Метод прогонки для решения СЛАУ с трехдиагональной матрицей.

Пусть матрица A – трехдиагональная. Запишем СЛАУ

$$A\mathbf{y} = \mathbf{f},\tag{1}$$

в следующем виде:

$$a_i y_{i-1} + b_i y_i + c_i y_{i+1} = f_i, \quad i = \overline{2, n-1},$$
 (2)

$$b_1 y_1 + c_1 y_2 = f_1, (3)$$

$$a_n y_{n-1} + b_n y_n = f_n. (4)$$

Решение системы (2)-(4) будем искать в виде:

$$y_{i+1} = \alpha_i y_i + \beta_i, \quad i = \overline{1, n-1}. \tag{5}$$

Подставляя (5) в (2), получаем

$$y_i = \frac{-a_i}{\alpha_i c_i + b_i} y_{i-1} + \frac{f_i - \beta_i c_i}{\alpha_i c_i + b_i},$$

откуда находим рекурентную формулу для отыскания $\alpha_i, \beta_i, \ i = \overline{n-1, 1}$:

$$\alpha_{i-1} = \frac{-a_i}{\alpha_i c_i + b_i}, \ \beta_{i-1} = \frac{f_i - \beta_i c_i}{\alpha_i c_i + b_i}.$$
 (6)

Значение $\alpha_{n-1}, \beta_{n-1}$ находим из (4). Так как

$$y_n = \frac{-a_n}{b_n} y_{n-1} + \frac{f_n}{b_n},$$

ТО

$$\alpha_{n-1} = \frac{-a_n}{b_n}, \ \beta_{n-1} = \frac{f_n}{b_n}.$$
 (7)

После вычисления $\alpha_i, \beta_i, i = \overline{1, n-1}$ по формулам (6)–(7) находим y_1 из (3) и $y_2 = \alpha_1 y_1 + \beta_1; y_i$ для $i = \overline{2, n}$ находим по формуле (5).

Разностные методы решения уравнения теплопроводности

Рассмотрим начально-краевую задачу для одномерного уравнения теплопроводности.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x, t), \ 0 < x < 1, t > 0, \tag{1}$$

$$u(x,0) = u_0(x), \ 0 < x < 1,$$
 (2)

$$u(0,t) = u(1,t) = 0, \ t > 0.$$
 (3)

Пусть $n \in$, h = 1/n – шаг по пространственной переменной, τ – шаг по времени, $x_i = ih, t_j = j\tau$. Обозначим $y_i^j = y(x_i, t_j)$,

$$y_{t} = \frac{y_{i}^{j+1} - y_{i}^{j}}{\tau}, \ y_{\overline{x}x} = \frac{y_{i-1}^{j} - 2y_{i}^{j} + y_{i+1}^{j}}{h^{2}},$$
$$\widehat{y}_{\overline{x}x} = \frac{y_{i-1}^{j+1} - 2y_{i}^{j+1} + y_{i+1}^{j+1}}{h^{2}}.$$

Для решения задачи (1)-(3) будем рассматривать следующие разностные задачи.

4

1. Явная разностная схема (РС).

$$y_t = y_{\overline{x}x} + \varphi, \ \varphi_i^j = f(x_i, t_j),$$

 $y_i^0 = u_0(x_i),$
 $y_0^j = y_n^j = 0.$

Порядок аппроксимации равен $O(\tau + h^2)$; РС устойчива при выполнении условия $\tau/h^2 < 1/2$.

2. Чисто неявная РС.

$$y_t = \widehat{y}_{\overline{x}x} + \varphi, \ \varphi_i^j = f(x_i, t_j).$$

Порядок аппроксимации этой $PC - O(\tau + h^2)$.

3. Симметричная РС.

$$y_t = \frac{1}{2} (\hat{y}_{\bar{x}x} + y_{\bar{x}x}) + \varphi, \ \varphi_i^j = f(x_i, t_j + \tau/2).$$

Порядок аппроксимации этой $PC - O(\tau^2 + h^2)$.

4. Схема повышенного порядка аппроксимации.

$$y_t = \left(\frac{1}{2} - \frac{h^2}{12\tau}\right)\widehat{y}_{\overline{x}x} + \left(\frac{1}{2} + \frac{h^2}{12\tau}\right)y_{\overline{x}x} + \varphi.$$

Здесь
$$\varphi_i^j = f(x_i, t_j + \tau/2) + \frac{h^2}{12} f_{xx}''(x_i, t_j + \tau/2).$$
 Порядок аппроксимации этой РС – $O(\tau^2 + h^4)$.

Неявные PC являются абсолютно устойчивыми. Для их решения необходимо на j+1м слое решать СЛАУ с трёхдиагональной матрицей.

Рекомендуемая литература

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
 - 2. Калиткин Н.Н. Численные методы. М.: Наука, 1978.
 - 3. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
 - 4. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.