IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD **ENTRE DOS MAGNITUDES**

Nombre:	Curso	:	Fecha:	

CONCEPTO DE MAGNITUD. PROPORCIONALIDAD

- Una **magnitud** es cualquier característica de un objeto que podemos medir. Ejemplo: la longitud, la masa, el número de alumnos, la capacidad, la velocidad, el precio, etc.
- Las magnitudes se expresan en unidades de medida: metros, kilómetros, kilogramos, gramos, número de personas, litros, kilómetros por hora, metros por segundo, euros, dólares, etc.
- En ocasiones las magnitudes se relacionan entre sí. Esta relación se denomina de **proporcionalidad**, y nos ayuda a solucionar problemas de la vida cotidiana.

EJEMPLO

Un saco de harina pesa 10 kilogramos, 2 sacos de harina pesan 20 kilogramos y 3 sacos pesan 30 kilogramos. ¿Cuánto pesan 4 sacos? ¿Y 5 sacos? ¿Y 6 sacos? ¿Y 10 sacos?

Tenemos dos magnitudes: número de sacos de harina y peso de los sacos.

Entre ambas existe una relación de proporcionalidad: cuantos más sacos sean, más pesarán.

Este ejemplo lo podemos expresar mediante una tabla, llamada tabla de proporcionalidad:

N.º de sacos	1	2	3	4	5	6	7	8	9	10	. 10
Peso (kg)	10	20	30	40	50	60	70	80	90	100	10

Las series de números de ambas magnitudes, número de sacos y peso, son proporcionales entre sí; por tanto, podemos pasar de una serie a otra, multiplicando o dividiendo por 10.

ACTIVIDADES

- 1 Referido al ejemplo anterior:
 - a) Indica el peso, en kg, de 15, 17, 18, 20 y 50 sacos, y elabora una tabla de proporcionalidad.
 - b) ¿Cuántos sacos suponen 700 kg de harina? ¿Y 1000 kg?
- 2 En una cafetería cada menú formado por bebida, bocadillo y patatas, cuesta 3 €. Elabora una tabla de proporcionalidad con las magnitudes que se relacionan y expresa la relación entre los 10 primeros menús que se compran
- 3 En las siguientes tablas de proporcionalidad, averigua el número por el que hay que multiplicar y/o dividir para pasar de una serie a otra, y completa las tablas.

a)	1	3	5	7	9	11
	8	12				44

b)	1	2	3	4	5	6
	5	10				

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD **ENTRE DOS MAGNITUDES**

Curso: Fecha: Nombre:

RAZÓN ENTRE DOS NÚMEROS O CANTIDADES

Una **razón** es el cociente indicado entre dos números, a y b, que se pueden comparar: $\frac{d}{dx}$

En una razón, los números pueden ser cualesquiera: $\frac{2,5}{5}$; $\frac{4}{3.5}$, $\frac{10}{25}$; mientras que en una fracción los números son enteros: $\frac{2}{5}$, $\frac{4}{3}$, $\frac{10}{25}$

PROPORCIÓN

Si igualamos dos razones, obtenemos una **proporción**.

$$\frac{a}{b} = \frac{c}{d}$$
 es una proporción. \rightarrow **Términos de una proporción**
 a , d se llaman extremos
 b , c se llaman medios

Lectura de las proporciones

La proporción $\frac{a}{b} = \frac{c}{d}$ se lee: a es a b como c es a d La proporción $\frac{3}{4} = \frac{9}{12}$ se lee: a es a b como b es a 12

Eiemplo

N.º de sacos	1	2	3	4	5	6	7	8	9	10
Peso (kg)	10	20	30	40	50	60	70	80	90	100

Formamos las siguientes razones y observamos que:

$$\frac{1}{10} = 0.1$$
 $\frac{2}{20} = 0.1$ $\frac{3}{30} = 0.1$ $\frac{4}{40} = 0.1$ $\frac{5}{50} = 0.1$ $\frac{10}{100} = 0.1$

Son una serie de razones iguales. Su valor es el mismo: 0,1

$$\frac{1}{10} = \frac{2}{20} = \frac{3}{30} = \frac{4}{40} = \frac{5}{50} = \frac{6}{60} = \frac{7}{70} = \frac{8}{80} = \frac{9}{90} = \frac{10}{100} = 0,1$$

- Este valor es constante y es el mismo en todas las proporciones.
- Se llama constante de proporcionalidad

Indica los extremos y los medios de estas proporciones.

