

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ ⑫ Offenlegungsschrift
⑯ ⑩ DE 195 45 468 A 1

⑯ Int. Cl. 6:
C 12 N 15/63

C 12 N 15/80

C 12 N 15/60

C 12 N 1/00

C 12 N 1/15

C 12 P 25/00

C 07 D 475/14

// (C12N 15/60,C12R

1:645) (C12P 25/00,

C12R 1:645)A61K

31/525,A23K 1/16,

A23L 1/275,1/24,

1/187,A23G 9/00

DE 195 45 468 A 1

⑯ Anmelder:

Forschungszentrum Jülich GmbH, 52428 Jülich, DE;
BASF AG, 67063 Ludwigshafen, DE

⑯ Erfinder:

Stahmann, Klaus-Peter, Dr., 52428 Jülich, DE;
Böddecker, Theo, 52428 Jülich, DE; Sahm, Hermann,
Prof., 52428 Jülich, DE; Seulberger, Harald, Dr.,
69221 Dossenheim, DE

⑯ Entgegenhaltungen:

EP 4 05 370 A1

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Verfahren zur Herstellung von Riboflavin mittels Mikroorganismen mit erhöhter Isocitratlyase-Aktivität

DE 195 45 468 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen
BUNDESDRUCKEREI 06.97 702 034/7

Beschreibung

Die Erfindung betrifft ein Verfahren zur mikrobiellen Herstellung von Riboflavin gemäß den Ansprüchen 1 bis 11, Isocitratlyasegene gemäß den Ansprüchen 12 bis 15, Genstrukturen nach Anspruch 16, Vektoren nach Anspruch 17, transformierte Zellen gemäß Anspruch 18 bis 20 sowie Verwendungen eines Isocitratlyasegens nach Anspruch 21 bis 27.

Das Vitamin B₂, auch Riboflavin genannt, ist für Mensch und Tier essentiell. Bei Vitamin-B₂-Mangel treten Entzündungen der Mund- und Rachenschleimhäute, Risse in den Mundwinkeln, Juckreiz und Entzündungen in den Hautfalten u.ä. Hautschäden, Bindegautentzündungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme eintreten. Das Vitamin B₂ hat daher wirtschaftliche Bedeutung insbesondere als Vitaminpräparat bei Vitaminmangel sowie als Futtermittelzusatz. Daneben wird es auch als Lebensmittelfarbstoff, beispielsweise in Mayonnaise, Eiscreme, Pudding etc., eingesetzt.

Die Herstellung von Riboflavin erfolgt entweder chemisch oder mikrobiell. Bei den chemischen Herstellungsverfahren wird das Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei allerdings auch relativ kostspielige Ausgangsprodukte – wie beispielsweise D-Ribose – eingesetzt werden müssen. Daher kommt die chemische Synthese des Riboflavins nur für solche Anwendungszwecke in Betracht, für die reines Riboflavin notwendig ist, wie z. B. in der Humanmedizin.

Eine Alternative zur chemischen Herstellung des Riboflavins bietet die Herstellung dieses Stoffes durch Mikroorganismen. Die mikrobielle Herstellung des Riboflavins eignet sich insbesondere für solche Fälle, in denen eine hohe Reinheit dieser Substanz nicht erforderlich ist. Dies ist beispielsweise dann der Fall, wenn das Riboflavin als Zusatz zu Futtermittelprodukten eingesetzt werden soll. In solchen Fällen hat die mikrobielle Herstellung des Riboflavins den Vorteil, daß diese Substanz in einem einstufigen Prozeß gewinnbar ist. Auch können als Ausgangsprodukte für die mikrobielle Synthese nachwachsende Rohstoffe, wie beispielsweise pflanzliche Öle, eingesetzt werden.

Die Herstellung von Riboflavin durch Fermentation von Pilzen wie *Ashbya gossypii* oder *Eremothecium ashbyii* ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983); aber auch Hefen, wie z. B. *Candida* oder *Saccharomyces*, und Bakterien, wie *Clostridium*, sind zur Riboflavinproduktion geeignet. Riboflavin-überproduzierende Bakterienstämme sind beispielsweise in der EP 405370 beschrieben, wobei die Stämme durch Transformation der Riboflavin-Biosynthese-Gene aus *Bacillus subtilis* erhalten wurden. Diese Prokaryonten-Gene waren aber für ein rekombinantes Riboflavin-Herstellungsverfahren mit Eukaryonten wie *Saccharomyces cerevisiae* oder *Ashbya gossypii* ungeeignet. Daher wurden gemäß der wo 93/03183 die für die Riboflavin-Riosynthese spezifischen Gene aus einem Eukaryonten, nämlich aus *Saccharomyces cerevisiae*, isoliert, um damit ein rekombinantes Herstellungsverfahren für Riboflavin in einem eukaryontischen Produktionsorganismus bereitzustellen. Derartige rekombinante Herstellungsverfahren haben für die Riboflavin-Produktion jedoch dann keinen oder nur begrenzten Erfolg, wenn die Bereitstellung von Substrat für die an der Riboflavin-Biosynthese spezifisch beteiligten Enzyme unzureichend ist.

