Εισαγωγή σε VLSI

Εργαστηριακή Άσκηση 4

Μπορείτε να δείτε την τελευταία έκδοση του Project εδώ ή σκανάροντας τον κωδικό QR που βρίσκεται στην επικεφαλίδα.

Περιγραφή Αναφοράς

Παρακάτω παραθέτουμε τις απαντήσεις μας στην "Τέταρτη Εργαστηριακή Άσκηση" του μαθήματος "Εισαγωγή σε VLSI" καθώς και σχόλια τα οποία προέκυψαν κατά την εκπόνηση του.

Περιεχόμενα

1. Πρ	ρώτη Άσκηση	2
Ερώτημα (2
Ερώτημα ((b)	3
<mark>2</mark> . Δε	ύτερη Άσκηση	4
Ερώτημα ((i)	4
Ερώτημα ((ii)	4
Ερώτημα ((iii)	4
3 . Το	ίτη Άσκηση	6

Απαντήσεις

1. Πρώτη Άσκηση

Ερώτημα (a)

Εφαρμόζοντας την μέθοδο του παραδείγματος, υπολογίζουμε πρώτα το F:

$$F = GHB = (\frac{4}{3} \cdot 1) \cdot \frac{12}{4} \cdot 1 = 4$$

Ύστερα μπορούμε να υπολογίσουμε το \hat{f} .

$$\hat{f} = \sqrt{F} = 2$$

Και άρα, χρησιμοποιώντας τον τύπο, βρίσκουμε το χ:

$$C_{in} = \frac{gC_{out}}{\hat{f}} \Rightarrow x = \frac{1 \cdot 12}{2} = 6C$$

Επίσης, υπολογίζουμε την καθυστέρηση μονοπατιού ως:

$$D = D_F + P = 2 \cdot 2 + 3 = 7 \Rightarrow D \approx 7 \cdot 2 = 14 \text{ ns}$$

Για την πειραματική επαλήθευση, κατασκευάσαμε πρώτα τον ελάχιστο αντιστροφέα μόνο του (σε cmos65n) ώστε να βρούμε το **τ** της τεχνολογίας. Βρήκαμε ότι είναι 2ns. Ταυτόχρονα, μετρήσαμε την χωρητικότητα της πύλης, η οποία ήταν 0.5 fF.

Υστερα, γνωρίζοντας πλέον όλες τις χωρητικότητες (και άρα τα πλάτη των τρανζίστορ που χρειαζόμαστε), σχεδιάσαμε ολόκληρο το layout που φαίνεται στην Εικόνα 1 (κάτω από την οποία φαίνονται και οι διαστάσεις των transistor). Στην Εικόνα 2 και στον πίνακα που την συνοδεύει, μπορείτε να δείτε τις καθυστερήσεις που επιβεβαιώνουν τους παραπάνω υπολογισμούς.

Για τους ακριβείς υπολογισμούς των διαστάσεων, μπορείτε να πατήσετε το παρακάτω κουμπί.

Εικόνα 1

Transistor	λ	nm
NAND PMOS	8	280
NAND NMOS	8	280
NOT PMOS	16	560
NOT NMOS	8	280

Εικόνα 2

Rise Delay	17 ns
Fall Delay	18 ns

Ερώτημα (b)

Για τους υπολογισμούς μας χρησιμοποιούμε το μονοπάτι που φαίνεται παραπάνω.

Υπολογίζουμε πάλι πρώτα το F:

$$F = GHB = (1 \cdot \frac{5}{3}) \cdot \frac{12}{3} \cdot 1 = \frac{60}{9}$$

Ύστερα μπορούμε να υπολογίσουμε το \hat{f} .

$$\hat{f} = \sqrt{F} = 2,582$$

Και άρα, χρησιμοποιώντας τον τύπο:

$$C_{in} = \frac{gC_{out}}{\hat{f}} \Rightarrow y = \frac{5 \cdot 12}{3 \cdot 2,582} = 7,746 C$$

Επίσης, υπολογίζουμε την καθυστέρηση μονοπατιού ως:

$$D = D_F + P = 2 \cdot 2,582 + 2 + 1 = 8,164$$

 $\Rightarrow D \approx 8,164 \cdot 2 = 16,328 \text{ ns}$

Και άρα είναι πιο αργή από την πρώτη υλοποίηση.

