

Laboratorium Metod Numerycznych

Temat: Całkowanie numeryczne

Grupa dziekańska: 6

Radosław Tchórzewski

Ćwiczenie wykonano: 17.05.2022

1.Zadane całki obliczone analitycznie przy użyciu wbudowanych metod programu MATLAB:

```
Zadana zostala funkcja o wzorze f(x) = cos(x)

Jej calka obliczona metoda symboliczna posiada wzor: sin(x)

Jej granice wynosza odpowiednio gorna: 1.570796, dolna: 0.523599

A wartosc calki wynosi 0.500000

Zadana zostala funkcja o wzorze f(x) = 1/(x^2 + 1)

Jej calka obliczona metoda symboliczna posiada wzor: atan(x)

Jej granice wynosza odpowiednio gorna: 1.000000, dolna: 0.000000

A wartosc calki wynosi 0.785398

Zadana zostala funkcja o wzorze f(x) = 8/x

Jej calka obliczona metoda symboliczna posiada wzor: 8*log(x)

Jej granice wynosza odpowiednio gorna: -3.000000, dolna: -15.000000

A wartosc calki wynosi -12.875503
```

2. Opis teoretyczny poszczególnych metod:

a) Metoda prostokątów:

Metoda prostokątów korzysta z definicji całki oznaczonej Riemanna. Wartość całki jest interpretowana jako suma pól obszarów pod wykresem krzywej zadanej w danym przedziale całkowania. Metoda ta jest obarczona dużym błędem, jednak błąd ten maleje wraz ze wzrostem ilości przedziałów.

b) Metoda trapezów:

Metoda trapezów oblicza wartość całki za pomocą sumy pól tak jak metoda prostokątów. W tym przypadku stosujemy jednak trapezy o podstawach równych wartości funkcji oraz wysokości równej szerokości przedziału. Trapezy przybliżają wartość funkcji znacznie lepiej niż prostokąty co sprawia, że metoda ta jest dokładniejsza.

c) Metoda Simpsona:

Metoda Simpsona jest najdokładniejszą z badanych metod. Jako przybliżenie stosujemy w niej parabolę. Obliczamy sumy wycinków obszarów pod parabolą. Parabole te przybliżają wykres funkcji z bardzo małym błędem co w praktyce oznacza mniejszą ilość przedziałów przy osiągnięciu tej samej dokładności w porównaniu do pozostałych opisywanych metod.

3.Porównanie dokładności

a) Dla
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos(x) \ dx$$
 Wartość obliczona analitycznie: 0.5

Liczba	M	Metoda prostokątów	
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	0.261799	0.238201%	47.640122
4	0.383778	0.116222%	23.244303
8	0.442605	0.057395%	11.479076
16	0.471481	0.028519%	5.703823
32	0.485785	0.014215%	2.842986
64	0.492904	0.007096%	1.419262
128	0.496455	0.003545%	0.709073
512	0.499114	0.000886%	0.177164
1024	0.499557	0.000443%	0.088573
10000	0.499955	0.000045%	0.009069

Liczba		Metoda trapezów	
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	0.488524	0.011476%	2.295138
4	0.497141	0.002859%	0.571811
8	0.499286	0.000714%	0.142830
16	0.499822	0.000178%	0.035700
32	0.499955	0.000045%	0.008924
64	0.499989	0.000011%	0.002231
128	0.499997	0.00003%	0.000558
512	0.500000	0.000000%	0.000035
1024	0.500000	0.00000%	0.000009
10000	0.500000	0.00000%	0.000000

