各种化学反应

瞬间完成的炸药爆炸反应

岩石的风化

2NO (g) + 2CO (g)
$$\rightarrow$$
 N₂ (g) + 2CO₂ (g)

$$\Delta_{\rm r} G^{\theta}_{\rm m} = -668 \text{ kJ} \cdot \text{mol}^{-1}$$

该反应限度很大,但反应速率极慢,不能付诸 实用。研制该反应的催化剂是人们感兴趣的课题

对于合成氨反应

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\Delta_{\rm r} G^{\theta}_{\rm m} = -33 \text{ kJ} \cdot \text{mol}^{-1}$$

化学热力学判断常温常压下反应能进行,且转 化率很高,但实际反应速率太慢,毫无工业价值

化学平衡和反应速率是化学反应问题的两大不可分割的方面,均十分重要

> 化学反应动力学的任务:

1) 化学反应的速率问题

2) 化学反应的机理问题

Ahmed Zewail (Caltech, USA) 1999 年诺贝尔化学奖获得者

研究成果:利用飞秒 (10-15 s) 光谱研究化学反应的过渡态

Receiving the award from the king, Stockholm, December 10, 1999

第八章 化学反应动力学

- 8.1 化学反应速率的表示方法
- 8.2 化学反应理论
- 8.3 化学反应历程
- 8.4 化学反应速率的影响因素

8.1 化学反应速率的表示方法

> 平均速率

以反应 $A \rightarrow B$ 为例:某一段时间内的平均速率

$$\overline{\upsilon} = -\frac{\Delta c_{\rm A}}{\Delta t} = \frac{\Delta c_{\rm B}}{\Delta t}$$

反应物 A 消耗的速率等于产物 B 生成的速率, 但符号相反

> 瞬时速率

当 $\Delta t \rightarrow 0$ 时的反应速率称为瞬时速率,也可表示为微分式 $\Delta c_{A} = \frac{dc_{A}}{dc_{B}}$

浓度 *c* 时间 *t*

> 起始速率

当 t=0 时,反应的**瞬时速率** 称起始速率

> 反应速率的通式

对一般反应:

 $aA + bB \rightarrow cC + dD$

反应物浓度随时 间的变化

该反应的平均速率表达式:

$$\overline{\upsilon} = -\frac{1}{a} \frac{\Delta c_{A}}{\Delta t} = -\frac{1}{b} \frac{\Delta c_{B}}{\Delta t} = \frac{1}{c} \frac{\Delta c_{C}}{\Delta t} = \frac{1}{d} \frac{\Delta c_{D}}{\Delta t}$$

反应速率的实验测定

测定反应物(产物) 浓度随时间变化 化学分析法 物化分析法 测某些与浓度 在某时刻突然终止 相关的物理量 反应, 取样、分析 特点:自动化,准确 特点: 麻烦、误差大

大化实验: 反应速率的测定

$$S_2O_8^{2-}(aq) + 2I^-(aq) \Longrightarrow 2SO_4^{2-}(aq) + I_2$$
 (I)

$$\upsilon = -\frac{\Delta c(S_2O_8^{2-})}{\Delta t}$$

$$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow S_4O_6^{2-}(aq) + 2I^-(aq)$$
 (II)

反应系统中加入一定体积已知浓度的 $S_2O_3^{2-}$ 溶液,并加入数滴淀粉指示剂。当 $S_2O_3^{2-}$ 耗尽,反应系统显示蓝色

$$\therefore \upsilon = -\frac{\Delta c (S_2 O_8^{2-})}{\Delta t} = -\frac{\Delta c (S_2 O_3^{2-})}{2\Delta t}$$

8.2 化学反应理论

1. 碰撞理论

德国化学家M. Trantz 和英国化学家W.C.M. Lewis 分别独立根据气体分子运动论提出化学反应动力学的 分子碰撞理论

碰撞理论要点:

- 单位时间,分子间有效碰撞次 数与反应速率成正比
- > 若碰撞分子的动能达到发生反 应所需最低能量,称有效碰撞: 能发生反应的碰撞,其余是无 效碰撞 13

活化能

等温下分子能 量分布曲线

$$E_{\rm a} = E_{\rm 活化} - E_{\rm 平均}$$

发生反应所需最小能量,即活化分子的最低能量与一般分子的平均能量差,称活化能E。

一般化学反应 E_a : 42 ~ 420 kJ·mol⁻¹

作用

- ▶ 克服分子靠近时电子云间的强 烈排斥;
- ▶ 仅能量高的分子碰撞,才能将 动能转化成内部势能,破坏旧 键,形成新键

> 方位因子

除碰撞几率外,分子碰撞的方位也很重要,所以 碰撞理论又引入了方位因子的概念

碰撞前 碰撞 碰撞后

有效碰撞

无效碰撞

 $Cl + NOCl \rightarrow NO + Cl_2$

影响有效碰撞的条件

温度

温度 ↑ ,反应分子运动 速率 ↑

- ▶ 反应分子单位时间内碰撞 次数 ↑;
- 反应分子能量增加,活化分子百分数增大

不同温度分子能量分布曲线

温度对速率影响的特例

反应速率常数随温度变化的类型

影响有效碰撞的条件

浓度

增大反应物浓度 → 单位体积内活化分子数增多

→ 单位时间内有效碰撞次数增多 → 反应速率增大

压强

对于有气体参加的反应,其他条件不变:

增加压强 → 气体的体积减小 → 浓度增大 → 分子间的有效碰撞机会增多 → 反应速率增大

碰撞理论的优缺点

优点

- 对经验公式进行了理论证明,阐明了速率常数的物理意义
- ▶ 简单直观,解释了浓度、温度、压强等对反应速率的影响

缺点

对简单的气体双原子分子反应解释成功,难以解释结构复杂的分子间反应

2. 过渡态理论

1935年,Eyring H、Evans M G 和 Polanyi M 在量子力学基础上提出:反应物相互接近要经一个中间过渡态,即先形成一种活化络合物,后再转化为产物

化学反应中的能量变化

化学反应中能量变化示意图

研究有机反应机理

$$\begin{array}{c} CH_{3} \\ HO^{-} + \\ H^{\text{Intro}} C \xrightarrow{Br} \\ C_{6}H_{13} \end{array}$$

$$\begin{array}{c} CH_{3} \\ C_{6}H_{13} \end{array}$$

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CGH_{13} \end{array}$$

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CGH_{13} \end{array}$$

$$\begin{array}{c} CH_{3} \\ CGH_{13} \\ CGH_{13} \end{array}$$

8.3 化学反应历程

- 1. 基元反应及其速率方程
- ▶ 基元反应 一步完成的反应称基元反应
- > 基元反应的速率方程

以基元反应 $aA + bB \rightarrow cC$ 为例,该反应的速率 方程 $\upsilon = kc^a(A) \cdot c^b(B)$ k: 反应速率常数

质量作用定律

一定温度,<mark>基元反应</mark>的速率与各反应物浓度乘积成正比,各浓度项指数为化学反应方程式中各反应物的计量数

> 基元反应举例

单分子反应: $O_3(g) \rightarrow O_2(g) + O(g)$

双分子反应: $Cl(g) + CH_4(g) \rightarrow HCl(g) + CH_3(g)$

三分子反应: $O(g) + NO(g) + N_2(g) \rightarrow NO_2(g) + N_2(g)$

基元反应速率方程,与反应物组成和比例一致, 可根据反应方程式直接写出

问题:具有与反应物组成一致的速率方程的反应,是 否一定是基元反应? 不一定

2. 复杂反应及其速率方程

> 复杂反应

大多反应都非基元反应,是经历了两个或两个以上基元反应的多步反应,称**复杂反应**,其基元反应的总和,称反应历程

> 复杂反应的速率方程

- 质量作用定律只适用每步基元反应,不适用总反应
- 以反应中最慢一步为总反应的控速步骤,其速率方程以控速步骤的速率方程表示

例如:

$$2NO + 2H_2 \rightarrow N_2 + 2H_2O$$

反应的速率方程 $\upsilon = k c^2(NO) c(H_2)$

表明该反应不是基元反应,可能的反应历程:

(1)
$$2NO + H_2 \rightarrow N_2 + H_2O_2$$

(慢反应)←

(2)
$$H_2O_2 + H_2 \rightarrow 2H_2O$$

(快反应)

3. 反应级数

对一般反应 $aA + bB \rightarrow cC + dD$, 反应速率方程:

$$\upsilon = kc^m(\mathbf{A}) \cdot c^n(\mathbf{B})$$

- m、n 之和: 反应级数,m+n=1,一级反应; m+n=2,称二级反应;
- 反应级数不一定与反应式系数相等,须通过实验测定或理论推导,不能直接由反应式推测得出

> 反应速率常数

$$\upsilon = kc^m(\mathbf{A}) \cdot c^n(\mathbf{B})$$

$$c(A) = c(B) = 1 \text{ mol} \cdot L^{-1}, \quad v = k$$

- 一定温度, k 在数值上等于各反应物为 1 mol·L⁻¹ 时 的反应速率;
- 可作为反应速率大小的量度:

k↑,反应速率较快

k \downarrow ,反应速率较慢

• k 可由实验测定,单位随 $m \times n$ 数值改变

【例题1】对于反应 $2NO + Cl_2 \rightarrow 2NOCl$ 的浓度变化和速率测定数据如下 (50 °C):

序号	c (NO)	c (Cl ₂)	υ (NOCl)
	(mol·L ⁻¹)	$(\text{mol}\cdot L^{-1})$	$(\text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1})$
(I)	0.250	0.250	1.43×10^{-6}
(II)	0.250	0.500	2.86×10^{-6}
(III)	0.500	0.500	1.14×10^{-5}

- (1) 写出该反应的速率方程式;
- (2) 计算 50 ℃ 时该反应的速率常数 k;
- (3) 计算 c (NO) = c (Cl₂) = 0.200 mol·L⁻¹ 时的反应速率

(1) 写出该反应的速率方程式;

序号	c (NO)	c (Cl ₂)	υ (NOCl)
	(mol·L ⁻¹)	$(\text{mol} \cdot L^{-1})$	$(\text{mol}\cdot\text{L}^{-1}\cdot\text{s}^{-1})$
(I)	0.250	0.250	1.43×10^{-6}
(II)	0.250	0.500	2.86×10^{-6}
(III)	0.500	0.500	1.14×10^{-5}

解: (1) 从 (I)(II) 得: $\upsilon \propto c$ (Cl₂)

从 (II)(III) 得: $\upsilon \propto c^2$ (NO)

合并两式可得: $\upsilon \propto c^2$ (NO) c (Cl₂)

该反应速率方程为 $\upsilon = k c^2 \text{ (NO) } c \text{ (Cl}_2\text{)}$

(2) 计算 50 °C 时该反应的速率常数 k;

由三组数据中的任一组,代入速率方程:数据(I)

$$k = \upsilon / [c^2 \text{ (NO) } c \text{ (Cl}_2)] = 1.43 \times / [(0.250)^2 \times 0.250]$$

= $9.15 \times 10^{-5} \text{ L}^2 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$

(3) 计算当 c (NO) = c (Cl₂) = 0.200 mol·L⁻¹ 时的反应速率 $v = k c^2$ (NO) c (Cl₂) = 9.15 × 10⁻⁵ × (0.200)² × 0.200 = 7.32 × 10⁻⁷ mol·L⁻¹·s⁻¹

8.4 影响化学反应速率的因素

- 1. 浓度对化学反应速率的影响
- ➤ 零级反应 反应速率与反应物浓度无关等于常数

对一般零级反应 A → 生成物, 反应速率方程:

$$\upsilon = -\frac{\mathrm{d}c(\mathbf{A})}{\mathrm{d}t} = k$$

如 $c_0(A)$ 、 $c_t(A)$ 分别表示反应物的初始和 t 时浓度,则零级反应浓度—时间关系式:

$$c_t(\mathbf{A}) = c_0(\mathbf{A}) - kt$$

零级反应浓度-时间关系式:

$$c_t(\mathbf{A}) = c_0(\mathbf{A}) - kt$$

零级反应特征:以匀速进行, υ 与浓度 c 或时间 t 无关,反应物在一定时间内将全部耗尽

零级反应的浓度 - 时间图

> 一级反应

对一般的一级反应: B → 生成物

$$\upsilon = -\frac{\mathrm{d}c(\mathbf{B})}{\mathrm{d}t} = k \cdot c(\mathbf{B})$$

如 $c_0(B)$ 、 $c_t(B)$ 分别表示反应物的初始和 t 时浓度,反应速率方程可写为:

$$\frac{\mathrm{d}c(\mathrm{B})}{c(\mathrm{B})} = -k \cdot \mathrm{d}t$$

上式两边积分
$$\int_{c_0(B)}^{c_t(B)} \frac{\mathrm{d}c(B)}{c(B)} = -k \int_0^t \mathrm{d}t$$

$$\int_{c_0(\mathbf{B})}^{c_t(\mathbf{B})} \frac{\mathrm{d}c(\mathbf{B})}{c(\mathbf{B})} = -k \int_0^t \mathrm{d}t$$

积分换对数:

$$\ln \frac{c_t(\mathbf{B})}{c_0(\mathbf{B})} = -kt$$

或:
$$\lg \frac{c_t(\mathbf{B})}{c_0(\mathbf{B})} = -\frac{kt}{2.303}$$

$$\exists \mathbf{R} : \quad \lg c_t(\mathbf{B}) = \lg c_0(\mathbf{B}) - \frac{kt}{2.303}$$

一级反应特征: $\lg c_t(B)$ 与 t 呈直线关系,由直线斜率可算反应速率常数 k

$$\lg \frac{c_t(\mathbf{B})}{c_0(\mathbf{B})} = -\frac{kt}{2.303}$$

一级反应中,反应物进行到一半 $(c_t = 1/2c_0)$,所需时间 $t_{1/2}$ 为: $t_{1/2} = 0.693/k$

 $t_{1/2}$ 为一常数,与浓度无关,称反应半衰期

一级反应半衰期 $t_{1/2} \propto 1/k$:

k↑,反应速率↑,半衰期 *t*_{1/2}↓

k ↓ ,反应速率 ↓ ,半衰期 *t*_{1/2} ↑

若反应半衰期为常数,该反应一定为一级反应 所有<mark>放射性衰变</mark>都为一级反应,过程与温度无关

各类反应级数的实例

	反应级数	反应方程式	速率方程
	零级反应	$N_2O(g) \xrightarrow{Au} N_2(g) + 1/2O_2(g)$	$\upsilon = kc^0(\mathbf{N}_2\mathbf{O}) = k$
	一级反应	$2N_2O_5 \longrightarrow 4NO_2 + O_2$ $CH_3CH_2Cl \longrightarrow CH_2 = CH_2 + HCl$	$\upsilon = k \cdot c(N_2O_5)$ $\upsilon = k \cdot c(CH_3CH_2C1)$
	二级反应	$NO_2 + CO \longrightarrow NO + CO_2$	$\upsilon = k \cdot c(\text{NO}_2) \cdot c(\text{CO})$
	三级反应	$2NO + O_2 \longrightarrow 2NO_2$	$\upsilon = k \cdot c^2(\text{NO}) \cdot c(\text{O}_2)$
5	}数级反应	$CO + Cl_2 \longrightarrow COCl_2$	$\upsilon = k \cdot c(\text{CO}) \cdot c^{3/2}(\text{Cl}_2)$

简单反应的速率公式

级 数	微分式	积分式	k 的单位	半衰期	线性 关系
零级	$\upsilon = -\frac{\mathrm{d}c(\mathbf{A})}{\mathrm{d}t}$ $= k$	$c_t(\mathbf{A}) = c_0(\mathbf{A}) - kt$	[浓度]·[时间] ⁻¹	$c_0(A)/2k$	$c_t(A)$ 对 t
少	$\upsilon = -\frac{\mathrm{d}c(\mathbf{B})}{\mathrm{d}t}$ $= k \cdot c(\mathbf{B})$	$\lg \frac{c_0(\mathbf{B})}{c_t(\mathbf{B})} = \frac{kt}{2.303}$	[时间] ⁻¹	0.693/k	$\lg c_t(\mathbf{B})$ 对 t

2. 温度对化学反应速率的影响

➤ Arrhenius 经验式

1888 年,瑞典化学家 Arrhenius 从大量实验数据

$$k = A \cdot e^{-Ea/RT}$$

其中,k: 反应速率常数; A: 指前因子

 E_a : 反应活化能

上式两边取对数:

$$\ln k = \ln A - \frac{E_a}{RT} \qquad \text{if} \qquad \lg k = \lg A - \frac{E_a}{2.303R} \cdot \frac{1}{T}$$

进一步可写为:

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \quad \text{ if } \quad \lg \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

> 反应活化能

Arrhenius 认为: 当化学反应发生时,反应物 R 需克服一定能量形成一反应过渡态 \mathbf{R}^* ,然后 \mathbf{R}^* 再转化为产物 P,而 $(E_{\mathbf{R}^*}-E_{\mathbf{R}})$ 就是反应活化能 $E_{\mathbf{g}}$:

$$\lg k = \lg A - \frac{E_a}{2.303R} \cdot \frac{1}{T}$$

以 $\lg k - 1/T$ 作图,可求 出反应的活化能 E_a 和常数 A

lgk 与 1/T 的关系图

Arrhenius 公式: $k = A \cdot e^{-Ea/RT}$

$$\lg \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_2 \cdot T_1} \right)$$

可得:

- (1) 温度与反应速率呈指数关系,影响显著;
- (2) T、A 相近的化学反应, E_a 越小,反应速率越大;
- (3) T_1 、 T_2 确定, E_a 越大, k_2/k_1 越大:温度变化相同时,活化能越大的反应,反应速率变化越大

3. 催化剂对反应速率的影响

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

> 催化剂与催化作用

能改变化学反应速率,而自身不发生永久化学变化的物质,称<mark>催化剂</mark>;其改变反应速率的作用,称<mark>催化化</mark>化作用

> 催化剂特征

- 显著改变化学反应速率,但本身质量、组成、化学性质不变
- 不影响产率(化学平衡)
- 催化剂改变了反应路径,降低了活化能
- 用量少,有选择性,易中毒,可再生

> 催化原理

催化剂对反应速率的 影响,要比浓度、压强、 温度显著得多

催化剂能改变反应历 程,降低反应的活化能, 使更多的分子越过活化能 垒成为活化分子,从而提 高反应速率

催化作用使反应活化能降低

> 单相催化与多相催化

催化剂降低活化能的方式,有<mark>单相催化和多相催化</mark> 单相催化

又称均相催化,反应物与催化剂处于同一相,如:

$$2SO_2(g) + O_2(g) \xrightarrow{NO} 2SO_3(g)$$

催化过程:

$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$
 较快反应

$$NO_2(g) + SO_2(g) \longrightarrow NO(g) + SO_3(g)$$
 快反应

多相催化

又称<mark>非均相催化</mark>,反应物与催化剂分属不同的相,主要是固体催化剂催化气相反应和液相反应

多相催化过程

- 反应物被吸附至催化剂表面, 化学键松弛活化
- 反应物在催化剂表面发生化学反应,生成产物
- 产物从催化剂表面解吸附、脱离,向外扩散

例如: 汽车尾气 (NO和CO)的催化转化

$$2NO(g) + 2CO(g) \xrightarrow{\text{Pt, Pd, Rh}} N_2(g) + 2CO_2(g)$$

反应在固相催化剂表面的活性中心上进行,催 化剂分散在陶瓷载体上,表面积很大,活性中心足 够多,尾气可与催化剂充分接触

NO 与 CO 间的催化转化

> 酶催化

生物体内普遍存在的催化反应:底物与酶的活性基团处于相应的空间位置时,形成中间活化物,反应历程的变化,降低活化能,加快反应速率

自然界中氮的循环

固氮

将大气中的氮转变为能被植物直接吸收的氮化物, 称<mark>固氮</mark>, 这是人类长期追求的目标。从化学上看至少有多种可能的方法:

方法
$$N_2(g) + O_2(g) \Longrightarrow 2NO(g)$$

$$K^{\theta}(298 \text{ K}) = 4.5 \times 10^{-31}$$

平衡常数很小,生成 NO 的浓度微不足道, N_2 与 O_2 基本不起反应。除自然界的雷电作用和汽车高温燃烧的尾气外,该反应不能作为室温固氮的实用方法

方法二
$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

从反应的自发性看:

此化学反应: 放热,熵减 $\longrightarrow \Delta_r H < 0$, $\Delta_r S < 0$ 根据 $\Delta_r G = \Delta_r H - T \Delta_r S$,反应可在低温下自发进行

$$K^{\theta}$$
 (298 K) = 6.0 × 10⁵

平衡常数很大,在室温下此反应应当进行得很完全

从平衡观点看:在低温、加压的条件下进行为好

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

但该反应在室温下进行的极慢。因此,实际的 工业化生产是在加热、加压和催化剂的条件下进行:

温度: 400~500℃

压力: $3 \times 10^4 \sim 7 \times 10^4 \text{ kPa}$

催化剂: 铁触媒

化学热力学指出了化学反应的可能性,**化学动力学**解决化学反应的现实性

第八章 小结

- 1. 化学反应速率的表示方法
- 2. 化学反应理论 碰撞理论:活化能;过渡态理论
- 3. 化学反应历程

基元反应:质量作用定律

复杂反应,反应级数

■ 4. 化学反应速率的影响因素

浓度: 零级反应, 一级反应, 二级反应

温度: Arrhenius 公式

催化剂