

Emulación Cuántica – MPI Qulacs

Perspectiva de usuario

FUJITSU-PUBLIC © Fujitsu 2023

Intro

- Formador:
 - Álvaro Caride
 - Fujitsu-CESGA
 - Quantum computing plataform engenier
- Instalación QMIO
 - Fechas de inicio
 - IQC
- Curso de formación emulación cuántica en Qmio
 - Scheduling
 - Foco

Esquema del curso

- Arquitectura
 - Cluster Híbrido
 - Overview instalación
 - FX700
 - MPI-Qulacs
- Características del Sistema
 - Gestión de recursos
 - Software Stack
 - Ventajas y limitaciones
- ¿Cómo utilizar el Sistema?
 - qulacs
 - Implementación en paralela
 - Hands-On (Dojo)
 - Base
 - Paralelización
 - Ejemplo
 - Migración al QC

Día 1

- Intro
- Primer Lanzamiento
- Arquitectura
- Software Stack
- Revisión del primer lanzamiento
- Resultados

Día 2

- Intro
- Overview Qulacs base
- Qulacs y modelos de ruido
- Qulacs y circuitos paramétricos
- Implementación Paralela
- Migración a Qmio
- Resultados

Consulta

- ¿Cuánto estas familiarizada/familiarizado con emulación cuántica?
- ¿Qué language de programación prefieres?
- ¿En qué rango de qubits sueles trabajar?
 - ¿Teneis posibilidad de lanzar al cluster?

Primer lanzamiento


```
from qulacs import QuantumState, QuantumCircuit
from mpi4py import MPI
comm = MPI.COMM WORLD
qubits = 5
state = QuantumState(qubits)
state.set zero state()
circuit = QuantumCircuit(qubits)
circuit.add_H_gate(0)
for i in range(1, qubits):
    circuit.add CNOT gate(0, i)
circuit.update quantum state(state)
print(state.get_vector())
```

Submit.sh


```
#!/bin/bash
#SBATCH -N 1 → → # Numero de nodos
source /etc/profile.d/lmod.sh
export OMP NUM THREADS=48
export QULACS NUM THREADS=48
module load qulacs-hpcx
#OMP PROC BIND=TRUE
#numactl -N 0-3 -m 0-3
mpirun -npernode ${SLURM_NTASKS_PER_NODE} python ghz.py
```

Results.out


```
libfabric/1.13.0 loaded
openmpi4/4.1.4 loaded
py3-mpi4py/3.1.3 loaded
hpcx-mt-ompi loaded
qulacs-hpcx/1.0 loaded
[0.70710678+0.j 0.
                         +0.j 0.
                                       +0.j 0.
                                                      +0.j
          +0.j 0.
                         +0.j 0.
                                       +0.j 0.
0.
                                                      +0.j
 0.
          +0.j 0.
                         +0.j 0.
                                       +0.j 0.
                                                      +0.j
          +0.j 0.
                         +0.j 0.
                                       +0.j 0.
 0.
                                                      +0.j
          +0.j 0.
                         +0.j 0.
                                       +0.j 0.
                                                      +0.j
          +0.j 0.
                         +0.j 0.
                                       +0.j 0.
                                                      +0.j
          +0.j 0.
                         +0.j 0.
                                       +0.j 0.
                                                      +0.j
          +0.j 0.
                         +0.j 0.
                                        +0.j 0.70710678+0.jl
```


Arquitectura

¿Qué es emulador Cuántico?

Piezas del cluster híbrido

- Nodos de Administración
- Nodos de login
- Almacenamiento
 - Cabina netapp NFS
 - Lustre
- Nodos de Cómputo
 - HPC x86 64
 - Emulador Cuántico A64FX
 - Computador Cuántico Superconductor

¿Dónde?

