

PolarHT[™] Power MOSFET

IXTK 102N30P

 $V_{DSS} = 300 V$ $I_{D25} = 102 A$ $R_{DS(op)} \le 33 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}$ $T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	300 300	V		
V _{GSS} V _{GSM}	Continuous Transient	±20 ±30	V		
I _{D25}	T _c = 25° C	102	Α		
I _{D(RMS)}	External lead current limit	75	Α		
I _{DM}	$T_{_{\rm C}}$ = 25° C, pulse width limited by $T_{_{\rm JM}}$	250	Α		
I _{AR}	T _c =25°C	60	Α		
E _{AR}	T _C =25°C	60	mJ		
E _{AS}	T _c = 25° C	2.5	J		
dv/dt	$I_{S} \leq I_{DM}$, di/dt $\leq 100 \text{ A/}\mu\text{s}$, $V_{DD} \leq V_{DSS}$, $T_{J} \leq 150^{\circ}\text{ C}$, $R_{G} = 4 \Omega$	10	V/ns		
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C =25°C	700	W		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C		
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s Mounting torque	300 260 1.13/10	°C °C Nm/lb.in.		
M _d Weight	TO-264	1.13/10	<u>g</u>		

Symbol Test Conditions $(T_J = 25^{\circ} C, \text{ unless otherwise specified})$		Characteristic Values Min. Typ. Max.				
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		300			V
$V_{_{\mathrm{GS(th)}}}$	$V_{DS} = V_{GS}, I_{D} = 500 \mu A$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C			25 250	μA μA
R _{DS(on)}	V_{GS} = 10 V, I_{D} = 0.5 I_{D25} Pulse test, t \leq 300 μ s, duty	cycle d ≤ 2 %			33	mΩ

TO-264 (IXTK)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- ¹ International standard package
- Unclamped Inductive Switching (UIS) rated
- ¹ Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- ¹ High power density

Symbol	· ·		Characteristic Values unless otherwise specified) Min. Typ. Max.		
g _{fs}	$V_{DS} = 10 \text{ V; } I_{D} = 0.5 I_{D25}, \text{ pulse test}$	45	Typ. 57	S	
C _{iss}	50 5 520		7500	pF	
c _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		1150	pF	
C _{rss}			230	pF	
t _{d(on)}			30	ns	
t,	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 60 \text{ A}$		28	ns	
t _{d(off)}	$R_G = 3.3 \Omega$ (External)		130	ns	
t _r			30	ns	
$Q_{g(on)}$			224	nC	
Q _{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$		50	nC	
\mathbf{Q}_{gd}			110	nC	
R _{thJC}				0.18° C/W	
R _{thCS}			0.15	° C/W	

Source-Drain Diode Characteristic Values $(T_J = 25^{\circ} C, \text{ unless otherwise specified})$ Symbol Test Conditions Min. Typ. Max. I_S $V_{GS} = 0 \text{ V}$ 102 A

I _s	V _{GS} = 0 V		102	Α
I _{SM}	Repetitive		250	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, t ≤300 µs, duty cycle d≤ 2 %		1.5	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \end{array} \right\}$	$I_F = 25 \text{ A}, -di/dt = 100 \text{ A/}\mu\text{s}$ $V_R = 100 \text{ V}, V_{GS} = 0 \text{ V}$	250 3.3		ns μC

Fig. 1. Output Characteristics

Fig. 3. Output Characteristics @ 125°C

Fig. 5. R_{DS(on)} Normalized to

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case

Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Forward-Bias Safe Operating Area

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance

