

Dimensionsreduktion

# INTERACTIVE VISUAL DATA MINING

## ÜBERSICHT

#### **Dimensions reduktion**

Einleitung

Factor Analysis

Principal Component Analysis (PCA)

Multi-Dimensional Scaling (MDS)

T-distributed stochastic neighborhood embedding (t-SNE)

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

### **EINLEITUNG**

- Ausgangssituation
  - Tabelle mit n Datenpunkten und m
     Attributen

| ID     | Attribut<br>1 | Attribut<br>2 | Attribut<br>3 | <br>Attribut<br>m |
|--------|---------------|---------------|---------------|-------------------|
| $id_1$ | $a_{1,1}$     | $a_{1,2}$     | $a_{1,3}$     | $a_{1,m}$         |
| $id_2$ | $a_{2,1}$     | $a_{2,2}$     | $a_{2,3}$     | $a_{2,m}$         |
|        |               |               |               |                   |
| $id_n$ | $a_{n,1}$     | $a_{n,2}$     | $a_{n,3}$     | $a_{n,m}$         |

- Problem
  - Mehr Daten als Darstellungsfläche
- Lösung
  - Datenauswahl
    - Einschränkung der Attribute
    - Einschränkung der Attributwerte
    - ProjektionDatenreduktion
    - Dimensionsreduktion ("Dimensionality Reduction")
  - Clustering

### **EINLEITUNG**

- Projektion
  - − Wähle  $d \in \{2, 3\}$  Attribute
  - Führt in der Regel zu vielen "gleichen"
     Datenpunkten → Overplotting
  - Probleme
    - Welche Attribute werden betrachtet?
    - Berücksichtigt die Werte und die Verteilung der Werte der Datenpunkte nicht

- Dimensionsreduktion
  - Ersetze gegebene Attribute

$$A = \{A_1, ..., A_m\}$$

durch eine Menge von weniger Attributen

$$D = \{D_1, \dots, D_d\}$$
$$d \ll m$$

- Meist: d ∈ {2, 3}
- Alternativen:
  - *D* ⊆ *A*: entspricht Projektion
  - $-D \cap A = \emptyset$ 
    - Die neuen Attribute werden aus den alten berechnet
  - Kombination aus beidem

### **EINLEITUNG**

- Verfahren:
  - Factor Analysis
  - Principal Component Analysis (PCA)
  - Multi-Dimensional Scaling (MDS)
- Andere Möglichkeiten
  - Self-Organizing Maps
  - Visuelle Metaphern, um die Dimensionen anzuordnen

## – Achtung!

- Für alle Verfahren gilt:
  - Information, die nicht erhoben wurde, wird durch eine Analyse nicht hinzugefügt
  - Beware of "garbage in, garbage out"
     Vorsicht vor "Müll hinein, Müll heraus":
    - Das Verfahren findet immer Faktoren
    - Hintergrund-/Domänen-Wissen ist notwendig, um zu entscheiden, ob die Faktoren einen Wert haben

- Arten
  - Typ Q
    - Zusammenfassung der Datenpunkte
    - Aufwändige Berechnung
    - Meist wird stattdessen Clustering verwendet
  - Typ R
    - Finde "verborgene Dimensionen"(Gruppen von korrelierten Variablen)

- Ziele:
  - Identifikation von Strukturen
  - Zusammenfassung der Daten
  - Reduktion der Daten
- Eigenschaften:
  - Gruppen sind disjunkt
  - Gruppen können von ihren Mitgliedern repräsentiert werden

Typ Q Faktor-Analyse – Clustering

|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| Α | 7     | 7     | 8     |
| В | 8     | 6     | 6     |
| С | 2     | 2     | 3     |
| D | 3     | 1     | 1     |



- Faktor-Analyse
  - Gruppe 1: A, C
  - Gruppe 2: B, D
- Clustering
  - Gruppe 1: A, B
  - Gruppe 2: C, D

- Anzahl der Datenpunkte » Anzahl der Variablen
  - Minimum 50 100 Datenpunkte
  - #Datenpunkte = 5-10 · #Variablen
  - #Datenpunkte = 20 · #Variablen
- Verwendung von möglichst wenig Variablen
- Verwendung von möglichst vielen Datenpunkten

- Anwendbarkeit
  - Bartlett's Test auf Sphärizität
    - Nullhypothese: die Korrelationsmatrix ist gleich der Einheitsmatrix
    - Signifikanz: p < 0.05
    - Nullhypothese wird abgelehnt → Faktoranalyse möglich
    - Voraussetzung: multivariate
       Normalverteilung

$$-X^{2} = -\left(n - 1 - \frac{2 \cdot m + 5}{6}\right) \log(\det(R))$$

R: Korrelationsmatrix

Anwendbarkeit: Measure of Sampling Adequacy (MSA)

- Gesamt und für jede der m Variablen
- Variablen mit kleineren Werten werden von der Faktoranalyse ausgenommen
- $\forall 1 \leq j \leq m$ :

$$MSA_j := \frac{\sum_{k \neq j} r_{jk}^2}{\sum_{k \neq j} r_{jk}^2 + \sum_{k \neq j} p_{jk}^2}$$

