Package 'DIscBIO'

November 6, 2023

Date 2023-11-06

Title A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics

Version 1.2.2

Description An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.

License MIT + file LICENSE

Encoding UTF-8

Imports methods, TSCAN, httr, mclust, statmod, igraph, RWeka, vegan, NetIndices, png, grDevices, RColorBrewer, ggplot2, rpart, fpc, cluster, rpart.plot, tsne, AnnotationDbi, org.Hs.eg.db, graphics, stats, utils, impute, withr

Depends R (>= 4.0), SingleCellExperiment

Suggests testthat, Seurat

LazyData true

RoxygenNote 7.2.3

URL https://github.com/ocbe-uio/DIscBIO

BugReports https://github.com/ocbe-uio/DIscBIO/issues

Collate 'DIscBIO-classes.R' 'DIscBIO-generic-ClassVectoringDT.R'

'DIscBIO-generic-ClustDiffGenes.R' 'DIscBIO-generic-Clustexp.R'

'DIscBIO-generic-DEGanalysis.R'

'DIscBIO-generic-DEGanalysis2clust.R'

'DIscBIO-generic-Exprmclust.R'

'DIscBIO-generic-FinalPreprocessing.R'

'DIscBIO-generic-FindOutliers.R'

'DIscBIO-generic-NoiseFiltering.R' 'DIscBIO-generic-PCAplotSymbols.R' 'DIscBIO-generic-PCAplotSymbols.R' 'DIscBIO-generic-PlotmclustMB.R' 'DIscBIO-generic-clusteringOrder.R' 'DIscBIO-generic-clustheatmap.R' 'DIscBIO-generic-comptSNE.R' 'DIscBIO-generic-plotExptSNE.R' 'DIscBIO-generic-plotGap.R' 'DIscBIO-generic-plotLabelstSNE.R' 'DIscBIO-generic-plotOrderTsne.R' 'DIscBIO-generic-plotSilhouette.R' 'DIscBIO-generic-plotSymbolstSNE.R' 'DIscBIO-generic-plottSNE.R' 'DIscBIO-generic-plottSNE.R' 'DIscBIO-generic-plottSNE.R' 'DIscBIO-generic-pseudoTimeOrdering.R' 'J48DT.R' 'J48DTeval.R' 'Jaccard.R' 'NetAnalysis.R' 'Networking.R' 'PPI.R' 'PlotMBpca.R' 'RpartDT.R' 'RpartEVAL.R' 'VolcanoPlot.R' 'bootstrap.R' 'calc_pcareduceres.R' 'cross.val.R' 'customConverters.R' 'datasets.R' 'internal-functions-samr-adapted.R' 'internal-functions.R'	
NeedsCompilation no	
Author Salim Ghannoum [aut, cph], Alvaro Köhn-Luque [aut, ths], Waldir Leoncio [cre, aut], Damiano Fantini [ctb]	
Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no></w.l.netto@medisin.uio.no>	
Repository CRAN	
Date/Publication 2023-11-06 10:50:02 UTC	
Date/1 ubilcation 2023-11-00 10.30.02 01C	
R topics documented:	
as.DISCBIO	3
check.format	4
ClassVectoringDT	4
ClustDiffGenes	5
Clustexp	7
clustheatmap	8
comptSNE	9
customConvertFeats	11
DEGanalysis	11
DEGanalysis2clust	13
DISCBIO	14
DISCBIO2SingleCellExperiment	15
Exprmclust	16
FinalPreprocessing	17
FindOutliers	18
foldchange.seq.twoclass.unpaired	20
HumanMouseGeneIds	20

as.DISCBIO 3

	43
wilcoxon.unpaired.seq.func	
VolcanoPlot	
valuesG1msTest	
samr.estimate.depth	
sammy	
RpartEVAL	
RpartDT	
retrieveURL	
resa	
replaceDecimals	
reformatSiggenes	
rankcols	
pseudoTimeOrdering	
prepExampleDataset	
PPI	33
plottSNE	
plotSymbolstSNE	32
plotSilhouette	32
plotOrderTsne	31
PlotmclustMB	
PlotMBpca	
plotLabelstSNE	
plotGap	
plotExptSNE	
PCAplotSymbols	
Normalizedata	
NoiseFiltering	
Networking	
NetAnalysis	
KmeanOrder	
Jaccard	
J48DT	
J48DT	20

Description

Initialize a DISCBIO-class object starting from a SingleCellExperiment object or a Seurat object

```
as.DISCBIO(x, ...)
```

4 Class Vectoring DT

Arguments

x an object of class Seurat or SingleCellExperiment

... additional parameters to pass to the function

Details

Additional parameters to pass to 'list' include, if x is a Seurat object, "assay", which is a string indicating the assay slot used to obtain data from (defaults to 'RNA')

Value

```
a DISCBIO-class object
```

check.format

Check format

Description

Check format

Usage

```
check.format(y, resp.type, censoring.status = NULL)
```

Arguments

```
y y
resp.type resp type
censoring.status
censoring status
```

ClassVectoringDT

Generating a class vector to be used for the decision tree analysis.

Description

This function generates a class vector for the input dataset so the decision tree analysis can be implemented afterwards.

ClustDiffGenes 5

Usage

```
ClassVectoringDT(
  object,
  Clustering = "K-means",
  First = "CL1",
  Second = "CL2",
  sigDEG,
  quiet = FALSE
)
## S4 method for signature 'DISCBIO'
ClassVectoringDT(
  object,
  Clustering = "K-means",
 Κ,
  First = "CL1",
  Second = "CL2",
  sigDEG,
  quiet = FALSE
)
```

Arguments

object D	[SCBIO cla	ass object.
----------	------------	-------------

Clustering Clustering has to be one of the following: ["K-means", "MB"]. Default is "K-

means"

K A numeric value of the number of clusters.

