Algèbre 2

Extensions séparables

Question 1/5

CNS pour
$$P' = 0$$
 pour $P \in \mathbb{K}[X]$, $car(K) = 0$

Réponse 1/5

Il existe
$$S \in \mathbb{K}[X]$$
 tel que $P(X) = S(X^p)$
Il existe $Q \in \mathbb{K}^a[X]$ tel que $P = Q^p$, c'est vrai
pour Q tel que $Q^{\sigma} = S$ où
 $\left(\sum i = 1nc_iX^i\right)^{\sigma} = \sum i = 1nc_i^pX^i$

Question 2/5

$$a \in \mathbb{K}^{a}$$
 est séparable $a \in \mathbb{K}^{a}$ est inséparable $a \in \mathbb{K}^{a}$ est totalement inséparable

Réponse 2/5

 $P_{\alpha,\mathbb{K}}$ l'est

Question 3/5

Polynôme séparable Polynôme inséparable Polynôme totalement inséparable

Réponse 3/5

$$P$$
 est séparable si $P' \neq 0$

$$P \text{ est inséparable si } P' = 0$$

$$P \text{ est pûrement inséparable si } P = (X_a)^{p^n} \text{ avec}$$

$$a \in \mathbb{K}^a$$

Question 4/5

K est parfait

Réponse 4/5

Question 5/5

CNS pour
$$\mathbb{K}$$
 parfait $\operatorname{car}(\mathbb{K}) = p > 0$

Réponse 5/5

frob_p est surjectif En particulier, si $\mathbb{K} = \mathbb{K}^{a}$ ou \mathbb{K} est fini, \mathbb{K} est parfait