

Non Linearity in Neural Networks

- Non-linearity is an essential component in the success of Neural Networks
- The most obvious activation function is a Heaviside function
- It has a biological meaning of a firing neuron
- What is the problem with it?

Non-Linear Activation Functions

Neural Networks require non-linear activation functions

- The first activation function was *the*Sigmoid
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Activation Function - Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron
- How does the gradient of a sigmoid look?

Problem of Sigmoid

- Saturated neurons "kill" the gradients
- Derivative of Sigmoid Function is always smaller than 1
- Error signal is getting smaller and smaller

$$rac{d}{dx}\sigma(x)=\sigma(x)(1-\sigma(x))$$

Vanishing Gradient Problem

Activation Function - Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron
- How does the gradient of a sigmoid look?
- exp() is slightly computationally expensive

Activation Functions - Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron
- Saturated neurons "kill" the gradients
- exp() is slightly computationally expensivε
- Sigmoid outputs are not zero-centered

Activation Functions - Tanh

Hyperbolic Tangent

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

```
tanh(x) = sinh(x)/cosh(x) = (e^{x} - e^{-x})/(e^{x} + e^{-x})
```


- Does not saturate
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice
- Output is not zero-centered

Backward

Slide credit: Lior Rokach

Slide credit: Lior Rokach

- If the activation is >0, then the gradient is 1
- There is no attenuation!

- If the activation is 0, then the gradient is also 0
- Due to the chain rule and the multiplication by O, all the weights connected to that neuron will have O gradient and will not change

Dying ReLU Neurons

- ReLU neurons can become inactive for some input (produce 0)
- The gradient in this case is 0
- If the neuron is inactive for all inputs in the training set, it will never change state
- The neuron becomes stuck in a perpetually inactive state and "dies"
- In some cases, large numbers of neurons in a network can become stuck in dead states, effectively decreasing the model capacity
- This problem typically arises when the learning rate is set too high

Discussion

- Does a dead neuron during training always stay dead during inference?
- How can we identify this problem?
- Can lowering the learning rate help?
- Can adding more data help?
- How can we solve the problem?

- Gradient not vanishing
- Efficient computation
- Sparse activation
- Non-zero centered
- Can potentially blow up as it is unbounded

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than
 sigmoid/tanh in practice! (e.g. 6x)

 $f(ak) = \frac{1}{2} (0.01x, x)$

If (alk) Reliation (0.01x, x)

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than
 sigmoid/tanh in practice! (e.g. 6x)

Backprop into α (parameter)

[Clevert et al., 2015]

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha \ (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$
 - Computation requires exp()

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

Gaussian Error Linear Unit

- Introduced in 2018
- Used in GPT-3, BERT and other SOTA NLP models
- It combines dropout (zeroing out neurons randomly for a sparse network), zone out (maintain previous value), and ReLU
- It weights inputs by percentile rather than gates, leading to a smoother version of ReLU
- The derivative is highly curved

$$f(x) = x \phi(x)$$

$$f'(x) = \phi(x) + x \phi(x)$$

Activation Functions – Best Practices

- Use ReLU.
 - Check for dead neurons

 Be careful with your learning rates
- Try out Leaky ReLU / ELU / GELU
- Avoid sigmoid
- When fine tuning, use the activation function used by the original trainers of the pre-trained network

In PyTorch

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
   def forward(self, x):
        x = self.pool (F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```

In PyTorch

Non-linear Activations (weighted sum, nonlinearity)

nn.ELU	Applies the element-wise function:
nn.Hardshrink	Applies the hard shrinkage function element-wise:
nn.Hardsigmoid	Applies the element-wise function:
nn.Hardtanh	Applies the HardTanh function element- wise
nn.Hardswish	Applies the hardswish function, element-wise, as described in the paper:
nn.LeakyReLU	Applies the element-wise function:
nn.LogSigmoid	Applies the element-wise function:
nn.MultiheadAttention	Allows the model to jointly attend to information from different representation subspaces.
nn . PReLU	Applies the element-wise function:
nn . ReLU	Applies the rectified linear unit function element-wise:

nn.ReLU6	Applies the element-wise function:
nn.RReLU	Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper:
nn.SELU	Applied element-wise, as:
nn.CELU	Applies the element-wise function:
nn.GELU	Applies the Gaussian Error Linear Units function:
nn.Sigmoid	Applies the element-wise function:
nn.SiLU	Applies the silu function, element-wise.
nn.Softplus	Applies the element-wise function:
nn.Softshrink	Applies the soft shrinkage function elementwise:
nn.Softsign	Applies the element-wise function:
nn.Tanh	Applies the element-wise function:

nn.Threshold
Thresholds each element of the input
Tensor.

Non-linear Activations (other)

nn.Softmin	Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0, 1] and sum to 1.
nn.Softmax	Applies the Softmax function to an n- dimensional input Tensor rescaling them so that the elements of the n- dimensional output Tensor lie in the range [0,1] and sum to 1.
nn.Softmax2d	Applies SoftMax over features to each spatial location.
nn.LogSoftmax	Applies the $\log(\operatorname{Softmax}(x))$ function to an n-dimensional input Tensor.
nn.AdaptiveLogSoftmaxWithLoss	Efficient softmax approximation as described in Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou.

Suggested Reading

- https://cs231n.github.io/neural-networks-1/#intro
- https://machinelearningknowledge.ai/activation-functions-neural-network/
 ork/

or

- https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
- https://medium.com/@snaily16/what-why-and-which-activation-function-b2bf748c0441

Recommended Resources

- https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
- https://www.youtube.com/watch?v=-7scQpJT7uo
- https://atcold.github.io/pytorch-Deep-Learning/en/week11/11-1/
- https://arxiv.org/abs/2005.00817

Home Experiments

- Change activation function to one of these:
 https://pytorch.org/docs/stable/nn.html#non-linear-activations-weight
 ed-sum-nonlinearity
- Implement a custom non-linear activation function based on this guide

https://towardsdatascience.com/extending-pytorch-with-custom-activation-functions-2d8b065ef2fa