Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

Tristan Delcourt, Louise Nguyen

2025

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

☐Introduction et enjeux

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

Les nombres RSA

- Factoriser N = pq où p et q sont premiers et très grand.
- ▶ Dernier nombre non factorisé: RSA-260 (260 chiffres)

La méthode de Dixon

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Congruences de carrés

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés

> Etapes de la méthode L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

La méthode de Dixon

Congruences de carrés

Congruence de carrés

$$N=pq$$
, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ► On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbf{N} \land (\mathbf{x} \mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x y: $p \mid N \land (x y)$, ce qui donne $\mathbf{N} \land (\mathbf{x} \mathbf{y}) \neq \mathbf{1}$

Conclusion

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Etapes de la méthode

Plan

Introduction et enjeux

La méthode de Dixon

Congruences de carrés

Etapes de la méthode

L'algorithme final

Optimisiations

Crible Quadratic

Approximation logarithmique

Résultats

Principe de l'algorithme

Chercher x et y tel que $x^2 \equiv y^2 \pmod{N}$ et trouver des facteurs en 3 étapes:

- ► Construire *x* **le plus efficacement possible**.
- ► Avec *x*, on construit *y* pour avoir la congruence.
- ► Calculer $N \wedge (x y)$ et $N \wedge (x + y)$.

 $b\in\mathbb{N}$

2

3

5

.

•

•

 p_b

 $b\in\mathbb{N}$

 $oxed{\left(x_1,\quad x_2,\quad x_3,\quad \ldots,\quad x_{b+1}
ight)}$

2

3

5

•

•

.

 p_b

2

3

5

•

•

•

 p_b

Construction de y - Pivot de Gauss

▶ On a b+1 vecteurs de \mathbb{F}_2^b et \mathbb{F}_2 corps, cela donne un système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

On pose
$$y = \prod_{j=1}^b p_j^{\alpha_j}$$
 et $x = \prod_{j=1}^{b+1} x_i^{\lambda_i}$

▶ On peut trouver les λ_i avec un système que l'on résout avec un **pivot de Gauss**.

Résultat admis (calcul)

$$x^2 \equiv y^2 \pmod{N}$$

La méthode de Dixon

Etapes de la méthode

Un exemple

- ► $N = 20382493 = 3467 \times 5879$ et b = 4, (2, 3, 5, 7)
- Ces 5 = b + 1 nombres x_j vérifient x_j^2 (mod N) = $2^{v_j^{(1)}} \cdots 7^{v_j^{(1)}}$:

Xj	Vj
16853	(6,5,2,2)
32877	(3,0,7,0)
35261	(3, 2, 1, 0)
48834	(0,2,3,1)

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$. $\begin{cases} x_j & v_j \\ 16853 & (6, 5, 2, 2) \\ 32877 & (3, 0, 7, 0) \\ 35261 & (3, 2, 1, 0) \\ 48834 & (0, 2, 3, 1) \end{cases}$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

▶
$$N = 20382493 = 3467 \times 5879 \text{ et } b = 4.$$

• x_j v_j
16853 (6,5,2,2)
16853 (5,5,2,2)
27 (mod N) = $2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}}$ pour $j = 1,2,3,4,5$ (3,0,7,0)
28261 (3,2,1,0)
48834 (0,2,3,1)

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$. $\begin{cases} x_j & v_j \\ 16853 & (6, 5, 2, 2) \\ 32877 & (3, 0, 7, 0) \\ 35261 & (3, 2, 1, 0) \\ (5 = b + 1 \text{ relations}) & 48834 & (0, 2, 3, 1) \end{cases}$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$\bullet \ \, \text{On a}\,\, x^2 \equiv y^2 \,\, \big(\text{mod}\,\, N\big)$$

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

▶
$$N = 20382493 = 3467 \times 5879 \text{ et } b = 4.$$
 16853 (6,5,2,2)
▶ $x_j^2 \pmod{N} = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j = 1,2,3,4,5$ (3,0,7,0)
(5 = $b + 1$ relations) 35261 (3,2,1,0)
48834 (0,2,3,1)

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

► On a
$$x^2 \equiv y^2 \pmod{N}$$

► $N \land (x - y) = 5879$ et

►
$$N \wedge (x - y) = 5879$$
 et $N \wedge (x + y) = 3467$.

▶
$$N = 20382493 = 3467 \times 5879 \text{ et } b = 4.$$
 16853 (6,5,2,2)
▶ $x_j^2 \pmod{N} = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j = 1,2,3,4,5$ (3,0,7,0)
(5 = $b + 1$ relations) 35261 (3,2,1,0)
48834 (0,2,3,1)

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

► On a
$$x^2 \equiv y^2 \pmod{N}$$

► $N \land (x - y) = 5879$ et

►
$$N \wedge (x - y) = 5879$$
 et $N \wedge (x + y) = 3467$.

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$. $\begin{cases} x_j & v_j \\ 16853 & (6, 5, 2, 2) \\ 32877 & (3, 0, 7, 0) \\ 35261 & (3, 2, 1, 0) \\ (5 = b + 1 \text{ relations}) & 48834 & (0, 2, 3, 1) \end{cases}$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

$$N \wedge (x - y) = 5879$$
 et $N \wedge (x + y) = 3467$.

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

L'algorithme final

Plan

Introduction et enjeux

La méthode de Dixon

Congruences de carrés Etapes de la méthode

L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

Entrée: $N \in \mathbb{N}$ composé, $b \in \mathbb{N}$ Sortie: $(v_i)_{i \in \mathbb{I}_1, b+1\mathbb{I}}, (x_i)_{i \in \mathbb{I}_1, b+1\mathbb{I}}$

```
La méthode de Dixon
```

L'algorithme final

L'algorithme final

```
Algorithme 1 Recherche de nombres B-friables
```

```
1: pour i \leftarrow 1 \dots b+1 faire
2: en\_cours \leftarrow V
3: tant que en\_cours faire
4: x_i \leftarrow \mathbb{U}(1, N-1)
5: x_i' \leftarrow x_i^2 \mod N
6: si \ x_i' \text{ est } B\text{-friable (par algorithme na\"if) alors}
7: en\_cours \leftarrow F
8: v_i \leftarrow (v_i^{(1)}, \dots, v_i^{(b)})
renvoyer (v_i)_{i \in [\![1,b+1]\!]}, (x_i)_{i \in [\![1,b+1]\!]}
```

L'algorithme final

Algorithme 2 Factorisation par la méthode de Dixon

Entrée: $N \in \mathbb{N}$ composé, $B \in \mathbb{N}$

Sortie: p et q et tel que $p \mid N$ et $q \mid N$

1:
$$b \leftarrow \pi(B)$$

2:
$$(v_i)_{i \in \llbracket 1,b+1 \rrbracket}, (x_i)_{i \in \llbracket 1,b+1 \rrbracket} \leftarrow RechercheBFriables(N,b)$$

3:
$$(\lambda_i)_{i \in \llbracket 1,b+1 \rrbracket} \leftarrow PivotdeGauss((v_i)_{i \in \llbracket 1,b+1 \rrbracket})$$

4:
$$x \leftarrow \prod_{j=1}^{b+1} x_i^{\lambda_i}$$

5:
$$y \leftarrow \prod_{j=1}^b p_j^{\alpha_j}$$

renvoyer $N \wedge (x - y), N \wedge (x + y)$

Etude théorique (Louise Ngyuen)

Une minoration de la densité des B-friables

Soit $B: \mathbb{N}^* \to \mathbb{N}^*$ une fonction telle que $\ln n = o(B(n))$ et $\ln B(n) = o(\ln n)$. Alors on a, pour $n \to +\infty$,

$$\Psi(B(n), n) \ge n \exp\left(\left(\frac{\ln n}{\ln B(n)} \ln \ln n\right) (-1 + o(1))\right)$$

Une complexité sous-exponentiel

$$\exp\left((1+o(1))2\sqrt{2}(\ln n \ln \ln n)^{1/2}\right)$$

lorsque
$$B = \exp\left(\frac{1}{\sqrt{2}}(\ln n \ln \ln n)^{1/2}\right)$$

Optimisiations

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

— Optimisiations

Crible Quadratic

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisiations

Crible Quadratic

Approximation logarithmique

Résultats

Principe

- ▶ Utilisation d'un polynôme $Q = (\sqrt{N} + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ pour p dans FB grâce a Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $ightharpoonup p|Q(x) \implies \forall k \in \mathbb{N}, p|Q(x+kp)$. En effet,

$$Q(x + kp) = (\sqrt{n} + x + kp)^{2} - N$$

= $Q(x) + 2kp(\sqrt{n} + x) + k^{2}p^{2}$

d'où
$$p|Q(x+kp)$$

lacktriangle Cribler sur un intervalle $[\![1,S]\!]$, puis sur $[\![S+1,2S]\!]$ etc...

