МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)"

ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ КАФЕДРА ДИСКРЕТНОЙ МАТЕМАТИКИ

Выпускная квалификационная работа по направлению 01.03.02 "Прикладные математика и информатика" НА ТЕМУ:

ВЕРИФИКАЦИЯ ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ О НИЖНЕЙ ОЦЕНКЕ ХРОМАТИЧЕСКОГО ЧИСЛА ПЛОСКОСТИ В СИСТЕМЕ COQ

Студент	Анюшева Е.Б.
Научный руководитель к.ф-м.н	Дашков Е.В.

Оглавление

		Стр
Аннот	ация	3
Введе	ние	4
0.1	Хроматическое число плоскости. Задача Нелсона — Эрдёша —	
	Хадвигера	4
0.2	Система Сод. Описание, история, возможности, применения	5
0.3	Мотивировка задачи	6
0.4	Обзор литературы	6
Глава	1. Построение графов через реализацию графа на	
	плоскости	7
Глава	2. Реализация графа в Coq	8
Глава	3. Доказательство свойств раскраски малых графов в Соq	S
Глава	4. Алгоритм раскраски графа из статьи де Грея	10
4.1	Работа алгоритма на Python	10
4.2	Реализация алгоритма в Coq	10
Глава	5. Заключение	11
5.1	Сравнительный анализ результатов	11
5.2	Reporte	11

Аннотация

В данной работы мы сделали то и это. Использовали Соq, красили графы, веселились.

Введение

0.1 Хроматическое число плоскости. Задача Нелсона — Эрдёша — Хадвигера

Граф G – это упорядоченная пара G:=(V,E), где V — непустое множество, а E — подмножество $V\times V$. Если $(u,v)\in E$, то вершины u и v называются cмежеными. Обозначение $u\sim v$.

Раскраска f графа G – это отображение из V в множество цветов. Раскраска f называется npaeuльной, если $u\sim v\to f(u)\neq f(v)$

Хроматическое число графа — это минимальное количество цветов, в которые можно правильно раскрасить граф.

Граф единичных расстояний − это граф, вершинами которого являются некоторые точки евклидовой плоскости, а ребрами соединены все пары вершин, находящиеся на расстоянии 1.

Xроматическое число плоскости χ — это минимальное число цветов χ , в которое можно правильно раскрасить любой граф единичных расстояний.

Задача Нелсона — Эрдёша — Хадвигера заключается в нахождении хроматического числа плоскости. С 1950 года известно [3], что хроматическое число плоскости хотя бы 4 и не больше 7.

TODO: объяснить, почему, прикрепить картинки про 4 и 7, [2].

В апреле 2018 года Обри де Грей опубликовал статью, в которой доказал, что хроматическое число плоскости хотя бы 5. На момент написания работы задача является открытой. Данная работа фокусируется на уточнении неясных мест в данной статье, явных детерминированных конструкциях графов из статьи и верификации отдельных утверждений статьи в системе Coq.

Рисунок 1 — Веретено Мозера

0.2 Система Соq. Описание, история, возможности, применения

История создания, история использования (сортировки, раскраска карты, \parallel что-нибудь.)

Какая логика? Че за изоморфизм там? Что такое Галина? Мы пользуемся Галиной? Что такое тактики?

Мы будем пользоваться представлением графа чувака автора учебника, [] учебник.

Рисунок 2 — Раскраска плоскости в 7 цветов

0.3 Мотивировка задачи

Краткое изложение структуры статьи де Грея, статья просится на верификацию.

0.4 Обзор литературы

1. Huele 2. Exoo, Geoffrey; Ismailescu, Dan

Пацаны проверили на SAT solver-е, кто-то придумал пример поменьше, кто-то графы по-другому делает.

Глава 1. Построение графов через реализацию графа на плоскости

Глава 2. Реализация графа в Соф

Глава 3. Доказательство свойств раскраски малых графов в Соф

Глава 4. Алгоритм раскраски графа из статьи де Грея

- 4.1 Работа алгоритма на Python
- 4.2 Реализация алгоритма в Соф

Глава 5. Заключение

5.1 Сравнительный анализ результатов

5.2 Выводы

Список литературы

- 1. A. de Grey, The chromatic number of the plane is at least 5, arXiv:1804.02385, -2018.
- 2. H. Hadwiger, Ueberdeckung des Euklidischen Raumes durch kongruente Mengen, Portugaliae mathematica, 4(4), 238-242 (1945).
- 3. A. Soifer, The Mathematical Coloring Book, Springfer, 2008, ISBN-13: 9780387746401.
- 4. Marijn J.H. Heule, Computing Small Unit-Distance Graphs with Chromatic Number 5, arXiv:1805.12181, 2018.
- 5. G. Exoo, D. Ismailescu, The chromatic number of the plane is at least 5 a new proof, arXiv:1805.00157, 2018.