Suponemos que f y g son dos funciones continuas de I en R , siendo I un interva	lo
abierto (no vacío) de la recta real, y siendo f no idénticamente nula.	
Consideramos la ecuación diferencial $y' = fy + g$. (I)	
Supongamos que $\varphi: I \to R$ es una función derivable, no idénticamente nula, que solución de la ecuación diferencial $y' = fy$;	e
y que $\psi: I \to R$ es una función derivable que es solución de la ecuación diferencial (I). Se pide:	1
1 Decir si es cierto o no, demostrando la respuesta, que la función φ no se anula	l
en ningún punto de <i>I</i> .	
Demostrar también que, si $b \in I$ y $\varphi(b) = a$ $(a \neq 0)$, entonces la función φ es	
única, y es de la forma $\varphi(x) = ae^{\int_b^x f(t)dt}$ $(x \in I)$.	
(Sugerencia: Tener en cuenta que, en un intervalo I de la recta real R , el único subconjunto no vacío de I , que es simultáneamente abierto y cerrado [para la topología relativa], es el propio intervalo I).	
(Hay que demostrar las respuestas, no suponerlas conocidas).	
2 Demostrar que, fijada cualquier constante $C \in R$, la función $y = C\phi + \psi$ es	
solución de la ecuación diferencial (I).	
3 Demostrar que cualquier función derivable de I en R , que sea solución de la	
ecuación diferencial (I), es de la forma indicada en el apartado anterior.	
4 Sea $a \in I$. Demostrar que, si $f(a) \neq 0$, todas las rectas tangentes a las curvas $y = C\varphi + \psi$, en los puntos de abscisa $x = a$, se cortan en un punto. Calcular este punto.	
5 Sea $a \in I$. Demostrar que, si $f(a) = 0$, todas las rectas tangentes a las curvas $y = C\phi + \psi$, en los puntos de abscisa $x = a$, son paralelas. Calcular su pendiente.	
6 Obtener la solución de la ecuación diferencial $y' = \frac{y}{senx} + tg\frac{x}{2}$, para $0 < x < \pi$, que verifique $y(\frac{\pi}{2}) = y(-\frac{\pi}{2}) = 1$.	
Solución	

- $\varphi(b) = a \ (a \neq 0)$, y es de la forma indicada, se demuestra del mismo modo que en el ejercicio resuelto que se puso en el foro.
- 2.- Teniendo en cuenta las hipótesis, se tiene que, fijada cualquier constante $C \in R$, la función $y = C\varphi + \psi$ es una función derivable, definida en *I*, que verifica:

$$y'=C\varphi'+\psi'=C(f\varphi)+f\psi+g=f(C\varphi+\psi)+g=fy+g.$$

Luego la función $y = C\varphi + \psi$ es solución de (I).

3.- Supongamos que $h: I \to R$ es una función derivable, solución de (I). Se tiene que h' = fh + g.

Puesto que la función φ no se anula en ningún punto, en particular, dado $b \in I$,

$$\varphi(b) \neq 0$$
. Ponemos $K = \frac{h(b) - \psi(b)}{\varphi(b)}$.

La función $y_1 = K\varphi + \psi$ es derivable y es solución de (I), según hemos probado en el apartado anterior. Además, verifica que

$$y_1(b) = K\varphi(b) + \psi(b) = h(b) - \psi(b) + \psi(b) = h(b).$$

En consecuencia, la función $h - y_1$ es derivable, está definida en toda la recta, y cumple que

$$(h-y_1)' = h'-y_1' = (fh+g)-(fy_1+g) = fh-fy_1 = f(h-y_1)$$
. Luego $h-y_1$ es solución de la ecuación diferencial $y' = fy$.

Si $h - y_1$ no fuera idénticamente nula, entonces $h - y_1$ no se anularía en ningún punto, según se probó en el primer apartado. Ahora bien, se tiene que

$$(h-y_1)(b)=h(b)-y_1(b)=h(b)-h(b)=0$$
. Luego $h-y_1$ debe ser idénticamente nula. Por tanto, $h=y_1=K\varphi+\psi$, siendo $K=\frac{h(b)-\psi(b)}{\varphi(b)}$.

Hemos probado así que cualquier solución de (I) es de la forma indicada en el apartado anterior.

