Pontifícia Universidade Católica de Minas Gerais Pós-graduação em Ciência de Dados e Big Data

# Fluxo de Trabalho KNIME Ferramenta de Web Scraping no apoio à Análise Linguística: a construção de um Corpus Textual

Aluno: Marcelo Honório de Oliveira

Orientador: Cristiano Rodrigues de Carvalho

Belo Horizonte

# **SUMÁRIO**

| 1 | RE  | ESUMO EXECUTIVO                                        | 5  |
|---|-----|--------------------------------------------------------|----|
| 2 | CA  | ARACTERIZAÇÃO DO PROBLEMA, MOTIVAÇÕES, OBJETIVO        | 6  |
| 3 | W   | EB SCRAPING E A FERRAMENTA KNIME                       | 7  |
|   | 3.1 | Técnicas de Web Scraping                               | 7  |
|   | 3.2 | Ferramenta KNIME Analytics Platform                    | 12 |
| 4 | 0   | FLUXO DE DADOS DO KNIME                                | 14 |
|   | 4.1 | Passo 1: Planejamento                                  | 15 |
|   | 4.2 | Passo 2: Definição do método de extração               | 16 |
|   | 4.3 | Passo 3: Instalação e configuração da ferramenta KNIME | 17 |
|   | 4.4 | Passo 4: Criação e configuração do fluxo de dados      | 17 |
|   | 4.4 | 4.1 Scraping no Site da SciELO                         | 18 |
|   | 4.4 | 4.2 Scraping no Site da Oxford University              | 18 |
|   | 4.5 | Passo 5: Execução do fluxo e armazenamento dos dados   | 19 |
|   | 4.6 | Passo 6: Validação dos dados extraídos                 | 21 |
| 5 | CC  | ONCLUSÕES                                              | 24 |
| 6 | TR  | RABALHOS FUTUROS                                       | 25 |
| 7 | RF  | FERÊNCIAS RIRI IOGRÁFICAS                              | 26 |

# LISTA DE ILUSTRAÇÕES

| Figura 1: Protocolo de Exclusão de Robôs - SciELO                  | 8  |
|--------------------------------------------------------------------|----|
| Figura 2: Protocolo de Exclusão de Robôs - Oxford University Press | 8  |
| Figura 3: Meta Tag Robot – SciELO (Encontrada com valor "all")     | 9  |
| Figura 4: Meta Tag Robot – SciELO (Não encontrada)                 | 10 |
| Figura 5: Extensão Scraper - Área de download                      | 11 |
| Figura 6: Exemplo de uso do Scraper                                | 12 |
| Figura 7: Tela inicial do KNIME                                    | 13 |
| Figura 8: Ciclo de Projeto de Mineração de Dados (Barbieri, 2011)  | 14 |
| Figura 9: Caminho de navegação SciELO                              | 15 |
| Figura 10: Caminho de navegação Oxford                             | 16 |
| Figura 11: Mineração Web (Kosala & Blockeel, 2000)                 | 16 |
| Figura 12: KNIME - Document View – SciELO                          | 19 |
| Figura 13: KNIME - Document View – Oxford University Press         | 20 |
| Figura 14: Saída Arquivos de Texto - SciELO - Português            | 20 |
| Figura 15: Saída Arquivos de Texto - SciELO - Inglês               | 21 |
| Figura 16: Saída Arquivos de Texto - Oxford - Inglês               | 21 |
| Figura 17: Repositório Github - marcelohonoliveira - TCC           | 23 |
| Figura 18: COCA - Corpus of Contemporay American English           | 25 |

# LISTA DE TABELAS

| Tabela 1: Páginas raspadas – Português |    |
|----------------------------------------|----|
| Tabela 2: Páginas raspadas – Inglês    | 22 |

#### 1 RESUMO EXECUTIVO

O trabalho mostra os passos realizados no desenvolvimento de um fluxo de dados para coleta e organização de textos de páginas da *web* utilizados para uma análise linguística por meio da construção de um *corpus*<sup>1</sup>. Os problemas que podem ocorrer e as respectivas soluções são apresentadas de forma detalhada.

