BLINK: FAST AND GENERIC COLLECTIVES FOR DISTRIBUTED ML(MLSys 2020)

Wang Jian

2020年11月12日

目录

1	INT	TRODUCTION	1
2	MC	TIVATION	3
	2.1	The case for packing trees	3
	2.2	Micro Benchmarks	3
	2.3	Blink Approach	4
3	\mathbf{DE}	SIGN	5
	3.1	Packing Spanning Trees	5
	3.2	Approximate Packing	5
		3.2.1 Minimizing Number of Trees	5
	3.3	Handling many-to-many operations	6
	3.4	DGX-2 and Multi-server settings	6
4	IM	PLEMENTATION	6
	4.1	CodeGen Implementation	6
	4.2	CodeGen Optimizations	6
		4.2.1 Automatic chunk size selection	6
		4.2.2 Link Sharing	7

5	EVALUATION			
	5.1	Tree Packing Benefits	8	
	5.2	Broadcast, AllReduce Micro-benchmarks	8	
	5.3	End-to-end Training	8	
6	RELATED WORK			
7	CO	NCLUSION	8	

摘要

跨 GPU 的模型参数同步为大规模数据并行训练引入了高开销。面对不断增加的硬件异构性,现有的参数同步协议无法有效地利用可用的网络资源。我们提出 Blink(a collective communication library that dynamically generates optimal communication primitives by packing spanning trees),与 NCCL(modern communication libraries, NVIDIA's Collective Communications Library)进行比较 (soa)。

1 INTRODUCTION

In data-parallel training, each GPU has a full copy of the model parameters and GPUs frequently exchange parameters with other GPUs involved in training.

通信开销占 50%-90%, the fact that GPU computation is getting faster and model sizes are growing larger, thus making communication overheads stand out

现有的通信库: NVIDIA's Collective Communications Library (NCCL), Baidu's Ring AllReduce

实现 gpu 间集群峰值性能的核心障碍是由于拓扑异构导致的链路利用率不足。我们发现这种情况的发生主要有两个原因:

1. 服务器配置不同,协议必须具有拓扑意识,才能有效地使用硬件

Figure 1. Hybrid mesh-cube topology of NVLink in the DGX-1 8-GPU server. Solid lines here indicate the bi-directional NVLinks on the DGX-1-P100, red dashed-lines are the additional NVLinks in DGX-1-V100 servers. NVLink Gen1 has bi-directional pairwise throughput of 18-20GB/s (DGX-1-P100); Gen2 goes up to 22-25GB/s (DGX-1-V100).

2. 在多租户集群中,对 gpu 之间的互连拓扑是不敏感的。许多 job 被分配到同一个机器上。必须能够利用碎片化时间来避免排队延迟。

Figure 2. Number of GPUs within each 8-GPU server allocated to 40,000 multi-GPU jobs

尽管 jobs 大多以 2 的幂次请求 gpu ,大多数机器还是分配了 3.5.6.7 个 gpu 。

Contributions:

- 提出 Blink, 以达到接近最佳的链路利用率。
- 动态生成给定拓扑的最佳通信原语
- probes the set of links available for a given job at runtime and builds a topology with appropriate link capacities.
- ..
- 提供 NCCL-compatible API, 无缝衔接深度学习框架。

2 MOTIVATION

2.1 The case for packing trees

我们的动力来自通信的开销

2.2 Micro Benchmarks

- Depth Test
 - A simple chain topology

Figure 6. Depth test of Reduce+forward, over a chain of GPUs.

数据集越小,吞吐量下降;chain length 越长 (GPU 越多),吞吐量从 21 降到 19

• Multi-transfer Test Two topologies: a multi-input, multi-output (MIMO) as Fig. 8(a) and a multi-chain aggregation (MCA) as Fig. 8(b).

2.3 Blink Approach

工作流程:

- 在运行时,一旦深度学习任务被调度并分配了一组 gpu, Blink 就能够 探测机器的拓扑,并通过所分配的 gpu 推断互连拓扑。
- TreeGen,这一步输出一组生成树和对应于应该通过它们发送多少数 据的权重
- CodeGen parses the spanning trees and generates CUDA code.
- 设置 LD_{PRELOAD} flag, 动态加载 Blink 的实现。

3 DESIGN

3.1 Packing Spanning Trees

GPU, links -> 图论 -> 寻找最大权重的 spanning tree

$$\max \sum_{i} w_{i} \tag{1}$$

such that
$$\forall e \in E, \sum_{i} \kappa_i * w_i < c_e$$
 (2)

where
$$\kappa_i = \begin{cases} 1, & \text{if } e \in T_i \\ 0, & \text{otherwise} \end{cases}$$
 (3)

直接寻找事件复杂度较大,下面介绍优化方法。

3.2 Approximate Packing

multiplicative weight update(MWU):

- 初始化权重和 capacity
- 循环:
 - 寻找最小权重的 spanning tree
 - 降低该 tree 的权重, 更新图的权重

3.2.1 Minimizing Number of Trees

将权重限制为 0 or 1 -> 整数线性规划 integer linear program(ILP)

3.3 Handling many-to-many operations

前面的讨论关注于 one-to-many, 为了解决 many-to-many, 我们发现所有机器是双向的, 所以图变成了无向图。

3.4 DGX-2 and Multi-server settings

4 IMPLEMENTATION

4.1 CodeGen Implementation

简化问题, 只讨论两种 collective communication: Broadcast and AllReduce

4.2 CodeGen Optimizations

两个问题

4.2.1 Automatic chunk size selection

块的大小影响整体的效率。

使块小点,能够提高系统效率。因此我们需要设计如何自动选择块的大小。 multiplicative increase, additive decrease (MIAD): 初始化块大小很小, 当吞吐量提高,以乘法增加块大小,直到达到一个平稳状态。

Figure 11. Automatic chunk size selection with MIAD (multiple-increase, additive-decrease.)

4.2.2 Link Sharing

问题: CUDA functions do not provide any direct control on how links are shared

解决: reusing CUDA streams when the same link is used in multiple trees at roughly the same position

5 EVALUATION

- 5.1 Tree Packing Benefits
- 5.2 Broadcast, AllReduce Micro-benchmarks
- 5.3 End-to-end Training

6 RELATED WORK

- Topology-fixed Schemes: MPI, Horovod, All-Reduce, Gloo
- Topology-aware Protocols

7 CONCLUSION

Blink 是一个用于加速分布式 ML 的快速通用的集体通信库。为了处理现代 GPU 硬件中普遍存在的拓扑异构,Blink 动态地包生成树以最大化链路利用率。与最先进的基于环的协议 (如 NCCL2) 相比,Blink 实现了高达8 倍的模型同步,并将端到端训练时间减少了 40%。