Доверительный искусственный интеллект: честные языковые модели и где они обитают

Беликова Ю.А.

### **BIO**

- Бакалавр ИУ9 МГТУ им. Баумана
- Магистр МФТИ по программе Методы и технологии ИИ (МТИИ)
- Исследователь в области обработки естественного языка Sber Al Lab

# Почему именно эта магистратура?

Магистратура МТИИ <sup>1</sup> дает системный взгляд на разные области ИИ.

- Обработка естественного языка (NLP): Как научить машину понимать и генерировать человеческий язык?
  - Задачи: машинный перевод, создание чат-ботов, анализ тональности, суммаризация.
- Компьютерное зрение (CV): Как научить машину "видеть" и интерпретировать визуальный мир?
  - Задачи: распознавание объектов, сегментация изображений, системы для беспилотного транспорта.
- Обучение с подкреплением (RL): Как научить агента принимать оптимальные решения для достижения цели?
  - Задачи: обучение игровых ботов (AlphaGo), управление роботами, оптимизация логистики, дообучение языковых моделей.

<sup>&</sup>lt;sup>1</sup>https://wiki.cogmodel.mipt.ru/s/mtai/doc/kursy-xbuoD9Zxcs

# Системный взгляд на ИИ



# Особенности исследовательского трека

### Ключевые преимущества:

- Погружение в науку: Основной фокус программы — развитие навыков самостоятельного исследования.
- Междисциплинарность: Возможность изучать и применять методы из разных областей ИИ
- Публикационная активность: Ожидается участие в международных конференциях, подготовка научных статей, работа в коллаборациях.

### Вызовы и особенности:

- Высокая самостоятельность: Необходимость самому формулировать гипотезы, планировать эксперименты и анализировать результаты.
- Плотная научная среда:
   Высокая конкуренция,
   регулярные конференции.
- Сложность совмещения с индустрией: Программа требует полного погружения; совмещать с full-time работой вне R&D крайне сложно.

### Советы

### Как начать:

- Изучите или повторите основы (линейная алгебра, оптимизация и др.)
- Читайте современные статьи (конференции, журналы, arXiv)
- Участвуйте в соревнованиях (Kaggle, Codabench)
- Воспроизводите результаты известных работ

### Исследовательские навыки:

- Критическое мышление и скептицизм
- Умение формулировать гипотезы
- Навыки экспериментального дизайна

### Soft skills:

- Коммуникация: презентации, статьи, обсуждения
- Сотрудничество в команде
- Управление временем и проектами

# Большие языковые модели

### Определение

**Большая языковая модель (Large Language Model, LLM)** — параметрическая нейросетевая модель для генерации текста, построенная на архитектуре трансформера и отличающаяся большим числом параметров.

#### Ключевые компоненты:

- Токенизация: текст → последовательность токенов
- Эмбеддинги: токены → векторы фиксированной размерности
- Блоки трансформера: многоголовое внимание + feed-forward сети
- Автогрессивная генерация: предсказание следующего токена

### Токенизация: от текста к числам

### Пример токенизации (BPE/SentencePiece):

### Ключевые принципы:

- Разбиение на подстроки: токены
- Словарь: фиксированный набор токенов (обычно 30К-100К)
- Специальные токены: [CLS], [SEP], [PAD], [UNK]
- Обработка OOV: незнакомые слова → подтокены

# Эмбеддинги: превращение токенов в векторы

### Формула эмбеддинга:

$$\mathbf{e}_i = \mathbf{E}[\mathsf{token} \; \mathsf{id}_i, :] \in \mathbb{R}^{d_{\mathsf{model}}}$$

 $\mathbf{E} \in \mathbb{R}^{|V| imes d_{\mathsf{model}}}$  — обучаемая матрица эмбеддингов

### Позиционное кодирование:

$$\textit{PE}_{(\textit{pos},2i)} = \sin\left(\frac{\textit{pos}}{10000^{2i/\textit{d}_{\text{model}}}}\right) \quad \textit{PE}_{(\textit{pos},2i+1)} = \cos\left(\frac{\textit{pos}}{10000^{2i/\textit{d}_{\text{model}}}}\right)$$

Итоговый вход:  $\mathbf{x}_i = \mathbf{e}_i + \mathbf{p}\mathbf{e}_i$ 

# Архитектура блока трансформера



### Ключевые операции:

- Multi-Head Attention: Attention(Q, K, V) = softmax  $\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$
- FFN:  $\max(0, \mathbf{xW}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2$
- LayerNorm:  $\gamma \frac{\mathbf{x} \mu}{2} + \beta$