Estructura

- Nodos de Administración
 - Controlador de colas

- Nodos de login
 - Acceso
 - Qmio.cesga.es

batchlim

Estructura

- Almacenamiento
 - Cabina netapp NFS
 - Lustre
 - \$HOME
 - \$STORE
 - \$LUSTRE
 - \$Q_SWAP

myquota

Estructura

- Nodos de Cómputo
 - HPC x86_64
 - Emulador Cuántico A64FX
 - Computador Cuántico Superconductor

compute

Colas

- Nodos de Cómputo
 - HPC x86_64 -> -p ilk
 - Emulador Cuántico A64FX -> -p a64
 - Computador Cuántico Superconductor -> -p qpu

```
acaride@loginU3 ~
$ sinfo
                      TIMELIMIT NODES
                                        STATE NODELIST
PARTITION
                AVATI
                      infinite
                                         idle c7-23
qpu
ilk_interactive
                  up infinite
                                         idle c7-[1-2]
ilk*
                  up infinite
                                         idle c7-[3-22]
a 64
                      infinite
                                         idle c7-[101-116]
acaride@login03 ~
```

sinfo scontrol

...

```
acaride@loginU3 ~
$ scontrol show Node=c7-101
NodeName=c7-101 Arch=aarch64 CoresPerSocket=12
   CPUAlloc=0 CPUEfctv=48 CPUTot=48 CPULoad=0.08
   AvailableFeatures=a64
   ActiveFeatures=a64
  Gres=(null)
  NodeAddr=c7-101 NodeHostName=c7-101 Version=23.11.4
  OS=Linux 4.18.0-425.3.1.el8.aarch64 #1 SMP Thu Nov 10 00:36:38 UTC 2022
   RealMemory=30000 AllocMem=0 FreeMem=22343 Sockets=4 Boards=1
  State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=30 Owner=N/A MCS_label=N/A
   Partitions=a64
   BootTime=2024-04-18T09:56:35 SlurmdStartTime=2024-05-08T15:35:04
  LastBusvTime=2024-05-12T10:53:05 ResumeAfterTime=None
  CfgTRES=cpu=48, mem=30000M, billing=48
   AllocTRES=
  CapWatts=n/a
   CurrentWatts=0 AveWatts=0
   ExtSensorsJoules=n/a ExtSensorsWatts=0 ExtSensorsTemp=n/a
```

FX700

- Hardware Específico:
 - 2 Chasis (4us) correspondientes a 16 nodos en total.
 - Cada nodo cuenta con un procesador A64FX con 48 cores, NoC y 32
 GB de memoria. Están interconectados por IB.
 - Procesadores ARM 64 bits con instrucciones vectoriales extendidas (SVE).
- Software:
 - Rocky Linux 8.7
 - OpenHPC
 - gnu12
 - Openmpi4
 - HPC-X
 - UCX
 - Python3.8.13
 - Papi, extrae, likwid...

Specifications	A64FX
ISA (Base, extension)	Armv8.2-A, SVE
Process technology	7 nm
Peak DP performance	2.7 or 3.0 TFLOPS
SIMD width	512-bit
# of cores	48 (+ 4)
Memory capacity	32 GiB (HBM2 x4)
Memory peak bandwidth	1024 GB/s
PCle	Gen3 16 lanes
High speed interconnect	TofuD integrated

MPI-Qulacs

- GCC 11.2
- CMake 3.24.0
- Open MPI 4.1

C_COMPILER=mpicc CXX_COMPILER=mpic++ USE_MPI=Yes pip install .

- Construido sobre el emulador opensource Qulacs.
- Implementación paralela
- Optimizaciones
- En desarrollo

MPI-Qulacs. Niveles de paralelismo

item	keywords	detail
1. Parallismo a nivel cluster	MPI	 Separa y mantiene el vector de estado para soportar procesamiento distribuido. Los datos deben ser intercambiados utilizando la interfáz de paso de mensajes. MPI
2. Paralelismo a nivel de procesador	OpenMP	 Divide las tareas equitativamente entre cada core y las ejecuta Para datos grandes, es más rápido fijar el área de memoria más cercana a los grupos de cores de inicio a fin.
3. Paralelismo a nivel de core	pipeline SIMD	 CPU's recientes usan microcódigo y tuberías de operaciones paralelas. Para maximizar la performance, los datos deben entrar continuamente en los pipelines. Escribir en ensamblador, considerando los accesos a memoria, puede ayudar a llenar efectivamente esos pipelines.
4. Reduce inter-node communication	FusedSWAP	- La Puerta fused SWAP recoloca datos del vector de estado en bloques para minimizer el coste de comunicación realizando la recolocación antes del cálculo.

