l'Ingénieus

Industrielles de

Sciences

l'Ingénieur

Chapitre 1 - Approche énergétique

TD 1

Système de dépose de poudre

Concours Centrale Supelec – TSI 2016 Savoirs et compétences :

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1: Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

On s'intéresse à un système permettant de créer des motifs sur de la poudre de maquillage compactée. Le poste de pulvérisation est en partie constitué d'un robot cartésien 3 axes permettant de déplacer des godets de poudre compactée (grâce à un préhenseur) en dessous de la buse de pulvérisation.

Objectif L'objectif est de valider le choix du moteur effectué par le concepteur du système.

Le cahier des charges impose que la vitesse maximale du chariot sur l'axe \overrightarrow{x} soit de $V_{\rm max} = 0.45\,{\rm m\,s^{-1}}$ et que l'accélération maximale du chariot soit de $\gamma_{\rm max} = 10\,{\rm m\,s^{-2}}$.

Travail demandé

La transmission est réalisée de la façon suivante. L'arbre 1 est entrainé par un moto-réducteur dont le raport de réduction est noté r.

Notations

- Ω : vitesse de rotation du moteur;
- C_m : le couple exercé par le moteur;
- $r = n_{\text{axe poulie}}/n_{\text{moteur}} = \frac{1}{10}$: rapport de réduction du réducteur entre le moteur et les poulies;
- $M_2 = 25 \text{ kg}$: masse de l'ensemble mobile 2;
- $\phi = 28,65 \,\mathrm{mm}$ est le diamètre primitif des poulies;
- l'inertie des courroies est négligée;
- $J_m = 1.2 \times 10^{-5} \text{ kg m}^2$: moment d'inertie de l'arbre moteur;
- $J_1 = 4 \times 10^{-4} \text{ kg m}^2$: moment d'inertie de l'arbre 1;
- $C_r = 0.15 \,\mathrm{Nm}$: couple de frottements secs dans les liaisons ramené à l'arbre moteur;
- $\mu = 0.001\,\mathrm{N}\,\mathrm{m}\,\mathrm{s}\,\mathrm{rad}^{-1}$: coefficient de frottements visqueux dans les liaisons ramené à l'arbre moteur.

Question 1 Déterminer la vitesse maximale de rotation du moteur Ω_{max} . Faire l'application numérique.

Question 2 Déterminer l'accélération maximale du moteur $\dot{\Omega}_{max}$. Faire l'application numérique.

Question 3 Donner l'expression de l'énergie cinétique de l'ensemble mobile dans son mouvement le long de l'axe \overrightarrow{x} par rapport au bâti notée \mathcal{E}_c (ensemble/0). En déduire l'inertie équivalente J de l'ensemble mobile rapportée à l'arbre du moteur. Faire l'application numérique.

Question 4 Établir l'expression du couple moteur maximal exercé par le moteur sur l'arbre moteur noté C_{max} . Faire l'application numérique.

Question 5 Donner l'expression de la puissance mécanique maximale que devra fournir le moteur électrique. Faire l'application numérique.

Le concepteur du système a choisi un moteur synchrone de vitesse nominale de $3000\,\mathrm{tr\,min^{-1}}$ et de puissance utile $0,47\,\mathrm{kW}$.

Question 6 Valider le choix du moteur en le justifiant. Argumenter la présence éventuelle d'écart entre la puissance mécanique maximale calculée et la puissance nominale du moteur choisi.

1