- a) Indica el peso, en kg, de 15, 17, 18, 20 y 50 sacos, y elabora una tabla de proporcionalidad.
- b) ¿Cuántos sacos suponen 700 kg de harina? ¿Y 1000 kg?

PROPORCIÓN	SE LEE	EXREMOS	MEDIOS
$\frac{4}{7} = \frac{16}{28}$			
$\frac{1}{8} = \frac{3}{24}$			
$\frac{3}{10} = \frac{6}{20}$			

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES

Nombre: Curso: Fecha:

- 5 Observa la siguiente tabla de valores.
 - a) Comprueba si forman una serie de razones iguales.
 - b) Halla el valor de cada proporción.
 - c) ¿Es el mismo en todas las proporciones? ¿Cómo se llama ese valor?

3	9	18	27	36	45	54
1	3	6	9	12	15	18

6 Dadas estas series de razones iguales, añade tres razones e indica la constante de proporcionalidad.

a)
$$\frac{3}{5} = \frac{6}{10} = - = - = -$$

c)
$$\frac{10}{8} = \frac{20}{16} = \dots = \dots = \dots$$

b)
$$\frac{6}{15} = \frac{12}{30} = --- = ---$$

d)
$$\frac{5}{8} = \frac{15}{24} = \dots = \dots = \dots$$

- 7 Un quiosco vende las gominolas solo de una forma: 3 bolsas que cuestan 2 €
 - a) Forma una tabla de proporcionalidad para 6, 9, 12, 15 y 18 bolsas de gominolas.
 - b) Escribe tres parejas de razones iguales.
 - c) Indica la constante de proporcionalidad.

PROPIEDADES DE LAS PROPORCIONES

 La suma de los antecedentes dividida entre la suma de los consecuentes es igual a la constante de proporcionalidad.

$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f} = k \qquad \frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{1+2+3+4}{2+4+6+8} = \frac{10}{20} = 0,5$$

• En una proporción, el producto de extremos es igual al producto de medios. (Recuerda el concepto de fracciones equivalentes y los productos cruzados.)

$$\frac{a}{b} = \frac{c}{d} \longrightarrow a \cdot d = b \cdot c$$
 $\frac{1}{2} = \frac{2}{4}$ $1 \cdot 4 = 2 \cdot 2$ $\frac{3}{6} = \frac{4}{8} \longrightarrow 3 \cdot 8 = 6 \cdot 4$

En las siguientes series de razones iguales, comprueba que la suma de los antecedentes dividida entre la suma de los consecuentes es igual a la constante de proporcionalidad.

a)
$$\frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16} = \frac{5}{20}$$

b)
$$\frac{8}{2} = \frac{16}{24} = \frac{32}{8} = \frac{48}{12} = \frac{80}{20}$$

Constante de proporcionalidad =

Constante de proporcionalidad =

RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES

Nombre: Curso: Fecha:

MAGNITUDES DIRECTAMENTE PROPORCIONALES

- Dos magnitudes son directamente proporcionales cuando:
 - Al **aumentar** una cantidad el doble, el triple..., la otra también **aumenta** el doble, el triple...
 - Al **disminuir** una cantidad la mitad, la tercera parte..., la otra también **disminuye** la mitad, la tercera parte...
- La razón entre dos cantidades es siempre la misma y se llama constante de proporcionalidad.

EJEMPLO

Un cupón de lotería cuesta 2 €, dos cupones 4 €, 3 cupones 6 €...

