Differentiation and Integration

Introduction to Derivative

In mathematics.

> The rate of change of a function with respect to a variable is known as derivative.

Derivative Vs. Differentiation

➤ Differentiation is a technique for calculating a derivative, which is the rate of change of a function's output y in relation to the change of a variable x.

Representation of Differentials

 \triangleright Differentials are represented as dx, dy, dt, and so on, where dx represents a small change in x, dy represents a small change in y, and dt is a small change in t. When comparing changes in related quantities where y is the function of x.

http://www.differencebetween.net/science/mathematics-statistics/difference-between-differential-and-derivative/

Representation of derivative

<u>Technique</u>	<u>Function</u>	<u>Derivative</u>
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f-g	f' – g'
Product Rule	fg	f g' + f' g
Quotient Rule	f/g	f' g – g' fg²
Reciprocal Rule	1/f	-f'/f ²
Chain Rule(as "Composition of Functions")	fºg	(f′ º g) × g′
Chain Rule (using ')	f(g(x))	f'(g(x))g'(x)
Chain Rule (using d/dx)	Dy/dx = (dy/du)(du/dx)	

Sum Rule:

What is derivative
$$g = 5x^2 + 10x^3$$
?

From the Sum rule $f+g = f'+g'$

$$\frac{d}{dx} = 5(2)x^{2-1} = 10x$$

$$\frac{d}{dx} = 10(3)x^{3-1} = 30x^2$$
the derivative $g = 5x^2 + 10x^3 = 10x + 30x^2$

Difference Rule:

The derivative of
$$f-g=f'-g'$$

What is the derivative of $3f^3-4f^3$
 $\frac{d}{dx} 3f^3 = (3)(3) f^{3-1} = 9f^2$
 $\frac{d}{dx} 4f^3 = MI(3) f^{3-1} = 12f^3$

the derivative of $3f^3-4f^3$ is $9f^3-12f^3$

Product Rule:

According to product rule:

the derivative of
$$\frac{d}{\sin(x)} \cos(x) = fg = fg' + f'g$$

$$f = \sin(x) \quad , \quad g = \cos(x) \qquad \frac{d}{dx} \cos(x) = -\sin x$$

So the derivative will be

$$f = \sin(x) = \cos(x) = \cos(x)$$

$$f = \sin(x) = \cos(x)$$

$$f = \cos(x) = \cos(x)$$

$$f = \cos(x)$$

$$f = \cos(x) = \cos(x)$$

$$f = \cos(x$$

Resiprocal Rule:

$$\frac{d}{dx} \frac{1}{x^{2}}$$

$$= \frac{1}{dx} \frac{1}{x^{2}}$$

$$= \frac{-2}{x^{3}}$$
The derivative of $\frac{1}{x^{2}} = \frac{-2}{x^{3}}$

Chain Rule:

$$\frac{d}{dx} \cos(x^3)$$

$$\frac{d}{dx} \cos(x^3) = -\sin(x^3) (3x)$$

$$\frac{d}{dx} \cos(x^3) = -3x \sin(x^3)$$
The derivative of $\cos(x^3)$ is $-3x \sin(x^3)$.

Introduction to Integration

- Integration is a method of finding the total by combining sections.
- > It can be used to find areas, volumes, central points and many useful things
- > The process of finding an Integral is the inverse of finding a Derivative.
- ➤ The symbol for "Integral" is a stylish "S" (for "Sum", the idea of summing sections)

Techniques of integration

Rules	Function	Integral
Multiplication by constant	ʃcf(x) dx	cʃf(x) dx
Power Rule (n≠-1)	∫x ⁿ dx	x ⁿ⁺¹ n+1 + C
Sum Rule	∫(f + g) dx	∫f dx + ∫g dx
Difference Rule	∫(f - g) dx	∫f dx - ∫g dx
Integration by Parts	$\int u v dx = u \int v dx - \int u' (\int v dx) dx$	
Substitution Rule	Will discuss later	

Power Rule:

What is
$$\int x^{4} dx$$
?

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C$$

$$\int x^{4} dx = \frac{x^{4}}{n+1} + C$$

$$\int x^{4} dx = \frac{x^{5}}{5} + C$$

Sum Rule:

$$\int (\operatorname{Sec}^{2} x + 2x + \pi) \, dx?$$

$$\int (\operatorname{Sec}^{2} x + 2x + \pi) \, dx = \int \operatorname{Sec}^{2} x + \int 2x + \int \pi.$$

$$\int \operatorname{Sec}^{2} x = \tan x + c$$

$$2\int x = 2x^{2} = x^{2} + c$$

$$2\int x = \pi^{2} + c$$

$$2\int (\operatorname{Sec}^{2} x + 2x + \pi) \, dx = \tan x + \pi^{2} + \pi^{2} + c$$

Integration By Parts:

$$\int UV \, dx = U \int V \, dx - \int [U'] \left(\int V \, dx \right) \right] dx$$

$$\Rightarrow \int \chi \, Sin(\chi) \, d\chi - \int [\chi'] \left(\int Sin(\chi) \, d\chi \right) \, d\chi$$

$$= (\chi)(-\cos(\chi)) - \int [(1)(-\cos(\chi))] \, d\chi$$

$$= -\chi \cos(\chi) - \int -\cos(\chi) \, d\chi$$

$$= -\chi \cos(\chi) - (-\sin(\chi)) + C$$

$$= -\chi \cos(\chi) + \sin \chi + C$$

$$= -\cos(\chi) + \sin \chi + C$$

Substitution Pule:

$$\int f(g(x)) g'(x) dx$$

$$\int Sin(x^{2}) 2x dx$$

$$= u = x^{2}$$

$$\int du = 2x \qquad du = 2dx$$

$$dx$$

$$\int Sin(u) du$$

$$\int Sin(x) = -\cos(x)$$

$$-\cos(u) + C$$

$$= -\cos(x^{2}) + C$$

why +C?

• It is the "Constant of Integration". It is there because of **all the**

functions whose derivative is 2x:

• The derivative of x^2 is 2x,

- The derivative of x^2+4 is also 2x,
- The derivative of x^2+99 is also 2x,
- Because the derivative of a constant is zero.
- So when we **reverse** the operation (to find the integral) we only know **2x**, but there could have been a **constant of any value**.

