



# Energy System Modeling with Python

University of Freiburg (Germany) | Faculty of Engineering
Department of Sustainable Systems Engineering | INATECH
Chair for Control and Integration of Grids



Tuesday, 3. June 2025







# Theoretical part

# Feature Selection: From More to Meaningful

- Think back to Lecture 7: You extended your regression model with new variables. How did you decide which features to include?
- Is there a more systematic way to guide this selection?

#### **Correlation Matrix**

- Measures how strongly each input feature is linearly related to the target
- Values range from **-1** (strong negative) to **+1** (strong positive)
- Fast, visual filter for redundancy and relevance

# **Pearson Correlation**

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

where:

cov(X,Y) is the covariance

 $\sigma_X$ ,  $\sigma_Y$  is the standard deviation of X, Y

- > Measures the strength and direction of a linear relationship between two variables
- Symmetric:  $\rho_{X,Y} = \rho_{Y,X}$
- ➤ Values range from -1 (perfect negative) to +1 (perfect positive)



#### **Correlation Matrix**

#### Correlation Matrix for Year 2024





#### **Correlation and Causation**





Correlation # Causation

## **Limits of Linear Models**



- Solar output is smooth and cyclical, not linear
- Zero generation at night sharp non-linearity
- Linear models fail to follow this pattern



# Polynomials Help — But Only Up to a Point



# **Polynomial model**

$$\hat{y}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d$$

# Linear vs Non-Linear Models: It's Not About the Shape

#### **Linear Models**

- Linear Regression
- Polynomial Regression
- Ridge / Lasso

#### **Definition:**

Linear in the parameters: prediction is a weighted sum of input features or transformations

#### **Example (Polynomial):**

$$\hat{y}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d$$

#### **Key Insight:**

Even with curved output, the model is still **linear** in how parameters influence prediction.

#### **Non-Linear Models**

- Decision Trees (Random Forests)
- **Gradient Boosting**
- **Neural Networks**

#### **Definition:**

Model output depends **non-linearly** on parameters or model structure (e.g., thresholds, activations, hierarchy).

#### **Example (Random Forest):**

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} T_i(x)$$

where  $T_i$  are individual decision trees.

#### **Key Insight:**

These models can adapt structure to data, not just tune weights.

# Linear vs Non-Linear in Practice: Fitting Solar Generation



# Random Forests: Many Trees, Many Views

#### **Definition:**

A Random Forest builds multiple decision trees; each trained on a random subset of the data and features. The final prediction is the average of all tree outputs.

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} T_i(x)$$

where  $T_i$  are individual decision trees.



#### **Why Random Forests Work:**

- Each tree captures **different patterns** in the data by **overfitting** to that data
- By averaging many diverse models, the forest becomes stable and can generalize
- Trees are **non-linear**: they model abrupt changes, interactions, and thresholds

# Random Forests: Many Trees, Many Views



# **Random Forests: Hyperparameters**

| Parameter                                     | Role and Intuition                                                                                                                                                              | Typical Values                                                                                           |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
|                                               | How many decision trees are included in the forest.                                                                                                                             |                                                                                                          |  |
| Number of Trees<br>(n_estimators)             | More trees reduce prediction variance via averaging. Beyond a certain point, additional trees do not improve results noticeably but increase computation time.                  | 100 – 300 for most applications<br>Larger for more stability                                             |  |
|                                               | Controls how many features each tree considers when making a split.                                                                                                             | - Regression: use full set                                                                               |  |
| Number of Features  per Split  (max_features) | Smaller values increase randomness and reduce tree correlation (→ lower variance) but can increase bias. Larger values reduce bias but may overfit and make trees more similar. | <ul> <li>Classification: use √(# features)</li> <li>More generalization: try 0.3×(# features)</li> </ul> |  |

# Gradient Boosting: Learning from Mistakes, Iteratively

#### **Key Equation:**

$$F_m(x) = F_{m-1}(x) + \alpha \cdot h_m(x)$$

#### where:

 $F_m(x)$  boosted model at stage m

 $h_m(x)$ : new weak learner fit to the residuals (the gradient)

α: learning rate

**Gradient Boosting** is a machine learning method that builds a strong model by adding up many small models one step at a time.

