Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Домашняя работа № 3 по дисциплине "Конструкторско-техническое обеспечение производства ЭВМ" Вариант 12

Выполнил:

Чебыкин И. Б.

Группа: РЗ401

Проверяющий: Поляков В. И.

Исходные данные

Цепей: 21 модулей: 13

Цепь	Модуль	/	Контакт
1	13/5	7/2	8/2
2	1/9	3/14	10/9
3	12/12	13/10	11/9
4	9/9	5/12	
5	12/5	8/5	
6	13/8	6/14	12/10
7	5/10	13/6	12/7
8	13/7	1/2	7/13
9	12/1	9/2	4/8
10	13/12	8/7	5/4
11	7/5	4/3	
12	13/13	10/6	12/3
13	13/11	11/12	8/3
14	13/1	12/11	11/7
15	12/6	6/5	
16	11/13	11/4	
17	8/8	7/8	11/8
18	13/3	12/9	
19	11/5	9/3	4/11
20	10/11	2/5	
21	13/4	5/2	2/12

Матрица комплексов Q

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
u_1	0	0	0	0	0	0	1	1	0	0	0	0	1
u_2	1	0	1	0	0	0	0	0	0	1	0	0	0
u_3	0	0	0	0	0	0	0	0	0	0	1	1	1
u_4	0	0	0	0	1	0	0	0	1	0	0	0	0
u_5	0	0	0	0	0	0	0	1	0	0	0	1	0
u_6	0	0	0	0	0	1	0	0	0	0	0	1	1
u_7	0	0	0	0	1	0	0	0	0	0	0	1	1
u_8	1	0	0	0	0	0	1	0	0	0	0	0	1
u_9	0	0	0	1	0	0	0	0	1	0	0	1	0
u_{10}	0	0	0	0	1	0	0	1	0	0	0	0	1
u_{11}	0	0	0	1	0	0	1	0	0	0	0	0	0
u_{12}	0	0	0	0	0	0	0	0	0	1	0	1	1
u_{13}	0	0	0	0	0	0	0	1	0	0	1	0	1
u_{14}	0	0	0	0	0	0	0	0	0	0	1	1	1
u_{15}	0	0	0	0	0	1	0	0	0	0	0	1	0

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
$\overline{u_{16}}$	0	0	0	0	0	0	0	0	0	0	1	0	0
u_{17}	0	0	0	0	0	0	1	1	0	0	1	0	0
u_{18}	0	0	0	0	0	0	0	0	0	0	0	1	1
u_{19}	0	0	0	1	0	0	0	0	1	0	1	0	0
u_{20}^{-3}	0	1	0	0	0	0	0	0	0	1	0	0	0
u_{21}^{-3}	0	1	0	0	1	0		0		0	0	0	1

Матрица смежности R

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
$\overline{e_1}$	0	0	1	0	0	0	1	0	0	1	0	0	1
e_2	0	0	0	0	1	0	0	0	0	1	0	0	1
e_3	1	0	0	0	0	0	0	0	0	1	0	0	0
e_4	0	0	0	0	0	0	1	0	2	0	1	1	0
e_5	0	1	0	0	0	0	0	1	1	0	0	1	3
e_6	0	0	0	0	0	0	0	0	0	0	0	2	1
e_7	1	0	0	1	0	0	0	2	0	0	1	0	2
e_8	0	0	0	0	1	0	2	0	0	0	2	1	3
e_9	0	0	0	2	1	0	0	0	0	0	1	1	0
e_{10}	1	1	1	0	0	0	0	0	0	0	0	1	1
e_{11}	0	0	0	1	0	0	1	2	1	0	0	2	3
e_{12}	0	0	0	1	1	2	0	1	1	1	2	0	6
e_{13}	1	1	0	0	3	1	2	3	0	1	3	6	0

Выполнение

Поиск гамильтонова цикла

$$S = \{e_1, e_3, e_{10}, e_2, e_5, e_8, e_7, e_4, e_9, e_{11}, e_{12}, e_6, e_{13}\}$$

Перенумеруем вершины графа таким образом, чтобы ребра гамильтонова цикла были внешними:

Старые	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
Новые													

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
$\overline{e_1}$	0	1	1	0	0	0	1	0	0	0	0	0	1
e_2^-	1	0	1	0	0	0	0	0	0	0	0	0	0
e_3^-	1	1	0	1	0	0	0	0	0	0	1	0	1
e_4	0	0	1	0	1	0	0	0	0	0	0	0	1
e_5	0	0	0	1	0	1	0	0	1	0	1	0	3