### Особенности:

- Residual connections
- Нормализация после каждого слоя
- Параллельная обработка последовательности

# Механизм внимания: как модель "смотрит"



### 1. Q, K, V:

$$O = XW^Q$$

$$K = XW^{\mathcal{K}}$$

$$\mathbf{V} = \mathbf{X}\mathbf{W}^{\mathsf{V}}$$

### 2. Веса внимания:

$$\mathbf{A} = \operatorname{softmax} \left( \frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d_k}} \right)$$

### 3. Итог:

Attention(Q, K, V) = AV

### Маскирование:

$$A_{i,j} = \begin{cases} -\infty, & j > i \\ \text{score}_{i,j}, & j \leq i \end{cases}$$

(для автогрессии)

# Автогрессивная генерация: шаг за шагом

### Процесс генерации:

| Шаг 1     | Шаг 2    | Шаг 3   | Шаг 4     | Шаг 5 |
|-----------|----------|---------|-----------|-------|
| "Сегодня" | "погода" | "очень" | "хорошая" | "?"   |

#### Математически:

$$P(y_1,...,y_T|x) = \prod_{t=1}^{T} P(y_t|x,y_1,...,y_{t-1})$$

**На каждом шаге:** подаем всю последовательность ightarrow получаем распределение ightarrow выбираем токен ightarrow повторяем

# Стратегии декодирования

### 1. Greedy Beam Search:

• 
$$y_t = \arg \max_{w \in V} P(w|x, y_{< t})$$

### 2. Beam Search:

- Сохраняем к наиболее вероятных последовательностей
- На каждом шаге расширяем каждую из них
- Выбираем лучшую итоговую последовательность

### 3. Sampling:

- Temperature sampling:  $P'(w) = \frac{\exp(\operatorname{logit}_w/T)}{\sum_v \exp(\operatorname{logit}_v/T)}$
- Top-k sampling: выбираем из k наиболее вероятных токенов
- **Top-p sampling:** выбираем из токенов с суммарной вероятностью *p*

# Стадии обучения языковой модели

### 1. Предобучение (Pre-training):

- Цель: Выучить общие закономерности языка на терабайтах текста.
- Задача: Предсказание следующего слова.

$$\mathcal{L}_{\mathsf{pretrain}} = -\sum_{t=1}^{\ell} \log P_{\Theta}(y_t | x, y_{< t})$$

# Стадии обучения языковой модели

### 1. Предобучение (Pre-training):

- Цель: Выучить общие закономерности языка на терабайтах текста.
- Задача: Предсказание следующего слова.

$$\mathcal{L}_{\mathsf{pretrain}} = -\sum_{t=1}^{\ell} \log P_{\Theta}(y_t | x, y_{< t})$$

### 2. Инструктивное дообучение (SFT):

• **Цель:** Научить модель следовать инструкциям на парах "инструкция -> ответ".

# Стадии обучения языковой модели

### 1. Предобучение (Pre-training):

- Цель: Выучить общие закономерности языка на терабайтах текста.
- Задача: Предсказание следующего слова.

$$\mathcal{L}_{\mathsf{pretrain}} = -\sum_{t=1}^{\ell} \log P_{\Theta}(y_t | x, y_{< t})$$

### 2. Инструктивное дообучение (SFT):

• **Цель:** Научить модель следовать инструкциям на парах "инструкция -> ответ".

### 3. Выравнивание (Alignment) через DPO:

- Цель: Сделать ответы полезными, честными и безвредными.
- **Метод:** Direct Preference Optimization (DPO) учит модель предпочитать "хорошие" ответы  $(y_+)$  "плохим"  $(y_-)$ .

$$\mathcal{L}_{\mathsf{DPO}} \propto -\log\sigma\left(\beta\log\frac{\pi_{ heta}(y_{+}|\mathbf{x})}{\pi_{\mathsf{ref}}(y_{+}|\mathbf{x})} - \beta\log\frac{\pi_{ heta}(y_{-}|\mathbf{x})}{\pi_{\mathsf{ref}}(y_{-}|\mathbf{x})}
ight)$$

# Галлюцинации языковых моделей

### Определение

Галлюцинации – это случаи, когда языковая модель генерирует правдоподобный, но фактически неверный или несуществующий факт.

### Примеры:

- Модель уверенно придумывает несуществующие научные термины, цитаты, имена, даты.
- Генерация ссылок на статьи или книги, которых не существует.
- Ответы на вопросы, на которые нет информации в параметрах модели, но она всё равно "выдумывает" ответ.

