

Assíntotas Verticais

A reta x = a é uma assíntota vertical do gráfico de y = f(x) se pelo menos uma das seguintes afirmações for verdadeira:

$$\mathbf{i.} \ \lim_{x \to a^+} f(x) = +\infty;$$

iii.
$$\lim_{x \to a^{-}} f(x) = +\infty$$
;

ii.
$$\lim_{x\to a^+} f(x) = -\infty$$
;

iv.
$$\lim_{x \to a^{-}} f(x) = -\infty$$
.

Exemplo 2:

Esboce o gráfico de uma função f que satisfaça as seguintes condições:

$$\lim_{x\rightarrow-2^{+}}f\left(x\right)=-\infty; \\ \lim_{x\rightarrow-2^{-}}f\left(x\right)=3; \\ \lim_{x\rightarrow0^{-}}f\left(x\right)=1; \\ \lim_{x\rightarrow0^{+}}f\left(x\right)=2; \\ \lim_{x\rightarrow3}f\left(x\right)=-2; \\ \lim_{x\rightarrow\pm\infty}f\left(x\right)=0.$$

Interpretando os dados:

$$\lim_{x \to -2^+} f(x) = -\infty$$

$$\lim_{x \to -2^-} f(x) = 3$$

 $\lim_{x \to -2^+} f(x) = -\infty$ $\lim_{x \to -2^-} f(x) = 3$ $\lim_{x \to -2^-} f(x) = 3$ x = -2.

$$\lim_{x \to 0^{-}} f(x) = 1$$

$$\lim_{x \to 0^{+}} f(x) = 2$$

$$\lim_{x \to 0^+} f(x) = 2$$

f não é continua em x=0, pois o limite bilateral não existe.

$$\lim_{x \to 3} f(x) = -2$$

 $\lim_{x \to 3} f(x) = -2 \qquad \Longrightarrow \quad \text{O limite bilateral existe.}$

f será contínua em x = 3 se f(3) = -2, pois $\lim_{x \to 3} f(x) = -2 = f(3).$

Exemplo. Sejam f e g as funções ilustradas nas Figura 1 e Figura 2, respectivamente. Use as propriedades de limites para investigar, de forma detalhada, se existe o limite

$$L = \lim_{x \to -3} [(f(x) + 1) \sqrt[3]{g(x)}].$$

Propriedades de Limites

Se $\lim f(x)$ e $\lim g(x)$ existirem, então:

- 1. $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x)$;
- 2. $\lim [k.f(x)] = k. \lim f(x)$;
- 3. $\lim [f(x).g(x)] = \lim f(x).\lim g(x)$;
- 4. $\lim \left(\frac{f\left(x\right)}{g\left(x\right)}\right) = \frac{\lim f\left(x\right)}{\lim g\left(x\right)}$, se $\lim g\left(x\right) \neq 0$;
- 5. $\lim [f(x)]^n = (\lim f(x))^n$, com $n \in \mathbb{R}$;
- 6. $\lim (\log_a f(x)) = \log_a (\lim f(x))$, se $\lim f(x) > 0$;
- 7. $\lim [g(x)]^{f(x)} = (\lim g(x))^{(\lim f(x))};$
- 8. Se $\lim f(x) = 0$ e $g(x) \le k$, com $k \in \mathbb{R}$, então $\lim [f(x).g(x)] = 0$.

Exemplo. Sejam f e g as funções ilustradas nas Figura 1 e Figura 2, respectivamente. Use as propriedades de limites para investigar, de forma detalhada, se existe o limite $L = \lim_{x \to -3} \left[(f(x) + 1) \sqrt[3]{g(x)} \right]$.

$$L_{1} = \lim_{x \to -3^{+}} \left[(f(x) + 1) \sqrt[3]{g(x)} \right] = \left(\lim_{x \to -3^{+}} f(x) + \lim_{x \to -3^{+}} 1 \right) \sqrt[3]{\lim_{x \to -3^{+}} g(x)} = (0 + 1) \sqrt[3]{8} = 2$$

$$L_{2} = \lim_{x \to -3^{-}} \left[(f(x) + 1) \sqrt[3]{g(x)} \right] = \left(\lim_{x \to -3^{-}} f(x) + \lim_{x \to -3^{-}} 1 \right) \sqrt[3]{\lim_{x \to -3^{-}} g(x)} = (1 + 1) \sqrt[3]{1} = 2$$

Conclusão: Como limites laterais existem e são iguais, então o limite L existe e é igual a 2.