數位積體電路 HW4 311511057 張詔揚

■ 4-1 Minimal Energy-Delay Product

本次的作業是要 based on ASAP 7nm standard cells 設計出 2×2 convolution kernel,下圖為 2x2 convolution 的 block diagram,接著開始合成並跑 Spice 模擬。

(圖一: 2x2 convolution 的 block diagram)

設計出來的 verilog 會如上圖所示,採用 FSM 的架構,有輸入、convolution 計算、輸出的狀態,完成一個簡單的 pipeline 系統。另外,在乘法器和加法器的部分也充分運用到了 parallel 的技巧,convolution 時會用很多的硬體同時做計算。

首先,先進行波型圖比對電路輸出的與正確的波型是否吻合,下圖 Verilog 系統層級的波形模擬。

	*3 082	0F8	101	1.05												
rectoro. Ab		510	101	1CE	072	0E9	11D	052	0E9	08C	11D	0AC	10E	158	10F	0B2
IESTBED/I	A 4	Е	7	6	8		9	7	9	6	7		F	С	Е	2
TESTBED/ 4h	C A	D	Α	С	6	7	Е	8	С	4	9	Е	В	7	3	9
TESTBED/I 4h	B 5	3	С	D	0		A	0	F	В	D	9	Е	D	7	5
TESTBED/ 4h	3 8	0	8	F	6		1	5	1	5	7		D	4	5	0
TESTBED/ 4h	6	В	7	8	6	D	9	1	0	2	F	4	2	3	В	0
TESTBED/ 4h	8 3	7	Α	7	5	9	6	5	3	8	7	3	1	С	5	С
TESTBED/ 4h	E 4	1	3	F	4	E	В	8	D	6	2	9	8	F	В	Е
TESTBED/ 4h	F 7	8	9		6	В	A	7	2	6	D	3	9	8	5	3
TESTBED/ 10h	*3 082	0F8	101	1CE	072	0E9	11D	052	0E9	08C	11D	0AC	10E	158	10F	0B2

(圖二: Verilog波形模擬)

接下來會把寫好的 code 進行合成,合成時將一個 clock cycle 設為 1000,得到由 standard cells 組成的 gate level code,同時,也會產生 timing 和 area 的分析報告。

Point	Incr	Path
input external delay IFM_3[0] (in) U10/Y (INVxp33_ASAP7_75t_R) U80/Y (NOR2xp33_ASAP7_75t_R) DP_OP_10J1_122_2300/U122/CON (FAx1_ASAP7_75t_R) U15/Y (INVxp33_ASAP7_75t_R) DP_OP_10J1_122_2300/U106/CON (FAx1_ASAP7_75t_R) DP_OP_10J1_122_2300/U106/SN (FAx1_ASAP7_75t_R) U47/Y (INVxp33_ASAP7_75t_R) DP_OP_10J1_122_2300/U99/CON (FAx1_ASAP7_75t_R) U62/Y (INVx1_ASAP7_75t_R) DP_OP_10J1_122_2300/U80/SN (FAx1_ASAP7_75t_R) U19/Y (INVxp33_ASAP7_75t_R) U19/Y (INVxp33_ASAP7_75t_R) U137/Y (MAJIxp5_ASAP7_75t_R) U139/Y (MAJIxp5_ASAP7_75t_R) U141/Y (MAJx2_ASAP7_75t_R) U144/Y (INVx1_ASAP7_75t_R) U144/Y (INVx1_ASAP7_75t_R) U145/CON (FAx1_ASAP7_75t_R) U145/SN (FAx1_ASAP7_75t_R) Output[8] (out) data arrival time	0.00 0.00 14.92 27.38 22.80 26.32 34.69 16.44 33.93 26.90 16.71 65.73 33.56 43.51 29.23 33.88 23.71 19.85 18.24 11.38 0.00	0.00 f 0.00 f 14.92 r 42.30 f 65.11 r 91.43 f 126.11 r 142.55 f 176.48 r 203.38 f 220.09 r 285.83 r 319.39 f 362.90 r 392.13 f 426.01 f 449.72 r 469.57 f 487.81 r 499.19 f 499.19 f
max_delay output external delay data required time	500.00	500.00 500.00 500.00
data required time data arrival time		500.00 -499.19
slack (MET)		0.81

(圖三: 合成後的 timing 分析)

