COMP9313: Big Data Management

High Dimensional Similarity Search

Similarity Search

- Problem Definition:
 - Given a query q and dataset D, find $o \in D$, where o is similar to q
- Two types of similarity search
 - Range search:
 - $dist(o,q) \leq \tau$
 - Nearest neighbor search
 - $dist(o^*, q) \le dist(o, q), \forall o \in D$
 - Top-k version

- Euclidean, Jaccard, inner product, ...
- Classic problem, with mutual solutions

High Dimensional Similarity Search

- Applications and relationship to Big Data
 - Almost every object can be and has been represented by a high dimensional vector
 - Words, documents
 - Image, audio, video
 - ...
 - Similarity search is a fundamental process in information retrieval
 - E.g., Google search engine, face recognition system, ...
- High Dimension makes a huge difference!
 - Traditional solutions are no longer feasible
 - This lecture is about why and how
 - We focus on high dimensional vectors in Euclidean space

Similarity Search in Low Dimensional Space

Similarity Search in One Dimensional Space

- Just numbers, use binary search, binary search tree, B+ Tree...
- The essential idea behind: objects can be sorted

Similarity Search in Two Dimensional Space

- Why binary search no longer works?
 - No order!
- Voronoi diagram

Euclidean distance

Manhattan distance

Similarity Search in Two Dimensional Space

- Partition based algorithms
 - Partition data into "cells"
 - Nearest neighbors are in the same cell with query or adjacent cells

• How many "cells" to probe on 3-dimensional space?

Similarity Search in Metric Space

- Triangle inequality
 - $dist(x,q) \le dist(x,y) + dist(y,q)$
- Orchard's Algorithm
 - for each $x \in D$, create a list of points in increasing order of distance to x
 - given query q, randomly pick a point x as the initial candidate (i.e., pivot p), compute dist(p,q)
 - walk along the list of p, and compute the distances to q. If found y closer to q than p, then use y as the new pivot (e.g., $p \leftarrow y$).
 - repeat the procedure, and stop when
 - $dist(p, y) > 2 \cdot dist(p, q)$

Similarity Search in Metric Space

•Orchard's Algorithm, stop when $dist(p, y) > 2 \cdot dist(p, q)$

```
2 \cdot dist(p,q) < dist(p,y) and

dist(p,y) \leq dist(p,q) + dist(y,q)

\Rightarrow 2 \cdot dist(p,q) < dist(p,q) + dist(y,q)

\Leftrightarrow dist(p,q) < dist(y,q)
```

•Since the list of p is in increasing order of distance to p, $dist(p, y) > 2 \cdot dist(p, q)$ hold for all the rest y's.

None of the Above Works in High Dimensional Space!

Curse of Dimensionality

- •Refers to various phenomena that arise in high dimensional spaces that do not occur in low dimensional settings.
- Triangle inequality
 - The pruning power reduces heavily
- What is the volume of a high dimensional "ring" (i.e., hyperspherical shell)?

$$\frac{V_{ring}(w=1,d=2)}{V_{ball}(r=10,d=2)} = 29\%$$

$$\frac{V_{ring}(w=1,d=100)}{V_{ball}(r=10,d=100)} = 99.997\%$$

Approximate Nearest Neighbor Search in High Dimensional Space

- There is no sub-linear solution to find the exact result of a nearest neighbor query
 - So we relax the condition
- approximate nearest neighbor search (ANNS)
 - allow returned points to be not the NN of query
 - Success: returns the true NN
 - use success rate (e.g., percentage of succeed queries) to evaluate the method
 - Hard to bound the success rate

c-approximate NN Search

- •Success: returns o such that
 - $dist(o,q) \le c \cdot dist(o^*,q)$
- Then we can bound the success probability
 - Usually noted as 1δ

Locality Sensitive Hashing

Hash function

- Index: Map data/objects to values (e.g., hash key)
 - Same data \Rightarrow same hash key (with 100% probability)
 - Different data ⇒ different hash keys (with high probability)
- Retrieval: Easy to retrieve identical objects (as they have the same hash key)
 - Applications: hash map, hash join
- Low cost
 - Space: O(n)
 - Time: O(1)
- Why it cannot be used in nearest neighbor search?
 - Even a minor difference leads to totally different hash keys

Locality Sensitive Hashing

- Index: make the hash functions error tolerant
 - Similar data ⇒ same hash key (with high probability)
 - Dissimilar data ⇒ different hash keys (with high probability)
- Retrieval:
 - Compute the hash key for the query
 - Obtain all the data has the same key with query (i.e., candidates)
 - Find the nearest one to the query
 - Cost:
 - Space: O(n)
 - Time: O(1) + O(|cand|)
- It is not the real Locality Sensitive Hashing!
 - We still have several unsolved issues...

