$$\vec{p} = m\vec{v} \qquad \vec{v} = \vec{\omega} \times \vec{r} \qquad \vec{l} = I\vec{\omega} = \vec{r} \times \vec{p} \qquad \vec{N} = \frac{d\vec{l}}{dt} = \vec{r} \times \vec{F} \qquad U = \frac{1}{2}I\omega^2 \qquad I = \int_V r^2 \, dm$$
 Given $m\frac{d^2x}{dx^2} = F(x), \ f(x_0) = 0, \ \text{and} \ F'(x_0) > 0.$ For small deviations from x_0 : $x(t) = x_0 + A\cos\left(\sqrt{\frac{F'(x_0)}{m}} \ t + \phi\right)$

In mathematical statement, Hamilton's Principle states that $I = \int_{t_1}^{t_2} \mathcal{L} dt = \int_{t_1}^{t_2} (T - U) dt$ where we want to minimize I. We write $\mathcal{L}(q_i, \dot{q}_i; t)$ and $\mathcal{H}(q_1, p_i; t)$. Denote the constraint in algebraic expression $f(q_i; t) = 0$

$$\frac{\partial \mathcal{L}}{\partial q_i} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = 0 \qquad \begin{cases} \frac{\partial \mathcal{L}}{\partial q_i} \text{ is called the generalized force component} \\ \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \end{cases} + \sum_k \lambda_k \frac{\partial f_k}{\partial q_i} = 0$$

$$\begin{pmatrix} \frac{\partial \mathcal{L}}{\partial q_i} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \end{pmatrix} + \sum_k \lambda_k \frac{\partial f_k}{\partial q_i} = 0$$

$$Q_i \coloneqq \sum_{k=1}^m \lambda_k \frac{\partial f_k}{\partial q_i} \qquad \quad p_i \coloneqq \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \qquad \quad \mathcal{H} \coloneqq \sum_i \dot{q} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \mathcal{L} \qquad \quad \dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i} \qquad \quad -\dot{p}_i = \frac{\partial \mathcal{H}}{\partial q_i} \qquad \quad \frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$$

 Q_i is the generalized constrain force components. p_i is the generalized momentum associated with q_i . If p_i is invariant under time, the associated q_i is cyclic, and the generalized momentum $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = p_i$ is the canonical momentum, or conjugate momentum. If the kinetic energy T is quadratic in \dot{q}_i , and $U = U(q_i)$, then \mathcal{H} gives the total energy of the system. In the center of mass frame:

$$\mathcal{L} = \frac{\mu}{2} |\dot{\vec{r}}|^2 - U(r) = \frac{\mu}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) - U(r)$$

$$E = \frac{1}{2} \mu \dot{r}^2 + \frac{1}{2} \frac{l^2}{\mu r^2} + U(r) = \frac{1}{2} \mu \dot{r}^2 + U_{\text{eff}}(r)$$

 d_1 , d_2 are the distance of the two particles to the center of mass. $l/(2\mu r^2)$ is the angular momentum barrier.

$$l = m_1 d_1^2 \dot{\theta} + m_2 d_2^2 \dot{\theta} = \mu r^2 \dot{\theta} = \text{constant} \qquad \frac{d^2}{d\theta^2} \frac{1}{r} + \frac{1}{r} = -\frac{\mu r^2}{l^2} F(r) \qquad \mu \ddot{r} + \frac{\partial}{\partial r} \left(U(r) + \frac{l^2}{2\mu r^2} \right) = 0$$

$$\int_0^t dt' = \int_{r(0)}^{r(t)} \left(\frac{2}{\mu} \left(E - U(r') - \frac{l^2}{2\mu(r')^2} \right) \right)^{1/2} dr' \qquad \theta(t) - \theta(0) = \int_0^t \frac{1}{\mu(r(t'))^2} dt'$$

$$\theta(r) = \int_{r(0)}^{r(t)} \frac{d\theta}{dt} \frac{dt}{dr} dr' = \pm \int_{r(0)}^{r(t)} \frac{l/(\mu(r')^2) dr'}{\sqrt{\frac{2}{\mu}} \left(E - U(r') \right) - \left(\frac{l^2}{\mu r'} \right)^2} \qquad \begin{array}{c} \varepsilon > 1, \quad E > 0 \\ \varepsilon = 1, \quad E = 0 \\ \varepsilon = 0, \quad E = V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \text{Hyperbola} \\ \theta < \varepsilon < 1, \quad V_{\min} < E < 0 \\ \varepsilon = 0, \quad E = V_{\min} \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \theta < \varepsilon < 1, \quad V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \theta < \varepsilon < 1, \quad V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \theta < \varepsilon < 1, \quad V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \theta < \varepsilon < 1, \quad V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \theta < \theta < 0, \quad E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < V_{\min} < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1, \quad E < 0 \\ \varepsilon = 0, \quad E < 0 \end{array} \qquad \begin{array}{c} \varepsilon > 1$$

ASSUME U(r) = -k/r. ϵ is the eccentricity of the two-body system, u_0 is constant, u = 1/r, Kepler's First Law states:

$$\alpha \coloneqq \frac{l^2}{\mu k} \qquad \epsilon = \frac{l^2 u_0}{\mu k} \qquad \frac{\alpha}{r} = 1 + \epsilon \cos(\theta) \qquad \epsilon = \sqrt{1 + \frac{2El^2}{\mu k^2}} \qquad E = \frac{1}{2} \frac{l^2}{\mu} \frac{(1+\epsilon)^2}{\alpha^2} - \frac{k(1+\epsilon)}{\alpha}$$

$$u = \frac{\mu k}{l^2} \left(\frac{l^2 u_0}{\mu k} \cos(\theta) + 1 \right) \qquad \alpha = a(1+\epsilon)(1-\epsilon) \qquad a = \frac{\alpha}{1-\epsilon^2} = \frac{k}{2|E|} \qquad b = \sqrt{\alpha a} = \frac{\alpha}{\sqrt{1-\epsilon^2}} = \frac{l}{\sqrt{2\mu|E|}}$$

ASSUME U(r) = -k/r. Kepler's Second and Third Law:

$$\frac{dA}{dt} = \frac{r^2}{2} \frac{d\theta}{dt} = \frac{r^2\dot{\theta}}{2} = \frac{l}{2\mu} = \text{constant} \qquad \qquad \tau = \frac{2\mu}{l} A = \frac{2\mu}{l} (\pi ab) = \pi k \sqrt{\frac{\mu}{2}} |E|^{-3/2} \qquad \qquad \tau^2 = \frac{4\pi^2}{k} \mu a^3 + \frac{2\mu}{l} (\pi ab) = \frac{2\mu}{l} A = \frac{2\mu}{l} (\pi ab) = \frac{$$

For the transfer from the ellipse to the circular orbit of radius r_2 , $\Delta v_2 = v_2$

$$v_{t2} = \sqrt{\frac{2k}{mr_2} \left(\frac{r_1}{r_1 + r_2}\right)}$$
 $T_t = \frac{\tau_t}{2} = \pi \sqrt{\frac{m}{k}} a_t^{3/2}$

ASSUME INELASTIC COLLISION of m_1 and m_2 . Center of mass parameters: \vec{R}, \vec{V}, M . Initial KE T_0 in LAB. Moving particle: initial speed u_1 in LAB, initial speed u'_1 in CM, final speed v_1 in LAB, final speed v'_1 in CM. Particle at rest in LAB: initial speed u_2 in LAB, initial speed u'_2 in CM, final speed v_2 in LAB, final speed v'_2 in CM.

$$\vec{R} = \frac{\int_{M} \vec{r} \, dm}{\int_{M} \, dm} \qquad \vec{F}_{ext} = M \frac{d\vec{V}_{CM}}{dt} = \frac{d\vec{P}_{CM}}{dt} \qquad \vec{V} = \frac{m_{1}\vec{u}_{1}}{m_{1} + m_{2}} = -\vec{u}_{2}' \qquad \frac{V}{v_{1}'} = \frac{m_{1}u_{1}/(m_{1} + m_{2})}{m_{2}u_{1}/(m_{1} + m_{2})} = \frac{m_{1}}{m_{2}}$$

$$\tan(\psi) = \frac{\sin(\theta)}{\cos(\theta) + (V/v_{1}')} = \frac{\sin(\theta)}{\cos(\theta) + (m_{1}/m_{2})} \qquad \tan(\zeta) = \frac{\sin(\theta)}{1 - \cos(\theta)} = \cot\left(\frac{\theta}{2}\right) \qquad 2\zeta = \pi - \theta$$

$$\frac{T_{1}}{T_{0}} := \frac{m_{1}v_{1}^{2}}{m_{1}u_{1}^{2}} = 1 - \frac{2m_{1}m_{2}(1 - \cos(\theta))}{(m_{1} + m_{2})^{2}} = \frac{m_{1}^{2}}{(m_{1} + m_{2})^{2}} \left(\cos(\psi) \pm \sqrt{\left(\frac{m_{2}}{m_{1}}\right)^{2} - \sin^{2}(\psi)}\right)^{2} \qquad (*)$$

In (*), take plus sign for the radical unless $m_1 > m_2$. If $m_1 > m_2$ evaluated using ψ , the result is double-valued.

$$\frac{T_2}{T_0} := \frac{m_2 v_2^2}{m_1 u_1^2} = 1 - \frac{T_1}{T_0} = \frac{4m_1 m_2 \cos^2(\zeta)}{(m_1 + m_2)^2} \qquad \text{if } \zeta \leq \frac{\pi}{2} \qquad \frac{\text{Laboratory System}}{\mathbf{v}} \qquad \frac{m_2}{\mathbf{v}} \qquad \frac{m_1}{\mathbf{u}_1} \qquad \frac{\mathbf{u}_1}{\mathbf{u}_2} \qquad \frac{\mathbf{u}_2}{\mathbf{v}} \qquad \frac{m_1}{\mathbf{u}_2} \qquad \frac{\mathbf{u}_2}{\mathbf{v}} \qquad \frac{m_2}{\mathbf{v}} \qquad \frac{\mathbf{u}_2}{\mathbf{v}} \qquad \frac{\mathbf{u}_2}{\mathbf{$$

$$\psi_{max} = \sin^{-1}\left(\frac{v_1'}{V}\right) = \sin^{-1}\left(\frac{m_2}{m_1}\right)$$

If we have
$$m_2 = m_2$$
, we have $\theta = 2\psi$, and we get the followings:
$$\frac{T_1}{T_0} = \cos^2(\psi) \qquad \qquad \frac{T_2}{T_0} = \sin^2(\psi) \qquad \qquad \zeta + = \frac{\pi}{2} \qquad \qquad \text{if } m_1 = m_2$$