Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

LISTING OF CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

- 1. 26. (Cancelled)
- 27. (Previously Presented) A compound having the general formula:

or

wherein M is Zr, Hf or Ti;

 $(C_5H_{5-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements, and halogen radicals, or ($C_5H_{5-x}R_x$) is a cyclopentadienyl ring in which two adjacent R groups are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-1}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A of the Periodic Table of Elements, each R' is, independently, a radical selected from a group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

each Q is, independently, selected from the group consisting of halogen, hydride or C_1 - C_{20} hydrocarbyl, provided that Q is different from $(C_5H_{5-x}R_x)$;

L is a neutral Lewis base where "w" is a number greater than 0 and up to 3; M' has the same meaning as M; and

Q' has the same meaning as Q.

28. - 43. (Cancelled)

- 44. (Currently Amended) The compound of claim 27 wherein each Q is independently selected from the group consisting of halogen, hydride and C₁-C₂₀ hydrocarbyl.
- 45. (Previously Presented) The compound of claim 27 wherein each Q is independently selected from the group consisting of hydride, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, chloro, bromo, fluoro, and iodo.
- 46. (Previously Presented) The compound of claim 27 wherein M is Zr.
- 47. (Previously Presented) The compound of claim 27 wherein M is Hf.
- 48. (Currently Amended) A compound having the general formula

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

or a dimer thereof, wherein:

M is Zr, Hf, or Ti;

(C₅H_{4-x}R_x) is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, x is 0, 1, 2, 3, or 4 denoting the degree of substitution, provided that x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C₁-C₂₀ hydrocarbyl radicals, substituted C₁-C₂₀ hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C₁-C₂₀ hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group consisting of silicon and germanium, eyano, and halogen radicals, or (C₅H_{4-x}R_x) is a cyclopentadienyl ring in which two adjacent R groups are joined forming a C₄-C₂₀ ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-2}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and z is the coordination number of the element J;

X is, independently each occurrence, an anionic ligand group selected from the group consisting of halogen, hydride, or substituted or unsubstituted C_1 to C_{20}

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

hydrocarbyl, alkoxide, aryloxide, amide, arylamide, phosphide or arylphosphide, provided that X is different from ($C_5H_{4-x}R_x$) or both X together may be an alkylidene or a cyclometallated hydrocarbyl; hydride, halide, alkyl of up to 30 carbon atoms, alkoxy having up to a total of 30 carbon atoms and oxygen atoms, cyanide, azide, acetylacetonate, aryl having from 6 to 30 carbon atoms, aryl oxy having a total of from 7 to 30 carbon and oxygen atoms, norbornyl and benzyl;

T is CR₂*, CR₂*CR₂*, SiR₂* or SiR₂*SiR₂*, where R* is selected from the group consisting of a covalent bridging group containing a Group IV A or VA element; hydrogen, C₁ to C₂₀-alkyl, haloaklyl having up to a total of 20 carbon and halogen atoms, aryl having from 6 to 20 carbon atoms, and haloaryl having a total of from 7 to 20 carbon and halogen atoms; and

L is a neutral Lewis base; and w is a number from 0 to 3.

- 49. (Currently Amended) The compound of claim 48 wherein each X is independently selected from the group consisting of halide, hydride and alkyl of up to 30 carbon atoms substituted and unsubstituted C₁ to C₂₀ hydrocarbyls.
- 50. (Previously Presented) The compound of claim 48 wherein each X is independently selected from the group consisting of hydride, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, chloro, bromo, fluoro, and iodo.
- 51. (Previously Presented) The compound of claim 48 wherein M is Zr.
- 52. (Previously Presented) The compound of claim 48 wherein M is Hf.
- 53. (Cancelled)
- 54. (Previously Presented) The compound of claim 48 wherein J is oxygen, phosphorus, or sulfur.

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

55. (Currently Amended) The compound of claim 48 wherein J is nitrogen-and T is CR_2* or CR_2*CR_2* , where R* is selected from the group consisting of hydrogen, C_1 to C_{20} -alkyl, haloaklyl having up to a total of 20 carbon and halogen atoms, aryl having from 6 to 20 carbon atoms, and haloaryl having a total of from 7 to 20 carbon and halogen atoms.

