A multiprover interactive proof system for the local Hamiltonian problem

Thomas Vidick
Caltech

Joint work with Joseph Fitzsimons SUTD and CQT, Singapore

Outline

1. Local verification of classical & quantum proofs

2. Quantum multiplayer games

3. Result: a game for the local Hamiltonian problem

- 4. Consequences:
 - a) The quantum PCP conjecture
 - b) Quantum interactive proof systems

Local verification of classical proofs

- $NP = \{ decision problems "does x have property P?" \}$ that have polynomial-time verifiable proofs }
 - Ex: Clique, chromatic number, Hamiltonian path
 - 3D Ising spin
 - Pancake sorting, Modal logic S5-Satisfiability, Super Mario, Lemmings
- Graph $G \rightarrow 3$ -SAT formula φ Cook-Levin theorem: 3-SAT is complete for NP
- $G \text{ 3-colorable} \Leftrightarrow \varphi \text{ satisfiable}$ Consequence: all problems in NP have local verification procedures
- Do we even need the whole proof?

 Proof required to guarantee consistency of assignment

$$\exists x, \varphi(x) = C_1(x)$$
 is C_2 (exponorable) $C_m(x) = 1$?

 $C_{10}(x) = x_3 \vee x_5 \vee \overline{x_8} ?$

Multiplayer games: the power of two Merlins

- Arthur ("referee") asks questions
- Two isolated Merlins ("players")
- Arthur checks answers.
- Value $\omega(G) = \sup_{Merlins} \Pr[Arthur accepts]$
- Ex: 3-SAT game $G=G_{\varphi}$

$$\exists x, \varphi(x) = C_1(x) \land C_2(x) \land \dots \land C_m(x) = 1$$
?

- Consequence: All languages in NP have truly local verification procedure
- PCP Theorem: poly-time $G_{\varphi} \to \widetilde{G_{\varphi}}$ such that $\omega(G_{\varphi}) = 1 \Longrightarrow \omega(\widetilde{G_{\varphi}}) = 1$ $\omega(G_{\varphi}) < 1 \Longrightarrow \omega(\widetilde{G_{\varphi}}) \le 0.9$

Local verification of quantum proofs

- QMA = { decision problems "does x have property P"
 that have quantum polynomial-time verifiable quantum proofs }
 - Ex: quantum circuit-sat, unitary non-identity check
 - Consistency of local density matrices, N-representability
- [Kitaev'99,Kempe-Regev'03] 3-local Hamiltonian is complete for QMA

$$H=\sum_i H_i$$
, each H_i acts on 3 out of n qubits. Decide: $\exists |\Gamma\rangle$, $\langle \Gamma|H|\Gamma\rangle \leq a=2^{-p(n)}$, or $\forall |\Phi\rangle$, $\langle \Phi|H|\Phi\rangle \geq b=1/q(n)$?

- Still need Merlin to provide complete state
- Today: is "truly local" verification of QMA problems possible?

Outline

1. Local verification of classical & quantum proofs

2. Quantum multiplayer games

3. Result: a game for the local Hamiltonian problem

- 4. Consequences:
 - a) The quantum PCP conjecture
 - b) Quantum interactive proof systems

Quantum multiplayer games

Quantum Arthur exchanges quantum messages with quantum Merlins

• Value $\omega^*(G) = \sup_{Merlins} \Pr[Arthur accepts]$

Measure $\Pi = \{\Pi^{acc}, \Pi^{rej}\}$

Quantum messages → more power to Arthur

- Entanglement → more power to Merlins...
- Can Arthur use entangled Merlins to his advantage?

The power of entangled Merlins (1)

The clause-vs-variable game

No entanglement:

$$\omega(G_{\varphi}) = 1 \Leftrightarrow \varphi \text{ SAT}$$

- Magic Square game: \exists 3-SAT φ , φ UNSAT but $\omega^*(G_\varphi)=1!$
- Not a surprise: $\omega^*(G) \gg \omega(G)$ is nothing else than Bell inequality violation

- [KKMTV'08,IKM'09] More complicated $\varphi \to \widetilde{G_{\varphi}}$ s.t. φ SAT $\Leftrightarrow \omega^*(\widetilde{G_{\varphi}}) = 1$ \to Arthur can still use entangled Merlins to decide problems in NP
- Can Arthur use entangled Merlins to decide QMA problems?

