Estruturas de Dados

Victor Machado da Silva, MSc victor.silva@professores.ibmec.edu.br

Índice

- Apresentação do curso
- Algoritmos
- Complexidade de Algoritmos
- <u>Listas Lineares</u>
- Pilhas e Filas
- Listas Encadeadas
- Árvores
- Árvores Binárias de Busca
- Árvores Balanceadas
- Algoritmos de Ordenação
- Listas de Prioridades

Apresentação do curso

Apresentação do curso

- Contato: victor.silva@professores.ibmec.edu.br
- Grupo no Whatsapp: https://chat.whatsapp.com/IqnSl5PTiVBI1WNwMpXxSS
- Material: <u>www.victor0machado.github.io</u>

Apresentação do curso

- Avaliação
 - Proporção
 - AC (20%): atividades em sala
 - AP1 (40%): projeto + prova objetiva (sem consulta)
 - AP2 (40%): projeto + prova objetiva (sem consulta)
 - Detalhes das entregas
 - Atividades da AC individuais ou em dupla
 - Projetos da AP1 e AP2 em grupos, mínimo 2 e máximo 3 pessoas

Algoritmos

Introdução

Um algoritmo é um processo sistemático para a resolução de um problema. O desenvolvimento de algoritmos é particularmente importante para problemas a serem solucionados em um computador, pela própria natureza do instrumento utilizado.

Um algoritmo computa uma saída, o resultado do problema, a partir de uma entrada, as informações inicialmente conhecidas e que permitem encontrar a solução do problema. Durante o processo de computação o algoritmo manipula dados, gerados a partir da sua entrada.

O estudo de estruturas de dados não pode ser desvinculado de seus aspectos algorítmicos. A escolha correta da estrutura adequada a cada caso depende diretamente do conhecimento de algoritmos para manipular a estrutura de maneira eficiente.

Apresentação dos algoritmos

As convenções seguintes serão utilizadas com respeito à linguagem:

- O início e o final de cada bloco são determinados por indentação, isto é, pela posição da margem esquerda. Se uma certa linha do algoritmo inicia um bloco, ele se estende até a última linha seguinte, cuja margem esquerda se localiza mais à direita do que a primeira do bloco;
- A declaração de atribuição é indicada pelo símbolo :=;
- As declarações seguintes são empregadas com significado semelhante ao usual:

```
se... então
se... senão
enquanto... faça
para... faça
pare
```

 Variáveis simples, vetores, matrizes e registro são considerados como tradicionalmente em linguagens de programação. Os elementos de vetores e matrizes são identificados por índices entre colchetes.

```
para i := 1, ..., |__n/2__|
  temp := S[i]
  S[i] := S[n - i + 1]
  S[n - i + 1] := temp
```


Aplicações

- Escreva os algoritmos, em pseudocódigo, para os problemas abaixo:
 - https://br.spoj.com/problems/TOMADA13/
 - https://br.spoj.com/problems/METEORO/
 - https://br.spoj.com/problems/JDESAF12/
 - https://br.spoj.com/problems/CARTAS14/
 - https://br.spoj.com/problems/ENCOTEL/

Recursividade

Um tipo especial de procedimento será utilizado, algumas vezes, ao longo do curso. É aquele que contém, em sua descrição, uma ou mais chamadas a si mesmo. Um procedimento dessa natureza é denominado **recursivo**.

Naturalmente, todo procedimento, recursivo ou não, deve possuir pelo menos uma chamada proveniente de um local exterior a ele. Essa chamada é denominada **externa**. Um procedimento não recursivo é, pois, aquele em que todas as chamadas são externas.

O exemplo clássico mais simples de recursividade é o cálculo do fatorial de um inteiro $n \ge 0$:

```
função fat(i)
    fat(i) := se i <= 1 então 1 senão i * fat(i - 1)

fat[0] := 1
para j := 1, ..., n faça
    fat[j] := j * fat[j - 1]</pre>
```


Aplicações

- Escreva os algoritmos, em pseudocódigo, para os problemas abaixo:
 - https://br.spoj.com/problems/F91/
 - https://br.spoj.com/problems/RUM09S/
 - https://br.spoj.com/problems/PARIDADE/

Recursividade

Um exemplo conhecido, onde a solução recursiva é comum e extremamente mais simples que a solução não-recursiva, é o do <u>Problema da Torre de Hanói</u>.

