Instructions: Read the comments in code cells as you complete the problems. Submit your completed notebook and PDF files to Blackboard.

```
In [13]:
          1 #0 Run this cell
          2 import numpy as np
          3 import pandas as pd
          4 import seaborn as sns
          5 import matplotlib.pyplot as plt
          6 from sklearn.model selection import train test split
          7 from sklearn.linear model import LinearRegression
          8 from sklearn.model selection import cross val score
In [14]:
         1 #0 Run this cell and enter your first name when prompted.
          2 # Do not modify the code here.
          3 name = input("Enter your first name: ")
          4 url = "https://raw.githubusercontent.com/babdelfa/ML/main/california_housing.c
          5 name = pd.read_csv(url)
          6 print("\nSample of the data: \n")
          7
            print(name.head())
          8 print('The data has been loaded. Refer to the dataframe using your name.')
          9 print('\nBegin the analysis below.')
         Enter your first name: jij
         Sample of the data:
            MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
                                                     1627.0 3.116858
           3.2083
                       34.0
                             5.471264
                                       1.063218
                                                                           32.78
           5.7049
                                                       731.0 3.137339
         1
                        9.0 6.699571
                                        1.085837
                                                                           34.66
           1.6125
         2
                        52.0
                             3.135135
                                        1.364865
                                                       286.0 1.932432
                                                                           37.78
                                                      1809.0 3.207447
         3
           5.2586
                       17.0
                             6.945035
                                        1.131206
                                                                           38.69
           5.0380
                        9.0 5.428415
                                       0.967213
                                                      2581.0 2.820765
                                                                           38.42
            Longitude MedHouseValue
         0
             -115.56
                              0.762
             -118.17
                              1.732
         1
         2
              -122.40
                              1.125
         3
              -121.26
                              1.370
```

The data has been loaded. Refer to the dataframe using your name.

1.856

Begin the analysis below.

-122.79

```
In [15]:
          1 #1 Provide summary statistics about the data using the describe method.
            name.describe()
```

Out[15]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Long
count	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.00
mean	3.928064	28.267684	5.436901	1.091814	1421.930717	2.988522	35.644944	-119.58
std	1.904240	12.485409	1.903414	0.351354	1051.047314	3.698413	2.150855	1.99
min	0.499900	1.000000	1.885057	0.444444	8.000000	0.970588	32.560000	-124.23
25%	2.612150	18.000000	4.488618	1.004777	795.000000	2.432214	33.930000	-121.79
50%	3.595100	28.000000	5.300644	1.048780	1173.000000	2.815526	34.270000	-118.51
75%	4.813000	37.000000	6.083468	1.101280	1752.000000	3.265220	37.700000	-118.00
max	15.000100	52.000000	47.515152	11.181818	11935.000000	230.172414	41.860000	-114.56

In [16]: #2 Provide a correlation matrix on the dataframe using the corr method. name.corr()

Out[16]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
Medinc	1.000000	-0.098871	0.430025	-0.079185	-0.009787	0.016813	-0.054324	-0.044666
HouseAge	-0.098871	1.000000	-0.179765	-0.097652	-0.311671	0.031231	0.004006	-0.111073
AveRooms	0.430025	-0.179765	1.000000	0.742803	-0.094080	0.021448	0.137633	-0.059797
AveBedrms	-0.079185	-0.097652	0.742803	1.000000	-0.077782	0.005210	0.078649	0.010896
Population	-0.009787	-0.311671	-0.094080	-0.077782	1.000000	0.109704	-0.131691	0.132512
AveOccup	0.016813	0.031231	0.021448	0.005210	0.109704	1.000000	-0.015511	0.027616
Latitude	-0.054324	0.004006	0.137633	0.078649	-0.131691	-0.015511	1.000000	-0.921209
Longitude	-0.044666	-0.111073	-0.059797	0.010896	0.132512	0.027616	-0.921209	1.000000
MedHouseValue	0.683157	0.133851	0.186472	-0.066514	-0.034604	-0.049769	-0.148020	-0.048220

```
In [17]:
          1 #3 Review median house value correlaton coefficients with the other variables
            # Using the drop method, remove the three variables with the weakest correlati
          5 drop = ["Population", "AveOccup", "Longitude"]
          6 name.drop(columns=drop, inplace=True)
          7 print(name)
```