Es ist Aufgabe der Erfindung, ein Verfahren zur mikrobiellen Herstellung von Riboflavin zu schaffen, durch das ein erhöhter Anteil an Riboflavin gebildet wird. Es ist ferner Aufgabe der Erfindung, Stoffe bereit zu stellen, die in einem solchen Verfahren einsetzbar sind.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Isocitratlyase-(ICL-)Aktivität und/oder die ICL-Genexpression eines Riboflavin-produzierenden Mikroorganismus erhöht wird. Eine erhöhte ICL-Aktivität bzw. eine erhöhte ICL-Genexpression hat überraschenderweise zur Folge, daß ein erhöhter Anteil an Riboflavin gebildet wird. Dieses Ergebnis ist insofern überraschend, als ca. 150 Enzyme an der Riboflavin-Biosynthese beteiligt sind und die ICL als zentrales anaplerotisches Enzym keinesfalls für die Riboflavin-Synthese spezifisch ist.

Zur Erhöhung der ICL-Aktivität wird insbesondere die endogene Aktivität eines Riboflavin-produzierenden Mikroorganismus erhöht. Eine Erhöhung der Enzymaktivität kann beispielsweise erreicht werden, indem durch Veränderung des katalytischen Zentrums ein erhöhter Substratsatz erfolgt oder indem die Wirkung von Enzym-Inhibitoren aufgehoben wird. Auch kann eine erhöhte Enzymaktivität durch Erhöhung der Enzymsynthese, beispielsweise durch Genamplifikation oder durch Ausschaltung von Faktoren, die die Enzym-Biosynthese reprimieren, hervorgerufen werden. Die endogene ICL-Aktivität wird vorzugsweise durch Mutation des endogenen ICL-Gens erhöht. Derartige Mutationen können entweder nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösenden Chemikalien, oder gezielt mittels gentechnologischer Methoden wie Deletion(en), Insertion(en) und/oder Nukleotid-Austausch(e).

Die ICL-Genexpression wird durch Erhöhen der ICL-Genkopienzahl und/oder durch Verstärkung regulatorischer Faktoren, die die ICL-Genexpression positiv beeinflussen, erhöht. So kann eine Verstärkung regulatorischer Elemente vorzugsweise auf der Transkriptionsebene erfolgen, indem insbesondere die Transkriptionssignale erhöht werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der m-RNA verbessert wird. Zur Erhöhung der Genkopienzahl wird das ICL-Gen in ein Genkonstrukt bzw. in einen Vektor eingebaut, der vorzugsweise das dem ICL-Gen zugeordnete regulatorische Gensequenzen enthält, insbesondere solche, die die Genexpression verstärken. Anschließend wird ein Riboflavin-produzierender Mikroorganismus, vorzugsweise *Ashbya gossypii*, mit dem das ICL-Gen enthaltende Genkonstrukt transformiert.

Das ICL-Gen wird vorzugsweise aus Mikroorganismen, insbesondere aus dem Pilz *Ashbya gossypii*, isoliert. Für die Isolierung des Gens kommen aber auch alle weiteren Organismen, deren Zellen die anaplerotische Sequenz des Glyoxylat-Cyclus und damit die Isocitratlyase enthalten, also auch Pflanzen, in Betracht. Die Isolierung des Gens kann durch homologe oder heterologe Komplementation einer im ICL-Gen defekten

Mutante oder auch durch heterologes Probing oder PCR mit heterologen Primern erfolgen. Zur Subklonierung kann das Insert des komplementierenden Plasmids anschließend durch geeignete Schnitte mit Restriktionsenzymen in der Größe minimiert werden. Nach Sequenzierung und Identifizierung des putativen Gens erfolgt eine paßgenaue Subklonierung durch Fusions-PCR. Plasmide, die die so erhaltenen Fragmente als Insert tragen, werden in die ICL-Gen-defekte Mutante eingebracht, die auf Funktionalität des ICL-Gens getestet wird. Funktionelle Konstrukte werden schließlich zur Transformation eines Riboflavin-Produzenten eingesetzt.

Nach Isolierung und Sequenzierung sind Isocitratlyasegene mit Nukleotidsequenzen erhältlich, die für die in Tabelle 1 angegebene Aminosäuresequenz oder deren Allelvariationen kodieren. Allel-Variationen umfassen insbesondere funktionelle Derivate, die durch Deletion, Insertion oder Substitution von Nukleotiden aus entsprechenden Sequenzen erhältlich sind, wobei die ICL-Aktivität aber erhalten bleibt. Eine entsprechende Sequenz ist in Tabelle 1 von Nukleotid 1 bis 1680 angegeben.

