EP 0 878 469 A1 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

18.11.1998 Patentblatt 1998/47

(21) Anmeldenummer: 98810412.1

(22) Anmeldetag: 07.05.1998

(51) Int Cl.6: C07D 251/24, C07D 215/22, C07D 405/14, A61K 7/42, A61K 31/53

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 16.05.1997 EP 97810304

(71) Anmelder: Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)

(72) Erfinder:

Haase, Jürg 4126 Bettingen (CH)

· Luther, Helmut 79639 Grenzach-Wyhlen (DE)

Resorcinyl-Triazine (54)

(57)Beschrieben werden Resorcinyl-Triazine der Formel

Die erfindungsgemässen Verbindungen eignen sich insbesondere als Sonnenschutzmittel in kosmetischen, pharmazeutischen und veterinärmedizinischen Präparaten.

Beschreibung

5

Die vorliegende Erfindung betrifft neue Resorcinyl-Triazine, Verfahren zur Herstellung dieser Verbindungen sowie die Verwendung von ausgewählten Resorcinyl-Triazinen für kosmetische Mittel.

Die neuen Resorcinyl-Triazine entsprechen der Formel

worin

35

50

20 R₁ und R₂, unabhängig voneinander, einen Rest der Formel (1a)

$$-(CH_2)_{m_1} \overset{O}{\subset} \\ H_3$$

 R_3 Hydroxy; nicht substituiertes oder durch ein oder mehrere OH-Gruppen substituiertes C_1 - C_5 -Alkyl; C_1 - C_5 -Alkylamino; M; einen Rest der Formel

45
$$(1c) \qquad \begin{array}{c} CH_3 \\ -O \\ H_3C \\ CH_3 \end{array} \qquad \begin{array}{c} H_3C \\ CH_3 \end{array} \qquad \begin{array}{c} H \\ CH_3 \\ CH_3 \end{array} \qquad \vdots$$

5

10

worin R', R° und R° unabhängig voneinander nicht substituiertes oder durch ein oder mehrere OH-Gruppen substituiertes C_1-C_{14} -Alkyl;

R₄ Wasserstoff; M; C₁-C₅-Alkyl; oder einen Rest der Formel -(CH₂)_{m2}-O-T₁;

٨

A₁ einen Rest der Formel

(1g); (1h) — (1i) — O-R₁

20

30

35

40

15

R₅ Wasserstoff; C₁-C₁₀-Alkyl, oder einen Rest der Formel -CH₂-CH(-OH)-CH₂-O-T₁;

R₆ Wasserstoff; oder Methyl;

25 T₁ Wasserstoff; oder C₁-C₈-Alkyl;

Q₁ C₁-C₁₈-Alkyl;

M ein Metallkation;

m₁ 1 bis 3; und

m2 1 bis 4;

m3 2 bis 14; und

n₁ 1-16;

bedeuten.

C₁-C₅-Alkyl, C₁-C₈-Alkyl, C₁-C₁₀-Alkyl, bzw. C₁-C₁₈-Alkyl sind geradkettige oder verzweigte Alkylreste wie z.B. Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.Butyl, tert.Butyl, Amyl, Isoamyl oder tert.Amyl, Heptyl, Octyl, Isooctyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl oder Octadecyl.

 C_1 - C_5 -Alkoxy sind geradkettige oder verzweigte Reste wie z.B. Methoxy, Ethoxy, n-Propoxy, lsopropoxy, n-Butoxy, sek.Butoxy, tert.Butoxy, Amyloxy, Isoamyloxy oder tert.Amyloxy.

Beispiele für Mono- oder Di-C₁-C₅-Alkylamino sind Methylamino, Ethylamino, Propylamino, n-Butylamino, sek. Butylamino, tert.Butylamino, Pentylamino, Dimethylamino, Diethylamino; Dipropylamino; Dibutylamino oder Methyl-Ethylamino.

Beispiele für Metallkationen sind das Lithium-, Kalium-, Natrium-, Calcium-, Magnesium-, Kupfer-, oder Zinkion. Bevorzugt sind Resorcinyl-Verbindungen der Formel (1), worin

A₁ einen Rest der Formel

45

50

(1h₁)
$$O-R_s$$
; (1h₂) , oder (1k₁) $O-R_s$

55 worin

 $\rm R_1$ und $\rm R_4$ die in den Formeln (1h) und (1k) angegebene angegebene Bedeutungen haben. Wichtige erfindungsgemässe Resorcinyl-Verbindungen entsprechen der Formel

worin R_1 und R_2 , unabhängig voneinander einen Rest der Formel

 $-CH_{2}\overset{\circ}{C}\overset{\circ}{C}$

 $\begin{array}{ll} R_3 & Wasserstoff; oder \ C_1\text{-}C_5\text{-}Alkyl; \ und \\ R_5 & C_1\text{-}C_{10}\text{-}Alkyl; \end{array}$

30 bedeuten.

25

Weitere wichtige Resorcinyl-Triazinverbindungen entsprechen der Formel

worin

50

 $\mathsf{R}_1,\,\mathsf{R}_2$ und R_5 unabhängig voneinander einen Rest der Formel

$$-CH_{2} \stackrel{O}{\longrightarrow} O - R_{3}$$

und

R₃ Wasserstoff; oder C₁-C₅-Alkyl; bedeuten.

Insbesondere sind Verbindungen der Formel (3) bevorzugt, worin R_1 , R_2 und R_5 die gleiche Bedeutung haben. Beispiele für ertindungsgemässe Triazinderivate sind in Tabelle 1 aufgeführt:

5

10	
15	
20	
25	
30	
35	

Tabelle 1:				
	O-R _a OH N HO OH C-CH ₂ -C-R _c			
<u>R</u> a	<u>R</u> _b	<u>R</u> c		
CH₃	СН ₃ Н ₃ С-С-О- СН ₃	СН ₃ Н ₃ С-С-О- СН ₃		
C₂H₅	СН ₃ Н ₃ С-С-О- СН ₃	СН ₃ Н ₃ С-С-О- СН ₃		
CH₃	-NH-COOC₄H ₉	-NH-COOC ₄ H ₉		
C₂H₅	-NH-COOC₄H ₉	-NH-⟨COOC⁴H²		
CH₃	-ОН	-OH		
C₂H₅	-ОН	-OH		
-ОН	-ОН	-OH		
CH₃ C₂H₅	-OM M= Alkali, Erdalkali, Cu, Zn, Mg -OM	-OM M= Alkali, Erdalkali, Cu, Zn, Mg -OM		
	M≂ Alkali, Erdalkali, Cu, Zn, Mg	M= Alkali, Erdalkali, Cu, Zn, Mg		

	Tabelle	1 (Fortsetzung)	
5	<u>R</u> a	B₀	<u>R</u> ç
	CH₃	O N(CH₂CH₂OH)₃	O` ¹N(CH₂CH₂OH)₃
	C₂H₅	O` [↑] N(CH ₂ CH ₂ OH) ₃	O` [↑] N(CH ₂ CH ₂ OH) ₃
10	CH₃	CH ₃ - 	CH ₃
15	C ₂ H ₅	CH ₃ H ₃ C - N (CH ₂), -O CH ₃ n=2-14	CH ₃ H ₃ C−N ← (CH ₂), O ← CH ₃
20	CH₃	но	но
25	C₂H₅	но	но
30	CH₃	H ₃ C CH ₃ CH ₃ CH ₃ O-	H ₃ C CH ₃ CH ₃ CH ₃ O-
35	C₂H₅	H ₃ C CH ₃ CH ₃ CH ₃ O-	H ₃ C CH ₃ CH ₃ CH ₃ O-
40			

[Tabelle	1 (Fortsetzung)	
5	<u>R</u> .	<u>R</u> _b	<u>R</u> c
10	CH₃	-O CH ₃ CH	-0 H ₃ C H H ₃ C H CH ₃ CH ₃
15	C₂H₅	H ₂ C H H ₃ C H CH ₃ CH ₃	H,C CH, CH, CH,
20	CH₃	но он	но он он
<i>25</i> <i>30</i>	C₂H₅	но он	но
		NH—	NH

Die neuen Resorcinyl-Triazine lassen sich auf verschiedene Art und Weise herstellen. Beispielsweise lassen sich die Verbindungen der Formel (1), wenn A₁ einen Rest der Formel (1h) und R₁ und R₂ die gleiche Bedeutung haben, in einer dreistufigen Reaktion, ausgehend von Cyanurchlorid, herstellen. Man setzt dabei die entsprechende Phenylmagnesiumbromidverbindung in einer Grignardreaktion mit Cyanurchlorid zur Dichlortriazinverbindung der Formel

40

45

50

um. Verfahren zur Herstellung dieser Zwischenstufe sind bekannt und z.B. in der EP-A-0,577,559 beschrieben. Anschliessend werden die beiden Resorcingruppen in allgemein bekannter Weise durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, eingeführt. In der dritten Stufe erfolgt die Veretherung der freien, p-ständigen Hydroxylgruppen, je nach Bedeutung der Reste R₁ und R₂, durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethem. Ausführliche Angaben dazu können den Herstellungsbeispielen entnommen werden.

Die Dichlortriazin-Zwischenstufe der Formel (11) ist auch ohne Einsatz von Grignard-Reagenzien durch Ring-

schlussreaktion zugänglich. Dazu wird das entsprechend substituierte Benzonitril mit Dicyandiamid zum 6-Aryl-1,3,5-triazin-2,4-dion umgesetzt, welches mit Thionylchlorid in das Chlorderivat der Formel (11) übergeführt wird. Alternativ dazu ist die Verbindung der Formel (11) auch durch Reaktion der entsprechend substituierten N,N-Dimethylcarbonsäureamide mit Phosphoroxychlorid und N-Cyan-chlorformamidin zugänglich. Diese Reaktionen sind bereits bekannt und z.B. in Dyes and Pigments 7, 419-443 (1986) beschrieben.

