TO PASS 80% or higher

GRADE 80%

Optimization algorithms

LATEST SUBMISSION GRADE

8	0%	
1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch? $a^{[8]}(7)(3)$ $\bullet a^{[3]}(8)(7)$ $a^{[3]}(7)(8)$ $a^{[8]}(3)(7)$	1/1 point
	Correct	
2.	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one	1/1 point
	epoch using batch gradient descent. You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	✓ Correct	
3.	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	1/1 point
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	✓ Correct	
	if the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	

 ${\it 4.} \quad {\it Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:}$

1/1 point

Which of the following do you agree with?

✓ Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- $\bigcirc \ \ \text{If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this}$ looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent,

5. Suppose the temperature in Casablanca over the first three days of January are the same:

1/1 point

Jan 1st: $heta_1=10^oC$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- \bigcirc $v_2=10$, $v_2^{corrected}=10$
- $\bigcirc \ v_2 = 7.5, v_2^{corrected} = 7.5$
- $\bigcirc \ v_2=10, v_2^{corrected}=7.5$

✓ Correct

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1 point

- $\alpha = \frac{1}{\sqrt{t}}\alpha_0$
- $\bigcirc \ \alpha = \frac{1}{1+2*t}\alpha_0$
- $\bigcirc \ \alpha = 0.95^t \alpha_0$

✓ Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary eta? (Check the two that apply)

- lacksquare Increasing eta will shift the red line slightly to the right.

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

 $\hfill \square$ Decreasing β will create more oscillation within the red line.

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line $\phi=0.98$ that had a lot of oscillations.

 $\hfill \square$ Increasing β will create more oscillations within the red line.

8. Consider this figure:

0 / 1 point

These plots were generated with gradient descent: with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

	(large β)
\bigcirc	(1) is gradient descent (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum

- (large β)

 (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- \bigcirc (1) is gradient descent with momentum (small eta), (2) is gradient descent with momentum (small eta), (3) is gradient descent

Incorrect

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\dots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

0 / 1 point

- Try better random initialization for the weights
- Try initializing all the weights to zero
- Try using Adam

✓ Correct

lacksquare Try tuning the learning rate α

✓ Correct

Try mini-batch gradient descent

✓ Correct

You didn't select all the correct answers

10. Which of the following statements about Adam is False?

1/1 point

- $\bigcirc \ \ \text{We usually use "default" values for the hyperparameters } \beta_1,\beta_2 \text{ and } \varepsilon \text{ in Adam } (\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8})$
- Adam should be used with batch gradient computations, not with mini-batches.
- Adam combines the advantages of RMSProp and momentum
- \bigcirc The learning rate hyperparameter lpha in Adam usually needs to be tuned.

✓ Correct