République Algérienne Démocratique et Populaire Ministère de l'enseignement Supérieure et de la Recherche Scientifique Université des sciences et de la Technologie Houari Boumediene

Faculté de Mathématique

Département de Recherche Opérationnelle

Rapport

Méthodes de Prévision Lissage exponentiel

- Présenté par :
 - BERRIOUECHE Sabrina
- Professeur du module :
 - Mr CHAABANE Djamal

Première partie SUR LE PLAN THÉORIQUE

0.0.1 Lissage exponential simple:

Avec l'absence de la tendance et de la saisonnalité.

• Algorithme:

Étape 01 : (Initialisation)

La valeur initiale du lissage est fixée par

$$\widehat{\mathbf{x}}_1 = x_1 \ ou \ \widehat{\mathbf{x}}_1 = \overline{\mathbf{x}}$$

Lire α

Étape 02 :

Pour j = 2 à N

on calcule
$$\widehat{\mathbf{x}}_1 = \widehat{\mathbf{x}}_{j-1} + (1-lpha)(\mathbf{x}_j - \widehat{\mathbf{x}}_{j-1})$$

Fin pour

• Justification de l'algorithme :

La valeur $\widehat{X}_N(h)$ = fournie par le modèle du lissage exponentiel simple avec la constante de lissage α (entre 0 et 1) est

$$\widehat{X}_{N}(h) = \widehat{X}_{N} + h = (1 - \alpha) \cdot \sum_{j=0}^{N-1} \alpha^{j} X_{N-j}$$
(1)

On remplace N par N-1 dans (1)

$$\widehat{X}_{N-1}(h) = \widehat{X}_{N-1} + h = (1 - \alpha) \cdot \sum_{j=0}^{N-1} \alpha^j X_{N-1-j}$$

On multiplie par α

$$\alpha \cdot \widehat{X}_{N-1}(h) = \widehat{X}_{N-1} + h = (1 - \alpha) \cdot \sum_{j=0}^{N-2} \alpha^{j+1} X_{N-(j+1)}$$

$$\alpha \cdot \widehat{X}_{N-1}(h) = (1 - \alpha) \sum_{j=0}^{N-2} \alpha^{j'} X_{N-j'}$$
(2)

On fait la soustraction de (1) - (2), on aura

$$\widehat{X}_{N} - \alpha \cdot \widehat{X}_{N-1}(h) = (1 - \alpha) \cdot \sum_{j=0}^{N-1} \alpha^{j} X'_{N-j} - (1 - \alpha) \sum_{j=0}^{N-2} \alpha^{j'} X_{N-j'}
= (1 - \alpha) \cdot (\sum_{j=0}^{N-1} \alpha^{j} X'_{N-j} - \sum_{j=0}^{N-2} \alpha^{j'} X_{N-j'})
= (1 - \alpha) \cdot X_{N}$$

Qui donne la formule de lissage simple suivante :

$$\widehat{X}_N = \widehat{X}_{N-1} + (1 - \alpha)(X_N - \widehat{X}_{N-1})$$

Et la valeur de premier lissage $\widehat{X}_1 = X_1$.

0.0.2Lissage exponentiel double:

Avec la présence de la tendance.

Algorithme:

$$S_1(1) = X \text{ et } S_2(1) = (1 - \alpha)^2 \cdot X_1$$

Étape 02:

Pour
$$j = 2$$
 à N
 $S_1(j) = \alpha \cdot S_1(j-1) + (1-\alpha) \cdot X_j$
 $S_2(j) = \alpha \cdot S_2(j-1) + (1-\alpha) \cdot S_1(j)$

Fin pour;

Étape 03 :

On calcule

$$\widehat{\alpha}_1(N) = 2S_1(N) - S_2(N)$$

$$\widehat{\alpha}_2(N) = \frac{(1-\alpha)}{\alpha} (S_1(N) - S_2(N))$$

Étape 04:

Prévision

$$\widehat{X}_{N+h} = \widehat{\alpha}_1(N) + \widehat{\alpha}_2(N) + h$$

• <u>Justification</u>:

Le modèle de lissage double est donné par la formule suivante :

$$\widehat{X}_{N+h} = \widehat{\alpha}_1(N) + \widehat{\alpha}_2(N) + h$$

On cherche $\widehat{\alpha}_1(N)$ et $\widehat{\alpha}_2(N)$ par

$$\min_{\widehat{\alpha}_1,\widehat{\alpha}_2} S^2 = ||\alpha(X_t - \widehat{\alpha}_1 - \widehat{\alpha}_2(t - N))||^2 \Longrightarrow Somme = \sum_{j=0}^{N-1} \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2$$

On dérive la formule "somme" par rapport à $\widehat{\alpha}_1$ et $\widehat{\alpha}_2$, on ontient

$$\begin{cases} \frac{\partial S^2}{\partial \widehat{\alpha}_1} = \frac{\partial}{\partial \widehat{\alpha}_1} \left(\sum_{j=0}^{N-1} \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2 \right) = -2 \sum_{j=0}^{N-1} \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2 \\ \frac{\partial S^2}{\partial \widehat{\alpha}_2} = \frac{\partial}{\partial \widehat{\alpha}_2} \left(\sum_{j=0}^{N-1} \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2 \right) = -2 \sum_{j=0}^{N-1} j \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2 \end{cases}$$

On s'annule les deux dérivées, on aura

$$\begin{cases}
\frac{\partial S^2}{\partial \widehat{\alpha}_1} = 0 \\
\frac{\partial S^2}{\partial \widehat{\alpha}_2} = 0
\end{cases} \Longrightarrow
\begin{cases}
-2\sum_{j=0}^{N-1} \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2 = 0 \\
-2\sum_{j=0}^{N-1} j \alpha^j (X_{N-j} - \widehat{\alpha}_1 + \widehat{\alpha}_2 \times j)^2 = 0
\end{cases}$$

$$\Longrightarrow
\begin{cases}
\widehat{\alpha}_1 \sum_{j=0}^{N-1} \alpha^j - \widehat{\alpha}_2 \sum_{j=0}^{N-1} j \alpha^j = \sum_{j=0}^{N-1} \alpha^j X_{N-j} \\
\widehat{\alpha}_1 \sum_{j=0}^{N-1} j \alpha^j - \widehat{\alpha}_2 \sum_{j=0}^{N-1} j^2 \alpha^j = \sum_{j=0}^{N-1} j \alpha^j X_{N-j}
\end{cases}$$
(3)

Quand N tend vers ∞ , on aura

$$\sum_{j=0}^{N-1} \alpha^j = \frac{1}{1-\alpha}$$

$$\sum_{j=0}^{N-1} j\alpha^j = \frac{\alpha}{(1-\alpha)^2}$$

$$\sum_{j=0}^{N-1} j^2 \alpha^j = \frac{\alpha(\alpha+1)}{(1-\alpha)^3}$$

On remplace (3)

$$\begin{cases} \widehat{\alpha}_1 - \widehat{\alpha}_2 \frac{1}{1-\alpha} = (1-\alpha) \sum_{j=0}^{N-1} \alpha^j X_{N-j} \\ \widehat{\alpha}_1 \alpha - \widehat{\alpha}_2 \frac{\alpha(\alpha+1)}{(1-\alpha)} = (1-\alpha)^2 \sum_{j=0}^{N-1} j \alpha^j X_{N-j} \end{cases}$$

On définie les lissage comme suit

$$\begin{cases} S_1(N) = (1 - \alpha) \sum_{j=0}^{N-1} \alpha^j X_{N-j} \\ S_1(N) = (1 - \alpha) \sum_{j=0}^{N-1} \alpha^j S_1(N-j) \end{cases} \Rightarrow \begin{cases} S_1(N) = (1 - \alpha) \sum_{j=0}^{N-1} \alpha^j X_{N-j} \\ S_1(N) = (1 - \alpha) \sum_{j=0}^{N-1} j \alpha^j X_{N-j} + (1 - \alpha) S_1(N) \end{cases}$$

