Листок № 5

Мы начинаем изучение натуральных чисел, индукции и рекурсии, конечных и счетных множеств. Индукция по № является сквозной и самой главной идеей. Нужно обратить внимание на разные (хотя эквивалентные) формы принципа индукции. В теоремах о счетной мощности мы явно указываем применение аксиомы выбора, хотя не стремимся применить слабейшую необходимую ее форму.

Далее нужно изложить основы теории формальных языков. На лекция соответствующих определений не будет.

Литература: основной конспект, с. 85–120.

1. Докажите, что для каждого натурального $n \geqslant 3$ найдутся $a_1, \ldots, a_n \in \mathbb{N}_+$, т. ч.

$$1 = \frac{1}{a_1} + \ldots + \frac{1}{a_n},$$

причем $a_i \neq a_j$, если $i \neq j$.

2. Пусть число $a+\frac{1}{a}\in\mathbb{Z}$ для некоторого $a\in\mathbb{R}$. Докажите, что тогда для любого $n\in\mathbb{N}$ верно $a^n+rac{1}{a^n}\in\mathbb{Z}$. (Порядковая индукция: два шага назад.) 3. Найдите все решения уравнения $8a^4+4b^4+2c^4=d^4$ во множестве \mathbb{Z} . (Принцип

наименьшего числа.)

4. На краю пустыни, представляющей собой луч прямой, стоит машина и бесконечный резервуар бензина. С полным баком машина может проехать 100 км. В любой точке пустыни можно слить часть бензина из бака и оставить его там на хранение, так что хранимое количество неограниченно. Докажите, что можно проехать сколь угодно далеко в пустыню. (Усиление индуктивного предположения, чтобы в нем на «кончился бензин».)

5. На доске написаны N цифр — нули и единицы в любой комбинации. Разрешается выполнять два действия:

- заменять первую цифру (нуль на единицу и наоборот);
- заменять цифру, стоящую после первой единицы.

Докажите, что за конечное число шагов можно получить любую желаемую последовательность длины N.

6. Вершины выпуклого многоугольника раскрашены в три цвета так, что каждый цвет использован и никакие две соседние вершины не окрашены в один цвет. Докажите, что многоугольник можно разбить диагоналями на треугольники так, чтобы у каждого треугольника вершины были трех разных цветов. (Всю нужную геометрию понимаем интуитивно.)

7. У каждого депутата в (конечной) палате имеется не более трех врагов (никакой депутат себе не враг и враждебности не прощает). Покажите, что депутатов можно разделить на две фракции так, чтобы у каждого депутата было не более одного врага внутри его фракции.

- 8. Пусть конечные множества A и B равномощны. Докажите, что всякая функция $f \colon A \to B$ является инъекцией тогда и только тогда, когда является сюръекцией.
- **9.** Используя предыдущую задачу, докажите *китайскую теорему об остатках*: пусть числа $m_1, \ldots, m_n \in \mathbb{N}_+$ попарно взаимно просты и $a_i \in \underline{m_i}$; тогда существует единственное число $x \in \underline{M}$, где $M = m_1 \cdot \ldots \cdot m_n$, т.ч. $x \equiv_{m_1} a_1, \ldots, x \equiv_{m_n} a_n$.
 - 10. Рассмотрите несколько примеров рекурсивных определений функций.

Напомним теорему о рекурсии:

Пусть U некоторое множество, $u_0 \in U$ и $h: U \to U$. Тогда существует единственная функция $f: \mathbb{N} \to U$, т. ч.

$$f(0) = u_0$$
 и $f(n+1) = h(f(n))$

при всех $n \in \mathbb{N}$.

11. Обоснуйте такую форму рекурсии:

Пусть U некоторое множество, $u_0 \in U$ и $h: \mathbb{N} \times U \to U$. Тогда существует единственная функция $f: \mathbb{N} \to U$, т. ч.

$$f(0) = u_0$$
 и $f(n+1) = h(n, f(n))$

при всех $n \in \mathbb{N}$.

12. Обоснуйте такую форму рекурсии (примитивная рекурсия):

Пусть U и V некоторые множества, $g\colon V\to U$ и $h\colon \mathbb{N}\times V\times U\to U$. Тогда существует единственная функция $f\colon \mathbb{N}\times V\to U$, т. ч.

$$f(0,v) = g(v)$$
 и $f(n+1) = h(n,v,f(n,v))$

при всех $v \in V$ и $n \in \mathbb{N}$.

- **13.** Если A счетно, а B счетно или конечно, то счетно и $A \cup B$.
- 14. Выведите принцип зависимого выбора следует из аксиомы выбора.
- **15.** Пусть множество A бесконечное, а множество B конечное или счетное. Докажите, что тогда $A \cup B \sim A$.
- **16.** Докажите, что если множество $A \setminus B$ бесконечно, а B конечно или счетно, то $A \sim A \setminus B$.

Словом длины n в алфавите A (т. е. непустом множестве) называется любая функция $\sigma\colon n\to A$.

- **17.** Покажите, что длина слова определена однозначно и равна его мощности как множества.
 - **18.** Докажите, что если алфавит A конечный или счетный, то множество A^* счетно.
 - **19.** Для любых $\sigma, \tau, \rho \in A^*$ верно:

- a) $\sigma \varepsilon = \sigma = \varepsilon \sigma$;
- б) $(\sigma \tau) \rho = \sigma(\tau \rho)$.
- **20.** Докажите, что для любых $\sigma, \tau \in A^*$ верно:
- a) $(\sigma^{\mathsf{R}})^{\mathsf{R}} = \sigma;$
- б) $(\sigma \tau)^{R} = \tau^{R} \sigma^{R}$.
- **21.** Докажите *левый закон сокращения*: для любых $\sigma, \tau, \rho \in A^*$ из $\sigma \tau = \sigma \rho$ следует $\tau = \rho$.
- **22.** Докажите, что если $\sigma = \sigma^{\mathsf{R}}$, т. е. слово $\sigma \in A^*$ есть *палиндром*, то для некоторых $\tau \in A^*$ и $a \in A$ имеет место $\sigma = \tau \tau^{\mathsf{R}}$ или $\sigma = \tau a \tau^{\mathsf{R}}$.
 - **23.** Докажите, что для всех $\sigma \in A^*$ и $k, l \in \mathbb{N}$ верно:
 - a) $\sigma^k \sigma^l = \sigma^{k+l}$;
 - 6) $\sigma^k \sigma^l = \sigma^l \sigma^k$.
 - **24.** Докажите, что (A^*, \sqsubseteq) есть ч. у. м. для любого алфавита A.
 - **25.** Докажите, что $(A^*, \sqsubseteq) \cong (A^*, \supseteq)$.
 - **26.** Докажите, что для любых $\sigma, \tau, \rho \in A^*$ верно:
 - а) существует $\inf_{\sqsubseteq} \{\sigma, \tau\};$
 - б) если $\sigma \sqsubseteq \rho$ и $\tau \sqsubseteq \rho$, то $\sigma \sqsubseteq \tau$ или $\tau \sqsubset \sigma$.
 - **27.** Какому хорошо известному упорядочению изоморфно ч. у. м. $(\{a\}^*, \sqsubseteq)$?
- **28.** Докажите, что если $\sigma\tau=\tau\sigma$, то найдется слово ρ и числа $k,l\in\mathbb{N}$, т. ч. $\sigma=\rho^k$ и $\tau=\rho^l$.

Пусть $a \in A$. Рассмотрим функцию $|\cdot|_a : A^* \to \mathbb{N}$, т. ч.

$$|\sigma|_a = |\sigma^{-1}[\{a\}]| = |\{i \in |\sigma| \mid \sigma(i) = a\}|$$

для всех $\sigma \in A^*$.

29. Докажите, что для всех $\sigma, \tau \in A^*$ верно $|\sigma \tau|_a = |\sigma|_a + |\tau|_a$.

