Some useful constants:

- h (Planck's constant) = 6.626×10^{-34} J-s
- c (Speed of light) = $2.998 \times 10^8 \approx 3 \times 10^8 \text{ m/s}$
- m_e (Mass of electron) = 9.1×10^{-31} kg
- e (Charge on an electron) = 1.6×10^{-19} C
- \hbar (Reduced Planck's constant) = 1.055×10^{-34} J-s

1 Photoelectric effect

• Let the frequency of the incident light on the metal surface be ν , and the work function of the metal be ϕ . The energy of the ejected photon is given by:

$$E = h\nu - \phi$$

Which can be rewritten in terms of the wavelength (λ) and the speed of light (c) as:

$$E = \frac{hc}{\lambda} - \phi$$

In the case where

$$\phi = h\nu_0 = \frac{hc}{\lambda_0}$$

 ν_0 and λ_0 are called the **threshold frequency and wavelength** respectively.

• For a particle of mass m travelling with a velocity v, its (De Broglie) wavelength takes the form:

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

Where p is the linear momentum of the particle in question.

• When an electron of charge -e is accelerated across a potential difference V, it acquires the kinetic energy E = eV. From this, it follows that the *De Broglie wavelength* of the particle is:

$$\lambda = \frac{h}{\sqrt{2m_e eV}}$$

 m_e being the mass of the electron.

2 Schrödinger equation

• The time independent Schrödinger equation for a particle having the wavefunction ψ (in a single dimension) is

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

The left hand side of the above equation is abbreviated to a *single operator* known as the **Hamiltonian**, which represents the **total energy of a particular system**. We now have a compact version of the S.E: $|\hat{H}\psi = E\psi|$

• A wavefunction ψ is said to be **normalised** if its probability density over the entire space is 1. More formally, the following relation must hold

$$\int_{-\infty}^{\infty} \psi^* \psi dx = 1$$

Where ψ^* is the **complex conjugate** of ψ . Note that psi is normalized only for a 1 dimensional case above.

• Suppose that Δx and Δp denotes the uncertainty in the measurement of position and momentum respectively. Heisenberg's uncertainty principle states

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

3 Particle In a Box

1. 1D case:

We consider a box of length L, quantum number n, particle mass m and wavelength of the particle λ

- Acceptable values of linear momentum $p = \frac{nh}{2L}$
- \bullet Solution to the Schrödinger equation for the n^{th} excited state:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

• Permitted energy values:

$$E_n = \frac{n^2 h^2}{8mL^2}$$

The energy of the lowest state (n = 1) is called the **zero-point energy**

2. **2D** case:

A box of dimensions L_x and L_y along the x and y directions is considered, with the quantum numbers n_x and n_y

• Solution to the Schrödinger equation:

$$\psi_{n_x n_y}(x, y) = \sqrt{\left(\frac{4}{L_x L_y}\right)} \sin\left(\frac{n_x \pi x}{L_x}\right) \sin\left(\frac{n_y \pi y}{L_y}\right)$$

• Permissible energy values:

$$E_{n_x n_y} = \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\right) \frac{h^2}{8m}$$

4 Rigid Rotor

1. **2D** case:

We consider here a particle of mass m rotating in a circle of radius r. The moment of inertia of the system is taken to be $I = mr^2$

- Angular momentum $J_z = m_l \hbar$ where $m_l = 0, \pm 1, \pm 2...$
- Permissible energy values $E_n = \frac{n^2 \hbar^2}{2I} = \frac{m_l^2 \hbar^2}{2I}$ where m_l and $n = 0, \pm 1, \pm 2...$

2. **3D** case:

In addition to the previously defined quantities, we introduce l: the **orbital angular momentum** quantum number.

- Permissible energy values $E_l = l(l+1)\frac{\hbar^2}{2mr^2}$ Here, $l=0,1,2\ldots$ and $m_l=-l,(-l+1)\ldots(l-1),l$
- Angular momentum is quantized and given by the values $J = \sqrt{l(l+1)}\hbar$

5 Simple Harmonic Oscillator

Here, we are concerned only with the permissible energy values:

$$E_v = \left(v + \frac{1}{2}\right)h\nu$$

Where ν is the **vibrational frequency** given by $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$. The values of ν include the set of all non-negative integers.

Spectra of Complex Atoms

- Total orbital angular momentum: $L = l_1 + l_2, \dots, |l_1 l_2|$
- Total spin angular momentum: $S = s_1 + s_2, \dots, |s_1 s_2|$
- Total angular momentum: $J = L + S, \dots, |L S|$
- Term symbol: $^{2S+1}L_{J}$ Here, L takes integral values starting from 0, corresponding to the sub-shell, that is 0(s), 1(p), ... etc.
- For a given value of J, there are (2J+1) degenerate states and for a term, (2L+1)(2S+1) states exist.
- Note that all atomic transitions must take place in compliance to the **selection rules**:
 - 1. $\Delta L = 0, \pm 1$
 - $2. \ \Delta S = 0$
 - 3. $\Delta J = 0, \pm 1$ (an exception being the forbidden transition between two levels where J = 0)

To determine the ground state of an atom, we use the following procedure:

- 1. Compute the highest value of S using the above definition
- 2. Similarly, compute the highest value of L
- 3. Using these values, calculate the maximum and minimum values of J. From here, 2 cases arise:
 - (a) Less than $\frac{1}{2}$ filled sub-shell $\implies J_{\text{max}}$
 - (b) Greater than $\frac{1}{2}$ filled sub-shell $\implies J_{\min}$

7 Spectroscopy

Nomenclature of some frequently used symbols:

- 1. $I_0 \rightarrow$ Intensity of incident radiation
- 2. $I \rightarrow$ Intensity of transmitted radiation
- 3. $[C] \rightarrow \text{Concentration}$
- 4. $L \to \text{Path length of radiation through the sample}$
- 5. $\epsilon \to \text{Molar absorption coefficient } \left(= \frac{1}{|C||L|} \right)$
- Absorbance = $A = \log\left(\frac{I_0}{I}\right)$ and transmittance $T = \left(\frac{I}{I_0}\right)$. From this, it can be inferred that $A = -\log T$.

An alternate for of absorbance is $A = \epsilon[C]L$

• The total absorbance of a mixture at a given wavelength λ is

$$A = A_A + A_B$$
$$= \epsilon_A[A]I + \epsilon_B[B]I$$

• The individual absorbance for a mixture of 2 light absorbing species (albeit at two separate wavelengths: λ_1 and λ_2) is obtained by solving a system of 2 simultaneous equations (similar to the one above)

$$[A] = \frac{\epsilon_{B2}A_1 - \epsilon_{B1}A_2}{L(\epsilon_{A1}\epsilon_{B2} - \epsilon_{A2}\epsilon_{B1})}$$
$$[B] = \frac{\epsilon_{A1}A_2 - \epsilon_{A2}A_1}{L(\epsilon_{A1}\epsilon_{B2} - \epsilon_{A2}\epsilon_{B1})}$$

$$[B] = \frac{\epsilon_{A1}A_2 - \epsilon_{A2}A_1}{L(\epsilon_{A1}\epsilon_{B2} - \epsilon_{A2}\epsilon_{B1})}$$

7.0.1 Rotational Spectroscopy

- Rotational constant $B = \frac{\hbar^2}{4\pi I}$
- Energy levels $E_j = hBJ(J+1) = J(J+1)\frac{\hbar^2}{2I}$ In this case J = 0, 1, 2, ... denotes the rotational quantum number, B denotes the rotational constant and $I = \sum m_i r_i^2$, the moment of inertia.
- In the absence of an electric/magnetic field, all rotational levels are (2J+1) fold degenerate.
- Population of molecules follows the **Boltzmann distribution**, ie:

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/kT}$$

Here, E_j indicates the energy level of the $j^{\rm th}$ state.

In the state of thermal equilibrium, the population of any level P_j is given by the relation

$$\frac{P_j}{P_0} = (2J+1)e^{-(hBJ(J+1)/kT)}$$

7.0.2 Vibrational Spectroscopy

- Depth of potential well = **Strength of bond** (in terms of the force constant k)
- The energy levels are equally spaced by a gap of $h\nu$ and the zero point energy is given by $\frac{h\nu}{2}$
- Vibrational energy levels become less widely spaced due to anharmonicity.
- In a molecule having N atoms, the position (degrees of freedom) of all atoms is 3N.
 - 1. Translational: 3
 - 2. Rotational: 2 (linear) or 3 (non-linear)
 - 3. Vibrational: 3N 5 (linear) or 3N 6 (non-linear)

7.0.3 IR Spectroscopy

- Below 1500cm⁻¹: fingerprint region
- When IR radiation is absorbed, the intensity of transmitted radiation **decreases** and hence a **dip** in the spectrum

Some important peaks in the IR spectrum:

IR spectrum	
Functional group	Typical absorption
	$({\rm cm}^{-1})$
=C-H stretch	3000-3100
N-H stretch	3300-3500
O-H stretch	3550-3200
C=C stretch	1680-1620
C=C bending	1500-1700
C=O stretch	≈ 1700

It must be noted that the O-H stretching frequency **decreases** due to **H-bonding** (ie - the spectral graph broadens due to this)