Math Logic and Life Midterm

- (1) Find the truth set of the propositional function $(x^2 + 1)(x 3)(x^2 2)(2x 3) = 0$, when it is given that the set of meanings of this propositional function is each of the following
 - (a)Z(b)Q(c)R(d)C
- (2) Both of the following statements have the set of positive real numbers as their set of meanings. Which statement is true?
 - a) $(\exists y)(\forall x)(x < 2y)$ b) $(\forall x)(\exists y)(x < 2y)$
- (3) Write the converse and contrapositive of the following expression: "If $\sqrt{2} < \sqrt{5}$, then 2 < 5."
- (4) Suppose statement $P: (\forall x)(\exists y)(x < 2y)$. Write statement /simP
- (5) Determine which of the following expressions are tautologies.
 - (a) $P \to P$
 - (b) $P \cap (Q \cup R) \leftrightarrow (P \cap Q) \cup (P \cap R)$
 - (c) $P \cup Q \leftrightarrow (\sim P \rightarrow Q)$
- (6) Assume that "Tim is a boy" is a true statement and that "Tim is ten years old" is a true statement. Which of the following are true?
 - a) Tim is not a boy and Tim is ten years old
 - b) If Tim is not a boy then Tim is ten years old
 - c) Tim is ten years old or Tim is a boy
 - d) If Tim is not ten years old then Tim is not a boy
- (7) Show that $(P \to Q) \cap (P \cap (\sim Q))$ is a contradiction.
- (8) Which of the following are propositions?
- (9) Determine which of the following statements are true
 - (a) If $A \supseteq B$, then A = B
 - (b) Since \emptyset is a set that is a member of every set, there is a set that is a number of every set
 - (c) If A = B, then $A \supset B$
 - (d) If sets $A = \{1, 3, 5\}$ and $B = \{1, 3, 7\}$ then $A \cap B = \{1, 3\}$
 - (e) $\{\{1,2,3\}\}\in N\cup P(N)$
 - (f) $\{\{1, 2, 3\}\}\subseteq N \cup P(N)$
 - (g) The empty set is a subset of every set.

(h) If sets
$$A = \{1, 2, 3, 4, 5, 6\}$$
 and $B = \{3, 4, 6\}$ then $A - B = \{1, 2\}$

(i)
$$\{1, 2, 3\} \in N \cup P(N)$$

(j)
$$\{1, 2, 3\} \subseteq P(N)$$

(10) Write a useful negation of each of the following propositions.

a) If
$$1 \neq 3$$
, then $f(1) \neq f(3)$ b) If $a > b$, then $a^2 > b^2$

- (11) Give are sets $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 3, 4, 5, 6, 7\}$
- (12) Finish the following truth table:

P	Q	\sim P	\sim Q	$\sim P \vee Q$	$P \land \sim Q$	\sim Q $\rightarrow\sim$ P
Т	Т					
Т	F					
F	Т					
F	F					

- (13) Prove that if an integer n^2 is even then n is even
- (14) If r is real number such that $r^2 = 2$, then r is irrational.
- (15) Prove or disprove the following statement. For any sets P,Q, and $R,(P\cap Q)\cup R=P\cap (Q\cup R)$
- (16) Prove that for any natural number n, either n is a prime or a perfect square, or n divides (n-1)!.