Data CleaningMIE223

MIE223 Winter 2025

1 Why Clean Data?

1.1 Example

Company_Name	Address	Market Cap
Google	Googleplex, Mtn. View	\$210
Intl. Business Machines	Armonk, NY	\$200
Microsoft	Redmond, WA	\$250
Sally's Lemonade Stand	Alameda,CA	\$260,000

• Apple: Missing Data

• IBM: Entity Resolution / Unnormalized Naming

• Sally's Lemonade Stand: Unit Mismatch

1.2 Where is Data Cleaning in the Organization?

- Data comes in all shapres and forms
- ETL: Extract, Transform, Load
- Data science exists in business intelligence and analytics
- Data engineers work in application database

1.3 Cost of Bad Quality Data Over Time

• Cost for preventing bad data: \$1

• Cost for correcting bad data: \$10

• Cost for fixing problem resulting from bad data: \$100

2 Perspectives on Data Science and Data Cleaning

2.1 Data Science is an Intersectional Discipline

- Computer Science
- Math and Statistics
- · Domain Knowledge

2.2 Dirty Data

- The Statistics View:
 - There is a process that produces data
 - Any dataset is a sample of the output of that process
 - Results are probabilistic
 - You can correct bias in your sample
- The Database View:
 - I got my hands on this data set
 - Some of the values are missing, corrupted, wrong, duplicated
 - Results are absolute (relational model)
 - You get a better answer by improving the quality of the values in your dataset
- The Domain Expert's View
 - This Data Doesn't look right
 - This Answer Doesn't look right
 - What happened?
- The data scientist's view is a combination of the above.

Note 1. A Data scientist knows more programming than a statistician and more statistics than a programmer. A Data scientist intimately understands their domain!

2.3 Data Quality Problems

- Data is dirty on its own
 - Human collection or data entry (generally lazy and want to see their children)
- Data sets are clean but integration (i.e., combining them) screws them up (such as different units of measurement)
- Data sets are clean but suffer "bit rot" (lose data from cutting)
 - Constant data transformations introduce errors, noise, data loss
 - Meanings of labels change over time
- Any combination of the above... and much, much more!

2.4 Some Data Issues you will Encounter

- 1. Parsing text into fields (separator issues)
- 2. Naming conventions and entity resolution D: NYC vs New York
- 3. Missing required field (birthdate)
- 4. Gaps in time series
- 5. Different representations ("2" vs 2), Unicode lookalikes
- 6. Fields too long (get truncated)
- 7. Mixed data types (feet, meters)
- 8. Redundant Records (exact match or other)
- 9. Formatting issues especially dates
- 10. Licensing issues/privacy/cost prevent access to all data

2.5 Key Types of Data Quality Issues

- **incomplete**: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
- noisy: containing errors or outliers
 - e.g., Salary="-10"
- inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records
- redundancy: duplicated content

2.6 Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Changes in the data collected over time
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments, undocumented API changes
 - Human or computer error at data entry, UI changes!
 - Errors in data transmission, discretization, conversion (losing precision)
 - Typing errors (meters, feet, km mixed in same column)
- · Inconsistent data may come from
 - Different data sources (data integration)
 - Changes in data collection practices over time
- Redundancy
 - Human error (could not find previous record), data integration

3 The Role of Data Cleaning in Data Science

3.1 Data Science in the Real World

Q: How do real-world data scientists spend their time?

Q: How do real-world data scientists spend their time?

Q: How do real-world data scientists spend their time?

During a typical data science project at work or school, approximately what proportion of your time is devoted to the following?

3.2 Data Cleaning Makes Everything Okay?

Note 2. "The appearance of a hole in the earth's ozone layer over Antarctica, first detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were malfunctioning." - National Center for Atmospheric Research

The data was rejected as unreasonable by data quality control algorithms.

4 Principles of Data Cleaning

4.1 Data Cleaning Tasks

- Data Summary
- Consider filling in missing values
- Identify outliers and smooth out noisy data
- · Correct inconsistent data
- · Resolve redundancy

5 Data Cleaning: Data Summary

5.1 Data Summary Procedure

- Look at data types of columns
 - Beware of "Object" columns, indicator that you've mixed types (e.g., "2" and 2)
- For high cardinality strings and categorical (e.g., "country") columns
 - How many unique elements are there?
 - Are any missing?
 - Count frequencies of string
 - * Look at top-10 most frequent and least frequent values
 - * Look at strings near the mean and median frequency
- For low cardinality strings and categorical (e.g., "province") columns
 - Look at frequency of each unique value
- For ordinal numeric (integers) or floating point values
 - Compute summary statistics
 - View a histogram (but before you do this, hypothesize what you will see)

5.2 Summary Statistics and for Each Variable (Column)

- Range
 - Minimum
 - Maximum
- Central Tendency
 - Mean
 - Median
 - Mode

- * Value that occurs most frequently in discrete data
- * Value with highest probability in continuous data
- * Informally: # peaks in numeric data unimodal, bimodal, trimodal, multimodal, ...
- If Data is non-numeric, consider frequencies below (e.g., mean frequency of jobs in "Job")
- If Data is a string, consider sorting it and looking at nearby values

5.3 Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q1 (25th percentile), Q3 (75th percentile)
 - Inter-quartile range: IQR = Q3 Q1
 - Five number summary: min, Q1, M, Q3, max
 - Boxplot: ends of the box are the quartiles, median is marked, whiskers (min / max), and plot outlier individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: sigma)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$