python

Class: Machine Learning

Topic

Introduction to Machine Learning

What We Have Learnt

Getting started with exploratory data analysis

Machine Learning

What We Will Learn

Introduction

Examples

Tasks Performed

Algorithms

Advance Concepts

Implementation Using Credit Default Dataset

Getting Started

What is Machine Learning?

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur Samuels, 1959

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

- Tom Mitchell, Carnegie Mellon University

Our Daily Lives

Gmail Spam Filtering

Any popular e-mail service provider today can mark e-mails as spam with a reasonable degree of accuracy

Our Daily Lives

Product Recommendation by Ecommerce Websites

Application of machine learning algorithms

Our Daily Lives

Handwritten Character Recognition

Machine learning algorithms can classify handwritten digits with close to 100% accuracy

Our Daily Lives

Auto pilot on Tesla cars

Self-driving cars from Google

Ideas and Methodologies

Probability and Statistics

Computer Science

Computational Biology

Backbone of modern Machine Learning theory

Ideas and Methodologies

Fields from Social Sciences

Ideas and Methodologies

Advent of Modern Computing Power

Ideas and Methodologies

Good results on problems considered historically difficult to solve have given Machine Learning much popularity in Press

Starting point should be a question with a specific business context in mind

Why is Image Recognition Important?

The Process

Why do you think predicting whether a customer will default credit card payment next month is useful from a business perspective

The Process

Data relevant to the question needs to be gathered

Historical data helps the machine learn from it

The Process

Once the machine learns from historical data, it needs some additional data to determine how well it has learnt

The Process

Example

Probability/This course

There is classroom material that helps the students learn the concepts along with some real life examples

Once classroom lectures are done, students get evaluated based on an examination at the end of the course

Questions may not come from the materials that were studied

The Process

Data

Raw data comes in different formats

The Process

The Process

The Process

The Process

The Process

Data

THIS IS SPAM!

The Process

Data

The sender, the e-mail text contain some useful information about the legitimacy of the e-mail

The Process

How do we get a machine to extract information out of raw data that will help it learn a specific problem?

Conversion of raw data to useful machine readable informative features is called **feature engineering**

Going Back

During the exploratory analysis, the average bill amount for each customer over the last 6 months was taken – a form of feature engineering

The number of features is only limited by creativity and imagination

Starting Point

Going from seemingly unstructured data to something that is more tidy, clean and structured

Starting Point

Print shape

Credit Data

29000 rows and 25 columns

Row – customer

Column – information about the customer

Rectangular format **Tidy Data**

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

3 e-mails

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

Whether or not the sender is in the receiver's contact list

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

x1 is a Boolean value – it can take one of 2 possible values – True or False

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

Counts the number of special characters in the e-mail, denoted by **x2**

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

This is also a Boolean which marks whether the e-mail is spam

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

This is the variable that needs to be predicted using Machine Learning algorithm

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

This variable is called a **response**

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

Also known as **Outcome** or **Dependent** variable

Example

Email No.	Sender in Contact List (x1)	Number of special Characters (x2)	Spam
1	YES	4	NO
2	NO	23	YES
3	YES	45	YES

Alternative terms for features are **independent** variables, explanatory variables

Exercise

Think of some more interesting features that you can construct from the raw data that might be useful in classifying an e-mail as spam or not

Recap

Introduction to Machine Learning

What is Machine Learning?

Examples

Evolution

Getting Started

Feature Engineering

Next

Types of Tasks, Machine Learning Algorithms and Linear Regression