Verbindungen der Formel (1), worin A₁ einen Rest der Formel (1h) bedeutet, lassen sich weiterhin durch Umsetzung von phenylsubstituierten Benzoxazin-4-onen der Formel

mit Benzamidinverbindungen der Formel

erhalten, wobei R_1 , R_2 und R_5 die in Formel (1) angegebene Bedeutung haben. Die Herstellung solcher Benzoxazinon-Zwischenstufen und die Umsetzung mit Amidinen sind in Helv.Chim.Acta $\underline{55}$, 1566-1595 (1972) beschrieben.

Bedeutet in Formel (1) A_1 einen Rest der Formel (1g) und haben R_1 und R_2 die gleiche Bedeutung, lassen sich die erfindungsgemässen Resorcinyl-Triazine z.B. in einer dreistufigen Reaktion, ausgehend von Cyanurchlorid, herstellen. Man setzt dabei den entsprechenden Aminobenzoesäureester mit Cyanurchlorid zur Dichlortriazinverbindung der Formel

um. Anschliessend werden die beiden Resorcingruppen in allgemein bekannter Weise durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, eingeführt. Diese Reaktionen sind beispielsweise in der EP-A-165,608 beschrieben. Schliesslich erfolgt die Veretherung der freien, p-ständigen Hydroxylgruppen, je nach Bedeutung der Reste R₁ und R₂, durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethern. Detaillierte Angaben dazu können den Synthesebeispielen entnommen werden.

Weiterhin können die erfindungsgemässen Verbindungen der Formel (1) durch Dehydrierung einer Dihydrotriazinverbindung der Formel

55

5

20

30

35

hergestellt werden. R₁, R₂ und A₁ haben dabei die in Formel (1) angegebene Bedeutung.

Als Dehydrierungsmittel wird in der Regel Chloranil eingesetzt. Die Dehydrierung von Di-hydrotriazinverbindungen zu 1,3,5-Triazinen mit Hilfe von Chloranil ist z.B. aus der Khim. Geteritsikl. Soedin. (2), S. 350-353 (1969) bekannt.

Verbindungen der Formel (1), worin A_1 einen Rest der Formel (11) und B_1 und B_2 die gleiche Bedeutung haben, lassen sich z.B. in einer dreistufigen Reaktion, ausgehend von Cyanurchlorid, herstellen. Dabei setzt man das entsprechende N-Alkyl-Pyrrol mit Cyanurchlorid in einer Friedel-Crafts-Reaktion selektiv zur Dichlortriazinverbindung der Formel

$$(1q) \qquad \qquad \bigvee_{N = Q_1} N = Q_1$$

um. Q₁ hat dabei die in Formel (1) angegebene Bedeutung.

15

20

25

30

35

40

45

55

Anschliessend werden die beiden Resorcingruppen in allgemein bekannter Weise durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, eingeführt. Diese Reaktionen sind z. B. in der EP-A-165,608 beschrieben. Die Veretherung der freien, p-ständigen Hydroxylgruppen erfolgt durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethern. Detaillierte Angaben dazu können den Synthesebeispielen entrommen werden.

Die erfindungsgemässen Verbindungen der Formel (1) eignen sich insbesondere als UV-Filter, d.h. zum Schützen von ultraviolett empfindlichen organischen Materialien, insbesondere der Haut und Haare von Menschen und Tieren vor der schädigenden Einwirkung von UV-Strahlung. Diese Verbindungen eignen sich daher als Lichtschutzmittel in kosmetischen, pharmazeutischen und veterinärmedizinischen Präparaten. Diese Verbindungen können sowohl gelöst als auch im mikronisierten Zustand verwendet werden.

Einen weiteren Erfindungsgegenstand bildet daher ein kosmetisches Präparat, enthaltend mindestens eine Verbindung der Formel (1), sowie kosmetisch verträgliche Träger- oder Hilfsstoffe.

Für die kosmetische Verwendung haben die erfindungsgemässen Lichtschutzmittel gewöhnlich eine mittlere Partikelgrösse im Bereich von 0,02 bis 2, vorzugsweise 0,05 bis 1,5, und ganz besonders von 0,1 bis 1,0 μ. Die unlöslichen erfindungsgemässen UV-Absorber können durch übliche Methoden, z.B. Mahlen mit einer Düsen-, Kugel-, Vibrationsoder Hammermühle auf die gewünschte Partikelgrösse gebracht werden. Vorzugsweise wird das Mahlen in Anwesenheit von 0,1 bis 30, vorzugsweise 0,5 bis 15 Gew.-%, bezogen auf den UV-Absorber, einer Mahlhilfe wie z.B. eines alkylierten Vinylpyrrolidon-Polymers, eines Vinylpyrrolidon-Vinylacetat-Copolymers, eines Acylglutamates oder insbesondere eines Phospholipids durchgeführt.

Das kosmetische Präparat kann neben dem erfindungsgemässen UV-Absorber auch noch einen oder mehrere weitere UV-Schutzstoffe der folgenden Substanzklassen enthalten:

- 1. p-Aminobenzoesäurederivate, wie z.B. 4-Dimethylaminobenzoesäure-2-ethylhexylester;
- 2. Salicylsäurederivate, wie z.B. Salicylsäure-2-ethylhexylester;

- 3. Benzophenonderivate, wie z.B. 2-Hydroxy-4-methoxybenzophenon und sein 5-sulfonsäurederivat;
- 4. Dibenzoylmethanderivate, wie z.B. 1 -(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)propan-1,3-dion;
- 5. Diphenylacrylate, wie z.B. 2-Ethylhexyl-2-cyano-3,3-diphenyl acrylat und 3-(Benzofuranyl)-2-cyanoacrylat;
- 3-Imidazol-4-yl-acrylsäure und -ester;
- 7. Benzofuranderivate, insbesondere 2-(p-Aminophenyl)benzofuranderivate, beschrieben in der EP-A-582,189, US-A-5,338,539, US-A-5,518,713 und der EP-A-613,893;
 - 8. polymere UV-Absorber wie z.B. die in der EP-A-709,080 beschriebenen Benzylidenmalonatderivate;
 - 9. Zimtsäurederivate, wie z.B. die in der US-A-5,601,811 und WO 97/00851 offenbarten 4-Methoxyzimtsäure-2-ethylhexylester bzw. Isoamylester oder Zimtsäurederivate;
 - 10.Campherderivate, wie z.B. 3-(4'-Methyl)benzyliden-bornan-2-on, 3-Benzyliden-bornan-2-on, N-[2(und 4)-2-Oxyborn-3-yliden-methyl)-benzyl]acrylamid-Polymer, 3-(4'-Trimethylammonium)-benzyliden-bornan-2-on methylsulfat, 3,3'-(1,4-Phenylendimethin)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]heptan-1-methansulphonsäure) und Salze, 3-(4'-Sulfo)-benzyliden-bornan-2-on und Salze;
 - 11. Trianilino-s-Triazinderivate, wie z.B. 2,4,6-Trianilin-(p-carbo-2'-ethyl-1'-oxi)-1,3,5-triazin sowie die in der US-A-5,332,568, EP-A-517,104, EP-A-507,691, WO 93/17002 und EP-A-570,838 offenbarten UV-Absorber;
 - 12.2-Hydroxyphenyl-Benzotriazol-Derivate;
 - 13.2-Phenylbenzimidazol-5-sulfonsäure und deren Salze;
 - 14. Menthyl-o-aminobenzoat.
 - 15.TiO2 (unterschiedlich umhüllt), ZnO und Mica.

20

30

40

45

5

10

15

Auch die in "Sunscreens", Eds. N.J. Lowe, N.A.Shaath, Marcel Dekker, Inc., New York and Basel oder in Cosmetics & Toiletries (107), 50ff (1992) beschriebenen UV-Absorber können als zusätzliche UV-Schutzstoffe in der erfindungsgemässen Formulierung verwendet werden.

Weiterhin kann das erfindungsgemässe kosmetische Präparat auch zusammen mit bekannten Antioxidantien, wie z.B. Vitamin E, Carotinoiden oder HALS (="Hindered Amine Light Stabilizers")-Verbindungen eingesetzt werden.

Das erfindungsgemässe kosmetische Präparat enthält 0,1 bis 15, vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung, eines UV-Absorbers oder eines Gemisches aus UV-Absorbern und einen kosmetisch verträglichen Hilfsstoff.

Die Herstellung des kosmetischen Präparats kann durch physikalisches Mischen des oder der UV-Absorber mit dem Hilfsstoff durch gewöhnliche Methoden, wie z.B. durch einfaches Zusammenrühren der Einzelkomponenten erfolgen.

Das erfindungsgemässe kosmetische Präparat kann als Wasser-in-Öl- oder Öl-in-Wasser-Emulsion, als Öl-in-Alkohol-Lotion, als vesikulare Dispersion eines ionischen oder nichtionischen amphiphilen Lipids, als Gel, fester Stift oder als Aerosol-Formulierung formuliert werden.

Als Wasser-in-Öl- oder Öl-in-Wasser-Emulsion enthält der kosmetisch verträgliche Hilfsstoff vorzugsweise 5 bis 50% einer Ölphase, 5 bis 20% eines Emulgators und 30 bis 90% Wasser. Die Ölphase kann dabei irgendein für kosmetische Formulierungen geeignetes Öl enthalten, wie z.B. ein oder mehrere Kohlenwasserstofföle, ein Wachs, ein natürliches Öl, ein Silikon-Öl, einen Fettsäureester oder einen Fettalkohol. Bevorzugte Mono- oder Polyole sind Ethanol, Isopropanol, Propylenglykol, Hexylenglycol, Glycerin und Sorbitol.

