

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Special) Degree in Applied Biology Fourth Year Semester IIExamination – April/May 2016

ZOO 4203 – WILDLIFE MANAGEMENT & CONSERVATION

Time: Two (2) hours

Answer four (04) questions only. Question number 1 is compulsory.

1. (a) Below are the genotypes at three loci from a sample of ten individuals of *Semnopithecus vetulus*.

Individual		Locus	
	1	2	3
1	aa	BB	CC
2	aa	Bb	CC
3	Aa	BB	CC
4	aa	Bb	CC
5	Aa	BB	CC
6	AA	BB	CC
7	aa	BB	CC
8	AA	BB	CC
9	AA	BB	CC
10	Aa	BB	CC

- (i) What are the frequencies of alleles and genotypes at each locus?
- (ii) What is the polymorphism using the 95% criterion (the frequency of the most common allele <95%) and heterozygosity for this population?
- (iii) If individuals 1–6 were females and individuals 7–10 were males, what would be the effective population size of this population?
- (iv) What portion of the genetic variance of this population would be likely to remain after three generations of random genetic drift?
- (v) Will random genetic drift have an equal effect on all the alleles listed above? Briefly explain your answer.

(b) The table below is a summary of genetic distance $[F_{st}/(1 - F_{st})]$ and geographic distance between six populations of two sympatric primates, *Semnopithecus vetulus* and *Macaca sinica*. *S. vetulus* is extremely arboreal while *M.sinica* is capable of using both arboreal and terrestrial pathways. Typically, *S. vetulus* travels relatively short distanced during a given day ($\approx 200 \text{ m}$) in comparison to *M. sinica* ($\approx 2000 \text{m}$). In addition, *S. vetulus* is extremely folivorous and selective, while *M. sinica* is frugivorous and flexible in its dietary ecology.

	Genetic distance	
Geographic distance (km)	M. sinica	S. vetulus
14.91	1.03	2.5
15.72	0.05	4.1
9.43	0.07	1.3
2.88	1	2.4
12.48	0.46	2.5
12.51	1.31	2.4
10.49	1.21	1.8
11.66	0.93	2.5
5.3	1.24	0.42
7.66	0.47	1.5
5.48	1.03	0.54
9.14	0.87	1.5
2.65	0.53	0.35
2.92	0.8	0.42
4.94	0.32	0.7

- (i) Plot genetic distance against geographic distance for the two species and using the information provided above and provide two biological plausible explanations for the observed relationships.
- (ii) Based on genetic distances between populations of each species, provide recommendations on how populations of these two species should be conserved. Justify your recommendations.
- 2. Describe four factors or processes that might contribute to a population's extinction.
- 3. Using examples, succinctly discuss why some species are rarer and some more sensitive to human induced disturbances than others.

- 4. Write short notes on **four (04)** of the following;
 - a) Spatial scales of biodiversity
 - b) Metapopulation dynamics
 - c) Evolutionarily significant units (ESU)
 - d) Population viability analyses
 - e) Survivorship curves
- 5. Briefly discuss the causes and consequences of deforestation.

$$\frac{1}{N_e} = \frac{1}{t} \left(\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_t} \right)$$

$$N = \frac{4N_f N_m}{N_f + N_m}$$

$$1-1/(2N)$$

$$[1-1/(2N)]t$$