DY BADA

Easy Base of Aircraft Data (BADA) integration in Python for rapid prototyping

Introduction

- BADA is an aircraft performance model (APM) developed and maintained by EUROCONTROL.
- pyBADA is a Python library for aircraft performance modelling, trajectory prediction and optimisation, and visualisation with BADA, build on CasADi, an open-source tool for optimisation and algorithmic differentiation.
- pyBADA is multi-platform and easy to install -> pip install ssh://user.name@bleriot.upc.edu/path/pyBada
- pyBADA implements:
 - BADA3, BADA4
 - BADAH

CasADi

 At the core of CasADi is a symbolic framework that allows the user to construct symbolic expressions.

Numeric:
$$x = 3$$

 $y = 5$
 $z = x^2 + y$
>14

Symbolic: $x = SX.sym('x')$
 $y = SX.sym('y')$
 $z = x^2 + y$
>x^2 + y
gradient(z,x) >2*x

Atmophere

- Implements the standard atmosphere models:
 - ISA (international standard atmosphere)
 - o MIL-STD-210A standard

theta = atmosphere.theta(h)

Temperature [K]

Optimisation

- Calculates optimal speeds with wind:
 - Maximum range cruise (MRC)
 - Long range cruise (LRC)
 - Economic cruise speed (ECON)
 - Maximum endurance cruise (MEC)

opt.MrcMach(aircraft,delta,theta,m,w) >0.78

Visualisation

 Provides tools for visualisation of aircraft trajectories, aircraft envelope and performance.

visualisation.plot (x=v, y=(Tmax-D)*v/(m*g), z=h)

Performance

- Automatically parses the BADA datasets. aircraft = performance.bada3("XXX.OPF")
- Evaluates the performance functions of the BADA model at given flight conditions.

Numeric: Symbolic: v = 447

v = SX.sym('v')T= SX.sym('T') T = 3.6aircraft.ff(v=v, T=T) aircraft.ff(v=v, T=T) $> 0.94 \cdot (1 + v/1.0E + 05) \cdot T$ > 3.39

Easy and fast implementation of the BADA APM and derivatives for optimisation and sensitivity analysis.

 $+\frac{\delta\theta^{\frac{1}{2}}W_{mref}a_{0}L_{HV}^{-1}}{M\sqrt{\tau\gamma_{a}R}+w}\sum_{i=0}^{4}\sum_{j=0}^{4}\sum_{i=0}^{4}f_{5i+j+1}M^{i}\left(\frac{1}{2W_{mref}}p_{0}kSM^{2}K\left(\left(d_{1}+\frac{d_{2}}{(1-M^{2})^{\frac{1}{2}}}+\frac{d_{3}}{(1-M^{2})}+\frac{d_{4}}{(1-M^{2})^{\frac{3}{2}}}+\frac{d_{5}}{(1-M^{2})^{\frac{3}{2}}}+\frac{d_{5}}{(1-M^{2})^{\frac{3}{2}}}\right)$ $+\left(d_{6}+\frac{d_{7}}{(1-M^{2})^{\frac{3}{2}}}+\frac{d_{8}}{(1-M^{2})^{3}}+\frac{d_{9}}{(1-M^{2})^{\frac{9}{2}}}+\frac{d_{10}}{(1-M^{2})^{6}}\right)\left(\frac{2mg}{\delta p_{0}kSM^{2}}\right)^{2}$ $+\left(d_{11}+\frac{d_{12}}{\left(1-M^2\right)^7}+\frac{d_{13}}{\left(1-M^2\right)^{\frac{15}{2}}}+\frac{d_{14}}{\left(1-M^2\right)^8}+\frac{d_{15}}{\left(1-M^2\right)^{\frac{17}{2}}}\right)\left(\frac{2mg}{\delta p_0kSM^2}\right)^6\right)\right)^{\frac{1}{2}}$

Trajectory prediction

Computes trajectories given the initial conditions, and weather conditions.

pyBADA has been used in...

- Real-time optimal planning and guidance.
- Fuel estimation from surveillance data.
- Generation of realistic scenarios for the assessment of wake-vortex hazards in en-route airspace.