- 56. (Previously Presented) The compound of claim 48 wherein $(C_5H_{4-x}R_x)$ is tetrahydroindenyl, fluorenyl, or octahydrofluorenyl.
- 57. 59. (Cancelled)
- 60. (Previously Presented) The compound of claim 48 wherein T is methylene or ethylene.
- 61. (Previously Presented) The compound of claim 48 wherein T is dimethylsilyl.
- 62. (Previously Presented) The compound of claim 48 wherein T is diphenylsilyl.
- 63. (Previously Presented) The compound of claim 48 wherein X is a halide.
- 64. (Previously Presented) A compound having the general formula

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

or

$$\begin{array}{c|c} & (C_5H_{5-y-x}R_x) & (JR'_{z-1-y}) \\ \hline T_y & Q' & Q' \\ \hline & (JR'_{z-1-y}) & (C_5H_{5-y-x}R_x) \end{array}$$

wherein M is Zr, Hf, or Ti;

M' has the same meaning as M;

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements and halogen radicals, or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is nitrogen, phosphorus, oxygen, or sulfur, and R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is 3 when J is nitrogen or phosphorus or z is 2 when J is oxygen or sulfur;

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;

Q' has the same meaning as Q;

y is 0 or 1 when w is greater than 0; T is a covalent bridging group containing a Group IV-A or V-A element; and

L is a neutral Lewis base, where w denotes the number 0 or 1, and when w is 0 y is 1.

65. (Previously Presented) A compound having the general formula

or

wherein M is Zr, Hf, or Ti;

M' has the same meaning as M;

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements and halogen radicals, or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is nitrogen, and R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is 3;

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;

O' has the same meaning as O;

y is 0 or 1 when w is greater than 0; T is a covalent bridging group containing a Group IV-A or V-A element; and

L is a neutral Lewis base, where w denotes the number 0 or 1, and when w is 0 y is 1.

66. (Previously Presented) A compound having the general formula

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

or

wherein M is Zr, or Hf;

M' has the same meaning as M;

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, wherein x is 0, 1 or 3, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements and halogen radicals, or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and each R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;

Q' has the same meaning as Q;

y is 0 or 1 when w is greater than 0; T is a covalent bridging group containing a Group IV-A or V-A element; and

L is a neutral Lewis base, where w denotes the number 0 or 1, and when w is 0 y is 1.

67. (Currently Amended) A compound having the general formula

or

$$T_{y} = \begin{pmatrix} C_{5}H_{5-y-x}R_{x} \end{pmatrix} \qquad \qquad (JR'_{z-1-y}) \\ Q' = Q' \qquad \qquad T_{y} \qquad \qquad T_{y} \qquad \qquad (C_{5}H_{5-y-x}R_{x}) \qquad \qquad (C_{5}H_{5-y-x}R_{x}R_{x}) \qquad \qquad (C_{5}H_{5-y-x}R_{x}R_{x}R_{x}) \qquad \qquad (C_{5}H_{5-y-x}R_{x}R$$

wherein M is Ti, Zr, or Hf;

M' has the same meaning as M;

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements and halogen radicals, or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and each R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

each Q is independently selected from the group consisting of halogen, hydride or a substituted or unsubstituted C_1 - C_{20} hydrocarbyl, alkoxide, aryloxide, amide, arylamide, phosphide, or arylphosphide, provided that provided that Q is not a substituted or unsubstituted cyclopentadienyl ring, or both Q together are an alkylidene or a cyclometallated hydrocarbyl;

Q' has the same meaning as Q;

y is 0 or 1 when w is greater than 0; T is a covalent bridging group containing a Group IV-A or V-A element; and

L is a neutral Lewis base, where w denotes the number 0 or 1, and when w is 0 y is 1.

68. (Previously Presented) A compound having the general formula

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

or

$$\begin{array}{c|c} & (C_5H_{5-y-x}R_x) & (JR'_{z-1-y}) \\ \hline T_y & Q' & Q' \\ \hline & (JR'_{z-1-y}) & (C_5H_{5-y-x}R_x) \end{array}$$

wherein M is Zr, Hf, or Ti;

M' has the same meaning as M;

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R groups are

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

joined forming a C₄-C₂₀ ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and each R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen atom, and z is the coordination number of the element J;

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;

Q' has the same meaning as Q;

y is 0 or 1 when w is greater than 0, y is 1 when w is 0; T is a covalent bridging group containing a Group IV-A or V-A element and

L is a Lewis base; where w denotes a number from 0 to 3.

