Complex Exponentials

R. Mok BSc(AdvMath), MTeach, GradCertDS

AISNSW Mathematics Heads of Department Conference, October 2022

Table of Contents

- Opening Question
- 2 Revisiting De Moivre's Theorem
- 3 Euler's Formula
- What is an exponential?
- Bibliography

Table of Contents

- Opening Question
- 2 Revisiting De Moivre's Theorem
- Buler's Formula
- What is an exponential?
- Bibliography

Opening Question

Here's a few questions to warm you up for the session to see if you're awake!

- Solve for $x \in \mathbb{N} : x^2 = 4$ A) x = 2 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$
- ② Solve for $x \in \mathbb{R} : x^2 = 4$ A) x = 2 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$
- **3** Solve for $x \in \mathbb{C} : x^2 = 4$ A) x = 2 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$

4 / 29

R. Mok Complex Exponentials October 2022

Opening Question

Here's a few questions to warm you up for the session to see if you're awake!

- Solve for $x \in \mathbb{N} : x^2 = 4$ A) x = 2 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$
- ② Solve for $x \in \mathbb{R} : x^2 = 4$ A) x = 2 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$
- **3** Solve for $x \in \mathbb{C} : x^2 = 4$ A) x = 2 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$

Answers:

- A, B and D
- 2 C
- B and C

Table of Contents

- Opening Question
- 2 Revisiting De Moivre's Theorem
- Buler's Formula
- What is an exponential?
- Bibliography

De Moivre's Theorem (DMT)[1]

$$[r(\cos\theta+i\sin\theta)]^n=r^n(\cos(n\theta)+i\sin(n\theta))$$

R. Mok Complex Exponentials

De Moivre's Theorem (DMT)[1]

$$[r(\cos\theta+i\sin\theta)]^n=r^n(\cos(n\theta)+i\sin(n\theta))$$

Pythagoras' Theorem

$$c^2 = a^2 + b^2$$

De Moivre's Theorem (DMT)[1]

For all integers n

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Pythagoras' Theorem

A triangle with side lengths a, b, c is right angled if and only if

$$c^2 = a^2 + b^2$$

De Moivre's Theorem (DMT)[1]

For all integers n

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

This is to ensure the exponential of a complex number yields one value for all arguments of that complex number.

Pythagoras' Theorem

A triangle with side lengths a, b, c is right angled if and only if

$$c^2 = a^2 + b^2$$

October 2022

6/29

R. Mok Complex Exponentials

Exploring De Moivre's Theorem with DESMOS

https://www.desmos.com/calculator/igqisujucx

Extending De Moivre's Theorem to Rational Exponents

If we want to extend DMT to rational exponents, this happens:

Example

$$1 = (\cos 0 + i \sin 0) \text{ or } (\cos 2\pi + i \sin 2\pi)$$

$$1^{\frac{1}{2}} = (\cos 0 + i \sin 0)^{\frac{1}{2}} \text{ or } (\cos 2\pi + i \sin 2\pi)^{\frac{1}{2}}$$

$$= \cos 0 + i \sin 0 \text{ or } \cos \pi + i \sin \pi$$

$$= 1 \text{ or } -1$$

Extending De Moivre's Theorem to Rational Exponents

If we want to extend DMT to rational exponents, this happens:

Example

$$1 = (\cos 0 + i \sin 0) \text{ or } (\cos 2\pi + i \sin 2\pi)$$

$$1^{\frac{1}{2}} = (\cos 0 + i \sin 0)^{\frac{1}{2}} \text{ or } (\cos 2\pi + i \sin 2\pi)^{\frac{1}{2}}$$

$$= \cos 0 + i \sin 0 \text{ or } \cos \pi + i \sin \pi$$

$$= 1 \text{ or } -1$$

Exponentials of complex numbers are multi-valued functions¹.

R. Mok Complex Exponentials October 2022

8 / 29

¹HSC uses the terminology 'one-to-many' relation.

