Primer on Semiconductors

Unit 1: Material Properties

Lecture 1.7: Unit 1 Recap

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Semiconductors

metal

semiconductor

insulator

gold (Au)

silicon (Si)

glass (SiO₂)

Example semiconductor: Si

- Si crystallizes in the diamond lattice.
- We specify planes and directions with Miller indices.
- In a solid, energy levels become energy bands.

Silicon energy levels → energy bands

Energy band diagram

Energy vs. momentum: E(k)

Energy band structure vs. energy band diagram

Band structure is a plot of energy **vs. crystal momentum** (or k).

An energy band diagram is a plot of the bottom of the conduction band and top of the valence band **vs. position.**

Bandgap and intrinsic carrier concentration

Intrinsic Si

$$E_G(Si) = 1.1 \,\mathrm{eV}$$

$$E_G(GaAs) = 1.4 \text{ eV}$$

$$E_G(Ge) = 0.66 \text{ eV}$$

$$n_i(Si) = 1 \times 10^{10} \text{ cm}^{-3} \quad (T = 300 \text{ K})$$

$$n_i (\text{GaAs}) = 2 \times 10^6 \text{ cm}^{-3} \quad (T = 300 \text{ K})$$

$$n_i(\text{Ge}) = 2 \times 10^{13} \text{ cm}^{-3} \quad (T = 300 \text{ K})$$

Optical generation: E(k)

(more

Direct recombination: E(k)

(more

10

Bonding model view: intrinsic semiconductor

- 1) Electrons in the conduction band can move
- 2) Holes in the valence band can move
- 3) Electrons and holes can recombine

Doping

N-type doping: Energy band view

P-type doping: Energy band view

Insulators

Metals

Semiconductors

empty states

 E_{TOP}

empty states

filled states

 E_{BOT}

Lundstrom: 2018

empty states

filled states

Carrier concentration vs. temperature

Summary

- 1. Quantization of energy levels
- 2. Energy bands
- 3. Electrons and holes
- 4. Doping
- 5. Insulators, metals, and semiconductors

Vocabulary

- 1) Crystalline
- 2) Amorphous
- 3) Polycrystalline
- 4) Bravais lattices
- 5) Unit cell
- 6) Primitive unit cell
- 7) Diamond lattice
- 8) Zinc blende lattice
- 9) Miller indices

- 10) Energy levels
- 11) Energy bands
- 12) Forbidden gap (bandgap)
- 13) Conduction band
- 14) Valence band
- 15) Electrons (in the conduction band)
- 16) Holes (in the valence band)
- 17) Optical generation
- 18) Thermal generation
- 19) Metal
- 20) Insulator
- 21) Semiconductor

Lundstrom: 2018

18