Wavelet Tutorial

Learning Goals

- What are wavelet transforms for? Wavelet compression!
- Haar wavelets
 - Given a 1-D (or 2-D) image, find its Haar wavelet coefficients.
 - Given the Haar wavelet coefficients, recover the original image.
- Proof of minimum reconstruction error

Wavelet Compression

- An image can be thought of as a vector of dimension $w \times h$.
- This is really big! Makes for slow computation.
- GOAL: Reduce the dimensionality of the image without losing too much "important information".
- (Hint: We've already seen an example of a possible set of basis vectors: eigenfaces via PCA.)

Image transformation

Represent each image as a linear combination of basis vectors and coefficients.

wavelet coefficient vector $(m \times 1)$

wavelet basis $(m \times m)$

original image vector $(m \times 1)$

Image reconstruction

Represent each image as a linear combination of basis vectors and coefficients.

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{m-1} \\ x_m \end{bmatrix} = \begin{bmatrix} B_1 & B_2 & \dots & B_{m-1} & B_m \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{m-1} \\ y_m \end{bmatrix}$$

original image vector $(m \times 1)$

wavelet basis $(m \times m)$

wavelet coefficient vector $(m \times 1)$

Wavelet Compression

GOAL: Reduce the dimensionality of the image X without losing too much "important information".

ALGORITHM:

- 1. Compute the wavelet transformation $Y = B^T X$ of image X given a wavelet basis B.
- 2. Keep the k-largest coefficients in Y to obtain Y' with dimensionality k. (k is a fixed parameter.)
- 3. Keep the corresponding vectors in B to obtain B'.
- 4. Compute a new image by wavelet reconstruction, X' = B' Y'. This new image has dimensionality k.

Wavelet Compression

Alternatively, instead of fixing k beforehand, keep growing Y' until the difference between the reconstructed image X' and the original image X is small.

Let X be a 1-D image with pixel intensities [8 4 3 5]. Compute the Haar wavelet coefficients of X.

Let X be a 1-D image with pixel intensities [8 4 3 5]. Compute the Haar wavelet coefficients of X.

- 1. For each pair of pixels (2i, 2i + 1), compute the **average** and the **detail** coefficients (ie. 2i average).
- 2. Recurse on the averages until there is only one left.
- 3. Return the vector containing: the last average and the detail coefficients.

Let X be a 1-D image with pixel intensities [8 4 3 5]. Compute the Haar wavelet coefficients of X.

- 1. For each pair of pixels (2i, 2i + 1), compute the **average** and the **detail** coefficients (ie. 2i average).
- 2. Recurse on the averages until there is only one left.
- 3. Return the vector containing: the last average and the detail coefficients.

Let X be a 1-D image with pixel intensities [8 4 3 5]. Compute the Haar wavelet coefficients of X.

- 1. For each pair of pixels (2i, 2i + 1), compute the **average** and the **detail** coefficients (ie. 2i average).
- 2. Recurse on the averages until there is only one left.
- 3. Return the vector containing: the last average and the detail coefficients.

Let X be a 1-D image with pixel intensities [8 4 3 5]. Compute the Haar wavelet coefficients of X.

Method 1: Use the recursive algorithm.

- 1. For each pair of pixels (2i, 2i + 1), compute the **average** and the **detail** coefficients (ie. 2i average).
- 2. Recurse on the averages until there is only one left.
- 3. Return the vector containing: the last average and the detail coefficients.

averages

Let X be a 1-D image with pixel intensities [8 4 3 5]. Compute the Haar wavelet coefficients of X.

- 1. For each pair of pixels (2i, 2i + 1), compute the **average** and the **detail** coefficients (ie. 2i average).
- 2. Recurse on the averages until there is only one left.
- 3. Return the vector containing: the last average and the detail coefficients.

Let $Y = [6 \ 1 \ 2 \ -2]^T$ be the Haar wavelet coefficients of some image X. Recover the pixel intensities of the original image.

Method 1: Reverse the algorithm from class.

- 1. The first coefficient is the average. Use it and the first detail coefficient to determine two averages from "the level above".
- 2. Recurse on the new averages and given detail coefficients no detail coefficients remain.
- 3. Return the resulting vector.

6

averages

Let $Y = [6 \ 1 \ 2 \ -2]^T$ be the Haar wavelet coefficients of some image X. Recover the pixel intensities of the original image.

Method 1: Reverse the algorithm from class.

- 1. The first coefficient is the average. Use it and the first detail coefficient to determine two averages from "the level above".
- 2. Recurse on the new averages and given detail coefficients no detail coefficients remain.
- 3. Return the resulting vector.

averages

Let $Y = [6 \ 1 \ 2 \ -2]^T$ be the Haar wavelet coefficients of some image X. Recover the pixel intensities of the original image.