- Distinguimos dos magnitudes: número de cupones y precio.
 - Al **aumentar** el número de cupones, **aumenta** su precio.
 - Al disminuir el número de cupones, también disminuye su precio.
 - Son magnitudes directamente proporcionales:

N.º de cupones	1	2	3	4	5	6	.2 .2
Precio (€)	2	4	6	8	10	12	(2).2)

• Observamos las razones de las proporciones:

$$\frac{1}{2} = \frac{2}{4} = 0.5$$
 $\frac{3}{6} = \frac{5}{10} = 0.5$ $\frac{4}{8} = \frac{6}{12} = 0.5$ $\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{6}{12} = 0.5$

La constante de proporcionalidad es siempre la misma: 0,5. Son series de razones iguales y forman fracciones equivalentes.

• Multiplicando o dividiendo por el mismo número obtenemos valores equivalentes:

$$\frac{1}{2} \xrightarrow{\cdot 4} \frac{4}{8}$$

$$\frac{6}{12} \xrightarrow{:3} \frac{2}{4}$$

$$\frac{5}{10} \xrightarrow{:5} \frac{1}{2}$$

ACTIVIDADES

- 1 Indica si las siguientes magnitudes son directamente proporcionales.
 - a) El peso de unos bombones y el dinero que valen.
 - b) La velocidad de un coche y el tiempo que tarda en recorrer una distancia.
 - c) El número de hojas de un libro y su peso.
 - d) El precio de una tela y los metros comprados.
- 2 En una fábrica de ladrillos, 5 ladrillos apilados miden 1 metro de altura. Completa la tabla con los valores correspondientes.
 - a) Indica si son magnitudes directamente proporcionales.
 - b) Forma proporciones y halla la constante de proporcionalidad.
 - c) ¿Qué altura medirían 100 ladrillos? ¿Y 500 ladrillos?

N.º de ladrillos	1	2	3	4	5	6	7	8	9	10
Altura (m)	10	20	30	40	50	60	70	80	90	100

RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES

Nombre: Curso:

Fecha:

- 3 Luisa y Ana tienen que pintar durante el verano la valla de la casa de sus abuelos. La valla tiene una longitud de 30 metros y su abuelo les ha dicho que por cada 6 metros que pinten les dará 5 €.
 - a) Forma la tabla de valores con las magnitudes correspondientes.

- b) Forma proporciones y halla la constante de proporcionalidad.
- c) Si la valla tuviera 42 metros, ¿cuánto dinero ganarían Luisa y Ana?

REGLA DE TRES SIMPLE DIRECTA

- La regla de tres simple directa nos permite **calcular el valor desconocido** de una proporción en la que las magnitudes son directamente proporcionales.
- Conocemos **tres** de los cuatro valores de la proporción, y el término desconocido lo nombramos con la letra **x**, **y** o **z**.

EJEMPLO

Tres cajas de latas de refrescos pesan 15 kg. ¿Cuánto pesarán 4 cajas?

Si 3 cajas
$$\xrightarrow{\text{pesan}}$$
 15 kg
4 cajas $\xrightarrow{\text{pesan}}$ x kg \rightarrow $\frac{3}{4} = \frac{15}{x} \rightarrow 3 \cdot x = 4 \cdot 15 \rightarrow 3x = 60 \rightarrow \frac{3x}{3} = \frac{60}{3} \rightarrow x = 20$

Las 4 cajas pesarán 20 kg.

- 4 Si 4 pasteles cuestan 12 €, ¿cuánto costarán 6 pasteles? ¿Y 15 pasteles?
- Tres obreros realizan una zanja de 6 metros en un día. Si mantienen el mismo ritmo de trabajo, ¿cuántos metros de zanja abrirán en un día, si se incorporan 5 obreros más?
- 6 El precio de 12 fotocopias es 0,50 €. ¿Cuánto costará hacer 30 fotocopias?

