Fundamental Theorem of Arithmetic

Shef Scholars Competitive Math Academy

August 2025

Introduction

The Fundamental Theorem of Arithmetic tells us that every integer can be written as a product of prime numbers.

Theorem 1. (Fundamental Theorem of Arithmetic). Every natural number n greater than one can be uniquely written in the form

$$n = p_1^{k_1} p_2^{k_2} \dots p_l^{k_l},$$

where $p_1 < p_2 < \cdots < p_l$ are prime numbers and k_1, k_2, \ldots, k_l are natural numbers.

Proof of Fundamental theorem of arithmetic:

Existence. Assume there exists a natural number not expressible as a product of primes. Let m be the smallest such number. Then m is not prime, so m = ab with 1 < a, b < m. By minimality, a and b have prime factorizations, so m = ab also does — contradiction. Hence, every number has a prime factorization.

Uniqueness. Assume n has two distinct factorizations:

$$n = p_1 p_2 \dots p_k = q_1 q_2 \dots q_l,$$

with primes in non-decreasing order. Cancel all common primes: we get

$$p_1p_2\ldots p_t=q_1q_2\ldots q_s,$$

with all remaining primes distinct. Then $p_1 \mid q_1q_2\dots q_s$, so $p_1 \mid q_j$ for some j. But this contradicts the fact that $p_i \neq q_j$. Thus, the prime factorization is unique.

Number of Divisors of a Number

Let n be a natural number with the prime factorization

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},$$

where p_1, p_2, \ldots, p_k are distinct prime numbers and $\alpha_1, \alpha_2, \ldots, \alpha_k$ are positive integers.

The number of positive divisors of n, denoted by d(n), is given by the formula:

$$d(n) = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_k + 1).$$

Proof: Each divisor of n can be written in the form

$$d = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k},$$

where $0 \le \beta_i \le \alpha_i$ for each i. The number of choices for each exponent β_i is $\alpha_i + 1$, so by the multiplication principle, the total number of divisors is the product of these quantities.

Sum of Divisors of a Number

Let n be a natural number with the prime factorization

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},$$

where p_1, p_2, \ldots, p_k are distinct primes and $\alpha_1, \alpha_2, \ldots, \alpha_k$ are positive integers.

The sum of all positive divisors of n, denoted by $\sigma(n)$, is given by the formula:

$$\sigma(n) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i + 1} - 1}{p_i - 1}.$$

Proof: We will prove the statement by induction on the number n of factors in the product. **Base case:** k = 1. For $n = p_1^{\alpha_1}$,

$$\sigma(n) = 1 + p_1 + p_1^2 + \dots + p_1^{\alpha_1} = \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1}.$$

Inductive step: Assume the formula holds for k primes. Consider

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} p_{k+1}^{\alpha_{k+1}},$$

with k+1 distinct primes.

Let m be natural number in a form:

$$m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}.$$

Split the sum of divisors $\sigma(n)$ by considering all divisors of n. Each divisor of n can be written uniquely as a product of a divisor of $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ and a power of p_{k+1} :

$$d = d' \cdot p_{k+1}^j,$$

where d' divides m and j is an integer with $0 \le j \le \alpha_{k+1}$.

To find the sum of all divisors of n, we sum over all possible j and for each fixed j, sum over all divisors d' of m. Thus, the total sum is:

$$\sigma(n) = \sum_{j=0}^{\alpha_{k+1}} \left(\sum_{d'|m} d' \cdot p_{k+1}^j \right).$$

We can rewrite this by factoring out p_{k+1}^j since it does not depend on d':

$$\sigma(n) = \sum_{j=0}^{\alpha_{k+1}} p_{k+1}^j \left(\sum_{d' \mid m} d' \right).$$

Notice that the inner sum $\sum_{d'|m} d'$ is just $\sigma(m)$, the sum of divisors of m, which we know by the induction hypothesis.

Therefore, the entire sum becomes:

$$\sigma(n) = \sigma(m) \cdot \left(1 + p_{k+1} + p_{k+1}^2 + \dots + p_{k+1}^{\alpha_{k+1}}\right).$$

The second factor is a geometric series with sum

$$\frac{p_{k+1}^{\alpha_{k+1}+1}-1}{p_{k+1}-1}.$$

Combining both, we get

$$\sigma(n) = \sigma(m) \cdot \frac{p_{k+1}^{\alpha_{k+1}+1} - 1}{p_{k+1} - 1},$$

which completes the inductive step.

Greatest Common Divisor

To find gcd(a, b) using prime factorization, we write both numbers as a product of the same prime numbers:

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}, \quad b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}(1)$$

where a_i , b_i are natural numbers or 0. A prime p may divide only one of the numbers. In such a case, for example, if p_1 is not a factor of b, then $b_1 = 0$.

