

National University

Of Computer & Emerging Sciences

Department	Department of Computer Science	Dept. Code	CS
Course Title	Calculus and Analytical Geometry	Course Code	MT 1003
Pre-requisite(s)	None	Credit Hrs.	3

Objective:	The main objective of this course to enhance the knowledge acquire in
	college Mathematics, Familiarize the student with basic concepts of calculus
	and its applications in solving engineering problems.

PLO	Program Learning Outcome (PLO) Statement	Level	Tools
01	Ability to apply knowledge of mathematics,	E	Q, A, M,
	science and engineering fundamentals and an		F
	engineering		
	Specialization to the solution of complex		
	engineering problems.		

I = Introduction, R = Reinforcement, E = Evaluation.

A = Assignment, Q = Quiz, M = Midterm, F = Final, L = Lab, P = Project, W = Written Report.

CLO	Course Learning Outcome (CLO)	Domain	Taxonom y level	PLO	Tools
01	Define the ideas of derivatives and anti- derivatives (integrals) using the concept of limits & continuity and sigma	Cognitive	C1	PLO-1	M, F, A, Q
02	Translate the learning of vector calculus and analytical geometry in multiple dimensions		C1	PLO-1	F, A, Q
03	Apply derivatives and integrals for solving different problems arising in computer sciences.	Cognitive	C1	PLO-1	M, F, A, Q

Text Book(s)	Title	Calculus Early Transcendental 10 th Edition	
	Author	Howard Anton, IRl Bivens, Stephen Davis	
	Publisher	JOHN WILEY	
Ref. Book(s)	Title	Calculus & Analytical Geometry 9 th Edition	
	Author	George B. Thomas, Ross L. Finney	
	Publisher		
	Title Calculus Early Transcendental 8 th Edition		
	Author	James Stewart	
	Publisher	Thomson, 2008	

Week	Contents/Topics	Exercises/Questions	CLO
	Interval, Inequality, Relation and Functions vertical line test,	Appendix	•
1	Piecewise, Absolute value, Introduction to functions Domain and	, , , , , ,	
	Range, One-One and onto function. Symmetry ,Even/odd	*	
	function, Asymptote	66,67)	
2	Concepts of limit. Evaluation of limits. Continuity and points	1.1 (1-16)	
	of discontinuity. Types of discontinuity.	1.2 (1-32)	01
		1.5 (1-6,11-22,	
		29,30,35,36)	
3	Secant line, Equation of Normal and tangent line, Slope, Rate	2.1 (11-18),	
	of change. Concept and idea of differentiation. Geometrical	2.2 (9-20,46-48),	
	meaning of derivatives. Rules and techniques of	2.3 (1-24, 41-47)	
	differentiation.		01
4	Product and quotient rule. Derivative of trigonometric and	2.4 (1-24)	
	logarithm function, Chain rule	2.5 (1-24)	
		2.6 (7-40)	
		3.1 (3-18,25-28)	01
5	Chain rule, Implicit differentiation. Local Linear		
	approximation. Indeterminate forms, L' Hospital Rule	46)	
	approximation indeterminate forms, 2 frospital real	3.6 (7-45)	
		3.0 (7 4 3)	01
6	Mid-Term I		
7	Application of derivatives, Role's and Mean Value's Theorem.	3.4 (10-20),	03
		4.8 (1-8)	US
8	Concavity, Increasing and Decreasing. Relative Extreme (1st	4.1 (15-30)	
	and 2 nd derivative test) Absolute Maxima and Minima	4.2 (7-12, 25-36)	03
		(12 a)	2.1
9	Riemann sums and definite integral	5.5 (13-24)	01
10	Area bounded by the curves. Volume by Disk and washer		03
	method	6.2 (1-26)	
11	Mid-Term II		
12	Techniques of integration, Basic Integration, Integration by		
	parts Reduction formula, Trigonometric substitution	7.2 (1-30, 61,62,63)	01
		7.4 (1-25,37-48)	
13	Integration of Rational function by Partial fraction, $u = tan(x/2)$	7.5 (9-30),	
	substitution, Improper integrals.	7.6 (65-70)	01
		7.8 (3-32)	
14	Parametric equations of lines in 3D, Plane in 3-space	11.5 (3-10,15-22,29-34)	
15	Distance Problems involving planes, Intersecting planes.	11.6 (11-20, 41-48)	02
16	Final Exam		

Marks Distribution:

Sessional I	15
Sessional II	15
Assignment	10

Quiz	10
Final	50
Total	100