

Introdução a Séries Temporais

Prof. Eraylson Galdino

Agenda

- O que são séries temporais
- Análise de séries temporais:
 - Objetivo
 - Aplicações
- Modelos de Séries Temporais
- Componentes
- Função de autocorrelação
- Correlograma
- Processo estacionário

Séries Temporais: Definição

George Box & Gwilym Jenkis

Uma série temporal é um conjunto de **observações ordenadas**, x_t , cada uma observada em um instante de tempo.

Peter J Brockwell

Uma série temporal é um conjunto de observações, x_t , cada uma registrada num tempo específico t.

Séries Temporais: Definição

- Séries temporais discretas: são séries em que o intervalo de observações (t) pertence a um conjunto discreto. Ou seja, as observações são feitas em intervalos de tempo fixos;
- Séries temporais contínuas: são séries em que as observações são obtidas continuamente através de algum intervalo no tempo, por exemplo, quando T = [0, 1];

Séries Temporais: exemplo

Exemplo de uma série temporal discreta

Séries Temporais: exemplo

Exemplo de uma série temporal contínua

- Objetivos:
 - Compreender as características de tal fenômeno temporal;
 - Selecionar e estimar um modelo estocástico que possivelmente tenha gerado o conjunto de dados;
- Aplicações:
 - Entendimento de um comportamento temporal;
 - Classificar um comportamento temporal;
 - Detecção de anomalias;
 - Previsão;

• Entendimento de um comportamento temporal

Detecção de anomalias

Figure 6: An example of an annotated Marotta Valve time series. The discord discovered (highlighted in bold) exactly corresponds with the expert's annotation

• Previsão

Classificação

- Campos de Aplicação:
 - Mercado Financeiro;
 - Meteorologia;
 - Medicina;
 - Controle de Qualidade e Processos;
 - Governo;
 - Epidemiologia;
 - Transporte;

- No geral, análise de Séries Temporais consiste em:
 - Analisar um conjunto de dados (ao longo do tempo);
 - Selecionar e estimar um modelo matemático que possivelmente tenha gerado o conjunto de dados;

Modelos de Séries Temporais

George Box

Todos os modelos estão errados, mas alguns são úteis.

- Selecionar um modelo probabilístico adequado para os dados é uma das partes mais importantes da análise de séries temporais;
- Geralmente, é suposto que cada observação x seja um valor resultante de uma determinada variável aleatória X;
- Um modelo de série temporal para um determinado dado observado x(t) é a especificação da composição de distribuições da sequência da variável aleatória X(t) em que x(t) é uma observação;

- Modelos com média zero:
 - Ruído i.i.d. (independente e identicamente distribuído);
 - Processo binário;
 - Random Walk (Passeio Aleatório);
- Modelos com tendência e sazonalidade

- Modelo com média zero: Ruído i.i.d
 - Modelo mais simples;
 - Sem os componentes de tendência e sazonalidade;
 - As observações são resultados de variáveis aleatórias i.i.d. com média zero;
 - Não existe dependência entre as observações;
 - Através do valor x(t) não é possível prever o valor de x(t+h);
 - Apesar de não ser interessante para predição, é um modelo importante para construção e entendimento de modelos mais complexos;

• Um ruído i.i.d com distribuição normal com média zero e variância σ^2 é também chamado de ruído branco gaussiano;

• Processo binário:

As observações só podem assumir dois valores possíveis;

- Random Walk:
 - Ideia remete a "caminhada do bêbado". Tomada de vários passos consecutivos, cada qual em uma direção aleatória;
 - É obtido através da soma cumulativa de variáveis i.i.d aleatórias

com o valor atual;

- Random Walk:
 - Problema de previsão

- Random Walk:
 - Problema de previsão

- Random Walk:
 - Problema de previsão

Real	Previsão
0,685264	0,69427
0,690659	0,688232
0,681649	0,69365
0,685226	0,684601
0,691443	0,688193
0,700727	0,694438
0,707789	0,703763

- Algumas séries é perceptível que não podem ser modeladas por modelos simples de média zero;
- São geradas com componentes de tendência e sazonalidade;
- Tendência: mudança sistemática na série temporal que não aparenta ser periódico;
- Sazonalidade: comportamento que se repete durante um período de tempo;

• Série com tendência

Série com sazonalidade

- Modelo Aditivo:
 - Z(t) = Tendência + Sazonalidade + Ruído
 - As mudanças são consistentes
 - Uma tendência linear é uma linha reta
 - Uma sazonalidade linear tem a mesma frequência (comprimento dos ciclos) e amplitude (altura dos ciclos)

- Modelo Multiplicativo:
 - Z(t) = Tendência * Sazonalidade * Ruído
 - É não linear (quadrático, exponencial, etc.)
 - Mudanças ao longo do tempo aumentam ou diminuem
 - Uma tendência não linear é uma curva
 - Uma sazonalidade não-linear tem frequência e amplitude variável

