Beyond Parallel Corpora

Philipp Koehn

22 October 2024

data and machine learning

- We framed machine translation as a supervised machine learning task
 - training examples with labels
 - here: input sentences with translation
 - structured prediction: output has to be constructed in several steps

- We framed machine translation as a supervised machine learning task
 - training examples with labels
 - here: input sentences with translation
 - structured prediction: output has to be constructed in several steps
- Unsupervised learning
 - training examples without labels
 - here: just sentences in the input language
 - we will also look at using just sentences output language

- We framed machine translation as a supervised machine learning task
 - training examples with labels
 - here: input sentences with translation
 - structured prediction: output has to be constructed in several steps
- Unsupervised learning
 - training examples without labels
 - here: just sentences in the input language
 - we will also look at using just sentences output language
- Semi-supervised learning
 - some labeled training data
 - some unlabeled training data (usually more)

- We framed machine translation as a supervised machine learning task
 - training examples with labels
 - here: input sentences with translation
 - structured prediction: output has to be constructed in several steps
- Unsupervised learning
 - training examples without labels
 - here: just sentences in the input language
 - we will also look at using just sentences output language
- Semi-supervised learning
 - some labeled training data
 - some unlabeled training data (usually more)
- Self-training
 - make predictions on unlabeled training data
 - use predicted labeled as supervised translation data

Transfer Learning

• Learning from data similar to our task

Transfer Learning

- Learning from data similar to our task
- Other language pairs
 - first, train a model on different language pair
 - then, train on the targeted language pair
 - or: train jointly on both

Transfer Learning

- Learning from data similar to our task
- Other language pairs
 - first, train a model on different language pair
 - then, train on the targeted language pair
 - or: train jointly on both
- Multi-Task training
 - train on a related task first
 - e.g., part-of-speeh tagging
- Share some or all of the components

using monolingual data

Using Monolingual Data

- Language model
 - trained on large amounts of target language data
 - better fluency of output
- Key to success of statistical machine translation
- Neural machine translation
 - integrate neural language model into model
 - create artificial data with backtranslation

- Train a separate language model
- Add as conditioning context to the decoder

- Train a separate language model
- Add as conditioning context to the decoder
- Recall state progression in the decoder
 - decoder state s_i
 - embedding of previous output word Ey_{i-1}
 - input context c_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

- Train a separate language model
- Add as conditioning context to the decoder
- Recall state progression in the decoder
 - decoder state s_i
 - embedding of previous output word Ey_{i-1}
 - input context c_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

 $\bullet \,$ Add hidden state of neural language model $s_i^{\rm LM}$

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i, s_i^{LM})$$

- Train a separate language model
- Add as conditioning context to the decoder
- Recall state progression in the decoder
 - decoder state s_i
 - embedding of previous output word Ey_{i-1}
 - input context c_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

 \bullet Add hidden state of neural language model $s_i^{\rm LM}$

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i, s_i^{LM})$$

- Pre-train language model
- Leave its parameters fixed during translation model training

• Balance impact of language model vs. translation model

- Balance impact of language model vs. translation model
- Learn a scaling factor (gate) $gate_i^{LM} = f(s_i^{LM})$

- Balance impact of language model vs. translation model
- Learn a scaling factor (gate) $\operatorname{gate}_i^{\operatorname{LM}} = f(s_i^{\operatorname{LM}})$
- Use it to scale values of language model state

$$\bar{s}_i^{\mathrm{LM}} = \mathrm{gate}_i^{\mathrm{LM}} \times s_i^{\mathrm{LM}}$$

- Balance impact of language model vs. translation model
- Learn a scaling factor (gate) $gate_i^{LM} = f(s_i^{LM})$
- Use it to scale values of language model state

$$\bar{s}_i^{\rm LM} = {\rm gate}_i^{\rm LM} \times s_i^{\rm LM}$$

• Use this scaled language model state for decoder state

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i, \bar{s}_i^{LM})$$

backtranslation

Back Translation

• Monolingual data is parallel data that misses its other half

Back Translation

- Monolingual data is parallel data that misses its other half
- Let's synthesize that half

Back Translation

• Steps

- 1. train a system in reverse language translation
- 2. use this system to translate target side monolingual data
 - → synthetic parallel corpus
- 3. combine generated synthetic parallel data with real parallel data to build the final system
- Roughly equal amounts of synthetic and real data
- Useful method for domain adaptation

• Quality of backtranslation system matters

- Quality of backtranslation system matters
- Build a better backtranslation system ... with backtranslation

- Quality of backtranslation system matters
- Build a better backtranslation system ... with backtranslation

• Example: Better system for backtranslation matters

German–English	Back	Final
no back-translation	_	29.6
*10k iterations	10.6	29.6 (+0.0)
*100k iterations	21.0	31.1 (+1.5)
convergence	23.7	32.5 (+2.9)
re-back-translation	27.9	33.6 (+4.0)

^{* =} limited training of back-translation system

Variants

- Copy Target
 - if no good neural machine translation system to start with
 - just copy target language text to the source

- Forward Translation
 - synthesize training data in same direction as training
 - self-training (inferior but sometimes successful)

