

Hi3136

Data Sheet

Issue 00B10

Date 2013-05-17

Copyright © HiSilicon Technologies Co., Ltd. 2012. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

HISILICON, and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base

> Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

About This Document

Purpose

Hi3136 V100 is a satellite digital TV channel receiver chipset. This document describes the features, logic architecture, and hardware design of Hi3136 V100 for guiding user design.

Related Version

The following table lists the product version related to this document.

Product Name	Version
Hi3136	V100

Intended Audience

This document is intended for:

- Design and maintenance personnel for electronics
- Sales personnel for electronics

Conventions

Register Attributes

The register attributes that may be found in this document are defined as follows.

Symbol	Description	Symbol	Description
RO	The register is read-only.	RW	The register is read/write.

Symbol	Description	Symbol	Description
RC	The register is cleared on a read.	WC	The register can be read. The register is cleared when 1 is written. The register keeps unchanged when 0 is written.

Reset Value Conventions

In the register definition tables:

- If the reset value (for the Reset row) of a bit is "?", the reset value is undefined.
- If the reset values of one or multiple bits are "?", the total reset value of a register is undefined and is marked as "-".

Numerical System

The expressions of data capacity, frequency, and data rate are described as follows.

Type	Symbol	Value
	K	1024
Data capacity (such as the RAM capacity)	M	1,048,576
, , , ,	G	1,073,741,824
	k	1000
Frequency, data rate	M	1,000,000
	G	1,000,000,000

The expressions of addresses and data are described as follows.

Symbol	Example	Description
0x	0xFE04, 0x18	Address or data in hexadecimal
0b	0ь000, 0ь00 00000000	Data or sequence in binary (register description is excluded.)
X	00X, 1XX	In data expression, X indicates 0 or 1. For example, 00X indicates 000 or 001 and 1XX indicates 100, 101, 110, or 111.

Change History

Changes between document issues are cumulative. Therefore, the latest document issue contains all changes made in previous issues.

Issue 00B10 (2013-05-17)

This issue is the first official release, which incorporates the following changes:

Chapter 3 Hardware

The section 3.8.2 Output Timing Parameters is modified.

Issue 00B01 (2012-12-06)

This issue is first draft release.

Contents

1 Product Description	1-1
1.1 Introduction to Hi3136 V100	1-1
1.2 Key Specifications	1-1
1.2.1 Demodulation	1-1
1.2.2 Features	1-1
1.2.3 System	1-2
1.2.4 Interfaces	1-2
1.2.5 Process	1-2
1.3 Functional Block Diagram	1-2
1.4 Application Fields	1-3
1.5 Typical Application	1-3

Figures

Figure 1-1 Functional block diagram	1-3	
Figure 1-2 Typical front-end receiving application	1-4	

1 Product Description

1.1 Introduction to Hi3136 V100

Hi3136 V100 is a satellite digital TV channel receiver chipset that supports digital video broadcasting-satellite (DVB-S), DVB-S2, and DirecTV modes. The chipset uses all-digital processing technologies from baseband sampling on satellite digital signals to MPEG TS output. Hi3136 V100 supports quaternary phase shift keying (QPSK), 8 phase shift keying (8PSK), 16 absolute phase shift keying (16APSK), 32APSK, adaptive coding and modulation (ACM), and variable coding and modulation (VCM). These features make Hi3136 V100 the most comprehensive chipset in the industry. Hi3136 V100 supports a maximum of 60 Msps symbol rate and provides rapid and reliable blind scanning to search programs at full frequency bands and to obtain system information such as the carrier frequency, symbol rate, and code rate. Hi3136 V100 also supports phase noise suppression, anti-multipath, and anti-interference. Rapid channel synchronization enables Hi3136 V100 to reduce channel switching time. All these features enable Hi3136 V100 to work in various environments.

1.2 Key Specifications

1.2.1 Demodulation

Hi3136 V100 supports DVB-S2, DVB-S, and DirecTV (ITU-R BO.1516-System B) standards and automatic standard recognition. In the DVB-S2 standard, Hi3136 V100 provides the following demodulation functions:

- QPSK, 8PSK, 16APSK, and 32APSK
- 11 code rates
- Short and long frames
- CCM, VCM, and ACM modes
- TSs and generic streams (GSs), data services support

1.2.2 Features

Hi3136 V100 has the following features:

- Rapid and reliable blind scanning at full frequency bands to automatically obtain system information such as the carrier frequency, symbol rate, and code rate
- Superior phase noise suppression

- Superior anti-multipath for reducing reflections from high buildings and impedance mismatch
- Superior anti-interference for improving environment adaptation
- Rapid channel synchronization for reducing channel switching time
- Wide carrier and symbol rate acquisition ranges for improving applications
- Adaptive spectrum inversion recognition
- A maximum bit rate of 187.5 Mbit/s
- A minimum symbol rate of 1 Msps and the following maximum symbol rates:
 - 60 Msps in QPSK or 8PSK mode
 - 47 Msps in 16APSK mode
 - 37.5 Msps in 32APSK mode

1.2.3 System

Hi3136 V100 has the following system features:

- Integrated 125 MHz and 10-bit ADC with dual channels for supporting highly accurate sampling
- Integrated PLL, external passive crystal oscillator, 10–30 MHz (24 MHz typically)
- Real-time monitoring of the signal strength, signal-to-noise ratio, and bit error rate
- Simple external circuits, 2-layer PCB routing, low BOM costs

1.2.4 Interfaces

Hi3136 V100 has the following interface features:

- I²C bus protocol support for flexibly controlling chipsets
- Tuner I²C bus trunk
- Digital satellite equipment control (DiSEqC) V2.x and frequency shift keying (FSK) protocol support for controlling satellite equipment
- TS outputs in configurable serial or parallel mode to work with decoding chipsets
- Configurable TS output pin for facilitating PCB routing

1.2.5 Process

Hi3136 V100 uses the following power supplies and package:

- 1.2 V core power, 3.3 V I/O power, and the maximum power consumption of 540 mW
- Mapped quad flat non-leaded 48 (MQFN48), body size of 6 mm x 6 mm (0.24 in. x 0.24 in.), in compliance with the restriction of the use of certain hazardous substances (RoHS) directive

1.3 Functional Block Diagram

Figure 1-1 provides the functional block diagram.

Q VINP Equalizer Anti-aliasing filter Q_VINN ADC Carrier recovery Symbol timing recovery _VINP Match filter Frame sync I_VINN AGC **AGC** DVB-S2 DVB-S DirecTV **FEC FEC FEC** XIN **CLK** XOUT ◀ **GEN** CLK_OUT ◀ User packet processing TS/GS DiSEqC_IN DiSEqC_OUT output interface **DiSEqC** HV SEL∢ LNB_EN < FSKI **FSK** Reset I2C slave FSKO **◄** RSTN SCLT SDAT ADDR[1:0] SCL SDA

Figure 1-1 Functional block diagram

1.4 Application Fields

Hi3136 V100 applies to:

- Satellite tuner
- Satellite STB and integrated digital TV
- Satellite modem and digital TV card

1.5 Typical Application

Figure 1-2 demonstrates the typical front-end receiving application.

RF JN RC LPF DisEqC SDA Tuner AGC SCL circuit I_VINP I_VINI Q_VINP Q_VINI I_VINP I_VINI Q_VINP Q_VINI **AGC** DISEQC_OUT SCLT DISEQC_IN SDAT LNB_EN SCL Hi3136 HV_SEL SDA FSK_IN XIN Quartz ____ FSK_OUT XOUT TS_OUT TS_CLK TS_SYNC TS_ERR TS_VALID Ŷ Decoder

Figure 1-2 Typical front-end receiving application

Contents

2	Demod	2-1
	2.1 Introduction	2-1
	2.2 Clock	2-1
	2.3 Reset	2-4
	2.4 I ² C Controller	2-4
	2.5 ADC	2-5
	2.6 AGC	2-6
	2.7 AAF	2-6
	2.8 TR	2-7
	2.9 MF	2-7
	2.10 EQU	2-7
	2.11 CR	2-7
	2.12 Frame Synchronization	2-7
	2.13 DVB-S2 FEC Module	2-8
	2.14 DVB-S&DirecTV FEC Module	2-8
	2.15 TS Output	2-8
	2.16 Signal Monitoring	2-12
	2.17 Channel Blind Scanning	2-18
	2.18 DiSEqC	2-19
	2.19 Register Summary	2-22
	2.20 Demod Register Descriptions	2-29

Figures

Figure 2-1 Internal clock domains of the Demod	2-1
Figure 2-2 I ² C read timing	2-4
Figure 2-3 I ² C write timing	2-5
Figure 2-4 I ² C forwarding schematic diagram	2-5
Figure 2-5 Timing in TS parallel output mode	2-9
Figure 2-6 Timing in 1-bit TS serial output mode	2-9
Figure 2-7 Timing in 2-bit TS serial output mode	2-10
Figure 2-8 Schematic diagram for the 0 tone burst output	2-20
Figure 2-9 Schematic diagram for the 1 data burst output	2-21
Figure 2-10 Schematic diagram for the DiSEqc message output	2-21

Tables

Table 2-1 Clock domains of other main modules	2-2
Table 2-2 Frequency ranges of PLL input and output clocks and internal clocks.	2-3
Table 2-3 Maximum symbol rates in various demodulation modes	2-3
Table 2-4 AGC signal clock frequencies	2-6
Table 2-5 TS output modes	2-9
Table 2-6 Mapping between the control signal ts_x_sel and the controlled external pin	2-11
Table 2-7 Mapping between the ts_x_sel value and the internal TS signal	2-11
Table 2-8 Mapping between PLS_CODE bit[6:2] and the modulation modes and code rates	2-13
Table 2-9 Mapping between the values of ROLL_OFF bit[1:0] and roll-off factors	2-13
Table 2-10 Code rates in DVB-S and DirecTV modes	2-14
Table 2-11 Values of <i>N</i> in DVB-S2 mode	2-16
Table 2-12 Mapping between the values of BER_CTRL bit[6:4] and frams	2-17
Table 2-13 Working modes on the DiSEqc TX end.	2-20
Table 2-14 Summary of Demod registers (base address: 0x00)	2-22

2 Demod

2.1 Introduction

The Demod completes all-digital processing from baseband sampling on satellite digital TV signals, demodulation, and forward error correction (FEC) decoding to MPEG TS output. The Demod supports the DVB-S2 (ETS 302 307), DVB-S (ETS 300 421), and DirecTV (ITU-R BO.1294 System B) standards.

2.2 Clock

The Demod input clock is derived from an external crystal oscillator clock or external clock. After the internal PLLs process the input clock, the working clock frequency for the Demod is obtained. The Demod has two internal clock domains: CLK_DEMO and CLK_FEC. The CLK_DEMO clock domain is used for ADC and demodulation, and the CLK_FEC clock domain is used for FEC decoding and TS output. Figure 2-1 shows the internal clock domains of the Demod.

Figure 2-1 Internal clock domains of the Demod

Table 2-1 describes the clock domains of other main modules.

Table 2-1	Clock	domains	of other	main	modules
I abic 2-1	CIOCK	domains	or ourci	mann	modules

Module	Clock Domain
I ² C	After power-on, the I ² C module works under a crystal oscillator clock or an external clock. After the internal PLLs are stable, the clock domain can be switched to CLK_DEMO to accelerate I ² C communication.
DISEQC	CLK_DEMO (demodulation clock)
FSK	CLK_FEC (FEC decoding clock)

Perform the following steps to set the CLK DEMO frequency:

- Step 1 Set ADC_CTRL2[i2c_xo_clk] to 0 to switch the I²C clock to crystal oscillator clock or external clock. If Hi3136 V100 starts to work after power-on reset, the I²C module works under a crystal oscillator clock or an external clock by default.
- Step 2 Set PLL1 CTRL1[pll1 pd] to 1 to disable PLL1.
- Step 3 Set PLL1 parameters.

```
FVC01 = FREF/pll1_refdiv[5:0] x (pll1_fbdiv[7:0] + pll1_frac[11:0]/2^12)
FOUT1 = FVC01/pll1_postdiv1[2:0]/pll1_postdiv2[2:0]
```

where

- FREF is the frequency of a crystal oscillator clock or an external clock.
- FVCO1 is the PLL1 VCO frequency.
- FOUT1 is the CLK_DEMO output frequency.
- For details about other parameters, see the descriptions of PLL1 registers.

The working frequency of CLK_DEMO is 125 MHz when the typical 24 MHz crystal oscillator clock or external clock and default configurations are used.

- **Step 4** Set PLL1_CTRL1[pll1_pd] to 0 to enable PLL1.
- **Step 5** Wait until TS CTRL2[pll1 lock] is 1, which indicating that PLL1 is locked.
- Step 6 Set PLL1 CTRL5[pll1 vcopd] to 0 to enable the PLL1 output.
- **Step 7** Set ADC_CTRL2[i2c_xo_clk] to 0 to switch the I²C clock to CLK_DEMO.
- **Step 8** Write 0 and then 1 to RSTN_CTRL[hot_rst_n] to perform a hot reset on Hi3136 V100.

----End

The procedure for setting the CLK_FEC frequency is similar. The only difference is to replace PLL1/pll1/FVCO1/FOUT1 with PLL2/pll2/FVCO2/FOUT2. For details, see PLL2 registers. The working frequency of CLK_FEC is 187.5 MHz when the typical 24 MHz crystal oscillator clock or external clock and default configurations are used.

MAIOTE

You can set the CLK_DEMO and CLK_FEC frequencies after switching the 1^2 C clock to the crystal oscillator clock or external clock. The frequencies of PLLx input and output clocks and internal clocks must fall within the value ranges described in Table 2-2. The value of x in PLLx or FVOCx is 1 or 2.

Table 2-2 Frequency	ranges of PLL input an	d output clocks and	l internal clocks

Clock	Frequency Range (MHz)
FREF	10-30
FREF/pllx_refdiv	10-40
FVCOx	≤ 1600
CLK_DEMO (FOUT1)	≤ 125
CLK_FEC (FOUT2)	≤ 187.5

The maximum symbol rate supported by the Demod is CLK_DEMO/2 to ensure that the demodulation function is normal. Table 2-3 describes the relationship between the maximum symbol rate and the CLK_FEC frequency. The FEC decoding function is normal only when the maximum symbol rate is not exceeded.

Table 2-3 Maximum symbol rates in various demodulation modes

Modulation Mode	Maximum Symbol Rate
QPSK	CLK_FEC/2
8PSK	CLK_FEC/3
16APSK	CLK_FEC/4
32APSK	CLK_FEC/5

After power-on reset, PLL1 and PLL2 outputs are disabled. Set PLL1_CTRL5[pll1_vcopd] and PLL2_CTRL5[pll2_vcopd] to 0 to enable clock outputs.

To ensure that Hi3136 V100 works properly, do as follows after changing PLL frequencies:

- Set CLK_DEMO_L[clk_demo_l], CLK_DEMO_M[clk_demo_m], and CLK_DEMO_H[clk_demo_h] based on the current CLK_DEMO frequency. The CLK_DEMO frequency unit is kHz and the CLK_DEMO frequency is calculated as follows:
 - CLK_DEMO frequency = clk_demo_h x 65536 + clk_demo_m x 256 + clk_demo_l
- Set CLK_FEC_L[clk_fec_l], CLK_FEC_M[clk_fec_m], and CLK_FEC_H[clk_fec_h] based on the current CLK_FEC frequency. The CLK_FEC frequency unit is kHz and the CLK_FEC frequency is calculated as follows:
 - CLK_FEC frequency = clk_fec_h x 65536 + clk_fec_m x 256 + clk_fec_l

The Demod provides the loopback clock CLK_OUT (PIN_24) for other chips such as the MPEG decoding chip. The CLK_OUT frequency is equal to the frequency of the crystal oscillator clock or external clock.

2.3 Reset

Reset operations are classified into hard reset and soft reset.

- The external RSTN pin is used for power-on reset or used by the main control chip for resetting the Demod. When a hard reset is performed, all registers are reset.
- By using the I²C module, internal registers can be reset by a cold reset (cool_rst_n) or hot reset (hot rst n) as follows:
 - Cold reset: Write 0 and then 1 to RSTN_CTRL[cool_rst_n]. When a cold reset is performed, all registers are reset, which is the same as a hard reset.
 - Hot reset: Write 0 and then 1 to RSTN_CTRL[hot_rst_n]. When a hot reset is performed, only the logic is reset and register values are retained.

2.4 I²C Controller

The I²C controller on the Demod acts as an I²C slave. The I²C controller reads or writes to the internal configuration register of the Demod over I²C communication and forwards I²C communication for the tuner.

When the I²C controller acts as the slave, it supports all I²C operations initiated by the main control chip. The Demod component address is expressed by 10110XXY. XX is specified by setting ADDR bit[1:0] and Y is used to specify the operation type. The value 1 indicates read and the value 0 indicates write. Figure 2-2 shows the I²C read timing, and Figure 2-3 shows the I²C write timing.

Figure 2-2 I²C read timing

The I²C controller consecutively reads or writes to multiple registers by working with software. For the tuner, the Demod can forward I²C communication. That is, the main control chip can access the tuner in the same way that the main control chip accesses the Demod when the I²C path between the main control chip and the tuner is enabled. Each time after an I²C read or write operation is complete, the Demod automatically disables forwarding to prevent interference to the tuner from the I²C module. For details about I²C addresses for the tuner, see tuner user manuals.

Figure 2-4 shows the I²C forwarding schematic diagram.

Figure 2-4 I²C forwarding schematic diagram

For details about how to enable I²C forwarding, see the descriptions of the TUNER_SEL register.

2.5 ADC

The Demod integrates a 10-bit ADC with dual channels. The ADC samples the baseband analog in-phase (I)/quadrant (Q) signals output from the front-end tuner. The CLK_DEMO frequency is set by changing the actual sampling clock frequency. The maximum CLK_DEMO frequency is 125 MHz. The ADC supports differential or single-ended inputs.

The default input mode is differential input. The peak voltage at full scale is 1 V. The sampling clock edge is selected by configuring ADC CTRL2[adc clk inv].

Typically, the ADC I/Q traces and tuner I/Q traces are connected respectively. In some cases, the ADC I/Q traces and tuner Q/I traces are connected respectively to facilitate PCB routing, which can also be automatically identified by the Demod.

After powering on the Demod, write 3 and then 0 to ADC_CTRL1[adc_om] to initialize the Demod.

2.6 AGC

The automatic gain control (AGC) module receives I/O outputs from the ADC and generates an AGC control signal (PDM wave) based on the difference between the expected and the actual power consumption. After resistor-capacitor (RC) filtering externally, the AGC control signal is transmitted to the tuner to adjust the tuner output amplitude to the expected value.

Set the following items:

- Set the clock frequency of the AGC control signal by configuring AGC_CTRL[pdm_div].
- Set the output polarity by configuring AGC_CTRL[agc_inverse].
- Set the expected AGC power consumption by configuring AGC GOAL[agc goal].
- Set the AGC adjustment speed by configuring AGC_SPEED_BOUND[agc_speed].

Table 2-4 describes AGC signal clock frequencies.

Table 2-4 AGC signal clock frequencies

pdm_div[2:0]	AGC Signal Clock Frequency
0	CLK_DEMO
1	CLK_DEMO/2
2	CLK_DEMO/4
3	CLK_DEMO/8
4	CLK_DEMO/16
5	CLK_DEMO/32
6	CLK_DEMO/64
7	CLK_DEMO/128

2.7 **AAF**

The anti-aliasing filter (AAF) suppresses out-of-band interference based on the configured symbol rate, preventing interference to valid signals.

2.8 TR

The timing recovery (TR) module recovers a clock with the same symbol rate as that at the TX end and sampling data with accurate clock phase.

The Demod uses the I²C module to write the initial symbol rate fs, ensuring that the TR module works properly. fs is a 16-bit unsigned number. The LSB indicates 1 kHz, and the maximum fs value is about 65 MHz. For details, see the descriptions of the FS_H and FS_L registers.

When channel blind scanning is enabled, the initial symbol rate can be provided by the blind scanning module. For details, see section 2.17 "Channel Blind Scanning."

2.9 MF

The matched filter (MF) is a root raised cosine filter. Its roll-off factor is 0.2, 0.25, or 0.35, which can be automatically identified.

2.10 EQU

The equalizer (EQU) eliminates the influences caused by echoes and linear channel distortion by using the blind equalization algorithm and decree feedback equalization algorithm. Set the blind equalization step by configuring EQU_CTRL[blind_step]. Set the decree feedback equalization step by configuring LMS_STEP[lms_step_4_8] or RD_WR_TAP[lms_step_16_32]. LMS_STEP[lms_step_4_8] corresponds to the QPSK or 8PSK mode, and RD_WR_TAP[lms_step_16_32] corresponds to the 16APSK or 32APSK mode.

2.11 CR

The carrier recovery (CR) module traces and compensates the frequency offset and phase offset of the carrier. By using an innovative algorithm, Hi3136 V100 optimizes the phase noise suppression, synchronization speed, and carrier and symbol rate acquisition range.