Method 1: Reverse the algorithm from class.

- 1. The first coefficient is the average. Use it and the first detail coefficient to determine two averages from "the level above".
- 2. Recurse on the new averages and given detail coefficients no detail coefficients remain.
- 3. Return the resulting vector.

averages

Let $Y = [6 \ 1 \ 2 \ -2]^T$ be the Haar wavelet coefficients of some image X. Recover the pixel intensities of the original image.

Method 1: Reverse the algorithm from class.

- 1. The first coefficient is the average. Use it and the first detail coefficient to determine two averages from "the level above".
- 2. Recurse on the new averages and given detail coefficients no detail coefficients remain.
- 3. Return the resulting vector.

averages

Let $Y = [6 \ 1 \ 2 \ -2]^T$ be the Haar wavelet coefficients of some image X. Recover the pixel intensities of the original image.

Method 1: Reverse the algorithm from class.

- 1. The first coefficient is the average. Use it and the first detail coefficient to determine two averages from "the level above".
- 2. Recurse on the new averages and given detail coefficients no detail coefficients remain.
- 3. Return the resulting vector.

averages

Let X be a 1-D image with pixel intensities [8 4 3 5]^T. Compute the Haar wavelet coefficients of X.

Method 2: Use the Haar matrix product. Compute Y = WX where W is:

$$W = \begin{bmatrix} \phi_0^0 \\ \varphi_0^0 \\ \varphi_0^1 \\ \varphi_1^1 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Let $Y = [6 \ 1 \ 2 \ -2]^T$ be the Haar wavelet coefficients of some image X. Recover the pixel intensities of the original image.

Exercise: Do this using matrix products!

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

Method 1: Use the algorithm from class:

- 1. For every discrete 2-by-2 patch of the image, compute the average and detail coefficients.
- 2. Recurse on the averages until only one remains.

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

 p_2

 p_4

 p_1

 p_3

Method 1: Use the algorithm from class:

- 1. For every discrete 2-by-2 patch of the image, compute the **average** and detail coefficients.
- 2. Recurse on the averages until only one remains.

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

$$A = \frac{1}{4}(p_1 + p_2 + p_3 + p_4)$$

$$d_2 = \frac{1}{4}(p_1 - p_2 + p_3 - p_4)$$

$$d_3 = \frac{1}{4}(p_1 + p_2 - p_3 - p_4)$$

$$d_4 = \frac{1}{4}(p_1 - p_2 - p_3 + p_4)$$

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

 p_2

 p_4

 p_3

Method 1: Use the algorithm from class:

- 1. For every discrete 2-by-2 patch of the image, compute the **average** and detail coefficients.
- 2. Recurse on the averages until only one remains.

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

4	5	-1	2
-2	1	0	0

$$A = \frac{1}{4}(p_1 + p_2 + p_3 + p_4)$$

$$d_2 = \frac{1}{4}(p_1 - p_2 + p_3 - p_4)$$

$$d_3 = \frac{1}{4}(p_1 + p_2 - p_3 - p_4)$$

$$d_4 = \frac{1}{4}(p_1 + p_2 + p_3 - p_4)$$

original image

intermediate image

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

Method 1: Use the algorithm from class:

- 1. For every discrete 2-by-2 patch of the image, compute the average and detail coefficients.
- 2. Recurse on the averages until only one remains.

recurse on these intermediate averages

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

4	5	-1	2		
4.5	5	1.5	0		
-2	1	0	0		
-1.5	0	-0.5	2		

original image

intermediate image

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

Method 1: Use the algorithm from class:

- 1. For every discrete 2-by-2 patch of the image, compute the average and detail coefficients.
- 2. Recurse on the averages until only one remains.

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

4	5	-1	2
4.5	15	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

4.63	0.38	-1	2
-0.13	-0.13	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

original image

intermediate image

final image

 d_4

Let Y be a 2-D matrix of Haar wavelet coefficients of some image X. Recover the original pixel intensities. $A \mid d_2$

Method 1: Reverse the algorithm from class:

- 1. Begin with the upper-right 2-by-2 patch. Use the detail coefficients to recover the averages from "one level up".
- 2. Recurse on the intermediate averages until no detail coefficients remain.

4.63	0.38	-1	2
-0.13	-0.13	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

original coefficients

Let Y be a 2-D matrix of Haar wavelet coefficients of some image X. Recover the original pixel intensities. $A \mid d_2$

Method 1: Reverse the algorithm from class:

- 1. Begin with the upper-right 2-by-2 patch. Use the detail coefficients to recover the averages from "one level up".
- 2. Recurse on the intermediate averages until no detail coefficients remain.

