K-moduli space of del pezzo surface pairs

Joint work with Long Pan and Haoyu Wu

Fei Si

BICMR, Peking university

Nov 24, 2023 AG seminar at MSRC, CQUT

• K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $Ric(\omega) = \omega$.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $Ric(\omega) = \omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $Ric(\omega) = \omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-polystability. It is proved by Chen-Donaldson-Sun and Tian.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $Ric(\omega) = \omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-polystability. It is proved by Chen-Donaldson-Sun and Tian.
- In 2017, Chi Li and K. Fujita discover the valuative criterion for K-stability, where many birational geometric tools can apply.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $Ric(\omega) = \omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-polystability. It is proved by Chen-Donaldson-Sun and Tian.
- In 2017, Chi Li and K. Fujita discover the valuative criterion for K-stability, where many birational geometric tools can apply.
- In the recent years, Xu's school developed algebraic K-stability theory and use the theory to construct good moduli spaces for K-polystable (log) Fano varieties.

K-stability: definition

Recall a log Fano variety (X,D) consists of a normal projective variety X and an effective \mathbb{Q} -divisor D such that $-(K_X+D)$ is ample \mathbb{Q} -Cartier divisor.

For example, $(X = \mathbb{P}^3, cS_4)$ for $c \in (0,1) \cap \mathbb{Q}$. If D = 0, log Fano = Fano.

K-stability: definition

Recall a log Fano variety (X,D) consists of a normal projective variety X and an effective \mathbb{Q} -divisor D such that $-(K_X+D)$ is ample \mathbb{Q} -Cartier divisor.

For example, $(X=\mathbb{P}^3,cS_4)$ for $c\in(0,1)\cap\mathbb{Q}$. If D=0, \log Fano = Fano.

Definition (Fujita-Li)

A log Fano variety (X, D) is K-semistable if

$$FL_{(X,D)}(E) := A_{(X,D)}(E) - S_{(X,D)}(E) \ge 0$$

for any prime divisor $E \subset Y \xrightarrow{\pi} X$. Here

$$A_{(X,D)}(E) := 1 + \operatorname{ord}_E(K_Y - \pi^*(K_X + D))$$

$$S_{(X,D)}(E) := \frac{1}{(-K_X - D)^n} \int_0^\infty \operatorname{vol}(-\pi^*(K_X + D) - tE) dt$$

Claim: $\mathbb{F}_1\cong \mathit{Bl}_p\mathbb{P}^2$ is K-unstable.

Claim: $\mathbb{F}_1 \cong Bl_p\mathbb{P}^2$ is K-unstable.

• Let $E \subset Bl_p\mathbb{P}^2$ be the exceptional divisor of blowups $\mu: Bl_p\mathbb{P}^2 \to \mathbb{P}^2$, then $A_{Bl_p\mathbb{P}^2}(E) = 1 + 0 = 1$.

Claim: $\mathbb{F}_1 \cong Bl_p\mathbb{P}^2$ is K-unstable.

- Let $E \subset Bl_p\mathbb{P}^2$ be the exceptional divisor of blowups $\mu: Bl_p\mathbb{P}^2 \to \mathbb{P}^2$, then $A_{Bl_p\mathbb{P}^2}(E) = 1 + 0 = 1$.
- Recall Zariski decomposition on normal projective surface X: let D be pesudo-effective \mathbb{Q} -divisor, then there is a unique decomposition D=P+N where $P,N\geq 0$ \mathbb{Q} -divisors such that $P.N_i=0$ for each component of N,P is nef and the intersection matrix of components of N is negative or N=0. In particular, $vol(D)=P^2$.

Claim: $\mathbb{F}_1 \cong Bl_p\mathbb{P}^2$ is K-unstable.

- Let $E \subset Bl_p\mathbb{P}^2$ be the exceptional divisor of blowups $\mu: Bl_p\mathbb{P}^2 \to \mathbb{P}^2$, then $A_{Bl_p\mathbb{P}^2}(E) = 1 + 0 = 1$.
- Recall Zariski decomposition on normal projective surface X: let D be pesudo-effective \mathbb{Q} -divisor, then there is a unique decomposition D=P+N where $P,N\geq 0$ \mathbb{Q} -divisors such that $P.N_i=0$ for each component of N,P is nef and the intersection matrix of components of N is negative or N=0. In particular, $vol(D)=P^2$.
- $-K_{Bl_p\mathbb{P}^2} tE = \mu^*\mathcal{O}(3) (t+1)E$ has Zariski decomposition $P_t = \mu^*\mathcal{O}(3) (t+1)E$ for $0 \le t \le 2$.

Claim: $\mathbb{F}_1 \cong Bl_p\mathbb{P}^2$ is K-unstable.

- Let $E \subset Bl_p\mathbb{P}^2$ be the exceptional divisor of blowups $\mu: Bl_p\mathbb{P}^2 \to \mathbb{P}^2$, then $A_{Bl_p\mathbb{P}^2}(E) = 1 + 0 = 1$.
- Recall Zariski decomposition on normal projective surface X: let D be pesudo-effective \mathbb{Q} -divisor, then there is a unique decomposition D=P+N where $P,N\geq 0$ \mathbb{Q} -divisors such that $P.N_i=0$ for each component of N,P is nef and the intersection matrix of components of N is negative or N=0. In particular, $vol(D)=P^2$.
- $-K_{Bl_p\mathbb{P}^2} tE = \mu^*\mathcal{O}(3) (t+1)E$ has Zariski decomposition $P_t = \mu^*\mathcal{O}(3) (t+1)E$ for $0 \le t \le 2$. Then

$$S_{Bl_p\mathbb{P}^2}(E) = \frac{1}{8} \int_0^2 (9 - (t+1)^2) dt = \frac{7}{6}$$

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

1 Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

- **1** Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable?
- ② (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

- **1** Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable?
- (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable?
- Ocalabi's Problem: Can we classify K-stable Fano 3 -folds?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

- **1** Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable?
- (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable?
- Ocalabi's Problem: Can we classify K-stable Fano 3 -folds?

At present, it is an active research direction to check K-stablity of log Fano varieties. The main two approaches

- Equivariant criterion and Abban-Zhuang's adjunction of stability threshold.
- Moduli method.

• Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.
- Moduli methods:
 - ① Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space $|\mathcal{O}_{\mathbb{P}^n}(3)|/\!\!/ \operatorname{PGL}(n+1)$.

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.
- Moduli methods:
 - Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space $|\mathcal{O}_{\mathbb{P}^n}(3)|/\!\!/ \operatorname{PGL}(n+1)$.
 - ② Ascher-DeVleming-Liu (2021) proved K-moduli space of $(\mathbb{P}^1 \times \mathbb{P}^1, cC)$ is isomorphic to VGIT

$$\mathbb{P}\mathcal{E}/\!\!/_{L_t}PGL(4), \ L_t = \mathcal{O}_{\mathbb{P}\mathcal{E}}(1) + p^*\mathcal{O}_{\mathbb{P}^9}(t)$$

where $p: \mathbb{P}\mathcal{E} \to |\mathcal{O}_{\mathbb{P}^3}(2)| = \mathbb{P}^9$ is a projective bundle parametrizing (2,4) complete intersections in \mathbb{P}^3 .

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.
- Moduli methods:
 - **1** Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space $|\mathcal{O}_{\mathbb{P}^n}(3)|$ // PGL(n+1).
 - ② Ascher-DeVleming-Liu (2021) proved K-moduli space of $(\mathbb{P}^1 \times \mathbb{P}^1, cC)$ is isomorphic to VGIT

$$\mathbb{P}\mathcal{E}/\!\!/_{L_t}PGL(4), \ L_t = \mathcal{O}_{\mathbb{P}\mathcal{E}}(1) + p^*\mathcal{O}_{\mathbb{P}^9}(t)$$

where $p: \mathbb{P}\mathcal{E} \to |\mathcal{O}_{\mathbb{P}^3}(2)| = \mathbb{P}^9$ is a projective bundle parametrizing (2,4) complete intersections in \mathbb{P}^3 .

3 Ascher-DeVleming-Liu (2022) gives full wall-crossing of K-moduli space for (\mathbb{P}^3, cS_4) , based on the work of Laza-O'Grady's work on moduli space of quartic K3 surfaces.

