

Entwurf und Charakterisierung eines kapazitiven Sensors zur Detektion von Eisschichten

Bachelorthesis von Kevin R. Mader 05.11.2021
Institut für Mikrosystemtechnik - IMTEK Albert-Ludwigs-Universität Freiburg

Motivation

- Senkung der Effizienz
- Erhöhte mechanische Belastung der Windkraftanlage
- Eiswurf: Gefahr für Mensch, Tier und Gebäude
- Ab kritischer Eisschicht muss die Anlage abgeschaltet werden

(Fakoerde et al)

Motivation

 Elektrische Energie sollte nah beim Verbraucher generiert werden

Im Norden starke Winde, aber Vereisungsproblematik

 Vereisung bringt Einbußen der Energiegewinnung von bis zu 50 % des Jahresertrags

Daten: IPCC — Intergovernmental Panel on Climate Change

Vereisungsarten

- Meteorologische Vereisung
- Instrumentelle Vereisung

(Kexiang Wei et al)

- Harter Frost
- Klareis
- Weicher Frost/ Raureif

(Kexiang Wei et al)

Enteisungsmethoden

- Besprühen von Windkraftanlagen mit warmem Wasser
- Beheizen mit Verlustwärme aus der Gondel
 - Energieverlust beträgt etwa 120 kW für eine 2.0 MW Windkraftanlage ab 50% Auslastung
- Aktives Beheizen mit Heizelementen
- Schwarze Rotorblätter
- Lotus-Effekt

(Energiforsk)

(Fakoerde et al)

Eisdetektion

- Vibrationsanalyse
- Windstärke und Leistungsausgabe
- Kapazitive Detektion
 - > Auf der Gondel
 - > Am Rotorblatt

(Fakoerde et al)

Kapazitive Sensoren

Plattenkondensator:

- Große Fläche b · t zueinander
- Gerade Feldlinien zwischen den Platten
- > Kapazität gegeben durch $C = rac{b \cdot t}{d} \cdot arepsilon_r \cdot arepsilon_0$
- Lineares Signal über steigenden Füllstand
- Vertikaler koplanarer Kondensator
 - Geringe Fläche b · t
 - Überwiegend Streufelder
 - Lineares Signal über steigenden Füllstand
- Horizontaler koplanarer Kondensator
 - Mit steigendem Füllstand tritt Sättigung ein

Material	Relative Permittivität $arepsilon_r$
Vakuum	1,0
Luft	1,000576 (0 °C, 105 Pa) 1,05404 (0 °C, 107 Pa)
Wasser	87,9 (0 °C) 80,2 (20 °C)
Eis	100 (- 20 °C, f = 50 Hz) 3,2 (- 20 °C, f > 100 kHz)
FR-4	3,2 4,7

Simulation der Sensor-Elektroden

- Simulation mit Leiterbahnbreiten und abständen {1 mm, 3 mm, 5 mm, 7 mm, 9 mm, 11 mm}
- Elektroden auf FR-4 ($\varepsilon_r = 4.4$)
- Umgeben von Vakuum ($\varepsilon_r = 1$)
- Auftrag mit Eis ($\varepsilon_r = 3.2$)

Entworfener Prototyp

Messaufbau

Messdurchführung

- 1. Wasser aufsprühen
- 2. Einschwingen
- Höhenvermessung
- Kapazitätsmessung

Datenaufzeichnung

Zusammenführen der Messwerte am Computer mit Live-Visualisierung:

- Speicherung:
 - Netzwerkanalysator-Messwerte
 - > Sensortemperatur
 - Zeitpunkt in der Messreihe
 - Höhenprofile

- Live-Anzeige:
 - > Durchschn. Sensorkapazität
 - Sensortemperatur
 - Zeitpunkt in der Messreihe

Frequenzverhalten des Sensors

- Sinkende Kapazität mit steigender Frequenz
- Stärkeres Rauschen im unteren Frequenzbereich durch Messdauer
- Kapazitätswert aus Mittelwert der Werte zwischen 400 kHz und 1 MHz

Sensorverhalten über Eisschichtdicke

- Erhöhte Grundkapazität durch Anschluss des Netzwerkanalysators
- Schmale Elektrode in Sättigung nach 1 mm Eis

Vergleich von Messwerten zu Simulation

- Anpassung der Simulation zur Berücksichtigung der Masseflächen
- Messwerte zeigen den gleichen Trend wie die Simulation

15 - 15 -

Temperaturverhalten des Sensors

- Messung des Sensors im Klimaschrank, Zyklen zwischen −25 °C und +35 °C
- Umgebungstemperatur im Labor $\theta_{Ambient} = 23$ °C
- relative Luftfeuchte RH = 50 %
- entspricht RH = 100 % bei $\theta = 13 \,^{\circ}\text{C}$

Zusammenfassung

- Die Elektrodenpaare zeigen eine Empfindlichkeit für kleine Eisschichten $< 1 \text{ mm} \text{ von } \frac{\Delta C}{\Delta H_{ice}} = 0.5 \frac{\text{pF}}{\text{mm}}$ für die kleinen Elektroden und $\frac{\Delta C}{\Delta H_{ice}} = 0.7 \frac{\text{pF}}{\text{mm}}$ für die großen.
- Bei Eisschichten über 2 mm sind die kleinen Elektroden gesättigt, während die großen Elektroden auch hier noch eine Empfindlichkeit um $\frac{\Delta C}{\Delta H_{ice}} = 0.1 \frac{pF}{mm}$ zeigen.

Aussicht

- Messung des Temperaturverhaltens unter kontrollierter Luftfeuchte
- Erweiterung des Teststands um Temperaturregelung
 - Detailliertere Charakterisierung des Verhaltens bei Eisbildung und versch. Temperaturen
- Produktion des Sensors auf dünnem, flexiblen Leiterplattenmaterial

- 18 -

Quellen

- (Fakoerde et al) doi: 10.1016/j.rser.2016.06.080
 Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis
- (Energiforsk)
 Airborne de-icing solutions for wind turbines REPORT 2016:300
- (George Xydis et al) doi: 10.3390/challe6020188
 Wind turbine waste heat recovery—A short-term heat loss forecasting approach
- (Kexiang Wei et al) doi: 10.1002/we.2427
 A review on ice detection technology and ice elimination technology for wind turbine

Backup #1: Temperaturverhalten mit Eis

- Temperatur erreicht durch Ein- und Auschalten des Peltier-Elements
- Anschmelzen der oberen Eisschicht

Backup #2: Temperaturverhalten ohne Eis

Backup #3: LCR-Messungen

- Messung 2: Signifikante Veränderung durch verschieben der Messleitungen
- Messung 1&3: Eisbildung an den Klemmen des LCR-Meters
- Messung 4: Entfernung von Feuchtigkeit und Eis von den Klemmen

Backup #4: Oberflächenenergie

- Der Benetzungswinkel θ
- Oberflächenspannung der Flüssigkeit σ_L
- der Oberflächenenergie des Körpers σ_B
- Grenzflächenenergie zwischen den beiden Komponenten σ_{LB}

$$\cos \theta = \frac{\sigma_B - \sigma_{LB}}{\sigma_L}$$

Backup #5: Höhenprofildetektion

- Standardabweichung pro Messpunkt: max. 29,24 μm
- Da Temperatur konstantgehalten wird, keine Einflüsse durch Ausdehnung/Kontraktion

Zeichenfläche

- 25 -

Mehr Zeichenfläche

- 26 -

NOCH mehr Zeichenfläche

FREBUR - 27 -