In some cases (for example, when the symbol rate is low), demodulation performance is improved by offsetting the tuner center frequency. The offset must be compensated in Hi3136 V100. Set the offset by configuring CENT_FREQ_L[cent_freq_l] and CENT_FREQ_H[cent_freq_h]. The value of cent_freq[15:0] is the difference between the actual center frequency and the configured center frequency of tuner input signals. The value is a signed number. The LSB indicates 1 kHz, and the value range is -32 MHz to +32 MHz.

2.12 Frame Synchronization

Because DVB-S2 signals are organized by frame, the frame start position must be accurate. The frame synchronization function is used to locate the frame start position. Rapid synchronization is supported at an extremely low signal-to-noise ratio (SNR). In addition, reliable synchronization is supported when the frame length changes by frame in VCM or ACM mode.

2.13 DVB-S2 FEC Module

This module performs the following operations:

- **Step 1** Demap symbols and transmit the generated software information to the deinterleaver.
- **Step 2** After deinterleaving, store the information in the random access memory (RAM) for low-density parity check code (LDPC) decoding. The short frame mode, long frame modes, and all standard code rates are supported during LDPC decoding.
- **Step 3** Transmit the decoded data to the Bose-Chaudhuri-Hocquenghem (BCH) module for BCH decoding.

----End

2.14 DVB-S&DirecTV FEC Module

This module performs the following operations:

- **Step 1** Identify and synchronize Viterbi code rates.
- Step 2 Perform depuncturing and demapping.
- **Step 3** Perform Viterbi decoding. The supported code rates include 1/2, 2/3, 3/4, 5/6, 7/8, and 6/7.
- **Step 4** Perform DVB-S/DirecTV deinterleaving.
- Step 5 Transmit deinterleaved data to the Reed-Solomon (RS) decoder for channel correction.

 The DVB-S output packet length is 188 bytes, and the DirecTV output packet length is 130 bytes.

----End

2.15 TS Output

The Demod supports three TS output modes: parallel mode, 1-bit serial mode, and 2-bit serial mode.

The signals from the TS output interface include the data signal TS_OUT[7:0], clock signal TS_CLK, data validity signal TS_VLD, sync header signal TS_SYNC, and packet error signal TS_ERR.

- TS_OUT: TS frame data. This signal is 8 bits in parallel mode, 1 bit in 1-bit serial mode, and 2 bits in 2-bit serial mode.
- TS_CLK: data clock. The clock edge is configurable. The clock output varies according to the output mode.
- TS_VLD: TS packet data validity indicator. It is byte valid in parallel mode or bit valid in 1-bit serial mode.
- TS_SYNC: TS packet sync header indicator. It is byte valid in parallel mode or bit valid in 1-bit serial mode.
- TS_ERR: TS packet error indicator. Set it to 1 if an error occurs in the current TS packet.

Select the TS output mode by configuring TS_PARALL_CTRL[ts_parall] and TS_PARALL_CTRL[ts_serial2]. See Table 2-5.

Table 2-5 TS output modes

ts_parall	ts_serial2	TS Output Mode	Maximum TS_CLK Frequency (MHz)	Maximum TS Bit Rate (Mbit/s)
1	0	Parallel mode	23.5	187.5
1	1	2-bit serial mode	94	187.5
0	x	1-bit serial mode	187.5	187.5

Figure 2-5 shows the timing in TS parallel output mode.

Figure 2-5 Timing in TS parallel output mode

Figure 2-6 shows the timing in 1-bit TS serial output mode.

Figure 2-6 Timing in 1-bit TS serial output mode

M NOTE

In 1-bit serial output mode, the TS_CLK frequency is fixed at the CLK_FEC frequency. Invalid bits are masked by setting the TS_VLD level to low. In Figure 2-6, upper bits are output first. You can enable lower bits to output first by configuring TS_CTRL0[ts_lsb_first]. TS_OUT can be mapped to any pin in TS_OUT[7:0]. For details, see the following sections.

Figure 2-7 shows the timing in 2-bit TS serial output mode.

Figure 2-7 Timing in 2-bit TS serial output mode

M NOTE

In 2-bit serial output mode, TS_OUT can be mapped to any two pins in TS_OUT[7:0].

In parallel output mode or 2-bit serial output mode, select the TS_CLK clock edge by configuring TS_CTRL0[ts_clk_inv]. If TS_CTRL0[ts_clk_inv] is 0, the rising edge is between TS data. If TS_CTRL0[ts_clk_inv] is 1, the falling edge is between data.

In 1-bit serial output mode, select the TS_CLK clock edge by configuring ADC_CTRL2[clk_inv]. If ADC_CTRL2[clk_inv] is 0, the rising edge is selected. If ADC_CTRL2[clk_inv] is 1, the falling edge is selected.

In parallel mode or 2-bit serial mode, the Demod automatically generates an even TS_CLK signal based on the CLK_FEC frequency, transmission standard, symbol rate, and modulation mode. You can also specify a fixed frequency-division signal of CLK_FEC as the TS_CLK signal. This method is recommended, because TS outputs including VCM and multi-TS are supported in most cases. Perform the following steps:

- Step 1 Set TS_CTRL4[ts_clk_div], TS_CLK_DIV_F_L[ts_clk_div_f_l], and TS_CLK_DIV_F_H[ts_clk_div_f_h] to determine the frequency divider for the system clock. ts_clk_div[5:0] is the integral part of the frequency divider and ranges from 8 to 63. ts_clk_div_f[15:0] is the decimal part of the frequency divider. The actual frequency divider is calculated as follows: Frequency divider = ts_clk_div[5:0] + ts_clk_div_f[15:0]/65536
- **Step 2** Set TS CTRL4[clk auto] to 0 to switch TS CLK to the configured frequency.
- Step 3 Determine whether to mask the TS_CLK output by configuring TS_CTRL0[mask_ts_clk] when TS_VLD is low.

CAUTION

Ensure that the maximum TS rate is supported at the TS_CLK frequency.

In 1-bit serial output mode, the TS_CLK output frequency is fixed at the CLK_FEC frequency. Mask invalid bits by setting TS_VLD to low.

The TS pin outputs are selected by using control signals. In Table 2-6, the value of x in ts_x sel is a or 0-9.

Table 2-6 Mapping between the control signal ts_x_sel and the controlled external pin

Control Signal	Register	Controlled External Pin
ts_0_ sel	TS_10_SEL	TS_OUT0
ts_1_sel	TS_10_SEL	TS_OUT1
ts_2_ sel	TS_32_SEL	TS_OUT2
ts_3_sel	TS_32_SEL	TS_OUT3
ts_4_ sel	TS_54_SEL	TS_OUT4
ts_5_ sel	TS_54_SEL	TS_OUT5
ts_6_sel	TS_76_SEL	TS_OUT6
ts_7_ sel	TS_76_SEL	TS_OUT7
ts_8_ sel	TS_98_SEL	TS_SYNC
ts_9_ sel	TS_98_SEL	TS_VLD
ts_ a_sel	TS_PARALL_CTRL	TS_ERR

Table 2-7 describes the mapping between the ts_x _sel value and the internal TS signal. The value of x in ts_x sel is a or 0–9.

Table 2-7 Mapping between the ts x sel value and the internal TS signal

ts_x_sel Value	Internal TS Signal
0000	ts_out[0]
0001	ts_out[1]
0010	ts_out[2]
0011	ts_out[3]
0100	ts_out[4]

ts_x_sel Value	Internal TS Signal
0101	ts_out[5]
0110	ts_out[6]
0111	ts_out[7]
1000	ts_sync
1001	ts_vld
Others	ts_err

M NOTE

- In 1-bit serial output mode, if the upper bit output takes priority, select the internal TS data signal ts out[7]. If the lower bit output takes priority, select the internal TS data signal ts out[0].
- In 2-bit serial output mode, if the upper bit output takes priority, select the internal TS data signal ts_out[7:6]. If the lower bit output takes priority, select the internal TS data signal ts_out[1:0].

----End

2.16 Signal Monitoring

Signal Strength

The Demod supports signal power statistics. Read AGC_CTRL_L[agc_ctrl_l] and then AGC_CTRL_H[agc_ctrl_h] to obtain the signal strength identifier.

```
sig_strength = agc_ctrl_h x 256 + agc_ctrl_l
```

A larger sig strength value indicates weaker signal strength.

Transmission Standard and Spectrum Inversion Recognition

To read the transmission standard, perform the following steps:

- **Step 1** Wait until LOCK_FLAG[fec_ok] is 1. The read information is correct only when LOCK_FLAG[fec_ok] is 1.
- **Step 2** Read LOCK_FLAG[sync_ok]. If LOCK_FLAG[sync_ok] is 1, the mode is DVB-S2. If LOCK_FLAG[sync_ok] is 0, the mode is DVB-S/DirecTV.
 - DVB-S2 mode

Read PLS_CODE bit[6:0]. PLS_CODE bit[6:2] indicate the modulation mode and code rate. PLS_CODE bit[1] indicates the frame length. If PLS_CODE bit[1] is 0, the frame is a normal frame (the frame length is 64800 bits). If PLS_CODE bit[1] is 1, the frame is a short frame (the frame length is 16200 bits). PLS_CODE bit[0] indicates whether there is pilot. If PLS_CODE bit[0] is 0, there is no pilot. If PLS_CODE bit[0] is 1, there is a pilot. Table 2-8 describes the mapping between PLS_CODE bit[6:2] and the modulation modes and code rates

Table 2-8 Mapping between PLS CODE bit[6:2] and the modulation modes and code rates

PLS_CODE Bit[6:2]	Modulation Mode and Code Rate	PLS_CODE Bit[6:2]	Modulation Mode and Code Rate
00000	Dummy (QPSK)	10000	8PSK 8/9
00001	QPSK 1/4	10001	8PSK 9/10
00010	QPSK 1/3	10010	16APSK 2/3
00011	QPSK 2/5	10011	16APSK 3/4
00100	QPSK 1/2	10100	16APSK 4/5
00101	QPSK 3/5	10101	16APSK 5/6
00110	QPSK 2/3	10110	16APSK 8/9
00111	QPSK 3/4	10111	16APSK 9/10
01000	QPSK 4/5	11000	32APSK 3/4
01001	QPSK 5/6	11001	32APSK 4/5
01010	QPSK 8/9	11010	32APSK 5/6
01011	QPSK 9/10	11011	32APSK 8/9
01100	8PSK 3/5	11100	32APSK 9/10
01101	8PSK 2/3	11101	Reserved
01110	8PSK 3/4	11110	Reserved
01111	8PSK 5/6	11111	Reserved

Read TS_CTRL3[is_ccm] in DVB-S2 mode. If TS_CTRL3[is_ccm] is 0, the current transmission mode is VCM or ACM. If TS_CTRL3[is_ccm] is 1, the current transmission mode is CCM.

Read ROLL_OFF[roll_off] to obtain the roll-off factors in DVB-S2 mode. Table 2-9 describes the mapping between the values of ROLL_OFF bit[1:0] and roll-off factors.

Table 2-9 Mapping between the values of ROLL OFF bit[1:0] and roll-off factors

ROLL_OFF Bit[1:0]	Roll-Off Factor
00	0.35
01	0.25
10	0.2
11	Reserved

Read FREQ_INV[freq_inverse] in DVB-S2 mode. If FREQ_INV[freq_inverse] is 1, the spectrum is inverted. If FREQ_INV[freq_inverse] is 0, the spectrum is not inverted.

DVB-S/DirecTV

Read SEAR_RESULT bit[0]. If SEAR_RESULT bit[0] is 1, the mode is DirecTV. If SEAR_RESULT bit[0] is 0, the mode is DVB-S. Read SEAR_RESULT bit[3:1] to obtain the code rates in DVB-S and DirecTV modes.

Table 2-10 Code rates in DVB-S and DirecTV modes

SEAR_RESULT Bit[3:1]	Code Rate in DVB-S Mode	Code Rate in DirecTV Mode
000	1/2	1/2
001	2/3	2/3
010	3/4	N/A
011	5/6	N/A
100	7/8	N/A
101	N/A	6/7
110	N/A	N/A
111	N/A	N/A

Note the following:

- The modulation mode for DVB-S/DirecTV is fixed at QPSK.
- The roll-off factor is fixed at 0.35 for DVB-S or 0.2 for DirecTV.
- Read DEC RESULT[iq swap] in DVB-S/DirecTV mode.
 - 1: The spectrum is inverted.
 - 0: The spectrum is not inverted.

----End

Symbol Rate Offset

The initial symbol rate fs must be loaded before timing recovery. After the timing loop is stable, read [fs_offset_fc_l] and then FS_OFFSET_FC_H[fs_offset_fc_h] from the Demod. Calculate the offset between the actual symbol rate and fs as follows:

```
fs_offset_tmp = (fs_offset_fc_h*256+fs_offset_fc_1)
if(fs_offset_tmp>=32768)
fs_offset = (fs_offset_tmp-65536)/2^22*CLK_DEMO
else
fs_offset = fs_offset_tmp/2^22*CLK_DEMO
```

If the value of fs_offset is a positive number, the actual symbol rate is greater than the configured symbol rate. If the value of fs_offset is a negative number, the actual symbol rate is less than the configured symbol rate. The units of CLK DEMO and fs_offset are kHz.

Note that the symbol rate offset is valid only when the offset is read after LOCK FLAG[fec ok] is 1.

Carrier Offset

After the carrier loop is stable, read [freq_offset_fc_l] and then FREQ_OFFSET_FC_H[freq_offset_fc_h] from the Demod. Calculate the offset between the actual signal center frequency and the tuner center frequency as follows:

```
freq_offset_tmp=(freq_offset_fc_h*256+freq_offset_fc_l)
if(freq_offset_tmp>=32768)
freq_offset = (freq_offset_tmp - 65536)/2^17*CLK_DEMO
else
freq_offset = freq_offset_tmp/2^17*CLK_DEMO
```

If the value of freq_offset is a positive number, the actual center frequency is greater than the tuner center frequency. If the value of freq_offset is a negative number, the actual center frequency is less than the tuner center frequency. The units of CLK_DEMO and freq_offset are kHz.

Note that the carrier offset is valid only when the offset is read after LOCK_FLAG[fec_ok] is 1

Signal Quality

The Demod provides the noise power statistics registers NOISE_POW_H[noise_pow_h] and NOISE_POW_L[noise_pow_l]. Read the register values and convert the values into the SNR as follows (The SNR is used to evaluate the signal quality and its unit is dB):

```
SNR = 10.0 \times log10(8192.0/(noise_pow_h [6:0] \times 256 + noise_pow_l))
```


CAUTION

Read NOISE_POW_H and then NOISE_POW_L. Read NOISE_POW_H[cnr_est_ok] to obtain the signal quality indicator. The estimated SNR is reliable only when NOISE_POW_H[cnr_est_ok] is 1.

BER Statistics

Calculate the bit error rate (BER) before RS (for DVB-S/DirecTV) or BCH (for DVB-S2) correction by using the Demod error bit count registers FEC BER H and FEC BER L.

Read FEC_BER_L and then FEC_BER_H, and calculate the error bit count error_cnt as follows:

```
error cnt = FEC BER H x 256 + FEC BER L
```

If the BER is high, the actual error bit count may be greater than the maximum value of the error bit count registers. The registers will retain the maximum value, which results in a BER that is less than the actual value.

In DVB-S/DirecTV mode, calculate the BER before RS decoding as follows:

$$BER = \frac{error_cnt}{8 \times N \times frams}$$

where

- *error_cnt* is the error bit count.
- N is 204 in DVB-S mode or 146 in DirecTV mode.
- *frams* is the total frame count, which is set by configuring BER_CTRL bit[6:4]. For details, see Table 2-12.

In DVB-S2 mode, calculate the BER before BCH decoding as follows:

$$BER = \frac{error_cnt}{N \times frams}$$

where

- *error_cnt* is the error bit count.
- *N* is the BCH code length. The BCH code length varies according to the frame length mode and code rate. For details, see Table 2-11.
- *frams* is the total frame count, which is set by configuring BER_CTRL bit[6:4]. For details, see Table 2-12.

Table 2-11 Values of *N* in DVB-S2 mode

LDPC Code Rate	N Value for a Normal Frame	N Value for a Short Frame
1/4	16200	3240
1/3	21600	5400
2/5	25920	6480
1/2	32400	7200
3/5	38880	9720
2/3	43200	10800
3/4	48600	11880
4/5	51840	12600
5/6	54000	13320
8/9	57600	14400
9/10	58320	N/A

Table 2-12 Mapping between the values of BER_CTRL bit[6:4] and frams						ıms	

BER_CTRL bit [6:4]	frams Value in DVB-S/DirecTV Mode	frams Value in DVB-S2 Mode
b'000	d'16	d'4
b'001	d'64	d'16
b'010	d'256	d'128
b'011	d'1024	d'256
b'100	d'4096	d'2048
b'101	d'16384	d'4096
b'110	d'65536	d'32768
b'111	d'262144	d'65535

• In DVB-S/DirecTV mode, calculate the BER after RS decoding as follows: BER = 32 x FER

For details about the frame error rate (FER), see section "FER Statistics." The BER after RS decoding is an approximate value.

• In DVB-S mode, calculate the BER after BCH decoding as follows: BER = 27 x FER For details about the FER, see section "FER Statistics." The BER after BCH decoding is an approximate value.

M NOTE

The BER statistics enable register is FS CTRL2 bit[1]. It is active high and is high by default.

FER Statistics

The frame is an RS frame for DVB-S/DirecTV signals or a BCH frame for DVB-S2 signals. The statistics enable register FS_CTRL2 bit[1] controls both FER statistics and BER statistics.

Read FEC_FER_L and then FEC_FER_H, and calculate the error frame count error_fram as follows:

error fram = FEC FER H x 256 + FEC FER L

Calculate the FER as follows:

FER = error fram/frams

where

- *error_fram* is the error frame count.
- frams is the total frame count in DVB-S, DirecTV, and DVB-S2 modes, which is set by configuring BER_CTRL bit[6:4]. For details, see section "BER Statistics."

PER Statistics

In DVB-S2 mode, a BCH frame contains several TS and generic stream (GS) packets that can be used to calculate the packet error rate (PER). To calculate the PER, perform the following steps:

- **Step 1** For multi-TS transmission, set TS_CTRL4[isi_sel_vld] to 1 and ISI_SEL[isi_sel] to the stream ID to select streams. For single-TS transmission, skip this step.
- **Step 2** Set RST_WAIT[crc_pkt_cnt] to specify the total packet count for PER statistics.

Calculate the total packet count as follows:

Total packet count = crc pkt cnt x 1024

If crc pkt cnt is 0, the total packet count is 1024.

Step 3 Read CRC ERR[crc err] and calculate the PER as follows: PER = crc err/1024

CAUTION

- If consecutive streams are selected, PER statistics is invalid.
- If the PER is not 0 but less than 1/1024, the value 1/1024 is used.
- If the PER is greater than 255/1024, the value 255/1024 is used.

2.17 Channel Blind Scanning

Channel blind scanning enables you to obtain the accurate channel center frequency and symbol rate when they are unknown.

Typically, the accurate transponder (TP) carrier frequency and symbol rate are obtained after channel blind scanning is performed when the TP carrier frequency and symbol rate are unknown. If channel blind scanning is performed when the carrier frequency and symbol rate are known, system synchronization performance is improved.

Three operating states are provided:

- Blind scanning disabled: set CBS CTRL RDADDR[use cbs] to 0.
- Blind scanning when the carrier frequency and symbol rate are known: set CBS_CTRL_RDADDR[use_cbs] and CBS_CTRL_RDADDR[know_fs_fc] to 1 and CBS_CTRL_RDADDR[cbs_rd_addr] to 0. Other operations are the same as non-blind scanning operations.
- Blind scanning at full frequency bands: set CBS_CTRL_RDADDR[use_cbs] to 1 and CBS_CTRL_RDADDR[know_fs_fc] to 0. Multiple TPs may be found during blind scanning. After the TP specified in CBS_CTRL_RDADDR[cbs_rd_addr] is automatically selected, demodulation and FEC decoding are performed.

To perform blind scanning at full frequency bands, perform the following steps:

Step 1 Initialize Hi3136 V100.

- **Step 2** Configure the blind scanning mode by setting CBS_CTRL_RDADDR[use_cbs] to 1 and CBS_CTRL_RDADDR[know fs fc] to 0.
- **Step 3** Configure the tuner RF frequency, wait 5 to 20 ms, and perform a hot reset. The wait time depends on the tuner.
- **Step 4** Wait 2 to 5 ms and query CBS_FINISH[cbs_finish].
 - If CBS_FINISH[cbs_finish] is 1, go to Step 5.
 - If CBS_FINISH[cbs_finish] is not 1, continue to wait and query.
- **Step 5** Read CBS_R2_NUM[sig_num] to obtain the number of valid signals. If CBS_R2_NUM[sig_num] is not 0, set CBS_CTRL_RDADDR[cbs_rd_addr] to 0 and read the symbol rate offset and carrier offset of the first TP. The actual carrier frequency of the first TP is the RF frequency plus or minus the carrier offset, which depends on the hardware.
- Step 6 Set CBS_CTRL_RDADDR[cbs_rd_addr] to 1 and read the information about the second TP by following the descriptions in Step 5. Repeat Step 6 until
 CBS_CTRL_RDADDR[cbs_rd_addr] is CBS_R2_NUM[vld_sig_num] minus 1. For details about the TP symbol rate offset and carrier offset, see the descriptions of the registers
 CBS_FS_L, CBS_FS_H, CBS_FC_L, and CBS_FC_H.
- **Step 7** Go to Step 2 and change the tuner RF frequency until blind scanning is complete in the specified frequency band range. Note that the frequency increment must be less than or equal to 13.5 MHz.
- **Step 8** Process blind scanning results by using software. The processing operations include deleting duplicated TPs, sorting TPs by carrier, and checking TP validity. The operations depend on the software scheme.

