

National University

of Computer & Emerging Sciences Peshawar Campus

Student Name:	Roll No:
Program: CS-13 (A&B) Semester: SPRING – 2016 Time Allowed: 3:00 hours Course: Artificial Intelligence (AI)	Examination: Final Total Marks: 110 Weightage: 50 Date: 23-05-2016 Instructor: Dr. Hafeez Ur Rehman
NOTE: Attempt all questions.	

Attempt an questions

Question # 01: [Marks: 5+5+5]

A. Suppose you want to design an artificially intelligent agent how will you specify its **task environment?** List measures and describe those measures using example of an agent.

B. Characterize the following agents into their respective task environments:

Agents /	Deterministic/	Static/Dynamic/	Episodic/Sequential	Discrete/
Environment	Stochastic	Semidynamic		Continuous
Types				
CROSS WORD				
CHESS				
HUMANOID				
ROBOT				
POKER				
PART PICKING				
ROBOT				

C. Consider the following reflex agent model. Modify it (add/remove modules) to make it a complete **learning agent**.

Question # 02:

- A. Suppose you are presented with some AI search problem X. How will you decide if X is appropriate for A* search? What is the practical problem associated with A* search and how will you counter it? List at least two ways.

 [Marks: 5]
- B. Consider the 4-Queen problem that you would like to solve using Genetic Algorithm (GA). The idea is to find a configuration in which no queen attacks the other. A random configuration of the problem is shown below:

 [Marks: 2+2+3+4+2+2]

			Q4
	Q2		
		Q3	
Q1			

In the above context answer the following:

- a. How will you turn it into a maximization problem? Write objective function.
- b. What will be the maximum fitness value that your algorithm will try to achieve?
- c. Why will you prefer GAs over Simulated Annealing for this problem?
- d. Start with a random population of two and list the steps involved using GA in generating the first generation of states?
- e. What will be the effect on the algorithm, if mutation probability is set to $1x10^{-5000}$ (i.e., very low)?
- f. Generate a goal state of the above problem.

Question # 03: [Marks: 5+5+10]

- A. Give example of a perceptron with two inputs A and B and *converged weights* that implement a Boolean (A \land $^{\sim}$ B) function.
- B. Design a two-layer network of perceptrons and *converged weights* that implement the XOR function.
- C. Derive a *gradient descent training rule* for the following unit with inputs $x_0, x_1, ..., x_n$ (including bias) as well as output *Out* which is a sigmoid function.

Whereas, $net = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_1 \mathbf{x}_1^2 + \dots + \mathbf{w}_n \mathbf{x}_n + \mathbf{w}_n \mathbf{x}_n^2$

Question # 04:

[Marks: 10 + (part B: 5 + 10)]

A. Consider a two-layer feedforward ANN with two inputs A and B, one hidden unit C, and one output unit D. This network has five weights (namely, w_{OC} , w_{AC} , w_{BC} , w_{OD} , w_{CD}), where w_{OX} represents the threshold weight for unit x. Initialize these weights to the values (0.1, 0.1, 0.1, 0.1, 0.1), then **give their values after each of the first two training iterations** of the BACKPROPAGATION algorithm. Assume learning rate η =0.3, incremental weight updates, and the following training examples:

A	В	T
1	0	1
0	1	0

- B. Consider a multi-layer perceptron network as shown in the following diagram. Also, assume that each perceptron p has two functions namely, net_p which is the linear sum of all inputs & weights, and output O_p which is equal to a **Squashing** function i.e. $O(net_p) = tanh(net_p)$, used as activation function. Write *simplified* expressions (with your comments + proof) to:
 - i. Calculate weight update $(\Delta W_{C\beta})$ for output layer nodes.
 - ii. Calculate weight update $(\Delta W_{\Omega B})$ for Hidden layer nodes. Let the error terms of each perceptron at the output layer be δ_{α} and δ_{β} respectively.

[**Hints**: $tanh'(x) = 1 - tanh^2(x)$. The network error is $E = \frac{1}{2} \sum_{d \in D} \sum_{i=\alpha}^{\beta} (t_{di} - O_{di})^2$, D is training data]

Question # 05: Give short answers (max 4 lines) of the following:

- 1. How will you define Autonomy of an agent?
- 2. What are the **problems** associated with AI's Turing test?
- 3. Why we introduce **randomness** in Local search algorithms?
- 4. What is the difference between a **state** and a **node** for an agent?
- 5. What is a *consistent* hypothesis?
- 6. Difference between classification and regression?
- 7. What is the effect of the size of k (too large or too small) in KNN classifier?
- 8. Why we put *negative sign* (-) with gradient descent weight update (Δw) rule?
- 9. What is the remedy for dealing with high biasness and high variance in a classifier?
- 10. Describe at least 3 activation functions that can be used with gradient descent search?
- 11. What is linear regression?
- 12. In short words, state the problem with RBFS search?
- 13. What will be the size of a *hypothesis space* with *d* number of features (assuming binary features) and 50 target classes?
- 14. In KNN classifier, state cases in which you will use Euclidean distance, Manhattan distance, and Hamming distance among feature vectors?
- 15. Comment on the statement: "A classifier trained on less training data is more likely to Overfit".

---- Good Luck! ----

[Marks: 30]