Introduction to Imaginary-Time Path Integrals

Qijing Zheng

Department of Physics

University of Science and Technology of China

2019/10/10

Outline

Introduction

2 Basics of Imaginary-time Path Integrals

How to model the dynamics of electrons and nuclei from ab initio?

The time-dependent Schrödinger equation:

$$i\hbar \frac{\partial \Psi(\mathbf{r}, \mathbf{R}, t)}{\partial t} = \hat{\mathcal{H}}(\mathbf{r}, \mathbf{R}) \Psi(\mathbf{r}, \mathbf{R}, t)$$

In practice, approximations have to be made! 1

¹ "Ab initio molecular dynamics", Mariana Rossi, DFT Workshop 2017

Nuclear Quantum Effects

The *thermal* de Broglie wavelength of a particle:

$$\Lambda = \frac{h}{\sqrt{2\pi m k_B T}}$$

for a hydrogen atom at 300 K, $\Lambda \approx 1.0$ Å.

other nuclear quantum effects: exchange effects, quantum coherence...

• NQEs are important for any vibrational mode for which $\hbar\omega/k_B\,T>1$. If $T=300\,{\rm K}$, $\omega\approx208\,{\rm cm}^{-1}$.

Outline

Introduction

2 Basics of Imaginary-time Path Integrals

Path Integral Isomorphism I

For a single particle moving in one spatial dimension potential 2

$$\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + \hat{V}(\hat{x}) \equiv \hat{T} + \hat{V}$$

The quantum partition function

$$\begin{split} Z &= \text{tr}\left[e^{-\beta\hat{\mathcal{H}}}\right] = \text{tr}\left[\left(e^{-\frac{\beta}{P}\hat{\mathcal{H}}}\right)^{P}\right] = \text{tr}\left[\left(e^{-\beta_{P}\hat{\mathcal{H}}}\right)^{P}\right] \\ &= \int \mathrm{d}x_{1} \left\langle x_{1} | \left(e^{-\beta_{P}\hat{\mathcal{H}}}\right)^{P} | x_{1} \right\rangle \\ &= \int \mathrm{d}x_{1} \dots \int \mathrm{d}x_{P} \left\langle x_{1} | e^{-\beta_{P}\hat{\mathcal{H}}} | x_{2} \right\rangle \dots \left\langle x_{P} | e^{-\beta_{P}\hat{\mathcal{H}}} | x_{1} \right\rangle \end{split}$$

Note the connection between the quantum propagator and the density matrix,

$$\langle x'|e^{-i\hat{\mathcal{H}}t/\hbar}|x\rangle \qquad \Rightarrow \qquad \langle x'|e^{-\beta\hat{\mathcal{H}}}|x\rangle; \quad t=-i\beta\hbar$$

Hence the name imaginary-time path integral. By using the Trotter splitting³

$$\begin{split} e^{-\beta_P \hat{\mathcal{H}}} &= e^{-\beta_P \hat{V}/2} e^{-\beta_P \hat{T}} e^{-\beta_P \hat{V}/2} + \mathcal{O}(\beta_P^3) \\ \Rightarrow & \langle x_i | e^{-\beta_P \hat{\mathcal{H}}} | x_j \rangle \approx \left(\frac{m}{2\pi\beta_P \hbar^2} \right)^{1/2} e^{-\beta_P \left[\frac{m}{2(\beta_P \hbar)^2} (x_i - x_j)^2 + \frac{1}{2} \left(V(x_i) + V(x_j) \right) \right]} \end{split}$$

 ✓ □ ▷ ✓ ⓓ ▷ ✓ ⓓ ▷ ✓ ⓓ ▷ ☒
 ♥ ○ ○

 Q.J. Zheng (D.P. USTC)
 2019/10/10
 6/19

Path Integral Isomorphism II

$$\begin{split} Z &= \operatorname{tr} \left[e^{-\beta \hat{\mathcal{H}}} \right] \\ &= \lim_{P \to \infty} \int \mathrm{d} x_1 \dots \int \mathrm{d} x_P \, \left(\frac{m}{2\pi \beta_P \hbar^2} \right)^{P/2} \exp \left\{ -\beta_P \underbrace{\sum_{i=1}^P \left[\frac{m}{2(\beta_P \hbar)^2} (x_{i+1} - x_i)^2 + V(x_i) \right]}_{V_{\text{eff}}(x_1, \dots, x_P)} \right\} \bigg|_{x_{P+1} = x_1} \end{split}$$

- Maps the quantum partition function to the configuration integral of classical ring-polymers.
- **EXACT** when $P \to \infty$. Reduce to classical partition function when P = 1.
- The integral can be sampled with Monte Carlo method (PIMC, not covered in this talk), but for MD we need momenta!

4□▶<</p>
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

² "Statistical Mechanics: Theory and Molecular Simulation", Mark E. Tuckerman

³There are higher-order splitting techniques.

Expectation Values from Path Integral

For a Hermitian operator \hat{A} , the expectation value follows,

$$\left\langle \hat{A}\right\rangle =\frac{1}{Z}\operatorname{tr}\left[\hat{A}e^{-\beta\hat{\mathcal{H}}}\right]=\frac{1}{Z}\operatorname{tr}\left[\hat{A}(e^{-\beta\rho\hat{\mathcal{H}}})^{P}\right]$$

if \hat{A} is purely a function of \hat{x} , i.e. $\hat{A}(\hat{x})|x\rangle = a(x)|x\rangle$, then ⁴

$$\begin{split} \langle \hat{A} \rangle &= \frac{1}{Z} \lim_{P \to \infty} \int \mathrm{d}x_1 \dots \int \mathrm{d}x_P \, \left(\frac{m}{2\pi\beta_P \hbar^2} \right)^{P/2} \\ &\qquad \left(\frac{1}{P} \sum_{i=1}^P \mathsf{a}(x_i) \right) \exp \left\{ -\beta_P \sum_{i=1}^P \left[\frac{m}{2(\beta_P \hbar)^2} (x_{i+1} - x_i)^2 + V(x_i) \right] \right\} \bigg|_{x_{P+1} = x_i} \end{split}$$

- If \hat{A} is a function of momentum operator \hat{p} , then the *cyclic-path* condition $x_{P+1} = x_1$ is released, in which case one should resort to the so-called *open-path* path integral method.
- The thermodynamic functions, which may depend on both \hat{x} and \hat{p} , are exceptional because thermodynamic relations can be used. For example

$$E = \langle \hat{\mathcal{H}} \rangle = \langle \frac{\hat{\rho}^2}{2m} + V(\hat{x}) \rangle = -\frac{\partial}{\partial \beta} \ln Z = \frac{1}{Z} \frac{\partial Z}{\partial \beta}$$

Q.J. Zheng (D.P. USTC) 2019/10/10

PIMD — Introducing Momenta

Insert
$$P$$
 Gaussian integral into Z : $\left(\frac{\beta}{2\pi\tilde{m}}\right)^{1/2}\int \mathrm{d}p\,\mathrm{e}^{-\beta p^2/2\tilde{m}}=1$

$$Z = \left(\frac{1}{2\pi\hbar}\right)^P \prod_{i=1}^P \sqrt{\frac{m}{\tilde{m}_i}} \lim_{P \to \infty} \int \mathrm{d}x_1 \dots \int \mathrm{d}x_P \int \mathrm{d}p_1 \dots \int \mathrm{d}p_P$$

$$= \exp\left\{-\beta_P \sum_{i=1}^P \left[\frac{p_i^2}{2\tilde{m}_i} + \frac{m}{2(\beta_P \hbar)^2} (x_{i+1} - x_i)^2 + V(x_i)\right]\right\}$$

$$= \mathcal{C}\lim_{P \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

$$= \lim_{p \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

$$= \lim_{p \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

$$= \lim_{p \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

$$= \lim_{p \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

$$= \lim_{p \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

$$= \lim_{p \to \infty} \int \mathrm{d}\mathbf{x}^P \int \mathrm{d}\mathbf{p}^P \exp\left[-\beta_P H_P(\mathbf{x}, \mathbf{p})\right]$$