----End

CAUTION

- CBS_RELIABILITY1 and CBS_R2_NUM provide blind scanning reliability
 measurements for each TP. The measurements can be used in software schemes to form
 more complicated software control policies, accelerating the blind scanning speed and
 improving reliability.
- When blind scanning is performed when the carrier frequency and symbol rate are known (CBS_CTRL_RDADDR[know_fs_fc] = 1), the carrier offset in blind scanning results is a relative value based on the known carrier frequency. When blind scanning is performed at full frequency bands, the carrier offset is an absolute value. The blind scanning carrier offset does not contain the carrier offset provided by the CR module.

2.18 DiSEqC

The DiSEqc transmits and receives data in compliance with the DiSEqc V2.x standard and controls the working status of satellite front-end devices such as the low noise block (LNB) and multi-switch.

Set DSEC EN [dsec en] to enable or disable the DiSEqc peripheral circuit.

- 1: The LNB_EN pin outputs a high level.
- 0: The LNB_EN pin outputs a low level.

Set TX_CTRL1[hv_sel] to select 13 V or 18 V level.

- 1: The HV_SEL pin outputs a high level.
- 0: The HV_SEL pin outputs a low level.

Before using the DiSEqc function, obtain a 22 kHz carrier by setting the frequency divider of CLK_DEMO based on the values of DSEC_RATIO_L (lower eight bits of diseqc_ratio) and DSEC_RATIO_H (upper eight bits of diseqc_ratio). See the following formula:

diseqc_ratio[15:0] = round (CLK_DEMO/22)

Note that the unit of CLK_DEMO is kHz and round indicates a rounding-up operation.

TX

Set TX_CTRL1[dsec_mode] to select the working mode on the DiSEqc TX end. See Table 2-13.

Table 2-13 Working modes on the DiSEqc TX end

dsec_mode Bit[2:0]	TX Mode
000	Idle.
001	Consecutive 22 kHz square waves are transmitted. The duty ratio is 50%.
010	A 0 tone burst is transmitted.
011	A 1 data burst is transmitted.
100	DiSEqc messages are transmitted.
Others	Reserved.

Figure 2-8 shows the schematic diagram for the 0 tone burst output.

Figure 2-8 Schematic diagram for the 0 tone burst output

Figure 2-9 shows the schematic diagram for the 1 data burst output.

Figure 2-9 Schematic diagram for the 1 data burst output

Figure 2-10 shows the schematic diagram for the DiSEqc message output.

Figure 2-10 Schematic diagram for the DiSEqc message output

The TX procedure is as follows:

- **Step 1** Set TX_CTRL1[dsec_mode] to 0. To transmit messages, go to Step 2. To transmit other data, go to Step 6.
- **Step 2** Write to DSEC DATA[dsec data].
- **Step 3** Write the storage address to DSEC_ADDR bit[2:0] and set DSEC_ADDR bit[7] and DSEC_ADDR bit[3] to 0.
- **Step 4** Repeat Step 2 and Step 3 until all user data is stored.
- **Step 5** Configure TX CTRL1[num byte].
- **Step 6** Configure TX CTRL1[dsec mode] to start transmission.
- **Step 7** If TX_CTRL1[dsec_mode] is 001, manually set TX_CTRL1[dsec_mode] to 0. In other modes, TX_CTRL1[dsec_mode] is automatically cleared.

----End

NOTE

DiSEqc messages are stored in the internal RAM to reduce I²C addresses. To store data, write data to DSEC_DATA and then write the storage address to DSEC_ADDR. To read data, write the read address to DSEC_ADDR and then read data from DSEC_DATA. The following describes address allocation rules:

- When DSEC_ADDR bit[7] is 1, the current operation is a read operation. When DSEC_ADDR bit[3] is 0, DSEC_ADDR bit[2:0] specify the address for storing the transmitted data.
 When DSEC_ADDR bit[3] is 1, DSEC_ADDR bit[2:0] specify the address for storing the received data.
- When DSEC_ADDR bit[7] is 1, the current operation is a write operation. When DSEC_ADDR bit[3] is 0, DSEC_ADDR bit[2:0] specify the address for storing the transmitted data.
 When DSEC_ADDR bit[3] is 1, the address specified in DSEC_ADDR bit[2:0] is invalid.

RX

If bit 1 in the first byte of the message to be transmitted is 1, the state machine in the DiSEqc automatically enters the RX status after transmission is complete. The RX procedure is as follows:

- **Step 1** Read INT STATE to obtain the RX status.
- **Step 2** Read RX_STATE[rx_recv_bytes] to obtain the number of bytes to be received.
- **Step 3** Write the address to be read to DSEC_ADDR bit[2:0] and set DSEC_ADDR bit[7] and DSEC_ADDR bit[3] to 1.
- Step 4 Read DSEC_DATA.
- **Step 5** Repeat Step 3 and Step 4 until all data is read.

----End

2.19 Register Summary

When you write to some bits of a register, you are required to read the register, change the values of the bits to be written, and retain the values of other bits.

If a quantity of state to be read is specified by multiple registers, you need to read the low register and then high register unless otherwise specified. For example, to obtain freq_offset_fc specified by the registers FREQ_OFFSET_FC_L and FREQ_OFFSET_FC_H, read FREQ_OFFSET_FC_L and then FREQ_OFFSET_FC_H.

CAUTION

For the registers related to the signal quality, read the high register and then low register.

Table 2-14 describes Demod registers.

Table 2-14 Summary of Demod registers (base address: 0x00)

Offset Address	Register	Description	Page
0x00	PLL1_CTRL1	PLL1 control register 1	2-29
0x01	PLL1_CTRL2	PLL1 control register 2	2-29
0x02	PLL1_CTRL3	PLL1 control register 3	2-30

Offset Address	Register	Description	Page
0x03	PLL1_CTRL4	PLL1 control register 4	2-30
0x04	PLL1_CTRL5	PLL1 control register 5	2-30
0x05	PLL2_CTRL1	PLL2 control register 1	2-31
0x06	PLL2_CTRL2	PLL2 control register 2	2-31
0x07	PLL2_CTRL3	PLL2 control register 3	2-32
0x08	PLL2_CTRL4	PLL2 control register 4	2-32
0x09	PLL2_CTRL5	PLL2 control register 5	2-32
0x0A	ADC_CTRL1	ADC control register 1	2-33
0x0B	TS_CTRL1	TS control register 1	2-34
0x0C	ADC_CTRL2	ADC control register 2	2-35
0x0D	IO_CTRL1	I/O control register 1	2-36
0x0E	IO_CTRL2	I/O control register 2	2-37
0x0F	TS_CTRL2	TS control register 2	2-37
0x20	MAN_RST_CTRL0	Reset control register	2-38
0x21	MAN_RST_CTRL1	Reset control enable register	2-39
0x22	STATE_WAITS	Timeout reset register	2-40
0x23	CLK_DEMO_L	Demodulation clock low register	2-40
0x24	CLK_DEMO_M	Demodulation clock middle register	2-41
0x25	CLK_DEMO_H	Demodulation clock high register	2-41
0x26	CLK_FEC_L	FEC decoding clock low register	2-42
0x27	CLK_FEC_M	FEC decoding clock middle register	2-42
0x28	CLK_FEC_H	FEC decoding clock high register	2-42
0x29	LOCK_TIME_L	Lock time low register	2-43
0x2A	LOCK_TIME_M	Lock time middle register	2-43
0x2B	LOCK_TIME_H	Lock time high register	2-43
0x2C	LOCK_FLAG	Lock flag register	2-44
0x2D	TUNER_SEL	Tuner control register	2-44
0x2E	RSTN_CTRL	Logic reset register	2-45
0x2F	ILA_SEL	Test vector select register	2-45
0x30	AGC_SPEED_BOUND	AGC step register	2-46

Offset Address	Register	Description	Page
0x31	AGC_GOAL	AGC power register	2-46
0x32	AGCOK_WAIT	AGC wait register	2-47
0x33	AGC_CTRL	AGC control register	2-47
0x34	AGC_DC_I	Channel I direct current (DC) register	2-48
0x35	AGC_DC_Q	Channel Q DC register	2-48
0x36	DAGC_CTRL	Digital AGC (DAGC) control register	2-48
0x37	AGC_CTRL_L	AGC power low register	2-49
0x38	AGC_CTRL_H	AGC power high register	2-49
0x39	AMP_ERR_IIR	Power error register	2-50
0x3A	PDM_CTRL_L	Manual AGC control word low register	2-50
0x3B	PDM_CTRL_H	Manual AGC control word high register	2-50
0x40	TR_CTRL1	TR control register	2-51
0x41	DAGC_STD	DAGC control register	2-51
0x43	TR_MONITOR	TR monitor register	2-52
0x44	CNT_THRESH	TR wait time register	2-52
0x46	FS_L	Symbol rate low register	2-53
0x47	FS_H	Symbol rate high register	2-53
0x48	CENT_FREQ_L	Carrier frequency low register	2-53
0x49	CENT_FREQ_H	Carrier frequency high register	2-54
0x4C	FS_OFFSET_FC_L	Symbol rate offset low register	2-54
0x4D	FS_OFFSET_FC_H	Symbol rate offset high register	2-55
0x4E	FREQ_OFFSET_FC_L	Frequency offset low register	2-55
0x4F	FREQ_OFFSET_FC_H	Frequency offset high register	2-55
0x50	PLH_SYNC_1	Frame synchronization control register 1	2-56
0x51	PLH_SYNC_2	Frame synchronization control register 2	2-56
0x52	CR_CTRL_SW	CR control register	2-57
0x53	SCAN_STEP_L	Frequency scanning speed register	2-58
0x54	SCAN_STEP_FB	Frequency scanning control register	2-58

Offset Address	Register	Description	Page
0x55	SCAN_ADJUST	Automatic frequency scanning speed register	2-59
0x56	CR_ZUNI_WAIT	Carrier control register	2-59
0x57	CR_BW_ADJUST	Carrier bandwidth control register	2-59
0x58	CR_BW_MAX	Carrier maximum bandwidth control register	2-60
0x59	CR_BW_SET	Carrier bandwidth control register	2-60
0x5A	CR_CN	Carrier noise (CN) ratio register	2-61
0x5B	CR_STATE	Carrier status register	2-61
0x5C	PLS_CODE	PLS_CODE register	2-61
0x5D	FREQ_INV	Spectrum inversion register	2-62
0x5E	CR_ZUNI_BW_L	Carrier bandwidth low register	2-62
0x5F	CR_ZUNI_BW_H	Carrier bandwidth high register	2-63
0x60	SYNC_FREQ_L	Frame synchronization frequency low register.	2-63
0x61	SYNC_FREQ_H	Frame synchronization frequency high register	2-63
0x62	SCAN_FREQ_L	Scanning frequency low register.	2-64
0x63	SCAN_FREQ_H	Scanning frequency high register.	2-64
0x64	FREQ_ACC_L	Carrier frequency offset slow feedback low register	2-65
0x65	FREQ_ACC_H	Carrier frequency offset slow feedback high register	2-65
0x66	TR_FREQ_FB_L	Carrier frequency offset TR feedback low register	2-65
0x67	TR_FREQ_FB_H	Carrier frequency offset TR feedback high register	2-66
0x68	CR_LOOP_DC_L	Carrier PLL control word low register	2-66
0x69	CR_LOOP_DC_H	Carrier PLL control word high register	2-66
0x6C	CHIP_ID_0	Chip ID register 0	2-67
0x6D	CHIP_ID_1	Chip ID register 1	2-67
0x6E	CHIP_ID_2	Chip ID register 2	2-67
0x6F	CHIP_ID_3	Chip ID register 3	2-68

Offset Address	Register	Description	Page
0x70	EQU_CTRL	Equalization control register	2-68
0x71	LMS_STEP	Equalization step control register	2-69
0x75	CN_CTRL	Noise power statistics control register	2-69
0x76	EQU_TAP_REAL	Equalization tap real part register	2-70
0x77	EQU_TAP_IMAG	Equalization tap imaginary part register	2-70
0x78	EQU_TAP_SEL	Tap select register	2-70
0x7A	XREG_INIT_LOW	Equalization control low register	2-71
0x7B	XREG_INIT_MID	Equalization control middle register	2-71
0x7C	XREG_INIT_HI	Equalization control high register	2-72
0x7D	RD_WR_TAP	Tap control register	2-72
0x7E	NOISE_POW_L	Noise power low register	2-73
0x7F	NOISE_POW_H	Noise power high register	2-73
0x82	LDPC_ITER	LDPC iteration control register	2-73
0x83	BER_CTRL	BER control register	2-74
0x84	FEC_BER_L	BER low register	2-74
0x85	FEC_BER_H	BER high register	2-75
0x86	FEC_FER_L	FER low register	2-75
0x87	FEC_FER_H	FER high register	2-75
0x88	S2_SUCCESS	S2 decoding success register	2-76
0x89	VTB_CTRL1	VTB control register 1	2-76
0x8A	VTB_THRES	VTB search control register	2-77
0x8B	VTB_CTRL2	VTB control register 2	2-78
0x8C	FS_CTRL1	S frame synchronization control register 1	2-78
0x8D	FS_CTRL2	S frame synchronization control register 2	2-79
0x8E	SEAR_RESULT	S search result register	2-79
0x8F	DEC_RESULT	S decoding result register	2-80
0x90	TS_PARALL_CTRL	TS output select register	2-81
0x91	TS_10_SEL	TS output control register	2-82
0x92	TS_32_SEL	TS output control register	2-82

Offset Address	Register	Description	Page
0x93	TS_54_SEL	TS output control register	2-82
0x94	TS_76_SEL	TS output control register	2-83
0x95	TS_98_SEL	TS output control register	2-83
0x96	TS_CTRL0	TS control register 0	2-84
0x97	TS_CTRL3	TS control register 3	2-85
0x98	TS_CTRL4	TS control register 4	2-85
0x99	TS_CLK_DIV_F_L	TS clock low register	2-86
0x9A	TS_CLK_DIV_F_H	TS clock high register	2-86
0x9B	ISI_SEL	Input stream identifier (ISI) select register	2-87
0x9C	MATTYPE	Stream ID register	2-87
0x9D	ROLL_OFF	Roll-off register	2-87
0x9E	CRC_ERR	CRC check register	2-88
0x9F	RST_WAIT	Reset wait register	2-88
0xA0	FC_MAX_RELIABLE	Blind scanning carrier control register	2-89
0xA1	FS_SPAN	Blind scanning symbol rate range register	2-89
0xA7	AMP_MIN_FS	Blind scanning minimum symbol rate register	2-90
0xA8	CBS_CTRL_RDADDR	Blind scanning control register	2-90
0xA9	CBS_FS_L	Bind scanning symbol rate low register	2-91
0xAA	CBS_FS_H	Bind scanning symbol rate high register	2-91
0xAB	CBS_FC_L	Blind scanning frequency offset low register	2-92
0xAC	CBS_FC_H	Blind scanning frequency offset high register	2-92
0xAD	CBS_FINISH	Blind scanning completion register	2-93
0xAE	CBS_RELIABILITY1	Blind scanning reliability register	2-93
0xAF	CBS_R2_NUM	Blind scanning signal count register	2-93
0xB0	DSEC_ADDR	DSEC address register	2-94
0xB1	DSEC_DATA	DSEC data register	2-94
0xB2	DSEC_RATIO_L	DSEC frequency low register	2-95

Offset Address	Register	Description	Page
0xB3	DSEC_RATIO_H	DSEC frequency high register	2-95
0xB4	TX_CTRL1	DSEC TX control register	2-96
0xB5	RX_CTRL1	DSEC RX control register	2-96
0xB7	DSEC_EN	DSEC enable register	2-97
0xB8	RX_STATE	DSEC RX status register	2-97
0xB9	INT_STATE	DSEC status register	2-98
0xC0	DF_FC_L	FSK frequency offset low register	2-98
0xC1	DF_FC_H	FSK frequency offset high register	2-99
0xC2	FS_FC_L	FSK symbol rate low register	2-99
0xC3	FS_FC_M	FSK symbol rate middle register	2-100
0xC4	FS_FC_H	FSK symbol rate high register	2-100
0xC5	HEAD_L	Frame header low register	2-100
0xC6	HEAD_M	Frame header middle register	2-101
0xC7	HEAD_H	Frame header high register	2-101
0xC8	NBIT_HEAD	FSK control register	2-101
0xC9	CRC_POLY_L	CRC low register	2-102
0xCA	CRC_POLY_M	CRC middle register	2-102
0xCB	CRC_POLY_H	CRC high register	2-102
0xCC	NBIT_CRC	CRC control register	2-103
0xCD	TCF_FC_L	TX frequency low register	2-103
0xCE	TCF_FC_H	TX frequency high register	2-104
0xCF	RCF_FC_L	RX frequency low register	2-104
0xD0	RCF_FC_H	RX frequency high register	2-104
0xD1	TX_NBIT_L	TX control register	2-105
0xD2	TX_CTRL2	TX control register	2-105
0xD3	RX_NBIT_L	RX control register	2-106
0xD4	RX_CTRL2	RX control register	2-106
0xD5	FSK_ADDR	FSK address register	2-107
0xD6	FSK_DATA	FSK data register	2-107
0xD7	FSK_RX_LEN	FSK control register	2-108

2.20 Demod Register Descriptions

PLL1_CTRL1

PLL1_CTRL1 is PLL1 control register 1.

		Of	fset Ad	dress		Register Name			Total Reset Value		
		0x00					CTRL1		0x01		
Bit	7		6		5	4	3	2	1	0	
Name	pll1_pd	l	pll1_bypass			pll1_refdiv					
Reset	0			0	0	0	0	0	0	1	
	Bits	Ac	cess Name		!	Description					
	[7]	RW	7	pll1_p	d	Global power-down signal of PLL1, active high.					
	[6]	RW	V pll1_b		ypass	PLL1 bypass signal, active high.					
	[5:0]	RW pll1_re		PTOIV	PLL1 frequency divider. The frequency-division clock range from 1 MHz to 40 MHz.			k ranges			

PLL1_CTRL2

PLL1_CTRL2 is PLL1 control register 2.

		Of	fset Ad	dress		Register Name			Total Reset Va	alue
	0x 0 1					PLL1_0	CTRL2		0x61	
Bit	7		6		5	4	3	2	1	0
Name	pll1_dsm	pd			pll1_postdiv2		pll1_dacpd		pll1_postdiv1	
Reset	0			1	1	0	0	0	0	1
	Bits	Acc	ccess Name		:	Description				
	[7]	RW	-	pll1_dsmpd		Delta sigma power-down signal of PLL1. 1: integral frequency division 0: decimal frequency division				
	[6:4]	RW	-	Pll1_postdiv2		Value of frequency divider 2 after PLL1 VCO. FOUT = FVCO/postdiv1/postdiv2				
	[3]	RW	V pll1_dacpo		acpd	DAC pd signal of PLL1. The signal is low in normal cases.			cases.	
	[2:0]	RW	-	pll1_p	ostdiv1	Value of freq FOUT = FVC			VCO.	

PLL1_CTRL3

PLL1_CTRL3 is PLL1 control register 3.

		Of	fset Ad	dress		Register Name			Total Reset Value	
		0x02					PLL1_CTRL3			
Bit	7		6		5	4	3	2	1	0
Name		pll1_fbdiv								
Reset	0		0		0	1	1	1	1	1
	Bits	Bits Access Name			:	Description				
	[7:0]			Lower eight bits of the integral frequency divider of PLL1. The upper four bits are not used and are fixed at 0.						

PLL1_CTRL4

PLL1_CTRL4 is PLL1 control register 4.

		Offset Address					Register Name			Total Reset Value	
	0x03					PLL1_CTRL4			0x00	0x00	
Bit	7		6		5	4	3	2	1	0	
Name				pll1_frac_l							
Reset	0		0		0	0	0	0	0	0	
	Bits	Bits Access Name			:	Description					
	[7:0]	:0] RW pll1_frac_l			Bits 19–12 of the decimal frequency divider of PLL1. The lower 12 bits are not used and are fixed at 0.						

PLL1_CTRL5

PLL1_CTRL5 is PLL1 control register 5.

		Offset Address					Register Name			Total Reset Value	
	0x04					PLL1_CTRL5			0x14		
Bit	7		6		5	4	3	2	1	0	
Name	:	reserved			pll1_postdivpd	pll1_vcopd	pll1_frac_h				
Reset	0		()	0	1	0	1	0	0	
	Bits Access Name			Description							
	[7:6] - reserved		ed	Reserved.							

