Part1: Identify regular and non-regular languages (K1)

Exercise 1.1 [2.5 pts]

Prove that the following language is non-regular:

$$L = \{(001)^n (111)^{2n}\}$$

Exercise 2.1 [3 pts]

Construct context free grammars to accept the following languages:

1. $L(G) = \{w \mid w \text{ starts and ends with the same symbol}\}, \Sigma = \{0,1\}$

[1 pt]

2. $L(G) = \{w \mid |w| \text{ is odd}\}, \ \Sigma = \{0,1\}$

[1 pt]

3. $L(G) = \{a^n b^m c^m d^{2n} \mid n \ge 0, m > 0\}, \ \Sigma = \{a, b, c, d\}$

[1 pt]

Exercise 2.2 [3 pts]

Construct regular expressions representing the following languages:

1. The language over the alphabet $\{\$, \%, \#\}$, in which for every string w it holds that the number of \$'s in w is a multiple of 5. [1 pt] The language over the alphabet $\{0,1\}$, consisting of even number of 0's followed by odd number of 1's. [1 pt] The language over the alphabet $\{\&, @\}$, consisting of strings of &'s and @'s of any length including the null string. [1 pt]

Exercise 2.2 [3 pts]

Construct regular expressions representing the following languages:

The language over the alphabet {\$, %, #}, in which for every string w it holds that the number of \$'s in w is a multiple of 5.

$$(x+\#)^*(\$(x+\#)^*\$(x+\#)^*\$(x+\#)^*\$(x+\#)^*\$(x+\#)^*)^* \circ R$$

$$(x+\#)^*((\$(x+\#)^*)^*)^*$$

2. The language over the alphabet $\{0,1\}$, consisting of even number of 0's followed by odd number of 1's.

[1 pt]

The language over the alphabet {&, @}, consisting of strings of @'s and @'s of any length including the null string.

Exercise 3.1 [3 pts]

Construct a **DFA** for the following regular expression:

$$a^*ba^*ab^*b$$

Exercise 3.2 [3 pts]

Construct a push down automata over $\{0,1\}$ that accepts the following language:

$L = \{0^{3n}1^n \mid n > 0\}$

Exercise 3.3 [2 pts]

Consider the NFA and the two DFA (DFA 1 and DFA 2) represented below:

1. Which DFA (1 or 2) is equivalent to the above NFA?

[1 pt]

[1 pt]

2. Label the states of the considered DFA according to the conversion algorithm (on the provided figure).

	a (Ь
705	{0,13	703
{0,17	(0,1,2)	[0]
{0,1,2}	10,1,2,31	105
(0,1,2,3)	10,1,2,35	1933
{0,3}	1011,37	{0,3}
50,1,37	(01,2,3)	(0,37

$$S^*(0,\lambda) = \{0\}$$

 $S^*(1,\lambda) = \{1\}$
 $S^*(2,\lambda) = \{2\}$
 $S^*(3,\lambda) = \{3\}$

5

Exercise 4.1 [3 pts]

Which language is generated by the grammar G given by each of the following productions:

1. $S \rightarrow aSb \mid aSbb \mid \lambda$ [1 pt]

 $L = \{$

2. $S \rightarrow aSc \mid B \nearrow$ $B \rightarrow bBc \mid \lambda$ [1 pt]

 $L = \{$

3. $S \rightarrow aaSaba \mid aaBaba$ $B \rightarrow bB \mid b$ $aaaabba \Rightarrow bbb \Rightarrow abaaba$ [1 pt]

 $L = \{ (\alpha \alpha)^{n} b^{m} (aba)^{n} | n 70, m 70 \}$

Exercise 4.2 [1 pt]

Given the following two automata (automata 1 and automata 2):

Exercise 4.2 [1 pt]

Given the following two automata (automata 1 and automata 2):

Give the expressions of r1, r2, r3 and r4 so that automata 2 is equivalent to automata 1.

r1	0 + 11
r2	\0
r3	
r4	0+10

Exercise 4.3 [1 pt]

Given the following automata, give the corresponding grammar.

Exercise 4.4 [1 pt]

What is the language covered by the following push down automata?

