Seção 1.5. Teoria Local das Curvas Parametrizadas pelo Comprimento de Arco

By Gabriela Silva

26 de fevereiro de 2020

Exercício 5. Uma curva parametrizada regular α tem a seguinte propriedade: todas as suas tangentes passam por um ponto fixo.

(a) Prove que o traço de α é o (segmento de) uma reta.

Solução. Seja r_s o conjunto das retas que passa por $\alpha(s)$ e tem como vetor diretor $\alpha'(s)$.

$$r_s(\lambda) = \alpha(s) + \lambda \alpha'(s)$$

Como para todo s essas retas passam por um ponto fixo p, temos que existe um $\lambda_s \in \mathbb{R}$ tal que $p = r_s(\lambda_s) = \alpha(s) + \lambda_s \alpha'(s)$. Então,

$$p = \alpha(s) + \lambda(s)\alpha'(s) \tag{1}$$

onde $\lambda(s) = \lambda_s$. Derivando a equação 1 em relação a s, temos:

$$0 = \alpha'(s) + \lambda'(s)\alpha'(s) + \lambda(s)\alpha''(s)$$

$$0 = \alpha'(s) + \lambda'(s)\alpha'(s) + \lambda(s)k(s)n(s)$$

$$0 = \alpha'(s)(1 + \lambda'(s)) + \lambda(s)k(s)n(s)$$

$$0 = (1 + \lambda'(s))\alpha'(s) + \lambda(s)k(s)n(s)$$

Como $\alpha'(s)$ e n(s) são vetores L.I. (linearmente independentes) segue que:

$$\begin{cases} 1 + \lambda'(s) = 0 \Rightarrow \lambda'(s) = -1 \\ \lambda(s)k(s) = 0 \Rightarrow k(s) = 0 \end{cases}$$

Assim, concluimos que k(s) = 0, pois se existisse s_0 tal que $k(s_0) \neq 0$, então numa vizinhança de s_0 teríamos $k \neq 0$. Assim, numa vizinhança de s_0 teríamos que $\lambda(s) = 0$, consequentemente $\lambda'(s) = 0$, absurdo, pois $\lambda'(s) = -1$, $\forall s$. Portanto, o traço de α é uma reta.

(b) A conclusão ainda é válida se α não é regular?

Solução. Não. Tomemos por exemplo a curva α definida por:

$$\alpha: \mathbb{R} \to \mathbb{R}^2$$

$$\alpha(t) = \begin{cases} (-t^2, t^2), \text{ se } t \le 0\\ (t^2, t^2), \text{ se } t > 0 \end{cases}$$

Todas as retas tangentes passam pela origem mas α não é regular, pois $\alpha'(0) = 0$.