Course 3. Schema Refinement

Good designs / bad designs

Data represented by schemas generally have application-dependent constraints relating to attribute values.

Example: Consider the following *MovieList* relation:

Title	Director	Cinema	Phone	Time
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings 3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:00
The Lord of the Rings 3	Jackson	Odeon	442222	14:00
War Horse	Spielberg	Odeon	442222	16:30

Figure 3.1 *MovieList* relation instance

Data stored by this relation respect the following constraints:

- Each movie has one director
- Each cinema has one phone number
- Each cinema screens one movie at a time

Common problems if a design is bad:

- **Insertion anomaly**: We can't store information about a new movie if the screening place and time are not known
- **Deletion anomaly**: If we delete all movies directed by Peter Jackson, we lose information about *Cinema City* cinema
- **Update anomaly**: If the phone number of a cinema changes, we have to be careful of inconsistent updates

Usually, we can refine a bad schema by *decomposing* it into multiple "good" ones.

Movies		_	
Title	Director	Cinema	
The Hobbit	Jackson		T) (
The Lord of the Rings 3	Jackson	Cinema	Phone
Adventures of Tintin	Spielberg	Cinema City	441111
War Horse	Spielberg	Odeon	442222

Screens		
Cinema	Time	Title
Cinema City	11:30	The Hobbit
Cinema City	14:30	The Lord of the Rings 3
Odeon	11:00	Adventures of Tintin
Odeon	14:00	The Lord of the Rings 3
Odeon	16:30	War Horse

Figure 3.2 Decomposition of *MovieList* relation

Refined schema allows:

- insertions of new movies without knowing their screening details
- deletions of movies without losing information about cinemas
- a single record to be updated to change a cinema's phone number

There are two main questions:

- How to determine whether a schema design is "good" or "bad"?
- How to transform a bad design into a *good* one?

The theory of *functional dependencies* provides a systematic approach to address these questions. This theory was introduced by E.F. Codd in: "A relational model for large shared data banks", Com. of the ACM, 13(6), 1970, pp.377-387.

Functional dependencies

Functional dependencies (FDs) are constraints on schemas that specify that the values for a certain set of attributes determine unique values for another set of attributes

Let α and β denote subsets of attributes of a relational schema R. We use:

$$\alpha \rightarrow \beta$$

to denote that α functionally determines β (or β functionally depends on α)

In our previous example (*MovieList* relation) we can identify the following functional dependencies:

- 1. Title \rightarrow Director
- 2. Cinema \rightarrow Phone
- 3. Cinema, Time \rightarrow Title

Definition. The functional dependency $\alpha \to \beta$ holds on R if and only if for any relation instance of R, whenever two tuples t_1 and t_2 agree on the attributes α , they also agree on the attributes β .

That is,

$$\pi_{\alpha}(t_1) = \pi_{\alpha}(t_2) \implies \pi_{\beta}(t_1) = \pi_{\beta}(t_2)$$

Note: $\pi_{\alpha}(t)$ denote the projection of attributes α of tuple t

Let r be a relation instance of relation schema R

We are saying that r satisfies **FD** $\alpha \to \beta$ if for every pair of tuples t_1 and t_2 in r such that $\pi_{\alpha}(t_1) = \pi_{\alpha}(t_2)$, it is also true that $\pi_{\beta}(t_1) = \pi_{\beta}(t_2)$. Thus, a **FD** f holds on R if and only if for any relation instance r of R, r satisfies f

r is said to **violate** a FD f if r does not satisfy f. r is said to be a **legal instance of R** if r satisfies all FDs that hold on R.

A FD $\alpha \rightarrow \beta$ is a **trivial FD** if $\alpha \supseteq \beta$; otherwise it is a **non-trivial FD**

Example. Relation Movie(Title, Director, Composer). Let r be a legal relation instance of Movie as shown:

Title	Director	Composer
Schindler's List	Spielberg	Williams
Saving Private Ryan	Spielberg	Williams
North by Northwest	Hitchcock	Herrmann
Angela's Ashes	Parker	Williams
Vertigo	Hitchcock	Herrmann

Figure 3.3. *Movie* relation instance

The functional dependency $composer \rightarrow director$ does not hold on Movie. At the same time, r satisfies the FD $director \rightarrow composer$, but we cannot conclude that $director \rightarrow composer$ holds on Movie!

Conclusion: based on legal instances of R we can tell which FDs do not hold on R, but we can't deduce which non-trivial FDs hold.

Implication Problem: Given a set of functional dependencies F (that hold on R) and a functional dependency f, does f also hold on R? F **logically implies** (**or implies**) f, denoted by $F \Rightarrow f$, if every relation instance f of f that satisfies the FDs f also satisfies the FD f

Example: In *MovieList*, we have the following predefined set of functional dependencies:

$$F = \{ Title \rightarrow Director$$

$$Cinema \rightarrow Phone$$

$$Cinema, Time \rightarrow Title \}$$

Does Cinema, Time \rightarrow Director or Time \rightarrow Director also hold?