- We could iterate through steps of
 - train system
 - create synthetic corpus

- We could iterate through steps of
 - train system
 - create synthetic corpus
- Dual learning: train models in both directions together
 - translation models $F \to E$ and $E \to F$
 - take sentence f
 - translate into sentence e'
 - translate that back into sentence f'
 - training objective: f should match f'

- We could iterate through steps of
 - train system
 - create synthetic corpus
- Dual learning: train models in both directions together
 - translation models $F \to E$ and $E \to F$
 - take sentence f
 - translate into sentence e'
 - translate that back into sentence f'
 - training objective: f should match f'
- Setup could be fooled by just copying (e' = f)
 - \Rightarrow score **e**' with a language for language *E* add language model score as cost to training objective

monolingual pretraining

Low Resource Language Pairs

- Problem: not enough parallel to even train a proper encoder or decoder
- Idea: use monolingual data
 - **–** ... in source language \rightarrow initialize encoder
 - **–** ... in target language \rightarrow initialize decoder
- How do we present monolingual data in training?

Masked Training

- Replace some input word sequences with <pad> (30% of words)
- Train model MASKED → TEXT on both source and target text

Why did the chicken cross the road? \uparrow Why did $\langle pad \rangle$ chicken $\langle pad \rangle$ the road?

Reordering Sentences

Reorder sentences (each training example has 3 sentences)

Why did the chicken cross the road? The chicken wanted to get to the other side. There are some delicious sunflower seeds.

The chicken wanted to get <pad> other <pad>.
 <pad> are some delicious <pad> seeds.
 Why did <pad> chicken <pad> the road?

Example: mBART

"Multilingual Denoising Pre-training for Neural Machine Translation" (Liu et al., 2020)

- 25 languages: from 55 billion words English to 56 million words Burmese
- Followed by training on parallel data
- ⇒ Helps with low-resource languages (but not with >20 million sentence pair parallel data)

unsupervised machine translation

Monolingual Embedding Spaces

- Embedding spaces for different languages have similar shape
- Intuition: relationship between *dog*, *cat*, and *lion*, independent of language
- How can we rotate the triangle to match up?

Matching Embedding Spaces

- Seed lexicon of identically spelled words, numbers, names
- Adversarial training: discriminator predicts language [Conneau et al., 2018]
- Match matrices with word similarity scores: Vecmap [Artetxe et al., 2018]

Bilingual Lexicon Induction

- Given shared embedding state
- \Rightarrow matching points in space = word translations

Inferred Translation Model

- Translation model
 - induced word translations
 - \rightarrow statistical phrase translation table (probability \simeq similarity)
- Language model
 - target side monolingual data
 - → estimate statistical n-gram language model
- ⇒ Statistical phrase-based machine translation system

Synthetic Training Data

- Create synthetic parallel corpus
 - monolingual text in source language
 - translate with inferred system: translations in target language

Iterate

- Iterate
 - Predict data: generate translation for monolingual corpus
 - Predict model: estimate model from synthetic data
 - iterate this process, alternate between language directions
- Increasingly use neural machine translation model to synthesize data

multiple language pairs

Multiple Language Pairs

- There are more than two languages in the world
- We may want to build systems for many language pairs
- Typical: train separate models for each
- Joint training

Multiple Input Languages

- Example
 - German-English
 - French-English
- Concatenate training data
- Joint model benefits from exposure to more English data
- Shown beneficial in low resource conditions
- Do input languages have to be related? (maybe not)

Multiple Output Languages

- Example
 - French-English
 - French-Spanish
- Concatenate training data
- Given a French input sentence, how specify output language?

Multiple Output Languages

- Example
 - French-English
 - French-Spanish
- Concatenate training data
- Given a French input sentence, how specify output language?
- Indicate output language with special tag

[ENGLISH] N'y a-t-il pas ici deux poids, deux mesures?

 \Rightarrow Is this not a case of double standards?

[SPANISH] N'y a-t-il pas ici deux poids, deux mesures?

 \Rightarrow ¿No puede verse con toda claridad que estamos utilizando un doble rasero?

Zero Shot Translation

- Example
 - German-English
 - French-English
 - French-Spanish
- We want to translate
 - German–Spanish

Zero Shot

- Train on
 - German-English
 - French-English
 - French-Spanish
- Specify translation

[SPANISH] Messen wir hier nicht mit zweierlei Maß?

 \Rightarrow ¿No puede verse con toda claridad que estamos utilizando un doble rasero?

Zero Shot: Hype

Algorithms

Google's Al just created its own universal 'language'

The technology used in Google Translate can identify hidden material between languages to create what's known as interlingua

BV MATT BURGESS

23 Nov 2016

Zero Shot: Reality

Table 5: Portuguese Spanish BLEU scores using various models.

