Faculty of Engineering & Technology Fourth Semester B.E. (Computer Science Engineering) (C.B.S.) Examination THEORETICAL FOUNDATION OF COMPUTER SCIENCE

Time—Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

Paper-IV

- (1) All questions carry marks as indicated.
- (2) Assume suitable data wherever necessary.
- (3) Illustrate your answers wherever necessary with the help of neat sketches.
- 1. (a) With the help of Mathematical Induction prove that:

$$1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n \times (n+1)(2n+1)}{6}.$$

- (b) Explain the following terms:
 - (i) Null set
 - (ii) Singleton set
 - (iii) Power set

	(v)	Universal set	
	(vi)	Family of sets.	6
(c)		cribe the concept of Pigeon hole principle able example.	e with 4
		OR	
2. (a)	Wha	at do you mean by the following terms:	
	(i)	Prefix of a string	
	(ii)	Star closure of a language	
	(iii)	Positive closure of a language	
	(iv)	Proper prefixes and suffixes of a string.	4
(b)	Exp	olain Chomsky hierarchy of formal language	ges. 6
(c)	Exp	plain the following terms with suitable exam	iples :
	(i) ·	Closure of Relation	
	(ii)	Reflexive Closure	
	(iii)	Symmetric Closure	
	(iv)	Transitive Closure.	4
3. (a)	m	nstruct a DFA which is equivalent to $= (\{q_0, q_1, q_2, q_3\}, \{0,1\}, \delta, q_0, \{q_3\})$ nsition δ is given in table	NFA and
MI V5	375 .	2	Contd.

(iv) Subset

\mathcal{L}	O A A A A A A A A A A A A A A A A A A A	1
q_0	$q_0^{}q_1^{}$	q_0
q_1	$q_2^{}$	q_1
q_2	q_3	q_3
q_3	#Posteriordon	\mathfrak{q}_2

(b) Design a DFA for accepting

$$L = \{W \mid \begin{matrix} W \in (a \mid b) \\ n(a)W \text{ MOD3} > n(b)\text{MOD3} \end{matrix}$$

where
$$n(a) \rightarrow No.$$
 of a's and $n(b) \rightarrow No.$ of b's. 7

OR

- 4. (a) Design a Moore and Melay Machine that will generate OUTPUT EVEN if the no. of a's are even and generate OUTPUT ODD if the no. of a's are ODD over Σ = {a, b}.
 - (b) Convert the given Melay to Equivalent Moore Machine:

MLV-5375

6

5. (a) Find the Regular Expression for the given transition diagram using Arden's theorem.

- (b) Explain Pumping Lemma for Regular sets. Show that $L = \{0^{i}1^{i} \mid i \ge 1\} \text{ is not Regular.}$
- (c) Convert the Grammar with Productions:

$$S \rightarrow ABa$$

 $A \rightarrow aab$

 $B \rightarrow Ac$

to Chomsky Normal form.

OR

6. (a) Convert the following Grammar into GNF:

$$S \rightarrow aAS$$

$$S \rightarrow a$$

$$A \rightarrow SbA$$

Contd.

 $A \rightarrow SS$ $A \rightarrow ba$

(b) Obtain Left Linear Grammar Equivalent to the following Right Linear Grammar.

 $S \rightarrow 01A \mid 10$ $A \rightarrow 10A \mid 10$ 5

(c) What is an Ambiguous Grammar? Check the ambiguity of the following Grammar:

 $S \rightarrow aSSb \mid bSSa \mid \in$ 4

7. (a) Design PDA for the given language. Design the algorithm and transition diagram for the same:

 $L = \{a^n b^{2n} \mid n \ge 1\}$

(b) Design a PDA for the following LPG:

 $S \to XY$

 $X \rightarrow AX \mid BX \mid a$

 $Y \rightarrow YA \mid YB \mid ap$

 $A \rightarrow a$

 $B \rightarrow b$

OR

5

5

8. (a) Construct a PDA accepting the $\alpha = \{a^n b^m a^n \mid m, n \ge 1\}$

by null store. Construct a corresponding context free grammar accepting the same set.

(b) Construct a CFG which generate the following language:

 $L = \{a^n b^m c^m d^n \mid m, n \ge 1\}$ and also design a PDA for above CFG.

5

- 9. (a) Describe the concept of Chruch's Hypothesis. 3
 - (b) Design a Turing Machine for (n+1)/2 where n is a uninary number.
 - (c) Explain the concept of Linear Bounded Automata.

4

OR

10. (a) Design a TM that has

INPUT :- # W # & generate O/P as

OUTPUT :- # W # W

8

- (b) Explain the following terms:
 - (i) Multitape Turing Machine
 - (ii) Universal Turing Machine.

5

11. (a) Define Ackermann's Function. Compute A (1, 1), A (2, 1) and A (2, 2).

(b) Explain Post Correspondence problem. Prove that PCP with two list:

$$X = (01, 1, 1)$$

$$Y = (01^2, 10, 1^2)$$

has no solution.

5

(c) What is meant by Undecidability?

3

OR

- 12. (a) "Every function in Primitive Recursive class is Turing Computable." Comment on the statement. 3
 - (b) Explain the properties of Recursive and Recursively Enumerable language.
 - (c) Describe the concept of Halting Problem. 4