Paralelismo a nivel de procesador

- El A64FX consiste en cuatro grupos de cores principales (CMG)
- Cada grupo tiene 12 cores, cache de nivel 2 y un controlador de memoria conectado a la memoria de alto ancho de banda (HBM)

 Para cálculos con alta demanda de memoria, es más rápido bloquear la memoria más cercana al CMG de inicio a fin

Figure 1-1 Main Functional Blocks on A64FX Processor Chip

Paralelismo a nivel de core

- Cada core tiene dos unidades de pipeline como unidades de cálculo de punto flotate.
- El A64FX tiene dos pipelines que pueden realizar 8 operaciones de punto flotante (512 bit de largo) a la vez cada ciclo.
- Escribiendo en ensamblador con el conocimiento del acceso a memoria de la apliación, es possible llenar esos pipelines de manera eficiente.

Processing stage diagram inside the core

Vector de estado distribuido

- Divide y guarda el vector de estado para realizar el cálculo en paralelo
- El qubit the más abajo de cada rank es el qubit local.
 Los pares existen en el mismo rank.
- El de arriba coincide con el MPI-rank y es llamado qubit global.

Reducir la comunicación entre nodos

- La fused SWAP aplica una reordenación de los datos del vector de estad.
 - Ejemplo: Operaciones CNOT con puertas de dos qubits
 - Las operaciones de puertas cuánticas a través de servidores causan comunicacionón cada vez
 - Recoloca los datos para reducir las comunicaciones durante las operaciones

Software Stack

Sistema de módulos

Árbol de módulos (Lmod)

Diferentes para las diferentes arquitecturas

```
caride@login03 /mnt/netapp2/Home FT2/home/cesga/acaride/DOJO 20240513/py/qulacs
module av
------/opt/cesga/gmio/hpc/software/Core/hpcx/2.17.1/modulefiles
 hpcx-debug-ompi hpcx-debug hpcx-mt-ompi hpcx-mt hpcx-ompi hpcx-prof-ompi hpcx-prof hpcx-stack
                                          libseccomp/2.5.5
 apptainer/1.2.3
                                (Tool)
                                                                         (Tool)
 bison/3.1
                                (Tool)
                                          libxml2/2.9.7
                                                                         (Tool)
 boost.python/1.85.0-python-3.9.9
                                          libxslt/1.1.32
                                                                         (Tool)
 boost/1.85.0
                                (Math)
                                          m4/1.4.18
                                                                         (Tool)
 cmake/3.18.2
                                (Tool)
                                          meson-python/0.16.0-python-3.9.9
 cmake/3.25.0
                                (Tool)
                                          meson/0.53.1
                                                                         (Tool)
 cmake/3.27.6
                                          meson/1.4.0-python-3.9.9
                                                                         (Tool,D)
                                          miniconda3/22.11.1-1
 cython/3.0.9-python-3.9.9
                                (Comp)
                                                                         (Comp)
 flex/2.6.4
                                (Tool)
                                          ncurses/6.1
                                                                         (Tool)
 gcc/12.3.0
                                (Comp)
                                          ninia/1.9.0
                                                                         (Tool)
                                                                         (Math)
 gcccore/12.3.0
                                (Comp)
                                          numpy/1.26.4-python-3.9.9-mkl
 alib/2.58.2
                                (VisF)
                                          numpy/1.26.4-python-3.9.9-openblas (Math)
 glpk/4.65
                                (Math)
                                          numpy/1.26.4-python-3.9.9
                                                                         (Math,D)
                                          openblas/0.3.24
 qmp/6.1.2
                                (Math)
 qo/1.20.4
                                (Comp)
                                          openssl/1.1.0i
                                                                         (Tool)
 gocryptfs/2.4.0-linux-static amd64 (Tool)
                                          openssl/1.1.1b
                                                                         (Tool)
 qperf/3.1
                                          openssl/1.1.1q
                                                                         (Tool .D)
 help2man/1.47.6
                                          pixman/0.38.4
                                                                         (VisF)
 icu/75.1-python-3.9.9
                                          python/3.9.9
                                                                         (Comp)
 imkl/2023.2.0
                                          gmio-run/0.1.1-python-3.9.9
                                                                         (OComp)
 jupyter-server/1.13.5-python-3.9.9
                                          rust/1.75.0
                                                                         (Tool)
 libffi/3.2.1
                                (Tool)
                                          singularity/4.0.0
 libffi/3.4.2
                                (Tool)
                                          sqlite/3.45.3
 libffi/3.4.4
                                (Tool,D)
                                          squashfs/4.3
                                (Tool)
                                          squashfuse/0.5.0
 qmio/hpc (S,L)
```