Για την δημιουργία του Layout χρειάζεται να στρογγυλέψουμε το y στον πλησιέστερο ακέραιο, που είναι το 8.

Ύστερα, γνωρίζοντας πλέον όλες τις χωρητικότητες (και άρα τα πλάτη των τρανζίστορ που χρειαζόμαστε), σχεδιάσαμε ολόκληρο το layout που φαίνεται στην Εικόνα 3 (κάτω από την οποία φαίνονται και οι διαστάσεις των transistor). Στην Εικόνα 4 και στον πίνακα που την συνοδεύει, μπορείτε να δείτε τις καθυστερήσεις που επιβεβαιώνουν τους παραπάνω υπολογισμούς.

Για τους ακριβείς υπολογισμούς των διαστάσεων, μπορείτε να πατήσετε το παρακάτω κουμπί.

Εικόνα 3

Transistor	λ	nm
NOR PMOS	26	910
NOR NMOS	6	210
NOT PMOS	8	280
NOT NMOS	4	140

Elkova 4

Rise Delay	20 ns
Fall Delay	22 ns

2. Δεύτερη Άσκηση

Ερώτημα (i)

Οι εκφράσεις δίνονται παρακάτω:

(a)
$$D_{min} = n \cdot \hat{f} + P = 2 \cdot \sqrt{\frac{8}{3} \cdot H} + 7$$

(B)
$$D_{min} = n \cdot \hat{f} + P = 2 \cdot \sqrt{\frac{25}{9} \cdot H} + 5$$

(y)
$$D_{min} = n \cdot \hat{f} + P = 2 \cdot \sqrt{\frac{28}{9} \cdot H} + 5$$

(8)
$$D_{min} = n \cdot \hat{f} + P = 4 \cdot \sqrt[4]{\frac{20}{9} \cdot H} + 7$$

Σχεδιασμός	G	P	N	Dmin (H=5)	Dmin (H=18)
α	8/3	7	2	14,30	20,86
β	25/9	5	2	12,45	19,14
γ	28/9	5	2	12,89	19,97
δ	20/9	7	4	14,30	17,06

Ερώτημα (iii)

(β) Αφού οι nand στην είσοδο είναι ελάχιστες, μπορούμε να εξάγουμε το σχήμα που φαίνεται στο σχήμα δεξιά. Από εκεί παίρνουμε το $C_{\rm in\ path}$

Με την χωρητικότητα εισόδου δεδομένη πλέον, μέσω του δοσμένου H, παίρνουμε το $C_{\mathrm{out\ path}}$ και οι υπολογισμοί μας συνεχίζονται στο μοτίβο της προηγούμενης άσκησης.

Προκύπτει το layout που φαίνεται στην Εικόνα 5 (ο πίνακας που την συνοδεύει εξηγεί τις διαστάσεις των τρανζίστορ), και οι μετρήσεις του στην Εικόνα 6.

Εικόνα 5

Transistor	λ	nm
NOR PMOS	68	2380
NOR NMOS	17	595
NAND PMOS	8	280
NAND NMOS	12	420

Εικόνα 6

Rise Delay	- ns
Fall Delay	- ns

Λόγω του μήκους του κυκλώματος, σχεδιάσαμε πρώτα ένα Stick Diagram για να μας βοηθήσει αργότερα:

Για τους ακριβείς υπολογισμούς των διαστάσεων, μπορείτε να πατήσετε το παρακάτω κουμπί.

