RECUPERATORIO DEL PRIMER PARCIAL 14/12/2015

Nombre y Apellido:

Número de libreta:

1	2	3	4	5	Calificación

Ejercicio 1. Calcular $\#\{(a_n)_{n\in\mathbb{N}}\in\mathbb{Q}^\mathbb{N}:a_n\to 0\ y\ na_n\ \text{no converge}\}.$

Ejercicio 2. En C[0,1] definimos

$$d(f,g) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|f(r_k) - g(r_k)|}{1 + |f(r_k) - g(r_k)|},$$

donde $\{r_k\}_{k\in\mathbb{N}}$ es una numeración de $\mathbb{Q}\cap[0,1]$.

- a) Probar que (C[0,1],d) es un espacio métrico.
- b) Probar que $id: (C[0,1], d_{\infty}) \to (C[0,1], d)$ es continua.

Recordar que:

$$d_{\infty}(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|.$$

c) Probar que $id: (C[0,1],d) \to (C[0,1],d_{\infty})$ no es continua.

Sugerencia: Considere $\phi \in C[0,1]$ tal que $\phi(r_k) = 0$ para $1 \le k \le n$ y $\phi(r_{n+1}) = 1$. Utilice el Teorema de Urysohn.

Ejercicio 3. Consideramos el espacio métrico $(\mathbb{R}^{\mathbb{N}}, d)$ donde d esta dada por

$$d((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sum_{n=1}^{\infty} \frac{\min(1, |a_n - b_n|)}{2^n}$$

decidir si el espacio es separable.

Ejercicio 4. Sean X un espacio métrico compacto y A, B dos subconjuntos disjuntos de X. Probar que si d(A, B) = 0 entonces las fronteras de A y B se intersecan.

Ejercicio 5. Sean (X,d) un espacio métrico y A un subconjunto de X. Para cada z en A^c sea $f_z:A\to\mathbb{R}$ dada por $f_z(x)=\frac{1}{d(x,z)}$. Probar que A es cerrado si y solo si f_z es uniformemente continua para cada $z\in A^c$.