l'Ingénieur

Activation 2

Éolienne

Émilien Durif

Savoirs et compétences :

- □ Mod2.C17.SF1 : déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide
- Res1.C2 : principe fondamental de la dynamique

1

On s'intéresse au cours de cet exercice à une éolienne bipale telle que représentée sur la figure ci-dessous.

Ce mécanisme est composé de trois ensembles en mouvement relatif que l'on décrit à l'aide de 4 solides.On cherche à dimensionner l'actionneur permettant l'orientation de l'éolienne lorsque les effets dynamiques d'un défaut de balourd sont prépondérants. On suppose donc que seule l'action mécanique due au moteur agissant entre 0 et 1 pour créer un couple C_m selon la direction $\overline{z_0}$.

L'éolienne est composée de :

- un support $\mathbf{0}$, auquel on associe un repère $R_0 =$ $(K; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0});$
- une girouette ${\bf 1}$ (de centre d'inertie K) en liaison pivot d'axe $(K, \overrightarrow{z_{0,1}})$ avec le support **0**. On lui associe un repère $R_1 = (K; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_{0,1}})$ et on pose $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$. On note *J* son moment d'inertie par rapport à l'axe $(K, \overrightarrow{z_1})$: $J = I_{(K, \overrightarrow{z_1})}(1)$;
- une hélice **2**, en liaison pivot d'axe $(K, \overrightarrow{x_{1,2}})$ avec **1**. On lui associe un repère $R_2 = (K; \overrightarrow{x_{1,2}}, \overrightarrow{y_2}, \overrightarrow{z_2})$ choisi tel que $\overrightarrow{x_2} = \overrightarrow{x_1}$ et on pose $\beta = (\overrightarrow{y_1}, \overrightarrow{y_2})$. On note M sa masse, G son centre d'inertie situé sur l'axe de rotation et on pose $\overrightarrow{KG} = a \overrightarrow{x_1}$. On donne la matrice de l'opérateur d'inertie au point *G* :

$$\overline{\overline{I}}_{G}(2) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{x_{2}}, \overrightarrow{y_{2}}, \overrightarrow{z_{2}}\right)}.$$

• on modélise enfin un déséquilibre possible de l'hélice en rotation par un balourd 3 assimilé à une masse ponctuelle m au point Q. On pose \overrightarrow{GQ} = $-b\overrightarrow{z_2}$.

Question 1 Tracer le graphe de structure de l'éolienne.

Question 2 Déterminer le théorème à utiliser pour relier C_m aux paramètres dynamiques du problème.

Question 3 Déterminer la composante suivant $\overrightarrow{z_0}$ du moment cinétique au point K de la girouette 1 dans son mouvement par rapport au support 1, notée $\sigma(K, 1/0) \cdot \overrightarrow{z_0}$.

Question 4 Déterminer le moment cinétique $\sigma(K,2/0)$ calculé au point K de l'hélice **2** dans son mouvement par rapport à 0.

Question 5 Déterminer le moment cinétique $\overrightarrow{\sigma(K,3/0)}$

Question 6 Déterminer la composante suivant $\overrightarrow{z_0}$ du moment dynamique au point K de la girouette 1 dans son mouvement par rapport au support 0, notée $\overrightarrow{z_0} \cdot \overrightarrow{\delta(K, 1/0)}$.

Question 7 Déterminer la composante suivant $\overrightarrow{z_0}$ du moment dynamique $\overrightarrow{z_0} \cdot \overline{\delta(K,2/0)}$.

Question 8 Déterminer la projection du moment *dynamique de* 3/0 *selon* $\overrightarrow{z_0}$: $\overrightarrow{z_0} \cdot \delta(K, 3/0)$.

Question 9 Dans le cas d'une vitesse de rotation de l'hélice $\mathbf{2}$ ($\dot{\beta}$) constante et dans le cas où l'angle α est constant (pas de changement d'orientation de l'éolienne) déterminer l'expression du couple C_m que devrait fournir un moteur placé dans le mat (entre 0 et 1) pour « contrer » les effets dynamiques du balourd.

Colle 01

Porte-outil

Savoirs et compétences :

C2-08: Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Le dispositif porte-outil d'une machine d'affûtage est composé de trois solides 1, 2 et 3.

Le repère $\mathcal{R}_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$, avec $(O, \overrightarrow{z_0})$ vertical ascendant, est lié au bâti $\mathbf{0}$ de la machine. Il est supposé galiléen. Toutes les liaisons sont supposées parfaites.

Le repère $\mathcal{R}_1 = (O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$ est lié au support tournant **1** en liaison pivot d'axe $(O, \overrightarrow{z_0})$ avec le bâti **0**. La position de **1** par rapport à l'axe $(O, \overrightarrow{z_0})$ est repérée par $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$.

On note I_1 le moment d'inertie de 1 par rapport à l'axe $(O, \overrightarrow{z_0})$ et H le point tel que $\overrightarrow{OH} = h x_1$.

Le repère $\mathcal{R}_2 = (H; \overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2})$ est lié au bras pivotant **2** en liaison pivot d'axe $(H, \overrightarrow{y_1})$ avec **1**. La position de **2** est repérée par $\beta = (\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{z_0}, \overrightarrow{z_2})$.

On note m_2 la masse de (2), de centre d'inertie H de

matrice d'inertie
$$I_H(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}_2}.$$

Le repère $\mathcal{R}_3 = (G; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_2})$ est lié au porte-outil (3) (avec l'outil à affûter tenu par le mandrin) en liaison pivot glissant d'axe $(H, \overrightarrow{z_2})$ avec (2).