First A string vector showing the first target cluster. Default is "CL1"

Second A string vector showing the second target cluster. Default is "CL2"

sigDEG A data frame of the differentially expressed genes (DEGs) generated by running

 $"DEGanalysis()" \ or \ "DEGanalysisM()".$

quiet If 'TRUE', suppresses intermediary output

Value

A data frame.

ClustDiffGenes ClustDiffGenes

Description

Creates a table of cluster differences

6 ClustDiffGenes

Usage

```
ClustDiffGenes(
  object,
 Κ,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)
## S4 method for signature 'DISCBIO'
ClustDiffGenes(
  object,
 Κ,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)
```

Arguments

object	DISCBIO class object.
K	A numeric value of the number of clusters.
pValue	A numeric value of the p-value. Default is 0.05.
fdr	A numeric value of the false discovery rate. Default is 0.01.
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet	if 'TRUE', suppresses intermediate text output
filename_up	Name of the exported "up" file (if 'export=TRUE')
filename_down	Name of the exported "down" file (if 'export=TRUE')
filename_binom	Name of the exported binomial file
filename_sigdeg	
	Name of the exported sigDEG file

Value

A list containing two tables.

Clustexp 7

Examples

```
sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln = 3, quiet = TRUE)
cdiff <- ClustDiffGenes(sc, K = 3, fdr = .3, export = FALSE)
str(cdiff)
cdiff[[2]]</pre>
```

Clustexp

Clustering of single-cell transcriptome data

Description

This functions performs the initial clustering of the RaceID algorithm.

```
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
 metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
 B.gap = 50,
  cln = 0,
 rseed = NULL,
  quiet = FALSE
)
## S4 method for signature 'DISCBIO'
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
 metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
 B.gap = 50,
  cln = 0,
  rseed = NULL,
  quiet = FALSE
)
```

8 clustheatmap

Arguments

object	DISCBIO class object.
clustnr	Maximum number of clusters for the derivation of the cluster number by the saturation of mean within-cluster-dispersion. Default is 20.
bootnr	A numeric value of booststrapping runs for clusterboot. Default is 50.
metric	Is the method to transform the input data to a distance object. Metric has to be one of the following: ["spearman", "pearson", "kendall", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"].
do.gap	A logical vector that allows generating the number of clusters based on the gap statistics. Default is TRUE.
SE.method	The SE.method determines the first local maximum of the gap statistics. The SE.method has to be one of the following:["firstSEmax", "Tibs2001SEmax", "globalSEmax", "firstmax", "globalmax"]. Default is "Tibs2001SEmax"
SE.factor	A numeric value of the fraction of the standard deviation by which the local maximum is required to differ from the neighboring points it is compared to. Default is 0.25.
B.gap	Number of bootstrap runs for the calculation of the gap statistics. Default is 50
cln	Number of clusters to be used. Default is NULL and the cluster number is inferred by the saturation criterion.
rseed	Random integer to enforce reproducible clustering results.
quiet	if 'TRUE', intermediate output is suppressed

Value

The DISCBIO-class object input with the cpart slot filled.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data sc <- Clustexp(sc, cln = 2) ^{\circ}
```

clustheatmap	Plotting clusters in a heatmap representation of the cell distances

Description

This functions plots a heatmap of the distance matrix grouped by clusters. Individual clusters are highlighted with rainbow colors along the x and y-axes.

comptSNE 9

Usage

```
clustheatmap(
  object,
  clustering_method = "k-means",
  hmethod = "single",
  rseed = NULL,
  quiet = FALSE,
  plot = TRUE
)
## S4 method for signature 'DISCBIO'
clustheatmap(
  object,
  clustering_method = "k-means",
  hmethod = "single",
  rseed = NULL,
  quiet = FALSE,
  plot = TRUE
)
```

Arguments

object DISCBIO class object.

clustering_method

either "k-means" or "model-based" ("k" and "mb" are also accepted)

hmethod Agglomeration method used for determining the cluster order from hierarchical

clustering of the cluster medoids. This should be one of "ward.D", "ward.D2",

"single", "complete", "average". Default is "single".

rseed Random integer to fix random results.

quiet if 'TRUE', intermediary output is suppressed

plot if 'TRUE', plots the heatmap; otherwise, just prints cclmo

Value

Unless otherwise specified, a heatmap and a vector of the underlying cluster order.

Description

This function is used to compute the t-Distributed Stochastic Neighbor Embedding (t-SNE).

10 comptSNE

Usage

```
comptSNE(
  object,
  rseed = NULL,
  max_iter = 5000,
  epoch = 500,
  quiet = FALSE,
  ...
)

## S4 method for signature 'DISCBIO'
comptSNE(
  object,
  rseed = NULL,
  max_iter = 5000,
  epoch = 500,
  quiet = FALSE,
  ...
)
```

Arguments

object	DISCBIO class object.
rseed	Random integer to to yield reproducible maps across different runs
max_iter	maximum number of iterations to perform.
epoch	The number of iterations in between update messages.
quiet	if 'TRUE', suppresses intermediate output
	other parameters to be passed to 'tsne::tsne'

Value

The DISCBIO-class object input with the tsne slot filled.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln = 2) # data must be clustered before plottin
sc <- comptSNE(sc, max_iter = 30)
head(sc@tsne)</pre>
```

customConvertFeats 11

customConvertFeats

Automatic Feature Id Conversion.

Description

Attempt to automatically convert non-ENSEMBL feature identifiers to ENSEMBL identifiers. Features are included as rownames of the input data.frame (or matrix). It is assumed that feature identifiers (i.e., rownames of x) come from human or mouse genomes, and are either OFFICIAL SYMBOLS or ENTREZIDS. If less than 20 is identified, an error will be thrown.

