Partiel

[Durée 1h30. Aucun document n'est autorisé. Tous les exercices sont indépendantes. Seules les réponses soigneusement justifiées seront prises en compte.]

Dans la suite $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace de probabilité fixé et muni d'une filtration $(\mathcal{F}_n)_{n\geqslant 0}$. Sauf indication explicite tout processus adapté ou martingale est référé à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$. On rappel que $\Delta X_k = X_k - X_{k-1}$.

Exercice 1. Soit $Z \sim \mathcal{E}(1)$ une v.a. exponentielle de paramètre 1. Soit $Y = \mathbb{I}_{1 \leqslant Z \leqslant 2}$. Calculer $\mathbb{E}[Z|Y]$ et $\mathbb{E}[Y|Z]$.

Exercice 2. Soit $(X_n)_{n\geqslant 0}$ un processus adapté et integrable. Montrer que si $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ pour tout temps d'arrêt borné T alors $(X_n)_{n\geqslant 0}$ est une martingale.

Exercice 3. Soit $(X_n)_{n\geqslant 0}$ une sous-martingale telle que pour tout $n\geqslant 0$ on a $|X_n|\leqslant Z$ où Z est une v.a. integrable. Soient S,T deux temps d'arrêt tels que $0\leqslant S\leqslant T$ et que $\mathbb{E}[T]<+\infty$. On pose $V_k=\mathbb{I}_{S< k\leqslant T}$ pour tout $k\geqslant 0$.

- a) Montrer que $(V_k)_{k\geqslant 1}$ est un processus previsible.
- b) Montrer que $((V \bullet X)_n)_{n \ge 0}$ est une sous-martingale.
- c) Calculer $(V \bullet X)_n$ pour tout $n \ge 0$.
- d) En déduire que $\mathbb{E}[X_S] \leq \mathbb{E}[X_T]$.

Exercice 4. Soit $(X_n)_{n\geqslant 1}$ une suite iid de v.a. de loi $\mathbb{P}(X_n=-1)=\mathbb{P}(X_n=+1)=1/2$. Soit $(\mathcal{F}_n)_{n\geqslant 1}$ la filtration engendrée par les $(X_n)_{n\geqslant 1}$. On considère la marche aléatoire simple $S_n=X_1+\cdots+X_n$ qui démarre de 0 et $T=\inf\{n\geqslant 0\colon S_n=1\}$ le premier temps d'atteinte de 1. Le but de l'exercice est de montrer que T est fini p.s. mais non intégrable.

- a) Soit $(S_n^T)_{n\geqslant 0}$ le processus arrêté en T. Montrer que $(S_n^T)_{n\geqslant 0}$ converge p.s.
- b) En déduire que T est fini p.s. (indication: montrer que $S_n^T S_{n+1}^T$ tend vers 0 p.s.)
- c) La suite $(S_n^T)_{n\geq 0}$ converge-t-elle dans L^1 ?
- d) Montrer que T n'est pas intégrable (indication: raisonner par l'absurde)
- e) Pour tout $\theta > 0$ soit $M_n = \exp(\theta S_n \lambda(\theta)n)$. Déterminer la fonction $\lambda(\theta)$ de sorte que $(M_n)_{n \geq 0}$ soit une martingale.
- f) Calculer $\mathbb{E}[M_{n \wedge T}]$ pour tout $n \ge 1$.
- g) Montrer que $\mathbb{E}[e^{-\lambda(\theta)T}] = e^{-\theta}$.
- h) En déduire une formule pour la fonction generatrice de T, $\varphi_T(s) = \mathbb{E}[e^{sT}]$, pour $s \leq 0$.