Recursividade

A solução do problema é descrita a seguir. Para n>1, o pino-trabalho deve ser utilizado como área de armazenamento temporário. O raciocínio utilizado para resolver o problema é semelhante ao de uma prova matemática por indução. Suponha que se saiba como resolver o problema até n-1 discos, n>1, de forma recursiva. A extensão para n discos pode ser obtida pela realização dos seguintes passos:

- Resolver o problema da Torre de Hanói para os n-1 discos do topo do pino-origem A, supondo que o pino-destino seja C e o trabalho seja B;
- Mover o n-ésimo pino (maior de todos) de A para B;
- Resolver o problema da Torre de Hanói para os n-1 discos localizados no pino C, suposto origem, considerando os pinos A e B como trabalho e destino, respectivamente.

```
procedimento hanoi(n, A, B, C)
se n > 0 então
   hanoi(n - 1, A, C, B)
   mover o disco do topo de A para B
   hanoi(n - 1, C, B, A)
```


Complexidade de algoritmos

Introdução

Conforme já mencionado, uma característica muito importante de qualquer algoritmo é o seu tempo de execução. Naturalmente, é possível determiná-lo através de métodos empíricos, isto é, obter o tempo de execução através da execução propriamente dita do algoritmo, considerando-se entradas diversas.

Ao contrário do método empírico, o método analítico visa aferir o tempo de execução de forma independente do computador utilizado, da linguagem e dos compiladores empregados e das condições locais de processamento.

Introdução

As seguintes simplificações serão introduzidas para o modelo proposto:

- Suponha que a quantidade de dados a serem manipulados pelo algoritmo seja suficientemente grande. Somente o comportamento assintótico será avaliado.
- Não serão consideradas constantes aditivas ou multiplicativas na expressão matemática obtida.
 Isto é, a expressão matemática obtida será válida, a menos de tais constantes.

O processo de execução de um algoritmo pode ser dividido em etapas elementares, denominadas *passos*. Cada passo consiste na execução de um número fixo de operações básicas cujos tempos de execução são considerados constantes.

São considerados passos:

- Operações aritméticas, relacionais e lógicas
- Atribuições
- Acesso a elementos em vetores e matrizes
- Acesso a campos de uma estrutura (struct)
- Obtenção do endereço de uma variável (incluindo declarações de variáveis)
- Alteração/obtenção de conteúdo através de ponteiros
- Retorno de valores
- Instruções de alocação de memória
- Chamada de procedimento, função, método, etc.


```
func main() int {
   x, y, media float64

  x = 1
   y = 2

  media = (x + y) / 2

  return 0
}
```

```
func main() int {
    x := 1
    y := 2

media := (x + y) / 2

return 0
}
```

```
func main() int {
   media float64

media = (1 + 2) / 2

return 0
}
```

```
func main() int {
   x, y, media float64

  x = 1
   y = 2

  media = (x + y) / 2

  return 0
}
```

```
func main() int {
    x := 1
    y := 2

media := (x + y) / 2

return 0
}
```

```
func main() int {
   media float64

media = (1 + 2) / 2

return 0
}
```

9

5

Nem sempre mudar ou melhorar o código vai causar diferenças de desempenho no algoritmo! Algumas podem simplesmente atrapalhar a legibilidade ou até provocar defeitos no software.

Prática: https://br.spoj.com/problems/JBUSCA12/

- Submeta um programa ao JBUSCA12 do SPOJ e avalie o tempo de execução
- Traga algumas melhorias para o programa e submeta novamente
- As melhorias reduziram o tempo de execução?

Alguns algoritmos possuem um número variável de passos. Considere, por exemplo, um programa que calcule o n-ésimo número da série de Fibonacci:

```
func fibo(n int) int {
    penultimo, ultimo, proximo, i int
   i = 1
    penultimo = 1
    ultimo = 1
    for i < n {
        proximo = penultimo + ultimo
        penultimo = ultimo
        ultimo = proximo
        <u>i</u>++
    return penultimo
```

```
4
1...n
6 \longrightarrow (n-1) \text{ vezes!}
```


$$8 + n + (n - 1) * 6$$

 $7n + 2$

Com base nesse exemplo, podemos dizer que o custo de execução de um algoritmo (em termos de números de passos) depende, principalmente, do tamanho da entrada dos dados.

Logo, é comum considerar o tempo de execução de um programa como uma **função do tamanho da entrada**.

```
func soma(v []int, n int) int {
    soma := 0

for i := 0; i < n; i++ {
        soma += v[i]

    return soma
}</pre>
```

```
2
2 / 0...n / 2
3 Esses passos são executados n vezes
1
5 + (n+1) + n * 5
6n + 6
```


Com base nesse exemplo, podemos dizer que o custo de execução de um algoritmo (em termos de números de passos) depende, principalmente, do tamanho da entrada dos dados.

