SHA3 양자회로 구현

https://youtu.be/6VgPPAVsxBg

IT융합공학부 송경주

HANSUNG UNIVERSITY CryptoCraft LAB

- Secure Hash Algorithm(SHA)-3
 - Secure Hash Algorithm(SHA)-3는 SHA1, SHA2를 대체하기 위해 2015년 National Institute of Standards and Technology (NIST) 에서 공개한 해시함수
- 해시함수 공격 방법 : Preimage attack
 - Preimage → 해시가 주어졌을 때, 원본 메시지를 찾는 방법 (H = hash(M) 에 대해 H가 주어졌을 때, M을 찾음)
 - n-bit의 해시는 n-bit의 preimage 저항을 가짐
 - → 좋은 해시함수일수록 preimage 를 찾는 것이 매우 어려움

• SHA3 출력 길이 n : 224, 256, 384, 512 bit

• 충돌 저항성 : $2^{n/2}$

• Pre-image 저항성 : 2^n

구분	출력 크기	메시지 크기	b	r	С	워드	라운드 수
SHA3 -224	224 -bit	무제한	1600 -bit	1152 -bit	448 -bit	64 -bit	64
SHA3 -256	256 -bit	무제한	1600 -bit	1088-bit	512 -bit	64 -bit	64
SHA3 -384	384 -bit	무제한	1600 -bit	832 -bit	768 -bit	64 -bit	80
SHA3 -512	512 -bit	무제한	1600 -bit	576 -bit	1024 -bit	64 -bit	80

[SHA3 구조]

- Sponge 구조를 사용하여 동작
 - : 입력된 데이터가 스펀지 구조에 의해 'absorbed' 및 'squeezed' 단계를 통해 결과를 출력함
- Absorbing : 메시지 블록이 XOR되어 permutation 함수를 통해 변환됨
- Squeezing : output 블록을 함수 f의 반복으로 업데이트함

- SHA3 f function : 5개의 단계로 동작
 - $\theta(theta)$, $\rho(rho)$, $\pi(pi)$, $\chi(chi)$, $\iota(iota)$
- 입력 b비트에 따라 12 + 2l만큼의 라운드로 f함수가 진행됨
- SHA3 State = $5 \times 5 \times \omega$ 의 3차원 행렬

b(bit)	25	50	100	200	400	800	1600
w	1	2	4	8	16	32	64
l	0	1	2	3	4	5	6

< b비트에 따른 w와 l값 >

- $\theta(theta)$
 - 1. ((x-1),z) column 비트들의 합과 ((x+1),(z-1)) column 비트들의 합을 XOR
 - 2. 1의 결과를 (x, y, z)비트에 XOR 함 (최종 결과 값 : (x, y, z)에 저장)

Secure Hash Algorithm(SHA)-3 Quantum circuit

• $\theta(theta)$ Quantum circuit Classic : C, D, temp, A_out (state(1600) 크기의 temp 4개 사용)

```
i in range(5):
for j in range(5):
        for k in range(64):
             C=sum([A[(i-1)%5][ji][k] for ji in range(5)]) % 2
            D=sum([A[((i+1) % 5)][ji][(k-1)%64] for ji in range(5)]) % 2
            temp=C+D+A[i][j][k] % 2
            A_out[i][j][k]=temp
```

Quantum : anc (state(1600) 크기의 anc 1개 사용) → 4800 큐비트 절약 But 매 라운드마다 1600 큐비트 사용

- → 1. CNOT 게이트를 사용하여 input[x-1][-][z] 에 있는 column들의 합을 모두 anc에 저장
- 2. CNOT 게이트를 사용하여 input[x+1][-][z+1] 에 있는 column들의 합을 모두 anc에 저장 (1과 2 중첩)
- └→ 3. CNOT 게이트를 사용하여 anc와 기존 input[x][y][z] 에 대한 mod 2 덧셈 진행 → 저장은 anc

★ 1-2-3 반복에서 input[x][y][z]는 이후 1,2 에서 사용되므로 값이 유지되어야 함

• ho(rho)각 Iane에서 정해진 offset 만큼 Rotate하는 과정

	x=3	x=4	x=0	x=1	x=2
y=2	153	231	3	10	171
y=1	55	276	36	300	6
y=0	28	91	0	1	190
y=4	120	78	210	66	253
y=3	21	136	105	45	15

