

Networks

Содержание

- Сетевая модель OSI и стек протоколов TCP/IP
- Протоколы транспортного уровня
- Протокол IP. Адресация
- Тестирование сети

Open Systems Interconnection (OSI) model

OSI Model			
	Data unit	Layer	Function
	Data	7. Application	Network process to application
Host layers		6. Presentation	Data representation, encryption and decryption, convert machine dependent data to machine independent data
		5. Session	Interhost communication, managing sessions between applications
	Segments	4. Transport	End-to-end connections, reliability and flow control
	Packet/Datagram	3. Network	Path determination and logical addressing
Media layers	Frame	2. Data link	Physical addressing
	Bit	1. Physical	Media, signal and binary transmission

Comparison between TCP/IP and OSI models

Headers

Network Topology

Data Flow

TCP vs UDP

- Slower but reliable transfers
- Typical applications:
 - Email
 - Web browsing

- Fast but nonguaranteed transfers ("best effort")
- Typical applications:
 - VolP
 - Music streaming

IP packet

IPv4 address

- IP-адрес уникальный логический адрес 3-го уровня
 Содержится в заголовке IP пакета и идентифицирует:
 - Отправителя Source Address (32)
 - **Адресата** Destination Address (32)
- Размер IPv4 адреса 32 бита

Составляющие IPv4 адреса

- Сетевая часть адреса (Network Part) старшие биты
 - Р число бит
 - определяет максимальное количество сетей
- Часть адреса устройства (Host Part) младшие биты
 - N число бит
 - определяет максимальное количество устройств в сети

$$P + N = 32$$

Типы IPv4 адресов

Адрес устройства (Host Address):

Однозначно идентифицирует одно сетевое устройство

192.168.25.[1-254]

Адрес сети (Network Address):

- Идентифицирует всю подсеть
- все биты Host Part нулевые
- Используется для маршрутизации

192.168.25.0

Широковещательный адрес (Broadcast Address):

- Задает все устройства в подсети
- Все биты Host Part единичные
- Используется для рассылки всем устройствам в одной сети

192.168.25.255

Типы IPv4 адресов

Host Address

100

255

Однозначно идентифицирует одно сетевое устройство: 192.168.25.[1-254]

Network Address

- Идентифицирует всю подсеть
- Все биты Host Part нулевые
- Используется для маршрутизации

Broadcast Address

- Задает все устройства в подсети
- Все биты Host Part единичные
- •Используется для рассылки всем устройствам в одной сети

Классовая адресация

Маска подсети

- Маска подсети (Subnet Mask) 32-битовое число, показывающее диапазон IP-адресов, находящихся в одной подсети
 - 1 биты подсети (нераздельны, с лева на право)
 - 0 биты устройства (нераздельны, с права на лево)

Разделение на подсети

- Разделение на подсети (Subnetting) создание логических подсетей из одного блока адресов (сети)
 - Заимствование битов в сетевую часть адреса (S бит)
 - Число подсетей: 2s
 - Число устройств в подсети: 2^N 2

Префикс

 Длина префикса (Prefix Length) – число бит в сетевой части адреса

Однозначно задает:

Максимальное количество устройств в сети

$$2^{N}-2$$
, $N = 32 - Prefix_Length$

Максимальное количество сетей (данного уровня)

- Адреса:
 - Сети
 - Широковещательный

192.168.25.0/24

192.168.25.0/25

Mask vs Prefix

Variable Length Subnet Mask (VLSM)

Типы передачи

- Unicast индивидуальная передача
 - Адресована отдельному устройству (единственному)

- Адресована всем устройствам
 - Directed Broadcast в удаленной подсети
 - Limited Broadcast в локальной подсети

- Multicast групповая передача
 - Адресована группе устройств сети (нескольким)

Unicast

- Адресат:
 - Один отдельное устройство
 - Задается полем IPv4 заголовка (устройство):
 - Destination Address логический адрес устройства

Broadcast

- Адресат:
 - Все устройства в указанной подсети:
 - Локальной LAN (Limited Broadcast)
 - Удаленной LAN (Directed Broadcast)
 - Задается полем IPv4 заголовка (подсеть):
 - Destination Address широковещательный адрес подсети

Multicast

- Адресат:
 - Выбранная группа устройств
 - Задается полем IPv4 заголовка:
 - Destination Address отдельная зарезервированная группа