x86 + gcc


```
$ module av
 ------ GCC/12.3.0 -------
   boost.python/1.85.0-python-3.9.9 (D)
                                                pytket/1.23.0-python-3.9.9
                                                                                     (QComp)
                                                                                                 qulacs/0.6.3-python-3.9.9 (QComp,D)
   boost/1.85.0
                                   (Math,D)
                                               qiskit-qulacs/0.1.0-python-3.9.9-mpi (QComp)
                                                                                                 gutip/5.0.0-python-3.9.9
   cvxpy/1.4.3-python-3.9.9
                                                qiskit-qulacs/0.1.0-python-3.9.9
                                                                                    (QComp,D)
                                                                                                 scipy/1.11.0-python-3.9.9 (Math)
   networkx/2.8.8-python-3.9.9
                                    (Tool)
                                                qiskit/1.0.2-python-3.9.9-mpi
                                                                                    (QComp)
                                                                                                 scipy/1.13.0-python-3.9.9 (Math,D)
   openblas/0.3.24
                                                qiskit/1.0.2-python-3.9.9
                                                                                    (OComp,D)
   pvthran/0.15.0-pvthon-3.9.9
                                                gulacs/0.6.3-pvthon-3.9.9-mpi
                                                                                    (OComp)
   apptainer/1.2.3
                                        (Tool)
                                                   matplotlib/3.5.3-pvthon-3.9.9
                                                                                        (VisF)
   binutils/2.40
                                        (L, Tool)
                                                   meson-python/0.16.0-python-3.9.9
   bison/3.1
                                        (Tool)
                                                   meson-python/0.16.0-python-3.9.9
   bison/3.1
                                        (Tool,D)
                                                   meson/0.53.1
                                                                                        (Tool)
   boost.python/1.85.0-python-3.9.9
                                                   meson/0.53.1
                                                                                        (Tool)
   boost/1.85.0
                                        (Math)
                                                   meson/0.63.3-python-3.9.9
                                                                                        (Tool)
   catch2/2.13.9
                                                   meson/1.4.0-python-3.9.9
                                                                                        (Tool,D)
   cmake/3.18.2
                                        (Tool)
                                                   meson/1.4.0-pvthon-3.9.9
                                                                                        (Tool)
   cmake/3.18.2
                                        (Tool)
                                                   miniconda3/22.11.1-1
                                                                                        (Comp)
   cmake/3.25.0
                                        (Tool)
                                                   mpc/1.3.1
   cmake/3.25.0
                                        (Tool)
                                                   mpfr/4.2.1
   cmake/3.27.6
                                                   nasm/2.16.03
   cmake/3.27.6
                                                   ncurses/6.1
                                                                                        (Tool)
   conan/1.64.0-python-3.9.9
                                                                                        (Tool.D)
                                                   ninja/1.9.0
   cython/0.29.24-python-3.9.9
                                        (Comp)
                                                   ninja/1.9.0
                                                                                        (Tool,D)
                                        (Comp.D)
   cython/3.0.9-python-3.9.9
                                                   nlohmann ison/3.11.3
   cython/3.0.9-python-3.9.9
                                        (Comp)
                                                   nodejs/18.12.1-python-3.9.9-with-icu (Comp)
   eigen/3.4.0
                                        (Math)
                                                   numpy/1.26.4-python-3.9.9-mkl
                                                                                        (Math)
   flex/2.6.4
                                        (Tool,D)
                                                   numpy/1.26.4-python-3.9.9-openblas
                                                                                        (Math)
   flex/2.6.4
                                        (Tool)
                                                   numpy/1.26.4-python-3.9.9
                                                                                        (Math)
   flint/3.1.2
                                        (Math)
                                                   numpy/1.26.4-python-3.9.9
                                                                                        (Math,D)
   gcc/12.3.0
                                        (L,Comp)
                                                   openblas/0.3.24
   gcccore/12.3.0
                                        (L.Comp)
                                                   openssl/1.1.0i
                                                                                        (Tool)
   glib/2.58.2
                                        (VisF)
                                                   openssl/1.1.1b
                                                                                        (Tool)
   qlpk/4.65
                                        (Math)
                                                   openssl/1.1.1q
                                                                                        (Tool,D)
   amp/6.1.2
                                        (Math)
                                                   pcre2/10.35
                                                   pixman/0.38.4
                                                                                        (VisF)
   gmp/6.3.0
   go/1.20.4
                                        (Comp)
                                                   pybind11/2.8.1-python-3.9.9
                                                                                        (Tool)
   gocryptfs/2.4.0-linux-static amd64
                                        (Tool)
                                                   pybind11/2.12.0-python-3.9.9
                                                                                        (Tool,D)
   gperf/3.1
                                        (Tool)
                                                   pylatexenc/2.10-python-3.9.9
   graphviz/10.0.1
                                                   pyqt-builder/1.16.1-python-3.9.9
   help2man/1.47.6
                                        (Tool.D)
                                                   pytest/6.2.5-python-3.9.9
   help2man/1.47.6
                                                   python/3.9.9-base
                                                                                        (Comp)
                                                                                        (Comp)
   icu/75.1-python-3.9.9
                                                   python/3.9.9
   imkl/2023.2.0
                                        (Math)
                                                   python/3.9.9
                                                                                        (Comp)
   jupyter-bundle/20240425-python-3.9.9
                                                   pvthon/3.11.9
                                                                                        (QComp)
   jupyter-server/1.13.5-python-3.9.9
                                                   qmio-run/0.1.1-python-3.9.9
```

