Using GEOS-Chem and OMI HCHO to estimate isoprene emissions over Africa

Eloïse Marais, Harvard Earth and Planetary Sciences

also D. Millet, J. Murphy, C. Reeves, M. Barkley, S. Casadio, T. Kurosu, K. Chance, R. Koster, S. Mahanama, J. Mao, F. Paulot, A. Padmanabhan, D.J. Jacob

Project funded by NASA ACMAP

5th International GEOS-Chem User's Meeting 2-5 May 2011

Estimating isoprene emissions from GEOS-Chem

$$C_5H_8 \xrightarrow{OH} ISOPOO \xrightarrow{NO} ISOPO \xrightarrow{-HO_2} HCHO + MVK/MACR$$
ISOPOOH

Deriving a biogenic HCHO signal over Africa

Test GEOS-Chem using AMMA aircraft observations

Mean vertical profiles of species simulated by GEOS-Chem using MEGAN and the Paulot et al. (2009) isoprene scheme coincident with AMMA observations

GEOS-Chem

MODIS EVI for Jul-Aug 2006 (West Africa wet season)

Isoprene and (MVK+MACR) show good agreement, but large discrepancies between model and observations in the HCHO vertical profile over the AMMA domain.

OH and HO₂ dependence on isoprene

HO₂ and OH variability below 950 hPa as a function of isoprene during AMMA

HO_x levels from GEOS-Chem are consistent with observations

OH and HO₂ from GEOS-Chem do not exhibit an isoprene-dependent bias

Estimate HCHO yields using GEOS-Chem

Estimate the yield of HCHO from MEGAN isoprene emissions using the relationship between Ω_{HCHO} and Eisoprene in the model:

$$\Omega_{\text{HCHO}} = SE_{\text{isoprene}} + B$$

$$S = \frac{Y_{\text{isoprene} \to \text{HCHO}}}{k_{\text{HCHO}}}$$

HCHO from GEOS-Chem as a function of Eisoprene from MEGAN over Africa in Jan

HCHO yields affected by NO_x in the model due to **smearing** of the HCHO signal in the model

Slope values over Africa for January 2006

Instead use the relationship between (MVK+MACR) and isoprene emissions in the model:

$$S = \frac{Y_{\text{isoprene} \rightarrow \text{HCHO}}}{k_{\text{HCHO}}} = \frac{Y_{\text{isoprene} \rightarrow (\text{MVK+MACR})}}{k_{(\text{MVK+MACR})}} \times \frac{k_{(\text{MVK+MACR})}}{k_{\text{HCHO}}} \times \frac{k_{(\text{MVK+MACR})}}{k_{\text{HCHO}}}$$
Accounts for the difference in loss rates of HCHO and (MVK+MACR)

Spatial variability of S for $E_{isop} > 2 \times 10^{12}$ atoms C cm⁻² s⁻¹

Yields reflect spatial variability of NO_x over Africa – higher (lower) yields are obtained over high (low) NO_x regions.

Therefore, apply NOx-dependent yields of HCHO from GEOS-Chem over Africa to estimate isoprene emissions from OMI HCHO

Concluding Remarks

- The model is able to capture the variability of isoprene and (MVK+MACR) over the AMMA domain
- OH and HO_2 are well reproduced in the model as a function of isoprene concentration in a region that is subject to low- NO_x and high- NO_x reaction pathways
- (MVK+MACR) columns from GEOS-Chem can be used to obtain Nox-dependent yields of HCHO from isoprene

Future Work: Estimate NOx-dependent yields of isoprene from GEOS-Chem to calculate annual isoprene emissions over Africa from the OMI HCHO biogenic vertical columns for comparison with MEGAN.

Additional Slides

Variability of S as a function of NO_x

Latitudinal profile of isoprene, (MVK+MACR) and HCHO

Isoprene, (MVK+MACR) and HCHO averaged over 0.5° latitude bins

OMI biogenic HCHO for July – Aug 2005-2009

→ GC HCHO divided by 2 in plot for visual comparison

HCHO yields over Africa from GEOS-Chem

$$\Omega_{\rm HCHO} = SE_{\rm Isoprene} + B$$

Spatial variability of S where $E_{\text{Isoprene}} > 2 \times 10^{12}$ atoms C cm⁻² s⁻¹

Poor correlation between HCHO and isoprene emissions in regions with low NO_x, due to delay in HCHO formation

Apply single HCHO yield over Africa to avoid introducing spatial variability from the model

$$(S = 1.9 \times 10^3 \text{ s})$$

HCHO columns from GEOS-Chem (left) and OMI HCHO (right) over the AMMA domain from July-August.

 $2^{\circ} \times 2.5^{\circ}$ resolution (2006)

Yields of HCHO over the US are lower ($\mathbf{1.5} \times \mathbf{10^3} \, \mathbf{s}$) than those obtained using Ω_{HCHO} ($\mathbf{2.1} \times \mathbf{10^3} \, \mathbf{s}$) due to additional formation of second-generation HCHO.

Use ratio value of 1.4 for the US to adjust the yield and apply to all NO_x regimes:

$$\Omega_{\text{HCHO}} = 1.4 \times SE_{\text{isoprene}}$$