Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Prof. Dr. Christof Schütte, Lasse Hinrichsen

2. Übung zur Vorlesung

Computerorientierte Mathematik I

WS 2020/2021

http://numerik.mi.fu-berlin.de/wiki/WS_2020/CoMaI.php

Abgabe: Do., 3. Dezember 2020, 12:15 Uhr

1. Aufgabe (4 TP)

Führen Sie die folgenden Rechenaufgaben mit Dualzahlen aus, ohne in das Dezimalsystem umzurechnen:

- a) $0.1100101_2 \cdot 10101.111_2 = ?$
- b) $\frac{10_2}{110_2} + \frac{101_2}{10100_2} = ?$

2. Aufgabe (4 TP)

Beweisen oder widerlegen Sie die folgenden Aussagen:

- a) Jeder endliche Dualbruch ist auch ein endlicher Dezimalbruch.
- b) Jeder endliche Dezimalbruch ist auch ein endlicher Dualbruch.

len(ar)= 2

10

3. Aufgabe (6 PP)

In dieser Aufgabe sollen Sie in Python eine Funktion implementieren, die ganze Zahlen im Dezimalsystem als Zahlen im Dualsystem darstellt. Gehen Sie dabei in mehreren Schritten vor:

a) Implementieren Sie eine Funktion ntobasetwo(n, c), die eine natürliche Zahl $n \in \mathbb{N}$ in eine Binärzahl der Länge c umwandelt.

Als Rückgabewert wird eine Liste b der Länge c erwartet, sodass

$$n = \sum_{i=0}^{c-1} b_i 2^i$$

sowie $b_i \in \{0, 1\}$ für alle $i \in \{0, \dots, c-1\}$ gilt.

Für den Fall, dass n nicht als Binärzahl der Länge c dargestellt werden kann, soll Ihr Programm das Ergebnis entsprechend abschneiden. Sprich, falls $n = \sum_{i=0}^{m} b_i 2^i$ mit m > c gilt, sollen nur die b_i mit $i \in \{0, \ldots, c-1\}$ zurückgegeben werden.

- b) Implementieren Sie eine Funktion complement (b), die das Zweierkomplement einer Binärzahl entsprechend der Vorlesung berechnet. Dabei wird als Eingabe eine Liste b erwartet mit $b_i \in \{0, 1\}$. Der Rückgabewert soll auch eine Liste \hat{b} mit $\hat{b}_i \in \{0, 1\}$ sein, sodass b und \hat{b} dieselbe Länge haben.
- c) Implementieren Sie eine Funktion ztobasetwo(z, c), die eine ganze Zahl $z \in \mathbb{Z}$ in eine Binärzahl in Form einer Liste der Länge c umwandelt, wobei negative Zahlen mit Hilfe des Zweierkomplements realisiert werden. Verwenden Sie dabei die Funktionen aus den vorangegangenen Teilaufgaben.

Dokumentieren und testen Sie Ihren Code!

Wichtig: Verwenden Sie keine der in Python (oder Python-Bibliotheken) vordefinierten Funktionen zur direkten Umwandlung zwischen Zahlensystemen! Sie können diese aber nutzen, um Ihren Code zu testen.

Hinweis: Eventuell sind die Funktionen numpy.mod (oder der % Operator), numpy.floor oder numpy.ceil aus der Numpy-Bibliothek für Sie hilfreich.

4. Bonusaufgabe (Quiz) (1 Bonus TP/PP)

Formulieren Sie eine Frage zur Vorlesung. Falls Sie die Antwort wissen, geben Sie die richtige Antwort und 3 falsche Antwortmöglichkeiten an.

Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

1. Aufgabe (4 TP)

Führen Sie die folgenden Rechenaufgaben mit Dualzahlen aus, ohne in das Dezimalsystem umzurechnen:

a) $0.1100101_2 \cdot 10101.111_2 = ?$

b)
$$\frac{10_2}{110_2} + \frac{101_2}{10100_2} = ?$$

2. Aufgabe (4 TP)

Beweisen oder widerlegen Sie die folgenden Aussagen:

- a) Jeder endliche Dualbruch ist auch ein endlicher Dezimalbruch.
- b) Jeder endliche Dezimalbruch ist auch ein endlicher Dualbruch.

