

Name: K.Alekya Batch: COMETFWC024

Date: 16 May 2025

Also, it is given that

$$\angle PST = \angle PRQ(2)$$

So,

$$\angle PRQ = \angle PQR$$
 [From (1) and (2)]

Therefore,

$$PQ = PR$$
 (Sides opposite the equal angles)

i.e., PQR is an isosceles triangle.

EXERCISE 6.2

1. In Fig. 6.17, (i) and (ii), $DE \parallel BC$. Find EC in (i) and AD in (ii).

(i) C 2. E and F are points on the sides PQ and PR respectively of a $\triangle PQR$. For each of the following cases, state whether $EF \parallel QR$:

(i)
$$PE = 3.9$$
 cm, $EQ = 3$ cm, $PF = 3.6$ cm and F

(ii)
$$PE = 4$$
 cm, $QE = 4.5$ cm, $PF = 8$ cm and RF

(iii)
$$PQ = 1.28$$
 cm, $PR = 2.56$ cm, $PE = 0.18$ cm a

3. In Fig. 6.18, if $LM \parallel CB$ and $LN \parallel CD$, prove that $^{4\,\mathrm{cm}}$

$$\frac{AM}{AB} = \frac{AN}{AD}$$

Fig. 6.19

4. In Fig. 6.19, $DE \parallel AC$ and $DF \parallel AE$. Prove that

$$\frac{BF}{FE} = \frac{BE}{EC}$$

5. In Fig. 6.20, $DE \parallel OQ$ and $DF \parallel OR$. Show that $EF \parallel QR$.

Fig. 6.20

Fig. 6.21

- 6. In Fig. 6.21, A, B and C are points on OP, OQ and OR respectively such that $AB \parallel PQ$ and $AC \parallel PR$. Show that $BC \parallel QR$.
- 7. Using Theorem 6.1, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX.)
- 8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX.)
- 9. ABCD is a trapezium in which $AB \parallel DC$ and its diagonals intersect each other at the point O. Show that

$$\frac{AO}{BO} = \frac{CO}{DO}$$

10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that

$$\frac{AO}{BO} = \frac{CO}{DO}$$

Show that ABCD is a trapezium.