$a \mid b$

$$a \mid b \ (a, b \in \mathbb{Z})$$

 $a \mid b \ (a, b \in \mathbb{Z})$: a divides b.

 $a \mid b \ (a, b \in \mathbb{Z})$: a divides b. a is a divisor of b. $a\mid b\ (a,b\in\mathbb{Z})$: $a\ {
m divides}\ b.$ $a\ {
m is}\ a\ {
m divisor}\ {
m of}\ b.$ $b\ {
m is}\ a\ {
m multiple}\ {
m of}\ a.$

 $a\mid b\ (a,b\in\mathbb{Z})$: a divides b. a is a divisor of b. b is a multiple of a. i.e.

 $a\mid b\ (a,b\in\mathbb{Z})$: a divides b. a is a divisor of b. b is a multiple of a. $i.e.\ \exists k\in\mathbb{Z}$ $a \mid b \ (a, b \in \mathbb{Z})$: a divides b. a is a divisor of b. b is a multiple of a. $i.e. \exists k \in \mathbb{Z} \ s.t. \ b = ak$

 $a \mid b \ (a, b \in \mathbb{Z})$: a divides b. a is a divisor of b. b is a multiple of a. $i.e. \exists k \in \mathbb{Z} \ s.t. \ b = ak$

• a | b

 $a \mid b \ (a, b \in \mathbb{Z})$: a divides b. a is a divisor of b. b is a multiple of a. $i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak$

 \bullet $a \mid b, b \mid c$

```
a \mid b \ (a, b \in \mathbb{Z}) : a divides b.

a is a divisor of b.

b is a multiple of a.

i.e. \exists k \in \mathbb{Z} \text{ s.t. } b = ak
```


• $a \mid b, b \mid c \Rightarrow a \mid c$ Proof

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \text{ s.t. } b = ak$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$
 • Proof $ex) 2 \mid 6$

```
a \mid b \ (a, b \in \mathbb{Z}) : a \text{ divides } b.

a \text{ is a divisor of } b.

b \text{ is a multiple of } a.

i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak
```

• $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18$

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \text{ s.t. } b = ak$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$
 • Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- a | b

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \text{ s.t. } b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- \bullet $a \mid b, b \mid a$

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \ \text{s.t.} \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof
- a | b

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof
- \bullet $a \mid b, a \mid c$

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof
- $a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$ Proof

$$a\mid b\ (a,b\in\mathbb{Z})$$
 : $a\ \text{divides}\ b.$ $a\ \text{is a divisor of}\ b.$ $b\ \text{is a multiple of}\ a.$ $i.e.\ \exists k\in\mathbb{Z}\ s.t.\ b=ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof
- $a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$ Proof $ex) \mid b \mid c$

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : $a \text{ divides } b$.
 $a \text{ is a divisor of } b$.
 $b \text{ is a multiple of } a$.
 $i.e. \ \exists k \in \mathbb{Z} \ \text{s.t.} \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof
- $a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$ Proof ex) $3 \mid 6, 3 \mid 21$

$$a \mid b \ (a, b \in \mathbb{Z})$$
 : a divides b .
 a is a divisor of b .
 b is a multiple of a .
 $i.e. \ \exists k \in \mathbb{Z} \ s.t. \ b = ak$

- $a \mid b, b \mid c \Rightarrow a \mid c$ Proof $ex) 2 \mid 6, 6 \mid 18 \Rightarrow 2 \mid 18$
- $a \mid b, b \mid a \Rightarrow a = \pm b$ Proof
- $a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$ Proof ex) $3 \mid 6, 3 \mid 21 \Rightarrow 3 \mid (6 \pm 21)$

 $\bullet \ a \mid b, \ b \mid c \Rightarrow a \mid c$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$

$$b = ak_1$$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$

$$b=ak_1, c=bk_2$$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$

$$b=ak_1,c=bk_2\ (k_1,k_2\in\mathbb{Z})$$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$

$$b = ak_1, c = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $c = (ak_1)k_2$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$

$$b = ak_1, c = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $c = (ak_1)k_2 = a(k_1k_2)$