As atividades realizadas no caso apresentado podem servir de referência para novas coletas onde as técnicas de *Web Scraping* se aplicam e concernentes às limitações próprias de uma coleta automática na *web*.

\_

<sup>&</sup>lt;sup>1</sup> Um *corpus* linguístico é uma coleção de textos que foram selecionados e reunidos para que a linguagem possa ser estudada no computador. (Wynne, 2005)

# 2 CARACTERIZAÇÃO DO PROBLEMA, MOTIVAÇÕES, OBJETIVO

Umas das dificuldades apresentadas por linguistas é a aquisição de material para a realização de estudos que abrangem o uso de termos e expressões em um idioma e a escassez dos recursos computacionais na pesquisa linguística. Uma das razões é o a falta de conhecimento dos instrumentos disponíveis. Diversos trabalhos na área da linguística utilizam poucos textos devido à carência de material formatado e organizado especialmente quando este é proveniente da *web* ou de redes sociais (Sardinha, 1999).

Ao se deparar com as limitações dos especialistas em idioma, viu-se a necessidade de prover uma forma de facilitar a extração, organização e armazenamento de um número razoavelmente grande de texto para a análise linguística. A partir desta motivação, o desafio foi desenvolver uma rotina que, por meio de automatização do processo de coleta, fosse capaz também de realizar a organização dos textos em documentos classificados e disponibilizar aos interessados o *corpus* em arquivos de texto para aplicação da análise linguística em si.

O produto final deste trabalho foi, portanto, a construção de um *corpus* textual que possibilite ao linguista analisar o uso de verbos modais do inglês (*will, should, would, may, might, must*) nas normas de submissão de artigos de periódicos disponíveis na plataforma SciELO - Scientific Electronic Library (SciELO, 2018) e a tradução de tais normas do português para o inglês, bem como as escolhas tradutórias e o uso das mesmas estruturas por nativos conforme as instruções da Oxford University Press (Oxford University, 2018).

Logo, o objetivo deste relatório foi demonstrar como se deu o desenvolvimento da ferramenta que extraiu da *web* textos específicos de fontes pré-determinadas e que, cujo resultado, proporcionasse, a quem interessar, a possibilidade de analisar o material coletado e observar o uso de termos específicos de um determinado idioma – aqui, o inglês.

#### 3 WEB SCRAPING E A FERRAMENTA KNIME

#### 3.1 Técnicas de Web Scraping

Scraping ou Raspagem é a forma de se extrair dados da *web* e movê-los para um formato mais simples com o objetivo de facilitar a sua análise e cruzá-los com outras fontes com mais flexibilidade. Para realizar, portanto, essa extração, se faz necessária a utilização de ferramentas computacionais que aplicam tais técnicas. (Andriolo, 2012)

Web Scraping é uma técnica de software de computador utilizada para extrair informações de sites e consiste, principalmente, na transformação de dados não estruturados (HTML - HyperText Markup Language) na web em dados estruturados - banco de dados ou planilha eletrônica por exemplo (Ray, 2015).

Após a definição da fonte da coleta, é importante verificar se o dado ali disponibilizado está aberto para ser acessado por meio de ferramentas de automatização de leitura (robôs). Uma das formas que as fontes de dados têm para sinalizar que é autorizado aplicar *scraping* é o uso do Protocolo de Exclusão de Robôs - método empregado pelos administradores de sistemas para informar aos robôs visitantes quais partes de um site não devem ser raspados por eles (Wikipédia, 2017).