- 69. (Currently Amended) The compound of claim 68 wherein each Q is a halogen or C_1 to C_{20} hydrocarbyl radical.
- 70. (Previously Presented) A compound represented by general formula

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

M is Zr, Hf, or Ti;

 $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, x is 0, 1, 2, 3, or 4 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and halogen radicals, or $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

(JR'_{z-2}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A, and R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is 3;

each Q is, independently, a univalent anionic ligand group or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring; and

T is a covalent bridging group containing a Group IV-A or V-A element.

71. (Previously Presented) A compound having the general formula:

or

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

 $\begin{array}{c|c} & (C_5H_{4-x}R_x) & (JR'_{z-2}) \\ \hline \\ & Q' & Q' \\ \hline & & & \\ &$

wherein M is Zr, Hf, or Ti;

M' has the same meaning as M;

 $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, x is 0, 1, 2, 3, or 4 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and halogen radicals, or $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-2}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;

Q' has the same meaning as Q;

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

T is a covalent bridging group selected from the group consisting of dialkyl, alkylaryl, or diaryl substituted silicon or germanium radicals; and L is a neutral Lewis base where w denotes the number 0 or 1.

72. (Currently Amended) A compound having the general formula:

or

$$\begin{array}{c|c} & (C_5H_{4-x}R_x) & (JR'_{z-2}) \\ \hline \\ & Q & M' & T \\ \hline \\ & (JR'_{z-2}) & (C_5H_{4-x}R_x) \end{array}$$

wherein M is Zr, Hf, or Ti;

M' has the same meaning as M;

 $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, x is 0, 1, 2, 3, or 4 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20}

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and halogen radicals, or $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

 (JR'_{z-2}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;

Q' has the same meaning as Q;

T is a covalent bridging group selected from the group consisting of substituted or unsubstituted methylene or and ethylene radicals; and

L is a neutral Lewis base where w denotes the number 0 or 1.

73. - 76. (Cancelled)

77. (Previously Presented) The compound of claim 70 wherein Q is independently selected from the group consisting of halogen, hydride and C_1 to C_{20} hydrocarbyl.

78. (Previously Presented) The compound of claim 71 wherein Q is independently selected from the group consisting of halogen, hydride or C_1 to C_{20} hydrocarbyl.

79. (Previously Presented) The compound of claim 72 wherein Q is independently selected from the group consisting of halogen, hydride or C_1 to C_{20} hydrocarbyl.

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

80. (Previously Presented) The compound of claim 70 wherein each Q is independently selected from the group consisting of hydride, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, chloro, bromo, and iodo.

- 81. (Previously Presented) The compound of claim 71 wherein each Q is independently selected from the group consisting of hydride, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, chloro, bromo, and iodo.
- 82. (Previously Presented) The compound of claim 72 wherein each Q is independently selected from the group consisting of hydride, methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, chloro, bromo, and iodo.
- 83. (Previously Presented) A process for the polymerization of one or more alpha olefins comprising conducting the polymerization in the presence of a catalyst system comprising (A) the compound of claim 48 and (B) an alumoxane.
- 84. (Previously Presented) The process of claim 83 wherein the mole ratio of Al:M is from 10:1 to 20,000:1.
- 85. (Previously Presented) The process of claim 83 wherein the one or more alpha olefins is ethylene.
- 86. (Previously Presented) The process of claim 83 wherein the one or more alpha olefins is propylene.
- 87. (Previously Presented) The process of claim 83 wherein the one or more alpha olefins is (1) ethylene in combination with an alpha olefin having 3 to 20 carbon atoms, (2) propylene in combination with ethylene and/or C4 or higher alpha-olefins and

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

diolefins, or (3) butene in combination with ethylene and/or C4 or higher alpha-olefins and diolefins.

88. - 98. (Cancelled)

- 99. (Currently Amended) A process for the polymerization of one or more alpha olefins comprising conducting the polymerization in the presence of a catalyst system comprising:
- (A) a Group IV B transition metal component of the formula:

or

wherein M is Zr, Hf or Ti;

M' has the same meaning as M;

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements, and halogen radicals, or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R-groups are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and each R' is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen atom, and z is the coordination number of the element J;

each Q is, independently, any univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is different from (C₅H_{5-y-x}R_x);

Q' has the same meaning as Q;

y is 0 or 1 when w is greater than 0; y is1 when w is 0; is 0, when y is 1, T is a covalent bridging group containing a Group IV-A or V-A element; and

L is a Lewis base where w denotes, a number from 0 to 3; (B) an alumoxane, wherein the olefin is styrene.