[5]	RW	mill nostatyna	Power-down signal of the frequency divider after PLL1 VCO. The value 1 indicates valid.
[4]	RW	mill veona	Power-down signal of PLL1 VCO buffer. The VCO still works but the output buffer is disabled.
[3:0]	RW	mili trac n	Bits 23–20 of the decimal frequency divider of PLL1. The lower 12 bits are not used and are fixed at 0.

PLL2_CTRL1

PLL2_CTRL1 is PLL2 control register 1.

		Of	fset Ad	dress		Register	r Name		Total Reset Va	alue
			0x05			PLL2_C	CTRL1		0x01	
Bit	7			6	5	4	3	2	1	0
Name	pll2_pd	I	pll2_l	oypass			pll2_	refdiv		
Reset	0		0		0	0	0	0	0	1
	Bits	Ac	cess	Name		Description				
	[7]	RW	7	pll2_p	Global power-down signal of PLL2, active high.			ive high.		
	[6]	RW	7	pll2_b	ypass	PLL2 bypass signal, active high.				
	[5:0]	RW	7	pll2_re	2T/1137	PLL2 frequer from 1 MHz	-	he frequency-	division cloc	k ranges

PLL2_CTRL2

PLL2_CTRL2 is PLL2 control register 2.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x06			PLL2_CTRL2			0x61		
Bit	7			6	5	4	3	2	1	0	
Name	pll2_dsm	pd			pll2_postdiv2		pll2_dacpd	pll2_postdiv1			
Reset	0		1		1	0	0	0	0	1	
	Bits	Acc	ess	Name	!	Description	L				
	[7]	RW	pll2_d				ency division	_	2. The value 1 e 0 indicates d		
	[6:4]	RW	T	pll2 postdiv2		Value of frequency divider 2 after PLL2 VCO. FOUT = FVCO/postdiv1/postdiv2					

Hi3136
Data Sheet 2 Demod

[3]	RW	pll2_dacpd	DAC pd signal of PLL2. The signal is low in normal cases.
[2:0]	RW	pll2 postdiv1	Value of frequency divider 1 after PLL2 VCO. FOUT = FVCO/postdiv1/postdiv2

PLL2_CTRL3

PLL2_CTRL3 is PLL2 control register 3.

		Of	fset Ad 0x07			Register		Total Reset Value 0x2E		
Bit	7	6		6	5	4	3	2	1	0
Name						pll2_	fbdiv			
Reset	0		(0	1	0	1	1	1	0
	Bits	Ac	cess	Name		Description				
	[7:0]			Lower eight bits of the integral frequency divider of PLL2. The upper four bits are not used and are fixed at 0.						

PLL2_CTRL4

PLL2_CTRL4 is PLL2 control register 4.

		Of	ffset Ad 0x08			Register PLL2_0			Total Reset Value 0x00		
Bit	7	7		6	5	4	3	2	1	0	
Name						pll2_frac_l					
Reset	0			0	0 0 0		0	0	0		
	Bits	Ac	cess	s Name		Description					
	[7:0]	RW pll2		pll2_fr		Bits 19–12 of the decimal frequency divider of PLL2. The lower 12 bits are not used and are fixed at 0.				The lower	

PLL2_CTRL5

PLL2_CTRL5 is PLL2 control register 5.

		Of	fset Ad	dress		Register	Name		Total Reset Va	alue
			0x09			PLL2_CTRL5 Ox			0x1E	
Bit	7		(6	5	4	3	2	1	0
Name		reserved			pll2_postdivpd	pll2_vcopd	pll2_frac_h			
Reset	0			0	0	1	1	1	1	0
	Bits	Acc	cess	Name		Description				
	[7:6]	-		reserve	ed	Reserved.				
	[5]	RW	7	pll2_p	octdivind	Power-down value 1 indica	_	frequency div	ider after PLI	L2 VCO. The
	[4]	RW	7	pll2_v	cond	Power-down the output but	_		r. The VCO s	till works but
	[3:0]	RW	т	pll2_fr	ac n	Bits 23–20 of 12 bits are no			rider of PLL2.	The lower

ADC_CTRL1

ADC_CTRL1 is ADC control register 1.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x0A	L		ADC_C	CTRL1	0x4A			
Bit	7			6	5	4 3		2	1	0	
Name	adc_od	f	adc_p	dclamp	adc	_om	ado	_cs	ado	e_is	
Reset	0	1		1	0	0	1	0	1	0	
	Bits Access		cess	Name	!	Description					
	[7]	RW	I	adc_o	df	Output forma 1: complemen 0: sign-and-m	nt				
	[6]	RW	I	adc_po	delamp	ADC mode. 1: AC mode 0: DC mode					
	[5:4]	RW	Į.	adc_oı	n	Mode select. 00: normal mode 01: standby mode (minimum startup time) 10: minimum power consumption mode 11: power-down mode					

[3:2]	RW	adc_cs	Channel signal. 00: channel I 11: channel Q 10: channel I and channel Q 11: reserved
[1:0]	RW	adc_is	Bias control. 00: reduced by 50% based on the current value 01: reduced by 25% based on the current value 10: no offset 11: increased by 25% based on the current value

TS_CTRL1

TS_CTRL1 is TS control register 1.

		Off	set Ad			Register Name TS_CTRL1			Total Reset Value 0x6C	
Bit	7		(6	5	4	3	2	1	0
Name		ts_vld_ds				ts_err_ds reserved			rved	
Reset	0			1	1	0	1	1	0	0
	Bits	Bits Access			:	Description				
	[7:5]	RW		ts_vld_	_ds	Drive current 000: 0 mA 001: 4 mA 010: 8 mA 011: 12 mA 100: 12 mA 101: 16 mA 110: 20 mA 111: 24 mA	of the TS_VI	LD pin.		

[4:2]	RW	ts_err_ds	Drive current of the TS_ERR pin. 000: 0 mA 001: 4 mA 010: 8 mA 011: 12 mA 100: 12 mA 101: 16 mA 111: 24 mA
[1:0]	-	reserved	Reserved.

ADC_CTRL2

ADC_CTRL2 is ADC control register 2.

		Off	set Ad	dress		Register	Register Name Total Reset			alue		
			0x0C	,		ADC_C	CTRL2		0x52			
Bit	7		(6	5	4	3	2	1	0		
Name	adc_clk_	sel	adc_c	lk_on	adc_clk_inv	i2c_xo_clk	reserved	clk_inv	lock_fsko	ts_testout		
Reset	0			1	0	1	0	0	1	0		
	Bits	Acc	ess	Name		Description						
	[7]	RW		adc_cl		ADC I/O cloc 1: TS_SYNC 0: TS_SYNC	is the input p					
	[6]	RW		adc_cl	_	ADC clock er 1: normal clock 0: no clock						
	[5]	RW		adc_cl	_	ADC clock in 1: inverse clo 0: forward clo	ck					
	[4] RW			i2c_xo_clk		Crystal oscillator clock. 1: The crystal oscillator input clock acts as the clk_i2c clock. 0: The PLL output clock acts as the clk_i2c clock.						
	[3]	-		reserve	ed	Reserved.						
	[2]	RW		clk_inv		TS serial cloc 1: inverse out 0: forward ou	put					

[1]	RW	lock_fsko	Lock output. 1: FSK output 0: channel OK output
[0]	RW		Test mode. 0: TSs are output in normal mode. 1: The TS pin is multiplexed for test signal output.

IO_CTRL1

IO_CTRL1 is I/O control register 1.

		Of	fset Ad 0x0D			Register Name Total Reset Value IO_CTRL1 0x1B						
Bit	7		(6	5	4	3	2	1	0		
Name	adc_im	l	adc_c	lk_sel		ts_out_ds ts_sync_ds						
Reset	0		(0	0	1	1	0	1	1		
	Bits	Aco	cess	Name	:	Description						
	[7]	RW	7	adc_in	1	Input mode. 1: single-end 0: differential						
	[6] RW adc_clk_				ADC clock. 1: I/O clock 0: PLL output clock							
	[6] RW			ts_out_		Drive current 000: 0 mA 001: 4 mA 010: 8 mA 011: 12 mA 100: 12 mA 101: 16 mA 110: 20 mA 111: 24 mA	of the TS_O	UT pin.				

[2:0] RW	ts_sync_ds	Drive current of the TS_SYNC pin. 000: 0 mA 001: 4 mA 010: 8 mA 011: 12 mA 100: 12 mA 101: 16 mA 110: 20 mA
----------	------------	--

IO_CTRL2

IO_CTRL2 is I/O control register 2.

		Of	fset Ad 0x0E			Register Name Total Reset Value IO_CTRL2 0x1B							
Bit	7			6	5	4	4 3 2 1 0						
Name	test_clk_en clkout_sel					fsko_ds ts_clk_ds							
Reset	0 0 Bits Access Name				0	1	1	0	1	1			
	Bits Access Name					Description	1						
	[7]	RW		test_clk_en		Test clock enable. 1: test clock output 0: normal mode							
	[6] RW clk			clkout_	_sel	1: The disequence of PLL0 and	Clock output control. 1: The diseqc_in and diseqc_out are multiplexed to output clocks of PLL0 and PLL1. 0: The normal pin function is used.						
	[5:3]	RW	T	fsko_d	ls	Drive current of the FSK_OUT pin.							
	[2:0]	RW	T	ts_clk_	_ds	Drive current of the TS_CLK pin.							

TS_CTRL2

TS_CTRL2 is TS control register 2.

		Of	fset Ad			Register TS_C			Total Reset Value 0x00					
Bit	7			6	5	4	3	2	1	0				
Name	pll2_loc	k	pll1	_lock	ts_out_sl	ts_sync_sl	ts_vld_sl	ts_err_sl	ts_clk_sl	fsko_sl				
Reset	0			0	0	0 0 0 0								
	Bits	Aco	cess	Name		Description								
	[7]	RO		pll2_lo	ock	PLL2 clock for the second place of the second	lag.							
	[6]	RO		pll1_lc	ock	PLL1 clock flag. 1: locked 0: unlocked								
	[5]	RW	7	ts_out_	_sl	TS_OUT pin speed adjustment. 1: slow edge 0: fast edge								
	[4]	RW	Ţ	ts_syne	c_sl	TS_SYNC pin speed adjustment. 1: slow edge 0: fast edge								
	[3]	RW	7	ts_vld_	_sl	TS_VLD pin speed adjustment. 1: slow edge 0: fast edge								
	[2]	RW	7	ts_err_	sl	TS_ERR pin 1: slow edge 0: fast edge	speed adjustn	nent.						
	[1]	RW	7	ts_clk_	_sl	TS_CLK pin speed adjustment. 1: slow edge 0: fast edge								
	[0]	RW	7	fsko_s	1	FSK_OUT pin speed adjustment. 1: slow edge 0: fast edge								

MAN_RST_CTRL0

MAN_RST_CTRL0 is a reset control register.

		Of	fset Ac			Register Name Total Reset Value MAN_RST_CTRL0 0xFF							
Bit	7			6	5	4	3	2	1	0			
Name	rstn_fsl	k	rstn	_outp	rstn_fec	rstn_equ	rstn_cr	rstn_tr	rstn_cbs	rstn_agc			
Reset	1			1	1	1	1	1	1	1			
	Bits	Ac	cess	Name		Description							
	[7]	RW	7	rstn_fs	k	FSK reset. 1: deassert reset 0: reset							
	[6]	RW	I	rstn_oı	ıtp	OUTP reset. 1: deassert res 0: reset	set						
	[5]	RW	T.	rstn_fe	С	FEC reset. 1: deassert reset 0: reset							
	[4]	RW	7	rstn_ec	ļu	EQU reset. 1: deassert res 0: reset	set						
	[3]	RW	T.	rstn_cr		CR reset. 1: deassert reset 0: reset							
	[2]	RW	7	rstn_tr		TR reset. 1: deassert reset 0: reset							
	[1]	RW	7	rstn_cl		CBS reset. 1: deassert reset 0: reset							
	[0]	RW	I	rstn_aş	ge	AGC reset. 1: deassert reset 0: reset							

MAN_RST_CTRL1

MAN_RST_CTRL1 is a reset control enable register.

		O	ffset Ad	ldress		Register Name Total F				alue		
			0x21			MAN_RS	Γ_CTRL1		0x07			
Bit	7			6	5	4	3	2	1	0		
Name					reserved			auto_rst_ena	rstn_diseqc	rstn_catch		
Reset	0			0 0		0	0	1	1	1		
	Bits Access		Name		Description							
	[7:3] -			reserve	ed	Reserved.						
				auto_r	st_ena	FEC auto reset enable. 1: enabled 0: disabled						
	[1] RW		rstn_diseqc		DiSEqC reset. 1: deassert reset 0: reset							
	[0] RW rstn_catch			atch	Catch reset. 1: deassert res 0: reset	set						

STATE_WAITS

STATE_WAITS is a timeout reset register.

		Offs	set Ado	dress		Register	r Name		Total Reset Value			
			0x22			STATE_	WAITS		0x1B			
Bit	7		6	5	5	4	3	2	1	0		
Name						state_wait						
Reset	0		0		0	1 1		0	1	1		
	Bits Ac		cess Name			Description	escription					
						OK signal wait timeout reset.						
	[7:0]	RW	i	state_v		When bit[28:21] of the counter are greater than the state_wait field, the system is reset.						

CLK_DEMO_L

CLK_DEMO_L is a demodulation clock low register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x23	i		CLK_DI	EMO_L		0x48		
Bit	7			6	5	4 3		2	1	0	
Name						clk_de	emo_l				
Reset	0		1	0	0 1		0	0	0		
	Bits Access		cess	Name		Description					
	[7:0] RW			clk_de		Lower bits of the frequency of the demodulation clock CLK_DEMO. The LSB indicates 1 kHz.					

CLK_DEMO_M

CLK_DEMO_M is a demodulation clock middle register.

		Of	fset Ad 0x24			Register			Total Reset Value 0xE8			
Bit	7			6	5	4	3	2	2 1 0			
Name						clk_de	mo_m					
Reset	1 1				1	0 1 0 0						
	Bits	Ac	cess	Name		Description						
	[7:0] RW clk_demo_m					Middle bits of the frequency of the demodulation clock CLK_DEMO.						

CLK_DEMO_H

CLK_DEMO_H is a demodulation clock high register.

		Of	ffset Ad	ldress		Registe	r Name		Total Reset Value			
			0x25	;		CLK_DI	EMO_H		0x01			
Bit	7			6	5	4	3	2	1	0		
Name					reserved					clk_demo_h		
Reset	0		0		0	0	0	0	0	1		
	Bits	Bits Acces		Name	:	Description	Į.					
	[7:2] -			reserved		Reserved.						
	[1:0]	RW	I	clk_de		Upper bits of CLK_DEMO		y of the demo	dulation clock	Σ		

CLK_FEC_L

CLK_FEC_L is an FEC decoding clock low register.

		Of	ffset Ad 0x26			Register CLK F		Total Reset Value 0x6C			
			0320			CLK_F	EC_L		UXOC		
Bit	7		(6	5	4 3		2	1	0	
Name						clk_fec_l					
Reset	0		1	1	0 1		1	0	0		
				Name		Description					
	[7:0]	RW	I	clk_fe		Lower bits of the frequency of the FEC decoding clock CLK_FEC. The LSB indicates 1 kHz.					

CLK_FEC_M

CLK_FEC_M is an FEC decoding clock middle register.

		Of	fset Ad	dress		Register	Name		Total Reset Value		
			0x27			CLK_F	EC_M		0xDC		
Bit	7 6 :			5	4	3	2	2 1 0			
Name						clk_f	ec_m				
Reset	1 1			0	1	1	1	0	0		
	Bits Access Name			:	Description						
	[7:0] RW clk_fec_			clk_fe		Middle bits o CLK_FEC.	f the frequenc	y of the FEC	decoding clo	ck	

CLK_FEC_H

CLK_FEC_H is an FEC decoding clock high register.

		Of	fset Ad	ldress		Register Name				alue
			0x28	3		CLK_F	0x02			
Bit	7			6	5	4 3 2 1				
Name					rese	rved		clk_fec_h		
Reset	0		0		0	0 0		0	1	0
	Bits	Aco	cess Name			Description				
	[7:2]	-		reserve	ed	Reserved.				
	[1:0] RW clk_fec_h				e_h	Upper bits of the frequency of the FEC decoding clock CLK_1				

LOCK_TIME_L

LOCK_TIME_L is a lock time low register.

		Of	fset Ad 0x29			Register LOCK 7		Total Reset Value 0x00			
Bit	7			6	5	4	3 2 1 0				
Name				tr_t	ime			cbs_time			
Reset	0		0		0	0 0		0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:4] RO tr_tim			tr_time	:	TR lock time.	ne. Its unit is 10 ms.				
	[3:0] RO cbs_time			ne	CBS lock time. Its unit is 10 ms.						

LOCK_TIME_M

LOCK_TIME_M is a lock time middle register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x2A	L		LOCK_T	TIME_M	0x00			
Bit	7			6	5	4	3	2	1	0	
Name				cr_ti	me_l			sync_time			
Reset	0		(0	0	0	0	0	0	0	
	Bits	Acc	ess	Name		Description					
	7:4] RO cr_time_1			e_1	Lower four b	its of the CR	lock time. Its	unit is 10 ms.			
	[3:0] RO sync_time			ime	Sync lock time. Its unit is 10 ms.						

LOCK_TIME_H

LOCK_TIME_H is a lock time high register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x2B	3		LOCK_TIME_H			0x00			
Bit	7	7 6			5	4	3	1	0			
Name					fec_time				me_h			
Reset	0	0 0		0 0		0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:2] RO fec_time				ne	FEC lock tim	e. Its unit is 1					

[1:0]	RO	cr_time_h	Upper two bits of the CR lock time.
-------	----	-----------	-------------------------------------

LOCK_FLAG

LOCK_FLAG is a lock flag register.

			et Address 0x2C		Registe LOCK			Total Reset Value 0x00				
Bit	7		6	5	4	3	2	1	0			
ame		reserve	ed	fec_ok	cr_ok	sync_ok	tr_ok	cbs_ok	agc_ok			
eset	0		0	0	0 0 0 0							
	Bits	Acce	ss Name	2	Description							
	[7:6]	-	reserv	ed	Reserved.							
	[5]	RO	fec_ol	ζ	FEC lock flag 1: locked 0: unlocked	5 .						
	[4]	RO	cr_ok		CR lock flag. 1: locked 0: unlocked							
	[3]	RO	sync_o	ok	Sync lock flag. 1: locked 0: unlocked							
	[2]	RO	tr_ok		TR lock flag. 1: locked 0: unlocked							
	[1]	RO	cbs_ol	k	CBS lock flag. 1: locked 0: unlocked							
	[0]	RO	agc_o	k	AGC lock flag. 1: locked 0: unlocked							

TUNER_SEL

TUNER_SEL is a tuner control register.

		Offset Ac			Register TUNEI			Total Reset Value 0x00		
		UAZI			TONEI	K_BEL		0.000		
Bit	7		6	5	4	3	2	1	0	
Name			rese	rved	man_state				tuner_sel	
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	!	Description					
	[7:4]	-	reserve	ed	Reserved.					
	[3:1]	RO	man_s	tate	Status of the main control state machine.					
					Tuner signal	selected by co	onfiguring the	I ² C.		
	[0] RW tuner_sel				This field mu time after the cleared. If you field to 1 again	tuner is read u need to con		is field is auto	matically	

RSTN_CTRL

RSTN_CTRL is a logic reset register.

		Off	set Ad	dress		Register	r Name		Total Reset Value			
			0x2E	,		RSTN_	CTRL		0x03			
Bit	7		(6	5	4 3 2 1				0		
Name					rese	reserved				cool_rstn		
Reset	0		(0	0	0	0	0	1	1		
	Bits	Acc	ess	Name	:	Description						
	[7:2] -			reserved		Reserved.						
						Logic reset signal. Only the logic but not the system registers are reset.						
	[1]	RW		hot_rst	lII	1: not reset						
						0: reset						
						Reset signal.	The logic and	system regis	ters are reset.			
	[0]	cool_rstn		stn	1: not reset							
						0: reset						

ILA_SEL

ILA_SEL is test vector select register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x2F			ILA_	SEL		0x00		
Bit	7		6		5	4	3	2	1	0	
Name						ila_	sel				
Reset	0	0)	0	0	0	0	0	0	
	Bits Access Nam			Name		Description					
	[7:0] RW ila_sel					Test vector select for the ILA and Catch modules.					

AGC_SPEED_BOUND

AGC_SPEED_BOUND is an AGC step register.

		Ot	fset Ad 0x30			Register	alue				
Bit	7			6	5	4	3	2	1	0	
Name			agc_	speed			err_bound				
Reset	0	0 1			1	0	0	1	1	1	
	Bits	Ac	cess	Name		Description					
	[7:5] RW agc_s			agc_sp		AGC step. Th maximum val	gured value pl	us 2 and the			
	[4:0] RW err_bound			und	Amplitude error boundary.						

