Evolution & Learning in GamesEcon 243B

Jean-Paul Carvalho

Lecture 11. Stochastic Stability

Analyzing Large-Dimensional Markov Processes

- ► We have seen that stationary distributions for reversible Markov processes can be computed.
- Mhen the noise level ε is positive and the population size N is finite, individual behavior gives rise to an irreducible (and aperiodic) Markov process on a finite state space.
- We know there exists a <u>unique</u> stationary distribution $\mu^{e,N}$ of such a process.
- ► However, this stationary distribution puts positive weight on every state.
- As we take the limit as $\varepsilon \to 0$ (the small noise limit) or as $N \to \infty$ (the large population limit) or both, the stationary distribution concentrates weight on a small set of states (often a single state).

Stochastic Stability

- ► There are different ways of defining **stochastic stability** depending on which limits are taken and in what order.
- Results can differ depending on the definition used.
- ► We shall focus on the small noise limit:

Definition: *Stochastic Stability* (Foster and Young 1990). A state x is stochastically stable if $\lim_{\varepsilon \to 0} \mu^{\varepsilon,N}(x) > 0$.

▶ In other words, for ε small, the process spends virtually all the time (as $t \to \infty$) in the stochastically stable set of states.

Risk dominance

► Consider the following general symmetric normal-form game:

$$A = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right).$$

- ► Let *x* equal the weight on strategy 1. The mixed equilibrium is $x^* = \frac{a-b}{(a-b)+(d-c)}$.
- ightharpoonup x = 1 risk dominates x = 0 if the product of the deviation losses is at least as high for x = 1, and vice versa (Harsanyi and Selten 1988).
- ► In a symmetric game this means: $(d c) \ge (a b)$, which implies that $x^* \le \frac{1}{2}$.
- ▶ If the inequalities are strict then x = 1 strictly risk dominates state x = 0.

Two-Strategy Coordination Games

► Consider the following symmetric normal-form *pure* coordination game:

$$A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right).$$

- ▶ Note that:
 - ► Strategy 1 is a best response if and only if $x \ge x^* = \frac{2}{5}$, where x^* is the mixed Nash equilibrium.
 - ► Strategy 0 is a best response if and only if $x \le \frac{2}{5}$.
 - As $x^* < \frac{1}{2}$, x = 1 is strictly risk dominant (here it is both the payoff dominant and risk dominant equilibrium).

Two-Strategy Coordination Games

Theorem 10.1. In two-strategy coordination games, for N sufficiently large, the $BRM(\varepsilon)$ revision protocol selects the state in which everyone plays the risk-dominant Nash equilibrium as the unique stochastically stable state.

- ▶ When individuals are randomly matched to play a symmetric coordination game, the only possible recurrence classes of the unperturbed $BRM(\varepsilon)$ dynamic are the two coordination equilibria (which are absorbing states).
- Let state 0 be the "All 0" (x = 0) coordination equilibrium and state 1 be the "All 1" (x = 1) coordination equilibrium.
- ▶ If $\frac{\mu_{\epsilon}^{\epsilon}}{\mu_{\epsilon}^{\epsilon}} \to 0$ as $\epsilon \to 0$, then state 0 is stochastically stable.
- ▶ If $\frac{\mu_1^{\epsilon}}{\mu_0^{\epsilon}} \to \infty$ as $\epsilon \to 0$, then state 1 is stochastically stable.

► Recall from Theorem 9.4 that:

$$\frac{\mu_1}{\mu_0} = \prod_{j=1}^N \frac{N - j + 1}{j} \cdot \frac{\rho_{01}(F(\frac{j-1}{N}), \frac{j-1}{N})}{\rho_{10}(F(\frac{j}{N}), \frac{j}{N})}.$$
 (1)

- Note that for $x > x^*$, strategy 1 is a best response and is chosen with prob. $1 \frac{\varepsilon}{2}$. For $x < x^*$, strategy 0 is a best response.
- ► Substituting into (1), we get the expression for the $BRM(\varepsilon)$ dynamic:

$$\frac{\mu_1}{\mu_0} = \prod_{j=\lceil Nx^* \rceil}^{N} \frac{N-j+1}{j} \cdot \frac{1-\frac{\varepsilon}{2}}{\frac{\varepsilon}{2}} \prod_{j=1}^{\lfloor Nx^* \rfloor} \frac{N-j+1}{j} \cdot \frac{\frac{\varepsilon}{2}}{1-\frac{\varepsilon}{2}}. \quad (2)$$

