# Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia



## Programa de Engenharia de Sistemas e Computação

CPS767 - Algoritmos de Monte Carlo e Cadeias de Markov Prof. Daniel Ratton Figueiredo

## 2ª Lista de Exercícios

Luiz Henrique Souza Caldas email: lhscaldas@cos.ufrj.br

31 de março de 2025

## Questão 1: Cauda do dado

Considere um icosaedro (um sólido Platônico de 20 faces) honesto, tal que a probabilidade associada a cada face é 1/20. Considere que o dado será lançado até que um número primo seja observado, e seja Z a variável aleatória que denota o número de vezes que o dado é lançado. Responda às perguntas abaixo:

1. Determine a distribuição de Z, ou seja  $P[Z=k], k=1,2,\ldots$  Que distribuição é esta?

#### Resposta:

Os números primos são 2, 3, 5, 7, 11, 13, 17, 19. Portanto, a probabilidade de obter um número primo em um lançamento é  $p=\frac{8}{20}=\frac{2}{5}$ . Consequentemente, a probabilidade de não obter um número primo em um lançamento é  $1-p=\frac{3}{5}$ . Assim, a distribuição de Z é dada por:

$$P[Z = k] = (1 - p)^{k-1}p = \left(\frac{3}{5}\right)^{k-1} \left(\frac{2}{5}\right)$$

para  $k=1,2,\ldots$  Esta é uma distribuição geométrica com parâmetro  $p=\frac{2}{5}$ .

2. Utilize a desigualdade de Markov para calcular um limitante para  $P[Z \ge 10]$ .

#### Resposta:

A desigualdade de Markov afirma que, para uma v.a. Z > 0 e a > 0, temos:

$$P[Z \ge a] \le \frac{E[Z]}{a}$$

Para calcular  ${\cal E}[Z]$ , utilizamos a fórmula da média de uma distribuição geométrica:

$$E[Z] = \frac{1}{p} = \frac{1}{\frac{2}{5}} = \frac{5}{2}$$

Assim, aplicando a desigualdade de Markov com a=10, obtemos:

$$P[Z \ge 10] \le \frac{E[Z]}{10} = \frac{\frac{5}{2}}{10} = \frac{1}{4} = 0.25$$

Portanto,  $P[Z \ge 10] \le 0.25$ . Isso significa que a probabilidade de o número de lançamentos do dado ser maior ou igual a 10 é menor ou igual a 25%.

3. Utilize a desigualdade de Chebyshev para calcular um limitante para  $P[Z \ge 10]$ .

#### Resposta:

A média e variância da distribuição geométrica são  $\mu=\frac{1}{p}=\frac{5}{2}$  e  $\sigma^2=\frac{1-p}{p^2}=\frac{15}{4}$ . Aplicando Chebyshev:

$$P[|Z - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

Subtraindo  $\mu$  de ambos os lados em  $P[Z \ge 10]$ , temos:

$$P[Z \geq 10] = P[Z - \mu \geq 10 - \tfrac{5}{2}] = P[Z - \mu \geq \tfrac{15}{2}] \leq P[|Z - \mu| \geq k\sigma]$$

Fazendo  $k\sigma = \frac{15}{2}$ , então

$$k = \frac{15}{2} \cdot \frac{2}{\sqrt{15}} = \sqrt{15}$$

Assim, temos:

$$P[Z \ge 10] \le \frac{1}{15} \approx 0.0667$$

4. Calcule o valor exato de  $P[Z \ge 10]$  (dica: use probabilidade complementar). Compare os valores obtidos.

#### Resposta:

$$P[Z \ge 10] = 1 - P[Z \le 9] = 1 - \sum_{k=1}^{9} P[Z = k]$$

$$P[Z \ge 10] = 1 - \frac{2}{5} \sum_{k=1}^{9} \left(\frac{3}{5}\right)^{k-1} = 1 - \frac{2}{5} \cdot \frac{1 - \left(\frac{3}{5}\right)^{9}}{1 - \frac{3}{5}} = \left(\frac{3}{5}\right)^{9}$$

$$P[Z \ge 10] = \left(\frac{3}{5}\right)^9 \approx 0.0101$$

Comparando os valores:

• Markov:  $P[Z \ge 10] \le 0.25$ 

• Chebyshev:  $P[Z \ge 10] \le 0.0667$ 

• Valor exato:  $P[Z \ge 10] \approx 0.0101$ 

Ambas as desigualdades fornecem limites conservadores, sendo Chebyshev mais ajustado que Markov. O valor exato é o mais preciso.

### Questão 2: Pesquisa eleitoral

Você leu no jornal que uma pesquisa eleitoral com 1500 pessoas indicou que 40% dos entrevistados prefere o candidato A enquanto 60% preferem o candidato B. Determine a margem de erro desta pesquisa usando uma confiança de 95%. O que você precisou assumir para calcular a margem de erro?

