Course Introduction

Prof. Seokin Hong Fall 2021

New Giant in Semiconductor Industry

Nvidia vs Intel

Nvidia's market value tops Intel's for the first time

Source: Bloomberg

History of NVIDIA GPU

GEFORCE 8800 GTX GPU Clock: 576MHz Memory: 768 MB DDR Bandwidth: 86.40GB/s

Architecture: Tesla First GPU built with CUDA architecture

GEFORCE GTX 690 GPU Clock: 915MHz

Memory: 2GB GDDR5 Bandwidth: 192.3GB/s

Architecture: Kepler

GEFORCE GTX 980 Ti

GPU Clock: 1076MHz Memory: 6GB GDDR5 Bandwidth: 336.6 GB/s Architecture: Maxwell

GEFORCE GTX 1080 Ti

GPU Clock: 1481MHz Memory: 11GB GDDR5 Bandwidth: 484.4 GB/s Architecture: Pascal

GEFORCE RTX 2080 Ti

GPU Clock: 1340MHz Memory: 11GB GDDR5 Bandwidth: 616.0GB/s **Architecture: Turing**

Why GPU?

Source: NVIDIA

Source: https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

In machine learning and big data era, GPUs are essential to meet the required computing power.

GPU Acceleration is Everywhere for Everything

- 3D Rendering
- Big Data & Data Mining
- Bioinformatics & Genomics
- Business Intelligence & Analytics
- Climate, Weather and Ocean Modeling
- Computational Fluid Dynamics
- Database
- Electronic Design Automation
- Game
- Machine Learning

Course Objectives

- You will learn about
 - Increasingly important role of parallel computing
 - Multicore CPU and GPU architectures
 - Parallel Programming with PThread, OpenMP, and CUDA
 - Important patterns of parallel computation
 - Case study of accelerating machine learning

Course Schedule (Tentative)

Date	Торіс	Reading	Note
2021-08-31	Course Introduction		
2021-09-02	Intoroduction to Parallel Computing		
2021-09-07	Multicore Architecture		
2021-09-09	Multicore Architecture		
2021-09-14	Parallel Programming Models		
2021-09-16	Parallel Programming Basics		
2021-09-21	Parallel Programming Basics		
2021-09-23	Pthread		
2021-09-28	OpenMP		
2021-09-30	OpenMP		
2021-10-05	Synchronization		
2021-10-07	Cache Coherence		
2021-10-12	Cache Coherence		
2021-10-14	Memory Consistency		
2021-10-19	Interconnection Networks		
2021-10-21	Midterm exam		
2021-10-26	Heterogeneous Parallel Computing		
2021-10-28	GPU Architecture		
2021-11-02	Fundamentals of CUDA1		
2021-11-04	Fundamentals of CUDA2		
2021-11-09	CUDA Threads 1		
2021-11-11	CUDA Threads 2		
2021-11-16	CUDA Memory Model 1		
2021-11-18	CUDA Memory Model 2		
2021-11-23	Performance Considerations		
2021-11-25	Parallel Algorithm: Convolution		
2021-11-30	Parallel Algorithm: Sparse Matrix Computation		
2021-12-02	Parallel Algorithm: Graph Search		
2021-12-07	Application case study: Deep Learning		
2021-12-09			

Phase1: Multicore CPU

Phase2: GPU

Who am I?

- Seokin Hong, Ph.D.
- seokin@skku.edu
- Office: #400526, Semiconductor Bldg.
- Office Hour : 14:00~16:00, Friday
- compasslab.skku.edu

- o Computer architecture
- Memory and storage systems
- Near-data processing for big data analytics and machine learning
- Domain-specific Accelerators (e.g., Hardwares for AI)

Teaching Assistants

- 변광은 (Byeon, Kwang Eun)
 - o puzzlebook26@gmail.com

- 김용준 (Kim, Yongjun)
 - o yongjunkim@skku.edu

Textbooks (Reference)

- Introduction to Parallel Computing, 2nd Edition
- Parallel Computer Architecture: A Hardware/Software Approach,
- Programming Massively Parallel Processors, 3rd Edition.

Course Information

- Meet Tuesday 15:00-16:15, Thursday 16:30-17:45
- Lecture style: Pre-recorded video (lecture) + Realtime video streaming (Q&A, every Thursday)
- WebEx Info.: https://skku-ict.webex.com/meet/seokin
- Website: i-campus
 - > Announcement, Lecture notes, Homework, Course schedule, Q&A

How Will You Be Evaluated?

■ Midterm : 30%

■ Final : 30%

■ Attendance : 5%

■ Homework: 20%

Project (individual): 15%

Grade will be determined solely by the score (non-negotiable)

Next Time

Introduction to Parallel Computing