~	~		~	,	
$TELINII \cap V$	$CV \cap V$	DITDEDV	$D \cap C \setminus C \setminus$	$/1$ C \wedge	7ACDED
TEHNIČKA	SKULA	KUDEKA	BOSKO	VICA	ZAGKEB

PROJEKTIRANJE I SIMULACIJA MEMORIJSKOG SUSTAVA

Uputa za laboratorijsku vježbu

Milan Korać, dipl.ing.

Zadaci:

- Pokrenuti program Logisim i otvoriti biblioteku s memorijskim modulima. Ispisati sve memorijske elemente koje sadrži ta biblioteka, nacrtati simbole i njihove pinove.
 - Nakon što smo pokrenuli program Logisim, potrebno je dodati biblioteku koja sadrži memorijske module. Naziv te biblioteke je Memory.

Navigacija:Project→Load Library→Built-in Library→Memory→OK

- Nakon što smo učitali biblioteku Memory otvaramo ju pritiskom na ikonu + pored mape Memory. Sadržaj biblioteke Memory čine: D Flip-Flop, T Flip-Flop, J-K Flip-Flop, S-R Flip-Flop (bistabili), Register, Shift Register, Random Generator, Counterte RAM i ROM (memorijski moduli).
- Komponente na radnu površinu stavljamo pritiskom na lijevu tipku miša te pozicioniramo komponentu na radnu površinu programa te pritisnemo ponovno lijevu tipku kako bi postavili komponentu.

• Nakon što smo postavili komponente iz biblioteke *Memory*, postavljamo nazive sklopova (npr. RAM, T bistabil) tako da u alatnoj traci odaberemo ikonu ^A te pritiskom na radnu površinu omogućujemo upis određenog teksta. Program nudi i dodatne postavke tj. promjene teksta (vrsta fonta, veličina fonta) te poravnanje teksta (ulijevo, udesno, sredina, gore itd.). Postoji još jedan način kako možemo dodati naziv komponente, a to je da prilikom postavljanja komponete u tablici atributa u kategoriju "Label" napišemo naziv.

- 2) "Postaviti na radnu površinu memorijski modul ROM i proanalizirati njegove ulaze i izlaze. Proučiti koliko memorijskih riječi može najviše sadržavati, koja je najveća adresa i koliko može biti najduža memorijska riječ."
 - "ROM (Read Only Memory) je sklop s permanentno upisanim sadržajem. Ima samo jedan upis (najčešće u proizvodnji), a ostalo je čitanje. Ima više vrsta: ROM, Programmable ROM, Erasable PROM, Electrically EPROM."
 - Postavili smo memorijski modul ROM na radnu površinu programa na isti način kako je objašnjeno u prethodnom zadatku.

- Memorijski modul ROM sadrži pinove:
 - Pin A: ulaz; određuje trenutno odabranu adresu koja se u sklopu obrađuje ili čita
 - Pin D: izlaz; na izlaz se šalje vrijednost zapisana na lokaciji koja se trenutno čita
 - Pin SEL: izlaz koji se koristi ako postoji više ROM modula(ako ih ima više u paraleli može omogućiti ili onemogućiti čitavi rad ROM modula ovisno o vrijednostima "0" ili "1"), u suprotnom se može ignorirati.
- Broj memorijskih riječi možemo jednostavno povećati klikom na ROM modul. Zatim nam se na lijevoj strani prozora programa prikazuje tablica atributa u kojoj možemo postaviti željene vrijednosti (*Adress Bit Width, Data Bit Width*). Maksimalan broj riječi u ROM-u je 2²⁴=16.777.216, što je otprilike 16 MB podataka.
- Kako bi promijenili sadržaj ROM-a odlazimo u HEX Editor.
 Navigacija:desni klik na sklop→Edit Contents...

 Najveća moguća adresa je ffffff, a najduža memorijska riječ je 32 bita.