Qui donne le système d'équations linéaire suivant

$$S_1(N) = \widehat{\alpha}_1 - \widehat{\alpha}_2 \frac{1}{1-\alpha}$$

$$S_2(N) - (1-\alpha)S_1(N) = \widehat{\alpha}_1 \alpha - \widehat{\alpha}_2 \frac{\alpha(\alpha+1)}{(1-\alpha)}$$

On détermine $\widehat{\alpha}_1$ et $\widehat{\alpha}_2$

$$\widehat{\alpha}_1 = 2 \cdot S_1(N) - S_2(N)$$

$$\widehat{\alpha}_2 = \frac{1}{1 - \alpha} (S_1(N) - S_2(N))$$

Cela implique

$$S_1(N) = \alpha \cdot S_1(N-1) + (1-\alpha) \cdot X_N$$

 $S_2(N) = \alpha \cdot S_2(N-1) + (1-\alpha) \cdot S_1(N)$

Et les premiers valeurs de $S_1(N)$ et $S_2(N)$ sont X_1 et $(1-\alpha)^2X_1$ respevtivement.

Deuxième partie SUR LE PLAN PRATIQUE

0.0.3Implémentation des algorithmes en MATLAB:

Le code de lissage simple :

```
%code de lissage exponentiel simple
%Faire entrer la série chronologique X N et alpha
%Etape 01 de lissage simple : Initialisation
%La première valeur de lissage
    lissage simple(1) = X N(1);
    lissage initial(1)=lissage simple(1):
%Etape 02 de lissage simple : calcul de lissage
    for i = 2 : N+1
         lissage simple(i) = lissage initial(i-1)+(1-alpha)*(X N(i-1)-lissage initial(i-1));
         lissage initial(i)=lissage simple(i);
    end
%Affichage des résultats
    lissage simple;
    lissage simple([1])=[]
```

Le code de lissage double :

```
%Code de lissage exponentiel double
    %Faire entrer la série chronologique X N et alpha et h
    %Etape 01: initialisation de lissage
        lissage double(1)= X N(1);
        S 1(1)=lissage double(1);
        S = 2(1) = (1-alpha)^2 \times N(2);
    %Etape 02 : calcul de lissage
        for i = 2:N
             %le premier lissage
             S 1(i) = alpha*S 1(i-1) + (1-alpha)*X N(i);
             %le deuxième lissage
             S_2(i) = alpha*S_2(i-1) + (1-alpha)*S_1(i);
        end
         S 1
        S 2
     %Etape 03 : calcul des alpha's
        alpha chap 1(N) = 2*S 1(N)-S 2(N);
        alpha chap 1([1:N-1])=[]
        alpha_chap_2(N) = ((1-alpha)/alpha)*(S_1(N)-S_2(N));
        alpha_chap_2([1 : N-1]) = []
     %Etape 04 : prévision pour la période h
        X_{chap}(N+h) = alpha chap 1+alpha chap 2+h;
        X chap (N+h)
    %Affichage des résultats
        S = transpose(S = 1)
        S = transpose(S 2)
         alpha chap 1 = transpose(alpha chap 1)
         alpha chap 2 = transpose(alpha chap 2)
        X \text{ chap} = transpose(X \text{ chap})
```