 $S=10 \ | \ N=20382493$

 $T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$

$$S = 10$$
 $N = 20382493$

$$T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$$

$$p=2 \mid \mid Q(1) \equiv 0 \pmod{2} \mid$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$p=2 \mid \mid Q(1) \equiv 0 \pmod{2}$$

 $[2732, 11736, 20796, 29831, 38868, \ldots, Q(10)]$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S=10$$
 $N=20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S=10$$
 $N=20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

```
Optimisiations
```

Crible Quadratic

Algorithme 3 Algorithme du crible quadratique

```
Entrée: N \in \mathbb{N}^*. b \in \mathbb{N}^*. S > 1
Sortie: (v_i)_{i \in [1,k]}, (x_i)_{i \in [1,k]}, k \in [0,S]
 1: T \leftarrow \text{tableau tel que } T[i] \leftarrow (i + |\sqrt{N}|)^2 - N \text{ pour } i \in [1, S]
 2: V \leftarrow \text{tableau tel que } V[i] \leftarrow (0, \dots, 0) \in \mathbb{N}^b \text{ pour } i \in [1, S]
 3: pour p \in \{p_1, \dots, p_b\} tel que n est un carré modulo p faire
         x_1, x_2 \leftarrow \text{les racines de } (X + |\sqrt{N}|)^2 - N \text{ modulo } p
 4:
         pour i \in \{1, 2\} faire
 5:
 6:
               q \leftarrow x_i
 7:
               tant que a < S faire
 8:
                    tant que T[q] \mod p = 0 faire
                    T[q] \leftarrow T[q]/p
 9.
                    V[q] \leftarrow V[q] + (0, \dots, 1, \dots, 0) (en position p)
10:
11:
                    q \leftarrow q + p
     renvoyer L'ensemble des (i + |\sqrt{N}|, V[i]) tels que T[i] = 1 pour
     i \in [1, S]
```

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

Optimisiations

Approximation logarithmique

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisiations

Crible Quadratic

Approximation logarithmique

Résultats

Annexe

Justification

- L'opération d'addition est bien moins coûteuse (O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ Si $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. Alors dans le crible on peut soustraire $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- ▶ $\log_2(Q(x)) \approx \text{nb_bits}(Q(x))$, ce qui permet l'approximation du logarithme
- ▶ Problème: on connaît pas α_i . Solution: on soustrait par $\ln(p_i)$ sans le α_i . Puisque l'on fait déjà des approximations avec les flottants, ce n'est pas un problème car on va devoir introduire un **seuil** dans tous les cas

- └ Optimisiations
 - Approximation logarithmique

Seuil

Deux possibilités d'algorithme:

- Pour chaque x_i , on calcule $\log_2(Q(x_i))$ composant l'intervalle du crible, et donc on utilise un seuil assez petit. Coûteux à cause du calcul de chaque $\log_2(Q(x_i))$
- ► En choisissant S assez petit, on remarque que les $log_2(Q(x_i))$ sont de même ordre de grandeur, et donc on procède de la manière suivante:
 - Avant le crible, l'intervalle est maintenant initialisé avec des 0, permet de ne pas a avoir a calculer tous les $log_2(Q(x_i))$.
 - ▶ Durant le crible, on ajoute $log_2(p_i)$ dans l'intervalle au lieu de soustraire.
 - Après le crible, on calcule $\log_2(Q(x_1))$ où x_1 est le premier nombre de l'intervalle, et on l'utilise comme seuil.

Plan

Introduction et enjeux

La méthode de Dixon
Congruences de carrés
Etapes de la méthode
L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

Annexe

Résultats

Apres plusieurs centaines de tests, on a les résultats suivants:

Bits	Dixon	QSIEVE	MPQS
60	0.5	0.05s	-
80	5s	0.1s	-
100	100s	0.1s	0.1s
120	-	2s	0.6s
140	-	5s	5s
160	-	-	80s

Graphique final

Annexe

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisiations
Crible Quadratic
Approximation logarithmique

Résultats

Annexe

Les derniers codes sont tous accessibles depuis mon $\operatorname{Git}\operatorname{\mathsf{Hub}}$

../c/vector.h

```
#pragma once
#include <gmp.h>
```

void mod_vect(int* v, int mod, int n1);
void add_vect(int* sum, int* op, int n1);

```
void div.vect(int* v, int d, int n1);
void sub.vect(int** v, int i, int j, int n1);
void prod.vect(mpz_t prod, mpz_t* z, int n1, system_t
s);
```

```
#include <gmp.h>
#include <assert.h>
#include <stdlib.h>
#include "system.h"
void mod_vect(int* v, int mod, int n1){
    for(int i = 0; i < n1; i++){
        v[i] = abs(v[i]) \% mod;
void add_vect(int* sum, int* op, int n1){
    for(int i = 0; i < n1; i++){
        sum[i] += op[i]:
void div_vect(int* v, int d, int n1){
    for(int i = 0; i < n1; i++){
        assert(v[i]\%d == 0):
```

```
v[i] /= d;
void sub_vect(int** v, int i, int j, int n1){
    for(int k = 0; k < n1; k++){
        v[i][k] = v[i][k] - v[i][k];
void prod_vect(mpz_t prod, mpz_t* z, int n1, system_t
       s){
    mpz_set_ui(prod. 1):
    for(int i = 0; i < n1; i++){
        if(s->sol[i]){
            mpz_mul(prod, prod, z[s->perm[i]]);
```

../c/tonellishanks.h

#pragma once

#include <gmp.h>

../c/tonellishanks.c

```
#include <stdint.h>
#include <gmp.h>
                                                              if (ss == 1) {
#include <stdio.h>
                                                                  //uint64_t r1 = modpow(n, (p + 1) / 4, p);
                                                                  mpz_powm_ui(temp, n, (p+1)/4, pj);
#include <assert.h>
#include < stdlib.h >
                                                                  uint64_t r1 = mpz_get_ui(temp):
uint64_t modpow(uint64_t a, uint64_t b, uint64_t n) {
                                                                  *x1 = r1;
    uint64_t \times = 1. v = a:
                                                                  *x2 = p - r1:
    while (b > 0) {
                                                                  mpz_clears(temp, pj, NULL);
        if (b % 2 == 1) {
                                                                  return;
            x = (x * y) \% n; // multiplying with base
        y = (y * y) \% n; // squaring the base
                                                              while (modpow(z, (p-1) / 2, p) != (unsigned)
        b /= 2;
                                                                     long int) p = 1) { // uint_64 only there
                                                                     for the compiler to stop complaining
    return x % n:
                                                                  z++:
void tonelli_shanks_ui(mpz_t n, unsigned long int p, int
                                                              c = modpow(z, q, p):
       * x1, int* x2) {
    uint64_t q = p - 1;
                                                              //r = modpow(n, (q + 1) / 2, p);
    uint64_t ss = 0:
                                                              mpz_powm_ui(temp, n, (q+1)/2, pj);
    uint64_t z = 2;
                                                              r = mpz_get_ui(temp);
    uint64_t c, r, t, m;
                                                              //t = modpow(n, q, p);
                                                              mpz_powm_ui(temp, n, q, pj);
    while ((q \& 1) == 0) {
                                                              t = mpz_get_ui(temp);
        ss += 1:
        a >>= 1:
                                                              m = ss:
    }
                                                              while(1){
    mpz_t temp, pj;
                                                                  uint64_t i = 0, zz = t:
    mpz_init(temp);
                                                                  uint64_t b = c, e;
                                                                  if (t == 1) {
    mpz_init_set_ui(pj, p);
```

```
*x1 = r:
                                                              mpz_init(op1);
            *x2 = p - r:
            mpz_clears(temp, pj, NULL);
                                                              if (ss == 1) {
                                                                  //uint64_t r1 = modpow(n, (p + 1) / 4, p);
            return:
                                                                   mpz_add_ui(op1, p. 1):
        while (zz != 1 \&\& i < (m-1)) {
                                                                  mpz_divexact_ui(op1, op1, 4);
            zz = zz * zz \% p;
                                                                  mpz_powm(op1, n, op1, p);
            i++:
                                                                  mpz_set(x1. op1):
        e = m - i - 1:
                                                                  mpz\_sub(x2, p, x1);
        while (e > 0) {
            b = b * b \% p:
                                                                   mpz_clears(q, z, op1, NULL):
            e--:
                                                                  return;
        r = r * b \% p:
        c = b * b \% p:
                                                              mpz_t op2, op3:
        t = t * c % p;
                                                              mpz_inits(op2, op3, NULL);
        m = i:
                                                              mpz_sub_ui(op1, p, 1);
                                                              mpz_divexact_ui(op1, op1, 2);
                                                              mpz_powm(op2, z, op1, p);
void tonelli_shanks_mpz(mpz_t n, mpz_t p, mpz_t x1.
       mpz_t \times 2)
                                                              mpz_sub_ui(op3, p, 1);
                                                              while(mpz_cmp(op2, op3) != 0){
    assert(mpz\_legendre(n, p) == 1);
                                                                   mpz_add_ui(z, z, 1):
                                                                  mpz_powm(op2, z, op1, p):
    mpz_t q, z;
    mpz_init_set(q, p);
    mpz_sub_ui(q, q, 1);
    int ss = 0:
                                                              mpz_t c. r. t. m. i. zz. b. e:
    mpz_init_set_ui(z, 2);
                                                              mpz_inits(c, r, t, m, i, zz, b, e, NULL);
                                                              mpz_powm(c, z, q, p);
    while(mpz_divisible_ui_p(q, 2) != 0){
        ss += 1:
                                                              mpz_add_ui(op1, q, 1);
        mpz_divexact_ui(q, q, 2);
                                                              mpz_divexact_ui(op1, op1, 2);
    }
                                                              mpz_powm(r, n, op1, p):
    mpz_t op1;
                                                              mpz_powm(t, n, q, p);
```

```
mpz_set_ui(m. ss):
                                                               mpz_sub(e, m, i):
                                                               mpz_sub_ui(e, e, 1);
while(1){
                                                               while(mpz_sgn(e)>0){
    mpz_set_ui(i, 0):
                                                                   mpz_mul(b, b, b):
    mpz_set(zz, t);
                                                                   mpz_mod(b, b, p);
    mpz_set(b, c);
                                                                   mpz_sub_ui(e, e, 1);
    if(mpz\_cmp\_ui(t, 1) == 0){
        mpz\_set(x1, r);
                                                               mpz_mul(r, r, b);
        mpz\_sub(x2, p, x1);
                                                               mpz_mod(r, r, p);
        mpz_clears(c, r, t, m, i, zz, b, e, op1, op2,
                                                               mpz_mul(c, b, b);
                op3, q, z, NULL);
                                                               mpz_mod(c, c, p);
        return:
```

mpz_sub_ui(op1, m, 1);

