More Bayes

And multilevel binomial logistic regression

Daniel Anderson

Agenda

- More equation practice
- Finishing up our intro to Bayes
 - Specific focus on MCMC
- Implementation with {brms}
- Logistic regression review
- Extending to multilevel logistic regression models with Ime4

Equation practice

The data

library(tidyverse)

librarv(lme4)

Read in the following data

```
d <- read csv(here::here("data", "three-lev.csv"))</pre>
d
  # A tibble: 7,230 x 12
##
     schid
                 sid
                      size lowinc mobility female black hispanic retained
##
     <dbl>
               <dbl> <dbl>
                            <dbl>
                                     <dbl> <dbl> <dbl>
                                                            <dbl>
                                                                    <dbl>
                                      12.5
##
   1 2020 273026452
                     380
                            40.3
                                                0
                     380
                                      12.5
   2 2020 273026452
##
                            40.3
##
   3 2020 273026452
                                      12.5
                     380
                            40.3
##
                                      12.5
   4 2020 273030991
                       380
                            40.3
##
                                      12.5
   5 2020 273030991
                       380
                            40.3
##
                                      12.5
   6 2020 273030991
                       380
                            40.3
##
   7 2020 273030991
                       380
                            40.3
                                      12.5
##
                                      12.5
   8 2020 273030991
                       380
                            40.3
   9 2020 273059461
                     380
                            40.3
                                      12.5
##
  10 2020 273059461
                     380
                            40.3
                                      12.5
  # ... with 7,220 more rows, and 2 more variables: year <dbl>, math <dbl>
```

Fit the following model

$$egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i]}, \sigma^2
ight) \ & lpha_j \sim N\left(\gamma_0^lpha + \gamma_1^lpha(\operatorname{mobility}), \sigma_{lpha_j}^2
ight), ext{for schid j} = 1, \ldots, & J \end{aligned}$$

```
lmer(math ~ mobility + (1|schid), data = d)
```

Fit the following model

```
egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i],k[i]} + eta_{1j[i]}(\operatorname{year}), \sigma^2
ight) \ & \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{female}) \ \mu_{eta_{1j}} \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{array}
ight) 
ight), 	ext{for sid } 	ext{j} = 1, \ldots, 	ext{J} \ & lpha_k \sim N\left(\gamma_0^lpha + \gamma_1^lpha(\operatorname{mobility}), \sigma_{lpha_k}^2\right), 	ext{for schid } 	ext{k} = 1, \ldots, 	ext{K} \end{aligned}
```

Fit the following model

```
egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i],k[i]} + eta_{1j[i]}(\operatorname{year}), \sigma^2
ight) \ & \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{black}) + \gamma_2^lpha(\operatorname{hispanic}) + \gamma_3^lpha(\operatorname{female}) \ \gamma_0^{lpha_j} + \gamma_1^{eta_1}(\operatorname{black}) + \gamma_2^{eta_1}(\operatorname{hispanic}) \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{aligned}
ight) \end{aligned}
ight), 	ext{for sid j} \ & lpha_k \sim N\left(\gamma_0^lpha + \gamma_1^lpha(\operatorname{mobility}), \sigma_{lpha_k}^2\right), 	ext{for schid k} = 1, \ldots, 	ext{K} \end{aligned}
```

Fit the following model

```
egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i],k[i]} + eta_{1j[i],k[i]}(\operatorname{year}),\sigma^2
ight) \ \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_{1k[i]}^lpha(\operatorname{female}) \ \gamma_0^{eta_1} + \gamma_1^{eta_1}(\operatorname{female}) \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{aligned}
ight) 
ight), 	ext{for sid j} = 1, \ldots, 	ext{J} \ \left(egin{aligned} lpha_k \ eta_{1k} \ eta_{1k} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{mobility}) + \gamma_2^lpha(\operatorname{lowinc}) \ \gamma_{1k}^lpha + \gamma_1^lpha_1(\operatorname{mobility}) \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_k}^2 & 
ho_{lpha_keta_{1k}} & 
ho_{lpha_k\gamma_{1k}} \ eta_{eta_{1k}} & 
ho_{eta_{1k}\gamma_{1k}} \ eta_{\gamma_{1k}} & 
ho_{eta_{1k}} \end{array}
ight), 	ext{for schid I} \ \left(egin{aligned} lpha_{\gamma_{1k}} & 
ho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \ eta_{\gamma_{1k}} & 
ho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \end{array}
ight) 
ight), 	ext{for schid I} \ \left(egin{aligned} lpha_{\gamma_{1k}} & 
ho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \ eta_{\gamma_{1k}} & \sigma_{\gamma_{1k}}^2 \end{array}
ight) 
ight), 	ext{for schid I} \ \left(egin{aligned} lpha_{\gamma_{1k}} & 
ho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \ eta_{\gamma_{1k}} & \sigma_{\gamma_{1k}}^2 \end{array}
ight) 
ight), 	ext{for schid I} \ \left(egin{aligned} lpha_{\gamma_{1k}} & \rho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \ eta_{\gamma_{1k}} & \sigma_{\gamma_{1k}}^2 \end{array}
ight) 
ight), 	ext{for schid I} \ \left(egin{aligned} lpha_{\gamma_{1k}} & \rho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \ eta_{\gamma_{1k}} & \sigma_{\gamma_{1k}}^2 \end{array}
ight) 
ight), 	ext{for schid I} \ \left(egin{aligned} lpha_{\gamma_{1k}} & \rho_{\gamma_{1k}eta_{1k}} & \sigma_{\gamma_{1k}}^2 \ eta_{1k} & \sigma_{\gamma_{1k}}^2 \ \ \end{aligned} 
ight) \ \ \left(eta_{1k} & \sigma_{\gamma_{1k}} & \sigma_{\gamma_{1k}} & \sigma_{\gamma_{1k}}^2 \ \ \end{aligned} 
ight) \ \ \left(eta_{1k} & \sigma_{\gamma_{1k}} & \sigma_{\gamma_{1k}} & \sigma_{\gamma_{1k}}^2 \ \ \end{aligned} 
ight) \ \ \left(eta_{1k} & \sigma_{\gamma_{1k}} & \sigma_{\gamma_{1k}}
```