Code de génération des séries chronologiques aléatoires :

```
La fonction suivante prend "d start" et "d end" comme des entrées et sert à générer le temps :
    %Génération de temps pour les séries chronologique
         function [m] = SerieChronologique(d start,d end)
             %La première date de la série
             date start = datevec(d_start);
             %La dernière date de la série
              date end = datevec(d end);
             tmp = (1 : [date end-date start] * [12 1 0 0 0 0]')'-1;
             u = ones(size(tmp));
             m = datenum([date start(1)*u, date start(2)+tmp, u*[1 0 0 0]]);
        end
    Puis, on exécute le code suivant pour avoir les données d'une série chronologique sans tendance :
%Génération : Série chronologoique avec tendance
    %Génération : Temps
    %dd-mmm-d : format de la date entrée
    %Choisir une date de début et une date de fin
        date = datestr(SerieChronologique('d start', 'd end'), 'dd-mmm-vy');
     %Génération : Données
        A = randi([1200 \ 1950], 24, 1);
        val = sort(A);
     %Génération : Série chronologique
        esp=' '; espace=repmat(esp,24,1);
        time serie = strcat([date, espace, int2str(val)])
    Et on exécute le code suivant pour avoir les données d'une série chronologique avec tendance :
%Génération : Série chronologoique avec tendance
    %Génération : Temps
    %dd-mmm-d : format de la date entrée
    %Choisir une date de début et une date de fin
        date = datestr(SerieChronologique('d_start','d_end'),'dd-mmm-yy');
     %Génération : Données
        val = randi([1200 \ 1950], 24, 1);
     %Génération : Série chronologique
        esp=' '; espace=repmat(esp,24,1);
        time serie = strcat([date, espace, int2str(val)])
```

0.0.4 Applications:

1ère application : lissage exponentiel simple

Pour "N=12", " $d_start=1-jan-2020$ " et " $d_end=1-jan-2021$ ", on applique le code de prévision suivant pour :

- Générer une série chronologique sans tendance.
- Choisir une meilleure valeur de la constante α .

• Calculer le lissage simple.

```
display('1\LISSAGEEXPONENTIELSIMPLE: Sriechronologiques anstendance')
       %Donner une valeur à N : N désigne le nombre des élements de la série
                 N = 12:
                 %Génération : Série chronologoique sans tendance
                           %Génération : Temps
                           %'dd-mm-yy' : la forme de la date entrée
                           %Choisir une date de début et une date de fin
                                    date = datestr(SerieChronologique('1-jan-2019', '1-jan-2020'), 'dd-mmm-yy');
                           %Génération : Données
                                     val = randi([950 \ 2000], N, 1);
                           %Affichage : Série chronologique
                                    esp = '; espace = repmat(esp,N,1);
                                    serie chronologique = strcat([date,espace,int2str(val)])
                 %Lissage simple et le choix de la meilleure constante d'alpha
                           %Déclaration des variables
                                    alpha = 0.01; j = 1;
                                     X N = val;
                           %Initialisation de min de l'erreur carré et de la meilleure constante
                           %d'alpha
                                    \min \ \text{Err } \text{carre} = \inf;
                                    meilleur alpha = 0.01;
                           %faire varier le alpha
                                     while (alpha \leq 0.99)
                                               %
Etape 01 de lissage simple : Initialisation
                                                %La première valeur de lissage
                                               lissage simple(1) = X N(1);
                                               lissage initial(1) = lissage simple(1);
                                               %Etape 02 de lissage simple : calcul de lissage
                                               for i = 2 : N+1
                                                         %Calcul: lissage simple
                                                         lissage simple(i) = lissage initial(i-1) + (1-alpha)*(X N(i-1)-lissage initial(i-1))*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)*(I-alpha)
1));
                                                         lissage initial(i) = lissage simple(i);
                                                         %Calcul: l'erreur
                                                         Err(i)=X N(i-1)-lissage simple(i);
                                                         %Calcul: l'erreur carré
                                                         Err carre(i) = Err(i)^2;
                                                         %Calcul : la moyenne de l'erreur carré
                                                         Moyenne Err carre(j) = sum(Err carre)/N;
                                               end
                                               %La condition pour que alpha soit meilleure
                                               if (Moyenne Err carre(j)<min Err carre)
                                                        min Err carre = Moyenne Err carre(j);
                                                         meilleur alpha = alpha;
                                               end
                                               %Incrémentation
                                               alpha = alpha + 0.01;
                                               j = j + 1;
                                               lissage simple([1]) = [];
                                               Err([1]) = [];
```

```
Err carre([1]) = [];
       end
   %Affichage des résultats
       lissage exponentiel simple = transpose(lissage simple)
       Erreur = transpose(Err)
       Erreur carre = transpose(Err carre)
       meilleur alpha
On aura les résultas suivants :
  >> Prevision lissage simple
  1\ LISSAGE EXPONENTIEL SIMPLE : Série chronologique sans tendance
  serie chronologique =
  01-Jan-19 1547
  01-Feb-19
               1443
  01-Mar-19
                962
  01-Apr-19 1304
  01-May-19
               1120
  01-Jun-19 1784
  01-Jul-19 1277
01-Aug-19 1505
  01-Sep-19 1124
  01-Oct-19 1582
              1226
  01-Nov-19
  01-Dec-19
               1637
           lissage exponentiel simple =
              1.0e+03 *
                                                  Erreur =
               1.5470
               1.5449
                                                   -101.9200
               1.5333
                                                   -571.2616
               1.5287
                                                   -224.6764
               1.5205
                                                   -400.5028
               1.5258
                                                    258.2272
               1.5208
                                                   -243.7973
               1.5205
                                                    -15.4814
               1.5126
                                                   -388.5518
               1.5139
                                                     68.0593
               1.5082
                                                   -282.1819
               1.5108
                                                    126.2417
```

```
Erreur_carre =

1.0e+05 *

0
0.1039
3.2634
0.5048
1.6040
0.6668
0.5944
0.0024
1.5097
0.0463
0.7963
0.1594
```

