第七章 复合优化算法

修贤超

https://xianchaoxiu.github.io

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

邻近算子

■ 考虑如下复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

- □ f(x) 为可微函数 (可能非凸)
- □ h(x) 可能为不可微函数
- 定义 7.1 对于一个凸函数 h, 定义邻近算子为

$$\operatorname{prox}_h(x) = \arg\min_{u} \left\{ h(u) + \frac{1}{2} ||u - x||_2^2 \right\}$$

■ 定理 7.1 如果 h 为闭凸函数,则对任意 x 有 $prox_h(x)$ 存在且唯一

邻近算子

■ 定理 7.2 若ħ 是适当的闭凸函数,则

$$u = \operatorname{prox}_h(x) \quad \Leftrightarrow \quad x - u \in \partial h(u)$$

证明 若 $u =_h (x)$, 则由最优性条件得 $0 \in \partial h(u) + (u - x)$, 因此有 $x - u \in \partial h(u)$. 反之,若 $x - u \in \partial h(u)$ 则由次梯度的定义可得到

$$h(v) \geqslant h(u) + (x - u)^{\top} (v - u), \quad \forall v \in \text{dom } h$$

两边同时加 $\frac{1}{2}||v-x||^2$, 即有

$$h(v) + \frac{1}{2} \|v - x\|^2 \ge h(u) + (x - u)^{\top} (v - u) + \frac{1}{2} \|(v - u) - (x - u)\|^2$$
$$\ge h(u) + \frac{1}{2} \|u - x\|^2, \quad \forall v \in \text{dom } h$$

根据定义可得 $u =_h (x)$

■ ℓ_1 范数 $h(x) = ||x||_1$, $\operatorname{prox}_{th}(x) = \operatorname{sign}(x) \max\{|x| - t, 0\}$

证明 邻近算子 $u = \text{prox}_{th}(x)$ 的最优性条件为

$$x - u \in t\partial ||u||_1 = \begin{cases} \{t\}, & u > 0 \\ [-t, t], & u = 0 \\ \{-t\}, & u < 0 \end{cases}$$

当 x > t 时, u = x - t; 当 x < -t 时, u = x + t; 当 $x \in [-t, t]$ 时, u = 0 因此 $u = \text{sign}(x) \max\{|x| - t, 0\}$

■
$$\ell_2$$
 范数 $h(x) = \|x\|_2$, $\operatorname{prox}_{th}(x) = \begin{cases} (1 - \frac{t}{\|x\|_2})x, & \|x\|_2 \geqslant t \\ 0, & \text{其他} \end{cases}$

证明 邻近算子 $u = \text{prox}_{th}(x)$ 的最优性条件为

$$x - u \in t\partial ||u||_2 = \begin{cases} \{\frac{tu}{||u||_2}\}, & u \neq 0\\ \{w : ||w||_2 \leqslant t\}, & u = 0 \end{cases}$$

当
$$||x||_2 > t$$
 时, $u = x - \frac{tx}{||x||_2}$; 当 $||x||_2 \leqslant t$ 时, $u = 0$

- 邻近算子的计算规则
 - \Box 变量的常数倍放缩以及平移 $(\lambda \neq 0)$

$$h(x) = g(\lambda x + a), \quad \operatorname{prox}_h(x) = \frac{1}{\lambda} \left(\operatorname{prox}_{\lambda^2 g}(\lambda x + a) - a \right)$$

 \Box 函数(及变量)的常数倍放缩 $(\lambda > 0)$

$$h(x) = \lambda g\left(\frac{x}{\lambda}\right), \quad \operatorname{prox}_h(x) = \lambda \operatorname{prox}_{\lambda^{-1}g}\left(\frac{x}{\lambda}\right)$$

□ 加上线性函数

$$h(x) = g(x) + a^{\mathsf{T}}x, \quad \operatorname{prox}_h(x) = \operatorname{prox}_g(x - a)$$

□ 加上二次项 (u > 0)

$$h(x) = g(x) + \frac{u}{2} ||x - a||_2^2, \quad \text{prox}_h(x) = \text{prox}_{\theta g}(\theta x + (1 - \theta)a)$$

