# **IMPLEMENTATION OF SGD**

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [2]:
from sklearn.datasets import load boston
dataset= load_boston()
In [3]:
dataset.data.shape
Out[3]:
(506, 13)
In [4]:
dataset.feature_names
Out[4]:
array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
In [5]:
import pandas as pd
df = pd.DataFrame(dataset.data, columns = dataset.feature_names)
df.head()
Out[5]:
```

|   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      | LSTAT |
|---|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|-------|
| 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 | 4.98  |
| 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 | 9.14  |
| 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 | 4.03  |
| 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 | 2.94  |
| 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 | 5.33  |

```
In [6]:
```

df.describe()

### Out[6]:

|       | CRIM       | ZN         | INDUS      | CHAS       | NOX        | RM         | AGE        | DIS        | RAD        | TAX        | PTR    |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------|
| count | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.00 |
| mean  | 3.613524   | 11.363636  | 11.136779  | 0.069170   | 0.554695   | 6.284634   | 68.574901  | 3.795043   | 9.549407   | 408.237154 | 18.45  |
| std   | 8.601545   | 23.322453  | 6.860353   | 0.253994   | 0.115878   | 0.702617   | 28.148861  | 2.105710   | 8.707259   | 168.537116 | 2.16   |
| min   | 0.006320   | 0.000000   | 0.460000   | 0.000000   | 0.385000   | 3.561000   | 2.900000   | 1.129600   | 1.000000   | 187.000000 | 12.60  |
| 25%   | 0.082045   | 0.000000   | 5.190000   | 0.000000   | 0.449000   | 5.885500   | 45.025000  | 2.100175   | 4.000000   | 279.000000 | 17.40  |

```
0.256510
                  0.000000
                            9.690000
                                      0.08448
                                                0.538000
                                                         6.208500
                                                                  77.50000
                                                                             3.207450
                                                                                       5.00000
 50%
 75%
        3.677083
                 12.500000
                           18.100000
                                      0.000000
                                               0.624000
                                                         6.623500
                                                                  94.075000
                                                                             5.188425
                                                                                      24.000000
                                                                                               666.000000
                                                                                                          20.20
                                                                            12.126500
       88.976200 100.000000
                          27.740000
                                                         8.780000 100.000000
                                                                                      24.000000 711.000000
                                                                                                         22.00
  max
                                      1.000000
                                               0.871000
4
                                                                                                            Þ
In [7]:
df['price'] = dataset.target
In [8]:
X = df.drop('price', axis=1)
y = df['price']
In [10]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train_1, y_test_1 = train_test_split(X, y, test_size = 0.3, random_state = 42)
print(X_train.shape)
print(X test.shape)
print(y train 1.shape)
print(y_test_1.shape)
(354, 13)
(152, 13)
(354,)
(152,)
In [11]:
#Standardize the values
from sklearn.preprocessing import StandardScaler
sc_X_1 = StandardScaler()
X_train_1 = sc_X_1.fit_transform(X_train)
X \text{ test } 1 = \text{sc } X \text{ 1.transform}(X \text{ test})
In [13]:
print(X train 1.shape)
print(y_train_1.shape)
(354, 13)
(354,)
In [14]:
X train 1
Out[14]:
array([[-0.41425879, -0.50512499, -1.29214218, ..., 0.18727079,
          0.39651419, -1.01531611],
        [-0.40200818, -0.50512499, -0.16208345, ..., -0.21208981,
          0.3870674 , -0.05366252],
        [-0.39721053, -0.50512499, -0.60948856, ..., -0.16771641,
          0.42854113, -0.31132373],
        [-0.41604586, 3.03838247, -1.3166773, ..., -0.56707702,
          0.35987906, -0.90549329],
        [0.92611293, -0.50512499, 1.00549958, ..., 0.8528718,
         -2.87841346, 1.52750437],
        [-0.39030549, -0.50512499, -0.37135358, \ldots, 1.16348561,
         -3.32828832, -0.25218837]])
```

# 1. By Sklearn

```
In [15]:
```

```
# code source:https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-bosto
n-housing-dataset-cd62a80775ef
from sklearn.linear_model import LinearRegression

lm = LinearRegression()
lm.fit(X_train_1, y_train_1)

y_pred = lm.predict(X_test_1)

