Clustering II

Lecture #17 | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Local cluster detection
 - Autocorrelation-based
 - Kulldorff's Scan Statistic (SaTScan)
 - Density-based clusters

Clustering?

- What is clustering?
 - Clustering
 - Identifying whether events/values are clustered in space
 - Global, does not tell us "where"
 - Pattern is not random
 - For observations with values, spatial autocorrelation
 - For unmarked points, other tests

Clustering?

- What is clustering?
 - Cluster detection
 - Identifying clusters of events/values in space (deviations from expected)
 - Local regions having...
 - Higher density (unmarked points)
 - High/Low values (e.g., incidence rate)
 - Spatial autocorrelation, scan statistics

- Using Local Autocorrelation
 - For detection of clusters of "high" values, such as elevated incidence rate of some disease, e.g., LISA
 - Simply identifies <u>observations</u> with high values...
 - ...w/ neighbors having high values (H-H)
 - ...w/ neighbors having low values (outlier)

- Using Local Autocorrelation
 - LISA method
 - Observation + neighbors
 - LISA results
 - Observation-based
 - Regional clusters are simply a collection of individual observations that happen to be located near one another
 - Nothing tying multiple regions together

● ● Table - CATCTPBE0015							
	R12	PBER13	PBER14	PBER15	LISA_I	LISA_CL	LISA_P
498	15789	0.600000	0.290909	0.117647	27.7429107	1	0.0060000
2827	57692	0.049180	0.048387	0.084746	1.8241487	1	0.0010000
2833	21101	0.370787	0.406250	0.369369	24.6830557	1	0.0050000
3487	95238	0.195122	0.225806	0.066667	5.6619757	1	0.0110000
1	00000	0.059524	0.013889	0.013333	0.1447826	0	0.2190000
2	00000	0.008621	0.050000	0.010000	-0.0776767	0	0.1390000
3	18868	0.000000	0.008929	0.000000	0.1503457	0	0.1870000
4	00000	0.000000	0.000000	0.000000	0.1540371	0	0.1210000
5	20408	0.031746	0.000000	0.018692	-0.0700253	0	0.080000
6	18018	0.009434	0.000000	0.000000	0.0949752	2	0.0270000
7	00000	0.045455	0.000000	0.000000	-0.1869132	4	0.0010000
8	00000	0.007692	0.008403	0.000000	-0.1011829	0	0.1330000
9	00000	0.000000	0.000000	0.000000	-0.1869093	0	0.1120000
10	00000	0.000000	0.000000	0.000000	0.1688026	2	0.0400000
11	09709	0.000000	0.000000	0.000000	0.1596978	2	0.0140000
12	00000	0.000000	0.000000	0.000000	0.1176653	0	0.1540000
13	00000	0.000000	0.583333	0.684211	-0.2310434	0	0.0740000
14	35714	0.019608	0.021277	0.019802	0.0038928	0	0.4210000
15	16667	0.035714	0.012346	0.013889	-0.0360511	0	0.4920000
16	08547	0.000000	0.000000	0.035211	0.1440382	0	0.1110000
17	99338	0.091837	0.056818	0.023585	0.2728499	0	0.2180000
18	00000	0.000000	0.000000	0.000000	-0.1822374	0	0.1030000
19	00000	0.000000	0.000000	0.000000	0.1470644	0	0.1300000
20	00000	0.000000	0.014286	0.000000	0.1577026	0	0.0930000
21	12658	0.007194	0.005618	0.000000	0.0603476	0	0.3650000
22	03774	0.000000	0.000000	0.002976	0.0792863	0	0.4070000
#obs=8036 #selected=4							

- Using Local Autocorrelation
 - Regional clusters are simply a collection of individual observations that happen to be located near one another
 - Nothing tying multiple regions together
 - Interpretation can be difficult in some cases

- Using Local Autocorrelation
 - Remember, these are rate-based (or proportion) methods
 - No consideration of the size of underlying population in the local cluster
 - Statistical significance of tests are based on number of <u>observation units</u>, not the size of the underlying populations

- Using Local Autocorrelation
 - Local cluster size is based on the definition of neighbors
 - Can be small or large
 - But, output remains at the observation-level
 - ...even though the method includes multiple observations in determining that value

- Alternate method for areal (polygon) data with rate-based data
 - AMOEBA
 - Space or spatiotemporal
 - Uses Getis Ord Gi*
 - Identifies irregularly shaped clusters
 - Contiguity based

- Kulldorff's Scan Statistic
 - Temporal, Spatial, or Spatiotemporal local cluster detection
 - Considers variation in background population
 - Density/size and attributes
 - Varies observation window size
 - In both space and time, as necessary
 - Compares expected cases to observed cases

- Kulldorff's Scan Statistic
 - Temporal, Spatial, or Spatiotemporal local cluster detection
 - Output unit is a "cluster"
 - A set of observations that belong to the cluster object
 - With associated attributes
 - Output can be multiple clusters
 - Different from local spatial autocorrelation!

