Roll NO	•					
1 :			[

B.E. / B.Tech. (Full Time) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY 2014 ELECTRONICS AND COMMUNICATION ENGINEERING BRANCH

Third Semester

EC8351 - DIGITAL ELECTRONICS AND SYSTEM DESIGN

(Regulations :2012)

Dura	ation: 3 Hrs.	Maximum Marks 100
	Answer All Questions	
	Part A	$10 \times 2 = 20 \text{ Marks}$
1	Convert decimal number 8 to biquinary code	
2	Express the following function in terms of maxterms	
	AB' + A'B'D + A'CD'	•
3	Draw the circuit diagram of 2 to 4 decoder	
4	Implement the following function using PROM	
	$f(x,y,z) = \Sigma(0,2,6,7)$	
5	Write down the characteristic equation and excitation table of	T flip flop
6	What are the advantages of Johnson counter over Ring counter	r? .
7	Define stable state	
8 .	What is pulse mode sequential circuit?	
9	What is the propagation delay? How do you find the propagation	on delay?
10	How many 32K x 8 RAM chips are needed to provide a memory	capacity of 256K bytes?
٠.	Part B	5 X 16 = 80 Marks
11	Reduce the following function using tabulation	method and implement
	using universal gates	
	f(A,B,C,D,E,F)=Σ(6,9,13,18,19,25,27,29,41,45,57	7,61)
12	a) i) Draw the circuit diagram of BCD adder and exp	lain its function (8 marks)
	ii) Draw the circuit diagram of 4 bit carry look ahe	ad adder and explain
•		(8 marks)
	(or)	
	b) i) Implement the following function using PLA	(8 marks)
	$f_1(A,B,C,D) = \Sigma(3,4,6,9,11)$	
•	$f_2(A,B,C,D) = \Sigma(2,4,8,10,11,12)$	
	ii) Implement the following function using Mux	(8 marks)
* .		•

 $f(A,B,C,D) = \Sigma(3,6,7,10,11)$

- a) i) Explain the operation of Master slave flip flop with neat circuit diagram (8 marks)
 - ii) Implement the following counter sequence using D flip flop (8 marks) 001,100,011,110,111,001,.....

(or)

b) Reduce the following state table to minimum number of state

Present state	Next s	Output	
_	x=0	x=1	Z
а	. a	b	1
b	c ·	е	0
С	f	g	1
d	. с	а	0
е	i	g	1
f	h.	i	1
g	С	f	0
. h	" f	b	1
. i .	С	e	0

- a) i) What is critical and non critical races? how do you overcome this problem? (8 marks)
 - ii) Briefly explain essential hazards and how do you eliminate this hazards (8 marks)

(or)

- b) In asynchronous sequential network has two inputs (x₁x₂) and one output (Z). If the input sequence 00,01,11 occurs, Z becomes 1 and remains 1 until the input sequence 11,01,00 occurs. In this case Z becomes 0 and remains 0 until the first sequence occurs again. Find the minimum primitive flow table
- 15 a) i) Explain with circuit diagram the operation of Totem Pole TTL gate (8 marks)
 - ii) Explain with neat circuit diagram the operation of three state TTL gate (8 marks)

(or)

- b) I) Draw 1 bit basic RAM binary cell and explain its read/write operation? From this one bit basic memory cell construct 4x4 memory cell (10 marks)
 - ii) What are the difference between static and dynamic memory? Explain how DRAM memory cell is addressed? (6 marks)