Den Isocitratlyasegenen ist insbesondere ein Promotor der Nukleotidsequenz von Nukleotid -375 bis -1 gemäß Tabelle 1 oder eine im wesentlichen gleichwirkende DNA-Sequenz vorgeschaltet. So kann beispielsweise dem Gen ein Promotor vorgeschaltet sein, der sich von dem Promotor mit der angegebenen Nukleotidsequenz durch ein oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) unterscheidet, ohne daß aber die Funktionalität bzw. Wirksamkeit des Promoters beeinträchtigt ist. Des Weiteren kann der Promotor auch durch Veränderung seiner Sequenz in seiner Wirksamkeit erhöht oder komplett durch wirksamere Promotoren ausgetauscht werden.

Dem ICL-Gen können des weiteren regulatorische Gensequenzen bzw. Regulatorgene zugeordnet sein, die insbesondere die ICL-Gen-Aktivität erhöhen. So können dem ICL-Gen beispielsweise sog. "enhancer" zugeordnet sein, die über eine verbesserte Wechselwirkung zwischen RNA-Polymerase und DNA eine erhöhte ICL-Genexpression bewirken.

Dem Isocitratlyasegen mit oder ohne vorgeschaltetem Promotor bzw. mit oder ohne Regulatorgenen können ein oder mehrere DNA-Sequenzen vor- und/oder nachgeschaltet sein, so daß das Gen in einer Genstruktur enthalten ist.

Durch Klonierung des ICL-Gens sind Plasmide bzw. Vektoren erhältlich, die das ICL-Gen enthalten und – wie bereits oben erwähnt – zur Transformation eines Riboflavin-Produzenten geeignet sind. Die durch Transformation erhältlichen Zellen, bei denen es sich vorzugsweise um transformierte Zellen von *Ashbya gossypii* handelt, enthalten das Gen in replizierbarer Form, d. h. in zusätzlichen Kopien auf dem Chromosom, wobei die Genkopien durch homologe Rekombination an beliebigen Stellen des Genoms integriert werden, und/oder auf einem Plasmid bzw. Vektor.

Ausführungsbeispiele

1. Erstellung einer genomischen Genbank aus *Ashbya gossypii*

Zur Erstellung einer genomischen DNA-Bank wurde chromosomal DNA nach der Methode von Wright und Philippse (1991, Gene 109: 99–105) isoliert. Die DNA wurde partiell mit Sau 3A verdaut und mit einem Saccharose-Dichtegradienten fraktioniert. Die größten Fragmente (Fig. 1) wurden mit dem Bam H1 geschnitten. E.coli/S.cerevisiae Shuttlevektor YEp 352 (J.E. Hill et al., 1993, Yeast 2: 163–167) ligiert. Mit diesem Ligationsansatz wurde E.coli DH5 α transformiert. Von Platten mit Ampicillin und X-Gal wurden 3600 Kolonien isoliert, die durch ihre weiße Farbe als Klone mit Insert tragendem Plasmid erkennbar waren. Die Untersuchung von dreißig solcher zufällig ausgewählter Klone ergab, daß tatsächlich alle ein Plasmid trugen, diese inserts im Größenbereich 7–18 kb hatten und alle Inserts verschieden waren, was anhand der Restriktionsmuster erkennbar war. Aufgrund einer Genomgröße von 7×10^3 kb für *Ashbya gossypii* liegt die Wahrscheinlichkeit das jedes Gen in dieser Genbank enthalten ist bei 97%–99,99%. Je 100 Klone wurden auf einer Agarplatte in großen Ausstrichen kultiviert und danach die Plasmide als Pool präpariert. Die Genbank bestand dementsprechend aus 36 Plasmidpools.

2. Selektion des *icl*-tragenden Genbankfragments

Mit den Plasmidpräparationen der Genbank wurde die Hefe *Saccharomyces cerevisiae* ICL1d ura3(fs) (E. Fernandez et al., 1992, Eur. J. Biochem. 204: 983–990) transformiert. Diese Mutante ist im ICL1-Gen disruptiert und besitzt im ura3-Gen eine Mutation im Leserahmen. Dieser Genotyp führt dazu, daß der Stamm nicht auf Ethanol als Kohlenstoffquelle wachsen kann und eine Uracil-Auxotrophie zeigt. Im ersten Schritt wurden die mit der Genbank transformierten Hefezellen auf Minimalmedium mit Glucose als einziger Kohlenstoffquelle selektiert. Aufgrund des auf dem Plasmid vorhandenen ura3-Gens konnten nur die Zellen wachsen, die ein Plasmid aufgenommen hatten, denn das Minimalmedium enthielt kein Uracil. In diesem Schritt wurden 1900 Klone erhalten. Diese wurden durch Replikatlattierung auf ein Minimalmedium mit Ethanol als einziger Kohlenstoffquelle übertragen. Da zum Wachstum auf Ethanol unbedingt die Isocitratlyase als anaplerotisches Enzym nötig ist, konnten nur die Klone wachsen, die auf dem Plasmid das ICL-Gen trugen. Es konnten zwei Klone isoliert werden, die auf Ethanol wuchsen.