Equivariant criterion

Theorem (Zhuang 2021)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Equivariant criterion

Theorem (Zhuang 2021)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Assume effective torus action $T = (\mathbb{G}_m)^{\dim X - 1}$ on (X, D). Equivalently, $(\mathbb{C}(X))^T = \mathbb{C}(\mathbb{P}^1)$ and there is $X \dashrightarrow \mathbb{P}^1$.

Equivariant criterion

Theorem (Zhuang 2021)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Assume effective torus action $T = (\mathbb{G}_m)^{\dim X - 1}$ on (X, D). Equivalently, $(\mathbb{C}(X))^T = \mathbb{C}(\mathbb{P}^1)$ and there is $X \dashrightarrow \mathbb{P}^1$.

Theorem (Ilten- Süss 2017)

Let (X, D) be a 2-dimensional log Fano with an effective \mathbb{G}_m -action λ . Then (X, D) is K-polystable if and only if the followings hold:

- $FL_{(X,D)}(F) > 0$ for all vertical λ -invariant prime divisors F on X;
- **2** $FL_{(X,D)}(F) = 0$ for all horizontal λ -invariant prime divisors F on X;
- **3** $FL_{(X,D)}(v) = 0$ for the valuation v induced by the 1-PS λ .

 $C = H_X + H_y + 4H_z \sim -2K_{Bl_p\mathbb{P}^2}$ where H_X the proper transform of the line $\{x=0\} \subset \mathbb{P}^2$.

$$C=H_X+H_y+4H_z\sim -2K_{Bl_p\mathbb{P}^2}$$
 where H_X the proper transform of the line $\{x=0\}\subset \mathbb{P}^2$.

Proposition

 $(Bl_p\mathbb{P}^2, cC)$ is K-semistable if and only if $c = \frac{1}{14}$.

 $C=H_x+H_y+4H_z\sim -2K_{Bl_p\mathbb{P}^2}$ where H_x the proper transform of the line $\{x=0\}\subset \mathbb{P}^2$.

Proposition

 $(Bl_p\mathbb{P}^2, cC)$ is K-semistable if and only if $c = \frac{1}{14}$.

Proof.

- $A_{(Bl_p\mathbb{P}^2,cC)}(H_z) = 1 4c \ge S_{(Bl_p\mathbb{P}^2,cC)}(H_z) = \frac{5}{6}(1 2c)$ implies $c \le \frac{1}{14}$
- $A_{(Bl_p\mathbb{P}^2,cC)}(H_x) = 1 c \ge S_{(Bl_p\mathbb{P}^2,cC)}(H_x) = \frac{13}{12}(1 2c)$ implies $c \ge \frac{1}{14}$

 $C=H_x+H_y+4H_z\sim -2K_{Bl_p\mathbb{P}^2}$ where H_x the proper transform of the line $\{x=0\}\subset \mathbb{P}^2$.

Proposition

 $(Bl_p\mathbb{P}^2, cC)$ is K-semistable if and only if $c=\frac{1}{14}$.

Proof.

- $A_{(Bl_p\mathbb{P}^2,cC)}(H_z) = 1 4c \ge S_{(Bl_p\mathbb{P}^2,cC)}(H_z) = \frac{5}{6}(1 2c)$ implies $c \le \frac{1}{14}$
- $A_{(Bl_p\mathbb{P}^2,cC)}(H_x) = 1 c \ge S_{(Bl_p\mathbb{P}^2,cC)}(H_x) = \frac{13}{12}(1 2c)$ implies $c \ge \frac{1}{14}$
- The pair $(Bl_p\mathbb{P}^2,C)$ is toric. Computation of barycenters will show $(Bl_p\mathbb{P}^2,\frac{1}{14}C)$ is K-semistable. Or one can use a \mathbb{G}_m -equivariant criterion.

K-moduli spaces of log Fano varieties

• Due to many people's work (Jiang, Xu, Blum-Liu-Xu, Blum-Xu, Liu-Xu-Zhuang, Xu-Zhuang etc), there is a proper Artin stack of finite type $\mathfrak{P}^K(c)$ parametrizing K-semistable n-dimensional log Fano varieties (X,cD) with fixed volume $v=(-K_X)^n$ where $D\sim -2K_X$ and $c\in(0,\frac12)\cap\mathbb{Q}$.