Usage

```
customConvertFeats(x, verbose = TRUE)
```

Arguments

x data.frame or matrix including raw counts (typically, UMIs), where rows are fea-

tures (genes) and rownames are feature identifiers (SYMBOLs or ENTREZIDs).

verbose logical, shall messages be printed to inform about conversion advances.

Value

a data.frame where rownames are ENSEMBL IDs. The new feature IDs are automatically imputed based on existing feature IDs (SYMBOLs or ENTREZIDs).

DEGanalysis

Determining differentially expressed genes (DEGs) between all individual clusters.

Description

This function defines DEGs between all individual clusters generated by either K-means or model based clustering.

```
DEGanalysis(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
```

12 DEGanalysis

```
filename_sigdeg = "sigDEG",
...
)

## S4 method for signature 'DISCBIO'
DEGanalysis(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
...
)
```

Arguments

object DISCBIO class object.

K A numeric value of the number of clusters.

Clustering Clustering has to be one of the following: ["K-means","MB"]. Default is "K-

means"

fdr A numeric value of the false discovery rate. Default is 0.05.

name A string vector showing the name to be used to save the resulted tables.

export A logical vector that allows writing the final gene list in excel file. Default is

TRUE.

quiet if 'TRUE', suppresses intermediate text output

plot if 'TRUE', plots are generated

filename_deg Name of the exported DEG table

filename_sigdeg

Name of the exported sigDEG table

. . . additional parameters to be passed to samr()

Value

A list containing two tables.

DEGanalysis2clust 13

DEGanalysis2clust

Determining differentially expressed genes (DEGs) between two particular clusters.

Description

This function defines DEGs between particular clusters generated by either K-means or model based clustering.

Usage

```
DEGanalysis2clust(
  object,
 Κ,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1"
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
)
## S4 method for signature 'DISCBIO'
DEGanalysis2clust(
  object,
 Κ,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
 First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
)
```

Arguments

object

DISCBIO class object.

14 DISCBIO

K A numeric value of the number of clusters.

Clustering Clustering has to be one of the following: ["K-means","MB"]. Default is "K-

means"

fdr A numeric value of the false discovery rate. Default is 0.05.

name A string vector showing the name to be used to save the resulted tables.

First A string vector showing the first target cluster. Default is "CL1"

Second A string vector showing the second target cluster. Default is "CL2"

export A logical vector that allows writing the final gene list in excel file. Default is

TRUE.

quiet if 'TRUE', suppresses intermediate text output

plot if 'TRUE', plots are generated filename_deg Name of the exported DEG table

filename_sigdeg

Name of the exported sigDEG table

... additional parameters to be passed to samr()

Value

A list containing two tables.

DISCBIO The DISCBIO Class

Description

The DISCBIO class is the central object storing all information generated throughout the pipeline.

Arguments

object An DISCBIO object.

Details

DISCBIO

Slots

SingleCellExperiment Representation of the single cell input data, including both cells from regular and ERCC spike-in samples. Data are stored in a SingleCellExperiment object.

expdata The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It does not contain ERCC spike-ins.

expdataAll The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It can contain ERCC spike-ins.

ndata Data with expression normalized to one for each cell.

fdata Filtered data with expression normalized to one for each cell.

distances A distance matrix.

tsne A data frame with coordinates of two-dimensional tsne layout for the K-means clustering.

background A list storing the polynomial fit for the background model of gene expression variability. It is used for outlier identification.

out A list storing information on outlier cells used for the prediction of rare cell types.

cpart A vector containing the final clustering partition computed by K-means.

fcol A vector containing the colour scheme for the clusters.

filterpar A list containing the parameters used for cell and gene filtering based on expression.

clusterpar A list containing the parameters used for the K-means clustering.

outlierpar A list containing the parameters used for outlier identification.

kmeans A list containing the results of running the Clustexp() function.

MBclusters A vector containing the final clustering partition computed by Model-based clustering.

kordering A vector containing the Pseudo-time ordering based on k-means clusters.

MBordering A vector containing the Pseudo-time ordering based on Model-based clusters.

MBtsne A data.frame with coordinates of two-dimensional tsne layout for the Model-based clustering.

noiseF A vector containing the gene list resulted from running the noise filtering.

FinalGeneList A vector containing the final gene list resulted from running the noise filtering or/and the expression filtering.

Examples

```
class(valuesG1msTest)
G1_reclassified <- DISCBIO(valuesG1msTest)
class(G1_reclassified)
str(G1_reclassified, max.level = 2)
identical(G1_reclassified@expdataAll, valuesG1msTest)</pre>
```

 ${\tt DISCBIO2SingleCellExperiment}$

Convert a DISCBIO object to a SingleCellExperiment.

Description

Extract the SingleCellExperiment input data from the corresponding input slot in a DISCBIO-class object

```
DISCBIO2SingleCellExperiment(x)
```

16 Exprmclust

Arguments

Х

an object of class DISCBIO

Value

a SingleCellExperiment-class object

Examples

```
g1_disc <- DISCBIO(valuesG1msTest)
class(g1_disc)
g1_sce <- DISCBIO2SingleCellExperiment(g1_disc)
class(g1_sce)</pre>
```

Exprmclust

Performing Model-based clustering on expression values

Description

this function first uses principal component analysis (PCA) to reduce dimensionality of original data. It then performs model-based clustering on the transformed expression values.

```
Exprmclust(
  object,
 K = 3,
 modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)
## S4 method for signature 'DISCBIO'
Exprmclust(
 object,
 K = 3,
 modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)
## S4 method for signature 'data.frame'
Exprmclust(
 object,
```

FinalPreprocessing 17

```
K = 3,
modelNames = "VVV",
reduce = TRUE,
cluster = NULL,
quiet = FALSE
)
```

Arguments

object DISCBIO class object.

