Witten model 1

Definition 1.1 (Witten model)

Hamiltonian を 2 成分で

$$H = \begin{pmatrix} A^{\dagger}A & 0\\ 0 & AA^{\dagger} \end{pmatrix} = \begin{pmatrix} H_{+} & 0\\ 0 & H_{-} \end{pmatrix} \tag{1}$$

の形で与える量子力学系を Witten model や $\mathcal{N}=2$ 超対称量子力学 ($\mathcal{N}=2$ SUSYQM) という. 量子力学なので、具体的 に A は

$$A := \frac{1}{\sqrt{2m}} \left(-i\hbar \frac{\mathrm{d}^2}{\mathrm{d}x^2} - iW'(x) \right) \tag{2}$$

と書け, W(x) は superpotential*1 という. また,

$$H_{+} = \frac{-\hbar^{2}}{2m} \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} + \frac{1}{2m} (W'(x))^{2} - \frac{\hbar}{2m} W''(x)$$
(3)

$$H_{-} = \frac{-\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2m} (W'(x))^2 + \frac{\hbar}{2m} W''(x)$$
 (4)

である. これに伴い、波動関数は二成分考える必要があり、 $\Psi(x) = (\psi_+(x), \psi_-(x))^\top$ と書く.

Witten model は定義した H に加え,

$$Q := \begin{pmatrix} 0 & A^{\dagger} \\ A & 0 \end{pmatrix}, \quad (-1)^F = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{5}$$

を定めると,これらは最小超対称関係を満たす.

これから定義に従って計算すると、実 supercharge は

$$Q_1 = \begin{pmatrix} 0 & A^{\dagger} \\ A & 0 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 0 & iA^{\dagger} \\ -iA & 0 \end{pmatrix}, \tag{6}$$

複素 supercharge は

$$Q = \begin{pmatrix} 0 & 0 \\ \sqrt{2}A & \end{pmatrix} = \sqrt{2}A\sigma_{-} \tag{7}$$

$$Q^{\dagger} = \begin{pmatrix} 0 & \sqrt{2}A^{\dagger} \\ 0 & 0 \end{pmatrix} = \sqrt{2}A^{\dagger}\sigma_{+} \tag{8}$$

となる. σ_\pm は冪零行列なので、複素 supercharge の冪零性はここから自然にわかる. エネルギーの縮退の構造に関して、今までどおり、H と $(-1)^F$ の同時固有状態を考える. $(-1)^F=\sigma_3$ の形から、固有状 態は $(\psi_+(x),0)^{ op}$, $(0,\psi_-(x))^{ op}$ であり, $H\Psi_E(x)=E\Psi_E(x)$ は

$$A^{\dagger}A\psi_{E,+}(x) = E\psi_{E,+}(x) \tag{9}$$

$$AA^{\dagger}\psi_{E,-}(x) = E\psi_{E,-}(x) \tag{10}$$

を解けば良いことになる.

Theorem 1.2

ここで、E > 0 の場合

$$A\psi_{E,+}(x) = \sqrt{E}\psi_{E,-}(x),\tag{11}$$

$$A^{\dagger}\psi_{E,-}(x) = \sqrt{E}\psi_{E,+} \tag{12}$$

の超対称関係がある.

今,Eq. (11) の一つの解 $\psi_{E,+}(x)$ を取って, $A\psi_{E,+}(x)$ を考えると, $AA^\dagger(A\psi_{E,+})(x)=EA\psi_{E,+}(x)$ より Eq. (12) の解 になる. 規格化は $\|A\psi_{E,+}\|^2 = \langle \psi_{E,+}, A^\dagger A \psi_{E,+} \rangle = E$ なので $A\psi_{E,+}(x) = \sqrt{E}\psi_{E,-}(x)$ である. もうひとつも同様. Witten model は二成分で考えているが、別個の 2 つの量子力学系 $H_+ = A^\dagger A$, $H_- = AA^\dagger$ を二つ取ってきたと思うと、 その間に A と A^{\dagger} を通して対応がついたことになる. H_{+} と H_{-} を超対称パートナー Hamiltonian という.

