About Lempel-Ziv Compression Algorithm

Xiao Liang

Computer Science Department Stony Brook University

Nov. 6th, 2014

Motivation

- ▶ Data need to be compressed to save storage space.
- ► Hoffman Coding is good, but it requires prior knowledge about the distribution of the data. Otherwise:
 - 1st round to record the frequency
 - 2nd round to do the compression Time consuming
- ▶ We need an adaptive compression algorithm that does not assume any a priori knowledge of the symbol probabilities; Do the compression in one scan.
- The solution is Lempel-Ziv compression.

About Huffman Coding

Bounds for Huffman Coding

Let L be the expected length of a single letter in Huffman coding, and H(P) is the entropy for the distribution of the letters, then

$$H(P) \leq L \leq H(P) + 1$$

Proof Outlines:

Lower Bound follows from Shannon's Theorem.

Upper Bound:

- ▶ Huffman coding is optimal in terms of expected length.
- Kraft inequality

Proofs of the Bounds for Huffman Coding (1/2)

Kcraft Inequality

Let $\ell_1, \ell_2, ..., \ell_k \in \mathbb{N}$. Then there exists a prefix binary tree with k leaves at distance (depth) ℓ_i for i=1,...,k from the root if and only if

$$\sum_{i=1}^k 2^{-\ell_i} \le 1$$

This can be easily proven by Mathematical Induction.

Let $\ell_a = \lceil -\log_2(p_a) \rceil$, since $\sum_{a \in A} 2^{-\ell_a} = \sum_{a \in A} 2^{-\lceil -\log_2(p_a) \rceil} \leq \sum_{a \in A} 2^{\log_2(p_a)} = 1$ according to Kcraft inequality, we know there exists a binary tree with |A| leaves and the corresponding prefix tree has a string of length ℓ_a for $a \in A$.

Proofs of the Bounds for Huffman Coding (2/2)

Since we have argued that Huffman coding is optimal in terms of expected length, it is better than the prefix code tree we considered in last slides corresponding to $\ell_a = \lceil -\log_2(p_a) \rceil$. Thus:

$$L \leq \sum_{a \in A} p_a \ell_a$$

$$= \sum_{a \in A} p_a \lceil -\log_2(p_a) \rceil$$

$$\leq \sum_{a \in A} p_a (1 - \log_2 p_a)$$

$$= H(P) + 1$$

LZ and Variants

LZ77 and LZ78 are the two lossless data compression algorithms published in papers by Abraham Lempel and Jacob Ziv in 1977 and 1978.

LZ77 Family		1				
LZ78 Family	LZW	LZC	LZT	LZMW	LZJ	LZFG

Table: Variants Based LZ Algorithm

The "zip" and "unzip" use the LZH technique while UNIX's compress methods belong to the LZW and LZC classes.

Agenda

- 1. Show how the LZ78 algorithm works
- 2. Analysis of LZ78's performance
- 3. (If time allows) Most Popular Implementation:

Lemple-Ziv-Welch

LZ78 Algorithm

- Encoding
 - 1. new string \rightarrow dictionary (Call it phrase)
 - 2. encode new strings using phrase in the dictionary, then add it in dictionary as a Phrase, which can be used to express new strings in the future
- Decoding Just the reverse of Encoding.

Illustrated by an example taken from Prof. Peter Shor's Lecture notes:

http://www-math.mit.edu/~djk/18.310/Lecture-Notes/LZ-worst-case.pdf

Do it on board.

Performance of LZ78 - Worst Case

Suppose input string (of length n) can be partitioned into c(n) phrases. Then we will have at most

$$c(n)(\log_2 c(n) + \log_2 \alpha)$$

bits in the encoded data. (Denote $\alpha = |A|$, the size of Alphabet)

We can show that (Do it on the board):

$$c(n) \leq \frac{n}{\log_2 c(n) - 3}$$

Thus

worst-case-encoding
$$\leq n + 4c(n) = n + O(\frac{n}{\log_2 n})$$

This is asymptotically optimal, since there is no way to compress all strings of length n into fewer than n bits. (Why? $\log_2(2^n) = n$)

