Chapter 11.3 A Simple Linear Regression Model

Jim Albert and Monika Hu

Chapter 11 Simple Linear Regression

The linear regression model framework

- Assume the response variable, the price of a house sale
 - a continuous variable
 - distributed as a normal random variable
- ▶ Specifically, the price Y_i for house i, is normally distributed with mean μ_i and standard deviation σ .

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma)$$
 (1)

▶ $i = 1, \dots, n$, where n = 24 is the number of homes in the dataset

The linear regression model framework cont'd

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma)$$
 (2)

- ► The ind over ~ indicates that each response Y_i independently follows its own normal density
- ▶ A common standard deviation σ is shared among all responses Y_i 's

The linear regression model framework cont'd

Since we believe the size of the house is helpful in understanding a house's price, we represent the mean price μ_i as a linear function of the house size x_i depending on two parameters β_0 and β_1

$$\mu_i = \beta_0 + \beta_1 x_i \tag{3}$$

The intercept and slope parameters

▶ How do we interpret the intercept and slope parameters?

The intercept and slope parameters

- How do we interpret the intercept and slope parameters?
- ▶ The intercept β_0 gives the expected price μ_i for a house i that has zero square feet $(x_i = 0)$
 - not a meaningful parameter since no house (not even a tiny house) has zero square feet
- ▶ The slope parameter β_1 gives the change in the expected price μ_i , when the size x_i of house i increases by 1 unit, i.e., increases by 1000 square feet