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
$\overline{e_6}$	0	0	0	0	1	0	2	0	0	2	1	0	3
e_7	1	0	0	0	0	2	0	1	0	1	0	0	2
e_8	0	0	0	0	0	0	1	0	2	1	1	0	0
e_9	0	0	0	0	1	0	0	2	0	1	1	0	0
e_{10}	0	0	0	0	0	2	1	1	1	0	2	0	3
e_{11}	0	0	1	0	1	1	0	1	1	2	0	2	6
e_{12}	0	0	0	0	0	0	0	0	0	0	2	0	1
e_{13}	1	0	1	1	3	3	2	0	0	3	6	1	0

Рис. 1: Граф по матрице смежности после перенумерования

Пересечения ребер:

e_3 - e_{13} :	e_1 - e_7				
e_3 - e_{11} :	e_1 - e_7				
e_4 - e_{13} :	e_1 - e_7	e_3 - e_{11}			
e_{5} - e_{13} :	e_1 - e_7	e_3 - e_{11}			
e_5 - e_{11} :	e_1 - e_7				
e_{5} - e_{9} :	e_1 - e_7				
e_6 - e_{13} :	e_1 - e_7	e_3 - e_{11}	e_5 - e_{11}	e_5 - e_9	

```
e_6-e_{11}: e_1-e_7 e_5-e_9
e_6-e_{10}:
             e_1-e_7
                         e_5-e_9
e_{7}-e_{13}:
            e_3-e_{11} e_5-e_{11} e_5-e_9 e_6-e_{11} e_6-e_{10}
e_{7}-e_{10}:
            e_5-e_9
e_8-e_{11}:
            e_5-e_9
                       e_6-e_{10} e_7-e_{10}
e_{8}-e_{10}:
            e_5-e_9
e_9-e_{11}:
            e_6\hbox{-}e_{10} e_7\hbox{-}e_{10} e_8\hbox{-}e_{10}
e_{10}-e_{13}: e_{3}-e_{11} e_{5}-e_{11} e_{6}-e_{11}
                                                e_8-e_{11} e_9-e_{11}
```

Новая нумерация ребер:

[1]	e_{3} - e_{13}
[2]	e_{3} - e_{11}
[3]	e_4 - e_{13}
[4]	e_5 - e_{13}
[5]	e_5 - e_{11}
[6]	e_5 - e_9
[7]	e_6 - e_{13}
[8]	e_6 - e_{11}
[9]	e_6 - e_{10}
[10]	$e_{7} - e_{13}$
[11]	$e_{7} - e_{10}$
[12]	e_{8} - e_{11}
[13]	e_8 - e_{10}
[14]	e_9 - e_{11}
[15]	e_{10} - e_{13}
[16]	e_1 - e_7

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
[1]	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
[2]	0	1	1	1	0	0	1	0	0	1	0	0	0	0	1	1
[3]	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
[4]	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1
[5]	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1
[6]	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	1
[7]	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	1
[8]	0	0	0	0	0	1	0	1	0	1	0	0	0	0	1	1
[9]	0	0	0	0	0	1	0	0	1	1	0	1	0	1	0	1
[10]	0	1	0	0	1	1	0	1	1	1	0	0	0	0	0	0
[11]	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0
[12]	0	0	0	0	0	1	0	0	1	0	1	1	0	0	1	0
[13]	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0
[14]	0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0
[15]	0	1	0	0	1	0	0	1	0	0	0	1	0	1	1	0

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
[16]	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1

Семейство максимальных внутренне устойчивых множеств ψ_G

$\overline{\psi_1}$	1	2	5	6	14			
ψ_2	1	2	5	8	9	11	13	
ψ_3	1	2	5	8	12	13		
ψ_4	1	2	5	8	12	14		
ψ_5	1	3	4	5	6	14		
ψ_{ϵ}	1	3	4	5	8	9	11	13
ψ_7	1	3	4	5	8	12	13	
ψ_8	1	3	4	5	8	12	14	
ψ_9	1	3	4	6	15			
ψ_{10}	1	3	4	7	8	9	11	13
ψ_{11}	1	3	4	7	8	12	13	
ψ_{12}	1	3	4	7	8	12	14	
ψ_{13}	1	3	4	7	9	11	13	15
ψ_{14}	1	3	4	7	10	11	13	15
ψ_{15}	1	3	4	7	10	12	13	
ψ_{16}	1	3	4	7	10	12	14	
ψ_{17}	10	11	13	15	16			
ψ_{18}	10	12	13	16				
ψ_{19}	10	12	14	16				

Для каждой пары множеств вычислим значение критерия $\alpha_{\gamma\delta}=|\psi_{\gamma}|+|\psi_{\delta}|-|\psi_{\gamma}\cup\psi_{\delta}|.$ Результаты вычислений запишем в матрицу $\mathbf{A}=||\alpha_{\gamma\delta}||.$