- 3) "Postaviti na radnu površinu memorijski modul RAM i proanalizirati njegove ulaze i izlaze. Proučiti koliko memorijskih riječi može najviše sadržavati, koja je najveća adresa i koliko može biti najduža memorijska riječ."
 - "RAM (Random Access Memory) je upisno/ispisna memorija koja pripada skupini memorija s izravnim pristupom. Sadržaj memorije RAM može se čitati i mijenjati-upisom novog sadržaja. Nedostatak: nestankom napajanja njezin se sadržaj briše."
 - Postavili smo RAM memorijski modul na radnu površinu programa te su njezini pinovi:
 - Pin A:ulaz; određuje trenutno odabranu adresu koja se u sklopu obrađuje ili čita
 - Pin D:ulaz/izlaz; ako je pin Out u stanju "1" ili neodređen, tada RAM šalje samo vrijednost trenutno odabrane adrese na pin D, koji je u tom slučaju izlaz. U slučaju da je pin Out u stanju "0" tada se pin D ponaša kao ulaz, kao vrijednost koja će biti postavljena na trenutno odabranu adresu sve dok se clock ne prebaci iz stanja "0" u "1".
 - Pin Sel:izlaz koji se koristi ako postoji više RAM memorijskih modula (omogućuje/onemogućuje u paraleli čitavi rad RAM modula ovisno o vrijednostima "0" ili "1"), ako ne postoji može se ignorirati. Znači, kada je pin Sel u stanju "0", nikakva vrijednost se neće emitirati na D izlazu i vrijednost u memoriji se neće mijenjati sve dokse stanje na ulazu Clockne prebaci iz "0" u "1".
 - Clock(ulaz za impulse): Kada je pin Out u stanju 0, a Clock ulaz se prebaci iz "0" u "1"(istovremeno pin Sel je u "1"/neodređeno ipin Clr u "0"), tada se vrijednost trenutno odabrane adrese mijenja u stanje koje se nalazi na D pinu. Sve dok Clock ulaz ostaje "0" ili "1", vrijednost D pina neće biti pohranjena u RAM memoriji.
 - Pin Out (Id): ulaz; odabire koji bi RAM modul trebao emitirati vrijednost na *D pin*, ovisno o trenutno odabranoj adresi na *A pinu*. Te karakteristike izlaza su omogućene ako je *pin Out* u stanju "1" ili neodređen, a ako se nalazi u stanju

- "0", tada se *pin D* ponaša kao ulaz za učitavanje vrijednosti sve dok se vrijednost *Clock-a* ne prebaci iz "0"u "1".
- Pin Clr: ulaz; kada je u stanju "1", a istovremeno jepin Sel u "1" ili neodređen, sve se vrijednosti u memoriji brišu, odnosno vrijednosti se postavljaju u "0", bez obzira na ostale impulse.
- Postavke RAM modula izvršavamo na isti način kao što je potrebno izvesti za ROM modul. Tako iz postavka u tablici atributa možemo vidjeti da je maksimalan broj riječu u RAM modulu 2²⁴=16.777.216 odnosno 16 MB podataka, najveća moguća adresa je ffffff, a najduža memorijska riječ je duljine 32 bita.

RAM (Random Access Memory)

- 4) "Postaviti na radnu površinu registar, proanalizirati njegove ulaze i izlaze. Koliko bita se može najviše pohraniti u registar."
 - "Registri pamte n-bitne podatke (n-broj bistabila). Ovisno o izvedbi mogu imati serijski upis/ispis podataka ili parelelni upis/ispis podataka. Za registre se koriste SR, JK i D bistabili."
 - Postavili smo registar na radnu površinu programa:

- Njegovi pinovi su:
 - Pin D: ulaz podataka; u trenutku kada se prebacivrijednost Clock-a iz stanja "0" u "1", vrijednost registra se prebacuje istog trenutka u vrijednost ulaza D.
 - Pin Q: izlaz; šalje vrijednosti trenutno pohranjene adrese u registar
 - Clock(ulaz za impulse): u trenutku kada se vrijednost ulaza prebaci iz "0" u "1", vrijednost registra će se obnoviti na vrijednost ulaza D.
 - Pin Clr: asinkroni reset; kada je u stanju "0"/neodređeno, ulaz nema nikakav učinak na rad sklopa. Samo ako je u stanju "1" vrijednost registra se postavlja u "0". Taj asinkroni način rada Clr-a ne odnosi se na trenutnu vrijednost Clock-a. Sve dok je u stanju "1" ostali ulazi nemaju učinka.
- Maksimalan broj bitova koje možemo pohraniti u registar je 32bita. U tablici atributa se još nalazi opcija za okidanje (na prednji brid, zadnji brid te na vrijednost napona - visoki/niski; u prijevodu "0" ili "1").
- Dodatak: u Logisim-u se nalazi još i posmačni (shift) registar.