AGC_GOAL

AGC_GOAL is an AGC power register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x31			AGC_0	GOAL	0x22			
Bit	7	7 6			5	4	3	2	1	0	
Name	agc_goal										
Reset	0 0			0	1	0	0	1	0		
	Bits	Aco	cess	Name	:	Description					
	[7:0] RW agc_goal			oal	Target AGC power.						

AGCOK_WAIT

AGCOK_WAIT is an AGC wait register.

		Of	ffset Ad	dress		Register	Name	Total Reset Value			
			0x32			AGCOK	_WAIT	0x 0 F			
Bit	7	6		5	4 3		2	1	0		
Name						agcok	_wait				
Reset	0			0	0	0	1	1	1	1	
	Bits Access Name			Name	:	Description					
	[7:0] RW agcok_wait			_wait	AGC amplitu	de abnormal					

AGC_CTRL

AGC_CTRL is an AGC control register.

		Offset Ac			Register Name AGC_CTRL			Total Reset Value 0x71			
Bit	7	0.7.5.	6	5	4	3	2	1	0		
	,	1									
Name		par	n_div		adc_twos	iq_swap	agc_hold	agc_inverse	dagc_on		
Reset	0		1	1	1	0	0	0	1		
	Bits	Access	Name	:	Description						
	[7:5]	RW	pdm_c	liv	Pulse width o The actual va		•	plus 1.			
	[4]	RW	adc_tv	vos	Input data format. 1: complement 0: sign-and-magnitude						
	[3]	RW	iq_swa	ар	I/Q data switch. 1: switched 0: not switched						
	[2]	RW	agc_ho	old	AGC working type. 1: The AGC holds and the output PDM is a fixed value. 0: The AGC works in normal mode.						
	[1]	RW	agc_in	verse	PDM signal output. 1: inverted 0: not inverted (normal output)						

			DAGC enable.
[0]	RW	dagc_on	1: enabled
			0: disabled

AGC_DC_I

AGC_DC_I is a channel I DC register.

		Of	fset Ado			Register			Total Reset Value 0x00		
Bit	7 6			6	5	4	3	2 1			
Name	agc_dc_i										
Reset	0		()	0	0	0	0	0	0	
	Bits Access Name				Description						
	[7:0] RO agc_dc_i				:_i	DC value of channel I data.					

AGC_DC_Q

AGC_DC_Q is a channel Q DC register.

		Of	fset Ad			Register Name AGC_DC_Q			Total Reset Value 0x00		
Bit	7		(5	5	4	3	2 1 0			
Name	agc_dc_q										
Reset	0		0		0 0 0			0	0	0	
	Bits Access Name					Description					
	[7:0] RO agc_dc_q				:_q	DC value of channel Q data.					

DAGC_CTRL

DAGC_CTRL is a DAGC control register.

		Of	fset Ad 0x36			Register Name DAGC_CTRL			Total Reset Value 0x00	
Bit	7	6			5	4	3	2 1		
Name	dagc_ctrl									
Reset	0	0 0		0	0 0 0			0	0	0
	Bits Access Name			:	Description					
	[7:0] RO dagc_ctrl				etrl	Control word of the DAGC.				

AGC_CTRL_L

AGC_CTRL_L is an AGC power low register.

		Of	fset Ad 0x37			Register AGC_C		Total Reset Value 0x00			
Bit	7		(6	5	4	3	2	1	0	
Name	agc_ctrl_l										
Reset	0		0		0	0 0		0	0	0	
	Bits Access Name			!	Description						
	[7:0] RO			agc_ct	rı ı	Lower eight bits of the AGC control word, indicating the current signal power.					

AGC_CTRL_H

AGC_CTRL_H is an AGC power high register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x38			AGC_C	TRL_H		0x 0 0		
Bit	7	7 6 5			5	4	3	2	1	0	
Name	agc_ok	c_ok res						agc_ctrl_h			
Reset	0		0		0	0	0	0	0	0	
	Bits Access		cess	Name		Description					
						AGC lock.					
	[7] RC		agc_o		ζ	1: locked					
						0: unlock					
	[6:4]		reserved		Reserved.						

[3:0]	RO	age etri n	Upper four bits of the AGC control word, indicating the current signal power.
-------	----	------------	---

AMP_ERR_IIR

AMP_ERR_IIR is a power error register.

		Of	fset Ad 0x39			Register AMP E			Total Reset Value 0x00		
Bit	7 6			5	4	3	2 1 0				
Name	amp_err_iir										
Reset	0	0 0		0	0	0	0	0	0	0	
	Bits Access Name				Description						
	[7:0] RO amp_err_iir				rr_iir	Error between the data power and the reference power.					

PDM_CTRL_L

PDM_CTRL_L is manual AGC control word low register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x3A			PDM_C	TRL_L	0x00			
Bit	7		6		5	4	3	2	1	0	
Name	pdm_ctrl_1										
Reset	0		0		0	0 0		0	0	0	
	Bits Access Name			:	Description						
	[7:0] RW pdm_ctrl_l			TTI I	Lower eight bits of the configurable AGC control word in manu AGC mode.						

PDM_CTRL_H

PDM_CTRL_H is manual AGC control word high register.

			t Address 0x3B		Register PDM_C			Total Reset Value 0x00		
Bit	7		6	5	4	3	2	1	0	
Name			reserved		pdm_ctrl_sel	sel pdm_ctrl_h				
Reset	0		0	0	0	0	0	0	0	
	Bits	Acces	s Name		Description					
	[7:5]	-	reserve	ed	Reserved.					
	[4] RW pdm_ctrl_se			trl_sel	Manual AGC control. 1: manual mode (pdm_ctrl_sel acts as the control word) 0: automatic AGC mode					
	[3:0] RW pdm_ctrl_h				Upper four bits of the configurable AGC control word in manual AGC mode.					

TR_CTRL1

TR_CTRL1 is a TR control register.

		Offs	et Address		Register Name			Total Reset Value			
			0x40		TR_CTRL1			0x21			
Bit	7		6	5	4	3	2	1	0		
Name			rese	rved	dagc_bypass dagc_speed						
Reset	0		0	1	0	0	0	0	1		
	Bits	Acce	ess Name	!	Description						
	[7:4]	7:4] - reserved			Reserved.						
	[3]	RW	dagc_l	oypass	DAGC bypass. 1: bypass 0: not bypass						
	[2:0]	RW	dagc_s	speed	DAGC adjustment speed. A larger value indicates a faster AGC adjustment speed.						

DAGC_STD

DAGC_STD is a DAGC control register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x41			DAGC	_STD		0x20		
Bit	7	7 6				4	3	2	1	0	
Name						dago	_std				
Reset	0		(0	1	1 0 0 0 0					
	Bits Access Name				Description						
	[7:0] RW dagc_std				std	Average amp A larger valu					

TR_MONITOR

TR_MONITOR is a TR monitor register.

		Of	fset Ad 0x43			Register Name Total Reset Value TR_MONITOR 0x00				
Bit	7			6	5	4	3	2	1	0
Name	tr_ok					reserved				
Reset	0			0	0	0 0 0 0				
	Bits Access		cess	Name	!	Description				
	[7]	RO		tr_ok		Timing lock f 1: locked 0: unlocked	flag.			
	[6:0] - reserved				ed	Reserved.				

CNT_THRESH

CNT_THRESH is a TR wait time register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x44			CNT_TI	HRESH		0x10		
Bit	7		(6	5	4	3	2	1	0	
Name						cnt_t	hresh				
Reset	0 0			0	0	1	0	0	0	0	
	Bits	Ac	cess	Name	!	Description					
	[7:0] RW		I	ent_thi	resh	Lock detection wait time. A larger value indicates longer wait time.					

FS_L

FS_L is a symbol rate low register.

		Of	ffset Ad 0x46			Register FS_			Total Reset Value 0x10		
Bit	7 6 5					4	3	2	1	0	
Name						fs					
Reset	0 0 0					1	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RW fs_l					Lower bits of number. The			ool rate is an u	insigned	

FS_H

FS_H is a symbol rate high register.

		Of	fset Ad 0x47			Register FS_			Total Reset Value 0x27			
Bit	7		(6	5	4	3	2	1	0		
Name						fs_h						
Reset	0		(0	1	0	0	1	1	1		
	Bits Access			Name		Description						
	[7:0] RW fs_			fs_h		Upper bits of the symbol rate. The symbol rate is an unsignatumber. The LSB indicates 1 kHz.						

CENT_FREQ_L

CENT_FREQ_L is a carrier frequency low register.

		Of	fset Ad			Register Name CENT_FREQ_L			Total Reset Value 0x00		
Bit	7	7 6				4	3	2	1	0	
Name						cent_	freq_1				
Reset	0		(0	0	0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RW cent_freq_l					Lower bits of a signed num				frequency is	

CENT_FREQ_H

CENT_FREQ_H is a carrier frequency high register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x49	1		CENT_F	REQ_H		0x00		
Bit	7	7 6				4	3	2	1	0	
Name						cent_f	freq_h				
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RW cent_freq_h				rea n	Upper bits of a signed num			•	frequency is	

FS_OFFSET_FC_L

FS_OFFSET_FC_L is a symbol rate offset low register.

			et Address 0x4C	Register Name FS_OFFSET_FC_L				Total Reset Value 0x00		
Bit	7		6	5	4	3	2	1	0	
Name				fs_offset_fc_l						
Reset	0 0			0	0 0 0 0					
	Bits	Acces	ss Name	:	Description					
	[7:0]	RO	fs_offs	set_fc_l	Lower bits of clock. The sy normalized of	mbol rate offs	set is a signed			

FS_OFFSET_FC_H

FS_OFFSET_FC_H is a symbol rate offset high register.

		Offse	et Address		Register Name			Total Reset Value			
			0x4D		FS_OFFSET_FC_H			0x00			
Bit	7		6	5	4	3	2	1	0		
Name					fs_offs	et_fc_h					
Reset	0		0	0	0 0 0 0						
	Bits	Bits Access Name			Description						
	[7:0] RO fs_offset_			et_fc_h	Upper bits of clock. The sy normalized of	mbol rate offs	set is a signed				

FREQ_OFFSET_FC_L

FREQ_OFFSET_FC_L is a frequency offset low register.

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x4E	E		FREQ_OFFSET_FC_L			0x00		
Bit	7			6	5	4	3	2	1	0	
Name						freq_off					
Reset	0	0 0				0 0 0 0					
	Bits	Bits Access Name			me Description						
	[7:0] RO freq			freq_o	ffset_fc_l	clock. The ca	r bits of the carrier frequency offset normalized to the system. The carrier frequency offset is a signed number. The actual alized offset is freq_offset_fc/2^17.				

FREQ_OFFSET_FC_H

FREQ_OFFSET_FC_H is a frequency offset high register.

		Of	fset Ad			Registe			Total Reset Value 0x00			
			0x4F			FREQ_OFF	SEI_FC_H		0x00			
Bit	7		(6	5	4	3	2	1	0		
Name						freq_off	set_fc_h					
Reset	0 0			0	0	0	0	0	0			
	Bits	Bits Access			!	Description						
	[7:0] RO			freq_o	ffset_fc_h	Upper bits of the carrier frequency offset normalized to the system clock. The carrier frequency offset is a signed number. The actual normalized offset is freq_offset_fc/2^17.						

PLH_SYNC_1

PLH_SYNC_1 is frame synchronization control register 1.

		Off	fset Ad	dress					Total Reset Va	alue	
			0x50	ı		PLH_SY	YNC_1		0x4F		
Bit	7			6	5	4	3	2	1	0	
Name				plh_sy	nc_th	reserved					
Reset	0			1	0	0 1 1 1 1					
	Bits Access Name					Description					
	[7:4] RW			plh_sy	nc_th	Confidence count threshold for determining whether frame synchronization enters the synchronization state. A smaller indicates a faster synchronization speed but easier false synchronization.					
	[3:0] - reserved					Reserved.					

PLH_SYNC_2

PLH_SYNC_2 is frame synchronization control register 2.

		Of	fset Ad 0x51			Register PLH_S		Total Reset Value 0x49				
Bit	7			6	5	4	3	2	1	0		
Name				plh_l	ost_th	plh_am_th						
Reset	0			1	0	0	1	0	0	1		
	Bits Access Na			Name	ame Description							
	[7:4] RW		plh_lost_th		Number of lost frames when lock loss is checked during frame synchronization. A smaller value indicates a faster check speed but easier false lock loss.							
	[3:0] RW plh_am_th				n_th	Amplitude threshold for frame synchronization. A smaller value indicates higher synchronization performance but slower synchronization speed.						

CR_CTRL_SW

CR_CTRL_SW is a CR control register.

		Of	fset Ad	dress		Register Name			Total Reset Value			
			0x52			CR_CTI	RL_SW	0x3F				
Bit	7	7		6	5	4	3	2	1	0		
Name	cr_crfb_byp	_crfb_bypass ccm_c		lummy	denbi_bypass	use_intp	reserved	use_pulse_det	scan_auto	cr_bw_auto		
Reset	0			0	1	1	1	1	1	1		
	Bits Access Name			Name	!	Description						
	[7]	RW	I	cr_crfl	o_bypass	Carrier frequency offset slow feedback bypass. 1: bypass 0: not bypass						
	[6]	RW	Ī	ccm_d		Blank frame allowed in the CCM. 1: allowed 0: not allowed						
	[5] RW denbi_bypass					Narrowband interference suppression module bypass. 1: bypass 0: not bypass						
	[4]	RW	7	use_in	tp	Carrier phase interpolation using pilot. 1: yes 0: no						
	[3]	-		reserve	ed	Reserved.						

[2]	RW	use_pulse_det	Pulse interference detection. 1: yes 0: no
[1]	RW	scan_auto	Mode for setting the carrier frequency scanning step. 1: automatic mode 0: manual mode
[0]	RW	cr_bw_auto	Mode for setting the CR bandwidth. 1: automatic mode 0: manual mode

SCAN_STEP_L

SCAN_STEP_L is a frequency scanning speed register.

		Of	fset Ad			Register SCAN S			Total Reset Value 0x64		
Bit	_			5	5	4	3	2	1	0	
Name	scan_step_1										
Reset	0			1	1	0	0	1	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RW		I			Lower eight bits of the 12-bit frequency scanning speed manually configured.					

SCAN_STEP_FB

SCAN_STEP_FB is a frequency scanning control register.

		Of	fset Ad 0x54			Register SCAN_S			Total Reset Value 0x30		
Bit	7		6		5	4	3	2	1	0	
Name	reserve	d		fb_speed			scan_step_h				
Reset	0	0		0	1	1	0	0	0	0	
	Bits	s Access Name		!	Description						
	[7]	reserve		ed	Reserved.						
	[6:4]	[:4] RW fb_speed		ed	Carrier freque	ency slow feedback speed.					
	[3:0]	RW	7	scan_s	ten n	Upper four bits of the 12-bit frequency scanning speed manually configured.					

SCAN_ADJUST

SCAN_ADJUST is an automatic frequency scanning speed register.

		Of	fset Ac 0x55			Register Name SCAN_ADJUST				Total Reset Value 0x18		
Bit	7			6	5	4 3 2 1						
Name	reserved					scan_adjust						
Reset	0		0		0	1	1	0	0	0		
	Bits	Ac	cess	Name		Description						
	[7:6] - reserve			reserve	ed	ed Reserved.						
	[5:0] RW scan_adjus			djust	Automatic adjustment of the frequency scanning speed.							

CR_ZUNI_WAIT

CR_ZUNI_WAIT is a carrier control register.

		Of	fset Ad	dress		Register	Name		Total Reset Value		
			0x56			CR_ZUNI_WAIT				0x8B	
Bit	7			6	5	4	3	2	1	0	
Name			cr_	zuni				cr_lock_wait			
Reset	1			0	0	0	1	0	1	1	
	Bits	its Access Name			Description						
	[7:5]	7:5] RW cr_zuni				Stable dampin	ng of the CR	PLL.			
	[4:0] RW cr_lock_wait				x_wait	Carrier lock wait time.					

CR_BW_ADJUST

CR_BW_ADJUST is a carrier bandwidth control register.

		Of	fset Ad	dress		Register			Total Reset Value			
			0x57	'	CR_BW_ADJUST				0x20			
Bit	7			6	5	4	3	2	1	0		
Name		resei	rved		bw_adjust							
Reset	0 0			0	1	1 0 0 0 0						
	Bits	Aco	cess	Name		Description						
	[7:6]	7:6] - reserv			red Reserved.							
	[5:0] RW bw_a				CR bandwidth adjustment.							

CR_BW_MAX

CR_BW_MAX is a carrier maximum bandwidth control register.

		Off	fset Ad 0x58			Register CR_BW			Total Reset Value 0xFF			
Bit	7		(6	5	4 3 2 1						
Name						cr_bw						
Reset	1			1 1		1	1	1	1	1		
	Bits	Bits Access			:	Description						
	[7:0] RW			cr_bw	_max	Maximum CR bandwidth. Note: The field value multiplied by 32 is the actual maximulandwidth.						

CR_BW_SET

CR_BW_SET is a carrier bandwidth control register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x59			CR_BW_SET			0x1F		
Bit	7		(6	5	4	3 2 1 0				
Name			cr_bv	v_exp		cr_bw_coef					
Reset	0			0	0	1 1 1 1 1					
	Bits	Ac	cess	Name		Description					
	[7:5] RW cr_bw_exp			_exp	Exponential part of the bandwidth.						

[4:0]	RW	Decimal part of the bandwidth. The actual bandwidth is calculated as follows:
		Actual bandwidth = cr_bw_coef x 2^cr_bw_exp

CR_CN

CR_CN is a CN ratio register.

		Of	fset Ad 0x5A			Register CR		Total Reset Value 0x00				
			UXJA			_	CN		0.000			
Bit	7	7 6				4 3 2 1						
Name						cr_cn						
Reset	0		(0	0	0	0	0	0	0		
				Name	:	Description						
	[7:0] RO cr_cn					CN ratio. The	he LSB indica	ates 0.1875				

CR_STATE

CR_STATE is a carrier status register.

		Of	fset Ad 0x5B			Register CR_S		Total Reset Value 0x00				
Bit	7			6	5	4	3	2	1	0		
Name						erved			scan_ok	sync_ok		
Reset	0				0	0	0	0	0	0		
	Bits	its Access				Description						
	[7:3]	-		reserve	ed	d Reserved.						
	[2]	RO		cr_ok		CR completion.						
	[1]] RO scan_ok			k	Carrier freque	ency scanning	completion.				
	[0]	RO		sync_c	k	Frame synchronization completion.						

PLS_CODE

PLS_CODE is a PLS_CODE register.

		Of	fset Ad 0x5C			Register PLS_C			Total Reset Value 0x00			
Bit	7			6	5	4 3 2 1						
Name	reserved		pls_code									
Reset	0		0		0	0 0		0	0	0		
	Bits	Aco	cess Name			Description						
	[7]	-		reserve	ed	Reserved.						
	[6:0]	RO		pls_co	(1 P	PLS_CODE i MODCOD ar				dicate the		

FREQ_INV

FREQ_INV is a spectrum reversion register.

		Of	fset Ad	ldress		Register	Name	Total Reset Value				
			0x5E)		FREQ	_INV		0x02			
Bit	7			6	5	4	3	2	1	0		
Name						reserved				freq_inverse		
Reset	0	0 0 0				0 0 0 1						
	Bits	Aco	cess	Name		Description						
	[7:1]	-		reserve	ed	Reserved.						
	[0]	0] RO freq_inverse				Spectrum invert. This field is valid only in DVB-S2 mode.						

CR_ZUNI_BW_L

CR_ZUNI_BW_L is a carrier bandwidth low register.

		Of	fset Ad	ldress		Registe	r Name	Total Reset Value				
			0x5E	E		CR_ZUNI_BW_L			0x 0 0			
Bit	7	7 6				4	3	2	1	0		
Name						cr_zuni_bw_l						
Reset	0			0	0	0 0 0				0		
	Bits				:	Description						
	[7:0]	[7:0] RO c			1 hw I	Lower eight bits of the 13-bit product of the damping value the bandwidth.						

CR_ZUNI_BW_H

CR_ZUNI_BW_H is a carrier bandwidth high register.

		Of	ffset Ad	ldress		Register	r Name		Total Reset Value			
			0x5F	7		CR_ZUN	I_BW_H		0x00			
Bit	7			6	5	4	3	2	1	0		
Name			rese	erved		cr_zuni_bw_h						
Reset	0			0	0	0 0 0 0						
	Bits	Ac	cess	Name	!	Description						
	[7:5]	-		reserve	ed	Reserved.						
	[4:0] RO cr_zuni_bw_h					Upper five bits of the 13-bit product of the damping value and bandwidth.						

SYNC_FREQ_L

SYNC_FREQ_L is a frame synchronization frequency low register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x60)		SYNC_F	FREQ_L		0x00		
Bit	7			6	5	4	3	2	1	0	
Name						sync_	freq_l				
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:0]	RO	ı	sync_f	req_l	Lower eight bits of the 12-bit estimated frame synchronization frequency. The LSB is (2^-12 x fs).					

SYNC_FREQ_H

SYNC_FREQ_H is a frame synchronization frequency high register.