Roots of Unity

This process is essentially how Roots of Unity are found:

Example

$$egin{aligned} &z^n=1\ &=(\cos(2k\pi)+i\sin(2k\pi)) ext{ for } k\in\mathbb{Z}\ &z=\cos\left(rac{2k\pi}{n}
ight)+i\sin\left(rac{2k\pi}{n}
ight) ext{ by the extended DMT} \end{aligned}$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

9 / 29

R. Mok Complex Exponentials October 2022

Opening Question

Solve for $x \in \mathbb{C}$: $x^2 = 4$

A)
$$x = 2$$
 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$

R. Mok

Opening Question

Solve for $x \in \mathbb{C}$: $x^2 = 4$

A)
$$x = 2$$
 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$

Note:
$$\sqrt{4} = 2$$
, $4^{\frac{1}{2}} = \pm 2$

R. Mok

Opening Question

Solve for $x \in \mathbb{C} : x^2 = 4$

A)
$$x = 2$$
 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$

Note: $\sqrt{4} = 2$, $4^{\frac{1}{2}} = \pm 2$

 $\sqrt{\cdot}:\mathbb{C}\to\mathbb{C}$ is single-valued and the input is restricted to the principal argument. However, the exponential is multi-valued.

October 2022

R. Mok

Opening Question

Solve for $x \in \mathbb{C}$: $x^2 = 4$

A)
$$x = 2$$
 B) $x = 4^{\frac{1}{2}}$ C) $x = \pm 2$ D) $x = \sqrt{4}$

Note: $\sqrt{4} = 2$, $4^{\frac{1}{2}} = \pm 2$

 $\sqrt{\cdot}:\mathbb{C}\to\mathbb{C}$ is single-valued and the input is restricted to the principal argument. However, the exponential is multi-valued.

What even is an exponential then? More on that later...

October 2022

10 / 29

R. Mok Complex Exponentials

Complex Exponentials with Irrationals

• Rational exponents m/n divide the revolutions of arguments nicely such that their results repeat themselves with periodicity (at most) n.

Complex Exponentials with Irrationals

- Rational exponents m/n divide the revolutions of arguments nicely such that their results repeat themselves with periodicity (at most) n.
- Irrational exponents do not divide the revolutions nicely and hence have infinite values.

Complex Exponentials with Irrationals

- Rational exponents m/n divide the revolutions of arguments nicely such that their results repeat themselves with periodicity (at most) n.
- Irrational exponents do not divide the revolutions nicely and hence have infinite values.

Figure: $1^{\frac{1}{5}}$ vs. irrational exponents such as 1^{π} , $(-1)^{\sqrt{2}}$, etc

• De Moivre's Theorem (DMT) for integer exponents yields single values.

- De Moivre's Theorem (DMT) for integer exponents yields single values.
- Extending DMT to rational exponents m/n yields (at most) n values.

- De Moivre's Theorem (DMT) for integer exponents yields single values.
- Extending DMT to rational exponents m/n yields (at most) n values.
- Extending DMT to irrational exponents yields infinite values.

- De Moivre's Theorem (DMT) for integer exponents yields single values.
- Extending DMT to rational exponents m/n yields (at most) n values.
- Extending DMT to irrational exponents yields infinite values.
- What's next? Complex exponents.

Table of Contents

- Opening Question
- 2 Revisiting De Moivre's Theorem
- Selection Euler's Formula
- What is an exponential?
- Bibliography

Euler's Formula

HSC Dotpoint MEX-N1.3 introduces Euler's Formula [1] which was not in the old syllabus:

Euler's Formula

$$e^{ix} = \cos x + i \sin x$$
 for real x

Euler's Formula

HSC Dotpoint MEX-N1.3 introduces Euler's Formula [1] which was not in the old syllabus:

Euler's Formula

$$e^{ix} = \cos x + i \sin x$$
 for real x

This opens up new avenues of discussion that were previously not possible in the old syllabus...

Euler's Formula

HSC Dotpoint MEX-N1.3 introduces Euler's Formula [1] which was not in the old syllabus:

Euler's Formula

$$e^{ix} = \cos x + i \sin x$$
 for real x

This opens up new avenues of discussion that were previously not possible in the old syllabus...

... such as:

De Moivre's Theorem Restated

$$(e^{ix})^n = e^{inx}$$

with the same discussions about n as in the previous section.

14 / 29

R. Mok Complex Exponentials October 2022

Complex Logarithms

Euler's Formula opens up discussion about:

$$z = |z|e^{i\arg z}$$

$$\log z = \log(|z|e^{i\arg z})$$

15/29

Complex Logarithms

Euler's Formula opens up discussion about:

$$z = |z|e^{i\arg z}$$

$$\log z = \log(|z|e^{i\arg z})$$

Does such a function log : $\mathbb{C}\setminus\{0\}\to\mathbb{C}$ that is the inverse of complex exponentiation exist? Yes it does - proof beyond the time we have now.

