

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo Probabilidade e Estatística - 2010/2 Gabarito da AP1

1ª questão (2,5 pontos) - Conhece-se os resultados de pesquisas aplicadas em relação aos salários dos funcionários do setor de contabilidade de duas empresas, apresentados a seguir:

Empresa A

Funcionários	1	2	3	4	5	6	7	8	9	10
Salário	1.210,00	1.480,00	970,00	960,00	600,00	680,00	720,00	450,00	570,00	500,00
(em Reais)	-,	,	,	,	,	,	- ,	7	,	,

Empresa B

Faixas Salariais (em reais)	Freqüência (<i>ni</i>)	Freqüência relativa (<i>fi</i>)	Freqüência acumulada (<i>fac</i>)
450,00 - 650,00	12	0,32	0,32
650,00 850,00	6	0,16	0,48
850,00 1.050,00	4	0,1	0,58
1.050,00 1.250,00	7	0,18	0,76
1.250,00 1.500,00	9	0,24	1
Total	38	1	

Calcule a média aritmética, variância e desvio padrão dos salários das 2 empresas e a faixa de salário onde se encontram a moda e a mediana. Na empresa B tomar como representante de cada faixa, o seu ponto médio.

Solução:

Passo 1: Cálculo da média aritmética

Média aritmética:
$$x_{obs} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}$$

Funcionários	Salário		
1	1.210,00		
2	1.480,00		
3	970,00		
4	960,00		
5	600,00		
6	680,00		
7	720,00		
8	450,00		
9	570,00		
10	500,00		
Total	8.140,00		

$$x_{obs(emp.A)} = \frac{Total}{10} = \frac{8140,00}{10} = 814,00$$

$$var_{obs(Emp.A)} = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{obs}^{-})^2 = \frac{1}{10} (1009240) = 100924$$

$$dp_{obs(Emp.B)} = \sqrt{var_{obs(Emp.B)}} = \sqrt{106.574,19} = 326,46$$

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{100924} = 317,69$$

Para a Empresa B:

Faixas salariais				(Sal. méd	(Sal. méd	
		Sal. médio		p/faixa –	p/faixa	n⊢x (Sal. méd
	\mathbf{n}_{i}	p/ faixa	média	média)	– média)²	p/faixa - média) ²
450,00 650,00	12	550,00	929,60	-379,60	144.100,16	1.729.201,87
650,00 850,00	6	750,00	929,60	-179,60	32.258,05	193.548,30
850,00 1050,00	4	950,00	929,60	20,40	415,95	1.663,78
1050,00 1250,00	7	1.150,00	929,60	220,40	48.573,84	340.016,88
1250,00 1500,00	9	1.375,00	929,60	445,40	198.376,47	1.785.388,24
Total (Σ=)	38					4.049.819,08

Logo a variância será:

$$var_{obs(Emp.B)} = \frac{1}{n} \sum_{i=1}^{n} n_i (x_i - x_{obs}^-)^2 = \frac{1}{38} (4049819,08) = 106574,19$$

e o desvio padrão:

$$dp_{obs(Emp.B)} = \sqrt{var_{obs(Emp.B)}} = \sqrt{106.574,19} = 326,46$$

Passo 2:Cálculo da moda e da mediana

Moda – valor com maior freqüência de ocorrência

Mediana- o valor que está na posição central dos valores colocados em ordem:

Empresa A:

$$Mediana = \frac{(600+680)}{2} = 640$$
 pois possui um número par de elementos.

Não apresenta moda.

Empresa B:

Mediana	Faixa 850,00 - 1050,00
Moda	Faixa 450,00 - 650,00

 2^a questão (2,5 pontos) — Sabe-se que uma determinada moeda viciada, quando lançada, mostra a face cara (c) quatro vezes mais do que a face coroa (r), ou seja, se: P(r) = p tem-se que P(c)=5p. Esta moeda é lançada 5vezes. Sendo X o número de caras que podem aparecer nesse lançamento, monte uma tabela com as possíveis ocorrências nesses 5 lançamentos e determine:

a)(1.5 pontos) a média , a variância e o desvio padrão b)(0.5 ponto) P(X > 2)

RESPOSTA:

Seja
$$P(r)=p$$
 e $P(c)=5p$ com $p+5p=1 \Rightarrow p=0.166$ logo
$$P(c)=5*0.166=0.83$$

$$P(r)=1*0.166=0.166$$

$$P(X=0)=P(5r)=(0.166)^5=0.000128601$$

$$P(X=1)=P(1ce4r)=5*(0.83)*(0.166)^4=0.003215021$$

$$P(X=1) = P(1ce41) = 3*(0,83)*(0,166) = 0,003213021$$

$$P(X=2) = P(2ce3r) = 10*(0,83)^{2}*(0,166)^{3} = 0,032150206$$

$$P(X=3) = P(3ce2r) = 10*(0,83)^{3}*(0,166)^{2} = 0,160751029$$

$$P(X=4) = P(4ce1r) = 5*(0,83)^{4}*(0,166)^{1} = 0,401877572$$

$$P(X=5) = P(5ce0r) = 1*(0,83)^{5}*(0,166)^{0} = 0,401877572$$

X	P(X)	X*P(X)	$X^{2*}P(X)$
0	0,000128601	0	0
1	0,003215021	0,0032150	0,0032150
2	0,032150206	0,0643004	0,1286008
3	0,160751029	0,4822531	1,4467593
4	0,401877572	1,6075103	6,4300412
5	0,401877572	2,0093879	10,0469393
	1	4,1666667	18,055556

(a)
$$E(X) = 4,16666666667$$

$$VAR(X) = 18,05 - (4,1666666667)^2 = 0,69$$

 $dp(X) = \sqrt{VAR(X)} = 0,83$

$$P(X>2) = P(X=3) + P(X=4) + P(X=5)$$
 (b) $P(X>2) = 0.160751029 + 0.401877572 + 0.401877572 = 0.964506173$

3ª questão (2,5 pontos) – Num livro com 1500 páginas há 900 erros de impressão. Utilize o modelo de Poisson para calcular a probabilidade que uma página tenha mais de 3 erros de impressão.

Dados do problema: Distribuição poisson Total de páginas 1500 Erros de impressão 900

Taxa de ocorrência de erros: $\lambda = \frac{900}{1500}0.6$

Número de erros que se deseja verificar: k=3

Logo:

$$p(X>3)=1-(p(X=0)+p(X=1)+p(x=2)+p(X=3))$$

$$p(X=0)=\frac{e^{-0.6}(0.6)^{0}}{0!}=0.548812$$

$$p(X=1)=\frac{e^{-0.6}(0.6)^{1}}{1!}=0.329287$$

$$p(X=2)=\frac{e^{-0.6}(0.6)^{2}}{2!}=0.098786$$

$$p(X=3)=\frac{e^{-0.6}(0.6)^{3}}{3!}=0.019757$$

$$p(X>3)=1-(p(X=0)+p(X=1)+p(X=2)+p(X=3))$$

$$p(X>3)=1-(0.548812+0.329287+0.098786+0.019757)$$

$$p(X>3)=1-0.996642$$

$$p(X>3)=0.003358$$

Assim a probabilidade de se ter mais que 3 erros por página é de: 0,003358 ou 0,3358%

4ª questão (2,5 pontos) – Um fabricante de um determinado produto eletrônico suspeita que 3% de seus produtos apresentam algum defeito. Se sua suspeita for correta

a) Utilize o modelo binomial e determine qual a probabilidade de que, numa amostra com 10 de seus produtos, haja no máximo um defeituoso.

RESPOSTA:

$$P(x=0)+P(x=1) = {10 \choose 0} \times (0.03)^{0} \times (0.97)^{10} + {10 \choose 1} \times (0.03)^{1} \times (0.97)^{9}$$

$$P(x=0)+P(x=1) = 0.737424126 + 0.228068317$$

$$P(x=0)+P(x=1) = 0.965493443$$

b) Utilize o modelo geométrico para saber se esse fabricante for escolher aleatoriamente 5 desses produtos para mostrar a um vendedor, qual a probabilidade de somente o sexto es tar defeituoso?

RESPOSTA:

Para o modelo geométrico temos:

X: número de vezes necessárias para encontrar o sexto defeituoso. P= 0,03

q = 0.97

$$P(x=6)=(0.97)^5\times(0.03)^1$$

 $P(x=6)=0.02576202$