Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-2	-1	0	2
f(x)	4	2	2	32
f'(x)	-9	_	-1	_

Dále pomocí získaného polynomu odhadněte hodnotu funkce f a její derivace v $x_0=1$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \frac{\sqrt{5 - 4x - x^2}}{\arccos(2x + 1)} - \ln^{-3}(2x + 6).$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (\sqrt{4n^2 - 5} - 2n),$$

(a)
$$\lim_{n \to \infty} (\sqrt{4n^2 - 5} - 2n)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x}$, (c) $\lim_{x \to \frac{\pi}{2}} (1 - \sin x) \operatorname{tg} x$.

$$(c) \lim_{x \to \frac{\pi}{2}} (1 - \sin x) \operatorname{tg} x$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \sqrt{2-5x^3}$ a bod $x_0 = -1$. Najděte rovnici tečny ke grafu funkce f v bodě x_0 .

 \blacktriangleright Příklad 5 [2 b.]: Kámen vyhozen z výšky $h=10\,m$ kolmo vzhůru má počáteční rychlost $v_0 = 20 \, m/s$. Určete:

- (a) Jakou rychlost bude mít kámen v čase t = 1.5 s?
- (b) Za jaký čas dosáhne maximální výšky?
- (c) Jaké výšky dosáhne?

(Nápověda: Dráhu popisuje vztah $s=h+v_0t-\frac{1}{2}gt^2$, gravitační zrychlení uvažujte $g=10\,m/s^2$.)

▶ Příklad 6 [2 b.]: Určete intervaly kde je funkce

$$f(x) = \frac{175}{144}(2x-3)^{9/5} - \frac{7}{2}x^2 + 2x - 5, \qquad f'(x) = \frac{35}{8}(2x-3)^{4/5} - 7x + 2,$$

konvexní, kde je konkávní a najděte inflexní body a jejich hodnoty.

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

Druhou tabulku ponechejte prázdnou.

[▷] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

 [∨] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-1	0	1	2
f(x)	-1	-1	1	11
f'(x)	-5	_	_	22

Dále pomocí získaného polynomu odhadněte hodnotu funkce f a její derivace v $x_0 = \frac{1}{2}$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \sqrt{5 - 2x} - 4 \arctan \frac{x^3 + 2}{\ln(2x + 3)}.$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (3n - \sqrt{9n^2 - 3}),$$

(a)
$$\lim_{n \to \infty} (3n - \sqrt{9n^2 - 3}),$$
 (b) $\lim_{x \to \infty} \frac{x^3 + \sqrt[3]{x^{12} + x^5} - \sqrt{x}}{\sqrt{x + 3x^8} - x},$ (c) $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right).$

$$(c) \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \ln(x^2 - 3x - 9)$ a bod $x_0 = 5$. Najděte rovnici tečny ke grafu funkce f v bodě x_0 .

▶ Příklad 5 [2 b.]: Těleso se pohybuje po dráze $s=8+3t+t^2-\frac{t^3}{3}$ (v metrech). Určete:

- (a) Za jaký čas zastaví?
- (b) Jaké bude jeho zrychlení v čase t = 0.5 s?
- (c) Jakou dráhu těleso urazí od času t = 0 do zastavení?
- ▶ Příklad 6 [2 b.]: Určete intervaly kde je funkce

$$f(x) = x^2 + 2x - \frac{9}{5}(x+1)^{5/3}, \qquad f'(x) = 2x + 2 - 3\sqrt[3]{(x+1)^2},$$

konvexní, kde je konkávní a najděte inflexní body a jejich hodnoty.

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[▷] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

 [∨] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-2	0	1	2
f(x)	28	2	1	8
f'(x)	_	-1	0	_

Dále pomocí získaného polynomu odhadněte hodnotu funkce f a její derivace v $x_0 = -1$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \arccos \frac{3-x}{7} - e^{2x} \sqrt{\frac{2x-13}{x-5}}.$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n\to\infty} \left(\sqrt{5n-7} - \sqrt{7n-5}\right)$$

(a)
$$\lim_{n \to \infty} \left(\sqrt{5n - 7} - \sqrt{7n - 5} \right)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{x^5 + 4} + 3^x - x^2}{\sqrt[3]{x^5 + 2} - 3^{x+1}}$, (c) $\lim_{x \to 0^+} x^x$.

$$(c) \lim_{x \to 0^+} x^x.$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \sqrt[3]{x^2 + 10x + 1}$ a bod $x_0 = -1$. Najděte rovnici tečny ke grafu funkce f v bodě x_0 .

▶ Příklad 5 [2 b.]: Množství elektrického náboje Q, který prochází vodičem, se mění s časem podle vztahu $Q = 3t^2 + 2t + 2$ (jednotky coulomb C a sekunda s).

