Invariant Generation via Genetic Programming

Soonho Kong

soon@ropas.snu.ac.kr

12 Mar 2010 ROPAS Show&Tell

Problem:

Inductive Invariant Generation

For the annotated loop

$$\{\delta\}$$
 while ρ do S end $\{\epsilon\}$

Find an invariant *I* satisfying the following conditions:

- (A) $\delta \Rightarrow \iota$ (t holds when entering the loop)
- (B) $\iota \wedge \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration)
- (C) $\iota \land \neg \rho \Rightarrow \epsilon$ (ι gives ϵ after leaving the loop)

$$\begin{array}{c} (\delta) \Rightarrow I \Rightarrow \epsilon \vee \rho \\ \underline{\iota} \text{ strongest} & \overline{\iota} \text{ weakest} \end{array}$$

under-approximation over-approximation of an invariant

of an invariant

Precondition

Loop Body

Postcondition

```
\{ phase = F \land success = F \land give\_up = F \land cutoff = 0 \land count = 0 \}
 1 while \neg(success \lor give\_up) do
       entered\_phase := F;
 3
       if \neg phase then
          if cutoff = 0 then cutoff := 1;
          else if cutoff = 1 \land maxcost > 1 then cutoff := maxcost;
 5
                else phase := T; entered\_phase := T; cutoff := 1000;
          if cutoff = maxcost \land \neg search then give_{-}up := T;
       else
          count := count + 1;
10
          if count > words then give_{-}up := T;
      if entered\_phase then count := 1;
11
12
      linkages := nondet;
13
      if linkages > 5000 then linkages := 5000;
14
      canonical := 0; valid := 0;
      if linkages \neq 0 then
15
16
          valid := \mathtt{nondet}; \mathtt{assume} \ 0 \leq valid \wedge valid \leq linkages;
          canonical := linkages;
17
18
      if valid > 0 then success := T;
19 end
{ (valid > 0 \lor count > words \lor (cutoff = maxcost \land \neg search)) \land
 valid \leq linkages \wedge canonical = linkages \wedge linkages \leq 5000
```

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER

with 20 Atomic Propositions (Building Blocks)

```
\{ phase = F \land success = F \land give\_up = F \land cutoff = 0 \land count = 0 \}
                                                                    1 while \neg(success \lor give\_up) do
                                                                                      entered\_phase := F;
                                                                                      if \neg phase then
                                                                                                  if cutoff = 0 then cutoff := 1;
                                                                                                 else if contact 1
                                                                                                                                                                                                                                                                                                                        An Invariant
success \Rightarrow (valid \leq linkages \wedge linkages \leq 5000 \wedge canonical = linkages) \wedge
 success \Rightarrow (\neg search \lor count > words \lor valid \neq 0) \land
 success \Rightarrow (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land (count > words \lor cutoff = maxcost \lor (count > words \lor cutoff = words \lor (count > words \lor cutoff = words \lor (count > words \lor
 \mathit{give\_up} \Rightarrow ((\mathit{valid} = 0 \land \mathit{linkages} = 0 \land \mathit{canonical} = \mathit{linkages}) \lor
                                                             (canonical \neq 0 \land valid \leq linkages \land linkages \leq 5000 \land canonical = linkages)) \land \\
   give\_up \Rightarrow (cutoff = maxcost \lor count > words \lor
                                                               (canonical \neq 0 \land valid \neq 0 \land linkages \neq 0)) \land
    give\_up \Rightarrow (\neg search \lor count > words \lor valid \neq 0)
                                                                                                                                Homoet; assume 0 \leq valid \wedge valid \leq linkages;
                                                                                                  canonical := linkages;
                                                               17
                                                               18
                                                                                      if valid > 0 then success := T;
                                                               19 end
                                                               \{ (valid > 0 \lor count > words \lor (cutoff = maxcost \land \neg search)) \land \}
                                                                     valid \leq linkages \wedge canonical = linkages \wedge linkages \leq 5000
```

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER with 20 Atomic Propositions (Building Blocks)

Problem #1: Active Learning

Problem #1: Active Learning

Invariant approximations are not directly utilized.

Problem #2: Naive Randomized Mechanism

Teacher solely relies on naive randomized mechanism when approximations are not helpful.

Problem #2: Naive Randomized Mechanism

Teacher solely relies on naive randomized mechanism when approximations are not helpful.

Problem #2: Naive Randomized Mechanism

Teacher solely relies on naive randomized mechanism when approximations are not helpful.

Problem #1: Active Learning

Problem #1: Active Learning

Teacher can guide the learner only through the form of answers.

Solution: Active Teaching

In genetic programming, we can manipulate the formula directly: $c \Rightarrow (c \lor \underline{\iota}) \land \overline{\iota}$

Problem #2: Naive Randomized Mechanism
Teacher solely relies on naive randomized
mechanism when approximations are not helpful.

Problem #2: Naive Randomized Mechanism

Teacher solely relies on naive randomized mechanism when approximations are not helpful.

Solution: Natural Selection

Genetic programming favors better solutions.

Key Issue: How to define Fitness Function?