Liczba	Metoda Simpsona		
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	0.500216	0.000216%	0.043159
4	0.500013	0.000013%	0.002631
8	0.500001	0.00001%	0.000163
16	0.500000	0.00000%	0.000010
32	0.500000	0.00000%	0.000001
64	0.500000	0.000000%	0.000000
128	0.500000	0.000000%	0.000000
512	0.500000	0.00000%	0.000000
1024	0.500000	0.00000%	0.000000
10000	0.500000	0.000000%	0.000000

b) Dla $\int_0^1 \frac{dx}{1+x^2}$ Wartość obliczona analitycznie: 0.785398

Liczba	Metoda prostokątów		
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	0.650000	0.135398%	17.239430
4	0.720294	0.065104%	8.289305
8	0.753497	0.031901%	4.061767
16	0.769610	0.015788%	2.010160
32	0.777545	0.007853%	0.999899
64	0.781482	0.003916%	0.498654
128	0.783442	0.001956%	0.249003
512	0.784910	0.000488%	0.062190
1024	0.785154	0.000244%	0.031090
10000	0.785373	0.000025%	0.003183

Liczba	Metoda trapezów		
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	0.775000	0.010398%	1.323935
4	0.782794	0.002604%	0.331557
8	0.784747	0.000651%	0.082893
16	0.785235	0.000163%	0.020723
32	0.785357	0.000041%	0.005181
64	0.785388	0.000010%	0.001295
128	0.785396	0.00003%	0.000324
512	0.785398	0.00000%	0.000020
1024	0.785398	0.00000%	0.000005
10000	0.785398	0.000000%	0.000000

Liczba	Metoda Simpso		na
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	0.783333	0.002065%	0.262902
4	0.785392	0.00006%	0.000765
8	0.785398	0.000000%	0.000005
16	0.785398	0.000000%	0.000000
32	0.785398	0.000000%	0.000000
64	0.785398	0.000000%	0.000000
128	0.785398	0.000000%	0.000000
512	0.785398	0.000000%	0.000000
1024	0.785398	0.000000%	0.000000
10000	0.785398	0.000000%	0.000000

c) Dla $\int_{-15}^{-3} \frac{8}{x} dx$ Wartość obliczona analitycznie: -12.875503

Liczba	Metoda prostokątów		
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	-21.333333	8.457830%	65.689316
4	-16.666667	3.791163%	29.444778
8	-14.631746	1.756243%	13.640187
16	-13.715251	0.839747%	6.522054
32	-13.285487	0.409984%	3.184216
64	-13.078002	0.202499%	1.572746
128	-12.976128	0.100625%	0.781522
512	-12.900542	0.025039%	0.194471
1024	-12.888013	0.012510%	0.097159
10000	-12.876783	0.001280%	0.009942

Liczba	ı	Metoda trapezów	
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny
2	-14.933333	2.057830%	15.982521
4	-13.466667	0.591163%	4.591381
8	-13.031746	0.156243%	1.213488
16	-12.915251	0.039747%	0.308705
32	-12.885487	0.009984%	0.077542
64	-12.878002	0.002499%	0.019409
128	-12.876128	0.000625%	0.004854
512	-12.875542	0.000039%	0.000303
1024	-12.875513	0.000010%	0.000076
10000	-12.875503	0.00000%	0.000001

Liczba	zba Metod		ba Metoda Simpsona	Metoda Simpsona	
przedziałów	Osiągnięta wartość	Błąd bezwzględny	Błąd względny		
2	-13.511111	0.635608%	4.936567		
4	-12.977778	0.102274%	0.794334		
8	-12.886772	0.011269%	0.087524		
16	-12.876419	0.000915%	0.007110		
32	-12.875566	0.000063%	0.000487		
64	-12.875507	0.000004%	0.000031		
128	-12.875504	0.000000%	0.000002		
512	-12.875503	0.000000%	0.000000		
1024	-12.875503	0.00000%	0.000000		
10000	-12.875503	0.000000%	0.000000		

4.Obliczanie liczby przedziałów przy zadanej dokładności : a) Dla
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\cos(x)\ dx$$
 Wartość obliczona analitycznie: 0.5

Zadana	Metoda prostokątów	
dokładność	Osiągnięta wartość	Ilość przedziałów
0.1	0.499501	908
0.01	0.499950	9070
1	0.495012	91
0.5	0.497507	182
0.25	0.498750	363

