Motors and Motion Sensors

07/10/2025 Dr. Jizhong Xiao

Outline

- Robot Actuators
 - Stepper Motor
 - DC Motor
 - Servo Motor
- 2. Motor Feedback Sensors
 - Rotary Encoder
 - Hall Effect Sensor
- Motor Speed Control

Robot Actuators

Stepper motors

DC motors

Servo motors

Physics review:

Nature is lazy.

Things seek lowest energy states.

- iron core vs. magnet
- magnetic fields tend to line up

Electromagnetic fields and magnetic fields are the same thing.

How Electric Motors Work?

Stepper Motors

Stepper Motor Basics

computer disk drives

- Direct control of rotor position (no sensing needed)
- Low resolution

Increased Resolution

Increased Resolution

Half stepping

More teeth on rotor or stator

Increased Resolution

Half stepping

More teeth on rotor or stator

How Does a Stepper Motor Works?

How to Control?

4 Lead Wire Configuration

Step Table					
Ste	p Red	Blue	Yellow	White	
C) +	-	+	-	
1	-	+	+	-	
2	2 -	+	-	+	
3	3 +	-	-	+	
4	+	-	+	-	

Clockwise Facing Mounting End

Each step, like the second hand of a clock => tick, tick
Increase the frequency of the steps => continuous motion

Motoring along...

- direct control of position
- precise positioning (The amount of rotational movement per step depends on the construction of the motor)

• Easy to Control

• torque is lower at high speeds than the primary alternative...

Stepper Motors Explained

Project 16: Stepper Motor Experiment

DC Motors

DC motors -- exposed!

DC motor basics

DC motor basics

DC motor basics

DC Motors Explained

Project 13: DC Motor and Driver

Servo Motors

Servo motor

- Compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor for position feedback (potentiometer or encoder), and a closed-loop controller that uses position feedback to control its motion and final position.
- Servos can output higher torque than a simple DC Motor alone and they are widely used to control motion in toys, robots, etc.
- Servos have three wire leads, VCC, GND and servomotor signal
- Use a PWM signal with a duty cycle in a certain range to drive the Servo to the designated angle

Servo Motors Explained

Project 15: Servo Motor Experiment

2 Motor Feedback Sensors

Encoders

Encoders continually measure the rotation of the motor

Gives us a way to tell how far and fast we are traveling!

Magnetic vs Optical Encoders

Hall Effect Sensors

Magnetic Encoders

Senses change in rotational position as motor spins 6 pole magnetic disk (60° between each pole)

2 Hall Effect Sensors (90° between each sensor

Detects the presence of a magnetic field

Hall Effect: Production of a voltage difference from a current and a magnetic field

Motor Position Sensors

- Optical Encoders
 - Relative position
 - Absolute position
- Hall Effect Sensors

2.1 Incremental Encoder

Incremental Encoder

Optical Encoders

• Detecting absolute position

Absolute Encoders

• Detecting absolute position

Gray Code

#	Binary	/
0	0	000
1	1	001
2	10	011
3	11	010
4	100	110
5	101	111
6	110	101
7	111	100
8	1000	
9	1001	

among others...

Absolute Encoder

Incremental v.s. Absolute Encoder

2.3 Hall Effect Sensors

Hall Effect and Hall Effect Sensors

Motor Control

Control: getting motors to do what you want them to

What you want to control \neq what you can control

Controlling speed with voltage

- The back emf depends only on the motor speed.
- The motor's torque depends only on the current, I.

$$e = k_e \omega$$

 $\tau = k_\tau I$

Controlling speed with voltage

- The back emf depends only on the motor speed.
- The motor's torque depends only on the current, I.

• Consider this circuit's V:

$$e = k_e \omega$$

$$\tau = k_{_{\tau}}\,I$$

$$V = IR + e$$

How is V related to ω ?

$$V = \frac{\tau R}{k_{\tau}} + k_{e} \omega$$

$$\omega = -\frac{R}{k_{\tau} k_{e}} \tau + \frac{V}{k_{e}}$$

Speed is proportional to voltage.

speed vs. torque at a fixed voltage

Motor specs

FAULHABER MicroMo Electronics, Inc.

Application Notes

Electrical Specifications (@22°C)

For motor type 1624		003S	006S	012S	024	
nominal supply voltage	(Volts)	3	6	12	24	
armature resistance	(Volts) (Ohms)	-	8.6	24	75	
	,					
maximum power outpu	,	1.41	1.05	1.50	1.92	
maximum efficiency	(%)	76	72	74	74	
no-load speed (rpm	12,000	10,600	13,000	14,400		
no-load current (mA) 30	16	10	6		
friction torque (oz-i	n) .010	.011	.013	.013		
stall torque	(oz-in)	.613	.510	.600	.694	
velocity constant (rpm	/v) 4065	1808	1105	611		
back EMF constant	(mV/rpn	n)	.246	.553	.905	1.635
torque constant (oz-i	n/A) .333	.748	1.223	2.212		
armature inductance	(mH)	.085	.200	.750	3.00	

Back to control

Basic input / output relationship:

$$V = \frac{\tau R}{k_{\tau}} + k_{e} \omega$$

We can control the voltage applied V.

We want a particular motor speed ω .

How to change the voltage?

V is usually controlled via PWM -- "pulse width modulation"

3 DC Motor Control

Turning the motors on and off, controlling the motor's direction and speed

Motor On/Off State

Motor Direction

Motor Speed

Motor On/Off State

Motor On/Off State

We can't power the motor directly from the MCU!!

Why? Not enough voltage or current from the MCU

Motors require at least 6V and can draw up to 0.67A

MCU can only supply 3.3V and relatively little current

Big boi battery power

MCU power

(Part of) The Solution: Transistors

The NPN transistor acts as a normally open switch

When voltage is applied to the base, current is allowed to flow between the collector and the emitter.

Similar to relays, except faster and better suited for smaller applications

(Part of) The Solution: Transistors

We can control the on and off state of the motor from the MCU using an NPN transistor!

Flyback Diode

Recall that motors involve creating magnetic fields... Inductance!

Turning motors off results in a temporary voltage spike to maintain current (back emf)

Diode: allows current to flow in ONE direction

✓ Motor On/Off State

Motor Direction

Motor Speed

We can take advantage of this fact to create a circuit called an H-Bride https://tinyurl.com/yxn/yk4

Four Transistors, Four Flyback Diodes

Turning on Q1 and Q4 ⇒ current flows through the motor to the **right.**

Turning on Q2 and Q3 ⇒ current flows through the motor to the **left.**

Turning on all four transistors results in a short circuit - **Don't do it!**

Dual H-Bridge

One IC to control two motors!

Four **Inputs**: each input is connected to two transistors (i.e input 1 turns on Q1 and Q4)

Four **Outputs**: two outputs to connect to each motor

Enable Pins: activate the H-Bridge and allow us to turn on the transistors

L293DD H-Bridge

Dual H-Bridge

Decoupling Capacitors:

Low pass filter to remove noise

The Physical H-Bridge ICs

Checklist for Motor Control

✓ Motor On/Off State

Motor Direction

Motor Speed

The Problem: Motor Speed

Since we are directly connecting the motors to the battery voltage, we only have two speeds -> 0% and 100%

How do we tell the motors to go 50% speed? 75%?

We can rapidly mix on and off inputs to create a range of voltages

Motors have inertia, so they respond slowly to rapid voltage changes

Quick Vocab Terms:

- PWM: Pulse-Width Modulation
- Duty Cycle: % of time in the ON state
- Frequency: # of cycles per second

Implemented using Timers!

MCU Clock Speed 16 MHz

H-Bridge Max Frequency 5 kHz

Counter Period: 16 MHz / 5 kHz = 3200 clock cycles

Pulse Value: Clock cycles to stay on per period

Ex. 75% duty cycle ⇒ 2400 clock cycles on, 800 off

Checklist for Motor Control

✓ Motor On/Off State

✓ Motor Direction

Motor Speed

PWM

PWM -- "pulse width modulation

- Duty cycle:
 - The ratio of the "On time" and the "Off time" in one cycle
 - Determines the fractional amount of full power delivered to the motor