

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

IMPLEMENTATION OF FCFS ALGORITHM

LAB MANUAL

-	MODERN OPERATING SYSTEMS
	7 100
ŀ	多
	Andrew S. Tanesbaum

Date:		
Name:		
Reg#:	Group:	
Marks:	Signature:	

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

Lab objective

Write a C program to implement the various process scheduling mechanisms such Algorithm for FCFS scheduling:

- Step 1: Start the process
- Step 2: Accept the number of processes in the ready Queue
- Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time
- Step 4: Set the waiting of the first process as '0' and its burst time as its turn around time
- Step 5: for each process in the Ready Q calculate
 - (a) Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)
 - (b) Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)
 - (a) Average waiting time = Total waiting Time / Number of process
 - (b) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

/* FCFS SCHEDULING ALGORITHM */

```
#include<stdio.h>
void main()
{
  int i,n,sum,wt,tat,twt,ttat;
  int t[10];
```


FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

```
float awt, atat;
clrscr();
printf("Enter number of processors:\n");
scanf("%d",&n);
for(i=0;i< n;i++)
 printf("\n Enter the Burst Time of the process %d",i+1);
 scanf("\n %d",&t[i]);
printf("\n\n FIRST COME FIRST SERVE SCHEDULING ALGORITHM \n");
printf("\n Process ID \t Waiting Time \t Turn Around Time \n"); printf("1 \t\t
0 \t\t %d \n",t[0]);
sum=0;
twt=0:
ttat=t[0];
for(i=1;i< n;i++)
sum+=t[i-1];
 wt=sum;
 tat=sum+t[i];
 twt=twt+wt;
 ttat=ttat+tat;
 printf("\n %d \t\t %d \t\t %d",i+1,wt,tat);
 printf("\n\n");
 awt=(float)twt/n;
 atat=(float)ttat/n;
 printf("\n Average Waiting Time %4.2f",awt);
 printf("\n Average Turnaround Time %4.2f",atat);
getch();
OUTPUT:
Enter number of processors:
Enter the Burst Time of the process 1: 2
```

Enter the Burst Time of the process 2: 5

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

Enter the Burst Time of the process 3: 4

FIRST COME FIRST SERVE SCHEDULING ALGORITHM

Process ID	Waiting Time	Turn Around Time
1	0	2
2	2	7
3	7	11

Average Waiting Time 3.00 Average Turnaround Time 6.67