Misura della distanza focale di una lente convergente Relazione: Esame di Laboratorio di Fisica 2

Dennis Angemi¹

¹Dipartimento di Fisica e Astronomia "Ettore Majorana", Università degli Studi di Catania

dd giugno 2023

1 Introduzione

- 1.1 Scopo della misura
- 1.2 Cenni teorici
- 2 Descrizione dell' apparato sperimentale
- 2.1 Principio di funzionamento degli apparecchi
- 2.2 Caratteristiche degli strumenti di misura
- 3 Esecuzione dell' esperienza
- 3.1 Procedura
- 3.2 Dati sperimentali

configuration	$x_p [cm]$	$x_o [cm]$	
1	4.60 ± 0.05	10.10 ± 0.05	

Table 1: Dati grezzi configurazione 1

dove

- x_p rappresenta la posizione del proiettore;
- \bullet x_o rappresenta la posizione dell'oggetto;

measure ID	$x_l \pm 0.05 \ cm$	$x_{s,inf} \pm 0.05 \ cm$	$x_{s,sup} \pm 0.05 \ cm$	$\begin{array}{c} l_{inf} \\ \pm \ 0.005 \ cm \end{array}$	$l_{sup} \pm 0.005 \ cm$
C1M1	21.80	66.30	78.40	6.360	7.850
C1M2	22.50	60.40	65.90	5.090	6.230

measure ID	$x_l \pm 0.05 \ cm$	$x_{s,inf} \pm 0.05 \ cm$	$x_{s,sup} \pm 0.05 \ cm$	$l_{inf} \pm 0.005 \ cm$	$l_{sup} \pm 0.005 \ cm$
C1M3	23.00	59.90	64.90	5.065	6.095
C1M4	23.50	56.85	58.90	4.235	4.850
C1M5	24.00	55.30	56.80	3.985	4.320
C1M6	24.50	53.70	54.30	3.600	3.275
C1M7	24.80	52.85	54.50	3.265	3.890
C1M8	25.00	52.80	53.80	3.410	3.535
C1M9	25.30	51.90	53.00	3.150	3.995
C1M10	25.50	51.60	52.80	3.000	3.285

Table 2: Dati grezzi configurazione 1

dove

- x_l rappresenta la posizione della lente;
- $x_{s,inf}$ e $x_{s,inf}$ rappresentano rispettivamente la posizione dell'estremo inferiore de di quello superiore dell'intervallo in cui l'immagine appare nitida sullo schermo;
- l_{inf} e l_{sup} rappresentano rispettivamente l'estremo inferiore e superiore dell'intervallo delle lunghezze dell'immagine della fenditura per cui essa fosse nitida;

4 Analisi dei dati

5 Conclusione

6 Note aggiuntive

6.1 Data availability

The data that support the findings of this study are openly available in dennisangemi/lab2-exam GitHub Repository at https://github.com/dennisangemi/lab2-exam/tree/main/data under CC-BY 4.0 license.

6.2 Code availability

The MATLAB code written to get the findings of this study is openly available in dennisangemi/lab1-exam GitHub Repository at https://github.com/dennisangemi/lab1-exam/tree/main/scripts

6.3 Software usati

• Google Sheets: Data Collection

• MATLAB: Data Analysis

• GitHub: Resource sharing

• Figma: Images designing

7 Bibliography

- Taylor, J. (1999). Introduzione all'analisi degli errori: Lo studio delle incertezze nelle misure fisiche. Zanichelli
- Bevington, P. (2002). Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Education
- Malthe-Sørenssen, A. (2015). Elementary Mechanics Using Matlab: A Modern Course Combining Analytical and Numerical Techniques. Springer
- Mazzoldi, P., Nigro, M., Voci, C. (2001). Fisica. Meccanica, termodinamica (Vol. 1). Edises

7.1 Bibliografia/sitografia

 \bullet scheda esperienza https://cms333.ct.infn.it/costa/Lab2/Schede/Lente-Convergente/Lente-Convergente.pdf