Лабораторна робота № 1

Інтерфейс системи Mathcad. Операції введення – виведення даних

Mema: вивчити особливості інтерфейсу користувача системи Mathcad; отримати навички використання операторів присвоєння та виводу даних в числовій, аналітично-символьній та графічній формі.

ХІД РОБОТИ

Завдання 1. Виконати приклади:

$$x = 2$$

 $y = x^2 + 1$
 $x \cdot y = 10$
 $x = 2$
 $y = 5$
 $f(x, y) = x^2 \cdot (\cos(x + y) - \sin(x + y))$
 $f(x, y) = 0.388$
 $f(1,2) = -1.131$
 $x = 1.5$
 $y = 2.2$
 $f(x, y) = -0.716$

Завдання1
x = 2
$y = x^2 + 1$
$x \cdot y = 10$
x=2
y=5
$f(x,y) = x^2 \cdot (\cos(x+y) - \sin(x+y))$
f(x,y) = 0.388
f(1,2) = -1.131 x = 1.5
x = 1.5 $y = 2.2$
g = 2.2 f(x,y) = -0.716
f(x,y) = -0.110

Рисунок 1-Завдання N⁰ 1

Завдання 2.

2.1. Обчислити для $\chi = 2$:

$$\gamma = \chi^2 + 1; \ \chi \cdot \gamma = ?; \ \frac{\chi}{\gamma} = ?; \ \sqrt{\chi \cdot \gamma}; \ \sqrt[3]{\chi} \cdot \gamma^2; \left(\frac{\gamma}{\chi}\right)^3; \ \chi^2 + 2\chi\gamma + \gamma^2; \ \gamma^{\chi};$$

2.2. Вивести значення функцій:

для
$$x = 3$$
, $y = 4$ та $f(x) = \sqrt{x} \cdot \sin(x - y)$ вивести : $f(x) = ?$; $f(2) = ?$; $f(5) = ?$.

2	4	Ma 2	П: 2	77	ДУ «Житомирська політехніка».22.121.08.000 - Лр1			3.000 - Лр1
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	0 б.	Саух.Я.В.				Літ.	Арк.	Аркушів
Пере	евір.	Філіпов.В.О.			Звіт з		1	ZZ
Керів	зник							
Н. кс	нтр.				лабораторної роботи	ΦΙΚΊ	Гρ. ΙΠ	3-19-1[1]
Зав.	каф.						•	

Рисунок 2-Завдання N⁰ 2

Завдання 3. Виконати додавання матриць:

1)
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{pmatrix}$ 2) $A = \begin{pmatrix} 1 & 3 \\ 7 & 2 \\ 8 & 11 \end{pmatrix}$ $A = \begin{pmatrix} 4 & 8 \\ 6 & 1 \\ 0 & 5 \end{pmatrix}$

Завдання 3
1)
$$A \coloneqq \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
 $B \coloneqq \begin{bmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{bmatrix}$ $A + B = \begin{bmatrix} 7 & 7 \\ 7 & 7 \\ 7 & 7 \end{bmatrix}$

Рисунок 3–Завдання $N^0 3$

2)
$$A := \begin{bmatrix} 1 & 3 \\ 7 & 2 \\ 8 & 11 \end{bmatrix}$$
 $B := \begin{bmatrix} 4 & 8 \\ 6 & 1 \\ 0 & 5 \end{bmatrix}$ $A + B = \begin{bmatrix} 5 & 11 \\ 13 & 3 \\ 8 & 16 \end{bmatrix}$

Рисунок 4-Завдання N⁰3

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 4. Помножити матрицю на скаляр.

$$\underline{A} = \begin{pmatrix} 1 & 3 \\ 7 & 2 \\ 8 & 11 \end{pmatrix}$$

$$\underline{B} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Рисунок 5-Завдання N⁰ 4

Завдання 5. Знайти добуток двох матриць.

1)
$$\underline{A} \times \underline{B}$$
, $\underline{A} = \begin{pmatrix} 1 & 3 \\ 7 & 2 \\ 8 & 11 \end{pmatrix}$, $\underline{B} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$;

1)
$$\underline{A} \times \underline{B}$$
, $\underline{A} = \begin{pmatrix} 1 & 3 \\ 7 & 2 \\ 8 & 11 \end{pmatrix}$, $\underline{B} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$;
2) $\underline{C} \times \underline{D}$, $\underline{C} = \begin{pmatrix} 1 & 3 \\ 7 & 2 \\ 8 & 11 \end{pmatrix}$, $\underline{D} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}$.

