Physics "Resistors" Summary

Tuesday, January 3, 2023 6:50 PM

1. Resistors:

A resistor is an electrical element that converts electrical energy into heat energy.

2. Resistance:

Measures the opposition to the flow of charges that constitute the electrical current.

- \uparrow The S.I unit of the resistance is: **Ohm** (Ω)
- Whenever the resistance increases _______ The current decreases (and vice versa)
- * Resistance of a resistor is measured by the Ohmmeter.

Note:

$$\rightarrow$$
 kilo-Ohm (k Ω) $\times 10^3$ Ohm (Ω)

$$\rightarrow$$
 Mega-Ohm (M Ω) $\times 10^6$ Ohm (Ω)

$$\rightarrow$$
 Milli-Ohm (m Ω) $\times 10^{-3}$ Ohm (Ω)

3. Ohms Law:

Voltage Current

(V) Resistance (I)

$$(\Omega)$$

4. Equation of a straight line:

Y=ac

As slope 7 st.line deviates towards Y-axis

Y= $\alpha\chi$: equation of straight line passing through the origin (Ο)

5. Resistors grouped in series

$$R_{\text{equivilant}} = R_1 + R_2 + R_3 \dots$$

 \star $R_{equivilant}$ is greater than the greatest resistor

6. Resistors grouped in parallel:

$$\frac{1^{st} \text{ method:}}{1} = \frac{1}{R_1} + \frac{1}{R_2}$$

 $ightharpoonup R_{equivilant}$ is smaller than the smallest resistor

$$\frac{2^{\text{nd}} \text{ method:}}{R_{equivilant}} = \frac{R_1 \times R_2}{R_1 + R_2}$$

$$\Rightarrow \text{Only valid if you have 2 resistors in parallel}$$

7. Rheostat:

Is a resistor of adjustable (variable) resistance.

$$R_h = (0,100)$$

$$R_{max}$$

8. $P = U \times T$

Where: P: power in watts U: Voltage in volts I: current in amperes

 $P_{dry\ cell} = P_1 + P_2 + P_3 \dots$

9. P=U x I $= (R \times I) \times I$ $= R \times I^2$

10. P=U x I $= \mathbf{U} \times \frac{\mathbf{U}}{R}$ $= \frac{\mathbf{U}^2}{R}$

11. $E = P \times t$

Where: E: energy in joules P: power in watts

 \star 1 kilo-watt (Kw) $\times 10^2$ watt (w)

 \star 1 Mega-watt (Mw) \times 10⁶ watt (w)

 \star 1 milli-watt (mw) $\times 10^{-3}$ watt (w)

t: time in seconds.

 \neq E(J) = P(w) x t(sec) \star E(Kw-hr) = P(w) x t(hr) \star E(w-hr) = P(w) x t(hr)

REMARK!!!!

In your house, car... loads are connected in parallel

they can function normally they receive equal voltage

12. Circuit breaker (Fuse):

Used to protect devices from overload (excessive) current.