Zadana	Metoda trapezów	
dokładność	Osiągnięta wartość	Ilość przedziałów
0.1	0.499543	10
0.01	0.499952	31
1	0.497141	4
0.5	0.498171	5
0.25	0.499067	7

Zadana	Metoda Simpsona	
dokładność	Osiągnięta wartość	Ilość przedziałów
0.1	0.500216	2
0.01	0.500013	4
1	0.500216	2
0.5	0.500216	2
0.25	0.500216	2

b) Dla $\int_0^1 \frac{dx}{1+x^2}$ Wartość obliczona analitycznie: 0.785398

Zadana dokładność	Metoda prostokątów	
	Osiągnięta wartość	Ilość przedziałów
0.1	0.784614	319
0.01	0.785320	3184
1	0.777545	32
0.5	0.781482	64
0.25	0.783442	128

Zadana dokładność	Metoda trapezów	
	Osiągnięta wartość	Ilość przedziałów
0.1	0.784747	8
0.01	0.785326	24
1	0.780769	3
0.5	0.782794	4
0.25	0.783732	5

Zadana dokładność	Metoda Simpsona	
	Osiągnięta wartość	Ilość przedziałów
0.1	0.785392	4
0.01	0.785392	4
1	0.783333	2
0.5	0.783333	2
0.25	0.785392	4

c) Dla $\int_{-15}^{-3} \frac{8}{x} dx$ Wartość obliczona analitycznie: -12.875503

Zadana dokładność	Metoda prostokątów	
	Osiągnięta wartość	Ilość przedziałów
0.1	-12.888378	995
0.01	-12.876791	9943
1	-13.003240	101
0.5	-12.939759	200
0.25	-12.907648	399

Zadana dokładność	Metoda trapezów	
	Osiągnięta wartość	Ilość przedziałów
0.1	-12.887655	29
0.01	-12.876767	90
1	-12.999532	9
0.5	-12.935523	13
0.25	-12.906950	18

Zadana dokładność	Metoda Simpsona	
	Osiągnięta wartość	Ilość przedziałów
0.1	-12.886772	8
0.01	-12.876419	16
1	-12.977778	4
0.5	-12.904903	6
0.25	-12.904903	6

