Tehtävä 1

Määritä vektorien $\overline{a}=(1,2,3)$ ja $\overline{b}=(-1,4,-2)$ pistetulo.

Ratkaisu

Pistemerkintä ja sen paikkavektori samastetaan eli $\overline{a}=(1,2,3)=\overline{i}+2\overline{j}+3\overline{k}$. Matriisilaskennassa vektori

kirjoitetaan pystyvektorina eli
$$\overline{a} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = (1, 2, 3)^T$$
.

Vektorien pistetulo on

$$\overline{a} \cdot \overline{b} = \overline{a}^T \overline{b} = (1, 2, 3) \begin{pmatrix} -1\\4\\-2 \end{pmatrix} = 1 \cdot (-1) + 2 \cdot 4 + 3 \cdot (-2) = 1.$$

Tehtävä 2

Laske matriisin A ja vektorin \overline{x} tulo, kun

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & -2 \\ 1 & 0 & -1 \end{pmatrix} \quad \text{ja} \quad \overline{x} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}.$$

Ratkaisu

Matriisi A on 3×3 -matriisi, jossa ensimmäinen kolmonen viittaa rivien (vaakarivien) lukumäärään ja jälkimmäinen kolmonen sarakkeiden (pystyrivien) lukumäärään. Vektori \overline{x} on 3×1 -matriisi eli lyhyesti vain 3-komponenttinen vektori. Tulo $A\overline{x}$ on määritelty ja tulo on 3-komponenttinen vektori.

Ratkaisu (jatkuu)

Tulo $A\overline{x}$ lasketaan niin, että lasketaan A:n sarakevektorien ja vektorin \overline{x} pistetulot ja ne tulevat tulovektorin komponenteiksi.

$$A\overline{x} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & -2 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \cdot 1 + 2 \cdot (-2) + 3 \cdot (-1) \\ -1 \cdot 1 + 4 \cdot (-2) - 2 \cdot (-1) \\ 1 \cdot 1 + 0 \cdot (-2) - 1 \cdot (-1) \end{pmatrix}$$
$$= \begin{pmatrix} -6 \\ -7 \\ 2 \end{pmatrix}.$$

Tehtävä 3

Laske matriisitulo AB, kun

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & -2 \\ 1 & 0 & -1 \end{pmatrix} \quad \text{ja} \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -2 & -1 & 0 & 2 \\ -1 & 1 & 2 & -2 \end{pmatrix}.$$

Ratkaisu

Varmistetaan aluksi, että tulo voidaan laskea. Matriisi A on 3×3 -matriisi ja B on 3×4 -matriisi, joten AB on määritelty, koska matriisissa A on yhtä monta saraketta kuin matriisissa B on rivejä. Tulo AB on 3×4 -matriisi. Tulomatriisin AB alkio, joka on i:nnellä rivillä ja j:nnellä sarakkeella, lasketaan A:n i:nnen rivivektorin ja B:n j:nnen sarakevektorin pistetulona.

Ratkaisu (jatkuu)

Lasketaan pistetulot

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = -6, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 3,$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = 9, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} = 2,$$

$$\begin{pmatrix} -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = -7, \begin{pmatrix} -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -8,$$

Ratkaisu (jatkuu)

$$\begin{pmatrix} -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = -7, \begin{pmatrix} -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} = -8,$$

$$\begin{pmatrix} -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = -7, \begin{pmatrix} -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} = 8,$$

$$\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = 2, \begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 1,$$

Ratkaisu (jatkuu aina vaan...)

$$\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = 1, \begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} = 6.$$

Ikävän puurtamisen jälkeen saadaan

$$AB = \begin{pmatrix} -6 & 3 & 9 & 2 \\ -7 & -8 & -7 & 8 \\ 2 & 1 & 1 & 6 \end{pmatrix}.$$