Table 2: Offsets of ρ [8]

Secure Hash Algorithm(SHA)-3 Quantum circuit

• $\rho(rho)$ Quantum circuit

	x=3	x=4	x = 0	x=1	x=2
y=2	153	231	3	10	171
y=1	55	276	36	300	6
y=0	28	91	0	1	190
y=4	120	78	210	66	253
y=3	21	136	105	45	15

Table 2: Offsets of ρ [8]

	x = 3	x = 4	x = 0	x = 1	x = 2
y = 2	25	39	3	10	43
y = 1	55	20	36	44	6
y = 0	28	27	0	1	62
y = 4	56	14	18	2	61
y = 3	21	8	41	45	15

```
for i in range(5):
for j in range(5):
    for k in range(64):
        result[i][j][k] = x[i][j][k - rhomatrix[i][j]]
```

• $\pi(pi)$ Quantum circuit State 내에서 lane의 자리를 재배치하는 과정

Steps:

- 1. For all triples (x, y, z) such that $0 \le x < 5$, $0 \le y < 5$, and $0 \le z < w$, let $\mathbf{A}'[x, y, z] = \mathbf{A}[(x + 3y) \mod 5, x, z]$.
- 2. Return A'.

• SWAP 게이트로 단순 Bit Rotation 수행

• $\chi(chi)$ Quantum circuit

오른쪽 2개 비트를 곱셈 연산한 결과와 XOR 연산하는 과정

Steps:

- 1. For all triples (x, y, z) such that $0 \le x < 5$, $0 \le y < 5$, and $0 \le z < w$, let
 - $\mathbf{A'}[x,y,z] = \mathbf{A}[x,y,z] \oplus ((\mathbf{A}[(x+1) \bmod 5, y, z] \oplus 1) \cdot \mathbf{A}[(x+2) \bmod 5, y, z]).$
- 2. Return A'. 중간 Temp 결과를 저장하지 않고 input에 바로 저장되도록 함

반복 x=0 : input[1][y][z]와 input[2][y][z] 을 사용하여 input[0][y][z] Update

반복 x=1 : input[2][y][z]와 input[3][y][z] 을 사용하여 input[1][y][z] Update

반복 x=2 : input[3][y][z]와 input[4][y][z] 을 사용하여 input[2][y][z] Update

반복 x=3 : input[4][y][z]와 input[0][y][z] 을 사용하여 input[3][y][z] Update

반복 x=4: input[0][y][z]와 input[1][y][z] 을 사용하여 input[4][y][z] Update

Input[0][y][z], input[1][y][z]를 각각 저장하기 위한 320+320 = 640 큐비트만 사용

ι(iota) Quantum circuit

Lane(0,0)이 라운드 상수와 XOR 연산을 수행하는 과정

Steps:

- 1. For all triples (x, y, z) such that $0 \le x < 5$, $0 \le y < 5$, and $0 \le z < w$, let A'[x, y, z] = A[x, y, z].
- 2. Let $RC = 0^w$.
- 3. For *j* from 0 to ℓ , let $RC[2^{j}-1]=rc(j+7i_r)$.
- 4. For all z such that $0 \le z < w$, let $A'[0,0,z] = A'[0,0,z] \oplus RC[z]$.
- 5. Return A'.
- RC는 상수이므로 Classic 계산으로 연산
- RC와 input의 CNOT 연산 → RC는 Classic 값이며 input는 Quantum 값이므로 RC 값에 조건문을 걸어 input에 X 게이트 수행

```
for l in range(7):
if rc[l + 7 * r] % 2 == 1:
    X | x[0][0][2 ** l - 1]
```

• 양자자원 추정 결과

이전 논문 연구 결과

	X	P/P^{\dagger}	T/T^{\dagger}	H	CNOT	T-depth	Depth
θ	0	0	0	0	17600	0	275
$ heta^{-1}$	0	0	0	0	1360000	0	25
χ	0	0	11200	3200	14400	15	55
χ^{-1}	0	0	13440	3840	18880	18	66
ι	85	0	0	0	0	0	24
SHA3-256	85	0	591360	168960	33269760	792	10128
SHA3-256	(Opt.) 85	46080	499200	168960	34260480	432	11040

Qubit: 3,200

제안 양자회로 결과

Qubit	Qubit T		X	Depth
55,360	115,200	591,360	76,886	2,020

Q&A