Amendments to the Claims:

The listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

3

4 5

6

1

2

1

2

- 1 Claim 1. (Currently Amended) A surface treatment method for a compound 2 semiconductor layer, the compound semiconductor layer including nitrogen, the method including a nitrogen plasma treatment step to recover: removing part of the compound semiconductor layer by dry etching;
 - performing a nitrogen plasma treatment step to recover from damage due to nitrogen vacancies arising in a surface of the compound semiconductor layer as a result of the dry etching.
 - Claim 2. (Currently Amended) The surface treatment method of claim 1, wherein the nitrogen plasma treatment step is performed by inductively coupled plasma reactive ion etching.
 - Claim 3. (Currently Amended) The surface treatment method of claim 1, wherein the nitrogen plasma treatment step is performed by non-etching exposure to nitrogen plasma.
- 1 Claim 4. (Currently Amended) The surface treatment method of claim 1, wherein further 2 comprising rinsing the treated surface of the compound semiconductor layer is rinsed with pure 3 water after the nitrogen plasma treatment step.

Claim	5.	(Currently	Ame	ended)	Α	surface	e treatment	method	l for	a	compound
semiconducto	r lay	er, the comp	ound	semic	conduc	tor lay	er being a co	mpound	semi	cone	luctor laye ı
comprising a	first	compound	semio	conduc	ctor la	yer inc	cluding nitrog	gen and	a sec	ond	compound
semiconducto	r la	yer formed	on	and d	lifferii	ng in	composition	from	the f	irst	compound
semiconductor layer, the method including:											

removing part of the second compound semiconductor layer by dry etching to partially expose a surface of the first compound semiconductor layer; and

performing a nitrogen plasma treatment step to recover from damage due to nitrogen vacancies arising in the exposed surface of the first compound semiconductor layer <u>as a result of the dry etching</u>.

- Claim 6. (*Original*) The surface treatment method of claim 5, wherein the first compound semiconductor layer comprises aluminum gallium nitride ($Al_xGa_{1-x}N$, 0 < x < 1) and the second compound semiconductor layer comprises gallium nitride (GaN).
- Claim 7. (*Original*) The surface treatment method of claim 5, wherein the nitrogen plasma treatment step is performed by inductively coupled plasma reactive ion etching.
- Claim 8. (*Original*) The surface treatment method of claim 5, wherein the nitrogen plasma treatment step is performed by non-etching exposure to nitrogen plasma.
- Claim 9. (*Currently Amended*) The surface treatment method of claim 5, wherein <u>further</u> <u>comprising rinsing</u> the treated surface of the first compound semiconductor layer is rinsed with pure water after the nitrogen plasma treatment step.

1	Claim 10. (Currently Amended) A method of fabrication of a semiconductor device, the							
2	method comprising:							
3	forming a compound semiconductor multilayer on a substrate, the compound							
4	semiconductor multilayer having a first compound semiconductor layer including nitrogen and a							
5	second compound semiconductor layer formed on and differing in composition from the first							
6	compound semiconductor layer;							
7	forming a first main electrode and a second main electrode on the second compound							
8	semiconductor layer, the first and second main electrodes being mutually separated by a certain							
9	distance;							
10	removing an area of the second compound semiconductor layer between the first main							
11	electrode and second main electrode by dry etching to expose a surface of the first compound							
12	semiconductor layer;							
13	annealing the partially exposed first compound semiconductor layer;							
14	treating at least part of the exposed surface area of the first compound semiconductor							
15	layer with nitrogen plasma to recover from damage due to nitrogen vacancies arising in the							
16	exposed surface of the first compound semiconductor layer as a result of the dry etching; and							
17	forming a gate compound semiconductor layer on said part of the exposed surface area of							
18	the first compound semiconductor layer.							
1	Claim 11. (Original) The method of fabrication of a semiconductor device of claim 10,							

wherein the first compound semiconductor layer comprises aluminum gallium nitride

 $(Al_xGa_{1-x}N, 0 < x < 1)$ and the second compound semiconductor layer comprises gallium nitride.

2

3

4

(GaN).

1 2

3

- Claim 12. (*Original*) The method of fabrication of a semiconductor device of claim 10, wherein the nitrogen plasma treatment step is performed by inductively coupled plasma reactive ion etching.
- Claim 13. (*Original*) The method of fabrication of a semiconductor device of claim 10, wherein the nitrogen plasma treatment step is performed by non-etching exposure to nitrogen plasma.
 - Claim 14. (*Original*) The method of fabrication of a semiconductor device of claim 10, further comprising rinsing the treated surface of the first compound semiconductor layer with pure water after the nitrogen plasma treatment step.
- Claim 15. (Original) The method of fabrication of a semiconductor device of claim 10, wherein the semiconductor device is a high electron mobility transistor.