

Complejidad computacional

Informática I - 2547100

Departamento de Ingeniería Electrónica y de Telecomunicaciones Facultad de Ingeniería 2016-2

Efficient programs

- Lo más importante en un programa es que sus datos de salida sean correctos.
- Sin embargo, a veces la velocidad del programa es esencial para obtener datos de salida correctos.

• En otras ocasiones, la velocidad del programa incrementará su utilidad.

 En ocasiones es necesario entonces incrementar la complejidad conceptual del algoritmo para reducir su complejidad computacional.

Execution time

¿Cuánto se demora fact () en ejecutarse?

```
def fact(n):
    ''' Asume que n es un entero mayor que cero '''
    ans = 1
    while n>=1:
        ans *= n
        n -= 1
    return ans
```

Dependerá de:

- 1. La velocidad del computador
- 2. La eficiencia del intérprete de Python
- 3. El valor de n

Time vs. computational complexity

- Para deshacernos de las dependencias 1 y 2, no midamos el tiempo en segundos sino en cantidad de operaciones primitivas: copiar un dato, sumar, restar, comparar, etc.
- La dependencia 3 es ineludible y nos obliga siempre a expresar la complejidad computacional teniendo en cuenta los datos de entrada.
- El tiempo de ejecución depende del tamaño y valor de los datos de entrada:

```
def linearSearch(L, x):
   for e in L:
      if e==x:
        return True
   return False
```

¿Qué pasa si ejecuto linearSearch (L, 3) donde L tiene un millón de elementos?

Execution time cases

Observemos que podemos dividir en tres casos las posibilidades de tiempo de ejecución de un programa:

- Caso mejor: es cuando las características de los datos de entrada (para un tamaño fijo) favorecen más el tiempo de ejecución.
- Caso peor: es cuando las características de los datos de entrada (para un tamaño fijo) generan el peor tiempo de ejecución.
- Caso promedio: es el generado por las condiciones promedio de las entradas.

Nos interesa el caso peor para poder dar garantías.

Modeling execution time

Finalmente observemos que:

la constante aditiva es despreciable

¿y la constante multiplicativa?

Multiplicative constants

```
def sqrtExhaustive(x, epsilon):
   step = epsilon**2
   ans = 0.0
                                                           ~ 9 operaciones
   while abs(ans**2 - x) \rightarrow= epsilon and ans**2 \leftarrow= x:
                                                             básicas por ciclo
      ans += step
   if abs(ans**2 - x) < epsilon:
      return ans
>>> sqrtExhaustive(100, 0.0001)
                                                 → ~ 10<sup>9</sup> iteraciones
def sqrtBisection(x, epsilon):
                                                           la constante
   low = 0.0
                                                            multiplicativa es
   high = max(1.0, x)
   ans = (high + low)/2.0
                                                            despreciable
   while abs(ans**2 - x) \geq epsilon:
      if ans**2 < x:
         low = ans
                                            ~ 11 operaciones
      else:
                                             básicas por ciclo
         high = ans
      ans = (high + low)/2.0
   return ans
>>> sqrtBisection(100, 0.0001)
                                                 ~ 20 iteraciones
```

Asymptotic notation

```
def f(x):
                                                >>> f(10)
   ans = 0
   for i in range(1000):
                                                Operaciones : 1000
                           - 1000 operaciones
                                                Operaciones : 1010
      ans += 1
                                                Operaciones : 1210
   print('Operaciones: ', ans)
   for i in range(x):
                                                >>> f(1000)
                            x operaciones
      ans += 1
                                                Operaciones : 1000
   print('Operaciones:
                         , ans)
                                                Operaciones: 2000
   for i in range(x):
                                                Operaciones : 2002000
      for j in range(x):
                                                >>> f(100000)
                           - 2x<sup>2</sup> operaciones
         ans += 1
                                                Operaciones : 1000
         ans += 1
                                                Operaciones : 1001000
   print('Operaciones: ', ans)
                                                Operaciones : 2000001001000
   return ans
```

El tiempo de ejecución puede ser expresado por:

1000 + x +2x² ≈
$$x^2$$
 para x>>0

notación asintótica

Big O notation

Para calcular la complejidad computacional asintótica de un algoritmo:

- Si el modelo de tiempo de ejecución se compone de la suma de varios términos, entonces conserve solo el que crece más rápido.
- Si ese término es un producto, elimine las constantes.