Componentes de séries temporais

- Abstração para entender melhor a série temporal;
- Não necessariamente para previsão:
 - Informações que podem ser aplicadas na preparação de dados e na seleção dos modelos;
 - Remoção de alguns desses componentes pode aumentar o desempenho do modelo de Machine Learning;
- Problemas do mundo real são caóticos e ruidosos:
 - Componentes aditivos e multiplicativos na mesma série;
 - Tendência de crescimento e decrescimento;
 - Sazonalidade variável;
 - Mudança de comportamento;

Função de Autocorrelação (FAC)

 Seja X(t) uma série estacionária, a Função de Autocovariância do lag h é:

$$\gamma_{x} = Cov(X_{t+h}, X_{t})$$

• A Função de Autocorrelação de X(t) do lag h é definida como:

$$\rho_x(h) = \frac{\gamma_x(h)}{\gamma_x(0)} = Cor(X_{t+h}, X_t)$$

 A autocorrelação é a correlação entre uma série e ela mesma defasada;

Função de Autocorrelação (FAC)

- Utilizada para analisar o grau de dependência temporal na série;
- A relação entre uma observação atual e observações é chamado de lags;
- Auxilia na seleção de possíveis modelos de séries temporais estacionárias;
- Através do coeficiente de correlação de Pearson:
 - -1 correlação negativa;
 - 1 correlação positiva;
 - 0 nenhuma correlação;

Função de Autocorrelação Parcial

- As autocorrelações para intervalos sucessivos são formalmente dependentes;
- A F.A.C parcial é utilizada para obter uma informação sobre autocorrelação na série sem esta influência em cascata;
- A autocorrelação parcial de atraso k corresponde a autocorrelação entre x_t e x_t e x_t que não é explicada pelos atrasos de 1 a k;

Correlação x Causalidade

- Correlação:
 - Uma variável A tem um comportamento semelhante à B;
- Causalidade:
 - Uma variável B influencia o comportamento da variável B;
- http://www.tylervigen.com/spurious-correlations

- Forma gráfica de analisar a autocorrelação;
- O correlograma traça as autocorrelações em diversas defasagens;
- Através da análise utilizando o correlograma é possível entender se a série é aleatória ou possui alguma tendência ou sazonalidade;
- Frequentemente utilizado para analisar os resíduos de um modelo;

Correlograma

- Para inferir se em um dado lag existe ou não correlação é utilizado intervalos de confiança;
- Para um intervalo de confiança de 95% os limites são ± 1.96/√n
- Os lag com coeficiente fora do intervalo de confiança são considerados significantes.
- O coeficiente com valor 1 representa correlação máxima positiva;
- O coeficiente com valor -1 representa correlação máxima negativa;
- O coeficiente com valor 0 representa que não existe correlação;

- Série aleatória:
 - Através do correlograma é possível analisar se uma série é aleatória ou não;
 - Em uma série completamente aleatória os lags são não correlacionados, ou seja, espera-se que o coeficiente de autocorrelação amostral k seja próximo à zero;

• Série aleatória:

- Correlação de curto prazo:
 - É dita de curto prazo quando uma observação acima da média tende a ser seguida por uma ou mais observações acima da média. O mesmo ocorre para observações abaixo da média.
 - A partir de uma certa defasagem k os valores do coef de k tendem a ser aproximadamente zero.

• Correlação de curto prazo:

- Séries não estacionária:
 - Para uma série com tendência os valores do coeficiente r não decaem para zero a não ser em defasagens grandes. Isso ocorre pois uma observação de um lado da média tende a ser seguida por um grande número de observações da mesma média (mesmo lado) por conta da tendência;
 - Nesse caso, pouca ou nenhuma informação pode ser obtida do correlograma pois a tendência dominará outras características;

• Séries não estacionária:

- Correlação negativa:
 - Quando os valores das observações tendem a se alternar acima e abaixo de uma média, o coeficiente de correlação também tende a se alternar;
 - O valor de r1 será negativo enquanto o valor de r2 será positivo já que as observações defasadas de 2 períodos (lags) tendem a estar do mesmo lado da média;

Abordagem Geral

- A abordagem consiste em plotar a série e analisar alguns aspectos:
 - Tendência
 - Sazonalidade
 - Alterações acentuadas no comportamento
 - Observações discrepantes com os dados
- Remover tendências e componentes sazonais para obter resíduos estacionários;
- Escolher um modelo para ajustar aos resíduos. Utilizando várias estatísticas amostrais como função de autocorrelação
- Alcançar a previsão original da série através da previsão dos resíduos junto com os valores estimados da tendência e sazonalidade;

- É um processo que se mantém em equilíbrio estatístico com propriedades probabilísticas que não se alteram no tempo;
- O processo é considerado fracamente estacionário se:
 - As características de x_t são iguais para todo t;
 - Média e variância constantes;

- Como testar se uma série é estacionária
 - Testes estatísticos:
 - Teste de Dickey-Fuller (H0: série não-estacionária)
 - Teste de KPSS (H0: série estacionária)
 - Gráficos:
 - Média e desvio constante
 - Histograma

Hora de programar

