DM 15

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre.

Un corrigé sera fourni dans une semaine.

Produit semi-direct de groupes

Partie I: Automorphismes de groupes

- 1°) Lorsque H est un groupe, on note Aut(H) l'ensemble des automorphismes de H. Montrer que Aut(H) est un groupe pour la loi de composition.
- **2°)** Soit $n \in \mathbb{N}$ avec $n \geq 2$ et $x \in \mathbb{Z}/n\mathbb{Z}$. À quelle condition sur x l'application $y \longmapsto xy$ est-elle un automorphisme du groupe $\mathbb{Z}/n\mathbb{Z}$?
- **3°)** Soit $n \in \mathbb{N}$ avec $n \geq 2$. Montrer que $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ est isomorphe au groupe des inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Partie II: produit semi-direct

Dans cette partie, H et K désignent deux groupes notés multiplicativement et φ est un morphisme du groupe K vers le groupe $\mathrm{Aut}(H)$. Ainsi, lorsque $k \in K$ et $h \in H$, $\varphi(k)(h)$ représente l'image de h par l'automorphisme $\varphi(k)$.

- 4°) Pour tout $(h,k) \in H \times K$ et $(h',k') \in H \times K$, on pose $(h,k).(h',k') = (h \varphi(k)(h'),kk')$. Montrer que cette égalité définit une loi de groupe sur l'ensemble $H \times K$. Ce groupe est appelé le produit semi-direct de H par K relativement à φ et il est noté $H \rtimes_{\varphi} K$.
- 5°) Montrer que $H \rtimes_{\varphi} K$ est commutatif si et seulement si H et K sont abéliens et si φ est l'application $k \longmapsto Id_H$.
- 6°) En utilisant les questions précédentes, construire un groupe non commutatif d'ordre 21.

7°) Si R est un sous-groupe d'un groupe G, noté multiplicativement, on dit que R est un sous-groupe distingué de G si et seulement si, pour tout $g \in G$ et $r \in R$, $grg^{-1} \in R$. Si G est un groupe noté multiplicativement, on note 1_G son élément neutre.

On note $E = H \times \{1_K\}$ et $F = \{1_H\} \times K$ et on pose $E.F = \{e.f / e \in E, f \in F\}$. Montrer que

- $E \cap F = \{1_{H \rtimes_{\varphi} K}\};$
- $--E.F = H \rtimes_{\varphi} K;$
- F est un sous-groupe de $H \bowtie_{\varphi} K$ isomorphe à K;
- E est un sous-groupe distingué de $H \bowtie_{\varphi} K$ isomorphe à H.

Partie III : construction réciproque

8°) Soit G un groupe, toujours noté multiplicativement. On suppose qu'il existe un sous-groupe distingué de G, noté E, et un sous-groupe de G noté F, tels que $E \cap F = \{1_G\}$ et E.F = G.

Montrer que l'application p, de $E \times F$ dans G, définie par p(e, f) = ef est une bijection. Montrer qu'il existe un morphisme φ de F dans $\operatorname{Aut}(E)$ tel que G est isomorphe à $E \rtimes_{\varphi} F$.

- 9°) Soit H, H', K et K' 4 groupes notés multiplicativement.
- On suppose que H' est isomorphe à H et que K' est isomorphe à K.

Si φ est un morphisme de K dans $\operatorname{Aut}(H)$, montrer qu'il existe un morphisme φ' de K' dans $\operatorname{Aut}(H')$ tel que $H \rtimes_{\varphi} K$ est isomorphe à $H' \rtimes_{\varphi'} K'$.

- 10°) Soit $n \in \mathbb{N}$ avec $n \geq 2$. On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité dans \mathbb{C} et on appelle D_n l'ensemble des similitudes s telles que $s(\mathbb{U}_n) = \mathbb{U}_n$.
- a) Montrer que D_n est un groupe (que l'on appelle le groupe diédral d'ordre 2n).
- **b)** Montrer que si $s \in D_n$, alors s(0) = 0.
- c) Déterminer les éléments de D_n .
- d) Montrer que D_n est isomorphe à un produit semi-direct de $\mathbb{Z}/n\mathbb{Z}$ par $\mathbb{Z}/2\mathbb{Z}$.