Inferência Estatística Paramétrica II

Estimação Pontual

Camila Borelli Zeller

Primeiras Idéias

A inferência estatística tem por objetivo fazer generalizações sobre uma população (obter informações a respeito de algumas características de interesse da população), com base nos dados de uma amostra.

Dois problemas básicos nesse processo são:

- (a) estimação de **parâmetros**.
- (b) teste de hipóteses sobre parâmetros.

$Par \hat{a}metros$

- Medidas usadas para descrever características da população.
- Usualmente representados por letras gregas, tais como θ , μ , σ , entre outras.
- Quantidades da população, em geral desconhecidas e sobre as quais temos interesse.

Inicialmente, iremos discutir as idéias básicas sobre estimação de parâmetros.

Problema de Estimação de Parâmetros

Assuma que alguma característica dos elementos de uma população pode ser representada por uma variável aleatória X cuja densidade (ou função de probabilidade) é $f(\cdot|\boldsymbol{\theta})$, onde a forma da densidade é assumida ser conhecida exceto pelo fato que ela contém um (ou mais) parâmetro(s) desconhecido(s), digamos $\boldsymbol{\theta}$.

• Note que θ pode ser um vetor, ou seja, $\theta = (\theta_1, \dots, \theta_k)$.

Nesta situação, quando a amostragem é feita a partir de uma população descrita por uma fdp ou fp $f(\cdot|\boldsymbol{\theta})$, o conhecimento de $\boldsymbol{\theta}$ gera o da população inteira.

Problema de Estimação de Parâmetros

• Desse modo, é natural procurar um método para encontrar um bom estimador de θ .

• Também pode ser o caso de que alguma função de θ , digamos $\tau(\theta)$, seja de interesse.

Problema de Estimação de Parâmetros

A estimação do parâmetro $\boldsymbol{\theta}$ pode ser feita de dois modos:

- Estimação pontual.
- Estimação por intervalo (Intervalos de Confiança).

Estimação Pontual

Dado um parâmetro de interesse, como a média da população μ ou proporção da população p, o objetivo da estimação pontual é usar uma amostra para calcular um número que represente, de certo modo, uma boa previsão do valor real do parâmetro.

• O número resultante é chamado estimativa pontual.

Definição: Estimadores e Estimativas

À combinação dos elementos da amostra, construída com a finalidade de representar, ou estimar, um parâmetro de interesse na população, denominamos **estimador**.

• Notação: $\widehat{\boldsymbol{\theta}}$.

Aos valores numéricos assumidos pelos estimadores (valores observados dos estimadores) denominamos estimativas pontuais ou simplesmente estimativas.

Comentários: Estimadores

- Um estimador é o que chamamos antes de estatística, porém associando-o a um parâmetro.
- Um estimador é uma função das variáveis aleatórias constituintes da amostra, isto é, $\widehat{\theta} = f(X_1, \dots, X_n)$.
- Um estimador é uma variável aleatória e a sua distribuição (distribuições amostrais) formará a base das argumentações utilizadas na extrapolação da informação da amostra para os parâmetros da população.

Comentários: Estimadores

Em alguns casos, é uma tarefa fácil decidir como encontrar a estimativa de um parâmetro e, geralmente a intuição, por si só, pode nos levar a estimadores muito bons. Por exemplo a estimação de um parâmetro com seu análogo amostral, em geral, é razoável. Em particular, a média amostral é uma boa estimativa para a média da população.

Na prática, nem sempre temos sugestões para um estimador, precisamos de um meio mais metodológico para estimação de parâmetros.

$Quest\~oes$

• Como encontrar estimadores? - Métodos para encontrar estimadores.

• Como selecionar o "melhor" estimador? - Avaliação dos estimadores.

Métodos para se encontrar Estimadores

Objetivo: O problema de estimação é, então, determinar uma função $\widehat{\boldsymbol{\theta}} = f(X_1, \dots, X_n)$ que seja "próxima" de $\boldsymbol{\theta}$.

Métodos para se encontrar Estimadores

- Trataremos de métodos para obter estimadores.
 - Estimadores de momentos.
 - Estimadores de máxima verossimilhança.
 - Estimadores de mínimos quadrados (Inferência I e Análise de Regressão).