Toddler Geometry (Problem set)

Jes Modian

February 26, 2023

Abstract

Geometry problems are harder than they seem.

Contents

1	Line	es, angles and shapes	2
	1.1	Basic properties	2
		Triangle properties	
	1.6	Circle properties	7

1 Lines, angles and shapes

After all the preposition stating, let's try some practical problems. (The diagrams in the problems are not necessarily to scale.)

1.1 Basic properties

Problem 1. In $\triangle ABC$, $\angle A = 62^{\circ}$ and $\angle B = 73^{\circ}$. What is $\angle C$?

(Difficulty: 1 [Beginner])

Solution 1.

$$\angle C = 180^{\circ} - \angle A - \angle B \qquad (\angle \text{ sum of } \triangle)$$
$$= 180^{\circ} - 62^{\circ} - 73^{\circ}$$
$$= \boxed{45^{\circ}}$$

Problem 2. In the figure, AB//CD, and E is a point between line AB and line CD. $\angle BAE=47^{\circ}$ and $\angle DCE=69^{\circ}$. What is x?

(Difficulty: 3 [Easy])

Solution 2. Draw EF//AB//CD.

$$\angle AEF + 47^{\circ} = 180^{\circ} \qquad \text{(alt. } \angle \text{s , } AB//EF)$$

$$\angle AEF = 133^{\circ}$$

$$\angle CEF + 69^{\circ} = 180^{\circ} \qquad \text{(alt. } \angle \text{s , } EF//CD)$$

$$\angle CEF = 111^{\circ}$$

$$x = \angle AEF + \angle CEF$$

$$= 133^{\circ} + 111^{\circ}$$

$$= \boxed{244^{\circ}}$$

Problem 3. D is a point inside $\triangle ABC$ such that $\angle ABD = \angle DBC$ and $\angle ACD = \angle DCB$, $\angle BDC = 98^{\circ}$. What is $\angle BAC$?

(Difficulty: 3)

Solution 3. Let $\angle ABD = \angle DBC = x$ and $\angle ACD = \angle DCB = y$. In $\triangle DBC$,

$$x + y + 98^{\circ} = 180^{\circ}$$
 (\angle sum of \triangle)
 $x + y = 82^{\circ}$

In $\triangle ABC$,

$$\angle BAC + 2x + 2y = 180^{\circ}$$
 (\angle sum of \triangle)
 $\angle BAC = 180^{\circ} - 2(x + y)$
 $= 180^{\circ} - 2(82^{\circ})$
 $= \boxed{16^{\circ}}$

1.3 Triangle properties

Problem 4. ABCD is a square. E is a point inside ABCD such that $\triangle ECD$ is an equilateral triangle. Join BE. What is $\angle ABE$?

(Difficulty: 3 [Easy])

Solution 4. .

$$\angle DCB = \angle CBA = 90^{\circ} \qquad (ABCD \text{ is square.})$$

$$\angle ECD = 60^{\circ} \qquad (\text{prop. of equil } \triangle)$$

$$\angle ECB = 90^{\circ} - 60^{\circ} = 30^{\circ}$$
Note that $EC = BC$.
$$\therefore \angle CBE = \angle CEB \qquad (\text{base } \angle \text{s, isos. } \triangle)$$

$$\angle CBE = (180^{\circ} - 30^{\circ})/2 = 75^{\circ} \qquad (\angle \text{ sum of } \triangle)$$

$$\angle ABE = 90^{\circ} - 75^{\circ} = \boxed{15^{\circ}}$$

Problem 5. In the figure, ABC and ADC are straight lines. It is given that AB = BD and BC = CD. If $\angle CDE = 66^{\circ}$, then $\angle ACD = ?$

(Difficulty: 3) (2019 DSE Paper 2 Q17)

Solution 5. Let $\angle BAD = x$.