• PIMD trajectories are obtained by integrating Hamilton's classical equaiton of motion

$$\frac{\mathrm{d}\boldsymbol{p}_i}{\mathrm{d}\boldsymbol{t}} = + \frac{\partial H_P(\mathbf{x}, \mathbf{p})}{\partial x_i}; \qquad \frac{\mathrm{d}x_i}{\mathrm{d}\boldsymbol{t}} = - \frac{\partial H_P(\mathbf{x}, \mathbf{p})}{\partial \boldsymbol{p}_i}$$

- $\beta_P H_P(\mathbf{x}, \mathbf{p}) \Rightarrow \beta (H_P(\mathbf{x}, \mathbf{p})/P)$, which affects the dynamics but not the statistics.
- Different mass matrices give the same static average, only dynamics will be changed.
- Mathematically, the main difference between PIMD, PACMD and RPMD is the choice of the mass matrix. Physically, they differ dramatically!

Q.J. Zheng (D.P. USTC) 2019/10/10

Multiparticle Generalization

For a system of *N distinguishable* nuclei, ⁵

$$\hat{\mathcal{H}}_P = \sum_I^N \frac{\mathbf{p}_I^2}{2m_I} + \frac{\hat{V}(\mathbf{x}_1, \dots, \mathbf{x}_N)}{\bigwedge \text{ Potential energy: could be from emperical potential or from } ab}$$

implied.

The PIMD Hamiltonian is

 $H_{P}(\{\mathbf{x}\}, \{\mathbf{p}\}) = \sum_{I=1}^{N} \sum_{i=1}^{P} \left[\frac{(\mathbf{p}_{I}^{i})^{2}}{2\tilde{m}_{I}^{i}} + \frac{1}{2} m_{I} \omega_{P}^{2} (\mathbf{x}_{I}^{i+1} - \mathbf{x}_{I}^{i})^{2} \right] + \sum_{i=1}^{P} \hat{V}(\mathbf{x}_{1}^{i}, \dots, \mathbf{x}_{N}^{i})$ sum over nuclei index sum over bead index $\omega_{P} = Pk_{B}T/\hbar$

initio calculations. Born-Oppenheimer approximation implicitly

classical ring-polymers

4 D > 4 A > 4 B > 4 B >

10 / 19

Q.J. Zheng (D.P. USTC) 2019/10/10

 $^{^{5}}$ We are neglecting the exchange effect, which is generally fine for nuclei (unless treating 4 K Helium) but not for electrons.

Terminologies and Properties of the Ring-Polymer

• Radius of Gyration – the spread in imaginary time. For a free particle the root mean square radius of gyration is:

$$\left\langle r_G^2(T) \right\rangle^{1/2} = \frac{\Lambda(T)}{\sqrt{8\pi}} \qquad \qquad \Lambda(T) = \frac{h}{\sqrt{2\pi m k_B T}}$$

$$\Lambda(T) = \frac{h}{\sqrt{2\pi m k_B T}}$$

 Bead to bead distance – For a free particle the average is:

$$\sqrt{\frac{\beta\hbar^2}{Pm}}$$

Note the distance decreases as P increases

 Centroid – the center of the Ring-Polymer.

$$x_c = \frac{1}{P} \sum_{i=1}^P x_i$$

Bead spring constants ⁶ – determined by mω²_P

$$\omega_P = rac{1}{eta_P \hbar} = P k_B T / \hbar$$

The overall object is referred to as an Imaginary Time Path or a Ring-Polymer.