		Of	fset Ad			Register	Total Reset Va	alue			
			0x61			SYNC_F	REQ_H		0x80		
Bit	7			6	5	4	3	2	1	0	
Name				rese	rved			sync_freq_h			
Reset	1			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:4]	7:4] - reserve			ed	Reserved.					
	[3:0]	RO	ı	sync_f		Upper four bits of the 12-bit estimated frame synchronization frequency. The LSB is (2^-4 x fs).					

SCAN_FREQ_L

SCAN_FREQ_L is a scanning frequency low register.

		Of	fset Ad 0x62			Register SCAN_F			Total Reset Va 0x00	alue	
Bit	7		(5	5	4	3	2	1	0	
Name						scan_	freq_1				
Reset	0)	0	0	0	0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:0] RO scan_freq_1					Lower eight bits of the 16-bit scanning frequency. The LSB is (2^-16 x fs).					

SCAN_FREQ_H

SCAN_FREQ_H is a scanning frequency high register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x63			SCAN_F	REQ_H		0x00		
Bit	7			6	5	4	3	2	1	0	
Name						scan_t	freq_h				
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name	!	Description					
	[7:0] RO scan_freq_h					Upper eight bits of the 16-bit scanning frequency. The LSB is (2^-8 x fs) .					

FREQ_ACC_L

FREQ_ACC_L is a carrier frequency offset slow feedback low register.

		Of	ffset Ad	dress		Register	r Name		Total Reset Value		
			0x64			FREQ_A	ACC_L		0x00		
Bit	7	7 6 5				4	3	2	1	0	
Name						freq_acc_l					
Reset	0	0 0 0				0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0]	RO	١	freq_a		Lower eight bits of the 16-bit carrier frequency offset slow feedback. The LSB is (2^-16 x fs).					

FREQ_ACC_H

FREQ_ACC_H is a carrier frequency offset slow feedback high register.

		Of	fset Ad 0x65			Register FREQ A			Total Reset Va	alue	
Bit	7			6	5	4	3	2	1	0	
Name						freq_a	acc_h				
Reset	0	0 0 0				0	0	0	0	0	
	Bits	Ac	cess	Name	!	Description					
	[7:0] RO freq_acc_h					Upper eight bits of the 16-bit carrier frequency offset slow feedback. The LSB is (2^-8 x fs).					

TR_FREQ_FB_L

TR_FREQ_FB_L is a carrier frequency offset TR feedback low register.

	[7:0]	RO	ı	tr_freq		Lower eight bits of the 16-bit carrier frequency offset TR feedback. The LSB is (2^-16 x fs).						
	Bits	Aco	cess	Name		Description						
Reset	0			0	0	0 0 0 0						
Name						tr_free	ı_fb_l					
Bit	7			6	5	4	3	2	1	0		
			0x66	· •		TR_FRE	Q_FB_L		0x00			
		Of	fset Ad	dress		Register	Name		Total Reset Value			

TR_FREQ_FB_H

TR_FREQ_FB_H is a carrier frequency offset TR feedback high register.

		Of	fset Ad			Register Name Total Reset Value TR FREQ FB H 0x00					
			0x67			TR_FREG	Q_FB_H		0x00		
Bit	7		(6	5	4	3	2	1	0	
Name						tr_freq	_fb_h				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0]	RO		tr_freq		Upper eight bits of the 16-bit carrier frequency offset TR feedback. The LSB is (2^-8 x fs).					

CR_LOOP_DC_L

CR_LOOP_DC_L is a carrier PLL control word low register.

		Of	fset Ad 0x68			Register CR_LOO			Total Reset Va 0x00	alue		
Bit	7		(6	5	4	3	2	1	0		
Name						cr_loo						
Reset	0	0 0				0	0	0	0	0		
	Bits	Ac	cess	Name	:	Description						
	[7:0] RO cr_loop_dc_l					Lower eight bits of the 16-bit carrier PLL control word. The LSB is (2^-20 x fs).						

CR_LOOP_DC_H

CR_LOOP_DC_H is a carrier PLL control word high register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x69)		CR_LOO	P_DC_H		0x00			
Bit	7	7 6				4	3	2	1	0		
Name						cr_looj	o_dc_h					
Reset	0	0 0 0				0	0	0	0	0		
	Bits	Acc	cess	Name		Description						
	[7:0]	RO		cr_loo		Upper eight bits of the 16-bit carrier PLL control word. The LSB is (2^-12 x fs).						

CHIP_ID_0

CHIP_ID_0 is chip ID register 0.

		Of	fset Ad	dress		Register	Name		Total Reset Value		
			0x6C	;		CHIP_	ID_0		0x00		
Bit	7			6	5	4	3	2	1	0	
Name						chip_	_id0				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0]	RO		chip_i	d_0	Lowest eight bits of the 32-bit chip ID.					

CHIP_ID_1

CHIP_ID_1 is chip ID register 1.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x6D)		CHIP_	_ID_1		0x01		
Bit	7		(6	5	4	3	2	1	0	
Name						chip_	_id_1				
Reset	0		(0	0	0	0	0	0	1	
	Bits Access Name Description										
	7:0] RO chip_id_1					Lower eight bits of the 32-bit chip ID.					

CHIP_ID_2

CHIP_ID_2 is chip ID register 2.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x6E			CHIP_	ID_2	0x36			
Bit	7	7 6			5	4	3	2	0		
Name	chip_id_2										
Reset	0	0 0			1	1	1	1	0		
	Bits Access Nar			Name Description							
	[7:0] RO chip_id_2					Upper eight bits of the 32-bit chip ID.					

CHIP_ID_3

CHIP_ID_3 is chip ID register 3.

		Of	fset Ad 0x6F			Register Name CHIP_ID_3			Total Reset Value 0x31		
Bit	7		(6	5	4	3	2	2 1 0		
Name	e chip_id_3										
Reset	0		(0	1	1 0 0 0					
	Bits Access Name				Description						
	[7:0] RO chip_id_3					Uppermost eight bits of the 32-bit chip ID.					

EQU_CTRL

EQU_CTRL is an equalization control register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x70	ı		EQU_0	CTRL	0x06			
Bit	7			6	5	4	3	2	1	0	
Name	equ_hol	equ_hold equ_		pypass		reserved			blind_step		
Reset	0		0		0	0	0	1	1	0	
	Bits Ac		ess Name		!	Description					
	[7]	RW		equ_hold		Current equalizer factor hold. 1: hold 0: not hold					
	[6]	6] RW		equ_bypass		Equalizer operation bypass. 1: bypass 0: not bypass					

[5:3]	-	reserved	Reserved.
[2:0]	RW	Inlind sten	Blind equalization step. Each time the value is added by 1, the step is multiplied by 2.

LMS_STEP

LMS_STEP is an equalization step control register.

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0x71			LMS_	STEP	0x02				
Bit	7			6	5	4	3	2	1	0		
Name					reserved			lms_step_4_8				
Reset	0		0	0	0	0	0	1	0			
	Bits	Bits Acce		Name		Description						
	[7:3] -			reserved		Reserved.						
	[2:0] RW lms_step_4_8					LMS equalization step in QPSK or 8PSK mode. Each time the value is added by 1, the step is multiplied by 2.						

CN_CTRL

CN_CTRL is a noise power statistics control register.

		Offset	Address		Register	r Name		Total Reset Value		
		0:	x75		CN_CTRL			0x48		
Bit	7		6	5	4 3 2 1 0					
Name	reserved			bypass_cnr_est	noise_sta reserved					
Reset	0		1	0	0 1 0 0					
	Bits	Acces	s Name		Description					
	[7:6]	-	reserv	ed	Reserved.					
	[5]					ion module by	/pass.			
	[4:3] RW noise			sta	Average time 00: 64 01: 128 10: 256 11: 512	s for noise po	wer statistics			

2 Demod

[2:0]	-	reserved	Reserved.
-------	---	----------	-----------

EQU_TAP_REAL

EQU_TAP_REAL is an equalization tap real part register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x76			EQU_TA	P_REAL	0x00			
Bit	7			6	5	4	3	2	1	0	
Name						equ_ta	p_real				
Reset	0		0		0	0 0		0	0	0	
	Bits Access			Name	!	Description					
	[7:0] RW equ_			equ_ta		Real part to be written to tap N or to be read from tap N . The re or write operation depends on the RD_WR_TAP register.					

EQU_TAP_IMAG

EQU_TAP_IMAG is an equalization tap imaginary part register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x77			EQU_TA	P_IMAG	0x00			
Bit	7			6	5	4	3	2	1	0	
Name	equ_tap_imag										
Reset	0		0		0	0 0 0		0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RW equ			equ_ta		Imaginary part to be written to tap <i>N</i> or to be read from tap <i>N</i> . The read or write operation depends on the RD_WR_TAP register.					

EQU_TAP_SEL

EQU_TAP_SEL is a tap select register.

		Of	ffset Ad	dress		Register	r Name		Total Reset Value		
			0x78	;		EQU_TA	0x01				
Bit	7			6	5	4	3	2	1	0	
Name					equ_ta	ap_sel	reserved				
Reset	0	0		0	0	0	0	0	0	1	
	Bits Access		cess	ss Name		Description					
	[7:2] RW		1	equ_tap_sel		Selected tap I number. If the tap is selected	e value is grea				
	[1:0] - reserved				ed	Reserved.					

XREG_INIT_LOW

XREG_INIT_LOW is an equalization control low register.

	Offset Address					Register	Name	Total Reset Value			
	0x7A					XREG_IN	IT_LOW	0x01			
Bit	7	7 6			5	4	3	2	0		
Name						xreg_init_low					
Reset	0	0		0 0		0 0 0			1		
	Bits Access Na		Name	Name Description							
	[7:0] RW xreg_i			xreg_i	nit_low	Lower eight b	oits of xreg_ir	nit.			

XREG_INIT_MID

XREG_INIT_MID is an equalization control middle register.

		Of	fset Ad			Register			Total Reset Value			
	0x7B					XREG_IN	IIT_MID	0x00				
Bit	7	6			5	4	3	2 1		0		
Name	xreg_init_mid											
Reset	0	0		0	0	0	0	0	0	0		
	Bits Access			Name		Description						
	[7:0] RW x			xreg_i	nit_mid	Middle eight bits of xreg_init.						

XREG_INIT_HI

XREG_INIT_HI is an equalization control high register.

		Off	set Ado	dress		Registe	r Name		Total Reset Value		
			0x7C			XREG_I	NIT_HI		0x60		
Bit	7		ϵ	5	5	4	3	2	1	0	
Name			rese	rved		ffe_step xreg_init				init_hi	
Reset	0		1	l	1	0	0	0	0	0	
	Bits	Acc	ess	Name		Description					
	[7:5]	-		reserve	ed	Reserved.					
	[4:2]					Step of the fe that the FFE tap step. Each half of the FE	tap step is the n time the fiel	same as the f	eedback equa	lizer (FBE)	
	[1:0]	RW		xreg_i	nit_hi	Upper two bits of xreg_init.					

RD_WR_TAP

RD_WR_TAP is a tap control register.

		Off	fset Ad 0x7D			Register RD_WI		Total Reset Value 0x82			
Bit	7		(6	5	4	3	2	1	0	
Name	reserved					rd_wr_tap reserved lms_step_16_32					
Reset	1 0 0 Bits Access Name					0 0 1 0					
						Description					
	[7:5] - reserved					Reserved.					
	[7:5] - reserved [4] RW rd_wr_tap			_tap	Equalizer tap 0: Tap N is re offset address the EQU_TA 1: The values 0x77 are writ EQU_TAP_S	ead and the reases are 0x76 a P_SEL registed of the registed ten to tap N. The reases are the re	nd value is sto nd 0x77. The er. ers whose offs	value N is spo set addresses a	ecified by are 0x76 and		
	[3] - reserved				ed	Reserved.					
	[2:0] RW lms_step_16_32				ep_16_32	LMS equalization step in 16APSK or 32APSK mode. Each time the value is added by 1, the step is multiplied by 2.					

NOISE_POW_L

NOISE_POW_L is a noise power low register.

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0x7E			NOISE_I	POW_L	0x00				
Bit	7			5	5	4	3	2	1	0		
Name						noise_	pow_l					
Reset	0		()	0	0	0	0	0	0		
	Bits Access Name					Description						
	[7:0] RO noise_pow_l					Lower eight bits of the output value for noise power statistics.						

NOISE_POW_H

NOISE_POW_H is a noise power high register.

		Of	fset Ad 0x7F			Register NOISE_l			Total Reset Value 0x00			
Bit	7			6	5	4	3	2	1	0		
Name	cnr_est_ok					noise_pow_h						
Reset	0			0	0	0 0 0						
	Bits	Ac	cess	Name		Description						
	[7] RO		ı	cnr_est_ok		CNR estimation completion.						
	[6:0] RO noise_pow_l			pow_h	Upper seven bits of the output value for noise power statistics							

LDPC_ITER

LDPC_ITER is an LDPC iteration control register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Va	lue	
			0x82			LDPC	_ITER		0x50		
Bit	7		(6	5	4	3	2	1	0	
Name	fix_iter	•	iter_nu	m_man		iter_num					
Reset	0					1	0	0	0	0	
	Bits	its Access Name				Description	l				
	[7]					Fixed or select 1: fixed maxi 0: automatica	mum iteration	n times			
	[6] RW ite		iter_nu	ım_man	Manually or a 1: manually 0: automatica		configured m	aximum itera	tion times.		
	[5:0]	[5:0] RW iter_num				Manually configured maximum iteration times.					

BER_CTRL

BER_CTRL is a BER control register.

		Of	fset Ad 0x83			Register BER_0			Total Reset Value 0xB5			
Bit	7			6	5	4	3	2	1	0		
Name	stop_se	stop_sel fra					rst_frr	n_num	rst_eri	r_num		
Reset					1	1	0	1	0	1		
	Bits Access I			Name		Description	Description					
	[7]	RW	7	stop_s	el	Iteration chec 1: Automatic 0: Iteration st	iteration chec	•	eration times is	s reached.		
	[6:4]	RW	T	frame_	num	BER statistics period.						
				rst_frn	n_num	Total frame c	ount for auto	reset statistics	S.			
	[1:0] RW rst_err_			rst_err	_num	Percentage of percentage in frames.						

FEC_BER_L

FEC_BER_L is a BER low register.

		Offset A	Address		Registe	r Name	Total Reset Value				
		0x	84		FEC_E	ER_L		0x00			
Bit	7		6	5	4	3	2	1	0		
Name					fec_ber_l						
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	Name	!	Description						
	[7:0]	RO	fec_be	er_l	Lower eight b	oits of BER st	atistics.				

FEC_BER_H

FEC_BER_H is a BER high register.

		Of	fset Ad 0x85			Register FEC_B			Total Reset Value 0x00		
Bit	7		(6	5	4 3 2 1					
Name					fec_ber_h						
Reset	0		(0	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RO fec_ber_h				r_h	Upper eight bits of BER statistics.					

FEC_FER_L

FEC_FER_L is an FER low register.

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0x86			FEC_F	ER_L	0x00				
Bit	7		(6	5	4	3	2	1	0		
Name						fec_	fer_1					
Reset	0 0 0				0	0 0 0 0						
	Bits	Aco	ess	Name		Description						
	[7:0] RO fec_fer_l			r_l	Lower eight bits of the error frame count.							

FEC_FER_H

FEC_FER_H is an FER high register.

		Offs	set Ado			Register FEC_F			Total Reset Value 0x00		
Bit	7		6	5	5	4	3	2	1	0	
Name						fec_fer_h					
Reset	0 0 0					0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RO fec_fer_h				_h	Upper eight b	its of the erro				

S2_SUCCESS

S2_SUCCESS is an S2 decoding success register.

		Offset Ac	ldress		Register	r Name		Total Reset Va	alue		
		0x88	3		S2_SUC	CCESS		0x00			
Bit	7		6	5	4	3	2	1	0		
Name				iter_	iter_num				ldpc_badly		
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	Name	,	Description	l					
	[7:2]	RO	iter_nu	ım	Half of the actual LDPC decoding iteration times.						
					BCH decoding success.						
	[1]	RO	bch_ca	ancorr	1: success						
					0: failure						
					LDPC decoding badly.						
	[0]	RO	ldpc_b	adly	1: failure						
					0: success						

VTB_CTRL1

VTB_CTRL1 is a VTB control register.

		Of	fset Ad	dress		Register Name Total Reset Value VTB_CTRL1 0x08						
			0x89)		VTB_C	CTRL1		0x08			
Bit	7			6	5	4	3	2	1	0		
Name	iq_swap_r	nod	iq_swa	ap_man	vtb_search_mo d	vtb_sea	rch_per		vtb_rate_man			
Reset	0			0	0	0	1	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7]	RW	I	iq_swa	p_mod	I/Q inversion 1: manual mo 0: automatic i	de					
	[6] RW			iq_swap_man		I/O manual inversion indicator. 1: inverted 0: not inverted						
	[5]	RW	7	vtb_se	arch_mod	VTB code rat 1: manual mo 0: automatic 1	de	e.				
	[4:3]	RW	I	vtb_se	arch_per	VTB search p	eriod.					
	[2:0] RW		vtb_ra	te_man	VTB cod rate 000: 1/2 001: 2/3 010: 3/4 011: 5/6 100: 7/8 101: 6/7 Other values:		arched.					

VTB_THRES

VTB_THRES is a VTB search control register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x8A			VTB_T	HRES	0x22			
Bit	7	7 6 :				4	3	2	1	0	
Name				vtb_lo	ock_th		vtb_loss_th				
Reset	0	0 0 1				0	0 0 1 0				
	Bits	Aco	cess	Name	:	Description	iption				
	[7:4] RW vtb_lock_th VTB s					VTB search l	ock threshold	•			

[3:0]	RW	vtb_loss_th	VTB search lock loss threshold.
-------	----	-------------	---------------------------------

VTB_CTRL2

VTB_CTRL2 is a VTB control register.

		Offset Ac			Register VTB_C			Total Reset Value 0x38		
Bit	7		6	5	4	3	2	1	0	
Name			vtb_t	out_th		vtb_lock_mod	vtb_adjust_ma n	vtb_a	ndjust	
Reset	0		0	1	1	1	0	0	0	
	Bits	Access	Name	!	Description					
	[7:4]	RW	vtb_to	ut_th	VTB search t	imeout thresh	old.			
	[3]	RW	vtb_lo	ck_mod	VTB search lock mode. 1: Lock loss is not checked after the VTB code rate is locked. 0: Lock loss is checked after the VTB code rate is locked.					
	[2]	RW	vtb_ad	ljust_man	Strength adjustment mode of VTB inputs. 1: The input signal strength is manually adjusted. 0: The strength is automatically adjusted based on the code rate.					
	[1:0]	RW	vtb_ad	just	Manual adjustment strength for VTB inputs. The vtb_adjust field is valid when vtb_adjust_man is 1. The greater the value of the vtb_adjust field is, the greater the adjusted signal strength is.					

FS_CTRL1

FS_CTRL1 is S frame synchronization control register 1.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x8C	;		FS_C	ΓRL1	0xA9			
Bit	7	7 6			5	4 3		2	1	0	
Name	fs_corr_en			fs_lo	ck_th	fs_lo	fs_loss_th		fs_direc_man	rs_corr_en	
Reset	1		(0	1	0	1	0	0	1	
	Bits	Ac	cess	Name		Description					
	[7] RV		V	fs_cor	r_en	FS frame hea 1: enabled 0: disabled	der correction	n enable.			

[6:5]	RW	fs_lock_th	FS lock threshold.
[4:3]	RW	fs_loss_th	FS lock loss threshold.
[2]	RW	fs_search_mod	FS search mode. 1: manual mode 0: automatic mode
[1]	RW	fs_direc_man	Mode search indicator. 1: Searching the DirecTV mode is manually configured. 0: Searching the DVB-S mode is manually configured.
[0]	RW	rs_corr_en	RS correction enable. 1: enabled 0: disabled

FS_CTRL2

FS_CTRL2 is S frame synchronization control register 2.

		Offset Ac			Register Name FS_CTRL2			Total Reset Value 0x5A		
Bit	7		6	5	4	3	2	1	0	
Name	fs_sear_th			fs_modtrans_th fs_tou			ut_th	ber_en	ber_clear	
Reset	0		1	0	1	1 1 0		1	0	
	Bits	Access	Name		Description					
	[7:6]	RW	fs_sear	_th	Times thresho	old for FS sea	rch by mode.			
	[5:4]	RW	fs_moo	dtrans_th	Frame count threshold for FS search for a mode.					
	[3:2]	RW	fs_tout	_th	FS search timeout threshold.					
	[1]	RW	ber_en		BER statistics enable. 1: enabled 0: disabled					
	[0]	RW	ber_cle	ear	BER statistics 1: cleared 0: not cleared					

SEAR_RESULT

SEAR_RESULT is an S search result register.

		Offset A			Register Name SEAR_RESULT			Total Reset Value 0x00		
Bit	7		6	5	4	3	2	1	0	
Name			rese	rved	vtt				ir_directv	
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name		Description					
	[7:4]	-	reserve	ed	Reserved.					
	[3:1] RO vtb_rate				Searched VT 000: 1/2 001: 2/3 010: 3/4 011: 5/6 100: 7/8 101: 6/7 Other values:					
	[0]	RO	ir_dire	ectv	DirecTV mod 1: DirecTV m 0: DVB-S mod	node				

DEC_RESULT

DEC_RESULT is an S decoding result register.

