Class 6 9/6/17 Mendelian Genetics

- Announcements
- Class administration
- Check iLearn for suggested problems
- Office hours HH668C:
 - Mon 2 4pm
 - THU 9/7 3:30 5:30pm

Romberg Tiburon Center Seminar Series

http://rtc.sfsu.edu/seminar/index.htm

Wednesday, 9/6/17
Bay Conference Center, 3:30PM

Cassia Pianca Romberg Tiburon Center Coastal Geomorphology Evolution from Hours to Decades: Lessons from Video Remote Sensing

https://www.researchgate.net/profile/Cassia_Pianca

2

Biol 871 Colloquium in Microbiology, Cell & Molecular Biology

http://biology.sfsu.edu/content/MCMB

Ben Blackman UC Berkeley

Evolving timekeepers: the genetics of natural variation in diurnal and seasonal biological rhythms

Tuesday, 9/12/17 HH 543, 2:10pm

Biol 572/872 Ecology, Evolution, & Conservation Biology Colloquium

http://biology.sfsu.edu/content/EEC

Rebecca Albright
California Academy of Sciences
Coral reefs under ocean
acidification

3

Using a testcross - 1

DD Homozygous tall

or Heterozygous tall

X dd

Cross the unknown genotype plant with a known homozygous recessive individual

You find a tall pea plant...is it homozygous or heterozygous for the plant height trait?

 A testcross is a way to determine whether an individual displaying the dominant phenotype is homozygous or heterozygous for that trait

> 5 Figure 3.4

Using a testcross - 2

Cross the unknown genotype plant with a known homozygous recessive individual

You find a tall pea plant...is it homozygous or heterozygous for the plant height trait?

A testcross is a way to determine whether an individual displaying the dominant phenotype is homozygous or heterozygous for that trait

Figure 3.4

Can two traits be inherited independently?

Mendel crossed plants that were truebreeding for two traits: seed color and seed shape/texture

- Parental phenotype:
 - Yellow and round
 - Green and wrinkled
- F1 progeny phenotype:
 - Yellow and round
- Allow F1 to selffertilize
- Analyzed the F2 progeny
 - Recovered 4 phenotypes

7 Figure 3.5

Results of dihybrid cross

Mendel crossed plants that were truebreeding for two traits: seed color and seed shape/texture

Reciprocal cross: Same results $P_1 \text{ cross}$ $yellow, round \times green, wrinkled \qquad yellow, wrinkled \times green, round$ $F_1 \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$

- F2 progeny phenotypes
 - Two looked like original parents (P)
 - Yellow, round
 - Green, wrinkled
 - Two looked different from original parents (P)
 - Yellow, wrinkled
 - Green, round

8 Figure 3.5

Dihybrid Cross - 1

- Each parent is true-breeding for two traits
 - Dominant traits
 - Yellow G, Round W
 - Recessive traits
 - Green q, Wrinkled w
- GG WW x gg ww [or GG ww x gg WW]
- Each parent generates haploid gametes

Figure 3.7

Dihybrid Cross - 2

- Each parent generates haploid gametes
 - GG WW --> GW
 - gg ww --> gw
- The first filial generation hybrid cross (F1)
 - genotype Gg Ww
 - phenotype is yellow, round

10 Figure 3.7

Dihybrid Cross - 3

- Allow the F1 to selffertilize
- Principle of Independent Assortment predicts 4 different gametes
- If these two different genes sort independently, then expect to get 25% of each
- Gamete genotypes: GW, Gw, qW, qw

11 Figure 3.7

Dihybrid Cross - 4

16 possible zygote combinations for F2 progeny

- 9 distinct F2 genotypes

12 Figure 3.7

Dihybrid Cross F2 phenotypic ratio: 9:3:3:1

Repeat this analysis using the reciprocal cross

- 4 distinct phenotypic classes (ratio)
- 9 Yellow, round (G- W-)
- 3 Green, round (gg W-)
- 3 Yellow, wrinkled (G- ww)
- 1 Green, wrinkled (gg ww)

Figure 3.7

Dihybrid cross supports Mendel's fourth postulate

- Mendel's fourth postulate (independent assortment) states that:
 - Traits assort independently during gamete formation
 - All possible combinations of gametes will form with equal frequency

Mendel's garden

- Top row = P1
- 2nd row = F1
- 3rd row = F2
- If the Last 4 rows = result of dihybrid cross
 - What would be wrong with this picture?

http://www.mun.ca/biology/scarr/Mendels Garden.html

W/W; g/g W/w; G/g W/w; G/g W/w; g/g w/w; G/g w/w; G/g

- Top row = P1
- 2nd row = F1
- 3rd row = F2
- If the Last 4 rows = result of dihybrid cross
 - What would be wrong with this picture?

Mendel's garden

http://www.mun.ca/biology/scarr/Mendels Garden.html

15