Podstawy Elektroniki - Sprawozdanie 4

Układy wzmacniaczy operacyjnych

Imię i nazwisko	Nr albumu	Grupa
Anita Zielińska		12
Dariusz Max Adamski		12
Damian Jóźwiak		12

Wybrany przebieg sinusoidalny o częstotliwości 4 kHz

Konfiguracja nieodwracająca

1.

Odczytane R1: 984,6 Ohm. Odczytane R2: 978,9 Ohm Wartość zasilania: 14,9 V.

6.

Amplituda przebiegu wejściowego: 6,2 V. Amplituda przebiegu wyjściowego: 12,4 V

7.

CH1 - przebieg wejściowy, CH2 - przebieg wyjściowy.

8.

Oszacowane wzmocnienie wzmacniacza w skali liniowej/decybelowej:

Ku = Uwy/Uwe = 2 [V/V]

Ku = 20log(Uwy/Uwe) = 13,86 [dB]

9.

Zin	Zf	Ku teoretyczne	Uwe	Uwy	Ku obliczone
984,6 Ohm	978,9 kOhm	1,99	24,8	12,4	2

10.

Rysunek 6: Wzmacniacz operacyjny w konfiguracji wtórnika napięciowego.

$$k_U = \frac{U_{wy}}{U_{we}} = \lim_{R \to 0^+, K \to \infty} \frac{1}{\frac{1}{K} + R} = \infty$$

Wzmocnienie K jest bardzo duże, teoretycznie dąży do nieskończoności. R dąży do zera, ponieważ jedynym źródłem oporu jest przewód (połączenie od 7 do 6), a teoretycznie przyjmujemy, że opór przewodu jest nieskończenie mały. Skutkiem jest nieskończone duże wzmocnienie.

W praktyce taki układ można wykorzystać na przykład do konstrukcji urządzeń pomiarowych, ponieważ dzięki bardzo dużemu wzmocnieniu możemy mierzyć nawet bardzo małe wartości.

Konfiguracja odwracająca

4.

Zin	Przełącznik	Zf	Przełącznik	Ku teoret.	Uwy	Uwy	Ku [V/V]	Ku [dB]
1 kΩ	1	2 kΩ	1	2	4,2	8,4	2	13,86
1 kΩ	1	1 kΩ	2	1	4,2	4,4	1,04	0,78
1 kΩ	1	5 kΩ	3	5	4	20	5	32,18
2 kΩ	2	1 kΩ	2	0,5	4,2	2,8	0,66	-8,31

6.

8.

Wzmacniacz jest w konfiguracji odwracającej, więc odwraca fazę przebiegu wyjściowego względem wyjścia, powodując tym samym przesunięcie fazowe o wartości połowy okresu

Blok integratora

5.

f = 6,4 kHz

Współczynnik nachylenia: 65 us

R	przełącznik	С	przełącznik	1/T teor.	1/T obl.
1 kΩ	1	10 nF	4	7,03	7,04
2 kΩ	2	10 nF	4	5,26	5,26

8.

Blok różniczkujący

7.

Efekt Gibbsa może być powodem zniekształceń przebiegu wyjściowego w pobliżu przełączeń poziomów. Sygnał wyjściowy jest różniczką sygnału wejściowego, więc odzwierciedla jego nachylenie, więc kiedy wartość wejściowa z narastającej zmienia kierunek na opadającą dochodzi do nieciągłości funkcji. W punktach przełączeń urządzenie ma problem przybliżyć punkt nieciągłości skończoną ilością sinusów. Niedokładne przybliżenie punktu nieciągłości widać na sygnale wyjściowym w postaci zniekształceń.

6.

f = 6,4 kHz

Gorzej dobrana stała Td:

Lepiej dobrana stała Td:

