```
In[1]:= SetOptions[SelectedNotebook[],
         PrintingStyleEnvironment → "Printout", ShowSyntaxStyles → True]
 In[2]:= << Notation`</pre>
 In[3]:= (* Simplify the notation for the
         formulas: index vectors based on a subscript notation \star)
       Notation \begin{bmatrix} x_n \\  \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_{[n]} \end{bmatrix}
 In[4]:= d = 1.0; (* Equilibrium bond length *)
       \alpha = \text{Reverse} \{13.00773, 1.962079, 0.444529, 0.1219492\} \& / @ \text{Range} [1, 2] / / \text{Flatten} \}
Out[5]= {0.121949, 0.444529, 1.96208, 13.0077, 0.121949, 0.444529, 1.96208, 13.0077}
 In[6]:= P = \{\{0, 0, 0\}, \{d, 0, 0\}\}; (* Atomic positions *)
       Z = Partition[Table[#, {n, 1, 4}] & /@P // Flatten, 3]
         (* Array of positions for the coefficients \alpha *)
Out[7]= \{\{0,0,0\},\{0,0,0\},\{0,0,0\},\{0,0,0\}\},
         \{1.,0,0\},\{1.,0,0\},\{1.,0,0\},\{1.,0,0\}\}
In[8]:= K = Array \left[ \text{Exp} \left[ -\frac{\alpha_{\#1} \alpha_{\#2}}{\alpha_{\#1} + \alpha_{\#2}} \text{Norm} \left[ Z_{\#1} - Z_{\#2} \right]^2 \right]  &, {8, 8}]; (* Coefficients matrix K_{p,q} *)
       #[K] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}
                                                                                                               0.940847
                                                                        1.
                                                                                     1.
                                                                                                               0.90874
                                                                                                    1.
                                                                                                               0.891533
                                                                                                               0.886197
                                                                                     1.
Out[9]= {True,
                                                      0.940847 0.90874 0.891533 0.886197
                                                                                                                   1.
                                                       0.90874 0.800704 0.695991 0.650613
                                                                                                                   1.
                                                      0.891533 0.695991 0.374921 0.181789
                                                                                                                   1.
                                                      0.886197 0.650613 0.181789 0.00149764
                                                                                                                   1.
In[10]:= \mathbf{R} = \mathbf{Array} \left[ \frac{\alpha_{\#1} \ Z_{\#1} + \alpha_{\#2} \ Z_{\#2}}{\alpha_{\#1} + \alpha_{\#2}} \ \&, \ \{8, 8\} \right]; (* \ \mathsf{Distances} \ \mathsf{matrix} \ \mathsf{R}_{\mathsf{p},\mathsf{q}} \ *)
       #[R] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}
```

Out[11]=

In[12]:=
$$S = Array \left[\left(\frac{\pi}{\alpha_{\#I} + \alpha_{\#2}} \right)^{3/2} K_{\#I,\#2} \&, \{8, 8\} \right]; (* Overlap matrix $S_{p,q} *)$$$

#[S] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[13]=

46.2287	13.0602	1.85084	0.117043	43.494
13.0602	6.64247	1.49148	0.112858	11.868
1.85084	1.49148	0.716317	0.0961392	1.6500
0.117043	0.112858	0.0961392	0.0419641	0.1037
43.4941	11.8683	1.65009	0.103723	46.228
11.8683	5.31865	1.03805	0.0734269	13.060
1.65009	1.03805	0.268562	0.017477	1.8508
0.103723	0.0734269	0.017477	0.000062847	0.1170

$$In[14] := T = Array \left[\frac{\alpha_{\#I} \ \alpha_{\#2}}{\alpha_{\#I} + \alpha_{\#2}} \ \left(3 - 2 \ \frac{\alpha_{\#I} \ \alpha_{\#2}}{\alpha_{\#I} + \alpha_{\#2}} \ Norm \left[Z_{\#I} - Z_{\#2} \right]^2 \right) S_{\#I,\#2} \ \&, \ \{8, 8\} \right];$$

 $(\star \ \text{Kinetic energy matrix} \ T_{p,q} \ \star)$

#[T] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[15]=

 $(*\ \ \text{Potential energy matrix}\ \ V_{p,q}\ *)$

#[V] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[17]=

-49.5733	-20.4017	-4.78952	-0.595591	- 47
-20.4017	-12.4983	-4.06016	-0.579931	- 19
-4 . 78952	-4.06016	-2.31383	-0.515863	-4.
-0.595591	-0.579931	-0.515863	-0.283481	-0.
-47.5078	-19.0125	-4.33849	-0.528623	- 45
-19.0125	-10.5321	-2.948	-0.378339	- 26
-4.33849	-2.948	-0.900982	-0.0903486	-4.
-0.528623	-0.378339	-0.0903486	-0.00025131	-0.

