

Pengenalan Emosi Manusia Menggunakan

Log-Gabor Convolutional Networks Melalui

Pendekatan Facial Region Segmentation

Naufan Rusyda Faikar 1607645

1. Bagaimana kinerjamodel log-Gabor CNNmelalui pendekatan FRS?

Revisi dari Pak Rasim, S.T., M.T.

Fitur	Waktu <i>training</i> (jam)	Epoch	Akurasi tes (%) pada perhitungan		
			Single	Simple average	Weighted average
EN + NM	<u>3,71</u>	114	59,23	64,21	64,21
EIN + INIVI	3,20	102	59,83		
EN+NM (concat.)	8,69	<u>136</u>	61,27	-	_
ENM	4,34	<u>86</u>	63,07		
EN + NM + ENM	11,25	Ibid.	Ibid.	66,25	66,34

E — *Eyes* atau daerah mata; N — *Nose* atau daerah hidung; M — *Mouth* atau daerah mulut; Weighted average — rerata yang dihitung berdasarkan akurasi tes tiap-tiap model

↑6,07% terhadap eksperimen sebelumnya

	Baseline CNN + DA	Ensemble Log-Gabor CNNs
Akurasi (%)	60,27	66,34

Kesimpulan

Terbukti bahwa model yang diusulkan dapat mengungguli model *baseline*.

2. Bagaimana peningkatan kinerja model secara kualitatif?

Revisi dari Pak Rizky R. J. P., M.Kom

#1 Model* lebih cocok diaplikasikan daripada model *baseline*

Neutral: Happiness: Surprise: Sadness:

Anger:
Disgust:
Fear:
Contempt:

Get started for free at projectoxford.ai

Model *baseline* versus model **yang diusulkan** pada *confusion matrix* untuk set data input *full-face*

#2 Model relatif lebih presisi daripada model *baseline*

Model *baseline* versus model **yang diusulkan** pada nilai presisi

Model tetap dinilai andal

sebab kegagalan mengenali *disgust* mendapatkan toleransi

- Emosi *disgust* dianggap sebagai *angry* oleh mayoritas dari anak-anak dan setengah dari orang-orang dewasa (Widen dkk., 2004; Widen & Russel, 2013; Widen & Russel, 2018).
- "...the signals for fear/surprise and anger/disgust were confused at the early stage of transmission..."

 (https://www.bbc.com/news/uk-scotland-glasgow-west-26019586)

Model tetap dinilai akurat

#4

karena mencapai *human accuracy*

Human accuracy adalah 65±5% untuk

. —

FER-2013 (Goodfellow dkk., 2013)

Model butuh *resource* besar

#5

daripada model baseline

Model	Waktu <i>training</i> (jam)	Waktu prediction (sekon)	Memori prediction (MiB)
CNN baseline	3,7 <u>1</u>	1,55	<u>577</u>
Log-GCN	11,25	<u>15,98</u>	1,523

Waktu yang diukur adalah waktu prediksi seluruh data tes FER-2013 menggunakan spesifikasi komputer dan sistem dalam penelitian ini

(EN + NM + ENM)

3. Bagaimana perbandingan kinerja model terbaik dari setiap skenario?

Revisi dari Pak Rizky R. J. P., M.Kom

4. Bagaimana kesimpulan akhir penelitian?

Revisi dari Pak Rasim, S.T., M.T.

Abstrak

"...Hasil eksperimen membuktikan bahwa Log-GCN

tanpadengan FRS berhasil mengungguli baseline

dengan augmentasi data melalui peningkatan akurasi

sebesar 4,86%6,07%."

meningkatkan performa model baseline.

Kesimpulan

2- Terbukti bahwa GCNs dengan/tanpa FRS dapat

	ı

5. Perbaikan kesalahan penulisan penomoran

Revisi dari Pak Rasim, S.T., M.T.

- Subbab 2.2 alinea ke-11

- Subbab 2.5 alinea ke-4

- Bab <u>5</u> alinea ke-<u>1</u> dan ke-<u>2</u>

Thanks!

From Unsplash