Рисунок 6-Завдання N⁰ 5

Завдання 6. Транспонувати матриці.

$$\underline{\underline{A}} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}; \qquad \underline{\underline{B}} = \begin{pmatrix} 1 & 0.5 \\ 3.2 & 15 \\ 4 & 0.1 \end{pmatrix};$$

$$\underline{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad \qquad \underline{D} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

		Саух.Я.В.		
		Філіпов.В.О.		
21111	Anic	No domin	Підпис	Пата

Завдання 6 [1 2]		[1.05]	
$A \coloneqq \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$	$A^{\mathrm{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$	$B \coloneqq \begin{bmatrix} 1 & 0.5 \\ 3.2 & 15 \\ 4 & 0.1 \end{bmatrix}$	$B^{\mathrm{T}} = \begin{bmatrix} 1 & 3.2 & 4 \\ 0.5 & 15 & 0.1 \end{bmatrix}$
[1 0 0]	[1 0 0]	[0 0 0]	[0 1 0]
$C \coloneqq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$C^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$D \coloneqq \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$D^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Рисунок 7–3авдання N⁰ 6

Завдання 7. Способи побудови графічних об'єктів.

Виконати приклади побудови графічних об'єктів із теоретичної частини, $\S4.2$, рисунки: 1.3-1.7, 1.9-1.18; навчитися використовувати інструменти форматування графіків (рис. 1.8) та виконувати операції трасування та масштабування, рис. 1.10.

Рисунок 8-Завдання N⁰7

Рисунок 9–Завдання N₂7

Рисунок 10 –Завдання N_{_} 7

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 11–Завдання $N^0 7$

Рисунок 12-Завдання N⁰7

Рисунок 13-Завдання N⁰7

Рисунок 14–3авдання $N_{-}^{0}7$

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 15-Завдання N⁰7

Завдання 8. Побудувати двомірні графіки різними способами в декартових координатах:

1) за допомогою рядів даних:

$$x = (1,2,3,4,5,6,7,8,9,10)^T$$
; $y = (1,3,4,5,7,8,6,9,12,15)^T$, rpa ϕ ik $y = f(x)$;

2) з використанням ранжируваної змінної: i = 1.....35; $x_i = i \cdot 0.45$; $y_i = \cos x_i$;

Рисунок 16-Завдання N⁰8

3) «швидкої побудови графіка функції»:

$$\cos x$$
, tgx , $\ln x$, e^{x} , \sqrt{x} , $\frac{1}{x}$, 2^{x} , x^{2} , x^{3} .

Рисунок 17-Завдання N₀8

		Саух.Я.В.			
		Філіпов.В.О.			
Змн.	Арк.	№ докум.	Підпис	Дата	

Рисунок 18-Завдання N₂8

Рисунок 19-Завдання N₋8

Рисунок 20-Завдання N₂8

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 21-Завдання N₂8

Рисунок 22-Завдання N₀8

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

4) графіки декількох функцій в рамках одного графічного об'єкта (діапазони значень задавати самостійно за допомогою інструмента панелі Маtrіх (оператор діапазону: *т...п*) і дослідити процес змінювання графічних об'єктів) Увага! Для конкретизації, зменшення, кроку розрахунку (збільшення кількості точок діапазону для підвищення точності побудови графічних об'єктів) через кому указати наступну точку, наприклад: X:=1,1.02..15:

для одного аргументу: $\sin x$ та $\cos x$, $\ln x$, $\lg x$ та 0,8x-2,3,; для двох аргументів: $\sin x$ та $\cos y$; x^2 та y^4 ; $\ln x$ та $\lg y$.

Рисунок 23-Завдання N⁰8

Рисунок 24-Завдання N_{_}8

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 25-Завдання N⁰8

<u>Завдання 9.</u> Графічним методом розв'язати рівняння: $\sin x = 0$ на інтервалі [-1,1]; $\cos x = 0$ на інтервалі [-2,1];

Алгоритм графічного методу:

- \circ Побудувати графік функції f(x).
- о На графіку в контекстному меню вибрати команду "Масштаб" (Zoom).
- \circ Вказати область на графіку поблизу кореня ((f(x)=0) , збільшити її та завершити операцію масштабування.
 - На графіку в контекстному меню вибрати команду "Трассировка" (Trace).
 - \circ Виконати операцію трасування в точці перетину графіка та осі x (f(x) = 0).
 - \circ Скопіювати значення x (кнопка "копировать x" вікна "Трассировка X-Y").
- \circ За рамками графіка виконати присвоювання змінній x значення кореня (команда "Вставить").

