CoreScope: Graph Mining Using k-Core Analysis

- Patterns, Anomalies and Algorithms

Mar-9-2017

Kijung Shin (kijungs@cs.cmu.edu)

1 General Information

Version: 2.0

Date: Mar-9-2017

Authors: Kijung Shin (kijungs@cs.cmu.edu)

2 Introduction

Core Scope v2.0 includes

- streaming algorithm for degeneracy (Core-D)
- anomaly detection algorithm based on coreness and trussness (Core-A, Truss-A)
- influential spreader detection method based on the structure of degeneracy-cores (Core-S)

Detailed information about each module is explained in the following papers:

- Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos, "Patterns and Anomalies in k-Cores
 of Real-World Graphs with Applications", Knowledge and Information Systems (submitted)
- Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos, "CoreScope: Graph Mining Using k-Core Analysis Patterns, Anomalies and Algorithms", IEEE International Conference on Data Mining (ICDM) 2016, Barcelona, Spain

3 Installation

- This package requires that java 1.7 or greater be installed in the system and set in PATH.
- For compilation (optional), type ./compile.sh
- For packaging (optional), type ./package.sh

For demo (optional), type make

4 Input File Format

The input file lists all edges in a graph. Each line corresponds to an edge, which consists of source node index and destination node index, which are separated by a tab. In addition, we assume the followings:

- Graph is symmetrized, i.e., if a link (u,v) is included in the file, (v,u) is also included.
- Node indices range from 0 to (the number of nodes 1)

example graph.tsv is an example of the input file.

5 Core-D: Streaming Algorithm for Degeneracy

5.1 How to Run

./run_coreD.sh input_path model sampling_ratio

5.2 Parameters

- input_path: path of the input file. See 4 for the detailed format of the input file.
- model: model to use. This parameter should be one among [basic, triangle, overall]
- sampling_ratio: sampling ratio. This parameter should be in [0, 1].

5.3 Output

• Estimated degeneracy of the input graph is printed on the console

6 Core-A: Anomaly Detection Based on Coreness

6.1 How to Run

./run_coreA.sh input_path output_path

6.2 Parameters

- input_path: path of the input file. See 4 for the detailed format of the input file.
- output_path: path of the output file. See 6.3 for the detailed format of the output file.

6.3 Output

The output file lists nodes and their anomaly score, coreness, and, degree, in the descending order of anomaly score. Each line consists of *ranking* (with regard to anomaly score), *node index*, *anomaly score*, *coreness*, and *degree*, which are separated by tabs.

output demo/coreA result.tsv is an example of the output file.

7 Core-A + DSM: Dense-Subgraph Detection Using Core-A Results

7.1 How to Run

./run_comb_coreA.sh input_path output_path weight

7.2 Parameters

- input_path: path of the input file. See 4 for the detailed format of the input file.
- output_path: path of the output file. See 7.3 for the detailed format of the output file.
- weight: weight that result of Core-A is multiplied by for being balanced with average degree.
 This parameter should be greater than or equal 0. This parameter should be set to 0 to run simple DSM without Core-A.

7.3 Output

The output file lists nodes belonging to the densest subgraph found by Core-A + DSM.

output_demo/comb_coreA_result.tsv is an example of the output file.

8 *Truss-A*: Anomaly Detection Based on Trussness

8.1 How to Run

 $./run_trussA.sh\ input_path\ output_path$

8.2 Parameters

- input_path: path of the input file. See 4 for the detailed format of the input file.
- output_path: path of the output file. See 8.3 for the detailed format of the output file.

8.3 Output

The output file lists nodes and their anomaly score, trussness, and, degree, in the descending order of anomaly score. Each line consists of *ranking* (with regard to anomaly score), *node*

index, anomaly score, trussness, and degree, which are separated by tabs.

output demo/trussA result.tsv is an example of the output file.

9 Truss-A + DSM: Dense-Subgraph Detection Using Truss-A Results

9.1 How to Run

./run_comb_trussA.sh input_path output_path weight

9.2 Parameters

- input_path: path of the input file. See 4 for the detailed format of the input file.
- output_path: path of the output file. See 9.3 for the detailed format of the output file.
- weight: weight that result of Truss-A is multiplied by for being balanced with average degree. This parameter should be greater than or equal 0. This parameter should be set to 0 to run simple DSM without Truss-A.

9.3 Output

The output file lists nodes belonging to the densest subgraph found by Truss-A + DSM.

output_demo/comb_trussA_result.tsv is an example of the output file.

10 Core-S: Identifying Spreaders based on the Structure of Degeneracy-Cores

10.1 How to Run

./run_coreS.sh input_path output_path spreader_num

10.2 Parameters

- input_path: path of the input file. See 4 for the detailed format of the input file.
- output_path: path of the output file. See 10.3 for the detailed format of the output file.
- spreader_num: number of spreaders to find. This parameter should be an integer at least 1.

10.3 Output

The output file lists the identified spreaders with their rank. Each line consists of *rank* and *node index*, which are separated by tabs.

output_demo/CoreS_result.tsv is an example of the output file.

11 SIR Simulation Using Spreaders Identified by Core-S as Seeds.

11.1 How to Run

./run_simulation.sh input_path output_path spreader_num infection_rate repetition_num

11.2 Parameters

- input path: path of the input file. See 4 for the detailed format of the input file.
- output_path: path of the output file. See 11.3 for the detailed format of the output file.
- spreader_num: number of spreaders to find. This parameter should be an integer at least 1.
- Infection_rate: probability that an infected node infects each of its neighbors. This parameter should be in (0,1)
- repetition_num: number of repetitions of simulation for each seed. This parameter should be an integer at least 1.

11.3 Output

The output file lists the average number of infected nodes for each seed, which is a spreader identified by CoreS. Each line consists of *node index* and *the average number of infected nodes* when the node is used as a seed. They are separated by tabs.

output_demo/simulation _result.tsv is an example of the output file.