3. Evidenzen für die Funktionalität des isolierten Genbankfragments

Zur Überprüfung, ob die Komplementation des chromosomalen ICL-Defekts plasmid-kodiert war, wurden die selektierten *Saccharomyces*-Klone zweimal auf Vollmedium mit Uracil kultiviert und die erhaltenen Zellen auf Platten vereinzelt. Von 16 bzw. 13 zufällig ausgewählten Klonen wuchsen 7 bzw. 5 nicht mehr auf

Minimalmedium mit Glucose. Genau diese Klone wuchsen auch nicht mehr auf Minimalmedium mit Ethanol. Die Kurierung vom Plasmid war also mit dem Verlust der ICL1d-Komplementation korreliert.

Aus einem der beiden Klone wurde das Plasmid wieder isoliert. Es enthielt ein Insert von etwa 8 kb. Erneute Transformation der *Saccharomyces*- Mutante führte zur Komplementation aller gefundenen Klone. Das 8 kb-Fragment ließ sich durch Sph I auf 2,9 kb, die voll funktionell waren, verkürzen.

Im Rohextrakt der auf Ethanol gewachsenen Transformante war die Isocitratlyase mit einer spezifischen Aktivität von 0,3 U/mg Protein messbar. Zudem zeigte der Westernblott mit polyklonalen Antikörpern gegen die *Ashbya*-ICL ein deutliches Signal.

PCR mit von tryptischen Peptiden der ICL abgeleiteten Primern ergab starke Signale der erwarteten Größe.

Aus einem zweidimensionalen Elektrophoresegel war ein Protein isoliert, mit Trypsin in Peptide zerlegt und durch Edmannabbau ansequenziert worden. Der Vergleich der Peptidsequenzen mit Datenbanken ergab eine Identität von über 70% mit der Isocitratlyase aus *Saccharomyces cerevisiae*. Davon abgeleitete Primer wurden zur PCR eingesetzt. Von dem ca. 8 kb großen komplementierenden Genbankfragment wurden 3,3 kb sequenziert (Sanger et al. Proc. Natl. Acad. Sci. USA 74 (1977) 5463–5467). Auf der ermittelten Sequenz konnten durch Datenbankvergleich zwei kodierende Bereiche gefunden werden. Ein Leserahmen von 1680 Basen (Tabelle 1) zeigt eine 65%ige Identität zum ICL1-Gen von *Saccharomyces cerevisiae*. Das ICL-Gen liegt 375 Basen upstream von einer Sequenz die 84% Identität zu einer Ser-tRNA von *Saccharomyces cerevisiae* zeigt (Tabelle 1).

4. Funktionalität subklonierter ICL in einem E.coli/flefe/*Ashbya*-Shuttlevektor

Zwei durch Restriktionsverdau erhaltene Fragmente und ein PCR-Produkt des isolierten Genbankfragments (Fig. 2) wurden in das von Steiner und Phillipsen (1994, Mol. Gen. Genet. 242: 263–271) konstruierte Plasmid (pAG 100 (Fig. 3) kloniert. Bei den Fragmenten handelte es sich um ein 2,9 kb Sph I-Fragment (pAG 100 icl4) und um ein 2,2 kb Bgl I/Eco RV-Fragment (pAG 100 icl6). Beide Fragmente enthielten die Ser-tRNA. Deshalb wurde zusätzlich eine PCR-Amplifikation des putativen Gens mit daran fusionierten Bam HI-Schnittstellen (pAG 100 icl8) durchgeführt. Alle drei DNAs wurden in die Bam HI site des Plasmids pAG 100 kloniert. Mit den erhaltenen Plasmiden wurde die Hefemutante *Saccharomyces cerevisiae* ICL1d ura3 (fs) transformiert. Alle drei Konstrukte führten zur vollständigen Komplementation der ICL1-Disruption d. h. trugen funktionelle Gene.

