

| Class Name : <b>MATH 1050/1051 Fall 2018</b> | Instructor Name : <b>Nguyen</b> |
|----------------------------------------------|---------------------------------|
| Student Name :                               | Instructor Note:                |

- 1. The length of a rectangle is four times its width. If the perimeter of the rectangle is 60 in, find its area.
- **2.** For each ordered pair, determine whether it is a solution to 5x 3y = 7.

| ( )      | Is it a solution? |    |  |
|----------|-------------------|----|--|
| (x, y)   | Yes               | No |  |
| (5, 6)   | С                 | 0  |  |
| (-4, -1) | c                 | 0  |  |
| (3, -7)  | С                 | O  |  |
| (-6, 2)  | C                 | 0  |  |

3. For each ordered pair, determine whether it is a solution to the system of equations.

$$\begin{cases} 6x - 3y = 9 \\ y = 2x - 3 \end{cases}$$

| ( )     | Is it a solution? |    |  |
|---------|-------------------|----|--|
| (x, y)  | Yes               | No |  |
| (0, -3) | О                 | О  |  |
| (4, -5) | O                 | 0  |  |
| (7, 11) | O                 | 0  |  |
| (-1, 8) | 0                 | 0  |  |

**4.** Suppose that the function f is defined, for all real numbers, as follows.

$$f(x) = \begin{cases} -2 & \text{if } x \neq 1 \\ -3 & \text{if } x = 1 \end{cases}$$

Find 
$$f(-3)$$
,  $f(1)$ , and  $f(4)$ .

$$f(-3)$$

**5.** The function f is defined below.

$$f(x) = \frac{x-4}{x^2 - 10x + 24}$$

Find all values of x that are NOT in the domain of f.

If there is more than one value, separate them with commas.

6. Find the domain of the function.

$$h(x) = \sqrt{35 - 5x}$$

Write your answer using interval notation.

7. Find the domain of the function.

$$f(x) = \frac{\sqrt{1+x}}{-1-3x}$$

Write your answer as an interval or union of intervals.

**8.** Find the difference quotient  $\frac{f(x+h)-f(x)}{h}$ , where  $h\neq 0$ , for the function below.

$$f(x) = 4x^2 - 5x - 4$$

Simplify your answer as much as possible.

**9.** The entire graph of the function f is shown in the figure below. Write the domain and range of f as intervals or unions of intervals.



**10.** Suppose that the functions g and h are defined for all real numbers x as follows.

$$g(x) = 3x - 1$$
$$h(x) = x - 5$$

Write the expressions for (g-h)(x) and (g+h)(x) and evaluate  $(g\cdot h)(2)$ .

$$(g-h)(x)$$

$$(g+h)(x)$$

$$(g \cdot h)(2)$$

11. Graph the equation.

$$y = -2\left|x+3\right| - 5$$



12. Graph the inequality.

$$y \ge -2x + 5$$



13. Suppose that the functions q and r are defined as follows.

$$q(x) = x^2 + 9$$
$$r(x) = \sqrt{x+8}$$

Find the following.

$$(q \circ r)(8)$$
$$(r \circ q)(8)$$

$$(r \circ q)(8)$$

**14.** For each pair of functions f and g below, find f(g(x)) and g(f(x)).

Then, determine whether f and g are inverses of each other.

Simplify your answers as much as possible.

(Assume that your expressions are defined for all x in the domain of the composition.

You do not have to indicate the domain.)

| <u> </u>                                               | to indicate the domain.)                                     |                                                       |                                               |  |
|--------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--|
| (a)                                                    | f(x) = 2x                                                    | (b)                                                   | $f(x) = \frac{x+1}{2}$                        |  |
|                                                        | $g\left(x\right) = \frac{x}{2}$                              |                                                       | $g\left(x\right) = 2x - 1$                    |  |
|                                                        | $f\left(g\left(x\right)\right) =$                            |                                                       | $f\left(g\left(x\right)\right) =$             |  |
|                                                        | $g\left(f\left(x\right)\right) =$                            |                                                       | g(f(x)) =                                     |  |
| -fa                                                    | - $f$ and $g$ are inverses of each other $\left  -f \right $ |                                                       | ${\it -f}$ and $g$ are inverses of each other |  |
| $-f$ and $g$ are $\mathit{not}$ inverses of each other |                                                              | - $f$ and $g$ are $\emph{not}$ inverses of each other |                                               |  |

**15.** The one-to-one functions g and h are defined as follows.

$$g = \{(-2, -3), (1, 4), (4, 1), (8, -1)\}$$

$$h\left(x\right) = \frac{x+2}{11}$$

Find the following.

| $g^{-1}(4)$           | Ш |  |
|-----------------------|---|--|
| $h^{-1}(x)$           | = |  |
| $(h \circ h^{-1})(0)$ | = |  |

**16.** Two functions f and g are defined in the figure below.





Find the domain and range of the composition  $g \circ f$ . Write your answers in set notation.

