

O que é iterativo?

Iterativo significa que o processo de desenvolvimento é dividido em ciclos curtos e repetitivos, chamados de iterações.

Cada iteração inclui uma parte do trabalho de desenvolvimento, desde a análise de requisitos até a implementação e testes.

Após cada iteração, o sistema é testado e avaliado para determinar se atende aos requisitos estabelecidos.

Em seguida, é possível adicionar, modificar ou remover requisitos e funcionalidades com base nos resultados da iteração anterior.

O processo iterativo permite que a equipe de desenvolvimento reaja rapidamente a mudanças e ajuste o projeto ao longo do tempo.

Diferença entre iteração e interação

A diferença entre **iteração** e **interação** está no contexto em que essas palavras são usadas, embora elas possam parecer semelhantes.

Iteração:

Refere-se ao ato de repetir um processo ou uma ação várias vezes, geralmente em uma sequência ou ciclo.

É um termo comumente usado em programação, matemática, e desenvolvimento de software, onde um conjunto de instruções é executado repetidamente até que uma condição seja atingida.

Exemplo em programação: "O loop for realiza 10 iterações para processar os dados."

Interação:

Envolve a troca ou comunicação entre duas ou mais entidades, como pessoas, sistemas, ou objetos. É o processo de ação mútua.

O termo é amplamente utilizado em áreas como ciências sociais, design de interface, e comunicação, referindo-se à forma como elementos se conectam e respondem uns aos outros.

Exemplo: "A interação entre o usuário e o sistema deve ser intuitiva."

Resumindo:

Iteração = Repetição de um processo.

Interação = Troca ou ação mútua entre entidades.

O que é incremental?

Incremental significa que o processo de desenvolvimento é dividido em partes menores e independentes, chamadas de incrementos.

Cada incremento é uma versão funcional do sistema que adiciona novas funcionalidades ou melhora as funcionalidades existentes.

Cada incremento é testado e validado antes de ser incorporado ao sistema principal.

O processo incremental permite que a equipe de desenvolvimento entregue valor para o cliente em pequenas partes, ao invés de esperar até que todo o sistema esteja pronto.

Em Resumo

O processo iterativo e incremental permite que o desenvolvimento de software seja mais flexível e adaptável a mudanças, ao mesmo tempo que entrega valor de forma mais rápida e eficiente para o cliente.

Modelo Espiral

Modelo Espiral -Conceito

O modelo espiral é um modelo de desenvolvimento de software que foi proposto por Barry Boehm em 1986. Ele foi criado para fornecer uma abordagem mais flexível para o desenvolvimento de software em comparação com modelos mais tradicionais, como o modelo cascata.

O modelo espiral é caracterizado por uma série de iterações em que o projeto é dividido em partes menores e mais gerenciáveis, cada uma com seus próprios objetivos, riscos e requisitos. Cada iteração passa por uma série de fases, incluindo planejamento, análise de riscos, desenvolvimento e avaliação.

Modelo Espiral Características

Uma das principais características do modelo espiral é que ele coloca uma ênfase significativa na identificação e gerenciamento de riscos.

Isso é feito por meio da avaliação contínua dos riscos associados ao projeto em cada iteração.

A equipe de desenvolvimento é capaz de identificar e gerenciar riscos com mais eficácia do que em modelos mais tradicionais, o que leva a uma maior probabilidade de sucesso do projeto.

Outra característica do modelo espiral é o uso de marcos (milestones) para orientar o progresso do projeto.

Modelo Espiral – Marcos(Milestones)

Marcos são pontos de referência importantes no ciclo de vida do projeto, que geralmente são alcançados após a conclusão de uma fase importante do projeto. Os marcos ajudam a avaliar o progresso do projeto, identificar problemas e planejar a próxima fase.

No modelo espiral, os marcos são definidos para cada iteração do ciclo de desenvolvimento. Cada iteração passa por quatro fases principais: planejamento, análise de risco, implementação e avaliação. Ao final de cada iteração, um marco é atingido e um relatório é elaborado para avaliar o progresso do projeto e definir a próxima iteração.

Os marcos no modelo espiral são projetados para avaliar não apenas o progresso do projeto em termos de cronograma e orçamento, mas também em termos de qualidade, desempenho e conformidade com as especificações do cliente. Os marcos são definidos com base nos resultados de cada fase, e a equipe do projeto deve alcançar cada marco antes de avançar para a próxima fase.