Logo, é comum considerar o tempo de execução de um programa como uma **função do tamanho da entrada**.

```
func conta() {
   i := 0

   for i < 30 {
      i++
}</pre>
```

$$2 + (30 + 1) + 30 * 2$$

93

Com base nesse exemplo, podemos dizer que o custo de execução de um algoritmo (em termos de números de passos) depende, principalmente, do tamanho da entrada dos dados.

Logo, é comum considerar o tempo de execução de um programa como uma função do

tamanho da entrada.

```
func busca(v []int, n int, k int) int {
    i := 0

    for i < n {
        if v[i] == k {
            return i
        }
        i++
    }

    return -1
}</pre>
```

A quantidade de vezes que o loop vai executar depende:

- Do tamanho do vetor
- Se k existe no vetor
- Da posição de k no vetor

Melhor caso: chave em $v[0] \rightarrow 6$

```
Pior caso: k não está no vetor \rightarrow 2 + (n + 1) + n * (2 + 2) + 1 5n + 4
```


Noção de complexidade:

- Seja A um algoritmo, $\{E_1, ..., E_m\}$, o conjunto de todas as entradas possíveis de A. Denote por t_i o número de passos efetuados por A, quando a entrada for E_i . Definem-se, com p_i sendo a probabilidade de ocorrência da entrada E_i :
 - Complexidade do pior caso: $\max_{E_{i \in E}} \{t_i\};$
 - Complexidade do melhor caso: $min_{E_{i \in E}}\{t_i\}$;
 - Complexidade do caso médio: $\sum_{1 \le i \le m} (p_i \times t_i)$.
- As complexidades têm por objetivo avaliar a eficiência de tempo ou espaço. A complexidade de tempo de pior caso corresponde ao número de passos que o algoritmo efetua no seu pior caso de execução, isto é, para a entrada mais desfavorável. De certa forma, a complexidade de pior caso é a mais importante das três mencionadas.

Exercício: Dada uma matriz n x n de valores inteiros, implemente uma função que localize um dado valor x. A função deve retornar VERDADEIRO se houver achado, e FALSO caso contrário.

Exercício: Dada uma matriz n x n de valores inteiros, implemente uma função que localize um dado valor x. A função deve retornar VERDADEIRO se houver achado, e FALSO caso contrário.

```
func busca(matriz [][]int, n, x int) bool {
   i, j int
   i = 0
    for i < n {
       j = 0
       for j < n {
           if (matriz[i][j] == x) {
               return true // achou
    return false // não achou
```

Qual o número de passos no melhor caso? E no pior caso?

Funções de tempo

As funções de tempo dos principais exemplos analisados anteriormente são:

Algoritmo	Função de tempo		
Média	f(n) = 9		
Fibonacci	f(n) = 7n + 2		
Somatório de vetor	f(n) = 6n + 6		
Busca em vetor	f(n) = 5n + 4		
Busca em matriz	$f(n) = 5n^2 + 5n + 5$		

Note que temos uma função constante, três funções lineares e uma função quadrática

Funções de tempo

Comparando o número de passos com base no valor n de entrada:

Valor de Entrada	Média de X e Y	N Fibonacci	Soma Vetor	Busca Vetor	Busca Matriz
Função	9	7n + 2	6n + 6	5n + 4	5n ² +5n + 5
1	9	9	12	9	15
2	9	16	18	14	35
4	9	30	30	24	105
8	9	58	54	44	365
16	9	114	102	84	1365
32	9	226	198	164	5285
64	9	450	390	324	20805
128	9	898	774	644	82565
256	9	1794	1542	1284	328965
512	9	3586	3078	2564	1313285
1024	9	7170	6150	5124	5248005
2048	9	14338	12294	10244	20981765
4096	9	28674	24582	20484	83906565
8192	9	57346	49158	40964	335585285
16384	9	114690	98310	81924	1342259205
32768	9	229378	196614	163844	5368872965
65536	9	458754	393222	327684	21475164165
131072	9	917506	786438	655364	85900001285
262144	9	1835010	1572870	1310724	3,43599E+11

A notação O

Quando se considera o número de passos efetuados por um algoritmo, podem-se desprezar constantes aditivas ou multiplicativas.

Por exemplo, um valor de número de passos igual a 3n será aproximado para n.

Além disso, como o interesse é restrito a valores assintóticos, termos de menor grau também podem ser desprezados. Assim, um valor de número de passos igual a $n^2 + n$ será aproximado para n^2 . O valor $6n^3 + 4n - 9$ será transformado em n^3 .

Torna-se útil, portanto, descrever operadores matemáticos que sejam capazes de representar situações como essas. A notação O será utilizada com essa finalidade.

