Appl. No. 10/774,326

Amdt. Dated May 31, 2007

Reply to Office Action of March 9, 2007

Attorney Docket No. 81846.0035 Customer No. 26021

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in

the application:

Listing of Claims:

1. (Currently Amended) A solar cell module comprising a base member, a

solar cell provided on an uppermost surface of the base member such that a lower

surface of the solar cell is positioned above and is mounted to the uppermost surface

of the base member and an insulating support member provided on a lower surface

of the base member, and configured to be laid together with tiles on the roof of a

building, wherein:

said base member is rectangular and has a ridge-side surface projecting

downwards with respect to a surface of a roof panel for mounting the solar cell

module, an eaves-side surface, a trough-side surface having a trough section and an anti-trough-side surface having a trough section, and

said solar cell module further comprises:

an under-lapping part is provided on the trough-side surface of said base

member to extend from a ridge side of the roof to an eaves-side thereof, and also to

overlap a side edge portion of an adjacent tile or a side edge portion of an adjacent

solar cell module; and

a projecting part is provided on the trough-side surface and the anti-trough-

side surface of the base member, along to extend from the ridge-side to the eaves-

side of the roof, and configured to overlap a trough section of [[an]] the adjacent tile

or [[the]] \underline{a} trough section of [[an]] \underline{the} adjacent solar module.

2-3. (Cancelled).

Appl. No. 10/774,326 Attorney Docket No. 81846.0035 Amdt. Dated May 31, 2007 Customer No.: 26021

Reply to Office Action of March 9, 2007

or the adjacent solar cell module.

4. (Currently Amended) The solar cell module according to claim 1, wherein the projecting part extends is provided on both the base member and the insulating support member to extend from a ridge-side end to eaves-side end of the each of the base member and the insulating support member trough section of the adjacent tile

5. (Currently Amended) The solar cell module according to claim 1, wherein a lower surface of the projecting part of said base member provided at the insulating support member contacts an upper edge of a rising wall which defines the trough section of the adjacent tile or the adjacent solar cell module [[to]] with seal a gap.

6. (Cancelled).

7. (Previously Presented) A method of laying solar cell modules together with tiles on the roof of a building, comprising:

laying a separate waterproof member having approximately the same height and length as the tiles and a width narrower than that of the tiles between each solar cell module and one tile which are laid adjacent in a direction perpendicular to the direction of a gradient of the roof, said separate waterproof member comprises a rectangular box that opens at a lower portion thereof with respect to the roof,

wherein the separate waterproof member has a trough section on one side, said trough section draining rainwater through a junction between each solar cell module and the one tile, which are laid adjacent in the direction perpendicular to the direction of the gradient of the roof, and gaps between said separate waterproof member, a side end portion of each solar cell module and the one tile are sealed in a watertight manner by seal members.

Appl. No. 10/774,326 Attorney Docket No. 81846.0035 Amdt. Dated May 31, 2007 Customer No.: 26021

Reply to Office Action of March 9, 2007

8-12. (Cancelled).

13. (Currently Amended) A method of laying solar cell modules together with tiles on a roof panel, comprising:

laying a solar cell module on the roof and at causing a lower surface of an eaves-side of said solar cell module to overlap an upper [[edges]] surface of a ridge-side of the tiles said tile laid on the roof so that an upper portion of a ridge side of the tiles overlaps an eaves-side of said solar cell module;

arranging fixing fastening strips, which prevent said solar cell modules module from being blown off, between a lower portion of the caves side of the solar cell module and to the upper portion of the ridge-side of said [[tiles]] tile, the fastening strips engaging the caves-side of the solar cell module and the ridge-side of the tiles with each other including engagement members; and

engaging the engagement members of the fastening strips to the lower portion of the eaves-side of said solar cell module and the upper portion of the ridge-side of said tiles; and

engaging the fastening strips to the roof and the upper portion of the ridge side of said tiles;

wherein each fastening strip comprises a rectangular main part and two rising parts that extend from the main part from two sides of the main part.

14. (Previously Presented) The method of laying solar cell modules, according to claim 13, wherein the fastening strips each include a screw secured to the roof through a ridge-side end of one tile at one end portion of said each fastening strip, and an engaging part coupled to an eaves-side end of the solar cell module laid at the upper edges of the tiles at another end portion of said each fastening

 Appl. No. 10/774,326
 Attorney Docket No. 81846.0035

 Amdt. Dated May 31, 2007
 Customer No.: 26021

Reply to Office Action of March 9, 2007

strip, the engaging part coupling the lower portion of eaves-side of the solar cell module and the upper edge of the ridge-side of the tiles.

15. (Previously Presented) The method of laying solar cell modules, according to claim 14, wherein the fastening strips each allow a height-adjusting screw, which has a tip abutting on an upper surface of a tile, to be screwed into said each fastening strip, and can adjust a height of the engaging part coupled to the eaves-side end of the solar cell module laid at the upper edges of the tiles, the height of the engaging part varying in accordance with an amount by which the height-

adjusting screw is screwed into said each fastening strip.

16. (Previously Presented) The method of laying solar cell modules, according to claim 13, wherein the solar cell module has an effective width which is an integral multiple of the width of the tiles, and when the solar cell module and the tiles are arranged in a zigzag manner, the fastening strips are arranged at substantially regular intervals in a widthwise direction of the solar cell module, and engage the lower portion of the ridge side of the solar cell module and the upper

portion of the eaves sides of the tiles with each other.

17. (Previously Presented) An apparatus for preventing a solar cell module from being blown off, the solar cell module being laid together with tiles on a roof

panel, and fastening strips provided on the ridge-side of the tile, wherein:

said fastening strips which prevent a solar cell module from being blown off have a securing part directly secured to the roof through a ridgeside end of one tile, and an engaging part coupled to an eaves-side end of the solar cell module laid at the upper edges of the tiles, the engaging part coupling the lower portion of eaves-side of the solar cell module and the upper edge of the ridge-side of the tile. Appl. No. 10/774,326 Amdt. Dated May 31, 2007

Reply to Office Action of March 9, 2007

wherein each fastening strip comprises a rectangular main part and two rising parts that extend from the main part from two sides of the main

Attorney Docket No. 81846.0035

Customer No.: 26021

part.

18-20. (Cancelled).

21. (Previously Presented) The solar cell module according to claim 1,

wherein the base member comprises a bottomless box that opens at the lower

surface of the base member.

22. (Previously Presented) The solar cell module according to claim 21.

wherein the bottomless box includes a hollow interior region that is adapted to

receive the insulating support member.

23. (Previously Presented) The solar cell module according to claim 1.

wherein the base member includes a solar cell holding region on the upper surface

of the base member, wherein the solar cell holding region includes an opening

formed adjacent to a central portion of the base member, wherein the solar cell further comprises a terminal box that is inserted and mounted in the opening

formed in the base member.

24. (Previously Presented) The solar cell module according to claim 1.

wherein the insulating support member comprises a reinforcing member that

reinforces the base member, wherein a lower surface of the reinforcing member is

positioned adjacent an upper surface of the roof when the solar cell module is laid

on the roof, wherein the reinforcing member prevents the base member form being

deformed when the base member receives the weight of a worker stepping on or

laving the solar cell module.

Page 6 of 12