1. 目的

抵抗 R、インダクタンス (コイル)L、コンデンサ C からなる回路に交流を加えたときの電圧、電流波形をオシロスコープなどで観察することにより基本的な交流回路を理解する。

2. 原理

図1のような形をもつ電圧 v は数学的に

$$v = V_m \sin(\omega t + \theta) \qquad [v] \tag{1}$$

として表現することができる。このときの v を瞬時値という。 V_m は波形の最大値または振幅と呼ばれる。式中の $\theta[\mathrm{rad/s}]$ は位相角といい、図 1 の原点を規定するのに必要なものである。また一波形を完了するのに要する時間 T を、周期という。正弦波関数は角度について $2\pi[\mathrm{rad}]$ なる周期を持っているため、 $\omega t = 2\pi$ の関係が成り立つ。この ω を角速度または角周波数 $[\mathrm{rad/s}]$ という、また一秒間に同一波形を繰り返す数を周波数 $[\mathrm{Hz}]$ といい、これを f とすると、

$$\omega = \frac{2\pi}{T} = 2\pi f \qquad [rad/s] \tag{2}$$

の関係がある。

一般的には正弦波交流の大きさを表すには最大値ではなく、実効値が用いられる。実効値とは瞬時値の2乗平均の平方根であり正弦波交流では

$$|V| = V_m \sqrt{\frac{1}{T} \int_0^T \sin^2 \omega t dt} = \frac{V_m}{\sqrt{2}} \qquad [V]$$
 (3)

となる。

1) 抵抗回路

図 2 に示す抵抗 R のみの回路に (1) 式の正弦波電圧を加えると、電流は直流回路 の場合と同様に I=v/R によって求めることができ、

$$i = \frac{V_m}{R}\sin(\omega t + \theta) = I_m\sin(\omega t + \theta)$$
 [A]

の電流が流れ、電圧と電流との位相関係は全く同一になる。このような位相関係を 同相にあるという。

2) 誘導回路

図 3 に示すインダクタンス L のみの回路に (1) 式の正弦波電圧を加えると、L に誘導される電圧が v と平衡するように電流が流れる。すなわち、

$$i = -\frac{V_m}{\omega L}\cos(\omega t + \theta) = \frac{V_m}{\omega L}\sin\left(\omega t + \theta - \frac{\pi}{2}\right)$$
 [A]

したがって電流の最大値 Im は

$$I_m = \frac{V_m}{\omega L} \qquad [A]$$

となる。 ω L は電圧と電流を関係づける点で抵抗とおなじであるが、物理的性質が異なるため誘導リアクタンス $[\Omega]$ という。また電流は、電圧より位相角において $\pi/2$ だけ遅れる。

3) 容量回路

コンデンサ C に交流電圧を加えるとコンデンサに電荷が蓄積されたり、放出されたりするに伴って、電荷が時間的に変化し電流が流れる。すなわち、

$$i = \omega C V_m \cos(\omega t + \theta) = \omega C V_m \sin\left(\omega t + \theta + \frac{\pi}{2}\right)$$
 [A]

となり、電流は電圧より $\pi/2$ だけ進む。ここで $1/\omega C$ を容量リアクタンス $[\Omega]$ という。

4) RLC 直列回路

RLC 直列回路に流れる電流は次のようになる。

$$i = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \sin(\omega t + \theta + \phi)$$
 [A]

ここで、 $\sqrt{R^2 + (\omega L - 1/\omega C)^2}$ を回路のインピーダンス $[\Omega]$ といい、通常 Z で表す。またこの回路では、

$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$
 [V]

の関係が成り立つ。また ϕ を位相差という。

$$\tan \phi = \frac{\omega L - \frac{1}{\omega C}}{R} \tag{10}$$

6.1.pdf

図 1: 正弦波

6.2.pdf

図 2: 抵抗回路

3. 実験方法

- 1) 図 6 のように発振器に電子電圧計を接続し周波数を 50[Hz]、電圧を 5[V](実 効値) に調整し、そのときの発振器の出力波形をグラフに記録する。
- 2) 図7の L-R 直列回路と C-R 直列回路の、電圧波形と電流波形をグラフに記録する。電流波形は、抵抗を流れる電流と電圧が同相であることから、抵抗の電圧波形から求める。
- 3) 図8のように配線し、発振器出力電圧をオシロスコープで 3.0[V] に保ち発振器の周波数を 300800Hz まで 50Hz 刻みで変化させ、周波数 電流のグラフを作成する。

