intro to machine learning

zhangyifeng

October 21, 2018

Contents
1 Intro 1 1.1 Course Requirements and Grading 1.2 Course
2 Logistic Regression 3
1 Intro
1.1 Course Requirements and Grading
${ m Lab}(30\%)$
 - Python - Synthetic data - 2 deliverables, distributed over moodle
Theory $exercises(0/20)$
close to the end(early December)
Final $exam(70\%)$
Theory questions(judgement-oriented)Simulate running algorithms by hand
Meeting hours
- Office: 104B, 68-72 Gower street - Meeting hours: Tuesday, 14:00-15:00
Prerequisites

Linear Algebra; Calculus; Probability; Programming

1.2 Course

Machine Learning

data -> maodel ->prediction

Least squares model

- least squares solution for linear regression
- Least squares solution for generalized linear regression
- Least squares solution for ridge regression

notation

D: probleim dimension, e.g. 1D, 2D(can visualize)

N: training set size

Training set: input-output pairs $S = \{x_i, y_i\}, i = 1, \dots, N$ where, $x_i = \{x_{i1}, \dots, x_{iD}\}^T \in$ $\mathbb{R}^D, y_i \in \mathbb{R}$, generally can be \boldsymbol{x}

 \boldsymbol{w} : weight, $\boldsymbol{w} = \{w_1, \dots, w_D\}^T \in \mathbb{R}^D$

 ϵ_i : noise

 $X = \{x_1, x_2, \dots, x_N\}^T = \{x_1^T; x_2^T; \dots; x_N^T\}$ Remark: ";" represent column vector

 $\mathbf{y} = \{y_1, \dots, y_N\}^T$ $\mathbf{\epsilon} = \{\epsilon_1, \dots, \epsilon_N\}^T$: residuals vectors

linear regression model

$$y = Xw + \epsilon$$
 or $y^T = w^TX^T + \epsilon^T$

that is $y_i = \boldsymbol{x}_i^T \boldsymbol{w} + \epsilon_i$, or $y_i = \boldsymbol{w}^T \boldsymbol{x}_i + \epsilon_i$, $i = 1, \dots, N$ Loss function: $L(w) = \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$

goal: min L(w) Least squares solution for linear regression: $w^* = (X^T X)^{-1} X^T y$

Generalized linear regression model

 $\boldsymbol{x} \to [\boldsymbol{\phi}(\boldsymbol{x})] = [\phi_1(\boldsymbol{x}), \dots, \phi_M(\boldsymbol{x})]^T$, where $\phi_i(\boldsymbol{x}), i = 1, \dots, M, \ \phi_i(\boldsymbol{x})$ can be other form besides x_i (if x_i , and M = D, it is just the linear regression model) If D=1, and $\phi_i(x)=x^{i-1}$, then it is k-th degree ploynomial fitting If the highest order of $\phi_i(\boldsymbol{x})$ is 2, then it is second-order polynomials fitting set $\Phi = [\phi(\boldsymbol{x_1})^T; \phi(\boldsymbol{x_2})^T; \dots; \phi(\boldsymbol{x_N})^T]$ then the model is:

$$y = \Phi w + \epsilon$$

Least squares solution for generalized linear regression: $w^* = (\Phi^T \Phi)^{-1} \Phi^T y$

approximations

If N>D (e.g. 30 points, 2 dimensions): overdetermined system If N< D (e.g. 30 points, 3000 dimensions): underdetermined system (overfitting)

How to control complexity (Regularized linear regression)

1. use vector norm (L2, L1, Lp norm) to measure residual vector Remark: different norm represent different regularized linear regression, here we use L2 norm

2.rewrite loss function: $L(\boldsymbol{w}) = ||\boldsymbol{y} - X\boldsymbol{w}||^2 + \lambda ||\boldsymbol{w}||^2$ this is Ridge regression, a.k.a, L2-regularized linear regression Remark: λ is "hyperparameter", select λ with cross-validation (use cross-validation for diff values of λ – pick value minimizes cross-validation error)

Cross-validation: least glorious, most effective of all methods (teacher said)

3.Least squares solution for ridge regression: $w^* = (X^TX + \lambda I)^{-1}X^Ty$

2 Logistic Regression

Machine Learning variants-Supervised learning

- Classification
- Regression

Gaussian (or Normal) distribution

one-dimensional case

- Mean μ
- Variance σ^2
- Pdf: $\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} exp\{-\frac{(\mathbf{x}-\mathbf{\mu})^T}{2\sigma^2}\}$

Multi-dimensional case

- Mean μ
- Covariance $\pmb{\Sigma}$
- Pdf: $\mathcal{N}(x; \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp(\{-\frac{1}{2}(x \mu)^T \Sigma^{-1}(x \mu)\})$

Remark: $|\Sigma|$ represent matrix norm, e.g. Frobenius norm of Σ

Parameter estimation

Given: $X = \{x_1, x_2, \dots, x_N\}$, parametric form of distribution, parameters θ

Learning goal: estimate θ

Likelihood of θ : $L(\theta) = p(X; \theta) = \prod_{n=1}^{N} p(x_n; \theta)$

Log-likelihood:
$$\ln L(\theta) = \sum_{n=1}^{N} \ln p(x_n; \theta)$$

 $\max \ln L(\theta) \Rightarrow \frac{\partial \ln L(\theta)}{\partial \theta} = 0 \Rightarrow \hat{\theta}$