# Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil A: Reguläre Sprachen

5: Abschlusseigenschaften, Grenzen und Algorithmen

Das Verhalten von vielen praktischen Systemen kann durch DFAs oder NFAs abstrahiert/beschrieben werden

#### Kaffeemaschine als DFA



 Oft möchten wir Eigenschaften solcher Systeme automatisch überprüfen

## Einleitung (1/2)

#### Beispiel

- Die Maschine soll nur Kaffee ausgießen, wenn (seit dem letzten Kaffee) eine Münze eingeworfen wurde
- Diese Eigenschaft lässt sich durch einen RE ausdrücken:

– 
$$m{R} \stackrel{ ext{def}}{=} m{(S^* ext{ m\"unze } S^* ext{ gieße } S^*)^*}$$
 (Mit  $m{S} = m{\Sigma} - \{ ext{m\"unze,gieße}\}$ )

- Lässt sich automatisch überprüfen, ob der Automat die Eigenschaft  $oldsymbol{R}$  erfüllt?
- ullet Formal führt das zur Frage: Ist  $oldsymbol{L}(oldsymbol{A})\subseteq oldsymbol{L}(oldsymbol{R})$ ?
  - Äquivalent: Ist  $oldsymbol{L}(oldsymbol{A}) \cap (oldsymbol{\Sigma}^* oldsymbol{L}(oldsymbol{R})) = \varnothing$ ?
- Es wäre also praktisch, eine Toolbox für Automaten zu haben
  - Schnitt, Vereinigung, Komplement, etc.
  - Testalgorithmen...

## Einleitung (2/2)

 Wir setzen in diesem Kapitel die Untersuchung der Klasse der regulären Sprachen fort

#### Wir betrachten

- algorithmische Methoden, mit denen sich reguläre Sprachen kombinieren und modifizieren lassen
- eine weitere, einfache Methode zum Nachweis, dass eine Sprache nicht regulär ist
- Algorithmen zum Testen von Eigenschaften einer durch einen Automaten gegebenen Sprache

### Inhalt

- > 5.1 Abschlusseigenschaften und Synthese von Automaten
  - 5.2 Grenzen der Regulären Sprachen
  - 5.3 Weitere Algorithmen für Automaten

### Größenmaße für Automaten

- Der Aufwand der folgenden Algorithmen wird in Abhängigkeit von der Größe der Eingabe beschrieben
- Wenn die Eingabe aus Automaten besteht, stellt sich also die Frage:
  - Wie "groß" ist ein endlicher Automat  $\mathcal{A}=(Q,\Sigma,\delta,s,F)$  ?
- Es können verschiedene Größenmaße definiert werden:
  - Anzahl der Zustände: |Q|
  - Anzahl der Transitionen:  $|\delta|$
  - Größe der Kodierung des Automaten als Bitstring
- Wir verwenden hier nur die ersten beiden Maße und geben das verwendete Maß jeweils explizit an

- ullet Für reguläre Ausdrücke lpha bezeichnet |lpha| einfach die Länge des Strings
  - Also:  $|(ab)^*c(d+\epsilon)|=11$
- Ob Konkatenationssymbole und Klammern für die Größe eines RE gezählt werden, ist für das Folgende nicht so wichtig
  - Wir interessieren uns nur für asymptotische Abschätzungen
  - $|\alpha|$  (nach unserer Definition) ist linear in der Anzahl der Symbolvorkommen und der Vorkommen des \*-Operators (sofern doppelte Klammerpaare ((...)) nicht vorkommen)

## Synthese endlicher Automaten: Boolesche Operationen (1/3)

- Wir betrachten jetzt, auf welche Weisen aus regulären Sprachen neue reguläre Sprachen gewonnen werden können
- Uns interessiert also:
  - Unter welchen Operationen ist die Klasse der regulären Sprachen abgeschlossen?
  - Mit welchen Algorithmen lassen sich solche Operationen ausführen?
- Wichtig: es geht im Folgenden nicht um Abschlusseigenschaften von einzelnen Sprachen sondern um Abschlusseigenschaften der Klasse aller regulären Sprachen

- Wir beginnen mit Booleschen Operationen
- Reguläre Ausdrücke haben einen Operator für die Vereinigung
  - ➡ Die Vereinigung zweier regulärer Sprachen ist regulär
- Um reguläre Sprachen algorithmisch gut "verarbeiten" zu können, ist es wichtig, dass auch der Durchschnitt zweier regulärer Sprachen und das Komplement einer regulären Sprache wieder regulär sind
- Außerdem sollten diese Booleschen Operationen auf der Ebene endlicher Automaten möglichst effizient ausgeführt werden können

## Synthese endlicher Automaten: Boolesche Operationen (2/3)

#### Satz 5.1

- ullet Seien  $\mathcal{A}_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$  und  $\mathcal{A}_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$  DFAs
- Dann lassen sich Automaten für die folgenden Sprachen konstruieren:
  - (a) für  $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ mit  $|Q_1||Q_2|$  Zuständen in Zeit  $\mathcal{O}(|Q_1||Q_2||\Sigma|)$
  - (b) für  $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$ mit  $|Q_1||Q_2|$  Zuständen in Zeit  $\mathcal{O}(|Q_1||Q_2||\Sigma|)$
  - (c) für  $\Sigma^* L(\mathcal{A}_1)$  mit  $|Q_1|$  Zuständen in Zeit  $\mathcal{O}(|Q_1|)$