$$\angle BAD = \angle BDA = x \qquad \text{(base $\angle s$, isos. \triangle)}$$

$$\angle CBD = 2x \qquad \text{(ext. \angle of \triangle)}$$

$$\angle CDB = \angle CBD = 2x \qquad \text{(base $\angle s$, isos. \triangle)}$$

$$\angle BCD = 180^{\circ} - 2x - 2x = 180^{\circ} - 4x \qquad (\angle \text{ sum of \triangle)}$$

$$\angle DAC + \angle ACD = x + (180^{\circ} - 4x) = 66^{\circ} \qquad \text{(ext. \angle of \triangle)}$$

$$x = 38^{\circ}$$

$$\angle ACD = 180^{\circ} - 4(38^{\circ}) = \boxed{28^{\circ}}$$

Problem 6. [1] In $\triangle ABC$, $\angle BAC = \angle ABC = 80^\circ$. Let D be a point on side AC such that $\angle ABD = 60^\circ$. Let E be a point on side BC such that $\angle BAE = 70^\circ$. Join DE. What is $\angle AED$?

(Difficulty: 6 [Very hard])

Solution 6. Let F be a point on side BC such that AB//DF. Hide point E to make the figure tidier. Note that $\angle DBC = 80^{\circ} - 60^{\circ} = 20^{\circ}$.

$$\angle CDF = \angle CAB = 80^{\circ}$$
 (corr. \angle s , $DF//AB$)
 $\angle CFD = \angle CBA = 80^{\circ}$ (corr. \angle s , $DF//AB$)
 $\angle BDF = 80^{\circ} - 20^{\circ} = 60^{\circ}$ (ext. \angle of \triangle)

Note that CD = CF and CA = CB (sides opp. equal \angle s). Thus AD = BF.

Join AF, and let AF and BD intersect at G. In $\triangle ADF$ and $\triangle BFD$, AD = BF, $\angle ADF = \angle BFD = 110^\circ$ (adj. \angle s on st. line), DF = DF. Thus $\triangle ADF \cong \triangle BFD$ (SAS). Thus $\angle DAF = \angle FBD = 20^\circ$ (corr. \angle s, $\cong \triangle$ s). Also, $\angle AFD = \angle BDF = 60^\circ$ (corr. \angle s, $\cong \triangle$ s). Thus $\triangle GDF$ is an equilateral triangle (con. of equil. \triangle), which means GF = DF.

Note that $\angle ACF = 180^\circ - 80^\circ - 80^\circ = 20^\circ$ (\angle sum of \triangle). Since $\angle CAF = \angle ACF = 20^\circ$, we have AF = FC (base \angle s, isos. \triangle).

Show point E again and hide GD and DF. Join CG.

Note that $\angle CAE = \angle EAF = 10^{\circ}$. Also note that GC bisects ACB (because G is in the middle), so $\angle ACG = \angle GCF = 10^{\circ}$.

Note that $\triangle GAC\cong\triangle ECA$ (ASA), so AG=EC (corr. sides, $\cong\triangle$ s). Since AF=FC, we have GF=FE.

Show D again and hide AF.

We have shown that GF = DF and GF = FE. Thus DF = FE. In $\triangle FDE$, $\triangle FDE = \triangle FED$ (base \angle s, isos. \triangle). So $\angle FED = (180^{\circ} - 80^{\circ})/2 = 50^{\circ}$ (\angle sum of \triangle).

Note that $\angle AEB = 180^{\circ} - 80^{\circ} - 70^{\circ} = 30^{\circ} \ (\angle \text{ sum of } \triangle).$

So
$$\angle AED = \angle FED - \angle AEB = 50^{\circ} - 30^{\circ} = \boxed{20^{\circ}}$$
.

Problem 7. [2] In $\triangle ABC$, AB = AC and $\angle BAC = 80^{\circ}$. Let P be a point inside $\triangle ABC$ such that $\angle BAP = 20^{\circ}$ and $\angle ABP = 10^{\circ}$. What is $\angle APC$?

(Difficulty: 6)

Solution 7. Since AB = AC, we have $\angle ABC = \angle ACB$ (base \angle s, isos. \triangle), so $\angle ABC = \angle ACB = (180^{\circ} - 80^{\circ})/2 = 50^{\circ}$. So $\angle PBC = 50^{\circ} - 10^{\circ} = 40^{\circ}$.

Draw AD between $\angle BAC$ such that AD=AB and $\angle DAC=40^\circ$. Note that $\angle PAD=80^\circ-20^\circ-40^\circ=20^\circ$.

