

Ethereum 9 3/4

Mimblewimble on Ethereum with zk-SNARKs

@wanseob

Wanseob Lim
nonce (Crypto community)
Ethcon
github.com/wanseob
twitter: @wanseoblim

venmo

02

wanseob.eth

He's using
CDP and
lending lots
of money

wanseob.eth

Technical details

zk-SNARKs friendly

zk-SNARKs friendly

zk-SNARKs friendly

Mimblewimble TX0

Mimblewimble TX0

Mimblewimble on the baby Jubjub curve.

Mimblewimble equation

+ Input TXO
$$+ (r_{in} \circ G + v_{in} \circ H)$$

$$- \text{Output TXOs} \qquad - (r_{out1} \circ G + v_{out1} \circ H)$$

$$- (r_{out2} \circ G + v_{out2} \circ H)$$

$$- \text{Fee} \qquad - v_{\text{Fee}} \circ H$$

$$= \text{Excess} \qquad = r_{excess} \circ G + 0 \circ H$$

$$v_{in} \cdot (v_{out1} + v_{out2} + v_{fee}) = 0$$

Problem of Mimblewimble on Ethereum

Mimblewimble transaction

Kernel

- Excess
- Schnorr Signature
- Fee
- Metadata

Body

- Input TXOs
- Output TXOs / Range proofs

Proofs

Range proofs of output TXOs

Commitment-nullifier scheme

Zk Mimblewimble transaction

Original Mimblewimble transaction

Kernel

- **Excess**
- **Schnorr Signature**
- Fee
- Metadata

Body

- **Input TXOs**
- Output TXOs / Range proofs

Proofs

Range proofs of output TXOs

Kernel

- Excess
- **Schnorr Signature**
- Fee
- Metadata

Body

- Spent tags(nullifier)
- **Output TXOs**

Proofs

- Range proofs of output TXOs
- Inclusion proofs of spent tags
- Mimblewimble proof

zk-Roll Up friendly data structure

Merkle Mountain Range

Pedersen Merkle Mountain Range

Pedersen Merkle Mountain Range - Leaf node

Pedersen Merkle Mountain Range - Branch node

Pedersen Merkle Mountain Range - Root

Proof for challenge

Tested with 3GHz 8 core CPU(Ryzen 1700) & 32Gb DDR4 RAM

	Constraints	Gas consumption	Proof generation(sec)
Deposit proof	29,140	612,273	3 s
Withdraw proof	588,910	658,043	3.5 s
Range proof	19,679	568,232	2 s
MMR Inclusion Proof	399,644	613,809	24 s
Mimblewimble Proof	141,552	975,399	9 s
MMR Roll up 8 items (4 txs)	1,614,383	1,392,269	1m 47s
MMR Roll up 16 items (8 txs)	2,906,951	2,127,267	3m 19s
MMR Roll up 32 items (16 txs)	5,492,087	3,597,531	7m 20s
MMR Roll up 64 items (32 txs)	10,662,359	6,541,946	17m 30s

Optimistic roll up

```
function rollUp(
    Tx[] memory txs,
    uint root,
    uint newRoot,
    uint[] proof
) internal {
    verifyTxWithZkSNARKs(txs, proof);
```

Optimistic roll up

```
function optimisticRollUp(
    Tx[] memory txs,
    uint root,
    uint newRoot,
    uint[] proof
) internal {
    // verifyTxWithZkSNARKs(txs, proof);
    save(keccak256(msg.data), RollUp(txs, proof));
    ...
```

Optimistic roll up (in Petersburg)

	Gas(Avg)	Gas per tx	Maximum TPS
oll up	85	3,859,179	0.17 tx/sec
2 tx	6,645,227	3,322,613	0.20 tx/sec
ic lup	49: 9		4. i tx) c
Optimistic roll ap 32 tx	4,694,516	146,703	4.53 tx/sec

Possibility of DAO & Defi

- Anyone can be a relayer!
- 2. Relayers can get transaction fee using Mimblewimble protocol
- 3. Relayers can set their own tx fee policy.
- 4. Proof of Stake is needed for the optimistic roll up.
- 5. Proof of Stake + Tx Fee = DAO & De-Fi?

Future works

- 1. Optimization
- 2. Relayer client (in progress)
- 3. Mobile client (in progress)
- 4. Goblins' network
 - a. Relayer's network to provide the instant finalization
- 5. Destroying the horcruxes

Summary

Mimblewimble transaction & commitment-nullifier

: Easy to implement on zk SNARKs. Totally hides where inputs come from

Pedersen Merkle Mountain Range

: Enables efficient roll up. It is able to append up to 256(Istanbul) items at once.

Optimistic Roll up

: Fraud proof without DA problems. It reduces gas cost down to 50k gas per transaction in Istanbul. (Standard ERC20: 50k ~ 100k gas per transaction)

Repositories

Ethereum 9³/₄ Repository:

https://github.com/ethereum934/eth-mimblewimble

Technical details:

https://ethresear.ch/t/ethereum-9-send-erc20-privately-using-mimblew

<u>imble-and-zk-snarks/6217</u>

And... just like Grin