LSH Functions

- Formal definition:
 - Given point o_1 , o_2 , distance r_1 , r_2 , probability p_1 , p_2
 - An LSH function $h(\cdot)$ should satisfy
 - $\Pr[h(o_1) = h(o_2)] \ge p_1$, if $dist(o_1, o_2) \le r_1$
 - $\Pr[h(o_1) = h(o_2)] \le p_2$, if $dist(o_1, o_2) > r_2$
- What is $h(\cdot)$ for a given distance/similarity function?
 - Jaccard similarity
 - Angular distance
 - Euclidean distance

MinHash - LSH Function for Jaccard Similarity

- Each data object is a set
 - $Jaccard(S_1, S_2) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}$
- •Randomly generate a global order for all the elements in $C = \bigcup_{i=1}^{n} S_i$
- •Let h(S) be the minimal member of S with respect to the global order
 - For example, $S = \{b, c, e, h, i\}$, we use inversed alphabet order, then re-ordered $S = \{i, h, e, c, b\}$, hence h(S) = i.

MinHash

- •Now we compute $\Pr[h(S_1) = h(S_2)]$
- •Every element $e \in S_1 \cup S_2$ has equal chance to be the first element among $S_1 \cup S_2$ after reordering
- $e \in S_1 \cap S_2$ if and only if $h(S_1) = h(S_2)$
- $e \notin S_1 \cap S_2$ if and only if $h(S_1) \neq h(S_2)$

•
$$\Pr[h(S_1) = h(S_2)] = \frac{|\{e_i|h_i(S_1) = h_i(S_2)\}|}{|\{e_i\}|} = \frac{|S_i \cap S_j|}{|S_i \cup S_j|} =$$

$$Jaccard(S_1, S_2)$$

SimHash – LSH Function for Angular Distance

- Each data object is a d dimensional vector
 - $\theta(x, y)$ is the angle between x and y
- •Randomly generate a normal vector a, where $a_i \sim N(0,1)$
- •Let $h(x; a) = \operatorname{sgn}(a^T x)$
 - sgn(o) = $\begin{cases} 1; if \ o \ge 0 \\ -1; if \ o < 0 \end{cases}$
 - x lies on which side of a's corresponding hyperplane

SimHash

- •Now we compute $\Pr[h(o_1) = h(o_2)]$
- $h(o_1) \neq h(o_2)$ iff o_1 and o_2 are on different sides of the hyperplane with

a as its normal vector

•
$$\Pr[h(o_1) = h(o_2)] = 1 - \frac{\theta}{\pi} \ a$$

p-stable LSH - LSH function for Euclidean distance

• Each data object is a d dimensional vector

•
$$dist(x,y) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

- Randomly generate a normal vector a, where $a_i \sim N(0,1)$
 - Normal distribution is 2-stable, i.e., if $a_i \sim N(0,1)$, then $\sum_{i=1}^{d} a_i \cdot x_i \sim N(0, ||x||_2^2)$
- •Let $h(x; a, b) = \left\lfloor \frac{a^T x + b}{w} \right\rfloor$, where $b \sim U(0,1)$ and w is user specified parameter
 - $\Pr[h(o_1; a, b) = h(o_2; a, b)] = \int_0^w \frac{1}{\|o_1, o_2\|} f_p\left(\frac{t}{\|o_1, o_2\|}\right) \left(1 \frac{t}{w}\right) dt$
 - $f_p(\cdot)$ is the pdf of the absolute value of normal variable

p-stable LSH

- •Intuition of p-stable LSH
 - Similar points have higher chance to be hashed together

Pr[h(x) = h(y)] for different Hash Functions

Problem of Single Hash Function

- Hard to distinguish if two pairs have distances close to each other
 - $\Pr[h(o_1) = h(o_2)] \ge p_1$, if $dist(o_1, o_2) \le r_1$
 - $\Pr[h(o_1) = h(o_2)] \le p_2$, if $dist(o_1, o_2) > r_2$
- We also want to control where the drastic change happens...
 - Close to $dist(o^*, q)$
 - Given range

