Studium Talent

Lista 1. Zasada Indukcji Matematycznej.

- 1. Udowodnić poniższe wzory dla $n \ge 1$ przy pomocy Zasady indukcji matematycznej:
 - a) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$,
 - b) $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$,
 - c) $1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n-1)2^{n+1} + 2$,
 - d) $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! 1$.
- 2. Obliczając wartości dla kilku początkowych $n \ge 1$ odgadnij wzór na sumę i wykaż jego prawdziwość za pomocą indukcji matematycznej:
 - a) $1 + \frac{1}{\sqrt{1+\sqrt{2}}} + \frac{1}{\sqrt{2+\sqrt{3}}} + \dots + \frac{1}{\sqrt{n-1}+\sqrt{n}}$
 - b) $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{(2n-1)(2n+1)}$.
- 3. Zapisać wzory z zadań 1 i 2 przy pomocy znaku sumy Σ .
- 4. Udowodnić poniższe nierówności przy pomocy Zasady indukcji matematycznej.
 - a) Nierówność Bernoulli'ego: $(1+x)^n \ge 1 + nx$, $x \ge -1$, $n \ge 1$,
 - b) $3^n \ge n^2 + n$, $n \ge 1$,
 - c) $n! > 2^n, \quad n \ge 4,$
 - d) $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$, $n \ge 1$.
- 5. Udowodnić poniższe własności podzielności przy pomocy Zasady indukcji matematycznej
 - a) 6 dzieli $n^3 n$,
 - b) 10 (dla ambitniejszych 30) dzieli $n^5 n$,
 - c) 11 dzieli $10^n (-1)^n$,
 - d) 10 dzieli $2^{2^n} 6$.
- 6. Przy pomocy Zasady indukcji matematycznej udowodnić, że n-kąt wypukły, $n \geq 3$, ma $\frac{n(n-3)}{2}$ przekątnych.
- 7. Z szachownicy o wymiarach $2^n \times 2^n$ usunięto jedno pole. Wykaż, że otrzymaną figurę można pokryć tryminami, tzn. kostkami złożonymi z trzech jednostkowych kwadratów, w kształcie równoramiennej elki.
- 8. Znajdź błąd w poniższym rozumowaniu.

<u>Stwierdzenie</u>: Dla każdego $n \ge 1$, każda grupa n kotów składa się z kotów tego samego koloru (czyli po prostu wszystkie koty sa tego samego koloru).

Dowód indukcyjny:

- 1) n=1. Jeden kot ma taki sam kolor jak on sam, więc teza prawdziwa.
- 2) Załóżmy, że dla pewnego $n \ge 1$ każda grupa n kotów składa się z kotów tego samego koloru. Rozważmy n+1 elementową grupę kotów. Wyróżnijmy dwa z nich i najwijmy je Mruczek i Pusia. Nie licząc Pusi, grupa ta ma juz n elementów, więc, na mocy założenia indukcyjnego, wszystkie koty poza Pusią mają ten sam kolor. Analogicznie, wszystkie koty poza Mruczkiem też mają ten sam kolor. Tak więc, zarówno Mruczek jak i Pusia mają ten sam kolor, co reszta kotów w grupie, więc ostatecznie cała n+1 elementowa grupa kotów ma ten sam kolor.

Na mocy Zasady indukcji matematycznej, wszystkie koty mają ten sam kolor.