Fit the following model

Don't worry if you run into convergene warnings

$$egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i],k[i]} + eta_{1j[i],k[i]}(\operatorname{year}),\sigma^2
ight) \ & \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_{1k[i]}^lpha + \gamma_{1k[i]}^lpha(\operatorname{female}) \ \gamma_{1k[i]}^lpha + \gamma_{1k[i]}^lpha(\operatorname{female}) \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 &
ho_{lpha_jeta_{1j}} \
ho_{eta_{1j}} \end{array}
ight), ext{for sid } j = 1, \ldots, J \ & \left(egin{aligned} \frac{lpha_k}{\gamma_{1k}} & \gamma_{1k} \ \gamma_{1k} \ \gamma_{1k} \ \gamma_{1k} \end{array}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{mobility}) + \gamma_2^lpha(\operatorname{lowinc}) \ \mu_{eta_{1k}} & \gamma_{2k} \ \eta_{2k} \ \eta_{2k} \end{array}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 0 & 0 & 0 \ 0 & \sigma_{eta_{1k}}^2 & 0 & 0 \ 0 & 0 & \sigma_{\gamma_{1k}}^2 & 0 \ 0 & 0 & 0 & \sigma_{\gamma_{1k}}^2 \end{array}
ight), ext{for schid } k = 1, \ldots, K \end{aligned}$$

Fit the following model

```
egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i]} + eta_{1j[i]}(\operatorname{year}), \sigma^2
ight) \ & \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{female}) \ \mu_{eta_{1j}} \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{array}
ight)
ight), 	ext{ for sid } 	ext{j} = 1, \ldots, 	ext{J} \ & \gamma_{1k} \sim N\left(\mu_{\gamma_{1k}}, \sigma_{\gamma_{1k}}^2\right), 	ext{ for schid } 	ext{k} = 1, \ldots, 	ext{K} \end{aligned}
```

Fit the following model

```
egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i]} + eta_{1j[i]}(\operatorname{year}), \sigma^2
ight) \ & \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{female}) + \gamma_2^lpha(\operatorname{mobility}) + \gamma_3^lpha(\operatorname{size}) \ eta_{j} \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{aligned}
ight) \end{aligned}
ight), 	ext{for sid } 	ext{j} = 1, \ldots, 	ext{J}
```

Last one

```
egin{aligned} & \operatorname{math}_i \sim N\left(lpha_{j[i],k[i]} + eta_{1j[i],k[i]}(\operatorname{year}), \sigma^2
ight) \ & \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{female}) \ \mu_{eta_{1j}} \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{array}
ight) 
ight), 	ext{for sid } 	ext{j} = 1, \ldots, 	ext{J} \ & \left(egin{aligned} lpha_k \ eta_{1k} \end{aligned}
ight) \sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(\operatorname{lowinc}) \ \gamma_0^{eta_1} + \gamma_1^{eta_1}(\operatorname{lowinc}) \end{array}
ight), \left(egin{aligned} \sigma_{lpha_k}^2 & 
ho_{lpha_keta_{1k}} \ 
ho_{eta_{1k}lpha_k} & \sigma_{eta_{1k}}^2 \end{array}
ight) 
ight), 	ext{for schid } 	ext{k} = 1, \ldots, 	ext{K} \end{aligned}
```

Finishing up w/Bayes intro

Updated beliefs

Remember our posterior is defined by

$$posterior = \frac{likelihood \times prior}{average\ likelihood}$$

When we just had a single parameter to estimate, μ , this was tractable with grid search.

With even simple linear regression, however, we have three parameters: α , β , and σ

Our Bayesian model then becomes considerably more complicated:

$$P(\alpha, \beta, \sigma \mid x) = \frac{P(x \mid \alpha, \beta, \sigma) P(\alpha, \beta, \sigma)}{\iiint P(x \mid \alpha, \beta, \sigma) P(\alpha, \beta, \sigma) d\alpha d\beta d\sigma}$$

Estimation

Rather than trying to compute the integrals, we draw samples from the joint posterior distribution.

This sounds a bit like magic - how do we do this?

Multiple different algorithms, but all use some form of Markov-Chain Monte-Carlo sampling

Conceptually

- Imagine the posterior as a hill
- We start with the parameters set to random numbers
 - Estimate the posterior with this values (our spot on the hill)
- Try to "walk" around in a way that we get a complete "picture" of the hill from the samples
- Use these samples as your posterior distribution

An example

Let's go back to an example where we're trying to estimate the mean with a know standard deviation.

 $N(\mu, 15)$

Start with an initial guess, say 110

MCMC

One algorithm:

- Generate a *proposal* by taking a sample from your best guess according to some distribution, e.g., $proposal \sim N(110, 10)$. Suppose we get a value of 108
- Observe the actual data. Let's say we have only one point: 100
- Compare the "height" of the proposal distribution to height of the current distribution, relative to observed data: N(100|110,15), N(100|108,15)

In code

```
dnorm(110, 100, 15)

## [1] 0.02129653

dnorm(108, 100, 15)

## [1] 0.02307026
```

- If probability of target distribution is higher, accept
- If probability is lower, randomly select between the two with probability equal to the "heights" (probability of the two distributions)
- If proposal is accepted it's the next sample in the chain
- Otherwise, the next sample is a copy of current sample

This completes one iteration

Next iteration starts by generating a new proposal distribution

Stop when you have enough samples to have an adequate "picture"

Example in code

Let's take 5000 samples

```
set.seed(42) # for reproducibility

samples <- c(
    110, # initial guess
    rep(NA, 4999) # space for subsequent samples to fill in
)</pre>
```

_000

```
for(i in 2:5000) {
  # generate proposal distribution
  proposal <- rnorm(1, mean = samples[i - 1], sd = 10)</pre>
  # calculate current/proposal distribution likelihoood
  prob_current <- dnorm(samples[i - 1], 100, 15)</pre>
  prob_proposal <- dnorm(proposal, 100, 15)</pre>
  # compute the probability ratio
  prob_ratio <- prob_proposal / prob_current</pre>
  # Determine which to select
  if(prob_ratio > runif(1)) {
    samples[i] <- proposal # accept</pre>
  } else {
    samples[i] <- samples[i - 1] # reject</pre>
  }
```

Plot

Iteration history

Plot

Density

Bayes Update Script

Last week I promised a script to let you play around with priors. I'll show that now ("bayes-update-plotting.R")

There's also a MH script I'll quickly show.

[demo]

Implementation with {brms}

Luckily, we don't have to program the MCMC algorithm ourselves

What is it?

- bayesian regression modeling with stan
- Uses stan as the model backend basically writes the model code for you then sends it to stan
- Allows model syntax similar to Ime4
- Simple specification of priors defaults are flat
- Provides many methods for post—model fitting inference

Fit a basic model

Let's start with the default (uninformative) priors, and fit a standard, simple-linear regression model

```
library(brms)
sleep_m0 <- brm(Reaction ~ Days, data = lme4::sleepstudy)</pre>
##
## SAMPLING FOR MODEL 'a3c55247ada09ee979052a314fc29ad7' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 1.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would t
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [
                                       0%1
                                            (Warmup)
## Chain 1: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration:
                        600 / 2000
                                    [ 30%]
                                            (Warmup)
## Chain 1: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [
                                      50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000
                                   [ 50%]
                                            (Sampling)
  Chain 1: Iteration: 1200 / 2000
                                      60%1
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000
                                      70%1
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000
                                            (Sampling)
                                    [ 80%]
```

Model summary

summary(sleep_m0)

```
Family: gaussian
   Links: mu = identity; sigma = identity
## Formula: Reaction ~ Days
     Data: lme4::sleepstudy (Number of observations: 180)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
           total post-warmup samples = 4000
##
## Population-Level Effects:
##
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                                               3040
                                                       4168
## Intercept 251.49 6.64 238.26 264.74 1.00
            10.45 1.25 7.98 12.90 1.00 4155
                                                                2967
## Days
##
## Family Specific Parameters:
        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
## sigma 47.96 2.51 43.34 53.22 1.00 4069
                                                            2959
##
## Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potenti
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

View "fixed" effect

Let's look at our estimated relation between Days and

Reaction

conditional_effects(sleep_m0)

Wrong model

Of course, this is the wrong model, we have a multilevel structure

Multilevel model

Population-Level Effects:

Notice the syntax is essentially equivalent to Ime4

```
sleep_m1 <- brm(Reaction ~ Days + (Days | Subject), data = lme4:</pre>
summarv(sleep m1)
   Family: qaussian
##
    Links: mu = identity; sigma = identity
## Formula: Reaction ~ Days + (Days | Subject)
##
     Data: lme4::sleepstudy (Number of observations: 180)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
           total post-warmup samples = 4000
##
## Group-Level Effects:
## ~Subject (Number of levels: 18)
##
                     Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS
                                                                 1529
## sd(Intercept)
                        27.06
                                   7.15 15.59 42.69 1.00
## sd(Days)
                      6.55
                                  1.49 4.19 10.04 1.00 1144
## cor(Intercept, Days) 0.08
                                  0.29 -0.47 0.64 1.01
                                                                 1125
##
                     Tail ESS
                         2353
## sd(Intercept)
                        1440
## sd(Days)
## cor(Intercept, Days) 1844
##
```

Fixed effect

The uncertainty has increased

conditional_effects(sleep_m1)

Checking your model

pp_check(sleep_m1)

More checks

plot(sleep_m1)

Even more

launch_shinystan(sleep_m1)

Model comparison

- Two primary (modern) methods
 - Leave-one-out Cross-Validation (LOO)
 - Widely Applicable Information Criterion (WAIC)

Both provide estimates of the *out-of-sample* predictive accuracy of the model. LOO is similar to K-fold CV, while WAIC is similar to AIC/BIC (but an improved version for Bayes models)

Both can be computed using **brms**. LOO is approximated (not actually refit each time).

LOO: M0

loo(sleep_m0)

LOO: M1

loo(sleep_m1)

```
## Warning: Found 3 observations with a pareto k > 0.7 in model 'sleep m1'.
## It is recommended to set 'moment match = TRUE' in order to perform momen
## matching for problematic observations.
##
## Computed from 4000 by 180 log-likelihood matrix
##
##
          Estimate SE
## elpd loo -861.7 22.7
## p loo 34.7 8.8
## looic 1723.3 45.5
## Monte Carlo SE of elpd loo is NA.
##
## Pareto k diagnostic values:
##
                           Count Pct.
                                        Min. n eff
## (-Inf, 0.5] (good)
                          175 97.2%
                                        682
## (0.5, 0.7] (ok)
## (0.5, 0.7] (ok) 2 1.1% 218
## (0.7, 1] (bad) 1 0.6% 14
                                        2189
## (1, Inf) (very bad) 2 1.1%
## See help('pareto-k-diagnostic') for details.
```

Plot

```
plot(loo(sleep_m1), label_points = TRUE)
```

Warning: Found 3 observations with a pareto_k > 0.7 in model 'sleep_m1'. ## It is recommended to set 'moment_match = TRUE' in order to perform moment ## matching for problematic observations.

PSIS diagnostic plot

Interpretation

Large values here (anything above 0.7) is an indication of model misspecification

Smaller values do not guarantee a well-specified model, however

LOO Compare

The best fitting model will be on top. Use the standard error within your interpretation

```
loo_compare(loo(sleep_m0), loo(sleep_m1))

## Warning: Found 3 observations with a pareto_k > 0.7 in model 'sleep_m1'.
## It is recommended to set 'moment_match = TRUE' in order to perform momen
## matching for problematic observations.
## elpd diff se_diff
```

This is a fairly complicated topic, and we won't spend a lot of time on it. See here for a bit more information specifically on the functions

\mathbb{A}

Similar to other information criteria.

```
waic(sleep_m0)
```

```
##
## Computed from 4000 by 180 log-likelihood matrix
##
## Estimate SE
## elpd waic -953.3 10.5
## p_waic 3.2 0.5
## waic 1906.5 21.0
```

waic(sleep_m1)

```
## Warning:
## 14 (7.8%) p_waic estimates greater than 0.4. We recommend trying loo ins
##
## Computed from 4000 by 180 log-likelihood matrix
##
##
     Estimate SE
## elpd waic -860.2 22.3
## p waic 33.2 8.4
```

Compare

You can use waic within loo_compare()

```
loo_compare(waic(sleep_m0), waic(sleep_m1))

## Warning:
## 14 (7.8%) p_waic estimates greater than 0.4. We recommend trying loo ins

## elpd_diff se_diff
## sleep_m1 0.0 0.0
## sleep_m0 -93.0 21.0
```

Another model

```
kidney_m0 <- brm(time ~ age + sex, data = kidney)
pp_check(kidney_m0, type = "ecdf_overlay")</pre>
```


Fixing this

We need to change the assumptions of our model – specifically that the outcome is not normally distributed

Plot the raw data

```
ggplot(kidney, aes(time)) +
  geom_histogram(alpha = 0.7)
```

Maybe Poisson?

(I realize we haven't talked about these types of models yet)

Nope

```
pp_check(kidney_m1, type = "ecdf_overlay")
```


Gamma w/log link

Specifying priors

Let's sample from *only* our priors to see what kind of predictions we get.

Here, we're specifying that our beta coefficient prior is $eta \sim N(0,0.5)$

```
kidney_m3 <- brm(
  time ~ age + sex,
  data = kidney,
  family = Gamma("log"),
  prior = prior(normal(0, 0.5), class = "b"),
  sample_prior = "only"
)</pre>
```

kidney_m3

```
## Warning: There were 2253 divergent transitions after warmup.
## Increasing adapt delta above 0.8 may help. See http://mc-stan.org/misc/
## warnings.html#divergent-transitions-after-warmup
##
   Family: gamma
    Links: mu = log; shape = identity
##
## Formula: time ~ age + sex
     Data: kidney (Number of observations: 76)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
           total post-warmup samples = 4000
##
## Population-Level Effects:
##
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## Intercept 4.23 22.42 -39.94 46.55 1.01
                                                        629
                                                                 991
        -0.02 0.51 -0.97 0.97 1.01
                                                         629
## age
                                                                  946
## sexfemale 0.01 0.50 -0.98 0.97 1.01
                                                         667
                                                                1196
##
## Family Specific Parameters:
##
        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                       2.35 1.01
                                                              711
## shape
            0.42
                     3.64
                              0.00
                                                     436
##
## Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potenti
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

Prior predictions

Random sample of 100 points

Why?

It seemed like our prior was fairly tight

The exploding prior happens because of the log transformation

- Age is coded in years
- Imagine a coef of 1 (2 standard deviations above our prior)
- Prediction for a 25 year old would be $\exp(25) = 7.2004899$ \times 10^{10}

A note on prior specifications

- It's hard
- I don't have a ton of good advice
- Be particularly careful when you're using distributions that have anything other than an identity link (e.g., log link, as we are here)

One more model

Let's fit a model we've fit previously

In Week 4, we fit this model

Try fitting the same model with **{brms}** with the default, diffuse priors

Bayesian verision

```
m_brms <- brm(popular ~ extrav + (extrav|class), popular)</pre>
```

```
Family: gaussian
   Links: mu = identity; sigma = identity
## Formula: popular ~ extrav + (extrav | class)
     Data: popular (Number of observations: 2000)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
          total post-warmup samples = 4000
##
## Group-Level Effects:
## ~class (Number of levels: 100)
##
                      Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS
                                                                1165
## sd(Intercept)
                          1.72 0.17 1.41 2.08 1.00
                         0.16 0.03 0.11 0.22 1.01
## sd(extrav)
                                                                 724
                                                                 358
## cor(Intercept, extrav)
                         -0.95 0.03 -1.00 -0.89 1.01
##
                      Tail ESS
                          2052
## sd(Intercept)
                         1755
## sd(extrav)
## cor(Intercept, extrav) 564
##
## Population-Level Effects:
##
           Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                                             1951
## Intercept 2.46 0.20 2.06 2.84 1.00
                                                  994
## extrav 0.49 0.03 0.44 0.54 1.00
                                                  1510
                                                              2474
##
## Family Specific Parameters:
```

Ime4 model

arm::display(m_lmer)

```
## lmer(formula = popular ~ extrav + (extrav | class), data = popular,
## control = lmerControl(optimizer = "bobyga"))
##
             coef.est coef.se
## (Intercept) 2.46 0.20
## extrav 0.49 0.03
##
## Error terms:
## Groups Name Std.Dev. Corr
## class (Intercept) 1.73
   extrav 0.16 -0.97
##
## Residual
                    0.95
## ---
## number of obs: 2000, groups: class, 100
\#\# AIC = 5791.4, DIC = 5762
## deviance = 5770.7
```

Add priors

- Multiple ways to do this
- Generally, I allow the intercept to just be what it is
- For "fixed" effects, you might consider regularizing priors.
- You can also set priors for individual parameters
- In my experience, you will mostly want to set priors for different "class"es of parameters, e.g.: Intercept, b, sd, sigma, cor

Half-Cauchy distribution

This is the distribution most often used for standard deviation priors

Specify some new priors

Let's specify some regularizing priors for the fixed effects and standard deviations

Almost no difference in this case

m_brms2

```
Family: gaussian
##
    Links: mu = identity; sigma = identity
## Formula: popular ~ extrav + (extrav | class)
##
     Data: popular (Number of observations: 2000)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
           total post-warmup samples = 4000
##
## Group-Level Effects:
## ~class (Number of levels: 100)
##
                       Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS
                          1.70 0.17 1.39 2.06 1.01
                                                                  1358
## sd(Intercept)
                          0.16 0.03 0.11 0.22 1.00
                                                                  871
## sd(extrav)
                         -0.95 0.03 -1.00 -0.88 1.01
                                                                   437
## cor(Intercept, extrav)
##
                       Tail ESS
                          1824
## sd(Intercept)
                          1683
## sd(extrav)
## cor(Intercept, extrav) 871
##
## Population-Level Effects:
##
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## Intercept 2.48 0.20 2.08 2.86 1.00
                                                   1157
                                                               1810
             0.49 0.03 0.44 0.54 1.00
## extrav
                                                   1960
                                                               2642
##
## Family Specific Parameters:
        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS1/127
##
```

Speed

We'll never reach the **lme4::lmer()** speeds, but we can make it faster.

