Centro de Educação Superior a Distância do Estado do Rio de Janeiro – CEDERJ

Curso de Tecnologia em Sistemas de Computação – TSC EAD-05.009 Fundamentos de Programação

Caderno de Exercícios Aula 08

(Estruturas de Dados: Lista e Lista de Lista)

Professores

Dante Corbucci Filho Leandro A. F. Fernandes

Instruções

- Utilize Python 3 e a IDE PyCharm na elaboração de soluções para os problemas propostos;
- A entrada de cada problema deve ser lida da entrada padrão (teclado);
- A saída de cada problema deve ser escrita na saída padrão (tela);
- Siga o formato apresentado na descrição da saída, caso contrário não é garantido que a saída emitida será considerada correta;
- Na saída, toda linha deve terminar com o caractere '\n';
- Utilize o URI Online Judge (http://www.urionlinejudge.com.br) e submeta sua solução para correção automática.

Referências Autorais

Os exercícios apresentados nesta lista foram extraídos do URI Online Judge (http://www.urionlinejudge.com.br). Acesse a URL apresentada abaixo do título de cada problema para proceder com a correção automática de sua solução e, também, para consultar a autoria do enunciado.

Problema A: Notas e Moedas

https://www.urionlinejudge.com.br/judge/pt/problems/view/1021

Leia um valor de ponto flutuante com duas casas decimais. Este valor representa um valor monetário. A seguir, calcule o menor número de notas e moedas possíveis no qual o valor pode ser decomposto. As notas consideradas são de 100, 50, 20, 10, 5, 2. As moedas possíveis são de 1, 0.50, 0.25, 0.10, 0.05 e 0.01. A seguir mostre a relação de notas necessárias.

Entrada

O arquivo de entrada contém um valor de ponto flutuante N ($0 \le N \le 1000000.00$).

Saída

Imprima a quantidade mínima de notas e moedas necessárias para trocar o valor inicial, conforme exemplo fornecido.

Obs: Utilize ponto (.) para separar a parte decimal.

Entrada	Saída
576.73	NOTAS:
	5 nota(s) de R\$ 100.00
	1 nota(s) de R\$ 50.00
	1 nota(s) de R\$ 20.00
	0 nota(s) de R\$ 10.00
	1 nota(s) de R\$ 5.00
	0 nota(s) de R\$ 2.00
	MOEDAS:
	1 moeda(s) de R\$ 1.00
	1 moeda(s) de R\$ 0.50
	0 moeda(s) de R\$ 0.25
	2 moeda(s) de R\$ 0.10
	0 moeda(s) de R\$ 0.05
	3 moeda(s) de R\$ 0.01

Entrada	Saída
4.00	NOTAS:
	0 nota(s) de R\$ 100.00
	0 nota(s) de R\$ 50.00
	0 nota(s) de R\$ 20.00
	0 nota(s) de R\$ 10.00
	0 nota(s) de R\$ 5.00
	2 nota(s) de R\$ 2.00
	MOEDAS:
	0 moeda(s) de R\$ 1.00
	0 moeda(s) de R\$ 0.50
	0 moeda(s) de R\$ 0.25
	0 moeda(s) de R\$ 0.10
	0 moeda(s) de R\$ 0.05
	0 moeda(s) de R\$ 0.01

Entrada	Saída
91.01	NOTAS:
	0 nota(s) de R\$ 100.00
	1 nota(s) de R\$ 50.00
	2 nota(s) de R\$ 20.00
	0 nota(s) de R\$ 10.00
	0 nota(s) de R\$ 5.00
	0 nota(s) de R\$ 2.00
	MOEDAS:
	1 moeda(s) de R\$ 1.00
	0 moeda(s) de R\$ 0.50
	0 moeda(s) de R\$ 0.25
	0 moeda(s) de R\$ 0.10
	0 moeda(s) de R\$ 0.05
	1 moeda(s) de R\$ 0.01

Problema B: Guerra por Território

https://www.urionlinejudge.com.br/judge/pt/problems/view/2420

Tombólia do Oeste e Tombólia do Leste travaram uma guerra durante 50 anos. O motivo da guerra era o tamanho do território de cada país. Pelo bem da população dos dois países, os governos resolveram fazer um tratado para finalizar a guerra. O tratado consiste em fazer um divisão justa, e certamente contínua, do território. Eles resolveram pedir sua ajuda para calcular o ponto de divisão do território. Depois de tantos anos de guerra, os países não podem lhe pagar uma viagem para ver previamente o território que será dividido. Ao invés disso, eles prepararam uma lista $a_1, a_2, ..., a_N$ de inteiros que indicam o tamanho de cada seção do território. A seção a_1 é vizinha da seção a_2 que por sua vez é vizinha da seção a_3 ; e assim por diante. Os governos querem uma divisão em uma seção k de tal forma que $a_1 + a_2 + ... + a_k = a_{k+1} + a_{k+2} + ... + a_N$.

