	doc_1		doc_2		decision	id
cases		Xumin Gu	authors	Xumin Gu		
	authors		title	Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the Rayleigh-Taylor sign condition		
		Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the Rayleigh-Taylor sign condition te 2017-12-06 00:00:00	publication_dat	te 2017-12-06 12:14:33+00:00		
	title		source	SupportedSources.ARXIV		
			journal	None		
			volume			
	source	SupportedSources.OPENALEX	doi			
		arXiv (Cornell University)	urls	• http://arxiv.org/pdf/1712.02152v1	DUPLICATES 1	133
	journal volume	arxiv (Comen University)		• http://arxiv.org/abs/1712.02152v1		
	doi	None		• http://arxiv.org/pdf/1712.02152v1		
		https://openalex.org/W2774144241	id	id-7065163989295393136	-	
	urls	neeps.//openare/noig/ \(\frac{1}{2}\frac{1}{7}\)		We consider a free boundary problem for the axially symmetric incompressible ideal magnetohydrodynamic equations that describes the motion of the plasma in vacuum.	=	
	id	id-3965781455800267675	abstract	Both the plasma magnetic field and vacuum magnetic field are tangent along the plasma-vacuum interface. Moreover, the vacuum magnetic field is composed in a non-	non- in	
	abstract			simply connected domain and hence is non-trivial. Under the Rayleigh-Taylor sign condition on the free surface, we prove the local well-posedness of the problem in Sobolev spaces. Furthermore, we also prove the local well-posdeness under a more general "stability" assumption for the initial data, which provided that the Rayleigh-		
	versions			Taylor sign condition is satisfied at all those points of the initial interface where the non-collinearity condition fails.		
			versions			