15/29

R. Mok Complex Exponentials October 2022

Complex Logarithms

Euler's Formula opens up discussion about:

$$z = |z|e^{i\arg z}$$

$$\log z = \log(|z|e^{i\arg z})$$

Does such a function log : $\mathbb{C}\setminus\{0\}\to\mathbb{C}$ that is the inverse of complex exponentiation exist? Yes it does - proof beyond the time we have now.

Complex Logarithm [2, p. 23]

If z is a complex number \neq 0, then there exist complex numbers ω such that $e^{\omega}=z$ where ω is in the form $\log_e|z|+i\mathrm{Arg}z+2n\pi i$ where $n\in\mathbb{Z}$.

15/29

R. Mok Complex Exponentials October 2022

Complex Exponential Equations

Example

Solve for $z \in \mathbb{C}$: $e^z = -1$.

Complex Exponential Equations

Example

Solve for $z \in \mathbb{C}$: $e^z = -1$.

$$z = \log(-1)$$

$$= \log_e |-1| + i \arg(-1)$$

$$= 0 + i \arg(-1)$$

$$= i(2k+1)\pi \text{ for } k \in \mathbb{Z}$$

16 / 29

R. Mok Complex Exponentials October 2022

Complex Exponential Equations

Example

Solve for $z \in \mathbb{C}$: $e^z = -1$.

$$z = \log(-1)$$

= $\log_e |-1| + i \arg(-1)$
= $0 + i \arg(-1)$
= $i(2k + 1)\pi$ for $k \in \mathbb{Z}$

If we test any of these solutions such as $z_1 = i3\pi$:

$$e^{z_1} = e^{i3\pi} = \cos(3\pi) + i\sin(3\pi) = -1$$

Hence, $i3\pi$ is indeed a solution to $e^z = -1$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

R. Mok Complex Exponentials

Complex Trigonometric Equations

It can be shown using Euler's Formula that:

Trigonometric Functions

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Complex Trigonometric Equations

Example

Solve for $z \in \mathbb{C}$: $\sin z = 2$

Complex Trigonometric Equations

Example

Solve for
$$z \in \mathbb{C}$$
: $\sin z = 2$

$$\begin{split} \frac{e^{iz} + e^{-iz}}{2} &= 2 \\ e^{iz} + e^{-iz} &= 4 \\ e^{2iz} - 4e^{iz} + 1 &= 0 \\ e^{iz} &= \frac{4 \pm \sqrt{4^2 - 4(1)(1)}}{2} = 2 \pm \sqrt{3} \\ iz &= \log_e(2 \pm \sqrt{3}) + i2k\pi \text{ for } k \in \mathbb{Z} \\ z &= \frac{1}{i} \log_e(2 \pm \sqrt{3}) + 2k\pi \end{split}$$

R. Mok Complex Exponentials October 2022 18 / 29

Complex Exponents

Example

Evaluate i^i .

Complex Exponents

Example

Evaluate ii.

```
i^i = e^{\log i^i}

= e^{i \log i}

= e^{i(\log_e |i| + i \arg i)}

= e^{i^2 \arg i}

= e^{-1(\frac{\pi}{2} + 2k\pi)} for k \in \mathbb{Z}

= \dots, 111.3177784899 \dots, 0.2078795764 \dots, 0.0003882032039 \dots, \dots
```

4□ > 4□ > 4□ > 4 = > 4 = > = 90

More examples

Example

- Evaluate 1ⁱ.
- Evaluate $(-1)^{\sqrt{2}}$.

More examples

Example

- Evaluate 1ⁱ.
- Evaluate $(-1)^{\sqrt{2}}$.

Answers:

$$1^i=e^{-2k\pi}$$
 for $k\in\mathbb{Z}$ $(-1)^{\sqrt{2}}=e^{\sqrt{2}i\pi(2k+1)}$ for $k\in\mathbb{Z}$

R. Mok

Table of Contents

- Opening Question
- 2 Revisiting De Moivre's Theorem
- Buler's Formula
- 4 What is an exponential?
- Bibliography

• Stage 4: A power is how many times that base multiplies itself.

$$2^3 = 2 \times 2 \times 2 = 8$$

22 / 29

• Stage 4: A power is how many times that base multiplies itself.

$$2^3 = 2 \times 2 \times 2 = 8$$

Problem: How can $2^{\frac{-1}{2}}$ mean $\underbrace{2 \times \ldots \times 2}$?