- Parallelize (not always as effective as you might hope)
- Use the cmdstanr backend
 - This requires a little bit of additional work, but is probably worth it if you're fitting bigger models.

```
install.packages(
   "cmdstanr",
   repos = c(
       "https://mc-stan.org/r-packages/",
       getOption("repos")
)
```

Timings

I'm not evaluating the below, but the timings were 114.368 seconds and 87.383 seconds, respectively.

Wrapping up our Bayes intro

Advantages to Bayes

- Opportunity to incorporate prior knowledge into the modeling process (you don't really *have* to – could just set wide priors)
- Natural interpretation of uncertainty
- Can often allow you to estimate models that are difficult if not impossible with frequentist methods

Disadvatages

- Generally going to be slower in implementation
- You may run into pushback from others particularly with respect to priors

Notes on the posterior

- The posterior is the distribution of the parameters, given the data
- Think of it as the distribution of what we don't know, but are interested in (model parameters), given what we know or have observed (the data), and our prior beliefs
- Gives a complete picture of parameter uncertainty
- We can do lots of things with the posterior that is hard to get otherwise

Break

05:00

Review of logistic regression

Data generating distribution

Up to this point, we've been assuming the data were generated from a normal distribution.

For example, we might fit a simple linear regression model to the wages data like this

$$egin{aligned} ext{wages}_i &\sim N\left(\hat{y}, \sigma^2
ight) \ \hat{y} &= lpha + eta_1 ext{(exper)} \end{aligned}$$

where we're embedding a linear model into the mean In code

```
wages <- read_csv(here::here("data", "wages.csv")) %>%
  mutate(hourly_wage = exp(lnw))

wages_lm <- lm(hourly_wage ~ exper, data = wages)</pre>
```

Graphically

```
ggplot(wages, aes(exper, hourly_wage)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Aside - you see why the log of wages was modeled instead?

Log wages

```
ggplot(wages, aes(exper, lnw)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Move to binary model

Let's split the wages data into a binary classification based on whether it's above or below the mean.

```
wages <- wages %>%
  mutate(
    high_wage = ifelse(
    hourly_wage > mean(hourly_wage, na.rm = TRUE), 1, 0
    )
  )

wages %>%
  select(id, hourly_wage, high_wage)
```

```
## # A tibble: 6,402 x 3
##
       id hourly wage high wage
                       <dbl>
##
  <dbl>
              <dbl>
## 1 31 4.441535
## 2 31 4.191254
   3 31 4.344888
##
##
   4 31 5.748851
   5 31 6.896403
##
## 6 31 5.523435
##
       31 8.052640
```

Plot

We could fit a linear model

```
m_lpm <- lm(high_wage ~ exper, data = wages)
arm::display(m_lpm)</pre>
```

This is referred to as a linear probability model (LPM) and they are pretty hotly contested, with proponents and detractors

Plot

```
ggplot(wages, aes(exper, high_wage)) +
  geom_point(alpha = 0.01) +
  geom_smooth(method = "lm", se = FALSE)
```


Prediction

What if somebody has an experience of 25 years?

```
predict(m_lpm, newdata = data.frame(exper = 25))
##
```

```
## 1.535723
```


Our prediction goes outside the range of our data.

As a rule, the assumed data generating process should match the boundaries of the data.

Of course, you could truncate after the fact. I think that's less than ideal (see here or here for discussions contrasting LPM with logistic regression).

The binomial model

 $y_i \sim \mathrm{Binomial}(n, p_i)$

Think in terms of coin flips

n is the number of coin flips, while p_i is the probability of heads

Example

Flip 1 coin 10 times

```
set.seed(42)
rbinom(
  n = 10, # number of trials
  size = 1, # number of coins
  prob = 0.5 # probability of heads
)
```

```
## [1] 1 1 0 1 1 1 1 0 1 1
```

Side note – a binomial model with size = 1 (or n = 1 in equation form) is equivalent to a Bernoulli distribution

Flip 10 coins 1 time

```
rbinom(n = 1, size = 10, prob = 0.5)
```

```
## [1] 5
```

Modeling

We now build a linear model for p, just like we previously built a linear model for μ .

Aproblem

Probability is bounded [0,1]

We need to ensure that our model respects these bounds

Link functions

We solve this problem by using a *link* function

$$y_i \sim \mathrm{Binomial}(n, p_i) \ f(p_i) = lpha + eta(x_i)$$

- ullet Instead of modeling p_i directly, we model $f(p_i)$
- ullet The specific f is the link function
- Link functions map the *linear* space of the model to the *non-linear* parameters (like probability)
- The log and logit links are most common

Binomial logistic regression

If we only have two categories, we commonly assume a binomial distribution, with a logit link.

$$y_i \sim \mathrm{Binomial}(n, p_i) \ \mathrm{logit}(p_i) = lpha + eta(x_i)$$

where the logit link is defined by the log-odds

$$\operatorname{logit}(p_i) = \operatorname{log}\!\left[rac{p_i}{1-p_i}
ight]$$

So

$$\logiggl[rac{p_i}{1-p_i}iggr] = lpha + eta(x_i)$$

Inverse link

What we probably want to interpret is probability

We can transform the log-odds to probability by exponentiating

$$p_i = rac{\exp(lpha + eta(x_i))}{1 + \exp(lpha + eta(x_i))}$$

This is the logistic function, or the inverse-logit.

Example logistic regression model

m_glm <- glm(high_wage ~ exper,</pre>

Coefficient interpretation

The coefficients are reported on the *log-odds* scale. Other than that, interpretation is the same.

For example:

The log-odds of a participant with zero years experience being in the high wage category was -1.65.

For every one year of additional experience, the log-odds of being in the high wage category increased by 0.25.

Note

- Outside of scientific audiences, almost nobody is going to understand the previous slide
- You *cannot* just transform the coefficients and interpret them as probabilities (because it is non-linear on the probability scale).

Log odds scale

```
tibble(exper = 0:25) %>%
  mutate(pred = predict(m_glm, newdata = .)) %>%
  ggplot(aes(exper, pred)) +
  geom_line()
```


Perfectly straight line - change in log-odds are modeled as a linear function of experience

Probability scale

Our model parameters map to probability non-linearly, and it is bound to $\left[0,1\right]$

Probability predictions

Let's make the predictions from the previous slide "by hand"

$$p_i = rac{\exp(lpha + eta(x_i))}{1 + \exp(lpha + eta(x_i))}$$

And our coefficients are

```
coef(m_glm)
```

```
## (Intercept) exper
## -1.6467568 0.2536815
```

Intercept

$$(p_i| ext{exper}=0) = rac{\exp(-1.65+0.25(0))}{1+\exp(-1.65+0.25(0))}$$
 $(p_i| ext{exper}=0) = rac{\exp(-1.65)}{1+\exp(-1.65)}$
 $(p_i| ext{exper}=0) = rac{0.19}{1.19} = 0.16$

Five years experience

Notice the exponentiation happens *after* adding the coefficients together

$$(p_i| ext{exper}=5) = rac{\exp(-1.65+0.25(5))}{1+\exp(-1.65+0.25(5))}$$
 $(p_i| ext{exper}=5) = rac{\exp(-0.4)}{1+\exp(-0.4)}$ $(p_i| ext{exper}=5) = rac{0.67}{1.67} = 0.40$

Fifteen years experience

$$(p_i| ext{exper}=15) = rac{\exp(-1.65+0.25(15))}{1+\exp(-1.65+0.25(15))}$$
 $(p_i| ext{exper}=15) = rac{\exp(2.1)}{1+\exp(2.1)}$ $(p_i| ext{exper}=15) = rac{8.16}{9.16} = 0.89$

More interpretation

Let's try to make this so more people might understand.

First, show the logistic curve on the probability scale! Can help prevent linear interpretations

Discuss probabilities at different x values

The "divide by 4" rule

Divide by 4

- ullet Logistic curve is steepest when $p_i=0.5$
- The slope of the logistic curve (its derivative) is maximized at eta/4
- Aside from the intercept, we can say that the change is no more than eta/4

Example

$$\frac{0.25}{4} = 0.0625$$

So, a one year increase in experience corresponds to, at most, a 6% increase in being in the high wage category

Example writeup

There was a 16 percent chance that a participant with zero years experience would be in the high wage category. The logistic function, which mapped years of experience to the probability of being in the *high-wage* category, was nonlinear, as shown in Figure 1. At its steepest point, a one year increase in experience corresponded with approximately a 6% increase in the probability of being in the high-wage category. For individuals with 5, 10, and 15 years of experience, the probability increased to a 41, 71, and 90 percent chance, respectively.

Other distributions

Vultievel logistic regression

The data

Polling data from the 1988 election.

```
# A tibble: 13,544 x 10
##
      org year survey bush state edu age female black weight
##
    ##
                                2
                                                  1403
##
                          33
                                                 778
##
   3
                        20
                                                  1564
##
                          31
                                                 1055
   5
##
                          18
                                                  1213
##
                          31
                                                  910
##
                        40
                                                   735
##
                          33
                                                   410
##
                          22
                                                   410
## 10
                          22
                                                   778
## # ... with 13,534 more rows
```

About the data

- Collected one week before the election
- Nationally representative sample
- Should use post-stratification to control for nonresponse, but we'll hold off on that for now (See Gelman & Hill, Chapter 14 for more details)

Baseline probability

Let's assume we want to estimate the probability that Bush will be elected.

We could fit a single level model like this

$$ext{bush} \sim ext{Binomial}\left(n=1, ext{prob}_{ ext{bush}=1} = \hat{P}
ight) \ \log\left[rac{\hat{P}}{1-\hat{P}}
ight] = lpha$$

In code

bush_sl <- glm(bush ~ 1,

So, $p_i = rac{\exp(0.25)}{1+\exp(0.25)} = 0.56$

Can you write the code for the previous model?

01:00

State-level variability

To estimate state-level variability, we just specify a distribution for the intercept variability.

$$ext{bush} \sim ext{Binomial}\left(n=1, ext{prob}_{ ext{bush}=1} = \hat{P}
ight) \ \log \left[rac{\hat{P}}{1-\hat{P}}
ight] = lpha_{j[i]} \ lpha_{j} \sim N\left(\mu_{lpha_{j}}, \sigma_{lpha_{j}}^{2}
ight), ext{for state j} = 1, \ldots, ext{J}$$

Notice we're still specifying that the intercept variability is generated by a *normal* distribution.

What does this variability actually represent?

Variance in the log-odds

Fitting the model

If we're using {Ime4}, we just swap lmer() for glmer() and specify the family and link function.

```
library(lme4)
m0 \leftarrow glmer(bush \sim 1 + (1|state),
           data = polls,
           family = binomial(link = "logit"))
arm::display(m0)
\#\# glmer(formula = bush ~ 1 + (1 | state), data = polls, family = binomial
## coef.est coef.se
## 0.25 0.06
##
## Error terms:
## Groups Name
                  Std.Dev.
## state (Intercept) 0.34
## Residual
                      1.00
## ---
## number of obs: 11566, groups: state, 49
\#\# AIC = 15697, DIC = 15450.4
## deviance = 15571.7
```

Interpretation

- The average log odds of supporting bush was 0.25
- This average varied between states with a standard deviation of 0.34

