Система сбора и анализа показателей жизнедеятельности на основе данных с мобильных устройств

Автор: А. Ю. Байгельдин, гр. 14.Б09-мм

Научный руководитель: к.ф.-м.н., доцент К. Ю. Романовский

Рецензент: зам. ген. директора ООО "ПитерСофтвареХаус" Хитров Д. В.

Введение

- **Стресс неспецефическая** реакция организма на воздействие различных (как положительных, так и отрицательных) факторов, нарушающее **гомеостаз** (равновесное состояние организма).
- Зустресс повышает функциональный резерв организма.
- Дистресс истощает организм и способствует развитию заболеваний.
- Симпатическая система отвечает за стресс ("fight or flight").
- Парасимпатическая система отвечает за отдых ("rest and digest").

Актуальность

- Получили развитие различные методики управления стрессом.
- Однако, человек может не замечать, что он находится под стрессом.
- Требуется система для **автоматического отслеживания** стресса, обладающая **достаточной мобильностью**, чтобы использовать ее в повседневной жизни.

Постановка задачи

Цель работы заключается в создании **прототипа мобильного приложения**, определяющего стресс на основе данных с носимых медицинских устройств.

Задачи:

- Изучить природу стресса и выбрать наиболее важные признаки.
- Спроектировать архитектуру приложения и его взаимодействия с моделью машинного обучения и носимыми устройствами.
- Разработать мобильное приложение и интегрировать в него модель машинного обучения.
- Собрать данные для обучения модели, обучить модель и оценить ее эффективность.

Существующие решения

- Большинство мобильных решений используют фотоплетизмографию.
- Стационарные системы используют разные показатели **активации симпатической нервной системы**: электрическая активность кожи, кровяное давление, сердцебиение, частота дыхания.
- Популярно применение **вариабельности сердечного ритма** (HRV).
- На основе HRV и данных о физической активности достигается **86%** качества определения стресса.

Выбор признаков

- HRV крайне важный показатель баланса нервной системы.
- Физическую активность можно рассчитать по данным акселерометра.
- Пульсометры дешевы и мобильны.

Взаимодействие с устройствами

Интерфейс

Сбор данных

- Стрессовые ситуации
 - Подготовка к ответу и сам ответ на экзамене
 - Тест Струпа с негативной обратной связью (в движении и без)
 - Видеоигры в жанре хоррор
- Не стрессовые ситуации
 - Отдых и сон
 - Прогулка
 - Чтение книги
- Было собрано ~700 измерений общей продолжительностью 6 часов.

Конструирование признаков

$$RMSSD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (RR_{i+1} - RR_i)^2}$$
 (1)

$$HR_{max} = 220 - age$$
 (2

$$AI = \sqrt{max(\frac{1}{3}\{\sum_{i=1}^{3}\frac{\sigma_i^2 - \overline{\sigma}^2}{\overline{\sigma}^2}\}, 0)}$$
 (3)

$$\%HR = \frac{HR - HR_{baseline}}{HR_{max} - HR_{baseline}}$$
 (4)

$$\Delta HRV = \ln RMSSD - \ln RMSSD_{baseline}$$
 ($\Delta HRV, \%HR, AI$)
(5)

Взаимодействие с моделью

Описание модели

- **SVM** (Support Vector Machine) с линейным ядром.
- **SMOTE** (Synthetic Minority Over-sampling Technique).

Оценка эффективности

	Точность	Полнота	F-мера
Отрицательно	0.96 (± 0.06)	0.93 (± 0.08)	0.95 (± 0.03)
Положительно	0.94 (± 0.07)	0.96 (± 0.06)	0.95 (± 0.03)
Среднее	0.95 (± 0.03)	0.95 (± 0.03)	0.95 (± 0.03)

- **Апробация** подтвердила точность для отрицательного класса и полноту для положительного, точность же положительного класса была ~50%.
- Модель детектирует стресс при общении с окружающими.

Ограничения

- Недостаток данных принуждает к линейной аппроксимации.
- Слабую персонализированность модели (т. е. фиксированный порог активации) можно решить:
 - о Сведением проблемы к задаче регрессии.
 - Обучением моделей с разной чувствительностью к стрессу.

Результаты

- Проведен анализ существующих решений для определения стресса и выбраны наиболее важные показатели для данной задачи.
- Спроектирована гибкая архитектура приложения и его взаимодействия с медицинскими сенсорами и моделью машинного обучения.
- Реализовано мобильное приложение для платформ iOS и Android.
- Проведена оценка эффективности обученной на собранных данных модели и показано, что на основе данных с пульсометра и акселерометра можно эффективно определять стресс.