Рисунок 26–3авдання N_{_}9

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 10.

Побудувати еквіпотенціальні лінії електричного поля, створюваного двома електричними зарядами q1 і q2, використовуючи графік ліній рівня. Вихідні дані та методика розрахунку наведені на рис. 2.1.

Рисунок 27-Завдання N⁰ 10

Завдання 11. Розв'язати систему рівнянь матричним способом (функція *Isolve*).

$$A1 := \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \qquad A0 := \begin{bmatrix} 2.3 & 6.7 & 9.8 \\ 24 & 42 & 1 \\ 6 & 12 & 0 \end{bmatrix} \qquad A2 := \begin{bmatrix} 2.3 & 6.7 & 2.8 & 9.8 \\ 24 & 42 & 7 & 1 \\ 6 & 0 & 8 & 12 \end{bmatrix}$$

$$B1 := \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} \qquad B0 := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad B2 := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x7 := \text{lsolve}(A1, B1) \qquad x6 := \text{lsolve}(A0, B0) \qquad x5 := \text{lsolve}(A2, B2)$$

$$x7 = \begin{bmatrix} 10.833 \\ -9.167 \\ 5.833 \end{bmatrix} \qquad x6 = \begin{bmatrix} -2.713 \\ 1.607 \\ -0.36 \end{bmatrix} \qquad x5 := \begin{bmatrix} 0.156 \\ -0.069 \\ 0.155 \\ 0.068 \end{bmatrix}$$

Рисунок 28-Завдання N⁰ 11

		Саух.Я.В.			
		Філіпов.В.О.			ДУ «Житомирська політехніка
Змн.	Арк.	№ докум.	Підпис	Дата	

Висновки: в результаті виконання завдань лабораторної роботи було вивчено особливості інтерфейсу користувача системи Mathcad; отримано навички використання операторів присвоєння та виводу даних в числовій, аналітично-символьній та графічній формі. Саух.Я.В. ДУ «Житомирська політехніка».22.121.08.000 - Лр1 Філіпов.В.О. 12

№ докум.

Підпис

Дата

ДОДАТКИ

		Саух.Я.В.		
		Філіпов.В.О.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання для самостійного відпрацювання:

1. Для x = 2, y = 5, $f(x, y) = x^2(\cos(x + y) - \sin(x + y))$ виконати символьний вивід даних :

f(x, y); sin(2z) (використати оператор «expand»);

 $(a^2 \cdot \sin(2z) + \frac{1}{a})a^3 \frac{1}{\cos z}$ (використати оператор «simplify»).

$$x = 2 \qquad y = 5 \qquad f(x,y) = x^{2} \left(\cos(x+y) - \sin(x+y)\right)$$

$$f(x,y) = 0.388 \underset{expand}{expand} \rightarrow -(4 \cdot \sin(7)) + 4 \cdot \cos(7) \qquad \sin(2 \cdot z) = 0.7$$

$$\left(a^{2} \cdot \sin(2z) + \frac{1}{a}\right) \cdot a^{3} \cdot \frac{1}{\cos(z)} \xrightarrow{simplify} \xrightarrow{a^{5} \cdot \sin\left(8 \cdot \sqrt{2} \cdot \sin\left(\frac{3 \cdot \pi}{4} + 7\right)\right) + a^{2}}$$

$$\cos\left(4 \cdot \sqrt{2} \cdot \sin\left(\frac{3 \cdot \pi}{4} + 7\right)\right)$$

Рисунок 29–Завдання самостійної $N^0 1$

2. Обчислити за допомогою арифметичних операторів:

$$\begin{array}{l} \sqrt{4}\,;\,\sqrt{2}\,;\,\sqrt{3}\,;\,\sqrt{5}\,;\,\sqrt[3]{8}\,;\,\sqrt[3]{27}\,;\,\sqrt[4]{64}\,;\\ \\ 2^3\,;\,3^2\,;\,2^4\,;\,4^3\,;\,10^{0.2},20^{0.1},50^{0.02}\,;\\ \\ e^2\,,\,e^3\,,\,e^{\ln(4)}\,,\,\ln\,e\,,\,_{\ln 10}\,,\,\,\,\log_2 8\,;\,\log_{1/2} 4\,,\\ \\ \cos\pi\,,\,\sin\pi\,,\,tg\pi\,,\,\cos(2\pi)\,,\,\sin(2\pi)\,,\,\cos\frac{\pi}{2}\,,\,\sin\frac{\pi}{2}\,,\,,\,\sin\frac{\pi}{4}\,,\,\cos\frac{\pi}{6}\,,\,\sin\frac{\pi}{6}\,. \end{array}$$

