Fundamentos de Comunicação de Dados (2022/2023) Ficha de Exercícios - Teoria da Informação - Duas aulas

- 1. No contexto da Teoria da Informação, explique e distinga os seguintes conceitos teóricos: *i)* Informação própria *ii)* Entropia e *iii)* Débito de informação.
- 2. Uma carta é tirada de um baralho de cartas de jogo.
 - a) É informado que a carta que tirou é uma espada. Quanta informação recebeu?
 - b) Quanta informação recebe se lhe for dito que a carta que tirou é um ás?
 - c) Quanta informação recebe se lhe for dito que a carta que tirou é um ás de espadas? Verifique a relação que existe entre este resultado e os obtidos em a) e b).
- 3. Calcular o débito de informação de uma fonte telegráfica que emite pontos e traços com probabilidades de ocorrência do ponto e do traço respectivamente P_p=2/3, P_t=1/3, tendo em conta que a fonte emite, em média, 3.75 símbolos por segundo.
- 4. Uma fonte emite n mensagens distintas $\{x_1, ..., x_n\}$ com probabilidades associadas $\{p_1, ..., p_n\}$. Considere o caso em que todas mensagens ocorrem com a mesma probabilidade, i.e. $p_i=1/n$. Calcule o valor da entropia da fonte e discuta o resultado obtido.
- 5. Uma fonte emite oito símbolos distintos $\{A,B,C,D,E,F,G,H\}$ com as seguintes probabilidades: P(A)=1/2, P(B)=P(C)=P(D)=1/12, P(E)=P(F)=P(G)=P(H)=1/16.
 - a) Calcule o valor da entropia desta fonte.
 - b) Qual o rendimento obtido se na codificação da fonte se utilizar um código de comprimento fixo mínimo.
 - c) Codifique a fonte utilizando códigos de *Shannon-Fano* (pp. 208 da sebenta) e refira qual o rendimento e compressão obtida.
 - d) Indique de que forma poderia ainda tentar melhorar a codificação desta fonte.

6.

	Uma fonte emite oito símbolos distintos {A,B,C,D,E,F,G,H} com as seguintes
	probabilidades: $P(A)=1/2$, $P(B)=P(C)=P(D)=1/12$, $P(E)=P(F)=P(G)=P(H)=1/16$.
A1	O valor da entropia da fonte (bits/símbolo) poderia ser superior a 3 bits/símbolo caso se
	assumisse outros valores para as probabilidades dos símbolos.
B2	O valor da entropia desta fonte é superior a 2 bits/símbolo.
C3	Utilizando códigos de <i>Shannon-Fano</i> , a transmissão de uma qualquer mensagem com Z
	símbolos desta fonte requer sempre um número total de dígitos binários inferior a Z*3.
D4	Com codificação por blocos de K símbolos, era possível encontrar um valor de K de tal
	forma comprimento médio de código (\overline{N}) fosse inferior a 2.2 dígitos binários por
	símbolo.

Indique se considera cada uma das afirmações anteriores verdadeira (V) ou Falsa (F):

A1 B2 C3 D4

7.

A1 B2

C3

D4

	Uma fonte de informação emite dezasseis símbolos independentes entre si de um
	alfabeto X, gerando em média 4800 símbolos cada 30 segundos. Sabe-se que o
	débito de informação desta fonte é de 240 bits/seg.
	Com os dados apresentados podemos afirmar que os dezasseis símbolos gerados
	pela fonte não são equiprováveis.
	Com codificação da fonte seria possível obter uma compressão superior a 60%.
	Usando códigos binários de comprimento fixo mínimo, para uma codificação por
,	blocos de 3 símbolos (K=3) necessitávamos de um código com comprimento de 12
	dígitos binários por cada conjunto de três símbolos _X .
	É possível definir uma codificação binária por blocos de quatro símbolos que
ļ	permita a obtenção de um comprimento médio de código inferior a 8 dígitos
	binários por cada conjunto de quatro símbolos _X .

Indique se considera cada uma das afirmações anteriores verdadeira (V) ou Falsa (F):

- 8. Uma fonte emite quatro símbolos distintos $\{A,B,C,D\}$ com as seguintes probabilidades P(A)=0.4, P(B)=0.4, P(C)=0.1 e P(D)=0.1.
 - a) Determine o valor da entropia da fonte.
 - b) Determine um código de comprimento variável para a fonte que possua um rendimento não inferior a 97%.
- 9. Uma fonte de dados binária produz símbolos 0 e 1 com $P_0=3/8$ $P_1=5/8$ e a influência entre símbolos em grupos de dois símbolos sucessivos é tal que $P_{0|1}=1/16$ e $P_{1|0}=3/4$.
 - a) Calcule a entropia real desta fonte com memória.
 - b) Compare o valor obtido em a) com o valor da entropia se a fonte fosse considerada sem memória.
 - c) Determine um código de comprimento variável para a fonte considerando blocos de dois símbolos (k=2) e calcule o seu rendimento.
- 10. Comente a seguinte afirmação: "Através da utilização de codificações Shannon-Fano é sempre possível obter um código de rendimento superior ao obtido por um código de comprimento fixo mínimo".
- 11. Suponha que pretende desenvolver uma aplicação de compressão/descompressão de ficheiros tendo como base a utilização de códigos *Shannon-Fano*. Neste contexto, raciocine sobre os seguintes aspectos:
 - O Qual seria a estrutura geral da aplicação a desenvolver e que algoritmos implementaria para as tarefas de compressão/descompressão dos ficheiros?
 - O Qual seria a estrutura de um ficheiro comprimido pela sua aplicação?

 Seria possível que, após utilizar a sua aplicação para compressão de um determinado ficheiro, o ficheiro resultante fosse maior que o ficheiro original?

o Sugestão:

Implemente um protótipo de uma aplicação deste tipo utilizando uma linguagem de programação da sua preferência. Verifique os níveis de compressão que consegue obter com essa aplicação.