

DO MORE GUNS REDUCE CRIME?

APPLIED ECONOMETRICS AND TIME SERIES ANALYSIS

AUTHOR:

ATUL KOTECHA

TABLE OF CONTENT

OBJECT	IVE	3
INTROD	UCTION	3
W	hat is "shall-issue" law?	3
Vie	ew behind the law:	3
EXPLOR	ATORY DATA ANALYSIS	3
Data	Overview:	3
a.	Shall-law - States:	4
b.	Number of states implementing law over years:	4
C.	Summary :	5
d.	Crime Rate over the years:	5
e.	State-wise crime rate:	5
f.	Shall-law vs Crime Rate:	6
g.	Crime Rate vs Incarceration Rate:	7
h.	Crime Rate vs Population and Population Density:	8
i.	Crime Rate vs % of white population and % of black population:	9
j.	Crime Rate vs % of males 10-29 years old:	10
k.	Crime Rate vs Income:	11
HYPOTH	IESIS:	12
DATA MO	DDELLING:	13
1. De	ependent variable – Violence:	14
a.	Pooled OLS with Cluster Robust Standard Error:	14
b.	Fixed Effect Model:	15
C.	Fixed Effect Model with Cluster Robust Standard Error:	16
d.	Fixed Effect Model with Time Fixed Effect:	17
e.	Random Effect Model	18
2. De	ependent variable – Robbery:	20
a.	Pooled OLS with Cluster Robust Standard Error:	20
b.	Fixed Effect Model	20
C.	Fixed Effect Model with Cluster Robust Standard Error:	21
d.	Fixed Effect Model with time fixed Effect:	22
e.	Random Effect Model	23
3. De	ependent variable – Murder:	25

	a.	Pooled OLS with Cluster Robust Standard Error:	25
	b.	Fixed Effect Model	26
	C.	Fixed Effect Model with Cluster Robust Standard Error:	27
	d.	Fixed Effect Model with time fixed Effect:	28
	e.	Random Effect Model	29
СО	NCL	USION:	31
LIN	IITAT	ΓΙΟΝ:	32

OBJECTIVE

The aim of this project is to analyze and check whether shall-issue law helps to reduce crime rate or not from data of 51 states.

INTRODUCTION

What is "shall-issue" law?

A Shall-issue law is one that provides governments to issue concealed carry handgun permits to <u>any</u> applicant if they met the necessary criteria.

Following are criteria to issue permit:

- The applicant must be an adult
- The applicant should not have significant criminal record
- The applicant should not history of mental illness
- The applicant should complete, if required by law, a course in firearms safety training.

If the applicant fulfills the above criteria, he/she will be issued a permit to carry a gun without demonstrating "good cause".

View behind the law:

The view behind this idea is when law-abiding citizens are equipped with a gun, they are no longer defenseless against would-be criminals. This will make the crime rate go down.

EXPLORATORY DATA ANALYSIS

Data Overview:

The guns dataset is a balanced panel data. The data is collected for 23 years (1977-1999) on 51 states of the USA (including District of Columbia). It has a total of 51 states x 23 years= 1173 observations. Each observation is a given state each year.

Following are features from dataset and their descriptions:

Variable	Definition					
vio	violent crime rate (incidents per 100,000 members of the population)					
rob	robbery rate (incidents per 100,000)					
mur	murder rate (incidents per 100,000)					
shall	= 1 if the state has a shall-carry law in effect in that year					
snati	= 0 otherwise					
	incarceration rate in the state in the previous year (sentenced					
incarc_rate	prisoners per 100,000 residents; value for the previous year)					
density	population per square mile of land area, divided by 1000					
avginc	real per capita personal income in the state, in thousands of dollars					
pop	state population, in millions of people					
pm1029	percent of state population that is male, ages 10 to 29					
pw1064	percent of state population that is white, ages 10 to 64					
pb1064	percent of state population that is black, ages 10 to 64					
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)					
year	Year (1977-1999)					

a. Shall-law - States:

There are 22 states which did not implement concealed weapon law between 1977-1999 and 29 states had implemented this law.

b. Number of states implementing law over years:

There are 4 states who had implemented shall laws before 1977. 25 states implemented shall law between 1977-1999. There might be a case, shall law might be successful and that's why states started to implement shall law.

c. Summary:

Variable	0bs	Mean	Std. Dev.	Min	Max
year	1,173	88	6.636079	77	99
vio	1,173	503.0747	334.2772	47	2921.8
mur	1,173	7.665132	7.52271	.2	80.6
rob	1,173	161.8202	170.51	6.4	1635.1
incarc_rate	1,173	226.5797	178.8881	19	1913
pb1064	1,173	5.336217	4.885688	.2482066	26.97957
pw1064	1,173	62.94543	9.761527	21.78043	76.52575
pm1029	1,173	16.08113	1.732143	12.21368	22.35269
pop	1,173	4.816341	5.252115	.402753	33.14512
avginc	1,173	13.7248	2.554543	8.554884	23.64671
density	1,173	.3520382	1.355472	.0007071	11.10212
stateid	1,173	28.96078	15.68352	1	56
shall	1,173	.2429668	.4290581	Ø	1

d. Crime Rate over the years:

All the crimes were at peak during 1991-1993. After that there was decline in crime. US economy recovered after 1993, that might be the reason for decrease in crimes.

e. State-wise crime rate:

From below figure, maximum crime rate is in state ID 11 (District of Columbia). Also,

f. Shall-law vs Crime Rate:

From the graphs above, we can conclude that shall law does effect on crime rate. As shall law was implemented in lot of other states after 1993, crime rate went down after that time.

g. Crime Rate vs Incarceration Rate:

We expect crime rate to go down with incarceration rate. From below graph, state (state ID 11) with highest crime rate has highest incarceration rate and state (state ID 38) with lowest crime rate has lowest incarceration rate. However, incarceration rate and crime rate go hand in hand, when crime rate increases, police do their jobs thoroughly and incarceration rate goes up. There is a simultaneous causality bias. This can be seen in graph of state with crime rate.

Crime Rate changes with Incarc. Rate

h. Crime Rate vs Population and Population Density:

Crime vs Population

Crime vs Population Density

We expect crime rate to go up with increase in population density. On the other hand, population shouldn't cause any changes in crime rate.

Stateid

From above graph states with high population density is has highest crime rate. But there is no relation between population and crime rate.

i. Crime Rate vs % of white population and % of black population:

From the graphs below, there seem to be no relation between population of black people and white people with crime rate. State ID 15 has highest percentage of black people and low percentage of white people still crime rate is low.

j. Crime Rate vs % of males 10-29 years old:

Males from age group of 10-29 are most likely to be involved in crimes. We expect states with high male population from age group of 10-29 should have higher crime rate. Graph below shows, states with high percentage of 10-29 males has lower percentage of crime.

k. Crime Rate vs Income:

State ID 11 has highest average income and highest crime rate but other states don't show any such relation. We expect crime rate to go down with increase in income. But this theory isn't applicable for this dataset.

