Preparação da biblioteca de sequenciação com o kit de preparação de DNA da Illumina

Para utilização com o kit de preparação de ADN da Illumina (antigo kit Nextera Flex).

Nota: Centrifugue sempre as placas e os tubos antes de os abrir para minimizar a possibilidade de contaminação.

Nota: Para evitar a contaminação cruzada, mude as pontas entre cada amostra quando adicionar ou transferir amostras ou misturas principais de reagentes.

Nota: Se estiver a utilizar tubos de 8 tiras no termociclador, é importante incluir pelo menos 3 tiras de tubos no total para equilibrar a pressão da tampa (os tubos " EQUILIBRIO" vazios não têm problemas).

Nota: Ao preparar reacções de PCR, é importante trabalhar sempre com gelo (ou blocos frios) para evitar que os componentes reactivos ao calor sejam activados prematuramente. Além disso, tenha em conta o tempo que a tampa do termociclador demora a atingir a temperatura de reação e aqueça previamente o termociclador em conformidade.

Nota: Deixe sempre que as esferas SPRI atinjam a temperatura ambiente durante 30 minutos antes de as utilizar.

Materiais

Equipamento:

- → Pipeta P20 (pipeta multicanal opcional)
- → Pipeta P200 (pipeta multicanal opcional)
- → Termociclador
- → Centrifugadora de tubos
- → Centrífuga de placas
- \rightarrow Vortex
- → Íman para placas de 96 poços
- → Selador de placas
- → Temporizador
- → Fluorómetro QuBit
- → Bioanalisador

Consumíveis:

- → Placas de PCR de 96 pocos
- → Placa de armazenamento profunda de polipropileno de 0,8 ml com 96 cavidades (placa midi) (2)
- → Selo adesivo para placas Microseal B (utilizado para cobrir as amostras durante as reacções)
- → Selo de folha de alumínio micro-vedante F (utilizado para armazenamento a longo prazo)
- → Tubos de microcentrifugação de 1,5 ml
- → Tubos de 8 tiras com tampa
- → Pontas de pipeta: P20, P200
- → Equipamento adequado de EPI e de biossegurança

Reagentes:

- → Kit de preparação de DNA Illumina
- → Índices IDT da Illumina UD
- → Água sem Nuclease
- \rightarrow Etanol

Preparação do Pré-Protocolo

Preparação da placa de índice

1. Determine o conjunto de índices a ser utilizado. Os índices IDT para Illumina UD podem ser utilizados em qualquer plataforma de sequenciação da Illumina, enquanto os índices Illumina Nextera CD só devem ser utilizados nas plataformas MiSeq e NextSeq (para obter mais informações, consulte este link).

Nota: Tenha em atenção que devem ser utilizados diferentes cavidades da mesma placa de índice para amostras num lote de sequenciação (ou seja, as cavidades não podem ser misturadas e combinadas entre placas de índice).

Nota: Cada cavidade de uma placa de índice só pode ser utilizada uma vez (numa única amostra, num único lote). Se não tiver utilizado todos as cavidades de uma placa de índice, pode voltar a congelar a placa e utilizar as cavidades não abertas num lote de sequenciação subsequente.

2. Utilizando a tabela apropriada no Apêndice A, anote o(s) índice(s) utilizado(s) para cada amostra (para índices UD, anote o índice selecionado; para índices CD, anote ambos os valores da célula apropriada).
Esta é uma etapa crucial do processo - em caso de esquecimento de anotar os índices utilizados, os dados de sequenciação não podem ser processados no pipeline bioinformático.

Marcação do DNA genómico

Esta etapa utiliza os transpossomas ligados a esferas para marcar o DNA, que é um processo que fragmenta e marca o DNA com sequências adaptadoras.

Equipamento:

- → Pipeta P20 (pipeta multicanal opcional)
- → Pipeta P200
- → Termociclador
- → Centrifugador de tubos
- \rightarrow Vortex

Consumíveis:

- → Placas de PCR de 96 cavidades
- → Selo adesivo para placas Microvedante B
- → Tubos de microcentrifugação de 1,5 ml
- → Tira de 8 tubos
- → Pontas de pipeta: P20, P200

Reagentes:

- → Transpossomas ligados a esferas (BLT) do kit de preparação de DNA da Illumina
- → Tampão de marcação 1 (TB1) do kit de preparação de DNA da Illumina
- → Água sem nuclease

Protocolo:

- 1. Coloque os transpossomas ligados a esferas (BLT) à temperatura ambiente. Agitar em vortex para misturar. Não centrifugar antes de pipetar. Não utilizar BLT que tenha sido armazenado a temperaturas inferiores a 2C.
- 2. Colocar o Tampão de Marcação (TB1) à temperatura ambiente. Agitar no vortex para misturar.
- 3. Preparar 20-23* amostras de DNA mais 1 controlo negativo de água sem nuclease por biblioteca. Adicionar 2-30μL de DNA a cada cavidade de uma placa de PCR de 96 cavidades, de modo a que a quantidade total de entrada para cada amostra seja de 10-24ng**. Assegurar que é adicionada a mesma quantidade de DNA para cada amostra.

Nota: O número de amostras de DNA a multiplexar depende do comprimento do genoma, da cobertura pretendida e da tecnologia de sequenciação a utilizar. Esta recomendação é para genomas bacterianos de ~4M, cobertura de ~30x e uma execução MiSeq com o kit de reagentes V2.

Nota: O DNA de entrada pode ser tão pequeno como 1ng e tão grande como 500ng. A quantidade de entrada deve ser registada para cada amostra e o número de ciclos de PCR em Amplificar DNA marcado deve ser ajustado em conformidade. Consulte o Manual da Illumina DNA Referência da Preparação para efetuar ajustes caso o DNA de entrada for <10ng ou >24ng.

- 4. Se o volume de DNA de qualquer amostra for $<30\mu$ L, adicione água sem nuclease à amostra de DNA para aumentar o volume total para 30μ L.
- 5. Agitar vigorosamente o BLT (tampa amarela) durante 10 segundos para o ressuspender. Repetir se necessário.
- 6. Preparar a seguinte reação por amostra:

Componente	Volume
BLT	10 μL
TB1	10 μL
DNA	30 μL
Volume Total	50 μL

Note: BLT e TB1 podem ser combinados antecipadamente numa mistura principal. Agitar bem a mistura principal de marcação no vortex para a ressuspender e, utilizando uma nova ponta de pipeta para cada amostra, adicionar 20 μl de mistura principal a cada cavidade da placa que contenha uma amostra.

- 7. Pipetar cada amostra 10 vezes para a ressuspender. Utilizar pontas novas para cada amostra.
- 8. Selar a placa com Microvedante B ou outro vedante opticamente transparente.
- 9. Efetuar os seguintes ensaios num termociclador:

Temperatura	Timpo
55°C	15 min
10°C	8

Nota: Selecionar a opção de tampa de pré-aquecimento e definir para 100° C. Definir o volume de reação para 50μ L.

Limpeza pós-tagmentação

Este passo lava o DNA marcado com adaptador no BLT antes da amplificação por PCR.

Equipamento:

- → Íman para placas de 96 cavidades
- → Pipeta P20 (pipeta multicanal opcional)
- → Pipeta P200 (pipeta multicanal opcional)
- \rightarrow Termociclador
- → Centrifugadora de tubos
- \rightarrow Vortex

Consumíveis:

- → Selo adesivo de placa Microvedante B
- → Pontas de pipeta: P20, P200

Reagentes:

- → Tampão de paragem de marcadores (TSB) do kit de preparação de DNA da Illumina
- → Tampão de lavagem do marcador (TWB) do kit de preparação do DNA Illumina

Protocolo:

- 1. Se forem observados precipitados no Tampão de Paragem do Marcador (TSB), aquecer a 37°C durante 10 minutos e, em seguida, agitar em vórtice até os precipitados se dissolverem. Utilizar à temperatura ambiente.
- 2. Adicionar 10 μL de TSB a cada cavidade de amostra da reação de marcação.
- 3. Pipetar lentamente cada cavidade 10 vezes para ressuspender as esferas.
- 4. Selar a placa com Microvedante B.
- 5. Executar o seguinte num termociclador:

Temperatura	Timpo
37°C	15 min
10°C	∞

Nota: Selecionar a opção de tampa de pré-aquecimento e definir para 100°C. Definir o volume de reação para 60 μL.

- 6. Colocar a placa no suporte magnético e esperar até o líquido ficar transparente (~3 minutos).
- 7. Retirar e deitar fora o sobrenadante, tendo o cuidado de não romper as esferas.

- 8. Retirar a placa de amostras do suporte magnético e utilizar uma técnica de pipetagem deliberadamente lenta para adicionar 100 μl de TWB (à temperatura ambiente) diretamente sobre as esferas. Uma técnica de pipetagem deliberadamente lenta minimiza o potencial de formação de espuma da TWB para evitar uma aspiração incorrecta do volume e uma mistura incompleta.
- 9. Pipetar lentamente até as esferas estarem completamente ressuspensas.
- 10. Colocar a placa no suporte magnético e aguardar até que o líquido figue transparente (~3 minutos).
- 11. Utilizando uma pipeta multicanal, retire e deite fora o sobrenadante.
- 12. Repetir os passos 8-11 para um total de duas lavagens.
- 13. Retirar a placa do suporte magnético e utilizar uma técnica de pipetagem deliberadamente lenta para adicionar 100 μl de TWB diretamente sobre as esferas.
- 14. Pipetar cada cavidade lentamente para ressuspender as esferas.
- 15. Selar a placa e colocar no suporte magnético até o líquido ficar transparente (~3 minutos). Manter no suporte magnético até ao Passo 4 da secção Amplificar DNA Marcado abaixo. O TWB permanece nas cavidades para evitar a secagem excessiva das esferas.

DNA Amplificar o DNA marcado

Esta etapa amplifica o DNA marcado utilizando um programa de PCR de ciclo limitado. A etapa de PCR adiciona adaptadores e sequências necessárias para a geração de agrupamentos de sequências.

Equipamento:

- → Íman para placas de 96 cavidades
- → Pipeta P20 (pipeta multicanal opcional)
- → Pipeta P200 (pipeta multicanal opcional)
- → Termociclador
- → Centrifugadora de tubos
- → Centrífuga de placas
- \rightarrow Vortex

Consumíveis:

- → Selo adesivo de placa Microvedante B
- → Tubos de microcentrifugação de 1,5mL
- → Pontas de pipeta: P20, P200

Reagentes:

- → Mistura de PCR melhorada (EPM) do kit de preparação de DNA da Illumina
- → Adaptadores de índice (tubos ou placas)
- → Água sem nuclease

Protocolo:

- 1. Descongelar o EPM em gelo. Inverter para misturar em seguida centrifugar rapidamente.
- 2. Descongele os Adaptadores de Índice à temperatura ambiente. Centrifugar imediatamente antes de utilizar.
- 3. Preparar a seguinte mistura principal por amostra:

Componente	Volume
EPM	20 μL
Água sem nuclease	20 μL
Volume Total	40 μL

Note: Agitar rapidamente a mistura principal no vortex e centrifugar a 280 x g durante 10 segundos.

- 4. Com a placa de DNA marcado no suporte magnético, utilizar uma pipeta de 200 μL para remover e eliminar o sobrenadante J (a espuma que permanece nas paredes das cavidades não afecta negativamente a biblioteca).
- 5. Retirar a placa do suporte magnético e adicionar imediatamente 40 μl de mistura principal diretamente às esferas. Utilizar uma ponta de pipeta separada para cada cavidade de amostra.
- 6. Pipetar imediatamente para misturar até as esferas estarem completamente ressuspensas. Selar a placa de amostras e centrifugar a 280 x g durante 3 segundos.
- 7. Preparar a placa de índice selecionada centrifugando a placa de índice selecionada a 1000 x g durante 1 minuto para afastar o líquido do selo.
- 8. Adicionar 10 μl do adaptador de índice adequado a cada amostra, tendo o máximo cuidado para evitar a contaminação. Mudar as pontas das pipetas entre cada adição e certificar-se de que anotou o(s) índice(s) adicionado(s) a cada amostra.
- 9. Utilizando uma pipeta regulada para 40 μL, pipetar 10 vezes para misturar. Em alternativa, selar a placa e utilizar um agitador de placas a 1600 rpm durante 1 minuto.
- 10. Selar a placa com Microvedante B e centrifugar a 280 x g durante 30 segundos.
- 11. Executar o seguinte num termociclador:

Tempe	ratura	Timpo
68°C		3 min
98°C		3 min
98°C		45 segundos
62°C		30 segundos
68°C		2 min
	Repeat steps 3, 4 & 5 for a total of	of 8 cycles
68°C		1 min
10°C		∞

Nota: Selecionar a opção de tampa de pré-aquecimento e definir para 100°C. Definir o volume de reação para 50 μL. Aguardar até que a máquina atinja a temperatura antes de adicionar as amostras.

Nota: O número de ciclos pressupõe a entrada de 10-24 ng de DNA. Consultar o Guia de Referência de Preparação de ADN da Illumina para obter recomendações de ciclos para diferentes valores de entrada.

12. Nesta altura, o DNA pode ser armazenado a 2-8°C durante um máximo de 3 dias

Limpeza das bibliotecas

Esta etapa utiliza o procedimento de purificação de esferas de dupla face para purificar as bibliotecas amplificadas

Equipamento:

- → Suporte de placas magnéticas
- → Pipeta P20 (pipeta multicanal opcional)
- → Pipeta P200 (pipeta multicanal opcional)
- → Termociclador
- → Centrifugadora de tubos
- → Centrífuga de placas
- \rightarrow Vortex

Consumíveis:

- → Placa de armazenamento profunda de 96 cavidades de polipropileno de 0,8 mL (placa midi) (2)
- → Placa de PCR de 96 cavidades
- → Selo adesivo Microvedante B para placa
- → Microvedante F vedante em folha
- → Tubos de microcentrifugação de 1,5 ml
- → Pontas de pipeta: P20, P200

Reagentes:

- → Grânulos de purificação de amostras (SPB) do kit de preparação de DNA da Illumina
- → Tampão de ressuspensão (RSB) do kit de preparação de DNA Illumina
- → Etanol a 80% preparado de fresco
- → Água sem nuclease

Protocolo:

- 1. Permitir que a amostra de esferas de purificação atinja a temperatura ambiente durante 30 minutos antes da utilização. Agitar os grânulos no vortex antes de cada utilização e pipetar lentamente devido à viscosidade da solução.
- 2. Descongelar o RSB e levar à temperatura ambiente. Agitar no vortex para misturar.
- 3. Centrifugar a 280 × g durante 1 minuto para recolher o conteúdo no fundo do recipiente.

Protocolo de sequenciação Illumina

- 4. Colocar a placa no suporte magnético e esperar até o líquido ficar transparente (~5 minutos).
- 5. Transferir 45 μ l de sobrenadante de cada cavidade da placa PCR para a cavidade correspondente de uma nova placa midi.
- 6. Agitar no vortex e inverter a SPB várias vezes para a ressuspender.
- 7. Adicionar 40 µl de água sem nuclease a cada cavidade contendo o sobrenadante.
- 8. Adicionar 45 µl de SPB a cada alvéolo que contenha o sobrenadante.
- 9. Pipetar cada alvéolo 10 vezes para misturar. Em alternativa, selar a placa e utilizar um agitador de placas a 1600 rpm durante 1 minuto.
- 10. Selar a placa e incubar à temperatura ambiente durante 5 minutos.
- 11. Colocar no suporte magnético e esperar até o líquido ficar transparente (~5 minutos).
- 12. Durante a incubação, agitar cuidadosamente no vórtex o SPB (tubo de estoque não diluído) e, em seguida, adicionar 15 µl a cada cavidade de uma nova placa midi.
- 13. Transferir 125 μ l de sobrenadante de cada cavidade da primeira placa para a cavidade correspondente da segunda placa (contendo 15 μ l de SPB não diluído).
- 14. Pipetar cada alvéolo da segunda placa 10 vezes para misturar. Em alternativa, selar a placa e utilizar um agitador de placas a 1600 rpm durante 1 minuto.
- 15. Deitar fora a primeira placa.
- 16. Incubar a placa midi selada à temperatura ambiente durante 5 minutos.
- 17. Colocar no suporte magnético e esperar até que o líquido fique transparente (~5 minutos).
- 18. Sem perturbar as esferas, remover e eliminar o sobrenadante.
- 19. Com a placa no suporte magnético, adicionar 200 μl de EtOH 80% fresco sem misturar.
- 20. Incubar durante 30 segundos.
- 21. Sem perturbar as esferas, remover e descartar o sobrenadante.
- 22. Repetir os passos 19-21 para um total de duas lavagens.
- 23. Utilize uma pipeta de 20 µl para remover e eliminar o EtOH residual.
- 24. Secar ao ar no suporte magnético durante 5 minutos. Evitar a secagem excessiva das esferas.
- 25. Retire do suporte magnético.
- 26. Adicionar 32 μl de RSB às esferas.

- 27. Pipete para ressuspender.
- 28. Incubar à temperatura ambiente durante 2 minutos.
- 29. Colocar a placa no suporte magnético e esperar até o líquido ficar transparente (~2 minutos).
- 30. Transferir 30 µl de sobrenadante para uma nova placa PCR de 96 cavidades.
- 31. Nesta altura, as bibliotecas podem ser armazenadas congeladas em segurança (-25°C a 15°C) durante um máximo de 30 dias

Bibliotecas de agrupamentos

Equipmento:

- → Pipeta P20 (pipeta multicanal opcional)
- → Pipeta P200 (pipeta multicanal opcional)
- → Centrifugador de tubos
- \rightarrow Vortex

Consumíveis:

- → Placa PCR de 96 cavidades
- → Tubos de microcentrifugação de 1,5 ml
- → Pontas de pipeta: P20, P200

Reagentes:

→ Água sem nuclease

Protocolo:

- 1. Quantificar cada biblioteca individualmente utilizando um Fluorómetro Qubit.
- 2. Calcule o tamanho médio do fragmento e avalie a qualidade da biblioteca utilizando uma Estação de Fita ou um Analisador Biológico.

Nota: Não agrupe bibliotecas que sejam principalmente dímeros de primers. O tamanho médio do fragmento para este protocolo é de aproximadamente 600 pb. Os dímeros de primers aparecerão num Bioanalisador ou numa Estação de Fita como fragmentos mais curtos, com cerca de 150-200 pb de comprimento.

- 3. Diluir todas as bibliotecas para 5nM em água sem nuclease.
- 4. Agrupe bibliotecas individuais em quantidades equimolares, adicionando 5 μL de cada biblioteca 5nM.

Nota: Agrupar as bibliotecas com concentração <5nM apenas se a biblioteca estiver relativamente isenta de dímeros de iniciadores. Neste caso, adicionar 5 μL da biblioteca sem diluir.

5. Executar novamente o bioanalisador para obter a concentração final da biblioteca agrupada e o tamanho do fragmento.

Apêndice A

1. Se utilizar os Índices Illumina UD, as configurações de placa para as Placas A-D estão disponíveis aqui e nas tabelas abaixo. A sequência específica associada a cada índice (necessária para preparar uma folha de amostras) está disponível aqui. Se estiver a agrupar menos de 8 amostras, leia as "Estratégias de agrupamento de dois a oito plexos" deste site antes de selecionar os índices a utilizar.

IDT para índices Illumina UD Placa A/Conjunto 1

A tabela seguinte mostra a configuração da placa para IDT para Índices UD Illumina Placa A/Conjunto 1. Anote o índice único a ser adicionado a cada amostra.

IDT para Índices UD Illumina Placa B/Conjunto 2

A tabela seguinte apresenta a configuração da placa para IDT para Illumina UD Indexes Plate B/conjunto 2. Anote o índice único a ser adicionado a cada amostra.

IDT para Índices Illumina UD Placa C/Conjunto 3

A tabela seguinte mostra a configuração da placa para IDT para Illumina UD Indexes Plate B/Set 2. Anote o índice único a ser adicionado a cada amostra.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	UDP0193	UDP0201	UDP0209	UDP0217	UDP0225	UDP0233	UDP0241	UDP0249	UDP0257	UDP0265	UDP0273	UDP0281
В	UDP0194	UDP0202	UDP0210	UDP0218	UDP0226	UDP0234	UDP0242	UDP0250	UDP0258 V2	UDP0266	UDP0274	UDP0282
С	UDP0195	UDP0203	UDP0211	UDP0219	UDP0227	UDP0235	UDP0243	UDP0251	UDP0259	UDP0267	UDP0275	UDP0283
D	UDP0196	UDP0204	UDP0212	UDP0220	UDP0228	UDP0236	UDP0244	UDP0252 V2	UDP0260	UDP0268	UDP0276	UDP02854
E	UDP0197	UDP0205	UDP0213	UDP0221	UDP0229	UDP0237	UDP0245	UDP0253	UDP0261	UDP0269	UDP0277	UDP0285
F	UDP0198	UDP0206	UDP0214	UDP0222	UDP0230	UDP0238	UDP0246	UDP0254	UDP0262	UDP0270	UDP0278	UDP0286
G	UDP0199	UDP0207	UDP0215	UDP0223	UDP0231	UDP0239	UDP0247	UDP0255	UDP0263	UDP0271	UDP0279	UDP0287
н	UDP0200	UDP0208	UDP0216	UDP0224	UDP0232	UDP0240	UDP0248	UDP0256	UDP0264	UDP0272	UDP0280	UDP0288

IDT para Índices Illumina UD Placa D/Conjunto 4

A tabela seguinte mostra a configuração da placa para IDT para Illumina UD Indexes Plate B/Conjunto 2. Anote o índice único a ser adicionado a cada amostra.

	1	2	3	4	5	6	7	8	9	10	11	12
A	UDP0289 V2	UDP0297	UDP0305	UDP0313	UDP0321	UDP0329	UDP0337	UDP0345	UDP0353	UDP0361	UDP0369	UDP0377
В	UDP0290 V2	UDP0298	UDP0306	UDP0314	UDP0322	UDP0330	UDP0338	UDP0346	UDP0354	UDP0362	UDP0370	UDP0378
С	UDP0291 V2	UDP0299	UDP0307	UDP0315	UDP0323	UDP0331	UDP0339	UDP0347	UDP0355	UDP0363	UDP0371	UDP0379
D	UDP0292	UDP0300	UDP0308	UDP0316	UDP0324	UDP0332	UDP0340	UDP0348	UDP0356	UDP0364	UDP0372	UDP0380
E	UDP0293	UDP0301 V2	UDP0309	UDP0317	UDP0325	UDP0333	UDP0341	UDP0349	UDP0357	UDP0365	UDP0373	UDP0381
F	UDP0294	UDP0302	UDP0310	UDP0318	UDP0326	UDP0334	UDP0342	UDP0350	UDP0358	UDP0366	UDP0374	UDP0382
G	UDP0295	UDP0303	UDP0311	UDP0319	UDP0327	UDP0335	UDP0343	UDP0351	UDP0359	UDP0367	UDP0375	UDP0383
н	UDP0296	UDP0304	UDP0312	UDP0320	UDP0328	UDP0336	UDP0344	UDP0352	UDP0360	UDP0368	UDP0376	UDP0384

2. Se estiver a utilizar índices de CD Illumina, a configuração da placa para os índices de CD Nextera DNA está disponível aqui ou na tabela abaixo. A sequência específica associada a cada índice (necessária para preparar a folha de amostras) está disponível aqui. Se o agrupamento for de menos de 8 amostras, leia a secção " Estratégias de agrupamento de dois a oito plexos" deste site antes de selecionar os índices a utilizar.

Nota: Deve anotar os números H7 e H5 na célula selecionada para cada amostra.

	1	2	3	4	5	6	7	8	9	10	11	12
А	H701	H702	H703	H705	H707	H723	H706	H712	H720	H710	H711	H714
	H505	H506	H517									
В	H702	H703	H701	H707	H723	H705	H712	H720	H706	H711	H714	H710
	H517	H505	H506									
С	H703	H701	H702	H723	H705	H707	H720	H706	H712	H714	H710	H711
Ŭ	H506	H517	H505									
D	H705	H707	H723	H706	H712	H720	H710	H711	H714	H701	H702	H703
	H503											
E	H706	H712	H720	H710	H711	H714	H701	H702	H703	H705	H707	H723
-	H516											
F	H710	H711	H714	H701	H702	H703	H705	H707	H723	H706	H712	H720
	H522	H510	H513									
G	H711	H714	H710	H702	H703	H701	H707	H723	H705	H712	H720	H706
3	H513	H522	H510									
н	H714	H710	H711	H703	H701	H702	H723	H705	H707	H720	H706	H712
"	H510	H513	H522									