

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Plano de ensino Semestre 2020-1

I. Identificação da disciplina				
$C\'odigo$	Nome da disciplina	Horas-aula semanais		Horas-aula semestrais
MTM3112	Álgebra Linear	Teóricas: 4	Práticas: 0	72

II. Professor(es) ministrante(s)

Alcides Buss, Leandro Batista Morgado, Leonardo Silveira Borges, Luiz Gustavo Cordeiro, Marcio Rodolfo Fernandes, Milton dos Santos Braitt, Paulo Mendes de Carvalho Neto.

III. Pré-requisito(s)

 ${
m MTM3111}$ – Geometria Analítica

IV. Curso(s) para o(s) qual(is) a disciplina é oferecida

Ciências da Computação, Engenharia Civil, Engenharia de Alimentos, Engenharia de Controle e Automação, Engenharia de Materiais, Engenharia de Produção Civil, Engenharia de Produção Elétrica, Engenharia de Produção Mecânica, Engenharia Elétrica, Engenharia Eletrônica, Engenharia Mecânica, Engenharia Química, Engenharia Sanitária e Ambiental, Física – Bacharelado, Meteorologia, Oceanografia.

V. Ementa

Espaço vetorial. Transformações lineares. Mudança de base. Produto interno. Transformações ortogonais. Autovalores e autovetores de um operador. Diagonalização. Aplicação da Álgebra Linear às ciências.

VI. Objetivos

Fornecer uma base teórico-prática sólida na teoria dos espaços vetoriais e dos operadores lineares de maneira a possibilitar sua aplicação nas diversas áreas da ciência e da tecnologia.

VII. Conteúdo programático

Unidade 1. Espaços Vetoriais.

- 1.1. Espaço vetorial real
- 1.1.1. Definição.
- 1.1.2. Unicidade do vetor nulo, do vetor simétrico e outras propriedades.
- 1.2. Subespaços vetoriais.
- 1.2.1. Definição.
- 1.2.2. Interseção e soma de subespaços.
- 1.2.3. Combinação Linear.
- 1.2.4. Subespaço gerado por um conjunto de vetores.
- 1.3. Base e dimensão de um espaço vetorial.
- 1.3.1. Vetores linearmente independentes e vetores linearmente dependentes: definição e propriedades.
- 1.3.2. Definição de base e dimensão de um espaço vetorial.
- 1.3.3. Propriedades: dimensão da soma de subespaços e outras que envolvam base e dimensão.
- 1.3.4. Definição de coordenadas de um vetor e de matriz coordenada. Mudança de coordenadas.

Unidade 2. Transformações Lineares.

- 2.1. Transformação linear.
- 2.1.1. Definição.
- 2.1.2. Teoremas.
- 2.2. Núcleo e imagem de uma transformação linear.
- 2.2.1. Definição de núcleo.
- 2.2.2. Definição de imagem.
- 2.2.3. Núcleo e imagem como subespaços vetoriais.
- 2.2.4. Geradores da imagem de uma transformação linear.
- 2.3. Transformações lineares injetoras e sobrejetoras.

- 2.3.1. Definição.
- 2.3.2. Isomorfismo: definição.
- 2.3.3. Teoremas.
- 2.4. Transformações lineares e matrizes.
- 2.4.1. Matrizes associadas a uma transformação linear.
- 2.4.2. Composição de transformações lineares.
- 2.4.3. Determinação de transformação linear inversa através da forma matricial.
- 2.4.4. Matriz mudança de base.

Unidade 3. Produto Interno.

- 3.1. Definição de produto interno.
- 3.2. Vetores ortogonais.
- 3.2.1. Definição e propriedades.
- 3.2.2. Definição de base ortogonal.
- 3.3. Norma de um vetor.
- 3.3.1. Definição e propriedades.
- 3.4. Ângulo entre vetores.
- 3.4.1. Definição.
- 3.5. Base ortonormal.
- 3.5.1. Definição.
- 3.6. Processo de ortogonalização de Gram-Schmidt. Componentes de um vetor numa base ortogonal.
- 3.7. Complemento ortogonal.
- 3.7.1. Definição e propriedades.

