M 431: Assignment 6

Nathan Stouffer

Homomorphisms between clocks

Problem. Find all homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{15} .

Proof.

Page 74 — Problem 13

Problem. If G is a finite abelian group of order n and $\varphi:G\longrightarrow G$ is defined by $\varphi(a)=a^m$ for all $a\in G$, find the necessary and sufficient condition that φ be an isomorphism of G onto itself.

Proof.

Page 75 — Problem 26

Problem. If G is a group and $a \in G$, define $\sigma_a(g) = aga^{-1}$. We saw in Example 9 of this section that σ_a is an isomorphism of G onto itself, so $\sigma_a \in A(G)$, the group of all 1-1 mappings of G (as a set) onto itself. Define $\psi: G \longrightarrow A(G)$ by $\psi(a) = \sigma_a$ for all $a \in G$. Prove that

- (a) ψ is a homomorphism of G into A(G).
- **(b)** $\ker \psi = Z(G)$ the center of G.

Proof.

- (a) We wish to show that ψ is a homomorphism. That is, we must show that $\psi(ab) = \psi(a)\psi(b)$ for all $a,b \in G$. On the LHS, we have $\psi(ab) = \sigma_{ab}$ and on the RHS we have $\psi(a)\psi(b) = \sigma_a \circ \sigma_b$. For the LHS to equal the RHS we must have $\sigma_{ab}(g) = (\sigma_a \circ \sigma_b)(g)$ for all $g \in G$. Fix any $g \in G$, then $\sigma_{ab}(g) = (ab)g(ab)^{-1} = abgb^{-1}a^{-1} = \sigma_a(bgb^{-1}) = \sigma_a(\sigma_b(g)) = (\sigma_a \circ \sigma_b)(g)$. Since g was arbitrary in G, we have shown the equality between maps $\sigma_{ab} = \sigma_a \circ \sigma_b$ which means ψ is a homomorphism.
- (b) Now we want to show that $\ker \psi = Z(G)$. Let's write their definitions. We know $\ker \psi := \{a \in G \mid \psi(a) = id \in A(G)\} \subset G$ and that $Z(G) := \{a \in G \mid ag = ga \text{ for all } g \in G\}$. We will show equality by showing inclusion in both directions. Going to the left, pick any $a \in \ker \psi$, then $\psi(a) = id \in A(G)$. Also, by definition, $\psi(a) = \sigma_a$ this gives the equality of maps $\sigma_a = id$. Then we have $\sigma_a(g) = id(g) = g$ for all $g \in G$. By definition, $\sigma_a(g) = aga^{-1}$ so we also have $aga^{-1} = g$ for all $g \in G$. Left multiplying by a gives ag = ga for all g, which is exactly the condition for membership in Z(G). Therefore, $a \in Z(G)$ and since a was arbitray in $\ker \psi$ we have the inclusion $\ker \psi \subset Z(G)$.

We now show the other inclusion $Z(G) \subset \ker \psi$. Fix any $b \in Z(G)$ then bg = gb for every $b \in G$. Left multplying by b^{-1} gives the equality $bgb^{-1} = g$ for all $b \in G$. The LHS is exactly $\sigma_b(g)$ so we have just shown that $\sigma_b(g) = g$ for every b. But then σ_b performs the same actions as the identity map $id \in A(G)$ so we have $\sigma_b = id$. Further, $\sigma_b = \psi(b)$ so we also have $\psi(b) = id \in A(G)$, which is the condition for membership in $\ker \psi$. By arbitrariness of b, we have shown $Z(G) \subset \ker \psi$.

Heisenberg to plane

Problem. Find an epimorphism the Heisenberg group $\mathbb{H}_3(\mathbb{R})$ onto \mathbb{R}^2 .

Proof. Consider the function $\varphi: \mathbb{H}_3(\mathbb{R}) \longrightarrow \mathbb{R}^2$ which maps a matrix $A = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{H}_3(\mathbb{R})$ to

the point $(x,y) \in \mathbb{R}^2$. For φ to be an epimorphism, we must verify that φ is both surjective and a homomorphism. For φ to be surjective, for every point in \mathbb{R}^2 we must have a matrix in $\mathbb{H}_3(\mathbb{R})$ such that φ maps

the matrix to the point. For the point $(a,b) \in \mathbb{R}^2$, choose the matrix $A = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$. Then $\varphi(A) = (a,b)$

as desired. Now let's verify that φ is a homomorphism. We must check that $\varphi(AA') = \varphi(A)\varphi(A')$ for all $A, A' \in \mathbb{H}_3(\mathbb{R})$.

$$AA' = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & x' + x & z' + y'x + z \\ 0 & 1 & y' + y \\ 0 & 0 & 1 \end{bmatrix}$$

On the LHS, $\varphi(AA')=(x'+x,y'+x)$. Then on the RHS, we have $\varphi(A)\varphi(A')=(x,y)+(x',y')=(x+x',y+y')=(x'+x,y'+y)$. So the LHS equals the RHS and φ is a homomorphism.

Klein group

Problem. Show that the group Sym(R) where R is a rectangle that is not a square is isomorphic to the product $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. We know the elements of \mathbb{Z}_2 so we know the elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$ and the group operation it is endowed with. We must explore the group Sym(R). Certainly $Sym(R) \leq D_8$ (where S is a square) for every symmetry of a rectangle is also a symmetry of a square. Figure 1 depicts the axis of symmetries of a rectangle R. Together with the identity transformation, there are four. Since $Sym(R) \leq D_8$ let's give the four transformations the same names that we call them in D_8 . Namely, $Sym(R) := \{e, r^2, f, fr^2\}$.

Figure 1: Symmetries of a rectangle R

Figure 2 defines a map $\varphi: Sym(R) \longrightarrow \mathbb{Z}_2 \times \mathbb{Z}_2$. Just from the figure, we know that φ is a bijection.

$$\varphi: \operatorname{Sym}(R) \longrightarrow \mathbb{Z}_{z} \times \mathbb{Z}_{z}$$

$$e \longmapsto (o_{1}o)$$

$$\downarrow \longleftrightarrow (o_{n}i)$$

$$\uparrow^{2} \longmapsto (o_{n}i)$$

$$\uparrow^{2} \longmapsto (i_{n}i)$$

Figure 2: Isomorphism between Sym(R) and $\mathbb{Z}_2 \times \mathbb{Z}_2$

To verify that φ is an isomorphism, we must verify that φ is a homomorphism. Before doing this, note that $\mathbb{Z}_2 \times \mathbb{Z}_2$ and Sym(R) are abelian. We can check Sym(R) by verifying that $fr^2 = r^2f$. Since each group is abelian, we only need to check one "ordering" of each pair of elements. Now we verify that φ respects the group structure.

$$\begin{split} \varphi(e) + \varphi(x) &= (0,0) + \varphi(x) = \varphi(x) = \varphi(ex) \text{ for any } x \in Sym(R) \\ \varphi(f) + \varphi(r^2) &= (1,0) + (0,1) = (1,1) = \varphi(fr^2) \\ \varphi(f) + \varphi(fr^2) &= (1,0) + (1,1) = (0,1) = \varphi(r^2) = \varphi(ffr^2) \\ \varphi(fr^2) + \varphi(r^2) &= (1,1) + (0,1) = (1,0) = \varphi(f) = \varphi(fr^4) \end{split}$$