1 Folgen und Reihen

#Folgen #Zahlenfolge

Was ist eine Zahlenfolge (kurz Folge)?

Eine fortlaufende endliche oder unendliche Anordnung von Zahlen Die einzelnen Zahlen werden #Glieder genannt mit dem Index Einfachste Zahlenfolge ist die **Zahlenfolge der Natürlichen Zahlen

Die Folge beginnt mit 1.

Das #Bildungsgesetz ist ganz einfach: von Glied zu Glied kommt eins dazu.

Die Zahlenfolge lautet:

Das allgemeine Glied heißt:

Weitere Bsp.:

- ullet gerade Zahlen
 - -
- ungerade Zahlen

 \rightarrow

Eine Folge als Funktionalität

Die #Definitionsmenge ist im Falle einer ${\bf endlichen}$ Folge mit $\,$ Gliedern die Menge

Arten des Bildungsgesetzes

Explizite oder #Term-Darstellung

Term = allgemeines Glied einer Folge

Angabe eines Terms (Formel), wie das Glied allgemein berechnet werden kann

#Rekursive-Darstellung

Angabe, wie das Glied aus dem vorhergehenden Folgeglied oder aus mehreren vorhergehenden Folgegliedern berechnet werden kann.

Beispiele

- 1.
 - Termdarstellung
- 2.
- Termdarstellung
- 3.
 - -> rekursive Darstellung

Arithmetische und Geometrische Folge

Arithmetische-Folge kann als eine <math display="inline"># lineare-Funktion, eine # geometrische-Folge kann als eine <math display="inline"># Exponential funktionaufgefasst werden

	Arithmetische Folge	Geometrische Folge
Termdarstellung		
Rekursive Darstellung		
	Eine folge heißt arithmetisch, wenn die #Differenz zweier aufeinander folgener Glieder und konstant ist	Eine Folge heißt geometrisch, wenn der #Quotient zweier aufeinander folgender Glieder konstant
Beispiele:	-> #Differenz ist konstant -> #Differenz ist konstant	-> #Quotient ist konstant -> #Quotient ist konstant

Beispiele: Stelle die Folgen al Term und rekursiv dar.

```
Bsp.: 1
```

#Term-Darstellung : #Rekursive-Darstellung :

Bsp.: 2

#Term-Darstellung : #Rekursive-Darstellung :

Bsp.: 3 Arithmetische Folge Geg.: #Differenz ist 0,8 Ges.: berechne die ersten Folgeglieder

Wertetabelle

Bsp.: 4 Geometrische Folge Geg.:

Ges.: Berechne das

Bsp.: 5 Berechne die Glieder der geometrischen Folge Bestimme das Glied einer geometrischen Folge mit und

Bsp.:6

1.

->

2.

->

Zur Arithmetischen Folge

beschreiben einen diskreten **Wachstums** und **Abnahmeprozess** Es ist daher meist von Vorteil die Zählung mit zu **beginnen**

Termdarstellung:

Rekursive Darstellung

Bsp.: 1

Die