pi fL\gg r$ ou $f\gg \frac{r}{2\pi L}\simeq 12\,\mathrm{Hz}$. Or on utilise très souvent des fréquences bien plus élevées.