Ring-Polymer Normal Modes

• Normal Modes: – the ring-polymer potential can be diagonalized

$$\sum_{i=1}^P \frac{1}{2} m \omega_P^2 (x_{i+1} - x_i)^2 \quad \Longleftrightarrow \quad \begin{aligned} \tilde{\mathbf{x}} &= \mathbf{U} \cdot \mathbf{x} \\ \mathbf{x} &= \mathbf{U}^T \cdot \tilde{\mathbf{x}} \end{aligned} \qquad \Longleftrightarrow \quad \sum_{j=1}^P \frac{1}{2} m \Omega_j^2 \tilde{x}_j^2;$$

where x is the bead Cartesian coordinate and \tilde{x} is the normal mode coordinate.

- \tilde{x}_1 corresponds to the centroid motion and $\Omega_1=0.$
- The transformation $\tilde{\mathbf{x}} \Leftrightarrow \mathbf{x}$ can be done with FFT.⁷
- The normal mode frequencies ⁸

$$\Omega_j = 2\omega_P \sin\left(rac{(j-1)\pi}{P}
ight)$$

e.g.
$$P = 8$$

• The matrix element U_{kj} of the unitary transformation matrix ${\bf U}$ for even P

$$\begin{cases} \sqrt{1/P}, & k = 1 \\ \sqrt{2/P} \cos \left(\frac{2\pi}{P}(j-1)(k-1)\right), & 2 \leqslant k \leqslant P/2 \\ \sqrt{1/P}(-1)^j, & k = P/2 + 1 \\ \sqrt{2/P} \sin \left(\frac{2\pi}{P}(j-1)(k-1)\right), & P/2 + 2 \leqslant k \leqslant P \end{cases}$$

and
$$\tilde{x}_k = \sum_{j=1}^P U_{kj} x_j$$
.

• Note if we choose $\beta_P H_P \Rightarrow \beta(H_P/P)$, then

$$\tilde{\mathbf{x}} = \frac{1}{\sqrt{P}} \mathbf{U} \cdot \mathbf{x}$$
$$\mathbf{x} = \sqrt{P} \mathbf{U}^T \cdot \tilde{\mathbf{x}}$$

⁷ J. Chem. Phys., 104, 2028(1996).

⁸This reminds me of the phonon dispersion of 1-D atomic chain Q.J. Zheng (D.P. USTC)

Initializing PIMD — Positions and Momenta

$$H_{P}(\{\mathbf{x}\}, \{\mathbf{p}\}) = \sum_{l=1}^{N} \sum_{i=1}^{P} \left[\frac{(\mathbf{p}_{l}^{i})^{2}}{2\tilde{m}_{l}^{i}} + \frac{1}{2} m_{l} \omega_{P}^{2} (\mathbf{x}_{l}^{i+1} - \mathbf{x}_{l}^{i})^{2} \right] + \sum_{i=1}^{P} \hat{V}(\mathbf{x}_{1}^{i}, \dots, \mathbf{x}_{N}^{i})$$

• To initialize PIMD requires specification of 3NP positions and 3NP momenta.

Momenta

• We inserted *P* Gaussians when introducing momenta

$$\left(\frac{\beta}{2\pi\tilde{m}}\right)^{1/2}\int\mathrm{d}\boldsymbol{p}\,\mathrm{e}^{-\beta\boldsymbol{p}^2/2\tilde{m}}$$

 We can then sample the momentum of each bead from a Gaussian distribution with

$$\begin{split} \bar{p} &= 0 \\ \sigma_{p} &= \sqrt{\frac{\tilde{m}}{\beta_{P}}} = \sqrt{\tilde{m}k_{B}PT} \end{split}$$

Positions

- Start all beads at the same positions and equilibrate.
 - RP will expand under NVE, T will drop.
 - Strong Thermostatting is need!
- Sample from the free ring-polymer distribution.
 - The only potential is the harmonic springs.
 - In normal mode coordinates

$$\sum_{j=1}^{P} \frac{1}{2} m \Omega_{j}^{2} \tilde{x}_{j}^{2} \quad \Rightarrow \quad \int \mathrm{d}\tilde{x}_{j} \, \mathrm{e}^{-\beta_{P} \left(\frac{1}{2} m \Omega_{j}^{2} \tilde{x}_{j}^{2}\right)}$$

- $\tilde{\tilde{x}}_j = 0$ and $\sigma_{\tilde{x}_j} = \sqrt{\frac{1}{\beta_P m \Omega_i^2}}$.
- In practice, RP slightly too extended.

Convergence of Standard Path Integral MD

For the 1D harmonic oscillator: $V(x) = \frac{1}{2}m\omega x^2$, the RP potential in the normal-mode coordinates

$$\sum_{i=1}^{P} \left[\frac{m}{2(\beta_P \hbar)^2} (x_{i+1} - x_i)^2 + V(x_i) \right] \quad \Rightarrow \quad \sum_{i=1}^{P} \frac{1}{2} m(\Omega_i^2 + \omega^2) \tilde{x}_i^2$$

then $\langle \tilde{x}_i^2 \rangle = 1/\beta_P m(\Omega_i^2 + \omega^2)$, the energy of the harmonic oscillator $\langle E \rangle_P$

$$\begin{split} \langle E \rangle_P &= \langle T \rangle_P + \langle V \rangle_P = 2 \langle V \rangle_P = 2 \cdot \frac{1}{2} m \omega^2 \langle x^2 \rangle = \frac{m \omega^2}{P} \sum_{i=1}^P \langle x_i^2 \rangle = \frac{m \omega^2}{P} \sum_{i=1}^P \langle \tilde{x}_i^2 \rangle \\ &= \frac{\theta}{\beta} \sum_{i=1}^P \frac{\theta}{P^2 \sin^2 \left(\frac{(i-1)\pi}{P} \right) + \theta^2} \qquad (\theta = \beta \hbar \omega/2) \end{split}$$

the exact solution is $\langle E \rangle = \frac{\theta}{\beta} \coth(\theta)$

- Commonly used convergence criteria: $P > \hbar \omega_{\rm max}/k_B T$
- Standard PIMD converges as $1/P^2$.
- Some properties converges faster, e.g. RDF converges fast but heat capacity very slowly.
- Methods exist to accelerate the convergence, e.g. PI + GLE.

Frequencies in a PIMD Simulation

For the 1D harmonic oscillator: $V(x) = \frac{1}{2}m\omega x^2$, the normal mode frequencies

$$ilde{\Omega}_i = \sqrt{\Omega_i^2 + \omega^2}; \qquad \Omega_i = 2\omega_P \sin\left(rac{(i-1)\pi}{P}
ight)$$

Hence the highest frequency is

$$\tilde{\Omega}_{\mathsf{max}} = \sqrt{\Omega_{\mathsf{max}}^2 + \omega^2} = \sqrt{4\omega_P^2 + \omega^2}$$

If we use the typical convergence criteria: $P=\alpha\hbar\omega/k_BT$, where $\alpha>1$ determines how accurate the calculation is.

$$\tilde{\Omega}_{\mathsf{max}} = (4\alpha^2 + 1)^{\frac{1}{2}}\omega$$

- For $\alpha=1$, the highest frequency in PIMD is $\sqrt{5}$ times larger than classical MD.
- For a *naive* implementation of PIMD, the time step should be $\sqrt{5}$ times smaller than classical MD.
- Methods to allow bigger time-steps:
 - Scale the normal mode masses so they all oscillate at the same frequency.
 Multiple time-scale molecular dynamics:
 - Multiple time-scale molecular dynamics: use smaller time-steps for bead forces.
 - Use an integrator where the free ring polymer is evolved exactly.