arm


```
acaride@c7-101 ~/Exploracion-qulacs/ejemplos
$ module av
                                                  /opt/ohpc/pub/moduledeps/gnu12-openmpi4 ------
  boost/1.80.0 extrae/3.8.3 py3-mpi4py/3.1.3
                                              -------/opt/ohpc/pub/moduledeps/gnu12 ------
  openblas/0.3.21 openmpi4/4.1.4 (L) py3-numpy/1.19.5
                                         -----/opt/ohpc/pub/modulefiles
  EasyBuild/4.6.2
                    gnu12/12.2.0 (L)
                                    libfabric/1.13.0 (L)
                                                       papi/6.0.0
                                                                                        valgrind/3.19.0
                                                                      prun/2.2
                                                       pmix/4.2.1
  autotools
                    hpcx-mt-ompi
                                    ohpc
                                                                      qulacs-hpcx/1.0
  cmake/3.24.2
                    hwloc/2.7.0 (L)
                                                       pmix/4.2.9 (D)
                                                                      ucx/1.11.2
                                                                                   (L)
```

pruebas

- Module spider
- Module av
- Module list
- Module purge (--force)
 - Source /etc/profile.d/lmod.sh

Comparaciones de ambas arquitecturas

• ¡En vivo en el cluster!

• Diff DOJO/py/mpi-qulacs/base_x86.sh

Puesta a punto

env-comparison.org


```
$ ucx_info -d | grep -i transport
```

Weak scalling full opt - Sped ups

Ventajas y Limitaciones

Disponibilidad

Disponibilidad

 Software instalado y funcionando en el cluster. Implementado para sacar partido de este hardware.

 Software en desarrollo activo. Contacto con el equipo de desarrollo.

mpiQulacs: A Distributed Quantum Computer Simulator for A64FX-based Cluster Systems

Satoshi Imamura, Masafumi Yamazaki, Takumi Honda, Akihiko Kasagi, Akihiro Tabuchi, Hiroshi Nakao, Naoto Fukumoto, and Kohta Nakashima ICT Systems Laboratory
Fuiitsu LTD.

2203.16044.pdf (arxiv.org)

Rapidez

Quantum Software Benchmark

Rapidez

Fig. 12. The execution time of the 30-qubit Quantum Software Benchmark circuit and effective memory bandwidth.

2203.16044.pdf (arxiv.org)

(a) Weak scaling (30 qubits per CPU, 31 qubits per GPU)

(b) Strong scaling (fixed 30 qubits)

Fig. 10. The execution time of Quantum Software Benchmark circuit with mpiQulacs running on Todoroki and Intel-QS, QuEST, and Qiskit Aer running on ABCI.

Cómodidad

Comodidad

Pensado para interactuar con MPI-Qulacs desde Python.

 La API para MPI no requiere de conocer todos los por menores para comenzar a distribuir la ejecución.

Contexto del cluter Híbrido

Vector de estado

- Un estado de n qubits es base de un espacio de Hilbert 2^n dimensional.
- Si un número complejo es expresado como 16 bytes, la cantidad de memoria requerida es de 2^{n+4} [Byte]

$$|\psi\rangle = c_{000}|000\rangle + \dots + c_{111}|111\rangle$$

n = 30

Gi Byte

Disponible en tu PC

n = 40

Ti Byte

Foco de MPI-Qulacs

:

 2^n

n=170

Byte

Excede cualquier espectativa

Flujo de procesamiento de la simulación de un circuito cuántico

Vuelta al primer lanzamiento

Base.py

Submit.sh

Lanzamiento

Result.out

Interactivo

- Compilación en c++
 - MAKEFILE
- Ejecución de example qulacs y mpiqtest -1 25 5 6

Recolecta día 1

Consulta

Esquema final

- Intro
- Primer Lanzamiento
- Arquitectura
- Software Stack
- Revisión del primer lanzamiento
- Resultados

Preview día 2

- Intro
- Overview Qulacs base
- Qulacs y modelos de ruido
- Qulacs y circuitos paramétricos
- Implementación Paralela
- Migración a Qmio
- Resultados

Gracias por vuestra atención!

Esquema del curso

- ¿Qué es emulador cuántico?
 - FX700
 - MPI-Qulacs
- ¿Porqué utilizar el Sistema?
 - Ventajas y limitaciones
- ¿Cómo utilizar el Sistema?
 - Implementación en el Cluster
 - Revisión Qulacs
 - Implementación paralela
 - Dojo
 - Base
 - Paralelización
 - Ejemplo
 - Migración al QC y trabajos heterogéneos

Implementación en el cluster

¿Cómo se utiliza?

Gestor de colas - slurm

- Slurm
 - Particiones por arquitectura.
 - -p qs
 - Máximo número de cores por nodo 48
 - Máximo número de nodos 16
 - Acceso a almacenamiento del CESGA (HOME de usuarios) y almacenamiento instalado fas2720 y lustre.
 - El directorio de lanzamiento debe ser accesible por slurm en todos los nodos del trabajo.
 - Lanzar trabajo a las colas -> sbatch
 - Trabajos interactivos -> compute --qs

Módulo de software

EasyBuild/4.6.2

L: Module is loaded

valgrind/3.19.0

Module list

/opt/ohpc/pub/modulefiles

papi/6.0.0

Module av

```
    Module load gulacs
```

 Interfaz en Python y en c++. Software pensado para interactuar con Python. La parte de c++ es más para el testeo de módulos.

