CMS Analyse I

Semestre d'automne

2018-2019

Table des matières

2	Suites de nombres réels		
	2.1	Définitions et propriétés	4
	2.2	Limite finie d'une suite	4
	2.3	Limite infinie d'une suite	6

2 Suites de nombres réels

2.1 Définitions et propriétés

Définition 2.1. Une suite de nombres réels $a_1, a_2, \ldots, a_n, \ldots$ est une application de \mathbb{N}^* dans \mathbb{R} , notée (a_n) :

$$(a_n): \mathbb{N}^* \longrightarrow \mathbb{R}$$
 $n \longmapsto a_n.$

Définition 2.2. Une suite (a_n) est constante si $\forall n \in \mathbb{N}^*, a_n = a$. On la note $(a_n) = (a)$.

Définition 2.3. Une suite (a_n) est majorée si $\exists M \in \mathbb{R}$ t.q. $\forall n \in \mathbb{N}^*, a_n \leq M$.

Définition 2.4. Une suite (a_n) est minorée si $\exists m \in \mathbb{R}$ t.q. $\forall n \in \mathbb{N}^*, a_n \geq m$.

Définition 2.5. Une suite (a_n) est bornée si elle est majorée et minorée.

Définition 2.6. Une suite (a_n) est croissante si $\forall n \in \mathbb{N}^*, a_n \leq a_{n+1}$, et strictement croissante si $\forall n \in \mathbb{N}^*, a_n < a_{n+1}$.

Définition 2.7. Une suite (a_n) est décroissante si $\forall n \in \mathbb{N}^*, a_n \geq a_{n+1}$, et strictement décroissante si $\forall n \in \mathbb{N}^*, a_n > a_{n+1}$.

Définition 2.8. Une suite (a_n) est (strictement) monotone si elle est (strictement) croissante ou (strictement) décroissante.

2.2 Limite finie d'une suite

Définition 2.9. Une suite (a_n) converge vers une limite a si

$$\forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N}^* \text{ t.q. } \forall n \geq N(\varepsilon), \ |a_n - a| < \varepsilon.$$

On écrit

$$\lim_{n \to \infty} a_n = a \quad \text{ou encore} \quad a_n \xrightarrow[n \to \infty]{} a.$$

Définition 2.10. L'intervalle $a - \varepsilon, a + \varepsilon$ est appelé ε -voisinage de a.

Définition 2.11. Une suite (a_n) qui converge vers une limite a est dite convergente. Sinon elle est dite divergente.

Exemple. $\lim_{n\to\infty} \frac{1}{n} = 0$.

Théorème 2.1.

Toute suite convergente n'a qu'une limite.

Théorème 2.2.

Toute suite convergente est bornée.

Théorème 2.3.

Soient (a_n) et (b_n) deux suites convergeant vers a et b respectivement. Alors

- 1. $|a_n| \underset{n\to\infty}{\longrightarrow} |a|$.
- 2. $(a_n \pm b_n) \xrightarrow[n \to \infty]{} a \pm b$.
- $\beta. (a_n b_n) \underset{n \to \infty}{\longrightarrow} ab.$
- 4. $\left(\frac{a_n}{b_n}\right) \xrightarrow[n \to \infty]{a} \frac{a}{b}$ si $\forall n \in \mathbb{N}^*, b_n \neq 0 \text{ et } b \neq 0$.

Théorème 2.4.

Soient (a_n) et (b_n) deux suites convergeant vers a et b respectivement. Alors on a l'implication

$$\exists N \in \mathbb{N}^* \ t.q. \ \forall n \ge N, \ a_n \le b_n \implies a \le b.$$

Théorème 2.5 (Théorème des deux gendarmes).

Soient $(a_n), (s_n), (b_n)$ des suites telles que

$$\exists N \in \mathbb{N}^* \ t.q. \ \forall n > N, \ a_n < s_n < b_n$$
.

On a alors l'implication

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \ell \implies \lim_{n \to \infty} s_n = \ell.$$

Théorème 2.6.

Soient (a_n) et (b_n) deux suites.

- 1. $Si |a_n| \xrightarrow[n \to \infty]{} 0$, alors $a_n \xrightarrow[n \to \infty]{} 0$.
- 2. $Si |a_n| \xrightarrow[n \to \infty]{} 0$ et b_n est bornée, alors $a_n b_n \xrightarrow[n \to \infty]{} 0$.

Théorème 2.7.

Toute suite croissante et majorée converge. Toute suite décroissante et minorée converge. (Toute suite monotone et bornée converge.)

