Álgebra I Práctica 7 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16.	21.	26.	31.	36.
2.	7.	12.	17.	22.	27.	32.	37.
3.	8.	13.	18.	23.	28.	33.	38.
4.	9.	14.	19.	24.	29.	34.	39.
5 .	10.	15.	20.	25.	30.	35.	

• Ejercicios Extras

1 .	3 .	5 .	७ 7.	9 .
2 .	4 .	♦ 6.	\ddots 8.	

Notas teóricas:

• Operaciones:

+: Sean
$$f, g \in \mathbb{K}[X]$$
 con $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{n} b_i X^i$

$$\Rightarrow f + g = \sum_{i=0}^{n} (a_i + b_i) X^i \in \mathbb{K}[X]$$

$$: \text{ Sean } f, g \in \mathbb{K}[X] \text{ con } f = \sum_{i=0}^{n} a_i X^i \text{ y } g = \sum_{j=0}^{m} b_j X^j$$

$$\Rightarrow f \cdot g = \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i \cdot b_j) X^k \in \mathbb{K}[X]$$

- $(\mathbb{K}[X], +, \cdot)$ es un anillo conmutativo $\to f \cdot (g+h) = f \cdot g + f \cdot h, \ \forall f, g, h \in \mathbb{K}[X]$
- Algoritmo de división: $f, g \in \mathbb{K}[X]$ no nulos, existen únicos q y $R \in \mathbb{K}[X]$ tal que $f = q \cdot g + R$ con gr(R) < gr(f) o R = 0
- α es raíz de $f \iff X \alpha \mid f \iff f = q \cdot (X \alpha)$
- $M\'{a}ximo\ com\'{u}n\ divisor$: Polinomio mónico de mayor grado que divide a ambos polinomios en $\mathbb{K}[X]$ y vale el algoritmo de Euclides.
 - -(f:g) | f y (f:g) | g
 - $-f = (f:g) \cdot k_f y g = (f:g) \cdot k_g \operatorname{con} k_f y k_g \operatorname{en} \mathbb{K}[X]$
 - Dos polinomios son coprimos si $(f:g)=1 \iff f \neq g$
- Raíces múltiples:

Sea $f \in \mathbb{K}[x]$ no nulo, y sea $\alpha \in \mathbb{K}$. Se dice que:

- $-\alpha$ es raíz <u>múltiple</u> de $f \Leftrightarrow f = (x-\alpha)^2 q$ para algún $q \in \mathbb{K}[X]$
- $-\alpha$ es raíz simple de $f \Leftrightarrow x \alpha \mid f$ en $\mathbb{K}[X]$, pero $(X \alpha)^2 \not\mid f$ en $\mathbb{K}[X] \Leftrightarrow f = (X \alpha)q$ para algún $q \in \overline{\mathbb{K}[X]}$ tal que $q(\alpha) \neq 0$.
- Sea $m \in \mathbb{N}_0$. Se dice que α es raíz de multiplicidad (exactamente) m de f, y se nota mult $(\alpha; f) = m \iff (X \alpha)^m \mid f$, pero $(x \alpha)^{m+1} \not\mid f$.
 - O equivalentemente, $f = (X \alpha)^m q \text{ con } q \in \mathbb{K}[X]$, pero $q(\alpha) \neq 0$
- Sea $f ∈ \mathbb{K}[X]$ no nulo mult(α; f) ≤ gr(f):
- Sean $f, g \in \mathbb{K}[X]$ no ambos nulos, y $\alpha \in \mathbb{K} \Rightarrow f(\alpha) = f(\alpha) = 0 \Leftrightarrow (f : g)(\alpha) = 0$
- Vale que α es raíz múltiple de $f \iff f(\alpha) = 0$ y $f'(\alpha) = 0 \iff \alpha$ es raíz de $(f:f'), X \alpha \mid (f:f')$
 - $\text{ mult}(\alpha, f) = m \iff f(\alpha) = 0 \text{ y mult}(\alpha; f') = m 1$

$$- \operatorname{mult}(\alpha; f) = m \iff \begin{cases} \operatorname{mult}(\alpha; f) \ge m \\ \operatorname{mult}(\alpha; f) = m \end{cases} \begin{cases} f(\alpha) = 0 \\ \vdots \\ f^{(m-1)}(\alpha) = 0 \\ f^{(m)}(\alpha) \ne 0 \end{cases}$$

• Polinomios irreducibles:

Sea $f \in K[X]$

- Se dice que f es irreducible en K[X] cuando $f \notin K$ y los únicos divisores de f son de la forma g=c o g=cf para algún $c \in K^{\times}$. O sea f tiene únicamente dos divisores mónicos (distintos), que son 1 y $\frac{f}{\operatorname{cp}(f)}$
- Se dice que f es reducible en K[X] cuando $f \notin K$ y f tiene algún divisor $g \in K[X]$ con $g \neq c$ y $g \neq cf$, $\forall c \in K^{\times}$, es decir f tiene algún divisor $g \in K[X]$ (no nulo por definición) con $0 < \operatorname{gr}(g) < \operatorname{gr}(f)$.

Ejercicios de la guía:

Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:

i)
$$(4X^6 - 2X^5 + 3X^2 - 2X + 7)^{77}$$
,

ii)
$$(-3X^7 + 5X^3 + X^2 - X + 5)^4 - (6X^4 + 2X^3 + X - 2)^7$$
,

iii)
$$(-3X^5 + X^4 - X + 5)^4 - 81X^{20} + 19X^{19}$$
,

- i) coeficiente principal: 4⁷⁷ $arado: 6 \cdot 77$
- ii) coeficiente principal: $(-3)^4 6^7 = -279.855$ grado: 28
- iii) coeficiente principal: $\underbrace{(-3X^5+X^4-X+5)^4}_f + \underbrace{-81X^{20}+19X^{19}}_g$ Cuando sumo me queda: cp f^4 cp $g=(-3)^4-81=0 \Rightarrow gr(f^4+g)<20 \rightarrow$ Calculo el cp f^4+g con gr $(f^4+g)=19$.

Taburo a
$$f$$
:
$$\begin{cases}
\frac{\text{para usar}}{\text{formula de } f \cdot g} \left(-3X^5 + X^4 - X + 5\right)^4 = \left(-3X^5 + 1X^4 - X + 5\right)^2 \cdot \left(-3X^5 + X^4 - X + 5\right)^2 \\
f^2 \cdot f^2 = \sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j\right) X^k \text{ con } a_i \text{ y } b_i \text{ los coeficientes de } f^2 \text{ y el otro } f^2 \text{ respectivamente } \bigstar^2
\end{cases}$$

$$\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j\right) X^k \xrightarrow{\text{me interesa solo}}_{\text{el término con } k = 19} \sum_{i+j=19} a_i b_j X^{19} \overset{\bigstar}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \overset{\bigstar}{=} 2 \cdot a_9 \cdot b_{10}$$

$$\left\{\begin{array}{c} \frac{b_{10} \text{ sale a}}{oj\text{imetro}} b_{10} = \left(-3\right)^2 = 9 \\ \frac{a_9 \text{ no tan fácil, volver}}{a \text{ usar } \sum f \cdot g \text{ en } k = 9} f \cdot f = \sum_{k=0}^{10} \left(\sum_{i+j=k} c_i \cdot d_j\right) X^k \overset{\bigstar}{=} \sum_{i+j=9} c_i \cdot d_j X^9 \overset{\bigstar}{=} c_4 \cdot d_5 + c_5 \cdot d_4 \overset{\bigstar}{=} 2 \cdot c_4 \cdot d_5
\end{cases}$$

$$\left\{\begin{array}{c} \frac{d_5 \text{ sale a}}{oj\text{imetro}} d_5 = -3 \\ oj\text{imetro} c_4 \text{ sale a} \\ oj\text{imetro} c_4 \text{ sale a} c_4 = 1 \end{array}\right\} \rightarrow a_9 = -6 \rightarrow \left\{\begin{array}{c} \text{cp } f^4 = 2 \cdot \left(-6\right) \cdot \left(9\right) = -108 \\ \text{cp } g = 19 \end{array}\right\} \rightarrow \left[\begin{array}{c} \text{cp } f^4 + g = -89 \end{array}\right] \checkmark$$

 \star : Sabemos que el gr $(f^4) = 20 \Rightarrow \operatorname{gr}(f^2) = 10$. Viendo las posibles combinaciones al multiplicar 2 polinomios de manera tal que los exponentes de las X sumen 19, es decir $X^i \cdot X^j = X^{19}$ con $i, j \leq 10$

solo puede ocurrir cuando los exponentes $\left\{\begin{array}{c} i = 10, j = 9 \\ \forall \\ i = 9, i = 10 \end{array}\right\}$

 \bigstar^2 : porque estoy multiplicando el mismo polinomio, $a_i = b_i$. Pero lo dejo distinto para hacerlos visualmente más genérico.