5.Kod napisany w programie MATLAB używany do obliczenia zaprezentowanych wartości :

```
clc
clear
%-----
%ilosc przedzialow
n = 124;
%-----
%-----
%calka liczona dokladnie metoda symboliczna
syms x;
f = [\cos(x), 1/(1+x^2), 8/x];
granice = [pi/2,pi/6;1,0;-3,-15];
for i = 1:3
   intf = int(f(i));
   fprintf('Zadana zostala funkcja o wzorze f(x) = %s\n',f(i));
   fprintf('Jej calka obliczona metoda symboliczna posiada wzor: %s\n',intf);
   fprintf('Jej granice wynosza odpowiednio gorna: %f, dolna:
%f\n',granice(i,1),granice(i,2));
   fprintf('A wartosc calki wynosi %f\n\n',int(f(i),granice(i,2),granice(i,1)));
end
%liczenie calki metoda prostokatow
fprintf('\nMetoda prostokatow:\n');
for j = 1:3
  funkcja = f(j);
  funkcja = matlabFunction(funkcja);
   dx = (granice(j,1)-granice(j,2))/n;
  wartosc = 0;
   for i = 1:n
     wartosc = wartosc + funkcja(granice(j,2)+i*dx);
   wartosc = dx*wartosc;
   dokladnosc = abs((wartosc-
(int(f(j),granice(j,2),granice(j,1))))/(int(f(j),granice(j,2),granice(j,1))))*100;
   bezwgledny = abs(wartosc-(int(f(j),granice(j,2),granice(j,1))));
   fprintf('Wartosc funkcji nr %i wynosi %f\n',j,wartosc);
   fprintf('Blad wzgledny wynosi %f%% a blad bezwgledny wynosi
%f\n\n',dokladnosc,bezwgledny);
%-----
%liczenie calki metoda trapezow
fprintf('\nMetoda trapezow:\n');
for j = 1:3
   funkcja = f(j);
   funkcja = matlabFunction(funkcja);
   dx = (granice(j,1)-granice(j,2))/n;
  wartosc = (funkcja(granice(j,2)) + funkcja(granice(j,1)))/2;
   for i = 1:n-1
     wartosc = wartosc + funkcja(granice(j,2)+i*dx);
   wartosc = dx*wartosc;
```

```
dokladnosc = abs((wartosc-
(int(f(j),granice(j,2),granice(j,1))))/(int(f(j),granice(j,2),granice(j,1))))*100;
   bezwgledny = abs(wartosc-(int(f(j),granice(j,2),granice(j,1))));
   fprintf('Wartosc funkcji nr %i wynosi %f\n',j,wartosc);
   fprintf('Blad wzgledny wynosi %f%% a blad bezwgledny wynosi
%f\n\n',dokladnosc,bezwgledny);
%liczenie calki metoda Simpsona
fprintf('\nMetoda Simpsona:\n');
for j = 1:3
   funkcja = f(j);
   funkcja = matlabFunction(funkcja);
   dx = (granice(j,1)-granice(j,2))/n;
   wartosc = funkcja(granice(j,2)) + funkcja(granice(j,1));
   parzyste = 0;
   nieparzyste = 0;
   for i = 1:n-1
      xi=granice(j,2)+(i*dx);
      if (mod(i,2) == 0)
         parzyste = parzyste + funkcja(xi);
      else
         nieparzyste = nieparzyste + funkcja(xi);
      end
   wartosc = wartosc + 4*nieparzyste + 2*parzyste;
   wartosc = (dx/3)*wartosc;
   dokladnosc = abs((wartosc-
(int(f(j),granice(j,2),granice(j,1))))/(int(f(j),granice(j,2),granice(j,1))))*100;
   bezwgledny = abs(wartosc-(int(f(j),granice(j,2),granice(j,1))));
   fprintf('Wartosc funkcji nr %i wynosi %f\n',j,wartosc);
   fprintf('Blad wzgledny wynosi %f%% a blad bezwgledny wynosi
%f\n\n',dokladnosc,bezwgledny);
end
%liczenie calki metoda prostokatow uzywajac kryterium dokladnosci
fprintf('\nMetoda prostokatow:\n');
for j = 1:3
   dokladnosc = 1;
   wartosc = 0;
   n = 1;
   while dokladnosc > 0.1
   funkcja = f(j);
   funkcja = matlabFunction(funkcja);
   dx = (granice(j,1)-granice(j,2))/n;
   wartosc = 0;
   for i = 1:n
      wartosc = wartosc + funkcja(granice(j,2)+i*dx);
   end
   wartosc = dx*wartosc;
   n = n+1;
   dokladnosc = abs((wartosc-
(int(f(j),granice(j,2),granice(j,1))))/(int(f(j),granice(j,2),granice(j,1))))*100;
   end
```

```
fprintf('Wartosc funkcji nr %i wynosi %f osiagajac zadana dokladnosc w %d
przedzialach\n',j,wartosc,n-1);
end
%liczenie calki metoda trapezow uzywajac kryterium dokladnosci
fprintf('\nMetoda trapezow:\n');
for j = 1:3
   dokladnosc = 1;
   n = 1;
   funkcja = f(j);
   funkcja = matlabFunction(funkcja);
   while dokladnosc > 0.1
   dx = (granice(j,1)-granice(j,2))/n;
   wartosc = (funkcja(granice(j,2)) + funkcja(granice(j,1)))/2;
   for i = 1:n-1
      wartosc = wartosc + funkcja(granice(j,2)+i*dx);
   end
   wartosc = dx*wartosc;
   dokladnosc = abs(abs(int(f(j),granice(j,2),granice(j,1))-
wartosc)/int(f(j),granice(j,2),granice(j,1))*100);
   fprintf('Wartosc funkcji nr %i wynosi %f osiagajac zadana dokladnosc w %d
przedzialach\n',j,wartosc,n-1);
%liczenie calki metoda Simpsona uzywajac kryterium dokladnosci
fprintf('\nMetoda Simpsona:\n');
for j = 1:3
   dokladnosc = 1;
   n = 2;
   funkcja = f(j);
   funkcja = matlabFunction(funkcja);
   while dokladnosc > 0.1
   dx = (granice(j,1)-granice(j,2))/n;
   wartosc = funkcja(granice(j,2)) + funkcja(granice(j,1));
   parzyste = 0;
   nieparzyste = 0;
   for i = 1:n-1
      xi=granice(j,2)+(i*dx);
      if (mod(i,2) == 0)
         parzyste = parzyste + funkcja(xi);
      else
         nieparzyste = nieparzyste + funkcja(xi);
      end
   wartosc = wartosc + 4*nieparzyste + 2*parzyste;
   wartosc = (dx/3)*wartosc;
   n = n+2;
   dokladnosc = abs(abs(int(f(j),granice(j,2),granice(j,1))-
wartosc)/int(f(j),granice(j,2),granice(j,1))*100);
   fprintf('Wartosc funkcji nr %i wynosi %f osiagajac zadana dokladnosc w %d
przedzialach\n',j,wartosc,n-2);
end
```

