Lineare Algebra — Vorlesungsnotizen

WiSe 2025/2026

Li	ineare Algebra	i
In	Inhaltsverzeichnis	
1	Notation	1
2	Mengen	1

Lineare Algebra 1

1 Notation

X, Y Aussage

 $X \wedge Y \colon X$ und Y

 $X \vee Y \colon X \text{ oder } Y$

 $\neg X$: nicht X (Negation)

 $X \Rightarrow Y$: aus X folgt Y

 $X \Leftrightarrow Y \colon X$ ist äquivalent zu Y

 $\forall x \in M : P(x)$: für alle x in M gilt P(x)

 $\exists x \in M : P(x)$: es existiert ein x in M mit P(x)

2 Mengen

Definition 2.1.

Menge wird durch Angabe ihrer Elemente definiert.

Zwei Mengen sind genau dann gleich, wenn sie dieselben Elemente haben.

Notation 2.2.

 $m \in M$: $\Leftrightarrow m$ ist ein Element von M.

 $m \notin M$: $\Leftrightarrow m$ ist kein Element von M.

Beispiel: $M = \{1, 2, 3\}$, dann ist $1 \in M$ und $4 \notin M$.

 $\emptyset = \{\}$ (leere Menge): Menge ohne Elemente.

 $\mathbb{N} = \text{nat}\ddot{\text{urliche Zahlen}} = \{1, 2, 3, \ldots\}$

 $\mathbb{N}_0 = \text{nat}\ddot{\text{urliche}} \text{ Zahlen mit Null} = \{0, 1, 2, 3, \ldots\}$

 $\mathbb{Z} = \text{ganze Zahlen} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

 $\mathbb{Q} = \text{rationale Zahlen} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z} \land q \in \mathbb{Z} \land q \neq 0 \right\}$

 \mathbb{R} = reelle Zahlen

 $\mathbb{C} = \text{komplexe Zahlen}$

Definition 2.3.

Eine Teilmenge N einer Menge M ist eine Menge, deren Elemente allesamt auch in M liegen.

Schreibweise: $N \subseteq M$.

$$N \subseteq M \Leftrightarrow \forall n \in N : n \in M$$
.

$$N \not\subseteq M \Leftrightarrow \exists n \in N : n \notin M.$$

$$N \subsetneq M \Leftrightarrow N \subseteq M \land N \neq M$$
.

Beispiel: $\emptyset \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Notation 2.4.

Zwei Mengen sind genau dann gleich, wenn sie wechselseitig Teilmengen voneinander sind:

$$N = M \Leftrightarrow N \subseteq M \land M \subseteq N$$
.