O modelo espiral é amplamente utilizado em projetos de grande escala e de longo prazo, onde os requisitos e objetivos do projeto podem mudar ao longo do tempo. Os marcos ajudam a manter o projeto no caminho certo e permitem que a equipe do projeto avalie regularmente o progresso e faça ajustes para alcançar os objetivos do projeto.

Aspectos gerenciais do Processo de Desenvolvimento de Software (PDS)

Os aspectos gerenciais do Processo de Desenvolvimento de Software (PDS) são todas as atividades relacionadas à gestão de projetos de desenvolvimento de software, incluindo o planejamento, a organização, a liderança e o controle dos recursos e atividades do projeto.

A gestão de projetos de desenvolvimento de software é essencial para garantir que o projeto seja concluído com sucesso, dentro do prazo e do orçamento definidos, e que atenda às necessidades e expectativas do cliente.

Algumas das atividades gerenciais essenciais no PDS incluem:

Aspectos gerenciais do Processo de Desenvolvimento de Software (PDS)

- 1) Planejamento: Esta atividade gerencial envolve a definição dos objetivos do projeto, estabelecimento de metas, identificação dos recursos necessários e criação do cronograma. O objetivo é estabelecer um plano claro para o projeto que permita que a equipe trabalhe de forma eficiente e eficaz para atingir os objetivos.
- **Organização:** A atividade de organização envolve a criação da equipe de projeto e a alocação de recursos para as diferentes tarefas do projeto. Isso inclui a identificação de habilidades necessárias e a atribuição de tarefas de acordo com a experiência e competências individuais.
- **3) Liderança:** A liderança envolve o direcionamento da equipe para alcançar os objetivos do projeto. Isso inclui a definição de metas, fornecimento de orientação e suporte para a equipe e a garantia de que a equipe trabalhe de forma eficaz e eficiente.

Aspectos gerenciais do Processo de Desenvolvimento de Software (PDS)

- 4) Controle: A atividade de controle envolve a monitoração do projeto para garantir que ele esteja avançando conforme planejado. Isso inclui a revisão do progresso do projeto, a identificação e gerenciamento de riscos, o monitoramento do uso de recursos e o ajuste do plano do projeto conforme necessário.
- **5) Gerenciamento de recursos:** O gerenciamento de recursos envolve a alocação adequada de recursos, incluindo pessoal, orçamento e tempo, para garantir que o projeto seja concluído dentro do prazo e do orçamento previstos. Isso inclui a identificação de recursos necessários, a alocação desses recursos e o monitoramento do uso desses recursos.
- **Gestão de riscos:** A gestão de riscos envolve a identificação e avaliação dos riscos potenciais associados ao projeto e a implementação de medidas para minimizar seu impacto negativo no projeto.

Modelo Espiral – Tipo de Abordagem

O modelo espiral é considerado uma abordagem adaptativa, pois permite que o projeto se adapte às mudanças e desafios que surgem durante o desenvolvimento.

Ele também é útil para projetos em que os requisitos são mal definidos ou estão em constante mudança.

Fases do Modelo Espiral - Planejamento

Na fase de planejamento, a equipe de desenvolvimento identifica os objetivos do projeto, as alternativas de abordagem, as restrições do projeto e as possíveis soluções. Além disso, nesta fase, é realizado o planejamento do processo de desenvolvimento, definindose as atividades a serem realizadas, os recursos necessários e o cronograma do projeto.

Fases do Modelo Espiral – Análise de Riscos

A análise de riscos é uma etapa crítica do modelo espiral. Nessa fase, a equipe de desenvolvimento identifica e avalia os riscos associados ao projeto. Os riscos podem ser técnicos, financeiros, de prazo, de recursos ou de requisitos. Com base nessa análise, a equipe pode tomar decisões informadas sobre o projeto, como priorizar determinadas funcionalidades, alocar recursos ou ajustar o cronograma.

Fases do Modelo Espiral – Engenharia

A fase de engenharia é quando a equipe de desenvolvimento realmente cria o software. Essa fase é dividida em várias subfases, incluindo design, implementação, testes e integração. Cada subfase é planejada e executada de acordo com o cronograma e as especificações definidas na fase de planejamento.

Fases do Modelo Espiral – Avaliação do Cliente

A fase final do ciclo iterativo é a avaliação do cliente.

Nessa fase, o software é entregue ao cliente e avaliado em relação aos requisitos estabelecidos na fase de planejamento.

