Contents

. Linear Algebra	2
1.1. Vector Spaces	2

1. Linear Algebra

1.1. Vector Spaces

Let V be a set, whose elements are called **vectors**. A vector \underline{v} is denoted as $\underline{v} = (v_1, v_2, ..., v_n)$, where each v_i with $1 \le i \le n$ is called the i-th **component** of \underline{v} .

Let + be an operation on such set, a *sum* of vectors, that has two vectors as arguments and returns another vector. That is, foreach $(\underline{x}, y) \in V \times V$ there exists a vector $\underline{v} \in V$ such that $\underline{x} + y = \underline{v}$.

Let \cdot be another operation, a product between a vector and a real number, that has a real number and a vector as argument and returns another vector. That is, foreach $\lambda \in \mathbb{R}$ and $\underline{v} \in V$ there exists a vector $\underline{w} \in V$ such that $\lambda \cdot v = w$.

Suppose those operations possess the following properties:

- (V, +) is an Abelian group;
- The product has the distributive property, such that for every $\lambda \in \mathbb{R}$ and for every $\underline{x}, \underline{y} \in V$ it is true that $\lambda \cdot (\underline{x} + y) = \lambda \cdot \underline{x} + \lambda \cdot y$;
- The product has the associative property, such that for every $\lambda, \mu \in \mathbb{R}$ and for every $\underline{x} \in V$ it is true that $(\lambda + \mu) \cdot \underline{x} = \lambda \cdot \underline{x} + \mu \cdot \underline{x}$;
- For every vector $\underline{v} \in V$, it is true that $1 \cdot \underline{v} = \underline{v}$.

If that is the case, the set V is called **vector space**. It should be noted that it does not matter what the elements of a vector space actually are (be they numbers, functions, polynomals, etcetera); as long as the aforementioned properties hold for the two operations, such set shares all of the properties that a vector space possesses. For the sake of readability, the product between a real number and a vector is often represented without the dot. That is to say, the expressions $\lambda \cdot \underline{x}$ and $\lambda \underline{x}$ have the same meaning.

Exercise 1.1.1: Denote as \mathbb{R}^n the set containing all vectors of real components¹ in the n-dimensional plane. Prove that \mathbb{R}^n constitutes a vector space.

Solution: It is possible to define both a sum between two vectors in the n-dimensional plane and a product between a vector in the n-dimensional space and a real number. To sum two vectors in the n-dimensional space, it suffices to sum each component with each component. To multiply a vector in the n-dimensional space with a real number it suffices to multiply each component by that number:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} \qquad \qquad \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{pmatrix}$$

- $(\mathbb{R}^n, +)$ constitutes an Abelian group. Infact:
 - The sum has the associative property:

$$\begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 + u_1 \\ v_2 + w_2 + u_2 \\ \vdots \\ v_n + w_n + u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 + u_1 \\ w_2 + u_2 \\ \vdots \\ w_n + u_n \end{pmatrix}$$

• There exists an identity element, in the form of the vector whose components are all zero:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} v_1 + 0 \\ v_2 + 0 \\ \vdots \\ v_n + 0 \end{pmatrix} = \begin{pmatrix} 0 + v_1 \\ 0 + v_2 \\ \vdots \\ 0 + v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

¹This is a misnomer.

• Each vector in the n-dimensional space has an inverse element with respect to the sum, that is the same vector multiplied by -1:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + (-1) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} -v_1 \\ -v_2 \\ \vdots \\ -v_n \end{pmatrix} = \begin{pmatrix} v_1 + (-v_1) \\ v_2 + (-v_2) \\ \vdots \\ v_n + (-v_n) \end{pmatrix} = \begin{pmatrix} -v_1 + v_1 \\ -v_2 + v_2 \\ \vdots \\ -v_n + v_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

• The sum has the commutative property:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} = \begin{pmatrix} w_1 + v_1 \\ w_2 + v_2 \\ \vdots \\ w_n + v_n \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