The power of entangled Merlins (2)

A Hamiltonian-vs-qubit game?

- Given H, can we design $G = G_H$ s.t.: $\exists |\Gamma\rangle, \langle \Gamma|H|\Gamma\rangle \leq a \quad \Rightarrow \ \omega^*(G) \approx 1$ $\forall |\Phi\rangle, \langle \Phi|H|\Phi\rangle \geq b \Rightarrow \ \omega^*(G) \ll 1$
- Some immediate difficulties:
 - Cannot check for equality of reduced densities
 - Local consistency
 ⇒ global consistency
 (deciding whether this holds is itself a QMA-complete problem)
 - [KobMat03] Need to use entanglement to go beyond NP
- Idea: split proof qubits between Merlins

The power of entangled Merlins (2)

A Hamiltonian-vs-qubit game?

• [AGIK'09] Assume *H* is 1D

- Merlin₁ takes even qubits,
 Merlin₂ takes odd qubits
- $\omega^*(G_H) = 1 \Rightarrow \exists |\Gamma\rangle, \langle \Gamma|H|\Gamma\rangle \approx 0$?

• Bad example: the EPR Hamiltonian $H_i = |EPR\rangle\langle EPR|_{i,i+1}$ for all i

• Highly frustrated, but $\omega^*(G_H) = 1!$

The difficulty

The difficulty

Can we check existence of global state $|\Gamma\rangle$ from "local snapshots" only?

Outline

1. Checking proofs locally

- 2. Entanglement in quantum multiplayer games
- Result: a quantum multiplayer game for the local Hamiltonian problem
- 4. Consequences:
 - 1. The quantum PCP conjecture
 - 2. Quantum interactive proof systems

Result: a five-player game for LH

Given 3-local H on n qubits, design 5-player $G = G_H$ such that:

• $\exists |\Gamma\rangle$, $\langle \Gamma | H | \Gamma \rangle \leq a \Rightarrow \omega^*(G) \geq 1 - a/2$

- Consequence: the value $\omega^*(G)$ for G with n classical questions, 3 answer qubits, 5 players, is QMA-hard to compute to within $\pm 1/poly(n)$
- Consequence: $QMIP \subseteq QMIP^*(1-2^{-p}, 1-2\cdot 2^{-p})$ (unless $NEXP = QMA_{EXP}$)

The game $G = G_H$

- ECC E corrects ≥ 1 error (ex: 5-qubit Steane code)
- Arthur runs two tests (prob 1/2 each):
- 1. Select random H_ℓ on q_i , q_j , q_k
 - a) Ask each Merlin for its share of q_i , q_j , q_k
 - b) Decode E
 - c) Measure H_{ℓ}
- 2. Select random H_{ℓ} on q_i, q_j, q_k
 - a) Ask one (random) Merlin for its share of q_i, q_j, q_k . Select $s \in \{i, j, k\}$ at random; ask remaining Merlins for their share of q_s
 - b) Verify that all shares of q_s lie in codespace
- Completeness: $\exists |\Gamma\rangle$, $\langle \Gamma|H|\Gamma\rangle \leq a \Rightarrow \omega^*(G) \geq 1 a/2$

$$\exists |\Gamma\rangle, \langle \Gamma|H_1|\Gamma\rangle + \cdots \langle \Gamma|H_m|\Gamma\rangle \leq \alpha?$$

Soundness: cheating Merlins (1)

• Example: EPR Hamiltonian

- Cheating Merlins share single EPR pair
- On question $H_{\ell} = \{q_{\ell}, q_{\ell+1}\}$, all Merlins sends back both shares of EPR
- On question q_i , all Merlins send back their share of first half of EPR
- All Merlins asked $H_{\ell} \to$ Arthur decodes correctly and verifies low energy \checkmark
- One Merlin asked $H_i = \{q_i, q_{i+1}\}$ or $H_{i-1} = \{q_{i-1}, q_i\}$, others asked q_i
 - If H_i , Arthur checks his first half with other Merlin's \rightarrow accept \checkmark
 - If H_{i+1} , Arthur checks his second half with otherMerlin's \rightarrow reject
- Answers from 4 Merlins + code property commit remaining Merlin's qubit

