

MAT 3007 — Optimization Convergence and Newton's Method

Lecture 17

July 16th

Andre Milzarek

SDS / CUHK-SZ

Repetition

Recap: Optimization Methods

One-Dimensional Problems:

- ▶ Bisection method: solve f'(x) = 0.
- ▶ Golden section method: does not require f'.

High-Dimensional Problems:

- ▶ General framework: Choose a descent direction d^k and a stepsize α_k in each iteration.
- ▶ Gradient descent method: Choose $d^k = -\nabla f(x^k)$.
- ▶ Stepsize: We can use exact line search via applying golden section method. (Might not be very efficient in practice).
- ▶ The most commonly used method is backtracking line search.

Backtracking / Armijo Line Search

Assume we have found a descent direction d^k and we want to choose step size α_k .

Let $\sigma, \gamma \in (0,1)$ be given. Choose α_k as the largest element in $\{1,\sigma,\sigma^2,\sigma^3,...\}$ such that

$$f(x^k + \alpha_k d^k) - f(x^k) \le \gamma \alpha_k \cdot \nabla f(x^k)^{\top} d^k.$$

- ► This condition is called Armijo condition.
- $ightharpoonup lpha_k$ can be determined after finitely many steps if d^k is a descent direction.

Procedure:

- 1. Start with $\alpha = 1$.
- 2. If $f(x^k + \alpha d^k) \leq f(x^k) + \gamma \alpha \cdot \nabla f(x^k)^{\top} d^k$, choose $\alpha_k = \alpha$. Otherwise, set $\alpha = \sigma \alpha$ and repeat this step.

The Gradient Descent Algorithm

Gradient Descent Method

1. Initialization: Select an initial point $x^0 \in \mathbb{R}^n$.

For k = 0, 1, ...:

2. Pick a stepsize α^k by a line search procedure (exact line search or backtracking) on the function

$$\phi(\alpha) = f(x^k - \alpha \nabla f(x^k)).$$

- 3. Set $x^{k+1} = x^k \alpha_k \nabla f(x^k)$.
- 4. If $\|\nabla f(x^{k+1})\| \le \varepsilon$, then STOP and x^{k+1} is the output.

Illustration

Minimize

$$f(x) = \exp(x_1 + x_2) + x_1^2 + 3x_2^2 - x_1x_2$$

using the gradient method with Armijo line search.

Gradient Method: Convergence and Properties

Convergence of the Gradient Method

We now derive and analyze different convergence properties of the gradient method.

Global Convergence:

- We show that the gradient method can find stationary points independent of the chosen initial point.
- ▶ We call such a property global convergence.

Local Convergence and Rate of Convergence:

- Under appropriate assumptions a rate of convergence can be established.
- → Guaranteed and quantifiable progress in each iteration.

Accumulation Points

We start with a definition of accumulation points.

Definition: Accumulation Point

A point x is an accumulation point of $(x^k)_k$ if for every $\varepsilon > 0$, there are infinitely many numbers k with $x^k \in B_{\varepsilon}(x)$.

We continue we several remarks:

- ▶ If x is an accumulation point of $(x^k)_k$ then there exists a subsequence $(x^{k_\ell})_\ell$ that converges to x.
- ▶ If $(x^k)_k$ converges to some $x \in \mathbb{R}^n$, then x is the unique accumulation point of $(x^k)_k$.
- ► A bounded sequence always possesses at least one accumulation point.

Examples: Accumulation Points

Examples:

- ► The sequence $(a_k)_k$ with $a_k = (-1)^k$ has the two accumulation points a = +1 and a = -1.
- ▶ The sequence

$$a_k := \begin{cases} k & k \text{ is odd,} \\ 0 & k \text{ is even,} \end{cases}$$

is not bounded. However, it has the accumulation point a=0.

