SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12

Mattias Villani

Avdelningen för Statistik och Maskininlärning Institutionen för datavetenskap Linköpings universitet

lı.u

ÖVERSIKT

- **▶** Prediktion
- ► Beslut

PREDIKTION

- ▶ Prediktion: inferens f\u00f6r ok\u00e4nda men potentiellt observerbara kvantiteter.
 - ▶ antalet buggar i en kod.
 - ► Sjukdom.
 - Mängden brytbara mineraler.
- Prognos: prediktion av framtida utfall.
 - ▶ lägenhetspriserna i linköping Jan 2016.
 - Framtida försäljning.
 - ► Slutpris i en eBay auktion.

Prediktion för att utvärdera modeller

- Prediktion är också ett utmärkt sätt att utvärdera och jämföra modeller. En korrekt modell predikterar bra.
- ► Träningsdata testdata.
- ► Accuracy: antal korrekt klassificeringar / totala antalet test data observationer.
- ► Handwritten digits data (3000 obs för träning, 10000 för test):
 - ▶ Multinomial regression med elastic net: accuracy = 88.49%
 - ► Support vector machine: accuracy: 89.42%

PREDIKTION I REGRESSION

Linjär regression

$$y = \beta_0 + \beta_1 x + \varepsilon$$

▶ Vad blir **prognosen** av Y för ett nytt x-värde, x_{\star} ?

$$\mu_{\star} = E\left(Y|X=x_{\star}\right) = \beta_0 + \beta_1 x_{\star}$$

som vi skattar med

$$\hat{y}_{\star} = \hat{\beta}_0 + \hat{\beta_1} x_{\star}$$

- ▶ Se Baron s. 377-378 för härledning av samplingfördelning, standardfel och konfidensintervall för \hat{y}_{\star} .
- Ett konfidensintervall för \hat{y}_{\star} är osäkerheten om **populationens** väntevärde vid $x = x_{\star}$. Dvs osäkerheten om regressionslinjen.
- ▶ Men hur ser osäkerheten för ett faktiskt y-värde ut om $x = x_{\star}$?
- ▶ Prognosintervall för Y när $x = x_*$

$$\hat{\beta}_0 + \hat{\beta_1} x_{\star} \pm t_{\alpha/2} \cdot s \cdot \sqrt{1 + \frac{1}{n} + \frac{(x_{\star} - \bar{x})^2}{S_{xx}}}$$

BAYESIANSK PREDIKTION

Prediktiv fördelning för ny observation \tilde{X} :

$$p(\tilde{x}|x_1,...,x_n) = \int f(\tilde{x}|x_1,...,x_n,\theta)\pi(\theta|x_1,...,x_n)d\theta$$

- ► Exempel: $x_1, ..., x_n | \theta \sim N(\theta, \sigma^2)$ och σ^2 känd.
- Prediktiv fördelning

$$\tilde{x}|x_1,...,x_n \sim N\left(\mu_x, \tau_x^2 + \sigma^2\right)$$

- Vår bästa prognos: $\mu_{\mathsf{x}} = \mathbb{E}(\theta|x_1,...,x_n)$.
- Prediktionsvarians = Varians pga osäkerhet om θ (τ_x^2) + Varians pga osäkerhet i populationen kring $\theta(\sigma^2)$.

BAYESIANSK PREDIKTION - AR-PROCESS

Autoregressiv process av första ordningen

$$y_t = \mu + \phi (y_{t-1} - \mu) + \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

- **Steady-state** (processens obetingade väntevärde): μ.
- ▶ Posterior: $\pi(\phi, \mu, \sigma | y_1, ..., y_T)$.
- ▶ Vi är intresserade av *h*-stegs prognosfördelningen: $p(y_{T+1}, y_{T+2}, ..., y_{T+h}|y_1, ..., y_T).$
- ▶ Simularing från $p(y_{T+1}, y_{T+2}, ..., y_{T+h}|y_1, ..., y_T)$:
 - 1. Simulera $\theta^{(1)} = (\phi^{(1)}, \mu^{(1)}, \sigma^{(1)})$ från posteriorn $p(\phi, \mu, \sigma | y_1, ..., y_T)$
 - 2. Betingat på $\theta = \theta^{(1)}$ simulera en **prognosbana**
 - $\tilde{\mathbf{y}}_{T+1}^{(1)} \sim p(\mathbf{y}_{T+1}|\mathbf{y}_{T}, \boldsymbol{\theta}^{(1)})$
 - $\tilde{y}_{T+2}^{(1)} \sim p(y_{T+2}|\tilde{y}_{T+1}^{(1)}, \theta^{(1)})$
 - $\tilde{y}_{T+h}^{(1)} \sim p(y_{T+h}|\tilde{y}_{T+h+1}^{(1)}, \theta^{(1)})$
- ▶ Upprepa steg 1 och 2 ett stort antal gånger.

