1684742

20 Octubre 2017

Reporte de algoritmo de Dijkstra.

El objetivo principal de éste algoritmo es encontrar el camino más corto desde un nodo o vértice que consideramos nuestro origen a otro de los nodos, lo anterior desarrollado a partir de un grafo que como sabemos está compuesto por los subconjuntos de vértices y aristas que a su vez tienen cierto peso y distancia existente entre ellos.

Ahora bien, la idea de éste algoritmo es ir explorando los caminos más cortos que parten de nuestro nodo origen a todos los demás, al obtener el camino más corto de nuestro punto de partida a los vértices que componen al grafo entonces, el algoritmo se detiene.

Para programar nuestro algoritmo de Dijkstra hicimos uso del grafo realizado con anterioridad; visitando cada uno de los nodos.

Código de Algoritmo de Dijkstra.

```
>>> from heapq import heappop, heappush
>>> from copy import deepcopy
>>> def flatten(L):
        while len(L)>0:
            yield L[0]
        L=L[1]

>>> class Grafo:
        def __init__(self):
```

self.V = set()

```
self.E = dict()
       self.vecinos = dict()
def agrega(self,v):
       self.V.add(v)
       if not v in self.vecinos:
              self.vecinos[v]=set()
def conecta(self,v,u,peso=1):
       self.agrega(v)
       self.agrega(u)
       self.E[(v,u)] = self.E[(u,v)] = peso
       self.vecinos[v].add(u)
       self.vecinos[u].add(v)
def complemento(self):
       comp=Grafo()
       for v in self.V:
              for w in self.V:
                     if v!=w and (v,w) not in self.E:
                            comp.conecta(v,w,1)
       return comp
def shortests(self,v):
       q = [(0, v, ())]
       dist=dict()
       visited=set()
       while len(q)>0:
              (l,u,p)=heappop(q)
              if u not in visited:
                     visited.add(u)
                     dist[u]=(I,u,list(flatten(p))[::-1]+[u])
```

p=(u,p)

for n in self.vecinos[u]:

if n not in visited:

el=self.E[(u,n)]

heappush(q,(l+el,n,p))

return dist

Recorrido	Distancia
c-a	1
c-f	1
C-C	0
c-b	2
b-f	2

Recorrido	Distancia
g-g	0
i-g	3
g-h	5
g-j	5
j-l	9
h-i	8
i-l	12
i-g	12
g-i	3
j-k	6

Recorrido	Distancia
I-g	12
I-4	4
g-i	3
k-j	6
m-j	6
k-l	10
m-l	2
l-n	3
g-m	11
g-l	6
о-р	7

0-c	10
j-m	6
с-р	7