高等数学、工科数学分析基础、微积分 2019 级下学期期末试卷

1、(4分) 设函数
$$f(x, y)$$
 在点 (0, 0) 处连续,且 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{\sin(x^2+y^2)} = 1$,则(

- (A) 点(0,0)不是 f(x,y)极值点.
- (B) 点(0,0)是 f(x,y)极大值点.
- (C) 点(0,0)是 f(x, y)极小值点.
- (D) 由条件不能确定(0,0)是否为极值点.

2、(4分) 设函数 z = z(x, y) 由方程 $x - 2019z = \varphi(y - 2020z)$ 确定,其中 φ 为可微

函数,则
$$2019 \frac{\partial z}{\partial x} + 2020 \frac{\partial z}{\partial y} =$$
 ()

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

、(4分)曲面 $2z = x^2 + y^2$ 在点(1,1,1)处的切平面方程是()

(A)
$$x + y - z = 1$$
.

(B)
$$x + y - z = 3$$
.

(C)
$$x + y + z = 1$$
.

(D)
$$x + y + z = 3$$
.

、(4分) 曲面 $2z = x^2 + y^2$ 在点(1,1,1) 处的法线方程是()

(A)
$$x = y = z$$
.

(B)
$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-1}{1}$$
.

(c)
$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-1}{-1}$$
.

(D)
$$\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$$
.

5、(4 分) 曲线 $x = e^t \cos t$, $y = e^t \sin t$, $z = 2e^t$ 在点(1,0,2) 处的切线方程

是()

(A)
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-2}$$
.

(B)
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{2}$$
.

(c)
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-2}{2}$$
.

(D)
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-2}{-2}$$
.

6、(4 分) 曲线 $x = e^t \cos t$, $y = e^t \sin t$, $z = 2e^t$ 在点(1,0,2) 处的法平面方程是()

(A)
$$x + y + 2z = 5$$
.

(B)
$$x + y - 2z = 5$$
.

(C)
$$x + y + 2z = 3$$
.

(D)
$$x + y - 2z = 3$$
.

7、(4分) 设函数 $z = x^2 + y^2$,则函数 z 在点 A(1,2) 处,沿从点 A 到点 $B(2,2+\sqrt{3})$ 方向的方向导数是 (

- (A) $1+2\sqrt{3}$.
- (B) $2+4\sqrt{3}$.
- (C) $1+\sqrt{3}$.
- (D) $1+3\sqrt{3}$.

8、(4分)设函数 z = f(x+y, x-y), 其中 f 具有二阶连续偏导数, 则 $\frac{\partial^2 z}{\partial x \partial y} = ($

- (A) $f_{11}'' + f_{22}''$.
- (B) $-f_{11}'' f_{22}''$.
- (C) $f_{11}'' f_{22}''$.
- (D) $f_{22}'' f_{11}''$.

9、	(4分)	在以下级数中,	发散的是	()

(A)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}.$$

(B)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}.$$

(C)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 2}{n^4 + 3n}.$$

(D)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

10、(4 分)设 f(x) 是周期为 2π 的周期函数, f(x) 在 $[-\pi,\pi)$ 上的表达式为

 $f(x) = \begin{cases} 0, -\pi \le x < 0 \\ x, 0 \le x < \pi \end{cases}$, f(x) 的 Fourier (傅里叶) 级数

 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 的和函数是 S(x) ,则 $S(3\pi) = ($

- (A) $\frac{\pi}{2}$.
- (B) π .
- (C) 0.
- (D) 3π .

(A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n)!} = -1.$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\pi^{2n+1}}{(2n+1)!} = 0.$$

(C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!} = \frac{\sin x}{x} \quad (x \in (-\infty, +\infty)).$$

(D)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n} \quad (-1 < x \le 1)$$
.

12、(2分) 判断题 幂级数
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 的收敛域是 [-1,1). ()

- (A) 正确.
- (B) 错误.

$$13$$
、(4分)幂级数 $\sum_{n=1}^{\infty}\frac{x^n}{n+1}$ 的和函数是(

(A)
$$\begin{cases} \frac{-\ln(1-x)}{x} - 1, x \in [-1,0) \cup (0,1) \\ 0, x = 0 \end{cases}$$
.

(B)
$$\begin{cases} \frac{-\ln(1-x)}{x} - 1, x \in (-1,0) \cup (0,1) \\ 0, x = 0 \end{cases}$$
.

(c)
$$\frac{-\ln(1-x)}{x} - 1, x \in (-1,1)$$
.

(D)
$$\frac{-\ln(1-x)}{x} - 1, x \in [-1,1)$$
.

14.
$$(4 \implies)$$
 $\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n^2}{(n^2 + i^2)(n^2 + j^2)} = ($

(A)
$$\frac{\pi}{2}$$
.

(B)
$$\frac{\pi}{4}$$
.