100. - 104. (Cancelled)

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

105. (Previously Presented) A process for the polymerization of one or more alpha olefins comprising conducting the polymerization in the presence of a catalyst system comprising:

(A) a Group IV B transition metal component of the formula:

wherein M is Zr, Hf or Ti;

M' has the same meaning as M;

 $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, x is 0, 1, 2, 3 or 4 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

Elements, and halogen radicals, or $(C_5H_{5-y-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R-groups are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic ligand;

 (JR'_{z-1-y}) is a heteroatom ligand in which J is an element with a coordination number of three from group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, and each R' is a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

each Q is, independently, a univalent anionic ligand or two Q's together are a divalent anionic chelating ligand, provided that Q is different from (C₅H_{5-x}R_x);

Q' has the same meaning as Q;

y is 1;

T is a covalent bridging group containing a Group IV-A or V-A element; and L is a neutral Lewis base where w denotes the number 0 or 1;

(B) an alumoxane.

106. (Previously Presented) The process of claim 105 wherein each Q is, independently, a substituted or unsubstituted C_1 - C_{20} hydrocarbyl, phosphide or arylphosphide radical, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring, or both Q together are an alkylidene or a cyclometallated hydrocarbyl.

107. (Previously Presented) The process of claim 105 wherein the heteroatom ligand group J element is nitrogen, phosphorous, oxygen or sulfur.

108. (Previously Presented) The process of claim 105 wherein Q is substituted or unsubstituted C1 to C20 hydrocarbyl radical.

109. (Previously Presented) The process of claim 105 wherein the heteroatom ligand group J element is nitrogen.

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

110. (Previously Presented) The process of claim 105 wherein the mole ratio of Al:M is from 10:1 to 20,000:1.

- 111. (Previously Presented) The process of claim 105 wherein the alpha olefin is (1) ethylene, (2) propylene, (3) ethylene in combination with an alpha olefin having 3 to 20 carbon atoms, (4) propylene in combination with ethylene and/or C4 or higher alphaolefins and diolefins, or (5) butene in combination with ethylene and/or C4 or higher alphaolefins and diolefins.
- 112. (Previously Presented) The process of claim 105 wherein both Q are selected from the group consisting of: methyl, ethyl, propyl, butyl, amyl, isoamyl, hexyl, isobutyl, heptyl, octyl, nonyl, decyl, cetyl, 2-ethylhexyl, and phenyl.
- 113. (Previously Presented) The process of claim 105 wherein both Q are methyl.
- 114. (Currently Amended) The process of claim 105 wherein both Q are selected from the group consisting of: diphenylphosphide, dicyclohexylphosphide, diethylphosphide, diethylphosphide, methylidene, ethylidene and propylidene.
- 115. (Previously Presented) The process of claim 105 wherein the alpha olefin is ethylene.
- 116. (Previously Presented) The process of claim 105 wherein the alpha olefin is propylene.
- 117. (Currently Amended) A process for the polymerization of one or more alpha olefins comprising conducting the polymerization in the presence of a catalyst system comprising:
- (A) a Group IV B transition metal component of the formula:

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

wherein M is Zr, Hf, or Ti;

M' has the same meaning as M;

(C₅H_{5-y-x}R_x) is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, x is 0, 1, 2, 3 or 4 denoting the degree of substitution, wherein x is 0, 1, 2, 3 or 4 when M is Ti and x is 0, 1 or 3 when M is Hf or Zr, and each substituent group R is, independently, a radical selected from the group consisting of straight alkyl radicals having 1 to 20 carbon atoms, branched alkyl radicals having 1 to 20 carbon atoms, methyl, ethyl, propyl, butyl, octyl, benzyl, phenyl, trimethylgermyl, trimethylstannyl, triethylplumbyl, trifluoromethyl, trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, and triphenylgermyl, or (C₅H_{4-x}R_x) is a cyclopentadienyl ring in which two adjacent R substituents are joined forming a C₄-C₂₀ ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand; (JR'z-1-y) is a heteroatom ligand selected from the group consisting of *t*-butylamido, phenylamido, p-n-butylphenylamido, cyclohexylamido, perfluorophenylamido, n-

