Lemma 1 The following two statements are equivalent:

- (P1) If $|\Gamma_n A\rangle$, $|\Gamma_n B\rangle$ are partners in a basis for some representation Γ_n of a group G, then there exists an irreducible representation $\Gamma_m^i \in {\Gamma^i(G)}$ for which they form partners in its basis.
- (P2) $\exists \hat{R} \in G \text{ such that } \langle \Gamma_n A | \hat{R} | \Gamma_n B \rangle \neq 0$

Proof. We will first prove $(P1) \to (P2)$ and then $(P2) \to (P1)$. From the definition of the basis, we have

$$\langle \Gamma_n A | \hat{R} | \Gamma_n B \rangle = D^{(\Gamma_n)} (\hat{R})_{AB}$$

We will prove $(P1) \to (P2)$ by contradiction. Assume $\forall \hat{R} \in G$ we have $\langle \Gamma_n A | \hat{R} | \Gamma_n B \rangle = 0$. Then $\forall \hat{R} \in G : D^{(\Gamma_n)}(\hat{R})_{AB} = 0$.

Then, following the approach of Dresselhaus, we define the projection operator $\hat{P}_{AB}^{(\Gamma_n)}$ like so:

$$\begin{array}{ccc} \hat{P}_{AB}^{(\Gamma_n)} \left| \Gamma_n B \right\rangle & = & \left| \Gamma_n A \right\rangle \\ & \hat{P}_{AB}^{(\Gamma_n)} \left| \Psi \right\rangle & = & 0 \quad \text{for} \quad \left\langle \Gamma_n B \middle| \Psi \right\rangle = 0 \end{array}$$

From the orthogonality of basis functions we see immediately that $[\hat{H}, \hat{P}_{AB}^{(\Gamma_n)}]$, hence it can be expressed as the linear combination of the elements of G:

$$\hat{P}_{AB}^{(\Gamma_n)} = \sum_{R} A_{AB}(\hat{R}) \hat{R}$$

$$\langle \Gamma_n A | \hat{P}_{AB}^{(\Gamma_n)} | \Gamma_n B \rangle = \langle \Gamma_n A | \Gamma_n A \rangle = \sum_{R} A_{AB}(\hat{R}) \langle \Gamma_n A | \hat{R} | \Gamma_n B \rangle$$

$$1 = \sum_{R} A_{AB}(\hat{R}) D^{(\Gamma_n)}(\hat{R})_{AB}$$

We have Schur's Wonderful Orthogonality Theorem:

$$\sum_{R} D^{(\Gamma_n)}(\hat{R})_{AB}^* D^{(\Gamma_n)}(\hat{R})_{AB} = \frac{|G|}{l_n}$$

where l_n is the dimension of Γ_n . Hence we identify

$$A_{AB}(\hat{R}) = \frac{l_n}{|G|} D^{(\Gamma_n)}(\hat{R})_{AB}^*$$

Then

$$\hat{P}_{AB}^{(\Gamma_n)} = \frac{l_n}{|G|} \sum_{R} D^{(\Gamma_n)} (\hat{R})_{AB}^* \hat{R} = 0$$

But $0 |\Gamma_n B\rangle = 0 \neq |\Gamma_n A\rangle$, which is a contradiction. This proves $(P1) \to (P2)$.

Now we prove $(P2) \to (P1)$ in almost the same fashion: we consider the representation Γ_n of which $|\Gamma_n A\rangle$, $|\Gamma_n B\rangle$ are partner basis vectors. From (P2) we see that $\hat{P}_{AB}^{(\Gamma_n)} \neq 0$, since all elements $\hat{R} \in G$ are linearly independent in its group-element space. Now:

either Γ_n is itself an irrep of G or it can be decomposed into irreps of G. In the former case, the proof is finished; in the latter case:

$$D^{(\Gamma_n)}(\hat{R}) = \bigoplus_a c_a D^{(\Gamma_a^i)}(\hat{R})$$

such that $D^{(\Gamma_n)}(\hat{R})_{XY}=0$ if X,Y don't belong to the same subspace of Γ_n -this is the definition of the block-diagonal form. However, if this were the case for A,B, then $\hat{P}_{AB}^{(\Gamma_n)}=0$, which contradicts (P2). Hence $|\Gamma_nA\rangle$, $|\Gamma_nB\rangle$ belong to the same subspace of Γ_n and form partners in the basis of one of its constituent irreducible representations, Γ_m^i . QED.