DC Motor Velocity Control Using Pulse Width Modulation (PWM)

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

Agenda for Discussion

- Introduction
 - Pulse Width Modulation
 - Duty Cycle
- PWM Generation in AVR
 - Timers in AVR
 - Timer/Counter 5 (TCNT5)
 - Output Compare Register
 - TCCR5A
 - TCCR5B
 - Summary
 - Program

• Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- 2 The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- ② The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- 3 Examples: Electric stoves, Lamp dimmers, and Robotic Servos

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- ② The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Examples: Electric stoves, Lamp dimmers, and Robotic Servos

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- 2 The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Servos Examples: Electric stoves, Lamp dimmers, and Robotic Servos

• The signal remains "ON" for some time and "OFF" for some time.

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- ▼ Toff = Time the output remains Low.

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- Toff = Time the output remains Low.
- When output is high the voltage is 5v

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- Toff = Time the output remains Low.
- When output is high the voltage is 5v
- When output is low the voltage is 0v

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- \bigcirc Toff = Time the output remains Low.
- When output is high the voltage is 5v
- When output is low the voltage is 0v
- \bullet Time Period(T) = Ton + Toff

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- Toff = Time the output remains Low.
- When output is high the voltage is 5v
- When output is low the voltage is 0v
- Time Period(T) = Ton + Toff
 - Duty Cycle = Ton*100/(Ton + Toff)

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- Toff = Time the output remains Low.
- \bigcirc When output is high the voltage is 5v
- When output is low the voltage is 0v
- \bigcirc Time Period(T) = Ton + Toff
- Outy Cycle = Ton*100/(Ton + Toff)
- **⊘** Duty Cycle = 50%

 $oldsymbol{\circ}$ Ton = Time the output remains high = 1

Toff = Time the output remains Low = 7

 \bigcirc Toff = Time the output remains Low = 7

Outy Cycle = 12.5%

Ton = Time the output remains high = 6

- \bigcirc Toff = Time the output remains Low = 2
- Outy Cycle = 75%

Fimers in AVR
Fimer/Counter 5 (TCNT5)
Output Compare Register
FCCR5A
FCCR5B
Summary
FORGER

PWM Generation in AVR

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

PWM Generation in AVR

Pulse width waveform generated for motion control of Firebird V is:

Pulse width waveform generated for motion control of Firebird V is:

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

▼ Timer/Counter register 5 (TCNT5)

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

- Timer/Counter register 5 (TCNT5)
 - Output Compare registers 5 (OCR5A and OCR5B)

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

- Timer/Counter register 5 (TCNT5)
- Output Compare registers 5 (OCR5A and OCR5B)
- ▼ Timer/Counter Control registers (TCCR5A and TCCR5B)

outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Timers in AVR

Timers in AVR
Timer/Counter 5 (TCNT5
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Timers in AVR

• The AVR microcontroller ATmega2560 has

- 1 The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and

- The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)

- 1 The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start

- 1 The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start
 - For 8-bit counter, roll over occurs at 255 count and

- The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start.
 - For 8-bit counter, roll over occurs at 255 count and
 - For 16-bit counter it occurs at 65535 count

- The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start.
 - For 8-bit counter, roll over occurs at 255 count and
 - For 16-bit counter it occurs at 65535 count

3 For speed control of Firebird V, Timer 5 is used.

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5B
TCCR5B
Summary

Timer/Counter 5 (TCNT5)

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Timer/Counter 5 (TCNT5)

● The Timer/Counter is a register that increments its value after every clock cycle.

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Timer/Counter 5 (TCNT5)

- The Timer/Counter is a register that increments its value after every clock cycle.
- 2 The maximum value depends upon the resolution of Counter.

- The Timer/Counter is a register that increments its value after every clock cycle.
- The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

- The Timer/Counter is a register that increments its value after every clock cycle.
- The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

4 For n-bit counter, maximum value $= 2^n - 1$.

- The Timer/Counter is a register that increments its value after every clock cycle.
- The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

- **4** For n-bit counter, maximum value $= 2^n 1$.
- **5** The Timer/Counter 5 is a 16 bit register.

- The Timer/Counter is a register that increments its value after every clock cycle.
- The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

- **4** For n-bit counter, maximum value $= 2^n 1$.
- **1** The Timer/Counter 5 is a 16 bit register.
- We use it in 8-bit mode, for PWM generation.

outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Output Compare Register (OCR5A, OCR5B and OCR5C)

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Output Compare Register (OCR5A, OCR5B and OCR5C)

• The value of the Timer/Counter 5 is constantly compared with a reference value.