 \bigstar^3 : Idem \bigstar^1 para el polinomio f

grado: 19

2. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$

3. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

4. Hallar el cociente y el resto de la división de f por g en los casos

i)
$$f = 5X^4 + 2X^3 - X + 4$$
 y $g = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = 4X^4 + X^3 - 4$$
 y $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/7\mathbb{Z})[X]$,

iii)
$$f = X^n - 1$$
 y $g = X - 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

Resultado válido para $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$

ii)
$$\begin{array}{c|c}
4X^4 + X^3 & -4 & 2X^2 + 1 \\
-4X^4 & -2X^2 & 2X^2 + \frac{1}{2}X - 1
\end{array}$$

$$\begin{array}{c|c}
X^3 - 2X^2 & -\frac{1}{2}X \\
-X^3 & -\frac{1}{2}X \\
-2X^2 - \frac{1}{2}X - 4 \\
2X^2 & +1 \\
\hline
-\frac{1}{2}X - 3
\end{array}$$

Resultado válido para $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ En $\mathbb{Z}/p\mathbb{Z} \to 4X^4 + X^3 - 4 = (2X^2 + 1) \cdot \underbrace{(2X^2 + 4X + 6)}_{q[X]} + \underbrace{(3X + 4)}_{r[X]}$

iii) Después de hacer un par iteraciones en la división asoma la idea de que:

$$X^n-1=(X-1)\cdot\sum\limits_{j=0}^{n-1}X^j+\underbrace{0}_{r[X]},$$
 (que es la geométrica con $X\neq 1$

Inducción: Quiero probar que $p(n): X^n-1=(X-1)\cdot \sum\limits_{j=0}^{n-1} X^j \quad \forall n\in\mathbb{N}$

Caso base:
$$p(\mathbf{1}): X^{\mathbf{1}} - 1 = (X - 1) \underbrace{\sum_{j=0}^{\mathbf{1}-1} X^j}_{X^0 = 1} \Rightarrow p(\mathbf{1})$$
 es Verdadero \checkmark

Paso inductivo:

Paso inductivo:
$$p(k): X^k - 1 = (X - 1) \cdot \sum_{j=0}^{k-1} X^j \text{ es Verdadera} \stackrel{?}{\Rightarrow} p(k+1): X^{k+1} - 1 = (X - 1) \cdot \sum_{j=0}^k X^j \text{ es Verdadera}$$

$$(X-1) \cdot \sum_{j=0}^{k} X^{j} = (X-1) \cdot (\sum_{j=0}^{k-1} X^{j} + X^{k}) = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + (X-1) \cdot X^{k} = X^{k} - 1 + X^{k+1} - X^{k} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X$$

$$X^{k+1}-1$$

Dado que p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción también será verdadera $p(n) \ \forall n \in \mathbb{N}$

- Determinar todos los $a \in \mathbb{C}$ tales que
 - i) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$.
 - ii) $X^4 aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$.
 - iii) El resto de la división de $X^5 3x^3 x^2 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.
 - i) Haciendo la division de $X^3 + 2X^2 + 2X + 1$ por $X^2 + aX + 1$, se tiene que:

$$X^{3} + 2X^{2} + 2X + 1 = (X - a + 2)(X^{2} + aX + 1) + \underbrace{(a^{2} - 2a + 1)X + a - 1}_{\text{resto}}$$

Así, para que $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$ tiene que ocurrir que el resto sea 0. O sea.

$$X^{2} + aX + 1 \mid X^{3} + 2X^{2} + 2X + 1 \iff (a^{2} - 2a + 1)X + a - 1 = 0$$
$$\iff \begin{cases} a^{2} - 2a + 1 = 0 \\ a - 1 = 0 \end{cases}$$

Analizo las ecuaciones:

- $a 1 = 0 \iff a = 1$
- $a^2 2a + 1 = 0 \xrightarrow{a=1} 1^2 2.1 + 1 = 1 2 + 1 = 0$

Luego, el valor de $a \in \mathbb{C}$ tal que $X^3 + 2X^2 + 2X + 1$ es divisible por $X^2 + aX + 1$ es a = 1

ii) 😭 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$

iii) Haciendo la division de $X^5 - 3X^3 - X^2 - 2X + 1$ por $X^2 + aX + 1$, se tiene que:

$$X^5 - 3X^3 - X^2 - 2X + 1 = q(X^2 + aX + 1) + \underbrace{r}_{\text{resto}}$$

con $q = (X^3 - aX^2 + (a^2 - 4)X - a^3 + 5a - 1)$ y $r = (a^4 - 6a^2 + a + 2)X + a^3 - 5a + 2$.

Así,

$$r = -8X + 4$$

$$\iff (a^4 - 6a^2 + a + 2)X + a^3 - 5a + 2 = -8X + 4$$

$$\iff \begin{cases} a^4 - 6a^2 + a + 2 = -8 \\ a^3 - 5a + 2 = 4 \end{cases} \iff \begin{cases} a^4 - 6a^2 + a + 10 = 0 \\ a^3 - 5a - 2 = 0 \end{cases}$$

Analizo las ecuaciones:

• $a^3 - 5a - 2 = 0 \Leftrightarrow a(a^2 - 5) - 2 = 0$ Veo que a = -2 es solución, por lo que divido $a^3 - 5a - 2$ por a + 2 con Ruffini:

Por lo que $a^3 - 5a - 2 = (a+2)(a^2 - 2a - 1)$

Busco las raíces de $a^2 - 2a - 1$ con la fórmula resolvente:

$$a_{+,-} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot (-1)}}{2}$$
$$= \frac{2 \pm \sqrt{8}}{2}$$
$$= 1 \pm \sqrt{2}$$

Por lo que
$$a^3 - 5a - 2 = (a+2)(a-1+\sqrt{2})(a-1-\sqrt{2}) = 0 \iff \begin{cases} a = -2 \\ a = 1+\sqrt{2} \\ a = 1-\sqrt{2} \end{cases}$$

 $\bullet \ a^4 - 6a^2 + a + 10 = 0$

Me fijo que valores de a obtenidos antes verifican:

- Si
$$a = -2 \Rightarrow (-2)^4 - 6(-2)^2 - 2 + 10 = 16 - 24 - 2 + 10 = 0$$

- Si $a = 1 + \sqrt{2} \Rightarrow (1 + \sqrt{2})^4 - 6(1 + \sqrt{2})^2 + 1 + \sqrt{2} + 10 = 10 + \sqrt{2} \neq 0$
- Si $a = 1 - \sqrt{2} \Rightarrow (1 - \sqrt{2})^4 - 6(1 - \sqrt{2})^2 + 1 - \sqrt{2} + 10 = 10 - \sqrt{2} \neq 0$

Luego, el único valor de $a \in \mathbb{C}$ tal que el resto de dividir a $X^5 - 3x^3 - x^2 - 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4 es a = -2

- **6.** <u>Definición</u>: Sea K un cuerpo y sea $h \in \mathbb{K}[X]$ un polinomio no nulo. Dados $f, g \in \mathbb{K}[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g(h)$.
 - i) Probar que $\equiv \ (h)$ es una relación de equivalencia en $\mathbb{K}[X].$
 - ii) Probar que si $f_1 \equiv g_1$ (h) y $f_2 \equiv g_2$ (h) entonces $f_1 + f_2 \equiv g_1 + g_2$ (h) $f_1 \cdot f_2 \equiv g_1 \cdot g_2$ (h).
 - iii) Probar que si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$.
 - iv) Probar que r es el resto de la división de f por h si y solo si $f \equiv r$ (h) y r = 0 o gr(r) < gr(h).
- ② ¿Errores? Mandá tu solución, entendible y coqueta, así corregimos.

