

Ciência dos Materiais A

Ana Rita C. Duarte aduarte@fct.unl.pt

A massa molecular de um polímero associado à sua estrutura química é o parâmetro que governa as suas propriedades e consequentemente as aplicações desse material.

Massa molecular de uma cadeia molecular ou macromolécula

$$M = M_0 x$$

 M_0 = massa molecular do monómero (unidade repetitiva)

x = grau de polimerização

$$M = N M_0$$

N = nº de cadeias moleculares/monómeros

Massa molecular média numérica

Considera o número de moléculas de cada tamanho Mi

$$\overline{x_n} = \frac{n^{\underline{o}} \ unidades \ de \ mon\'omero}{n^{\underline{o}} \ de \ macromol\'eculas} = \frac{\sum x_i N_i}{\sum N_i}$$

Grau médio de polimerização em número

$$\overline{M_n} = M_0 \overline{x_n} = \frac{\sum M_0 x_i N_i}{\sum N_i} = \frac{\sum M_i N_i}{\sum N_i}$$

Sensível à concentração das espécies de baixo PM

 M_0 = massa molecular do monómero (unidade repetitiva)

N – número de cadeias moleculares

Massa molecular média ponderal

Considera a massa de cada grupo de moléculas de massa Mi

$$\overline{M_w} = M_0 \overline{x_w} = \sum M_0 x_i \frac{w_i}{\sum w_i} = \sum M_i \left(\frac{w_i}{\sum w_i}\right) = \sum M_i \frac{M_i N_i}{\sum M_i N_i}$$

Grau médio de polimerização em peso

$$\overline{M_w} = \frac{\sum M_i^2 N_i}{\sum M_i N_i}$$

Sensível à concentração das espécies de alto PM

Conhecendo os valores de Mn e de Mw para uma amostra de polímero, esses números por si só não trazem muitas informações acerca da polidispersividade do polímero!

$$\alpha = \frac{M_w}{M_n}$$

Indíce de polidispersividade

A razão entre Mw e Mn é então uma medida da largura de distribuição, ou seja quanto mais afastado de 1 mais larga é a distribuição de peso molecular ou mais heterogéneo é o polímero.

Indíce de polidispersividade

Curva de distribuição de pesos moleculares

$$\alpha A < \alpha B < \alpha C$$

Calcular o Mn e Mw médios e o indice de polidispersividade de um polímero que apresenta o seguinte resultado de fraccionamento:

Fracção	Wi (g)	Mi (g/mol)
1	1000	1000
2	1000	1000000

Mn 2,00E+03 Mw 5,01E+05 α 2,51E+02

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Represente a curva de distribuição de pesos moleculares. Calcule o Mn e Mw médios e o indice de polidispersividade do poliestireno constituído pelas seguintes fracções:

Fracção	Wi (g)	Mi (g/mol)
1	0,10	15000
2	0,18	27000
3	0,25	39000
4	0,17	56000
5	0,12	78000
6	0,08	104000
7	0,06	120000
8	0,04	153000

Exercícios

Curva de distribuição de pesos moleculares

Mn	38687,06	g/mol
Mw	56630	g/mol
α	1,46	

SCIENCE & TECHNOLOGY

Exercícios

Represente a curva de distribuição de pesos moleculares. Calcule o Mn e Mw médios e o indice de polidispersividade do polímero constituído pelas seguintes fracções:

Fracção	Wi (g)	Mi (g/mol)
1	1,5	2000
2	5,5	50000
3	22	100000
4	12	200000
5	4,5	500000
6	1,5	1000000

Exercícios

Curva de distribuição de pesos moleculares

Mn	40851,8	g/mol
Mw	183574,5	g/mol
α	4,49	

Massa molar média numérica

- ❖ Análise de grupos terminais
- Elevação ebulioscópica / Depressão crioscópica
- Pressão osmótica
- ❖ Abaixamento da pressão de vapor

Massa molar média ponderal

- Difracção de luz
- Difracção de neutrões
- Ultracentrifugação

Baseiam-se na medição de propriedades coligativas
Propriedades que são apenas função do número de moléculas
e não da sua natureza

Métodos relativos

- Viscosimetria
- Cromatografia de exclusão de tamanho

Baseiam-se na medição de propriedades coligativas
Propriedades que são apenas função do número de moléculas
e não da sua natureza

<u>Restrições</u>

As variações são muito pequenas;

As variações diminuem com o aumento de concentração;

Eficientes para polímeros com massa molar de até 30.000;

Aditivos alteram a medida de propriedades

Elevação do ponto de ebulição (Ebulioscopia) Abaixamento do ponto de congelamento (Crioscopia)

$$\Delta T_{eb} = k_{eb}.m_{soluto}$$

$$\Delta T_{fus} = -k_f.m_{soluto}$$

$$m_{soluto} = \frac{n_{soluto}}{w_{solvente}} e MM_{soluto} = \frac{w_{soluto}}{n_{soluto}}$$

Onde:

 K_{eb} = constante ebulioscópica do solvente K_{fus} = constante crioscópica do solvente m = molalidade

Pressão osmótica

É a redução de pressão necessária para equilibrar (igualar) o potencial químico dos dois lados da membrana

Há fluxo através da membrana

$$\mu_1^{\ 0} > \mu_1$$

$$\pi/c = RT/M_n + Bc$$

Pressão osmótica

Variação da Pressão Osmótica com a Concentração de Soluto (em solução diluída)

$\frac{\pi}{c} = \frac{RT}{\overline{M_n}} + Bc + Cc^2 + \cdots$

$$\frac{\pi}{c} = \frac{RT}{\overline{M_n}} + Bc$$

$$\frac{RT}{\overline{M_n}}$$

1º Coeficiente de virial

Osmometria de membrana

Mn é obtido para uma solução diluída quando c tende para zero

A medida experimental da massa molar de um polímero pode ser feita por osmometria, técnica que envolve a determinação da pressão osmótica (π) de uma solução com uma massa conhecida de soluto.

Determine a massa molar de uma amostra de 3,20 g de polietileno (PE) dissolvida num solvente adequado, que em 100 mL de solução apresenta pressão osmótica de 1,64 \times 10⁻² atm a 27 $^{\circ}$ C.

Métodos relativos

Viscosimetria

A viscosidade depende da massa molar e da interação entre os segmentos da cadeia polimérica e as moléculas do solvente

- Quanto maior esta interação, maior (ou mais inchado) será o novelo polimérico
- Neste caso, maior será a resistência ao fluxo (viscosidade)

Viscosimetria

Métodos relativos

Para medir a massa molar de um polímero, faz-se a medida de viscosidade relativa para soluções diluídas em várias concentrações

Lei de Newton

$$\sigma = \eta \gamma$$

η – viscosidade dinâmica ou absoluta

Unidades

Poise (P) – viscosidade apresentada por um material que para uma tensão de corte de 1 dyne.cm⁻² apresenta uma velocidade de corte de 1 s⁻¹ (unidade do Sistema Métrico)

Centipoise (cP) = 100 Poise

Pa.s – Pascal.segundo = kg.m⁻¹.s 1Pa.s = 10 Poise (unidade do Sistema Internacional)

Stoke (St) – unidade de viscosidade cinemática = m².s⁻¹

Viscosimetria

Definições de viscosidade em solução

Medida a partir da razão do tempo de escoamento da solução em relação ao tempo de escoamento do solvente

Viscosidade	Definição matemática
Absoluta (η)	$\frac{\dot{\gamma}}{\sigma}$
Especifica (η_{esp})	$\frac{\eta - \eta_0}{\eta_0} = \frac{t - t_0}{t_0}$
Reduzida (η _{red})	$\eta_{esp}rac{1}{c}$
Intrínseca ([η])	$\lim_{c o 0}\eta_{red}$

 $\dot{\gamma}$ - velocidade de deformação

 σ - tensão aplicada

 η_0 - viscosidade do solvente puro

 η – viscosidade da solução polimérica

Definições de viscosidade em solução

Viscosimetria capilar

Equação de Huggins (1942)

Viscosidade intrínseca

$$\eta_{esp} \frac{1}{c} = [\eta] + k'[\eta]^2 c$$

Viscosimetria capilar

Determinação de Mn a partir de viscosimetria capilar

Equação de Mark-Houwink-Sakurada

$$[\eta] = K \overline{M_n}^a$$

$$ln[\eta] = \ln K + a \ln \overline{M}_n$$

(K, a) – Constantes de Mark-Houwink - Válidas para pares polímero/solvente a uma dada T

0 < a < 1 Relacionado com o tipo conformacional do polímero em solução

 $a = 0.5 \Rightarrow Solvente \theta$

a ~ 0.5 - comportamento em hélice

a ~ 1 comportamento em bastonete

K Relacionado com a geometria local da cadeia

Determinação de Mn a partir de viscosimetria capilar

Determinação das Constantes de Mark-Houwink

É necessário ter várias amostras do mesmo polímero de peso molecular diferente e determinado por um método absoluto

SCIENCE & TECHNOLOGY

Exercício

Calcule a massa molar viscosimétrica média a partir dos dados experimentais apresentados na tabela abaixo:

- Polímero: PMMA

- Solvente: tolueno/metanol 5/9 v/v

Dados:

 $K = 55,9 \times 10^{-3}$

a=0,5

Concentração	t		
(g/100mL)	(s)	ηesp	ηred
0,05	102,7		
0,1	105		
0,25	110		
0,5	118		
*solvente puro	100,5		

Cromatografia Liquída de Exclusão Molecular - GPC/SEC

Durante o fluxo de um determinado solvente, cadeias de tamanhos diferentes percorrem caminhos diferetens ao longo da coluna de GPC

Principio: separação fisíca das cadeias constituintes do polímero nos seus diferentes tamanhos

<u>Cadeias pequenas</u>: percurso longo entre particulas e através dos poros

<u>Cadeias grandes</u>: percurso curso uma vez que são excluídas dos poros mais pequenos

Cromatograma

Calibração é realizada com **padrões monodispersos - (Mw/Mn = 1)** (geralmente de PS)

Calibração Universal — curva realizada com padrões monodispersos diferentes do polímero em análise e corrigida para o polímero em análise com as constantes de Mark-Houwink de ambos os polímeros no solvente usado

$$\log M_{2} = \frac{1}{1+a_{2}} \log \frac{K_{1}}{K_{2}} + \frac{1+a_{1}}{1+a_{2}} \log M_{1}$$

M₁ – peso molecular médio do padrão de PS

M₂ - peso molecular médio do polímero em análise

(a₁, K₁) – constantes de Mark-Houwink do par PS/solvente a uma temperatura T

 (a_2, K_2) – constantes de Mark-Houwink do par polímero em análise/solvente a uma temperatura T

Curva de calibração

A cada volume de retenção conseguímos fazer corresponder um determinado peso molecular

$$\overline{\mathbf{M}}_{n} = \frac{\sum \mathbf{h}_{i}}{\sum (\mathbf{h}_{i} / \mathbf{M}_{i})}$$

$$\overline{M}_{\rm w} = \frac{\sum \left(h_{\rm i} M_{\rm i}\right)}{\sum h_{\rm i}}$$

Distribuição de Pesos Moleculares: o cálculo da DPM é feito através da integração da área sobre a curva do gráfico de intensidade.

Cálculo das massas médias Mn e Mw e polidispersividade a partir dos seguintes dados experimentais:

i	Vol eluição (ml)	Mi (10 ⁴)	hi (mm ou V)
1	33,8	6,65	0
2	34,3	6,55	0,2
3	34,8	6,45	0,6
4	35,3	6,35	1,3
5	35,8	6,25	2,3