Performance of LZ78 - i.i.d Results

Assume in a message of legnth n, each letter (from alphabet A) come from i.i.d. multinomial distribution where x_i has probability p_i . Then LZ78 can achieve:

$$n \cdot H(p_1, p_2, ..., p_{|A|}) + O(n)$$

Shannon's Noiseless Coding Theorem

In the i.i.d. setting described above, the best we can achieve is

$$|A| \log_2 n + n \cdot H(P) + c \cdot n \cdot \epsilon$$

(c and ϵ appears for some technical reasons in the derivation, for details, refer Shor's)

The first term is neglibile for large n, and we can let ϵ go to zero as $n \to \infty$ to get compression to $n \cdot H(P) + O(n)$ bits.

Performance of LZ78 - i.i.d Derivation ¹

Assume we have a Source. It emits letter x_i (in alphabet A) with probability p_i . Running the Source n times give us a string of length n, whose every letter is independently & identically distributed.

This length n string x can be expressed as:

$$x = x_1 x_2 x_3 ... x_n$$

It is possible that $x_i = x_j$ for $i \neq j$.

Due to the i.i.d. assumption, the probability of seeing this sequence is the products of the probability of each letter:

$$Pr(x) = \prod_{i=1}^{n} p_{x_i}$$

¹From Prof. Peter Shor's notes

Now assume x is partintioned into c(x) phrases under LZ78:

$$x = x_1 x_2 ... x_n = y_1 y_2 y_3 ... y_{c(x)}$$

Then:

$$Pr(x) = \prod_{i=1}^{n} p_{x_i} = \prod_{i=1}^{c(x)} Pr(y_i)$$

Now, let's let c_{ℓ} be the number of phrases y_i of length ℓ . These are (because of the way Lempel-Ziv works) all distinct. Now we prove the following inequality which we will use later.

Ziv's Inequality

$$-\log_2(Pr(x)) \geq \sum_{\ell} c_{\ell} \log_2 c_{\ell}$$

Proof of Ziv's Inequality

$$Pr(x) = \prod_{\ell} \prod_{|y_{\ell}| = \ell} Pr(y_{\ell})$$

For a specific value of ℓ , $\sum_{|y_i|=\ell} Pr(y_i) \leq 1$. Thus:²

$$\prod_{|y_i|=\ell} Pr(y_i) \leq (\frac{1}{c_\ell})^{c_\ell}$$

Therefore:

$$egin{aligned} -\log_2(Pr(x)) &= -\log_2(\prod_{\ell} \prod_{|y_i|=\ell} Pr(y_i)) \ &= -\sum_{\ell} \log_2(\prod_{|y_i|=\ell} Pr(y_i)) \ &\geq -\sum_{\ell} \log_2(rac{1}{c_\ell})^{c_\ell} = \sum_{\ell} c_\ell \log_2 c_\ell \end{aligned}$$

²max the products of variables with fixed sum, Lagrange Multiplier method

Since we know that $\sum_{\ell} c_{\ell} = c(x)$, we have

$$egin{aligned} \sum_{\ell} c_{\ell} \log_2 c_{\ell} &= \sum_{\ell} c_{\ell} \left(\log_2 c(x) + \log_2 rac{c_{\ell}}{c(x)}
ight) \ &= c(x) \log_2 c(x) + c(x) \sum_{\ell} rac{c_{\ell}}{c(x)} \log_2 rac{c_{\ell}}{c(x)} \end{aligned}$$

If we regard $\frac{c_\ell}{c(x)}$ as a probability distribution on length ℓ , then

$$-\sum_{\ell} \frac{c_{\ell}}{c(x)} \log_2 \frac{c_{\ell}}{c(x)}$$

is the entropy for this distribution.

Validity:

Sum to 1:
$$\sum_{\ell} \frac{c_{\ell}}{c(x)} = 1$$
,

Limited Expecctation:
$$\sum_{\ell} \ell \frac{c_{\ell}}{c(x)} = \frac{n}{c_{\ell}}$$

The maximum possible entropy for a probability distribution on positive integers whose expected value is $\frac{n}{C_{\ell}}$ is $O(\log_2 \frac{n}{C_{\ell}})$. (WHY?)