4. 使用器具

表1に実験で使用した器具を示す。

表 1: 使用器具

器具名	規格	製造会社名	その他
発振器		ケンウッド	AG-203 ≯ −316
オシロスコープ		$\operatorname{Tektronix}$	メ ―419
交流電圧系	10V	ケンウッド	VI-176
固定抵抗	$1 \mathrm{k} \Omega$		No.1
コイル	0.22H	タムラ製作所	VL-204 No.1
コンデンサ	$0.33 \mu \mathrm{F}$		No.1
交流電流計	5mA, 1.0 級	横河電機	い —P 264

5. 実験結果

表2および図9から12に各実験の結果を示す。

6.3.pdf

図 3: 誘導回路

6.4.pdf

図 4: 容量回路

6. 考察

1) R、L、C のインピーダンスの周波数に対する変化

① Rの周波数特性

交流電源と抵抗 $R[\Omega]$ を接続した回路を考える。交流電源に E[V] の交流起電力を加えた時、回路の電圧、電流の瞬時値 v,i は式 (1)、(4) の通りである。ここで、式 (2) より、式 (1)、(4) は、

$$v = V_m \sin(2\pi f t + \theta) \qquad [V] \tag{11}$$

$$i = I_m \sin(2\pi f t + \theta) \qquad [A] \tag{12}$$

と書き換えることができる。f に注目すると、f は正弦波の周期のみを変化させるので、最大値と実効値は変化しないことがわかる。

② Lの周波数特性

交流電源とインダクタンス L[H] のコイルを接続した回路を考える。交流電源に E[V] の交流起電力を加えた時、回路の電圧、電流の瞬時値 v,i は、式 (1)、(2)、(5) より、

$$\begin{aligned} v &= V_m \sin(2\pi f t + \theta) & \text{[V]} \\ i &= -\frac{V_m}{2\pi f L} \sin\left(2\pi f t + \theta - \frac{\pi}{2}\right) & \text{[A]} \end{aligned} \tag{13}$$

となる。fに注目すると、 V_m をfで除算するので、電流は周波数に反比例する。

③ Cの周波数特性

交流電源と静電容量 C[F] のコンデンサを接続した回路を考える。交流電源に E[V] の交流起電力を加えた時、回路の電圧、電流の瞬時値 v,i は、式 (1)、(2)、(7) より、

$$v = V_m \sin(2\pi f t + \theta)$$
 [V]

$$i = 2\pi f C V_m \sin\left(2\pi f t + \theta + \frac{\pi}{2}\right)$$
 [A] (14)

となる。f に注目すると、 V_m に f が掛けられているので、電流は周波数に比例する。

6.5.pdf

図 5: RLC 直列回路

6.6.pdf

図 6: 正弦波の観測

- 2) RLC 直列回路のインピーダンスの周波数特性
- 3) (9)式の導出
- 7. 参考文献

6.7.pdf 図 7: 電圧波形、電流波形の観測

6.8.pdf 図 8: R、L、C の周波数特性の測定

表 2: 各素子の周波数特性 (V_m =3.0[V])

$f[\mathrm{Hz}]$	$I[\mathrm{mA}]$			
	I_R	I_L	I_C	
300	2.11	4.64	1.28	
350	2.11	4.00	1.50	
400	2.11	3.51	1.75	
450	2.11	3.14	1.94	
500	2.11	2.85	2.19	
550	2.11	2.62	2.38	
600	2.11	2.37	2.56	
650	2.11	2.21	2.81	
700	2.11	2.06	3.01	
750	2.11	1.93	3.22	
800	2.11	1.80	3.42	