Theorem: Global Convergence

Let $f: \mathbb{R}^n \to \mathbb{R}$ be cont. diff. and let $(x^k)_k$ be generated by the gradient method for solving

$$\min_{x} f(x)$$
 s.t. $x \in \mathbb{R}^n$

with one of the following step size strategies:

- exact line search,
- ▶ Armijo line search (backtracking) with $\sigma, \gamma \in (0, 1)$.

Then, $(f(x^k))_k$ is nonincreasing and every accumulation point of $(x^k)_k$ is a stationary point of f.

Convergence: Additional Results and Comments

▶ If $\nabla f(x^k) \neq 0$ for all k (i.e., the method does not terminate after finitely many steps), then the acc. points of $(x^k)_k$ can only be local/global minima or saddle points!

Can we say more? What's the typical situation?

- ▶ If f is a polynomial function of the variables $x_1, x_2, ..., x_n$ and $(x^k)_k$ is bounded, the whole sequence $(x^k)_k$ converges to a stationary point x^* of f.
- Let x^* be an acc. point of $(x^k)_k$ and suppose that the second order sufficient optimality conditions hold at x^* :
- \rightarrow The sequence $(x^k)_k$ converges to the strict local min. x^* .

Convergence: Additional Results and Comments

▶ If $\nabla f(x^k) \neq 0$ for all k (i.e., the method does not terminate after finitely many steps), then the acc. points of $(x^k)_k$ can only be local/global minima or saddle points!

Can we say more? What's the typical situation?

- ▶ If f is a polynomial function of the variables $x_1, x_2, ..., x_n$ and $(x^k)_k$ is bounded, the whole sequence $(x^k)_k$ converges to a stationary point x^* of f.
- Let x^* be an acc. point of $(x^k)_k$ and suppose that the second order sufficient optimality conditions hold at x^* :
- \rightarrow The sequence $(x^k)_k$ converges to the strict local min. x^* .

Global Convergence: Illustration

We use the same function as example:

$$f(x) = \exp(x_1 + x_2) + x_1^2 + 3x_2^2 - x_1x_2$$

Left: exact line search. Right: backtracking.

Local Convergence and Rates

Assumption: Lipschitz Continuity

→ We require some additional properties to derive rates.

We need to assume that ∇f is Lipschitz continuous over \mathbb{R}^n :

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall \ x, y \in \mathbb{R}^n,$$

where L > 0 is the Lipschitz constant. The class of functions with Lipschitz gradient with constant L is denoted by $C_L^{1,1}(\mathbb{R}^n)$ or $C_L^{1,1}$.

Examples:

- ▶ The linear function $f(x) := b^{\top}x + c$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$, is in $C_0^{1,1}$.
- ► Consider the quadratic function $f(x) := \frac{1}{2}x^{\top}Ax + b^{\top}x + c$:

$$\|\nabla f(x) - \nabla f(y)\| = \|(Ax + b) - (Ay + b)\|$$

= $\|A(x - y)\| \le \|A\| \cdot \|x - y\|$.

Hence, we have $f \in C_L^{1,1}$ with L = ||A||.

Remarks and Lipschitz Continuity via Hessian

Remarks:

▶ Here, the norm ||A|| denotes the so-called spectral norm of A:

$$\|A\| = \sqrt{\lambda_{\mathsf{max}}(A^{ op}A)} = \max_{\|d\|=1} \|Ad\|$$

▶ If $f \in C_L^{1,1}$, we can also use constant stepsizes $\bar{\alpha} \in (0, \frac{2}{L})$.

If f is twice continuously differentiable, then Lipschitz continuity of the gradient is equivalent to boundedness of the Hessian.

