MATRICES

Eigen Values and Eigen Vectors

An eigenvalue is a scalar λ which satisfies the equation $A_{nxn}X_{nx1} = \lambda X_{nx1}$ and a non-zero X_{nx1} is called the corresponding eigenvector.

Problem

01) Verify that $X = \begin{bmatrix} 2 & 3 & -2 & -3 \end{bmatrix}^T$ is an eigenvector corresponding to the

eigen value
$$\lambda=2$$
 of the matrix $A=\begin{bmatrix} 1 & -4 & -1 & -4 \\ 2 & 0 & 5 & -4 \\ -1 & 1 & -2 & 3 \\ -1 & 4 & -1 & 6 \end{bmatrix}$

Homework

02) If X is an eigenvector of A corresponding to an eigenvalue $\boldsymbol{\lambda}$ then prove that

kX is also an eigenvector corresponding to the same eigenvalue.

03) Prove that distinct eigenvalues of a matrix have distinct eigenvectors.

Eigen Values and Eigen Vectors

Let A be n x n matrix, λ a scalar and, I the unit matrix of same order as A. $|A - \lambda I| = 0$ is called the **characteristic equation** of the matrix A.

For A=
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 the characteristic equation is given by

$$\lambda^{3} - (a_{11} + a_{22} + a_{33})\lambda^{2} + \begin{cases} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \\ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 0$$

The roots λ of this equation are called **characteristic roots** or **eigen values** of A .

If there exists a non-zero vector X such that $|A-\lambda I|=0$ then X said to be a **Characteristic/eigen vector** of a matrix A, corresponding to the **eigen value** λ .

Problems

A P. SHAH INSHHHHHHH OF THECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)
(Religious Jain Minority)

4) Show that the following matrices have the same characteristic equation

$$\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \begin{bmatrix} b & c & a \\ c & a & b \\ a & b & c \end{bmatrix} \begin{bmatrix} c & a & b \\ a & b & c \\ b & c & a \end{bmatrix}$$

Homework

5) Find the characteristic equation of the matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Note

Sum of the eigenvalues of A = sum of the diagonal elements of A(trace of A)

Product of the eigenvalues of A = determinant of A

Problem

6) Find the sum and product of the eigenvalues of A=
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Homework

7) Find the sum & product of the eigenvalues of A=
$$\begin{bmatrix} -2 & -9 & 5 \\ -5 & -10 & 7 \\ -9 & -21 & 14 \end{bmatrix}$$

Properties

The eigenvalues of a triangular/diagonal matrix are its diagonal elements.

The eigenvalues of an orthogonal matrix are +1 or -1 Eigenvalues of a Hermitian/symmetric matrix are all real

0 is an eigenvalue of a matrix A if and only if A is singular.

 λ^n is an eigenvalue of $_{A^n}$ if $^\lambda$ is an eigenvalue of A .

 λ^{-1} is an eigenvalue of A^{-1} if $^{\lambda}$ is an eigenvalue of A .

 $\frac{|A|}{\lambda}$ is an eigenvalue of $^{adj\,A}$ if $^{\lambda}$ is an eigenvalue of non-singular A .

(D-07)

Eigen vectors corresponding to distinct eigenvalues are linearly independent.

A. P. SHAH INSTITUTED OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)
(Religious Jain Minority)

Problems

8) Find the eigen values and the eigen vectors of

(a)
$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
 (M-12)(b) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 3 \end{bmatrix}$ (M-11)(c) $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$

- 9) Find eigen values of A^2 -3A+4I and eigen vectors of adjA where $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$
- 10) Find the sum and product of the eigenvalues of $\begin{bmatrix} 4 & 0 & 0 & 1 \\ 2 & -1 & 3 & 0 \\ 1 & 1 & 1 & 0 \\ -4 & 2 & -6 & 1 \end{bmatrix}$ (M-10)