A coleta deste trabalho se deu em dois sites:

- SciELO Scientific Electronic Library (SciELO, 2018)
- Oxford University Press (Oxford University, 2018)

Em ambas fontes, a aplicação do *scraping* foi permitida, pois o arquivo Robots.txt não existe no site do SciELO e no Oxford University Press não há restrição para os diretórios raspados neste trabalho<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup> O arquivo "Robots.txt" para a Oxford University Press restringiu o acesso a todo o conteúdo do site apenas ao agente "008" que é utilizado pelo provedor de servidos de rastreamento da *web* 80legs (Datafiniti, LLC, 2018). O 80legs permite que seus usuários criem e executem rastreamentos da *web* personalizados (BotReports, 2014).

#### SciELO: http://www.scielo.org/Robots.txt



Figura 1: Protocolo de Exclusão de Robôs - SciELO

#### Oxford University Press: https://academic.oup.com/Robots.txt

```
User-agent: 008
Disallow: /bin/
Disallow: /bin/
Disallow: /onfig/
Disallow: /app_data/
Disallow: /app_data/
Disallow: /app_data/
Disallow: /signin.aspx
Disallow: /signin.aspx
Disallow: /davacedsearch.aspx
Allow: /cassette.axd/stylesheet/
Allow: /cassette.axd/stylesheet/
Allow: /cassette.axd/stylesheet/
Allow: /cassette.axd/stylesheet/
Allow: /cassette.axd/stylesheet/
Allow: /cassette.axd/stylesheet/
Disallow: /asaed
Disallow: /searchresults.aspx
Disallow: /ased
Disallow: /searchresults.aspx
Disallow: /searchresults.aspx
Disallow: /searchresults.aspx
Disallow: /searchresults.aspx
Disallow: /asearchresults.aspx
Disallow: /casette.axd/manifest.xml
Disallow: /cpsi
Disallow: /cpsi
Disallow: /sfs/
Disallow: /sfs/
Disallow: /ascp/
Disallow: /ascp/
Disallow: /asco/
Disallow: /linnean/
```

Figura 2: Protocolo de Exclusão de Robôs - Oxford University Press

Além dos arquivos tipo "Robots.txt", foram verificadas as *Meta Tags* incorporadas aos sites estudados. *Meta Tags* são estruturas de dados sobre os próprios dados, uma breve descrição do conteúdo da página, seu autor, data de criação, linguagem e outras informações relevantes (Gazola, 2016).

A *Meta Tag* relacionada ao comportamento que o robô deve assumir acerca da permissão ou não para a coleta é a definida pela especificação "*robots*" conforme exemplo abaixo:

```
<meta name="robots" content="all" />
```

Por meio do navegador *web* Google Chrome (Alphabet Inc., 2018), foram verificadas tais Meta *Tags*:

- view-source:http://www.scielo.org/php/index.php
- view-source:https://academic.oup.com/journals

Em ambas fontes, a aplicação do *scraping* foi permitida, pois a *Meta Tag* não existe no site da Oxford University Press e no do SciELO não há restrição para a raspagem: a Meta Tag exibe o valor "all".

Figura 3: Meta Tag Robot – SciELO (Encontrada com valor "all")

<sup>&</sup>lt;sup>3</sup> All: Valor *default*, significa vazio, o robô de busca não recebe nenhuma informação. Não há restrições para a indexação ou a veiculação. Essa diretiva é o valor padrão e não terá efeito se for listada explicitamente. (Google Inc, 2018)



Figura 4: Meta Tag Robot – SciELO (Não encontrada)

Para facilitar o mapeamento do conteúdo das páginas de interesse, foi utilizada uma extensão do navegador *web* Google Chrome (Alphabet Inc., 2018) chamada Scraper na versão 1.7 atualizada em 20 de abril de 2015. O Scraper é uma extensão de Mineração de Dados<sup>4</sup> muito simples (mas limitada) para facilitar a pesquisa on-line quando é necessário obter dados rapidamente em formato tabular. Destina-se como uma ferramenta fácil de usar para usuários intermediários a avançados que se sentem confortáveis com o XPath<sup>5</sup> (Google, 2015).

