Bioinformatics for Next-Generation Sequencing ICIPE, Nairobi, November 2015

Read Mapping – Concept & Approaches

Simon Martin

Department of Zoology University of Cambridge

Outline

- Why read mapping, and what is it?
- Challenges
- How read mappers work
- Choosing a mapper
- What goes in? fastq data
- What comes out? SAM/BAM files

So you have your next-gen data... now what?

Why do we map?

When we have

- sequence reads
- a **reference** genome, transcriptome, or region
- From the same (or similar) species
 and we want...
- To know where each read belongs
- To infer the sequence (genotype) of the template (i.e. the samples we have sequenced)

What is read mapping?

- Each sequence read has a single location in the template genome
- We need to find its homologous position in a reference sequence
- This position is unknown and must be inferred from the read itself

Challenges

- Multiple optimal mappings
- Sequencing errors
- Real differences between template and reference
- Missing regions in the reference genome

Multiple mappings

- In theory a read should have only one perfect match
 - Read of length n has 4^n possible sequences
 - 100 bp read should occur by chance every 1.6 \times 10⁶⁰ bp
 - Read of 16 bp should be *unique* in the human genome (3.2 GB).
- But...
 - Genomes are repetitive (two thirds of human genome!)
 - Base usage is biased

Skewed GC content increases the chance of repeats dramatically!

ATGTAAATTTAAGTTAAATAACGCGCTATCAGCAGTACAATTTGTACAGTGCTGTCATTAAGGGTGGACGGCGGTGCA TTTATGTAAAAATATAACTATTTAGATAATAATAATCTTCACTGTAGAAAAAATAT TACTCTGTGTAAAAAAATTGGAAAGGGGTT CGAGATAAGAAGCAAATCAGAGAACCAGAATTAATGTTAAAAACGAT TGTAGCCATAAATGTTAAAAAATGTTAGCAAACCACATTCTATCCTAAAAATAGGC TTT CCTTTTGTTCAAGATACGTCCTAACTT AAAAAAAA TCTATACACCCT TGGTGCAAACCTAACCTACCTAACTTGGTTGGAAGTTCGGTTGCTACTCGCTGGTAATAAT TATCATGTGTTAATGTCTCCAATTCAGACGGAAAGAATATTAAACAGAATATAT TGTGGTATTTTCAGAATCAAAAAATGATTACCAAGTGCTAAGAAGCTAAGCAGCGGACGTCCGTTGCCCA TAAAGGACAAGACTCCATGTATTTGTAAAGAAATGAAAAATGTAAAGAGTA1

Sequencing error

	Technology	Read length	Approx. error rate
	Sanger	900	1/100 000
	Illumina HiSeq	100+100 Paired	1/1000
Next Gen ≺	Ion Torrent PGM	200-400	1/100
	PacBio RS	15000	1/10

Differences between template and reference

- Intra or inter-specific variation
 - Diversity / divergence time
 - Depends where in the genome you look

Sample / Reference	Differences
Human / Human	1/1000
Human / Neanderthal	1/500 ?
D. melanogaster / D. melanogaster	1/100
D. simulans / D. melanogaster	1/40

RNA modifications

Aligning a read

```
read CGCCAGACT - TAGTGTGCTCTG

|| || || || || || || || || || || || reference ATAAGCACACTTCTAA - GTG - TCTGGGTGC
```

- Many possible solutions to the problem (unless sequences are identical)
- Alignments can be scored according to:
 - Matches
 - Mis-match
 - Insertions and deletions (and their length)
 - Clipping

Aligning a read

- Which of the alignments is correct / better?
- Best score depends on scoring algorithm
- Nearly infinite number of solutions to an alignment problem
- Evaluating all alignments too expensive for mapping millions of reads

Mappers use heuristics

- Usually involves two steps:
 - Find exact/near-exact matches for one or more sub-strings ("seeds")
 - Only search for optimal alignments in regions with seed matches

- Seed matching can also be sped up e.g. "hash table", Burrows-Wheeler Transform
 - Compresses genome, speeds up searches for string matches

Some Read Mappers

BarraCUDA

Karma

RMAP

BLASR

Novoalign

Segemehl

Bfast

MAQ

Slider

Bowtie2

Mosaik

SSHANA

Brat

MrFast

SOAP

• BWA

Pash

SplacerS

CLCbio

PASS

Stampy

Eland

PerM

Tophat

• GenomeMapper

RazerS

Vmatch

GnuMap

REAL

Zoom

Differ in:

- Number of seeds
- Mismatches in seeds
- · Indexes / transforms for seed search
- Runtime vs precision

- · Allowance for alignment gaps
- · Multiple mappings per read
- Reporting mapping quality
- Support for types of sequence data

Choosing a mapper / aligner

- What type of sequence data do I have?
- How similar is my template to the reference?
- How accurate do I want my alignments to be?
- Am I expecting many indels, how large?
- How much data / time do I have?

