SPARC - MLFF

Machine-learned force fields
User guide

Material Physics & Mechanics Group
PI: Phanish Suryanarayana
Georgia Institute of Technology
Contributors
Citation
Acknowledgements

Contributors

- Phanish Suryanarayana (PI)
 - Shashikant Kumar: Code infrastructure, SOAP, Bayesian linear regression, UQ
 - Abhiraj Sharma: Boundary conditions, cyclix MLFF
- Andrew J. Medford (co-PI)
- John E. Pask (co-PI)

Citation

If you publish work using/regarding MLFF in SPARC, please cite some of the following articles, particularly those that are most relevant to your work:

```
https://doi.org/10.1063/5.0180541,
https://doi.org/10.1063/5.0204229 (SQ),
https://doi.org/10.48550/arXiv.2408.07554 (Cyclix),
https://doi.org/10.48550/arXiv.2407.15290 (internal energy)
```

Acknowledgements

• U.S. Department of Energy, Office of Science: DE-SC0023445

Comments

The code will fail with the following options and the related input options are listed.

• Relaxation algorithms specified using: RELAX_FLAG

Input file options

MLFF

```
MLFF_FLAG | MLFF_RCUT_SOAP | MLFF_RADIAL_BASIS |
MLFF_ANGULAR_BASIS | MLFF_INITIAL_STEPS_TRAIN |
MLFF_MODEL_FOLDER | MLFF_IF_ATOM_DATA_AVAILABLE |
MLFF_REGUL_MIN | MLFF_MAX_STR_STORE | MLFF_MAX_CONFIG_STORE |
MLFF_FACTOR_MULTIPLY_SIGMATOL | MLFF_IF_SPARSIFY_BEFORE_TRAIN |
MLFF_EXPONENT_SOAP | MLFF_SCALE_FORCE | MLFF_SCALE_STRESS
MLFF_PRINT_FLAG | MLFF_DFT_FQ |
```

MLFF

MLFF_FLAG

Type	Unit
Integer	No unit
Default	Example
Delault	
0	MLFF_FLAG: 1

Description

Flag to turn on MLFF in SPARC. There are three options currently available. (1) MLFF_FLAG: 1 to perform on-the-fly MD with no existing model, (2) MLFF_FLAG: 21 to perform only predictions from an existing model, and (3) MLFF_FLAG: 22 to perform on-the-fly MD building on top of an existing model

MLFF_RCUT_SOAP

Type Double Unit

Bohr

Default

10.0

Example

MLFF_RCUT_SOAP: 8.0

Description

The cutoff radius used to calculate the SOAP descriptor.

MLFF_SIGMA_ATOM_SOAP

Type
Double

Default
1.0

Unit
Bohr

Example
MLFF_SIGMA_ATOM_SOAP: 1.0

Description

The width of Gaussians in SOAP descriptor.

MLFF_RADIAL_BASIS

Type

Integer

Default

8

Unit

No unit

Example

MLFF_RADIAL_BASIS: 7

Description

The number of radial basis functions used in SOAP descriptors.

Remark

8-10 radial basis functions should be sufficient for most applications.

MLFF_ANGULAR_BASIS

Type

Integer

Unit

No unit

Default

6

Example

MLFF_ANGULAR_BASIS: 7

Description

The maximum angular momentum quantum number (L) of spherical harmonics used in the SOAP descriptor.

Remark

6-8 for SOAP works well for most applications.

MLFF_INITIAL_STEPS_TRAIN

Type
Integer

Default

10

Unit
No unit

Example
MLFF_INITIAL_STEPS_TRAIN:
20

Description

The number of DFT steps performed in the beginning of on-the-fly MLFF simulation.

MLFF_MODEL_FOLDER

Type
String

Unit
No unit

Default
No default

MLFF_MODEL_FOLDER: ././

Description

The location of folder where the trained model file is located.

MLFF_IF_ATOM_DATA_AVAILABLE

Description

Flag to indicate if an pretrained MLFF model is available.

