

후판 불량률 0%를 향해서

- 압연공정 Scale 불량의 핵심인자

목차

- 1. 과제 정의
- 2. 분석 계획
- 3. 분석 과정
- 4. 모델링 & 요약
- 5. 결론
- 6. Lesion Learn

분석배경

OO 공장의 고객사에서 최근들어 "Scale 불량 발생 증가"라는 이슈가 발생했다.

그 원인을 분석해 본 결과 **압연공정에서 Scale 불량이 급증한 것을 확인할** 수 있었다.

그래서 데이터를 수집하여 다양한 분석을 통해 불량 발생의 근본 원인을 찾고 결과를 해석하여 개선 기회를 도출한다.

발생원인	압입흠	Scratch	두께부족	Scale	계
발생률(%)	1.3	0.5	0.4	5.0	7.2

후판이란?

The POSCO Quality

후판

후판 제품은 비교적 두꺼운 열간 압연 강판입니다. 일반적으로 두께 4.5mm 이상이 후판으로 분류되며 100mm 이상은 극후물재라고 합니다. 후판 제품은 연속 주조기에서 생산된 슬래브(Slab)를 고객사가 요구하는 치수로 압연 및 냉각한 후 최종 제품 크기로 절단하여 만들어집니다.

용도별 분류

조선용강

구조용강

후판

압력용기용

강관용

고망간강

공정 Process

- ① 가열로: Slab를 재결정온도 이상으로 재가열하여 열간압연이 가능하도록 만드는 공정
- ② 압연: 가열로에서 추출된 Slab를 적정 두께/폭/길이로 압연을 하는 공정
- ③ 가속냉각: 압연 직후, 소재를 특정 온도/속도로 냉각하여 기계적 성질을 확보하는 공정
- ④ 전단: Slab에서 압연된 낱판을 고객이 원하는 정확한 폭/길이의 제품으로 전단하는 공정
- ⑤ 검판/정정: 고객사 요구수준 부적합재를 검사하고 필요한 추가 작업 후 제품 입고

잠재인자

Scale 불량을 줄이기 위하여 엔지니어들과의 협의를 통하여 다음과 같은 잠재적 원인을 도출하였다.

5

STEP 1 데이터 구성하기

STEP 2 변수의 분포 확인 및 품질 확인

STEP 3 탐색적 분석

STEP 4 회귀분석 모델링 및 모델 평가

STEP 5 결론 도출

STEP 6 개선 방향

데이터 구성하기

	PLATE_NO	ROLLING_DATE	SCALE	SPEC	STEEL_KIND	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO	 FUR_HZ_TEMP	FUR_HZ_TIME	FUI
0	PB562774	2008-08- 01:00:00:15	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	 1144	116	
1	PB562775	2008-08- 01:00:00:16	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	 1144	122	
2	PB562776	2008-08- 01:00:00:59	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	 1129	116	
3	PB562777	2008-08- 01:00:01:24	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	 1152	125	
4	PB562778	2008-08- 01:00:01:44	양품	BV-EH36- TM	Т8	38.33	3098	13334	12430	3호기	 1140	134	
715	PB563502	2008-08- 02:13:35:36	불량	NK-KA	C0	20.14	3580	38639	21870	3호기	 1172	72	
716	PB563503	2008-08- 02:13:35:02	양품	NV-A32	C0	15.08	3212	48233	18340	2호기	 1150	61	
717	PB563504	2008-08- 02:14:40:00	양품	NV-A32	C0	16.60	3441	43688	19590	2호기	 1169	65	
718	PB563505	2008-08- 02:13:35:19	양품	LR-A	C0	15.59	3363	48740	80240	3호기	 1179	86	
719	PB563506	2008-08- 02:14:40:53	양품	GL-A32	C0	16.09	3400	54209	69840	3호기	 1186	82	