5. Wirkung der ICL tragenden Plasmide auf die Riboflavinbildung von *Ashbya gossypii*

Die Transformation von *Ashbya gossypii* (Methode: Wright und Philippse, 1991) Gene 109: 99–105) mit den oben erklärten Plasmiden führte zu signifikanten Erhöhungen der Riboflavinbildung. Kultiviert wurde in 500 ml Schüttelkolben mit zwei Schikanen, das 50 ml Medium aus 10 g/l Sojaöl, 10 g/l Hefeextrakt und 200 µg/ml Geneticin enthielt. Der Kontrollstamm A.gossypii pAG 100, der ein Plasmid ohne Insert enthielt, produzierte in zwei Tagen $18,7 \pm 0,1$ mg/l Riboflavin. Die Stämme A. gossypii pAG 100.4 und A. gossypii pAG 100.6 produzierten $31,2 \pm 6,1$ mg/l bzw. $31,0 \pm 2,0$ mg/l Riboflavin (Fig. 4). Eine signifikante Änderung der spezifischen Aktivität der Isocitratlyase war aufgrund der starken Streuung nicht messbar. Der Stamm A. gossypii pAG 100.8 produzierte in einem Medium, das noch durch 3 g/l Glycin supplementiert wurde, innerhalb von drei Tagen $65 \pm 5,6$ mg/l Riboflavin. Der Kontrollstamm A. gossypii pAG 100 bildete dagegen im direkten Vergleich nur $29,9 \pm 1,8$ mg/l Riboflavin (Fig. 5). Weder in der spezifischen Aktivität der Isocitratlyase noch im Myzeltrockengewicht waren signifikante Unterschiede messbar.

45

50

55

60

65

Tabelle 1

CGAAAGGCC	AAATACCGA	AACGGCACAG	GCGCAGCTCT	AATAGCCGTT	-501	
CCACGATAAC	TTTGGACAGT	TATGGCACTA	TGGCGAGTG	GTAAAGGCGA	-451	5
<u>Ser-tRNA</u>						
AGACTTGAAA	TCTGTTGGC	TCTGCCCGCG	CTGGTTCAAA	TCCTGCTGGT	-401	10
<u>GTCGTTATTT</u>					-351	
CGCCCTTTG	CCCGCTGATT	CATCGCCCGC	CAGCAACACC	GGTTGAGCCG	-301	15
ATCAGCGCAA	GAACCGCGAA	AGTCACGTAT	GGGCCCCTAAG	AGTTGAGCTC	-251	
TCCCOCTCGG	CTCCTTCGG	GCGCGGAAAAA	GCCTGCGTCA	CCCCATTAAG	-201	
TCCGAAACCG	CGTTCAAGTG	TACTTGGTCC	GGGCCAATGT	GGTTGCCTCA	-151	20
TCCGAGTCAC	CGATAACGCAG	GTGCGCCCGT	CGAGTCACCA	TTAGGAGTAG	-101	
AGCATCTGAT	TATATATAGG	CCTAGTTACA	GCGGTAAACAT	AGACTGATAG	-51	25
CTCCAGCTCC	AGCACTAGCT	TGTAGGACAT	CTGCGCGACA	CCCAGTGAAC	-1	
ATG TCC CCT TCC	GTC AGA GAC	GCC CGC AAC	GAC CTT GCC	AGC CTG	45	
Met Ser Pro Ser	Val Arg Asp	Ala Arg Asn	Asp Leu Ala	Ser Leu		30
5	10	15				
CAA CAG CAG GCA	GCC GGC GAA	GCC GAG GAT	ATT AGG AGA	TGG TGG	90	
Gln Gln Gln Ala	Ala Ala Glu Ala	Glu Asp Ile	Arg Arg Trp	Trp Trp		35
16	20	25	30			
AGC CAG CCA CGG	TGG GCG GGC ACC	AAG CGC GTG TAC	ACG GCC GAG	135		
Ser Gln Pro Arg	Trp Ala Gly Thr	Lys Arg Val Tyr	Thr Ala Glu			
35	40	45				
GAC ATC GTC AAG	CGC CGC GGC ACG	TTC CCT GTC GTC	GAA TAC CCA	180	40	
Asp Ile Val Lys	Arg Arg Gly Thr	Phe Pro Val Val	Glu Tyr Pro			
46	50	55	60			
TCT TCC GTA ATG	GCG GAC AAG CTC	GTG GAG ACA TTG	GCG CGG CAC	225	45	
Ser Ser Val Met	Ala Asp Lys Leu	Val Glu Thr Leu	Ala Arg His			
61	65	70	75			
TCG CGC AAC GGC	ACG GTT TCA CAG	ACG TTC GGA GTG	CTC GAC CCA	270	50	
Ser Arg Asn Gly	Thr Val Ser Gln	Thr Phe Gly Val	Leu Asp Pro			
76	80	85	90			
GTG CAA ATG ACG	CAA ATG GTG AAG	TAT CTG GAC ACG ATT	TAC GTG	315		
Val Gln Met Thr	Gln Met Val Lys	Tyr Leu Asp Thr Ile	Tyr Val			
91	95	100	105			
TCT GGC TGG CAA	TGC AGC GCC ACG	GCT TCG ACC TCG	AAC AAC GAG CCT	360		
Ser Gly Trp Gln	Cys Ser Ala Thr	Ala 115	Asn Glu Pro			
106	110		120			