Let F & G denote sets of functional dependencies, and f denote a functional dependency. More generally, $F \Rightarrow G$ if $F \Rightarrow g$ for each $g \in G$.

The **closure of F** (denoted by F^+) is the set of all functional dependencies implied by F; that is,

$$F^+ = \{f \mid F \Longrightarrow f\}$$

\Two sets of functional dependencies, F and G, are **equivalent** (denoted by $F \equiv G$) if $F^+ = G^+$ (i.e., $F \Rightarrow G$ and $G \Rightarrow F$)

Axioms for Functional Dependencies

= a collection of formal rules used to derive a functional dependency from a set of functional dependencies

Armstrong's Axioms: Let α , β , $\gamma \subseteq R$

Reflexivity: If $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$

Augmentation: If $\alpha \rightarrow \beta$, then $\alpha \gamma \rightarrow \beta \gamma$

Transitivity: If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

Armstrong's Axioms are both sound and complete

Sound: Any derived FD is implied by F

Complete: All FDs in F⁺ can be derived

Problem: Consider R(A, B, C, D, E) with 3 functional dependencies:

$$F = \{A \rightarrow C; B \rightarrow C; CD \rightarrow E\}.$$

Show that $F \Rightarrow AD \rightarrow E$

Solution:

- 1. $A \rightarrow C$ (given)
- 2. AD \rightarrow CD (augmentation with (1))
- 3. $CD \rightarrow E$ (given)
- 4. AD \rightarrow E (transitivity with (2) and (3))

Additional Inference Rules

Union: If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$

Decomposition: If $\alpha \to \beta$, then $\alpha \to \beta$ ' for any β ' $\subseteq \beta$

Superkeys, Keys & Prime Attributes

A set of attributes α is a superkey of schema R (with FDs F) if $F \Rightarrow \alpha \rightarrow R$.

A set of attributes is a key of schema R if

- (1) α is a superkey, and
- (2) no proper subset of $\boldsymbol{\alpha}$ is a superkey

(i.e., for each
$$\beta \subset \alpha$$
, $\beta \to R \notin F^+$)

An attribute $A \in R$ is a prime attribute if A is contained in some key of R; otherwise, it is a nonprime attribute.

Example: Consider again *MovieList* (Title, Director, Cinema, Phone, Time) with functional dependencies set:

- (1) Cinema, Time \rightarrow Title
- (2) Cinema \rightarrow Phone
- (3) Title \rightarrow Director

{Cinema, Time} is the only key of MovieList.

Cinema and *Time* are the only prime attributes in *MovieList*.

Any superset of {Cinema; Time} in R is a superkey of MovieList.

Attribute Closure

Computing F^+ for a set of FDs F is not efficient as the size of F^+ could be exponentially large! More efficient to compute the closure of a set of attributes

Let $\alpha \subseteq R$ and F be a set of FDs that hold on R. The closure of α (with respect to F), denoted by α^+ , is the set of attributes that are functionally determined by α with respect to F; i.e.,

$$\alpha^+ = \{A \in R \mid F \Rightarrow \alpha \rightarrow A\}$$

Note that $F \Rightarrow \alpha \rightarrow \beta$ if and only if $\beta \subseteq \alpha^+(w.r.t. F)$

Algorithm to compute attribute closure:

```
Input: \alpha, F

Output: \alpha^+ (w.r.t. F)

Compute a sequence of sets of attrs \alpha_0, \alpha_1,... \alpha_k, \alpha_{k+1} as follows: \alpha_0 = \alpha
\alpha_{i+1} = \alpha_i \, \cup \, \gamma \text{ such that there is some FD}
\beta \! \to \! \gamma \, \in \, \text{F and } \beta \, \subseteq \, \alpha_i

Terminate the computation once \alpha_{k+1} = \alpha_k for some k Return \alpha_k
```

Problem: Given $F = \{A \rightarrow C; B \rightarrow C; CD \rightarrow E\}$, show that $F \Rightarrow AD \rightarrow E$.

Solution

i	$\alpha_{\mathbf{i}}$	FD used
0	AD	given input
1	ACD	A→C
2	ACDE	$CD \rightarrow E$
3	ACDE	none

So $AD^+ = ACDE$. Since $E \in AD^+$, therefore $F \Rightarrow AD \rightarrow E$

Schema Decompositions

The **decomposition of schema R** is a set of schemas $\{R_1, R_2, ..., R_n\}$ such that each $R_i \subseteq R$ and $R = \bigcup R_i$. If r is a relation of R, then r is decomposed into $\{r_1, r_2, ..., r_n\}$, where each $r_i = \pi_{R_i}$ (r)

Example:

```
{ (Cinema, Time, Title),
(Title, Director),
(Cinema, Phone)}
```

is a decomposition of: *MovieList*(Title, Director, Cinema, Phone, Time)