(C)
$$\frac{\pi^2}{4}$$
.

(D)
$$\frac{\pi^2}{16}$$
.

15、(4分) $\int_0^1 dy \int_y^1 e^{x^2} dx = ($ (A) $\frac{e-1}{2}$. (B) $\frac{1-e}{2}$. (C) e-1. (D) 1-e.

16、(4分)设积分域 $D = \{(x, y) | |x| + |y| \le 1\}$,则二重积分 $\iint_{\mathbb{R}} (2|x| - y) dxdy = ($)

- (A) 2.
- (B) 4.
- (C) $\frac{2}{3}$. (D) $\frac{4}{3}$.

17、(4 分) 设积分域 $D = \{(x,y)|(x-1)^2 + y^2 \le 1\}$, 则二重积分 $\iint (x+y) dx dy = 1$

- (A) $\frac{\pi}{4}$.
 - (B) $\frac{\pi}{3}$.
 - (c) $\frac{\pi}{2}$.
 - (D) π .

18、(4 分) 设积分域 $D = \{(x,y) | x^2 + y^2 \le 1\}$,二重积分 $I_1 = \iint_D (x^2 + y^2) dxdy$,

 $I_2 = \iint_D \sin(x^2 + y^2) \, dx dy$, $I_3 = \iint_D \tan(x^2 + y^2) \, dx dy$, \mathbb{U} (

- (A) $I_1 < I_2 < I_3$.
- (B) $I_2 < I_1 < I_3$.
- (C) $I_3 < I_2 < I_1$.
- (D) $I_2 < I_3 < I_1$.

19、(4分)设V是由曲面 $z = x^2 + y^2$ 与平面z = 4所围成的闭区域,则三重积分

$$\iiint_{V} z \, \mathrm{d}V = \quad ()$$

- (A) $\frac{64\pi}{3}$.
- (B) $\frac{32\pi}{3}$.
- (c) $\frac{16\pi}{3}$.
- (D) $\frac{8\pi}{3}$.

20、(4分) 设积分域 $V = \{(x, y, z) | x^2 + y^2 + z^2 \le 1, z \ge 0 \}$,则三重积分 $\iiint_{V} (x^{2} + y^{2} + z^{2}) \, \mathrm{d}V =$ () (A) $\frac{\pi}{5}$. (B) $\frac{2\pi}{5}$. (C) $\frac{\pi}{4}$. (D) $\frac{\pi}{3}$.

21、(4分) 设V 是由曲面 $z = \sqrt{x^2 + y^2}$ 与平面 z = 1所围成的闭区域,则三重积分

$$\iiint\limits_V z(x^2 + y^2) \, \mathrm{d}V = \quad ()$$

- (A) $\frac{\pi}{3}$.
- (B) $\frac{\pi}{6}$.
- (C) $\frac{\pi}{9}$.
- (D) $\frac{\pi}{12}$.

22、(4分)设曲线 $L: y = x^2 \ (0 \le x \le \sqrt{2})$,则第一型曲线积分 $\int_L x \, ds = ($

- (A) $\frac{7}{6}$.
- (B) $\frac{13}{6}$.
- (C) $\frac{7}{3}$.
- (D) $\frac{13}{3}$.

23、(4分)设 $S = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$,则第一型曲面积分 $\iint_S z^2 dS = ($

- (A) $\frac{\pi}{3}$.
- (B) $\frac{2\pi}{3}$.
- (C) π .
- (D) $\frac{4\pi}{3}$.

24、(4分)设L为曲线 $y = \sqrt{1-x^2}$ 上从点A(0,1)到点B(1,0)的有向弧段,则第二

型曲线积分 $\int_{L} \frac{y \, dx - x \, dy}{\sqrt{x^2 + y^2}} =$ ()

- $(A) \quad 0.$
- (B) $\frac{\pi}{2}$.
- (C) π .
- (D) $\frac{\pi}{3}$.

25、(4 分)设S是锥面 $z = \sqrt{x^2 + y^2}$ ($0 \le z \le 1$)的下侧,则第二型曲面积分 $\iint_{S} (x^{3} - xy) \, dy dz + (y^{3} - yz \sin x) \, dz dx - 3z(x^{2} + y^{2}) \, dx dy =$ ((A) $\frac{3\pi}{2}$. (B) $-\frac{3\pi}{2}$. (C) 2π . (D) -2π .

26、(2	分)	判断题	若 lim	$\int_0^t f_x'(x,y_0)$	$=f_x'(x_0)$	$,y_0),\lim_{y\to y_0}$	$f_y'(x_0,y)$	$=f_y'(x_0,y_0)$),贝	训函
数 f(x,	y)在点	$\bar{\mathbf{x}}(x_0, y_0)$) 处可微	t.	()				
(A)	正确	植.								
(B)	错误	<u>.</u>								