Université de Genève Section de Mathématiques A. Karlsson

ANALYSE II (Analyse Complexe) 2014 - 2015 Série d'exercices 2

1. Démontrer qu'une application $f: \mathbb{C} \to \mathbb{C}$ de la forme

$$f(z) = \lambda z + \mu \bar{z}$$

est \mathbb{C} -linéaire (i.e. $f(az) = af(z), a \in \mathbb{C}$) si et seulement si $\mu = 0$.

2. Décomposer la fonction $f(z) = z^3 + z$ en partie réelle et imaginaire f(x+iy) = u(x,y) + iv(x,y).

Calculer les dérivées partielles et vérifier les équations de Cauchy–Riemann.

- 3. Soit $u: \mathbb{R}^2 \to \mathbb{R}$ définie par $u(x,y) = x^2 y^2$. Montrer que u est une fonction harmonique. Existe-t-il une fonction $f: \mathbb{C} \to \mathbb{C}$ holomorphe dont u est la partie réelle? Mêmes questions pour $\tilde{u}(x,y) = x^2 + y^2$.
- 4. Parmi les fonctions suivantes de \mathbb{C} dans \mathbb{C} , lesquelles sont dérivables au sens complexe $(z = x + iy; x, y \in \mathbb{R})$?

(a)
$$x^4y^5 + ixy^3$$
, (b) $y^2 \sin x + iy$.

5. Pour $a, c \in \mathbb{R}$ et $b \in \mathbb{C}$ considérons l'équation

$$az\bar{z} + b\bar{z} + \bar{b}z + c = 0.$$

Montrer que cette équation représente un cercle dans \mathbb{C} si $a \neq 0$, $|b|^2 > ac$. Discuter le cas a = 0. Que se passe-t-il si $|b|^2 < ac$?

La transformation de Cayley $f: \mathbb{C} \setminus \{1\} \to \mathbb{C} \setminus \{1\}$ est définie par la formule suivante :

$$f(z) = \frac{z+1}{z-1}.$$

Démontrer que l'image d'un cercle par f est de nouveau un cercle (ou une droite). Déterminer son centre et son rayon.

- 6. Soit $u(x,y) = x^4 6x^2y^2 + y^4$ donnée. Trouver toute les fonctions v(x,y) qui satisfont partout avec u(x,y) les équations de Cauchy–Riemann.
- 7. Soit f une fonction de \mathbb{C} dans \mathbb{C} qui est polynomiale en x et y pour z=x+iy. Montrer que f est holomorphe si et seulement si c'est un polynôme en z.