Für das erfindungsgemässe kosmetische Präparat kann jeder konventionell einsetzbare Emulgator verwendet werden, wie z.B. einer oder mehrere ethoxylierte Ester von natürlichen Derivaten, wie z.B. polyethoxylierte Ester von hydrogeniertem Castor-Öl; oder ein Silikonöl-Emulgator wie z.B. Silikonpolyol; eine gegebenenfalls ethoxylierte Fettsäureseife; ein ethoxylierter Fettalkohol; ein gegebenenfalls ethoxylierter Sorbitanester; eine ethoxylierte Fettsäure; oder ein ethoxyliertes Glycerid.

Das kosmetische Präparat kann auch weitere Komponenten, wie z.B. Emollients, Emulsionsstabilisatoren, Haut-Feuchthaltemittel, Hautbräunungsbeschleuniger, Verdickungsmittel wie z.B. Xanthan, Feuchtigkeit-Retentionsmittel wie z.B. Glycerin, Konservierungsmittel, Duft- und Farbstoffe enthalten.

Das erfindungsgemässe kosmetische Präparat zeichnet sich durch exzellenten Schutz der menschlichen Haut gegen den schädigenden Einfluss von Sonnenlicht aus.

In den folgenden Beispielen beziehen sich die Prozentsätze auf das Gewicht. Die Mengen beziehen sich bei den eingesetzten Resorcinyl-Triazinverbindungen auf die Reinsubstanz.

55

Herstellungsbeispiele der neuen Verbindungen:

Beispiel 1:

5

20

25

30

35

In einem Reaktor werden 5,05 g 2,4-Bis-(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazin, 40 g Dimethyl-formamid (DMF) und 5,1 g Natriummethylat-Lösung (30%ig) vorgelegt und auf 95°C unter Vakuum aufgeheizt. Man destilliert etwa 10 g DMF-Methanol-Gemsich ab, hebt das Vakuum mit Stickstoff auf und lässt anschliessend eine Lösung von 3,96 g t-Butyl-chloracetat in 10 g DMF unter gutem Rühren zulaufen. Man rührt während 12 Stunden das Reaktionsgemisch bei 90°C nach. Die Reaktionsmasse wird nun am Rotationsverdampfer eingeengt, der halbfeste Rückstand mit Aceton extrahiert. Die Rohproduktlösung in Aceton wird im Vakuum eingeengt und der Rückstand 2x mit Toluol/Cyclohexan (17,5:12,5) Gemisch umkristallisiert.

Ausbeute: 2,6 g gelbe Kristalle

Fp.: 88 bis 94°C

Beispiel 2:

Entsprechend Beispiel 1 werden anstelle von t-Butylchloracetat 6,95g 4-Chloracetamido-n-butylbenzoat verwendet. Die Aufarbeitung erfolgt durch Extraktion des Rohproduktes mit Dioxan/Wasser und Methoxyethanol. Man erhält die Verbindung der Formel (102)

50

Ausbeute: 5,5g gelbe Kristalle Fp.: 280°C

Elementaranalyse:	С	N
berechnet	66,28 %	8,0 %
gefunden	66,2 %	8,0 %

UV-Spektrum (gemessen in DMF):		
λ _{max1} :286 nm;	ε = 57 800	
λ _{max2} : 338 nm;	ε = 49 600	

Beispiel 3a:

5

15

35

40

45

50

22,3 g Trisresorcinyltriazin werden mit 16,8g Chloressigsäuremethylester unter Verwendung von Natriummethylat (30%ig) als Base in DMF entprechend Beispiel 1 umgesetzt. Das Rohprodukt wird aus Dioxan/Methoxyethanol (1: 1-Gemisch) umkristallisiert.

Ausbeute: 9g Trisresorcinyl-monoglycolsäuremethylester.

Beispiel 3b: Hydrolyse zur Tricarbonsäure:

9g des erhaltenen Methylesters werden in einem Gemisch, bestehend aus 150ml NaOH 1N und 50ml Dioxan während 6 Stunden am Rückfluss gerührt. Nach Abkühlung der Reaktionsmasse wird diese mit HCI auf einen pH-Wert von 3,0 eingestellt. Die Tricarbonsäure der Formel

25 $O - CH_2 - C - OH$ $O - CH_2 - C - OH$ $O - CH_2 - C - OH$ $O - CH_2 - C - OH$

scheidet sich langsam als Trihydrat aus der Lösung ab. Ausbeute: 3 g graues Pulver

Г	Elementaranalyse:	С	2
Г	berechnet	51,2 %	6,6 %
1	gefunden	50,5 %	6,3 %

UV-Spektrum (gemessen in DMF):		
λ _{max1} : 300 nm;	ε = 27 700	
λ _{max2} : 348 nm;	ε = 44 300	

Beispiel 4a:

40,0 g 2,4-Bis(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazin werden in 750 ml DMF gelöst, mit 21,8 g NaHCO3 versetzt und unter vermindertem Druck (420 mbar) auf 121°C unter Rühren erhitzt. Während ca. 3 Stunden destilliert man ca. 100 ml DMF/Wasser aus der Reaktionsmasse ab. Nach Abkühlen auf 20°C hebt man das Vakuum auf und tropft unter Rühren 33 g Choressigsäureethylester, gelöst in 150 ml DMF langsam zu. Man rührt während 12 Stunden bei Raumtemperatur aus und anschliessend erhitzt man die Reaktionsmasse auf 80°C. Die Suspension wird filtriert und nach Zusatz von 3 g Ameisensäure im Hochvakuum eingeengt. Den Eindampfrückstand extrahiert man mit Methylethylketon. Man erhält 34 g der Verbindung der Formel

Beispiel 4b: Hydrolyse der Verbindung der Formel (104a)

20 22,5 g der Verbindung der Formel (104a) werden in 50 ml Wasser und 50 ml 2N NaOH während 10 Stunden bei 95°C gerührt. Die orangerote Lösung kühlt man auf 20°C ab und versetzt diese mit 100 ml 1N HCl. Die frei Säure fällt aus. Der Filterrückstand wird im Vakuum getrocknet. Man erhält ca. 20 g der Verbindung der Formel

Beispiel 4c:

40

Die Verbindung der Formel (104b) wird in Methoxyethanol gelöst und mit 2 Equivalenten Triethanolamin versetzt. Nach Eindampfen der Lösung erhält man die Verbindung der Formel

45

O-CH₃

$$2 \times N(CH_2CH_2OH)_3$$

OHNNOH

 $N OH$
 $N OH$

Spektrale Daten der Verbindung der Formel (104c):			
UV-Spektrum in Wasser: $\lambda_{\text{max1}} = 340 \text{ nm}$; $\epsilon = 34268$			
	$\lambda_{max2} = 325 \text{ NM};$	ε = 36973	

Beispiel 4d:

5

10

11,5 g der Verbindung der Formel (104a) werden in 50 ml N,N-Dimethylaminopropylamin suspendiert, mit Natriummethylat versetzt und während 16 Stunden unter N₂-Strom bei 130°C gerührt. Nach dem Eindampfen der Reaktionsmasse erhält man die Verbindung der Formel

Beispiel 4e:

30

6 g der Verbindung der Formel (104d) werden in 50 ml Dioxan mit Chloracetamid während 12 Stunden bei 75°C gerührt. Nach Eindampfen der Reaktionsmasse und Extraktion des Rohproduktes mit Aceton erhält man 7,1 g der Verbindung der Formel

35
40
(104e)
$$R = -0 - C_{N} - N - H - C_{N} - C_{N}$$

Spektrale Daten:		
UV-Spektrum in Ethanol:	λ _{max1} 339 nm;	ε = 36803
	λ _{max2} 320 nm;	

Beispiel 4f:

5

6g der Verbindung der Formel (104d) werden in 50 ml Dioxan mit 2,64 g Dimethylsulfat bei 75°C umgesetzt. Nach 10 Eindampfen der Reaktionsmasse und Extraktion des Rohproduktes mit Aceton erhält man 7,2 g der Verbindung der Formel

75 (104f)

$$P = 0$$
 $P = 0$
 $P = 0$

Spektral	e Daten:		
UV-Spel	trum in Wasser:	λ _{max1} 328 nm;	ε = 31763
		λ _{max2} 306 nm;	ε = 30836

Beispiel 5:

30

35

40

55

Entsprechend Beispiel 4a werden 40,4 g 2,4-Bis(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazin mit 137 g D,L-α-Tocopherol-Chloracetat (hergestellt als Tocopherol und Acetylchlorid in Pyridin/Aceton) umgesetzt. Nach Aufarbeitung der Reaktionsmasse durch Kristallisation aus Methylethylketon erhält man 84 g der Verbindung der Formel

$$R = \begin{array}{c} H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} H_{3}C \\ \end{array}$$

isoliert.

20 Applikationsbeispiel:

Beispiel 6: Herstellung einer Sonnenschutzlotion (W/O)

Α	Caprylic/Capric Triglycerid	6,0 %
	Octyldodecanol	4,0 %
	Cetearylisononanoat	3,0 %
	Polyglyceryl-2 Dipolyhydroxystearat	3,0 %
	Glyceryloleat	1,0 %
	Cera Alba	2,0 %
В	C ₁₂₋₁₅ -Alkylbenzoat	4,0 %
	Octylmethoxycinnamat	4,5 %
	Verbindung der Formel (105)	0,5 %

С	Wasser	58,5 %
	86%iges Glycerin	5,0 %
	Konservierungsmittel	0,5 %

	D	mikronisiertes 2,2'-Methylen-bis-(6-(2H-benzotriazole-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol	8,0 %
ı		(50%ige Suspension in Wasser)	

Die Komponenten des Teils A werden auf 75-80°C erwärmt und der bei 80°C vorgemischte Teil B unter Rühren zugegeben. Die Komponenten des Teils C werden auf ca. 80-90°C erwärmt und unter starkem Rühren in Teil A + B einhomogenisiert. Unter langsamem Rühren läßt man auf Raumtemperatur abkühlen und rührt den Teil D homogen ein. Die Sonnenschutzlotion zeigt einen wirkungsvollen kosmetischen Lichtschutz.