### Folgerung 5.2

- Die regulären Sprachen sind unter Durchschnitt, Vereinigung und Komplementbildung abgeschlossen
- (a) und (b) gelten auch für NFAs
- Für den Beweis von (a) und (b) verwenden wir das Konzept des **Produktautomaten**

### **Produktautomat: Beispiel**

• Ein Automat für die Menge aller Strings, die 010 als Teilstring enthalten **und** gerade viele Nullen haben:



0110100

• Um einen Automaten für die oben genannte Sprache zu erhalten, muss af als akzeptierender Zustand gewählt werden

## Synthese endlicher Automaten: Boolesche Operationen (3/3)

#### **Definition**

- ullet Seien  $oldsymbol{\mathcal{A}_1}=(Q_1,\Sigma,\delta_1,s_1,F_1), \ oldsymbol{\mathcal{A}_2}=(Q_2,\Sigma,\delta_2,s_2,F_2)$  DFAs
- ullet Sei  $F\subseteq Q_1 imes Q_2$
- ullet Der **Produktautomat zu**  $\mathcal{A}_1$  **und**  $\mathcal{A}_2$  mit akzeptierender Menge F ist der Automat  $\mathcal{B} \stackrel{\scriptscriptstyle \mathsf{def}}{=}$

 $(m{Q_1} imesm{Q_2},m{\Sigma},m{\delta_{\mathcal{B}}},(m{s_1},m{s_2}),m{F})$ , wobei  $m{\delta_{\mathcal{B}}}$  komponentenweise definiert ist, d.h.:

– Für  $q_1 \in Q_1$  und  $q_2 \in Q_2$  sei  $\delta_{\mathcal{B}}((q_1,q_2),\sigma) \stackrel{ ext{def}}{=} (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$ 

Wir schreiben manchmal  $\mathcal{A}_1 \times \mathcal{A}_2$  für den Produktautomaten, ohne eine akzeptierende Zustandsmenge zu spezifizieren

#### Beweis von Satz 5.1

- Wir beweisen zunächst Teil (a): Durchschnitt
- ullet Sei  ${\mathcal B}$  der Produktautomat zu  ${\mathcal A}_1$  und  ${\mathcal A}_2$  mit akzeptierender Menge  $F_1 imes F_2$
- Durch Induktion lässt sich leicht zeigen, dass für alle  $w \in \Sigma^*$  gilt:

$$egin{aligned} oldsymbol{\delta_{\mathcal{B}}^*}((s_{1},s_{2}),w) = \ & (oldsymbol{\delta_{1}^*}(s_{1},w),oldsymbol{\delta_{2}^*}(s_{2},w)) \end{aligned}$$

• Es folgt:

$$egin{aligned} w \in L(\mathcal{A}_1) \cap L(\mathcal{A}_2) \ &\iff \delta_1^*(s_1,w) \in F_1 ext{ und } \delta_2^*(s_2,w) \in F_2 \ &\iff (\delta_1^*(s_1,w),\delta_2^*(s_2,w)) \in F_1 imes F_2 \ &\iff \delta_\mathcal{B}^*((s_1,s_2),w) \in F_1 imes F_2 \ &\iff w \in L(\mathcal{B}) \end{aligned}$$

- ullet Teil (b) kann analog bewiesen werden, mit akzeptierender Menge  $F_1 imes Q_2 \cup Q_1 imes F_2$
- ullet Teil (c) ist noch einfacher: Wähle  $(Q_1,\Sigma,\delta_1,s_1,Q_1-F_1)$  als DFA

### Zum Verständnis des Produktautomaten

### PINGO-Frage: pingo.upb.de

Wie muss die akzeptierende Menge F des Produktautomaten gewählt werden, damit er die Menge aller Strings akzeptiert, die von einem der Automaten  $\mathcal{A}_1$ und  $\mathcal{A}_2$  akzeptiert wird, aber nicht vom anderen (symmetrische Differenz)?

(A) 
$$(oldsymbol{F_1}-oldsymbol{F_2}) \cup (oldsymbol{F_2}-oldsymbol{F_1})$$

(B) 
$$(oldsymbol{Q_1} imesoldsymbol{Q_2})-(oldsymbol{F_1} imesoldsymbol{F_2})$$

(C) 
$$(oldsymbol{Q_1} imes oldsymbol{F_2}) \cup (oldsymbol{F_1} imes oldsymbol{Q_2})$$

(D) 
$$(oldsymbol{Q_1} imes (oldsymbol{Q_2}-oldsymbol{F_2})) \cup ((oldsymbol{Q_1}-oldsymbol{F_1}) imes oldsymbol{Q_2})$$

(E) 
$$(oldsymbol{F_1} imes (oldsymbol{Q_2} - oldsymbol{F_2})) \cup ((oldsymbol{Q_1} - oldsymbol{F_1}) imes oldsymbol{F_2})$$

### Synthese endlicher Automaten: Konkatenation und Iteration

 Die Definition regulärer Ausdrücke garantiert auch den Abschluss unter Konkatenation und Stern

