

Transferts de chaleur

Les Echangeurs Thermiques calculs simplifiés

Pierre Le Cloirec

Ecole Nationale Supérieure de Chimie de Rennes

11 allée de Beaulieu, CS 50837

35708 Rennes cedex 07, France

Tel 33 (0) 2 23 23 80 00

e-mail Pierre.Le-Cloirec@ensc-rennes.fr

Echange à travers une paroi plane (1)

Hypothèses:

- Corps solide homogène
- Corps isotrope
- Une seule direction
- Régime permanent

$$T_1 > T_3 > T_4 > T_2$$

$$\Phi = \mathbf{h}_1 \mathbf{A} (\mathbf{T}_1 - \mathbf{T}_3)$$

$$\Phi = \frac{K}{e} A (T_3 - T_4)$$

$$\Phi = h_2 A (T_4 - T_2)$$

quantité de chaleur échangée par unité de temps (W)

T : température (K)

section droite du solide dans la direction de l'écoulement de la chaleur (m²)

: coefficient de conductivité thermique de la paroi (W m⁻¹ K⁻¹)

: coefficient d'échange par convection W m-2K-1

Echange à travers une paroi plane (2)

$$\frac{\Phi}{h_1 A} = (T_1 - T_3)$$
 $\frac{\Phi e}{KA} = (T_3 - T_4)$ $\frac{\Phi}{h_2 A} = (T_4 - T_2)$

Somme de l'ensemble des termes

$$\frac{\Phi}{A} \left[\frac{1}{h_1} + \frac{e}{K} + \frac{1}{h_2} \right] = (T_1 - T_2)$$

$$\Phi = \frac{1}{\left[\frac{1}{h_1} + \frac{e}{K} + \frac{1}{h_2} \right]} A(T_1 - T_2)$$

$$\Phi = UA\Delta T$$

avec
$$\frac{1}{\mathbf{U}} = \left[\frac{1}{\mathbf{h}_1} + \frac{\mathbf{e}}{\mathbf{K}} + \frac{1}{\mathbf{h}_2} \right]$$

Echange à travers une paroi cylindrique (1)

Convection

$$\Phi = h_1 A_1 (T_1 - T_3)$$

Conduction

$$\Phi = 2\pi LK_{m} \frac{(T_{3} - T_{4})}{Ln\left(\frac{D_{2}}{D_{1}}\right)}$$

Convection

$$\Phi = \mathbf{h}_2 \mathbf{A}_2 (\mathbf{T}_4 - \mathbf{T}_2)$$

avec

$$A_1 = \pi LD_1$$

$$\mathbf{A}_2 = \pi \mathbf{L} \mathbf{D}_2$$

Echange à travers une paroi cylindrique (2)

$$\frac{\Phi}{hA_1} = (T_1 - T_3) \frac{\Phi}{2\pi LK_m} Ln \left(\frac{D_2}{D_1}\right) = (T_3 - T_4) \frac{\Phi}{h_2 A_2} = (T_4 - T_2)$$

$$\Phi = \frac{1}{\frac{1}{h_1 A_1} + \frac{Ln \binom{D_2}{D_1}}{2\pi LK_m} + \frac{1}{h_2 A_2}} (T_1 - T_2)$$

$$\Phi = \frac{\pi LD_{2}}{\pi LD_{2} \left[\frac{1}{h_{1}A_{1}} + \frac{Ln \binom{D_{2}}{D_{1}}}{2\pi LK_{m}} + \frac{1}{h_{2}A_{2}} \right]}$$

Echange à travers une paroi cylindrique (3)

$$\Phi = \mathbf{U}_{\text{ext}} \mathbf{A}_{\text{ext}} (\mathbf{T}_1 - \mathbf{T}_2)$$

$$\frac{1}{\mathbf{U}_{\text{ext}}} = \frac{\mathbf{D}_2}{\mathbf{h}_1 \mathbf{D}_1} + \frac{\mathbf{D}_2 \mathbf{Ln} \left(\frac{\mathbf{D}_2}{\mathbf{D}_1} \right)}{2\mathbf{K}_{\text{m}}} + \frac{1}{\mathbf{h}_2}$$

Echange à travers une paroi cylindrique (4)

Référence la paroi intérieur

$$\Phi = \mathbf{U}_{\text{int}} \mathbf{A}_{\text{int}} (\mathbf{T}_1 - \mathbf{T}_2)$$

$$\frac{1}{\mathbf{U}_{int}} = \frac{1}{\mathbf{h}_1} + \frac{\mathbf{D}_1 \mathbf{L} \mathbf{n} \binom{\mathbf{D}_2}{\mathbf{D}_1}}{2\mathbf{K}_m} + \frac{\mathbf{D}_1}{\mathbf{h}_2 \mathbf{D}_2}$$

