5

10

15

20

25

30

METHOD JAP20 Rec'd PCT/PTO 11 MAY 2006

The present invention relates to polo-like kinases (PLKs) and small molecule inhibitors thereof. More specifically, the invention relates to a method for designing and identifying small molecule inhibitors using a homology model for PLK.

BACKGROUND TO THE INVENTION

The Polo-like kinase family consists of key cell cycle regulatory enzymes with integral roles in controlling entry into and progression through mitosis. Many tumour cells express high levels of PLK1 and are responsive to antisense oligonucleotides targeting this protein.

Initiation of mitosis requires activation of M-phase promoting factor (MPF), *i.e.* the complex between CDK1 and B-type cyclins [1]. The latter accumulate during the S and G2 phases of the cell cycle and promote the inhibitory phosphorylation of the MPF complex by WEE1, MIK1, and MYT1 kinases. At the end of the G2 phase, corresponding dephosphorylation by the dual-specificity phosphatase CDC25C triggers the activation of MPF [2]. In interphase, cyclin B localizes to the cytoplasm and becomes phosphorylated during prophase, followed by nuclear translocation. The nuclear accumulation of active MPF during prophase is thought to be important for initiating M-phase events [3]. However, nuclear MPF is kept inactive by WEE1 unless counteracted by CDC25C. The phosphatase CDC25C itself, localized to the cytoplasm during interphase, accumulates in the nucleus in prophase. The nuclear entry of both cyclin B and CDC25C are promoted through phosphorylation by PLK1 [4]. This kinase is thus an important regulator of M-phase initiation.

In humans, there exist three closely related polo-like kinases (PLKs) [5]. They contain a highly homologous N-terminal catalytic kinase domain and their C-termini contain two or three conserved regions, the polo boxes. The function of the polo boxes remains incompletely understood but polo box-dependent PLK1 activity is required for proper metaphase/anaphase transition and cytokinesis [6]. Of the three PLKs, PLK1 is the best characterized; it regulates a number of cell division cycle effects, including the onset of

2

mitosis, DNA-damage checkpoint activation, regulation of the anaphase promoting complex, phosphorylation of the proteasome, and centrosome duplication and maturation. Mammalian PLK2 (also known as SNK) and PLK3 (also known as PRK and FNK) were originally shown to be immediate early gene products. PLK3 kinase activity appears to peak during late S and G2 phase. It is also activated during DNA damage checkpoint activation and severe oxidative stress. PLK3 also plays an important role in the regulation of microtubule dynamics and centrosome function in the cell and deregulated PLK3 expression results in cell cycle arrest and apoptosis [7]. PLK2 is the least-well understood homologue of the three PLKs. Both PLK2 and PLK3 may have additional important post-mitotic functions [8].

5

10

15

20

25

30

The fact that human PLKs regulate some fundamental aspects of mitosis was shown by anti-PLK1 antibody microinjection of human tumour cells [9]. This treatment had no effect on DNA replication but impaired cell division. Cells were arrested in mitosis and showed abnormal distribution of condensed chromatin and monoastral microtubules nucleated from duplicated but unseparated centrosomes. By contrast, non-immortalized human cells arrested as single, mononucleated cells in G2. Moreover, when PLK1 function was blocked through adenovirus-mediated delivery of a dominant-negative gene, tumour-selective apoptosis in many tumour cell lines was observed, whereas again normal epithelial cells, although arrested in mitosis, escaped the mitotic catastrophe seen in tumour cells [10]. PLK1 activity is thus necessary for the functional maturation of centrosomes in late G2/early prophase and subsequent establishment of a bipolar spindle. Furthermore, these results suggest the presence in normal cells of a centrosome-maturation checkpoint that is sensitive to PLK1 impairment. Depletion of cellular PLK1 through the small interfering RNA (siRNA) technique also confirmed that this protein is required for multiple mitotic processes and completion of cytokinesis [11]. A potential therapeutic rationale for PLK inhibition is also suggested by work with PLK1-specific antisense oligonucleotides, which were shown to induce growth inhibition in cancer cells both in vitro and in vivo [12]. Constitutive expression of PLK1 in mammalian cells was shown to lead to malignant transformation [13]. Furthermore, overexpression of PLK1 is frequently observed in human tumours and WO 2005/047526

3

PCT/GB2004/004762

PLK1 expression is of prognostic value for patients suffering from various types of tumours [14-16].

Although the therapeutic potential of pharmacological PLK inhibition has been appreciated [17], very little has been reported to date concerning small-molecule PLK inhibitors that may be useful as drugs. The only characterized biochemical PLK1 inhibitor is scytonemin, a symmetric indolic marine natural product [18,19]. Scytonemin inhibits phosphorylation of CDC25C by recombinant PLK1 with an IC₅₀ value of about 2 μM (at an ATP concentration of 10 μM). Inhibition is apparently reversible and the mechanism with respect to ATP of mixed-competitive mode. Similar potency against other protein serine/threonine- and dual specificity cell-cycle kinases, including MYT1, CHK1, CDK1/cyclin B, and PKC, was observed. Scytonemin showed pronounced anti-proliferative effects on various human cell lines in vitro.

The present invention seeks to elucidate small molecule PLK inhibitors, and in particular, provides a method for designing and identifying such inhibitors. The invention also seeks to elucidate further information on the 3-dimensional structure of the PLK binding domain and the nature of the binding interactions between PLK and such small molecule inhibitors.

20

5

10

STATEMENT OF INVENTION

The present invention relates to a homology model for PLK, and the use thereof in the indentification of small molecule PLK inhibitors.

As used herein, the term "model" refers to a structural model such as a three dimensional (3D) structural model (or representation thereof) comprising PLK. Preferably, the model comprising PLK is built from all or a portion of the structure co-ordinates presented in Table 2. The homology model of the invention enables candidate compounds to be identified that bind spatially and preferentially to PLK, particularly to the active site of

30 PLK.

4

Aspects of the invention are presented in the accompanying claims and are further described in the following paragraphs.

DETAILED DESCRIPTION

5

20

25

30

ASSAYS BASED ON THE PLK1 HOMOLOGY MODEL

A first aspect of the invention relates to a method of screening for a modulator of PLK, wherein the method comprises using the structure co-ordinates of *Table 2*.

Since no experimental three-dimensional structures of PLK kinase domains are known, a PLK1 kinase domain homology model was constructed (*Example 1*). This model provides a plausible complex with the natural ligand ATP in the active site (*Figure 2*), as well as with two non-selective ATP-competitive kinase inhibitors, which were also found to inhibit PLK1, namely staurosporine [32] (IC₅₀ w.r.t. PLK1 = 0.4 μM) and 4
[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol [33] (IC₅₀ w.r.t. PLK1 = 4 μM) (*Figure 7*).

Of particular interest in the PLK1 kinase domain structure are Cys⁶⁷ and Cys¹³³, both of which line the ATP binding site. Cys¹³³ is located in the so-called hinge region, which is present in many kinases, and connects the N- and C-terminal lobes of the kinase domain. Its side chain projects away from the ATP-binding pocket, although its backbone NH and CO functions are probably involved in H-bonding with the purine system of ATP. The side chain of Cys⁶⁷ on the PLK1 N-terminal lobe, on the other hand, points into the ATP-binding pocket and probably contributes directly to ATP binding via contacts with the ribose and/or triphosphate moieties. The position occupied by Cys⁶⁷ in PLK1 is usually occupied by valine in other kinases and there contributes van der Waals contacts to ATP binding. A second unusual residue, Phe¹⁸³, which is commonly leucine in other kinases, also makes significant contributions to ATP binding through interactions with the purine system. These two key differences strongly suggest that they can be exploited in the generation of ATP-competitive inhibitors selective for PLK1. The presence of Cys⁶⁷ in the pocket opens up the possibility that covalent or irreversible inhibitors could be developed.

5

As discussed above, Cys^{67} of PLK1 is of particular interest, since in the modelled PLK1-ATP complex structure it is positioned closely to the ribose ring of ATP (Figure 4a). More specifically, a close contact between the Cys^{67} thiol group and the 5'-O of the ribose portion of ATP is observed. A suitable adenosine-derived covalent inhibitor would thus be 5'-thioadenosine. Modelling (Figure 4b) of this compound into the active site of PLK1 suggests that a simple rotation of the C^{α} - C^{β} bond of Cys^{67} should accommodate this inhibitor in such a way as to bring the sulfur atoms of Cys^{67} and 5'-thioadenosine into disulfide-bonding distance without large perturbations of the bound adenine portion.

10

15

20

25

30

5

In order to test the hypothesis that Cys⁶⁷ may indeed be involved in ATP binding by PLK1, the effect of non-specific thiol modifying agents such as thimerosal [34], Nethylmaleimide, and iodoacetamide on PLK1 enzymatic activity was studied. All these reagents were found to inhibit CDC25C phosphorylation by PLK1 to some extent, indicating the involvement of Cys residues in enzymatic activity. The fact that such inhibition could be abolished in the presence of an excess of the reducing agent dithiothreitol, which specifically reduces disulfide bonds and competes with Cys thiol groups for thiol modifying agents [35], is consistent with this notion (Example 8). Adenosine derivatives were studied next (Figure 5). Unmodified adenosine did not inhibit PLK1 function at concentrations up to 0.2 mM, whereas 2'- and 5'thioadenosines did. 5-Thioadenosine was about 3-fold more potent than its analogue 2'thioadenosine, supporting the hypothesis that the 5'-OH of the ribose ring is better oriented to react with Cys⁶⁷. Again a lack of inhibition was observed in the presence of DTT. Kinetic analysis of PLK1 inhibition (Example 14) showed that with e.g. 5'thioadenosine (Figure 6) this was dependent on ATP concentration but not competitive with ATP as would be the case for a reversible competitive ATP antagonist. The effects of the above thiol modifying reagents on a closely related serine/threonine kinase were also studied. Casein kinase II (CKII) was selected based on its sensitivity to certain inhibitors [36], e.g. wortmannin and LY294002 [37], which were also found to be capable of inhibiting PLK1 (IC50 with respect to PLK1 of < 0.1 μM and < 5 μM , respectively). No significant inhibition of CKII enzymatic activity was observed at concentrations up to 0.2 mM with thimerosal, N-ethylmaleimide, iodoacetamide,

6

adenosine, 2'-thioadenosine, or 5'-thioadenosine using the assay described in Example 4.

In summary, these results suggest that PLK-specific ATP antagonists can be developed that derive their potency and PLK selectivity from a combination of non-covalent binding to the unique ATP-binding pocket of PLK1 and covalent binding to the Cys⁶⁷ thiol group.

Observations from modelled structures of PLK1 inhibitors

15

20

30

Studies were also carried out on purvalanol A and various flavonoid molecules. Further details of these studies are outlined in the accompanying examples section

The interactions of the potent Cdk2 inhibitors, staurosporine and purvalanol A with the PLK1 ATP cavity reveal why both of these inhibitors are non-selective for the two kinases. Staurosporine makes similar H-bond and van der Waals contacts in both structures, however is rotated by about 30° in the PLK1 structure with regards to Cdk2. The non-bonded energies for this inhibitor indicate a rough correlation with the observed IC50's as shown by the ludi energetic scores of 456 (H-bond 131, lipophilic 307) with PLK1 and 726 (H-bond 230, lipophilic 478) for Cdk2 (higher value indicates more favourable binding). Analysis of these scores indicates that the less favourable H-bond interactions in the PLK1 context contribute significantly to the lower inhibition. Unfavourable hydrophobic contacts result in rotation of the inhibitor and less optimal geometry of the hinge H-bonds.

Purvalanol A also makes similar contacts with both enzymes with H-bonds from the aniline N, a H-bond like interaction from the purine C, and favourable contacts with the L130 "gatekeeper" residue (Figure 11A) and thus demonstrates the structural basis for binding to both kinases. Again less optimal van der Waals contacts in the PLK1 case result in less optimal H-bond interactions with the interdomain connecting hinge.

Molecular docking of morin hydrate, the most potent in the flavonoid series, with the PLK1 homology model gives significant insight into the interactions of this compound

7

with ATP binding site. A binding mode that is consistent with known kinase inhibitor interactions was observed and the inhibitor makes numerous van der Waals and H-bond contacts (Figure 11B). These include the two hydroxyls on the aromatic section of the flavonoid ring acting as H-bond donors to the carbonyls of C133 and E131. The flavonoid ring makes van der Waals interactions with L130, the gatekeeper residue and the 1,3 substituted catechol ring, makes H-bond contacts to the sidechain of D194 and the backbone amide of A65. Analysis of the activities of the other structural homologues in this series (Table 13) indicates that this observed pose of morin bound to PLK1 is consistent with the structure-activity relationship. Datescetin, which is identical to morin except lacks the ortho-hydroxyl is inactive suggesting a significant role for the 3'-hyrdoxyl. Quercetin however has partial activity and contains the 3hydroxyl but has no 1 hydroxyl. None of the other analogues in the series contains both the 1 and 3 position hydroxyls and therefore explains their loss of activity. The importance of both hydroxyl suggested by the SAR data is confirmed by the energetic contributions of H-bond interactions of these groups to the binding to the ATP cleft as shown in the docked structure. Placement of the hydroxyls on other positions in the ring would not allow optimal H-bond formation and thus indicates a structural rationale for their lack of potency in inhibiting PLK1 kinase activity.

Overall the postulated binding modes of the identified PLK1 inhibitors are energetically reasonable, consistent with observed structure-activity relationships and with the interactions of known kinase inhibitors. These results are therefore useful in design and synthesis of analogues of these structures which are optimized for PLK1 inhibition and selectivity.

25

30

5

10

15

Implications of the discovery of potent PLK1 kinase inhibitors

While the role of Cdks in the regulation of the cell cycle is very well established and comprehensively studied, PLKs clearly orchestrate events of the whole cell cycle [5]. However, very little is known about the physiological substrates for this class of enzymes. During mitosis and cytokinesis, PLKs are reported to associate with various structures involved in spindle formation and assembly including the centrosomes and kinetochores. Recent reports demonstrated the link between PLK1 in particular with

8

microtubule and microtubule-associated functions. Thus it is of a paramount importance to identify all the physiological substrates as well as all the posttranslational modifying enzymes for PLKs in order to understand their exact role in the cell cycle.

Over the last five years considerable efforts have been made in order to investigate the significance of PLK1 deregulation in the human health. A plethora of information is available strongly suggesting the oncogenicity of aberrantly expressed PLK1. As of yet, there is no direct evidence to prove the tumourogenic effects of the deregulated PLK1 activity and the challenge is therefore to determine the exact functions of PLK1 and subsequently determine the best routes for modulating this activity.

In the present study we sought to identify inhibitors of PLK1 in vitro and which could potentially applied to determine the cellular phenotype and consequences of reducing PLK1 kinase activity. The only inhibitor reported prior to this study is Scytonemin, a symmetric indolic marine natural product that is a micromolar non-specific ATP competitor [48]. Here we show for the first time that wortmannin is a very potent inhibitor of PLK1 while staurosporine and purvalanol A showed moderate inhibition.

15

20

25

30

Detailed examination indicated that while staurosporine inhibited PLK1 activity in an ATP dependent fashion, wortmannin inhibition was totally independent of ATP suggesting a different mode of binding. These results suggest a similar mode of inhibition to that reported previously for Phosphatidylinositol 3'OH kinase where wortmannin forms a covalent interaction with a Lysine residue (K833) positioned in the ATP binding pocket of the enzyme. Secondary structure analysis and homology modelling of the catalytic domain of PLK1 revealed the existence of a lysine residue (K82) projecting into the ATP binding cleft. It was therefore hypothesised that wortmannin covalently modifies this Lys residue and prevents ATP binding. It should be noted that previous reports clearly demonstrated that a single point mutation of K82 completely abolished the kinase activity of PLK1 since it required in the phosphotransfer step [49]. The observation from molecular modelling that the inhibitor docks in an orientation compatible with covalent interaction with K82, tolerates formation of the bond and energy minimisation without structural distortion and

WO 2005/047526

interacts similarly to the PI3 kinase binding mode additionally confirms the validity of the homology structure. The high plausibility of this model therefore strongly supports the experimental data indicating irreversible binding of Wortmannin and is consistent with the hypothesis for reactivity with K82.

5

10

20

25

30

In addition to the identification of wortmannin, staurosporine, and purvalanol A as inhibitors of PLK1 kinase, the described flavonoid compounds are potential tool compounds for *in vitro* cellular screening in order to determine a phenotype of PLK1 inhibition. They also represent starting points for designing potent and selective small molecule inhibitors of this enzyme.

Preferred embodiments of the invention will now be described.

In one preferred embodiment of the invention, the method comprises the steps of:

- 15 (a) providing at least a portion of the structure co-ordinates of *Table 2*;
 - (b) employing at least a portion of the structure co-ordinates of *Table 2* to design or select or synthesise a putative modulator of PLK;
 - (c) contacting the putative modulator of PLK with PLK or a mutant, variant, homologue, derivative or fragment thereof, in the presence of a substrate of PLK; and
 - (d) determining whether said putative modulator of PLK modulates PLK.

In a preferred embodiment, at least a portion of the structure co-ordinates of *Table 2* and/or the putative modulator of PLK and/or the substrate are provided on a machine-readable data storage medium comprising a data storage material encoded with machine readable data.

In a preferred embodiment, the putative modulator of PLK is selected from a library of compounds. Preferably, the library is an *in silico* library. Suitable *in silico* libraries will be familiar to those skilled in the art, and include the Available Chemical Directory (MDL Inc), the Derwent World Drug Index (WDI), BioByteMasterFile, the National Cancer Institute database (NCI), and the Maybridge catalogue.

In another preferred embodiment, the putative modulator of PLK is selected from a database.

In another preferred embodiment, the putative modulator of PLK is designed de novo.

5

In yet another preferred embodiment, the putative modulator of PLK is designed from a known PLK modulator.

Preferably, the design or selection of the putative modulator of PLK is performed in conjunction with computer modelling.

In one particularly preferred embodiment, the putative modulator of PLK inhibits PLK activity.

More preferably, the PLK is PLK1.

In a further preferred embodiment, the putative modulator of PLK is useful in the prevention and/or treatment of a PLK related disorder.

20 Even more preferably, the PLK related disorder is a proliferative disorder.

More preferably still, the proliferative disorder is selected from cancer, leukemia, glomerulonephritis, rheumatoid arthritis, psoriasis and chronic obstructive pulmonary disorder.

25

A second aspect of the invention relates to an assay for a candidate compound capable of modulating PLK, said assay comprising the steps of:

- (a) contacting said candidate compound with PLK;
- (b) detecting whether said candidate compound forms associations with one or more amino acid residues corresponding to PLK amino acid residues L59, G60, A65, C67, A80, K82, L130, E131, C133, R135, F183 and D194.

15

In one preferred embodiment, said candidate compound is selected by performing rational drug design with a 3-dimensional model of PLK in conjunction with computer modelling.

In an even more preferred embodiment, the assay comprises detecting whether said candidate compound forms an association with the amino acid residue corresponding to PLK amino acid residue C67.

A third aspect of the invention relates to the use of a compound selected from the following:

- 10 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate or derivatives thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol; 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an assay for identifying candidate compounds capable of modulating PLK.

Preferably, the compound of (ii) is staurosporine, wortmannin, purvalanol A, 20 LY294002, or morin hydrate. More preferably, the compound of (ii) is staurosporine, wortmannin, purvalanol A, even more preferably staurosporine or wortmannin.

Preferably, the assay is a competitive binding assay.

- 25 More preferably, the assay comprises contacting a candidate compound with PLK in the presence of a compound selected from:
 - (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate, or derivatives thereof; and
- 30 (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, and detecting any change in the interaction between (i), (ii) or (iii) and PLK.

Another aspect of the invention relates to a computer for producing a three-dimensional representation of PLK wherein said computer comprises:

- (a) a computer-readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprises the structure co-ordinates of *Table 2*;
- (b) a working memory for storing instructions for processing said computerreadable data;
 - (c) a central-processing unit coupled to said working memory and to said computerreadable data storage medium for processing said computer-machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

Another aspect of the invention relates to a machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by at least a portion of the structure co-ordinates of *Table 2*.

20

30

10

A further aspect of the invention relates to the use of the above-described computer or machine readable data storage medium to predict the structure and/or function of potential modulators of PLK.

Another aspect relates to the use of at least a portion of the structure co-ordinates of Table 2 to screen for modulators of PLK.

A further aspect relates to the use of at least a portion of the structure co-ordinates of *Table 2* to solve the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK.

13

Preferably, the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK is solved using molecular replacement.

- Yet another aspect of the invention relates to the use of at least a portion of the structure co-ordinates of *Table 2* in molecular design techniques to design, select and synthesise modulators of PLK.
- A further aspect of the invention relates to the use of at least a portion of the structure co-ordinates of *Table 2* in the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLK.

Another aspect of the invention relates to the use of at least a portion of the structure co-ordinates of *Table 2* to screen small molecule databases for chemical entities or compounds that modulate PLK.

PLK MODULATORS

A further aspect of the invention relates to a PLK modulator identified by the abovedescribed method, or a candidate compound identified by the above-described assay.

Preferably, the PLK modulator or candidate compound of the invention inhibits PLK activity.

- 25 More preferably, the PLK modulator or candidate compound of the invention is capable of forming a covalent bond with the amino acid residue corresponding to PLK amino acid residue C67.
- More preferably still, the PLK modulator or candidate compound of the invention is capable of forming a disulfide bond with the thiol group of the amino acid residue corresponding to PLK amino acid residue C67.

PCT/GB2004/004762 .

14

In one preferred embodiment, the PLK modulator or candidate compound of the invention is an irreversible antagonist.

The present invention permits the use of molecular design techniques to design, select and synthesise chemical entities and compounds, including PLK modulating compounds, capable of binding to PLK, in whole or in part.

By way of example, the structure co-ordinates of *Table 2* may be used to design compounds that bind to PLK and may alter the physical properties of the compounds (eg. solubility) or PLK itself. This invention may be used to design compounds that act as modulators, such as competitive inhibitors - of PLK by binding to all or a portion of the active site of PLK. Compounds may also be designed that act as non-competitive inhibitors of PLK. These non-competitive inhibitors may bind to all or a portion of PLK already bound to its substrate and may be more potent and specific than known PLK inhibitors that compete only for the PLK active site. Similarly, non-competitive inhibitors that bind to and inhibit PLK whether or not it is bound to another chemical entity may be designed using the structure co-ordinates of PLK described herein.

The present invention may also allow the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLK. Thus, the time-dependent analysis of structural changes in PLK during its interaction with other molecules may be performed. The reaction intermediates of PLK may also be deduced from the reaction product in co-complex with PLK. Such information is especially useful to design improved analogues of known PLK modulators or to design new PLK modulators based on the reaction intermediates of the PLK enzyme and PLK-modulator complex. This may provide a new route for designing PLK modulators with high specificity and stability. Preferably, this provides a new route for designing PLK modulators with high specificity, high stability and low toxicity.

30

25

WO 2005/047526

5

10

15

20

Small molecule databases or candidate compounds may be screened for chemical entities or compounds that can bind in whole, or in part, to PLK. Thus, in a preferred

15

embodiment, the putative PLK modulator is from a library of compounds or a database. In this screening, the quality of fit of such entities or compounds to the binding site may be judged by various methods – such as shape complementarity or estimated interaction energy (Meng, E. C. et al., J. Comp. Chem., 13, pp. 505-524 (1992)).

5

The structure co-ordinates of *Table 2*, or portions thereof, may also be useful in solving the structure of crystal forms of PLK. They may also be used to solve the structure of PLK mutants, PLK variants, PLK homologues, PLK derivatives, PLK fragments and PLK complexes.

10

15

Preferably, the structure co-ordinates of Table 2 may be used to solve the structure of the crystalline form of proteins having significant amino acid sequence homology to any functional domain of PLK. By way of example, molecular replacement may be used. In this method, the unknown crystal structure, whether it is a crystal form of PLK, a PLK mutant, a PLK variant, a PLK homologue (eg. another protein with significant amino acid sequence homology to any functional domain of PLK), a PLK derivative, a PLK fragment or a PLK co-complex may be determined using the PLK structure co-ordinates of the present invention. This method will provide a more accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information ab initio.

In a preferred embodiment of the present invention, the PLK crystal of unknown structure further comprises an entity bound to the PLK protein or a portion thereof, for example, an entity that is an inhibitor of PLK.

25

30

20

The crystal structures of such complexes may be solved by molecular replacement or in combination with MAD (Multiwavelength Anomalous Dispersion) and/or MIRAS (Multiple Isomorphous Replacement with Anomalous Scattering) procedures - and compared with that of wild-type PLK. Potential sites for modification within the binding sites of the enzyme may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between PLK and a chemical entity or compound.

16

The structures and complexes of PLK may be refined using computer software - such as X-PLOR (Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)), MLPHARE (Collaborative computational project Number 4. The CCP4 Suite: Programs for Protein Crystallography (1994) Acta Crystallogr. D 50, 760-763) and SHARP [De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameters refinement in the MIR and MAD methods (1997) Methods Enzymol. 276, 472-494). Preferably, the complexes are refined using the program CNS (Brünger et al. (1998) Acta Crystallogr. D 54, 905-921). During the final stages of refinement water molecules, ions and inhibitor molecules may be inserted in the structure. This information may thus be used to optimise known classes of PLK modulators, eg. PLK inhibitors, and more importantly, to design and synthesise novel classes of PLK modulators.

5

10

15

20

25

30

The overall figure of merit may be improved by iterative solvent flattening, phase combination and phase extension with the program SOLOMON [Abrahams, J. P. & Leslie, A. G. W. Methods used in structure determination of bovine mitochondrial F1 ATPase. (1996) Acta Crystallogr. D 52, 110-119].

The structure co-ordinates of the homology model of the present invention may also facilitate the identification of related proteins or enzymes analogous to PLK in function, structure or both, thereby further leading to novel therapeutic modes for treating or preventing PLK related diseases.

The design of compounds that bind to or modulate PLK according to the present invention generally involves consideration of two factors. Firstly, the compound must be capable of physically and structurally associating with PLK. Non-covalent molecular interactions important in the association of PLK with its substrate may include hydrogen bonding, van der Waals and hydrophobic interactions. Secondly, the compound must be able to assume a conformation that allows it to associate with PLK. Although certain portions of the compound may not directly participate in the association with PLK, those portions may still influence the overall conformation of the molecule. This may have a significant impact on potency. Such conformational

requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of a binding site of PLK, or the spacing between functional groups of a compound comprising several chemical entities that directly interact with PLK.

5

The potential modulating or binding effect of a chemical compound on PLK may be analysed prior to its actual synthesis and testing by the use of computer modelling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association with PLK, then synthesis and testing of the compound may be obviated. However, if computer modelling indicates a strong interaction, the molecule may be synthesised and tested for its ability to bind to PLK and modulate (eg. inhibit) using the fluorescent substrate assay of Thornberry et al. (2000) Methods Enzymol. 322, pp 100-110. In this manner, synthesis of inactive compounds may be avoided.

15

10

A modulating or other binding compound of PLK may be computationally evaluated and designed by means of a series of steps in which chemical entities or candidate compounds are screened and selected for their ability to associate with PLK.

A person skilled in the art may use one of several methods to screen chemical entities or candidate compounds for their ability to associate with PLK and more particularly with the individual binding sites of PLK. This process may begin by visual inspection of, for example, the active site on the computer screen based on the PLK co-ordinates of the present invention. Selected chemical entities or candidate compounds may then be positioned in a variety of orientations, or docked, with PLK. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimisation and molecular dynamics with standard molecular mechanics force fields -

Specialised computer programs may also assist in the process of selecting chemical entities or candidate compounds. These include but are not limited to MCSS (Miranker and Karplus (1991) Proteins: Structure, Function and Genetics, 11, pp. 29-34); GRID

such as CHARMM and AMBER.

18

(Goodford (1985) J. Med. Chem., 28, pp. 849-857) and AUTODOCK (Goodsell and Olsen (1990), Proteins: Structure. Function, and Genetics, 8, pp. 195-202.

Once suitable chemical entities or candidate compounds have been selected, they may be assembled into a single compound, such as a PLK modulator. Assembly may proceed by visual inspection of the relationship of the chemical entities or candidate compounds in relation to the structure co-ordinates of PLK. This may be followed by manual model building using software - such as Quanta, Sybyl, O, HOOK or CAVEAT [Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A 47, 110-119].

5

10

15

20

25

Refinement of the model may be carried out using the program CNS [Brünger, A. T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. (1998) Acta Crystallogr. D 54, 905-921].

Various programs may be used by a skilled person to connect the individual chemical entities or candidate compounds, such as 3D Database systems (Martin (1992) *J. Med. Chem.*, 35, pp. 2145-2154) and CAVEAT (Bartlett *et al.* (1989) *Royal Chem. Soc.* 78, pp. 182-196).

Rather than build a PLK inhibitor one chemical entity at a time, modulating or other PLK binding compounds may be designed as a whole or *de novo* using either an empty binding site or optionally including some portion(s) of a known inhibitor(s). Such compounds may be designed using programs that may include but are not limited to LEGEND (Nishibata and Itai (1991) Tetrahedron, 47, p. 8985) and LUDI (Bohm (1992) J. Comp. Aid. Molec. Design, 6, pp. 61-78).

Other molecular modelling techniques may also be employed in accordance with this invention – such as those described by Cohen et al., J. Med. Chem., 33, pp. 883-894 (1990); Navia and Murcko (1992) Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

19

Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to PLK may be computationally evaluated. Specific computer software may be used to evaluate the efficiency of binding (eg. to evaluate compound deformation energy and electrostatic interaction), such as QUANTA/CHARMM (Accelrys Inc., USA) and Insight II/Discover (Biosym Technologies Inc., San Diego, Calif., USA). These programs may be implemented, for instance, using a suitable workstation. Other hardware systems and software packages will be known to those persons skilled in the art.

Once a PLK-modulating compound has been selected or designed, as described above, substitutions may be made (eg. in atoms or side groups) to improve or modify the binding properties. The substitutions may be conservative ie. the replacement group may have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analysed for efficiency of binding to PLK by the same computer methods described above.

Candidate compounds and modulators of PLK etc. which are identified using the methods of the present invention may be screened in assays. Screening can be, for example in vitro, in cell culture, and/or in vivo. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity.

25

20

5

Current screening technologies are described in Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes. New York, NY, Marcel Dekker, (2001).

30 MODULATING PLK

As herein, the term "modulating" or "modulates" refers to preventing, suppressing, inhibiting, alleviating, restorating, elevating, increasing or otherwise affecting PLK.

20

The term "PLK modulator" may refer to a single entity or a combination of entities.

The PLK modulator may be an antagonist or an agonist of PLK.

As used herein, the term "agonist" means any entity, which is capable of interacting (eg. binding) with PLK and which is capable of increasing a proportion of the PLK that is in an active form, resulting in an increased biological response.

As used herein, the term "antagonist" means any entity, which is capable of interacting (eg. binding) with PLK and which is capable of decreasing (eg. inhibiting) a proportion of the PLK that is in an active form, resulting in a decreased biological response.

Preferably, the PLK modulators of the present invention are antagonists of PLK.

15 The modulator of PLK may be an organic compound or other chemical. The modulator of PLK may be a compound, which is obtainable from or produced by any suitable source, whether natural or artificial. The modulator of PLK may be an amino acid molecule, a polypeptide, or a chemical derivative thereof, or a combination thereof. The modulator of PLK may even be a polynucleotide molecule, which may be a sense or an anti-sense molecule. The modulator of PLK may even be an antibody.

The modulator of PLK may be designed or obtained from a library of compounds, which may comprise peptides, as well as other compounds, such as small organic molecules.

25

30

10

By way of example, the modulator of PLK may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic agent, a semi-synthetic agent, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised agent, a peptide cleaved from a whole protein, or a peptide synthesised synthetically (such as, by way of example, either using a peptide synthesiser or by recombinant techniques or combinations thereof, a recombinant agent,

an antibody, a natural or a non-natural agent, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof).

Typically, the modulator of PLK will be an organic compound. Typically, the organic compounds will comprise two or more hydrocarbyl groups. Here, the term 5 "hydrocarbyl group" means a group comprising at least C and H and may optionally comprise one or more other suitable substituents. Examples of such substituents may include halo-, alkoxy-, nitro-, an alkyl group, a cyclic group etc. In addition to the possibility of the substituents being a cyclic group, a combination of substituents may form a cyclic group. If the hydrocarbyl group comprises more than one C then those 10 carbons need not necessarily be linked to each other. For example, at least two of the carbons may be linked via a suitable element or group. Thus, the hydrocarbyl group may contain hetero atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for instance, sulphur, nitrogen and oxygen. For some applications, preferably the modulator of PLK comprises at least one cyclic group. The cyclic group 15 may be a polycyclic group, such as a non-fused polycyclic group. applications, the modulator of PLK comprises at least the one of said cyclic groups linked to another hydrocarbyl group.

The modulator of PLK may contain halo groups, for example, fluoro, chloro, bromo or iodo groups, or one or more of alkyl, alkoxy, alkenyl, alkylene and alkenylene groups, each of which may be branched or unbranched.

The modulator of PLK may be a structurally novel modulator of PLK, or may be an analogue of a known modulator of PLK.

Preferably, the PLK modulators have improved properties over those previously available, for example, fewer side effects.

The modulator of PLK may be a mimetic, or may be chemically modified.

The modulator of PLK may be capable of displaying other therapeutic properties.

22

The modulator of PLK may be used in combination with one or more other pharmaceutically active agents. If combinations of active agents are administered, then they may be administered simultaneously, separately or sequentially.

5 CANDIDATE COMPOUNDS

As used herein, the term "candidate compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not.

10 The candidate compound may be designed or obtained from a library of compounds, which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the candidate compound may be a natural substance, a biological macromolecule, or an extract made from biological materials - such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic candidate compound, a 15 semi-synthetic candidate compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised candidate compound, a peptide cleaved from a whole protein, or a peptide synthesised synthetically, for example, either using a peptide synthesiser or by recombinant techniques or combinations thereof, a recombinant 20 candidate compound, a natural or a non-natural candidate compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof. The candidate compound may even be a compound that is a modulator of PLK, such as a known inhibitor of PLK, that has been modified in some way eg. by recombinant DNA techniques or chemical synthesis techniques.

25

Typically, the candidate compound will be prepared by recombinant DNA techniques and/or chemical synthesis techniques.

Once a candidate compound capable of interacting PLK has been identified, further steps may be carried out to select and/or to modify the candidate compounds and/or to modify existing compounds, such that they are able to modulate PLK.

23

In one aspect, the modulator of PLK may act as a model (for example, a template) for the development of other compounds.

A further aspect relates to the use of candidate compounds or PLK modulators identified by the assays and methods of the invention in one or more model systems, for example, in a biological model, a disease model, or a model for PLK inhibition. Such models may be used for research purposes and for elucidating further details of the biological, physicochemical, pharmacological and/or pharmacokinetic activity of a particular candidate compound. By way of example, the candidate compounds or PLK modulators of the present invention may be used in biological models or systems in which the cell cycle is known to be of particular significance, e.g. in models relating to cell fertilization, especially in animals.

MIMETIC

5

10

25

As used herein, the term "mimetic" relates to any chemical which includes, but is not limited to, a peptide, polypeptide, antibody or other organic chemical which has the same qualitative activity or effect as a known compound. That is, the mimetic is a functional equivalent of a known compound.

20 CHEMICAL SYNTHESIS METHODS

Preferably, the modulator of PLK of the present invention may be prepared by chemical synthesis techniques.

It will be apparent to those skilled in the art that sensitive functional groups may need to be protected and deprotected during synthesis of a compound of the invention. This may be achieved by conventional techniques, for example as described in "Protective Groups in Organic Synthesis" by T W Greene and P G M Wuts, John Wiley and Sons Inc. (1991), and by P.J.Kocienski, in "Protecting Groups", Georg Thieme Verlag (1994).

It is possible during some of the reactions that any stereocentres present could, under certain conditions, be racemised, for example if a base is used in a reaction with a substrate having an having an optical centre comprising a base-sensitive group. This is possible during e.g. a guanylation step. It should be possible to circumvent potential

problems such as this by choice of reaction sequence, conditions, reagents, protection/deprotection regimes, etc. as is well-known in the art.

The compounds and salts may be separated and purified by conventional methods.

5

10

25

30

Separation of diastereomers may be achieved by conventional techniques, e.g. by fractional crystallisation, chromatography or H.P.L.C. of a stereoisomeric mixture of a compounds or suitable salts or derivatives thereof. An individual enantiomer of a compound may also be prepared from a corresponding optically pure intermediate or by resolution, such as by H.P.L.C. of the corresponding racemate using a suitable chiral support or by fractional crystallisation of the diastereomeric salts formed by reaction of the corresponding racemate with a suitably optically active acid or base.

PLK, modulators of PLK or variants, homologues, derivatives, fragments or mimetics thereof may be produced using chemical methods to synthesise the PLK or the modulator of PLK in whole or in part. For example, a PLK peptide or a modulator of PLK that is a peptide can be synthesised by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures And Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).

Synthesis of peptides (or variants, homologues, derivatives, fragments or mimetics thereof) may be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences comprising the modulator of PLK, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant modulator of PLK.

CHEMICAL MODIFICATION

In one embodiment, the modulator of PLK may be a chemically modified modulator of PLK. The chemical modification of a modulator of PLK may either enhance or reduce interactions between the modulator of PLK and the target, such as hydrogen bonding interactions, charge interactions, hydrophobic interactions, van der Waals interactions or dipole interactions.

PROCESS

5

Another aspect of the invention relates to a process comprising the steps of:

- 10 (a) performing the method according to the invention, or an assay according to the invention;
 - (b) identifying one or more modulators of PLK; and
 - (c) preparing a quantity of said one or more PLK modulators.
- 15 A further aspect of the invention relates to a process comprising the steps of:
 - (a) performing the method according to the invention, or an assay according to the invention;
 - (b) identifying one or more PLK modulators; and
- (c) preparing a pharmaceutical composition comprising said one or more identified PLK modulators.

A further aspect relates to a process comprising the steps of:

- (a) performing the method according to the invention, or an assay according to the invention;
- 25 (b) identifying one or more PLK modulators;
 - (c) modifying said one or more PLK modulators; and
 - (d) optionally preparing a pharmaceutical composition comprising said one or more PLK modulators.

30 PHARMACEUTICAL COMPOSITIONS

Another aspect of the invention relates to a pharmaceutical composition comprising a PLK modulator or candidate compound of the invention and a pharmaceutically

26

acceptable carrier, diluent, excipient or adjuvant or any combination thereof. Even though the PLK modulators or candidate compounds (including their pharmaceutically acceptable salts, esters and pharmaceutically acceptable solvates) can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent, particularly for human therapy. The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine.

Examples of such suitable excipients for the various different forms of pharmaceutical compositions described herein may be found in the "Handbook of Pharmaceutical Excipients, 2nd Edition, (1994), Edited by A Wade and PJ Weller.

Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985).

15

10

5

Examples of suitable carriers include lactose, starch, glucose, methyl cellulose, magnesium stearate, mannitol, sorbitol and the like. Examples of suitable diluents include ethanol, glycerol and water.

The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as, or in addition to, the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

25

Examples of suitable binders include starch, gelatin, natural sugars such as glucose, anhydrous lactose, free-flow lactose, beta-lactose, com sweeteners, natural and synthetic gums, such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose and polyethylene glycol.

30

Examples of suitable lubricants include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.

27

Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may be also used.

5

25

30

SALTS/ESTERS

The PLK modulators or candidate compounds of the present invention can be present as salts or esters, in particular pharmaceutically acceptable salts or esters.

Pharmaceutically acceptable salts of the PLK modulators or candidate compounds of 10 the invention include suitable acid addition or base salts thereof. A review of suitable pharmaceutical salts may be found in Berge et al, J Pharm Sci, 66, 1-19 (1977). Salts are formed, for example with strong inorganic acids such as mineral acids, e.g. sulphuric acid, phosphoric acid or hydrohalic acids; with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or 15 substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as (C1-C4)-alkyl- or aryl-20 sulfonic acids which are unsubstituted or substituted (for example, by a halogen) such as methane- or p-toluene sulfonic acid.

Esters are formed either using organic acids or alcohols/hydroxides, depending on the functional group being esterified. Organic acids include carboxylic acids, such as alkanecarboxylic acids of 1 to 12 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acid, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as (C₁-C₄)-alkyl- or aryl-sulfonic acids which are unsubstituted or substituted (for example, by a halogen) such as methane- or p-toluene

28

sulfonic acid. Suitable hydroxides include inorganic hydroxides, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide. Alcohols include alkanealcohols of 1-12 carbon atoms which may be unsubstituted or substituted, e.g. by a halogen).

5

10

25

30

ENANTIOMERS/TAUTOMERS

In all aspects of the present invention previously discussed, the invention includes, where appropriate all enantiomers and tautomers of the PLK modulators or candidate compounds of the invention. The man skilled in the art will recognise compounds that possess an optical properties (one or more chiral carbon atoms) or tautomeric characteristics. The corresponding enantiomers and/or tautomers may be isolated/prepared by methods known in the art.

STEREO AND GEOMETRIC ISOMERS

Some of the PLK modulators or candidate compounds of the invention may exist as stereoisomers and/or geometric isomers, e.g. they may possess one or more asymmetric and/or geometric centres and so may exist in two or more stereoisomeric and/or geometric forms. The present invention contemplates the use of all the individual stereoisomers and geometric isomers of those agents, and mixtures thereof. The terms used in the claims encompass these forms, provided said forms retain the appropriate functional activity (though not necessarily to the same degree).

The present invention also includes all suitable isotopic variations of the PLK modulators or candidate compounds, or pharmaceutically acceptable salts thereof. An isotopic variation of a PLK modulator or candidate compound of the present invention or a pharmaceutically acceptable salt thereof is defined as one in which at least one atom is replaced by an atom having the same atomic number but an atomic mass different from the atomic mass usually found in nature. Examples of isotopes that can be incorporated into the agent and pharmaceutically acceptable salts thereof include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulphur, fluorine and chlorine such as ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁷O, ¹⁸O, ³¹P, ³²P, ³⁵S, ¹⁸F and ³⁶Cl, respectively. Certain isotopic variations of the agent and pharmaceutically acceptable salts thereof,

29

for example, those in which a radioactive isotope such as ³H or ¹⁴C is incorporated, are useful in drug and/or substrate tissue distribution studies. Tritiated, i.e., ³H, and carbon-14, i.e., ¹⁴C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with isotopes such as deuterium, i.e., ²H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased *in vivo* half-life or reduced dosage requirements and hence may be preferred in some circumstances. Isotopic variations of the PLK modulators or candidate compounds of the present invention can generally be prepared by conventional procedures using appropriate isotopic variations of suitable reagents.

10

5

SOLVATES

The present invention also includes solvate forms of the PLK modulators or candidate compounds, for example, hydrates. The terms used in the claims encompass these forms.

. 15

20

POLYMORPHS

The invention furthermore relates to PLK modulators or candidate compounds of the present invention in their various crystalline forms, polymorphic forms and (an)hydrous forms. It is well established within the pharmaceutical industry that chemical compounds may be isolated in any of such forms by slightly varying the method of purification and or isolation form the solvents used in the synthetic preparation of such compounds.

PRODRUGS

The invention further includes PLK modulators or candidate compounds of the present invention in prodrug form. Such prodrugs are generally compounds of the invention wherein one or more appropriate groups have been modified such that the modification may be reversed upon administration to a human or mammalian subject. Such reversion is usually performed by an enzyme naturally present in such subject, though it is possible for a second agent to be administered together with such a prodrug in order to perform the reversion in vivo. Examples of such modifications include ester (for

example, any of those described above), wherein the reversion may be carried out be an esterase etc. Other such systems will be well known to those skilled in the art.

THERAPEUTIC USE

- The PLK modulators or candidate compounds of the present invention have been found to possess anti-proliferative activity and are therefore believed to be of use in the treatment of proliferative disorders, such as cancers, leukaemias or other disorders associated with uncontrolled cellular proliferation such as psoriasis and restenosis.
- A further aspect of the invention therefore relates to a method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a compound selected from the following:
 - (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate
 or derivatives thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethylthiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK such that said proliferative disorder is treated.

Another aspect relates to a method of treating a proliferative disorder comprising inhibiting PLK by administering to a subject in need thereof, a therapeutically effective amount of a compound selected from the following:

25 (i) 5'-thioadenosine, or a derivative thereof;

30

- (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate or derivatives thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that treatment of the proliferative disorder occurs.

31

Another aspect of the invention relates to a method of preventing and/or treating a PLK related disorder comprising administering a PLK modulator or candidate compound of the invention and/or a pharmaceutical composition according to the invention, wherein said PLK modulator, said candidate compound or said pharmaceutical, is capable of causing a beneficial preventative and/or therapeutic effect.

Preferably, for this aspect, the PLK modulator or candidate compound is selected from the following:

- (i) 5'-thioadenosine, or a derivative thereof:
- 10 (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate, or derivatives thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
- or a pharmaceutically acceptable salt thereof.

A further aspect of the invention relates to the use of a PLK modulator or candidate compound according to the invention in the preparation of a medicament for treating a PLK related disorder. Preferably, the PLK related disorder is a proliferative disorder, more preferably cancer.

As used herein the phrase "preparation of a medicament" includes the use of the compound directly as the medicament in addition to its use in a screening programme for further therapeutic agents or in any stage of the manufacture of such a medicament.

25

20

5

Another aspect relates to a method of treating a PLK dependent disorder in a subject in need thereof, said method comprising administering to said subject a compound selected from the following:

- (i) 5'-thioadenosine, or a derivative thereof;
- 30 (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate, or derivatives thereof; and

32

(iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK.

5

10

15

Preferably, the PLK dependent disorder is a disorder associated with increased PLK activity. Even more preferably, the disorder is cancer.

The term "proliferative disorder" is used herein in a broad sense to include any disorder that requires control of the cell cycle, for example cardiovascular disorders such as restenosis and cardiomyopathy, auto-immune disorders such as glomerulonephritis and rheumatoid arthritis, dermatological disorders such as psoriasis, anti-inflammatory, anti-fungal, antiparasitic disorders such as malaria, emphysema and alopecia. In these disorders, the compounds of the present invention may induce apoptosis or maintain stasis within the desired cells as required.

Preferably, the proliferative disorder is a cancer or leukaemia.

In another preferred embodiment, the proliferative disorder is psoriasis.

20

25

30

The compounds of the invention may inhibit any of the steps or stages in the cell cycle, for example, formation of the nuclear envelope, exit from the quiescent phase of the cell cycle (G0), G1 progression, chromosome decondensation, nuclear envelope breakdown, START, initiation of DNA replication, progression of DNA replication, termination of DNA replication, centrosome duplication, G2 progression, activation of mitotic or meiotic functions, chromosome condensation, centrosome separation, microtubule nucleation, spindle formation and function, interactions with microtubule motor proteins, chromatid separation and segregation, inactivation of mitotic functions, formation of contractile ring, and cytokinesis functions. In particular, the compounds of the invention may influence certain gene functions such as chromatin binding, formation of replication complexes, replication licensing, phosphorylation or other secondary modification activity, proteolytic degradation, microtubule binding, actin

5

10

25

30

binding, septin binding, microtubule organising centre nucleation activity and binding to components of cell cycle signalling pathways.

As defined herein, an anti-proliferative effect within the scope of the present invention may be demonstrated by the ability to inhibit cell proliferation in an *in vitro* whole cell assay, for example using any of the cell lines A549, HeLa, HT-29, MCF7, Saos-2, CCRF-CEM, HL-60 and K-562, or by showing kinase inhibition in an appropriate assay. These assays, including methods for their performance, are described in more detail in the accompanying Examples. Using such assays it may be determined whether a compound is anti-proliferative in the context of the present invention.

In one preferred embodiment, the compound of the invention is administered orally.

In one embodiment of the invention, the compound of the invention is administered in an amount sufficient to inhibit at least one PLK enzyme.

In a more preferred embodiment of the invention, the compound of the invention is administered in an amount sufficient to inhibit PLK1.

In one particularly preferred embodiment, the compounds of the invention are ATP-antagonistic inhibitors of PLK1.

In the present context ATP antagonism refers to the ability of an inhibitor compound to diminish or prevent PLK catalytic activity, i.e. phosphotransfer from ATP to a macromolecular PLK substrate, by virtue of reversibly or irreversibly binding at the enzyme's active site in such a manner as to impair or abolish ATP binding.

In another preferred embodiment, the compound of the invention is administered in an amount sufficient to inhibit PLK2 and/or PLK3.

Yet another aspect relates to a method of inhibiting PLK in a cell comprising contacting said cell with an amount of a compound selected from the following:

34

- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, wortmannin, purvalanol A, LY294002, quercetin, morin hydrate, or derivatives thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that PLK is inhibited in said cell.

Preferably, the cell is a cancer cell.

10

15

5

ADMINISTRATION

The pharmaceutical compositions of the present invention may be adapted for oral, rectal, vaginal, parenteral, intramuscular, intraperitoneal, intraarterial, intrathecal, intrabronchial, subcutaneous, intradermal, intravenous, nasal, buccal or sublingual routes of administration.

For oral administration, particular use is made of compressed tablets, pills, tablets, gellules, drops, and capsules. Preferably, these compositions contain from 1 to 250 mg and more preferably from 10-100 mg, of active ingredient per dose.

20

25

30

Other forms of administration comprise solutions or emulsions which may be injected intravenously, intraarterially, intrathecally, subcutaneously, intradermally, intraperitoneally or intramuscularly, and which are prepared from sterile or sterilisable solutions. The pharmaceutical compositions of the present invention may also be in form of suppositories, pessaries, suspensions, emulsions, lotions, ointments, creams, gels, sprays, solutions or dusting powders.

An alternative means of transdermal administration is by use of a skin patch. For example, the active ingredient can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin. The active ingredient can also be incorporated, at a concentration of between 1 and 10% by weight, into an

ointment consisting of a white wax or white soft paraffin base together with such stabilisers and preservatives as may be required.

Injectable forms may contain between 10 - 1000 mg, preferably between 10 - 250 mg, of active ingredient per dose.

Compositions may be formulated in unit dosage form, i.e., in the form of discrete portions containing a unit dose, or a multiple or sub-unit of a unit dose.

10 **DOSAGE**

15

20

25

A person of ordinary skill in the art can easily determine an appropriate dose of one of the instant compositions to administer to a subject without undue experimentation. Typically, a physician will determine the actual dosage which will be most suitable for an individual patient and it will depend on a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. The dosages disclosed herein are exemplary of the average case. There can of course be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

Depending upon the need, the agent may be administered at a dose of from 0.01 to 30 mg/kg body weight, such as from 0.1 to 10 mg/kg, more preferably from 0.1 to 1 mg/kg body weight.

In an exemplary embodiment, one or more doses of 10 to 150 mg/day will be administered to the patient for the treatment of malignancy.

30 PLK FRAGMENT

Another aspect of the invention relates to a fragment of PLK, or a homologue, mutant, or derivative thereof, comprising a ligand binding domain, said ligand binding domain

36

being defined by the amino acid residue structural coordinates selected from one or more of the following: L59, G60, A65, C67, A80, K82, L130, E131, C133, R135, F183 and D194.

As used herein, the term "ligand binding domain (LBD)" means the ligand binding region of PLK which is responsible for ligand binding. The term "ligand binding domain" also includes a homologue of the ligand binding domain, or a portion thereof.

As used herein, the term "portion thereof" means the structural co-ordinates corresponding to a sufficient number of amino acid residues of the PLK sequence (or homologue thereof) that are capable of interacting with a candidate compound capable of binding to the LBD. This term includes ligand binding domain amino acid residues having amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural co-ordinates provided in the homology model may contain a subset of the amino acid residues in the LBD which may be useful in the modelling and design of compounds that bind to the LBD.

In one preferred embodiment, the fragment of PLK, or a homologue, mutant or derivative thereof, corresponds to a portion of the structure co-ordinates of *Table 2*.

20

30

Another aspect of the invention relates to the use of the above-described fragment of PLK, or a homologue, mutant, or derivative thereof, in an assay for identifying candidate compounds capable of modulating PLK.

25 The PLK proteins produced by a host recombinant cell may be secreted or may be contained intracellularly depending on the nucleotide sequence and/or the vector used.

As will be understood by those skilled in the art, expression vectors containing a PLK encoding nucleotide sequence or a mutant, variant, homologue, derivative or fragment thereof, may be designed with signal sequences which direct secretion of the PLK coding sequences through a particular prokaryotic or eukaryotic cell membrane.

37

The PLK encoding sequence may be fused (eg. ligated) to nucleotide sequences encoding a polypeptide domain which will facilitate purification of soluble proteins (Kroll *DJ et al* (1993) DNA Cell Biol 12:441-53). Preferably, the polypeptide domain which facilitates purification of soluble proteins is fused in frame with the PLK encoding sequence. Such purification facilitating domains include, but are not limited to, metal chelating peptides—such as histidine-tryptophan modules that allow purification on immobilised metals (Porath J (1992) Protein Expr Purif 3, 263-281), protein A domains that allow purification on immobilised immunoglobulin, and the domain utilised in the FLAGS extension/affinity purification system (Immunex Corp, Seattle, WA). The inclusion of a cleavable linker sequence such as Factor XA or enterokinase (Invitrogen, San Diego, CA) between the purification domain and PLK is useful to facilitate purification.

NUCLEOTIDE SEQUENCES

5

10

15

25

30

As used herein, the term "nucleotide sequence" refers to nucleotide sequences, oligonucleotide sequences, polynucleotide sequences and variants, homologues, fragments and derivatives thereof (such as portions thereof) which comprise the nucleotide sequences encoding PLK.

The nucleotide sequence may be DNA or RNA of genomic or synthetic or recombinant origin, which may be double-stranded or single-stranded whether representing the sense or antisense strand or combinations thereof.

Preferably, the term nucleotide sequence is prepared by use of recombinant DNA techniques (e.g. recombinant DNA). The nucleotide sequences may include within them synthetic or modified nucleotides. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothioate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the nucleotide sequences described herein may be modified by any method available in the art.

It will be understood by a skilled person that numerous different nucleotide sequences can encode the same protein as a result of the degeneracy of the genetic code. In addition, it is to be understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not substantially affect the activity encoded by the nucleotide sequence of the present invention to reflect the codon usage of any particular host organism in which the target is to be expressed. Thus, the terms "variant", "homologue" or "derivative" in relation to nucleotide sequences include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acids from or to the sequence providing the resultant nucleotide sequence encodes a functional protein according to the present invention (or even a modulator of PLK according to the present invention if said modulator comprises a nucleotide sequence or an amino acid sequence).

AMINO ACID SEQUENCES

WO 2005/047526

5

10

25

As used herein, the term "amino acid sequence" is synonymous with the term "polypeptide" and/or the term "protein". In some instances, the term "amino acid sequence" is synonymous with the term "peptide".

The amino acid sequence may be isolated from a suitable source, or it may be made synthetically or it may be prepared by use of recombinant DNA techniques.

VARIANTS/HOMOLOGUES/DERIVATIVES/FRAGMENTS

The PLK described herein is intended to include any polypeptide, which has the activity of the naturally occurring PLK and includes all vertebrate and mammalian forms. Such terms also include polypeptides that differ from naturally occurring forms of PLK by having amino acid deletions, substitutions, and additions, but which retain the activity of PLK.

The term "variant" is used to mean a naturally occurring polypeptide or nucleotide sequences which differs from a wild-type or a native sequence.

39

The term "fragment" indicates that a polypeptide or nucleotide sequence comprises a fraction of a wild-type or a native sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. The sequence may also comprise other elements of sequence, for example, it may be a fusion protein with another protein. Preferably the sequence comprises at least 50%, more preferably at least 65%, more preferably at least 80%, most preferably at least 90% of the wild-type sequence.

5

10

15

25

30

The present invention also encompasses the use of variants, homologues and derivatives of nucleotide and amino acid sequences. Here, the term "homologue" means an entity having a certain homology with amino acid sequences or nucleotide sequences. Here, the term "homology" can be equated with "identity".

In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), it is preferred to express homology in terms of sequence identity.

An homologous sequence is taken to include a nucleotide sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

% homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid – Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST

5

10

15

20

25

41

2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8)

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62. Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

The sequences may also have deletions, insertions or substitutions of amino acid residues, which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

Conservative substitutions may be made, for example according to the Table below.

Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP	
		ILV	
	Polar - uncharged	CSTM	
		NQ	
	Polar - charged	DE	
		KR	
AROMATIC		HFWY	

Homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue, with an alternative residue) may occur i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.

Replacements may also be made by unnatural amino acids include; alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine*, p-Cl-phenylalanine*, p-Br-phenylalanine*, p-I-phenylalanine*, L-allyl-glycine*, β-alanine*, L-α-amino butyric acid*, L-γ-amino butyric acid*, L-α-amino isobutyric acid*, L-ε-amino caproic acid*, 7-amino heptanoic acid*, L-methionine sulfone**, L-norleucine*, L-norvaline*, p-nitro-L-phenylalanine*, L-hydroxyproline*, L-thioproline*, methyl derivatives of phenylalanine (Phe) such as 4-methyl-Phe*, pentamethyl-Phe*, L-Phe (4-amino)*, L-Tyr (methyl)*, L-Phe (4-isopropyl)*, L-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid)*, L-diaminopropionic acid * and L-Phe (4-benzyl)*. The notation * has been utilised for the purpose of the discussion above (relating to homologous or non-homologous substitution), to indicate the hydrophobic nature of the derivative whereas * has been utilised to indicate the hydrophilic nature of the derivative, * indicates amphipathic characteristics.

43

The term "derivative" or "derivatised" as used herein includes chemical modification of an entity, such as candidate compound or a PLK modulator. Illustrative of such chemical modifications would be replacement of hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

5

10

15

Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or βalanine residues. A further form of variation, involves the presence of one or more amino acid residues in peptoid form, will be well understood by those skilled in the art. For the avoidance of doubt, "the peptoid form" is used to refer to variant amino acid residues wherein the α-carbon substituent group is on the residue's nitrogen atom rather than the α-carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon RJ et al., PNAS (1992) 89(20), 9367-9371 and Horwell DC, Trends Biotechnol. (1995) 13(4), 132-134.

MUTANT

As used herein, the term "mutant" refers to PLK comprising one or more changes in the wild-type PLK sequence.

20

25

30

The term "mutant" is not limited to amino acid substitutions of the amino acid residues in PLK, but also includes deletions or insertions of nucleotides which may result in changes in the amino acid residues in the amino acid sequence of PLK.

The present invention also enables the solving of the crystal structure of PLK mutants.

More particularly, by virtue of the present invention, the location of the active site of PLK based on the structural coordinates of Table 2 permits the identification of desirable sites for mutation. For example, one or more mutations may be directed to a particular site such as the active site - or combination of sites of PLK. Similarly, only a location on, at or near the enzyme surface may be replaced, resulting in an altered surface charge of one or more charge units, as compared to the wild-type enzyme. Alternatively, an amino acid

44

residue in PLK may be chosen for replacement based on its hydrophilic or hydrophobic characteristics.

Such mutants may be characterised by any one of several different properties as compared with wild-type PLK. For example, such mutants may have altered surface charge of one or more charge units, or have an increased stability to subunit dissociation, or an altered substrate specificity in comparison with, or a higher specific activity than, wild-type PLK.

10 The mutants may be prepared in a number of ways that are known by a person skilled in the art. For example, mutations may be introduced by means of oligonucleotide-directed mutagenesis or other conventional methods. Alternatively, mutants of PLK may be generated by site specific replacement of a particular amino acid with an unnaturally occurring amino acid. This may be achieved by growing a host organism capable of expressing either the wild-type or mutant polypeptide on a growth medium depleted of one or more natural amino acids but enriched in one or more corresponding unnaturally occurring amino acids.

HOST CELLS

5

25

As used herein, the term "host cell" refers to any cell that comprises nucleotide sequences that are of use in the present invention, for example, nucleotide sequences encoding PLK.

Host cells may be transformed or transfected with a nucleotide sequence contained in a vector e.g. a cloning vector. Preferably, said nucleotide sequence is carried in a vector for the replication and/or expression of the nucleotide sequence. The cells will be chosen to be compatible with the said vector and may for example be prokaryotic (for example bacterial), fungal, yeast or plant cells.

The gram-negative bacterium *E. coli* is widely used as a host for cloning nucleotide sequences. This organism is also widely used for heterologous nucleotide sequence expression. However, large amounts of heterologous protein tend to accumulate inside

45

the cell. Subsequent purification of the desired protein from the bulk of *E. coli* intracellular proteins can sometimes be difficult.

In contrast to *E. coli*, bacteria from the genus Bacillus are very suitable as heterologous hosts because of their capability to secrete proteins into the culture medium. Other bacteria suitable as hosts are those from the genera Streptomyces and Pseudomonas.

Depending on the nature of the polynucleotide and/or the desirability for further processing of the expressed protein, eukaryotic hosts including yeasts or other fungi may be preferred. In general, yeast cells are preferred over fungal cells because yeast cells are easier to manipulate. However, some proteins are either poorly secreted from the yeast cell, or in some cases are not processed properly (e.g. hyperglycosylation in yeast). In these instances, a different fungal host organism should be selected.

Examples of expression hosts are fungi - such as Aspergillus species (such as those described in EP-A-0184438 and EP-A-0284603) and Trichoderma species; bacteria - such as Bacillus species (such as those described in EP-A-0134048 and EP-A-0253455), Streptomyces species and Pseudomonas species; yeasts - such as Kluyveromyces species (such as those described in EP-A-0096430 and EP-A-0301670) and Saccharomyces species; and mammalian cells - such as CHO-K1 cells.

The use of host cells may provide for post-translational modifications as may be needed to confer optimal biological activity on recombinant expression products of the present invention.

25

30

5

10

Aspects of the present invention also relate to host cells comprising the PLK constructs of the present invention. The PLK constructs may comprise a nucleotide sequence for replication and expression of the sequence. The cells will be chosen to be compatible with the vector and may for example be prokaryotic (for example bacterial), fungal, yeast or plant cells.

In a preferred embodiment, the host cells are mammalian cells, such as CHO-K1 cells.

VECTOR

Aspects of the present invention relate to a vector comprising a nucleotide sequence, such as a nucleotide sequence encoding PLK or a modulator of PLK, administered to a subject.

5

10

Preferably, PLK or the modulator of PLK is prepared and/or delivered using a genetic vector.

As it is well known in the art, a vector is a tool that allows or facilitates the transfer of an entity from one environment to another. In accordance with the present invention, and by way of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a host and/or a target cell for the purpose of replicating the vectors comprising nucleotide sequences and/or expressing the proteins encoded by the nucleotide sequences. Examples of vectors used in recombinant DNA techniques include, but are not limited to, plasmids, chromosomes, artificial chromosomes or viruses.

The term "vector" includes expression vectors and/or transformation vectors.

20

30

15

The term "expression vector" means a construct capable of in vivo or in vitrolex vivo expression.

The term "transformation vector" means a construct capable of being transferred from one species to another.

REGULATORY SEQUENCES

In some applications, nucleotide sequences are operably linked to a regulatory sequence which is capable of providing for the expression of the nucleotide sequence, such as by a chosen host cell. By way of example, a vector comprising the PLK nucleotide sequence is operably linked to such a regulatory sequence i.e. the vector is an expression vector.

The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.

The term "regulatory sequences" includes promoters and enhancers and other expression regulation signals.

The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site.

Enhanced expression of a nucleotide sequence, for example, a nucleotide sequence encoding PLK, may also be achieved by the selection of heterologous regulatory regions, e.g. promoter, secretion leader and terminator regions, which serve to increase expression and, if desired, secretion levels of the protein of interest from the chosen expression host and/or to provide for the inducible control of the expression of PLK. In eukaryotes, polyadenylation sequences may be operably connected to the PLK nucleotide sequence.

20

25

30

15

5

Preferably, the PLK nucleotide sequence is operably linked to at least a promoter.

Aside from the promoter native to the gene encoding the PLK nucleotide sequence, other promoters may be used to direct expression of the PLK polypeptide. The promoter may be selected for its efficiency in directing the expression of the PLK nucleotide sequence in the desired expression host.

In another embodiment, a constitutive promoter may be selected to direct the expression of the PLK nucleotide sequence. Such an expression construct may provide additional advantages since it circumvents the need to culture the expression hosts on a medium containing an inducing substrate.

1

48

Hybrid promoters may also be used to improve inducible regulation of the expression construct.

The promoter can additionally include features to ensure or to increase expression in a suitable host. For example, the features can be conserved regions such as a Pribnow Box or a TATA box. The promoter may even contain other sequences to affect (such as to maintain, enhance, decrease) the levels of expression of the PLK nucleotide sequence. For example, suitable other sequences include the Sh1-intron or an ADH intron. Other sequences include inducible elements - such as temperature, chemical, light or stress inducible elements. Also, suitable elements to enhance transcription or translation may be present.

EXPRESSION VECTOR

5

10

15

20

Preferably, nucleotide sequences, such as nucleotide sequences encoding PLK or modulators of PLK, are inserted into a vector that is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell.

