

An Econometric Approach to Amazon Landscapes and Assessing Their Hydroclimatological Impacts

Nathan Moore¹, Robert Walker¹, Eugenio Arima², Alex Pfaff³, Marcellus Caldas¹, Stephen Perz⁴, Eustaqio Reis⁵, Jiaguo Qi¹, Claudio Bohrer⁶, Juan Robalino³

¹Michigan State University ²Hobart & William Smith Colleges / IMAZON ³Columbia University ⁴University of Florida ⁵IPEA ⁶University Federal Fluminense

Road Map

- 1. Motivation
- 2. Method
- 3. Examples of Generated Land Cover
- 4. Aspects of Model Configuration
- 5. Results
- 6. Conclusion

1. Motivation

 Oyama & Nobre coupled modeling: (CPTEC/COLA AGCM)

2 potential equilibria

From Oyama & Nobre 2003 doi:10.1029/2003GL018600

"If sustainable development and conservation policies are not able to halt this increasing environmental degradation, then land use changes could, *per se*, tip the biome-climate system towards a *new alternative drier stable equilibrium state* with savannization of parts of Amazonia and desertification of the driest area of Northeast Brazil."

1. Motivation

Avissar et al. 2002, JGR

Many possible trajectories— Which trajectory will the Amazon follow?

Question:

- How will different patterns of land cover development in Amazonia alter precipitation, surface temperature, and the surface energy budget?
- Ultimate Question: How is uncertainty in landscape heterogeneity and external forcings represented in Amazon climate outcomes?

2. Method

No one has future observations— so we must model the future

Great uncertainty in predictions

Important goal: Represent the Uncertainty

Assume two fundamental sources of uncertainty:

- 1. actual landscapes (stochastic)
- 2. external forcings

2. Method

How we deal with these uncertainties:

- 1. use econometric model for landscapes (bernoulli trials)
- 2. use variety of atmospheric conditions across the spectrum of wet/normal/dry

2. Method, continued

Long-term Goal

- to produce actual estimates of uncertainty based on probability distributions.
- We hypothesize that it might look something like

No iterations to this point for feedback yet...

Technical Considerations

- 4.1 T of data (and counting...)
- 100 year-long simulations (50 BCS, 50 WCS)
- 1 sim month: 6 real days

Postprocessing:

- Only retained a subset of variables
- TRMM, MODIS LST available for validation

Current status

About 60% to 6 months completed

	BCS	WCS	
2001	01,02,03,04,05	01,02,03,04,05	
	26,27,28,29,30	26,27,28,29,30	
2000	06,07,08,09,10	06,07,08,09,10	
	31,32,33,34,35	31,32,33,34,35	
1999	11,12,13,14,15	11,12,13,14,15	
	36,37,38,39,40	36,37,38,39,40	
1998	16,17,18,19,20	16,17,18,19,20	
	41,42,43,44,45	41,42,43,44,45	
1997	21,22,23,24,25	21,22,23,24,25	
	46,47,48,49,50	46,47,48,49,50	blue=not to July yet

3. Examples of Generated Land Cover

1) Econometric Model creates potential landscape

Black = forest

white = converted to pasture

grey = other class

2) Represent these maps in the RAMS Climate Model

Aggregated to 20 km (model grid spacing)
Classes from GLC2000

Also did Total Deforestation

(sensitivity test)

4. Aspects of Model Configuration

- 20 km grid spacing (c.f. Ramos da Silva & Avissar 2006)
- 30 vertical levels
- Kain-Frisch convective parameterization
- LEAF-2 (Walko et al. 2000) biophysical characteristics
- Chen radiation scheme
- Mellor-Yamada diffusion
- Soil levels = -4.0, -2.0, -1.0, -.8, -.6, -.4, -.2, -.1, meters

5. Results

Pasture has mostly grass → brighter albedo

Rainfall Distribution, Jan to June (averaged)

Additional Comments

- No confidence intervals
- Only single cases for each scenario-year completed for this presentation
- Seasonality?
- Distribution
- Domain-avgd masks the spatial character
- Policy: optimal arrangement/farm size?

Major Advancements

- Treatment of uncertainty
- Spatial representation of threatened areas
- Span over wet-dry transition

(Extra Stuff)

5-day average precipitation, 1998

5-day average precipitation, 1999

5-day average precipitation, 2000