其中
$$\theta = \frac{1}{1+u}$$

□ 向量函数

$$h\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \varphi_1(x) + \varphi_2(y), \quad \operatorname{prox}_h\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} \operatorname{prox}_{\varphi_1}(x) \\ \operatorname{prox}_{\varphi_2}(y) \end{array}\right]$$

 $lue{}$ 设C 为闭凸集,则示性函数 I_C 的邻近算子为点 x 到 C 的投影 $\mathcal{P}_C(x)$

$$\operatorname{prox}_{I_C}(x) = \underset{u}{\operatorname{arg \, min}} \left\{ I_C(u) + \frac{1}{2} \|u - x\|^2 \right\}$$
$$= \underset{u \in C}{\operatorname{arg \, min}} \|u - x\|^2$$
$$= \mathcal{P}_C(x)$$

■几何意义

$$u = \mathcal{P}_C(x) \quad \Leftrightarrow \quad (x - u)^\top (z - u) \leqslant 0, \quad \forall z \in C$$

近似点梯度法

■ 考虑复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

■ 对于光滑部分 f 做梯度下降, 对于非光滑部分 h 使用邻近算子

```
========
```

- 1 给定函数 f(x),h(x), 初始点 x^0
- 2 while 未达到收敛准则 do
- $3 x^{k+1} = \operatorname{prox}_{t_k h}(x^k t_k \nabla f(x^k))$
- 4 end while

对近似点梯度法的理解

■ 把迭代公式展开

$$x^{k+1} = \operatorname{prox}_{t_k h}(x^k - t_k \nabla f(x^k))$$

$$\downarrow \downarrow$$

$$x^{k+1} = \arg\min_{u} \left\{ h(u) + \frac{1}{2t_k} \|u - x^k + t_k \nabla f(x^k)\|^2 \right\}$$

$$= \arg\min_{u} \left\{ h(u) + f(x^k) + \nabla f(x^k)^\top (u - x^k) + \frac{1}{2t_k} \|u - x^k\|^2 \right\}$$

■ 根据邻近算子与次梯度的关系, 可改写为

$$x^{k+1} = x^k - t_k \nabla f(x^k) - t_k g^k, \quad g^k \in \partial h(x^{k+1})$$

■ 对光滑部分做显式的梯度下降,对非光滑部分做隐式的梯度下降

步长选取

■ 当f 为梯度 L-利普希茨连续函数时,可取固定步长 $t_k = t \leqslant \frac{1}{L}$. 当 L 未知时可使用线搜索准则

$$f(x^{k+1}) \le f(x^k) + \nabla f(x^k)^{\top} (x^{k+1} - x^k) + \frac{1}{2t_k} ||x^{k+1} - x^k||^2$$

■ 利用 BB 步长作为 t_k 的初始估计并用非单调线搜索进行校正

$$\alpha_{\text{BB1}}^k = \frac{(s^{k-1})^\top y^{k-1}}{(y^{k-1})^\top y^{k-1}} \quad \mathbf{\vec{g}} \quad \alpha_{\text{BB2}}^k = \frac{(s^{k-1})^\top s^{k-1}}{(s^{k-1})^\top y^{k-1}}$$

其中
$$s^{k-1} = x^k - x^{k-1}$$
 以及 $y^{k-1} = \nabla f(x^k) - \nabla f(x^{k-1})$

■ 可构造如下适用于近似点梯度法的非单调线搜索准则

$$\psi(x^{k+1}) \le C^k - \frac{c_1}{2t_k} \|x^{k+1} - x^k\|^2$$

■ 考虑用近似点梯度法求解 LASSO 问题

$$\min_{x} \quad \mu \|x\|_{1} + \frac{1}{2} \|Ax - b\|^{2}$$

• $\Rightarrow f(x) = \frac{1}{2} ||Ax - b||^2, h(x) = \mu ||x||_1, \, \mathbf{M}$

$$\nabla f(x) = A^{\top} (Ax - b)$$
$$\operatorname{prox}_{t_k h}(x) = \operatorname{sign}(x) \max \{|x| - t_k \mu, 0\}$$

■ 相应的迭代格式为

$$y^{k} = x^{k} - t_{k}A^{\top}(Ax^{k} - b)$$
$$x^{k+1} = \text{sign}(y^{k}) \max\{|y^{k}| - t_{k}\mu, 0\}$$