	Model	Zero-shot	BLEU
$\overline{\rm (a)}$	PBMT bridged	no	28.99
(b)	NMT bridged	no	30.91
(c)	$NMT Pt \rightarrow Es$	no	31.50
(d)	Model 1 (Pt \rightarrow En, En \rightarrow Es)	yes	21.62
(e)	Model 2 (En \leftrightarrow {Es, Pt})	yes	24.75
(f)	Model 2 + incremental training	no	31.77

- Bridged: pivot translation Portuguese \rightarrow English \rightarrow Spanish
- Model 1 and 2: Zero shot training
- Model 2 + incremental training: use of some training data in language pair

Massively Multilingual Training

- Scaling up multilingual machine translation for more languages
 - many-to-English
 - English-to-many
 - many-to-many
- Mainly motivated by improving low-resource language pairs
- Move towards larger models

Translation Quality for 103 Languages

Gains with Multilingual Training

(source: Google)

Romanization

Many-to-Many

Facebook

Introducing the First Al Model That Translates 100 Languages Without Relying on English

October 19, 2020 By Angela Fan, Research Assistant

- 7.5 billion sentences for 100 languages (mined from web-crawled data)
- Model with 15 billion parameters
- Improvements especially for low resource languages

Even Bigger: NLLB (2022)

- No Language Left Behind: 200 languages
- Hand-translated test set: Flores-200
- Uses diverse data sources
 - public parallel data
 - translations created by professional translators
 - sentence pairs based on sentence embedding similarity
 - monolingual data for
 - * monolingual pre-training
 - * back-translation
 - * self-training
- Models of different scale (up to 54B parameters), publicly released

Different Amounts of Data per Language

- High-resource language pairs are undertrained
- Low-resource language pairs are overtrained

Different Amounts of Data per Language

- High-resource language pairs are undertrained
- Low-resource language pairs are overtrained
- \Rightarrow Oversampling low resource language pairs

 Data selection probability p_l for language pair l based on corpus sizes D_k

$$p_l = (D_l / \sum_k D_k)^{1/T}$$

Different Amounts of Data per Language

- High-resource language pairs are undertrained
- Low-resource language pairs are overtrained
- \Rightarrow Oversampling low resource language pairs

 Data selection probability p_l for language pair l based on corpus sizes D_k

$$p_l = (D_l / \sum_k D_k)^{1/T}$$

• Curriculum training: adding low-resource data only in later training stages

Interference

- Many languages in the same representation space
- Beneficial: shared cognates, numbers, names, ...
- Harmful: a lot of accidental overlap in tokens that have different meaning
 - die common German determiner
 - die different meaning in English
- What can be done to avoid harmful interference?

Language-Specific Components

- Various design choices
 - language-specific encoder
 - language-specific decoder
 - language specific adaptor components
- Example:

"Condensing Multilingual Knowledge with Lightweight Language-Specific Modules" Xu et al. (2023)

- language specific parameters
- shared parameters
- self-distillation method to condense everything into shared parameters

Mixture of Experts

- Conditional compute
- Gating mechanism decides which FF step to utilize
- Allows scaling to many more parameters without increasing computational cost

(a) Dense Transformer

(b) MoE Transformer

document-level translation

The Importance of Document-Level Context 47

- Pronouns
 - I bought a table. It is pretty.
 - Ich kaufte einen Tisch. Er/sie/es is schön.
- Better disambiguation
 - I have a lot of numbers. I still need to make the table.
- Terminological consistency

- Entire infrastructure focused on sentence level
 - Training data available as sentence pairs
 - Metrics defined at sentence level
 - APIs typically operate at sentence level

- Entire infrastructure focused on sentence level
 - Training data available as sentence pairs
 - Metrics defined at sentence level
 - APIs typically operate at sentence level
- This is slowly changing

- Entire infrastructure focused on sentence level
 - Training data available as sentence pairs
 - Metrics defined at sentence level
 - APIs typically operate at sentence level
- This is slowly changing
 - Scaling up transformers for multi-sentence translation [Junczys-Dowmunt et al., 2019]

- Entire infrastructure focused on sentence level
 - Training data available as sentence pairs
 - Metrics defined at sentence level
 - APIs typically operate at sentence level
- This is slowly changing
 - Scaling up transformers for multi-sentence translation [Junczys-Dowmunt et al., 2019]
 - Document-level metrics, e.g., CTXPRO [Wicks et al., 2023]

- Entire infrastructure focused on sentence level
 - Training data available as sentence pairs
 - Metrics defined at sentence level
 - APIs typically operate at sentence level
- This is slowly changing
 - Scaling up transformers for multi-sentence translation [Junczys-Dowmunt et al., 2019]
 - Document-level metrics, e.g., CTXPRO [Wicks et al., 2023]
 - Release of training data in document-aligned format
 e.g., Europarl, News Commentary, Paracrawl [Wicks et al., 2024]

- Entire infrastructure focused on sentence level
 - Training data available as sentence pairs
 - Metrics defined at sentence level
 - APIs typically operate at sentence level
- This is slowly changing
 - Scaling up transformers for multi-sentence translation [Junczys-Dowmunt et al., 2019]
 - Document-level metrics, e.g., CTXPRO [Wicks et al., 2023]
 - Release of training data in document-aligned format
 e.g., Europarl, News Commentary, Paracrawl [Wicks et al., 2024]

questions?