GD54/74HC74, GD54/74HCT74 DUAL D-TYPE FLIP-FLOPS WITH PRESET & CLEAR

General Description

These devices are identical in pinout to the 54/74LS74. They consist of two D-type flip-flops with individual preset, clear, and clock inputs. Information at a D-input is transferred to the corresponding Q output on the next positive going edge of the clock input. Both Q and \overline{Q} outputs are available from each flip-flop. The preset & clear inputs are asynchronous. These devices are characterized for operation over wide temperature ranges to meet industry and military specifications.

Features

- Low Power consumption characteristic of CMOS devices
- Output drive capability: 10 LS TTL Loads Min.
- · Operating speed superior to LS TTL
- Wide operating voltage range: for HC 2 to 6 volts for HCT 4.5 to 5.5 volts
- Low input current: 1µA Max.
- Low quiescent current: 40µA Max. (74HC)
- High noise immunity characteristic of CMOS
- · Diode protection on all inputs

Pin Configuration 14 Vcc 1CLR 1 13 2CLR 1D 2 1CLK 3 12 2D 1PR 4 74 11 2CLK 10 2PR 10 5 10 6 9 20 8 2ā GND 7 Suffix-Blank Plastic Dual In Line Package Suffix-J Ceramic Dual In Line Package Suffix-D Small Outline Package

Logic Diagram

Fig. 1 Logic diagram

Function Table

	INPL	OUTPUT			
PR	CLR	CLK	nD	пQ	ηQ
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	Х	Х	Н	н

	INPL	JTS	OUTPUTS				
PR	CLR	CLK	nD	Q _{n+1}	\overline{Q}_{n+1}		
н	Н	1	L	L	Н		
Н	н	1	Н	н	L		

H = HIGH voltage level

L = LOW voltage level

X = don t care

= LOW to-HIGH CLK transition

Q_{n+1} = state after the next LOW to-HIGH CLK transition

Absolute Maximum Ratings

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX.	UNIT
V _{cc}	DC Supply voltage		-05	+7	>
l _{ik} l _{ok}	DC input or output diode current	for V _I <-0.5 or V _I >V _{CC} +0 5V		20	mA
l _o	DC output source or sink current	for -0 5V <v<sub>o<v<sub>cc+0 5V</v<sub></v<sub>		25	mA
Icc	DC V _{CC} or GND current			50	mA
T _{stg}	Storage temperature range		-65	150	°C
P _D	Power dissipation per package	above +70°C. derate linearly with 8mW/K		500	mW
T _L	L'ead temperature	At distance 1/16±1/32 in from case for 60 sec(CERAMIC) 10 sec(PLASTIC)		300 260	°C

Recommended Operating Conditions

	LIM	IITS	UNITS
CHARACTERISTIC	MIN	MAX	UNITS
Supply-Voltage Range V _{CC} . GD54/74HC Types	2	6	٧
GD54/74HCT Types	4 5	5.5	
DC Input or Output Voltage V _I , V _O	0	V _{cc}	٧
Operating Temperature T _A : GD74 Types	-40	+85	°C
GD54 Types	-55	+125	0
Input Rise and Fall times t _r , t _i . GD54/74HC Types at 2V		1000	
at 4.5V		500	ns
at 6V		400	113
GD54/74HCT Types at 4 5V		500	

Logic diagram

Fig. 2 Logic diagram (one flip-flop)

DC Electrical Characteristics for HC

SYMBOL	PARAMETER	TEST	CONDITION	v _{cc}	Т	25°(0	GD74HC 74		GD54HC74		UNIT
				(V)	MIN.	TYP	MAX.	MIN	MAX	MIN.	MAX	
V ^{IH}	HIGH level input			2.0 4.5 6.0	1 5 3 15 4 2			1 5 3 15 4.2		1 5 3 15 4 2		v
V _{IL}	LOW level input voltage			2.0 4.5 6.0			0.3 0 9 1 2		03 09 12		03 09 12	V
HIGH leve	HIGH level	V _{IN} =V _{IH}	I _{OH} = ~ 20μA	2 0 4.5 6.0	1 9 4 4 5 9	2.0 4.5 6.0		1.9 4 4 5 9		1 9 4 4 5 9		v
	output voltage or V _{IL}		I _{OH} =-4mA I _{OH} =-5.2mA	4 5 6 0	3 98 5 48	4.3 5 2		3 84 5 34		3 7 5 2		
V _{OL}	LOW level	V _{IN} =V _{IH}	l _{OL} =20μA	2 0 4 5 6 0			0 1 0 1 0 1		0 1 0 1 0 1		0 1 0 1 0 1	v
	output voltage	or V _{IL}	I _{OL} =4mA I _{OL} =5 2mA	4 5 6.0		0.17 0.15	0.26 0.26		0.33 0.33		0 4 0 4	
[I _{IN}]	Input leakage Current	V _{IN} =\	CC or GND	60			0 1		10		1 0	μΑ
lcc	Quiescent Supply Current	V _{IN} =\ I _{out} =(/ _{CC} or GND DµA	60			4		40		80	μΑ