Crime rate VS Income

HYPOTHESIS:

Based on exploratory data analysis and intuition we propose below hypothesis:

a. Shall-Issue Law & Crime Rate:

Number of states implementing shall law increased from 4 to 29 in given time period. That means more state governments trusted this law and we expect shall law to reduce crime.

There is no data after 1999 which would have been helpful to get analysis of aftereffects of shall law on all three different type of crimes.

We expect violent crime to go down but armed robbery, as more people will have access to weapon and murders (in self-defense) to go up.

Null Hypothesis: Shall-issue law will decrease violent crime but there will be increase in murders and armed robbery.

Alternate hypothesis: Shall-issue law doesn't have effect on crime rate.

b. Crime rate & Population:

As per economic theory we expect crime rate to go up with increase in population density.

From the graphs, there was no relationship between percentage of whites, blacks and males of age 10-29 with crime rate. Also, population didn't have any relation with crime rate. So these parameters are not that significant.

Null Hypothesis: Increase in population density will increase crime rate.

Alternate hypothesis: Population density doesn't have effect on crime rate.

c. Crime rate & Incarceration Rate:

Crime rate and incarceration rate have simultaneous causality bias. We expect this variable to come out as insignificant.

Null Hypothesis: Incarceration rate will decrease crime rate.

Alternate hypothesis: Incarceration rate doesn't have effect on crime rate.

d. Crime rate & Income:

As per economic theory increase in income should reduce crime. But from graphs there seem to be no relationship between these two variables.

Null Hypothesis: Increase in income will decrease crime rate.

Alternate hypothesis: Income doesn't have effect on crime rate.

DATA MODELLING:

Histogram for all three dependent variables is highly skewed so we will take log transformation of those for further analysis.

Correlation analysis:

	shall	incarc~e	density	avginc	pop	pm1029	pb1064	pw1064
shall	1.0000							
incarc_rate	0.0424	1.0000						
density	-0.1126	0.5593	1.0000					
avginc	-0.0000	0.4615	0.3433	1.0000				
pop	-0.1244	0.0953	-0.0780	0.2152	1.0000			
pm1029	-0.2772	-0.4463	-0.0637	-0.5279	-0.0975	1.0000		
pb1064	-0.1839	0.5308	0.5432	0.2627	0.0581	0.0162	1.0000	
pw1064	0.2123	-0.5271	-0.5551	-0.1912	-0.0654	-0.0126	-0.9820	1.0000

There is obvious high correlation between population of black and white people. Other than these two variables there are no significant correlations.

We will keep these two variables in model though, from graph it was clear that these two variables don't have effect in crime rate. So in regression those should come insignificant.

1. Dependent variable - Violence:-

a. Pooled OLS with Cluster Robust Standard Error:

```
. reg ln_vio shall incarc_rate density avginc pop pm1029 pb1064 pw1064, vce(cluster state)
                                                Number of obs
Linear regression
                                                                         1,173
                                                F(8, 50)
                                                                         62.13
                                                                        0.0000
                                                Prob > F
                                                                        0.5643
                                                R-squared
                                                Root MSE
                                                                        .42769
                               (Std. Err. adjusted for 51 clusters in stateid)
                             Robust
      ln_vio
                    Coef.
                            Std. Err.
                                                P>|t|
                                                          [95% Conf. Interval]
       shall
                -.3683869
                             .113937
                                        -3.23
                                                0.002
                 .0016126
                            .0005999
                                                0.010
                                                         .0004076
                                                                      .0028177
 incarc rate
                                         2.69
                                                         -.0566485
     density
                 .0266885
                            .0414909
                                         0.64
                                                0.523
                                                                      .1100255
      avginc
                 .0012051
                            .0240808
                                         0.05
                                                0.960
                                                         -.0471626
                                                                      .0495728
        pop
                 .0427098
                            .011729
                                         3.64
                                                0.001
                                                         .0191515
                                                                      .0662681
      pm1029
                 .0088709
                            .0340964
                                         0.26
                                                0.796
                                                         -.0596137
                                                                      .0773554
                 .0808526
                            .0713875
                                                         -.0625334
                                                                      .2242386
      pb1064
                                         1.13
                                               0.263
      pw1064
                 .0312005
                              .03409
                                         0.92
                                               0.364
                                                         -.0372713
                                                                      .0996723
                 2.981738
                            2.166513
                                         1.38
                                               0.175
                                                         -1.369831
                                                                      7.333307
```

Panel data generally have issues with:

- Heteroskedasticity
- Serial correlation correlation between error term is not zero
- Endogeneity Correlation between error term and variable –'shall'

Pooled OLS doesn't take of serial correlation, endogeneity. We have taken care of heteroskedasticity with White's robust standard error.

The shall coefficient shows that shall-issue law has an impact on violent crimes rates where violent crimes can be reduced by 36.8%. While the coefficient is very significant, but the value is unrealistically high.

All other variables except incarceration rate are not significant. But we know that incarceration rate and crime rate have simultaneous casualty bias and the coefficient will be biased.

b. Fixed Effect Model:

Pooled OLS models don't consider unobserved heterogeneity. This model will take care of that.

. xtreg ln_vio	shall incar	_rate densi	ty avgin	c pop pm10)29 pb1064 pw	1064, fe	
Fixed-effects	(within) reg	ression		Number o	of obs =	1,173	
Group variable	e: stateid			Number o	of groups =	51	
R-sq:				Obs per	group:		
within :	- 0 2178			ons bei	min =	23	
between :					avg =	23.0	
overall:					max =	23.0	
Over all .	- 0.0001				illax -	23	
				F(8,1114	1) =	38.77	
corr(u_i, Xb)	= -0.3687			Prob > F	=	0.0000	
ln_vio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
shall	0461415	.0188668	-2.45	0.015	08316	009123	
incarc_rate	000071	.0000936	-0.76	0.448	0002547	.0001126	
density	1722901	.0850362	-2.03	0.043	3391392	0054409	
avginc	0092037	.0059083	-1.56	0.120	0207963	.0023889	
рор	.0115247	.0087239	1.32	0.187	0055924	.0286417	
pm1029	0502725	.0064037	-7.85	0.000	0628373	0377078	
pb1064	.1042804	.0177564	5.87	0.000	.0694407	.1391201	
pw1064	.0408611	.0050745	8.05	0.000	.0309044	.0508177	
_cons	3.866017	.3847716	10.05	0.000	3.111058	4.620975	
sigma u	.68024951						
sigma e	.16072287						
rho	.94712779	(fraction	of varia	nce due to	u_i)		
F test that all u i=0: F(50, 1114) = 142.57 Prob > F = 0.0000							

The shall coefficient shows a significant drop in the absolute value (from 36.8% to 4.6%) of the impact on violent crimes. This drop is mainly due to observed and unobserved heterogeneity within individual that is time invariant. Omitted variables can be attitude towards crime and using weapons, or police department efficiency towards crime control. The coefficient is significant at 5%. Fixed effects model has lower standard error than the cluster robust error. The advantage of using Fixed effect model is that it controls both observed and unobserved heterogeneity.

c. Fixed Effect Model with Cluster Robust Standard Error:

There still might be some variables that changes within states but varies with time. For example, if state government implemented any laws within observed time period that can reduce crime rate in that state but over the years. This unobserved time variant heterogeneity will be taken care by this model.