At each step, it fits a new model to the **errors** (**residuals**) of the current prediction, improving the overall accuracy.

# Gradient Boosting in Practice: XGBoost vs. LightGBM

# **LightGBM**



#### **XGBoost**



# Gradient Boosting in Practice: XGBoost vs. LightGBM

| Feature                          | XGBoost                                           | LightGBM                                            |
|----------------------------------|---------------------------------------------------|-----------------------------------------------------|
| Tree growth strategy             | Level-wise (symmetric trees)                      | Leaf-wise (asymmetric trees with max depth limit)   |
| Training speed                   | Slower                                            | Faster                                              |
| Memory usage                     | Higher                                            | Lower                                               |
| Accuracy                         | Often slightly higher due to deeper tree coverage | Competitive, sometimes overfits on small datasets   |
| Support for categorical features | Requires encoding                                 | Native support                                      |
| Best suited for                  | Small to medium datasets where stability is key   | Large datasets and low-latency training             |
| Out-of-the-box stability         | More robust, harder to overfit                    | Needs tuning (e.g., max_depth) to avoid overfitting |

# **XGBoost: Hyperparameters**

| Parameter        | Role & Intuition                                                                                                                                                             | Typical<br>Values |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| max_depth        | Tree complexity control. Limits how deep each tree grows. Deeper trees model complex interactions but increase risk of overfitting.                                          | 3–10              |
| min_child_weight | Split conservatism.  Minimum sum of instance Hessian weights in a child. Higher values force more samples per leaf, reducing sensitivity to noise.                           | 1–10              |
| learning_rate    | Shrinkage factor. Scales the contribution of each new tree. Lower values require more boosting rounds but improve generalization by preventing large, destabilizing updates. | 0.01–0.3          |

# **LightGBM: Hyperparameters**

| Parameter        | Role & Intuition                                                                                                                                                                                          | Typical<br>Values |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| num_leaves       | Main complexity control Leaf-wise growth can yield very deep trees; set num_leaves ≤ 2^max_depth to avoid runaway depth and overfitting.                                                                  | 30                |
| min_data_in_leaf | Regularization of leaf size Requires a minimum number of samples per leaf. Larger values (hundreds–thousands) prevent overly specific leaves and guard against overfitting, especially on large datasets. | 100–1 000         |
| max_depth        | Explicit depth cap Bounds leaf-wise growth; when used, ensure num_leaves ≤ 2^max_depth. Controls the maximum levels of splits per tree.                                                                   | 5–15              |

# Random Forest vs. Gradient Boosting

| Feature           | Random Forest                                    | Gradient Boosting                                                                       |
|-------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|
| Training Strategy | Parallel, independent trees (bagging)            | Sequential, each tree learns from residuals (boosting)                                  |
| Tree Depth        | Typically deep trees (low bias, higher variance) | Typically shallow trees (higher bias, lower variance)                                   |
| Bias vs. Variance | Reduces variance through averaging               | Reduces bias by sequentially correcting errors                                          |
| Interpretability  | Moderate (feature importance available)          | Lower (complex ensemble of corrections)                                                 |
| Overfitting Risk  | Lower due to averaging over diverse trees        | Higher—requires careful regularization (e.g., learning rate, early stopping)            |
| Performance       | Robust, faster to train, good for large datasets | Often more accurate with proper tuning, but more sensitive to noise and hyperparameters |

# Generalization



#### **Generalization Error**

In machine learning, the goal isn't merely to achieve high performance on the training dataset. Rather, the key focus is on how well the **model generalizes** that is, how accurately it can make predictions on previously unseen data.

$$GE = E\left[\left(y - \hat{f}(x)\right)^{2}\right] = \sigma^{2} + \left(E\left[\hat{f}(x)\right] - f(x)\right)^{2} + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right]$$

**Generalization error** (test error) is the error or the loss that a model incurs when it is tested against possibly all the infinite data that follows the same distribution as the training data.

