Lecture 2

Datapath Design Book of John P. Hayes

Fixed-Point Arithmetic

- ✓ Addition
- ✓ Subtraction
- Multiplication
- Division

Half Adder

$X_0 Y_0$	$S_0 C_0$		
0 0	0 0		
0 1	1 0		
1 0	1 0		
1 1	1		

(b) Truth Table

$$S_0 = X_0 \text{ xor } Y_0 \text{ and } C_0 = X_0 Y_0$$

Full Adder

Inputs			Outputs	
x_0	y_0	c_{-1}	c_0	s_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1.1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1 9	1

(a) Full Adder

$$s_0 = x_0 xor y_0 xor c_{-1}$$

 $c_0 = x_0 y_0 + x_0 c_{-1} + y_0 c_{-1}$

(b) Truth Table

Full Adder

(b) Symbol

(a) Two-level AND-OR logic circuit

Serial Binary Adder

- Least expensive circuit in terms of hardware cost.
- ✓ It adds the numbers bit by bit and so requires n clock cycle to compute the sum of two n-bit numbers.
- Circuit size is independent of n.

Ripple Carry Adder / Parallel Adder

- ✓A 1 appearing on the carry in line of a 1-bit adder cause it to generate a 1 on its carry out line. So, the carry signal propagate through the adder from right to left.
- ✓ The maximum signal propagation delay is hd, where d is the delay of a full-adder stage.
- ✓ The amount of hardware increase linearly with n.

Subtracter for 2's Complement Number

- When s = 0 then X xor s = X
- ✓ When s=1 then X xor s=X

Subtracter for 2's Complement Number

Example: Adder/Subtractor

Subtracter

For sign-magnitude number, it is useful to construct a subtracter on the full (1-bit) subtracter function $z_i = x_i x_i x_i y_i x_i y_j x_i y_i x_i x_i y_i x_i x_i$

16 bit Adder

- ✓ When the result of an arithmetic operation exceeds the standard word size n, overflow occurs.
- \angle Example: let n=8 X=11101011=235₁₀ and Y=00101010=42₁₀ Z= X+Y=11101011

$$+00101010$$
 $| 000101010 = 21_{10}$
 $C_7 = 1$

$$C_7Z = 100010101 = 277_{10} = 256_{10} + 21_{10}$$

- \checkmark The result of an addition simply wraps around when the largest number $2^{n}-1$ is exceeds.
- For n, the number range for unsigned number is 0 to 2^n-1

- ✓ We can never have overflow on adding a negative and positive number.
- Example: let n=8 $X=11101011=-21_{10}$ and $Y=00101010=+42_{10}$ $Z=X+Y=00010101 = 21_{10}$ $C_7=1$

So, $C_{n-1} = 1$ does not indicate overflow.

- ✓ Overflow in 2's complement addition can result from adding 1) two positive numbers or 2) two negative numbers.
- ✓ <u>Case 1:</u> Two numbers are positive.

Let n=4 +7 = 0111 +3 = 0011 so,
$$0111+0011 = 1010$$
 so, $c_{n-2} = 1$

 C_{n-2} =1 indicates that the magnitude of the sum exceeds the n-1 bits allocated to it.

✓ Case 2: Two numbers are negative.

Let
$$n=4 -7 = 1001 -3 = 1101$$

Let n=4 -7 = 1001 -3 = 1101 so,
$$1001+1101 = 10110$$
 so, $c_{n-2} = 0$

- For n the number for 2's complement number is $+(2^{n-1}-1)$ to -2^n .

$$Z_{n-1}Z_{n-2}....Z_{0} := X_{n-1}X_{n-2}...X_{0} + Y_{n-1}Y_{n-2}...Y_{0} + X_{n-1}Y_{n-2}...Y_{0} + X_{n-1}Y_{n-1}C_{n-2} + X_{n-1}Y_{n-1}C_{n-2}$$

$$V = X_{n-1}X_{n-1}X_{n-2} + X_{n-1}Y_{n-1}C_{n-2}$$

$$V = C_{n-1}X_{n-2}X_{n-2}$$

X_{n-1}	Y_{n-1}	C _{n-2}	Z_{n-1}	$oldsymbol{ m V}$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	0

