NAIL062 V&P Logika: 13. cvičení

Témata: (Zápočtový test z predikátové logiky.) Vybraná témata z teorie modelů.

Příklad 1. Buď $T = \{(\forall x)(\exists y)S(y) = x, \ S(x) = S(y) \to x = y\}$ teorie v jazyce $L = \langle S \rangle$ s rovností, kde S je unární funkční symbol.

- (a) Buď $\mathcal{R} = \langle \mathbb{R}, S \rangle$, kde S(r) = r + 1 pro $r \in \mathbb{R}$. Právě pro která $r \in \mathbb{R}$ je množina $\{r\}$ definovatelná v \mathcal{R} z parametru 0?
- (b) Je teorie T otevřeně axiomatizovatelná? Uveďte zdůvodnění.
- (c) Je extenze T' teorie T o axiom $S(x) = x \omega$ -kategorická teorie? Je T' kompletní?
- (d) Pro která $0 < n \in \mathbb{N}$ existuje *L*-struktura \mathcal{B} velikosti n elementárně ekvivalentní s \mathcal{R} ? Existuje spočetná struktura \mathcal{B} elementárně ekvivaletní s \mathcal{R} ?

Příklad 2. Uvažme následující graf:

- (a) Najděte všechny automorfismy.
- (b) Které podmnožiny množiny vrcholů V jsou definovatelné? Uveďte definující formule. (Nápověda: Využijte (a).)
- (c) Které binární relace na V jsou definovatelné?

Příklad 3. Nechť $T = \{U(x) \to U(f(x)), (\exists x)U(x), \neg(f(x) = x), \varphi\}$ je teorie v jazyce $L = \langle U, f \rangle$ s rovností, kde U je unární relační symbol, f je unární funkční symbol a φ vyjadřuje, že "existují maximálně 4 prvky".

- (a) Je teorie T extenzí teorie $S = \{(\exists x)(\exists y)(\neg x = y \land U(x) \land U(y)), \varphi\}$ v jazyce $L' = \langle U \rangle$? Je konzervativní extenzí? Zdůvodněte.
- (b) Je teorie T otevřeně axiomatizovatelná? Zdůvodněte.

Příklad 4. Nechť $T = \{\varphi\}$ je teorie jazyka $L = \langle U, c \rangle$ s rovností, kde U je unární relační symbol, c je konstantní symbol a axiom φ vyjadřuje "Existuje alespoň 5 prvků, pro které platí U(x)."

(a) Nalezněte dvě neekvivalentní jednoduché kompletní extenze teorie T nebo zdůvodněte, proč neexistují.

(b) Je teorie T otevřeně axiomatizovatelná? Uveď
te zdůvodnění.

Příklad 5. Buď $T = \{(\forall x)(\exists y)S(y) = x, \ S(x) = S(y) \to x = y\}$ teorie v jazyce $L = \langle S \rangle$ s rovností, kde S je unární funkční symbol.

- (a) Nalezněte extenzi T' teorie T o definici nového unárního funkčního symbolu P takovou, že $T' \models S(S(x)) = y \leftrightarrow P(P(y)) = x$. (2b)
- (b) Je teorie T' otevřeně axiomatizovatelná? Uveďte zdůvodnění. (2b)

Příklad 6. Nechť T je extenze teorie $DeLO^-$ (tj. hustých lineárních uspořádání s minimálním prvkem a bez maximálního prvku) o nový axiom $c \leq d$ v jazyce $L = \langle \leq, c, d \rangle$ s rovností, kde c, d jsou nové konstantní symboly.

- (a) Jsou sentence $(\exists x)(x \le d \land x \ne d)$ a $(\forall x)(x \le d)$ pravdivé / lživé / nezávislé v T? Uveďte zdůvodnění.
- (b) Napište dvě neekvivalentní jednoduché kompletní extenze teorie T.

Domácí úkol. Už žádný není. Hodně štěstí u zkoušky (resp. u opravného testu)!