算法与复杂性 作业七

516021910528 - SHEN Jiamin

2020年3月30日

$1 \quad 0330$

1. 有 n 个数存放在两个有序数组中,如何找到这 n 个数的第 k 小的数

比较两个数组的头部,将最小的一个提取出来。重复该步骤 k 次,第 k 个数即为第 k 小的数。该算法的时间复杂度为 O(k)

```
算法 1 归并取第 k 小的数
```

输入:数组 $A[1 \dots p], B[1 \dots q]$;目标 k

 $\triangleright p + q = n \ge k$

输出: A, B 中第 k 小的数 m

- 1: $cnt \leftarrow 0, i \leftarrow 1, j \leftarrow 1$
- 2: while $cnt < k \land i \le p \land j \le q$ do
- 3: **if** A[i] < B[j] **then**
- 4: $m \leftarrow A[i], i \leftarrow i+1$
- 5: **else**
- 6: $m \leftarrow B[j], j \leftarrow j+1$
- 7: end if
- 8: $cnt \leftarrow cnt + 1$
- 9: end while
- 10: while $cnt < k \land i < p$ do
- 11: $m \leftarrow A[i], i \leftarrow i+1$
- 12: $cnt \leftarrow cnt + 1$
- 13: end while
- 14: while $cnt < k \land j < q$ do
- 15: $m \leftarrow B[j], j \leftarrow j+1$
- 16: $cnt \leftarrow cnt + 1$
- 17: end while

算法 2 计数 KMP

```
输入: Text[1...n] (被查找字符串), Pattern[1...m] (查找目标)
输出: cnt (Pattern 在 Text 中出现的次数)
 1: procedure STRINGMATCH(Text, n, Pattern, m)
        next \leftarrow ComputeNext(Pattern, m)
        i \leftarrow 1, j \leftarrow 1
 3:
        cnt \leftarrow 0
 4:
        while i \leq n do
 5:
            if Pattern[j] = Text[i] then
 6:
                j \leftarrow j + 1, i \leftarrow i + 1
 7:
                if j = m + 1 then
 8:
                    j \leftarrow next[j] + 1
 9:
                    cnt \leftarrow cnt + 1
10:
                end if
11:
            else
12:
                j \leftarrow next[j] + 1
13:
                if j = 0 then
14:
                    j \leftarrow 1, i \leftarrow i + 1
15:
                end if
16:
            end if
17:
        end while
18:
        return cnt
19:
20: end procedure
21: procedure ComputeNext(Pattern, m)
22:
        next[1 \dots m+1]
        next[1] \leftarrow -1, next[2] \leftarrow 0
23:
        for i \leftarrow 3 to m+1 do
24:
            j \leftarrow next[i-1]+1
25:
            while j > 0 \land Pattern[i-1] \neq Pattern[j] do
26:
                j \leftarrow next[j] + 1
27:
            end while
28:
            next[j] \leftarrow j
29:
        end for
30:
        return next
31:
32: end procedure
```

2. 如何修改 KMP 算法, 使之能够获得字符串 B 在字符串 A 中出现的次数

给定原有算法,已经能找到一个 s,使得 $\forall 1 \leq i \leq m, A[s+i-1] = B[i]$ 。

如果存在一个 $s' = s + \delta, 1 \le \delta < m$,使得 $\forall i \in [1, m], A[s' + i - 1] = B[i]$ (即 A 中有两个重叠的 B,重叠长度为 $m - \delta$),那么必然有即 $\forall 1 \le i \le m - \delta, B[i] = B[i + \delta]$ (即 B 长度为 $m - \delta$ 的前后缀是相等的)。

伪代码见算法2

- 3. 设计高效算法求序列 T 和 P 的最长公共子序列和最短公共超序列的长度。
 - (a) 最长公共子序列 (LCS) L 定义为 T 和 P 的共同子序列中最长的一个

记 T[: i] 为序列 T 的前 i 个元素组成的序列。记 $l_{LCS}(T,P)$ 为 T 和 P 的最长公共子序列 的长度。不妨设序列 T 和 P 的长度分别为 m,n。

则有归纳关系

$$l_{LCS}(T[:i], P[:j]) = \begin{cases} l_{LCS}(T[:i-1], P[:j-1]) + 1 &, T[i] = P[j] \\ \max \{l_{LCS}(T[:i], P[:j-1]), l_{LCS}(T[:i-1], P[:j])\} &, T[i] \neq P[j] \end{cases}$$

