1 South Comment

Dr. Phung Thi Kieu Ha

Electronic Circuits and Applications

Lesson 2. BJT small-signal amplifier

Learning Contents

- 1. Introduction
- 2. BJT biasing
- 3. Small-signal equivalent circuit
- 4. Analysis of CB, CE, CC circuit
- 5. DC & AC design

Learning Goals

- 1. Be able to determine the DC levels of important BJT configurations and determine whether the network is operating properly
- 2. Become familiar with the r_e model for the BJT transistor,
- 3. Learn to use the r_e equivalent model to find the important AC parameters for an amplifier.
- 4. Develop some skills in troubleshooting AC amplifier networks

- 1.1. Small-signal amplifier
- 1.2. BJT amplifier operation
- 1.3. BJT operating point

1.1. Small-signal amplifier

- Input signal is relatively weak
- Generated output signal is small fluctuation with respect to quiescent (Q) point value
- Circuit can be reduced to a linearized equivalent circuit around its operating point with sufficient accuracy.
- Circuit model ignores simultaneous variations in the gain and supply values

1.2. BJT amplifier operation

DC sources supply the active device BJT

1.2. BJT amplifier operation

1.2. BJT amplifier operation

1.2. BJT amplifier operation

UCE

1.2. BJT amplifier operation

 Q near cut-off region: the positive swing of the output voltage might be cut if input increases

(a) Amplitude of V_{ce} and I_c limited by cutoff

(b) Transistor driven into cutoff by a further increase in input amplitude

1.2. BJT amplifier operation

 Q near saturation: the negative swing of the output voltage might be cut if input increases

(a) Amplitude of V_{ce} and I_c limited by saturation

(b) Transistor driven into saturation by a further increase in input amplitude

1.2. BJT amplifier operation

1.3. BJT Operating point

Operating point = DC current & voltage level of operation

1.3. BJT Operating point

1.3. BJT Operating point

 For a BJT operating in active/amplifier region, the collector current is multiple of base current with the constant coefficient, called the amplified current parameter (β).

$$V_{BE} \approx 0.7V$$
 (Si) or $V_{BE} \approx 0.3$ (Ge) *
 $I_{E} = I_{C} + I_{B}$
 $I_{C} = \beta I_{B}$ or $I_{C} \approx \alpha I_{E}$

1.3. BJT Operating point

For a BJT operating in saturation region the current reach the maximum value for a particular design.

 I_{Csat} is some idea of the possible max collector current (to stay below for a linear amplification)

$$I_{C_{\text{sat}}}$$

$$R_{CE} = 0 \Omega$$

$$(V_{CE} = 0 \text{ V}, I_{C} = I_{C_{\text{sat}}})$$

$$I_{C_{\text{sat}}} = \frac{V_{CC}}{R_{C}}$$

1.3. BJT Operating point

For a BJT operating in cutoff region

- Cutoff region defined by I_B ≈ 0μA or I_E ≈ 0μA
- Equivalent to an open-circuit, R_{cutoff} of BJT is very very large
- Voltage U_{CE} is nearly maximum value

- 2.1. Amplifier mode of BJT
- 2.2. Fix-base configuration
- 2.3. Voltage-divider configuration
- 2.4. Voltage-feedback configuration

2.1. Amplifier mode of BJT

For signal amplifying, operating point should be in "active region" => BE junction in forward-biasing & BC junction in reversed-biasing

In detail

NPN:
$$V_E < V_B < V_C$$

or PNP: $V_E > V_B > V_C$

NOTE

$$V_{BE} \approx 0.7V$$
 (Si) or $V_{BE} \approx 0.3$ (Ge) *
 $I_{E} = I_{C} + I_{B}$
 $I_{C} = \beta I_{B}$ or $I_{C} \approx \alpha I_{E}$