K An integer vector specifying all possible cluster numbers. Default is 3.

modelNames model to be used in model-based clustering. By default "ellipsoidal, varying

volume, shape, and orientation" is used.

reduce A logical vector that allows performing the PCA on the expression data. Default

is TRUE.

cluster A vector showing the ID of cells in the clusters.

quiet if 'TRUE', suppresses intermediary output

Value

If 'object' is of class DISCBIO, the output is the same object with the MBclusters slot filled. If the 'object' is a data frame, the function returns a named list containing the four objects that together correspond to the contents of the MBclusters slot.

FinalPreprocessing

Final Preprocessing

Description

This function generates the final filtered normalized dataset.

```
FinalPreprocessing(
  object,
  GeneFlitering = "NoiseF",
  export = FALSE,
  quiet = FALSE,
  fileName = "filteredDataset"
)

## S4 method for signature 'DISCBIO'
FinalPreprocessing(
  object,
  GeneFlitering = "NoiseF",
  export = FALSE,
```

18 FindOutliers

```
quiet = FALSE,
fileName = "filteredDataset"
)
```

Arguments

object DISCBIO class object.

GeneFlitering GeneFlitering has to be one of the followings: ["NoiseF", "ExpF"]. Default is

"NoiseF"

export A logical vector that allows writing the final gene list in excel file. Default is

TRUE.

quiet if 'TRUE', intermediary output is suppressed fileName File name for exporting (if 'export = TRUE')

Value

The DISCBIO-class object input with the FinalGeneList slot filled.

Examples

```
#sc <- DISCBIO(valuesG1msTest)
#sc <- NoiseFiltering(sc, percentile = 0.9, CV = 0.2, export = FALSE)
#sc <- FinalPreprocessing(sc, GeneFlitering = "NoiseF", export = FALSE)</pre>
```

FindOutliers

Inference of outlier cells

Description

This functions performs the outlier identification for k-means and model-based clustering

```
FindOutliers(
  object,
  K,
  outminc = 5,
  outlg = 2,
  probthr = 0.001,
  thr = 2^-(1:40),
  outdistquant = 0.75,
  plot = TRUE,
  quiet = FALSE
)

## S4 method for signature 'DISCBIO'
```

FindOutliers 19

```
FindOutliers(
  object,
  K,
  outminc = 5,
  outlg = 2,
  probthr = 0.001,
  thr = 2^-(1:40),
  outdistquant = 0.75,
  plot = TRUE,
  quiet = FALSE
)
```

Arguments

object	DISCBIO class object.
K	Number of clusters to be used.
outminc	minimal transcript count of a gene in a clusters to be tested for being an outlier gene. Default is 5.
outlg	Minimum number of outlier genes required for being an outlier cell. Default is 2.
probthr	outlier probability threshold for a minimum of outlg genes to be an outlier cell. This probability is computed from a negative binomial background model of expression in a cluster. Default is 0.001.
thr	probability values for which the number of outliers is computed in order to plot the dependence of the number of outliers on the probability threshold. Default is $2**-(1:40)$.set
outdistquant	Real number between zero and one. Outlier cells are merged to outlier clusters if their distance smaller than the outdistquant-quantile of the distance distribution of pairs of cells in the original clusters after outlier removal. Default is 0.75.
plot	if 'TRUE', produces a plot of -log10prob per K
quiet	if 'TRUE', intermediary output is suppressed

Value

A named vector of the genes containing outlying cells and the number of cells on each.

Examples

```
sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln = 2) # K-means clustering
FindOutliers(sc, K = 2)</pre>
```

20 J48DT

```
foldchange.seq.twoclass.unpaired
```

Foldchange of two class unpaired sequencing data

Description

Foldchange of two class unpaired sequencing data

Usage

```
foldchange.seq.twoclass.unpaired(x, y, depth)
```

Arguments

X	X
у	y
depth	depth

HumanMouseGeneIds

Human and Mouse Gene Identifiers.

Description

Data.frame including ENTREZID, SYMBOL, and ENSEMBL gene identifiers of human and mouse genes.

Source

Data were imported, modified, and formatted from the Mus.musculus (ver 1.3.1) and the Homo.sapiens (ver 1.3.1) BioConductor libraries.

J48DT

J48 Decision Tree

Description

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

```
J48DT(data, quiet = FALSE, plot = TRUE)
```

J48DTeval 21

Arguments

data	A data frame resulted from running the function ClassVectoringDT.

quiet If 'TRUE', suppresses intermediary output

plot If 'FALSE', suppresses plot output

Value

Information about the J48 model and, by default, a plot of the decision tree.

J48DTeval	Evaluating the performance of the J48 decision tree.	

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

Usage

```
J48DTeval(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)
```

Arguments

data	The resulted	data from	running the	e function	J48DT.

num.folds A numeric value of the number of folds for the cross validation assessment.

Default is 10.

First A string vector showing the first target cluster. Default is "CL1"

Second A string vector showing the second target cluster. Default is "CL2"

quiet If 'TRUE', suppresses intermediary output

Value

Statistics about the J48 model

22 KmeanOrder

Jaccard	Jaccard's similarity
---------	----------------------

Description

Robustness of the clusters can be assessed by Jaccard's similarity, which reflects the reproducibility of individual clusters across bootstrapping runs. Jaccard's similarity is the intersect of two clusters divided by the union.

Usage

```
Jaccard(object, Clustering = "K-means", K, plot = TRUE, R = 100)
```

Arguments

object DISCBIO class object.

Clustering Clustering has to be one of the following: ["K-means","MB"]. Default is "K-

means"

K A numeric value of the number of clusters
plot if 'TRUE', plots the mean Jaccard similarities

R number of bootstrap replicates

Value

A plot of the mean Jaccard similarity coefficient per cluster.

