ECON 0150 | Economic Data Analysis The economist's data analysis pipeline.

Part 4.3 | Regression Assumptions, Multiple Sample Tests

Regression: Key Concepts A regression is a flexible way to run many statistical tests.

The Linear Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- β_0 is the intercept (value of \bar{y} when x = 0)
- β_1 is the slope (change in y per unit change in x)
- ε_i is the error term (random noise around the model)

OLS Estimation: Minimizes $\sum_{i=1}^{n} \varepsilon_i^2$

T-Tests Using Regression One-sample t-test as a horizontal line model

- > *Model: Temperature* = $\beta_0 + \varepsilon$
- > Interpretation: The intercept β_0 is the estimated mean temperature
- > Green lines: Residuals (difference between data and mean)

> The t-test checks if β_0 is significantly different from zero

Example: Two-Sample t-Test Using Regression Is temperature lower with more green space?

 $Temperature = \beta_0 + \beta_1 \cdot HighGreen + \varepsilon$

Example: Two-Sample t-Test Using Regression Model: Temperature = $\beta_0 + \beta_1 \cdot HighGreen + \varepsilon$

> The t-test on β_1 tests if this difference is significant

 β_0 = Mean temperature in low green space cities (22.03°C)

= Temperature difference in high green space cities (-3.02°C)

Example: Neighborhood Income and Pollution Do low-income neighborhoods face higher pollution levels?

$$Pollution = \beta_0 + \beta_1 \cdot LowIncome + \varepsilon$$

Example: Neighborhood Income and Pollution *Model: Pollution* = $\beta_0 + \beta_1 \cdot LowIncome + \varepsilon$

> A significant positive β_1 suggests environmental quality differences between neighborhoods

- β_0 = Mean pollution in high-income areas (24.8)
- $\beta_1 = Additional pollution in low-income areas (+15.0)$

Example: Comparing Many Regions How does temperature differ across climate regions?

 $Temperature = \beta_0 + \beta_1 \cdot Mountain + \beta_2 \cdot Desert + \beta_3 \cdot Plains + \varepsilon$

Example: Comparing Many Regions Model: Temperature = $\beta_0 + \beta_1 \cdot Mountain + \beta_2 \cdot Desert + \beta_3 \cdot Plains + \varepsilon$

- β_0 = Mean temperature in Coastal areas (18.8°C)
- β_1 = Difference between Mountain and Coastal (-9.3°C)
- β_2 = Difference between Desert and Coastal (+10.5°C)
- β_3 = Difference between Plains and Coastal (-1.9°C)

Example: Comparing Many Regions

Model: Temperature = $\beta_0 + \beta_1 \cdot Mountain + \beta_2 \cdot Desert + \beta_3 \cdot Plains + \varepsilon$

> This performs the same analysis as ANOVA but gives specific comparisons

OLS Assumptions
Our test results are only valid when the model assumptions are valid.

- 1. **Linearity**: The relationship between X and Y is linear
- 2. Independence: Observations are independent from each other
- 3. **Homoskedasticity**: Equal error variance across all values of X
- 4. Normality: Errors are normally distributed

Model Diagnostics: Why Check Assumptions? Assumption violations affect our inferences

If assumptions are violated:

- Coefficient estimates may be biased
- Standard errors may be wrong
- p-values may be misleading
- *Predictions may be unreliable*

Checking for Linearity The error term should be unrelated to the fitted value.

> which one of these figures shows linearity?

- > the left one is what we want to see
- > residual plots should show that the model is equally wrong everywhere

Checking for Homoskedasticity Residuals should be spread out the same everywhere.

> which one of these figures shows homoskedasticity?

- > the left figure shows constant variability (homoskedasticity)
- > the right one has increasing variability (heteroskedasticity)
- > residual plots should show that the model is equally wrong everywhere

Checking for Normality Residuals should be normally distributed

- > left shows a nice bell shape (roughly normally distributed)
- > right shows a skewed distribution (not normally distributed)
- > by the CLT we can still use regression without this if the sample is large enough

Extending to Multiple Regression Adding control variables to isolate relationships

> Model: Pollution = $\beta_0 + \beta_1 \cdot Income + \beta_2 \cdot Density + \varepsilon$

Extending to Multiple Regression Adding control variables to isolate relationships

- $\beta_0 = Baseline pollution level (70.0)$
- β_1 = Effect of income on pollution, holding density constant (-0.0003)
- β_2 = Effect of density on pollution, holding income constant (+0.001)

Key Takeaways

Regression provides a unified framework for statistical testing

One-Sample T-Test: Regression with only an intercept $(y = \beta_0 + \varepsilon)$

Two-Sample T-Test: Regression with a dummy variable (

$$y = \beta_0 + \beta_1 \cdot Group + \varepsilon$$

ANOVA: Regression with multiple dummy variables for groups

Multiple Regression: Adding control variables to isolate relationships

> All use the same OLS framework and interpretation of coefficients and p-values