}

op1)<0){
mpz_mul(zz, zz, zz);
mpz_mod(zz, zz, p);
mpz_add_ui(i, i, 1);

while(mpz_cmp_ui(zz, 1) $!= 0 \&\& mpz_cmp(i, i)$

mpz_mul(t, t, c);
mpz_mod(t, t, p);

mpz_set(m, i):

```
../c/system.h
```

```
#pragma once
#include <stdbool.h>

typedef system_s* system_t;

typedef struct system {
    int** m;
    int* perm;
    int* sol;
    bool done;
    int 1, n2, arb;
} system_s* system_t;

typedef system_s* system_t;

typedef system_s* system_t;

typedef system_s* system_t;

typedef system_s* system_s*

system_s* system_s*

void gaussian_step(system_t s);

void free_system(system_t s);

**Total Control Cont
```

```
#include "system.h"
#include "vector.h"
#include "list_matrix_utils.h"
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
void swap_lines_horz(system_t s, int i, int j){
    int* temp = s->m[i];
    s->m[i] = s->m[i];
    s->m[i] = temp;
void swap_lines_vert(system_t s, int i, int j){
    int temp = s->perm[i]:
    s->perm[i] = s->perm[j];
    s->perm[i] = temp;
    for(int k = 0: k < s -> n1: k++){
        int temp = s->m[k][i];
        s->m[k][i] = s->m[k][i]
        s->m[k][i] = temp:
int find_index(system_t s, int from, int look){
    for(int i = from; i < s -> n1; i++){
        if(s->m[i][look]){
            return i:
    return -1:
```

```
system_t transpose(int** v, int n1, int n2){
    system_t s = malloc(sizeof(system_s)):
    s->m = malloc(n2*sizeof(int*));
    for(int i = 0: i < n2: i++){
        s->m[i] = malloc(n1*sizeof(int));
        for(int j = 0; j < n1; j++){
            s->m[i][i] = v[i][i]:
    s->n1 = n2:
    s->n2=n1:
    return s;
void triangulate(system_t s){
    s->perm = malloc(s->n2*sizeof(int)):
    for(int i = 0; i < s -> n2; i++){
        s->perm[i] = i;
    int i = 0:
    int i = 0:
    while(i < s - > n1 \&\& i < s - > n2){
        int k = find_index(s, i, i):
        if(k! = -1)
            if(i != i){
                 swap_lines_vert(s, i, i):
            swap_lines_horz(s, i, k):
            for(int l = i + 1; l < s -> n1; l++){
```

```
if(s->m[l][i] == 1){
                    sub\_vect(s->m, l, i, s->n2):
                    mod_vect(s->m[l], 2, s->n2):
                                                         void iter_sol(system_t s){
                                                             int i = s - > arb:
                                                             while(i < s - > n2 \&\& (s - > sol[i] == 1)){
            i++:
                                                                  s->sol[i]=0;
            i = i;
                                                                  i++;
        else {
                                                             if(i >= s->n2){
                                                                  s->done = true;
                                                                  return;
                                                             s->sol[i]=1;
void get_arbitary(system_t triangulated){
    for(int i = triangulated\rightarrown1-1; i>=0; i-){
                                                         system_t init_gauss(int** v, int n1, int n2){
                                                             //printf("Initial vectors\n");
        int i = 0;
        while(j < triangulated->n2 && !triangulated
                                                             //print_ll(v. n1. n2):
               ->m[i][j]){
            i++;
                                                             system_t s = transpose(v, n1, n2);
                                                             s->done = false:
        if(j < triangulated -> n2){
            triangulated->arb = i+1;
                                                             //printf("Transposed\n");
                                                             //print ||(s->m, s->n1, s->n2)|
            return;
                                                             for(int i = 0: i < s - > n1: i + + ){
                                                                  mod_vect(s->m[i], 2, s->n2);
    fprintf(stderr, "ERROR:-All-vectors-are-zero-in-
           system\n"):
    exit(1);
                                                              //printf("Modded\n");
                                                             //print_l(s->m, s->n1, s->n2);
void init_sol(system_t s){
                                                             triangulate(s);
    s->sol = malloc(s->n2*sizeof(int));
    for(int i = s->arb; i < s->n2; i++){
                                                             //printf("Triangulated\n"):
        s->sol[i]=0:
                                                             //print_l|(s->m, s->n1, s->n2):
    }
```

```
k];
}
s->sol[j] = abs(s->sol[j]) % 2;
    return s;
void gaussian_step(system_t s){
    iter_sol(s);
                                                           void free_system(system_t s){
    for(int i = s - > n1 - 1; i > = 0; i - - ){
                                                               for(int i = 0; i < s -> n1; i++){
        int i = 0;
                                                                   free(s->m[i]);
        while(j < s->n2 && !s->m[i][j]){
                                                               free(s->m);
            i++:
                                                               free(s->sol);
                                                               free(s->perm);
        if(j < s -> n2){
                                                               free(s);
            s->sol[i]=0;
```

 $s{-}{>}sol[j]\mathrel{-}{=}s{-}{>}m[i][k]*s{-}{>}sol[$

get_arbitary(s);

for(int k = s->n2-1; k>j; k--){

init_sol(s):

```
../c/parse_input.h
```

```
mpz_t N;
#pragma once
#include <gmp.h>
                                                            bool quiet;
#include <stdbool.h>
                                                            TYPE algorithm;
                                                            int extra:
typedef enum {DIXON, QSIEVE, MPQS, PMPQS}
                                                            int delta:
       TYPE;
                                                        } input_t;
typedef struct input_s {
                                                        input_t* parse_input(int argc, char** argv);
    char* output_file;
                                                        void free_input(input_t* input);
    int bound, sieving_interval;
```

../c/parse_input.c

```
#include "parse_input.h"
                                                           }
#include < stdlib.h >
#include <string.h>
                                                           input_t* parse_input(int argc, char** argv){
#include <gmp.h>
                                                               input_t* input = init_input();
#include <stdbool.h>
                                                               int i = 1:
input_t* init_input(void){
                                                               while(i<argc){
    input_t* input = malloc(sizeof(input_t));
                                                                   if(strcmp(argv[i], "-b") == 0 || strcmp(argv[
                                                                          il. "--bound") == 0){
    input->bound =-1:
    input->output_file = NULL;
                                                                       i++:
    input—>sieving_interval = -1;
                                                                       if(i<argc){
    input->extra = -1:
                                                                            if(valid_int(argv[i])) input—>bound =
    input - > guiet = false:
                                                                                    atoi(argv[i]);
    input->algorithm = QSIEVE;
                                                                            else return NULL;}
    input->delta=0:
                                                                       else return NULL:
    mpz_init_set_ui(input->N, 0);
    return input;
                                                                   else if(strcmp(argv[i], "-s") == 0 || strcmp(
                                                                          argv[i], "——sieving_interval") == 0){
bool valid_int(char* str){
                                                                       i++:
    int i = 0;
                                                                       if(i<argc){
    char c = str[i];
                                                                            if(valid_int(argv[i])) input->
    while(c != '\setminus 0'){
                                                                                   sieving\_interval = atoi(argv[i]);
        if(c<48 || c>57) return false;
                                                                            else return NULL;}
        c = str[++i]:
                                                                       else return NULL:
    }
                                                                   else if(strcmp(argv[i], "-e") == 0 || strcmp(
    return true:
                                                                          argv[i]. "--extra") == 0){
                                                                       i++:
void free_input(input_t* input){
                                                                       if(i<argc){</pre>
    if(input—>output_file) free(input—>output_file);
                                                                            if(valid_int(argv[i])) input—>extra =
    mpz_clear(input->N);
                                                                                   atoi(argv[i]);
    free(input);
                                                                            else return NULL;}
```

```
else return NULL;
                                                            i++;
                                                            if(i<argc) {
                                                                 if(strcmp(argv[i], "dixon") == 0)
else if(strcmp(argv[i], "-n") == 0 || strcmp(
                                                                        input->algorithm = DIXON;
       argv[i], "--number") == 0){
                                                                 else if(strcmp(argv[i], "qsieve") ==
    i++:
                                                                        0) input->algorithm =
    if(i<argc){
                                                                        QSIEVE:
        if(valid_int(argv[i])) mpz_set_str(input
                                                                 else if(strcmp(argv[i], "mpqs") == 0)
               -> N. argv[i], 10):
                                                                         input->algorithm = MPQS:
        else return NULL;}
                                                                 else if(strcmp(argv[i], "pmpqs") ==
    else return NULL;
                                                                        0) input->algorithm =
}
                                                                        PMPQS:
                                                                 else return NULL;}
else if(strcmp(argv[i], "-d") == 0 || strcmp(
                                                            else return NULL;
       argv[i], "--delta") == 0){
    i++:
    if(i<argc){
                                                         else if(strcmp(argv[i], "-q") == 0 ||
                                                                 strcmp(argv[i], "-stfu") == 0 /*
        if(valid_int(argv[i])) input—>delta =
               atoi(argv[i]);
                                                                        easter egg*/ ||
                                                                 strcmp(argv[i], "--quiet") == 0){
        else return NULL;}
    else return NULL;
                                                            input->quiet = true;
else if(strcmp(argv[i], "-o") == 0){
                                                         else return NULL;
    i++:
    if(i<argc) input—>output_file = argv[i];
                                                        i++:
    else return NULL;
                                                    return input:
else if(strcmp(argv[i], "-t") == 0 || strcmp(
       argv[i], "——type") == 0){
```