DE 195 45 468 A1

	GGG	CCC	GAT	CTC	GCG	GAC	TAT	CCG	ATG	GAC	ACC	GTG	CCA	AAC	AAG	405
	Gly	Pro	Asp	Leu	Ala	Asp	Tyr	Pro	Met	Asp	Thr	Val	Pro	Asn	Lys	
121				125					130						135	
5	GTC	GAG	CAC	CTG	TTC	ATG	GCG	CAG	CTG	TTC	CAC	GAC	CGG	AAA	CAG	450
	Val	Glu	His	Leu	Phe	Met	Ala	Gln	Leu	Phe	His	Asp	Arg	Lys	Gln	
136				140					145						150	
10	CGC	GAG	GCC	CGC	CTG	TCG	TGC	ACT	ACC	CAG	CGC	GAG	CTC	GAC	CAA	495
	Arg	Glu	Ala	Arg	Leu	Ser	Cys	Thr	Thr	Gln	Arg	Glu	Leu	Asp	Gln	
151				155					160						165	
15	TTG	GGG	CCT	GAG	ATT	GAC	TAC	TTG	AGG	CCG	ATT	GTC	GCT	GAC	GCA	540
	Leu	Gly	Pro	Glu	Ile	Asp	Tyr	Leu	Arg	Pro	Ile	Val	Ala	Asp	Ala	
166				170					175						180	
20	GAC	ACC	GGC	CAC	GGC	GGG	CTA	ACA	GCC	GTC	TTT	AAA	CTC	ACG	AAG	585
	Asp	Thr	Gly	His	Gly	Gly	Leu	Thr	Ala	Val	Phe	Lys	Leu	Thr	Lys	
181				185					190						195	
25	ATG	TTC	ATC	GAG	CGC	GGT	GCA	GCC	GGT	ATC	CAC	ATG	GAG	GAC	CAG	630
	Met	Phe	Ile	Glu	Arg	Gly	Ala	Ala	Gly	Ile	His	Met	Glu	Asp	Gln	
196				200					205						210	
30	TCC	TCC	AGC	AAC	AAA	AAG	TGC	GGG	CAC	ATG	GCG	GGC	CGC	TGC	GTG	675
	Ser	Ser	Ser	Asn	Lys	Lys	Cys	Gly	His	Met	Ala	Gly	Arg	Cys	Val	
211				215					220						225	
35	ATC	CCT	GTT	CAG	GAG	CAC	ATT	AGT	CGT	TTA	GTG	ACT	GTG	CGC	ATG	720
	Ile	Pro	Val	Gln	Glu	His	Ile	Ser	Arg	Leu	Val	Thr	Val	Arg	Met	
226				230					235						240	
40	TGT	GCG	GAC	GTG	ATG	CAC	TCG	AAC	CTG	GTG	CTT	GTC	GCG	AGA	ACA	765
	Cys	Ala	Asp	Val	Met	His	Ser	Asn	Leu	Val	Leu	Val	Ala	Arg		
241				245					250						255	
45	GAC	TCG	GAG	GCC	GCC	ACC	TTA	CTT	AGC	TCG	AAC	ATT	GAC	GCG	CGC	810
	Asp	Ser	Glu	Ala	Ala	Thr	Leu	Leu	Ser	Ser	Asn	Ile	Asp	Ala	Arg	
256				260					265						270	
50	GAT	CAT	TAC	TAC	ATT	GTC	GGG	GCC	TCG	AAC	CCT	GAG	GTA	ACT	GTA	855
	Asp	His	Tyr	Tyr	Ile	Val	Gly	Ala	Ser	Asn	Pro	Glu	Val	Thr	Val	
271				275					280						285	
55	CCG	CTG	ATC	GAA	GTG	TTG	GAC	GCC	GCG	CAG	CAG	GCC	GGC	GCC	TCA	900
	Pro	Leu	Ile	Glu	Val	Leu	Asp	Ala	Ala	Gln	Gln	Ala	Gly	Ala	Ser	
286				290					295						300	
60	GGT	GAC	AGA	TTG	GCT	CAG	CTA	GAG	GAG	GAC	TGG	TGC	AAG	AAG	GCC	945
	Gly	Asp	Arg	Leu	Ala	Gln	Leu	Glu	Glu	Asp	Trp	Cys	Lys	Lys	Ala	
301				305					310						315	
65	AAG	TTG	AGG	CTC	TTC	CAC	GAG	GCA	TTT	GCC	GAC	CAG	GTG	AAT	GCC	990
	Lys	Leu	Arg	Leu	Phe	His	Glu	Ala	Phe	Ala	Asp	Gin	Val	Asn	Ala	
316				320					325						330	
70	AGC	CCT	TCG	ATC	AAA	GAC	AAG	GCG	GGC	GTT	ATT	GCC	AAA	TTT	AAC	1035
	Ser	Pro	Ser	Ile	Lys	Asp	Lys	Ala	Gly	Val	Ile	Ala	Lys	Phe	Asn	
331				335					340						345	

