SYNTAX

Sudeshna Sarkar

14 AUG 2019

Syntax

- Constituency
- Ordering
- Grammatical relations and dependency
 - Heads, agreement, grammatical function
- Key formalisms
 - Context-free grammars
 - Dependency grammars
- Resources
 - Treebanks

Constituency

- Basic idea: groups of words act as a single unit
- Constituents form coherent classes that behave similarly
 - With respect to their internal structure: e.g., at the core of a noun phrase is a noun
 - With respect to other constituents: e.g., noun phrases generally occur before verbs

Constituency: Example

Noun phrases in English...

Harry the Horse a high-class spot such as Mindy's the Broadway coppers the reason he comes into the Hot Box three parties from Brooklyn

- They can all precede verbs
- They can all be preposed/postposed

Example of Constituent Tree

((Paul (gave Peter (two pears))) .)

Example of Dependency Tree

[#,0] ([gave,2] ([Paul,1], [Peter,3], [pears,5] ([two,4])), [.,6])

Words and Phrases

- Word (token): smallest unit of the syntactic layer
 - grammatical (function) words
 - lexical (content) words
- Phrase
 - Sequence of immediate constituents (words or phrases).
- Phrase types by their main word—head
 - Noun phrase: the new book of my grandpa
 - Adjectival phrase: brand new
 - Adverbial phrase: very well
 - Prepositional phrase: in the classroom
 - Verb phrase: to catch a ball

Noun Phrase

- A noun or a (substantive) pronoun is the head.
 - <u>water</u>
 - the book
 - new <u>ideas</u>
 - two <u>millions</u> of inhabitants
 - one small <u>village</u>
 - the greatest price movement in one year since the World War II
 - operating <u>system</u> that, regardless of all efforts by our admin, crashes just too often
 - <u>hе</u>
 - whoever

Evidence of Constituency

- 1. They can all appear in similar syntactic environments
 - NP before a verb
- 2. Preposed or Postposed constructions
 - The prepositional phrase can be placed in a number of different locations in the sentence
 - But the individual words in the phrase cannot.

Adjective Phrase

- An adjective or a determiner (attributive pronoun) is the head.
- Simple ADJPs are very frequent, complex ones are rare.
 - <u>old</u>
 - very <u>old</u>
 - really very <u>old</u>
 - five times <u>older</u> than the oldest elephant in our ZOO
 - <u>sure</u> that he will arrive first

Adverbial Phrases

- An adverb is the head.
 - quickly
 - much more
 - <u>how</u>
 - <u>louder</u> than you can imagine
 - yesterday

Prepositional (Postpositional) Phrase

- The preposition serves as head (because it determines the case of the rest of the phrase).
- Often have a function similar to adverbial phrases or noun phrases (object of a verb).
 - <u>in</u> the city center
 - − <u>in</u> God
 - around five o'clock
 - to a better future
 - up to a situation where neither of them could back out
 - with respect to his nonage

Clause and Sentence

- Group of words with 1 predicate, e.g.:
 - John loves Mary.
 - ...that you are right.
 - simple sentence or part of compound sentence
- Sentence
 - simple sentence or compound sentence
 - consists of one or more clauses
 - e.g. John loves Mary. or "I realized that you were right."

Clause and Sentence

- Main clause
 - Independent of other clauses in the sentence
- Nested clause, relative clause
 - Depends on another clause, carries out a function in that clause (as a dependent phrase)
 - This is the man [that] I saw

Sentence

- Consists of one or more main clauses.
- If there are more than one main clause then they are usually coordinated.

Formal Grammars of English

Context-free grammars (CFGs)

- Consist of
 - Rules
 - Terminals
 - Non-terminals
 - Start Symbol

- Specifies a set of tree structures that capture constituency and ordering in language
 - N a set of non-terminal symbols (or variables)
 - Σ a set of terminal symbols (disjoint from N)
 - R a set of rules or productions, each of the form $A \rightarrow \beta$, where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)$ *
 - S a designated start symbol and a member of N

Productions of CFG

- A CFG can be thought of in two ways:
 - a device for generating sentences(Derivation)
 - a device for assigning a structure to a given sentence.
- Some rules for noun phrases:

```
NP → Det Nominal
NP → ProperNoun
Nominal → Noun | Nominal Noun
```

Noun Phrases

15-Aug-19

Nominals

- Contain the head and any pre- and post- modifiers of the head.
 - Pre-
 - Quantifiers, cardinals, ordinals...
 - Three cars
 - Adjectives
 - large cars

Postmodifiers

- Three kinds
 - Prepositional phrases
 - From Seattle
 - Non-finite clauses
 - Arriving before noon
 - Relative clauses
 - That serve breakfast
- Same general (recursive) rules to handle these
 - Nominal → Nominal PP
 - Nominal → Nominal GerundVP
 - Nominal → Nominal RelClause

Verb Phrases

 English VPs consist of a verb (the head) along with 0 or more following constituents which we'll call arguments.

```
VP \rightarrow Verb disappear VP \rightarrow Verb NP prefer a morning flight VP \rightarrow Verb NP PP leave Boston in the morning VP \rightarrow Verb PP leaving on Thursday
```

Subcategorization

- Even though there are many valid VP rules in English, not all verbs are allowed to participate in all those VP rules.
- We can subcategorize the verbs in a language according to the sets of VP rules that they participate in.
- This is just an elaboration on the traditional notion of transitive/intransitive.
- Modern grammars have many such classes

Subcategorization

- Sneeze: John sneezed
- Find: Please find [a flight to NY]_{NP}
- Give: Give [me]_{NP}[a cheaper fare]_{NP}
- Help: Can you help [me]_{NP}[with a flight]_{PP}
- Prefer: I prefer [to leave earlier]_{TO-VP}
- Told: I was told [United has a flight]_S
- ...

Generative Grammar

- The use of formal languages to model Generative natural languages is called *generative grammar* since the language is defined by the set of possible sentences "generated" by the grammar.
- You can view these rules as either analysis or synthesis engines
 - Generate strings in the language
 - Reject strings not in the language
 - Assign structures (trees) to strings in the language

L0 Grammar

Grammar Rules	Examples
$S \rightarrow NP VP$	I + want a morning flight
$NP \rightarrow Pronoun$	I
Proper-Noun	Los Angeles
Det Nominal	a + flight
Nominal → Nominal Noun	morning + flight
Noun	flights
$VP \rightarrow Verb$	do
Verb NP	want + a flight
Verb NP PP	leave + Boston + in the morning
Verb PP	leaving + on Thursday
PP → Preposition NP	from + Los Angeles

Sentence Types

Declaratives: A plane left.

$$S \longrightarrow NP VP$$

• Imperatives: Leave!

$$S \longrightarrow VP$$

Yes-No Questions: Did the plane leave?

$$S \rightarrow Aux NP VP$$

WH Questions: When did the plane leave?

$$S \longrightarrow WH-NP Aux NP VP$$

Derivations

- A derivation is a sequence of rules applied to a string that accounts for that string
 - Covers all the elements in the string
 - Covers only the elements in the string

Parsing

 Parsing is the process of taking a string and a grammar and returning parse tree(s) for that string