NATIONAL BUREAU OF STANDARDS REPORT

10 108

ALGORITHMS FOR CALCULATING THE TRANSIENT HEAT CONDUCTION BY THERMAL RESPONSE FACTORS FOR MULTI-LAYER STRUCTURES OF VARIOUS HEAT CONDUCTION SYSTEMS

(Theories, Computer Programs, and Sample Calculations)

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics ²—Radio Engineering ²—Tirne and Frequency ²—Astrophysics ²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurcment System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information —Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

4212239

August 28, 1969

10 108

ALGORITHMS FOR CALCULATING THE TRANSIENT HEAT CONDUCTION BY THERMAL RESPONSE FACTORS FOR MULTI-LAYER STRUCTURES OF VARIOUS HEAT CONDUCTION SYSTEMS

(Theories, Computer Programs, and Sample Calculations)

by

T. Kusuda

IMPORTANT NOTICE

NATIONAL BUREAU OF ST/ for use within the Government. and review. For this reason, the whole or in part, is not authori Bureau of Standards, Washingto the Report has been specifically

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

s accounting documents intended subjected to additional evaluation listing of this Report, either in Office of the Director, National y the Government agency for which pies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

PREFACE

A paper entitled "Thermal Response Factors for Multi-layer Structures of Various Heat Conduction Systems" was published in the 1969 Transactions of the American Society of Heating, Refrigerating and Air Conditioning Engineers (Vol. 75, Part 1, pp. 246-271). A computer program mentioned in that paper alled RESPTK was used to obtain thermal response factors for walls, solid objects and semi-infinite walls of planes, cylindrical and spherical systems. In order to respond to the many requests for the computer program, the Fortran listing, the input instructions of RESPTK and various modifications to that paper have been included in this report.

Contingent upon the responses given to this report a formal NBS publication may be issued in the future as a Building Science Series paper.

ABSTRACT

The thermal response factor method for calculating transient heat conduction through multi-layer slabs is generalized to include the solutions for many other important engineering heat transfer problems. Response factor formulas for multi-layer structures of cylindrical and spherical objects (hollow as well as solid), plane and curved surface walls adjacent to an infinitely thick heat conduction medium, such as the ground, and to plane slabs, are presented in this paper. Numerical evaluation of these formulas is carried out for selected multi-layer structures and results are tabulated.

Also included in this report are Fortran listings of the response factor calculation programs and sample usages of the computer programs for evaluating heat conduction through building walls.

Key Words: Thermal response factors, multi-layer structures, transient heat conduction, cylinder and sphere

Nomenclature

Unless otherwise specified, the following symbols are used throughout this paper. Since the units attached to symbols represent the

English system (still most popular among heat and air conditioning
engineers in the United States), a conversion table for standard metric
units is also provided at the end of this section.

A, B, C, D	Elements of overall temperature flux matrix
A_{v} , B_{v} , C_{v} , D_{v}	Elements of individual layer temperature-flux
	matrix
F	Heat flux, Btu hr ⁻¹ ft ⁻²
f	Laplace transform of heat flux
h _I , h _o	Exterior wall surface heat conductance
	[Btu ft ⁻² F ⁻¹ hr ⁻¹]
I	Irradiated heat flux, [Btu ft ⁻² hr ⁻¹ F ⁻¹]
j	Complex number notation = $\sqrt{-1}$
λ _V	Thermal conductivity of the vth layer
	[Btu $hr^{-1} F^{-1} ft^{-1}$]
1 _v	Thickness of the vth layer, [ft.]
m	Curvature index: m = 0, plane; m = 1, cylin-
	der; m = 2, sphere
N	A large number
n	Total number of layers to be considered
p	Laplace transform parameter (p is treated as a
	complex variable for the inversion integral)
Q	Heat flux, [Btu hr ⁻¹ ft ⁻²]

```
=\sqrt{\frac{p}{p}}
q
                            Radii of the bounding surfaces of the vth
r, rv+1
                            layer, [ft]
                            Thermal resistance of the oth layer, [ft2 F
R
                              hr Btu<sup>-1</sup>7
R
                            General response function defined in the text
T
                            Temperature, [F]
                            Initial temperature at t = 0, [F]
Ty, Ty+1
                            Boundary temperatures of the oth layer, [F]
v, v,+1
                            Temperature departure of the oth layer, (T -
                              T_0) and (T_{v+1}^{-1}-T_0), respectively, [F]
\bar{v}_{v}, \bar{v}_{v+1}
                            Laplace transforms of the temperature depar-
                              tures, V and V
                           Response factors, [Btu ft<sup>-2</sup> F<sup>-1</sup> hr<sup>-1</sup>]
X_i, Y_i, and Z_i
                           Modified response factors [Btu ft<sup>-2</sup> F<sup>-1</sup> hr<sup>-1</sup>]
X_i, Y_i, and Z_i
                            Thermal diffusivity of vth layer, [ft^2 hr^{-1}]
\alpha_{i,j}
                            Characteristic function of pulses
φ
δ
                            Time increment, [hr]
                           Determinant of the matrix for A,, B,, C,, D,
\Delta_{ij}
Γ
                           Determinant of the matrix of A, B, C, D
                           Time coordinate t_i = t - i\delta, [hr]
t,
                            Time index t = \tau \delta
T
                           \Omega = \beta_{g} \delta
\Omega
                           \beta_{h} = -p_{h}, roots for residue evaluation
BA
                                 k = 1, 2, 3, \dots
Ψ(β<sub>6</sub>)
                           Defined in the text, eq. (26)
```

Subscripts

v = 1ayer boundaries

♠ = roots for the residue evaluation

i = response factor series in relation to time series

 τ = discrete time

Unit Conversion

To convert from	Multiply by	To Obtain
$Q = Btu hr^{-1} ft^{-2}$	3.152481E + 00	W m ⁻²
$h = Btu hr^{-1} ft^{-2} \circ F^{-1}$	5.6783E + 00	W m ⁻² K ⁻¹
$\lambda = Btu, hr^{-1} ft^{-1} °F^{-1}$	0.14423E - 02	W m-1 K-1
$c = Btu 1b^{-1} F^{-1}$	4.187E + 03	J Kg ⁻¹ °K ⁻¹
$\rho = 1b \text{ ft}^{-3}$	1.602E + 01	Kg m ⁻³
$\alpha = ft^2 hr^{-1}$	2.581E - 05	m ² s ⁻¹
$\ell = ft$	3.048E - 01	m

1. Introduction

A recent advance in computer application for hour by hour building heat transfer calculations has made it possible to improve the Response Factor technique in transient heat conduction analysis. This improved response factor method permits an accurate evaluation of transient (non-steady and/or aperiodic) heat conduction through multi-layer walls and roofs, which has heretofore been extremely difficult.

It should be stated that an existing procedure commonly known in the U.S. as the Mackey and Wright 1-2/ solution for evaluating the building heat transfer has been based upon the assumption that the building walls and roofs experience steady periodic temperature cycles on a diurnal basis. Their solution obtained using this assumption is inadequate for the accurate evaluation of actual hour-by-hour heat gain or loss of buildings.

Another well-known approach solving the transient heat transfer is finite difference approximations to the heat conduction equation. Although the computational procedures involved in this latter technique are less complicated than analytical procedures, extremely small grid sizes are required for finite difference time and space coordinates if computational stability is to be retained in calculating transient heat flow for a multi-layer heat flow problem.

The Response Factor Method has been treated previously by several authors $\frac{3-8}{}$. This method basically utilizes the superposition principle in such a manner that the overall thermal response of the building structure at a selected time is the sum of the responses caused by many individual temperature pulses during preceding significant times. Thus, by simulating the transient boundary temperatures by a train of pulses, and by summing up the heat flux caused by each pulse, the total heat flux at a given time can be derived. The calculation of the thermal response of multi-layer walls and roofs due to each individual temperature pulse has in the past been simulated by the concept of a finite number of lumped-resistances-and-capacitances by equating the heat flow path to an electrical circuit analog. A significant contribution has been made recently by Mitalas and Arseneault $\frac{9}{}$, who improved considerably the accuracy of the calculation by avoiding the lumped-resistance-andcapacitance concept. Mitalas and Arseneault were able to solve the differential equation of heat conduction for the multilayer system by employing a matrix equation of Laplace transforms $\frac{10}{}$. Although the matrix equation of the composite wall has been employed effectively in the past, previous efforts $\frac{1,2,6,7,8}{}$ have used Fourier series simulation of the boundary temperature functions. The previous difficulty of applying the matrix method for a periodic heat transfer problem was primarily due to the complexity of evaluating the inversion integrals of the Laplace transforms. Using a high-speed digital computer, Mitalas

and Arsenault were able numerically to invert the Laplace transform matrix for the multi-layer heat conduction equation when a periodic or transient boundary temperature function is simulated by a train of triangular pulses.

In this paper, the method employed by Mitalas and Arseneault is extended to cover walls and roofs with cylindrical and spherical curvatures. The response factors for the cylindrical and spherical walls may also be useful in analyzing the transient heat flow through pipes, underground shelters and structures, storage tanks, and tunnels. Sample calculations for a typical brick wall were performed using a computer program to carry out the mathematical procedures outlined in this paper. Results of the calculations for plane, cylindrical and spherical walls are compared with those obtained by an exact analytical method for a steady periodic boundary temperature profile.

Also presented in this paper are formulas for evaluating heat flux in semi-infinite systems, interfacial temperatures and heat fluxes of the multi-layer transient system, and the analyses for non-linear boundary heat transfer problems.

2. Heat Conduction Through a Homogeneous Layer

The heat conduction equations for one-dimensional heat flow in a homogeneous layer of a multilayer system are first analyzed. Assume that this particular layer has thermal diffusivity $\alpha_{_{\downarrow}}$, thermal conductivity $\lambda_{_{\downarrow}}$, and at time t has boundary temperatures $T_{_{\downarrow}}(t)$ at the surface $r=r_{_{\downarrow}}$, and $T_{_{\downarrow}+1}(t)$ at the surface $r=r_{_{\downarrow}+1}$. Also assume that the temperature of the layer at time t=0 was constant at $T_{_{\downarrow}}$. The differential equation and boundary conditions describing the conditions stated above are then

$$\frac{\partial^2 T}{\partial r^2} + \frac{m}{r} \frac{\partial T}{\partial r} = \frac{1}{\alpha_v} \frac{\partial T}{\partial t} \quad \text{for } m = 0, 1, \text{ or } 2$$
 (1)

$$T = T_{y} \text{ at } r = r_{y}$$
 for $t > 0$

$$T = T_{v+1}$$
 at $r = r_{v+1}$

$$T = T_0$$
 for all r at $t = 0$

Applying the Laplace transform to the above relations, it is possible to write

$$\frac{\mathrm{d}^2 \bar{V}}{\mathrm{d}r^2} + \frac{\mathrm{m}}{\mathrm{r}} \frac{\mathrm{d}\bar{V}}{\mathrm{d}r} = q_V^2 \bar{V} \tag{2}$$

$$\bar{V} = \bar{V}_{v}$$
 at $r = r_{v}$

$$\bar{\mathbf{v}} = \bar{\mathbf{v}}_{\mathbf{v}+1}$$
 at $\mathbf{r} = \mathbf{r}_{\mathbf{v}+1}$

where

$$\overline{V} = \int_0^\infty (T - T_0) e^{-pt} dt$$
 (3)

$$q_{\mathcal{V}} = \sqrt{\frac{p}{\alpha_{\mathcal{V}}}} \tag{4}$$

and p is the Laplace transform operator.

A general solution of these Laplace transform equations for heat conduction may be written in matrix form,

$$\begin{pmatrix} \vec{v}_{\downarrow} \\ f_{\downarrow} \end{pmatrix} = \begin{pmatrix} A_{\downarrow} & B_{\downarrow} \\ C_{\downarrow} & D_{\downarrow} \end{pmatrix} \begin{pmatrix} \vec{v}_{\downarrow+1} \\ f_{\downarrow+1} \end{pmatrix}$$
 (5)

or by rearranging,

where f_{ν} and $f_{\nu+1}$ are the Laplace transforms of $-\lambda \frac{dV}{\nu dr}$, heat flux at $r=r_{\nu}$, and $r_{\nu+1}$, respectively. Specific expressions for each element of the matrix in (5) for the cases of m=0, 1, and 2 are shown in Tables 1, 2 and 3.

By using the expressions in Tables 1, 2, and 3, it can be shown that the determinant of the matrix in (5) is

$$\Gamma_{\mathcal{V}} = \left| \begin{array}{cc} A_{\mathcal{V}} & B_{\mathcal{V}} \\ C_{\mathcal{V}} & D_{\mathcal{V}} \end{array} \right| = \left(\frac{r_{\mathcal{V}+1}}{r_{\mathcal{V}}} \right)^{m} \tag{7}$$

3. Multi-layer Heat Conduction

The solutions obtained for the single layer (the vth layer) bounded by $r = r_v$ and $r = r_{v+1}$ are valid for each of the other layers of a multilayer slab, so that one may write for each layer:

1st layer:
$$\begin{pmatrix} \overline{V}_1 \\ f_1 \end{pmatrix} = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \begin{pmatrix} \overline{V}_2 \\ f_2 \end{pmatrix}$$

2nd layer: $\begin{pmatrix} \overline{V}_2 \\ f_2 \end{pmatrix} = \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix} \begin{pmatrix} \overline{V}_3 \\ f_3 \end{pmatrix}$ (8)

(n-1)st layer:
$$\begin{pmatrix} \overline{V}_{n-1} \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix} \begin{pmatrix} \overline{V}_{n} \\ f_{n} \end{pmatrix}$$

This is predicted upon the assumption that there is perfect thermal contact at the interface of the layers of the multi-layer slab giving continuity of temperature and heat flux. Combining the above matrix equations give

$$\begin{pmatrix} \overline{V}_1 \\ f_1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overline{V}_n \\ f_n \end{pmatrix} \tag{9}$$

where

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix} \cdots \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix}$$
(10)

If the oth layer of the multi-layer slab has a negligibly small thermal mass, (e.g., is a fully enclosed air space), the matrix elements for that layer are

$$A_{V} = 1$$

$$B_{V} = R_{V}$$

$$C_{V} = 0$$

$$D_{V} = \Gamma_{V}$$
(11)

where $R_{_{\text{V}}}$ is the thermal resistance of the layer.

Applying matrix algebra, the determinant of the overall matrix in (10) can be shown to be

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \Gamma = \Gamma_1 \cdot \Gamma_2 \cdot \Gamma_3 \cdot \ldots \cdot \Gamma_{n-1} = \left(\frac{r_n}{r_1}\right)^m. \tag{12}$$

From (9), the Laplace transform of the heat flux matrix relation is

$$\begin{pmatrix} f_1 \\ f_n \end{pmatrix} = \begin{pmatrix} \frac{D}{B} & -\frac{\Gamma}{B} \\ \frac{1}{B} & -\frac{A}{B} \end{pmatrix} \begin{pmatrix} \overline{V}_1 \\ \overline{V}_n \end{pmatrix}$$
(13)

The heat flux at each surface can be evaluated by applying the inversion theorem of the Laplace transform to equation (13).

4. Superposition Principle and the Inversion of Laplace Transforms

The inversion of (13) can be approximated easily by applying the superposition principle where the slab temperature T is represented by a linear sum of functions V_i (i = 1, 2, ...) such that

5

10

pulse function

$$T - T_0 = \sum_{i=0}^{\infty} V_i(t_i)$$
 (14)

Furthermore, the boundary temperature functions T_1 and T_n at $r=r_1$ and $r=r_n$ are assumed to be represented by a series of pulse functions such that

$$V_1 = T_1 - T_0 = \bigvee_{i=0}^{\infty} V_{i,i} \varphi(t_i)$$

$$V_n = T_n - T_0 = \sum_{i=0}^{\infty} V_{n,i} \varphi(t_i)$$

In the above equation, $V_{1,i}$ and $V_{n,i}$ are pulse heights at time $t=i\delta$ for the boundary surfaces, where δ is the discrete time interval of the pulses. The pulse function $\phi(t_i)$ is defined only for $0 < t_i < m'\delta$, where m' is the width of the pulse at the time base. The simplest pulse most commonly used is the rectangular pulse of width δ , (or m'=1), such as shown in Fig. 1, and it can be described by the following

$$\varphi(t_i) = 0$$
 $t_i \le 0$
= 1 $0 < t_i \le \delta$
= 0 $t_i > \delta$

Fig. I, Rectangular pulses

Fig. 2, Trapezoidal pulses

Although the rectangular pulse simulation of the boundary temperatures is very simple, the approximation of a complex profile by a finite number of rectangular pulses inevitably causes loss of accuracy unless the time increment δ is chosen extremely small. A considerable gain in the accuracy, however, can be restored if the boundary temperatures are simulated by trapezoidal pulses, such as shown in Fig. 2. It can be proven also that two overlapping triangular pulses (dotted line) of base width of 2δ have identical thermal response to that created by the trapezoidal pulse of width δ , which is shared by the two triangular pulses (see Fig. 2). The triangular pulse of m' = 2 is, however, better suited for this analysis than the trapezoidal pulse, since it represents each pulse by a single pulse instead of two. The pulse function for a triangular pulse of base 2δ is

$$\varphi(t_i) = 0 \qquad \text{for} \qquad t_i \le 0$$

$$= t_i/\delta \qquad \text{for} \quad 0 < t_i \le \delta$$

$$= 2 - t_i/\delta \qquad \text{for} \quad \delta < t_i \le 2\delta$$

$$= 0 \qquad \text{for} \qquad t_i > 2\delta$$

Substituting (14) and (16) into the original differential equation it is found that the solutions obtained for V are also valid for V_i ($i = 1, 2, \ldots, \infty$), provided that the new time coordinate t_i used for V_i is related to the original time coordinate t by

$$t_i = t - i\delta$$

The Laplace transform flux relation for $V_{1,i}$ and $V_{n,i}$, similar to equation (13) is then written as

$$\begin{pmatrix} f_{1,i} \\ f_{n,i} \end{pmatrix} = \overline{\varphi} \begin{pmatrix} \frac{D}{B} & -\frac{\Gamma}{B} \\ \frac{1}{B} & -\frac{A}{B} \end{pmatrix} \begin{pmatrix} V_{1,t-i\delta} \\ V_{n,t-i\delta} \end{pmatrix}$$
(17)

where $\bar{\phi}$ is the Laplace transform of the pulse function ϕ , or

$$\overline{\varphi} = \frac{1}{\delta p^2} \text{ for } 0 < t_i \le \delta$$

$$= \frac{1}{\delta p^2} (1 - 2e^{-p\delta}) \text{ for } \delta < t_i \le 2\delta$$

$$= \frac{1}{\delta p^2} (1 - e^{-p\delta})^2, \text{ for } 2\delta < t_i$$
(18)

for the triangular pulse function.

The inversion of the Laplace transform can be accomplished by applying the residue theorem to the inversion integral, details of which are given elsewhere $\frac{10}{}$.

The inversion of flux equation (17) essentially involves the analysis of the following general formula

$$f_i = \frac{R}{\phi}$$
 (19)

where R represents D, Γ , 1, or A in equation (17). The inversion of (19) yields

$$F_{i} = \lim_{p \to 0} \frac{d}{dp} \left[\frac{p^{2} \overline{\varphi} R e^{pt_{i}}}{B} \right] + \sum_{n=1}^{\infty} \left[\frac{\overline{\varphi} R e^{pt_{i}}}{dp} \right]_{p=-\beta_{n}}$$
(20)

where $\beta_{\frac{1}{h}}$ (h = 1, 2, ...) are the real roots of the equation

$$B(p = -\beta_h) = 0. \tag{21}$$

In order to evaluate equation (20), values of A, B, D, $\frac{dA}{dp}$, $\frac{dB}{dp}$, $\frac{dD}{dp}$ at p = 0 and $p = -\beta_R$, (R = 0, 1, 2, ...) are needed.

The derivatives of matrix elements A_{v} , B_{v} , C_{v} , and D_{v} are provided in tables 4, 5, and 6 to assist in the calculation of the derivatives of A, B, C, and D by the following relationship:

$$\frac{d}{dp} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{dA_{1}}{dp} & \frac{dB_{1}}{dp} \\ \frac{dC_{1}}{dp} & \frac{dD_{1}}{dp} \end{pmatrix} \begin{pmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{pmatrix} \cdots \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix} + \begin{pmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{pmatrix} \begin{pmatrix} \frac{dA_{2}}{dp} & \frac{dB_{2}}{dp} \\ \frac{dC_{2}}{dp} & \frac{dD_{2}}{dp} \end{pmatrix} \cdots \begin{pmatrix} A_{n-1} & B_{n-1} \\ C_{n-1} & D_{n-1} \end{pmatrix} + \begin{pmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{pmatrix} \begin{pmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{pmatrix} \cdots \begin{pmatrix} \frac{dA_{n-1}}{dp} & \frac{dB_{n-1}}{dp} \\ \frac{dC_{n-1}}{dp} & \frac{dD_{n-1}}{dp} \end{pmatrix}$$
(22)

Applying the theory of limits, it can also be shown that

$$\frac{1 \text{ im }}{p \to 0} \begin{pmatrix} A_{v} & B_{v} \\ C_{v} & D_{v} \end{pmatrix} = \begin{pmatrix} 1 & R_{v} \\ 0 & 1 \end{pmatrix} \qquad \text{for } m = 0$$

$$\frac{1}{\lambda} \frac{r_{v+1}}{\lambda_{v}} \ln \left(\frac{r_{v+1}}{r_{v}} \right)$$

$$= \begin{pmatrix} \frac{r_{v+1}}{r_{v}} \\ 0 & \frac{r_{v+1}}{r_{v}} \end{pmatrix} \qquad \text{for } m = 1 \qquad (23)$$

$$= \begin{pmatrix} 1 & R_{v} \left(\frac{r_{v+1}}{r_{v}} \right) \\ 0 & \frac{r_{v+1}}{r_{v}} \end{pmatrix}^{2} \qquad \text{for } m = 2$$

It is extremely interesting to note that the multiplication of these successive matrices for the multi-component slab would yield

$$\lim_{p \to 0} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{U} \\ 0 & \Gamma \end{pmatrix}$$

where U' = overall steady-state heat conductance from the surface 1 to n + 1.

The first term of the right-hand side of equation (20) can be reduced further, for the case of the triangular pulse function, to the following relation

$$\frac{1 \text{ im }}{p \to 0} \frac{d}{dp} \left[\frac{p^2 \overline{\varphi} R e^{pt_i}}{B} \right] = \frac{\underline{U}}{\delta} \left[\frac{dR}{dp} + R - \frac{R}{\frac{dB}{dp}} \right]_{p=0}, \quad 0 < t_i \le \delta$$

$$= -\frac{\underline{U}}{\delta} \left[\frac{dR}{dp} - \frac{R}{\frac{dB}{dp}} \right]_{p=0}, \quad \delta < t_i \le 2\delta$$

$$= 0, \quad 2\delta < t_i$$

Table 7 is provided for the evaluation of the limits of each of the matrix elements and their derivatives, such as R and $\frac{dR}{dp}$, as p approaches zero.

Letting $p = -\beta_{h}$, then

$$q_{v} = j \sqrt{\frac{\beta \hbar}{\alpha_{v}}}$$
 (25)

whereby the complex functions of Tables 1, 2, 3, 4, 5, and 6 and the derivatives occurring in series on the right-hand side of equation (20) can be represented as real functions as shown in Tables 8, 9, and 10.

The functions indicated in Tables 8, 9 and 10 are to be evaluated at each of the negative real roots $-\beta_{\frac{1}{12}}$ ($\frac{1}{12}$ = 1, 2, 3,) of the equation B(p) = 0, for all non-negligible terms of equation (20). The magnitude of the terms, however, decreases quite rapidly with increase in $\frac{1}{12}$, particularly when $t_{\frac{1}{12}}$ is large or when a particular component has a large $\frac{\ell_{\frac{1}{12}}}{\sqrt{\alpha_{\frac{1}{12}}}}$ value. For the triangular pulse function, the series of equation (20) can be evaluated by the following relations

$$\sum_{k=1}^{\infty} \frac{\overline{\varphi} \operatorname{Re}^{\operatorname{pt_{i}}}}{\frac{dB}{dp}} = \sum_{p=-\beta k}^{\infty} = \sum_{k=1}^{\infty} \overline{\Psi}(\beta_{k}) e^{-\Omega} \qquad \text{for } t_{i} \leq \delta$$

$$= \sum_{k=1}^{\infty} \overline{\Psi}(\beta_{k}) (1 - 2e^{\lambda}) e^{-2\Omega} \qquad \text{for } \delta < t_{i} \leq 2\delta$$

$$= \sum_{k=1}^{\infty} \overline{\Psi}(\beta_{k}) (1 - e^{\lambda})^{2} e^{-i\Omega} \qquad \text{for } t_{i} = i\delta > 2\delta$$

$$\frac{\delta}{k=1} = \frac{\delta}{k} = \frac{$$

where

$$\Psi(\beta_{\hat{n}}) = \frac{1}{\delta \beta_{\hat{n}}^{2}} \left[\frac{R}{dB} \right]_{p=-\beta_{\hat{n}}}$$

$$\Omega = \beta_{\hat{n}} \delta$$

where R may be any one of A, Γ , 1, or D of Equation (17).

By combining (24) and (26), generalized response factors X_i (i = 0, 1, 2, ∞) may be derived in terms of R and its derivative $\frac{dR}{dp}$ as follows:

$$X_{0} = \begin{bmatrix} \frac{R}{B} \end{bmatrix}_{p=0} + \begin{bmatrix} \frac{dR}{dp} & -\frac{R}{d} \frac{dB}{dp} \\ \frac{dS}{B\delta} & -\frac{R}{B} \frac{dB}{dp} \end{bmatrix}_{p=0} + \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) e^{-\beta_{h}\delta} \quad \text{(for } i=1)$$

$$X_{1} = -\begin{bmatrix} \frac{dR}{dp} & -\frac{R}{dp} \\ \frac{dS}{B\delta} & -\frac{R}{B} \frac{dB}{dp} \end{bmatrix}_{p=0} + \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1-2e^{\beta_{h}\delta}) e^{-2\beta_{h}\delta} \quad \text{(for } i=2)$$

$$X_{1} = \sum_{h=1}^{\infty} \overline{\Psi}(\beta_{h}) (1-e^{\beta_{h}\delta})^{2} e^{-i\beta_{h}\delta} \quad \text{(for } i=3,4,...\infty)$$

Using these notations, the inversion of heat flux relation (17) may be expressed generally as

where X_i , Y_i , and Z_i are response factors and correspond to X_i of equation (27), (28) and (29) when R is replaced by D, 1, and A respectively.

By denoting the time coordinate t by increments of δ , say $t = \tau \delta$, $V_1(t - i\delta)$ may be expressed simply by $V_{1,\tau-i}$. Using the subscripted temperature notation, equation (28) can be used to express the original heat conduction system as follows

This relation is called the convolution equation of the heat fluxes.

In equation (29), X_i , Y_i , and Z_i are called response factors. A close examination of (27), (28) and (29) reveals the following interesting facts:

1. Response factors X_i , Y_i , and Z_i tend to decrease with a common ratio $e^{-\beta_1 \delta}$ for large values of i or

$$\frac{X_{i+1}}{X_{i}} = \frac{Y_{i+1}}{Y_{i}} = \frac{Z_{i+1}}{Z_{i}} = e^{-\beta_{1}\delta} \quad \text{if } i \ge N$$
 (30)

and N is a large number. For a conventional building wall, N \approx 15.

2. To be compatible with the steady state heat flow condition when V_1 and V_n are constant, it is necessary that

$$\begin{vmatrix} \frac{1}{\Gamma} & \sum_{i=0}^{\infty} X_i \\ i = 0 \end{vmatrix} = \begin{vmatrix} \sum_{i=0}^{\infty} Y_i \\ i = 0 \end{vmatrix} = \begin{vmatrix} \sum_{i=0}^{\infty} Z_i \\ i = 0 \end{vmatrix} = U$$
 (31)

where U is the overall heat transfer coefficient based upon $r \, = \, r_{n+1} \, .$

5. Sample Calculations

A digital computer program called RESPTK (refer to Appendix) has been developed at the National Bureau of Standards for calculating the response factors formulated in the previous sections. Sample walls with properties as shown in Fig. 3 and Table 11 were analyzed by this program for cases m = 0, 1, and 2 (for plane wall (PW), cylindrical wall (CW), and spherical wall (SW), respectively). The sample wall consists of two solid mass layers bounded by two air film layers.

Table 12 shows the residues of $\frac{D}{\varphi}$, $\frac{\varphi}{B}$, and $\frac{A}{\varphi}$ at p=0 for $0 < t \le \delta$ and for $\delta < t \le 2\delta$. The residue of these functions becomes zero for $t > 2\delta$.

Table 13 gives β_{A} , the roots of B(p) = 0 along the negative real The response factors calculated by formula (20) for R = D, 1 and A are indicated in Table 14 as X_i , Y_i , and Z_i , respectively. Also indicated at the end of Table 14 are the common ratios from (30) attained by successive values of each of the response factors when $i \ge 14$. Each of the response factors corresponds to the value evaluated at $t = i\delta$. As seen from Table 14, the response factors for plane, cylindrical, and spherical walls are very similar to each other in this particular wall. This is due to the fact that the curved walls used in the sample calculations had an innermost radius of 5 ft. and total wall thickness of 2/3 ft., which can be very closely simulated by the plane wall heat transfer. Using the response factors the heat flux values at $r = r_1$ and $r = r_5$ were also calculated for a periodic temperature profile, results of which are shown in Table 15, 16, and 17 corresponding respectively to the plane, cylindrical and spherical walls. Although the application of the response factor calculation is not limited to the periodic heat flow problem, the periodic heat flow problem was chosen for the sample calculation because exact solutions for the periodic heat flow problem can be used to check the accuracy of the

response factor method. (The response factor calculation is, in a rigorous sense, an approximate solution, where the boundary temperature profiles are approximated by a train of trapezoidal pulses). The exact solutions for the heat conduction equation under periodic boundary temperature conditions are obtained by setting in the original differential equation

$$T_{1} = T_{0} + \sum_{i=1}^{\infty} V_{1,i} e^{j\omega_{i}t}$$

$$T_{n} = T_{0} + \sum_{i=1}^{\infty} V_{n,i} e^{j\omega_{i}t}$$

$$q_{V,i} = \sqrt{\frac{\omega_{i}}{2\alpha_{V}}} (1+j), \omega_{i} = \frac{i2\pi}{P} \text{ and } P = 24$$

$$(34)$$

The heat flux relations in terms of complex variables are treated in reference [10]. Another computer program called ETD 2 was developed during the course of this study to perform the complex algebra calculation for the periodic heat flow problem. The results of the exact solutions are given in Tables 15, 16, and 17.

Agreement between the exact solutions and the solutions obtained by the response factor calculations shown in Tables 15, 16, and 17 is very good. To obtain this degree of agreement, the response factors had to be calculated up to i = 72. The compilation and computation of heat flux by response factors for all three walls using a UNIVAC 1108 took 34 seconds, while for a periodic heat transfer solution by complex algebra, the time was 16 seconds. The response factor calculation involves a lengthy iterative process in searching for the roots of B(p) = 0.

The plane wall response factors treated in this paper have also been calculated by D. G. Stephenson of the National Research Council of Canada $\frac{11}{}$. His results agree very well with those obtained in this paper.

6. Heating and Cooling of Plates, Cylinders and Spheres
For the calculation of heating and cooling loads for buildings, it
may become necessary to determine the heat storage effect of interior
furnishings, partitions, floors, ceilings, etc. This heat exchange
problem may also be treated by the response factor method if these
materials can be represented by simple geometric shapes such as solid
plates, cylinders or spheres.

The boundary conditions for these cases are $\frac{\partial T}{\partial r}$ = 0 at r = 0 for all t > 0 for the cylindrical and spherical cases (m \neq 0). For the case of cylindrical and spherical objects, the Laplace transform heat flux relation at the outside surface of the innermost core r = r₁ is expressed in terms of that core's thermal properties λ_1 and α_1

$$f_1 = G'\overline{V}_1 \tag{33}$$

where

$$G' = -\lambda_1 q_1 \left[\frac{I_1(q_1 r_1)}{I_0(q_1 r_1)} \right] \text{ for } m = 1$$
 (34)

$$= \lambda_1 q_1 \left[\frac{1}{q_1 r_1} - \frac{\cosh (q_1 r_1)}{\sinh (q_1 r_1)} \right] \text{ for } m = 2$$
 (35)

Combining this relationship with the rest of the outer multi-layer system as before

$$\begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_n \end{pmatrix} = \begin{pmatrix} \frac{\mathbf{D}}{\mathbf{B}} & -\frac{\Gamma}{\mathbf{B}} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{V}}_1 \\ \overline{\mathbf{V}}_n \end{pmatrix}$$

$$\frac{1}{\mathbf{B}} & -\frac{\mathbf{A}}{\mathbf{B}}$$

$$(36)$$

and noting that

$$f_1 = \frac{D}{B} \overline{V}_1 - \frac{\Gamma}{B} \overline{V}_n = G' \overline{V}_1, \qquad (37)$$

$$\overline{V}_1 = \left(\frac{\frac{\Gamma}{B} \overline{V}_n}{\frac{D}{B} - G^*}\right), \tag{38}$$

then
$$f_n = \frac{\overline{V_1}}{B} - \frac{A}{B} \overline{V_n}$$

$$= \frac{AG' - C}{D - BG'} \overline{V_n}$$
(39)

The inversion of this heat flux relation is readily obtained by the residue theorem similar to equation (20). Table 18 shows specific expressions of G^{\dagger} d G^{\dagger} /dp for m = 1 and 2 (or for the cylinder and sphere.

For a plane shaped object heated or cooled at both surfaces in a space, the response factor representations of heat exchange between the objects and the air in space at time $t=\tau\delta$ is

$$q_{\tau} = \sum_{i=0}^{\infty} (X_i + Z_i - 2Y_i) T_{\tau-i}$$
 (40)

where X_i , Y_i , Z_i (i = 0, 1, 2...) are response factors of the slab as defined in (30) including surface heat transfer coefficients, and $T_{\tau-i}$ represents space air temperature at time (τ - i) δ .

7. Semi-infinite System

In many cases the transient heat conduction characteristics of semi-infinite and composite systems are needed. Problems of heat conduction to the paved earth surface, to the basement floor and to underground pipes are good examples for the semi-infinite system.

Assume the nth layer of the previous system (equations 8, 9, and 10) to be infinitely thick, its thermal conductivity and diffusivity been λ_n and α_n . For the infinitely thick nth layer, boundary conditions can be written as follows

$$T = T_n(t)$$
 at $r = r_n$
 $T = T_0$ for all t at $r_{n+1} \rightarrow \infty$ (41)

The general solution in the Laplace transform domain is

$$f_n = G\overline{V}_n \tag{42}$$

where

$$G = \lambda_n q_n \quad \text{for } m = 0$$

$$= \lambda_n q_n \left[\frac{K_1 (q_n r_n)}{K_0 (q_n r_n)} \right] \text{for } m = 1$$

$$= \lambda_n q_n \left[1 + \frac{1}{q_n r_n} \right] \text{for } m = 2$$

$$q_n = \sqrt{\frac{P}{\alpha_n}}$$
(43)

Combining relation (37) with (9), the Laplace transform of the heat flux equation at $r = r_1$ (or at the surface) can be written as

$$f_1 = \left(\frac{C + DG}{A + BG}\right) \overline{V}_1 \tag{44}$$

The inversion of (44) cannot be obtained by the residue theorem as in the previous cases because of a branch point $\frac{10}{}$ at p = 0. The branch point integration described in reference [10] may be performed to yield the following response factor relations for the surface heat flux over a multi-layer semi-infinite system.

$$\mathbf{F}_{\tau} = \sum_{i=0}^{\infty} \overline{\mathbf{Z}}_{i} \ \mathbf{T}_{1,\tau-i}$$

where
$$\overline{Z}_0 = \phi_1$$

$$\overline{Z}_1 = \phi_2 - 2\phi_1$$

$$\overline{Z}_1 = \phi_1 - 2\phi_{1-1} + \phi_{1-2} \quad \text{for } i \ge 3$$

$$\phi_1 = \int_0^{i\delta} \left(\frac{-1}{2\pi i} \int_{C_1 \text{ and } C_2} \left(\frac{C + DG}{A + BG}\right) \frac{ept}{p\delta} dp\right) dt$$
(45)

and c_1 and c_2 are paths of the line integral where p is defined by $p = re^{i\pi}$ and $p = re^{-i\pi}$ respectively for r from zero to infinity. Although the method described above is for a rigorous and generalized evaluation of response factors, an approximate solution to the problem may be obtained as described below.

For an approximate method, the response factor calculations will be performed for the surface layer region (which may or may not be of a multi-layer system) and for the semi-infinite region separately. The response factors for the former are denoted herein by X_i , Y_i and Z_i ($i = 0, 1, 2, \ldots$) and for the latter by Z_i' ($i = 0, 1, \ldots$).

The surface temperature of the entire region and the interfacial temperature (at $r = r_n$) between the surface layer and the semi-infinite regions at time τ are denoted by $T_{1,\tau}$ and $T_{n,\tau}$ respectively. At the interface, the following heat transfer relations can be established:

$$F_{n,\tau} = \sum_{i=0}^{\infty} Z_i^{!} T_{n,\tau-i}$$

$$= \sum_{i=0}^{\infty} Y_i T_{1,\tau-i} - \sum_{i=0}^{\infty} Z_i T_{n,\tau-i}$$

$$(46)$$

Eliminating $T_{n,\tau-i}$ from the above equation, and applying it to the heat flux at the surface $(r = r_1)$,

$$F_{1,\tau} = \sum_{i=0}^{\infty} \overline{z}_i T_{1,\tau-i}$$

where \bar{Z}_i (i = 0,1,... ∞) are the response factors for the overall system (multi-layer surface region plus the semi-infinite region), expressed as

$$\overline{Z}_{i} = X_{i} - \frac{Y_{i}^{2}}{Z_{i} + Z_{i}'}$$

$$\tag{47}$$

Table 19 shows mathematical formulas for obtaining Z_i for m = 0, 1, and 2. Also shown in the Appendix are system schematics and response factors of various heat conduction systems treated in this paper.

8. Interfacial Temperatures

The response factor method can also be used to calculate the temperatures at the interfaces of a multi-layer wall system when surface temperatures at the outer surfaces are prescribed.

For the multi-layer system of Fig. 3, assume that the interfacial temperature at $r=r_3$ is to be calculated. The Laplace transforms of the matrix relations for the flux and temperature for the two subsystems, one for the layers 1 and 2, and the other for the layers 3 and 4, are written as follows:

$$\begin{pmatrix} \overline{V}_{3} \\ f_{3} \end{pmatrix} = \begin{pmatrix} A_{3} & B_{3} \\ C_{3} & D_{3} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{h_{0}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \overline{V}_{0} \\ f_{0} \end{pmatrix}$$

$$\begin{pmatrix} \overline{V}_{I} \\ f_{I} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{h_{I}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{pmatrix} \begin{pmatrix} \overline{V}_{3} \\ f_{3} \end{pmatrix}$$

By denoting

$$\begin{pmatrix} A \begin{pmatrix} 1 \\ C \end{pmatrix} & B \begin{pmatrix} 1 \\ C \end{pmatrix} \end{pmatrix} = \begin{pmatrix} A_3 & B_3 \\ C_3 & D_3 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{h_0} \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} A \begin{pmatrix} 2 \\ C \end{pmatrix} & B \begin{pmatrix} 2 \\ C \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{h_1} \end{pmatrix} \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix}$$
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A \begin{pmatrix} 2 \\ C \end{pmatrix} & B \begin{pmatrix} 2 \\ C \end{pmatrix} \end{pmatrix} \begin{pmatrix} A \begin{pmatrix} 1 \\ C \end{pmatrix} & B \begin{pmatrix} 1 \\ C \end{pmatrix} \end{pmatrix}$$

and by knowing that

$$\begin{pmatrix} \mathbf{f}_{\mathbf{I}} \\ \mathbf{f}_{\mathbf{O}} \end{pmatrix} = \begin{pmatrix} \frac{D}{B} & -\frac{1}{B} \\ \frac{1}{B} & -\frac{A}{B} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{v}}_{\mathbf{I}} \\ \overline{\mathbf{v}}_{\mathbf{O}} \end{pmatrix}$$

and

$$\begin{pmatrix} \overline{V}_3 \\ f_3 \end{pmatrix} = \begin{pmatrix} A(1) & B(1) \\ C(1) & D(1) \end{pmatrix} \begin{pmatrix} \overline{V}_0 \\ f_0 \end{pmatrix}$$

it can be shown that

$$\bar{V}_3 = \frac{B(1)}{B} \bar{V}_1 + \left\{ \frac{B(2) A}{B} \right\} \bar{V}_0.$$
 (48)

The inverse transform can be carried out to yield the following relation, if the triangular pulse simulations are used for V_i and V_0 .

$$V_{3,\tau} = \sum_{i=0}^{\infty} (a_i \ V_{I,\tau-i} + b_i \ V_{O,\tau-i})$$
 (49)

where, for example, b; can be evaluated by

$$b_{i} = \lim_{p \to 0} \frac{d}{dp} \left[\frac{B(2)}{B\delta} \bar{\varphi}^{e^{ip\delta}} \right] + \sum_{h=1}^{\infty} \left[\frac{B(2) \bar{\varphi}^{e^{ip\delta}}}{p^{2} \delta \frac{dB}{dp}} \right]_{p=p_{h}}$$
(50)

when p_{h} is the Ath negative real root of B(p) = 0.

9. Application of Response Factors Calculation to

In many heat conduction problems, non-linear heat transfer relations occur at boundary surfaces. Two such cases of major importance are treated in this section as illustrative examples of the response factors technique.

Case 1: Stefan-Boltzmann type radiation heat exchange at one of the surfaces:

This situation is typical of the radiation heat exchange of space craft. Assume that the surfaces receive the solar radiation I, and become heated and in turn emit long wave-length radiation, which is proportional to the fourth power of the absolute temperature. The boundary heat transfer is then

$$-\lambda \left(\frac{\partial T}{\partial r}\right) = I(t) - \sigma \epsilon T^{4}$$
surface (51)

where $\sigma = Stefan-Boltzmann constant$

€ = surface emittance

If the inside surface of a wall of finite thickness is kept at a constant temperature T_0 , which is at the initial temperature when t=0, the heat transfer relation at a time $t=\tau\delta$ is

$$Q_{\tau} = \sum_{i=0}^{\infty} (T_{\tau-i} - T_{o}) X_{i} = I_{\tau} - \sigma \epsilon T_{\tau}^{4}$$
 (52)

 $\boldsymbol{T}_{_{\boldsymbol{T}}}$ must be found from the following relation by iteration

$$T_{\tau} X_{o} + \sigma \epsilon T_{\tau}^{4} = I_{\tau} - \sum_{i=1}^{\infty} (T_{\tau-i} - T_{o}) X_{i}$$
 (53)

Substituting the solution T_{τ} back into (39), the heat flux at time $t = \tau \delta$ can be obtained.

Case 2: Simultaneous heat and mass transfer boundary:

Transient heat transfer through a multilayer solid wall when one surface is wet and experiencing either evaporative or condensing heat and mass transfer is treated in this section. The surface boundary condition is:

$$-\lambda \left(\frac{\partial T}{\partial r}\right) = I + h_c (T_a - T) + K_D L(W_a - W)$$
surface (54)

where

I = Irradiated heat flux

h = Convective heat transfer coefficient

Kn = Mass transfer coefficient

 $T_a = Ambient air temperature$

W_a = Ambient air humidity ratio

W = Humidity ratio of saturated air at the surface temperature, T

L = Latent heat of evaporation or condensation

Assuming again that the temperature of the other surface of the wall is kept constant at the initial system temperature at t=0, the response factor relation for the iterative procedure for finding T_{T} will be written as

$$X_{o}(T_{\tau}-T_{o}) - h_{c}(T_{a}-T_{\tau}) - K_{D}L(W_{a}-W_{\tau}) = I_{\tau} - \sum_{i=0}^{\infty} X_{i}(T_{\tau-i}-T_{o})$$
 (55)

As can be seen in this example, the irradiation, heat and mass transfer coefficients, air temperature and air humidity ratio can also be treated as time variables.

The value of T_T must be found first from (55) by iteration and put back into the heat flux equation to calculate the heat transfer. Many other complex heat transfer problems can be solved in the same manner.

10. Calculation of Space Temperature

The response factors developed in this paper are not only useful for evaluating the conduction heat transfer, but also are applicable to the calculation of a space temperature.

Consider a simple room surrounded by a wall whose response factors are X_i , Y_i and Z_i (j = 0, 1, ...).

Also assume that the room air temperature at time t is established as a result of sensible heat balance among the following components:

 q_G = heat generated at time τ q_V = cooling capacity of supply air

= 1.08 • (CFM) • ($T_T - T_{s,T}$)

where (CFM) = supply air flow rate in cu. ft per min.

 T_{τ} = room air temperature at time τ $T_{s,\tau}$ = supply air temperature entering the room

 q_a = heat capacity of room air

$$= V_a C_a \frac{dT_{\tau}}{d\tau} = V_a C_a (T_{\tau} - T_{\tau-1})/\Delta \tau$$

where $V_a = room$ air volume $C_a = room$ air specific heat

 $\frac{\mathrm{d}T}{\mathrm{d}\tau}$ = time change of room air temperature \boldsymbol{q}_w = heat gain to the room through the wall

$$= \left[-\sum_{j=0}^{\infty} T_{\tau-j} X_{j} + \sum_{j=0}^{\infty} T_{0,\tau-j} Y_{j} \right] A_{w}$$

when A_{w} = total wall area

It is assumed that the response factors were previously calculated for the heat flow in the direction from inside to outside in time increment $\Delta \tau$

The heat balance equation is

$$q_G + q_w - q_v = q_a$$

The room air temperature T_{τ} is readily obtained by substituting each expression of heat flow into the above equation and factoring out T_{τ} as follows:

$$T_{\tau} = \frac{\frac{V_{a}C_{a}}{\Delta \tau} T_{\tau-1} - \left[\sum_{j=1}^{\infty} T_{\tau-j} X_{j} - \sum_{j=0}^{\infty} T_{o,\tau-j} Y_{j} \right] A_{w} + 1.08 \text{ (CFM) } T_{s,\tau} + q_{G}}{\frac{V_{a}C_{a}}{\Delta \tau} + 1.08 \text{ (CFM)} + X_{o} A_{w}}$$

The knowledge of the past history of room air and outdoor air temperature, therefore, permits the evaluation of present room air temperature with the use of response factors. Although the example cited herein is a simple one, any degree of complexity can be added, if necessary, to make a complete heat balance of more complicated system.

11. Modified Response Factors

According to equation (29), the heat flux calculation by the convolution relation requires a large number of terms for the summation before the values of terms X_i $V_{\tau-i}$ becomes sufficiently small to be negligible. When the heat flux values are to be calculated successively, however, it is possible to shorten the computational efforts by making use of the modified response factors.

The modified response factor concept may be explained in conjunction with the common ratio (CR) relation of equation (30) as follows. From equation (29) the heat fluxes at $r = r_1$ for two consecutive times τ -1 and t can be expressed as

$$F_{1,\tau} = \sum_{i=0}^{\infty} (X_i \ V_{1,\tau-i} - \Gamma \ Y_i \ V_{n,\tau-i})$$
 (56)

$$F_{1,\tau-1} = \sum_{i=0}^{\infty} (X_i \ V_{i,\tau-1-i} - \Gamma \ Y_i \ V_{n,\tau-1-i})$$
 (57)

By multiplying the common ratio of the response factors (denoted here as $CR = e^{-\beta}1^{\delta}$) to the both sides of equation (57) and subtracting it from equation (56),

$$F_{1,\tau} - CR \cdot F_{1,\tau-1} = (X_0 V_{1,\tau} - \Gamma Y_0 V_{n,\tau})$$

$$+ \sum_{i=1}^{\infty} \{ (X_i - X_{i-1} \cdot CR) V_{1,\tau-i} - \Gamma (Y_i - Y_{i-1} \cdot CR) V_{n,\tau-i} \}$$
(58)

By noting from equation (30) that

$$\frac{X_{i}}{X_{i-1}} = \frac{Y_{i}}{Y_{i-1}} = CR \qquad \text{for } i \ge N + 1$$

the heat flux at $r = r_1$ for time τ may be calculated by

$$F_{1,\tau} = CR \cdot F_{1,\tau-1} + \sum_{i=0}^{N} (X_i V_{i,\tau-i} - \Gamma Y_i V_{n,\tau-i})$$
 (59)

where
$$X_{i}' = X_{i} - X_{i-1} \cdot CR$$

 $Y_{i}' = Y_{i} - Y_{i-1} \cdot CR$
for $i = 1, 2, ... N$ (60)

and
$$X_0' = X_0$$

$$Y_0' = Y_0$$

These sets of finite numbers, X_i^{\dagger} , and Y_i^{\dagger} (i = 0, 1 ... N), are called the modified response factors of the first kind.

Since the value of N is usually around 15, as indicated earlier for most of the building walls and roofs, the calculation effort for $F_{1,\tau}$ can be reduced drastically by employing the modified response factors. The similar expression can be derived for the heat flux at $r = r_{n+1}$, or for $F_{n,\tau}$.

Periodic heat flow

The response factor calculation can also be modified to shorten the periodic heat flow calculations. Under a periodic boundary condition, the temperatures and heat flux must assume the following relation

$$V_{1,\tau} = V_{1,\tau-\hbar p}$$
 $V_{n,\tau} = V_{n,\tau-\hbar p}$
 $F_{1,\tau} = F_{1,\tau-\hbar p}$

where p is the period of the cycle and \hbar = 0, 1, 2, ... ∞ .

Assuming that p is larger than N, beyond which the response factors are evaluated by the common ratio relation (30), equation (29) can be expressed as follows:

$$\binom{F_{1,\tau}}{F_{n,\tau}} = \sum_{i=0}^{p-1} \binom{X_i - \Gamma_{Y_i}}{Y_i - Z_i} \binom{V_{1,\tau-1}}{V_{n,\tau-1}}$$

for $o < \tau < p-1$

whereby X_i , Y_i and Z_i are modified response factors of the second kind according to the following relationships

$$X_{i}' = X_{i} + X_{p} \cdot (CR)^{i}/(1 - CR^{p})$$
 $Y_{i}' = Y_{i} + Y_{p} (CR)^{i}/(1 - CR^{p})$
 $Z_{i}' = Z_{i} + Z_{p} (CR)^{i}/(1 - CR^{p})$

12. Conclusions

General formulae for calculating thermal response factors for multi-layer structures of plane, cylindrical and spherical construction, have been developed and these formulae are listed in this report. Several applications of these response factors are also illustrated such as

- a. Interface temperature of a multi-layer construction
- b. Evaluation of non-linear boundary temperature problem such as radiation and evaporation
- c. Evaluation of room air temperature

The computer program called RESPTK developed to obtain the response factors based upon the formulae described in this report is found in the Appendix.

$$m = 0$$

$$A_{\nu} = \cosh (q_{\nu}\ell_{\nu})$$

$$B_{\nu} = R_{\nu} S(q_{\nu}\ell_{\nu})$$

$$C_{\nu} = \frac{q_{\nu}\ell_{\nu}}{R_{\nu}} \sinh (q_{\nu}\ell_{\nu})$$

$$D_{\nu} = \cosh (q_{\nu}\ell_{\nu})$$

$$where \ell_{\nu} = r_{\nu}+1 - r_{\nu}$$

$$R_{\nu} = \frac{\ell_{\nu}}{\lambda_{\nu}}$$

$$S(q_{\nu}\ell_{\nu}) = \frac{\sinh (q_{\nu}\ell_{\nu})}{q_{\nu}\ell_{\nu}}$$

Table 2 Matrix Elements for Cylindrical Layer

$$m = 1$$

$$A_{v} = (q_{v} r_{v+1}) (I_{o,1} K_{1,2} + K_{o,1} I_{1,2})$$

$$B_{v} = \left(\frac{r_{v+1}}{\lambda_{v}}\right) \left(-I_{o,1} K_{o,2} + K_{o,1} I_{o,2}\right)$$

$$C_{v} = \lambda_{v} q_{v}^{2} r_{v+1} (-I_{1,1} K_{1,2} + K_{1,1} I_{1,2})$$

$$D_{v} = (q_{v} r_{v+1}) (I_{1,1} K_{o,2} + K_{1,1} I_{o,2})$$

$$where I_{o,1} = I_{o} (q_{v} r_{v})$$

$$I_{o,2} = I_{o} (q_{v} r_{v+1})$$

$$I_{1,1} = I_{1} (q_{v} r_{v})$$

$$I_{1,2} = I_{1} (q_{v} r_{v})$$

$$K_{o,1} = K_{o} (q_{v} r_{v})$$

$$K_{o,2} = K_{o} (q_{v} r_{v})$$

$$K_{1,1} = K_{1} (q_{v} r_{v})$$

$$K_{1,2} = K_{1} (q_{v} r_{v})$$

These are the modified Bessel Functions.

Table 3 Matrix Elements for Spherical Layer

$$m = 2$$

$$A_{V} = \left(\frac{r_{V}+1}{r_{V}}\right) \left(\cosh(q_{V}\ell_{V}) - \frac{\ell_{V}}{r_{V}+1} - S(q_{V}\ell_{V})\right)$$

$$B_{V} = R_{V} \left(\frac{r_{V}+1}{r_{V}}\right) S(q_{V}\ell_{V})$$

$$C_{V} = \frac{1}{R_{V}} \left(\frac{\ell_{V}}{r_{V}}\right)^{2} \left[(q_{V}^{2}r_{V}r_{V}+1 - 1) - S(q_{V}\ell_{V}) + \cosh(q_{V}\ell_{V}) \right]$$

$$D_{V} = \left(\frac{r_{V}+1}{r_{V}}\right) \left(\cosh(q_{V}\ell_{V}) + (\frac{\ell_{V}}{r_{V}}) - S(q_{V}\ell_{V})\right)$$
where $\ell_{V} = r_{V}+1 - r_{V}$

$$R_{V} = \frac{\ell_{V}}{\ell_{V}}$$

$$S(q_{V}\ell_{V}) = \frac{\sinh(q_{V}\ell_{V})}{q_{V}\ell_{V}}$$

Table 4

Derivatives of Matrix Elements for Plane Layer

$$m = 0$$

$$\frac{dA_{y}}{dp} = \left(\frac{\ell_{y}^{2}}{2\alpha_{y}}\right) S_{1} (q_{y}\ell_{y})$$

$$\frac{dB_{V}}{dp} = \left(\frac{\ell_{V}^{2}}{2\alpha_{V}}\right) R_{V} S_{2} \left(q_{V} \ell_{V}\right)$$

$$\frac{dC_{V}}{dp} = \left(\frac{R_{V}^{2}}{2\alpha_{V}}\right) \frac{1}{R_{V}} \left[S_{1} \left(q_{V} \ell v \right) + \cosh(q_{V} \ell_{V}) \right]$$

$$\frac{dD_{v}}{dp} = \left(\frac{\ell_{v}^{2}}{2\alpha_{v}}\right) S_{1} (q\ell_{v})$$

where
$$S_1(q_{\nu}\ell_{\nu}) = \frac{\sinh(q_{\nu}\ell_{\nu})}{q_{\nu}\ell_{\nu}}$$

$$S_{2}(q_{y}\ell_{y}) = \frac{\cosh(q_{y}\ell_{y}) - S_{1}(q_{y}\ell_{y})}{(q_{y}\ell_{y})^{2}}$$

Table 5

Derivatives of Matrix Elements for Cylindrical Layer

m = 1

$$\frac{dA_{V}}{dp} = \left(\frac{r_{V}r_{V+1}}{2\alpha_{V}}\right) \left(\mathbf{I}_{1},_{1}K_{1},_{2} - K_{1},_{1}\mathbf{I}_{1},_{2}\right) - \left(\frac{r_{V}^{2}+1}{2\alpha_{V}}\right) \left(\mathbf{I}_{0,1}K_{0,2} - K_{0,1}\mathbf{I}_{0,2}\right)$$

$$\frac{\mathrm{d} \mathbf{B} \nu}{\mathrm{d} \mathbf{p}} = - \left(\frac{\mathbf{r}_{\mathcal{V}} \mathbf{r}_{\mathcal{V}+1}}{2\alpha_{\mathcal{V}}} \right) \left(\frac{\mathbf{I}_{1} \cdot \mathbf{1}_{0 \cdot 2} + \mathbf{K}_{1} \cdot \mathbf{1}_{0 \cdot 2}}{\mathbf{q}_{\mathcal{V}} \lambda_{\mathcal{V}}} \right) + \left(\frac{\mathbf{r}_{\mathcal{V}+1}^{2}}{2\alpha_{\mathcal{V}}} \right) \left(\frac{\mathbf{I}_{0 \cdot 1} \mathbf{K}_{1 \cdot 2} + \mathbf{K}_{0 \cdot 1} \mathbf{I}_{1 \cdot 2}}{\mathbf{q}_{\mathcal{V}} \lambda_{\mathcal{V}}} \right)$$

$$\frac{d\mathbf{C}_{v}}{d\mathbf{p}} = -\left(\frac{\mathbf{r}_{v}\mathbf{r}_{v+1}}{2\alpha_{v}}\right) \left(\mathbf{q}_{v}\lambda_{v}\right) \left(\mathbf{I}_{o,1}\mathbf{K}_{1,2} + \mathbf{K}_{o,1}\mathbf{I}_{1,2}\right)$$

$$+ \left(\frac{\mathbf{r}_{v+1}^{2}}{2\alpha_{v}}\right) \left(\mathbf{q}_{v}\lambda_{v}\right) \left(\mathbf{I}_{1,1}\mathbf{K}_{o,2} + \mathbf{K}_{1,1}\mathbf{I}_{o,2}\right)$$

$$\frac{dD_{\nu}}{dp} = \left(\frac{r_{\nu}r_{\nu+1}}{2\alpha_{\nu}}\right) \left(I_{0,1}K_{0,2} - K_{0,1}I_{0,2}\right) - \left(\frac{r_{\nu+1}^{2}}{2\alpha_{\nu}}\right) \left(I_{1,1}K_{1,2} - K_{1,1}I_{1,2}\right)$$

where $I_{0,1}$, $I_{0,2}$ $K_{1,2}$ are all defined previously in Table 2.

 $\begin{array}{c} {\rm Table} \ 6 \\ {\rm Derivatives} \ {\rm of} \ {\rm Matrix} \ {\rm Elements} \ {\rm for} \ {\rm Spherical} \ {\rm Layer} \end{array}$

$$m = 2$$

$$\frac{dA_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}} S_{1}(q_{\nu}\ell_{\nu}) - \left(\frac{\ell_{\nu}}{r_{\nu}}\right) S_{2}(q_{\nu}\ell_{\nu})\right)$$

$$\frac{dB_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) R_{\nu} \left(\frac{r_{\nu}+1}{r_{\nu}}\right) S_{2} (q_{\nu}\ell_{\nu})$$

$$\frac{dC_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}^{2}}{r_{\nu}^{2}}\right) \left[\left(\frac{2r_{\nu}r_{\nu}+1}{\ell_{\nu}^{2}} + 1\right) S_{1}(q_{\nu}^{2}r_{\nu}r_{\nu}+1 - 1) S_{2}(q_{\nu}\ell_{\nu})\right]$$

$$\frac{dD_{\nu}}{dp} = \left(\frac{\ell_{\nu}^{2}}{2\alpha_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}} S_{1}(q_{\nu}\ell_{\nu}) + \left(\frac{\ell_{\nu}}{r_{\nu}}\right) \left(\frac{r_{\nu}+1}{r_{\nu}}\right) S_{2}(q_{\nu}\ell_{\nu})\right)$$

where S_1 and S_2 have been defined in Table 4.

Table 7 Limits of Derivative Matrices

$$m = 0$$

$$\frac{dA_{v}}{dp} = \frac{\ell v^{2}}{2\alpha_{v}}$$

$$\frac{dB_{v}}{dp} = \frac{\ell v^{2}}{6\alpha_{v}} R_{v}$$

$$\frac{dC_{v}}{dp} = \frac{1}{R_{v}} \frac{\ell v^{2}}{\alpha_{v}}$$

$$\frac{dD_{v}}{dp} = \frac{\ell v^{2}}{2\alpha_{v}}$$

m = 1

$$\begin{split} \frac{dA_{\mathcal{V}}}{d\,p} &= \left(\frac{r_{\mathcal{V}+1}^2}{2\alpha_{\mathcal{V}}}\right) \left[\frac{1}{2} \left[\left(\frac{r_{\mathcal{V}}}{r_{\mathcal{V}+1}}\right)^2 - 1\right] + \ell_n \frac{r_{\mathcal{V}+1}}{r_{\mathcal{V}}}\right] \\ \frac{dB_{\mathcal{V}}}{d\,p} &= \left(\frac{r_{\mathcal{V}+1}^2}{4\alpha_{\mathcal{V}}}\right) \left(\frac{r_{\mathcal{V}+1}}{\lambda_{\mathcal{V}}}\right) \left[\left[1 + \left(\frac{r_{\mathcal{V}}}{r_{\mathcal{V}+1}}\right)^2\right] \ell_n \left(\frac{r_{\mathcal{V}+1}}{r_{\mathcal{V}}}\right) - \left(1 - \left(\frac{r_{\mathcal{V}}}{r_{\mathcal{V}+1}}\right)^2\right)\right] \\ \frac{dC_{\mathcal{V}}}{d\,p} &= \left(\frac{\lambda_{\mathcal{V}}}{r_{\mathcal{V}}}\right) \left(\frac{r_{\mathcal{V}+1}^2}{2\alpha}\right) \left[1 - \left(\frac{r_{\mathcal{V}}}{r_{\mathcal{V}+1}}\right)^2\right] \\ \frac{dD_{\mathcal{V}}}{d\,p} &= \left(\frac{r_{\mathcal{V}+1}^2}{2\alpha_{\mathcal{V}}}\right) \left[\frac{1}{2} \left(\frac{r_{\mathcal{V}+1}^2 - r_{\mathcal{V}}^2}{r_{\mathcal{V}+1}}\right) - \left(\frac{r_{\mathcal{V}}}{r_{\mathcal{V}+1}}\right) \ell_n \left(\frac{r_{\mathcal{V}+1}}{r_{\mathcal{V}}}\right)\right] \end{split}$$

When $(r_{v+1} - r_v)/r_v$ is sufficiently small, these derivatives can be approximated as follows:

$$\frac{dA_{v}}{dp} = \left(\frac{\ell v^{3}}{2\alpha}\right) \left[1 - \frac{1}{2} \left(\frac{\ell v}{r_{v}}\right)^{2}\right]$$

$$\frac{dB_{v}}{dp} = \left(\frac{\ell v^{2}}{2\alpha}\right) \left[\frac{1}{3} + \frac{5}{12} \left(\frac{\ell}{r_{v}}\right) + \frac{1}{4} \left(\frac{\ell}{r_{v}}\right)^{3} + \frac{1}{6} \left(\frac{\ell}{r_{v}}\right)^{3}\right] R_{v}$$

$$\frac{dC_{v}}{dp} = \left(\frac{\ell v^{3}}{2\alpha}\right) \left[2 + \frac{\ell}{r_{v}}\right] \frac{1}{R_{v}}$$

$$\frac{dD_{v}}{d} = \left(\frac{\ell v^{3}}{2\alpha}\right) \left[1 + \frac{3}{2} \left(\frac{\ell v}{r_{v}}\right)\right]$$

$$m = 2$$

$$\frac{dA_{V}}{dp} = \left(\frac{\ell_{V}^{2}}{6\alpha_{V}}\right) \left(\frac{2r_{V+1}}{r_{V}} + 1\right)$$

$$\frac{dB_{V}}{dp} = R_{V} \left(\frac{r_{V+1}}{r_{V}}\right) \left(\frac{\ell_{V}^{2}}{6\alpha_{V}}\right)$$

$$\frac{dC_{V}}{dp} = \frac{1}{R_{V}} \left(\frac{\ell_{V}^{2}}{2\alpha_{V}}\right) \left[\frac{2r_{V+1}}{r_{V}} + \frac{2}{3} \left(\frac{\ell_{V}}{r_{V}}\right)^{2}\right]$$

$$\frac{dD_{V}}{dp} = \left(\frac{\ell_{V}^{2}}{6\alpha_{V}}\right) \left(\frac{r_{V+1}}{r_{V}}\right) \left(\frac{r_{V+1}}{r_{V}} + 2\right)$$

When $(r_{\nu+1} - r_{\nu})/r_{\nu}$ is sufficiently small, these derivatives can be approximated as follows

$$\frac{dA_{\nu}}{dp} = \frac{\ell_{\nu}^{3}}{2\alpha_{\nu}} \left(1 + \frac{2}{3} \frac{\ell_{\nu}}{r_{\nu}} \right)$$

$$\frac{dB_{\nu}}{dp} = \frac{\ell_{\nu}^{2}}{6\alpha_{\nu}} R_{\nu} \left(1 + \frac{\ell_{\nu}}{r_{\nu}} \right)$$

$$\frac{dC_{\nu}}{dp} = \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}^{2}}{\alpha_{\nu}} \right) \left[1 + \frac{\ell_{\nu}}{r_{\nu}} + \frac{1}{3} \left(\frac{\ell_{\nu}}{r_{\nu}} \right)^{2} \right]$$

$$\frac{dD_{\nu}}{dp} = \frac{\ell_{\nu}^{2}}{2\alpha_{\nu}} \left(1 + \frac{1}{3} \frac{\ell_{\nu}}{r_{\nu}} \right) \left(1 + \frac{\ell_{\nu}}{r_{\nu}} \right)$$

Table 8 Matrix Elements for $p = -\beta_{\frac{1}{2}}$ for Plane Layer

$$m = 0$$

$$A_{v} = \cos E$$

$$B_{v} = R_{v} S_{1}(E)$$

$$C_{v} = -\frac{E}{R_{v}} \sin E$$

$$D_{v} = \cos E$$

$$\frac{dA_{v}}{dp} = \gamma S_{1}(E)$$

$$\frac{dB_{v}}{dp} = \gamma R_{v} S_{2}(E)$$

$$\frac{dC_{v}}{dp} = \frac{\gamma}{R_{v}} (S_{1}(E) + \cos (E))$$

$$\frac{dD_{v}}{dp} = \gamma S_{1}(E)$$

$$where \qquad E = \sqrt{\frac{\beta_{1}}{\alpha}} (S_{1}(E) - \cos E)$$

$$S_{1}(E) = \frac{\sin E}{E}$$

$$S_{2}(E) = \frac{S_{1}(E) - \cos E}{E^{2}}$$

$$\gamma = \frac{\ell^{2} v}{2\alpha_{v}}$$

Matrix Elements for $p = -\beta_{\frac{1}{12}}$ for Cylindrical Layer

$$m = 3$$

$$\begin{split} & A_{0} = -\frac{\pi}{2} \; E_{2} (J_{01}Y_{12} - Y_{01}J_{12}) \\ & B_{0} = \frac{\pi}{2} \left(\frac{r_{0}+1}{\lambda_{0}} \right) \left(J_{01}Y_{02} - Y_{01}J_{02} \right) \\ & C_{0} = \frac{\pi}{2} \left(\frac{\lambda_{0}}{r_{0}+1} \right) \left(-J_{11}Y_{12} + Y_{11}J_{12} \right) E_{2}^{2} \\ & D_{0} = \frac{\pi}{2} \; E_{2} (J_{11}Y_{02} - Y_{11}J_{02}) \\ & \frac{dA_{0}}{dp} = \frac{\pi}{4\alpha} \left\{ -r_{0}+1r_{0} (J_{11}Y_{12} - Y_{11}J_{12}) + r_{0}^{2}+1 (J_{01}Y_{02} - Y_{01}J_{02}) \right\} \\ & \frac{dB_{0}}{dp} = \frac{\pi}{4\alpha} \left(\frac{r_{0}+1}{\lambda_{0}} \right) \frac{1}{E_{2}} \left\{ (r_{0}+1r_{0}) (J_{11}Y_{02}-Y_{11}J_{02}) + (r_{0}+1)^{2} (J_{01}Y_{12}-Y_{01}J_{12}) \right\} \\ & \frac{dC_{0}}{dp} = \frac{\pi}{4\alpha} \left(\frac{r_{0}+1}{\lambda_{0}} \right) \; E_{2} \left\{ (r_{0}+1r_{0}) (J_{01}Y_{12}-Y_{01}J_{12}) + (r_{0}+1)^{2} (J_{11}Y_{02}-Y_{11}J_{02}) \right\} \\ & \frac{dD_{0}}{dp} = \frac{\pi}{4\alpha} \left\{ (r_{0}+1r_{0}) (-J_{01}Y_{02} + Y_{01}J_{02}) - (r_{0}+1)^{2} (-J_{11}Y_{12} + Y_{11}J_{12}) \right\} \\ & \text{where } \; E_{2} = \sqrt{\frac{\beta_{A}}{C_{0}}} \; r_{0}+1, \; E_{1} = \sqrt{\frac{E_{A}}{C_{0}}} \; r_{0} \\ & J_{01} = J_{0}(E_{1}), \; J_{11} = J_{1}(E_{1}) \\ & J_{02} = J_{0}(E_{2}), \; J_{12} = J_{1}(E_{2}) \\ & K_{01} = K_{0}(E_{1}), \; K_{11} = K_{1}(E_{1}) \\ & K_{02} = K_{0}(E_{2}), \; K_{12} = K_{1}(E_{2}) \end{split}$$

Matrix Elements for $p = -\beta_R$ for Spherical Layer

m = 2

$$\begin{split} A_{\nu} &= \left(\frac{r_{\nu+1}}{r_{\nu}}\right) \left(\cos E - \frac{\ell_{\nu}}{r_{\nu+1}} S_{1}\left(E\right)\right) \\ B_{\nu} &= R_{\nu} \left(\frac{r_{\nu+1}}{r_{\nu}}\right) S_{1}\left(E\right) \\ C_{\nu} &= \frac{1}{R_{\nu}} \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2} \left[\cosh E - \left(E_{1}E_{2} + 1\right) S_{1}\left(E\right)\right] \\ D_{\nu} &= \left(\frac{r_{\nu+1}}{r_{\nu}}\right) \left(\cos E + \frac{\ell_{\nu}}{r_{\nu}} S_{1}\left(E\right)\right) \\ \frac{dA_{\nu}}{dp} &= \gamma \left\{\frac{r_{\nu+1}}{r_{\nu}} S_{1}\left(E\right) - \frac{\ell_{\nu}}{r_{\nu}} S_{2}\left(E\right)\right\} \\ \frac{dB_{\nu}}{dp} &= \gamma R_{\nu} \left(\frac{r_{\nu+1}}{r_{\nu}}\right) S_{2}\left(E\right) \\ \frac{dC_{\nu}}{dp} &= \gamma \left(\frac{1}{R_{\nu}}\right) \left(\frac{\ell_{\nu}}{r_{\nu}}\right)^{2} \left(\left(\frac{r_{\nu}r_{\nu+1}}{\ell_{\nu}} + 1\right) S_{1}\left(E\right) - \left(E_{1}E_{2} + 1\right) S_{2}\left(E\right)\right) \\ \frac{dD_{\nu}}{dp} &= \gamma \left(\frac{r_{\nu+1}}{r_{\nu}} S_{1}\left(E\right) + \left(\frac{\ell_{\nu}}{r_{\nu}}\right) \left(\frac{r_{\nu+1}}{r_{\nu}}\right) S_{2}\left(E\right)\right) \\ where &E &= \sqrt{\frac{E_{\rho}}{CQ_{\nu}}} \ell_{\nu} \\ E_{1} &= \sqrt{\frac{E_{\rho}}{Q_{\nu}}} r_{\nu}, \quad E_{2} &= \sqrt{\frac{E_{\rho}}{Q_{\nu}}} r_{\nu+1} \\ S_{1}\left(E\right) &= \frac{S_{1}\left(E\right) - \cos E}{E^{2}} \\ S_{2}\left(E\right) &= \frac{S_{1}\left(E\right) - \cos E}{E^{2}} \\ \gamma &= \frac{\ell_{\nu}^{2}}{2Q_{\nu}}. \end{split}$$

Table JC Walls Sample multi-layer

Fig. 3.

Table 11

layer v	description	l _ν (ft)	λ _ν (Btu/hr.)	(ft²/hr.)	r _V (ft)
1	Inside air film h _I = 1.20	0			5.000
2	Common brick 4"	0,333	0.42	0.019	5.000
3	Face brick 4"	0.333	0.77	0.028	5.333
4	Outside air film h _o = 3.0	0			5.666

Table 12

$0 < t \le \delta$		Residues at p D $\overline{\phi}/B$	= 0 for $\overline{\varphi}/B$	Α φ/Β
	PW	2.73117	-2.94849	7.88866
	CW	2.6297	-2.6874	7.90340
	SW	2.52953	-2.44114	7.89881
$\delta < t \le 2\delta$				
	PW	-2.31309	3.36656	-7.47058
	CW	-2.19279	3.07306	- 7.51776
	SW	-2.07374	2.79607	-7.54387
PW = plane v	wall	m = 0		
CW = cylind	rical	wall m = 1		

SW = spherical wall m = 2

Table 13

A	βή: Roots o: PW	f B(p) = 0 CW	SW
1	.17452	.17701	.17980
2	.84430	.84634	.84866
3	2.56859	2.57005	2.57188
4	4.85967	4.86146	4.86360
5	8.85960	8.86093	8.86265
6	12.84988	12.85127	12.85303
7	19.15047	19.15200	19.15398
8	25.00846	25.0095	25.01083
9	33.33174	33,33359	33,33583
10	41.45064	41.45137	41.45249

PW = plane wall

CW = cylindrical wall

SW = spherical wall

Table 14
Response Factors, Btu ft⁻², F⁻¹, hr⁻¹

í		x _i	Yi	z _i
0	PW	.91949	0.00013	1.9834
	CW	.92162	0.00014	1.97607
	SW	.92365	0.00011	1.96864
1	PW	16678	0.00812	51260
	CW	1639 2	0.00759	 52 127
	SW	16099	0.00713	52993
2	PW	-0.07950	0.03112	23226
	CW	-0.07744	0.02916	 23749
	SW	-0.07540	0.02726	2 4268
3	PW	-0.05150	0.04482	15634
	CW	-0.04987	0.04185	15997
	SW	-0.04826	0.03903	16353
4	PW	-0.03715	0.04658	11690
	CW	-0.03580	0.04340	11954
	SW	-0.03447	0.04038	12207
5	PW	-0.02861	0.04304	-0.09216
	CW	-0.02746	0.04000	-0.09410
	SW	-0.02632	0.03712	-0.09592
6	PW	-0.02292	0.03784	-0.07482
	CW	-0.02192	0.03508	-0.07625
	SW	-0.02094	0.03247	-0.07756
7	PW	-0.01877	0.03250	-0.66173
	CW	-0.01790	0.03006	-0.06277
	SW	-0.01704	0.02775	-0.06369
8	PW	-0.01556	0.02761	-0.05137
	CW	-0.01480	0.02548	-0.05212
	SW	-0.01404	0.02344	-0.05274
9	PW	-0.01298	0.02333	-0.04294
	CW	-0.01231	0.02147	-0.04346
	SW	-0.01165	0.01970	-0.04386
10	PW	-0.01086	0.01965	-0.03598
	CW	-0.01028	0.01804	-0.03632
	SW	-0.00970	0.01651	-0.03655

Table 14 (con't)

i		Xi	Yi	${\tt z_i}$	
11	PW CW SW	-0.00911 -0.00860 -0.00809	0.01653 0.01513 0.01381	-0.03018 -0.03039 -0.03050	
12	PW CW SW	-0.00764 -0.00719 -0.00675	0.01389 0.01269 0.01155	-0.02533 -0.02544 -0.02547	
13	PW CW SW	-0.00642 -0.00602 -0.00564	0.01167 0.01063 0.00965	-0.02126 -0.02131 -0.02127	
14	PW CW SW	-0.00539 -0.00505 -0.00471	0.00980 0.00891 0.00807	-0.01786 -0.01785 -0.01777	
CR	PW CW SW	0.8398 0.8378 0.8358			

PW = plane wall m = 0

CW = cylindrical wall m = 1

SW = spherical wall m = 2

CR = common ratio where for $i \ge 15$

$$\frac{X_{i+1}}{X_{i}} = \frac{Y_{i+1}}{Y_{i}} = \frac{Z_{i+1}}{Z_{i}} = CR$$

Table 15 Plane Wall Model

t	TIt	Tøt		QI _t	QΦt	
			Exact	Response Factor	Exact	Response Factor
			Solution	Solution	Solution	Solution
24		-, -,	17.15	-17.15	21.04	20 50
	75	77	-17.15	-19.18	31.04	30.58
23	75	79	-19.20	-20.83	32.92	33.77
22	75	81	-20.90	l .	39.47	38.71
21	75	83	-21.48	-21.33	44.79	47.35
20	75	85	-20.00	-19.91	69.48	70.30
19	75	87	-17.10	-17.10	-20.15	-24.28
18	75	138	-13.72	-13.76	-72.88	-78.01
17	75	162	-10.45	-10.53	-101.46	-103.27
16	75	168	-7.82	-7.91	-111.45	-111.14
15	75	163	-6.06	-6.13	-98,60	-99.37
14	75	148	-5.05	-5.07	-76.34	-74.90
13	75	128	-4.04	-4.36	-32.97	-32.06
12	75	104	-3.86	-3.89	-28.51	-28.87
11	75	100	-3.65	-3.68	-23.32	-23.04
10	75	95	-3.73	-3.75	-16.17	-16.18
9	75	90	-4.13	-4.15	-10.75	-10.70
8	75	86	-4.86	-4.87	-4.76	-4.73
7	75	82	-5.82	-5.83	7.48	8.04
6	75	76	-6.94	-6.95	14.46	14.34
5	75	74	-8.21	-8.22	17.11	17.42
4	75	74	-9.65	-9.66	19.08	18.77
3	75	75	-11.29	-11.30	19.94	20.27
2	75	76	-13.11	-13.12	25.02	24.84
1	75	76	-15.07	-15.08	27.90	28.39

TI: Inside temperature, (F)

Tø: Outside temperature, (F)

QI: Inside heat flux, (Btu hr^{-1} ft⁻²)

Q ϕ : Outside heat flux, (Btu hr⁻¹ ft⁻²)

$$QI_{t} = \sum_{j=0}^{\infty} X_{j} \cdot TI_{t-j} - \sum_{j=0}^{\infty} Y_{j} \cdot T\phi_{t-j}$$

$$Q\phi_{t} = \sum_{j=0}^{\infty} Y_{j} \cdot TI_{t-j} - \sum_{j=0}^{\infty} Z_{j} \cdot T\phi_{t-j}$$

Cylindrical Wall Table 16

t	TIt	$\mathrm{T}\phi_{t}$		QI _t	QØ _t	
			Exact	Response Factor	Exact	Response Factor
			Solution	Solution	Solution	Solution Solution
24	75	77	- 17.94	-17.95	31.68	31.23
23	75	79	-20.13	-20.12	33.76	34.62
22	75	81	-22.00	-21.88	40.37	39.80
21	75	83	-2 2.60	-22.44	46.17	48.76
20	75	85	-21.06	-20.96	71.40	72.21
19	75	87	-18.01	-18.01	-17.72	-21.91
18	75	138	-14.44	-14.48	- 75.48	-75.61
17	75	162	-10.99	-11.07	-99.28	-101.12
16	75	168	-8.21	-8.30	-109.69	- 109.39
15	75	163	-6.33	-6.41	-97.30	-98 .08
14	75	148	- 5.25	- 5.29	-75.50	-74.04
13	75	128	- 4.50	-4.53	-32.40	-31.48
12	75	104	-3.99	-4.02	-28.06	-28.43
11	75	100	-3.76	-3.78	-23.02	-22.73
10	75	95	-3 .82	-3.85	-15.97	-15.93
9	75	90	-4.24	-4.26	-10.64	- 10.59
8	75	86	- 5.00	-5.01	- 4.73	- 4.70
7	75	82	-6.00	-6.01	7.47	8.04
6	75	76	-7.18	-7.18	14.49	14.36
5	75	74	- 8.50	-8.51	17.18	17.49
4	75	74	-10.02	-10.03	19. 2 3	18.92
3	75	75	-11.75	-11.75	20.1,7	20.50
2	75	76	-13.67	-13.68	25.36	25.18
1	75	76	- 15.75	-15.76	28.37	28 .8 6

TI: Inside temperature, (F)

Tø: Outside temperature, (F)

QI: Inside heat flux (Btu hr^{-1} ft^{-2})

 $Q\phi$: Outside heat flux (Btu hr⁻¹ ft⁻²)

$$\mathbf{QI_{t}} = \sum_{j} \mathbf{TI_{t-j}} - \Gamma \sum_{j} \mathbf{T} \phi_{t-j}$$

$$QO_{t} = \sum_{j} TI_{t-j} - \Gamma \sum_{j} T\phi_{t-j}$$

$$\Gamma = \frac{5.666}{5.000}$$

Spherical Wall Table 17

Time	TI	Τø		QI		Qφ
(hr)			Exact	Response Factor	Exact	Response Factor
(111)			Solution	Solution	Solution	Solution
0.4	75	77	-18.74	-18.75	32,21	31,80
24	75	79	-21.07	-21.05	34.52	35.39
23	75	81	-23.03	-22.95	41.60	40.82
22 21	75	83	-23.74	-23.57	47.49	50.12
20	75.	85	-22.15	-23.57	73.26	74.06
19	75	87	-18.94	-18.93	-15.32	-19.57
18	75	138	-15.18	,-15.22	-73.10	-73.24
17	75	162	-11.54	-11.62	-97.13	-98.98
16	75	168	-8.60	-8.69	-107.96	-107.65
15	75	163	-6.60	-6.69	-96.03	-96.81
14	75	148	-5.46	-5.50	-74.68	-73.20
13	75	128	-4.66	-4.69	-31.86	-30.92
12	75	104	-4.11	-4.13	-27.64	-28.02
11	75	100	-3.85	-3.88	-22.74	-22.45
10	75	95	-3.91	-3.93	-15.80	-15.82
9	75	90	-4.32	-4. 35	-10.57	-10.52
	75	86	-5.11	- 5.12	-4.74	-4.71
8 7	75	82	-6.16	-6.16	7.42	7.99
6	75	76	-7.39	-7.39	14.46	14.33
5	75	74	-8.78	-8.78	17.20	17.51
4	75	74	-10.37	-10.38	19.32	19.01
3	75	75	-12.18	-12.19	20.33	20.67
2	75	76	-14.21	-14.22	25.62	25.45
1	75	76	-16.41	-16.42	28.77	29.27
	-					

TI: Inside temperature, (F)

 $T\emptyset$: Outside temperature, (F)

QI: Inside heat flux, (Btu hr⁻¹ ft⁻²)

Q ϕ : Outside heat flux, (Btu hr⁻¹ ft⁻²)

$$QI_{t} = \sum_{j=0}^{\infty} X_{j} \cdot TI_{t-j} - \Gamma \sum_{j=0}^{\infty} Y_{j} \cdot T\phi_{t-j}$$

$$Q\phi_{t} = \sum_{j=0}^{\infty} Y_{j} \cdot TI_{t-j} - \sum_{j=0}^{\infty} Z_{j} \cdot T\phi_{t-j}$$

$$I_{t} = \left(\frac{5.666}{5.000}\right)^{2}$$

Table 18 Formulas for Cylinder and Sphere

m = 1.

$$G' = \left(\frac{\lambda_1}{r_1}\right) E_1 \frac{J_1(E_1)}{J_0(E_1)}$$
 at $p = i\beta$

$$\frac{dG'}{dp} = -\left(\frac{\lambda_1}{r_1}\right)\left(\frac{r_1^2}{2\alpha}\right)\left[\frac{J_1(E)}{EJ_0(E)} + \frac{J_0^2(E) - \frac{J_0(E)J_1(E)}{E}}{J_0^2(E)}\right]$$

m = 2

$$G' = \left(\frac{\lambda_1}{r_1}\right) \left(1 - \frac{\cos(E)}{S_1(E)}\right)$$

$$\frac{dG'}{dp} = -\left(\frac{\lambda_1}{r_1}\right)\left(\frac{r_1^2}{2\alpha}\right)\left[1 - \frac{\cos(E) \cdot S_2(E)}{S_1^2(E)}\right]$$

where definitions of E, S_1 (E) and S_2 (E) are identical to those used in the previous tables. As E_1 approaches to zero G' approaches zero for both m=1 and 2, $\frac{dG'}{dp}$ becomes $-\left(\frac{r_1^2}{2\alpha}\right)\!\left(\frac{\lambda_1}{r_1}\right)$ for m=1 and $-\left(\frac{r_1^2}{3\alpha}\right)\!\left(\frac{\lambda_1}{r_1}\right)$ for m=2.

Fig.4 Sample structures For Appendix

Table 19

Response Factors for Semi-infinite Region

Common Symbols

$$L = \frac{\lambda_n}{r_n} \text{ and } \mu = \frac{r_n^2}{Q_n \delta}$$

$$\phi_i = \left(\frac{2}{\pi}\right)^2 \int_0^\infty \frac{1 - e^{-\beta^2 i/\mu}}{\beta^3 \{Y_0^2(\beta) + J_0^2(\beta)\}} d\beta$$

$$m = 0$$

$$\overline{Z}_1 = 2L \sqrt{\frac{\mu}{\pi}}$$

$$\overline{Z}_2 = \overline{Z}_1 (/2 - 2)$$

$$\overline{Z}_i = \overline{Z}_1 (/i - 2/i - 1 + \sqrt{i - 2}), i \ge 3$$

$$m = 1$$

$$\overline{Z}_1 = I_\mu (\phi_1)$$

$$\overline{Z}_2 = I_\mu (\phi_2 - 2\phi_1)$$

$$\overline{Z}_i = I_\mu (\phi_i - 2\phi_{i-1} + \phi_{i-2}) \text{ for } i \ge 3$$

$$m = 2$$

$$\overline{Z}_1 = 2L \sqrt{\frac{\mu}{\pi}} (1 + \frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{\mu}})$$

$$\overline{Z}_2 = 2L \sqrt{\frac{\mu}{\pi}} (\sqrt{2} - 2)$$

$$\overline{Z}_1 = 2L \sqrt{\frac{\mu}{\pi}} (\sqrt{2} - 2)$$

These relationships show a very interesting fact such that Z_i for $i=2,\ 3,\ldots\infty$ are identical for the cases where $m=0,\ 1$ and 2. Moreover, from the cases of m=0 and 1, it should follow that

$$(\phi_i - 2\phi_{i-1} + \phi_{i-2}) = \frac{2}{\sqrt{\mu \pi}} (/i - 2/i-1 + /i-2)$$

or
$$\left(\frac{2}{\pi}\right)^2 \int_0^\infty \frac{1 - e^{-\beta^2 i/\mu} d\beta}{\beta^3 \{Y_0^2(\beta) + J_0^2(\beta)\}} = 2\sqrt{\frac{i}{\mu \pi}}$$

which seems to be a remarkable relationship.

References

- [1] C. O. Mackey and L. T. Wright, Periodic Heat Flow--Homogeneous walls or roofs, ASHVE Trans vol. 50, 1944, p. 293.
- [2] C. O. Mackey and L. T. Wright, Periodic Heat Flow--Composite walls or roofs, ASHVE Trans vol. 52, 1946, pp. 283-296.
- [3] J. P. Stewart, Solar heat gain through walls and roofs for cooling load calculations, ASHVE Trans Vol. 54, 1948, pp. 361-388.
- [4] W. R. Brisken and S. G. Reque, Heat load calculations by thermal response, ASHRAE Trans, Vol. 62, 1956, p. 391.
- [5] D. G. Stephenson and G. P. Mitalas, Cooling load calculations by thermal response factors, ASHVE Trans, vol. 73, 1967.
- [6] L. A. Pipes, Matrix Analysis of heat transfer problems, Franklin Institute Journal, Vol. 263, No. 3, March, 1957, pp. 195-205.
- [7] H. L. Holden, The calculation of fluctuating heat flow in buildings
 Australian Computer Conference, Melbourne, 1963, DBR Report 236,
 CSIRO.
- [8] R. W. Muncey, Thermal response of a building to sudden changes of temperature or heat flow, Australian Journal of Applied Science, Vol. 14, No. 2, pp. 123, 128, 1963.
- [9] G. P. Mitalas and J. G. Arseneault, Fortran IV program to calculate heat flux response factors for multi-layer slabs, DBR computer program No. 23, Division of Building Research, National Research Council of Canada, 1967.

- [10] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids,
 Oxford at the Clarendon Press, 1957, p. 326.
- [11] D. G. Stephenson, National Research Council of Canada, private communication.

APPENDIX

Response factor formulas developed in the main text of this paper were used in the computer program called RESPTK. The Fortran listings of RESPTK and other necessary subroutines to calculate the thermal response factors of various multi-layer heat conduction systems such as depicted in Figure 4 are attached herewith. The main program to perform the input/output operation for RESPTK is called RESP. Sample input and output for RESP obtained for the systems described in Figure 4 are also attached. Certain portions of the computer program are written in Fortran V (Univac 1108) and certain modifications to the program will be necessary for use with a compiler that does not recognize statements made for the Univac Fortran V compiler.

Input Requirement of the Computer Program RESPTK

RESPTK (K, L, R, G, AG, KG, X, Y, Z, NL, DT, NR, CR, U, IM, IS, F)

Input:

- K = Thermal conductivity (BTU/hr, ft, F) of each layer given in the order for minimum radius to the larger radii (Fig. 2). For the plane wall, it should be given from inside surface layer to the outer layers. For the layer with no thermal mass, such as surface boundary layer, conductance values should be used.
- L = Thickness of each layer (ft) given in the order for minimum radius to the larger radii (Fig. 2). This could be zero for some layers, i.e. surface boundary layer.
- R = Radius (ft) of each layer boundary given in the order of minimum value to the larger values (Fig. 2). For plane wall model, any arbitrary value being same for all the layer, should be given. Note that the number of R is NL + 1.
- G = Thermal diffusivity (ft²/hr) of each layer given in the order for the minimum radius to the larger radii (Fig. 2). For the layers with no thermal mass, such as surface boundary layers and air space, G should be zero for this program.

AG = Thermal diffusivity (ft²/hr) of solid core or semi-infinite layer (Fig. 1), given only when IS = 1, or 2.

X, Y, Z = Thermal response factors (Btu/hr, ft²) generated by this program for a wall of finite thickness.

NL = Number of layers to be considered for the heat conduction system. Surface boundary layers and air spaces should be treated as separate layers with G = 0 (Fig. 2).

When IS = 1 or 2, the solid core or the semi-infinite region should not be counted as a layer.

DT = Time increament (hr) for which the calculation of heat flux is desired. For hourly calculation DT = 1.

NR = Number of X, Y, and Z generated by the program. NR is the output of this program such that the values of X, Y, Z can be calculated by a common ratio CR as follows:

$$\frac{X(J+1)}{X(J)} = \frac{Y(J+1)}{Y(J)} = \frac{Z(J+1)}{Z(J)} = CR$$

when $J \geq NR$.

CR = Common ratio described above.

U = Overall thermal conductance obtained by the reciprocal of total thermal resistance of the heat conduction system under consideration,

Btu/hr, ft², °F.

IM = Curvature index (Fig. 1)

if IM = 0 plane system

= 1 cylindrical system

= 2 spherical system

IS = Heat conduction system index (Fig. 1)

if IS = 0 finite wall

= 1 semi-infinite region attached

= 2 solid core attached

F = Response factors for the system with solid core or semi-infinite region.

Calculation of heat flux

(A) Referring to Fig. 2, the heat flux QI(N) and QO(N) can be evaluated as follows, where N is the time index such that time = DT*N.

$$QI(N) = \sum_{J=1}^{M} X(J)*TI(N-J) - GM* \sum_{J=1}^{M} Y(J)*TO(N-J)$$

QO(N) =
$$\sum_{J=1}^{M} Y(J)*TI(N-J) - \sum_{J=1}^{M} Z(J)*TO(N-J)$$

where QI and QO, and TI and TO are heat fluxes (Btu/hr, ft²) and temperatures (F) at surfaces where the radii are minimum and maximum, or at the inside and outside surfaces. The values of QI and QO are positive when heat is flowing from TI side to TO side or from inside to outside.

In above equation for QI(N),

M = maximum number of response factors to be used, value of which will be determined by the significance of X(M)*TI(N-M). Usually M ≤ 72 (when M > NR, X(J), Y(J) and Z(J) should be calculated by the common ratio CR such as described earlier) and

$$GM = \frac{R(NL + 1)}{R(L)} ** IM, which is unity for the plane wall problem.$$

B. For calculating heat conduction for the system with the semiinfinite region (when IS = 1),

$$QI(N) = \sum_{J=1}^{M} F(J)*TI(N-J)$$

TI(N-J) is the temperature at the surface where the radius is minimum (inner surface) at time (N-J)*DT. The value of QI(N) is positive when heat is flowing in the direction from the minimum radius (inside surface) to the larger radii (to outer layer and to the semi-infinite region).

(C) For calculating the heat conduction for solid core system (IS = Z),

QO(N) =
$$-\sum_{J=1}^{M}$$
 F(J) TO(N-J), Btu/hr, ft²

TO(N-J) is the temperature of the surface where the radius is maximum (outside surface). The heat flux QO(N) is positive as it is defined in the above equation when heat is flowing in the direction from the smaller radius to the larger radii.

Bessel function

The calculation for IM = 1 (cylindrical system) requires a double precision Bessel function subroutine in the following forms:

$$J_0(X) = DBEJ(X, 0)$$

$$J_1(X) = DBEJ(X, 1)$$

$$Y_0(X) = DBEY(X, 0)$$

$$Y_1(X) = DBEY(X, 1)$$

```
WKIN ASG
         A=0491
WILL FOR KESPIKESP
C
      THIS PROGRAM IS DEVELOPED BY T.KUSUDA OF THE NATIONAL BURFAU OF
C
      STANDARDS FUR CALCULIING THE THERMAL RESPONSE FACTURS FOR
C
      COMPUSITE WALLS, FLOORS, ROOFS, BASEMENT WALLS HASEMENT FLOORS
C
      AND INTERNAL FURNISHINGS OF SIMPLE SHAPES
(
      RESPONSE FACTORS ARE USED IN THE FULLOWING MANNER
L
      X, Y, Z ARE KESPUNSE FACTORS
C
     GI=X*11-Y*10*GMA INSIDE WHERE R IS MINIMUM
C
      QU=Y*T1+Z*10 OUTSIDE WHERE R IS MAXIMUM
C
      T<sub>1</sub>
            INSIDE TEMPERARURE WHERE R IS MINIMUM
C
      10
            UUTSIDE TEMPERATURE WHERE R IS MAXIMUM
C
         THERMAL CONDUCTIVITY
         THERMAL DIFFUSIVITY
C
          THICKINGSS
C
    IMEU OR BLACK
                     PLANE WALL
Ċ
    IM=1
         CYLINURICAL MALL
C
    IMEZ SPHERICAL WALL
L
    IN=U
            FINITE THICK WALL
Ċ
    IN=1
            SEMI-FINITE WALL
Ċ
            SOLID ONJECT
    IF RESPONSE FACTORS OF THE SOLID CYLINDER OR SPHERE OF HOMOGENEOUS PROPETY ARE DESIRED. TREAT THE PROBLEM OF MULTILAYER BUT WITH THE
C
(
    IDENTICAL PROPERIIES FOR ALL THE LAYERS EXCEPT THE RADIOS
C
     IF IHEAT=U NO TEMPERATURE DATA THUS NO HEAT CALCULATION
C
     IF IHEAT=1 PERIODIC BOUNDATRY CONDITIONS
  400 FURMAT (2110
      REAL K(10), G(10), L(10), R(11), KG
      LIMENSION x(200),Y(200),Z(200),T1(1000),T0(1000),C(10),D(10),RES(1
     10),KMK(10,4),KMKG(4),F(200)
    1 FURMAT(1U1)
    2 FORMAT (10F7.0)
  IUU FORMAT (10hl
                     LAYER
                                           K(1)
                                                       (I)
  101 FURMATITION
                                                                 i(I)
                                                                         RESCI
                                L(I)
                                                                              )
     1)
          DESCRIPTION
  102 FURMAT (77h
                                                                              )
           UF LAYERS
     2
  103 FORMAT(110,1F11.3,1F10.3,1F10.2,1F10.3,1F8.2,2X,4A6)
                                                   THERMAL CONDUCTANCE
  IU4 FORMAT (SAHU
     3U=1F/.5)
  105 FORMAT (49HU
                                                    TIME INCREMENT DT=1F3.0 )
                                                       RESPONSE FACTORS
                                                                              )
  106 FORMAT (50HU
  107 FORMAT (120HO
                                    J
                                                           X
                                                                              )
     1
  108 FORMAT(1117,1F23.4,2F15.4)
  112 FURMAT (4A6)
                                               COMMON RATIO CR=1F7.5)
  117 FURMAT (44HU
      KEAU(5,1) THEAT
       IF (INEAT . NE . O) CALL TOATA (10, T1, NP, IHEAT)
  100 READ(5,2) DELTAT
  SUO READ (5.1) NLAYKINTESTI IMI IN
       IF (NLAYR. 6) . 10) 60 TO 600
      NNLAYR=NLAYR+1
       IF (NLATR.EG.O) GO TO 500
      DO 200 I=1.NLATR
  200 KEAD(5,2) L(1),K(1),D(1),C(1),RES(1)
       IF(IN.EQ.Z.AND.IM.EQ.U) GO TO 301
    READ KORHOO AND C OF GROUND IF IN=1
  500 IF (IN.NE.U) KEAD (5,2) KG, UG, CG
     AG THERMAL DIFFUSIVITY OF EARTH
       IF (IN.NE.U) AG=KG/CG/DG
       IF (NLAYR.LW.0) GO TO 501
```

```
1+ (1M.EQ.U) GU TU 501
     READ(502) (K(1) o I=1 o NINLAYK)
     60 TU 302
SU1 K(1)=10.
     DU 303 I=ZINNLAYR
JUS K(1)=K(I-1)+L(1)
302 IF (111. EN. 2. ANDI. IM. NE. U) READ (5.112) (RMKG(J), J=1.4)
     LU 113 1=1. NI. AYR
113 KEAD (5,112) (RINK (1,J), J=1,4)
     IF (IN. E(0.1) READ (5,112) (RMKG(J), J=1,4)
     DO 109 ITTINLAYR
     1 = (L(I)) 110,111,110
111 6(1)=0.
     K(I)=1./KES(1)
     60 TO 109
110 6(1)=K(I)/C(1)/D(I)
1119 CONTINUE
DUL GMA=(K(MMLAYK)/K(1))**IM
     WKITE (BOBUT)
207 FURMATIZMI
     CALL RESMIN (KILINGORAGINGINARY) 7 INLAYRI DELTATINKTI CRIUTI IMI INIF)
     WRITE (BOILUU)
     IF (IN. EW. U) WRITE (6.701)
/UI FURMAT (50mU
                  PLANE WALL SYSTEM
                                                                               )
     1+ (IM. EQ. 1) WRITE (6,702)
 102 FURMAT (50HU CYLINDRICAL
                                                                               )
                                  SYSTEM
     1+ (IM.EU.Z) WRITE (6,703)
                  SPHERICAL SYSTEM
                                                                               )
 103 FORMAT (50mu
     WHITH (6,101)
     WhITE (boluz)
     WHITE (60460)
      11 (I) LAYKOLGOU) OU TU 502
     1+ (III.-EQ.2.AND. IM. OIDE. () WKITF (6.120) KG. DG. CG. (RMKG(J). J=1.4)
     DO 202 ILLINEATR
     1r (L(1)) 202,203,202
203 K(1)=0.
2U2 WRITE(6:103) I:L(I):K(I):H(I):C(I):RES(I):(RMK(I:J):J=1:4)
     1F (In. EQ. 1) WRITE (n. 120) KG, DG, CG, (KMKG (J), J=1,4)
120 FORMAT (1F27.3+1F10.2+1F10.3+10x+4Ab)
SUZ WRITE (6:105) DELIAT
     WKITE (601U4)UT
     WRITE (6+106)
     WRITE (6+400)
     IF (IN.NE.U) 60 TU 1535
     WRITE (6+107)
     UO 114 N=1 NRT
     JN=N-1
 114 WRITE (DOLUG) JNOX (N) OY (N) OZ (N)
     60 TU 504
1535 WRITE (0:555)
                                                                              )
                                                              F
 555 FURMAT (5UHU
     IF (IN.EQ.1) GO TO 505
     IF (IN. EQ. Z. AND. IM. EQ. U) GO TO 505
     LU SUB NELPHRT
     JIV=11-1
     (i_1)_{X=Z}(i_1)_X
 SUG WRITE (6,508) JN,X(N)
     60 TU 504
 DUS DU SUY NELPHRT
     J1=IV-T
 509 WKITE (broub) JNFF (N)
 508 FURMAT (1,24,1121.5)
```

504 WRITE (6,400)
WRITE (6,400)
WRITE (6,11/) CR
1+ (N1EST.E.G.H) GO TO 500
CALL HEAT (A,Y,Z,TI,TO,DELTAT.NP,NRI,GMA,CR)
GO TO 500
510P
EDD

```
WILL FOR SAMPLE, SAMPLE
     THIS PROGRAM ILLUSTRATES THE USE OF RESPTA AND HEATX
C
      DEVELOPED BY THE NATIONAL BUREAU OF STANDARDS
C
            INSIDE TEMPERATURE WHERE R IS THE SMALLEST
C
      11
      TU
             OUTSIDE TEMPERATURE WHERE R IS THE LARGEST
            THERMAL CONDUCTIVITY, K IS THE THRMAL CONDUCTANCE OF THE
      LAYER IF THERE IS NO THERMAL MASS SUCH AS AIR SPACE
C
            THICKNESS OF THE LAYER L=0 IF NO THERMAL MASS
            RADIUS OF THE LAYER USE ARBITRARY VALUE FOR THE PLANE WALL
      K
            THERMAL DIFFUSIVITY OF THE LAYER G=0 FOR NO THERMAL MASS
      DIMENSION NV(200), SOC (200), TCT (200), F(200), DB (200), TZ (200), TO (200)
      DIMENSION IX (40) , TY (48) , HTW (11)
      LIMENSION (1(200), T2(200), W2(200)
    2 FURMAT (1UIT)
    5 FURNAT (10+7.11)
  104 FURMAT(SUND WALL COMPUSITION STATED FROM INSIDE SURFACE
  105 FURMAT (120HO
                      LAYER
                                     K
                                                          L
                                                                         )
     1 K
                                                                         )
  110 FORMAT (SUMB PLANE WALL MODEL
                                                                         )
  III FURMATISUNU CYLLINDRICAL WALL MODEL
  112 FORMATISUNU SPHERICAL WALL MODEL
      KEAL KOL
      KEADISTED NOAT ON IMAX
      14 (NUAT . LG . U) 60 TO 100
          ROUM AIR TEMPERATURE
           UUTUUUK AIR TEMPEKATURE
      DB
             WIND VELOCITY IN KNOTS
しいい
      W V
              SULAR RAUIATION
      SUL
             TUTAL CLOUD AMOUNT
      TUT
      READ(5,1) (T/(UT),UT=1,24)
      KEAD (5,1) (UH (UT), UT=1,24)
      READ(5,1)(WV(J1),J1=1,24)
      KEAD(5,1)(SOL(UT),UT=1,24)
      READ(5,1)(ICT(JT),JT=1,24)
    1 FURMAT (12FU.II)
      DO 103 ITEZINDAY
      DO 103 JK=1,24
      JT=24*(II-1)+JK
      DB(J1)=DB(JK)
      TU(UI)=DB(UK)
      WV (JI) = WV (JK)
      SUL (UT) = SUL (UK)
  183 12(JI)=TZ(OK)
  100 READ (5,2) NL, IM
      READ (5,5) (K(I), 1=1,NL)
      READ(5,5) (L(I),1=1,NL)
      NLL=NL+1
      REAU(5,5) (R(1),1=1,NLL)
      READ (5,5) (6(1), I=1, NL)
      READ (5,5) UT
      1 (IM. EQ. U) WRITE (6,110)
      IF (1M.EQ.1) WRITE (6,111)
      IF (IM.EU.Z) WRITE(6,112)
      WKITE (6,104)
      WRITE (0,105)
      DO 4 J=1 + NLL
    4 WRITE(0:3) K(J), L(J), R(J), 6(J)
    3 FORMAT (6F2U.6)
      AG=0
```

KG=U

```
1N=0
   GX=R(NLL)/K(1)
   1+ (IM. EU. U) GMA=1.
   IF (IM. EQ. L) GMA=GX
   IF (IMOENOW) GMACGX**>
   CALL RESPIR (KOLONOGO AGOKGO XOYO ZONLODTONROCKO UO IMO INOF)
   HIW(3)=0./
   HIW(9)=0.9
   171W(10)=1.
   HTW(1)=01
   HIW (2) = NK
   HIW(3)=48
   17W(4)=6MA
   HTW (5) = CK
   WK17E (0,13)
13 FURMATUZUMI
                                                             TCT(KT)
                     DB(KI)
                                   TZ(KT)
                                               SOL (KT)
  1V(KT)
                  FUL
                                101
                                        HEATWT
   WIPEU.
   いととこし。
   DU 11 KT=49 NTMAX
   CALL FU ( WV (KT) , 1 , FOC , FUT , 1 )
   HIW(B) =FUC
   FAW(7)=SUL(KT)
   UDH=DB(K))
   HIW(11)=101(KT)
 IN THIS PROGRAM THE PRESENT TIME IS DT*48 TH HOUR
   CALL REVICTO, TX, 48, KT)
   CALL REVILIZATIONSKI)
   CALL HEALX (X.Y.Z.TX.IY.OUB. TOT. HEALWI. HTW. G1P. G2P)
   WK17c(b,12) Db(K1),TZ(KT),SOL(KT),1CT(KT),WV(K1),FUC,7OT,HEATWT
12 FURMAT (10+12.2)
   11 (KI-48)=101
   T2(K1-48)=12(K1)
   UP (KI-48) THEATWI
11 TO(KI)=TUI
   WRITE (7) 11
   WRITE (7)12
   WKITE (7) WZ
   KEWIND 7
```

END

W

)

```
WA FOR AFA
      SUBRUUTING RESPTA (KALAKAGAAGAKGAXAYAZANLADTANRACRAUAIMAISAF)
      LIMERISTON K(10) *L(10) *K(10) *G(10) *X(100) *Y(100) *Z(100) *AP(10) *BP(1
     10) (CP(10) (DP(10) (A(10) (B(10) (C(10) (D(10) (ZR1(3) (ZR2(3) (RB(3) (RAP(3
     2),ROUT(100),RA(3,100),ZRK(3,100),RX(100),RY(100),AZ(100)
     30- (100)
      KEAL KOLOKO
      PI=3.1415927
      1F(15.E0.1.AND.1M.EQ.0) WRITE(6,004)
  604 FORMAT (50mb
                     SEMI-INFINITE
                                       PLANE WALL
                                                                              )
      1+ (IS.EQ.1.AND.IM.EQ.1) WRITE (6,005)
                                                                              )
  OUS FURMAT (50HU
                      SEMI-INFINITE
                                       CYLINDER
      1F(15.EQ.1.AND.IM.EQ.2) WRITE(6,006)
                                                                              )
  006 FURMAT (50HU
                      SEMI-INFINITE
      16 (15.60.2.AND.IM.EQ.O) WRITE (6.607)
  007 FURMAT (5000
                      SOLID SLAB
                                                                              )
      IF (IS.EQ. Z. ANU. IM. EQ. 1)
                                 WKITE (6,602)
                                                                              )
  002 FORMAT (50H
                      SULID----CILINDER
      IF (IS. EQ. 2. AND. IM. EQ. 2) WRITE (6.005)
  603 FORMAT (50H
                      SULID---- SPHERE
                                                                              )
      M:3=3
      IF (IS. EQ. C. AND. [M.NE. D) M3=1
      IF (IS.NE.1) 60 TU 613
  608 ZE=KG/R(NE+1)
      UY=R(NL+1)**2/AG/UT
      CALL GPF (UY , ZL , IM , AZ )
      IF (IS.EQ.1.AND.NL.EQ.U) GO TO 9U1
  013 CALL ABCUZIO. *KILOROGOAXOBXOCXODXOIMONL)
      Kb(1)=UX
      Rb(2)=1.
      KH(3)=AX
      U=1./BX
      UU 1 I=1 olkL
      PX=0
      CALL ABCUP2(PX+K(1)+L(1)+R(1)+G(1)+AP(1)+BP(1)+CP(1)+DP(1)+IM)
    1 CALL ARCUZ(PX,K(I),L(1),R(I),G(1),A(I),B(I),C(I),D(1),IM,1)
      IF (NL.LT.2) 60 TU 502
      CALL DERVI (A, b, C, D, AP, bP, CP, DP, APP, BPP, CPP, DPP, NL)
      60 TO 503
  502 APP=AP(1)
      BPP=nP(1)
      CPP=CP(1)
      UPP=UP(1)
  503 IF (IS.NE.2) 60 TO 501
       1F (IM. EQ. U) GO TU 501
      CALL SULID (0. +R(1) +KG+AG+IM+HF+HFP)
      Z_R1(1)=(-UPP+HFP*AX)/DX/UT
      2R2(1) = -2R1(1)
      WRITE (6,1300)
                                     CPP
                                                           HEP
 1300 FORMAT(120H
                                                                              )
     1
                                ÛX
           AX
 1400 FURMAT (4HZU.5)
      WRITE(6,1400) CPP,HFP,AX,DX
      60 TO 1212
  501 RAP(1)=DPP
      RAP(2)=0.
      RAP(3)=APP
      UO 2 I=1,5
       C1=RAP(I)/bX/DT
      C2 = RB(1)*BPP/BX/BX/DT
       ZR2(I) = -C1 + C2
    2 ZR1(I) = -2R2(I) + Rb(I) / BX
```

```
1212 WKITE (6,04)
                                                                           )
  64 FURMAT (5UHU
                   RESIDUES AT P=0
     WRITE (6.100) (ZR1(1), I =1, M3)
     WRITE (6,100) (ZRZ(I), I=1,M3)
 100 FURMAT (3FZU.6)
   ROOTS OF BUP)=0.
 212 NNAX=40
     IF (IS. EQ. Z. AND. IM. NE. )) NMAX=100
     Px=0.001
     DP0=0.1/01
     If (IS.EQ.2.AND.IM.NE.A) DPU=3.1416*3.1410*AG/K(1)/K(1)*0.25
     DLX=0.0001
     IF (IS.EQ.Z.AND.IM.NE.D) DLX=DPO/1000
     NEU
     WRITE (6,63)
                                                                           )
  63 FORMAT (SUNU
                  RUDIS OF B(P)=0
  11 DE=DPO
     CALL ABOUT (PXONOLOROGOAXOBXOCXOUXOLMONL)
     IF (15.E0.Z.AND.IM.NE.U) CALL SULDX(PX.R(1), KG, AG, IM.BX, DX, TEST1)
  15 PxP=Px+DL
     CALL ADCUA (PXP+K+L+R+G+AXP+BXP+CXP+DXP+IM+NL)
     1+ (IS.NE.Z) 60 TU 213
     1F (1M.EQ.0) GO TO 215
     CALL SOLUX (PXP+R(1)+KG+AG+IM+BXP+DXP+TES(2)
     1F (TEST1*[LST2) 112.113.114
 114 PX=PXP
     TESTI=TESIZ
     60 TO 15
 112 IF (DL-ULX) 130,130,117
 117 UL=UL/2.
     60 TO 15
 113 1+ (TESI1) 118,119,118
 119 KXX=PX
     GO TO 31
 TIN KXX=PXP
     60 TU 31
 130 AB=ABS(TEST1/TEST2)
     RXX=(PX+AD*PXP)/(1+An)
     60 TO 31
 213 IF (HX*HXP) 12,13,14
  14 PX=PXP
     BX=BXP
     60 TU 15
  12 1F (DL-DLX) 30,30,17
  17 UL=DL/2.
     60 TO 15
  13 IF(BX) 18,19,18
  19 KXX=PX
     60 TO 31
  TR KXX=HXH
     GU TU 31
  30 AB=ABS(BX/BXP)
     KXX=(PX+AB*PXP)/(1.+AB)
  31 N=N+1
     ROOT (N)=KXX
     1F(N.G1.1) DPO=ROOT(N)-ROOT(N-1)
     NRT=N
     WRITE (6,41) NOROUT (N)
  41 FORMAT(IIU,1F2U.6)
     PX=RXX+DLX
     TESTMX=40
     TESTX=RXX*UT
```

```
1F (TESTX+TESTMX)42,42,43
 42 IF (N.LT. INMAX) GO TO 11
 43 WRITE (6,05)
 65 FORMAT (50HU RESUDUES AT PEROUT (N)
                                                                          )
    DO 600 JULIANRT
    Px=ROOT(JJ)
    DO 51 U=1 NL
    CALE ABCUZ(PX+K(J)+L(J)+R(J)+G(J)+A(J)+B(J)+C(J)+D(J)+IM+1)
 51 CALL ABCUPZ(PX+K(J)+L(J)+R(J)+G(J)+AP(J)+BP(J)+CP(J)+DP(J)+IM)
    CALL ABOUZ (PX+K+L+R+G+AX+BX+CX+DX+IM+NL)
    1F(NL.LT.Z) 60 TO 504
    CALL DERVI (A, B, C, D, AP, BP, CP, DP, APP, BPP, CPP, DPP, NL)
    60 TU 505
504 APP=AP(1)
    BPP=BP(1)
    CPP=CP(1)
    UPP=DP(1)
505 IF (IS.NE.Z) GO TO 214
    IF (IM. EQ. U) GO TO 214
    CALL SULID (PX+K(1)+KG+AG+IM+HF+HFP)
    IF (HF) 401,400,401
401 PYS
           =(HF*AX=Cx)/Px/PX/(UPP=HFP*bX=HF*bPP)/DT
    60 TU 402
400 PYS=U.
402 KA(1,JJ)=PYS
    60 TU 601
214 PY=BPP*PX*PX*DT
    KA(1,UU)=UX/PY
    Y9/.1=(LU.5)AN
    RA(3,JJ)=AX/PY
601 PZ=PX*0T
 52 KX(JJ)=EXP(-PZ)
  5 KY(JJ)=(1.-EXP(PZ))**2
000 WRITE(6,54) ROUT(JJ),(RA(M,JJ),M=1,M3)
 54 FORMAT (4+20.6)
    00 154 JU=1+NRT
    DU 154 M=1 + M3
    ZR1(M)=RA(M,JJ)*RX(JJ)+ZR1(M)
154 ZR2(M)=R3(M)+RX(JJ)*RX(JJ)*RX(JJ))*(I-2/RX(JJ))+ZR2(M)
    11=1
    1111=2
                                                                          )
 80 FORMAT (50HU
                  RESPONSE FACTORS OF
                                        FINITE SLAB
                                            (U)X
                                                                 Y(J)
 81 FORMAT (120HO
                         J
   1
                Z(J)
701 FORMAT(120H1 RESPONSE FACTORS FOR SOLID CYLINDRICAL OBJECTS
702 FORMAT (120H1
                     RESPONSE FACTORS FOR SOLID SPHERICAL OBJECTS
                                                                          )
    IF (IS.EQ.2.AND.IM.EQ.1) WRITE(6,701)
    1F(IS.EQ.2.AND.IM.EQ.2) WRITE(6,702)
    IF(IS.EQ.U) WRITE(6,8U)
    WHITE (6,61)
    IF(ZR1(2).LT.0) ZR1(2)=0.
    WRITE (6,55) II, (ZR1(M), M=1, M3)
    WRITE(6,55) III, (ZR2(M), M=1, M3)
    DO 67 M=1 M3
    ZRK (M+1)=ZR1(M)
 67 ZRK (M, 2)=ZR2 (M)
 55 FORMAT(Ilu, 3F20.6)
    NT=100
    DO 58 N=3,NT
    NR=N
```

```
UU 61 M=1,M3
O1 ZKK (M. N) =U.
   DO 57 M=1.M3
   UO 57 UU=1.NRT
   1/**(IJJ)) **/I
57 ZRK(M+N)=ZRK(M+N)+PZ*RY(JJ)*RA(M+JJ)
   WRITE (0,55) N. (ZRK (M.N) . M=1. M3)
   1F(N.L1.5) GO TO 58
   TEST1=2RK(1+N)/2KK(1+N-1)
    TFSTZ=ZRK(1+N-1)/ZKK(1+N-2)
    TESTS=ABS (TEST1-TEST2)
    IF (TEST3-0.00001) 59:59:58
58 CONTINUE
59 DO 60 NEI NR
    X(N)=ZRK(I+N)
    Y(N)=ZKK(ZIN)
60 Z(N)=ZKK (3,N)
   CK=TES12
    WRITE (0102) CK
                      CK=1F10.6)
62 FURMAT (10HU
    IF (15.E0. a. ANL) - IM - EQ - 01 60 TO 800
    1-(15.NE.1) 60 TO 900
901 IF (NL. EQ. U) 60 TO 905
    GF=2*KG/SWKT(DI*AG*PI)
    IF (NR.LT.50) 60 10 610
    DO 204 J=50 NR
    25=0
204 A7(J)=GF*(SORT(ZU)-2.*SGRT(ZU-1.)+SGRT(ZU-2.))
    NKR=14K
    60 TO 300
010 00 301 JECK+50
    Z (U+1)=Z(U)*CR
    X(J+1)=X(J)*CR
301 Y(J+1)=Y(J)*CR
    NKK=50
JUO DU 205 J=1 NKR
205 F(J)=x(J)-Y(J)*Y(J)/(Z(J)+AZ(J))
    INK=NKK
    60 TU 90b
905 DO 904 JELINR
404 + (J) =AZ(J)
906 WRITE (6,207)
                                           F
                         J
207 FURMAT (SUHU
     CH1=1.
     DO 208 J=1.50
     CR=F (J+1)/F (J)
     TESTCR=ABS(CR=CR1)
     1F(TESTCK-0.00001) 611,611,612
 612 CR1=CR
     1-ل=ل،
 208 WRITE (6,209) JUIF (J)
 209 FORMAT (1110,1F20.5)
 011 NR=J
     CR=CR1
     60 TO 900
 000 WRITE (6,207)
     UO 210 J=1,NR
     F(J)=2*Y(J)-(X(J)+Z(J))
     JJ=J-1
 210 WRITE(DIZU9) JUIF(J)
 900 KETURN
     END
```

)

```
IN FUR BOB
      SUBROUTING DERVI(A.B.C.D.AP.BP.CP.UP.APP.BPP.CPP.DPP.N)
      DIMENSION A(N) (N) (N) (C(N) (D(N) (AP(N) (BP(M) (CP(N) (DP(N) (AT(10) (BT(11
     1), CT(10), 61(10), ATT(10), 6TT(10), CTI(10), 6TT(10)
      UU 1 1=1 014
      DO 2 J=1,14
      IF (I.Eu. J) 60 10 3
      AT (U) A= (U) TA
      b[(J)=b(J)
      CT(J)=C(J)
      しょ(し)=(し)
      60 TU 2
    3 AT (J) = AP (J)
      67 (U)=6P(U)
      CI(U)=CP(U)
      しま(じ)=UP(じ)
    2 CONTINUE
    1 CALL MULICATOBIOCTODIOATICIDOBITCIDOCTICIDODITCIDON)
      APPEATICLE
      BPP=BTT(1)
      CHP=CTT(I)
      UPP=0T1(1)
      DO 4 1=211
      APPEAPPEALT(I)
      DPP=BPP+b [1 (1)
      CPP=CPP+CFI(I)
    4 DPP=DPP+011(1)
      KETURN
      LIND
```

```
WIN FOR COC
      SUBRUUTINE AHCUZIZOKOLOROGOAOBOCODOLMONL)
      D_1MENS_1O_N = AX(10) *BX(10) *CX(10) *DX(10) *R(10) *G(10)
      DUUBLE PRECISION DREJUBEY, 201, 202
      REAL K(10), L(10), J(11, JU2, J11, J12
      F1=3.1415927
      PP=P1*0.5
       IF (NL.LT.Z) R(Z)=R(1)+L(1)
      UO 4 1=1 + NL
       IF (G(I)) 103,103,102
  102 11 (2) 1.1.101
  101 ZU=SURT (2/6(1))
      461=20*R(1)
      262=20*R(1+1)
      ZUL=ZU*L(1)
       IF (IM. NE. . 1) GO TO 3
      JU1=DBEJ(241+0)
      J11=JHEJ(ZG1.1)
      JU2=03EJ(262+01
      U12=118EJ(20211)
       101=03EY(261+0)
      YII = UKEY (ZGI.I)
       YUS=UBEY (262,0)
       Y12=1115EY (262,1)
      (S10*10Y-51Y*10U)*\U2-Y01*U12)
      6x(1)=PP*R(1+1)/K(1)*(~Y01*J02+J01*Y02)
      CX(I)=K(1)/R(I+1)*(-Ul1*12+Y11*U12)*PF*ZQZ*ZQ2
      UX(1)=PP*Z@2*(U11*Y02-Y11*U02)
      60 TU 4
    3 CUESIN (ZGL)
      C1=CUS(ZGL)
      51=CU/ZOL
      SZ=(S1-C1)/ZQL/ZQL
       1F (IM. EQ. 2) 60 TU 5
       Ax(I)=C1
      bx(I)=L(I)/K(I)*SI
      Lx(1)=-ZuL*K(1)/L(1)*LU
      Ux (I)=U1
      60 TO 4
    5 GM=R(1+1)/K(1)
       AX(1)=6M*(C1-L(I)/R(1+1)*S1)
       Dx(I)=L(1)/K(I)*GM*S1
       (x(1)=(1)*(1)*(1)/R(1)/R(1)*K(1)/L(1)*(-(2u1*Zu2+1)*S1+C1)
       U_{X}(1) = GM * (C1 + L(1) / R(1) * S1)
       60 TU 4
    1 AX(1)=1.
       Cx(I)=0.
       U_X(I) = (R(I+1)/R(I)) **IM
       IF (IM \cdot EQ \cdot U) \mid HX(I) = L(I) / K(I)
       IF(IM.E0.1) HX(I)=R(I+1)/K(I)*LOG(K(I+1)/R(I))
       1F(IM.EQ.2) HX(I)=L(1)/K(I)*(R(I+1)/R(1))
       60 TU 4
  103 Ax(I)=1.
       6x(1)=1/k(1)
       Cx(I)=u.
       UX(I) = (R(1+1)/K(1)) **1M
    4 CONTINUE
       A=AX(1)
       b=8X(1)
       C=CX(1)
       D=0x(1)
       IF (NL.LT. 2) 60 TO 6
```

3

```
WIN FOR UPD
      SUBRUUTING ANCOPZ (ZOKOLOKOGOAPOBPOCPODPOIM)
      DUVINLE PRECISION 201, 202, DBEJ, UBLY
      KEAL K.L.JU1.JU2.J11.J12
      F1=3.1415927
      PP=P1/4./0
      1F(G) 105,103,104
  104 1+ (Z) 101+101+105
  105 ZU=SURT(//6)
      ZUL=/1)*L
      241=20*K
      202=201+20L
      17 (IM. NE. 1) 60 TU 5
      X=K*(K+L)
      Y=(K+L) *+c
      L1=(K+L)/1.
      JUI = DOEJ (261 + U)
      JU2=118EJ (262.0)
      U11=DisEJ(261+1)
      J12=015EJ(262+1)
      YU1=0BEY(2G1+0)
      YU2=UBEY (462+U)
      Y11=0HEY(ZG1,1)
      Y12=UBEY (ZG2+1)
      &P=(x*(Jii*Y82=Y11*J82)*Z1/Z02+Y*(J01*Y12=Y01*J12)*Z1/Z02)*PP
      LP=PP*Z02/21*(x*(JU1*Y12-Y01*J12)+Y*(J11*Y02-Y11*J02))
      in=(x*(-00i*Y02+r01*J02)-Y*(-011*Y12+Y11*J12))*PP
      60 TU 4
    う スニレキレキじゅう/し
      KI=R+L
      KES=L/K
      40=5111(20L)
      L1=CUS(ZGL)
      S1=CU/ZOL
      SZ=(SI-CI)/ZUL/ZUL
      1+ (IM. EQ. 6) 00 TU 5
      AP=X*(K1*51/R-L*52/R)
      BH#RES*X*KI*SZ/R
      ZP1=201
      21.7=7.42
      LP=X*(L/R)**2/RE5*((2.*R*R1/L/L+1)*S1-(ZP1*ZP2+1.)*S2)
      DP=X*(R1/K*S1+(L/R)*(R1/K)*S2)
      60 TO 4
    5 AP=X*S1
      BH=X*KES*52
      CP=X*(S1+C1)/RES
      UP=X*S1
      60 TJ 4
  105 AP=0.
      bH=0.
      CP=11.
      UP=U.
      60 TU 4
  101 1F (IM.NE. 11) 60 TO 6
      A=L*L*U.5/6
      AHEX
      BP=X*L/K/3
      CH=K/L*X*2.
      UPEX
      60 TU 4
    6 IF (IM.NE.1) 60 TO 7
```

```
R1=R+L

AP=(0.50季度*R-R1*R1)+R1*R1*L0G(R1/R))*0.5/G

BP=R1/4/G/K*((R1*R1+R*R)*L0G(R1/R))*0.5/G

LP=B.5/G*(U.5)*(R1*R1+R*R)

LP=0.5/G*(U.5)*(R1*R1+R*R)*R1/R-R*R1*L0G(R1/R))

GO TO 4

7 太上半上*U.5/G

R1=R+L

AP=X/3.*(2*R1/R+1.)

BP=L/K*R1/R*X/3.

CP=K/L*X*L/R*(Z.*R4*R1/L/L+0.66667)

LP=X/3.*R1/R*(R1/R+2)

4 Kr TURN

EGD
```

```
WIN FUR E.E
      SUBRUUTINE MILL (A.D.C. D. AT. BT. CT. DION)
      DIMENSION A(N).B(N).C(N).D(N)
      ATTEA(1)
      o17=8(1)
      CITEC(1)
      U1 (=0(1)
      1- (11. Ll. 2) 60 10 3
      UU 1 0=2011
      A1=A17+A(U)+H71+C(U)
      51=A(T+B(U)+BT(+D(U)
      CT=CTT*A(U)+OFT*C(U)
      U1=C11*15(U)+11T1*11(U)
      ALLEAL
      1317=31
      CITELI
    1 DITENT
      60 TU 4
    5 A1=A17
      BITHIT
      CI=CIT
      UI=DIT
    4 KETURII
       EIID
```

```
WIN FOR FOF
      SUHROUTINE SULID (ZORLONGO AGO IN OHF OHFP)
      KEAL KUNUUINGII
      DUUHLE PRECISION DHEJIZGO
      14=54R1(2/A6)
      ZU1=ZU*RI
      4(y1)=2(1)1
      ZH=R1*R1/16
      CONTREZECT
      1+(1) 20102
    2 IF (IM.NF.1) OU TU 100
      JU1=UBEJ(ZUD.U)
      1x=ABS(JU1)
      11-(7x-0.00001) 4,4,5
    5 011=UHEU(ZWD,1)
      FIF = CULI+ZUL+U11/JU1
      Hr 1=U11/001/701
      h-2=(JU1*JU1+J11*J11-JU1*J11/Z01)/JU1/J01
      HFP==CUN*U.5*ZA*(HF1+HF2)
      60 TU 300
  100 C=CO5(Z01)
      5=514(201)/201
      Tx=AHS(SIH(201))
      15 (TX-0.00001) 4,4,5
    3 hr=-LUN*(C/S-1)
      nFP=-CUN+U.5+2A*(1+C*(C-5)/5/5/ZU1/2U1)
      60 TU 500
    1 mr=0.
      IF (IM.EU.Z) HFP=-CUN+ZA/S.
      1F (1M.E0.1) HFP==0.5*CUN+7A
      60 TU 300
    4 Hr=0.
      HEPSU.
  300 KF TURN
      END
```

```
BN FOR 6.6
      SUBRULTINE SULUXIZORIONGO AGO IMOBODO TEST)
      REAL KG, JULI JIL
      DOUBLE PRECISION OBEJIZOU
      20=50R1 (Z/AG)
      Z01=/6*R1
      Z(d)=Z(d)
      CUNEKG/RI
      16 (1m. NE. 1) 60 TO 100
      JUI=UBEJ(ZWD.U)
      011=065EJ(260.1)
      1EST=1)*JU1=13*J11*CON*ZU1
      60 TO 200
  100 TEST=0*SIN(Z01)=0*CON*(SIN(Z01)=201*COS(201))
  200 KETURII
      END
```

```
WIN FOR JOJ
      SUBRUUTINE GPF (U, ZL, 1M, Z)
      UIMENSION 2(100),21(5000),25(5000)
      DOUBLE PRECISION DBEJ, DBEY, ZU
      P1=3.1415927
      SUTPLESORT (PI)
      P12=2./P1
      Eb=0.001
      UH=0.1
  100 FORMAT(50HU RESPONSE FACTORS FOR SEMI-INFINITE BED
      WRITE (DILUU)
      WHITE (DILUL)
  101 FORMAT (50hu
                                  Z(K)
      Z(1)=2*ZL*SORT(U)/SOTPL
      ZZ=2(1)
      Z(2)=Z(1)*(SURT(2.)=2.)
      DO 2 K=3,50
      4K=K
    2 Z(K)=Z(1)*(SWRT(ZK)-2.*SWRT(ZK-1)+SQRT(ZK-2.))
      1- (IM.EG.U) 60 TO 70
      1F (IM. EQ. 1) 60 TU 1
      \angle(1)=\angle(1)+\angleL
      60 To 70
    1 X=PI2 *LUG(0.5*CH )+0.36746691
      SUN=PI*0.5*(ATAN(X)+0.5*PI)
      1x=0
      ロニモドーリロ
      DU 1/ L=1,5000
      ち=8+08
    B ZW=H
      1F (Ix. EQ. 10) GO 10 30
      ZJOZUBEJ(ZG+H)
      ZYO=UBEY(ZGIU)
       OYS*OLS*ZJU*ZJU+ZYO*ZYO
       Tr STY=PI2/6
       IESTZ=AAS (TESTX-TESTY)
       16 (TESTZ-0.00001) 30,30,30,31
   31 ZZ=8*8*8*1ESTX
       60 TU 32
   30 ZZ=H*H*P1Z
       1x=10
   32 LT(L)=1./LL
       L1=L
       7EST=ADS(2)(L))*10
       16 (TEST-0.0001) 11,11,17
   17 CONTINUE
   11 LTY=LT/2
       LTX=LTY*Z-1
       BMAX=EB+(LTX-1)*UB
       BB=1./bMAX
       ZJ=1./U
       SUT=SUN*ZJ
       R=EH-DR
       DO SH L=1.LT
       6=8+06
       ZH=H*H*ZU
     6 ZPEEXP(-ZB)
   28 ZS(L)=(1.-ZP)*ZT(L)
       CALL SIMS(2S.DB , SUM, LTX)
       GK=(SUM+SUT)*PI2 +BH
       GG=GK*FIZ
       Z(1) = 66 * 2L * U
```

)

)

70 DU 15 K=1.50 15 WRITE(6.16) K.2(K) 16 FORMAT(1110.3F10.5) KFIURD

```
WIN FOR HOH
      SUBROUTINE TORIAITO, TI, NP, IHT)
      IF IHTL1 KEAD DAILY CYCLE
C
      IF INTER READ WEEKLY DATA
      DIMENSION 10(1000),TI(1000),DB(200),DP(200),SOL(200)
  115 FURMAT (1255.1)
    2 FURMAT (12Fb.0)
      11- (IHT.EG.1) 60 10 121
      DU 110 MD-117
      NI=(:vi)-1) *24+1
      NF=N1+23
      READ (5, 115) (1/8 (N), N=N1, NF)
      READ (5,115) (DP (D),N=NI,NF)
  116 READ (5,115) (SUL (N), NEWIONE)
      UU 119 N-11168
      10(N)=08(n)+0.5*(SUL(n)*3.67-7)
  119 11(10)=75.
      60 TU 125
  121 KEAU (5,2) (UH(J),J=1,24)
      UU 122 NU=1.7
      DO 122 N=1,24
      101=(110-1)*24+10
      TO (NI) =DB (N)
  122 11(N1)=75.
  123 WKITE (6,204)
  204 FORMATIZAL *4X*4HTIME*5X*2HD6*7X*3ASUN*8X*2HTO*8X*2HDP*8X*2HTI)
      00 205 MM=1.108
      iv=160-11/1+1
      TIMETHIN
  205 WRITE (DIZUD) TIMEIDE (N) . SOL (N) . TO (N) . DP (N) . TI (N)
  206 FORMAT (6FIU. 1)
      14 = 1 mg
      RETURLS
```

EID

```
NII FUR HEATKINEATX
      SUBROUTINE HEATX (X, Y, Z, TO, (Z, DB, 101 + HEATWT, HTW, Q1P, Q2P)
      MEAT FLUX CALCULATION WHEN THE UUTSIDE SURFACE UNDERGOES
      COMBINATION OF PADIATIVE AND CONVECTIVE HEAT TRANSFER
      01MF, 1510N A(1), 1110/(1), TU(1), TY(1), PIW(1)
      HEAL TIN
(.
      X(J), Y(J), Z(J), J=1, N=()))) SISPUNSE FAC
TO(1), FZ(1), LEI, NT DOUBSIDE SURFACE AND SPACE TEMPERATURES
(_
      UN OUISIUR AIR TEMPS, KATURE
Ü
      HIWILDEDI TIRE INCPERENT FOR RESPUNSE FACTORS
(
      HTM(Z)INK BUMBER OF RESHORSE FACTORS TO RE SUPPLIED
MIN(S) THE HUMBER OF FEMPERATURE DATA TO BE SUPPLIED
      HIM (4) IGMA RADIUS TALLO FUR CYLINDER AND SPHERE
۲,
      HIW(5)=CK COMMON RAKIU FOR THE RESPUNSE FACTOR CALCULATION FOR
L
1
      U . 61 . IVK
      DIW(D) = FUC OUTSILE SURFACE HEAT TRANSFER COEFFICIENT
Ċ
€.
      CUMVECTIVE PUR TON
      HIWLITELL SOLAR AND DAY RADIATION
Ç
Ċ
      MIN(M) -A SOLAK MARIFATION ANSORPTION FACTOR OF THE OUTSIDE SURFACE
(
      HIW(4) = F EMMITTAINCE OF THE OUTSIDE SUKHACE
      HIW(IN)=CUSWI CUSI IF OF WALL TIET ANGLE
Ċ
      FIRE (E1) TOTAL CLUUD AMOUNT
Ü
      TUT OUTSIDE SURFACE TEMPERATURE CALCULATED=TU(1)
C
      MEATENT MEAT GAIN TO THE SPACE
      NR=0.1714L-8
      C.UINIMXU
      しょニ40。
      WI=HIW(1)
      1 \times (C = I + 1 \times (C + 1) \times (2))
      NITIFIX (HIM (3))
      61 A=111 W (4)
      CHIPPIN (5)
      CCSMI=HTW(10)
      EAT=KK* (400 +1/13) 4*4
      IF (CUSWI) 1,1,2
    2 EAT=EAT-2*CUSWT*(10.-FIN(11))
    1 1,=0.
      1XX=1X+61X
      TO(1)=1X
      UK = 1.
    5 E1=KK*(400++10(1))**4
      CALL HEAT LATTIZATZATONNIANKAGMARCKAGIAUZAGIPAGZP)
      1:1=h1@(B)*hTu(7)
      h2=H10(9)*(EAT-E1)
      H3=H10(6)*(DH=10(1))
      H=H]+HZ+H3+W2
      60 TU (4+5 +12)+UK
    4 b1=H
      TU(1)=TXX
      UN=2
      60 TU 3
    5 6/=6
      11 (B1+021 6,7,6
    8 TX=TXX
      PH=19
   18 TXX=LX+DX
      TU(1)=1XX
      JK=2
      60 TU 3
    6 IF (1)X-UXMIN) 14,14,13
   13 Dx=DX*U.5
      60 TO 18
```

14 C=AHS(H2/h1)
 TO(1)=(Txx+C*Tx)/(1.+C)
 Jk=3
 GO TO 3
 7 IF(H1) 10,11,10
 TO(1)=IX
 GO TO 12
 TO(1)=IXA
 12 TO(1)=IXA
 12 TO(1)=IXA
 HEATWT=Q1
 KETURN
 END

```
WILL FUR FUITU
       THIS SUBBOUTINE CALCULATES OUTSIDE SURFACE HEAT TRANSFER
C
C
      COEFFICIEDIS, FUT AND FUC
(
      FUT.... KNUTATION PLUS CONVECTION
C
      FUL... CULLVECTION
      V..... WIND VWLUCITY IN KNOTS
      SUBROUTING FU(V, 15, FUC, FUT, 1WH)
      0.1MENS104 A(b)/0.40.00140., 0.100240., 0.10.00125/, B(b)/.45440.320.0.
     133010.31500.24400.262/0(6)/2.0402.2011.9001.4501.8001.45/
      VF=V*1.153
      FOI=A(15)*VP*VP+6(15)*VP+C(15)
             IF THE SURFACE IS WINDWARD OR PARALLEL TO THE WIND
C
      INDED IF THE SURFACE IS LEEWARD
      ir (Iw) . Ew. U) 60 fo 1
      11 (VP-7.0) 1.1.2
    2 FUC=0.23+VF+1.02
      60 TU 3
    1 FUC=2.63
```

3 RETURN LIND

```
WILL FOR I.I
      SUBROUTINE HEAT (A.Y.X.TI.TU.NT.NK.UMA.CK.01.02.01P.02P)
      RESPUNSE FACTOR CALCULATION OF HEAT FLUXES
(
      PRIOR TO THE APPLICATION OF THIS ROUTINE THE TEMPERATURE DATA
C
      SHOULD HAVE BEEN REVERSED BY SUBROUTINE KEVT
C
            INSTILL LEMPERATURE WHERE R IS MINIMUM
C
            OUTSIDE TEMPERATURE WHERE R IS MAXIMUM
      10
      DIMERSION A(1), Y(1), Z(1), T1(1), TO(1), XX(30), YY(30), ZZ(30)
      DU PUUU JEZINK
      XX(J) = X(U) = CH = X(U-1)
      YY(J)=Y(J)-CR*Y(J-1)
 2000 \ ZZ(J) = Z(J) - CR \times Z(J-1)
 1000 SUMX=0.
      SUMY=11.
      SUMY 1=U.
      SUM/=110
      14T=NK
      DO 4 0=1 + BT
      SUMX=SUMX+1I(J)*AX(J)
      SUMY=SUMY+10(J) * YY(J)
      SUMY (=SUMITY+II(J)*YY(J)
    4 SUMZ=SUMZ+10(U)*ZZ(U)
      G1=SUMX+SUMY*GMA
                           +4411
      UZ=SUMIY-SUM7 +UZP
      WIP=WI
      WZP=WZ
      KE TUKN
      CIVID
```

WITFOR REVIERE TO SUBROUTINE REVI(I) RT.N.N.I)

DIMENSION I(I) RT.(I)

C THIS ROUTINE REVERSE THE ORDER OF TEMPERATURE SEQUENCE

FOR N TEMPERATURE POINTS

C STARTING FROM PRESENT TIME NT AMD ENDING UP WITH TIME NT=N+1

DO 1 J=1,N

1 KI(J)=I(HI-J+1)

KETURN
LND

```
WIN FOR BIKE, DIKE
    THE BESSEL FUNCTION SUBROUTINES WERE DEVELOPED BY B.A. PEAVY
C
    OF THE NATIONAL BUREAU OF STANDARDS
      FUNCTION UBEU (X.M)
      CUMMUN /CICHE/M, WOR, SOU, V, AOB, COU, E, F, G, H, PI
      DOUBLE PRECISION A(10),B(16),C(16),D(16),E(12),F(12),G(12),H(12),
     1F(18) * Q(18) * K(18) * S(18) * U(46) * V(46) * PI
      DOUBLE PRELISION T(46), AA, AB, AC, AD, X, DEEJ
      J=2
  100 AA=X/A.DU
      AC=X
      1+ (AA.GI.1.110) 60 TO 6
      [(1)=1.Du
      1(2)=2.DU*AA**2-1.U0
      Ab=4.1)U*AA**2-2.00
      DU 1 N=3,18
    1 \ T(N) = Ab \times T(N-1) - T(N-2)
      1F (J.EQ. 0) 50 TU 20
      1F (J.EQ.Z) 60 TO 30
      1F (DAHS(X).LT.1.D-8) AC=1.D-8
      1F (J.EQ.3) 60 TO 40
      ABELUG (AC/8.08)
      1+ (M. EQ. 1) 60 TU 3
      AC=(U(1)-Ab*P(1))/2.00
      DU 2 N=2.18
    2 AC=AC+T(N)*(N(N)-AH*P(N))
      60 TU 5
    3 AC=(5(1)-Ab*k(1))/2.00
      DU 4 N=2,16
    4 AC=AC+T(N)*(S(N)-K(N)*AB)
      AC=1.DU/X-AA*AC
    5 UNEUTAC
      RETURN
    6 AA= 1.00/AA
      IF (U.EQ.L) AA=-AA
      L=12
      IF (J.LT.c) L=40
       1(1)=1.00
       T(2)=AA
       IF (J.GE.Z) T(2)=2.00*AA**2-1.00
       AN=2.00*AA
       1- (U.GE.Z) AU=2.DU*AA*AU-2.D0
       DU 7 N=31L
    7 + (N) = Ab + (N-1) - T(N-2)
       1F (U.GT.1) 60 TU 50
       AA=1.DU
       IF (X.LT.700.DU) AA=EXP(-X)
       AB=1.DU/SGRT(X)
       IF (J.EQ.U) 60 TU 24
       AH=AB*PI*HA
       IF (M.EU.1) GU TU 9
       AC=U(1)/2.UU
       DU 8 N=2+46
    A = AC = AC + T(N) * U(N)
      AC=AC*AB
       66 TO 5
    9 AL=V(1)/2.00
       UU 10 N=2,46
   10 AC=AC+T(N)*V(N)
       ACTAC* AB
       60 TU 5
   20 IF (M.EQ.1) GO TO 22
```

```
AL=P(1)/2.00
   DU 21 N=2116
21 AC=AC+[(11)*P(14)
   60 TO 5
22 AL=R(1)/2.U0
   UU 23 N=2+16
23 AC=AC+1(N)*K(N)
   AC=AC*AA
   60 TU 5
24 AB=AB/AA
   IF (M.E(V.I) 60 TO 26
   ハレニい(1)/2.00
   UU 25 N=2140
25 AC=AC+1(N)*U(N)
ZH ALZAH*AC
   60 70 5
20 AL=V(1)/2.00
   DO 27 N=2+38
27 AL=AL+T(N) *V(11)
   60 TU 28
30 IF (M.EQ.1) GO TO 32
   AL=A(1)/2.00
   DU 31 N=2+16
31 AC=AC+T(II)*A(III)
   60 TU 5
32 AC=0(1)/2.00
   UU 35 N=2,16
33 AC=AC+1(11) *C(11)
   AL=AC*AA
   GU TU 5
40 AD=2.00*LUG(AC)/PI
   1F (M.EQ.1) 50 TO 42
   AC=(B(1)+Ab*A(1))/2.110
   UU 41 N=2+16
41 AC=AC+T(N)*(N(N)+AD*A(N))
   60 TO 5
42 AC=(1)(1)+Ab*C(1))/2.00
   DO 43 N=2+16
43 AC=AC+T(N)*(N(N)+AD*C(N))
   AU=AC*AA-Z.DU/(P1*X)
   60 TO 5
50 AD=SURT(Z.DO/(PIAK))
   1F (M.EQ.1) GO TO BO
   AH=E(1)/2.00
   AC=F(1)/2.00
   UO 51 N=2,12
   ABFAB+T(N) *E(N)
51 AC=AC+T(N) *F(N)
   AC=AL*AA
   AA=X-P1/4.00
55 IF (U.EQ.S) GO TO 52
   AC=AU*(AU*LOS(AA)-AC*SIN(AA))
   60 TU 5
52 ACTAU* (AC*COS(AA)+AB*SIN(AA))
   60 TU 5
60 AH=G(1)/2.00
   AC=H(1)/2・UÜ
   DO 61 N=2+12
   AB=AB+T(N)*G(N)
61 AC=AC+T(N)*H(N)
   AC=AC*AA
   AA=X-.75UU*PI
```

GU TU 55
ENTRY DHEL(X,M)
JEU
GO TO 100
ENTRY DHEN(X,M)
JE1
GO TU 100
ENTRY DHEL(X,M)
JE3
GO TU 100
END

```
FOR BITH, BIIn
   BLOCK DATA
   CUMMUN /LICHE/POURISOUDVOAOBOCOUPEOFOGOHOPI
   DOUBLE PRECISION A(10),B(16),C(16),D(16),E(12),F(12),G(12),H(12),
  1P(18),Q(16),R(18),S(18),U(46),V(46),P[,T,W,X,Y,Z
 CHEBYSHEV CUEFFICIENTS FUR BESSEL FUNCTIONS
   DATA A/.31545594294978023900:-.8723442352852221D-2:.26517861320333
  1081Du;-.3/00949936726497/900;.158067102332097261D0;-.0348937694114
  2U8885DU++4619180U69467604D-2+-+460626166206275D-3++32460328821D-4+
  3-.1761946907762D-5:.76081635924D-7:-.267925353D-8:.78486963D-10:-.
  41943d35D-111.41253U-131-.759D-15/16/-.060292226406569883D01-.27447
  543055297+026500++179034314077182663D0++201567346255046637D0+-+1773
  6UZ01Z781143582U0++U47196689595763367U0+++7287962479552079D=2++7531
  7135932577740-3:--:56320791410570-4::32065325376550-5:--:14407233274D
  8-6, 52487947870-6, -1583755250-9, 40263310-11, -6874730-13, 16430-1
  94/,0/1.296/175412105298400,-1.1918011605412168700,1.28799409885767
  17a2hu+-+aa443934134543253b0++177709117239728283h0+++02917552480b1
  25420aD0+.52402701826838570=2+-.2604443695485810=3+.15887019259932D
  3-4,-.761/56780540-6,.29497070073D-7,-.942421298D-9,.25281237D-10,-
  4.577/4D-12:.1330D-13:.1955D-15/:D/.0406U82117718685U8D0:-.1286973
  564381350nu=-76729636288664594uu+67561578u7721876670u+-626624991
  6556754924b0;.042519180353336904D0;~.5131641161061085D-2;.440478629
  78671D=5+-•28304640149515D=4+•1416624364492D=5+-•56884400399D=7+•18
  87547u324u=8;-.51/21215u=10;.1211433u=11;-.24409D=13;.4280=15/;PI/3
  9.141592653589793200/
   DATA_E/1.998920o98695037331D0++.536522040813212D=3+.3075184787519D
  1-5,-.517059453750-7,.15306464640-8,-.706409140-10,.51682620-11,-.4
  23jj45d[-1z++3zbbj-13+-+5u64jj-14++6748j]-15+-+1j-15/+F/-+0311117u921
  >Un74uu+•ac>85199+2611ou−4+−•7414498411Ubu−n+•17972457248D−7+−•7271
  491594(;-9,.422012190-16,-.32067470-11,.30061450-12,-.3336330-13,.42
  5552D-14+-.60999D-15+.966D-16/+6/2+U018U6U81720U274D0+.898989833085
  6941n=3+=•398/28430u489n=5+•61776339606n=7+=•1871890749D=8+•8816898
  770-10:--57048640-11:-4699190-12:--468420-13:-54530-14:--7220-15:-1
  8070=15/18/.09355557413907065001=.90277235491571D=41.9138615257960=
  96,-.209597613840-7,.8229193330-9,-.468636370-10,.35152190-11,-.326
  14320-12**359660-13*=*45610-14**65080-15*=*10270-15/
          U/ • 798331 /U33 /77718U6UU • • • 27824U3U273932236D-2 • • 22510873571
  1159949n=3++15278/7872300049n=4++157817791105719n=5++227n83004n8408
  20-61.43426562949220-71.10453170037960-71.2879354629250-81.78080927
  3512n-9++15141541538n-9+-+1954135293D-1u+-+436057528D-10+-+28962217
  45D-101--1222743919D-101--245354238D-111-110880533D-111-139814476D-
  5111.70425609D=121.12051141D=121-.11025346D=121-.10945044D=121-.417
  682930-13++466839-14++1606270-13++8988520-14++659640-15+-+253132D-1
  74,-.1832220-14,-.290120-15,.456410-15,.3d550-15,.72510-16,-.96770-
  816,-.85376-16,-.14736-16,.23820-16,.19750-16,.223D-17,-.653D-17,-.
  94660-17,-.20-19,.190-17,.1080-17,-.190-18,-.560-18/
          V/-7971+2770484402007D0+--187627251400034881D=1+--372851820
  11u091957u=3,-.2119852311849735u=4,-.200394040362657D=5,-.272962045
  293394D-6+-+5026542819771D-7+-+1180972280086D-7+-+321152515316D-8+-
  3.87()784853446-9; -. 17395449u09D-9; .1644931968D-10; .4513375613D-10; .
  43U66929043U-101.1317959611D-101.278710776D-111-.107958557D-111-.14
  55443110-111-.75000504D-121-.13840416U-121.11008746U-121.11415063U-
  612*.4496995D-13*-.410384D-14*-.1649841D-13*-.950147D-14*-.8545D-15
  7..25694D-14..191914D-14..3J188D-15.-.45975D-15.-.40183D-15.-.813D-
  816,.97250-16,.8882D-16,.16010-16,-.2399D-16,-.2056D-16,-.264D-17,.
```

298287100++4771874879617413520=1++341633176601234095D=2++1924693596
38811366D=3++873831549662236D=5++32609105057896D=6++1016972672769D=
47++26882612695D=9++60968928D=11++11989083D=12++206305D=14++3132D=1
50++42D=18/

124099600,22.274819242462230900,4.0116737601793485300,.509493365439

P/255.46687962436216700.190.494320172742844D0.82.4890327440

96610-17: 4670-17: 110-18:-1930-17:-1130-17: 170-18: 580-18/

UATA 0/~21.057660177402440200;−4.5634335864483950100;8.005368868
17003.547700;5.2836328668739200100;1.5115356760292279100;.2590844324
23490019700;.3008072242051187450−1;.2536308168086199010−2;.16270837
3904302330−3;.8216025939930660−5;.335195255631330−6;.1128121138760−
47;.318587979630−9;.7657574380−11;.158554130−12;.2857520−14;.45230−516;.630−18;

UATA 57-26.0880954808626678D0;-1.83923922428619943D0;9.361617831
13953888D0;4.009387026628418500;1.1014619930048522D0;.16107430195
26147824D0;.163000492898164176D-1;.121705699451574089D-2;.700106278
35475753D-4;.320251069193505D-5;.11936797074664D-6;.369678327636D-8
4;.96659752D-10;.216255319D-11;.4187279D-13;.7086D-15;.1057D-16;.14
50-18/

COMMON /ZMZ)/T(20),W(20),X(20),Y(20),Z(18)

DATA 1/2.404825557695772/700,5.5200781102863106500,8.6537279129110
11221700,11.791534439014281600,14.930917708487785900,18.07106396791
20922500,21.211636629879258900,24.352471530749302700,27.49347913204
30254300,30.63460646843197500,33.775820213573568700,36.917698353664
4043900,40.05842576462823900,43.19979171317673000,46.34118837166181
5400,49.46200989739781700,52.62405184111499600,55.76551075501997900
6.58.90698392608094200,62.04846919022716900/

□ATA ₩/3.a31705970207512200.7.u1558666981501d7p0.10.17346813500272
12p0.13.322691936314223p0.16.47u630050a77c32800.19.6158585104682420
20.22.7600843805927719D0.25.903672007618383p0.29.04682853491685500.
332.189679910974404p0.35.332307550083865p0.38.474766234771615p0.41.
4017094212814451p0.44.759318997c52821p0.47.901460887185447p0.51.043
553518357150900.54.185553641061320p0.57.32752543790101p0.60.4694578
645347491p0.63.6113566984812320u7

UATA X/.5191474972894667710:-.3402048065583681200:.271452299928381 19pn+-.23z45983156472476D0+.286546435077996D0+-.18**7**7288030404394100 2+.1752658942292298500++.16170155066924998D0+.15218121577059451b0++ 3 .1441659/763657519DII/.1572969454005029DUI/-.1515246266686680DUI/0/. 4126(n949/12727545)));-•121398624771/5019i));•1172111988906n592u0;-•1 5134291926164295200+•1099911430462771300+**-•1**066478882547174500+•103 5959572869J771800+-.10129349893401842D0/+1/-.40275939570255393D0+.3 7061157525261525400+-*2497048770578451700+*2183594072478729400+-*19 3546537145655716000..1800633753443155300.-.16718460047381802D0..1557 9249852523522100,-.148011109972777500,.140605798183982200,-.1342112 146310000bb00:1286166220720700:-:123667900769857D0::11924981201069 2005Da+-+115Z73b941201b875Du++111b7u49685920975u0+-+1u8385348943680 35nnu+.10537405539524985Du+-.102nu05671u340887pu+.1u00351468116ZD+/ 4+//1.57079632679489700+62+60+15116+60+12554474+60+4716+60+3902416+ 500, 50, 00, 900, 400, 400, 7381280, 00, 24, 00, 1958, 400, 6, 00, 4, 00, 2466720, 600120013.0015.0017.00/

```
INN XUT SAMPLE
   7 108
   75.
         75.
                                 75.
                                       75.
                                             75.
                                                    75.
                                                         75.
                                                                75.
                                                                      75.
               15.
                    75.
                          75.
                                             81.
   76.
        71.
              10.
                    79.
                          33.
                                 81.
                                       84.
                                                    80.
                                                         79.
                                                                78.
                                                                      71.
                    74.
                          74.
                                 74.
                                       75.
                                             77.
                                                    du.
                                                         83.
                                                                87.
                                                                      90.
   70.
        70.
               15.
                           93.
                                 91.
                                       87.
                                             85.
                                                    83.
                                                         81.
                                                                74.
                                                                      77.
   93.
        44.
              95.
                    94.
        U.
                     4.
                          10.
                                       15.
                                             10.
                                                               · U.
                                                                       d.
   U.
               ۷.
                                 15.
                                                    Š.
                                                         2.
                                 5.
                                                                 U.
   10.
        10.
               30.
                     20.
                          Lu
                                       4.
                                              4.
                                                    1.
                                                         U.
                                                                       U.
   0.
               U •
                     U.
                           li.
                                 10.
                                             29.
                                                    41.
                                                          42.
                                                               345.
                                                                     350.
        U.
      348.
                     44.
                           41.
                                 24.
                                      20.
                                                          U.
                                                                 U.
                                                                       U.
  J50.
               41.
                                            ట.
                                                   () •
                                              0.
                                                                 2.
   0.
                    ۷.
                          4.
                                 2.
                                       U.
                                                   U.
                                                          2.
                                                                       2.
        U.
               U.
    1.
                                        1.
                                              1.
                     U.
                           u.
                                 U.
                                                    1.
                                                          1.
                                                                 1.
                                                                       1.
         1.
               1.
    ن
            0
                0.77
   1.86
          0.42
0.
   0.3333 0.3333
    5.0 5.0
              5.333
                      5.660
```

0. 0.015

1.0

0.026

```
INPUT DATA FORMAT FOR RESP
    U
    1 .
          0
    3
                U
                      - O
               U.
                     U. 0.92
         U ·
    U.
              40.
  11.U1
        0.12
                     11.5
                          U.
   0.5
       1.00
              140 .
                   0.20
                           0.00
 INSIDE SURFACE
178-IN LIN/LEUM
6-IN CONCRETE
    3
         Û
                U
                      1
                     Ų•
               U •
          U.
                          0.92
    U •
              80.
       0.12
  0.01
                     0.5
                           0.
  0.5 1.00
              140.
                     0.20 0.00
   0.7 120. 6.25
 INSTUE SURFACE
1/8-IN LIN/LEUM
6-IN CONCRETE
GRUUND
          ()
    Ú.
         ه زا
               U.
                      0.92
  11.25
       0.12
                     0.3
               nu.
                           Ü•
                € •
   U .
        U a
                      U .
                          0.92
 UUTSIDE SURFACE
S-IN PAPER
 OUTSIDE SURFACE
                     U
    3 U 1
               i) a
                          0.92
    U.
         U .
                     U ·
              8U *
  0.01
       0.13
                     0.5
                           U .
   0.5 1.00
              140.
                     0.2 0.00
               3.01
        ٥٠
                    3.51 3.51
   ٥.
 INSIDE SURFACEL SET RI
 1/8-IN LINULEUM
 0-IN CONCRETE
                      Ĺ
    3
          0
                1
          U •
               U •
                      U •
                          0.92
    0.
                         U •
  U.01 U.13
               8U •
                      0.5
                     0.2 0.00
   0.5 1.00
             140.
   0.7
        120.
               0.23
   3.
        ٥.
               3.01
                   3.51 3.51
 INNER SURFACE (SET K)
 1/3-IN LINULEUM
 6-11 CONCRETE
 GROUND
               1
          ()
                      2
    4
               HU.
                      0.3
                            0.
  0.01
        0.13
               Ú.
                           0.92
   0 •
                      U.
        U.
  U - 25
         50.
               0.32
  0.5
        0.51
               0.51
 PAPER (6 IN K)
 1/8-IN LINOLEUM
 SURFACE
              2
U•
                      0
    3
           0
                           0.92
                      U.
         U •
    0 •
               80.
                      0.3
                           0.
  0.01
       0.13
                     0.2 0.00
        1.00
   11.5
               140.
                   3.51
    ٥٠
                           3.51
         ٥.
               3.01
 INNER SURFAC ( 3-FT R)
 1/8-IN LINOLEUM
 6-IN CONCRETE
    3
         0
                 2
                      U·•
                           0.92
                0.
    0.
          U•
```

```
0.01
        0.13
                 80.
                        0.3
                                U.
                               0.00
    0.5
         1.00
                 1400
                        0.2
    0.7
                 0.25
          120.
    3.
                 3.11
                        3.51
                              3.51
          INSTUE SURFACEL 3FT RI
                              65
 1/8-In Linuteum
 6-IN CONCRETE
 GRUUNU
     2
                   2
                          2
   0.01
         0.13
                 Au.
                         0.5
                                0.
    U.
                  U.
                               0.92
           U.
                         U.
   0.25
                 0.32
          50.
   0.5
                 0.51
          0.51
 6-IN RAD PAPER
 1/8-IN LINULEUM
 SUKFACE
    44
lai EUF
```

to riv

PLANE WA	١.	1.
----------	----	----

LAYER NO	L(I)	K(1)	(1)	C(1)	RES(J)	DESCRIPTION OF LAYERS
1	•000 •010	.000	•00 80•00	•000 •300	.92	THSTOF SURFACE
2 3	•500	1.000	140.00	.200	• 60	6-IN CONCRETE

THERMAL CONDUCTANCE	U=	• 665
RESDANSE EACTORS		

J	X	Υ	7
0	.8809	.0276	5.9704
1	0911	.1801	-3.5343
2	0470	.1684	6904
3	0291	.1081	4057
4	0182	.0678	2527
5	0114	.0424	1580
6	0071	.0265	0989
7	0044	.0166	0618

LAYER NO	e Makana	i_(T)	K(1)	(I)	C(1)	RFS(I)	DESCRIPTION OF LAYERS
1		.000	• 000	• on	• 0 0 0	.92	INSIDE SURFACE
2	***	.010	.120	80.00	,•300	• 0 0	1/8-IN I INOLEUM
3		•500	1.000	140.00	.200	.00	6-IN CONCRETE
			.700	120.00	•230		GROUND.

THERMAL	CONDUCTANCE	U=	.665

RESPONSE FACTORS

	J	Ł.
The second section of the second section of the second section of the second section s	0	•88083
	1	08610
	2	02270
	3	01117
AND I MANUSCHAMMENT RESERVED TO THE PROPERTY OF THE PROPERTY O	4	00700
	5	00472
The second secon	6	00329
	7	00232
gall for a spheroid stablement is a distance for distance of the stable	8	00163
	G)	00114
	10	00079
	11	00053
	12	00036
	13	00023
	14	00015
	15	00010
	16	00006
	1.7	00004
	18	00002
	19	00002
	20	00001
	21	00001
_	22	00000
	23	00000
	24	00000
	25	00000
	26	00000
	27	00000
	28	60000
	29	00000
	30	00000
	31	00000
	32	00000

1 1	1	A	. 1	F .
H	1	11	1 4	-

LAYER	f(1)	K(1)	(1)	C(1)	RFS(I)	DESCRIPTION OF LAYERS
1	•000	.000	•00	•000	.92	OUTSIDE SURFACE
2	.250	.120	80.00	•300	•00	3-IN PAPER
3	.000	•000	• 6.0	• 000	.92	OUTSIDE SURFACE

THERMAL CONDUCTANCE	11=	.255
---------------------	-----	------

RESPONSE FACTORS

J	F
0	+1.44446
2	23878
3	18292
4	14116
5	10896
6	08411
7	06492
8	05012
9	. •03868
10	02986
11	02305
12	01779
13	• 01373

CYLINDRICAL WALL

LAYEK NO	L(I)	K(1)		C(1)	RES(I)	DESCRIPTION OF LAYERS
1 2 3	.000 .010 .500	•000 •130 1•000	.00 20.00 140.00	•000 •300 •200	.92 .00	INSIDE SURFACE 1/8-IN LINOLEUM 6-IN CONCRETE

TIME INCREMENT DT= 1.

THERMAL CONDUCTANCE U= .586

RESPONSE FACTORS

J	X	Y	プ
0	•8881	.0254	5.8264
1	0880	·1638	-3.5342
2	0443	•150 7	6843
3	0269	.0950	3953
4	- •0165	.0584	2418
5	0101	.0359	1484
6	0062	•0220	0911
7	0038	.0135	0560

CYLTHDRICAL WALL

LAYER NO_	1_(1)	K(I)	(1)	C(T)	RES(T)	DESCRIPTION OF LAYERS
1	.000	.000	.00	• 000	.92	THINER SURFACE (3FT
2	.010	.130	80.00	•300	• 0.0	1/8-IN LINOLFUM
3	•500	1.000	140.00	.200	•00	6-IN CONCRETE
		.700	_120.00	.230		GROUND_

TIME INCREMENT DT= 1.

 THERMAL CONDUCTANCE	U=	.586
RESPONSE FACTORS		

J	. F
0	• 98803
1	08387
2	02481
3	01290
4	00799
5	00521
6	00348
7	00234
8	00158
9	00106
10	00070
1.1	00046
12	00029
_ 13 _	00019
1 4	00012
15	00007
16	00005
17	60003
18	00002
19	00001
0.5	00001
21	00000
22	00000
23	00000
24	00000
25	00000
26	00000
27	00000
28	00000
29	00000
30	10000
31	00000

PHCKI	CAL WALL					
LAYER 40	L(T)	K(I)	(1)	C(I)	RFS(1)	DESCRIPTION OF LAYERS
	-				o'a	· · · · · · · · · · · · · · · · · · ·
1	• 600	• 000	• 0 0	• 000	.92	INNER SURFAC(3-FT
2	.010	.130	80.00	.300	• 0.0	1/R-IN I THOLFUM
3	•500	1.000	140.00	.200	• 0.0	6-IN CONCRETE
			TIME INCR	EMENT DT=	1.	

THERMAL CONDUCTANCE U= .514

RESPONSE FACTORS

J	X	Υ	7
0	.8905	.0232	5.6855
1	0842	.1480	-3.5316
2	0414	1338	6766
3	0246	•0828	3840
4	0148	<u>.0500</u>	2305
5	0089	.0301	1388
6	0054	.0181	0837
7	0032	.0109	0504

CY	15	•	1. 4	153	1	~	A	
U		1	145	./IK	1	١.	H	۱.

LAYER	L(1)	K(1)	(1)	C(T)	RES(T)	DESCRIPTION OF LAYERS
1 -	•016 •000	•250 •130	50.00 80.00	•320 •300 •000	•0n	PAPER(6 IN R) 1/8-IN LINDI FUM SURFACE

THERMAL CONDUCTANCE U= 1.002

RESPONSE FACTORS

J	F
0	.73468
1	20036
2	10006
3	07064
4	 05563
5	04593
<u> </u>	03869
7	03284
8	02797
9	02385
10	02035
11	01736
12	01481
1.3	01264
14	01079

way the indian brought the in-	agaay saaniyaa sigaaddad isaaniyan da sadad dii sadanii is sadan i	Francis Programme Annual Statement and		-		
SPHERICA					and the second	
SPHERICA	L. WALLE.					
LAYER 110	L(I)	κ(1)	(1)	C(1)	RES(T)	DESCRIPTION OF LAYERS
1	.000	.000	• 0.0	• 000	.92	INSTDE SURFACE (3
2	.010	.130	80.00	•300	.00	1/8-IN I INOLFUM
2 3	•500	1.000	140.00	.200	.00	6-IN CONCRETE
an area the graph of the distribution of the graph of the con-		.700	120.00	.230	· Ov ******* * ******* * ***	GROUND
			TIME IN	CREMENT DI=	t	
			THERMAL	CONDUCTANCE	U	= .514
			RESP	ONSE FACTORS		
	note in charge contents on the contents of the		definition of the state of the			and the second s
		ı		_		
		<u>ل</u> ()		- 89045		
		1		08081		
gani meneng, magagapia salipa sadi sadi sadi sadi sanjan sadi silahan sadi sasi dan salam sa	kan diangere dan bilikahan dan 2 x 1 metat ada dan 40 Metebber	2	a veletilikkeitelijängula illip ovuoteen korrolda veliittiisia kilolusti mokus kilolusti saatu. Valat olis olik	02585	en man and an annual section of the section of	
		3		01379		
		4		00841		
		5		00533		
		ñ		00344		
		7		00223		
makana unakana bahin kanna ani maya a kanna hirufarinina di sebut in ba nda	garrer y prince y Angele designation and a designation of the second section of the sec	8	a mgP -mgP -mgP -mgP -mgP -mgP -mgP -mgP	00145	Please & repr. of the Effects of the State of the control of the state	hallin op in finallettiagen i Mariette delta dem de destatement filosoppia delta oppositati delta oppositati i
		9		00093		
		10	. Manual day and a second dispersion of the se	00060		
		11		00038		
		12	THE RESERVE THE PARTY OF THE PA	00024		The first fi
		13		00015		
generalise della regioni della prima della estra della regiona della regiona della regiona della regiona della	mygrifferenna a peringgenegyelver, republikeny desse, aldebeselver is tradition	14	The Property of Self-Prince Base Self-Resemble of the same who is a suith Security/Plane-based series.	00009	ingeren, encode tittlette-encol-immunikatik kitteri tytte metri e	-an a virte detection of the introduction following an image is differ above (APT DE) (APT DE) (APT DE) (APT DE)
		15		00005		
		16		00003		
		17		00002		
		18		00001		
		19		00001		
		20		00000		****
		21		00000		

-.00000

-.00000

-.00000 -.00000

-.00000

-.00000

-.00000

-.00000

22

23

24

25 26

27

28

29

5PH	ER	TCA	L

LAYER NO	L(I)	K(I)	(1)	C(1)	RES(I)	DESCRIPTION OF LAYERS
and the control front Management and the Company of	ennagene en en en egeneralen en en servicionere en erre destinabilitation	.250	50.00	.320	A SAME A MINIS - SAME A SAME A	6-IN RAD PAPER
1	.010	.130	80.00	.300	• 0.0	1/8-IN LINOLEUM
2	.000	•000	• 0 0	.000	•92	SURFACE

THERMAL CONDUCTANCE	U= 1.	200
DECRANCE ELETADO		

J	F
0	.71441
1	23048
2	12067
3	08440
4	06333
5	04860
6	03756
7	02909
a	02254
9	01747
10	01355
11	01050
12	00814