. xtreg ln_vio shall incarc_rate density avginc pop pm1029 pb1064 pw1064, fe cluster (state)								
Fixed-effects (within) regression Number of obs = 1,173								
Group variable				Number o	of groups	=	51	
R-sq:				Obs per	group:			
within =					min	=	23	
between :	= 0.0033				avg	=	23.0	
overall :	= 0.0001				max	=	23	
				F/0 F0\			24.40	
/ ! Vb)	0.3607			F(8,50) Prob > F		=	34.10 0.0000	
corr(u_i, Xb)	= -0.368/			Prob > F		=	0.0000	
		(Std. E	rr. adjus	sted for 5	1 clusters	in s	tateid)	
		Robust						
ln_vio	Coef.	Std. Err.	t	P> t	[95% Con	nf. In	terval]	
shall	0461415	.0417616	-1.10	0.275	1300223	3 .(0377392	
incarc_rate	000071	.0002504	-0.28	0.778	0005739		0004318	
density	1722901	.1376129	-1.25	0.216	4486936		1041135	
avginc	0092037	.0129649	-0.71	0.481	0352445	5	.016837	
pop	.0115247	.014224	0.81	0.422	0170452	2 .	0400945	
pm1029	0502725	.0206949	-2.43	0.019	0918394	۱ - ۱	0087057	
pb1064	.1042804	.0326849	3.19	0.002	.0386308	3 .:	1699301	
pw1064	.0408611	.0134585	3.04	0.004	.0138289		0678932	
_cons	3.866017	.7701057	5.02	0.000	2.319214	5	.412819	
sigma u	.68024951							
sigma e	.16072287							
rho	.94712779	(fraction	of variar	nce due to	u_i)			

The shall coefficient is same as fixed effect model. But the standard errors are much higher than with least square standard errors. This proves there was some time variant heterogeneity. Coefficient of shall is insignificant.

Coefficients of pm1029,pb1064,pw1064 are significant. Those suggest as population of male aged between 10-29 goes up by 1%, crime rate goes down by 5%. This is in contrast with economic theory so this variable is biased.

All other coefficients are insignificant.

d. Fixed Effect Model with Time Fixed Effect:

There might be some variables which changes over time but are constant for each state. For example, federal laws to reduce crime rate, countries economy. Fixed effect with time fixed models will address bias from such omitted variables.

. xtreg ln_vio	o shall incar	c_rate densi	ty avgino	pop pm:	1029 pb1064 pw	1064 i.year,	fe cluster (state)
Fixed-effects	(within) reg	ression		Number	of obs =	1,173	
Group variable	. , ,				of groups =	51	
R-sq:				Obs per	r group:		
within :	= 0.4180				min =	23	
between :	= 0.0419				avg =	23.0	
overall :	= 0.0009				max =	23	
				F(30,50	9) =	56.86	
corr(u i, Xb)	= -0.2929			Prob >	F =	0.0000	
\							
		(Std. E	rr. adjus	sted for	51 clusters i	n stateid)	
		Robust					
ln_vio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
shall	0279935	.0407168	-0.69	0.495	1097757	.0537886	
incarc_rate	.000076	.0002079	0.37	0.716	0003416	.0004935	
density	091555	.1238622	-0.74	0.463	3403396	.1572296	
avginc	.0009587	.0164931	0.06	0.954	0321688	.0340861	
pop	0047544	.0152294	-0.31	0.756	0353436	.0258347	
pm1029	.0733254	.0524733	1.40	0.168	0320704	.1787211	
pb1064	.0291862	.0495407	0.59	0.558	0703192	.1286916	
pw1064	.0092501	.0237564	0.39	0.699	0384659	.0569662	
year	0505064	0454556	3.60	0.004	0200767	0000755	
78	.0585261	.0161556	3.62	0.001	.0260767	.0909755	
79	.1639486	.0244579	6.70	0.000	.1148233	.2130738	
80	.2170759	.0334184	6.50	0.000	.1499531	.2841987	
81	.2172551	.0391956	5.54	0.000	.1385284	.2959819	
82	.1946328	.0465743	4.18	0.000	.1010856	.28818	
83	.158645	.0593845	2.67	0.010	.0393676	.2779223	
84	.1929883	.0770021	2.51	0.015	.0383251	.3476515	
85	.2444764	.0922217	2.65	0.011	.0592438	.4297091	
86	.3240904	.1089181	2.98	0.004	.1053219	.5428589	
87	.324365	.1249881	2.60	0.012	.073319	.5754111	
88	.3867412	.1397074	2.77	0.008	.1061305	.6673518	
89	.4422143	.1535358	2.88	0.006	.1338286	.7505999	
90	.5430478	.1960859	2.77	0.008	.1491976	.936898	
91	.5959456	.2040685	2.92	0.005	.1860618	1.005829	
92	.6275171	.2170306	2.89	0.006	.1915982	1.063436	
93	.6497414	.2246177	2.89	0.006	.1985834	1.100899	
94	.6354187	.2332437	2.72	0.009	.1669349	1.103903	
95	.6276831	.2423607	2.59	0.013	.1408874	1.114479	
96	.5713423	.2534067	2.25	0.029	.06236	1.080325	
97	.5501153	.2613516	2.10	0.040	.0251751	1.075055	
98	.4932904	.2746546	1.80	0.079	0583697	1.04495	
99	.4328776	.2862197	1.51	0.137	1420117	1.007767	
_cons	3.765525	1.152108	3.27	0.002	1.451448	6.079603	

The shall coefficient is further reduced, leading to a decrease on violent crimes by 2.8%. But the coefficient is still insignificant. The year variable has been added.

All variable coefficients are highly insignificant.

All time variables except year 1998 and 1999 are significant at alpha=5%. We can run F-test to check whether time variables are significant or not.

Null Hypothesis: All year variables are zero

Alternate Hypothesis: At least one of the year variable is not zero.