Exemple. Soient $q \in \mathbb{R}$ et la suite (q^n) . Alors

$$(q^n) \begin{cases} \text{diverge} & \text{si } |q| > 1\\ \text{diverge} & \text{si } q = -1\\ \text{converge} & \text{si } q = 1\\ \text{converge} & \text{si } |q| < 1. \end{cases}$$

Exemple. Suite géométrique : soient $q \in \mathbb{R} \setminus \{1\}$ et la suite (a_n) de terme général

$$a_n = 1 + q + q^2 + \dots + q^{n-1} = \sum_{k=0}^{n-1} q^k$$
.

Alors

$$(a_n) \left\{ \begin{array}{ll} \text{converge vers } \frac{1}{1-q} & \text{si } |q| < 1 \\ \text{diverge} & \text{si } |q| \geq 1 \,. \end{array} \right.$$

Exemple. On note e la limite

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} \simeq 2.71828.$$

Remarque. Le nombre e est aussi donné par la limite

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

2.3 Limite infinie d'une suite

Définition 2.12. Une suite (a_n) tend vers l'infini si

$$\forall A > 0, \ \exists N(A) \in \mathbb{N}^* \text{ t.q. } \forall n \ge N(A), \ a_n > A.$$

On écrit

$$\lim_{n \to \infty} a_n = \infty \quad \text{ou encore} \quad a_n \xrightarrow[n \to \infty]{} \infty.$$

Définition 2.13. L'intervalle A, ∞ est appelé A-voisinage de l'infini.

Définition 2.14. $\lim_{n\to\infty} a_n = -\infty$ si

$$\forall B < 0, \ \exists N(B) \in \mathbb{N}^* \text{ t.q. } \forall n \ge N(B), \ a_n < B.$$

Théorème 2.8.

Soient (a_n) et (b_n) deux suites.

1. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et (b_n) converge, alors $a_n + b_n \xrightarrow[n \to \infty]{} \infty$.

2. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et $b_n \xrightarrow[n \to \infty]{} \infty$, alors $a_n + b_n \xrightarrow[n \to \infty]{} \infty$.

3. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et (b_n) est bornée, alors $a_n + b_n \xrightarrow[n \to \infty]{} \infty$.

4. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et $\lambda > 0$, alors $\lambda a_n \xrightarrow[n \to \infty]{} \infty$ et $(-\lambda)a_n \xrightarrow[n \to \infty]{} -\infty$.

5. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et $b_n \xrightarrow[n \to \infty]{} b > 0$, alors $a_n b_n \xrightarrow[n \to \infty]{} \infty$.

6. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et $\exists N \in \mathbb{N}^*$ et $m \in \mathbb{R}^*_+$ t.q. $\forall n \geq N, b_n \geq m$, alors $a_n b_n \xrightarrow[n \to \infty]{} \infty$.

7. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
 et $b_n \xrightarrow[n \to \infty]{} \infty$, alors $a_n b_n \xrightarrow[n \to \infty]{} \infty$.

8. Si
$$a_n \xrightarrow[n \to \infty]{} \infty$$
, alors $\frac{1}{a_n} \xrightarrow[n \to \infty]{} 0$.

9. Si
$$a_n \xrightarrow[n \to \infty]{} 0$$
 et $\exists N \in \mathbb{N}^*$ t.q. $\forall n \geq N, a_n > 0$, alors $\frac{1}{a_n} \xrightarrow[n \to \infty]{} \infty$.

10. Soient (a_n) et (b_n) deux suites telles que $\exists N \in \mathbb{N}^*$ t.q. $\forall n \geq N, a_n \leq b_n$. Alors

•
$$si\ a_n \longrightarrow \infty$$
, $alors\ b_n \longrightarrow \infty$,

•
$$si\ a_n \xrightarrow[n\to\infty]{} \infty$$
, $alors\ b_n \xrightarrow[n\to\infty]{} \infty$,
• $si\ b_n \xrightarrow[n\to\infty]{} -\infty$, $alors\ a_n \xrightarrow[n\to\infty]{} -\infty$.

Remarque. Formes indéterminées. Soient $(a_n), (b_n), (c_n), (d_n)$ des suites telles que $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$ et $\lim_{n\to\infty} c_n = \lim_{n\to\infty} d_n = \infty$. On ne peut rien dire à priori sur les limites suivantes

$$\lim_{n \to \infty} \frac{a_n}{b_n}, \qquad \lim_{n \to \infty} \frac{c_n}{d_n}, \qquad \lim_{n \to \infty} a_n c_n, \qquad \lim_{n \to \infty} \left(c_n - d_n \right).$$