Dozent: Denis Vogel Tutor: Marina Savarino

Aufgabe 36

Es gilt

Für die gesuchte Darstellungsmatrix erhalten wir also

$$\begin{pmatrix} -2 & 0 & 2 \\ 0 & 0 & 4 \\ 3 & 2 & -1 \end{pmatrix}.$$

Aufgabe 37

- (a) Sei $n \in N$, $m \in M$ und (m_1, \ldots, m_n) eine Basis von M. Ist $\varphi(n) \otimes m = 0$, so ist $\mathrm{id}_N \otimes \Phi^{-1}(\varphi(n) \otimes m) = \mathrm{id}_L \otimes \Phi^{-1}(\varphi(n) \otimes \sum_{i=1}^n m_i) = \varphi(n) \otimes (\alpha_1, \ldots, \alpha_n)$ ebenfalls 0 und mit dem Isomorphismus aus 8.14 auch $0 = (\alpha_1 \varphi(n), \ldots, \alpha_n \varphi(n)) = (\varphi(\alpha_1 n), \ldots, \varphi(\alpha_n n))$. Aufgrund der Injektivität von φ muss also bereits $(\alpha_1 n, \ldots, \alpha_n n) = 0$ sein. Wir können nun erneut 8.14 benutzen, um zu folgern, dass $n \otimes (\alpha_1, \ldots, \alpha_n) = 0$ ist. Unter der Abbildung $\mathrm{id}_N \otimes \Phi$ erhalten wir $n \otimes m = 0$. Daraus folgt, dass $\ker \varphi \otimes \mathrm{id}_M = \{0\}$ sein muss, da sich die Argumentation auf Summen von reinen Tensoren überträgt.
- (b) Da M flach ist, folgt aus der Injektivität von φ sofort die Injektivität von $(\varphi \otimes \mathrm{id}_M) \colon M \otimes M \to N \otimes M$ nach Definition von flachen Moduln. Da N ebenfalls flach ist, folgt analog die Injektivität von $(\mathrm{id}_N \otimes \varphi) \colon N \otimes M \to N \otimes N$. Die Komposition zweier injektiver Abbildungen ist wieder injektiv, sodass $\varphi \otimes \varphi = (\mathrm{id}_N \otimes \varphi) \circ (\varphi \otimes \mathrm{id}_M)$ injektiv ist.
- (c) Wähle $R = \mathbb{Z}$ und $M = \mathbb{Z}/2\mathbb{Z}$. Dann ist nach Beispiel 8.12 M nicht flach.

Aufgabe 38

(a) Seien $f: \bigwedge^2 M \to M \otimes M$ und $g: \bigwedge^2 N \to N \otimes N$ die entsprechenden eindeutigen R-Modulhomomorphismen aus Aufgabe 35. Da M und N beide freie Moduln sind, sind f und g nach Aufgabe 35b beide injektiv, genau wie $(\varphi \otimes \varphi): M \otimes M \to N \otimes N$ nach Aufgabe 37b.

Behauptung: Das Diagramm

kommutiert.

Beweis. Wir definieren die offensichtlich bilineare Abbildung

$$\beta: M \times M \to N \otimes N, (a,b) \mapsto \varphi(a) \otimes \varphi(b) - \varphi(b) \otimes \varphi(a).$$

Wegen der universellen Eigenschaft UA gibt es daher einen eindeutigen R-Modulhomomorphismus

$$F: \bigwedge^2 M \to N \otimes N, \ a \wedge b \mapsto \varphi(a) \otimes \varphi(b) - \varphi(b) \otimes \varphi(a).$$

Man sieht leicht, dass $((\varphi \otimes \varphi) \circ f)(a, b) = F(a, b)$ und $(g \circ (\bigwedge^2 \varphi))(a, b) = F(a, b)$. Da F aber eindeutig bestimmt ist, sind beide Abbildungen gleich.

Daher ist auch der Kern beider Abbildungen gleich.

$$\ker((\varphi \otimes \varphi) \circ f) = 0 = \ker(f \circ (\bigwedge^2 \varphi)).$$

Ist die Komposition zweier Abbildungen injektiv, so auch die zwei Komponenten. Also muss $\bigwedge^2 \varphi$ injektiv sein.

(b)

(i) \Longrightarrow (ii) Es gilt $\ker \psi = \{(a,b) \in \mathbb{R}^2 \mid \psi(a,b) = 0\} = \{(a,b) \in \mathbb{R}^2 \mid am_1 + bm_2 = 0\} \stackrel{(m_1,m_2) \text{ l.u.}}{=} \{0\}$. Daher ist ψ injektiv. Nach Satz 9.9 lässt sich jedes $x \in \bigwedge^2 \mathbb{R}^2$ auf eindeutige Weise durch $r \cdot (e_1 \wedge e_2)$ mit $r \in \mathbb{R}$ schreiben. Also ist

$$(\bigwedge^2 \psi)(x) = (\bigwedge^2 \psi)(r \cdot (e_1 \wedge e_2)) = r \cdot (\psi(e_1) \wedge \psi(e_2)) = r \cdot (m_1 \wedge m_2).$$

Ist nun $r \cdot (m_1 \wedge m_2) = 0$, dann ist $r \cdot (e_1 \wedge e_2) \in \ker \psi$. Da ψ injektiv ist, muss also schon r = 0 sein.

