Derivation of the back propagation rule

Stephen J Eglen

October 29, 2020

Notation 1

In the following notation, pay attention to the subscript, as it tells you whether we refer to input (i), hidden (j) or output (k) units. I also use p, q and r for each of the three layers when talking about a specific connection. Although in principal each hidden and output neuron can have a bias unit, we often assume it is yet another input (which does not receive input) and so biases are omitted here.

Term	Meaning
\overline{x}	Total input to a unit
z	Output of a unit
i, p	Subscript for input units
j,q	Subscript for hidden units
k, r	Subscript for output units
w_{ij}	Weight from input unit i to hidden unit j
w_{ik}	Weight from hidden unit j to output unit k
Δw_{ij}	Weight change from unit i to unit j

Calculating Network Activation 1.1

We will train the network to learn the association between given inputs z_i and their desired outputs t_k . Unit activations, x_i , and outputs, z_i , of hidden layer units are calculated by:

Hidden layer
$$x_j = \sum_i w_{ij} z_i$$
 (1)

$$z_j = g(x_j) \tag{2}$$

$$z_{j} = g(x_{j})$$
 (2)
Output layer $x_{k} = \sum_{j} w_{jk} z_{j}$ (3)

$$z_k = g(x_k) \tag{4}$$

Error function
$$E = \frac{1}{2} \sum_{k} (t_k - z_k)^2$$
 (5)

 $g(\cdot)$ is some transfer function, typically sigmoidal or the identity. We wish to make a learning rule:

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$$

Updating weights from hidden to output layer, w_{jk}

If we change any weight w_{jk} , the only activation that will change is z_k , so $\frac{\partial E}{\partial w_{ik}}$ only involves one output unit, k. So, from 5:

$$\frac{\partial E}{\partial w_{jk}} = -(t_k - z_k) \frac{\partial z_k}{\partial w_{jk}}$$

$$\frac{\partial z_k}{\partial w_{jk}} = g'(x_k) \frac{\partial x_k}{\partial w_{jk}} = g'(x_k) z_j \quad \text{(from 3, 4)}$$

$$\frac{\partial E}{\partial w_{jk}} = -(t_k - z_k) g'(x_k) z_j$$
Let
$$\delta_k = g'(x_k) (t_k - z_k)$$
So
$$\frac{\partial E}{\partial w_{jk}} = -\delta_k z_j$$

1.3 Updating weights from input to hidden layer, w_{ij}

If we change any weight w_{ij} , this can change the activation of hidden unit z_j and so affect all output layer units, not just one output unit.

$$\frac{\partial E}{\partial w_{ij}} = -\sum_{k} (t_k - z_k) \frac{\partial z_k}{\partial w_{ij}}$$

Apply the chain rule to get the derivative

$$\frac{\partial z_k}{\partial w_{ij}} = \frac{\partial z_k}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}}$$

$$\frac{\partial z_k}{\partial z_j} = g'(x_k) \frac{\partial x_k}{\partial z_j} = g'(x_k) w_{jk} \qquad \text{from 3, 4}$$

$$\frac{\partial z_j}{\partial w_{ij}} = g'(x_j) \frac{\partial x_j}{\partial w_{ij}} = g'(x_j) z_i \qquad \text{from 1, 2}$$

Plugging them all back together we get:

$$\frac{\partial E}{\partial w_{ij}} = -\sum_{k} (t_k - z_k) \times g'(x_k) w_{jk} \times g'(x_j) z_i$$

$$= -z_i g'(x_j) \sum_{k} (t_k - z_k) g'(x_k) w_{jk}$$

$$= -z_i g'(x_j) \sum_{k} \delta_k w_{jk}$$
Let
$$\delta_j = g'(x_j) \sum_{k} \delta_k w_{jk}$$

$$\frac{\partial E}{\partial w_{ij}} = -\delta_j z_i$$

So, errors **back-propagate**: travel in opposite direction to activity to generate internal errors δ_i .

References