Диапазоны IPv4 адресов

Type of Add	Type of Address		Usage	Reserved Range		
Host Addresses			IPv4 Hosts	0.0.0.0 – 223.255.255.255		
	Multicast Addresses	Reserved Link Local	Multicast Groups on a Local Network	224.0.0.0 – 224.0.0.255		
		Globally Scoped	Multicast Groups on a Global Network	224.0.1.0 – 238.255.255.255		
		Administratively Scoped	Special	239.0.0.0 – 239.255.255.255		
Experimental Addresses			Research or Experimentation	240.0.0.0 – 255.255.255.254		

IPv4 адреса устройств

• Приватные:

- 10.0.0.0/8 (10.0.0.0 10.255.255.255)
- 192.168.0.0 /16 (192.168.0.0 192.168.255.255)
- 172.16.0.0/12 (172.16.0.0 172.31.255.255.255)

Специальные адреса IPv4

- Адреса сетей (Network Addresses)
- Широковещательные адреса (Broadcast Addresses)
- Маршрут по умолчанию (Default Route)
 - 0.0.0.0
 - Зарезервированы: **0.0.0.0/8** (0.0.0.0 0.255.255.255)
- Адрес обратной петли (Loopback Address)
 - 127.0.0.1
 - Зарезервированы: **127.0.0.0/8** (127.0.0.0 127.255.255.255)
- Локально-связанные адреса (Link-Local Addresses)
 - **169.254.0.0/16** (169.254.0.0 169.254.255.255)
- Тестовые адреса (TEST-NET Addresses)
 - **192.0.2.0/24** (192.0.2.0 192.0.2.255)

Недостатки IPv4

- Ограниченная масштабируемость сетей
 - Недостаточность 32-х битного адресного пространства
 - Сложность компоновки маршрутов
 - разрастание таблиц маршрутизации
- Сложность обработки заголовков
- Отсутствие поддержки классов обслуживания
 - Ухудшение качества передачи мультисервисных данных
- Отсутствие поддержки функций безопасности на сетевом уровне

Byt	Byte 1 Byte 2		E	Byte 3	Byt	Syte 4		
Ver (4)	IHL (4)	TOS (8)	Packet Length (16)			A		
Identification (16)			Fs (3)	Fragm	ent Offset	(13)		
TTL	TTL (8) Protocol (8)		Header Checksum (16)				20	
Source Address (32)						bytes		
Destination Address (32)								
Options Padding				\				

Internet Protocol v6

- Расширено адресное пространство до 128 бит
- Упрощен стандартный заголовок пакета
- Изменено представление необязательных полей заголовка
- Введены метки потоков данных
- Введены механизмы аутентификации и шифрования
- Улучшена поддержка иерархической адресации, агрегирования маршрутов и автоматического конфигурирования адресов

Byte 1 Byte	rte 2 Byte 3	Byte 4			
Ver (4) Traffic Class (8) Flow Label (20)					
Payload Length (16)	Next Header (8)	Hop Limit (8)			
Source Address (128)					
Destination Address (128)					

Тестирование сети (Loopback)

- ping утилита для тестирования IP соединения / стека
 - ICMP Internet Control Message Protocol
 - ICMP Echo Request
 - ICMP Echo Reply
 - Проверка локального стека TCP/IP (127.0.0.1 Loopback):
 - Отражает состояние сетевого уровня (локально)
 - Ничего не говорит о нижележащих уровнях
 - Ничего не говорит о корректности сетевых настроек (IP, Mask, Gateway...)

Тестирование сети (Local)

- Проверка локальной сети (IP, Gateway):
 - Функционирование всего стека TCP/IP
 - Функционирование шлюза
 - Функционирование концентратора, коммутатора ...
 - Функционирование локальной сети

Тестирование сети (Remote)

- Проверка соединения с удаленной сетью (устройством):
 - Возможность межсетевой передачи (WAN, Internet)
 - Функционирование промежуточного оборудования (и ПО)
 - Функционирование конечного адресуемого устройства (и ПО)
- Ограничения:
 - Запрет / отброс ICMP датаграмм
 - Сложность маршрутов

Тестирование пути

- traceroute утилита для отображения пути следования пакетов
 - испльзуемые протоколы для обнаружения маршрута:
 ICMP, TCP, UDP
 - Отображение пути (путей) следования пакетов
 - Отображение суммарного времени доставки и возврата (Round Trip Time)

