BABI VEKTOR

1.1 Pengertian

Banyak kuantitas fisik, seperti luas, panjang, massa dan temperatur, dapat dijelaskan secara lengkap apabila besaran kuantitas tersebut telah diberikan. Kuantitas seperti ini dinamakan *skalar*. Kualitas fisik lainnya disebut *vektor*, penjelasannya tidak begitu lengkap sehingga baik besarannya maupun arahnya dapat dispesifikasikan. Sebagai contoh, angin yang bergerak pada umumnya digambarkan dengan memberikan kecepatan dan arahnya, misalnya mendekati 20 mil / jam.

Vektor-vektor dapat dinyatakan secara geometris sebagai segmen – segmen garis terarah ataupun panah-panah di ruang-2 atau ruang-3; arah panah menentukan arah vektor dan panjang panah menyatakan besarnya. Ekor panah disebut *titik awal (initial point)* dari vektor, dan ujung panah dinamakan *titik terminal (terminal point)*.

Gambar 1.1

Pada gambar 1.1a, titik awal vector v adalah **A** da titik terminalnya adalah **B**, maka dituliskan $v = \overrightarrow{AB}$

Vektor – vektor yang mempunyai panjang dan arah yang sama, seperti pada gambar 3.1b disebut *ekivalen*.

Untuk menuliskan panjang vektor v digunakan notasi |v|

1.2 Operasi – operasi pada vector

a. Penjumlahan Vektor

Ada 2 metode yang dapat digunakan untuk menjumlahkan 2 buah vektor

a.1 Metode Jajaran Genjang

Gambar 1.2

Vektor hasil (resultant) yaitu a + b diperoleh dari diagonal jajaran genjang yang dibentuk oleh vektor a dan b setelah titik awal dan titik akhir ditempatkan berimpit.

a.2 Metode Segitiga

Gambar 1.3

Resultan diperoleh dengan menempatkan titik awal salah satu vektor pada titik ujung vektor yang lain, maka resultannya adalah vektor bertitik awal di titik awal a dan bertitik ujung di titik ujung b

Catatan:

- 1. Penjumlahan vektor bersifat komutatif, a + b = b + a
- 2. Metode Segitiga baik sekali digunakan untuk menjumlahkan lebih dari 2 vektor. Misalnya a + b + c + d + e, maka resultannya adalah vektor dengan titik awal di titik awal vektor a dan bertitik ujung di titik ujung vektor e
- 3. Pengurangan vektor a dan b adalah a b = a + (-b)

b. Perkalian Skalar

Jika k adalah suatu skalar bilangan riil, a suatu vektor, maka perkalian skalar ka menghasilkan suatu vektor yang panjangnya |k| kali panjang a dan arahnya sama dengan arah a bila k positif atau berlawanan arah bila k negatif. Bila k = 0 maka ka =0 disebut vektor nol, yaitu vektor yang titik awal dan titik ujungnya berimpit.

Gambar 1.4

1.3 Susunan Koordinat Ruang-n

a. Ruang dimensi satu (R¹)

Gambar 1.5

Titik O mewakili bilangan nol, titik E mewakili bilangan 1. Ditulis O(0), E(1), P($\frac{2}{5}$) artinya P mewkili bilangan $\frac{2}{5}$ dan kita letakkan P sehingga OP = $\frac{2}{5}$ satuan ke arah E (arah positif).

b. Ruang dimensi dua (R²)

Setiap pasangan bilangan riil (koordinat titik) dapat diwakili oleh sebuah titik pada suatu bidang rata, yang membentuk susunan koordinat di dalam ruang dimensi dua, ditulis R².

Gambar 1.6

c. Ruang dimensi tiga (R³)

Gambar 1.7

d. Ruang dimensi n (Rn)

Secara umum untuk R^n dimana n adalah bilangan bulat positif, suatu titik di dalam R^n dinyatakan sebagai n-tupel bilangan riil. Misalnya titik $X(x_1, x_2, ..., x_n)$

1.4 Vektor di dalam Ruang Rⁿ

Lebih_dahulu kita pandang suatu susunan koordinat di R². Suatu vektor disebut satuan bila panjangnya = 1.

Kita ambil sekarang vektor satuan:

 $e_1 = OE_1$ yang titik awalnya O(0,0) dan titik ujungnya adalah $E_1(1,0)$

 $e_2 = OE_2$ yang titik awalnya O(0,0) dan titik ujungnya adalah $E_2(0,1)$

Kemudian kita tulis $e_1 = 1e_1 + 0 e_2$

$$e_2 = 0e_1 + 1 e_2$$

Yang selanjutnya penulisan itu disingkat dengan

$$e_1 = [1,0]$$

$$e_2 = [0,1]$$

Sekarang pandang vektor a yang titik awalnya O(0,0) dan titik ujungnya titik A(a_1 , a_2). Vektor a disebut vektor posisi dari titik A.

Gambar 1.8

Bilangan – bilangan a_1, a_2 disebut komponen – komponen dari a Panjang vektor a adalah $\sqrt{a_1^2 + a_2^2}$

Secara umum untuk vektor p yang titik awalnya $P(p_1, p_2)$ dan titik ujungnya di $Q(q_1, q_2)$:

$$\mathbf{PQ} = (q_1 - p_1) e_1 + (q_2 - p_2) e_2$$
$$= [(q_1 - p_1), (q_2 - p_2)]$$

Kesimpulan (untuk Rⁿ):

- 1. Vektor posisi dari titik $A(a_1, a_2, ..., a_n)$ adalah $OA = [a_1, a_2, ..., a_n]$
- 2. Vektor bertitik awal di $P(p_1, p_2, ..., p_n)$ dan bertitik ujung di $Q(q_1, q_2, ..., q_n)$ adalah $PQ = [q_1 p_1, q_2 p_2, ..., q_n p_n]$
- 3. Panjang vektor $a = [a_1, a_2, ..., a_n]$ adalah $|a| = \sqrt{a_1^2 + a_2^2 + + a_n^2}$ Jarak 2 titik P(p₁, p₂, ..., p_n) dan Q(q₁, q₂, ..., q_n) adalah panjang vektor PQ yaitu :

$$|PQ| = \sqrt{(q_1 - p_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

4. Vektor – vektor satuan dari susunan koordinat adalah

$$e_1 = [1,0,0,...,0],$$

 $e_2 = [0,1,0,...,0],$

$$e_3 = [0,0,1,0...,0], dst.$$

<u>Latihan:</u>

- 1. Carilah komponen komponen vektor yang bertitik awal di P dan terminal di Q
 - a. P(3,5) dan Q(2,8)
- b. P(6,5,8) dan Q(8,-7,-3)
- 2. Carilah vektor yang bertitik awal P(2, -1, 4) yang mempunyai arah seperti $\underline{\mathbf{v}}$ = [7, 6, -3]