- i) uff... Para probar que esto es una relación de equivalencia pruebo que sea reflexiva, simétrica y transitiva,
 - reflexiva: Es f congruente a f módulo h? $f \equiv f(h) \iff h \mid f f = 0 \iff h \mid 0 \quad \checkmark$
 - sim'etrica: Si $f \equiv g$ (h) $\iff g \equiv f$ (h) $f \equiv g$ (h) $\iff h \mid f g \iff h \mid -(g f) \iff h \mid g f \iff g \equiv f$ (h) \checkmark
 - transitiva: Si $\begin{cases} f \equiv g(h) \\ g \equiv p(h) \end{cases} \stackrel{?}{\iff} f \equiv p(h).$

$$\begin{cases} h \mid f - g & \xrightarrow{F_1 + F_2} \\ h \mid g - p & \xrightarrow{F_2} \end{cases} \begin{cases} h \mid f - g \\ h \mid f - p \end{cases} \rightarrow f \equiv p (h) \quad \checkmark$$

Cumple condiciones para ser una relación de equivalencias en $\mathbb{K}[X]$

ii) Si
$$\begin{cases} f_1 \equiv g_1(h) \\ f_2 \equiv g_2(h) \end{cases}$$

$$f_1 \equiv g_1(h) \iff h \mid f_1 - g_1 \Rightarrow h \mid f_2 \cdot (f_1 - g_1) \iff f_1 \cdot f_2 \equiv g_1 \cdot f_2(h) \iff f_1 \cdot f_2 \equiv g_1 \cdot g_2(h)$$

iii) Inducción: Quiero probar p(n): Si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$. Caso base: $p(1): f^1 \equiv g^1(h) \bigstar^2$ Verdadera \checkmark

 $\textit{Paso inductivo: } p(k): \underbrace{f^k \equiv g^k \; (h)}_{HI} \; \text{es verdadera} \stackrel{?}{\Rightarrow} p(k+1): f^{k+1} \equiv g^{k+1} \; (h) \; \text{¿También lo es?}$

$$f^{k} \equiv g^{k} (h) \iff h \mid f^{k} - g^{k} \Rightarrow h \mid f \cdot (f^{k} - g^{k}) \iff f^{k+1} \equiv f \cdot g^{k} (h) \iff f^{k+1} \equiv g^{k+1} (h) \quad \checkmark$$

Finalmente p(1), p(k), p(k+1) resultaron verdaderas y por el principio de inducción p(n) es verdaderas $\forall n \in \mathbb{N}$

iv) ***** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 3$.

- 7. Hallar el resto de la división de f por g para:
 - i) $f = X^{353} X 1$ y $g = X^{31} 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,
 - ii) $f = X^{1000} + X^{40} + X^{20} + 1$ y $g = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$
 - iii) $f = X^{200} 3X^{101} + 2$, y $g = X^{100} X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,
 - iv) $f = X^{3016} + 2X^{1833} X^{174} + X^{137} + 2X^4 X^3 + 1$, y $g = X^4 + X^3 + X^2 + X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ (Sugerencia ver **4.** iii))).

i)
$$g \mid g \iff X^{31} - 2 \equiv 0 \ (X^{31} - 2) \iff X^{31} \equiv 2 \ (g)$$

$$f = X^{353} - X - 1 = (\underbrace{X^{31}}_{\stackrel{(g)}{=} 2})^{11} X^{12} - X - 1 \stackrel{(g)}{=} 2^{11} X^{12} - X - 1 \rightarrow \boxed{r_g(f) = 2^{11} X^{12} - 1}$$

ii)
$$g \mid g \iff X^6 + 1 \equiv 0 \ (X^6 + 1) \iff X^6 \equiv -1 \ (g)$$

$$f = X^{1000} + X^{40} + X^{20} + 1 = (X^6)^{166} X^4 + (X^6)^6 X^4 + (X^6)^3 X^2 + 1 \stackrel{(g)}{\equiv} X^4 + X^4 - X^2 + 1 = 2X^4 - X^2 + 1$$

$$\to \boxed{r_g(f) = 2X^4 - X^2 + 1}$$

$$\frac{r_g(f) = 2X - X + 1}{\text{Qu\'e onda en } \mathbb{Z}/p\mathbb{Z}?} \to \begin{cases} \sin p = 2 \to X^2 + 1 \\ \sin p > 2 \to 2X^4 + (p-1)X^2 + 1 \end{cases}$$

iii)
$$g \mid g \iff X^{100} - X + 1 \equiv 0 \ (X^{100} - X + 1) \iff X^{100} \equiv X - 1 \ (g)$$

 $f = X^{200} - 3X^{101} + 2 = (X^{100})^2 - 3X^{100}X + 2 \stackrel{(g)}{\equiv} (X - 1)^2 - 3(X - 1)X + 2$
 $\rightarrow r_g(f) = (X - 1)^2 - 3(X - 1)X + 2$

iv) Usando la sugerencia: Del ejercicio **4.** iii) sale que
$$X^n - 1 = (X - 1) \cdot \sum_{k=0}^{n-1} X^k$$

$$\xrightarrow[\text{para el } g]{n=5} X^5 - 1 = (X-1)\underbrace{(X^4 + X^3 + X^2 + X + 1)}_g \iff X^5 \equiv \underbrace{1}_{r_g(X^5)}(g) \quad \checkmark$$

$$f = (X^{5})^{603}X + 2(X^{5})^{366}X^{3} - (X^{5})^{34}X^{4} + (X^{5})^{27}X^{2} + 2X^{4} - X^{3} + 1$$

$$f = \underbrace{X + 2X^{3} - X^{4} + X^{2} + 2X^{4} - X^{3} + 1}_{=X^{4} + X^{3} + X^{2} + X + 1 = g}(g) \iff \boxed{f \equiv 0 \ (g)}$$

8. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo:

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $g = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1$$
, $g = X^5 - 2X^4 + 2X^2 - 3X + 1$,

$$\xrightarrow{\text{Euclides}} (f:g) = (g:3X^3 - 55X^2 + X + 1)$$

$$\xrightarrow{\text{escribo a } f} f = (X+1) \cdot g + 3X^3 - 55X^2 + X + 1$$
en función de g

$$X^{5} + X^{3} - 6X^{2} + 2X + 2 = \left(X^{4} - X^{3} - X^{2} + 1\right) \cdot \left(X + 1\right) + \left(3X^{3} - 5X^{2} + X + 1\right)$$

$$X^{4} - X^{3} - X^{2} + 1 = \left(3X^{3} - 5X^{2} + X + 1\right) \cdot \left(\frac{1}{3}X + \frac{2}{9}\right) + \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right)$$

$$3X^{3} - 5X^{2} + X + 1 = \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right) \cdot \left(-\frac{27}{2}X + \frac{225}{4}\right) + \left(\frac{171}{4}X - \frac{171}{4}\right)$$

$$-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9} = \left(\frac{171}{4}X - \frac{171}{4}\right) \cdot \left(-\frac{8}{1539}X - \frac{28}{1539}\right) + 0$$

El MCD será el último resto no nulo y mónico $\boxed{\rightarrow (f:g) = X-1}$

ii)
$$X^6 + X^4 + X^2 + 1 = (X^3 + X) \cdot X^3 + (X^2 + 1)$$

 $X^3 + X = (X^2 + 1) \cdot X + 0$

El MCD será el último resto no nulo y mónico $\rightarrow \boxed{(f:g) = X^2 + 1}$ El MCD escrito como combinación polinomial de f y $g \rightarrow \boxed{X^2 + 1 = f \cdot 1 + g \cdot (-X^3)}$

iii)

$$2X^{6} - 4X^{5} + X^{4} + 4X^{3} - 6X^{2} + 4X + 1 = \left(X^{5} - 2X^{4} + 2X^{2} - 3X + 1\right) \cdot 2X + \left(X^{4} + 2X + 1\right)$$

$$X^{5} - 2X^{4} + 2X^{2} - 3X + 1 = \left(X^{4} + 2X + 1\right) \cdot \left(X - 2\right) + 3$$

$$X^{4} + 2X + 1 = 3 \cdot \left(\frac{1}{3}X^{4} + \frac{2}{3}X + \frac{1}{3}\right) + 0$$
El MCD será el último resto no nulo y $m\'onico \rightarrow \boxed{(f:g) = 1}$
El MCD escrito como combinación polinomial de f y $g \rightarrow \boxed{1 = \frac{1}{3}g \cdot (2X^{2} - 4X + 1) - \frac{1}{3}f \cdot (X - 2)}$

10. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 - 2X^2 - X + 2$.