KmeanOrder	Pseudo-time ordering based on k-means clusters	

Description

This function takes the exact output of expression and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

```
KmeanOrder(
  object,
  quiet = FALSE,
  export = FALSE,
  filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters")
## S4 method for signature 'DISCBIO'
```

NetAnalysis 23

```
KmeanOrder(
  object,
  quiet = FALSE,
  export = FALSE,
  filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters")
```

Arguments

object DISCBIO class object.

quiet if 'TRUE', suppresses intermediary output export if 'TRUE', exports order table to csv

filename Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the kordering slot filled.

Note

This function has been replaced by pseudoTimeOrdering(), but it is being kept for legacy purposes. It will, however, be removed from future versions of DIscBIO.

Description

This function checks the connectivity degree and the betweenness centrality, which reflect the communication flow in the defined PPI networks

Usage

```
NetAnalysis(data, export = FALSE, FileName = "NetworkAnalysisTable-1")
```

Arguments

data Protein-protein interaction data frame resulted from running the PPI function.

export if 'TRUE', exports the analysis table as a csv file

FileName suffix for the file name (if export = TRUE)

Value

A network analysis table

Networking Networking

Networking

Plotting the network.

Description

This function uses STRING API to plot the network.

Usage

```
Networking(
  data,
  FileName = NULL,
  species = "9606",
  plot_width = 25,
  plot_height = 15,
  retries = 3
)
```

Arguments

data A gene list.

FileName A string vector showing the name to be used to save the resulted network. If

'NULL', the network will be saved to a temporary directory

species The taxonomy name/id. Default is "9606" for Homo sapiens.

plot_width Plot width
plot_height Plot height

retries maximum number of attempts to connect to the STRING api.

Value

A plot of the network

References

https://string-db.org/api/

NoiseFiltering 25

NoiseFiltering

Noise Filtering

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows: Each column is divided by the geometric means of the rows. The median (or, if requested, another location estimator) of these ratios (skipping the genes with a # geometric mean of zero) is used as the size factor for this column. Source: DESeq package.

Usage

```
NoiseFiltering(
  object,
  percentile = 0.8,
  CV = 0.3,
  geneCol = "yellow",
  FgeneCol = "black",
  erccCol = "blue",
  Val = TRUE,
  plot = TRUE,
  export = FALSE,
  quiet = FALSE,
  filename = "Noise_filtering_genes_test"
)
## S4 method for signature 'DISCBIO'
NoiseFiltering(
  object,
  percentile = 0.8,
  CV = 0.3,
  geneCol = "yellow",
  FgeneCol = "black",
  erccCol = "blue",
  Val = TRUE,
  plot = TRUE,
  export = FALSE,
  quiet = FALSE,
  filename = "Noise_filtering_genes_test"
)
```

Arguments

object DISCBIO class object.

percentile A numeric value of the percentile. It is used to validate the ERCC spik-ins. Default is 0.8.

26 Normalizedata

CV	A numeric value of the coefficient of variation. It is used to validate the ERCC spik-ins. Default is 0.5.
geneCol	Color of the genes that did not pass the filtration.
FgeneCol	Color of the genes that passt the filtration.
erccCol	Color of the ERCC spik-ins.
Val	A logical vector that allows plotting only the validated ERCC spike-ins. Default is TRUE. If Val=FALSE will plot all the ERCC spike-ins.
plot	A logical vector that allows plotting the technical noise. Default is TRUE.
export	A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet	if 'TRUE', suppresses printed output
filename	Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the noiseF slot filled.

Note

This function should be used only if the dataset has ERCC.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sd_filtered <- NoiseFiltering(sc, export = FALSE)
str(sd_filtered)
```

Normalizedata	Normalizing and filtering	

Description

This function allows filtering of genes and cells to be used in the downstream analysis.

```
Normalizedata(
  object,
  mintotal = 1000,
  minexpr = 0,
  minnumber = 0,
  maxexpr = Inf,
  downsample = FALSE,
  dsn = 1,
```

Normalizedata 27

```
rseed = NULL
)

## S4 method for signature 'DISCBIO'
Normalizedata(
  object,
  mintotal = 1000,
  minexpr = 0,
  minnumber = 0,
  maxexpr = Inf,
  downsample = FALSE,
  dsn = 1,
  rseed = NULL
)
```

Arguments

object DISCBIO class object.

minitotal minimum total transcript number required. Cells with less than mintotal trans-

scripts are filtered out. Default is 1000.

minexpr minimum required transcript count of a gene in at least minnumber cells. All

other genes are filtered out. Default is 0.

minnumber minimum number of cells that are expressing each gene at minexpr transcripts.

Default is 0.

maxexpr maximum allowed transcript count of a gene in at least a single cell after nor-

malization or downsampling. All other genes are filtered out. Default is Inf.

downsample A logical vector. Default is FALSE. If downsample is set to TRUE, then tran-

script counts are downsampled to mintotal transcripts per cell, instead of the normalization. Downsampled versions of the transcript count data are averaged

across dsn samples

dsn A numeric value of the number of samples to be used to average the down-

sampled versions of the transcript count data. Default is 1 which means that sampling noise should be comparable across cells. For high numbers of dsn the

data will become similar to the median normalization.

rseed Random integer to enforce reproducible clustering. results

Value

The DISCBIO-class object input with the ndata and fdata slots filled.

Examples

```
sc <- DISCBIO(valuesG1msTest) # changes signature of data
# In this case this function is used to normalize the reads
sc_normal <- Normalizedata(
    sc,
    mintotal = 1000, minexpr = 0, minnumber = 0, maxexpr = Inf,</pre>
```

28 plotExptSNE

```
downsample = FALSE, dsn = 1, rseed = 17000
)
summary(sc_normal@fdata)
```

PCAplotSymbols

Plot PCA symbols

Description

Generates a plot of grouped PCA components

Usage