<sup>&</sup>lt;sup>4</sup> A Mineração de Dados é o processo de descoberta de informações acionáveis em grandes conjuntos de dados. A mineração de dados usa análise matemática para derivar padrões e tendências que existem nos dados. Normalmente, esses padrões não podem ser descobertos com a exploração de dados tradicional pelo fato de as relações serem muito complexas ou por haver muitos dados. (Microsoft Corporation, 2017)

<sup>&</sup>lt;sup>5</sup> XPath: forma pela qual se pode referir partes de um documento XML (W3C, 2018).



Figura 5: Extensão Scraper - Área de download

A extensão Scraper foi utilizada, especialmente, para listar as partes do site que endereçassem os conteúdos de interesse. No exemplo abaixo, observa-se a ferramenta fornecendo a referência XPath para os itens de menu dos Assuntos do site SciELO.



Figura 6: Exemplo de uso do Scraper

#### 3.2 Ferramenta KNIME Analytics Platform

De acordo com o *site* da empresa, a plataforma analítica KNIME é uma solução aberta à inovação baseada em dados e projetada para descobrir o potencial da Mineração de Dados para novos *insights* ou previsões (KNIME, 2017).

A ferramenta integra vários componentes para Aprendizagem de Máquina e Mineração de Dados por meio de um conceito modular de pipeline de dados. A interface gráfica do usuário permite a montagem rápida e fácil de nós (nodes) para o pré-processamento de dados (ETL: Extract, Transform and Load - Extração, Transformação e Carregamento), para modelagem, análise e visualização de dados (Russell & Cohn, 2012).



Figura 7: Tela inicial do KNIME

Neste trabalho, foi utilizado o KNIME na versão 3.4.0 e licenciada sob a Licença Pública Geral (GNU) – Versão 3 com todos as extensões então disponíveis.

#### 4 O FLUXO DE DADOS DO KNIME

Este capítulo é dedicado à descrição do procedimento completo em alto nível para desenvolvimento do fluxo de dados na ferramenta KNIME.

O procedimento foi testado completamente e cada um de seus passos será descrito detalhadamente. Assim, a execução das etapas descritas poderá ser de grande valia para obtenção de sucesso em uma nova extração de outras fontes da *web*.

Todo o trabalho foi baseado no ciclo de desenvolvimento de um projeto de Mineração de Dados conforme diagrama abaixo cuja proposta original é composta por seis fases básicas:



Figura 8: Ciclo de Projeto de Mineração de Dados (Barbieri, 2011)

O trabalho de desenvolvimento do fluxo foi composto por uma série de passos, citados e descritos a seguir:

- Planejamento
- Definição do método de extração
- Instalação e configuração da ferramenta KNIME

- Criação e configuração do fluxo de dados
- Execução do fluxo e armazenamento dos dados
- Validação dos dados extraídos

#### 4.1 Passo 1: Planejamento

A demanda inicial foi extrair as páginas de instruções aos autores que desejassem submeter artigos de periódicos nas plataformas SciELO - Scientific Electronic Library e Oxford University Press.

Portanto, o primeiro passo foi entender como e onde se localizam tais instruções e o caminho de navegação até elas. O diagrama a seguir demonstra como isso se deu:



Figura 9: Caminho de navegação SciELO



Figura 10: Caminho de navegação Oxford

#### 4.2 Passo 2: Definição do método de extração

De acordo com (Kosala & Blockeel, 2000), mineração *web* pode ser dividida em três subáreas: Mineração de Estrutura (*Web Structure Mining*), Mineração de Uso (*Web Usage Mining*) e Mineração de Conteúdo (*Web Content Mining*), como observado na figura baixo:



Figura 11: Mineração Web (Kosala & Blockeel, 2000)

A Mineração de Estrutura Web é a linha de pesquisa inspirada no estudo das redes sociais e de análise de citações e está interessada na estrutura dos hiperlinks dentro da *Web*. Já a Mineração de Uso na *Web* se concentra em técnicas que podem prever o comportamento do usuário enquanto o usuário interage com a *Web* (Kosala & Blockeel, 2000).