Nucleotide sequences produced by a host recombinant cell may be secreted or may be contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors can be designed with signal sequences, which direct secretion of the nucleotide sequence through a particular prokaryotic or eukaryotic cell membrane.

Preferably, the expression vectors are stably expressed in CHO cells as described previously (Ehlers *et al.* (1996) *Biochemistry 35*, 9549-9559). More preferably, the expression vectors are pLEN- tACEΔ36g(1, 2, 3, 4) and pLEN- tACEΔ36g(1,3).

FUSION PROTEINS

PLK or a modulator of PLK may be expressed as a fusion protein to aid extraction and purification and/or delivery of the modulator of PLK or the PLK protein to an individual and/or to facilitate the development of a screen for modulators of PLK.

49

Examples of fusion protein partners include glutathione-S-transferase (GST), 6xHis, GAL4 (DNA binding and/or transcriptional activation domains) and β -galactosidase.

It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein sequence of interest to allow removal of fusion protein sequences. Preferably, the fusion protein will not hinder the activity of the protein of interest.

The fusion protein may comprise an antigen or an antigenic determinant fused to the substance of the present invention. In this embodiment, the fusion protein may be a non-naturally occurring fusion protein comprising a substance, which may act as an adjuvant in the sense of providing a generalised stimulation of the immune system. The antigen or antigenic determinant may be attached to either the amino or carboxy terminus of the substance.

15

10

5

ORGANISM

The term "organism" in relation to the present invention includes any organism that could comprise PLK and/or modulators of PLK. Examples of organisms may include mammals, fungi, yeast or plants.

20

Preferably, the organism is a mammal. More preferably, the organism is a human.

TRANSFORMATION

As indicated earlier, the host organism can be a prokaryotic or a eukaryotic organism.

Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts are well documented in the art, for example see Sambrook et al (Molecular Cloning: A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory Press) and Ausubel *et al.*, Current Protocols in Molecular Biology (1995), John Wiley & Sons, Inc. Examples of suitable eukaryotic hosts include mammalian cells.

If a prokaryotic host is used then the nucleotide sequence, such as the PLK nucleotide sequence, may need to be suitably modified before transformation - such as by removal of introns.

Thus, the present invention also relates to the transformation of a host cell with a nucleotide sequence, such as PLK or a modulator of PLK. Host cells transformed with the nucleotide sequence may be cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. The protein produced by a recombinant cell may be secreted or may be contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing coding sequences can be designed with signal sequences which direct secretion of the coding sequences through a particular prokaryotic or eukaryotic cell membrane. Other recombinant constructions may join the coding sequence to nucleotide sequence encoding a polypeptide domain, which will facilitate purification of soluble proteins (Kroll *DJ et al* (1993) DNA Cell Biol 12:441-53) e.g. 6-His or Glutathione-S-transferase.

TRANSFECTION

25

Vectors comprising for example, the PLK nucleotide sequence, may be introduced into host cells, for example, mammalian cells, using a variety of methods.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (*Nature Biotech*. (1996) 14, 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2,-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

Uptake of nucleic acid constructs by mammalian cells is enhanced by several known transfection techniques for example those including the use of transfection agents. Example of these agents include cationic agents (for example calcium phosphate and

51

DEAE-dextran) and lipofectants (for example lipofectamTM and transfectamTM). Typically, nucleic acid constructs are mixed with the transfection agent to produce a composition.

- Such methods are described in many standard laboratory manuals such as Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- The present invention is further described by way of example, and with reference to the following figures wherein:
 - Figure 1 shows multiple sequence alignment (Clustal W) of human PLK1 (P53350), PLK2 (Q9NYY3), and PLK3 (Q9H4B4).
- 15 Figure 2 shows a schematic view of PLK1 homology model in complex with ATP (stick model, labelled). The protein structure is indicated with a ribbon (loops, thin; helices, thick; sheets, arrows). The Cys residues are shown with space-filled atoms and are labelled.
- 20 Figure 3 shows sequence alignment of PLK1 and PKA kinase domains.
 - Figure 4 shows modelled complex between PLK1 and ATP (a) and 5'-thioadenosine (b). The positions of the thiol groups (SH) of Cys⁶⁷ and 5'thioadenosine are indicated.
- Figure 5 shows dose response curves of PLK1 activity inhibition by various adenosine derivatives in the absence or presence of the reducing agent dithiothreitol (+DTT or DTT).
 - Figure 6 shows kinetic analysis of PLK1 inhibition by 5'-thioadenosine.

52

Figure 7 shows modelled PLK1-bound conformations of ATP (a); 5'-thioadenosine (b); staurosporine (c); and 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol (d). Non-H atoms are labelled.

- 5 Figure 8 shows dose response curves for Purvalanol A, staurosporine and wortmannin.
 - Figure 9 shows the ATP dependence of PLK1 inhibition by staurosporine (a) and wortmannin (b).
- 10 Figure 10 shows the Inhibition of PLK1 and Casein Kinase II by Wortmannin and LY294002.
 - Figure 11 shows docked structures of A) purvalanol A and B) morin hydrate with the ATP binding site of the PLK1 model structure.

Figure 12 shows modelled structure of wortmannin covalently bound to K82 in the ATP cleft of PLK1. The right panel view is rotated by 180° along the y axis relative to the left view.

15

25

- Figure 13 shows a Lineweaver-Burk plot analysis of the ATP dependence of Inhibitor A.
 - Figure 14 shows a Lineweaver-Burk plot analysis of the ATP dependence of Inhibitor B.
 - Figure 15 shows the modelled structure of Inhibitor B in the binding pocket of PLK1, showing the close proximity of the potential reactive atoms of Inhibitor B to the cysteine (C67) residue of PLK1.

53

EXAMPLES

General Methods

The methods described here may employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA and 5 immunology, which are within the capabilities of a person of ordinary skill in the art. Such techniques are explained in the literature. See, for example, J. Sambrook, E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Books 1-3, Cold Spring Harbor Laboratory Press; Ausubel, F. M. et al. (1995 and periodic supplements; Current Protocols in Molecular Biology, ch. 9, 13, and 16, 10 John Wiley & Sons, New York, N.Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, DNA Isolation and Sequencing: Essential Techniques, John Wiley & Sons; J. M. Polak and James O'D. McGee, 1990, In Situ Hybridization: Principles and Practice; Oxford University Press; M. J. Gait (Editor), 1984, Oligonucleotide Synthesis: A Practical Approach, Irl Press; D. M. J. Lilley and J. E. Dahlberg, 1992, Methods of Enzymology: 15 DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press; Using Antibodies: A Laboratory Manual: Portable Protocol NO. I by Edward Harlow, David Lane, Ed Harlow (1999, Cold Spring Harbor Laboratory Press, ISBN 0-87969-544-7); Antibodies : A Laboratory Manual by Ed Harlow (Editor), David Lane (Editor) (1988, Cold Spring Harbor Laboratory Press, 20 ISBN 0-87969-314-2), 1855. Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes (2001, New York, NY, Marcel Dekker, ISBN 0-8247-0562-9); and Lab Ref: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench, Edited Jane Roskams and Linda Rodgers, 2002, Cold Spring Harbor Laboratory, ISBN 0-87969-630-3. Each of these general texts is herein 25 incorporated by reference.

Example 1

Construction of PLK1 homology model

The homology model for PLK1 kinase domain was generated using the program module Homology within the molecular modelling package Insight II (Accelrys, San Diego, CA) [38]. The sequence containing the kinase domain of PLK1 (residues 1 –

5

10

15

20

25

30

356) was employed in a FASTA sequence and structural search [39] in order to find the closest sequence-related kinase for which experimental structural information was available. For this search, the BLOSUM 50 scoring matrix [40] and a specific residue string value of 2 was employed. The closest match of known structure proved to be that of cAMP-dependent protein kinase (protein kinase A, PKA) with a sequence identity of 30 % and similarity of close to 50 % (Figure 3). Although these values are typically low for homology model building, the structural conservation of protein kinases was thought to allow a valid structure to be generated. Sequence alignment of PLK1 kinase domain with PKA in addition to CDK2 and ERK2 (which also were among the most homologous structures) indicated that the minimal kinase domain included residues 52 - 308. For the sequence alignment, the PAM 120 multiple scoring matrix [41] was used with a dimension block of 0.6, a high significance p value of 0.0001, a not significant p value of 0.1, and a pair-wise threshold of 60. Using a combination of the three structures to generate coordinates for the regions that had the highest identity in each kinase (Table 1), a model structure for the kinase domain was constructed. The strategy generally involved using PKA to define the structurally conserved regions (SCRs) from which the coordinates were subsequently transferred. This was then followed by loop construction where the non-SCRs were generated by de-novo building and subsequent evaluation of the most realistic coordinates (in terms of energetics of the loop itself and the exclusion of loops leading to overlapping atoms). After loop building was completed for missing coordinates, the raw coordinates were then refined using successive rounds of end repair splice repairing using an omega force constant of 50, energy minimization (100 steps of steepest descent to a derivative of 5). The model was then completed through using a further minimisation and 1 ps of molecular dynamics to more fully explore the conformational space of the loop regions. The final model structure was then checked against databases of protein structures for bond length and dihedral angle violations. The results indicated that these as a whole were within acceptable limits with > 80 % of residues having phi-psi plots with the allowed region in Ramachandran space [42]. The coordinate file for the final PLK1 homology model -ATP complex in Brookhaven Protein Databank (PDB) format [43] is shown in Table 2.

55

Example 2

5

10

15

20

25

30

Production of recombinant human PLK1

The human PLK1 (SwissProt accession number P53350, [44]) open reading frame (ORF) was amplified by PCR from a human foetal lung cDNA library (Clontech). An Nhe I restriction endonuclease site was introduced upstream of the ORF, by inclusion in the sense PCR primer. An Eco RI restriction endonuclease site was introduced downstream of the ORF, by inclusion in the antisense PCR primer. The PCR product generated was cloned into pCR4-Topo (Invitrogen), and sequenced. The ORF was then sub-cloned as an Nhe I / Eco RI fragment into pSSP1, a derivative of bacmid transfer vector pFastBac HTa (Invitrogen). The PLK1 ORF was cloned into pSSP1 such that the resulting PLK1 translation product would have a 19 amino acid N-terminal tag (MSYYHHHHHHGMASDDDDK) containing a hexahistidine tag and an enterokinase cleavage site. The pSSP1-Plk1 expression cassette was transferred into bacmid DNA by transposition in E. coli DH10Bac (Invitrogen). Purified recombinant bacmid DNA was transfected into Sf9 cells, to produce an infective stock of recombinant baculovirus. Following subsequent amplification and titering of the baculoviral stock, this was used to infect Sf9 cells at a multiplicity of infection of approximately 3. His-tagged PLK1 was expressed by incubating the infected cells at 27 °C, with shaking. Two days after infection, the cells were collected by centrifugation. Prior to purification, PLK1 expression was confirmed by Western blotting. To the cell pellet from 150 mL Sf9 insect cell culture 10 mL lysis buffer [10 mM Tris-HCl pH 8.0, 150 ml NaCl, 20 mM βmercaptoethanol, 1 mM PMSF, 1 mM benzamidine, protease inhibitor cocktail (Sigma; 1: 1,000 diluted), 20 mM imidazole], supplemented with 2 mM NaF and 1 mM Na_3VO_4 , was added; the mixture was sonicated (6 × 20 s) on ice and centrifuged for 15 min at 15,000 r.p.m. The supernatant was filtered (0.45 µm filter) and the filtrate was applied to a pre-equilibrated (with 20 mL lysis buffer) 1.2-mL Ni-NTA agarose column (Qiagen). After incubation for 2 h at 4 °C, the non-bound fraction was eluted with was buffer (as lysis buffer but 300 mM NaCl and without imidazole). Protein was eluted with elution buffer (as lysis buffer but 100 mM NaCl, 250 mM imidazole, 0.02 % Nonidet P-40). Pooled fractions containing target protein were applied to an equilibrated (with dialysis buffer) 5-mL HiTrapTM desalting column (Amersham Biosciences) and eluted with dialysis buffer (25 mM Tris/MES pH 7.6, 1 mM β-

56

mercaptoethanol, 0.01 % Tween-20, 10 mM MgCl₂, 50 μM ATP, 100 mM NaCl, 1 mM PMSF, 1 mM benzamidine, 10 % glycerol). Pooled fractions containing pure target protein were centrifuged 15,000 r.p.m. for 15 min. The supernatant PLK1 stock solution was stored at -70 °C.

5

10

15

Example 3

Construction, expression and purification of a Cdc25C fragment

Using standard techniques, a full-length Cdc25C clone was isolated by PCR from HeLa mRNA and inserted on a *BamHI-HindIII* fragment into pRsetA. The amino terminal Cdc25C fragment (encoding residues 1-300) was excised from this vector and inserted into pET28a (between the *NcoI* and *BamHI* sites). Expression was under the control of the T7 promoter, and the encoded protein contains a His6 tag at the carboxy terminus. The vector was transformed into *E. coli* strain BRL(DE3) pLysS for expression experiments. The protein was expressed in BL21(DE3) RIL bacteria cells, grown in LB media at 37 °C until optical density at 600 nm of 0.6 was reached. The expression was induced with 1 mM IPTG and the bacterial culture was grown further for 3 h. The bacteria were harvested by centrifugation and the cell pellet was re-suspended in 50mM Tris pH 7.5 and 10 % sucrose, snap-frozen, and stored at -70 °C until used.

Purification of the protein was then carried out by lysing the bacterial pellet in 10 mL of lysis buffer (10mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol, and 20 mM imidazole) supplemented with a cocktail of protease inhibitors, sonicated 6 times at 20-s bursts. The lysate was then centrifuged for 15 min at 15,000 r.p.m. and filtered through a 0.45-μm filter. The sample was then loaded onto a Ni-NTA agarose column, washed several times then the Cdc25C protein fragment was eluted with a buffer containing 10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 5 mM β-mercaptoethanol, 0.02 % Nonidet P-40, and 250 mM imidazol. The eluate was then dialysed, concentrated, snap-frozen in liquid nitrogen, and stored at -70 °C until used.

Example 4

PLK1 assay

PLK1 kinase activity was assayed using human CDC25C phosphatase as a substrate [4]. The assays were carried out using 96-well microtitre plates by incubating CDC25C (2 μg/well) with 1 μg/well of purified human recombinant PLK1 and varying concentrations of the candidate compound in a total volume of 25 μL of 20 mM Tris/HCl buffer pH 7.5, supplemented with 25 mM β-glycerophosphate, 5 mM EGTA, 1 mM DTT, and 1 mM NaVO₃. Reaction was initiated by the addition of 100 μM ATP and 0.5 μCi of [γ-³²P]-ATP. The reaction mixture was incubated at 30 °C for 1 h, then stopped with 75 mM aq orthophosphoric acid, transferred onto a 96-well P81 filter plate (Whatman), dried, and the extent of CDC25C phosphorylation was assessed by scintillation counting using a Packard TopCount plate reader.

Example 5

15 Casein kinase II (CKII) assay

Human recombinant CKII activity was assayed using the peptide H-Arg-Arg-Arg-Glu-Glu-Glu-Glu-Glu-Glu-OH as a substrate. The assays were carried out using 96-well microtitre plates by incubating the peptide substrate (10 μM) with 20 Units/well of CKII (New England Biolabs) and varying concentrations of the candidate compound in a total volume of 25 μL of 25 mM MOPS buffer pH 7.0, supplemented with 25 mM β-glycerophosphate, 5 mM EGTA, 1 mM DTT, and 1 mM NaVO₃. Reaction was initiated by the addition of 100 μM ATP and 0.25 μCi of [γ-³²P]-ATP. The reaction mixture was incubated at 30 °C for 15 minutes, then stopped with 75 mM aq orthophosphoric acid, transferred onto a 96-well P81 filter plate (Whatman), dried, and the extent of peptide phosphorylation was assessed by scintillation counting using a Packard TopCount plate reader.

Example 6

Chemical kinase inhibitors

Wortmannin and LY294002 were acquired from CN Biosciences Ltd., UK. Staurosporine, quercetin, and myricetin were from Sigma Chemicals, UK. All other

58

flavonoid compounds were purchased from Indofine Chemical Company, Inc., Somerville, New Jersey, USA.

Example 7

5 Synthesis of Compounds

4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2,4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol and 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol were synthesised in accordance with the methodology described in WO 01/72745. Staurosporine and derivatives thereof (such as CGP 41251 and UCN-01) are described in the literature [see for example, Gescher A., Gen Pharmacol. 1998, 31, p721-8].

Synthesis of 5'-deoxy-5-thio-adenosine (4)

5'-Deoxy-5-thio-adenosine (4) is a known compound [45] and it can be prepared readily from commercially available 2',3'-isopropylideneadenosine 1 as shown in Scheme 1 [46].

Scheme 1

20

25

10

15

5'-Deoxy-5'-acetylthio-2',3'-O-isopropylideneadenosine (2)

Diethyl azodicarboxyl-ate (3.4 mL, 21.73 mmol) was added drop-wise over 5 min to an ice-cold solution of triphenylphosphine (5.7 g, 21.73 mmol). The solution was stirred for 30 min at 0 °C prior to the addition of 2',3'-O-isopropylideneadenosine (1; 3.0 g, 9.76 mmol) and stirring was then continued for a further 10 min to produce a yellow suspension. To the suspension a solution of thioacetic acid (1.6 mL, 21.73 mmol) in absol tetrahydrofuran (5 mL) was added drop-wise and stirring was then continued for a further 1 h at 0 °C. During this time the yellow suspension became a darker yellow

59

solution. After stirring for 1 h the solvent was removed under reduced pressure and the resulting yellowish residue was purified by flash chromatography on silica gel [350 g, CHCl₃/THF (4:1 v/v) and then CHCl₃/CH₃OH (9:1 v/v)]. The fractions containing the product were combined and the solvent removed under reduced pressure. The residue was dried *in vacuo* (0.5 mbar) to furnish pure protected thionucleoside 2 (3.2 g, 90 %) as a white foam; TLC R_f (CH₂Cl₂/CH₃OH, 9:1 v/v) = 0.6, mp = 56-57 °C; ¹H-NMR (CDCl₃): δ 1.39 (s, 6H, CH₃), 2.34 (s, 3H, COCH₃), 3.18 and 3.29 (AB part of ABX spectrum, $J_{5'a-H, 4'-H} = J_{5'b-H, 4'-H} = 6.5$ Hz, $J_{gem} = 13.5$ Hz, 2H, 5'a-H, 5'b-H), 4.34 (dt, $J_{4'-H, 3'-H} = 3$ Hz, $J_{4'a-H, 5a'-H} = J_{4'-H, 5'b-H} = 7$ Hz, 1H, 4'-H), 4.97 (dd, $J_{3'-H, 4'-H} = 3$ Hz, $J_{3'-H} = 6.5$ Hz, 1H, 3'-H), 5.51 (dd, $J_{2'-H, 1'-H} = 2$ Hz, $J_{2'-H, 3'-H} = 6.5$ Hz, 1H, 2'-H), 6.07 (d, $J_{1'-H, 2'-H} = Hz$, 1H, 1'-H), 5.9 (s, br., 2H, NH₂), 7.90 (s, 1H, 8-H) and 8.36 (s, 1H, 2-H); ¹³C-NMR (CDCl₃): δ 25.56 (q, CH₃), 27.33 (q, CH₃), 30.79 (q, COCH₃), 31.60 (t, C-5'), 84.24 (d, C-3'), 84.43 (d, C-2'), 86.47 (d, C-4'), 91.07 (d, C-1'), 114.75 (s, C(CH₃)₂), 120.53 (s, C-5), 140.09 (d, C-8), 149.42 (s, C-4), 153.45 (d, C-2), 155.92 (s, C-6) and 194.79 (s, CO); ESMS; m/z: 366.0 [M + H⁺]; [α]_D (CDCl₃) = -13.2.

5'-Deoxy-5'acetyl-thioadenosine (3)

5

10

15

20

25

30

A solution of compound 2 (200 mg, 0.54 mmol) was stirred in a mixture of formic acid and water (10 ml, 1:1) at room temperature. The progress of the reaction was monitored by reversed-phase HPLC. After 50 h reaction time the solvent was evaporated under reduced pressure. Traces of formic acid were removed by co-evaporating 5 times with absolute ethanol to produce an off-white powder, which was purified by silica gel flash chromatography [30 g, CH₂Cl₂/CH₃OH (4:1 v/v)]. The fractions containing the product were combined, the solvent removed under reduced pressure and the product further dried *in vacuo* (0.5 mbar) to title compound 3 (150 mg, 86 %); TLC R_f (CH₂Cl₂:CH₃. OH, 9:1 v/v) = 0.24; ¹H-NMR (CDCl₃): δ 2.32 (s, 3H, COCH₃), 3.15 and 3.34 (AB part of ABX spectrum, $J_{5'-H, 4'-H} = 5.5$ Hz, $J_{5'b-H, 4'} = 7$ Hz, $J_{gem} = 14$ Hz, 2H, 5'a-H, 5'b-H), 3.9 (ddd, $J_{4'-H, 3'-H} = 3.5$ Hz, $J_{5'a-H, 4'-H} = 6$ Hz, $J_{5'b-H, 4'-H} = 7.5$ Hz, 1H, 4'-H), 4.08 (m, 1H, 3'-H), 4.76 (t, $J_{2'-H, 1'-H} = J_{2'-H, 3'-H} = J_{2'-H, 2'-OH} = 6$ Hz, 1H, 2'-H), 5.37 (s, 1H, D₂0 exchangeable, 3'-OH), 5.51 (s, 1H, D₂0 exchangeable, 2'-OH), 5.85 (d, $J_{1'-H, 2'-H} = 6$ Hz, 1H, 1'-H), 7.28 (s, br., 2H, D₂0 exchangeable, 6-NH₂), 8.14 (s, 1H, 2-H) and 8.53 (s, 1H, 8-H); ESMS; m/z: 326.5 [M + H[†]].

60

5'-Deoxy-5'-thioadenosine (4)

To eliminate traces of oxygen, a mixture of CH₃OH/H₂O (5:2) was degassed by first passing nitrogen gas (for 15 min) and secondly ammonia gas (for 15 min) through the mixture. Nucleoside 3 (50 mg, 0.16 mmol) was solubilised in the ammonia-saturated CH₃OH/H₂O mixture (7 mL) under N₂, and the mixture stirred at 0 °C. After 1.5 h the reaction mixture was frozen using liquid nitrogen and the solvent removed by drying *in vacuo* to afford title compound 4 (25 mg, 55 %); TLC R_f (CH₂Cl₂/CH₃OH, 7:1 v/v) = 0.85; mp = 109-110 °C, ¹H-NMR [(D₆ DMSO)]: δ 2.57 (s, br., 1H, 5'-SH), 2.75-2.80 (m, 2H, 5'a-H, 5'b-H), 3.98 (dt, J_{4'-H}, 3'-H = 3 Hz, J_{4'-H}, 5'a-H = J_{4'-H}, 5'b-H = 6 Hz, 1H, 4'-H), 4.18 (q, J_{3'-H}, 2'-H = J_{3'-H}, 3'-OH = 4 Hz, 1H, 3'-H), 4.78 (q, J_{2'-H}, 1'-H = J_{2'-H}, 3'-H = J_{2'-H}, 2'-OH = 5 Hz, 1H, 2'-H), 5.28 (d, J_{3'-OH}, 3'-OH = 5 Hz, 1H, 3'-OH), 5.48 (d, J_{2'-OH}, 2'-H = 6 Hz, 1H, 2'-OH), 5.88 (d, J_{1'-H}, 2'-H = 6 Hz, 1H, 1'-H), 7.28 (s, br., 2H, 6-NH₂), 8.14 (s, 1H, 2-H) and 8.35 (s, 1H, 8-H); ESMS; *m/z*: 283.92 [M + H⁺]; [α]_D (DMSO) = -29.3.

15

20

25

Example 8

<u>Inhibition of PLK1 enzymatic activity by adenosine, thioadenosines, and thiol-reactive compounds</u>

Adenosine, N-ethylmaleimide, iodoacetamide, and thimerosal were obtained from Sigma Chemical Co. 2'-Thioadenosine was obtained from Calbiochem. 5'-Thioadenosine was prepared as described in Example 7. All compounds were made up as 10 mM stocks in neat dimethylsulfoxide and fresh dilutions to the desired concentrations were made in assay buffer prior to the assay. The candidate compounds were incubated with the enzyme in the kinase assay buffer for the duration of the assay, usually 1 hour at 30 °C (refer Example 4). For each compound duplicate samples, one of which contained dithiothreitol (DTT) at 1 mM final concentration, were assayed. The results are summarized in Table 3 and Figure 5.

Example 9

30 <u>Inhibition of PLK1 enzymatic activity by other small molecules</u>

The effects of staurosporine, a promiscuous kinase inhibitor, and wortmannin, a specific PI-3 kinase inhibitor, were also tested for the inhibition of PLK1 activity. The

results showed that while staurosporine caused moderate inhibition of PLK1, wortmannin was considerably more potent, with a very similar activity to that reported for its PI-3 kinase inhibition. The PLK1 IC50 values for staurosporine and wortmannin in the biochemical assay were 0.8 ± 0.2 and 0.18 ± 0.1 µM, respectively (Figure 8).

5

In order further to investigate the possibility of other protein kinase inhibitors affecting PLK1 enzymatic activity, a library of trisubstituted purine CDK2 inhibitors was tested in the in vitro assay. It was found that purvalanol A, a potent ATP antagonist of several CDKs also inhibited PLK1 with an activity (IC₅₀) of 5 μ M.

10

15

٠,

20

30

Example 10

Kinetic analysis of PLK1 inhibition by staurosporine and wortmannin

In order to determine the nature of inhibition of PLK1 activity by staurosporine and wortmannin, a full investigation of the dependence on ATP concentration of the inhibition by these two compounds was carried out (Figure 9). The results obtained showed that staurosporine inhibition was a fully ATP-competitive, whereas that of wortmannin was completely ATP-independent. This situation mirrors the previously reported mechanism of inhibition of PI-3 kinase by wortmannin through irreversible covalent modification of Lys833 in the ATP-binding site [37]. Staurosporine, on the other hand, was also reported to be less potent against PI-3 kinase (IC₅₀ of 10 μ M) [37].

Example 11

Flavonoids inhibit PLK1 activity in vitro

Based on the results clearly demonstrating that wortmannin is very potent against PLK1, we sought to test whether any other known PI3 kinase inhibitors have an effect 25 on PLK1 activity. A number of flavonoid compounds including LY294002, Quercetin and Myricetin which were previously reported to cause a moderate inhibition of PI3 kinase activity (IC50 values of 1.4, 3.8 and 1.8 μ M respectively, [37]) were screened against PLK1 (Table 12). Interestingly, the results showed that indeed LY294002 was equally potent against PLK1 giving an IC50 value of 5-10 μM. Quercetin on the other hand was less potent (64 μ M) whilst Myricetin was inactive against PLK1 (>100 μ M IC₅₀).

5

10

15

20

25

62

Table 13 shows a summary of screening of 8 additional flavonoid compounds against PLK1. Of these morin hydrate was the most potent with an IC₅₀ of 12 μ M.

As dose-response inhibition for a number of closely related flavonoid inhibitors was obtained, it was possible to determine a structure-activity relationship for this compound class. Each of the other 10 compounds screened contains an identical core structure to morin and only vary on the extent of hydroxyl substitutions on the flavonoid. Comparing the inactive inhibitor, datescetin with morin, reveals that the R3' hydroxyl is important for binding (since it is absent in Datescetin). The lower potency of quercetin on PLK1 (64 µM) and its lack of a R1' hydroxyl also suggests that it makes intermolecular contacts in the ATP cleft. The lack of inhibition of myricetin and kaepmpferol which also lack this group is consistent this observation although it is likely that the additional OH group at R2' in myricetin interferes with binding. Comparison of luteolin with the weak inhibitor, quercetin suggests that the R3 hydroxyl makes a contribution due to the absence of this group in the former compounds. The inactivity of gangolin, which has no substituents on the 2nd ring is expected, however the weak inhibition of robinetin is unusual. This compound is similar to the inactive myricetin however does not have an R1 hydroxyl suggesting that this group makes unfavourable interactions and removing it results in tighter interaction. The weak inhibition observed for robinetin is probably at the threshold of sensitivity of the kinase assay and therefore may not be reliable. The inactivity of daidzein, fisetin and kaempferide is in line with the impotency of other similar compounds in this series.

In addition, based on literature reports [36] we found that out of 25 kinases tested, Casein Kinase II was the second most sensitive to inhibition by LY294002. The effects of wortmannin and LY294002 against Casein kinase II were tested and compared that to PLK1 inhibition (Figure 10).

Example 12

5

10

15

20

Sequence and structural comparison of PLK1 with other protein kinases

In order to obtain more information on the kinase domain of PLK1 and further characterise the residues that comprise the ATP binding pocket, a sequence similarity and homology analysis was performed (Figure 3). A FASTA search of protein kinases with available 3-D structural information revealed that the closest structural matches for the kinase domain included Cdk2 and ERK2, however the AGC kinase, PKA had the highest homology (over 40% similarity and 30% identity) As a consequence of the similarities of PLK1 and PKA, several commonly used PKA inhibitors were tested to determine if any correlation exists between the structural similarities and mode of inhibition of these two enzymes.

To this end, commercially available PKA inhibitors H89, A3 hydrochloride, KT5720 and 4-cyano 3-methylisoquinoline were screened against PLK1 and the results were compared to the published values against PKA. Surprisingly, none of these compounds caused any inhibition of PLK1, even at concentrations as high as 1mM. Moreover, Balanol a very potent inhibitor of the ACG family of protein kinases [47] was tested here to show no detectable inhibition of PLK1. Put together, these result clearly demonstrate that despite the fact the PLK1 has the greatest homology with PKA, their mode and mechanism of inhibition by small molecule ATP competitors appear to be vastly different (Table 14).

Example 13

Molecular Modelling of the interactions of inhibitors with PLK1 kinase domain

As mentioned above, the closest structural homologue to the kinase domain of PLK1 is protein kinase A. Despite the relatively low sequence identity between these two enzymes, the structural conservation of the protein kinase fold allowed the construction of a homology model structure of PLK1. This hypothetical structure was then used in flexible docking calculations with the identified PLK1 ATP competitive ligands to determine if representative kinase binding modes could be identified and thus enable validation of model. Positioning of the trisubstituted purine derivative, purvalanol A was undertaken using the automated docking routine, Affinity (I2000, Accelrys) that

64

allows for flexibility in both the receptor binding site and in the ligand itself. The use of this ligand is expedient as it is a potent Cdk2 inhibitor and its complex crystal structure has been previously determined. While it is possible that purvalanol A binds to PLK1 in a different way, its Cdk2 pose is nonetheless suggestive of how the purines interact with the mitotic kinase. Investigation of numerous predicted structures of purvalanol A with PLK1 indeed revealed an energetically favourable pose that formed similar contacts to those observed in the Cdk2 bound structure (Figure 11A).

The hinge region H-bonds observed in the Cdk2 complex (E81, L83) were formed with C133 of PLK1 and in addition the isopropyl group interacts with the deep cleft of the ATP pocket (L130 corresponding to F80 in Cdk2). As a cross-validation, purvalanol A was also docked into the structure of PKA that was used as the template for the PLK1 model. This result confirmed that no binding mode forming kinase inhibitory contacts was observed with PKA and therefore was consistent with the lack of inhibition of this inhibitor. In order to probe the structural basis for the lower potency of staurosporine against PLK1, this compounds was modelled into the homology structure. A similar binding mode to that observed in Cdk2 was observed. Wortmannin also was modelled in the ATP cleft of the PLK1 homology structure to determine if the structural basis for its irreversible inhibition could be predicted. Docking of this inhibitor revealed an energetically favourable binding mode that placed the reactive functionality in close proximity to K82 of PLK1. Formation of the covalent bond between Wortmannin and K82, followed by energy minimisation to convergence resulted in a plausible low energy complex structure that was consistent with its interactions in the PI3 kinase experimental structure (Figure 12).

25

30

20

5

In order to further examine, the interactions of the newly characterised PLK1 inhibitors, the flavonoid compound LY294002 was additionally docked into the PLK1 kinase domain. As this compound has been developed as a PI3 kinase inhibitor and since its co-crystal structure has been solved, a useful benchmark is available to probe the model structure. This time however, comparison of the structural ensemble of docked poses showed that no energetically realistic binding mode closely representing that observed with PI3K. Comparison of the primary structure of PI3K and PLK1 shows that these

65

two enzymes have a low sequence identity (15%) and diverge considerably in the residues lining the ATP cleft. It is thus very possible that LY294002 forms different non-bonded interactions in the PLK1 context. Evaluation of the most energetically favourable structure for this inhibitor indicates a plausible binding mode with the PLK1 catalytic domain however is substantially different from the binding mode observed in the PI3K structure.

Due to the observed activity of morin hydrate on PLK1 and since activity data was available for a number of close structural analogues, this compound was additionally docked into the PLK1 kinase domain. Examination of the structural ensemble generated by molecular dynamics docking indicates that energetically plausible poses representative of "kinase inhibitors" from crystal structures are observed and are consistent with the activities of other molecules in this series (Figure 11B).

15 <u>Example 14</u>

5

10

20

ATP-dependence of PLK1 inhibition by 5'-thioadenosine

The kinase assay described in *Example 4* was used. ATP dependence of the effects of adenosine, 2'-thioadenosine, 5-'thioadenosine, and thimerosal was investigated at 12.5, 25, 50, and 100 µM ATP. The results showed that none of these compounds were classical competitive inhibitors with respect to ATP, as would be expected from a covalent inhibitor. Results of the kinetic analysis with 5'-thioadenosine are shown in *Figure 6*.

Example 15

25 Contact models of PLK1 kinase domain with bound ligands

The homology model described in *Example 1* was used as the basis for the docking of ATP, 5'-thioadenosine, and two additional ATP-competitive kinase inhibitors we have found to inhibit PLK1. The conformations of these ligands in the PLK1 ATP-binding pocket are depicted in *Figure 7*. Descriptions of the PLK1-ligand complex structures in the form of interatomic distances between the residues lining the ATP-binding pocket of PLK1 and the ligands were obtained using the molecular modelling programs Quanta2000 (Accelrys, CA, USA) and Maestro (Schrodinger Inc., Oregon, USA). The

output from the former lists all contacts between PLK1 and ligands that are less than 3.5 Å. In the latter case a listing of all PLK1-ligand contacts not involving H atoms is given, together with the interatomic distances. Also given is a measure of the quality of the contacts. Only favourable contacts are listed and the closer the value of the contact cut-off ratio to 1.3, the better the contact. Results are summarized in Table 4 (Maestro) & Table 5 (Quanta) for ATP, in Table 6 (Maestro) & Table 7 (Quanta) for 5'-thioadenosine, in Table 8 (Maestro) & Table 9 (Quanta) for staurosporine, and in Table 10 (Maestro) & Table 11 (Quanta) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol. The ligand atom numbering is shown in Figure 7.

10

5

Example 16

Covalent inhibition of PLK1 by benzthiazole N-oxide derivative

The homology model of the invention was further validated by studies using two known inhibitors of PLK, Inhibitors A and B, the structures of which are shown below.

15

20

25

As is shown in Figure 13, the selective PLK1 inhibitor A (IC₅₀ for PLK1 activity is 0.5 μ M at 10 μ M ATP) competes with ATP for binding to the active site of the enzyme. Furthermore, upon varying the concentration of inhibitor as well as of ATP, the kinetic analysis shows that the binding of the inhibitor is fully reversible, as the $K_{\rm M,\ ATP}$ (intercepts on the abscissa in the Lineweaver-Burk plot) vary, with no change in the reaction velocity $V_{\rm max}$ of the enzyme (common intersect on the ordinate).

Inhibitor A: 7-Nitro-3-oxy-5-trifluoromethyl-benzothiazole-2-carboxylic acid amide

The closely related analogue Inhibitor B, which only differs from A by the presence of a SCF₃ group rather than a CF₃ group, shows different behaviour. The kinetic analysis for this compound suggests that the inhibitor affects the V_{max} of the enzyme, without

altering the apparent affinity for ATP $(K_{\rm M, ATP})$ (Figure 14). This shows that the inhibitor is non-competitive with respect to ATP and hence strongly suggests that it is binding covalently to the PLK1 ATP binding site.

5

Inhibitor B: 7-Nitro-3-oxy-5-trifluoromethylsulfanyl-benzothiazole-2-carboxylic acid amide

This covalent binding would most likely be with the cysteine residue (C67) in the binding pocket of PLK1 and is supported through the close proximity of the potential reactive atoms of Inhibitor B to the cysteine in the modelled structure of inhibitor A shown in Figure 15.

Various modifications and variations of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the relevant fields are intended to be covered by the present invention.

68 **REFERENCES**

- [1] Nurse, P. (1990) Nature, 344, 503-508.
- [2] Nigg, E.A. (2001) Nat. Rev. Mol. Cell Biol., 2, 21-32.
- [3] Takizawa, C.G. and Morgan, D.O. (2000) Curr. Opin. Cell Biol., 12, 658-665.
- [4] Roshak, A.K., Capper, E.A., Imburgia, C., Fornwald, J., Scott, G. and Marshall, L.A. (2000) Cell. Signalling, 12, 405-411.
- [5] Glover, D.M., Hagan, I.M. and Tavares, A.A. (1998) Genes Dev., 12, 3777-3787.
- [6] Seong, Y.-S., Kamijo, K., Lee, J.-S., Fernandez, E., Kuriyama, R., Miki, T. and Lee, K.S. (2002) J. Biol. Chem., 277, 32282 -32293.
- [7] Wang, Q., Xie, S., Chen, J., Fukusawa, K., Naik, U., Traganos, F., Darzynkiewicz, Z., Jhanwar-Uniyal, M. and Dai, W. (2002) Mol. Cell. Biol., 22, 3450-3459.
- [8] Kauselmann, G., Weiler, M., Wulff, P., Jessberger, S., Konietzko, U., Scafidi, J., Staubli, U., Bereiter-Hahn, J., Strebhardt, K. and Kuhl, D. (1999) EMBO J., 18, 5528-5539.
- [9] Lane, H.A. and Nigg, E.A. (1996) J. Cell. Biol., 135, 1701-1713.
- [10] Cogswell, J.P., Brown, C.E., Bisi, J.E. and Neill, S.D. (2000) Cell Growth Differ., 11, 615-623.
- [11] Liu, X. and Erikson, R.L. (2003) Proc. Natl. Acad. Sci. USA, 100, 5789-5794.
- [12] Spankuch-Schmitt, B., Wolf, G., Solbach, C., Loibl, S., Knecht, R., Stegmuller, M., von Minckwitz, G., Kaufmann, M. and Strebhardt, K. (2002) Oncogene, 21, 3162-3171.
- [13] Smith, M.R., Wilson, M.L., Hamanaka, R., Chase, D., Kung, H., Longo, D.L. and Ferris, D.K. (1997) Biochem. Biophys. Res. Commun., 234, 397-405.

- [14] Takahashi, T., Sano, B., Nagata, T., Kato, H., Sugiyama, Y., Kunieda, K., Kimura, M., Okano, Y. and Saji, S. (2003) Cancer Science, 94, 148-152.
- [15] Tokumitsu, Y., Mori, M., Tanaka, S., Akazawa, K., Nakano, S. and Niho, Y. (1999) Int. J. Oncol., 15, 687-692.
- [16] Wolf, G., Elez, R., Doermer, A., Holtrich, U., Ackermann, H., Stutte, H.J., Altmannsberger, H.-M., Rübsamen-Waigmann, H. and Strebhardt, K. (1997) Oncogene, 14, 543-549.
- [17] Kraker, A.J. and Booher, R.N. (1999) In Annual Reports in Medicinal Chemistry (Vol. 34) (Doherty, A.M., ed.), pp. 247-256, Academic Press.
- [18] Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Eichman, C., Jackson, J.R., Mattern, M., Gerwick, W.H., Jacobs, R.S. and Marshall, L.A. (2002) J. Pharmacol. Exp. Ther., 303, 858-866.
- [19] Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Grace, K., Gerwick, W.H., Jacobs, R.S. and Marshall, L.A. (2002) Inflammation Research, 51, 112-114.
- [20] Singh, J. (1994) Protein Engineering, 7, 849-858.
- [21] Singh, J., Dobrusin, E.M., Fry, D.W., Haske, T., Whitty, A. and McNamara, D.J. (1997) J. Med. Chem., 40, 1130-1135.
- [22] Fry, D.W., Bridges, A.J., Denny, W.A., Doherty, A., Greis, K.D., Hicks, J.L., Hook, K.E., Keller, P.R., Leopold, W.R., Loo, J.A., McNamara, D.J., Nelson, J.M., Sherwood, V., Smaill, J.B., Trumpp-Kallmeyer, S. and Dobrusin, E.M. (1998) Proc. Natl. Acad. Sci. USA, 95, 12022-12027.
- [23] Smaill, J.B., Showalter, H.D.H., Zhou, H., Bridges, A.J., McNamara, D.J., Fry, D.W., Nelson, J.M., Sherwood, V., Vincent, P.W., Roberts, B.J., Elliott, W.L. and Denny, W.A. (2001) J. Med. Chem., 44, 429-440.

- [24] Tsou, H.-R., Mamuya, N., Johnson, B.D., Reich, M.F., Gruber, B.C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F.E., Greenberger, L.M., Wang, Y.-F. and Wissner, A. (2001) J. Med. Chem., 44, 2719-2734.
- [25] Denny, W.A. (2002) Pharmacology & Therapeutics, 93, 253-261.
- [26] Smaill, J.B., Rewcastle, G.W., Loo, J.A., Greis, K.D., Chan, O.H., Reyner, E.L., Lipka, E., Showalter, H.D.H., Vincent, P.W., Elliott, W.L. and Denny, W.A. (2000) J. Med. Chem., 43, 1380-1397.
- [27] Allen, L.F., Lenehan, P.F., Eiseman, I.A., Elliott, W.L. and Fry, D.W. (2002) Seminars in Oncology, 29 (3, Suppl. 11), 11-21.
- [28] Torrance, C.J., Jackson, P.E., Montgomery, E., Kinzler, K.W., Vogelstein, B., Wissner, A., Nunes, M., Frost, P. and Discafani, C.M. (2000) *Nat. Med.*, 6(9), 1024-1028.
- [29] Wissner, A., Overbeek, E., Reich, M.F., Floyd, M.B., Johnson, B.D., Mamuya, N., Rosfjord, E.C., Discafani, C., Davis, R., Shi, X., Rabindran, S.K., Gruber, B.C., Ye, F., Hallett, W.A., Nilakantan, R., Shen, R., Wang, Y.-F., Greenberger, L.M. and Tsou, H.-R. (2003) J. Med. Chem., 46, 49-63.
- [30] Stamos, J., Sliwkowski, M.X. and Eigenbrot, C. (2002) J. Biol. Chem., 277, 46265-46272.
- [31] Brenner, S.E. (2001) Nat. Rev. Genet., 2, 801-809.
- [32] Gescher, A. (1998) General Pharmacology, 31, 721-728.
- [33] Fischer, P.M. and Wang, S. (2001) In PCT Intl. Patent Appl. WO 2001072745, Cyclacel Limited, UK.
- [34] Elferink, J.G.R. (1999) Gen. Pharmacol., 33, 1-6.
- [35] Cleland, W.W. (1964) Biochemistry, 4, 480-485.

- [36] Davies, S.P., Reddy, H., Caivano, M. and Cohen, P. (2000) *Biochem. J.*, 351, 95-105.
- [37] Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P. and Williams, R.L. (2000) Mol. Cell, 6, 909-919.
- [38] Greer, J. (1990) Proteins, 7, 317-334.
- [39] Pearson, W.R. (2000) Methods Mol. Biol., 132, 185-219.
- [40] Henikoff, S. and Henikoff, J.G. (1992) Proc. Natl. Acad. Sci. USA, 89, 10915-10919.
- [41] Altschul, S.F. (1991) J. Mol. Biol., 219, 555-565.
- [42] Venkatachalam, C.M. and Ramachandran, G.N. (1973) Ann. Rev. Biochem., 38, 45-77.
- [43] Westbrook, J.D. and Fitzgerald, P.M.D. (2003) Methods Biochem. Anal., 44, 161-179.
- [44] Hamanaka, R., Maloid, S., Smith, M.R., O'Connell, C.D., Longo, D.L. and Ferris, D.K. (1994) Cell Growth Differ., 5, 249-257.
- [45] Marriott, J.H., Mottahedeh, M. and Reese, C.B. (1990) Tetrahedron Lett., 31, 7485-7488.
- [46] Pignot, M., Pljevaljcic, G. and Weinhold, E. (2000) Eur. J. Org. Chem., 549-555.
- [47] Setyawan J., Koide K., Diller T. C., Bunnage M. E., Taylor S. S., Nicolaou K.C., Brunton L. L. (1999) Mol Pharmacol. 56. 370-376.
- [48] Jacobs, R. S., Stevenson, C. S., Gerwick, W. H., Marshall, L. A. (2001) Therapeutic applications of Scytonemin, a polo-like kinase (PLK) inhibitor. WO 2001062900; University of California, USA: PCT Int. Appl., 64 pp.
- [49] Mundt, K. E., Golsteyn, R. M., Lane, H. A., Nigg E. A. (1997) Biochem. Biophys. Res. Comm. 239, 377-385.

Table 1. Sequence comparison between PLK1 and CDK2, ERK-2, or PKA kinase domains, respectively.

DI IZI commond	Sequence identity (%)				
PLK1 sequence segment	CDK2	ERK-2	PKA		
1-50	0	8	12		
51-100	14	20	28		
101-150	18	8	20		
151-200	44	48	44		
201-250	30	30	42		
251-306	18	20	22		

Table 2. PDB coordinate file of PLK1-ATP homology model

MOTA	1	N	ARG	52	108.414	117.322	91.897	1.00	0.00	N
MOTA	2	CA	ARG	52	109.182	116.827	90.698	1.00	0.00	C
ATOM	3	С	ARG	52	108.390	116.045	89.578	1.00	0.00	С
MOTA	4	0	ARG	52	108.985	115.798	88.530	1.00	0.00	0
ATOM	5	CB	ARG	52	110.589	116.233	91.053	1.00	0.00	C
ATOM	6	CG	ARG	52	110.801	114.702	91.020	1.00	0.00	С
MOTA	7	CD	ARG	52	112.287	114.328	.91.157	1.00	0.00	C
MOTA	8	NE	ARG	52	112.450	112.916	90.739	1.00	0.00	N
ATOM	9	CZ	ARG	52	113.551	112.190	90.870	1.00	0.00	C
ATOM	10	NH1	ARG	52	114.666	112.630	91.370	1.00	0.00	N
ATOM	11	NH2	ARG	52	113.501	110.971	90.474	1.00	0.00	N
ATOM	12	1H	ARG	52	107.626	116.687	92.087	1.00	0.00	H
MOTA	13	2H	ARG	52	109.037	117.350	92.717	1.00	0.00	H
MOTA	14	HE	ARG	52	111.635	112.458	90.308	1.00	0.00	н
MOTA	15	HA	ARG	52	109.432	117.749	90.134	1.00	0.00	н
ATOM	16	1HB	ARG	52	111.303	116.678	90.331	1.00	0.00	Н
ATOM	17	2HB	ARG	52	110.945	116.616	92.029	1.00	0.00	н
MOTA	18	1HG	ARG	52	110.209	114.203	91.813	1.00	0.00	H
ATOM	19	2HG	ARG	52	110.408	114.292	90.070	1.00	0.00	Н
MOTA	20	1HD	ARG	52	112.925	114.977	90.524	1.00	0.00	H
ATOM	21	2HD	ARG	52	112.620	114.481	92.204	1.00	0.00	H
MOTA	22	2HH1	ARG	52	114.619	113.601	91.675	1.00	0.00	н
MOTA	23	1HH1	ARG	52	115.438	111.966	91.428	1.00	0.00	н
ATOM	24	1HH2	ARG	52	112.572	110.717	90.120	1.00	0.00	H
MOTA	25	2HH2	ARG	52	114.330	110.391	90.596	1.00	0.00	H
MOTA	26	N	TYR	53	107.105	115.659	89.725	1.00	0.00	N
MOTA	27	CA	TYR	53	106.360	114.857	88.698	1.00	0.00	С
ATOM	28	С	TYR	53	104.944	115.448	88.356	1.00	0.00	С
ATOM	29	0	TYR	53	104.213	115.917	89.234	1.00	0.00	0
MOTA	30	CB	TYR	53	106.221	113.387	89.193	1.00	0.00	C
ATOM	31	CG	TYR	53	107.481	112.506	89.105	1.00	0.00	C
ATOM	32		TYR	53		112.270	90.254	1.00	0.00	С
MOTA	33	CD2	TYR	53		·111.902	87.899	1.00	0.00	С
ATOM	34	CE1	TYR	53 .	109.362	111.450	90.197	1.00	0.00	C
ATOM	35	CE2	TYR	53		111.069	87.849	1.00	0.00	С
ATOM	36	CZ	TYR	53		110.848	89.000	1.00	0.00	С
MOTA	37	OH	TYR	53		110.047	88.972	1.00	0.00	0
ATOM	38	H	TYR	53	106.610	115.929	90.587	1.00	0.00	H
ATOM	39	HA	TYR	53		114.835	87.749	1.00	0.00	н
ATOM	40	1HB	TYR	53	105.807	113.374	90.220	1.00	0.00	н
MOTA	41	2HB	TYR	53	105.431	112.881	88.609	1.00	0.00	H
ATOM	42	HD1	TYR	53	107.971	112.729	91.194	1.00	0.00	H
ATOM	43	HDS	TYR	53	107.294	112.078	86.995	1.00	0.00	H
ATOM	44	HE1	TYR	53	109.966	111.296	91.080	1.00	0.00	H
ATOM	45	HE2	TYR	53	109.268	110.610	86.916	1.00	0.00	Н
ATOM	46	HH	TYR	53	111.034		88.067	1.00	0.00	н
ATOM	47	N	VAL	54		115.358	87.076	1.00	0.00	N
ATOM	48	CA	VAL	54	103.182		86.588	1.00	0.00	С
ATOM	49	C	VAL	54	102.488		85.933	1.00	0.00	С
ATOM	50	0	VAL	54	102.989	113.950	84.954	1.00	0.00	0

					73					
ATOM	51 CB	VAL	54	103.294	116.991	85.608	1.00	0.00		С
ATOM	52 CG	1 VAL	54	101.959	117.391		1.00	0.00		c
ATOM		2 VAL	54	103.822	118.277	86.288	1.00	0.00		C
MOTA	54 H	VAL	54		114.977		1.00	0.00		H
MOTA	55 HA		54		116.097		1.00	0.00		H
ATOM ATOM	56 HB 57 1HG	VAL	54		116.714	84.802	1.00	0.00		H
ATOM	58 2HG		54 54		117.679 118.243	-	1.00	0.00		H
ATOM	59 3HG		54		116.243	84.234 84.325	1.00	0.00		H
ATOM	60 2HG		54		118.112	86.769	1.00	0.00		H
ATOM	61 3HG	2 VAL	54		119.104	85.567	1.00	0.00		H H
ATOM	62 1HG	2 VAL	54		118.642	87.079	1.00	0.00		н
ATOM	63 N	ARG	55	101.311	. 114.102	86.439	0.00	0.00		N
MOTA	64 CA	ARG	55	100.503	113.002	85.830	0.00	0.00		C
ATOM	65 C	ARG	55		113.480	84.579	0.00	0.00		C
ATOM ATOM	66 O 67 CB	ARG ARG	55		114.441	84.665	0.00	0.00		0
ATOM	68 CG	ARG	55 55		112.395	86.882	0.00	0.00		C
ATOM	69 CD	ARG	55		111.773	88.159 88.997	0.00	0.00		C
ATOM	70 NE	ARG	55		110.761	90.348	0.00	0.00		C N
ATOM	71 CZ	ARG	55		110.180	91.339	0.00	0.00	•	C
ATOM	72 NH	1 ARG	55	97.772	109.704	91.239	0.00	0.00		N
ATOM		2 ARG	55	99.572	110.091	92.474	0.00	0.00		N
ATOM	74 HE	ARG	55		111.041	90.530	1.00	0.00		H
ATOM	75 H	ARG	55		114.668	87.214	0.00	0.00		H
MOTA MOTA	76 HA 77 1HB	ARG ARG	55 55		112.185	85.519	0.00	0.00		H
ATOM	78 2HB	ARG	5 5 55		111.617	86.379	0.00	0.00		H
ATOM	79 1HG	ARG	55		112.570	87.182 88.763	0.00	0.00		H
ATOM	80 2HG	ARG	55		111.072	87.909	0.00	0.00		H H
ATOM	81 1HD	ARG	55		110.098	88.493	0.00	0.00		н
ATOM	82 2HD	ARG	55	98.176	111.658	89.090	0.00	0.00		н
MOTA	83 1HH		55		109.276	92.070	0.00	0.00		H
ATOM	84 2HH1		55		109.802	90.301	0.00	0.00		H
ATOM ATOM		2 ARG 2 ARG	55 55		109.677	93.250	0.00	0.00		H
ATOM	87 N	GLY	5 5 56		110.524 112.791	92.448	0.00	0.00		H
ATOM	88 CA	GLY	56		113.119	83.436 82.194	1.00	0.00		N
ATOM	89 C	GLY	56		112.295	81.942	1.00	0.00		C
ATOM	90 O	GLY	56		112.843	81.956	1.00	0.00		Ö
ATOM	91 H	GLY	56	100.528	112.039	83.459	1.00	0.00		н
ATOM	92 1HA	GLY	56		114.192	82.166	1.00	0.00		H
ATOM ATOM	93 2HA 94 N	GLY	5 6		112.995	81.322	1.00	0.00		H
ATOM	94 N 95 CA	ARG ARG	57 57		110.991	81.655	1.00	0.00		N
ATOM	96 C	ARG	5 <i>7</i>		110.087 108.655	81.374 81.967	1.00	0.00		C
ATOM	97 0	ARG	57		108.174	82.064	1.00	0.00		С О
MOTA	98 CB	ARG	57		110.079	79.834	1.00	0.00		c
MOTA	99 CG	ARG	57		109.398	79.373	1.00	0.00		c
MOTA	100 CD	ARG	57	94.996	109.479	77.856	1.00	0.00		č
ATOM	101 NE	ARG	57		108.821	77.548	1.00	0.00		N
MOTA MOTA	102 CZ 103 NH1	ARG ARG	57		108.542	76.337	1.00	0.00		C
ATOM		ARG	57 57		108.827 107.952	75.232	1.00	0.00		N
ATOM	105 HE	ARG	57		107.952	76.262 78.347	1.00 1.00	0.00		N
ATOM	106 H	ARG	57		110.643	81.765	1.00	0.00		H H
ATOM	107 HA	ARG	5 7		110.497	81.863	1.00	0.00		H
ATOM	108 1HB	ARG	57	96.511	111.124	79.467	1.00	0.00		H
ATOM	109 2HB	ARG	57		109.607	79.326	1.00	0.00		H
ATOM	110 1HG	ARG	57		108.329	79.670	1.00	0.00		Н
ATOM ATOM	111 2HG 112 1HD	ARG	57 57		109.854	79.890	1.00	0.00		H
ATOM	112 1HD	ARG ARG	57 5 7		110.534	77.515	1.00	0.00		H
ATOM	113 2HD		5 <i>7</i> 57		108.976 109.292	77.325 75.385	1.00	0.00		H
ATOM	115 1HH1		57		109.292	75.365	1.00 1.00	0.00		H
MOTA	116 1HH2		57		107.762	77.189	1.00	0.00		H H
ATOM	117 2HH2		57		107.720	75.338	1.00	0.00		n H
ATOM	118 N	PHE	58		107.949	82.336	1.00	0.00		Ŋ
ATOM	119 CA	PHE	58	95.987	106.512	82.726	1.00	0.00		C
ATOM	120 C	PHE	58		105.555	81.519	1.00	0.00	(C
MOTA	121 0	PHE	58		105.617	80.481	1.00	0.00	()
ATOM ATOM	122 CB 123 CG	PHE	58 50		106.129	83.545	1.00	0.00		2
a. Ori	بال دعد	FNL	58	33.362	106.079	82.812	1.00	0.00	(2

						• •				
MOTA	124	CD1	PHE	58	92.925	104.888	82.221	1.00	0.00	С
ATOM	125	CE1	PHE	58	91.712		81.539	1.00	0.00	c
ATOM	126	CZ	PHE	58	90.924		81.449	1.00	0.00	C
ATOM	127	CE2		58	91.347		82.043	1.00	0.00	C
MOTA	128	CD2		58	92.561		82.725	1.00	0.00	C
ATOM	129	H	PHE	58	95.026		82.064	1.00	0.00	н н
ATOM	130	HA	PHB	58	96.818		83.454	1.00	0.00	н
MOTA	131		PHE	58	94.904 94.636		84.019 84.415	1.00	0.00	н
ATOM	132	2HB	PHE	58 58	-	103.999	82.262	1.00	0.00	н
ATOM	133 134	HD1 HE1		58		103.929	81.068	1.00	0.00	H
MOTA MOTA	135	HZ	PHE	58		105.961	80.913	1.00	0.00	н
ATOM	136		PHE	58		108.067	81.966	1.00	0.00	н
ATOM	137		PHE	58		108.149	83.179	1.00	0.00	H
ATOM	138	N	LEU	59	97.255	104.662	81.698	0.00	0.00	N
MOTA	139	CA	LEU	59	97.536	103.546	80.752	0.00	0.00	С
MOTA	140	С	LEU	59	96.581	102.327	81.038	0.00	0.00	С
ATOM	141	0	LEU	59	95.715	102.031	80.211	0.00	0.00	0
MOTA	142	CB	LEU	59		103.309	80.853	0.00	0.00	C
MOTA	143	CG	LEU	59		102.416	79.817	0.00	0.00	C
ATOM	144		LEU	59		100.925	79.926	0.00	0.00	C
ATOM.	145		LEU	59 50		102.897	78.369 82.627	0.00	0.00	н
ATOM	146	H	LEU	59 59		104.671	79.716	0.00	0.00	н
MOTA	147	HA 1HB	PEA PEA	59		102.939	81.865	0.00	0.00	H
MOTA MOTA	148 149	2HB	TEA	59		104.291	80.798	0.00	0.00	H
ATOM	150	HG	LEU	59	100.892		80.047	0.00	0.00	н
ATOM		1HD1		59	99.582	100.542	80.956	0.00	0.00	H
MOTA	152	2HD1	LEU	59	98.436	100.688	79.606	0.00	0.00	н
MOTA	153	3HD1	LEU	59	100.153		79.304	0.00	0.00	H
MOTA	154	1HD2		59	100.279		77.675	0.00	0.00	н
MOTA	155			59		102.786	78.012	0.00	0.00	. H
ATOM	156	3HD2		59 60		103.961	78.256 82.223	0.00	0.00	N
ATOM	157 158	N CA	GLY	60 60		100.505	82.595	0.00	0.00	Ċ
MOTA MOTA	159	C	GLY	60		100.470	84.075	0.00	0.00	Ċ
ATOM	160	ō	GLY	60		101.287	84.920	0.00	0.00	0
ATOM	161	н	GLY	60	97.447	102.031	82.805	0.00	0.00	H
ATOM	162	1HA	GLY	60	96.432	99.582	82.395	0.00	0.00	н
MOTA	163		GLY	60		100.400	81.931	0.00	0.00	н
ATOM	164	N	LYS	61	94.466	99.529	84.393	1.00	0.00	N C
ATOM	165	CA	LYS	61	93.868 93.299	99.405 97.972	85.758 86.042	1.00	0.00	a
ATOM	166 167		LYS	61 61	92.266	97.584	85.486	1.00	0.00	ō
ATOM ATOM	168		LYS	61		100.472	85.958	1.00	0.00	C
ATOM	169		LYS	61		100.597	87.406	1.00	0.00	С
ATOM	170		LYS	61	91.152	101.703	87.529	1.00	0.00	C
MOTA	171	CE	LYS	61		101.830	88.958	1.00	0.00	C
ATOM	172	NZ	LYS	61		102.910	89.003	1.00	0.00	N
MOTA	173		LYS	61		102.999	89.961	1.00	0.00	H
ATOM	174		LYS	61		103.799 102.687	88.719 88.359	1.00	0.00	H H
MOTA	176	3HZ H	LYS LYS	61 61	94.523	98.723	83.745	1.00	0.00	н
ATOM ATOM	177		LYS	61	94.668	99.606	86.500	1.00	0.00	н
ATOM		1HB	LYS	61		101.471	85.646	1.00	0.00	H
ATOM		2HB	LYS	61	91.900	100.252	85.275	1.00	0.00	H
ATOM		1HG	LYS	61	91.791	99.629	87.739	1.00	0.00	H
ATOM	181	. 2HG	LYS	61		100.804	88.098	1.00	0.00	H
ATOM		1HD	LYS	61		102.672	87.205	1.00	0.00	н
MOTA		SHD	LYS	61		101.497	86.825	1.00 1.00	0.00	H H
ATOM	184	1HE	LYS LYS	61 61		100.873 102.052	89.292 89.669	1.00	0.00	н
ATOM ATOM	186		GLY	62	93.868	97.257	87.026	0.00	0.00	N
ATOM	187		GLY	62	93.338	95.929	87.443	0.00	0.00	C
ATOM	188		GLY	62	93.782	95.448	88.844	0.00	0.00	С
ATOM	189		GLY	62	93.881	96.219	89.801	0.00	0.00	0
ATOM	190		GLY	62	94.799	97.595	87.296	0.00	0.00	н
MOTA		L 1HA	GLY	62	93.630	95.190	86.668	0.00	0.00	н
MOTA		2 2HA	GLY	62	92.228	95.918	87.437	0.00	0.00	H
ATOM	193		GLY	63 63	94.055	94.138	88.968 90.288	1.00	0.00	N C
ATOM	194		GLY GLY	63 63	94.411 95.817	93.510 93.707	90.288	1.00	0.00	c
MOTA MOTA	199 196		GLY	63	96.231		91.746	1.00	0.00	ō
AT ON	190	, ,	211	33	,,,,,,,	007				ū

						75				
ATOM	197	Н	GLY	63	93.953		88.103	1.00	0.00	н
ATOM		1HA	GLY	63	93.677		91.056	1.00	0.00	н
ATOM	199		GLY	63	94.259		90.203	1.00	0.00	н
MOTA MOTA	200 201		PHE	64 64	96.503 97.650		90.594	0.00	0.00	N
ATOM	202		PHE	64	97.030		91.383 91.873	0.00	0.00	C
ATOM	203		PHE	64	96.780		93.017	0.00	0.00	C 0
MOTA	204		PHE	64	98.957		90.531	0.00	0.00	č
ATOM	205		PHE	64	100.322		91.262	0.00	0.00	C
MOTA MOTA	206 207		PHE	64 64	101.339		90.729	0.00	0.00	С
ATOM	208		PHE	64	102.589 102.844		91.339 92.476	0.00	0.00	c
ATOM	209		PHE	64	101.849		93.015	0.00	0.00	C
ATOM	210		PHE	64	100.597		92.407	0.00	0.00	č
MOTA MOTA	211		PHE	64	96.013	95.366	89.888	0.00	0.00	H
ATOM	212	HA 1HB	PHE	64 64	97.815 98.995		92.306	0.00	0.00	Н
ATOM	214		PHE	64	98.885	94.272	89.745 89.943	0.00	0.00	н н
MOTA	215		PHE	64	101.175	93.786	89.834	0.00	0.00	H
MOTA	216		PHE	64	103.371	93.687	90.923	0.00	0.00	н
ATOM ATOM	217 218		PHE	64 64	103.822	95.022	92.935	0.00	0.00	H
ATOM	219		PHE	64	102.058 99.845	96.458 96.585	93.903 92.839	0.00	0.00	н
MOTA	220		ALA	65	97.243	97.795	90.990	1.00	0.00	H N
MOTA	221	CA	ALA	65	96.401	99.013	91.144	1.00	0.00	ċ
ATOM	222	C	ALA	65	96.155	99.807	89.814	1.00	0.00	С
ATOM ATOM	223 224	O CB	ALA ALA	65 65	95.088 96.915	99.660 99.890	89.208	1.00	0.00	0
ATOM	225	H	ALA	65 .	97.644	97.519	92.311 90.086	1.00 1.00	0.00	C H
MOTA	226	HA	ALA	65	95.375	98.686	91.416	1.00	0.00	н
MOTA	227		ALA	65	96.805	99.369	93.278	1.00	0.00	Н
ATOM ATOM	228 229		ALA ALA	65 65		100.139	92.197	1.00	0.00	н
ATOM	230	N	LYS	66	96.357 97.056	100.841	92.391 89.405	1.00	0.00	H
ATOM	231	CA	LYS	66		101.620	88.233	1.00	0.00	C N
ATOM	232	C	LYS	66		102.188	87.702	1.00	0.00	Ċ
ATOM ATOM	233 234	O CB	LYS	66 66		102.808	88.469	1.00	0.00	0
ATOM	235	CG	LYS	66		102.752 103.839	88.564 89.590	1.00	0.00	C
MOTA	236	CD	LYS	66		104.754	89.991	1.00	0.00	c
ATOM	237	CE	LYS	66		105.928	90.862	1.00	0.00	Ċ
ATOM ATOM	238	NZ 1HZ	LYS	66 66		106.785	91.189	1.00	0.00	N
ATOM		2HZ	LYS	66 66		107.574 107.146	91.773 90.319	1.00	0.00	н
ATOM		3HZ	LYS	66		106.234	91.702	1.00	0.00 0.00	H H
ATOM	242	H	LYS	66		100.685	89.906	1.00	0.00	н
ATOM ATOM	243	HA 1HB	LYS LYS	66		101.006	87.418	1.00	0.00	н
ATOM		2HB	LYS	66 66		103.250 102.272	87.615 88.900	1.00	0.00	н
ATOM		1HG	LYS	66		103.368	90.497	1.00	0.00	H H
ATOM		2HG	LYS	66		104.444	89.163	1.00	0.00	н
ATOM ATOM		1HD 2HD	LYS	66		105.136	89.086	1.00	0.00	H
ATOM	250		LYS	66 66		104.158 105.558	90.526 91.789	1.00	0.00	н
ATOM	251		LYS	66		106.524	90.330	1.00	0.00 0.00	H H
ATOM	252	N	CYS	67	98.478	102.033	86.400	1.00	0.00	N
ATOM ATOM	253	CA	CYS	67		102.670	85.746	1.00	0.00	C
ATOM	254 255	0	CYS CYS	67 67	98.198	103.971	84.964 84.372	1.00	0.00	C
ATOM	256	CB	CYS	67	100.379		84.922	1.00	0.00 0.00	o c
ATOM	257	SG	CYS	67	99.311	100.811	83.669	1.00	0.00	s
ATOM	258	H	CYS	67	97.759		85.832	1.00	0.00	н
ATOM ATOM	259 260	HA 1HB	CYS	67 67	100.393 101.271		86.518	1.00	0.00	н
ATOM			CYS	67	101.271		84.418 85.593	1.00	0.00	H
ATOM	262		CYS	67	100.236		83.152	1.00	0.00	H H
ATOM	263		PHE	68	100.157	104.979	85.038	1.00	0.00	N
ATOM ATOM	264 265		PHE	68 68	99.953		84.412	1.00	0.00	С
ATOM	266		PHE PHE	68 68	101.159 102.314		83.511 83.840	1.00	0.00	C
ATOM	267		PHE	68	99.753		85.554	1.00	0.00	0 C
ATOM	268		PHE	68	98.298	107.699	85.907	1.00	0.00	c
ATOM	269	CD1	PHE	68	97.740	108.912	85.487	1.00	0.00	C