Beispiel 7: Herstellung einer Sonnenschutzlotion (O/W)

Α	Polyglyceryl-3 Methylglucose-distearat	2,0 %
	Decyloleat	5,7 %
	Isopropylpalmitat	5,0 %
	Caprylic/Capric Triglyceride	1,5 %
	Octylmethoxycinnamat	6,0 %

В	Wasser	68,9 %
	Verbindung der Formel (104c)	5,5 %
_	86%iges Glycerin	3,5 %
	Konservierungsmittel	0,5 %

С	Carbomer	0,2 %
	Isopropylpalmitat	0,8 %

D	Natriumhydroxid 10 %ig	0,4 %

Die Komponenten der Teile A und B werden jeweils auf ca. 80°C erhitzt und vorsichtig zusammengerührt. Dann werden die Komponenten des Teils C zugegeben und homogenisiert. Nach Herunterkühlen wird Teil D unter Rühren zugegeben.

Die Sonnenschutzlotion zeigt einen wirkungsvollen kosmetischen Lichtschutz.

Beispiel 8: Herstellung eines Haar-Konditionierers mit UV-Schutz (Schaum)

Α	Wasser	83,3 %
	Nonoxynol 9	0,3 %
	Oleth 20	0,5 %
	PVPNA Copolymer	4,0 %
	Verbindung der Formel (104f)	5,0 %
	Polyquaternium-11	5,0 %

١	В	Laurylacetat	0,5 %
		Polyglyceryl-2 Dipolyhydroxystearat	1,0 %

C Konservierungsmittei 0,5 %	C	Konservierungsmittel	0,5 %
------------------------------	---	----------------------	-------

Die Komponenten der Teile A und B werden bei ca. 50°C gemischt und nach Abkühlen wird Teil C und Parfümöl nach Bedarf zugegeben. Die Mischung wird in einen Aerosolbehälter abgefüllt und mit Treibgas versetzt.

Patentansprüche

15

35

45

1. Resorcinyl-Triazine der Formel

10 A_1 A_1 A

worin R_1 und R_2 , unabhängig voneinander, einen Rest der Formel (1a)

$$-(CH_2)\frac{O}{m_1}C$$

$$R_3$$

25 R₃ Hydroxy; nicht substituiertes oder durch ein oder mehrere OH-Gruppen substituiertes C₁-C₅-Alkyl; C₁-C₅-Alkoxy; Amino; Mono- oder Di-C₁-C₅-Alkylamino; M; einen Rest der Formel

(1d)
$$(1e)$$
 $(1e)$ $(1$

(1g)
$$-N$$
 CO_2R_4 :

5

15

20

30

35

worin R', R" und R" unabhängig voneinander nicht substiuiertes oder durch ein oder mehrere OH-Gruppen substituiertes C₁-C₁₄-Alkyl;

¹⁰ R₅ Wasserstoff; M; C₁-C₅-Alkyl; oder einen Rest der Formel -(CH₂)_{m2}-O-T₁;

A₁ einen Rest der Formel

(1g); (1h) $O-R_5$ (1i) $O-R_1$

R_S Wasserstoff; C₁-C₁₀-Alkyl,

-(CH,CHR,-O)-R,4 ,

oder einen Rest der Formel -CH₂-CH(-OH)-CH₂-O-T₁;

R₆ Wasserstoff; oder Methyl;

T₁ Wasserstoff; oder C₁-C₈-Alkyl;

Q₁ C₁-C₁₈-Alkyl;

M ein Metallkation;

m₁ 1 bis 3; und

m2 1 bis 4,

m₃ 2 bis 14; und

n₁ 1-16;

bedeuten.

2. Resorcinyl-Triazine nach Anspruch 1, dadurch gekennzeichnet, dass A₁ einen Rest der Formel

(1h₁)
$$O-R_5$$
; (1h₂) $O-R_5$, oder (1k₁) $O-R_5$

50 worin

R₁ und R₅ die in Anspruch 1 angegebene Bedeutungen haben.

3. Resorcinyl-Triazine nach Anspruch 1 oder 2 der Formel

worin R_1 und R_2 , unabhängig voneinander einen Rest der Formel

 25 $$\rm H_{3}$$ Wasserstoff; oder C $_{1}$ -C $_{5}$ -Alkyl; und $\rm H_{5}$ C $_{1}$ -C $_{10}$ -Alkyl;

bedeuten.

15

30 4. Resorcinyl-Triazine nach Anspruch 1 oder 2 der Formel

worin

50

 ${\rm R_1,\,R_2}$ und ${\rm R_5}$ unabhängig voneinander einen Rest der Formel

und

R₃ Wasserstoff; oder C₁-C₅-Alkyl; bedeuten.

- 5. Resorcinyl-Triazine nach Anspruch 4, dadurch gekennzeichnet, dass R₁, R₂ und R₅ die gleiche Bedeutung haben.
- 6. Verfahren zur Herstellung der Resorcinyl-Triazine der Formel (1), worin A₁ einen Rest der Formel (1a) und R₁ und R₂ die gleiche Bedeutung haben, durch Umsetzung der entsprechenden Phenylmagnesiumbromidverbindung in einer Grignardreaktion mit Cyanurchlorid zur Dichlortriazinverbindung der Formel

10 O-R₅

(11)

N N CI

- Einführung der Resorcingruppen durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, und Veretherung der freien, p-ständigen Hydroxylgruppen, je nach Bedeutung der Reste R₁ und R₂, durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethern.
- 7. Verwendung der Resorcinyl-Triazine der Formel (1) zum Schützen von menschlichen und tierischen Haaren und der Haut vor der schädigenden Einwirkung von UV-Strahlung.
 - 8. Kosmetisches Präparat, enthaltend mindestens eine oder mehrere Verbindungen der Formel (1) nach Anspruch 1 mit kosmetisch verträglichen Träger- oder Hilfsstoffen.
- 30 9. Präparat nach Anspruch 8, dadurch gekennzeichnet, dass es weitere UV-Schutzstoffe enthält.
 - 10. Präparat nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass es als weitere UV-Schutzstoffe Triazine, Oxanilide, Triazole, Vinylgruppen enthaltende Amide oder Zimtsäureamide enthält.

35

40

45

50

Europäisches EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 81 0412

	EINSCHLÄGIGE	DOKUMENTE	·	
Kategorie	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
x	EP 0 531 258 A (CIB. 1993 * Seite 9; Beispiel		1	C07D251/24 C07D215/22 C07D405/14 A61K7/42
x	GB 1 061 521 A (CIB * Beispiel 12 *	A LTD.) 15.März 1967	1,7	A61K31/53
X	CH 484 695 A (CIBA * Beispiel 29 *	A.G.) 31.Januar 1970	1,7	
Y		GEIGY AG ;STEVENSON MARK S (US); RAVICHAND) iel A *	1,8	
Y	WO 97 03643 A (CIBA ;LUTHER H. (DE); ST M. (DE)) 6.Februar * Beispiele 20-24,2	EHLEIN A.(FR); MINKLEI 1997	1,8	
Y	US 3 444 164 A (LUE 13.Mai 1969 * Anspruch 1; Beisp	THI CHRISTIAN ET AL)	1,8	RECHERCHIERTE SACHGEBIETE (Int.Cl.6) CO7D A61K
Y,D	EP 0 165 608 A (CIB 1985 * Beispiele 113,118	A GEIGY AG) 27.Dezember	1,8	G03C
Α	FR 2 698 870 A (CIB 1994 * Zusammenfassung *	A-GEIGY A.G.) 10.Juni	1,7	
A	EP 0 743 309 A (CIB 1996 * Ansprüche 1,6,7 *	A GEIGY AG) 20.November	1,7	
		-/		
Der vo	orliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Pruter
	BERLIN	4.September 1998	Fre	elon, D
X : von Y : von and A : tecl O : nicl	ATEGORIE DER GENANNTEN DÖK abesonderer Bedeufung allein befrach besonderer Bedeufung in Verbindung keren Veröffentlichung derselben Kater nnologischer Hintergrund hischräfliche Offenbarung sichariliferatur	tet E: âlteres Patentdoi nach dem Armei n mit einer D: in der Anmeldun pone L: aus anderen Grü	kument, das jed idedatum veröffe ig angeführtes D inden angeführte	intlicht worden ist okument

Europäisches Patentamt EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 81 0412

	EINSCHLÄGIGE [OKUMENTE		
Kategorie	Kennzeichnung des Dokumen der maßgeblichen	ts mit Angabe, soweit erforderlich, Teile	Betrifft Anspruch	KLASSIFIKATION DER AMMELDUNG (Int.Cl.6)
A .	WO 95 22959 A (CIBA G WALTER (DE); FANKHAUS LUTHER) 31.August 199 * Seite 7; Beispiele & GB 2 286 774 A	SER PETER (CH); 95	1,7	
			1, 7	
A	FR 2 084 822 A (CIBA- 17.Dezember 1971 * Seite 20 - Seite 22		1,7	
A	US 4 826 978 A (MIGDA 2.Mai 1989 * Zusammenfassung *	AL CYRIL A ET AL)	1,7	
				RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
Der vo	rtiegende Recherchenbericht wurde	tür alle Patentansprüche erstellt	-	
	Recherchenort	Abschlußdatum der Recherche		Prûter
	BERLIN	4.September 1998	Fre	lon, D
X : von Y : von and A : tech	ATEGORIE DER GENANNTEN DOKUM besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung m erschen betrachtung derseiben Kategori unologischer Hintergrund	E : ātteres Patenid nach dem Anm it einer D : in der Anmeldu e L : aus anderen Gr	okument, das jedo eldedatum veröffer rg angeführtes Do ünden angeführte	ntlicht worden ist skument s Dokument
O : nict	ntschriftliche Offenbarung schentiteratur	 å : M	ichen Patentfamili	e, übereinstimmendes

EPO FORM 1503 03 (2) (PO4C03)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag:18.11.1998 Patentblatt 1998/47
- (21) Anmeldenummer: 98810412.1
- (00)

(51) Int CL⁶: **C07D 251/24**, C07D 215/22, C07D 405/14, A61K 7/42, A61K 31/53

- (22) Anmeldetag: 07.05.1998
- (84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

- (30) Priorität: 16.05.1997 EP 97810304
- (71) Anmelder: Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)
- (72) Erfinder:
 - Haase, Jürg
 4126 Bettingen (CH)
 - Luther, Helmut 79639 Grenzach-Wyhlen (DE)

- (54) Resorcinyl-Triazine
- (57) Beschrieben werden Resorcinyl-Triazine der Formel

Die erfindungsgemässen Verbindungen eignen sich insbesondere als Sonnenschutzmittel in kosmetischen, pharmazeutischen und veterinärmedizinischen Präparaten.