plt.scatter(y_test_1, y_pred)
plt.xlabel("Prices: $Y_i$")
plt.ylabel("Predicted prices: $\hat{Y}_i$")
plt.title("Prices vs Predicted prices: $Y_i$ vs $\hat{Y}_i$")
plt.show()
```



# 2. From scratch

## In [16]:

Χ

Out[16]:

|   |     | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      | LSTAT |
|---|-----|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|-------|
|   | 0   | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 | 4.98  |
|   | 1   | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 | 9.14  |
|   | 2   | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 | 4.03  |
|   | 3   | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 | 2.94  |
|   | 4   | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 | 5.33  |
|   |     |         |      |       |      |       |       |      |        |     |       |         |        |       |
| 5 | 501 | 0.06263 | 0.0  | 11.93 | 0.0  | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0    | 391.99 | 9.67  |
| 5 | 502 | 0.04527 | 0.0  | 11.93 | 0.0  | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0    | 396.90 | 9.08  |
| 5 | 503 | 0.06076 | 0.0  | 11.93 | 0.0  | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0    | 396.90 | 5.64  |
| 5 | 504 | 0.10959 | 0.0  | 11.93 | 0.0  | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0    | 393.45 | 6.48  |
| 5 | 505 | 0.04741 | 0.0  | 11.93 | 0.0  | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0    | 396.90 | 7.88  |

506 rows × 13 columns

## In [18]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train_2, y_test_2 = train_test_split(X, y, test_size = 0.3, random_state = 42)
print(X_train.shape)
print(X_test.shape)
print(y_train_2.shape)
print(y_test_2_shape)
```

```
brinc(A rest 7 . smake)
(354, 13)
(152, 13)
(354,)
(152,)
In [19]:
X train.head(2)
Out[19]:
        CRIM ZN INDUS CHAS NOX
                                           RM AGE
                                                         DIS RAD TAX PTRATIO
                                                                                        B LSTAT
   5 0.02985 0.0
                              0.0 0.458 6.430
                                                58.7 6.0622
                                                               3.0 222.0
                                                                                18.7 394.12
                                                                                                5.21
                      2.18
 116 0.13158 0.0
                    10.01
                              0.0 0.547 6.176 72.5 2.7301
                                                               6.0 432.0
                                                                                17.8 393.30
                                                                                              12.04
In [20]:
X train.index
Out[20]:
Int64Index([ 5, 116, 45, 16, 468, 360, 3, 405, 185, 60,
                121, 505, 20, 188, 71, 106, 270, 348, 435, 102],
               dtype='int64', length=354)
In [22]:
 #Standardizing
from sklearn.preprocessing import StandardScaler
sc X 2 = StandardScaler()
X train 2 = sc X 2.fit transform(X train)
X_{test_2} = sc_X_2.transform(X_{test_2})
In [23]:
X train 2 = pd.DataFrame(X train 2, columns=dataset.feature names, index= X train.index)
X train 2.head(3)
Out[23]:
         CRIM
                     ΖN
                            INDUS
                                      CHAS
                                                  NOX
                                                             RM
                                                                      AGE
                                                                                DIS
                                                                                         RAD
                                                                                                    TAX PTRATIO
                                                                                                                               LSTAT
   \begin{smallmatrix} 5 \\ 0.414259 \end{smallmatrix} 0.505125 \begin{smallmatrix} 1.292142 \end{smallmatrix} 0.281546 \begin{smallmatrix} 0.851085 \end{smallmatrix} 0.145264 \begin{smallmatrix} 0.365584 \end{smallmatrix} 1.081628 \begin{smallmatrix} 1.081628 \\ 0.746179 \end{smallmatrix} 1.112790 \begin{smallmatrix} 0.187271 \\ 0.396514 \end{smallmatrix} 1.015316
 0.212090 0.387067 0.053663
  4
In [25]:
import warnings
warnings.filterwarnings('ignore')
training data 2 = X \text{ train } 2
training_data_2['price'] = y_train_2
training_data_2.head(5)
Out[25]:
         CRIM
                     ΖN
                            INDUS
                                      CHAS
                                                  NOX
                                                                                         RAD
                                                                                                    TAX PTRATIO
                                                                                                                               LSTAT
   \begin{smallmatrix} 5 \\ 0.414259 \end{smallmatrix} 0.505125 \begin{smallmatrix} 1.292142 \end{smallmatrix} 0.281546 \begin{smallmatrix} 0.851085 \end{smallmatrix} 0.145264 \begin{smallmatrix} 0.365584 \end{smallmatrix} 1.081628 \begin{smallmatrix} 0.746179 \end{smallmatrix} 1.112790 \begin{smallmatrix} 0.187271 \end{smallmatrix} 0.396514 \begin{smallmatrix} 1.01531628 \end{smallmatrix} 1.01531628
```

```
TAX
0 150088
    CRIM
          ΖN
              INDUS
                   CHAS
                         NOX
                               RM
                                         DIS
                                              RAD
                                                      PTRATIQ
                                                                 LSTAT
                                                           0 387067
<u>116</u> 0.402008 0.505125 0.162083 0.281546 0.087967
                            0.208401
                                            0.398464
                                                      0.212090
                                       0.487876
                                                                 0.053663
1.207859 0.312760 0.822422
16 0.290936 0.505125 0.431970 0.281546 0.165136 0.543965 1.429789 0.345133 0.630274 0.601625
```

