Homework 4. Due Thursday, Oct. 22

1. (5 pts) Let A be a symmetric matrix. Consider the Rayleigh quotient

$$\rho_A(\mathbf{x}) = \frac{\mathbf{x}^\top A \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \mathbf{x} \in \mathbb{R}^d.$$

Note that since $\rho_A(\mathbf{x})$ is invariant along every line passing through the origin, one can consider the function $\phi(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} A \mathbf{x}$ restricted to the unit sphere $\|\mathbf{x}\|_2^2 = 1$ instead. Prove that

- (a) \mathbf{v} is a stationary point of ρ_A if and only if \mathbf{v} is an eigenvector of A, and $\rho_A(\mathbf{v}) = \lambda_{\mathbf{v}}$, the corresponding eigenvalue.
- (b) The only local minima and maxima of ρ_A are the global minimum and maximum, and all other stationary points are saddles.
- 2. (5 pts) Prove the Eckart-Young-Mirsky theorem for any Ky-Fan norm, i.e., if $A = U\Sigma V^{\top}$ is the SVD of A, and M is any matrix of the size of A such that $rank(M) \leq k$, then

$$\|A - M\| \geq \|A - U_k \Sigma_k V_k^\intercal\| \quad \text{for any Ky-Fan norm} \quad \|\cdot\|.$$