61,	
CI),	
Assumes 200 is an eigenvalue of A.	
$Ax = \lambda x = 0 \qquad c \neq 0$	
But A is our invertable montrix.	
>> A. A - (x = A - 0 = 0	
=> <u>I</u> ·x=0	
-: I is a indentity montrix.	
ζ- X= Đ	
However. x=0 does not satisfy Ax=>X CX\$	(0.
Merefore, all the elgenratues of A are non-zo	
と27・	
Prove that $Ax = \lambda x \Rightarrow A^{-1}x = \lambda^{-1}x$ cx \$0)	
CO≠ベン、ベベニャA	
4-1. A-x= A-1. A.x	

$$I \cdot x = A^{-1} \cdot \lambda \cdot x$$

$$x = A^{-1} \cdot \lambda \cdot x$$

$$\frac{1}{\lambda} \cdot x = A^{-1} \cdot x$$

$$\Rightarrow \lambda^{-1} \cdot x = A^{-1} \cdot x$$
Therefore, any eigenvalues λ of A .

Q2.

When N=1:

X is an elgonvector of B with eigenvalue > when wen, Suppose:

X-1 is a elgenralue of A-1.

X is an elgonvector of Br with eigenvalue zr. whom usut, Prove:

X is an eigenvector of B^{n+1} with eigenvalue X^{n+1} $B^{n+1}X = CBBX$

= (B) x") X

0.14.0.0
= Nncox)
$=\lambda^{n}(\chi\chi)$
$= \chi_{\sim +1} \chi$
Therefore, $B^{crel} \chi_2 \chi^{rel} x$
0.3.
CI) -
Suppose:
& x1 +w) is linear correlation.
Then:
Xp4 E \(\times \(\times \) \(\times \)
{x1 xp3 is linear independent.
CIEPCMI
=> [x, xp,xp+1] is linear correlation.
=> 01/4 + + apxp + apy xpy =0 0

We have: AX(=)ixIA XP41 = NP41 X P41 - - - - (2) `. (D = O 0= 0. A. we have: A-COUXI+ ... + ONDXPT OPFIXPFI)=0 A aixi + -...+ A apxp + A aprixp+1=0 a. Ax, + ---. ap Axp + ap+ Axp+1 =0 3 => ONINIXI+ -- · · OPXDXP + OPHINPHIXPHI=0 () P+73: 01(X1-xp+1)x1+...+ apcxp-xp+1)xp+ap+1.0.xp+1=0 we have: & x1 + vn) is linear independent. => Orb(yb-yb+1)=0 PELIPI

$\langle \lambda_1 \rangle$	In a ove distinu	e vigenualues.
>	ap=0	PEC1, P] (5)
aux, +	+ apxp + apx,	×p4 =0 O
>	apt1 Xpt1=0	· (b) and (b)
However.		
٤×1	- Xp, Xpf1 } is linear	correlation.
aix, +	+ apxp+ apx	×ρ, 0= μχ
=> 0	1pt1 \$0	
Hence.	Xp41=0	
But	XP+1 +0	· eigenvalue.
Summowishy	5 ~	
	(X1, Xm) is (meen	rly independent.
(27.		
For any i	matrix BERNXN:	

The	number	70	Pryenvalues	70	A	ìs	Soune	crs.
			roots of c					
			[K-A]	20	,			

And the highest term of λ :

Thingse term = n

Therefore, the equation of most has not roots cincludes roots with some values,

Summarizing:

for any matrix BERNAN, at most has
on distinct eigenvalues for B.

GCF.	
(I)	
For any nxn matrix A:	
detCAD = EN OVIKAik	~·· ①
= Saki Arj	··· (2)
k=1	(i.je[1.n])
uhen N=(:	
ATZA	
then: det CAT) = det CA>	
uhen n=k:	
Assumes that det CAT)= de	tcAs
when n=kt(:	
Compute det (A) by row 1:	

compute det (A) by column 1:

we have: ③ = € ① and ②

(3) is the expansion of deech) by row 1, which is some as the expansion of deech) by column 1.

Therefore, det(A) = det(AT)

ullen nel:

In=[1]

then: det (In)=1

when n=k:

: In is the nxn identity matrix

:. aij = | when i=j

aij=0 when itj ci.je[1.k]

 $det(In) = \sum_{j_1, j_2, \dots, j_k} c_{j_1} \alpha_{j_1} \alpha_{j_2} \alpha_{j_2} \cdots \alpha_{kj_k}$

= anazz..ann + 0+0+...+0

-1

Q5.
To prove that:
1117Uz= X2 UTUZ.
1, V, T V2 = V2 C2, V,).
= V2 CAV,)
= CAU, 27 Vz
= Vit At Vz
= V1 TAV2 - · · A ic a symmetrie matrix
= V1 () () ()
$= \lambda_2 V_1^{T} V_2$.
Therefore. $\lambda_1 U_1^T V_2 - \lambda_2 U_1^T U_2 = 0$
() 1 - >>> V, T V 2 = 0
$V_1^T V_2 = 0$ $\sim \sim \sim$
A

Sunnavizing:

VI. Vz are orthogonal.

CI).

det (A- >I)

= det ($\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$ - $\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$)

= | 3 4-x |

= -(1+2)(4-2)-2.3

 $= \gamma_5 - 2 \gamma_- (0)$

こしかけるしたーち)

(xtz) (x-\$)=0

Therefore, $\lambda_1 = 2$, $\lambda_2 = 5$

(2)

$$\begin{bmatrix} -4-\lambda & 2 \\ 3 & 4-\lambda \end{bmatrix} \overrightarrow{x} = \overrightarrow{0}$$

For x=5 we obtain:

$$\begin{bmatrix} 3 & -1 \end{bmatrix} \begin{bmatrix} x^{5} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

For N=-2 ne obtain:

$$\begin{bmatrix} -(-c-2) & 2 \\ 3 & 4-c-2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(3)

The set of all eigen vectors of A: Span ([3], [3])

Assumes Vi, Vz ove linear dependence:

 $\begin{bmatrix} \alpha_1 \\ 3\alpha_1 \end{bmatrix} + \begin{bmatrix} -2\alpha_2 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} \alpha_1 - 2\alpha_2 \\ 3\alpha_1 + \alpha_2 \end{bmatrix}$

(a1 - zarz = 0 (301+02=0 --- (2)

②x2+0; 7.0u=0

However, ou =0

Therefore. Vi, Tz ove linear independent.

=> Ju, J. Spans R2.

(4),

$$\forall N = b \cdot D_N b_{-1}$$

$$= \begin{bmatrix} 5-(.6-5)_{n} + 5.0 & 5.0 + 3.7 \\ -6.0 + 6.2 & -6.0 + 6.2 \\ -6.0 + 6.2 & -6.0 \end{bmatrix}$$

$$= \begin{bmatrix} (-5)^{n-1} + 3.5^{n} & (-5)^{n+1} + 5.5^{n} \\ (-5)^{n+1} + 5.5^{n} & (-5)^{n+1} + 2.5^{n} \end{bmatrix}$$