- 3. Carilah vektor yang bertitik terminal Q(2, 0, -7) yang mempunyai arah berlawanan dengan $\underline{\mathbf{v}} = [-2, 4, -1]$
- 4. Misalkan P adalah titik (2, 3, -2) dan Q adalah titik (7, -4, 1)
 - a. Carilah titik tengah dari segmen garis yang menghubungkan ${\bf P}$ dan ${\bf Q}$
 - b. Carilah titik pada segmen garis yang menghubungkan P dan Q yang ¾ dari P ke Q.
- 5. Hitunglah panjang v bila
 - a. $\underline{\mathbf{v}} = [3, 4]$
- b. $\underline{\mathbf{v}} = [-8, 7, 4]$
- 6. Hitunglah jarak antara P dan Q bila
 - a. P(2,3) dan Q(7,8)
- b. P(1, 1, 1) dan Q(6, -7, 3)

1.5 Beberapa Dalil pada Operasi Vektor

Untuk setiap vektor $a = [a_1, a_2, a_3, \ldots, a_n]$, $b = [b_1, b_2, b_3, \ldots, b_n]$, $c = [c_1, c_2, c_3, \ldots, c_n] \in \mathbb{R}^n$, dan m, k adalah skalar – skalar, maka berlaku :

- (1). a + b = b + a
- (2). (a + b) + c = a + (b + c)
- (3). k(a + b) = ka + kb
- (4). a + 0 = a
- (5). a + (-a) = 0
- (6). (k + m)a = ka + ma
- (7). (km)a = k(ma) = m(ka)

1.6 Dot Product (Hasil Kali Titik)

Definisi

Bila v dan w adalah vektor, dan θ adalah sudut antara v dan w ($0 \le \theta \le \pi$)

Maka hasil kali titik (dot product) v. w didefinisikan dengan:

$$v.w = \begin{cases} |v| |w| \cos \theta & jika \ v \neq 0 \ dan \ w \neq 0 \\ 0 & jika \ v = 0 \ atau \ w = 0 \end{cases}$$
(1.1)

Gambar 1.9

Perhatikan gambar 1.9 di atas. Jika $v = (v_1, v_2, v_3)$ dan $w = (w_1, w_2, w_3)$ adalah 2 vektor tak nol. Dan θ adalah sudut antara v dan w, maka hokum cosinus menghasilkan:

$$|\overrightarrow{PQ}|^2 = |v|^2 + |w|^2 - 2|v||w|\cos\theta$$
 (1.2)

Karena $\overrightarrow{PQ} = w - v$ maka dapat (1.2) dapat dituliskan kembali sebagai :

$$2|v||w|\cos\theta = |v|^2 + |w|^2 - |w-v|^2$$
$$|v||w|\cos\theta = \frac{1}{2}(|v|^2 + |w|^2 - |w-v|^2)$$
Atau

$$v \cdot w = \frac{1}{2} (|v|^2 + |w|^2 - |w - v|^2)$$

Dengan mensubstitusikan

$$|v|^2 = v_1^2 + v_2^2 + v_3^2$$
 dan $|w|^2 = w_1^2 + w_2^2 + w_3^2$

dan

$$|\mathbf{w} - \mathbf{v}|^2 = (w_1 - v_1)^2 + (w_2 - v_2)^2 + (w_3 - v_3)^2$$

Maka setelah disederhanakan akan diperoleh:

$$v. w = v_1w_1 + v_2w_2 + v_3w_3$$

Jika v dan w bukan vektor nol, maka persamaan (1.1) dapat ditulis dengan

$$\cos \theta = \frac{v.w}{|v||w|}$$

Contoh 1.1

Diketahui vektor v = (2, -1, 1) dan w = (1, 1, 2)

Carilah v.w dan tentukan sudut antara v dan w.

Iawab:

$$v. w = (2).(1) + (-1).(1) + (1)(2) = 2 - 1 + 2 = 3$$

$$|v| = \sqrt{4+1+1} = \sqrt{6}$$

 $|w| = \sqrt{1+1+4} = \sqrt{6}$

Jadi Cos θ = $\frac{3}{6}$ = $\frac{1}{2}$, maka sudut antara v dan w adalah 60°

1.7 Cross Product (Hasil Kali Silang)

Dalam banyak penerapan vektor pada bidang geometri, fisika, dan teknik, kita perlu membentuk vektor di ruang-3 yang tegak lurus dengan 2 vektor lain yang diberikan.

Definisi

Jika $v = (v_1, v_2, v_3)$ dan $w = (w_1, w_2, w_3)$ adalah vektor – vektor di Ruang-3, maka hasil kali silang (cross product) v x w adalah vektor yang didefinisikan oleh

$$v \times w = (v_2w_3 - v_3w_2, v_3w_1 - v_1w_3, v_1w_2 - v_2w_1)$$

atau dalam notasi determinan

$$\boldsymbol{v} \times \boldsymbol{w} = \begin{pmatrix} \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}, - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}, \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \end{pmatrix}$$

Contoh 1.2

Carilah $u \times v$ dimana u = (1, 2, -2) dan v = (3, 0, 1)

Jawab:

$$\begin{bmatrix} 1 & 2 & -2 \\ 3 & 0 & 1 \end{bmatrix}$$

$$u \times v = \begin{pmatrix} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, -\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$$

$$= (2, -7, -6)$$

Teorema

Jika v dan w adalah vector dalam Ruang-3, maka

- 1. v.(v x w) = 0
- 2. v.(v x w) = 0
- 3. $|v \times w|^2 = |v|^2 |w|^2 (v \cdot w)^2$ (Identitas Lagrange)

Jika θ adalah sudut di antara v dan w , maka v.w = $|v| |w| \cos \theta$, sehingga Identitas Lagrange dapat dituliskan kembali sebagai :

$$|v \times w|^{2} = |v|^{2} |w|^{2} - (v \cdot w)^{2}$$

$$= |v|^{2} |w|^{2} - (|v| |w| \cos \theta)^{2}$$

$$= |v|^{2} |w|^{2} - |v|^{2} |w|^{2} \cos^{2} \theta$$

$$= |v|^{2} |w|^{2} (1 - \cos^{2} \theta)$$

$$= |v|^{2} |w|^{2} \sin^{2} \theta$$

Jadi

 $|v x w| = |v| |w| \sin \theta$

Jadi luas A dari jajaran genjang di atas diberikan oleh

$$A = |v| |w| \sin \theta = |v \times w|$$

1.8 Persamaan Garis LUrus dan Bidang Rata

a. Garis Lurus

Gambar 1.6

Misalkan titik A(a₁, a₂, a₃) dan B(b₁, b₂, b₃)

Maka $\overrightarrow{OA} = [a_1, a_2, a_3]$ dan $\overrightarrow{OB} = [b_1, b_2, b_3]$ dan $\overrightarrow{AB} = [b_1 - a_1, b_2 - a_2, b_3 - a_3]$ Untuk setiap titik sebarang pada g berlaku $\mathbf{AX} = \lambda \mathbf{AB}$.

Jelas
$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$$

= $\overrightarrow{OA} + \lambda \overrightarrow{AB}$

Atau

$$[x_1, x_2, x_3] = [a_1, a_2, a_3] + \lambda [b_1-a_1, b_2-a_2, b_3-a_3]$$
.....(1.3)

Persamaan (1.3) di atas disebut *persamaan vektoris garis* lurus yang melalui 2 titik $A(a_1, a_2, a_3)$ dan $B(b_1, b_2, b_3)$.