Sea $P \in \mathbb{K}[X] \Rightarrow el \ resto \ de \ dividir \ a \ P \ por \ X - a \ es \ P(a)$.

$$f(X) = q(X) \cdot \underbrace{X^3 - 2X^2 - X + 2}_{g(X)} + r(X)$$
, con $g(X) = (X - 2) \cdot (X - 1) \cdot (X + 1)$ y $r(X) = a^2 + bX + c$, ya

$$que el gr(r) < gr(g) \xrightarrow{\text{evaluar}} \begin{cases}
f(1) = -2 = q(1) \cdot g(1) + r(1) = -2 \\
f(2) = 1 = q(2) \cdot g(2) + r(2) = 1 \\
f(-1) = 0 = q(-1) \cdot g(-1) + r(-1) = 0
\end{cases}$$

$$\Rightarrow \begin{cases}
r(1) = a + b + c = -2 \\
r(2) = 4a + 2b + c = 1 \\
r(-1) = a - b + c = 0
\end{cases}$$

$$\begin{pmatrix}
1 & 1 & 1 & | & -2 \\
4 & 2 & 1 & | & 1 \\
1 & -1 & 1 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & \frac{4}{3} \\
0 & 1 & 0 & | & -1 \\
0 & 0 & 1 & | & -\frac{7}{3}
\end{pmatrix}
\rightarrow
\boxed{r(X) = \frac{4}{3}X^2 - X - \frac{7}{3}}$$

11. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1$ por $X^3 - X$ en $\mathbb{Q}[X]$.

$$\begin{cases} f(X) = X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1 \\ g(X) = X \cdot (X - 1) \cdot (X + 1) \end{cases} \Rightarrow f = q(X) \cdot g(X) + r(X) \text{ con } \operatorname{gr}(\underbrace{aX^2 + bX + c}) \leq 2$$

$$\begin{cases} f(0) = q(0) \cdot \underbrace{g(0)} + r(0) = 1 \\ f(1) = q(1) \cdot \underbrace{g(1)} + r(1) = 3 \\ \end{cases}$$

$$f(-1) = q(-1) \cdot \underbrace{g(-1)} + r(-1) = 1 + 3(-1)^{n+1} + 3(-1)^n - 5 - 2 + 1 = \begin{cases} 2 & n \text{ impar} \\ 1 & n \text{ par} \end{cases}$$

$$\begin{cases} r(0) = c = 1 \\ r(1) = a + b + 1 = 3 \rightarrow a + b = 2 \\ r(-1) = a - b + 1 = \begin{cases} 2 \rightarrow a - b = 1 & n \text{ impar} \\ 1 \rightarrow a - b = 0 & n \text{ par} \end{cases}$$

$$\begin{cases} \frac{n}{\text{impar}} & \begin{pmatrix} 1 & 1 & |2 \\ 1 & -1 & |1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & |\frac{3}{2} \\ 0 & 1 & |\frac{1}{2} \end{pmatrix} \rightarrow \underbrace{r_{impar}(X) = \frac{3}{2}X^2 + \frac{1}{2}X + 1}_{r_{impar}(X) = \frac{3}{2}X^2 + X + 1}_{r_{impar}(X) = \frac{3}{2}X^2 + X + 1} \checkmark$$

12. Hallar la forma binomial de cada una de las raíces complejas del polinomio $f(X) = X^6 + X^3 - 2$.

Primera raíz:
$$f(\alpha_1 = 1) = 0 \rightarrow f(X) = q(X) \cdot (X - 1)$$
. Busco $q(X)$ con algoritmo de división.
$$X^6 + X^3 - 2 \begin{vmatrix} X - 1 \\ X - X^6 + X^5 \end{vmatrix}$$

$$- X^6 + X^5$$

$$- X^5 + X^4$$

$$- X^4 + X^3$$

$$- X^4 + X^3$$

$$- 2X^3 + 2X^2$$

$$- 2X^3 + 2X^2$$

$$- 2X^2 + 2X$$

$$- 2X + 2$$

$$- 2X + 2$$

El cociente $q(X) = X^5 + X^4 + X^3 + 2X^2 + 2X + 2$ se puede factorizar en grupos como $q(X) = (X^2 + X + 1) \cdot (X^3 + 2)$. Entonces las 5 raíces que me faltan para tener las 6 que debe tener $f \in \mathbb{C}[X]$ salen de esos dos polinomios.

$$X^{2} + X + 1 = 0 \Rightarrow \begin{cases} \alpha_{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \\ \alpha_{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} \end{cases}$$

$$X^{3} + 2 = 0 \xrightarrow{\text{exponencial}} \begin{cases} r^{3} = 2 \rightarrow r = \sqrt[3]{2} \\ 3\theta = \pi + 2k\pi \rightarrow \theta = \frac{\pi}{3} + \frac{2k\pi}{3} \text{ con } k = 0, 1, 2. \end{cases} \end{cases} \rightarrow \begin{cases} \alpha_{4} = \sqrt[3]{2}e^{i\frac{\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} + i\frac{\sqrt{3}}{2}) \\ \alpha_{5} = \sqrt[3]{2}e^{i\pi} = -\sqrt[3]{2} \\ \alpha_{6} = \sqrt[3]{2}e^{i\frac{5\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} - i\frac{\sqrt{3}}{2}) \end{cases}$$

Sea $w = e^{\frac{2\pi}{7}i}$. Probar que $w + w^2 + w^4$ es raíz del polinomio $X^2 + X + 2$

Voy a usar que si
$$w \in G_7 \Rightarrow \sum_{j=0}^{6} w^j = 0 \quad (w \neq 1)$$

Si
$$f(X) = X^2 + X + 2$$
 y $w + w^2 + w^4$ es raíz $\Rightarrow f(w + w^2 + w^4) = 0$
$$(w + w^2 + w^4)^2 + w + w^2 + w^4 + 2 = \underbrace{w^8}_{y=0} + 2w^6 + 2w^5 + 2w^4 + 2w^3 + 2w^2 + w + 2 = 2 \cdot \sum_{j=0}^6 w^j = 0 \quad \checkmark$$

14.

- i) Probar que si $w = e^{\frac{2\pi}{5}i} \in G_5$, entonces $X^2 + X 1 = [X (w + w^{-1})] \cdot [X (w^2 + w^{-2})]$.
- ii) Calcula, justificando cuidadosamente, el valor exacto de $\cos(\frac{2\pi}{5})$.

i) Voy a usar que si
$$w \in G_5 \Rightarrow \begin{cases} \sum_{j=0}^4 w^j = 0 & (w \neq 1)^{\bigstar^2} \\ w^k = w^{r_5(k)}^{\bigstar^1} \end{cases}$$

$$\begin{split} X^2 + X - 1 &= [X - (w + w^{-1})] \cdot [X - (w^2 + w^{-2})] = \\ X^2 - (w^2 + w^{-2})X - (w + w^{-1})X + \underbrace{(w + w^{-1})(w^2 + w^{-2})}_{\bigstar^1} = \\ &= X^2 - X\underbrace{(w^2 + w^{-2} + w + w^{-1})}_{\bigstar^1} + \underbrace{w + w^2 + w^3 + w^4}_{\bigstar^2} = \\ &= X^2 - X\underbrace{(w + w^2 + w^3 + w^4)}_{\star^2} + -1 + \underbrace{1 + w + w^2 + w^3 + w^4}_{=0} = X^2 - X\underbrace{(-1 + \underbrace{1 + w + w^2 + w^3 + w^4}_{=0})}_{=0} - 1 = \\ &= X^2 + X - 1 \quad \checkmark \end{split}$$

ii) Calculando las raíces a mano de
$$X^2+X-1 \to \left\{ \begin{array}{l} \frac{-1+\sqrt{5}}{2} \\ y \\ \frac{-1-\sqrt{5}}{2} \end{array} \right.$$

Pero del resultado del inciso i) tengo que :
$$w = e^{i\frac{2\pi}{5}} \xrightarrow[\text{la factorización es}]{\text{sé que una raíz dada}} w + w^{-1} = w + \overline{w} = 2 \operatorname{Re}(w) = 2 \cdot \underbrace{\cos(\frac{2\pi}{5})}_{\cos\theta \geq 0, \theta \in [0, 2\pi]} = \underbrace{-1 + \sqrt{5}}_{2}$$

$$\rightarrow \boxed{\cos(\frac{2\pi}{5}) = \frac{-1 + \sqrt{5}}{4}} \quad \checkmark$$

15.

- i) Sean $f, g \in \mathbb{C}[X]$ y sea $a \in \mathbb{C}$. Probar que a es raíz de f y g si y sólo sí a es raíz de (f : g).
- ii) Hallar todas las raíces complejas de X^4+3X-2 sabiendo que tiene una raíz en común con $X^4 + 3X^3 - 3X + 1.$
- i) Hacer!

ii) Busco el
$$(f:g)$$
:
$$X^{4} + 3X - 2 = (X^{4} + 3X^{3} - 3X + 1) \cdot 1 + (-3X^{3} + 6X - 3)$$

$$X^{4} + 3X^{3} - 3X + 1 = (-3X^{3} + 6X - 3) \cdot (-\frac{1}{3}X - 1) + (2X^{2} + 2X - 2)$$

$$-3X^{3} + 6X - 3 = (2X^{2} + 2X - 2) \cdot (-\frac{3}{2}X + \frac{3}{2}) + 0$$

$$(f:g) = X^{2} + X - 1 \xrightarrow{\text{raíces}} \begin{cases} \alpha_{1} = \frac{1 + \sqrt{5}}{2} \\ \alpha_{2} = \frac{1 - \sqrt{5}}{2} \end{cases}$$

$$X^{4} + 3X - 2 = (X^{2} + X - 1) \cdot (X^{2} - X + 2) + 0$$

16. Determinar la multiplicidad de a como raíz de f en los casos

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$,

ii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$,

iii)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2,$$

iv)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$.