# **Bias-Variance Decomposition**

$$GE = E\left[\left(y - \hat{f}(x)\right)^{2}\right] = \sigma^{2} + \left(E\left[\hat{f}(x)\right] - f(x)\right)^{2} + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right]$$

 $E\left[\left(y-\hat{f}(x)\right)^2\right]$  - expected squared error of the model's prediction  $\hat{f}(x)$  for a given input x, averaged over all possible training datasets and the inherent randomness in the output y. It represents the model's overall expected prediction error at point x.

 $\sigma^2$  — irreducible error, which is the variance of the noise in the data. It accounts for the variability in y that cannot be captured by any model, reflecting the inherent unpredictability in the data.

 $(E[\hat{f}(x)] - f(x))^2$  — squared bias of the model at point x. It measures the difference between the average prediction of the model (over all possible training datasets) and the true function f(x). A high bias indicates that the model systematically deviates from the true function.

 $E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^2\right]$  — variance of the model's predictions at point x. It quantifies how much the model's predictions fluctuate for different training datasets. A high variance indicates that the model's predictions are sensitive to the specific data it was trained on.

# **Bias-Variance: Guess what is what**



# **Bias-Variance Tradeoff**



25

# **Bias-Variance Tradeoff**



# **Train-Test Split & Evaluation**

#### Training Set (80 %)

- Fit model parameters
- Monitor training loss for underfitting

#### Validation Set (10 %)

- Tune hyperparameters & select models
- Early-stop to prevent overfitting

#### **Test Set (10 %)**

- Held out until final evaluation
- Provides unbiased measure of performance

#### Typical Dataset Split



#### **Best Practices & Cross-Validation**

#### Best practices

- Shuffle data before splitting (unless time-series)
- Stratify splits for imbalanced labels
- Scale/normalize using statistics from training set only
- Document split ratios and random seed for reproducibility
- Keep test set untouched until the very end

#### K-Fold Cross-Validation (CV)

- Partition data into K equal folds (e.g. K=5 or 10)
- 2. Rotate: train on K–1 folds, validate on 1-fold
- 3. Aggregate validation metrics across folds

#### When to use:

- Small datasets (reduce sampling noise)
- Robust estimate of model performance

Reminder: Always reserve a final test set for the unbiased evaluation after CV

## **Coffee Break**



# Time to put everything into code



# What You'll Do in Code Today

- Correlation Analysis & Matrix. Load the dataset, compute Pearson correlations between all feature pairs, and visualize the resulting correlation matrix to identify multicollinearity or particularly strong linear relationships.
- **Train/Validation/Test Split.** Partition your data into training, validation, and test sets shuffling as appropriate or applying a time-series split—to ensure robust evaluation.
- Random Forest Implementation. Instantiate and train a scikit-learn RandomForestRegressor, tune key hyperparameters (e.g. number of trees, max depth), and record its validation performance.
- **LightGBM Implementation.** Set up a LightGBM dataset, train a GradientBoosting model with LightGBM's Python API, adjust learning rate and tree parameters, and log its metrics on the validation set.
- **Performance Comparison.** Evaluate both Random Forest and LightGBM on the heldout test set using MAE and RMSE, then directly compare these non-linear results to the linear models from Lecture 7.
- Feature Importance Visualization. Extract feature-importance scores from each treebased model, plot them side-by-side, and discuss which predictors drive the best performance.

# **Takeaways**

- ✓ Non-linear models unlock richer patterns. Tree ensembles (Random Forest, LightGBM) often outperform linear regression when relationships are complex or exhibit thresholds.
- Correlation is just a first filter. A high Pearson coefficient signals linear relevance, but non-linear dependencies require flexible models.
- ✓ Robust evaluation matters. A clear train/validation/test split and careful hyperparameter tuning guard against both under- and over-fitting.
- ✓ Interpretability through importance. Feature-importance metrics in ensemble methods help translate "black-box" predictions into actionable insights.

#### **Further Questions to Think About**

- When might you still choose a simple linear model in production, despite lower accuracy?
- How could different data-splitting strategies (e.g., time-series cross-validation) change your evaluation?
- What are the limitations of permutation- or gain-based importance in ensemble models?
- How might you combine domain expertise with automated feature selection to improve forecasting?