Polytech Nice Sophia – S.I. 3 – Cours Signal Son et Image pour l'Informaticien (S.S.I.I.) Correction du D.S. du 2 novembre 2009 – durée : 2h – auteur : Jean-Paul Stromboni.

NOM, Prénom:	STROMBONI Jean-Paul
Groupe de TD :	Correction

Lire attentivement les consignes suivantes :

- l'épreuve dure 2 heures ; les documents autorisés sont les polycopiés de cours, les comptes-rendus de travaux dirigés, et les questionnaires de contrôle continu.
 Calculatrices autorisées, téléphones mobiles et ordinateurs portables proscrits.
- 2. on répond sur cette feuille dans la zone laissée libre sous la question :
 - 1. <u>les réponses doivent tenir dans les zones prévues à cet effet</u> (on peut écrire sur la dernière page, **en ajoutant un renvoi clair à la question concernée**).
 - 2. les réponses doivent correspondre aux questions posées, elles doivent être lisibles.
 - 3. le barème indiqué en gris à gauche est seulement indicatif.

Note sur 20 :	
Remarques du correcteur :	

I. Exercice : compression du signal par sous-échantillonnage (6.5 pt) :

Barème	Répondre aux questions dans l'espace laissé libre en dessous
0.5pt	Définir en une phrase la notion de taux de compression d'un signal audio :
	Le taux de compression est le rapport de la taille du signal (respectivement du bit rate) avant compression à la taille (ou respectivement au bit rate) du signal après compression
0.5pt	Soit un signal audio s de taille 44Mo et de bit rate 352kbps qui compressé voit son bit rate chuter à 44kbps. Quelle est la durée du signal audio s avant compression?
	Le bit rate 352000 bps multiplié par la durée D du signal exprimée en secondes fournit la tailledu signal en bits, puisque la taille vaut 44 Mo (Mo = mégaoctet),
	$D = 10^3$ secondes, c'est à dire 16 minutes et 40 secondes.
	Ou plutôt $D = 1024s$ si on tient compte de $1koctet = 1024octets$
0.5pt	Quelle est la taille du signal audio compressé ?
	La taille du signal compressé est de : $\frac{44Mo}{352kbps} = 5,5Mo$
0.5pt	Que vaut le taux de compression C du signal s ?
	Le taux de compression vaut $C = \frac{352000}{44000} = 8$

0.5pt	Définir en une phrase la notion de sous échantillonnage d'un signal audio dans un rapport M :
	Sous-échantillonner un signal dans un rapport M consiste à conserver un échantillon tous les M échantillons successifs, et don à supprimer les M-1 autres échantillons, c'est donc un moyen de compression du signal dans un rapport M
0.5pt	Le signal audio $s_n = s(nT_e) = 0.5\cos(1000\pi nT_e)$, avec $T_e = 1/8000s$ et n entier, $n \in [0,1023]$, est sous échantillonné dans un rapport $M = 3$ dans le signal ssech.
_	Calculer la fréquence d'échantillonnage de ssech, que l'on notera f_e
	Le rapport $M=3$ implique que l'on conserve un échantillon sur trois,
	le laps de temps qui s'écoule entre deux échantillons devient donc $3*Te$,
	par conséquent la fréquence d'échantillonnage du signal sous échantillonné est fe/3
0.5pt	Etablir si la contrainte de Shannon est respectée pour le signal sous-échantillonné
	La fréquence du signal est $f0=500Hz$, elle est inférieure à la moitié de la fréquence
	d'échantillonnage $fe/3$ du signal sous échantillonné, soit $f0 < fe/6$, donc la contrainte de Shannon est respectée.
	soit jo \ je/o, done la contrainte de Shannon est respectee.
0.5pt	Quel est le taux de compression appliqué au signal s pour créer ssech?
	C'est donc un taux de compression de 3 environ
	On sous-échantillonne un signal sinusoïdal de fréquence f_0 échantillonné à la
1.5pt	fréquence f_e , en respectant la contrainte de Shannon afin de compresser ce signal.
	Exprimer en fonction de f_0 et de f_e le taux de compression maximum prévisible.
	La fréquence d'échantillonnage fe devient fe/M, avec M entier, si M est le taux de
	compression.
	La contrainte de Shannon impose que $f0 < fe/(2M)$ Donc, le taux de compression maximum atteignable est $M < fe/(2*f0)$, c'est le plus grand
	entier inférieur à fe/ $(2*f0)$, $M = int(fe/(2*f0))$
	$C = \operatorname{int}(\frac{f_e}{2f_0})$
	$2f_0$
0.5pt	Quel taux de compression peut-on prédire si $f_0 = 440Hz$ et $f_e = 8000Hz$?
o.ept	
	On applique la formule établie, c'est $C = int(\frac{8000}{880}) = 9$
0.5pt	Discuter le cas où $f_0 = 4400Hz$ et $f_e = 8000Hz$:
	Dans ce cas, la contrainte de Shannon n'est pas vérifiée, et rien ne sert de sous
	échantillonner le signal s, car la méthode vue en cours avec le filtre de Shannon est
	incapable de le reconstruire (impossible d'être certain de la fréquence du signal).