*if not specified, BJT is made from Si

2.2. Fix-base configuration

2.2. Fix-base configuration

Loop BE:

$$V_{CC} - I_B R_B - U_{BE} = 0$$

$$\Rightarrow I_B = (V_{CC} - U_{BE}) / R_B$$

$$I_C = \beta * I_B$$

Loop CE:

$$\Rightarrow$$
 U_{CE} = V_{CC} - I_CR_C

Simple but unstable

2.2. Fix-base configuration

$$I_{B} = (V_{cc}-U_{BE})/(R_{B}+\beta R_{E})$$
$$= 34.6\mu A$$

$$I_{C} = \beta * I_{B}$$
$$= 4.84 \text{mA}$$

$$V_{CE} = V_{CC} - I_{C} R_{C} - I_{E} R_{E}$$

= 3.5V

2.3. Voltage-divider configuration

Thévenin theorem:

$$R_{BB} = R_1 / / R_2$$

 $E_{BB} = R_2 V_{cc} / (R_1 + R_2)$

Redraw new circuit which is equivalent to the fixed base configuration

2.3. Voltage-divider configuration

Voltage-divider configuration

Approximation approach

If
$$\beta^*R_E \ge 10R_2 -> I_2 \approx I_1$$

 $\Rightarrow V_B = R_2^*V_{CC}/(R_1 + R_2)$
 $\Rightarrow V_E = V_B - U_{BE}$
 $\Rightarrow I_C \approx I_E = V_E/R_E$
 $\Rightarrow U_{CE} = V_{CC} - I_C(R_C + R_E)$

2.4. Voltage-feedback configuration

Loop BE:

$$V_{CC}-I'_{C}R_{C}-I_{B}R_{B}-U_{BE}-I_{E}R_{E}=0$$

$$I_{B}=(V_{CC}-U_{BE})/(R_{B}+\beta(R_{C}+R_{E}))$$
with $I'_{C}\approx I_{C}$ $I_{E}\approx I_{C}$

- 3.1. Introduction
- 3.2. re equivalent circuit of Common-Base
- 3.3. re equivalent circuit of Common-Emitter

3.1. Introduction

3.1. Introduction

- When analyzing the circuit in AC mode:
 - √ Consider the capacitors as short-circuit
 - ✓ Consider the DC sources at 0 volt

3.2. re equivalent model for Common Base

3.2. re equivalent model for Common Base

- Separation of input and output
- Input: input current i_e and r_e is AC resistor of a normal diode

$$r_e = 26 \text{mV/I}_E$$

Output: a controlling current i_e,

$$i_c = \alpha^* i_e$$

3.2. re equivalent model for Common Base

- $Z_i = r_e$ $(n\Omega-50\Omega)$
- $Z_o = r_o \approx \infty \quad (nM\Omega)$

 Z_{o} is the slope of the output characteristic

- $A_v = \alpha^* R_L / r_e \approx R_L / r_e$ Voltage gain rather large and V_o & V_i in phase
- $A_i = -\alpha \approx -1$

3.3. re equivalent model for Common Emitter

3.3. re equivalent model for Common Emitter

3.3. re equivalent model for Common Emitter

Input current i_b and an AC resistor
 of a normal diode

$$r_e = 26 \text{mV/I}_E$$

Output: a source of a controlled collector current

$$i_c = \beta^* i_b$$

3.3. re equivalent model for Common Emitter

$$Z_{i} = v_{be}/i_{b} \approx \beta r_{e} \quad (n100\Omega - nK\Omega)$$

$$Z_{o} = r_{o} \qquad (40-50K\Omega)$$

$$A_{v} = -R_{L}/r_{e} \quad (r_{o} = \infty)$$

$$A_{i} = i_{c}/i_{b} = \beta$$

Medium Z_i, Z_o & rather large A_v, A_i

3.3. re equivalent model for Common Emitter

Common Emitter	Common Base
$Z_i = v_{be}/i_b \approx \beta r_e (n100\Omega - nK\Omega)$	$Z_i = r_e$ $(n\Omega-50\Omega)$
$Z_o = r_o$ (40-50K Ω)	$Z_o = r_o$ (nM Ω) Z_o is the slope of the output characteristic
$A_v = -R_L/r_e$ (consider $r_o = \infty$)	A _v = α*R _L /r _e ≈ R _L /r _e V _o & V _i in phase
$A_i = i_c/i_b = \beta$	Ai = -α ≈ -1
Medium Z _i , Z _o & rather large A _v , A _i	