AND-OR Composition

- •Recall for a single hash function, we have
 - $\Pr[h(o_1) = h(o_2)] = p(dist(o_1, o_2))$, denoted as p_{o_1, o_2}
- Now we consider two scenarios:
 - Combine k hashes together, using AND operation
 - One must match all the hashes
 - $Pr[H_{AND}(o_1) = H_{AND}(o_2)] = p_{o_1,o_2}^{k}$
 - Combine *l* hashes together, using OR operation
 - One need to match at least one of the hashes
 - $Pr[H_{OR}(o_1) = H_{OR}(o_2)] = 1 (1 p_{o_1,o_2})^l$
 - Not match only when all the hashes don't match

AND-OR Composition

•Example with minHash, k = 5, l = 5

$$\Pr[H_{AND}(o_1) = H_{AND}(o_2)]$$

$$\Pr[H_{OR}(o_1) = H_{OR}(o_2)]$$

AND-OR Composition in LSH

- Let $h_{i,j}$ be LSH functions, where $i \in \{1,2,...,l\}, j \in \{1,2,...,k\}$
- Let $H_i(o) = [h_{i,1}(o), h_{i,2}(o), ..., h_{i,k}(o)]$
 - super-hash
 - $H_i(o_1) = H_i(o_2) \Leftrightarrow \forall j \in \{1, 2, ..., k\}, h_{i,j}(o_1) = h_{i,j}(o_2)$
- Consider query q and any data point o, o is a nearest neighbor candidate of q if
 - $\exists i \in \{1,2,...,l\}, \ H_i(o) = H_i(q)$
- The probability of *o* is a nearest neighbor candidate of *q* is
 - $1 (1 p_{q,o}^k)^l$

The Effectiveness of LSH

•1 – $(1 - p_{q,o}^k)^l$ changes with $p_{q,o}$, (k = 20, l = 5)

$p_{q,o}$	$1 - (1 - p_{q,o}^k)^l$
0.2	0.002
0.4	0.050
0.6	0.333
0.7	0.601
0.8	0.863
0.9	0.988

• E.g., we are expected to retrieve 98.8% of the data with Jaccard > 0.9

False Positives and False Negatives

- False Positive:
 - returned data with dist(o, q) > r_2
- False Negative
 - not returned data with dist(o, q) $< r_1$
- They can be controlled by carefully chosen k and l
 - It's a trade-off between space/time and accuracy

The Framework of NNS using LSH

Pre-processing

- Generate LSH functions
 - minHash: random permutations
 - simHash: random normal vectors
 - p-stable: random normal vectors and random uniform values

Index

- Compute $H_i(o)$ for each data object $o, i \in \{1, ..., l\}$
- Index o using $H_i(o)$ as key in the i-th hash table

Query

- Compute $H_i(q)$ for query $q, i \in \{1, ..., l\}$
- Generate candidate set $\{o | \exists i \in \{1, ..., l\}, H_i(q) = H_i(o)\}$
- Compute the actual distance for all the candidates and return the nearest one to the query

The Drawback of LSH

- Concatenate k hashes is too "strong"
 - $h_{i,j}(o_1) \neq h_{i,j}(o_2) \Rightarrow H_i(q) \neq H_i(o)$ for any j
- Not adaptive to the distribution of the distances
 - What if not enough candidates?
 - Need to tune w (or build indexes different w's) to handle different cases

Multi-Probe LSH

Observation:

Figure 3: Probability of q's nearest neighbors falling into the neighboring slots.

- If q's nearest neighbor does not falls into q's hash bucket, then most likely it will fall into the adjacent bucket to q's
- Why? $\sum_{i=1}^{d} a_i \cdot x_i \sum_{i=1}^{d} a_i \cdot q_i \sim N(0, ||x, q||_2^2)$

•Idea:

• Not only look at the hash bucket where q falls into, but also those adjacent to it

• Problem:

- How many such bucket? 2^k
- And they are not equally important!

Multi-Probe LSH

- Consider the case when k=2:
- Note that $H_i(o) = (h_{i,1}(o), h_{i,2}(o))$
- The ideal probe order would be:
 - $h_{i,1}(q)$, $h_{i,2}(q)$: 0.315
 - $h_{i,1}(q)$, $h_{i,2}(q) 1:0.284$
 - $h_{i,1}(q) + 1, h_{i,2}(q): 0.150$
 - $h_{i,1}(q) 1$, $h_{i,2}(q)$: 0.035
 - $h_{i,1}(q), h_{i,2}(q) + 1: 0.019$

We don't have to compute the integration, but use the offset between f(q) and the boundaries.

 $h_{i,1}$

Multi Probe LSH

- Pros:
 - Requires less *l*
 - Because we use hash tables more efficiently
 - More robust against the unlucky points
- •Cons:
 - Lose the theoretical guarantee about the results
 - Not parallel-friendly

Collision Counting LSH (C2LSH)

- •C2LSH (SIGMOG'12 paper)
 - Which one is closer to *q*?

\boldsymbol{q}	1	1	1	1	1	1	1	1	1	1	1	1
o_1	1	1	1	2	1	2	1	1	2	1	1	1
o_2	1	1	1	1	2	2	3	4	1	2	3	4

- We will omit the theoretical parts hence leads to a slightly different version to the paper.
 - But the essential ideas are the same
- Project 1 is to implement C2LSH using PySpark!

Counting the Collisions

- Collision: match on a single hash function
 - Use number of collisions to determine the candidates
 - Match one of the super hash with $q \rightarrow$ collides at least αm hash values with q
- •Recall in LSH, The probability of o with $dist(o, q) \le r_1$ is a nearest neighbor candidate of q is $1 (1 p_1^k)^l$
- Now we compute the case with collision counting...

The Collision Probability

- $\forall o \text{ with } \operatorname{dist}(o, q) \leq r_1$, we have
 - $\Pr[\#collision(o) \ge \alpha m] = \sum_{i=\alpha m}^{m} {m \choose i} p^i (1-p)^{m-i}$
 - $p = \Pr[h_j(o) = h_j(q)] \ge p_1$
- We define m Bernoulli random variables $X_i \sim B(m, 1-p)$ with $1 \le i \le m$.
 - Let X_i equal 1 if o does not collide with q
 - i.e., $Pr[X_i = 1] = 1 p$
 - Let X_i equal 0 if o collides with q
 - i.e., $\Pr[\hat{X}_i = 0] = p$
 - Hence $E[X_i] = 1 p$
 - Thus $E(\bar{X}) = 1 p$, where $\bar{X} = \frac{\sum_{i=1}^{m} X_i}{m}$.
- Let $t = p \alpha > 0$, we have:

•
$$\Pr[\bar{X} - E(\bar{X}) \ge t] = \Pr\left[\frac{\sum_{i=1}^{m} X_i}{m} - (1-p) \ge t\right] = \Pr[\sum X_i \ge (1-\alpha)m]$$

The Collision Probability

- From Hoeffding's Inequality, we have
 - $\Pr[\bar{X} E(\bar{X}) \ge t] = \Pr[\sum X_i \ge (1 \alpha)m] \le \exp\left(-\frac{2(p \alpha)^2 m^2}{\sum_{i=1}^m (1 0)^2}\right) = \exp\left(-2(p \alpha)^2 m\right) \le \exp\left(-2(p_1 \alpha)^2 m\right)$
- Since the event "#collision(o) $\geq \alpha m$ " is equivalent to the event "o misses the collision with q less than $(1 \alpha)m$ times",
 - $\Pr[\#collision(o) \ge \alpha m] = \Pr[\sum X_i < (1 \alpha)m] \ge 1 \exp(-2(p_1 \alpha)^2 m)$
- Now you can compute the case for o with $dist(o, q) \ge r_2$ in a similar way...
- Then we can accordingly set α to control false positives and false negatives

Virtual Rehashing

- When we are not getting enough candidates...
 - E.g., # of candidates < top-k
- •Observation:
 - A close point o usually falls into adjacent hash buckets of q's if it does not collide with q
 - Why?
 - $\sum_{i=1}^{d} a_i \cdot x_i \sum_{i=1}^{d} a_i \cdot q_i \sim N(0, ||x, q||_2^2)$
- •Idea:
 - Include the adjacent hash buckets into consideration
 - So you don't need to re-hash them again...