$\sqrt{4} = 2$ $\sqrt{64} = 2.828$	$\sqrt{2} = 1.414$	$\sqrt{2} = 1.414$	$\sqrt{5} = 2.236$	$\sqrt[3]{8} = 2$	$\sqrt[3]{27} = 3$
A STATE OF THE PARTY OF THE PAR		$4^3 = 16$ $4^3 =$	$64 10^{0.2} = 1.$	585 20	$0^{0.1} = 1.349$
$e^2 = 7.389$		$e^{\ln{(4)}}=4$	$\ln(e) = 1$ lo	g(8,2)=3	$\log\left(4,\frac{1}{2}\right) = -2$
$\cos\left(\pi\right) \to -1$	$\sin(\pi)$ –	$\rightarrow 0$ $\tan(\pi)$	$\rightarrow 0$ $\cos(2 \cdot \pi)$	$) \rightarrow 1$ sin	$n(2 \cdot \pi) \to 0$
$\cos\left(\frac{\pi}{2}\right) \to 0$	$\sin\left(\frac{\pi}{2}\right)$	$\rightarrow 1$ $\sin\left(\frac{1}{2}\right)$	$\left(\frac{\pi}{4}\right) \rightarrow \frac{\sqrt{2}}{2}$ co	$\operatorname{os}\left(\frac{\pi}{6}\right) \to \frac{\sqrt{3}}{2}$	$\sin\left(\frac{\pi}{6}\right) \to \frac{1}{2}$

Рисунок 30–3авдання самостійної $N^0\,2$

3. Виконати розрахунки за допомогою обчислювальних операторів.

Врахувати особливість розрахунку границь, які обчислюються тільки символьно. Обчислити:

		Саух.Я.В.			
		Філіпов.В.О.			ДУ «Житомирська політехніка».22.121.08.000 - Лр1
2.111	1224	No domin	Підпис	Пата	