```
PCAplotSymbols(object, types = NULL)
## S4 method for signature 'DISCBIO'
PCAplotSymbols(object, types = NULL)
```

Arguments

object DISCBIO class object.

types If types=NULL then the names of the cells will be grouped automatically. De-

fault is NULL

Value

Plot of the Principal Components

plotExptSNE

Highlighting gene expression in the t-SNE map

Description

The t-SNE map representation can also be used to analyze expression of a gene or a group of genes, to investigate cluster specific gene expression patterns

```
plotExptSNE(object, g, n = NULL)
## S4 method for signature 'DISCBIO'
plotExptSNE(object, g, n = NULL)
```

plotGap 29

Arguments

object	DISCBIO class object.
g	Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the ndata slot of the DISCBIO object.
n	String of characters representing the title of the plot. Default is NULL and the first element of g is chosen.

Value

t-SNE plot for one particular gene

Description

Plotting Gap Statistics

Usage

```
plotGap(object, y_limits = NULL)
## S4 method for signature 'DISCBIO'
plotGap(object, y_limits = NULL)
```

Arguments

object DISCBIO class object.

y_limits 2-length numeric vector with the limits for the gap plot

Value

A plot of the gap statistics

30 PlotMBpca

|--|

Description

Visualizing k-means or model-based clusters using tSNE maps

Usage

```
plotLabelstSNE(object)
## S4 method for signature 'DISCBIO'
plotLabelstSNE(object)
```

Arguments

object DISCBIO class object.

Value

Plot containing the ID of the cells in each cluster

PlotMBpca	Plotting pseudo-time ordering or gene expression in Model-based
	clustering in PCA

Description

The PCA representation can either be used to show pseudo-time ordering or the gene expression of a particular gene.

Usage

```
PlotMBpca(object, type = "order", g = NULL, n = NULL)
```

Arguments

object	DISCBIO class object.
type	either 'order' to plot pseudo-time ordering or 'exp' to plot gene expression
g	Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the ndata slot of the DISCBIO object. Ignored if 'type="order"'.
n	String of characters representing the title of the plot. Default is NULL and the first element of g is chosen. Ignored if 'type="order".

PlotmclustMB 31

Value

A plot of the PCA.

PlotmclustMB

Plotting the Model-based clusters in PCA.

Description

Plot the model-based clustering results

Usage

```
PlotmclustMB(object)
## S4 method for signature 'DISCBIO'
PlotmclustMB(object)
```

Arguments

object

DISCBIO class object.

Value

A plot of the PCA.

plotOrderTsne

Plotting the pseudo-time ordering in the t-SNE map

Description

The tSNE representation can also be used to show the pseudo-time ordering.

Usage

```
plotOrderTsne(object)
## S4 method for signature 'DISCBIO'
plotOrderTsne(object)
```

Arguments

object

DISCBIO class object.

Value

A plot of the pseudo-time ordering.

32 plotSymbolstSNE

plotSilhouette

Silhouette Plot for K-means clustering

Description

The silhouette provides a representation of how well each point is represented by its cluster in comparison to the closest neighboring cluster. It computes for each point the difference between the average similarity to all points in the same cluster and to all points in the closest neighboring cluster. This difference it normalize such that it can take values between -1 and 1 with higher values reflecting better representation of a point by its cluster.

Usage

```
plotSilhouette(object, K)
## S4 method for signature 'DISCBIO'
plotSilhouette(object, K)
```

Arguments

object DISCBIO class object.

K A numeric value of the number of clusters

Value

A silhouette plot

plotSymbolstSNE

tSNE map for K-means clustering with symbols

Description

Visualizing the K-means clusters using tSNE maps

```
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
## S4 method for signature 'DISCBIO'
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
```

plottSNE 33

Arguments

object DISCBIO class object.

types If types=NULL then the names of the cells will be grouped automatically. De-

fault is NULL

legloc A keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft",

"top", "topright", "right" and "center". Default is "bottomright"

Value

Plot of tsne objet slot, grouped by gene.

plottSNE

tSNE map

Description

Visualizing the k-means or model-based clusters using tSNE maps

Usage

```
plottSNE(object)
## S4 method for signature 'DISCBIO'
plottSNE(object)
```

Arguments

object

DISCBIO class object.

Value

A plot of t-SNEs.

PPI

Defining protein-protein interactions (PPI) over a list of genes,

Description

This function uses STRING-api. The outcome of STRING analysis will be stored in commaseparated values files.

```
PPI(data, FileName = NULL, species = "9606")
```

34 prepExampleDataset

Arguments

data A gene list.

FileName A string vector showing the name to be used to save the resulted table. If null,

no file will be exported

species The taxonomy name/id. Default is "9606" for Homo sapiens.

Value

Either CSV files stored in the user's file system and its corresponding 'data.frame' object in R or and R object containing that information.

Prepare Example Dataset

Description

Internal function that prepares a pre-treated dataset for use in several examples

Usage

```
prepExampleDataset(dataset, save = TRUE)
```

Arguments

dataset Dataset used for transformation

save save results?

Details

This function serves the purpose of treating datasets such as valuesG1msReduced to reduce examples of other functions by bypassing some analysis steps covered in the vignettes.

Value

Two rda files, ones for K-means clustering and another for Model-based clustering.

Author(s)

Waldir Leoncio

pseudoTimeOrdering 35

pseudoTimeOrdering

Pseudo-time ordering

Description

This function takes the exact output of expresslust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

Usage

```
pseudoTimeOrdering(
  object,
  quiet = FALSE,
  export = FALSE,
  filename = "Cellular_pseudo-time_ordering"
)