Vektor \overrightarrow{AB} (atau vektor lain yang terletak pada g, dengan kata lain, kelipatan dari \overrightarrow{AB}) disebut vector arah garis lurus tersebut.

Jadi bila garis lurus melalui titik A(a₁, a₂, a₃) dengan vector arah \bar{a} = [a, b, c], maka persamaannya adalah:

$$[x_1, x_2, x_3] = [a_1, a_2, a_3] + \lambda [a, b, c]$$
(1.4)

Persamaan (1.4) dapat ditulis menjadi :

$$x_1 = a_1 + \lambda b_1$$

 $x_2 = a_2 + \lambda b_2$
 $x_3 = a_3 + \lambda b_3$

yang disebut dengan persamaan parameter garis lurus.

Kemudian bila a \neq 0, b \neq 0, c \neq 0, λ kita eliminasikan dari persamaan parameter di atas, diperoleh :

$$\lambda = \frac{(x_1 - a_1)}{a} = \frac{(x_2 - a_2)}{b} = \frac{(x_3 - a_3)}{c}$$

Merupakan persamaan linier garis lurus melalui titik $A(a_1, a_2, a_3)$ dengan vektor arah [a, b, c].

b. Bidang Rata

Gambar 1.7

Misal diketahui 3 titik $P(p_1, p_2, p_3)$, $Q(q_1, q_2, q_3)$ dan $R(r_1, r_2, r_3)$ pada sebuah bidang rata seperti di atas.

Maka
$$\overrightarrow{PQ} = [q_1-p_1, q_2-p_2, q_3-p_3]$$

 $\overrightarrow{PR} = [r_1-p_1, r_2-p_2, r_3-p_3]$

Untuk setiap titik pada bidang, berlaku $\overrightarrow{PX} = \lambda \overrightarrow{PQ} + \mu \overrightarrow{PR}$ Jelas dari gambar $\overrightarrow{OX} = \overrightarrow{OP} + \overrightarrow{PX}$

$$= \overrightarrow{OP} + \lambda \overrightarrow{PQ} + \mu \overrightarrow{PR}$$

Atau

$$[x_1, x_2, x_3] = [p_1, p_2, p_3] + \lambda [q_1-p_1, q_2-p_2, q_3-p_3] + \mu [r_1-p_1, r_2-p_2, r_3-p_3]$$

Adalah persamaan vektoris bidang yang melalui 3 titik. Kedua vektor \overrightarrow{PQ} dan \overrightarrow{PR} adalah vektor arah bidang. Latihan:

- 1. Tentukan:
 - a. **a.b** bila a = [2, -3, 6] dan b = [8, 2, -3]
 - b. Jarak A(2, 4, 0), B(-1, -2, 1)
 - c. Jarak vektor a = [1, 7] dan b = [6, -5]
- 2. a. Tentukan k supaya a = [1, k, -2, 5] mempunyai panjang $\sqrt{39}$
 - b. Berapa sudut antara a = [1, 2, 3, 4] dan b = [0, 0, 1, 1]
 - c. Tentukan k supaya a = [1, k, -3] tegak lurus b = [4, -k, 1]
- 3. Carilah u. v untuk
 - a. u = [-3, 1, 2] dan v = [4, 2, -5]
 - b. u = [1, 2] dan v = [6, -8]
- 4. Carilah sudut antara u dan v pada soal (3)
- 5. Misalkan u = [2, -1, 3], v = [0, 1, 7] dan w = [1, 4, 5], hitunglah
 - a. vxw
- b. u x (v x w)
- c. $(u \times v) \times w$
- d. $(u \times v) \times (v \times w)$ d. $u \times (v 2w)$
- f. $(u \times v) 2w$
- 6. a. Tentukan persamaan vektoris dari garis lurus

$$x_1 - 3 = x_2 - 4 = -x_3 + 2 = 3x_4 + 2$$

- b. Tentukan persamaan bidang rata yang melalui (1,1,1) dan garis lurus $g:[x_1,x_2,x_3]=[1,2,1]+\lambda[1,0,2]$
- c. Tentukan persamaan bidang rata yang melalui garis lurus g: $[x, y, z] = [1, 2, 3] + \lambda [4, 5, 6]$ serta sejajar dengan garis lurus h: $[x, y, z] = [7, 8, 10] + \lambda [1, 2, 31]$

BAB II RUANG VEKTOR

2.1 Ruang Vektor Umum

Definisi

Misalkan V sebarang himpunan benda yang dua operasinya kita definisikan yaitu penjumlahan dan perkalian dengan skalar (bilangan riil). Penjumlahan tersebut kita pahami untuk mengasosiasikan sebuah aturan dengan setiap pasang benda u dan v dalam V, yang mengandung elemen u + v, yang kita namakan jumlah u dan v, dengan perkalian skalar kita artikan setiap benda u pada V yang mengandung elemen ku, yang dinamakan perkalian skalar u oleh k. Jika semua aksioma berikut dipenuhi oleh semua benda u, v, w pada V dan oleh semua skalar u dan u0 kita namakan u1 sebuah ruang vektor dan benda u2 benda pada u3 kita namakan u3 sebuah ruang vektor dan benda u4 benda pada u6 kita namakan vektor :

- (1). Jika u dan v adalah benda benda pada V kita namakan vektor
- (2). u + v = v + u
- (3). u + (v + w) = (u + v) + w
- (4). Ada vektor **0** di *V* sehingga **0** + u = u + 0 = u untuk semua u di *V*
- (5). Untuk setiap u di V, terdapat -u sehingga u + (-u) = (-u) + u = 0
- (6). Jika k adalah sebarang skalar dan u adalah sebarang vektor di V, maka ku berada di V
- (7). k(u + v) = ku + kv
- (8). (k + 1)u = ku + 1u
- (9). k(1u) = l(ku)
- (10). 1u = u

2.2 SubRuang (subspace)

Definisi

Subhimpunan W dari sebuah ruang vektor V disebut sub ruang (subspace) V jika W itu sendiri adalah ruang vektor di bawah penjumlahan dan perkalian skalar yang didefinisikan pada V.

2.3 Vektor yang Bebas Linier dan Tak Bebas Linier

Definisi

Himpunan m buah vektor (u_1 , u_2 , ... u_m) disebut tak bebas linier (*linearly dependent*) bila terdapat skalar – skalar λ_1 , λ_2 , ..., λ_m yang tidak semuanya nol sedemikian hingga (u_1 , u_2 , ... u_m)

Sebaliknya himpunan (u_1 , u_2 , ... u_m) disebut bebas linier ($linearly\ independent$) jika $\lambda_1\ u_1 + \lambda_2\ u_2 + \ldots + \lambda_m\ u_m = 0$ hanya dipenuhi oleh $\lambda_1 = \lambda_2 = \ldots = \lambda_m = 0$.

