Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 8. 24. kwietnia i później

Zadania 1–2. Plik **z0801.csv** zawiera niezależne obserwacje zmiennej o rozkładzie $N(\mu, \sigma^2)$. (Liczby pochodzą z rozkładu N(2,9), ale nie korzystamy z tego w następujących poniżej zadaniach.)

- 1. Obliczyć wartości \bar{X}, S^2 .
- 2. Zakładamy, że znamy wartość parametru σ : $\sigma^2=9$. Stawiamy hipotezę $H_0: \mu=1.5$. Wyznaczyć wartość dystrybuanty $\Phi(z)$. Powtórzyć to postępowanie dla hipotezy $H_0: \mu=1.75$.
- 3. Nie znamy wartości parametru σ . Stawiamy hipotezę $H_0: \mu = 1.5$. Wyznaczyć wartość dystrybuanty t(49). Powtórzyć to postępowanie dla hipotezy $H_0: \mu = 1.75$.
- 4. Znaleźć estymator największej wiarygodności $\hat{\lambda}$ parametru λ dla obserwacji x_1, \ldots, x_n rozkładu zmiennej $X \sim \text{Poisson}(\lambda)$.
- 5. W pliku z0805.csv znajduje się 50 obserwacji rozkładu Poisson(λ). Znaleźć $\hat{\lambda}$ estymator MLE parametru λ .
- 6. Obserwacje x_1, \ldots, x_n pochodzą z rozkładu $U[\theta d/2, \theta + d/2]$.
 - (a) Znaleźć estymator MLE \hat{d} parametru d przy założeniu, że znamy wartość parametru θ .
 - (b) Nie znamy wartości tych parametrów. Znaleźć ich estymatory $\hat{d}, \hat{\theta}.$
- 7. Niezależne zmienne losowe X_1, \ldots, X_n mają rozkład $N(\mu, \sigma^2)$ każda. Wyznaczyć $E(S^2)$ oraz $V(S^2)$.
- 8. **2p.** Obserwacje x_1, \ldots, x_n pochodzą z rozkładu $N(\mu, \sigma^2)$. Wyznaczyć estymatory parametrów μ, σ . (Dwa estymatory jednocześnie.)
- 9. **2p.** Obserwacje rozkładu B(20, p) znajdują się w pliku **z0809.csv**. Wyznaczyć i obliczyć estymator \hat{p} parametru p. (Przy generowaniu użyto p = 0.4.)

Witold Karczewski