

Aprendizagem 2021/22

Homework II

Deadline 27/10/2021 23:59 via Fenix as PDF

- Homework limited to 4 pages (2.5-3pp for part I, 1-1.5pp for part II) according to the provided template
- Include your programming code as an Appendix (maximum 1 page)
- Submission Gxxx.PDF in Fenix where xxx is your group number. Please note that it is possible to submit several
 times on Fenix to prevent last-minute problems. Yet, only the last submission is considered valid
- Exchange of ideas is encouraged. Yet, if copy is detected after automatic/manual clearance, homework is nullified
 and IST guidelines apply for content sharers and consumers, irrespectively of the underlying intent
- Please consult the FAQ before posting questions to your faculty hosts

I. Pen-and-paper [13.5v]

Given the following integer data:

		y_1	y_2	y_3	output
Train	X 1	1	1	0 •	1 N
	X 2	1	1	5	3 N
	X 3	0	2	4 🗖	2 N
	X 4	1	2	3 🚺	0 N
	X 5	2	0	7 1	6 🔁
	X 6	1	1	1 0	4 P
	X 7	2	0	2 🐧	5 P
	X 8	0	2	9 1	7 🦰
test	X 9	2	0	0	2
	X 10	1	2	1	4

1) [5v] Consider the following basis function $\phi_j(\mathbf{x}) = \|\mathbf{x}\|_2^j$ Learn the following polynomial regression model:

$$f(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{3} w_j \cdot \phi_j(\mathbf{x})$$

- 2) [2v] Identify the RMSE on the testing data.
- 3) [5v] Consider an equal depth binarization of y_3 and class targets to be defined as:

$$t_i = \begin{cases} P, & output_i \ge 4 \\ N, & else \end{cases}$$

Learn a decision tree using ID3.

4) [1.5v] Identify the classification accuracy on the testing data.

II. Programming and critical analysis [6.5v]

Recall the breast.w.arff from previous homework.

- 5) [3.5v] In a single plot, compare the training and testing accuracy of a decision tree with a varying:
 - i. number of selected features in {1,3,5,9} using mutual information (tree with no fixed depth)
 - ii. maximum tree depth in {1,3,5,9} (with all features and default parameters)
- 6) [1.5v] Identify two reasons for the observed correlation.
- 7) [1.5v] Select a specific depth. Justify