4.- Suponemos que a es un número real verificando que $f(a) \neq 0$. Sea $C \in R$ una constante arbitraria.

Una recta tangente a la curva $y = C\varphi + \psi$, en el punto $(a, y(a)) = (a, C\varphi(a) + \psi(a))$, tiene como pendiente

$$y'(a) = (fy + g)(a) =$$

$$= f(a)y(a) + g(a) = f(a)(C\varphi(a) + \psi(a)) + g(a) = Cf(a)\varphi(a) + f(a)\psi(a) + g(a).$$

Por tanto, la ecuación de dicha recta tangente, Y - y(a) = y'(a)(x - a), es

$$Y - C\varphi(a) - \psi(a) = Cf(a)\varphi(a)(x-a) + [f(a)\psi(a) + g(a)](x-a).$$

O lo que es lo mismo,

$$Y = C\varphi(a)[1 + f(a)(x - a)] + [f(a)\psi(a) + g(a)](x - a) + \psi(a).$$

Esta expresión no depende de la constante C en el caso de que sea 1 + f(a)(x - a) = 0 (y sólo en ese caso, pues $\varphi(a) \neq 0$, ya que la función φ no se anula en ningún punto).

Ahora bien, ya que $f(a) \neq 0$ por hipótesis, se tiene que 1 + f(a)(x - a) = 0 si, y solamente si, $x - a = -\frac{1}{f(a)}$; o lo que es lo mismo, $x = a - \frac{1}{f(a)}$. Sustituyendo en la ecuación de la recta tangente, se tiene que, para este valor de x,

$$Y = [f(a)\psi(a) + g(a)](-\frac{1}{f(a)}) + \psi(a) = -\psi(a) - \frac{g(a)}{f(a)} + \psi(a) = -\frac{g(a)}{f(a)}.$$

Por tanto, si $f(a) \neq 0$, todas las rectas tangentes consideradas pasan por el punto $(a - \frac{1}{f(a)}, -\frac{g(a)}{f(a)})$.

(Una demostración distinta del mismo resultado, pero sin calcular el punto donde se cortan las tangentes, puede verse en el libro).

5.- Suponemos que a es un número real verificando que f(a) = 0. Sea $C \in R$ una constante arbitraria.

Una recta tangente a la curva $y = C\varphi + \psi$, en el punto $(a,y(a)) = (a,C\varphi(a)+\psi(a))$, tiene como pendiente

$$y'(a) = (fy + g)(a) = f(a)y(a) + g(a) = 0y(A) + g(a) = g(a).$$

Por tanto, dicha pendiente no depende de la constante C. Todas las rectas tangentes consideradas tienen esa misma pendiente (g(a)), luego son paralelas.

6.- Obsérvese que, para un número real x, $0 < |x| < \pi \Leftrightarrow x \in (-\pi, 0) \cup (0, \pi)$.

Consideremos en primer lugar la ecuación homogénea $y' = \frac{y}{senx}$ (0 < x < π). Pongamos $b = \frac{\pi}{2} \in (0,\pi)$.

De acuerdo con lo antes probado, una solución φ de la ecuación homogéna, definida en el intervalo abierto $I=(0,\pi)$, que verifique $\varphi(b)=a$ $(a\in R)$, es de la forma

 $\varphi(x) = ae^{\int_b^x \frac{1}{sent} dt}$, para todo $x \in I = (0, \pi)$, tanto si $a \neq 0$ (antes probado) como si a = 0 (como se comprueba fácilmente).

Ahora bien, haciendo el cambio de variable $u = tg \frac{t}{2}$, se tiene que t = 2arctg(u),

$$\frac{du}{dt} = \frac{1}{2\cos^{2}(\frac{t}{2})},$$

$$\int_{b}^{x} \frac{1}{sent} dt = \int_{b}^{x} \frac{1}{2sen(\frac{t}{2})\cos(\frac{t}{2})} dt = \int_{b}^{x} \frac{1/\cos^{2}(\frac{t}{2})}{2sen(\frac{t}{2})\cos(\frac{t}{2})/\cos^{2}(\frac{t}{2})} dt = \int_{b}^{x} \frac{1/\cos^{2}(\frac{t}{2})}{2tg(\frac{t}{2})} dt = \int_{tg\frac{b}{2}}^{u} \frac{1}{u} du = \log|u| - \log|tg(\frac{b}{2})| = \log|u| - \log|tg(\frac{\pi}{4})| = \log|u| - \log 1 = \log u - 0 = \log u = \log(|tg\frac{x}{2}|).$$
 (Nótese que $u = tg\frac{x}{2} = |u|$, pues $tg\frac{x}{2} > 0$, ya que $x \in (0,\pi)$.)