 $^{^{*1}}$ W'(x) のことを superpotential という流儀もあって,実際 Witten の原論文はそうだが,W(x) のほうがふさわしいらしい.

Witten model のゼロエネルギー状態を調べると、Witten index に幾何的解釈をつけることができる. ゼロエネルギー状 態は他とは異なり,一階の微分方程式の解になっている. $A\psi_{0,+}(x)=0, A^{\dagger}\psi_{E,-}(x)=0$ だが,微分を明らかに書くと,

$$\frac{-i\hbar}{\sqrt{2m}} \left(\frac{\mathrm{d}}{\mathrm{d}x} + \frac{1}{\hbar} W'(x) \right) \psi_{0,+}(x) = 0 \tag{13}$$

$$\frac{-i\hbar}{\sqrt{2m}} \left(\frac{\mathrm{d}}{\mathrm{d}x} + \frac{1}{\hbar} W'(x) \right) \psi_{0,+}(x) = 0$$

$$\frac{-i\hbar}{\sqrt{2m}} \left(\frac{\mathrm{d}}{\mathrm{d}x} - \frac{1}{\hbar} W'(x) \right) \psi_{0,-}(x) = 0$$
(13)

なので、簡単に解けて,

$$\psi_{0,+}(x) = N_{0,+} e^{-W(x)/\hbar} \tag{15}$$

$$\psi_{0,-}(x) = N_{0,-} e^{W(x)/\hbar} \tag{16}$$

となる. $N_{0,\pm}$ は適当な規格化定数である. ただし、量子力学としては、この解であり規格化可能なものだけが取りうる状態 なので規格化可能性を調べる必要がある.

便宜上, superpotential が p 次多項式で $W(x)=a_0+a_1x+a_2x^2+\cdots+a_px^p,\, a_p\neq 0$ で与えられるとする. 規格化可 能性を考えると、ゼロエネルギー状態はあるとしたら superpotential の最高次が偶数次の場合で、符号が正なら $(-1)^F$ の 固有値が +1 の方に存在し、負なら -1 の方に存在することになる. 1.

Table 1 ✓ の入っている場合が規格化可能.

	$W(\infty)$	$W(-\infty)$	$\psi_{0,+}$	$\psi_{0,-}$
$a_p > 0, p$: even	∞	∞	\checkmark	×
$a_p > 0, p$: odd	∞	$-\infty$	×	×
$a_p < 0, p$: even	$-\infty$	∞	×	\checkmark
$a_p < 0, p$: odd	$-\infty$	$-\infty$	\times	\times

Witten index は

$$\Delta_{W} = \begin{cases} +1, & a_{p} > 0, p : \text{ even} \\ -1, & a_{p} < 0, p : \text{ even} \\ 0, & p : \text{ odd} \end{cases}$$
 (17)

だが、これは superpotential の (二回微分が正の極値の数) - (負の極値の数) に等しいことが知られている *2 . 感覚的に は、superpotential を連続変形しても漸近的振る舞いを変えない限り、この数が変わらないこととして Witten index が topological 不変量であることが理解できる.

現象論にも Witten index は重要で、現状、SUSY は現実世界で観測されていないので、low energy では SUSY は破れて いないといけない.

ground state $|vac\rangle$ として、 $Q|vac\rangle = Q^{\dagger}|vac\rangle = 0$ のとき SUSY は破れていない、そうでないとき SUSY は破れている という. エネルギーの言葉ではこれは ground energy $E_0=0$ のとき SUSY が破れている, そうでないとき SUSY が破れ ていないことになる.

Witten index の言葉では、 $\Delta_{\rm W} \neq 0$ なら、かならずゼロエネルギー状態があるので、SUSY は破れていない. SUSY が 破れているならば、 $\Delta_{W}=0$ である. (逆は成り立たない.)

SUSY が破れている現象論模型を作るためには、 $\Delta_{\rm W}=0$ を満たすように作らなければいけない.

^{*&}lt;sup>2</sup> Witten1981 に書いてあるらしいが,見つけられなかった.