1 Logical Operators:

- 1. \neg Negation
- 2. \land Conjunction $(p \land q)$ when both p and q are true.
- 3. \vee Disjunction $(p \vee q)$ is false when both p and q are false.
- 4. \oplus Exclusive $(p \oplus q)$ is true when exactly 1 of p, q is true.
- 5. \rightarrow Conditional $(p\rightarrow q)$ is false when p is true and q is false.

The correct way to think about this is: p only if q. This means that p is true if and only if q.

The incorrect way is: q unless $\neg p$. This means that q is true unless p is false.

But, (p \rightarrow q) is true whenever q is true. Hence, q unless $\neg p$ is not logically equivalent.

6. \leftrightarrow Biconditional $(p \leftrightarrow q)$ is p if and only if q.

2 Tables

Precedence	Operator
1	_
2	^
3	V
4	\rightarrow
5	\leftrightarrow

3 Converse, Contrapositive, and Inverse

For $(p\rightarrow q)$:

- 1. Converse: $q \rightarrow p$
- 2. Contrapositive: $\neg q \rightarrow \neg p$ This is equivalent to conditional statements.
- 3. Inverse: $\neg p \rightarrow \neg q$