

Rács

Simona mérhetetlen gazdagságról álmodik. Felajánlják neki, hogy játszhat egy játékot egy nagy nyereményért.

Simona egy $N \times M$ méretű, pozitív egész számokat tartalmazó A rács (0,0) cellájában áll. El kell érnie az (N-1, M-1) cellát. Ehhez a jelenlegi (x,y) cellából többször is átmehet bármelyik másik (x+d,y) vagy (x,y+d) cellába, ahol d>0. Minden ilyen mozgásért Simona $|A_{x,y} - A_{x',y'}| - C$ érmét kap, ahol x', y' az új koordinátái, C pedig egy állandó, az utazás megkezdése előtt rögzített költség. Vegyük észre, hogy ha az $|A_{x,y}-A_{x',y'}|-C$ kifejezés negatív, akkor Simona érméket veszít. Vegyük észre azt is, hogy lehetséges, hogy a játékot negatív számú érmével fejezi be.

Segíts Simonának meghatározni az érmék maximális számát, amellyel be tudja fejezni a játékot.

Ha $a \ge 0$ akkor |a| = a különben |a| = -a.

🕙 Implementáció

A max profit függvényt kell megvalósítanod:

long long max profit(int N, int M, int C, std::vector<std::vector<int>> A)

- N, M: a rács méretei;
- *C*: a tesztesethez tartozó rögzített érték;
- A: $N \times M$ méretű, egész számok vektorait tartalmazó vektor, mely a kétdimenziós rácsot ábrázolja (előbb sor, majd oszlop szerint indexelve).

Ez a függvény minden tesztesetnél egyszer kerül meghívásra, és azt a maximális érmeszámot kell visszaadnia, amellyel Simona befejezheti a játékot.

🕙 Korlátok

- 1 ≤ N, M
- $N \cdot M \le 500\ 000$
- $1 \le A_{i,j} \le 1$ 000 000 minden $0 \le i < N$ és $0 \le j < M$ esetén
- $0 \le C \le 1\ 000\ 000$

Részfeladat	Pontszám	Szükséges részfeladatok	További korlátok
0	0	_	A példa.
1	9	_	$N = 1, M \le 200$
2	5	_	$N = 1, A_{i,j} \le A_{i,j+1}$
3	8	_	N=1, C=0
4	10	1	$N = 1, M \le 50\ 000$
5	7	1 - 4	N = 1
6	15	1	$N, M \le 200$
7	9	2	$A_{i,j} \leq A_{i+1,j}, A_{i,j+1}$
8	12	3	C = 0
9	12	0-1, 4, 6	$N \cdot M \le 50\ 000$
10	13	0 - 9	_

1 Példa

Tekintsük a következő példát:

Ebben az esetben az optimális útvonal $(0,0) \stackrel{7}{\to} (0,2) \stackrel{2}{\to} (1,2) \stackrel{10}{\to} (1,5) \stackrel{8}{\to} (4,5)$ és az elérhető érmék száma 7+2+10+8=27. A függvényednek 27-et kell visszaadnia.

Ebben az esetben a függvényednek -197-et kell visszaadnia. Fontos, hogy az eredmény negatív is lehet.

Mintaértékelő

A bemenet formátuma a következő:

- 1. sor: három egész szám N, M és C értékei.
- 2-(N+1). sorok: M egész szám az $A_{i,j}$ értékek.

A kimenet formátuma a következő:

• 1. sor: egy egész szám - a hívás visszatérési értéke.