TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2069 Poush

Exam.	New Back (2066 & Later Batch)			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT, B. Agri.	Pass Marks	32	
Year / Part	П/П	Time	3 hrs.	

Subject: - Numerical Methods (SH553)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.

[4]

[4]

[8]

[8]

[6]

[10]

[6]

- Write an algorithm to find a real root of a non-linear equation using the bisection method.
- 2. How can you obtain a real of a noon-linear equation using the Secant method? Explain graphically and hence obtain the iteration formula.
- 3. Find the root of the equation $xe^x \cos x = 0$ using the secant method correct to four decimal places.
- 4. Solve the following system of linear equations using the Gauss Elimination method with partial pivoting.

$$x + 2y - 12z + 8y = 27$$

$$5x + 4y + 7z - 2v = 4$$

$$-3x + 7y + 9z + 5y = 11$$

$$6x - 12y - 8z + 3y = 49$$

Find the dominant Eigen value and the corresponding vector of the following matrix using power method.

$$\begin{bmatrix} 1 & 4 & -1 \\ 4 & 2 & 5 \\ -1 & 5 & 10 \end{bmatrix}$$

Using Lagrange's interpolation formula evaluate f(27.5) from the table

x:	26	27	28	29	30
f (x):	3.846	3.704	3.571	3.448	3.333

7. Using the Natural Cubic Spline interpolation technique, estimate the value of y(0.5) from the following data:

x	0	11	2	003 x
у	2.0	2.2	1.0	0.5

The distance y(t) traversed in time t by an object moving in a straight line is given below; approximate the velocity and acceleration at 0.2 seconds.

SC A									
	t(in seconds)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	-
	y(in times)	0.0	1.5	7.1	14.3	24.5	36.7	50.0	

2069 Poush

9. Evaluate the integral $I = \int_{0.2}^{1.2} (\log(x+1) + \sin 2x) dx$, using Gaussian 2 point and 3 point formula.

[6]

OR

Write a Pseudo-code to integrate a given function within given limits using Simpson's 3/8 rule.

Solve the differential equation, $\frac{dy}{dx} = (1 + x^2)y$, within $x \le 0(0.2)0.4$ and y(0) = 1 using RK 4th order method.

[6]

Solve the following boundary value problem using the finite difference method, by dividing the interval into four sub-intervals. $\frac{d^2y}{dx^2} = x + y, y(0) = y(1) = 0.$ [6]

12. Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over a square mesh with sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length = 1. [10]

OR

Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with the boundary values as shown.

A rod is rotating in a plain. The following table gives the angle in radians (0) through which the rod has turned for various values of time in seconds (1). Find the angular velocity and angular acceleration t=0.2