

Intro to Deep Learning

Harbour.Space, Online March 2021

Radoslav Neychev

Outline

- 1. Neural Networks in different areas. Historical overview.
- 2. Backpropagation.
- 3. More on backpropagation.
- 4. Activation functions.
- 5. Playground.

History of Deep Learning

Deep Learning Timeline

Made by Favio Vázquez

XOR problem

Deep Learning Timeline

Made by Favio Vázquez

Deep Learning Timeline

Made by Favio Vázquez

Audio Features

Real world applications

person

flower pot

power drill

- Object detection
- Action classification
- Image captioning

• ...

"man in black shirt is playing guitar."

GANs, 2014+

https://thispersondoesnotexist.com/

Deep Learning Timeline

Made by Favio Vázquez

Transformer, BERT, GPT-2 and more, 2017+

Deep Learning Timeline

Made by Favio Vázquez

Deep Learning: intuition

Logistic regression

$$P(y|x) = \sigma(w \cdot x + b)$$

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Problem: nonlinear dependencies

Logistic regression (generally, linear model) need feature engineering to show good results.

And feature engineering is an *art*.

Classic pipeline

Handcrafted features, generated by experts.

NN pipeline

Automatically extracted features.

NN pipeline: example

E.g. two logistic regressions one after another.

Actually, it's a neural network.

Activation functions: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Some generally accepted terms

- Layer a building block for NNs :
 - Dense/Linear/FC layer: f(x) = Wx+b
 - Nonlinearity layer: $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we will cover later
- Activation function function applied to

layer output

- Sigmoid
- tanh
- ReLU
- Any other function to get nonlinear intermediate signal in NN
- Backpropagation a fancy word for

"chain rule"

Actually, networks can be deep

And deeper...

		conv1-1	conv1-2		conv2-1	conv2-2		conv3-1	conv3-2		conv4-1	conv4-2	conv4-3		conv5-1	conv5-2	conv5-3		fc6	fc7	fc8			
10010	Input	3 × 3 conv, 64	3×3 conv. 64	Pool	3×3 conv, 128	$3 \times 3 conv, 128$	Pool	3×3 conv, 256	3 × 3 conv, 256	Pool	$3 \times 3 conv$, 512	$3 \times 3 conv, 512$	$3 \times 3 conv$, 512	Pool	$3 \times 3 conv, 512$	$3 \times 3 conv, 512$	3 × 3 conv, 512	Pool	FC 4096	FC 4096	FC 1000	Softmax		
	Input	$3 \times 3 conv, 64$	3 × 3 conv, 64	Pool	3×3 conv, 128	3 × 3 conv, 128	Pool	$3 \times 3 conv, 256$	3 × 3 conv, 256	Pool	3×3 conv, 512	3×3 conv, 512	3 × 3 conv, 512	3 × 3 conv, 512	Pool	3 × 3 conv, 512	3×3 conv, 512	3 × 3 conv, 512	3×3 conv, 512	Pool	FC 4096	FC 4096	FC 1000	Softmax

Much deeper...

How to train it?

Backpropagation and chain rule

Chain rule is just simple math: $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

Backpropagation

Backpropagation and chain rule

Chain rule is just simple math: $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

32

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{array}{lll} f(x)=e^x &
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} &
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax &
ightarrow & rac{df}{dx}=a & f_c(x)=c+x &
ightarrow & rac{df}{dx}=1 \end{array}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad o \qquad \qquad rac{df}{dx}=e^x \qquad \qquad f_a(x)=ax \qquad \qquad o \qquad \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=ax \qquad \qquad f_c(x)=ax \qquad \qquad o \qquad \qquad f_c(x)=ax \qquad \qquad f_c(x)=ax$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1 \$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad o \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad \qquad o \qquad rac{df}{dx}=a$$

$$egin{aligned} rac{df}{dx} = e^x \ \hline rac{df}{dx} = a \end{aligned} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} rac{df}{dx} = e^x \ \hline rac{df}{dx} = a \end{aligned} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \ \qquad f_c(x)=c+x \ \qquad f_c(x)=c+x$$

$$rac{df}{dx} = -1/x^2 \ rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

51

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

52

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
 [local gradient] x [its gradient] x [its

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
 $\sigma(x)=rac{1}{1+e^{-x}}$ sigmoid function $rac{d\sigma(x)}{dx}=rac{e^{-x}}{(1+e^{-x})^2}=\left(rac{1+e^{-x}-1}{1+e^{-x}}
ight)\left(rac{1}{1+e^{-x}}
ight)=(1-\sigma(x))\,\sigma(x)$

Backpropagation: matrix form

$$y_1 = f_1(\mathbf{x}) = x_1$$

$$y_2 = f_2(\mathbf{x}) = x_2$$

$$\vdots$$

$$y_n = f_n(\mathbf{x}) = x_n$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \nabla f_1(\mathbf{x}) \\ \nabla f_2(\mathbf{x}) \\ \dots \\ \nabla f_m(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} f_1(\mathbf{x}) \\ \frac{\partial}{\partial \mathbf{x}} f_2(\mathbf{x}) \\ \dots \\ \frac{\partial}{\partial \mathbf{x}} f_m(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(\mathbf{x}) & \frac{\partial}{\partial x_2} f_1(\mathbf{x}) & \dots & \frac{\partial}{\partial x_n} f_1(\mathbf{x}) \\ \frac{\partial}{\partial x_1} f_2(\mathbf{x}) & \frac{\partial}{\partial x_2} f_2(\mathbf{x}) & \dots & \frac{\partial}{\partial x_n} f_2(\mathbf{x}) \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial}{\partial x_1} f_m(\mathbf{x}) & \frac{\partial}{\partial x_2} f_m(\mathbf{x}) & \dots & \frac{\partial}{\partial x_n} f_m(\mathbf{x}) \end{bmatrix}$$

$y_1 = f_1(\mathbf{x}) = x_1$ $y_2 = f_2(\mathbf{x}) = x_2$:

 $y_n = f_n(\mathbf{x}) = x_n$

Backpropagation: matrix form

 $\begin{array}{c|c} & \text{vector} \\ & \text{scalar} \\ \hline x \\ \hline \\ \text{scalar} \end{array}$

 $\lfloor f \rfloor$

 $\frac{\partial f}{\partial x}$

 $\frac{\partial f}{\partial \mathbf{x}}$

vector

 \mathbf{f}

 $\frac{\partial \mathbf{f}}{\partial x}$

 $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$

 $= \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & \ddots & \end{bmatrix}$

Backpropagation: matrix form

I (I is the identity matrix with ones down the diagonal)

Gradient optimization

Stochastic gradient descent (and variations) is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

source: http://cs231n.github.io/neural-networks-3/

Once more: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Sigmoid

$$f(a) = \frac{1}{1 + e^a}$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zerocentered
- exp() is a bit compute expensive

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

$$f(a) = \tanh(a)$$

ReLU (Rectified Linear Unit)

$$f(a) = \max(0, a)$$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into \alpha (parameter)

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs
- Computation requires exp()

Activation functions: sum up

- Use ReLU as baseline approach
- Be careful with the learning rates
- Try out Leaky ReLU or ELU
- Try out tanh but do not expect much from it
- Do not use Sigmoid

Don't miss the interactive playground

WHO'S AWESOME?

Outro

- Neural Networks are great
 - Especially for data with specific structure
- All operations should be differentiable to use backpropagation mechanics
 - And still it is just basic differentiation
- Many techniques in Deep Learning are inspired by nature
 - Or general sense

More materials for self-study: <u>link</u>