A notação O

Sejam f, h funções reais positivas de variável inteira n. Diz-se que f é O(h), escrevendo-se f = O(h), quando existir uma constante c > 0 e um valor inteiro n_o , tal que:

$$n > n_o \Rightarrow f(n) \le c \times h(n)$$

Ou seja, a função h atua como um limite superior para valores assintóticos da função f. Em seguida são apresentados alguns exemplos da notação O.

$$f = n^{2} - 1 \Rightarrow f = O(n^{2})$$

$$f = n^{3} - 1 \Rightarrow f = O(n^{3})$$

$$f = 403 \Rightarrow f = O(1)$$

$$f = 5 + 2\log n + 3\log^{2} n \Rightarrow f = O(\log^{2} n)$$

A notação O

Propriedades da notação O

- f(n) = O(f(n))
- c.O(f(n)) = O(c.f(n)) = O(f(n)) (c = constante)
- O(f(n)) + O(f(n)) = O(f(n))
- O(O(f(n))) = O(f(n))
- $f1(n) \cdot O(f2(n)) = O(f1(n) \cdot f2(n))$
- $O(f1(n)) \cdot O(f2(n)) = O(f1(n) \cdot f2(n))$
 - Isto significa que a complexidade de um algoritmo com dois trechos aninhados, em que o segundo é repetidamente executado pelo primeiro, é dada como o produto da complexidade do trecho mais interno pela complexidade do trecho mais externo.
- O(f1(n)) + O(f2(n)) = O(max(f1(n), f2(n)))
 - Isto significa que a complexidade de um algoritmo com dois trechos em sequência com tempos de execução diferentes é dada como a complexidade do trecho de maior complexidade.

Aplicações

Escreva um algoritmo em pseudocódigo e implemente em Go os problemas abaixo:

- Dado um array de números inteiros positivos e um valor alvo, encontre um par de números no array cuja soma seja igual ao valor alvo. Se nenhum par for encontrado, retorne um valor (-1, -1) indicando que nenhum par foi encontrado.
- https://br.spoj.com/problems/POPULAR/
- Dado um array de números inteiros positivos, encontre o comprimento da maior subsequência crescente contígua. Uma subsequência crescente é uma sequência de elementos em que cada elemento subsequente é estritamente maior do que o anterior.

Desafios

Escreva um algoritmo em pseudocódigo e implemente em Go os problemas abaixo:

■ Dado um array de números inteiros positivos, considerado ordenado crescentemente, e um valor alvo, encontre um par de números no array cuja soma seja igual ao valor alvo. Se nenhum par for encontrado, retorne um valor (-1, -1) indicando que nenhum par foi encontrado. Resolva esse problema com um algoritmo cuja complexidade é O(n).

Listas Lineares

Sobre listas

Dentre as estruturas de dados não primitivas, as listas lineares são as de manipulação mais simples. Iremos discutir seus algoritmos e estruturas de armazenamento.

Uma lista linear agrupa informações referentes a um conjunto de elementos que, de alguma forma, se relacionam entre si. Ela pode se constituir, por exemplo, de informações sobre os funcionários de uma empresa, sobre notas de compras, itens de estoque, notas de alunos, etc.

Uma lista linear, ou tabela, é então um conjunto de $n \ge 0$ nós L[1], L[2], ..., L[n] tais que suas propriedades estruturais decorrem, unicamente, da posição relativa dos nós dentro da sequência linear.

Operações mais comuns

As operações mais frequentes em listas são a busca, a inclusão e a remoção de um determinado elemento, o que, aliás, ocorre na maioria das estruturas de dados. Tais operações podem ser consideradas como básicas e, por essa razão, é necessário que os algoritmos que as implementem sejam eficientes.

Outras operações também são relevantes, porém não serão estudadas a fundo neste curso:

- Alteração de um elemento da lista;
- Combinação de duas ou mais listas lineares.
- Ordenação dos nós segundo um determinado campo;
- Determinação do primeiro (ou do último) nó da lista;
- etc.

Casos particulares

Casos particulares de listas são de especial interesse:

- Se as inserções e remoções são permitidas apenas nas extremidades da lista, ela recebe o nome de deque (uma abreviatura do inglês double ended queue);
- Se as inserções e as remoções são realizadas somente em um extremo, a lista é denominada pilha;
- A lista é denominada fila no caso em que as inserções são realizadas em um extremo e remoções em outro.

Alocação em memória

O tipo de armazenamento de uma lista linear pode ser classificado de acordo com a posição relativa na memória de dois nós consecutivos na lista:

- Quando dois nós consecutivos na lista são alocados contiguamente na memória do computador, a lista é classificada como de alocação sequencial de memória;
- Quando dois nós consecutivos não são alocados contiguamente, a lista é classificada como de alocação encadeada de memória.

A escolha de um ou outro tipo depende essencialmente das operações que serão executadas sobre a lista, do número de listas envolvidas na operação, bem como de características particulares.

Em Go e na maioria das linguagens, as estruturas básicas de dados (como arrays) são tratadas com alocação sequencial de memória.

Alocação sequencial

listaDeCompras [6]string{"leite", "café", "pão", "manteiga", "presunto", "queijo"}

Vantagens

- Acesso rápido aos elementos
- Menos overhead de memória
- Operações de leitura e gravação sequenciais tendem a ser mais rápidas

Desvantagens

- Difícil redimensionamento
- Inserir e remover elementos no meio do array podem ser atividades custosas

listaDeCompras → {"leite", "café", "pão", "manteiga", "presunto", "queijo"}

Vantagens

- Facilidade de redimensionamento
- Inserções e remoções são eficientes, pois envolvem apenas a atualização de ponteiros

Desvantagens

- Acesso sequencial lento
- Maior overhead de memória devido aos ponteiros que conectam os elementos

Listas lineares em alocação sequencial

Seja uma lista linear. Cada nó é formado por campos, que armazenam as características distintas dos elementos da lista. Além disso, cada nó da lista possui, um identificador, denominado **índice**. Os nós podem se encontrar ordenados, ou não, segundo os valores acessados a partir de suas chaves. No primeiro caso a lista é denominada ordenada, e não ordenada no caso contrário.

Observe que, para cada elemento da tabela referenciado na busca, o algoritmo realiza dois testes, a operação i <= n e a operação L[i] = x.

A complexidade de pior caso é O(n).

```
PROGRAMA buscal(v, n, x)

i := 0

Enquanto i < n, faça:

Se v[i] = x então:

Retorna i

Senão:

i := i + 1

Retorna -1
```

É possível otimizar esse algoritmo reduzindo o número de passos necessários e removendo a estrutura condicional, bastando adicionar um elemento ao final da lista com o valor procurado. No entanto, o algoritmo continua com complexidade O(n).

```
PROGRAMA busca2(v, n, x)

i := 0

v[n] := x

Enquanto v[i] != x, faça:

i := i + 1

Se i != n, então:

Retorna i

Senão:

Retorna -1
```

Quando a lista está ordenada, pode-se tirar proveito desse fato. Se o número procurado não pertence à lista, não há necessidade de percorrê-la até o final.

Apesar da complexidade média reduzir por conta da interrupção da busca, a complexidade de pior caso ainda se mantém em O(n).

```
PROGRAMA buscaOrd(v, n, x)
  i := 0
  v[n] := x
  Enquanto v[i] < x, faça:
    i := i + 1
  Se i = n ou v[i] != x, então:
      Retorna -1
  Senão:
      Retorna i</pre>
```

Ainda no caso das listas ordenadas, um algoritmo diverso e bem mais eficiente pode ser apresentado: a busca binária. Em tabelas, o primeiro nó pesquisado é o que se encontra no meio; se a comparação não é positiva, metade da tabela pode ser abandonada na busca, uma vez que o valor procurado se encontra ou na metade inferior, ou na superior. Esse procedimento, aplicado recursivamente, esgota a tabela.

3	6	10	11	12	19	25	26	31	32	38	39	40	52	64
<u>O</u>	1	2	3	4	5	6	7	8	9	10	11	12	13	<u>14</u>
3	6	10	11	12	19	25	26	31	32	38	39	40	52	64
<u>O</u>	1	2	3	4	5	<u>6</u>	7	8	9	10	11	12	13	14
					_		_							
3	6	10	11	12	19	25	26	31	32	38	39	40	52	64
0	1	2	3	<u>4</u>	5	<u>6</u>	7	8	9	10	11	12	13	14
3	6	10	11	12	19	25	26	31	32	38	39	40	52	64
0	1	2	3	<u>4</u>	<u>5</u>	6	7	8	9	10	11	12	13	14


```
PROGRAMA buscaBin(v, n, x)
  inf := 0
   sup := n - 1
   Enquanto inf <= sup, faça:
     meio := parte inteira de (inf + sup) / 2
      Se v[meio] = x então:
         Retorna meio
      Senão se v[meio] < x então:
        inf := meio + 1
      Senão:
         sup := meio - 1
   Retorna -1
```

Cálculo da complexidade de pior caso na busca binária:

- Pior caso acontece quando o elemento procurado é o último, ou mesmo quando não é encontrado;
- Primeira iteração: dimensão da tabela $\rightarrow n$
- Segunda iteração: dimensão da tabela $\rightarrow \lfloor n/2 \rfloor$
- Terceira iteração: dimensão da tabela $\rightarrow \lfloor \lfloor n/2 \rfloor/2 \rfloor$
- •
- mª iteração: dimensão da tabela $\rightarrow 1$ $\frac{n}{2^{m-1}} = 1 \rightarrow 2^{m-1} = n \rightarrow \log_2 2^{m-1} = \log_2 n \rightarrow (m-1) \times \log_2 2 = \log_2 n \rightarrow m = \log_2 n + 1$

Portanto, o programa irá rodar o loop um total de $\log_2 n + 1$ vezes. Sendo assim, a complexidade de pior caso para a busca binária em uma lista linear ordenada é $O(\log n)$.

Inserção e remoção em uma lista linear

Ambas as operações de inserção e remoção utilizam o procedimento de busca. No primeiro caso, o objetivo é evitar valores repetidos e, no segundo, a necessidade de localizar o elemento a ser removido.

Os dois algoritmos a seguir consideram tabelas não ordenadas. A memória pressuposta disponível tem *M* posições. Devem-se levar em conta as hipóteses de se tentar fazer inserções numa lista que já ocupa *M* posições (situação conhecida como *overflow*), bem como a tentativa de remoção de um elemento de uma lista vazia (*underflow*). A atitude a ser tomada em cada um desses casos depende do problema tratado.

Ambos as operações possuem complexidade O(n), apesar do algoritmo de remoção ser mais lento que o de inserção.

Caso seja assumido que é possível ter valores repetidos na tabela, é possível simplificar o algoritmo de inserção para que seja O(1), já que não é necessário realizar a operação de busca.

Inserção e remoção em uma lista linear

```
PROGRAMA insere(v, n, M, novoValor)

Se n < M então:

Se busca(v, n, novoValor) = -1 então:

v[n] := novoValor

n++

Senão:

Escrever "Elemento já existe na tabela"

Senão:

Escrever "Overflow"
```


Inserção e remoção em uma lista linear

```
PROGRAMA remove(v, n, valor)

Se n != 0 então:

indice := busca(v, n, valor)

Se índice != -1 então:

Para i := índice até n - 2, faça:

v[i] := v[i + 1]

n := n -1

Senão:

Escrever "Elemento não se encontra na tabela"

Senão:

Escrever "Underflow"
```


Pilhas e Filas

Pilhas e Filas

Em geral, o armazenamento sequencial de listas é empregado quando as estruturas, ao longo do tempo, sofrem poucas remoções e inserções. Em casos particulares de listas, esse armazenamento também é empregado. Nesse caso, a situação favorável é aquela em que inserções e remoções não acarretam movimentação de nós, o que ocorre se os elementos a serem inseridos e removidos estão em posições especiais, como a primeira ou a última posição. Deques, pilhas e filas satisfazem tais condições.

Na alocação sequencial de listas genéricas, considera-se sempre a primeira posição da lista no endereço 1 da memória disponível. Uma alternativa a essa estratégia consiste na utilização de ponteiros para o acesso a posições selecionadas.

Pilha de Prato

Se quisermos colocar um item na pilha, colocamos no topo.

Se quisermos retirar um item da pilha, retiramos do topo.

Primeiro que entra é o último a sair.

Pilha de Livro

São estruturas de dados simples de entender e bastante utilizadas na computação

O primeiro a entrar é sempre o último a sair, seguindo a estratégia FILO (first in, last out)

É possível de ser implementada através de arrays, utilizando as funções:

- push: insere um item no topo da pilha;
- pop: remove o item do topo da pilha.

Como as inserções e remoções não exigem uma busca pela lista, é possível desenvolver algoritmos que sejam O(1).

Um caso bem comum de uso de pilhas no desenvolvimento de software é no rastreamento do histórico de navegação em páginas web. Quando um *browser* é utilizado, o software mantém um registro das páginas que você visitou. Dessa forma, você consegue retornar à página anterior utilizando o botão "voltar" ou então atalhos no teclado, como Alt + ←.

Para gerenciar esse histórico de navegação, o *browser* utilizar uma estrutura de pilha. Cada vez que você visita uma nova página da web, uma entrada correspondente é colocada no topo da pilha. Isso significa que a página mais recente visitada fica no topo da pilha.

Quando você pressiona o botão "voltar" no navegador, o software desempilha a página superior da pilha, levando-o de volta à ´página que você visitou antes.

Um outro caso é na pilha de execução de um programa. Uma stack de chamadas é uma parte fundamental da memória usada em programas de computador para controlar a execução de funções ou métodos.

Passos de uma stack de chamadas:

- Quando um programa executa uma função ou método, ele cria um registro de ativação para essa função, que contém informações importantes, como parâmetros, variáveis e o endereço de retorno;
- À medida que novas funções são chamadas dentro de outras funções, os registros de ativação são empilhados uns sobre os outros na pilha de execução. A função mais recente é colocada no topo da pilha;
- O código da função no topo da pilha é executado (podendo incluir chamadas a outras funções);
- Quando uma função é concluída, seu registro de ativação é removido da parte superior da pilha, e a execução retorna para o ponto onde a função foi chamada.


```
PROGRAMA insere(p, topo, M, valor)

Se topo != M então:

topo++

p[topo] := valor

Senão:

Escrever "Overflow"

PROGRAMA remove(p, topo)

Se topo != -1 então:

topo--

Senão:

Escrever "Underflow"
```


Se quisermos colocar um item na fila, colocamos no final.

Se quisermos retirar um item da fila, retiramos do início.

Primeiro que sai é o primeiro que entrou.

FIFO (first in, first out)

São estruturas de dados também simples de entender

O primeiro a entrar é sempre o primeiro a sair, seguindo a estratégia FIFO (first in, first out)

É possível de ser implementada através de arrays, utilizando as funções:

- insert: insere um item no final da fila;
- remove: remove o item do início da fila.

Como as inserções e remoções não exigem uma busca pela lista, é possível desenvolver algoritmos que sejam O(1).

Dois casos comuns de uso de filas em software:

- Gerenciamento de tarefas em sistemas de filas de mensagens (Message Queues): As filas são amplamente usadas em sistemas de filas de mensagens para lidar com tarefas assíncronas. Por exemplo, em um sistema de processamento de pedidos online, os pedidos podem ser colocados em uma fila de mensagens para processamento posterior. Isso permite que o sistema processe pedidos de forma assíncrona e em paralelo, melhorando a eficiência e a escalabilidade.
- Fila de espera em aplicações de atendimento ao cliente: Em muitas aplicações de atendimento ao cliente, como centrais de atendimento e suporte online, as solicitações de atendimento ao cliente são colocadas em uma fila de espera. Os agentes de atendimento atendem às solicitações na ordem em que foram recebidas.


```
PROGRAMA insere(fila, f, r, M, valor)
  aux := (r + 1) mod M
  Se aux != f então:
    r := aux
    fila[r] := valor
    Se f = -1 então:
        f := 0
  Senão:
    Escrever "Overflow"
```

• • •


```
PROGRAMA remove(fila, f, r, M, valor)
Se f != -1 então:
    Se f = r então:
        f := r := -1
    Senão:
        f := (f + 1) mod M
Senão:
    Escrever "Underflow"
```


Listas Encadeadas

Alocação sequencial

listaDeCompras [6]string{"leite", "café", "pão", "manteiga", "presunto", "queijo"}

Vantagens

- Acesso rápido aos elementos
- Menos overhead de memória
- Operações de leitura e gravação sequenciais tendem a ser mais rápidas

Desvantagens

- Difícil redimensionamento
- Inserir e remover elementos no meio do array podem ser atividades custosas

listaDeCompras → {"leite", "café", "pão", "manteiga", "presunto", "queijo"}

Vantagens

- Facilidade de redimensionamento
- Inserções e remoções são eficientes, pois envolvem apenas a atualização de ponteiros

Desvantagens

- Acesso sequencial lento
- Maior overhead de memória devido aos ponteiros que conectam os elementos

O desempenho dos algoritmos que implementam operações realizadas em listas com alocação sequencial, mesmo sendo estes muito simples, pode ser bastante fraco. E mais, quando está prevista a utilização concomitante de mais de duas listas a gerência de memória se torna mais complexa.

Nesses casos se justifica a utilização da alocação encadeada, também conhecida por alocação dinâmica, uma vez que posições de memórias são alocadas (ou desalocadas) na medida em que são necessárias (ou dispensadas).

Os nós de uma lista encontram-se então aleatoriamente dispostos na memória e são interligados por ponteiros, que indicam a posição do próximo elemento da tabela. É necessário o acréscimo de um campo a cada nó, justamente o que indica o endereço do próximo nó da lista.

Há vantagens e desvantagens associadas a cada tipo de alocação. Estas, entretanto, só podem ser precisamente medidas ao se conhecerem as operações envolvidas na aplicação desejada.

De maneira geral pode-se afirmar que a alocação encadeada, a despeito de um gasto de memória maior em virtude da necessidade de um novo campo no nó (o campo do ponteiro), é mais conveniente quando o problema inclui o tratamento de mais uma lista.

Propriedades

- Uma lista vazia aponta sempre para NULL;
- O último nó da lista sempre aponta para NULL;
- Qualquer nó da lista sempre aponta para o nó seguinte, permitindo um passeio do primeiro ao último;
- Todo nó criado deve sempre apontar para NULL, até que sua posição na lista seja definida.

- Imprimir as informações armazenadas na lista;
- Inserir um nó na lista;
- Procurar um nó na lista;
- Identificar o tamanho da lista;
- Remover um nó da lista;
- Liberar a lista (remover todos os nós da lista).

ptlista Nó1 Nó2 Nó3 Nó4 Nó5

Exibe as informações dos nós

```
PROGRAMA exibe(ptlista)

pont := ptlista

Enquanto pont != NULL, faça:

Escrever pont*.info // Dados do nó

pont := pont*.prox
```

Procura um nó com uma determinada operação

```
PROGRAMA buscaSimples(ptlista, chaveBuscada)
  pont := ptlista
  Enquanto pont != NULL, faça:
    Se pont*.chave = chaveBuscada, então:
        Retorna pont
    pont := pont*.prox
Retorna NULL
```


Insere um nó ao final da lista

```
PROGRAMA insere (ptlista, novaChave)
   Cria novoNo com novaChave
   Se ptlista = NULL, então:
      ptlista := novoNo
   Senão:
      pont := ptlista
      Enquanto pont*.prox != NULL, faça:
         pont := pont*.prox
      pont*.prox := novoNo
```


Busca um nó em uma lista ordenada pelo campo 'chave'

```
PROGRAMA buscaOrd (ptlista, chaveBuscada)
   ant := NULL
   ptr := ptlista
   Enquanto ptr != NULL, faça:
      Se ptr.chave = chaveBuscada, então:
         retorna ant, ptr
      Se ptr.chave > chaveBuscada, então:
         retorna ant, NULL
      ant := ptr
      ptr := ptr*.prox
   Retorna ant,
```


Insere um nó em uma lista ordenada pelo campo 'chave'

```
PROGRAMA insereOrd(ptlista, novaChave)
   ant, ptr := buscaOrd(ptlista, novaChave)
   Se ptr = NULL, então encerra o programa
   Cria novoNo com novaChave
   Se ant = NULL, então:
      novoNo*.prox := ptlista
      ptlista := novoNo
   Senão:
      novoNo*.prox := ant*.prox
      ant*.prox := novoNo
```


Remove um nó em uma lista ordenada pelo campo `chave`

```
PROGRAMA removeOrd(ptlista, chaveBuscada)
   ant, ptr := buscaOrd(ptlista, chaveBuscada)
   Se ptr = NULL, então retorna NULL
   Se ant = NULL, então:
      ptlista := ptr*.prox
   Senão:
      ant*.prox := ptr*.prox
   Retorna ptr
```


Pilhas e Filas encadeadas

Como casos particulares, algumas modificações são necessárias para implementar operações eficientes em pilhas e filas. No caso de pilhas, as operações são muito simples. Considerandose listas simplesmente encadeadas, o topo da pilha é o primeiro nó da lista, apontado por uma variável ponteiro topo. Se a pilha estiver vazia então topo = NULL. Filas exigem duas variáveis do tipo ponteiro: inicio, que aponta para o primeiro nó da lista, e fim, que aponta para o último. Na fila vazia, ambos apontam para NULL. Os algoritmos que se seguem implementam essas operações.

Operações de pilhas encadeadas

topo Nó1 Nó2

topo

Nó1

Nó2

Insere um elemento no topo da pilha

```
PROGRAMA insere (pilha, novaChave)
   Cria novoNo com novaChave
   novoNo*.prox := pilha*.topo
   pilha*.topo := novoNo
```


Remove um elemento no topo da pilha

```
PROGRAMA remove (pilha)
   Se pilha*.topo = NULL então retorna NULL
   noRemovido := pilha*.topo
   pilha*.topo := noRemovido*.prox
   Retorna noRemovido
```


Insere um elemento no final da fila

```
PROGRAMA insere(fila, novaChave)
   Cria novoNo com novaChave

Se fila*.fim = NULL, então:
    fila*.inicio = novoNo
    fila*.fim = novoNo
Senão:
    fila*.fim*.prox = novoNo
    fila*.fim = novoNo
```


Remove um elemento no inicio da fila

```
PROGRAMA remove(fila)

Se fila*.inicio = NULL, então retorna NULL

noRemovido := fila*.inicio

fila*.inicio := fila*.inicio*.prox

Se fila*.inicio = NULL, então:

fila*.fim = NULL

Retorna noRemovido
```


IBMEC.BR

- f)/IBMEC
- (in) IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

Ibmec