What We Claim Is:

1	1.	A method for estimating channel characteristics in a multicarrier transmission	
2	system comprising the steps of:		
3		receiving a multicarrier signal;	
4		applying Fast Fourier transformations to carriers of said multicarrier signal;	
5		estimating channel characteristics of a multicarrier channel over which said	
6	multicarrier	signal was transmitted using iterative processing; and	
7		decoding said transformed multicarrier signal.	
1	2.	The method according to claim 1, wherein said iterative processing further	
2	comprises the steps of:		
3		determining if a block in a frame in the received signal is a training block;	
4		tentatively decoding said block of said received signal;	
5		calculating a tentative reference signal based on a previous training block;	
6		generating a tentative estimation of channel characteristics using said tentative	
7	reference signal;		
8		decoding said block of said received signal;	
9		calculating a reference signal based on said received block;	
10		generating an estimation of channel characteristics using said reference signal;	
11		incrementing the block number;	
12		determining if the end of said frame has been reached;	

- accepting a next block of received signal if said end of said frame has not been reached; and
- iteratively performing the steps above.
- The method according to claim 2, wherein said decoding steps are performed using $\hat{\mathbf{c}}_n = \arg\min_{\mathbf{c}_n} \sum_m ||\mathbf{x}_{m,n} \hat{\mathbf{H}}_{m,n} \mathbf{c}_n||^2$.
 - 4. The method according to claim 2, wherein said calculating steps are performed using $\widetilde{\mathbf{H}}_{m,n} = \underset{\mathbf{H}_{m,n}}{\operatorname{arg\,min}} \sum_{m} ||\mathbf{x}_{m,n} \mathbf{H}_{m,n} \hat{\mathbf{c}}_{n}||^{2}$.
 - 5. The method according to claim 2, wherein said first generating step is performed using $\sum_{l=1}^{M_L} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+1-l}) \mathbf{d}(\widehat{\mathbf{H}}_{m,n}) = 0$
- 1 6. The method according to claim 2, wherein said second generating step is $2 \qquad \text{performed using } \sum_{l=1}^{M_L} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+1-l}) \mathbf{d}(\widehat{\mathbf{H}}_{m,n+1}) = 0 .$
- 7. The method according to claim 1, wherein said decoding step further comprises the steps of:
- demodulating said multicarrier received signal;
- combining said demodulated multicarrier signal using a maximum ratio combiner; and
- 6 Viterbi decoding said combined signal.

2

3

4

5

1

1

- The method according to claim 7, further comprising the step of 8. 1 deinterleaving said combined signal if said combined signal was interleaved for transmission. 2
 - The method according to claim 2, wherein said decoding step further 9. comprises the steps of:

demodulating said multicarrier received signal;

combining said demodulated multicarrier signal using a maximum ratio combiner; and

Viterbi decoding said combined signal.

- The method according to claim 9, further comprising the step of deinterleaving 10. said combined signal if said combined signal was interleaved for transmission.
- The method according to claim 7, wherein said demodulating step is 11. performed concurrently for all signals of said multicarrier signal.
- The method according to claim 9, wherein said demodulating step is 12. performed concurrently for all signals of said multicarrier signal. 2
- The method according to claim 2, wherein said first generating step is 13. 1 performed using $\sum_{l=1}^{M_1} \mathbf{b}_l^T \widetilde{\mathbf{H}}_{m,n+1-l} - \hat{\mathbf{H}}_{m,n} = 0.$ 2
- The method according to claim 2, wherein said second generating step is 14. 1 performed using $\sum_{l=1}^{M_1} b_l^T \widetilde{H}_{m,n+1-l} - \hat{H}_{m,n+1} = 0$. 2

1	15.	The method according to claim 1, wherein Fast Fourier transformations are
2	applied to eac	ch carrier of said multicarrier signal.
1	16.	A method for estimating channel characteristics in a multicarrier transmission
2	system comp	rising the steps of:
3		receiving a multicarrier signal;
4		applying Fast Fourier transformations to carriers of said multicarrier signal;
5		estimating channel characteristics of a multicarrier channel over which said
6	multicarrier	signal was transmitted using iterative backward processing, wherein said
7	iterative back	tward processing further comprises the steps of;
8		determining if a block in a frame in the received signal is correct;
9		tentatively decoding said block of said received signal;
10		calculating a tentative reference signal based on a previous training block;
11		generating a tentative estimation of channel characteristics using said tentative
12	reference sign	nal;
13		decoding said block of said received signal;
14		calculating a reference signal based on said received block;
15		generating an estimation of channel characteristics using said reference signal;
16		decrementing the block number;
17		determining if the beginning of said frame has been reached;
18		accepting a next block of received signal if said beginning of said frame has
10	not been read	hed:

1

- iteratively performing the steps above; and 20
- decoding said transformed multicarrier signal. 21
 - The method according to claim 16, wherein said decoding steps are performed 17. 1 using $\hat{\mathbf{c}}_n = \underset{\mathbf{c}_n}{\operatorname{arg\,min}} \sum_m ||\mathbf{x}_{m,n} - \hat{\mathbf{H}}_{m,n} \mathbf{c}_n||^2$. 2
 - The method according to claim 16, wherein said calculating steps are 18. performed using $\widetilde{\mathbf{H}}_{m,n} = \underset{\mathbf{H}_{m,n}}{\arg\min} \sum_{m} ||\mathbf{x}_{m,n} - \mathbf{H}_{m,n} \hat{\mathbf{c}}_{n}||^{2}$.
 - The method according to claim 16, wherein said first generating step is 19. performed using $\sum_{l=1}^{M_t} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+l-1}) - \mathbf{d}(\widehat{\mathbf{H}}_{m,n}) = 0$
 - The method according to claim 16, wherein said second generating step is 20. performed using $\sum_{l=1}^{M_t} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+l-1}) - \mathbf{d}(\widehat{\mathbf{H}}_{m,n-1}) = 0$.
 - The method according to claim 16, wherein said decoding step further 21. comprises the steps of: 2
 - demodulating said multicarrier received signal; 3
 - combining said demodulated multicarrier signal using a maximum ratio 4 combiner; and 5
 - Viterbi decoding said combined signal. 6

2

1

2

1

2

2

1

1

2

- 22. The method according to claim 21, further comprising the step of deinterleaving said combined signal if said combined signal was interleaved for transmission.
 - 23. The method according to claim 21, wherein said demodulating step is performed concurrently for all signals of said multicarrier signal.
 - 24. The method according to claim 21, wherein said demodulating step is performed concurrently for all signals of said multicarrier signal.
 - 25. The method according to claim 16, wherein said generating steps are performed using $\sum_{l=1}^{M_L} \mathbf{B}_l^T \widetilde{\mathbf{H}}_{m,n+l} \hat{\mathbf{H}}_{m,n} = 0$.
 - 26. The method according to claim 16, wherein Fast Fourier transformations are applied to each carrier of said multicarrier signal.
 - 27. A method for estimating channel characteristics in a multicarrier transmission system comprising the steps of:
- 3 receiving a multicarrier signal;
- applying Fast Fourier transformations to carriers of said multicarrier signal;
- estimating channel characteristics of a multicarrier channel over which said multicarrier signal was transmitted concurrently using iterative processing and iterative backward processing; and
- 8 decoding said transformed multicarrier signal.

1	28.	The method according to claim 27, wherein said iterative processing further
2	comprises the	e steps of:
3		determining if a block in a frame in the received signal is a training block;
4		tentatively decoding said block of said received signal;
5		calculating a tentative reference signal based on a previous training block;
6		generating a tentative estimation of channel characteristics using said tentative
7	reference signal;	
8		decoding said block of said received signal;
9		calculating a reference signal based on said received block;
10		generating an estimation of channel characteristics using said reference signal;
11		incrementing the block number;
12		determining if the end of said frame has been reached;
13		accepting a next block of received signal if said end of said frame has not
14	been reached; and	
15		iteratively performing the steps above.
1	29.	The method according to claim 27, wherein said interactive backward
2	processing c	omprises the steps of:
3		determining if a block in a frame in the received signal is correct;
4		tentatively decoding said block of said received signal;
5		calculating a tentative reference signal based on a previous training block;
6		generating a tentative estimation of channel characteristics using said tentative
7	reference sig	gnal;

1

2

8	decoding said block of said received signal;	
9	calculating a reference signal based on said received block;	
10	generating an estimation of channel characteristics using said reference signal;	
11	decrementing the block number;	
12	determining if the beginning of said frame has been reached;	
13	accepting a next block of received signal if said beginning of said frame has	
14	not been reached; and	
15	iteratively performing the steps above.	
1	30. The method according to claim 27, wherein said decoding step further	
2	comprises the steps of:	
3	demodulating said multicarrier received signal;	
4	combining said demodulated multicarrier signal using a maximum ratio	
5	combiner; and	
6	Viterbi decoding said combined signal;	
1	31. The method according to claim 30, further comprising the step of	
2	deinterleaving said combined signal if said combined signal was interleaved for transmission.	
1	32. The method according to claim 30, wherein said demodulating step is	

33. The method according to claim 7, wherein said demodulating step is performed using QPSK techniques.

performed using QPSK techniques.

2

1

2

- 1 34. The method according to claim 9, wherein said demodulating step is 2 performed using QPSK techniques.
 - 35. The method according to claim 20, wherein said demodulating step is performed using QPSK techniques.
 - 36. The method according to claim 27, wherein Fast Fourier transformations are applied to each carrier of said multicarrier signal.