 $\frac{-1}{2}$ times

R. Mok Complex Exponentials October 2022 22 / 29

Stage 4: A power is how many times that base multiplies itself.

$$2^3 = 2 \times 2 \times 2 = 8$$

Problem: How can $2^{\frac{-1}{2}}$ mean $\underbrace{2 \times \ldots \times 2}_{\frac{-1}{2} \text{ times}}$?

• Stage 5: Extend the concept of exponentials continuously with index laws that fixes this problem.

R. Mok Complex Exponentials October 2022 22 / 29

• Stage 4: A power is how many times that base multiplies itself.

$$2^3 = 2 \times 2 \times 2 = 8$$

Problem: How can $2^{\frac{-1}{2}}$ mean $\underbrace{2 \times \ldots \times 2}_{\frac{-1}{2} \text{ times}}$?

- Stage 5: Extend the concept of exponentials continuously with index laws that fixes this problem.
- Stage 6: The number e is introduced in the topic of calculus. Jacob Bernoulli derived this value in 1683 when considering the compound interest problem of compounding a principal amount of \$1 at an ever increasing compounding period over a year. He arrived at the discovery:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

4□ > 4□ > 4 = > 4 = > = 90

Exponential Function

е

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

if and only if

$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

The proof uses concepts in Binomial Theorem and Analysis [3, pp. 64-65]. It can also be shown (using similar methods as in the proof) that:

Exponential Function [3, p. 174]

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 釣 Q C

Plots of increasing n for $(1 + \frac{x}{n})^n$

DESMOS Interactive:

https://www.desmos.com/calculator/deicpgcinp

Plots of $(1 + \frac{x}{n})^n$ for x = 1 or $x = i\pi$ and differing values of n are shown below:

Figure: $(1 + \frac{x}{3})^n$ for n = 1, 2, 3

R. Mok

Plots of increasing n for $(1 + \frac{x}{n})^n$

DESMOS Interactive:

https://www.desmos.com/calculator/deicpgcinp

Plots of $(1 + \frac{x}{n})^n$ for x = 1 or $x = i\pi$ and differing values of n are shown below:

Figure: $(1 + \frac{x}{10})^n$ for n = 1, 2, ..., 10

25/29

Plots of increasing *n* for $(1 + \frac{x}{n})^n$

DESMOS Interactive:

https://www.desmos.com/calculator/deicpgcinp

Plots of $(1 + \frac{x}{n})^n$ for x = 1 or $x = i\pi$ and differing values of n are shown below:

Figure: $(1 + \frac{x}{1000})^n$ for n = 1, 2, ..., 1000

26 / 29

What is an exponential?

What is an exponential?

What does a^b really mean?

 a^b is equivalent to $\exp(b \log a)$ [4, p. 46].

Ahlfors [4] adopts the convention that if a is restricted to positive numbers, $\log a$ shall be real (unless the contrary is stated) and a^b has a single value. Otherwise, $\log a$ is the complex logarithm and a^b has in general infinitely many values.

R. Mok Complex Exponentials October 2022 27 / 29

What is an exponential?

What does a^b really mean?

 a^b is equivalent to $\exp(b \log a)$ [4, p. 46].

Ahlfors [4] adopts the convention that if a is restricted to positive numbers, $\log a$ shall be real (unless the contrary is stated) and a^b has a single value. Otherwise, $\log a$ is the complex logarithm and a^b has in general infinitely many values.

We already need, and use, this definition in deriving Calculus results such as:

$$y = a^{x}$$

$$= e^{\log_{e}(a^{x})}$$

$$= e^{x \log_{e}(a)}$$

$$\frac{dy}{dx} = \log_{e}(a)e^{x \log_{e}(a)} = \log_{e}(a)a^{x}$$

Table of Contents

- Opening Question
- 2 Revisiting De Moivre's Theorem
- Buler's Formula
- What is an exponential?
- Bibliography

Bibliography

- [1] NSW Education Standards Authority, *Mathematics extension 2 stage 6 syllabus*, 2017.
- [2] T. M. Apostol, *Mathematical Analysis*, 2nd ed. Addison-Wesley, 1974, p. 23, ISBN: 0-201-00288-4.
- [3] W. Rudin, *Principles of Mathematical Analysis*, 3rd ed. McGraw-Hill, Inc., 1976, pp. 64–65, 178, ISBN: 0-07-054235-X.
- [4] L. V. Ahlfors, *Complex Analysis*, 3rd ed. McGraw-Hill, Inc., 1979, p. 46, ISBN: 0-07-000657-1.

Source files and PDF for this presentation can be found on: https://github.com/moksifu/complex_exponentials under the MIT Licence.

29 / 29