For the annotated loop

$$\{\delta\}$$
 while ρ do S end $\{\epsilon\}$

Find an invariant *I* satisfying the following conditions:

- (A) $\underline{\iota} \Rightarrow \iota$ (ι holds when entering the loop)
- (B) $\iota \wedge \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration)
- (C) $\iota \Rightarrow \overline{\iota}$ (ι gives ϵ after leaving the loop)

For the annotated loop

$$\{\delta\}$$
 while ρ do S end $\{\epsilon\}$

Find an invariant I satisfying the following conditions:

(A) $\underline{\iota} \Rightarrow \iota$

- (t holds when entering the loop)
- (B) $\iota \wedge \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration)

(C) $\iota \Rightarrow \overline{\iota}$

(ι gives ϵ after leaving the loop)

For the annotated loop

$$\{\delta\}$$
 while ρ do S end $\{\epsilon\}$

Find an invariant I satisfying the following conditions:

 \checkmark (A) $\underline{\iota} \Rightarrow \iota$

- (t holds when entering the loop)
- (B) $\iota \wedge \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration)

- \checkmark (C) $\iota \Rightarrow \overline{\iota}$
- (ι gives ϵ after leaving the loop)

For the annotated loop

$$\{\delta\}$$
 while ρ do S end $\{\epsilon\}$

Find an invariant I satisfying the following conditions:

- (A) $\underline{\iota} \Rightarrow \iota$ (ι holds when entering the loop)

 (B) $\iota \wedge \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration)

 (C) $\iota \Rightarrow \overline{\iota}$ (ι gives ϵ after leaving the loop)
- Solution Space

 Appro

 Appro

 Appro

 Appro

 Appro

 Candidate

 Candidate

(B) $\iota \wedge
ho \Rightarrow Pre(\iota,S)$ (ι holds at each iteration)

If (B) holds, then we find an invariant.

(B) $\iota \wedge
ho \Rightarrow Pre(\iota,S)$ (ι holds at each iteration)

If (B) does not hold, we need to quantify how bad the candidate is.

(B)
$$\iota \wedge \rho \Rightarrow Pre(\iota, S)$$
 (ι holds at each iteration)

If (B) does not hold, we need to quantify how bad the candidate is.

Fitness Function Property

$$Diff(\iota_1) \subseteq Diff(\iota_2) \Rightarrow Fit(\iota_1) \leq Fit(\iota_2)$$

Count the number of models in concrete domain.

Can not count them all in general.

$$Diff(\iota) = x < 3 \lor y > 10$$

Count the number of models in abstract domain.

Example $Dif\!f(\iota) = x < 3 \lor y > 10$ $\mathrm{SMT:}\ (10,15) \models \mathit{Dif\!f}(\iota)$

Count the number of models in abstract domain.

Example $Dif\!f(\iota) = x < 3 \lor y > 10$ $\mathrm{SMT:}\ (10,15) \models \mathit{Dif\!f}(\iota)$

Count the number of models in abstract domain.

Example $Dif\!f(\iota)=x<3\lor y>10$ $\mathrm{SMT:}\ \ (-3,7)\models \mathit{Dif\!f}(\iota)\land \neg[(x>5)\land (y>5)]$

Count the number of models in abstract domain.

Example $Dif\!f(\iota)=x<3\lor y>10$ $\mathrm{SMT:}\ \ (-3,7)\models \mathit{Dif\!f}(\iota)\land \neg[(x>5)\land (y>5)]$

Example
$$Diff(\iota) = x < 3 \lor y > 10$$

$$SMT: (-5, -5) \models Diff(\iota) \land \neg[(x > 5) \land (y > 5)] \land \neg[(x <= 5) \land (y > 5)]$$

Example
$$Diff(\iota) = x < 3 \lor y > 10$$

$$SMT: (-5, -5) \models Diff(\iota) \land \neg[(x > 5) \land (y > 5)] \land \neg[(x <= 5) \land (y > 5)]$$

$$Diff(\iota) = x < 3 \lor y > 10$$

$$SMT(Diff(\iota) \land \neg[(x > 5) \land (y > 5)] \land \neg[(x <= 5) \land (y > 5)] \land \neg[(x <= 5) \land (y <= 5)])$$

$$= UNSAT$$

$$Diff(\iota) = x < 3 \lor y > 10$$

$$SMT(Diff(\iota) \land \neg[(x > 5) \land (y > 5)] \land \neg[(x <= 5) \land (y > 5)] \land \neg[(x <= 5) \land (y <= 5)])$$

$$= UNSAT$$

$$\widehat{Fit}(\iota) = 3$$

Count the number of models in abstract domain.

 $Diff(\iota) = x < 3 \lor y > 10$ $SMT(Diff(\iota) \land \neg[(x > 5) \land (y > 5)] \land \neg[(x <= 5) \land (y > 5)] \land \neg[(x <= 5) \land (y <= 5)])$ = UNSAT

Fitness Function Property

$$Diff(\iota_1) \subseteq Diff(\iota_2) \Rightarrow Fit(\iota_1) \leq Fit(\iota_2)$$

Number of SMT calls could raise up to 2^n if we have n atomic propositions in predicate abstraction.

Number of SMT calls could raise up to 2^n if we have n atomic propositions in predicate abstraction.

In practice, that is **not** the case because of dependencies among atomic propositions.

Number of SMT calls could raise up to 2^n if we have n atomic propositions in predicate abstraction.

In practice, that is **not** the case because of dependencies among atomic propositions.

Number of SMT calls could raise up to 2^n if we have n atomic propositions in predicate abstraction.

In practice, that is **not** the case because of dependencies among atomic propositions.

y ↑				
	I	2	3	4
	5	6	7	8
	9	10	П	12 ×
-	13	14	15	16

$$16 \le 2^6 = 64$$

Issue: Formula Size

Formula size can grow infinitely.

1. Crossover operation

2. Fitness Function

SMT:
$$(10, 15) \models Diff(\iota)$$

$$(-3, 7) \models Diff(\iota) \land \neg[(x > 5) \land (y > 5)]$$

$$(-5, -5) \models Diff(\iota) \land \neg[(x > 5) \land (y > 5)] \land \neg[(x <= 5) \land (y > 5)]$$

Solution: Simplify formulae.

Progress

1. Design and implement abstract data type for formula to share subformulae (Heejae Shin & Wonchan Lee)

Plan

Thank you