CONTENIDOS

MÓDULO 2: MÉTODO MATRICIAL DE RIGIDEZ

OBJETIVO ESPECÍFICO: Resolver cualquier tipo de sistema estructural, mediante el ensamble de la matriz global de rigidez de la estructura.

CONTENIDO:

- 1. Definir la matriz de rigidez local de cualquier elemento estructural
- Deducir la matriz de transformación
- 3. Obtener la matriz global de rigidez
- 4. Obtener la solución de sistemas estructurales

MÓDULO 2: MÉTODO MATRICIAL DE RIGIDEZ

2.1. Matriz de rigidez local

Cerchas, vigas y pórticos rígidos

Ensamblaje de elementos estructurales unidos entre sí en un número finito de puntos discontinuos llamados *nodos*, y cargados solamente en esos puntos.

Cada elemento debe cumplir:

- 1. Equilibrio de fuerzas
- 2. Compatibilidad de desplazamientos
- Relaciones entre fuerzas y desplazamientos (determinados según las propiedades geométricas y elásticas de los elementos)

Sistema local de coordenadas: sistema de coordenadas del elemento

Para que la barra asuma una posición deformada: aplicar una serie de cargas en sus extremos.

Principio de superposición: permite calcular las fuerzas necesarias para producir cada uno de los desplazamientos de forma separada.

Fuerzas en los extremos de los elementos: axial, cortante, momento flector y momento torsor.

Desplazamiento axial (u₁)

$$f_1 = \frac{AE}{L}u_1 \qquad \qquad f_7 = -\frac{AE}{L}u_1$$

Fuerzas necesarias para producir u₁.

Z

Desplazamiento normal (u₂ y u₃)

$$V_i = \frac{12EI}{L^3}u$$

$$V_f = \frac{12EI}{L^3}u$$

$$M_i = \frac{6EI}{L^2}u$$

$$M_f = \frac{6EI}{L^2}u$$

Desplazamiento normal (u₂ y u₃)

$$f_2 = \frac{12EI_z}{L^3}u_2$$
 $f_6 = \frac{6EI_z}{L^2}u_2$ $f_8 = -\frac{12EI_z}{L^3}u_2$ $f_{12} = \frac{6EI_z}{L^2}u_2$

Fuerzas necesarias para producir u₂.

$$f_3 = \frac{12EI_y}{L^3}u_3$$
 $f_5 = -\frac{6EI_y}{L^2}u_3$ $f_9 = -\frac{12EI_y}{L^3}u_3$ $f_{11} = -\frac{6EI_y}{L^2}u_3$

Fuerzas necesarias para producir u₃.

Giro por flexión (u₅ y u₆)

$$V_f = \frac{6EI}{L^2}u$$

$$M_i = \frac{4EI}{L}u$$

$$M_f = \frac{2EI}{L}u$$

Giro por flexión (u₅ y u₆)

$$f_3 = -\frac{6EI_y}{L^2}u_5$$
 $f_5 = \frac{4EI_y}{L}u_5$ $f_9 = \frac{6EI_y}{L^2}u_5$ $f_{11} = \frac{2EI_y}{L}u_5$

Fuerzas necesarias para producir u₅.

$$f_2 = \frac{6EI_z}{L^2}u_6$$
 $f_6 = \frac{4EI_z}{L}u_6$ $f_8 = -\frac{6EI_z}{L^2}u_6$ $f_{12} = \frac{2EI_z}{L}u_6$

Fuerzas necesarias para producir u₆.

Torsión (u₄)

$$f_4 = \frac{GI_p}{L}u_4 \qquad \qquad f_{10} = -\frac{GI_p}{L}u_4$$

Fuerzas necesarias para producir u₄.

Z

Resumen

$$f_1 = \frac{AE}{L}u_1 \qquad f_7 = -\frac{AE}{L}u_1$$

$$f_2 = \frac{12EI_z}{L^3}u_2$$
 $f_6 = \frac{6EI_z}{L^2}u_2$ $f_8 = -\frac{12EI_z}{L^3}u_2$ $f_{12} = \frac{6EI_z}{L^2}u_2$

$$f_3 = \frac{12EI_y}{L^3}u_3$$
 $f_5 = -\frac{6EI_y}{L^2}u_3$ $f_9 = -\frac{12EI_y}{L^3}u_3$ $f_{11} = -\frac{6EI_y}{L^2}u_3$

$$f_4 = \frac{GI_p}{I_L} u_4 \qquad \qquad f_{10} = -\frac{GI_p}{I_L} u_4$$

$$f_3 = -\frac{6EI_y}{L^2}u_5$$
 $f_5 = \frac{4EI_y}{L}u_5$ $f_9 = \frac{6EI_y}{L^2}u_5$ $f_{11} = \frac{2EI_y}{L}u_5$

$$f_2 = \frac{6EI_z}{L^2}u_6$$
 $f_6 = \frac{4EI_z}{L}u_6$ $f_8 = -\frac{6EI_z}{L^2}u_6$ $f_{12} = \frac{2EI_z}{L}u_6$

Las fuerzas necesarias para producir u_7 , u_8 , u_9 , u_{10} , u_{11} y u_{12} se encuentran siguiendo el mismo procedimiento.