Resposta:

### Questão 3: Sanduíches

Você convidou 64 pessoas para uma festa e agora precisa preparar sanduíches para os convidados. Você acredita que cada convidado irá comer 0, 1 ou 2 sanduíches com probabilidades 1/4, 1/2 e 1/4, respectivamente. Assuma que o número de sanduíches que cada convidado irá comer é independente de qualquer outro convidado. Quantos sanduíches você deve preparar para ter uma confiança de 95% de que não vai faltar sanduíches para os convidados?

Resposta:

## Questão 4: Graus improváveis

Considere o modelo de grafo aleatório de Erdős-Rényi (também conhecido por G(n, p)), onde cada possível aresta de um grafo rotulado com n vértices ocorre com probabilidade p, independentemente. Responda às perguntas abaixo:

1. Determine a distribuição do grau do vértice 1 (em função de  $n \in p$ ).

Resposta:

2. Determine o valor  $\gamma$  (em função de n e p) tal que com alta probabilidade (1-1/n) o grau observado no vértice 1 é menor ou igual a  $\gamma$ .

Resposta:

#### Questão 5: Calculando uma importante constante

Seja  $X_i$  uma sequência i.i.d. de v.a. contínuas uniformes em [0,1]. Seja V o menor número k tal que a soma das primeiras k variáveis seja maior do que 1. Ou seja,  $V = \min\{k \mid X_1 + \dots + X_k \ge 1\}$ .

1. Escreva e implemente um algoritmo para gerar uma amostra de V.

Resposta:

2. Escreva e implemente um algoritmo de Monte Carlo para estimar o valor esperado de V.

Resposta:

3. Trace um gráfico do valor estimado em função do número de amostras. Para qual valor seu estimador está convergindo?

Resposta:

#### Questão 6: Transformada inversa

Mostre como o método da transformada inversa pode ser usado para gerar amostras de uma v.a. contínua X com as seguintes distribuições:

1. Distribuição exponencial com parâmetro  $\lambda > 0$ , cuja função densidade é dada por  $f_X(x) = \lambda e^{-\lambda x}$ , para  $x \ge 0$ .

Resposta:

2. Distribuição de Pareto com parâmetros  $x_0 > 0$  e  $\alpha > 0$ , cuja função densidade é dada por  $f_X(x) = \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}}$ , para  $x \ge x_0$ .

Resposta:

## Questão 7: Contando domínios na Web

Quantos domínios web existem dentro da UFRJ? Mais precisamente, quantos domínios existem dentro do padrão de nomes http://www.[a-z](k).ufrj.br, onde [a-z](k) é qualquer sequência de caracteres de comprimento k ou menor? Construa um algoritmo de Monte Carlo para estimar este número.

1. Descreva a variável aleatória cujo valor esperado está relacionado com a medida de interesse. Relacione analiticamente o valor esperado com a medida de interesse.

Resposta:

2. Implemente o método de Monte Carlo para gerar amostras e estimar a medida de interesse. Para determinar o valor de uma amostra, você deve consultar o domínio gerado para determinar se o mesmo existe (utilize uma biblioteca web para isto).

#### Resposta:

3. Assuma que k=4. Seja  $\hat{w}_n$  o valor do estimador do número de domínios após n amostras. Trace um gráfico em escala semi-log (eixo-x em escala log) de  $\hat{w}_n$  em função de n para  $n=1,\ldots,10^5$  (ou mais, se conseguir). O que você pode dizer sobre a convergência de  $\hat{w}_n$ ?

Resposta:

### Questão 8: Rejection Sampling

Considere o problema de gerar amostras de uma v.a.  $X \sim \text{Binomial}(1000, 0.2)$ .

1. Descreva uma proposta simples de função de probabilidade para gerar amostras de X usando Rejection Sampling. Calcule a eficiência dessa proposta.

#### Resposta:

2. Lembrando que a distribuição Binomial tem a forma de sino, centrada em sua média, proponha outra função de probabilidade para gerar amostras de X usando Rejection Sampling. Calcule a eficiência dessa proposta e compare com a eficiência acima. O que você pode concluir?

Resposta:

# Questão 9: Integração de Monte Carlo e Importance Sampling

Considere a função  $g(x) = e^{-x^2}$  e a integral de g(x) no intervalo [0,1].

1. Implemente um método de Monte Carlo simples para estimar o valor da integral.

Resposta:

2. Intuitivamente, muitas amostras de g(x) vão ter valores muito baixos. Dessa forma, utilize Importance Sampling para melhorar a qualidade do estimador do valor da integral. Em

particular, utilize a função de densidade  $h(x) = Ae^{-x}$  definida em [0, 1] onde A é o valor da constante de normalização. Mostre como gerar amostras de h(x).

Resposta:

3. Compare os dois métodos. Trace um gráfico do erro relativo de cada um dos estimadores em função do número de amostras. Ou seja,  $|\hat{I}_n - I|/I$  onde I é o valor exato da integral e  $\hat{I}_n$  é o valor do estimador com n amostras, para  $n = 10^1, 10^2, \ldots, 10^6$ .

Resposta:

## Códigos

Os códigos utilizados para a resolução dos exercícios estão disponíveis no repositório do GitHub: https://github.com/lhscaldas/CPS767\_MCMC/