Now it is clear that:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)},$$

because a and b can have at most $min(a_i, b_i)$ powers of p_i .

Least Common Multiple

Prime factorization can also be used to find the least common multiple (lcm) of two natural numbers.

Definition 1. The least common multiple of a and b, denoted by [a, b], is the smallest natural number divisible by both a and b.

If we represent a and b as in the previous form, then it is clear that

$$[a,b] = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}.$$

Theorem 2. For natural numbers a and b, it holds that

$$[a,b] \cdot \gcd(a,b) = ab.$$

Proof. Let the factorizations of a and b be as in (1), and define $m_j = \min(a_j, b_j)$ and $M_j = \max(a_j, b_j)$ for $j = 1, \ldots, n$. Then,

$$M_j + m_j = a_j + b_j,$$

so we get

$$[a,b] \cdot \gcd(a,b) = \prod_{j=1}^{n} p_j^{M_j} \cdot \prod_{j=1}^{n} p_j^{m_j} = \prod_{j=1}^{n} p_j^{M_j + m_j} = ab,$$
 q.e.d.

Proof that There Are Infinitely Many Prime Numbers

Assume, for contradiction, that there are only finitely many prime numbers. Let them be

$$p_1, p_2, \ldots, p_n$$
.

Consider the number

$$N = p_1 p_2 \cdots p_n + 1.$$

This number N is greater than 1, so it must have a prime divisor. However, none of the primes p_1, p_2, \ldots, p_n divides N, since each divides the product $p_1 p_2 \cdots p_n$, but not $N = p_1 p_2 \cdots p_n + 1$ (the remainder is 1).

Therefore, N must be divisible by a prime not in the list, contradicting the assumption that all primes are listed. Hence, there are infinitely many prime numbers.

Proof that There Are Infinitely Many Primes of the Form 4n + 3

Assume, for contradiction, that there are only finitely many primes of the form 4n + 3. Let these primes be

$$p_0, p_1, \ldots, p_k,$$

all of the form 4n + 3.

Consider the number

$$Q = 4p_0p_1 \cdots p_k - 1.$$

Note that Q is also of the form 4n + 3.

Since Q is greater than 1, it must have at least one prime divisor. By assumption, all primes of the form 4n + 3 are in the list p_0, p_1, \ldots, p_k .

If all prime factors of Q were of the form 4m + 1, then their product would also be of the form 4m + 1 because:

$$(4r+1)(4s+1) = 4(4rs+r+s)+1.$$

But Q is of the form 4n + 3, so it must have at least one prime factor of the form 4n + 3.

Therefore, Q must be divisible by some p_i from the list. However, $Q = 4p_0p_1 \cdots p_k - 1$ leaves remainder -1 when divided by any p_i , so none divides Q.

This contradiction shows that there are infinitely many primes of the form 4n + 3.

Problems

1. Prove the inequality:

$$\operatorname{lcm}(x,y) \cdot \operatorname{lcm}(y,z) \cdot \operatorname{lcm}(z,x) \ge \left(\operatorname{lcm}(x,y,z)\right)^2$$

- 2. Natural numbers a, b, c, d are all divisible by ad bc. Prove that |ad bc| = 1.
- 3. Let $1 = d_1 < d_2 < \cdots < d_k = n$ be all positive divisors of the number n. Find all n for which:

$$n = d_1^2 + d_2^2 + d_3^2 + d_4^2.$$

4. Let $m, n \in \mathbb{N}$. If the number:

$$\frac{m^2 + n^2 - m}{mn}$$

is an integer, prove that m is a perfect square.

- 5. Let n be a natural number. Let $a, b, c, m \in \mathbb{N}$ be such that $a \mid b^n, b \mid c^n$, and $c \mid a^n$, and $abc \mid (a+b+c)^m$. Determine the greatest possible value of m.
- 6. Let b, n > 1 be natural numbers. If for every k > 1 there exists an integer a_k such that:

$$k \mid b - a_k^n$$

Prove that $b = B^n$ for some integer B.

- 7. If a natural number n can be written as a sum of two squares in two different ways, prove that n is composite.
- 8. Let $m, n \in \mathbb{N}$ with m < n and $m \mid n$. Prove that

$$\frac{\sigma(m)}{m} < \frac{\sigma(n)}{n}.$$

9. A natural number n is called *perfect* if

$$\sigma(n) = 2n,$$

where $\sigma(n)$ denotes the sum of all positive divisors of n. Show that if n > 28 is perfect and $7 \mid n$, then $49 \mid n$.

10. Let $1 = d_1 < d_2 < \cdots < d_k = n$ be all positive divisors of a natural number n > 1. Define

5

$$D = \sum_{i=1}^{k-1} d_i d_{i+1}.$$

- (a) Prove that $D < n^2$.
- (b) Determine all n for which $D \mid n^2$.