Advanced Set Theory

Yang Ruizhi

February 27, 2023

Contents

1 Course 1 1

1 Course 1

Definition 1.1. Fix first order language \mathcal{L}_1 , \mathcal{L}_2 and theory T_1 in \mathcal{L}_1 , theory T_2 in \mathcal{L}_2 . We say that T_1 **interpret** T_2 iff there is a function π s.t.

- 1. $\pi(\forall) = \varphi_{\forall}(x)$ is a \mathcal{L}_1 -formula
- 2. $\pi(\approx) = \varphi_{\approx}(x,y)$ is a \mathcal{L}_1 -formula s.t.

 $T_1 \vdash \varphi_{\approx}(x,y)$ defines an equivalent relation on the set defined by $\varphi_{\forall}(x)$

e.g.,
$$\forall x \forall y (\varphi_\forall(x) \to \varphi_\forall(y)) \to \varphi_\approx(x,y) \to \varphi_\approx(y,x)$$

- 3. For any n-ary predicate P in \mathcal{L}_2 , $\pi(P)=\varphi_P(x_1,\dots,x_n)$ and respects the equivalence relation defined by φ_\forall
- $\begin{array}{lll} \text{4. For constant } c \text{ in } \mathcal{L}_2\text{, } \pi(c) = \varphi_c(x) \text{ s.t. } T_1 \vdash \exists x (\varphi_\forall(x) \land \varphi_c(x)) \land \\ \forall y, z (\varphi_\forall(y) \rightarrow \varphi_\forall(z) \rightarrow \varphi_c(y) \rightarrow \varphi_c(z) \rightarrow \varphi_\approx(y,z)) \end{array}$
- 5. For n -ary function symbol f in \mathcal{L}_2 , $\pi(f)=\varphi_f(x_1,\dots,x_n,y)$ s.t. it's a function modulo φ_\approx

Then we can recursively define the translation of formulas.

For term t we define

$$\varphi_t(x) = \begin{cases} \varphi_\approx(x,t) & t \text{ is a variable(constant) other than } x \\ \exists y_1 \dots y_n((\bigwedge_{i=1}^n \varphi_\forall(y_i) \land \varphi_{t_i}(y_i)) \land \varphi_f(y_1,\dots,y_n,x)) & t = ft_1 \dots t_n \end{cases}$$

For formulas

$$1. \ (t_1 \approx t_2)^* = \exists x_1 x_2 (\varphi_\forall(x_1) \land \varphi_\forall(x_2) \land \varphi_{t_1}(x_1) \land \varphi_{t_2}(x_2) \land \varphi_\approx(x_1,x_2))$$

2.
$$(Pt_1 ... t_n)$$

3.
$$(\forall x \varphi)^* = \forall x (\varphi_{\forall}(x) \to \varphi^*(x))$$

For any \mathcal{L}_2 -formula φ , $T_2 \vdash \varphi \Rightarrow T_1 \vdash \varphi^*$

Fact 1.2. If T_1 interprets T_2 then T_1 is consistent implies T_2 is consistent

Proof. If T_2 is not consistent, then T_1 is not consistent

Definition 1.3 (Relative consistency). T_2 is **relative consistent** in T_1 iff $Con(T_1) \rightarrow Con(T_2)$

Usually T_1 and T_2 are recursively enumerable.

Definition 1.4 (Consistency strength). Assume T_1 can interprets Q, T_2 is r.e., we say that the **consistency strength** of T_1 is strictly stronger than T_2 iff $T_1 \vdash \mathsf{Con}(T_2)$

Fact 1.5. If the consistency strength of T_1 is strictly stronger than T_2 then $Con(T_1) \rightarrow Con(T_2)$

Proof. If T_2 is not consistent, then $\neg Con(T_2)$ is a true Σ_1^0 -sentence, so $T_1 \vdash \neg Con(T_2)$

ZF,ZF-foundation, ZF-replacement, $V_{\omega+\omega}$ ZF-power set: ZF $\vdash V_{\omega+1} \vDash$ ZF -Pow ZF-Infinite: ZF $\vdash V_{\omega} \vDash$ ZF -Inf

NBG is finitely axiomatizable class existency axioms

- 1. $\in \subset V^2$ exists
- 2. If a class exists, then its complement exists
- 3. intersection of class exists
- 4. projection of class exists, $\forall X \exists Y \forall z (z \in Y \leftrightarrow \exists w (z, w) \in X)$

Fact 1.6. *NBG* is conservative over ZF, $ZF \vdash \varphi \Leftrightarrow NBG \vdash \varphi^*$