Задачи

- **1**. Показать, что переменная x_1 булевой функции f является фиктивной:
- 1) $f = (x_2 \rightarrow x_1) \cdot (x_2 \downarrow x_2)$,
- 2) $f = (x_1 \leftrightarrow x_2) \lor (x_1 \mid x_2),$
- 3) $f = ((x_1 + x_2) \rightarrow x_3) \cdot \neg (x_3 \rightarrow x_2)$.
 - **2.** Доказать, что $[K \cap L] \subseteq [K] \cap [L]$, $[K] \cup [L] \subseteq [K \cup L]$.
- **3.** Показать, что функция f принадлежит замыканию класса C булевых функций:
 - 1) f = x, $C = \{x + y\}$,
 - 2) f = x + y + z, $C = \{x \leftrightarrow y\}$,
 - 3) $f = x \lor y$, $C = {\neg x \lor \neg y}$,
 - 4) f = x + y + z, $C = \{ \neg x, xy \lor xz \lor yz \}$, 5) f = x + y, $C = \{x \cdot \neg y, x \lor \neg y \}$.
- **4.** Содержит ли замыкание класса $\{\iota(x), x \cdot y, x \vee y\}$ функции $\theta(x)$, $\neg x$?
 - **5.** Выяснить, является ли функция f двойственной к функции g

$$a) f = x + y, g = x \leftrightarrow y,$$

$$6) f = x \rightarrow y, g = y \rightarrow x,$$

$$\mathbf{B}) f = x \rightarrow y, g = \neg x \cdot y,$$

$$\Gamma) f = (x+y) \cdot z, g = (x+y) \cdot (z+1),$$

$$д) f = (x \cdot y) \lor (x \cdot z) \lor (y \cdot z), g = x \cdot y + x \cdot z + y \cdot z,$$

e)
$$f = x \leftrightarrow y$$
, $g = (\neg x \cdot y) \lor (x \cdot \neg y)$.

- **6.** Выяснить, будут ли следующие функции самодвойственными: v(x), xy, $(x \cdot y) \lor (x \cdot z) \lor (y \cdot z)$, $(x \lor y) \cdot (x \lor z) \cdot (y \lor z)$, x + y + z.
- **7.** Показать, что не существует самодвойственной функции, существенно зависящей от двух переменных.
- **8.** Доказать монотонность функций $x \cdot (y \lor z)$, $x \lor (y \cdot z)$, max(x, y, z), min(x, y, z).
- **9.** Выяснить, будут ли следующие функции монотонны: yx+y, xy+y+x, $x \leftrightarrow y$, $x \to (y \to x)$, $(x \cdot y) \lor (x \cdot z) \lor (y \cdot z)$, $x \to (x \to y)$.
- **10.** Доказать, что функция, двойственная монотонной, сама монотонна.
- **11.** Система функций С называется *базисом* замкнутого класса K, если замыкание системы С совпадает с K, но замыкание любой собственной подсистемы системы С уже не совпадает с K. Доказать, что система $\{\theta(x), \iota(x), x \cdot y, x \lor y\}$ образует базис в классе всех монотонных функций.
- **12.** Выяснить, будут ли следующие функции линейными: $x \downarrow y$, $\neg (x \leftrightarrow \neg y)$, $(x \leftrightarrow y) \leftrightarrow z$, $x \to (y \to x)$.

13. Сведением к известным полным классам доказать полноту классов функций двузначной логики:

a)
$$\{x \rightarrow y, \neg x\}$$
,

δ) { $x \rightarrow y$, θ(x)},

B)
$$\{x \downarrow y\}$$
,

 Γ) $\{x \rightarrow y, x+y\}$,

$$\exists x \lor y, x+y, \iota(x)$$
,

- e) $\{x \leftrightarrow y, \theta(x), x \lor y\}$.
- **14.** Используя теорему Поста, доказать полноту классов функций двузначной логики:

a)
$$\{x \lor y, \neg x\}$$
,

б) $\{x \rightarrow y, \neg x\},$

B)
$$\{x \cdot y + x, x + y, \iota(x)\}$$
,

 Γ) $\{x+y, x \leftrightarrow (y\cdot z)\},$

$$д) {x \cdot y, x + y, x \leftrightarrow (x \cdot y)},$$

- e) $\{x \leftrightarrow y, \theta(x), x \lor y\}$.
- **15.** Выяснить, будут ли полными в B_2 следующие классы функций:

a)
$$\{xy, x+y+1\},\$$

$$δ$$
) { $θ$ (x), $ι$ (x), (x · y)∨ z },

B)
$$\{\theta(x), \iota(x), x \leftrightarrow y\},\$$

$$\Gamma$$
) { $x \cdot y + x, x \leftrightarrow y, \theta(x)$ },

$$\mathbf{Z}$$
) $\{x \lor y, x \cdot y + x \cdot z\},$

e)
$$\{\neg x, (x \cdot y) \lor (x \cdot z) \lor (y \cdot z)\},\$$

ж)
$$\{l(x), \neg x, x+y+max(x, y, z)\},$$

3)
$$\{x+y, x \lor y \lor v(z)\}.$$