Beschreibung

5

Die vorliegende Erfindung betrifft neue Resorcinyl-Triazine, Verfahren zur Herstellung dieser Verbindungen sowie die Verwendung von ausgewählten Resorcinyl-Triazinen für kosmetische Mittel.

Die neuen Resorcinyl-Triazine entsprechen der Formel

worin

20

40

50

R₁ und R₂, unabhängig voneinander, einen Rest der Formel (1a)

$$-(CH_2) = \begin{pmatrix} O \\ II \\ -(CH_3) & R_3 \end{pmatrix}$$

30 R₃ Hydroxy; nicht substituiertes oder durch ein oder mehrere OH-Gruppen substituiertes C₁-C₅-Alkyl; C₁-C₅-Alkoxy; Amino; Mono- oder Di-C₁-C₅-Alkylamino; M; einen Rest der Formel

(1g)
$$-N - \sum_{CO_2R_4}$$

5

worin R', R* und R*' unabhängig voneinander nicht substituiertes oder durch ein oder mehrere OH-Gruppen substituiertes C₁-C₁₄-Alkyl;

R₄ Wasserstoff; M; C₁-C₅-Alkyl: oder einen Rest der Formel -(CH₂)_{m2}-O-T₁;

10 A₁ einen Rest der Formel

²⁰ R₅ Wasserstoff; C₁-C₁₀-Alkyl,

25

30

35

40

45

oder einen Rest der Formel -CH2-CH(-OH)-CH2-O-T1:

R₆ Wasserstoff; oder Methyl;

T₁ Wasserstoff; oder C₁-C₈-Alkyl;

 Q_1 C_1 - C_{18} -Alkyl;

M ein Metallkation;

m₁ 1 bis 3; und

m₂ 1 bis 4;

m₃ 2 bis 14; und

n₁ 1-16;

hedeuten

C₁-C₅-Alkyl, C₁-C₈-Alkyl, C₁-C₁₀-Alkyl, bzw. C₁-C₁₈-Alkyl sind geradkettige oder verzweigte Alkylreste wie z.B. Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.Butyl, tert.Butyl, Amyl, Isoamyl oder tert.Amyl, Heptyl, Octyl, Isooctyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl oder Octadecyl.

C₁-C₅-Alkoxy sind geradkettige oder verzweigte Reste wie z.B. Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, sek.Butoxy, tert.Butoxy, Amyloxy, Isoamyloxy oder tert.Amyloxy.

Beispiele für Mono- oder Di-C₁-C₅-Alkylamino sind Methylamino, Ethylamino, Propylamino, n-Butylamino, sek. Butylamino, tert.Butylamino, Pentylamino, Dimethylamino, Diethylamino; Dipropylamino; Dibutylamino oder Methyl-Ethylamino.

Beispiele für Metallkationen sind das Lithium-, Kalium-, Natrium-, Calcium-, Magnesium-, Kupfer-, oder Zinkion. Bevorzugt sind Resorcinyl-Verbindungen der Formel (1), worin

A₁ einen Rest der Formel

50

55

(1h₁)
$$O-R_5$$
; (1h₂) , oder (1k₁) $O-R_5$

worin

die in den Formeln (1h) und (1k) angegebene angegebene Bedeutungen haben. R_1 und R_4

Wichtige erfindungsgemässe Resorcinyl-Verbindungen entsprechen der Formel

10

15

5

20

worin

unabhängig voneinander einen Rest der Formel R₁ und R₂.

25

35

40

Wasserstoff: oder C1-C5-Alkyl; und

C1-C10-Alkyl; R_5

bedeuten.

Weitere wichtige Resorcinyl-Triazinverbindungen entsprechen der Formel

45

50

(3)

worin 55

> unabhängig voneinander einen Rest der Formel R_1 , R_2 and R_5

und

R₃ Wasserstoff; oder C₁-C₅-Alkyl; bedeuten.

Insbesondere sind Verbindungen der Formel (3) bevorzugt, worin

 $\rm R_1,\,R_2$ und $\rm R_5$ die gleiche Bedeutung haben. Beispiele für erfindungsgemässe Triazinderivate sind in Tabelle 1 aufgeführt:

ſ	Tabelle		
5		O-FI	•
			1
		,	J
10			
,,		OH N	N HO
		0	
		0 R-C-CH ₂ -O	0 0-CH ₂ -C-R _c
15		·	
	<u>R</u>	<u>R</u> _b	R _c
	CH₃		
20		СН	СН
		СН ₃ Н₃С−С−О СН ₃	СН ₃ Н ₃ С-С-О- СН ₃
		CH ₄	CH,
		,	
25	C₂H₅		
		сн.	CH.
		H-C-C-O-	H,C-C-O-
30	ŀ	СН ₃ СН ₃	СН³ СН³ СН³
	CH₃	-NH-(=)-COOC4H9	-NH-⟨)—COOC⁴H³
		-NH-COOC⁴H ⁸	1111
35	C ₂ H ₅		
	2.15	-NH-()-COOC4H	-NH-⟨\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
40	CH₃	-OH	-ОН
	C ₂ H ₅	-ОН	-ОН
	-ОН	-ОН	-ОН
	CH ₃	-OM	-ОМ
45		M= Alkali, Erdalkali, Cu, Zn, Mg	M= Alkali, Erdalkali, Cu, Zn, Mg
	C ₂ H ₅	-OM M= Alkali, Erdalkali, Cu, Zn, Mg	-OM M= Alkali, Erdalkali, Cu. Zn, Mg

R.	<u>R</u> ,	R _c
CH ₃	O N(CH ₂ CH ₂ OH) ₃	O N(CH2CH2OH)3
C₂H₅	O' *N(CH ₂ CH ₂ OH) ₃	O` N(CH₂CH₂OH)₃
CH₃	CH ₃ - - 	CH ₃
C ₂ H ₅	CH ₃ 	CH ₃ - -
CH₃	но	но
C₂H₅	но	но
CH₃	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ CH ₃ CH ₃ CH ₃ O
C₂H₅	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	O- H ₃ C CH ₃ CH ₃ CH ₃ CH ₃

Tabelle 1 (Fortsetzung)		
R.	B _b	<u>A</u> ,
CH₃	-0 CH ₃ CH ₃ CH ₃ CH ₃	-0 CH ₃ CH ₃ CH ₄ CH ₄ CH ₄
C₂H₅	-O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	-O CH ₃ H ₃ C H ₃ C H ₃ C H CH ₃ CH ₃
CH₃	ноо ноон 	HO OH OH
C₂H₅	но он	но он
	R₄ CH₃ C₂H₅	CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₅ CH ₇

Die neuen Resorcinyl-Triazine lassen sich auf verschiedene Art und Weise herstellen. Beispielsweise lassen sich die Verbindungen der Formel (1), wenn A₁ einen Rest der Formel (1h) und R₁ und R₂ die gleiche Bedeutung haben, in einer dreistufigen Reaktion, ausgehend von Cyanurchlorid, herstellen. Man setzt dabei die entsprechende Phenylmagnesiumbromidverbindung in einer Grignardreaktion mit Cyanurchlorid zur Dichlortriazinverbindung der Formel

35

40

45

50

(11) N N CI

um. Verfahren zur Herstellung dieser Zwischenstufe sind bekannt und z.B. in der EP-A-0,577,559 beschrieben. Anschliessend werden die beiden Resorcingruppen in allgemein bekannter Weise durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, eingeführt. In der dritten Stufe erfolgt die Veretherung der freien, p-ständigen Hydroxylgruppen, je nach Bedeutung der Reste R₁ und R₂, durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethem. Ausführliche Angaben dazu können den Herstellungsbeispielen entnommen werden.

Die Dichlortriazin-Zwischenstufe der Formel (1I) ist auch ohne Einsatz von Grignard-Reagenzien durch Ringschlussreaktion zugänglich. Dazu wird das entsprechend substituierte Benzonitril mit Dicyandiamid zum 6-Aryl-1,3,5-triazin-2,4-dion umgesetzt, welches mit Thionylchlorid in das Chlorderivat der Formel (1I) übergeführt wird. Alternativ dazu ist die Verbindung der Formel (1I) auch durch Reaktion der entsprechend substituierten N,N-Dimethylcarbonsäureamide mit Phosphoroxychlorid und N-Cyan-chlorformamidin zugänglich. Diese Reaktionen sind bereits bekannt und z.B. in Dyes and Pigments 7, 419-443 (1986) beschrieben.

Verbindungen der Formel (1), worin A_1 einen Rest der Formel (1h) bedeutet, lassen sich weiterhin durch Umsetzung von phenylsubstituierten Benzoxazin-4-onen der Formel

mit Benzamidinverbindungen der Formel

erhalten, wobei R_1 , R_2 und R_5 die in Formel (1) angegebene Bedeutung haben. Die Herstellung solcher Benzoxazinon-Zwischenstufen und die Umsetzung mit Amidinen sind in Helv.Chim. Acta <u>55</u>, 1566-1595 (1972) beschrieben.