DE 195 45 468 A1

TCA	CAG	ATC	GGG	CCA	CAG	ACA	GCG	GCG	TCG	ATC	AGA	GAG	ATG	CGC	1080	
Ser	Gln	Ile	Gly	Pro	Gln	Thr	Gly	Ala	Ser	Ile	Arg	Glu	Met	Arg		
346				350					355					360		
AAA	CTG	GGC	CGC	GAG	CTG	CTC	GGG	CAG	GAC	GTC	TAC	TTC	GAC	TGG	1125	5
Lys	Leu	Gly	Arg	Glut	Leu	Leu	Gly	Gln	Asp	Val	Tyr	Phe	Asp	Trp		
361				365					370					375		
GAC	CTG	CCT	CGC	GCT	AGA	GAG	GCG	TTG	TAC	CGC	TAC	AAG	GGC	GGC	1170	
Asp	Leu	Pro	Arg	Ala	Arg	Glu	Gly	Leu	Tyr	Arg	Tyr	Lys	Gly	Gly		10
376				380					385					390		
ACC	CAG	TGC	GCG	ATC	ATG	CGC	GCA	CGC	GCG	TTC	GCG	CCG	TAC	GCC	1215	
Thr	Gln	Cys	Ala	Ile	Met	Arg	Ala	Arg	Ala	Phe	Ala	Pro	Tyr	Ala		
391				395					400					405		15
GAC	CTG	GTC	TGG	TTC	GAA	TCC	AAC	TTC	CCT	GAC	TTC	CAG	CAG	GCT	1260	
Asp	Leu	Val	Trp	Phe	Glu	Ser	Asn	Phe	Pro	Asp	Phe	Gln	Gin	Ala		
406				410					415					420		20
AAG	GAG	TTT	GCG	CAG	GGC	GTG	CGC	GAG	AAG	TTC	CCC	AAC	AAG	TGG	1305	
Lys	Glu	Phe	Ala	Gln	Gly	Val	Arg	Glu	Lys	Phe	Pro	Asn	Lys	Trp		
421				425					430					435		
ATG	GCC	TAC	AAC	TTG	TCG	CCC	AGC	TTC	AAC	TGG	CCG	AAG	GCC	ATG	1350	25
Met	Ala	Tyr	Asn	Leu	Ser	Pro	Ser	Phe	Asn	Trp	Pro	Lys	Ala	Met		
436				440					445					450		
CCT	CCC	AAG	GAG	CAG	GAG	AAC	TAC	ATC	CAA	CGG	CTG	GGC	GAG	ATC	1395	
Pro	Pro	Lys	Glu	Gln	Glu	Asn	Tyr	Ile	Gln	Arg	Leu	Gly	Glu	Ile		30
451				455					460					465		
GGA	TAT	GTG	TGG	CAG	TTC	ATC	ACG	CTA	GCC	GGC	CTG	CAT	ACC	AAT	1440	
Gly	Tyr	Val	Trp	Gln	Phe	Ile	Thr	Leu	Ala	Gly	Leu	His	Thr	Asn		35
466				470					475					480		
GCC	TTG	GCC	ATC	GAC	AAC	TTC	TCG	CGC	GAA	TTC	ACC	AGG	TTC	GGA	1485	
Ala	Leu	Ala	Ile	Asp	Asn	Phe	Ser	Arg	Glu	Phe	Ser	Arg	Phe	Gly		
481				485					490					495		40
ATG	CGT	GCG	TAT	GCA	CAA	GGC	ATC	CAG	CAG	AGG	GAG	ATG	GAC	GAG	1530	
Met	Arg	Ala	Tyr	Ala	Gln	Gly	Ile	Gln	Gln	Arg	Glu	Met	Asp	Glu		
496				500					505					510		
GGC	GTC	GAT	GTC	CTA	AAA	CAC	CAG	AAG	TGG	GCC	GGC	GCA	GAG	TAT	1575	45
Gly	Val	Asp	Val	Leu	Lys	His	Gln	Lys	Trp	Ala	Gly	Ala	Glu	Tyr		
511				515					520					525		
GTT	GAC	AGC	ATT	CTC	AAG	CTT	GCC	CAG	GCG	GGT	GTG	TCT	TCG	ACA	1620	50
Val	Asp	Ser	Ile	Leu	Lys	Leu	Ala	Gln	Gly	Gly	Val	Ser	Ser	Thr		
526				530					535					540		
GCC	TCG	ATG	GGT	AAG	GGT	GTA	ACC	GAA	GAG	CAG	TTC	GGC	TCC	TCA	1665	
Ala	Ser	Met	Gly	Lys	Gly	Val	Thr	Glu	Glu	Gln	Phe	Gly	Ser	Ser		55
541				545					550					555		
AAC	GGT	GCC	AAA	CTA	TGA	TAT	CAT	CTC	TGA	GTC	ATT	TCT	CTC	GAC	1710	
Asn	Gly	Ala	Lys	Leu												
556				560												60
AAGATCCTCG GCCAGACTTC TGGAATATAT ATAACATCGG GTACCCCGACAT															1760	
CCCTGCCTTC CGCAACGTGC GAAGCAGCTG ATACGTATACT TTTAACCGCACA															1840	65