Catatan:

- 1. Jika m=1, maka:
 - a. Bila u = 0 (vektor nol), akan tak bebas linier, karena $\lambda u = 0$ $\Rightarrow \lambda 0 = 0$ terpenuhi juga untuk $\lambda \neq 0$
 - b. Bila $\lambda \neq 0$, akan bebas linier karena $\lambda u=0$ hanya dipenuhi oleh $\lambda =0$
- 2. Jika dalam himpunan terdapat vektor 0, misalnya $\{u_1, u_2, ..., 0, ..., u_m\}$ maka himpunan itu tak bebas linier,
 - $\lambda_1 u_1 + \lambda_2 u_2 + ... + \lambda_i 0 + ... + \lambda_m u_m = 0$ dipenuhi juga oleh $\lambda_I \neq 0$
- 3. JIka u dan v adalah 2 vektor yang berkelipatan, $u = \alpha v$, maka mereka tak bebas linier. Sebab $u = \alpha v \rightarrow 1u \alpha v = 0$, artinya terdapat $\lambda \neq 0$ pada $\lambda_1 v + \lambda_2 u = 0$

2.4 Kombinasi Linier

Definisi

Suatu vektor v dikatakan kombinasi linier dari vektor – vektor (u_1 , u_2 , ... u_m) bila terdapat skalar – skalar λ_1 , λ_2 , ..., λ_m sedemikian hingga v = λ_1 u_1 + λ_2 u_2 + ... + λ_m u_m .

Contoh 2.1

$$a = [2, 1, 2], b = [1, 0, 3], c = [3, 1, 5]$$

Kita hendak menyatakan *a* sebagai kombinasi linier dari *b* dan *c*

Kita hitung λ_1 , dan λ_2 yang memenuhi [2, 1, 2] = λ_1 [1, 0, 3] + λ_2 [3, 1, 5]

$$2 = \lambda_1 + 3 \lambda_2$$

$$1 = \lambda_2$$

$$2 = 3 \lambda_1 + 5 \lambda_2$$

Dengan substitusi, diperoleh λ_1 = -1 dan λ_2 = 1 Jadi penulisan yang diminta adalah a = -b + c

2.5 Arti Kombinasi Linier Secara Ilmu Ukur

- (1). Kalau v kombinasi linier dari suatu vektor u, yaitu $v = \lambda u$ yang mana v adalah kelipatan dari u dengan garis pembawanya sama (atau sejajar), v dan u disebut koliner (segaris).
- (2). v kombinasi linier dari 2 vektor u_1 dan u_2 , yaitu $v = \lambda_1 u_1 + \lambda_2 u_2$ maka v adalah diagonal jajaran genjang yang sisi sisinya $\lambda_1 u_1$ dan $\lambda_2 u_2$. u_1 dan u_2 disebut *koplanar* (sebidang).
- (3) v kombinasi linier dari 3 vektor u_1 , u_2 dan u_3 , yang tidak sebidang, yaitu $v = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$ maka v adalah diagonal paralelepipedum yang sisi sisinya $\lambda_1 u_1$, $\lambda_2 u_2$ dan $\lambda_3 u_3$.

2.6 Dimensi dan Basis

Definisi

Jika V adalah sebarang ruang vektor dan $S = \{v_1, v_2, ..., v_r\}$ merupakan himpunan berhingga dari vektor – vektor pada S, maka S disebut *basis* untuk V jika : (i). S bebas linier

(ii) S merentang *V*

Definisi

Dimensi sebuah ruang vektor V yang berdimensi berhingga didefinisikan sebagai banyaknya vektor pada basis untuk V.

Contoh 2.2

Tentukan dimensi dari ruang vektor yang dibentuk oleh:

- (i). p = [1, -2, 3, 1] dan q = [2, -4, 5, 2]
- (ii). u = [5, 7, 11, 4] dan v = [10, 14, 22, 8]

Jawab:

- (i). Kedua vektor pembentuk tidak berkelipatan, jadi sistem pembentuk bebas linier. Berarti dimensi = 2
- (ii). Kedua vektor berkelipatan. Vektor u maupun $v \neq 0$, jadi keduanya merupakan sistem pembentuk yang bebas linier. Berarti dimensi = 1

Latihan:

- 1. Tentukan dimensi dan basis dari ruang vektor yang dibentuk oleh:
 - (i). a = [1, 1, 2], b = [1, 2, 5], c = [5, 3, 4]
 - (ii). p = [1, 2, 2], q = [2, 4, 4], r = [1, 0, 1]
 - (iii) u = [1, 0, 1], v = [3, 0, 3], w = [2, 0, 2]
- 2. Apakah himpunan himpunan vektor ini merupakan basis R-3?
 - (i). [1, 1, 1], [1, -2, 3]
 - (ii). [1, 0, 0], [1, 1, 0], [1, 1, 1]
 - (iii). [1, 1, 2], [1, 2, 5], [5, 3, 4]
- 3. Diketahui L dibentuk oleh p = [1, 3, 1], q = [2, 1, 0], dan r = [4, x-2, 2]Ditanya:
 - (i) Nilai x supaya L berdimensi 2
 - (ii) Nilai y supaya vektor $a = [3, 2-y, 4] \in L\{p,q,r\}$
 - (iii) Koordinat a di atas relative terhadap basis {p,q}

BAB III MATRIK

3.1 Pengertian

Matrik adalah himpunan skalar yang disusun secara empat persegi panjang (menurut baris dan kolom)

Skalar – skalar itu disebut elemen matrik. Untuk batasnya biasanya digunakan: (), [], \mid | \mid

3.2 Notasi Matrik

Matrik diberi nama dengan huruf besar. Secara lengkap ditulis matrik $A=(a_{ij})$, artinya suatu matrik A yang elemen – elemennya adalah a_{ij} dimana index i menunjukkan baris ke-i dan indeks ke-j menunjukkan kolom ke-j.

Sehingga bila matrik disusun secara $A_{(mxn)} = (aij)$, mxn disebut ordo (ukuran) dari matrik A.

3.3 Operasi pada Matrik

1. Penjumlahan matrik

Syarat : ukuran matrik harus sama.

Jika A = (a_{ij}) dan B = (b_{ij}) , matrik berukuran sama, maka A + B adalah suatu matrik C = (c_{ij}) dimana c_{ij} = a_{ij} + b_{ij} untuk setiap I dan j

2. Perkalian skalar terhadap matrik

Kalau λ suatu skalar (bilangan) dan A = (a_{ij}) , maka matrik λ A = (λa_{ij}) , dengan kata lain, matrik λ A diperoleh dengan mengalikan semua elemen matrik A dengan λ .

Hukum pada penjumlahan dan perkalian scalar:

Jika A, B, C adalah matrik berukuran sama, dan λ adalah skalar maka :

- 1. A + B = B + A (komutatif)
- 2. (A + B) + C = A + (B+C) (asosiatif)
- 3. $\lambda(A + B) = \lambda A + \lambda B$ (distributif)
- 4. Selalu ada matrik D sedemikian hingga A + D = B

3. *Perkalian matrik*

Pada umumnya matrik tidak komutatif terhadap operasi perkalian : AB ≠ BA. Pada perkalian matrik AB, matrik A disebut matrik pertama dan B matrik kedua.

