A Rational Synthesis of Pt/C Catalysts

J. R. Regalbuto

Dept. of Chemical Engineering U. Illinois at Chicago

U.S. Patent Office

August 13, 2007

*Examples of catalyst synthesis presented here are examples and are not intended to limmit the invention.

Pt/carbon black catalyst Heart of a Fuel Cel catalyst sealant electrolyte electrodes 5.11 Graphibe Flow Channel PEMFC Unit Cell Part List Gold Plated Cu Plate 8,10 Gas Diffusion Layer 2,14 Belleville Washer Tellon Gasket 3,13 Insulator Pin MO Bott ME

Heart of a Packed Bed Reactor

Motivation

Prevalent methods for producing fuel cell electrodes are often cumbersome (e.g. E-TEK, Watanabe et al., J. Electroanal. Chem. 229 (1987) 395)

We've applied our fundamental insights on electrostatic adsorption to carbon materials, so as to greatly simplify the process Zhou, Zhenhua et al. (Qin Xin), Phys. Chem. Chem. Phys. 2003, 5(24), 5485-5488.

Method of "Strong Electrostatic Adsorption (SEA)"

Motivation

Prevalent methods for producing fuel cell electrodes are often cumbersome (e.g. E-TEK, Watanabe et al., J. Electroanal. Chem. 229 (1987) 395), use Pt sulfite acid

Hypothesis: SEA of common Pt precursors will lead to high dispersion of reduced (finished) catalyst:

RPA Model Components

(Melanie Timmons and Teresa Feltes, \mathcal{NSFREU}_{J} Carbon PZC results

- the solid surface has a dramatic effect on solution pH (Park and Regalbuto, JCIS 1995)

Carbon PZC results

The Equilibrium pH for Carbon Graphite at Various Surface Loadings

Pewised Physical Adsorption (RiPA)) Model

System Parameters:

imitial concentration C [mol/I] surface loading SL $[m^2/l]$ temperature T [K] final pH

Precursor Parameters:

number of hydration sheaths radius of hydrated ion $r_{\rm i}$ [m] vallence z [-]

Support Parameters:

surface ionization constants ApIK [-] dielectric constant of the oxide $\mathbb{E}\left[ight]$ hydroxyl site density \mathbb{N}_{s} [1l/nm²] point of zero charge $\mathbb{P}\mathbb{Z}\mathbb{C}$ [-]

Fundamental Constants.

e, e₀, k, F, N₀, r_w, R, e_w

OS — KRCR Mark 1 2 m $1+\mathbb{K}_{\mathbb{P}}\mathbb{C}_{\mathbb{P}}$

$$-RT$$
 In $K_i = \triangle G_{coul,i}$

10

ම

ത

\$

ଷ

$$\mathbb{AG}_{\mathit{coul},i} \equiv \mathbb{Z}_i \mathbb{F} \mathbb{W}_{i,x}$$

$$\psi_{i,x} = \left(\frac{2RT}{zF}\right) \ln \left(\frac{(Y+1)+(Y-1)\exp(-\kappa\alpha_i)}{(Y+1)-(Y-1)\exp(-\kappa\alpha_i)}\right)$$

$$Y = \exp\left(\frac{zF\psi_0}{2RT}\right)$$

2RT

Methods

ICP for measurement of [Pt], [Al] /ppm Surface coverage = μ mol/m² = (Cpr. imitial — Cpr. final)/SL

SL = Surface Loading:

1.786 g $lpha - \mathrm{Al_2O_3}$ (14 $\mathrm{m^2/g}$) Sed Mil 0.030L d - M202 $0.0903 g \text{ Y-Al}_{2}O_{3} (277 \text{ m}^{2}/g)$ 0.050