Homework

11) Find eigen values of adj A and eigen vectors of A^{-1} where A=

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

- 12) Find eigenvalues & eigenvectors of adj A & A^3 where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ (M-10,D-08)
- 13) Find eigen values & eigen vectors of of $A^3 + I$ where $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ (M-15,D-11, M-09)
- 14) Find the eigen values of the adjoint of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ (D-15)

Cayley-Hamilton Theorem

Every square matrix A satisfies its own characteristic equation that is $|A-\lambda I|=0$

Problems

15) Verify Cayley-Hamilton theorem for the following matrices

a)
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 and hence find A^{-1} and $2A^5 - 3A^4 + A^2 - 4I$

b)
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and hence find A^{-1} and $A^{5} - 2A^{4} + 3A^{3} + A$ (**D-08**)
c) $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and hence find A^{-2} (**M-12**)

c)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 and hence find A^{-2} (M-12)

Homework

16) Verify Cayley-Hamilton theorem for the following matrix and hence find A^{-1} & A^4

(a)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 find $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$

(a)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 find $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$
(b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$ (D-11, M-09) (c) $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 0 & 2 & 1 \end{bmatrix}$ (M-11)

(d) Find
$$A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$$
 in terms of A where $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ (M-14,D-14)

(e) Find the characteristic equation of the matrix
$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$
 and hence find the matrix represented by $A^6 - 6A^5 + 9A^4 + 4A^3 - 12A^2 + 2A - I$ (**D-15**)

Minimal polynomial & Derogatory/Non-derogatory matrix

The monic polynomial of lowest degree which annihilates the matrix A is called the minimal polynomial of the matrix A.

Minimal polynomial is a divisor of the characteristic polynomial.

If the minimal polynomial is of degree lesser than order of the matrix then the matrix is said to be a derogatory matrix; otherwise it is called a non-derogatory matrix.

A matrix with distinct eigenvalues is non-derogatory.

Problems

17) S.T. the following matrices are derogatory & find the minimal polynomial of the matrices

(a)
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$(b) \begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$

18) Show that the following matrices are non-derogatory

$$(a) \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$(b) \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

$$(b)\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

Homework

19) Determine if the following matrices are derogatory or non-derogatory

(a)
$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$

Functions of a square matrix

If A is a matrix of order of 2 then a function of the matrix A is given by λ_1 and λ_2 f(A) = a_0 A + a_1 I $f(A) = a_0$ A + a_1 I where a_0 and a_1 are obtained by solving

simultaneously the equation $f(\lambda) = a_0 \lambda + a_1$ for the two eigenvalues λ_1 and λ_2

(If the eigenvalue repeats the second equation is given by $f'(\lambda) = a_0$)

If A is a matrix of order of 3 then a function of the matrix A is given by $f(A)=a_0A^2+a_1A+a_2I$ where a_0,a_1 and a_2 are obtained by solving simultaneously the

equation $f(\lambda) = a_0 \lambda^2 + a_1 \lambda + a_2$ for the three eigenvalues $\lambda_1, \lambda_2, \text{and} \lambda_3$ (If the eigenvalue

repeat the other equations are given by taking derivatives of the equation $f(\lambda) = a_0 \lambda^2 + a_1 \lambda + a_2$

Problems

20) If
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -3 \end{bmatrix}$$
 find $3A^{57} + 2A^{18}$
21) If $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ find $\sin A$

21) If
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 find $\sin A$

22)If
$$A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$$
 find A^{50} (D-14)

Homework

23) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 find A^{50} 23) If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ find A^{50} (M-14)
24) If $A = \begin{bmatrix} \frac{\pi}{2} & \frac{3\pi}{2} \\ \pi & \pi \end{bmatrix}$ find $\cos A$

24) If
$$A = \begin{bmatrix} \frac{\pi}{2} & \frac{3\pi}{2} \\ \pi & \pi \end{bmatrix}$$
 find $\cos A$

25) If
$$A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$$
 then prove that $3 \tan A = A \tan 3$ (M-14)

Parshvanath Charitable Trust's

A. P. SHAH INSTRUME OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

26) Find
$$e^{A}$$
 and 4^{A} if $A = A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ (D-15)

Algebraic multiplicity and Geometric multiplicity

Algebraic multiplicity is the number of times an eigenvalue occurs and geometric multiplicity is the number of corresponding linearly independent eigenvectors.