Syarat : Jumlah *kolom* matrik pertama = jumlah *baris* matrik kedua

Definisi:

Panjang A = (a_{ij}) berukuran $(p \times q)$ dan B = (b_{ij}) berukuran $(q \times r)$. Maka perkalian AB adalah suatu matrik C = (c_{ij}) berukuran $(p \times r)$ dimana :

 $cij = a_{i1} b_{1j} + a_{i2} b_{2j} + ... + a_{iq} b_{qj}$, untuk setiap i = 1,2,...,p dan j = 1,2, ... r

Hukum pada perkalian matrik:

- 1. A(B + C) = AB + AC, dan (B + C) A = BA + CA, memenuhi hukum distributif
- 2. A(BC) = (AB)C, memenuhi hukum asosiatif
- 3. Perkalian tidak komutatif, $AB \neq BA$
- 4. Jika AB = 0 (matrik 0) , yaitu matrik yang semua elemennya adalah = 0, kemungkinan kemungkinannya adalah :
 - (i). A = 0 dan B = 0
 - (ii) A = 0 atau B = 0
 - (iii) $A \neq 0$ dan $B \neq 0$
- 5. Bila AB = AC belum tentu B = C

4. Transpose dari suatu matrik

Pandang suatu matrik $A = (a_{ij})$ berukuran $(m \times n)$ maka transpose dari A adalah matrik A^T berukuran $(n \times m)$ yang didapatkan dari A dengan menuliskan baris ke – i dari A, i = 1,2,...,m sebagai kolom ke –i dari A^T . Dengan kata lain : $A^T = (a_{ji})$

<u>Sifat – sifat matrik transpose</u>

- 1. $(A + B)^T = A^T + B^T$
- $2. \quad (A^T)^T = A$
- 3. $\lambda(A^T) = (\lambda A)^T$
- 4. $(AB)^{T} = B^{T} A^{T}$

3.4 Beberapa Jenis matrik Khusus

1. Matrik bujursangkar

adalah matrik dengan jumlah baris = jumlah kolom, sehingga disebut berordo n.

Barisan elemen a_{11} , a_{22} , ... a_{nn} disebut diagonal utama dari matrik bujursangkar A

2. Matrik nol

adalah matrik yang semua elemennya adalah 0

3. Matrik diagonal

matrik bujursangkar yang semua elemen di luar diagonal utamanya 0.

4. *Matrik identitas*

adalah matrik diagonal yang elemen – elemen diagonal utama adalah 1.

5. Matrik skalar

adalah matrik diagonal dengan semua elemen diagonal utamanyanya = k

6. Matrik segitiga bawah (lower triangular)

adalah matrik bujursangkar yang semua elemen di atas diagonal utama = 0.

7. *Matrik segitiga atas (upper triangular)*

adalah matrik bujursangkar yang semua elemen di bawah diagonal utama = 0.

8. Matrik simetris

adalah matrik yang transposenya sama dengan dirinya sendiri.

9. *Matrik anti simetris*

adalah matrik yang transposenya adalah negatifnya.

•

- 10. Matrik hermitian adalah matrik yang bila transpose hermitiannya adalah sama dengan dirinya sendiri.
- 11. Matrik idempoten, nilpotent

Bila berlaku $A.A = A^2 = A$, maka A dikatakan matrik idempoten.

Bila $A^r = 0$, maka A nilpotent dengan index r (dimana r adalah bilangan bulat positif terkecil yang memenuhi hubungan tersebut)

3.5 Transformasi (Operasi) elementer pada baris dan kolom suatu matrik

Yang dimaksud dengan transformasi elementer pada baris dan kolom suatu matrik A adalah sebagai berikut :

- 1a. Penukaran tempat baris ke i dan baris ke j ditulis $H_{ij}(A)$
- b. Penukaran tempat kolom ke i dan kolom ke j ditulis K_{ii} (A)
- 2a Mengalikan baris ke i dengan skalar $\lambda \neq 0$, ditulis $H_i^{(\lambda)}(A)$
- b. Mengalikan kolom ke j dengan skalar $\lambda \neq 0$, ditulis $K_i^{(\lambda)}(A)$
- 3a. Menambah baris ke i dengan λ kali baris ke j ditulis $H_{ij}^{(\lambda)}(A)$
 - b. Menambah kolom ke i dengan λ kali kolom ke j ditulis $K_{ij}^{(\lambda)}(A)$

Misalnya kita telah mengetahui matrik B sebagai hasil transformasi elementer dari A. Kita dapat mencari A, disebut invers dari transformasi elementer tersebut.

Matrik ekivalen

Dua matrik A dan B dikatakan ekivalen (A~B) apabila salah satunya dapat diperoleh dari yang lin dengan transformasi – transformasi elementer terhadap baris dan atau kolom. Jika transformasi elementernya pada baris saja, maka dikatakan ekivalen baris. Begitu juga dengan kolom.

Matrik Elementer

Sebuah matrik $n \times n$ disebut *matrik elementer* jika matrik tersebut dapat diperoleh dari matrik identitas $n \times n$ yaitu I_n dengan melakukan sebuah operasi baris elementer tunggal.

3.6 Mencari solusi dengan menggunakan eliminasi Gauss Jordan

Misal diketahui matrik A adalah matrik bujursangkar. Dan X adalah pemecahan bagi AX = 0 dimana AX = 0 adalah bentuk matrik dari sistem :

Jika kita memecahkannya dengan menggunakan eliminasi Gauss Jordan, maka sistem persamaan yang bersesuaian dengan bentuk eselon baris tereduksi dari matrik yang diperbesar akan menjadi:

$$x_1 = 0$$

$$x_2 = 0 \\
 \vdots \\
 x_n = 0$$

dan matrik yang diperbesar tersebut adalah:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 \\ \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 \end{bmatrix}$$

3.7 Mencari invers matrik

Contoh 3.1:

Cari invers matrik
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Jawab:

Pada akhir operasi , matrik dibentuk menjadi $[I \mid A^{\text{-1}}]$ dari bentuk asal $[A \mid I]$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix}$$

dengan operasi elementer $H_{\,21}^{(-2)}$ dan $H_{\,21}^{(-1)}$ menjadi

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{bmatrix}$$

dengan operasi elementer $H_{32}^{(2)}$ menjadi

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix}$$

dengan operasi elementer $H_3^{\ (-1)}$ menjadi

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

dengan operasi elementer $H_{13}^{(-3)}$ dan $H_{23}^{(3)}$ menjadi

$$\begin{bmatrix} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

dengan operasi elementer $H_{12}^{(-2)}$ menjadi

$$\begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

Jadi invers dari matrik A adalah
$$\begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

LATIHAN:

- 1. Carilah $3A^2 + 2A 3I^2$, bila $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$
- 2. Tunjukkan bahwa A adalah matrik idempoten, $A = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$
- 3. Carilah invers dari $A = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$
- 4. Diketahui $A = \begin{bmatrix} 3 & 1 & 2 & 1 \\ 4 & 1 & 0 & 2 \\ 1 & 3 & 0 & 1 \end{bmatrix}$, matrik B dihasilkan dari sederetan transformasi elementer $H_{31}^{\ (-1)}$, $H_{2}^{\ (2)}$, H_{12} , $K_{41}^{\ (1)}$, $K_{3}^{\ (2)}$ terhadap A.
- 5. Tentukan transpose hermitian dari:

$$Q = \begin{bmatrix} 2+i & i & \sin ix \\ 3+i & x^2 & \pi \end{bmatrix}$$

Carilah B tersebut.

