University of California Los Angeles

Closed-Loop Subspace Identification of a Quadrotor

A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Engineering

by

Andrew G. Kee

Abstract of the Thesis

Closed-Loop Subspace Identification of a Quadrotor

by

Andrew G. Kee

Master of Science in Engineering
University of California, Los Angeles, 2013
Professor Steve Gibson, Chair

Ne quo feugiat tractatos temporibus, eam te malorum sensibus. Impetus voluptua senserit id mel, lucilius adipiscing at duo. Suas noster sanctus cu pro, movet dicam intellegebat pri ad, esse utamur vulputate ut per. Admodum facilisi sea an, omittam molestiae pertinacia vim eu, et eam illud graeco. Enim persius duo ei, mea te posse congue putent.

Has ut commodo inermis definiebas. Eu pro audire fabellas. Te qui zril omnes forensibus, ius an dico tempor maiorum. Ea mel illud adipisci.

Ad vel dicant aliquip, ut eam agam constituto, no quo erant melius. Porro labores invidunt ad vel, quaeque epicurei vituperatoribus ex cum. Qui tamquam omnesque ex, essent percipitur intellegam an per. Iusto expetenda sed et.

The thesis of Andrew G. Kee is approved.

Steve Gibson, Committee Chair

University of California, Los Angeles 2013

Table of Contents

1	Intr	$\operatorname{oduction}$	1
	1.1	Related Work	2
	1.2	Motivation and Contributions	2
2	Mo	del and Assumptions	4
	2.1	State Space Model	4
	2.2	Assumptions	5
3	Sub	space Identification Methods	6
	3.1	Open-Loop Subspace Identification	6
		3.1.1 Estimation of the Extended Observability Matrix	8
	3.2	Closed-Loop Subspace Identification	8
		3.2.1 Identifying Systems Operating Under Feedback Control	9
		3.2.2 Innovation Estimation Method	9
		3.2.3 Whitening Filter	9
4	Exp	$ m eriments \dots \dots$	0
	4.1	Experiment Design	10
5	Res	$\mathrm{ults}\ldots\ldots\ldots\ldots\ldots$.1
6	Con	clusion	.2
	6.1	Future Work	12
	6.2	Linear Algebra Tools	3

References	 	 	15

LIST OF FIGURES

1.1	A figure caption .	•			•				•	•				•				2
1.2	A figure caption .																	S

LIST OF TABLES

Nomenclature

N	Number of block rows
S	Number of block columns
\mathbb{R}	Set of all real numbers
u	System input sequence
y	System output sequence
x	System state sequence

Introduction

Unmanned Aerial Vehicles (UAVs) have seen explosive growth in the past thirty years, performing a multitude of military and civilian tasks including surveillance, reconnaissance, armed combat operations, search and rescue, forest fire management, and domestic policing [9, 10]. A class of modern UAVs which have recently grown in popularity are quadrotors - Vertical Take Off and Landing (VTOL) vehicles powered by four rotors arranged in a cross configuration. The main advantage of the quadrotor lies in its mechanical simplicity. Adjusting the speed of one or more of the vehicle's fixed-pitch rotors provides full attitude control, eliminating the need for the swash plate mechanism found on single rotor helicopters [1, 2]. In spite of its mechanical simplicity, the quadrotor exhibits somewhat complex dynamics that are best modeled as a Multi-Input Multi-Output (MIMO) system.

Advances in MEMS sensors and light-weight high-powered lithium polymer batteries have contributed to the recent popularity of quadrotors, making them an attractive choice for research applications in flight dynamics and control, as in [3, 5, 6, 7]. One problem of particular interest is the development of mathematical models representing system dynamics based on experimentally gathered data. System identification provides a mechanism to relate this input-output data to the underlying system dynamics. Traditionally, system identification techniques have focused on developing a system model which minimizes prediction error. Identification methods of this form are commonly known as Prediction Error Methods (PEMs). PEMs have seen widespread use in both theoretical and real-world ap-

plications, but experience difficulties with MIMO systems as noted in [8, 11]. Subspace identification methods have recently grown in popularity and offer an alternative approach to the identification problem. These methods have a foundation in linear algebra and overcome the issues found in PEMs when identifying MIMO systems [4]. It is the goal of this research project to apply subspace identification techniques to a quadrotor using experimentally gathered closed-loop input and output data.

1.1 Related Work

For text, let's use the first words out of the ispell dictionary.