Ripple Carry Adder z_{n-1} z_{n-2} z_{n-2} z_{n-2} z_{n-2} z_{n-3} z_{n-1} z_{n-2} z_{n-2} z_{n-2} z_{n-3} z_{n-1} z_{n-2} z_{n-2} z_{n-2} z_{n-2} z_{n-3} z_{n-2} z_{n-3} z_{n-2} z_{n-3} z_{n-2} z_{n-3} z_{n-3} z_{n-2} z_{n-3} z_{n-2} z_{n-3} z_{n-3} z_{n-2} z_{n-3} z_{n-3} z_{n-3} z_{n-3} z_{n-3} z_{n-2} z_{n-3} z_{n

- ✓ the carry signal propagate through the adder from right to left
- ✓ The maximum signal propagation delay is nd, where d is the delay of a full-adder stage.

High Speed Adder

- ✓ Reduce the time required to form carry signals.
- ✓ **Approach:** To compute the input carry needed by stage *i* directly from carrylike signals obtained from all the preceding stages i-1, i-2, ..,0.
- ✓ Adders that use this principle are called carry-lookahead adders.

Carry Lookahead Adder

- \checkmark generate signal $g_i = x_i y_i$ and propagate signal $p_i = x_i + y_i$
- $\mathbf{c}_{i} = x_{i}y_{i} + x_{i}c_{i-1} + y_{i}c_{i-1}$ is the carry to be sent to the stage i+1.

$$c_i = g_i + p_i c_{i-1}$$

$$\mathbf{c}_{i-1} = \mathbf{g}_{i-1} + \mathbf{p}_{i-1}\mathbf{c}_{i-2}$$

$$\mathbf{c}_{i} = \mathbf{g}_{i} + \mathbf{p}_{i}\mathbf{g}_{i-1} + \mathbf{p}_{i}\mathbf{p}_{i-1}\mathbf{c}_{i-2}$$

4-bit Carry Lookahead Adder

$$c_0 = g_0 + p_0 c_{in}$$

$$c_1 = g_1 + p_1 g_0 + p_1 p_0 c_{in}$$

$$c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_{in}$$

$$c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_{in}$$

 $z_i = x_i xor y_i xor c_{i-1} can be written as <math>z_i = p_i xor g_i xor c_{i-1}$

4-bit Carry Lookahead Adder

4-bit CarryLookahead Adder

- ✓ Maximum delay is 4d, where d is the average gate delay. It is independent of number of input n.
- The complexity of the carry generation logic in the carry lookahead adder, including its gate count, its maximum fan-in, and its maximum fan-out increase steadily with n.
- ✓ It limits n to 4.

Adder Expansion

✓ If we replace n 1-bit adder stages in the n-bit ripple carry adder with n k-bit adders, we obtain an nk-bit adder.

Figure: A 16-bit adder composed of 4-bit adders linked by ripple-carry propagation

Adder Expansion

$$g = x_i y_i + x_{i-1} y_{i-1} (x_i + y_i) + x_{i-2} y_{i-2} (x_i + y_i) (x_{i-1} + y_{i-1})$$

$$+ x_{i-3} y_{i-3} (x_i + y_i) (x_{i-1} + y_{i-1}) (x_{i-2} + y_{i-2})$$

$$p = (x_i + y_i) (x_{i-1} + y_{i-1}) (x_{i-2} + y_{i-2}) (x_{i-3} + y_{i-3})$$

Design of a Complete 2's Complement Adder-Subtracter

Chapter 4, Section 4.1 of John P. Hayes Book