Bedeutet in Formel (1) A₁ einen Rest der Formel (1g) und haben R₁ und R₂ die gleiche Bedeutung, lassen sich die erfindungsgemässen Resorcinyl-Triazine z.B. in einer dreistufigen Reaktion, ausgehend von Cyanurchlorid, herstellen. Man setzt dabei den entsprechenden Aminobenzoesäureester mit Cyanurchlorid zur Dichlortriazinverbindung der Formel

um. Anschliessend werden die beiden Resorcingruppen in allgemein bekannter Weise durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, eingeführt. Diese Reaktionen sind beispielsweise in der EP-A-165,608 beschrieben. Schliesslich erfolgt die Veretherung der freien, p-ständigen Hydroxylgruppen, je nach Bedeutung der Reste R₁ und R₂, durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethern. Detaillierte Angaben dazu können den Synthesebeispielen entnommen werden.

Weiterhin können die erfindungsgemässen Verbindungen der Formel (1) durch Dehydrierung einer Dihydrotriazinverbindung der Formel

55

50

20

hergestellt werden. R₁, R₂ und A₁ haben dabei die in Formel (1) angegebene Bedeutung.

Als Dehydrierungsmittel wird in der Regel Chloranil eingesetzt. Die Dehydrierung von Dihydrotriazinverbindungen zu 1,3,5-Triazinen mit Hilfe von Chloranil ist z.B. aus der Khim. Geteritsikl. Soedin. (2), S. 350-353 (1969) bekannt.

Verbindungen der Formel (1), worin A₁ einen Rest der Formel (1I) und R₁ und R₂ die gleiche Bedeutung haben, lassen sich z.B. in einer dreistufigen Reaktion, ausgehend von Cyanurchlorid, herstellen. Dabei setzt man das entsprechende N-Alkyl-Pyrrol mit Cyanurchlorid in einer Friedel-Crafts-Reaktion selektiv zur Dichlortriazinverbindung der Formel

um. Q1 hat dabei die in Formel (1) angegebene Bedeutung.

15

20

35

40

45

Anschliessend werden die beiden Resorcingruppen in allgemein bekannter Weise durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, eingeführt. Diese Reaktionen sind z.B. in der EP-A-165,608 beschrieben. Die Veretherung der freien, p-ständigen Hydroxylgruppen erfolgt durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethern. Detaillierte Angaben dazu können den Synthesebeispielen entnom-

Die erfindungsgemässen Verbindungen der Formel (1) eignen sich insbesondere als UV-Filter, d.h. zum Schützen von ultraviolett empfindlichen organischen Materialien, insbesondere der Haut und Haare von Menschen und Tieren vor der schädigenden Einwirkung von UV-Strahlung. Diese Verbindungen eignen sich daher als Lichtschutzmittel in kosmetischen, pharmazeutischen und veterinärmedizinischen Präparaten. Diese Verbindungen können sowohl gelöst als auch im mikronisierten Zustand verwendet werden.

Einen weiteren Erfindungsgegenstand bildet daher ein kosmetisches Präparat, enthaltend mindestens eine Verbindung der Formel (1), sowie kosmetisch verträgliche Träger- oder Hilfsstoffe.

Für die kosmetische Verwendung haben die erfindungsgemässen Lichtschutzmittel gewöhnlich eine mittlere Partikelgrösse im Bereich von 0.02 bis 2, vorzugsweise 0.05 bis 1.5, und ganz besonders von 0.1 bis $1.0\,\mu$. Die unlöslichen erfindungsgemässen UV-Absorber können durch übliche Methoden, z.B. Mahlen mit einer Düsen-, Kugel-, Vibrationsoder Hammermühle auf die gewünschte Partikelgrösse gebracht werden. Vorzugsweise wird das Mahlen in Anwesenheit von 0,1 bis 30, vorzugsweise 0,5 bis 15 Gew.-%, bezogen auf den UV-Absorber, einer Mahlhilfe wie z.B. eines alkylierten Vinylpyrrolidon-Polymers, eines Vinylpyrrolidon-Vinylacetat-Copolymers, eines Acylglutamates oder insbesondere eines Phospholipids durchgeführt.

Das kosmetische Präparat kann neben dem erfindungsgemässen UV-Absorber auch noch einen oder mehrere weitere UV-Schutzstoffe der folgenden Substanzklassen enthalten:

- 1. p-Aminobenzoesäurederivate, wie z.B. 4-Dimethylaminobenzoesäure-2-ethylhexylester;
- Salicylsäurederivate, wie z.B. Salicylsäure-2-ethylhexylester;

- 3. Benzophenonderivate, wie z.B. 2-Hydroxy-4-methoxybenzophenon und sein 5-sullonsäurederivat;
- 4. Dibenzoylmethanderivate, wie z.B. 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)propan-1,3-dion;
- 5. Diphenylacrylate, wie z.B. 2-Ethylhexyl-2-cyano-3,3-diphenyl acrylat und 3-(Benzofuranyl)-2-cyanoacrylat;
- 6. 3-Imidazol-4-yl-acrylsäure und -ester;
- 7. Benzofuranderivate, insbesondere 2-(p-Aminophenyl)benzofuranderivate, beschrieben in der EP-A-582,189, US-A-5,338,539, US-A-5,518,713 und der EP-A-613,893;
 - 8. polymere UV-Absorber wie z.B. die in der EP-A-709,080 beschriebenen Benzylidenmalonalderivate;
 - 9. Zimtsäurederivate, wie z.B. die in der US-A-5,601,811 und WO 97/00851 offenbarten 4-Methoxyzimtsäure-2-ethylhexylester bzw. Isoamylester oder Zimtsäurederivate;
- 10. Campherderivate. wie z.B. 3-(4'-Methyl)benzyliden-bornan-2-on, 3-Benzyliden-bornan-2-on, N-[2(und 4)-2-Oxyborn-3-yliden-methyl)-benzyl]acrylamid-Polymer, 3-(4'-Trimethylammonium)-benzyliden-bornan-2-on methylsulfat, 3,3'-(1,4-Phenylendimethin)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]heptan-1-methansulphonsäure) und Salze, 3-(4'-Sulfo)-benzyliden-bornan-2-on und Salze;
 - 11. Trianilino-s-Triazinderivate, wie z.B. 2,4,6-Trianilin-(p-carbo-2'-ethyl-1'-oxi)-1,3,5-triazin sowie die in der US-A-5,332,568, EP-A-517,104, EP-A-507,691, WO 93/17002 und EP-A-570,838 offenbarten UV-Absorber:
 - 12.2-Hydroxyphenyl-Benzotriazol-Derivate;
 - 13.2-Phenylbenzimidazol-5-sulfonsäure und deren Salze;
 - 14, Menthyl-o-aminobenzoat.
 - 15.TiO₂ (unterschiedlich umhüllt), ZnO und Mica.

20

25

30

35

40

45

15

5

Auch die in "Sunscreens", Eds. N.J. Lowe, N.A. Shaath, Marcel Dekker, Inc., New York and Basel oder in Cosmetics & Toiletries (107), 50ff (1992) beschriebenen UV-Absorber können als zusätzliche UV-Schutzstoffe in der erfindungsgemässen Formulierung verwendet werden.

Weiterhin kann das erfindungsgemässe kosmetische Präparat auch zusammen mit bekannten Antioxidantien, wie z.B. Vitamin E, Carotinoiden oder HALS (="Hindered Amine Light Stabilizers")-Verbindungen eingesetzt werden.

Das erfindungsgemässe kosmetische Präparat enthält 0,1 bis 15, vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung, eines UV-Absorbers oder eines Gemisches aus UV-Absorbem und einen kosmetisch verträglichen Hilfsstoff.

Die Herstellung des kosmetischen Präparats kann durch physikalisches Mischen des oder der UV-Absorber mit dem Hilfsstoff durch gewöhnliche Methoden, wie z.B. durch einfaches Zusammenrühren der Einzelkomponenten erfolgen.

Das erfindungsgemässe kosmetische Präparat kann als Wasser-in-Öl- oder Öl-in-Wasser-Emulsion, als Öl-in-Alkohol-Lotion, als vesikulare Dispersion eines ionischen oder nichtionischen amphiphilen Lipids, als Gel, fester Stift oder als Aerosol-Formulierung formuliert werden.

Als Wasser-in-Öl- oder Öl-in-Wasser-Emulsion enthält der kosmetisch verträgliche Hilfsstoff vorzugsweise 5 bis 50% einer Ölphase, 5 bis 20% eines Emulgators und 30 bis 90% Wasser. Die Ölphase kann dabei irgendein für kosmetische Formulierungen geeignetes Öl enthalten, wie z.B. ein oder mehrere Kohlenwasserstofföle, ein Wachs, ein natürliches Öl, ein Silikon-Öl, einen Fettsäureester oder einen Fettalkohol. Bevorzugte Mono- oder Polyole sind Ethanol, Isopropanol, Propylenglykol, Hexylenglycol, Glycerin und Sorbitol.

Für das erfindungsgemässe kosmetische Präparat kann jeder konventionell einsetzbare Emulgator verwendet werden, wie z.B. einer oder mehrere ethoxylierte Ester von natürlichen Derivaten, wie z.B. polyethoxylierte Ester von hydrogeniertem Castor-Öl; oder ein Silikonöl-Emulgator wie z.B. Silikonpolyol; eine gegebenenfalls ethoxylierte Fettsäureseife; ein ethoxylierte Fettalkohol; ein gegebenenfalls ethoxylierter Sorbitanester; eine ethoxylierte Fettsäures oder ein ethoxyliertes Glycerid.

Das kosmetische Präparat kann auch weitere Komponenten, wie z.B. Emollients, Emulsionsstabilisatoren, Haut-Feuchthaltemittel, Hautbräunungsbeschleuniger, Verdickungsmittel wie z.B. Xanthan, Feuchtigkeit-Retentionsmittel wie z.B. Glycerin, Konservierungsmittel, Duft- und Farbstoffe enthalten.

