

Bagging Ensemble – Part 2 | Bagging Classifiers

1. What is Bagging Classifier?

- A bagging classifier applies bagging to classification problems.
- Steps:
 - 1. Create multiple bootstrap samples from the training set.
 - 2. Train a classifier (e.g., Decision Tree, SVM, Logistic Regression) on each sample.
 - 3. Combine predictions with majority voting.

2. Example

Suppose we want to classify whether a patient has a disease:

- Model 1 → "Yes"
- Model 2 → "No"
- Model 3 → "Yes"
- Final prediction (Majority) → Yes

3. Benefits of Bagging Classifiers

- ❖ Reduces variance → improves stability.
- Less prone to overfitting than a single tree.
- Handles noisy datasets well.

Bagging Ensemble – Part 3 | Bagging Regressor

1. What is Bagging Regressor?

- Same idea as Bagging Classifier, but for regression problems (predicting numbers).
- Instead of majority voting, predictions are combined via averaging.

2. Example

We want to predict house prices:

- Model 1 → \$250,000
- Model 2 → \$270,000

- Model 3 → \$260,000
- Final prediction = Average = \$260,000

3. Benefits of Bagging Regressor

- * Reduces variance in regression predictions.
- Captures complex relationships better than a single weak regressor.
- Smooths out extreme predictions from unstable models.

Bagging Classifier vs Bagging Regressor

Feature	Bagging Classifier	Bagging Regressor
Task	Classification	Regression
Aggregation Method	Majority Vote	Average
Example Output	Yes/No, Class A/B	Continuous Value
Base Models	Trees, Logistic	Trees, Linear Models

Final Takeaway:

- Bagging Classifier → classification tasks (uses majority vote).
- Bagging Regressor → regression tasks (uses averaging).
- Both reduce variance, improve stability, and work best with unstable, highvariance models (like decision trees).