Matriz simétrica

- Material elástico (relación lineal entre las cargas y las deformaciones)
- Deformaciones pequeñas (cálculos con dimensiones iniciales)
- Efecto de las fuerzas axiales en la flexión despreciable
- Cargas aplicadas en los nudos de manera gradual y proporcional
- No se considera el efecto de las deformaciones debidas a las fuerzas cortantes
- No se considera la rigidez de los nudos
- Los elementos no se pandean por efecto de la carga axial y de la torsión
- Planos XY y XZ: planos principales de flexión, en ellos actúan las cargas
- Coincidencia entre el centro de cortante y el centro de torsión (por lo tanto, flexión y torsión son independientes)
- Los dos extremos del elemento son restringidos
- Para pórticos: uno de los planos de simetría debe coincidir con el plano de carga

2.1.1. Matriz de rigidez local de un elemento de pórticos planos

$$\sum F_{x}=0$$

$$\sum F_y = 0$$

$$\sum M_z = 0$$

Pórtico plano: fuerzas aplicadas en el plano de la estructura

2.1.1. Matriz de rigidez local de un elemento de pórticos planos

$$k = \begin{bmatrix} \frac{AE}{L} & 0 & 0 & -\frac{AE}{L} & 0 & 0\\ 0 & \frac{12EI_z}{L^3} & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & \frac{6EI_z}{L^2}\\ 0 & \frac{6EI_z}{L^2} & \frac{4EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & \frac{2EI_z}{L}\\ -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & 0 & 0\\ 0 & -\frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2} & 0 & \frac{12EI_z}{L^3} & -\frac{6EI_z}{L^2}\\ 0 & \frac{6EI_z}{L^2} & \frac{2EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & \frac{4EI_z}{L} \end{bmatrix}$$

2.1.2. Matriz de rigidez local de un elemento de entramados

2.1.2. Matriz de rigidez local de un elemento de entramados

$$k = \begin{bmatrix} \frac{12EI_z}{L^3} & 0 & \frac{6EI_z}{L^2} & -\frac{12EI_z}{L^3} & 0 & \frac{6EI_z}{L^2} \\ 0 & \frac{GI_p}{L} & 0 & 0 & -\frac{GI_p}{L} & 0 \\ \frac{6EI_z}{L^2} & 0 & \frac{4EI_z}{L} & -\frac{6EI_z}{L^2} & 0 & \frac{2EI_z}{L} \\ -\frac{12EI_z}{L^3} & 0 & -\frac{6EI_z}{L^2} & \frac{12EI_z}{L^3} & 0 & -\frac{6EI_z}{L^2} \\ 0 & -\frac{GI_p}{L} & 0 & 0 & \frac{GI_p}{L} & 0 \\ \frac{6EI_z}{L^2} & 0 & \frac{2EI_z}{L} & -\frac{6EI_z}{L^2} & 0 & \frac{4EI_z}{L} \end{bmatrix}$$

2.1.3. Matriz de rigidez local de un elemento de cercha plana

$$\sum F_{x}=0$$

$$\sum F_{y}=0$$

2.1.3. Matriz de rigidez local de un elemento de cercha plana

$$k = \begin{bmatrix} \frac{AE}{L} & 0 & -\frac{AE}{L} & 0\\ 0 & \frac{12EI_z}{L^3} & 0 & -\frac{12EI_z}{L^3}\\ -\frac{AE}{L} & 0 & \frac{AE}{L} & 0\\ 0 & -\frac{12EI_z}{L^3} & 0 & \frac{12EI_z}{L^3} \end{bmatrix}$$

$$k = \begin{bmatrix} \frac{AE}{L} & 0 & -\frac{AE}{L} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{AE}{L} & 0 & \frac{AE}{L} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Pero bajo deformaciones pequeñas u₂ y u₈ no afectan la deformación de las barras

2.1.4. Matriz de rigidez local de un elemento de cercha espacial

Solo u₁ y u₇ afectan la deformación de las barras