Apesar da aplicação também das técnicas das duas linhas de mineração anteriormente citadas, o trabalho se concentrou na Mineração de Conteúdo na *web* já que a busca foi realizada com o objetivo de extrair o texto das páginas (conteúdo da *Web*). Ou seja, textos no formato com pouca ou sem estrutura: HTML. A técnica de Mineração de Conteúdo na *web* procura descobrir informações úteis de conteúdo, dados e documentos ali, por meio de busca programática.

#### 4.3 Passo 3: Instalação e configuração da ferramenta KNIME

Após realizado o download do Instalador do KNIME Analytics Platform versão 3.5.2 para Windows 64 Bits a partir do *site* oficial da aplicação (KNIME, 2017), foi realizada a instalação padrão incluindo todas as extensões. Não foi necessária nenhuma configuração extra ou programação adicional.

#### 4.4 Passo 4: Criação e configuração do fluxo de dados

A coleta dos dados exigiu a divisão do trabalho em três fluxos de trabalho:

- Site da SciELO Versão em Português
- Site da SciELO Versão em Inglês
- Site da Oxford University Versão Única em Inglês

Independentemente do site raspado, a construção do fluxo seguiu um modelo único onde iniciava-se pela página inicial e seguiu com uma navegação pelos menus e submenus até atingir a página de instruções aos autores. Cada página visitada fornecia o próximo passo da busca e, por fim, a extração em si. Nas próximos seções, serão detalhados os fluxos de trabalhos criados.

#### 4.4.1 Scraping no Site da SciELO

A raspagem se inicia a partir da definição do site (Node 1 – *Table Creator*) inserindo o URL<sup>6</sup> do site escolhido:

- Português: http://www.scielo.org/php/index.php?lang=pt.
- Inglês: <a href="http://www.scielo.org/php/index.php?lang=en">http://www.scielo.org/php/index.php?lang=en</a>

Como os site da SciELO permite a navegação em Português e em Inglês, a raspagem foi realizada em dois fluxos independentes e respectivo ao idioma. A definição do idioma é realizada por meio de *cookie*<sup>7</sup> e essa foi a diferença básica entre os fluxos para o SciELO.

A utilização do *cookie* se fez necessária para que todo o fluxo se dê no respetivo idioma.

Em seguida, foram se incluindo sequencialmente nodes que liam a página inicial, mapeavam, elencavam e armazenavam os links para as páginas subsequentes, até a página final de interesse a ser coletada: A página de instrução aos autores.

O processo se encerra com a geração dos arquivos de texto em um diretório do computador (Node 40 – *StringCell to File*).

#### 4.4.2 Scraping no Site da Oxford University

A raspagem se inicia a partir da definição do site (Node 1 – *Table Creator*) inserindo o URL do site escolhido: <a href="https://academic.oup.com/journals/">https://academic.oup.com/journals/</a>.

Como também descrito na seção anterior para o *site* da SciELO, paro o da Oxford, foram se incluindo sequencialmente nodes que liam a página inicial, mapeavam, elencavam e armazenavam os links para as páginas subsequentes, até a página final de interesse a ser coletada: A página de instrução aos autores.

O processo se encerra com a geração dos arquivos de texto em um diretório do computador (Node 43 – *StringCell to File*).

<sup>7</sup> Cookie é um pedaço de texto que um servidor Web pode armazenar no disco rígido do usuário. São utilizados pelos sites principalmente para identificar e armazenar informações sobre os visitantes (Martinez, 2018).

<sup>&</sup>lt;sup>6</sup> URL (*Uniform Resource Locator* - Localizador Padrão de Recursos) é o formato de atribuição universal para designar um recurso na Internet (CCM Benchmark Group, 2018).