In[18]:= H = T + V;

#[H] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[19]=


```
-41.117
          -16.6522 -4.15202
                                -0.553169
                                            - 35
-16.6522
          -8.06909
                    -2.43854
                                -0.434398
                                            - 15
-4.15202
          -2.43854
                    -0.205623
                                -0.0241367
                                            -3.
-0.553169 -0.434398 -0.0241367
                               0.535304
                                           -0.
-39.8751
                                -0.494057
          -15.8226 -3.81364
                                            - 4
-15.8226
          -7.51116
                   -2.09206
                                -0.310786
                                            -16
-3.81364 -2.09206 -0.627521
                                -0.10256
                                            -4.
-0.494057 - 0.310786 - 0.10256 - 0.00434196 - 0.
```

Out[21]=

$$\begin{split} & \text{In}[\text{20}] \coloneqq \text{Q} = \text{Array} \Big[S_{\text{\#}1, \text{\#}3} \; S_{\text{\#}2, \text{\#}4} \; \text{If} \Big[\text{Norm} \big[R_{\text{\#}1, \text{\#}3} - R_{\text{\#}2, \text{\#}4} \big] == 0 \; , \; \frac{2}{\sqrt{\pi}} \; \sqrt{\frac{(\alpha_{\text{\#}1} + \alpha_{\text{\#}3}) \; (\alpha_{\text{\#}2} + \alpha_{\text{\#}4})}{\alpha_{\text{\#}1} + \alpha_{\text{\#}3} + \alpha_{\text{\#}2} + \alpha_{\text{\#}4}}} \; \; , \\ & \frac{1}{\text{Norm} \big[R_{\text{\#}1, \text{\#}3} - R_{\text{\#}2, \text{\#}4} \big]} \; \text{Erf} \Big[\sqrt{\frac{(\alpha_{\text{\#}1} + \alpha_{\text{\#}3}) \; (\alpha_{\text{\#}2} + \alpha_{\text{\#}4})}{\alpha_{\text{\#}1} + \alpha_{\text{\#}3} + \alpha_{\text{\#}2} + \alpha_{\text{\#}4}}} \; \; \text{Norm} \big[R_{\text{\#}1, \text{\#}3} - R_{\text{\#}2, \text{\#}4} \big] \Big] \Big] \; \&, \\ & \{ 8, \, 8, \, 8, \, 8 \} \Big] \; ; \; (* \; Q_{p,r,q,s} \; \text{matrix}, \; \text{it's an 8 by 8} \\ & \text{matrix containing 8 by 8 matrices *}) \\ & \{ \text{SymmetricMatrixQ}[Q] \; , \\ & \text{Grid@Array}[\text{ArrayPlot}[Q_{\text{\#}1, \text{\#}2}, \; \text{ImageSize} \rightarrow \text{Tiny}] \; \&, \; \{ 8, \, 8 \}] \; , \; \text{MatrixForm@Q} \} \end{split}$$

 $\{$ False,


```
In[22]:= P = ConstantArray[0., {8, 8}];
     #[P] & /@ {ArrayPlot, MatrixForm}
```

Out[23]=

$$In[24]:= G = Array \left[\sum_{r=1}^{8} \sum_{s=1}^{8} P_{r,s} \left(2 Q_{\#I,r,\#2,s} - Q_{\#I,r,s,\#2} \right) \&, \{8,8\} \right] \left(* G_{p,q} \text{ matrix } * \right) ;$$

#[G] & /@ {ArrayPlot, MatrixForm}

Out[25]=


```
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
```

#[F] & /@ {ArrayPlot, MatrixForm}

Out[27]=

```
-41.117
         -16.6522 \quad -4.15202 \quad -0.553169
                                          -39.8751
-16.6522 -8.06909 -2.43854
                               -0.434398
                                          -15.8226
-4.15202 -2.43854 -0.205623 -0.0241367
                                          -3.81364
-0.553169 -0.434398 -0.0241367
                               0.535304
                                          -0.494057
-39.8751
         -15.8226
                   -3.81364
                              -0.494057
                                           -41.117
-15.8226 -7.51116 -2.09206
                                          -16.6522
                               -0.310786
-3.81364 -2.09206 -0.627521
                               -0.10256
                                          -4.15202
-0.494057 -0.310786 -0.10256 -0.00434196 -0.553169
```