State-level variation

```
library(broom.mixed)
m0_tidied <- tidy(m0, effects = "ran_vals", conf.int = TRUE)
m0_tidied</pre>
```

```
\# A tibble: 49 x 8
                               estimate std.error conf.low
##
     effect group level term
##
     <chr> <chr> <chr> <chr>
                                          <dbl>
                                                     <dbl>
                                                                <dbl>
##
   1 ran vals state 1
                                     0.5201836
                                                0.1526301
                                                           0.2210341
                     (Intercept)
##
   2 ran vals state 3
                     (Intercept)
                                     0.09438107 0.1424292
                                                          -0.1847750
##
   3 ran vals state 4
                      (Intercept)
                                     0.06905650 0.1737493
                                                          -0.2714859
##
   4 ran vals state 5
                      (Intercept)
                                     0.03522421 0.05570977
                                                          -0.07396493
   5 ran vals state 6
##
                      (Intercept)
                                     0.1045418
                                                0.1513626
                                                          -0.1921233
##
   6 ran vals state 7
                      (Intercept) -0.1015410
                                                0.1546380
                                                          -0.4046260
##
                                                          -0.8482644
   7 ran vals state 8
                       (Intercept) -0.3824312
                                                0.2376744
##
   8 ran vals state 9
                      (Intercept) -0.6229779
                                                0.2931982 - 1.197636
                      (Intercept) 0.3027001
##
   9 ran vals state 10
                                                0.07975137 0.1463903
                         (Intercept)
## 10 ran vals state 11
                                     0.09282107 0.1173420
                                                          -0.1371651
## # ... with 39 more rows, and 1 more variable: conf.high <dbl>
```

Fancified Plot Code

Fancified Plot

Extending the model

Let's add some predictors

- Include age, female and black as fixed effect predictors.
- We should center age so the intercept represents the sample average age.

You try first

03:00

```
polls <- polls %>%
  mutate(age c = age - mean(age, na.rm = TRUE))
m1 <- glmer(bush ~ age_c + female + black + (1|state),
            data = polls,
            familv = binomial(link = "logit"))
arm::display(m1)
\#\# glmer(formula = bush ~ age c + female + black + (1 | state),
## data = polls, family = binomial(link = "logit"))
##
            coef.est coef.se
## (Intercept) 0.43 0.07
## age c -0.08 0.02
## female -0.11 0.04
## black -1.84 0.09
##
## Error terms:
## Groups Name Std.Dev.
## state (Intercept) 0.41
## Residual
                     1.00
## ---
## number of obs: 11566, groups: state, 49
## AIC = 15137.1, DIC = 14856.7
## deviance = 14991.9
```

Varying slopes

The average probability of a respondent who was coded **black == 1** who was the average age and non-female supporting Bush was

$$(p_i | \mathrm{age} = 0, \mathrm{female} = 0, \mathrm{black} = 1) = rac{\exp(0.43 + (-0.08 \times 0) + (-0.11 \times 0) + (-1.84 \times 1))}{1 + \exp(0.43 + (-0.08 \times 0) + (-0.11 \times 0) + (-1.84 \times 1))}$$
 $(p_i | \mathrm{age} = 0, \mathrm{female} = 0, \mathrm{black} = 1) = rac{\exp(0.43 - 1.84)}{1 + \exp(0.43 - 1.84)}$
 $(p_i | \mathrm{age} = 0, \mathrm{female} = 0, \mathrm{black} = 1) = rac{\exp(-1.41)}{1 + \exp(-1.41)}$
 $(p_i | \mathrm{age} = 0, \mathrm{female} = 0, \mathrm{black} = 1) = rac{0.24}{1.24}$
 $(p_i | \mathrm{age} = 0, \mathrm{female} = 0, \mathrm{black} = 1) = 0.19$

Vary by state?

You try first – try to fit a model that estimates betweenstate variability in the relation between individuals coded black, and their probability of voting for Bush.

```
m2 <- glmer(bush ~ age_c + female + black + (black|state),</pre>
           data = polls,
           family = binomial(link = "logit"))
arm::display(m2)
## glmer(formula = bush ~ age c + female + black + (black | state),
      data = polls, family = binomial(link = "logit"))
##
##
             coef.est coef.se
## (Intercept) 0.43 0.07
## age_c -0.08 0.02
## female -0.11 0.04
## black -1.66 0.19
##
## Error terms:
                                           01:00
## Groups
                  Std.Dev. Corr
           Name
## state (Intercept) 0.44
##
           black 0.87 - 0.46
  Residual
                      1.00
```

Look at random effects

```
ranef_m2 <- tidy(m2, effects = "ran_vals", conf.int = TRUE) %>%
  arrange(level)
ranef_m2
```

```
## # A tibble: 98 x 8
##
  effect group level term estimate std.error conf.low
##
  <chr> <chr> <chr> <chr> <chr>
                                        <dbl>
                                                  <dbl>
                                                             <dbl>
##
   1 ran vals state 1 (Intercept) 0.4768807
                                             0.1716175
                                                       0.1405165
##
   2 ran vals state 1 black
                                   1.066314
                                             0.4118905 0.2590240
   3 ran vals state 10 (Intercept) 0.3000900
##
                                             0.08425460 0.1349540
##
   4 ran vals state 10 black
                                -0.1573061
                                             0.3564817
                                                       -0.8559974
   5 ran vals state 11
                     (Intercept) 0.2440973
##
                                             0.1326607
                                                       -0.01591285
##
                     black
   6 ran vals state 11
                                -0.6672948
                                             0.4129706
                                                       -1.476702
##
   7 ran vals state 13 (Intercept) -0.2406066 0.2710096 -0.7717756
   8 ran vals state 13 black 0.2180487
##
                                             0.8103377 - 1.370184
   9 ran vals state 14 (Intercept) -0.04190335 0.09568848 -0.2294493
## 10 ran vals state 14 black -0.3926602
                                             0.3611247 - 1.100452
## # ... with 88 more rows, and 1 more variable: conf.high <dbl>
```

Include fixed effects

##

```
fe <- data.frame(</pre>
  fixed = fixef(m2),
  term = names(fixef(m2))
 fe
##
                   fixed term
## (Intercept) 0.43434106 (Intercept)
## age c -0.08284379 age c
## female -0.10836146 female
## black -1.66095113 black
 ranef_m2 <- left_join(ranef_m2, fe)</pre>
 ranef m2 %>%
  select(level, term, estimate, fixed)
## # A tibble: 98 x 4
## level term estimate fixed
## <chr> <chr>
                           <dbl> <dbl>
## 1 1 (Intercept) 0.4768807 0.4343411
## 2 1 black 1.066314 -1.660951
## 3 10 (Intercept) 0.3000900 0.4343411
   4 10 black
                      -0.1573061 -1.660951
```

