Continuous and Discrete Signal

Digital Image and Sound Processing

assoc. prof. dr. Kęstutis Jankauskas kestutis.jankauskas@ktu.lt

Today in the Slides

- Continuous and Discrete Signal
- Quantization
- Noise and Types of Noise
- Recording and Playing Sound
- Recording and Displaying Image

Continuous and Discrete Signal

- Before the era of digital technologies, the signal was captured in a continuous form
- Continuous signal has no defined resolution, but signal details are blurred at a certain zoom level
- Discrete signal resolution is limited
- Perfect copy of analog signal is impossible
- Digital storages are more resistant to destructive effects of the environment

Continuous-time Signal

- Known as an Analog signal
- Uninterrupted form of the signal
- Can be very similar to an originally recorded sound
- "Infinite" resolution
- Cannot be copied identically
- Storage devices and methods are prone to distortion

Discrete-time Signal

- Known as a Digital signal
- Quantized signal
 - > "Stepped" signal form
 - > No inter-level values
- Limited resolution
 - > Sound: time, amplitude resolution
 - > Image: spatial, color depth resolution
 - > Video: time, spatial, color depth resolution

Quantization

- Used in signal discretization
- Used in lossy compression algorithms

$$Q(x) = \Delta \left[\frac{x}{\Delta} + \frac{1}{2} \right]$$

x - analog signal value

 Δ - quantization step

Noise

- Noise is a disturbance (random fluctuations) of a signal
- Noise is introduced during capture, storage, transmission, processing, or conversion of a signal
- High level noise degrades essential information in a signal
- SNR (Signal-to-Noise Ratio) defines the ratio between signal and noise levels

Types of Noise

- Additive noise
 - > Gaussian noise
 - > Flicker noise
 - > Brownian noise
 - > Cauchy noise
- Multiplicative noise
- Quantization error
- Shot noise
- Transient noise
- Phase noise

[5, 35]

Gaussian distribution

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu$$
 - average

 σ – standard dev.

Recording Analog Sound

- Analog sound signal is recorded by capturing air pressure variations
- Microphone converts acoustic waves to fluctuations in an electric current
- Fluctuations in an electric circuit are converted to mechanic or magnetic fluctuations in a recording device

Playing Analog Sound

 Sound is generated by converting amplified electric impulses to acoustic waves in a loudspeaker

Recording and Playing Digital Sound

- ADC (Analog-Digital Converter)
- DAC (Digital-Analog Converter)
- Signal is processed before sending to a speaker

Sound Signal Characteristics

• Bandwidth or bit-rate:

- > Depends on physical properties of a circuit in analog systems
- > Depends on the sampling rate and device performance in digital systems
- Sampling Rate (time resolution):
 - > Indicates how often pressure levels are measured
 - > Depends on the performance of a digital recording device
- Bit-depth or Resolution (amplitude resolution: 16, 24, 32 bits)
- Signal-to-Noise Ratio or SNR
- Number of Channels

Recording Analog Image

- Light stream is captured on a semi-transparent material, which reacts to the amount of light passing through it
- Image is captured on a film and later on a photographic paper or a film with a help of light-sensitive chemical elements

Playing Analog Image

• Cinema

- Constantly changing images with the rate of 24 frames per second are merged by brain into a continuously moving picture
- > Film and movie projector

Television

- Image is captured, encoded, and stored in a magnetic videotape
- Moving images are transmitted using radio waves or via cable and decoded in a TV set

[16, 17]

Recording Digital Image

- Light is converted to voltage variations in a electric current by the help of photo-responsive elements (CCD – charge-coupled device)
- Digital image results from a finite number of photo-responsive elements arranged in a 2D matrix
- Each element captures the intensity of one pixel of an image

Displaying Digital Image

- CRT (Cathode-Ray Tube)
- LCD (Liquid Crystal Display)
 - > CCFL (Cold Cathode Fluorescent)
 - > **LED** (Light-Emitting Diode)
- PDP (Plasma Display Panel)
- OLED (Organic Light-emitting Diode)

[19, 20, 21, 22, 23, 24, 25]

Visual Signal Characteristics

- Resolution (spatial resolution)— the size of an image matrix (1920×1080 (HDTV), 4096×2160 (4K Digital Cinema)
- Brightness the perception elicited by the luminance of an image
- Contrast the difference in luminance or color
- Saturation (colorfulness) the amount of chrominance in an image
- Frame rate (time resolution) the number of frames per second (24 FPS, 30 FPS)
- Color depth the number of bits used for the storage of one pixel
- Color model or color space defines how a color of a pixel is encoded (RGB, HLS)

Displaying 3D Image

Stereoscopic displays

- > Glasses are used to filter out a different image plane for each eye
- > Brain does 3D reconstruction automatically

• Holograms

- > Spatial images are created in a volume by using phenomenon of light diffraction and interference
- > Coherent light sources (lasers) are applied

Interference and Diffraction

- Interference interaction of electromagnetic waves with similar frequencies
- Diffraction ability of light to change its path when an obstacle with a size similar to a wavelength of the light is encountered

[32, 33]

Interesting Facts

- It is said that an analog sound is "warmer" than digital because it can include subtle variations that a digital sound loses during sampling
- In audio engineering, electronics, physics, and many other fields, the color of noise refers to the power spectrum of a noise signal; there is white, pink, red, grey, blue noise
- Even though brain cannot process more than 24 frames per second, additional frames can be stored in sub-consciousness
- PDP displays loose a half of brightness after 100 000 operation hours (LCD looses as much after 30 000 60 000 hours); it takes 27 years if a display is running for 10 hours a day

References

- 1. https://en.wikipedia.org/wiki/Comparison of analog and digital recording
- 2. https://en.wikipedia.org/wiki/Analog_signal
- 3. https://en.wikipedia.org/wiki/Discrete-time_signal
- 4. https://en.wikipedia.org/wiki/Quantization (signal processing)
- 5. https://en.wikipedia.org/wiki/Noise (signal processing)
- 6. https://en.wikipedia.org/wiki/Magnetic tape
- 7. https://en.wikipedia.org/wiki/Gramophone record
- 8. https://en.wikipedia.org/wiki/Tape recorder
- 9. https://en.wikipedia.org/wiki/Digital audio
- 10. http://en.wikipedia.org/wiki/Sample rate
- 11. http://en.wikipedia.org/wiki/Audio_bit_depth
- 12. http://www.mediacollege.com/audio/01/sound-systems.html
- 13. http://en.wikipedia.org/wiki/Analog_photography
- 14. http://en.wikipedia.org/wiki/Photographic film
- 15. http://en.wikipedia.org/wiki/Photography
- 16. http://en.wikipedia.org/wiki/Analog television
- 17. http://en.wikipedia.org/wiki/Movie_theater
- 18. http://en.wikipedia.org/wiki/Charge-coupled device
- 19. http://en.wikipedia.org/wiki/Cathode ray tube

References

- 20. http://en.wikipedia.org/wiki/Lcd
- 21. http://en.wikipedia.org/wiki/Plasma display
- 22. http://en.wikipedia.org/wiki/LED-backlit_LCD television
- 23. http://en.wikipedia.org/wiki/Liquid crystal
- 24. http://en.wikipedia.org/wiki/Twisted nematic field effect
- 25. https://en.wikipedia.org/wiki/OLED
- 26. http://en.wikipedia.org/wiki/Color depth
- 27. http://en.wikipedia.org/wiki/Contrast %28vision%29
- 28. http://en.wikipedia.org/wiki/Brightness
- 29. http://en.wikipedia.org/wiki/Saturation_%28color_theory%29
- 30. http://en.wikipedia.org/wiki/Frame rate
- 31. http://en.wikipedia.org/wiki/Holography
- 32. http://en.wikipedia.org/wiki/Interference_%28optics%29
- 33. http://en.wikipedia.org/wiki/Diffraction
- 34. https://en.wikipedia.org/wiki/Colors of noise
- 35. https://en.wikipedia.org/wiki/Normal_distribution