DC Electrical Characteristics for HCT

SYMBOL	PARAMETER	TEST	CONDITION	v _{cc}	Т	A=25°	С	GD74I	HCT74	GD54	HCT 74	UNIT
				(V)	MIN	TYP	МАХ	MIN	МАХ	MIN	MAX	
V _{IH}	HIGH level input Voltage			4 5 to 5 5	20			20		20		٧
V _{IL}	LOW level			4 5 to 5 5			08		08		08	٧
V _{OH}	HIGH level output voltage	V _{IN} =V _{IH}	i _{OH} =-20μA i _{OH} =-4mA	4 5 4 5	4 4 3 98	4 5 4 3		4 4 3 84		4 4 3 7		٧
V _{OL}	LOW level output voltage	v _{IN} =v _{IH}	I _{OL} =20μA	4 5 4 5		0 17	0 1 0 26		0 1 0 33		01	٧
I _{IN}	Input leakage Current	V _{IN} =	V _{CC} or GND	5 5			01		10		10	μΑ
lcc	Quiescent Supply Current	V _{IN} =	V _{CC} or GND DµA	5 5			4		40		80	Αц

Timing Requirements for HC: t_r = t_t =6ns C_L =50 pF

0,4501	0.0	ALIETED	v _{cc}	1	A=25°	С	GD74I	HC 74	GD54HC74		UNIT
SYMBOL	PAH	AMETER	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	PR or CLR (low)	2 0 4 5 6 0	80 16 14	30 10 8		100 20 18		120 25 22		ns	
t _w	Pulse width	CLK (high or low)	2 0 4 5 6 0	80 16 14	30 10 8		100 20 18		120 25 22		ns
t _{su}	Setup time	Data before CLK †	2 0 4.5 6.0	60 15 14	30 10 8		80 18 16		100 20 18		ns
t _{rec}	Recovery time	PR or CLR inactive	2 0 4 5 6 0	5 5 5	0 0		5 5 5		5 5 5		ns
t _h	Hold time	Data after CLK †	2 0 4 5 6.0	3 3 3	0 0 0		3 3 3		3 3 3		ns

AC Characteristics for HC: t_r = t_t =6ns C_L=50 pF

SYMBOL	PARAMETER	V _{CC}	T _A =25°C			GD74	HC74	GD54HC74		UNIT
J T M DOL	(AIVANETELL	(V)	MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.	
f _{max}	Maximum Clock Pulse Frequency	2.0 4.5 6.0	6 30 35	20 65 75		5 25 30		4 20 25		MHz
t _{PLH} /	Propagation Delay Time nCLK to nQ, nQ	2.0 4.5 6.0		45 15 14	170 30 28		210 40 35		250 50 45	ns
t _{PLH} /	Propagation Delay Time	2.0 4.5 6.0		45 14 13	180 32 28		220 42 35		260 52 45	ns
t _{PLH} /	Propagation Delay Time	2.0 4.5 6.0		45 14 13	180 32 28		220 42 35		260 52 45	ns
t _{TLH} /	Output Transition Time	2.0 4.5 6.0		25 8 7	70 15 13		85 18 16		100 22 18	ns

Timing Requirements for HCT: $t_{\rm r}$ = $t_{\rm r}$ =6ns $C_{\rm L}$ =50 pF

SYMBOL	DAD	PARAMETER		T _A =25°C			GD74HCT74		GD54HCT74		UNIT
STWIBOL	FAID			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
¹ w Pulse width	PR or CLR (low)	4 5	18	10		20		25		ns	
	CLK (high or low)	4 5	16	10		20		25		ns	
t _{su}	Setup time	Data before CLK †	4 5	15	10		18		20		ns
trec	Recovery time	PR or CLR inactive	4 5	5	0		5		5		ns
t _h	Hold time	Data after CLK †	4 5	3	0		3		3		ns

AC Characteristics for HCT: t_r = t_f =6ns C_L =50 pF

SYMBOL	PARAMETER	v _{cc}	T _A =25°C			GD74HCT74		GD54HCT74		UNIT
		(V)	MIN	TYP	MAX	MiN	MAX.	MIN	MAX	
f _{max}	Maximum Clock Pulse Frequency	45	27	54		22		18		MHz
t _{PLH} /	Propagation Delay Time nCLK to nQ, nQ	45		18	-35		44		53	ns
t _{PLH} /	Propagation Delay Time ⊓PR to nQ, nQ	45		20	35		44		53	ns
t _{PLH} /	Propagation Delay Time $n\overline{\text{CLR}}$ to nQ , $n\overline{Q}$	45		20	35		44		53	ns
t _{TLH} /	Output Transition Time	45		8	15		18		22	ns

AC Waveform

Fig. 3 Waveforms showing the clock (nCLK) to output (nQ $n\overline{Q}$) propagation delays the clock pulse width the nD to nCLK set up the nCLK to nD hold times the output transition times and the maximum clock pulse frequency

Note to Fig. 3

The shaded areas indicate when the input is permitted to change for predictable output per formance.

Fig. 4 Waveforms showing the preset and clear input to output $(nQ, n\overline{Q})$ propagation delays and the preset and clear pulse width

Note to AC waveforms

(1) HC $V_M = 50^{\circ} \circ V = GND$ to V_{CC} HCT $V_M = 1$ 3V $V_i = GND$ to 3V