Chapter 7 Wireless and Mobile Networks

Yaxiong Xie

Department of Computer Science and Engineering University at Buffalo, SUNY

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Adapted from the slides of the book's authors

Wireless and Mobile Networks: context

- more wireless (mobile) phone subscribers than fixed (wired) phone subscribers (10-to-1 in 2019)!
- more mobile-broadband-connected devices than fixed-broadbandconnected devices devices (5-1 in 2019)!
 - 4G/5G cellular networks now embracing Internet protocol stack, including SDN
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 7 outline

Introduction

Wireless

- Wireless Links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Characteristics of selected wireless links

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Wireless link characteristics (1)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared by many devices (e.g., WiFi, cellular, motors): interference
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless link characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER (Bit Error Rate) tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

----- QAM256 (8 Mbps)

– – · QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless link characteristics (3)

Multiple wireless senders, receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A,
 C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: *avoid collisions:* CSMA/CollisionAvoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK
return ACK after SIES (ACK peeded)

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send (CTS) in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Collision Avoidance: RTS-CTS exchange

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication [Chapter 8]
 - then typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

802.11: mobility within same subnet

 H1 remains in same IP subnet: IP address can remain same

switch: which AP is associated with H1?

 self-learning (Ch. 6): switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent;
 otherwise sleep again until next beacon frame

Personal area networks: Bluetooth

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- 2.4-2.5 GHz ISM radio band, up to 3 Mbps
- master controller / clients devices:
 - master polls clients, grants requests for client transmissions

- master device
- c client device
- P parked device (inactive)

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

4G/5G cellular networks

- the solution for wide-area mobile Internet
- widespread deployment/use:
 - more mobile-broadband-connected devices than fixedbroadband-connected devices devices (5-1 in 2019)!
 - 4G availability: 97% of time in Korea (90% in US)
- transmission rates up to 100's Mbps
- technical standards: 3rd Generation Partnership Project (3GPP)
 - wwww.3gpp.org
 - 4G: Long-Term Evolution (LTE)standard

Mobile device:

- smartphone, tablet, laptop,IoT, ... with 4G LTE radio
- 64-bit International Mobile Subscriber Identity (IMSI), stored on SIM (Subscriber Identity Module) card
- LTE jargon: User Equipment (UE)

Base station:

- at "edge" of carrier's network
- manages wireless radio resources, mobile devices in its coverage area ("cell")
- coordinates device authentication with other elements
- similar to WiFi AP but:
 - active role in user mobility
 - coordinates with nearly base stations to optimize radio use
- LTE jargon: eNode-B

Home Subscriber Service -

- stores info about mobile devices for which the HSS's network is their "home network"
- works with MME in device authentication

Serving Gateway (S-GW), Packet Gateway (P-GW)

lie on data path from mobile to/from Internet

- P-GW
 - gateway to mobile cellular network
 - Looks like nay other internet gateway router
 - provides NAT services
- other routers:
 - extensive use of tunneling

Mobility Management Entity —

- device authentication (device-to-network, networkto-device) coordinated with mobile home network HSS
- mobile device management:
 - device handover between cells
 - tracking/paging device location
- path (tunneling) setup from mobile device to P-GW

LTE: data plane control plane separation

control plane

 new protocols for mobility management, security, authentication (later)

data plane

- new protocols at link, physical layers
- extensive use of tunneling to facilitate mobility

LTE data plane protocol stack: first hop

LTE radio access network (RA)

LTE data plane protocol stack: first hop

LTE radio access network (RA)

LTE data plane: associating with a BS

- 1 BS broadcasts primary synch signal every 5 ms on all frequencies
 - BSs from multiple carriers may be broadcasting synch signals
- (2) mobile finds a primary synch signal, then locates 2nd synch signal on this freq.
 - mobile then finds info broadcast by BS: channel bandwidth, configurations;
 BS's cellular carrier info
 - mobile may get info from multiple base stations, multiple cellular networks
- (3) mobile selects which BS to associate with (e.g., preference for home carrier)
- 4 more steps still needed to authenticate, establish state, set up data plane

LTE mobiles: sleep modes

as in WiFi, Bluetooth: LTE mobile may put radio to "sleep" to conserve battery:

- light sleep: after 100's msec of inactivity
 - wake up periodically (100's msec) to check for downstream transmissions
- deep sleep: after 5-10 secs of inactivity
 - mobile may change cells while deep sleeping need to re-establish association

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Contacting a mobile friend:

Consider friend frequently changing locations, how do you find him/her?