500m²/L

PZC	4.7	8.4	(6) (7)	78	2.6	4.8		5,2	4.5		3.6	0°6	9.5	8.9
Total Pore Volume (ml/g)	1.0	1.36		2.16	60	@°]		2.55	1.64		L°00	1,4	0.8	3,46
Pretreatment	Acid washed, steam activation of	Acid washed steam activated	Acid washed steam activated	Acid washed steam activated	Chemically activated by phosphotic	chemical activation of handwood		Heated, ground natural graphite	Heated, ground petroleum coke		pyrolysis	pyrolysis	pyrrollysûs	pyrolysis
SA (m²/g)	650	800	650	1200	1400			115	280		25	62	01/1	254
Abbrevi- ation	S51	SX2	SX4		ČĄ.	IMB:		ASBURY	TIMREX		N754	E250	E350	VXC
Carbon Name	Activated carbon Darco s-51	Norit SX 2	Norit SX 4		Notifi CA-1	Danco KB/B.	S Grapping	Ashury Grade 4827	Timeal TIMREX HSAG 300	Carbon Black	Degussa A1-04088 N754	Ensaco 250 Powder	Ensuco 350 Powder	Vulcam XC 72

PZC Determinations of Carbons

RPA Simulation of CPA and PTA Adsorption Over Supports with Different PZC

CPA FIZPICI6

Xao and Regalbuto, J. Mol. Catal. 219, 2004, 97.

CPA, PTA uptake vs. pH, varying carbon type PTA/mid PZC CPA/high PZC

STEM of PTA/Timrex after 200°C Reduction

- average size $\approx 8-10 \text{ nm}$

- average size ≅ 1-2 nm

Fuel Cell Electrocatalyst Synthesis

Max. loading via SEA

CPA uptake vs. pH, carbon blacks

Companison of Platinum Particle size on High Surface Area Carbon Black (BP2000, 1500 \rm{m}^2/\rm{gm})

SEA, 500 m²/1, pH 2.9, 200°C reduc.

Pt utilization in high SA carbon blacks

	: :		samiple	SA	W	Pt area (m² Pt/gm Pt)	· ·
	6				 % &	SEA at pH 2.9	
G G	0		Ketjen 300	000	10	93 (91)*	
			Ketjen 600	1415	788	62	· ,
			BP 2000	1475	30	116	·
	े जे ,	· ·	Ensaco 350	795	10	112	· · · · · · · · · · · · · · · · · · ·
	o amd sm		* measured independent with cyclic voltammetry	d indep		* measured independently by H. Gasteiger, GM, with cyclic voltammetry	

particle size (1-2 mm)

Pd(II) uptake on carbon

[PdCl₄]-2 dissolved in 5.6 times excess Cl; basified with NH_4OH

[(NH₃)₄Pd]⁺² starting solution, basified with NaOH

SEA @ pH 11

Timrex 1.9 wt%

Asbury 0.6 wt%

wt% 15 ± 5 Å

0.02 µm

JR vs. Ebner

Objective:

- Ebner: deposit NIM on oxygen free carbon to reduce leaching, sintering
- JR.: deposit highly dispersed NM on either O-free of O-containing carbon

Mechanism:

- Ebner: reactive deposition by hydrolysis of NM complex at high pH
- JR: electrostatic deposition at optimal pH at either pH range

JR vs. Fischer

] Medhanism:

- Fischer: electroless deposition at high pH by reduction of NM complex, aliways have one reducing agent in solution
- JR: electrostatic deposition at optimal pH at either pH range, no reducing agent in solution

Conclusions

- SEA is a good, simple method for the synthesis of Pt/C materials with common Pt complexes
 - CPA: use PZC ~ 9 carbon, pH ~ 2.9
- Pátc: use PZC ~ 9 carbon, ph. ~2-3.

- PTFA), PdTFA: use PZC ~ 445 carbon, pH ~110.5 PTFAV/high pH; steric exclusions for high SA carbons
- . SEA method is based on a simple electrostatic mechanism of monolayer adsorption of charged metal complexes
- SEA method does not involve hydrolyzing or reducing agents