F-test:

```
. testparm i.year
(1) 78.year = 0
(2) 79.year = 0
(3) 80.year = 0
( 4) 81.year = 0
( 5) 82.year = 0
( 6) 83.year = 0
( 7) 84.year = 0
(8) 85.year = 0
( 9) 86.year = 0
(10) 87.year = 0
(11) 88.year = 0
(12) 89.year = 0
(13) 90.year = 0
(14) 91.year = 0
(15) 92.year
(16) 93.year = 0
(17) 94.year = 0
(18) 95.year = 0
(19) 96.year = 0
(20) 97.year = 0
(21) 98.year = 0
(22) 99.year = 0
     F( 22,
               50) =
          Prob > F =
```

P-value for F-test is zero, so we reject the null hypothesis and can say that at least one of the year variable is non-zero.

e. Random Effect Model

Fixed effect model is not feasible as data is collected from 51 states not randomly drawn from a population. It is a population, but to see whether endogeneity exists in data we will run random effect model.

. xtreg ln_vio	shall incard	_rate densit	y avginc	pop pm10	929 pb1064	pw1064, re
Random-effects	GLS regressi	on		Number o	of obs	= 1,173
Group variable	e: stateid			Number o	of groups	= 51
R-sq:				Obs per	group:	
within =	0.2044				min	= 23
between =	0.4908				avg	= 23.0
overall =	0.4591				max	= 23
				Wald chi		= 337.19
corr(u_i, X)	= 0 (assumed	1)		Prob > 0	:h12	= 0.0000
ln_vio	Coef.	Std. Err.	z	P> z	[95% Con	of. Interval]
shall	069609	.0190835	-3.65	0.000	107012	032206
incarc_rate	.0001888	.0000687	2.75	0.006	.0000541	.0003235
density	.0661588	.037363	1.77	0.077	0070713	.1393889
avginc	0105112	.0058749	-1.79	0.074	0220258	.0010034
pop	.0225755	.0063498	3.56	0.000	.0101301	.035021
pm1029	0375292	.0060462	-6.21	0.000	0493794	
pb1064	.1067022	.0132976	8.02	0.000	.0806394	.1327649
pw1064	.0400716	.0050987	7.86	0.000	.0300783	
_cons	3.525463	.3874011	9.10	0.000	2.766171	4.284755
siama u	.33790775					
sigma_u sigma e	.16072287					
sigma_e	.81550462	(fraction o	f varior	ce due +c	v 11 11	
1110	.01330402	(11 accton 0	. var tall	ce uue tt	, u_1)	

From this model, we get a significant coefficient for shall, which suggest violence in states with shall law is lower by 7% than without shall law.

We will perform Hausman test to check if endogeneity exists.

Hausman Test -

. hausman fixed random

	Coeffi	cients ——		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fixed	random	Difference	S.E.
shall	0461415	069609	.0234675	
incarc_rate	000071	.0001888	0002598	.0000635
density	1722901	.0661588	2384489	.0763882
avginc	0092037	0105112	.0013075	.0006269
рор	.0115247	.0225755	0110508	.0059821
pm1029	0502725	0375292	0127434	.0021099
pb1064	.1042804	.1067022	0024217	.011767
pw1064	.0408611	.0400716	.0007895	

```
\mbox{\sc b} = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg
```

```
Test: Ho: difference in coefficients not systematic  \begin{array}{ccc} \text{chi2(8)} &=& (b\text{-B})^*[(V\text{\_b-V\_B})^*(\text{-1})](b\text{-B}) \\ &=& 31.86 \\ \text{Prob>chi2} &=& 0.0001 \\ (V\text{\_b-V\_B} \text{ is not positive definite}) \end{array}
```

The value of the chi-square statistic: 31.86. P-value is small almost approaching zero. Hence, we reject the null hypothesis of no endogeneity and conclude that we should use the fixed effect model.

Best Model (d) is the fixed effect model using robust standard errors with both state and time fixed effects. As per the model results the shall-issue law doesn't have an impact on violent crime rates.

We will perform same operations for dependent variable robbery and murder.

2. Dependent variable - Robbery:-

a. Pooled OLS with Cluster Robust Standard Error:

```
. reg ln_rob shall incarc_rate density avginc pop pm1029 pb1064 pw1064, vce(cluster state)
Linear regression
                                               Number of obs
                                                                        1,173
                                               F(8, 50)
                                                                        27.22
                                               Prob > F
                                                                       0.0000
                                               R-squared
                                                                       0.5962
                                                Root MSE
                                                                       .60869
                               (Std. Err. adjusted for 51 clusters in stateid)
                             Robust
                   Coef.
                                              P>|t|
                                                         [95% Conf. Interval]
      ln rob
                           Std. Err.
                                          t
                -.5288202
                            .1608765
       shall
                                       -3.29
                                               0.002
                                                        -.8519501 -.2056903
 incarc_rate
                 .0010057
                            .0006401
                                        1.57
                                               0.122
                                                        -.0002799
                                                                     .0022914
                           .0459796
     density
                 .0905048
                                        1.97
                                               0.055
                                                         -.001848
                                                                     .1828576
                 .0407325
                           .0281568
                                        1.45
                                               0.154
                                                         -.015822
                                                                      .097287
      avginc
        pop
                 .0778176
                           .0225194
                                        3.46
                                               0.001
                                                         .0325862
                                                                     .1230491
      pm1029
                 .0272565
                          .0417254
                                        0.65
                                               0.517
                                                        -.0565515
                                                                     .1110645
      pb1064
                 .1021881
                           .0894076
                                        1.14
                                               0.259
                                                         -.0773923
                                                                     .2817686
                 .0275209
                           .0450088
                                               0.544
                                                         -.062882
                                                                     .1179237
      pw1064
                                        0.61
       _cons
                 .9041383
                             3.0615
                                        0.30
                                               0.769
                                                        -5.245065
                                                                     7.053341
```

The shall coefficient shows that shall-issue law has an impact on robbery crime rates where robbery crimes can be reduced by 52.9%. While the coefficient is very significant, but the value is unrealistically high.