Figure 1.1: A figure caption

1.2 Motivation and Contributions

Figure 1.2: A figure caption

Model and Assumptions

Introduce concept of LTI system here

2.1 State Space Model

We will consider a combined deterministic-stochastic LTI system written in innovation form as

$$x(k+1) = Ax(k) + Bu(k) + Ke(k)$$
 (2.1a)

$$y(k) = Cx(k) + Du(k) + e(k)$$
 (2.1b)

where $x_k \in \mathbb{R}^n$ is the system state, $u_k \in \mathbb{R}^m$ is the system input, $y_k \in \mathbb{R}^l$ is the system output, and $e_k \in \mathbb{R}^l$ is the innovation. A, B, C, and D are the system matrices with appropriate dimensions and K is the Kalman filter gain. The system represented in (2.1) can also be represented in predictor form as

$$x(k+1) = A_K x(k) + B_K u(k) + K y(k)$$
 (2.2a)

$$y(k) = Cx(k) + Du(k) + e(k)$$
 (2.2b)

where $A_K = A - KC$ and $B_K = B - KD$.

The systems represented by (2.1) and (2.2) are equivalent from an input/output point of view, but because A_K is guaranteed stable even if the original process matrix A is unstable, the predictor form proves advantageous when considering unstable open-loop systems. We will use the state space model in innovation form

to derive the general subspace algorithm for identifying combined deterministicstochastic LTI systems but will rely on the prediction form of the model when considering identification of closed-loop systems.

2.2 Assumptions

[Assumption 1]: $A_K = A - KC$ is stable (i.e. its eigenvalues lie within the unit circle)

[Assumption 2]: The system is represented in its minimal form

Subspace Identification Methods

Subspace identification methods (SIM) provide an approach to identifing an unknown LTI system in its state space form using input/output data. Subspace methods rely on linear algebra techniques to extract the system matrices from the column space of the system's extended observability matrix. Considering the combined deterministic-stochastic LTI system introduced in the previous chapter, the subspace identification problem is: given a set of input and output data, estimate the system matrices A, B, C, and D and the Kalman filter gain K up to within a similarity transform.

!!!!!Give basic overview of the two steps here!

3.1 Open-Loop Subspace Identification

Considering the combined deterministic-stochastic LTI system in innovation form

$$x(k+1) = Ax(k) + Bu(k) + Ke(k)$$
 (3.1a)

$$y(k) = Cx(k) + Du(k) + e(k)$$
 (3.1b)

we wish to estimate A, B, C, D, and K to within a similarity transform using system input/output data. Based on the state space model in (3.1), an extended state space model can be formulated as

$$Y_f = \Gamma_f X_k + H_f U_f + G_f E_f \tag{3.2}$$

where the subscript f denotes the future horizon. The extended observability matrix is

$$\Gamma_f = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{f-1} \end{bmatrix}$$
(3.3)

and H_f and G_f are Toeplitz matrices of the Markov parameters of the deterministic and stochastic subsystems, respectively

$$H_{f} = \begin{bmatrix} D & 0 & 0 & \cdots & 0 \\ CB & D & 0 & \cdots & 0 \\ CAB & CB & D & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ CA^{f-2}B & CA^{f-3}B & CA^{f-4}B & \cdots & D \end{bmatrix}$$
(3.4a)

$$G_{f} = \begin{bmatrix} I & 0 & 0 & \cdots & 0 \\ CK & I & 0 & \cdots & 0 \\ CAK & CK & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ CA^{f-2}K & CA^{f-3}K & CA^{f-4}K & \cdots & I \end{bmatrix}$$
(3.4b)

We arrange the input data in the following Hankel form:

$$U_{f} = \begin{bmatrix} u(k) & u(k+1) & \cdots & u(k+N-1) \\ u(k+1) & u(k+2) & \cdots & u(k+N) \\ \vdots & \vdots & \ddots & \vdots \\ u(k+f-1) & u(k+f) & \cdots & u(k+f+N-2) \end{bmatrix}$$
(3.5)

We similarly arrange the output data Y_f and noise E_f according to the same Hankel form.

!!!!! Need to discuss past and future splitting !!!!!

$$Z_p = \begin{bmatrix} U_p \\ Y_p \end{bmatrix}$$

3.1.1 Estimation of the Extended Observability Matrix

Estimate Γ_f from (3.2) via MOESP: linear regression followed by an SVD to estimate EOM.