			70				
ATOM	270 CB1 P	HB 68	96.435 109.246	85.843	1.00	0.00	C
ATOM		HE 68	95.682 108.371	86.620 87.035	1.00	0.00	C
ATOM	272 CE2 P		96.228 107.159 97.532 106.823	86.682	1.00	0.00	c
ATOM	273 CD2 P	HE 68 HE 68	101.038 104.758	85.528	1.00	0.00	н
ATOM ATOM		HB 68	99.054 106.312	83.764	1.00	0.00	H
ATOM		HE 68	100.300 107.066	86.470	1.00	0.00	H
MOTA		HB 68	100.257 108.312	85.283	1.00	0.00	H
ATOM	278 HD1 P		98.312 109.598	84.877	1.00	0.00	H H
ATOM	279 HE1 P		96.009 110.183	85.512 86.896	1.00 1.00	0.00	н
ATOM		HE 68	94.669 108.628 95.640 106.480	87.633	1.00	0.00	н
ATOM ATOM	281 HE2 P 282 HD2 P		97.947 105.882	87.013	1.00	0.00	н
ATOM		LU 69	100.875 107.502	82.456	1.00	0.00	N
ATOM		LU 69	101.904 108.317	81.744	1.00	0.00	c c
MOTA		LU 69	102.269 109.587	82.591	1.00	0.00	C
MOTA		LU 69	101.475 110.527	82.695	1.00	0.00	0 C
MOTA		ELU 69	101.313 108.631 102.257 109.425	80.346 79.404	1.00	0.00	č
MOTA MOTA		រេប 69 រេប 69	101.724 109.581	77.983	1.00	0.00	Ċ
MOTA	290 OE1 G		101.463 108.612	77.239	1.00	0.00	0
ATOM		LU 69	101.433 110.872	77.674	1.00	0.00	0
ATOM	292 H G	ELU 69	99.870 107.688	82.316	1.00	0.00	н
MOTA		ELU 69	102.816 107.705	81.581	1.00 1.00	0.00	H H
MOTA		ELU 69 ELU. 69	101.047 107.679 100.356 109.179	79.841 80.447	1.00	0.00	H
MOTA MOTA		3LU. 69 3LU 69	102.471 110.425	79.828	1.00	0.00	н
ATOM		3LU 69	103.236 108.929	79.306	1.00	0.00	Н
ATOM		ILE 70	103.448 109.579	83.229	1.00	0.00	N
MOTA		ILE 70	103.873 110.642	84.193	1.00	0.00	C
MOTA		ILE 70	105.179 111.309	83.637 83.454	1.00	0.00	ō
ATOM		ILE 70 ILE 70	106.208 110.650 104.059 110.093	85.662	1.00	0.00	Č
ATOM ATOM	302 CB 3		102.877 109.225	86.195	1.00	0.00	C
ATOM	304 CG2		104.317 111.255	86.658	1.00	0.00	С
MOTA	305 CD1		103.026 108.633	87.611	1.00	0.00	C
ATOM		ILE 70	103.997 108.715	83.099	1.00	0.00	H H
ATOM		ILE 70	103.089 111.422 104.960 109.444	84.256 85.657	1.00	0.00	н
MOTA	308 HB 309 1HG1	ILE 70 ILE 70	101.931 109.795	86.130	1.00	0.00	н
MOTA MOTA	310 2HG1		102.737 108.371	85.507	1.00	0.00	H
ATOM	311 2HG2		105.106 111.947	86.313	1.00	0.00	H
MOTA	312 3HG2		103.412 111.865	86.831	1.00	0.00	Н
ATOM	313 1HG2		104.649 110.880	87.643 87.762	1.00	0.00	H H
ATOM	314 2HD1		104.015 108.167 102.906 109.405	88.395	1.00	0.00	H
ATOM ATOM	315 3HD1 316 1HD1		102.263 107.858	87.810	1.00	0.00	н
ATOM		SER 71	105.152 112.631	83.413	1.00	0.00	N
ATOM		SER 71	106.376 113.412	83.098	1.00	0.00	C
ATOM		SER 71	107.154 113.834	84.385	1.00	0.00	0
MOTA		SER 71	106.586 114.421 105.960 114.645	85.309 82.265	1.00	0.00 0:00	c
MOTA MOTA		SER 71 SER 71	107.110 115.366	81.807	1.00	0.00	ō
ATOM		SER 71	104.293 113.093	83.746	1.00	0.00	H
ATOM		SER 71	107.043 112.810	82.450	1.00	0.00	H
ATOM	325 1HB	SER 71	105.366 114.332	81.383	1.00	0.00	н
MOTA		SER 71	105.297 115.316	82.847	1.00	0.00	H H
ATOM		SER 71 ASP 72	107.585 115.699 108.478 113.631	82.578 84.406	1.00	0.00	N
MOTA MOTA		ASP 72 ASP 72	109.394 114.350	85.338	1.00	0.00	Ċ
MOTA		ASP 72	109.438 115.878	84.976	1.00	0.00	C
ATOM		ASP 72	109.784 116.245	83.851	1.00	0.00	0
MOTA	332 CB	ASP 72	110.803 113.684	85.270	1.00	0.00	c
MOTA	333 CG	ASP 72	111.439 113.276	86.597	1.00	0.00	0
ATOM	334 OD1		111.932 112.171 111.409 114.257	86.785 87.539	1.00	0.00	0
ATOM ATOM	335 OD2 336 H	ASP 72 ASP 72	108.829 113.054	83.626	1.00	0.00	н
ATOM	336 H 337 HA	ASP 72	108.993 114.230	86.367	1.00	0.00	н
MOTA	338 1HB	ASP 72	110.779 112.765	84.660	1.00	0.00	н
ATOM	339 2HB	ASP 72	111.527 114.326	84.736	1.00	0.00	H
MOTA	340 N	ALA 73	109.010 116.750	85.893	1.00	0.00	N
ATOM	341 CA	ALA 73	108.809 118.199	85.618	1.00	0.00	c
MOTA	342 C	ALA 73	110.090 119.067	85.378	1.00	0.00	C

						77					
ATOM	343	0	ALA	73	110.112	119.894	84.466	1.00	0.00	o	,
ATOM	344	CB	ALA	73		7 118.712		1.00	0.00	Ċ	
MOTA	345	H	; ALA	73		116.340		1.00	0.00	н	;
ATOM ATOM	346	HA 2HB	ALA ALA	73 73		7 118.298 5 118.105	84.699	1.00	0.00	H	
ATOM	348		ALA	73		118.720	86.956 87.749	1.00	0.00	н	
ATOM		1HB	ALA	73		119.748	86.618	1.00	0.00	H H	
ATOM	350	N	ASP	74		118.878	86.187	1.00	0.00	N	
ATOM	351	CA	ASP	74		119.637	86.060	1.00	0.00	C	
MOTA	352	C	ASP	74		119.098	84.983	1.00	0.00	С	
ATOM ATOM	353 354	O CB	ASP ASP	74 74		3 119.901	84.399	1.00	0.00	0	
ATOM	355	CG	ASP	74) 119.767) 120.707	87.483 88.409	1.00	0.00	C	
MOTA	356		ASP	74		121.888	88.568	1.00	0.00	c 0	
MOTA	357	OD2	ASP	74	111.176	120.106	88.975	1.00	0.00	ő	
MOTA	358	H	ASP	74		118.227	86.954	1.00	0.00	н	
MOTA MOTA	359	HA 1HB	ASP ASP	74		120.667	85.713	1.00	0.00	H	
ATOM		2HB	ASP	74 74		118.780 120.175	87.967 87.408	1.00	0.00	н	
ATOM	362	N	THR	75		. 117.782	84.701	0.00	0.00	H N	
ATOM	363	CA	THR	75		117.208	83.552	0.00	0.00	C	
ATOM	364	C	THR	75		117.002	82.190	0.00	0.00	Ċ	
MOTA MOTA	365	0	THR	75		116.797	81.167	0.00	0.00	0	
ATOM	366 367	CB	THR	75 75		115.866	83.972 84.377	0.00	0.00	C	
ATOM	368	CG2		75		115.964	85.096	0.00	0.00	0	
ATOM	369	H	THR	75		117.204	85.264	0.00	0.00	н	
MOTA	370	HA	THR	75		117.901	83.291	0.00	0.00	н	
ATOM	371	HB	THR	75		115.471	83.084	0.00	0.00	H	
MOTA MOTA	372	HG1 1HG2		75 75		114.041	84.362	0.00	0.00	н	
ATOM	374			75 75		116.685	85.288 84.847	0.00	0.00	H	
MOTA	375			75		116.296	86.048	0.00	0.00	H H	
MOTA	376	N	LYS	76		117.002	82.157	1.00	0.00	N	
ATOM	377	CA	LYS	76		116.626	80.966	1.00	0.00	C	
ATOM ATOM	378 379	c o	LYS LYS	76 76		115.147	80.454	1.00	0.00	C	
ATOM	380	CB	LYS	76 76		114.899 117.750	79.326 79.890	1.00	0.00	0	
ATOM	381	CG	LYS	76		117.715	78.869	1.00	0.00	C	
ATOM	382	CD	LYS	76	110.269	118.893	77.878	1.00	0.00	č	
ATOM	383	CE	LYS	76 		118.874	76.902	1.00	0.00	. С	
ATOM ATOM	384 385	NZ 1HZ	LYS	76 76		120.032	75.991 75.336	1.00	0.00	N	
ATOM	386		LYS	76		120.020	76.540	1.00	0.00	H H	
ATOM	387	3HZ	LYS	76		119.982	75.461	1.00	0.00	н	
ATOM	388	H	LYS	76		117.241	83.060	1.00	0.00	н	
ATOM ATOM	389 390	HA	LYS	76 76		116.647	81.335	1.00	0.00	н	
ATOM	391		LYS LYS	76 76		118.738 117.701	80.390 79.362	1.00	0.00	н	
MOTA	392		LYS	76		116.758	78.310	1.00	0.00	H H	
MOTA	393	2HG	LYS	76		117.726	79.405	1.00	0.00	н	
ATOM	394		LYS	76		119.850	78.439	1.00	0.00	н	
ATOM ATOM	395 396		LYS LYS	76 76		118.866	77.323	1.00	0.00	н	
ATOM	397		LYS	76 76		117.929 118.910	76.323 77.455	1.00	0.00	н	
ATOM	398	N	GLU	77		114.160	81.304	1.00	0.00	H N	
ATOM	399	CA	GLU	77		112.710	81.010	1.00	0.00	C	
ATOM	400	C	GLU	77		111.924	81.242	1.00	0.00	C	
ATOM ATOM	401 402	O CB	GLU GLU	77 77		111.953	82.341	1.00	0.00	0	
ATOM	403	CG	GLU	77 7 7		112.150 112.687	81.907 81.620	1.00	0.00	C	
ATOM	404	CD	GLU	77		112.124	82.569	1.00	0.00	C	
ATOM	405	OE1		7 7		112.545	83.706	1.00	0.00	ō	
ATOM	406	OE2		77		111.096	82.017	1.00	0.00	0	
ATOM ATOM	407 408	H HA	GLU GLU	77 77		114.507	82.230	1.00	0.00	н	
ATOM	409		GLU	77 77	111.698	112.563	79.954 82.971	1.00	0.00	Н	
ATOM	410	2HB	GLU	77	112.548		81.804	1.00	0.00	н н	
ATOM	411	1HG	GLU	77	114.243		80.574	1.00	0.00	н	
ATOM	412		GLU	77	113.973		81.706	1.00	0.00	н	
ATOM ATOM	413 414	N CA	VAL VAL	78 78	109.538		80.218	1.00	0.00	N	
ATOM	415	CA	VAL	78 78	108.198 108.278		80.279 80.702	1.00	0.00	C	
		_		, •	2/0	_0,,040	30.702	1.00	0.00	С	

ATOM	416	5 0	VAL	78	109.02	0 108.243	80.129	1.00	0.00	o
ATOM	417	CB	VAL	78	107.37	2 110.787				Ġ
MOTA	418	CG1	. VAL	78		9 112.261	78.749			
ATOM	419		VAL	78		5 110.259	77.661			. 0
ATOM	420		VAL	78		1 111.278	79.345			C
MOTA	421		VAL	78		8 111.065	81.062			H
ATOM	422		VAL	78						Н
ATOM		1HG1		78		4 110.234	79.103			H
ATOM						3 112.918	78.578			н
	424			78		7 112.382	77.879			H
ATOM	425		VAL	78		1 112.669	79.625	1.00	0.00	H
ATOM	426		VAL	78		7 109.184	77.736	1.00	0.00	H
MOTA	427		VAL	78		8 110.363	76.794	1.00	0.00	н
ATOM	428		VAL	78	108.95	0 110.791	77.408	1.00	0.00	н
ATOM	429	N	PHE	79	107.45	8 108.656	81.701	1.00	0.00	N
ATOM	430	CA	PHE	79	107.55	9 107.335	82.387	1.00		c
MOTA	431	. с	PHE	79	106.16	0 106.654	82.583	1.00		č
ATOM	432	. 0	PHE	79	105.16	3 107.290	82.943	1.00		ŏ
MOTA	433	CB	PHE	79		3 107.551	83.793	1.00		Č
ATOM	434	CG	PHE	79		7 107.986	83.837	1.00		c
ATOM	435	CD1	PHE	79		7 109.280	84.244	1.00		
ATOM	436		PHE	79		109.666	84.309	1.00	0.00	C
ATOM	437		PHE	79		7 108.773	83.948			C
ATOM	438		PHE	79		3 107.481		1.00	0.00	C
ATOM	439		PHE	79		107.088	83.544	1.00	0.00	C
ATOM	440		PHE	79			83.496	1.00	0.00	С
ATOM	441					5 109.437	82.183	1.00	0.00	H
ATOM	442		PHE	79		9 106.643	81.810	1.00	0.00	H
			PHE	79		3 108.258	84.363	1.00	0.00	H
ATOM	443		PHE	79		106.607	84.368	1.00	0.00	H
ATOM	444		PHE	79		109.992	84.503	1.00	0.00	H
ATOM	445		PHE	79		9 110.656	84.642	1.00	0.00	H
ATOM	446		PHE	79		109.073	84.006	1.00	0.00	н
MOTA	447		PHE	79		3 106.782	83.282	1.00	0.00	H
MOTA	448		PHE	79		106.085	83.177	1.00	0.00	н
MOTA	449		ALA	80	106.110	105.319	82.471	0.00	0.00	N
ATOM	450	CA	ALA	80		104.508	83.001	0.00	0.00	Ĉ
ATOM	451	C	ALA	80	105.107	104.272	84.547	0.00	0.00	Ċ
MOTA	452	0	ALA	80		103.428	85.035	0.00	0.00	ŏ
ATOM	453	СВ	ALA	80		103.194	82.218	0.00	0.00	c
ATOM	454	H	ALA	80		104.891	82.358	0.00	0.00	
ATOM	455	HA	ALA	80		105.000	82.765	0.00	0.00	н
ATOM		1HB	ALA	80		102.506	82.564			н
ATOM		2НВ	ALA	80		103.354	81.136	0.00	0.00	H
ATOM	458		ALA	80		102.656		0.00	0.00	H
ATOM	459		GLY	81		105.047	82.325	0.00	0.00	H
ATOM	460		GLY	81		105.047	85.329	1.00	0.00	N
ATOM	461	c	GLY	81			86.811	1.00	0.00	C
MOTA	462	Ö				104.300	87.487	1.00	0.00	С
ATOM			GLY	81		104.747	87.385	1.00	0.00	0
	463	H	GLY	81		105.767	84.788	1.00	0.00	H
ATOM		1HA	GLY	81		104.556	87.150	1.00	0.00	н
ATOM		2HA	GLY	81		106.029	87.189	1.00	0.00	H
ATOM	466	N	LYS	82		103.207	88.205	0.00	0.00	N
ATOM	467	CA	LYS	82		102.410	88.951	0.00	0.00	С
ATOM	468	C	LYS	82	102.243	102.984	90.404	0.00	0.00	С
ATOM	469		LYS	82		102.982	91.231	0.00	0.00	0
ATOM	470	CB	LYS	82	102.939	100.916	88.804	0.00	0.00	С
ATOM	471	CG	LYS	82	102.310	99.855	89.746	0.00	0.00	Č
ATOM	472	CD	LYS	82	102.506	98.366	89.344	0.00	0.00	Č
ATOM	473	CE	LYS	82	103.964	97.854	89.290	0.00	0.00	č
ATOM	474	NZ	LYS	82	104.023		88.932	0.00	0.00	N
ATOM	475	1HZ	LYS	82	103.258		89.258	1.00	0.00	
ATOM		2HZ	LYS	82	104.049		87.906			н
ATOM		3HZ	LYS	82	104.877		89.296	1,00	0.00	H
ATOM	478	Н	LYS	82		102.956		1.00	0.00	H
ATOM	479	HA	LYS	82		102.956	88.189	0.00	0.00	н
ATOM		1HB	LYS				88.412	0.00	0.00	H
ATOM		2HB		82		100.839	88.899	0.00	0.00	H
			LYS	82		100.609	87.752	0.00	0.00	H
ATOM		1HG	LYS	82		100.047	89.831	0.00	0.00	H
ATOM		2HG	LYS	82		100.010	90.766	0.00	0.00	H
ATOM		1HD	LYS	82	102.006	98.183	88.371	0.00	0.00	H
ATOM		2HD	LYS	82	101.939	97.735	90.057	0.00	0.00	Н
ATOM		THE	LYS	82	104.477	98.016	90.265	0.00	0.00	н
ATOM	487		LYS	82	104.562	98.441	88.556	0.00	0.00	H
ATOM	488	N	ILE	83	101.013		90.715	0.00	0.00	. N

_	_
.,	11
•	٠,

MOTA	489		ILE	83	100.653	103.99	92.050	0.00	0.00	c
MOTA	490		ILE	83	99.997	102.86	1 92.910	0.00	0.00	Ċ
MOTA	491		ILE	83	98.864	102.450	92.636	0.00		ō
MOTA	492		ILE	83	99.731	105.26	7 91.908	0.00	0.00	Ċ
MOTA	493		ILE	83	99.435	105.908	93.291	0.00	0.00	Ċ
ATOM	494		ILE	83	100.274	106.399	90.972	0.00	0.00	Č
MOTA	495		ILE	83	99.796	106.303	89.513	0.00	0.00	Ċ
ATOM	496		ILE	83	100.334	103.382	89.944	0.00	0.00	н
ATOM	497		ILE	83	101.573	104.343	92.566	0.00	0.00	н
MOTA	498		ILE	83		104.929		0.00	0.00	H
MOTA	499			83		106.773		0.00	0.00	н
ATOM		2HG2		83		105.197		0.00	0.00	н
MOTA		3HG2		83		106.268		0.00	0.00	н
MOTA		1HG1		83		106.416		0.00	0.00	н
MOTA		2HG1		83		107.399		0.00	0.00	н
ATOM		1HD1		83		107.159		0.00	0.00	. н
MOTA MOTA	505	2HD1	ILE	83		105.386		0.00	0.00	H
ATOM	507			83		106.323		0.00	0.00	H
ATOM	508		VAL VAL	84		102.366		1.00	0.00	N
ATOM	509		VAL	84 84		101.190		1.00	0.00	С
MOTA	510		VAL	84		101.685		1.00	0.00	C
ATOM	511		VAL	84		100.119		1.00	0.00	0
ATOM	512		VAL	84	100.985	98.872		1.00	0.00	C
ATOM	513		VAL	84	101.915	99.594		1.00	0.00	C
ATOM	514		VAL	84		102.693		1.00	0.00	c
MOTA	515	HA	VAL	84		100.666		1.00	0.00	H
ATOM	516	HB	VAL	84		100.600		1.00	0.00	H H
ATOM	517	1HG1	VAL	84	100.133	98.329		1.00	0.00	H
MOTA	518	2HG1	VAL	84	101.820	98.152		1.00	0.00	H
MOTA	519	3HG1	VAL	84	100.689	99.129		1.00	0.00	н
MOTA		2HG2		84	102.366	100.415	92.933	1.00	0.00	н
ATOM		3HG2		84	102.707	98.831	93.635	1.00	0.00	н
ATOM	522			84	101.112	99.150		1.00	0.00	н
ATOM	523	Ŋ	PRO	85		101.783		1.00	0.00	N
MOTA	524	CA	PRO	85		102.296		1.00	0.00	C
ATOM	525	C	PRO	85		101.264		1.00	0.00	C
ATOM ATOM	526	0	PRO	85		100.091		1.00	0.00	0
ATOM	527 528	CB CG	PRO PRO	85		102.731		1.00	0.00	С
ATOM	529	CD	PRO	85 85		101.769		1.00	0.00	C
ATOM	530	HA	PRO	85		101.509		1.00	0.00	C
ATOM		1HB	PRO	85		102.729		1.00	0.00	Н
ATOM			PRO	85		103.769		1.00	0.00	Н
ATOM		1HG	PRO	85		100.819		1.00	0.00	H H
ATOM	534	2HG	PRO	85		102.164	95.675	1.00	0.00	н
MOTA	535	1HD	PRO	85		100.464	95.147	1.00	0.00	н
MOTA	536	2HD	PRO	85		102.183	94.633	1.00	0.00	н
ATOM	537	N	LYS	86	98.387	101.742	100.135	0.00	0.00	N
ATOM	538	CA	LYS	86	98.662	100.888	101.331	0.00	0.00	C
ATOM	539	C	LYS	86	97.517	99.968	101.889	0.00	0.00	С
ATOM	540	0	LYS	86	97.759	98.781	102.113	0.00	0.00	0
ATOM	541	CB	LYS	86			102.404	0.00	0.00	С
ATOM ATOM	542	CG	LYS	86			102.985	0.00	0.00	С
ATOM	543 544	CD	LYS	86			103.828	0.00	0.00	C
ATOM	545	CE NZ	LYS	86 86			104.284	0.00	0.00	С
ATOM		1HZ	LYS	86 86			105.030	0.00	0.00	N
ATOM		2HZ	LYS	86	20.244	106.885	105.341	1.00	0.00	н
ATOM	548		LYS	86	100.239		105.851	1.00	0.00	H
ATOM	549	Н	LYS	86			104.420	1.00	0.00	н
ATOM	550	HA	LYS	86	99 450	100.710	101.022	0.00	0.00	н
ATOM	551		LYS	86	100.269			0.00	0.00	н
ATOM	552		LYS	86			103.240	0.00	0.00	H
MOTA	553		LYS	86			103.596	0.00	0.00	H
ATOM	554		LYS	86			102.165	0.00	0.00	H H
ATOM	555		LYS	86	100.211			0.00	0.00	H
ATOM	556	2HD	LYS	86		103.384		0.00	0.00	н
MOTA	557	1HE	LYS	86		104.879		0.00	0.00	н
ATOM	558	2HE	LYS	86	98.133	105.705	103.413	0.00	0.00	н
ATOM	559	N	SEŖ	87		100.474		1.00	0.00	N
ATOM	560	CA	SER	87	95.133		102.540	1.00	0.00	č
ATOM	561	С	SER	87	94.623		101.515	1.00	0.00	č
										_

94.403 ATOM 562 0 SER 87 97.411 101.905 1.00 0.00 0 ATOM 563 CB SER 94.007 100.572 103.026 1.00 87 0.00 C ATOM 564 OG SER 92.956 99.832 103.653 1.00 0.00 87 O ATOM 565 SER 96.215 101.475 101.887 1.00 Н 87 0.00 Н ATOM 566 HA SER 87 95.461 99.059 103.431 1.00 Н 0.00 ATOM 567 1HB SER 87 94.402 101.305 103.758 1.00 0.00 H 2HB ATOM 568 SER 87 93.596 101.174 102.191 1.00 0.00 H MOTA 569 HG SER 87 92.584 99.229 102.998 1.00 0.00 H 570 LEU 94.447 ATOM N 88 98.902 100.227 1.00 0.00 N ATOM 571 CA LEU 88 94.175 97.890 99.154 1.00 0.00 C C LEU MOTA 572 95.362 96.936 98.752 88 1.00 0.00 C ATOM 573 0 LEU 88 95.100 95.892 98.156 1.00 0.00 0 CB LEU MOTA 574 88 93.567 98.609 97.916 1.00 0.00 C MOTA 575 CG LEU 88 92.166 99.261 98.079 1.00 0.00 C MOTA 576 CD1 LEU 88 91.833 100.106 96.839 1.00 0.00 C ATOM 577 CD2 LEU 88 91.053 98.218 98.282 1.00 C 0.00 ATOM 578 Н LEU 88 94.777 99.847 100.006 1.00 0.00 H ATOM 579 HA LEU 88 93.404 97.191 99.529 1.00 0.00 Н 580 1HB LRU 94.292 99.365 MOTA 88 97.570 1.00 0.00 H ATOM 581 2HB LEU 88 93.512 97.889 97.075 1.00 0.00 Н MOTA 582 HG LEU 88 92.179 99.938 98.956 1.00 0.00 Н 92.580 100.904 ATOM 583 2HD1 LEU 88 96.672 1.00 0.00 н 584 3HD1 LEU ATOM 88 91.798 99.496 95.915 1.00 0.00 н ATOM 585 1HD1 LEU 88 90.851 100.605 96.935 1.00 0.00 Н MOTA 586 2HD2 LEU 88 91.004 97.492 97.449 1.00 0.00 H ATOM 587 3HD2 LEU 88 91.192 97.637 99.211 1.00 0.00 н MOTA 588 1HD2 LEU 90.055 88 98.690 98.359 1.00 0.00 н ATOM 589 N LEU 89 96.626 97.224 99,109 1.00 0.00 N ATOM 590 CA LEU 89 97.699 96.192 99.214 1.00 C 0.00 MOTA LEU 591 C 89 97.562 95.227 100.455 1.00 0.00 C **ATOM** 592 0 LEU 89 97.664 94.008 100.298 0 1.00 0.00 99.055 96.960 ATOM 593 CB LEU 89 99.166 C 1.00 0.00 96.091 LEU ATOM 594 CG 89 100.327 98.994 1.00 0.00 C ATOM 595 CD1 LEU 89 100.467 95.560 97.558 C 1.00 0.00 MOTA 596 CD2 LEU 89 101.587 96.896 99.355 1.00 0.00 C ATOM 597 н LEU 89 96.766 98.189 99.426 1.00 н 0.00 ATOM 598 HA LEU 89 97.643 95.547 98.314 1.00 0.00 н 599 1HB LEU ATOM 89 99.038 97.716 98.354 1.00 0.00 H MOTA 600 2HB LEU 89 99.142 97.561 100.093 1.00 0.00 Н MOTA 601 HG LEU 89 100.270 95.225 99.684 1.00 0.00 H ATOM 602 2HD1 LEU 89 99.536 95.099 97.181 1.00 0.00 н 100.723 ATOM 603 3HD1 LEU 89 96.351 96.834 1.00 0.00 Н ATOM 604 1HDL LEU 101.247 94.781 89 97.489 1.00 0.00 н MOTA 605 2HD2 LEU 89 101.702 97.797 98.723 1.00 0.00 Н MOTA 606 3HD2 LEU 101.562 97.237 100.406 89 1.00 0.00 H ATOM 607 1HD2 LEU 89 102.507 96.295 99.239 1.00 0.00 H 95.750 101.676 ATOM 608 LEU 90 97.330 N 1.00 0.00 N CA 94.928 102.915 ATOM 609 LEU 90 97.169 1.00 0.00 C ATOM 610 C LEU 90 95.928 93.965 102.973 C 1.00 0.00 96.098 92.800 103.340 ATOM 611 0 LEU 90 1.00 0.00 0 ATOM 612 CB LEU 90 97.194 95.890 104.141 1.00 0.00 C MOTA 613 CG LEU 90 98.552 96.556 104.496 C 1.00 0.00 ATOM 614 CD1 LEU 90 98.334 97.715 105.480 1.00 0.00 C ATOM 615 CD2 LEU 90 99.545 95.556 105.115 1.00 0.00 C 97.315 MOTA 616 Н LEU 90 96.778 101.696 1.00 0.00 H ATOM 617 HA LEU 90 98.046 94.258 102.994 1.00 0.00 н 96.424 ATOM 618 1HB LEU 90 96.670 103.982 1.00 0.00 Н T.EII ATOM 619 2HB 90 96.838 95.348 105.041 1.00 0.00 H ATOM 620 HG LEU 90 99.004 96.976 103.574 1.00 0.00 н ATOM 621 2HD1 LEU 97.669 98.489 105.053 1.00 0.00 Н ATOM 622 3HD1 LEU 97.880 97.378 106.432 90 1.00 0.00 H 99.284 98.222 105.733 ATOM 623 1HD1 LEU 90 1.00 0.00 Н ATOM 624 2HD2 LEU 90 99.137 95.070 106.021 1.00 0.00 3HD2 LEU 99.817 94.752 104.408 ATOM 625 90 1.00 0.00 Н MOTA 626 1HD2 LEU 90 100.488 96.050 105.410 1.00 0.00 H ATOM 627 N LYS 91 94.703 94,420 102,640 0.00 0.00 N ATOM 628 CA LYS 91 93.473 93.563 102.662 0.00 0.00 MOTA 629 LYS 93.508 92.243 101.787 C 91 0.00 0.00 C ATOM 630 0 LYS 91 93.266 91.185 102.376 0.00 0.00 0 ATOM 631 CB LYS 91 92.218 94.452 102.398 0.00 0.00 C ATOM 632 CG LYS 91 91.542 95.092 103.637 0.00 0.00 ATOM 633 CD LYS 91 92.338 96.229 104.304 0.00 0.00 C ATOM 634 CE LYS 91.582 96.846 105.488 0.00 0.00

			0.4	
ATOM	635 NZ LYS	91	81 92.386 97.929 106.087 0.00 0.00	
ATOM	636 1HZ LYS	91	91 973 00 220 200	N
ATOM	637 2HZ LYS	91	93.283 97.549 106.419 1.00 0.00	H
ATOM	638 3HZ LYS	91	92.562 98.657 105.380 1.00 0.00	H
ATOM	639 H LYS	91	94.687 95.406 102.350 0.00 0.00	H
ATOM	640 HA LYS	91	93.377 93.183 103.699 0.00 0.00	H H
ATOM ATOM	641 1HB LYS	91	91.440 93.828 101.916 0.00 0.00	Н
ATOM	642 2HB LYS 643 1HG LYS	91	92.435 95.229 101.637 0.00 0.00	н
ATOM	644 2HG LYS	91 91	91.314 94.304 104.382 0.00 0.00	н
ATOM	645 1HD LYS	91	90.551 95.483 103.331 0.00 0.00 92.559 97.007 103.551 0.00 0.00	н
ATOM	646 2HD LYS	91	93 333 05 045 304	н
ATOM	647 1HE LYS	91	91 261 96 965 465 6	H
ATOM	648 2HE LYS	91	90.598 97.243 105.168 0.00 0.00	H
ATOM	649 N PRO	92	93.817 92.198 100.453 1.00 0.00	H N
ATOM ATOM	650 CA PRO	92	94.036 90.912 99.718 1.00 0.00	G M
ATOM	651 C PRO 652 O PRO	92	95.423 90.180 99.890 1.00 0.00	Ċ
ATOM	653 CB PRO	92 92	95.793 89.369 99.038 1.00 0.00	ō
ATOM	654 CG PRO	92	93.768 91.398 98.277 1.00 0.00 94.319 92.824 98.235 1.00 0.00	С
ATOM	655 CD PRO	92	93 993 93 797	C
MOTA	656 HA PRO	92	93 360 00 155	С
ATOM	657 1HB PRO	92	94.220 90.748 97.504 1.00 0.00	H
MOTA	658 2HB PRO	92	92.679 91.403 98.076 1.00 0.00	H H
ATOM ATOM	659 1HG PRO 660 2HG PRO	92	95.417 92.815 98.087 1.00 0.00	н
ATOM	660 2HG PRO 661 1HD PRO	92	93.897 93.431 97.411 1.00 0.00	н
ATOM	662 2HD PRO	92 92	94.812 94.049 99.968 1.00 0.00	H
MOTA	663 N HIS	93	93.067 94.003 99.577 1.00 0.00 96.172 90.428.100.981 1.00 0.00	H
MOTA	664 CA HIS	93	97 474 99 745 456 56	N
ATOM	665 C HIS	93	98.649 89.921 100.264 1.00 0.00	c
ATOM	666 O HIS	93	99.418 88.994 99.993 1.00 0.00	C 0
ATOM ATOM	667 CB HIS	93	97.234 88.275 101.763 1.00 0.00	C
ATOM	668 CG HIS 669 ND1 HIS	93	96.378 88.105 103.018 1.00 0.00	Ċ
ATOM	670 CE1 HIS	93 93	96.872 88.240 104.307 1.00 0.00	N
ATOM	671 NE2 HIS	93	95.697 88.123 105.005 1.00 0.00 94.519 87.915 104 337 1.00 0.00	C
ATOM	672 CD2 HIS	93	94 995 97 993 100	N
ATOM	673 H HIS	93:	95 706 91 050 701 511 1.00 0.00	C
ATOM	674 HA HIS	93	97.865 90.269 102.198 1.00 0.00	H
ATOM ATOM	675 1HB HIS	93	96.801 87.691 100.929 1.00 0.00	H H
ATOM	676 2HB HIS 677 HE1 HIS	93	98.208 87.786 101.958 1.00 0.00	н
ATOM	678 HE2 HIS	93 93	95.706 88.228 106.083 1.00 0.00 93.557 87.930 104.690 1.00 0.00	н
MOTA	679 HD2 HIS	93	94 767 97 969 100	H
ATOM	680 N GTW	94	99 922 91 125 99 555	H
ATOM	681 CA GLN	94	99.797 91.412 98.619 0.00 0.00	N
ATOM	682 C GLN	94	101.180 92.046 99.017 0.00 0.00	c c
ATOM ATOM	683 O GLN 684 CB GLN	94	102.059 92.109 98.155 0.00 0.00	Ö
ATOM	COF 00 07-11	94	99.060 92.295 97.574 0.00 0.00	Č
ATOM	686 CD GIW	94 94	97.975 91.596 96.709 0.00 0.00 97.355 92.477 95.614 0.00 0.00	C
ATOM	687 OE1 GLN	94	97 667 93 647	C
ATOM	688 NE2 GLN	94	96 477 07 001	0
ATOM	689 H GLN	94	98.058 91.789 99.942 0.00 0.00	N
ATOM ATOM	690 HA GLN 691 1HB GLN	94	100.067 90.467 98.106 0.00 0.00	H H
ATOM	691 1HB GLN 692 2HB GLN	94	99.805 92.722 96.876 0.00 0.00	H
ATOM	693 1HG GLN	94 94	98.619 93.181 98.071 0.00 0.00 97.166 91.217 97.361 0.00 0.00	н
ATOM	694 2HG GLN	94	99 414 00 500	H
ATOM	695 1HE2 GLN	94	96 379 90 910	H
ATOM	696 2HE2 GLN	94	96 371 00 400	н
ATOM	697 N ARG	95	101.412 92.495 100.268 1.00 0.00	H
ATOM ATOM	698 CA ARG	95	102.691 93.151 100.696 1.00 0.00	N C
ATOM	699 C ARG 700 O ARG	95	104.026 92.358 100.429 1.00 0.00	c
ATOM	700 O ARG 701 CB ARG	95 95	104.961 92.917 99.853 1.00 0.00	ō
ATOM	701 CB ARG	95 95	102.495 93.590 102.174 1.00 0.00	Ċ
ATOM	703 CD ARG	95	103.631 94.474 102.750 1.00 0.00 103.389 94.848 104.218 1.00 0.00	C
ATOM	704 NE ARG	95	104 539 05 550 101	C
ATOM	705 CZ ARG	95	104.723 96.079 105.937 1.00 0.00	N
ATOM ATOM		95	103.907 95.845 106.921 1.00 0.00	C N
A1017	707 NH2 ARG	95	105.786 96.762 106.176 1.00 0.00	N

						82				
ATOM	708	HB	ARG	95	105.252	95.916	103.996	1.00	0.00	н
ATOM	709	H	ARG	95	100.593	92.395	100.878	1.00	0.00	H
MOTA	710	HA	ARG	95	102.788		100.097	1.00	0.00	н
ATOM		1HB	ARG	95	101.543		102.272	1.00	0.00	Н
ATOM ATOM	712	2HB 1HG	ARG ARG	95 95	102.374 104.606		102.810	1.00	0.00	H H
ATOM		2HG	ARG	95	103.748		102.145	1.00	0.00	H
ATOM		1HD	ARG	95	102.448		104.319	1.00	0.00	н
ATOM		2HD	ARG	95	103.278	93.931	104.835	1.00	0.00	H
MOTA		2HH1		95	103.101		106.651	1.00	0.00	н
MOTA	718	1HH1 1HH2		95 95	104.170 106.362		107.835	1.00	0.00	H H
MOTA MOTA	720	2HH2		95	105.945		107.131	1.00	0.00	н
ATOM	721	N	GLU	96	104.096		100.833	0.00	0.00	N
ATOM	722	CA	GLU	96	105.189		100.412	0.00	0.00	C
MOTA	723	C	GLU	96	104.931	89.350	99.079	0.00	0.00	C
ATOM ATOM	724 725	O CB	GLU GLU	96 96	105.894 105.463	88.989	98.402 101.587	0.00	0.00	0
ATOM	726	CG	GLU	96	106.066		102.872	0.00	0.00	č
ATOM	727	CD	GLU	96	106.233		104.017	0.00	0.00	c
MOTA	728		GLU	96	105.377		104.869	0.00	0.00	0
MOTA	729		GLU	96	107.438		103.990	0.00	0.00	0
ATOM ATOM	730 731	H HA	GLU	96 96	103.250 106.124		101.306	0.00	0.00	H H
ATOM	732		GLU	96	106.166		101.235	0.00	0.00	н
ATOM	733		GLU	96	104.534		101.832	0.00	0.00	н
ATOM		1HG	GLU	96	105.426		103.237	0.00	0.00	н
ATOM	735		GLU	96	107.044	90.260		0.00	0.00	H N
ATOM ATOM	736 73 7	N CA	LYS LYS	97 97	103.671 103.353	89.057 88.216	98.688 97.488	0.00	0.00	C
ATOM	738		LYS	97	103.443	88.919	96.085	0.00	0.00	Ċ
MOTA	739	0	LYS	97	104.022	88.356	95.154	0.00	0.00	0
MOTA	740		LYS	97	101.948	87.561	97.656	0.00	0.00	C.
ATOM ATOM	741 742		LYS	97 97	101.708 100.329	86.653 85.964	98.883 98.808	0.00	0.00	C
ATOM	743		LYS	97	99.974	85.222		0.00	0.00	č
ATOM	744		LYS	97	98.655	84.577	99.947	0.00	0.00	N
ATOM		1HZ	LYS	97	98.413		100.815	1.00	0.00	н
ATOM	746		LYS	97	97.942	85.294	99.755	1.00	0.00	H H
ATOM ATOM	747 748		LYS LYS	97 97	98.690 102.948	83.908 89.411	99.164 99.318	1.00 0.00	0.00	H
ATOM	749		LYS	97	104.088	87.389	97.445	0.00	0.00	н
ATOM	750	1HB	LYS	, 97	101.171	88.351	97.642	0.00	0.00	н
ATOM		2HB	LYS	97	101.748	86.960	96.746	0.00	0.00	H
ATOM ATOM		1HG 2HG	LYS	97 97	102.512 101.772	85.895 87.260	98.965 99.808	0.00	0.00	H H
ATOM		1HD	LYS	97	99.549	86.725	98.598	0.00	0.00	н
ATOM		2HD	LYS	97	100.312	85.270	97.945	0.00	0.00	H
MOTA		1HE	LYS	97	100.743		100.353	0.00	0.00	H
ATOM ATOM		2HE	LYS	97 98	99.946 102.791	85.926 90.083	100.959 95.914	0.00	0.00	H N
ATOM	758 759		MET MET	98	102.791	90.853	94.632	0.00	0.00	C
ATOM	760		MET	98	103.722	92.109	94.646	0.00	0.00	C
MOTA	761		MET	98	104.487	92.313	93.699	0.00	0.00	0
ATOM	762		MET	98	101.318	91.226	94.282	0.00	0.00	C
ATOM ATOM	763 764		MET MET	98 98	100.475 98.916	90.087 90.757	93.674 93.075	0.00	0.00	C S
ATOM	765		MET	98	98.221	89.275	92.335	0.00	0.00	C
MOTA	766		MET	98	102.511	90.501	96.807	0.00	0.00	Н
ATOM	767		MET	98	103.171	90.224	93.803	0.00	0.00	H
MOTA		1HB	MET	98 98	100.800	91.647	95.163 93.554	0.00	0.00	H
ATOM ATOM		2HB	MET MET	98	101.316	92.056 89.617	92.825	0.00	0.00	н
ATOM		2HG	MET	98	100.289	89.287	94.414	0.00	0.00	н
ATOM	772	1HE	MET	98	98.818	88.972	91.457	0.00	0.00	H
ATOM		2HE	MET	98	97.185	89.464	92.000	0.00	0.00	н
ATOM ATOM	774 775	3HE	met ser	98 99	98.208 103.680	88.439 92.944	93.057 95.705	0.00	0.00	H N
ATOM	776		SER	99	103.000	93.904	95.997	0.00	0.00	C
ATOM	777		SER	99	106.098	93.204	96.500	0.00	0.00	С
ATOM	778		SER	99	106.170	91.989	96.692	0.00	0.00	0
ATOM	779		SER	99	104.199	94.965	96.962	0.00	0.00	C
ATOM	780	OG	SER	99	105.102	96.061	97.138	0.00	0.00	0

						83				
MOTA	78:		SER	99	103.120		96.475	0.00	0.00	н
ATOM	782		SER		105.037					н
ATOM		1HB	SER		103.243				0.00	н
ATOM ATOM	789	1 2HB 5 HG	SER SER		103.965					H
ATOM	786		MET	100	104.767 107.175					H
MOTA	787		MET	100	108.594					C N
ATOM	788		MET	100	109.244					c
ATOM	789		MET	100	110.469		95.226			ŏ
ATOM ATOM	790 791		MET MET	100	108.921					C
ATOM	792		MET	100 100	108.700 109.201		99.246 100.548	_		C
ATOM	793		MET	100	108.896					s C
ATOM	794		MET	100	106.918	_	96.637			н
ATOM	795		MET	100	109.184		96.850	1.00		н
MOTA MOTA		1HB	MET MET	100 100	108.342	91.636	97.792			H
ATOM		1HG	MET	100	109.979 109.273	92.253 94.163	97.800 99.344			H
ATOM	799		MET	100	107.633	93.478	99.390	1.00	0.00	H
ATOM		THE	MET	100	109.507		101.915	1.00	0.00	H H
ATOM		3HE	MET	100	107.830	93.435	102.019	1.00	0.00	H
ATOM ATOM	802 803		MET	100	109.152		102.907	1.00	0.00	H
ATOM	804		GLU	101 101	108.496 109.067	92.944	94.163	0.00	0.00	N
ATOM	805		GLU	101	110.071	92.992 94.151	92.774 92.406	0.00	0.00	C
ATOM	806	0	GLU	101	110.931	93.963	91.547	0.00	0.00	C
ATOM	807		GLU	101	107.894	92.894	91.754	0.00	0.00	č
ATOM ATOM	808 809		GLU	101	106.842	94.060	91.838	0.00	0.00	C
ATOM	810		GLU GLU	101 101	106.279 105.843	94.737	90.600	0.00	0.00	C
ATOM	811		GLU	101	106.170	94.086 95.980	89.632 90.633	0.00	0.00	0
MOTA	812	H	GLU	101	107.491	92.835	94.351	0.00	0.00	O H
ATOM	813		GLU	101	109.663	92.066	92.653	0.00	0.00	н
ATOM ATOM		1HB 2HB	GLU	101	107.339	91.952	91.938	0.00	0.00	H
ATOM	816		GLU	101 101	108.294 107.241	92.806	90.725	0.00	0.00	H
MOTA	817		GLU	101	105.963	94.883 93.712	92.455 92.397	0.00	0.00	н
ATOM	818	N	ILE	102	110.011	95.307	93.091	0.00	0.00	И
ATOM	819	CA	ILE	102	111.117	96.324	93.126	0.00	0.00	č
ATOM ATOM	820 821	c o	ILE	102 102	112.564	95.800	93.464	0.00	0.00	C
ATOM	822	СВ	ILE	102	113.523 110.710	96.238 97.558	92.831	0.00	0.00	0
ATOM	823		ILE	102	109.536	98.355	94.018 93.396	0.00	0.00	C
ATOM	824		ILE	102	110.409	97.228	95.514	0.00	0.00	c
ATOM ATOM	825		ILE	102	110.410	98.432	96.472	0.00	0.00	Ċ
ATOM	826 827	H HA	ILE	102 102	109.270 111.220	95.297	93.797	0.00	0.00	H
ATOM	828	HB	ILE	102	111.585	96.704 98.242	92.090 94.004	0.00 0.0 0	0.00	H
ATOM	829	1HG2	ILE	102	109.385	99.330	93.894	0.00	0.00	H H
ATOM		2HG2		102	109.710	98.570	92.327	0.00	0.00	н
ATOM ATOM		3HG2 1HG1		102	108.578	97.804	93.456	0.00	0.00	H
ATOM		2HG1		102 102	111.165 109.448	96.515 96.687	95.895	0.00	0.00	Н
ATOM		1HD1		102	110.241	98.116	95.601 97.517	0.00	0.00	H
ATOM		2HD1		102	111.381	98.963	96.454	0.00	0.00	H H
ATOM		3HD1		102	109.623	99.168	96.227	0.00	0.00	н
ATOM ATOM	837 838	N CA	SER SER	103	112.731	94.840	94.395	1.00	0.00	N
ATOM	839	C	SER	103 103	114.010 114.407	94.078 93.084	94.548	1.00	0.00	C
ATOM	840	ō	SER	103	115.580	92.714	93.393 93.302	1.00	0.00 0.00	C
ATOM	841	CB	SER	103	113.946	93.347	95.908	1.00	0.00	O C
ATOM	842	OG	SER	103	115.211	92.763	96.229	1.00	0.00	ŏ
ATOM ATOM	843 844	H HA	SER SER	103	111.847	94.461	94.757	1.00	0.00	H
ATOM	845		SER	103 103	114.842 113.664	94.808 94.044	94.614	1.00	0.00	H
ATOM	846		SER	103	113.064	92.564	96.721 95.899	1.00	0.00	H
MOTA	847	HG	SER	103	115.563	92.369	95.418	1.00	0.00	H H
ATOM	848	N	ILE	104	113.466	92.652	92.534	0.00	0.00	N
ATOM ATOM	849 850	CA C	ILE	104	113.770	91.892	91.283	0.00	0.00	c
ATOM	851	0	ILE ILE	104 104	114.234 115.419	92.901 92.936	90.167	0.00	0.00	C
ATOM	852	CB	ILE	104	112.573	90.937	89.833 90.894	0.00 0.00	0.00	O C
ATOM	853	CG2	ILE	104	112.868	90.156	89.586	0.00	0.00	C C

						• •				
ATOM	854	CG1	ILE	104	112.175	89.917	92.006	0.00	0.00	C
MOTA	855	CD1		104	110.818	89.209	91.806	0.00	0.00	С Н
ATOM	856	H	ILE	104	112.552	93.098 91.231	92.676	0.00	0.00	н
ATOM	857	HA HB	ILE	104 104	114.641 111.688	91.577	91.467 90.702	0.00	0.00	н
MOTA MOTA	858 859	1HG2		104	112.044	89.477	89.301	0.00	0.00	н
ATOM		2HG2		104	112.997	90.835	88.724	0.00	0.00	H
MOTA		3HG2		104	113.784	89.541	89.662	0.00	0.00	H
ATOM	862	1HG1	ILE	104	112.122	90.432	92.984	0.00	0.00	н
MOTA	863	2HG1		104	112.976	89.162	92.138	0.00	0.00	H H
ATOM	_	1HD1		104	110.546	88.603	92.691 91.641	0.00	0.00	н
MOTA		2HD1 3HD1		104 104	109.990 110.825	89.923 88.518	90.944	0.00	0.00	н
ATOM ATOM	866 867	N	HIS	105	113.344	93.746	89.616	1.00	0.00	N
ATOM	868	CA	HIS	105	113.695	94.702	88.517	1.00	0.00	С
ATOM	869	C	HIS	105	114.587	95.965	88.831	1.00	0.00	C
ATOM	870	0	HIS	105	114.998	96.646	87.890	1.00	0.00	0 C
MOTA	871	CB	HIS	105	112.403	95.005	87.708	1.00	0.00	c
MOTA	872	CG	HIS	105 105	111.208 109.950	95.654 95.079	88.402 88.433	1.00	0.00	n
MOTA MOTA	873 874		HIS HIS	105	109.254	96.094	89.029	1.00	0.00	С
MOTA	875		HIS	105	109.900	97.248	89.378	1.00	0.00	N
ATOM	876		HIS	105	111.175	96.940	88.946	1.00	0.00	c
MOTA	877	H	HIS	105	112.395	93.691	90.011	1.00	0.00	Н
MOTA	878	HA	HIS	105	114.335	94.144	87.803	1.00	0.00	H H
MOTA	879		HIS	105	112.660 112.066	95.634 94.058	86.835 87.248	1.00 1.00	0.00	н
ATOM	880 881		HIS HIS	105 105	108.185	95.999	89.157	1.00	0.00	н
MOTA MOTA	882		HIS	105	109.511	98.124	89.737	1.00	0.00	н
ATOM	883		HIS	105	112.024	97.602	88.960	1.00	0.00	Н
MOTA	884	N	ARG	106	114.967	96.248	90.091	1.00	0.00	N
MOTA	885		ARG	106	116.188	97.062	90.403	1.00	0.00	C C
MOTA	886		ARG	106	117.561	96.302 96.905	90.234 89.777	1.00	0.00	ō
ATOM ATOM	887 888		ARG ARG	106 106	118.534 116.016	97.669	91.825	1.00	0.00	č
ATOM	889		ARG	106	116.944	98.849	92.215	1.00	0.00	С
MOTA	890		ARG	106	116.548	100.176	91.548	1.00	0.00	C
MOTA	891	NE	ARG	106	117.304		92.139	1.00	0.00	N
MOTA	892		ARG	106	117.196		91.754	1.00	0.00	C N
MOTA	893		ARG	106	116.436 117.895		90.782 92.389	1.00	0.00	n
ATOM ATOM	894 895		ARG ARG	106 106	117.960		92.904	1.00	0.00	н
ATOM	896		ARG	106	114.499	95.669	90.799	1.00	0.00	H
MOTA	897		ARG	106	116.232	97.909	89.690	1.00	0.00	н
ATOM	898		ARG	106	114.973	98.014	91.962	1.00	0.00	H H
ATOM	899		ARG	106	116.131	96.860	92.572 93.315	1.00	0.00	н
ATOM		1HG 2HG	ARG ARG	106 106	116.907 118.005	98.977 98.616	91.995	1.00	0.00	н
ATOM ATOM	902		ARG	106	116.720		90.454	1.00	0.00	н
ATOM	903		ARG	106	115.467		91.693	1.00	0.00	H
MOTA		2HH:		106	115.966	102.231	90.280	1.00	0.00	н
MOTA		1HH:		106		103.981	90.557	1.00	0.00	Н
MOTA		1HH		106	118.476		93.111 92.071	1.00	0.00	H H
ATOM		2HH:	2 ARG SER	106 107	117.656	95.006	90.591	1.00	0.00	N
ATOM ATOM	908 908		SER	107	118.898	94.191	90.412	1.00	0.00	С
ATOM	910		SER	107	119.231	93.611	88.983	1.00	0.00	C
ATOM	91:		SER	107	120.313	93.038	88.811	1.00	0.00	0
MOTA	913		SER	107	118.801	93.051	91.457	1.00	0.00	C
MOTA	91:			107	120.020	92.306	91.515 90.835	1.00	0.00	О Н
ATOM	91		SER	107	116.758 119.773	94.573 94.811	90.633	1.00	0.00	н
ATOM ATOM	91	5 HA 6 1HB		107 107	118.583	93.450	92.468	1.00	0.00	н
ATOM		7 2HB			117.956	92.371	91.219	1.00	0.00	H
ATOM	91				120.314	92.177	90.601	1.00	0.00	н
ATOM	91		LEU	108	118.339	93.708	87.985	1.00	0.00	, N
ATOM	92	0 CA			118.502	93.046	86.658	1.00	0.00	C
ATOM	92		LEU		119.119			1.00	0.00	C 0
ATOM	92		LEU		118.409 117.098	94.660 92.487				c
ATOM ATOM	92 92				116.686	91.054	_			c
ATOM	92		1 LEU		117.204	90.574	_			C
ATOM	92		2 LEU		115.152	90.965		1.00	0.00	С

						85				
ATOM	927	H	LEU	108	117.463	94.155	88.273	1.00	0.00	н
ATOM	928	HA	LEU	108	119.184	92.174	86.733	1.00	0.00	н
ATOM		1HB	LEU		116.324	93.229	86.542	1.00	0.00	H
MOTA MOTA	930	2HB HG	TEA TEA	108 108	117.022	92.480 90.334	85.156	1.00	0.00	H
ATOM	932			108	117.076 118.307	90.517	85.960 88.100	1.00	0.00	Н
ATOM	933	3HD1		108	116.898	91.239	88.903	1.00	0.00	H H
ATOM	934	1HD1	LEU	108	116.842	89.558	88.321	1.00	0.00	н
ATOM		2HD2		108	114.700	91.680	87.419	1.00	0.00	н
ATOM		3HD2		108	114.728	91.191	85.712	1.00	0.00	H
MOTA MOTA	937 938	1HD2 N	ALA	108 109	114.791 120.459	89.961 94.046	86.993	1.00	0.00	H
ATOM	939	CA	ALA	109	121.181	94.809	85.502 84.450	1.00	0.00	n n
ATOM	940	C	ALA	109	121.276	94.026	83.092	1.00	0.00	c
ATOM	941	0	ALA	109	122.205	93.242	82.864	1.00	0.00	ō
ATOM	942	CB	ALA	109	122.549	95.166	85.065	1.00	0.00	С
ATOM ATOM	943 944	H HA	ALA ALA	109 109	120.937	93.517	86.238	1.00	0.00	H
ATOM	945		ALA	109	120.661 122.442	95.770 95.760	84.261 85.993	1.00	0.00	н
ATOM	946	3 HB	ALA	109	123.147	94.269	85.313	1.00	0.00	H H
ATOM	947		ALA	109	123.155	95.773	84.367	1.00	0.00	н
ATOM	948	N	HIS	110	120.281	94.224	82.211	0.00	0.00	N
ATOM ATOM	949	CA	HIS	110	120.183	93.522	80.899	0.00	0.00	С
ATOM	950 951	C O	HIS HIS	110 110	119.536 118.774	94.431 95.359	79.796 80.081	0.00	0.00	C
ATOM	952	СВ	HIS	110	119.385	92.201	81.129	0.00	0.00	0 C
ATOM	953	CG	HIS	110	119.470	91.154	80.018	0.00	0.00	č
ATOM	954		HIS	110	118.360	90.593	79.403	0.00	0.00	N
ATOM ATOM	955 956		HIS	110	118.990	89.661	78.619	0.00	0.00	C
ATOM	957		HIS	110 110	120.356 120.651	89.578 90.545	78.616 79.559	0.00	0.00	и
ATOM	958	H	HIS	110	119.499	94.777	82.586	0.00	0.00	C H
ATOM	959	HA	HIS	110	121.208	93.272	80.555	0.00	0.00	н
ATOM		1HB	HIS	110	118.324	92.438	81.344	0.00	0.00	н
ATOM ATOM	961 962		HIS	110	119.738	91.705	82.050	0.00	0.00	н
MOTA	963		HIS HIS	110 110	118.402 120.958	88.948 88.868	78.058 78.185	0.00	0.00	н
ATOM	964		HIS	110	121.637	90.755	79.950	0.00	0.00	н н
ATOM	965	N	GLN	111	119.796	94.124	78.511	1.00	0.00	N
ATOM	966	CA	GLN	111	119.073	94.767	77.370	1.00	0.00	Ċ
ATOM ATOM	967	C	GLN	111	117.522	94.518	77.294	1.00	0.00	C
ATOM	968 969	O CB	GLN GLN	111 111	116.783 119.814	95.452 94.355	76.9 77 76.065	1.00 1.00	0.00	0
ATOM	970	CG	GLN	111	119.352	95.115	74.789	1.00	0.00	c
MOTA	971	CD	GLN	111	120.079	94.724	73.503	1.00	0.00	č
ATOM	972		GLN	111	119.676	93.832	72.768	1.00	0.00	0
ATOM ATOM	973 974	H	GLN GLN	111 111	121.156 120.352	95.386 93.273	73.167	1.00	0.00	Ŋ
ATOM	975	HA	GLN	111	119.191	95.864	78.391 77.481	1.00	0.00	H H
ATOM	976	1HB	GLN	111	120.904	94.513	76.190	1.00	0.00	н
ATOM		2HB	GLN	111	119.695	93.264	75.901	1.00	0.00	н
ATOM		1HG	GLN	111	118.276	94.920	74.613	1.00	0.00	H
ATOM ATOM		2HG 1HE2	GLN	111 111	119.413 121.424	96.208	74.943	1.00	0.00	Н
ATOM		2HE2		111	121.540	96.166 95.113	73.769 72.259	1.00	0.00	H H
ATOM	982	N	HIS	112	117.029	93.294	77.559	1.00	0.00	N N
MOTA	983	CA	HIS	112	115.593	92.928	77.334	1.00	0.00	Ċ
ATOM	984	C	HIS	112	114.665	93.099	78.602	1.00	0.00	C
ATOM	985 986	O CB	HIS HIS	112 112	113.745 115.545	92.309	78.828	1.00	0.00	0
ATOM	987	CG	HIS	112	116.435	91.483 91.140	76.735 75.527	1.00 1.00	0.00	c c
ATOM	988	ND1		112	116.759	92.021	74.504	1.00	0.00	И
ATOM	989	CE1		112	117.721	91.285	73.864	1.00	0.00	Č
MOTA	990	NE2		112	118.030	90.033	74.311	1.00	0.00	N
ATOM ATOM	991	CD2		112	117.181	89.959	75.402	1.00	0.00	C
ATOM	992 993	H HA	HIS HIS	112 112	117.723 115.158	92.612 93.595	77.883	1.00	0.00	н
ATOM	994		HIS	112	115.756	90.764	76.563 77.550	1.00	0.00	H H
ATOM		2HB	HIS	112	114.502	91.264	76.442	1.00	0.00	н
MOTA	996	HE1		112	118.248	91.719	73.024	1.00	0.00	н
ATOM	997	HE2		112	118.792	89.412	74.014	1.00	0.00	H
ATOM ATOM	998 999	HD2 N	VAL	112 113	117.131	89.137	76.100	1.00	0.00	н
	233	14	441	113	114.879	94.140	79.426	1.00	0.00	N

						00				
MOTA	1000	CA	VAL	113	114.177	94.363	80.732	1.00	0.00	С
MOTA	1001	Ç	VAL	113	113.876	95.899	80.839	1.00	0.00	С
MOTA	1002	0	VAL	113	114.762	96.727	80.603	1.00	0.00	0
MOTA	1003	CB	VAL	113	115.031	93.822	81.942	1.00	0.00	С
MOTA	1004	CG1	VAL	113	114.422	94.136	83.330	1.00	0.00	С
ATOM	1005	CG2	VAL	113	115.264	92.290	81.916	1.00	0.00	С
MOTA	1006	H	VAL	113	115.671	94.731	79.141	1.00	0.00	H
MOTA	1007	HA	VAL	113	113.208	93.826	80.741	1.00	0.00	H
MOTA	1008	HB	VAL	113	116.025	94.314	81.899	1.00	0.00	H
MOTA		1HG1		113	113.405	93.722	83.446	1.00	0.00	н
MOTA		2HG1		113	115.039	93.742	84.161	1.00	0.00	н
MOTA		3HG1		113	114.345	95.227	83.509	1.00	0.00	H
ATOM		2HG2		113	115.809	91.975	81.008	1.00	0.00	н
MOTA		3HG2		113	115.874	91.945	82.773	1.00	0.00	н
MOTA		1HG2		113	114.314	91.724	81.936	1.00	0.00	Н
ATOM	1015	И	VAL	114	112.642	96.296 97.744	81.208	0.00	0.00	N C
MOTA	1016 1017	CA C	VAL	114 114	112.230 113.120	98.550	81.262 82.289	0.00	0.00	c
ATOM ATOM	1017	Ö	VAL	114	113.120	98.124	83.436	0.00	0.00	ō
ATOM	1019	CB	VAL	114	110.701	97.852	81.615	0.00	0.00	č
ATOM	1020		VAL	114	110.200	99.308	81.734	0.00	0.00	Č
ATOM	1021		VAL	114	109.717	97.185	80.624	0.00	0.00	Č
ATOM	1022	H	VAL	114	112.016	95.535	81.503	0.00	0.00	H
ATOM	1023	HA	VAL	114	112.370	98.187	80.256	0.00	0.00	н
MOTA	1024	HB	VAL	114	110.557	97.367	82.602	0.00	0.00	. н
ATOM		1HG1		114	110.767	99.897	82.479	0.00	0.00	H
MOTA		2HG1		114	110.258	99.866	80.780	0.00	0.00	H
ATOM	1027	3HG1	VAL	114	109.150	99.339	82.069	0.00	0.00	H
ATOM	1028	1HG2	VAL	114	109.688	97.697	79.644	0.00	0.00	н
ATOM	1029	2HG2	VAL	114	109.962	96.125	80.438	0.00	0.00	Н
ATOM	1030	3HG2		114	108.678	97.192	81.006	0.00	0.00	н
ATOM	1031	N	GLY	115	113.677	99.701	81.873	1.00	0.00	N
ATOM	1032	CA	GLY	115		100.527	82.744	1.00	0.00	· C
ATOM	1033	C	GLY	115		101.190	83.956	1.00	0.00	C
ATOM	1034	0	GLY	115		101.999	83.811	1.00	0.00	0
ATOM	1035	H	GLY	115		100.067	80.961	1.00	0.00	H H
ATOM	1036		GLY	115	115.441	99.941 101.342	83.061 82.130	1.00	0.00	Н
ATOM ATOM	1037 1038	2 na N	GLY PHE	115 116		101.342	85.163	1.00	0.00	N
ATOM	1039	CA	PHE	116		101.270		1.00	0.00	Ċ
ATOM	1040	c	PHE	116		102.526	87.030	1.00	0.00	č
ATOM	1041	ŏ	PHE	116		102.470	87.485	1.00	0.00	0
ATOM	1042	CB	PHE	116	113.598		87.373	1.00	0.00	C
ATOM	1043	CG	PHE	116	112.797	100.237	88.671	1.00	0.00	C
ATOM	1044	CD1	PHE	116	111.508	100.777	88.644	1.00	0.00	С
MOTA	1045	CEI	PHE	116	110.797	100.954	89.820	1.00	0.00	С
ATOM	1046	cz	PHE	116		100.551	91.030	1.00	0.00	c
ATOM	1047		PHE	116	112.610	99.980	91.072	1.00	0.00	C
MOTA	1048		PHE		113.338	99.830	89.893	1.00	0.00	C
ATOM	1049		PHE	116	114.915	99.996	85.144	1.00	0.00	н
MOTA	1050		PHE			101.542	86.204 86.844	1.00	0.00	H H
MOTA MOTA	1051	1HB 2HB	PHE		113.152 114.633	99.173 99.711	87.601	1.00	0.00	н
MOTA	1052		PHE			101.070	87.714	1.00	0.00	н
MOTA	1054		PHE			101.392	89.786	1.00	0.00	н
MOTA	1055		PHE			100.687	91.925	1.00	0.00	н
ATOM	1056		PHE		113.026	99.647	92.013	1.00	0.00	н
ATOM	1057		PHE		114.313	99.368	89.922	1.00	0.00	н
MOTA	1058	N	HIS	117	113.642	103.657	87.050	1.00	0.00	N
ATOM	1059	CA	HIS	117	114.145	104.947	87.595	1.00	0.00	C
ATOM	1060	C	HIS	117	114.102	105.098	89.160	1.00	0.00	С
MOTA	1061	0	HIS	117	115.055	105.637	89.731	1.00	0.00	0
MOTA	1062	CB	HIS			106.045	86.836	1.00	0.00	C
ATOM	1063		HIS			107.481	87.004	1.00	0.00	C
ATOM	1064		HIS			108.504	87.493	1.00	0.00	N
ATOM	1065		HIS			109.556	87.340	1.00	0.00	C
ATOM	1066		HIS			109.346	86.812	1.00	0.00	И
ATOM	1067		HIS			107.982	86.595	1.00	0.00	C
ATOM	1068		HIS			103.548	86.734	1.00	0.00	H H
ATOM ATOM	1069	HA 1HB	HIS HIS			105.053 105.837	87.312 85.749	1.00	0.00	H H
ATOM		2HB	HIS			105.837	87.128	1.00	0.00	н
ATOM	1071		HIS			110.546	87.656	1.00	0.00	н
2200	2012	and T		/	113.000		0,.050		5.00	n

