TD2. Vecteurs aléatoires, vecteurs Gaussiens et loi Gamma et Khi-deux.

Exercice 1. Soit (X, Y) un couple aléatoire à valeurs dans \mathbb{R}^2 admettant une densité $f_{(X,Y)}(x,y) = C \mathbb{I}_{x^2+y^2 \leqslant 1}$

- a) Déterminer C et montrer que X, Y ne sont pas indépendantes.
- b) Calculer $\mathbb{P}(X+Y\leq 0)$ et $\mathbb{P}(X\geq 0,Y\geq 0)$ et $\mathrm{Var}(X|Y)=\mathbb{E}[(X-\mathbb{E}[X|Y])^2|Y]$.
- c) Soient (R, Θ) tels que $R \ge 0$, $\Theta \in [0, 2\pi)$ et $X = R\sin(\Theta)$, $Y = R\cos(\Theta)$. Montrer que R, Θ sont indépendantes et calculer leurs lois marginales.

Exercice 2. Soit (X, Y) un couple de variables aléatoires tel que la loi marginale de X est une loi uniforme sur [0,1] et la loi conditionnelle de Y sachant X = x est une loi $\mathcal{N}(x, x^2)$.

- a) Calculer $\mathbb{E}(X)$, Var(X) et Cov(X, Y).
- b) Montrer que X et Y/X sont indépendantes.

Exercice 3. Soient X et Y deux variables aléatoires indépendantes de lois respectivement $\mathcal{G}(\alpha_1, \beta)$ et $\mathcal{G}(\alpha_2, \beta)$. On pose S = X + Y et T = X/(X + Y).

- a) Montrer que S et T sont des variables indépendantes et préciser leurs lois respectives.
- b) Déterminer la loi de X/Y et calculer son espérance si elle existe.

Exercice 4. Montrer que la loi exponentielle de paramètre λ est un cas particulier de la loi Gamma. Considérons maintenant $X_1, ..., X_n, n$ variables aléatoires indépendantes de même loi exponentielle de paramètre λ . Déterminer la loi de $\sum_{i=1}^{n} X_i$.

Exercice 5. Soit $U_1, ..., U_n$ n variables indépendantes de loi uniforme $\mathcal{U}[0, 1]$. Déterminer les lois respectives des variables aléatoires $I_n = \min(U_1, ..., U_n)$ et $M_n = \max(U_1, ..., U_n)$.

Exercice 6. Soit $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ où ρ est un réel.

- a) Donner une condition nécessaire et suffisante sur le réel ρ pour que Σ soit la matrice de variance-covariance d'un vecteur gaussien.
- b) On suppose de plus que ce vecteur gaussien est centré. Donner l'expression analytique de sa densité de probabilité.

Exercice 7. Soit (X, Y) un vecteur gaussien de moyenne (1, -1) et de matrice de variance-covariance $\Sigma = \begin{pmatrix} 4 & 3 \\ 3 & 9 \end{pmatrix}$.

- a) Calculer le coefficient de corrélation linéaire de X et Y, $\mathbb{P}(X < 0)$ et $\mathbb{P}(X Y < 0)$.
- b) Déterminer la valeur de α telle que $\mathbb{P}(|X+Y| \leq \alpha) \geq 0.9$.

Exercice 8. Soit (X,Y) deux variables aléatoires gaussiennes indépendantes de même loi $\mathcal{N}(0,1)$. On pose U=X/Y. Montrer que U suit une loi de Cauchy, i.e. une loi dont la densité de probabilité est de la forme $f(u)=\frac{1}{\pi(u^2+1)}$.