#### 4.5 Passo 5: Execução do fluxo e armazenamento dos dados

Após a configuração dos fluxos, a rotina de raspagem foi iniciada lendo, portanto, todas as páginas listas com respostas breves e sem erros em tempo de execução.

Os dados foram armazenados nos fluxos de trabalho do KNIME em formato de documentos conforme imagens abaixo:



Figura 12: KNIME - Document View - SciELO



Figura 13: KNIME - Document View - Oxford University Press

Os documentos foram exportados em arquivo texto para disponibilização aos interessados:

#### \03 Saída - SciELO - Português



Figura 14: Saída Arquivos de Texto - SciELO - Português

#### **\02 Saída - SciELO - Inglês**



Figura 15: Saída Arquivos de Texto - SciELO - Inglês

#### **\01 Saída - Oxford - Inglês**



Figura 16: Saída Arquivos de Texto - Oxford - Inglês

#### 4.6 Passo 6: Validação dos dados extraídos

Para verificação do conteúdo extraído, foi gerada uma planilha eletrônica listando todos as 1.317 páginas de periódicos raspadas organizadas conforme tabelas abaixo:

| País   Site   Assunto   Periódico               | <b>∡</b> Quantidade | Percentual |
|-------------------------------------------------|---------------------|------------|
| <b>⊟</b> Brasil                                 | 407                 | 100,00%    |
| <b>■ SciELO - Scientific Electronic Library</b> | 407                 | 100,00%    |
| <b>⊞ Ciências Agrárias</b>                      | 47                  | 11,55%     |
| <b>⊞Ciências Biológicas</b>                     | 42                  | 10,32%     |
| ⊞ Ciências da Saúde                             | 115                 | 28,26%     |
| ⊞ Ciências Exatas e da Terra                    | 21                  | 5,16%      |
| ⊞ Ciências Humanas                              | 96                  | 23,59%     |
| <b>⊞ Ciências Sociais Aplicadas</b>             | 44                  | 10,81%     |
| ⊞ Engenharias                                   | 26                  | 6,39%      |

Português 🗷

16

407

3,93%

100,00%

Tabela 1: Páginas raspadas – Português

**Total Geral** 

⊞ Lingüística, Letras e Artes

Idioma

| Idioma                                   | Inglês 🖫            |            |
|------------------------------------------|---------------------|------------|
|                                          |                     |            |
| País   Site   Assunto   Periódico        | <b>▼</b> Quantidade | Percentual |
| <b>⊟</b> Brasil                          | 408                 | 44,84%     |
| ■ SciELO - Scientific Electronic Library | y 408               | 100,00%    |
| <b>⊞Agricultural Sciences</b>            | 47                  | 11,52%     |
| ⊕ Applied Social Sciences                | 44                  | 10,78%     |
| ⊞ Biological Sciences                    | 42                  | 10,29%     |
| ⊞ Engineering                            | 26                  | 6,37%      |
| <b>⊞ Exact and Earth Sciences</b>        | 21                  | 5,15%      |
| ⊞ Health Sciences                        | 115                 | 28,19%     |
| <b>⊞ Human Sciences</b>                  | 97                  | 23,77%     |
| <b>⊞ Literature and Arts</b>             | 16                  | 3,92%      |
| <b>⊟Reino Unido</b>                      | 502                 | 55,16%     |
| <b>■Oxford University Press</b>          | 502                 | 100,00%    |
| <b>⊞ Arts &amp; Humanities</b>           | 84                  | 16,73%     |
| ⊞Law                                     | 56                  | 11,16%     |
|                                          | 118                 | 23,51%     |
| <b>⊞Science &amp; Mathematics</b>        | 147                 | 29,28%     |
| <b>⊞Social Sciences</b>                  | 97                  | 19,32%     |
| Total Geral                              | 910                 | 100,00%    |