Unidade 4. Autovalores e Autovetores.

- 4.1. Definição de autovalores e autovetores.
- 4.2. Autovalores e autovetores de uma matriz.
- 4.2.1. Polinômio característico.
- 4.3. Diagonalização de operadores lineares.
- 4.3.1. Teoremas.

Unidade 5. Tipos Especiais de Operadores Lineares.

- 5.1. Matriz simétrica e matriz ortogonal.
- 5.1.1. Teoremas.
- 5.2. Operadores autoadjuntos e ortogonais.
- 5.2.1. Definição.
- 5.2.2. Teoremas.
- 5.3. Diagonalização de operadores autoadjuntos.
- 5.3.1. Teorema.

VIII. Metodologia de ensino e desenvolvimento do programa

Serão ministradas aulas expositivas e dialogadas, com resolução de exercícios em sala de aula. O aluno terá, à sua disposição, monitores (ver horários no site http://www.mtm.ufsc.br).

IX. Metodologia de avaliação

O aluno será avaliado através de 3 a 6 provas parciais que serão realizadas ao longo do semestre letivo. O professor ministrante, a seu critério, poderá aplicar pequenos testes os quais terão um peso na nota final não superior a 25%. Será calculada a média aritmética (ou ponderada) das notas obtidas nas avaliações (e testes) e será considerado aprovado o aluno que tiver, além de frequência suficiente, média maior ou igual a 6,0.

X. Avaliação final

De acordo com o parágrafo 2º do artigo 70 da Resolução 17/Cun/97, o aluno com frequência suficiente e média das avaliações do semestre de 3,0 a 5,5 terá direito a uma nova avaliação, no final do semestre, abordando todo o conteúdo programático. A nota final desse aluno será calculada através da média aritmética entre a média das avaliações anteriores e a nota da nova avaliação.

XI. Cronograma teórico

Será definido pelo professor ministrante.

XII. Cronograma prático

Não se aplica.

XIII. Bibliografia básica

- 1. STEINBRUCH, Alfredo e WINTERLE, Paulo Álgebra Linear, 2ª edição, Pearson Makron Books, São Paulo, 1987.
- 2. BOLDRINI, J. L. Álgebra Linear, Editora Harper e Row do Brasil Ltda, 3ª edição, 1984.
- 3. POOLE, D. Álgebra Linear, Thomson, São Paulo, 2004.

XIV. Bibliografia complementar

- 1. ANTON, H., Rorres, C. Álgebra Linear com Aplicações, Editora Bookman, Porto Alegre, 8 ed., 2001.
- 2. CALLIOLI, C. A., Domingues, H. H., Costa, R. C. F. Álgebra Linear e Aplicações, Atual Editora, 1990.
- 3. HOFFMAN, K., KUNZE, R. Álgebra Linear, Livros Técnicos e Científicos (LTC), 1979.
- 4. KOLMAN, B. Álgebra Linear, Editora Guanabara, 1984.
- 5. LAY, D. C. Álgebra Linear e suas aplicações, LTC Editora, Rio de Janeiro, 1999.
- 6. LIPSCHUTZ, S. Álgebra Linear, Coleção Schaum, Ed. Mac-Graw-Hill, 1981.
- 7. STRANG, G. Álgebra Linear e Suas Aplicações, Traduação da 4ª Edição Norte-Americana, Cengage Learning, 2010.
- 8. VALLADARES, R. C. Álgebra Linear, Livros Técnicos e Científicos (LTC), 1990.
- 9. WILLIAMS, G. Linear Algebra with applications, 4. ed. Jones And Bartlett Mathematics, 2000.

Florianópolis, 3 de março de 2020.

Professor Leonardo Silveira Borges
Coordenador da disciplina