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5B
TCCR5B
Summary
Program

Output Compare Register (OCR5A, OCR5B and OCR5C)

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- 2 This reference value is given in the Output Compare Register (OCR).

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Output Compare Register (OCR5A, OCR5B and OCR5C)

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- Ohis reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Output Compare Register (OCR5A, OCR5B and OCR5C)

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- Or This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.
- For motion control of Firebird V, we use OCR5A and OCR5B registers.

Timers in AVR Output Compare Register

Output Compare Register (OCR5A, OCR5B and OCR5C)

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.
- For motion control of Firebird V, we use OCR5A and OCR5B registers.
- OCR5A is associated with the OC5A pin (PORTL3). This pin is connected to the enable(EN2) pin of motor driver, which is associated with the left motor.

Output Compare Register (OCR5A, OCR5B and OCR5C)

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- Or This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.
- For motion control of Firebird V, we use OCR5A and OCR5B registers.
- OCR5A is associated with the OC5A pin (PORTL3). This pin is connected to the enable(EN2) pin of motor driver, which is associated with the left motor.
- Similarly, OCR5B is associated with the OC5B pin (PORTL4). This pin is connected to the enable(EN1) pin of motor driver, which is associated with the right motor.

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

PWM signal for Left and Right motor

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

PWM signal for Left and Right motor

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

TCCR5A- Timer Counter Control Register A

TCCR5A

TCCR5A- Timer Counter Control Register A

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

Timers in AVR
Timer/Counter 5 (TCNT5
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

TCCR5A- Timer Counter Control Register A

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

 $TCCR5A = 0 \times A9$

TCCR5A- Timer Counter Control Register A

Т	Bit	Symbol	Description	Bit Value
	7	COM5A1	Compare Output Mode for Channel A bit 1	1
	6	COM5A0	Compare Output Mode for Channel A bit 0	0
	5	COM5B1	Compare Output Mode for Channel B bit 1	1
	4	COM5B0	Compare Output Mode for Channel B bit 0	0
	3	COM5C1	Compare Output Mode for Channel C bit 1	1
ĺ	2	COM5C0	Compare Output Mode for Channel C bit 0	0
	1	WGM11	Waveform Generation Mode bit 1	0
ĺ	0	WGM10	Waveform Generation Mode bit 0	1

 $TCCR5A = 0 \times A9$

• There are 2 types of bits in TCCR5A: Compare output mode bit waveform generation mode bit.

TCCR5A- Timer Counter Control Register A

Т	Bit	Symbol	Description	Bit Value
	7	COM5A1	Compare Output Mode for Channel A bit 1	1
	6	COM5A0	Compare Output Mode for Channel A bit 0	0
	5	COM5B1	Compare Output Mode for Channel B bit 1	1
	4	COM5B0	Compare Output Mode for Channel B bit 0	0
	3	COM5C1	Compare Output Mode for Channel C bit 1	1
	2	COM5C0	Compare Output Mode for Channel C bit 0	0
	1	WGM11	Waveform Generation Mode bit 1	0
	0	WGM10	Waveform Generation Mode bit 0	1

$TCCR5A = 0 \times A9$

- There are 2 types of bits in TCCR5A: Compare output mode bit waveform generation mode bit.
- 2 Compare Output Mode bits decide the action to be taken when counter(TCNT5) value matches reference value in Output Compare Register(OCR5).

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Compare Output Mode bits

TCCR5A

Compare Output Mode bits

Table 17-4 Compare Output Mode, Fast PWM

		output mous, ruet rum		
COMnA1 COMnB1 COMnC1	COMnA0 COMnB0 COMnC0	Description		
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected.		
0	WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B and disconnected (normal port operation). For all other WGM1 settings, port operation, OC1A/OC1B/OC1C disconnected.			
1 0		Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at BOTTOM (non-inverting mode).		
1	1	Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at BOTTOM (inverting mode).		

outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Cont..

Cont...

• We are using non-inverting mode for PWM generation.

Cont..

