

Квантовая макрофизика.

Лекция 11. Контактные явления в полупроводниках.
Построение энергетических диаграмм контактов полупроводников.

Share this: f 🔯 💆 🖼 📴 3

Leo Esaki - Facts

Leo Esaki

Born: 12 March 1925, Osaka, Japan

Affiliation at the time of the award: IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Prize motivation: "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"

Field: condensed matter physics, semiconductors

Share this: f 🔯 💟 🚼 🖾 3

Leo Esaki - Facts

Leo

Bor

Affi

awa

The Nobel Prize in Physics 2000

Zhores Alferov, Herbert Kroemer, Jack Kilby

Share this: 🚹 🔯 💟 🔡 🖾 6

Herbert Kroemer - Facts

Herbert Kroemer

Born: 25 August 1928, Weimar, Germany

Affiliation at the time of the award: University of California, Santa Barbara, CA, USA

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

Share this: f 🔯 💟 👪 🖾 3

Leo Esaki - Facts

Leo

Bor

Affi

awa

Herbert Kroe

Share this: 🚹 🚰 💆 🔼 🔼 11

Zhores Alferov - Facts

Zhores I. Alferov

Born: 15 March 1930, Vitebsk, Belorussia, USSR (now Belarus)

Affiliation at the time of the award: A.F. loffe Physico-Technical Institute, St. Petersburg, Russia

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

Share this: f @ 💟 👪 🖂

Leo

Bor

Affi

awa

NY,

Leo Esaki - Facts

Herbert Kro

Whenever I teach my semiconductor device course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of «Kroemer's Lemma of Proven Ignorance»:

- If, in discussing a semiconductor problem you cannot draw an Energy Band Diagram, this shows that you don't know what you are talking about with the corollary.
- If you can draw one, but don't, then your audience won't know what you are talking about.

H.Kroemer, Nobel Prize Lecture, 2000

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

Share this: f 💁 💟 👪 🖾

Leo Esaki - Facts

Leo

Bor

Affi

awa

NY,

Herbert Kro

Whenever I teach my semiconductor device course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of «Kroemer's Lemma of Proven Ignorance»:

- If, in discussing a semiconductor problem you cannot draw an Energy Band Diagram, this shows that you don't know what you are talking about with the corollary.
- If you can draw one, but don't, then your audience won't know what you are talking about.

H.Kroemer, Nobel Prize Lecture, 2000

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

Часть 1. Энергетическая диаграмма p-n перехода

Энергетическая диаграмма полупроводника

р-п переход

Упрощённая геометрия:

- два «бруска» полупроводника р и n-типа
- гладкая граница
- один «родительский» полупроводник, одинаковое расположение зон.

р-п переход

Упрощённая геометрия:

- два «бруска» полупроводника р и n-типа
- гладкая граница
- один «родительский» полупроводник, одинаковое расположение зон.

р-п переход

Упрощённая геометрия:

- два «бруска» полупроводника р и n-типа
- гладкая граница
- один «родительский» полупроводник, одинаковое расположение зон.

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

$$n_e(T) = Q_e(T)e^{-(E_g - \mu(T))/T}$$

 $n_h = Q_h(T)e^{-\mu(T)/T}$

$$\mu(\vec{r}) - e \phi(\vec{r}) = const$$

$$n_e(T) = Q_e(T)e^{-(E_g - \mu(T))/T}$$

 $n_h = Q_h(T)e^{-\mu(T)/T}$

$$T \ln n_e - e \phi = const(T)$$

 $T \ln n_h + e \phi = const(T)$

Электронейтральность:

$$d_a N_a = d_d N_d$$

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

Электронейтральность:

$$d_a N_a = d_d N_d$$

Контактная разность потенциалов:

$$\Delta \varphi = \varphi_d - \varphi_a = \frac{1}{e} (\mu_d - \mu_a) =$$

$$= \frac{E_g + E_d - E_a}{2e} \approx \frac{E_g}{e}$$

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

Электронейтральность:

$$d_a N_a = d_d N_d$$

Контактная разность потенциалов:

$$\Delta \varphi = \varphi_d - \varphi_a = \frac{1}{e} (\mu_d - \mu_a) =$$

$$= \frac{E_g + E_d - E_a}{2e} \approx \frac{E_g}{e}$$

Уравнения на потенциал:

$$\epsilon \frac{d^2 \varphi}{d x^2} = -4 \pi e N_d$$

$$\epsilon \frac{d^2 \varphi}{d x^2} = 4 \pi e N_a$$

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

n

Электронейтральность:

$$d_a N_a = d_d N_d$$

Контактная разность потенциалов:

$$\Delta \varphi = \varphi_d - \varphi_a = \frac{1}{e} (\mu_d - \mu_a) =$$

$$= \frac{E_g + E_d - E_a}{2e} \approx \frac{E_g}{e}$$

равнения на потенциал:

$$\epsilon \frac{d^2 \varphi}{d x^2} = -4 \pi e N_d$$

$$\epsilon \frac{d^2 \varphi}{d x^2} = 4 \pi e N_a$$

p

 d_{a}

Часть 2. Энергетические диаграммы p-n перехода под напряжением

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

$$= D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$$

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

$$= D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$$

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

$$= D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$$

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

$$= D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$$

Часть 3. Туннельный диод Лео Есаки

The Nobel Prize in Physics 1973

Leo Esaki, Ivar Giaever, Brian D. Josephson

Share this: f 🔯 💆 🔠 🔼 3

Leo Esaki - Facts

Leo Esaki

Born: 12 March 1925, Osaka, Japan

Affiliation at the time of the award: IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Prize motivation: "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"

Field: condensed matter physics, semiconductors

Контакт сильно легированных полупроводников

Контакт сильно легированных полупроводников

Контакт сильно легированных полупроводников

Энергетические диаграммы туннельного диода под напряжением

Из нобелевской лекции Л.Есаки

Часть 4. Гетероструктуры

Правило Андерсона

Правило Андерсона

Гетеропереход. Типы гетероперехода.

Гетеропереход. Типы гетероперехода.

Гетеропереход. Типы гетероперехода.

Технология: требования к материалам для гетероперехода.

- разные ширина запрещённой зоны и сродство полупроводника
- возможность получения атомно-гладкой границы (в т.ч.: близкие периоды решётки!)
- технологичность (чистота, стабильность, возможность легирования)

Структура GaAs

Ga-Al-As

Al_xGa_{1-x}As

	AlAs	GaAs
период решётки, Å	5.6611	5.6533
ширина зоны, эВ	2.16	1.42
сродство, эВ	3.5	4.1
тип проводимости	(I) «n»	(D) «p»

Ga-Al-As

IV III 5 10,811 6 12,01115 B 14,0067 Углерод Бор Азот 14 28,086 Кремний 13 26,9815 15 30,9738 Фосфор Алюминий 23 50,942 22 21 Sc Ti 47,90 44,956

Скандий

Ga

Галлий

31 69,72 Ge

Германий

 $Al_xGa_{1-x}As$

	AlAs	GaAs
период решётки, Å	5.6611	5.6533
ширина зоны, эВ	2.16	1.42
сродство, эВ	3.5	4.1
тип проводимости	(l) «n»	(D) «p»

http://www.hemi.nsu.ru/mends.htm

Титан

32 72,59 Ванадий

Мышьяк

Ga-Al-As

III		IV	v		
одинакова залентност Al и Ga!	ъ	6 12,01115	N 7		
Бор Al 13 26,9815 Алюминий	Углерод Si 14 28,086 Кремний		Р 15 30,9738 Фосфор		
21 Sc 44,956 Скандий	22 47.9	о Ті	23 50,942 Ванадий		
Ga 31 _{69,72} Галлий	Ge rep	е 32 _{72,59} маний	As 33 _{74,9216} Мышьяк		

 $Al_xGa_{1-x}As$

	AlAs	GaAs
период решётки, Å	5.6611	5.6533
ширина зоны, эВ	2.16	1.42
сродство, эВ	3.5	4.1
тип проводимости	(l) «n»	(D) «p»

http://www.hemi.nsu.ru/mends.htm

Зонная структура прямозонного полупроводника GaAs

Зонная структура GaAs. Слева: первая зона Бриллюэна и рассматриваемое сечение первой зоны. Справа: вычисленная в выбранном сечении энергия, показана только нижняя из зон проводимости. Ноль отсчёта энергии соответствует потолку валентной зоны.

W. R. Frensley and N. G. Einspruch editors, Heterostructures and Quantum Devices, Academic Press, 1994

Энергетическая диаграмма гетероперехода nAlAs-pGaAs

По правилу Андерсона разрыв дна зоны проводимости *4.1-3.5=0.6эВ*

В действительности: 0.4эВ

Энергетическая диаграмма гетероперехода nAlAs-pGaAs

«Реалистичная» энергетическая диаграмма для сильно легированного n-AlAs

«Реалистичная» энергетическая диаграмма для сильно легированного n-AlAs

Основное на этой лекции.

