НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

з лабораторної роботи № 5 із дисципліни «Криптографічні методи захисту інформації» на тему

Криптографічні алгоритми Діффі-Хеллмана та Ель-Гамаля

Виконав: Керівник:

студент групи КМ-ХХ ст. викладач Бай Ю. П.

Іваненко І. І.

3MICT

Постановка завдань	2
Математичне підгрунтя і опис алгоритму Діффі-Хеллмана	
Математичне підґрунтя і опис алгоритму Ель-Гамаля	3
Контрольний приклад до алгоритма Діффі-Хеллмана	
Завдання 1. Обмін ключами за алгоритмом Діффі-Хеллмана	4
Контрольні приклади до алгоритма Ель-Гамаля	4
Завдання 2. Шифрування і розшифрування за алгоритмом Ель-Гамаля	5
Список літератури	7
Лодаток 1	8

Мета роботи: розробити асиметричні криптосистеми на основі алгоритмів Діффі-Хеллмана та Ель-Гамаля.

Постановка завдань

- 1. Скласти програму, яка дозволяє здійснити обмін ключами за алгоритмом Діффі-Хеллмана. Перевірити роботу програми на контрольному прикладі. В якості ВІДПРАВНИКА здійснити обмін ключами з ОДЕРЖУВАЧЕМ, згенерувати спільний ключ. Навести скріншоти детального виконання алгоритму для контрольного прикладу та власного завдання.
 - 1.а. Контрольний приклад (Протокол Діффі-Хеллмана)

$$g = 5$$
, $p = 23$, $a = 6$, $b = 15$,
public key $\{g, p\} = \{5, 23\}$
Alice's private key $\{a\} = \{6\}$
Bob's private key $\{b\} = \{15\}$
 $K = 2$

- 1.6. Виконати дії ВІДПРАВНИКА та ОДЕРЖУВАЧА, згенерувати спільний ключ K, заповнити Tаблицю I. Результати також записати в гуглтаблицю Завдання ЛР 5.
- 2. Скласти програму, яка дозволяє виконувати шифрування та розшифрування за алгоритмом Ель-Гамаля. Перевірити роботу програми на контрольних прикладах. Навести скріншоти детального виконання алгоритму для контрольних прикладів (a, δ) та власного завдання (b).
 - 2.а. Контрольний приклад 1 (Схема Ель-Гамаля)
 - 2.б. Контрольний приклад 2 (ElGamal encryption)
- 2.в. Виконати дії ВІДПРАВНИКА: використовуючи заданий відкритий ключ, зашифрувати День свого народження, записаний у форматі "ddmm", або інше число в діапазоні від 101 до 3112. Результати шифрування для двох різних випадкових чисел k_1 і k_2 записати в Завдання ЛР 5. Розшифрувати одержані криптотексти. Заповнити Taблиці 2, 3.

Увага! Як визначити M? 01 січня $\to M = 101 \dots 4$ липня $\to M = 407 \dots 31$ грудня $\to M = 3112$.

Математичне підґрунтя і опис алгоритму Діффі-Хеллмана
•••••
Математичне підґрунтя і опис алгоритму Ель-Гамаля

Контрольний приклад до алгоритма Діффі-Хеллмана

Протокол Діффі-Хеллмана

Виконати приклад. Додати скріншот, що містить усі проміжні результати.

Завдання 1. Обмін ключами за алгоритмом Діффі-Хеллмана

Таблиця 1.

$f(x) = g^x \bmod p$

	Alice (Відправник)		Bob (Одержувач)	
1	Обирає і публікує прості числа g, p (частини відкритого ключа)	{3,17}		
2	Обирає секретний ключ <i>а</i>	4	Обирає секретний ключ b	6
3	Обчислює і публікує $A = g^a \mod p$	A=13	Обчислює і публікує $B = g^b \mod p$	B=15
4	Обчислює $K=B^a \mod p$	16	Обчислює $K=A^b \mod p$	16

Контрольні приклади до алгоритма Ель-Гамаля

2.*a*.

2.б.

Завдання 2. Шифрування і розшифрування за алгоритмом Ель-Гамаля

Таблиця 2 (Шифрування 1).

	Alice (ВІДПРАВНИК)			Воь (ОДЕРЖУВАЧ)	
			1	Обирає прості числа g, p (g - генератор, p - модуль)	g = 2 $p = 2357$
			2	Обирає секретний ключ х	1751
			3	Обчислює $y=g^x \mod p$	y = 1185
			4	Публікує відкритий ключ $\{p, g, y\}$	2357, 2, 1751
5	Одержує відкритий ключ $\{p, g, y\}$	2357, 2, 1751			
6	Обирає текст для шифрування M	2035			
7	Обирає випадкове ціле число k : k	1520			
8	Обчислює $a = g^k \mod p$ та $b = (y^k \cdot M) \mod p$	a = 1430 $b = 697$			
9	Надсилає одержувачу шифротекст $(a; b)$.	1430, 697			
			10	Використовуючи секретний ключ x , розшифровує отриманий шифротекст: $M' = (a^{(p-1-x)} \cdot b) \mod p$	M' = 2035

Таблиця 3 (Шифрування 2).

	Alice (ВІДПРАВНИК)			Вов (ОДЕРЖУВАЧ)	
			1	Обирає прості числа g, p (g - генератор, р - модуль)	g = 2 $p = 2357$
			2	Обирає секретний ключ х	1751
			3	Обчислює $y=g^x \mod p$	y = 1185
			4	Публікує відкритий ключ $\{p, g, y\}$	2357, 2, 1751
5	Одержує відкритий ключ $\{p, g, y\}$	2357, 2, 1751			
6	Обирає текст для шифрування M	2035			
7	Обирає випадкове ціле число k : k				
8	Обчислює $a = g^k \mod p$ та $b = (y^k \cdot M) \mod p$				
9	Надсилає одержувачу шифротекст $(a; b)$.				
			10	Використовуючи секретний ключ x , розшифровує отриманий шифротекст: $M' = (a^{(p-1-x)} \cdot b) \mod p$	M' = 2035

Список літератури

- 1. Тарнавський Ю.А. Технології захисту інформації [Електронний ресурс] / Ю. А. Тарнавський. Київ: КПІ ім. Ігоря Сікорського, 2018. 162 с.
- 2. Шнайер Б. Прикладная криптография: Протоколы, алгоритмы, исходные тексты на языке Си / Б. Шнайер. М.: Диалектика, 2003. 610 с.
- 3. Алферов А.П., Зубов А.Ю., Кузьмин А.С., Черемушкин А.В. Основы криптографии. М.: Гелиос АРВ, 2001. 480 с.
- 4. Столлингс В. Криптография и защита сетей: принципы и практика, 2-е изд.: Пер. с англ. М.: «Вильямс», 2001. 672 с.
- 5. Menezes A.J., Van Oorschot P.C., Vanstone S.A. Handbook of Applied Cryptography. CRC Press, Inc., 1997. 795 p.

Додаток 1

Скріншоти виконання обчислень