Υπολογισμοί

(δ) Ξανά λόγω των ελάχιστων NAND, παίρνουμε το $C_{\mbox{in path}}.$

Ύστερα κινούμαστε από τα δεξιά προς τα αριστερά, υπολογίζοντας κάθε φορά το C_{in} , από τον τύπο:

$$C_{in} = \frac{g \cdot C_{out}}{\hat{f}}$$

Λόγω του μήκους του κυκλώματος, σχεδιάσαμε πρώτα ένα Stick Diagram για να μας βοηθήσει αργότερα:

Σύμφωνα με το Stick Diagram και τις διαστάσεις που υπολογίσαμε, προκύπτει το layout στην Εικόνα 7, ο πίνακας που το συνοδεύει με τα μεγέθη των transistor. Οι μετρήσεις δίνονται στην Εικόνα 8 και στον πίνακα που την συνοδεύει.

Για τους ακριβείς υπολογισμούς των διαστάσεων, μπορείτε να πατήσετε το παρακάτω κουμπί.

Εικόνα 7

Transistor	λ	nm
NOT_right PMOS	95	3325
NOT_right NMOS	48	1680
NAND_right PMOS	38	1330
NAND_right NMOS	38	1330
NOT_left PMOS	20	700
NOT_left NMOS	10	350
NAND_left PMOS	8	280
NAND_left NMOS	12	420

Εικόνα 8

Rise Delay	- ns
Fall Delay	- ns

3. Τρίτη Άσκηση

Από την άσκηση δίνεται ότι το $C_{
m pad}$ είναι 256 φορές μεγαλύτερο από την χωρητικότητα εισόδου του κυκλώματος, άρα H=256.

Για τους υπολογισμούς και των δύο παρακάτω περιπτώσεων, μπορείτε να πατήσετε το παρακάτω κουμπί.

Υπολογισμοί

K=4

Με το H δεδομένο και κινούμενοι από αριστερά προς τα δεξιά με τον τύπο $C_{in}=\frac{g\cdot C_{out}}{\hat{f}},$ βρίσκουμε όλες τις διαστάσεις (πίνακας κάτω από την Εικόνα 9) που χρειαζόμαστε για να φτιάξουμε το layout των αντιστροφέων που φαίνεται στην Εικόνα 9.

$$D_{\mathsf{min}} = \hat{f} + P = \sqrt[4]{1 \cdot 1 \cdot 256} + 170 = 426 \mathsf{ns}$$

Για τις πειραματικές μετρήσεις, δείτε την Εικόνα 10 και τον πίνακα που την συνοδεύει.

Εικόνα 9

Transistor	λ	nm
K4 PMOS	512	17.920
K4 NMOS	256	8.960
K3 PMOS	128	4.480
K3 NMOS	64	2.240
K2 PMOS	32	1.120
K2 NMOS	16	560
K1 PMOS	8	280
K1 NMOS	4	140

Elkova 10

Rise Delay	- ns
Fall Delay	- ns

K=2

Παρόμοια με προηγουμένως, βρίσκουμε όλες τις διαστάσεις (πίνακας κάτω από την Εικόνα 9) που χρειαζόμαστε για να φτιάξουμε το layout των αντιστροφέων που φαίνεται στην Εικόνα 11.

$$D_{\mathsf{min}} = \hat{f} + P = \sqrt{1 \cdot 1 \cdot 256} + 34 = 290 \mathsf{ns}$$

Για τις πειραματικές μετρήσεις, δείτε την Εικόνα 12 και τον πίνακα που την συνοδεύει.

Συμπέρασμα

Βλέπουμε λοιπόν...

Εικόνα 9

Transistor	λ	nm
K2 PMOS	128	4.480
K2 NMOS	64	2.240
K1 PMOS	8	280
K1 NMOS	4	140

Εικόνα 10

Rise Delay	- ns
Fall Delay	- ns