8

RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES

RECU	NOCER MAGINITUDES L	JIREC I AIVIEIN I E	PROPORCION	NALES
Nombre:		Curso:	Fecha:	
7 Un excursionista recorrecorrerá en 5 horas?	rre 10 km en 2,5 horas. Si mantiene ¿Y en 7 horas?	el mismo ritmo ¿cuánto	os kilómetros	
	oblemas mediante la regla de tres dir or desconocido para el valor 1, y luego			unidad,
Resuelve los siguientes ¡	problemas, utilizando el método	de reducción a la unic	lad.	
En un túnel de lavado ¿Y 50 coches?	se limpian 10 coches en una hora.	¿En cuánto tiempo se la	varán 25 coches?	
	Si 10 coches se lavan en ———	→ 60 minutos		
	1 coche se lavará en ———	$\longrightarrow \frac{60}{10} = 6 \text{ minutos}$		
Después de calcular el para lavar 25 y 50 coch 25 coches se lavar		ne, hallamos el tiempo er	mpleado	
Ignacio cobra 120 € po ¿Y por 20 días?	or cada 5 días de trabajo. ¿Cuánto c	obrará por 15 días?		
Si 3 cafés cuestan 2,70	0 €, ¿cuánto costarán 5 cafés? ¿Y 1	0 cafés?		
11 Un bono de autobús c	on diez viajes cuesta 6 €. ¿Cuánto o	cuesta cada viaje? ¿Y си	iánto costarán 3 bond	os?
12 Si 4 yogures valen 1,20	0 €, ¿cuánto cuestan 12 yogures? ¿	Y 30 yogures?		

RECONOCER MAGNITUDES INVERSAMENTE PROPORCIONALES

Nombre:	Curso	Fecha:	
	04.100.		

MAGNITUDES INVERSAMENTE PROPORCIONALES

- Dos magnitudes son inversamente proporcionales cuando:
 - Al **aumentar** una el doble, el triple..., la otra **disminuye** la mitad, la tercera parte...
 - Al **disminuir** una la mitad, la tercera parte..., la otra **aumenta** el doble, el triple...
- · Al multiplicar (o dividir) uno de los valores de una magnitud por un número, el valor correspondiente de la otra magnitud queda dividido (o multiplicado) por el mismo número.

EJEMPLO

Un grifo vierte 3 litros de agua cada minuto, tardando 15 minutos en llenar un tonel. Si aumentamos el caudal a 6 litros por minuto, tarda 7,5 minutos en llenarlo. Si lo aumentamos a 9 litros por minuto, lo llenará en 5 minutos. Si lo aumentamos a 12 litros por minuto, tardará 3,75 minutos, etc.

- Distinguimos dos magnitudes: caudal de agua (en litros por minuto) y tiempo en llenar el tonel.
 - Al **aumentar** el número de litros por minuto, **disminuye** el tiempo en que se llenaría el tonel.
 - Si disminuve el caudal, aumenta el tiempo.
 - Son magnitudes inversamente proporcionales:

Caudal (ℓ/min)	3	6	9	12
Tiempo (min)	15	7,5	5	3,75

• Vemos que en las razones de las proporciones se invierte el orden de los valores:

$$\frac{3}{6} = \frac{7,5}{15} = 0,5$$
 $\frac{3}{9} = \frac{5}{15} = 0,3$ $\frac{12}{6} = \frac{7,5}{3,75} = 2$

$$\frac{3}{9} = \frac{5}{15} = 0.3$$

$$\frac{12}{6} = \frac{7,5}{3,75} = 2$$

• Al multiplicar (o dividir) uno de los valores, el valor correspondiente queda dividido (o multiplicado) por el mismo número.

ACTIVIDADES

- Indica si las siguientes magnitudes son o no inversamente proporcionales.
 - a) La velocidad de un coche y el tiempo que tarda en recorrer una distancia.
 - b) El número de operarios de una obra y el tiempo que tardan en terminarla.
 - c) El número de hojas de un libro y su peso.
 - d) El peso de la fruta y el dinero que cuesta.
 - e) La velocidad de un excursionista y la distancia que recorre.
 - f) El número de grifos de un depósito y el tiempo que tarda en llenarse.