3.4. re equivalent model for Common Collector

Use Common Emitter model

- 4.1. Common-Base
- 4.2. Common-Emitter
- 4.3. Common-Collector

4.1. Common-Base

4.1. Common-Base

$$Z_i = R_e || r_e$$

Rather small

$$Z_{\rm o} = R_{\rm c}$$

Rather large

$$A_v = \alpha R_c / r_e \approx R_c / r_e$$

 $A_v = \alpha R_c/r_e \approx R_c/r_e$ Rather large, $V_i \& V_o$ in phase

$$A_i = -\alpha \approx -1$$

No current gain

4.1. Common Emitter with Fix-base current bias

4.2. Common Emitter with Fix-base current bias

$$Z_{i} = R_{b}||\beta r_{e}| \approx \beta r_{e} \text{ when } R_{b} \ge 10\beta r_{e}$$

$$Z_{o} = R_{c}||r_{o}| \approx R_{c} \text{ when } r_{o} \ge 10R_{c}$$

$$A_{v} = -(R_{c}||r_{o})/r_{e}| \approx -R_{c}/r_{e} \text{ when } r_{o} \ge 10R_{c}$$

$$A_{i} = \beta R_{b}r_{o} / [(r_{o} + R_{c})(R_{b} + \beta r_{e})] \approx \beta$$

- Medium input & output resistance
- V_i & V_o in reversed phase

4.2. Common Emitter with Fix-base current bias

DC operating point

$$I_{\rm F} = 4.85 \, \text{mA}$$

$$V_{CF} = 3.5V$$

$$r_{\rm e} = 26 \,{\rm mV/I_E} = 5.36 \,{\Omega}$$

AC parameters

$$Z_{in} = 390 K //\beta r_{e} = 0.75 K \Omega$$

$$Z_{out} = 2.2 K\Omega$$

$$A_{v} = -R_{c}/r_{e} = 410$$

However, the output voltage is limited at around 3V since the DC V_{CF} is 3.5V

4.3. Common Emitter with voltage feedback bias

4.3. Common Emitter with voltage feedback bias

$$Z_{i} = r_{e}/(1/\beta + R_{c}/R_{f})$$

$$Z_{o} = R_{c}//R_{f}$$

$$A_{v} = -R_{c}/r_{e}$$

$$A_{i} = \beta R_{f}/(R_{f} + \beta R_{c}) \approx R_{f}/R_{c} \text{ when } \beta R_{c} >> R_{f}$$

NOTE: - considering $r_o = \infty$

- see Ref book for the case of realistic r_o

4.3. Common Collector with voltage feedback bias

4.3. Common Collector with voltage feedback bias

```
Z_{i} = R_{B} \parallel [\beta r_{e} + (\beta + 1)R_{E}] \approx R_{B} \parallel \beta (r_{e} + R_{E})
Z_{o} = R_{E} \parallel r_{e} \qquad \approx r_{e} \quad \text{vi} \quad RE >> re
A_{v} = R_{E} / (R_{E} + re) \qquad \approx 1
A_{i} = -\beta R_{B} / [R_{B} + \beta (r_{e} + R_{E})]
```

- Very high input impedance but low output impedance
- "Repeat" the input voltage at the output => "emitter repeater"
- Impedance matching

- 5.1. Common-Emitter amplifier with/without RE
- 5.2. Trouble shooting
- 5.3. Notes on design