Soundness: cheating Merlins (2)

- Goal: show $\forall |\Phi\rangle$, $\langle \Phi|H|\Phi\rangle \geq b \Rightarrow \omega^*(G) \leq 1 b/n^c$
- Contrapositive: $\omega^*(G) > 1 b/n^c \Rightarrow \exists |\Gamma\rangle, \langle \Gamma|H|\Gamma\rangle < b$
 - → extract low-energy witness from successful Merlin's strategies
- Given:
 - 5-prover entangled state $|\psi\rangle$
 - For each i, unitary U_i extracts Merlin's answer qubit to q_i
 - For each term H_{ℓ} on q_i, q_j, q_k , unitary V_{ℓ} extracts $\{q_i, q_j, q_k\}$

- Unitaries local to each Merlin, but no a priori notion of qubit
- Need to *simultaneously* extract $q_1, q_2, q_3, ...$

Soundness: cheating Merlins (3)

We give circuit generating low-energy witness $|\Gamma\rangle$ from successful Merlin's strategies

 $q_1 \\ q_2$

Outline

1. Checking proofs locally

- 2. Entanglement in quantum multiplayer games
- 3. Result: a quantum multiplayer game for the local Hamiltonian problem
- 4. Consequences:
 - 1. The quantum PCP conjecture
 - 2. Quantum interactive proof systems

Perspective: the quantum PCP conjecture

PCP theorem (1):

constant-factor approximations to $\omega(G)$ are NP-hard

Clause-vsvariable game PCP theorem (2): Given 3-SAT φ , it is NP-hard to decide between 100%-SAT vs \leq 99%-SAT

Kitaev's QMA-completeness result for LH is a first step towards:

[AALV'10] Quantum PCP conjecture: There exists constants $\alpha < \beta$ such that given local $H = H_1 + \cdots + H_m$, it is QMA-hard to decide between:

- $\exists |\Gamma\rangle$, $\langle \Gamma|H|\Gamma\rangle \leq a = \alpha m$, or
- $\forall |\Phi\rangle$, $\langle \Phi|H|\Phi\rangle \geq b = \beta m$

No known implication!

Our results are a first step towards:

Quantum PCP conjecture*: constant-factor approximations to $\omega^*(G)$ are QMA-hard

Consequences for interactive proof systems

 $L \in MIP(c,s)$ if $\exists x \to G_x$ such that

- $x \in L \Rightarrow \omega(G_x) \geq c$
- $x \notin L \Rightarrow \omega(G_x) \leq s$

 $L \in QMIP^*(c,s)$ if $\exists x \to G_x$ such that

- $x \in L \Rightarrow \omega^*(G_x) \ge c$
- $x \notin L \Rightarrow \omega^*(G_x) \leq s$

Cook-Levin:

$$NEXP = MIP(1,1-2^{-p})$$

PCP:

$$NEXP = MIP(1,1/2)$$

• [KKMTV'08,IKM'09]

$$NEXP \subseteq (Q)MIP^*(1,1-2^{-p})$$

• [IV'13]

$$NEXP \subseteq (Q)MIP^*(1,1/2)$$

- Our result: $QMA_{EXP} \subseteq QMIP^*(1 2^{-p}, 1 2 \cdot 2^{-p})$
- Consequence: $QMIP \neq QMIP^*(1 2^{-p}, 1 2 \cdot 2^{-p})$

(unless
$$NEXP = QMA_{EXP}$$
)

Summary

- Design "truly local" verification pocedure for LH
- Entangled Merlins strictly more powerful than unentangled
- Proof uses ECC to recover global witness from local snapshots

Questions

- Design a game with classical answers for LH?
 [RUV'13] requires poly rounds
- Prove Quantum PCP Conjecture*
- What is the relationship between QPCP and QPCP*?
- Are there quantum games for languages beyond QMA?

Thank you!

