PR-Milestone 1 Report

Table of Contents

Preprocessing	2
Data Analysis	3
Regression Techniques	7
Model Acquired Results	8
Features Used/Discarded	9
Data Size	10
Acquired Results	11
Conclusion	13

Preprocessing

1- Renaming columns names from X1,X2,... to a better naming convention (Item ID, Store ID, etc..) by using function rename in pandas.

Renaming in detail:

\

- X1: Item ID
- X2: Item_Weight
- X3: Item_Fat_Amount
- X4: Item_Store_Allocation
- X5: Item_Category
- X6: Item_Price
- X7: Store_ID
- X8: Store_Establishment_Year
- X9: Store_Size
- X10: Store_Location_Type
- X11: Store_Type
- 2- Replacing the following in item fat amount column using pandas rename:
 - a. LF to Low Fat
 - b. Low fat to Low Fat
 - c. Reg Regular
- 3- Filling the NaN's in item weight using with backward fill— using fillna function found in pandas with a method parameter='bfill'
- 4- Filling the 0's in item store allocation with backward fill -using fillna function found in pandas with a method parameter='bfill'
- 5- Filling the NaN's in store size with backward fill using fillna function found in pandas with a method parameter='bfill'
- 6- We performed label encoding on Store_Size , Store_Location_type, store_type

Data Analysis

Visually, as we can see above. This is the correlation between each feature with the other. In our case, we will mainly focus on the relation between all features with our target which is "Y".

Here is a summary table that shows the relation of all features with our target.

Feature	Correlation with target "Y"
Item_Weight	0.01
Item_Fat_Amount	0.00
Item_Store_Allocation	-0.14
Item_Price	0.58
Store_type	0.39
Store_Establishment_Year	-0.05
Store_Size	-0.09
Store_Location_Type	0.08

Based on the table above, our top features are:

- o Item_Store_Allocation
- o Item_Price
- o Store_Size
- o Store_Location_Type
- o Store_Type

Regression Techniques

- 1- Random Forest
- 2- Gradient Boosting Regressor
- 3- Polynomial

Model Acquired Results

Model	Description	Advantages	Mean absolute error
Random Forest	Random forest builds multiple decision tree s and merges them together to get a more accurate and stable prediction	Can be used for regression & classification	764
GradientBoostingRegressor	Gradient boosting is a type of machine learning boosting. It relies on the intuition that the best possible next model, when combined with previous models, minimizes the overall prediction error If a small change in the prediction for a case causes no change in error, then next target outcome of the case is zero.	provides predictive accuracy that cannot be beaten.	755
Polynomial	used in many experimental procedures to produce the outcome using this equation. It provides a great defined relationship between the independent and dependent variables	Polynomial provides the best approximation of the relationship between the dependent and independent variable.	769

Features Used/Discarded

> Features Used:

- o Item_Store_Allocation
- o Item_Price
- o Store_Size
- o Store_Location_Type
- o Store_Type

> Features Discarded:

- o Item ID
- o Item Weight
- o Item fat amount
- o Item category
- o Store ID
- o Establishment year

Data Size

Training Data Size: 80% -> 4800

Testing Data Size: 20% -> 1200

Acquired Results

Gradient Boosting Regressor Mean Error: 751.95

Conclusion

In this phase, we saw the effect of pre-processing on the accuracy & erro r. In addition, we saw the impact of preprocessing on highly correlated fe atures.

My initial intuition was adding new columns that holds extra informatio n or simplifying the categorical data may have a positive effect on the out put but, unfortunately it did not.