BAD194.69.09 96-152035/16 +DE 4432081-A1 BASFAC 94.09.09 94DE-4432081 (96.03.14) B29C 65/14, 65/16 Radiation welding of the moplastics and non melting materials major last that avoiding the use of exponsive fixtures and complex equipment to apply energy to the joint Addal Date WELZM: ROOS R The posts to be connected are first luterlocked or held soguither by integral excesses, locked into the correct end position, to bring the joint surfaces into contact. They are then irradiated to mak them ingether,

and the bunk is coulded. Blust contacting curfaces may be joined. avoiding implication of sucrounding edge regions. Laser light with a wavalength between 0.5 and 10.90 µm, pref. between 0.70 and 10.64 um is used. To weld non-thermoplestics, their joining surfaces are custed with thermuplantic.

To join thermoplastic parts using baser energy.

A(11-C1B)

ADVANTACE

The mather of joining thermoplastics avoids the use of special fixures and expensive equipment to produce the necessary benting at the join. These disalvantages arrend the use of e.g. ultrasome and the the join. I have distinguishing a second up the of e.g. unresome and the thore specialised intery friction welding. The moderal swould their use, and the energy can be directed where required. It is possible to weld without y all types of themoplastics by these means. Carbon black or alternatively highlicine additions, in concentrations of 0.01 to 0.1% may be used to increase the absorbation of authorize. (CCI) may be used to increase the absorption of recistion. (CCI)

DB 4432081-A+

. .

X	Di)		0		· ·	econociones.	s in the second				one one	***************************************		erana namero.	
		Folt Discuss	<u> </u>	espûgenet	aserlight					and and said	B29C65/58		rst interlocked or held together by internal stresses, locked into the correct end position, to bring the joint surfaces into contact. They are ether, and the bond is cooled. Blunt contacting surfaces may be joined, avoiding irradiation of surrounding edge regions. Laser light with 10.90 mu m, pref. between 0.70 and 10.64 mu m is used. To weld non-thermoplastics, their joining surfaces are coated with	Tabase - 12	
🚰 82 esp@cenet - Document Viewer Navigation - Microsoft Internet Explorer	Edit View Favorites Jools Help	3 ② 图 图 图 ② 例 ② 图 图 图 图 图 图 图 图 图 图 图 Refresh Home Search Favorites Media History Mail Print	ress (趣) http://l2.espacenet.com/espacenet/viewer?PN=DE4432081&CY=epbd.G=en&DB=EPD	DE4432081 Biblio Desc Claims Page Drawing	Radiation welding of thermoplastics and non melting materials usi	為 Patent Number. DE4432081 Publication date: 1996-03-14	引 Inventor(s): ROOS ROLAND (DE); WELZ MARTIN (DE) — Applicant(s): BASF AG (DE)	Requested Patent: 区 DE4432091	Application Number.	Priority Number(s): DE19344432081 19940909	EC Classification: <u>B29C65/16, B29C65/72, B29C65/00H8C, B29C65/00M8F, B29C65/00M8F4, B29C65/58</u> Equivalents:	Abstract	The parts to be connected are figure in them together in the service of the servi	Data supplied from the esp@cenet database - I2	置] http://i2.espacenet.com/espacenet/bnsviewer?CY=ep&d.G=en&DB=EPD&PN=DE4432081&ID=DE+++4432081A1+I+
Ø]82 e	뺽	⊕ ₹	Address	6	❖	€				ll o	Pu (9			el http:

(19) BUNDESREPUBLIK **DEUTSCHLAND**

[®] Off nl gungsschrift [®] DE 44 32 081 A 1

(6) Int. Cl.8: B 29 C 65/14 B 29 C 85/18 // (B29K 105:08, 23:00,77:00,35:00, 25:00,83:00,61:04)

DEUTSCHES PATENTAMT

- (21) Aktenz ichen: P 44 32 081.7 Anmeldetag:
- 9. 9.94 (43) Offenlegungstag: 14. 3.98

71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Welz, Martin, 67098 Bad Dürkheim, DE; Roos, Roland, 67240 Bobenheim-Roxheim, DE

- (64) Verfahren zum Schweißverbinden von Kunststoffteilen
- 57 Fügeteile (1 und 2) aus Thermoplasten werden mit Hilfe von Strahlungsenergie (3) miteinander verschweißt, wobei die zu verbindenden Teile während des Schweißvorgangs durch Formschluß oder inneren Kraftschluß an den Fügeflächen (4) zusammengehalten werden.

Beschreibung

Die Erfindung betrifft ein Verfahren zum Schweißverbinden von Kunststoffteilen mit Hilfe von Strahlungsenergie.

Formteile aus thermoplastischen Kunststoffen können nach unterschiedlichen Schweißverfahren miteinander verbunden werden, wobei für das Aufschmelzen der Fügeflächen viele Energiearten eingesetzt werden, z. B. Warmgas, IR-Strahlung, beheizte Platten oder Formtei- 10 le, Reibung durch Rotation oder Vibration, Ultraschall und hochfrequente elektromagnetische Felder.