Theorem: Lipschitz Continuity via Hessians

Let f be a twice cont. differentiable function. Then, the following two conditions are equivalent:

- $f \in C^{1,1}_I(\mathbb{R}^n).$
- $\|\nabla^2 f(x)\| \le L \text{ for any } x \in \mathbb{R}^n.$

Linear Convergence

Definition: Linear Convergence

We say that $(x^k)_k$ converges linear with rate $\eta \in (0,1)$ to $x^* \in \mathbb{R}^n$ if there is $\ell \geq 0$ such that

$$||x^{k+1} - x^*|| \le \eta \cdot ||x^k - x^*||, \quad \forall \ k \ge \ell.$$

Example:

Let $\eta \in (0,1)$ be given, then the sequence $(x^k)_k$ with $x^k := \eta^k$ converges linear to $x^* = 0$ with rate η . In fact, we have:

$$\frac{|x^{k+1} - x^*|}{|x^k - x^*|} = \frac{\eta^{k+1}}{\eta^k} = \eta, \quad \forall \ k \ge 0.$$

Illustration of Linear Convergence

- ► The plot in (b) shows convergence of the adjusted sequence $\tilde{x}^k = \log_{10}(0.95^k) = \log_{10}(0.95) \cdot k \approx -0.022 \cdot k$.
- ▶ The labels of the *y*-axis are given by $10^{\tilde{x}^k}$.
- ► In logarithmic plots, linear convergence corresponds to linear behavior with slope log₁₀(0.95).

Theorem: Rates for Convex Problems

Let $f \in C_L^{1,1}$ and suppose there exists $\mu > 0$ such that

$$\mu \|d\|^2 \le d^\top \nabla^2 f(x) d (\le L \|d\|^2) \quad \forall d, \forall x.$$

Let $(x^k)_k$ be generated by the gradient method and let x^* be the solution of $\min_x f(x)$. Then:

$$(x^k)_k$$
 converges linearly to x^*

with rate $\eta=1-\frac{M\mu}{2}$ (see next slide $\leadsto M$) and it follows

$$f(x^k) - f(x^*) \le \eta^k \cdot [f(x^0) - f(x^*)]$$

and

$$\|\nabla f(x^k)\| \leq \sqrt{\frac{L}{\mu}\eta^k} \cdot \|\nabla f(x^0)\|, \ \|x^k - x^*\| \leq \sqrt{\frac{L}{\mu}\eta^k} \cdot \|x^0 - x^*\|.$$

Convergence Rate: Remarks

Remarks:

▶ The constant *M* depends on the chosen line search procedure:

$$M = \begin{cases} \bar{\alpha}(1 - \frac{L\bar{\alpha}}{2}) & \text{constant step size: } \bar{\alpha} \in (0, \frac{2}{L}), \\ \frac{1}{2L} & \text{exact line search,} \\ \gamma \min\{1, \frac{2\sigma(1-\gamma)}{L}\} & \text{Armijo line search.} \end{cases}$$

▶ In the theorem a stronger notion of convexity is required – the so-called strong convexity.

Example: Convergence Rates

▶ Gradient method with backtracking $(\gamma = \sigma = \frac{1}{2})$ for

$$\min_{x} \frac{1}{2} x^{\top} A x, \quad A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{50} \end{pmatrix}, \quad x^0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

It holds L=2, $\mu=\frac{1}{50}$ and the predicted rate is $\frac{799}{800}\approx 0.998$.

▶ Logarithmic plot of $(\|\nabla f(x^k)\|)_k$ and $(\|x^k - x^*\|)_k$. In red, the actual rate $\gamma \approx 0.96$ is shown.

More Properties of the Gradient Descent Method

We have seen that when using exact line search, the directions between consecutive steps are perpendicular, i.e.,

$$(d^{k+1})^{\top}d^k = 0$$

In fact, this is always true when using exact line search.

Why?

If α_k is the minimizer of $\phi(\alpha) = f(x^k + \alpha d^k)$. Then, $\phi'(\alpha_k) = 0$, which means:

$$0 = \phi'(\alpha_k) = \nabla f(x^k + \alpha_k d^k)^{\top} d^k = -(d^{k+1})^{\top} d^k.$$

Example: Perpendicular Steps

Discussion and Summary

Pros:

- Easy to understand and implement.
- Only need to know the first-order (gradient) information.
- ▶ Globally convergent, does not depend on the initial point.