		Offset	t Address		Register Name			Total Reset Value		
		0	x8F		DEC_R	ESULT		0x41		
Bit	7		6	5	4	3	2	1	0	
Name	rst_v	vcm_err_	_num	vtb_tout	fs_tout	vtb_lock	iq_swap	fs_lock	rs_cancorr	
Reset	0		1	0	0	0	0	0	1	
	Bits	Acces	s Name	!	Description					
	[7:6]	RW	rst_vci	n err num	Percentage of correct frames during auto reset in VCM mode. A larger percentage indicates a higher correct rate.					
	[5]	RO	vtb_to		VTB search timeout indicator. 1: Time is out. 0: Time is not out.					
	[4]	RO	fs_tou	t	FS search timeout indicator. 1: Time is out. 0: Time is not out.					

[3]	RO	vtb_lock	VTB search lock. 1: locked 0: unlocked
[2]	RO	iq_swap	I/Q inversion indicator. 1: inverted 0: not inverted
[1]	RO	fs_lock	FS search lock. 1: locked 0: unlocked
[0]	RO	rs_cancorr	RS decoding error indicator. 1: error 0: success

TS_PARALL_CTRL

TS_PARALL_CTRL is a TS output select register.

		Of	fset Ad 0x90			Register Name Total Reset Value TS_PARALL_CTRL 0x6A				ılue	
Bit	7		(6	5	4	3	2	1	0	
Name	c_isi_research reser			rved	ts_parall	ts_serial2		ts_a	ı_sel		
Reset	0			1	1	0	1	0	1	0	
	Bits	Acc	cess	Name		Description					
	[7]	RW	7	c_isi_r	research	Stream ID search again enable. 1: enabled (automatically cleared) 0: disabled					
	[6]	-		reserve	ed	Reserved.					
	[5]	RW	7	ts_para		TS parallel output mode select. 1: parallel mode 0: serial mode					
	[4] RW ts_serial2					2-bit TS output. 1: 2-bit TS output (ts_parall must be set to 1) 0: parallel mode or serial mode, which depends on the value of the ts_parall field					
	[3:0]	RW	ī	ts_a_s	el	TS_ERR pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.					

TS_10_SEL

TS_10_SEL is a TS output control register.

	Offset Address 0x91					Register			Total Reset Value 0x10		
Bit	7		(5	5	4	3	2	1	0	
Name				ts_1	_sel	ts_0_sel					
Reset	0	0 0)	0	1	0	0	0	0	
	Bits	Access Name			:	Description					
	[7:4]	7:4] RW ts_1_		ts_1_s		TS_OUT1 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.					
	[3:0]	3:0] RW ts_0_sel				TS_OUT0 pin output control. The bits in {ts_err, ts_vld, ts_sy ts_out[7:0]} are selected for signal output.					

TS_32_SEL

TS_32_SEL is a TS output control register.

		Of	fset Ad	dress		Register	Name	Total Reset Value		
			0x92			TS_32_SEL			0x32	
Bit	7 6 5					4	3	2	1	0
Name	ts_3_sel					ts_2_sel				
Reset	0 0			1	1	0	0	1	0	
	Bits	s Access Name				Description				
	[7:4] RW		I	ts_3_sel		TS_OUT3 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.				
	[3:0] RW ts_2_sel				TS_OUT2 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.					

TS_54_SEL

TS_54_SEL is a TS output control register.

		Of	fset Ad	ldress		Register	r Name	Total Reset Value			
			0x93	i		TS_54	_SEL	0x54			
Bit	7			6	5	4	3	2	1	0	
Name				ts_5	_sel			ts_4_sel			
Reset	0			1	0	1	0	1	0	0	
	Bits	Bits Access			!	Description					
	[7:4] RW		7			TS_OUT5 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.					
	[3:0] RW ts_4_sel					TS_OUT4 pin output control. The bits in {ts_err, ts_vld, ts_syncts_out[7:0]} are selected for signal output.					

TS_76_SEL

TS_76_SEL is a TS output control register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x94			TS_76	_SEL		0x76			
Bit	7			6	5	4	3 2 1 (
Name				ts_7	_sel				ts_6_sel			
Reset	0				1	1	0	1	1	0		
	Bits	its Access				Description	Description					
	[7:4] RW		I	ITC / CAI		TS_OUT7 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.						
	[3:0]	RW	7	ts_6_s		TS_OUT6 pii ts_out[7:0]} a				ld, ts_sync,		

TS_98_SEL

TS_98_SEL is a TS output control register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x95			TS_98	_SEL	0x98			
Bit	7		(6	5	4	3	2	1	0	
Name				ts_9	_sel	ts_8_sel					
Reset	1			0	0	1	1	0	0	0	
	Bits	s Access			!	Description					
	[7:4] RW		7	ITC 9 CAI		TS_VLD pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_out[7:0]} are selected for signal output.					
	[3:0] RW ts_8_sel				el	TS_SYNC pin output control. The bits in {ts_err, ts_vld, ts_synts_out[7:0]} are selected for signal output.					

TS_CTRL0

TS_CTRL0 is TS control register 0.

		Of	fset Ad 0x96			Register TS_C			Total Reset Value 0x92			
Bit	7		(6	5	4	3	2	1	0		
Name	pcr_chang	ge	pcr_loc	cal_chg	ts_lsb_first	serial_sync8	mask_ts_clk	ts_on_bf_ok	ts_clk_on	ts_clk_inv		
Reset	1		(0	0	1	0	0	1	0		
	Bits	Acc	ess	Name		Description						
	[7] RW		7	pcr_ch	ange	PCR modifica 1: enabled 0: disabled	ation enable.					
	[6] RW			pcr_lo	cal_chg	Whether to use the local counter to update the PCR. 1: The value of the local counter is used as the updated PCR value. 0: The result calculated by using ISCR is used as the updated PCR value.						
	[5]	RW	7	ts_lsb_	first	TS serial output sequence. 1: from 0 to 7 0: from 7 to 0						
	[4] RW		7	serial_	sync8	Number of ou 1: 8 0: 1	ıtput TS seria	l frame heade	rs during syn	chronization.		
	[3]	RW	7	mask_	ts_clk	TS parallel cl 1: The paralle 0: The paralle	el clock is out	put only wher	n ts_vld is val	id.		

[2]	RW		TS output control. 1: TSs are output before the system is ready. 0: TSs are output only after the system is ready.
[1]	RW	ts_clk_on	TS output enable. 1: enabled 0: disabled
[0]	RW	ts_clk_inv	TS clock control. 1: The TS parallel clock is output after being inverted. 0: The TS parallel output is directly output.

TS_CTRL3

TS_CTRL3 is TS control register 3.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value		
			0x97			TS_CTRL3 0x00				
Bit	7		(6	5 4 3				1	0
Name	is_ccm						matype_addr			
Reset	0		(0	0	0	0	0	0	0
	Bits Access			Name		Description	ı			
	[7]	RO		is_ccm	1	Current mode 1: CCM mode 0: VCM or A	e			
	[6:0]	RW	,	matype	e_addr	MATTYPE[r When matype MATTYPE[r ID.	matype_out] to nation. [4:0] is used to e_addr[6:5]== matype_out] is e_addr[6:5]== matype_out] is	o obtain the coordinate of select stream E2'b00, the our set the stream E2'b01, the our set matype1 con =2'b1x, the our	onfigured add ms. tput of D. tput of responding to	the stream

TS_CTRL4

TS_CTRL4 is TS control register 4.

		Of	fset Ad	dress		Registe	alue					
			0x98	}		TS_CTRL4 0xCA						
Bit	7			6	5	4	3	2	1	0		
Name	isi_sel_vld clk_auto			_auto		ts_clk_div						
Reset	1				0	0	1	0	1	0		
	Bits	Aco	cess	Name	:	Description	ı					
	[7]	RW	I	isi_sel	_vld	TS output selected by specifying the stream ID. 1: The output stream is the one specified by isi_sel. 0: The output stream is the first stream found.						
	[6] RW clk_au				to	Automatic ge 1: If there is of generated base 0: A fixed clo						
	[5:0] RW ts_clk_6				_div	TS parallel cl The frequenc = {ts_clk_div The value of	y divider is ca [5:0], ts_clk_	alculated as fo div_f[15:0]}/	ollows: Freque 2^16			

TS_CLK_DIV_F_L

TS_CLK_DIV_F_L is a TS clock low register.

		Of	fset Ad 0x99			Register TS_CLK_		Total Reset Value 0x00				
Bit	7 6			6	5	4 3			1	0		
Name	fame ts_clk_div_f_l											
Reset	0 0			0	0	0	0	0	0	0		
	Bits Access N			Name		Description						
	[7:0] RW		7			ts_clk_f[7:0]. Lower bits of the decimal part of the TS parallel clock obtained by dividing the system clock.						

TS_CLK_DIV_F_H

TS_CLK_DIV_F_H is a TS clock high register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x9A	L		TS_CLK_	DIV_F_H	0x00				
Bit	7			6	5	4	3	2	1	0		
Name						ts_clk_	div_f_h					
Reset	0 0			0	0	0	0	0	0	0		
	Bits Access		cess	Name		Description						
	[7:0] RW					ts_clk_f[7:0]. Upper bits of the decimal part of the clock obtained by dividing the system clock.				parallel		

ISI_SEL

ISI_SEL is an ISI select register.

		Of	fset Ad 0x9B			Register ISI_S			Total Reset Value 0x01			
Bit	7		(6	5	4	3	2	2 1 0			
Name												
Reset	0)	0	0	0	0	0	1		
	Bits	Aco	cess	Name		Description						
	[7:0] RW isi_sel					TS output select when TS_CTRL4[isi_sel_vld] is 1.						

MATTYPE

MATTYPE is a stream ID register.

		Of	fset Ad	ldress		Register	r Name	Total Reset Value				
			0x9C	2		MAT	ГҮРЕ	0x00				
Bit	7 6 5					4	3	2	2 1 0			
Name						matyp	e_out					
Reset	0 0				0	0 0 0 0						
	Bits Access Name					Description						
	[7:0] RO) matype		e_out ISI stream		output.					

ROLL_OFF

ROLL_OFF is a roll-off register.

		Offset A			Registe ROLL			Total Reset Value 0x00	
Bit	7		6	5	4	3	2	1	0
Name		roll_off		isi_num					
Reset	0		0	0	0 0 0				0
	Bits	Access	Name	;	Description	l			
	[7:6]	RO	roll_of		Roll-off factor 00: 0.35 01: 0.25 10: 0.20 11: reserved	or.			
	[5:0]	RO	isi_nu	m	Number of searched ISI streams.				

CRC_ERR

CRC_ERR is a CRC check register.

		Of	fset Ad 0x9E			Register CRC			Total Reset Value 0x00		
Bit	7			6	5	4	3	2	1	0	
Name						crc	_err				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Acc	ess	Name		Description					
	[7:0]	RO		crc_eri	.	The actual PE Actual PER = This field is v less than 1 bu crc_err is gre	e crc_err/1024 valid only for at is not 0, the	x 100% S2 signals. W field value is	hen the value 1. When the		

RST_WAIT

RST_WAIT is a reset wait register.

		Offset Ac	ldress		Registe	r Name	Total Reset Value			
		0x91	3		RST_WAIT 0x15					
Bit	7		6	5	4	3	2	1	0	
Name			crc_p	kt_cnt	rst_wait					
Reset	0		0	0	1	0	1	0	1	
	Bits	Access	Name	!	Description					
	[7:4]	RW	crc_pk	t_cnt	Packet count for PER statistics. The actual packet count is crc_pkt_cnt x 1024. When crc_pkt_cnt is 0, the actual packet count is 1024.					
	[3:0]	RW	rst_wa	it	Reset wait. When CLK_0 generated. CI CLK_CNT co	LK_CNT is a	counter that u	ises the FEC o		

FC_MAX_RELIABLE

FC_MAX_RELIABLE is a blind scanning carrier control register.

		Of	fset Ad 0xA0			Register Name Total Reset FC_MAX_RELIABLE 0xB4				alue	
Bit	7		(6	5	4	3	2	1	0	
Name		fc_dl	t_sel			reserved		cbs_reliable			
Reset	1		(0	1	1	0	1	0	0	
	Bits	Aco	cess	Name		Description					
	[7:6]				sel	Maximum err error is 3.072 increases by 1	MHz. When	_			
	[5:3]] - reserved			ed	Reserved.					
	[2:0]	O] RW cbs_reliable			lianie	A larger value indicates more reliable blind scanning and longer scanning time.					

FS_SPAN

FS_SPAN is a blind scanning symbol rate range register.

		Of	ffset Ad	ldress		Register	r Name	Total Reset Value				
			0xA	1		FS_S	PAN	0x00				
Bit	7			6	5	4	3	2	1	0		
Name					reserved			fs_span				
Reset	0 0 0					0 0 0 0						
	Bits	Ac	cess	Name	:	Description						
	[7:3] - reserved					Reserved.						
	[2:0]	RW	I	fs_spa	n	Symbol rate search range when the fs is specified. The value 0 indicates 2^-9 x fs. When the field value is added by 1, the rar is doubled.						

AMP_MIN_FS

AMP_MIN_FS is a blind scanning minimum symbol rate register.

		Of	ffset Ad	ldress		Register	r Name		Total Reset Value				
			0xA7	7		AMP_M	IIN_FS		0x67				
Bit	7			6	5	4	3	2	1	0			
Name			rese	erved		min_fs							
Reset	0			1	1	0	0 0 1 1 1						
	Bits	Ac	cess	Name	!	Description							
	[7:5]	_		reserve	ed	Reserved.							
	[4:0] RW min_fs					Minimum symbol rate for blind scanning. The LSB indicates 12 kHz.							

CBS_CTRL_RDADDR

CBS_CTRL_RDADDR is a blind scanning control register.

		Of	fset Ad	dress		Register	r Name		Total Reset Va	alue			
			0xA8	3		CBS_CTRL	_RDADDR		0x80				
Bit	7			6	5	4	3	2	1	0			
Name	use_cb	S	know	_fs_fc	reserved	cbs_rd_addr							
Reset	1		(0	0	0 0 0 0							
	Bits	Ac	cess	Name	!	Description							
	[7]	RW	I	use_ct	os	Blind scannin 1: enabled 0: disabled							
	[6]	RW	I	know_	_fs_fc	Blind scannin 1: known fs (0: unknown f	symbol rate)	and fc (baseba	and carrier fre	equency)			
	[5]	-		reserve	ed	Reserved.							
	[4:0]	RW	7	cbs_rd	_addr	Address for re Multiple resu the RAM. Ea (correspondir from 0xA9 to	Its are obtaine ch result has t ng to some reg	ed for each bli	ind scanning a reliability inf	ormation			

CBS_FS_L

CBS_FS_L is a blind scanning symbol rate low register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0xA9)		CBS_	FS_L		0x00		
Bit	7			6	5	4	3	2	1	0	
Name						cbs_	_fs_1				
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RO cbs_fs_l					Lower eight t The LSB indi		nbol rate obta	ined after blir	nd scanning.	

CBS_FS_H

CBS_FS_H is a blind scanning symbol rate high register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0xAA	1		CBS_1	FS_H		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						cbs_	fs_h					
Reset	0			0	0	0	0	0	0	0		
	Bits	Bits Access Name			ame Description							
	[7:0]	7:0] RO cbs_fs_h				Upper eight b The symbol r			ned after blin	d scanning.		

CBS_FC_L

CBS_FC_L is a blind scanning frequency offset low register.

		Of	fset Ad 0xAE			Register CBS_l			Total Reset Va	alue		
Bit	7		(6	5	4	3	2	1	0		
Name						cbs_	fc_1					
Reset	0			0	0	0	0	0	0	0		
	Bits	Ac	cess	Name		Description						
	[7:0] RO cbs_fc_l					Lower eight bits of the carrier frequency offset obtained after blin scanning. The LSB indicates 1 kHz.						

CBS_FC_H

CBS_FC_H is a blind scanning frequency offset high register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xAC	2		CBS_l	FC_H		0x00			
Bit	7		(6	5	4	3	2	1	0		
Name						cbs_	fc_h					
Reset	0		()	0	0	0	0	0	0		
	Bits	Aco	cess	Name	!	Description						
	[7:0]	RO		cbs_fc		Upper eight bits of the carrier frequency offset obtained after scanning. The frequency offset is a signed number.						

CBS_FINISH

CBS_FINISH is a blind scanning completion register.

		Of	fset Ad			Register CBS_F	Total Reset Va	ılue			
Bit	7			6	5	4	3	2	1	0	
Name						reserved					
Reset	0					0	0	0	0	0	
	Bits	Sits Access Name				Description					
	[7:1]	-		reserve	ved Reserved.						
	[0] RO cbs_finish				nish	Blind scannin 1: complete 0: not comple		-			

CBS_RELIABILITY1

CBS_RELIABILITY1 is a blind scanning reliability register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xAE	E		CBS_RELL	ABILITY1		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						cbs_reli						
Reset	0	0 0				0	0	0	0	0		
	Bits					Description						
	[7:0] RO cbs_reliability					Blind scannin reliable.	g result relial	oility 1. A larg	ger value indi	cates more		

CBS_R2_NUM

CBS_R2_NUM is a blind scanning signal count register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0xAF	,		CBS_R2	2_NUM	0x 0 0			
Bit	7	7		6 5		4	3	2	1	0	
Name	reliability2					sig_num					
Reset	0		0		0	0	0	0	0	0	
	Bits Acces		ess	Name	!	Description					
	[7:5] RO			renaning/		Blind scanning result reliability 2. A larger value indicates more reliable.					
	[4:0] RO		sig_nu	m	Number of valid signals for current blind scanning.						

DSEC_ADDR

DSEC_ADDR is a DSEC address register.

		Of	fset Ad	ldress		Register Name			Total Reset Value			
			0xB()		DSEC_ADDR			0x00			
Bit	7		6	5	4	3	2	1	0			
Name		dsec_addr										
Reset	0			0	0	0	0	0	0	0		
	Bits Access Name Description											
						When dsec_addr[7] is 1, the current operation is a read operation. When dsec_addr[3] is 0, dsec_addr[2:0] specifies the address for storing the data to be transmitted.						
	[7:0]	RW	P.W. day			When dsec_addr[3] is 1, dsec_addr[2:0] specifies the address for storing the data to be received.						
	[7.0]	IX VV	(When dsec_addr[7] is 0, the current operation is a write operation. When dsec_addr[3] is 0, dsec_addr[2:0] specifies the address for storing the data to be transmitted.						
	When dsec_addr[3] is 1, the address specified by dsec_adinvalid.								_addr[2:0] is			

DSEC_DATA

DSEC_DATA is a DSEC data register.

		Of	fset Ad 0xB1			Register Name Total Reset Value DSEC_DATA 0x00					
Bit	7			6	5	4	3	2	1	0	
Name						dsec_data					
Reset	0			0	0	0	0	0	0	0	
	Bits	Aco	cess	Name	:	Description					
	[7:0]	RW	7	dsec_c	lata	Transmit data For details, so If bit[1] in the state machine after transmis For details, so	ee section 2.1 e first byte of e in the DiSEc ssion is compl	8 "TX." the message to automatical lete.		,	

DSEC_RATIO_L

DSEC_RATIO_L is a DSEC frequency low register.

		Of	fset Ad 0xB2			Register DSEC_R			Total Reset Value 0x88			
Bit	7	7 6 5				4	3	2	1	0		
Name						dsec_1	ratio_l					
Reset	1		(0	0	0 1 0 0						
	Bits	Aco	cess	Name		Description						
	[7:0] RW dsec_ratio_l			atio_l	Lower bits of 22 kHz squar kHz.	•	•	•	-			

DSEC_RATIO_H

DSEC_RATIO_H is a DSEC frequency high register.

		Of	fset Ad 0xB3			Register DSEC R.		Total Reset Value 0x13				
Bit	7			6	5	4	3	2	1	0		
Name						dsec_r	ratio_h					
Reset	0			0	0	1	0	0	1	1		
	Bits	Aco	cess	Name		Description						
	[7:0] RW dsec_ratio_h					Upper bits of 22 kHz squar	generating a					

TX_CTRL1

TX_CTRL1 is a DSEC TX control register.

		Offs	set Address 0xB4		Register TX_C			Total Reset Va	alue		
Bit	7		6	5	4	3	2	1	0		
Name	reserve	d		num_byte			dsec_mode	hv_sel			
Reset	0		0	0	0	0	0	0	0		
	Bits	Acce	ess Nam	e	Descriptio	n					
	[7]			/ed	Reserved.						
			num_	byte	Number of bytes of the message to be transmitted. The actual value is the configured value plus 1.						
	[3:1]	RW	dsec_	mode	000: The D 001: Consec 010: A 0 to 011: A 1 da	ne burst is tra ta burst is tra aplete DiSEqC	square wave nsmitted. nsmitted.	s are transmit ransmitted.	ted.		
	[0] RW		hv_se	el	Horizontal/Vertical polarization direction. 1: output high level 0: output low level						

RX_CTRL1

RX_CTRL1 is a DSEC RX control register.