- i) $f = X^5 2X^3 + X$, a = 1, Todos casos de factoreo: $f = X^5 - 2X^3 + X = X(X^4 - 2X^2 + 1) = X(X^2 - 1)^2 = X(X - 1)^2(X + 1)^2 =$ La multiplicidad de a = 1 como raíz es 2.
- iii) $f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a=2,$ $f = (X-2)^3((X+2) + (X+1)) = (X-2)^3(2X+3)$ La multiplicidad de a=2 como raíz de f es 3.
- iv) $f = (X-2)^2(X^2-4) 4(X-2)^3$, a = 2, $f = (X-2)^2(X^2-4) 4(X-2)^3 = (X-2)^2(X-2)(X+2) 4(X-2)^3 = (X-2)^3(X+2-4) = (X-2)^4$ La multiplicidad de a = 2 como raíz de f es 4.

17. Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ tales que $f = nX^{n+1} - (n+1)X^n + a$ tiene solo raíces simples en \mathbb{C} .

$$f = nX^{n+1} - (n+1)X^n + a$$

$$\xrightarrow{\text{derivo}} f' = n(n+1)X^n - n(n+1)X^{n-1} \iff f' = n(n+1)X^{n-1}(X-1)$$

$$f'(\alpha) = 0 \Leftrightarrow \begin{cases} n > 1 \Rightarrow f'(\alpha = 1) = 0 \text{ y } f'(\alpha = 0) = 0 \\ n = 1 \Rightarrow f'(\alpha = 1) = 0 \end{cases}$$

Para que las raíces α , de f no sean simples, es necesario que $f'(\alpha) = 0$. Por lo tanto, estudio solo los valores de raíces encontrados para la derivada. Si f ha de tener raíces dobles, estás deberían ser $\alpha = 1$ o $\alpha = 0$. Entonces:

$$\begin{cases} f(\alpha = 1) = a - 1 \Rightarrow f(1) \neq 0 \ \forall n \in \mathbb{N} \Leftrightarrow a \neq 1 \\ f(\alpha = 0) = a \Rightarrow f(0) \neq 0 \Leftrightarrow a \neq 0 \end{cases}$$

Si $a = 0 \land n \stackrel{\bigstar}{=} 1 \Rightarrow f$ tiene solo una raíz simple en 0.

Si $a \neq 1 \Rightarrow f$ tiene solo raíces simples $\forall n \in \mathbb{N}$.

Si $a \neq 0 \land n > 1 \Rightarrow f$ tiene solo raíces simples.

seguramente hay una mejor forma de expresar la respuesta.

18. Controlar y Pasar

19. Sea $f = X^{20} + 8X^{10} + 2a$. Determinar todos los valores de $a \in \mathbb{C}$ para los cuales f admite una raíz múltiple en \mathbb{C} . Para cada valor hallado determinar cuántas raíces distintas tiene f y la multiplicidad de cada una de ellas.

Si f tiene raíces múltiples $\alpha_k \Leftrightarrow f(\alpha_k) = f'(\alpha_k) = 0$, por lo tanto tanto comienzo buscando las raíces de f' para sacarme ese a de en medio.

$$f' = 20X^{19} + 80X^9 = 20X^9(X^{10} + 4) \Rightarrow f' = 0 \Leftrightarrow \begin{cases} X = 0 \\ X^{10} = -4 \Leftrightarrow X = \sqrt[10]{4}e^{i\frac{2k+1}{10}\pi} & k \in \mathbb{Z}_{[0,9]} \end{cases}$$
 Hay de momento 11 raíces de f' . Me interesa saber si son raíces de f :

$$f(0) = 2a \Rightarrow f(0) = 0 \Leftrightarrow a = 0$$

$$f = (X^{10})^2 + 8X^{10} + 2a \Rightarrow f(\alpha = X^{10}) = -4 = (-4)^2 + 8(-4) + 2a = -16 + 2a = 0 \Leftrightarrow a = 8$$

Entonces:

Si
$$a = 0 \Rightarrow f = X^{10}(X^{10} + 8)$$

$$\Rightarrow f = 0 \Leftrightarrow X = 0 \text{ o } X^{10} = -8, \text{ donde } \boxed{\mu(0; f) = 10} \text{ y } \boxed{\mu(\sqrt[10]{8}e^{i\frac{2k+1}{10}\pi}); f) = 1 \text{ } k \in \mathbb{Z}_{[0-9]}}.$$

11 raíces distintas.

Si
$$a = 8 \Rightarrow f = X^{20} + 8X^{10} + 16 = (X^{10} + 4)^2$$

 $\Rightarrow f = 0 \Leftrightarrow X^{10} = -4$, donde $\mu(\sqrt[10]{4}e^{i\frac{2k+1}{10}\pi}); f) = 2 \ k \in \mathbb{Z}_{[0-9]}$

10 raíces distintas.

Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

21.

- i) Probar que para todo $a \in \mathbb{C}$, el polinomio $f = X^6 2X^5 + (1+a)X^3 + (1+a)X^2 2X + 1$ es divisible por $(X-1)^2$.
- 🎧 ¡Aportá! Correcciones, subiendo ejercicios, 🗡 al repo, críticas, todo sirve.

ii) Determinar todos los $a \in \mathbb{C}$ para los cuales f es divisible por $(X-1)^3$.

$$\begin{aligned} \text{i)} \quad & (X-1)^2 \,|\, f \ \, \forall a \in \mathbb{C} \Leftrightarrow 1 \text{ es } \textit{por lo menos} \text{ raı́z doble de } f \Leftrightarrow f(1) = f'(1) = 0. \\ & \left\{ \begin{array}{l} f = X^6 - 2X^5 + (1+a)X^3 + (1+a)X^2 - 2X + 1 & \xrightarrow{\text{evaluo}} \\ f' = 6X^5 - 10X^4 + 4(1+a)X^3 - 6aX^2 + 2(1+a)X - 2 & \xrightarrow{\text{evaluo}} \\ X = 1 \end{array} \right. \\ & \left\{ \begin{array}{l} f(1) = 0 \\ X = 1 \end{array} \right. \forall a \in \mathbb{C} \end{aligned}$$

Calculando f(1) y f'(1) se comprueba. \checkmark

ii)
$$(X-1)^3 \mid f \Leftrightarrow f''(1) = 0$$

 $\Rightarrow f'' = 30X^4 - 40X^3 + 12(1+a)X^2 - 12aX + 2(1+a) \xrightarrow{\text{evalúo}} f''(1) = 2a$
 $\Rightarrow f''(1) = 0 \Leftrightarrow a = 0$

$$\boxed{(X-1)^3 \mid f \iff a=0} \quad \checkmark$$

Observar que si $a \neq 0$, 1 es una raíz doble de f de otra forma es una raíz por lo menos triple.

22. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

23. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en \LaTeX

24. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

25. 😭 Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

26. Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 3$.

27. 🚼 Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

28. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

29. 🚼 Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

30. 😤 Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en LATEX $\to \bigcirc$.

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

🚰 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

😭 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

* Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

😭 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

\rightharpoonup Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Ejercicios extras:

a) Hallar todos los posibles $\mathbf{c} \in \mathbb{R}$, $\mathbf{c} > 0$ tales que:

$$f = X^6 - 4X^5 - X^4 + 4X^3 + 4X^2 + 48X + \mathbf{c}$$

tenga una raíz de argumento $\frac{3\pi}{2}$

- b) Para cada valor de **c** hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$, sabiendo que tiene al menos una raíz doble.
- a) Si la raíz $\alpha = re^{i\frac{3\pi}{2}} = r(-i) \Rightarrow f$

$$f(r(-i)) = (r(-i))^6 - 4(r(-i))^5 - (r(-i))^4 + 4^3 + 4(r(-i))^2 + 48(r(-i)) + \mathbf{c} \stackrel{\bigstar}{=} \\ -r^6 + 4r^5i - r^4 - 4r^3i - 4r^2 - 48ri + \mathbf{c} = 0 \iff \begin{cases} \operatorname{Re} : -r^6 - r^4 - 4r^2 + \mathbf{c} = 0 \Rightarrow \mathbf{c} = r^6 + r^4 + 4r^2 \\ \operatorname{Im} : r(4r^4 - 4r^2 - 48) = 0 \xrightarrow[r^2 = y \text{ y } r \in \mathbb{R}_{>0}]{\text{bicuadrática}} r^2 = 3 \end{cases}$$