K-moduli spaces of log Fano varieties

- Due to many people's work (Jiang, Xu, Blum-Liu-Xu, Blum-Xu, Liu-Xu-Zhuang, Xu-Zhuang etc), there is a proper Artin stack of finite type $\mathfrak{P}^K(c)$ parametrizing K-semistable n-dimensional log Fano varieties (X,cD) with fixed volume $v=(-K_X)^n$ where $D\sim -2K_X$ and $c\in(0,\frac12)\cap\mathbb{Q}$.
- Moreover, $\mathfrak{P}^K(c)$ has good moduli space

$$\mathfrak{P}^K(c) \to \mathrm{P}^K(c)$$

in the sense of J. Alper, which locally looks like

$$[Spec(R)/G] \rightarrow Spec(R^G)$$

where G is a reductive algebraic group.

K-moduli wall-crossing

Theorem (Ascher-DeVleming-Liu- 2019)

There are finitely many rational numbers (i.e., walls) $0 < w_1 < \dots < w_m < \frac{1}{2}$ such that

$$\overline{P}(c)^K \cong \overline{P}(c')^K \ \text{ for any } w_i < c, c' < w_{i+1} \text{ and any } 1 \leq i \leq m-1.$$

Denote $\overline{P}^K(w_i, w_{i+1}) := \overline{P}^K(c)$ for some $c \in (w_i, w_{i+1})$, then at each wall w_i , there is a flip (or divisorial contraction)

$$\overline{P}^K(w_{i-1}, w_i) \longrightarrow \overline{P}^K(w_i) \longleftarrow \overline{P}^K(w_i, w_{i+1})$$

which fits into a local VGIT.

K-moduli of del pezzo pair of degree 8

• Let $P^K(c)$ be the K-moduli space of 2-dimensional log Fano varieties with $(-K_X)^2 = 8$ and a general member is $(Bl_p\mathbb{P}^2, cC)$.

K-moduli of del pezzo pair of degree 8

- Let $P^K(c)$ be the K-moduli space of 2-dimensional log Fano varieties with $(-K_X)^2 = 8$ and a general member is $(Bl_p\mathbb{P}^2, cC)$.
- ullet $C\in |-2K_{BI_{D}\mathbb{P}^{2}}|$ can be viewed as $C=\pi^{st}D-2E$ where $D\subset \mathbb{P}^{2}$

$$D = \{z^4 f_2(x, y) + z^3 f_3(x, y) + \dots + f_6(x, y) = 0\}.$$

K-moduli of del pezzo pair of degree 8

- Let $P^K(c)$ be the K-moduli space of 2-dimensional log Fano varieties with $(-K_X)^2 = 8$ and a general member is $(Bl_p\mathbb{P}^2, cC)$.
- ullet $C\in |-2K_{BI_D\mathbb{P}^2}|$ can be viewed as $C=\pi^*D-2E$ where $D\subset \mathbb{P}^2$

$$D = \{z^4 f_2(x, y) + z^3 f_3(x, y) + \dots + f_6(x, y) = 0\}.$$

Assume $f_2(x, y)$ has rank 2, then curve D has the form

$$az^4xy + z^3\widetilde{f}_3(x,y) + z^2f_4(x,y) + zf_5(x,y) + f_6(x,y) = 0$$

Let $\mathbb{P}V\cong\mathbb{P}^{20}$ be the parameter space of such D and there is $T=(\mathbb{C}^*)^2$ -action on $\mathbb{P}V$ and define GIT space $\mathbb{P}V/\!\!/T$.

Moduli space

• Let $X = X_C \to Bl_p\mathbb{P}^2$ be the double cover branched along smooth curve $C \sim -2K_{Bl_p\mathbb{P}^2}$, then X is a K3 surface with anti-symplectic involution $\tau: X \to X$. Then NS(X) contains

$$\left(\begin{array}{cc} 0 & 2 \\ 2 & -2 \end{array}\right).$$

Its period domain \mathcal{D} is determined transcendental lattice $U^2 \oplus E_8 \oplus E_7 \oplus A_1$.