通常 slack 代表邏輯閘運算時間有無超過循序電路一個 cycle 的時間,以及有無違反 setup time 和 hold time,如果超過的話,slack 是負值,則會得到錯誤的運算結果。

```
Number of ports:
Number of nets:
                                            272
                                            195
Number of cells:
                                           195
Number of combinational cells:
                                             0
Number of sequential cells:
                                             0
Number of macros/black boxes:
                                            55
15
Number of buf/inv:
Number of references:
Combinational area:
                                    311.895357
Buf/Inv area:
                                     38.724481
                                      0.000000
Noncombinational area:
                                      0.000000
Macro/Black Box area:
Net Interconnect area:
                             undefined (No wire load specified)
Total cell area:
                                    311.895357
Total area:
                             undefined
```

(圖四: 合成後的 area 分析報告)

(圖五: Hspice 的波形模擬)

轉換 verilog code 為 hspice code 進行後續的模擬與分析。首先,利用上方的合成後的 timing 分析報告對照 convolution_SYN 檔尋找它的 critical path 的節點。

接著會寫超過二十組的 pattern,並且包含 timing 分析報告中一致的那條 critical path,接下去進行調整電壓的模擬與量測。

如上圖所示,可以驗證轉換之後電路的功能性依舊正確,能讀進輸入的訊號, 並產生正確的輸出。

下方為量測 critical path 上的 delay time 和 power 所得到的結果,可以觀察到隨著Voltage 的上升,delay 時間會有明顯的下降,而 power 也會隨之上升。

V _{DD} (V)	delay(s)	power(W)	product(s-W)
0.4	1.17078E-9	2.36914E-6	2.77373E-15
0.5	5.19072E-10	4.02556E-6	2.08956E-15
0.6	3.21409E-10	6.22843E-6	2.00187E-15
0.7	2.33027E-10	8.90882E-6	2.076E-15
0.8	1.86974E-10	1.21928E-5	2.27973E-15
0.9	1.6125E-10	1.62321E-5	2.61742E-15
1	1.46039E-10	2.1158E-5	3.08989E-15
1.1	1.36791E-10	2.72224E-5	3.72378E-15

(圖七: Voltage 變化時 delay 和 power 的量測數據)

1

(圖八: delay 和電壓的關係圖)

(圖九: power 和電壓的關係圖)

最後,可以透過 power 和 delay 相乘,找出最佳的 voltage 設定,約在 0.6V 附近,能有適中的 power 和 delay 數值,如下圖所示。

(圖十: power- delay 和電壓關係圖)

■ 4-2 Minimal Energy-Delay Product

Report : area

Design: Comparator Version: T-2022.03

Date : Mon Dec 11 20:30:40 2023

Library(s) Used:

 $asap7sc7p5t_SIMPLE_RVT_TT_08302018 \ (File: /RAID2/COURSE/dic/dic290/test2/02_SYN/asap7sc7p5t_SIMPLE_RVT_TT_08302018.db)$

Number of ports:129Number of nets:210Number of cells:82

Number of combinational cells: 82
Number of sequential cells: 0
Number of macros/black boxes: 0
Number of buf/inv: 0
Number of references: 6

Combinational area: 161.663038

Buf/Inv area: 0.000000

Noncombinational area: 0.000000

Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 161.663038 Total area: undefined

1

(圖十一: 合成後的 area 分析報告)

★ tphl1=483p

Information: Updating design information... (UID-85)

Report: timing
-path full
-delay max
-max_paths 1
Design: Comparator
Version: T-2022.03

Date: Mon Dec 11 20:30:40 2023

Operating Conditions: PVT_0P7V_25C Library: asap7sc7p5t_INVBUF_RVT_TT_08302018

Wire Load Model Mode: top

Startpoint: B[47] (input port) Endpoint: Out (output port) Path Group: default

Path Type: max

Point Incr Path

input external delay 0.00 0.00 r

B[47] (in) 0.00 0.00 r

U79/Y (XNOR2xp5_ASAP7_75t_R) 14.28 r U87/Y (NAND4xp25_ASAP7_75t_R) 18.47 32.74 f U74/Y (NOR5xp2_ASAP7_75t_R) 26.10 58.84 r U83/Y (NAND4xp25_ASAP7_75t_R) 21.97 80.81 f U10/Y (NOR5xp2_ASAP7_75t_R) 17.38 98.19 r

Out (out) 0.00 98.19 r data arrival time 98.19

 max_delay
 280.00
 280.00

 output external delay
 0.00
 280.00

 data required time
 280.00

data required time 280.00 data arrival time -98.19

slack (MET) 181.81

1

(圖十二: 合成後的 timing 分析報告)