Question 1:

Gradient Descent

Discussion

The data consist of outliers so we applied normalization on the data.

Input Training data after min-max normalization.

	00	Living Area	No of Bedrooms		Prices
0	1	0.345284	0.50	0	0.433962
1	1	0.206288	0.50	1	0.301887
2	1	0.426917	0.50	2	0.375660
3	1	0.155543	0.25	3	0.117170
4	1	0.592388	0.75	4	0.698113
5	1	0.312466	0.75	5	0.245283
6	1	0.188086	0.50	6	0.273585
7	1	0.158577	0.50	7	0.054904
8	1	0.145615	0.50	8	0.079434
9	1	0.177055	0.50	9	0.136981

Result with Initial theta value [0.1,0.1,0.1] Learning Rate = 0.05 Epochs = 100

Initial theta value [0.1,0.1,0.1] Learning Rate = 0.05 Epochs = 10000

Initial theta value [0.1,0.1,0.1] Learning Rate = 0.05 Epochs = 1000

Question 1: Part B

Output values

 $[89802.8912661625,\,138.97279961177128,\,-8640.304614474531]$

Conclusion

The gradient descent applied in the first part gives accurate results compared to the matrix.

Question 2

Question 2 pictures are attached in the zip folder,