					8'	7			
MOTA	107		2 HIS		115.907 110		7 1.00	0.00	н
ATOM ATOM	1074 1079		2 HIS GLY		115.869 107		_	0.00	Н
ATOM	107		GLY		113.030 104. 112.920 104.				N
ATOM	107		GLY		111.772 104	.081 92.021			c
ATOM ATOM	1078		GLY GLY		110.634 104.				ō
ATOM) lHA	GLY		112.330 104. 113.891 104.				н
ATOM		L 2HA	GLY	118	112.763 105.				H H
ATOM ATOM	1082		PHE		112.086 103.			0.00	N
ATOM	1084		PHE		111.077 103. 110.838 104.				C
ATOM	1085		PHE	119	111.701 104.				c 0
ATOM ATOM	1086		PHE PHE		111.485 101.	633 94.732	1.00	0.00	č
ATOM	1088		PHE		112.841 101. 112.914 101.			0.00	C
ATOM	1089	CE	PHE	119	114.134 101.			0.00	C C
ATOM ATOM	1090		PHE	119	115.288 101.		1.00	0.00	Ċ
ATOM	1092		PHE	119 119	115.225 101. 114.005 101.			0.00	C
ATOM	1093	H	PHE	119	113.071 103.			0.00	C H
ATOM ATOM	1094		PHE	119	110.110 102.		1.00	0.00	н
ATOM	1095 1096		PHE	119 119	110.676 101. 111.447 100.			0.00	Н
ATOM	1097	HD1	PHE	119	112.028 101.			0.00	H H
ATOM ATOM	1098 1099		PHE	119	114.185 101.		1.00	0.00	н
ATOM	1100		PHE	119 119	116.236 100. 116.122 100.		-	0.00	H
ATOM	1101		PHE	119	113.975 101.	198 93.624		0.00 0.00	H H
ATOM ATOM	1102 1103		PHE	120 120	109.682 104.		1.00	0.00	N
ATOM	1104		PHE	120	109.403 105. 108.310 105.		1.00	0.00	C
ATOM	1105		PHE	120	107.118 105.	356 96.981	1.00	0.00	c o
MOTA MOTA	1106 1107		PHE	120 120	109.042 107.		1.00	0.00	C
ATOM	1108		PHE	120	109.881 107.1 109.235 108.0		1.00	0.00	c
ATOM	1109		PHE	120	109.976 108.		1.00	0.00	c
ATOM ATOM	1110 1111	CES	PHE	120 120	111.364 108.9		1.00	0.00	C
MOTA	1112	CD2		120	112.017 108.1 111.279 107.1		1.00	0.00	C C
ATOM	1113	н	PHE	120	109.077 104.6	606 94.491	1.00	0.00	н
ATOM ATOM	1114 1115	HA 1HB	PHE	120 _. 120	110.320 106.0 107.971 107.2		1.00	0.00	н
ATOM	1116		PHE	120	109.108 108.0		1.00	0.00 0.00	H H
ATOM ATOM	1117		PHE	120	108.157 108.0	93.183	1.00	0.00	н
ATOM	1118 1119	HZ	PHE PHE	120 120	109.473 108.8 111.928 108.8		1.00	0.00	н
ATOM	1120	HE2	PHE	120	113.096 108.2		1.00 1.00	0.00	H H
ATOM ATOM	1121 1122	HD2 N	PHE	120	111.798 107.4		1.00	0.00	н
ATOM	1123	CA	GLU GLU	121 121	108.716 105.0 107.772 104.6		1.00 1.00	0.00	N
ATOM	1124	C	GLU	121	107.252 105.8	378 100.408	1.00	0.00	c c
ATOM ATOM	1125 1126	O CB	GLU GLU	121 121	107.704 106.1	99 101.511	1.00	0.00	0
MOTA	1127	CG	GLU	121	108.493 103.5 108.826 102.2		1.00 1.00	0.00	C
ATOM	1128	CD	GLU	121	109.594 101.2	22 100.647	1.00	0.00	c
ATOM ATOM	1129 1130	OE1 OE2		121 121	110.803 101.0 108.785 100.5	42 100.568	1.00	0.00	0
ATOM	1131	н	GLU	121	109.733 105.0	944 101.503 942 98.666	1.00	0.00	О Н
ATOM	1132	HA	GLU	121	106.880 104.1	22 99.186	1.00	0.00	н
ATOM ATOM	1133 1134		GLU GLU	121 121	109.416 104.0 107.857 103.3	05 100.925	1.00	0.00	H
ATOM	1135	1HG	GLU	121	107.903 101.7	33 99.430	1.00 1.00	0.00	H H
ATOM	1136		GLU	121	109.430 102.4	01 98.880	1.00	0.00	. Н
MOTA MOTA	1137 1138		ASP ASP	122 122	106.311 106.6 105.920 107.9	15 99.798	1.00	0.00	N
ATOM	1139		ASP	122	103.920 107.9	18 101.192	1.00	0.00	c
ATOM	1140		ASP	122	103.546 107.7	84 100.747	1.00	0.00	o
ATOM ATOM	1141 1142		ASP ASP	122 122	105.642 108.84 106.847 109.20			0.00	C
ATOM	1143	OD1		122	108.010 109.20			0.00	С 0
ATOM	1144	OD2		122	106.480 109.55	57 96.851		0.00	0
ATOM	1145	H .	ASP	122	105.914 106.17	74 98.957	1.00	0.00	н

						-				
ATOM	1146	HA	ASP	122	106.761	108.465	100.784	1.00	0.00	H
ATOM	1147		ASP			108.341		1.00	0.00	
				122			98.348			H
MOTA	1148	2HB	ASP	122		109.796	99.277	1.00	0.00	H
ATOM	1149	N	ASN	123	104.925	107.982	102.515	1.00	0.00	N
ATOM	1150	CA	ASN	123		107.675		1.00	0.00	С
ATOM	1151	С	asn	123		106.194		1.00	0.00	С
MOTA	1152	0	ASN	123	102.127	105.962	103.542	1.00	0.00	0
ATOM	1153	CB	ASN	123		108.748		1.00	0.00	Ċ
ATOM	1154	CG	ASN	123	103.189	110.195	103.819	1.00	0.00	C
MOTA	1155	OD1	ASN	123	103.643	110.586	104.886	1.00	0.00	0
ATOM	1156	MUS	ASN	123		111.034		1.00	0.00	N
ATOM	1157	H	asn	123	105.924	108.049	102.740	1.00	0.00	н
ATOM	1158	HA	asn	123	104.400	107.744	104.536	1.00	0.00	H
ATOM	1159	3 HB	ASN	123		108.658		1.00	0.00	Н
MOTA	1160		ASN	123		108.508		1.00	0.00	H
ATOM	1161	1HD2	ASN	123	103.425	111.971	103.025	1.00	0.00	H
ATOM	1162	2HD2	ASN	123	102.787	110.631	101.927	1.00	0.00	н
ATOM	1163	N	ASP	124		105.188				
								1.00	0.00	N
MOTA	1164	CA	ASP	124	103.882	103.736	103.266	1.00	0.00	С
MOTA	1165	C	ASP	124	103.351	103.261	101.859	1.00	0.00	С
ATOM	1166	0	ASP	124		102.112		1.00	0.00	ō
MOTA	1167	CB	ASP	124		103.142		1.00	0.00	С
ATOM	1168	CG	ASP	124	103.715	103.228	105.818	1.00	0.00	C
ATOM	1169	OD1	ASP	124	104.749	102.645	106.119	1.00	0.00	0
ATOM										
	1170		ASP	124		104.022		1.00	0.00	0
MOTA	1171	H	ASP	124	105.196	105.526	103.305	1.00	0.00	H
MOTA	1172	HA	ASP	124	104.861	103.217	103.318	1.00	0.00	H
ATOM	1173		ASP	124		103.615		1.00	0.00	н
ATOM	1174	ZHB	ASP	124	102.859	102.072	104.258	1.00	0.00	H
ATOM	1175	N	PHE	125	102.625	104.082	101.077	1.00	0.00	N
ATOM	1176	CA	PHE	125 -	102.218	103.745	99.679	1.00	0.00	С
ATOM	1177	C	PHE	125		103.892				
							98.614	1.00	0.00	C
ATOM	1178	0	PHE	125	104.244	104.757	98.716	1.00	0.00	0
ATOM	1179	CB	PHE	125	100.901	104.492	99.325	1.00	0.00	С
ATOM	1180	CG	PHE	125		106.028	99.414	1.00	0.00	Ċ
ATOM	1181		PHE	125		106.635		1.00	0.00	C
ATOM	1182	CEl	PHE	125	100.190	108.019	100.631	1.00	0.00	C
ATOM	1183	CZ	PHE	125	100.550	108.805	99.539	1.00	0.00	С
ATOM	1184		PHE	125						č
						108.208	98.386	1.00	0.00	
ATOM	1185	CD2	PHE	125	101.200	106.824	98.323	1.00	0.00	C
ATOM	1186	H	PHE	125	102.548	105.039	101.444	1.00	0.00	H
ATOM	1187	HA	PHE	125	101.938	102.672	99.674	1.00	0.00	H
ATOM	1188		PHE	125		104.191	98.304	1.00	0.00	H
MOTA	1189	2HB	PHE	125	100.100	104.073	99.960	1.00	0.00	H
ATOM	1190	HD1	PHE	125	100.052	106.040	101.426	1.00	0.00	н
ATOM	1191		PHE	125		108.482		1.00	0.00	н
ATOM	1192	HZ	PHE	125	100.441	109.878	99.588	1.00	0.00	H
ATOM	1193	HE2	PHE	125	101.326	108.821	97.541	1.00	0.00	н
ATOM	1194	HD2	PHE	125	101.594	106.371	97.423	1.00	0.00	н
ATOM	1195	N	VAL	126						
						102.985	97.623	1.00	0.00	N
MOTA	1196	CA	VAL	126		102.689	96.843	1.00	0.00	С
ATOM	1197	С	VAL	126	104.499	103.180	95.362	1.00	0.00	С
ATOM	1198	0	VAL	126	103.635	102.708	94.614	1.00	0.00	0
	1199	СВ	VAL							
MOTA				126		101.163	96.936	1.00	0.00	C
MOTA	1200	CG1	VAL	126	106.404	100.850	96.290	1.00	0.00	С
ATOM	1201	CG2	VAL	126	105.081	100.582	98.371	1.00	0.00	C
ATOM	1202	H	VAL	126	102.554	102.412	97.532	1.00	0.00	н
	1203				105.504				0.00	
ATOM		HA	VAL	126			97.296	1.00		Н
ATOM	1204	HB	VAL	126	104.264	100.587	96.380	1.00	0.00	H
ATOM	1205	1HG1	VAL	126	107.235	101.379	96.795	1.00	0.00	H
ATOM		2HG1		126	106.641	99.769	96.314	1.00	0.00	н
ATOM		3HG1		126	106.439		95.225	1.00	0.00	H
MOTA	1208	2HG2	VAL	126	104.092	100.624	98.866	1.00	0.00	H
ATOM	1209	3HG2	VAL	126	105.391	99.521	98.392	1.00	0.00	н
ATOM		1HG2		126	105.773		99.025	1.00	0.00	
										H
ATOM	1211	N	PHE	127	105.383		94.921	1.00	0.00	N
ATOM	1212	CA	PHE	127	105.474	104.515	93.496	1.00	0.00	С
ATOM	1213	C	PHE	127	106.590	103.719	92.746	1.00	0.00	C
ATOM										
	1214	0	PHE	127	107.765		93.129	1.00	0.00	0
ATOM	1215	CB	PHE	127	105.762	106.036	93.415	1.00	0.00	C
ATOM	1216	CG	PHE	127	104.615	106.959	93.846	1.00	0.00	С
ATOM	1217		PHE	127	104.543		95.159	1.00	0.00	Č
ATOM	1218	CEI	PHE	127	103.508	108.284	95.539	1.00	0.00	С

						07				
ATOM	1219		PHE		102.53	7 108.658	94.615	1.00	0.00	С
ATOM	1220		5 PHE			3 108.186		1.00	0.00	С
ATOM	1221					5 107.337		1.00	0.00	C
ATOM	1222		PHE			104.480		1.00	0.00	H
ATOM ATOM	1223 1224		PHE			104.346		1.00	0.00	Н
ATOM	1225		PHE			7 106.262 5 106.300		1.00	0.00	H
ATOM	1226		PHE			7 107.144		1.00	0.00	H
ATOM	1227		PHE			108.655	96.551	1.00	0.00	H
ATOM	1228		PHE			109.317		1.00	0.00	H H
MOTA	1229	HE2	PHE	127		5 108.475	92.583	1.00	0.00	н
MOTA	1230		PHE	127		106.974	91.905	1.00	0.00	H
ATOM	1231		VAL	128		103.025	91.663	1.00	0.00	N
ATOM ATOM	1232		VAL	128		3 102.171	90.872	1.00	0.00	C
ATOM	1233 1234		VAL VAL	128 128		102.863 102.756	89.474	1.00	0.00	С
ATOM	1235		VAL	128		102.756	88.615	1.00	0.00	0
ATOM	1236		VAL	128		99.721	90.814 89.999	1.00	0.00	C
ATOM	1237		VAL	128		100.039	92.194	1.00	0.00	C
ATOM	1238	H	VAL	128		103.006	91.501	1.00	0:00	н
ATOM	1239		VAL	128		102.117	91.363	1.00	0.00	н
.ATOM	1240		VAL	128		100.748	90.316	1.00	0.00	H
ATOM ATOM	1241	1HG1		128		100.079	88.969	1.00	0.00	H
ATOM	1242		. VAL	128 128	108.447		90.475	1.00	0.00	H
ATOM	1244			128	106.997	98.722	89.899 92.771	1.00	0.00	H
ATOM	1245		VAL	128	106.020		92.117	1.00	0.00	H H
ATOM	1246	1HG2	VAL	128		100.036	92.811	1.00	0.00	H
ATOM	1247		VAL	129	108.436	103.608	89.266	0.00	0.00	N
ATOM	1248		VAL	129		104.444	88.036	0.00	0.00	C
ATOM ATOM	1249		VAL	129		103.667	86.957	0.00	0.00	C
ATOM	1250 1251	O CB	VAL VAL	129 129		103.484	87.095	0.00	0.00	0
ATOM	1252		VAL	129		105.842	88.417 87.201	0.00	0.00	c
ATOM	1253		VAL	129		106.644	89.410	0.00	0.00	C
ATOM	1254	H ·	VAL	129		103.732	90.098	0.00	0.00	н
ATOM	1255	HA	VAL	129	107.648	104.677	87.586	0.00	0.00	H
ATOM	1256	HB	VAL	129		105.683	88.887	0.00	0.00	H
ATOM ATOM		1HG1		129		107.717	87.483	0.00	0.00	H
ATOM	1258	2HG1 3HG1		129 129		106.319	86.415	0.00	0.00	H
ATOM		1HG2		129		107.059 107.665	86.723 89.571	0.00	0.00	H
ATOM		2HG2		129		106.749	89.057	0.00	0.00	H H
ATOM	1262	3HG2	VAL	129		106.161	90.404	0.00	0.00	н
MOTA	1263	N	LEU	130		103.224	85.886	1.00	0.00	N
ATOM	1264	CA	LEU	130		102.478	84.746	1.00	0.00	С
ATOM ATOM	1265 1266	C	LEU	130		103.300	83.403	1.00	0.00	C
ATOM	1267	O CB	LEU	130 130		104.257 101.133	83.303	1.00	0.00	0
ATOM	1268	CG	LEU	130		100.080	84.676 85.784	1.00	0.00	C
ATOM	1269	CD1	LEU	130	107.776	99.055	85.901	1.00	0.00	C
ATOM	1270		LEU	130	110.226	99.320	85.529	1.00	0.00	č
ATOM	1271	H	LEU	130		103.474	85.837	1.00	0.00	Н
ATOM ATOM	1272	HA	LEU	130		102.267	84.925	1.00	0.00	H
ATOM	1273 1274		LEU LEU	130 130		101.361 100.665	84.647	1.00	0.00	H
ATOM	1275	HG	LEU	130		100.603	83.694 86.758	1.00	0.00	H
ATOM		2HD1		130	107.947	98.341	86.729	1.00	0.00	H H
ATOM		3HD1		130	106.801	99.541	86.090	1.00	0.00	H
ATOM		1HD1		130	107.665	98.457	84.978	1.00	0.00	н
ATOM		2HD2		130	110.487	98.655	86.373	1.00	0.00	H
ATOM		3HD2		130	110.172	98.685	84.626	1.00	0.00	H
ATOM ATOM	1281	1HD2 N	LEU GLU	130 131		100.001	85.379	1.00	0.00	H
ATOM	1283	CA	GLU	131		102.933	82.351 81.016	0.00	0.00	N
ATOM	1284	C	GLU	131		103.529	80.266	0.00	0.00	C
ATOM	1285	ō	GLU	131	107.847		80.440	0.00	0.00	С 0
MOTA	1286	CB	GLU	131	111.158		80.122	0.00	0.00	c
ATOM	1287	CG	GLU	131	112.609	103.393	80.570	0.00	0.00	c
ATOM	1288	CD	GLU	131	113.670		79.570	0.00	0.00	č
ATOM ATOM	1289	OEL		131	114.111		79.583	0.00	0.00	0
ATOM ATOM	1290 1291	OE2 H	GLU	131 131	114.051		78.666	0.00	0.00	0
	+67L	n	3110	727	110.871	102.320	82.581	0.00	0.00	H

						90				
MOTA	1292	HA	GLU	131		104.702	81.185	0.00	0.00	H
ATOM	1293		GLU	131		103.469	79.097	0.00	0.00	H
ATOM	1294 1295	2HB 1HG	GLU	131		101.969	79.995	0.00	0.00	H
ATOM ATOM	1296	2HG	GLU	131 131		102.929	81.533 80.717	0.00	0.00	H H
MOTA	1297	N	LEU	132		104.581	79.443	1.00	0.00	n N
MOTA	1298	CA	LEU	132		104.705	78.848	1.00	0.00	Ċ
MOTA	1299	С	LEU	132		103.852	77.552	1.00	0.00	C
MOTA	1300	0	LEU	132	106.574	104.373	76.440	1.00	0.00	0
MOTA	1301	CB	LEU	132		106.229	78.718	1.00	0.00	С
MOTA	1302	CG	LEU	132		106.739	78.479	1.00	0.00	c
ATOM	1303		LEU	132	-	106.724	77.008	1.00	0.00	C
MOTA MOTA	1304 1305	H CD2	TEA TEA	132 132		106.043	79.333 79.254	1.00	0.00	H C
ATOM	1305	на	LEU	132		104.329	79.594	1.00	0.00	н
ATOM	1307		LEU	132		106.718	79.651	1.00	0.00	н
ATOM	1308	2HB	LEU	132		106.664	77.950	1.00	0.00	н
ATOM	1309	HG	LEU	132	105.158	107.808	78.772	1.00	0.00	н
MOTA	1310	2HD1		132		107.316	76.851	1.00	0.00	н
MOTA		3HD1		132		107.156	76.347	1.00	0.00	H
MOTA		1HD1		132		105.704	76.637	1.00	0.00	H
ATOM ATOM		2HD2 3HD2		132 132		106.495	79.174 79.087	1.00	0.00	H H
MOTA	1315	1HD2		132		106.123	80.410	1.00	0.00	н
ATOM	1316	N	CYS	133		102.527	77.702	1.00	0.00	N
MOTA	1317	CA	CYS	133		101.589	76.542	1.00	0.00	C
MOTA	1318	С	CYS	133		100.892	76.285	1.00	0.00	С
MOTA	1319	0	CYS	133		100.720	77.177	1.00	0.00	0
ATOM	1320	CB	CYS	133		100.603	76.742	1.00	0.00	C
ATOM ATOM	1321 1322	SG H	CYS CYS	133 133		101.492	76.858	1.00	0.00	S
ATOM	1323	HA	CYS	133		102.222	78.648 75.607	1.00	0.00	H H
ATOM	1324		CYS	133	107.458	99.988	77.648	1.00	0.00	н
ATOM	1325	2HB	CYS	133	107.663	99.900	75.893	1.00	0.00	н
MOTA	1326	HG	CYS	133		102.358	75.852	1.00	0.00	н
ATOM	1327	N	ARG	134		100.465	75.033	1.00	0.00	N
MOTA	1328	CA	ARG	134	103.490	99.798	74.659	1.00	0.00	C
ATOM ATOM	1329 1330	С 0	ARG ARG	134 134	103.590 104.065	98.225 97.571	74.735 73.813	1.00 1.00	0.00	C 0
ATOM	1331	СВ	ARG	134		100.221	73.216	1.00	0.00	c
ATOM	1332	CG	ARG	134		101.619	73.038	1.00	0.00	č
ATOM	1333	CD	ARG	134	101.887	101.772	71.607	1.00	0.00	C
ATOM	1334	NE	ARG	134		103.064	71.452	1.00	0.00	N
ATOM	1335	CZ	ARG	134		103.419	70.376	1.00	0.00	C
MOTA MOTA	1336 1337		ARG ARG	134 134		102.699 104.556	69.293 70.389	1.00	0.00	n N
ATOM	1338	HE	ARG	134		103.752	72.213	1.00	0.00	Н
ATOM	1339	Н	ARG	134		100.514	74.405	1.00	0.00	н
MOTA	1340	HA	ARG	134	102.674	100.125	75.335	1.00	0.00	H
MOTA	1341		ARG	134		100.113	72.542	1.00	0.00	н
MOTA	1342	2HB	ARG	134	102.359	99.472	72.836	1.00	0.00	H
ATOM ATOM	1343 1344		ARG ARG	134 134		101.756	73.785 73.263	1.00	0.00	H
ATOM	1345		ARG	134		102.403	70.882	1.00	0.00	H H
ATOM	1346		ARG	134		100.921	71.383	1.00	0.00	н
ATOM		2HH1		134		101.836	69.356	1.00	0.00	H
MOTA		1HH1		134		103.155	68.477	1.00	0.00	H
ATOM		1HH2		134		105.082	71.261	1.00	0.00	Н
MOTA		2HH2		134		104.761	69.596	1.00	0.00	н
ATOM ATOM	1351 1352	n Ca	ARG ARG	135 135	103.087 102.444	97.624 96.259	75.813 75.882	1.00	0.00	и С
ATOM	1353	c	ARG	135	102.227	95.298	74.626	1.00	0.00	c
ATOM	1354	ŏ	ARG	135	102.193	95.768	73.496	1.00	0.00	ō
ATOM	1355	CB	ARG	135	101.170	96.500	76.763	1.00	0.00	Ċ
MOTA	1356	CG	ARG	135	100.249	97.756	76.533	1.00	0.00	С
ATOM	1357	CD	ARG	135	99.239	98.054	77.662	1.00	0.00	C
ATOM	1358	NE	ARG	135	98.236	96.968	77.722	1.00	0.00	И
MOTA MOTA	1359 1360	CZ	ARG ARG	135 135	98.273 98.483	96.032 96.230	78.641 79.894	1.00	0.00	C N
ATOM	1361	NH2	ARG	135	98.048	94.829	78.294	1.00	0.00	N
ATOM	1362	HE	ARG	135	97.982	96.480	76.853	1.00	0.00	н
ATOM	1363	Н	ARG	135	102.981	98.280	76.595	1.00	0.00	н
ATOM	1364	HA	ARG	135	103.127	95.662	76.520	1.00	0.00	н

						91				
ATOM ATOM		1HB	ARG		100.547					н
ATOM		2HB	ARG ARG		101.503 100.861					н
ATOM		2HG	ARG		99.741			1.00		H
ATOM		1HD	ARG	135	99.775					H H
MOTA		2HD	ARG		98.722			1.00		H
ATOM		2HH1			97.841	96.966		1.00	0.00	H
ATOM ATOM		1HH1			98.325 97.606	95.288	_	1.00	0.00	H
ATOM	1374		ARG		97.832	94.599 94.231	77.401 79.153	1.00	0.00	н
MOTA	1375		ARG		102.093	93.951	74.777	1.00	0.00	H N
ATOM	1376		ARG		102.057	92.967		1.00	0.00	ċ
ATOM ATOM	1377 1378		ARG ARG		100.688	92.376	73.061	1.00	0.00	С
ATOM	1379		ARG		100.739 103.087	91.506 91.811	72.193 73.900	1.00	0.00	0
ATOM	1380		ARG	136	104.158	91.580	72.810	1.00	0.00	c c
MOTA	1381		ARG	136	105.251	92.657	72.832	1.00	0.00	c
MOTA	1382		ARG	136	106.206	92.383	71.732	1.00	0.00	N
ATOM ATOM	1383 1384		ARG ARG	136 136	107.389 107.878	92.960	71.582	1.00	0.00	C
ATOM	1385		ARG	136	107.878	93.831 92.643	72.403 70.557	1.00	0.00	N
MOTA	1386		ARG	136	105.927	91.687	71.026	1.00	0.00	N H
ATOM	1387		ARG	136	102.248	93.616	75.740	1.00	0.00	H
MOTA MOTA	1388	HA 1HB	ARG ARG	136	102.443	93.480	72.718	1.00	0.00	H
ATOM		2HB	ARG	136 136	103.582 102.546	91.925 90.859	74.880 74.040	1.00	0.00	H
ATOM		1HG	ARG	136	104.633	90.591	72.959	1.00	0.00	H H
ATOM		2HG	ARG	136	103.686	91.522	71.809	1.00	0.00	н
ATOM	1393 1394		ARG	136	104.817	93.671	72.717	1.00	0.00	н
ATOM ATOM		2HH1	ARG	136 136	105.766 107.240	92.652 94.080	73.815 73.160	1.00	0.00	н
ATOM		1HH1		136	108.786	94.233	73.160	1.00	0.00	H H
ATOM		1HH2		136	107.610	91.983	69.942	1.00	0.00	н
MOTA		2HH2		136	108.989	93.111	70.433	1.00	0.00	н
ATOM ATOM	1399 1400	n Ca	SER SER	137 137	99.408	92.748	73.311	1.00	0.00	N
ATOM	1401	c	SER	137	98.894 98.599	93.583 95.136	74.450 74.259	1.00	0.00	c
MOTA	1402	0	SER	137	98.196	95.769	75.225	1.00	0.00	С 0
ATOM	1403	CB	SER	137	97.668	92.796	75.047	1.00	0.00	č
ATOM ATOM	1404 1405	OG H	SER SER	137 137	96.959	93.495	76.093	1.00	0.00	0
ATOM	1406	HA	SER	137	98.778 99.623	92.393 93.559	72.582 75.279	1.00	0.00	Н
ATOM	1407	1HB	SER	137	96.937	92.555	74.252	1.00	0.00	H H
ATOM	1408		SER	137	97.996	91.822	75.453	1.00	0.00	Н
ATOM ATOM	1409 1410	HG N	SER LEU	137 138	96.783	92.949	76.949	1.00	0.00	н
ATOM	1411	CA	LEU	138	98.732 98.781	96.006 95.723	73.240 71.777	1.00	0.00	N C
MOTA	1412	C	LEU	138	97.517	94.909	71.295	1.00	0.00	c
ATOM	1413	0	LEU	138	97.528	93.692	71.106	1.00	0.00	ō
ATOM ATOM	1414 1415	CB CG	LEU	138 138	100.246	95.409	71.362	1.00	0.00	C
ATOM	1416		LEU	138	100.687	95.099 94.813	69.916 69.905	1.00	0.00	C
MOTA	1417		LEU	138	100.015	93.877	69.283	1.00	0.00	c
ATOM	1418	H	LEU	138	98.550	96.940	73.620	1.00	0.00	н
ATOM ATOM	1419 1420	HA	LEU	138 138	98.653 100.846	96.705	71.281	1.00	0.00	H
ATOM ·	1421		LEU	138	100.635	96.286 94.628	71.679 72.003	1.00	0.00	н
MOTA	1422	HG	LEU	138	100.492	95.999	69.305	1.00	0.00	H
ATOM		2HD1		138	102.762	95.565	70.484	1.00	0.00	н
MOTA MOTA		3HD1 1HD1		138 138	102.447	93.835	70.362	1.00	0.00	H
ATOM		2HD2		138	102.610 100.082	94.808 92.981	68.881 69.930	1.00	0.00	H
ATOM	1427	3HD2	LEU	138	98.945	94.055	69.092	1.00	0.00	н н
ATOM		1HD2		138	100.466	93.612	68.310	1.00	0.00	н
ATOM ATOM	1429 1430	N CA	LEU	139	96.395	95.647	71.172	1.00	0.00	N
ATOM	1431		LEU	139 139	95.028 94.092	95.086 95.753	71.001 69.895	1.00	0.00	c
MOTA	1432		LEU	139	92.912	95.417	69.861	1.00	0.00	C O
ATOM	1433		LEU	139	94.384	95.134	72.442	1.00	0.00	c
ATOM ATOM	1434		LEU	139	93.658	93.861	72.954	1.00	0.00	C
ATOM ATOM	1435 1436	CD1 CD2		139 139	93.431 92.298	93.946 93.624	74.475	1.00	0.00	C
ATOM	1437		LEU	139	96.525	96.607	72.287 71.496	1.00	0.00	С н
										n

ATOM

ATOM

ATOM

MOTA

1508 1HZ

1510 3HZ

2HZ

1509

LYS

LYS

LYS

143

143

143

87.946

89.448

91.979

91.737

89.005 93.271

70.312

71.029

70.501 1.00

1.00

1.00

0.00

0.00

0.00

н

Н

H

						93				
ATOM	1511	н	LYS	143	95.796	92.914	67.405	1.00	0.00	н
ATOM	1512		LYS		93.768	91.094	66.174	1.00	0.00	н
ATOM ATOM		1HB 2HB	LYS		93.663	92.071	68.532	1.00	0.00	H
ATOM		1HG	LYS	143 143	93.260 91.157	93.634 92.643	67.831 66.822	1.00	0.00	H
ATOM		2HG	LYS	143	91.612	91.041	67.399	1.00	0.00	H H
MOTA		1HD	LYS	143	91.533	91.864	69.788	1.00	0.00	н
ATOM		2HD	LYS	143	91.083	93.480	69.220	1.00	0.00	н
ATOM ATOM		1HE 2HE	LYS	143 143	88.963 89.428	92.511 90.895	68.187 68.753	1.00	0.00	н
ATOM	1521		ARG	144	94.052	94.055	64.693	0.00	0.00	H
ATOM	1522		ARG		93.818	94.707	63.364	0.00	0.00	ċ
ATOM ATOM	1523 1524		ARG	144	94.430	93.932	62.133	0.00	0.00	C
ATOM	1524		ARG ARG	144 144	93.771 94.325	93.765 96.187	61.107 63.398	0.00	0.00	0
ATOM	1526	CG	ARG	144	94.048	97.079	64.638	0.00	0.00	C
ATOM	1527		ARG	144	92.575	97.236	65.036	0.00	0.00	Č
ATOM ATOM	1528 1529		ARG ARG	144	92.517	98.058	66.275	0.00	0.00	N
ATOM	1530		ARG	144 144	91.428 90.254	98.276 97.796	67.001 66.722	0.00	0.00	C N
ATOM	1531		ARG	144	91.551	99.010	68.049	0.00	0.00	N
MOTA	1532		ARG	144	93.394	98.494	66.595	1.00	0.00	н
ATOM ATOM	1533 1534		ARG ARG	144 144	94.877 92.724	94.270	65.261	0.00	0.00	H
ATOM	1535		ARG	144	93.934	94.742 96.702	63.188 62.499	0.00	0.00	H H
MOTA	1536		ARG	144	95.422	96.182	63.249	0.00	0.00	н
MOTA	1537		ARG	144	94.490	98.081	64.473	0.00	0.00	н
ATOM ATOM	1538 1539		ARG ARG	144 144	94.603 92.121	96.661 96.238	65.499 65.209	0.00	0.00	H
ATOM	1540		ARG	144	91.997	97.713	64.219	0.00	0.00	H H
ATOM		1HH1	-	144	89.492	98.028	67.359	0.00	0.00	H
ATOM ATOM	1542 1543	2HH1 1HH2		144	90.243	97.220	65.880	0.00	0.00	H
ATOM	1544			144 144	90.714 92.504	99.175 99.350	68.606 68.179	0.00	0.00	• Н
MOTA	1545	N	ARG	145	95.685	93.464	62.247	1.00	0.00	H N
ATOM	1546	CA	ARG	145	96.370	92.597	61.243	1.00	0.00	C
ATOM ATOM	1547 1548	С 0	ARG ARG	145 145	95.872 96.228	91.111	61.094	1.00	0.00	Ċ
ATOM	1549	СВ	ARG	145	97.877	90.473 92.563	60.101 61.650	1.00	0.00	0 0
MOTA	1550	CG	ARG	145	98.679	93.889	61.575	1.00	0.00	ć
ATOM	1551	CD	ARG	145	100.051	93.757	62.256	1.00	0.00	С
ATOM ATOM	1552 1553	NE CZ	ARG ARG	145 145	100.752 102.002	95.066 95.278	62.215 62.604	1.00 1.00	0.00	И
ATOM	1554		ARG	145	102.785	94.365	63.098	1.00	0.00	С И
ATOM	1555		ARG	145	102.465	96.470	62.475	1.00	0.00	Ŋ
ATOM ATOM	1556 1557	HE H	ARG ARG	145 145	100.224 96.135	95.874 93.688	61.856	1.00	0.00	H
ATOM	1558	HA	ARG	145	96.281	93.057	63.146 60.240	1.00	0.00	H H
ATOM	1559		ARG	145	97.951	92.141	62.674	1.00	0.00	н
ATOM	1560		ARG	145	98.410	91.821	61.021	1.00	0.00	H
ATOM ATOM	1561 1562		ARG ARG	145 145	98.805 98.115	94.204 94.711	60.520 62.056	1.00	0.00	H
ATOM	1563		ARG	145	99.923	93.427	63.309	1.00	0.00	H H
ATOM	1564		ARG	145	100.648	92.971	61.751	1.00	0.00	н
ATOM ATOM		2HH1 1HH1		145 145	102.341 103.735	93.449 94.640	63.156	1.00	0.00	н
ATOM		111112		145	101.776	97.099	63.347 62.057	1.00	0.00	H H
MOTA		2HH2		145	103.434	96.635	62.741	1.00	0.00	н
ATOM	1569	N	LYS	146	95.154	90.529	62.082	1.00	0.00	N
ATOM ATOM	1570 1571	CA C	LYS LYS	146 146	94.909 96.148	89.056 88.227	62.215 62.721	1.00	0.00	C
ATOM	1572	ŏ	LYS	146	96.076	87.587	63.775	1.00	0.00	C 0
ATOM	1573	CB	LYS	146	94.152	88.452	60.992	1.00	0.00	Č
ATOM	1574	CG	LYS	146	93.601	87.019	61.176	1.00	0.00	C
ATOM ATOM	1575 1576	CD	LYS	146 146	92.958 92.463	86.485 85.041	59.881 60.031	1.00	0.00	C
ATOM	1577	NZ	LYS	146	91.884	84.588	58.751	1.00	0.00	C N
ATOM	1578		LYS	146	91.550	83.618	58.848	1.00	0.00	н
ATOM ATOM	1579 1580		LYS	146	91.094	85.197	58.495	1.00	0.00	н
ATOM	1581	H H	LYS LYS	146 146	92.603 95.036	84.630 91.156	58.014 62.887	1.00	0.00	H
ATOM	1582	HA	LYS	146	94.192	88.979	63.054	1.00	0.00	H H
ATOM	1583	1HB	LYS	146	93.317	89.127	60.718	1.00	0.00	н

						94				
ATOM	1584 21	B I	LYS	146	94.824	88.464	60.112	1.00	0.00	н
ATOM	1585 11	HG I	LYS	146	94.419	86.340	61.489	1.00	0.00	Н
MOTA	1586 21	HG 1	LYS	146	92.866	87.000	62.003	1.00	0.00	H
ATOM	1587 1	HD I	LYS	146	92.118	87.145	59.582	1.00	0.00	н
ATOM	1588 2	HID I	LYS	146	93.694	86.549	59.054	1.00	0.00	Н
MOTA	1589 1	HE I	LYS	146	93.296	84.375	60.333	1.00	0.00	н
MOTA	1590 2	HE I	LYS	146	91.704	84.972	60.836	1.00	0.00	H
ATOM	1591	N Z	ALA	147	97.248	88.196	61.950	1.00	0.00	N
MOTA	1592	CA Z	ALA	147	98.402	87.294	62.187	1.00	0.00	C
MOTA	1593	C Z	ALA	147	99.779	87.983	61.895	1.00	0.00	C
MOTA	1594	0 2	ALA	147	99.933	88.722	60.915	1.00	0.00	0
MOTA	1595	CB :	ALA	147	98.170	86.085	61.256	1.00	0.00	C
MOTA	1596	H :	ALA	147	97.178	88.800	61.122	1.00	0.00	H
MOTA	1597		ALA	147	98.408	86.934	63.237	1.00	0.00	H
MOTA	1598 2		ALA	147	97.255	85.528	61.536	1.00	0.00	H
ATOM	1599 3		ALA	147	98.071	86.380	60.195	1.00	0.00	H
MOTA	1600 1		ALA	147	99.006	85.368	61.308	1.00	0.00	N H
MOTA			LEU	148	100.806	87.700	62.716	1.00	0.00	C
MOTA			LEU	148	102.207	88.129	62.439	1.00	0.00	č
MOTA	1603		LEU	148	102.986	87.003	61.680 62.105	1.00	0.00	Ö
MOTA	1604		LEU	148	103.014	85.843 88.519	63.757	1.00	0.00	č
MOTA	1605		LEU	148	102.939	89.637	64.641	1.00	0.00	Ċ
MOTA	1606		LEU	148	102.326 103.212	89.891	65.868	1.00	0.00	č
MOTA	1607	CD1		148	103.212	90.967	63.907	1.00	0.00	č
MOTA	1608	CD2	LEU	148 148	100.590	87.057	63.490	1.00	0.00	н
MOTA	1609	H HA	LEU	148	102.200	89.037	61.803	1.00	0.00	н
ATOM	1610 1611 1		LEU	148	103.042	87.607	64.378	1.00	0.00	H
MOTA MOTA	1612 2		LEU	148	103.981	88.795	63.509	1.00	0.00	H
ATOM	1613	HG	LEU	148	101.343	89.275	65.004	1.00	0.00	н
ATOM	1614 2			148	103.436	88.954	66.407	1.00	0.00	H
ATOM	1615 3			148	104.185	90.351	65.609	1.00	0.00	н
ATOM	1616			148	102.720	90.564	66.595	1.00	0.00	H
ATOM	1617			148	103.034	91.381	63.491	1.00	0.00	H
ATOM	1618			148	101.382	90.848	63.072	1.00	0.00	н
ATOM	1619			148	101.664	91.730	64.580	1.00	0.00	H
ATOM	1620	N	THR	149	103.648	87.338	60.563	1.00	0.00	N
ATOM	1621	CA	THR	149	104.435	86.350	59.754	1.00	0.00	С
ATOM	1622	C	THR	149	105.682	85.746	60.498	1.00	0.00	C
ATOM	1623	0	THR	149	106.190	86.324	61.461	1.00	0.00	0
ATOM	1624	CB	THR	149	104.837	86.961	58.370	1.00	0.00	. С
MOTA	1625		THR	149	105.679	88.098	58.524	1.00	0.00	0
MOTA	1626	CG2	THR	149	103.673	87.383	57.459	1.00	0.00	C
MOTA	1627	H	THR	149	103.553	88.318	60.285	1.00	0.00	H H
ATOM	1628	HA	THR	149	103.758	85.496	59.545	1.00	0.00	н
MOTA	1629	HB	THR	149	105.407	86.192	57.810	1.00	0.00	н
MOTA	1630		THR	149	105.422	88.711	57.831	1.00	0.00	н
MOTA	1631			149	104.024	87.738	56.472 57.266	1.00	0.00	н
ATOM	1632			149	102.982	86.539	57.904	1.00	0.00	н
ATOM	1633			149	103.065	88.194 84.586	60.038	0.00	0.00	N
ATOM	1634	N	GLU	150	106.193 107.355			0.00	0.00	c c
ATOM	1635	CA	GLU	150	108.671	84.748	60.925	0.00	0.00	Ċ
ATOM	1636	C	GLU	150 150	109.164	84.675	62.052	0.00	0.00	ō
ATOM	1637	0	GLU	150	107.587	82.517	59.960	0.00	0.00	C
ATOM	1638	CB	GLU	150	106.402	81.503	60.039	0.00	0.00	c
ATOM	1639 1640	CD	GLU	150	106.509	80.210	59.224	0.00	0.00	C
MOTA MOTA	1641		GLU	150	107.099	79.207	59.610	0.00	0.00	0
MOTA	1642		GLU	150	105.835	80.283	58.040	0.00	0.00	0
ATOM	1643	H	GLU	150	105.612		59.330	0.00	0.00	н
ATOM	1644	HA	GLU	150	107.022	83.624	61.706	0.00	0.00	H
ATOM	1645		GLU	150	108.487	82.034	60.389	0.00	0.00	H
MOTA	1646		GLU	150	107.856	82.703	58.907	0.00	0.00	H
MOTA	1647		GLU	150	105.461	81.993	59.736	0.00	0.00	H
ATOM	1648		GLU	150	106.235	81.212	61.092	0.00	0.00	H
ATOM	1649	N	PRO	151	109.214	85.621	60.014	0.00	0.00	N
ATOM	1650	CA	PRO	151	110.199	86.694	60.384	0.00	0.00	С
ATOM	1651	CD	PRO	151	108.872	85.617	58.583	0.00	0.00	C
ATOM	1652	C	PRO	151	109.855	87.723	61.524	0.00	0.00	C
ATOM	1653	0 .		151	110.743	88.145	62.266	0.00	0.00	0
ATOM	1654	CB	PRO	151	110.413	87.422		0.00	0.00	C
ATOM	1655	CG	PRO	151	109.986	86.440	57.949	0.00	0.00	C
ATOM	1656	HA	PRO	151	111.150	86.203	60.668	0.00	0.00	н

						95				
MOTA	1657	1HD	PRO	151	107.885	86.088	58.412	0.00	0.00	·H
ATOM	1658		PRO	151	108.856	84.598	58.157	0.00	0.00	н
ATOM	1659		PRO	151	111.462	87.754	58.917	0.00	0.00	н
ATOM ATOM	1660 1661		PRO	151 151	109.787 110.834	88.335 85.785	58.968 57.690	0.00	0.00	H
ATOM			PRO	151	109.669	86.944	57.018	0.00	0.00	H H
ATOM	1663	N	GLU	152	108.587	88.146	61.648	1.00	0.00	N
MOTA	1664	CA	GLU	152	108.117	89.007	62.775	1.00	0.00	· c
ATOM	1665	C	GLU	152	107.904	88.238	64.129	1.00	0.00	С
ATOM	1666	O	GLU	152	108.439	88.657	65.158	1.00	0.00	0
ATOM ATOM	1667 1668	CB	GLU GLU	152 152	106.855 106.211	89.756 90.800	62.250 63.203	1.00	0.00	C
ATOM	1669	CD	GLU	152	106.987	92.086	63.492	1.00	0.00	C
ATOM	1670		GLU	152	108.200	92.220	63.370	1.00	0.00	ŏ
ATOM	1671		GLU	152	106.172	93.078	63.939	1.00	0.00	Ō
ATOM	1672	н	GLU	152	107.932	87.605	61.072	1.00	0.00	H
ATOM ATOM	1673 1674	HA 1UD	GLU	152 152	108.892 107.096	89.773 90.261	62.981	1.00	0.00	н
ATOM	1675		GLU	152	106.081	89.009	61.293 61.984	1.00	0.00	H H
ATOM	1676		GLU	152	105.230	91.093	62.786	1.00	0.00	н
MOTA	1677	2HG	GLU	152	105.977	90.333	64.176	1.00	0.00	н
ATOM	1678	N	ALA	153	107.158	87.116	64.137	0.00	0.00	Ŋ
ATOM	1679	CA	ALA	153	107.037	86.226	65.325	0.00	0.00	C
ATOM ATOM	1680 1681	C O	ALA ALA	153 153	108.359 108.492	85.596 85.516	65.902 67.125	0.00	0.00	C
ATOM	1682	СВ	ALA	153	105.982	85.168	64.944	0.00	0.00	0 C
MOTA	1683	H	ALA	153	106.793	86.850	63.212	0.00	0.00	н
ATOM	1684	HA	ALA	153	106.608	86.829	66.151	0.00	0.00	н
ATOM	1685		ALA	153	105.751	84.502	65.795	0.00	0.00	Н
ATOM ATOM	1686 1687		ALA ALA	153 153	105.021 106.317	85.624 84.525	64.636 64.108	0.00	0.00	H
ATOM	1688	N	ARG	154	109.343	85.199	65.066	0.00	0.00	H N
MOTA	1689	CA	ARG	154	110.722	84.852	65.539	0.00	0.00	c
ATOM	1690	C	ARG	154	111.530	85.995	66.258	0.00	0.00	C
ATOM	1691	0	ARG	154	112.158	85.741	67.286	0.00	0.00	0
ATOM ATOM	1692 1693	CB	ARG ARG	154 154	111.503 112.107	84.146 85.065	64.390 63.296	0.00	0.00	C
ATOM	1694	CD	ARG	154	113.543	85.528	63.593	0.00	0.00	c c
ATOM	1695	NE	ARG	154	113.880	86.656	62.687	0.00	0.00	и
ATOM	1696	CZ	ARG	154	114.866	87.527	62.870	0.00	0.00	C
MOTA	1697		ARG	154	115.740	87.459	63.831	0.00	0.00	N
ATOM ATOM	1698 1699	HE	ARG ARG	154 154	114.962 113.299	88.493 86.772	62.030 61.844	0.00 1.00	0.00	. N
ATOM	1700	н	ARG	154	109.127	85.334	64.069	0.00	0.00	H H
MOTA	1701	HA	ARG	154	110.592	84.074	66.310	0.00	0.00	н
MOTA	1702		ARG	154	110.836	83.409	63.904	0.00	0.00	н
ATOM	1703		ARG	154	112.305	83.522	64.828	0.00	0.00	Н
ATOM ATOM	1704 1705		ARG ARG	154 154	111.443 112.090	85.935 84.564	63.149	0.00	0.00	H
ATOM	1706		ARG	154	114.240	84.680	62.315 63.473	0.00	0.00	H H
ATOM		2HD	ARG	154	113.654	85.843	64.648	0.00	0.00	н
MOTA		1HH1		154	116.480	88.160	63.838	0.00	0.00	н
ATOM		2HH1		154	115.646	86.618	64.402	0.00	0.00	н
MOTA MOTA		1HH2 2HH2		154 154	115.697 114.203	89.181 88.476	62.187 61.347	0.00	0.00	Н
ATOM	1712	N	TYR	155	111.514	87.235	65.733	1.00	0.00	и Н
ATOM	1713	CA	TYR	155	112.066	88.440	66.422	1.00	0.00	c
ATOM	1714	C	TYR	155	111.457	88.734	67.843	1.00	0.00	C
ATOM	1715	0	TYR	155	112.186	89.051	68.784	1.00	0.00	0
ATOM ATOM	1716 1717	CB CG	TYR TYR	155 155	111.895 112.698	89.611 90.878	65.411 65.739	1.00	0.00	C
ATOM	1718	CD1		155	113.979	91.045	65.204	1.00	0.00	C
ATOM	1719	CD2		155	112.161	91.879	66.559	1.00	0.00	c
ATOM	1720	CE1		155	114.708	92.198	65.479	1.00	0.00	C
ATOM	1721	CE2		155	112.900	93.027	66.840	1.00	0.00	C
ATOM ATOM	1722 1723	CZ OH	TYR	155	114.171	93.185	66.296	1.00	0.00	C
ATOM	1723	H	TYR TYR	155 155	114.904 111.095	94.310 87.361	66.558 64.800	1.00	0.00	о н
ATOM	1725	HA	TYR	155	113.152	88.277	66.573	1.00	0.00	H
ATOM	1726	1HB	TYR	155	112.182	89.280	64.391	1.00	0.00	н
ATOM	1727		TYR	155	110.823	89.866	65.305	1.00	0.00	H
ATOM	1728	HD1		155	114.411	90.280	64.573	1.00	0.00	н
ATOM	1729	HD2	TYR	155	111.176	91.762	66.990	1.00	0.00	H

						96				
ATOM	1730	HE1	TYR	155	115.698	92.323	65.073	1.00	0.00	н
ATOM	1731	HE2		155	112.486	93.787	67.484	1.00	0.00	H
ATOM	1732	HH	TYR	155	114.330	94.967	66.971	1.00	0.00	H
ATOM	1733	N	TYR	156	110.132	88.574	67.992	0.00	0.00	N
MOTA	1734	CA	TYR	156	109.433	88.599	69.304	0.00	0.00	C
MOTA	1735	C	TYR	156	109.852	87.428 87.710	70.275 71.422	0.00	0.00	. 0
ATOM ATOM	1736 1737	O CB	TYR TYR	156 156	110.195 107.898	88.642	69.018	0.00	0.00	C
MOTA	1738	CG	TYR	156	107.223	89.943	68.497	0.00	0.00	С
MOTA	1739		TYR	156	107.798	90.774	67.520	0.00	0.00	С
ATOM	1740	CE1	TYR	156	107.141	91.923	67.090	0.00	0.00	c
MOTA	1741	CZ	TYR	156	105.895	92.247	67.606	0.00	0.00	C
MOTA	1742	OH	TYR	156	105.263	93.392	67.205	0.00	0.00	0
MOTA	1743		TYR	156	105.296 105.959	91.425 90.281	68.555 68.997	0.00	0.00	c
MOTA MOTA	1744 1745	H H	TYR TYR	156 156	109.565	88.424	67.145	1.00	0.00	н
ATOM	1746	HA	TYR	156	109.702	89.539	69.829	0.00	0.00	H
ATOM	1747		TYR	156	107.396	88.358	69.964	0.00	0.00	H
ATOM	1748	2HB	TYR	156	107.629	87.819	68.330	0.00	0.00	H
MOTA	1749		TYR	156	108.758	90.552	67.084	0.00	0.00	H
MOTA	1750		TYR	156	107.610	92.568	66.361	0.00	0.00	H
MOTA	1751	HH	TYR	156	104.508 104.337	93.523 91.683	67.781 68.977	0.00	0.00	H H
MOTA MOTA	1752 1753		TYR TYR	156 156	104.337	89.679	69.760	0.00	0.00	н
ATOM	1754	N	PEA	157	109.860	86.143	69.853	1.00	0.00	N
ATOM	1755	CA	LEU	157	110.345	85.012	70.711	1.00	0.00	C
MOTA	1756	C	LEU	157	111.873	84.971	71.073	1.00	0.00	C
MOTA	1757	0	LEU	157	112.208	84.574	72.191	1.00	0.00	0
ATOM	1758	CB	FEG	157	109.771	83.662	70.181	1.00	0.00	c
ATOM	1759	CG	Pen Pen	157 157	110.541 111.558	82.934 81.907	69.039 69.572		-0.00	c
ATOM ATOM	1760 1761		LEU	157	109.575	82.206	68.098	1.00	0.00	č
ATOM	1762	н	LEU	157	109.582	86.019	68.870	1.00	0.00	н
ATOM	1763	HA	LEU	157	109.856	85.147	71.693	1.00	0.00	н
ATOM	1764		LEU	157	109.664	82.968	71.037	1.00	0.00	н
ATOM	1765	2HB	LEU	157	108.718	83.834	69.881	1.00	0.00	H H
ATOM	1766	HG	LEU	157 157	111.088 112.317	83.689 82.369	68.443 70.227	1.00	0.00	н
ATOM ATOM	1767 1768	3HD1		157	111.074	81.105	70.159	1.00	0.00	н
ATOM		1HD1		157	112.116	81.418	68.750	1.00	0.00	Н
ATOM		2HD2		157	108.993	81.441	68.635	1.00	0.00	н
MOTA	1771	3HD2		157	108.848	82.902	67.638		0.00	н
ATOM	1772		LEU	157	110.101	81.700	67.267 70.162	1.00	0.00	H N
MOTA	1773 1774	N CA	ARG ARG	158 158	112.794 114.267	85.339 85.286	70.102	1.00	0.00	C
MOTA MOTA	1775	C	ARG	158	114.818	86.178	71.582	1.00	0.00	Ċ
ATOM	1776	ŏ	ARG	158	115.619	85.706	72.392	1.00	0.00	0
ATOM	1777	CB	ARG	158	115.007	85.449	69.057	1.00	0.00	C
MOTA	1778	CG	ARG	158	115.175	86.874	68.458	1.00	0.00	C
MOTA	1779	CD	ARG	158	116.540	87.524	68.779	1.00	0.00	C N
MOTA	1780	NE CZ	ARG ARG	158 158	116.446 117.045	89.000 89.775	68.662 67.769	1.00	0.00	c
MOTA MOTA	1781 1782		ARG	158	117.835	89.356	66.828	1.00	0.00	N
ATOM	1783		ARG	158	116.819	91.036	67.853	1.00	0.00	N
ATOM	1784	HE	ARG	158	115.849	89.477	69.353	1.00	0.00	H
MOTA	1785		ARG	158	112.401	85.649	69.259	1.00	0.00	н
MOTA	1786		ARG	158	114.482	84.249 84.986	70.742 69.177	1.00	0.00	H H
MOTA	1787		ARG ARG	158 158	115.999 114.521	84.802	68.299	1.00	0.00	н
MOTA MOTA		2HB 1HG	ARG		115.054	86.841	67.357	1.00	0.00	Н
ATOM		2HG	ARG		114.337	87.520	68.789	1.00	0.00	н
ATOM	1791	1HD	ARG	158	116.836	87.294	69.821	1.00	0.00	Н
MOTA		2HD	ARG		117.337	87.084	68.149	1.00	0.00	н
MOTA			1 ARG		117.958	88.343	66.791	1.00	0.00	Н
ATOM			l ARG		118.205 116.085	90.060 91.238	66.191 68.536	1.00	0.00	H H
MOTA MOTA			2 ARG 2 ARG		117.170	91.627	67.101	1.00	0.00	н
MOTA	1797		GLN		114.342	87.426	71.705	0.00	0.00	N
ATOM	1798		GLN		114.561	88.275	72.911	0.00	0.00	С
ATOM	1799	C	GLN		113.899	87.764	74.246	0.00	0.00	C
MOTA	1800		GLN		114.458	87.994	75.318	0.00	0.00	0
ATOM	1801		GLN		114.096	89.718	72.581 71.381	0.00	0.00	C C
ATOM	1802	CG	GLN	159	114.776	90.433	11.301	0.00	0.00	C

						97				
ATOM	1803	CD	GLN	159	114.427	91.912	71.236	0.00	0.00	С
ATOM	1804	OE1		159	113.474	92.320	70.582	0.00	0.00	0
MOTA MOTA	1805 1806	NE2 H	GLN GLN	159 159	115.171 113.734	92.782 87.719	71.861 70.929	0.00	0.00	N H
ATOM	1807	HA.	GLN	159	115.650	88.322	73.109	0.00	0.00	H
MOTA	1808	1HB	GLN	159	114.249	90.337	73.487	0.00	0.00	H
ATOM	1809		GLN	159	113.003	89.711	72.411	0.00	0.00	H
ATOM ATOM	1810 1811		GLN GLN	159 159	114.475 115.875	89.939 90.305	70.438 71.420	0.00	0.00	н
ATOM			GLN	159	115.731	92.400	72.632	0.00	0.00.	H H
ATOM			GLN	159	114.805	93.732	71.792	0.00	0.00	H
ATOM	1814	N	ILE	160	112.749	87.059	74.203	0.00	0.00	N
ATOM ATOM	1815 1816	CA C	ILE ILE	160 160	112.178 113.065	86.320 85.090	75.382 75.820	0.00	0.00	· c
ATOM	1817	ō	ILE	160	113.349	84.959	77.011	0.00	0.00	o
ATOM	1818	CB	ILE	160	110.665	85.933	75.161	0.00	0.00	c
MOTA	1819		ILE	160	110.033	85.314	76.441	0.00	0.00	C
ATOM ATOM	1820 1821		ILE	160 160	109.741 108.408	87.100 86.662	74.696 74.063	0.00	0.00	C
ATOM	1822	н	ILE	160	112.391	86.927	73.248	0.00	0.00	н
MOTA	1823	HA	ILE	160	112.195	87.020	76.242	0.00	0.00	н
ATOM ATOM	1824	HB 1HG2	ILE	160	110.651	85.163	74.364 76.278	0.00	0.00	н
ATOM		2HG2		160 160	108.989 110.580	84.988 84.418	76.788	0.00	0.00	H H
ATOM		3HG2		160	110.020	86.029	77.284	0.00	0.00	н
ATOM		1HG1		160	110.259	87.714	73.936	0.00	0.00	н
ATOM ATOM		2HG1 1HD1		160 160	109.554 107.902	87.808 87.513	75.526 73.570	0.00	0.00	Н
ATOM		2HD1		160	107.502	85.892	73.285	0.00	0.00	H H
ATOM	1832	3HD1	ILE	160	107.708	86.253	74.812	0.00	0.00	H
ATOM	1833	N	VAL	161	113.521	84.213	74.899	0.00	0.00	N
MOTA MOTA	1834 1835	CA C	VAL VAL	161 161	114.529 115.907	83.137 83.685	75.205 75.750	0.00	0.00	C
ATOM	1836	ō	VAL	161	116.400	83.167	76.752	0.00	0.00	ō
ATOM	1837	CB	VAL	161	114.681	82.153	73.984	0.00	0.00	С
ATOM ATOM	1838 1839		VAL VAL	161 161	115.681 113.363	80.993 81.472	74.226 73.541	0.00	0.00	C
ATOM	1840	H H	VAL	161	113.202	84.416	73.940	0.00	0.00	C H
ATOM	1841	HA	VAL	161	114.115	82.533	76.037	0.00	0.00	н
ATOM	1842	HB 1HG1	VAL	161	115.060	82.747	73.126	0.00	0.00	н
ATOM ATOM	1843 1844	2HG1		161 161	115.804 116.693	80.350 81.358	73.333	0.00	0.00	H H
ATOM	1845	3HG1		161	115.368	80.335	75.059	0.00	0.00	н
ATOM		1HG2		161	113.504	80.827	72.653	0.00	0.00	н
ATOM ATOM	1848	2HG2 3HG2		161 161	112.928 112.588	80.840 82.210	74.338 73.260	0.00	0.00	H H
ATOM	1849	N	LEU	162	116.504	84.730	75.145	0.00	0.00	N
ATOM	.1850	CA	LEU	162	117.649	85.484	75.753	0.00	0.00	C
MOTA MOTA	1851 1852	C O	LEU LEU	162 162	117.378 118.260	86.204 86.217	77.127 77.988	0.00	0.00	C 0
ATOM	1853	СВ	LEU	162	118.193	86.481	74.690	0.00	0.00	c
ATOM	1854	CG	LEU	162	118.906	85.886	73.448	0.00	0.00	С
ATOM	1855		LEU	162	119.135	86.980	72.393	0.00	0.00	C
ATOM ATOM	1856 1857	H	LEU	162 162	120.255 116.028	85.243 85.052	73.811 74.289	0.00	0.00	С Н
ATOM	1858	HA	LEU	162	118.451	84.756	75.972	0.00	0.00	н
ATOM	1859		LEU	162	118.894	87.188	75.175	0.00	0.00	н
ATOM ATOM	1860 1861	2HB HG	LEU	162 162	117.350 118.252	87.120 85.114	74.357 72.991	0.00	0.00	H H
ATOM		1HD1		162	119.596	86.571	71.476	0.00	0.00	н
ATOM		2HD1		162	118.185	87.454	72.080	0.00	0.00	н
ATOM		3HD1		162	119.801	87.785	72.757	0.00	0.00	н
ATOM ATOM		1HD2 2HD2		162 162	120.769 120.944	84.844 85.963	72.918 74.291	0.00	0.00	, н н
ATOM		3HD2		162	120.136	84.390	74.502	0.00	0.00	н
ATOM	1868	N	GLY	163	116.183	86.782	77.352	1.00	0.00	Ŋ
ATOM ATOM	1869 1870	CA C	GLY GLY	163 163	115.710 115.582	87.181 86.064	78.711 79.778	1.00	0.00	C
ATOM	1871	0	GLY	163	116.190	86.183	80.837	1.00	0.00	0
ATOM	1872	H	GLY	163	115.552	86.757	76.537	1.00	0.00	н
ATOM	1873		GLY	163	116.368	87.972	79.118	1.00	0.00	H
ATOM ATOM	1874 1875	2HA N	GLY CYS	163 164	114.724 114.850	87.667 84.974	78.616 79.497	1.00	0.00 0.00	H
234 UN	TO / 3	7.4	C13	70.4	TAM . 03U	04.3/4	13.431	1.00	0.00	N