Choosing a mapper

Comparison of recall rates and running time for several short read aligners.

Choosing a mapper

Precision and recall by amount of variation for 4 datasets, by polymorphism: (number of SNPs, Indel size).

		(0,0)		(1,	(1,0) (2,0)		(4,0)		(0,3)		(1,3)		(2,3)		(4,3)		
	Program	Prec.	Recl.	Prec.	Recl.	Prec.	Recl.	Prec.	Recl.	Prec.	Recl.	Prec.	Recl.	Prec.	Recl.	Prec.	Recl.
B	SHRiMP	99.7	96.6	99.6	96.4	99.6	95.7	99.3	89.3	99.3	93.5	99.3	90.6	98.6	85.7	97.6	69.7
aired	BFAST	95.4	93.8	94.3	91.6	92.6	86.2	87.0	63.5	91.6	78.8	89.3	71.8	86.8	61.9	80.7	38.8
0	BWA	91.1	65.2	85.4	27.7	64.7	5.4	17.7	0.3	62.0	4.4	49.2	1.5	29.6	0.4	11.9	0.1
20	Bowtie	97.5	46.6	97.5	11.1	96.9	1.0	0.0	0.0	97.1	1.3	100	0.2	100	0.0	0.0	0.0
D	SHRiMP	99.6	97.5	99.6	97.2	99.6	97.3	99.6	96.9	99.3	96.6	99.5	96.9	99.4	96.5	99.2	94.5
aired	BFAST	97.4	97.1	97.1	96.8	96.8	96.5	95.9	94.5	96.4	96.0	96.0	95.5	95.9	94.8	94.1	89.5
0	BWA	93.2	62.3	86.5	30.2	68.2	8.8	14.7	0.4	65.0	7.5	41.5	2.2	22.4	0.6	11.7	0.1
75	Bowtie	98.1	18.1	98.4	2.6	96.2	0.1	100	0.0	97.1	0.5	100	0.0	0.0	0.0	0.0	0.0
Ф	SHRiMP	99.7	93.3	98.9	92.6	98.0	91.1	94.8	72.5	97.0	89.5	95.3	83.5	93.0	69.6	83.4	25.6
single	BFAST	98.9	93.0	97.9	90.5	96.2	83.7	87.7	50.7	95.2	80.4	92.8	68.7	89.0	53.5	78.0	24.6
	BWA	95.3	79.7	93.0	33.7	71.8	2.1	15.2	0.0	89.5	5.6	83.7	1.1	61.9	0.1	0.0	0.0
20	Bowtie	95.2	65.5	92.1	15.7	49.1	0.3	2.5	0.0	92.1	2.2	85.4	0.4	36.8	0.0	0.0	0.0
<u>e</u>	SHRiMP	99.7	96.0	99.6	95.8	99.4	95.6	98.9	94.4	99.2	95.5	98.8	94.9	98.5	93.7	97.2	79.7
single	BFAST	99.3	96.0	99.1	95.6	98.8	95.1	97.4	91.6	98.5	95.1	98.0	94.1	97.4	92.1	94.3	81.6
5 si	BWA	97.5	78.2	97.0	38.0	95.1	6.5	56.4	0.0	96.7	9.4	94.6	1.2	90.4	0.2	100	0.0
7.	Bowtie	97.4	42.0	96.2	6.0	75.7	0.1	0.0	0.0	95.8	0.8	96.3	0.1	100	0.0	0.0	0.0

Recall rates for four sets of 2 million simulated 72-bp paired-end reads, mapped back to the human reference by five read mapping algorithms.