• The product has the associative property:

$$(\lambda+\mu) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} (\lambda+\mu)v_1 \\ (\lambda+\mu)v_2 \\ \vdots \\ (\lambda+\mu)v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 + \mu v_1 \\ \lambda v_2 + \mu v_2 \\ \vdots \\ \lambda v_n + \mu v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{pmatrix} + \begin{pmatrix} \mu v_1 \\ \mu v_2 \\ \vdots \\ \mu v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

• The product has the distributive property:

$$\lambda \left(\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} \right) = \lambda \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} = \begin{pmatrix} \lambda(v_1 + w_1) \\ \lambda(v_2 + w_2) \\ \vdots \\ \lambda(v_n + w_n) \end{pmatrix} = \begin{pmatrix} \lambda v_1 + \lambda w_1 \\ \lambda v_2 + \lambda w_2 \\ \vdots \\ \lambda v_n + \lambda w_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \lambda \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

• Multiplying a vector by the number 1 leaves the vector unchanged:

$$1 \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} 1v_1 \\ 1v_2 \\ \vdots \\ 1v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Let $\left\{\underline{v_1},\underline{v_2},...,\underline{v_n}\right\}$ be a set of n vectors of a vector space V, and let $\lambda_1,\lambda_2,...,\lambda_n$ be n real numbers (not necessarely distinct). Every summation defined as such:

$$\sum_{i=1}^{n} \lambda_i \underline{v_i} = \lambda_1 \underline{v_1} + \lambda_2 \underline{v_2} + \ldots + \lambda_i \underline{v_i} + \ldots + \lambda_n \underline{v_n}$$

Is called a **linear combination** of the vectors $\left\{\underline{v_1},\underline{v_2},...,\underline{v_n}\right\}$, with $\lambda_1,\lambda_2,...,\lambda_n$ as **coefficients**. A set of vectors $\left\{\underline{v_1},\underline{v_2},...,\underline{v_n}\right\}$ is said to be **linearly independent** if the only linear combination of such vectors that equals the null vector is the one that has 0 as every coefficient. If there exists a linear combination of such vectors that is equal to the null vector and that has at least a non-zero coefficient, those vectors are said to be **linearly independent**.

Theorem 1.1.1: Let $\{\underline{v_1}, \underline{v_2}, ..., \underline{v_n}\}$ be a set of n vectors of a vector space V. If those vectors are linearly dependent, there exists at least one vector of such set that can be expressed as a linear combination of the remaining vectors, and vice versa.

Proof: If such set of vectors is linearly dependent, there must exist a linear combination of the set that equals the null vector, be it:

$$\sum_{i=1}^n \lambda_i \underline{v_i} = \lambda_1 \underline{v_1} + \lambda_2 \underline{v_2} + \ldots + \lambda_j \underline{v_j} + \ldots + \lambda_n \underline{v_n} = \underline{0}$$

Where there's at least a non-zero coefficient. Let's assume, without loss of generality, that the j-th coefficient is non-zero (whether such coefficient is the only one to be non-zero is irrelevant). The product of such coefficient with the corresponding vector can be moved to the right side of the equation like so:

$$\lambda_1\underline{v_1} + \lambda_2\underline{v_2} + \ldots + \lambda_n\underline{v_n} = -\lambda_jv_j$$

Dividing both sides by $-\lambda_i$ gives:

$$-\frac{\lambda_1}{\lambda_i}\underline{v_1}-\frac{\lambda_2}{\lambda_i}\underline{v_2}-\ldots-\frac{\lambda_n}{\lambda_i}\underline{v_n}=\underline{v_j}$$

Each $-\frac{\lambda_i}{\lambda_j}$ is itself a real number, and therefore the expression above is a linear combination that is equal to a vector of the set.