6. Cari solusi dari persamaan linier berikut ini :

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 5x_2 + 3x_3 = 3$
 $x_1 + 8x_3 = 17$

7. Pecahkan persamaan matrik untuk X dalam masing – masing bagian berikut:

a.
$$X \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 0 \\ 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ -3 & 1 & 5 \end{bmatrix}$$

b.
$$X\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & -1 & 0 \\ 6 & -3 & 7 \end{bmatrix}$$

BAB IV DETERMINAN

4.1 Pengertian

Setiap matrik bujursangkar A selalu dikaitkan dengan suatu sknlar yang disebut Determinan. Sebelum mulai dengan yang lebih umum, kita ambil

dahulu matrik
$$A_{(2x2)}$$
 sebagai berikut : $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Didefinisikan;
$$det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad -bc$$

Contoh:

$$A = \begin{bmatrix} 1 & 3 \\ 5 & 5 \end{bmatrix}$$
 maka $det(A) = 1.5 - 3.5 = 5 - 15 = -10$

4.2 PERMUTASI

Definisi:

Permutasi himpunan bilangan – bilangan bulat {1,2,3 ...,n} adalah susunan bilangan – bilangan bulat ini menurut suatu aturan tanpa menghilangkan atau mengulangi bilangan – bilangan tersebut.

Contoh 4.1:

Ada 6 permutasi yang berbeda dari himpunan {1,2,3} yaitu {1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,2,1}, {3,1,2}

Banyaknya permutasi dapat dihitung dengan factorial. Untuk contoh soal diatas 3! = 1.2.3 = 6

Definisi

Invers pada suatu permutasi $(j_1, j_2, j_3 ..., j_n)$ adalah adanya $j_k < j_i$ $(j_k \text{ mendahului } j_i)$ padahal $j_i < j_k$ (I dan k = 1, 2, ..., n)

Contoh 4.2:

Berapa banyak invers yang terdapat pada permutasi {2, 1, 4, 3} ? Ada 2 invers yaitu :

- 1. $j_i = 2$ mendahului $j_k = 1$, padahal 1 < 2
- 2. $j_i = 4$ mendahului $j_k = 3$, padahal 3 < 4

4.3 DETERMINAN

Cara termudah mencari determinan dari matrik bujursangkar untuk orde yang tidak terlalu besar adalah dengan metode SARRUS .

Contoh 4.3:

$$\begin{vmatrix} 2 & 3 & 1 & 2 & 3 \\ 2 & 1 & 2 & 2 & 1 \\ 3 & 1 & 2 & 3 & 1 \end{vmatrix} = 2.1.2 + 3.2.3 + 1.2.1 - 1.1.3 - 2.2.1 - 3.2.2$$

$$= 4 + 18 + 2 - 3 - 4 - 12 = 5$$

4.4 SIFAT - SIFAT DETERMINAN

- 1. $det(A) = det(A^T)$
- 2. Tanda determinan berubah jika 2 baris atau kolom ditukar tempatnya.
- 3. Harga determinan menjadi λ kali, bila suatu baris / kolom dikalikan dengan skalar λ

4.5 MENGHITUNG DETERMINAN DGN REDUKSI BARIS

Metode ini penting untuk menghindari perhitungan panjang yang terlibat dalam penerapan definisi determinan secara langsung.

Theorema:

Jika A adalah matrik segitiga n x n, maka det(A) adalah hasil kali elemen – elemen pada diagonal utama, yaitu , $det(A) = a_{11}.a_{22}.a_{33}...a_{nn}$

Contoh 4.4:
$$\begin{vmatrix} 2 & 7 & -3 & 8 & 3 \\ 0 & -3 & 7 & 5 & 1 \\ 0 & 0 & 6 & 7 & 6 \\ 0 & 0 & 0 & 9 & 8 \\ 0 & 0 & 0 & 0 & 4 \end{vmatrix} = (2) (-3) (6) (9) (4) = -1296$$

Contoh 4.5:

Hitung det(A) dimana A =
$$\begin{vmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{vmatrix}$$

Jawab:

Baris I ditukar dengan baris II (
$$H_{21}$$
), sehingga menjadi = - $\begin{vmatrix} 3 & -6 & 9 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix}$

$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix} \Rightarrow H_{31}^{(-2)} \Rightarrow = -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 10 & -5 \end{vmatrix} \Rightarrow H_{32}^{(-10)} \Rightarrow$$

$$= -3 \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & -55 \end{vmatrix} = (-3)(-55) \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{vmatrix} = (-3)(-55)(1) = 165$$

Metode reduksi baris ini sangat sesuai untuk menghitung determinan dengan menggunakan komputer karena metode tersebut sistematis dan mudah diprogramkan.

4.6 MINOR, EKSPANSI KOFAKTOR, & ATURAN CRAMER

Minor a_{ij} adalah determinan submatrik yang tetap setelah baris ke – i dan kolom ke – j dicoret dari A . Dinyatakan dengan $|M_{ij}|$. Sedangkan bilangan (-1) $^{i+j}$ |Mij| dinyatakan oleh C_{ij} disebut *Kofaktor*

Contoh 4.6 :

A =
$$\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 1 \end{bmatrix}$$
 Minor dari elemen $a_{23} = \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = 18 - 24 = -6$
Kofaktor dari elemen $a_{23} = (-1)^5 (-6) = 6$

Perhatikan bahwa kofaktor dan minor hanya berbeda pada tandanya, yaitu $C_{ij} = \pm M_{ij}$. Cara cepat untuk menentukan apakah

penggunaantanda + atau tanda – merupakan penggunaan tanda yang menghubungkan C_{ij} dan M_{ij} berada dalam baris ke – i dan kolom ke – j dari susunan :

Misalnya
$$C_{11} = M_{11}$$
, $C_{21} = -M_{21}$, $C_{44} = M_{44}$, $C_{23} = -M_{23}$

Theorema

Determinan matrik A yang berukuran $n \times n$ dapat dihitung dengan mengalikan elemen – elemen dalam suatu baris (atau kolom) dengan kofaktor – kofaktornya dan menambahkan hasil kali – hasil kali yang dihasilkan, yaitu setiap $1 \le i \le n$ dan $1 \le j \le n$, maka

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

(ekspansi kofaktor sepanjang kolom ke – j) dan

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}$$

(ekspansi kofaktor sepanjang baris ke – i)

Contoh 4.7:

Det(A) bila A =
$$\begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}$$
 adalah

Dengan menggunakan ekspansi kofaktor sepanjang baris pertama

$$= 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - 1 \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} + 0 \begin{vmatrix} -2 & -4 \\ 5 & 4 \end{vmatrix} = (3)(-4) - (1)(-11)$$

$$= -12 + 11$$

$$= -1$$

Definisi:

Jika A adalah sebarang matrik $n \times n$ dan C_{ij} adalah kofaktor a_{ij} , maka matrik

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & \dots & C_{1n} \\ C_{21} & C_{22} & C_{23} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n1} & C_{n2} & C_{n3} & \dots & C_{nn} \end{bmatrix} \text{ disebut matrik kofaktor A.}$$

Transpose matrik ini disebut Adjoin A dan sinyatakan dengan adj(A).

