LEHRSTUHL A FÜR MATHEMATIK

Prof. Dr. S. Walcher

Markus Hirshman, Dipl.-Gyml.

Niclas Kruff, Dr.

Übung 15 zur Vorlesung Analysis für Informatiker, WS 2018/2019

Präsenzaufgaben

Die folgenden Aufgaben werden in der Globalübung am 30.01.2018 bearbeitet und besprochen.

Präsenzaufgabe 1

Gegeben sei die Funktion

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ x \mapsto \begin{pmatrix} e^x \cdot \cos(y) \\ e^x \cdot \sin(y) \end{pmatrix}.$$

- (a) Zeigen Sie, dass f in einer Umgebung von $\begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix}$ umkehrbar ist.
- (b) Zeigen Sie, dass f in einer Umgebung von $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$ umkehrbar ist.

Präsenzaufgabe 2

Zeigen Sie, dass sich die Gleichung $x^2 + xy + y^2 - 3 = 0$ in einer Umgebung von $(1,1) \in \mathbb{R}^2$ eindeutig nach y auflösen lässt. Es sei $U \subset \mathbb{R}$ offen und $g: U \to \mathbb{R}$ eine Funktion mit der Eigenschaft $x^2 + xg(x) + g(x)^2 - 3 = 0$. Bestimmen Sie die Ableitung g'(1).

Präsenzaufgabe 3

Gegeben sei die Funktion $F: \mathbb{R}^2 \to \mathbb{R}^2$, $\binom{x}{y} \mapsto \binom{x+y}{xy}$.

- (a) Bestimmen Sie alle Punkte in denen *F* nicht lokal invertierbar ist.
- (b) Bestimmen Sie alle Urbilder von $\binom{3}{2}$ und die Ableitungen der jeweiligen lokalen Umkehrfunktionen bei $\binom{3}{2}$.

Präsenzaufgabe 4

Zeigen Sie: Es gibt eine Umgebung $U \subset \mathbb{R}^2$ von $(0,1)^t$ und eine stetig differenzierbare Funktion $g: \mathbb{R} \to \mathbb{R}$, für die für alle $(x,y)^t \in U$ mit

$$e^{xy} = y + xy^2$$

gilt
$$y = g(x)$$
.