

< Back to Al for Trading

Multifactor Model

REVIEW

CODE REVIEW

HISTORY

Meets Specifications

Hi here,

Congratulations, you completed all the tasks and successfully completed the project.

Hope you love the contents, lessons and learned a lot from difficulties faced during the project submission.

Try to implement the same concept in real world scenario's.

Congrats again and All the best for Term 2 and future projects.

Regards,

Reviewer.

Your feedback is helpful to update myself.

Statistical Risk Model

The function fit_pca fits the PCA model with returns.

With required parameters, you successfully implemented the PCA model

The function factor_betas gets the factor betas from the PCA model.

Using PCA model, the factor betas returns is a nice work.

The function factor_returns gets the factor returns from the PCA model.

same using PCA model, generate factor returns is an awesome work.

/

The function | factor_cov_matrix | gets the factor covariance matrix.

Good job on finding the factor_covariance _matrix

The function idiosyncratic_var_matrix gets the idiosyncratic variance matrix.

Brilliant work on finding the correct idiosyncratic variance matrix.

/

The function idiosyncratic_var_vector gets the idiosyncratic variance vector.

Fantastic job on finding the idiosyncratic variance vector

/

The function predict_portfolio_risk gets the predicted portfolio risk.

predicted portfolio risk is calculated successfully.

Create Alpha Factors

The function mean_reversion_5day_sector_neutral generates the mean reversion 5 day sector neutral factor.

Generation of mean_reversion_5day_sector_neutral is an good work.

The function mean_reversion_5day_sector_neutral_smoothed generates the mean reversion 5 day sector neutral smoothed factor.

Good calculation in calculation of smoothed factor.

Evaluate Alpha Factors

/

The function sharpe_ratio gets the sharpe ratio for each factor for the entire period.

Implementation of sharp ratio is again awesome work.

The student correctly mentions what would happened if you smooth the momentum factor and why.

Your explanation is good, yes the FRA is very close to 1.0 meaning the factor ranks are very stable, so there would no change in momentum factor.

Optimal Portfolio Constrained by Risk Model

The function <code>OptimalHoldings._get_obj</code> returns the correct objective function.

Clear job on finding the Correct objective function

/

The function OptimalHoldings._get_constraints returns the correct list of constraints.

The list of constraints you generated is an Excellent job.

/

The function <code>OptimalHoldingsRegualization._get_obj</code> returns the correct objective function.

For Regualization your objective function is good.

The function OptimalHoldingsStrictFactor._get_obj returns the correct objective function.

Finally its awesome, you generate the correct objective function for optimizing the returns with the strict factor constraint