Echange à travers une paroi cylindrique (5) Si n tubes plongent dans un bain

$$\Phi = \mathbf{U}_{\mathrm{ext}} \mathbf{A}_{\mathrm{ext}} (\mathbf{T}_1 - \mathbf{T}_2)$$

avec

$$A_{\text{ext}} = n\pi LD_2$$

U_{ext} inchangé

Echangeur tubulaire simple

Exemple d'un échangeur de laboratoire Liebig

Echangeur tubulaire simple Courant Parallèle

Echangeur tubulaire simple Contre-courant

Bilan thermique simplifié (1)

$$Q = Q_{froid} = Q_{chaud}$$

$$Q = m_{froid} C_{p_{froid}} (\Delta T)_{froid} = m_{froid} C_{p_{chaud}} (\Delta T)_{chaud}$$

$$\Phi = \Phi_{\text{froid}} = \Phi_{\text{chaud}}$$

$$\Phi = Q_{mfroid}C_{p_{froid}}(\Delta T)_{froid} = Q_{mchaud}C_{p_{chaud}}(\Delta T)_{chaud}$$

Bilan thermique simplifié (2)

$$\Phi = Q_{mfroid}C_{p_{froid}}(\Delta T)_{froi_d} = Q_{mchaud}C_{p_{chaud}}(\Delta T)_{chaud}$$

$$\mathbf{Q}_{\mathrm{m}} = \mathbf{Q}_{\mathrm{v}} \mathbf{\bar{\rho}} \Big|_{\mathrm{T}}$$

Pour les fluides incompressibles

$$\left. \overline{\rho} \right|_{T} \approx \frac{\rho_{T_1} + \rho_{T_2}}{2}$$

 $\rho_{T_i} \approx cons \ tan \ te$

Pour les fluides compressibles

$$\left. \overline{\rho} \right|_{\mathrm{T}} \approx \frac{\rho_{\mathrm{T}_1} + \rho_{\mathrm{T}_2}}{2}$$

$$\rho_{T_i} = \rho_0 \frac{P_i}{P_0} \frac{T_0}{T_i}$$

Si ΔT faible

Calcul d'un échangeur tubulaire simple (1)

Dans le cas d'une paroi cylindrique :

$$\Phi = \mathbf{U}_{\text{ext}} \mathbf{A}_{\text{ext}} (\mathbf{T}_1 - \mathbf{T}_2)$$

avec

$$\Delta T = T_{chaud} - T_{froid}$$

$$\frac{1}{U_{ext}} = \frac{D_2}{h_1 D_1} + \frac{D_2 Ln \binom{D_2}{D_1}}{2K_m} + \frac{1}{h_2}$$

Dans un échangeur :

AT du fluide froid et chaud sont non-constants

Par exemple à contre courant $\Delta T_2 = (T_1 - T_4)_{\text{entrée}}$ et $\Delta T_1 = (T_2 - T_3)_{\text{sortie}}$

· hi sont fonction des caractéristiques des fluides dépendant de T

Calcul d'un échangeur tubulaire simple (2)

Echangeur tubulaire simple Contre courant

Calcul d'un échangeur tubulaire simple (3)

Dans le cas où les caractéristiques du fluide (C_p , μ , ρ ...) varient peu dans l'intervalle du fluide chaud et du fluide froid :

- Calcul de μ , K... aux températures moyennes arithmétiques $\frac{T_i + T_k}{2}$
- Calcul des hi et de Uext avec ces valeurs
- Calcul de ΔT par la moyenne logarithmique aux deux extrémités

$$\Delta T_{\text{moyen}} = \frac{\Delta T_2 - \Delta T_1}{Ln \left(\frac{\Delta T_2}{\Delta T_1}\right)}$$

avec

$$\Delta T_2 = T_1 - T_4$$

$$\Delta T_1 = T_2 - T_3$$

Si
$$\Delta T_2 \approx \Delta T_1$$

alors

$$\Delta T_{\text{moyen}} \approx \frac{1}{2} (\Delta T_1 + \Delta T_2)$$

Calcul d'un échangeur tubulaire simple (4)

Calcul du flux de chaleur échangé :

$$\Phi = Q_{mfroid}C_{pfroid}(T_4 - T_3) = Q_{mChaud}C_{pchaud}(T_1 - T_2)$$

Calcul de la surface d'échange :

$$\Phi = \mathbf{U}_{\mathrm{ext}} \mathbf{A}_{\mathrm{ext}} \Delta \mathbf{T}_{\mathrm{moyen}}$$

Calcul d'un échangeur tubulaire simple (5)

Dans le cas où les caractéristiques du fluide (C_p , μ , ρ ...) varient dans

l'intervalle de température du fluide chaud et du fluide froid :

On considère que U est constant le long de l'échangeur

$$\Phi = A_{ext} \; \frac{U_2 \Delta T_2 - U_1 \Delta T_1}{Ln \bigg(\frac{U_2 \Delta T_2}{U_1 \Delta T_1}\bigg)}$$

$$\Delta T_2 = T_1 - T_4 \qquad \text{et} \qquad \Delta T_1 = T_2 - T_3$$

Cas d'un échangeur à contre-courant

avec

$$\left[\frac{1}{U_{ext}}\right]_{1} = \left[\frac{D_{2}}{h_{1}D_{1}} + \frac{D_{2}Ln\binom{D_{2}}{D_{1}}}{2K_{m}} + \frac{1}{h_{2}}\right]_{1(T_{2} \text{ et } T_{3})} \left[\frac{1}{U_{ext}}\right]_{2} = \left[\frac{D_{2}}{h_{1}D_{1}} + \frac{D_{2}Ln\binom{D_{2}}{D_{1}}}{2K_{m}} + \frac{1}{h_{2}}\right]_{2(T_{1} \text{ et } T_{3})}$$