Technologische Entwicklungszyklen

Ein spannender Überblick

Passwort-Cracking: Consumer vs. Militär/Enterprise

	RTX 4090 (Gaming)	H100-Cluster / Spezial-ASICs
Jahr	2022	2022+
Hashrate MD5	ca. 100–150 Milliarden H/s	mehrere Billionen H/s
Hashrate bcrypt (cost=12)	200-250 H/s	10.000-20.000 H/s
Parallelisierung	Einzelkarte	Multi-GPU-Cluster, FPGAs, ASICs
Preis	ca. 1.800 €	Millionenbereich

Fazit: Profi-Cluster knacken Passwörter je nach Hash-Typ 10- bis 1000-mal schneller als Consumer-Hardware. Bei sicheren Verfahren wie berypt liegt der Vorsprung bei ca. Faktor 50–100.

"Aber Quantencomputer?!"

- Praktische Quantencomputer für Passwort-Cracking existieren noch nicht.
- Forschungsprototypen (z.B. China, Google) könnten in 5–10 Jahren Angriffe ermöglichen.
- Shor-Algorithmus könnte RSA/ECC-Verschlüsselung brechen, aber gängige Passwort-Hashes (wie bcrypt, Argon2) bleiben sicherer.

Konsequenzen für Passwortsicherheit

- **Gegen Consumer-Hardware:** 12–16 Zeichen, sichere Hash-Verfahren (bcrypt, Argon2) sind heute sicher.
- Gegen staatliche Akteure:
 - − Nur sehr lange Passwörter (> 20 Zeichen) + moderne Hashes + Zwei-Faktor-Auth bieten Schutz.
 - Empfehlung: Passwortmanager (z.B. KeePassXC), Zwei-Faktor-Authentifizierung (Hardware-Token),
 Vollverschlüsselung (VeraCrypt).

Merke: Euer Passwort ist nur so sicher wie die langsamste Hardware, die es angreift – und die wird jedes Jahr schneller.

KI-Beschleuniger: Consumer vs. Profi

	RTX 4090 (Gaming)	Nvidia H100 (Server)
Jahr	2022	2022
Preis	1.500-2.000 €	30.000-40.000 €
FP32-Rechenleistung	ca. 82 TFLOPS	ca. 60 TFLOPS
KI-Leistung (Tensor Cores)	330 Tensor-TFLOPS	4.000 Tensor-TFLOPS
Speicher	24 GB GDDR6X	80 GB HBM3
Speicherbandbreite	1.008 GB/s	3.000 GB/s
Vernetzung	PCle 4.0 x16	NVLink (bis 900 GB/s)

Fazit: Profi-KI-Beschleuniger sind 10–30-mal schneller als Consumer-Hardware bei spezialisierter KI-Arbeit und bieten extreme Speicherbandbreite und Vernetzung.

SSDs: Consumer vs. Militär/Enterprise

	Samsung 990 PRO	Kioxia FL6 Series
NAND-Typ	TLC	SLC
Langlebigkeit (TBW)	ca. 1.200 TB	> 20.000 TB
Lesegeschwindigkeit	7.400 MB/s	6.200 MB/s
Schreibgeschwindigkeit	6.900 MB/s	5.600 MB/s
Zugriffsverzögerung	40–80 μs	$< 10~\mu s$
Preis	130 € (1 TB)	> 1.500 € (1,6 TB)

Fazit: Enterprise-SSDs sind nicht unbedingt schneller, aber um ein Vielfaches robuster und langlebiger als Consumer-SSDs. Sie sind für extreme Dauerbelastung und raue Umgebungen optimiert.

Digitale Fotografie: Consumer vs. Militär

	Sony α 7 IV	Militärsensoren (z.B. KH-11)
Auflösung	33 MP	geschätzt 200–300 MP
Sensorgröße	Vollformat	größer als Vollformat
Dynamikumfang	ca. 15 Blendenstufen	> 20 Blendenstufen
ISO-Empfindlichkeit	bis ISO 204.800	extrem hohe Low-Light-Performance
Spezialfeatures	Serienbilder, Autofokus	Multispektral, Nachtsicht, Infrarot
Preis	ca. 3.000 €	Programme kosten Milliarden

Technologie-Historie:

- Die ersten digitalen Bildsensoren wurden in den 1960ern für Spionagesatelliten (z.B. KH-11 Kennan) und die NASA entwickelt
- Kodak baute 1975 die erste Consumer-Digitalkamera (0,01 MP), basierend auf Militärtechnologie
- 1977 Voyager: Analoge TV-Kameras (Vidicon-Röhren) Bilder wurden erst auf Erde digitalisiert

- Erst 1981 flog die erste digitale CCD-Kamera ins All (Sony XC-1 auf Space Shuttle STS-2)
- 1995 Hubble: Erstes digitales Wissenschafts-CCD (0.3 MP)
- 2021 JWST: HgCdTe-Sensoren mit -266°C Kühlung (Militärtechnologie)

Fazit: Raumfahrt- und Militärtechnik zeigt:

- 10-20 Jahre technischer Vorsprung
- Spezialsensoren für extreme Umgebungen
- Multispektralfähigkeit als Schlüsselmerkmal

Militärische Sensoren sind Consumertechnik Jahrzehnte voraus, mit enormen Auflösungen, Spektralvielfalt und unglaublicher Lichtempfindlichkeit.

Gesamtzusammenfassung

- **Passwort-Cracking:** 10–1000-fache Geschwindigkeit je nach Hashverfahren.
- KI-Hardware: 10-30-fache Leistung bei Spezialanwendungen.
- **SSDs:** 20-fache Haltbarkeit und 5-fach geringere Latenz.
- **Digitale Kameras:** 10–20 Jahre technischer Vorsprung, Spezialaufnahmen im Multispektralbereich.

Hinweis: Die Angaben basieren auf Schätzungen und veröffentlichten Informationen über militärische Technologien, die teilweise geheim gehalten werden.