

Effects of urban growth on bats in Kent, UK

Daisy Jowers

Intro to me

MSc Ecology and Data Science 2023-24

Work in the sustainable construction sector

Outline of talk

- 1. A look at 40 years of data
- 2. Investigating the effects of urban growth
- 3. Questions/Discussion

43 years of data from citizen scientists

43 years of data from citizen scientists

Distribution of records

The Very Rare

Common Name

- Alcathoe bat
- Barbastelle bat
- Greater horseshoe bat
- Greater mouse-eared bat
- Grey long-eared bat
- Kuhl's pipistrelle

Period

- 1985-1989
- 1995-1999
- ▲ 2005-2009
- ◆ 2010-2014
- **2015-2019**
- ▼ 2020-2024

Myotis

Mouse-eared bats	Myotis gen.	5685	1980	2023	
Alcathoe	Myotis alcathoe	3	2010	2017	
Bechsteins	Myotis bechsteinii	37	2000	2019	<u>- 1</u>
Brandt's/Whiskered	Myotis brandtii/mystacinus	574	1980	2022	
Daubentons	Myotis daubentonii	2692	1980	2023	
Grey mouse-eared	Myotis myotis	2	1985	1985	II I
Natterers	Myotis nattereri	1738	1980	2023	

Common Name

- Alcathoe bat
 Brandt's bat
 Myotis spp.
 Whiskered bat
- Bechstein's bat
 Daubenton's bat
 Natterer's bat
 Whiskered/Brandt's/Alcathoe bat

Change in observers over time

Recommendations

Record your absences!!

Fill in everything you know

1 entry per species!

Keep personal data separate

Questions on Part 1?

Biodiversity is globally threatened by urban growth

A brief overview of British bats

- 18 species (17 breeding).
- Overall UK population trend is positive.
- Variation across species.
- Limited knowledge of some species.

Bats can act as indicators of wider population trends

- Increasingly easy to monitor.
- Successfully used for other ecological changes.
- Monitored across the UK and the EU.
- More knowledge required in urban landscapes.

Urban growth in Kent

Three hypotheses about urban growth effects

Liu et al. (2010) A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data.

Five model specifications

Results of non-urban land cover types

More species utilise urban land than expected

Findings contrast with previous studies for *Myotis* species

Starik et al. (2024) Unexpected bat community changes along an urban-rural gradient in the Berlin-Brandenburg metropolitan area.

Scale of urban extent may explain difference in findings

Where urban growth is important, its pattern matters

Where urban growth is important, its pattern matters

Improved model fit in:

- 2 of 7 species
- 1 of 5 genera

Where urban growth is important, its pattern matters

Mechanism 1:

Edge expansion

Suburban extent

Populations of regular suburban exploiters

Mechanism 2:

Conclusions

- Valuable historic information is hidden in poorly-standardised databases.
- Scale matters when considering effects of urban extent.
- In smaller cities and large towns, more species may be able to exploit urban resources as long as sufficient fragmentation is maintained.
- Future research: rarer species, activity levels, greater temporal coverage.

Summary

- Global biodiversity is threatened by urban growth.
- Bats are a promising indicator group.
- A large citizen science dataset was used to investigate effects of urban growth on populations.
- Edge expansion is better for *Myotis* and *P. pygmaeus* than infilling.
- More research is needed to investigate effects in other genera/species.

Future Directions

- Better detection modelling
- Other regional bat groups and other fauna/flora groups
- More understanding of outlying developments
- Projecting into the future

Kent & Medway Population Growth 2021 - 2040

References

Li, G., Fang, C., Li, Y., Wang, Z., Sun, S., He, S., Qi, W., Bao, C., Ma, H., Fan, Y., Feng, Y., & Liu, X. (2022). Global impacts of future urban expansion on terrestrial vertebrate diversity [Publisher: Nature Publishing Group]. *Nature Communications*, 13(1), 1628. https://doi.org/10.1038/s41467-022-29324-2

Gibb, R., Browning, E., Glover-Kapfer, P., & Jones, K. E. (2019). Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring [Num Pages: 17 Place: Hoboken Publisher: Wiley Web of Science ID: WOS:000459020800002]. *Methods in Ecology and Evolution*, 10(2), 169–185. https://doi.org/10.1111/2041-210X.13101

Hill, A., Prince, P., Piña Covarrubias, E., Doncaster, C., Snaddon, J., Rogers, A. (2018). AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. *Methods in Ecology and Evolution*. 2018; 9: 1199-1211. https://doi/10.1111/2041-210X.12955

Russo, D., Salinas-Ramos, V. B., Cistrone, L., Smeraldo, S., Bosso, L., & Ancillotto, L. (2021). Do We Need to Use Bats as Bioindicators? *Biology*, 10(8), 693. https://doi.org/10.3390/biology10080693

Joint Nature Conservation Committee. (2023). *UK Biodiversity Indicators 2023* (Indicator C8i). Available at: https://jncc.gov.uk/our-work/ukbi-c8-mammals-of-the-wider-countryside/ Accessed: 2024-09-03.

Bat Conservation Trust. (2024). *The National Bat Monitoring Programme Annual Report 2023.* [Publisher: Bat Conservation Trust, London]. Available at: https://www.bats.org.uk/our-work/national-bat-monitoring-programme/reports/nbmp-annual-report Accessed: 2024-09-03.

Liu, X., Li, X., Chen, Y., Tan, Z., Li, S., & Ai, B. (2010). A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data [Num Pages: 12 Place: Dordrecht Publisher: Springer Web of Science ID: WOS:000276609800002]. *Landscape Ecology*, 25(5), 671–682. https://doi.org/10.1007/s10980-010-9454-5

Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using Ime4. *Journal of Statistical Software*, 67, 1–48. https://doi.org/10.18637/jss.v067.i01

Starik, N., Gygax, L., & Gottert, T. (2024). Unexpected bat community changes along an urban–rural gradient in the Berlin–Brandenburg metropolitan area [Publisher: Nature Publishing Group]. Scientific Reports, 14(1), 10552. https://doi.org/10.1038/s41598-024-61317-7

Lintott, P. R., Bunnefeld, N., & Park, K. J. (2015). Opportunities for improving the foraging potential of urban waterways for bats. *Biological Conservation*, 191, 224–233. https://doi.org/10.1016/j.biocon.2015.06.036

Questions and Discussion

Model Equation

$$Y_i \sim \text{Binomial}(1, \pi_i)$$

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_j Z_{j,i} + b_k W_{k,i}$$

Y_i	Response in observation <i>i</i> .	$Y_i \in \{0, 1\}$
π_i	Probability of observation <i>i</i> being 1.	$0 \le \pi_i \le 1$
eta_j	Coefficient (slope) of fixed effect j.	$j \in \{\text{deciduous woodland,, growth pattern}\}$
$Z_{j,i}$	Value of fixed effect j in observation i .	$Z_{j,i} = \frac{X_i - \mu_j}{\sigma_j}$
b_k	Coefficient (slope) of random effect k.	$k \in \{\text{season, year}\}$
$W_{k,i}$	Value (level) of random effect k in observation i .	$W_k \in \begin{cases} \text{hibernation, active} \\ 1980, \dots, 2023 \end{cases}$

Spatial and temporal distribution of records

The Kent Bat Group

https://www.kentbatgroup.org.uk

- Formed in 1983.
- Monitor populations.
- Run the 'bat ambulance'.
- Educate local residents.