../c/list_matrix_utils.h

#pragma once

void print_list(int* I, int n);

void print_ll(int** ll, int n1, int n2);
void free_ll(int** m, int n1);

../c/list_matrix_utils.c

../c/factorbase.h

```
#include <gmp.h>
// bruh
bool is_prime(int n);
// calculates pi(n), the number of prime numbers <=
int pi(int n);
// returns a list of piB first primes
```

#pragma once

```
/** Reduces the factor base of the algorithm, refer to:
```

- * Quadratic sieve factorisation algorithm
- * Bc. Ondrej Vladyka * Section 2.3.1 (p.16)

int* primes(int piB, int B);

/ int prime_base(mpz_t n, int* pb_len, int* primes, int piB);

```
for (int i = 2; i <= B; i++) {
#include <stdbool.h>
#include <gmp.h>
                                                                      if (is_prime(i)){
#include < stdlib.h >
                                                                           p[k] = i:
                                                                           k++:
bool is_prime(int n) {
    // Corner cases
    if (n <= 1)
                                                                  return p;
        return false:
    if (n <= 3)
        return true;
                                                             /* Used for legendre symbol, exists in gmp already
    // This is checked so that we can skip
                                                             bool euler_criterion(mpz_t n, int p){
    // middle five numbers in below loop
                                                                  int e = (p-1)/2;
    if (n % 2 == 0 || n % 3 == 0)
                                                                  mpz_t r, p1;
        return false:
                                                                  mpz_init(r):
                                                                  mpz_init_set_ui(p1, p):
    for (int i = 5; i * i <= n; i = i + 6)
                                                                  mpz_powm_ui(r, n, e, p1);
        if (n \% i == 0 || n \% (i + 2) == 0)
                                                                  return(mpz\_cmp\_ui(r, 1) == 0):
             return false:
                                                             */
    return true;
                                                             int* prime_base(mpz_t n, int* pb_len, int* primes, int
                                                                     piB){
int pi(int n) {
    int k = 0:
                                                                  int* pb = malloc(piB*sizeof(int));
    for (int i = 2: i <= n: i++) {
                                                                  pb[0] = 2:
        if (is_prime(i)) k++;
                                                                  int i = 1:
    return k:
                                                                  mpz_t p1;
                                                                  mpz_init(p1);
                                                                  for(int i = 1; i < piB; i++){
                                                                      mpz_set_ui(p1, primes[i]);
int* primes(int piB, int B){
                                                                      if(mpz_legendre(n, p1) == 1){
	//printf("%d \setminus n", primes[i]);
    int* p = malloc(piB*sizeof(int));
    int k = 0;
```

```
\begin{array}{c} \mathsf{pb[j]} = \mathsf{primes[i]}; & \mathit{for\ mpqs} \\ \mathsf{j}++; & \mathsf{mpz\_clear(p1)}; \\ \mathsf{\}} & \mathsf{mpz\_clear(p1)}; \\ \mathsf{*pb\_len} = \mathsf{j}; & \mathsf{pb} = \mathsf{realloc(pb, (j+1)*sizeof(int))}; //+1 \mathit{used} \end{array}
```

```
primes, int n1, system_t s){
#include <stdbool.h>
#include <gmp.h>
                                                             mpz_set_ui(prod. 1):
#include <sys/time.h>
                                                             mpz_t temp:
#include <stdio.h>
                                                             mpz_init(temp);
                                                             for(int i = 0; i < n1; i++){
#include < stdlib.h >
#include <assert.h>
                                                                 if(s->sol[i]){
                                                                      mpz_mul(prod, prod, d[s->perm[i]]);
#include "system.h"
#include "vector.h"
#include "parse_input.h"
                                                                 mpz_ui_pow_ui(temp, primes[i], v[i]);
#include "factorbase.h"
                                                                 mpz_mul(prod, prod, temp);
#include "list_matrix_utils.h"
                                                             mpz_clear(temp):
// Include algorithms
// Dixon's method
#include "./dixon/dixon.h"
                                                         void rebuild(mpz_t prod. int* v. int* primes, int n1){
                                                             /** Rebuilds the product of primes to the power
// The Quadratic Sieve
                                                                    of half
#include "./asieve/asieve.h"
                                                              * the solution found by the gaussian solve
// Multipolynomial Quadratic Sieve
                                                              * EX:
#include "./mpgs/polynomial.h"
                                                              *v = (1, 2, 3, 1)
#include "./mpqs/mpqs.h"
                                                              * primes = [2, 3, 5, 7]
                                                              * prod = 2**1 * 3** 2 * 5**3 * 7**1
#include "./mpgs/parallel_mpgs.h"
                                                              * returns prod
/**
                                                             mpz_set_ui(prod. 1):
 * START OF ALGORITHM
                                                             mpz_t temp:
                                                             mpz_init(temp);
 */
                                                             for(int i = 0; i < n1; i++){
                                                                 mpz_ui_pow_ui(temp, primes[i], v[i]);
                                                                 mpz_mul(prod, prod, temp);
void rebuild_mpgs(mpz_t prod, mpz_t* d, int* v, int*
```

```
mpz_clear(temp);
                                                                      free(p):
                                                                      break:
void sum_lignes(int* sum, int** v, system_t s){
                                                                  case MPQS:
    /** Sums the lines of vectors into 'sum' according
                                                                      pb = prime_base(input->N, &pb_len, p.
            the solution of the
                                                                             piB):
     * output of the system 's', such that each power
                                                                      pb[pb\_len] = -1;
            is even
                                                                      if(!input->quiet) printf("base-reduction-
     */
                                                                             %f%%\n". (float)pb_len/piB*100)
    for(int i = 0; i < s - > n1; i + + ){
        sum[i] = 0;
                                                                      free(p);
    }
                                                                      break:
                                                                  case PMPQS:
    for(int i = 0; i < s - > n2; i + + ){
                                                                      pb = prime_base(input->N, &pb_len, p,
        if(s->sol[i]){
                                                                             piB):
            add_vect(sum, v[s->perm[i]], s->n1);
                                                                      pb[pb_len] = -1:
                                                                      if(!input->quiet) printf("base-reduction-
                                                                             %f%%\n", (float)pb_len/piB*100)
                                                                      free(p);
void factor(input_t* input){
                                                                      break;
    int piB = pi(input->bound):
    if(!input->quiet) printf("pi(B)--%d\n", piB);
                                                             int target_nb = pb_len + input—>extra;
    int* p = primes(piB, input->bound);
                                                             mpz_t*z = malloc((target_nb)*sizeof(mpz_t));
    int pb_len;
                                                             for(int i = 0; i < target_nb; i++){
                                                                  mpz_init(z[i]);
    int* pb;
    switch(input->algorithm){
        case DIXON-
            pb = p;
                                                              //Getting zis
            pb_len = piB;
                                                             int** v;
            break:
                                                             mpz_t* d;
        case QSIEVE:
                                                             struct timeval t1, t2;
            pb = prime_base(input->N, &pb_len, p,
                                                             gettimeofday(&t1, 0);
                                                             switch(input->algorithm){
                   piB):
            if(!input->quiet) printf("base-reduction-
                                                                  case DIXON:
                   %f%%\n", (float)pb_len/piB*100)
                                                                      v = dixon(z, input -> N, pb_len, pb, input
```

```
->extra, input->quiet);
                                                         mpz_t f, Z1, Z2, test1, test2;
                                                         mpz_inits(f, Z1, Z2, test1, test2, NULL);
        break:
   case QSIEVE:
                                                         //gaussian init
        v = gsieve(z, input -> N, pb_len, pb,
               input->extra, input->
                                                         system_t s;
               sieving_interval, input—>quiet):
                                                         int* sum:
        break:
                                                         switch(input—>algorithm){
   case MPQS:
                                                             case DIXON:
        d = malloc(target_nb*sizeof(mpz_t));
                                                                 s = init_gauss(v, target_nb, pb_len);
        for(int i = 0; i < target_nb; i++){
                                                                 sum = malloc(pb\_len*sizeof(int));
            mpz_init(d[i]);
                                                                 break:
                                                             case QSIEVE:
        v = mpqs(z, d, input -> N, pb_len, pb,
                                                                 s = init_gauss(v, target_nb, pb_len);
               input->extra, input->
                                                                 sum = malloc(pb\_len*sizeof(int));
               sieving_interval, input->delta.
                                                                 break:
                                                             case MPQS:
               input->quiet):
        break:
                                                                 // for -1
   case PMPQS:
                                                                 s = init_gauss(v, target_nb, pb_len+1);
        d = malloc(target_nb*sizeof(mpz_t));
                                                                 sum = malloc((pb\_len+1)*sizeof(int));
        for(int i = 0; i < target_nb; i++){
                                                                 break;
                                                             case PMPQS:
            mpz_init(d[i]);
                                                                 // for -1
        v = parallel_mpqs(z, d, input->N, pb_len
                                                                 s = init_gauss(v, target_nb, pb_len+1);
                                                                 sum = malloc((pb\_len+1)*sizeof(int));
               , pb, input->extra, input->
               sieving_interval, input->delta.
                                                                 break:
               input->quiet):
                                                         if(!input->quiet) printf("2^%d-solutions-to-iterate
        break;
                                                                 n''. s->n2 - s->arb):
gettimeofday(&t2, 0);
                                                         bool done = false:
long seconds = t2.tv_sec - t1.tv_sec;
                                                         while(!done){
long microseconds = t2.tv_usec - t1.tv_usec;
                                                             gaussian_step(s);
double time_spent = seconds + microseconds*1e
       -6:
                                                              prod_vect(Z1, z, target_nb, s);
if(!input->quiet) printf("Time-to-get-zi:-%fs\n",
                                                              sum_lignes(sum, v, s);
       time_spent);
                                                             div_vect(sum, 2, pb_len):
```

```
switch(input->algorithm){
                                                                                                                                                                                                                                                                                mpz_add(f, Z1, Z2);
                    case DIXON:
                                                                                                                                                                                                                                                                                mpz_gcd(f, f, input->N):
                                       rebuild(Z2, sum, pb, pb_len);
                                                                                                                                                                                                                                                                                if(mpz\_cmp\_ui(f, 1) != 0 \&\& mpz\_cmp(f, 1) != 0 \&\& mpz\_cmp(f, 1) := 0 \&\& mpz\_cmp(f, 1) 
                                       break:
                    case QSIEVE:
                                                                                                                                                                                                                                                                                                                 input -> N) != 0){
                                       rebuild(Z2, sum, pb, pb_len);
                                                                                                                                                                                                                                                                                                   assert(mpz_divisible_p(input->N, f));
                                                                                                                                                                                                                                                                                                  if(!input->quiet) gmp_printf("%Zd-=-0-
                                       break;
                    case MPQS:
                                                                                                                                                                                                                                                                                                                                     [\%Zd]\n", input—>N, f);
                                       rebuild_mpqs(Z2, d, sum, pb, pb_len,
                                                                                                                                                                                                                                                                                                   done = true:
                                                                         s);
                                       break;
                    case PMPQS:
                                                                                                                                                                                                                                                                               if(s->done){
                                       rebuild_mpgs(Z2, d, sum, pb, pb_len,
                                                                                                                                                                                                                                                                                                   if(!input->quiet) fprintf(stderr, "ERROR
                                                                                                                                                                                                                                                                                                                                     :-no-solution-for-this-set-of-zi\n");
                                       break:
                                                                                                                                                                                                                                                                                                  exit(1);
// TEST
 mpz_set(test1, Z1);
                                                                                                                                                                                                                                                           free(sum);
mpz_mul(test1, test1, test1);
                                                                                                                                                                                                                                                           free(pb);
mpz_set(test2, Z2);
                                                                                                                                                                                                                                                           free_system(s);
mpz_mul(test2, test2, test2);
                                                                                                                                                                                                                                                           free_II(v, target_nb);
assert(mpz_congruent_p(test1, test2, input->
                                                                                                                                                                                                                                                           for(int i = 0; i < target_nb; i++){
                                  N) != 0);
                                                                                                                                                                                                                                                                               mpz_clear(z[i]);
 // END TEST
                                                                                                                                                                                                                                                           free(z):
mpz_sub(f, Z1, Z2);
                                                                                                                                                                                                                                                           switch(input->algorithm){
mpz_gcd(f, f, input->N):
                                                                                                                                                                                                                                                                                case DIXON:
                                                                                                                                                                                                                                                                                                  break:
if(mpz\_cmp\_ui(f, 1) != 0 \&\& mpz\_cmp(f, 1) != 0 \&\& mpz\_cmp(f, 1) := 0 \&\& mpz\_cmp(f, 1) 
                                                                                                                                                                                                                                                                                case QSIEVE:
                                  input—>N) != 0){
                                                                                                                                                                                                                                                                                                  break;
                     assert(mpz_divisible_p(input->N, f));
                                                                                                                                                                                                                                                                               case MPQS:
                    if(!input->quiet) gmp_printf("%Zd-=-0-
                                                                                                                                                                                                                                                                                                   for(int i = 0; i < target_nb; i++)
                                                     [\%Zd]\n'', input—>N, f);
                                                                                                                                                                                                                                                                                                                                     mpz_clear(d[i]);
                                                                                                                                                                                                                                                                                                  free(d):
                     done = true:
                                                                                                                                                                                                                                                                                                  break:
                                                                                                                                                                                                                                                                                case PMPQS:
```

```
for(int i = 0; i < target_nb; i++)
                                                             if(input->bound == -1) input->bound =
                   mpz_clear(d[i]);
                                                                    10000:
            free(d);
                                                             if(input->sieving\_interval == -1) input->
            break;
                                                                    sieving\_interval = 100000;
    }
                                                             if(input->extra == -1) input->extra = 1:
                                                             struct timeval t1, t2;
    mpz_clears(f, Z1, Z2, test1, test2, NULL);
                                                             gettimeofday(&t1, 0);
                                                             factor(input);
                                                             gettimeofday(&t2, 0);
int main(int argc, char** argv){
                                                             long seconds = t2.tv_sec - t1.tv_sec;
    input_t* input = parse_input(argc, argv);
                                                             long microseconds = t2.tv\_usec - t1.tv\_usec:
    if(input==NULL){
                                                             double time_spent = seconds + microseconds*1e
        fprintf(stderr, "ERROR:-Invalid-input\n");
                                                                    -6:
        return 1:
                                                             if(!input->quiet) printf("Total-time:-%fs\n",
                                                                    time_spent):
    if(mpz\_cmp\_ui(input->N, 0) == 0){
                                                             free_input(input):
        fprintf(stderr, "ERROR:-No-input-number,-use-
               -n-%%number%%\n");
                                                             return 0;
        return 1;
```