Für die Serienfertigung von kleinen Formteilen bis etwa 150 mm Durchmesser, wird bevorzugt das Ultraschallschweißverfahren eingesetzt, da es mit Schweiß- 15 zeiten unter einer Sekunde sehr wirtschaftlich arbeitet. Bei größeren Formteilen wird das Vibrationsschweißverfahren mit Schweißzeiten von wenigen Sekunden bevorzugt. Das Rotationsreibschweißverfahren ist auf rotationssymmetrische Teile beschränkt, und das Heiz- 20 elementschweißen benötigt lange Aufheizzeiten.

Die genannten Schweißverfahren benötigen spezielle, zum Teil sehr aufwendige Werkzeuge für die Fixierung und ggf. auch zur Energieeinbringung, z. B. Heizelemente, Sonotroden usw., da insbesondere bei den 25 Reibschweißverfahren hohe Kräfte aufgebracht werden müssen. Beim Ultraschallschweißen und beim Vibrationsschweißen werden zusätzlich die Teile und gegebenenfalls darin enthaltene Funktionsteile, z. B. Elektronik durch hohe Beschleunigungskräfte belastet und mögli- 30 cherweise beschädigt. Beim Heizelementschweißen ist eine Schädigung durch Wärmestrahlung oder Konvektion oft nicht auszuschließen.

Vorliegender Erfindung liegt dementsprechend die Aufgabe zugrunde, ein Verfahren zum Schweißverbinden von Kunststoffteilen mit Hilfe von Strahlungsenergie zu entwickeln, welches ohne Vorrichtungen zur Fixierung der zu verbindenden Teile und ohne aufwendige Einrichtungen zum Einbringen der Schweißenergie auskommt.

Die Lösung der Aufgabe besteht in einem Verfahren der genannten Art, bei dem gemäß der Erfindung die zu verbindenden Teile zuerst durch Formschluß oder inneren Kraftschluß in der richtigen Endlage miteinander und anschließend mit Strahlungsenergie beaufschlagt werden.

Weitere Einzelheiten und Vorteile des Verfahrens nach der Erfindung sind anhand in der Zeichnung schematisch dargestellter Ausführungsbeispiele nachfol- 50 gend beschrieben.

Es zeigen

Fig. 1 eine formschlüssige Fixierung der zu verbindenden Fügeteile und Beaufschlagung mit Strahlungs-

Fig. 2 das Verbinden stumpf aufeinander stoßender Fügeflächen mittels Strahlungsenergie.

Das Verbinden von Formteilen aus Thermoplasten durch Schweißen mit energiereicher Strahlung ist einfach auszuführen, wenn ein Fügeteil 1 (Fig. 1) aus Strah- 60 lung gut absorbierendem und das zweite 2 aus Strahlung zumindest teilweise durchlässigem aber mit dem ersten Teil gut verschweißbarem Material besteht.

Durch die energiereiche Strahlung 3, beispielsweise Laserstrahlen, die durch das durchlässige bzw. teil- 65 durchlässige Fügeteil auf die Fügefläche 4 des absorbierenden Fügeteils 1 dringt, wird letztere aufgeschmolzen und erwärmt auch die Fügefläche des nicht absorbieren-

den Teils 2, da die Schmelze - bedingt durch die Ausdehnung auf ein größeres Volumen - auch in der Lage ist, kleinere Spalte zu überbrücken. So wird bei Erzeugung eines ausreichenden Schmelzev lumens ein Schweißdruck von innen aufgebaut. Bei Abkühlung der Teile baut sich dieser Druck wieder ab.

Beim Schweißen mit energiereichen Strahlen wird im Gegensatz zu anderen Schweißverfahren, wie Vibration oder Ultraschall, nur ein kleiner Bereich der Fügezone aufgeschmolzen (Fig. 2), die restliche Fügezone wirkt dabei als Abstandshalter, die die von außen aufgebrachte Schweißkraft abfängt. Es ist daher wichtig, daß keine Schmelze durch Austrieb verloren geht, damit beim Abkühlen keine Vakuolen oder Eigenspannungen durch Schrumpfung entstehen.

Ferner ist die Vermeidung von Schmelzeaustrieb hinsichtlich des Aussehens und der Funktion der Formteile von großem Vorteil und erspart eine sonst notwendige Nacharbeit. Konstruktive Maßnahmen, wie sie zum Verdecken des Austriebs erforderlich sind, können somit entfallen. Beispielsweise wird bei stumpf aufeinanderstoßenden Fügeflächen nach allen Seiten ein von der Energiestrahlung nicht beaufschlagter Randbereich 5 (Fig. 2) eingehalten.

Das gegenseitige Fixieren der Fügeteile 1 und 2 erfolgt erfindungsgemäß durch Formschluß, z.B. durch Einrastverbindungen oder Gewinde oder inneren Kraftschluß, wie Verschraubungen oder Magnete. Diese Fixierung braucht nur so dimensioniert werden, daß der örtlich entstehende Schweißdruck, der sich mit der Strahlführung entlang der Nahtkontur bewegt, aufgenommen wird. Die Teile können dann, beispielsweise von einem Roboter, so geführt werden, daß die Schweißnahtkontur vom energiereichen Strahl immer frei erreichbar ist. Eine von außen aufzubringende Fixierung würde beide Fügeteile erfassen und daher die Strahlführung erheblich behindern und die Teile mechanisch belasten. Die Relativgeschwindigkeit zwischen Schweißstrahl und der zu schweißenden Naht, die Vorschubgeschwindigkeit also, hängt vom Material und dessen Wandstärke sowie von der Nahtbreite und der Strahlleistung ab und liegt gewöhnlich zwischen 0,5 und 10 m/min.