What goes in: fastq reads

```
$ head -4 myreads.fastq
@DHKW5DQ1:192:C0PTHACXX:2:1101:3309:2499 2:N:0:TGCGTGAA
ACACCCCAGCAGCCCGAGTACGGGATAAAGCGGAACATACCGCCTAATTCTTGGCACCAACATAATTTAAGTTCGCGGCGGGAAGCTCGGTAAACATAACC
+
@B@FFFFFHHHHHIJJII<EHEGIGIIJJGIIIGIIJGIGHIEHHFFDFFECEEEDEDDDBBCDDDEC>CDDBDDDDD-5<8>C><+8?C#######</pre>
```

4 lines

- Sequence ID, raw sequence, '+', Quality scores
- Quality used "phred" scores
 - $-Q = -10 \log_{10} p$ and $p = 10^{-Q/10}$
 - If Q = 30, p = 0.001 (1/1000 probability of error)
 - Encoded as ASCII characters
 - With some offset (usually 33 or 64)

What goes in: fastq reads

FastQC

fastx_trimmer to trim a defined part of reads

\$ fastx_trimmer -f 1 -l 80 -i myreads.fastq -o myreads.trimmed.fastq

What goes in: fastq reads

FastQC produces lots of useful graphics

What comes out: SAM/BAM

Viewers: IGV, Tablet, EagleView, HawkEye, BamView etc.

What comes out: SAM/BAM

- Sequence Alignment/Map format
- Has 'Header' and 'Alignment' Sections

```
12345678901234 5678901234567890123456789012345
Coor
ref
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
              TTAGATAAAGGATA*CTG
+r001/1
+r002
             aaaAGATAA*GGATA
+r003
            gcctaAGCTAA
+r004
                         ATAGCT.....TCAGC
-r003
                                ttagctTAGGC
-r001/2
                                              CAGCGGCAT
```

The corresponding SAM format is:

```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
      99 ref 7 30 8M2I4M1D3M = 37
                                    39 TTAGATAAAGGATACTG *
r002
       0 ref 9 30 3S6M1P1I4M * 0
                                     O AAAAGATAAGGATA
r003
       0 ref 9 30 5S6M
                                     O GCCTAAGCTAA
                                                         * SA:Z:ref,29,-,6H5M,17,0;
       0 ref 16 30 6M14N5M
                              * 0
                                     O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                     O TAGGC
                                                         * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
                                                         * NM:i:1
```

```
Coor
        12345678901234 5678901234567890123456789012345
ref
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1
             TTAGATAAAGGATA*CTG
+r002
             aaaAGATAA*GGATA
+r003
           gcctaAGCTAA
                         ATAGCT.....TCAGC
+r004
-r003
                               ttagctTAGGC
-r001/2
                                             CAGCGGCAT
```

The corresponding SAM format is:

Header Section

- Lines start with @
- Format TAG: VALUE

```
@HD
        VN:1.0
                GO:none SO:coordinate
as Q
        SN:HE669515
                         LN:1113
@SQ
        SN:HE669513
                         LN:11036
രടഠ
        SN:HE669511
                         LN:14485
രടഠ
        SN:HE669509
                         LN:1831
        SN:HE669507
as Q
                         LN:15013
@SQ
        SN:HE669505
                         LN:8974
രടഠ
        SN:HE669503
                         LN:3243
```

- @HD header line, VN: Format version, SO: sort order
- @SQ reference sequences, SN: sequence name, LN: length

Header Section

```
SN:HE670532
                         LN:59893
@SQ
        SN:HE669517
                         LN: 203704
@SQ
        SN:HE668723
                         LN:77637
@SQ
        SN:HE668283
                         LN:18120
as Q
                         LN:5707
        SN:HE669516
@SQ
        SN:HE669860
                         LN:7066
@RG
        ID:cyd cyd.2158 PL:Sanger
                                          SM:cyd_cyd.2158
@PG
                                          VN:1.0.17 (r1481)
        ID:dvtam
                         PN:stampy
```

- @RG Read groups, ID: Unique ID, SM: Sample
- @PG Program: PN: Program name, VN: version

Alignment Section

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	Int	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Alignment Section

- Bitwise Flag
 - Twelve possible yes/no answers encoded by a number (but how?)
 - We can chat about this if there is time.

Bit	Description
0x1	template having multiple segments in sequencing
0x2	each segment properly aligned according to the aligner
0x4	segment unmapped
0x8	next segment in the template unmapped
0x10	SEQ being reverse complemented
0x20	SEQ of the next segment in the template being reversed
0x40	the first segment in the template
0x80	the last segment in the template
0x100	secondary alignment
0x200	not passing quality controls
0x400	PCR or optical duplicate
0x800	supplementary alignment

Alignment Section

- CIGAR string
 - Describes locations of matches (or mismatches), insertions, deletions and how long the runs are
 - 53M5I43M means 53 matches followed by a 5 bp insertion followed by 43 matches
 - NOTE, match doesn't mean the bases are identical, just that they line up.

