Observación 2.5.

Dada una matriz $A \in \mathcal{M}_{n \times m}(\mathbb{R})$, podemos considerar la transformación lineal $T_A : \mathbb{R}^m \to \mathbb{R}^n$, definida por

 $T_a(x) = A \cdot x$, donde $x \in \mathbb{R}^m$ considerado como vector columna

Si C_m y C_n son bases canónicas de \mathbb{R}^m y \mathbb{R}^n respectivamente, entonces:

$$[T]_{C_m}^{C_n} = A$$

Esto es, la matriz asociada es la misma matriz A de definición.

Ejemplo 2.9.

Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$, $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$ y sean $C_2 = \{(1,0), (0,1)\}$ $C_3 = \{(1,0,0), (0,1)\}$

 $(0,1,0),(0,0,1)\}$ bases de \mathbb{R}^2 y $\mathbb{R}^3,$ respectivamente. Entonces.

$$T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1\\2 & 1 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} = 1\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 0\begin{pmatrix} 0\\1\\0 \end{pmatrix} + 2\begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1\\2 & 1 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} -1\\1\\1 \end{pmatrix} = -1\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 1\begin{pmatrix} 0\\1\\0 \end{pmatrix} + 1\begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Luego,

$$[T]_{C_2}^{C_3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} = A$$

Observación 2.6.

Sean $T: V \to W$ transformación lineal, con dim(V) = n y dim(W) = m. Entonces si B_1 es base de V y B_2 es base de W, se tiene que:

$$[T]_{B_1}^{B_2} \in \mathcal{M}_{m \times n}$$

es decir, la matriz asociada es de dimensión $m \times n$.

 $\left\{T(x,y,t)\right\}_{g_2}$

 $= \left[\left[\right]_{g}^{3} \left[\left(x, y, \epsilon \right) \right]_{g}$

Observación 2.7.

Matriz asiciada a las bases Canónicas Sea $T: V \to W$ aplicación lineal, y sean B_1 y B_2 bases canónicas de V y W respectivamente, entonces la matriz asociada $[T]_{B_1}^{B_2}$ se escribe simplemente como: [T]

Observación 2.8.

- 1.- La matriz $[T]_{B_1}^{B_2}$ queda completamente determinada conocidas la transformación lineal T y las bases B_1 y B_2 del dominio y codominio respectivamente.
- 2.- Recíprocamente, dada la matriz $M \in \mathcal{M}_{m \times n}$ y dos bases B_1 y B_2 de los espacios V y W respectivamente, queda completamente determinada una transformación lineal $T: V \to W$ tal que:

$$[T]_{B_1}^{B_2} = M$$

Ejemplo 2.10.

Hallar la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ sabiendo que

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix} y B_1 = \{(1,0,1), (1,1,0), (0,1,0)\} y B_2 = \{(1,2), (0,2)\}$$

Solución: Queremos encontrar T(x,y,z), para ello solo necesitamos $[T(x,y,z)]_{B_2}$.

$$(x,y,z) = \alpha(1,0,1) + \beta(1,1,0) + \gamma(0,1,0) \Rightarrow \begin{array}{cccc} \alpha+\beta & = & x & \beta & = & x-z \\ \beta+\gamma & = & y & \Rightarrow \gamma & = & y-x+z \\ \alpha & = & z & \alpha & = & z \end{array}$$

Luego,

Así,
$$T(x, y, z) = (3x - y - 2z)(1, 2) + (-2x + 2y + z)(0, 2) = (3x - y - 2z, 2x + 2y - 2z)$$

EJERCICIO: Sea $B_1 = \{p_0, p_1, p_2\}$ con $p_i(t) = (t+1)^i, \forall t \in \mathbb{R}, i = 0, 1, 2 \text{ y } B_2 = \{(1, 1, 0), (1, 0)$ $\overline{(1,2,3),(3,2,1)}$ bases de $P_2[t]$ y \mathbb{R}^3 respectivamente.

16

Considere la aplición lineal $T: P_2[t] \to \mathbb{R}^3$ tal que :

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

Dado que $q_0 = q_0(t) = t^2 + t - 1, \forall t \in \mathbb{R}$, Hallar $T(q_0)$.

Teorema 2.5.

Sean dos transformaciones lineales $T:V\to W$ y $S:V\to W.$ Sea B_1 base de V y B_2 base de W entonces:

$$[T+S]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [S]_{B_1}^{B_2}$$

Teorema 2.6.

Sea $T:V\to W$ una transformación lineal y α un escalar de \mathbb{K} . Sea B_1 base de V y B_2 base de W. Entonces:

$$[\alpha T]_{B_1}^{B_2} = \alpha [T]_{B_1}^{B_2}$$

Teorema 2.7.

Consideremos los espacios vectoriales U, V y W con U, V y W de dimensión finita, y las transformadas lineales $S: U \to V$ y $T: V \to W$, sean B_1, B_2 y B_3 bases de U, V y W respectivamente. Entonces la matriz asociada a la composición $T \circ S$ es el producto de las matrices asociadas, es decir,

$$[T \circ S]_{B_1}^{B_3} = [T]_{B_2}^{B_3} \cdot [S]_{B_1}^{B_2}$$

Teorema 2.8.

Sea $T:V\to W$ un **isomorfismo**, $T^{-1}:W\to V$ su inversa, B_1,B_2 bases de V y Wrespectivamente. Como $T\circ T^{-1}=Id_W$ se cumple que

$$[T]_{B_1}^{B_2} \cdot [T^{-1}]_{B_2}^{B_1} = [Id]_{B_2}^{B_2} = I$$

También $T^{-1} \circ T = Id_V$ por lo que

$$[T^{-1}]_{B_2}^{B_1} \cdot [T]_{B_1}^{B_2} = [Id]_{B_1}^{B_1} = I$$

Deducimos que la matriz asociada a la transformación inversa es la inversa de la matriz asociada a la transformación, es decir,

$$[T^{-1}]_{B_2}^{B_1} = ([T]_{B_1}^{B_2})^{-1}$$

Turch Ejercicio : Se consideran las transformaciones

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, donde $T(3,5) = (8,1)$ y $T(-2,1) = (-1,-5)$,

$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
, donde $S(1,0) = (1,1)$ y $S(0,1) = (0,1)$

y las bases $B_1 = \{(1,2), (1,1)\}$ y $B_2 = \{(1,-1), (1,1)\}$ de \mathbb{R}^2

1. Halla
$$[T+S]_{B_1}^{B_2}$$
 y $[3T]_{B_1}^{B_2}$.

2. Hallar
$$[(S+T)^2]_{B_1}^{B_2}$$

3. Hallar
$$[T^{-1}]_{B_1}^{B_2}$$

Matriz Asociada de Algunas Transformaciones

Figure Sea T: \mathbb{R}^3 — \mathbb{R}^4 , le transformación Lineal definida por $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_3 \\ x_1 \end{bmatrix}$ Encuentre la matriz associado a T con respecto a las bases $B_1 = \{(2,0,0), (0,3,0), (0,0,1)\}$ $B_2 = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,0), (1,1,1,0)\}$