meilleur_alpha =

0.0100

>>

2ème application : lissage exponentiel double

Pour "N=24", " $d_start=1-jan-2020$ " , " $d_end=1-jan-2020$ " et h=9, on applique le code de prévision suivant pour :

- Générer une série chronologique avec tendance.
- Choisir une meilleure valeur de la constante α .
- Calculer le lissage double.

```
display('1\LISSAGEEXPONENTIELDOUBLE')
display('Série chronologique avec tendance')
%Choisir une valeur pour N et h
N = 24; h = 9;
%Génération: Série chronologoique avec tendance
%Génération: Temps
%dd-mmm-d: format de la date entrée
%Choisir une date de début et une date de fin
date = datestr(SerieChronologique('1-jan-2020','1-jan-2022'),'dd-mmm-yy');
%Génération: Données
A = randi([950 2000],N,1);
val = sort(A);
%Affichage: Série chronologique
```

```
esp = '; espace = repmat(esp, N, 1);
         serie chronologique = strcat([date,espace,int2str(val)])
%Lissage double et le choix de la meilleure constante d'alpha
    %Déclaration des variables
         alpha = 0.01; j = 1;
         X N = val;
    %Initialisation de min de l'erreur carré et de la meilleure constante
     %d'alpha
         \min \ \text{Err } \text{carre} = \inf;
         meilleur alpha = 0.01;
    %faire varier le alpha
    while(alpha \leq 0.99)
    \%Etape 01 : initialisation de lissage
         lissage double(1) = X N(1);
         S 1(1) = lissage double(1);
    S 2(1) = (1-alpha)^2 X N(1);
    %Etape 02 : calcul de lissage
         for i = 2 : N
              %le premier lissage
              S \ 1(i) = alpha*S_1(i-1) + (1-alpha)*X_N(i);
              %le deuxième lissage
              S 2(i) = alpha*S 2(i-1)+(1-alpha)*S 1(i);
         end
    %Etape 03 : calcul des alpha's
         for i = 1 : N
              alpha chap 1(i) = 2*S 1(i)-S 2(i);
              alpha chap 2(i) = ((1-alpha)/alpha)*(S 1(i)-S 2(i));
         end
     %Etape 04 : prévision pour la période h
         for i = 1 : N
              X \operatorname{chap}(i) = \operatorname{alpha} \operatorname{chap} 1(i) + (\operatorname{alpha} \operatorname{chap} 2(i) * h);
              %Calcul: l'erreur
              Err(i) = X N(i)-X chap(i);
              %Calcul: l'erreur carré
              Err carre(i) = Err(i)^2;
         end
         %Calcul : la moyenne de l'erreur carré
              Moyenne Err carre(j) = sum(Err carre)/N;
         %La condition pour que alpha soit meilleure
              if (Moyenne Err carre(j)<min Err carre)
                   min Err carre = Moyenne Err carre(j);
                   meilleur alpha = alpha;
              end
         %Incrémentation d'alpha
              alpha = alpha + 0.01;
             j = j + 1;
    end
     %Affichage des résultats
         S = transpose(S = 1)
         S = transpose(S = 2)
    alpha chap 1 = transpose(alpha chap 1)
    alpha chap 2 = transpose(alpha chap 2)
```

```
X_chap = transpose(X_chap)
Erreur = transpose(Err)
Erreur_carre = transpose(Err_carre)
meilleur_alpha
```