- (a) Jaká bude okamžitá hodnota proudu I (jednotky amper A) v čase $t=1\,s$?
- (b) Kdy bude hodnota proudu I = 20 A?

(Nápověda: Proud je změna náboje v čase.)

▶ Příklad 6 [2 b.]: Určete intervaly monotonie a najděte lokální extrémy a jejich hodnoty pro funkci

$$f(x) = 2(x+1) - 3\sqrt[3]{(x+1)^2}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

Druhou tabulku ponechejte prázdnou.

[▷] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

 [∨] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-2	-1	0	2
f(x)	-1	-1	1	35
f'(x)	_	3	1	_

Dále pomocí získaného polynomu odhadněte hodnotu funkce f a její derivace v $x_0 = 1$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \frac{\arccos\frac{x-1}{4}}{(x^2 - 3x + 2)\ln(x+1)}.$$

▶ Příklad 3 [2 b.]: Určete limity

$$(a) \lim_{n \to \infty} (\sqrt{(n+3)(n-1)} - n)$$

(a)
$$\lim_{n \to \infty} (\sqrt{(n+3)(n-1)} - n)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{3x}}{\sqrt{5x + \sqrt{7x + \sqrt{8x}}}}$, (c) $\lim_{x \to 0^+} (\cot x)^{\sin x}$.

$$(c) \lim_{x \to 0^+} (\cot x)^{\sin x}.$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \ln(x^3 + 2x^2 + 1)$ a bod $x_0 = -2$. Najděte rovnici tečny ke grafu funkce f v bodě x_0 .

▶ Příklad 5 [2 b.]: Těleso sjede po nakloněné rovině dlouhé 50 m za 10 s. Jaká je jeho konečná rychlost, pokud předpokládáme, že dráha je kvadratická funkce času a že počáteční rychlost je nulová?

(Nápověda: Dráhu uvažujte jako $s = at^2 + bt + c$ s neurčitými koeficienty $a, b, c \in \mathbb{R}$.)

▶ Příklad 6 [2 b.]: Určete intervaly monotonie a najděte lokální extrémy a jejich hodnoty pro funkci

$$f(x) = \frac{35}{8}(2x - 3)^{4/5} - 7x + 2.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

Druhou tabulku ponechejte prázdnou.

[▷] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

 [∨] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Výsledky

1) A:
$$P(x) = x^4 + 2x^3 - x + 2$$
, $P(1) = 4$, $P'(1) = 9$
B: $P(x) = x^4 - x^3 + 2x - 1$, $P(1/2) = -1/16$, $P'(1/2) = 7/4$
C: $P(x) = x^4 - x^3 - x + 2$, $P(-1) = 5$, $P'(-1) = -8$
D: $P(x) = x^4 + 2x^3 + x + 1$, $P(1) = 5$, $P'(1) = 11$

2) A:
$$(-3, -5/2) \cup (-5/2, 1]$$

B: $(-3/2, -1) \cup (-1, 5/2]$
C: $[-4, 5) \cup [13/2, 10]$
D: $(-1, 0) \cup (0, 1) \cup (1, 2) \cup (2, 5]$

3) A: (a) 0, (b)
$$-1$$
, (c) 0
B: (a) 0, (b) $1/\sqrt{3}$, (c) 0
C: (a) $-\infty$, (b) $-1/3$, (c) 1
D: (a) 1, (b) $\sqrt{3/5}$, (c) 1

4) A:
$$t: y - \sqrt{7} = \frac{-15}{2\sqrt{7}}(x+1)$$

B: $t: y - 0 = 7(x-5)$
C: $t: y + 2 = \frac{2}{3}(x+1)$
D: $t: y - 0 = 4(x+2)$

5) A: (a) 5, (b) 2, (c) 30
B: (a) 3, (b) 1, (c) 9
C: (a) 8, (b) 3
D:
$$10$$
, $(s(t) = t^2/2)$

6) A: $\bigcup \text{pro } x \in [3/2, 2], \bigcap \text{pro } x \in (-\infty, 3/2] \cup [2, \infty),$ infl. body [3/2, -79/8], [2, -1985/144]B: $\bigcup \text{pro } x \in (-\infty, -1] \cup [0, \infty), \bigcap \text{pro } x \in [-1, 0],$ infl. body [-1, -1], [0, -9/5]C: $\nearrow \text{pro } x \in (-\infty, -1] \cup [0, \infty), \searrow \text{pro } x \in [-1, 0],$ lok. min. [0, -1], lok. max. [-1, 0]D: $\nearrow \text{pro } x \in [3/2, 2], \searrow \text{pro } x(-\infty, 3/2] \cup [2, \infty),$ lok. min. [3/2, -17/2], lok. max. [2, -61/8]