General Description

The LTA8151, LTA8152 and LTA8154 (LTA815x) are a family of zero-drift, micro-power, rail-to-rail output operational amplifiers capable of operating on wide supplies ranging from +4.5 V (± 2.25 V) to +48 V (± 2.4 V). The LTA815x op-amps use Linearin's proprietary auto-zeroing techniques to offer outstanding dc precision and ac performance, including low offset voltage (30 μ V maximum), near zero-drift over time and temperature, 1 MHz bandwidth, and 0.41 μ V_{pp} input voltage noise at 0.1 Hz to 10 Hz. These high-precision, low-quiescent-current op-amps offer high input impedance and rail-to-rail output swing within 10 mV of the rails. The input common-mode range includes the negative rail.

The single version LTA8151 device is available in micro-size MSOP-8L, SOT-23-5L, and SOIC-8L packages. The dual version LTA8152 device is offered in MSOP-8L and SOIC-8L packages. The quad version LTA8154 device is offered in SOIC-14L and TSSOP-14L packages. All versions are specified for operation from -40° C to $+125^{\circ}$ C.

Features and Benefits

- High DC Precision
 - $-~\pm30~\mu V$ (maximum) V_{0S} with a Drift of $\pm50~nV/^{\circ}C$
 - CMRR: 130 dBPSRR: 132 dBA_{VOL}: 136 dB
 - V_{n} : 0.41 μV_{PP} (typical, 0.1 to 10 Hz)
- Wide Supply: ± 2.25 V to ± 24 V, 4.5 V to 48 V
- Gain Bandwidth: 1 MHzSlew Rate: 0.56 V/us
- Low Quiescent Current: 142 μA per amplifier
- Low Bias Current: ±150 pA
 Rail-to-Rail Output Operation

Applications

- High-Side and Low-Side Current Sensing
- Transducer Amplifiers
- Precision Active Filters
- Programmable Logic Controllers
- Test and Measurement Equipment
- Multiplexed Data-Acquisition Systems
- Tracking Amplifier in Power Modules
- Power Delivery: UPS, Server, and Merchant Network Power

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from V_{S-} to V_{S+} – 1.5 V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as -IN.
+V _S	Positive power supply. The voltage is from 4.5 V to 48 V. Split supplies are possible as long as the voltage between V_{S+} and V_{S-} is from 4.5 V to 48 V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 4.5 V to 48 V.
OUT	Amplifier output.
NC	No connection

Ordering Information (1)

•				
Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA8151XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	Z51
LTA8151XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	ZHV51
LTA8151XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	ZHV51
LTA8152XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	ZHV52
LTA8152XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	ZHV52
LTA8152XF8/R6	DFN3x3-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	ZHV52
LTA8154XS14/R5	SOIC-14L	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	ZHV54
LTA8154XT14/R6	TSS0P-14L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	ZHV54

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V_{S+} to V_{S-}	60 V
Signal Input Terminals: Voltage, Current	$-V_S$ – 0.3 V to +V $_S$ + 0.3 V, ±10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	–65 to +150 ℃
Junction Temperature, T _J	150 °C
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	Item	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 ⁽¹⁾	2 000	V
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	2 000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

Electrical Characteristics

 V_S = 4.5 V to 48 V, T_A = +25 °C, V_{CM} = V_S /2, V_0 = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFFSET VOLTAGE						,	
Input offset voltage	V _{os}			±10	±30	μV	
Offset voltage drift	V _{os} TC	T _A = -40 to +125 °C		±50		nV/°C	
Power supply	PSRR	$V_{\rm S}$ = 4.5 to 48 V, $V_{\rm CM}$ = 0.1 V				- dB	
rejection ratio	FJININ	T_A = -40 to +125 °C					
INPUT BIAS CURRENT							
				150		-	
Input bias current	I _B	T _A = −40 to +85 °C				pΑ	
		T _A = −40 to +125 °C		3000			
Input offset current	I _{os}			300		pΑ	
NOISE							
Input voltage noise	V _n	f = 0.1 to 10 Hz		0.41		μV_{P-P}	
Input voltage noise	e _n	f = 10 Hz		22		nV/√Hz	
density		f = 1 kHz		22		, 1112	
Input current noise density	l _n	f = 1 kHz		10		fA/√Hz	
INPUT VOLTAGE							
Common-mode voltage range	$V_{\rm CM}$		-V _s		+V _S -1.5	٧	
		$V_{S-} < V_{CM} < V_{S+} - 1.5 V$		130			
Common-mode	CMRR	V _{S-} +0.5 < V _{CM} < V _{S+} -1.5 V		139		dB	
rejection ratio		V_{S-} +0.5 < V_{CM} < V_{S+} -1.5 V, V_{S} = ± 20 V, T_{A} = -40 to +125 °C		122		· ·-	
INPUT IMPEDANCE							
Input capacitance	C	Differential		3		- pF	
	C _{IN}	Common mode	Common mode		4.5		
OPEN-LOOP GAIN							
Open-loop voltage		$V_{S-}+0.5 < V_0 < V_{S+}-0.5 V$		136			
gain	A _{VOL}	$V_{S-}+0.5 < V_0 < V_{S+}-0.5 V,$ $T_A = -40 \text{ to } +125 ^{\circ}\text{C}$				dB	
FREQUENCY RESPONS	SE .						
Gain bandwidth product	GBW			1		MHz	
Slew rate SR		G = +1		0.56		V/µs	
Total harmonic distortion + noise	THD+N	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.0002		%	
Sottling time		To 0.1%, V _S = 40 V, G = +1, 5 V step		22		- μs	
Settling time	t _S	To 0.01%, V _S = 40 V, G = +1, 5 V step			30		
Overload recovery time	t _{OR}	$V_{IN} \times Gain > V_{S}$		2		μs	

Electrical Characteristics (continued)

 V_S = 4.5 V to 48 V, T_A = +25 °C, V_{CM} = V_S /2, V_0 = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
ОИТРИТ	· ·	•	<u> </u>				
High output voltage swing	V	R _L = 10 kΩ		+V _S -100		m\/	
High output voltage swing	V _{oH}	R _L = 2 kΩ		+V _S -270		– mV	
Low output voltage cwing	V	R_L = 10 k Ω		-V _S +60		– mV	
Low output voltage swing	V _{OL}	R _L = 2 kΩ		-V _S +250		- IIIV	
Short-circuit current	I _{sc}			±45		mA	
POWER SUPPLY							
Operating supply voltage	V_{S}	T_A = -40 to +125 °C	4.5		48	V	
Quiescent current (per amplifier)	1	V _S = 5 V		142			
duescent current (per ampuner)	l l _a	V _S = 36 V		160		— μΑ	
THERMAL CHARACTERISTICS							
Operating temperature range	T_A		-40		+125	°C	
		S0T23-5L		190			
		MS0P-8L		201			
Package Thermal Resistance	θ_{JA}	SOIC-8L		125		°C/W	
		TSS0P-14L		112		_	
		SOIC-14L		115			

Typical Performance Characteristics

At T $_{\rm A}$ = +25 °C, V $_{\rm CM}$ = V $_{\rm S}$ /2, and R $_{\rm L}$ = 10 k Ω connected to V $_{\rm S}$ /2, unless otherwise noted.

Quiescent Current as a function of Supply Voltage

Quiescent Current as a function of Temperature

Output Voltage Swing as a function of Output Current (Sourcing, $V_S = 40 \text{ V}$)

Output Voltage Swing as a function of Output Current (Sinking, $V_S = 40 \text{ V}$)

Large-Signal Step Response(Failing)

Small-Signal Step Response

Tape and Reel Information

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

* All dimensions are nominal

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8151XT5/R6	S0T23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3

Package Outlines

DIMENSIONS, SOT23-5L

	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.039	0.047	
b	0.33	0.41	0.013	0.016	
С	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
E	2.60	3.00	0.102	0.118	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.60 REF		0.024	REF	
L1	0.30	0.60	0.012	0.024	
θ	0°	8°	0°	8°	

RECOMMENDED SOLDERING FOOTPRINT, SOT23-5L

Package Outlines (continued)

DIMENSIONS, SOIC-8L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L

Package Outlines (continued)

DIMENSIONS, MSOP-8L

RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L

Package Outlines (continued)

DIMENSIONS, DFN3x3-8L

Package Outlines (continued)

DIMENSIONS, SOIC-14L

	Dimer	nsions	Dimensions			
Symbol	In Milli	meters	In Inches			
	Min	Max	Min	Max		
Α	1.450	1.850	0.057	0.073		
A1	0.100	0.300	0.004	0.012		
A2	1.350	1.550	0.053	0.061		
A3	0.550	0.750	0.022	0.030		
b	0.406	TYP.	0.016 TYP.			
С	0.203	TYP.	0.008 TYP.			
D	8.630	8.830	0.340	0.348		
E	5.840	6.240	0.230	0.246		
E1	3.850	4.050	0.152	0.159		
е	1.270 TYP.		0.050 TYP.			
L1	1.040 REF.		0.041	REF.		
L	0.350	0.750	0.014	0.030		
θ	2°	8°	2°	8°		

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

Package Outlines (continued)

DIMENSIONS, TSSOP-14L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

