Реализация тестового стенда Network Function Virtualization результаты

Кижнеров Павел Александрович

научный руководитель: ст. преп И.В Зеленчук

СПбГУ

22 мая 2019 г.

Введение

Network Function Virtualization - концепция, предлагающая виртуализировать аппаратные сетевые устройства посредством предоставления возможности сетевым функциям исполняться программными модулями.

Введение

Актуальность обусловлена стремлением крупных компаний избавться от физических устройств, так как каждое из них:

- Занимает место в помещении
- Потребляет электроэнергию
- Нуждается в климатических ресурсах
- Имеет свойство морально устаревать
- Зачастую сильно зависит от вендора

Цель и задачи

Цель - начать создание тестового стенда NFV Были поставлены следующие задачи:

- Изучить предметную область
- Провести сравнительный анализ существующих решений
- Начать реализацию одного из решений

Предметная область

Основа архитектуры – VIM, VNFM и NFVO VIM (Virtual Infrastructure Manager) – контролирует и управляет вычислениями, памятью и сетевыми ресурсами. Собирает данные о производительности

VNFM (Virtual Network Function Manager) – запускает, обслуживает, и прекращениет работы виртуализированных функций

NFVO (NFV Orchestrator) - управлениет и администрирует виртуализированные сетевые функции через VIM и VNFM

Предметная область

Рис. 1: Архитектура NFV, разработанная ETSI

Существующие решения: VIM

Рис. 2: решения для VIM

Существующие решения: VIM

vCloud NFV - проприетарная интегрированная платформа от VMWare
OPNFV - open-source интегрированная платформа от Linux Foundation
Для реализации VIM была выбрана OPNFV в силу проприетарности vCloud NFV

Существующие решения: NFVO

Рис. 3: решения для NFVO

Существующие решения: NFVO

- Open Source MANO
- ONAP
- OpenBaton
- Sonata

Предварительно - OSM, так как разрабатывается самим ETSI

- Установка и настройка окружения
- Конфигурация сети
- Конфигурация программного обеспечения OPNFV: PDF (POD Descriptor File), IDF (Installer Descriptor File)
- Клонирование репозитория релиза Gambia и запуск deploy.sh

Gambia 7.2 – последний стабильный релиз OPNFV. Установщики:

- Apex
- Fuel
- Compass4NFV

Apex – относительно легкая настройка сети, но есть неопределенности с конфигурационными файлами **Fuel** – сложная настройка сети, но более ясная документация

Compass4NFV – скудная документация, но более производительный результат

В качестве установщика был выбран Fuel, так как разницы с Арех на небольшой сети быть не должно, но зато есть подробная инструкция.

Предполагается, что имеется опыт работы с РХЕ и KVM, поэтому было принято решение выполнить следующие задания:

- С помощью РХЕ установить ОС на виртуальную машину
- Поставить на хост несколько ОС, используя KVM

Сценарий - установщик + конфигурация + upstream компоненты Для наших нужд требуется тривиальный вариант.

Scenario	Installer	Owner	Jenkins Job Created (Y/N)	Intent to release 7.0 (Y/N) (1,2)	Intent to release 7.1 (Y/N) (1,2)	Intent to release 7.2 (Y/N) ^(1,2)
os-odl- nofeature-ha	Compass	@ Harry Huang	Y	Υ	Υ	Υ
K8-nosdn- stor4nfv-ha	Compass	@ Harry Huang	Υ	Υ	Y	Υ
os-nosdn-bar- ha	Compass	@ Harry Huang	Υ	Υ	Υ	Υ
os-nosdn- stor4nfv-ha	Compass	@ Harry Huang	N	Υ	Υ	Υ
os-nosdn- calipso-noha	Apex	@ Koren Lev	N	Y	Y	Υ
os-nosdn- nofeature- noha	Fuel@x86	@ Michael Polenchuk	Y	Y	Y	Υ
os-nosdn- nofeature-ha	Fuel@x86 Fuel@aarch64	@ Michael Polenchuk	Y	Y	Y	Υ

Реализация: доступ к аппаратуре

Возникла проблема удаленного доступа к стенду из за NAT.

Решена с помощью настройки сервера VPN и установки ПО на роутер для поддержки VPN туннелирования.

Реализация: доступ к аппаратуре

В качестве протокола VPN был выбран OPNVPN ради экономия времени, так как уже имеется опыт работы.

ПО для роутера – DD-WRT, так как на слуху, а выбор прошивки не является основной целью данной курсовой работы.

Результаты

Достигли:

- Изучена архитектура NFV
- Проанализированы существующие решения
- Начата реализация инфраструктурного менеджера
 - Изучен гипервизор KVM
 - Подготовлено ПО для удаленного доступа к тестовому стенду