PIMD, CMD and RPMD 9

CMD

- Approximate quantum dynamics
- Path centroid idea

$$m\ddot{x}_c = \left\langle \delta(x_0 - x_c) \frac{-1}{P} \sum_{i=1}^{P} \frac{\partial V(x_i)}{\partial x_i} \right\rangle$$

• Sample the whole configuration space available to the non-centroid modes at each given position of centroid x_0 .

- PIMD with adiabatic decoupling of centroid and non-centroid motions.
- No thermostat for the centroid mode.
- Thermostatting for noncentroid mode as in PIMD.
- Must sample initial conditions.

PIMD

- Static equilibrium properties.
- Need to efficiently and ergodically sample the phase surface.
 - Thermostatting
 - Coordinate transformation and bead masses scaling

RPMD

- Approximate quantum dynamics
- PIMD with physical bead masses.
- Thermostats should not be used.
- Must sample initial conditions.

J. Chem. Phys., 129, 074501(2008);
Q.J. Zheng (D.P. USTC)

⁹ J. Chem. Phys., **130**, 194510(2009);

PIMD, (PA)CMD and RPMD — Fictitious Masses

The RP Hamiltonian in the normal-mode coordinates

$$\begin{split} H_{P}(\{\tilde{\mathbf{x}}\}, \{\tilde{\mathbf{p}}\}) &= \sum_{i=1}^{P} \left[\frac{\tilde{p}_{i}^{2}}{2\tilde{m}_{i}} + \frac{1}{2} m \Omega_{i}^{2} \tilde{\mathbf{x}}_{i}^{2} \right] + \sum_{i=1}^{P} V\left(\mathbf{x}_{i}(\tilde{\mathbf{x}}_{1}, \dots, \tilde{\mathbf{x}}_{P})\right) \\ &\Rightarrow \quad \tilde{m}_{i} \ddot{\tilde{\mathbf{x}}}_{i} = -m \Omega_{i}^{2} \tilde{\mathbf{x}}_{i} - \sum_{j=1}^{P} \frac{\partial V\left(\mathbf{x}_{j}(\tilde{\mathbf{x}}_{1}, \dots, \tilde{\mathbf{x}}_{P})\right)}{\partial \tilde{\mathbf{x}}_{i}} \\ &\Rightarrow \quad \tilde{m}_{1} \ddot{\tilde{\mathbf{x}}}_{1} = -\frac{1}{\sqrt{P}} \sum_{j=1}^{P} \frac{\partial V(\mathbf{x}_{j})}{\partial \mathbf{x}_{j}} \\ \end{split}$$

• PIMD — scale the mass to bring all the frequencies to the same value ω_p .

$$\tilde{m}_1 = m,$$
 $\tilde{m}_i = 4\sin^2\left(\frac{(i-1)\pi}{P}\right)m \quad (2 \leqslant i \leqslant P)$

ullet (PA)CMD — adiabatic parameter $\gamma>1$, shifting the noncentroid frequencies $\gamma\omega_P$ off the physical spectra ω_{max} .

$$\tilde{m}_1 = m, \qquad \tilde{m}_i = 4 \sin^2 \left(\frac{(i-1)\pi}{P} \right) m/\gamma^2 \quad (2 \leqslant i \leqslant P)$$

RPMD — Use real masses for all the beads.

$$\tilde{m}_i = m, \quad (1 \leqslant i \leqslant P)$$

Q.J. Zheng (D.P. USTC)

Initializing CMD/RPMD

- CMD and RPMD are intended to provide approximations to quantum dynamics and not to efficiently sample the quantum phase space.
- The ergodicity problem can be circumvented by launching trajectories from many different choice of configurations and momenta.

- Que Run a PIMD trajectory using an efficient thermostat scheme.
- Pick configurations and momenta from the thermostatted trajectory and launch RPMD or CMD trajectories from them.
- Ideally the separation in time between each should be determined by the correlation time of the properties in the system.

Thank you!