# Esercitazioni di laboratorio del corso di genetica

Gaia Faggin Giacomo Fantoni Filippo Gastaldello Elisa Pettinà

 $Github: \ https://github.com/giacThePhantom/Genetica$ 

22 dicembre 2020

## Organismo Modello Saccharomyces cerevisiae

#### Panoramica

Il microorganismo Saccharomyces cerevisiae, comunemente conosciuto come lievito del pane è un organismo eucariote unicellulare. È stato ampiamente utilizzato per studiare la genetica degli eucarioti, ma il suo utilizzo risale all'antichità. Veniva infatti usato per la produzione di pane, birra e, in tempi più moderni, di bicarbonati. Nel 1857 Pasteur lo identifica come il microorganismo responsabile della fermentazione, mentre il suo utilizzo nell'analisi genetica inizia nel 1935. Le numerose ricerche compiute su esso hanno permesso di caratterizzare accuratamente i suoi geni. Allo stesso tempo, la natura unicellulare del lievito lo rende adatto alle tecniche molecolari sviluppate per i batteri. Questo organismo permette pertanto di combinare la genetica classica e la biologia molecolare, rendendolo un modello potente per lo studio dei sistemi genetici eucarioti

### Vantaggi come organismo genetico modello

Il lievito, oltre ad essere un organismo eucariote con sistemi genetici simili a quelli di altri organismi più complessi come l'uomo, è anche unicellulare, cosa che lo rende semplice da maneggiare come i batteri. Può esistere sia in forma aploide che diploide. Quando si trova in forma aploide le cellule possiedono un solo allele in ogni locus. Questo allele verrà pertanto espresso, rendendo impossibile un mascheramento dell'espressione di altri alleli da parte di alleli dominanti. Questo permette una facile identificazione degli alleli recessivi nelle cellule aploidi, dei quali verrà studiare la loro interazione con altri alleli nelle cellule diploidi. Un'altra caratteristica del lievito è che al termine della meiosi tutti i gameti prodotti si trovano in un asco e rimangono separati dai gameti prodotti nelle altre divisioni meiotiche. le quattro cellule contenute in un asco sono dette tetradi. L'analisi genetica delle tetradi in S. cerevisiae consente di osservare direttamente gli effetti delle singole divisioni meiotiche e di identificare più facilmente gli effetti di crossing-over. Numerosi analisi genetiche hanno identificato migliaia di mutanti e molte potenti tecniche molecolari sviluppate per manipolare le sequenze genetiche nei batteri sono state adattate per essere usate nel lievito. Infine le cellule del lievito possiedono molti geni presenti anche nell'uomo e in altri eucarioti complessi con funzionalità identiche o simili. Si nota pertanto come lo studio genetico delle cellule di lievito spesso contribuisce alla comprensione di meccanismi di organismi più complessi, uomo compreso.

#### Il ciclo vitale del lievito

Saccharomyces cerevisiae può pertanto esistere sotto forma di cellule aploidi o diploidi.

#### Forma aploide

La forma aploide compare tipicamente in condizioni di carenza di nutrienti. Il lievito si riproduce per via mitotica, producendo due cellule aploidi identiche al genitore per gemmazione.

#### Forma diploide

La forma diploide nasce dopo riproduzione sessuata del lievito. Si distinguono due tipi sessuali: a e  $\alpha$ . Due cellule appartenenti a tipi sessuali diversi si uniscono e fondono i nuclei, dando origine a una cellula diploide, in grado di generare cellule diploidi geneticamente identiche per gemmazione. La carenza di sostanze nutritive induce le cellule a subire meiosi, formando quattro nuclei aploidi in cellule diverse e infine 4 spore aploidi.

#### Genoma del lievito

Saccharomyces cerevisiae contiene 16 paia di cromosomi eucariotici. Il tasso di ricombinazione è elevato, conferendo al lievito una mappa genetica lunga. Il genoma contiene 12 milioni di paia di basi oltre a 2-3 milioni di paia di geni di rRNA. È stato il primo organismo eucariote il cui genoma è stato completamente sequenziato.

#### Plasmidi del lievito

Plasmide  $2\mu$  Le cellule del lievito in natura possiedono un plasmide circolare  $2\mu$ . È lungo 6300 paia di basi e viene trasmesso durante mitosi e meiosi alle cellule figlie. Possiede un origine di replicazione riconosciuta dal sistema di replicazione del lievito ed è in grado di replicarsi in modo autonomo nella cellula. Modifiche al plasmide lo hanno reso un vettore efficiente per il trasferimento di geni nel lievito.

**Plasmidi batterici** Plasmidi batterici modificati possono essere usati come vettori per il trasferimento dei geni. Alcuni di questi sono in grado di dare ricombinazione omologa con il cromosoma del lievito trasferendo le loro sequenze al genoma di *Saccharomyces cerevisiae*.

Mutagenesi in vitro

Interazione geni-ambiente

Analisi RFLP di polimorfismi a singolo nucleotide