	ψ_1	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}	ψ_{13}	ψ_{14}	ψ_{15}	ψ_{16}	ψ_{17}	ψ_{18}	ψ_{19}
ψ_1	0	9	8	7	7	11	10	9	8	12	11	10	12	12	11	10	10	9	8
ψ_2		0	8	9	11	9	10	11	11	10	11	12	11	12	12	13	10	10	11
ψ_3			0	7	10	10	8	9	10	11	9	10	12	12	10	11	10	8	9
ψ_4				0	9	11	9	8	10	12	10	9	13	13	11	10	11	9	8
ψ_5					0	10	9	8	7	11	10	9	11	11	10	9	11	10	9
ψ_6						0	9	10	10	9	10	11	10	11	11	12	11	11	12
ψ_7							0	8	9	10	8	9	11	11	9	10	11	9	10
ψ_8								0	9	11	9	8	12	12	10	9	12	10	9
ψ_9									0	10	9	9	9	9	9	9	9	9	9
ψ_{10}										0	9	10	9	10	10	11	11	11	12
ψ_{11}											0	8	10	10	8	9	11	9	10
ψ_{12}												0	11	11	9	8	12	10	9
ψ_{13}													0	9	10	11	10	11	12
ψ_{14}														0	9	10	9	10	11
ψ_{15}															0	8	10	8	9

	ψ_1	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}	ψ_{13}	ψ_{14}	ψ_{15}	ψ_{16}	ψ_{17}	ψ_{18}	ψ_{19}
$\overline{\psi_{16}}$																0	11	9	8
ψ_{17}																	0	6	7
ψ_{18}																		0	5
ψ_{19}																			0

Наибольшее значение функция принимает на паре $\psi 2 - \psi 16$, равное 13 Убираем рёбра, содержащиеся в $\psi 2$ или $\psi 16$

Остается:

$$\psi'1 = \{6, 15\}$$
$$\psi'2 = \{15, 16\}$$

Найдём новую матрицу А:

$$\begin{array}{c|cccc}
 & \psi'1 & \psi'2 \\
\hline
\psi'1 & 0 & 3 \\
\psi'2 & & 0
\end{array}$$

Наибольшее значение функция принимает на паре ψ '1 – ψ '2, равное 3 Убираем рёбра, содержащиеся в ψ '1 или ψ '2

Новое семейство пустое. Все рёбра реализованы.

Итоговая толщина графа m = 2

Планарные графы см. в приложении.

Проверка изоморфизма графов

Критерий	Исходная матрица	Преобразованная матрица	Соответствие
Число вершин m	13	13	+
Число рёбер k	31	31	+
Компоненты связности p(g)	1	1	+
Степени вершин	[9, 8, 6, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2]	[9, 8, 6, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2]	+

По основным инвариантам графы совпадают.

Разобьем вершины на классы по их степеням:

9	[13]	[13]
8	[12]	[11]
6	[11]	[10]
5	[5, 7, 8, 10]	[3, 5, 6, 7]

Измененный граф ВЫПОЛНЕНИЕ

4	[1, 4, 9]	[1, 8, 9]
3	[2]	[4]
2	[3, 6]	[2, 12]

Точные соответствия

X	Y
13	13
12	11
11	10
2	4

Свяжем установленные вершины с неустановленными вершинами.

X	X	Y	Y
13	5	13	3
12	7	11	5
11	8	10	6
2	10	4	7
	1		1
	4		8
	9		9
	3		2
	6		12

У графа есть вершины с нечётным количеством смежных рёбер. Дополним граф так, чтобы их не было.

Измененный граф

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
$\overline{e_1}$	0	0	1	0	0	0	1	0	0	1	0	0	1
e_2^-	0	0	0	0	1	0	1	0	0	1	0	0	1
e_3^-	1	0	0	0	0	0	0	0	0	1	0	0	0
e_4	0	0	0	0	0	0	1	0	1	0	1	1	0
e_5	0	1	0	0	0	0	0	1	1	1	0	1	1
e_6	0	0	0	0	0	0	0	0	0	0	0	1	1
e_7	1	1	0	1	0	0	0	1	0	0	1	0	1
e_8	0	0	0	0	1	0	1	0	0	0	1	1	1
e_9	0	0	0	1	1	0	0	0	0	0	1	1	0
e_{10}	1	1	1	0	1	0	0	0	0	0	0	1	1
e_{11}^{-3}	0	0	0	1	0	0	1	1	1	0	0	1	1

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
$\overline{e_{12}}$	0	0	0	1	1	1	0	1	1	1	1	0	1
e_{13}	1	1	0	0	1	1	1	1	0	1	1	1	0

Эйлеров цикл:

Приложение

Рис. 2: Граф пересечений

Рис. 3: До преобразований (внутренние)

Рис. 4: До преобразований (внешние)

Рис. 5: После 1 преобразования (внутренние)

Рис. 6: После 1 преобразования (внешние)