RECONOCER MAGNITUDES INVERSAMENTE PROPORCIONALES

Nombre: Curso: Fecha:

2 Completa estas tablas de valores inversamente proporcionales.

a)	5	10	20	4		
	60	30			25	5

b)	1	2		4		
	36		12		6	4

C)	8			3	1	6
	3	12	4)

d)	6	3	21	7		1
	7				1	

REGLA DE TRES SIMPLE INVERSA

- La regla de tres simple inversa nos permite **calcular el valor desconocido** de una proporción en la que las magnitudes son inversamente proporcionales.
- Conocemos **tres** de los cuatro valores de la proporción, y el valor desconocido lo nombramos con la letra **x**, **y** o **z**.

EJEMPLO

Diez albañiles tardan 45 días en construir un muro. Si deben terminar la obra en 15 días, ¿cuántos albañiles hacen falta?

Las magnitudes son número de albañiles y días de trabajo.

Son **inversamente** proporcionales: si queremos que se realice la obra en **menos** tiempo, tendremos que **aumentar** el número de trabajadores.

Lo resolvemos de la siguiente manera:

Si 10 albañiles
$$\xrightarrow{\text{tardan}}$$
 45 días x albañiles $\xrightarrow{\text{tardan}}$ 45 días x 3 días x 3 días x 45 días x 46 días x 47 días x 48 días x

Hacen falta 30 albañiles para terminar la obra en 15 días.

- 3 En el ejemplo anterior, averigua el número de albañiles necesario para terminar el trabajo si quisiéramos que lo acabasen en 5 días.
- 4 Un depósito de agua se llena en 18 horas si un grifo vierte 360 litros de agua cada minuto.
 - a) ¿Cuánto tardaría en llenarse si vertiera 270 litros por minuto?
 - b) ¿Y si salieran 630 litros por minuto?

8

RECONOCER MAGNITUDES INVERSAMENTE PROPORCIONALES

Nombre:			Curso:	Fecha:	
		nso suficiente para aliment para cuántos días tendría		as.	
Está plar		ta y hay que realizar un túi s realicen la obra en 90 día inas harían falta?		tiempo	
a la un		mediante la regla de tres inv valor desconocido para el v			
Resuelve los	siguientes ejercicios, med	diante el método de reduc	ción a la unidad.		
	ores tardan 2 horas en pi tiempo tardarán?	ntar una valla. Si se incorpo	ora un pintor más,		
8 Si 20 obr	eros levantan un muro de	e ladrillos en 6 días, ¿cuánt	os días tardarían 12	2 obreros?	
_		rer una distancia a una vel			
	velocidad llevara un autom a avioneta que emplease 4	nóvil que recorre la misma d 5 minutos?	istancia en la mitad	ae tiempo?	

RESOLVER PROBLEMAS DE PORCENTAJES

Nombre:	Curso:	Fecha:	

ACTIVIDADES

1 En una clase de 2.º ESO el 60 % de los alumnos son chicas. Si en total hay 30 alumnos, calcula el número de chicas, de chicos y el porcentaje de estos últimos.

Si 30 alumnos
$$\xrightarrow{\text{son}}$$
 el 100 % \longrightarrow X alumnos $\xrightarrow{\text{serán}}$ el 60 % \longrightarrow X \longrightarrow

2 Una fábrica produce 1500 automóviles al mes. El 25% son furgonetas, el 60% turismos y el resto monovolúmenes. Halla las unidades producidas de cada tipo de automóvil.

3 Unas zapatillas que antes costaban 60 € tienen un descuento del 15%. Calcula cuánto valen ahora.

En un instituto de 1200 alumnos se han publicado los resultados de una encuesta sobre música moderna: el 30% de los alumnos prefieren música tecno, el 25% pop, un 40% rock, y el resto, música melódica. Calcula los alumnos que prefieren cada modalidad musical y el porcentaje de los que eligen la música melódica.

De un colegio con 600 alumnos, el 50% son de Educación Primaria, el 35% de ESO y el 15% de Bachillerato. Halla el número de alumnos de cada nivel educativo.

Un pantano tiene una capacidad total de 5 millones de metros cúbicos de agua.

Actualmente está lleno al 75% de su capacidad. Calcula los metros cúbicos de agua que contiene.