II. Exercice: le jeu des neuf erreurs avec les scripts Matlab (6.5 pt):

Neuf erreurs se sont glissées dans le script suivant, à raison d'une erreur ou plus par ligne :

- 1. signaler sur le script les erreurs détectées en leur attribuant un numéro de 1 à 7,
- 2. corriger ensuite les erreurs détectées dans le tableau au bas de cette page

```
fe=8000 Hz;
              (1)
f0=440;
a0 = .5;
t=[0:1/fe:5/F0]; (2)
s=a0cos(2*pi*f0*t) (3)
stem(t,s)
title(Chronogramme)
                        (4)
xlabel("temps (s)")
                        (5)
ylabel(['s(0)', num2str((s(0)))  (6) et (7)
figure(2)
N = 1024
fk= [0:N]*fe/N;
                         (8) et (9)
stem(fk,fft(s(1:N)))
```

Barèm	Répondre à chaque question dans la case laissée vide en dessous
e	
0.5pt	Correction de l'erreur 1:
	fe=8000; % Hz
0.5pt	Correction de l'erreur 2:
	T=[0 :1/fe :5/f0];
0.5pt	Correction de l'erreur 3:
	s=a0*cos(2*pi*f0*t);
0.5pt	Correction de l'erreur 4:
	title('Chronogramme')
0.5pt	Correction de l'erreur 5:
	xlabel('temps (s)')
0.5pt	Correction de l'erreur 6 et de l'erreur 7 :
	ylabel(['s(0)', num2str((s(1))])
0.5pt	Correction de l'erreur 8:
	<pre>fk=[0:N-1]*fe/N; assure un vecteur de même taille que abs(fft(s(1:N)))</pre>
	stem(fk,abs(fft(s(1:N))))
	En plus, il n'y a pas 1024 échantillons dans s, d'où une dixième erreur.

III. Exercice: le terme exponentiel de la TFD (7 pt):

On étudie la quantité $w_N^{nk} = e^{2i\pi nk/N}$, où k, n et N sont des entiers naturels :

	ia quantite $W_N = \mathcal{C}$, ou \mathcal{K} , wet \mathcal{W} some descentiers nature is:		
Barèm e	On demande de répondre dans l'espace vide laissé sous les questions :		
0.5pt	Préciser ci-dessous les parties réelle et imaginaire pure de w_N^{nk}		
	$w_N^{nk} = e^{2i\pi nk/N} = \cos(2\pi nk/N) + i\sin(2\pi nk/N)$		
	$W_N = C = COS(2\pi t R/17) + t SIII(2\pi t R/17)$		
	partie réelle Partie imaginaire pure		
0.5pt	Que valent le module et l'argument de w_N^{nk} ?		
	Le module vaut I , et l'argument vaut $2\pi nk/N$ en radians		
0.5pt	Que vaut la quantité complexe conjuguée de w_N^{nk} ?		
	Dans la quantité complexe conjuguée de w_N^{nk} , la partie réelle reste identique et la partie imaginaire pure change de signe, c'est donc que w_N^{nk} devient $w_N^{-nk}=e^{-2\piink/N}$		
0.5pt	Comparer $W_N^{(n+N)k}$ et W_N^{nk}		
	$w_N^{(n+N)k} = w_N^{nk} \times w_N^{Nk} = w_N^{nk}$, car $w_N^{Nk} = e^{2ik\pi} = 1$, si k est un entier		
0.5pt	Comparer W_N^{nk} et $W_N^{(N-n)k}$		
	$w_N^{(N-n)k} = w_N^{Nk} \times w_N^{-nk} = w_N^{-nk}$, l'une est la quantité complexe conjuguée de l'autre		
1pt	Calculer partie réelle et la partie imaginaire pure de $x_n = w_N^{nk} + w_N^{-nk}$		
	$x_n = w_N^{nk} + w_N^{-nk} = 2 \times \cos(2\pi n k/N)$ les parties réelles s'ajoutent et les parties imaginaires pures se compensent exactement xn est égal à sa partie réelle, et la partie imaginaire est nulle.		

1pt	Exprimer la quantité $\cos(2\pi n_0 k/N)$ en fonction de $w_N^{n_0 k}$
	$\cos(2\pi n_0 k/N) = \frac{e^{2\pi i n_0 k/N} + e^{-2\pi i n_0 k/N}}{2} = \frac{w_N^{n_0 k} + w_N^{-n_0 k}}{2}$
1pt	Que vaut la quantité $X_k = \sum_{n=0}^{N-1} w_N^{-nk}$ en fonction de N et de k ?
	$X_k = \sum_{n=0}^{N-1} w_N^{-nk} = \sum_{n=0}^{N-1} \alpha^{-n} \text{ avec } \alpha = e^{2\pi i k/N}$
	$X_{k} = \frac{1 - \alpha^{-N}}{1 - \alpha^{-1}} = \frac{1 - e^{-2i\pi k}}{1 - e^{2i\pi k/N}} = e^{-i\pi(k - \frac{k}{N})} \frac{\sin(\pi k)}{\sin(\pi k/N)}$
1.5pt	Déduire des résultats précédents la valeur de $Y_k = \sum_{n=0}^{N-1} \cos(2\pi n k_0/N) w_N^{-nk}$
	En appliquant la formule $\cos(2\pi n k_0/N) = \frac{w_N^{nk_0} + w_N^{-nk_0}}{2}$, il vient
	$Y_k = \sum_{n=0}^{N-1} \cos(2\pi n k_0 / N) w_N^{-nk} = \sum_{n=0}^{N-1} \frac{w_N^{nk_0} + w_N^{-nk_0}}{2} \times w_N^{-nk}$
	$Y_{k} = \sum_{n=0}^{N-1} \frac{w_{N}^{nk_{0}} w_{N}^{-nk} + w_{N}^{-nk_{0}} w_{N}^{-nk}}{2} = \frac{1}{2} \left(\sum_{n=0}^{N-1} w_{N}^{-n(k-k_{0})} + \sum_{n=0}^{N-1} w_{N}^{-n(k+k_{0})} \right)$
	Soit en utilisant le résultat obtenu pour le Xk précédent : $Y_k = \left(X_{k-k_0} + X_{k+k_0}\right)/2$