

Bit manipulation

" Data		Binary	Madwine undustand	<u>-</u>
56 —	7	010110		State HVI -> D
56.25				101 → ⑥
'A'	56 <u></u>			
"ABC"	→ A(B) € - > 6	_/	frog lang	
Pic A	-) Pixel → (R, G, B 260, (80,1)	60	Compiler	
PDF PFI			([0 10 1110) CPU con	
poc	 7		execute	2
Video D				
Andro Mm/m				

Computer Science

Binary System Numbers "Deumal No System

10 unique digits = [146] < Magnitude 011,2,3,4 2×9 -> is it valid base 5 No?

Ly invalid

$$= 2^{3} \cdot 1 + 2 \cdot 0 + 2^{1} + 2 \cdot 1$$

$$= 2.1 + 2.0 + 2.17 = 2.1 + 0 + 2 + 1$$

Examples

Binay

$$| 101 = 7 = 5$$
 $| 100 = 7 = 5$
 $| 100 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 111 = 7 = 5$
 $| 11$

Decimal to Binary Conversion Decimal Made 2 3 -7 100 00001 -7 [O] 7 [10 6 - 000 9 10 -> 1010 U 7 101 -> 1100 64 32 16 8 12 -71101 32+16+8=56 13

Rem

6432 168 72 1

1001110 -

64+8+4+2 $\rightarrow D$

39,

39 = 2 × 19

$$\frac{2}{2} = \frac{2}{16}$$

$$\frac{2}{16}$$

$$78\%2 = 0$$
 While (no ?)

 $78\%2 = 739$

while (no ?)

rem = print (

while (no 70) of

$$rem = no \% 2$$

$$print (rem);$$

$$no = no/2;$$

Algorithm
$$ho = 78$$

$$while (no > 0) d$$

$$rem = no %2;$$

$$print (rem);$$

Reverse

power =
$$10^{\circ} = 1$$
, ans = 0

last-digit = $10^{\circ} = 1$, ans = 0

last-digit = $10^{\circ} = 1$, ans = 0

ans = $10^{\circ} = 1$, ans = 0

last-digit = $10^{\circ} = 1$, ans = 0

ans = $10^{\circ} = 1$, ans = 0

last-digit = $10^{\circ} = 1$, ans = 0

ans = $10^{\circ} = 1$, ans = 0

last-digit = $10^{\circ} = 1$, ans = 0

ans = $10^{\circ} = 1$, ans = 0

last-digit = $10^{\circ} = 1$, ans = 0

ans = $10^{\circ} = 1$, ans = 0

ans = $10^{\circ} = 1$, ans = 0

$$rem = \frac{1}{2}$$

$$s = 0 + \frac{1}{2} \times 1 + 0$$

$$+ \frac{1}{2} \times 1000$$

$$= 0 + \frac{1}{2} + \frac{1}{2} \times 1000$$

$$= 0 + \frac{1}{2} + \frac{1}{2} \times 1000$$

$$= \frac{1101}{8421}$$

$$= 8441$$

Storage of the int int 32 bits = (5) 23 -1 5209 -ve No 7 ragnihale. 31 bit -> Signedint -, front Sign bit Jule 13 a bit

Thow negative nois are stored. Ophonal Signed int regative is handled Storage -> But different. 25 Compliment form

to make subtraction easy & reduce hardware

Cruit
$$\rightarrow$$
 (Addur) Subtract

 $6-8 \Rightarrow -2$

Ly Ginn $1 \rightarrow$ (Indirect)

 $5+(-8)$
 $5+(-5)$
 $5+(-5)$
 5

Flip all bits of No (positive)

Compliment

(ompliment

 32 bit
 33 bit
 33 bit
 33 bit
 34 bit

Addition

$$5-5=0$$

$$5+(-5)$$

$$1+1=0$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+(-5)$$

$$5+($$

Usecase Suppose of no is even / odd faster nocho no% 2 = = 0 lobo $(1 + (n_0) = -1)$

omewise

Bitwise OR 62 0 \mathcal{O} 0 9 =) 100 ħ OR 10 Algoritms Travelling Salesman 00 00

 $\frac{a8b8c}{any} = \frac{b8c8a}{any}$

0|b|c = a|c|b = c|a|b - - - -

 $\alpha \wedge b \wedge c = \alpha \wedge c \wedge b = c \wedge \alpha \wedge b = c \wedge b \wedge c$

016 =1(2)

$$6 \wedge 6 = 0$$
 $6 \wedge 2 \wedge 6 \wedge 2 = 0$
 $= 6 \wedge 6 \wedge 1 \wedge 2$

$$\frac{6 \times 6 \times 2 \times 2}{0 \times 0} = 6$$

2N+1 numbers where Unique No every no is occ twice except one unique no find he unique No.

freg

$$\frac{1}{5} \frac{1}{5} \frac{1}$$

- 5161718

0101

Way -L

Next class + Problems true Bitwise

$$\begin{array}{c}
\hline
0 \\
0 \\
0
\end{array} = 0$$

$$\sim 1 \rightarrow 0$$