### Решение – Генерация с дополненной выборкой

### Определение

Генерация с дополненной выборкой (Retrieval Augmented Generation, RAG) — подход, комбинирующий LLM с внешней системой извлечения знаний.

### Архитектура RAG:

- 1. **Retrieval**: поиск релевантных документов  $D = \{d_i\}$
- 2. Augmentation: расширение контекста вопроса q документами D
- 3. **Generation**: генерация ответа a на основе (q, D)

### Решение – Генерация с дополненной выборкой

### Определение

Генерация с дополненной выборкой (Retrieval Augmented Generation, RAG) — подход, комбинирующий LLM с внешней системой извлечения знаний.

### Архитектура RAG:

- 1. **Retrieval**: поиск релевантных документов  $D = \{d_i\}$
- 2. Augmentation: расширение контекста вопроса q документами D
- 3. **Generation**: генерация ответа a на основе (q, D)

**Ho...** RAG не является панацеей. Модели все равно галлюцинируют, даже имея перед глазами правильный ответ.

# Примеры контекстуальных галлюцинаций

QUESTION: how to prepare to get an ultrasound?

REFERENCE: Passage 1: 1 If you are just interested in checking the gender, you can go as early as 17 weeks. 2 Any earlier, and the results may not be accurate, leading to an extra coat of paint for your bedroom. 3 To get good pictures, 3D ultrasounds are best performed between 20 and 32 weeks, and the best pictures are between 24 and 30 weeks.

**RESPONSE:** Based on the given passages, here's how to prepare for an ultrasound:

- \* For a gender reveal ultrasound, wait until at least 17 weeks of pregnancy to ensure accurate results.
- \* For 3D ultrasounds, schedule the appointment between 20 and 32 weeks of pregnancy for the best pictures ...

- Evident Conflict: прямое противоречие контексту
- Evident Introduction: добавление необоснованной информации
- Subtle Conflict: изменение смысла контекста
- Subtle Introduction: домысливание деталей

<sup>&</sup>lt;sup>a</sup> Wu и др., RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models. 2023.

# Вопрос для размышления

Если LLM обучены предсказывать следующий токен на основе контекста, почему они генерируют информацию, противоречащую этому контексту?

# Вопрос для размышления

Если LLM обучены предсказывать следующий токен на основе контекста, почему они генерируют информацию, противоречащую этому контексту?

#### Возможные гипотезы:

- Конфликт между параметрическими знаниями и контекстом
- Ошибки в механизме внимания
- Проблемы с пониманием инструкций
- Переобучение на некорректных данных
- Фундаментальные ограничения архитектуры

### Ключевой вопрос

Как можно препятствовать контекстуальным галлюцинациям?

# Почему LLM галлюцинируют?

### Фундаментальные причины:

- Архитектурные ограничения: автогрессивная природа генерации
- Данные обучения: противоречия и неточности в корпусах
- Переобучение: запоминание вместо понимания
- Проблема выравнивания: несоответствие целей обучения и использования

### Особенности в RAG:

- Конфликт между параметрическими знаниями и контекстом
- Неспособность признать незнание
- "Уверенность" в неверных фактах

#### Важно

Галлюцинации критичны в медицине, праве, финансах — областях, где ошибки недопустимы

# Подходы к борьбе с галлюцинациями

### Black-box методы:

- Внешняя проверка фактов
- SelfCheckGPT
- FactScore
- Специальные схемы запросов
- Ансамблирование моделей

**Плюсы**: работают с любыми моделями **Минусы**: вычислительные затраты

### White-box методы:

- Анализ внутренних состояний
- Карты внимания
- Активации нейронов
- Управляемое декодирование
- Коррекция скрытых состояний

Плюсы: эффективность

Минусы: требуют доступа к модели

# Black-box методы детекции галлюцинаций



2023.

<sup>&</sup>lt;sup>2</sup> Min и др., FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation,

# White-box методы детекции галлюцинаций



<sup>&</sup>lt;sup>3</sup>Chuang и др., Lookback Lens: Detecting and Mitigating Contextual Hallucinations in Large Language Models Using Only Attention Maps, 2024.