即第一步做梯度下降, 第二步做收缩

■ 使用 BB 步长加速收敛

应用举例: 低秩矩阵恢复

■ 考虑低秩矩阵恢复模型

$$\min_{X \in \mathbb{R}^{m \times n}} \quad \mu \|X\|_* + \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2$$

令

$$f(X) = \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2, \quad h(X) = \mu ||X||_*$$

■ 定义矩阵

$$P_{ij} = \begin{cases} 1, & (i,j) \in \Omega \\ 0, & \not\exists \text{ th} \end{cases}$$

则

$$f(X) = \frac{1}{2} ||P \odot (X - M)||_F^2$$

应用举例: 低秩矩阵恢复

■进一步可以得到

$$\nabla f(X) = P \odot (X - M)$$
$$\operatorname{prox}_{t_k h}(X) = U \operatorname{Diag}(\max\{|d| - t_k \mu, 0\}) V^{\top}$$

■ 得到近似点梯度法的迭代格式

$$Y^{k} = X^{k} - t_{k}P \odot (X^{k} - M)$$
$$X^{k+1} = \operatorname{prox}_{t_{k}h}(Y^{k})$$

收敛性分析

- 假设 7.1 为了保证近似点梯度算法的收敛性

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y$$

- □ h 是适当的闭凸函数 (因此 th 的定义是合理的)
- 定理 7.3 在假设 7.1 下,取定步长为 $t_k = t \in (0, \frac{1}{L}]$,设 $\{x^k\}$ 为迭代产生序列,则

$$\psi(x^k) - \psi^* \leqslant \frac{1}{2kt} \|x^0 - x^*\|^2$$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

典型问题形式

■ 考虑如下复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

■ f(x) 是连续可微的凸函数,且梯度是利普西茨连续的

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

■ h(x) 是适当的闭凸函数, 且临近算子

$$\operatorname{prox}_h(x) =_{u \in \operatorname{dom}h} \left\{ h(u) + \frac{1}{2} ||x - u||^2 \right\}$$

■ 近似点梯度法

$$x^{k+1} = \operatorname{prox}_{t_k h}(x^k - t_k \nabla f(x^k))$$

在步长取常数 $t_k = 1/L$ 时,收敛速度为 (1/k)

Nesterov 加速算法简史

- Nesterov 分别在 1983 年、1988 年和 2005 年提出了三种改进的一阶算法,收敛速度能达到 $\mathcal{O}\left(\frac{1}{k^2}\right)$
- Beck 和 Teboulle 在 2008 年提出了 FISTA 算法, 第一步沿着前两步的计算方向计算一个新点, 第二步在该新点处做一步近似点梯度迭代

FISTA 的等价形式

- 1 $\hat{m} \lambda x^0 = x^{-1} \in \mathbb{R}^n, k \leftarrow 1$
- 2 while 未达到收敛准则 do
- 3 计算 $y^k = x^{k-1} + \frac{k-2}{k+1}(x^{k-1} x^{k-2})$
- 4 选取 $t_k = t \in (0, 1/L]$, 计算 $x^k = \text{prox}_{t_k h}(y^k t_k \nabla f(y^k))$
- $5 k \leftarrow k+1$
- 6 end while

========

- **1** $\hat{\mathbf{h}} \lambda x^0 = x^{-1} \in \mathbb{R}^n, k \leftarrow 1$
- 2 while 未达到收敛准则 do
- 3 计算 $y^k = (1 \gamma_k)x^{k-1} + \gamma_k v^{k-1}$
- 4 选取 t_k , 计算 $x^k = \operatorname{prox}_{t_k h}(y^k t_k \nabla f(y^k))$
- 5 计算 $v^k = x^{k-1} + \frac{1}{\gamma_k} (x^k x^{k-1})$
- 6 $k \leftarrow k+1$
- 7 end while

第二类 Nesterov 加速算法

■ 第二类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$
$$y^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})h} \left(y^{k-1} - \frac{t_{k}}{\gamma_{k}} \nabla f(z^{k}) \right)$$
$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