Virtual Rehashing

•At first consider h(o) = h(q)

\boldsymbol{q}	1	1	1	1	1	1	1	1	1	1
o_1	1	0	2	-1	1	2	4	-3	0	-1

•Consider $h(o) = h(q) \pm 1$ if not enough candidates

\boldsymbol{q}	1	1	1	1	1	1	1	1	1	1
o_1	1	0	2	-1	1	2	4	-3	0	-1

• Then $h(o) = h(q) \pm 2$ and so on...

q										
o_1	1	0	2	-1	1	2	4	-3	0	-1

The Framework of NNS using C2LSH

- Pre-processing
 - Generate LSH functions
 - Random normal vectors and random uniform values

Index

• Compute and store $h_i(o)$ for each data object o, $i \in \{1, ..., m\}$

Query

- Compute $h_i(q)$ for query $q, i \in \{1, ..., m\}$
- Take those o that shares at least αm hashes with q as candidates
- Relax the collision condition (e.g., virtual rehashing) and repeat the above step, until we got enough candidates

Pseudo code of Candidate Generation in C2LSH

```
candGen(data_hashes, query_hashes, \alpha m, \beta n):
       offset \leftarrow 0
       cand \leftarrow \emptyset
       while true:
              for each (id, hashes) in data_hashes:
                     if count(hashes, query_hashes, offset) \geq \alpha m:
                             cand \leftarrow cand \cup {id}
              if |cand| < \beta n:
                     offset \leftarrow offset + 1
              else:
                     break
       return cand
```

Pseudo code of Candidate Generation in C2LSH

```
count(hashes_1, hashes_2, offset):

counter \leftarrow 0

for each hash_1, hash_2 in hashes_1, hashes_2:

if |hash_1 - hash_2| \leq offset:

counter \leftarrow counter + 1

return counter
```

Project 1

- •Spec has been released, deadline: 18 Jul, 2020
 - Late Penalty: 10% on day 1 and 30% on each subsequent day.
- •Implement a light version of C2LSH (i.e., the one we introduced in the lecture)
- Start working ASAP
- Evaluation: Correctness and Efficiency
- Must use PySpark, some python modules and PySpark functions are banned.
 - E.g., numpy, pandas, collect(), take(), ...
 - Use transformations!

Project 1

- There will be a bonus part (max 20 points) to encourage efficient implementations.
 - Details in the spec
- Make sure you have valid output
- Make your own test cases, a real dataset would be more desirable
 - Toy example in the spec is a real "toy" (e.g., for babies...)
- Won't accept excuses like "it works on my own computer"
- Don't violate the Student Conduct!!!

Product Quantization

and K-Means Clustering

Recall: NNS in High Dimensional Euclidean Space

- Naïve (but exact) solution:
 - Linear scan: compute dist(o, q) for all $o \in D$

•
$$dist(o,q) = \sqrt{\sum_{i=1}^{d} (o_i - q_i)^2}$$

- $\bullet O(nd)$
 - $n ext{ times } (d ext{ subtractions} + d 1 ext{ additions} + d ext{ multiplications})$
- Storage is also costly: O(nd)
 - Could be problematic in DBMS and distributed systems
- This motivates the idea of compression

Vector Quantization

- Idea: compressed representation of vectors
 - Each vector o is represented by a representative
 - Denoted as QZ(o)
 - We will discuss how to get the representatives later
 - We control the total number of representatives for the dataset (denoted as k)
 - One representative represents multiple vectors
 - Instead of store o, we store its representative id
 - d floats => 1 integer
 - Instead of compute dist(o, q), we compute dist(QZ(o), q)
 - We only need k computations of distance!

How to Generate Representatives

- Assigning representatives is essentially a partition problem
 - Construct a "good" partition of a database of *n* objects into a set of *k* clusters
- How to measure the "goodness" of a given partitioning scheme?
 - Cost of a cluster
 - $Cost(C_i) = \sum_{o_j \in C_i} ||o_j center(C_i)||_2^2$
 - Cost of k clusters: sum of $Cost(C_i)$

Partitioning Problem: Basic Concept

- •It's an optimization problem!
 - •Global optimal:
 - NP-hard (for a wide range of cost functions)
 - Requires exhaustively enumerate all $\binom{n}{k}$ partitions
 - Stirling numbers of the second kind
 - $\binom{n}{k} \sim \frac{k^n}{k!}$ when $n \to \infty$
 - Heuristic methods:
 - k-means
 - Many variants