hwloc/2.7.0

libfabric/1.13.0 (L)

Las librerías csim, cppsim y vqcsim no son separables.

cmake/3.24.2

gnu12/12.2.0 (L)

Module load qulacs

Implementación paralela de Qulacs

- QuantumState state(qubits, use_multi_cpu)
- State.get_device_name() -> cpu/multi-cpu
- State.set_Haar_random_state()
- State.sample(number_sampling, [seed])
 - QULACS_NUM_THREADS

Añadir ~/qulacs-test/dojo

Esquema del curso

- ¿Qué es emulador cuántico?
 - FX700
 - MPI-Qulacs
- ¿Porqué utilizar el Sistema?
 - Ventajas y limitaciones
- ¿Cómo utilizar el Sistema?
 - Implementación en el Cluster
 - Revisión Qulacs
 - Implementación paralela
 - Dojo
 - Base
 - Paralelización
 - Ejemplo
 - Migración al QC y trabajos heterogéneos

DojoHands-on

Dojo

- Carpeta raíz de los ejemplos:
 - /apps/DEMO
- Solicitar sesión interactiva:
 - Para ver las opciones:Compute -help
 - Para solicitar la sesión:
 Compute -qs –N 1 –npn
 <Numero de ranks MPI por nodo>

- Enviar trabajo a colas
 - Sbatch –p qs <Resto de opciones>
 - Submit.sh en el directorio /apps/DEMO

Base

- Crear vector de estado
- Inicializarlo
- Recoger información
- Copiarlo y pegarlo
- Eliminarlo
- Aplicarle puertas
- Merge
- ...

Revisar los scripts dojo-1.py, dojo-2.py y dojo-3.py en la carpeta DEMO

```
from mpi4py import MPI
from qulacs import QuantumState
from qulacs.state import inner product
def main():
        # MPI initialiization
        comm = MPI.COMM WORLD
        size = comm.Get size()
        rank = comm.Get rank()
        #######################
        # State operations
        n = 5
        state = QuantumState(n)
        #Zero State
        state.set zero state()
        print(state.get vector())
        #inizialize to |00101>
        state.set computational basis(0b00101)
        print(state.get vector())
        # Random State
        state.set Haar random state()
        print(state.get vector())
        # Copy and load Data
        second state = state.copy()
        print(second state.get vector())
        third state = QuantumState(n)
        third state.load(state)
```

Distribución vector de estado

QuantumState state(qubits, use_multi_cpu=TRUE)

```
Inicialización MPI
 mpicomm = MPI.COMM WORLD
mpirank = mpicomm.Get rank()
mpisize = mpicomm.Get size()
globalqubits = int(np.log2(mpisize))
def add oracle to circuit(circuit, s):
    Añade las puertas del oráculo U f al circuito basado en el número secreto s.
    n = len(s)
    for i, bit in enumerate(s):
        if bit == "1":
            circuit.add gate(CNOT(i, n))
def bernstein vazirani(s):
    Implementa el algoritmo de Bernstein-Vazirani para encontrar s.
    n = len(s)
    global nqubits
    nqubits = n + 1
    #state = QuantumState(n + 1)
    Distribución del quantum state
    global state
    state = QuantumState(n + 1, use multi cpu = True)
    state.set zero state()
    circuit = QuantumCircuit(n + 1)
    # Inicialización: Aplica X y H al último qubit.
    circuit.add gate(X(n))
```

Ejemplo

• Implementación paralela de algoritmo de Bernstein-Vazirani

```
qulacs.gate import X, H, CNOT
                                                                                                    om qulacs.gate import X, H, CNOT
 port numpy as np
mpicomm = MPI.COMM WORLD
mpirank = mpicomm.\overline{Get} rank()
def add oracle to circuit(circuit, s):
                                                                                                  def add oracle to circuit(circuit, s):
-- 3 lines: for i, bit in enumerate(s):---
                                                                                                 +-- 3 lines: for i, bit in enumerate(s):----
ef bernstein vazirani(s):
                                                                                                  def bernstein vazirani(s):
   global ngubits
                                                                                                      state = QuantumState(n + 1)
   state = QuantumState(n + , use multi cpu = True)
   circuit = QuantumCircuit(n + 1)
                                                                                                      circuit = QuantumCircuit(n + 1)
```


