

Deterministic finite automaton

Seminar 15.5

- an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can transit from one state to another in response to some inputs;
- FSM consists of:
 - O Transition table defines transitions for current state and particular inout
 - O Current state set of states, in which machine can be at that particular moment
 - Starting, Terminal states

• Deterministic FSM — Each state has only one rule of reaction for any possible input

Turing Machine

• Deterministic FSM — $(\Sigma, Q, s \in Q, T \subset Q, \delta : Q \times \Sigma \rightarrow Q)$

o ∑ **-**

 $\circ Q$ -

05-

 $\circ T$ -

· δ -

- Deterministic FSM $(\Sigma, Q, s \in Q, T \subset Q, \delta : Q \times \Sigma \rightarrow Q)$
 - $^{\rm O}$ Σ alphabet, out of which consists input words
 - $^{\circ}Q$ finite set of FSM's possible states
 - O_S start state
 - \circ T set of accept states
 - $^{\circ}\delta$ transition function

- Deterministic FSM $(\Sigma, Q, s \in Q, T \subset Q, \delta : Q \times \Sigma \rightarrow Q)$
 - $^{\circ} \Sigma$ alphabet, out of which consists input words
 - $^{\circ}Q$ finite set of FSM's possible states
 - O S start state
 - \circ T set of accept states
 - $^{\circ}\delta$ transition function

- Deterministic FSM $(\Sigma, Q, s \in Q, T \subset Q, \delta : Q \times \Sigma \rightarrow Q)$
 - $^{\circ} \Sigma$ alphabet, out of which consists input words
 - $^{\circ}Q$ finite set of FSM's possible states
 - O_S start state
 - \circ T set of accept states
 - $^{\circ}\delta$ transition function

Turing Machine

- a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of endless tape according to a table of rules
- memory tape is divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine
- a head is positioned over one of these cells, and a state is selected from a finite set of states.
- The choice of the following transition is based on a finite table of rules

- Turing Machine $(\Sigma, \Pi, B, Q, s, T, N\delta)$
 - $^{\rm o}$ Π \supset Σ set of symbols possible to be written by head
 - $\circ B \in \Pi/\Sigma$ blank symbol between words
 - $\circ N \in \mathcal{Q}$ declining automation state
 - $\circ \delta: \Pi \times Q \to \Pi \times Q \times \{\leftarrow, \rightarrow, \downarrow\}$ transition function

Maximum Flow problem Definitions

- Cut is a set of edges, required for the connectivity of source & sink, s&t respectively
- Maximum s-t flow value equals the minimum capacity of s-t cut

