

Biodiversity Project

National Park Service

By Flavio Pasquali

Data Analysis Project - Part I

Purpose: To perform data analysis on the conservation statuses of different species and to find out if there are any patterns to the types of species that become endangered.

Data Source: species_info.csv

Total Rows (records): **5543**

Species number: **7**

Conservation Status: 4

Dataframe:

['category','scientific_name',common_names','conservation_status']

Conservation Status by Species

Conservation status	Scientific name
Endangered	15
In Recovery	4
No Intervention	5363
Species of Concern	151
Threatened	10

Chi-Squared Test for Significance

It looks like Mammals are more likely to be endangered than Birds, but is it a significant difference?

This difference isn't significant! (pval: 0,68759)

Is the difference between Reptile and Mammal significant?

This difference is significant! (pval: 0,38355)

Category	Not Protected	Protected	% Protected
Amphibian	72	7	0.088608
Bird	413	75	0.153689
Fish	115	11	0.087302
Mammal	146	30	0.170455
Nonvascular Plant	328	5	0.015015
Reptile	73	5	0.064103
Vascular Plant	4216	46	0.010793

Purpose: To analyze the observation and species
DataFrames to help track sheep locations.

Data Source : **ovservations.csv**

species_info.csv

Dataframe: ovservations

['scientific_name', park_name', observations']

Dataframe: species_info

['category','scientific_name',common_names','conservation_status']

Merging Sheep and Observation DataFrames

Total sheep sightings (across all three species) were made at each national park?

	Park Name	Observations
0	Bryce National Park	250
1	Great Smoky Mountains National Park	149
2	Yellowstone National Park	507
3	Yosemite National Park	282

Observations of Sheep per Week

Foot and Mouth Reduction Effort - Sample Size Determination

Premises

- Last year it was recorded that 15% of sheep at Bryce National Park have foot and mouth disease.
- Detect at least 5% of reduction
- Level of significance (90%)

Results:

- 1. Baseline conversion rate: 15%
- 2. Minimum Detectable Effect: 33,33%
- 3. Sample Size: 870
- 4. Yellow weeks observing: 1,7
- 5. Bryce weeks observing: 3,48