Moduli space

• Let $X = X_C \to Bl_p \mathbb{P}^2$ be the double cover branched along smooth curve $C \sim -2K_{Bl_p \mathbb{P}^2}$, then X is a K3 surface with anti-symplectic involution $\tau: X \to X$. Then NS(X) contains

$$\left(\begin{array}{cc} 0 & 2 \\ 2 & -2 \end{array}\right).$$

Its period domain \mathcal{D} is determined transcendental lattice $U^2 \oplus E_8 \oplus E_7 \oplus A_1$.

Via a period point of K3 surfaces, there is biratonal map

$$\mathrm{P}^{K}(c) \dashrightarrow \mathcal{F} = \Gamma \setminus \mathcal{D}, \ [(Bl_{p}\mathbb{P}^{2},C)] \mapsto H^{2,0}(S_{C}) \mod \Gamma$$

if $P^K(c)$ is nonempty.

Two divisors \mathcal{F}

• Hyperelliptic divisor H_h on $\mathcal{F} \colon X \xrightarrow{2:1} Bl_p \mathbb{P}^2$ branched along a general curve $C \in |-2K_{Bl_p \mathbb{P}^2}|$ tangent the (-1)-curve E.

$$NS(X) = \begin{pmatrix} & L & E_1 & E_2 \\ \hline L & 2 & 0 & 0 \\ E_1 & 0 & -2 & 1 \\ E_2 & 0 & 1 & -2 \end{pmatrix}$$

Two divisors \mathcal{F}

• Hyperelliptic divisor H_h on $\mathcal{F} \colon X \xrightarrow{2:1} Bl_p \mathbb{P}^2$ branched along a general curve $C \in |-2K_{Bl_p \mathbb{P}^2}|$ tangent the (-1)-curve E.

$$NS(X) = \begin{pmatrix} L & E_1 & E_2 \\ \hline L & 2 & 0 & 0 \\ E_1 & 0 & -2 & 1 \\ E_2 & 0 & 1 & -2 \end{pmatrix}$$

• Unigonal divisor H_u on $\mathcal{F}: X \xrightarrow{2:1} Bl_p \widetilde{\mathbb{P}(1,1,4)} \to Bl_p \mathbb{P}(1,1,4)$.

$$NS(X) = \begin{pmatrix} & E' & F' & H'_y \\ \hline E' & -2 & 0 & 2 \\ F' & 0 & -2 & 1 \\ H'_y & 2 & 1 & -2 \end{pmatrix}$$

Theorem A (Pan-Si-Wu,2023)

• The walls for K-moduli space $P^K(c)$ are

$$\begin{aligned} W_h = & \{ \ \frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7} \ \} \\ W_u = & \{ \ \frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118} \ \} \end{aligned}$$

Theorem A (Pan-Si-Wu,2023)

• The walls for K-moduli space $P^K(c)$ are

$$W_h = \left\{ \begin{array}{l} \frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7} \end{array} \right\}$$

$$W_u = \left\{ \begin{array}{l} \frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118} \end{array} \right\}$$

② If $c \in (0, \frac{1}{14})$, $P^{K}(c)$ is empty. If $c \in (\frac{1}{14}, \frac{5}{58})$, $P^{K}(c) \cong \mathbb{P}V /\!\!/ T$.

Theorem A (Pan-Si-Wu,2023)

1 The walls for K-moduli space $P^K(c)$ are

$$W_h = \left\{ \begin{array}{l} \frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7} \end{array} \right\}$$

$$W_u = \left\{ \begin{array}{l} \frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118} \end{array} \right\}$$

- ② If $c \in (0, \frac{1}{14})$, $P^K(c)$ is empty. If $c \in (\frac{1}{14}, \frac{5}{58})$, $P^K(c) \cong \mathbb{P}V /\!\!/ T$.
- **③** There are two divisorial contraction morphisms $P^K(w+\epsilon) \to P^K(w)$ at $w=\frac{5}{58}$ and $w=\frac{29}{106}$. The exceptional divisors $E_w^+ \subset P^K(w+\epsilon)$ is birational to hyperelliptic divisor $H_h($ resp. unigonal divisor H_u).