../c/dixon/dixon.h

#pragma once

 $int**\ dixon(mpz_t*\ z,\ mpz_t\ N,\ int\ pb_len,\ int*\ pb,\ int$

extra, bool tests);

../c/dixon/dixon.c

```
#include <gmp.h>
                                                                 /** Gets pb_len+extra b-smooth realtions
#include <stdbool.h>
                                                                        definied at:
#include <stdio.h>
                                                                  * Quadratic sieve factorisation algorithm
#include <stdlib.h>
                                                                  * Bc. Ondrej Vladyka
                                                                  * Definition 1.11 (p.5)
bool vectorize_dixon(mpz_t n, int * v, int pb_len, int *
       }(dq
    /** Attemps naive factorisation to 'n' with the
                                                                 //ceil(sart(n))
            primes in
                                                                 mpz_t sqrt_N;
     * the prime base 'pb' and putting the result into '
                                                                 mpz_init(sqrt_N);
             v', vector of powers of
                                                                 mpz_sqrt(sqrt_N, N);
     * the primes in the prime base
                                                                 mpz_add_ui(sgrt_N, sgrt_N, 1):
     * If it succeeds, returns true, otherwise, returns
             false
                                                                 mpz_t zi;
    */
                                                                 mpz_t zi_cpv:
    for(int i = 0; i < pb_len; i++){
                                                                 mpz_init_set(zi, sqrt_N);
        v[i] = 0;
                                                                 mpz_init(zi_cpy);
    }
                                                                 int** v = malloc((pb_len+extra)*sizeof(int*));
    for(int i = 0; i < pb\_len \&\& (mpz\_cmp\_ui(n, 1) !=
            0); i++){}
                                                                 for(int i = 0; i < pb_len + extra; i++){
        while (mpz_divisible_ui_p(n, pb[i])){
                                                                     bool found = false:
             v[i]++
                                                                     int* vi = malloc(pb_len*sizeof(int));
             mpz_divexact_ui(n, n, pb[i]);
                                                                     while(!found){
    }
                                                                          mpz_add_ui(zi, zi, 1);
                                                                          mpz_mul(zi_cpy, zi, zi);
    if(mpz\_cmp\_ui(n, 1) == 0)
                                                                          mpz_mod(zi_cpv, zi_cpv, N):
        return true:
    return false;
                                                                          found = vectorize_dixon(zi_cpy, vi, pb_len,
                                                                                  pb);
                                                                     if(!tests){
int ** dixon(mpz_t* z, mpz_t N, int pb_len, int * pb, int
                                                                          printf("\r");
        extra, bool tests){
```

}

../c/qsieve/qsieve.h

#pragma once
#include <gmp.h>
#include <stdbool.h>

bool vectorize_qsieve(mpz_t n, int* v, int pb_len, int*

pb);