On aura les résultats suivants :

>> prevision_lissage_double

1\ LISSAGE EXPONENTIEL DOUBLE
Série chronologique avec tendance

serie_chronologique =

01-Jan-20	1006
01-Feb-20	1029
01-Mar-20	1086
01-Apr-20	1156
01-May-20	1205
01-Jun-20	1213
01-Jul-20	1250
01-Aug-20	1317
01-Sep-20	1319
01-0ct-20	1349
01-Nov-20	1447
01-Dec-20	1507
01-Jan-21	1527
01-Feb-21	1546
01-Mar-21	1565
01-Apr-21	1597
01-May-21	1742
01-Jun-21	1745
01-Jul-21	1768
01-Aug-21	1805
01-Sep-21	1823
01-Oct-21	1913
01-Nov-21	1926
01-Dec-21	1931

S_1 =

1.0e+03	*	
		alpha_chap_1 =
1.0060	S 2 =	
1.0065	_	1.0e+03 *
1.0081	0.4024	0.0446
1.0110	20.5236	2.0116
1.0149	40.2741	1.9924
1.0189	59.6888	1.9758
1.0235	78.7928	1.9623
1.0293	97.5940	1.9510
1.0253	116.1116	1.9401
	134.3763	1.9308
1.0414	152.3915	1.9243
1.0495	170.1720	1.91/9
1.0587	187.7591	1.9113
1.0680	205.1775	1.9122
1.0776	222.4348	1.9137
1.0874	239.5381	1.9157
1.0975	256.4944	1.9182
1.1104	273.3154	1.9218
1.1231	290.0577	1.9308
1.1360	306.7190	1.9395
1.1494	323.3051	1.9487
	339.8270	1.9590
1.1629	356.2879	1.9695
1.1779	372.7197	1.9830
1.1928	389.1220	1.9966
1.2076	405.4916	2.0097

alpha_chap_2 =

- 20.5224
- 20.1212
- 19.7505
- 19.4147
- 19.1040
- 18.8012
- 18.5176
- 18.2647
- 18.0152
- 17.7805
- 17.5871
- 17.4184
- 17.2573
- 17.1034
- 16.9562
- 16.8210
- 16.7423
- 16.6613
- 16.5860
- 16.5219
- 16.4609
- 16.4317
- 16.4024
- 16.3696

Erreur =

X chap =		
_	1.0e+03 *	Erreur carre =
1.0e+03 *		
	-1.1903	1.0e+06 *
2.1963	-1.1445	
2.1735	-1.0676	1.4168
2.1536	-0.9811	1.3099
2.1371	-0.9179	1.1397
2.1229	-0.8963	0.9625
2.1093	-0.8475	0.8426
2.0975	-0.7717	0.8034
2.0887	-0.7610	0.7183
2.0800	-0.7237	0.5955
2.0727	-0.6226	0.5792
2.0696	-0.5619	0.5237 0.3876
2.0689	-0.5420	0.3158
2.0690	-0.5236	0.2937
2.0696	-0.5058	0.2742
2.0708	-0.4762	0.2558
2.0732	-0.3395	0.2267
2.0815		0.1153
2.0895	-0.3445	0.1187
2.0980	-0.3300	0.1089
2.1077	-0.3027	0.0916
2.1176	-0.2946	0.0868
2.1309	-0.2179	0.0475
2.1442	-0.2182	0.0476
2.1570	-0.2260	0.0511

meilleur_alpha =

0.9800

>>