MLFF_REGUL_MIN

Type

Double

Unit

No unit

Default

1e-14

Example

MLFF_REGUL_MIN: 1e-10

Description

The mimimum value of inverse of condition number of $K^TK + \lambda I$ matrix which appear in MLFF calculation.

MLFF_REGUL_MIN

Remark

The $K^TK + \lambda I$ matrix needs to be inverted during the training of MLFF. The matrix K^TK is in general ill-conditioned so regularization is used to improve the conditioning. Any number in the range of 1E-10-1E-14 should work. A larger value should result in lesser DFT calls, but also lesser accuracy of MLFF model.

MLFF_MAX_STR_STORE

Type

Integer

Unit

No unit

Default

500

Example

MLFF_MAX_STR_STORE: 1000

Description

Maximum number of DFT calls that can be made during the on-the-fly simulation.

Remark

A larger number requires larger memory allocation.

MLFF_MAX_CONFIG_STORE

Type

Integer

Default

5000

Unit

No unit

Example

MLFF_MAX_CONFIG_STORE: 1000

Description

Maximum number of atomic descriptors per element type that will be used in training.

Remark

A larger number requires larger memory allocation.

MLFF_FACTOR_MULTIPLY_SIGMATOL

Type
Double

Default
1.01

Line Stample
MLFF_FACTOR_MULTIPLY_SIGNATOL:
1.001

Description

A prefactor multiplied with maximum of Bayesian errors while updating the $\sigma_{\rm tol}.$ It has to be greater than 1.

Remark

A larger value will result lesser DFT calls hence might reduce the accuracy. Use any number in (1.0001-1.01) range.

MLFF_IF_SPARSIFY_BEFORE_TRAIN

Description

Flag to turn on the sparsification before each of the training steps.

MLFF_EXPONENT_SOAP

Type

Double

Unit

No unit

Default

4.0

Example

MLFF_EXPONENT_SOAP: 4.0

Description

The exponent in the polynomial kernel used in Bayesian linear regression.

Remark

In principle, any number greater than 1 could be used. The code has been tested most for the exponent of 4.

MLFF_TOL_FORCE

Type

 Double

Unit

No unit

Default

5e-10

Example

MLFF_TOL_FORCE: 1e-10

Description

The initial value of $\sigma_{tol}.$

MLFF_SCALE_FORCE

Type

Double

Unit

No unit

Default

1.0

Example

MLFF_SCALE_FORCE: 10

Description

The scaling of force terms in the loss function during the training.

Remark

A larger number can result in better accuracy of MLFF forces.

MLFF_MLFF_SPLINE_NGRID_FLAG

Type
Integer

Default

Default

100

Unit

No unit

Example

MLFF_MLFF_SPLINE_NGRID_FLAG:
100

Description

Number of grid points to use for spline interpolation of hnl.

Remark

A larger number can result in better accuracy of MLFF forces.

MLFF_SCALE_STRESS

Type

Double

Unit

No unit

Default

1.0 1.0 1.0 1.0 1.0 1.0

Example

MLFF_SCALE_STRESS: 10 1 1 10 1 10

Description

The scaling of stress tensor terms in the loss function during the training.

MLFF_PRINT_FLAG

Type
Integer

Default
1

Unit
No unit

Example
MLFF_PRINT_FLAG: 1

Description

Flag to turn on the printing of MLFF related log in a file named 'mlff.log' during runtime.

MLFF_INTERNAL_ENERGY_FLAG

Type
Integer

Default

MLFF_INTERNAL_ENERGY_FLAG:
1

Description

Flag to turn on the training of internal energy model based on linear regression.

MLFF_PRESSURE_TRAIN_FLAG

Description

Flag to turn on the training with only pressure and not all of the stress tensor components.

MLFF_DFT_FQ

Type

Integer

Default

100000000

Unit

No unit

Example

MLFF_DFT_FQ: 100

Description

Input variable to set the frequency at which DFT must be performed during on-the-fly $\mbox{MD}.$