

Methods in Spatial Analysis PS | LV.Nr. 856.141

Paris-Lodron University Salzburg Department of Geoinformatics – Z_GIS

Johannes Scholz

TU Graz, Institute of Geodesy Research Group Geoinformation

johannes.scholz@tugraz.at | johannes.scholz@plus.ac.at

ifg.tugraz.at | | www.johannesscholz.net

@Joe_GISc @Joe_GISc@mastodon.online

Analyzing Surfaces

Introduction

- Spatial analysis techniques to determine (estimate) the following terrain parameter:
 - Elevation (mostly the base dataset)
 - Slope
 - Aspect
 - Profile Curvature
 - Plan Curvature

Basic Info

Vertical Datums:

Height measurements

Basic Info (DSM – DTM)

Different types of Digital Elevation Models (DEMs)

Basic Info

Slope

Calculation:

Slope as percent =
$$\frac{\text{rise}}{\text{run}} *100$$

= $A/B * 100$

Slope as degrees =
$$\phi$$

Slope Calculation (Zevenbergen & Thorne 1987)

Four nearest cells elevation values

42	45	47
40	44	49
44	48	52

← C = 10 **→**

kernel for dZ/dx

Z_1	Z ₂	Z ₃
0	0	0
Z_4	z_0	Z ₅
-1	0	1
Z ₆	Z ₇	Z ₈
0	0	0

 $dZ/dx = (Z_5 - Z_4)/2C$ dZ/dx = (49 - 40)/20 = 0.45

kernel for dZ/dy

Z_1	Z ₂	Z ₃
0	1	0
0	Z ₀ 0	Z ₅ 0
Z ₆	z ₇ -1	Z ₈

 $dZ/dy = (Z_2 - Z_1)/2C$ dZ/dy = (45 - 48)/20 = -0.15

slope = atan
$$[(0.45)^2 + (-0.15)^2]^{0.5}$$
 = 25.3°

Slope Calculation (Horn 1981)

3rd-order finite difference

elevation values

42	45	47
40	44	49
44	48	52

kernel for dZ/dx

Z_1	Z_2	Z ₃
-1	0	1
Z_4	z_0	Z ₅
-2	0	2
Z ₆	Z ₇	Z ₈
-1	0	1

$$dZ/dx = [(Z_3 - Z_1) + 2(Z_5 - Z_4) + (Z_8 - Z_6)]/8C$$

kernel for dZ/dy

_			
Z	1	Z_2	Z_3
	1	2	1
Z	4	Z ₀	Z ₅
	0	0	0
Z	-6	Z ₇	Z ₈
	-1	-2	-1

$$dZ/dx = [(Z_1 - Z_6) + 2(Z_2 - Z_7) + (Z_3 - Z_8)]/8C$$

slope = atan
$$[(0.39)^2 + (-0.16)^2]^{0.5} = 22.9^\circ$$

← C = 10 **→**

Aspect

- Direction of max. slope
 - 0° >> N
 - 90° >> 0
 - 180° >> S
 - 270° >> W

Important for hydrological analyses!

Aspect

The following images show an input elevation dataset and the output aspect raster.

Profile & Plan Curvature

- Characterisation of the land forms
- Used to estimate soil wetness, rain runoff, vegetation conditions, ...
- Profile Curvature: parallel to the direction of the maximum slope
- Plan Curvature: perpendicular to the direction of the maximum slope

Profile & Plan Curvature

z ₁	Z ₂	Z ₃
Z ₄	z ₀	Z ₅
Z ₆	Z ₇	Z ₈
		← C →

plan curvature
$$\frac{2 (DH^2 + EG^2 - FGH)}{G^2 + H^2}$$
profile curvature
$$\frac{-2 (DG^2 + EH^2 + FGH)}{G^2 + H^2}$$

Profile Curvature

- A negative value (figure A) indicates that the surface is upwardly convex at that cell.
- A positive profile (figure B) indicates that the surface is upwardly concave at that cell.
- A value of zero indicates that the surface is linear (figure C)
- Profile curvature affects the acceleration or deceleration of flow across the surface.

Plan Curvature

- A positive value (figure A) indicates the surface is sidewardly convex at that cell.
- A negative plan (figure B) indicates the surface is sidewardly concave at that cell.
- A value of zero indicates the surface is linear (figure C)
- Profile curvature relates to the convergence and divergence of flow across a surface.

Combinations

- The slope affects the overall rate of movement downslope.
- Aspect defines the direction of flow.
- The profile curvature affects the acceleration and deceleration of flow and, therefore, influences erosion and deposition.
- The plan curvature influences convergence and divergence of flow.
- Considering both plan and profile curvature together allows us to understand more accurately the flow across a surface.

Methods in Spatial Analysis PS | LV.Nr. 856.141

Paris-Lodron University Salzburg Department of Geoinformatics – Z_GIS

Johannes Scholz

TU Graz, Institute of Geodesy Research Group Geoinformation

johannes.scholz@tugraz.at | johannes.scholz@plus.ac.at

ifg.tugraz.at | | www.johannesscholz.net

@Joe_GISc @Joe_GISc@mastodon.online