$$\begin{array}{c} \overset{\smile}{\operatorname{d}} & \sin(k) \to \cos(k) & \frac{\operatorname{d}}{\operatorname{d}k} \cos(k) \to -\sin(k) & \frac{\operatorname{d}}{\operatorname{d}k} \cot(k) \to -\cot(k)^2 - 1 & \frac{\operatorname{d}}{\operatorname{d}k} \tan(k) \to \tan(k)^2 + 1 \\ \frac{\operatorname{d}}{\operatorname{d}k} \ln(k) \to \frac{1}{k} & \frac{\operatorname{d}}{\operatorname{d}k} k^4 \to 4 \cdot k^3 & \frac{\operatorname{d}}{\operatorname{d}k} \to -\frac{1}{k^2} & \frac{\operatorname{d}}{\operatorname{d}k} \sqrt{k} \to \frac{1}{2 \cdot \sqrt{k}} & \frac{\operatorname{d}}{\operatorname{d}k} e^k \to e^k & \frac{\operatorname{d}}{\operatorname{d}k} a^k \to \ln(a) \cdot a^k \\ \frac{\operatorname{d}}{\operatorname{d}k} \to 0 & \frac{\operatorname{d}^2}{\operatorname{d}k^2} \sin(k) \to -\sin(k) & \frac{\operatorname{d}^2}{\operatorname{d}k^2} \cos(k) \to -\cos(k) & \frac{\operatorname{d}^2}{\operatorname{d}k^2} \ln(k) \to \frac{1}{k^2} & \int 1 \operatorname{d}k \to k & \int 2 \operatorname{d}k \to 2 \cdot k \\ \int 2 \cdot k \operatorname{d}k \to k^2 & \int (2 \cdot k = 4) \operatorname{d}k \to \int 2 \cdot k = 4 \operatorname{d}k & \int \frac{1}{k} \operatorname{d}k \to \ln(k) & \int \frac{1}{2 \cdot k + 3} \operatorname{d}k \to \frac{\ln(2 \cdot k + 3)}{2} \\ \int \frac{1}{a \cdot k + b} \operatorname{d}k \to & \frac{\ln(a \cdot k + b)}{a} & \int \frac{1}{k^2 - a^2} \operatorname{d}k \to \frac{-\ln(k + a) + \ln(k - a)}{2 \cdot a} & \int \frac{1}{k^2 - 4} \operatorname{d}k \to \frac{-\ln(k + 2) + \ln(k - 2)}{4} \\ \int \frac{1}{k^2 + 4^2} \operatorname{d}k \to & \frac{a^2}{a^2} & -k & \int \frac{1}{a^2 - k^2} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{\sqrt{1 + k}} \operatorname{d}k \to \sqrt{2 \cdot \pi - 4} \\ \int \frac{k}{\sqrt{k^2 + a^2}} \operatorname{d}k \to \frac{a^2}{\sqrt{k^2 + a^2} - k} & \int \frac{1}{a^2 - k^2} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{\sqrt{1 + k}} \operatorname{d}k \to \sqrt{2 \cdot \pi - 4} \\ \int \frac{e^2}{\sqrt{k^2 + a^2}} \operatorname{d}k \to 2 \cdot \sqrt{3 - 2} & \int \frac{(k - (k - 2)^2)}{\sqrt{k^2 + a^2}} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{\sqrt{1 + k}} \operatorname{d}k \to \sqrt{2 \cdot \pi - 4} \\ \int \frac{1}{k \cdot \sqrt{1 + \ln(k)}} \operatorname{d}k \to 2 \cdot \sqrt{3 - 2} & \int \frac{(k - (k - 2)^2)}{\sqrt{2}} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{\sqrt{1 + k}} \operatorname{d}k \to \sqrt{2 \cdot \pi - 4} \\ \int \frac{1}{k \cdot \sqrt{1 + \ln(k)}} \operatorname{d}k \to 2 \cdot \sqrt{3 - 2} & \int \frac{(k - (k - 2)^2)}{\sqrt{2}} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{\sqrt{1 + k}} \operatorname{d}k \to \sqrt{2 \cdot \pi - 4} \\ \int \frac{1}{k \cdot \sqrt{1 + \ln(k)}} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{\sqrt{1 + k}} \operatorname{d}k \to \frac{\pi}{2} & \int \frac{\sin(k)}{$$

Рисунок 31-Завдання самостійної N⁰ 3

4. Обчислити детермінанти матриць.

1)
$$A := \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 $B := \begin{bmatrix} 2 & 3 & 5 \\ 7 & 2 & 4 \\ 8 & 11 & 6 \end{bmatrix}$ $C := \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$ $D := \begin{bmatrix} 3 & 2 & 4 \\ 2 & 5 & 3 \\ 7 & 2 & 2 \end{bmatrix}$ $|A| = 0$ $|B| = 211$ $|C| = -1$ $|D| = -78$

Рисунок 32–3авдання самостійної N_{_} 4

5. Виконати обчислення обернених матриць A попереднього завдання.

Рисунок 33-Завдання самостійної N⁰ 5

6. Розв'язати системи лінійних рівнянь.

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

$$A1 \coloneqq \begin{bmatrix} 3 & 2 \\ 4 & 6 \end{bmatrix} \qquad B1 \coloneqq \begin{bmatrix} 7 \\ 9 \end{bmatrix} \qquad x \coloneqq \text{Isolve} (A1, B1) \qquad x = \begin{bmatrix} 2.4 \\ -0.1 \end{bmatrix}$$

$$A2 \coloneqq \begin{bmatrix} 3 & 2 & 4 \\ 2 & 5 & 3 \\ 7 & 2 & 2 \end{bmatrix} \qquad B2 \coloneqq \begin{bmatrix} 5 \\ 17 \\ 11 \end{bmatrix} \qquad x2 \coloneqq \text{Isolve} (A2, B2) \qquad x2 = \begin{bmatrix} 0.846 \\ 3.846 \\ -1.308 \end{bmatrix}$$

$$A3 \coloneqq \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \qquad B3 \coloneqq \begin{bmatrix} 6 \\ 1 \\ 0 \end{bmatrix} \qquad x3 \coloneqq \text{Isolve} (A3, B3) \qquad x3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

