Aufgabe 1: Definitions- und Wertebereich

Was sind die (maximal möglichen) Definitions- und dazugehörigen Wertebereiche der folgenden Funktionen:

(a)
$$f(x) = \frac{1}{x^2 + 1}$$

(b)
$$f(x) = \sqrt{x+2} - 1$$

(c)
$$f(x) = e^{5x+3}$$

(d)
$$f(x) = \sqrt{1 - e^x}$$

Aufgabe 2: Definitionsbereich

Was sind die (maximal möglichen) Definitionsbereiche der folgenden Funktionen:

(a)
$$f(x) = \frac{3x+1}{x^2+x-6}$$

(b)
$$f(x) = \frac{\sqrt{x^2 - 3x - 4}}{x + 5}$$

(c)
$$f(x) = \log(x^2 - x)$$

Aufgabe 3: Funktionen

Bestimmen Sie Nullstellen, Pole und Asymptoten folgender Funktionen und fertigen Sie jeweils eine Skizze an.

(a)
$$y = 3x - 4$$

(b)
$$y = x^3 - 2$$

(c)
$$y = x^2 - 2x - 3$$

(d)
$$y = -\frac{1}{x}$$

(e)
$$y = \frac{1}{x^2 + x + 1}$$

$$(f) y = \frac{1}{x} + x$$

Aufgabe 4: Trigonometrische Funktionen

Zeichnen Sie die folgenden Funktionen und bestimmen Sie Nullstellen und Periode.

(a)
$$f(x) = 2\sin\left(\frac{1}{2}x\right)$$

(b)
$$f(x) = \sin(3x + \frac{1}{4})$$

(c)
$$f(x) = \cos(4\pi x)$$

Aufgabe 5: Mehr Trigonometrische Funktionen

Vervollständigen Sie die Tabelle mit Hilfe der trigonometrischen Formeln und den Werten $\sin 0^\circ = 0$, $\cos 0^\circ = 1$, $\sin 30^\circ = \frac{1}{2}$ und $\cos 30^\circ = \frac{1}{2} \sqrt{3}$.

α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cos \alpha$
0°	0	1		
30°	<u>1</u> 2	$\frac{1}{2}\sqrt{3}$		
45°				
60°				
90°				
105°				
120°				
165°				
180°				
270°				
360°				

Aufgabe 6: Hyperbolische Funktionen

Beweisen Sie die folgende Relation für die Hyperbelfunktionen:

$$\cosh^2 x - \sinh^2 x = 1.$$

Aufgabe 7: Logarithmus und Exponentialfunktion

Vereinfachen oder berechnen Sie:

(a) $\log_2 8$

(b) $\ln\left(\frac{1}{\sqrt{e^3}}\right)$

(c) $\ln(b^5) + \ln\left(\frac{1}{b^5}\right)$

(d) $\ln(x^a) + \ln(x^b)$

(e) $\ln(b^x) + \ln(a^x)$

(f) $(\log_b a)(\log_a b)$

(g) $\ln(e) + e^{\ln(1)}$

(h) $\frac{e^{-3} \cdot e^4}{e^{-1}}$

(i) $e^{\ln(e^2)}$

(j) $2\ln(e^3) + \ln\frac{1}{e^6}$

Dr. Rainer Wanke

Übungsblatt 4

26.03.2020

Aufgabe 8: Umkehrfunktion

Bilden Sie die Umkehrfunktion folgender Funktionen und geben Sie deren Definitionsund Wertebereiche an:

(a)
$$f(x) = 3x - 5$$

(b)
$$f(x) = \ln(2x)$$

(c)
$$f(x) = 2x^3 + 2$$

(d)
$$f(x) = \sin x - 2$$