		•				70				
MOTA	1876	CA	CYS	164	114.876	83.737	80.335	1.00	0.00	С
MOTA	1877	C	CYS	164	116.266	83.039	80.567	1.00	0.00	C
MOTA	1878	0	CYS	164	116.521	82.564	81.673	1.00	0.00	0
ATOM	1879	CB	CYS	164	113.829	82.778	79.729	1.00	0.00	C
MOTA	1880	SG	CYS	164	112.154	83.509	79.788	1.00	0.00	S
ATOM	1881	H	CYS	164	114.400	84.992	78.570	1.00	0.00	H
MOTA	1882	HA	CYS	164	114.518	84.010	81.346	1.00	0.00	н
MOTA	1883	1HB	CYS	164	114.081	82.520	78.681	1.00	0.00	Н
MOTA	1884	2HB	CYS	164	113.813	81.822	80.285	1.00	0.00	Н
MOTA	1885	HG	CYS	164	112.078	83.650	81.109	1.00	0.00	H
ATOM	1886	N	GLN	165	117.185	83.026	79.584	1.00	0.00	N
ATOM	1887	CA	GLM	165	118.630	82.717	79.812	1.00	0.00	C
ATOM	1888	C	GLM	165	119.377	83.597	80.884	1.00	0.00	C
ATOM	1889	0	GLN	165	120.137	83.048	81.686	1.00	0.00	0
MOTA	1890	CB	GLN	165	119.305	82.732	78.409	1.00	0.00	C
MOTA	1891	CG	GLN	165	120.812	82.361	78.337	1.00	0.00	. C
MOTA	1892	CD	GLN	165	121.171	80.925	78.714	1.00	0.00	C
MOTA	1893		GLN	165	121.176	80.021	77.889	1.00	0.00	0
MOTA	1894		GLN	165	121.483	80.662	79.958	1.00	0.00	N
ATOM	1895	H	GLN	165	116.831	83.380	78.683	1.00	0.00	н
ATOM	1896	HA	GLN	165	118.685	81.679	80.192	1.00	0.00	н
MOTA	1897		GLN	165	118.748	82.064	77.721	1.00	0.00	H H
ATOM		2HB	GLN	165	119.186	83.742	77.971		0.00	
ATOM	1899		GLN	165	121.163	82.514	77.300	1.00	0.00	H H
MOTA	1900		GLN	165	121.416	83.072	78.933 80.632	1.00	0.00	н
ATOM		1HE2		165	121.348	81.425 79.679	80.146	1.00	0.00	н
ATOM		2HE2		165	121.686 119.158	84.923	80.915	0.00	0.00	N
ATOM	1903	N	TYR	166	119.158	85.789	82.059	0.00	0.00	C
ATOM	1904	CA	TYR TYR	166 166	118.771	85.539	83.393	0.00	0.00	č
ATOM	1905 1906	C O	TYR	166	119.399	85.300	84.425	0.00	0.00	ő
ATOM	1907	СВ	TYR	166	119.502	87.256	81.545	0.00	0.00	Ċ
ATOM ATOM	1908	CG	TYR	166	120.132	88.308	82.473	0.00	0.00	Ċ
ATOM	1909		TYR	166	121.487	88.633	82.352	0.00	0.00	Ċ
ATOM	1910		TYR	166	122.045	89.626	83.155	0.00	0.00	Ċ
ATOM	1911	CZ	TYR	166	121.259	90.279	84.099	0.00	0.00	c
ATOM	1912	ОН	TYR	166	121.795	91.289	84.845	0.00	0.00	0
ATOM	1913		TYR	166	119.916	89.950	84.239	0.00	0.00	C
MOTA	1914		TYR	166	119.349	88.973	83.422	0.00	0.00	С
ATOM	1915	H	TYR	166	118.685	85.361	80.112	1.00	0.00	н
ATOM	1916	HA	TYR	166	120.631	85.572	82.293	0.00	0.00	Н
ATOM	1917	1HB	TYR	166	118.451	87.533	81.332	0.00	0.00	н
ATOM	1918	2HB	TYR	166	119.994	87.330	80.555	0.00	0.00	H
ATOM	1919	HD1	TYR	166	122.106	88.133	81.622	0.00	0.00	н
ATOM	1920	HE1	TYR	166	123.087	89.891	83.046	0.00	0.00	н
MOTA	1921	HH	TYR	166	122.244	91.892	84.240	0.00	0.00	H
ATOM	1922	HE2	TYR	166	119.310	90.457	84.974	0.00	0.00	Н
MOTA	1923	HD2	TYR	166	118.302	88.727	83.543	0.00	0.00	Н
MOTA	1924	И	LEU	167	117.424	85.573	83.383	0.00	0.00	Ŋ
MOTA	1925		PEA	167	116.580	85.358	84.599	0.00	0.00	C
ATOM	1926		LEU	167	116.762	83.982	85.326	0.00	0.00	C
ATOM	1927		LEU	167	116.969	83.963	86.540	0.00	0.00	0
MOTA	1928		LEU	167	115.083	85.622	84.256	0.00	0.00	C
ATOM	1929		LEU		114.679	87.034	83.757	0.00	0.00	C
ATOM	1930		LEU	167	113.194	87.063	83.364	0.00	0.00	c
MOTA	1931		LEU	167	114.939	88.119	84.808	0.00		н
MOTA	1932		LEU		117.014	85.798 86.113	82.466	0.00	0.00	н
ATOM	1933		LEU		116.884	85.389	85.350 85.151	0.00	0.00	Н
ATOM	1934		LEU		114.473 114.764	84.870	83.510	0.00	0.00	н
ATOM	1935		LEU	167 167	115.274	87.289	82.858	0.00	0.00	н
ATOM	1936	HG 1HD1	LEU	167 167	112.894	88.053	82.971	0.00	0.00	н
MOTA		2HD1		167	112.964	86.327	82.572	0.00	0.00	н
ATOM ATOM		3HD1			112.532	86.847	84.222	0.00	0.00	н
MOTA		1HD2			114.642	89.118	84.443	0.00	0.00	н
ATOM		2HD2			114.388	87.929	85.748	0.00	0.00	н
ATOM		3HD2		167	116.011	88.196	85.072	0.00	0.00	H
ATOM	1943		HIS	168	116.757	82.845	84.609	0.00	0.00	И
ATOM	1943		HIS	168	117.105	81.512	85.190	0.00	0.00	c
ATOM	1945		HIS	168	118.576	81.396	85.749	0.00	0.00	č
ATOM	1946		HIS	168	118.773	80.818	86.819	0.00	0.00	ō
ATOM	1947		HIS	168	116.788	80.395	84.153	0.00	0.00	Ċ
ATOM	1948		HIS		115.353	80.235	83.617	0.00	0.00	Ċ
								-	•	_

						99				
ATOM	1949	ND1	HIS	168	114.199	80.809	84.143	0.00	0.00	N
ATOM	1950	CE1		168	113.278	80.323	83.255	0.00	0.00	С
MOTA	1951	ME3		168	113.675	79.497	82.239	0.00	0.00	N
ATOM	1952	CD2	_	168	115.034	79.451	82.498	0.00	0.00	C
ATOM ATOM	1953 1954	H HA	HIS HIS	168 168	116.578 116.440	82.972 81.343	83.603 86.062	0.00	0.00	H H
ATOM	1955	1HB	HIS	168	117.074	79.422	84.594	0.00	0.00	H
ATOM	1956		HIS	168	117.467	80.521	83.289	0.00	0.00	н
ATOM	1957	HEI	HIS	168	112.235	80.561	83.392	0.00	0.00	н
MOTA	1958		HIS	168	113.102	78.947	81.590	0.00	0.00	H
ATOM	1959		HIS	168	115.756	78.876	81.940	0.00	0.00	H
MOTA MOTA	1960 1961	N CA	ARG ARG	169 169	119.587 120.937	81.991 82.244	85.080 85.682	1.00 1.00	0.00	C N
ATOM	1962	c	ARG	169	120.977	83.160	86.968	1.00	0.00	č
ATOM	1963	0	ARG	169	121.743	82.871	87.888	1.00	0.00	0
ATOM	1964	CB	ARG	169	121.828	82.766	84.521	1.00	0.00	С
ATOM	1965	CG	ARG	169	123.343	82.852	84.825	1.00	0.00	c
ATOM ATOM	1966 1967	NE CD	ARG	169 169	124.142 125.581	83.372 83.393	83.619 83.981	1.00	0.00	C N
ATOM	1968	cz	ARG	169	126.573	83.759	83.183	1.00	0.00	Č
ATOM	1969		ARG	169	126.421	84.150	81.954	1.00	0.00	N
MOTA	1970		ARG	169	127.763	83.721	83.667	1.00	0.00	N
ATOM	1971	HE	ARG	169	125.830	83.099	84.936	1.00	0.00	н
ATOM ATOM	1972 1973	H HA	ARG ARG	169	119.258 121.348	82.535	84.276 86.002	1.00	0.00	H
ATOM	1974	1HB	ARG	169 169	121.700	81.266 82.114	83.635	1.00	0.00	H H
ATOM	1975		ARG	169	121.462	83.761	84.197	1.00	0.00	н
MOTA	1976	1HG	ARG	169	123.525	83.511	85.698	1.00	0.00	H
ATOM	1977		ARG	169	123.729	81.859	85.131	1.00	0.00	H
ATOM	1978 1979		ARG ARG	169	123.973	82.723	82.737	1.00	0.00	H
ATOM ATOM		2HH1		169 169	123.797 125.445	84.390 84.158	83.344 81.655	1.00	0.00	H H
ATOM	1981			169	127.263	84.410	81.442	1.00	0.00	н
MOTA		1HH2	ARG	169	127.763	83.411	84.641	1.00	0.00	н
MOTA	1983			169	128.535	84.007	83.067	1.00	0.00	Н
ATOM	1984	И	ASN	170	120.138	84.208	87.078	1.00	0.00	N
MOTA MOTA	1985 1986	CA C	asn asn	170 170	119.868 119.114	84.914 84.109	88.374 89.511	1.00 1.00	0.00	c c
ATOM	1987	ŏ	ASN	170	118.897	84.666	90.590	1.00	0.00	ŏ
MOTA	1988	CB	ASN	170	119.043	86.208	88.075	1.00	0.00	С
ATOM	1989	CG	ASN	170	119.476	87.253	87.043	1.00	0.00	. с
ATOM	1990		asn asn	170 170	118.647 120.734	87.828 87.585	86.350 86.923	1.00	0.00	. 0
ATOM ATOM	1991 1992	H H	ASN	170	119.600	84.408	86.222	1.00	0.00	N H
ATOM	1993	HA	ASN	170	120.836	85.216	88.819	1.00	0.00	H
ATOM	1994	1HB	ASN	170	118.016	85.911	87.792	1.00	0.00	H
ATOM	1995	2HB	ASN	170	118.903	86.769	89.016	1.00	0.00	н
ATOM ATOM	1996 1997	1HD2 2HD2		170 170	120.898 121.406	88.227 86.966	86.142 87.382	1.00	0.00	H H
ATOM	1998	N N	ARG	171	118.659	82.858	89.280	1.00	0.00	N
ATOM	1999	CA	ARG	171	117.640	82.151	90.127	1.00	0.00	С
MOTA	2000	C	ARG	171	116.210	82.824	90.209	1.00	0.00	C
ATOM	2001	0	ARG	171	115.514	82.730	91.223	1.00	0.00	0
ATOM ATOM	2002 2003	CB	ARG ARG	171 171	118.236 119.399	81.706 80.683	91.497 91.421	1.00	0.00	c c
ATOM	2004	CD	ARG	171	119.917	80.277	92.807	1.00	0.00	c
ATOM	2005	NE	ARG	171	120.996	79.272	92.633	1.00	0.00	N
MOTA	2006	CZ	ARG	171	121.728	78.749	93.607	1.00	0.00	c
ATOM	2007		ARG	171	121.590	79.037	94.866	1.00	0.00	N
ATOM ATOM	2008 2009	NH2 HE	ARG ARG	171 171	122.632 121.194	77.900 78.955	93.271 91.674	1.00	0.00	N H
ATOM	2010	н	ARG	171	118.968	82.485	88.374	1.00	0.00	н
ATOM	2011	HA	ARG	171	117.420	81.210	89.588	1.00	0.00	H
ATOM	2012		ARG	171	118.557	82.602	92.062	1.00	0.00	н
ATOM	2013		ARG	171	117.428	81.265	92.113	1.00	0.00	н
ATOM ATOM	2014 2015		ARG ARG	171 171	119.078 120.235	79.782 81.107	90.862 90.828	1.00	0.00	H H
ATOM	2016		ARG	171	120.235	81.171	93.344	1.00	0.00	н
ATOM	2017		ARG	171	119.093	79.858	93.421	1.00	0.00	н
ATOM	2018	2HH1		171	120.858	79.727	95.037	1.00	0.00	H
ATOM		1HH1		171	122.219	78.576	95.520	1.00	0.00	н
ATOM ATOM		1HH2 2HH2		171 171	122.663 123.214	77.768 77.504	92.258 94.006	1.00 1.00	0.00	H H
AT ON	2021	~.un4	ALC:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24.000	2.00	J. 00	п

WO 2005/047526 PCT/GB2004/004762

100

2022 VAL 115.741 83.442 89.110 1.00 0.00 ATOM N 172 2023 0.00 ATOM CA VAL 172 114.438 84.169 89.046 1.00 ATOM 2024 С VAL 172 113.496 83.370 88.083 1.00 0.00 ATOM 2025 0 VAL 172 113.552 83.505 86.855 1.00 0.00 114.661 85.671 113.351 86.468 2026 CB 88.631 1.00 ATOM VAL 172 0.00 MOTA 2027 CG1 VAL 172 88.415 1.00 0.00 115.491 86.480 2028 CG2 VAL ATOM 172 89.657 1.00 0.00 C MOTA 2029 H VAL 172 116.426 83.513 88.344 1.00 0.00 н 2030 VAL 113.959 84.202 90.047 MOTA HA 172 1.00 0.00 Н ATOM 2031 HB VAL 172 115.214 85.677 87.669 1.00 0.00 MOTA 2032 1HG1 VAL 172 112.732 86.513 89.332 1.00 0.00 H ATOM 2033 2HG1 VAL 172 113.547 87.510 88.101 1.00 0.00 H 2034 3HG1 VAL 112.721 86.025 ATOM 172 87.621 1.00 0.00 1.00 ATOM 2035 2HG2 VAL 172 116.478 86.016 89.846 0.00 H MOTA 2036 3HG2 VAL 172 115.697 87.510 89.309 1.00 0.00 H 2037 1HG2 VAL 114.986 86.556 ATOM 172 1.00 90.638 0.00 н 112.575 82.575 MOTA 2038 N ILE 173 88.653 0.00 0.00 N 111.447 81.954 MOTA 2039 CA ILE 173 87.886 0.00 0.00 MOTA 2040 C ILE 173 110.383 B3.074 87.611 0.00 C 0.00 109.709 83.512 2041 0 ILE 173 ATOM 88.544 0 0.00 0.00 CB ILE ATOM 2042 173 110.844 80.716 88.658 0.00 0.00 ATOM 2043 CG2 ILE 173 109.635 80.078 87.912 0.00 0.00 С ATOM 2044 CG1 ILE 173 111.881 79.595 88.975 C 0.00 0.00 CD1 ILE c ATOM 2045 173 111.442 78.565 90.033 0.00 0.00 112.632 82.538 ATOM 2046 H ILE 173 89.675 0.00 0.00 н ATOM 2047 HA ILE 173 111.836 81.577 86.918 0.00 0.00 MOTA 2048 HB ILE 173 110.467 81.102 89.627 0.00 0.00 н MOTA 2049 1HG2 ILE 173 109.151 79.289 88.517 0.00 0.00 н MOTA 2050 2HG2 ILE 108.838 80.813 173 87.695 0.00 0.00 H ATOM 2051 3HG2 ILE 173 109.929 79.606 86.958 0.00 0.00 н ATOM 2052 1HG1 ILE 173 112.824 80.045 89.341 0.00 0.00 2053 2HG1 ILE ATOM 173 112.172 79.077 88.044 0.00 0.00 н ATOM 2054 1HD1 ILE 173 112.255 77.853 90.265 0.00 0.00 н ATOM 2055 2HD1 ILE 111.160 79.050 0.00 173 90.988 0.00 Н 2056 3HD1 ILE ATOM 173 110.575 77.962 89.706 0.00 0.00 Н MOTA 2057 N HIS 174 110.237 83.550 86.361 1.00 0.00 2058 HIS 174 109.317 ATOM CA 84.693 86.059 1.00 0.00 C MOTA 2059 С HIS 174 107.793 84.449 86.376 1.00 0.00 C ATOM 2060 0 107.197 HIS 174 85.215 87.138 1.00 0.00 0 CB HIS 109.621 85.167 84.608 ATOM 2061 174 1.00 0.00 C MOTA 2062 CG HIS 174 108.991 86.510 84.245 1.00 0.00 ATOM 2063 ND1 HIS 174 109.547 87.720 84.610 1.00 0.00 N MOTA 2064 CE1 HIS 174 108.528 88.561 84.240 1.00 C 0.00 ATOM 2065 NE2 HIS 107.408 88.047 174 83.646 1.00 0.00 N ATOM 2066 CD2 HIS 174 107.722 86.700 83.677 1.00 0.00 С MOTA 2067 H HIS 174 111.089 83.401 85.808 1.00 0.00 H ATOM 2068 HA HIS 174 109.616 85.530 86.728 1.00 0.00 н ATOM 2069 1HB 110.714 85.272 84.465 HIS 174 1.00 0.00 н ATOM 2070 2HB HIS 174 109.312 84.405 83.873 1.00 0.00 Н MOTA 2071 HE1 HIS 174 108.594 89.618 84.467 1.00 0.00 Н ATOM 2072 HE2 HIS 174 106.492 88.497 83.525 1.00 0.00 Н ATOM 2073 HD2 HIS 174 107.043 85.901 83.421 1.00 0.00 H 107.160 83.405 85.801 MOTA 2074 N ARG 175 0.00 0.00 N CA ARG ATOM 2075 175 105.738 83.015 86.076 0.00 0.00 С ATOM 2076 С ARG 175 104.626 83.935 85.455 0.00 0.00 C ATOM 2077 ARG 175 103.710 83.427 84.802 0 0.00 0.00 0 105.530 82.631 87.571 104.378 81.637 87.838 ATOM 2078 CB ARG 175 0.00 0.00 C ATOM 2079 CG ARG 175 0.00 C 0.00 ARG MOTA 2080 CD 175 104.296 81.222 89.315 0.00 0.00 C ATOM 2081 NE ARG 175 103.290 80.140 89.415 0.00 0.00 N ATOM 2082 CZ ARG 175 102.838 79.593 90.531 0.00 0.00 C MOTA 2083 NH1 ARG 103.214 79.931 175 91.729 0.00 0.00 N 78.668 90.400 ATOM 2084 NH2 ARG 175 101.966 0.00 0.00 N ATOM 2085 HE ARG 175 102.905 79.778 88.530 1.00 0.00 ATOM 2086 H ARG 175 107.738 82.919 85.104 0.00 0.00 Н ATOM 2087 HA ARG 175 105.622 82.068 85.513 0.00 0.00 н MOTA 2088 1HB 83.551 88.171 ARG 175 105.397 0.00 0.00 н ATOM 2089 2HB ARG 175 106.465 82.177 87.958 0.00 0.00 н MOTA 2090 1HG ARG 175 104.517 80.733 87.210 0.00 0.00 Н ATOM 2091 2HG ARG 175 103.406 82.064 87.515 0.00 0.00 Н MOTA 2092 1HD ARG 175 104.009 82.089 89.943 0.00 0.00 н ATOM 2093 2HD ARG 175 105.280 80.863 89.681 0.00 0.00 ATOM 2094 1HH1 ARG 175 102.744 79.451 92.498 0.00 0.00 н

						101				
ATOM	2095	2HH1	ARG	175	103.889	80.695	91.751	0.00	0.00	н
MOTA		1HH2		175	101.643	78.167	91.237	0.00		H
ATOM		2HH2		175	101.804	78.446	89.417	0.00	0.00	н
ATOM ATOM	2098		ASP ASP	176 176	104.702 103.764	85.268 86.234	85.615 84.968	0.00		Ŋ
ATOM	2100		ASP	176	104.080	86.497	83.442	0.00	0.00	C
ATOM	2101		ASP	176	104.454	87.605	83.049	0.00	0.00	ō
ATOM	2102		ASP	176	103.818	87.483	85.894	0.00	0.00	C
ATOM ATOM	2103 2104		ASP ASP	176 176	102.699 101.504	88.484 88.205	85.653	0.00	0.00	C
ATOM	2105		ASP	176	103.054	89.672	85.698 85.637	0.00	0.00	0
ATOM	2106		ASP	176	105.525	85.562	86.163	0.00	0.00	н
ATOM	2107		ASP	176	102.735	85.823	85.015	0.00	0.00	н
ATOM ATOM	2100	1HB	ASP ASP	176 176	104.797 103.748	87.993 87.209	85.798 86.962	0.00	0.00	н
ATOM	2110		LEU	177	103.740	85.481	82.572	0.00	0.00	H N
MOTA	2111		LEU	177	104.341	85.556	81.137	0.00	0.00	c
ATOM	2112		LEU	177	103.112	85.411	80.177	0.00	0.00	С
ATOM ATOM	2113 2114		LEU	177 177	102.648 105.476	84.308 84.511	79.872	0.00	0.00	0
ATOM	2115		LEU	177	106.235	84.562	80.915 79.560	0.00	0.00	C
MOTA	2116		LEU	177	106.906	85.921	79.284	0.00	0.00	č
ATOM	2117		LEU	177	107.333	83.485	79.529	0.00	0.00	С
ATOM ATOM	2118		PEA	177 177	103.702 104.805	84.587 86.542	83.030 80.937	0.00	0.00	н
ATOM		1HB	LEU	177	105.054	83.496	81.051	0.00	0.00	H H
MOTA		2HB	LEU	177	106.224	84.609	81.725	0.00	0.00	н
ATOM ATOM	2122	HG 1HD1	LEU	177 177	105.517	84.348	78.741	0.00	0.00	H
ATOM		2HD1		177	107.505 106.167	85.902 86.732	78.353 79.150	0.00	0.00	H H
MOTA	2125	3HD1	LEU	177	107.586	86.228	80.101	0.00	0.00	H
ATOM		1HD2		177	107.855	83.463	78.556	0.00	0.00	H
ATOM ATOM	2127 2128	2HD2 3HD2		. 177 177	108.102 106.926	83.646 82.471	80.307 79.685	0.00	0.00	н
ATOM	2129		LYS	178	102.583	86.554	79.709	0.00	0.00	H N
ATOM	2130		LYS	178	101.463	86.610	78.722	0.00	0.00	С
ATOM ATOM	2131 2132		LYS LYS	178 178	101.689 102.744	87.771	77.676	0.00	0.00	C
ATOM	2133		LYS	178	100.114	88.413 86.647	77.632 79.527	0.00	0.00	O C
MOTA	2134		LYS	178	99.771	88.005	80.244	0.00	0.00	č
ATOM ATOM	2135 2136		LYS LYS	178 178	98.457	88.773	79.928	0.00	0.00	C
ATOM	2137		LYS	178	98.363 97.371	90.078 91.082	80.774 80.284	0.00	0.00	N C
ATOM	2138		LYS	178	96.334	90.864	80.118	1.00	0.00	н
ATOM ATOM	2139 2140		LYS	178	97.357	92.061	80.681	1.00	0.00	Н
ATOM	2140	H	LYS LYS	178 178	97.360 103.132	91.463 87.388	79.301 79.934	1.00	0.00	H
MOTA	2142	HA	LYS	178	101.469	85.678	78.119	0.00	0.00	H H
MOTA	2143		LYS	178	100.182	85.941	80.379	0.00	0.00	н
ATOM ATOM	2144 2145		LYS	178 178	99.318 100.614	86.209 88.710	78.895 80.085	0.00	0.00	H
ATOM	2146		LYS	178	99.828	87.850	81.343	0.00	0.00	H H
ATOM	2147		LYS	178	97.563	88.150	80.119	0.00	0.00	н
ATOM ATOM	2148 2149		LYS	178	98.407	89.015	78.850	0.00	0.00	H
ATOM	2150		LYS	178 178	99.353 98.140	90.577 89.833	80.849 81.834	0.00	0.00	H H
ATOM	2151	N	LEU	179	100.665	88.092	76.867	1.00	0.00	N
ATOM	2152	CA	LEU	179	100.661	89.288	75.979	1.00	0.00	С
ATOM ATOM	2153 2154	C O	LEU	179 179	100.758 101.659	90.666 91.433	76.713	1.00	0.00	C
ATOM	2155	CB	LEU	179	99.451	89.228	76.379 75.007	1.00	0.00 0.00	0
ATOM	2156	CG	LEU	179	99.463	88.132	73.904	1.00	0.00	č
ATOM ATOM	2157 2158	CD1 CD2		179 179	98.968	86.763	74.404	1.00	0.00	C
ATOM	2159	н	LEU	179	98.584 99.878	88.550 87.438	72.712 76.888	1.00	0.00	C H
MOTA	2160	HA	LEU	179	101.577	89.250	75.358	1.00	0.00	H H
ATOM	2161		LEU	179	98.498	89.208	75.572	1.00	0.00	H
ATOM ATOM	2162 2163		TEA TEA	179 179	99.425 100.496	90.204 88.021	74.488 73.518	1.00	0.00	н
ATOM		2HD1		179	99.607	86.339	75.196	1.00	0.00	H H
ATOM		3HD1		179	97.932	86.801	74.789	1.00	0.00	н
ATOM ATOM		1HD1 2HD2		179	98.988	86.014	73.593	1.00	0.00	H
	2201		250	179	97.524	88.698	72.994	1.00	0.00	н

				•		102				••
ATOM		3HD2		179	98.936	89.497	72.259	1.00	0.00	H H
MOTA	2169	1HD2		179	98.605 99.916	87.800	71.899 77.712	1.00	0.00	, N
ATOM ATOM	2170 2171	N CA	GLY	180 180	100.099	90.992 92.232	78.527	1.00	0.00	·c
MOTA	2172	c	GLY	180	101.529	92.588	79.036	1.00	0.00	C
ATOM	2173	ō	GLY	180	102.069	93.647	78.710	1.00	0.00	0
ATOM	2174	H	GLY	180	99.039	90.461	77.744	1.00	0.00	. н
ATOM	2175	1HA	GLY	180	99.812	93.071	77.875	1.00	0.00	H
MOTA	2176	2HA	GLY	180	99.394	92.319	79.367	1.00	0.00	Н
ATOM	2177	N	ASN	181	102.174 103.474	91.645 91.871	79.727 80.434	0.00	0.00	N C
MOTA MOTA	2178 2179	CA CA	asn asn	181 181	104.829	91.922	79.623	0.00	0.00	č
ATOM	2180	õ	ASN	181	105.920	91.917	80.207	0.00	0.00	Ō
ATOM	2181	CB	ASN	181	103.567	90.754	81.519	0.00	0.00	С
ATOM	2182	CG	ASN	181	102.405	90.641	82.505	0.00	0.00	C
MOTA	2183		ASN	181	101.450	89.904	82.283	0.00	0.00	0
MOTA	2184	ND2		181 181	102.429 101.561	91.382 90.881	83.570 80.025	0.00	0.00	N H
ATOM ATOM	2185 2186	H HA	asn Asn	181	103.420	92.840	80.969	0.00	0.00	н
ATOM	2187		ASN	181	104.500	90.872	82.106	0.00	0.00	H
ATOM	2188		ASN	181	103.685	89.766	81.039	0.00	0.00	H
MOTA		1HD2		181	102.021	90.827	84.338	0.00	0.00	H
ATOM				181	103.337	91.837	83.699	0.00	0.00	H N
ATOM	2191	n Ca	rea rea	182 182	104.794 106.015	92.001 92.163	78.289 77.449	0.00	0.00	C
ATOM ATOM	2192 2193	C	LEU	182	105.850	93.462	76.595	0.00	0.00	č
ATOM	2194	ō	LEU	182	104.848	93.643	75.902	0.00	0.00	0
MOTA	2195	CB	LEU	182	106.188	90.902	76.560	0.00	0.00	c
ATOM	2196	CG	FEA	182	106.477	89.531	77.242	0.00	0.00	c
ATOM ATOM	2197 2198		LEU	182 182	106.212 107.914	88.418 89.431	76.223 77.773	0.00	0.00	č
ATOM	2198	H H	LEU	182	103.841	92.184	77.945	0.00	0.00	н
ATOM	2200	HA	LEU	182	106.927	92.272	78.072	0.00	0.00	н
MOTA	2201	1HB	LEU	182	106.998	91.117	75.844	0.00	0.00	н
ATOM	2202		LEU	182	105.275	90.809	75.941	0.00	0.00	H H
ATOM ATOM	2203 2204	HG 1HD1	LEU	182 182	105.775 106.449	89.389 87.416	78.091 76.624	0.00	0.00	н
ATOM	2205			182	105.148	88.392	75.917	0.00	0.00	H
ATOM		3HD1		182	106.808	88.561	75.304	0.00	0.00	Н
MOTA	2207			182	108.125	88.438	78.211	0.00	0.00	н
MOTA	2208			182 182	108.666 108.102	89.603 90.172	76.980 78.570	0.00	0.00	H H
ATOM ATOM	2209 2210		LEU	183	106.816	94.384	76.619	1.00	0.00	N
ATOM	2211		PHE	183	106.566	95.801	76.213	1.00	0.00	C
MOTA	2212	С	PHE	183	107.378	96.162	74.934	1.00	0.00	c
ATOM	2213		PHE	183	108.602	96.004	74.910	1.00	0.00	0 C
ATOM	2214		PHE	183 183	106.879 105.873	96.721 96.583	77.437 78.598	1.00	0.00	c
MOTA MOTA	2215 2216			183	104.710	97.353	78.601	1.00	0.00	č
ATOM	2217			183	103.664	97.046	79.467	1.00	0.00	С
ATOM	2218		PHE	183	103.797	96.002	80.375	1.00	0.00	C
MOTA	2219		PHE	183	104.987	95.288	80.441	1.00	0.00	c c
ATOM	2220 2221		PHE PHE	183 183	106.024 107.542	95.575 94.195	79.557 77.325	1.00	0.00	н
ATOM ATOM	2222		PHE	183	105.494	95.964	75.974	1.00	0.00	н
ATOM		1HB	PHE	183	107.909	96.554	77.805	1.00	0.00	н
ATOM		2HB	PHE	183	106.890	97.776	77.103	1.00	0.00	. н
MOTA	2225		PHE	183	104.614	98.187	77.924	1.00	0.00	Н
ATOM	2226		PHE PHE		102.761 102.988	97.638 95.770	79.466 81.054	1.00	0.00	H H
ATOM ATOM	2227 2228		PHE		105.094	94.496	81.163	1.00	0.00	н
ATOM	2229		PHE	183	106.917	94.968	79.579	1.00	0.00	н
ATOM	2230		LEU	184	106.730	96.690	73.873	1.00	0.00	N
ATOM	2231		LEU		107.416	97.309	72.691	1.00	0.00	C
ATOM	2232		LEU		108.064	98.692	73.028 73.283	1.00	0.00	C 0
ATOM ATOM	2233 2234		LEU		107.333 106.409	99.660 97.532	73.283	1.00	0.00	c
ATOM	223		LEU		106.138	96.389	70.506	1.00	0.00	C
ATOM	2236		r Pen		105.052	96.846	69.514	1.00	0.00	С
ATOM	2231		2 LEU		107.372	96.012	69.667	1.00	0.00	C
ATOM	2238		LEU		105.739	96.918	74.050	1.00 1.00	0.00	H H
ATOM ATOM	2239		LEU		108.217 105.456	96.630 97.912	72.340 71.919	1.00	0.00	H H
WION	224	1HB	TIE (T04	~~~~				2.00	**

						103				
ATOM	2241	2HB	FEA	184	106.746		70.898	1.00	0.00	н
ATOM	2242	HG	LEU	184	105.777		71.059	1.00	0.00	H
MOTA	2243	2HD1		184	104.139		70.031	1.00	0.00	H
MOTA MOTA	2244 2245	3HD1 1HD1		184 184	105.390 104.757		68.883 68.831	1.00	0.00	Н
ATOM		2HD2		184	107.705		69.013	1.00	0.00	H H
ATOM	2247	3HD2	LEU	184	108.239		70.287	1.00	0.00	Н
ATOM	2248	1HD2		184	107.163	95.145	69.011	.1.00	0.00	н
ATOM	2249	N	ASN	185	109.403		73.058	1.00	0.00	N
ATOM ATOM	2250 2251	CA C	asn asn	185 185		100.086	73.132	1.00	0.00	C
ATOM	2252	õ	ASN	185		100.930	71.806 70.758	1.00	0.00	C O
ATOM	2253	CB	ASN	185	111.522		73.732	1.00	0.00	č
MOTA	2254	CG	ASN	185	112.608		72.837	1.00	0.00	C
ATOM ATOM	2255 2256		asn asn	185	112.593		71.615	1.00	0.00	0
ATOM	2257	H	ASN	185 185	113.632 109.889		73.422 72.930	1.00	0.00	N
ATOM	2258	HA	ASN	185		100.716	73.879	1.00	0.00	H H
MOTA	2259	1HB	asn	185		100.816	74.083	1.00	0.00	н
MOTA	2260	2HB	ASN	185	111.419	99.249	74.657	1.00	0.00	H
MOTA MOTA	2261 2262	1HD2 2HD2		185 185	114.326 113.566	98.305	72.770	1.00	0.00	H
ATOM	2263	N.	GLU	186		98.525 102.162	74.431 71.853	1.00	0.00	H N
ATOM	2264	CA	GLU	186		103.106	70.696		0.00	C
ATOM	2265	C	GLU	186		102.718	69.427	1.00	0.00	·c
ATOM	2266	0	GLU	186		103.204	68.337	1.00	0.00	0
ATOM ATOM	2267 2268	CB CG	GLU	186 186		104.518 105.203	71.262 72.195	1.00	0.00	C
ATOM	2269	CD	GLU	186		104.655	73.619	1.00	0.00	C
ATOM	2270		GLU	186		103.990	74.228	1.00	0.00	ō
ATOM	2271		GLU	186		104.880	74.100	1.00	0.00	0
ATOM ATOM	2272 2273	H HA	GLU GLU	186 186		102.491 103.157	72.797	1.00	0.00	H
ATOM	2274		GLU	186		103.157	70.315 71.757	1.00	0.00	H H
ATOM	2275	2HB	GLU	186		105.199	70.400	1.00	0.00	н
ATOM	2276	1HG	GLU	186		106.268	72.311	1.00	0.00	H
ATOM ATOM	2277 2278	2HG	GLU	186		105.215	71.690	1.00	0.00	H
ATOM	2279	N CA	ASP ASP	187 187		101.825	69.536 68.358	1.00	0.00	N C
ATOM	2280	C	ASP	187	112.360	99.707	67.989	1.00	0.00	c
MOTA	2281	0	ASP	187	112.928	98.972	67.175	1.00	0.00	0
ATOM ATOM	2282 2283	CB CG	ASP ASP	187		100.991	68.633	1.00	0.00	C
ATOM	2284	OD1		187 187		102.299	68.593 67.559	1.00	0.00	С 0
MOTA	2285	OD2		187		102.774	69.835	1.00	0.00	ŏ
MOTA	2286	H	ASP	187		101.438	70.483	1.00	0.00	H
ATOM ATOM	2287 2288	HA	ASP ASP	187	112.875		67.437	1.00	0.00	H
ATOM	2289	1HB 2HB	ASP	187 187	114.712 114.992		69.590 67.870	1.00	0.00	H H
ATOM	2290	N	LEU	188	111.182	99.345	68.536	1.00	0.00	N
MOTA	2291	CA	TEA	188	110.435	98.074	68.258	1.00	0.00	С
ATOM	2292	C	LEU	188	111.031	96.740	68.850	1.00	0.00	С
ATOM ATOM	2293 2294	O CB	LEU	188 188	110.984 109.963	95.685 97.964	68.210 66.770	1.00 1.00	0.00	0
ATOM	2295	CG	LEU	188	109.099	99.113	66.185	1.00	0.00	C
MOTA	2296	CD1		188	108.906	98.904	64.675	1.00	0.00	c
MOTA	2297	CD2		188	107.720	99.221	66.860	1.00	0.00	C
ATOM ATOM	2298 2299	H HA	LEU	188 188	110.807 109.504	98.180	69.191 68.844	1.00 1.00	0.00	H
ATOM	2300		LEU	188	110.866	97.831	66.144	1.00	0.00	H H
ATOM	2301	2HB	LEU	188	109.408	97.014	66.643	1.00	0.00	н
ATOM	2302		LEU	188	109.638		66.327	1.00	0.00	H
ATOM ATOM		2HD1 3HD1		188 188	109.876	98.865	64.143	1.00	0.00	H
ATOM		1HD1		188	108.372 108.330	97.962 99.729	64.446 64.216	1.00	0.00	H H
ATOM		2HD2		188	107.141	98.282	66.782	1.00	0.00	H
ATOM	2307	3HD2	LEU	188	107.809	99.465	67.935	1.00	0.00	H
ATOM		1HD2		188	107.108		66.411	1.00	0.00	Н
ATOM ATOM	2309 2310		GLU GLU	189 189	111.538 112.173	96.755 95.567	70.097 70.749	1.00	0.00	N
ATOM	2311		GLU	189	111.436	95.126	70.749	1.00	0.00	C C
ATOM	2312	0	GLU	189	110.715	95.897	72.708	1.00	0.00	0
ATOM	2313	CB	GLU	189	113.678	95.893	71.008	1.00	0.00	C

						104				
MOTA	2314	CG	GLU	189	114.656	95.681	69.821	1.00	0.00	С
ATOM	2315		GLU	189	114.692	96.837	68.832	1.00	0.00	С
MOTA	2316	OE1	GLU	189	115.281	97.892	69.046	1.00	0.00	. 0
ATOM	2317	OE2		189	113.970	96.585	67.707	1.00	0.00	0
MOTA	2318	H	GLU	189	111.640	97.704	70.480	1.00	0.00 0.00	H H
ATOM	2319 2320	HA	GLU	189	112.131 113.790	94.686 96.916	70.075 71.405	1.00	0.00	н
MOTA MOTA	2320		GLU	189 189	114.042	95.267	71.843	1.00	0.00	H
MOTA		1HG	GLU	189	115.685	95.563	70.206	1.00	0.00	н
ATOM		2HG	GLU	189	114.440	94.731	69.294	1.00	0.00	н
MOTA	2324	N	VAL	190	111.664	93.866	72.489	1.00	0.00	N
MOTA	2325	CA	VAL	190	111.100	93.293	73.754	1.00	0.00	C
MOTA	2326 2327	0	VAL VAL	190 190	111.790 112.974	93.877 93.637	75.036 75.298	1.00	0.00	o
MOTA MOTA	2328	СВ	VAL	190	111.177	91.721	73.750	1.00	0.00	Ċ
ATOM	2329	CG1		190	110.578	91.047	75.010	1.00	0.00	C
MOTA	2330	CG2		190	110.495	91.026	72.548	1.00	0.00	C
MOTA	2331	H	VAL	190	112.242	93.298	71.855	1.00	0.00	H H
MOTA	2332	HA HB	VAL VAL	190 190	110.025 112.252	93.542 91.463	73.801 73.722	1.00	0.00	н
ATOM ATOM	2333 2334	1HG1		190	109.496	91.252	75.118	1.00	0.00	н
ATOM	2335			190	110.706	89.949	74.991	1.00	0.00	н
MOTA		3HG1	VAL	190	111.068	91.390	75.941	1.00	0.00	н
MOTA		2HG2		190	110.881	91.382	71.576	1.00	0.00	н
ATOM			VAL	190	110.658	89.933 91.178	72.556 72.544	1.00	0.00	H H
MOTA MOTA	2339	1HG2 N	LYS	190 191	109.401 110.996	94.554	75.872	1.00	0.00	N
ATOM	2341	CA	LYS	191	111.369	94.885	77.269	1.00	0.00	С
ATOM	2342	С	LYS	191	110.423	94.113	78.258	1.00	0.00	C
ATOM	2343	0	LYS	191	109.215	94.364	78.306	1.00	0.00	0
MOTA	2344	CB	LYS	191	111.259	96.423	77.448 76.706	1.00	0.00	c
MOTA MOTA	2345 2346	CD	LYS LYS	191 191	112.257 113.703	97.343 97.231	77.229	1.00	0.00	c
ATOM	2347	CE	LYS	191	114.545	98.495	76.998	1.00	0.00	Č
ATOM	2348	NZ	LYS	191	115.860	98.307	77.636	1.00	0.00	N
ATOM	2349		LYS	191	116.437	99.148	77.489	1.00	0.00	н
MOTA	2350		LYS	191	115.733	98.151	78.646	1.00	0.00	H H
ATOM ATOM	2351 2352	знz Н	LYS	191 191	116.331 110.119	97.491 94.893	77.220 75.451	1.00	0.00	н
ATOM	2353	HA	LYS	191	112.417	94.601	77.489	1.00	0.00	н
ATOM	2354	1HB	LYS	191	110.229	96.745	77.190	1.00	0.00	Н
MOTA	2355		LYS	191	111.347	96.649	78.525	1.00	0.00	н
ATOM		1HG	LYS	191	112.222 111.899	97.146 98.383	75.616 76.832	1.00	0.00	H H
ATOM ATOM		2HG 1HD	LYS LYS	191 191	113.684	97.025	78.314	1.00	0.00	н
ATOM		2HD	LYS	191	114.192	96.343	76.780	1.00	0.00	H
MOTA	2360		LYS	191	114.675	98.701	75.921	1.00	0.00	Н
ATOM	2361		LYS	191	114.048	99.385	77.436	1.00	0.00	H
ATOM	2362 2363		ILE	192 192	110.954 110.156	93.189 92.448	79.078 80.114	1.00	0.00	n C
ATOM ATOM	2364		ILE	192	109.807	93.417	81.306	1.00	0.00	Ċ
ATOM	2365		ILE	192	110.706	93.999	81.924	1.00	0.00	0
MOTA	2366	CB	ILE	192	110.905	91.140	80.577	1.00	0.00	C
ATOM	2367		ILE	192	111.266	90.151	79.424	1.00	0.00	C
MOTA	2368		ILE	192 192	110.090 112.362	90.351 89.124	81.640 79.760	1.00	0.00	c c
ATOM ATOM	2369 2370		ILE	192	111.953	92.986	78.923	1.00	0.00	н
ATOM	2371		ILE	192	109.209	92.115	79.643	1.00	0.00	H
MOTA	2372	HB	ILE	192	111.853	91.469	81.050	1.00	0.00	Н
ATOM		1HG1		192	110.364	89.623	79.069	1.00	0.00	Н
ATOM		2HG1		192	111.620	90.711	78.536	1.00	0.00	H H
ATOM ATOM		2HG2		192 192	109.842 109.133	90.969 89.964	82.524 81.241	1.00	0.00	H
ATOM		1HG2		192	110.648	89.485	82.042	1.00	0.00	н
ATOM		2HD1		192	113.309	89.619	80.049	1.00	0.00	н
ATOM	2379	3HD1	. ILE	192	112.073	88.451	80.588	1.00	0.00	H
ATOM		1HD1		192	112.580	88.482	78.887	1.00	0.00	H
MOTA	2381		GLY GLY		108.501 107.981	93.593 94.465	81.560 82.644	1.00	0.00	и С
MOTA MOTA	2382 2383		GLY	193	107.981	93.807	83.394	1.00	0.00	c
ATOM	2384		GLY		106.069	92.963	82.867	1.00	0.00	o
ATOM	2385		GLY	193	107.857	92.935	81.093	1.00	0.00	н
ATOM		1HA	GLY	193	108.780	94.742	83.361	1.00	0.00	н

						105					
ATOM	2387	2HA	GLY	193	107.620	95.417	82.214	1.00	0.00	1	Ŧ
ATOM	2388	N	ASP	194	106.620	94.204	84.651	0.00	0.00		1
ATOM ATOM	2389 2390	CA C	ASP ASP	194	105.779	93.470	85.637	0.00	0.00		2
ATOM	2390	Ö	ASP	194 194	106.338 106.282	92.050 91.059	86.040 85.311	0.00	0.00	(2
ATOM	2392	CB	ASP	194	104.243	93.694	85.490	0.00	0.00	č	
ATOM	2393	CG	ASP	194	103.710	94.969	86.165	0.00	0.00	C	3
MOTA MOTA	2394 2395		ASP ASP	194 194	102.591 104.420	94.994 95.994	86.709 86.207	0.00	0.00	C	
ATOM	2396	H	ASP	194	107.243	94.956	84.952	0.00	0.00	C) I
ATOM	2397	HA	ASP	194	106.000	94.081	86.538	0.00	0.00		ī
ATOM	2398		ASP	194	103.702	92.835	85.929	0.00	0.00	F	
MOTA MOTA	2399 2400	2HB N	ASP PHE	194 195	103.950 106.971	93 ⁻ . 706 92 . 028	84.427 87.220	0.00	0.00	. F	
ATOM	2401	CA	PHE	195	107.659	90.844	87.809	0.00	0.00	ĵ	
ATOM	2402	C	PHE	195	106.955	90.346	89.118	0.00	0.00	C	2
ATOM ATOM	2403 2404	O CB	PHE	195 195	107.603 109.123	89.677 91.329	89.928	0.00	0.00	C	
ATOM	2405	CG	PHE	195	110.056	91.346	88.053 86.828	0.00	0.00		-
ATOM	2406		PHE	195	110.856	90:237	86.538	0.00	0.00	ì	
ATOM ATOM	2407		PHE	195	111.733	90.267	85.457	0.00	0.00	C	2
ATOM	2408 2409	CE2	PHE	195 195	111.821 111.028	91.406 92.514	84.661 84.943	0.00	0.00	C	
ATOM	2410		PHE	195	110.140	92.480	86.015	0.00	0.00		
ATOM	2411		PHE	195	106.824	92.881	87.779	0.00	0.00	H	
ATOM ATOM	2412 2413	HA	PHE PHE	195 195	107.709	89.937	87.162	0.00	0.00	H	
ATOM	2414		PHE	195	109.585 109.136	90.688 92.321	88.817 88.548	0.00	0.00	H	
ATOM	2415		PHB	195	110.792	89.343	87.141	0.00	0.00	H	
ATOM	2416		PHE	195	112.334	89.398	85.231	0.00	0.00	H	
ATOM ATOM	2417 2418	HZ HE2	PHE	195 195	112.500 111.092	91.427 93.402	83.821 84.334	0.00	0.00	H	
ATOM	2419		PHE	195	109.522	93.343	86.222	0.00	0.00	H	
ATOM	2420	N	GLY	196	105.650	90.587	89.364	0.00	0.00	. 18	ī
ATOM ATOM	2421 2422	CA C	GLY	196 196	105.014 104.105	90.327 89.088	90.689	0.00	0.00	C	
ATOM	2423	ō	GLY	196	102.957	89.227	90.820 91.239	0.00	0.00	0	
ATOM	2424	H	GLY	196	105.226	91.180	88.638	0.00	0.00	H	
ATOM ATOM	2425 2426		GLY	196	104.419	91.219	90.959	0.00	0.00	H	
ATOM	2427	N N	GLY	196 197	105.762 104.634	90.262 87.889	91.504 90.543	0.00 1.00	0.00	H N	
MOTA	2428	CA	LEU	197	104.022	86.603	91.006	1.00	0.00	Ċ	
ATOM	2429	C	LEU	197	105.151	85.715	91.663	1.00	0.00	Ċ	
ATOM ATOM	2430 2431	O CB	LEU	197 197	105.867 103.184	86.202 85.943	92.541 89.856	1.00	0.00	0	
ATOM	2432	CG	LEU	197	101.879	86.642	89.386	1.00	0.00	d	
ATOM	2433		LEU	197	101.258	85.871	88.209	1.00	0.00	c	:
ATOM ATOM	2434 2435	H H	LEU	197 197	100.819 105.635	86.751 87.961	90.496 90.323	1.00	0.00	C H	
ATOM	2436	HA	LEU	197	103.337	86.799	91.855	1.00	0.00	н	
ATOM	2437		LEU	197	103.851	85.796	88.985	1.00	0.00	н	l
ATOM ATOM	2438 2439	2HB HG	LEU	197 197	102.903 102.132	84.921 87.665	90.170 89.038	1.00	0.00	н	
ATOM		2HD1		197	101.973	85.727	87.381	1.00	0.00	H H	
ATOM		3HD1		197	100.903	84.864	88.502	1.00	0.00	н	
ATOM ATOM		1HD1 2HD2		197 197	100.391	86.412	87.783	1.00	0.00	Н	
ATOM		3HD2		197	100.543 101.167	85.768 87.379	90.917 91.337	1.00	0.00	H H	
ATOM	2445	1HD2	LEU	197	99.890	87.224	90.127	1.00	0.00	н	
ATOM	2446	N	ALA	198	105.281	84.402	91.365	0.00	0.00	N	
MOTA MOTA	2447 2448	CA C	ALA ALA	198 198	106.339 106.806	83.495 83.637	91.934 93.440	0.00	0.00	c	
ATOM	2449	ō	ALA	198	108.002	83.748	93.727	0.00	0.00	o	
MOTA	2450	CB	ALA	198	107.503	83.535	90.916	0.00	0.00	С	
ATOM ATOM	2451 2452	H HA	ALA ALA	198 198	104.748	84.147	90.531	0.00	0.00	н	
ATOM	2452		ALA	198	105.931 108.291	82.469 82.802	91.885 91.167	0.00	0.00	H H	
ATOM	2454	2HB	ALA	198	107.191	83.322	89.879	0.00	0.00	н	
ATOM	2455		ALA	198	107.996	84.527	90.905	0.00	0.00	H	
ATOM ATOM	2456 2457	N CA	THR THR	199 199	105.868 106.156	83.616 84.018	94.406 95.827	0.00 0.00	0.00	n C	
ATOM	2458	C	THR	199	106.899	82.955	96.723	0.00	0.00	C	
ATOM	2459	0	THR	199	106.343	82.424	97.690	0.00	0.00	o	

						106				
ATOM	2460	CB	THR	199	104.846	84.607	96.453	0.00	0.00	С
ATOM	2461	OG1	THR	199	105.108	85.041	97.781	0.00	0.00	0
MOTA	2462	CG2	THR	199	103.621	83.679	96.562	0.00	0.00	C
ATOM	2463	H	THR	199	104.928	83.743	94.023	0.00	0.00	н
ATOM	2464	HA HB	THR	199 199	106.844 104.555	84.891 85.498	95.7 9 7 95.858	0.00	0.00	H H
ATOM ATOM	2465 2466	HG1	THR	199	105.389	84.253	98.258	0.00	0.00	н
ATOM	2467		THR	199	103.274	83.329	95.574	0.00	0.00	H
ATOM		2HG2		199	103.828	82.784	97.176	0.00	0.00	H
ATOM	2469		THR	199	102.768	84.204	97.033	0.00	0.00	н
ATOM	2470	N	LYS	200	108.191	82.708	96.444	0.00	0.00	И
ATOM ATOM	2471 2472	CA. C	LYS	200 200	109.045 110.269	81.751 82.493	97.211 97.854	0.00	0.00	c c
ATOM	2473	õ	LYS	200	110.965	83.267	97.191	0.00	0.00	ŏ
ATOM	2474	CB	LYS	200	109.511	80.590	96.281	0.00	0.00	C
ATOM	2475	CG	LYS	200	108.392	79.733	95.634	0.00	0.00	С
ATOM	2476	CD	LYS	200	108.929	78.488	94.901	0.00	0.00	C
ATOM ATOM	2477 2478	CE NZ	LYS LYS	200 200	107.840 108.399	77.788 76.594	94.074 93.408	0.00	0.00 0.00	N C
ATOM		1HZ	LYS	200	107.662	76.132	92.856	1.00	0.00	н
ATOM	2480		LYS	200	109.168	76.877	92.784	1.00	0.00	н
MOTA	2481	3HZ	LYS	200	108.757	75.940	94.118	1.00	0.00	Н
ATOM	2482	H	LYS	200	108.518	83.167	95.581	0.00	0.00	н
ATOM	2483	HA	LYS	200	108.457	81.285	98.030	0.00	0.00	Н
MOTA MOTA	2484 2485	1HB 2HB	LYS LYS	200 200	110.160 110.174	81.001 79.924	95.481 96.865	0.00	0.00	H H
ATOM	2486		LYS	200	107.653	79.425	96.400	0.00	0.00	н
ATOM	2487		LYS	200	107.826	80.368	94.923	0.00	0.00	н
MOTA	2488		LYS	200	109.766	78.777	94.234	0.00	0.00	Н
ATOM ATOM	2489	2HD 1HE	LYS LYS	200 200	109.366 106.978	77.785	95.6 37 94.7 11	0.00	0.00	H H
ATOM	2490 2491		LYS	200	106.978	78.483	93.308	0.00	0.00	н
ATOM	2492	N	VAL	201	110.533	82.262	99.151	0.00	0.00	N
ATOM	2493	CA	VAL	201	111.582	83.002	99.926	0.00	0.00	С
ATOM	2494	C	VAL	201	112.931		100.056	0.00	0.00	С
ATOM	2495	O	VAL	201	112.932		100.172	0.00	0.00	0
MOTA MOTA	2496 2497	CB	VAL VAL	201 201	110.952 110.769		101.300	0.00	0.00	c
MOTA	2498			201	111.719		101.969	0.00	0.00	Č
ATOM	2499	H	VAL	201	109.948	81.547	99.591	0.00	0.00	н
MOTA	2500	HA	VAL	201	111.822	83.938	99.379	0.00	0.00	H
ATOM ATOM	2501 2502	HB 1HG1	VAL	201 201	109.942 111.738		101.080	0.00	0.00	H H
MOTA	2502			201	110.206		103.235	0.00	0.00	н
ATOM			VAL	201	110.214		101.938	0.00	0.00	H
MOTA		1HG2		201	112.741		102.280	0.00	0.00	н
MOTA	2506	2HG2		201	111.820		101.292	0.00	0.00	H
ATOM ATOM	2507 2508	3HG2 N	GLU	201 202	111.200 114.083		102.874	0.00	0.00	H N
ATOM	2509	CA	GLU	202	115.425		100.286	0.00	0.00	Ċ
ATOM	2510	C	GLU	202	115.779	81.725	101.739	0.00	0.00	C
MOTA	2511	0	GLU	202	116.881		102.253	0.00	0.00	0
ATOM ATOM	2512 2513	CB	GLU	202 202	116.504 116.458	83.217 83.535	99.708 98.184	0.00	0.00	c c
ATOM	2514	CD	GLU	202	115.676	84.788	97.775	0.00	0.00	Ċ
ATOM	2515		GLU	202	114.539	85.053	98.156	0.00	0.00	ō
ATOM	2516	OE2	GLU	202	116.386	85.585	96.932	0.00	0.00	0
ATOM	2517	H	GLU	202	114.001	83.871	99.795	0.00	0.00	н
ATOM ATOM	2518 2519	HA 1 UR	GLU GLU	202 202	115.455 116.534	81.342	99.651	0.00	0.00	н н
ATOM	2520		GLU	202	117.493	82.758	99.902	0.00	0.00	н
ATOM	2521		GLU	202	117.496	83.646	97.815	0.00	0.00	н
ATOM	2522	2HG	GLU	202	116.054	82.676	97.616	0.00	0.00	н
ATOM	2523	И	TYR	203	114.863		102.354	0.00	0.00	N
ATOM ATOM	2524 2525	CA	TYR TYR	203 203	115.139 114.495		103.556	0.00	0.00	c c
ATOM	2525 2526	0	TYR	203	115.206		103.433	0.00	0.00	0
ATOM	2527	СВ	TYR	203	114.729		104.875	0.00	0.00	C
ATOM	2528	CG	TYR	203	115.716	81.901	105.398	0.00	0.00	С
ATOM	2529		TYR	203	116.989		105.840	0.00	0.00	c
ATOM	2530		TYR	203	117.875		106.344	0.00	0.00	C
ATOM ATOM	2531 2532	CZ OH	TYR TYR	203 203	117.489 118.352		106.423	0.00	0.00	C 0
				~			 			_

						107				
ATOM	2533	CE2	TYR	203	116.225		105.991	0.00	0.00	C
ATOM	2534		TYR		115.340	83.246	105.477	0.00	0.00	č
ATOM ATOM	2535 2536		TYR		113.907		101.972	1.00	0.00	H
ATOM	2537		TYR TYR		116.228 113.711		103.608 104.769	0.00	0.00	н
ATOM	2538		TYR		114.617		104.789	0.00	0.00	H H
ATOM	2539		TYR		117.300		105.787	0.00	0.00	н
MOTA	2540		TYR		118.858		106.672	0.00	0.00	н
ATOM ATOM	2541 2542		TYR TYR		119.183 115.933		107.133 106.059	0.00	0.00	н
ATOM	2543				114.361		105.145	0.00	0.00	H H
ATOM	2544		ASP	204	113.189	78.546	103.110	0.00	0.00	n
ATOM ATOM	2545		ASP	204	112.574		102.817	0.00	0.00	С
ATOM	2546 2547		ASP ASP	204 204	111.617 110.886		101.564 101.331	0.00	0.00	C
ATOM	2548		ASP	204	111.973		104.114	0.00	0.00	o c
ATOM	2549		ASP	204	110.524	76.932	104.462	0.00	0.00	c
ATOM ATOM	2550		ASP ASP	204	110.164		105.017	0.00	0.00	0
ATOM	2551 2552		ASP	204	109.676 112.693		104.080 102.920	0.00	0.00	0
ATOM	2553		ASP	204	113.401		102.528	0.00	0.00	H H
MOTA		1HB	ASP	204	112.050	75.497	104.043	0.00	0.00	н
MOTA	2555 2556		ASP	204	112.599		104.991	0.00	0.00	H
ATOM ATOM	2557		GLY GLY	205 205	111.602 110.724	76.142	100.783	0.00	0.00	N
ATOM	2558		GLY	205	109.511	75.068	99.584 99.784	0.00	0.00	c
MOTA	2559		GLY	205	109.682		100.024	0.00	0.00	Ö
ATOM ATOM	2560		GLY	205	112.181		101.128	0.00	0.00	н
ATOM	2561 2562		GLY	205 205	110.407 111.323	76.994 75.579	99.196	0.00	0.00	Н
ATOM	2563		GLU	206	108.290	75.605	98.760 99.660	0.00	0.00	H N
MOTA	2564	CA	GLU	206	107.034	74.858	99.972	0.00	0.00	C
ATOM	2565	C	GLU	206	105.858	75.267	99.020	0.00	0.00	С
MOTA MOTA	2566 2567	O CB	GLU	206 206	105.527 106.695	76.451	98.906 101.487	0.00	0.00	0
ATOM	2568	CG	GLU	206	106.381		101.487	0.00	0.00	c
ATOM	2569	CD	GLU	206	106.297		103.499	0.00	0.00	c
ATOM	2570		GLU	206	107.039		104.309	0.00	0.00	o
ATOM ATOM	2571 2572	OE2	GLU	206 206	105.335 108.289		103.853	0.00	0.00	0
ATOM	2573	HA	GLU	206	107.213	76.621 73.774	99.527 99.821	0.00	0.00	H H
ATOM	2574		GLU	206	105.848		101.750	0.00	0.00	н
ATOM	2575		GLU	206	107.545		102.075		0.00	н
ATOM ATOM	2576 2577		GLU GLU	206 206	107.156 105.439		101.629 101.526	0.00	0.00	H
ATOM	2578	N	ARG	207	105.178	74.299	98.371	0.00	0.00	H N
MOTA	2579	CA	ARG	207	103.984	74.593	97.511	0.00	0.00	č
MOTA	2580	C	ARG	207	102.644	74.622	98.338	0.00	0.00	С
ATOM ATOM	2581 2582	O CB	ARG ARG	207 207	101.731 103.948	73.817 73.615	98.148 96.295	0.00	0.00	0
ATOM	2583	CG	ARG	207	105.115	73.695	95.268	0.00	0.00 0.00	c c
ATOM	2584	CD	ARG	207	106.268	72.718	95.557	0.00	0.00	č
ATOM ATOM	2585	NE	ARG	207	107.373	72.962	94.591	0.00	0.00	N
ATOM	2586 2587	CZ NH1	ARG ARG	207 207	108.655 109.140	73.134 73.144	94.889 96.096	0.00	0.00	C C
ATOM	2588		ARG	207	109.474	73.306	93.911	0.00	0.00	N N
ATOM	2589	HE	ARG	207	107.118	73.002	93.594	1.00	0.00	н
ATOM ATOM	2590 2591	H HA	ARG	207	105.521	73.344	98.513	0.00	0.00	н
ATOM	2592		ARG ARG	207 207	104.084 103.801	75.603 72.574	97.065 96.640	0.00	0.00	H
ATOM	2593		ARG	207	103.016	73.828	95.733	0.00	0.00	H H
ATOM	2594		ARG	207	104.731	73.468	94.252	0.00	0.00	н
ATOM ATOM	2595		ARG	207	105.498	74.731	95.192	0.00	0.00	н
ATOM	2596 2597		ARG ARG	207 207	106.593 105.910	72.797 71.676	96.609 95.436	0.00	0.00	Н
ATOM		1HH1		207	110.147	73.271	96.191	0.00	0.00	H H
ATOM		2HH1		207	108.436	73.002	96.820	0.00	0.00	н
ATOM		1HH2		207	109.015	73.300	92.994	0.00	0.00	н
ATOM ATOM	2601	2HH2 N	ARG LYS	207 208	110.458 102.551	73.437 75.594	94.135	0.00	0.00	н
ATOM	2603	CA	LYS	208	101.367	75.800	99.257 100.154	0.00	0.00	N C
ATOM	2604	Ċ	LYS	208	100.318	76.879	99.671	0.00	0.00	C
ATOM	2,605	0	LYS	208	99.196	76.904	100.180	0.00	0.00	0

WO 2005/047526 PCT/GB2004/004762

						100				
NEOW.	2606	CD	TVC	200	102 002	108	101 541	0.00	0.00	С
MOTA MOTA	2606 2607		LYS LYS	208 208	102.023 101.078		101.541	0.00	0.00	č
ATOM	2608		LYS	208	101.870		104.081	0.00	0.00	С
ATOM	2609		LYS	208	101.036		105.304	0.00	0.00	C
ATOM	2610		LYS	208	101.838		106.527	0.00	0.00	N
MOTA	2611 2612		LYS	208	101.282 102.106		107.351	1.00	0.00	H H
MOTA MOTA	2613		LYS	208 208	102.106		106.482	1.00	0.00	н
ATOM	2614	н	LYS	208	103.435	76.102	99.387	0.00	0.00	н
MOTA	2615	HA	LYS	208	100.792		100.241	0.00	0.00	H
ATOM	2616		LYS	208	102.739		101.756	0.00	0.00	н
ATOM	2617 2618		LYS LYS	208 208	102.644 100.505		101.497	0.00	0.00	H
ATOM ATOM		2HG	LYS	208	100.303		102.740	0.00	0.00	н
ATOM	2620		LYS	208	102.260		104.211	0.00	0.00	H
ATOM		SHD	LYS	208	102.765		104.020	0.00	0.00	H
MOTA		1HE	LYS	208	100.722		105.221	0.00	0.00	н
ATOM ATOM	2623 2624	N SHE	LYS	208 209	100.104 100.659	77.740	98.691	0.00	0.00	н
ATOM	2625		LYS	209	99.705	78.666	97.997	0.00	0.00	c
ATOM	2626	C	LYS	209	99.374	78.284	96.498	0.00	0.00	C
MOTA	2627	0	LYS	209	98.226	78.420	96.065	0.00	0.00	0
MOTA	2628	CB	LYS	209	100.265	80.104	98.203	0.00	0.00	C
ATOM ATOM	2629 2630	CD CD	LYS	209 209	99.332 99.630	81.261 81.806	97.765 96.350	0.00	0.00	C
ATOM	2631	CE	LYS	209	98.518	82.713	95.793	0.00	0.00	č
ATOM	2632	NZ	LYS	209	97.422	81.903	95.221	0.00	0.00	N
ATOM	2633		LYS	209	96.689	82.527	94.854	1.00	0.00	H
ATOM	2634		LYS	209 209	97.789 97.023	81.319 81.299	94.457 95.954	1.00	0.00	H H
ATOM ATOM	2635 2636	3HZ H	LYS	209	101.624	77.598	98.384	0.00	0.00	н
ATOM	2637	HA	LYS	209	98.723	78.635	98.513	0.00	0.00	н
MOTA	2638		LYS	209	100.457	80.245	99.286	0.00	0.00	н
ATOM	2639		LYS	209	101.263	80.211	97.735	0.00	0.00	Н
ATOM ATOM	2640 2641		LYS LYS	209 209	98.273 99.430	80.948 82.095	97.853 98.485	0.00	0.00	H H
MOTA	2642		LYS	209	100.572	82.388	96.396	0.00	0.00	н
MOTA	2643		LYS	209	99.846	80.986	95.638	0.00	0.00	н
ATOM	2644		LYS	209	98.125	83.390	96.578	0.00	0.00	H
ATOM ATOM	2645 2646	2HE N	LYS THR	209 210	98.924 100.341	83.383 77.767	95.009 95.710	0.00	0.00	H N
ATOM	2647	CA	THR	210	100.077	76.742	94.640	0.00	0.00	c
ATOM	2648	C	THR	210	99.851	77.267	93.177	0.00	0.00	С
ATOM	2649	0	THR	210	100.677	76.956	92.318	0.00	0.00	0
ATOM	2650 2651	CB	THR THR	210 210	99.149 99.601	75.559 75.041	95.084 96.330	0.00	0.00	C 0
MOTA MOTA	2652	CG2	THR	210	99.114	74.344	94.145	0.00	0.00	č
ATOM	2653	н	THR	210	101.215	77.717	96.237	0.00	0.00	H
MOTA	2654	HA	THR	210	101.060	76.239	94.553	0.00	0.00	н
MOTA	2655	HB	THR	210	98.116	75.943	95.207	0.00	0.00	H H
MOTA MOTA	2656 2657	1HG2	THR	210 210	99.191 98.450	74.178 73.553	96.440 94.537	0.00	0.00	н
MOTA	2658			210	98.737	74.606	93.138	0.00	0.00	н
ATOM	2659	3HG2			100.117	73.895	94.010	0.00	0.00	Н
ATOM	2660	N	LEU	211	98.760	77.989	92.859	0.00	0.00	N C
MOTA MOTA	2661 2662	CA C	LEU	211 211	98.390 98.152	78.383 79.921	91.462 91.268	0.00	0.00	c
ATOM	2663	ŏ	LEU	211	97.299	80.524	91.926	0.00	0.00	ō
MOTA	2664	CB	LEU	211	97, 152	77.525	91.055	0.00	0.00	C
ATOM	2665	CG	LEU	211	96.653	77.648	89.589	0.00	0.00	C
MOTA MOTA	2666 2667		TEA TEA	211 211	97.684 95.344	77.137 76.862	88.570 89.403	0.00	0.00	c
ATOM	2668	H	LEU	211	98.174	78.215	93.673	1.00	0.00	H
ATOM	2669	HA	LEU	211	99.205	78.082	90.775	0.00	0.00	H
MOTA	2670		LEU	211	96.317	77.777	91.739	0.00	0.00	. н
ATOM	2671		LEU	211	97.367	76.457	91.258	0.00	0.00	H H
ATOM ATOM	2672 2673	HG 1HD1	LEU	211 211	96.437 97.305	78.714 77.209	89.370 87.538	0.00	0.00	H
ATOM		2HD1		211	98.623	77.717	88.593	0.00	0.00	н
ATOM	2675	3HD1	LEU	211	97.946	76.077	88.745	0.00	0.00	н
ATOM		1HD2		211	94.944	76.959	88.377	0.00	0.00	н
ATOM		2HD2		211	95.475 94 551	75.781 77.222	89.600 90.084	0.00	0.00	H H
ATOM	20/8	3HD2	пво	211	94.551	11.266	30.004	0.00	0.00	n