On the other hand, assume that the j-th vector of the set is equal to a linear combination of the remaining vectors like so:

$$\lambda_1\underline{v_1} + \lambda_2\underline{v_2} + \ldots + \lambda_n\underline{v_n} = \underline{v_j}$$

Moving v_j to the left gives:

$$\lambda_1\underline{v_1}+\lambda_2\underline{v_2}+\ldots+(-1)\underline{v_j}+\ldots+\lambda_n\underline{v_n}=\underline{0}$$

Since -1 is a real number, the expression on the left side of the equation is indeed a linear combination of the whole set, that is equal to the null vector.

Exercise 1.1.2: Consider the vector space \mathbb{R}^n . Check if the vectors $\underline{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\underline{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are linearly independent or linearly dependent.

Solution: Consider such linear combination:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

To test whether $\underline{v_1}$ and $\underline{v_2}$ are linearly dependent or independent, it suffices to solve this system of equations:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \lambda_1 \\ 0 \end{pmatrix} + \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 2\lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} 2\lambda_1 = 0 \\ \lambda_2 = 0 \end{cases} \Rightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$$

Since the only solution to such system is $\lambda_1=0,\lambda_2=0,$ $\underline{v_1}$ and $\underline{v_2}$ are linearly independent.

Exercise 1.1.3: Consider the vector space \mathbb{R}^n . Check if the vectors $\underline{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\underline{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\underline{v_3} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ are linearly independent or linearly dependent.

Solution: Consider such linear combination:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

To test whether $\underline{v_1}$, $\underline{v_2}$ and $\underline{v_3}$ are linearly dependent or independent, it suffices to solve this system of equations:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ \lambda_2 = 0 \end{cases} \Rightarrow \begin{cases} \lambda_1 = -2\lambda_3 \\ \lambda_2 = 0 \end{cases}$$

Since there are infinite solutions to such system, including non-zero solutions, $\underline{v_1}$, $\underline{v_2}$ and $\underline{v_3}$ are linearly dependent. For example, setting $\lambda_1=1$ results in:

$$1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Which is, indeed, a correct identity.

A set of vectors $S = \{\underline{s_1}, ..., \underline{s_n}\}$ of a vector space V is said to **generate** V if every vector of V can be written as a linear combination of the vectors in S. That is to say, S generates V if for every $\underline{v} \in V$ there exist a set of coefficients $\lambda_1, ..., \lambda_n$ such that:

$$\underline{v} = \sum_{i=1}^{n} \lambda_i \underline{s_i} = \lambda_1 \underline{s_1} + \dots + \lambda_n \underline{s_n}$$

Theorem 1.1.2: Let S be a set of vectors of a vector space V that can generate V. Let $\underline{w} \in V$ be a random vector of V. The set of vectors $S \cup \{\underline{w}\}$ is linearly dependent.

Proof: If S can generate V and \underline{w} belongs to V, there exists a linear combination of the vectors in S such that:

$$\underline{w} = \sum_{i=1}^{n} \lambda_{i} \underline{s_{i}} = \lambda_{1} \underline{s_{1}} + \dots + \lambda_{n} \underline{s_{n}}$$

Moving w to the right side of the equation gives:

$$\underline{0}=(-1)\underline{w}+\lambda_1s_1+\ldots+\lambda_ns_n$$

The expression on the right side of the equation is indeed a linear combination of $S \cup \{\underline{w}\}$, that is equal to the null vector. Since at least -1 is a non zero coefficient, such set is linearly dependent.

A set of vectors that can generate a vector space and is itself linearly independent is called a **basis** for such vector space. The cardinality of a basis is called the **dimension** of the corresponding vector space.

Theorem 1.1.3: A basis of a vector space has the minimum cardinality out of every set of vectors that can generate it. In other words, if a basis of a vector space has cardinality n, at least n vectors are needed to generate such space.

