Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher

Go to next item

1 / 1 point

1. The tip coordinates for the two-link planar 2R robot of figure below are given by

 $x = \cos \theta_1 + 2\cos(\theta_1 + \theta_2)$

$$y = \sin \theta_1 + 2\sin(\theta_1 + \theta_2)$$

(In other words, link 1 has length 1 and link 2 has length 2.) The joint angles have no limits.

Which of the following best describes the shape of the robot's workspace (the set of locations the endpoint can reach)?

- O A circle and its interior.
- A circle only (not including the interior).
- Annulus or ring (the area between two concentric bounding circles).
 - Correct

The endpoint can never get closer than a distance 1 from the origin.

The chassis of a mobile robot moving on a flat surface can be considered as a planar rigid body. Assume that the
chassis is circular, and the mobile robot moves in a square room. Which of the following could be a mathematical
description of the C-space of the chassis while it is confined to the room? (See Chapter 2.3.1 for related
discussion.)

1 / 1 point

- $igotimes [a,b] imes [a,b] imes S^1$
- \bigcap $[a,b] \times \mathbb{R}^1 \times S^1$
- $\bigcirc \ [a,b]\times [a,b]\times \mathbb{R}^1$
- $\bigcirc \mathbb{R}^2 \times S^1$
- **⊘** Correct

3. Which of the following is a possible mathematical description of the C-space of a rigid body in 3-dimensional space?

1/1 point

- $\bigcirc \ \mathbb{R}^3 \times S^3$
- $\bigcirc \mathbb{R}^3 \times T^3$
- $\bigcirc \ \mathbb{R}^3 \times T^2 \times S^1$
- $igotimes \mathbb{R}^3 imes S^2 imes S^1$

○ Correct

This follows from the reasoning in Chapter 2.1 when we counted the degrees of freedom of a rigid body. \mathbb{R}^3 is for the placement of the first point, S^2 is for the placement of the second point on the surface of a sphere, and S^1 is for the placement of the third point on a circle.

4. A spacecraft is a free-flying rigid body with a 7R arm mounted on it. The joints have no joint limits. Give a mathematical description of the C-space of this system. (See Chapter 2.3.1 for related discussion.)

1 / 1 point

- \bigcirc $\mathbb{R}^3 \times T^{10}$
- $\bigcirc \ \mathbb{R}^3 \times S^3 \times T^7$
- $\bigcirc \ \mathbb{R}^4 \times S^2 \times T^7$

⊘ Correct

The 7R arm is described by T^7 , which can be combined with the S^1 of the rigid-body orientation $S^2\times S^1$, giving $T^7\times S^1=T^8$.

rotat	te and translate in the plane) plus the robot arm. (See Chapter 2.3.1 for related discussion.)
0	$\mathbb{R}^2 imes S^2 imes S^1 imes [a,b]$
0	$\mathbb{R}^2 imes S^3 imes [a,b]$
•	$\mathbb{R}^2 imes T^3 imes [a,b]$
0	$\mathbb{R}^3 imes T^3$
0) Correct $\mathbb{R}^2 imes S^1$ for the chassis and $T^2 imes [a,b]$ for the arm, and remember that $T^2 imes S^1=T^3$.
	[.,,.],

6. Determine whether the following differential constraint is holonomic or not (nonholonomic). See the example in Chapter 2.4.

1 / 1 point

$(1 + \cos q_1)\dot{q}_1 + (2 + \sin q_2)\dot{q}_2 + (\cos q_1 + \sin q_2 + 3)\dot{q}_3 = 0.$	
O Holonomic	
Nonholonomic	

⊘ Correct

 $\textbf{7.} \quad \text{The task is to carry a waiter's tray so that it is always horizontal (orthogonal to the gravity vector), but otherwise}$ free to move in any other direction. How many degrees of freedom does the task space (the C-space of a horizontal tray) have? (Enter an integer number.)

1 / 1 point

4

Correct
The horizontal constraint eliminates 2 of the degrees of freedom (roll and pitch) of the tray (a spatial rigid)