CS 2800 HW #10

KIRILL CHERNYSHOV

Key: as. = assumption, abs. = reductio ad absurdum, e. m. = excluded middle.

Problem 1

(a) Suppose $\neg P$. Q can either evaluate to T or F:

Therefore, $\neg P \models \neg (P \land Q)$.

(b)

$$\frac{P \land Q \vdash P \land Q}{P \land Q \vdash P} \stackrel{as.}{\underset{\neg P}{} \land e lim} \stackrel{as.}{\underset{\neg P}{} \vdash \neg P} as.$$

$$\frac{P \land Q \vdash P \land Q}{P \land Q \vdash P} \land e lim} \stackrel{\neg P \vdash \neg P}{\underset{\neg P}{} \vdash \neg P} as.$$

$$\frac{P \land Q \vdash P \land Q}{P \land Q \vdash P} \land e lim} {\neg P \vdash \neg P} as.$$

$$\frac{P \land Q \vdash P \land Q}{\neg P \vdash \neg P} \land Q \vdash \neg P \land Q} \land e lim} {\neg P \vdash \neg P} \land Q \vdash \neg P \land Q} \lor e lim$$

Problem 2

Inductively assume $P(\phi)$ and $P(\psi)$. $I \models \phi \rightarrow \psi$ means that $eval(\phi \rightarrow \psi, I) = T$, that is, $I \models \neg \phi$ or $I \models \psi$. If $I \models \neg \phi$ then using our assumption, $I \vdash \neg \phi$, and so $I \vdash \phi \rightarrow \psi$. This can be seen from the following proof tree:

$$\frac{\overline{\phi \vdash \phi} \ as. \quad \overline{\neg \phi \vdash \neg phi} \ as.}{\frac{\neg \phi, \phi \vdash \psi}{\neg \phi \vdash \phi \rightarrow \psi} \rightarrow intro}$$

If $I \models \psi$, then using our assumption, $I \vdash \psi$, and once again we have $I \vdash \phi \rightarrow \psi$:

$$\frac{\overline{\phi,\psi \vdash \psi}}{\psi \vdash \phi \to \psi} \stackrel{as.}{\to} intro$$

Conversely, if $I \not\models \phi \to \psi$, then $I \models \phi \land \neg \psi$. Using the inductive assumption, we have $I \vdash \phi$ and $I \vdash \neg \psi$. Therefore:

1

$$\frac{\frac{\overline{\phi \vdash \phi} \ as. \quad \overline{\phi \rightarrow \psi \vdash \phi \rightarrow \psi} \ as.}{\frac{\phi, \phi \rightarrow \psi \vdash \psi}{} \rightarrow elim \quad \overline{\neg \psi \vdash \neg \psi} \ as.} }{\frac{\phi, \phi \rightarrow \psi \vdash \psi}{} \rightarrow elim \quad \overline{\neg \psi \vdash \neg \psi} \ as.}$$

$$\frac{\phi, \phi \rightarrow \psi \vdash \psi}{} \rightarrow elim \quad \overline{\neg \psi \vdash \neg \psi} \ as.}$$

$$\frac{\phi, \neg \psi, \phi \rightarrow \psi \vdash \neg (\phi \rightarrow \psi)}{} \rightarrow elim \quad \overline{\neg \psi} \rightarrow elim \quad \overline{\rightarrow \psi} \rightarrow elim \quad$$