Für das Schweißen mit energiereichen Strahlen sind fixiert und die Fügeflächen dabei in Kontakt gebracht 45 fast alle Thermoplaste geeignet. Die Durchlässigkeit bzw. Absorption der Strahlung ist sowohl vom Thermoplasttyp und den Zusätzen, wie Füllstoffe und Pigmente als auch von der Wellenlänge und Energiedichte der eingesetzten Strahlen abhängig. Zum Verbinden von nichtthermoplastischen Fügeteilen können diese mit thermoplastischen Beschichtungen an den Fügeflächen versehen werden.

> Für das erfindungsgemäße Schweißverfahren und die dafür bevorzugt eingesetzten Strahlen eines Nd:YAG - Lasers sind als durchlässige oder teildurchlässige Thermoplaste insbesondere geeignet:

Polyolefine, Polyamide, Polyformaldehyd, PMMA, PBT, PET. Weiterhin sind auch Styrolpolymere und -copolymere, Polysulfone u. a. geeignet.

Die erforderliche Strahlenabsorption von Thermoplasten ist durch verschiedene Zusätze auf die gewünschte Strahleindringtiefe einstellbar. Dabei haben sich die verschiedensten Farbmittel, insbesondere aber Ruß oder Nigrosin in einer Konzentration von 0,01 bis 0,10% bewährt.

Andere Zusätze, beispielsweise Glasfasern, Glaskugeln und andere Füllstoffe, erhöhen zwar die Streuung der Strahlung in den Teilen und verkleinern damit die

4

Eindringtiefe, verhindern aber nicht v llständig die Durchdringung, so daß auch derartige Materialien für zu durchstrahlende Teile bedingt geeignet sind. Auch diese gefüllten Thermoplaste sind durch spezielle Zusätze so einstellbar, daß sie die energiereiche Strahlung in 6 der Oberfläche absorbieren.

Als energiereiche Strahlung werden Laserstrahlen beispielsweise einer Wellenlänge zwischen 0,50 und 10,90 µm, vorzugsweise zwischen 0,70 und 3 µm eingesetzt. Die Erzeugung der Strahlung und deren Eigenschaften sind in der einschlägigen Literatur beschrieben. Dabei sind alle Laserquellen einzusetzen, die Thermoplaste erwärmen können, insbesondere Laser, die im Infrarotbereich emittieren. Bevorzugt wird für das Schweißen von Thermoplasten der Nd:YAG — Laser 15 eingesetzt, für viele Anwendungen ist aber auch der CO₂-Laser geeignet.

Bei einer Kombination von Fügeteilen aus nicht absorbierendem und absorbierendem Material wird die Fügefläche des absorbierenden Unterteils durch das 20 Oberteil hindurch bestrahlt und durch die Absorption in der Oberfläche aufgeheizt und aufgeschmolzen. Dabei ist es von Vorteil, wenn der Einfallswinkel α möglichst klein ist, um Verluste durch Reflexion gering zu halten.

Beim Verschweißen von Fügeteilen aus stark absorbierenden Materialien und bei Stumpfschweißnähten ist auch eine Bestrahlung in der Schweißebene möglich. Die Nahtbreite entspricht dann der Eindringtiefe des Strahles.

Patentansprüche

1. Verfahren zum Schweißverbinden von Kunststoffteilen mit Hilfe von Strahlungsenergie, dadurch gekennzeichnet, daß die zu verbindenden 35 Teile zuerst durch Formschluß oder inneren Kraftschluß in der richtigen Endlage miteinander fixiert und die Fügeflächen dabei in Kontakt gebracht und anschließend so lange mit Strahlungsenergie beaufschlagt werden, bis in der vorgesehenen Schweißzone die Kunststoffteile aufgeschmolzen sind, sich dabei verbinden, und die auf diese Weise verbundenen Kunststoffmaterialien durch Abkühlen verfestigt werden.

 Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei stumpf aufeinander stoßenden Fügeflächen nach allen Seiten ein von der Energiestrahlung nicht beaufschlagter Randbereich eingehalten wird.

3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß als Energiestrahlung Laserstrahlen einer Wellenlänge zwischen 0,50 und 10,90 µm, vorzugsweise zwischen 0,70 und 10,64 µm eingesetzt werden.

4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß zum Schweißverbinden von nichtthermoplastischen Kunststoffteilen diese an den Fügeflächen mit thermoplastischem Kunststoffmaterial beschichtet werden.

Hierzu 1 Seite(n) Zeichnungen

60

30

Nummer: Int. Cl.8:

B 29 C 65/14

DE 44 32 081 A1

Off nlegungstag:

14. März 1996

