Série 11 Thermodynamique (MiMos 22 et 23) Gaz Parfaits - Premier Principe

Exercice 1 Partie Cours

Energie interne U - Enthalpie H - Loi de Meyer - Loi de Laplace.

- 1- Rappeler l'expression du **premier principe de la thermodynamique**, donnant la différentielle de l'énergie interne : **dU** d'un système fermé.
 - On s'intéresse à des systèmes de variables d'état (P, V, T), pour lesquels le seul travail est celui des forces de pression.
- 2- a) Réécrire le premier principe en exprimant la variation d'énergie interne ΔU entre l'état final (2) et l'état initial (1) pour une **transformation isobare**.
 - b) En déduire l'expression de la chaleur échangée Q en fonction de U₁, U₂, P, V₁ et V₂.

Montrer que dans ce cas l'énergie thermique Q représente la variation d'une fonction d'état H que l'on définira.

- c) Ecrire la différentielle dH(T,P), en déduire la capacité thermique à pression constante notée C_p ainsi que la quantité de chaleur δQ en fonction de C_p .
- d) Exprimer la différentielle dH en fonction de la différentielle dU, en déduire la relation de Meyer, donnée par: $C_p C_V = nR$, valable pour un gaz parfait.
- e) On pose le coefficient de Laplace: $C_p / C_V = \gamma$, en déduire les expressions de Cp et de Cv en fonction de γ et R.
- f) Utiliser les relations : $dH = C_p dT$ et $dU = C_v dT$ (valable pour un gaz parfait), pour établir la relation de Laplace : $P.V^r = constante$, lorsque le gaz subi une transformation adiabatique.

Exercice 2

Un compresseur formé par un récipient, fermé par un piston mobile, contient 2 g de l'hélium considéré comme gaz parfait, monoatomique, dans les conditions (P_1,V_1) . On opère une compression adiabatique, de façon réversible, qui amène le gaz dans les conditions (P_2, V_2) . Sachant que $P_1 = 1$ atm, $V_1 = 10$ litres et $P_2 = 3$ atm.

- Calculer:

 1 Le volume final V₂
 - 2 Le travail reçu par le gaz
 - 3 La variation d'énergie interne du gaz
 - 4- En déduire l'élévation de température du gaz. On donne : $\gamma = \frac{C_P}{C_V} = \frac{5}{3}$ et R = 8,3 J.K⁻¹mol⁻¹.

Exercice 3

L'état initial d'une mole de gaz parfait est caractérisé par $P_0 = 2.10^5$ Pascals, $V_0 = 14$ litres. On fait subir successivement à ce gaz:

- une détente isobare, qui double son volume.
- une compression isotherme, qui le ramène à son volume initial,
- un refroidissement isochore, qui le ramène à l'état initial (P_0, V_0) .
- 1- Représenter le cycle de transformation dans le diagramme de Clapeyron (P, V)
- 2- A quelle température s'effectue la compression isotherme ? En déduire la pression maximale atteinte.
- 3- a) Exprimer le travail W, la quantité de chaleur Q et la variation d'énergie interne échangés par le système au cours de chaque transformation, en fonction de P_0 et V_0 .
 - b) Faire le bilan du cycle.

Données pour tout l'exercice :

$$c_v = \frac{5}{2}.R$$
, $c_p = \frac{7}{2}.R$, $R = 8.3 \text{ J.K}^{-1}$.