可用动态规划的方法解决此问题。该算法的时间复杂度为 $O(|T \times P|)$,空间复杂度为 $O(\min \{|T|, |P|\})$ 。

```
算法 3 最长公共子序列的长度
```

```
► 不妨设 m > n
输入: P[1...m], T[1...n] (两个序列)
输出: l(T, P) 的最长公共子序列的长度)
 1: dp[0...1][0...n] \leftarrow \{0\}
 2: for i \leftarrow 1 to m do
       for j \leftarrow 1 to n do
           if T[i] = P[j] then
               dp[i \mod 2][j] \leftarrow dp[(i-1) \mod 2][j-1] + 1
           else if dp[i \mod 2][j-1] \ge dp[(i-1) \mod 2][j] then
               dp[i \bmod 2][j] \leftarrow dp[i \bmod 2][j-1]
           else
               dp[i \mod 2][j] \leftarrow dp[(i-1) \mod 2][j]
           end if
       end for
12: end for
13: return dp[m \mod 2][n]
```

(b) 最短公共超序列(SCS)S 定义为所有以 T 和 P 为子序列的序列中最短的一个

T+P 一定是 T 和 P 的一个公共超序列,所以 $|S| \leq |T| + |P|$ 。

当 T,P 存在一个公共子序列 Q 时,只需从 P 中移除一个 Q,然后将 P 中其他元素按照 与 T 中属于 Q 的元素相对顺序不变的顺序插入 T 中,使 P 成为该新序列的子序列。此 时该新序列为 T 和 P 的公共超序列,其长度为 |T|+|P|-|Q|。

所以

$$|S| = \min(|T| + |P| - |Q|) = |T| + |P| - \max(|Q|) = |T| + |P| - |L|$$

求 |L| 的算法见算法3。

4. 给定规模为 n 的整数数组,如何知道其中是否有**两个数之和**恰好等于 x。给出算法及相应的时间复杂性。

记该数组为 A

解 1 建立一个可以容纳 n 个整数的哈希表 H。扫描整个数组, 到第 i 个数时, 计算 r := x - A[i]。 若 r 不在哈希表中,记 H[r] = i;否则有 A[i] + A[H[r]] = x。哈希表查找和插入的时间复杂度为 O(1),所以遍历整个数组的时间复杂度为 O(n)。

算法 4 求补 1

输入: A[1...n] (被查找的数组)

输出: 是否存在两个数之和恰好等于 x

- 1: $H \leftarrow \mathsf{Hashmap}(n)$
- 2: for $i \leftarrow 1$ to n do
- 3: $r \leftarrow x A[i]$
- 4: **if** H.contains(r) **then**
- 5: return true

 \triangleright 此时 A[i] + A[H[r]] = x

- 6: **else**
- 7: $H[r] \leftarrow i$
- 8: end if
- 9: end for
- 10: return false

解 2 将数组中的所有数分成两个堆,超过 x/2 的所有数插入最大化堆 S, 不足 x/2 的所有数插入最小化堆 I。去两个堆最顶端的数 s, i 的和并与 x 比较:

- 若 s+i>x,则移除 S 最顶端的元素并重新调整堆。因为 I 中所有的元素都比 i 大,不可能有一个 i' 使得 $i'+s\leq i$
- 若 s+i < x,则移除 I 最顶端的元素并重新调整堆。因为 S 中所有的元素都比 s 大,不可能有一个 s' 使得 i+s' > i

建堆的时间复杂度为 $O(n \log n)$, 出堆的时间复杂度最大为

$$a \log a + (n-a) \log(n-a) \le a \log n + (n-a) \log n = n \log n$$

所以该算法的时间复杂度为 $O(n \log n)$ 。

```
算法 5 求补 2
输入: A[1...n] (被查找的数组)
输出: 是否存在两个数之和恰好等于 x
 1: S \leftarrow MaximizeHeap(), I \leftarrow MinimizeHeap(), halfcnt \leftarrow 0
                                                                                            ▷ 建堆
 2: for i \leftarrow 1 to n do
       if 2A[i] > x then
           S.Push(A[i])
 4:
       else if 2A[i] < x then
 5:
           I.Push(A[i])
 6:
                                                                                       \triangleright 2A[i] = x
       else
 7:
           halfcnt \leftarrow halfcnt + 1
 8:
       end if
 9.
10: end for
                                                               ▷ 数组中恰好存在 2 个或更多 x/2
11: if halfcnt \geq 2 then
       return true
13: end if
14: while \neg S.empty \land \neg I.empty do
                                                                                            ▷出堆
       s \leftarrow S.top, i \leftarrow I.top
                                                                                  ▷ 取堆顶的元素
15:
       if s+i>x then
16:
17:
           S.Pop()
       else if s + i < x then
18:
           I.Pop()
19:
       else
                                                                                       \triangleright s + i = x
20:
21:
           return true
       end if
22:
23: end while
24: return false
```