Patentansprüche

1. Verfahren zur mikrobiellen Herstellung von Riboflavin, bei dem die Isocitratlyase-(ICL-)Aktivität und/oder die ICL-Genexpression eines Riboflavin-produzierenden Mikroorganismus erhöht wird.
- 5 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die endogene ICL-Aktivität des Mikroorganismus erhöht wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß durch Mutation des endogenen ICL-Gens ein Enzym mit höherer ICL-Aktivität erzeugt wird.
- 10 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die ICL-Genexpression durch Erhöhen der ICL-Genkopienzahl erhöht wird.
- 5 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß zur Erhöhung der Genkopienzahl das ICL-Gen in ein Genkonstrukt eingebaut wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das ICL-Gen in ein Genkonstrukt eingebaut wird, das dem ICL-Gen zugeordnete regulatorische Gensequenzen enthält.
- 15 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß ein Riboflavin-produzierender Mikroorganismus mit dem das ICL-Gen enthaltende Genkonstrukt transformiert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß *Ashbya gossypii* mit dem das ICL-Gen enthaltenden Genkonstrukt transformiert wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das ICL-Gen aus einem Mikroorganismus isoliert wird.
- 20 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das ICL-Gen aus *Ashbya gossypii* isoliert wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die ICL-Genexpression durch Verstärkung der Transkriptionssignale erhöht wird.
- 25 12. ICL-Gen mit einer für die in Tabelle 1 angegebene Aminosäuresequenz und deren Allelvariationen kodierenden Nukleotid-Sequenz.
13. ICL-Gen nach Anspruch 12 mit der Nukleotidsequenz von Nucleotid 1 bis 1680 gemäß Tabelle 1 oder einer im wesentlichen gleichwirkenden DNA-Sequenz.
- 30 14. ICL-Gen nach Anspruch 12 oder 13 mit einem vorgeschalteten Promotor der Nukleotidsequenz von Nukleotid -375 bis -1 gemäß Tabelle 1 oder einer im wesentlichen gleichwirkenden DNA-Sequenz.
15. ICL-Gen nach einem der Ansprüche 12 bis 14 mit diesem zugeordneten regulatorischen Gensequenzen.
16. Genstruktur, enthaltend ein ICL-Gen nach einem der Ansprüche 12 bis 15.
17. Vektor, enthaltend ein ICL-Gen nach einem der Ansprüche 12 bis 15 oder eine Genstruktur nach Anspruch 16.
- 35 18. Transformierte Zelle, enthaltend in replizierbarer Form ein ICL-Gen nach einem der Ansprüche 12 bis 15 oder eine Genstruktur nach Anspruch 16.
19. Transformierte Zelle nach Anspruch 18, enthaltend einen Vektor nach Anspruch 17.
20. Transformierte Zelle nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß sie *Ashbya gossypii* ist.
21. Verwendung eines ICL-Gens zur Steigerung der Riboflavinproduktion von Mikroorganismen.
- 40 22. Verwendung nach Anspruch 21, dadurch gekennzeichnet, daß ein mutiertes ICL-Gen, das für ein Enzym mit erhöhter ICL-Aktivität kodiert, verwendet wird.
23. Verwendung nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß der Riboflavin-produzierende Mikroorganismus mit einem Genkonstrukt, das ein ICL-Gen enthält, transformiert wird.
24. Verwendung nach Anspruch 23, dadurch gekennzeichnet, daß das Genkonstrukt zusätzlich regulatorische Gensequenzen trägt.
- 45 25. Verwendung nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß ein mikrobielles ICL-Gen verwendet wird.
26. Verwendung nach Anspruch 25, dadurch gekennzeichnet, daß ein ICL-Gen aus *Ashbya gossypii* verwendet wird.
- 50 27. Verwendung nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, daß als Riboflavin-produzierender Mikroorganismus *Ashbya gossypii* verwendet wird.

Hierzu 5 Seite(n) Zeichnungen

55

60

65

- Leerseite -

Fraktionen des Sau 3A - Verdaus
nach Ultrazentrifugation

Figur 1

Figur 2

Figur 3

Figur 4

Figur 5