In[28]:= MatrixNormalize[v_{-}, M_{-}] := $\frac{v}{\text{Sqrt}[v.M.v]}$;

In[29]:= (* Doing the first eigensystem calculation as a testing ground <math>*)

 $\{\lambda, \psi\}$ = Eigensystem[$\{F, S\}$]; (* Calculate the eigenvalues and eigenvectors *)

 $\{\lambda, \psi\} = \{\lambda[\#], \psi[\#]\} \& \text{ordering}[\lambda]; (* Sort them in ascending order *)$

 $\psi = MatrixNormalize[#, S] & /@\psi;$

(* Normalize them w.r.t. the overlap matrix S *)

If[AllTrue[Thread[#.S.# ≠ 1] & /@ψ, TrueQ], Abort[], Nothing];

(* Perform a numerical divergence check *)

#[ψ] & /@ {ArrayPlot, MatrixForm}

Out[33]=


```
-0.0053109 -0.138633 -0.227877 -0.103876 -0.0053109
-0.247679 \quad -0.290428 \quad -0.112811 \quad -0.0503944 \quad 0.247679
0.108453
          -0.18563 -0.114518 -0.0553259 0.108453
           0.64799
                      0.112376
-0.480872
                                 0.07753
                                            0.480872
-0.0670001 0.421322
                     -1.13493 0.00410123 -0.0670001
0.195647
           -0.715908 1.35432
                                0.0142581
                                           -0.195647
0.0648705 -0.272204 1.03771
                                -4.39883 -0.0648705
-0.0163136 0.129456 -0.793669 4.35218
                                           -0.0163136
```

 $ln[34]:= \epsilon = 10^{-6} // N; (* Accuracy level *)$

In[35]:= (* Reset before the while-loop to assert correctness *)

 $\lambda = ConstantArray[0., {8}];$

 $\xi = \lambda + \epsilon$;

 $ln[37]:= \Delta = \{\}; (* List of the norm of the differences *)$

```
In[38]:= (* While the new and previous eigenvalues are still different enough... *)
        While |Norm[\xi - \lambda] > \epsilon,
            AppendTo[\Delta, Norm[\xi - \lambda]];
            (* Append the norm of the difference to the \triangle list *)
            \xi = \lambda; (* Overwrite the previous eigenvalues *)
            G = Array \left[\sum_{r=1}^{8}\sum_{r=1}^{8}P_{r,s}\right] (2 Q_{\#1,r,\#2,s} - Q_{\#1,r,s,\#2}) &, {8, 8} (* G_{p,q} matrix *);
            F = H + \frac{1}{2}G; (* Compute the Fock operator from the G matrix *)
            \{\lambda, \psi\} = Eigensystem[\{F, S\}];
            (∗ Calculate the eigenvalues and eigenvectors ∗)
            \{\lambda, \psi\} = \{\lambda[\#], \psi[\#]\} &@Ordering[\lambda]; (* Sort them in ascending order *)
            \psi = MatrixNormalize[#, S] & /@\psi;
            (★ Normalize them w.r.t. the overlap matrix S ★)
            If[AllTrue[Thread[#.S.# ≠ 1] & /@ψ, TrueQ], Abort[], Nothing];
            (* Perform a numerical divergence check *)
            (∗ Calculate the density matrix from the
             eigenvector \psi_1 associated with the minimal eigenvalue *)
            P = 2 TensorProduct [\psi_1, \psi_1];
           // AbsoluteTiming // First
Out[38]=
        0.052874
 In[39]:= (* Return the first eigenvalue and the equilibrium bonding energy,
        where \frac{1}{d} is the E_{nucl} term *)
        Quantity[#, "HartreeEnergy"] & /@ \left\{\lambda_1, \, \text{Total}\left[P\left(H + \frac{1}{4} \, G\right), \, 2\right] + \frac{1}{4}\right\}
        UnitConvert[#, "Electronvolts"] & /@%
Out[39]=
        \{-0.669956 E_h, -1.07855 E_h\}
Out[40]=
        \{-18.2304 \, eV, -29.3488 \, eV\}
 In[41]:= ListStepPlot[Drop[\Delta, 1], PlotRange \rightarrow Full]
        (★ Measurements give 0.05 seconds for the convergence time for an SCF loop ★)
```