5. 每个螺母需要一个螺栓配套使用,现有 n 个不同尺寸的螺母和相应的 n 个螺栓,如何快速地为为每一个螺母找到对应的螺栓? 只能将一个螺母与一个螺栓进行匹配尝试,从而知道相互之间的大小关系,不能够比较两个螺母的大小,也不能比较两个螺栓的大小。给出算法及相应的时间复杂性。

(类似于快排)

分组方法: 随机取一个螺栓(记其大小为 x_0),与每个螺母都进行一次比较。在找到配对的螺母的同时,把比这个螺栓小的螺母和比它大的螺母分成两部分 Y_0, Y_1 。有

$$\forall y_i \in Y_0, y_j \in Y_1, y_i < x_0 < y_j$$

然后从 Y_0, Y_1 两堆螺母里各选一个螺母(y_0, y_1),和螺栓匹配,同时将螺栓按小、中、大分成 三堆 X_0, X_1, X_2 。且有

$$\forall x_i \in X_0, x_i < y_0 \qquad \forall x_j \in X_2, x_j > y_0$$

此时从 X_0 中任选一个螺栓, 其配对的螺母必然在 Y_0 中, 候选螺母的数量大约减半。

归纳假设: 因为螺栓与螺母是一一配对的, 即

$$\forall x_i \in X, \exists y_i \in Y : x_i = y_i$$

所以则若有 $\forall x_i \in \hat{X}, x_i \in \mathbb{C}_X^{\hat{X}} : x_i > x_i, \ \forall y_i \in \hat{Y}, y_i \in \mathbb{C}_Y^{\hat{Y}} : y_i > y_i$ 则必有

$$\left| \hat{X} \right| \le \left| \hat{Y} \right| \Rightarrow \hat{X} \subseteq \hat{Y}$$

即与 \hat{X} 中的螺栓匹配的螺母全部都在 \hat{Y} 中。所以一定可以用 \hat{X} 中的一个螺栓,将 \hat{Y} 分为两组(除非选中的螺栓匹配的螺母是 \hat{Y} 中最小或最大的)。

算法描述: 见算法6

复杂性分析:若只考虑拆分一个集合,不考虑拆分另一个集合时从本集合中抽取的元素。

将一个规模为 n 的集合分为两部分需要进行 n 次比较,且每分一次元素的总个数少 1 个。若要将集合分为 2^k 个部分,需要比较的次数为 $\sum_{i=0}^{k-1} (n-i)$,元素总数减少了 $\sum_{i=1}^k i$ 。此时,剩余的元素数量有 $n-\frac{(1+k)k}{2}$ 。使拆分结束,有

$$n - \frac{(1+k)k}{2} = 2^k \Rightarrow 2n = 2^{k+1} + k(1+k) \ge 2^{k+1}$$
$$k \le \log n$$

所以总的比较次数为

$$\sum_{i=0}^{k-1} (n-i) = \frac{k \left[n + n - (k-1) \right]}{2} = -\frac{1}{2} k^2 + (n + \frac{1}{2}) k = -\frac{1}{2} k \left[k - (2n+1) \right]$$