In [26]:

```
def cost_function(weights, bias, features, target):
   totalError = 0
   for i in range(len(features)):
        x = features
        y = target
        totalError += (y[:,1] - np.dot(x[i], weights) + bias)**2
        return totalError/len(x)
```

#### In [27]:

```
#https://github.com/premvardhan/Stochastic-Gradient-descent-in-
python/blob/master/LinearRegression_on_bostan_house_price_using_SGD_reopen.ipynb
def ImplementSGD(w0, b0, training_data, X_test, y_test, learning_rate, iterations, m):
   loss train = []
   loss test = []
   grad W = 0
   grad_b = 0
   for iter in range(iterations):
       #training batch
       train sample = training data.sample(m)
       y = np.asmatrix(train_sample['price'])
       x = np.asmatrix(train_sample.drop(['price'], axis=1))
       for i in range(len(x)):
            grad W += np.dot(-2*x[i].T, (y[:,i] - np.dot(x[i], w0) + b0))
            grad b += -2*(y[:,i] - (np.dot(x[i] , w0) + b0))
            w1 = w0 - learning rate * grad W
            b1 = b0 - learning_rate * grad_b
       if (w0==w1).all():
            break
        else:
           w0 = w1
            b0 = b1
            learning rate = learning rate/2
       error train = cost function (w0, b0, x, y)
       loss train.append(error train)
        error_test = cost_function(w0, b0, np.asmatrix(X_test), np.asmatrix(y test))
       loss test.append(error test)
   return w0, b0, loss train, loss test
```

#### In [531]:

```
#w0 = np.asmatrix(np.random.rand(13)).T
#b0 = np.random.rand()
w0 = np.asmatrix(np.zeros(13)).T
b0 = 0
W,b, loss_train, loss_test = ImplementSGD(w0, b0, training_data_2, X_test_2, y_test_2, 0.001, 2500, 177)
```

#### In [532]:

```
print(W)
print(b)
```

```
[[ 0.39757704]
  [ 0.49149552]
  [-0.14612561]
  [ 0.80366253]
  [ 0.39242645]
  [ 3.08664273]
  [-0.2078443 ]
  [-1.17380315]
  [ 0.83002523]
  [ 0.35558206]
  [-0.93041063]
  [ 1.73416789]
  [-4.00053788]]
  [[23.18309227]]
```

## Predict the test data using Implemented SGD Weights and bias

```
In [30]:
```

```
def predict(testing_data, weights , bias):
    y_pred = []
    for i in range(testing_data.shape[0]):
        x = np.asmatrix(testing_data)
        y = (np.dot(x[i] , weights) + bias)
        #print(y.shape)
        y_pred.append(y)

    return np.array(y_pred)
```

```
In [533]:
```

```
y_pred_test = predict(X_test_2, W,b)
```

```
In [534]:
```

```
y_pred_test = y_pred_test.reshape(-1,1)
```

### Comparing both the results

```
In [34]:
```

```
# RMSE for Sklearn library predictions
from sklearn.metrics import mean_squared_error
#from math import sqrt
MSE_1 = mean_squared_error(y_test_1, y_pred)
print('Mean_Squared_Error:', MSE_1)
```

Mean Squared Error: 21.51744423117721

#### In [424]:

```
#RMSE for our own implementations of SGD
from sklearn.metrics import mean_squared_error
#from math import sqrt
MSE_2 = mean_squared_error(y_test_2, y_pred_test)
print('Mean Squared Error:', MSE_2)
```

Mean Squared Error: 25.360046548960746

# Note:

• I can't reduce much more of MSE\_2 even after i changed different iterations, learning rate and epochs.

III [J/].

```
fig = plt.figure(figsize=(10,5))
ax1 = fig.add_subplot(121)
sns.distplot(y_pred)
plt.title('Distribution of Y_pred predicted by SKLearn')

ax2 = fig.add_subplot(122)
sns.distplot(y_pred_test)
plt.title('Distribution of Y_pred predicted by ImplementSGD')
```

#### Out[37]:

Text(0.5, 1.0, 'Distribution of Y pred predicted by ImplementSGD')



# **Summary:**

- It looks like the distribution of both the data are in almost similar and their mean is a lso at around 20 for both of them

# **Conclusion:**

## In [425]:

```
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = ['Model', 'Root Mean Squared Error']
x.add_row(['Sklearn', str('%4f'%MSE_1)])
x.add_row(['SGD from scratch', str('%4f'%MSE_2)])
print(x)
```

| Model            | Root Mean Squared Error |
|------------------|-------------------------|
| Sklearn          | 21.517444               |
| SGD from scratch | 25.360046               |

• We can see that the RMSE for Sklearn prediction is: 21.51 and RMSE for our own implemented SGD is 25.36 and since it almost close to each other we can say that our SGD implementation working good