Colle 16 - MPSI Dérivabilité

Exercice 1 (Question de cours)

Démontrer les théorèmes suivants :

- 1. Soit $f: I \to \mathbb{R}$ et soit $a \in I$ tel que a ne soit pas une extrémité de I. Si f présente un extremum local en a et si f est dérivable en a, alors f'(a) = 0.
- 2. Le théorème de Rolle.
- 3. Soit $f: I \to \mathbb{R}$ une fonction dérivable. $f' \ge 0 \Leftrightarrow f$ est croissante.
- 4. Le théorème de la limite de la dérivée : si f est continue sur I, dérivable sur $I \setminus \{a\}$ et si $\lim_{x \to a} f'(x) = l \in \overline{\mathbb{R}}$, alors $\lim_{x \to a} \frac{f(x) f(a)}{x a} = l$.

Exercice 2

Sur quelles parties de \mathbb{R} , les fonctions suivantes sont-elles continues, dérivables?

$$x \mapsto x|x|, \qquad x \mapsto \frac{x}{|x|+1}.$$

Exercice 3

Etudier la dérivabilité des fonctions suivantes :

$$x \mapsto \sqrt{x^2 - x^3}, \qquad x \mapsto (x^2 - 1)\arccos(x^2).$$

Exercice 4

Calculer la dérivée n-ième de

$$x \mapsto x^2(1+x)^n, \qquad x \mapsto (x^2+1)e^x$$

Exercice 5

Calculer la dérivée n-ième de

$$x\mapsto \frac{1}{1-x}, \qquad x\mapsto \frac{1}{1+x}, \qquad x\mapsto \frac{1}{1-x^2}$$

Exercice 6

Soient $a, b, c \in \mathbb{R}$. Montrer qu'il existe $x \in]0; 1[$ tel que

$$4ax^3 + 3bx^2 + 2cx = a + b + c.$$

Indication : on pourra utiliser le théorème de Rolle.

Exercice 7

Soit $f: I \to \mathbb{R}$ dérivable.

Montrer que f est lipschitzienne si, et seulement si, sa dérivée est bornée.

Exercice 8

Montre à l'aide du théorème des accroissements finis que

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} \sim -\frac{\ln n}{n^2}.$$

Exercice 9

Etablir les inégalités suivantes :

- 1. $\forall x \in]-1; +\infty[, \frac{x}{x+1} \le \ln(1+x) \le x.$
- 2. $\forall x \in \mathbb{R}_+, e^x \ge 1 + x + \frac{x^2}{2}$.

Exercice 10

- 1. Soit f dérivable sur l'intervalle I, et $(a,b) \in I^2$. Montrer que si f s'annule en n points de [a;b] alors f' s'annule en au moins n-1 points de [a;b].
- 2. Soit P un polynôme de degré n ayant toutes ses racines réelles. Montrer que P' a aussi toutes ses racines réelles.

Correction de l'exercice 1

1.

2. On utilise le théorème précédent en un point c extremum local.

3.

4. L'énoncé est le suivant :

Si f est continue sur I, dérivable sur $I\setminus\{a\}$ et si $\lim_{x\to a} f'(x) = l \in \overline{\mathbb{R}}$, alors $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = l$.

Correction de l'exercice 2

1. f(x) = x|x| est définie et continue sur \mathbb{R} .

Par opérations, f est dérivable sur \mathbb{R}^* .

Quand
$$h \to 0^+, \frac{f(h) - f(0)}{h} = h \to 0$$

Quand
$$h \to 0^+$$
, $\frac{f(h) - f(0)}{h} = h \to 0$
et quand $h \to 0^-$, $\frac{f(h) - f(0)}{h} = -h \to 0$.
 f est dérivable en 0 et $f'(0) = 0$.

2. $f(x) = \frac{x}{|x|+1}$ est définie et continue sur \mathbb{R} .

Par opérations
$$f$$
 est dérivable sur \mathbb{R}^* .
Quand $h \to 0$, $\frac{f(h) - f(0)}{h} = \frac{1}{|h| + 1} \to 1$.

Donc f est dérivable en 0 et f'(0) = 1.

Correction de l'exercice 3

1. $f(x) = \sqrt{x^2 - x^3}$ est définie et continue sur $]-\infty;1]$.

Par opérations, f est dérivable sur $]-\infty,0[\cup]0;1[$.

Quand
$$h \to 0^+$$
, $\frac{f(h) - f(0)}{h} = \sqrt{1 - h} \to 1$.

Quand
$$h \to 0^-, \frac{f(h) - f(0)}{h} \to -1.$$

Quand $h \to 0^+$, $\frac{f(h) - f(0)}{h} = \sqrt{1 - h} \to 1$.

Quand $h \to 0^-$, $\frac{f(h) - f(0)}{h} \to -1$. f n'es par dérivable en 0 mais y admet un nombre dérivée à droite et à gauche.

Quand $h \to 0^-$, $\frac{f(1+h)-f(1)}{h} = \frac{\sqrt{-h-2h^2-h^3}}{h} \to -\infty$. f, n'est pas dérivable en 1, il y a une tangente verticale à son graphe en cet abscisse.

2. $f(x) = (x^2 - 1) \arccos x^2$ est définie et continue sur [-1; 1].

Par opération f est dérivable sur]-1;1[.

Quand $h \to 0^-$, $\frac{f(1+h)-f(1)}{h}=(2+h)\arccos((1+h)^2)\to 0$. f est dérivable en 1 et f'(1)=0. Par parité, f est aussi dérivable en -1 et f'(-1)=0.

Correction de l'exercice 4

On exploite la formule de Leibniz.

1.

$$(x^{2}(1+x)^{n})^{(n)} = \binom{0}{n}x^{2}((1+x)^{n})^{(n)} + \binom{1}{n}(x^{2})'((1+x)^{n})^{(n-1)} + \binom{2}{n}(x^{2})''((1+x)^{n})^{(n-2)}$$
$$= n!x^{2} + 2n \cdot n!x(1+x) + n(n-1)\frac{n!}{2}(1+x)^{2}$$

2.

$$((x^{2}+1)e^{x})^{(n)} = \sum_{k=0}^{n} {n \choose n} (x^{2}+1)^{(k)} (e^{x})^{(n-k)}$$
$$= (x^{2}+2nx+n(n-1)+1)e^{x}$$

Correction de l'exercice 5

En calculant les dérivées successives on montre par récurrence

$$\left(\frac{1}{1-x}\right)^{(n)} = \frac{n!}{(1-x)^{(n+1)}}.$$

 $\left(\frac{1}{1+x}\right)^{(n)} = (-1)^n \frac{n!}{(1+x)^{(n+1)}}.$

Enfin, comme

 $\frac{1}{1-x^2} = \frac{1}{2} \frac{1}{1-x} + \frac{1}{2} \frac{1}{1+x}$

on a

$$\left(\frac{1}{1-x^2}\right)^{(n)} = \frac{n!}{2(1-x)^{(n+1)}} + \frac{(-1)^n n!}{2(1+x)^{(n+1)}}.$$

Correction de l'exercice 6

Soit $\varphi:[0,1]\to\mathbb{R}$ définie par

$$\varphi(x) = ax^4 + bx^3 + x^2 - (a+b+c)x.$$

 φ est dérivable et $\varphi(0) = 0 = \varphi(1)$. Il suffit d'appliquer le théorème de Rolle pour conclure.

Correction de l'exercice 7

(⇐) en vertu de l'inégalité des accroissements finis.

 (\Rightarrow) si f est k-lipschitzienne alors $\forall x,y\in I$ tels que $x\neq y$ on a

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le k.$$

A la limite quand $y \to x$ on obtient $|f'(x)| \le k$. Par suite f' est bornée.

Correction de l'exercice 8

En appliquant le théorème des accroissements finis à $x \mapsto x^{1/x}$ entre n et n+1, on obtient

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} = \frac{1-c}{c^2}c^{1/c}$$

avec $c \in]n; n+1[$.

Puisque $c \sim n \to +\infty$, $\ln c \sim \ln n$ et puisque $c^{1/c} \to 1$

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} \sim -\frac{\ln n}{n^2}.$$

Correction de l'exercice 9

1. Soit $f: x \mapsto x - \ln(1+x)$ définie et de classe C^{∞} sur $]-1; +\infty[$.

 $f'(x) = \frac{x}{1+x}$. On en déduit le tableau de variations de f qui montre que f est positive.

Soit $g: x \mapsto \ln(1+x) - \frac{x}{1+x}$ définie et de classe C^{∞} sur $]-1; +\infty[$.

 $g'(x) = \frac{x}{(1+x)^2}$. On en déduit par le tableau de variations de g que g est positive.

2. Soit $f: x \mapsto e^x - 1 - x - \frac{1}{2}x^2$ définie et de classe C^{∞} sur \mathbb{R}_+ .

 $f^{(3)}(x) = e^x > 0$. On déduit par les tableaux de variations de f'', de f' puis de f que f est positive.

Correction de l'exercice 10

1. Soit $(x_i)_{i \in [[1,n]]}$ des racines de f, telles que $a \le x_1 < x_2 < ... < x_n \le b$.

Pour $i \in [[1, n-1]]$, on sait que f est dérivable sur [a, b] donc sur $[x_i, x_{i+1}]$. Le théorème de Rolle sur $[x_i, x_{i+1}]$ donne l'existence de $t_i \in]x_i, x_{i+1}] \subset [a, b]$ tel que $f'(t_i) = 0$. Les t_i sont deux à deux différents, car appartenant à des intervalles deux à deux disjoints. Au final, les $(t_i)_{i \in [[1,n-1]]}$ sont n-1 racines de f' dans [a,b]. f' s'annule au moins n-1 fois dans [a,b].

2. Considérons les racines réelles de P et leur ordre de multiplicité : $x_1, x_2, ..., x_p$ d'ordre de multiplicité respectif $\alpha_1, \alpha_2, ..., \alpha_p$.

Comme P est à racines réelles sur \mathbb{R} , alors $\sum_{i=1}^{p} \alpha_i = n = degP$. En particulier, $x_1, x_2, ..., x_p$ sont racines de P' d'ordre de multiplicité respectif $\alpha_1 - 1, \alpha_2 - 1, ..., \alpha_p - 1$: on obtient ainsi n-p racines de P'.

La fonction P s'annule en $(x_i)_{i \in [[1,p]]}$; ainsi, la démarche de la question 1) donne p-1 nouvelles racines de $P': (t_i)_{i \in [[1,p-1]]}$, avec pour $i \in [[1, p-1]], t_i \in]x_i, x_{i+1}[.$

Nous obtenons ainsi (n-p)+(p-1)=n-1 racines réelles de P' comptées avec leur ordre de multiplicité. Or P' est de degré n-1, donc possède au plus n-1 racines réelles. Ainsi, les racines de P' sont toutes réelles.