						4.00				
						109				
MOTA MOTA	2679 2680	N CA	CYS		98.844 98.480	80.530	90.287	0.00	0.00	N
MOTA	2681	C	CYS		98.450	81.859 82.007	89.721 88.209	0.00	0.00	C
ATOM	2682	ŏ	CYS	212	99.672	81.234	87.662	0.00	0.00	0
ATOM	2683	CB	CYS		99.121	82.952	90.615	0.00	0.00	Č
ATOM	2684	SG	CYS	212	100.943	82.953	90.479	0.00	0.00	s
ATOM	2685	H	CYS	212	99.566	79.952	89.843	0.00	0.00	н
MOTA	2686	HA	CYS	212	97.378	81.976	89.772	0.00	0.00	H
ATOM ATOM	2687 2688		CYS	212	98.834	82.823	91.677	0.00	0.00	H
ATOM	2689	HG	CYS	212 212	98.750 101.154	83.954 81.796	90.330 91.094	0.00	0.00	н
ATOM	2690	N	GLY		98.337	83.037	87.535	0.00	0.00	H N
MOTA	2691	CA	GLY		98.800	83.453	86.181	0.00	0.00	č
ATOM	2692	C'	GLY		97.663	83.738	85.183	0.00	0.00	c
ATOM	2693	0	GLY		96.866	84.657	85.383	0.00	0.00	0
ATOM ATOM	2694 2695	H	GLY		97.707 99.534	83.619 82.740	88.099	0.00	0.00	H
ATOM	2696		GLY		99.374	84.392	85.752 86.282	0.00	0.00	. H
ATOM	2697	N	THR		97.627	82.972	84.088	0.00	0.00	n N
ATOM	2698	CA	THR	214	96.718	83.237	82.933	0.00	0.00	Ċ
ATOM	2699	C	THR		96.128	81.867	82.441	0.00	0.00	С
MOTA	2700	0	THR		96.917	81.060	81.936	0.00	0.00	0
ATOM ATOM	2701 2702	CB OG1	THR		97.505 97.923	83.999 85.263	81.819	0.00	0.00	C
ATOM	2703	CG2			96.715	84.308	82.313 80.537	0.00	0.00	o c
MOTA	2704	н	THR		98.341	82.239	84.062	0.00	0.00	н
MOTA	2705	HA	THR	214	95.895	83.909	83.235	0.00	0.00	н
ATOM	2706	HB	THR	214	98.407	83.413	81.557	0.00	0.00	H
ATOM ATOM	2707 2708	HG1 1HG2		214 214	98.390	85.696 84.855	81.594	0.00	0.00	H
ATOM	2709	2HG2		214	97.329 96.367	83.386	79.799 80.036	0.00	0.00	H H
ATOM	2710	3HG2		214	95.823	84.928	80.747	0.00	0.00	H
ATOM	2711	N	PRO	215	94.799	81.546	82.525	0.00	0.00	N
ATOM	2712	CA	PRO	215	94.254	80.205	82.148	0.00	0.00	С
MOTA MOTA	2713 2714	CD C	PRO PRO	215 215	93.794	82.405	83.185	0.00	0.00	C
ATOM	2715	o	PRO	215	94.668 94.961	79.504 78.311	80.814 80.835	0.00	0.00	C 0
ATOM	2716	CB	PRO	215	92.735	80.418	82.290	0.00	0.00	č
ATOM	2717	CG	PRO	215	92.599	81.474	83.388	0.00	0.00	С
ATOM	2718	HA	PRO	215	. 94.580	79.510	82.945	0.00	0.00	н
ATOM ATOM	2719 2720	1HD 2HD	PRO PRO	215 215	93.527 94.140	83.261 82.814	82.535 84.156	0.00	0.00	H H
ATOM	2721	1HB	PRO	215	92.203	79.478	82.536	0.00	0.00	н
ATOM	2722	2HB	PRO	215	92.296	80.791	81.344	0.00	0.00	н
ATOM	2723		PRO	215	92.652	80.997	84.386	0.00	0.00	H
ATOM ATOM	2724 2725	2HG N	PRO ASN	215 216	91.637	82.017 80.230	83.344	0.00	0.00	н
ATOM	2726	CA	ASN	216	94.745 95.298	79.690	79.689 78.401	1.00	0.00	N C
ATOM	2727	C	ASN	216	96.866	79.462	78.324	1.00	0.00	c
ATOM	2728	0	asn	216	97.340	78.817	77.387	1.00	0.00	ō
ATOM	2729	CB	ASN	216	94.840	80.631	77.244	1.00	0.00	C
ATOM ATOM	2730 2731	CG OD1	asn asn	216 216	93.338 92.446	80.908 80.174	77.057 77.461	1.00	0.00	C
ATOM	2732		ASN	216	92.998	82.007	76.437	1.00	0.00	o N
ATOM	2733	H	ASN	216	94.425	81.195	79.805	1.00	0.00	. н
ATOM	2734	HA	asn	216	94.848	78.695	78.209	1.00	0.00	H
ATOM	2735		ASN	216	95.381	81.591	77.334	1.00	0.00	H
ATOM ATOM	2736	1HD2	ASN	216 216	95.186 91.991	80.193 82.076	76.288 76.264	1.00	0.00	н
ATOM		2HD2		216	93.751	82.524	75.978	1.00	0.00	H H
ATOM	2739	N	TYR	217	97.665	80.015	79.256	0.00	0.00	N
MOTA	2740	CA	TYR	217	99.167	79.977	79.236	0.00	0.00	C
ATOM	2741	C	TYR	217	99.882	79.104	80.338	0.00	0.00	C
ATOM ATOM	2742 2743	O CB	TYR TYR	217 217	101.110 99.650	78.969 81.465	80.279 79.294	0.00	0.00	0
ATOM	2744	CG	TYR	217	99.775	82.174	79.294	0.00	0.00	C
ATOM	2745		TYR	217	101.042	82.420	77.396	0.00	0.00	c
ATOM	2746	CE1		217	101.172	82.951	76.118	0.00	0.00	C
ATOM	2747	CZ	TYR	217	100.038	83.236	75.364	0.00	0.00	C
ATOM ATOM	2748 2749	OH CE2	TYR	217 217	100.171 98.772	83.611 83.046	74.059 75.907	0.00	0.00	0
ATOM	2750	CD2		217	98.639	82.526	75.907	0.00	0.00	C
ATOM	2751	н	TYR	217	97.212	80.500	80.044	1.00	0.00	н

						110				
D.TTOM	2752	на	TYR	217	99.528	110 79.534	78.286	0.00	0.00	н
ATOM ATOM			TYR	217	100.632	81.524	79.806	0.00	0.00	н
MOTA			TYR	217	99.005	82.062	79.960	0.00	0.00	н
MOTA	2755		TYR	217	101.934	82.173	77.953	0.00	0.00	Н
MOTA	2756		TYR	217	102.158	83.101	75.707 73.772	0.00	0.00	H H
MOTA MOTA	2757 2758	HH HE2	TYR	217 217	101.054 97.896	83.350 83.266	75.315	0.00	0.00	н
MOTA	2759		TYR	217	97.654	82.353	77.596	0.00	0.00	н
MOTA	2760	N	ILE	218	99.176	78.544	81.339	1.00	0.00	N
MOTA	2761	CA	ILE	218	99.789	77.778	82.473	1.00	0.00	C
MOTA	2762	0	ILE	218 218	100.234 99.593	76.315 75.634	82.106 81.302	1.00	0.00	O C
MOTA MOTA	2763 2764	СВ	ILE	218	98.852	77.782	83.741	1.00	0.00	Č
ATOM	2765	CG1		218	97.441	77.159	83.512	1.00	0.00	С
MOTA	2766		ILE	218	98.755	79.177	84.408	1.00	0.00	c
ATOM	2767	CD1		218 218	96.717 98.162	76.713 78.681	84.792 81.261	1.00	0.00	C H
MOTA MOTA	2768 2769	H HA	ILE	218	100.713	78.317	82.768	1.00	0.00	н
MOTA	2770	НВ	ILE	218	99.357	77.140	84.489	1.00	0.00	н
MOTA		1HG1		218	96.797	77.850	82.931	1.00	0.00	н
MOTA	2772	2HG1		218	97.535	76.264	82.866 84.631	1.00	0.00	H H
ATOM ATOM	2773 2774	2HG2 3HG2		218 218	99.752 98.227	79.601 79.903	83.765	1.00 1.00	0.00	н
ATOM		1HG2		218	98.211	79.141	85.371	1.00	0.00	н
MOTA	2776	2HD1	ILE	218	97.360	76.074	85.427	1.00	0.00	H
MOTA		3HD1		218	96.388	77.571	85.404	1.00	0.00	H H
ATOM	2778 27 7 9	1HD1 N	ALA	218 219	95.818 101.320	76.116 75.825	84.556 82.731	1.00	0.00	n
MOTA MOTA	2780	CA	ALA	219	101.841	74.455	82.485	0.00	0.00	Ċ
ATOM	2781	C	ALA	219	101.206	73.307	83.368	0.00	0.00	C
MOTA	2782	0	ALA	219	100.817	73.579	84.511	0.00	0.00	0
MOTA	2783	CB H	ALA ALA	219 219	103.364 101.770	74.552 76.471	82.711 83.382	0.00	0.00	C H
MOTA MOTA	2784 2785	HA	ALA	219	101.770	74.215	81.416	0.00	0.00	H
ATOM	2786	1HB	ALA	219	103.872	73.623	82.397	0.00	0.00	H
MOTA	2787		ALA	219	103.825	75.369	82.126	0.00	0.00	Н
MOTA	2788	3HB	ALA PRO	219 220	103.616 101.158	74.720 72.005	83.775 82.943	0.00	0.00	H N
MOTA MOTA	2789 2790	N CA	PRO	220	100.659	70.877	83.791	0.00	0.00	c
ATOM	2791	CD	PRO	220	101.394	71.597	81.543	0.00	0.00	C
MOTA	2792	C	PRO	220	101.187	70.651	85.247	0.00	0.00	C 0
MOTA MOTA	2793 2794	O CB	PRO	220 220	100.407 100.904	70.199 69.656	86.082 82.883	0.00	0.00	c
MOTA	2795	CG	PRO	220	100.785	70.200	81.462	0.00	0.00	c
ATOM	2796	HA	PRO	220	99.562	71.009	83.886	0.00	0.00	н
MOTA	2797		PRO	220	102.476	71.581	81.306	0.00	0.00	H H
MOTA MOTA	2798 2799	2HD	PRO PRO	220 220	100.898 100.186	72.264 68.836	80.814 83.080	0.00	0.00	н
ATOM	2800		PRO	220	101.916	69.231	83.038	0.00	0.00	н
ATOM	2801	1HG	PRO	220	99.721	70.265	81.158	0.00	0.00	н
MOTA	2802		PRO	220	101.288	69.563	80.711 85.580	0.00	0.00	H N
MOTA MOTA	2803 2804	N CA	GLU	221 221	102.455 102.945	70.966 70.910	86.995	0.00	0.00	c
ATOM	2805		GLU	221	102.260	71.890	88.015	0.00	0.00	С
MOTA	2806	0	GLU	221	101.936	71.471	89.129	0.00	0.00	0
ATOM	2807		GLU	221	104.487 105.359	71.081 69.952	87.071 86.464	0.00	0.00	C
MOTA MOTA	2808 2809	CD	GLU	221 221	106.798	70.025	86.972	0.00	0.00	č
ATOM	2810		GLU	221	107.633	70.826	86.560	0.00	0.00	0
ATOM	2811		GLU		107.020	69.153	87.992	0.00	0.00	0
MOTA	2812		GLU	221 221	102.987 102.712	71.365 69.898	84.803 87.380	0.00	0.00	H H
MOTA MOTA	2813 2814	HA 1HB	GLU GLU		104.749	71.155	88.147	0.00	0.00	н
ATOM		2HB	GLU		104.783	72.059	86.645	0.00	0.00	H
ATOM	2816	1HG	GLU	221	105.363	70.002	85.361	0.00	0.00	н
MOTA		2HG	GLU		104.941	68.959	86.717 87.658	0.00	0.00	H N
MOTA MOTA	2818 2819		VAL VAL		102.046 101.206	73.170 74.108	88.480	1.00	0.00	C
ATOM	2820		VAL		99.684	73.725	88.570	1.00	0.00	. C
MOTA	2821	0	VAL	222	99.093	73.815	89.649	1.00	0.00	0
ATOM	2822		VAL		101.425	75.616	88.090	1.00	0.00	c
MOTA MOTA	2823 2824		VAL VAL		102.863 101.043	76.109 76.020	88.353 86.649	1.00	0.00	c
							-			

						111				
ATOM	2825	н	VAL	222	102.203	111 73.339	86.661	1.00	0.00	н
MOTA	2826	HA	VAL	222	101.561	74.024	89.528	1.00	0.00	H
ATOM	2827	HB	VAL	222	100.774	76.205	88.767	1.00	0.00	н
ATOM	2828	1HG1	VAL	222	103.609	75.553	87.759	1.00	0.00	н
MOTA		2HG1		222	102.997	77.183	88.122	1.00	0.00	н
ATOM		3HG1		222	103.135	75.982	89.416	1.00	0.00	н
MOTA		2HG2		222	100.005	75.734	86.400	1.00	0.00	н
ATOM		3HG2 1HG2		222	101.111	77.114	86.497	1.00	0.00	H
MOTA MOTA	2834	N N	LEU	222 223	101.699 99.058	75.546 73.284	85.896 87.463	1.00	0.00	H N
ATOM	2835	CA	LEU	223	97.660	72.767	87.463	1.00	0.00	C
MOTA	2836	C	LEU	223	97.419	71.428	88.252	1.00	0.00	ä
MOTA	2837	0	LEU	223	96.535	71.382	89.110	1.00	0.00	0
ATOM	2838	CB	LEU	223	97.223	72.719	85.970	1.00	0.00	C
ATOM	2839	CG	LEU	223	95.765	72.282	85.690	1.00	0.00	C
ATOM ATOM	2840 2841	CD1	LEU	223 223	94.728 95.530	73.218 72.202	86.333	1.00	0.00	C
ATOM	2842	H H	LEU	223	99.671	73.215	84.175 86.643	1.00	0.00	C H
ATOM	2843	HA	LEU	223	97.031	73.525	87.968	1.00	0.00	н
ATOM	2844		LEU	223	97.391	73.708	85.502	1.00	0.00	н
MOTA	2845	2HB	LEU	223	97.903	72.033	85.428	1.00	0.00	н
ATOM	2846	HG	LEU	223	95.616	71.263	86.104	1.00	0.00	н
MOTA		2HD1		223	94.851	73.284	87.429	1.00	0.00	H
ATOM ATOM		3HD1 1HD1		223 223	94.782 93.699	74.249 72.854	85.935 86.179	1.00	0.00	H
ATOM		2HD2		223	95.604	73.188	83.680	1.00	0.00	H H
ATOM		3HD2		223	96.256	71.532	83.677	1.00	0.00	н
ATOM	2852	1HD2	LEU	223	94.532	71.792	83.951	1.00	0.00	Н
ATOM	2853	N	SER	224	98.187	70.356	87.989	1.00	0.00	N
ATOM	2854	CA	SER	224	98.075	69.064	88.736	1.00	0.00	C
ATOM ATOM	2855 2856	c o	SER SER	224 224	98.658 98.658	68.999 67.921	90.199 90.799	1.00	0.00	C
ATOM	2857	СВ	SER	224	98.741	67.985	87.840	1.00	0.00	0
ATOM	2858	OG	SER	224	98.135	67.870	86.550	1.00	0.00	ō
MOTA	2859	H	SER	224	98.879	70.476	87.238	1.00	0.00	н
ATOM	2860	HA	SER	224	97.005	68.795	88.832	1.00	0.00	н
MOTA	2861		SER	224	99.820	68.204	87.720	1.00	0.00	н
ATOM ATOM	2862 2863	2HB HG	SER	224 224	98.702 97.378	66.998 67.267	88.340	1.00	0.00	H
ATOM	2864	N	LYS	225	99.135	70.118	86.625 90.782	1.00	0.00	H N
ATOM	2865	CA	LYS	225	99.694	70.188	92.172	1.00	0.00	Č
ATOM	2866	С	LYS	225	101.005	69.347	92.400	1.00	0.00	C
ATOM	2867	0	LYS	225	101.078	68.465	93.259	1.00	0.00	0
ATOM	2868	CB	LYS	225	98.586	69.988	93.255	1.00	0.00	C
ATOM ATOM	2869 2870	CG CD	LYS	225 225	97.368 96.400	70.940 70.792	93.162 94.350	1.00	0.00	C
ATOM	2871	CE	LYS	225	95.179	71.713	94.203	1.00	0.00	c
ATOM	2872	NZ	LYS	225	94.285	71.539	95.364	1.00	0.00	N
MOTA	2873		LYS	225	93.467	72.156	95.264	1.00	0.00	Н
ATOM	2874		LYS	225	93.970	70.559	95.412	1.00	0.00	Н
MOTA MOTA	2875 2876	3HZ H	LYS	225 225	94.792 98.995	71.779	96.228	1.00	0.00	H
ATOM	2877	HA	LYS	225	100.027	70.950 71.236	90.199 92.303	1.00	0.00	H H
ATOM	2878		LYS	225	98.236	68.938	93.219	1.00	0.00	н
ATOM	2879		LYS	225	99.054	70.093	94.253	1.00	0.00	н
ATOM	2880		LYS	225	97.711	71.987	93.077	1.00	0.00	н
ATOM	2881		LYS	225	96.824	70.743	92.216	1.00	0.00	H
ATOM ATOM	2882 2883		LYS	225 225	96.066 96.934	69.738 71.007	94.425	1.00	0.00	н
ATOM	2884		LYS	225	95.494	72.772	95.295 94.114	1.00	0.00	H H
ATOM	2885		LYS	225	94.630	71.476	93.268	1.00	0.00	н
ATOM	2886	N	LYS	226	102.052	69.648	91.613	0.00	0.00	N
MOTA	2887	CA	LYS	226	103.328	68.872	91.587	0.00	0.00	С
ATOM	2888	C	LYS	226	104.564	69.752	92.003	0.00	0.00	C
ATOM	2889	0	LYS	226	104.453	70.949	92.291	0.00	0.00	0
ATOM ATOM	2890 2891	CB CG	LYS	226 226	103.451 102.481	68.283 67.124	90.144 89.805	0.00	0.00	C
ATOM	2892	CD	LYS	226	102.522	66.736	88.315	0.00	0.00	c
ATOM	2893	CE	LYS	226	101.637	65.515	88.023	0.00	0.00	c
MOTA	2894	NZ	LYS	226	101.527	65.311	86.566	0.00	0.00	N
ATOM	2895		LYS	226	100.932	64.491	86.378	1.00	0.00	н
ATOM	2896		LYS	226	101.107	66.146	86.133	1.00	0.00	н
MOTA	2897	382	LYS	226	102.464	65.153	86.169	1.00	0.00	н

MOTA	2898	H	LYS	226	101.835	70.349	90.892	0.00	0.00	H
MOTA	2899	HA	LYS	226	103.295	68.031	92.309	0.00	0.00	H
ATOM	2900		LYS	226	104.478	67.911	89.973	0.00	0.00	H
MOTA		2HB	LYS	226	103.337	69.102	89.410	0.00	0.00	H
ATOM	2902		LYS	226	101.442	67.407	90.074	0.00	0.00	H
ATOM	2903		LYS	226	102.712	66.247	90.442	0.00	0.00	н
ATOM	2904		LYS	226	103.564	66.527	88.001	0.00	0.00	н
	2905		LYS	226	102.191	67.603	87.712	0.00	0.00	H
ATOM				226	100.625	65.645	88.456	0.00	0.00	н
MOTA	2906		LYS		102.050	64.607	88.504	0.00	0.00	н
MOTA	2907		LYS	226		69.164	92.013	0.00	0.00	N
ATOM	2908	N	GLY	227	105.779			0.00	0.00	Ĉ
MOTA	2909	CA	GLY	227	107.043	69.942	92.196			c
MOTA	2910	C	GLY	227	107.474	70.781	90.969	0.00	0.00	
ATOM	2911	0	GLY	227	108.252	70.317	90.129	0.00	0.00	0
MOTA	2912	H	GLY	227	105.763	68.170	91.767	0.00	0.00	H
MOTA	2913		GLY	227	107.867	69.245	92.430	0.00	0.00	H
MOTA	2914		GLY	227	106.975	70.593	93.090	0.00	0.00	H
MOTA	2915	N	HIS	228	106.938	72.001	90.862	1.00	0.00	N
MOTA	2916	CA	HIS	228	107.134	72.882	89.682	1.00	0.00	C
MOTA	2917	C	HIS	228	108.488	73.673	89.671	1.00	0.00	C
MOTA	2918	0	HIS	228	109.095	73.931	90.713	1.00	0.00	0
MOTA	2919	CB	HIS	228	105.849	73.745	89.522	1.00	0.00	C
MOTA	2920	CG	HIS	228	105.638	74.923	90.476	1.00	0.00	C
MOTA	2921	ND1	HIS	228	104.839	74.852	91.605	1.00	0.00	N
MOTA	2922	CE1	HIS	228	104.822	76.176	91.952	1.00	0.00	C
ATOM	2923	NE2	HIS	228	105.504	77.090	91.195	1.00	0.00	N
MOTA	2924	CD2	HIS	228	106.028	76.252	90.228	1.00	0.00	c
ATOM	2925	H	HIS	228	106.269	72.229	91.611	1.00	0.00	н
MOTA	2926	HA	HIS	228	107.156	72.227	88.789	1.00	0.00	H
MOTA	2927		HIS	228	105.814	74.126	88.490	1.00	0.00	н
MOTA	2928		HIS	228	104.952	73.095	89.578	1.00	0.00	H
ATOM	2929		HIS	228	104.223	76.496	92.796	1.00	0.00	н
ATOM	2930		HIS	228	105.433	78.113	91.204	1.00	0.00	H
ATOM	2931		HIS	228	106.583	76.576	89.357	1.00	0.00	H
ATOM	2932		SER	229	108.982	74.034	88.477	1.00	0.00	N
ATOM	2933		SER	229	110.344	74.627	88.307	1.00	0.00	C
ATOM	2934		SER	229	110.413	75.767	87.228	1.00	0.00	С
ATOM	2935		SER	229	109.414	76.160	86.618	1.00	0.00	0
ATOM	2936		SER	229	111.307	73.436	88.019	1.00	0.00	С
ATOM	2937		SER	229	111.082	72.858	86.728	1.00	0.00	0
ATOM	2938		SER	229	108.401	73.777	87.675	1.00	0.00	н
ATOM	2939		SER	229	110.667	75.107	89.254	1.00	0.00	н
ATOM	2940		SER	229	112.359	73.774	88.078	1.00	0.00	H
MOTA		2HB	SER	229	111.226	72.659	88.807	1.00	0.00	H
ATOM	2942		SER	229	110.404	72.178	86.829	1.00	0.00	н
	2943		PHE	230	111.629	76.267	86.950	1.00	0.00	N
ATOM ATOM	2944		PHE	230	111.937	77.099	85.741	1.00	0.00	C
			PHE	230	111.471	76.593	84.316	1.00	0.00	C
ATOM	2945		PHE	230	111.222	77.406	83.423	1.00	0.00	ō
MOTA	2946		PHE	230	113.452	77.459	85.816	1.00	0.00	c
ATOM	2947				114.486	76.333	85.620	1.00	0.00	Ċ
MOTA	2948		PHE	230	114.974	76.051	84.343	1.00	0.00	č
MOTA	2949		PHE	230					0.00	č
MOTA	2950		PHE	230	115.897 116.347	75.025 74.284	84.148 85.237	1.00	0.00	٠. و
MOTA	2951		PHE	230	115.881	74.568	86.518	1.00	0.00	c
MOTA	2952		PHE	230		75.593	86.710	1.00	0.00	č
MOTA	2953		PHE	230	114.956 112.386		87.479	1.00	0.00	н
MOTA	2954		PHE	230		75.821		1.00	0.00	н
MOTA	2955		PHE	230	111.391	78.053	85.871			н
MOTA		1HB	PHE	230	113.651	78.247	85.071	1.00	0.00	н
ATOM	295		PHE	230	113.669	77.979	86.769	1.00		н
MOTA	2958		PHE	230	114.632	76.633	83.501	1.00	0.00	
MOTA	2959		PHE	230	116.265	74.805	83.156	1.00	0.00	H
ATOM	2960		PHE	230	117.066	73.490	85.087	1.00	0.00	н
ATOM	296		PHE	230	116.243	73.999	87.361	1.00	0.00	н
ATOM	2963		PHE	230	114.613	75.812	87.710	1.00	0.00	н
MOTA	2963		GLU		111.292	75.272	84.131	1.00	0.00	N
MOTA	2964	4 CA	GLU		110.562	74.677	82.969	1.00	0.00	c
ATOM	296	5 C	GLU	231	109.060	75.098	82.737	1.00	0.00	C
ATOM	2966		GLU		108.584	75.005	81.604	1.00	0.00	0
ATOM	296	7 CB	GLU		110.656	73.133	83.100	1.00	0.00	C
ATOM	2968	B CG	GLU	231	112.078	72.518	83.008	1.00	0.00	c
ATOM	296	9 CD	GLU		112.065	70.999	82.925	1.00	0.00	C
ATOM	297		GLU	231	112.137	70.254	83.897	1.00	0.00	0

				440			
ATOM	2971 OE2 GL	U 231	333 027	113		_	
ATOM		-	111.937 111.571	70.573			.00
ATOM			111.097	74.703 74.967			.00 H
ATOM		J 231	110.167	72.799			• •
ATOM			110.045	72.676		_	.00 н
ATOM			112.608	72.908			.00 H
ATOM ATOM			112.696	72.813	83.876		.00 н
ATOM			108.315	75.563			.00 N
ATOM			106.975	76.233			.00 C
ATOM			106.973	77.440			.00 C
ATOM			106.066 106.397	77.540 76.618			.00
ATOM			105.069	77.417			.00 C
ATOM	2984 CG2 VAI	232	106.142	75.406			.00 C
ATOM	2985 H VAI		108.833	75.616		_	.00 H
ATOM	2986 HA VAL		106.286	75.487			.00 H
MOTA MOTA	2987 HB VAL 2988 1HG1 VAL		107.150	77.263	85.501	_	.00 H
ATOM	2989 2HG1 VAL		104.717	77.675			.00 H
ATOM	2990 3HG1 VAL		105.171 104.250	78.380			.00 H
ATOM	2991 1HG2 VAL	232	105.825	76.866 75.734			.00 н
ATOM	2992 2HG2 VAL		105.361	74.727			00 H
ATOM	2993 3HG2 VAL	232	107.054	74.800			00 H
ATOM	2994 N ASP		107.988	78.323			00 N
ATOM ATOM	2995 CA ASP		108.152	79.450			00 C
ATOM	2996 C ASP 2997 O ASP		108.270	79.073	80.140	0.00 0.	_
ATOM	2998 CB ASP		107.709	79.791			00 0
ATOM	2999 CG ASP		109.365 109.178	80.306 81.054			00 C
MOTA	3000 OD1 ASP	233	108.462	82.039			00 C
ATOM	3001 OD2 ASP	233	109.888	80.506			00 00
ATOM	3002 H ASP	233	108.728	78.048			00 H
ATOM ATOM	3003 HA ASP	233	107.242	80.084			00 H
ATOM	3004 1HB ASP 3005 2HB ASP	233	109.579	81.077		0.00 0.	
ATOM	3005 2HB ASP	233 234	110.280	79.686		0.00 0.	
ATOM	3007 CA VAL	234	108.966 109.051	77.984 77.551		.00 0.	
ATOM	3008 C VAL	234	107.716	77.024		00 0.	
ATOM	3009 O VAL	234	107.491	77.285		.00 0.	
ATOM	3010 CB VAL	234	110.287	76.640		.00 0.	-
ATOM ATOM	3011 CG1 VAL 3012 CG2 VAL	234	111.637	77.212		.00 0.0	_
ATOM	3012 CG2 VAL	234 234	110.179	75.177		.00 0.0	
ATOM	3014 HA VAL	234	109.295 109.256	77.390 78.472		.00 0.0	
ATOM	3015 HB VAL	234	110.352	76.595		.00 0.0	
ATOM	3016 1HG1 VAL	234		78.217		.00 0.0	
ATOM	3017 2HG1 VAL	234	111.679	77.294		.00 0.0	
ATOM ATOM	3018 3HG1 VAL 3019 2HG2 VAL	234		76.569		.00 0.0	
ATOM	3020 3HG2 VAL	234 234		74.691		.00 0.0	
ATOM	3021 1HG2 VAL	234		74.567 75.080		.00 0.0	_
ATOM	3022 N TRP	235		76.370		.00 0.0 .00 0.0	_
ATOM	3023 CA TRP	235		76.190		.00 0.0 .00 0.0	
ATOM	3024 C TRP	235	104.631	77.524		.00 0.0	
ATOM ATOM	3025 O TRP 3026 CB TRP	235		77.605	76.537 0.	0.0	_
ATOM	3026 CB TRP 3027 CG TRP	235 235		75.370		0.0	
ATOM	3028 CD1 TRP	235		74.907		0.0	0 с
ATOM	3029 NE1 TRP	235		75.732 75.016		00 0.0	
ATOM	3030 CE2 TRP	235				00 0.0	_
ATOM	3031 CD2 TRP	235				00 0.0	_
ATOM	3032 CE3 TRP	235	103.427			00 0.0	
MOTA MOTA	3033 CZ3 TRP	235	102.666	71.256	78.137 0.	00 0.0	_
ATOM	3034 CH2 TRP 3035 CZ2 TRP	235				00 0.0	o c
ATOM	3036 H TRP	235 235				00 0.00) c
ATOM	3037 HA TRP	235				00 0.00	
MOTA	3038 1HB TRP	235			77.096 O. 80.068 O.		
ATOM	3039 2HB TRP	235			79.371 0.		
ATOM	3040 HD1 TRP	235	102.100 7		79.085 0.		
ATOM ATOM	3041 HE1 TRP	235		5.330	78.617 0.		
ATOM	3042 HE3 TRP 3043 HZ3 TRP	235			78.604 0.0	00 0.00	
	nes irr	235	103.151 7	0.298	78.052 0.0	00 0.00	

ATOM

MOTA

ATOM

3114

3115

3116

CA

C

0

MET

MET

MET

241

241

241

104.976

103.699

103.509

81.681

81.313

81.859

69.418

68.578

67.490

1.00

1.00

1.00

0.00

0.00

0.00

C

C

ATON	4 3117 CB ME	T 241	115 106.015 80.527 69.488 1.00 0.00	
ATOM	1 3118 CG ME		106 567	C
ATOM			106.567 80.031 68.129 1.00 0.00 107.621 78.555 68.239 1.00 0.00	C S
ATOM ATOM			108.499 78.673 69.810 1.00 0.00	C
ATOM		_	105.091 81.530 71.626 1.00 0.00	н
ATOM			105.453 82.535 68.899 1.00 0.00	H
ATOM			106.874 80.850 70.110 1.00 0.00 105.577 79.664 70.029 1.00 0.00	H
ATOM	3125 1HG ME		105 735 70 757	Н
ATOM			107.116 80.834 67.606 1.00 0.00	н
ATOM ATOM			109.111 79.588 69.866 1.00 0.00	H H
ATOM			107.793 78.671 70.659 1.00 0.00	н
ATOM			109.169 77.807 69.936 1.00 0.00 102.832 80.420 69.086 0.00 0.00	H
ATOM	3131 CA TY		101 524 80 005 50	N
ATOM		242	101.524 80.095 68.447 0.00 0.00 100.518 81.301 68.359 0.00 0.00	C
MOTA MOTA			100.074 81.616 67.254 0.00 0.00	С 0
MOTA			100.977 78.843 69.192 0.00 0.00	č
ATOM			99.848 78.067 68.487 0.00 0.00 98.549 78.587 68.430 0.00 0.00	C
ATOM			97 505 77 001	С
ATOM			97 747 76 505	C
ATOM	3139 OH TYR		96.709 75.742 67.055 0.00 0.00	C 0
ATOM ATOM	3140 CE2 TYR 3141 CD2 TYR		99.037 76.005 67.506 0.00 0.00	Ċ
ATOM	3141 CD2 TYR 3142 H TYR		100.086 76.773 68.008 0.00 0.00	č
MOTA	3143 HA TYR		103.082 79.937 69.961 1.00 0.00 101.733 79.791 67.401 0.00 0.00	H
MOTA	3144 1HB TYR		100 640 70 775	н
ATOM	3145 2HB TYR		101.809 78.139 69.399 0.00 0.00	H H
MOTA MOTA	3146 HD1 TYR 3147 HE1 TYR		98.325 79.574 68.813 0.00 0.00	н
ATOM	3148 HH TYR	_	96.504 78.227 67.911 0.00 0.00	H
ATOM	3149 HE2 TYR		95.880 76.166 67.285 0.00 0.00 99.213 74.992 67.173 0.00 0.00	н
ATOM	3150 HD2 TYR	242	101.076 76.342 68.058 0.00 0.00	H
ATOM ATOM	3151 N THR		100.184 81.981 69.478 1.00 0.00	H N
ATOM	3152 CA THR 3153 C THR	243 243	99.285 83.185 69.481 1.00 0.00	c
ATOM	3154 O THR	243	99.713 84.342 68.514 1.00 0.00 98.888 84.807 67.726 1.00 0.00	C
ATOM	3155 CB THR	243	99 000 03 743	0
ATOM	3156 OG1 THR	243	98.832 82.718 71.884 1.00 0.00	C 0
MOTA MOTA	3157 CG2 THR 3158 H THR	243	97.910 84.721 71.059 1.00 0.00	c
ATOM	3158 H THR 3159 HA THR	243 243	100.655 81.660 70.333 1.00 0.00	н
ATOM	3160 HB THR	243	98.293 82.839 69.129 1.00 0.00 100.024 84.260 71.238 1.00 0.00	н
ATOM	3161 HG1 THR	243	99.139 83.061 72.734 1.00 0.00	H
ATOM ATOM	3162 1HG2 THR	243	97.704 85.005 72.105 1.00 0.00	H H
ATOM	3163 2HG2 THR 3164 3HG2 THR	243 243	98.085 85.655 70.491 1.00 0.00	H
ATOM	3165 N LEU	244	96.979 84.281 70.658 1.00 0.00 100.985 84.781 68.545 1.00 0.00	H
ATOM	3166 CA LEU	244	101 545 85 727 67	N
ATOM	3167 C LEU	244	101.478 85.258 66.049 1.00 0.00	c c
ATOM ATOM	3168 O LEU	244	101.053 86.030 65.189 1.00 0.00	ŏ
ATOM	3170 CG LEU	244 244	102.996 86.108 67.971 1.00 0.00 103.197 86.828 69.336 1.00 0.00	Ċ
ATOM	3171 CD1 LEU	244	104 603 06 055	C
ATOM	3172 CD2 LEU	244	102.634 88.258 69.364 1.00 0.00	C
ATOM ATOM	3173 H LEU	244	101.595 84.257 69.185 1.00 0.00	C H
ATOM	3174 HA LEU 3175 1HB LEU	244	100.944 86.664 67.584 1.00 0.00	H
ATOM	3176 2HB LEU	244 244	103.598 85.177 67.962 1.00 0.00 103.453 86.732 67.179 1.00 0.00	н
ATOM	3177 HG LEU	244	102 602 06 045	H
ATOM	3178 2HD1 LEU	244	102.882 86.247 70.127 1.00 0.00 105.106 85.835 69.783 1.00 0.00	H
ATOM	3179 3HD1 LEU	244	105.282 87.366 68.897 1.00 0.00	H H
ATOM ATOM	3180 1HD1 LEU 3181 2HD2 LEU	244	104.891 87.376 70.636 1.00 0.00	н
ATOM	3182 3HD2 LEU	244 244	103.144 88.924 68.647 1.00 0.00	н
ATOM	3183 1HD2 LEU	244	101.554 88.286 69.124 1.00 0.00 102.744 88.721 70.362 1.00 0.00	н
ATOM	3184 N LEU	245	102.744 88.721 70.362 1.00 0.00 101.858 84.002 65.739 1.00 0.00	н
ATOM	3185 CA LEU	245	101.796 83.446 64.357 1.00 0.00	C C
ATOM ATOM	3186 C LEU	245	100.365 83.227 63.747 1.00 0.00	Ċ
ATOM	3187 O LEU 3188 CB LEU	245 245	100.130 83.686 62.629 1.00 0.00	ŏ
ATOM	3189 CG LEU	245 245	102.732 82.203 64.331 1.00 0.00 102.919 81.454 62.985 1.00 0.00	C
			102.919 81.454 62.985 1.00 0.00	C

						116				
MOTA	3190		LEU	245	103.344	82.362	61.820	1.00	0.00	С
MOTA	3191		LEU	245	103.963	80.340	63.152	1.00	0.00	C
ATOM ATOM	3192 3193	H HA	LEU	245 245	102.133 102.271	83.433 84.194	66.548 63.697	1.00	0.00	H- H
MOTA	3194		LEU	245	103.730	82.513	64.700	1.00	0.00	H
ATOM	3195		LEU	245	102.371	81.475	65.084	1.00	0.00	н
MOTA	3196	HG	LEU	245	101.953	80.980	62.714	1.00	0.00	H
ATOM ATOM		2HD1 3HD1		245 245	102.592 104.301	83.146 _. 82.881	61.614 62.016	1.00	0.00	H H
ATOM		1HD1		245	103.446	81.789	60.880	1.00	0.00	н
ATOM		2HD2		245	104.967	80.740	63.387	1.00	0.00	H
ATOM		3HD2		245	103.690	79.650	63.972	1.00	0.00	Н
ATOM ATOM	3202 3203	1HD2 N	VAL	245 246	104.055 99.420	79.729 82.532	62.234 64.412	1.00	0.00	H N
ATOM	3204	CA	VAL	246	98.018	82.373	63.887	1.00	0.00	Ċ
MOTA	3205	C	VAL	246	97.012	83.542	64.197	1.00	0.00	С
ATOM ATOM	3206 3207	O CB	VAL	246 246	96.113 97.466	83.787 80.939	63.387 64.220	1.00	0.00	0
ATOM	3207		VAL	246	97.060	80.705	65.691	1.00	0.00	c
MOTA	3209		VAL	246	96.256	80.541	63.340	1.00	0.00	c
ATOM	3210	H	VAL	246	99.698	82.253	65.364	1.00	0.00	н
MOTA MOTA	3211 3212	HA HB	VAL	246 246	98.082 98.274	82.391 80.217	62.781 63.987	1.00	0.00	H H
ATOM		1HG1		246	96.219	81.348	66.008	1.00	0.00	H
MOTA		2HG1		246	96.751	79.661	65.873	1.00	0.00	H
ATOM		3HG1		246	97.889	80.912	66.389	1.00	0.00	н
ATOM ATOM		2HG2 3HG2		246 246	96.503 95.894	80.566 79.519	62.265 63.559	1.00	0.00	H H
ATOM		1HG2		246	95.393	81.219	63.488	1.00	0.00	H
MOTA	3219	N	GLY	247	97.099	84.206	65.360	0.00	0.00	N
MOTA MOTA	3220 3221	CA C	GLY GLY	247 247	96.020 95.492	85.100 84.695	65.871 67.263	0.00	0.00	C
ATOM	3222	Ö	GLY	247	95.697	85.401	68.254	0.00	0.00	ō
MOTA	3223	H	GLY	247	97.934	83.977	65.917	0.00	0.00	н
MOTA	3224	1HA	GLY	247	95.163	85.180	65.173	0.00	0.00	н
MOTA MOTA	3225 3226	2HA N	GLY LYS	247 248	96.403 94.784	86.132 83.561	65.927 67.320	0.00 1.00	0.00	H
ATOM	3227	CA	LYS	248	94.201	83.016	68.579	1.00	0.00	c
MOTA	3228	C	LYS	248	95.191	82.099	69.402	1.00	0.00	C
ATOM ATOM	3229 3230	O CB	LYS	248 248	95.994 92.912	81.382 82.231	68.791 68.204	1.00	0.00	0 C
ATOM	3231	CG	LYS	248	91.705	83.103	67.777	1.00	0.00	Ċ
MOTA	3232	CD	LYS	248	90.498	82.257	67.331	1.00	0.00	С
MOTA	3233 3234	CE	LYS	248	89.278	83.127	66.999	1.00	0.00	C
MOTA MOTA	3235	1HZ	LYS LYS	248 248	88.159 87.339	82.262 82.845	66.577 66.354	1.00	0.00	N H
ATOM		2HZ	LYS	248	88.436	81.725	65.743	1.00	0.00	н
ATOM	3237	знг	LYS	248	87.920	81.612	67.339	1.00	0.00	н
ATOM ATOM	3238 3239	H HA	LYS	248 248	94.798 93.904	83.034 83.868	66.443 69.219	1.00	0.00	H H
ATOM	3240	1HB		248	93.145	81.487	67.415	1.00	0.00	н
MOTA	3241		LYS	248	92.596	81.613	69.067	1.00	0.00	н
MOTA MOTA	3242 3243		LYS	248 248	91.419 92.002	83.774 83.776	68.610 66.948	1.00 1.00	0.00	. н
ATOM	3244		LYS	248	90.780	81.656	66.443	1.00	0.00	H H
ATOM	3245		LYS	248	90.239	81.516	68.112	1.00	0.00	н
ATOM	3246		LYS	248	88.979	83.741	67.873	1.00	0.00	н
ATOM ATOM	3247 3248	2HE N	LYS PRO	248 249	89.524 95.154	83.843 82.039	66.188 70.771	1.00	0.00	H N
ATOM	3249	CA	PRO	249	96.020	81.112	71.555	0.00	0.00	Ċ
MOTA	3250	CD	PRO	249	94.324	82.923	71.609	0.00	0.00	С
ATOM ATOM	3251 3252	C	PRO PRO	249 249	95.717 94.594	79.571 79.206	71.421 71.051	0.00	0.00	c
ATOM	3252	CB	PRO	249	95.856	81.670	72.986	0.00	0.00	o c
ATOM	3254	CG	PRO	249	94.475	82.324	73.005	0.00	0.00	Ċ
MOTA	3255	HA	PRO	249	97.059	81.260	71.214	0.00	0.00	н
ATOM ATOM	3256 3257		PRO PRO	249 249	93.266 94.709	82.947 83.962	71.289 71.575	0.00	0.00	H H
ATOM	3258		PRO	249	96.635	82.431	73.179	0.00	0.00	н
ATOM	3259	2HB	PRO	249	95.969	80.898	73.772	0.00	0.00	Н
ATOM	3260		PRO	249	94.358	83.079	73.801	0.00	0.00	н
ATOM ATOM	3261 3262	2HG N	PRO PRO	249 250	93.697 96.669	81.554 78.630	73.164 71.710	0.00	0.00	H N
				-						

						117					
ATOM	326				96.501		71.345	0.00	0.00	С	
ATOM ATOM	326: 326:				98.027			0.00		-	
ATOM	326		PRO PRO		95.405 94.769						
ATOM	326		PRO	-	97.937						
MOTA	326		PRO		98.615					_	
ATOM	326		PRO	250	96.236						
ATOM		0 1HD	PRO		98.022	79.609					
ATOM ATOM	327	1 2HD 2 1HB	PRO		98.612						
ATOM	3273		PRO PRO	250 250	98.465 97.983						
ATOM		1 1HG	PRO	250	99.717			0.00			
ATOM	3279	5 2HG	PRO	250	98.359		73.544	0.00		H H	
ATOM	3276		PHE	251	95.171	76.536	73.369	0.00	0.00	N	
MOTA MOTA	3277 3278		PHE	251	93.963		74.056	0.00	0.00	C	
ATOM	3279		PHE	251 251	93.134 93.535	•	74.676	0.00	0.00	С	
ATOM	3280		PHE	251	94.359	77.784 74.924	75.669 75.110	0.00	0.00	0	
ATOM	3281		PHE	251	94.855	73.539	74.627	0.00	0.00	c	
MOTA	3282			251	94.370	72.914	73.468	0.00	0.00	Č	
ATOM ATOM	3283 3284			251	94.778	71.624	73.136	0.00	0.00	c	
ATOM	3285		PHE S	251 251	95.658 96.139	70.940	73.966	0.00	0.00	C	
ATOM	3286			251	95.739	71.542 72.836	75.122 75.452	0.00	0.00	C	
MOTA	3287		PHE	251	95.711	77.322	73.743	0.00	0.00	С Н	
ATOM	3288		PHE	251	93.295	75.495	73.329	0.00	0.00	н	
MOTA MOTA	3289 3290		PHE	251	93.478	74.727	75.750	0.00	0.00	н	
ATOM	3291		PHE	251 251	95.092 93.671	75.375	75.806	0.00	0.00	H	
ATOM	3292			251	94.410	73.410 71.151	72.814 72.236	0.00	0.00	н	
MOTA	3293		PHE	251	95.972	69.941	73.707	0.00	0.00	H H	
ATOM	3294		PHE	251	96.825	71.005	75.763	0.00	0.00	н	
ATOM ATOM	3295 3296		PHE GLU	251	96.115	73.283	76.358	0.00	0.00	Н	
ATOM	3297		GLU	252 252	91.963 90.978	77.457 78.433	74.083	1.00	0.00	N	
ATOM	3298		GLU	252	89.511	77.887	74.629 74.512	1.00	0.00	c	
ATOM	3299		GLU	252	88.774	78.205	73.573	1.00	0.00	o	
ATOM	3300		GLU	252	91.191	79.843	74.006	1.00	0.00	č	
ATOM ATOM	3301 3302	CD	GLU	252 252	91.120	79.990	72.457	1.00	0.00	C	
ATOM	3303	OE1		252	90.880 91.116	81.410 82.435	71.943 72.575	1.00	0.00	C	
MOTA	3304	OE2		252	90.369	81.410	70.683	1.00	0.00	0	
MOTA	3305	Н	GLU	252	91.798	76.958	73.202	1.00	0.00	н	
ATOM ATOM	3306 3307	HA	GLU	252	91.157	78.567	75.716	1.00	0.00	н	
ATOM	3308		GLU GLU	252 252	90.450 92.170	80.523 80.226	74.472	1.00	0.00	н	
ATOM	3309		GLU	252	92.052	79.611	74.346 71.998	1.00	0.00	H	
ATOM	3310		GLU	252	90.319	79.351	72.044	1.00	0.00	H H	
ATOM ATOM	3311	N	THR	253	89.078	77.064	75.479	1.00	0.00	N	
ATOM	3312 3313	CA C	THR THR	253 253	87.671	76.555	75.551	1.00	0.00	С	
ATOM	3314	ŏ	THR	253	86.821 87.348	77.456 78.092	76.525 77.442	1.00	0.00	C	
MOTA	3315	CB	THR	253	87.705	75.025	75.879	1.00	0.00	o C	
ATOM	3316		THR	253	88.536	74.338	74.942	1.00	0.00	ő	
ATOM ATOM	3317 3318	CG2 H	THR	253	86.347	74.314	75.773	1.00	0.00	Ċ	
ATOM	3319	HA	THR THR	253 253	89.751 87.207	76.885	76.233	1.00	0.00	н	
MOTA	3320	HB	THR	253	88.122	76.633 74.883	74.548 76.897	1.00	0.00	н	
ATOM	3321	HG1		253	88.566	73.395	75.177	1.00	0.00	H H	
ATOM		1HG2		253	86.442	73.235	76.002	1.00	0.00	H	
ATOM ATOM		2HG2 3HG2		253 253	85.601	74.722	76.478	1.00	0.00	H	
ATOM	3325	N	SER	253	85.921 85.496	74.392 77.557	74.756	1.00	0.00	H	
ATOM	3326	CA	SER	254	84.656	78.676	76.310 76.858	1.00	0.00	И	
ATOM	3327	С	SER	254	84.494	78.929	78.410	1.00	0.00	c	
ATOM ATOM	3328	0	SER	254	83.812	79.888	78.786	1.00	0.00	ō	
ATOM ATOM	332 <i>9</i> 3330	CB OG	SER SER	254	83.275	78.531	76.169	1.00	0.00	Ċ	
ATOM	3331	H	SER	254 254	82.460 85.181	79.682 77.003	76.403	1.00	0.00	0	
MOTA	3332	HA	SER	254	85.095	79.620	75.509 76.478	1.00	0.00	H	
MOTA	3333		SER	254	83.378	78.402		1.00	0.00	н н	
ATOM		2HB	SER	254	82.749	77.626		1.00	0.00	н	
MOTA	3335	HG	SER	254	82.592	79.944	77.326	1.00	0.00	н	

						118				
ATOM	3336	N	CYS	255	85.100	78.129	79.298	1.00	0.00	N
ATOM	3337	CA	CYS	255	85.274	78.483	80.735	1.00	0.00	С
ATOM	3338	C	CYS	255	86.653	77.980	81.291	1.00	0.00	С
MOTA	3339	0	CYS	255	87.287	77.081	80.727	1.00	0.00	0
ATOM	3340	CB	CYS	255	84.059	77.949	81.532	1.00	0.00	C
MOTA	3341	SG	CYS	255	83.991	76.125	81.530	1.00	0.00	S
MOTA	3342	H	CYS	255	85.801	77.541	78.829	1.00	0.00	H H
MOTA	3343	HA	CYS	255	85.285	79.588 78.298	80.834 82.579	1.00	0.00	н
ATOM	3344	1HB 2HB	CYS	255 255	84.098 83.111	78.350	81.122	1.00	0.00	н
MOTA MOTA	3345 3346	HG	CYS	255	83.576	75.982	80.275	1.00	0.00	н
ATOM	3347	и	LEU	256	87.110	78.539	82.429	1.00	0.00	N
ATOM	3348	CA	LEU	256	88.437	78.204	83.043	1.00	0.00	C
ATOM	3349	C	LEU	256	88.717	76.678	83.289	1.00	0.00	C
MOTA	3350	0	LEU	256	89.732	76.166	82.819	1.00	0.00	0
ATOM	3351	CB	LEU	256	88.641	79.036	84.347	1.00	0.00	C
MOTA	3352	CG	LEU	256	88.951	80.551	84.214	1.00	0.00	C
MOTA	3353		LEU	256	87.723	81.413 81.077	83.867 85.533	1.00	0.00	c
MOTA	3354	H H	Leu Leu	256 256	89.546 86.525	79.294	82.798	1.00	0.00	н
MOTA MOTA	3355 3356	HA	LEU	256	89.222	78.522	82.328	1.00	0.00	н
ATOM	3357		LEU	256	87.794	78.878	85.043	1.00	0.00	н
ATOM	3358		TEA	256	89.502	78.580	84.880	1.00	0.00	н
ATOM	3359	HG	LEU	256	89.710	80.687	83.419	1.00	0.00	- н
ATOM	3360			256	87.335	81.198	82.857	1.00	0.00	Н
MOTA	3361			256	86.893	81.266	84.584	1.00	0.00	н
ATOM		1HD1		256	87.965	82.492	83.872	1.00	0.00	H H
ATOM	3363			256 256	88.839 90.465	80.978 80.530	86.380 85.818	1.00	0.00	н
ATOM	3364 3365			256 256	89.825	82.144	85.467	1.00	0.00	н
ATOM ATOM	3366	N	LYS	257	87.800	75.951	83.953	1.00	0.00	N
ATOM	3367		LYS	257	87.873	74.462	84.089	1.00	0.00	С
ATOM	3368		LYS	257	87.861	73.614	82.764	1.00	0.00	C
ATOM			LYS	257	B8.490	72.555	82.727	1.00	0.00	0
MOTA	3370	CB	LYS	257	86.754	74.003	85.066	1.00	0.00	C
MOTA			LYS	257	86.922	74.460	86.537	1.00	0.00	c
MOTA			LYS	257	85.765	73.981	87.434	1.00	0.00	C C
ATOM			LYS LYS	257 257	85.926 84.781	74.466 73.996	88.881 89.685	1.00	0.00	и
MOTA . MOTA			LYS	257	84.887	74.321	90.657	1.00	0.00	н
ATOM			LYS	257	83.906	74.372	89.292	1.00	0.00	н
ATOM			LYS	257	84.749	72.967	89.670	1.00	0.00	H
ATOM			LYS	257	86.991	76.492	84.272	1.00	0.00	Н
ATOM	3379	HA	LYS	257	88.840	74.217	84.568	1.00	0.00	н
ATOM			LYS	257	85.766	74.319	84.678	1.00	0.00	Н
ATOM		2HB	LYS	257	86.711	72.897 74.087	85.064 86.937	1.00	0.00	H H
ATOM		1HG	LYS	257 257	87.885 86.992	75.564	86.588	1.00	0.00	н
ATOM ATOM		2HG	LYS	257	84.800	74.343	87.025	1.00	0.00	н
ATOM		2HD	LYS	257	85.706	72.875	87.407	1.00	0.00	H
ATOM		1HE	LYS	257	86.877	74.097	89.316	1.00	0.00	H
ATOM		7 2HE	LYS	257	85.978	75.573	88.918	1.00	0.00	H
ATOM	3388	N	GLU	258	87.189	74.064	81.686	1.00	0.00	N
ATOM			GLU	258	87.332	73.448	80.332	1.00	0.00	c c
ATOM			GLU	258	88.705	73.711	79.619 79.114	1.00	0.00	0
ATOM			GLU	258 258	89.293 86.118	72.754 73.847	79.451	1.00	0.00	č
ATOM ATOM			GLU GLU	258 258	84.750	73.213	79.823	1.00	0.00	č
ATOM			GLU	258	84.645	71.709	79.571	1.00	0.00	C
ATOM			LGLU	258	84.362	71.217	78.485	1.00	0.00	0
ATOM			GLU	258	84.899	70.977	80.687	1.00	0.00	0
MOTA			GLU	258	86.861	75.028	81.801	1.00	0.00	, H
ATOM			GLU	258	87.289	72.346	80.451	1.00	0.00	H
ATOM		1HB	GLU	258	86.027	74.951	79.425	1.00	0.00	Н
ATON		2HB	GLU	258	86.339	73.566	78.406	1.00	0.00	н н
ATON		L 1HG	GLU	258	84.495	73.423 73.695	80.877 79.230	1.00	0.00	H
ATO!		2 2HG	GLU THR	258 259	83.951 89.256	74.941	79.608	1.00	0.00	n N
IOTA IOTA			THR	259	90.700	75.186	79.255	1.00	0.00	c c
ATO			THR	259	91.743	74.348	80.089	1.00	0.00	C
ATO			THR	259	92.662	73.765	79.509	1.00	0.00	0
ATON			THR	259	90.988	76.720	79.303	1.00	0.00	С
ATON			1 THR	259	90.192	77.414	78.352	1.00	0.00	0

						119				
ATOM	3409	CG:	2 THR	259	92.425	77.133	78.955	1.00	0.00	С
ATOM	3410		THR		88.665	75.681	80.011	1.00	0.00	н
ATOM	3411		THR		90.841	74.870	78.203	1.00	0-00	H
ATOM ATOM	3412		THR		90.750	77.097	80.320	1.00	0.00	H
ATOM	3413	1HG2	L THR THR		90.577 92.562	78.292 78.226	78.280	1.00	0.00	Н
ATOM		2HG2			93.166	76.226	79.020 79.646	1.00	0.00	Н
MOTA		3 HG2			92.711	76.823	77.933	1.00	0.00	H H
ATOM	3417		TYR		91.586	74.262	81.423	0.00	0.00	N
ATOM	3418		TYR		92.363	73.330	82.294	0.00	0.00	Ĉ
ATOM ATOM	3419 3420		TYR TYR	260	92.279	71.804	81.919	0.00	0.00	С
ATOM	3421		TYR		93.315 91.924	71.139 73.570	81.844 83.770	0.00	0.00	0
ATOM	3422		TYR	260	92.128	74.943	84.457	0.00	0.00	C
ATOM	3423			260	92.987	75.934	83.963	0.00	0.00	č
ATOM	3424			260	93.105	77.157	84.618	0.00	0.00	C
MOTA MOTA	3425 3426		TYR TYR	260 260	92.370	77.402	85.772	0.00	0.00	С
ATOM	3427		TYR	260	92.494 91.523	78.601 76.424	86.417 86.280	0.00	0.00	0
ATOM	3428			260	91.408	75.196	85.631	0.00	0.00	C
MOTA	3429		TYR	260	90.890	74.876	81.869	1.00	0.00	н
MOTA	3430		TYR	260	93.435	73.594	82.207	0.00	0.00	н
ATOM ATOM	3431 3432	1HB	TYR	260	92.431	72.818	84.399	0.00	0.00	H
ATOM	3433		TYR TYR	260 260	90.856 93.564	73.289 75.768	83.848 83.063	0.00	0.00	H
ATOM	3434			260	93.777	77.903	84.231	0.00	0.00	H H
MOTA	3435		TYR	260	93.285	79.038	86.094	0.00	0.00	H.
ATOM	3436			260	90.964	76.616	87.184	0.00	0.00	н
ATOM ATOM	3437		TYR	260	90.752	74.444	86.046	0.00	0.00	H
ATOM	3438 3439		TEA TEA	261 261	91.075 90.897	71.265 69.932	81.640	1.00	0.00	N
ATOM	3440		LEU	261	91.694	69.702	80.984 79.646	1.00	0.00	c
ATOM	3441	0	LEU	261	92.322	68.652	79.497	1.00	0.00	ō
ATOM	3442		LEU	261	89.358	69.723	80.849	1.00	0.00	Ċ
ATOM ATOM	3443		LEU	261	88.856	68.354	80.325	1.00	0.00	С
ATOM	3444 3445		LEU	261 261	89.165 87.340	67.203 68.412	81.298	1.00	0.00	C
ATOM	3446		LEU	261	90.292	71.922	80.075 81.746	1.00	0.00	С н
ATOM	3447	HA	LEU	261	91.277	69.171	81.692	1.00	0.00	н
ATOM	3448		LEU	261	88.869	69.924	81.824	1.00	0.00	H
ATOM ATOM	3449		LEU	261	88.967	70.510	80.178	1.00	0.00	Н
ATOM	3450 3451		LEU	261 261	89.350 90.254	68.138 67.069	79.355	1.00	0.00	н
ATOM	3452			261	88.721	67.367	81.437 82.298	1.00	0.00	H H
MOTA		1HD1		261	88.781	66.236	80.922	1.00	0.00	H
ATOM		2HD2		261	86.774	68.623	81.001	1.00	0.00	H
ATOM ATOM		3HD2 1HD2		261 261	87.082	69.198	79.340	1.00	0.00	Н
ATOM	3457	N N	ARG	262	86.959 91.731	67.459 70.679	79.664 78.720	1.00	0.00	H
MOTA	3458	CA	ARG	262	92.648	70.647	77.542	1.00	0.00	N C
ATOM	3459		ARG	262	94.188	70.612	77.880	1.00	0.00	Ċ
ATOM	3460	O	ARG	262	94.905	69.763	77.348	1.00	0.00	0
ATOM ATOM	3461 3462	CB CG	ARG ARG	262 262	92.340 90.899	71.831 72.128	76.577	1.00	0.00	C
ATOM	3463	CD	ARG	262	90.194	70.966	76.094 75.385	1.00	0.00 0.00	C
ATOM	3464	NE	ARG	262	88.899	71.458	74.845	1.00	0.00	N
ATOM	3465	CZ	ARG	262	88.061	70.748	74.099	1.00	0.00	C
ATOM	3466		ARG	262	88.245	69.501	73.778	1.00	0.00	N
ATOM ATOM	3467 3468	HE	ARG ARG	262 262	87.005 88.631	71.337 72.428	73.662	1.00	0.00	N
ATOM	3469	н	ARG	262	91.155	71.428	75.067 78.953	1.00	0.00 0.00	H H
ATOM	3470	HA	ARG	262	92.440	69.712	76.984	1.00	0.00	н
ATOM	3471		ARG	262	92.731	72.763	77.029	1.00	0.00	н
ATOM	3472		ARG	262	92.961	71.684	75.673	1.00	0.00	н
ATOM ATOM	3473 3474		ARG ARG	262	90.280	72.468	76.943	1.00	0.00	н
ATOM	3475		ARG	262 262	90.939 90.835	73.002 70.574	75.413 74.570	1.00	0.00	H
ATOM	3476		ARG	262	90.030	70.128	76.095	1.00	0.00	H H
ATOM		2HH1		262	89.103	69.110	74.168	1.00	0.00	н
ATOM		1HH1		262	87.536	69.062	73.194	1.00	0.00	Н
ATOM ATOM		1HH2 2HH2		262	86.968	72.323	73.921	1.00	0.00	н
ATOM	3481	ZAAZ N	ILE	262 263	86.383 94.699	70.796 71.521	73.065 78.739	1.00 0.00	0.00	H
							.0.133	5.50	0.00	N

						100				
	2402	a >	~~ ~	262	06 163	120	70 007	0.00	0.00	С
ATOM ATOM	3482 3483	CA C	ILB	263 263	96.162 96.852	71.638 70.322	79.087 79.595	0.00	0.00	Ċ
ATOM	3484	Ö	ILE	263	97.919	69.961	79.089	0.00	0.00	0
MOTA	3485	CB	ILB	263	96.358	72.915	79.998	0.00	0.00	С
MOTA	3486	CG2		263	97.713	72.981	80.760	0.00	0.00	c
ATOM	3487	CG1		263	96.180	74.229	79.176	0.00	0.00	c c
MOTA	3488	CD1		263	96.033 93.987	75.524 72.147	79.988 79.138	0.00	0.00 0.00	н
ATOM ATOM	3489 3490	H HA	ILE	263 263	96.703	71.848	78.143	0.00	0.00	н
ATOM	3491	HB	ILE	263	95.570	72.886	80.779	0.00	0.00	н
ATOM		1HG2		263	97.758	73.841	81.453	0.00	0.00	н
ATOM	3493	2HG2		263	97.888	72.090	81.391	0.00	0.00	н
ATOM		3HG2		263	98.576	73.073	80.078 78.541	0.00	0.00	H H
MOTA MOTA		1HG1 2HG1		263 263	95.276 97.018	74.150 74.342	78.460	0.00	0.00	н
ATOM	3497	1HD1		263	95.825	76.385	79.327	0.00	0.00	н
MOTA	3498			263	95.201	75.466	80.716	0.00	0.00	H
MOTA	3499	3HD1		263	96.952	75.777	80.549	0.00	0.00	н
ATOM	3500	N	LYS	264	96.248	69.602	80.554	1.00	0.00	N C
ATOM ATOM	3501 3502	CA C	LYS LYS	264 264	96.726 96.706	68.247 67.106	80.970 79.876	1.00	0.00	c
ATOM	3502	ŏ	LYS	264	97.548	66.207	79.928	1.00	0.00	0
ATOM	3504	СВ	LYS	264	95.936	67.915	82.266	1.00	0.00	С
MOTA	3505	CG	LYS	264	96.507	66.746	83.102	1.00	0.00	C
ATOM	3506	CD	LYS	264	95.859	66.668	84.497	1.00	0.00	C
MOTA	3507	CE NZ	LYS LYS	264 264	96.455 95.990	65.540 65.686	85.352 86.747	1.00	0.00	N
MOTA MOTA	3508 3509		LYS	264	96.389	64.930	87.323	1.00	0.00	H
ATOM	3510		LYS	264	96.296	66.597	87.118	1.00	0.00	H
MOTA	3511	3HZ	LYS	264	94.962	65.631	86.775	1.00	0.00	н
ATOM	3512	H	LYS	264	95.332	69.978	80.830	1.00	0.00	H H
MOTA	3513 3514	HA	LYS LYS	264 264	97.791 95.915	68.352 68.811	81.256 82.921	1.00	0.00	н
ATOM ATOM	3514		LYS	264	94.873	67.717	82.021	1.00	0.00	н
ATOM	3516		LYS	264	96.375	65.790	82.559	1.00	0.00	н
MOTA	3517		LYS	264	97.603	66.872	83.218	1.00	0.00	н
ATOM	3518		LYS	264	95.990	67.646 66.533	85.005 84.400	1.00	0.00	H H
MOTA MOTA	3519 3520		LYS LYS	264 264	94.763 96.164	64.551	84.944	1.00	0.00	н
MOTA	3521		LYS	264	97.564	65.563	85.324	1.00	0.00	H ·
MOTA	3522	N	LYS	265	95.801	67.156	78.879	1.00	0.00	N
MOTA	3523	CA	LYS	265	95.810	66.235	77.699	1.00	0.00	c
MOTA	3524 3525	C O	LYS LYS	265 265	96.949 97.292	66.440 65.473	76.629 75.946	1.00	0.00	ō
ATOM ATOM	3525	СВ	LYS	265	94.419	66.320	77.003	1.00	0.00	C
ATOM	3527	CG	LYS	265	93.209	65.795	77.809	1.00	0.00	C
ATOM	3528	CD	LYS	265	91.881	66.006	77.056	1.00	0.00	C
ATOM	3529	CE	LYS	265	90.672	65.560 65.791	77.889 77.125	1.00	0.00	C N
MOTA MOTA	3530 3531		LYS LYS	265 265	89.430 88.620	65.492	77.686	1.00	0.00	н
MOTA	3532		LYS	265	89.343	66.794	76.905	1.00	0.00	H
ATOM		3HZ	LYS	265	89.460	65.250	76.249	1.00	0.00	н
MOTA	3534		LYS	265	95.178	67.973	78.921	1.00	0.00	н
ATOM	3535		LYS	265	95.937 94.232	65.197 67.367	78.066 76.691	1.00	0.00	H H
ATOM ATOM		1HB	LYS LYS	265 265	94.456	65.750	76.053	1.00	0.00	н
ATOM		1HG	LYS	265	93.348	64.723	78.049	1.00	0.00	H
ATOM		2HG	LYS	265	93.160	66.311	78.789	1.00	0.00	H
MOTA		1HD	LYS	265	91.772	67.079	76.801	1.00	0.00	Н
ATOM		2HD	LYS	265 265	91.908 90.760	65.464 64.492	76.090 78.170	1.00	0.00	H H
ATOM ATOM		1HE 2HE	LYS	265 265	90.640	66.128	78.842	1.00	0.00	н
ATOM	3544		ASN	266	97.497	67.659	76.420	1.00	0.00	N
ATOM	3545		ASN	266	98.622	67.927	75.454	1.00	0.00	C
MOTA	3546		ASN	266	98.354	67.785	73.900	1.00	0.00	C
ATOM	3547		ASN	266	99.262	68.052 67.198	73.108 75.952	1.00	0.00	o c
ATOM ATOM	3548 3549		asn asn	266 266	99.918 101.331	67.198	75.554	1.00	0.00	c
ATOM	3550		ASN	266	102.317	67.035	75.926	1.00	0.00	0
ATOM	3551		2 ASN	266	101.533	68.726	74.836	1.00	0.00	N
ATOM	3552		ASN	266	97.146	68.365	77.079	1.00	0.00	H
ATOM	3553		ASN	266	98.819	69.010	75.570 77.057	1.00	0.00	H H
ATOM	3554	1HB	asn	266	99.928	67.201	,,,,,,,,,	2.00	3.00	n

						121				
ATOM	3555	2HB	ASN	266	99.845	66.127	75.691	1.00	0.00	н
MOTA		1HD2		266	102.525	68.892	74.616	1.00	0.00	н
MOTA	3557			266	100.737	68.989	74.248	1.00	0.00	H
ATOM ATOM	3558 3559	n Ca	GLU	267 267	97.150 96.876	67.411 67.153	73.431 71.985	1.00	0.00	N
ATOM	3560	c.	GLU	267	96.696	68.462	71.129	1.00	0.00	c
ATOM	3561	0	GLU	267	95.588	68.985	70.971	1.00	0.00	ō
ATOM	3562	СВ	GLU	267	95.662	66.183	71.946	1.00	0.00	C
ATOM ATOM	3563 3564	CC	GLU	267 267	95.357 94.191	65.583 64.600	70.549 70.541	1.00	0.00	C
ATOM	3565		GLU	267	94.308	63.397	70.740	1.00	0.00	C 0
ATOM	3566		GLU	267	93.002	65.207	70.284	1.00	0.00	ō
ATOM ATOM	3567	H HA	GLU	267	96.511	67.122	74.178	1.00	0.00	H
ATOM	3568 3569		GLU	267 267	97.734 95.833	66.589 65.341	71.560 72.650	1.00	0.00	H
ATOM	3570		GLU	267	94.761	66.704	72.329	1.00	0.00	H
ATOM	3571		GLU	267	95.145	66.387	69.818	1.00	0.00	н
ATOM ATOM	3572 3573	2HG N	GLU TYR	267 268	96.246	65.055	70.155	1.00	0.00	H
ATOM	3574	CA	TYR	268	97.801 97.809	68.977 70.263	70.566 69.810	1.00	0.00	. N
MOTA	3575	C	TYR	268	97.716	70.049	68.260	1.00		Č
ATOM	3576	0_	TYR	268	98.681	69.627	67.613	1.00	0.00	0
ATOM ATOM	3577 3578	CB	TYR TYR	268 268	99.087 99.105	71.069	70.197	1.00		C
ATOM	3579		TYR	268	99.934	71.681 71.160	71.610 72.610	1.00	0.00	C
MOTA	3580		TYR	268	98.293	72.781	71.901	1.00	0.00	c
ATOM	3581		TYR	268	99.936	71.723	73.886	1.00	0.00	C
ATOM ATOM	3582 3583	CE2 CZ	TYR TYR	268 268	98.311 99.135	73.348 72.824	73.172 74.159	1.00	0.00	C C
ATOM	3584	ОН	TYR	268	99.129	73.384	75.404	1.00	0.00	0
MOTA	3585	H	TYR	268	98.686	68.459	70.662	1.00	0.00	н
ATOM ATOM	3586	HA 1HB	TYR	268	96.943	70.887	70.118	1.00	0.00	н
ATOM	3587 3588	2HB	TYR TYR	268 268	99.988 99.218	70.447 71.902	70.028 69.480	1.00	0.00	H H
ATOM	3589	HD1		268	100.574	70.315	72.401	1.00.	0.00	н
ATOM	3590		TYR	268	97.630	73.189	71.151	1.00	0.00	H
ATOM ATOM	3591 3592	HE1 HE2	TYR TYR	268 268	100.564 97.647	71.324	74.667	1.00	0.00	н
ATOM	3593	HH	TYR	268	98.543	74.166 74.141	73.408 75.387	1.00	0.00	H H
ATOM	3594	N	SER	269	96.568	70.395	67.653	1.00	0.00	n
ATOM	3595	CA	SER	269	96.405	70.397	66.171	1.00	0.00	c
ATOM ATOM	3596 3597	C O	SER SER	269 269	96.971 96.390	71.702 72.782	65.513 65.646	1.00	0.00	C 0
ATOM	3598	CB	SER	269	94.904	70.187	65.869	1.00	0.00	c
MOTA	3599	OG	SER	269	94.671	70.101	64.462	1.00	0.00	0
ATOM ATOM	3600 3601	H HA	SER SER	269 269	95.820 96.930	70.687 69.519	68.289 65.741	1.00	0.00	н
ATOM	3602	1HB	SER	269	94.538	69.257	66.349	1.00	0.00	H H
ATOM	3603		SER	269	94.294	71.008	66.298	1.00	0.00	н
ATOM	3604	HG	SER	269	94.931	70.946	64.075	1.00	0.00	H
ATOM ATOM	3605 3606	N CA	ILE	270 270	98.101 98.790	71.600 72.785	64.796 64.192	1.00 1.00	0.00	N C
ATOM	3607	C	ILE	270	98.061	73.392	62.921	1.00	0.00	č
ATOM	3608	0	ILE	270	97.670	72.619	62.038	1.00	0.00	0
ATOM ATOM	3609 3610	CB CG1	ILE	270 270	100.313 100.607	72.516 71.347	63.902 62.913	1.00	0.00	C
ATOM	3611	CG2		270	101.142	72.357	65.205	1.00	0.00	c
ATOM	3612	CD1		270	101.972	71.429	62.207	1.00	0.00	c
ATOM ATOM	3613	H HA	ILE	270	98.550	70.680	64.833	1.00	0.00	Н
ATOM	3614 3615	HB	ILE	270 270	98.791 100.692	73.563 73.441	64.976 63.419	1.00	0.00	H H
ATOM		1HG1		270	100.504	70.372	63.427	1.00	0.00	н
ATOM		2HG1		270	99.834	71.324	62.120	1.00	0.00	Н
ATOM ATOM		2HG2 3HG2		270	101.005	73.213	65.890	1.00	0.00	н
ATOM		1HG2		270 270	100.862 102.227	71.445 72.289	65.766 65.001	1.00 1.00	0.00	H H
ATOM	3621	2HD1	ILE	270	102.088	72.375	61.642	1.00	0.00	н
ATOM		3HD1		270	102.809	71.363	62.922	1.00	0.00	H
ATOM ATOM	3623 3624	1HD1 N	ILE PRO	270 271	102.101 97.905	70.606	61.481	1.00	0.00	н
ATOM	3625	CA	PRO	271	97.452	74.741 75.329	62.737 61.445	0.00	0.00	N C
ATOM	3626	CD	PRO	271	98.045	75.733	63.816	0.00	0.00	c
ATOM	3627	C	PRO	271	98.411	75.108	60.225	0.00	0.00	C

						122				
MOTA	3628	0	PRO	271	99.637	75.076	60.365	0.00	0.00	0
MOTA	3629	CB	PRO	271	97.285	76.826	61.795	0.00	0.00	С
MOTA	3630	CG	PRO	271	97.187	76.890	63.320	0.00	0.00	c
MOTA	3631	HA	PRO	271	96.457	74.900	61.214	0.00	0.00	н
MOTA		1HD 2HD	PRO PRO	271 271	99.104 97.663	76.028	63.948 64.789	0.00	0.00	H H
MOTA MOTA		1HB	PRO	271	96.401	75.374 77.273	61.302	0.00	0.00	н
MOTA	3635		PRO	271	98.155	77.425	61.460	0.00	0.00	H
ATOM	3636		PRO	271	96.138	76.747	63.647	0.00	0.00	н
ATOM	3637		PRO	271	97.527	77.855	63.736	0.00	0.00	н
MOTA	3638	N	LYS	272	97.848	75.012	59.012	1.00	0.00	N
ATOM	3639	CA	LYS	272	98.620	74.638	57.781	1.00	0.00	С
MOTA	3640	C	LYS	272	99.753	75.604	57.258	1.00	0.00	c
MOTA	3641	O CB	LYS LYS	272 272	100.562 97.590	75.181 74.311	56.429 56.660	1.00	0.00	0
MOTA MOTA	3642 3643	CG	LYS	272	96.728	73.042	56.890	1.00	0.00	c
ATOM	3644	CD	LYS	272	95.734	72.788	55.741	1.00	0.00	č
ATOM	3645	CE	LYS	272	94.875	71.542	55.996	1.00	0.00	С
MOTA	3646	NZ	LYS	272	93.936	71.353	54.873	1.00	0.00	N
MOTA	3647		LYS	272	93.359	70.516	55.044	1.00	0.00	н
ATOM	3648	2HZ	LYS	272	93.326	72.179	54.792	1.00	0.00	н
ATOM	3649		LYS	272	94.465	71.231	53.998	1.00	0.00	H
MOTA MOTA	3650 3651	H HA	LYS	272 272	96.826 99.166	74.945 73.697	59.037 58.001	1.00	0.00	H H
MOTA	3652		LYS	272	96.940	75.189	56.482	1.00	0.00	н
MOTA	3653		LYS	272	98.135	74.172	55.706	1.00	0.00	н
ATOM	3654	1HG	LYS	272	97.390	72.162	57.013	1.00	0.00	н
MOTA	3655		Lys	272	96.173	73.124	57.844	1.00	0.00	H
MOTA	3656		LYS	272	95.079	73.673	55.612	1.00	0.00	- н
MOTA	3657		LYS	272 272	96.288 95.515	72.683 70.644	54.786 56.117	1.00	0.00	H H
MOTA MOTA	3658 3659		LYS	272	94.310	71.646	56.944	1.00	0.00	н
ATOM	3660	N	HIS	273	99.852	76.859	57.732	0.00	0.00	N
ATOM	3661	CA	HIS	273	101.068	77.716	57.532	0.00	0.00	С
MOTA	3662	C	HIS	273	102.303	77.505	58.495	0.00	0.00	С
MOTA	3663	0	HIS	273	103.356	78.106	58.261	0.00	0.00	0
ATOM	3664	CB	HIS	273	100.609	79.199	57.426	0.00	0.00	C
ATOM ATOM	3665 3666	CG	HIS HIS	273 273	100.004 100.759	79.854 80.491	58.670 59.641	0.00	0.00	C N
ATOM	3667		HIS	273	99.745	80.966	60.435	0.00	0.00	c
ATOM	3668		HIS	273	98.441	80.711	60.103	0.00	0.00	N
ATOM	3669	CD2	HIS	273	98.631	79.995	58.934	0.00	0.00	С
ATOM	3670	H	HIS	273	99.200	77.027	58.504	0.00	0.00	H
ATOM	3671	HA	HIS	273	101.491	77.482	56.535	0.00	0.00	H
ATOM ATOM	3672 3673		HIS	273 273	99.904 101.478	79.300 79.808	56.580 57.111	0.00	0.00	H H
ATOM	3674		HIS	273	99.988	81.567	61.300	0.00	0.00	н
ATOM	3675		HIS	273	97.590	81.135	60.489	0.00	0.00	н
ATOM	3676	HD2	HIS	. 273	97.843	79.641	58.283	0.00	0.00	н
ATOM	3677	N	ILE	274	102.221	76.650	59.534	1.00	0.00	N
MOTA	3678	CA	ILE	274	103.380	76.285	60.408	1.00	0.00	c
MOTA	3679	C	ILE	274 274	104.287 103.846	75.247 74.144	59.646 59.306	1.00	0.00	c 0
ATOM ATOM	3680 3681	O CB	ILE	274	102.859	75.786	61.818	1.00	0.00	C
MOTA	3682		ILE	274	102.352	76.893	62.794	1.00	0.00	C
ATOM	3683		ILE	274	103.914	74.996	62.640	1.00	0.00	C
MOTA	3684	CD1	ILE	274	101.144	77.724	62.340	1.00	0.00	C
ATOM	3685	H	ILE	274	101.319	76.162	59.609	1.00	0.00	н
MOTA	3686	HA	ILE	274	103.981	77.196	60.601	1.00	0.00	н
ATOM ATOM	3687	HB 1HG1	ILE	274 274	102.021 102.069	75.081 76.430	61.635 63.760	1.00 1.00	0.00	H H
ATOM		2HG1		274	103.185	77.575	63.760	1.00	0.00	. н
ATOM		2HG2		274	104.283	74.114	62.088	1.00	0.00	н
ATOM		3HG2		274	104.802	75.606	62.892	1.00	0.00	H
ATOM	3692	1HG2	ILE	274	103.506	74.600	63.590	1.00	0.00	H
ATOM		2HD1		274	101.395	78.386	61.491	1.00	0.00	н
ATOM		3HD1		274	100.312	77.074	62.015	1.00	0.00	H
ATOM ATOM	3695 3696	1HD1 N	ASN	274 275	100.765 105.570	78.375 75.583	63.149 59.420	1.00 1.00	0.00	H N
ATOM	3697	CA	ASN	275	106.556	74.631	58.827	1.00	0.00	C
ATOM	3698	c.	ASN	275	107.024	73.470	59.801	1.00	0.00	č
ATOM	3699	ō	asn	275	106.988	73.680	61.018	1.00	0.00	٠. ٥
MOTA	3700	CB	asn	275	107.707	75.475	58.199	1.00	0.00	. с

						123				
ATOM	3701	CG	ASN	275	108.908	75.847	59.075	1.00	0.00	C
ATOM ATOM	3702 3703		ASN ASN	275	109.770	75.027	59.362	1.00	0.00	0
ATOM	3704	H H	ASN	275 275	109.051 105.796	77.070 76.553	59.501 59.657	1.00	0.00	N H
ATOM	3705	HA	ASN	275	106.038	74.137	57.980	1.00	0.00	H
ATOM	3706		ASN	275	108.130	74.902	57.357	1.00	0.00	H
ATOM	3707	2HB	ASN	275	107.304	76.377	57.702	1.00	0.00	Ħ
ATOM	3708	1HD2	ASN	275	109.868	77.196	60.104	1.00	0.00	H
ATOM		2HD2		275	108.261	77.716	59.370	1.00	0.00	H
ATOM	3710	N	PRO	276	107.529	72.281	59.351	1.00	0.00	N
ATOM ATOM	3711 3712	CA C	PRO PRO	276 276	108.012 109.169	71.204	60.272	1.00	0.00	C
ATOM	3713	0	PRO	276	109.175	71.505	61.293 62.375	1.00	0.00	0
ATOM	3714	СВ	PRO	276	108.317	70.048	59.295	1.00	0.00	Č
ATOM	3715	CG	PRO	276	108.521	70.705	57.929	1.00	0.00	Ġ
MOTA	3716	CD	PRO	276	107.552	71.883	57.930	1.00	0.00	C
ATOM	3717	HA	PRO	276	107.154	70.888	60.894	1.00	0.00	н
MOTA MOTA	3718 3719		PRO	276	109.183	69.429	59.600	1.00	0.00	H
ATOM	3720		PRO	276 276	107.450 109.564	69.360 71.066	59.253 57.829	1.00	0.00	H H
ATOM	3721		PRO	276	108.334	70.011	57.088	1.00	0.00	Н
ATOM	3722	1HD	PRO	276	107.894	72.676	57.242	1.00	0.00	н
MOTA	3723	2HD	PRO	276	106.538	71.571	57.604	1.00	0.00	н
MOTA	3724	N	VAL	277	110.109	72.418	60.991	1.00	0.00	N
ATOM	3725	CA	VAL	277	111.112	72.927	61.992	1.00	0.00	ď
MOTA MOTA	3726 3727	0	VAL VAL	277 277	110.471 110.775	73.844 73.669	63.108 64.292	1.00	0.00	C
ATOM	3728	СВ	VAL	277	112.343	73.601	61.275	1.00	0.00	0
ATOM	3729		VAL	277	113.500	73.923	62.250	1.00	0.00	č
ATOM	3730	CG2	VAL	277	112.986	72.778	60.130	1.00	0.00	Ċ
MOTA	3731	H	VAL	277	109.923	72.910	60.110	1.00	0.00	н
ATOM	3732	HA	VAL	277	111.515	72.046	62.533	1.00	0.00	Н
ATOM ATOM	3733	HB 1HG1	VAL	277 277	111.989 113.946	74.556 73.012	60.836	1.00	0.00	н
ATOM		2HG1		277	114.317	74.489	62.689 61.763	1.00	0.00	H H
ATOM		3HG1		277	113.158	74.543	63.096	1.00	0.00	н
MOTA	3737	2HG2	VAL	277	112.267	72.588	59.312	1.00	0.00	н
ATOM		3HG2		277	113.844	73.303	59.667	1.00	0.00	н
ATOM		1HG2		277	113.347	71.793	60.477	1.00	0.00	н
ATOM ATOM	3740 3741	N CA	ALA ALA	278 278	109.573 108.679	74.787 75.464	62.751 63.733	1.00 1.00	0.00	N C
ATOM	3742	c	ALA	278	107.712	74.540	64.557	1.00	0.00	c
ATOM	3743	0	ALA	278	107.630	74.703	65.775	1.00	0.00	ō
MOTA	3744	CB	ALA	278	107.921	76.556	62.955	1.00	0.00	С
ATOM	3745	H	ALA	278	109.333	74.738	61.754	1.00	0.00	H
ATOM ATOM	3746 3747	AH 2U2	ALA ALA	278 278	109.320 108.606	75.978 77.275	64.478 62.472	1.00	0.00	н
ATOM	3748		ALA	278	107.273	76.132	62.163	1.00	0.00	H H
ATOM	3749		ALA	278	107.267	77.145	63.624	1.00	0.00	н
ATOM	3750	N	ALA	279	107.026	73.560	63.934	1.00	0.00	N
ATOM	3751	CA	ALA	279	106.300	72.479	64.659	1.00	0.00	С
ATOM	3752	C	ALA ALA	279	107.139	71.631	65.676	1.00	0.00	C
ATOM ATOM	3753 3754	O CB	ALA	279 279	106.714 105.640	71.487 71.588	66.822 63.591	1.00	0.00	0
ATOM	3755	н	ALA	279	107.144	73.548	62.910	1.00	0.00	н
ATOM	3756	HA	ALA	279	105.486	72.953	65.245	1.00	0.00	H
ATOM	3757		ALA	279	105.033	72.162	62.868	1.00	0.00	н
ATOM	3758		ALA	279	106.390	71.021	63.011	1.00	0.00	н
ATOM ATOM	3759 3760	N	ALA SER	279 280	104.968 108.335	70.841 71.141	64.053 65.295	1.00	0.00	н
ATOM	3761	CA	SER	280	109.313	70.538	66.246	1.00 1.00	0.00	C N
ATOM	3762	c	SER	280	109.736	71.432	67.466	1.00	0.00	č
ATOM	3763	0	SER	280	109.698	70.949	68.596	1.00	0.00	0
ATOM	3764	CB	SER	280	110.530	70.068	65.414	1.00	0.00	C
ATOM	3765	OG	SER	280	111.472	69.355	66.219	1.00	0.00	0
ATOM ATOM	3766 3767	H HA	SER	280 280	108.550 108.843	71.281 69.630	64.299	1.00	0.00	H
ATOM	3768		SER	280	110.202	69.630	66.675 64.585	1.00	0.00	H H
ATOM	3769		SER	280	111.030	70.929	64.926	1.00	0.00	н
ATOM	3770	HG	SER	280	111.677	69.903	66.986	1.00	0.00	н
MOTA	3771	N	LEU	281	110.091	72.716	67.265	0.00	0.00	N
ATOM	3772	CA	LEU	281	110.282	73.690	68.385	0.00	0.00	C
MOTA	3773	С	LEU	281	109.019	73.976	69.287	0.00	0.00	С

						124				
ATOM	3774	0	LEU	281	109.153	74.008	70.512	0.00	0.00	0
ATOM	3775	CB	LEU	281	110.916	74.971	67.767	0.00	0.00	Ċ
ATOM	3776	CG	LEU	281	111.466	76.022	68.769	0.00	0.00	Ċ
ATOM	3777	CD1	LEU	281	112.724	75.538	69.510	0.00	0.00	С
MOTA	3778	CD2	LEU	281	111.794	77.333	68.038	0.00	0.00	C
MOTA	3779	H	LEU	281	110.044	73.008	66.280	0.00	0.00	н
ATOM	3780	HA	LEU	281	111.034	73.249	69.067	0.00	0.00	H
ATOM	3781		LEU	281	110.155	75.447	67.118	0.00	0.00	н
ATOM	3782	2HB	LEU	281	111.735	74.695	67.073	0.00	0.00	н
ATOM ATOM	3783	HG 1HD1	LEU	281 281	110.686 113.118	76.238 76.305	69.526	0.00	0.00	H
ATOM		2HD1		281	112.523	74.639	70.202 70.123	0.00	0.00	H H
ATOM		3HD1		281	113.541	75.285	68.812	0.00	0.00	н
ATOM	3787	1HD2		281	112.150	78.116	68.736	0.00	0.00	н
MOTA	3788	2HD2	TEA	281	112.581	77.195	67.273	0.00	0.00	н
MOTA	3789	3HD2	LEU	281	110.909	77.749	67.522	0.00	0.00	н
MOTA	3790	N	ILE	282	107.811	74.141	68.710	1.00	0.00	N
ATOM	3791	CA	ILE	282	106.519	74.183	69.481	1.00	0.00	С
ATOM	3792	C	ILE	282	106.240	72.868	70.311	1.00	0.00	Ċ
ATOM	3793	0	ILE	282	105.937	72.968	71.499	1.00	0.00	0
ATOM	3794	CB	ILE	282	105.333	74.624	68.532	1.00	0.00	c
ATOM ATOM	3795 3796		ILE	282 282	105.508	76.060 74.566	67.944 69.215	1.00	0.00	c c
ATOM	3797		ILE	282	104.640	76.398	66.716	1.00	0.00	c
ATOM	3798	н	ILE	282	107.829	74.102	67.681	1.00	0.00	н
ATOM	3799	HA	ILE	282	106.618	74.980	70.244	1.00	0.00	н
MOTA	3800	HB	ILE	282	105.319	73.908	67.686	1.00	0.00	н
ATOM	3801	1HG1	ILE	282	105.354	76.820	68.735	1.00	0.00	н
MOTA		2HG1		282	106.559	76.201	67.631	1.00	0.00	H
ATOM		2HG2		282	103.703	73.553	69.590	1.00	0.00	н
ATOM		3HG2		282	103.874	75.257	70.076	1.00	0.00	H
ATOM		1HG2		282	103.116	74.826	68.525	1.00	0.00	н
ATOM ATOM	3806 3807	2HD1 3HD1		282 282	104.804 103.559	75.679 76.401	65.892 66.950	1.00	0.00	н
ATOM		1HD1		282	104.881	77.403	66.322	1.00	0.00	H H
ATOM	3809	N	GLN	283	106.365	71.662	69.727	1.00	0.00	N
ATOM	3810	CA	GLN	283	106.324	70.366	70.478	1.00	0.00	Ċ
ATOM	3811	C	GLN	283	107.407	70.164	71.602	1.00	0.00	Č
ATOM	3812	0	GLN	283	107.077	69.647	72.669	1.00	0.00	0
ATOM	3813	CB	GIM	283	106.371	69.207	69.441	1.00	0.00	С
MOTA	3814	CG	GLN	283	105.123	69.066	68.524	1.00	0.00	С
MOTA	3815	CD	GLN	283	105.263	67.998	67.437	1.00	0.00	C
ATOM	3816		GLN GLN	283 283	105.841	68.208 66.821	66.378	1.00	0.00	0
ATOM ATOM	3817 3818	H	GLN	283	104.736 106.619	71.701	67.648 68.728	1.00	0.00	N H
ATOM	3819	на	GLN	283	105.351	70.309	71.006	1.00	0.00	н
ATOM	3820		GLN	283	107.284	69.312	68.820	1.00	0.00	H
ATOM	3821	2HB	GLN	283	106.509	68.248	69.979	1.00	0.00	н
ATOM	3822	1HG	GLN	283	104.215	68.892	69.130	1.00	0.00	H
ATOM	3823		GLN	283	104.931	70.020	68.000	1.00	0.00	H
ATOM		1HE2		283	104.316	66.660	68.566	1.00	0.00	н
ATOM		2HE2		283	104.911	66.152	66.894	1.00	0.00	н
ATOM ATOM	3826 3827	n Ca	LYS LYS	284 284	108.670 109.702	70.582 70.663	71.395 72.477	1.00	0.00	N
ATOM	3828	C	LYS	284	109.702	71.603	73.689	1.00	0.00	c c
ATOM	3829	ŏ	LYS	284	109.483	71.189	74.843	1.00	0.00	ő
ATOM	3830	CB	LYS	284	111.052	71.077	71.820	1.00	0.00	Č
MOTA	3831	CG	LYS	284	111.752	69.995	70.965	1.00	0.00	С
MOTA	3832	CD	LYS	284	112.939	70.569	70.164	1.00	0.00	C
ATOM	3833	CE	LYS	284	113.574	69.518	69.246	1.00	0.00	C
ATOM	3834	NZ	LYS	284	114.669	70.131	68.468	1.00	0.00	N
ATOM	3835		LYS	284	115.093	69.421	67.853	1.00	0.00	н
ATOM ATOM	3836 3837		LYS	284 284	114.295 115.385	70.901 70.498	67.895 69.111	1.00	0.00	H H
ATOM	3838	H	LYS	284	108.845	70.927	70.442	1.00	0.00	н
ATOM	3839	HA	LYS	284	109.825	69.652	72.914	1.00	0.00	н
ATOM	3840		LYS	284	110.891	71.994	71.217	1.00	0.00	н
ATOM	3841		LYS	284	111.762	71.394	72.606	1.00	0.00	н
ATOM	3842	1HG	LYS	284	112.088	69.161	71.612	1.00	0.00	н
ATOM	3843		LYS	284	111.023	69.541	70.266	1.00	0.00	н
ATOM	3844		LYS	284	112.585	71.426	69.555	1.00	0.00	Н
MOTA	3845		LYS	284	113.695	70.985	70.860	1.00	0.00	н
ATOM	3846	THE	LYS	284	113.956	68.663	69.840	1.00	0.00	н

						125				
ATOM	3847	2HE	LYS	284	112.813	69.091	68.562	1.00	0.00	н
ATOM	3848		MET	285	108.903	72.845	73.438	1.00	0.00	N
ATOM ATOM	3849 3850		MET MET	285	108.343	73.747	74.490	1.00	0.00	С
ATOM	3851		MET	285 285	107.007 106.880	73.268 73.356	75.172 76.396	1.00	0.00	C
ATOM	3852		MET	285	108.192	75.163	73.863	1.00	0.00	O C
ATOM	3853		MET	285	109.509	75.909	73.553	1.00	0.00	č
ATOM ATOM	3854 3855		MET	285	109.147	77.567	72.955	1.00	0.00	S
ATOM	3856		MET MET	285 285	110.808 108.820	78.115 73.061	72.529 72.436	1.00	0.00	C
ATOM	3857		MET	285	109.080	73.822	75.315	1.00	0.00	н н
ATOM	3858		MET	285	107.573	75.105	72.945	1.00	0.00	н
ATOM ATOM		2HB 1HG	MET	285	107.603	75.796	74.550	1.00	0.00	н
ATOM		2HG	MET MET	285 285	110.149 110.091	75.976 75.364	74.452 72.785	1.00	0.00	H
MOTA		1HE	MET	285	111.438	78.200	73.430	1.00	0.00	H H
ATOM		3HE	MET	285	111.288	77.407	71.829	1.00	0.00	H
ATOM ATOM	3864 3865	2HE N	MET LEU	285	110.774	79.105	72.043	1.00	0.00	H
ATOM	3866		LEU	286 286	106.023 104.734	72.769 72.249	74.403 74.938	0.00	0.00	N C
ATOM	3867		LEU	286	104.765	70.689	75.136	0.00	0.00	c
ATOM	3868		LEU	286	104.191	69.933	74.344	0.00	0.00	Ō
ATOM ATOM	3869 3870		LEU	286 286	103.593	72.713	73.979	0.00	0.00	C
ATOM	3871		LEU	286	103.350 102.345	74.234 74.488	73.781 72.647	0.00	0.00	C
MOTA	3872		LEU	286	102.828	74.911	75.053	0.00	0.00	c
ATOM	3873	H	LEU	286	106.248	72.721	73.399	0.00	0.00	н
ATOM ATOM	3874 3875		LEU LEU	286 286	104.520 102.649	72.696 72.257	75.927	0.00	0.00	H
ATOM	3876		LEU	286	103.772	72.237	74.326 72.989	0.00	0.00	H H
ATOM	3877		LEU	286	104.310	74.702	73.489	0.00	0.00	н
ATOM ATOM		1HD1		286	102.251	75.564	72.415	0.00	0.00	Н
ATOM		2HD1 3HD1		286 286	102.649 101.334	73.981 74.117	71.715 72.893	0.00	0.00	н
ATOM		1HD2		286	102.662	75.994	74.907	0.00	0.00	H H
ATOM		2HD2		286	101.871	74.475	75.399	0.00	0.00	н
ATOM ATOM	3883 3884	3HD2 N	LEU GLN	286	103.544	74.819	75.886	0.00	0.00	н
ATOM	3885	CA	GLN	287 287	105.413 105.589	70.203 68.743	76.211 76.475	0.00	0.00	С И
ATOM	3886	C	GLN	287	105.173	68.375	77.939	0.00	0.00	c
ATOM	3887	0	GLN	287	105.882	68.685	78.895	0.00	0.00	0
ATOM ·	3888 3889	CB CG	GLN GLN	287 287	107.068 107.540	68.397 66.935	76.131	0.00	0.00	C
ATOM	3890	CD	GLN	287	106.894	65.837	76.360 75.513	0.00	0.00	C C
MOTA	3891	OE1		287	107.388	65.437	74.467	0.00	0.00	ő
ATOM ATOM	3892	NE2		287	105.791	65.276	75.937	0.00	0.00	N
ATOM	3893 3894	H HA	GLN GLN	287 287	105.978 104.957	70.908 68.147	76.702 75.785	0.00	0.00	H
ATOM	3895		GLN	287	107.737	69.060	76.715	0.00	0.00	н н
ATOM	3896	2HB	GLN	287	107.271	68.671	75.076	0.00	0.00	н
ATOM ATOM	3897 3898		GLN GLN	287 287	107.477	66.675	77.433	0.00	0.00	н
ATOM		1HE2		287	108.623 105.310	66.896 65.754	76.145 76.700	0.00	0.00	H H
MOTA		2HE2		287	105.393	64.634	75.247	0.00	0.00	H
ATOM	3901	N	THR	288	104.048	67.664	78.139	1.00	0.00	N
ATOM ATOM	3902 3903	CA C	THR THR	288 288	103.543 104.436	67.291	79.511 80.418	1.00	0.00	C
ATOM	3904	Ö	THR	288	104.234	66.358 66.308	81.634	1.00	0.00	c 0
ATOM	3905	CB	THR	288	102.058	66.822	79.390	1.00	0.00	č
ATOM	3906		THR	288	101.424	66.860	80.660	1.00	0.00	0
ATOM ATOM	3907 3908	H	THR THR	288 288	101.822 103.483	65.403 67.504	78.845 77.290	1.00	0.00	c
ATOM	3909	HA	THR	288	103.495	68.235	80.088	1.00	0.00	H H
ATOM	3910	HB	THR	288	101.518	67.539	78.739	1.00	0.00	н
ATOM	3911		THR	288	100.655	66.284	80.589	1.00	0.00	H
ATOM ATOM		1HG2 2HG2		288 288	100.743 102.281	65.181 65.264	78.732 77.849	1.00	0.00	Н
ATOM	3914			288	102.251	64.629	79.511	1.00	0.00	H H
ATOM	3915	N	ASP	289	105.434	65.659	79.851	0.00	0.00	N
ATOM ATOM	3916	CA	ASP	289	106.531	65.022	80.628	0.00	0.00	C
ATOM	3917 3918	C O	ASP ASP	` 289 289	107.747 108.507	66.022 66.112	80.745 79.773	0.00	0.00	c
ATOM	3919	CB	ASP	289	106.933	63.698	79.773	0.00	0.00	0 C
										_

						407				
						126				
MOTA	3920	CG	ASP	289	105.899	62.579	79.992	0.00	0.00	c o
ATOM	3921	OD1 OD2		289 289	105.743 105.173	61.857 62.469	80.970 78.848	0.00	0.00	ŏ
MOTA MOTA	3922 3923	H	ASP	289	105.566	65.931	78.873	0.00	0.00	н
MOTA	3924	HA	ASP	289	106.183	64.747	81.643	0.00	0.00	H
ATOM	3925		ASP	289	107.856	63.302	80.382	0.00	0.00	H
ATOM		2HB	ASP	289	107.206	63.884	78.866	0.00	0.00	Н
MOTA	3927	Ŋ	PRO	290	108.009	66.769	81.862	1.00	0.00	Й
ATOM	3928	CA	PRO	290	109.137	67.754	81.926	1.00	0.00	C
MOTA	3929	C	PRO	290	110.615 111.483	67.241 68.016	81.787 81.382	1.00	0.00	o
MOTA MOTA	3930 3931	O CB	PRO PRO	290 290	108.847	68.505	83.240	1.00	0.00	č
ATOM	3932	CG	PRO	290	107.998	67.547	84.076	1.00	0.00	С
ATOM	3933	CD	PRO	290	107.135	66.813	83.051	1.00	0.00	C
ATOM	3934	HA	PRO	290	109.003	68.477	81.096	1.00	0.00	н
MOTA		1HB	PRO	290	109.761	68.838	83.770	1.00	0.00	н
ATOM		2HB	PRO	290	108.273	69.427	83.016	1.00	0.00	H H
ATOM		1HG	PRO PRO	290 290	108.650 107.394	66.830 68.066	84.612 84.842	1.00	0.00	н
MOTA MOTA	3938 3939	2HG 1HD	PRO	290	106.837	65.816	83.426	1.00	0.00	н
ATOM	3940	2HD	PRO	290	106.212	67.384	82.828	1.00	0.00	H
ATOM	3941	N	THR	291	110.902	65.954	82.033	0.00	0.00	N
ATOM	3942	CA	THR	291	112.170	65.287	81.572	0.00	0.00	C
MOTA	3943	C	THR	291	112.443	65.277	80.021	0.00	0.00	C 0
MOTA	3944	O	THR	291 291	113.599 112.272	65.396 63.838	79.608 82.150	0.00	0.00	c
ATOM ATOM	3945 3946	CB	THR THR	291	111.144	63.050	81.782	0.00	0.00	ō
ATOM	3947	CG2		291	112.401	63.745	83.679	0.00	0.00	С
ATOM	3948	н	THR	291	110.076	65.407	82.290	0.00	0.00	H
MOTA	3949	HA	THR	291	113.018	65.861	81.998	0.00	0.00	H
MOTA	3950	HB	THR	291	113.182	63.366	81.723	0.00	0.00	H H
ATOM	3951	HG1 1HG2		291 291	111.255 112.536	62.203 62.702	82.220 84.020	0.00	0.00	н
ATOM ATOM	3952 3953		THR	291	113.270	64.321	84.048	0.00	0.00	н
ATOM	3954			291	111.506	64.145	84.192	0.00	0.00	н
ATOM	3955	N	ALA	292	111.407	65.155	79.170	1.00	0.00	N
MOTA	3956	CA	ALA	292	111.517	65.430	77.707	1.00	0.00	C
MOTA	3957	C	ALA	292	111.351	66.921	77.21 7 76.008	1.00	0.00	C 0
ATOM	3958	O CB	ALA ALA	292 292	111.419 110.464	67.163 64.496	77.075	1.00	0.00	č
ATOM ATOM	3959 3960	CB H	ALA	292	110.496	65.160	79.642	1.00	0.00	H
ATOM	3961		ALA	292	112.511	65.107	77.339	1.00	0.00	н
ATOM	3962		ALA	292	110.646	63.432	77.318	1.00	0.00	н
MOTA	3963		ALA	292	109.436	64.743	77.400	1.00	0.00	H H
MOTA		1HB	ALA	292	110.472 111.155	64.572 67.913	75.971 78.102	1.00	0.00	N
MOTA MOTA	3965 3966		ARG ARG	293 293	111.035	69.349	77.730	0.00	0.00	C
MOTA	3967		ARG	293	112.431	70.079	77.848	0.00	0.00	С
ATOM	3968		ARG	293	112.874	70.307	78.980	0.00	0.00	0
MOTA	3969	CB	ARG	293	109.945	69.948	78.668	0.00	0.00	C
MOTA	3970		ARG	293	109.355 108.545	71.322	78.250 79.350	0.00	0.00	c
MOTA	3971		ARG ARG	293 293	108.343	71.246	79.800	0.00	0.00	N
MOTA MOTA	3972 3973		ARG	293	106.613	71.500	80.849	0.00	0.00	C
ATOM	3974		LARG	293	106.746	72.531	81.627	0.00	0.00	N
ATOM	3975		2 ARG	293	105.679	70.655	81.106	0.00	0.00	Ŋ
MOTA	3976		ARG		107.138	70.414	79.242	1.00	0.00	H H
MOTA	3977		ARG		111.190 110.638	67.608 69.440	79.081 76.702	0.00	0.00	н
ATOM	3978	HA HB	ARG ARG		110.838	70.018	79.696	0.00	0.00	н
MOTA MOTA		2HB	ARG		109.087	69.250	78.757	0.00	0.00	H
ATOM		1HG	ARG		108.717	71.197	77.352	0.00	0.00	н
MOTA		2 1 1 G	ARG	293	110.172	71.994	77.921	0.00	0.00	н
ATOM		1HD	ARG		108.180	73.013	78.961	0.00	0.00	H H
MOTA		2HD	ARG		109.216 106.110	72.282 72.599	80.197 82.417	0.00	0.00	H H
ATOM		5 1HH: 5 2HH:			105.110	73.161	81.338	0.00	0.00	н
ATOM ATOM		7 1HH			105.098	70.793	81.925	0.00	0.00	H
ATOM		3 2HH			105.711	69.884	80.425	0.00	0.00	н
ATOM	3989	9 N	PRO	294	113.176	70.471	76.769	1.00	0.00	N
ATOM	3990				114.485	71.175	76.914	1.00	0.00	C
ATOM	399:		PRO		114.392 113.468	72.639 73.393	77.466 77.152		0.00	0
MOTA	3992	2 0	PRO	294	TT3.400	,3,373	,,,132	4.00	3. 44	Ū

						127				
ATOM	3993	CB	PRO	294	115.049	71.081	75.481	1.00	0.00	d
MOTA	3994	CG	PRO	294	113.832	70.955	74.566	1.00	0.00	C
MOTA	3995	CD	PRO	294	112.832	70.136	75.375	1.00.	0.00	C
ATOM	3996	HA	PRO	294	115.134	70.581	77.588	1.00	0.00	H
ATOM ATOM	3997 3998		PRO	294	115.680	71.944	75.202	1.00	0.00	H
ATOM	3999		PRO PRO	294 294	115.686 113.411	70.180 71.958	75.389	1.00	0.00	H
ATOM	4000		PRO	294	114.067	70.495	74.363 73.588	1.00	0.00	H H
ATOM	4001		PRO	294	111.795	70.403	75.105	1.00	0.00	H
ATOM	4002		PRO	294	112.957	69.050	75.192	1.00	0.00	н
ATOM	4003	N	THR	295	115.339	73.037	78.328	1.00	0.00	N
MOTA	4004	CA	THR	295	115.353	74.386	78.981	1.00	0.00	c
MOTA	4005	C	THR	295	116.817	74.695	79.466	1.00	0.00	c
ATOM	4006	0	THR	295	117.387	73.917	80.231	1.00	0.00	0
ATOM	4007	CB	THR	295	114.333	74.468	80.166	1.00	0.00	d
ATOM ATOM	4008 4009		THR	295 295	113.010 114.231	74.194	79.725	1.00	0.00	0
ATOM	4010	H H	THR	295	116.015	75.846 72.303	80.832 78.578	1.00	0.00	C H
ATOM	4011	HA	THR	295	115.040	75.133	78.232	1.00	0.00	H
ATOM	4012	HB	THR	295	114.610	73.714	80.932	1.00	0.00	H
MOTA	4013	HG1	THR	295	113.092	73.632	78.939	1.00	0.00	н
MOTA	4014	1HG2	THR	295	113.968	76.636	80.108	1.00	0.00	н
MOTA		2HG2		295	113.451	75.851	81.616	1.00	0.00	. Н
ATOM				295	115.181	76.140	81.311	1.00	0.00	н
ATOM	4017	N	ILE	296	117.571	75.760	79.174	1.00	0.00	N
ATOM	4018	CA	ILE	296	117.200	76.943	78.320	1.00	0.00	c
MOTA MOTA	4019 4020	C O	ILE	296 296	118.198 117.754	77.193	77.130	1.00	0.00	C
ATOM	4021	СВ	ILE	296	116.909	77.424 78.203	76.002 79.219	1.00	0.00	o c
ATOM	4022		ILE	296	116.285	79.421	78.478	1.00	0.00	c
ATOM	4023		ILE	296	118.123	78.712	80.038	1.00	0.00	č
ATOM	4024		ILE	296	114.886	79.182	77.886	1.00	0.00	Č
ATOM	4025	H	ILE	296	118.460	75.689	79.683	1.00	0.00	н
MOTA	4026	HA	ILE	296	116.253	76.730	77.797	1.00	0.00	н
ATOM	4027	HB	IFE	296	116.153	77.880	79.950	1.00	0.00	н
ATOM		1HG1		296	116.200	80.276	79.177	1.00	0.00	H
MOTA		2HG1		296	116.970	79.783	77.684	1.00	0.00	H
MOTA MOTA		2HG2 3HG2		296 396	118.571	77.916	80.662	1.00	0.00	H
ATOM		1HG2		296 296	118.925 117.843	79.109 79.526	79.388 80.735	1.00	0.00	H H
ATOM		2HD1		296	114.897	78.440	77.066	1.00	0.00	н
ATOM		3HD1		296	114.170	78.831	78.652	1.00	0.00	н
MOTA	4035			296	114.472	80.115	77.461	1.00	0.00	н
MOTA	4036	N	ASN	297	119.524	77.082	77.342	1.00	0.00	N
MOTA	4037	CA	ASN	297	120.539	76.963	76.244	1.00	0.00	С
ATOM	4038	С	ASN	297	120.318	75.865	75.137	1.00	0.00	С
ATOM	4039	0	ASN	297	120.720	76.074	73.993	1.00	0.00	0
ATOM	4040	CB	ASN	297	121.955	76.877	76.885	1.00	0.00	C
ATOM ATOM	4041 4042	CG	asn asn	297 297	122.271 121.591	75.635 75.318	77.728 78.696	1.00	0.00	c 0
ATOM	4043		ASN	297	123.300	74.896	77.410	1.00	0.00	N
ATOM	4044	н	ASN	297	119.777	76.885	78.316	1.00	0.00	н
ATOM	4045	HA	ASN	297	120.509	77.926	75.696	1.00	0.00	H
MOTA	4046	1HB	ASN	297	122.710	77.007	76.087	1.00	0.00	н
ATOM	4047	2HB	ASN	297	122.116	77.751	77.540	1.00	0.00	H
ATOM		1HD2		297	123.467	74.122	78.059	1.00	0.00	н
MOTA		2HD2		297	123.883	75.208	76.631	1.00	0.00	H
MOTA	4050	N	GLU	298	119.665	74.735	75.458	1.00	0.00	N
ATOM	4051	CA	GLU	298	119.131	73.759	74.458	1.00	0.00	c
MOTA MOTA	4052	C	GLU	298	118.095 118.223	74.333	73.417	1.00	0.00	C
ATOM	4053 4054	O CB	GLU	298 298	118.500	74.070 72.576	72.223 75.246	1.00	0.00	O C
ATOM	4055	CG	GLU	298	119.433	71.725	76.149	1.00	0.00	c
ATOM	4056	CD	GLU	298	118.675	70.676	76.962	1.00	0.00	G
ATOM	4057		GLU	298	117.817	70.947	77.795	1.00	0.00	ō
ATOM	4058		GLU	298	119.052	69.407	76.656	1.00	0.00	. 0
ATOM	4059	H	GLU	298	119.435	74.674	76.456	1.00	0.00	H
ATOM	4060	HA	GLU	298	119.980	73.366	73.862	1.00	0.00	н
MOTA	4061		GLU	298	117.661	72.964	75.858	1.00	0.00	H
ATOM	4062		GLU	298	118.022	71.888	74.519	1.00	0.00	н
ATOM	4063		GLU	298	120.219	71.239	75.542	1.00	0.00	н
ATOM ATOM	4064 4065	2HG N	GLU	298	119.971	72.366	76.871	1.00	0.00	Н
ATOM	4003	7.4	LEU	299	117.091	75.115	73.859	1.00	0.00	И

MOTA	4066	CA	LEU	299	116.186	75.882	72.942	1.00	0.00	c
MOTA	4067	С	PRO	299	116.861	77.050	72.136	1.00	0.00	c
ATOM	4068	0	LEU	299	116.532	77.249	70.965	1.00	0.00	o
MOTA	4069	CB	LEU	299	114.977	76.408	73.767	1.00	0.00	Ċ
ATOM	4070	CG	LEU	299	113.984	75.356	74.328	1.00	0.00	Ċ
MOTA	4071		LEU	299	113.061	76.019	75.358	1.00	0.00	č
ATOM	4072		LEU	299	113.127	74.708	73.229	1.00	0.00	Č
ATOM	4073	н	LEU	299	117.153	75.335	74.857	1.00		
ATOM	4074	HA	LEU	299	115.798	75.187	72.171		0.00	н
ATOM	4075		LEU	299	115.370	77.032		1.00	0.00	H
		2HB					74.594	1.00	0.00	H
ATOM	4076 4077		LEU	299	114.398	77.123	73.148	1.00	0.00	Н
ATOM		HG	TEO	299	114.545	74.556	74.851	1.00	0.00	Н
ATOM		2HD1		299	113.638	76.425	76.207	1.00	0.00	H
MOTA		3HD1		299	112.472	76.850	74.931	1.00	0.00	н
ATOM		1HD1		299	112.342	75.295	75.786	1.00	0.00	H
ATOM	4081			299	112.564	75.457	72.642	1.00	0.00	H
MOTA	4082	3HD2		299	113.738	74.125	72.517	1.00	0.00	H
MOTA	4083	1HD2		299	112.380	74.008	73.649	1.00	0.00	H
ATOM	4084	N	LEU	300	117.800	77.804	72.742	0.00	0.00	N
ATOM	4085	CA	LEU	300	118.689	78.749	72.003	0.00	0.00	C
ATOM	4086	С	LEU	300	119.619	78.094	70.910	0.00	0.00	С
MOTA	4087	0	LEU	300	119.696	78.602	69.791	0.00	0.00	0
ATOM	4088	CB	LEU	300	119.475	79.548	73.087	0.00	0.00	С
ATOM	4089	CG	LEU	300	120.146	80.865	72.617	0.00	0.00	С
MOTA	4090		ΓEΩ	300	119.115	81.989	72.419	0.00	0.00	С
MOTA	4091	CD2	LEU	300	121.191	81.327	73.645	0.00	0.00	С
MOTA	4092	H	LEU	300	117.959	77.545	73.722	0.00	0.00	H
MOTA	4093	HA	LEU	300	118.035	79.456	71.458	0.00	0.00	H
MOTA	4094	1HB	TEA	300	120.243	78.874	73.511	0.00	0.00	H
MOTA	4095	2HB	LEU	300	118.821	79.790	73.950	0.00	0.00	н
MOTA	4096	HG	LEU	300	120.669	80.685	71.654	0.00	0.00	Ħ
ATOM	4097	1HD1	LEU	300	119.592	82.917	72.055	0.00	0.00	H
MOTA	4098	2HD1	LEU	300	118.343	81.724	71.675	0.00	0.00	H
MOTA	4099	3HD1	LEU	300	118.589	82.249	73.357	0.00	0.00	H
ATOM	4100	1HD2	LEU	300	121.695	82.259	73.327	0.00	0.00	H
ATOM	4101	2HD2	LEU	300	120.746	81.517	74.640	0.00	0.00	H
MOTA	4102	3HD2	LEU	300	121.988	80.573	73.783	0.00	0.00	H
ATOM	4103	N	ASN	301	120.297	76.970	71.206	1.00	0.00	N
MOTA	4104	CA	ASN	301	121.104	76.208	70.204	1.00	0.00	С
ATOM	4105	C	ASN	301	120.227	75,154	69.432	1.00	0.00	С
ATOM	4106	0	ASN	301	120.271	73.949	69.696	1.00	0.00	0
MOTA	4107	CB	ASN	301	122.318	75.573	70.940	1.00	0.00	C
MOTA	4108	CG	ASN	301	123.381	76.548	71.451	1.00	0.00	C
MOTA	4109	OD1	ASN	301	124.255	77.005	70.727	1.00	0.00	0
MOTA	4110	ND2	ASN	301	123.349	76.909	72.706	1.00	0.00	N
ATOM	4111	H	ASN	301	120.089	76.589	72.137	1.00	0.00	н
ATOM	4112	HA	ASN	301	121.521	76.899	69.441	1.00	0.00	н
ATOM	4113	1HB	ASN	301	121.973	74.907	71.753	1.00	0.00	H
ATOM	4114	2HB	ASN	301	122.841	74.896	70.241	1.00	0.00	н
ATOM	4115	1HD2	ASN	301	124.007	77.663	72.912	1.00	0.00	н
ATOM	4116	2HD2	ASN	301	122.480	76.659	73.193	1.00	0.00	н
ATOM	4117	N	ASP	302	119.431	75.633	68.462	1.00	0.00	N
ATOM	4118	CA	ASP	302	118.470	74.800	67.682	1.00	0.00	C
ATOM	4119	C	ASP	302	118.558	75.124	66.146	1.00	0.00	c
ATOM	4120	0	ASP	302	118.888	76.244	65.746	1.00	0.00	0
ATOM	4121	CB	ASP	302	117.068	75.070	68.304	1.00	0.00	c
MOTA	4122	CG	ASP	302	115.930	74.205	67.769	1.00	0.00	С
MOTA	4123	OD1	ASP	302	115.315	74.453	66.736	1.00	0.00	ö
MOTA	4124	OD2	ASP	302	115.684	73.122	68.555	1.00	0.00	0
ATOM	4125	н	ASP	302	119.450	76.657	68.388	1.00	0.00	н
ATOM	4126	HA	ASP	302	118.713	73.724	67.810	1.00	0.00	н
ATOM	4127		ASP	302	117.108	74.932	69.403	1.00	0.00	н
MOTA	4128		ASP	302	116.784	76.131	68.168	1.00	0.00	н
ATOM	4129	N	GLU	303	118.186	74.166	65.272	1.00	0.00	N
ATOM	4130	CA	GLU	303	118.106	74.393	63.789	1.00	0.00	c
ATOM	4131	C	GLU	303	117.247	75.612	63.272	1.00	0.00	č
ATOM	4132	ō	GLU	303	117.653	76.272	62.311	1.00	0.00	ō
ATOM	4133	СВ	GLU	303	117.698	73.037	63.143	1.00	0.00	č
ATOM	4134	CG	GLU	303	117.791	72.950	61.594	1.00	0.00	č
ATOM	4135	CD	GLU	303	119.196	73.093	61.008	1.00	0.00	č
ATOM	4136	OE1		303	120.002	72.174	60.934	1.00	0.00	ő
ATOM	4137	OE2		303	119.453	74.358	60.580	1.00	0.00	ŏ
ATOM	4138	н	GLU	303	117.932	73.274	65.704	1.00	0.00	н
										**

						129				
ATOM	4139		GLU	303	119.138	74.609	63.453	1.00	0.00	н
ATOM ATOM		1HB	GLU		118.319	72.218			0.00	. Н
ATOM	4142	L 2HB	GLU		116.662 117.397	72.789	63.449		0.00	H
ATOM	4143		GLU		117.126	71.974 73.698	61.259 61.122	1.00	0.00	H H
ATOM	4144	ı N	PHE		116.123	75.957	63.930	1.00	0.00	n N
MOTA	4145		PHB		115.408	77.255	63.706	1.00	0.00	С
MOTA MOTA	4146		PHE		116.187	78.601		1.00	0.00	C
ATOM	4148		PHE		115.678 114.086	79.671 77.155	63.666 64.532	1.00	0.00	0
ATOM	4149		PHE		112.952	78.103	64.094	1.00	0.00	C
ATOM	4150		L PHE		112.209	77.828	62.941	1.00	0.00	č
ATOM ATOM	4151 4152		PHE PHE		111.199	78:696	62.531	1.00	0.00	С
ATOM	4153		PHE		110.911 111.637	79.832 80.110	63.280 64.436	1.00	0.00	C
ATOM	4154		PHE		112.654	79.248	64.842	1.00	0.00	C
ATOM	4155		PHE		115.943	75.378	64.761	1.00	0.00	н
ATOM ATOM	4156 4157		PHE		115.142	77.303	62.631	1.00	0.00	H
ATOM	4158		PHE	304 304	113.671 114.322	76.131 77.303	64.512 65.605	1.00	0.00	H
ATOM	4159		PHE	304	112.421	76.945	62.353	1.00	0.00	н н
ATOM	4160		. PHE	304	110.639	78.489	61.632	1.00	0.00	H
ATOM ATOM	4161 4162		PHE	304	110.124	80.503	62.962		0.00	H
ATOM	4163		PHE PHE	304 304	111.414 113.223	80.993 79.482	65.017 65.731	1.00	0.00	H
ATOM	4164		PHE	305	117.381	78.573		1.00	0.00	H N
MOTA	4165		PHE	305	118.152	79.787	65.016	1.00	0.00	Ċ
ATOM ATOM	4166 4167		PHE	305	119.662	79.644	64.585	1.00	0.00	С
ATOM	4168		PHE	305 305	120.540 117.850	79.402 80.000	65.413 66.535	1.00	0.00	0
ATOM	4169		PHE	305	118.007	81.423	67.096	1.00	0.00	c c
ATOM	4170		PHE	305	117.364	82.517	66.501	1.00	0.00	č
ATOM ATOM	4171 4172			305	117.504	83.793	67.039	1.00	0.00	С
ATOM	4173	CE2	PHE	305 305	118.254 118.865	83.979 82.894	68.198 68.816	1.00	0.00	C
ATOM	4174			305	118.748	81.623	68.264	1.00	0.00	c c
ATOM	4175	H	PHE	305	117.712	77.629	64.875	1.00	0.00	н
ATOM ATOM	4176 4177		PHE	305 305	117.765	80.671	64.481	1.00	0.00	Н
ATOM	4178		PHE	305	116.802 118.447	79.722 79.271	66.766 67.120	1.00	0.00	H H
ATOM	4179	HD1	PHE	305	116.765	82.390	65.609	1.00	0.00	н
ATOM	4180		PHE	305	117.030	84.635	66.552	1.00	0.00	н
ATOM ATOM	4181 4182	HZ HE2	PHE	305 305	118.367 119.442	84.968 83.036	68.618 69.715	1.00	0.00	н
ATOM	4183		PHE	305	119.245	80.795	68.747	1.00	0.00	H H
ATOM	4184	N	THR	306	119.955	79.784	63.270	1.00	0.00	N
ATOM ATOM	4185 4186	CA C	THR THR	306	121.282	79.388	62.661	1.00	0.00	C
ATOM	4187	Ö	THR	306 306	122.021 123.248	80.408 80.336	61.698 61.626	1.00	0.00	c 0
ATOM	4188	CB	THR	306	121.171	77.981	61.978	1.00	0.00	Č
MOTA	4189		THR	306	120.041	77.881	61.114	1.00	0.00	0
ATOM ATOM	4190 4191	H	THR THR	306 306	121.072 119.106	76.801 79.752	62.954	1.00	0.00	C
ATOM	4192	HA	THR	306	122.024	79.272	62.694 63.477	1.00	0.00	н н
ATOM	4193	HB	THR	306	122.083	77.809	61.368	1.00	0.00	н
ATOM ATOM	4194	HG1 1HG2	THR	306	119.374	77.379	61.601	1.00	0.00	H
ATOM		2HG2		306 306	121.035 121.942	75.832 76.765	62.425 63.637	1.00	0.00	H
ATOM		3HG2		306	120.171	76.867	63.591	1.00	0.00 0.00	H H
ATOM	4198	N	SER	307	121.351	81.322	60.959	1.00	0.00	N
ATOM ATOM	4199 4200	CA C	SER SER	307	122.008	82.279	60.005	1.00	0.00	C
ATOM	4201	ō	SER	307 307	121.336 120.332	83.709 83.893	59.965 59.268	1.00	0.00	c
ATOM	4202	СВ	SER	307	122.038	81.621	58.598	1.00	0.00	0
ATOM	4203	OG	SER	307	120.733	81.519	58.018	1.00	0.00	ō
ATOM ATOM	4204 4205	H HA	SER	307	120.334	81.201	60.982	1.00	0.00	H
ATOM	4206		SER SER	307 307	123.069 122.689	82.426 82.210	60.287 57.925	1.00	0.00	н
ATOM	4207		SER	307	122.506	80.618	58.645	1.00	0.00	H H
ATOM	4208	HG	SER	307	120.294	82.369	58.183	1.00	0.00	н
ATOM ATOM	4209 4210	N CA	GLY	308	121.864	84.730	60.673	0.00	0.00	N
ATOM	4210	CA	GLY GLY	308 308	121.237 121.856	86.094 87.165	60.694 61.631	0.00	0.00	C
		-	-			_,	44.431	J. JU	0.00	С

						130				
MOTA	4212	OC	GLY	308	121.218	87.503	62.866	1.00	0.00	0
MOTA	4213	0	GLY	308	122.904	87.719	61.299	0.00	0.00	0
ATOM	4214	HC	GLY	308	120.660	86.703	63.195	1.00	0.00	Н
MOTA	4215	H	GLY	308	122.592	84.429	61.338	1.00	0.00	Н
MOTA	4216	1HA	GLY	308	121.270	86.515	59.672	0.00	0.00	H
MOTA	4217	2HA	GLY	308	120.155	86.006	60.912	0.00	0.00	H
TER										
ATOM	4218	PG	ATP	400H	94.957	91.733	84.664		56.62	P
ATOM	4219	01G	ATP	400H	94.187	90.944	83.509		61.42	0
ATOM	4220	PB	ATP	400H	95.915	93.870	83.671	1.00	53.17	P
MOTA	4221	01B	ATP	400H	96.089	93.010	82.330	1.00	54.96	0
MOTA	4222	Ola	ATP	400H	96.187	97.690	82.708	1.00	34.47	0
ATOM	4223	PA	ATP	400H	96.566	96.129	82.542	1.00	45.52	P
ATOM	4224	05	ATP	400H	98.142	95.970	82.935	1.00	43.48	0
ATOM	4225	03B	ATP	400H	94.875	93.256	84.560	1.00	53.99	0
MOTA	4226	02G	ATP	400H	96.437	91.126	84.983	1.00	57.35	0
ATOM	4227	03G	ATP	400H	94.312	91.481	86.097	1.00	57.62	0
ATOM	4228	02A	ATP	400H	96.428	95.839	80.960	1.00	42.48	0
ATOM	4229		ATP	400H	95.542	95.326	83.388	1.00	50.69	0
MOTA	4230	02B	ATP	400H	97.232	93.930	84.606	1.00	58.07	0
ATOM	4231	C5A	ATP	400H	99.030	97.140	83.056	1.00	39.42	C
ATOM	4232	C5	ATP	400H	105.482	98.998	81.874	1.00	22.15	C
ATOM	4233	02	ATP	400H	102.885	98.017	86.127	1.00	41.77	0
ATOM	4234	C2A	ATP	400H	102.084	98.131	84.952	1.00	38.93	С
MOTA	4235	C2	ATP	400H	103.750	100.569	80.504	1.00	24.73	С
ATOM	4236	04	ATP	400H	101.513	97.285	82.879	1.00	32.13	0
ATOM	4237	Cl	ATP	400H	102.647	97.361	83.759	1.00	30.56	С
ATOM	4238	N9	ATP	400H	103.870	98.006	83.189	1.00	23.28	N
MOTA	4239	C8	ATP	400H	105.187	97.588	83.362	1.00	19.33	C
MOTA	4240	N7	ATP	400H	106.229	98.104	82.631	1.00	24.44	N
ATOM	4241	C4	ATP	400H	104.058	98.982	82.211	1.00	23.86	С
ATOM	4242	C6	ATP	400H	105.895	99.858	80.790	1.00	20.25	C
MOTA	4243	N6	ATP	400H	107.148	99.906	80.376	1.00	24.16	N
MOTA	4244	N1	ATP	400H	105.019	100.612	80.163		22.35	N
ATOM	4245	из	ATP	400H	103.170	99.872	81.450		25.23	И
ATOM	4246	03	ATP	400H	100.578	96.609	86.178	1.00	49.35	0
ATOM	4247	C3	ATP	400H	100.670	97.532	85.088		39.09	C
ATOM	4248	C4A	ATP	400H	100.405	96.839	83.718		36.99	c
MOTA	4249	2H5	ATP	400H	99.210	97.562	82.051	1.00	0.00	H
ATOM	4250	1H5	ATP	400H	98.505	97.953	83.587	1.00	0.00	Н
MOTA	4251	H2A	ATP	400H	102.013	99.195	84.663	1.00	0.00	H
ATOM	4252	H2	ATP			101.207	79.921	1.00	0.00	H
MOTA	4253	H1	ATP		102.912	96.326	84.052	1.00	0.00	Н
MOTA	4254	H8	ATP	400H	105.406	96.787	84.057	1.00	0.00	н
ATOM	4255		ATP		107.816	99.359	80.926	1.00	0.00	н
ATOM		2H6	ATP			100.761	79.847	1.00	0.00	H
MOTA	4257		ATP		103.375	97.170	86.050	1.00	0.00	H
MOTA	4258	ноз	ATP		101.361	96.023	86.141	1.00	0.00	H
MOTA	4259		ATP		99.958	98.359	85.265	1.00	0.00	H
ATOM	4260	H4	ATP	400H	100.487	95.738	83.832	1.00	0.00	н
END										

Table 3. Inhibition of PLK1 enzymatic activity by adenosine, thioadenosines, and various thiol-reactive compounds in the presence or absence of dithiothreitol (+DTT or -DTT); IC₅₀; concentration with half-maximal inhibition.