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

butylamido, methylamido, ethylamido, *n*-propylamido, isopropylamido, benzylamido, *t*-butylphosphido, ethylphosphido, phenylphosphido, and cyclohexylphosphido, and z is 3; each Q selected is from the group consisting of hydride, methyl, ethyl, <u>n-propyl, isopropyl, n-butyl, isobutyl, propyl, butyl, amyl, isoamyl, hexyl, heptyl, octyl, nonyl, decyl, cetyl, phenyl, chloro, bromo, fluoro, iodo, methoxy, ethoxy, propoxy, butoxy, phenoxy, methylphenoxy, dimethylamido, <u>diethyolamido, diethylamido,</u> methylethylamido, <u>dibutylamido, di-t-butylamido, dipropylamido,</u>, diphenylamido, diphenylphosphido, dicyclohexylphosphido, <u>diethylphosphido,</u> and dimethylphosphido;</u>

Q' has the same meaning as Q;

y is 1;

T is selected from the group consisting of dialkyl, alkylaryl, or diaryl substituted silicon or germanium radicals, unsubstituted methylene and ethylene radicals;

L is a neutral Lewis base where w denotes the number 0 or 1; and
(B) an alumoxane, alumoxane.

- 118. (Previously Presented) The process of claim 117 wherein T is selected from the group consisting of dimethylsilyl, diethylsilyl, di-*n*-propylsilyl, diisopropylsilyl, di-*n*-butylsilyl, di-*n*-hexylsilyl, methylphenylsilyl, ethylmethylsilyl, diphenylsilyl, *n*-hexylmethylsilyl, cyclopentamethylenesilyl, cyclotetramethylenesilyl, cyclotetramethylenesilyl, cyclotrimethylenesilyl, dimethylgermyl, and diethylgermyl.
- 119. (Previously Presented) The process of claim 117 wherein the process is solution process.
- 120. (Cancelled)
- 121. (Cancelled)
- 122. (Previously Presented) A compound having the general formula:

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

or

$$(C_{5}H_{5-x}R_{x})$$

$$Q'$$

$$Q'$$

$$Q'$$

$$Q'$$

$$(C_{5}H_{5-x}R_{x})$$

$$(C_{5}H_{5-x}R_{x})$$

wherein M is Zr, Hf or Ti;

 $(C_5H_{5-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups R, x is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from the group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1 - C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group IV A of the Periodic Table of Elements, and halogen radicals, or $(C_5H_{5-x}R_x)$ is a cyclopentadienyl ring in which two adjacent R groups are joined forming a C_4 - C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

(JR'_{z-1}) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, each R' is, independently, a radical

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

selected from a group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals where one or more hydrogen atoms is replaced by a halogen radical, and z is the coordination number of the element J;

each Q is, independently, selected from the group consisting of halogen, hydride and C_1 - C_{20} hydrocarbyl, provided that Q is different from ($C_5H_{5-x}R_x$);

L is a neutral Lewis base where "w" is a number greater than 0 and up to 3;

M' has the same meaning as M; and

Q' has the same meaning as Q.

123. (Previously Presented) The compound of claim 48 wherein J is oxygen.

124. - 126. (Cancelled)

127. (Currently Amended) The process of claim 48 88—wherein y is 1 and T is hydrocarbyl radical.

128. (Currently Amended) The process of claim 48 88 wherein y is 1 and T is CR₂* or CR₂*CR₂*, where R* is selected from the group consisting of hydrogen, C₁ to C₂₀ alkyl, haloaklyl having up to a total of 20 carbon and halogen atoms, aryl having from 6 to 20 carbon atoms, and haloaryl having a total of from 7 to 20 carbon and halogen atoms.

129. (Currently Amended) The process of claim 48 88-wherein Q is selected from the group consisting of halogen, hydride and C_1 - C_{20} hydrocarbyl.

130. (Currently Amended) The process of claim 48 88 wherein J is oxygen.

131. (Currently Amended) The process of claim 48 88—wherein (JR'_{z-2}) J is nitrogen and R' is phenylamido, p-n-butylphenylamido, cyclohexylamido, perfluorophenyl amido, t-butyl phosphide, ethyl phosphido, phenyl phosphido, or cyclohexyl phosphido.

Atty. Docket No.: 1989B010A-3 Office Action dated October 9, 2008

Amendment and Response mailed January 8, 2009

132. (Currently Amended) The process of claim $\underline{48.88}$ wherein ($C_5H_{4-x}R_x$) is fluorenyl, tetrahydroindenyl, or octahydrofluorenyl.

133. - 134. (Cancelled)