La position de (3) est repérée par $\gamma = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{y_2}, \overrightarrow{y_3})$ et par $\overrightarrow{HG} = \lambda \overrightarrow{z_2}$.

On note m_3 la masse de (3), de centre d'inertie G de

matrice d'inertie
$$I_G(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\Re_2}$$
.

Question 1 *Justifier la forme de la matrice de la pièce* (3).

Question 2 Calculer $\overrightarrow{V(G,3/0)}$.

Question 3 Indiquer la méthode permettant de calculer le torseur dynamique en G de (3) en mouvement par rapport à \Re_0 en projection sur $\overrightarrow{z_2}$.

Question 4 Calculer le moment dynamique en H appliqué à l'ensemble $\{2, 3\}$ en mouvement par rapport à \mathcal{R}_0 en projection sur $\overline{y_1}$.

Question 5 Calculer le moment dynamique en O appliqué à l'ensemble $\{1, 2, 3\}$ en mouvement par rapport à \mathcal{R}_0 en projection sur $\overline{z_0}$.

Colle 02

Porte-outil

Équipe PT - PT* La Martinière Monplaisir

Savoirs et compétences :

C2-08: Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Soit le rotor (1) défini ci-dessous. Il est constitué d'un arbre de masse négligeable en liaison pivot par rapport à un bâti (0). Sur cet arbre est monté, en liaison complète, un disque de masse M, de rayon R et d'épaisseur H. Le repère $\mathcal{R}'_1 = \left(G; \overrightarrow{x'_1}, \overrightarrow{y'_1}, \overrightarrow{z'_1}\right)$ est attaché à ce solide.

La base $\mathscr{B}'_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ se déduit de $\mathscr{B}_1 =$ $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ par une rotation d'angle α autour de $\overrightarrow{z_1} = \overrightarrow{z_1}$ La base $\mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ se déduit de $\mathscr{B}_0 =$ $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ par une rotation d'angle θ autour de $\overrightarrow{x_1} = \overrightarrow{x_0}$.

Enfin, le rotor 1 est entrainé par un moteur (non représenté) fournissant un couple noté $C_m \overrightarrow{x_0}$. Le montage de ce disque présente deux défauts :

- un défaut de perpendicularité caractérisé par l'angle α ;
- un défaut d'excentricité représenté par la cote e.

Question 1 Déterminer la forme de la matrice d'inertie dy cylindre en C dans la base \mathcal{B}'_1 .

Question 2 Déterminer les éléments de réduction en A du torseur dynamique de (1) dans son mouvement par rapport à \mathcal{R}_0 .

Question 3 Appliquer le PFD pour déterminer les inconnues de liaison.

Colle 03

Régulateur

Savoirs et compétences :

C2-08: Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Un système matériel est constitué de 5 solides reliés au bâti (0). Les solides (1), (2), (3) et (5) sont des barres sans épaisseur, articulées par des pivots en O, A ou B de manière à demeurer dans un même plan noté $(\overrightarrow{x_1}, \overrightarrow{y_1})$. Cet ensemble est donc mobile en rotation autour de $\overrightarrow{z_1}$. On repère sa position angulaire par le paramètre ψ .

Au bâti ($\mathbf{0}$), on associé le repère fixe \mathcal{R}_0 .

À chaque S_i on associe une base $\mathscr{B}_i(\overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z_i})$. Les repère \mathcal{R}_i sont d'origine O ou A selon le cas.

Les rotations internes sont définies par θ_2 autour de $(O, \overrightarrow{y_1})$ et θ_3 autour de $(A, \overrightarrow{y_1})$.

Les barres (2) et (3) sont identiques, de longueur 2aet de masse $m_2 = m_3 = m$.

Les barres (1) et (5) ont une masse m_i et des longueurs ℓ_i . (4) est un volant d'inertie de masse M qui fait l'objet d'une liaison pivot d'axe $(G, \overrightarrow{x_3})$ avec la barre (3). Un repère \mathcal{R}_4 est lié à ce volant dont on définit sa position par le paramètre angulaire φ .

On donne le paramétrage suivant.

Question 1 Proposer une matrice d'inertie pour chacun des solides.

Question 2 Déterminer les torseurs cinétiques suivants: $\{\mathscr{C}(1/0)\}_{O}$, $\{\mathscr{C}(2/0)\}_{O}$.

Question 3 Déterminer les torseurs dynamiques suivants: $\{\mathcal{D}(1/0)\}_{O}$, $\{\mathcal{D}(2/0)\}_{O}$. En déduire $\{\mathcal{D}(1\cup 2/0)\}_{O}$

Question 4 Déterminer les torseur dynamique $\{\mathscr{D}(4/0)\}_{G}$.

Question 5 Déterminer les torseur dynamique $\{\mathcal{D}(1\cup 2\cup 3\cup 4\cup 5/0)\}_{O}$.

Question 6 Calculer l'énergie cinétique de l'ensemble du système dans son mouvement par rapport au bâti.

Exercice 1 - Mouvement TR *

C2-08 C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$; $G_2 = C$ désigne le centre d'inertie de 2, on note m_2 la masse de 2 et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 *Exprimer le torseur dynamique* $\{\mathcal{D}(2/0)\}$ *en B*.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Corrigé voir 1.

5

Exercice 2 - Mouvement RR *

C2-08

C2-09 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec L = 15 mm. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2} \overrightarrow{R_{i_1}}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} \overrightarrow{A_1} \\ 0 \\ 0 \end{pmatrix}$
- G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}\overrightarrow{Li_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 \\ 0 & B_2 \\ 0 & 0 \end{pmatrix}$

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en A.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 2.

Exercice 3 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus : • $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1)$;

- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 \\ 0 \\ 0 \end{pmatrix}$

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir ??.