## S4 method for signature 'DISCBIO'
pseudoTimeOrdering(
  object,
  quiet = FALSE,
  export = FALSE,
  filename = "Cellular_pseudo-time_ordering"
)
```

Arguments

object DISCBIO class object.

quiet if 'TRUE', suppresses intermediary output export if 'TRUE', exports order table to csv

filename Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the kordering slot filled.

rankcols

Rank columns

Description

Ranks the elements within each col of the matrix x and returns these ranks in a matrix

```
rankcols(x)
```

36 replaceDecimals

Arguments

X X

Note

this function is equivalent to 'samr::rankcol', but uses 'apply' to rank the colums instead of a compiled Fortran function which was causing our DEGanalysis functions to freeze in large datasets.

reformatSiggenes

Reformat Siggenes Table

Description

Reformats the Siggenes table output from the SAMR package

Usage

```
reformatSiggenes(table)
```

Arguments

table

output from 'samr::samr.compute.siggenes.table'

Author(s)

Waldir Leoncio

See Also

replaceDecimals

replaceDecimals

Replace Decimals

Description

Replaces decimals separators between comma and periods on a character vector

Usage

```
replaceDecimals(x, from = ",", to = ".")
```

Arguments

x vector of characters

from decimal separator on input file to decimal separator for output file

resa 37

Note

This function was especially designed to be used with retormatSiggenes

See Also

reformatSiggenes

resa Resampling

Description

Corresponds to 'samr::resample'

Usage

```
resa(x, d, nresamp = 20)
```

Arguments

x data matrix. nrow=#gene, ncol=#sample

d estimated sequencing depth nresamp number of resamplings

Value

xresamp: an rank array with dim #gene*#sample*nresamp

retrieveURL Retries a URL

Description

Retries a URL

Usage

```
retrieveURL(data, species, outputFormat, maxRetries = 3, successCode = 200)
```

Arguments

data A gene list

species The taxonomy name/id. Default is "9606" for Homo sapiens

outputFormat format of the output. Can be "highres_image", "tsv", "json", "tsv-no-header",

"xml"

maxRetries maximum number of attempts to connect to the STRING api.

successCode Status code number that represents success

38 RpartEVAL

Value

either the output of httr::GET or an error message

Author(s)

Waldir Leoncio

RpartDT

RPART Decision Tree

Description

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage

```
RpartDT(data, quiet = FALSE, plot = TRUE)
```

Arguments

data The exact output of the exprmclust function.

quiet If 'TRUE', suppresses intermediary output

plot If 'FALSE', suppresses plot output

Value

Information about the model and, by default, a plot of the decision tree.

RpartEVAL

Evaluating the performance of the RPART Decision Tree.

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

```
RpartEVAL(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)
```

sammy 39

Arguments

The resulted data from running the function J48DT.

A numeric value of the number of folds for the cross validation assessment. Default is 10.

First A string vector showing the first target cluster. Default is "CL1"

Second A string vector showing the second target cluster. Default is "CL2"

quiet If 'TRUE', suppresses intermediary output

Value

Performance statistics of the model

sammy

Significance analysis of microarrays

Description

This function is an adaptation of 'samr::samr'

```
sammy(
  data,
  resp.type = c("Quantitative", "Two class unpaired", "Survival", "Multiclass",
    "One class", "Two class paired", "Two class unpaired timecourse",
   "One class timecourse", "Two class paired timecourse", "Pattern discovery"),
  assay.type = c("array", "seq"),
  s0 = NULL,
  s0.perc = NULL,
  nperms = 100,
  center.arrays = FALSE,
  testStatistic = c("standard", "wilcoxon"),
  time.summary.type = c("slope", "signed.area"),
  regression.method = c("standard", "ranks"),
  return.x = FALSE,
  knn.neighbors = 10,
  random.seed = NULL,
  nresamp = 20,
 nresamp.perm = NULL,
 xl.mode = c("regular", "firsttime", "next20", "lasttime"),
 xl.time = NULL,
  xl.prevfit = NULL
)
```

40 sammy

Arguments

data Data object with components x- p by n matrix of features, one observation

per column (missing values allowed); y- n-vector of outcome measurements; censoring.status- n-vector of censoring censoring.status (1= died or event occurred, 0=survived, or event was censored), needed for a censored survival out-

come

resp. type Problem type: "Quantitative" for a continuous parameter (Available for both ar-

ray and sequencing data); "Two class unpaired" (for both array and sequencing data); "Survival" for censored survival outcome (for both array and sequencingdata); "Multiclass": more than 2 groups (for both array and sequencing data); "One class" for a single group (only for array data); "Two class paired" for two classes with paired observations (for both array and sequencing data); "Two class unpaired timecourse" (only for array data), "One class time course" (only for array data), "Two class.paired timecourse" (only for array data), or "Pattern

discovery" (only for array data)

assay.type Assay type: "array" for microarray data, "seq" for counts from sequencing

so Exchangeability factor for denominator of test statistic; Default is automatic

choice. Only used for array data.

so.perc Percentile of standard deviation values to use for so; default is automatic choice;

-1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of stan-

dard deviation values= min of sd values. Only used for array data.

nperms Number of permutations used to estimate false discovery rates

center.arrays Should the data for each sample (array) be median centered at the outset? De-

fault =FALSE. Only used for array data.

testStatistic Test statistic to use in two class unpaired case. Either "standard" (t-statistic) or

,"wilcoxon" (Two-sample wilcoxon or Mann-Whitney test). Only used for array

data.

time.summary.type

Summary measure for each time course: "slope", or "signed.area"). Only used

for array data.

regression.method

Regression method for quantitative case: "standard", (linear least squares) or

"ranks" (linear least squares on ranked data). Only used for array data.

return.x Should the matrix of feature values be returned? Only useful for time course

data, where x contains summaries of the features over time. Otherwise x is the

same as the input data

knn.neighbors Number of nearest neighbors to use for imputation of missing features values.

Only used for array data.

random. seed Optional initial seed for random number generator (integer)

nresamp For assay.type="seq", number of resamples used to construct test statistic. De-

fault 20. Only used for sequencing data.

nresamp.perm For assay.type="seq", number of resamples used to construct test statistic for

permutations. Default is equal to nresamp and it must be at most nresamp. Only

used for sequencing data.

samr.estimate.depth 41

x1.mode	Used by Excel interface
xl.time	Used by Excel interface
xl.prevfit	Used by Excel interface

samr.estimate.depth E

Estimate sequencing depths

Description

Estimate sequencing depths

Usage