- $-r_{jk}$ : Korrelation zwischen j und k
- $-p_{jk}$ : partielle Korrelation zwischen j und k

- Auswertung
  - < 0,5: Variable ungeeignet</p>
  - -0.6 <  $MSA_i$  ≤ 0.8: Variable brauchbar
  - > 0.8: Variable gut geeignet
- Partielle Korrelation:

$$- p_{jk,l} = \frac{r_{jk} - r_{jl} \cdot r_{kl}}{\sqrt{(1 - r_{jl}^2) \cdot (1 - r_{kl}^2)}}$$

- Varianz
  - Gemeinsame Varianz mehrerer Variablen
  - Spezifische Varianz einer Variablen
  - Fehler-Varianz

- Component Analysis / Principal
   Component Analysis
  - Betrachtet gesamte Varianz der Variablen
- Common Factor Analysis
  - Betrachtet nur die gemeinsame Varianz der Variablen
  - Spezifische und Fehler-Varianz werden nicht betrachtet

- Anzahl der Faktoren
  - Fest: zum Beispiel in der Visualisierung
  - Betrachtete Varianz
    - Summiere die von den Faktoren berücksichtigte Varianz bis ein Schwellwert überschritten wird
      - Üblich: 95%
  - Betrachte nur Faktoren mit Eigenwerten≥ 1
    - Gut geeignet für 20-50 Variablen
    - -m < 20: tendenziell zu wenige Faktoren
    - -m > 50: tendenziell zu viele Faktoren

- Nachbearbeitung Rotation
  - Zeilen: Variablen
  - Spalten: Faktoren
  - Einträge: Beitrag der Variablen zu einem Faktor
  - VARIMAX
    - Spalten-orientiert
    - Optimiere Beiträge der Variablen zu einem Faktor, so dass sie nahe 1 oder nahe 0 sind

## PRINCIPAL COMPONENT ANALYSIS (PCA)

- 30 Beobachtungen
- $-t_1$ : Richtung der größten Variation (Diffusion, Abweichung)
- $-t_2$ : Richtung der zweitgrößte Variation (Diffusion, Abweichung)

**–** ...





## PRINCIPAL COMPONENT ANALYSIS (PCA)

- Gegeben: m möglicherweise korrelierte beobachtete Variablen  $x_1, \dots, x_m$ 

- Ergebnis: p < m unkorrelierte Variablen (principal components)

- Anforderung: p soll so klein wie möglich sein

- Visualisierung:  $p \in \{2, 3\}$ 

Alternativ: Wähle p, so dass eine möglichst große Varianz abgedeckt wird

und verwende Scatterplot-Matrizen

## 6.3 PRINCIPAL COMPONENT ANALYSIS (PCA)

- Andere Namen
  - Karhunen-Loève Transformation (KLT, Bildverarbeitung)
  - Empirical orthogonal functions (Meteorologie, Geophysik)
  - Hotelling Transformation
  - Proper orthogonal decomposition (POD)
  - Deutsch: Hauptkomponentenanalyse

- Ziele
  - Berechne eine reduzierte Menge von Dimensionen
    - Orthogonal
    - Linear
  - Ordne die Dimensionen absteigend bezüglich der Varianz
- Varianz
  - Maß für den Informationsgehalt einer Variable
- Mathematisch
  - Suche eine neue Basis des Vektorraumes

## PRINCIPAL COMPONENT ANALYSIS (PCA)

#### Konstruktion

$$X = (X_1, ..., X_m), X_j = (x_{1,j}, ..., x_{n,j})^T$$

$$\mu = (\mu_1, ..., \mu_m), \, \mu_j = \frac{1}{n} \cdot \sum_{i=1}^n x_{i,j}$$

$$Y = (y_{ij}), y_{ij} = x_{ij} - \mu_j$$

$$C = \frac{1}{n-1} \cdot Y^T Y$$

$$C = U\Lambda U^T, U^TU = I_m$$

$$\Lambda = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_m \end{pmatrix}$$

$$U = (u_1, \dots, u_m)$$

$$i > j \to \lambda_i > \lambda_j$$

## PRINCIPAL COMPONENT ANALYSIS (PCA)

- Eigenschaften:
  - $-\lambda_1, u_1$ : größte Varianz
  - $-\lambda_2, u_2$ : zweitgrößte Varianz
  - **—** ...
  - Die ersten p Eigenwerte beschreiben einen Großteil der Varianz
  - Principal components mit einer Varianz nahe 0 können verwendet werden, um Ausreißer zu identifizieren
- Wird auch häufig in der Scientific
   Visualization verwendet

- Einschränkungen:
  - Das Ergebnis ist abhängig von der Skalierung der einzelnen Variablen (Attribute)
  - Ausreißer haben einen großen Einfluss auf das Ergebnis
  - Lineare Methode
  - Interpretation der Basis (Ergebnisse)