#### **Satz 5.3**

- ullet Seien  ${\cal A}_1$  und  ${\cal A}_2$  DFAs (oder NFAs) für Sprachen  $L_1$  und  $L_2$
- ullet Dann lassen sich NFAs (oder DFAs) für  $L_1\circ L_2$  und  $L_1^*$  konstruieren

#### Beweisidee

- ullet Ein DFA für  $L_1 \circ L_2$  kann in zwei Schritten gewonnen werden:
  - 1. Verknüpfung von  $\mathcal{A}_1$  und  $\mathcal{A}_2$  durch  $\epsilon$ Übergänge von den akzeptierenden Zuständen von  $\mathcal{A}_1$  zum Startzustand von  $\mathcal{A}_2$ 
    - Wie bei der Umwandlung von REs in  $\epsilon$ -NFAs
  - 2. Determinisierung des entstandenen  $\epsilon$ -NFAs
- ullet  $L_1^*$ : (fast) analog; eventuell neuer akzeptierender Startzustand

## Abschlusseigenschaften: Homomorphismen (1/3)

- Wir betrachten nun weitere Abschlusseigenschaften der Klasse der regulären Sprachen, die vor allem für theoretische Zwecke hilfreich sind:
  - Abschluss unter Homomorphismen
  - Abschluss unter inversen Homomorphismen

#### Definition

- ullet Eine Funktion  $h:\Sigma^* o \Gamma^*$  ist ein **Ho**momorphismus, wenn für alle Strings  $oldsymbol{u},oldsymbol{v}\in oldsymbol{\Sigma^*}$  gilt:  $oldsymbol{h}(oldsymbol{u}oldsymbol{v})=oldsymbol{h}(oldsymbol{u})oldsymbol{h}(oldsymbol{v})$
- ullet Aus der Definition folgt:  $oldsymbol{h}(oldsymbol{\epsilon}) = oldsymbol{\epsilon}$
- Zur Definition eines Homomorphismus von  $oldsymbol{\Sigma}^*$  nach  $oldsymbol{\Gamma}^*$  genügt es,  $oldsymbol{h}(oldsymbol{\sigma})$  für alle  $oldsymbol{\sigma} \in oldsymbol{\Sigma}$ festzulegen
- ullet Dadurch ist  $oldsymbol{h}(oldsymbol{w})$  auch für beliebige Strings  $w = \sigma_1 \cdots \sigma_n$  eindeutig festgelegt:  $h(w) = h(\sigma_1) \cdots h(\sigma_n)$

#### Beispiel

- $h: \{a, b, c, d\}^* \to \{0, 1\}^*$
- Definiert durch:

$$- h(a) \stackrel{ ext{def}}{=} 00$$

$$- h(b) \stackrel{ ext{def}}{=} 1$$

$$-h(c)\stackrel{ ext{def}}{=}\epsilon$$

$$-h(d)\stackrel{ ext{def}}{=} 0110$$

- ullet Dann:  $oldsymbol{h(abdc)} = oldsymbol{0010110}$
- ullet Für  $L\subseteq \Sigma^*$  sei  $oldsymbol{h}(oldsymbol{L}) \stackrel{ ext{def}}{=} \{oldsymbol{h}(oldsymbol{w}) \mid oldsymbol{w} \in oldsymbol{L}\}$
- ullet Für  $L\subseteq \Gamma^*$  sei  $oldsymbol{h^{-1}(L)} \stackrel{ ext{ iny def}}{=} \{oldsymbol{w} \mid oldsymbol{h}(oldsymbol{w}) \in oldsymbol{L}\}$
- Wir werden sehen: aus einem DFA für L lassen sich leicht konstruieren:
  - ein DFA für  $m{h^{-1}(L)}$  und
  - ein NFA für  $oldsymbol{h}(oldsymbol{L})$
- ightharpoonup h(L) und  $h^{-1}(L)$  sind regulär

## Abschlusseigenschaften: Homomorphismen (2/3)



GTI / Bollig / SoSe 17

A: 5. Abschlusseigenschaften, Grenzen und Algorithmen

Automat für  $oldsymbol{L}$ 

## Abschlusseigenschaften: Homomorphismen (3/3)

#### Satz 5.4

- ullet Ist L eine reguläre Sprache über  $\Sigma$  und ist  $\Gamma$  ein Alphabet, so sind die folgenden Sprachen regulär:
  - (a) h(L), für jeden Homomorphismus  $h:\Sigma^* o \Gamma^*$
  - (b)  $h^{-1}(L)$ , für jeden Homomorphismus  $h:\Gamma^* o\Sigma^*$

#### Beweisidee

- (b) Sei  $\mathcal{A} = (Q, \Sigma, \delta, s, F)$  DFA für L
  - Wir definieren  $\mathcal{A}'\stackrel{ ext{def}}{=}(Q,\Gamma,\delta',s,F)$  durch:

$$oldsymbol{\delta}'(oldsymbol{q},oldsymbol{\sigma})\stackrel{ ext{ iny def}}{=} oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{h}(oldsymbol{\sigma}))$$

- Dann gilt:  $oldsymbol{\delta'^*}(oldsymbol{s},oldsymbol{w}) = oldsymbol{\delta^*}(oldsymbol{s},oldsymbol{h}(oldsymbol{w}))$
- Also:  $oldsymbol{w} \in oldsymbol{L}(\mathcal{A}') \iff oldsymbol{h}(oldsymbol{w}) \in oldsymbol{L}(\mathcal{A})$
- (a) Idee:
  - Ersetze die Transition  $\delta(q,\sigma)$  durch eine Folge von Transitionen für  $h(\sigma)$
  - → neue Zustände einfügen