4.63	0.38	-1	2
-0.13	-0.13	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

4	5	-1	2
4.5	15	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

$$p_{1} = A + d_{2} + d_{3} + d_{4}$$

$$p_{2} = A - d_{2} + d_{3} - d_{4}$$

$$p_{3} = A + d_{2} - d_{3} - d_{4}$$

$$p_{4} = A - d_{2} - d_{3} + d_{4}$$

 d_4

original coefficients

intermediate coefficients

Let Y be a 2-D matrix of Haar wavelet coefficients of some image X. Recover the original pixel intensities. $A \mid d_2$

Method 1: Reverse the algorithm from class: d_3

- 1. Begin with the upper-right 2-by-2 patch. Use the detail coefficients to recover the averages from "one level up".
- 2. Recurse.

4	5	-1	2
4.5	G ₁	1.5	0
-2	1	0	0

intermediate coefficients

1	3	
5	7	

$$p_1 = A + d_2 + d_3 + d_4$$

$$p_2 = A - d_2 + d_3 - d_4$$

$$p_3 = A + d_2 - d_3 - d_4$$

$$p_4 = A - d_2 - d_3 + d_4$$

 d_4

Let Y be a 2-D matrix of Haar wavelet coefficients of some image X. Recover the original pixel intensities. $A \mid d_2$

Method 1: Reverse the algorithm from class: d_3 d_4

- 1. Begin with the upper-right 2-by-2 patch. Use the detail coefficients to recover the averages from "one level up".
- 2. Recurse.

4	150	-1	2
4.5	25	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

$$p_1 = A + d_2 + d_3 + d_4$$

$$p_2 = A - d_2 + d_3 - d_4$$

$$p_3 = A + d_2 - d_3 - d_4$$

$$p_4 = A - d_2 - d_3 + d_4$$

intermediate coefficients

original image

Let X be a 2-D image with pixel intensities as indicated. Compute the Hyrwavelet coefficients of X.

The 2-D Haar wavelet transformation is a **separable convolution!** Hence, it can be represented as a series of 1-D transformations.

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

Let X be a 2-D image with pixel intensities as indicated. Compute the X wavelet coefficients of X.

Method 2: Compute a bunch of 1-D Haar wavelet transforms:

- 1. Compute the 1-D Haar wavelet transform for each column to form an intermediate image, Γ .
- 2. Compute the 1-D Haar wavelet transform for each row of Γ .

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

Let X be a 2-D image with pixel intensities as indicated. Compute the X wavelet coefficients of X.

Method 2: Compute a bunch of 1-D Haar wavelet transforms:

- 1. Compute the 1-D Haar wavelet transform for each column to form an intermediate image, Γ .
- 2. Compute the 1-D Haar wavelet transform for the **first half of the rows** of Γ .

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

4.5	4	6	4
-1.5	1	1	-1
-2	-2	1	1
-2	-1	2	-2

4.63	0.38	-1	2
-0.13	-0.13	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

Let Y be a 2-D matrix of Haar wavelet coefficients of some image X. Recover the original pixel intensities.

Method 2: Compute a bunch of 1-D Haar wavelet reconstructions:

- 1. Compute the 1-D Haar wavelet reconstruction for each row of I to form an intermediate image, I.
- 2. Compute the 1-D Haar wavelet reconstruction for each column of I.

4.63	0.38	-1	2
-0.13	-0.13	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

Let Y be a 2-D matrix of Haar wavelet coefficients of some image X. Recover the original pixel intensities.

Method 2: Compute a bunch of 1-D Haar wavelet reconstructions:

- 1. Compute the 1-D Haar wavelet reconstruction for each row of I to form an intermediate image, I.
- 2. Compute the 1-D Haar wavelet reconstruction for each column of I.

4.63	0.38	-1	2
-0.13	-0.13	1.5	0
-2	1	0	0
-1.5	0	-0.5	2

4.5	4	6	4
-1.5	1	1	-1
-2	-2	1	1
-2	-1	2	-2

1	3	8	4
5	7	6	2
4	2	7	3
8	4	3	7

Let X be a 2-D image with pixel intensities as indicated. Compute the Haar wavelet coefficients of X.

(Bonus!) Method 3: Derive the 2-D Haar wavelet basis.

- Each component B_i of the basis will be a matrix with the same dimensions as the image X.
- Each Haar wavelet coefficient Y_i is the dot product $X \bullet B_i$. Ask your prof how the dot product between two matrices is defined...