Luego $\varphi(x) = ae^{\log(\left|tg\frac{x}{2}\right|)} = a\left|tg\frac{x}{2}\right| = a tg\frac{x}{2}$, para todo $x \in (0,\pi)$.

una constante, para todo $x \in (0,\pi)$.

Por tanto, si consideramos una función derivable $g:(0,\pi)\to R$ tal que la función $\psi(x) = g(x)tg\frac{x}{2}$ sea una solución particular de la ecuación dada (es decir, de la ecuación $y' = \frac{y}{senx} + tg\frac{x}{2}$, en el intervalo abierto $(0,\pi)$, es inmediato comprobar que debe ser $g'(x)tg\frac{x}{2} = tg\frac{x}{2}$, para todo $x \in (0,\pi)$; luego debe ser g'(x) = 1 y g(x) = x + K, siendo K una constante, para $x \in (0,\pi)$, $x \neq 0$; y ya que la función g está bien definida y

Por tanto, de acuerdo con lo anterior, $y = (x + K)tg(\frac{x}{2})$, siendo K una constante, es la solución general de la ecuación dada, en el intervalo $(0,\pi)$.

es continua (pues es derivable) en el intervalo $(0,\pi)$, debe ser g(x) = x + K, siendo K

En el referido intervalo $(0,\pi)$, la solución que verifica $y(\frac{\pi}{2}) = 1$ es, por tanto, la única que cumple $1 = (\frac{\pi}{2} + K)tg(\frac{\pi}{4}) = \frac{\pi}{2} + K \Leftrightarrow K = 1 - \frac{\pi}{2} = \frac{2-\pi}{2}$.

Análogamente, si consideramos el intervalo abierto $J = (-\pi, 0)$, y ponemos por ejemplo $b = -\frac{\pi}{2} \in (-\pi, 0)$, se tiene que, dado $a \in R$, una solución φ de la ecuación homogéna, definida en el intervalo abierto $J=(-\pi,0)$, que verifique $\varphi(b)=a$, es de la

$$\varphi(x) = ae^{\log\left|tg\frac{x}{2}\right|} = a\left|tg\frac{x}{2}\right| = -a\ tg\frac{x}{2} = etg\frac{x}{2} \quad \text{(siendo } e = -a\text{), para todo}$$

 $x \in (-\pi, 0).$

También procediendo como antes, se comprueba que una solución general de la ecuación dada (es decir, de la ecuación $y' = \frac{y}{senx} + tg\frac{x}{2}$), en el intervalo abierto $J=(-\pi,0)$, es de la forma $y=(x+L)tg(\frac{x}{2})$, siendo L una constante.

En el referido intervalo $(-\pi,0)$, la solución que verifica $y(-\frac{\pi}{2})=1$ es, por tanto, la única que cumple $1 = \left(-\frac{\pi}{2} + L\right)tg\left(\frac{\pi}{4}\right) = \frac{\pi}{2} - L \Leftrightarrow L = \frac{\pi}{2} - 1 = \frac{\pi-2}{2}$.

En consecuencia, en el conjunto abierto $JUI = (-\pi, 0) \cup (0, \pi) = \left\{ x \in R / \ 0 < |x| < \pi \right\}, \text{ la solución de la ecuación cosniderada}$ $(y' = \frac{y}{senx} + tg\frac{x}{2}), \text{ que verifica } y(\frac{\pi}{2}) = y(-\frac{\pi}{2}) = 1, \text{ es única y es la siguiente:}$ $y = \begin{cases} (x + \frac{\pi-2}{2})tg(\frac{x}{2}), & \text{si } -\pi < x < 0 \\ (x + \frac{2-\pi}{2})tg(\frac{x}{2}), & \text{si } 0 < x < \pi \end{cases}$ (Es fácil realizar la comprehación y conviene hacerlo) (Es fácil realizar la comprobación, y conviene hacerlo).