Mark E as the intersection of AD and BC. In $\triangle AEC$, $\angle AEC = 180^{\circ} - 40^{\circ} - 50^{\circ} = 90^{\circ}$ (\angle sum of \triangle).

Join BD. Since AB = AD, we have $\angle ABD = \angle ADB = (180^\circ - 40^\circ)/2 = 70^\circ$ (base \angle s, isos. \triangle)& (\angle sum of \triangle). Note that $\angle BED = 90^\circ$ (vert. opp. \angle s), so $\angle DBE = 180^\circ - 70^\circ - 90^\circ = 20^\circ$ (\angle sum of \triangle).

Join DC and PD. Note that $\triangle DAB \cong \triangle DAC$ (SAS), so BD = DC and $\angle ADC = \angle ADB = 70^{\circ}$. Since BD = DC, we have $\angle DCB = \angle DBC = 20^{\circ}$ (base \angle s, isos. \triangle).

Note that $\triangle BAP \cong \triangle DAP$ (SAS), so $\angle PDA = \angle PBA = 10^{\circ}$ (corr. $\angle s$, $\cong \triangle s$). Thus $\angle PDB = 70^{\circ} - 10^{\circ} = 60^{\circ}$. Note that in $\triangle BPD$, $\angle PBD = \angle PDB = 60^{\circ}$. Thus $\triangle BPD$ is an equil. \triangle (con. of equil. \triangle), so BP = DP = BD. Since BD = DC, we have DP = DC.

Since $\triangle DPC$ is an isos. \triangle with DP=DC, we have $\angle DPC=\angle DCP=(180^\circ-80^\circ)/2=50^\circ$ (base \angle s, isos. \triangle)& (\angle sum of \triangle). Thus $\angle ECP=50^\circ-20^\circ=30^\circ$. So $\angle PCA=50^\circ-30^\circ=20^\circ$.

Finally, in $\triangle APC$, $\angle APC = 180^{\circ} - (20^{\circ} + 40^{\circ}) - 20^{\circ} = \boxed{100^{\circ}}$.

1.6 Circle properties

(Problem solving tips: try to use all the information given in the problem.)

Problem 8. In the figure, AC is a diameter of the circle ABCD. EF is the tangent to the circle at D such that AB//EC. If $\angle CDF = 49^{\circ}$ and $\angle CED = 31^{\circ}$, then $\angle ACB = ?$ (Difficulty: 4 [Medium]) (2021 DSE Paper 2 Q39)

Solution 8. (Diagram adjusted for accuracy.) Join DA.

$$\angle CDA, \angle ABC = 90^{\circ} \qquad (\angle \text{ in semi-circle})$$

$$\angle CAD = 49^{\circ} \qquad (\angle \text{ in alt. segment})$$

$$\angle DCA = 90^{\circ} - 49^{\circ} = 41^{\circ} \qquad (\angle \text{ sum of } \triangle)$$

$$\angle DCE = 49^{\circ} - 31^{\circ} = 18^{\circ} \qquad (\text{ext. } \angle \text{ of } \triangle)$$

$$\angle ACE = 41^{\circ} - 18^{\circ} = 23^{\circ}$$

$$\angle BAC = \angle ACE = 23^{\circ} \qquad (\text{alt. } \angle \text{s , } AB//EC)$$

$$\angle ACB = 90^{\circ} - 23 = \boxed{67^{\circ}} \qquad (\angle \text{ sum of } \triangle)$$

Problem 9. In the figure, ABCDE is a circle. If AC = BD, $\angle AED = 96^{\circ}$ and $\angle BDC = 14^{\circ}$, then $\angle CAD = ?$

(Difficulty: 4) (2021 DSE Paper 2 Q22)

Solution 9. Join AB. Let $\angle CAD = x$.