Das erfindungsgemässe kosmetische Präparat zeichnet sich durch exzellenten Schutz der menschlichen Haut gegen den schädigenden Einfluss von Sonnenlicht aus.

In den folgenden Beispielen beziehen sich die Prozentsätze auf das Gewicht. Die Mengen beziehen sich bei den eingesetzten Resorcinyl-Triazinverbindungen auf die Reinsubstanz.

55

Herstellungsbeispiele der neuen Verbindungen:

Beispiel 1:

5

20

In einem Reaktor werden 5,05 g 2,4-Bis-(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazin, 40 g Dimethyl-tormamid (DMF) und 5,1 g Natriummethylat-Lösung (30%ig) vorgelegt und auf 95°C unter Vakuum aufgeheizt. Man destilliert etwa 10 g DMF-Methanol-Gemsich ab, hebt das Vakuum mit Stickstoff auf und lässt anschliessend eine Lösung von 3,96 g t-Butyl-chloracetat in 10 g DMF unter gutem Rühren zulaufen. Man rührt während 12 Stunden das Reaktionsgemisch bei 90°C nach. Die Reaktionsmasse wird nun am Rotationsverdampfer eingeengt, der halbfeste Rückstand mit Aceton extrahiert. Die Rohproduktlösung in Aceton wird im Vakuum eingeengt und der Rückstand 2x mit Toluol/Cyclohexan (17,5:12.5) Gemisch umkristallisiert.

Ausbeute: 2,6 g gelbe Kristalle

Fp.: 88 bis 94°C

30

35

Beispiel 2:

Entsprechend Beispiel 1 werden anstelle von t-Butylchloracetat 6,95g 4-Chloracetamido-n-butylbenzoat verwendet. Die Aufarbeitung erfolgt durch Extraktion des Rohproduktes mit Dioxan/Wasser und Methoxyethanol. Man erhält die Verbindung der Formel (102)

Ausbeute: 5.5g gelbe Kristalle

Fp.: 280°C

Elementaranalyse:	С	N
berechnet	66,28 %	8,0 %
gefunden	66,2 %	8,0 %

UV-Spektrum (geme	(gemessen in DMF):	
λ _{max1} :286 nm;	ε = 57 800	
λ _{max2} : 338 nm;	ε = 49 600	

Beispiel 3a:

5

10

15

20

40

45

50

55

22.3 g Trisresorcinyltriazin werden mit 16,8g Chloressigsäuremethylester unter Verwendung von Natriummethylat (30%ig) als Base in DMF entprechend Beispiel 1 umgesetzt. Das Rohprodukt wird aus Dioxan/Methoxyethanol (1: 1-Gemisch) umkristallisiert.

Ausbeute: 9g Trisresorcinyl-monoglycolsäuremethylester.

Beispiel 3b: Hydrolyse zur Tricarbonsäure:

9g des erhaltenen Methylesters werden in einem Gemisch, bestehend aus 150ml NaOH 1N und 50ml Dioxan während 6 Stunden am Rückfluss gerührt. Nach Abkühlung der Reaktionsmasse wird diese mit HCI auf einen pH-Wert von 3,0 eingestellt. Die Tricarbonsäure der Formel

25 30 (103) HO — CH₂-C-OH
O-CH₂-C-OH

scheidet sich langsam als Trihydrat aus der Lösung ab. Ausbeute: 3 g graues Pulver

Elementaranalyse:	C	N
berechnet	51,2 %	6,6 %
gefunden	50,5 %	6,3 %

UV-Spektrum (gemessen in DMF): $\lambda_{max1}: 300 \text{ nm}; \qquad \epsilon = 27 700$ $\lambda_{max2}: 348 \text{ nm}; \qquad \epsilon = 44 300$

Beispiel 4a:

40,0 g 2.4-Bis(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazin werden in 750 ml DMF gelöst, mit 21,8 g NaHCO₃ versetzt und unter vermindertem Druck (420 mbar) auf 121°C unter Rühren erhitzt. Während ca. 3 Stunden destilliert man ca. 100 ml DMF/Wasser aus der Reaktionsmasse ab. Nach Abkühlen auf 20°C hebt man das Vakuum auf und tropft unter Rühren 33 g Choressigsäureethylester, gelöst in 150 ml DMF langsam zu. Man rührt während 12 Stunden bei Raumtemperatur aus und anschliessend erhitzt man die Reaktionsmasse auf 80°C. Die Suspension wird filtriert und nach Zusatz von 3 g Ameisensäure im Hochvakuum eingeengt. Den Eindampfrückstand extrahiert man

mit Methylethylketon. Man erhält 34 g der Verbindung der Formel

Beispiel 4b: Hydrolyse der Verbindung der Formel (104a)

22,5 g der Verbindung der Formel (104a) werden in 50 ml Wasser und 50 ml 2N NaOH während 10 Stunden bei 95°C gerührt. Die orangerote Lösung kühlt man auf 20°C ab und versetzt diese mit 100 ml 1N HCI. Die frei Säure fällt aus. Der Filterrückstand wird im Vakuum getrocknet. Man erhält ca. 20 g der Verbindung der Formel

30 (104b) O-CH₂ O-CH₂ O-CH₂ C-OH

Beispiel 4c:

20

25

40

45

50

55

Die Verbindung der Formel (104b) wird in Methoxyethanol gelöst und mit 2 Equivalenten Triethanolamin versetzt. Nach Eindampfen der Lösung erhält man die Verbindung der Formel

5 (104c)
$$2 \times N(CH_2CH_2OH)_3$$
 $O - CH_2 - C - OH$

Beispiel 4d:

15

20

11,5 g der Verbindung der Formel (104a) werden in 50 ml N,N-Dimethylaminopropylamin suspendiert, mit Natriummethylat versetzt und während 16 Stunden unter N₂-Strom bei 130°C gerührt. Nach dem Eindampfen der Reaktionsmasse erhält man die Verbindung der Formel

35 (104d)
$$R = H_3C$$
 $O = H_3C$ $O = H_3C$

Beispiel 4e:

45

50

55

6 g der Verbindung der Formel (104d) werden in 50 ml Dioxan mit Chloracetamid während 12 Stunden bei 75°C gerührt. Nach Eindampfen der Reaktionsmasse und Extraktion des Rohproduktes mit Aceton erhält man 7,1 g der Verbindung der Formel

Spektrale Daten:		
UV-Spektrum in Ethanol:	λ _{max1} 339 nm;	ε = 36803
·	λ _{max2} 320 nm;	ε = 32104

Beispiel 4f:

6g der Verbindung der Formel (104d) werden in 50 ml Dioxan mit 2,64 g Dimethylsulfat bei 75°C umgesetzt. Nach Eindampfen der Reaktionsmasse und Extraktion des Rohproduktes mit Aceton erhält man 7,2 g der Verbindung der Formel

40 (104f)

$$R = H_3C \longrightarrow 0$$
 CH_3
 $H_3C \longrightarrow 0$
 CH_3
 $N - C - CH_2 - O - O$
 CH_3
 $N - C - CH_2 - O - O$

55	Spektrale Daten:		
	UV-Spektrum in Wasser:	λ _{max1} 328 nm;	ε = 31763
		λ _{max2} 306 nm;	ε = 30836

Beispiel 5:

5

20

35

Entsprechend Beispiel 4a werden 40,4 g 2,4-Bis(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazin mit 137 g D,L-α-Tocopherol-Chloracetat (hergestellt als Tocopherol und Acetylchlorid in Pyridin/Aceton) umgesetzt. Nach Aufarbeitung der Reaktionsmasse durch Kristallisation aus Methylethylketon erhält man 84 g der Verbindung der Formel

 $H = \begin{array}{c} H_{3}C \\ H_{3}C \\ \end{array} \qquad \begin{array}{c} H_{3}C \\ H_{3}C \\ \end{array} \qquad \begin{array}{c} H_{3}C \\ H_{3}C \\ \end{array} \qquad \begin{array}{c} CH_{3} \\ H$

Spektrale Daten		
UV-Spektrum in Dioxan:	λ _{max1} 336 nm;	ε = 45999
	λ _{max2} 306 nm;	ε = 43748

6,0 % 4,0 % 3,0 %

3,0 %

1,0 % 2,0 %

4,0 % 4,5 %

isoliert.

40 Applikationsbeispiel:

Beispiel 6: Herstellung einer Sonnenschutzlotion (W/O)

45	Α	Caprylic/Capric Triglycerid
		Octyldodecanol
		Cetearylisononanoat
F0		Polyglyceryl-2 Dipolyhydroxystearat
50		Glyceryloleat
		Cera Alba
55	В	C ₁₂₋₁₅ -Alkylbenzoat
		Octylmethoxycinnamat
		

(fortgesetzt)

Verbindung der Formel (105)	0,5 %

С	C Wasser	
	86%iges Glycerin	5,0 %
	Konservierungsmittel	0,5 %

1	D	mikronisiertes 2,2'-Methylen-bis-(6-(2H-benzotriazole-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol	8,0 %
l		(50%ige Suspension in Wasser)	<u> </u>

Die Komponenten des Teils A werden auf 75-80°C erwärmt und der bei 80°C vorgemischte Teil B unter Rühren zugegeben. Die Komponenten des Teils C werden auf ca. 80-90°C erwärmt und unter starkem Rühren in Teil A + B einhomogenisiert. Unter langsamem Rühren läßt man auf Raumtemperatur abkühlen und rührt den Teil D homogen ein. Die Sonnenschutzlotion zeigt einen wirkungsvollen kosmetischen Lichtschutz.

