Xinshi Wang 661975305 hw03

1.

Proof: Assume there exists M_{P1} and M_{P2} such that $M_{P1} \neq M_{P2}$. Consider one leaf node v for tree T. Since T has a perfect match, the parent vertex of v denoted as u could only have one childb(Otherwise some leaf vertices will not be saturated). Then we remove all the leaf vertices which gives us $\{e_1, e_2, ... e_n\}$. We repeat this process untill we have no vertices. Since in every iteration the edges between the leaf vertices and parent vertices are unique, the set $e_1, e_2, ..., e_n$ which is the set of edges in perfect match, is unique. Thus M_{p1} must equal to M_{p2} .

Proof: Since the match $|M| = \frac{|V(G)|}{2}$, we know M is a perfect match. We know G has a perfect match M iff $o(G-S) \leq |S|, \forall S \subseteq V(G)$ from the Tutte condition. In this case, S is a single vertex v. Since graph G has a perfect match, $o(G-v) \leq 1$. There are two exhuastive cases, o(G-v) = 0 or o(G-v) = 1. If o(G-v) = 0, there are no odd components, which means all components are even. Thus we have |V(G)| - 1 (since we removed one vertex) being even. Since we know |V(G)| is even, |V(G)| - 1 must be odd, which forms a contradiction. Thus it must be the case o(G-v) = 1, which means G has exactly one odd component.

Proof: We need to prove two statements. (1). S is a vertex cover $\implies \bar{S}$ is an independent set. (2). \bar{S} is an independent set $\implies S$ is a vertex cover.

Let us first prove S is a vertex cover $\Longrightarrow \bar{S}$ is an independent set. Let us assume that $\exists (u,v) \in E(\bar{S})$, then $\nexists(u,v) \in E(S)$ by the definition of a complement graph. Since $u \in V(S)$, $v \in V(S)$, and $\nexists(u,v) \in E(S)$, S is not an vertex cover which leads to a contradiction. Thus $\forall u,v \in \bar{S}, \nexists(u,v) \in E(\bar{S})$. In other words, no vertices in \bar{S} are connected. Thus \bar{S} is an vertex cover.

Let us next prove \bar{S} is an independent set of graph $G = (V, E) \implies S$ is a vertex cover. If \bar{S} is an independent set, then $\forall (u, v) \in E(G)$, at most one vertex is in \bar{S} otherwise it is not an independent set. Therefore at least one vertex is in S. Therefore every pair of vertices has at least one endpoint in S, which implies S is an vertex cover.

4. $|8| \le |\text{vetex cover}| \le 21$

From the Konig theorem, we know the cardinality of minimum vertex cover of G equals the cardinality of the maximum match of G. Thus minimum vertex cover = |M| = 9 - 1(one vertex is unsaturated). The maximum vertex cover is the cardinality of the vertex set since all vertices must cover the edge set of G.

1

5. $0 < |M| \le 12$.

From the Konig theorem, we know the cardinality of minimum vertex cover of G equals the cardinality of the maximum match of G. Thus the upper bound for the matching of G is 12. Thus $|M| \leq 12$. Also, since the graph is connected, the matching is non-empty

6.

Let us draw the following graph One match here is edge set $\{AB, CE\}$. The maximum match here

has cardinality of 2. We prove this using tutte's condition.

Since there are 6 vertices, $|M_p| = \frac{|V(G)|}{2} = 3$. We proceed to prove the graph does not have a perfect match, thus $|M_{max}| < 3$.

If there exists a perfect match for graph G, then $o(G-S) \leq |S|$, $\forall S \subseteq G$. However, if we remove the vertex c, the odd components are $\{F\}, \{D\}, \{E\}$. Thus we have o(G-S) = 3 > 1 > |S|. Thus the graph does not have a perfect match. Since we have found a match M such that |M| = 2 and proved $|M_{max}| < 3$, the match we found above is the maximum match.

7. (a). Let S=4, then if we remove S, the odd components are $\{1,2,3\},\{6\}$. Thus o(G-S)=2>1>|S|. Thus Tutte's condition does not hold and perfect match does not exist.

(b). Let us draw the following graph Note here it is a perfect match since all vertices have been saturated.

8. (a). Vertex cover

(b). Edge cover