AR(1)-PROCESS

8 / 16

BAYESIAN h-STEP AHEAD PREDICTIVE DISTRIBUTION

BESLUTSTEORI

- ▶ Låt $\theta \in \Theta$ vara en **okänd kvantitet**, **tillstånd**. Exempel: Sjukdom, Global temperaturökning, antalet buggar.
- ▶ Låt $a \in A$ vara ett **beslut** (eng. action). Ex: operation, energisskatt, releasedatum.
- ▶ Välja beslut a när tillståndet visar sig vara θ ger dig **nyttan** (eng. utility)

$$U(a, \theta)$$

► Alternativt: **förlust** (eng. loss):

$$L(a, \theta) = -U(a, \theta)$$

DISKRETA TILLSTÅND, DISKRETA BESLUT

ightharpoonup Förlusttabell för problem med två möjliga heta-utfall och två möjliga beslut:

$$\begin{array}{c|cccc} & \theta_1 & \theta_2 \\ \hline a_1 & L(a_1, \theta_1) & L(a_1, \theta_2) \\ a_2 & L(a_2, \theta_1) & L(a_2, \theta_2) \\ \end{array}$$

► Exempel:

	Regnigt	Soligt
Paraply	20	10
Inget paraply	50	0

BESLUT

- ▶ Tillståndrummet ⊕ kan vara diskret eller kontinuerligt.
- **Beslutsrummet** A kan vara diskret eller kontinuerligt.
- ▶ Kontinuerligt Θ , diskret A:
 - ▶ Brobygge: θ =grad av miljöpåverkan och A = {bygga, ej bygga}.
- ▶ Diskret Θ , kontinuerligt A:
 - ▶ θ =antalet buggar. $\theta \in \{0, 1, 2, ...\}$ och \mathcal{A} = releasetid.
 - ▶ brottsdom. $\theta \in \{\text{oskyldig}, \text{skyldig}\}$. $\mathcal{A} = \{\text{tid i fängelse}\}$.
- Kontinuerligt Θ, Kontinuerligt A:
 - $m{ ilde{ heta}}= ext{efterfrågan på produkt, } \mathcal{A}=\{ ext{hur många enheter i lager?}\}$

KONTINUERLIGA TILLSTÅND, KONTINUERLIGA BESLUT

- ightharpoonup Exempel på **förlustfunktioner** när både a och θ är kontinuerliga:
 - ▶ Linjär: $L(a, \theta) = |a \theta|$
 - Kvadratisk: $L(a, \theta) = (a \theta)^2$
 - ► Lin-Lin:

$$L(a,\theta) = \begin{cases} c_1 \cdot |a - \theta| & \text{if } a \le \theta \\ c_2 \cdot |a - \theta| & \text{if } a > \theta \end{cases}$$

- Exempel:
 - ightharpoonup hetaantalet efterfrågade produkter
 - a antal produkter i lager
 - Nytta

$$U(a, \theta) = \begin{cases} p \cdot \theta - c_1(a - \theta) & \text{om } a > \theta \text{ [f\"or litet lager]} \\ p \cdot a - c_2(\theta - a)^2 & \text{om } a \le \theta \text{ [f\"or stort lager]} \end{cases}$$

OPTIMALA BESLUT

- ► Exempel på vanlig beslutsregel: **Minimax**. Välj det beslut som minimerar den maximala förlusten.
- ▶ Bayes: Välj det beslut som maximerar förväntad nytta a posteriori:

$$a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} \mathbb{E}[U(a, \theta)],$$

där \mathbb{E} är väntevärdet med avseende på aposteriorn $p(\theta|Data)$.

▶ I praktiken: simulera $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ från $p(\theta|Data)$ och approximera

$$\mathbb{E}[U(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} U(a,\theta^{(i)})$$

- ► Separationsprincipen:
- 1. Ta först fram $p(\theta|Data)$...
- 2. därefter $U(a, \theta)$ och slutligen ...
- 3. välj det $a \in \mathcal{A}$ som maximerar $\mathbb{E}[U(a, \theta)]$.

VÄNTEVÄRDE, MEDIAN ELLER TYPVÄRDE?

- ▶ Hur kan vi bäst sammanfatta en aposteriorifördelning $p(\theta|Data)$ med ett enda tal?
- Att välja en punktskattning är ett beslutsproblem.
- ► Valet beror på din förlustfunktion:
 - **Linjär förlust** \rightarrow Posterior median är optimal
 - $lackbox{ Quadratic loss } o ext{Posteriorvantevardet } \mathbb{E}(heta|\mathit{Data}) ext{ ar optimal}$
 - ▶ **Lin-Lin loss** $\rightarrow c_2/(c_1+c_2)$ kvantilen i posteriorn är optimal
 - ▶ **Noll-ett förlust** → Posterior typvärdet är optimalt

FÖRLUSTFUNKTIONER