## MULTI-DIMENSIONAL SCALING (MDS)

- Gegeben: eine Tabelle mit Ähnlichkeiten
- Gesucht: Abbildung der Datenpunkte von einem Koordinatensystem in ein anderes
- Bedingungen
  - Monotonie: die Distanz zwischen zwei Datenpunkten im Zielsystem ist kleiner, wenn die Distanz der Datenpunkte im Originalsystem kleiner ist
  - Minimum: die Dimension des Zielsystems soll so klein wie möglich sein

MDS: Menge von Systemen

## **MULTI-DIMENSIONAL SCALING (MDS)**

- Gegeben: 
$$X = (x_1, ..., x_r), x_i \in \mathbb{R}^m$$

- Gesucht: 
$$Y = (y_1, ..., y_n), y_i \in \mathbb{R}^n, n \ll m$$

- Bedingung: 
$$||y_i - y_j|| \approx t_{ij}, \forall i, j$$

- In der Visualisierung: 
$$n = 2$$
 oder  $n = 3$ 

– Minimierung der Kostenfunktion: 
$$\min_{x_1,...x_r} \sum_{i < j} (\|y_i - y_j\| - t_{ij})^2$$

18

## **MULTI-DIMENSIONAL SCALING (MDS)**

- Metric Multi-Dimensional Scaling
  - Gegeben: Distanzmatrix  $(t_{ij})$

$$-A = (a_{ik}), a_{ik} = -\frac{1}{2}t_{ik}^2$$

$$-B = (b_{ij}), b_{ij} = a_{ij} - \frac{1}{m} \sum_{k=1}^{m} a_{ik} - \frac{1}{m} \sum_{l=1}^{m} a_{lj} - \frac{1}{m^2} \sum_{l=1}^{m} \sum_{k=1}^{m} a_{lk}$$

- Bestimme die Eigenwerte  $\lambda_i$  und die zugehörigen Eigenvektoren  $e_i$  von B mit  $\sum_{j=1}^m \gamma_{ij}^2 = \lambda_i$
- Wähle die m Eigenvektoren mit den größten Eigenwerten
- Vergleichbar mit der PCA

## T-DISTRIBUTED STOCHASTIC NEIGHBORHOOD EMBEDDING (T-SNE)

- t-SNE ist eine weitere Methode zur Dimensionsreduktion
- Daten werden in eine 2 dimensionale Ebene eingebettet
- T-SNE versucht die lokale Verteilung der Daten zu bewahren
- Häufig im Bereich des Maschinellen Lernens eingesetzt

- Berechne für jede Distanz zwischen Punkt i und j eine abhängige Wahrscheinlichkeit, welche die Ähnlichkeit repräsentiert
- Platziere einen Gausschen Kernel über dem Punkt i und berechne die Wahrscheinlichkeiten aller Nachbarn.
- Wandle die abhängigen
   Wahrscheinlichkeiten in
   Wahrscheinlichkeiten um
- Für jeden Punkt i muss die Breite des Kernels angepasst werden

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k 
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}$$

$$p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

- Platziere jeden Punkt in eine 2D Ebene
- Berechne für jeden Punkt eine Wahrscheinlichkeit basierend auf der Student t-Verteilung
  - Ein Freiheitsgrad
- Optimiere die Einbettung durch einen Gradient Walk, bis die Wahrscheinlichkeiten "passen"
- Kullback-Leibler Divergenz als Metrik für die Platzierung

$$q_{ij} = rac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k 
eq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

$$KL(P||Q) = \sum_{i 
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

- t-SNE hat mehrere Parameter
  - Perplexity: Wie viele Datenpunkte sollen im Gauss Kernel liegen
  - Maximale Iterationen
  - theta: Parameter f
    ür die Barnes-Hut Optimierung
  - Anzahl der Dimensionen

- Die Komplexität ist für Laufzeit und Speicher ist n²
- Optimierung des 2. Schrittes mit einem Quadtree
- Nur für Datensätze mit weniger als 10.000 Datenpunkten
- Erzeugt keine deterministischen Ergebnisse

Demo

– https://distill.pub/2016/misread-tsne/

- UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
- Ähnlich zu t-SNE, hat aber entscheidende Unterschiede
  - Berechnet auch bedingte Wahrscheinlichkeiten, diese werden aber nicht normalisiert
  - Kann andere Distanzmetriken als Euklid nutzen
  - Normalisiert auch nicht während der Einbettung
  - Nutzt nearest neighbor statt perplexity

- Nutzt bei der Einbettung eine andere Initialisierung, Verteilungsfunktion sowie Vergleichsmaß
  - Graph Laplacian
  - Binary Cross Entropy
- Nutzt den Stochastic Gradient Descent statt dem regulären
  - Performanzvorteil

- Kann durch diese Veränderungen wesentlich mehr Datenpunkte verarbeiten
  - Keine Logarithmen
  - Keine Normalisierung
  - SGD bei der Einbettung

Konserviert auch globale Strukturen in der Einbettung



