AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for using a computer system to solve an
2	unconstrained interval global optimization problem specified by a function f,
3	wherein f is a scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method
4	comprising:
5	receiving a representation of the function f at the computer system;
6	storing the representation in a memory within the computer system; and
7	performing an interval global optimization process to compute guaranteed
8	bounds on a globally minimum value of the function $f(x)$ over a subbox X ;
9	wherein performing the interval global optimization process involves,
10	applying term consistency to a set of relations associated
11	with the function f over the subbox X , and excluding any portion of
12	the subbox X that violates any of these relations,
13	applying box consistency to the set of relations associated
14	with the function f over the subbox X , and excluding any portion of
15	the subbox X that violates any of these relations, and
16	performing an interval Newton step on the subbox X to
17	produce a resulting subbox Y, wherein the point of expansion of
18	the interval Newton step is a point x within the subbox X , and
19	wherein performing the interval Newton step involves evaluating
20	the gradient $g(x)$ of the function $f(x)$ using interval arithmetic; and

21	recording the guaranteed bounds in the memory within the computer
22	system.
1	
1	2. (Original) The method of claim 1, wherein applying term consistency
2	involves:
3	symbolically manipulating an equation within the computer system to
4	solve for a term $g(x_j)$, thereby producing a modified equation $g(x_j) = h(\mathbf{x})$, wherein
5	the term $g(x_j)$ can be analytically inverted to produce an inverse function $g^{-1}(y)$;
6	substituting the subbox X into the modified equation to produce the
7	equation $g(X'_j) = h(\mathbf{X});$
8	solving for $X'_j = g^{-1}(h(\mathbf{X}))$; and
9	intersecting X'_j with the interval X_j to produce a new subbox \mathbf{X}^+ ;
10	wherein the new subbox X^+ contains all solutions of the equation within
11	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to
12	the size of the subbox X .
1	3. (Original) The method of claim 1, wherein performing the interval
2	global optimization process involves:
3	keeping track of a smallest upper bound f bar of the function $f(\mathbf{x})$;
4	removing from consideration any subbox X for which $f(\mathbf{X}) > f_bar$; and
5	wherein applying term consistency to the f_bar relation involves applying
6	term consistency to the inequality $f(\mathbf{x}) \leq f_bar$ over the subbox \mathbf{X} .
1	4. (Original) The method of claim 3, wherein applying box consistency to
2	the set of relations involves applying box consistency to the inequality $f(\mathbf{x}) \leq$
3	f har over the subbox X .

- 1 5. (Original) The method of claim 1, wherein performing the interval
- 2 global optimization process involves:
- determining the gradient g(x) of the function f(x), wherein g(x) includes
- 4 components $g_i(\mathbf{x})$ (i=1,...,n);
- removing from consideration any subbox for which any element of g(x) is
- 6 bounded away from zero, thereby indicating that the subbox does not include a
- 7 stationary point of $f(\mathbf{x})$; and
- 8 wherein applying term consistency to the set of relations involves applying
- 9 term consistency to each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox
- 10 X.
- 6. (Original) The method of claim 5, wherein applying box consistency to
- 2 the set of relations involves applying box consistency to each component
- 3 $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox \mathbf{X} .
- 7. (Original) The method of claim 1, wherein performing the interval
- 2 global optimization process involves:
- determining diagonal elements $H_{ii}(\mathbf{x})$ (i=1,...,n) of the Hessian of the
- 4 function $f(\mathbf{x})$;
- 5 removing from consideration any subbox for which a diagonal element of
- 6 the Hessian is always negative, which indicates that the function f is not convex
- 7 and consequently does not contain a global minimum within the subbox;
- 8 wherein applying term consistency to the set of relations involves applying
- 9 term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .
- 8. (Original) The method of claim 7, wherein applying box consistency to
- 2 the set of relations involves applying box consistency to each inequality
- 3 $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .

I	9. (Original) The method of claim 1,
2	wherein performing the interval Newton step involves,
3	computing the Jacobian $J(x,X)$ of the gradient g evaluated
4	as a function of a point x over the subbox X ,
5	computing an approximate inverse B of the center of
6	J(x,X), and
7	using the approximate inverse B to analytically determine
8	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
9	and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ $(i=1,,n)$; and
10	wherein applying term consistency to the set of relations involves applying
11	term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable
12	x_i ($i=1,,n$) over the subbox X .
1	10. (Original) The method of claim 9, wherein applying box consistency to
2	the set of relations involves applying box consistency to each component $(\mathbf{Bg}(\mathbf{x}))_{i}$
3	= 0 $(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the subbox X .
1	11. (Original) The method of claim 1, further comprising terminating
2	attempts to further reduce the subbox X when:
3	the width of X is less than a first threshold value; and
4	the magnitude of $f(X)$ is less than a second threshold value.
1	12. (Original) The method of claim 11, wherein performing the interval
2	Newton step involves:
3	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f
4	evaluated as a function of x over the subbox X ; and
5	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where

7	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of
8	J(x,X).

1	13. (Original) A computer-readable storage medium storing instructions
2	that when executed by a computer cause the computer to perform a method for
3	using a computer system to solve an unconstrained interval global optimization
4	problem specified by a function f , wherein f is a scalar function of a vector
5	$\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:
6	receiving a representation of the function f at the computer system;
7	storing the representation in a memory within the computer system; and
8	performing an interval global optimization process to compute guaranteed
9	bounds on a globally minimum value of the function $f(x)$ over a subbox X ;
10	wherein performing the interval global optimization process involves,
11	applying term consistency to a set of relations associated
12	with the function f over the subbox X , and excluding any portion of
13	the subbox X that violates any of these relations,
14	applying box consistency to the set of relations associated
15	with the function f over the subbox X , and excluding any portion of
16	the subbox X that violates any of these relations, and
17	performing an interval Newton step on the subbox X to
18	produce a resulting subbox Y, wherein the point of expansion of
19	the interval Newton step is a point x within the subbox X , and
20	wherein performing the interval Newton step involves evaluating
21	the gradient $g(x)$ of the function $f(x)$ using interval arithmetic.

14. (Original) The computer-readable storage medium of claim 13, wherein applying term consistency involves:

1

2

```
3
              symbolically manipulating an equation within the computer system to
 4
      solve for a term g(x_i), thereby producing a modified equation g(x_i) = h(\mathbf{x}), wherein
 5
      the term g(x_i) can be analytically inverted to produce an inverse function g^{-1}(y);
 6
              substituting the subbox X into the modified equation to produce the
 7
      equation g(X'_i) = h(X);
              solving for X'_i = g^{-1}(h(\mathbf{X})); and
 8
 9
              intersecting X'_i with the interval X_i to produce a new subbox \mathbf{X}^+;
              wherein the new subbox X^+ contains all solutions of the equation within
10
11
      the subbox X, and wherein the size of the new subbox X^{+} is less than or equal to
12
      the size of the subbox X.
 1
              15. (Original) The computer-readable storage medium of claim 13,
2
      wherein performing the interval global optimization process involves:
3
              keeping track of a smallest upper bound f bar of the function f(\mathbf{x});
4
              removing from consideration any subbox X for which f(X) > f bar; and
5
              wherein applying term consistency to the f bar relation involves applying
6
      term consistency to the inequality f(\mathbf{x}) \le f bar over the subbox \mathbf{X}.
1
              16. (Original) The computer-readable storage medium of claim 15,
2
      wherein applying box consistency to the set of relations involves applying box
3
      consistency to the inequality f(\mathbf{x}) \le f bar over the subbox \mathbf{X}.
1
              17. (Original) The computer-readable storage medium of claim 13,
2
      wherein performing the interval global optimization process involves:
3
             determining the gradient g(x) of the function f(x), wherein g(x) includes
```

components $g_i(\mathbf{x})$ (i=1,...,n);

4

5	removing from consideration any subbox for which any element of $g(x)$ is
6	bounded away from zero, thereby indicating that the subbox does not include a
7	stationary point of $f(\mathbf{x})$; and
8	wherein applying term consistency to the set of relations involves applying
9	term consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox
10	X.
1	18. (Original) The computer-readable storage medium of claim 17,
2	wherein applying box consistency to the set of relations involves applying box
3	consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} .
1	19. (Original) The computer-readable storage medium of claim 13,
2	wherein performing the interval global optimization process involves:
3	determining diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
4	function $f(\mathbf{x})$;
5	removing from consideration any subbox for which a diagonal element of
6	the Hessian is always negative, which indicates that the function f is not convex
7	and consequently does not contain a global minimum within the subbox;
8	wherein applying term consistency to the set of relations involves applying
9	term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the subbox \mathbf{X} .
1	20. (Original) The computer-readable storage medium of claim 19,
2	wherein applying box consistency to the set of relations involves applying box
3	consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the subbox \mathbf{X} .
1	21. (Original) The computer-readable storage medium of claim 13,
2	wherein performing the interval Newton step involves,

3	computing the Jacobian $J(x,X)$ of the gradient g evaluated
4	as a function of a point x over the subbox X ,
5	computing an approximate inverse B of the center of
6	J(x,X), and
7	using the approximate inverse B to analytically determine
8	the system $Bg(x)$, wherein $g(x)$ is the gradient of the function $f(x)$,
9	and wherein $g(x)$ includes components $g_i(x)$ ($i=1,,n$); and
10	wherein applying term consistency to the set of relations involves applying
11	term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable
12	x_i ($i=1,,n$) over the subbox X .
1	22. (Original) The computer-readable storage medium of claim 21,
2	wherein applying box consistency to the set of relations involves applying box
3	consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable x_i
4	(i=1,,n) over the subbox X .
1	23. (Original) The computer-readable storage medium of claim 13,
2	wherein the method further comprises terminating attempts to further reduce the
3	subbox X when:
4	the width of X is less than a first threshold value; and
5	the magnitude of $f(X)$ is less than a second threshold value.
1	24. (Original) The computer-readable storage medium of claim 13,
2	wherein performing the interval Newton step involves:
3	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f
4	evaluated as a function of x over the subbox X ; and
5	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where

7	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of
8	J(x,X).
1	25. (Currently amended) An apparatus that solves an unconstrained
2	interval global optimization problem specified by a function f , wherein f is a scalar
3	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the apparatus comprising:
4	a receiving mechanism that is configured to receive a representation of the
5	function f;
6	a memory for storing the representation; and
7	an interval global optimization mechanism that is configured to perform
8	an interval global optimization process to compute guaranteed bounds on a
9	globally minimum value of the function $f(\mathbf{x})$ over a subbox \mathbf{X} ;
10	a term consistency mechanism within the interval global optimization
11	mechanism that is configured to apply term consistency to a set of relations
12	associated with the function f over the subbox X , and to exclude any portion of the
13	subbox X that violates any of these relations;
14	a box consistency mechanism within the interval global optimization
15	mechanism that is configured to apply box consistency to the set of relations
16	associated with the function f over the subbox X , and to exclude any portion of the
17	subbox X that violates any of these relations; and
18	an interval Newton mechanism within the interval global optimization
19	mechanism that is configured to perform an interval Newton step on the subbox \mathbf{X}
20	to produce a resulting subbox Y, wherein the point of expansion of the interval
21	Newton step is a point x within the subbox X , and wherein performing the interval
22	Newton step involves evaluating the gradient $g(x)$ of the function $f(x)$ using
23	interval arithmetic; and
24	a recording mechanism configured to record the guaranteed bounds in the

```
1
              26. (Original) The apparatus of claim 25, wherein the term consistency
 2
      mechanism is configured to:
 3
              symbolically manipulate an equation to solve for a term g(x_i), thereby
 4
      producing a modified equation g(x_i) = h(\mathbf{x}), wherein the term g(x_i) can be
 5
      analytically inverted to produce an inverse function g^{-1}(v);
 6
              substitute the subbox X into the modified equation to produce the equation
 7
      g(X'_i) = h(\mathbf{X});
              solve for X'_i = g^{-1}(h(X)); and to
 8
 9
              intersect X_i' with the interval X_i to produce a new subbox \mathbf{X}^+;
              wherein the new subbox X^+ contains all solutions of the equation within
10
      the subbox X, and wherein the size of the new subbox X^+ is less than or equal to
11
12
      the size of the subbox X.
 1
              27. (Original) The apparatus of claim 25,
 2
              wherein the interval global optimization mechanism is configured to,
 3
                              keep track of a smallest upper bound f bar of the function
 4
                     f(\mathbf{x}), and to
 5
                              remove from consideration any subbox X for which
 6
                     f(\mathbf{X}) > f bar; and
 7
              wherein the term consistency mechanism is configured to apply term
      consistency to the inequality f(\mathbf{x}) \le f_bar over the subbox \mathbf{X}.
8
1
              28. (Original) The apparatus of claim 27, wherein the box consistency
     mechanism is configured to apply box consistency to the inequality f(\mathbf{x}) \leq f bar
2
3
      over the subbox X.
1
             29. (Original) The apparatus of claim 25,
2
             wherein the interval global optimization mechanism is configured to,
```

