

Course code	Course Name	L-T-P -Credits	Year of Introduction	
CS404	Embedded Systems	3-0-0-3	2016	

Course Objectives:

- To introduce the technologies behind embedded computing systems.
- To introduce and discuss various software components involved in embedded system design and development.
- To expose students to the recent trends in embedded system design.

Syllabus:

Introduction to embedded systems, basic components, its characteristics. Modelling embedded systems, firmware development. Integration and testing of embedded systems, development environment. Characteristics of RTOS, interrupt handling, creating tasks in a typical RTOS. Embedded product development life cycle.

Expected Outcome:

The Student will be able to:

- i. demonstrate the role of individual components involved in a typical embedded system
- ii. analyze the characteristics of different computing elements and select the most appropriate one for an embedded system
- iii. model the operation of a given embedded system
- iv. substantiate the role of different software modules in the development of an embedded system
- v. develop simple tasks to run on an RTOS
- vi. examine the latest trends prevalent in embedded system design

References:

- 1. J Staunstrup and Wayne Wolf, Hardware / Software Co-Design: Principles and Practice, Prentice Hall.
- 2. Jean J. Labrose, Micro C/OS II: The Real Time Kernel, 2e, CRC Press, 2002.
- 3. Raj Kamal, Embedded Systems: Architecture, Programming and Design, Third Edition, McGraw Hill Education (India), 2014.
- 4. Shibu K.V., Introduction to Embedded Systems, McGraw Hill Education (India), 2009.
- 5. Steave Heath, Embedded System Design, Second Edition, Elsevier.
- 6. Wayne Wolf, Computers as Components-Principles of Embedded Computer System Design, Morgan Kaufmann publishers, Third edition, 2012.

Course Plan

Module	Contents	Hours	End Sem. Exam Marks
I	Fundamentals of Embedded Systems- complex systems and microprocessors- Embedded system design process .Specifications- architecture design of embedded system-design of hardware and software components- structural and behavioural description.	6	15%
II	Hardware Software Co-Design and Program Modelling – Fundamental Issues, Computational Models- Data Flow Graph, Control Data Flow Graph, State Machine, Sequential Model, Concurrent Model, Object oriented model, UML	9	15%

FIRST INTERNAL EXAMINATION				
III	Design and Development of Embedded Product – Firmware Design and Development – Design Approaches, Firmware Development Languages.	6	15%	
IV	Integration and Testing of Embedded Hardware and Firmware- Integration of Hardware and Firmware. Embedded System Development Environment – IDEs, Cross Compilers, Disassemblers, Decompilers, Simulators, Emulators and Debuggers.	6	15%	
SECOND INTERNAL EXAMINATION				
V	RTOS based Design – Basic operating system services. Interrupt handling in RTOS environment. Design Principles. Task scheduling models. How to Choose an RTOS. Case Study – MicroC/OS-II.	9	20%	
VI	Networks – Distributed Embedded Architectures, Networks for embedded systems, Network based design, Internet enabled systems. Embedded Product Development Life Cycle – Description – Objectives -Phases – Approaches 1. Recent Trends in Embedded Computing.	6	20%	
	FND SEMESTER FYAM			

END SEMESTER EXAM

Question Paper Pattern

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks: 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI). All questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I** & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have maximum THREE subparts.

4. Part C

- a. Total marks: 18
- b. *THREE* questions, each having **9 marks**. One question is from **module III**; one question is from **module IV**; one question *uniformly* covers **modules III** & **IV**.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks: 24
- b. *THREE* questions, each having **12 marks**. One question is from **module V**; one question is from **module VI**; one question *uniformly* covers **modules V** & VI
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* **50**% analytical/numerical questions in all possible combinations of question choices.