../c/qsieve/qsieve.c

```
#include <gmp.h>
                                                                return false;
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
                                                            float* prime_logs(int* pb, int pb_len){
                                                                float* plogs = malloc(pb_len*sizeof(float));
#include <assert.h>
#include < math.h >
                                                                for(int i = 0; i < pb_len; i++){
#include " .. /system.h"
                                                                     plogs[i] = log2(pb[i]):
#include "../tonellishanks.h"
bool vectorize_gsieve(mpz_t n, int* v, int pb_len, int*
                                                                return plogs;
       pb){
    /** Attemps naive factorisation to 'n' with the
            primes in
                                                            int calculate_threshhold(mpz_t N, mpz_t sqrt_N, int s,
     * the prime base 'pb' and putting the result into '
                                                                    int loop_number, int* pb, int pb_len){
             v', vector of powers of
     * the primes in the prime base
                                                                mpz_t gstart;
     * If it succeeds, returns true, otherwise, returns
                                                                mpz_init_set_ui(qstart, s);
             false
                                                                mpz_mul_ui(qstart, qstart, loop_number);
    */
                                                                mpz_add(gstart, gstart, sgrt_N);
    for(int i = 0; i < pb_len; i++){
                                                                mpz_mul(qstart, qstart, qstart);
        v[i] = 0;
                                                                mpz_sub(qstart, qstart, N);
    }
                                                                int t = mpz_sizeinbase(qstart, 2) - (int) log2(pb[
    for(int i = 0; i < pb\_len \&\& (mpz\_cmp\_ui(n, 1) !=
                                                                        pb_len-11):
            0): i++){
                                                                mpz_clear(gstart):
        while (mpz_divisible_ui_p(n, pb[i])){
                                                                return t;
             v[i]++:
             mpz_divexact_ui(n, n, pb[i]);
                                                            int ** qsieve(mpz_t* z, mpz_t N, int pb_len, int * pb,
    }
                                                                    int extra, int s, bool quiet){
                                                                 /** Gets pb_len+extra zis that are b-smooth,
    if(mpz\_cmp\_ui(n, 1) == 0)
                                                                        definied at:
                                                                  * Quadratic sieve factorisation algorithm
        return true;
```

```
* Bc. Ondrej Vladyka
                                                             if(mpz_divisible_ui_p(temp, 2) == 0) \times 1[0] = 1;
 * Definition 1.11 (p.5)
                                                             int sol1. sol2:
                                                             for(int i = 1; i < pb\_len; i++){
//ceil(sart(n))
mpz_t sqrt_N;
                                                                      tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
mpz_init(sqrt_N);
                                                                      x1[i] = sol1;
mpz_sqrt(sqrt_N, N);
                                                                      \times 2[i] = sol2;
mpz_add_ui(sgrt_N, sgrt_N, 1):
                                                                      // change solution from x = n [p] to (sqrt
                                                                              (N) + x) = n [p]
mpz_t zi;
mpz_init_set(zi, sart_N):
                                                                      mpz_set_ui(temp, x1[i]):
                                                                      mpz_sub(temp, temp, sqrt_N);
mpz_t qx;
mpz_init(qx);
                                                                      mpz_mod_ui(temp, temp, pb[i]);
int** v = malloc((pb_len+extra)*sizeof(int*));
                                                                      \times 1[i] = mpz_get_ui(temp):
for(int i = 0; i < pb\_len + extra; i++){
    v[i] = malloc(pb_len*sizeof(int*));
                                                                      mpz_set_ui(temp, x2[i]);
                                                                      mpz_sub(temp, temp, sqrt_N);
float* sinterval = malloc(s*sizeof(float));
                                                                      mpz_mod_ui(temp, temp, pb[i]);
float* plogs = prime_logs(pb, pb_len);
                                                                      \times 2[i] = mpz_get_ui(temp):
// TESTS
                                                             mpz_clear(temp);
mpz_t temp:
mpz_init(temp);
                                                             int loop_number = 0:
// END TESTS
                                                             int relations\_found = 0;
                                                             int tries = 0:
                                                             while(relations_found < pb_len + extra){</pre>
int* x1 = malloc(pb_len*sizeof(int));
int* x2 = malloc(pb_len*sizeof(int));
                                                                 for(int i = 0; i < s; i++){
                                                                      sinterval[i] = 0:
                                                                  }
// find solution for 2
mpz_set(temp, sqrt_N);
mpz_mul(temp, temp, temp);
                                                                 // sieve for 2
mpz_sub(temp, temp, N);
                                                                  while(\times 1[0] < s){
\times 1[0] = 0;
                                                                      sinterval[x1[0]] += plogs[0];
```

```
\times 1[0] += pb[0]:
                                                                          // ax = zi**2 - N
\times 1[0] = \times 1[0] - s
                                                                          mpz_mul(qx, zi, zi);
                                                                          mpz\_sub(qx, qx, N);
// sieve other primes
for(int i = 1; i < pb\_len; i++){
                                                                          found = vectorize_qsieve(qx, v[
                                                                                 relations_found], pb_len, pb);
    while(x1[i] < s){
         sinterval[x1[i]] += plogs[i];
                                                                          if(found){
         \times 1[i] += pb[i];
                                                                              mpz_set(z[relations_found], zi);
                                                                              relations_found++;
                                                                              found = false:
    while(\times 2[i] < s){
                                                                              if(!quiet){
                                                                                   printf("\r");
         sinterval[x2[i]] += plogs[i];
                                                                                   printf("%.1f%%-|-%.1f%%",
         \times 2[i] += pb[i]:
                                                                                           (float)relations_found
                                                                                           /(pb_len+extra)*100,
                                                                                            (float)relations_found
    //next interval
                                                                                           /tries*100);
    x1[i] = x1[i] - s;

x2[i] = x2[i] - s;
                                                                                   fflush(stdout);
int t = calculate_threshhold(N, sqrt_N, s,
        loop_number, pb, pb_len);
                                                                loop_number++:
//printf("t = %d n", t):
bool found:
                                                           if(!quiet) printf("\n");
for(int i = 0; i < s && relations_found <
        pb_len + extra; i++){
                                                           mpz_clears(sqrt_N, zi, qx, NULL);
    if(sinterval[i] > t){}
                                                           free(\times 1);
         tries++:
                                                           free(x2);
                                                           free(sinterval);
         //zi = sqrt(n) + x where x = s*
                                                           free(plogs);
                 loopnumber + i
         mpz_set_ui(zi, s);
                                                           return v:
```

mpz_mul_ui(zi, zi, loop_number);
mpz_add_ui(zi, zi, i);

../c/mpqs/common_mpqs.h

```
#include <gmp.h>
#include <stdbool.h>
```

#pragma once

bool already_added(mpz_t zi, mpz_t* z, int relations_found);

../c/mpqs/common_mpqs.c

```
v', vector of powers of
#include <gmp.h>
#include <stdbool.h>
                                                                  * the primes in the prime base
#include < math.h >
                                                                  * If it succeeds, returns true, otherwise, returns
#include <stdlib.h>
                                                                          false
#include <stdio.h>
                                                                for(int i = 0; i < pb_len; i++){
int calculate_threshhold_mpgs(mpz_t sgrt_N, int s, int*
                                                                     v[i] = 0;
        pb. int pb_len. int delta){
                                                                if(mpz\_sgn(n)<0){
                                                                     v[pb\_len] = 1;
    mpz_t gstart;
    mpz_init_set_ui(qstart, s);
                                                                     mpz_neg(n, n);
    mpz_mul(gstart, gstart, sgrt_N):
                                                                else{
                                                                     v[pb\_len] = 0;
    int t = mpz_sizeinbase(qstart, 2) - (int) log2(pb[
            pb_len-11) - delta:
    mpz_clear(qstart);
    return t;
                                                                for(int i = 0; i < pb\_len && (mpz\_cmp\_ui(n, 1) !=
                                                                        0): i++){
                                                                     while (mpz_divisible_ui_p(n, pb[i])){
float* prime_logs_mpqs(int* pb, int pb_len){
                                                                         v[i]++
    float* plogs = malloc(pb_len*sizeof(float));
                                                                         mpz_divexact_ui(n, n, pb[i]);
    for(int i = 0; i < pb_len; i++){
        plogs[i] = log2(pb[i]);
    }
                                                                if(mpz\_cmp\_ui(n, 1) == 0)
                                                                     return true:
                                                                return false;
    return plogs;
bool vectorize_mpgs(mpz_t n, int* v, int pb_len, int*
                                                            bool already_added(mpz_t zi, mpz_t* z, int
                                                                    relations_found){
    /** Attemps naive factorisation to 'n' with the
                                                                for(int i = 0; i < relations\_found; i++){
                                                                     if(mpz\_cmp(zi, z[i]) == 0){
            primes in
     * the prime base 'pb' and putting the result into
                                                                         return true;
```

```
}
}
return false;
```

../c/mpqs/polynomial.h

```
#pragma once
#include <gmp.h>
                                                              // used to make operations without declaring and
#include <stdbool.h>
                                                                     freeing everytime
                                                              mpz_t op1, op2, op3;
struct poly_s {
                                                          };
    mpz_t d;
                                                          typedef struct poly_s* poly_t;
    mpz_t N:
                                                          void get_next_poly(poly_t p);
    mpz_t a;
                                                          poly_t init_poly(mpz_t N, int M);
    mpz_t b;
                                                          void calc_poly(poly_t p, mpz_t x);
    mpz_t c;
                                                          poly_t copy_poly(poly_t p);
    mpz_t zi;
                                                          void free_poly(poly_t p);
    mpz_t qx;
```

../c/mpqs/polynomial.c

```
mpz_add(p->b, p->b, x1);
#include "polynomial.h"
#include <gmp.h>
#include < stdlib.h >
                                                          mpz_mul(p->op1, p->b, p->b):
                                                          assert(mpz_congruent_p(p->op1, p->N, p->a)
#include <assert.h>
#include <stdio.h>
#include "../tonellishanks.h"
                                                          mpz-sub(p->c, p->op1, p->N):
                                                          mpz_divexact(p->c, p->c, p->a):
void calc_coefficients(poly_t p){
    mpz_mul(p->a, p->d, p->d);
                                                          mpz_clears(x1, x2, NULL);
    mpz_t x1, x2;
    mpz_inits(x1, x2, NULL);
                                                      void get_next_poly(poly_t p){
   tonelli_shanks_mpz(p->N, p->d. x1. x2):
                                                          mpz_nextprime(p->d, p->d);
                                                          while(mpz_legendre(p->N, p->d) != 1){
   // getting ready for congruence solve for raising
                                                              mpz_nextprime(p->d, p->d):
          solution
                                                          calc_coefficients(p);
    mpz_mul_ui(p->op1, \times 1, 2):
    mpz_mul(p->op2, x1, x1);
    mpz_sub(p\rightarrowop2, p\rightarrowop2, p\rightarrowN);
                                                      poly_t init_poly(mpz_t N, int M){
    mpz\_divexact(p->op2, p->op2, p->d);
                                                          poly_t p = malloc(sizeof(struct poly_s));
    mpz_neg(p->op2, p->op2);
    mpz\_mod(p->op2, p->op2, p->d);
                                                          mpz_inits(p->d, p->N, p->a, p->b, p->c,
                                                                 p->op1, p->op2, p->op3, p->zi, p
                                                                 ->ax. NULL):
    mpz_t g, n, m;
   mpz_inits(g, n, m, NULL);
                                                          mpz_set(p->N. N):
    mpz\_gcdext(g, n, m, p->d, p->op1):
    assert(mpz\_cmp\_ui(g, 1) == 0);
                                                          // choose value of d according to 2.4.2
    mpz_mul(p->op1, p->op2, m); // t
                                                          // sqrt( (sqrt(2N))/M )
    mpz_clears(g, n, m, NULL);
                                                          mpz_mul_ui(p->op1, N, 2);
                                                          mpz\_sqrt(p->op1, p->op1):
    mpz_set(p->b, p->d):
                                                          mpz_div_ui(p->op1, p->op1, M);
```