- 5) "Projektirati memorijski modul ROM s 512 memorijskih riječi duljine 16 bita. Koliki je kapacitet tog memorijskog modula? Upišite sadržaj na prve četiri memorijske lokacije i simulirajte iščitavanje promjenom adrese."
 - Postavili smo ROM modul te namjestili postavke u tablici atributa.
 Postavili smo Address Bit Width na 9 bita (potrebno nam je 9-bitno adresiranje jer želimo postići 512 memorijskih riječi → 2⁹=512), a Data Bit Width na 16 bita. Zatim smo postavili Pin na ulaz A te u njegovim postavkama postavili Data Bits u 9 bita. Isto to smo ponovili za ulaz/izlaz D, ali smo postavili Data Bits u 16 bita.

• Realizacija sklopa:

- Kapacitet modula izvedenog na ovaj način iznosi 1Kb.
- Zatim slijedi upisivanje podataka u ROM memoriju. Koristimo HEX Editor do kojeg dolazimo desnim klikom na ROM modul, zatim Edit Contents...
- Nakon što smo upisali sadržaj u ROM to izgleda ovako:

• Zatim krenemo iščitavati memorijske lokacije, mijenjajući adrese na *ulazu A*pomoću • smo dobili rezultate:

Adresa (pin A-ulaz)	HEX	Binarno (pin D-izlaz)
00000000	8812	1000 1000 0001 0010
00000001	1198	0001 0001 1001 1000
00000010	1995	0001 1001 1001 0101
00000011	7777	0111 0111 0111 0111

- 6) "Projektirati memorijski modul RAM s 1M memorijskih riječi duljine 24 bita. Koliki je kapacitet tog memorijskog modula? Upišite sadržaj za prve četiri memorijske lokacije i simulirajte iščitavanje promjenom adrese."
 - Postavili smo RAM modul na radnu površinu te uredili njegovu konfiguraciju. Postavili smo dužinu riječi na 24 bita, a 1M smo realizirali preko 20 bita jer je 2²⁰=1.048.576 što je približno 1M.
 - RAM memorijski modul projektiran na ovaj način ima kapacitet 25.165.824 bita (1.048.576 memorijskih riječi od kojih je svaka duljine 24 bita, pa je to ukupno 25.165.824 bita) odnosno otprilike 3 MB.
 - Realizacija sklopa:

• Rezultati:

CLR	Adresa (pin A-ulaz)	HEX	Binarno (pin D-izlaz)
0	0000000000000000000	cc9656	1100 1100 1001 0110 0101 0110
0	0000000000000000001	58444a	0101 1000 0100 0100 0100 1010
0	00000000000000000010	555add	0101 0101 0101 1010 1101 1101
0	0000000000000000011	888d41	1000 1000 1000 1101 0100 0001
1	(nije bitno)	000000	0000 0000 0000 0000 0000 0000

• Iz tablice možemo vidjeti da postavljanjem *Clr-a* u "1" sav se sadržaj RAM memorije briše. Nešto slično kada se RAM briše nestankom napajanja (samo što je suprotno – iz "1" u "0").

- 7) "Projektirati memorijski modul RAM s 4M memorijskih riječi duljine 8 bita. Koliki je kapacitet tog memorijskog modula? Simulirajte upisivanje podataka na prvih pet adresa promjenom adrese."
 - Ponavljamo postupak iz prethodnog zadatka, samo što postavljamo duljinu memorijskih riječi na 8 bita, a 4M realiziramo s 22 bita jer je 2²²=4.194.304 (približno 4M).
 - Sada je kapacitet RAM memorije 33.554.432 bita, odnosno 4.194.304 byte-a (33.554.432/8=4.194.304 jer 1 Byte ima 8 bitova).
 - Realizacija sklopa:

• Sklop radi kao i u prijašnjem zadatku, ali sada imamo i "vanjsko" upisivanje podataka. Vanjski upis podataka omogućujemo pomoću pina Write (ako je u "1" upis je omogućen, te se upisuje kada se vrijednost Clock-a dosegne "1", a kada je Write u "0" upis je onemogućen). Podatke upisujemo u pin Upis, a mijenjanjem Adrese odabiremo na koju memorijsku lokaciju želimo upisati novi sadržaj. Na pinu Izlaz dobivamo binarnu kombinaciju sadržaja na odabranoj adresi. Istovremeno pin Sel mora biti u "1", a Clr u "0".