b. Fixed Effect Model

```
. xtreg ln_rob shall incarc_rate density avginc pop pm1029 pb1064 pw1064, fe
Fixed-effects (within) regression
                                               Number of obs
                                                                         1,173
Group variable: stateid
                                               Number of groups =
                                                                            51
R-sq:
                                                Obs per group:
    within = 0.0366
                                                              min =
                                                                           23
     between = 0.0531
                                                              avg =
                                                                          23.0
     overall = 0.0521
                                                                            23
                                                F(8,1114)
                                                                          5.29
corr(u_i, Xb) = -0.0859
                                                Prob > F
                                                                        0.0000
      ln_rob
                   Coef.
                           Std. Err.
                                               P>|t|
                                                          [95% Conf. Interval]
                                           t
       shall.
                -.0078189
                            .0252557
                                        -0.31
                                               0.757
                                                         -.0573731
                                                                      .0417352
 incarc_rate
                -.0000763
                            .0001253
                                        -0.61
                                                0.542
                                                         -.0003222
                                                                      .0001695
                -.1860917
     density
                                        -1.63
                                                0.102
                                                         -.4094413
                -.0175195
                             .007909
                                        -2.22
                                               0.027
                                                         -.0330377
                                                                     -.0020012
      avginc
        pop
                .0163332
                           .0116781
                                        1.40
                                               0.162
                                                         -.0065803
                                                                     .0392466
                 .0111817
                                                                      .0280012
      pm1029
                            .0085722
                                        1.30
                                                0.192
                                                         -.0056378
                 .1115421
                            .0237693
                                         4.69
                                                0.000
                                                          .0649045
                                                                      .1581796
      pb1064
      pw1064
                 .0271807
                            .0067929
                                         4.00
                                                0.000
                                                          .0138525
                                                                       .040509
                2.445723
                            .5150678
                                        4.75
                                               0.000
                                                          1.435111
                                                                     3.456335
       _cons
     sigma_u
                 .9174441
     sigma_e
                .21514885
                .94787229
                           (fraction of variance due to u i)
F test that all u_i=0: F(50, 1114) = 164.06
                                                             Prob > F = 0.0000
```

The shall coefficient shows a significant drop in the absolute value (from 52.9% to 7.8%) of the impact on robbery crimes. This drop is mainly due to an omitted variable bias. Coefficient is insignificant at 5%. Fixed effects model has lower standard error than the cluster robust error. The advantage of using

Fixed effect model is that it controls both observed and unobserved heterogeneity.

c. Fixed Effect Model with Cluster Robust Standard Error:

. xtreg ln_rob	shall incar	c_rate densi	ty avgin	pop pm1	029 pb1064	pw106	54, fe cluste	er (state)
Fixed-effects	(within) reg	ression		Number	of obs	=	1,173	
Group variable				Number	of groups	=	51	
R-sq: within = between =			Obs per	group: min avg		23 23.0		
overall =	= 0.0521				max		23	
corr(u_i, Xb)	= -0.0859			F(8,50) Prob >		=	2.86 0.0108	
		(Std. E	rr. adju:	sted for	51 cluster	s in s	stateid)	
ln_rob	Coef.	Robust Std. Err.	t	P> t	[95% Co	nf. In	nterval]	
shall	0078189	.0551653	-0.14	0.888	118621	7.	.1029838	
incarc_rate	0000763	.000321	-0.24	0.813	000721	1.	.0005685	
density	1860917	.1663413	-1.12	0.269	52019	8.	1480147	
avginc	0175195	.0220352	-0.80	0.430	061778	4.	.0267395	
pop	.0163332	.0275874	0.59	0.556	039077	8.	.0717441	
pm1029	.0111817	.0290976	0.38	0.702	047262	6	.069626	
pb1064	.1115421	.0511546	2.18	0.034	.00879	5.	2142891	
pw1064	.0271807	.0164344	1.65	0.104	005828	6.	.0601901	
_cons	2.445723	1.012584	2.42	0.019	.411888	7 4	1.479557	
sigma_u sigma_e rho	.9174441 .21514885 .94787229	(fraction	of varia	nce due to	o u_i)			

The shall coefficient shows that shall-issue law has an impact on robbery crimes where robberies can be reduced by 7.8%. But the coefficient is insignificant. The same coefficient is seen in the previous model, but the difference is in the significance.

d. Fixed Effect Model with time fixed Effect:

. xtreg ln_rob shall incarc_rate density avginc pop pm1029 pb1064 pw1064 i.year, fe cluster (state)

Fixed-effects (within) regression Number of obs 1,173 Group variable: stateid Number of groups = Obs per group: R-sq: within = 0.2359 min = 23 between = **0.1358** avg = 23.0 overall = **0.1362** max = F(30,50) 40.77 $corr(u_i, Xb) = 0.1441$ Prob > F 0.0000

(Std. Err. adjusted for 51 clusters in stateid)

		(Std. E	rr. adjus	sted for	51 clusters 1	n stateid)
		Robust				
ln_rob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
shall	.0268298	.0521753	0.51	0.609	0779673	.1316269
incarc_rate	.0000314	.0003477	0.09	0.928	000667	.0007297
density	0447449	.1982135	-0.23	0.822	4428684	.3533786
avginc	.0143569	.0247676	0.58	0.565	0353903	.064104
pop	.0000164	.0259374	0.00	0.999	0520805	.0521133
pm1029	.1046049	.072997	1.43	0.158	0420138	.2512236
pb1064	.0141078	.0840609	0.17	0.867	1547335	.1829491
pw1064	0128322	.0327626	-0.39	0.697	0786379	.0529734
year						
78	.0328497	.0216897	1.51	0.136	0107154	.0764148
79	.1375917	.032117	4.28	0.000	.0730828	.2021006
80	.243408	.045464	5.35	0.000	.1520908	.3347251
81	.2737088	.0508793	5.38	0.000	.1715147	.375903
82	.21599	.0644109	3.35	0.002	.0866168	.3453632
83	.1208158	.0867066	1.39	0.170	0533395	.2949711
84	.078831	.1064308	0.74	0.462	1349416	.2926036
85	.1131495	.1272629	0.89	0.378	1424655	.3687645
86	.1895678	.1521449	1.25	0.219	1160242	.4951598
87	.1572151	.1688872	0.93	0.356	1820049	.496435
88	.1927596	.1878849	1.03	0.310	1846184	.5701376
89	.2487313	.2140573	1.16	0.251	1812154	.6786781
90	.3509806	.2668617	1.32	0.194	185027	.8869881
91	.4668537	.2791767	1.67	0.101	0938891	1.027596
92	.4633221	.2951262	1.57	0.123	1294562	1.0561
93	.4796983	.3082342	1.56	0.126	1394084	1.098805
94	.4943754	.3234124	1.53	0.133	1552175	1.143968
95	.4940171	.3338462	1.48	0.145	1765328	1.164567
96	.4341625	.3504351	1.24	0.221	2697072	1.138032
97	.3652393	.3581743	1.02	0.313	354175	1.084654
98	.2677144	.3690383	0.73	0.472	4735208	1.00895
99	.1894683	.3845414	0.49	0.624	5829059	.9618425
_cons	3.27912	1.676644	1.96	0.056	088518	6.646759

The shall coefficient is further changed with sign reversal, leading to an increase in robbery crimes by 2.7%. But the coefficient is still insignificant. The year variable has been added. 5 of the year variables are significant. All other are not significant.

