Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Instytut Informatyki PK

Wektory

Wektory i skalary Dodawanie wektorów Mnożenie wektorów

Ruch w kilku wymiarach

Przemieszczenie, prędkość i przyspieszenie Rzut ukośny Ruch jednostajny po okręgu

Wektory i skalary

Różne drogi dla tego samego przemieszczenia

Definicja

Skalar — wielkość fizyczna, która jest scharakteryzowana tylko przez wartość

Np.: temperatura, masa, czas

Definicja

Wektor — wielkość, która ma wartość (wartość bezwzględną, moduł) oraz kierunek Np.: przemieszczenie, prędkość, przyspieszenie

Geometryczne dodawanie wektorów

Suma \vec{s} wektorów \vec{a} i \vec{b}

Równanie wektorowe:

$$\vec{s} = \vec{a} + \vec{b}$$

Przemienność dodawania:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Łączność dodawania:

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

Odejmowanie wektorów:

$$\vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Składowe wektorów

Wektory składowe \vec{a}_x i \vec{a}_y wektora \vec{a}

Definicje

Wektorami składowymi wektora nazywamy jego rzuty na osie współrzędnych.

Składowe (współrzędne) wektora *ā* są to liczby:

$$a_x = x_2 - x_1 = a \cos \theta$$

$$a_v = y_2 - y_1 = a \sin \theta$$

Długość (wartość bezwzględna, moduł) wektora \vec{a} :

$$a = \sqrt{a_x^2 + a_y^2}$$

Kąt θ spełnia zależność:

$$tg \theta = a_X/a_Y$$

Wektory jednostkowe

Definicja

Wektorem jednostkowym nazywamy wektor o długości równej 1, skierowany w określonym kierunku.

Wektory jednostkowe î, ĵ, k w prawoskrętnym układzie współrzędnych w przestrzeni trójwymiarowej.

Dodawanie składowych wektorów

Wektory składowe wektora *ā* Wektory składowe wektora a można wyrazić przez wektory jednostkowe:

$$\vec{a}_x = a_x \hat{i}, \quad \vec{a}_y = a_y \hat{k}.$$

Stąd:
 $\vec{a} = a_x \hat{i} + a_y \hat{k}$

 Algebraiczne dodawanie wektorów równanie wektorowe:

$$\vec{r} = \vec{a} + \vec{b}$$

jest równoważne równaniom dla składowych:

$$r_x = a_x + b_x$$
,
 $r_y = a_y + b_y$,
 $r_z = a_z + b_z$.

Wektory a prawa fizyki

Obrót układu współrzędnych o kąt ϕ

- Możemy wybierać różne układy współrzędnych (obroty, przesunięcia).
- Współrzędne wektorów zmieniają się wtedy.
- Same wektory, ich zależności, długości są niezmienne, np.: $a^2 = a_x^2 + a_y^2 = a_x'^2 + a_y'^2$
- Dotyczy to również fizycznych wielkości wektorowych.

Mnożenie przez skalar i iloczyn skalarny

Mnożenie wektora a przez skalar s

Wynikiem jest wektor o długości a|s| i kierunku przeciwnym, jeśli s < 0

Definicja

Iloczyn skalarny wektorów \vec{a} i \vec{b} jest liczbą:

$$\vec{a} \cdot \vec{b} = ab \cos \phi$$
,

gdzie ϕ oznacza kąt między kierunkami \vec{a} i \vec{b} .

- $\vec{a} \cdot \vec{b} = 0$ dla wektorów prostopadłych
- $\vec{a} \cdot \vec{a} = a^2$
- Obliczanie przez składowe:

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Iloczyn wektorowy

Iloczyn wektorowy wektorów \vec{a} i \vec{b}

Definicja

Iloczynem wektorowym $\vec{a} \times \vec{b}$ wektorów \vec{a} i \vec{b} jest wektor \vec{c} o długości:

$$c = ab \sin \phi$$
,

gdzie ϕ oznacza mniejszy z kątów między \vec{a} i \vec{b} .

Wektor \vec{c} jest prostopadły do płaszczyzny wyznaczonej przez \vec{a} i \vec{b} . Kierunek \vec{c} określa reguła śruby prawoskrętnej (prawej dłoni).

- $\bullet \ \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$
- $\vec{a} \times \vec{b} = 0$, jeśli \vec{a} , \vec{b} równoległe.

$$c_{x} = a_{y}b_{z} - a_{z}b_{y},$$

$$c_{y} = a_{z}b_{x} - a_{x}b_{z},$$

$$c_{z} = a_{x}b_{y} - a_{y}b_{x}.$$

Położenie, przemieszczenie i prędkość średnia

Wektor położenia \vec{r} (wodzący):

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Wektor przemieszczenia $\Delta \vec{r}$:

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 ,$$

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

Wektor prędkości średniej $\vec{v}_{\text{śr}}$:

$$\vec{v}_{\text{śr}} = \frac{\Delta x}{\Delta t},$$

$$\vec{v}_{\text{śr}} = \frac{\Delta x}{\Delta t}\hat{i} + \frac{\Delta y}{\Delta t}\hat{j} + \frac{\Delta z}{\Delta t}\hat{k}$$

Prędkość chwilowa

Tor cząstki

Wektor prędkości chwilowej \vec{v} :

$$\vec{v} = \frac{d\vec{r}}{dt},$$

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k},$$

$$v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}, \quad v_z = \frac{dz}{dt}.$$

 Kierunek prędkości chwilowej jest zgodny z kierunkiem stycznej do toru cząstki w punkcie gdzie ona się znajduje.

Przyspieszenie

Tor cząstki

Wektor przyspieszenia średniego $\vec{a}_{\text{śr}}$:

$$\vec{a}_{\mathsf{sr}} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} = \frac{\Delta \vec{v}}{\Delta t}$$

Wektor przyspieszenia chwilowego \vec{a} :

$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} ,$$

$$a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t}, \quad a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t}, \quad a_z = \frac{\mathrm{d}v_z}{\mathrm{d}t}.$$