720 rows × 21 columns

변수 설명

변수	변수 설명	변수 역할	변수 형태	변수 설명	척도
PLATE_NO	Plate No	ID	범주형	Plate No	Nominal
ROLLING_DATE	작업시각	제외	연속형	작업시각	Datetime
SCALE	Scale불량	목표변수	범주형	Scale불량	Binary
SPEC	제품 규격	설명변수	범주형	제품 규격	Nominal
STEEL_KIND	강종	설명변수	범주형	강종	Nominal
PT_THICK	Plate 뚜께	설명변수	연속형	Plate 뚜께	Interval
PT_WIDTH	Plate 폭	설명변수	연속형	Plate 폭	Interval
PT_LENGTH	Plate 길이	설명변수	연속형	Plate 길이	Interval
PT_WEIGHT	Plate 중량	설명변수	연속형	Plate 중량	Interval
FUR_NO	가열로 호기	설명변수	범주형	가열로 호기	Nominal
FUR_NO_ROW	가열로 작업순번	설명변수	연속형	가열로	Interval
FUR_HZ_TEMP	가열로 가열대 온도	설명변수	연속형	가열로 가열대 온도	Interval
FUR_HZ_TIME	가열로 가열대 시간	설명변수	연속형	가열로 가열대 시간	Interval
FUR_SZ_TEMP	가열로 균열대 온도	설명변수	연속형	가열로 균열대 온도	Interval
FUR_SZ_TIME	가열로 균열대 시간	설명변수	연속형	가열로 균열대 시간	Interval
FUR_TIME	가열로 시간	설명변수	연속형	가열로 시간	Interval
FUR_EXTEMP	추출온도	설명변수	연속형	압연온도	Interval
ROLLING_TEMP_T5	압연온도	설명변수	연속형	가열대 온도	Interval
HSB	HSB적용(1-적용,0-미적용)	설명변수	범주형	HSB적용(1-적용,0-미적용)	Binary
ROLLING_DESCALING	압연 중 Descaling 횟수	설명변수	연속형	압연 중 Descaling 횟수	Interval
WORK_GR	작업조	설명변수	범주형	작업조	Nominal

SCALE불량.csv

데이터

- 변수: 21개

- 자료 수: 720개

PLATE_NO

ROLLING_DATE

SPEC

STEEL_KIND

위 4개의 변수는 분석에서 제외

분석과정

STEP 2-1

목표변수 및 설명변수의 분포 확인

목표 변수 : SCALE

- 양품: 489

- 불량: 231

목표변수 및 설명변수의 분포 확인

목표변수 및 설명변수의 분포 확인

HSB SCALE 불량 양품	HSB 미적용 33 0	적용 198 489
HSB SCALE	미적용	적용
50MLE 불량 양품	1.0 0.0	0.288 0.712

₩ORK_GR SCALE	1조 2	RK_GI	R 4조	
50MLL 불량 양품	67 122 1	45 54 20 118	65 129	
₩ORK_GR SCALE	1조	2조	3조	4조
불량 양품	0.354 0.646	0.273 0.727	0.314 0.686	0.335 0.665

데이터 품질 확인(결측치, 이상치 확인 및 제거)

SCALE	0	
PT_THK	0	
PT_WDTH	0	
PT_LTH	0	
PT_\GT	0	
FUR_NO	0	
FUR_NO_ROW	0	
FUR_HZ_TEMP	0	
FUR_HZ_TIME	0	
FUR_SZ_TEMP	0	
FUR_SZ_TIME	0	
FUR_TIME	0	
FUR_EXTEMP	0	
ROLLING_TEMP_T5	0	
HSB	0	
ROLLING_DESCALING	0	
₩ORK_GR	0	
dtype: int64		

목표 변수 및 설명 변수의 결측치

없음

분석과정

STEP 2-2

데이터 품질 확인(결측치, 이상치 확인 및 제거)

_ROW	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	FUR_TIME	FUR_EXTEMP	ROLLING_TEMP_T5	HSB	ROLLING_DESCALING	WORK_GR
2	1132	95	1128	80	341	1128	0	적용	6	1조
1	1169	64	1164	61	308	1164	0	적용	10	3조
2	1163	57	1166	67	303	1166	0	적용	10	4조
1	1133	89	1122	59	378	1122	0	적용	6	2조
2	1130	92	1124	61	362	1124	0	적용	6	3조
1	1119	109	1117	76	383	1117	0	적용	6	3조

ROLLING_TEMP_T5 <= 100 인 데이터를 확인하였을 때 총 6개의 데이터를 확인할 수 있으며,
ROLLING_TEMP_T5 값이 0인 것을 보아 **이상기**임을 알 수 있다.

