Attention and transformers

Сьогодні на лекції

Recurrent Neural Networks

Long short-term memory (LSTM)

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

В чому перевага LSTM?

эже запам'ятати попередні стани

Може забути попередні стани

Може визначити нскільки треба запам'ятати попередні стани

Визначає на скільки ам'ятати/забути попередні стани

Все разом

Seq2Seq models

I am

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Attention mechanism

Additive(*)	$score(s_t, n_i) = v_a \; tallin(vv_a[s_t, n_i])$	
Location-Base	$lpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a oldsymbol{s}_t)$	
	Note: This simplifies the softmax alignment to only depend on the	
	target position.	
Self-	Relating different positions of the same input sequence. Theoretically the	
Attention(&)	self-attention can adopt any score functions above, but just replace the	

Attending to the part of input state space; i.e. a patch of the input image.

 $\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \operatorname{cosine}[\boldsymbol{s}_t, \boldsymbol{h}_i]$

score(e, \mathbf{h} .) - \mathbf{v}^{\top} tanh(\mathbf{W} [e. \mathbf{h} .])

target sequence with the same input sequence.

Attending to the entire input state space.

Content-base

attention

Additivo(*)

Global/Soft

Local/Hard

The_	The_
animal_	animal_
didn_	didn_
'_	'_
t_	t_
cross_	cross_
the_	the_
street_	street_
because_	because_
it_	it_
was_	was_
too_	too_
tire	tire
d_	d_

Що дає механізм уваги?

Transformers – Attention is All You Need

$$c = \sum_j lpha_j h_j$$

$$e_{ij} = a(s_i, h_j), \qquad lpha_{i,j} = rac{\exp(e_{ij})}{\sum_k \exp(e_{ik})}$$

$$e_{ij} = f(s_i)g(h_i)^T$$

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Attention Is All You Need

Multi-head attention

Multi-Head Attention Linear Concat Scaled Dot-Product Attention Linear Linear