► Rearranging:

$$\frac{\mu_1}{\mu_0} = \left(\frac{1 - \frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right)^{N - \lceil Nx^* \rceil + 1} \left(\frac{\frac{\varepsilon}{2}}{1 - \frac{\varepsilon}{2}}\right)^{\lfloor Nx^* \rfloor} \prod_{j=1}^{N} \frac{N - j + 1}{j}. \quad (3)$$

Recognizing that $\lceil Nx^* \rceil = \lfloor Nx^* \rfloor + 1$, so that $N - \lceil Nx^* \rceil + 1 = N - \lfloor Nx^* \rfloor$, we can write:

$$\frac{\mu_1}{\mu_0} = \left(\frac{1 - \frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right)^{N - 2\lfloor Nx^* \rfloor} \prod_{j=1}^{N} \frac{N - j + 1}{j},\tag{4}$$

which is proportional to:

$$\left(\frac{1-\frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right)^{N-2\lfloor Nx^*\rfloor}.$$
 (5)

► As $\varepsilon \to 0$:

$$\left(\frac{1-\frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right) \to \infty. \tag{6}$$

- ► Therefore $\frac{\mu_1}{\mu_0} \to \infty$ if $N > 2\lfloor Nx^* \rfloor$ and $\frac{\mu_1}{\mu_0} \to 0$ if $N < 2\lfloor Nx^* \rfloor$.
- ► For *N* sufficiently large, this is equivalent to:
 - ▶ $\frac{\mu_1}{\mu_0}$ → ∞ if $x^* < \frac{1}{2}$ —"All 1" is the unique stochastically stable state,
 - ▶ $\frac{\mu_1}{\mu_0}$ → 0 if $x^* > \frac{1}{2}$ —"All 0" is the unique stochastically stable state.

Pure Coordination

Corollary 10.2. Under the $BRM(\varepsilon)$ revision protocol, $\lim_{\varepsilon\to 0}\mu_1^{\varepsilon}=1$ in the pure coordination game, i.e. "All 1" is the unique stochastically stable state.

Impure Coordination

► Now consider the following symmetric normal-form coordination game called **Stag Hunt**:

$$A = \left(\begin{array}{cc} 2 & 2 \\ 0 & 3 \end{array}\right).$$

Now $x^* = \frac{2}{3} > \frac{1}{2}$ is the mixed Nash equilibrium. Therefore, x = 0 is strictly risk-dominant, but Pareto <u>inefficient</u>.

Corollary 10.3. Under the $BRM(\varepsilon)$ revision protocol, $\lim_{\varepsilon\to 0}\mu_0^\varepsilon=1$ in the stag hunt game, i.e. "All 0" (all hare) is the unique stochastically stable state.

Stochastic Stability

- ► Thus far, we have learned how to identify stochastically stable states for *reversible Markov processes*, for which a stationary distribution can be computed.
- ► Here we shall broaden the scope of our stochastic stability analysis and in doing so we shall require new concepts and techniques.

Regular Perturbed Markov Process

Definition. For each $\varepsilon \in [0, \varepsilon^*]$, let $\{X_t^{\varepsilon}\}$ be a Markov process. $\{X_t^{\varepsilon}\}$ is a *regular perturbed Markov process* if it is (a) irreducible for all $\varepsilon \in (0, \varepsilon^*]$ and (b) if for every $x, x' \in X$, $P_{xx'}^{\varepsilon}$ approaches $P_{xx'}^{0}$ at an exponential rate, i.e.

$$\lim_{\varepsilon \to 0} P^{\varepsilon}_{\mathbf{x}\mathbf{x}'} = P^{0}_{\mathbf{x}\mathbf{x}'},$$

and

if
$$P_{xx'}^{\varepsilon} > 0$$
 for some $\varepsilon > 0$, then $0 < \lim_{\varepsilon \to 0} P_{xx'}^{\varepsilon} / \varepsilon^{r(x,x')} < \infty$

for some $r(x, x') \ge 0$.

Resistances

- ▶ The real number r(x, x') is called the **resistance** (or cost) of the transition $x \to x'$.
- ► There cannot be two distinct exponents that satisfy the last condition, therefore r(x, x') is uniquely identified.
- ▶ $P_{xx'}^0 > 0$ if and only if r(x, x') = 0, i.e. transitions that occur under the unperturbed process have zero resistance.
- It is straightforward to show that the BRM(ε) and logit choice protocols generate regular Perturbed Markov processes.