A transformation $\phi: V \mapsto W$, with both V and W being vector spaces, is called a **linear transformation** if and only if:

$$\phi\big(\underline{v_1} + \underline{v_2}\big) = \phi\big(\underline{v_1}\big) + \phi\big(\underline{v_2}\big) \ \forall \underline{v_1}, \underline{v_2} \in V \\ \hspace*{1.5cm} \phi(\lambda\underline{v}) = \lambda\phi(\underline{v}) \ \forall \underline{v} \in V, \lambda \in \mathbb{R}$$

In particular, if V = W, the transformation ϕ is said to be an **endomorphism**.

Exercise 1.1.4: Consider the vector space \mathbb{R} (that is, the set of real numbers). Check whether the transformations $\phi_1(x) = 2x$ and $\phi_2(x) = x + 1$ are linear or not.

Solution:

- The transformation $\phi_1(x)=2x$ is linear. Infact, given two real numbers a and b, is indeed true that 2(a+b)=2a+2b, since the product between real numbers has the distributive property. Similarly, given a real number a and a real number λ , it is true that $2(\lambda a) = 2\lambda a$, since the product between real numbers has the associative property;
- The transformation $\phi_2(x) = x + 1$ is not linear. Given two real numbers a and b, it results in $\phi_2(a+b) = (a+b) + 1 = a+b+1$, while $\phi_2(a) + \phi_2(b) = a+1+b+1 = a+b+2$.

It can be shown that a linear transformation is equivalent to a manipulation of matrices.

Let $\phi: V \mapsto W$ be a linear transformation between two vector space V and W. Let $B = \{b_1, ..., b_n\}$ be a basis for V and $C=\left\{c_1,...,c_m\right\}$ a basis for W. Each vector $\underline{x}\in V$ can be written as a linear combination of the vector tors of B:

$$\underline{x} = \sum_{i=1}^{n} \lambda_i \underline{b_i}$$

Applying ϕ to \underline{x} gives:

$$\phi(\underline{x}) = \phi\Biggl(\sum_{i=1}^n \lambda_i \underline{b_i}\Biggr) = \sum_{i=1}^n \phi\Bigl(\lambda_i \underline{b_i}\Bigr) = \sum_{i=1}^n \lambda_i \phi\Bigl(\underline{b_i}\Bigr)$$

The two rightmost equalities stem from the fact that ϕ is linear.

Each $\phi(b_i)$ is a vector of W, since it's the result of applying ϕ to an vector of V. This means that each $\phi(b_i)$ can itself be written as a linear combination of elements of *C*:

$$\phi(b_i) = \sum_{j=1}^m \gamma_{j,i} c_j$$

Substituting it back in the previous expression gives:

$$\phi(\underline{x}) = \sum_{i=1}^{n} \lambda_i \left(\sum_{j=1}^{m} \gamma_{j,i} c_j \right) = \sum_{i,j=1}^{n,m} \lambda_i \gamma_{j,i} c_j$$

This means that, fixed a given basis B, to know all the relevant information regarding a vector x of V it suffices to "store" the λ coefficients of its linear combination with respect to B in a (column) vector.

In a similar fashion, to know all the relevant information of its image $\phi(\underline{x})$ it suffices to store the $\sum_{i=1}^{m} \lambda_i \gamma_{j,i}$ coefficients of its linear combination with respect to C in a (column) vector:

$$\underline{x} \Longleftrightarrow \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \qquad \qquad \phi(\underline{x}) \Longleftrightarrow \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$$

Where, for clarity, each $\sum_{j=1}^m \lambda_i \gamma_{j,i}$ has been written simply as μ_i . It is then possible to describe the application of the transformation ϕ as the following product of matrices:

$$\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \gamma_{1,1} & \gamma_{1,2} & \dots & \gamma_{1,n} \\ \gamma_{2,1} & \gamma_{2,2} & \dots & \gamma_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{m,1} & \gamma_{m,2} & \dots & \gamma_{m,n} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$