Assessing Normalization Methods in Spatial Transcriptomics

BEN ANDERSON STAT 877 5/4/2022

Spatial Transcriptomics

FOCUS | 06 JANUARY 2021

Method of the Year 2020: spatially resolved transcriptomics

Spatially resolved transcriptomics is our Method of the Year 2020, for its ability to provide valuable insights into the biology of cells and tissues while retaining information about spatial context.

Major Benefit: Retains spatial information between samples

SNAP25

Spatial LIBD Paper

10x Genomics *Visium* method Spatial analysis of brain tissue slices

Normalizing RNAseq data is Important

Key assumption for normalization

True biological gene expression is masked by technical noise

Within-Sample variance

- Length of Gene
 Longer gives more reads
- GC-content
 Affects amplification rate

Between-Sample variance

- Sequencing depth
 Biased against low exp. genes
- Sample preparationHow good is your pipetting?

Challenges in Spatial Normalization

10x Genomics Visium samples all material in spot

- How many cells?
- What size are the cells?

Data Source

2831 genes after filtering

~4000 spots per sample

	Spot 1	Spot 2		Spot 3999	Spot 4000
Gene 1	0	0	1	0	1
Gene 2	0	3	0	0	0
•••	4	7	0	11	3
Gene 2830	0	43	0	0	4
Gene 2831	0	0	1	1	0

x 6

Data Processing

Normalization Methods

- 1. Non-normalized (control)
- 2. Total count normalization
- 3. SCTransform
- 4. Dino (ZN & CK 2021)

Unsupervised clustering method

- 1. Filter genes and spots
- 2. PCA transform (50 PCs)
- 3. KMeans clustering on 50 PCs num. clusters = 7 or 5

Scoring metric

Cluster assignment accuracy compared to Ground Truth

Ground Truth

L2 L3

Layers

L5

L6 WM

Conclusion

Normalization tends to boosts accuracy versus no normalization

% Accuracy

	Non-normalized	Count Norm.	SCTransform	Dino
Brain 1 rep 1	33.2	47.4	44.0	46.5
Brain 1 rep 2	44.6	47.0	48.6	46.7
Brain 2 rep 1	40.6	48.4	46.5	48.4
Brain 2 rep 2	41.3	47.2	39.4	44.9
Brain 3 rep 1	35.5	42.0	40.1	42.0
Brain 3 rep 2	<mark>42.5</mark>	<mark>39.3</mark>	<mark>39.8</mark>	<mark>40.2</mark>
Average	39.6	45.2	43	44.8

Normalization minimizes "spottiness" of cluster assignments

SCTransform

Dino

Analysis available at github.com/benton-anderson/877