- We are using non-inverting mode for PWM generation.
- 2 Non-inverting mode and inverting mode

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Waveform Generation Bit

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Waveform Generation Bit

Table 17-2. Waveform Generation Mode Bit Description⁽¹⁾

Table 17-2. Wavelorin denotation would be Description								
Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation	ТОР	Update of OCRnX at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	CTC	OCRnA	Immediate	MAX
5	0	- 1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM,Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	CTC	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	BOTTOM	TOP
15	1	1	1	1	Fast PWM	OCRnA	BOTTOM	TOP

outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

TCCR5B- Timer Counter Control Register B

TCCR5B- Timer Counter Control Register B

Bit	Symbol	Description	Bit Value
7	ICNC5	Input Capture Noise Canceller	0
6	ICES5	Input Capture Edge Select	0
5	_	Reserved Bit	0
4	WGM53	Waveform Generation Mode bit 3	0
3	WGM52	Waveform Generation Mode bit 2	1
2	CS52	Clock Select	0
1	CS51	Clock Select	1
0	CS50	Clock Select	1

TCCR5B- Timer Counter Control Register B

Bit	Symbol	Description	Bit Value
7	ICNC5	Input Capture Noise Canceller	0
6	ICES5	Input Capture Edge Select	0
5	_	Reserved Bit	0
4	WGM53	Waveform Generation Mode bit 3	0
3	WGM52	Waveform Generation Mode bit 2	1
2	CS52	Clock Select	0
1	CS51	Clock Select	1
0	CS50	Clock Select	1

TCCR5B = 0x0B

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5B
TCCR5B
Summary

Clock Select Bits

Clock Select Bits

Table 17-6. Clock Select Bit Description

CSn2	CSn1	CSn0	Description
0	0	0	No clock source. (Timer/Counter stopped)
0	0	1	clk _{I/O} /1 (No prescaling
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{l/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on Tn pin. Clock on falling edge
1	1	1	External clock source on Tn pin. Clock on rising edge

$$PWM_{frequency} = Clock_{frequency}/(N*255)$$

where,

$$\mathsf{Clock}_{\mathit{frequency}} = 14745600 \mathit{Hz}$$

N = prescaler factor

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Summary

Summary

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

Summary

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

 \bigcirc TCNT5L = 0x00

Summary

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0x00
- \bigcirc TCCR5A = 0×A9

Summary

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0x00
- \bigcirc TCCR5A = 0×A9
- **⊘** TCCR5B = 0x0B

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0×00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0x00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00
- \bigcirc OCR5AL = 0xFF

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0×00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00
- \bigcirc OCR5AL = 0xFF
- \bigcirc OCR5BH = 0x00

In order to use Fast PWM mode to control the speed of DC motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0x00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00
- \bigcirc OCR5AL = 0xFF
- **OCR5BH** = 0×00

 \bigcirc OCR5BL = 0xFF

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Syntax for C-Program

PWM Initialization

Syntax for C-Program

PWM Initialization

Port Pin Config

Syntax for C-Program

PWM Initialization

```
Port Pin Config

void motion_pin_config (void) //Configure Pins as Output
{
    //Port A for motion control and Port L for Velocity Control must be defined Output
}
```


Syntax for C-Program

PWM Initialization

```
Port Pin Config

void motion_pin_config (void) //Configure Pins as Output
{
    //Port A for motion control and Port L for Velocity Control must be defined Output
}
```

PWM Initialization

Syntax for C-Program

PWM Initialization

```
Port Pin Config
void motion_pin_config (void) //Configure Pins as Output
 //Port A for motion control and Port L for Velocity Control must be defined Output
```

```
PWM Initialization
void timer5_init() //Set Register Values for starting Fast 8-bit PWM
  TCCR5A = 0xA9;
  TCCR5B = 0x0B;
  TCNT5L = 0x00:
  OCR5AH = 0x00;
  OCR5AL = OxFF;
  OCR5BH = 0x00:
  OCR5BL = OxFF:
```


19/21

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Syntax for C-Program

Program

Syntax for C-Program

Program

```
Main Program
```


Syntax for C-Program

Program

```
Main Program
int main(void) {
    motion_pin_config();
    timer5_init();
    forward();
    while(1)
    {
        velocity(100,100);
        _delay_ms(500);
        velocity(0,255);
        _delay_ms(500);
    }
}
```


Syntax for C-Program

Program

```
Main Program

int main(void)
{
    motion_pin_config();
    timer5_init();
    forward();
    while(1)
    {
        velocity(100,100);
        _delay_ms(500);
        velocity(0,255);
        _delay_ms(500);
}
```

Velocity Function

Program

Syntax for C-Program

Program

```
Main Program
int main(void)
 motion_pin_config();
 timer5_init();
 forward():
 while(1)
    velocity(100,100);
    _delay_ms(500);
    velocity(0,255);
    _delay_ms(500);
```

Velocity Function

```
void velocity (unsigned char left_motor, unsigned char right_motor)
   OCR5AL = (unsigned char)left_motor;
   OCR5BL = (unsigned char)right_motor;
```

www.e-yantra.org

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary
Program

Thank You!

Post your queries on: support@e-yantra.org

