Modeling and Characterization of Signals and Systems.

- Stands are modeled as functions f: A -> B where A, B are sets.
- examples
 - · A=TR, B=TR CT Analog Signals
 - · A=Z, B=R DT real-valued stg ral
 - . A=Z, B=C OT complex-valued signal
 - · A=Z, B= b₀Z"+ b₁Z"+ b₂z"-... b₀ Digital Signal.

 bi ∈ εο,13
 - · A=R, B=R Two-channel CT Aralog Signel (e.g. stresaudio)
 - · A={0,1,2,... N3 x {0,1,2... M3} Digital Image, graysoule 8 bit
 B={0,1,2... 2553
- To model stancts we build up from primitive stanals using transformations.
 - · Example Primitives for CT stands
 - S(+) Selta Function
 - BU(+) step function
 - n est SEC the complex exponential

Recall
$$S = \alpha + j B$$
 $e^{St} = e^{(\alpha + i\beta)t}$
 $d \in \mathbb{R}$ real $= e^{\alpha t} = e^{\beta t}$
 $B \in \mathbb{R}$ Imagi $= e^{\alpha t} = e^{(\alpha + i\beta)t}$
 $= e^{\alpha t} = e^{(\alpha + i\beta)t}$

o By transforming primitive signals we can mode!

more complex ones.

Ex! cos(wt) = \frac{1}{2}e^{3nt} + \frac{1}{2}e^{3nt} = \frac{1}{2}e^{3nt} + \frac{1}{2}e^{3nt} = \frac{1}{

- we can also think about I decomposing signals
rather than building them up. The most usefull is
the fourin decomposition

which applies to many, but as we will see, not all stynals, For example XHI=euH) cannot be decomposed into pure sinuspids.

- Example primitives for DT signals.

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = C \frac{1}{2} = C \frac{1}{2} \frac{1}$$

- Example models for DT signals.

4	169	2
estions	Çov:	(5)
		100

- The correspondy fourn decomposition for DT signals is the discrete Fourn.

$$X[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi/2} X(e^{i\omega}) e^{j\omega n} d\omega$$

which again applies to some, but not all signals of intest.

- Systems either

- 1) produce signals
- 2) measure signals
- 3) transform Signals (inputs) into other signals (outputs)
- CT Systems transform CT signals to CT Signals
- PTSystems transform DT storals to DT signals
- Hybrid Systems convert between to from CT/DT signals

- major classification of systems.
 - B memoryless or dynamic
 - B causal, anti-causal, non-causal
 - B threntable, non-invertable
 - BIBO stable or unstable
 - a Time-varying of time-invarient
 - a Linear or Monlinear.
- the focus of 2214 and this course are Linen Time-Inventor systems (LTJ) in CT and DT.

- CT systems can be represented by

· Differential Equations.

e.g. damped pondulum ray + by + c sin(y) = x (+)

- CT LTI systems can be represented by

· LCCDE with zero initial conditions

· impulse response h(+)

· block diagram

· transfer Function H(s) * Focus of 3204.

- Stable CT LTI systems can also be represented by their frequency response

HG'W) = P(J'W) = J & LH3

- DTLTIsystems can be represented by

· LCCDE with zero auxillary conditions

· Impulse response h [n]

a block dragram

· transfer Function H(z) * Focus of 3704

- Stable DT LTI systems can be represented by

Frequency Response Hilein) = Ylein) = Ilein)

⁻ DT systems can in general be represented by difference equations.
e.g. logistic equation y [n+1] = a x [n] (1-x [n])

- ECE 2714 leaves open two major guestions
 - 1) how do we deal with signals that do not have Bourn transforms
 - z) how do we deal with unstable systems.
- the First Question is seemingly not that important as Signals without Jourser transforms grow faster than practically useful.
- the second question is more relevant.
 - how do we prevent unstable systems when designing?
 - How can we stabulize unstable systems.
- The first and second questions are related since the impulse response het, here of unstable offstems do NOT have Fairer Transforms.

⁻ we will address those issues by introducing two new tools

⁻ deplace transform

⁻ Zhanstonn.

- Some example Problems.

1) Given the following LCCDE determine the impulse response. h(t).

 $D^{3}y + 6D^{2}y + 11Dy + 6y = Dx + x$ $Q(D) = D^{3} + 6D^{2} + 11D + 6$ = (D+1)(D+2)(D+3) $P(D) = D + 1 + 0D^{2}$

 $y_{n}(t) = c_{i}e^{t} + c_{2}e^{-2t} + c_{3}e^{-3t}$ $y_{n}(t) = -c_{i}e^{t} - 2c_{2}e^{2t} - 3c_{3}e^{-3t}$ $y_{n}(0) = 0$ $y_{n}''(t) = c_{i}e^{t} + 4c_{2}e^{-2t} + 9c_{3}e^{-3t}$ $y_{n}''(0) = 1$

Solve $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 = 1/2 \\ c_2 = -1 \\ 0 \end{bmatrix}$

h(+)=>65(+) + [p(D) yn]o(+)

 $= \left[-\frac{1}{2}e^{-t} + 7e^{-2t} - \frac{3}{2}e^{-3t} + \frac{1}{2}e^{-t} - 7e^{-3t} + \frac{1}{2}e^{-3t} \right] \cup \{t\}$ $= \left[0e^{t} + e^{-2t} - e^{-3t} \right] \cup \{t\}$ $= \left[v_{0}^{2} + e^{-3t} - e^{-3t} \right] \cup \{t\}$ $= \left[v_{0}^{2} + e^{-3t} - e^{-3t} \right] \cup \{t\}$

two will see Laplace gives us intoition about solutions like this and in many cases simplifies the analysis.

#2 7

2) Find the impulse response that corresponds to the block diagram

[= delay block

$$9[n] = -\frac{3}{4}y[n-1] - \frac{1}{4}y[n-2] + x[n] - x[n-1]$$

 $9[n+2] + \frac{3}{4}y[n+1] + \frac{1}{4}y[n] = x[n+2] - x[n+1]$
 $Q(E) = E^2 + \frac{3}{4}E + \frac{1}{6}$
 $(E+\frac{1}{4})(E+\frac{1}{4})$

92=0 62=1/8

$$h[n] = -\frac{2}{3}h[n-1] - \frac{1}{8}h[n-2] + \frac{1}{8}[n] - \frac{1}{8}[n-1]$$

$$h[0] = -\frac{2}{3}(0) - \frac{1}{8}(0) + (1) - (0) = 1 = \frac{1}{4} = -\frac{1}{2}c_1 - \frac{1}{4}c_2$$

$$h[1] = -\frac{2}{3}(-\frac{1}{3}) - \frac{1}{8}(0) + (0) - 1 = -\frac{1}{4} = -\frac{1}{2}c_1 - \frac{1}{4}c_2$$

$$h[2] = -\frac{2}{3}(-\frac{1}{3}) - \frac{1}{8}(1) + 0 + 0 = \frac{1}{4} - \frac{1}{8} = \frac{19}{16}v$$

$$c_1 = 6$$

cz = -5

h [27 = 6(-1)2 - 5(-4)2 = 4 - 5 = 19/16