3	determine the gradient $g(x)$ of the function $f(x)$, wherein
4	$g(x)$ includes components $g_i(x)$ ($i=1,,n$), and to
5	remove from consideration any subbox for which any
6	element of $g(x)$ is bounded away from zero, thereby indicating that
7	the subbox does not include a stationary point of $f(x)$; and
8	wherein the term consistency mechanism is configured to apply term
9	consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} .
1	30. (Original) The apparatus of claim 29, wherein the box consistency
2	mechanism is configured to apply box consistency to each component
3	$g_i(\mathbf{x})=0$ $(i=1,,n)$ of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} .
1	31. (Original) The apparatus of claim 25,
2	wherein the interval global optimization mechanism is configured to,
3	determine diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the
4	Hessian of the function $f(\mathbf{x})$, and to
5	remove from consideration any subbox for which a
6	diagonal element of the Hessian is always negative, which
7	indicates that the function f is not convex and consequently does
8	not contain a global minimum within the subbox;
9	wherein the term consistency mechanism is configured to apply term
10	consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ ($i=1,,n$) over the subbox \mathbf{X} .
1	32. (Original) The apparatus of claim 31, wherein the box consistency
2	mechanism is configured to apply box consistency to each inequality
3	$H_{ii}(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the subbox \mathbf{X} .
1	33. (Original) The apparatus of claim 25,

2	wherein the interval Newton mechanism is configured to,
3	compute the Jacobian $J(x,X)$ of the gradient g evaluated as
4	a function of a point x over the subbox X ,
5	compute an approximate inverse B of the center of $J(x,X)$,
6	and to
7	use the approximate inverse B to analytically determine the
8	system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$, and
9	wherein $g(x)$ includes components $g_i(x)$ ($i=1,,n$); and
10	wherein the term consistency mechanism is configured to apply term
11	consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable
12	x_i ($i=1,,n$) over the subbox X .
1	34. (Original) The apparatus of claim 33, wherein the box consistency
2	mechanism is configured to apply box consistency to each component
3	$(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the subbox \mathbf{X} .
1	35. (Original) The apparatus of claim 25, further comprising a termination
2	mechanism that is configured to terminate attempts to further reduce the subbox X
3	when:
4	
	the width of X is less than a first threshold value; and
5	the magnitude of $f(X)$ is less than a second threshold value.
1	36. (Currently amended) The apparatus of elaim 11 claim 35, wherein the
2	interval Newton mechanism is configured to:,
3	compute $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f evaluated
4	as a function of x over the subbox X ; and to
5	determine if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where

- M(x,X) = BJ(x,X), r(x) = -Bf(x), and B is an approximate inverse of the center of
- J(x,X).