Tabela 2: Páginas raspadas – Inglês

O Fluxo de Trabalho do KNIME e demais artefatos gerados estão disponíveis para download no link abaixo:

#### https://github.com/marcelohonoliveira/Ciencia-de-Dados-e-Big-Data/tree/master/TCC



Figura 17: Repositório Github - marcelohonoliveira - TCC

#### 5 CONCLUSÕES

O desenvolvimento do presente trabalho possibilitou a prática de técnicas de Web Scraping envolvendo os assuntos relativos à mineração de texto da *web* para extração, organização e disponibilização de conteúdo antes disponíveis apenas nos *sites* de origem.

Os objetivos foram alcançados com êxito confirmando a aderência da ferramenta escolhida para extração com as necessidades da mineração realizada. O *corpus* construído está disponível a quem interessar em especial linguistas que desejam consumir expressões idiomáticas do inglês e respectivas tradução para o português brasileiro.

Por fim, o trabalho permitiu ao acadêmico experimentar umas das atividades inerentes à Mineração de Dados no que toca os processos de extração, transformação e carga de dados, atividades essas de extrema importância para aqueles se expõem aos desafios da Ciência de Dados.

#### 6 TRABALHOS FUTUROS

A utilização dos *corpora* pode ser feita diretamente pelo interessado, especialmente linguistas, numa análise humana sem a utilização de ferramentas específicas. Contudo, isso é viável quando o *corpus* é pequeno e em pequena quantidade.

Este trabalho produziu um número elevado de *corpora* que inviabilizaria uma análise detalhada dos textos sem a utilização de outros recursos computacionais além dos já utilizados para a coleta e organização deste material.

Assim sendo, fica como sugestão de trabalho futuro o desenvolvimento de ferramentas que contribuísse para a análise linguística em massa de grandes volumes de textos. Por exemplo, encontrar padrões na construção textual onde os verbos modais foram usados.

Uma ferramenta já disponível no mercado que faz um trabalho similar é o COCA (*Corpus of Contemporay American English*) – um corpus do inglês americano de uso gratuito que possui um módulo que permite analisar um termo específico em diversos contextos. (Davies, 2017). Mas essa ferramenta não permite utilizar um corpus próprio, apenas o corpus do COCA.



Figura 18: COCA - Corpus of Contemporay American English

#### 7 REFERÊNCIAS BIBLIOGRÁFICAS

- Alphabet Inc. (1 de Janeiro de 2018). *Chrome Navegador*. (Google LLC) Acesso em 15 de Fevereiro de 2018, disponível em Use um navegador da Web gratuito e mais rápido: https://www.google.com.br/chrome/
- Andriolo, E. (09 de Abril de 2012). *Desvendando 'Data Scraping': Entenda como raspar dados pode facilitar o trabalho jornalístico*. (Texas University) Acesso em 17 de Fevereiro de 2018, disponível em Knight Center for Journalism in the Americas: https://knightcenter.utexas.edu/pt-br/blog/00-9586-desvendando-o-data-scraping-entenda-como-raspar-dados-pode-facilitar-o-trabalho-jornali
- Barbieri, C. (2011). B12 Business Intelligence: Modelagem & Qualidade. Rio de Janeiro: Elsevier.
- BotReports. (22 de Fevereiro de 2014). *BotReports Updates on the latest spiders, crawlers, scrapers*. (BotReports) Acesso em 8 de Abril de 2018, disponível em http://www.botreports.com/user-agent/008.shtml
- CCM Benchmark Group. (8 de Abril de 2018). *O que é um URL*. Fonte: CCM Brasil: https://br.ccm.net/contents/288-o-que-e-um-url
- Datafiniti, LLC. (1 de Janeiro de 2018). 80legs Easy Web Scraping Tools and Cloud-Based Web Crawling. (Datafiniti, LLC) Acesso em 8 de Abril de 2018, disponível em http://80legs.com/
- Davies, M. (1 de Dezembro de 2017). *COCA*. (M. Davies, Produtor, & Brigham Young University) Acesso em 22 de Abril de 2018, disponível em Corpus of Contemporay American English: https://corpus.byu.edu/coca/
- Gazola, A. (19 de Janeiro de 2016). *Utilizando meta tags*. (Mozilla) Acesso em 28 de Fevereiro de 2018, disponível em https://developer.mozilla.org/pt-PT/docs/Utilizando\_meta\_tags
- Google. (20 de Abril de 2015). *Scraper*. (Google) Acesso em 25 de Fevereiro de 2018, disponível em https://chrome.google.com/webstore/detail/scraper/mbigbapnjcgaffohmbkdlecaccepng jd
- Google Inc. (8 de Abril de 2018). *Especificações para metatags robots e cabeçalhos HTTP X-Robots-Tag*. Fonte: Google Developers: https://developers.google.com/search/reference/robots\_meta\_tag?hl=pt-br
- KNIME. (1 de Janeiro de 2017). *About KNIME*. (KNIME Open for Innovation) Acesso em 2 de Março de 2018, disponível em https://www.knime.com/about
- Kosala, R., & Blockeel, H. (Julho de 2000). Web Mining Research: A Survey. *ACM SigKDD Exploration*, *II*(1), 1-15. doi:10.1145/360402.360406