	MedInc	HouseAge	AveRooms	AveBedrms	Latitude	MedHouseValue
0	3.2083	34.0	5.471264	1.063218	32.78	0.762
1	5.7049	9.0	6.699571	1.085837	34.66	1.732
2	1.6125	52.0	3.135135	1.364865	37.78	1.125
3	5.2586	17.0	6.945035	1.131206	38.69	1.370
4	5.0380	9.0	5.428415	0.967213	38.42	1.856
			• • •		• • •	• • •
4123	5.7480	28.0	6.002427	1.029126	37.63	3.021
4124	2.0625	52.0	4.323353	1.026946	34.01	1.344
4125	2.1944	33.0	4.131313	0.984848	34.04	2.033

[4128 rows x 6 columns]

4126 5.6360

3.3438

```
In [21]:
          1 #4 Use seaborn's pairplot function on the data showing median house value on t
          2 sns.pairplot(name, y_vars = "MedHouseValue")
```

0.894118

1.108140

34.16

33.84

2.679

1.533

Out[21]: <seaborn.axisgrid.PairGrid at 0x7fb3078a6fd0>

49.0 5.117647

25.0 4.297674


```
In [27]:
             #5 Use a for statement to run a simple learning regression model for each of t
          2 # features predicting the target (median house value)
          3
          4
             for x in name.columns[:-1]:
          5
                 X =
                      name[[x]]
                                  #feature variable
          6
                      name.MedHouseValue #target variable
          7
                 reg1 = LinearRegression()
                                                  #instantiate the model
          8
                 regl.fit(X, y)
                                  #Train the model using X and y
                 print(x, reg1.score(X, y))
         MedInc 0.46670303605951935
         HouseAge 0.017916166265603772
         AveRooms 0.03477164709990799
         AveBedrms 0.004424072299616277
         Latitude 0.021909951040249176
In [44]: rn1(sklearn) to do a train_test_split on the data
         random state to 433.
         model using the LinearRegression estimator.
        siAg the train data.
        re5on train data.
        re6on test data.
          7
        y train, y test = train test split(name[["MedInc","HouseAge","AveRooms","AveBedrms"
                    # instantiate the model uing the estimator
        ession()
                       # train the model
         v10train)
        g21score(X_train, y_train))
        g22score(X_test, y_test))
         Train: 0.5572196613842659
         Test: 0.5229219735139651
In [45]:
         1 X test[:1]
Out[45]:
              MedInc HouseAge AveRooms AveBedrms Latitude
                3.75
                         29.0
                              5.318841
                                        1.123188
                                                 34.04
          403
         1 #7 Use the predict method to find the target value (i.e., median house value)
In [47]:
          2 \# the features' values in the first row of X_test
          3 reg2.predict([[3.75, 29.0,5.318841, 1.123188, 34.04]])
Out[47]: array([2.14247342])
In [39]:
         1 y_test[:1]
Out[39]: 403
                1.906
         Name: MedHouseValue, dtype: float64
          1 #8 What is the amount difference between the predicted median house value from
In [41]:
          2 # and the observed median house value? (found in y_test)
          3 difference = 1.906 - 2.14247342
          4 print(difference)
         -0.23647342000000005
```

```
In [48]: suffice a model where the target variable is the MedHouseValue and the remaining column
        a 20-Fold cross-validation showing the ten scores. Also show the average of the tel
         BinearRegression()
        sults = cross_val_score(reg3, name[["MedInc","HouseAge","AveRooms","AveBedrms","Lat
         (c♥ results)
         sults.mean()
```

[0.57357707 0.56383348 0.54648759 0.55034607 0.59756961 0.54713964 0.51005965 0.54130444 0.52998809 0.495945951

Out[48]: 0.5456251600969492

In [50]:

```
1 #10 What is the amount difference between the model score using the train-test
2 # the cross-validation approach?
```

- 3 difference1 = 0.57357707 0.5456251600969492
- 4 print(difference1)

0.027951909903050853

- 1 ##### 11 Between reg2 and reg3, which model seems to be better in predicting median house values? Justify your answer.
- 2 3 reg2>reg3 is better because it is closer to 1
- 1 #### 12 Based on your analysis from # 5, which feature seems to have less weight in predict the target? Justify your answer.
- 3 Avebedroom. because it is closet to 0