Пусть $\mathcal{B} = \{\langle, \rangle\}$ Определим функцию $b \colon \mathcal{B}^* \to \mathbb{Z}$ скобочного итога, полагая $b(\sigma) = |\sigma|_{\langle} - |\sigma|_{\rangle}$ для всех $\sigma \in \mathcal{B}^*$. Язык R правильных скобочных последовательностей над алфавитом \mathcal{B} есть множество

$$\{\sigma\in\mathcal{B}^*\mid b(\sigma)=0\ \mathrm{if}\ b(\tau)\geqslant0\ \mathrm{для}\ \mathrm{всеx}\ \tau\sqsubseteq\sigma\}.$$

- **30.** Докажите, что если $\sigma, \tau \in R$, то $\langle \sigma \rangle, \sigma \tau \in R$.
- **31.** Докажите, что для любого $\sigma \in R \setminus \{\varepsilon\}$ найдется $\tau \in \mathcal{B}^*$, т. ч. $\sigma = \langle \tau \rangle$.

- **32.** Докажите, что для любого $\sigma \in R \setminus \{\varepsilon\}$, если ни для какого $\rho \in R \setminus \{\varepsilon\}$ не верно $\rho \sqsubset \sigma$, то найдется $\tau \in R$, т. ч. $\sigma = \langle \tau \rangle$.
 - **33.** Пусть E'' есть наименьшее $X \subseteq \mathbb{N}$, т. ч.

$$\{0,2\} \subseteq X$$
 и $\forall n \forall m (n,m \in X \Longrightarrow n+m \in X).$

Почему такое множество существует? Докажите, что E'' есть множество всех четных чисел.

- **34.** Пусть $R \subseteq A^2$. Положим $(R)_1 = R$ и $(R)_{n+1} = (R)_n \circ R$ при всех n > 0. Докажите, что
 - a) $(R)_m \circ (R)_n = (R)_{m+n};$
 - б) $\hat{R} = \bigcup_{n \in \mathbb{N}_{+}} (R)_{n}$, где \hat{R} транзитивное замыкание отношения R.
- **35.** Определите «симметричное замыкание» отношения $R \subseteq A^2$ и выразите его через R.

Определим множество S как \subseteq -наименьшее такое $X \subseteq \{\langle, \rangle\}^*$, что

$$\varepsilon \in X$$
 и $\forall \sigma \forall \tau \ (\sigma, \tau \in X \Longrightarrow \langle \sigma \rangle, \sigma \tau \in X).$

Определим множество B как \subseteq -наименьшее такое $X \subseteq \underline{2}^*$, что

$$\{0,1\} \subseteq X$$
 и $\forall \sigma (\sigma \in X \setminus \{0\} \Longrightarrow \sigma 0, \sigma 1 \in X).$

Определим язык Ar замкнутых арифметических термов, состоящий из выражений вроде $\langle \langle 3+2 \rangle \cdot 5 \rangle$, где натуральные числа сами выступают своими обозначениями. Итак, Ar есть наименьшее $X \subseteq (\mathbb{N} \cup \{+,\cdot,\langle,\rangle\})^*$, т. ч.

$$\forall n \in \mathbb{N} \ n \in Ar \quad \text{if} \quad \forall \sigma \forall \tau \left(\sigma, \tau \in X \Longrightarrow \langle \sigma + \tau \rangle, \langle \sigma \cdot \tau \rangle \in X \right).$$

- **36.** Перепишите выше определенные множества (включая \hat{R} и E'') в форме $\mathcal{F}(X)$ для подходящих индуктивного определения \mathcal{F} над U и множества $X \subseteq U$.
- **37.** Докажите, что для каждого $A \subseteq U$ существует индуктивное определение $\mathcal F$ над U, т. ч. $A = \mathcal F(\varnothing)$.
- **38.** Рассмотрим определение $\mathcal{F} = \{+^{(2)}\}$ над множеством \mathbb{Z} . Применяя индукцию по построению, докажите, что $\mathcal{F}(\{1\}) = \mathbb{N}_+$, $\mathcal{F}(\{1,-1\}) = \mathbb{Z}$ и $\mathcal{F}(\{2,-2\}) = 2\mathbb{Z}$.
- **39.** Рассмотрим определение $\mathcal{F} = \{1^{(0)}, +^{(2)}, \cdot^{(2)}, f^{(1)}, g^{(1)}\}$, где f(x) = -x, g(x) = 1/x при $x \neq 0$ и g(0) = 0, над множеством \mathbb{R} . Применяя индукцию по построению, докажите, что
 - a) $\mathcal{F}(\emptyset) = \mathbb{Q};$
 - б) $\mathcal{F}(\{\sqrt{2}\}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \ (m. e. это \mathbb{Q}(\sqrt{2})).$
- **40.** Пусть отношение $R\subseteq A^2$ симметрично. Тогда его транзитивное замыкание \hat{R} также симметрично. Докажите это, применяя

