

Department of ECE, Bennett University

EECE105L: Fundamentals of Electrical and Electronics Engineering

Tutorial Sheet-13

Topics Covered: Applications of Diodes

If not mentioned, assume non-ideality factor (η) as 1.5, reverse saturation current I₀ as 5 nA, built-in the voltage of the diode is 0.6 V

Half wave rectification:

1. Assume a sinusoidal waveform with an amplitude of 10 V and 60 Hz is applied to the circuit shown in fig. 1. Draw the output waveform across the resistor and diode by assuming the diode is (i) ideal (ii) non-ideal.

2. Assume a sinusoidal waveform with an amplitude of 10 V and 60 Hz is applied to the circuit shown in fig. 2. Draw the output waveform across the resistor and diode by assuming the diode is (i) ideal (ii) non-ideal.

Full wave rectification:

- A full-wave bridge rectifier with a 120 V RMS sinusoidal input has a load resistance of 1 k Ω . Answer the following:
 - i) What is the voltage available across the load?
 - ii) What is the peak inverse voltage of each diode?
 - iii) When the diodes are conducting, what is the maximum current through each diode?

iv) What should be the minimum power rating of the diode?

4. A full-wave bridge rectifier with a 200 V peak-to-peak input has a load resistance of 3.3 k Ω . Draw the output voltage waveform as seen across the load.

Clippers and Clampers

5. For the inputs shown in the circuit shown in Fig. 3 and Fig. 4, draw the output voltage across the load resistor R_L .

6. Consider the circuit shown in fig. 5. Determine the current through the resistor and voltage across the diode. Assume that the cut-in voltage of the diode is 0.6 V.

Answers: will be discussed in tutorial sessions

----- END OF QUESTIONS -----