Jika A adalah matrik yang dapat dibalik, maka :
$$A^{-1} = \frac{1}{\det(A)}$$
 adj(A)

ATURAN CRAMER

Theorema

Jika AX = B adalah sistem yang terdiri dari n persamaan linier dalam n bilangan tak diketahui sehingga $det(A) \neq 0$, maka system tesebut mempunyai pemecahan unik. Pemecahan ini adalah :

$$x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \quad \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

dimana Aj adalah matrik yang didaptkan dengan mengantikan elemen-

elemen dalam kolom ke j dari A dengan elemen matrik B =
$$\begin{bmatrix} b \\ b_2 \\ . \\ b_n \end{bmatrix}$$

Contoh 4.8:

Gunakan aturan Cramer untuk memecahkan

$$x_1 + 2x_3 = 6$$

 $-3x_1 + 4x_2 + 6x_3 = 30$
 $-x_1 - 2x_2 + 3x_3 = 8$

Jawab:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 40 & 6 \\ -1 & -2 & 3 \end{bmatrix},$$

$$A_{1} = \begin{bmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 3 \end{bmatrix}$$

Maka

$$x_1 = \frac{\det(A_1)}{\det(A)} = \frac{-40}{44} = \frac{-10}{11},$$

$$x_2 = \frac{\det(A_2)}{\det(A)} = \frac{72}{44} = \frac{18}{11},$$

$$x_3 = \frac{\det(A_3)}{\det(A)} = \frac{152}{44} = \frac{38}{11}$$

Latihan

Latihan Soal:

- 1. Cari semua minor dan kofaktor dari $A = \begin{bmatrix} 1 & 6 & -3 \\ -2 & 7 & 1 \\ 3 & -1 & 4 \end{bmatrix}$
- 2. $Q = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{bmatrix}$, cari:
 - a. adj(A)
 - b. det(A)
 - c. A⁻¹
- 3. Carilah harga x,y,z,dan w yang memenuhi susunan persamaan linier berikut :

$$2x + 4y + 3z + 2w = 1$$

$$3x + 6y + 5z + 2w = 1$$

$$2x + 5y + 2z - 3w = 0$$

$$4x + 5y + 14z + 14w = 0$$

BAB V TRANSFORMASI LINIER

5.1 Pengantar

Definisi

Jika $F:V \rightarrow W$ adalah sebuah fungsi dari ruang vektor V ke dalam ruang vektor W, maka F disebut transformasi linier, jika :

- (i). F(u+v) = F(u) + F(v), untuk semua vektor u dan v di V
- (ii). F(ku) = kF(u) untuk semua vektor u di dalam V dan semua skalar k

Contoh 5.1

Misal $F:R^2 \rightarrow R^3$ adalah sebuah fungsi yang didefinisikan oleh :

$$F(v) = (x, x+y, x-y)$$

Jika u= (x_1, y_1) dan v= (x_2, y_2) maka $u + v = (x_1 + x_2, y_1 + y_2)$ Sehingga,

$$F(u + v) = (x_1 + x_2, [x_1 + x_2] + [y_1 + y_2], [x_1 + x_2] - [y_1 + y_2])$$

= $(x_1, x_1 + y_1, x_1 - y_1) + (x_2, x_2 + y_2, x_2 - y_2)$
= $F(u) + F(v)$

Demikian juga jika k adalah sebuah skalar, k $u = (kx_1, ky_1)$ sehingga

$$F(ku) = (kx_1, kx_1 + ky_1, kx_1 - ky_1)$$

= $k(x_1, x_1 + y_1, x_1 - y_1)$
= $k F(u)$

Jadi F adalah sebuah transformasi linier

Latihan:

Tentukan apakah F linier untuk masing – masing latihan berikut :

- 1. F(x,y) = (2x, y)
- 2. F(x,y) = (2x+y, x-y)
- 3. F(x, y, z) = (2x+y, 3y-4z)
- 4. F(x,y,z) = (1, 1)

5.2 Transformasi Linier dari $R^n \rightarrow R^m$

Misalkan $\mathbf{e_1}$, $\mathbf{e_2}$, ..., $\mathbf{e_n}$ adalah basis baku untuk R^n dan misalkan A adalah sebuah matrik m x n yang mempunyai $T(\mathbf{e_1})$, $T(\mathbf{e_2})$, ..., $T(\mathbf{e_n})$ sebagai vektor - vektor kolomnya.

Misal jika $T:R^2 \rightarrow R^2$ diberikan oleh :

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ x_1 - x_2 \end{bmatrix}$$

Maka

$$T(e_1) = T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{dan} \quad T(e_2) = T\begin{pmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Jadi $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ adalah matrik baku untuk T di atas.

5.3 Jenis – jenis Transformasi Linier bidang

1. Rotasi (Perputaran)

Matrik baku untuk T adalah : $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

2. Refleksi

Refleksi terhadap sebuah garis l adalah transformasi yang memetakan masing – masing titik pada bidang ke dalam bayangan cerminnya terhadap l

Matrik baku untuk:

- a. refleksi terhadap sumbu y (yang mengubah $\begin{bmatrix} x \\ y \end{bmatrix}$ menjadi $\begin{bmatrix} -x \\ y \end{bmatrix}$)
 adalah : $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- b. refleksi terhadap sumbu x (yang mengubah $\begin{bmatrix} x \\ y \end{bmatrix}$ menjadi $\begin{bmatrix} x \\ -y \end{bmatrix}$) adalah : $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

c. refleksi terhadap garis y = x (yang mengubah $\begin{bmatrix} x \\ y \end{bmatrix}$ menjadi $\begin{bmatrix} y \\ x \end{bmatrix}$)
adalah: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

3. Ekspansi dan kompresi

Jika koordinat x dari masing – masing titik pada bidang dikalikan dengan konstanta k yang positif dimana k > 1, maka efeknya adalah memperluas gambar bidang dalam arah x. Jika 0 < k < 1 maka efeknya adalah mengkompresi gambar bidang dalam arah x. Disebut **dengan ekspansi (kompresi) dalam arah x dengan faktor k**

Matrik baku untuk transformasi ini adalah : $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$

Demikian juga , jika koordinat y dari masing – masing titik pada bidang dikalikan dengan konstanta k yang positif dimana k > 1, maka efeknya adalah memperluas gambar bidang dalam arah y. Jika 0 < k < 1 maka efeknya adalah mengkompresi gambar bidang dalam arah y. Disebut **dengan ekspansi (kompresi) dalam arah y dengan faktor k**

Matrik baku untuk transformasi ini adalah :
$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$

4. Geseran

Sebuah geseran dalam arah x dengan faktor k adalah transformasi yang menggerakkan masing – masing titik (x,y) sejajar dengan sumbu x sebanyak ky menuju kedudukan yang baru (x + ky, y)

Matrik baku untuk transformasi ini adalah :
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

Sebuah geseran dalam arah y dengan faktor k adalah transformasi yang menggerakkan masing – masing titik (x,y) sejajar dengan sumbu y sebanyak kx menuju kedudukan yang baru (x,y+kx)

Matrik baku untuk transformasi ini adalah :
$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$

Jika dilakukan banyak sekali transformasi matrik dari Rⁿ ke R^m secara berturutan, maka hasil yang sama dapat dicapai dengan transformasi matrik tunggal.