$$\leq -\frac{1}{2} (\log n)^2 + (n + \frac{1}{2}) (\log n)$$

$$= n \log n - \frac{1}{2} (\log n)^2 + \frac{1}{2} (\log n) = O(n \log n)$$

```
算法 6 螺栓螺母配对
```

```
输入: X[1...n] (螺栓), Y[1...n] (螺母)
输出: P = \{(x_i, y_i)\} (配对的螺栓螺母)
 1: \mathcal{X} \leftarrow \{X\}, \mathcal{Y} \leftarrow \{Y\}
                                                                                 ▷ 初始时, 螺栓、螺母都只有一组
 2: repeat
        \hat{X} \leftarrow \mathcal{X}.back, \hat{Y} \leftarrow \mathcal{Y}.back
                                                                                   ▷ 取最后面的一组(尺寸最大的)
        if \hat{X}.length < \hat{Y}.length then
                                                                       \triangleright 从 \hat{X} 中随机选一个 x, 并从 \hat{X} 中删除 x
            x \leftarrow \text{Select}(\hat{X})
 5:
                                                                  \triangleright Y_1 中的螺母更小一些,Y_2 中的螺母更大一些
            Y_1, Y_2, y \leftarrow \text{Split}(x, \hat{Y})
            \mathcal{Y}.PopBack()
 7:
                                                                  ▶ 确保 y 中靠前的分组中任何一个螺母的尺寸
            \mathcal{Y}.PushBack(Y_1) if \neg Y_1.empty
 8:
                                                                         ▷ 严格小于靠后的分组中所有螺母的尺寸
            \mathcal{Y}.PushBack(Y_2) if \neg Y_2.empty
 9:
            P.PushBack((x,y))
                                                                                                                ▷ 配对的
10:
        else
11:
            y \leftarrow \text{Select}(\hat{Y})
                                                                       \triangleright 从 \hat{Y} 中随机选一个 y, 并从 \hat{Y} 中删除 y
12:
            X_1, X_2, x \leftarrow \text{Split}(y, \hat{X})
13:
            \mathcal{X}.PopBack()
14:
            \mathcal{X}.PushBack(X_1) if \neg X_1.empty
15:
            \mathcal{X}.PushBack(X_2) if \neg X_2.empty
16:
            P.PushBack((x,y))
17:
        end if
18:
                                                                                                 ▷ X, y 应当同时为空
19: until \neg \mathcal{X}.empty \land \neg \mathcal{Y}.empty
20: procedure SPLIT(pivot, C)
21:
        S \leftarrow \Phi, I \leftarrow \Phi, peer
         while \neg C.empty do
22:
            c \leftarrow C.PopBack()
23:
            if c > pivot then
24:
                 S.PushBack(c)
25:
            else if c < pivot then
26:
27:
                 I.PushBack(c)
            else
28:
                 peer \leftarrow c
29:
            end if
30:
        end while
31:
        return I, S, peer
33: end procedure
```

2 0402

6. 用分治法找到数组中的最大数和最小数,若数组规模为 2 的幂,证明需要的比较次数为 $\frac{3}{5}n-2$

易判断初始条件 T(1) = 0, T(2) = 1, 且有递推关系

$$T(n) = T(2^m) = 2T(2^{m-1}) + 2 \Rightarrow T(2^m) + 2 = 2T(2^{m-1}) + 4$$

即

$$\frac{T(2^m)+2}{T(2^{m-1})+2}=2$$

所以当 $m \ge 1$ 时, $T(2^m) + 2 = 3 \cdot 2^{m-1}$, 可得 $T(2^m) = \begin{cases} 3 \cdot 2^{m-1} - 2 &, m \ge 1 \\ 1 &, m = 0 \end{cases}$

即

$$T(n) = \begin{cases} \frac{3}{2}n - 2 & , n \ge 2\\ 1 & , n = 1 \end{cases}$$

7. 对于任意给定的 4 个 1-10 之间的整数 (可以相同), 判断是否可以通过整数四则运算得到 24

我们将运算中不具有交换律的情况算作两种运算,并规定 $x_1 \le x_2$,使两个数构成有序数对。则任一个有序数对的两个数之间可能有 6 种运算,即

$$x_1 + x_2$$
 $x_1 \cdot x_2$ $x_1 - x_2$ $x_2 - x_1$ x_1/x_2 x_2/x_1

记 Q(a,b) 为 a 与 b 进行这 6 种计算得到的所有结果的集合, $|Q(a,b)| \le 6$ 。

记 J(A,B,O,n) 为判断是否存在 A 中的某个数能和 B 中的某个数通过 O 中的运算直接得到 n。对于每一种运算,使用类似于算法4中的算法,首先扫描一遍较小的数组并在哈希表中记录下互补的值,然后扫描另一个数组看是否存在于哈希表中。这一部分需要进行 $\min \{|A|,|B|\}$ 次计算和 $\max \{|A|,|B|\}$ 次哈希表查找。所以 J(A,B) 的时间复杂度为 |O|(|A|+|B|)。

- 4 个数的结合次序有两种, 可表示为后缀表达式
 - $(x_1, x_2, op_1, x_3, x_4, op_2, op_3)$: 4 个数两两一组分为 2 组共有 $\frac{\binom{4}{2} + \binom{2}{2}}{2} = 3$ 种分组方式。所以讨论全部结果需要执行 3 次

$$J(Q(x_1, x_2), Q(x_3, x_4), \{+, \times, -, \div, \hat{-}, \hat{\div}\}, 24)$$

总的运算次数为 $3 \times 6 \times 12 = 216$

- $(x_1, x_2, x_3, x_4, op_1, op_2, op_3)$: 此时若 op_2 与 op_3 的运算顺序是可交换的,则与上一种情况相同。
 - op2, op3 同为加、减法(可通过增减括号后等价)
 - op2, op3 同为乘、除法