Alignment Section

CIGAR string

```
Coor
        12345678901234 5678901234567890123456789012345
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
ref
+r001/1
              TTAGATAAAGGATA*CTG
+r002
             aaaAGATAA*GGATA
+r003
           gcctaAGCTAA
+r004
                         ATAGCT.....TCAGC
-r003
                                ttagctTAGGC
-r001/2
                                              CAGCGGCAT
```

The corresponding SAM format is:

```
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002
      O ref 9 30 3S6M1P1I4M * O O AAAAGATAAGGATA
r003
      0 ref 9 30 5S6M
                              * O O GCCTAAGCTAA
                                                        * SA:Z:ref,29,-,6H5M,17,0;
r004
       0 ref 16 30 6M14N5M
                                    O ATAGCTTCAGC
                                                        * SA:Z:ref,9,+,5S6M,30,1;
r003 2064 ref 29 17 6H5M
                                    O TAGGC
r001 147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
                                                        * NM:i:1
```

Some simple SAMtools commands (see http://samtools.sourceforge.net/samtools.shtml#1)

```
Take a look at your bam file
samtools view myfile.bam | less
Look at the header only
samtools view -H myfile.bam | less
Compress sam to bam
Samtools view -Sb myfile.sam > myfile.bam
General mapping statistics
samtools flagstat myfile.bam
109057232 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 duplicates
103930724 + 0 mapped (95.30%:nan%)
109057232 + 0 paired in sequencing
54523649 + 0 \text{ read1}
54533583 + 0 \text{ read2}
89500562 + 0 properly paired (82.07%:nan%)
103173202 + 0 with itself and mate mapped
757522 + 0 singletons (0.69%:nan%)
9528350 + 0 with mate mapped to a different chr
1898612 + 0 with mate mapped to a different chr (mapQ>=5)
```

```
Coor
        12345678901234 5678901234567890123456789012345
ref
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1
             TTAGATAAAGGATA*CTG
+r002
             aaaAGATAA*GGATA
+r003
           gcctaAGCTAA
                         ATAGCT.....TCAGC
+r004
-r003
                               ttagctTAGGC
-r001/2
                                             CAGCGGCAT
```

The corresponding SAM format is:

Handy bam file visualisation samtools tview myfile.bam

33141	33151	33161	33171	33181	33191	33201	33211	33221	33231	33241	33251	3326
NNNNNNNNNN	ииииииииии	NNNNNNNNN	иииииииииии	имимимими	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	INNNNNNNNN	INNNNNNNNNN	NNNNNNNNNNN	NNNNNNNNNN	NNNNNN
STTGATGATAA	TGAACGAGG(CGAAAAAAA	TATGCAGAGGC	CGCGTGTTT	\TCGCTTCGC	<u> </u>	<u>TGCCTCGCTA</u>	AGGATAATG	TGTGAAGCTA ⁻	TAAAAAAATCG	CACTAAAAA	TAATAG
gttgatgataa	tgaacgaggd	gaaaaaaa	tatgcagaggc	cgcgtgttta	atcgcttcgct	tacctttggc	tgcctcgct	taatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatag
gttgatgataa	tgaacgaggd	gaaaaaaa	tatgcagaggc	cgcgtgttta	atcgcttcgct	tacctttggc	tgcctcgcta	aggat		aaaaaaatcg	cactaaaaaa	taatagi
			tatgcagaggc									ag:
			tatgcagaggc									g ¹
а	tgaacgaggo		tatgcagaggc									
			tatgcagaggc									
gttgat			tatgcagaggc									
gttgatgata		aaa	tatgcagaggc	cgcgtgttta	atcgcttcgct	tacctttggc	tgcctcgcta	aggataatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatag
gttgatgataa				ā	atcgcttcgct	tacctttggc	tgcctcgcta	aggataatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatagi
gttgatgataa	tgaa					accgttggc	tgcctcgcta	aggataatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatagi
gttgatgataa	tgaacg					gc	tgcctcgcta	aggataatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatag
gttgatgataa	tgaacgaggd	gaaaaaaa	tatgcagaggc	cgcgtgttta	at	C	tgcctcgcta	aggataatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatagi
							cgcta	aggataatg [.]	tgtgaagcta [.]	taaaaaaatcg	cactaaaaaa	taatag