Jika transformasi - transformasi matrik

$$T_1(\mathbf{x}) = A_1\mathbf{x}, \quad T_2(\mathbf{x}) = A_2\mathbf{x}, \quad \dots, \quad T_n(\mathbf{x}) = A_n\mathbf{x},$$

Dari R^n ke R^m dilakukan berurutan, maka hasil yang sama dapat dicapai dengan transformasi matrik tunggal $T(\mathbf{x}) = A\mathbf{x}$, dimana

$$A = A_k \dots A_2 A_1$$

Contoh 5.2

- a. Carilah transformasi matrik dari R^2 ke R^2 yang mula mula menggeser dengan faktor sebesar 2 dalam arah x dan kemudian merefleksikannya terhadap y = x
- b. Carilah transformasi matrik dari R^2 ke R^2 yang mula mula merefleksikannya terhadap y = x dan kemudian menggeser dengan faktor sebesar 2 dalam arah x

Jawab:

a). Matrik baku untuk geseran adalah $A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

Dan untuk refleksi terhadap y = x adalah $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Jadi matrik baku untuk geseran yang diikuti dengan refleksi adalah

$$A_2. A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

b). Matrik baku untuk refleksi yang diikuti dengan geseran adalah

$$A_1. A_2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

Dari contoh di atas, perhatikan bahwa A_2 . $A_1 \neq A_1$. A_2

Jika T:R2 \rightarrow R2 adalah perkalian oleh sebuah matrik A yang punya invers, dan misalkan T memetakan titik (x,y) ke titik (x', y'), maka

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$$

Dan

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Contoh 5.3

Carilah persamaan bayangan sebuah garis y = 2x + 1 yang dipetakan oleh

matrik A =
$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

Jawab:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Dan

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Sehingga

$$x = x' - y'$$
$$y = -2x' + 3y'$$

Substitusikan ke y = 2x + 1 maka dihasilkan :

$$-2x' + 3y' = 2(x' - y') + 1$$

$$-2x' + 3y' = 2x' - 2y' + 1$$

$$5y' = 4x' + 1$$

$$y' = \frac{4}{5}x' + \frac{1}{5}$$

Latihan

1. Carilah matrik bakunya

a.
$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -x_1 \\ x_1 + 3x_2 \\ x_1 - x_2 \end{bmatrix}$$

b.
$$T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7x_1 + 2x_2 - x_3 + x_4 \\ x_2 + x_3 \\ -x_1 \end{bmatrix}$$

- 2. Carilah matrik baku untuk transformasi linier bidang T:R2 \rightarrow R2 yang memetakan titik (x,y) ke dalam :
 - (a). Refleksi terhadap garis y = -x
 - (b). Refleksi melalui titk pusat
 - (c). Proyeksi ortogonal pada sumbu x
 - (d). Proyeksi ortogonal pada sumbu y
- 3. Gambarkan bayangan bujursangkar dengan titik titik sudut (0,0), (1,0), (0,1), dan (1,1) di bawah perkalian oleh $A = \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}$
- 4. Carilah persamaan bayangan garis y = -4x + 3 di bawah perkalian oleh A = $\begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}$

BAB VI NILAI EIGEN DAN VEKTOR EIGEN

Definisi

Jika A adalah matrik n x n, maka vektor tak nol x di dalam R^n dinamakan $vektor\ eigen$ dari A jika Ax adalah kelipatan skalar dari x, yaitu,

$$Ax = \lambda x$$

untuk suatu skalar λ . Skalar λ disebut *nilai eigen* dari A dan x dikatakan vektor eigen *yang bersesuaian* dengan λ .

Contoh 6.1

Vektor
$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 adalah vektor eigen dari $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$

Yang bersesuaian dengan nilai λ = 3 karena

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Untuk mencari nilai eigen matrik A yang berukuran n x n maka kita menuliskannya kembali $Ax = \lambda x$ sebagai $Ax = \lambda Ix$

$$\Leftrightarrow$$
 $(\lambda I - A)x = 0$

Dan persamaan di atas akan mempunyai penyelesaian jika

$$\det(\lambda I - A) = 0$$
(6.1)

Persamaan (6.1) disebut persamaan karakteristik A.

Contoh 6.2

Carilah nilai – nilai eigen dari $A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$

Jawab:

Karena

$$\lambda I - A = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} \lambda - 3 & -2 \\ 1 & \lambda \end{bmatrix}$$

$$Det(\lambda I - A) = (\lambda - 3) \lambda - (-2) = 0$$

$$= \lambda^2 - 3\lambda + 2 = 0$$

$$\lambda_1 = 2, \ \lambda_2 = 1$$

Jadi nilai – nilai eigen dari A adalah λ_1 = 2 dan λ_2 = 1

Latihan:

1. Carilah persamaan karakteristik dari matrik
$$A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$

2. Carilah persamaan karakteristik dari matrik
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

DAFTAR ISI

Kata Po	engantari	
Daftar	Isi ii	
BAB I .		1
1.1	Pengertian	
1.2	Operasi – operasi pada vector	2
1.3	Susunan Koordinat Ruang-n	
1.4	Vektor di dalam Ruang R ⁿ	
1.5	Beberapa Dalil pada Operasi Vektor	8
1.6	Dot Product (Hasil Kali Titik)	8
1.7	Cross Product (Hasil Kali Silang)	10
1.8	Persamaan Garis LUrus dan Bidang Rata	12
a.	Garis Lurus	
b.	Bidang Rata	14
BAB II		17
2.1	Ruang Vektor Umum	17
2.2	SubRuang (subspace)	18
2.3	Vektor yang Bebas Linier dan Tak Bebas Linier	18
2.4	Kombinasi Linier	19
2.5	Arti Kombinasi Linier Secara Ilmu Ukur	19
2.6	Dimensi dan Basis	20
BAB II	[22
3.1	Pengertian	22
3.2	Notasi Matrik	22
3.3	Operasi pada Matrik	22
3.4	Beberapa Jenis matrik Khusus	24
3.5	Transformasi (Operasi) elementer pada baris dan kolom suatu	
matr	ik26	
3.6	Mencari solusi dengan menggunakan eliminasi Gauss Jordan	27
3.7	Mencari invers matrik	28
BAB IV	7	32
4.1	Pengertian	32

4.2	PERMUTASI	32
4.3	DETERMINAN	33
4.4	SIFAT - SIFAT DETERMINAN	34
4.5	MENGHITUNG DETERMINAN DGN REDUKSI BARIS.	34
4.6	MINOR, EKSPANSI KOFAKTOR, & ATURAN CRAMER	R35
BAB V		40
5.1	Pengantar	40
5.2	Transformasi Linier dari R ⁿ → R ^m	41
5.3	Jenis – jenis Transformasi Linier bidang	41
BAB VI		48
Daftar Pustaka		18