## Synthese endlicher Automaten: Größe

- Die folgende Tabelle gibt eine Übersicht über die Größe der Zielautomaten (Anzahl Zustände) für die betrachteten Operationen
- Dabei spielt es eine Rolle, ob die gegebenen Automaten und der Zielautomat
   DFAs oder NFAs sind
- ullet  $Q_1$  und  $Q_2$  bezeichnen jeweils die Zustandsmengen für Automaten für  $L_1$  und  $L_2$
- ullet |h| und |S| bezeichnen jeweils die Größe der Repräsentation von h und S

|                                          | DFA → DFA                                                     | DFA → NFA                                                  | NFA → NFA                                                        |
|------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|
| $L_1 \cap L_2$                           | $oxed{\mathcal{O}( oldsymbol{Q_1} 	imes oldsymbol{Q_2} )}$    | $oxed{\mathcal{O}( oldsymbol{Q_1} 	imes oldsymbol{Q_2} )}$ | $oxed{\mathcal{O}( oldsymbol{Q_1} 	imes oldsymbol{Q_2} )}$       |
| $ig  oldsymbol{L_1} \cup oldsymbol{L_2}$ | $ig  \; \mathcal{O}( oldsymbol{Q_1}  	imes  oldsymbol{Q_2}) $ | $ig  \mathcal{O}( oldsymbol{Q_1}  +  oldsymbol{Q_2}) $     | $ig  \; \mathcal{O}( oldsymbol{Q_1}  +  oldsymbol{Q_2} ) \; ig $ |
| $ig  oldsymbol{L_1-L_2}$                 | $ig  \mathcal{O}( oldsymbol{Q_1}  	imes  oldsymbol{Q_2} )$    | $ig  \mathcal{O}( oldsymbol{Q_1}  	imes  oldsymbol{Q_2} )$ | $ig  \;  Q_1  	imes 2^{\mathcal{O}( Q_2 )} \; \; ig $            |
| $oxedsymbol{L_1} \circ oldsymbol{L_2}$   | $ig  Q_1 	imes 2^{\mathcal{O}( Q_2 )}$                        | $oxed{\mathcal{O}( oldsymbol{Q_1} + oldsymbol{Q_2} )}$     | $igg  \mathcal{O}( oldsymbol{Q_1}  +  oldsymbol{Q_2} ) \ igg $   |
| $oldsymbol{L_1^*}$                       | $\mathbf{2^{\mathcal{O}( Q_1 )}}$                             | $\mathcal{O}( oldsymbol{Q_1} )$                            | $\mathcal{O}( oldsymbol{Q_1} )$                                  |
| $oldsymbol{h(L_1)}$                      | $2^{\mathcal{O}( Q_1 + h )}$                                  | $\mathcal{O}( oldsymbol{Q_1} + oldsymbol{h} )$             | $igg  \mathcal{O}( oldsymbol{Q_1}  +  oldsymbol{h} )$            |
| $h^{-1}(L_1)$                            | $\mathcal{O}( Q_1 )$                                          | $\mathcal{O}( Q_1 )$                                       | $\mathcal{O}( Q_1 )$                                             |

### Inhalt

- 5.1 Abschlusseigenschaften und Synthese von Automaten
- > 5.2 Grenzen der Regulären Sprachen
  - 5.3 Weitere Algorithmen für Automaten

## **Pumping-Lemma: Einleitung**

- Wir haben mit dem Satz von Myhill und Nerode bereits eine Methode kennen gelernt, mit der wir überprüfen können, ob eine Sprache regulär ist
- ullet Damit haben wir gezeigt, dass die Sprache  $L_{ab} = \{a^mb^m \mid m \geqslant 0\}$  nicht regulär ist
- Wir werden jetzt mit dem Pumping-Lemma eine weitere Methode kennen lernen, mit der sich nachweisen lässt, dass eine gegebene Sprache nicht regulär ist

#### • Vorteile:

- Recht einfach und anschaulich
- Lässt sich verallgemeinern für kontextfreie Sprachen
- Liefert interessante Einsicht über reguläre Sprachen

#### • Nachteile:

- Funktioniert nicht immer
- Lässt sich nicht zum Nachweis von Regularität verwenden

### **Pumping-Lemma: Grundidee (1/2)**



- Beobachtung: Ein "Kreis" in einer akzeptierenden Berechnung lässt sich beliebig oft wiederholen
- Der akzeptierte String wird dabei "aufgepumpt" (oder "abgepumpt")

## Pumping-Lemma: Grundidee (2/2)



- Etwas formaler:
  - Wenn  $|w|\geqslant |Q|$  gilt, muss es einen Zustand geben, den der DFA beim Lesen von w (mindestens) zweimal besucht
  - Wenn der DFA beim Lesen eines Strings  $w \in L(\mathcal{A})$  einen Zustand zweimal besucht, lässt w sich so in xyz zerlegen, dass gelten:
    - $*~y 
      eq \epsilon$  und
    - st für alle  $k\geqslant 0$  ist  $xy^kz\in L(\mathcal{A})$
- lacktriangle Wenn L regulär ist, gibt es ein n, so dass sich jedes  $w \in L$  mit  $|w| \geqslant n$  in xyz zerlegen lässt, so dass gelten:
  - $-y \neq \epsilon$  und
  - für alle  $oldsymbol{k}\geqslant oldsymbol{0}$  ist  $oldsymbol{x}oldsymbol{y}^{oldsymbol{k}}oldsymbol{z}\in oldsymbol{L}(oldsymbol{\mathcal{A}})$