데이터 품질 확인(결측치, 이상치 확인 및 제거)

	SCALE	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO	FUR_NO_ROW	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEM
0	양품	32.25	3707	15109	14180	1호기	1	1144	116	113
1	양품	32.25	3707	15109	14180	1호기	2	1144	122	113
2	양품	33.27	3619	19181	18130	2호기	1	1129	116	112
3	양품	33.27	3619	19181	18130	2호기	2	1152	125	112
4	양품	38.33	3098	13334	12430	3호기	1	1140	134	112
709	불량	20.14	3580	38639	21870	3호기	1	1172	72	116
710	양품	15.08	3212	48233	18340	2호기	1	1150	61	116
711	양품	16.60	3441	43688	19590	2호기	2	1169	65	116
712	양품	15.59	3363	48740	80240	3호기	2	1179	86	116
713	양품	16.09	3400	54209	69840	3호기	1	1186	82	116

714 rows × 17 columns

이상치 6개 데이터 제거

STEP 3 탐색적 분석

탐색적 분석

그래프 분석을 통해서 PT_THK, PT_WDTH, PT_LTH, PT_WGT, FUR_HZ_TEMP, FUR_HZ_TIME, FUR_SZ_TEMP, FUR_SZ_TIME, FUR_TIME, FUR_EXTEMP, ROLLING_TEMP_T5 변수가 영향이 있음을 볼 수 있다.

특히 ROLLING_TEMP_T5가 가장 크게 영향이 있음을 알 수 있다.

TEMP 관련 DATA들의 그래프를 보았을 때 TEMP가 높을수록 불량이 다발하는 것을 알 수 있다. (FUR_HZ_TIME, FUR_SZ_TEMP, FUR_EXTEMP, ROLLING_TEMP_T5)

Crosstab을 통해서 HSB를 미적용 했을 경우에 불량이 100% 이므로 HSB 적용유무 역시 불량에 영향이 크다는 것을 알 수 있다.

ROLLING_TEMP_T5 > HSB > FUR_HZ_TEMP, FUR_SZ_TEMP, FUR_EXTEMP

로지스틱 회귀분석

Logit Regression Results

Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	1	SCALE No. Observation Logit Df Residuals: MLE Df Model: Sat, 12 Sep 2020 Pseudo R-squ.: 16:11:19 Log-Likelihood False LL-Null: nonrobust LLR p-value:			: 499 481 17 0.5886 -128.79 -313.05 6.912e-68		
	coef	std err	z	P> z	[0.025	0.975]	
Intercept C(FUR_NO)[T.2호기] C(FUR_NO)[T.3호기] C(HSB)[T.적용] C(WORK_GR)[T.2조] C(WORK_GR)[T.3조] C(WORK_GR)[T.4조] PT_THK PT_WDTH PT_LTH PT_LTH PT_HGT FUR_HZ_TEMP FUR_HZ_TEMP FUR_SZ_TEMP FUR_SZ_TIME FUR_EXTEMP ROLLING_TEMP_T5 ROLLING_DESCALING	24. 4980 -0. 3578 0. 4796 -26. 2793 -0. 8168 -1. 0032 -0. 1289 -0. 8213 -0. 7085 -0. 9413 -0. 1801 0. 4663 0. 3038 0. 5009 -0. 7029 -0. 0028 0. 5009 2. 1394 -1. 3349	0.416	-0.907 1.154 -0.003	0.997 0.365 0.249 0.997 0.070 0.046 0.771 0.123 0.006 0.028 0.340 0.126 1.000 0.063 0.990 1.000 0.000	-0.335 -1.52e+04 -1.701 -1.987 -0.996 -1.866 -1.211 -1.782	1.52e+04 0.416 1.294 1.52e+04 0.067 -0.019 0.739 0.223 -0.206 -0.100 0.190 1.147 0.693 2.61e+07 0.038 0.441 2.61e+07 2.880 -0.665	