All variables are insignificant.

F-test -

```
. testparm i.year
(1) 78.year = 0
(2)
     79.year = 0
  3)
      80.year = 0
  4)
      81.year = 0
 (5)
      82.year = 0
(6)
      83.year = 0
 (7)
      84.year = 0
(8)
     85.year = 0
 (9)
      86.year = 0
 (10) 87.year = 0
 (11)
      88.year = 0
 (12)
     89.year = 0
 (13)
      90.year = 0
     91.year = 0
 (14)
 (15) 92.year = 0
     93.vear = 0
 (16)
 (17) 94.year = 0
 (18) 95.year = 0
 (19) 96.year = 0
(20) 97.year = 0
 (21) 98.year = 0
(22) 99.year = 0
      F( 22,
                50) =
```

P-value for F-test is zero, so we reject the null hypothesis and can say that at least one of the year variable is non-zero.

e. Random Effect Model

Fixed effect model is not feasible as data is collected from 51 states not randomly drawn from a population.

```
. xtreg ln_rob shall incarc_rate density avginc pop pm1029 pb1064 pw1064, re
Random-effects GLS regression
                                                Number of obs
Group variable: stateid
                                                Number of groups =
                                                                           51
                                               Obs per group:
    within = 0.0269
                                                                           23
                                                             min =
    between = 0.5183
                                                                          23.0
                                                              avg =
    overall = 0.4910
                                                              max =
                                                                           23
                                                Wald chi2(8)
                                                                         99.59
corr(u_i, X) = 0  (assumed)
                                                Prob > chi2
                                                                        0.0000
      ln_rob
                   Coef. Std. Err.
                                               P> z
                                                         [95% Conf. Interval]
      shall
                -.0411192
                            .0255899
                                                0.108
                                                         -.0912745
                                                                      .0090362
                                        -1.61
 incarc_rate
                 .0001735
                           .0000931
                                        1.86
                                                0.062
                                                         -9.02e-06
                                                                       .000356
     density
                 .0997518
                           .0527672
                                        1.89
                                                0.059
                                                         -.0036699
                                                                      .2031735
      avginc
                -.0152975
                            .0078914
                                        -1.94
                                                0.053
                                                         -.0307643
                                                                      .0001693
                .0405861
                           .0087624
                                        4.63
                                                0.000
                                                         .0234121
                                                                       .05776
        pop
      pm1029
                 .0252997
                            .0081299
                                        3.11
                                                0.002
                                                          .0093654
                                                                       .041234
      pb1064
                 .1074485
                            .0181757
                                        5.91
                                                0.000
                                                          .0718247
                                                                      .1430723
      pw1064
                 .0282639
                            .0068389
                                         4.13
                                                0.000
                                                          .0148598
                                                                       .041668
                  1.8759
                              .52089
                                                0.000
                                                          .8549742
                                                                     2.896826
       _cons
                .48469008
     sigma_u
                .21514885
     sigma_e
                           (fraction of variance due to u_i)
```

From this model, we get a significant coefficient for shall, which suggest robbery in states with shall law is lower by 4.1% than states without shall law.

We will perform Hausman test to check if endogeneity exists.

Hausman Test -

. hausman fixed random

1	(b)	(B)	(b-B)	sqrt(diag(V b-V B))
	fixed	random	Difference	S.E.
shall	0078189	0411192	.0333002	
incarc_rate	0000763	.0001735	0002498	.0000838
density	1860917	.0997518	2858435	.1008633
avginc pop	0175195 -0163332	0152975 .0405861	002222 0242529	.0005277 .00772
pm1029	.0111817	.0252997	014118	.002718
pb1064	.1115421	.1074485	.0040936	.0153173
pw1064	.0271807	.0282639	0010832	

 $\label{eq:basic_basic} b = consistent \ under \ Ho \ and \ Ha; \ obtained \ from \ xtreg \\ B = inconsistent \ under \ Ha, \ efficient \ under \ Ho; \ obtained \ from \ xtreg \\$

Test: Ho: difference in coefficients not systematic

 $chi2(8) = (b-B)'[(V_b-V_B)^{-1}](b-B)$ = 26.94 Prob>chi2 = 0.0007 $(V_b-V_B$ is not positive definite)

The value of the chi-square statistic: 26.94. P-value is small almost approaching zero. Hence, we reject the null hypothesis of no endogeneity and conclude that we should use the fixed effect model.

Best Model (d) is the fixed effect model using robust standard errors with both state and time fixed effects. As per the model results the shall-issue law doesn't have an impact on robbery rates.

3. Dependent variable - Murder:-

a. Pooled OLS with Cluster Robust Standard Error:

. reg ln_mur shall incarc_rate density avginc pop pm1029 pb1064 pw1064, vce (cluster state)

Linear regression Number of obs = 1,173 $F(8, 50) = 138.04 \\ Prob > F = 0.0000 \\ R-squared = 0.6059 \\ Root MSE = .44312$

(Std. Err. adjusted for 51 clusters in stateid)

ln_mur	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
shall	3131735	.0990416	-3.16	0.003	5121045	1142425
incarc_rate	.002097	.0004603	4.56	0.000	.0011723	.0030216
density	.0396669	.039893	0.99	0.325	0404606	.1197944
avginc	0772578	.027044	-2.86	0.006	1315773	0229382
pop	.0416175	.011926	3.49	0.001	.0176633	.0655717
pm1029	.0655308	.0361641	1.81	0.076	007107	.1381685
pb1064	.1307641	.0611915	2.14	0.038	.0078573	.2536709
pw1064	.0470796	.0285914	1.65	0.106	0103479	.104507
_cons	-2.485593	1.992083	-1.25	0.218	-6.486809	1.515622

The shall coefficient shows that shall-issue law has an impact on murder rates where murder crimes can be reduced by 31.3%. While the coefficient is very significant, but the value is unrealistically high.

