Как понять, что реализация не подходит?

плохо написал – иди переписывай!

Алгоритм

Вход: значения

Вычисления: код

Выход: значение

Качество кода?

Оформление кода:

• Единообразное оформление: стандарт?

Читабельность кода:

• Чтобы понять мог реализацию другой программист?

<u>Сложный код:</u> – длинное нечитабельное и не структурированное полотно?

НО на кого это влияет?

- --пользователь **не видит код**
- --ошибки искать и другому разобраться сложно!

Какой алгоритм плохой?

Медленно работает

- Быстрая машина это дорого, а большинство пользовательских и рабочих точно не дорогие
- Мобильные устройства не настолько производительны, как компьютеры
- Интернет может сбоить, быть медленным
- Может требоваться быстрый отклик или мы теряем пользователей и деньги

Много жрет памяти

(чаще всего оперативную)

- Не хватает места другим приложениям
- Не хватает места другим исполняемым приложениям: работают медленно
- Данных может быть очень много и дублирование данных или попытка хранения в быстрой памяти проблема

Оценка сложности алгоритма

По ПАМЯТИ: сколько занимает памяти

- 1 переменная 1 пункт сложности
- Массив размером n n пунктов сложности
- Строка длинной n n пунктов сложности

По ВРЕМЕНИ: сколько операций нужно выполнить

- 1 операция 1 пункт сложности: присвоить/сравнить
- 1 итерация = k операций в итерации k пунктов сложности
- Условие = t логических операций и действий t пунктов сложности

Память:

int i, j, n;
int A[100];
char B[n];

3 переменных	3 пункта
Массив 100 элементов	100 пунктов
Строка п символов	n пунктов

Память:

```
int i, j, n;
int A[100];
char B[n];
```

3 переменных 3 пункта Массив 100 элементов 100 пунктов Строка п символов **п** пунктов

Время

```
for i = 1 to n {
    j++;
    k=n;
}
```

Операции	Цикл
1 (i = 1)	n - итераций
{1	2 пункта внутри итерации
1}	Итого: 2n+1

Память:

int i, j, n;
int A[100];
char B[n];

3 переменных	3 пункта
Массив 100 элементов	100 пунктов
Строка п символов	n пунктов

Время

while
$$(A[i] + A[i-1] > 0)$$
 {
$$A[i + 1] = A[i];$$

$$i = i - 1;$$

Операции	Цикл
{3	n - итераций
2	7 пункта внутри итерации
2}	Итого: 7n

if (i<0 && (i/2=0)) then j=n;

Условие	подробнее
4	i/2=0 - 2 операции

Память:

int i, j, n;
int A[100];
char B[n];

3 переменных	3 пункта
Массив 100 элементов	100 пунктов
Строка п символов	n пунктов

Время

```
for i = 1 to n {
    j++;
    k=n;
}
```

Операции	Цикл
1 (i = 1)	n - итераций
{1	2 пункта внутри итерации
1}	Итого: 2n+1

while $(A[i] + A[i-1]$	>	0) {
A[i+1] = A[i];		
i = i - 1;		
1		

Операции	Цикл
{3	n - итераций
2	7 пункта внутри итерации
2}	Итого: 7n

}	
if (i<0 &&	(i/2=0)
then j=n;	

Условие	подробнее
4	i/2=0 - 2 операции

```
int i, j, n=100;
int A[n]=1;
char B[n];
for i = 1 to n do
   j++;
i=n;
while (A[i] + A[i-1] > 0) {
    A[i + 1] = A[i];
    i = i - 1;
    if (i<0 && (i/2=0)) then j=n;
```

```
int i, j, n=100;
int A[n]=1;
char B[n];
for i = 1 to n do
   j++;
i=n;
while (A[i] + A[i-1] > 0) {
    A[i + 1] = A[i];
    i = i - 1;
    if (i<0 && (i/2=0)) then j=n;
```

Память = М	Время = Т
+3	+1
+n=100	+n
+n=100	
	+1
	{+n=100}
	+1
	{+3
	+2
	+2
	4+1 = 5}=12
	Итераций цикла: n
n+n+3	12n+1+n+n+1
M(n)=2n+3	T(n)=14n+2

```
int n=10;
int A[n];
int key, i, j;
for i = 0 to n-1 do
   A[j] = i;
for i = 0 to n-1 do
   for j = 0 to n-1 do
       A[i]=A[i]+A[j];
```

```
int n=10;
int A[n];
int key, i, j;
for i = 0 to n-1 do
   A[j] = i;
for i = 0 to n-1 do
   for j = 0 to n-1 do
       A[i]=A[i]+A[j];
```

Память = М	Время = Т		
1	+1		
+n=10			
+3			
	+1		
	{+n=10}		
	+1		
	{+1		
	{+2} – n итераций}		
	n - итераций		
	=n(2n+1)		
1+n+3	n(2n+1)+1+n+1+1		
M(n)=n+4	T(n)=2n ² +2n+3		

Функции сложности

- M(n) сложность по памяти
- **T(n)** сложность по времени
- Зависят от размера входных данных **n**
- Размерность мы можем получать во время исполнения программы
- Функция как и реализация может быть простой (x=2 «прямая», аналогично код без циклов и без массивов М(n) = 3 / T(n) = 6)

Функция сложности – функция!

- M(n) сложность по памяти
 T(n) сложность по времени
 Вспомним типовые функции:
- x²
- $Log_2 x$
- x*Log₂ x
- x³
- \bullet a^{x}
- и так далее

Функция сложности

M(n) – сложность по памяти более предсказуема и чаще всего определена размером входных данных

T(n) – сложность по времени зависит в большей степени от программиста и его творческого порыва!

Далее будем чаще говорить именно о временной сложности - сложности алгоритма!

Показательный пример

```
int n=10;
int A[n];
int key, i, j;
```

T(n) – как описать?

Распишем итерации первого цикла

Итерация № (внешнего)	Итераций внутреннего			
1	1			
2	2			
3	3 4			
4				
5	5			
•••	•••			
i=n	n			

Вычисление

for
$$i = 1$$
 to n do
for $j = 1$ to **i** do

$$A[i]=A[i]+A[j];$$

С помощью суммы арифметической прогрессии:

$$T(n) = (1+n)n/2 =$$

= $(n^2+n)/2$

- Внутренний цикл **for** зависит от внешнего
- Как мы видим (см таблицу ранее) число операций в итерации внутреннего цикла изменяется с шагом +1
- Описать число операций двух циклов можно с помощью суммы арифметической прогрессии

```
int n=10;
int A[N];
int key, i, j;
//получаем массив А
i=N;
while (A[i] + A[i-1] > N){
    A[i - 1] = A[i];
    i = i - 1;
```

```
int n=10;
int A[N];
int key, i, j;
//получаем массив А
i=N;
while (A[i] + A[i-1] > N)
    A[i - 1] = A[i];
    i = i - 1;
```

• Не зная какой будет массив А, вывести функцию времени невозможно

Как тогда оценить сложность по времени?

- Минимально: цикл не выполнится ни разу, значит условие проверится 1 раз=3 операции
- **Максимально:** цикл выполнится N раз = 7N

Иллюстрация оценки

Максимальная и минимальная оценки функции похожи

на асимптоты

Асимптотическая оценка сложности

Порядок роста описывает то, как сложность алгоритма растет с увеличением размера входных данных. Чаще всего он представлен в виде О-нотации (om нем. «Ordnung» — порядок): O(f(n)), где f(n) — формула, выражающая сложность алгоритма. В формуле может присутствовать переменная n, представляющая размер входных данных.

$$T(n)=2n^2+2n+3$$

порядок роста
$$n^2$$
 или $O(n^2)$

$$T(n)=1290n^3+12n^2-3586$$

порядок роста
$$n^3$$
 или $O(n^3)$

$$T(n)=2n^2 \log n + 142n^2 - n$$

порядок роста
$$n^2 \log n$$
 или $O(n^2 \log n)$

$$T(n)=1290n^3+2n^2\log n-142n^2-n+386$$
 порядок роста n^3 или $O(n^3)$

Асимптотическая оценка сложности

Существуют различные оценки сложности алгоритма. Пусть у нас есть функция f(n) (раньше мы называли ее T(n)), которая оценивает время работы нашего алгоритма. Тогда мы хотим найти новую функцию g(n), соответствующую определенным требованиям.

$$f(n) = O(g(n)) \Leftrightarrow$$

 $\Leftrightarrow \exists c > 0, n_0 > 0 : \forall n > n_0$
выполняется
 $0 <= f(n) <= c * g(n)$

Другими словами, для того, чтобы функция g(n) была оценкой сверху для f(n), должно выполняться следующее: Существуют c > 0 и $n_0 > 0$ такие, что начиная c некоторого $n > n_0$ f(n) лежит между 0 и c * g(n)

Асимптотическая оценка сложности

$$\Omega(g(n))$$
 — оценка снизу для $f(n)$

 $\Theta(g(n))$ – точная оценка для f(n)

$$f(n) = \Omega(g(n)) \Leftrightarrow$$

⇔ ∃ c > 0, n_0 > 0 : ∀ n > n_0 выполняется
0 <= c * $g(n)$ <= $f(n)$

Для того, чтобы функция g(n) была оценкой снизу для f(n), должно выполняться следующее: Существуют c > 0 и $n_0 > 0$ такие, что начиная с некоторого $n > n_0$ f(n) лежит выше, чем c * g(n)

$$f(n) = \Theta(g(n)) \Leftrightarrow$$

 $\Leftrightarrow \exists c_1 > 0, n_0 > 0, c_2 > 0 : \forall n > n_0$ выполняется $0 <= c_2 * g(n) <= f(n) <= c_1 * g(n)$

Для того, чтобы функция g(n) была точной оценкой для f(n), должно выполняться следующее: Существуют c_1 , c_2 , $n_0 > 0$ такие, что начиная с некоторого $n > n_0$ f(n) лежит между $c_1 * g(n)$ и $c_2 * g(n)$

Свойства О

(читается как О большое)

Пусть есть 2 функции: $f_1(n) = O(g_1(n))$, $f_2(n) = O(g_2(n))$ Тогда для них выполняются следующие свойства:

- 1. Сложность суммы: $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$ бОльшая из функций порядка роста
- 2. Сложность произведения: $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$ произведение функций порядков роста
- 3. Умножение на константу: $f_1(n) * c = O(g_1(n))$ при умножении константы отбрасываются
- 4. Сложение с константой: $f_1(n) + c = O(g_1(n))$ при сложении константы тоже отбрасываются
- 5. Теорема о связи О, Ω и Θ : $f(n) = \Theta(g(n)) \Leftrightarrow O(g(n)) = \Omega(g(n))$ Точная оценка существует тогда и только тогда, когда верхняя и нижняя оценки совпадают. В таком случае все 3 оценки равны между собой

Зачем оценивать алгоритмы?

Устройство 1:

10⁹ операций/сек

Объем данных: N= **10**⁷

Алгоритм: n^2

Время: **10**⁷ ***10**⁷/ **10**⁹

 $= 10^5 \text{ сек > суток}$

Устройство 2:

10⁷ операций/сек

Объем данных: N= **10**⁷

Алгоритм: n*log n

Время: **10**⁷ **log 10**⁷/

 $10^7 = 23,25$ cek <

минуты

Зачем оценивать алгоритмы?

Время выполнения алгоритма с определённой сложностью в зависимости от размера входных данных при скорости **10**⁶ операций в секунду:

размер сложность	10	20	30	40	50	60
n	0,00001 сек.	0,00002 сек.	0,00003 сек.	0,00004 сек.	0,00005 сек.	0,00005 сек.
n²	0,0001 сек.	0,0004 сек.	0,0009 сек.	0,0016 сек.	0,0025 сек.	0,0036 сек.
n³	0,001 сек.	0,008 сек.	0,027 сек.	0,064 сек.	0,125 сек.	0,216 сек.
n ⁵	0,1 сек.	3,2 сек.	24,3 сек.	1,7 минут	5,2 минут	13 минут
2 ⁿ	0,0001 сек.	1 сек.	17,9 минут	12,7 дней	35,7 веков	366 веков
3 ⁿ	0,059 сек.	58 минут	6,5 лет	3855 веков	2х10 ⁸ веков	1,3х10 ¹³ веков

Обычно алгоритмы классифицируют в соответствии с их временной сложностью. Можно выделить следующие их типы:

- 1. Постоянный сложность оценивается как O(1).
- 2. Логарифмический сложность оценивается как O(log(n))
- 3. Линейный оценка равна O(n).
- 4. Квадратный $O(n^2)$
- 5. Кубический, полиноминальный $O(n^3)$, $O(n^m)$.
- 6. Экспоненциальный $O(t^{p(n)})$, t- константа, p(n) некоторая полиномиальная функция.
- 7. Факториальный O(n!). Обладает наибольшей временной сложностью среди всех известных типов.

Для того, чтобы визуально представить себе различную скорость роста функций, достаточно взглянуть на следующий график:

Логарифмическая сложность присуща алгоритмам, которые сводят большую задачу к набору меньших задач, уменьшая на каждом шаге размер задачи на постоянную величину. Например, двоичный поиск в массиве, когда на каждом шаге размер массива сокращается вдвое.

Линейное время выполнения свойственно тем алгоритмам, в которых осуществляется небольшая обработка каждого входного элемента.

```
Пример: найти количество чисел
int a[n];
int x;
                 равных \mathbf{x} в массиве размера \mathbf{n}
int cnt = 0;
for (int i = 0; i < n; i++)
    if (a[i] == x)
                            Проходим по всему массиву за п
        cnt++;
                         O(n)
```

Оценка nlog(n) возникает в тех случаях, когда алгоритм решает задачу, разбивая её на меньшие подзадачи и решая их независимо друг от друга, а затем объединяя решение.

```
function mergeSortRecursive(a : int[n]; left, right : int):

if left + 1 >= right
    return

mid = (left + right) / 2

mergeSortRecursive(a, left, mid)
mergeSortRecursive(a, mid, right)
merge(a, left, mid, right)

Проход суммарно по всему массиву, отсюда n

Пример: сортировка слиянием
```

O(nlogn)

Квадратичное время выполнения свойственно алгоритмам, обрабатывающим все пары элементов данных.

```
function bubbleSort(a):
   for i = 0 to n - 2
     for j = 0 to n - 2
     if a[j] > a[j + 1]
        swap(a[j], a[j + 1])
```

Проход по всему массиву, отсюда п

Еще один проход по всему массиву, отсюда еще п

Пример: сортировка пузырьком

 $O(n^2)$

Кубическое время соответсвует алгоритмам, которые обрабатывают все тройки элементов данных.

O(n³)

Экспоненциальное и факториальное время присуще алгоритмам, которые выполняют перебор всевозможных сочетаний элементов.

Пример экспоненциального времени работы: есть п человек и п мест, на которые этих людей надо рассадить. Перебрать все возможные комбинации занятых мест $O(2^n)$

Пример факториального времени работы: есть n человек и n мест, на которые этих людей надо рассадить. Перебрать все возможные перестановки людей на местах O(n!)