Accuracy : 0.865

Confusion Matrix : [[131 | 13] | [16 | 55]]

- 모델의 정분류율은 86.5%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 131건 실제값이 1인데 0으로 분류된 데이터가 16건 실제값이 0인데 1로 분류된 데이터가 13건 실제값이 1인데 1로 분류된 데이터가 55건

- 유의한 데이터 : C(WORK_GR)[T.3조], PT_WDTH, PT_LTH, ROLLING_TEMP_T5, ROLLING_DESCALING
- 유의하지 않은 데이터 : C(FUR_NO)[T.2호기], C(FUR_NO)[T.3호기], C(HSB)[T.적용], C(WORK_GR)[T.2조], C(WORK_GR)[T.4조], PT_THK, PT_WGT, FUR_HZ_TEMP, FUR_HZ_TIME, FUR_SZ_TEMP, FUR_SZ_TIME, FUR_TIME, FUR_EXTEMP

로지스틱 회귀분석

ROLLING_TEMP_T5가 높을 경우와 ROLLING_DESCALING가 낮을 경우 SCALE이 발생할 가능성이 높아짐 특히 ROLLING_TEMP_T5의 영향이 크다.

ROLLING_TEMP_T5 > ROLLING_DESCALING > C(WORK_GR)[T.3조] > PT_LTH > PT_WDTH

의사결정나무

Accuracy:0.949

Confusion Matrix: [[141 3] [8 63]]

- 모델의 정분류율은 94.9%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 141건 실제값이 1인데 0으로 분류된 데이터가 8건 실제값이 0인데 1로 분류된 데이터가 3건 실제값이 1인데 1로 분류된 데이터가 63건

ROLLING_TEMP_T5 <= 1000.5, HSB 적용, FUR_EXTEMP <= 1175.5, ROLLING_DESCALING <= 5.5, FUR_SZ_TIME <= 37.5 인 경우에 최적의 결과 도출

의사결정나무

	Feature	Importance
11	ROLLING_TEMP_T5	0.575
16	HSB_미적용	0.174
10	FUR_EXTEMP	0.112
12	ROLLING_DESCALING	0.062
9	FUR_TIME	0.015

- 설명변수의 중요도 ROLLING_TEMP_T5 > HSB > FUR_EXTEMP > ROLLING_DESCALING > FUR_TIME

랜덤 포레스트

```
Accuracy on test set: 0.953
Confusion matrix:
[[144 0]
[ 10 61]]
```

- 모델의 정분류율은 95.3%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 144건 실제값이 1인데 0으로 분류된 데이터가 10건 실제값이 0인데 1로 분류된 데이터가 0건 실제값이 1인데 1로 분류된 데이터가 61건

랜덤 포레스트

	Feature	Importance
11	ROLLING_TEMP_T5	0.312
10	FUR_EXTEMP	0.089
7	FUR_SZ_TEMP	0.085
12	ROLLING_DESCALING	0.072
17	HSB_적용	0.062

- 설명변수의 중요도 ROLLING_TEMP_T5 > FUR_EXTEMP > FUR_SZ_TEMP > ROLLING_DESCALING > HSB

그래디언트 부스팅

Accuracy on test set:0.995

```
Confusion matrix:
[[144 | 0]
[ | 1 | 70]]
```

- 모델의 정분류율은 99.5%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 144건 실제값이 1인데 0으로 분류된 데이터가 1건 실제값이 0인데 1로 분류된 데이터가 0건 실제값이 1인데 1로 분류된 데이터가 70건

그래디언트 부스팅

	Feature	Importance
11	ROLLING_TEMP_T5	0.605
17	HSB_적용	0.099
7	FUR_SZ_TEMP	0.092
16	HSB_미적용	0.085
0	PT_THK	0.036
10	FUR_EXTEMP	0.028

- 설명변수의 중요도 ROLLING_TEMP_T5 > HSB > FUR_SZ_TEMP > PT_THK > FUR_EXTEMP

STEP 4-5 서포트 벡터 머신

```
Accuracy on test set: 0.860
Confusion matrix:
[[133 11]
[ 19 52]]
```

- 모델의 정분류율은 86.0%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 133건 실제값이 1인데 0으로 분류된 데이터가 19건 실제값이 0인데 1로 분류된 데이터가 11건 실제값이 1인데 1로 분류된 데이터가 52건

인공 신경망

Accuracy on test set : 0.837

```
Confusion matrix :
[[126 | 18]
[ 17 | 54]]
```

- 모델의 정분류율은 83.7%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 126건 실제값이 1인데 0으로 분류된 데이터가 17건 실제값이 0인데 1로 분류된 데이터가 18건 실제값이 1인데 1로 분류된 데이터가 54건

KNN

test data accuracy:0.777

```
Confusion Matrix:
[[121 | 23]
[ 25 | 46]]
```

- 모델의 정분류율은 77.7%
- 분류 내용 실제값이 0인데 0으로 분류한 데이터가 121건 실제값이 1인데 0으로 분류된 데이터가 25건 실제값이 0인데 1로 분류된 데이터가 23건 실제값이 1인데 1로 분류된 데이터가 46건

결론도출

	TrainAccuracy	TestAccuracy	F1Score	AUC
DecisionTree	1.000	0.949	0.920	0.933
RandomForest	1.000	0.953	0.924	0.930
GradientBoosting	1.000	0.972	0.956	0.958
SupportVectorMachine	0.934	0.860	0.776	0.828
NeuralNet	0.974	0.837	0.755	0.818
K-NearestNeighbors	0.974	0.837	0.657	0.744

모델 평가 시
GradientBoosting의 정확도가
가장 우수

결론도출

로지스틱 회귀분석	의사결정나무	랜덤 포레스트	그래디언트 부스팅
ROLLING_TEMP_T5 ROLLING_DESCALING C(WORK_GR)[T.3조] PT_LTH PT_WDTH	ROLLING_TEMP_T5 HSB FUR_EXTEMP ROLLING_DESCALING FUR_TIME	ROLLING_TEMP_T5 FUR_EXTEMP FUR_SZ_TEMP ROLLING_DESCALING HSB	ROLLING_TEMP_T5 HSB FUR_SZ_TEMP PT_THK FUR_EXTEMP

네가지 모델을 실행한 결과 ROLLING_TEMP_T5가 공통적으로 가장 높은 우선순위에 위치

또한 모델 평가를 통해 가장 정확도가 우수한 모델인 **그래디언트 부스팅**에 가중치 부여

결론도출

변수	변수 설명 변수 '		변수 역할 변수 형태	분석 제외 사유	탐색적 기법	모델링 기법					선정
		변수 역할			그래프	로지스틱 회귀분석	DT	RF	GB	총점	(사유)
PLATE_NO	Plate No	ID	범주형	제외							
ROLLING_DATE	작업시각	제외	연속형	제외							
SCALE	Scale불량	목표변수	범주형								
SPEC	제품 규격	설명변수	범주형	제외							
STEEL_KIND	강종	설명변수	범주형	제외							
PT_THICK	Plate 뚜께	설명변수	연속형		1				3	4	
PT_WIDTH	Plate 폭	설명변수	연속형		1	1				2	
PT_LENGTH	Plate 길이	설명변수	연속형		1	2				3	
PT_WEIGHT	Plate 중량	설명변수	연속형		1					1	
FUR_NO	가열로 호기	설명변수	범주형							0	
FUR_NO_ROW	가열로 작업순번	설명변수	연속형							0	
FUR_HZ_TEMP	가열로 가열대 온도	설명변수	연속형		1					1	
FUR_HZ_TIME	가열로 가열대 시간	설명변수	연속형		1					1	
FUR_SZ_TEMP	가열로 균열대 온도	설명변수	연속형		1			3	4	8	4위
FUR_SZ_TIME	가열로 균열대 시간	설명변수	연속형		1					1	
FUR_TIME	가열로 시간	설명변수	연속형		1		1			2	
FUR_EXTEMP	추출온도	설명변수	연속형		1		3	4	2	10	2위
ROLLING_TEMP_T5	압연온도	설명변수	연속형		2	5	5	5	6	23	1위
HSB	HSB적용(1-적용,0-미적용	설명변수	범주형				4	1	5	10	2위
ROLLING_DESCALING	압연 중 Descaling 횟수	설명변수	연속형			4	2	2		8	4위
WORK_GR	작업조	설명변수	범주형			3				3	

[※] PLATE_NO, ROLLING_DATE, SPEC, STEEL_KIND는 목표변수에 영향을 주지 않는 변수라고 판단하여 분석 제외

[※] 각 모델별로 TOP 5를 선정하여 1위(5점), 2위(4점), 3위(3점), 4위(2점), 5위(1점) 부여

[※] 가장 정확도가 높은 모델링 기법에 1점 부여

[※] 그래프 분석의 경우 주관적 판단이 들어갈 수 있으므로 상관관계가 있는 변수에 1점, 가장 상관관계가 커 보이는 모델에 2점 부여

[※] 총점을 합산하였을 때 가장 높은 점수를 획득한 변수를 선정하여 해결

결론도출

			분석	탐색적 기법	모델링 기법					선정	
변수	변수 설명	변수 역할	변수 형태	제외 사유	그래프	로지스틱 회귀분석	DT	RF	GB	총점	(사유)
FUR_SZ_TEMP	가열로 균열대 온도	설명변수	연속형		1			3	4	8	4위
FUR_EXTEMP	추출온도	설명변수	연속형		1		3	4	2	10	2위
ROLLING_TEMP_T5	압연온도	설명변수	연속형		2	5	5	5	6	23	1위
HSB	HSB적용(1-적용,0-미적용	설명변수	범주형				4	1	5	10	2위
ROLLING_DESCALING	압연 중 Descaling 횟수	설명변수	연속형			4	2	2		8	4위

데이터 분석을 통해 Scale 불량 발생에 영향을 주는 인자 **TOP 5** 선정

1위 ROLLING_TEMP_T5 2위 FUR_EXTEMP, HSB 4위 FUR_SZ_TEMP, ROLLING_DESCALING

개선방향

ROLLING_TEMP_T5

- Scale 불량 발생의 TOP 1 ROLLING_TEMP_T5 개선 필요
- ROLLING_TEMP_T5 ≥ 1000에서 불량 다발
- 의사결정 나무 모델에서도 가장 높은 순위에 위치하였기 때문에 의사결정 나무 모델 결과를 바탕으로 개선방향 도출

의사결정나무

- Sample=499에서 불량률 32.1%
- ROLLING_TEMP_T5 ≤ 1000.5에서 불량률 **14.0%**로 감소
- Pilot Test 를 통해 확인 필요

실제 공정 데이터를 바탕으로 불량 발생의 근본 원인을 분석해 볼 수 있는 기회가 되어서 무척이나 좋은 경험이었습니다. 그동안 배웠던 다양한 모델링 방법을 통해서 Scale 불량의핵심 원인이 무엇인지 파악할 수 있었습니다.

잠시나마 반도체 생산장비 엔지니어로 근무하며 장비의 고질적인 고장을 해결하기 위해 장비 고장 데이터를 추출해서 발생건수가 높았던 고장부터 TOP3를 정하여 해결했던 경험이었습니다. 비록 반도체와 철강은 다른 산업 이지만 제조업이라는 공통점 속에서 조금 더 이번 과제를 이해하는데 도움이 되었다고 생각합니다.