- search all phone books?
- expect her to let you know where he/she is?
- call his/her parents?
- Facebook!

The importance of having a "home":

- a definitive source of information about you
- a place where people can find out where you are

Home network, visited network: 4G/5G

Home network, visited network: ISP/WiFi

ISP/WiFi: no notion of global "home"

- credentials from ISP (e.g., username, password) stored on device or with user
- ISPs may have national, international presence
- different networks: different credentials
 - some exceptions (e.g., eduroam)
 - architectures exist (mobile IP) for 4G-like mobility, but not used

Home network, visited network: generic

Registration: home needs to know where you are!

end result:

- visited mobility manager knows about mobile
- home HSS knows location of mobile

Mobility with indirect routing

Mobility with indirect routing: comments

- triangle routing:
 - inefficient when correspondent and mobile are in same network

- mobile moves among visited networks: transparent to correspondent!
 - registers in new visited network
 - new visited network registers with home HSS
 - datagrams continue to be forwarded from home network to mobile in new network
 - on-going (e.g., TCP) connections between correspondent and mobile can be maintained!

Mobility with direct routing

Mobility with direct routing: comments

- overcomes triangle routing inefficiencies
- non-transparent to correspondent: correspondent must get care-ofaddress from home agent
- what if mobile changes visited network?
 - can be handled, but with additional complexity

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Mobility in 4G networks: major mobility tasks

1) base station association:

- covered earlier
- mobile provides IMSI –
 identifying itself, home network
- 2) control-plane configuration:
 - MME, home HSS establish control-plane state - mobile is in visited network
- 3 data-plane configuration:
 - MME configures forwarding tunnels for mobile
 - visited, home network establish tunnels from home P-GW to mobile

4 mobile handover:

Streaming

server

mobile device changes its point of attachment to visited network

Configuring LTE control-plane elements

- Mobile communicates with local MME via BS control-plane channel
- MME uses mobile's IMSI info to contact mobile's home HSS
 - retrieve authentication, encryption, network service information
 - home HHS knows mobile now resident in visited network
- BS, mobile select parameters for BS-mobile data-plane radio channel

Configuring data-plane tunnels for mobile

- S-GW to BS tunnel: when mobile changes base stations, simply change endpoint IP address of tunnel
- S-GW to home P-GW tunnel: implementation of indirect routing

tunneling via GTP (GPRS tunneling protocol): mobile's datagram to streaming server encapsulated using GTP inside UDP, inside datagram

Handover between BSs in same cellular network

- 1 current (source) BS selects target BS, sends *Handover Request message* to target BS
- target BS pre-allocates radio time slots, responds with HR ACK with info for mobile
- (3) source BS informs mobile of new BS
 - mobile can now send via new BS handover looks complete to mobile
- 4 source BS stops sending datagrams to mobile, instead forwards to new BS (who forwards to mobile over radio channel)

Handover between BSs in same cellular network

- 5 target BS informs MME that it is new BS for mobile
 - MME instructs S-GW to change tunnel endpoint to be (new) target BS
- 6 target BS ACKs back to source BS: handover complete, source BS can release resources
- (7) mobile's datagrams now flow through new tunnel from target BS to S-GW

Mobile IP

- mobile IP architecture standardized ~20 years ago [RFC 5944]
 - long before ubiquitous smartphones, 4G support for Internet protocols
 - did not see wide deployment/use
 - perhaps WiFi for Internet, and 2G/3G phones for voice were "good enough" at the time
- mobile IP architecture:
 - indirect routing to node (via home network) using tunnels
 - mobile IP home agent: combined roles of 4G HSS and home P-GW
 - mobile IP foreign agent: combined roles of 4G MME and S-GW
 - protocols for agent discovery in visited network, registration of visited location in home network via ICMP extensions

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handover loss
 - TCP interprets loss as congestion, will decrease congestion window unnecessarily
 - delay impairments for real-time traffic
 - bandwidth a scare resource for wireless links

Chapter 7 summary

Wireless

- Wireless Links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

