Embedding trees in dense graphs

V. Rozhoň

Extra seminar, 2018

How many edges in a graph force a certain structure there to appear? E.g. more than $n^2/4$ edges force a graph to contain a triangle.

How many edges in a graph force a certain structure there to appear? E.g. more than $n^2/4$ edges force a graph to contain a triangle. How many edges force a graph to contain a specific tree?

How many edges in a graph force a certain structure there to appear? E.g. more than $n^2/4$ edges force a graph to contain a triangle. How many edges force a graph to contain a specific tree?

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Tightness: take union of K_k .

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Tightness: take union of K_k .

The conjecture holds if we replace k-1 by 2k.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Tightness: take union of K_k .

The conjecture holds if we replace k-1 by 2k.

Observation

Every graph with **minimum** degree greater than k-1 contain any tree on k+1 vertices.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Tightness: take union of K_k .

The conjecture holds if we replace k-1 by 2k.

Observation

Every graph with **minimum** degree greater than k-1 contain any tree on k+1 vertices.

Observation

Every graph with average degree I contain a subgraph with average degree at least I and minimum degree at least I/2.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Theorem (Ajtai, Komlós, Simonovits, Szemerédi 18+)

The Erdős-Sós conjecture holds for $k > k_0$.

The proof is very complicated.

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Can we get better?

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Can we get better?

Theorem (Erdős, Gallai)

Any graph with $\Delta(G) \ge k$ and $\delta(G) \ge k/2$ contains a tree T on k+1 vertices, if T is a path . . .

Conjecture (Erdős, Sós)

Every graph with average degree greater than k-1 contain any tree on k+1 vertices.

Can we get better?

Theorem (Erdős, Gallai)

Any graph with $\Delta(G) \geq k$ and $\delta(G) \geq k/2$ contains a tree T on k+1 vertices, if T is a path . . .

Theorem (Wagner)

 \dots but this is not true if T is a random tree w.h.p.

With some additional assumptions, we can still get it to work:

Theorem,

For any $\eta>0$ there exist n_0 and $\gamma>0$ such that the following holds. Let G be a graph of order $n>n_0$ and T a tree of order k such that $\Delta(T)\geq \gamma k$. If $\delta(G)\geq k/2+\eta n$, and at least ηn vertices of G have degree at least $k+\eta n$, then G contains T.

With some additional assumptions, we can still get it to work:

Theorem

For any $\eta>0$ there exist n_0 and $\gamma>0$ such that the following holds. Let G be a graph of order $n>n_0$ and T a tree of order k such that $\Delta(T)\geq \gamma k$. If $\delta(G)\geq k/2+\eta n$, and at least ηn vertices of G have degree at least $k+\eta n$, then G contains T.

Corollary

For any $\eta>0$ there exists n_0 and $\gamma>0$ such that for every $n>n_0$, any graph of order n with average degree $\deg(G)\geq k+\eta n$ contains every tree on k vertices with maximum degree $\Delta(T)\leq \gamma k$.

Corollary

For any $\eta>0$ there exists n_0 and $\gamma>0$ such that for every $n>n_0$, any graph of order n with average degree $\overline{\deg}(G)\geq k+\eta n$ contains every tree on k vertices with maximum degree $\Delta(T)\leq \gamma k$.

Corollary

For any $\eta>0$ there exists n_0 and $\gamma>0$ such that for every $n>n_0$, any graph of order n with average degree $d\overline{eg}(G)\geq k+\eta n$ contains every tree on k vertices with maximum degree $\Delta(T)\leq \gamma k$.

More honest version:

Corollary

For any $\eta>0$ and q>0 there exists n_0 and $\gamma>0$ such that for every $n>n_0$ and k>qn, any graph of order n with average degree $\deg(G)\geq k+\eta k$ contains every tree on k vertices with maximum degree $\Delta(T)\leq \gamma k$.

Theorem

For any $\eta>0$ there exist n_0 and $\gamma>0$ such that the following holds. Let G be a graph of order $n>n_0$ and T a tree of order k such that $\Delta(T)\geq \gamma k$. If $\delta(G)\geq k/2+\eta n$, and at least ηn vertices of G have degree at least $k+\eta n$, then G contains T.