Cons:

► Convergence speed may not be fast enough ~> linear convergence.

Newton's Method

Newton's Method

Next we study another method for unconstrained optimization:

Newton's method.

It has the following features:

- ▶ Converge much faster than the gradient method.
- Require second-order information (second-order derivative).
- More sensitive to the initial point.

Newton's Method – in $\mathbb R$

Newton's Method: One Dimension

We want to minimize f:

A necessary condition is g(x) = f'(x) = 0. We first try to find such points.

Newton's method is an iterative method. At each point x^k , we first approximate g using first-order Taylor expansion at x^k :

$$g(x) \approx g(x^k) + g'(x^k)(x - x^k)$$

We set the right-hand side to be 0 and solve it:

$$x = x^k - \frac{g(x^k)}{g'(x^k)}$$

We choose this x as our next iterate x^{k+1} .

▶ Here we assume $g'(x) \neq 0$ at each step!

Illustration of Newton's Method to Find g(x) = 0

Illustration of Newton's Method to Find g(x) = 0

Illustration of Newton's Method to Find g(x) = 0

However ...

Newton's method may not converge for every initial point.

► Consider $g(x) = x/\sqrt{1+x^2}$. It has root x = 0.

However ...

Newton's method may not converge for every initial point.

► Consider $g(x) = x/\sqrt{1+x^2}$. It has root x = 0.

However ...

Newton's method may not converge for every initial point.

► Consider $g(x) = x/\sqrt{1+x^2}$. It has root x = 0.

Convergence of Newton's Method (1-D Case)

Theorem: Convergence Newton's Method

If g is twice cont. differentiable and x^* is a root of g at which $g'(x^*) \neq 0$, then provided that $|x^0 - x^*|$ is sufficiently small, the sequence generated by the Newton iterations:

$$x^{k+1} = x^k - \frac{g(x^k)}{g'(x^k)}$$

will satisfy

$$|x^{k+1} - x^*| \le C|x^k - x^*|^2$$

with $C = \sup_{x} \frac{1}{2} \left| \frac{g''(x)}{g'(x)} \right|$.

▶ We call this convergence speed quadratic convergence.

Linear Convergence vs Quadratic Convergence

Remember gradient descent method has linear convergence rate:

$$|x^{k+1} - x^*| \le \eta |x^k - x^*|.$$

Now, Newton's method has quadratic convergence rate:

$$|x^{k+1} - x^*| \le C|x^k - x^*|^2$$
.

Example:

Let us set $\eta = C = 0.5$ and $|x^0 - x^*| = 0.5$. Then:

Iteration	1	2	3	5
Gradient (linear conv.)	0.25	0.125	0.063	0.031
Newton (quadratic conv.)	0.125	0.0078	3×10^{-5}	$1 imes 10^{-19}$

In order to achieve 1×10^{-19} , Newton's method needs 5 iterations, while the gradient method would require 64 iterations.

Illustration of Quadratic Convergence

- Quadratic convergence implies that the number of correct digits (i.e., the digits that coincide with the limit) double after each iteration.
- ► The logarithmic plot in (b) is similar to a quadratic function that opens downward.

Back to the Optimization Problem

We set g(x) = f'(x), where f(x) is the function we want to minimize.

Therefore, in terms of f, the Newton iteration can written as:

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}.$$

- ▶ Under proper conditions, this sequence of $\{x^k\}$ converges to a stationary point of f.
- ▶ When *f* is convex, it converges to the global minimizer (under appropriate assumptions).

Connection to the Gradient Descent Method

One Newton step is given by:

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}$$

A gradient descent step is given by:

$$x^{k+1} = x^k - \alpha f'(x^k)$$

Observation:

- ▶ In the 1-D case, Newton's method simply specifies a unique step size in the gradient method (rather than performing line searches).
- In the high-dimensional case, however, Newton's method will also alter the direction.