- Spatial model inputs (cases only)
 - Location coordinates
 - Each location has case and population count
 - These are point representations
 - -Thus, for areal (polygon) data, they need to be converted to points (centroids)
 - Prediction coordinates
 - Grid of locations
 - If no grid, locations are used

- Spatial model (cases only)
 - Moving window method that works through the study area
 - Compares observed number of cases to expected number of cases (Poisson) within the scan window
 - Window size varies to account for variable cluster sizes
 - Window shape can be circular, elliptical, or user specified

- Spatial model inputs (cases/controls)
 - Location coordinates
 - Cases (1)
 - Controls (0)
 - These are point representations
 - -Thus, for areal (polygon) data, they need to be converted to points (centroids)
 - Prediction coordinates
 - Grid of locations
 - If no grid, locations are used

- Spatial model (cases/controls)
 - Moving window method that works through the study area
 - Compares observed number of cases to expected number of cases (Bernoilli) within the scan window
 - Window size varies to account for variable cluster sizes
 - Window shape can be circular, elliptical, or user specified

- Moving window method
 - Location of window (grid)

- Moving window method
 - Location of window (grid)

- Moving window method
 - Location of window (grid)

- Moving window method
 - Location of window (grid)

- Moving window method
 - Location of window (grid)

- Moving window method
 - Location of window (grid)

- Moving window method
 - Size of window (grid)

- Moving window method
 - Size of window (grid)

- Moving window method
 - Size of window (grid)

- Moving window method
 - Size of window (grid)

- Moving window method
 - Location of window (no grid)

- Moving window method
 - Location of window (no grid)

- Moving window method
 - Location of window (no grid)

- Moving window method
 - Location of window (no grid)

- Window size options
 - Allows us to set a threshold for cluster size
 - By total population size (%)
 - By physical size of window (distance)
 - Important to control for potentially large spatial clusters
 - Not really a "local cluster"?

- Window shape options
 - Circular (default)
 - Elliptical
 - Contains penalty option for deviation from circular
 - User-specified
 - Window defined by set of neighbors for each observation

- Spatiotemporal model (cases only)
 - Extend the spatial model with time
 - Rather than a circle in 2D (space), cluster is a cylinder in 3D (2D space plus time)
 - Basic idea is similar
 - Rather than simply moving a circle of various sizes across space, move a cylinder of various sizes across space and time
 - Can account for varying intensity through time

- Spatiotemporal model inputs (cases only)
 - Location coordinates
 - Each location has case, population count, and time
 - These are point representations
 - Thus, for areal (polygon) data, they need to be converted to points (centroids)
 - Prediction coordinates
 - Grid of locations (If no grid, locations are used)
 - Temporal window

- Calculates a likelihood ratio for each potential cluster
 - Based on observed and expected disease cases
 - Adjusts for multiple tests (similar clusters)
 - Identifies most likely cluster
 - e.g., consider the number of "high" clusters that would be found containing a single location with an extremely high count

- Advantages
 - Often used/accepted
 - Mathematically sound, straightforward interpretation
 - Quite customizable for purpose
- Disadvantages
 - Spatial output options not great
 - Cluster shape restrictions

Density-based Clustering

- Point density surface
 - Requires (user input)

- Regularly-spaced grid of locations
- Kernel or density function
- Kernel size
- Areal regions / extent of "cluster"
 - Requires (user input)
 - ullet Areal region where point density > X

Density-based Clustering

- Advantages
 - Can use unmarked or marked point data
 - Density surfaces look nice
- Disadvantages
 - Subjectivity (kernel function, size)
 - Requires a user-defined threshold for identifying a "cluster"

Local Clusters

- Considerations
 - What is the question?
 - e.g., observations vs groups of obs
 - Exploratory or confirmatory
 - e.g., a priori beliefs about presence of a cluster?
 - Scale
 - What is the scale of a local cluster?... for your health outcome, in your region?

Local Clusters

- Considerations
 - What is the question?
 - e.g., observations vs groups of obs
 - Exploratory or confirmatory
 - e.g., a priori beliefs about presence of a cluster?
 - Scale
 - What is the scale of a local cluster?... for your health outcome, in your region?

LISA vs SatScan

- Considerations
 - Exploratory vs Confirmatory Analysis
 - LISA: Hypothesis Generation
 - SatScan: Hypothesis Testing
 - Individual-level vs group-level
 - LISA: How anomalous (outlier!) is <u>each</u> observation compared to the overall spatial patterns across the study area
 - SatScan: What is the 'group' of elevated or lower risk compared to expected?

Keywords

- Kulldorff
- SaTScan
- Moving window
 - Window size, shape