We can actually prove a more general version:

Theorem

For any $\eta>0$ there exist n_0 and $\gamma>0$ such that the following holds. Let G be a graph of order $n>n_0$ and T a tree of order k such that $\Delta(T)\geq \gamma k$. If $\delta(G)\geq k/2+\eta n$, and at least ηn vertices of G have degree at least $k+\eta n$, then G contains T.

We can actually prove a more general version:

Theorem

For any $r,\eta>0$ there exist n_0 and $\gamma>0$ such that the following holds. Let G be a graph of order $n>n_0$ and T a tree of order k with two colour classes T_1,T_2 such that $|T_1|\leq rk$ and $\Delta(T_2)\leq \gamma k$. If $\delta(G)\geq rk+\eta n$, and at least ηn vertices of G have degree at least $k+\eta n$, then G contains T.

This is actually tight in some sense.

Loebl-Komlós-Sós conjecture

Conjecture (Loebl, Komlós, Sós)

If at least n/2 vertices of a graph have degree at least k, then it contains every tree on k+1 vertices.

Loebl-Komlós-Sós conjecture

Conjecture (Loebl, Komlós, Sós)

If at least n/2 vertices of a graph have degree at least k, then it contains every tree on k+1 vertices.

Theorem (Ajtai, Hladký, Komlós, Piguet, Stein, Szemerédi)

For any $\eta>0$ there exists $n_0\in\mathbb{N}$ such that for every $n\geq n_0$, any graph of order n with at least $(1+\eta)n/2$ vertices of degree at least $k+\eta k$ contains every tree of order at most k.

Loebl-Komlós-Sós conjecture – simplified history

Theorem (Piguet, Stein)

The conjecture holds for trees with diameter at most 5.

Theorem (Piguet, Stein)

For any $\eta > 0$ there exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, any graph of order n with at least n/2 vertices of degree at least $k + \eta n$ contains every tree of order at most k.

Theorem (Ajtai, Hladký, Komlós, Piguet, Stein, Szemerédi)

For any $\eta > 0$ there exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, any graph of order n with at least $(1 + \eta)n/2$ vertices of degree at least $k + \eta k$ contains every tree of order at most k.

Loebl-Komlós-Sós(-Simonovits) conjecture – more history

Conjecture (Loebl)

If at least n/2 vertices of a graph have degree at least n/2, then it contains every tree on n/2+1 vertices.

Loebl-Komlós-Sós(-Simonovits) conjecture – more history

Conjecture (Loebl)

If at least n/2 vertices of a graph have degree at least n/2, then it contains every tree on n/2+1 vertices.

Conjecture (Komlós, Sós)

If at least n/2 vertices of a graph have degree at least k, then it contains every tree on k+1 vertices.

Loebl-Komlós-Sós(-Simonovits) conjecture – more history

Conjecture (Loebl)

If at least n/2 vertices of a graph have degree at least n/2, then it contains every tree on n/2+1 vertices.

Conjecture (Komlós, Sós)

If at least n/2 vertices of a graph have degree at least k, then it contains every tree on k+1 vertices.

Conjecture (Simonovits)

Let 0 < r < 1/2. If at least rn vertices of a graph have degree at least k, then it contains every tree on k+1 vertices with at most r(k+1) vertices in one colour class.

Loebl-Komlós-Sós-Simonovits conjecture

Conjecture (Loebl, Komlós, Sós, Simonovits)

Let 0 < r < 1/2. If at least rn vertices of a graph have degree at least k, then it contains every tree on k+1 vertices with at most r(k+1) vertices in one colour class.

Theorem (Klimošová, Piguet, R.)

Let $0 < r \le 1/2$ and $\eta > 0$. There exists $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$, any graph of order n with at least rn vertices of degree at least $k + \eta n$ contains every tree of order at most k such that the size of its smaller colour class is at most rk.

Some proof ideas

2) Clusterization