Add in fixed effects

```
ranef_m2 <- ranef_m2 %>%
  mutate(estimate = estimate + fixed)
ranef_m2
```

```
## # A tibble: 98 x 9
  effect group level term estimate std.error conf.low
##
## <chr> <chr> <chr> <chr>
                                      <dbl>
                                                <dbl>
                                                           <dbl>
##
   1 ran vals state 1 (Intercept) 0.9112217 0.1716175 0.1405165
   2 ran vals state 1 black -0.5946367 0.4118905 0.2590240
##
   3 ran_vals state 10 (Intercept) 0.7344310 0.08425460 0.1349540
##
## 4 ran vals state 10 black
                               -1.818257 0.3564817 -0.8559974
                    (Intercept) 0.6784383 0.1326607 -0.01591285
   5 ran vals state 11
##
   6 ran vals state 11 black -2.328246 0.4129706 -1.476702
##
##
   7 ran vals state 13 (Intercept) 0.1937344 0.2710096 -0.7717756
## 8 ran_vals state 13 black -1.442902 0.8103377 -1.370184
##
   9 ran vals state 14 (Intercept) 0.3924377 0.09568848 -0.2294493
## 10 ran vals state 14 black -2.053611 0.3611247 -1.100452
## # ... with 88 more rows, and 2 more variables: conf.high <dbl>, fixed <dbl
```

Compute log-odds

Compute means for each group - i.e., add the coefficients

```
to_plot <- ranef_m2 %>%
  group_by(level) %>%
  mutate(estimate = cumsum(estimate)) %>%
  ungroup()

to_plot
```

```
## # A tibble: 98 x 9
 effect group level term estimate std.error conf.low
##
## <chr> <chr> <chr> <chr> <chr>
                                                 <dbl>
                                       <dbl>
                                                           <dbl>
   1 ran vals state 1 (Intercept) 0.9112217 0.1716175 0.1405165
   2 ran vals state 1 black
##
                             0.3165850 0.4118905 0.2590240
   3 ran vals state 10 (Intercept) 0.7344310 0.08425460 0.1349540
##
## 4 ran_vals state 10 black
                             -1.083826 0.3564817 -0.8559974
                     (Intercept) 0.6784383 0.1326607 -0.01591285
##
   5 ran vals state 11
##
   6 ran vals state 11
                     black
                              -1.649808 0.4129706 -1.476702
##
   7 ran vals state 13 (Intercept) 0.1937344 0.2710096 -0.7717756
   8 ran vals state 13 black -1.249168 0.8103377 -1.370184
##
   9 ran_vals state 14 (Intercept) 0.3924377 0.09568848 -0.2294493
## 10 ran vals state 14 black -1.661174 0.3611247 -1.100452
## # ... with 88 more rows, and 2 more variables: conf.high <dbl>, fixed <dbl
```

Create factor level

```
lev_order <- to_plot %>%
  filter(term == "(Intercept)") %>%
  mutate(lev = forcats::fct_reorder(level, estimate))

to_plot <- to_plot %>%
  mutate(level = factor(level, levels = levels(lev_order$lev)))
```

Plot

```
# data transform
to_plot %>%
  mutate(group = ifelse(term == "(Intercept)", "Non-Black", "Black")
 # plot
  ggplot(aes(prob, level)) +
  geom_line(aes(group = level), color = "gray60", size = 1.2) +
  geom_point(aes(color = group)) +
  geom_vline(xintercept = 0.5, color = "gray40", size = 3) +
  # themeing stuff
 labs(x = "Probability Estimate", y = "") +
  xlim(0, 1) +
  scale_color_brewer(palette = "Set2") +
  theme(panel.grid.major.y = element_blank(),
        axis.text.y = element_blank())
```

Plot

Probability scale

```
# data transform
to plot %>%
  mutate(
    group = ifelse(term == "(Intercept)", "Non-Black", "Black"),
   prob = exp(estimate)/(1 + exp(estimate))
 ) %>%
 # plot
  ggplot(aes(prob, level)) +
  geom_line(aes(group = level), color = "gray60", size = 1.2) +
  geom_point(aes(color = group)) +
  geom_vline(xintercept = 0.5, color = "gray40", size = 3) +
  # themeing stuff
 labs(x = "Probability Estimate", y = "") +
  xlim(0, 1) +
  scale color brewer(palette = "Set2") +
  theme(panel.grid.major.y = element_blank(),
        axis.text.v = element blank())
```

Probability scale

Bayes

Refit

Can you fit the same model we just fit, but with **{brms}**?

You try first

Feel free to just use flat priors

Flat priors

```
library(brms)
m2_brms <- brm(bush ~ age + female + black + (black|state),</pre>
             data = polls,
             family = bernoulli(link = "logit"),
             backend = "cmdstan",
             cores = 4)
## Warning: Rows containing NAs were excluded from the model.
##
```

Model summary

summary(m2_brms)

```
##
   Family: bernoulli
##
   Links: mu = logit
## Formula: bush ~ age + female + black + (black | state)
##
     Data: polls (Number of observations: 11566)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
          total post-warmup samples = 4000
##
## Group-Level Effects:
## ~state (Number of levels: 49)
##
                     Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS
## sd(Intercept)
                        0.46
                                 0.06 0.36 0.59 1.00
                                                              949
                                 0.20 0.61
## sd(black)
                        0.96
                                                 1.41 1.01 1202
## cor(Intercept, black)
                        -0.40
                                 0.19 - 0.71
                                                 0.02 1.00 1417
##
                     Tail ESS
                       2013
## sd(Intercept)
                       2403
## sd(black)
## cor(Intercept, black) 2354
##
## Population-Level Effects:
##
           Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                                    732
                                                            1254
## Intercept 0.62
                       0.09 0.46 0.80 1.00
                                                 5674
                                                         3257
## age
             -0.08 0.02 -0.12 -0.05 1.00
                                                 5243 2793
## female -0.11 0.04 -0.19 -0.03 1.00
## black -1.67 0.22
                                                 1050 124.688
                               -2.10
                                       -1.24 1.00
```

Posterior predictive check

pp_check(m2_brms, type = "bars")

Posterior predictive check 2

pp_check(m2_brms, type = "stat")

Next time

- More Bayes for binomial logistic regression
- Plotting Bayes models
- Missing data
- Piece—wise growth models