 $mpz_sqrt(p->op1, p->op1)$;

 $mpz_mul(p->b, p->b, p->op1);$

```
mpz_prevprime(p->d, p->op1);
                                                      void free_polv(polv_t p){
   // get next prime such that (n/p) = 1
                                                          mpz_clears(p\rightarrowd, p\rightarrowN, p\rightarrowa, p\rightarrowb, p\rightarrowc
    while(mpz_legendre(N, p->d) !=1){
                                                                 , p->op1, p->op2, p->op3, p->zi, p
       mpz_nextprime(p->d, p->d):
                                                                 ->ax. NULL):
                                                          free(p):
   calc_coefficients(p);
   return p:
                                                      polv_t copv_polv(polv_t p){
                                                          poly_t cpy = malloc(sizeof(struct poly_s));
void calc_polv(polv_t p, mpz_t x){
                                                          mpz_inits(cpv->d, cpv->N, cpv->a, cpv->b.
    mpz\_mul(p->zi, p->a, x);
                                                                 cpy->c, cpy->op1, cpy->op2, cpy->
    mpz_add(p->zi, p->zi, p->b);
                                                                 op3, cpy->zi, cpy->qx, NULL);
                                                          mpz_set(cpy->d, p->d);
   mpz_mul(p->qx, x, x):
   mpz_mul(p->qx, p->qx, p->a);
                                                          mpz_set(cpy->N, p->N);
    mpz\_mul(p->op1, p->b, x):
                                                          mpz_set(cpv->a, p->a):
    mpz_mul_ui(p->op1, p->op1, 2);
                                                          mpz\_set(cpv->b, p->b);
    mpz_add(p->qx, p->qx, p->op1);
                                                          mpz_set(cpy->c, p->c);
```

return cpy;

 $mpz_add(p->qx, p->qx, p->c)$;

../c/mpqs/mpqs.h

#pragma once

#include <gmp.h>
#include <stdbool.h>

../c/mpqs/mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include < math.h >
#include <time.h>
#include "polynomial.h"
#include "common_mpgs.h"
                                                              // TESTS
#include " .. /system.h"
                                                              mpz_t temp;
#include "../tonellishanks.h"
int ** mpgs(mpz_t * z, mpz_t * d, mpz_t N, int pb_len,
       int* pb. int extra. int s. int delta, bool quiet){
    /** Gets pb_len+extra zis that are b-smooth,
           definied at:
     * Quadratic sieve factorisation algorithm
     * Bc. Ondrej Vladyka
     * Definition 1.11 (p.5)
     */
    //ceil(sqrt(n))
    mpz_t sqrt_N;
    mpz_init(sqrt_N);
    mpz_sqrt(sqrt_N, N);
    mpz_add_ui(sqrt_N, sqrt_N, 1);
    mpz_t x;
    mpz_init(x);
                                                              clock_t start:
    poly_t Q = init_poly(N, s);
    int** v = malloc((pb_len+extra)*sizeof(int*));
    for(int i = 0; i < pb_len + extra; i++){
```

```
v[i] = malloc((pb_len+1)*sizeof(int*)); // +1
            for -1
float* sinterval = malloc(2*s*sizeof(float));
float* plogs = prime_logs_mpqs(pb, pb_len);
int t = calculate_threshhold_mpqs(sqrt_N, s, pb,
       pb_len, delta);
mpz_init(temp);
// END TESTS
int* r = malloc(pb_len*sizeof(int));
int* x1 = malloc(pb_len*sizeof(int));
int* x2 = malloc(pb_len*sizeof(int));
int sol1, sol2;
for(int i = 1; i < pb_len; i++){
    tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
    r[i] = sol1;
mpz_t g, m, n, pi;
mpz_inits(g, m, n, pi, NULL);
int relations_found = 0:
start = clock();
int tries = 0:
while(relations_found < pb_len + extra){
```

```
// for 2
                                                                 //calc_poly(Q, temp);
                                                                  //assert(mpz\_divisible\_ui\_p(Q->qx, pb[i])
mpz_set_ui(temp, 0):
calc_poly(Q, temp);
                                                                          != 0):
\times 1[0] = 0;
if(mpz_divisible_ui_p(Q->qx, 2) == 0) \times 1[0]
       = 1:
                                                                  //realign sieving interval to [-s, s]
                                                                 int k = (x1[i] + s)/pb[i];
//others
                                                                 \times 1[i] -= k * pb[i];
for(int i = 1; i < pb\_len; i++){
                                                                 \times 1[i] += s:
    mpz_set_ui(pi, pb[i]);
    mpz_gcdext(g, m, n, Q->a, pi);
                                                                  k = (x2[i] + s)/pb[i];
    if(mpz\_cmp\_ui(g, 1) != 0){
                                                                 \times 2[i] -= k * pb[i]:
         fprintf(stderr, "ERROR:-Number-is-too
                                                                 x2[i] += s;
                -small-for-the-current-
                implementation-of-MPQS\n");
                                                                 //mpz\_set\_si(temp, -s):
         exit(1);
                                                                  //mpz_add_ui(temp, temp, x1[i]);
                                                                  //calc_poly(Q, temp);
                                                                  //assert(mpz_divisible_ui_p(Q->ax. pb[i])
    mpz_set_ui(temp, r[i]);
                                                                          != 0):
    mpz_sub(temp, temp, Q->b);
    mpz_mul(temp, temp, m);
    mpz_mod(temp, temp, pi):
                                                             for(int i = 0: i < 2*s: i++){
                                                                 sinterval[i] = 0;
    x1[i] = mpz_get_ui(temp);
    //calc_polv(Q, temp):
                                                             /*
    //assert(mpz\_divisible\_ui\_p(Q->qx, pb[i])
                                                             // sieve for 2
             != 0):
                                                             while(x1[0] < 2*s){
                                                                 sinterval[x1[0]] += plogs[0]:
    mpz_set_ui(temp, pb[i]);
                                                                 \times 1[0] += pb[0]:
    mpz_sub_ui(temp, temp, r[i]);
    mpz_sub(temp, temp, Q->b);
    mpz_mul(temp, temp, m);
    mpz_mod(temp, temp, pi);
                                                             // sieve other primes
                                                             for(int i = 30: i < pb_len: i++){
    \times 2[i] = mpz_get_ui(temp):
                                                                 while(\times 1[i] < 2*s){
```

```
sinterval[x1[i]] += plogs[i];
                                                                                   printf("\r");
        \times 1[i] += pb[i]:
                                                                                   printf("%.1f%%-|-%.1f
                                                                                           %%", (float)
                                                                                           relations_found/(
    while(\times 2[i] < 2*s){
                                                                                           pb_len+extra)
        sinterval[x2[i]] += plogs[i];
                                                                                           *100, (float)
        \times 2[i] += pb[i];
                                                                                           relations_found/
                                                                                           tries*100);
                                                                                   fflush(stdout):
bool found:
bool update_time = false;
for(int i = 0; i < 2*s && relations_found <
       pb_len + extra: i++){
    if(sinterval[i] > t){}
                                                             if(update_time && !quiet) printf("-(~%.0fs-left
        tries++:
                                                                     )----" , (double)(clock() - start)/
                                                                     CLOCKS_PER_SEC/relations_found*((
        mpz_set_si(x, -s):
        mpz_add_ui(x, x, i);
                                                                     pb_len+extra — relations_found)));
        calc_poly(Q, x);
                                                             get_next_poly(Q);
        if(!already_added(Q->zi, z,
                relations_found)){
                                                        if(!quiet) printf("\n");
             found = vectorize\_mpqs(Q->qx,
                                                        mpz_clears(sqrt_N, temp, g, m, n, pi, x, NULL);
                      v[relations_found], pb_len,
                                                        free(x1):
                      pb);
                                                        free(x2);
             if(found){
                                                        free(r);
                 mpz_set(z[relations_found], Q
                                                        free(sinterval):
                         ->zi);
                                                        free(plogs);
                 mpz_set(d[relations_found], Q
                                                        free_poly(Q);
                         ->d);
                 relations_found++:
                                                        return v:
                 update_time = true;
                 found = false;
                 if(!quiet){
```

../c/mpqs/parallel_mpqs.h

```
#pragma once
#include <gmp.h>
#include "polynomial.h"
#include <sys/time.h>
#include <stdint.h>
struct sieve_arg_s {
    // used for sieveing
    int* pb:
    int pb_len:
    int extra;
    int* r:
    float* plogs:
    int s:
    int to
    int* relations_found:
    int** v;
    bool quiet;
    mpz_t* z:
    mpz_t* d:
```

