Image Filtering

EECS 442 – David Fouhey Winter 2023, University of Michigan

https://web.eecs.umich.edu/~fouhey/teaching/EECS442_W23/

Let's Take An Image

Let's Fix Things

- We have noise in our image
- Let's replace each pixel with a weighted average of its neighborhood
- Weights are filter kernel

Out	

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Output 10.33

Done! Next?

(1) 10.66 (2) 9.33(3) 14.2 (4) 11.33

Signal

10 12 11 12 9 10 11

Filter

1/3 1/3 1/3

Output

10.66 10.33

1D Case (1) 10.33 (2) 11.33 (3) 10 (4) 9.1

Signal 10 12 9 11 10 11 12

Filter 1/3 1/3 1/3

Output 10.33 10.66 10

You lose pixels (maybe...)
Filter "sees" only a few pixels at a time

Input

I13 I31

Filter

Output

O11	O12	O13	O14
O21	O22	O23	O24
O31	O32	O33	O34

Input & Filter

Output

F11	F12	F13	l14	l15	l16
F21	F22	F23	124	125	126
F31	F32	F33	134	135	136
141	142	143	144	145	146
l51	152	l53	154	l55	156

O11

Input & Filter

	1	L	1
()	I I'	ΓN	I IT
	U	ιp	ut

l11	F11	F12	F13	l15	I16
121	F21	F22	F23	125	126
I31	F31	F32	F33	135	136
141	142	143	144	145	146
I51	152	153	154	155	156

O12 = I12*F11 + I13*F12 + ... + I34*F33

Input Filter Output

l11	l12	l13	l14	l15	I16
I21	122	123	124	125	126
I31	132	133	134	l35	136
141	142	143	144	I45	146
I51	152	I53	154	I55	156

F11	F12	F13
F21	F22	F23
F31	F32	F33

How many times can we apply a 3x3 filter to a 5x6 image?

Input

l11	l12	l13	114	l15	I16
I21	122	123	124	125	126
l31	132	133	134	135	136
141	142	143	144	145	146
l51	152	153	154	155	156

Filter

Output

Oij = Iij*F11 + Ii(j+1)*F12 + ... + I(i+2)(j+2)*F33

Painful Details – Edge Cases

Filtering doesn't keep the whole image. Suppose **f** is the image and **g** the filter.

Full – any part of g touches f. Same – same size as f;Valid – only when filter doesn't fall off edge.

Painful Details – Edge Cases

What to about the "?" region?

Symm: fold sides over

Circular/Wrap: wrap around

pad/fill: add value, often 0

Painful Details – Does it Matter?

(I've applied the filter per-color channel) Which padding did I use and why?

Note – this is a zoom of the filtered, not a filter of the zoomed

Painful Details – Does it Matter?

(I've applied the filter per-color channel)

Note – this is a zoom of the filtered, not a filter of the zoomed

Original

0	0	0
0	1	0
0	0	0

?

Original

0	0	0
0	1	0
0	0	0

The Same!

Original

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	1
0	0	0

Shifted *LEFT*1 pixel

Original

0	1	0
0	0	0
0	0	0

?

Original

0	1	0
0	0	0
0	0	0

Shifted **DOWN**1 pixel

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

?

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Blur (Box Filter)

Original

0	0	0
0	2	0
0	0	0

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

?

Original

0	0	0
0	2	0
0	0	0

_

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Sharpened (Acccentuates difference from local average)

Sharpening

before

after

Properties – Linear

Assume: I image f1, f2 filters

Linear: apply(I,f1+f2) = apply(I,f1) + apply(I,f2)

I is a white box on black, and f1, f2 are rectangles

$$\mathsf{A}(\ \square \ , \ \square \ + \ \square \) = \mathsf{A}(\ \square \ , \ \square \) = \square$$

Note: I am showing filters un-normalized and blown up. They're a smaller box filter (i.e., each entry is 1/(size^2))

Properties – Shift-Invariant

Assume: I image, f filter

Shift-invariant: shift(apply(I,f)) = apply(shift(I,f))

Intuitively: only depends on filter neighborhood

Painful Details - Signal Processing

What I just showed is often called "convolution". *Actually* cross-correlation. Source of *terrible* confusion.

Cross-Correlation (Original Orientation)

Convolution (Flip filter in x,y first)

Convolution

To be more clear:

```
def imageFilter(image, filter):
      for y in range(...): for x in range(...)
      # you'll fill this in
      return filtered
def imageConvolve2D(image, filter):
      # flip the filter left/right and up/down
      filterUse = np.fliplr(np.flipud(filter))
      return imageFilter2D(image, filterUse)
```

Properties of Convolution

- Any shift-invariant, linear operation is a convolution (*)
- Commutative: f * g = g * f
- Associative: (f * g) * h = f * (g * h)
- Distributes over +: f * (g + h) = f * g + f * h
- Scalars factor out: kf * g = f * kg = k (f * g)
- Identity (a single one with all zeros):

Property List: K. Grauman

Questions?

