RMST 编程练习报告

李本正 2019.09.19

1、RMST

编写采用了论文Efficient minimum spanning tree construction without Delaunay triangulation, Hai Zhou中的方法。可以证明,以任意一个点为端点,将平面分为八块,每块占45度角,那么在生成树的最优解中,每个块中与这个点至多有一条边,即一个点最多分别向八个方向最近的点连接一条边。

以 R1 区域为例,当前点为(xs,ys),则问题为在所有点中寻找满足条件 x>x0、y-x>ys-xs,且 x+y 最小的点。可以用树状数组维护,将所有点按 x 坐标排序,将 y-x 值离散后从大到小插入树状数组。每次查找 y-x>ys-xs 的一段中 x+y 最小的点即可。R2,R3,R4 区域可以由翻转坐标系得到。因为有四个方向是两两对称的,所以只求前四个就行。最后用 Kruskal 在 4*n 条边的图中求解 MST 即可。

运行时间大约为 BGA 中的 RMST 的 110%。

2、RSMT

编写采用了论文 Efficient Steiner Tree Construction Based on Spanning Graphs, Hai Zhou 中的方法。生成树中一个点和一条边可以形成一个 pair,将 pair 用一个斯坦纳点和三条边连接,就可以取代 pair 中的边和生成树中的一条边,可能带来线长减小。计算所有 pair 的收益,贪心的取最大的 pair 来修改树中的连接关系。

论文中寻找 pair 时只寻找和此边顶点相邻的所有点。比起 n^2 枚举所有 pair 虽然结果略微变差但是复杂度大大减小。

VLSI Testcase 运行结果与论文中给出的结果非常接近,并且略优。

3、实验结果

实验的对象为 BAG,ACC 分布设置为 3 和 12 的 FLUTE,我写的 RST 以及 RMST 算法。 Pin 的数量从 2^1 到 2^12。每次随机生成 100 组数据,分别运行这 5 中算法。计算 WL 和 Runtime 的平均值。

线长结果如下表:

	BGA	ACC=3	ACC=12	RST	RMST
2	648.14	648.14	648.14	648.14	648.14
4	1312.27	1312	1312	1312.31	1447.83
8	2065.65	2057.32	2057.32	2065.2	2293.35
16	3022.03	3016.91	3004.46	3021.98	3363.15
32	4276.59	4329.35	4258.68	4279.88	4791.07

64	6024.64	6053.16	6010.59	6026.35	6750.33
128	8463.36	8521.39	8452.23	8466.53	9497.78
256	16599.38	16610.06	16554.98	16609.92	18638.39
512	16599.38	16610.06	16554.98	16609.92	18638.39
1024	23369.07	23518.41	23319.6	23381.48	26243.64
2048	32850.91	33069.83	32794.06	32871.92	36900.19
4096	46333.04	46636.73	46246.23	46360.28	52027.26

将点数取对数作为横坐标,WL 相比 RMST 结果的提升百分比作为纵坐标,作图如下。可以看出 RST 与 BAG 基本重合。而 ACC=12 的 FLUTE 效果最好。尤其是在点数很小时 FLUTE 可以得到准确得 RSMT 结果。

运行时间如下表:

	BGA	ACC=3	ACC=12	RST	RMST
2	0	0	0	0	0
4	0	0	0	0	0
8	0	0	0	0	0
16	0	0	0	0	0
32	0.00001	0	0	0	0
64	0.00108	0	0.00017	0	0
128	0.00324	0	0.00231	0.0002	0
256	0.01035	0.00014	0.00622	0.0089	0
512	0.02715	0.00437	0.01539	0.0151	0
1024	0.0668	0.00921	0.03282	0.0326	0
2048	0.16736	0.02823	0.07418	0.0732	0
4096	0.38678	0.07527	0.1643	0.1638	0.01

将点数作为横坐标,运行时间作为纵坐标,作图如下。

可以看出 RST 与 ACC=12 的 BGA 基本重合。而 ACC=3 的 FLUTE 最快。RST 解质量与 BGA 相似的情况下运行时间更快,FLUTE 与 RST 运行时间相似的情况下,解的质量更高。综上所述 FLUTE 为其中最好的算法。

4、心得体会

平面图中的问题相比一般图论问题确实有很多关键的不同之处,需要多加思考。