b. Fixed Effect Model

```
. xtreg ln_mur shall incarc_rate density avginc pop pm1029 pb1064 pw1064, fe
Fixed-effects (within) regression
                                              Number of obs
                                                                       1,173
Group variable: stateid
                                              Number of groups =
                                                                          51
R-sq:
                                              Obs per group:
    within = 0.1528
                                                            min =
                                                                          23
    between = 0.2221
                                                            avg =
                                                                        23.0
    overall = 0.1846
                                                             max =
                                                                          23
                                               F(8,1114)
                                                                       25.12
corr(u_i, Xb) = -0.8961
                                              Prob > F
                                                                      0.0000
                           Std. Err.
                                              P>|t|
                                                         [95% Conf. Interval]
     ln_mur
                   Coef.
      shall
                 -.06081
                           .0257579
                                       -2.36
                                              0.018
                                                       -.1113495
                                                                   -.0102704
 incarc_rate
                 -.00036
                           .0001278
                                       -2.82
                                              0.005
                                                        -.0006107
                                                                   -.0001093
    density
               -.6707132
                           .1160957
                                       -5.78
                                              0.000
                                                         -.898504
                                                                   -.4429224
     avginc
                .0243114
                           .0080663
                                       3.01
                                              0.003
                                                        .0084846
                                                                   .0401382
               -.0257054
                           .0119103
                                              0.031
                                                        -.0490745
                                                                   -.0023363
                                       -2.16
        pop
     pm1029
                .0392384
                           .0087427
                                       4.49
                                              0.000
                                                        .0220844
                                                                    .0563923
     pb1064
                .0307009
                           .0242419
                                        1.27
                                              0.206
                                                        -.0168641
                                                                    .0782658
     pw1064
                .0103313
                            .006928
                                        1.49
                                               0.136
                                                         -.003262
                                                                     .0239246
                .4600088
                           .5253095
                                              0.381
                                                        -.5706989
                                                                    1.490716
                                       0.88
      cons
    sigma_u
                 1.36035
               .21942693
    sigma_e
               .97464151
                           (fraction of variance due to u_i)
F test that all u_i=0: F(50, 1114) = 72.66
                                                           Prob > F = 0.0000
```

The shall coefficient shows a significant drop in the absolute value (from 31.3% to 6.1%) of the impact on murder crimes. This drop is mainly due to an omitted variable bias. Coefficient is insignificant at 5%. Fixed effects model has lower standard error than the cluster robust error. The advantage of using Fixed effect model is that it controls both observed and unobserved heterogeneity.

c. Fixed Effect Model with Cluster Robust Standard Error:

```
. xtreg ln_mur shall incarc_rate density avginc pop pm1029 pb1064 pw1064, fe cluster (state)
Fixed-effects (within) regression
                                                Number of obs
                                                                         1,173
Group variable: stateid
                                                Number of groups =
R-sq:
                                                Obs per group:
     within = 0.1528
                                                              min =
                                                                           23
    between = 0.2221
                                                              avg =
                                                                          23.0
    overall = 0.1846
                                                              max =
                                                                           23
                                                F(8,50)
                                                                        156.39
corr(u_i, Xb) = -0.8961
                              (Std. Err. adjusted for 51 clusters in stateid)
                             Robust
                                               P>|t|
                                                         [95% Conf. Interval]
      ln_mur
                   Coef.
                           Std. Err.
       shall
                  -.06081
                            .0369632
                                        -1.65
                                               0.106
                                                        -.1350527
                                                                      .0134327
 incarc_rate
                 -.00036
                            .0004231
                                        -0.85
                                                0.399
                                                         -.0012099
                                                                      .0004899
     density
                -.6707132
                           .3957745
                                        -1.69
                                                0.096
                                                         -1.46565
                                                                     .1242232
     avginc
                 .0243114
                            .0156779
                                        1.55
                                                0.127
                                                         -.0071786
                                                                     .0558013
        pop
                -.0257054
                           .0203457
                                        -1.26
                                               0.212
                                                        -.0665709
                                                                     .0151602
      pm1029
                 .0392384
                            .0215964
                                        1.82
                                                0.075
                                                        -.0041394
                                                                      .0826161
      pb1064
                 .0307009
                            .0781245
                                         0.39
                                                0.696
                                                         -.1262169
                                                                      .1876186
                 .0103313
                           .0128776
                                         0.80
                                                0.426
                                                         -.0155341
                                                                      .0361967
      pw1064
                 .4600088
                            .8425884
                                        0.55
                                                0.588
                                                         -1.23238
                                                                     2.152397
       _cons
     sigma_u
                 1.36035
                .21942693
     sigma_e
                .97464151
                           (fraction of variance due to u_i)
```

The shall coefficient shows that shall-issue law has an impact on murder crimes where robberies can be reduced by 6.1%. But the coefficient is insignificant. The same coefficient is seen in the previous model, but the difference is in the significance.

d. Fixed Effect Model with time fixed Effect:

. xtreg ln_mur shall incarc_rate density avginc pop pm1029 pb1064 pw1064 i.year, fe cluster (state)

Fixed-effects (within) regression	Number of obs	=	1,173
Group variable: stateid	Number of groups	=	51
R-sq:	Obs per group:		
within = 0.2905	min	=	23
between = 0.1945	avg	=	23.0
overall = 0.1413	max	=	23
	F(30,50)	=	81.49
corr(u_i, Xb) = -0.8336	Prob > F	=	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

		Robust				
ln_mur	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
shall	0149524	.0382403	-0.39	0.697	0917603	.0618556
incarc_rate	0001164	.0003631	-0.32	0.750	0008457	.0006129
density	5442635	.3192203	-1.70	0.094	-1.185436	.0969093
avginc	.0566492	.0165554	3.42	0.001	.0233967	.0899017
pop	0320769	.0209819	-1.53	0.133	0742202	.0100664
pm1029	.0691941	.0417945	1.66	0.104	0147526	.1531408
pb1064	.0219833	.0758151	0.29	0.773	1302958	.1742624
pw1064	0004893	.0201044	-0.02	0.981	0408701	.0398915
year						
78	0007195	.0322722	-0.02	0.982	0655401	.0641011
79	.0592481	.0311141	1.90	0.063	0032465	.1217427
80	.0901814	.041058	2.20	0.033	.0077139	.1726489
81	.1021543	.0510636	2.00	0.051	00041	.2047186
82	.0224098	.0581861	0.39	0.702	0944604	.1392799
83	0314385	.0640621	-0.49	0.626	1601111	.0972341
84	1359192	.071662	-1.90	0.064	2798565	.0080181
85	0866144	.0856965	-1.01	0.317	2587409	.0855122
86	0122752	.0927286	-0.13	0.895	1985262	.1739758
87	0290338	.0999408	-0.29	0.773	2297707	.1717032
88	0174594	.1196893	-0.15	0.885	2578626	.2229437
89	0145617	.1321034	-0.11	0.913	2798993	.2507759
90	.059998	.1649718	0.36	0.718	2713577	.3913537
91	.1053071	.1754909	0.60	0.551	2471767	.4577909
92	.0681002	.1828352	0.37	0.711	2991352	.4353355
93	.1544297	.1898113	0.81	0.420	2268176	.535677
94	.0442648	.1971908	0.22	0.823	3518047	.4403342
95	.0556601	.1989082	0.28	0.781	3438588	.455179
96	015709	.2125365	-0.07	0.941	4426011	.4111831
97	1221824	.2186706	-0.56	0.579	5613952	.3170304
98	1863381	.2332966	-0.80	0.428	6549281	.2822519
99	2554286	.2420434	-1.06	0.296	741587	.2307298
_cons	.1882653	1.056771	0.18	0.859	-1.934322	2.310853

The shall coefficient is further reduced, leading to a decrease on murder crimes by 1.5%. But the coefficient is still insignificant. The year variable has been added.

