COLLLEGE CODE :3126

COLLEGE NAME :THANGAVELU ENGINEERING COLLEGE

DEPARTMENT : B.TECH(INFORMATION TECHNOLOGY)

STUDENT NM-ID :089d7329118b7909c084fe92d019b2e

ROLL NO:312623205006

DATE :17/05/2025

TECHNOLOGY-PROJECT NAME

SUMITTED BY,

K.DHANUSH

K.KRISHNAKUMAR

D.BRINDHA

E.DURGADEVI

K.SHYLISH

P.VINITHA

V.DEEPIKA

S.KAMALI

B.UMA RAJESWARI

SURESHBABU ELUMALAI

Phase 5: Project Demonstration & Documentation

Title:AI-Natural Disaster Prediction and Management System

Abstract:

The Natural Disaster Prediction and Management System aims to enhance disaster preparedness and response through the use of artificial intelligence, geospatial analysis, real-time sensor data, and cloud-based data management. This final phase integrates machine learning models for disaster prediction (e.g., floods, earthquakes, wildfires), real-time data from IoT sensors and satellites, and a responsive alert and resource coordination system. The project supports large-scale deployment with ERP system integration and ensures secure, scalable operation. The report covers system demonstration, technical details, evaluation metrics, source code, and testing documentation, including diagrams and screenshots.

1. Project Demonstration

Overview

The system demonstration will show end-to-end functionality including real-time monitoring, prediction alerts, and disaster response coordination.

Demonstration Details:

System Walkthrough:

Demonstration of user interface for viewing hazard alerts, historical data, and AI predictions.

Disaster Prediction Accuracy:

Showcase how AI models analyze environmental and geospatial data to predict disasters.

IoT and Satellite Integration:

Real-time data from sensors (e.g., seismic, temperature, river levels) and satellite imagery is shown in action.

Scalability and Performance:

Demonstrates system's capability to handle high data throughput and multiple users during crises.

Security & Privacy:

Explains protocols for secure handling of sensitive geographic and emergency data.

4. Final Project Report Submission

Overview:

A comprehensive summary of project phases, highlighting system goals, technological achievements, challenges, and results.

Report Sections

Executive Summary

Phase BreaKdown: Model training, IoT setup, alert system development, data security.
Challenges & Solutions: Handling false positives, real-time data inconsistencies, system resilience under disaster load.
Outcomes: Readiness of the system for deployment in regional/national disaster management infrastructure.
Outcome:
$\it A$ complete report submission detailing development from inception to final deployment stage.
5. Project Handover and Future Works
Overview:
The system is prepped for operational handover and scalability.
Handover Details
Next Steps:
Suggestions include integrating drone-based monitoring, enhancing model accuracy with deep learning, multilingual alert systems, and mobile app rollout.
Outcome:
The project will be officially handed over with full documentation, training manuals, and future development recommendations.

Page 1: Source Code for Plotting

```
import pandas as pd
 import matplotlib.pyplot as plt
# Load data
df = pd.read_csv('flood.csv')
# Bar chart: Average score per factor
mean_values = df.mean().sort_values(ascending=False)
plt.figure(figsize=(10, 6))
mean_values.plot(Kind='bar', color='red')
plt.title("Average Contribution of Factors to Flood Probability")
plt.ylabel("Average Score")
plt.xticKs(rotation=90)
plt.tight_layout()
plt.savefig("bar_chart.png")
plt.close()
# Scatter plot: Monsoon Intensity vs Flood Probability
plt.figure(figsize=(8, 6))
plt.scatter(df[MonsoonIntensity], df[FloodProbability], color='blue')
plt.title("Scatter Plot: Monsoon Intensity vs Flood Probability")
plt.xlabel("Monsoon Intensity")
plt.ylabel("Flood Probability")
plt.tight_layout()
plt.savefig("scatter_plot.png")
plt.close()
```

Page 2: Bar Chart Output

Page 3: Software Requirements

- 1. Python 3.x installed.
- 2. Required Python libraries:
 - pandas
 - matplotlib
 - python-docx
- 3. An environment like Jupyter Notebook, VS Code, or any Python IDE.
- 4. Operating System: Windows/Linux/MacOS.
- 5. CSV file named 'flood.csv' should be in the working directory.