VLSI DESIGN FLOW: RTL TO GDS

Lecture 29 Power Analysis

Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

Lecture Plan

Power Analysis:

- Components of Power Dissipation
- Power Models in Library
- Estimating Power Dissipation

Components of Power Dissipation

Power dissipation is broadly of two types:

1. Dynamic Power Dissipation:

> Occurs when a circuit performs computation actively

2. Static Power Dissipation:

> When the circuit is powered on (supply voltages are applied), but it does not perform active computation

Dynamic Power Dissipation: Switching Power

Switching power dissipated in a synchronous circuit:

$$P_{sw} = C_L V_{DD}^2 \alpha f_{clk}$$

where,

- f_{clk} =frequency of the clock in the circuit
- α =activity of the signal
 - ightharpoonup define $\alpha=1$ when the output completes one cycle of transition $(1 \rightarrow 0 \rightarrow 1)$ in one clock period

Dynamic Power Dissipation: Short circuit Power

Short circuit power dissipation:

$$P_{sc} = V_{DD}I_{SC}$$

Power dissipated when short circuit condition occur:

$$P_{dyn} = P_{sw} + P_{sc}$$

Static Power Dissipation

- Static power dissipation occurs because of:
 - > Subthreshold current
 - ➤ Gate Leakage
 - > Junction Leakage
- $P_{stat} = V_{DD}I_{leak}$

Total power dissipation in a circuit:

$$P_{tot} = P_{dyn} + P_{stat}$$

Technology Library Models: Dynamic Power

Energy dissipated in one cycle of $0 \rightarrow 1 \rightarrow 0$ transition:

$$E_{dyn} = C_L V_{DD}^2 + V_{DD} I_{SC} \tau_{SC}$$

$$E_{dyn} = (C_d + C_w + C_I) V_{DD}^2 + V_{DD} I_{SC} \tau_{SC}$$

We can write:

$$E_{dyn} = C_d V_{DD}^2 + V_{DD} I_{SC} \tau_{SC} + (C_w + C_I) V_{DD}^2 = E_{int} + E_{ext}$$

- Energy dissipated inside a cell E_{int} is the property of the cell and modelled in the library
- Energy dissipated outside a cell E_{ext} depends on the environment (external load)
 - \triangleright Tools can compute it after $(C_w + C_I)$ is known
- Power can be estimated using energy per transition by multiplying with activity and clock frequency

Non-linear Power Model (NLPM)

- Internal power dissipation depends on the output-load and input slew
- Modelled as two-dimensional table named internal_power
 - Referred to as Non-linear Power Model (NLPM)

- Rise and fall power can be represented as different arcs
- Values represent energy dissipated per transition

```
u table template(index 1) {
     variable_1 : input_net_transition ;
     variable_2 : total_output_net_capacitance ;
index_1("10, 20, 30");
     index 2("1.2, 5.0,15.0, 37.5);
pin(Z) {
     internal_power()
           related_pin
           rise_power(index_1) {
              values("4, 5, 7, 12, ...3x4 table);
S. Saurabh, "Introduction to VLSI Design Flow". Cambridge
University Press, 2023.
```

Technology Library Models: Static Power

- Static power dissipated inside a CMOS logic gate depends on the value (0 or 1) at its input pin
- Modeled using when condition in the library

```
cell (NAND2) { ...
    cell_leakage_power : 125;
    leakage_power () {
        when : "!A & !B"; value : 20; }
    leakage_power () {
        when : "A & !B"; value : 150; }
    leakage_power () {
        when : "!A & B"; value : 200; }
    leakage_power () {
        when : "A & B"; value : 300; } ...

S. Saurabh, "Introduction to VLSI Design Flow". Cambridge University Press, 2023.
```


Estimating Power Dissipation

$$P_{tot} = C_L V_{DD}^2 \alpha f_{clk} + V_{DD} I_{SC} + V_{DD} I_{leak}$$
 where,

- V_{DD} = supply voltage
- C_L = load capacitance
- f_{clk} = frequency of the clock in the circuit
- α = activity of the signal

- Computing power dissipation is a challenging problem.
 - > Capacitance estimation
 - > Accounting for the activity of signals

Activity of a signal depends on:

- Application being run on an IC
- Logical structure and the circuit topology

Estimation of Activity

Simulation-based Techniques (Vector-based Technique):

- Perform simulation using test bench.
- Simulator generates the output response for all the nets [value change dump (VCD) files]
 - ➤ Convert a VCD file into a format from which the activity measures can be easily extracted [switching activity interchange format (SAIF)]
 - > Provide the SAIF file to the power analysis tool
 - > Tools can also assume default activity [such as 0.2]

Probabilistic Techniques (Vector-less Technique):

- Propagate the activity measures through the circuit by considering the logic function of the gates encountered in the path
- Example: Assume that static probabilities of signals A and B are $P_1^A = 0.5$ and $P_1^B = 0.3$
 - \triangleright If they propagate through an AND gate: $P_1^{A.B} = P_1^A.P_1^B = 0.5 \times 0.3 = 0.15$
 - ➤ If they propagate through an OR gate: $P_1^{A+B} = 1 (1 P_1^A)(1 P_1^B) = 1 0.5 \times 0.7 = 0.65$

References

- N. H. Weste and D. Harris. "CMOS VLSI Design: A Circuits and Systems Perspective". Pearson Education India, 2015.
- S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: Cambridge University Press, 2023.

