MATH 644

Chapter 6

SECTION 6.2: NORMALITY AND EQUICONTINUITY

Contents

Normality	2
Space of Continuous Functions	4
Equicontinuous Family of Functions	6
Family of Analytic Functions	9

Created by: Pierre-Olivier Parisé Spring 2023

NORMALITY

DEFINITION 1. A collection, or family, \mathcal{F} of continuous functions on a region $\Omega \subset \mathbb{C}$ is said to be **normal on** Ω provided every sequence $(f_n) \subset \mathcal{F}$ contains a subsequence which converges uniformly on compact subsets of Ω .

EXAMPLE 2. Show if the given family is normal on the given region.

- (a) $\mathcal{F}_1 := \{ f_n(z) = z^n : n = 0, 1, \ldots \}$ and $\Omega = \mathbb{D}$.
- (b) $\mathcal{F}_2 := \{g_n : n = 0, 1, \ldots\}$, where $g_n(z) = 1$ if n is even and $g_n(z) = 0$ if n is odd and $\Omega = \mathbb{C}$.

Lemma 3. Suppose Ω

- is a region and;
- $\Omega = \bigcup_{j=1}^{\infty} \Delta_j$, where $\Delta_j \subset \Omega$ are closed disks.

A family of continuous functions \mathcal{F} is normal on Ω if and only if, for each j, every sequence in \mathcal{F} contains a subsequence which converges uniformly on Δ_j .

Proof.

SPACE OF CONTINUOUS FUNCTIONS

THEOREM 4. A sequence $(f_n) \subset C(\Omega)$ converges uniformly on compact subsets of Ω to $f \in C(\Omega)$ if and only if $\lim_{n\to\infty} \rho(f_n, f) = 0$.

Proof.

Note:

• When $\lim_{n\to\infty} \rho(f_n, f) = 0$, we say that (f_n) converges locally uniformly to f on Ω .

EQUICONTINUOUS FAMILY OF FUNCTIONS

DEFINITION 5. A family of functions \mathcal{F} defined on a set $E \subset \mathbb{C}$ is

(a) equicontinuous at $\mathbf{w} \in \mathbf{E}$ if $\forall \varepsilon > 0, \exists \delta > 0$ so that

$$z \in E \text{ and } |z - w| < \delta \implies |f(z) - f(w)| < \varepsilon, \forall f \in \mathcal{F}.$$

- (b) equicontinuous on E if it is equicontinuous at each $w \in E$.
- (c) uniformly equicontinuous on E if $\forall \varepsilon > 0, \exists \delta > 0$ so that

$$z, w \in E \text{ and } |z - w| < \delta \implies |f(z) - f(w)| < \varepsilon, \forall f \in \mathcal{F}.$$

EXAMPLE 6. Fix M > 0. Show that the family

$$\mathcal{F} := \{ f : \mathbb{D} \to \mathbb{C} : f \text{ analytic and } |f'| \le M \}$$

is uniformly equicontinuous on \mathbb{D} .

THEOREM 7. [Arzela-Ascoli] A family of continuous functions \mathcal{F} is normal on a region $\Omega \subset \mathbb{C}$ if and only if

- (a) \mathcal{F} is equicontinuous on Ω and;
- (b) there is a $z_0 \in \Omega$ so that the collection $\{f(z_0) : f \in \mathcal{F}\}$ is a bounded subset of \mathbb{C} .

Proof.

Family of Analytic Functions

DEFINITION 8. A family \mathcal{F} of continuous functions is said to be **locally bounded** on Ω if $\forall w \in \Omega, \exists \delta > 0$ and $M < \infty$ so that $|z - w| < \delta \Rightarrow |f(z)| \leq M, \forall f \in \mathcal{F}$.

THEOREM 9. Let \mathcal{F} be a family of analytic functions on a region Ω . Then the following are equivalent:

- (a) \mathcal{F} is normal on Ω ;
- (b) \mathcal{F} is locally bounded on Ω ;
- (c) $\mathcal{F}' := \{f' : f \in \mathcal{F}\}$ is locally bounded on Ω and there is a $z_0 \in \Omega$ so that $\{f(z_0) : f \in \mathcal{F}\}$ is a bounded subset of \mathbb{C} .

Proof.