Table for K-wall

wall	curve B on \mathbb{P}^2	weight	curve singularity at p
$\frac{1}{14}$	$x^4zy=0$	(1,0,0)	A_1
14 5 58 1 10 7 62	$x^4z^2 + x^3y^3 = 0$	(0,2,3)	A_2
$\frac{1}{10}$	$x^4z^2 + x^3zy^2 + a \cdot x^2y^4 = 0$	(0,1,2)	A ₃
$\frac{7}{62}$	$x^4z^2 + xy^5 = 0$	(0,2,5)	A_4
1 8	$x^4z^2 + x^2zy^3 + a \cdot y^6 = 0,$	(0,1,3)	A_5 tangent to L_z
	$x^3f_3(z,y)=0$	(0,1,1)	D_4
<u>5</u> 34	$x^4z^2 + xzy^4 = 0$	(0,1,4)	A_7 with a line
	$x^3 z^2 y + x^2 y^4 = 0$	(0,2,3)	D_5
$\frac{1}{6}$	$x^4z^2+zy^5=0$	(0,1,5)	A_9 with a line
	$x^3 z^2 y + x^2 z y^3 + a \cdot x y^5 = 0$	(0,1,2)	D_6

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_1 = \textit{Bl}_{[1,0,0]} \mathbb{P}^2$

Table for K-walls

wall	curve B on \mathbb{P}^2	weight	curve singularity at p	
7 38	$x^3z^2y + y^6 = 0$	(0,2,5)	D_7 tangent to L_z	
	$x^3z^3 + x^2y^4 = 0$	(0,3,4)	E ₆	
$\frac{1}{5}$	$x^3z^2y + xzy^4 = 0$	(0,1,3)	D_8 with L_z	
<u>5</u> 22	$x^3z^2y + zy^5 = 0$	(0,1,4)	D_{10} with L_z E_7	
	$x^3z^3 + x^2zy^3 = 0$	(0,2,3)		
$\frac{2}{7}$	$x^3z^3 + xy^5 = 0$	(0,3,5)	E ₈	

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_1 = \textit{Bl}_{[1,0,0]} \mathbb{P}^2$

Table for K-walls

wall	curve B on \mathbb{P}^2	weight	curve singularity at p	
7 38	$x^3z^2y + y^6 = 0$	(0,2,5)	D_7 tangent to L_z	
	$x^3z^3 + x^2y^4 = 0$	(0,3,4)	<i>E</i> ₆	
$\frac{1}{5}$	$x^3z^2y + xzy^4 = 0$	(0,1,3)	D_8 with L_z	
<u>5</u> 22	$x^3z^2y + zy^5 = 0$	(0,1,4)	D_{10} with L_z E_7	
	$x^3z^3 + x^2zy^3 = 0$	(0,2,3)		
$\frac{2}{7}$	$x^3z^3 + xy^5 = 0$	(0,3,5)	E ₈	

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_1=Bl_{[1,0,0]}\mathbb{P}^2$

wall	curve B on $\mathbb{P}(1,1,4)$	weight	(a, b, m)
$\frac{29}{106}$	$z^3 + z^2 x^4 = 0$	(1,0,4)	(0,1,0)
$\frac{31}{110}$	$z^3 + zyx^7 = 0$	(2,0,7)	(1, 1, 1)
$\frac{2}{7}$	$z^3 + y^2 x^{10} = 0$	(3,0,10)	(2,1,2)
$\frac{35}{118}$	$z^3 + zy^2x^6 + y^3x^9 = 0$	(1,0,3)	(1,0,1)

Table: K-moduli walls from index 2 del Pezzo $Bl_{[1,0,0]}\mathbb{P}(1,1,4)$

Define the Hasset-Keel-Looijenga (HKL) model for ${\mathcal F}$

$$\mathcal{F}(s) := \operatorname{Proj} \left(\bigoplus_{m} H^{0}(\mathcal{F}, m(\lambda + sH_{h} + 25sH_{u})) \right)$$

By Baily-Borel's work, $\mathcal{F}(0) = \mathcal{F}^*$ is Baily-Borel's compactification for \mathcal{F} with boundaries $\mathcal{F}^* - \mathcal{F}$ consisting of modular curves.

Define the Hasset-Keel-Looijenga (HKL) model for ${\mathcal F}$

$$\mathcal{F}(s) := \operatorname{Proj} \big(\bigoplus_m H^0(\mathcal{F}, m(\lambda + sH_h + 25sH_u) \big)$$

By Baily-Borel's work, $\mathcal{F}(0) = \mathcal{F}^*$ is Baily-Borel's compactification for \mathcal{F} with boundaries $\mathcal{F}^* - \mathcal{F}$ consisting of modular curves.

Theorem B (Pan-Si-Wu,2023)

There is natural isomorphism $P^K(c) \cong \mathcal{F}(s)$ induced by the period map under the transformation

$$s = s(c) = \frac{1 - 2c}{56c - 4}$$

where $\frac{1}{14} < c < \frac{1}{2}$. In particular, $P^K(c)$ will interpolates the GIT space $\mathbb{P}V/\!\!/T$ and Baily-Borel compactification \mathcal{F}^* . The walls are $w = \frac{1}{n}$ and

$$n \in \{1, 2, 3, 4, 6, 8, 10, 12, 16, 25, 27, 28, 31\}$$

Sketch of proof of Theorem A

• Step1: To determine K-semistable degeneration. By using some classification results of index ≤ 2 del pezzo surface and normalised volume comparison due to Chi Li, Li-Liu, we can show each $(X, cC) \in \mathbb{P}^K(c)$, then X is either $Bl_p\mathbb{P}^2$ or $Bl_p\mathbb{P}(1, 1, 4)$.

Sketch of proof of Theorem A

- Step1: To determine K-semistable degeneration. By using some classification results of index ≤ 2 del pezzo surface and normalised volume comparison due to Chi Li, Li-Liu, we can show each $(X,cC) \in \mathcal{P}^K(c)$, then X is either $Bl_p\mathbb{P}^2$ or $Bl_p\mathbb{P}(1,1,4)$.
- Step2: Local VGIT structure of K-moduli implies if $(X,cC) \in P^K(w)$ admits 1-PS λ and thus $FL(E_\lambda)=0$ where E_λ is exceptional divisor of certain weighted blowup determined by λ . e.g, $X=BI_{[1,0,0]}\mathbb{P}^2$ and for some $\lambda=[0,m_1,m_2]$ on X,

$$A_{(X,cC)}(E_{\lambda}) = a + b - mc, \quad S_{(X,cC)}(E_{\lambda}) = \frac{14a + 13b}{12}(1 - 2c)$$

Then $A_{(X,cC)}(E_{\lambda}) = S_{(X,cC)}(E_{\lambda})$ will all potential walls.

• Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls.

 Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls.

Following the arguments of Liu-Xu, show for $\frac{1}{14} < c < \frac{1}{14} + \epsilon$ and any K-degeneration (X_0, cC_0) of $(Bl_p\mathbb{P}^2, cC)$, X_0 is still $Bl_p\mathbb{P}^2$, then

$$\mathfrak{P}^K \hookrightarrow \mathbb{P}V.$$

Then explicit wall-crossing are followed by analysis of local VGIT at each wall $w \in W_u \cup W_h$.

Some remarks:

• The explicit wall-crossing from $\mathbb{P}V/\!\!/T$ to \mathcal{F}^* will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F} .

Some remarks:

- The explicit wall-crossing from $\mathbb{P}V/\!\!/T$ to \mathcal{F}^* will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F} .
- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).

Some remarks:

- The explicit wall-crossing from $\mathbb{P}V/\!\!/T$ to \mathcal{F}^* will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F} .
- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).
- It should be interesting to look at the behavior of $c>\frac{1}{2}$ and $c=\frac{1}{2}$. For $c>\frac{1}{2}$, by Alexeev-Engel and Alexeev-Engel-Han's work, the KSBA moduli space compactifying pairs $(Bl_p\mathbb{P}^2,cC)$ and their slc degeneration has a natural normalization— Toroidal compactification of \mathcal{F} .
 - For $c = \frac{1}{2}$, it is expected to have a moduli theory for log CY to connect wall crossing from K-moduli to KSBA moduli.

Thank you for attention!