	Call	Put	Binary Call	Binary Put
Value V Black-Scholes value	$Se^{-D(T-t)}\mathcal{N}(d_1)\\-Ee^{-r(T-t)}\mathcal{N}(d_2)$	$-Se^{-D(T-t)}N(-d_1) \ + Ee^{-r(T-t)}N(-d_2)$	$e^{-r(T-t)}N(d_2)$	$e^{-r(T-t)}(1-N(d_2))$
Delta $\frac{\partial V}{\partial S}$ Sensitivity to underlying	$e^{-D(T-t)}\mathcal{N}(d_1)$	$e^{-D(T-t)}(\mathcal{N}(d_1)-1)$	$\frac{e^{-r(T-t)}N'(d_2)}{\sigma S\sqrt{T-t}}$	$-\frac{\mathrm{e}^{-r(T-t)}\mathcal{N}'(d_2)}{\sigma \mathbb{S}\sqrt{T-t}}$
$\frac{\partial^2 V}{\partial S^2}$ Sensitivity of delta to underlying	$\frac{e^{-D(T-t)}N'(d_1)}{\sigma S\sqrt{T-t}}$	$\frac{\mathrm{e}^{-D(T-t)}N'(\mathcal{d}_1)}{\sigma S\sqrt{T-t}}$	$-\frac{\mathrm{e}^{-r(T-t)}d_1N'(d_2)}{\sigma^2\mathrm{S}^2(T-t)}$	$\frac{\mathrm{e}^{-r(T-t)} d_1 N'(d_2)}{\sigma^2 S^2 (T-t)}$
Theta $\frac{\partial V}{\partial t}$ Sensitivity to time	$-\frac{\sigma \text{Se}^{-D(T-t)} N'(d_1)}{2\sqrt{T-t}} \\ +DSN(d_1) \text{e}^{-D(T-t)} \\ -r \text{Ee}^{-r(T-t)} N(d_2)$	$-rac{\sigma Se^{-D(T-t)}N'(-d_1)}{2\sqrt{T-t}} \ -DSN(-d_1)e^{-D(T-t)} \ +rEe^{-r(T-t)}N(-d_2)$	$r \mathrm{e}^{-r(T-t)} N(d_2) \ + \mathrm{e}^{-r(T-t)} N'(d_2) \ imes \left(rac{d_1}{2(T-t)} - rac{r-D}{\sigma \sqrt{T-t}} ight)$	$re^{-r(T-t)}(1-N(d_2)) \ -e^{-r(T-t)}N'(d_2) \ imes \left(rac{d_1}{2(T-t)}-rac{r-D}{\sigma\sqrt{T-t}} ight)$
Speed $\frac{\partial^3 V}{\partial S^3}$ Sensitivity of gamma to underlying	$-\frac{\mathrm{e}^{-D(T-t)} \mathcal{N}'(d_1)}{\sigma^2 S^2 (T-t)} \\ \times \left(d_1 + \sigma \sqrt{T-t}\right)$	$-\frac{\mathrm{e}^{-D(T-t)}N'(\sigma_1)}{\sigma^2S^2(T-t)} \\ \times (\sigma_1 + \sigma\sqrt{T-t})$	$-\frac{\mathrm{e}^{-r(T-\delta)N'(d_2)}}{\sigma^2 \mathrm{S}^3(T-t)} \times \left(-2d_1 + \frac{1-d_1d_2}{\sigma\sqrt{T-t}}\right)$	$\frac{e^{-r(T-t)}N'(d_2)}{\sigma^2S^3(T-t)} \times \left(-2d_1 + \frac{1-d_1d_2}{\sigma\sqrt{T-t}}\right)$
Vega $\frac{\partial V}{\partial \sigma}$ Sensitivity to volatility	$S\sqrt{T-t}e^{-D(T-t)}N'(d_1)$	$S\sqrt{T-t}e^{-D(T-t)}N(d_1)$	$-e^{-t(T-t)}N'(d_2) \times \left(\sqrt{T-t} + \frac{d_2}{\sigma}\right)$	$e^{-r(T-t)}N'(d_2) \times \left(\sqrt{T-t} + \frac{d_2}{\sigma}\right)$
Rho (r) $\frac{\partial V}{\partial r}$ Sensitivity to interest rate	$E(T-t)e^{-r(T-t)}N(d_2)$	$-E(T-t)e^{-r(T-t)}N(-d_2)$	$-(T-t)e^{-(T-t)}N(d_2) + \frac{\sqrt{T-t}}{\sigma}e^{-r(T-t)}N'(d_2)$	$-(T-t)\mathrm{e}^{-r(T-t)}(1-N(d_2)) \ -rac{\sqrt{T-t}}{\sigma}\mathrm{e}^{-r(T-t)}N(d_2)$
Rho (D) $\frac{\partial V}{\partial D}$ Sensitivity to dividend yield	$-(T-t)Se^{-D(T-t)}N(d_1)$	$(T-t)Se^{-D(T-t)}N(-d_1)$	$-\frac{\sqrt{T-t}}{\sigma} \mathrm{e}^{-r(T-t)} N'(d_2)$	$rac{\sqrt{T-t}}{\sigma} \mathrm{e}^{-\mathrm{r}(T-t)} \mathcal{N}(d_2)$

 $\log\left(\frac{S}{E}\right) + (r - D - \frac{1}{2}\sigma^2)(T - t)$

 $\frac{\log\left(\frac{S}{E}\right) + (r - D + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}},$

 $d_1 = -$