First, eliminate U_f by post-multiplying (3.2) by $\Pi_{U_f}^{\perp}$ (eliminate the influence of the input) giving

$$Y_f \Pi_{U_f}^{\perp} = \Gamma_f X_k \Pi_{U_f}^{\perp} + G_f E_f \Pi_{U_f}^{\perp}$$
 (3.6)

Recalling E_f is uncorrelated with U_f ,

$$Y_f \Pi_{U_f}^{\perp} = \Gamma_f X_k \Pi_{U_f}^{\perp} + G_f E_f \tag{3.7}$$

Next we eliminate the influence of the noise term E_f . From Kalman filter theory, E_f is uncorrelated with Z_p (cite Qin overview paper on this one):

$$\lim_{N \to \infty} \frac{1}{N} E_f Z_p^T = 0$$

Thus multiplying (3.7) on the right by Z_p gives

$$Y_f \Pi_{U_f}^{\perp} Z_p = \Gamma_f X_k \Pi_{U_f}^{\perp} Z_p \tag{3.8}$$

3.2 Closed-Loop Subspace Identification

Under open-loop conditions, E_f is uncorrelated with U_f . That is,

$$\lim_{N \to \infty} \frac{1}{N} E_f U_f^T = 0$$

or

$$E_f \Pi_{U_f}^{\perp} = E_f (I - U_f^T (U_f U_f^T)^{-1} U_f) = E_f$$

- 3.2.1 Identifying Systems Operating Under Feedback Control
- 3.2.2 Innovation Estimation Method
- 3.2.3 Whitening Filter

Experiments

4.1 Experiment Design

Results

Conclusion

6.1 Future Work

APPENDIX A: LINEAR ALGEBRA TOOLS

6.2 Linear Algebra Tools

Hankel Matrices

A Hankel matrix is a matrix $H \in \mathbb{R}^{m \times n}$ with constant skew-diagonals. In other words, the value of the (i, j)th entry of H depends only on the sum i + j.

$$H_{m,n} = \begin{bmatrix} h_1 & h_2 & \cdots & h_n \\ h_2 & h_3 & \cdots & h_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ h_m & h_{m+1} & \cdots & h_{m+n-1} \end{bmatrix}$$

If each entry in the matrix is also a matrix, it is called a block Hankel matrix.

Fundamental Matrix Subspaces

We require two of the fundamental matrix subspaces: the column space and the row space. The column space of a matrix $A \in \mathbb{R}^{m \times n}$ is the set of all linear combinations of the column vectors of A. The dimension of the column space is called the rank. The row space of a matrix $A \in \mathbb{R}^{m \times n}$ is the set of all linear combinations of the row vectors of A.

Projections

Singular Value Decomposition

Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed by a singular value decomposition (SVD) given by

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal matrix of the singular values of A ordered such that

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_k > 0$$

REFERENCES

- [1] Anthony RS Bramwell, David Balmford, and George Done. *Bramwell's heli-copter dynamics*. Butterworth-Heinemann, 2001.
- [2] Shweta Gupte, Paul Infant Teenu Mohandas, and James M Conrad. A survey of quadrotor unmanned aerial vehicles. In *Southeastcon*, 2012 Proceedings of *IEEE*, pages 1–6. IEEE, 2012.
- [3] Gabriel M Hoffmann, Haomiao Huang, Steven L Waslander, and Claire J Tomlin. Quadrotor helicopter flight dynamics and control: Theory and experiment. In *Proc. of the AIAA Guidance, Navigation, and Control Conference*, pages 1–20, 2007.
- [4] Tohru Katayama. Subspace methods for system identification. Springer, 2005.
- [5] Arda Özgür Kivrak. Design of control systems for a quadrotor flight vehicle equipped with inertial sensors. *Atilim University*, *December*, 2006.
- [6] Daniel Mellinger, Michael Shomin, and Vijay Kumar. Control of quadrotors for robust perching and landing. In *Proc. Int. Powered Lift Conf*, pages 119–126, 2010.
- [7] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The grasp multiple micro-uav testbed. *Robotics & Automation Magazine*, *IEEE*, 17(3):56–65, 2010.
- [8] S Joe Qin. An overview of subspace identification. Computers & chemical engineering, 30(10):1502–1513, 2006.
- [9] Zak Sarris and STN ATLAS. Survey of uav applications in civil markets (june 2001). In *The 9 th IEEE Mediterranean Conference on Control and Automation (MED'01)*, 2001.
- [10] Kimon P Valavanis. Advances in unmanned aerial vehicles: state of the art and the road to autonomy, volume 33. Springer, 2007.
- [11] Mats Viberg. Subspace-based methods for the identification of linear time-invariant systems. *Automatica*, 31(12):1835–1851, 1995.