因此, 给定 op_2 后, op_3 只有 3 种选择排列方式共有 $\binom{4}{2}\binom{2}{1} = 12$ 种。

$$J(Q(Q(x_3, x_4), x_2), \{x_1\}, \{+, -, \hat{-}\}, 24)$$

 $Q(x_3,x_4)$ 的运算结果可由上一种情况的运算结果查表得到。运算次数为 $12\times 6^2\times 3=1296$ 次

总运算次数为 1512。

- 8. 有 $n=2^k$ 位选手参加一项单循环比赛,即每位选手都要与其他 n-1 位选手比赛,且在 n-1 天 内每人每天进行一场比赛
 - (a) 设计算法以得到赛程安排

赛程安排可表示为表格 M 如下 (以 k=2 为例):

上表中, $m_{1,2}=0$ 表示 1 号选手和 2 号选手在第 0 天进行一场比赛。由于自己不能和自己比赛,所以对角线上的值是无意义的。同时表格中的值应关于对角线对称,所以只需考虑对角线一侧的值(这里只考虑上方)。因此只要以某种算法,使用 [0,n-1) 中的整数填写上表,使每行、每列都不存在重复的数即可。

填写表格方法为:

• 第一个数:

$$m_{1.2} = 0$$

• 第一行其他的数:

$$\forall j : 2 < j \le n, m_{1,j} = [1 + m_{1,j-1} \mod (n-1)]$$

• 表中其他的数:

$$\forall i, j : i > 1, j > i, m_{i,j} = [1 + m_{i-1,j-1} \bmod (n-1)]$$

算法 7 比赛安排

输入: n (参加比赛的人数)

输出: M[1...n][1...n] (比赛的安排, i 号选手与 j 号选手在第 M[i][j] 天比赛)

- 1: $M[1][2] \leftarrow 0$
- 2: for $j \leftarrow 3$ to n do
- 3: $M[1][j] \leftarrow M[1][j-1] \mod (n-1)$
- 4: end for
- 5: for $i \leftarrow 2$ to n do
- 6: **for** $j \leftarrow i + 1$ to n **do**
- 7: $M[i][j] \leftarrow M[i-1][j] \mod (n-1)$
- 8: end for
- 9: end for

由于第一行中只有 n-1 个数,所以恰能使用 [0,n-1) 中所有的数填满且不重复。由于每一列中最多只有 n-1 个数,且有循环递增关系,所以一定能使用 [0,n-1) 中的数填满而不产生重复。由于第一行从左到右有循环递增关系,第二行的值为第一行对应的值 +1,所以行中的递增关系保持,即每一行中也没有重复的数。因此由此方法填写的表格满足要求。

该表格中安排了 $\frac{n^2-n}{2}=2^{k-1}(n-1)$, 满足每天 k 场比赛, n-1 天恰好比完。算法的时间复杂度为 $O(n^2)$

(b) 若比赛结果存放在一矩阵中,针对该矩阵设计 $O(n \log n)$ 的算法,为各个选手赋予次序 P_i ,使得 P_1 打败 P_2 , P_2 打败 P_3 ,依此类推。

对于任意两个选手 i, j,定义若 i 赢了 j 则 i < j。由于每两个人之间都有一场比赛,所以任意两个人之间都可以按上述定义比较大小,该大小关系可以通过查询比赛结果的数组得到。使用一种基于比较的排序算法(如快速排序),即可在 $O(n \log n)$ 的时间内排除顺序。

9. 数组 A 中包含 n 个互不相同的整数,用 O(n) 的时间找出 A 中最大的 i 个数,并按从大到小的次序输出($i \le n^{1/2}$)

首先使用自底向上的方法建最大堆, 然后出堆 i 次。

• 自底向上建堆过程中,每一步比较的次数最多是该节点高度的 2 倍。对于高度为 i 的节点,记其所有子节点的高度和为 H(i),则有

$$H(i) = 2H(i-1) + 1 \xrightarrow{H(0)=0} H(i) = 2^{i+1} - i - 2$$

而 n 个节点的最大高度为 $\log n$,所以这一部分的时间复杂度为

$$T_1(n) = 4n - 2\lceil \log n \rceil - 4$$

• 出堆 i 次所需的时间 $T_2(i) \leq i \log n$ 。

所以整体的时间复杂度

$$T(n,i) = T_1(n) + T_2(i) \le (4n - 2\lceil \log n \rceil - 4) + i \log n$$

$$\le 4n - 2\lceil \log n \rceil - 4 + \sqrt{n} \log n$$

$$\le 4n - 2\lceil \log n \rceil - 4 + \sqrt{n} \cdot n^{1/2}$$

$$= 5n - 2\lceil \log n \rceil - 4 = O(n)$$