## Pumping-Lemma: Aussage und Beweis

#### Satz 5.5

- ullet Sei L regulär
- ullet Dann gibt es ein  $m{n}$ , so dass jeder String  $m{w} \in m{L}$  mit  $|m{w}| \geqslant m{n}$  auf mindestens eine Weise als  $m{w} = m{x}m{y}m{z}$  geschrieben werden kann, so dass die folgenden Aussagen gelten:
  - (1)  $y \neq \epsilon$
  - (2)  $|xy| \leqslant n$
  - (3) für alle  $k\geqslant 0$  ist  $xy^kz\in L$
- Die Aussage des Pumping-Lemmas gilt auch in der Form:

$$m{w} 
otin m{L} \ldots \Rightarrow \ldots xy^k m{z} 
otin m{L}$$

#### Beweisskizze

ullet L regulär  $\Rightarrow$ 

$$oldsymbol{L} = oldsymbol{L}(oldsymbol{\mathcal{A}})$$
 für einen DFA  $oldsymbol{\mathcal{A}}$ 

- ullet Sei n die Anzahl der Zustände von  ${\mathcal A}$
- ullet Sei  $w\in L$  mit  $|w|\geqslant n$
- lacktriangle Beim Lesen der ersten n Zeichen von w muss sich ein Zustand wiederholen (Schubfachprinzip)
- $lack \delta^*(s,x) = \delta^*(s,xy)$  für gewisse x,y,z mit w=xyz und (1) und (2)
- ullet Sei  $oldsymbol{q} \stackrel{ ext{ iny def}}{=} oldsymbol{\delta}^*(s,oldsymbol{x})$
- $lack \delta^*(q,y)=q$
- $lack \delta^*(s,xy^kz)=\delta^*(s,xyz)\in F$ , für alle  $k\geqslant 0$
- **→** (3)

## **Pumping-Lemma: Anwendung (1/2)**

 Für den Nachweis, dass eine gegebene Sprache nicht regulär ist, ist die folgende äquivalente Formulierung des Pumping-Lemmas besser geeignet

#### Korollar 5.6

- ullet Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String  $w\in L$  mit  $|w|\geqslant n$ , so dass für jede Zerlegung w=xyz mit

(1) 
$$y \neq \epsilon$$
 und

(2) 
$$|xy| \leqslant n$$

ein  $k\geqslant 0$  existiert, so dass  $xy^kz\notin L$ 

- ullet Dann ist  $oldsymbol{L}$  nicht regulär
- Da Korollar 5.6 die Kontraposition von Satz
   5.5 ist, folgt es direkt aus Satz 5.5

#### Beispiel

- ullet Sei wieder  $L_{ab}\stackrel{ ext{ iny def}}{=} \{a^mb^m\mid m\geqslant 0\}$
- Sei n beliebig
- ullet Wir wählen  $oldsymbol{w} = oldsymbol{a^n} b^{oldsymbol{n}} \in oldsymbol{L_{ab}}$  (wichtig:  $oldsymbol{w}$  hängt von  $oldsymbol{n}$  ab!)
- $ullet |w|=2n\geqslant n$
- ullet Seien nun x,y,z beliebige Strings, die w=xyz und die folgenden Bedingungen erfüllen:
  - (1)  $y \neq \epsilon$ (2)  $|xy| \leqslant n$
- ullet Wegen (2) enthält  $oldsymbol{y}$  kein  $oldsymbol{b}$ , wegen (1) enthält es mindestens ein  $oldsymbol{a}$ 
  - $\Rightarrow xz$  hat mehr b als a
- Wähle k=0:
  - $\Rightarrow xy^0z = xz \notin L_{ab}$
- $lacktriangleright L_{ab}$  ist nicht regulär

## Pumping-Lemma: Anwendung (2/2)

### Beispiel

Sei wieder

$$L_{ab}\stackrel{ ext{ iny def}}{=}\{a^{m{m}}b^{m{m}}\mid m\geqslant 0\}$$

- Sei n beliebig
- ullet Wir wählen  $oldsymbol{w} = oldsymbol{a^nb^n} \in oldsymbol{L_{ab}}$  (wichtig:  $oldsymbol{w}$  hängt von  $oldsymbol{n}$  ab!)
- $ullet |w|=2n\geqslant n$
- ullet Seien nun x,y,z beliebige Strings, die w=xyz und die folgenden Bedingungen erfüllen:
  - (1)  $y + \epsilon$
  - (2)  $|xy| \leqslant n$
- Wegen (2) enthält y kein b, wegen (1) enthält es mindestens ein a
  - ightharpoonup xz hat mehr b als a
- Wähle k=0:
  - $ightharpoonup xy^0z=xz\notin L_{ab}$
- $lacktriangleright L_{ab}$  ist nicht regulär