(ii) \Longrightarrow (i) Wir zeigen die Aussage per Kontraposition. Seien $0 \neq a, b \in R$ mit $am_1 + bm_2 = 0$ gegeben. Dann gilt für r = b.

$$b(m_1 \wedge m_2) = (m_1 \wedge bm_2) = (m_1 \wedge -am_1) = -a(m_1 \wedge m_1) = 0.$$

(c) Sei (m_1, m_2) eine Basis von M. Da $m_1 \wedge m_2$ ein Erzeugendensystem ist, können wir jedes Element aus $\bigwedge^2 M$ schreiben als $r(m_1 \wedge m_2)$ für geeignetes $r \in R$. Es gilt

$$r \cdot (m_1 \wedge m_2) \in \ker(\bigwedge^2 \varphi) \iff 0 = (\bigwedge^2 \varphi)(r \cdot (m_1 \wedge m_2)) = r \cdot (\bigwedge^2 \varphi)(m_1 \wedge m_2) = r \cdot \det \varphi \cdot (m_1 \wedge m_2) \iff r \cdot \det \varphi = 0.$$

Offensichtlich ist also die Injektivität von $(\bigwedge^2 \varphi)$ äquivalent dazu, dass det φ kein Nullteiler ist.

- (i) \Longrightarrow (ii) Nach Teilaufgabe a ist $\bigwedge^2 \varphi \colon \bigwedge^2 M \to \bigwedge^2 M$ injektiv, da M endlich erzeugt und frei ist und φ injektiv ist.
- (ii) \Longrightarrow (i) Angenommen, $\bigwedge^2 \varphi \colon \bigwedge^2 M \to \bigwedge^2 M$ wäre injektiv, aber φ wäre nicht injektiv. Dann gäbe es $0 \neq a, b \in R$ bzw. ein $0 \neq am_1 + bm_2 \in R$, sodass $\varphi(m) = 0$. Ist nun $a \neq b$, so erhalten wir daraus $(am_1 + bm_2) \wedge (m_1 + m_2) = (a b)(m_1 \wedge m_2) \neq 0$, aber $(\bigwedge^2 \varphi)((am_1 + bm_2) \wedge (m_1 + m_2)) = \varphi(am_1 + bm_2) \wedge \varphi(bm_1 + am_2) = 0 \wedge \varphi(bm_1 + am_2) = 0$. Ist stattdessen a = b, so ist $(am_1 + bm_1) \wedge (m_1 m_2) = 2a(m_1 \wedge m_2)$, aber $(\bigwedge^2 \varphi)((am_1 + bm_2) \wedge (m_1 m_2)) = \varphi(am_1 + bm_2) \wedge \varphi(m_1 m_2) = 0 \wedge \varphi(m_1 m_2) = 0$. Damit erhalten wir einen Widerspruch zur Injektivität von $\bigwedge^2 \varphi$. Also muss φ injektiv sein.

Aufgabe 39

- (a) Offensichtlich ist f injektiv. Es gilt $g(2n,0)=(\overline{2n},\overline{0},\dots)=0$. Daher ist im $f\subset\ker g$. Sei nun $(i,(j_1,j_2,\dots))\in\ker g$. Daraus folgt sofort, dass $(j_1,j_2,\dots)=0$ sein muss. i muss gerade sein, da genau dann $\overline{i}=0$ ist. Also ist $(i,(j_1,j_2,\dots))=(2k,0)$ für ein geeignetes $k\in\mathbb{N}$. Die kanonische Projektion ist trivialerweise surjektiv, also insbesondere auch die komponentenweise kanonische Projektion bzw. Identität. Insgesamt folgt, dass es sich um eine kurze exakte Folge von \mathbb{Z} -Moduln handelt.
- (b) Sei ein Untermodul T von $N \otimes M$ gegeben, der die Eigenschaften aus Bemerkung 10.6 erfüllt. Dann existiert ein eindeutig bestimmtes Urbild $(a,(0,\ldots))$ von $(1,0,\ldots)$ unter $g|_T$. Nun betrachten wir $2(a,(0,\ldots))$. Es gilt $g_T(2(a,(0,\ldots)))=2(1,0,\ldots)=0$, aber auch $2(a,(0,\ldots))=(a,2(0,\ldots))=(a,(0,\ldots))$. Aufgrund der Injektivität von g_T muss daher schon $(a,(0,\ldots))=0$ sein. Nach Konstruktion ist aber $g_T((a,(0,\ldots)))\neq 0$. Daher erhalten wir einen Widerspruch und die Folge zerfällt nicht.