6.Krzywa łańcuchowa:

Przykładem zastosowania całek w zagadnieniach inżynierskich jest krzywa łańcuchowa. Jest to krzywa płaska, której kształt przyjmuje doskonale nierozciągliwa i nieskończenie wiotka lina o niezerowej, jednostajnie rozłożonej masie, swobodnie zwisająca pomiędzy dwiema różnymi podporami w jednorodnym polu grawitacyjnym.

Krzywa łańcuchowa jest przeskalowanym wykresem funkcji cosinusa hiperbolicznego:

$$y = a * \cosh\left(\frac{x}{a}\right)$$

Krzywa łańcuchowa może być zastosowana przy badaniu wiszących lin (np. lin metalowych bądź przewodów elektrycznych).

Liny wiszące można scharakteryzować pewnymi stałymi:

- a minimalne zawieszenie
- d maksymalne zawieszenie
- 2b rozpiętość
- h zwis (nazywany również strzałką zwisu)
- I długość linii łańcuchowej

Można wyprowadzić wzory opisujące poszczególne parametry:

$$l = \sqrt{d^2 - a^2}$$

$$a = \frac{l^2 - h^2}{2h}$$

Po pewnych przekształceniach możemy wyprowadzić przybliżoną zależność:

$$a \approx \frac{b^2}{2h}$$

Ostatecznie dla dużej wartości a (z czego wynika dla małej wartości h) dobre przybliżenie linii łańcuchowej możemy osiągnąć parabolą:

$$y \approx a + \frac{x^2}{2a}$$

Krzywa łańcuchowa używana jest również przy projektowaniu stropów. W przypadku stropu nazywanego arkadą równanie krzywej przyjmuje postać:

$$y = c * \cosh(\frac{x}{a})$$

7. Wnioski:

W przypadku każdej badanej funkcji możemy zauważyć wzrost dokładności oraz obniżenie błędu względnego jak i również bezwzględnego przy zwiększaniu liczby przedziałów. Analizując osiągnięte wyniki możemy z pewnością potwierdzić, że metoda Simpsona jest najbardziej dokładną oraz efektywną z analizowanych metod. W przypadku analizy obliczeń ze stałą liczbą przedziałów znacznie szybciej osiąga dokładną wartość, natomiast porównując tabele z podpunktu używającego kryterium dokładności widać że metoda ta w przypadku każdej z analizowanych funkcji znacznie szybciej osiąga żądaną dokładność. Możemy również zauważyć, że metoda prostokątów mimo bycia najbardziej podstawową dla niektórych funkcji osiąga zadowalające wyniki w podobnym tempie do metody trapezów, jednak przy analizowaniu kryterium dokładności widzimy już pomiędzy nimi różnice.