- Martinez, M. (5 de Abril de 2018). *Cookies*. Fonte: InfoEscola: https://www.infoescola.com/informatica/cookies/
- Microsoft Corporation. (14 de Março de 2017). *Conceitos de Mineração de Dados*. Acesso em 2018 de Abril de 2018, disponível em Microsoft Docs: https://docs.microsoft.com/pt-br/sql/analysis-services/data-mining/data-mining-concepts
- Oxford University. (1 de Fevereiro de 2018). *Oxford University Press Journals*. (Oxford University Press) Acesso em 1 de Fevereiro de 2018, disponível em Oxford University Press: https://academic.oup.com
- Ray, S. (22 de Outubro de 2015). *Beginner's guide to Web Scraping in Python (using BeautifulSoup)*. (Analytics Vidhya) Acesso em 19 de Fevereiro de 2018, disponível em https://www.analyticsvidhya.com/blog/2015/10/beginner-guide-web-scraping-beautiful-soup-python/
- Russell, J., & Cohn, R. (2012). KNIME. Em *KNIME* (p. 128). Stoughton: Book on Demand Ltd.
- Sardinha, T. B. (1999). Usando WordSmith Tools na investigação da linguagem. 20. (P. d.-G. Linguagem, Ed.) São Paulo, SP, Brasil: Pontifícia Universidade Católica de São Paulo. Acesso em 31 de Março de 2018, disponível em http://www2.lael.pucsp.br/direct/DirectPapers40.pdf
- SciELO. (1 de Fevereiro de 2018). *SciELO Scientific Electronic Library*. Acesso em 1 de Fevereiro de 2018, disponível em SciELO Scientific Electronic Library: http://www.scielo.org
- W3C. (18 de Abril de 2018). W3C Standards. Fonte: W3C: https://www.w3.org/TR/xpath/
- Wikipédia. (5 de Agosto de 2017). *Protocolo de Exclusão de Robôs*. (Wikepédia) Acesso em 1 de Março de 2018, disponível em Wikipédia A enciclopédia livre: https://pt.wikipedia.org/wiki/Protocolo\_de\_Exclus%C3%A3o\_de\_Rob%C3%B4s
- Wynne, M. (2005). *Developing linguistic corpora: A guide to good practice*. Oxford: AHDS literature, languages and linguistics.

# ANEXO I - Data Driven Analysis - Modals - SciELO - Português



# ANEXO II - Data Driven Analysis - Modals - SciELO - Inglês



# ANEXO III - Data Driven Analysis - Modals - Oxford - Inglês