Algebraic multiplicity

Geometric multiplicity

Similarity

A & B are said to be similar if there exists a non-singular matrix P such that $P^{-1}AP = B$

Problems

27) Prove that similar matrices have the same eigen values.

28) Show that
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$ are not similar matrices

Homework

29) Prove that AB and BA have the same eigen values, if A or B is non-singular.

30) Show that
$$A = \begin{bmatrix} 5 & 5 \\ -2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ are similar matrices

Diagonalization

If a matrix A is similar to a diagonal matrix D then it is said to be diagonalizable.

Condition that a matrix A is diagonalizable is that for each eigenvalue of A

Algebraic multiplicity = Geometric multiplicity.

Then $P^{-1}AP=D$ where diagonal elements of D are the eigenvalues of A and the corresponding eigenvectors are the columns of P.

A matrix with distinct eigenvalues is always diagonalizable.

Problems

31) Show that the following matrices A are diagonalizable and find the diagonalizing (or modal)matrix P and the diagonal(or spectral) matrix D in each case

(a)
$$\begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 (M-15)

32) Show that the following matrices A are not diagonalizable

(a)
$$\begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

Homework

33) Find a matrix P which diagonalizes $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ and verify that $P^{-1}AP = D$

34) Determine if the following matrices are diagonalizable

(a)
$$\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix} (b) \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix} (c) \begin{bmatrix} -17 & 18 & -6 \\ -18 & 19 & -6 \\ -9 & 9 & 2 \end{bmatrix}$$

35) If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ then show that both A and B are not diagonalizable

but AB is diagonalizable

36) Diagonalize the Hermitian matrix $\begin{bmatrix} -3 & 2+2i \\ 2-2i & 4 \end{bmatrix}$

Orthogonal similarity and Orthogonal Reduction

A and B are said to be orthogonally similar if there exist an orthogonal matrix P such that B= $P^{-1}AP = P^{T}AP$

A symmetric matrix A is always orthogonally similar to a diagonal matrix D such that D= $P^{-1}AP = P^{T}AP$ where the diagonal elements of D are the eigenvalues of A and the corresponding normalized eigenvectors are the columns of P.

This is known as orthogonal reduction of symmetric matrix A to diagonal matrix D.

Problems

37) Find the orthogonal matrix P that will diagonalize the following symmetric matrix A and also find the diagonal matrix D

(a)
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 (M-14,D-14) (b) $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

(b)
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

38) If A is symmetric matrix of order 3 and the eigenvalues are $\lambda_1 = 0, \lambda_2 = 3, \lambda_3 = 15$ and the corresponding eigenvectors are $X_1 = [1,2,2]^T$ for $\lambda_1 = 0$, $X_2 = [-2,-1,2]^T$ for $\lambda_2=3$ and X_3 for $\lambda_3=15$.Find X_3 $AX_1,AX_2,A^{10}X_3$.

Homework

39) Find the orthogonal matrix P that will diagonalize the following symmetric matrix A and also find the diagonal matrix D

$$(a)\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \quad (b) \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

40) If A is symmetric matrix of order 3 and the eigenvalues are $\lambda_1 = 8, \lambda_2 = 2, \lambda_3 = 2$ and the corresponding eigenvectors are $X_1 = [2, -1, 1]^T$ for $\lambda_1 = 8$, $X_2 = [-1/2, 0, 1]^T$ for λ_2 =2 and X_3 for λ_3 =2 .Find X_3 AX_1 , AX_2 , $A^{10}X_3$.