• Rezultati:

Write	Upis	Adresa	HEX	Izlaz
0	(nije bitno)	000000000000000000000000000000000000000	cd	1100 1101
0	(nije bitno)	00000000000000000000001	54	0101 0100
0	(nije bitno)	000000000000000000000000000000000000000	f3	1111 0011
0	(nije bitno)	0000000000000000000011	1d	0001 1101
1	1011 1101	0000000000000000000111	bd	1011 1101

- 8) "Projektirati memorijski modul RAM sa 8M memorijskih riječi duljine 16 bita. Koliki je kapacitet tog memorijskog modula? Simulirajte sustav koji omogućuje i upisivanje i iščitavanje podataka na prvih pet adresa."
 - Postavimo RAM modul te njegove postavke u tablici atributa.
 Duljinu riječi postavimo na 16 bita, a 8M memorijskih riječi realiziramo pomoću 23 bita (2²³=8.388.608; približno 8M). Tako postavimo i sve ostale komponente na radnoj površini programa (osim adrese).
 - Nakon što smo sve postavili, sada RAM modul ima kapacitet
 134.217.728 bita što je jednako 16.777.216 bytea; približno 16 MB.
 - Zadatak je zapravo vrlo sličan, tj. shema spoja je ista, samo što ćemo sada upisati prvih 5 lokacija, a prije sam radi primjera upisivao 4 memorijske lokacije u RAM modulu.
 - Realizacija sklopa:

• Rezultati:

Write	Upis	Adresa	HEX	Izlaz
1	1010 1011 1100 1101	000000000000000000000000000000000000000	abcd	1010 1011 1100 1101
1	0001 1101 1110 1111	000000000000000000000000000000000000000	1def	0001 1101 1110 1111
1	1110 1110 0101 0001	000000000000000000000000000000000000000	ee51	1110 1110 0101 0001
1	1100 1101 1111 0011	000000000000000000000011	cdf3	1100 1101 1111 0011
1	0001 1001 1001 1101	000000000000000000000000000000000000000	199d	0001 1001 1001 1101

- 9) "Projektirati memorijski sustav od četiri memorijska modula RAM ukupnog kapaciteta 64MB. Svi moduli su jednakog kapaciteta i duljine memorijske riječi 8 bita."
 - Postavili smo 4 RAM modula ukupnog kapaciteta 64 MB (svaki modul posebno mora imati 16 MB). To smo postigli tako što smo na svakom modulu postavili 24 bitno adresiranje (2²⁴=16.777.216). Isto tako na svakom modulu smo postavili 8 bita duljinu memorijskih riječi.
 - Postupak spajanja: svaki modul ima zajednički ulaz (pin A),
 zajednički Clock, izlaz (pin D) i pin ld(Out). Također svaki modul
 mora imati pin Sel u "1". Kako je shema prilično slična shemi iz
 prethodnog zadatka (osim što je potrebno 4 RAM modula), tako je
 i sam rad sklopa identičan, tj. upis i ispis podataka.
 - U shemu sam još dodao LED matrix sklop koji omogućuje da pomoću njega "grafički" vidimo binarni zapis na izlazu.
 - Ukoliko želimo gledati sadržaj RAM memorije (bez korištenja HEX editora) preko sklopova, moramo postaviti pin Write u "0". Ova činjenica se također odnosi na prethodne zadatke. Clock je također bitan jer bez njega ne možemo upisati sadržaj izvana (potreban je jedan impuls za upis novog sadržaja).
 - Shema se zbog svoje veličine nalazi na idućoj stranici.

• Realizacija sklopa:

