

NEXT PROJECT

WRITING A THESIS ...

"EXPLAINABLE AI FOR STEM CELL MODELS WITH LEIGH DISEASE"

Previous Project:

Classifying
Leigh Disease Images

Combined image:

CLASSIFICATION (DS VS. TT)

Got 540/540 with accuracy 100.000%

	precision	recall	f1-score	support
DS		1.00	1.00	264
TT	1.00		1.00	276
accuracy	/			540

Z'-Factor: 0.924

WHAT ARE WE GOING TO DO WITH THIS?

- > Help to find the best component/drug for treating Leigh Disease
 - -> scan for cell culture images appearing to be wildtypes after treatment

> Try to understand the difference between the classes

HEAT-MAPS CAN BE SUFFICIENT, SOMETIMES

Figure 2: Example of a saliency map explanation of a True Positive (TP) image for the label "train". It highlights the contours of the lines below the train. A possible interpretation is that the CNN has learned to recognise trains when rails are present.

Figure 3: Example of a saliency map explanation of a False Positive (FP) image for the label "train". A possible interpretation is that edges in the lower part appeared similar to rails, which could explain this error.

OCCLUSION BASED ATTRIBUTIONS

Sanity check: It can detect our cells

Problematic: In some images, empty areas are more important

NEW PLAN

> Set up a neural network that can classify & generate images

> Modulate an image to contain the information of another class

> How does it change? Can we spot a difference?

GENERATE NEW IMAGES (AUTOENCODER)

GENERATE NEW IMAGES (AUTOENCODER)

GENERATE NEW IMAGES (AUTOENCODER)

INVERTIBLE NEURAL NETWORK

CLASSIFICATION (DS VS. TT)

ResNext50:

Got 540/540 with accuracy 100.000%

Z'-Factor: 0.924

i-ResNet50:

Got 540/540 with accuracy 100.000%

Z'-Factor: 0.701

COUNTERFACTUALS

COUNTERFACTUALS

DECISION BOUNDERY

DECISION BOUNDERY

FUTURE WORK: MULTI-CLASS APPLICATION (DIFFERENT TREATMENTS)

- > Set up a neural network that can classify & generate images
 - → Found one

- > Modulate an image to contain the information of another class
 - → Convincing images

- > How does it change? Can we spot a difference?
 - → The treated cell cultures have a higher mitochondrial membrane activity (red)
 - → Application for DS/WT is still ongoing

ATTRIBUTIONS

Occlusion Example:

AUTOENCODER

