Devoir maison 11.

À rendre le lundi 2 mai 2022

Exercice

Partie 1 : Étude de deux applications

La notation $\mathbb{R}_2[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. On note $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. On définit les deux applications suivantes :

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

$$P \mapsto \frac{1}{2} \left[P\left(\frac{X}{2}\right) + P\left(\frac{X+1}{2}\right) \right]$$

et

$$\phi: \mathbb{R}_2[X] \to \mathbb{R}$$

$$P \mapsto P(1)$$

On rappelle aussi que l'on note $f^0=\mathrm{id}_{\mathbb{R}_2[X]}$, et pour tout $n\in\mathbb{N}^*$, $f^n=f\circ f^{n-1}$.

- 1°) Vérifier que f est bien à valeurs dans $\mathbb{R}_2[X]$ et montrer que f est linéaire.
- 2°) Montrer que ϕ est linéaire.
- 3°) Écrire la matrice de f dans la base \mathcal{B} de $\mathbb{R}_2[X]$, en indiquant les calculs intermédiaires.
- 4°) L'application f est-elle bijective?
- 5°) Déterminer une base de Ker ϕ . Quelle est la dimension de Ker ϕ ?
- **6°)** L'application ϕ est-elle injective? surjective?

Partie 2 : Calcul des puissances successives d'une matrice

On note I_3 la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et A la matrice :

$$A = \begin{pmatrix} 1 & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

Enfin, on note \mathcal{B}' la famille de $\mathbb{R}_2[X]$ définie par

$$\mathcal{B}' = (P_1, P_2, P_3)$$
 où $P_1 = 1, P_2 = -2X + 1, P_3 = 6X^2 - 6X + 1$

- 7°) Justifier que la famille \mathcal{B}' est une base de $\mathbb{R}_2[X]$.
- 8°) Écrire la matrice D de f dans la base \mathcal{B}' .
- 9°) Écrire la matrice de passage Q de \mathcal{B} à \mathcal{B}' .
- 10°) Justifier que Q est inversible et calculer son inverse.
- 11°) Calculer A^n pour tout $n \in \mathbb{N}$. On explicitera les neuf coefficients de A^n .
- 12°) Pour $n \in \mathbb{N}$ et $P = a + bX + cX^2$ avec $(a, b, c) \in \mathbb{R}^3$, déterminer $f^n(P)$ en fonction de a, b, c.
- 13°) En déduire que :

$$\forall P \in \mathbb{R}_2[X], \lim_{n \to +\infty} \phi(f^n(P)) = \int_0^1 P(t) dt$$