Por lo tanto si $\mathbf{c} = r^6 + r^4 + 4r^2 = (r^2)^3 + (r^2)^2 + 4r^2 \Rightarrow \boxed{\mathbf{c} = 48}$ con raíces $\pm \sqrt{3}i$ dado que $f \in \mathbb{Q}[X]$

b) Debe ocurrir que $(X - \sqrt{3}i)(X + \sqrt{3}i) = X^2 + 3 \mid f$ $X^6 - 4X^5 - X^4 + 4X^3 + 4X^2 + 48X + 48 \mid X^2 + 3$ $-X^6 - 3X^4$ $-4X^5 - 4X^4 + 4X^3$ $\frac{4X^{5} - \frac{-3X^{4}}{4X^{5} - 4X^{4}} + 4X^{3}}{4X^{5} - 4X^{4} + 16X^{3}} + 4X^{2}}$ $\frac{-4X^{4} + 16X^{3} + 4X^{2}}{4X^{4} + 12X^{2}}$ $\frac{16X^{3} + 16X^{2} + 48X}{-16X^{3} - 48X}$ $\frac{16X^{2} + 48}{-16X^{2} - 48}$ 0 V + 16) cc

 $f = (X^2 + 3)\underbrace{(X^4 - 4X^3 - 4X^2 + 16X + 16)}_q$ como f tiene al menos una raíz doble puedo ver las raíces de la derivada de q:

 $q' = (4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0 \xrightarrow{\text{Posibles raices, Gauss : ()}} q'(1) = 0$, pero $g(1) \neq 0$ $0 \Rightarrow f(1) \neq 0$

$$\begin{array}{c} \frac{\text{divido para}}{\text{bajar grado}} & X^3 - 3X^2 - 2X + 4 \left| \frac{X - 1}{X^2 - 2X - 4} \right| \\ \underline{-X^3 + X^2} \\ -2X^2 - 2X \\ \underline{-4X + 4} \\ \underline{-4X - 4} \\ 0 \\ \\ g' = 4(X - 1)\underbrace{(X^2 - 2X - 4)}_{=h} \xrightarrow{\text{busco raices}} X^2 - 2X - 4 = 0 \iff \alpha_{1,2} = 1 \pm \sqrt{5} \\ h = (X - (1 + \sqrt{5})) \cdot (X - (1 - \sqrt{5}) = X^2 - 2X - 4 \text{ Para calcular que } f(\alpha_1) = g(\alpha_1) = 0 \text{ y comprobar que es una raiz doble, puedo hacer:} \\ X^4 - 4X^3 - 4X^2 + 16X + 16 \left| \frac{X^2 - 2X - 4\sqrt{g}}{X^2 - 2X - 4} \right| \\ \underline{-2X^3 + 16X} \\ \underline{-2X^3 + 4X^2 - 8X} \\ -4X^2 + 8X + 16 \\ \underline{-4X^2 - 8X - 16} \\ 0 \\ \end{array}$$

 $h^2 = (X^2 - 2X - 4)^2 \rightarrow$ no la vi venir

factorizaciones:

$$\begin{cases}
\mathbb{Q}[X] \to f = (X^2 + 3)(X^2 + 3)(X^2 - 2X - 4)^2 \\
\mathbb{R}[X] \to f = (X - (1 + \sqrt{5}))(X - (1 - \sqrt{5}))(X^2 - 2X - 4)^2 \\
\mathbb{C}[X] \to f = (X - (1 + \sqrt{5}))(X - (1 - \sqrt{5}))(X - 3i)^2(X + 3i)^2
\end{cases}$$

2. Factorizar el polinomio $P = X^6 - X^5 - 13X^4 + 14X^3 + 35X^2 - 49X + 49$ como producto de irreducibles en $\mathbb{C}[X], \mathbb{R}[X]$ y $\mathbb{Q}[X]$ sabiendo que $\sqrt{7}$ es una raíz múltiple.

Un polinomio con coeficientes racionales, y una raíz irracional $\alpha=\sqrt{7}$, tendrá también al conjugado irracional 1, $\overline{\alpha}=-\sqrt{7}$

Si agregamos la información de que $\sqrt{7}$ es por lo menos raíz doble, obtenemos que:

 $f = (X^4 - 14X^2 + 49) \cdot (X^2 - X + 1) \xrightarrow{\text{resolvente}} \begin{cases} \alpha_{+,-} = \frac{1 \pm w}{2} \\ w^2 = -3 \end{cases}$ $\to f = (X^4 - 14X^2 + 49) \cdot (X - (\frac{1}{2} + i\frac{\sqrt{3}}{2}))(X - (\frac{1}{2} - i\frac{\sqrt{3}}{2}))$

¹Estoy usando la misma notación para conjugado racional y conjugado complejo. ¿Está bien? No sé, no me importa mientras se entienda.

$$\begin{cases} \mathbb{Q}[X] \to f = (X^2 + 7)^2 (X^2 - X + 1) \\ \mathbb{R}[X] \to f = (X + \sqrt{7})^2 (X - \sqrt{7})^2 (X^2 - X + 1) \\ \mathbb{C}[X] \to f = (X + \sqrt{7})^2 (X - \sqrt{7})^2 (X - (\frac{1}{2} + i\frac{\sqrt{3}}{2}))(X - (\frac{1}{2} - i\frac{\sqrt{3}}{2})) \end{cases}$$

- **igodelta3.** Hallar **todos** los polinomios **mónicos** $f \in \mathbb{Q}[X]$ de grado mínimo que cumplan simultáneamente las siguientes condiciones:
 - i) $1 \sqrt{2}$ es raíz de f;
 - ii) $X(X-2)^2 \mid (f:f');$
 - iii) $(f: X^3 1) \neq 1$;
 - iv) f(-1) = 27;
 - i) Como $f \in \mathbb{Q}[X]$ si $\alpha_1 = 1 \sqrt{2}$ es raíz entonces $\alpha_2 = 1 + \sqrt{2}$ para que no haya coeficientes irracionales en el polinomio.

$$(X - (1 - \sqrt{2})) \cdot (X - (1 + \sqrt{2})) = X^2 - 2X - 1$$

Por lo tanto $X^2 - 2X - 1$ será un factor de $f \in \mathbb{Q}[X]$.

- ii) Si $X(X-2)^2 \mid (f:f') \Rightarrow \begin{cases} \alpha_3 = 0 \text{ raı́z simple de } f' \Rightarrow \text{ raı́z doble de } f \\ \alpha_4 = 2 \text{ raı́z simple de } f' \Rightarrow \text{ raı́z doble de } f \end{cases}$ Por lo tanto $X^2(X-2)^3$ serán factores de f.
- iii) Si $(f: X^3 1) \neq 1$ quiere decir que por lo menos alguna de las 3 raíces de: $X^3 1 = (X 1) \cdot (X (-\frac{1}{2} + \frac{\sqrt{3}}{2})) \cdot (X (-\frac{1}{2} \frac{\sqrt{3}}{2}))$ tiene que aparecer en la factorización de f. Pero parecido al item i) si tengo una raíz compleja, también necesito el conjugado complejo, para que no me queden coeficientes de f en complejos, $X^3 1 = (X 1) \cdot (X^2 + X + 1)$, me quedaría con el factor de menor grado si eso no rompe otras condiciones.

Por lo tanto (X-1) o (X^2+X+1) aparecerá en la factorización de f.

iv) f(-1) = 27. Hasta el momento:

$$\begin{cases} f_1 = (X^2 - 2X - 1) \cdot (X - 2)^3 \cdot X^2 \cdot (X^2 + X + 1) \to f_1(-1) = 2 \cdot (-27) \cdot 1 \cdot 1 = -54 \\ f_2 = (X^2 - 2X - 1) \cdot (X - 2)^3 \cdot X^2 \cdot (X - 1) \to f_2(-1) = 2 \cdot (-27) \cdot 1 \cdot (-2) = 108 \end{cases}$$

, ninguno cumple la condición iv).

Para encontrar un polinomio que cumpla lo pedido tomaría el f_2 que tiene menor grado de los dos y lo multiplicaría por $(X - \frac{3}{4})$ de manera que $f = (X^2 - 2X - 1) \cdot X^2 \cdot (X - 2)^3 \cdot (X - 1) \cdot (X - \frac{3}{4}) \rightarrow \boxed{f(-1) = 27}$ así cumpliendo todas las condiciones.

