27/06/2025

PRÉDICTION DE L'ÉNERGIE MOLÉCULAIRE

BESBES Ines & ROOL Sara, 5ModIA

MATRICE DE COULOMB

QU'EST-CE QU'UNE MATRICE DE COULOMB ?

$$M_{ij}^{Coulomb} = \begin{cases} 0.5Z_i^{2.4} & \text{si } i = j\\ \frac{Z_i Z_j}{R_{ij}} & \text{si } i \neq j \end{cases}$$

- Invariante par translation et par rotation
- Non invariante à la permutation des atomes

Exemples de matrice de Coulomb en fonction de différentes transformations

RÉSULTATS

Modèle	Description du modèle	Transformation des données de test	RMSE de train	RMSE de test
Régression	Ridge avec $\alpha = 0.01$ et entraîné sur X_raw non normalisé	X_test_raw et non normalisé	1.58	1.657
Régression	Ridge avec $\alpha = 0.01$ et entraîné sur X_sorted non normalisé	X_test_sorted et non normalisé	1.39	1.486
Random forest	Entrainé sur X_raw avec n_estimators = 400 et max_depth = 25	X_test_raw et non normalisé	0.225	0.626
Random forest	Entrainé sur X_sorted avec n_estimators = 400 et max_depth = 25	X_test_sorted et non normalisé	0.170	0.497
Réseau de neurones	Entrainé sur X_sorted binarisé puis normalisé et l'optimiseur SGD	X_test_sorted binarisé puis normalisé selon les données d'entraînement	0.724	11.010
Réseau de neurones	Entrainé sur X_augmented binarisé puis normalisé et l'optimiseur SGD	X_test_augmented binarisé puis normalisé selon les données d'entraînement	0.243	2.929
Réseau de neurones	Entrainé sur X_augmented binarisé puis normalisé et l'optimiseur SGD	X_test_raw binarisé puis normalisé selon les données d'entraînement	0.243	2.466

Table comparative des RMSE d'entraînement et de test pour différent modèle

SCATTERING

QU'EST-CE QUE LE SCATTERING ?

3 canaux:

- Densité totale (identité atomique)
- Densité de valence (réactivité chimique)
- Densité de coeur (structure interne des noyaux)

Régression de diffusion d'une propriété moléculaire f(x)

RÉSULTATS

Combinaison	Modèle	RMSE Train	RMSE Test
Scattering avec J=2, L=3	Ridge ($\alpha = 0.001$)	0.98	0.713
Scattering avec J=2, L=3 + features géométriques	Ridge ($\alpha = 0.01$)	0.24	0.242
Scattering avec J=4, L=3	Ridge ($\alpha = 0.01$)	1.14	0.799
Scattering avec J=4, L=3 + features géométriques	Ridge ($\alpha = 0.01$)	0.23	0.24
Scattering avec J=2, L=3 + Coulomb (sorted)	Ridge ($\alpha = 0.1$)	0.36	0.43
Scattering avec J=2, L=3 + Coulomb (sorted) + features	LinearRegression	0.20	0.33
Scattering avec J=2, L=3 + Coulomb (raw)	Ridge ($\alpha = 0.0001$)	0.29	0.32
Scattering avec J=2, L=3 + Coulomb (raw) + features	${\rm Ridge}\;(\alpha=0.1)$	0.22	0.215

Table comparative des RMSE d'entraînement et de test pour différentes combinaisons de modèles

MERCI

RÉFÉRENCES

[1] Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, Andreas Ziehe, Alexandre Tkatchenko, O. Anatole von Lilienfeld, Klaus-Robert Müller. Learning Invariant Representations of Molecules for Atomization Energy Prediction. In Advances in Neural Information Processing Systems (NeurlPS), vol. 25, 2012.

[2] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, Stéphane Mallat, Louis Thiry. Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties. Journal of Chemical Physics, vol. 148, pp. 241732, 2018.