F-test

```
. testparm i.year
(1) 78.year = 0
(2) 79.year = 0
(3) 80.year = 0
(4) 81.year = 0
(5)
     82.year = 0
(6) 83.year = 0
(7)
     84.year = 0
(8)
     85.year = 0
(9) 86.year = 0
(10) 87.year = 0
(11) 88.year = 0
(12) 89.year = 0
(13)
     90.year = 0
(14) 91.year = 0
(15) 92.year = 0
(16) 93.year = 0
(17) 94.year = 0
(18) 95.year = 0
(19) 96.year = 0
(20) 97.year = 0
(21) 98.year = 0
(22) 99.year = 0
      F(22, 50) = 19.61
           Prob > F =
                       0.0000
```

P-value for F-test is zero, so we reject the null hypothesis and can say that at least one of the year variable is non-zero.

e. Random Effect Model

```
. xtreg ln_mur shall incarc_rate density avginc pop pm1029 pb1064 pw1064, re
                                                                      1,173
Random-effects GLS regression
                                              Number of obs
Group variable: stateid
                                              Number of groups =
                                                                         51
                                              Obs per group:
    within = 0.0813
                                                            min =
                                                                         23
    hetween = 0.4921
                                                            avg =
                                                                       23.0
    overall = 0.4381
                                                                         23
                                              Wald chi2(8)
                                                                     169.92
corr(u_i, X) = 0 (assumed)
                                              Prob > chi2
                                                                     0.0000
     ln_mur
                  Coef. Std. Err.
                                         Z
                                             P> z
                                                        [95% Conf. Interval]
                                                       -.1680629
      shall
               -.1153705
                          .0268844
                                              0.000
                                      -4.29
                                                                    -.062678
 incarc_rate
                .0004438
                           .0000925
                                       4.80
                                              0.000
                                                        .0002625
                                                                     .000625
    density
                .0163429
                          .0381659
                                       0.43
                                              0.669
                                                       -.0584609
                                                                   .0911467
     avginc
                .0093982
                          .0081589
                                       1.15
                                              0.249
                                                       -.0065929
                                                                   .0253893
        pop
                .0029126 .0072821
                                       0.40
                                              0.689
                                                        -.01136
                                                                   .0171851
                          .0084037
                .0734716
                                                                    .0899426
      pm1029
                                       8.74
                                              0.000
                                                        .0570007
      pb1064
                .0512656
                           .0168244
                                       3.05
                                              0.002
                                                        .0182903
                                                                    .0842409
      pw1064
                .0069318
                          .0071688
                                       0.97
                                              0.334
                                                       -.0071188
                                                                   .0209824
               -.3301384
                           .536504
                                              0.538
      cons
                                      -0.62
                                                       -1.381667
                                                                   .7213902
     sigma_u
               .30755149
    sigma_e
               .66267693
                          (fraction of variance due to u i)
```

From this model, we get a significant coefficient for shall, which suggest murder in states with shall law is lower by 11.5 % than states without shall law.

We will perform Hausman test to check if endogeneity exists

Hausman Test -

. hausman fixed random

	Coeffi	cients ——		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fixed	random	Difference	S.E.
shall	06081	1153705	.0545605	
incarc_rate	00036	.0004438	0008037	.0000882
density	6707132	.0163429	6870561	.1096429
avginc	.0243114	.0093982	.0149132	
pop	0257054	.0029126	0286179	.0094248
pm1029	.0392384	.0734716	0342333	.0024109
pb1064	.0307009	.0512656	0205648	.017453
pw1064	.0103313	.0069318	.0033995	

 $b = consistent \ under \ Ho \ and \ Ha; \ obtained \ from \ xtreg \\ B = inconsistent \ under \ Ha, \ efficient \ under \ Ho; \ obtained \ from \ xtreg \\$

Test: Ho: difference in coefficients not systematic

chi2(8) = $(b-B)'[(V_b-V_B)^{-1}](b-B)$ = 91.44 Prob>chi2 = 0.0000 $(V_b-V_B$ is not positive definite)

The value of the chi-square statistic: 91.44. P-value is small almost approaching zero. Hence, we reject the null hypothesis of no endogeneity and conclude that we should use the fixed effect model.

Best Model (d) is the fixed effect model using robust standard errors with both state and time fixed effects. As per the model results the shall-issue law doesn't have an impact on murder rates.

CONCLUSION:

Estimate of coefficient of explanatory variable shall-issue law for all three dependent variables is as shown in below tables.

Violence rate : Variable - In(Vio)						
Model Name Coef. for shall P-value Significant						
Pooled OLS with Robust std. error	-0.368	0.002	Yes			
Fixed Effect Model	-0.046	0.015	Yes			
Fixed Effect with Robust std. error	-0.046	0.275	No			
Fixed effect with Time fixed effect	-0.027	0.495	No			
Random Effect	-0.069	0.000	Yes			

Robbery : Variable - In(Rob)						
Model Name Coef. for shall P-value Significant						
Pooled OLS with Robust std. error	-0.529	0.002	Yes			
Fixed Effect Model	-0.007	0.757	No			
Fixed Effect with Robust std. error	-0.007	0.888	No			
Fixed effect with Time fixed effect	0.027	0.609	No			
Random Effect	-0.041	0.108	No			

Murder : Variable - In(Mur)						
Model Name Coef. for shall P-value Significant						
Pooled OLS with Robust std. error	-0.313	0.003	Yes			
Fixed Effect Model	-0.061	0.018	Yes			
Fixed Effect with Robust std. error	-0.061	0.106	No			
Fixed effect with Time fixed effect	-0.015	0.697	No			
Random Effect	-0.115	0.000	Yes			

Fixed effect model with time fixed effect is best model as it addresses heterogeneities that are changing with time but constant across states and time variant heterogeneities within state.

Sign of estimate of shall-issue law for violence rate and robbery is as expected, sign for murder is opposite that proposed. However, all the coefficients are insignificant.

All other variables also don't have any impact on crime rate.

We conclude that - "MORE GUNS DO NOT REDUCE CRIME".

LIMITATION:

If the unobserved variable that is heterogeneous and it is changing over time also, it is correlated with the regressors, even though the Fixed Effect estimator is going to remain biased.

For instance, if a variable like, the people notion about having gun changes over time then it will not be captured. Hence, we need more data to see its effect on our evaluation, but it is difficult to comprehend.