# Моя магистерская работа

**Цель:** разработать white-box методологию для детекции и минимизации контекстуальных галлюцинаций

### Методология:

- 1. Детекция галлюцинаций
  - Необучаемый подход: ансамбль топологического анализа + неопределенность
  - Обучаемый подход: пробинг внутренних состояний

### 2. Минимизация галлюцинаций

- Управляемое декодирование с выбором кандидатов
- Дообучение методом DPO на автоматических парах предпочтений

# Метод №1: Необучаемая детекция

**Как поймать "ложь" без разметки данных?** Первый предложенный мной метод не требует обучения и основан на двух сигналах изнутри модели:

- 1. Топологический анализ карт внимания (MTopDiv):
  - Строим граф, показывающий, на какие слова из контекста модель "смотрит". Если ответ "топологически оторван" от контекста, это признак галлюцинации.
- 2. Оценка неопределенности (Uncertainty):
  - Измеряем "уверенность" модели в каждом сгенерированном токене (через энтропию). Высокая неопределенность — высокий риск галлюцинации.

### Результат

Объединяем эти два сигнала в единый скор. Высокий скор = вероятная галлюцинация.

# Метод №2: Обучаемая детекция

Второй подход — обучить небольшой классификатор, который предсказывает галлюцинации по внутренним состояниям LLM.

### • Признаки для классификатора:

- Агрегированные скрытые состояния: Средние, максимальные значения векторов, представляющих слова.
- Lookback признаки: Соотношение внимания, которое модель уделяет контексту, по сравнению с уже сгенерированным текстом.

### • Классификаторы:

 Использовались как классические модели (CatBoost), так и современные подходы для табличных данных (TabPFN), которые отлично работают на малых объемах данных.

# Метод №3: Минимизация галлюцинаций

После детекции мы можем заставить модель быть честнее.

### 1. Управляемая генерация (Ensemble Guided Decoding):

- Генерируем несколько вариантов ответа.
- С помощью нашего детектора оцениваем "уровень галлюцинаций" в каждом из них.
- Выбираем самый "честный" вариант.

### 2. Дообучение через DPO:

- Используя наш детектор, автоматически создаем обучающие пары: "хороший" (у<sub>+</sub>) и "плохой" (у<sub>-</sub>) ответы.
- Дообучаем LLM по методу DPO, чтобы она научилась генерировать ответы, похожие на  $y_+$ , и избегать ответов, похожих на  $y_-$ .

# Что получилось в итоге?

Сравнение метрики Faithfulness (в %, чем выше — тем лучше) для Llama-2-7b на датасете CoQA.

| Метод                               | Faithfulness (%) |
|-------------------------------------|------------------|
| Стандартная генерация (Greedy)      | 70.7             |
| Выбор лучшего кандидата (Ensemble+) | 81.9             |
| Наша модель после дообучения (DPO)  | 83.5             |

**Вывод:** Предложенная методология значительно повышает фактическую точность (*Faithfulness*) ответов LLM.

### Ключевой результат

Мы можем не только детектировать, но и эффективно исправлять галлюцинации, дообучая модель на автоматически созданных данных.

# Пример: анализ галлюцинаций в ответах LLM

#### Контекст:

 Компания была основана в Калифорнии. В открытых источниках не указана точная дата основания. Основатели — Джон Смит и Мария Иванова.

### Вопрос:

• Когда и где была основана компания, кто её основатели?

### Исходный ответ модели

Компания была основана в 1985 году в Калифорнии. Её основатели — Джон Смит и Мария Иванова. Компания быстро вышла на рынок Европы.

- Явное добавление: 1985 год не указан в контексте
- Скрытое добавление: выход на рынок Европы — не подтверждено
- Оценка ансамбля детекции: 0.89

### Скорректированный ответ

Компания основана в Калифорнии. Основатели — Джон Смит и Мария Иванова.

- Ensemble-Guided Fine-tuning
- Faithfulness score: 0.97

# Будущие направления исследований

#### Технические вызовы:

- Масштабирование на модели 10В+ параметров
- Работа с длинными контекстами (4К+ токенов)
- Динамическая коррекция во время генерации
- Real-time DPO адаптация

### Методологические направления:

- Каузальное понимание механизмов галлюцинаций
- Интерпретируемость внутренних состояний
- Универсальные детекторы для разных архитектур
- Этические аспекты доверительного ИИ

### Индустриальные применения:

- Валидация ИИ-систем для критических областей
- Стандарты надежности для LLM
- Регулирование использования ИИ

# Ключевые выводы

- LLM совершили прорыв, но галлюцинации серьезная проблемой
- White-box подходы показывают многообещающие результаты
- Доверительный ИИ критически важен для практических применений
- Исследования в этой области активно развиваются

### Спасибо за внимание!

# Вопросы?

Беликова Ю.А.

Email: belikova.iua@phystech.edu