Problem 10. In the figure, ABC and CDE are circles such that ADC is a straight line. PQ is the common tangent to the two circles at C. AB is the tangent to the circle CDE at E. If $\angle ADE = 100^\circ$ and $\angle BCQ = 35^\circ$, then $\angle ABC = ?$

(Difficulty: 4) (2020 DSE Paper 2 Q39)

Solution 10. Join EC.

$$\angle CAB = 35^{\circ} \qquad (\angle \text{ in alt. segment})$$

$$\angle AED = 180^{\circ} - 35^{\circ} - 100^{\circ} = 45^{\circ} \qquad (\angle \text{ sum of } \triangle)$$

$$\angle DCE = 45^{\circ} \qquad (\angle \text{ in alt. segment})$$

$$\angle EDC = 180^{\circ} - 100^{\circ} = 80^{\circ} \qquad (\text{adj. } \angle \text{s on st. line})$$

$$\angle ECQ = \angle EDC = 80^{\circ} \qquad (\angle \text{ in alt. segment})$$

$$\angle ECB = 80^{\circ} - 35^{\circ} = 45^{\circ}$$

$$\angle ABC = 180^{\circ} - 35^{\circ} - (45^{\circ} + 45^{\circ}) = \boxed{55^{\circ}} \qquad (\angle \text{ sum of } \triangle)$$

Problem 11. In the figure, O is the centre of the semi-circle ABCD . If AC = BD and $\angle COD = 48^{\circ}$, then $\angle ABD = ?$

(Difficulty: 3) (2019 DSE Paper 2 Q21)

Solution 11. .

Note that $\triangle OAC \cong \triangle OBD$ (SSS). This means $\angle AOC = \angle DOB$ (corr. sides, $\cong \triangle$ s), and thus $\angle AOD = \angle BOC = (180^{\circ} - 48^{\circ})/2 = 66^{\circ}$ (adj. \angle s on st. line). In $\triangle OBD$,

$$\angle ABD = (180^{\circ} - 48^{\circ} - 66^{\circ})/2 = \boxed{33^{\circ}} \qquad (\angle \text{ sum of } \triangle)$$

Problem 12. In the figure, TA is the tangent to the circle ABCDE at point A . If $\angle BAD = 64^{\circ}$, $\angle EAT = 38^{\circ}$ and $\angle DCE = 22^{\circ}$, then $\angle ADB = ?$

(Difficulty: 3) (2019 DSE Paper 2 Q39)

Solution 12. Join DE.

Problem 13. In the figure, ABCD is a circle. AD produced and BC produced meet at the point E. It is given that BD = DE, $\angle BAC = 66^{\circ}$ and $\angle ABD = 30^{\circ}$. Find $\angle CED$.

(Difficulty: 3) (2018 DSE Paper 2 Q22)

Solution 13. Let $\angle CED = x$.

$$\angle DBE = x \qquad \text{(base $\angle s, isos. \triangle)}$$

$$\angle CAD = \angle CBD = x \qquad \text{($\angle s in the same segment)}$$

$$\angle ACB = \angle CED + \angle CAD = 2x \qquad \text{(ext. \angle of \triangle)}$$
 In $\triangle ABC$,
$$66^\circ + (30^\circ + x) + 2x = 180^\circ \qquad \text{(\angle sum of \triangle)}$$

$$x = \boxed{28^\circ}$$

Problem 14. In the figure, TA is the tangent to the circle ABCD at the point A. CD produced and TA produced meet at the point E. It is given that AB = CD, $\angle BAT = 24^{\circ}$ and $\angle AED = 72^{\circ}$. Find $\angle ABC$.

(Difficulty: 4) (2018 DSE Paper 2 Q39)

Solution 14. Join AD and AC. Let $\angle EAD = x$.

$$\angle ACB = 24^{\circ} \qquad (\angle \text{ in alt. segment})$$

$$\angle CAD = \angle ACB = 24^{\circ} \qquad (\text{equal chords, equal } \angle \text{s at } \bigcirc^{ce})$$

$$\angle DCA = \angle EAD = x \qquad (\angle \text{ in alt. segment})$$

$$\text{In } \triangle CEA \text{ ,} \qquad 72^{\circ} + x + (x + 24^{\circ}) = 180^{\circ} \qquad (\angle \text{ sum of } \triangle)$$

$$x = 42^{\circ}$$

$$\angle ABC = \angle EAC = 42^{\circ} + 24^{\circ} \qquad (\angle \text{ in alt. segment})$$

$$= \boxed{66^{\circ}}$$

Problem 15. In the figure, ABCD is a rhombus. C is the centre of the circle BDE and ADE is a straight line. BE and CD intersect at F. If $\angle ADC = 118^{\circ}$, then $\angle DFE = ?$