```
// used to print progress and predicted time left
struct timeval begin;
uint_fast64_t* tries;

// used to constantly have a certain number of
threads running
int thread_id;
bool* threads_running;
};
typedef struct sieve_arg_s sieve_arg_t;

bool already_added(mpz_t zi, mpz_t* z, int
relations_found);
void* sieve_100_polys (void* args);
int** parallel_mpqs(mpz_t* z, mpz_t* d, mpz_t N, int
pb_len, int* pb, int extra, int s, int delta, bool
quiet);
```

poly_t Qinit;

../c/mpqs/parallel_mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include < math.h >
#include <time.h>
#include < pthread.h >
#include <sys/time.h>
#include "polynomial.h"
#include "common_mpgs.h"
#include "parallel_mpgs.h"
#include "../system.h"
#include "../tonellishanks.h"
pthread_mutex_t mutex;
void* sieve_100_polys (void* args){
    sieve_arg_t* arg = (sieve_arg_t*) args;
    poly_t Q = copy_poly(arg->Qinit):
    mpz_t temp, g, m, n, pi, x;
    mpz_inits(temp, g, m, n, pi, x, NULL);
    float* sinterval = malloc(2*arg->s*sizeof(float))
    int* x1 = malloc(arg->pb_len*sizeof(int));
    int* x2 = malloc(arg->pb_len*sizeof(int));
    for(int i = 0: i < 100 \&\& *(arg -> relations\_found)
            < arg -> pb_len + arg -> extra; i++){
        get_next_poly(Q);
```

```
//get sol for 2
mpz_set_ui(temp, 0);
calc_poly(Q, temp);
\times 1[0] = 0:
if(mpz_divisible_ui_p(Q->qx, 2) == 0) \times 1[0]
       = 1:
//get sol for others
for(int i = 1; i < arg - > pb_len; i++){
    mpz_set_ui(pi, arg->pb[i]);
    mpz\_gcdext(g, m, n, Q->a, pi):
    if(mpz\_cmp\_ui(g, 1) != 0){
        fprintf(stderr, "ERROR:-Number-is-too
                -small-for-the-current-
                implementation-of-MPQS\n"):
        exit(1);
    mpz_set_ui(temp, arg->r[i]);
    mpz_sub(temp, temp, Q->b);
    mpz_mul(temp, temp, m);
    mpz_mod(temp, temp, pi);
    \times 1[i] = mpz_get_ui(temp):
    //calc_poly(Q, temp);
    //assert(mpz\_divisible\_ui\_p(Q->qx. arg
            \stackrel{\cdot}{-}>pb[i]) != 0):
    mpz_set_ui(temp, arg->pb[i]);
    mpz_sub_ui(temp, temp, arg->r[i]);
    mpz_sub(temp, temp, Q->b);
    mpz_mul(temp, temp, m);
```

```
mpz_mod(temp, temp, pi);
                                                            // sieve other primes
                                                            for(int i = 30: i < arg -> pb_len: i++){
    \times 2[i] = mpz_get_ui(temp):
                                                                 while(\times 1[i] < 2*arg -> s){
                                                                     sinterval[x1[i]] += arg->plogs[i];
    //calc_polv(Q, temp):
                                                                     \times 1[i] += arg -> pb[i]:
    //assert(mpz\_divisible\_ui\_p(Q->qx, arg
            ->pb[i]) != 0);
                                                                 while(\times 2[i] < 2*arg -> s){
                                                                     sinterval[x2[i]] += arg -> plogs[i];
                                                                     \times 2[i] += arg -> pb[i];
    //realign sieving interval to [-s, s]
    int k = (x1[i] + arg -> s)/arg -> pb[i];
    \times 1[i] = k * arg > pb[i]
    \times 1[i] += arg -> s:
                                                            bool found;
    k = (x2[i] + arg -> s)/arg -> pb[i];
                                                            bool update_time = false;
    \times 2[i] -= k * arg -> pb[i];
                                                            pthread_mutex_lock(&mutex):
    \times 2[i] += arg -> s:
                                                            for(int i = 0; i < 2*arg -> s && *(arg -> s)
                                                                    relations_found) < arg -> pb_len + arg
    //mpz\_set\_si(temp, -arg->s);
                                                                    ->extra: i++){
    //mpz_add_ui(temp, temp, x1[i]);
                                                                if(sinterval[i] > arg = >t){}
    //calc_poly(Q, temp);
                                                                     *(arg->tries) += 1;
    //assert(mpz_divisible_ui_p(Q->qx, arg
                                                                     mpz_set_si(x, -arg->s);
            ->pb[i]) != 0:
                                                                     mpz_add_ui(x, x, i);
                                                                     calc_poly(Q, x);
//reset sieveing_interval
                                                                     if(!alreadv\_added(Q->zi, arg->z)
for(int i = 0; i<2*arg->s; i++){
                                                                             *(arg->relations_found))){
    sinterval[i] = 0;
                                                                         found = vectorize\_mpqs(Q->qx,
                                                                                  arg->v[*(arg->
                                                                                 relations_found)], arg->
                                                                                 pb_len, arg->pb);
// sieve for 2
                                                                         if(found){
while(x1[0] < 2*arg -> s){
                                                                              mpz_set(arg->z[*(arg->
    sinterval[x1[0]] += arg -> plogs[0];
                                                                                     relations_found)], Q
    \times 1[0] += arg -> pb[0]:
                                                                                     ->zi);
}
                                                                              mpz_set(arg->d[*(arg->
                                                                                     relations_found)]. Q
*/
                                                                                     ->d):
```

```
*(arg->relations_found) +=
                                                          pthread_mutex_unlock(&mutex);
                 found = false:
                 update_time = true;
                                                     mpz_clears(temp, g, m, n, pi, x, NULL);
                 if(!arg->quiet){
                                                     free(x1):
                     printf("\r");
                                                     free(x2);
                     printf("%.1f%%-|-%.1f
                                                     free(sinterval);
                            %%", (float)(*(
                                                     free_poly(Q);
                            arg->
                                                     arg->threads_running[arg->thread_id] = false;
                            relations_found))
                            /(arg->pb_len+
                                                     return NULL;
                            arg->extra)
                            *100, (float)(*(
                            arg->
                                                 int ** parallel_mpqs(mpz_t* z, mpz_t* d, mpz_t N, int
                            relations_found))
                                                         pb_len, int* pb, int extra, int s, int delta, bool
                            /(*(arg->tries))
                                                         auiet){
                            *100);
                                                      /** Gets pb_len+extra zis that are b—smooth,
                     fflush(stdout):
                                                             definied at:
                                                       * Quadratic sieve factorisation algorithm
                                                       * Bc. Ondrej Vladyka
                                                       * Definition 1.11 (p.5)
                                                     //ceil(sqrt(n))
struct timeval current:
                                                     mpz_t sart_N:
gettimeofday(&current, 0);
                                                     mpz_init(sqrt_N);
long seconds = current.tv_sec - arg->begin.
                                                     mpz\_sqrt(sqrt\_N, N);
                                                     mpz_add_ui(sqrt_N, sqrt_N, 1):
       tv_sec:
long microseconds = current.tv_usec - arg
       —>begin.tv_usec;
                                                     poly_t Q = init_poly(N, s);
double elapsed = seconds + microseconds*1e
       -6:
                                                     int** v = malloc((pb_len+extra)*sizeof(int*));
                                                     for(int i = 0; i < pb\_len + extra; i++){
if(update_time && !arg->quiet) printf("-
       (~%.0fs-left)-----", elapsed/(*arg->
                                                          v[i] = malloc((pb_len+1)*sizeof(int*)); // +1
       relations_found)*(arg->pb_len+arg
                                                                  for -1
       —>extra — (*arg—>relations_found))
       );
                                                     float* plogs = prime_logs_mpqs(pb, pb_len);
```

```
quiet,
                                                                               z,
int* r = malloc(pb_len*sizeof(int));
                                                                               d.
int sol1, sol2:
                                                                               Q.
for(int i = 1: i < pb_len: i++){
                                                                               begin.
    tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
                                                                               &tries.
    r[i] = sol1;
                                                                               threads_running
int t = calculate_threshhold_mpgs(sgrt_N, s, pb.
                                                                           };
       pb_len, delta);
                                                                           threads_running[i] = true;
                                                                           pthread_create(threads+i, NULL,
                                                                                  sieve_100_polys, args+i):
sieve\_arg\_t* args = malloc(8*sizeof(sieve\_arg\_t)):
pthread_t* threads = malloc(8*sizeof(pthread_t));
bool* threads_running = malloc(8*sizeof(bool));
                                                                      for(int i = 0; i < 100; i++){
for(int i = 0: i < 8: i++){
                                                                           get_next_polv(Q):
    threads_running[i] = false:
int relations_found = 0:
                                                             if(!quiet) printf("\n");
uint_fast64_t tries = 0:
struct timeval begin;
                                                             for(int i = 0; i < 8; i++){
gettimeofday(&begin, 0);
                                                                  pthread_ioin(threads[i], NULL):
while(relations_found < pb_len + extra){
    for(int i = 0; i < 8; i++){
         if(!threads_running[i]){
                                                             free(threads):
             args[i] = (sieve_arg_t) {
                                                             free(args):
                 pb,
                                                             free(r);
                  pb_len.
                                                             free(plogs):
                                                             free(threads_running):
                  extra.
                                                             free_poly(Q);
                  r,
                 plogs,
                                                             mpz_clear(sqrt_N);
                 s,
                                                             return v;
                 &relations found.
                 ٧,
```