

Introducción a la IA

Alfons Juan Albert Sanchis Jorge Civera

Índice

1	Introducción	1
2	El test de Turing	2
3	La cibernética	3
4	Las redes neuronales	4
5	La inteligencia artificial	5
6	La IA simbólica	6
7	El reconocimiento de formas	7
8	El aprendizaje automático	8

1. Introducción

Inteligencia proviene del latín *intelligere*, combinación de *intus* (entre) y legere (elegir), es decir, elegir (bien) entre opciones.

Los historiadores de la *inteligencia artificial (IA)* se remontan en la Grecia clásica, Egipto incluso, para hallar los primeros intentos de *automatización de la inteligencia humana* [1, 2, 3, 4].

La *historia de la lA* es sobre todo la historia de una rama de la informática que ha evolucionado con ella desde los años 1940 y que se mueve entre dos posiciones filosóficas/psicológicas:

- Empirismo / conductismo: la experiencia (sensorial) es la principal fuente de conocimiento y acondicionamiento del comportamiento.
- Racionalismo / cognitivismo: la razón (lógica) es la principal fuente de conocimiento y acondicionamiento de la mente.

2. El test de Turing

En un artículo publicado en 1950 [5], *Alan Turing* propone responder a la pregunta "*Pueden pensar las máquinas?*" mediante el *juego de la imitación* o *test de Turing*: un interrogador humano conversa textualmente con una "máquina" y una persona, y tiene que averiguar quién es quién; diremos que la "máquina" piensa si es capaz de engañarlo.

Turing defiende que el método de preguntas y respuestas permite introducir casi todos los ámbitos de la actividad humana:

```
Q: Please write me a sonnet on the subject of the Forth Bridge.
```

- A: Count me out on this one. I never could write poetry.
- O: Add 34957 to 70764
- A: (Pause about 30 seconds and then give as answer) 105621.
- Q : Do you play chess?
- A : Yes.
- Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your move. What do you play?
- A: (After a pause of 15 seconds) R-R8 mate.

El test de Turing ha sido y es objeto de gran debate [6].

3. La cibernética

En 1948 *Norbert Wiener* definió la *cibernética* (gobernanza) como la *teoría de control y comunicación en el animal y la máquina* [7].

Los cibernéticos iniciaron el estudio de las *redes neuronales*.

Norbert Wiener

1943: Neurona McCulloch-Pitts [8]

4. Las redes neuronales

- 1943: William McCulloch y Walter Pitts proponen el primer modelo computacional de red neuronal (artificial) [8].
- 1951: Marvin Minsky implementa la "primera" red neuronal (artificial), SNARC (Stochastic Neural Analog Reinforcement Calculator), con 40 neuronas artificiales analógicas.
- 1954: *Belmont Farley* y *Wesley Clark* realizan las primeras simulaciones digitales de redes neuronales [9].
- 1958: *Frank Rosenblatt*, propone el *Perceptrón (Mark 1)*, la primera implementación de una red neuronal (para clasificación binaria de imágenes) capaz de aprender a partir de datos [10].
- El *conexionismo* mantiene una actividad discreta hasta que revive a finales de los 1980 y, sobre todo, en los 2010.

5. La inteligencia artificial

John McCarthy propuso el término inteligencia artificial (IA) para el taller de Dartmouth (Dartmouth Summer Research Project donde Artificial Intelligence), celebrado el verano de 1956 en la Universidad de Dartmouth, a partir de una propuesta hecha en agosto de 1955 :

Se intentará encontrar como construir máquinas que usen el lenguaje, formen abstracciones y conceptos, resuelvan problemas reservados a los humanos, y mejoren ellas mismas.

Web McCarthy: http://www-formal.stanford.edu/jmc

Cómo reconocen algunos participantes reunidos 50 años después, el taller lanzó la IA como campo de investigación, pero no se llegó a ningún acuerdo sobre teoría general del campo y el aprendizaje [11].

6. La lA simbólica

Presentado en Dartmouth por *A. Newell*, *H. Simon* y *C. Shaw*, el *LT, logic theorist* es el "primer" programa de IA [12].

LT es un sistema de *razonamiento automático* para *la demostración automática de teoremas* o deducción *automática* en *lógica proposicional* que incluye tres ideas clave en IA:

- Razonamiento mediante búsqueda en un árbol donde la raíz es la hipótesis inicial, cada rama añade una deducción y, el camino hasta llegar a la proposición objetivo es la demostración.
- Heurísticas para podar ramas del árbol no prometedoras.
- Procesamiento de listas simbólicas para la representación de conocimiento.

La *IA simbólica* ha sido la rama más ambiciosa y dominando la *IA* hasta los 1990, cuando los *sistemas expertos* dan a los *agentes inteligentes*, más modestos y abiertos al *probabilismo*.

7. El reconocimiento de formas

En 1955 *Oliver Selfridge* [13] y *Gerald Dinneen* [14] definen el *reconocimiento de formas (pattern recognition)* como *la extracción de las características significativas de datos en un fondo de detalle irrelevante,* para automatizar la *clasificación* de "formas".

Selfridge y Dinneen rehuyen cuestiones filosóficas y proponen ser prácticos, elegir un problema de la vida real como por ejemplo el *OCR (Optical Character Recognition)* e ir a por él.

8. El aprendizaje automático

En 1959 *Arthur Samuel* empleó el término *aprendizaje automáti- co* en un programa de damas capaz de aprender solo [15].

Referencias

- [1] Daniel Crevier. Al: The Tumultuous Search for Artificial Intelligence. BasicBooks, 1993.
- [2] Pamela McCorduck. *Machines Who Think: A Personal Inquiry into the History and Prospects of AI*. A K Peters, 2004.
- [3] Nils J. Nilsson. *The Quest for Artificial Intelligence*. Cambridge University Press, 2009. ai.stanford.edu/~nilsson.
- [4] Piero Scaruffi. *Intelligence is not Artificial*. CreateSpace Independent Publishing Platform, 2018. scaruffi.com (/singular/purchase.html) (/mind/ai.html).
- [5] Alan M. Turing. Computing Machinery and Intelligence. *Mind*, 1950.
- [6] A. P. Saygin, I. Cicekli, and V. Akman. Turing Test: 50 Years Later. *Minds and Machines*, 10(4):463–518, 2000.
- [7] Norbert Wiener. *Cybernetics: Or Control and Communication in the Animal and the Machine*. MIT press, 2nd edition, 1961.
- [8] Warren McCulloch and Walter Pitts. A Logical Calculus of Ideas Immanent in Nervous Activity. *Bulletin of Mathematical Biophysics*, 5:115–133, 1943.
- [9] Belmont G. Farley and Wesley A. Clark. Simulation of self-organizing systems by digital computer. *IEEE Trans. of the IRE Professional Group on Information Theory*, 4(4), 1954.
- [10] Frank Rosenblatt. The Perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6):386–408, 1958.
- [11] James Moor. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. *Al Magazine*, 27(4), 2006.
- [12] Allen Newell and Herbert A. Simon. The logic theory machine: A complex information processing system. *IRE Transactions on Information Theory*, 2(3):61–79, 1956.
- [13] Oliver G. Selfridge. Pattern Recognition and Modern Computers. In *Proc. of the March* 1–3, 1955, Western Joint Computer Conf., pages 91–93, 1955.

- [14] Gerald P. Dinneen. Programming Pattern Recognition. In *Proc. of the March 1–3, 1955, Western Joint Computer Conf.*, pages 94–100, 1955.
- [15] Arthur L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. *IBM Journal of Research and Development*, pages 535–554, 1959.