$$\frac{1000}{2}$$
 + $\frac{1}{x}$ + $2x^2$ + $2x^2$ + $2x^2$

Notación de **O** grande:

$$O(x^2)$$

Constant complexity

```
5.3 — constant
5.2
5.1
5.0
4.9
4.8
4.7
0
2
4
6
8
10
```

```
def f():
    ans = 0
    for i in range(1000):
        ans += 1
    print('Iteraciones acumuladas: ', ans)
```

```
0(1)
```

```
def genderGuesser(name, age):
    print(';Hola '+name+'!')
    if name[len(name)-1]=='a' or name[len(name)-1]=='A':
        print('Ya sé que tienes '+age+' años y creo que eres una mujer...')
    else:
        print('Ya sé que tienes '+age+' años y creo que eres un hombre...')
    ans = input('¿Adiviné? ')
    if ans.lower()=='si':
        print('¡Cómo te quedó el ojo!')
    else:
        print('Mmmm ok, lo siento')
    print('Chao...')
```

Asumir que print y len son O(1)

Informática I (2016-2)

Logarithmic complexity

```
def intToStr(i):
   '''Asume que i es un entero no negativo
     Retorna la representación decimal de i en un string'''
  digits = '0123456789'
  if i==0:
     return 0
  result = ''
  while i > 0:
                                                  O(log(i))
      result = digits[i%10] + result
      i = i//10
  return result
```

```
def addDigits(n):
   '''Asume que n es un entero no negativo
      Retorna la suma de los dígitos de n'''
                              O(\log(n))
   stringRep = intToStr(n) -
  val = 0
                                                       O(\log(n))
   for c in stringRep:
                               O(len(stringRep))
      val += int(c)
   return val
                                       log(n)
```

Asumir que int es O(1)

Linear complexity

```
def addDigits(s):
    '''Asume que s es un string compuesto por caracteres decimales
        Retorna un entero que es la suma de los dígitos en s'''
    val = 0
    for c in s:
        val += int(c)
        return val
O(len(s))
```

```
def factorial(x):
    '''Asume que x es un entero positivo
        Retorna el factorial de x'''
    if x == 1:
        return 1
    else:
        return x * factorial(x-1)
O(len(x))
```

Asumir que int es O(1)

Log-linear complexity

- Muchos algoritmos prácticos pertenecen a esta clase
- Un ejemplo típico es el algoritmo de ordenamiento merge sort

Polinomial complexity

```
def intersec(L1, L2):
   '''Asume que L1 y L2 son listas
      Retorna una lista con la intersección de L1 y L2'''
   # Construcción de lista con elementos comunes
   tmp = []
   for el in L1:
      for e2 in L2:
                                 O(len(L1)*len(L2))
         if e1 == e2:
            tmp.append(e1)
   # Eliminación de duplicados
   result = []
   for e in tmp:
      if e not in result:
                                  O(len(tmp)*len(result))
         result.append(e)
   return result.
```

$$2 * O(len(L1)*len(L2)) = O(len(L1)*len(L2))$$

Asumir que append es O(1)

Exponential complexity

```
def getBinaryRep(n, numDigits):
   '''Asume que n y numDigits son enteros no negativos
      Retorna un string que es la representación binaria
      de n en numDigits bits'''
   result = ''
                                   → O(log(n))
   while n > 0:
      result = str(n%2) + result
                                                              O(numDigits)
      n = n//2
   for i in range(numDigits-len(result)): → O(numDigits)
      result = '0' + result
   return result.
def genPowerset(L):
   '''Asume que L es una lista
      Retorna una lista de listas que contiene todas las posibles
      combinaciones de los elementos de L'''
   powerset = []
   for i in range (2**len(L)): \longrightarrow O(2^{len(L)})
      binStr = getBinaryRep(i, len(L)) ———
                                                      → O(len(L))
      subset = []
                                          → O(len(L))
      for j in range(len(L):
         if binStr[j] == '1':
            subset.append(L[j])
      powerset.append(subset)
                                      O(2*len(L)*2^{len(L)}) \approx O(2^{len(L)})
   return powerset
```

Main complexity clases

O(1): tiempo de ejecución constante

O(log n): tiempo de ejecución logarítmico

O(n): tiempo de ejecución lineal

O(n log n): tiempo de ejecución log-lineal

O(nk): tiempo de ejecución polinomial

O(kⁿ): tiempo de ejecución exponencial