" It is not hard to see why this should be true intuitively. If the expected value is $\frac{n}{c(x)}$, then most of the weight must be in the first $O(\frac{n}{c(x)})$ integers, and if a distribution is spread out over a sample space of size $O(\frac{n}{c(x)})$, the entropy is at most $O(\log_2 \frac{n}{c(x)})$."

In summary, we then have

$$-\log_2 Pr(x) \geq \sum_{\ell} c_{\ell} \log_2 c_{\ell} \geq c(x) \log_2 c(x) - c(x) O(\log_2 \frac{n}{c(x)})$$

i.e.

$$c(x)\log_2 c(x) \le -\log_2 Pr(x) + O(\log_2 \frac{n}{c(x)})$$

Derivation Ended

$$c(x)\log_2 c(x) \le -\log_2 Pr(x) + O(\log_2 \frac{n}{c(x)})$$

- $ightharpoonup c(x) \log_2 c(x)$ is approximately the length of encoded string.
- $ightharpoonup \log_2 Pr(x)$ is an approximation of entropy of input string
- ► $O(\log_2 \frac{n}{c(x)}) = O(\log \log n)$ since $\frac{n}{c(x)} = O(\log n)$

Performance of LZ78 - In Practice

Huffman algorithm (Unix "compact" program) Lempel-Ziv algorithm (Unix "compress" program)

* Size of compressed file as percentage of the original file

	Adaptive Huffman	Lempel-Ziv
LaTeX file	66%	44%
Speech file	65%	64%
Image file	94%	88%

Table: Huffman v.s. Lempel-Ziv

The large text file described in the Statistical Distributions of English Text (containing the seven classic books with a 27-letter English alphabet) has a compression ratio of 36.3%. This corresponds to a rate of 2.9 bits/character (Shannon: 2.3 bits/character)

Lempel-Ziv-Welch Compression Algorithm

In Terry Welch's paper "A Technique for High-Performance Data Compression" (1984), he proposed an improved variant of LZ78.

```
Dict.
                         Output
                         (0,a) 1 = a
   a a c a b c a b c b
                         (1,b)
   lalalclalb|clalb|clb|
a b a a c a b c a b c b
                         (1,a) 3 = aa
        cabcabcb
                         (0,c) 4 = c
a b a a c a b c a b c b
                        (2,c) 5 = abc
                        (5,b) 6 = abcb
a b a a c a b c a b c b
```

Figure: LZ78 Encoding Example

LZW do not output the letter (the second element in the output vector)

Lempel-Ziv-Welch Compression Algorithm: Encoding

Do it on the Board.

First of all, store the ASCII table in its Dictionary

Figure: LZW Encoding Example

Lempel-Ziv-Welch Compression Algorithm: Decoding

Figure: LZW Encoding Example ³

³Figures are from Prof. Paolo Ferragina, Algoritmiper's notes

Useful Resources

1. Compression Algorithms: Huffman and Lempel-Ziv-Welch (LZW)

http://web.mit.edu/6.02/www/s2012/handouts/3.pdf

2. Huffman Coding efficiency

http://math.mit.edu/~shor/18.310/huffman.pdf

3. Lempel-Ziv worst case by Shor

http://www-math.mit.edu/~djk/18.310/Lecture-Notes/LZ-worst-case.pdf

4. Lempel-Ziv average case by Shor

http://math.mit.edu/~shor/18.310/lempel_ziv_notes.pdf

5. Shannon's Noisless Coding Theorem

SBU: https://www.math.stonybrook.edu/~tony/archive/312s09/info6plus.pdf

MIT: http://math.mit.edu/~shor/18.310/noiseless-coding

6. Lempel-Ziv-Welch Pseudocode

http://www.geeksforgeeks.org/lzw-lempel-ziv-welch-compression-technique/

7. Illustration for LZ

http://www.data-compression.com/lossless.html

8. LZ78 v.s. LZW

http://pages.di.unipi.it/ferragina/Teach/InformationRetrieval/3-Lecture.pdf