- Bemerkungen zur Anwendung des Pumping-Lemmas
  - n dürfen Sie nicht wählen
    - st Der Beweis muss für beliebiges  $m{n}$  funktionieren
  - $-w\in L$  dürfen Sie selbst (geschickt) wählen
    - \* Es muss in Abhängigigkeit von  $m{n}$  gewählt werden ( $|m{w}|\geqslant m{n}$ )
      - · Dabei ist n für den Beweis eine Variable
  - -x,y,z dürfen Sie **nicht** wählen
    - Wir wissen aber (und verwenden), dass (1)
       und (2) gelten
  - Zuletzt muss ein  $m{k}$  gefunden werden, für das  $xy^kz\notin m{L}$  gilt
    - \* Sehr oft ist hier eine Fallunterscheidung nötig:
      - · nach den Möglichkeiten, wie x,y,z den String w unterteilen

### Das Pumping-Lemma als Spiel

- Das Pumping-Lemma ist zwar im Kern recht anschaulich, der Wechsel zwischen Existenz- und Allquantoren kann jedoch durchaus zu Verwirrung führen
- Es kann deshalb hilfreich sein, die Aussage des Pumping-Lemmas in ein 2-Personen-Spiel zu fassen

### • Spiel für Sprache *L*:

- Person 1 wählt n
- Person 2 wählt ein  $w \in L$  mit  $|w| \geqslant n$
- Person 1 wählt x, y, z mit

$$w=xyz,y+\epsilon,|xy|\leqslant n$$

- Person 2 wählt  $oldsymbol{k}$
- ullet Falls  $xy^kz\notin L$ , hat Person 2 gewonnen, andernfalls Person 1
- ullet Es gilt: falls Person 2 eine Gewinnstrategie hat, ist L nicht regulär
- ullet Wenn Sie nachweisen wollen, dass  $oldsymbol{L}$  nicht regulär ist, sind Sie Person 2

### Grenzen des Pumping-Lemmas

- ullet Sei L die Sprache $\{a^mb^nc^n\mid m,n\geqslant 1\}\cup \{b^mc^n\mid m,n\geqslant 0\}$
- ullet Klar:  $oldsymbol{L}$  ist nicht regulär
  - Das lässt sich durch eine leichte Abwandlung des Beweises aus Kapitel 4 für  $L_{ab}$  zeigen
- Aber: L erfüllt die Aussage des Pumping-Lemmas:
  - Jeder String w, lässt sich als xyz zerlegen, mit  $x=\epsilon$  und |y|=1
  - ightharpoonup dann lässt sich y beliebig wiederholen:
    - st falls y=a: klar, dann ist das Wort in der ersten Menge und es dürfen beliebig viele a's kommen
    - \* falls  $y \neq a$ : klar, dann ist das Wort in der zweiten Menge und das Zeichen darf beliebig wiederholt werden

 Es gilt aber die folgende Verallgemeinerung des Pumping-Lemmas

### Satz 5.7 [Jaffe, 78]

- ullet Eine Sprache L ist **genau dann** regulär **wenn** es ein n gibt, so dass jeder String  $w\in L$  mit  $|w|\geqslant n$  auf mindestens eine Weise als w=xyz geschrieben werden kann, so dass die folgenden Aussagen gelten:
  - (1)  $y \neq \epsilon$
  - (2)  $|xy| \leqslant n$
- (3') für alle  $k\geqslant 0$  gilt:  $xy^kz\sim_L xyz$

### Reguläre Sprachen: Grenzen

- Woran lässt sich erkennen, ob eine Sprache regular ist?
- Intuitiv: wenn es genügt, sich beim Lesen eines Eingabewortes nur konstant viel Information zu merken, unabhängig von der Eingabelänge
- ullet Beispiel:  $m{L_{ab}} = \{m{a^mb^m} \mid m{m} \geqslant m{0}\}$  ist nicht regulär, da nach Lesen von  $m{a^i}$  "das  $m{i}$  gemerkt sein muss"
- Insbesondere darf der Wertebereich, in dem gezählt wird, nicht mit der Eingabelänge größer werden
- ullet Aber: es gibt auch reguläre Sprachen, die mit Zahlen zu tun haben, zum Beispiel:  $m{L}_{ ext{drei}} \stackrel{ ext{def}}{=} \{m{w} \mid m{w} ext{ ist die Binärdarstellung}$  einer Zahl, die durch drei teilbar ist $\}$

## Reguläre Sprachen: Zählen modulo ...

- ullet Ziel: Automat für  $m{L}_{ ext{drei}} = \{m{w} \mid m{w} ext{ ist die Binärdarstellung einer Zahl, die durch drei teilbar ist} \}$
- Ansatz: was passiert, wenn an eine Binärzahl eine 0 oder 1 angehängt wird?
- Notation:
  - Für  $m{w} \in \{m{0}, m{1}\}^*$  sei  $m{B}(m{w})$  die Zahl, die von  $m{w}$  repräsentiert wird
  - Also: B(1100)=12