- а) индукцию по построению;
- б) результат задачи 34.
- 41. С помощью индукции по построению докажите, что
- a) $\langle \rangle \rangle \notin S$;
- 6) $000 \notin B$;
- B) $\langle + \rangle \notin Ar$.
- **42.** Докажите, что S = R.
- **43.** Приведите примеры построений элементов относительно данных выше индуктивных определений.
 - 44. С помощью построений докажите, что
 - a) $\langle \rangle \rangle \notin S$;
 - б) $000 \notin B$;
 - B) $\langle + \rangle \notin Ar$.

(Мы используем теорему, что элемент попадает в $\mathcal{F}(X)$ тогда и только тогда, когда имеет соответствующее построение.)

- 45. Докажите, что префикс построения и конкатенация построений есть построение.
- **46.** Пусть \mathcal{F} индуктивное определение над U и $Y,Z\subseteq U$. Используя, если нужно, построения, докажите, что:
 - а) если $Y \subseteq Z$, то $\mathcal{F}(Y) \subseteq \mathcal{F}(Z)$;
 - б) если $u \in \mathcal{F}(Y)$, то $u \in \mathcal{F}(Y')$ для некоторого конечного $Y' \subseteq Y$;
 - B) $\mathcal{F}(\mathcal{F}(Y)) \subseteq \mathcal{F}(Y)$.
- **47.** Обладает ли приведенное выше определение языка S свойством однозначности разбора?

Положим $\mathcal{D}=\{\varepsilon^{(0)},q^{(2)}\}$, где $q(\sigma,\tau)=\langle\sigma\rangle\tau$ для всех $\sigma,\tau\in\mathcal{B}^*$. Язык $D=\mathcal{D}(\varnothing)$ называют языком Дика.

- **48.** Докажите, что D = R.
- **49.** Докажите, что определение ${\cal D}$ обладает свойством однозначности разбора.
- **50.** Пусть C_n есть число правильных скобочных последовательностей длины 2n. Используя однозначность разбора, докажите, что

$$C_0 = 1$$
 и $C_{n+1} = \sum_{k+m=n} C_k \cdot C_m$.

Существуют ли правильные скобочные последовательности нечетной длины?

- **51.** Приведите несколько примеров языков, обладающих и не обладающих свойством беспрефиксности.
- **52.** Докажите, что язык L бессуффиксный тогда и только тогда, когда язык $L^{\mathsf{R}} = \{\sigma^{\mathsf{R}} \mid \sigma \in L\}$ беспрефиксный.
- **53.** Докажите, что язык замкнутых арифметических термов Ar является беспрефиксным.
- ${\bf 54.}$ Используя беспрефиксность, докажите, что приведенное определение языка Ar обладает свойством однозначности разбора.
- **55.** Проверьте однозначность разбора для следующих модификаций определения языка Ar:
 - а) пишем только левую скобку: $\langle \langle 2+3\cdot 5 \text{ и пр.};$
 - б) пишем только правую скобку;
 - в) пишем одинаковые символы вместо правой и левой скобок: $||2+3| \cdot 5|$ и пр.;
 - г) не пишем скобок вовсе.
- **56.** Используя теорему о рекурсии по построению, определите функцию на языке Ar, возвращающую по терму $t \in Ar$
 - а) его значение (натуральное число);
 - б) число закрывающих скобок в терме;
 - в) наибольшую константу, входящую в терм;
 - г) число различных констант, входящих в терм.