- Nearly everything onwards is a convolution.
- This is important to get right.

Smoothing With A Box

Intuition: if filter touches it, it gets a contribution.

Input

Filter

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Output

Solution – Weighted Combination

Intuition: weight according to closeness to center. Define 0,0 to be center pixel, then:

Filter_{ij}
$$\propto 1$$
What's this?

Filter_{ij} $\propto \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$

Recognize the Filter?

It's a Gaussian!

$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

0.003	0.013	0.022	0.013	0.003
0.003 0.013 0.022	0.060	0.098	0.060	0.013
0.022	0.098	0.162	0.098	0.022
0.013	0.060	0.098	0.060	0.013
0.003	0.013	0.022	0.013	0.003

Smoothing With A Box & Gauss

Still have some speckles, but it's not a big box

Input Box Filter Gauss. Filter

Gaussian Filters

Note: filter visualizations are independently normalized throughout the slides so you can see them better

Input Image (no filter)

$$\sigma = 1$$

$$\sigma = 2$$

$$\sigma = 4$$

$$\sigma = 8$$

Picking a Filter Size

Too small filter → bad approximation
Want size ≈ 6σ (99.7% of energy)
Left far too small; right slightly too small!

$$\sigma$$
 = 8, size = 21

$$\sigma$$
 = 8, size = 43

Runtime Complexity

Image size = NxN = 6x6Filter size = MxM = 3x3

l11	l12	l13	l14	l15	l16
I21	F11	F12	F13	125	126
I31	F21	F22	F23	135	136
141	F31	F32	F33	145	146
I51	152	153	154	155	156
l61	162	I63	164	l65	166

for ImageY in range(N):
for ImageX in range(N):
for FilterY in

range(M):

for FilterX in

range(M):

. . .

Time: $O(N^2M^2)$

Separability

Conv(vector, transposed vector) → outer product

Fy1						Fx1 * Fy1	Fx2 * Fy1	Fx3 * Fy1
Fy2	*	Fx1	Fx2	Fx3	=	Fx1 * Fy2	Fx2 * Fy2	Fx3 * Fy2
Fy3						Fx1 * Fy3	Fx2 * Fy3	Fx3 * Fy3

Separability

$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

$$Filter_{ij} \propto \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Separability

1D Gaussian * 1D Gaussian = 2D Gaussian

Image * 2D Gauss = Image * (1D Gauss * 1D Gauss)

= (Image * 1D Gauss) * 1D Gauss

Runtime Complexity

Image size = NxN = 6x6Filter size = Mx1 = 3x1

l11	l12	l13	l14	l15	l16
I21	F1	123	124	125	126
I31	F2	133	134	135	136
141	F3	143	144	145	146
I51	152	153	154	155	156
l61	162	l63	164	165	166

What are my compute savings for a 13x13 filter?

```
for ImageY in range(N):
    for ImageX in range(N):
        for FilterY in
range(M):
```

for ImageY in range(N):
 for ImageX in range(N):
 for FilterX in

range(M):

Why Gaussian?

Gaussian filtering removes parts of the signal above a certain frequency. Often noise is high frequency and signal is low frequency.

Where Gaussian Fails

$$\sigma = 1$$

Why Does This Fail?

Means can be arbitrarily distorted by outliers

What else is an "average" other than a mean?

Non-linear Filters (2D)

[040, 081, 013, 125, 830, 076, 144, 092, 108] Sort [013, 040, 076, 081, 092, 108, 125, 144, 830] [830, 076, 080, 092, 108, 095, 102, 106, 087] Sort [076, 080, 087, 092, 095, 102, 106, 108, 830]

95

Applying Median Filter

Median Filter (size=3)

Applying Median Filter

Median Filter (size = 7)

Is Median Filtering Linear?

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

$$\frac{1}{2}$$

$$\frac{1}$$

Filtering – Sharpening

Image

Smoothed

Details

"Sharpened" $\alpha=1$

 $+\alpha$

"Sharpened" α =0

 $+\alpha$

"Sharpened" α =2

 $+\alpha$

"Sharpened" α =0

Filtering – Extreme Sharpening Image Details

 $+\alpha$

"Sharpened" α =10

Filtering

What's this Filter?

Filtering – Derivatives

 $(Dx^2 + Dy^2)^{1/2}$

Filtering – Bonus

 If you're curious, you can use filters to accomplish a surprisingly large number of things.

Filtering – Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

Filtering – Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