- Es gelten:
  - -B(u0) = 2B(u)
  - B(u1) = 2B(u) + 1
- ullet Also: wenn  $B(oldsymbol{u})\equiv_{oldsymbol{3}} oldsymbol{0}$ , dann  $B(oldsymbol{u}oldsymbol{0})\equiv_{oldsymbol{3}} oldsymbol{0}$  und  $B(oldsymbol{u}oldsymbol{1})\equiv_{oldsymbol{3}} oldsymbol{1}$
- → Grundidee des Automaten: der Zustand (0,1, oder 2) gibt den Rest der bisher gelesenen Binärzahl bei Division durch 3 an



### Inhalt

- 5.1 Abschlusseigenschaften und Synthese von Automaten
- 5.2 Grenzen der Regulären Sprachen
- > 5.3 Weitere Algorithmen für Automaten

### **Umwandlungsalgorithmen (Wdh.)**



### **Algorithmen: Leerheitstest**

 Für Anwendungen (nicht nur) im Bereich des Model Checking ist das folgende Problem wichtig

#### Definition: Leerheits-Problem für DFAs

Gegeben: DFA  ${\cal A}$ 

Frage: Ist  $L(A) \neq \emptyset$ ?



#### Algorithmus:

- 1. Vergiss die Kantenmarkierungen
- 2. Füge einen Zielknoten  $oldsymbol{t}$  ein und Kanten von allen akzeptierenden Knoten zu  $oldsymbol{t}$
- 3. Teste, ob es einen Weg von  $oldsymbol{s}$  nach  $oldsymbol{t}$  gibt
- 4. Falls ja: Ausgabe " $L(\mathcal{A}) \neq \emptyset$ "
  - Das Leerheitsproblem für DFAs lässt sich also auf das Erreichbarkeitsproblem in gerichteten Graphen zurückführen
    - Aufwand:  $\mathcal{O}(|\delta|)$
  - Der Algorithmus funktioniert auch für NFAs
  - ullet Der Leerheitstest für reguläre Ausdrücke lpha ist (fast) trivial:
    - falls kein arnothing vorkommt, ist  $oldsymbol{L}(oldsymbol{lpha}) \, 
      eq \, arnothing$
    - Ansonsten lässt sich  $\alpha$  gemäß der Regeln aus Kapitel 2 vereinfachen
    - $-L(\alpha) \neq \emptyset \Longleftrightarrow$

am Schluss bleibt nicht Ø übrig

### **Algorithmen: Wortproblem**

Definition: Wortproblem für Reguläre Sprachen

**Gegeben:** Wort  $w \in \Sigma^*$ , reguläre Sprache L, repräsentiert durch DFA  $\mathcal{A}$ , NFA  $\mathcal{A}'$  oder RE lpha

Frage: lst  $w \in L$ ?

- Der Algorithmus für das Wortproblem und damit der Aufwand hängen von der Repräsentation der Sprache ab:
  - **DFA:** Simuliere den Automaten Aufwand:  $\mathcal{O}(|oldsymbol{w}|+|oldsymbol{\delta}|)$
  - NFA: Simuliere den Potenzmengenautomaten, ohne ihn explizit zu konstruieren
     \* Speichere dabei immer nur die aktuell

erreichte Zustandsmenge

Aufwand:  $\mathcal{O}(|oldsymbol{w}| imes|oldsymbol{\delta}|)$ 

- RE: Wandle den RE in einen  $\epsilon$ -NFA um und simuliere dann den Potenzmengenautomaten Aufwand:  $\mathcal{O}(|w| \times |\alpha|)$ 

### Erläuterungen:

- ullet Für die Simulation wird jeweils zuerst die Transitionsfunktion  $\delta$  in ein Array geschrieben
- ullet Aufwand  $\mathcal{O}(|oldsymbol{\delta}|)$
- Die einzelnen Übergänge können dann durch Nachschauen in der Tabelle ausgeführt werden
- Bei der Simulation von NFAs sind die Tabelleneinträge jeweils Mengen von Zuständen

# Algorithmen: Äquivalenztest für DFAs (1/3)

### Definition: Äquivalenzproblem für DFAs

**Gegeben:** DFAs  $\mathcal{A}_1$  und  $\mathcal{A}_2$ 

Frage: Ist  $L(\mathcal{A}_1) = L(\mathcal{A}_2)$ ?

- Wir betrachten zwei Lösungsmethoden:
  - (1) Mit Minimalautomaten
  - (2) Mit dem Produktautomaten

#### (1) Mit Minimalautomaten:

- Konstruiere die Minimal-Automaten:  $\mathcal{A}_1'$  und  $\mathcal{A}_2'$  zu  $\mathcal{A}_1$  und  $\mathcal{A}_2$
- Teste, ob  $\mathcal{A}_1'$  und  $\mathcal{A}_2'$  isomorph sind:
  - st Konstruiere dazu schrittweise eine Bijektion  $\pi$  von (den Zuständen von)  $\mathcal{A}_1'$  auf  $\mathcal{A}_2'$
  - \* Initialisierung:  $\pi$  bildet Startzustand auf Startzustand ab
  - \* Dann: Setze  $\pi$  gemäß der Transitionen von  $\mathcal{A}_1'$  und  $\mathcal{A}_2'$  fort
- Aufwand:  $\mathcal{O}(|\Sigma|(|Q_1|^2+|Q_2|^2))$