Sua tarefa é dada uma lista de inteiros positivos a_1 , a_2 ,..., a_N , determinar a seção k tal que soma dos comprimentos das seções a_1 até a_k é igual a soma dos comprimentos das seções a_{k+1} até a_N .

Entrada

A primeira linha da entrada contém um inteiro N ($1 \le N \le 10^5$) indicando o número de seções do território. A segunda linha da entrada contém N inteiros $\mathbf{a_1}$, $\mathbf{a_2}$,..., $\mathbf{a_N}$ ($1 \le \mathbf{a_i} \le 100$, para $\mathbf{i} = 1, 2, \ldots, N$.) separados por um único espaço que indicam os comprimentos das seções.

Saída

Seu programa deve imprimir uma única linha contendo um inteiro que indica a seção do território onde acontecerá a divisão.(É garantido que sempre existe uma divisão que satisfaz as condições dos países).

Entrada	Saída
4	3
5 3 2 10	

Entrada	Saída
9	4
282844444	

Problema C: Catálogo de Livros

https://www.urionlinejudge.com.br/judge/pt/problems/view/1802

Bino está elaborando um catálogo de livros escolares. Ele está organizando um catálogo com conjuntos distintos de livros para vender em sua loja online. Cada conjunto de livros é formado por 5 livros, sendo um de cada matéria (português, matemática, física, química e biologia). Dois conjuntos de livros são considerados distintos se existe pelo menos um livro que está em um e não está no outro. Bino quer expor no site apenas os conjuntos distintos mais caros, e pediu sua ajuda.

O valor de um conjunto \acute{e} a soma dos valores de cada livro que está nele. Sua tarefa \acute{e} informar qual a soma dos valores dos \emph{K} conjuntos distintos de livros mais caros. Em caso de empate entre conjuntos mais caros, Bino escolhe qualquer um dos conjuntos empatados.

Entrada

A entrada consiste em 6 linhas: A primeira linha contém um inteiro P ($5 \le P \le 10$), representando que Bino tem Ptipos diferentes de livros de português, seguido por P inteiros v_i ($1 \le v_i \le 1000$), representando os valores de cada livro de português. A segunda linha contém um inteiro M ($5 \le M \le 10$), representando que Bino tem M tipos diferentes de livros de matemática, seguido por M inteiros v_i ($1 \le v_i \le 1000$), representando os valores de cada livro de matemática. A terceira linha contém um inteiro F ($5 \le F \le 10$), representando que Bino tem F tipos diferentes de livros de física, seguido por F inteiros v_i ($1 \le v_i \le 1000$), representando os valores de cada livro de física. A quarta linha contém um inteiro Q ($5 \le Q \le 10$), representando que Bino tem Q tipos diferentes de livros de química, seguido por Q inteiros v_i ($1 \le v_i \le 1000$), representando os valores de cada livro de química. A quinta linha contém um inteiro P ($1 \le V_i \le 1000$), representando que Bino tem P tipos diferentes de livros de biologia, seguido por P inteiros P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia. A sexta linha contém um inteiro P ($1 \le V_i \le 1000$), representando os valores de cada livro de biologia.

Saída

Imprima o valor da soma dos valores dos K conjuntos distintos de livros mais caros.

Entrada	Saída
5 2 5 6 3 8	42
596315	
5 4 8 5 2 6	
5 3 2 4 9 5	
578514	
1	
Entrada	Saída
5 2 5 6 3 8	397
596315	
5 4 8 5 2 6	
5 3 2 4 9 5	
578514	
10	

Problema D: Estágio

https://www.urionlinejudge.com.br/judge/pt/problems/view/2248

Você conseguiu um estágio para trabalhar como programador na secretaria da sua escola. Como primeira tarefa, Dona Vilma, a coordenadora, solicitou que você aprimore um programa que foi desenvolvido pelo estagiário anterior. Esse programa tem como entrada uma lista de nomes e de médias finais dos alunos de uma turma, e determina o aluno com a maior média na turma. Dona Vilma pretende utilizar o programa para premiar o melhor aluno de cada turma da escola. O programa desenvolvido pelo estagiário anterior encontra-se nas páginas a seguir (programa Pascal na página 5, programa C na página 6, programa C++ na página 7).

Como você pode verificar, o programa na forma atual tem uma imperfeição: no caso de haver alunos empatados com a melhor média na turma, ele imprime apenas o primeiro aluno que aparece na lista.

Dona Vilma deseja que você altere o programa para que ele produza uma lista com todos os alunos da turma que obtiveram a maior média, e não apenas um deles. Você consegue ajudá-la nesta tarefa?

Entrada

A entrada é constituída de vários conjuntos de teste, representando várias turmas. A primeira linha de um conjunto de testes contém um número inteiro \mathbf{N} ($1 \le \mathbf{N} \le 1000$) que indica o total de alunos na turma. As \mathbf{N} linhas seguintes contêm, cada uma, um par de números inteiros \mathbf{C} ($1 \le \mathbf{C} \le 20000$) e \mathbf{M} ($0 \le \mathbf{M} \le 100$), indicando respectivamente o código e a média de um aluno. O final da entrada é indicado por uma turma com $\mathbf{N} = 0$.

Saída

Para cada turma da entrada seu programa deve produzir três linhas na saída. A primeira linha deve conter um identificador do conjunto de teste, no formato "Turma n", onde n é numerado a partir de 1. A segunda linha deve conter os códigos dos alunos que obtiveram a maior média da turma. Os códigos dos alunos devem aparecer na mesma ordem da entrada, e cada um deve ser seguido de um espaço em branco. A terceira linha deve ser deixada em branco. O formato mostrado no exemplo de saída abaixo deve ser seguido rigorosamente.

Entrada	Saída
3	Turma 1
1 85	2
2 91	
3 73	
5	Turma 2
	12601 10111 212
12300 81	
12601 99	
15023 76	
10111 99	
212 99	
0	

Problema E: Colheita de Caju

https://www.urionlinejudge.com.br/judge/pt/problems/view/2305

Conrado é gerente em uma das fazendas de plantação de caju da Sociedade de Beneficiamento de Caju (SBC), um grupo que cultiva caju em grandes propriedades para o mercado externo.

Os cajueiros são plantados dispostos em linhas e colunas, formando uma espécie de grade. Na fazenda administrada por Conrado existem L linhas de cajueiros, cada uma formada por C colunas. Nesta semana Conrado deve executar a colheita da produção de um subconjunto contínuo de cajueiros. Esse subconjunto é formado por M linhas e N colunas de cajueiros. Há uma semana, seus funcionários analisaram cada cajueiro da fazenda e estimaram a sua produtividade em número de cajus prontos para a colheita. Conrado agora precisa da sua ajuda para determinar qual a produtividade máxima estimada (em número de cajus) de uma área de M × N cajueiros.

Sua tarefa é escrever um programa que, dado um mapa da fazenda contendo o número de cajus prontos para colheita em cada cajueiro, encontre qual o número máximo de cajus que podem ser colhidos na fazenda em uma área de $M \times N$ cajueiros.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira linha da entrada contém quatro números inteiros, \mathbf{L} , \mathbf{C} , \mathbf{M} e \mathbf{N} . \mathbf{L} e \mathbf{C} representam, respectivamente, o número de linhas ($1 \le \mathbf{L} \le 1000$) e de colunas ($1 \le \mathbf{C} \le 1000$) de cajueiros existentes na fazenda. \mathbf{M} e \mathbf{N} representam, respectivamente, o número de linhas ($1 \le \mathbf{M} \le \mathbf{L}$) e de colunas ($1 \le \mathbf{N} \le \mathbf{C}$) de cajueiros a serem colhidos. As \mathbf{L} linhas seguintes contêm \mathbf{C} inteiros cada, representando número de cajus prontos para colheita no cajueiro localizado naquela linha e coluna.

Saída

Seu programa deve imprimir, na saída padrão, uma única linha que contém o número máximo estimado de cajus que podem ser colhidos em uma área contínua de $M \times N$. Esse número não será superior a 1000000.

Entrada	Saída
3 3 1 1	10
1 2 3	
1 3 3	
1 10 1	

Entrada	Saída
4 4 2 1	16
1 2 3 4	
5678	
1 10 5 2	
1 5 9 10	

Entrada	Saída
5 5 2 2	7
11131	
1 2 1 1 1	
11121	
11211	
1 3 1 1 3	

Problema F: Quadrados

https://www.urionlinejudge.com.br/judge/pt/problems/view/2327

Chama-se de quadrado mágico um arranjo, na forma de um quadrado, de $N \times N$ números inteiros tal que todas as linhas, colunas e diagonais têm a mesma soma.

Por exemplo, o quadrado abaixo

é um quadrado mágico de soma 15, pois todas as linhas (2+7+6=15, 9+5+1=15) e (2+3+8=15), colunas (2+9+4=15, 7+5+3=15) e (2+3+8=15)) e diagonais (2+3+8=15) e (2

Escreva um programa que, dado um quadrado, determine se ele é magico ou não e qual a soma dele (caso seja mágico).

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira linha da entrada de cada caso de teste contém um inteiro \mathbf{N} (2 < \mathbf{N} < 10). As \mathbf{N} linhas seguintes contêm \mathbf{N} inteiros cada, separados por exatamente um espaço em branco. Os inteiros dentro do quadrado são todos maiores que 0 (zero) e menores que 1.000.

Saída

Seu programa deve imprimir, na saída padrão, uma única linha com um inteiro representando a soma do quadrado mágico ou -1 caso o quadrado não seja mágico.

Entrada	Saída
3	15
276	
951	
4 3 8	

Entrada	Saída
3	-1
1 2 3	
456	
789	

Entrada	Saída
4	34
16 3 2 13	
5 10 11 8	
9 6 7 12	
4 15 14 1	