\dot{\circ}4. Factorizar como producto de polinomios irreducibles en $\mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$ al polinomio

$$f = X^5 + 2X^4 - 7X^3 - 7X^2 + 10X - 15$$

sabiendo $(f: X^4 - X^3 + 6X^2 - 5X + 5) \neq 1$

Si el $(f: X^4 - X^3 + 6X^2 - 5X + 5) \neq 1$, esto nos da información sobre raíces comunes entre f y $X^4 - X^3 + 6X^2 - 5X + 5$. Puedo hacer el algoritmo de Euclides para encontrar el MCD, con esa o esas raíces. El último resto no nulo hecho mónico será el MCD.par

$$X^{5} + 2X^{4} - 7X^{3} - 7X^{2} + 10X - 15 = \left(X^{4} - X^{3} + 6X^{2} - 5X + 5\right) \cdot \left(X + 3\right) + \left(-10X^{3} - 20X^{2} + 20X - 30\right)$$

$$X^{4} - X^{3} + 6X^{2} - 5X + 5 = \left(-10X^{3} - 20X^{2} + 20X - 30\right) \cdot \left(-\frac{1}{10}X + \frac{3}{10}\right) + \left(14X^{2} - 14X + 14\right)$$

$$-10X^{3} - 20X^{2} + 20X - 30 = \left(14X^{2} - 14X + 14\right) \cdot \left(-\frac{5}{7}X - \frac{15}{7}\right) + 0$$

 $(f: X^4 - X^3 + 6X^2 - 5X + 5) = X^2 - X + 1$. Las raíces del MCD son $\alpha_{1,2} = \frac{1 \pm w}{2}$ con $w^2 = 3i$. $X^2 - X + 1 = (X - (\frac{1}{2} - \frac{\sqrt{3}}{2}))(X - (\frac{1}{2} + \frac{\sqrt{3}}{2}))$ Por definición de lo que es el MCD sabemos que $X^2 - X + 1 \mid f$, haciendo la división bajamos el grado y

seguimos buscando las raíces.

Obtuvimos que $f = (X^2 - X + 1) \cdot (X^3 + 3X^2 - 5X - 15) + 0$. Hermoso resultado, donde la hermosura se mide en su simpleza para ser factorizado. Sin usar calculadora ni Guass ni ninguna cosa extraña podemos expresar a f como:

$$f \stackrel{!}{=} (X^2 - X + 1) \cdot \underbrace{(X - \sqrt{5}) \cdot (X + \sqrt{5}) \cdot (X + 3)}_{X^3 + 3X^2 - 5X - 15}$$

Si todavía no viste como fue la factorización en! te recomiendo que sigas mirando sin tocar calculadora ni ningún tipo de spoiler del pesado o pesada sabelotodo que quizás tenés al lado y que no te deja tiempo para pensar. Es puro factoreo que debería salir a ojo.

Ahora factorizamos en irreducibles, que son polinomios mónicos que solo se dividen por sí mismos y por 1. Para tener una mejor explicación clickeá acá! Y vas a la teoría del apunte.

factorizaciones:

$$\mathbb{Q}[X] \rightarrow f = (X^2 - 5) \cdot (X^2 - X + 1) \cdot (X + 3)$$

$$\stackrel{\in \mathbb{R}[X]}{\in \mathbb{R}[X]} \stackrel{\in \mathbb{R}[X]}{\in \mathbb{R}[X]} \stackrel{\in \mathbb{R}[X]}{\in \mathbb{R}[X]} \stackrel{\in \mathbb{R}[X]}{\bullet \mathbb{R}[X]}$$

$$\mathbb{R}[X] \rightarrow f = (X - \sqrt{5}) \cdot (X + \sqrt{5}) \cdot (X^2 - X + 1) \cdot (X + 3)$$

$$\stackrel{\in \mathbb{C}[X]}{\in \mathbb{C}[X]} \stackrel{\in \mathbb{C}[X]}{\bullet \mathbb{C}[X]} \stackrel{\in \mathbb{C}[X]}{\bullet \mathbb{C}[X]} \stackrel{\in \mathbb{C}[X]}{\bullet \mathbb{C}[X]}$$

$$\mathbb{C}[X] \rightarrow f = (X + 3) \cdot (X - \sqrt{5}) \cdot (X + \sqrt{5}) \cdot (X - (\frac{1}{2} - \frac{\sqrt{3}}{2})) \cdot (X - (\frac{1}{2} + \frac{\sqrt{3}}{2}))$$

Sea $(f_n)_{(n\geq 1)}$ la sucesión de poliniomios en $\mathbb{R}[X]$ definida como:

$$f_1 = X^5 + 3X^4 + 5X^3 + 11X^2 - 20 \text{ y } f_{n+1} = (X+2)^2 f_n' + 3f_n, \text{ para cada } n \in \mathbb{N}.$$

Probar que -2 es raíz doble de f_n para todo $n \in \mathbb{N}$.

No caer en la $trampilla^{2}$ de olvidar que para que una raíz de f sea doble, i.e. $mult(-2; f) \stackrel{!}{=} 2$ debe ocurrir lo "obvio", f(-2) = f'(-2) = 0 y también que $f''(-2) \neq 0$. Si olvidamos esto último solo probaríamos que la mult $(-1; f) \ge 2$ y tendríamos el ejercicio mal \mathfrak{Z} .

Por inducción en n: q(n): "-2 es raíz doble de f_n , $\forall n \in \mathbb{N}$ "

Caso base: j,q(1) es V?

$$\begin{cases} f_1 = X^5 + 3X^4 + 5X^3 + 11X^2 - 20 & \xrightarrow{\text{evaluar}} & f_1(-2) = 0 \\ f_1' = 5X^4 + 12X^3 + 15X^2 + 22X & \xrightarrow{\text{evaluar}} & f_1'(-2) = 0 \\ f_1'' = 20X^3 + 36X^2 + 30X + 22 & \xrightarrow{\text{evaluar}} & f_1''(-2) = 22 \neq 0 \end{cases}$$

 \therefore mult $(-2; f_1) = 2 \Rightarrow -2$ es raíz doble de $f_1 \Rightarrow q(1)$ es V

<u>Paso inductivo:</u> ¿Si q(k) verdadera $\Rightarrow q(k+1)$ también lo es, $\forall k \in \mathbb{N}$?

$$HI: -2 \text{ es raı́z doble de } f_k \Leftrightarrow \begin{cases} f_k(-2) = 0 \bigstar^1 \\ f'_k(-2) = 0 \bigstar^2 \\ f''_k(-2) \neq 0 \bigstar^3 \end{cases}$$

QPQ dado $k \in \mathbb{N}$, q(k+1) : -2 es raíz doble de $f_{k+1} \stackrel{\text{def}}{=} (X+2)^2 f_k' + 3f_k$:

Derivar:

$$\begin{cases} f_{k+1} \stackrel{\text{def}}{=} (X+2)^2 f_k' + 3f_k \\ f_{k+1}' = 2(X+2) f_k' + (X+2)^2 f_k'' + f_k' \\ f_{k+1}'' = 2f_k' + (2x+4) f_k'' + 2(x+2) f_k'' + (x+2)^2 f_k''' + f_k'' \end{cases}$$

Evaluar en -2:

$$f_{k+1}(-2) \stackrel{?}{=} 0 \Leftrightarrow f_{k+1}(-2) = (-2+2)^2 f'_k(-2) + 3f_k(-2) = 0^2 f'_k(-2) + 3f_k(-2) = 3f_k(-2) \stackrel{\bigstar}{=} 0 \checkmark$$

$$f'_{k+1}(-2) \stackrel{?}{=} 0 \;\; \Leftrightarrow \;\; f'_{k+1}(-2) = 2(-2+2)f'_k(-2) + (-2+2)^2f'' + f'_k(-2) = f'_k(-2) \stackrel{\bigstar^2}{=} 0 \quad \checkmark$$

$$f_{k+1}''(-2) \neq 0 \Leftrightarrow \begin{cases} f_{k+1}''(-2) = 2f_k'(-2) + 2(-2 + 2)f_k''(-2) +$$

Como q(1), q(k) y q(k+1) resultaron verdaderas, por principio de inducción q(n) también lo es $\forall n \in \mathbb{N}$.

a) Determinar todos los valores de $n \in \mathbb{N}$ (positivo) para los cuales el polinomio

$$f = X^5 + \frac{n}{3}X^4 - \frac{8}{3}X^3 + \frac{11}{3}X^2 - X$$

tiene una raíz **entera** no nula.

- b) Para el o los valores hallados en el ítem (a), factorizar el polinomio f obtenido como producto de irreducibles en $\mathbb{Q}[X], \mathbb{R}[X]$ y $\mathbb{C}[X]$
- a) Determinar todos los valores de $n \in \mathbb{N}$ (positivo) para los cuales el polinomio

$$f = X^5 + \frac{n}{3}X^4 - \frac{8}{3}X^3 + \frac{11}{3}X^2 - X$$

tiene una raíz **entera** no nula.

Solución:

Limpiando los denominadores de f se obtiene el polinomio g con las mismas raíces:

$$g = 3X^5 + nX^4 - 8X^3 + 11X^2 - 3X = X(\underbrace{3X^4 + nX^3 - 8X^2 + 11X - 3}_h)$$

Por enunciado ignoramos la raiz nula y utilizando el Lema de Gauss buscamos las raíces racionales de

$$h = 3X^4 + nX^3 - 8X^2 + 11X - 3$$

Aquí, $a_0 = -3 \text{ y } a_n = 3$

$$Div(a_0) = Div(a_n) = \{\pm 1, \pm 3\}$$

Como busco raíces enteras, las busco en el conjunto:

$$\{\pm 1, \pm 3\}$$

Chequeo:

$$\begin{array}{lll} h(-1) = 0 & \iff & n = -19 \notin \mathbb{N} \\ h(1) = 0 & \iff & n = -3 \notin \mathbb{N} \\ h(-3) = 0 & \iff & \boxed{n = 5} \in \mathbb{N} \\ h(3) = 0 & \iff & n = \frac{67}{9} \notin \mathbb{N} \end{array}$$

Rta: n=5 es el único valor de $n \in \mathbb{N}$ para los cuales el polinomio f tiene una raíz entera no nula.

b) Para el o los valores hallados en el ítem (a), factorizar el polinomio f obtenido como producto de irreducibles en $\mathbb{Q}[X], \mathbb{R}[X]$ y $\mathbb{C}[X]$

Solución:

Primero factorizo la raiz nula de de f

$$f = X^5 + \frac{5}{3}X^4 - \frac{8}{3}X^3 + \frac{11}{3}X^2 - X = X(X^4 + \frac{5}{3}X^3 - \frac{8}{3}X^2 + \frac{11}{3}X - 1)$$

Se, por el item (a), que -3 es una de las raíces racionales de f. Busco otras posibles raiíces racionales en el polinomio h (con n=5) obtenido en el item (a) en el conjunto $\{\pm \frac{1}{3}\}$

$$h(-\frac{1}{3}) = -\frac{208}{27}$$

 $h(\frac{1}{3}) = 0 \implies \frac{1}{3}$ es una raiz racional de f.

Factorizo el polinomio f diviendolo por el producto de las dos raíces encontradas $(X+3)\cdot (X-\frac{1}{3})=X^2+\frac{8}{3}-1$

$$\begin{array}{c|c} X^4 + \frac{5}{3}X^3 - \frac{8}{3}X^2 + \frac{11}{3}X - 1 & X^2 + \frac{8}{3}X - 1 \\ -X^4 - \frac{8}{3}X^3 + X^2 & X^2 - X + 1 \\ \hline -X^3 - \frac{5}{3}X^2 + \frac{11}{3}X & X^3 + \frac{8}{3}X^2 - X \\ \hline X^2 + \frac{8}{3}X - 1 & X^2 - \frac{8}{3}X + 1 \\ \hline -X^2 - \frac{8}{3}X + 1 & 0 \end{array}$$

Factorizo el polinomio cuadrático $X^2 + \frac{8}{3}X - 1$

$$\Delta = (-1)^2 - 4 \cdot 1 \cdot 1 = -3$$

$$x_{+} = \frac{1 + \sqrt{3}i}{2} \in \mathbb{C} \text{ y } x_{-} = \frac{1 - \sqrt{3}i}{2} \in \mathbb{C}$$

Rta:

 $\therefore f = X(X+3)(X-\frac{1}{3})(X-(\frac{1}{2}+\frac{\sqrt{3}}{2}i))(X-(\frac{1}{2}-\frac{\sqrt{3}}{2}i)) \in \mathbb{C}$ con todos sus factores de multiplicidad 1 y por lo tanto irreducibles.

 $f = X(X+3)(X-\frac{1}{3})(X^2-X+1) \in \mathbb{R}$ con 3 factores de multiplicidad 1 y 1 de multiplicidad 2 pero de raíces complejas y por lo tanto irreducibles en \mathbb{R} .

 $f = X(X+3)(X-\frac{1}{3})(X^2-X+1) \in \mathbb{Q}$ con 3 factores de multiplicidad 1 y 1 de multiplicidad 2 pero de raíces complejas y por lo tanto irreducibles en \mathbb{Q} .

- **07.** Determinar un polinomio $f \in \mathbb{Q}[X]$ de grado mínimo que satisfaga simultáneamente:
 - \blacksquare f es mónico,
 - $\operatorname{gr}(f: 2X^3 5X^2 20X + 11) = 2$
 - f tiene una raíz $z \in G_3$ con $z \neq 1$, que es doble,
 - f(0) = 33;

El dato de gr $(f: 2X^3 - 5X^2 - 20X + 11) = 2$ indica que hay un polinomio, d, con gr(d) = 2 que cumple

que $\begin{cases} d \mid f \\ d \mid g \end{cases}$ entonces, f tiene 2 raíces en común con g, puede ser una doble o dos simples. Dado que nos piden que sea de grado mínimo habrá que tener cuidado cual elegir para no violar ninguna condición.

Calculemos las posibles raíces de g usando lema de gauss: Posibles raíces serán los cocientes de los divisores de 11 y los de 2. $\mathcal{D}(11) = \{\pm 1, \pm 11\}, \mathcal{D}(2) = \{\pm 1, \pm 2\}$: $\{\pm 1, \pm \frac{1}{2}, \pm 11, \pm \frac{11}{2}\}$. Probando esos valores encuentro que $g(\frac{1}{2}) = 0$ y ninguna de las otras funcionó. Le bajamos el grado con el algoritmo de división a g.

$$\begin{array}{c|c}
2X^{3} - 5X^{2} - 20X + 11 & X - \frac{1}{2} \\
-2X^{3} + X^{2} & 2X^{2} - 4X - 22 \\
\hline
-4X^{2} - 20X \\
4X^{2} - 2X \\
-22X + 11 \\
22X - 11
\end{array}$$

 $g = (X - \frac{1}{2}) \cdot (\underbrace{2X^2 - 4X - 22}_{h}) + 0$, buscamos raíces de h:

$$\alpha_{+,-} = \frac{4 \pm 8\sqrt{3}}{4} = 1 \pm 2\sqrt{3} = \begin{cases} 1 + 2\sqrt{3} \\ 1 - 2\sqrt{3} \end{cases}$$

Entonces: f tiene 2 raíces en común con $g=(X-\frac{1}{2})(X-(1+2\sqrt{3}))(X-(1-2\sqrt{3}))$. Dado que $f\in\mathbb{Q}[X]$ voy a seleccionar las raíces $\in\mathbb{I}$ por la condiciónde grado mínimo.

Con la condición que dice que f tiene una raíz $z \in G_3$ con $z \neq 1$, que es doble, no nos dejan muchas opciones. G_3 tiene tres raíces, solución de $w^3 = 1$, dado que por enunciado no puede ser 1, entonces solo

quedan. $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ (si no te acordás como encontrar raíces de la familia G_n te dejo el ejercicio 12.) que se hacen las cuentas. Ok, tengo esas dos $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ ¿Cuál elijo? cualquiera nos sirve, porque, nuevamente, como $fen \mathbb{Q}[X]$ si agarro una raíz compleja también necesito su conjugado complejo, lo mismo que antes. Hasta el momento tenemos:

$$f = \underbrace{(X - (1 + 2\sqrt{3}))(X - (1 - 2\sqrt{3}))}_{X^2 - 2X - 11} \underbrace{(X - (-\frac{1}{2} + \frac{\sqrt{3}}{2}))^{2^{*1}}(X - (-\frac{1}{2} - \frac{\sqrt{3}}{2}))^{2^{*1}}}_{(X^2 + X + 1)^2} = \underbrace{(X^2 - 2X - 11)(X^2 + X + 1)^2}_{(X^2 + X + 1)^2}$$

 \star Si es doble una de las complejas, también debe serlo su conjugado, porque $f \in \mathbb{Q}[X]$.

Nos queda cumplir que f(0) = 33, si bien ahora f(0) = -11. Acá tenemos que tener en cuenta la primera condición. f es m'onico, así que no podemos corregir el valor con coeficiente independiente. Hay que proponer otro factor en $\mathbb{Q}[X]$, que al evaluar de el número que al multiplicarse con -11 nos dé 33. El candidato es (X-3), dado que en 0 vale -3 y así $f(0) = (-11) \cdot (-3) = 33$ como queremos. El $f \in \mathbb{Q}[X]$ que cumple lo pedido:

$$f = (X^2 - 2X - 11)(X^2 + X + 1)^2(X - 3)$$

- a) Determinar todos los $f \in \mathbb{R}[X]$ mónicos de grado mínimo tales que cumplan:
 - f contiene entre sus raíces al menos una raíz cúbica de la unidad,
 - $X^2 + 1 \mid (f:f'),$
 - f tiene al menos 2 raíces enteras,
 - f(1) = -12,
- b) Con el polinomio f hallado exprasar factorización en irreducibles en $\mathbb{Q}[X], \mathbb{R}[X]$ y $\mathbb{C}[X]$.

Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

- **99.** Hallar $f \in \mathbb{Q}[X]$ de grado mínimo tal que cumpla las siguientes condiciones
 - f comparte una raíz con $x^3 3X^2 + 7X 5$
 - $X + 3 \sqrt{2} | f$,
 - 1-2i es raíz de f y f'(X-2i)=0

😭 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.