5.1. Common-Emitter amplifier with/without RE

DC current & voltage level of operation change when R_E is added

5.1. Common-Emitter amplifier with/without RE

DC operating point and the bias stabilization of R_F

Without R_□

$$V_{CC} - U_{BE} - I_B R_B = 0$$

$$V_{CC} - U_{BE} - I_B R_B = 0$$
 $V_{CC} - U_{BE} - I_B R_B - I_E R_E = 0$

$$I_{B} = (V_{CC} - U_{BE})/R_{B}$$

$$I_C = \beta^* I_B$$

$$I_{B} = (V_{CC} - U_{BE})/(R_{B} + \beta R_{E})$$

$$I_C = \beta^* I_B$$

$$U_{CE} = V_{CC} - I_{C}R_{C}$$

$$U_{CE} = V_{CC} - I_{C}R_{C} - I_{E}R_{E}$$

Less dependent on variation of β

5.1. Common-Emitter amplifier with/without RE

AC parameters change when R_E is added

$$Z_i = R_B //\beta r_e$$

$$Z_o = R_C$$

$$A_v = -R_C/r_e$$

$$Z_i = R_B //\beta (r_e + R_E)$$

$$Z_{o} = R_{C}$$

$$A_v = -R_C/(r_e + R_E)$$

To avoid voltage gain reduction, bypass R_E by capacitor C_E

5.1. Common-Emitter amplifier with/without RE

5.1. Common-Emitter amplifier with/without RE

AC parameters R_E is bypassed by C_E

$$Z_i = R_B //\beta r_e$$

$$Z_i = R_B //\beta (r_e + R_E)$$

$$Z_o = R_C$$

$$Z_{o} = R_{C}$$

$$A_v = -R_C/r_e$$

$$A_v = -R_C/(r_e + R_E)$$

5.1. Common-Emitter amplifier with/without RE

Voltage divider configuration

$$\beta^*R_E \ge 10R_2 -> I_{R2} \approx I_{R1}$$
 $V_B = R_2^*V_{CC}/(R_1 + R_2)$
 $V_E = V_B - U_{BE}$
 $I_C \approx I_E \text{ while } I_E = V_E/R_E$
 $U_{CF} = V_{CC} - I_C(R_C + R_F)$

DC Current & Voltage independent with β

Bypassed R_E by capacitor C_E to maximize the voltage gain Av = -Rc/re

5.1. Common-Emitter amplifier with/without RE

- How to choose an appropriate R_E?
- Tradeoff of R_F:
 - √ temperature stabilization by large R_E
 - ✓ not too large as it will limit the range of the AC swings: to maximize AC output signal, R_B/R_E as small as possible
- Recommend: V_{RE} ~ 1/10 ½ DC source

5.1. Common-Emitter amplifier with/without RE

DC current & voltage level of operation change when R_E is added

5.2. Trouble Shooting

• A "right" BJT amplifier should work as follows

5.2. Trouble shooting

Case 1: The output voltage is lower than the expectation

5.2. Trouble shooting

• Measure the voltage at Emitter lead, it is greater

5.2. Trouble shooting

Case 2: The output voltage is only half-cycle

5.3. Notes on design process of an amplifier

- Consider the DC operating point in relationship with
 - ✓ Saturation level Max rating of I_C
 - ✓ Cutoff level Max rating of V_{CE}
- Concern of the limiting power of BJT devices
- Concern of DC stability, and its affects on AC gain, impedance

Summary

- 1. DC level condition for BJT working in amplifier mode is the BE junction in forward-biasing and the BC junction in reverse-biasing. Note on the saturation current and the cut-off condition.
- 2. AC equivalent circuits of BJT vary with the DC level condition (input resistor r_e) and the amplifier configuration (Common-Base, Common-Emitter, Common-Collector).
- 3. The AC parameters (input resistance, output resistance and voltage/current gain) of Common-Base, Common-Emitter, Common-Collector networks reflect the role of each configuration.
- 4. The interaction of DC level condition and AC parameters directs several trade-offs in circuit design process.

Next lesson guide...

Lesson 3: FET signal-small amplifier

Reference

Electronics devices and Circuits theory – Robert Boylestad, Louis Nashelsky, Prentice Hall, 11th edition

Electronic principles – Albert Paul Malvino