$$A4 \coloneqq \begin{bmatrix} 0 & 7 & 1 \\ 3 & 6 & 3 \\ -3 & 8 & -1 \end{bmatrix} \qquad B4 \coloneqq \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \qquad x4 \coloneqq \boxed{\text{Isolve}} (A4, B4) \qquad x4 = ? \qquad \text{Po3B'93KiB HeMac}$$

$$A5 \coloneqq \begin{bmatrix} 6 & 2 & 8 \\ 1 & 3 & 4 \\ 5 & 6 & 2 \end{bmatrix} \qquad B5 \coloneqq \begin{bmatrix} 14 \\ 5 \\ 7 \end{bmatrix} \qquad x5 \coloneqq \boxed{\text{Isolve}} (A5, B5) \qquad x5 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Рисунок 34-Завдання самостійної N⁰ 6

- 7. Побудувати двомірні графіки різними способами в декартових координатах:
- 1) за допомогою рядів даних:

$$x = (1,2,3,4,5,6,7,8,9,10)^T$$
; $y = (3,8,5,11,4,18,9,22,25)^T$, rpa ϕ ik $y = f(x)$;

- 2) з використанням ранжируваної змінної: i = 1.....26; $x_i = i \cdot 0,25$; $y_i = \sin x_i$;
- 3) «швидкої побудови графіка функції»:

$$tgx$$
, $ctgx$, $\ln x$, e^x , \sqrt{x} , $\sqrt[4]{x}$, $\sqrt[3]{x}$, $\frac{1}{x}$, $\lg x$, 2^x , 4^x , $2x+3$, x^2 , x^3 , x^4 , x^5 .

4) графіки декількох функцій в рамках одного графічного об'єкта:

одного аргументу: $\sin x$ та $\cos x$, $\ln x$, $\lg x$ та 0.7x-2;

двох аргументів: $\sin x$ та $\cos y$; x^2 та y^4 ; $\ln x$ та $\lg y$.

Рисунок 35–Завдання самостійної N⁰ 7

		Саух.Я.В.			
		Філіпов.В.О.			
Змн.	Арк.	№ докум.	Підпис	Дата	

Рисунок 36–Завдання самостійної $N^0 7$

Рисунок 37–Завдання самостійної N⁰7

Рисунок 38–3авдання самостійної $N^0\,7$

Рисунок 39–Завдання самостійної $N^0 7$

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 40–Завдання самостійної $N^0\,7$

Рисунок 41–Завдання самостійної N⁰ 7

Рисунок 42–Завдання самостійної $N_{-}^{0}7$

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 43–3авдання самостійної N_{-}^{0} 7

Рисунок 44–Завдання самостійної $N_{-}^{0}7$

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 45–Завдання самостійної N⁰ 7

8. Побудувати тримірні графіки різних типів:

1)
$$Z(x, y) = x^2 + y^2$$
;

2)
$$F(x,y) = \sin x \cos y$$
, для $-1 \le x \le 2$; $-1 \le y \le 2$.

3)
$$M(x,y)=\sin\frac{m\pi x}{a}\sin\frac{n\pi y}{b}$$
, для $a=b=\pi$

$$(m=2, n=1), m=2, n=2), (m=3, n=2), (m=3, n=3).$$

4)
$$K(x, y) = x \cdot \sin 2y + y \cos 3x$$
, $(x, y) = [-\pi, \pi]$;

5)
$$S(x,y) = \sqrt{x^2 + y^2}$$
, $(x,y) = [-\pi,\pi]$

Рисунок 46–3авдання самостійної N⁰ 8

		Саух.Я.В.		
		Філіпов.В.О.	·	
21111	Anic	No domin	Підпис	Пата

Рисунок 47–Завдання самостійної N⁰ 8

Рисунок 48-Завдання самостійної N⁰8

Рисунок 49–Завдання самостійної N⁰8

		Саух.Я.В.			
		Філіпов.В.О.			ДУ «Житомирська політехн
Змн.	Арк.	№ докум.	Підпис	Дата	

9. Знайти екстремуми функцій (точки min та max) графічним способом.

$$y(x) = 2x^3 - 16x + 5$$
 для $x \in [-4;3];$ $y(x) = x^3 - 3x^2$ для $x \in [-2;3];$ $y(x) = x + e^x$ для $x \in [-1;2].$

Рисунок 50-Завдання самостійної N⁰ 9

Рисунок 51-Завдання самостійної N⁰ 9

		Саух.Я.В.		
		Філіпов.В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата