Wydział	lmię i nazwisko		Rok 2	Grupa 2	Zespół 2
WFilS	1. Kotłowska Karol	ina			
	2. Such Katarzyna				
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA WFiIS AGH	Fale podłużn	Fale podłużne w ciałach stałych			
Data wykonania 22.03.2021					OCENA

1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w precie.

2 Wykonanie ćwiczenia

2.1 Opis problemu

Do wykonania doświadczenia użyłyśmy następujących przedmiotów:

- komputer z zainstalowanym programem Zelscope
- taśma miernicza
- młotek
- pręty różnych długości z różnych materiałów
- układ podtrzymujący pręty na linkach

Najpierw zmierzyłyśmy długości 6 wybranych przez nas prętów. 5 prętów było wypełnionych w środku, natomiast 1 był pusty. Za niepewność miarki przyjęto 0.001 [m]. Pręty zostały podwieszone na stelażu równolegle do podłoża. Następnie włączyłyśmy komputer z zainstalowanym programem Zelscope. Kolejno ustawiałyśmy mikrofon przy jednym z końców pręta i uderzając młotkiem w drugi koniec dokonywałyśmy pomiarów w programie Zelscope.

3 Wyniki

Prety mierzyłyśmy za pomocą taśmy mierniczej, gestość materiałów odczytałyśmy z danych tabelarycznych:

	materiał	długość [m]	gęstość [kg/m^3]
1 pręt	stal	2,005	7800
2 pręt	stal	1,802	7800
3 pręt	stal	1,000	7800
4 pręt	mosiądz	1,000	8600
5 pręt	mosiądz	2,024	8600
6 pręt	aluminium	1,000	2700

Rysunek 1: Tabela 1. Długości poszczególnych prętów i gestości danych materiałów

Częstotliwości mierzyłyśmy za pomocą programu Zelscope.

Wszytskie pręty oprócz ostatniego były wypełnione w środku, ostatni - aluminiowy był pusty.

$$\Delta f = f_i - f_{i-1} = 2482,350 - 1247,060 = 1235,290[Hz] \tag{1}$$

$$\bar{f} = \frac{1}{n} \sum \Delta f = \frac{1}{4} \cdot (1235, 290 + 1258, 830 + 1247, 060 + 1235, 290) = 1244, 118[Hz]$$
 (2)

gdzie n to ilość pomiarów minus jeden, np.dla pierwszego pręta.

	f[Hz]	$\Delta f = f(x) - f(x-1)$	średnia
f1	1247,060		
f2	2482,350	1235,290	
f3	3741,180	1258,830	
f4	4988,240	1247,060	
f5	6223,530	1235,290	1244,118

Rysunek 2: Pomiary dla 1 pręta

	f[Hz]	$\Delta f = f(x) - f(x-1)$	średnia
f1	1423,530		
f2	2858,820	1435,290	
f3	4282,350	1423,530	
f4	5741,180	1458,830	
f5	7164,710	1423,530	1435,295

Rysunek 3: Pomiary dla 2 pręta

	f[Hz]	$\Delta f = f(x) - f(x-1)$	średnia
f1	2329,410		
f2	4611,760	2282,350	
f3	5458,820	847,060	
f4	6929,410	1470,590	
f5	9223,530	2294,120	1723,530

Rysunek 4: Pomiary dla 3 pręta

	f[Hz]	$\Delta f = f(x) - f(x-1)$	średnia
f1	1705,880		
f2	3435,290	1729,410	
f3	3988,240	552,950	
f4	5152,940	1164,700	
f5	6894,120	1741,180	1297,060

Rysunek 5: Pomiary dla 4 preta

	f[Hz]	$\Delta f = f(x) - f(x-1)$	średnia
f1	941,180		
f2	1882,350	941,170	
f3	2823,530	941,180	
f4	3776,470	952,940	
f5	4717,660	941,190	944,120

Rysunek 6: Pomiary dla 5 pręta

	f[Hz]	$\Delta f = f(x) - f(x-1)$	średnia
f1	1764,710		
f2	2494,120	729,410	
f3	3764,710	1270,590	
f4	4376,470	611,760	
f5	5111,760	735,290	836,763

Rysunek 7: Pomiary dla 6 preta

4 Opracowanie wyników pomiarów

Niepewność pomiaru długości prętów (typu B) obliczyłyśmy ze wzoru:

$$u_b(l) = \frac{\Delta_l}{\sqrt{3}} = 0,00058[m] \tag{3}$$

gdzie $\Delta_l = 0.001m$

Długość fali stojącej w pręcie:

$$\lambda = \frac{2l}{n} = \frac{2*2,005}{1} = 4,010[m] \tag{4}$$

gdzie n =1,2,3... to numer harmonicznej, obliczenia dla 1 pręta, 1 pomiaru.

Niepewność pośrednia pomiaru długości fali:

$$u_b(\lambda) = \left| \frac{\mathrm{d}\lambda}{\mathrm{d}l} \right| \Delta_l = \left| \frac{\mathrm{d}}{\mathrm{d}l} \frac{2l}{n} \right| \Delta_l = \frac{2}{n} \Delta_l = \frac{2}{1} \cdot 0,001 = 0,002[m]$$
 (5)

np. dla pierwszej harmonicznej

Prędkość fali dla odpowiednich harmonicznych obliczałyśmy ze wzoru:

$$v = \lambda f = 1247,060 \cdot 4,010 = 5000,711 \left[\frac{m}{s}\right]$$
 (6)

np. dla 1 pręta, 1 harmonicznej gdzie λ to długość fali, a f to częstotliwość

pręty	materiał	nr harmonicznej	f[Hz]	λ[m]	v[m/s]
		1	1247,060	4,010	5000,711
		2	2482,350	2,005	4977,112
1 pret stal	stal	3	3741,180	1,337	5000,711
	4	4988,240	1,003	5000,711	
		5	6223,530	0,802	4991,271

Rysunek 8: Obliczenia dla pręta 1

pręty	materiał	nr harmonicznej	f[Hz]	λ[m]	v[m/s]
		1	1423,530	3,604	5130,402
		2	2858,820	1,802	5151,594
2 pret	stal	3	4282,350	1,201	5144,530
		4	5741,180	0,901	5172,803
		5	7164,710	0,721	5164,323

Rysunek 9: Obliczenia dla pręta 2

pręty	materiał	nr harmonicznej	f[Hz]	λ[m]	v[m/s]
		1	2329,410	2,000	4658,820
		2	4611,760	1,000	4611,760
3 pret	pret stal	3	5458,820	0,667	3639,213
		4	6929,410	0,500	3464,705
		5	9223,530	0,400	3689,412

Rysunek 10: Obliczenia dla pręta $3\,$

pręty	materiał	nr harmonicznej	f[Hz]	λ[m]	v[m/s]
	1	1705,880	2,000	3411,760	
		2	3435,290	1,000	3435,290
4 pret	mosiądz	3	3988,240	0,667	2658,827
		4	5152,940	0,500	2576,470
		5	6894,120	0,400	2757,648

Rysunek 11: Obliczenia dla pręta $4\,$

pręty	materiał	nr harmonicznej	f[Hz]	λ[m]	v[m/s]
5 pret	mosiądz	1	941,180	4,048	3809,897
		2	1882,350	2,024	3809,876
		3	2823,530	1,349	3809,883
		4	3776,470	1,012	3821,788
		5	4717,660	0,810	3819,418

Rysunek 12: Obliczenia dla pręta 5

pręty	materiał	nr harmonicznej	f[Hz]	λ[m]	v[m/s]
6 pret	aluminium	1	1764,710	2,000	3529,420
		2	2494,120	1,000	2494,120
		3	3764,710	0,667	2509,807
		4	4376,470	0,500	2188,235
		5	5111,760	0,400	2044,704

Rysunek 13: Obliczenia dla pręta $6\,$

ze względu na uśrednienie wartości częstotliwości, niepewność pomiarową f, liczymy korzystając ze wzoru:

$$u(f) = \sqrt{\frac{\sum (\bar{f} - \Delta f)^2}{n * (n - 1)}} = \sqrt{\frac{380,965}{3 * 4}} = 5,634[Hz]$$
 (7)

np. dla pierwszego pręta

gdzie n to liczba pomiarów, \bar{f} to częstotliwość średnia dla pręta, a Δf to różnica częstotliwości

Średnia prędkość fali:

$$v = 2l \cdot \bar{f} = 2 \cdot 2,005 \cdot 1244,118 = 4988.913 \frac{m}{s}$$
 (8)

np. dla pierwszego pręta stalowego

gdzie l
 to długość pręta a \bar{f} to średnia częstotliwość

Niepewność złożona pomiaru prędkości:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial l}u(l)\right)^2 + \left(\frac{\partial v}{\partial f}u(f)\right)^2} = 2\sqrt{f^2u(l)^2 + l^2u(f)^2}$$
(9)

$$u(v) = 2 \cdot \sqrt{1244, 118^2 \cdot 0.00058^2 + 2,005^2 \cdot 5,634^2} = 22,640 \frac{m}{s}$$
 (10)

np. dla pierwszego pręta stalowego

	materiał	średnia częstotliwość [Hz]	niepewność częstotliwości [Hz]	średnia prędkość [m/s]	niepewność prędkości[m/s]	prędkości tabelaryczne [m/s]
pręt 1	stal	1244,118	5,634	4988,913	22,640	5100-6000
pręt 2	stal	1435,295	8,320	5172,803	30,031	5100-6000
pręt 3	stal	1723,530	350,004	3447,060	700,011	5100-6000
pręt 4	mosiądz	1297,060	282,162	2594,120	564,326	3830-4250
pręt 5	mosiądz	944,120	2,940	3821,798	11,951	3830-4250
pręt 6	aluminium	836,763	510,543	1673,526	42,545	6200-6360

Rysunek 14: Obliczenia dla wszystkich prętów

Moduł Younga (E) wyznaczyłyśmy kolejno za pomocą wzoru:

$$E = 4l^2 f^2 \rho = 4 \cdot 2,005^2 \cdot 1244,118^2 \cdot 7800 = 194,14[GPa]$$
(11)

Niepewność pomiaru dla modułu Younga:

$$u(E) = \sqrt{\left(\frac{\delta E}{\delta l}u(l)\right)^2 + \left(\frac{\delta E}{\delta f}u(f)\right)^2} = 8 \cdot l \cdot f\rho\sqrt{f^2 u^2(l) + l^2 u^2(f)}$$
(12)

$$u(E) = 8 \cdot 2,005 \cdot 1244,118 \cdot 7800 \cdot \sqrt{1244,118^2 \cdot 0.00058^2 + 2,005^2 \cdot 5,634^2} = 1,762 [GPa]$$
 (13)

gdzie l to długość pręta, f to częstotliwość, a ρ to gestość materiału

Korzystając z powyższych wzorów otrzymałyśmy wyniki, które wpisałyśmy do tabeli poniżej:

	materiał	moduł younga [GPa]	niepewność pomiarowa [Gpa]	wartość tabelaryczna [Gpa]
pręt 1	stal	194,136	1,762	190-210
pręt 2	stal	208,712	2,423	190-210
pręt 3	stal	92,681	37,642	190-210
pręt 4	mosiądz	57,873	25,180	97-150
pręt 5	mosiądz	125,613	0,786	97-150
pręt 6	aluminium	7,562	9,228	69-72

Rysunek 15: Obliczenia dla wszystkich prętów

5 Wnioski

Wyliczone wartości prędkości dla pręta 1 i 2 mieszczą się w granicach obliczonych niepewności pomiarowych, natomiast wartości prędkości da prędkości tabelaryczna. W przypadku wyznaczenia modułu Younga, ponownie wyliczone wartości dla pręta 1, 2, 5 mieszczą się w ramach obliczonych niepewności pomiarowych. Pozostałe pełne pręty nie. Moduł Younga wyznaczony dla pręta pustego wyszedł około 10 razy mniejszy od wartości tabelarycznej. W obu przypadkach obliczenia dla pręta pustego nie mają sensu, ponieważ wyniki nie są w najmniejszym stopniu bliskie wartościom teoretycznym. Aby doświadczenie było miarodajne, pomiary muszą być wykonywane na prętach pełnych.

Na dokładność wyników miały wpływ niepewności pomiaru:

- niedoskonałość przyrządów pomiarowych
- zmienne parametry przy uderzaniu młotkiem o pręt (różne kąty uderzenia, nieodpowiednio dobrana siła)
- niedokładne odczytywanie częstotliwości poszczególnych składowych harmonicznych
- błędy rejestrowania fal przez mikrofon (ze względu na mikrofon "z PRL-u" co naprawdę nie ułatwia pomiarów)
- wykres w programie Zelscope mógł odczytywać częstotliwości nie tylko fal podłużnych, ale także fal poprzecznych rozchodzących się w metalu