Кумпан Виктор @SkylarPro - tg AutoEncoder img2img without learning

img2img 60 epoch learning

Обучение img2img (пункт 3 из гита)

60 эпох переобучения нет и оптимизация идет плавно, можно учить дальше

Обучение img2cls (пункт 5 из гита)

Inference

```
[(base) → MILTestTasks git:(master) × python3 inference/inference.py
Load weight in model...
0it [00:00, ?it/s]/home/viktor.kumpan/.miniconda3/lib/python3.8/site-packages/toro
cice for softmax has been deprecated. Change the call to include dim=X as an argun
input = module(input)
625it [00:03, 201.41it/s]
Create_confusion
2022-04-27 12:28:28: Epoch 0/0,Accuracy_score: 0.25300;
```


Получаем оверфит, для борьбы с этим выкрутим weight_decay на 1e-05 и добавим dropout

Результат:

[(base) > MILTestTasks git:(master) × python3 inference/inference.py
Load weight in model...
0it [00:00, ?it/s]/home/viktor.kumpan/.miniconda3/lib/python3.8/site-parch/nn/modules/container.py:119: UserWarning: Implicit dimension choice max has been deprecated. Change the call to include dim=X as an argumeninput = module(input)
625it [00:03, 199.35it/s]
Create_confusion
2022-04-27 13:37:06: Epoch 0/0,Accuracy_score: 0.23400;

Ловим все равно переобучение, для устранения этого нужны трюки которые я описал в ШАГ6

И если прокоментировать conf matrix то моделька не может отличить похожие объекты (bear or chimpanzee)

ResNetUnet img2img with out learning

img2img 30 epoch learning

predict -> gt

img2img обучение (30 эпох) результат намного лучше чем AutoEncoder благодаря скипам)

По графикам видно, что еще можно учить и учить. (учить можно всегда) Важно отметить что I1,I2,SSIM на порядки ниже чем на AutoEncoder, скипы решают)

Обучение img2cls (пункт 5 из гита) Сразу выкрутим weight decay на 1e-05 и добавим dropout

Прикрутить голову классификации на ембединги encoder'а (АЕ использующий скипы нормально не удасться так как большое количество информации идет именно через них и перед сеткой нет особой необходимости делать репрезентативное латентное пространство с последнего слоя encoder'а. Это видно по графикам обучения. Точность крайне маленькая

```
(base) → MILTestTasks git:(master) × python3 inference/inference.py
Load weight in model...
0it [00:00, ?it/s]/home/viktor.kumpan/.miniconda3/lib/python3.8/site-pooice for softmax has been deprecated. Change the call to include dim=X input = module(input)
625it [00:06, 102.76it/s]
Create_confusion
2022-04-27 13:30:50: Epoch 0/0,Accuracy_score: 0.08300;
```

apple - 31	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	12	0
aquarium_fish - 1	25	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
baby - 1	4	12	0	0	0	0	0	0	1	0	0	0	0	0	0	3	1	0	0	9	3
bear - 0	0	0	0	0	2	0	11	0	1	0	0	0	0	0	0	1	1	0	0	4	13
beaver - 0	1	0	0	0	0	0	7	0	1	0	0	0	0	0	0	1	0	0	0	0	12
bed - 1	2	2	0	0	4	0	0	0	0	0	0	0	0	0	0	1	0	0	0	17	1
bee - 2	0	2	0	0	0	0	4	0	0	0	0	0	0	0	0	2	1	0	0	6	1
beetle - 3	0	0	0	0	2	0	10	0	0	0	0	0	0	0	0	1	1	0	0	7	6
bicycle - 1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	3	0	0	11	1
bottle - 4	3	2	0	0	4	0	1	0	2	0	0	0	0	0	0	1	2	0	0	17	5
bowl - 4	7	6	0	0	3	0	2	0	1	0	0	0	0	0	0	1	0	0	0	5	3
boy - 2	4	6	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	8	4
bridge - 1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	11	0	0	1	3
bus - 0	2	0	0	0	1	0	3	0	1	0	0	0	0	0	0	0	4	0	0	1	3
butterfly - 0	9	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	5
camel - 0	0	1	0	0	2	0	3	0	1	0	0	0	0	0	0	1	3	0	0	2	4
can - 2	0	2	0	0	2	0	1	0	1	0	0	0	0	0	0	3	0	0	0	16	4
castle - 2	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	22	0	0	7	1
caterpillar - 0	8	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	4
cattle - 0	2	0	0	0	0	0	6	0	2	0	0	0	0	0	0	0	0	0	0	3	10
chair - 1	1	0	0	0	2	0	1	0	2	0	0	0	0	0	0	2	0	0	0	33	1
chimpanzee - 2	1	1	0	0	0	0	4	0	0	0	0	0	0	0	0	0	2	0	0	0	29

Шаг 6

Улучшения, которые можно сделать

- 1. Для улучшение латентной репрезентации можно добавить в входное изображение еще один канал и его заполнить меткой класса (даст мощный буст)
- Для тренировки img2img можно добавить аугментацию шумом и сдвиги (так как сетка не устойчива к данным преобразованиям), с разными скейлами, собирать мозайку из данных это все даст тоже мощный буст. Да и вообще можно изменять по контрасту, цвету и прочие ауги. Для классификации можно делать кропы, шифты
- 3. Можно пределать FPN подход чтобы лучше прокидывать градиенты по сетке (для "AutoEncoder" оч поможет)
- 4. Можно поиграть с коэффицентами перед потерями, но это уже больше про другую задачу ну и с самими потерями.
- 5. Погуглить оптимальный Ir для этого сета))))
- 6. Можно добавить в pipeline PCA визуализацию латентного пр-ва для более глубокого анализа, больше метрик img2img

Подведение итогов

- 1. Написан полный pipeline для тренировки, валидации, теста, логи модели
- 2. Созданы две архитектуры АЕ и много всего)