•
$$a \mid b, b \mid c \Rightarrow a \mid c$$

$$b = ak_1, c = bk_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $c = (ak_1)k_2 = a(k_1k_2)$
Let $k_3 = k_1k_2$

 $\bullet \ a \mid b, \ b \mid c \Rightarrow a \mid c$

$$b = ak_1, c = bk_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $c = (ak_1)k_2 = a(k_1k_2)$
Let $k_3 = k_1k_2$
 $c = ak_3$

 $\bullet \ a \mid b, \ b \mid c \Rightarrow a \mid c$

$$b = ak_1, c = bk_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $c = (ak_1)k_2 = a(k_1k_2)$
Let $k_3 = k_1k_2$
 $c = ak_3$
 $\therefore a \mid c$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1$$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2$$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b=ak_1,a=bk_2\ (k_1,k_2\in\mathbb{Z})$$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$
 $a = ak_1k_2$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$
 $a = ak_1k_2$
 $a(k_1k_2 - 1) = 0$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$
 $a = ak_1k_2$
 $a(k_1k_2 - 1) = 0$
 $a = 0 \text{ or } k_1k_2 = 1$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$
 $a = ak_1k_2$
 $a(k_1k_2 - 1) = 0$
 $a = 0 \text{ or } k_1k_2 = 1$
 $(a = 0 \text{ and } b = 0) \text{ or } k_1 = \pm 1$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$
 $a = ak_1k_2$
 $a(k_1k_2 - 1) = 0$
 $a = 0 \text{ or } k_1k_2 = 1$
 $(a = 0 \text{ and } b = 0) \text{ or } k_1 = \pm 1(\because k_1, k_2 \in \mathbb{Z})$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $a = (ak_1)k_2 = ak_1k_2$
 $a = ak_1k_2$
 $a(k_1k_2 - 1) = 0$
 $a = 0 \text{ or } k_1k_2 = 1$
 $(a = 0 \text{ and } b = 0) \text{ or } k_1 = \pm 1(\because k_1, k_2 \in \mathbb{Z})$
 $(a = 0 \text{ and } b = 0) \text{ or } a = \pm b$

•
$$a \mid b, b \mid a \Rightarrow a = \pm b$$

$$b = ak_1, a = bk_2 (k_1, k_2 \in \mathbb{Z})$$

$$a = (ak_1)k_2 = ak_1k_2$$

$$a = ak_1k_2$$

$$a(k_1k_2 - 1) = 0$$

$$a = 0 \text{ or } k_1k_2 = 1$$

$$(a = 0 \text{ and } b = 0) \text{ or } k_1 = \pm 1(\because k_1, k_2 \in \mathbb{Z})$$

$$(a = 0 \text{ and } b = 0) \text{ or } a = \pm b$$

$$\therefore a = \pm b$$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

$$b = ak_1$$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

$$b=ak_1, c=ak_2$$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

$$b=ak_1,c=ak_2\ (k_1,k_2\in\mathbb{Z})$$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

$$b = ak_1, c = ak_2 (k_1, k_2 \in \mathbb{Z})$$

 $b \pm c = a(k_1 \pm k_2)$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

$$b = ak_1, c = ak_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $b \pm c = a(k_1 \pm k_2)$
Let $k_3 = k_1 \pm k_2$

•
$$a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$$

$$b = ak_1, c = ak_2 \ (k_1, k_2 \in \mathbb{Z})$$

 $b \pm c = a(k_1 \pm k_2)$
Let $k_3 = k_1 \pm k_2$
 $b \pm c = ak_3$

• $a \mid b, a \mid c \Rightarrow a \mid (b \pm c)$

$$b = ak_1, c = ak_2 (k_1, k_2 \in \mathbb{Z})$$

 $b \pm c = a(k_1 \pm k_2)$
Let $k_3 = k_1 \pm k_2$
 $b \pm c = ak_3$
 $\therefore a \mid (b \pm c)$

Github:

https://min7014.github.io/math20201209001.html

Click or paste URL into the URL search bar, and you can see a picture moving.