Properties of schema decomposition:

- 1. Decomposition must preserve information
 - o Data in original relation ≡ Data in decomposed relations

- o Crucial for correctness!
- 2. Decomposition should preserve FDs
 - o Functional dependencies in original schema ≡ functional dependencies in decomposed schemas
 - o Facilitates checking of functional dependency violations

Lossless - Join Decomposition

It is important that a decomposition preserves information; i.e., we can reconstruct r from joining its projections $\{r_1, r_2, ..., r_n\}$. Note that if $\{R_1, R_2, ..., R_n\}$ is a decomposition of R, then for any relation r of R, it is always true that

$$r \subseteq \pi_{R1}(r) \otimes \pi_{R2}(r) \otimes ... \otimes \pi_{Rn}(r)$$

A decomposition of R (with functional dependencies set F) into $\{R_1,R_2,...,R_n\}$ is a lossless-join decomposition with respect to F if

$$\pi_{R1}(r) \otimes \pi_{R2}(r) \otimes ... \otimes \pi_{Rn}(r) = r$$

for every relation r of R that satisfies F.

Example. Consider the decomposition of R(A,B,C) into $\{R_1(AC), R_2(BC)\}$

Since $r \subset r_1 \otimes r_2$, the above decomposition is not lossless-join A decomposition that is not lossless-join is called a lossy decomposition

How to determine if $\{R_1, R_2\}$ is a lossless-join decomposition of R?

Theorem: The decomposition of R (with FDs F) into $\{R_1, R_2\}$ is lossless with respect to F if and only if:

$$F \Rightarrow R_1 \cap R_2 \rightarrow R_1$$
 or $F \Rightarrow R_1 \cap R_2 \rightarrow R_2$

How to decompose R into $\{R_1, R_2\}$ such that it is a lossless-join decomposition?

Corollary: If $\alpha \rightarrow \beta$ holds on R and $\alpha \cap \beta = \emptyset$, then the decomposition of R into $\{R-\beta, \alpha\beta\}$ is a lossless-join decomposition

Example. Consider R(A,B,C) with FDs $F = \{A \rightarrow B\}$

The decomposition {AB, AC} has a lossless join since AB \cap AC = A and A \rightarrow AB

The decomposition {AB, BC} is not lossless join w.r.t. F since AB \cap BC = B and neither B \rightarrow AB nor B \rightarrow BC holds on R.

Theorem: If $\{R_1, R_2\}$ is a lossless-join decomposition of R, and if $\{R_{1,1}, R_{1,2}\}$ is a lossless-join decomposition of R_1 , then $\{R_{1,1}, R_{1,2}, R_2\}$ is a lossless-join decomposition of R:

Figure 3.4 First step of decomposing *MovieList* relation, based on $Title \rightarrow Director$ functional dependency

		Cinema	-Screens		
		Cinema	Phone	Time	Title
Movie		Cine. Ci	y 441111	11:30	The Hobbit
Title	Director	Cine. Ci	ty 441111	14:30	The Lord of the Rings 3
The Hobbit	Jackson	Odeon	442222	11:30	Adventures of Tintin
The Lord of the Rings 3	Jackson	1			
Adventures of Tintin	Spielberg	Odeon	442222	14:00	War Horse
War Horse	Spielberg	Odeon	442222	16:30	The Lord of the Rings 3
			Screens		
	/		Screens Cinema	Time	Title
	Cinema			<i>Time</i> 11:30	Title The Hobbit
	Cinema Cinema	Phone	Cinema		
		Phone 441111	Cinema Cine. City	11:30	The Hobbit
	Cinema		Cine. City Cine. City	11:30 14:30	The Hobbit Saving Private Ryan

Figure 3.5 Last step of decomposing *MovieList* relation, based on $Cinema \rightarrow Phone$ functional dependency

Preserve Functional Dependencies

The projection of F on α (denote by F_{α}) is the set of FDs in F^+ that involves only attributes in α ; i.e., $F_{\alpha} = \{ \beta \rightarrow \gamma \in F^+ \mid \beta \gamma \subseteq \alpha \}$

Computing FD Projections:

```
Input: \alpha, F

Output: F_{\alpha}

result = \emptyset;

for each \beta \subseteq \alpha do

T = \beta^+ (w.r.t. F)

result = result \cup \{\beta \rightarrow T \cap \alpha\}
```

If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold.

Definition. The decomposition $\{R_1, R_2, ..., R_n\}$ of R is dependency preserving if

 $(F_{R1} \cup F_{R2} \cup ... \cup F_{Rn})$ and F are equivalent, i.e.:

 $(F_{R1} \cup F_{R2} \cup ... \cup F_{Rn}) \! \Rightarrow \! F \quad \text{and} \ F \Rightarrow (F_{R1} \cup F_{R2} \cup ... \cup F_{Rn})$