Complex Analysis Homework

Math 361

Simon Xiang

Dr. Radin, M 361 The University of Texas at Austin August 27, 2020

Homework 1 (8/27/20)

Section 2: Problems 1,4,10. Let P represent the ordered set of problems under the < relation (note that < is a strict total ordering), e.g. $\{1,4,10\}$ for Homework 1. We accept the Axiom of Choice: then problem numbers in this LaTeX document are represented by the inverse image $f^{-1}(p)$ of some $p \in P$, where $f \colon \mathbb{N} \to P$ is the natural order surjection (f is not injective unless we restrict its domain to the subset $A_n \subset \mathbb{N}$, where $A_n = \{1,2,...,n\}, n = |P|$). We have $1 \mapsto p_1$, where p_1 is the least element of P (which exists by the Well-Ordering Theorem, if you view P as a non-empty subset of the set of all problems \mathscr{P}). Similarly, $2 \mapsto p_2$, where p_2 is the next element such that $p_2 > p_1$ but for every $p \in P$ not equal to p_1 or p_2 , $p > p_2$. Continuing on, we map elements of \mathbb{N} onto P in this way. For example, even though I may be working on the question $1 \in P$, in reality it is denoted in the LaTeX document by question $1 \in P$, since $1 \in P$, in reality it is denoted in the second problem in the list).

Problem 1 (Question 1). Verify that

(a)
$$(\sqrt{2} - i) - i(1 - \sqrt{2}i) = -2i;$$

(b)
$$(2,-3)(-2,1) = (-1,8);$$

(c)
$$(3,1)(3,-1)(\frac{1}{5},\frac{1}{10})=(2,1)$$

Solution. The solutions follow from some computations.

(a)
$$(\sqrt{2}-i)-i(1-\sqrt{2}i)=(\sqrt{2}-i-i+i^2\sqrt{2})=\sqrt{2}-2i-\sqrt{2}=-2i$$
.

(b)
$$(2,-3)(-2,1) = ((2 \cdot -2) - (1 \cdot -3), (-3 \cdot -2) + (2 \cdot 1)) = (-4+3,6+2) = (-1,8).$$

(c)
$$(3,1)(3,-1)(\frac{1}{5},\frac{1}{10}) = (9+1,3-3)(\frac{1}{5},\frac{1}{10}) = (10,0)(\frac{1}{5},\frac{1}{10}) = (2-0,0+1) = (2,1).$$

Problem 2 (Question 2, not assigned. Safe to ignore). Show that

(a) $\operatorname{Re}(iz) = -\operatorname{Im} z;$

(b) $\operatorname{Im}(iz) = \operatorname{Re} z$.

Solution. The solutions follow from some algebraic manipulation.

(a) Let $z \in \mathbb{C}$, then z = a + bi for $a, b \in \mathbb{R}$. Note that $\operatorname{Re} z = a$ and $\operatorname{Im} z = b$. Then $\operatorname{Re}(iz) = \operatorname{Re}(i(a+bi)) = \operatorname{Re}(ia+i^2b) = \operatorname{Re}(-b+ia) = -b = \operatorname{Im} z$.

(b) Let $z \in \mathbb{C}$, then $\text{Im}(iz) = \text{Im}(i(a+bi)) = \text{Im}(ia+i^2b) = \text{Im}(-b+ia) = a = \text{Re } z$.

1

Problem 3 (Question 4). Verify that $z = 1 \pm i$ satisfies the equation $z^2 - 2z + 2 = 0$.

Solution. Let z = 1 + i. Then $z^2 - 2z + 2 = (1 + i)^2 - 2(1 + i) + 2 = (1 + 2i - 1) - 2 - 2i + 2 = 2i - 2i = 0$.

Now let z = 1 - i. Then $z^2 - 2z + 2 = (1 - i)^2 - 2(1 - i) + 2 = (1 - 2i - 1) - 2 + 2i + 2 = -2i + 2i = 0$.

Note that this is just an example of that fact that conjugate elements are defined as both being solutions to the minimal polynomial of an algebraic element over a field.

Problem 4 (Question 10). Use i=(0,1) and y=(y,0) to verify that -(iy)=(-i)y. Then show that the additive inverse of $z=x+iy\in\mathbb{C}$ can be written as -z=-x-iy without ambiguity.

Solution. We have $-(iy) = -((0,1) \cdot (y,0)) = -(0-0,y+0) = -(0,y) = (0,-y)$. We also have $(-i)y = (0,-1) \cdot (y,0) = (0-0,-y+0) = (0,-y)$. We conclude that -(iy) = (-i)y.

To show that we can write the additive inverse of $z=x+iy\in\mathbb{C}$ (denoted by -z) as -z=-x-iy without ambiguity: Our first possibility is that -x-iy refers to -x+(-(iy)) (denoted -x-(iy) from now on). Then -z+z=(-x-(iy))+(x+(iy))=(-x+x)+(-(iy)+(iy)). Clearly -x and -(iy) are the additive inverses of x and (iy) respectively, so this sum is equal to zero plus zero which is just zero. The second possibility is that -x-iy refers to -x+((-i)y), in which case we have previously shown that (-i)y=-(iy), so this sum is equal to -x-(iy), and we are done.