The k-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - 1. Partition objects into k nonempty subsets (randomly)
 - 2. Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - 3. Assign each object to the cluster with the nearest seed point
 - 4. Go back to Step 2, stop when the assignment does not change

An Example of k-Means Clustering

Until no change

Vector Quantization

- Encode the vectors
 - Generate a codebook $W = \{c_1, ..., c_k\}$ via kmeans
 - Assign o to its nearest codeword in W
 - E.g., $QZ(o) = c_i \ (i \in 1 ... k)$ such that $dist(o, c_i) \le dist(o, c_i) \forall j$
 - Represent each vector o by its assigned codeword
- •Assume $d = 256, k = 2^{16}$
 - Before: 4 bytes * 256 = 1024 bytes for each vector
 - Now:
 - data: 16 bits = 2 bytes
 - codebook: 4 * 256 * 2¹⁶

Vector Quantization – Query Processing

•Given query q, how to find a point close to q?

- •Algorithm:
 - Compute QZ(q)
 - Candidate set C = all data vectors associated with QZ(q)
 - Verification: compute distance between q and $o_i \in C$
 - Requires loading the vectors in C
- Any problem/improvement?

Inverted index: a hash table that maps c_j to a list of o_i that are associated with c_j

 $QZ(q) = c_4$

Limitations of VQ

- •To achieve better accuracy, fine-grained quantizer with large *k* is needed
- •Large *k*
 - Costly to run K-means
 - Computing QZ(q) is expensive: O(kd)
 - May need to look beyond QZ(q) cell
- •Solution:
 - Product Quantization

Product Quantization

• Idea

- Partition the dimension into m partitions
 - Accordingly a vector => subvectors
- Use separate VQ with *k* codewords for each chunk

•Example:

- 8-dim vector decomposed into m = 2 subvectors
- Each codebook has k = 4 codewords, (i.e., $c_{i,j}$)
- Total space in bits:
 - Data: $n \cdot m \cdot log(k)$
 - Codebook: $m \cdot \frac{d}{m} \cdot k \cdot 32$

Example of PQ

2	4	6	5	-2	6	4	1
1	2	1	4	9	-1	2	0
	•••	•••					•••
	•••		•••		•••		•••

00	00
01	11

$c_{1,0}$	2.1	3.6	5.3	6.6
$c_{1,1}$	1.2	1.5	2.4	3.3
$c_{1,2}$		•••	•••	
$c_{1,3}$				
$c_{2,0}$	3.3	4.1	2.7	1.4
$c_{2,1}$			•••	
$C_{2,2}$				
$c_{2,3}$				

Distance Estimation

- Euclidean distance between a query point q and a data point encoded as t
 - Restore the virtual joint center by looking up each partition of t in the corresponding codebooks => p

•
$$d^2(q,t) = \sum_{i=1}^d (q_i - p_i)^2$$

 Known as Asymmetric Distance Computation (ADC)

•
$$d^2(q,t) = \sum_{i=1}^m (q_{(i)} - c_{i,t(i)})^2$$

p	1.2	1.5	2.4	3.3	3.3	4.1	2.7	1.4
---	-----	-----	-----	-----	-----	-----	-----	-----

Query Processing

- Compute ADC for every point in the database
 - How?
- •Candidate = those with the *l* smallest AD
- •[Optional] Reranking (if l > 1):
 - Load the data vectors and compute the actual Euclidean distance
 - Return the one with the smallest distance

Query Processing

$$(q_{(1)} - c_{1,t_1(1)})^2 + (q_{(2)} - c_{2,t_1(2)})^2$$

$$(q_{(1)} - c_{1,t_2(1)})^2 + (q_{(2)} - c_{2,t_2(2)})^2$$

$c_{1,0}$	2.1	3.6	5.3	6.6
$c_{1,1}$	1.2	1.5	2.4	3.3
$c_{1,2}$	•••	•••	•••	•••
<i>c</i> _{1,3}				•••
$c_{2,0}$	3.3	4.1	2.7	1.4
$c_{2,1}$				•••
$c_{2,2}$		•••		•••
$c_{2,3}$		•••		•••

Framework of PQ

- •Pre-processing:
 - Step 1: partition data vectors
 - Step 2: generate codebooks (e.g., k-means)
 - Step 3: encode data
- Query
 - Step 1: compute distance between q and codewords
 - Step 2: compute AD for each point and return the candidates
 - Step 3: re-ranking (optional)