(Difficulty: 3) (2016 DSE Paper 2 Q22)

Solution 15. .

$$CB//DA$$
 (prop. of rhombus)
 $\angle C = 180^{\circ} - 118^{\circ} = 62^{\circ}$ (int. \angle s , $CB//DA$)
 $\angle FED = 62^{\circ}/2 = 31^{\circ}$ (\angle at centre twice \angle at \bigcirc^{ce})
 $\angle DFE = 118^{\circ} - 31^{\circ} = \boxed{87^{\circ}}$ (ext. \angle of \triangle)

Problem 16. In the figure, ABCD is a square. BC is produced to G such that $\angle CDG = 25^{\circ}$. E is a point lying on AB such that AE = CG. If F is a point lying on BC such that $\angle CDF = 20^{\circ}$, then $\angle DFE = ?$

(Difficulty: 4) (2014 DSE Paper 2 Q16)

Solution 16. .

Note that $\triangle DAE \cong \triangle DCG$ (SAS) , so we have $\angle ADE = \angle CDG = 25^\circ$ (corr. sides, $\cong \triangle$ s). Note that $\angle EDF = 90^\circ - 25^\circ - 20^\circ = 45^\circ$.

In $\triangle DFE$ and $\triangle DFG$,

$$DE = DG$$
 (corr. sides, $\cong \triangle s$)
 $\angle EDF = \angle FDG = 45^{\circ}$
 $DF = DF$ (common side)
 $\therefore \triangle DFE \cong \triangle DFG$ (SAS)
 $\therefore \angle DFE = \angle DFG$ (corr. $\angle s$, $\cong \triangle s$)
 $= 90^{\circ} - 20^{\circ} = \boxed{70^{\circ}}$ (\angle sum of \triangle)

Problem 17. In the figure, AC is a diameter of the circle ABCDE . If $\angle ADE = 28^{\circ}$, then $\angle CBE = ?$

(Difficulty: 3) (2014 DSE paper 2 Q20)

Solution 17. Join CD.

$$\begin{split} \angle ADC &= 90^\circ \qquad (\angle \text{ in semi-circle}) \\ \angle CDE &= 90^\circ + 28^\circ = 118^\circ \\ \angle CBE &= 180^\circ - 118^\circ = \boxed{62^\circ} \qquad (\text{opp. } \angle \text{s , cyclic quad.}) \end{split}$$

Problem 18. In the figure, O is the centre of the circle ABCDEF. $\triangle PQR$ intersects the circle at A,B,C,D,E and F. If $\angle QPR=38^{\circ}$ and AB=CD=EF, then $\angle QOR=?$

(Difficulty: 4) (2014 DSE Paper 2 Q21)

Solution 18. Draw $OM \perp AB$, $ON \perp DC$, $OK \perp FE$.

Note that OM = ON = OK (equal chords, equidistant from centre) . Thus, $\angle ORK = \angle ORN$ and $\angle OQN = \angle OQM$ (prop. of \angle bisector) .

Let
$$\angle ORK = \angle ORN = x$$
 and $\angle OQN = \angle OQM = y$. In $\triangle PQR$,

$$38^{\circ} + 2x + 2y = 180^{\circ}$$
 (\angle sum of \triangle)
 $x + y = 71^{\circ}$

In $\triangle ORQ$,

$$x + y + \angle QOR = 180^{\circ}$$
 (\angle sum of \triangle)
 $\angle QOR = 180^{\circ} - 71^{\circ} = \boxed{109^{\circ}}$

References

- $[1] \begin{tabular}{ll} MindYourDecisions, "A classically hard geometry problem," YouTube. [Online]. Available: https://www.youtube.com/watch?v=CFhFx4n3aH8&ab_channel=MindYourDecisions \\ \begin{tabular}{ll} MindYourDecisions \\ \begin{tabular}{l$
- $\label{eq:complex} \begin{tabular}{ll} [2] & ----, & ``A' & classically hard geometry problem," YouTube. [Online]. Available: https://www.youtube.com/watch?v=Rjo-PcrKrB0&t=272s&ab_channel=MindYourDecisions \\ \end{tabular}$