■ 三个序列 $\{x^k\}$, $\{y^k\}$ 和 $\{z^k\}$ 都可以保证在定义域内

$$y^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})h}(y^{k-1} - (t_{k}/\gamma_{k})\nabla f(z^{k}))$$

$$y^{k-1} \quad z^{k} \quad x^{k-1}$$

第三类 Nesterov 加速算法

■ 第三类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$y^{k} = \operatorname{prox}_{(t_{k} \sum_{i=1}^{k} 1/\gamma_{i})h} \left(-t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} \nabla f(z^{i}) \right)$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

- 计算 y^k 时需要利用全部已有的 $\{\nabla f(z^i)\}, i=1,2,\cdots,k$
- lacksquare 取 $\gamma_k=rac{2}{k+1}$, $t_k=rac{1}{L}$ 时,也有 $\mathcal{O}\left(rac{1}{k^2}
 ight)$ 的收敛速度

针对非凸问题的 Nesterov 加速算法

- 考虑 f(x) 是非凸函数,但可微且梯度是利普希茨连续
- 非凸复合优化问题的加速梯度法框架

$$z^{k} = \gamma_{k} y^{k-1} + (1 - \gamma_{k}) x^{k-1}$$
$$y^{k} = \operatorname{prox}_{\lambda_{k} h} \left(y^{k-1} - \lambda_{k} \nabla f(z^{k}) \right)$$
$$x^{k} = \operatorname{prox}_{t_{k} h} \left(z^{k} - t_{k} \nabla f(z^{k}) \right)$$

- \blacksquare 当 λ_k 和 t_k 取特定值时,它等价于第二类 Nesterov 加速算法
- $lacksymbol{\blacksquare}$ 当 f 为凸函数,收敛速度为 $\mathcal{O}\left(rac{1}{k^2}
 ight)$; 当 f 为非凸函数,收敛速度为 $\mathcal{O}\left(rac{1}{k}
 ight)$

■ 考虑 LASSO 问题

$$\min_{x} \quad \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1}$$

■ FISTA 算法可以由下面的迭代格式给出

$$y^{k} = x^{k-1} + \frac{k-2}{k+1}(x^{k-1} - x^{k-2})$$

$$w^{k} = y^{k} - t_{k}A^{T}(Ay^{k} - b)$$

$$x^{k} = \operatorname{sign}(w^{k}) \max\{|w^{k}| - t_{k}\mu, 0\}$$

■ 与近似点梯度算法相同,由于最后一步将 w^k 中绝对值小于 $t_k \mu$ 的分量置零,该算法能够保证迭代过程中解具有稀疏结构

■ 第二类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$w^{k} = y^{k-1} - \frac{t_{k}}{\gamma_{k}}A^{\top}(Az^{k} - b)$$

$$y^{k} = \operatorname{sign}(w^{k}) \max \left\{ |w^{k}| - \frac{t_{k}}{\gamma_{k}}\mu, 0 \right\}$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

■ 第三类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$w^{k} = -t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} A^{T} (Az^{i} - b)$$

$$y^{k} = \operatorname{sign}(w^{k}) \max \left\{ |w^{k}| - t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} \mu, 0 \right\}$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

 $lacksymbol{\mathbb{R}} \mu = 10^{-3}$, 步长 $t = \frac{1}{L}$, 这里 $L = \lambda_{\max}(A^{\top}A)$

收敛性分析

■ 定理 7.5 在假设 7.1 下,取定步长 $t_k = t \in (0, 1/L]$. 设 $\{x^k\}$ 是由近似点梯度法迭代产生的序列,则

$$\psi(x^k) - \psi^* \le \frac{1}{2kt} \|x^0 - x^*\|^2$$

■ <mark>推论 7.1</mark> 在假设 7.1 下,当用 FISTA 算法求解凸复合优化问题时,若迭代点 x^k, y^k ,步长 t_k 以及组合系数 γ_k 满足一定条件,则

$$\psi(x^k) - \psi(x^*) \le \frac{C}{k^2}$$

其中 C 仅与函数 f ,初始点 x^0 的选取有关.特别地,采用线搜索的 FISTA 算法具有 $\mathcal{O}\left(\frac{1}{k^2}\right)$ 的收敛速度

Q&A

Thank you!

感谢您的聆听和反馈