```
samr.estimate.depth(x)
```

Arguments

Χ

data matrix. nrow=#gene, ncol=#sample

Value

depth: estimated sequencing depth. a vector with len sample.

valuesG1msTest

Single-cells data from a myxoid liposarcoma cell line

Description

A sample of single cells from a myxoid liposarcoma cell line. Columns refer to samples and rows refer to genes. The last rows refer to external RNA controls consortium (ERCC) spikeins. This dataset is part of a larger dataset containing 94 single cells. The complete dataset is fully compatible with this package and an rda file can be obtained at https://github.com/ocbeuio/DIscBIO/blob/dev/data/valuesG1ms.rda

VolcanoPlot	Volcano Plot

Description

Plotting differentially expressed genes (DEGs) in a particular cluster. Volcano plots are used to readily show the DEGs by plotting significance versus fold-change on the y and x axes, respectively.

Usage

```
VolcanoPlot(object, value = 0.05, name = NULL, fc = 0.5, FS = 0.4)
```

Arguments

object A data frame showing the differentially expressed genes (DEGs) in a particular

cluster

value A numeric value of the false discovery rate. Default is 0.05.. Default is 0.05

name A string vector showing the name to be used on the plot title

fc A numeric value of the fold change. Default is 0.5.

FS A numeric value of the font size. Default is 0.4.

Value

A volcano plot

```
wilcoxon.unpaired.seq.func
```

Twoclass Wilcoxon statistics

Description

Twoclass Wilcoxon statistics

Usage

```
wilcoxon.unpaired.seq.func(xresamp, y)
```

Arguments

xresamp an rank array with dim #gene*#sample*nresamp

y outcome vector of values 1 and 2

Value

the statistic.

Index

as.DISCBIO,3	${\tt foldchange.seq.twoclass.unpaired, 20}\\$
check.format,4	HumanMouseGeneIds, 20
ClassVectoringDT, 4	,
ClassVectoringDT,DISCBIO-method	J48DT, 20
(ClassVectoringDT), 4	J48DTeval, 21
ClustDiffGenes, 5	Jaccard, 22
ClustDiffGenes, DISCBIO-method	5 d c c d i d i d i d i d i d i d i d i d
(ClustDiffGenes), 5	KmeanOrder, 22
Clustexp, 7	KmeanOrder, DISCBIO-method (KmeanOrder)
Clustexp, DISCBIO-method (Clustexp), 7	22
clustheatmap, 8	
clustheatmap, DISCBIO-method	NetAnalysis, 23
(clustheatmap), 8	Networking, 24
comptSNE, 9	NoiseFiltering, 25
comptSNE, DISCBIO-method (comptSNE), 9	NoiseFiltering,DISCBIO-method
customConvertFeats, 11	(NoiseFiltering), 25
	Normalizedata, 26
DEGanalysis, 11	Normalizedata, DISCBIO-method
DEGanalysis, DISCBIO-method	(Normalizedata), 26
(DEGanalysis), 11	(
DEGanalysis2clust, 13	PCAplotSymbols, 28
DEGanalysis2clust,DISCBIO-method	PCAplotSymbols, DISCBIO-method
(DEGanalysis2clust), 13	(PCAplotSymbols), 28
DISCBIO, 14	plotExptSNE, 28
DISCBIO-class (DISCBIO), 14	plotExptSNE,DISCBIO-method
DISCBIO-class, (DISCBIO), 14	(plotExptSNE), 28
DISCBIO2SingleCellExperiment, 15	plotGap, 29
Evenesiust 16	plotGap, DISCBIO-method (plotGap), 29
Expressivet data from mathed	plotLabelstSNE, 30
Exprmclust, data. frame-method	plotLabelstSNE,DISCBIO-method
(Expressluent, 16	(plotLabelstSNE), 30
Exprmclust, DISCBIO-method (Exprmclust),	PlotMBpca, 30
16	PlotmclustMB, 31
FinalPreprocessing, 17	PlotmclustMB,DISCBIO-method
FinalPreprocessing, DISCBIO-method	(PlotmclustMB), 31
(FinalPreprocessing), 17	plotOrderTsne, 31
FindOutliers, 18	plotOrderTsne,DISCBIO-method
FindOutliers, DISCBIO-method	(plot0rderTsne), 31
(FindOutliers), 18	plotSilhouette, 32

INDEX INDEX

```
plotSilhouette, DISCBIO-method
        (plotSilhouette), 32
plotSymbolstSNE, 32
plotSymbolstSNE,DISCBIO-method
        (plotSymbolstSNE), 32
plottSNE, 33
plottSNE,DISCBIO-method(plottSNE), 33
PPI, 33
prepExampleDataset, 34
pseudoTimeOrdering, 35
{\tt pseudoTimeOrdering,DISCBIO-method}
        (pseudoTimeOrdering), 35
rankcols, 35
reformatSiggenes, 36
replaceDecimals, 36
resa, 37
retrieveURL, 37
RpartDT, 38
RpartEVAL, 38
sammy, 39
samr.estimate.depth, 41
valuesG1msTest, 41
VolcanoPlot, 42
wilcoxon.unpaired.seq.func, 42
```