Another Interpretation of Newton's Method

Consider the function f we want to minimize. We first write the second-order Taylor expansion at current step x^k :

$$f(x) \approx f(x^k) + f'(x^k)(x - x^k) + \frac{1}{2}f''(x^k)(x - x^k)^2.$$

What is the minimizer of the quadratic approximation?

▶ The minimizer is given by $(f''(x^k) > 0)$:

$$x^k - \frac{f'(x^k)}{f''(x^k)}$$

which is exactly the next iterate in Newton's method. Interpretation:

- ▶ Newton's method build a quadratic approximation of *f* locally. The Newton step then is the minimizer of this model.
- ▶ If the original objective function is quadratic, then Newton's method converges in one step.

Newton's Method – in \mathbb{R}^n

Newton's Method in High Dimensional Case

We want to solve $\min_{x \in \mathbb{R}^n} f(x)$ with $f : \mathbb{R}^n \to \mathbb{R}$.

At x^k , we approximate the objective function by its second order Taylor expansion:

$$f(x) \approx f(x^k) + \nabla f(x^k)^{\top} (x - x^k) + \frac{1}{2} (x - x^k)^{\top} \nabla^2 f(x^k) (x - x^k)$$

We minimize this quadratic approximation and get:

$$x = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k).$$

This motivates to define the search direction (Newton direction):

$$d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k).$$

In the gradient descent method, the direction is $-\nabla f(x^k)$.

Newton's method refines the search direction by using the second-order information: $\nabla^2 f(x^k)$.

Newton's Method in High Dimensional Case

We can also consider the nonlinear equation $\nabla f(x) = 0$.

Using a Taylor expansion at x^k , we have

$$\nabla f(x) \approx \nabla f(x^k) + \nabla^2 f(x^k)(x - x^k) =: q_k(x).$$

The solution to $q_k(x) = 0$ is

$$x = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

which is also Newton's step.

▶ In these derivations, we assume that $\nabla^2 f(x)$ is invertible in the search region.

Connection to Descent Directions

A vector d is a descent direction if $\nabla f(x)^{\top} d < 0$.

- ▶ If we go a very small step in that direction, the objective value must be decreasing (due to Taylor's expansion).
- ▶ In the gradient descent method, we have $d = -\nabla f(x)$ and

$$\nabla f(x)^{\top} d = -\|\nabla f(x)\|^2 < 0.$$

Newton's Step as a Descent Step

In Newton's method, we have

$$d = -(\nabla^2 f(x))^{-1} \nabla f(x).$$

Then, it holds that:

$$\nabla f(x)^{\top} d = -\nabla f(x)^{\top} (\nabla^2 f(x))^{-1} \nabla f(x).$$

- ▶ If f is convex, then $\nabla^2 f(x)$ is positive semidefinite and we obtain $\nabla f(x)^{\top} d \leq 0$.
- ▶ If $\nabla^2 f(x)$ is positive definite, then $\nabla f(x)^{\top} d < 0$.
- → In this case, Newton's direction is a descent direction.

Step Length

As we said earlier, Newton's method may not converge unless the starting point is close.

One way to ensure convergence is to again use a step size parameter $\alpha_{\mathbf{k}}$ in

$$x^{k+1} = x^k + \alpha_k d^k$$

where $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$ is Newton's direction.

• We can use backtracking line search to determine α_k .

Complete Procedure of Newton's Method

The Newton Method

1. Initialization: Select an initial point $x^0 \in \mathbb{R}^n$.

For k = 0, 1, ...:

2. Compute the Newton direction d^k which is the solution of the linear system

$$\nabla^2 f(x^k) d^k = -\nabla f(x^k).$$

- 3. Choose a step size α_k by backtracking line search and calculate $x^{k+1} = x^k + \alpha_k d^k$.
- 4. If $\|\nabla f(x^{k+1})\| \le \varepsilon$, then STOP and x^{k+1} is the output.

Questions?