Optimizaciones para mayor rendimiento

OMP_NUM_THREADS=1
 QULACS_NUM_THREADS=48

OMP PROC BIND=TRUE

Numactl –N 0-3 –m 0-3

Migración al cuántico

- Tres lenguajes principales:
 - Qiskit (hpc)
 - Mpi-Qulacs (qs)
 - QAT-QASM (qpu)
- Existen métodos de autotraducción desde y hasta QASM en qiskit y qulacs.
- Planteamiento: utilizar QASM como lenguaje universal.

- Después de la autotraducción, revisar siempre si el algoritmo se salida se corresponde con el de entrada
- Todos los sistemas reciben trabajos desde slurm
- Piedra Roseta en construcción

Trabajos heterogéneos

- SDAG. Capacidad de lanzar contra slurm workloads en forma de grafos directos acíclicos.
- En cada uno de los nodos del grafo puedes tener definida una parte del trabajo que se ejecuta en un hardware especifico.
- SDAG se ocupa de establecer dependencias –afterok automáticamente en relación al grafo lanzado.
- El objetivo de esto es minimiza el tiempo IDLE de los recursos más limitantes del sistema.

Het-Workload - /apps/DEMO/het-Workload

- Hpc-nodes
- Emulation-nodes
- qpu

acaride@login01 ~/qtest/submits/het-workflow											
s squeue -u acaride											
JOBID	USER ACCOUN NAME	PARTITION	QOS	FEATURES	ST	REASON	SUBMIT	TIME START_TIM	E END_TIME	TIME_LEFT TI	ME_LIMIT N
OD CPUS	PRIORITY MIN M NODELIST										
3024	acaride proyec 2-compilation	hpc	normal	(null)	PD	Dependency :	2023-10-23T12:1	6:36 N/	A N/A	5:00	5:00
1 1	4294901677 0										
3026	acaride proyec 4-post-proces	hpc	normal	(null)	PD	Dependency :	2023-10-23T12:1	6:36 N/	A N/A	5:00	5:00
1 1	4294901675 0										
3022	acaride proyec 1-preparation	hpc	normal	(null)	R	None	2023-10-23T12:1	6:36 2023-10-23T12:16:3	7 2023-10-23T12:36:37	19:48	20:00
1 64	4294901679 1G c7-1										
3025	acaride proyec 3-qpu-executi	qpu	normal	(null)	PD	Dependency :	2023-10-23T12:1	6:36 N/	A N/A	5:00	5:00
1 1	4294901676 0										
3023	acaride proyec 5-emulation.s	qs	normal	(null)	PD	Dependency :	2023-10-23T12:1	6:36 N/	A N/A	1-00:00:00 1-	-00:00:00
1 48	4294901678 0										

Referencias

- Qulacs Docs Qulacs Documentation Qulacs documentation
- Quantum Native Dojo <u>Welcome to Quantum Native Dojo! Quantum Native Dojo documentation (qulacs.org)</u>
- Git repo MPI <u>qulacs/README_MPI.md</u> at main · <u>qulacs/qulacs · GitHub</u>
- Qulacs Gui Qulacs Simulator (qulacs-gui.github.io)
- Artículo citado [2011.13524] Qulacs: a fast and versatile quantum circuit simulator for research purpose (arxiv.org)
- https://qce.quantum.ieee.org/2023/wpcontent/uploads/sites/7/2023/08/QALG QAPP QSYS QNET QTEM confere nce agenda 0830-v67.pdf p.18 EC251

¿Preguntas?

Thank you

FUJITSU-PUBLIC © Fujitsu 2023