Compound	IC ₅₀ (μM)				
Сотроици	+DTT	- DTT			
Thimerosal	> 200	22			
N-ethylmaleimide	> 200	55			
Iodoacetamide	> 200	83			
Adenosine	> 200	> 200			
2'-Thioadenosine	> 200	120			
5'-Thioadenosine	> 200	39			

Table 4. PLK1 contact model (Maestro) for ATP.

PL	K1	Ī	Ţ	
Residue	Atom	ATP atom	Distance (Å)	Contact cut-off ratio
K178	NZ	O1B	3.1	1.0
K178	CE	O1B	4.0	1.2
R135	NH1	O1A	3.9	1.2
K61	CA	O1A	4.2	1.3
K61	N	O1A	3.0	1.0
G60	N	O1A	4.1	1.3
G60	C	O1A	3.2	1.0
R135	NH1	PA	3.3	1.0
R135	CZ	PA	4.3	1.2
G60	3HD2	PA	4.4	1.3
R135	NH1	O5	3.1	1.0
G63	N	O3G	3.9	1.2
R135	NE	O2A	3.9	1.2
F135	NH2	O2A	3.3	1.0
R136	CZ	O2A	3.0	0.9
F136	NH1	C5A	3.3	1.0
C67	SG	C5A	3.7	1.1
F183	CE2	C5	4.0	1.1
F183	CZ	C5	3.8	1.1
F183	CE1	C5	3.6	1.0
F183	CD1	C5	3.7	1.1
A80	CB	C5	4.2	1.2
F183	CD2	C5	4.2	1.2
F183	CG	C5	4.1	1.2
D194	OD1	O2	3.1	1.0

			-	
D194	CG	O2	3.2	1.0
K82	NZ	O2	3.4	1.1
K82	CE	O2	3.3	1.0
K82	CD	O2	3.3	1.0
K82	CG	O2	4.1	1.3
K82	CB	O2	3.9	1.2
C67	SG	C2A	4.1	1.2
D194	OD2	C2A	3.4	1.1
D194	OD1	C2A	3.6	1.1
D194	CG	C2A	3.8	1.1
K82	CD	C2A	4.4	1.3
C67	CB	C2A	3.9	1.1
F183	CZ	C2	4.6	1.3
F183	CE1	C2	3.7	1.0
F183	CD1	C2	3.9	1.1
C133	0	C2	3.4	1.0
C133	Č	C2	4.4	1.3
A80	CB	C2	3.4	1.0
L59	CD1	C2	4.3	1.2
L59	CG	C2	4.4	1.3
C67	SG	04	4.2	1.3
F183	CZ	O4	3.6	1.1
F183	CE1	04	4.0	1.2
D194	CB	C1	4.4	1.3
F183	CZ	C1	3.8	1.1
F183	CE1	C1	4.4	1.3
D194	OD2	C1	3.3	1.0
D194	OD1	C1	3.8	1.1
D194	CG	C1	3.6	1.0
F183	CE2	N9	4.0	1.2
F183	CZ	N9	3.5	1.0
F183	CE1	N9	3.8	1.2
D194	OD2	N9	3.7	1.2
D194	CG	N9	4.3	1.3
D194	CB	C8	4.5	1.3
F183	CE2	C8	3.7	1.1
F183	CZ	C8	3.7	1.0
F183	CE1	C8	4.2	1.2
D194	OD2	C8	3.4	1.0
D194	CG	C8	4.1	1.2
G193	C	C8	4.1	1.2
G193	C	C8	4.3	1.2
D194	N	C8	3.9	1.2
F183	CD2	C8	4.4	1.2
L130	CD1	C8	3.9	1.1
F183	CE2	N7	3.8	1.1

			JJ	
F183	CZ	N7	3.9	1.1
F183	CE1	N7	4.2	1.2
F183	CD1	N7	4.4	1.3
G193	C	N7	4.4	1.3
G193	C	N7	4.0	1.2
F183	CD2	N7	4.0	1.2
F183	CG	N7	4.3	1.3
V114	CG2	N7	4.1	1.2
V114	CG1	N7	4.2	1.2
L130	CD1	N7	3.7	1.1
L130	СВ	N7	4.4	1.3
F183	CE2	C4	4.2	1.2
F183	CZ	C4	3.5	1.0
F183	CE1	C4	3.4	1.0
F183	CD1	C4	4.0	1.1
A80	CB	C4	4.3	1.2
F183	CZ	C6	4.4	1.3
F183	CE1	C6	3.8	1.1
F183	CD1	C6	3.5	1.0
C133	0	C6	4.1	1.2
A80	CB	C6	3.7	1.1
F183	CD2	C6	4.5	1.3
F183	CG	C6	3.9	1.1
V114	CG1	C6	4.4	1.3
C133	CB	C6	4.5	1.3
C133	N	C6	4.1	1.2
E131	0	C6	3.4	1.0
F183	CD1	N6	4.0	1.2
F183	CG	N6	4.0	1.2
V114	CG2	N6	3.8	1.1
V114	CG1	N6	3.4	1.0
V114	CB	N6	4.3	1.3
C133	SG	N6	4.4	1.3
C133	CB	N6	3.7	1.1
C133	CA	N6	4.2	1.3
C133	N	N6	3.8	1.2
E131	0	N6	2.8	0.9
E131	C	N6	4.0	1.2
F183	CE1	N1	3.9	1.1
F183	CD1	N1	3.6	1.1
C133	0	N1	3.1	1.0
C133	С	N1	3.9	1.1
F183	CD1	N1	3.3	1.0
F183	CG	N1	4.4	1.3
C133	CB	N1	4.3	1.3
C133	CA	N1	4.0	1.2

134

C133	N	N1	3.4	1.1
E131	0	N1	3.5	1.1
C67	SG	N3	4.5	1.3
F183	CZ	N3	4.1	1.2
F183	CE1	N3	3.5	1.0
F183	CD1	N3	4.1	1.2
F183	CD1	N3	3.9	1.1
L59	CD1	N3	4.1	1.2
D194	OD2	O3	3.9	1.3
D194	CG	O3	3.5	1.1
K82	CD	O3	4.1	1.3
C67	SG	C3	3.8	1.1
D194_	OD1	C3	3.6	1.1
D194	CG	C3	4.1	1.2
C67	CB	C3	4.1	1.2
C67	SG	C4A	4.1	1.2
D194	OD1	C4A	4.1	1.2

Table 5. PLK1 contact model (Quanta) for ATP.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	HG	3.5
L59	HD11	3.2
L59	HG	2.6
L59	HD13	3.1
G60	CA	2.8
G60	C	3.2
G60	HA1	1.9
G60	HA2	3.1
G60	HA1	3.5
G60	HA1	3.5
G60	HA1	2.9
K61	N	3.0
K61	H	2.2
G62	HA1	3.1
G63	H	2.9
C67	HG	3.1
C67	HB2	3.0
C67	HG	3.2
C67	HG	3.0
C67	HG	3.4
C67	HB2	3.3
C67	HG	3.2
C67	HG	3.2

-	_	
-1	~	•
	^	•

C67 HG 2.9 C67 SG 3.0 C67 HG 2.7 C67 CB 2.9 C67 SG 3.3 C67 HB1 2.9 C67 HB2 2.2 C67 HG 2.5 C67 CB 3.3 C67 CB 3.3 C67 HB2 2.6 C67 HB2 2.6 C67 HB2 2.6 C67 HB3 3.0 A80 CB 3.4 A80 HB1 2.9 A80 HB3 3.2 A80 HB3 3.1 A80 HB3 3.1 A80 HB3 3.1 A80 HB3 3.4 K82 CD 3.3 K82 CD 3.3 K82 HB2 3.1 K82 HB2 3.1 <			
C67 HG 2.7 C67 CB 2.9 C67 SG 3.3 C67 HB1 2.9 C67 HB2 2.2 C67 HG 2.5 C67 CB 3.3 C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB3 3.2 A80 HB3 3.2 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB3 3.1 A80 HB1 3.2 A80 HB3 3.1 A80 HB3 3.4 K82 CD 3.3 K82 NZ 3.4 K82 NZ 3.4 K82 HB2 3.1 <	C67	HG	2.9
C67 HG 2.7 C67 CB 2.9 C67 SG 3.3 C67 HB1 2.9 C67 HB2 2.2 C67 HB2 2.5 C67 CB 3.3 C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 HB1 3.2 A80 HB3 3.1 A80 HB3 3.1 A80 HB1 3.0 A80 HB2 3.0 A80 HB3 3.4 K82 CE 3.3 K82 NZ 3.4 K82 NZ 3.4 K82 HB2 3.1 K82 HB2 3.1		SG	3.0
C67 CB 2.9 C67 SG 3.3 C67 HB1 2.9 C67 HB2 2.2 C67 HG 2.5 C67 CB 3.3 C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB3 3.2 A80 HB3 3.2 A80 HB3 3.1 A80 HB3 3.1 A80 HB3 3.1 A80 HB3 3.1 A80 HB1 3.0 A80 HB3 3.1 A80 HB1 3.2 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HB2 3.1	C67	HG	
C67 HB1 2.9 C67 HB2 2.2 C67 CB 3.3 C67 CB 3.0 C67 CG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 HB1 3.2 A80 HB3 3.1 A80 HB3 3.1 A80 HB3 3.1 A80 HB1 3.2 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB2 3.5		CB	
C67 HB1 2.9 C67 HB2 2.2 C67 HG 2.5 C67 CB 3.3 C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 HB1 3.2 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 NZ 3.4 K82 NZ 3.4 K82 HB2 3.1 K82 HB2 3.1 K82 HB2 3.1 K82 HB2 3.5		SG	3.3
C67 HB2 2.2 C67 HG 2.5 C67 CB 3.3 C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 HB1 3.2 A80 HB2 2.9 A80 HB3 3.1 A80 HB3 3.1 A80 HB1 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 NZ 3.4 K82 NZ 3.4 K82 HB2 3.1 K82 HB2 3.1 K82 HB2 3.5 K82 HD1 3.4		HB1	
C67 CB 3.3 C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB3 3.2 A80 HB3 3.3 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB1 3.2 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HB2 3.5		HB2	
C67 SG 3.0 C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB3 3.2 A80 HB3 3.3 A80 HB1 3.2 A80 HB2 2.9 A80 HB3 3.1 A80 HB1 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CD 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HB1 3.5 K82 HB2 3.5			2.5
C67 HB2 2.6 C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB1 3.2 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HB2 3.5 K82 HB2 3.5			3.3
C67 HG 2.7 A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 CB 3.3 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.1 K82 HB2 3.5 K82 HB1 3.5 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5		SG	3.0
A80 CB 3.4 A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 CB 3.3 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB1 3.2 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HD1 3.4 K82 HB2 3.5 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ2 2.2			2.6
A80 HB1 2.9 A80 HB2 3.1 A80 HB3 3.2 A80 CB 3.3 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB1 3.2 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HB1 3.4 K82 HB2 3.5 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ2 3.2 K82 HZ2 3.2 </td <td></td> <td></td> <td>2.7</td>			2.7
A80 HB2 3.1 A80 HB3 3.2 A80 CB 3.3 A80 HB1 3.2 A80 HB3 3.1 A80 HB1 3.0 A80 HB1 3.2 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HB1 3.2 K82 HB2 3.5 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HB2 3.1 K82 HB2 3.1 K82 HZ2 3.2 K82 HB2 3.1 </td <td></td> <td></td> <td>3.4</td>			3.4
A80 HB3 3.2 A80 CB 3.3 A80 HB1 3.2 A80 HB2 2.9 A80 HB3 3.1 A80 HB1 3.0 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HD1 3.4 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ1 3.5 K82 HZ2 3.2 K82 HZ2 3.2 K82 HZ2 3.2 <td></td> <td></td> <td>2.9</td>			2.9
A80 CB 3.3 A80 HB1 3.2 A80 HB2 2.9 A80 HB3 3.1 A80 HB1 3.0 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HZ2 2.8 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HB1 3.4 K82 HB2 3.5 K82 HB1 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ1 3.5 K82 HZ2 3.2 K82 HZ2 3.2 K82 HZ2 3.2 <td></td> <td>HB2</td> <td></td>		HB2	
A80 HB2 2.9 A80 HB3 3.1 A80 HB1 3.0 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HD1 2.4 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ2 3.2 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.2
A80 HB2 2.9 A80 HB3 3.1 A80 HB1 3.0 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HD1 2.4 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ2 3.2 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.3
A80 HB2 2.9 A80 HB3 3.1 A80 HB1 3.0 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB2 3.1 K82 HD1 2.4 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ2 3.2 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.2
A80 HB1 3.0 A80 HB1 3.2 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB1 2.4 K82 HB2 3.0 K82 HB1 3.4 K82 HB2 3.5 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4		· 	2.9
A80 HB1 3.2 A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB1 2.4 K82 HE2 3.0 K82 HE2 3.0 K82 HB2 3.1 K82 HB1 3.1 K82 HB2 3.5 K82 HB2 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ2 3.1 K82 HZ2 3.2 K82 HZ2 3.2 K82 HZ1 3.2 V14 HG13 3.2 V14 HG23 3.1 V14 CG1 3.4			
A80 HB2 3.0 A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HB1 2.4 K82 HE2 3.0 K82 HE1 3.4 K82 HD1 3.4 K82 HB2 3.5 K82 HB2 3.5 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
A80 HB3 3.4 K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HD1 2.4 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 HB2 3.5 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 CD 3.3 K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HD1 2.4 K82 HE2 3.0 K82 HE2 3.0 K82 HD1 3.1 K82 HB2 3.5 K82 HB2 3.5 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HZ2 2.2 K82 HE2 3.1 K82 HZ2 3.2 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 CE 3.3 K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HD1 2.4 K82 HE2 3.0 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HE2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 NZ 3.4 K82 HZ2 2.8 K82 HB2 3.1 K82 HD1 2.4 K82 HE2 3.0 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HZ2 2.8 K82 HB2 3.1 K82 HD1 2.4 K82 HE2 3.0 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.3
K82 HB2 3.1 K82 HD1 2.4 K82 HE2 3.0 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HD1 2.4 K82 HE2 3.0 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HE2 3.0 K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4		 	
K82 HD1 3.4 K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HD1 3.1 K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HB2 3.5 K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 CE 3.4 K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 NZ 3.1 K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HZ1 3.5 K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HZ2 2.2 K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			
K82 HD1 2.9 K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.5
K82 HE2 3.1 K82 HZ2 3.2 K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4		IID1	2.2
K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			2.9
K82 HD1 3.2 V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.1
V114 HG13 3.2 V114 HG23 3.1 V114 CG1 3.4			3.2
V114 HG23 3.1 V114 CG1 3.4			
V114 CG1 3.4			
T			
7117 11012 3.1			
	1117	11012	3.1

136

V114 HG21 3.4 V114 HG23 3.2 V114 CB 3.3 V114 CG1 2.5 V114 CG2 2.9 V114 HG11 3.4 V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG23 2.3 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 3.1 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 O 3.3 E131 O 3.3 E131 O 2.0 C133 H 2.9 C133 HB1	V114	HG13	2.7
V114 CB 3.3 V114 CG1 2.5 V114 CG2 2.9 V114 HG11 3.4 V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 3.0 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 3.4 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 3.3 E131 O 3.4 C133 H 3.3 C133 H 3.3 C133 HB1 2.7 C133 HB1 <	V114		
V114 CB 3.3 V114 CG1 2.5 V114 CG2 2.9 V114 HG11 3.4 V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 3.0 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 3.4 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 3.3 E131 O 3.4 C133 H 3.3 C133 H 3.3 C133 HB1 2.7 C133 HB1 <	V114		
V114 CG1 2.5 V114 CG2 2.9 V114 HG11 3.4 V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 3.4 E131 O 3.5 E131 O 3.3 E131 O 2.0 C133 H 3.3 C133 HB1 2.7 C133 HB1 <t< td=""><td></td><td></td><td></td></t<>			
V114 CG2 2.9 V114 HG11 3.4 V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 3.0 L130 HB11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 3.4 E131 O 3.5 E131 O 3.3 E131 O 3.4 C133 H 3.9 C133 HB1 2.7 C133 HB1	V114		2.5
V114 HG11 3.4 V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 3.3 E131 O 2.0 C133 O 3.4 C133 H 2.9 C133 HB1 2.7 C133 HB1 2.7 C133 HB1 3.4 C133 HB1 3.4 C133 HB1			
V114 HG12 2.5 V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HB2 3.2 E131 O 3.4 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 2.0 C133 H 2.9 C133 HB1 2.7 C133 HB1 2.7 C133 HB1 3.4 <td>V114</td> <td></td> <td>3.4</td>	V114		3.4
V114 HG13 1.8 V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HB2 3.2 E131 O 3.4 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 2.0 C133 H 3.3 C133 H 3.3 C133 HB1 2.7 C133 HB1 2.7 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 2.3			
V114 HG21 2.8 V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 3.3 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 3.3 C133 HB1 2.7 C133 H 2.9 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 2.3	V114		
V114 HG23 2.3 V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 3.3 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 2.9 C133 HB1 2.7 C133 H 2.8 C133 H 2.8 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 3.4 C133 HB1 3.3 C133 HB1 2.3 <td>V114</td> <td>HG21</td> <td>2.8</td>	V114	HG21	2.8
V114 HG12 3.2 V114 HG13 3.2 L130 HD11 3.1 L130 HD11 2.8 L130 HB11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.5 E131 O 3.5 E131 O 3.3 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 2.9 C133 HB1 2.7 C133 HB1 3.4 C133 HB1 2.0 C133 HB1 2.3 R135 HH12 3.			2.3
V114 HG13 3.2 L130 HD11 3.1 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 HB1 2.7 C133 HB1 2.7 C133 H 2.8 C133 H 2.8 C133 HB1 3.4 C133 HB1 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 HH11	V114	HG12	3.2
L130 HD11 2.8 L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 2.9 C133 HB1 2.7 C133 H 2.8 C133 H 2.8 C133 HB1 3.4 C133 HB1 2.3 R135 HH12 3.0 R135 HH12 2.7 R135 HH11 2.9 R135 HH11	V114		3.2
L130 HD11 2.8 L130 HB11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 2.9 C133 HB1 2.7 C133 H 2.8 C133 O 3.1 C133 HB1 3.4 C133 HB1 3.3 R135 HH12 3.0 R135 HH12 2.7 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 <td></td> <td></td> <td>3.1</td>			3.1
L130 HD11 3.0 L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 2.9 C133 HB1 2.7 C133 H 2.8 C133 O 3.1 C133 HB1 3.4 C133 HB1 3.3 R135 HH12 3.0 R135 HH12 3.0 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 2.9 R135 HH11	L130		2.8
L130 HB2 3.2 E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 O 2.0 C133 O 3.4 C133 H 2.9 C133 HB1 2.7 C133 HB1 2.7 C133 H 2.8 C133 O 3.1 C133 H 2.8 C133 HB1 3.4 C133 HB1 3.0 C133 HB1 2.3 R135 HH12 3.0 R135 HH12 3.0 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 <td>L130</td> <td></td> <td>3.0</td>	L130		3.0
E131 O 3.4 E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 H 2.9 C133 H 2.9 C133 H 2.8 C133 H 2.9 C133 H 2.9 C133 H 2.0	L130		3.2
E131 O 2.8 E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 HB1 3.4 C133 HB1 3.0 C133 HB1 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 HH12 3.0 R135 HH11 2.9 R135 HH11 3.1 R135 HH11 2	E131	0	3.4
E131 O 3.5 E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 2.9 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 H 2.8 C133 H 2.8 C133 HB1 3.4 C133 HB1 2.9 C133 HB1 2.3 R135 HH12 3.0 R135 HH11 2.9 R135 HH11 2.9 R135 HH12 2.9 R135 HH11 2.7	E131	0	2.8
E131 O 3.3 E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH11 2.9 R135 HH11 2.9 R135 HH12 2.9 R135 HH11 2.7			3.5
E131 C 3.1 E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH11 2.9 R135 NH1 3.1 R135 HH11 2.9 R135 HH11 2.7	E131	0	3.3
E131 O 2.0 C133 O 3.4 C133 H 3.3 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 H 2.8 C133 HB1 3.4 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 HB1 2.3 R135 HH12 3.0 R135 HH12 3.0 R135 HH11 2.9 R135 HH11 2.9 R135 HH12 2.9 R135 HH11 2.7			3.1
C133 O 3.4 C133 H 3.3 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 HB1 2.3 R135 HH12 3.0 R135 HH12 3.3 R135 HH11 2.9 R135 HH11 2.9 R135 HH12 2.9 R135 HH11 2.7		0	2.0
C133 H 3.3 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH11 2.9 R135 NH1 3.1 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			3.4
C133 H 2.9 C133 HB1 2.7 C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 HH11 2.9 R135 HH12 2.9 R135 HH11 2.7			3.3
C133 N 3.4 C133 O 3.1 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 HH11 2.9 R135 HH12 2.9 R135 HH11 2.7			2.9
C133 O 3.1 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
C133 O 3.1 C133 H 2.8 C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7	C133		
C133 O 3.0 C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7	C133		
C133 HB1 3.4 C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
C133 N 2.9 C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.9 R135 HH11 2.9 R135 HH11 2.7			
C133 CB 3.1 C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
C133 H 2.0 C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
C133 HB1 2.3 R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
R135 HH12 3.0 R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
R135 NH1 3.3 R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
R135 HH12 2.7 R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH12 2.7			
R135 HH11 2.9 R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
R135 NH1 3.1 R135 HH12 2.9 R135 HH11 2.7			
R135 HH12 2.9 R135 HH11 2.7			
R135 HH11 2.7			
11.16 1 00 1			
	R135	CZ	3.0
R135 NH1 2.3			
R135 NH2 3.3	K135	NH2	3.3

R135	HH12	1.9
R135	HH11	2.1
R135	HH22	2.8
R135	NH1	3.3
R135	HH12	3.0
R135	HH11	3.4
R135	NH1	2.6
R135	HH12	2.3
R135	HH11	3.0
K178	NZ	3.1
K178	HZ1	3.1
K178	HZ2	2.3
F183	HE1	3.3
F183	HZ	2.8
F183	HZ	3.2
F183	CZ	3.5
F183	HZ	3.2
F183	CE1	3.4
F183	HE1	3.3
F183	HD1	3.3
F183	CE1	3.5
F183	HE1	3.0
F183	HZ	3.1
G193	HA2	3.5
G193	HA2	3.1
G193	C	3.4
G193	HA2	3.2
D194	CG	3.2
D194	OD1	3.1
D194	OD2	2.5
D194	OD2	3.4
D194	OD2	3.3
D194	OD2	3.4
D194	OD1	2.6
D194	СВ	3.3
D194	CG	2.6
D194	OD1	3.0
D194	OD2	2.7
D194	HB2	2.8
D194	N	2.9
D194	CG	3.3
D194	OD2	2.5
D194	H	2.7
D194	HB2	3.4
D194	CG	2.2
D194	OD1	2.4

D194	OD2	1.6
D194	CG	2.6
D194	OD1	1.7
D194	OD2	3.1

Table 6. PLK1 contact model (Maestro) for 5'-thioadenosine.

PLK	1	5'-Thio-	Distance	Contact
Residue	Atom	adenosine atom	Distance (Å)	cut-off ratio
G60	CA	S5	4.0	1.1
C67	N	S5	3.3	1.0
K66	C	S5	3.9	1.1
K66	CA	S5	4.1	1.2
K61	CA	S5	4.3	1.2
K61	N·	S5	3.9	1.2
G60	0	S5	3.4	1.0
G60	C	S5	3.5	1.0
C67	SG	S5	3.3	0.9
C67	СВ	S5	3.6	1.0
C67	CA	S5	4.1	1.2
R135	NH2	C5A	3.7	1.2
R135	CZ	C5A	4.0	1.2
R135	NH2	C5A	3.6	1.1
C67	SG	C5A	3.6	1.0
C67	CB	C5A	4.2	1.2
F183	CZ	C5	3.5	1.0
F183	CE1	C5	3.5	1.0
F183	CD1	C5	4.1	1.2
A80	CB	C5	3.8	1.1
F183	CE2	C5	4.0	1.2
D194	OD1	O2	3.6	1.2
D194	CG	O2	3.3	1.0
K82	NZ	O2	3.1	1.0
K82	CB	02	3.8	1.2
K82	CE	O2	3.1	1.0
K82	CD1	O2	3.2	1.0
K82	CG	02	4.0	1.3
D194	OD2	C2A	3.4	1.0
D194	OD1	C2A	3.6	1.1
D194	CG	C2A	3.8	1.1
K82	CB	C2A	4.1	1.2
C67	CB	C2A	3.9	1.2
K82	CE	C2A	4.2	1.2
K82	CD	C2A	3.9	1.1
F183	CZ	C2	4.2	1.2

		139		
C133	0	C2	3.5	1.1
F183	CE1	C2	3.5	1.0
F183	CD1	C2	4.0	1.2
R135	NH2	C2	4.1	1.3
L59	CD1	C2	3.8	1.1
L59	CG	C2	4.2	1.2
A80	CB	C2	3.4	1.0
R135	NH2	04	3.0	1.0
R135	CZ	O4	3.3	1.0
D194	OD1	04	3.8	1.3
R135	NH2	04	2.8	0.9
C67	SG	O4	3.6	1.1
C67	CB	O4	3.9	1.2
F183	CZ.	C1	4.2	1.2
R135	NH2	C1	3.7	1.2
R135	CZ	C1	4.3	1.3
D194	OD2	C1	3.6	1.1
D194	OD1	C1	3.3	1.0
D194	CG	C1	3.7	1.1
R135	NH2	C1	3.9	1.2
C67	CB	C1	4.4	1.3
F183	CZ	N9	3.7	1.1
F183	CE1	N9	4.2	1.3
F183	CZ	C8	3.8	1.1
D194	OD2	C8	4.3	1.2
F183	CE2	C8	4.1	1.2
L130	CD1	C8	3.6	1.1
F183	CZ	N7	3.8	1.1
F183	CE1	N7	4.2	1.3
F183	CE2	N7	3.9	1.2
L130	CD1	N7	3.6	1.1
L130	CB	N7	3.9	1.2
F183	CZ	C4	3.5	1.0
F183	CE1	C4	3.6	1.0
R135	NH2	C4	4.1	1.2
A80	CB	C4	4.0	1.2
F183	CE2	C4	4.4	1.3
F183	CZ	C6	3.9	1.1
C133	0	C6	4.1	1.3
F183	CE1	C6	3.4	1.0
F183	CD1	C6	3.5	1.0
A80	СВ	C6	3.5	1.0
F183	CD2	C6	4.5	1.3
F183	CE2	C6	4.4	1.3
F183	CG	C6	4.1	1.2
C133	N	C6	4.1	1.3

140

		140		
E131	0	C6	3.5	1.1
F183	CE1	N6	4.0	1.2
F183	CD1	N6	3.7	1.1
A80	CB	N6	4.1	1.3
F183	. CG	N6	3.9	1.2
C133	SG	N6	4.3	1.3
C133	SB	N6	3.6	1.1
F183	CE1	N6	4.1	1.3
C133	N	N6	3.7	1.2
E131	0	N6	2.9	1.0
V114	CG2	N6	4.1	1.3
V114	CG1	N6	3.7	1.1
F125	CE2	N6	4.0	1.2
F183	CZ	N1	4.3	1.3
C133	0	N1	3.1	1.0
C133	С	N1	3.8	1.2
F183	CE1	N1	3.4	1.0
F183	CD1	N1	3.6	1.1
A80	CB	N1	3.3	1.0
C133	CA	N1	4.1	1.2
C133	N	N1	3.6	1.1
E131	0	N1	3.8	1.2
F183	CZ	N3	4.0	1.2
F183	CE1	N3	3.6	1.1
R135	NH2	N3 .	3.4	1.1
C67	SG	N3	4.0	1.2
L59	CD1	N3	3.8	1.2
A80	CB	N3	3.8	1.1
D194	OD2	O3	3.0	0.9
D194	CG	O3	3.2	1.0
K82	NZ	O3	3.7	1.2
K82	CE	O3	4.1	1.3
K82	CD	O3	3.5	1.1
D194	OD2	C3	3.7	1.1
D194	OD1	C3	3.3	1.0
D194	CG	C3	3.9	1.2
C67	SG	C3	4.5	1.3
C67	CB	C3	4.1	1.2
K82	CD	C3	3.8	1.1
R135	NH2	C4A	3.4	1.0
R135	CZ	C4A	3.9	1.1
D194	OD2	C4A	4.4	1.3
D194	OD1	C4A	3.3	1.0
D194	CG	C4A	4.2	1.2
R135	NH2	C4A	3.6	1.1
C67	SG	C4A	4.0	1.1

		141		
C67	СВ	C4A	4.2	1.2

Table 7. PLK1 contact model (Quanta) for 5'-thioadenosine.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	HG	3.4
L59	HD11	3.5
L59	HD13	3.3
L59	HD11	3.2
L59 L59	CG	3.2
L59	CD1	3.0
L59	HG	2.5
L59	HD11	2.9
L59	HD13	2.5
G60	C	3.2
G60	0	3.2
G60	HA1	3.1
G60	HA1	3.3
C67	N	3.1
C67	СВ	3.1
C67	SG	2.0
C67	H	2.7
C67	HB2	3.0
C67	SG	3.2
C67	HB2	3.0
C67	SG	3.4
C67	HB2	3.4
C67	HB2	3.1
C67	SG	3.4
C67	CB	3.1
C67	HB1	3.2
C67	HB2	2.1
C67	CB	3.5
C67	HB2	2.6
A80	HB1	3.4
A80	HB3	3.2
A80	СВ	3.4
A80	HB1	2.8
A80	HB2	3.1
A80	HB1	3.2
A80	CB	3.5
A80	HB1	3.3
A80	HB2	3.4
A80	HB3	3.0

142

	142	
A80	HB3	3.4
A80	CB	3.3
A80	HB1	3.1
A80	HB2	2.9
A80	HB3	3.2
A80	HB1	2.9
A80	HB1	3.3
A80	HB2	3.3
K82	CD	3.2
K82	CE	3.1
K82	NZ	3.1
K82	HZ2	2.5
K82	HB2	3.0
K82	HD1	2.5
K82	HE2	2.6
K82	HB2	3.1
K82	HD1	2.9
K82	HZ2	3.1
K82	HD1	2.5
K82	HD1	,
K82	CB	3.5
	HB2	
K82	HD1	2.4
K82		3.1
K82	CE	3.3
K82	NZ	2.9
K82	HZ2	2.0
K82	HD1	2.9
K82	HE2	3.1
K82	HZ2	2.9
K82	HD1	3.2
K82	HB2	3.3
K82	HD1	2.6
V114	HG13	3.3
V114	HG13	2.9
V114	HG23	3.5
V114	CG1	2.8
V114	CG2	3.3
V114	HG12	2.8
V114	HG13	1.9
V114	HG21	3.2
V114	HG23	2.7
V114	HG13	3.5
L130	HD13	3.2
L130	HD11	3.0
L130	HB1	3.4
L130	HB2	3.4

)

L130	HD13	3.5
L130	HD11	2.8
L130	CD1	3.2
L130	HD13	2.9
L130	HD11	2.6
L130	HB2	3.2
E131	0	3.5
E131	0	2.9
E131	0	3.2
E131	0	2.5
C133	H	3.2
C133	. H	2.9
C133	HB1	2.7
C133	0	3.1
C133	H.	2.7
C133	0	3.1
C133	HB1	3.2
C133	N	2.7
C133	CA	3.2
C133	СВ	2.8
C133	SG	3.4
C133	H	2.0
C133	HB1	2.0
R135	HH11	3.1
R135	HH22	3.2
R135	CZ	3.3
R135	NH1	2.8
R135	NH2	3.0
R135	HH11	1.8
R135	HH22	2.1
R135	HH11	3.0
R135	HH22	2.7
R135	HH11	3.4
R135	HH11	3.3
R135	NH1	3.4
R135	HH11	2.8
R135	NH2	3.4
R135	HH11	2.8
R135	HH22	2.5
R135	CZ	3.1
R135	NH1	2.8
R135	NH2	3.1
R135	HH12	3.5
R135	HH11	2.6
R135	HH22	2.9
R135	NH2	3.4

144

R135	HH11	3.4
R135	HH22	2.5
R135	NH2	2.9
R135	HH11	3.2
R135	HH21	3.5
R135	HH22	2.1
F183	CE1	3.5
F183	HE1	2.9
F183	HZ	3.3
F183	HZ	3.1
F183	HZ	3.5
F183	HE1	3.4
F183	HZ	3.2
F183	CE1	3.4
F183	CE1	3.4
F183	HD1	3.4
F183	HE1	3.2
F183	HE1	2.9
F183	HE1	3.2
F183	HZ	2.9
D194	CG	3.3
D194	OD2	2.5
D194	OD2	3.4
D194	OD1	3.3
D194	CG	3.2
D194	OD1	2.6
D194	OD2	3.0
D194	OD1	3.3
D194	OD1	3.3
D194	CG	2.7
D194	OD1	2.4
D194	OD2	2.9
D194	OD2	3.4
D194	H	3.3
D194	CG	2.4
D194	OD1	2.8
D194	OD2	1.5
D194	CG	2.3
D194	OD1	1.7
D194	OD2	2.3
D194	OD1	2.4

145

Table 8. PLK1 contact model (Maestro) for staurosporine.

PLK1		Staurosporine	Distance	Contact
Residue	Atom	atom	(Å)	cut-off ratio
C67	CB	04	3.5	1.1
D194	OD2	C21	4.1	1.2
C67	CB	C23	4.2	1.2
C67	SG	C18	3.7	1.0
C67	CB	C18	3.9	1.1
C67	SG	C19	4.3	1.2
C67	CB	C19	4.2	1.2
D194	OD1	C16	3.4	1.0
D194	CG	C16	4.0	1.2
G193	0	C16	3.7	1.1
G193	C	C16	4.3	1.3
L130	CD1	C16	4.3	1.3
F183	CE1	C14 .	3.3	1.0
F183	CZ	C14	3.7	1.1
F183	CD1	C14	4.1	1.2
L130	CD2	C14	4.3	1.3
L130	CD1	C14	3.9	1.1
L130	CG	C14	4.2	1.2
L130	CB	C14	3.8	1.1
. A80	CB	C14	4.2	1.2
D194	OD1	C15	3.9	1.2
G193	0	C15	3.6	1.1
G193	C	C15	4.1	1.2
F183	CE1	C15	3.8	1.1
L130	CD2	C15	3.9	1.2
L130	CD1	C15	3.6	1.1
L130	CG	C15	4.1	1.2
L130	CB	C15	4.3	1.2
F183	CE1	C13	3.8	1.1
F183	CZ	C13	4.3	1.2
F183	CD1	C13	4.2	1.2
C67	SG	C13	4.6	1.3
A80	CB	C13	3.4	1.0
C67	SG	C12	3.8	1.1
A80	CB	C12	4.0	1.2
C67	SG	C17	4.0	1.1
C67	SG	N2	3.9	1.1
C67	CB	N2	4.0	1.2
R135	CG	C7	4.0	1.2
L59	CD1	C7	3.9	1.2
L59	CG	C7	4.3	1.3

		146		
L59	СВ	C7	3.8	1.1
C67	SG	C10	4.1	1.2
A80	CB	C10	4.3	1.3
L59	CD1	C10	3.9	1.1
C67	SG	C11	3.6	1.0
C67	СВ	C11	4.4	1.3
A80	СВ	C11	4.4	1.3
R135	CG	C6	4.0	1.2
L59	C	C6	4.4	1.3
L59	CB	C6	3.8	1.1
G60	CA	N3	4.2	1.3
G60	CA	C20	3.8	1.1
G60	N	C20	4.2	1.3
L59	С	C20	4.3	1.2
L59	0	C20	4.1	1.3
R135	CG	C5 ·	3.7	1.1
G60	CA	C5	4.3	1.3
G60	N	C5	4.2	1.3
L59	C	C5	3.9	1.1
L59	СВ	C5	4.1	1.2
L59	0	C5	3.7	1.1
R135	CG	C4	3.5	1.0
R135	NE	C4	3.7	1.1
R135	CD	C4	4.0	1.2
L59	С	C4	3.8	1.1
L59	CB	C4	4.4	1.3
L59	0	C4	3.2	1.0
R135	CG	C3	4.1	1.2
R135	CD	C3	4.4	1.3
L59	С	C3	4.1	1.2
L59	0	C3	3.2	1.0
G60	CA	C2	4.1	1.2
L59	0	C2	3.8	1.2
G60	CA	C1	3.7	1.1
L59	0	C1	4.2	1.3
C67	CB	C25	4.4	1.3
G60	CA	C25	4.3	1.3
D194	OD2	C23	4.0	1.2
D194	CG	C22	4.0	1.2
D194	OD2	C22	3.5	1.0
D194	OD1	C26	3.9	1.2
D194	CG	C26	4.0	1.2
D194	OD2	C26	3.4	1.0
K82	CE	C26	4.2	1.2
K82	CD	C26	3.9	1.1
K82	CG	C26	4.4	1.3

7	47
- 1	41

C67	CB	C26	4.2	1.2
G180	0	O6	3.7	1.2
N181	0	C27	3.8	1.2
N181	C	C27	4.2	1.2
N181	CA	C27	3.8	1.1
G180	0	C27	3.6	1.1
G180	Č	C27	4.2	1.2
D194	CG	C27	4.4	1.3
D194	N	C27	3.9	1.2
G193	0	C27	3.1	1.0
G193	C	C27	4.0	1.2
G180	0	N4	3.6	
D194	OD2	N4	4.2	1.2
N181	OD1	C28		1.3
K178	NZ	C28	4.1	1.3
D176			3.7	1.1
D176	OD2 CG	C28	4.4	1.3
		C28	4.1	1.2
D194	CB	C28	4.1	1.2
D194	OD2	C28	3.3	1.0
C133	0	C9	3.5	1.1
C133	C	C9	3.8	1.1
C133	N	C9	3.9	1.2
A80	CB	C9	3.9	1.2
L59	CD1	C9	3.9	1.1
R134	CA	N1	4.0	1.2
R134	N	N1	4.0	1.3
C133	0	N1	2.8	0.9
C133	С	N1	3.4	1.0
L59	CD2	N1	4.2	1.3
L59	CD1	N1	3.8	1.2
R135	CG	O5	3.8	1.2
R135	NH2	O5	3.1	1.0
R135	CZ	O5 ·	3.4	1.1
R135	CD	O5	3.8	1.2
L59	CD2	O5	3.6	1.1
L59	CG	O5	4.1	1.3
L59	CB	O5	3.9	1.2
R135	CG	C8	3.9	1.1
C133	0	C8	3.8	1.2
R135	CZ	C8	4.4	1.3
R135	NE	C8	3.6	1.1
R135	CD	C8	4.3	1.3
L59	CD2	C8	3.9	1.1
L59	CD1	C8	3.8	1.1
L59	CG	C8	4.0	1.2
L59	CB	C8	3.9	1.1
			5.7	1.1

WO 2005/047526 PCT/GB2004/004762

Table 9. PLK1 contact model (Quanta) for staurosporine.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	HB1	2.8
L59	HD13	3.1
L59	HD13	3.0
L59	HB1	2.9
L59	HB1	3.2
L59	0	3.2
L59	HB1	3.4
L59	0	3.2
L59	HD13	2.8
L59	HD13	2.7
L59	HD22	3.3
L59 L59	HB1	3.0
L59	HD22	2.6
L59	HB1	2.9
L59	HD13	2.9
L59	HD22	2.9
L59	0	3.4
L59	HB1	3.1
L59	0	3.5
L59 L59	CD1	3.3
L59	HD13	2.4
L59	HD13	3.1
L59	HD22	3.2
G60	HA1	3.2
G60	HA1	2.8
G60	HA1	3.5
G60	HA1	3.3
G60	HA1	2.7
G60	HA1	3.3
G60	HA1	2.9
G60	CA	3.4
G60	С	3.4
G60	HA1	2.5
C67	HB1	2.5 2.8
C67	HB2	3.3
C67	HB1	3.3
C67	HB1	3.4
C67	HB1	3.1
C67	HB1	3.5
C67	СВ	3.4

	149	
C67	HB1	2.3
C67	HG	3.5
A80	HB2	3.5
A80	СВ	3.4
A80	HB2	3.0
A80	HB3	2.9
A80	HB3	3.1
A80	HB3	3.4
A80	HB1	3.3
A80	HB2	3.4
A80	CB	3.0
A80	HB1	3.0
A80	HB2	
A80	HB3	2.6
A80	CB	2.7
A80	HB1	2.9
A80		2.2
A80	HB2 HB3	3.3
K82		2.7
K82	HD2	3.0
	HD2	3.4
K82	HD2	3.3
K82	HE1	3.1
K82	CD	3.5
K82	HZ3	2.9
K82	HD2	2.5
K82	HE1	3.3
K82	HB2	3.1
K82	HG1	3.3
K82	HD2	2.7
L130	HD12	3.3
L130	HB1	3.0
L130	HD12	2.9
L130	HD22	3.5
L130	HD12	2.6
L130	HD22	3.1
L130	CD1	3.4
L130	CD2	3.1
L130	HD12	2.6
L130	HD22	2.2
L130	HD21	3.4
L130	CB	3.1
L130	HB1	2.4
. L130	HB2	2.8
L130	HD12	3.1
L130	HD22	3.1
E131	0	3.4

L132 HA 3.5 L132 C 3.4 C133 O 2.8 C133 C 3.4 C133 D 3.5 C133 HB1 3.1 C133 HB1 3.1 C133 H 3.4 C133 C 2.7 C133 O 1.8 R134 HA 3.4 R134 HA 3.4 R134 HA 3.4 R134 HA 3.4 R135 HG2 3.0 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 3.0 R135 HG2 3.3 R135 HG3 3.4 <th></th> <th></th> <th></th>			
L132 C 3.4 C133 O 2.8 C133 C 3.4 C133 H 3.4 C133 HB1 3.1 C133 H 3.4 C133 H 3.4 C133 C 2.7 C133 O 1.8 R134 HA 3.4 R135 HG2 3.3 R135 HG2 3.3 R135 HG3 3.5 R135 HG1 3.1	L132	HA	3.5
C133 O 2.8 C133 C 3.4 C133 H 3.4 C133 HB1 3.1 C133 HB1 3.1 C133 N 3.5 C133 H 3.4 C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R135 HG2 3.3 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 <	L132		
C133 C 3.4 C133 H 3.4 C133 HB1 3.1 C133 N 3.5 C133 N 3.5 C133 H 3.4 C133 C 2.7 C133 O 1.8 C134 HAA 3.4 R134 HAA 3.4 R134 HAA 3.4 R135 HG2 3.3 R135 HG2 3.3 R135 HG3 3.3 <	C133	0	
C133 O 3.5 C133 HB1 3.4 C133 N 3.5 C133 N 3.5 C133 C 2.7 C133 O 1.8 C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R135 HG2 3.0 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HG1 3.1 R135 HE 3.4 R135 NH2 3.1		C	
C133 H 3.4 C133 HB1 3.1 C133 N 3.5 C133 C 2.7 C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R135 HG2 3.0 R135 HG2 3.3 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HG1 3.1 R135 HE 3.4 R135 HE 3.4		0	
C133 HB1 3.1 C133 N 3.5 C133 C 2.7 C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R134 HA 3.4 R134 HA 3.4 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.2 R135 HG1 3.7 R135 HG3 3.3 R135 HG1 3.1 R135 HG1 3.1 R135 HE 3.4 R135 HE 1.7			
C133 N 3.5 C133 H 3.4 C133 C 2.7 C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R134 HA 3.4 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG2 3.3 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HG3 3.1 R135 HG2 3.3 R135 HE 3.4 R135 HE 3.4 R135 HE 1.7 R135 HG2 3.9 </td <td></td> <td></td> <td></td>			
C133 H 3.4 C133 C 2.7 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R134 HA 3.4 R134 HA 2.8 R134 HA 2.8 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.0 R135 HG2 3.3 R135 HG1 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 3.1 R135 HG2 3.3 R135 HE 3.4 R135 HE 3.4 R135 NE 2.8 R135 NE 3.0 R135 HG2 3.0 R135 HG2 2.9<			
C133 C 2.7 C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R134 HA 2.8 R134 HA 2.8 R134 HA 2.8 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.0 R135 HG2 3.3 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HG2 3.3 R135 HE 3.4 R135 HE 3.4 R135 NE 2.8 R135 NH2 3.1 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 3.2<			
C133 O 1.8 C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R134 HA 2.8 R134 HA 2.8 R134 HA 2.8 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.0 R135 HE 3.2 R135 HG1 2.7 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HG2 3.3 R135 HE 3.4 R135 HE 3.4 R135 NE 2.8 R135 NH2 3.1 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 2.			
C133 O 1.8 R134 HA 3.1 R134 HA 3.4 R134 HA 2.8 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.0 R135 HG2 3.3 R135 HG2 3.3 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 2.9 R135 HG <td< td=""><td></td><td>0</td><td></td></td<>		0	
R134 HA 3.1 R134 HA 3.4 R134 HA 3.4 R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.0 R135 HG1 3.3 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HG1 3.1 R135 HG2 3.3 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 3.5 R135 HG1 3.4 R135 HG2 2.9 R135 HG1 3.0 R135 HG 3.2 R135 HG<			
R134 HA 3.4 R134 HA 3.4 R134 HA 2.8 R135 HG2 3.0 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.3 R135 HG2 3.5 R135 HG1 2.7 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HG2 3.3 R135 NE 2.8 R135 NE 2.8 R135 NE 2.8 R135 NH2 3.1 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 3.0 R135 HG1 3.4 R135 HG2 2.9 R135 HG1 3.4 R135 HG 3.5 R135 HG 3.2 R135 HG 3.2 R135 HG			
R134 HA 2.8 R135 HG2 3.0 R135 HG2 3.3 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.3 R135 HE 3.2 R135 HG1 2.7 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 2.9 R135 HG1 3.4 R135 HG2 2.9 R135 NE 3.0 R135 HG1 3.0 R135 HG 3.2 R135 HG 3.2 R135 HG 3.2 R135 HG<			
R134 HA 2.8 R135 HG2 3.0 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.3 R135 HE 3.2 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.8 R135 HE 1.7 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 2.9 R135 HG1 3.4 R135 NE 3.0 R135 HE 2.4 R135 HG 3.2 R135 HG1 3.0 R135 HG1 3.0 R135 HG1 3.2 R135 HG1 3.2 R135 HG1<			
R135 HG2 3.0 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.3 R135 HG2 3.5 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.8 R135 NE 3.4 R135 HG 3.0 R135 HG2 3.0 R135 HG2 2.9 R135 HG2 2.9 R135 HG1 3.0 R135 HE 2.4 R135 HG 3.2 R135 HG 3.2 R135 HG 3.2 R135 HG 3.3 R135 HG 3.3 R135 HG 3.2 R135 HG			
R135 HG2 3.3 R135 HG1 3.0 R135 HG2 3.3 R135 CG 3.5 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG2 3.3 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.8 R135 NE 3.4 R135 HG2 3.0 R135 HG2 3.0 R135 HG2 2.9 R135 HG2 3.5 R135 HG1 3.0 R135 HE 2.4 R135 HG 3.2 R135 HG1 3.0 R135 HG1 3.0 R135 HG1 3.0 R135 HG1 3.2 R135 HG1 3.2 R135 HG1 3.3 R135 HG			
R135 HG1 3.0 R135 HG2 3.3 R135 CG 3.5 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.3 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HH21 3.4 R135 HG2 2.9 R135 HH21 3.4 R135 HG2 3.5 R135 HE 3.0 R135 HG 3.0 R135 HG 3.2 R135 HG 3.2 R135 HG 3.2 R135 HG 3.3 R135 HG 3.3 R135 HG 3.3 R135 HG <td></td> <td></td> <td></td>			
R135 HG2 3.3 R135 CG 3.5 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.8 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HG2 2.9 R135 HH21 3.4 R135 HG2 2.9 R135 HG2 3.5 R135 HE 3.0 R135 HE 3.0 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.2 R135 HG1 3.2 R135 HG2 3.2 R135 HG1 3.3 R135 HG1 3.3 R135 H			
R135 CG 3.5 R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.3 R135 HE 1.7 R135 HG2 3.0 R135 HG2 3.0 R135 HG1 3.4 R135 HG2 2.9 R135 HG2 2.9 R135 HG1 3.4 R135 NE 3.0 R135 HE 2.4 R135 HG 3.2 R135 HG1 3.0 R135 HG1 3.2 R135 HG1 3.2 R135 HG1 3.3 R135 HE 3.5 R135 HE 3.5 R135 HE 3.5 R135 HE <td></td> <td></td> <td>3.3</td>			3.3
R135 HE 3.2 R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.3.4 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 HE 3.5		CG	3.5
R135 HG1 2.7 R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.3 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.2 R135 HG1 3.2 R135 HH21 3.2 R135 HE 3.5 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HG2 3.3 R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 NE 2.3 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HG2 2.9 R135 HG2 2.9 R135 HG1 3.4 R135 NE 3.0 R135 NE 3.0 R135 HG1 3.0 R135 HG1 3.0 R135 HG2 3.2 R135 HG1 3.2 R135 HH21 3.2 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HG1 3.1 R135 HE 3.4 R135 NE 2.8 R135 NE 2.8 R135 CZ 3.4 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HE 2.6 R135 HG2 2.9 R135 HG2 2.9 R135 HG1 3.4 R135 NE 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HG1 3.2 R135 HH21 3.2 R135 HE 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			3 3
R135 HE 3.4 R135 NE 2.8 R135 CZ 3.4 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 NE 2.8 R135 CZ 3.4 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 CZ 3.4 R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 HH21 3.2 R135 HE 3.5 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 NH2 3.1 R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HE 1.7 R135 HG2 3.0 R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HG2 3.0 R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HH21 2.2 R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HE 2.6 R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HG2 2.9 R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HH21 3.4 R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 CG 3.5 R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 NE 3.0 R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HE 2.4 R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HG1 3.0 R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5	R135		
R135 HG2 3.2 R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HH21 3.2 R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 H 3.3 R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			
R135 HE 3.5 R135 HE 1.7 K178 HZ1 3.5			3.3
R135 HE 1.7 K178 HZ1 3.5			3.5
K178 HZ1 3.5			
201			
			2.1

4	_	
- 1	_	

K178	HZ1	3.2
K178	NZ	3.5
K178	HZ1	2.5
K178	NZ	2.9
K178	HZ1	2.0
K178	HZ2	3.2
K178	HZ3	3.5
K178	HZ1	2.0
G180	0	3.5
G180	0	3.3
G180	0	2.6
N181	HA	2.8
N181	CA	3.4
N181	OD1	3.2
N181	HA	2.3
N181	CA	3.2
N181	С	3.5
N181	0	3.2
N181	HA	2.3
N181	OD1	3.2
F183	CE1	3.3
F183	HE1	2.8
F183	HE1	2.9
F183	HE1	2.9
F183	CE1	3.0
F183	CZ	3.0
F183	HE1	2.6
F183	HZ	2.7
G193 G193	<u>O</u>	3.1
	HA2	3.4
G193 G193	0	3.0
G193	0	3.3 2.5
D194	OD1	
D194	OD1	3.4
D194	H	3.4
D194	OD2	3.3
D194	HB2	3.3
D194	CG	3.0
D194	OD1	2.4
D194	OD2	3.5
D194	CG	2.9
D194	OD1	3.4
D194	OD2	2.5
D194	HB2	3.2
D194	OD2	3.3
		7.7

WO 2005/047526 PCT/GB2004/004762

152			
D194	CG	3.0	
D194	OD1	2.8	
D194	OD2	2.6	
D194	N	3.2	
D194	H	2.2	
D194	HB2	2.8	
D194	H	3.5	
D194	H	3.0	
D194	OD2	2.7	
D194	CB	3.2	
D194	CG	3.3	
D194	OD2	2.9	
D194	HB1	3.5	
D194	HB2	2.3	
D194	H	2.2	

Table 10. PLK1 contact model (Maestro) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol.

PLK1		Licand	Distance	Contact
Residue	Atom	Ligand atom	(Å)	cut-off
D194	OD2	NM1	3.8	ratio
K82	CD	NM1	4.1	1.3
D194	CG	CM12	4.0	1.2
D194	OD2	CM12	3.6	1.1
F64	CG	CM12	4.0	1.2
D194	OD1	CM12	3.5	1.1
K82	NZ	CM12	4.2	1.3
K82	CD	CM12	3.9	1.1
F64	CD1	CM12	4.1	1.2
F64	CB	CM12	3.8	1.1
D194	CG	С	4.0	1.2
D194	OD2	С	3.5	1.0
D194	OD1	С	3.8	1.2
K82	CD	С	4.1	1.2
C67	CB	С	4.0	1.2
D194	CG	N	3.5	1.1
D194	OD2	N	3.4	1.0
D194	OD1	N	3.1	1.0
K82	NZ	N	3.4	1.1
K82	CE	N	3.4	1.0
K82	CD	N	3.5	1.1
K82	CB	N	4.2	1.3
D194	CG	C1	3.9	1.1

D194	OD2	C1	3.8	1.1
D194	OD1	C1	3.7	1.2
K82	NZ	C1	4.1	1.2
K82	CE	C1	4.1	1.2
L130	CD1	C1	4.1	1.2
D194	CG	CM2	3.7	1.1
D194	CB	CM2	4.3	1.3
D194	CA	CM2	4.1	1.2
D194	OD2	CM2	4.0	1.2
D194	NZ	CM2	3.6	1.1
D194	OD1	CM2	3.5	1.1
K82	NZ	CM2	3.9	1.2
K82	CE	CM2	4.1	1.2
L130	CD2	CM2	3.9	1.2
L130	CD1	CM2	3.8	1.1
D194	OD2	S	4.2	1.2
C67	SG	S	3.5	1.0
C67	CB	S	3.3	0.9
D194	OD2	C2	4.3	1.3
F183	CZ	C2	4.1	1.2
C67	SG	C2	3.9	1.1
C67	CB	C2	4.3	1.3
F183	CZ	N1	4.0	1.2
F183	CG	N1	4.2	1.3
F183	CE1	N1	3.5	1.1
F183	CD1	N1	3.6	1.1
C133	N	N1	3.8	1.2
E131	0	N1	3.6	1.2
A80	CB	N1	3.3	1.0
C133	0	N1	3.4	1.1
C133	C	N1	4.2	1.3
F183	CD2	C3	4.3	1.3
F183	CE2	C3	4.2	1.2
F183	CZ	<u>C3</u>	4.0	1.2
F183	CG	C3	4.3	1.3
F183	CE1	C3	4.0	1.2
F183	CD1	C3	4.1	1.2
E131	0	C3	3.5	1.1
A80	CB	C3	3.5	1.0
F183	CE2	C4	4.0	1.2
F183	CZ	C4	3.8	1.1
F183	CE1	C4	4.2	1.2
L130	CD1	C4	4.1	1.2
L130	CB	C4	4.3	1.3
A80	СВ	C4	3.9	1.2
F183	CE2	C5	4.2	1.2

			•	
F183	CZ	C5	3.6	1.0
F183	CE1	C5	4.0	1.2
C67	SG	C5	3.9	1.1
A80	CB	C5	4.1	1.2
F183	CZ	N6	3.6	1.1
F183	CE1	N6	3.5	1.1
C67	SG	N6	3.5	1.0
A80	CB	N6	3.9	1.2
F183	CZ	C7	3.8	1.1
F183	CE1	C7	3.3	1.0
F183	CD1	C7	3.8	1.1
C67	SG	C7		
			4.2	1.2
A80	CB	C7	3.5	1.0
C133	O	C7	3.6	1.1
F183	CE1	N2	3.4	1.0
F183	CD1	N2	3.8	1.2
A80	· CB	N2	4.2	1.3
C133	0	N2	2.8	0.9
C133	C	N2	4.0	1.2
L59	CD2	N2	3.9	1.2
F183	CE1	C8	3.9	1.1
C133	0	C8	3.6	1.1
L59	CD2	C8	3.8	1.1
L59	CG	C8	4.2	1.2
L59	CB	C8	4.1	1.2
R135	CB	C9	4.4	1.3
R135	N	C9	4.1	1.3
R134	CA	C9	4.2	1.2
C133	0	C9.	3.4	1.0
C133	C	C9	4.4	1.3
L59	CD2	C9	3.9	1.1
L59	CG	C9	4.0	1.2
L59	CB	C9	4.3	1.2
R135	NH2	011	2.9	1.0
R135	NH1	011	3.4	1.1
R135	CZ	O11	3.5	1.1
L59	С	011	3.5	1.1
R135	NH2	C10	4.1	1.3
R135	CZ	C10	4.4	1.3
L59	CG	C10	4.1	1.2
L59	CB	C10	4.2	1.2
R135	NH2	C11	3.4	1.1
R135	NH1	C11	3.5	1.1
R135	CZ	C11	3.6	1.1
L59	C	C11	3.7	1.1
L59	CG	C11	4.4	1.3
		CII	7.4	1.0

WO 2005/047526 PCT/GB2004/004762

		15	55	
L59	CB	C11	4.0	1.2
L59	0	C11	3.2	1.0
L59	CA	C11	4.3	1.2
R135	NH1	C12	4.2	1.3
F183	CE1	C12	4.3	1.2
C67	SG	C12	4.3	1.2
L59	C	C12	4.4	1.3
L59	CD2	C12	4.4	1.3
L59	CG	C12	4.4.	1.3
L59	CB	C12	3.8	1.1
R135	NH2	C13	4.0	1.2
R135	NH1	C13	3.3	1.0
R135	CZ	C13	3.8	1.1
G60	CA	C13	4.3	1.2
G60	N	C13	3.8	1.2
L59	C	C13	3.5	1.0
L59	CB	C13	3.8	1.1
L59	0	C13	3.4	1.1
L59	CA	C13	4.2	1.2

Table 11. PLK1 contact model (Quanta) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol.

PLK1 residue	Residue atom	Protein — ligand atom distance (Å)
L59	0	1.7
L59	HD23	2.9
L59	HB1	3.1
L59	HD23	2.9
L59	HB1	3.5
L59	HG	3.3
L59	HD23	3.2
L59	0	2.7
L59	HG	3.3
L59	0	3.2
L59	HB1	3.2
L59	HB1	2.7
L59	0	3.4
L59	HB1	2.8
L59	HD23	3.0
L59	HD23	3.3
L59	HG	3.5
L59	С	2.7
L59	0	1.7

	156	
L59	HA	3.4
L59	HB1	3.1
L59	C	3.2
L59	O	3.2
L59	HB1	3.1
G60	N	3.2
G60	CA	3.4
G60	HA1	2.6
F64	HB2	2.9
F64	HB2	3.5
F64	CB	3.4
F64	HB2	2.4
F64	HD1	3.2
F64	СВ	3.2
F64	HB1	3.0
F64	HB2	2.5
C67	HB1	3.3
C67	HB1	3.0
C67	СВ	3.3
C67	HB1	2.6
C67	HB2	3.4
C67	SG	3.5
C67	HB1	3.0
C67	HB2	3.3
A80	СВ	3.3
A80	HB1	3.0
A80	HB2	3.1
A80	HB3	3.0
A80	CB	3.5
A80	HB1	3.3
A80	HB3	2.9
A80	HB1	3.4
A80	HB3	3.4
A80	HB1	3.3
A80	HB1	3.0
A80	HB1	2.9
A80	HB2	3.4
A80	HB3	3.0
K82	HD1	3.0
K82	HD1	2.9
K82	HD1	3.1
K82	CD	3.5
K82	CE	3.4
K82	NZ	3.4
K82	HZ2	2.7
K82	HB2	3.4

	_

	157	•
K82	HD1	2.7
K82	HE2	3.0
K82	HE2	3.3
K82	HZ2	3.4
K82	HE2	3.3
K82	HZ2	3.0
K82	HD1	3.4
K82	CD	3.0
K82	HZ2	3.2
K82	HD1	2.2
K82	HD2	2.9
K82	HE2	3.0
K82	NZ	3.1
K82	HZ2	2.6
K82	HZ3	2.9
K82	HE2	3.1
V114	HG12	2.9
V114	HG12	3.5
L130	HD13	3.3
L130	HD13	3.1
L130	HD22	3.2
L130	HB1	3.5
L130	HB1	3.3
L130	HD13	3.0
L130	HD22	3.1
L130	CG	3.4
L130	CD1	2.8
L130	CD2	2.9
L130	HD13	2.3
L130	HD11	2.6
L130	HD22	2.3
L130	HD21	2.8
L130	HB1	3.1
L130	CD1	3.3
L130	HB1	2.8
L130	HD13	2.4
L130	HD22	2.8
E131	0	3.5
E131	Ö	2.9
C133	0	1.8
C133	0	3.4
C133	H	3.5
C133	0	2.8
C133	O O	3.4
C133	H	3.5
C133	C	3.0
		3.0

158

	130	
C133	0	1.8
C133	0	2.6
R134	HA	3.2
R134	CA	3.3
R134	HA	2.3
R135	HH22	2.0
R135	Н	3.2
R135	HB1	3.4
R135	CZ	3.5
R135	NH1	3.4
R135	NH2	2.9
R135	HH11	2.8
		2.0
R135	HH22	3.5
R135	H	3.5
R135	NH2	3.4
R135	HH11	3.1
R135	HH22	2.8
R135	NH1	3.3
R135	HH11	2.9
R135	H	2.9
R135	H	3.5
R135	HH11_	3.3
R135	HH22	2.8
R135	NH1	2.9
R135	HH12	3.2
R135	HH11	2.4
F183	HZ	3.5
F183	HZ	3.3
F183	HE1	3.2
F183	HZ	3.4
F183	CE1	3.3
F183	HE1	3.0
F183	CE1	3.4
F183	HE1	2.8
F183	HE1	2.9
F183	HE1	3.3
F183	HE2	3.1
F183	HD1	3.3
F183	HE1	3.2
F183	HE1	3.4
G193	HA2	3.3
D194	OD2	3.5
D194	OD1	3.1
D194	OD2	3.4
D194 D194	H	3.2
D194 D194	CG	2.9
D194	LG	2.7

159

D194	OD1	2.5
D194	OD2	2.6
D194	N	3.0
D194	H	2.7
D194	H	3.4
D194	N	3.1
D194	CA	3.3
D194	CG	3.0
D194	OD1	2.6
D194	H	2.7
D194	HA	2.7

PCT/GB2004/004762

160 **Table 12.** In vitro activity of flavonoid compounds

No	Inhibitor	Plk1 ICso (μM)	PBK IC50 (μM)	CDK2 IC50 (μM)
1	Wortmannin	0.18±0.1	0.0042	>10
2	Staurosporine	0.8±0.2	9	0.004
3	Purvalanol A	5	ND	0.0009±0.002
4	LY2940002	9.33±3.7	1,4	ND
5	Quercetin	64.25±24	3.8	ND
OMe		OMe NHM	PH P	4 OH OH OH

Table 13. In vitro potencies for flavonoid compounds.

$$R_1$$
 R_2 R_3 R_4 R_2

	R ¹	R ²	R ³	R1'	R2'	R3'	R4'	Plk1 ICso (μM)
Morin Hydrate	ОН	ОН	ОН	ОН	. Н	ОН	H	12.6±1.4
Datescetin .	ОН	ОН	ОН	ОН	Н	Н	н	>100
Quercetin	ОН	ОН	ОН	Н	OH	ОН	Н	64.25±24
Myricetin	ОН	ОН	OH	H	ОН	ОН	ОН	>100
Kaempferol	ОН	ОН	ОН	Н	Н	ОН	Н	>100
Luteolin	ОН	ОН	Н	H	ОН	ОН	Н	>100
Galangin	ОН	OH	ОН	Н	Н	Н	Н	>100
Robinetin	H	ОН	OH	H	ОН	ОН	OH	60
Daidzein	H	ОН	Н	н	Н	ОН	Н	>100
Fisetin	Н	OH	ОН	Н	ОН	ОН	Н	>100
Kaempferide	ОН	ОН	ОН	н	Н	Ome	Н	. >100

Table 14. In vitro testing of PKA inhibitors

Compound	PKA (IC50, μM)	Plk1 (IC50, μM)
Balanol	0.003, 0.004*	>200
H89	0.048**	>500
A 3	11**	>500
puravalanol A	>100	10
4-Cyano-3-methy lis oquinoline	0.030**	>500
KT5720	0.056**	>500