Beispiel 7: Herstellung einer Sonnenschutzlotion (O/W)

Α	Polyglyceryl-3 Methylglucose-distearat	2,0 %
	Decyloleat	5,7 %
	Isopropylpalmitat	5,0 %
	Caprylic/Capric Triglyceride	1,5 %
	Octylmethoxycinnamat	6,0 %

В	Wasser	68,9 %
	Verbindung der Formel (104c)	5,5 %
	86%iges Glycerin	3,5 %
	Konsonierungsmittel	05%

С	Carbomer	0,2 %
	Isopropylpalmitat	0,8 %

D	Natriumhydroxid 10 %ig	0,4 %

Die Komponenten der Teile A und B werden jeweils auf ca. 80°C erhitzt und vorsichtig zusammengerührt. Dann werden die Komponenten des Teils C zugegeben und homogenisiert. Nach Herunterkühlen wird Teil D unter Rühren zugegeben.

Die Sonnenschutzlotion zeigt einen wirkungsvollen kosmetischen Lichtschutz.

Beispiel 8: Herstellung eines Haar-Konditionierers mit UV-Schutz (Schaum)

	Α	Wasser	83,3 %
1		Nonoxynol 9	0,3 %

(fortgesetzt)

Oleth 20	0,5 %
PVP/VA Copolymer	4,0 %
Verbindung der Formel (104f)	5,0 %
Polyquaternium-11	5,0 %

В	Laurylacetat	0.5 %
	Polyglyceryl-2 Dipolyhydroxystearat	1,0 %

C	Konservierungsmittel 0,5	%
---	--------------------------	---

Die Komponenten der Teile A und B werden bei ca. 50°C gemischt und nach Abkühlen wird Teil C und Parfümöl nach Bedarf zugegeben. Die Mischung wird in einen Aerosolbehälter abgefüllt und mit Treibgas versetzt.

Patentansprüche

5

10

15

20

25

30

35

40

45

50

1. Resorcinyl-Triazine der Formel

(1) $\begin{array}{c} A_1 \\ N \\ N \end{array}$

worin

R₁ und R₂, unabhängig voneinander, einen Rest der Formel (1a)

 $-(CH_2)_{m_1} \overset{O}{\subset} \\ R_3$

Hydroxy; nicht substituiertes oder durch ein oder mehrere OH-Gruppen substituiertes C₁-C₅-Alkyl; C₁-C₅-Alkoxy; Amino; Mono- oder Di-C₁-C₅-Alkylamino; M; einen Rest der Formel

(1b) H₃C CH₃ CH₃ CH₃ O— ;

(1d)
$$HO \longrightarrow OH$$
 ; (1e) $H'' \longrightarrow HO \longrightarrow OH$; (1f) $H'' \longrightarrow OH$; (1f) $H'' \longrightarrow OH$; (1f) $H'' \longrightarrow OH$

worin R', R" und R" unabhängig voneinander nicht substiuiertes oder durch ein oder mehrere OH-Gruppen substituiertes C₁-C₁₄-Alkyl;

H₅ Wasserstoff; M; C₁-C₅-Alkyl; oder einen Rest der Formel -(CH₂)_{m2}-O-T₁; einen Rest der Formel

R₅ Wasserstoff; C₁-C₁₀-Alkyl,

oder einen Rest der Formel -CH₂-CH(-OH)-CH₂-O-T₁;

 $\begin{array}{ccc} \textbf{45} & \textbf{R}_6 & \textbf{Wasserstoff; oder Methyl;} \\ \textbf{T}_1 & \textbf{Wasserstoff; oder C}_1\textbf{-C}_8\textbf{-Alkyl;} \\ \textbf{Q}_1 & \textbf{C}_1\textbf{-C}_{18}\textbf{-Alkyl;} \\ \textbf{M} & \textbf{ein Metallkation;} \end{array}$

n₁ 1-16;

bedeuten.

25

30

35

40

55

2. Resorcinyl-Triazine nach Anspruch 1, dadurch gekennzeichnet, dass

A₁ einen Rest der Formel

$$(1h_1) \qquad O-R_s; (1h_2) \qquad O-R_s$$
, oder $(1k_1)$

worin

R₁ und R₅ die in Anspruch 1 angegebene Bedeutungen haben.

3. Resorcinyl-Triazine nach Anspruch 1 oder 2 der Formel

worin

10

30

R₁ und R₂, unabhängig voneinander einen Rest der Formel

40 R_3 Wasserstoff; oder C_1 - C_5 -Alkyl; und C_1 - C_{10} -Alkyl;

bedeuten.

45 4. Resorcinyl-Triazine nach Anspruch 1 oder 2 der Formel

55

$$\begin{array}{c}
O-R_5\\
OH\\
N\\
N\\
O-R\\
O-R\\
\end{array}$$

worin

5

10

15

20

30

40

50

55

R₁, R₂ und R₅ unabhängig voneinander einen Rest der Formel

-CH₂-(O-R₃; 25

 R_3 Wasserstoff; oder C₁-C₅-Alkyl;

bedeuten.

5. Resorcinyl-Triazine nach Anspruch 4, dadurch gekennzeichnet, dass

35 R₁, R₂ und R₅ die gleiche Bedeutung haben.

> 6. Verfahren zur Herstellung der Resorcinyl-Triazine der Formel (1), worin A₁ einen Rest der Formel (1a) und R₁ und R₂ die gleiche Bedeutung haben, durch Umsetzung der entsprechenden Phenylmagnesiumbromidverbindung in einer Grignardreaktion mit Cyanurchlorid zur Dichlortriazinverbindung der Formel

Einführung der Resorcingruppen durch Friedel-Crafts-Acylierung von Resorcin in Gegenwart einer Lewis-Säure, insbesondere Aluminiumchlorid, und Veretherung der freien, p-ständigen Hydroxylgruppen, je nach Bedeutung der Reste R₁ und R₂, durch Alkylierung bzw. säurekatalysierte Addition von Glycidylethern.

7. Verwendung der Resorcinyl-Triazine der Formel (1) zum Schützen von menschlichen und tierischen Haaren und der Haut vor der schädigenden Einwirkung von UV-Strahlung.

8. Kosmetisches Präparat, enthaltend mindestens eine oder mehrere Verbindungen der Formel (1) nach Anspruch 1 mit kosmetisch verträglichen Träger- oder Hillsstoffen. 9. Präparat nach Anspruch 8, dadurch gekennzeichnet, dass es weitere UV-Schutzstoffe enthält. 10. Präparat nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass es als weitere UV-Schutzstoffe Triazine, Oxanilide, Triazole, Vinylgruppen enthaltende Amide oder Zimtsäureamide enthält.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 81 0412

	EINSCHLÄGIGI	DOKUMENTE		
Categorie	Kennzeichnung des Dokur der maßgeblich	nents mit Angabe soweit erforderlich, ien Teile	Betnfft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
x .		BA GEIGY AG) 10.März	1	C07D251/24 C07D215/22 C07D405/14 A61K7/42
x	GB 1 061 521 A (CIE * Beispiel 12 *	BA LTD.) 15.März 1967	1.7	A61K31/53
K .	CH 484 695 A (CIBA * Beispiel 29 *	A.G.) 31.Januar 1970	1.7	
Y		A GEIGY AG :STEVENSON MARK S (US); RAVICHAND) Diel A *	1,8	
Y	WO 97 03643 A (CIB/;LUTHER H. (DE); ST M. (DE)) 6.Februar * Beispiele 20-24,2	EHLEIN A.(FR): MINKLEI 1997	1,8	
Υ	US 3 444 164 A (LUE 13.Mai 1969 * Anspruch 1; Beisp	THI CHRISTIAN ET AL)	1,8	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
Y.D	EP 0 165 608 A (CIE 1985 * Beispiele 113,118	BA GEIGY AG) 27.Dezember 3.214 *	1,8	A61K G03C
A	FR 2 698 870 A (CIE 1994 * Zusammenfassung *	A-GEIGY A.G.) 10.Juni	1,7	
A	EP 0 743 309 A (CIE 1996 * Ansprüche 1,6,7 *	A GEIGY AG) 20.November	1,7	
Der vo		rde für alle Patentansprüche erstellt		
	Recherchenori BERLIN	Abschlußdatum der Recherche	C ===	Profes
X : von i Y : von i ande A : techi O nich:	NTEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Vertindun- ren Veröffentlichung derselben Kate nologischer Hintergrund Ischriftliche Offenbarung chemitieratur	let E alteres Patentdol nach dem Anmei g mit einer D in der Anmeldun gone L aus anderen Grü	grunde liegende kument, das jedo dedatum veröfter g angeführtes Do nden angeführter	nticht worden ist skument

Europäisches EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 81 0412

	EINSCHLÄGIGE	DOKUMENTE		
Kategone	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
A	WO 95 22959 A (CIBA WALTER (DE): FANKHALUTHER) 31 August 1 * Seite 7: Beispiel	USER PETER (CH); 995	1.7	
D	& GB 2 286 774 A			
A	FR 2 084 822 A (CIB 17.Dezember 1971 * Seite 20 - Seite		1,7	
Α	US 4 826 978 A (MIG 2.Mai 1989 * Zusammenfassung *	DAL CYRIL A ET AL)	1,7	
				RECHERCHIERTE SACHGEBIETE (Int.Cl.8)
			_	
Der v		rge für alle Patentansprüche erstellt	<u> </u>	
	Recnerchenori BERLIN	Abschubbahum der Fechense 4.September 199	8 Fre	Protein D
X voi Y voi and A tec	CATEGORIE DER GENANNTEN DOK n besonderer Bedeutung allein betrach n besonderer Bedeutung in Verbindun- steren Veröffentlichung desselben Kale- hnologischer Hintergrund hischvirtliche Ottenbarung ischenkteratur	UMENTE de trimdung : E atteres Patents Nel nach dem Ann g mit einer D: in der Anneldu gorie L aus andoren G	zugrunde liegende dokument, das jed neldedatum veröffe ung angefühnes D kunden angefühnte	Theorien oder Grundsatze och erst am oder intlicht worden ist okument