Computing Stochastically Stable States

- Let $E_1, E_2, ..., E_K$ be recurrence classes of the unperturbed process ($\varepsilon = 0$).
- ► For each pair of distinct recurrence classes E_j and E_k a jk-path is a sequence of states $\zeta = (x_1, x_2, ..., x_q)$ that begins in E_j and ends in E_k .
- The resistance is the sum of the resistances of its edges, i.e. $r(\zeta) = r(x_1, x_2) + r(x_2, x_3) + ... + r(x_{q-1}, x_q)$.
- ▶ Let $r_{jk} = \min r(\zeta)$ be the least resistance over all jk paths.
- ▶ $r_{jk} > 0$ for all $j \neq k$ by the definition of a recurrence class.

Computing Stochastically Stable States

- ► Construct a complete directed graph of *K* vertices, one for each recurrence class.
- ▶ The weight on the directed edge $j \rightarrow k$ is r_{jk} .
- ▶ A tree rooted at vertex j (a j-tree) is a set of K-1 directed edges such that from every vertex different to j there is a unique directed path in the tree to j.
- ► The resistance of a **rooted tree** is the sum of the resistance of its edges.
- ► The **stochastic potential** γ_j of E_j is the minimum resistance over all trees rooted at j.

Stochastic Potential & Stochastic Stability

Theorem 10.4. Let $\{X_t^{\varepsilon}\}$ be a regular perturbed Markov process and let μ^{ε} be the unique stationary distribution of $\{X_t^{\varepsilon}\}$ for each $\varepsilon > 0$.

Then $\lim_{\epsilon \to 0} \mu^{\epsilon} = \mu^{0}$ exists, and μ^{0} is a stationary distribution of the unperturbed process $\{X_{t}^{0}\}$.

The stochastically stable states are precisely those states that are contained in the recurrence classes of $\{X_t^0\}$ having minimum stochastic potential.

Coordination Games Again

- ► Consider a 2 × 2 coordination game. There are two recurrence classes E_0 ('all 0') and E_1 ('all 1').
- ► With a certain sequence of nonbest responses, the perturbed process can transit between recurrence classes.
- ▶ Let $r(E_0, E_1)$ be the *resistance* of the transition $E_0 \rightarrow E_1$.
- ▶ Under the $BRM(\varepsilon)$ protocol, this is the minimum number of errors required for the process to transit from state E_0 to state E_1 .

Coordination Games Again

► The corresponding trees are:

▶ Therefore, for N sufficiently large, we see that E_1 is stochastically stable if and only if it is risk dominant.

A Sufficient Condition for Stochastic Stability

- ▶ When there are many recurrence classes of the unperturbed Markov process $\{X_t^0\}$, the spanning tree method of finding a stochastically stable state can *sometimes* be difficult to implement.
- ► Consider the following alternative method introduced by (Ellison 1993) that provides a sufficient condition for stochastic stability (the spanning tree method provides both a necessary and sufficient condition).
- ► Let the unperturbed process have distinct recurrence classes $E_1, E_2, ... E_K$.
- ▶ Once it hits one of these recurrence classes, the unperturbed process locks in to that class.

The Radius-Coradius Theorem

- ► However, with a certain sequence of nonbest responses, the perturbed process can transit between recurrence classes.
- ▶ Once again, let $r(E, E_{\ell})$ be the *resistance* (or cost) of the transition $E \to E_{\ell}$.
- ▶ Define the **radius** of recurrence class *E* by:

$$R(E) = min_{\ell} \ r(E, E_{\ell})$$

and the coradius of *E* by:

$$CR(E) = max_{\ell} \ r(E_{\ell}, E)$$

The Radius-Coradius Theorem

Theorem 10.5 If R(E) > CR(E), then E is the unique stochastically stable class of $\{X_t^{\varepsilon}\}$.

The intuition for this is as follows:

- ► A lower bound on the probability of exiting recurrence class E is on the order of $\varepsilon^{R(E)}$.
- ► An upper bound on the probability of entering recurrence class E is on the order of $\varepsilon^{CR(E)}$.
- As $\varepsilon \to 0$, $\varepsilon^{R(E)-CR(E)} \to 0$ iff R(E) > CR(E).
- ▶ In this case, the proportion of time spent in *E* is far, far greater than the proportion of time spent outside of *E* as the noise level becomes vanishingly small.