**17.** Suppose  $H(x) = 5x^6 - 5$ .

Find two functions f and g such that  $(f \circ g)(x) = H(x)$ .

Neither function can be the identity function. (There may be more than one correct answer.)

**18.** Find the average rate of change of  $f(x) = -3x^2 + 9$  from x = -5 to x = -1.

Simplify your answer as much as possible.

- 19. Complete the following.
- (a) The graph of y = g(x) is shown. Draw the graph of y = g(-x) + 3.
- (b) The graph of y = h(x) is shown. Draw the graph of y = 2h(x) 4.





- **20.** (a) The graph of y=f(x) is shown. Draw the graph of y=-f(x). (b) The graph of y=g(x) is shown. Draw the graph of y=g(-x).





- 21. Transform each graph as specified below.
- (a) The graph of y = f(x) is shown. Graph y = f(2x).
- (b) The graph of  $y = g\left(x\right)$  is shown. Graph  $y = \frac{1}{2} g\left(x\right)$ .





## Obj. 6 #5 Answers for class MATH 1050/1051 Fall 2018

**1.** 144in<sup>2</sup>

| ( )      | Is it a solution? |    |  |
|----------|-------------------|----|--|
| (x, y)   | Yes               | No |  |
| (5, 6)   | 0                 | o  |  |
| (-4, -1) | C                 | c  |  |
| (3, -7)  | О                 | ©  |  |
| (-6, 2)  | С                 | ©  |  |

| ()       | Is it a solution? |    |  |
|----------|-------------------|----|--|
| (x, y)   | Yes               | No |  |
| (0, -3)  | •                 | 0  |  |
| (4, - 5) | O                 | 0  |  |
| (7, 11)  | •                 | 0  |  |
| (-1, 8)  | О                 | 0  |  |

4. 
$$f(-3) = -2$$
  
 $f(1) = -3$   
 $f(4) = -2$ 

$$f(1) = -3$$

$$f(4) = -2$$

**5.** 
$$x = 4, 6$$

6. 
$$(-\infty, 7]$$

7. 
$$\left[-1, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$$

8. 
$$8x + 4h - 5$$

9. domain = 
$$(-5, -4) \cup [-2, 2)$$
  
range =  $(-1, 0] \cup (1, 5)$ 

**10.** 
$$(g-h)(x) = 2x + 4$$
  
 $(g+h)(x) = 4x - 6$   
 $(g \cdot h)(2) = -15$ 



12.



**13.** 
$$(q \circ r)(8) = 25$$
  $(r \circ q)(8) = 9$ 

14.

(a) 
$$f(x) = 2x$$

$$g\left(x\right) = \frac{x}{2}$$

$$f(g(x)) = x$$

$$g\left(f\left(x\right)\right) = x$$

- $oldsymbol{\circ}$  f and g are inverses of each other
- $m{\mathbb{C}}\ f$  and g are *not* inverses of each other

 $\text{(b)} \ f(x) = \frac{x+1}{2}$ 

$$g\left(x\right) = 2x - 1$$

$$f(g(x)) = x$$

$$g(f(x)) = x$$

- $oldsymbol{\circ}$  f and g are inverses of each other

| • | 10.                   |   |       |  |
|---|-----------------------|---|-------|--|
|   | $g^{-1}(4)$           | = | 1     |  |
|   | $h^{-1}(x)$           | = | 11x-2 |  |
|   | $(h \circ h^{-1})(0)$ | = | 0     |  |

**16.** Domain of  $g \circ f = \{4, 7, 9\}$  Range of  $g \circ f = \{9\}$ 

17.

$$f(x) = x - 5$$

$$g(x) = 5x^6$$

**18.** 18





## 20.