#### (2) Mit dem Produktautomaten:

- Konstruiere den Produktautomaten  $\mathcal{A}=\mathcal{A}_1 imes \mathcal{A}_2$  mit der akzeptierende Menge  $F\stackrel{ ext{def}}{=}\{(p_1,p_2)\mid (p_1\in F_1,p_2\notin F_2)$
- oder  $(p_1 \notin F_1, p_2 \in F_2)$ }  $ightharpoonup \delta_{\mathcal{A}}^*((s_1, s_2), w) \in F$  genau dann, wenn w genau von einem
  - der beiden Automaten akzeptiert wird
  - Also:  $oldsymbol{L}(oldsymbol{\mathcal{A}_1}) = oldsymbol{L}(oldsymbol{\mathcal{A}_2})$  genau dann, wenn  $oldsymbol{L}(oldsymbol{\mathcal{A}}) = oldsymbol{arnothing}$
  - Die Frage "Ist $L(\mathcal{A}_1) = L(\mathcal{A}_2)$ ?" kann dann also durch den Leerheitstest für  $\mathcal{A}$  entschieden werden
- o Aufwand:  $\mathcal{O}(|oldsymbol{Q_1}| imes|oldsymbol{Q_2}| imes|oldsymbol{\Sigma}|)$

# Algorithmen: Äquivalenztest für DFAs (2/3)

### Beispiel

Sind diese beiden DFAs äquivalent?



- Berechnung des Produktautomaten
- Nicht erreichbare Zustände entfernen
- Die Sprache des Automaten ist leer
- Die Automaten sind äquivalent

# Algorithmen: Äquivalenztest für DFAs (3/3)

### Beispiel

Sind diese beiden DFAs äquivalent?





### Beispiel (Forts.)

 Minimierung des oberen Automaten liefert:



Beide Automaten sind nun isomorph gemäß

$$-a \mapsto c$$

$$-b \mapsto d$$

- Noch eine weitere Methode:
  - Führe den Markierungsalgorithmus auf " $\mathcal{A}_1 \cup \mathcal{A}_2$ " aus und überprüfe, ob  $(s_1,s_2)$  markiert wird

## Algorithmen: Äquivalenztest für NFAs und REs

- Äquivalenztests für NFAs und REs sind zwar auch automatisierbar, aber die Komplexität ist erheblich größer
- Genauer: Zu testen, ob zwei reguläre Ausdrücke (oder zwei NFAs) äquivalent sind ist vollständig für die Komplexitätsklasse PSPACE
  - Das gilt sogar, wenn einer der REs gleich  $\Sigma^*$  ist
  - Intuitiver Grund: Die REs müssen zuerst in DFAs umgewandelt werden
- Was "vollständig für PSPACE" bedeutet, werden wir im letzten Teil der Vorlesung sehen
- Hier lässt sich schon sagen: das Problem ist (wohl) noch schwieriger als NP-vollständige Probleme wie das Traveling Salesman Problem

## **Algorithmen: Endlichkeitstest**

### Definition: Endlichkeitsproblem für DFAs

Gegeben: DFA  ${\cal A}$ 

Frage: Ist  $L(\mathcal{A})$  endlich?

 Hier hilft uns die Grundidee des Pumping-Lemmas weiter:

### Beispiel



#### Satz 5.8

- Die Sprache eines DFA  $\mathcal{A}$  ist genau dann unendlich, wenn  $\mathcal{A}$  einen Zustand q mit den folgenden Eigenschaften hat:
  - (a) q ist von s aus erreichbar

d.h.: 
$$\exists x \in \Sigma^*: \delta^*(s,x) = q$$

(b) q liegt auf einem Kreis

d.h.: 
$$\exists y \in \Sigma^* : y + \epsilon$$
 und  $\delta^*(q,y) = q$ 

(c) Von q aus ist ein akzeptierender Zustand erreichbar d.h.  $\exists z \in \Sigma^* : \delta^*(q,z) \in F$ 

#### Beweisidee

- " $\Leftarrow$ " Dann werden die unendlich vielen Strings  $xy^0z, xy^1z, xy^2z, \ldots$  von dem DFA akzeptiert
- " $\Rightarrow$ " Die Existenz eines solchen Zustandes q folgt wie im Beweis des Pumping Lemmas
  - Aufwand:  $\mathcal{O}(|\delta|)$  (Doppelte DFS-Suche)
  - Funktioniert auch f
    ür NFAs

### Zusammenfassung

 Um Automaten und reguläre Ausdrücke anwenden zu können (zum Beispiel im Model Checking), benötigen wir Algorithmen für die Synthese und zum Testen von Eigenschaften regulärer Sprachen

### • Synthese:

- Die regulären Sprachen sind unter vielen Operationen abgeschlossen
- In vielen Fällen lassen sich die entsprechenden Zielautomaten effizient berechnen
- Für Boolesche Operationen spielen
   Produktautomaten eine wichtige Rolle

- Test von Eigenschaften:
  - Leerheit und Endlichkeit der Sprache eines NFA k\u00f6nnen effizient getestet werden - dabei wird im Wesentlichen ein Erreichbarkeitsproblem f\u00fcr gerichtete Graphen gel\u00f6st
  - Äquivalenz zweier DFAs kann ebenfalls effizient getestet werden
  - Äquivalenz von NFAs und REs ist im allgemeinen (wohl) erheblich schwieriger zu testen
- Das Pumping-Lemma liefert ein weiteres Verfahren zum Nachweis, dass eine Sprache nicht regulär ist