O feedback do cliente é usado para informar o próximo ciclo do processo de desenvolvimento.

Modelo Espiral

Prototipagem e Mecanismos de Risco

Prototipagem é um processo que envolve a criação de uma versão inicial de um produto ou sistema para testar e validar suas funcionalidades, design e usabilidade.

O objetivo é identificar e corrigir problemas antes de investir recursos significativos na produção do produto final.

Existem vários tipos de prototipagem, desde protótipos de papel e caneta até protótipos funcionais que simulam o produto final.

Prototipagem e Mecanismos de Risco

Já o Mecanismo de Redução de Riscos é uma estratégia utilizada por empresas para minimizar os riscos associados ao desenvolvimento de novos produtos ou serviços.

O objetivo é identificar e gerenciar os riscos ao longo do ciclo de vida do produto, desde a concepção até a comercialização.

Essa abordagem ajuda as empresas a antecipar possíveis problemas e a tomar medidas para evitá-los ou mitigá-los, o que pode reduzir os custos e aumentar a probabilidade de sucesso do projeto.

Prototipagem e Mecanismos de Risco

A prototipagem e o mecanismo de redução de riscos estão intimamente relacionados, uma vez que a prototipagem é uma ferramenta importante para identificar e mitigar riscos em projetos de desenvolvimento de produtos.

Ao criar protótipos, as empresas podem testar diferentes ideias e cenários, e assim obter feedback dos usuários e stakeholders.

Isso pode ajudar a identificar problemas de usabilidade, funcionalidade ou viabilidade técnica antes que o produto seja lançado no mercado, permitindo que as empresas tomem medidas para corrigir ou melhorar o projeto.

O Modelo Incremental e o Modelo Espiral são dois modelos de processo de software que têm como objetivo melhorar a eficiência e eficácia do processo de desenvolvimento de software.

A principal diferença entre eles é a forma como o processo de desenvolvimento é executado.

O Modelo Incremental segue um processo linear, onde o software é desenvolvido em etapas incrementais e entregues em partes.

Cada incremento consiste em uma funcionalidade específica, e a próxima etapa é construída com base no incremento anterior.

O modelo incremental é iterativo e permite que o desenvolvimento seja realizado em pequenas partes, o que permite que o software seja entregue mais rapidamente e permite que as mudanças sejam feitas com mais facilidade.

Já o **Modelo Espiral** é um modelo iterativo que utiliza a abordagem de ciclos para desenvolver o software.

Esse modelo envolve quatro fases principais: planejamento, análise de riscos, engenharia e avaliação.

Cada fase é composta por uma série de atividades e, após cada ciclo, o software é avaliado antes de prosseguir para o próximo ciclo.

O Modelo Espiral é mais flexível e adaptável a mudanças, pois permite que as equipes de desenvolvimento de software avaliem e ajustem o software em cada ciclo.

Em resumo, a principal diferença entre o Modelo Incremental e o Modelo Espiral é a abordagem que cada um adota no processo de desenvolvimento de software.

O Modelo Incremental segue uma abordagem linear e constrói o software em etapas incrementais, enquanto o Modelo Espiral segue uma abordagem iterativa e utiliza ciclos para avaliar e ajustar o software em cada fase.

Vantagens do Modelo Espiral

- Foco no Gerenciamento de Riscos: Riscos são identificados e tratados logo no início, prevenindo possíveis problemas mais adiante.
- Iteratividade: A evolução contínua do software em ciclos permite que o sistema seja ajustado e melhorado conforme o projeto avança.
- Engajamento dos Stakeholders: O envolvimento contínuo das partes interessadas em cada fase ajuda a garantir que o software atenda às suas necessidades e expectativas.

Desvantagens do Modelo Espiral

- Complexidade: O método pode ser difícil de implementar em projetos menores devido à sua complexidade.
- Custos Altos: A análise contínua de riscos e o uso de protótipos podem aumentar o custo do desenvolvimento.
- Requisitos Não Claros: Se os requisitos não forem claramente definidos no início, o processo iterativo pode se tornar prolongado e pouco eficiente.

Aplicação na Governança de TI

Na **Governança de TI**, o modelo espiral pode ser uma ferramenta valiosa para lidar com grandes projetos tecnológicos, que requerem um alto nível de flexibilidade e gerenciamento de riscos.

Sua ênfase na mitigação de riscos e nas revisões contínuas também se alinha aos princípios da governança, onde a transparência e a responsabilidade no uso de tecnologia são fundamentais.

Comparação com Outros Modelos

Cascata: O modelo espiral é mais flexível que o modelo cascata, que segue uma abordagem linear. No cascata, mudanças nos requisitos são mais difíceis de gerenciar.

Ágil: Enquanto o método ágil foca em entregas rápidas e iterações curtas, o espiral tem uma abordagem mais estruturada e controlada, especialmente no que diz respeito ao gerenciamento de riscos.

Exemplo:
Desenvolvimento
de um Sistema
de
Gerenciamento
Escolar (SGE)

1. Descrição do Projeto

O projeto tem como objetivo desenvolver um **Sistema de Gerenciamento Escolar (SGE)** que permita a administração eficiente de uma escola, incluindo o cadastro de alunos, controle de notas, emissão de relatórios, gestão de professores, e acompanhamento do desempenho acadêmico. O sistema será acessado por alunos, professores e administradores via web.

2. Aplicação do Modelo Espiral

Cada ciclo da espiral será detalhado com base nas quatro fases: Planejamento, Análise de Riscos, Desenvolvimento e Validação, e Avaliação e Planejamento da Próxima Fase.

Fase 1: Planejamento

Objetivos:

Desenvolver um **protótipo básico** do sistema com funcionalidades de cadastro de alunos e professores.

Recolher feedback inicial de administradores e professores.

Alternativas Consideradas:

Utilizar uma abordagem baseada em web com banco de dados relacional.

Stakeholders: Diretores da escola, equipe de TI, professores, e alguns alunos para testar o protótipo.

Fase 2: Análise de Riscos

Principais Riscos:

Incerteza nos Requisitos: Os requisitos podem não estar claramente definidos nesta fase inicial.

Problemas de Usabilidade: O protótipo pode não ser intuitivo para os usuários finais (professores e administradores).

Riscos Técnicos: Falta de experiência da equipe no uso de algumas tecnologias web.

Estratégia de Mitigação:

Criar protótipos simples para validar requisitos e realizar testes de usabilidade com usuários.

Fase 3: Desenvolvimento e Validação

Desenvolver um protótipo com funcionalidades básicas de:

- ✓ Cadastro de alunos (nome, idade, série, turma).
- ✓ Cadastro de professores (nome, matérias lecionadas).

Utilizar um banco de dados simples para armazenar essas informações.

Validar com alguns professores e administradores da escola.

Fase 4: Avaliação e Planejamento da Próxima Fase

Feedback: Os usuários gostaram da interface simples, mas sugeriram melhorias na navegação e maior detalhamento nas informações de alunos e professores.

Decisão: Continuar o projeto, expandindo o escopo para incluir o gerenciamento de notas e relatórios no próximo ciclo.

Fase 1: Planejamento

Objetivos:

- ✓ Adicionar a funcionalidade de gerenciamento de notas.
- ✓ Permitir que os professores registrem e atualizem notas dos alunos.
- ✓ Gerar relatórios de desempenho.

Stakeholders: Administradores, professores, alunos (para visualização de notas).

Fase 2: Análise de Riscos

Principais Riscos:

Erro de Armazenamento de Dados: Falhas na gravação das notas podem comprometer a integridade dos dados.

Segurança: O sistema agora manipula dados sensíveis, então problemas de segurança devem ser considerados.

Estratégia de Mitigação:

Implementar backups automáticos e controles de acesso para garantir que apenas professores possam alterar notas. Introduzir criptografia para proteger os dados sensíveis.

Fase 3: Desenvolvimento e Validação

Implementar o módulo de notas, permitindo:

- ✓ Cadastro de notas por matéria.
- ✓ Cálculo automático de médias e exibição de relatórios de desempenho.

Validar o funcionamento com um grupo piloto de professores e administradores.

Fase 4: Avaliação e Planejamento da Próxima Fase

Feedback: Os professores acharam útil o gerenciamento de notas, mas solicitaram a inclusão de **gráficos de desempenho** e maior automação no cálculo de médias.

Decisão: Avançar com a inclusão de novas funcionalidades, como relatórios gráficos e gestão de presença.

Fase 1: Planejamento

Objetivos:

- ✓ Incluir relatórios gráficos de desempenho dos alunos, comparando médias por turma e por disciplina.
- ✓ Adicionar um módulo de gestão de presença, permitindo que os professores registrem a presença dos alunos em cada aula.

Stakeholders: Alunos, professores, administradores.

Fase 2: Análise de Riscos

Principais Riscos:

Sobrecarga de Dados: O aumento no número de funcionalidades pode sobrecarregar o sistema.

Performance: Gerar relatórios gráficos pode afetar o tempo de resposta do sistema.

Estratégia de Mitigação:

Otimizar consultas no banco de dados para garantir uma boa performance ao gerar relatórios.

Testar escalabilidade do sistema para garantir que o número de alunos e professores possa crescer sem comprometer a performance.

Fase 3: Desenvolvimento e Validação

Implementar gráficos de desempenho baseados em notas.

Incluir a funcionalidade de gestão de presença, com relatórios de frequência.

Validar com mais usuários finais (professores e administradores).

Fase 4: Avaliação e Planejamento da Próxima Fase

Feedback: O sistema está atendendo bem, mas foi sugerido que os relatórios de presença sejam integrados ao módulo de notas para facilitar o acompanhamento completo do aluno.

Decisão: Avançar para a fase de integração e otimização.

Fase 1: Planejamento

Objetivos:

- ✓ Integrar os módulos de notas e presença, de modo que os professores possam visualizar e relacionar facilmente a frequência dos alunos com o desempenho acadêmico.
- ✓ Otimizar a performance do sistema, garantindo que ele suporte um número crescente de usuários e dados, sem comprometer a velocidade de resposta.
- ✓ Adicionar permissões mais detalhadas, permitindo níveis de acesso diferenciados para administradores, professores e alunos.

Stakeholders:

Professores, administradores, equipe de TI e alunos (principalmente para a visualização de dados integrados e relatórios).

Fase 2: Análise de Riscos

Principais Riscos:

- ✓ Complexidade na Integração: A integração de diferentes módulos (notas e presença) pode causar inconsistências nos dados ou exigir mudanças profundas na estrutura do banco de dados.
- ✓ Problemas de Escalabilidade: Com o aumento do número de usuários e dados, o sistema pode sofrer lentidão ou falhas.
- ✓ Segurança e Privacidade: Como o sistema agora lida com dados mais integrados e sensíveis, há um risco maior de vazamento de informações.

Estratégias de Mitigação:

Realizar **testes extensivos de integração** para garantir que os dados de notas e presença sejam combinados corretamente.

Otimizar as consultas e operações no banco de dados para garantir a **escalabilidade**.

Implementar **criptografia avançada** e monitoramento de acessos para proteger os dados sensíveis.

Fase 3: Desenvolvimento e Validação

Integração dos Módulos:

- Desenvolver um painel integrado onde professores podem visualizar gráficos e relatórios que mostram a relação entre a frequência dos alunos e suas notas.
- ✓ Implementar filtros para que os professores possam visualizar dados por turma, matéria ou aluno específico.

Otimização do Sistema:

Revisar o código e o banco de dados para melhorar a performance. Implementar caching para consultas frequentes e otimizar o carregamento de relatórios.

Níveis de Permissão:

Adicionar diferentes níveis de acesso no sistema:

- ✓ Administradores: Têm acesso total a todos os dados e funcionalidades, incluindo relatórios gerenciais.
- ✓ Professores: Podem visualizar e modificar dados de suas turmas e gerar relatórios.
- ✓ Alunos: Têm acesso restrito, podendo visualizar apenas suas próprias notas e frequência.

Validação:

- Realizar uma bateria de testes com diferentes tipos de usuários (administradores, professores e alunos) para garantir que todos os níveis de permissão estão funcionando corretamente.
- Testar a performance do sistema com uma carga simulada de muitos usuários simultâneos, para verificar a escalabilidade.

Fase 4: Avaliação e Planejamento da Próxima Fase

Feedback:

- O painel integrado de notas e frequência foi bem recebido, facilitando o acompanhamento dos alunos pelos professores.
- Os administradores elogiaram a otimização, relatando que o sistema está funcionando de maneira mais ágil e sem travamentos.
- Alguns alunos pediram que o sistema enviasse notificações automáticas quando novas notas fossem lançadas ou quando estivessem próximos de perder o limite de faltas permitido.

• Decisão:

- Considerar a adição de um sistema de notificações automáticas para alunos e professores, como uma próxima etapa de desenvolvimento.
- Continuar monitorando a performance e escalabilidade do sistema conforme o número de usuários cresce.
- Planejar futuras melhorias com base no feedback contínuo dos usuários.