LECTURE 33: HARMONIC OSCILLATOR

Wednesday, November 06, 2019

0.1 The Harmonic Oscillator

If our potential is $V = \frac{1}{2}kx^2$, we can write our Hamiltonian as

$$\mathbf{H} = \frac{\mathbf{P}^2}{2m} + \frac{1}{2}k\mathbf{X}^2 = \frac{\mathbf{P}^2}{2m} + \frac{1}{2}m\omega^2\mathbf{X}^2$$

where $\omega = \sqrt{\frac{k}{m}}$. We expect the eigenfunctions should have definite parity, since $[\mathbf{H}, \mathbf{\Pi}] = 0$ so $\mathbf{\Pi} | \varphi \rangle = \pm | \varphi \rangle$. We also know $[\mathbf{X}, \mathbf{P}] = \imath \hbar$ and $\mathbf{H} | \varphi \rangle = E | \varphi \rangle$. If we were to imagine differentiating the Schrödinger equation from $-\infty$, only a few miraculous values of E will solve this equation so that it vanishes at $+\infty$. We can make live a bit easier by getting rid of every quantity with physical dimensions. Let's introduce $\hat{\mathbf{X}} = \sqrt{\frac{m\omega}{\hbar}} \mathbf{X}$ and $\hat{\mathbf{P}} = \sqrt{\frac{1}{m\hbar\omega}} \mathbf{P}$ such that $\left[\hat{\mathbf{X}}, \hat{\mathbf{P}}\right] = \imath$. Therefore

$$\mathbf{\hat{H}} = \frac{1}{\hbar\omega}\mathbf{H} = \frac{1}{2}\left(\mathbf{\hat{P}}^2 + \mathbf{\hat{X}}^2\right)$$

We solve this by introducing two new operators, called "raising" and "lowering" operators:

$$\mathbf{a} \equiv \frac{1}{\sqrt{2}} \left(\hat{\mathbf{X}} + \imath \hat{\mathbf{P}} \right) \mathbf{a}^{\dagger} = \frac{1}{\sqrt{2}} \left(\hat{\mathbf{X}} - \imath \hat{\mathbf{P}} \right)$$

so $[\mathbf{a}, \mathbf{a}^{\dagger}] = 1$ and we define $\mathbf{N} = \mathbf{a}^{\dagger} \mathbf{a} = \frac{1}{2} \left(\hat{\mathbf{P}}^2 + \hat{\mathbf{X}}^2 - 1 \right)$. Therefore

$$\hat{\mathbf{H}} = \mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2} = \mathbf{N} + \frac{1}{2}$$

so $[{\bf H}, {\bf N}] = 0$.

$$\mathbf{N} \left| \varphi_{\nu}^{(i)} \right\rangle = \nu \left| \varphi_{\nu}^{(i)} \right\rangle$$

and

$$\hat{\mathbf{H}} \left| \varphi_{\nu}^{(i)} \right\rangle = \left(\nu + \frac{1}{2} \right) \left| \varphi_{\nu}^{(i)} \right\rangle$$

where (i) is an additional degree of freedom that we will find is not important.

$$\nu \ge 0$$

$$\nu = \nu \langle \varphi_{\nu} | \varphi_{\nu} \rangle = \langle \varphi_{\nu} | \mathbf{N} | \varphi_{\nu} \rangle = (\langle \varphi_{\nu} | \mathbf{a}^{\dagger}) (\mathbf{a} | \varphi_{\nu} \rangle) = \|\mathbf{a} | \varphi_{\nu} \rangle\|^{2} > 0$$

$$\nu = 0$$

$$\implies \mathbf{a} |\varphi \nu\rangle = 0$$

$$\nu > 0$$

$$\implies \mathbf{Na} |\varphi_{\nu}\rangle = (\nu - 1)\mathbf{a} |\varphi_{\nu}\rangle$$

This is because $[\mathbf{N}, \mathbf{a}] = -\mathbf{a}$, so $\mathbf{N}(\mathbf{a}|\varphi_{\nu}) = \mathbf{a}\mathbf{N}|\varphi_{\nu}\rangle - \mathbf{a}|\varphi_{\nu}\rangle = (\nu - 1)\mathbf{a}|\varphi_{\nu}\rangle$.

 $\mathbf{a}^{\dagger} |\varphi_{\nu}\rangle \neq 0$

$$\mathbf{N}\mathbf{a}^{\dagger} | \varphi_{\nu} \rangle = (\nu + 1)\mathbf{a}^{\dagger} | \varphi_{\nu} \rangle$$

 ν is a non-negative integer Assume $n < \nu < n+1$. $\mathbf{a}^{n+1} | \varphi_{\nu} \rangle = 0$, therefore $\nu - (n+1) = 0$ so $\nu \in \mathbb{Z}$.

 $|arphi_
u
angle$ is non-degenerate

 $|\varphi_0\rangle$ Lowering this state must give us zero, so

$$\mathbf{a} |\varphi_0\rangle = 0 = \frac{1}{\sqrt{2}} \left(\hat{\mathbf{X}} + \imath \hat{\mathbf{P}} \right) |\varphi_0\rangle$$

In x-space,

$$\left(x + \frac{\mathrm{d}}{\mathrm{d}x}\right)\varphi_0(x) = 0 \implies \varphi_0(x) = C_0 e^{-\frac{x^2}{2}}$$

 $|\varphi_n\rangle$ non-degenerate implies $|\varphi_{n+1}\rangle$ is non-degenerate

$$\mathbf{a}^{\dagger} [\mathbf{a} \left| \varphi_{n+1}^{(i)} \right\rangle = C^{(i)} \left| \varphi_{n} \right\rangle]$$

$$\mathbf{N} \left| \varphi_{n+1}^{(i)} \right\rangle = (n+1) \left| \varphi_{n+1}^{(i)} \right\rangle = C^{(i)} \mathbf{a}^{\dagger} \left| \varphi_{n} \right\rangle$$

$$\left| \varphi_{n+1}^{(i)} \right\rangle = \frac{C^{(i)}}{n+1} \mathbf{a}^{\dagger} \left| \varphi_{n} \right\rangle$$

0.1.1 Eigenfunctions of the Harmonic Oscillator

We start by normalizing the ground state wave function:

$$\varphi_0(x) = \frac{1}{\sqrt[4]{\pi}} e^{-\frac{x^2}{2}}$$

The other eigenfunctions can be found by raising the ground state:

 $|\varphi_n\rangle = \frac{1}{\sqrt{n!}} (\mathbf{a}^{\dagger})^n |\varphi_0\rangle$

so

 $\varphi_1(x) = \sqrt[4]{\frac{4}{\pi}} x e^{-\frac{x^2}{2}}$

and

$$\varphi_2(x) = \sqrt[4]{\frac{1}{4\pi}} \left[2x^2 - 1 \right] e^{-\frac{x^2}{2}}$$

where the polynomials in front of the exponential are the Hermite polynomials $H_n(x)$. The energy levels are evenly spaced by $\hbar\omega$ (so that the energy difference between the energy of the ground state is $\hbar\omega$ away from the first state, and the same with the first and second state). The space between the ground state and the x-axis is $\frac{1}{2}\hbar\omega$, so the energy eigenvalues are $\hbar\omega(n+\frac{1}{2})$.