

Stroke Mortality Predictor

University of Minnesota Data Visualization and Analytics Boot Camp
Team 2 — Janice Courtois, Alex Norgren, Tom Pankratz, Rachel Rautenberg
June 9, 2022

Team 2

Team 2 members all work at Mayo Clinic.

Janice Courtois

- Works in Healthcare Technology Management
- Lives on horse ranch in AZ
- Travels often to visit kids & grandson

Alex Norgren

- Works in a Lab
- Enjoys to golf

Tom Pankratz

- 19 years at Mayo Clinic
- Manages a digital experimentation team
- Dad of 4

Rachel Rautenberg

- Holds MHA
- 14 years at Mayo
- Mom of 4
- Enjoys the chaos

Topic: Stroke mortality

Goal of project & questions?

Brainstorming possible factors

Factors we landed on

Health-related:

- Smoking
- Obesity
- Access to healthy foods
- Access to exercise opportunities
- Primary care availability
- Availability of mental health providers

Social-related:

- College education
- Unemployment
- Income
- Violent crime rate
- Air pollution
- Length and type of commute to work
- Urban vs. rural

Source data

Stroke Mortality Data Among US Adults (35+) by State/Territory and County (2018)

County Health Rankings (2018)

Data exploration and integration

Target: Stroke mortality dataset

Features: Health rankings datasets

Establish Connection to Database

View of live connection via AWS

Datasets merge via PostgreSQL

Ready for Machine Learning!

Exploring for Machine Learning

- Decide prediction target
- Research & decide machine learning model
- Build machine learning model

Machine Learning

- Training & testing split
- Optimization

Model importances

Model importances: Top 5

Results

Did the model work?

- All data: 12.13
- Health features: 13.12
- Economic/Environmental Features: 13.21

Model output and usage

We wondered:

Could we input variations of the feature data to determine what sort of effect it would have on stroke mortality?

The stroke mortality predictor form & dashboard

Results

Percent Smokers appeared to have the largest impact on stroke mortality, but beyond that, it was difficult to determine impacts from the other features. It was likely less a matter of machine learning model choice, and more a matter of the choice of features/factors.

Recommendations

(what could we have done differently?)

As a starting point, we could have chosen features/factors that have already been determined by the health care community to have a larger impact on predicting stroke mortality.

According to Mayo Clinic.org, here are several:

- Physical inactivity
- Heavy or binge drinking
- Use of illegal drugs such as cocaine and methamphetamine
- High blood pressure
- Cigarette smoking or secondhand smoke exposure
- High cholesterol
- Diabetes

Questions?