## Лабораторная работа № 6

Имитационное моделирование

Королёв Иван

## Содержание

| 1  | Цель работы                                           | 5  |
|----|-------------------------------------------------------|----|
| 2  | Задание                                               | 6  |
| 3  | Теоретическое введение                                | 7  |
| 4  | Выполнение лабораторной работы                        | 8  |
|    | 4.1 Реализация модели в xcos                          | 8  |
|    | 4.2 Реализация модели с помощью блока Modelica в xcos | 11 |
|    | 4.3 Реализация модели в OpenModelica                  | 14 |
| 5  | Выводы                                                | 17 |
| Сг | писок литературы                                      | 18 |

## Список иллюстраций

| 4.1  | Константы                                       | 8  |
|------|-------------------------------------------------|----|
| 4.2  | Реализация модели                               | 9  |
| 4.3  | Начальные значения                              | 9  |
| 4.4  | Начальные значения                              | 10 |
| 4.5  | конечное время интегрирования                   | 10 |
| 4.6  | Фазовый портрет                                 | 11 |
| 4.7  | Динамика изменения численности хищников и жертв | 11 |
| 4.8  | Реализация модели                               | 12 |
| 4.9  | Параметры блока моделирования                   | 12 |
| 4.10 | Параметры блока моделирования                   | 13 |
| 4.11 | Фазовый портрет                                 | 13 |
| 4.12 | график изменения численности популяций          | 14 |
| 4.13 | Реализация модели                               | 15 |
| 4.14 | Фазовый портрет                                 | 15 |
|      |                                                 | 16 |

## Список таблиц

## 1 Цель работы

Реализовать модель "хищник-жертва" в xcos, с помощью блока моделирования в xcos и OpenModelica

### 2 Задание

- 1. Реализация модели в хсоѕ
- 2. Реализация модели с помощью блока Modelica в xcos
- 3. Реализация модели в OpenModelica. Построить графики изменения численности популяций и фазовый портрет

#### 3 Теоретическое введение

Модель «хищник-жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель имеет вид:

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = cxy - dy, \end{cases}$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников.

#### 4 Выполнение лабораторной работы

#### 4.1 Реализация модели в хсоѕ

Для начала фиксируем начальные данные a=2,b=1,c=0.3,d=1.(рис. 4.1).



Рис. 4.1: Константы

Реализуем модель хищник-жертва с помощью блоков. Все блоки идентичны с предыдущей лабораторной, блок времени, блок произведение, интегрирования, суммы и тд. Только дополнительно потребуется блок регистрирующее устройство для построения фазового портрета. (CSCOPXY). Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоками задания коэффициентов а и b. Второе уравнение модели задано нижним блоком интегрирования и блоками задания коэффициентов. (рис. 4.2).



Рис. 4.2: Реализация модели

Задаем начальные значения для x и y в параметрах блоков интегрирования. (рис. 4.3), (рис. 4.4)



Рис. 4.3: Начальные значения

| ▼ | Ввод значений                        | + ×         |
|---|--------------------------------------|-------------|
|   | Set Integral block parameters        |             |
|   | Initial Condition                    | 1           |
|   | With re-initialization (1:yes, 0:no) | 0           |
|   | With saturation (1:yes, 0:no)        | 0           |
|   | Upper limit                          | 1           |
|   | Lower limit                          | -1          |
|   |                                      |             |
|   |                                      | ОК Отменить |

Рис. 4.4: Начальные значения

Устанавливаем конечное время интегрирования 30. (рис. 4.5)

| - | Ввод значений                              | + x                |
|---|--------------------------------------------|--------------------|
|   | Set Scope parameters                       |                    |
|   | Color (>0) or mark (<0) vector (8 entries) | 1 3 5 7 9 11 13 15 |
|   | Output window number (-1 for automatic)    | -1                 |
|   | Output window position                     |                    |
|   | Output window sizes                        | [600;400]          |
|   | Ymin                                       | -15                |
|   | Ymax                                       | 15                 |
|   | Refresh period                             | 30                 |
|   | Buffer size                                | 20                 |
|   | Accept herited events 0/1                  | 0                  |
|   | Name of Scope (label&Id)                   |                    |
|   |                                            | ОК Отменить        |

Рис. 4.5: конечное время интегрирования

Фазовый портрет. (рис. 4.6)



Рис. 4.6: Фазовый портрет.

Динамика изменения численности хищников и жертв. Черной линией обозначена динамика численности жертв. Зеленой линией обозначена динамика численности хищников. (рис. 4.7)



Рис. 4.7: Динамика изменения численности хищников и жертв

# 4.2 Реализация модели с помощью блока Modelica в xcos

Как и ранее, задаем значения коэффициентам a,b,c,d. Устанавливаем конечное время интегрирования. Реализуем модель. Нам понадобится блок моделирования, блок констант и регистрирующее устройство для построения фазового портрета и для построения графика. (рис. 4.8)



Рис. 4.8: Реализация модели

Параметры блока моделирования и программный код (рис. 4.9), (рис. 4.10)



Рис. 4.9: Параметры блока моделирования



Рис. 4.10: Параметры блока моделирования

Фазовый портрет и график изменения численности популяций. Результат полностью идентичен с xcos. (рис. 4.11), (рис. 4.12)



Рис. 4.11: Фазовый портрет



Рис. 4.12: график изменения численности популяций

#### 4.3 Реализация модели в OpenModelica.

Код для реализации данной модели. Задаем начальные коэффициенты и пишем уравнения модели. Задаем конечное время интегрирования. (рис. 4.13)

```
model lab6
 1
 2
      parameter Real a = 2;
 3
      parameter Real b = 1;
 4
      parameter Real c = 0.3;
 5
      parameter Real d = 1;
 6
 7
 8
      parameter Real x0 = 2;
      parameter Real y0 = 1;
 9
10
11
      Real x(start=x0);
      Real y(start=y0);
12
13
14
    equation
15
16
      der(x) = a*x - b*x*y;
17
      der(y) = c*x*y - d*y;
18
    end lab6;
19
```

Рис. 4.13: Реализация модели

Фазовый портрет и график изменения численности популяций. Результат полностью идентичен с предыдущими реализациями. (рис. 4.14), (рис. 4.15)



Рис. 4.14: Фазовый портрет



Рис. 4.15: график изменения численности популяций

## 5 Выводы

Реализовал модель "хищник-жертва" в хсоs, с помощью блока моделирования в хсоs и OpenModelica

## Список литературы