Problems for the next seminar

Symmetric groups

For Friday: October 30

- **Problem 1.** Consider the Hecke algebra H(n) and introduce $t_i = s_i + 1/(y_i y_{i+1})$. Show that $t_i t_{i+1} t_i = t_{i+1} t_i t_{i+1}$.
- **Problem 2.** Let X_i be the Jucys-Murphy elements. Find the minimal polynomials of X_i , i = 1, 2, 3, 4, acting by the left multiplication in $\mathbb{C}S_4$.
- **Problem 3.** Recall that a skew Young diagram λ/μ with k boxes determines a representation $V_{\lambda/\mu}$ of the Hecke algebra H(k). We have $\mathbb{C}S_k \subset H(k)$. Determine the decomposition into irreducibles of the module $V_{\lambda/\mu}$ as a $\mathbb{C}S_k$ -module for
 - a) $\lambda = (2, 2), \, \mu = (1).$
 - b) $\lambda = (2, 2, 1), \mu = (1, 1).$
 - c) $\lambda = (3, 2, 1), \, \mu = (2, 1).$
- **Problem 4.** Recall that given an inclusion of groups $G \subset H$ and a G module V we have the induced module Ind_G^H . The induced module is the space $\mathbb{C}H \otimes_{\mathbb{C}G} V$ with H-action given by the left multiplication in the first factor. Compute the decomposition into irreducibles of the induced modules
 - a) $\operatorname{Ind}_{S_2}^{S_3}V$, for all irreducible S_2 modules V.
 - b) $\operatorname{Ind}_{S_3}^{S_4}V$, for all irreducible S_3 modules V.
 - b) $\operatorname{Ind}_{S_2 \times S_2}^{S_4}(V_1 \otimes V_2)$, for all irreducible S_2 modules V_1, V_2 .
- **Problem 5.** Let $V = \mathbb{C}^2$. The group S_4 acts on $V \otimes V \otimes V \otimes V$ by permutation of factors. Compute the decomposition into irreducibles.
- **Problem 6.** Show that the subalgebra of H(3) generated by y_1, y_2, y_3 is maximal commutative. Show that the center of H(3) consists of symmetric polynomials in y_1, y_2, y_3 .
- **Problem 7.** a) Show that there exists an action of H(2) in $\mathbb{C}[y_1, y_2]$ such that y_1, y_2 act as the multiplication operators and $s \cdot 1 = 1 \in \mathbb{C}[y_1, y_2]$. Find an explicit formula for the action of s.
 - b) Prove the same result for H(3).
- **Problem 8.** a) Consider the polynomial representation of H(2) described in Problem 7. Show that for any $a, b \in \mathbb{C}$ the subalgebra $A_{a,b}$

of $\mathbb{C}[y_1,y_2]$ generated by y_1+y_2-a and y_1y_2-b is an H(2)-submodule. Describe the H(2)-module $C[y_1,y_2]/A_{a,b}$. b) Do the same problem for H(3).

Problem 9. Classify all irreducible representation of H(3).