Hate Speech Detection Using Machine Learning

Hiroki Endo

Task

Train machine learning model to classify tweets from Twitter to following 3 classes

hate speech

offensive language

neither

Data Overview

cookies and crackers aren't even on the same level!

午前7:04 · 2014年6月27日 · Twitter Web Client

cookies and crackers aren't even on the same level!

Data size by class

Data Augmentation with Google Translate

Original:

Fuck you pussy ass hater go suck a dick and die fast

Translate to French, German, Dutch

Translated to French:

Va te faire foutre le cul chatte aller sucer une bite et mourir vite

Translate back to English

After re-translation:

Fuck you pussy hater will suck a dick and die quick

Data After Augmentation°

Preprocessing: Replacement

```
"@John: How was Japan?" Awesome! 😀
                    RT@Hana miss Japan: (
                                 Indicate Reply
@ mention to <user>
   "<user>: How was Japan?" <reply> Awesome! : grinning_face:
                 <rt from> miss Japan : sad face:
                   Indicate Retweet
                                              Replace emoji with
                                            corresponding meaning
```

Preprocessing: lemmatization

- Used Stanford CoreNLP Package¹ → Pipeline for doing various preprocessing
- POS tagging using GATE Twitter
 POStagger²
- → POS tagger trained with twitter tweet
- Lemmatize based on resulting POS tags

^{2.} https://gate.ac.uk/wiki/twitter-postagger.html

Preprocessing: Others

- Spell correct
- → Used module autocorrect¹
- Fix abbreviation
- → Used module contractions²
- Remove punctuations other than ?!
- Make Everything into lower case
- Remove stopwords
- → Used built in list from nltk³

- https://pypi.org/project/autocorrect/
- 2. https://pypi.org/project/contractions/
- 3. https://www.nltk.org/

Chosen Models

- Decision Tree
- LSTM

Decision Tree Parameter

	Only Original Data	Augmented Data
Max Depth	20	30
Minimum sample to create new branch	17.5%	15.5%
Featured considered at each branch	84%	82%

LSTM

Parameters • Model Structure

	Only Original Data	Augmented Data
embedding	20	20
LSTM Blocks	91	171
dropout	47%	63%
Softmax	3	3
Learning Rate	0.001	0.001

Model Structure

1. embedding layer

2. LSTM layer

Optimizer: Adam

Activation Func: layer → tanh

gates → hard sigmoid

3. Dropout

4. Output layer: softmax

Feature Extraction

- Decision Tree: TF-IDF
 - A. Give bigger weight to word occurring less frequent across all data.
 - B. Words, which occurrences are in top 30%, and bottom 0.4% are ignored
 - C. Combination of unigram and bigram

Feature Extraction

- LSTM: let model learn embedding
- →allows to create embedding best fitted to the task

ex. words with closest cosine distance to 'white'

GloVe¹ (Twitter base): black, blue, green, yellow, red, purple, tank

Embedding created by model: nigga, fuck, faggot, nigger, fag, ass, racist

1. https://nlp.stanford.edu/projects/glove/

Result

Decision Tree CART

Result: Original Data Only

Classification Result (%)

- Model can detect offensive language, neither well
 f1-score 約90%
- Not successful at detecting hate speech
- Especially, there is problem distinguishing hate speech and offensive language
- f1-macro: 78%
- f1-weighted: 85%

Result: With Data Augmentation

Without Data Augmentation

With Data Augmentation

- hate speech's true positive improved greatly
- More data was mistakenly classified as hate speech
- f1-macro: 78% → 80%
- f1-weighted: $85\% \rightarrow 85\%$

LSTM

Result: Original Data Only

Classification Result (%)

- Similar to decision tree, offensive, and neither are classified well
 f1-score 90%
- Accuracy for hate speech is bad
 - → 38% is classified as offensive
- f1-macro: 76%
- f1-weighted: 83%

Result: With Data Augmentation

Without Data Augmentation

With Data Augmentation

- Again, true positive of hate speech class improved
 f1-macro: 76% → 81%
- False positive of hate speech worthened

• f1-weighted: 83% → 86%

Model Comparison

Both models have similar result

Conclusion

Conclusion

- Trained decision tree and LSTM
- offensive language and neither classes can be detected well
 - → both models are good if only trying to detect those two
- There is still problem in classifying hate speech

Conclusion: hate vs offensive

100

- Models had difficulty distinguishing these two classes
- Original data only
- →hate speech likely to be classified as offensive language
- With data augmentation
- →offensive language likely to be classified as hate speech

Decision Tree

Best Model

Conclusion: Best Model

- It is easier to explain why the model has made its decision
 - →Can give explanation, when we delete posts from user
 - →less likely to damage user experience
- Performance is satisfactory
 - → f1-weighted 85%

Future Work

- 1. More data
- 2. Improv faults in decision tree
- 3. Try more advanced models