		Off	fset Ad	dress		Register	r Name		Total Reset Va	alue		
			0xB5			RX_C	TRL1		0x00			
Bit	7		(5	5	4	3	2	1 0			
Name					rese	reserved				tone_cofig		
Reset	0		()	0	0	0	0	0	0		
	Bits	Acc	ess	Name	ne Description							
	[7:2]	-		reserve	ed	Reserved.						
	[1.0]					Period deviat diseqc_in sign 00: 33–60 μs	nal.	kHz square w	vaves (44 μs)	in the		
	[1:0] RW ton					01: 30–60 μs 10: 33–66 μs						
						11: 30–66 μs						

DSEC_EN

DSEC_EN is a DSEC enable register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0xB7			DSEC_EN 0x00					
Bit	7		(5	5	4	3	2	1	0	
Name	dsec_en	dsec_en				reserved					
Reset	0				0	0	0	0	0	0	
	Bits	Bits Access		Name		Description					
						LNB enable.					
	[7]	7] RW		dsec_en		1: enabled					
						0: disabled					
	[6:0]		reserve	ed	Reserved.						

RX_STATE

RX_STATE is a DSEC RX status register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0xB8	3		RX_S	ГАТЕ	0x00			
Bit	7			6	5	4	3	2	1	0	
Name				rx_sile	nt_time			rx_recv_bytes			
Reset	0 0 0					0	0	0	0	0	
	Bits Access Name					Description					
	[7:4] RO rx_silent_time					The low level hold time for the DiSEqC input is (rx_silent_time x 16) ms.					
	[3:0] RO rx_recv_bytes					Number of bytes to be received. The actual value is the configured value plus 1.					

INT_STATE

INT_STATE is a DSEC status register.

		Of	fset Ad	dress		Register	Name		Total Reset Va	alue	
			0xB9)		INT_S	ГАТЕ		0x00		
Bit	7		(6	5	4	3	2	1	0	
Name				r_else	rx_err_silent	rx_err_overflo					
Reset	0 0 0				0	0 0 0 0					
	Bits Access Name 7] - reserved					Description					
	[7]	-		reserve	ed	Reserved.					
	6] RO rx_err_else				AICA	Bit error or byte error (the received message length in bit is not ar integral multiple of 8).					
	[5]	RO		rx_err_	CHANT	Indicator showing that the low level hold time for the DiSEqC input is longer than 192 ms.					
	[4]	RO		rx_err_		Indicator showing that the received data length is greater than 8 bytes.					
	[3] RO rx_err_par					Parity error indicator.					
	[2] RO rx_message					Message RX	completion ir	ndicator			
	[1] RO rx_byte					Byte RX completion indicator					
	[0] - reserved					Reserved.					

DF_FC_L

DF_FC_L is an FSK frequency offset low register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0xC0)		DF_FC_L			0x0C			
Bit	7			6	5	4	3	2	1	0		
Name						df_:	fc_l					
Reset	0			0	0	0	1	1	0	0		
	Bits	Bits Access Name			me Description							
	[7:0] RW df_fc_l				Lower bits of the system clo							

DF_FC_H

DF_FC_H is an FSK frequency offset high register.

		Of	fset Ad 0xC1			Register DF_F			Total Reset Va 0x03	alue	
Bit	7			6	5	4	3	2	1	0	
Name						df_f	`c_h				
Reset	0			0	0	0 0 0 1 1					
	Bits	Ac	cess	Name	,	Description					
	[7:0] RW df_fc_h					Upper bits of the FSK modulation frequency offset normalized the system clock.					

FS_FC_L

FS_FC_L is an FSK symbol rate low register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0xC2	2		FS_FC_L			0x45			
Bit	7			6	5	4	3	2	1	0		
Name						fs_:	fc_l					
Reset	0			1	0	0 0 1 0 1						
	Bits	Ac	cess	Name		Description						
	[7:0]	7:0] RW fs_fc_l				Lower bits of The actual no				system clock.		

FS_FC_M

FS_FC_M is an FSK symbol rate middle register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0xC3			FS_F	C_M		0x23		
Bit	7	7 6				4	3	2	1	0	
Name						fs_f	c_m				
Reset	0		()	1	0	0	0	1	1	
	Bits					Description					
	[7:0] RW fs_fc_m				m	Middle bits o clock.	f the FSK syn	nbol rate norn	nalized to the	system	

FS_FC_H

FS_FC_H is an FSK symbol rate high register.

		Of	fset Ac			Register FS_F			Total Reset Value 0x01			
Bit	7			6	5	4 3 2 1 0						
Name			rese	erved		fs_fc_h						
Reset	0			0	0	0	0	0	0	1		
	Bits	Aco	cess	Name	:	Description						
	[7:5] - reserved				ed	Reserved.						
	[4:0] RW fs_fc_h				h	Upper bits of the FSK symbol rate normalized to the system of						

$HEAD_L$

HEAD_L is a frame header low register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xC5			HEA	D_L		0x0D			
Bit	7		(5	5	4	3	2 1 0				
Name						hea	d_1					
Reset	0	0 0			0	0 1 1 0						
	Bits	Acc	ess	Name		Description						
	7:0] RW head_l				Lower bits of	er content.						

$HEAD_M$

HEAD_M is a frame header middle register.

		Of	fset Ad 0xC6			Register HEAI			Total Reset Value 0x55			
Bit	7			6	5	4	3	2	2 1 0			
Name						head	d_m					
Reset	0	0 1			0	0 1 0 1 0						
	Bits	Aco	cess	Name		Description						
	[7:0] RW head_m				n	Middle bits o						

HEAD_H

HEAD_H is a frame header high register.

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0xC7	7		HEA	D_H	0x55				
Bit	7			6	5	4	3	2	2 1 0			
Name						hea	d_h					
Reset	0 1			1	0	1	1 0 1 0 1					
	Bits	Aco	cess	Name		Description						
	[7:0] RW			head_h	l	Upper bits of the configured frame header content.						

NBIT_HEAD

NBIT_HEAD is an FSK control register.

		Of	fset Ad	dress		Register	Name		Total Reset Value			
			0xC8	}		NBIT_l	HEAD		0x18			
Bit	7			6	5	4 3 2 1 0						
Name			rese	rved		nbit_head						
Reset	0		(0	0	1 1 0 0 0						
	Bits	Ac	cess	Name	:	Description						
	[7:5] - reserved					Reserved.						

[4:0]	RW	nbit head	Valid bits of the specified header. head[nbit_head - 1:0] is transmitted.
-------	----	-----------	---

CRC_POLY_L

CRC_POLY_L is a CRC low register.

		Of	fset Ad			Register		Total Reset Value				
			0xC9)		CRC_PO	OLY_L		0x11			
Bit	7			6	5	4 3		2	1	0		
Name						crc_p	oly_l					
Reset	0			0	0	1 0 0 0				1		
	Bits Access			Name	:	Description						
	[7:0] RW			crc_po		Low bits of a The LCB cor	CRC result.					

CRC_POLY_M

CRC_POLY_M is a CRC middle register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0xCA			CRC_PC	OLY_M	0x89			
Bit	7		(6	5	4	0				
Name						crc_pc	oly_m				
Reset	1		(0	0	0	1	0	0	1	
	Bits	Ac	cess	Name	:	Description					
	[7:0] RW crc_poly				uv m	Middle bits or result.	f a specified p	oolynomial fo	r obtaining th	e CRC	

CRC_POLY_H

CRC_POLY_H is a CRC high register.

		Of	fset Ad			Register		Total Reset Value				
			0xCB	j		CRC_PC	JLY_H		0x 0 0			
Bit	7		(5	5	4	4 3 2 1					
Name						crc_p	oly_h					
Reset	0		()	0	0 0 0 0						
	Bits	Aco	cess	Name	:	Description						
	[7:0] RW crc_poly_h					Upper bits of	CRC result.					

NBIT_CRC

NBIT_CRC is a CRC control register.

		Of	fset Ad			Register		Total Reset Va 0x10	Ox10			
Bit	7			6	5	4	3	2	1	0		
Name			rese	erved		nbit_crc						
Reset	0	0			0	1	0	0	0	0		
	Bits	Ac	cess	Name	!	Description						
	[7:5]	5] - reserved				Reserved.						
	[4:0]	RW	7	nbit_cı		Valid bits of a crc_poly[nbit						

TCF_FC_L

TCF_FC_L is a TX frequency low register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xCD)		TCF_	FC_L		0xB8			
Bit	7		(6	5	4	3	2	2 1 0			
Name						tcf_	fc_l					
Reset	1 0)	1	1	1	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RW tcf_fc_l					Lower bits of clock. The ac						

TCF_FC_H

TCF_FC_H is a TX frequency high register.

		Of	ffset Ad	dress		Register	r Name	Total Reset Value				
			0xCE	E		TCF_I	FC_H		0x1E			
Bit	7			6	5	4 3 2 1				0		
Name						tcf_i	fc_h					
Reset	0 0				0	1	1	1	0			
	Bits	Bits Access Name				Description						
	[7:0] RW t			tcf_fc_	n	Upper bits of the TX center frequency normalized to the systeclock.						

RCF_FC_L

RCF_FC_L is an RX frequency low register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value		
	0xCF					RCF_	FC_L	0xB8		
Bit	7		(6	5	4	3	2	1	0
Name						rcf_fc_l				
Reset	1 0 1			1	1 1 0 0				0	
	Bits Access		Name		Description					
	[7:0]	RW rcf_fc		rcf_fc_		Lower bits of clock. The ac				

RCF_FC_H

RCF_FC_H is an RX frequency high register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
	0xD0					RCF_I	FC_H	0x1E			
Bit	7		6		5	4	3	2	1	0	
Name						ref_fe_h					
Reset	0 0 0			0	1	1	1	1	0		
	Bits Access			Name	:	Description					
	[7:0]	RW	RW rcf_fc_h		n	Upper bits of the RX center frequency normalized to the system clock.					

TX_NBIT_L

TX_NBIT_L is TX control low register.

	Offset Address 0xD1					Register		Total Reset Value 0x00			
Bit	7		5	5	4	3	2	1	0		
Name						tx_nbit					
Reset	0 0 0				0	0 0 0 0					
	Bits Access		cess	Name		Description					
	[7:0]	RW	7	tx nbit		Lower bits of the TX bit count provided by users. The bit count ranges from 1 to 256.					

TX_CTRL2

TX_CTRL2 is a TX control register.

		Off	fset Ad	ldress		Register	r Name	Total Reset Value				
			0xD2	2		TX_C	TRL2		0x21			
Bit	7			6	5	4	3	2	1	0		
Name	freq_sw	ap	tx_start		tx_pad	tx_busy	tx_done	rese	rved	tx_nbit_h		
Reset	0 0 1			1	0	0	0	0	1			
	Bits Access Name					Description	l					
						FSK high/lov	v frequency c	orresponding	to the TX/RX	bit.		
	[7] RW freq_swap				wap	1: When the TX/RX bit is 1, the frequency is cf minus df. When the TX/RX bit is 0, the frequency is cf plus df.						
					0: When the TX/RX bit is				lf. When the			
	[6]	RW		tx_star	t	TX start enable. This field is automatically cleared.						
						Whether to add the frame header and CRC.						
	[5]	RW		tx_pad		1: Header is added to the frame header and CRC is added to the frame tail based on the bit sequence provided by users.						
						0: Only the bit sequence provided by users is transmitted.						
	[4] RO tx_busy				у	TX busy indicator.						
	[3] RO tx_done				ie	TX completion indicator.						
	[2:1]	_		reserve	ed	Reserved.						

[0]	RW	tx_nbit_h	Upper bits of the TX bit count provided by users (excluding the header and CRC).
-----	----	-----------	--

RX_NBIT_L

RX_NBIT_L is an RX control register.

		Offset Address 0xD3					r Name	Total Reset Value			
	UXD3					RX_NI	BII_L		0x 0 0		
Bit	7			6	5	4	3	2	1	0	
Name						rx_nbit_1					
Reset	0 0			0 0		0	0	0	0	0	
	Bits Access		cess	Name		Description					
	[7:0]	RO rx_n		rx_nbi		Lower bits of the length of the received FSK frames (excluding the header and CRC). The length unit is bit.					

RX_CTRL2

RX_CTRL2 is an RX control register.

	Offset Address					Registe	r Name	Total Reset Value			
			0xD4			RX_C	TRL2	0x90			
Bit	7		6		5	4	3	2	1	0	
Name	rx_ena			rx_ti	hresh		rx_done	reserved	rx_nbit_h		
Reset	1		0		0	1	0	0	0	0	
	Bits	ess Na	ame		Description	escription					
	[7]	rx_	rx_ena		FSK RX enable. 1: enabled 0: enabled When this field is 1 and an FSK frame is successfully receive this field is automatically cleared. Set this field to 1 after react the received data.						
	[6:3]	RW	rx_	rx thresh		Energy threshold for signal detection. The smaller the threshold is, the easier signals are detected.					
	[2] RO 17			done		Indicator showing that an FSK packet is successfully received.					
	[1] - reserved			Reserved.							
	[0]						Upper bits of the length of the received FSK frames. The length unit is bit.				

FSK_ADDR

FSK_ADDR is an FSK address register.

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0xD5	5		FSK_A		0x00			
Bit	7	6		5	4 3		2	1	0		
Name						fsk_	addr				
Reset	0 0		0	0	0	0	0	0	0		
	Bits Access		cess	Name		Description					
	[7:0]	0] DW		fals ad		When FSK_ADDR bit[7] is 0, FSK_ADDR bit[4:0] specify the address for storing the data to be transmitted.					
	[7:0]	RW		fsk_ad		When FSK_A address for st				ify the	

FSK_DATA

FSK_DATA is an FSK data register.

		Offset Ad	ddress		Registe	r Name	Total Reset Value				
		0xD	6		FSK_l	DATA		0x00			
Bit	7		6	5	4	3	2	1	0		
Name					fsk_data						
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	Name	!	Description						
					Transmit data	a or read the re	eceived data.				
					The TX proc	edure is as fol	lows:				
					Step 1 Write	data to FSK_I	DATA.				
					Step 2 Write FSK_ADDR	a storage addr bit[7] to 0.	ress to FSK_A	ADDR bit[4:0] and set		
					Step 3 Repea	t step 1 and st	ep 2 until all	user data is st	ored.		
						ad, crc_poly, tx_pad, and tx		it_crc, freq_s	wap, tcf_fc,		
					Step 5 Set TX	X_CTRL2[tx_	start] to 1.				
					Step 6 Wait us complete.	ıntil TX_CTR	L2[tx_done]	indicates that	transmission		
					Step 7 Go to	step 1 to start	the next trans	smission.			
					End						
	[7:0]	RW	fsk_da	ıta	The RX procedure is as follows:						
					Step 1 Set head, crc_poly, nbit_head, nbit_crc, freq_swap, rcf_fc, df_fc, fs_fc, data1_flen, and flen.						
					Step 2 Set R	X_CTRL2[rx_	ena] to 1.				
					Step 3 Wait until RX_CTRL2[tx_done] indicates that reception is complete.						
					Step 4 Read rx_nbit to obtain the number of bytes of the received information (excluding the header and CRC). Currently, the value of rx_nbit must be a multiple of 8.						
					Step 5 Write a read address to FSK_ADDR bit[4:0] and set FSK_ADDR bit[7] to 1.						
				Step 6 Read FSK_DATA.							
				Step 7 Repeat step 5 and step 6 until all data is read.							
					End						

FSK_RX_LEN

FSK_RX_LEN is an FSK control register.

	Offset Address 0xD7					Register Name FSK_RX_LEN			Total Reset Value 0x20		
Bit	7	6 5			5	4	3	2	1	0	
Name	data1_fle	en	rese	rved	fl			len			
Reset	0		0		1	0	0	0	0	0	
	Bits Access Nan			Name	Description						
	[7] RW		7	data1_	flen	Whether the received frame includes the frame length field. 1: include. The RX end uses the extracted frame length. 0: not include. The RX end uses the specified frame length				h.	
	[6] - reserved				ed	Reserved.					
	[5:0]	RW	ī	flen		Number of specified RX bytes (excluding the header and CRC1 to CRC32).					

Contents

3 Hardware	3		
3.1 Package and Pins	3-1		
3.1.1 Package and Pinout	3-1		
3.1.2 Pin Descriptions	3-4		
3.1.3 Multiplexing Control Register	3-11		
3.1.4 Software Multiplexed Pin	3-12		
3.2 Electrical Specifications	3-12		
3.2.1 Power Consumption Specifications	3-12		
3.2.2 Rated Working Conditions	3-13		
3.2.3 Recommended Working Conditions	3-13		
3.2.4 Power-On and Power-Off Sequences	3-14		
3.2.5 DC Electrical Specifications	3-14		
3.3 Design Recommendations for Schematic Diagrams	3-14		
3.3.1 Design Recommendations for the Small System	3-14		
3.3.2 Power Supplies	3-21		
3.3.3 Unused Pins	3-22		
3.4 PCB Design Recommendations	3-22		
3.4.1 Stack and Layout	3-22		
3.4.2 PCB Design Recommendations for the Small System	3-24		
3.4.3 PCB Design Recommendations for Digital and Analog Interfaces	3-25		
3.5 Heat Design Recommendations	3-26		
3.5.1 Package Thermal Resistance	3-26		
3.5.2 Recommended Thermally Conductive Materials	3-27		
3.5.3 Schematic Diagram Design	3-27		
3.5.4 PCB Design.	3-28		
3.6 Soldering Process Recommendations	3-28		
3.6.1 Overview	3-28		
3.6.2 Process Preparations	3-29		
3.7 Moisture-Sensitive Specifications	3-30		
3.7.1 Storage and Usage	3-30		
3.7.2 Rebaking	3-30		
3.8 Interface Timings	3-31		

Hi3136	
Data Sheet	Contents
3.8.1 Output Interface Timings	3-31
3.8.2 Output Timing Parameters	3-33

Figures

Figure 3-1 Package views.	3-2
Figure 3-2 Package dimensions	3-3
Figure 3-3 Pin map	3-4
Figure 3-4 Recommended connection mode of the crystal oscillator	3-15
Figure 3-5 Typical reset circuit	3-15
Figure 3-6 Topology in which Hi3136 V100 connects to an STB decoder chip in parallel	3-17
Figure 3-7 Topology in which Hi3136 V100 connects to an STB decoder chip in series	3-17
Figure 3-8 Topology in which the DiSEqC interface connects to the LM317 or MP8126	3-18
Figure 3-9 Topology in which the AGC interface connects to a tuner	3-19
$\textbf{Figure 3-10} \ \text{Topology in which the } I^2C \ \text{interface of Hi} \\ 3136 \ V100 \ \text{connects to an STB decoder chip} \\ \dots \\ $	3-19
Figure 3-11 Interconnection topology for TS_OUT[0:7] and an STB decoder chip when more than two layers are designed	
Figure 3-12 Interconnection topology for TS_CLK/TS_SYNC/TS_VALID and an STB decoder chip w more than two PCB layers are designed	
Figure 3-13 Interconnection topology for TS_OUT[0:7] and an STB decoder chip when two PCB layer designed	
Figure 3-14 Interconnection topology for TS_VAILD/TS_SYNC/TS_CLK and an STB decoder chip w PCB layers are designed	
Figure 3-15 VDD33_IO topology	3-21
Figure 3-16 ADC_VDD12 topology	3-22
Figure 3-17 Board layout	3-23
Figure 3-18 Soldering temperatures	3-29
Figure 3-19 Timing in TS parallel output mode	3-32
Figure 3-20 Timing in 1-bit TS serial output mode	3-32
Figure 3-21 Timing in 2-bit TS serial output mode	3-33
Figure 3-22 TS_CLK timing and reverse timing	3-33
Figure 3-23 TS timings in parallel and 2-bit serial modes	3-33

Tables

Table 3-1 Pin arrangement.	3-4
Table 3-2 I/O pin types	3-5
Table 3-3 ADC pins	3-6
Table 3-4 I ² C pins	3-7
Table 3-5 TS pins.	3-8
Table 3-6 PLL pins	3-9
Table 3-7 OSC pins	3-10
Table 3-8 DiSEqC pins	3-10
Table 3-9 PG pins	3-10
Table 3-10 SYS pins	3-11
Table 3-11 FSK pins	3-11
Table 3-12 Software multiplexed pin FSK_OUT	3-12
Table 3-13 Outputs of the multiplexed pin FSK_OUT	3-12
Table 3-14 Power consumption specifications	3-12
Table 3-15 Rated working conditions	3-13
Table 3-16 Recommended working conditions	3-13
Table 3-17 DC electrical specifications	3-14
Table 3-18 Address configurations 1	3-16
Table 3-19 Address configurations 2	3-16
Table 3-20 Thermal resistance of the package	3-27
Table 3-21 Recommended thermally conductive materials	3-27
Table 3-22 Reflow soldering specifications.	3-29
Table 3-23 Floor life	3-30
Table 3-24 Rebaking reference	3-31
Table 3-25 TS output timing parameters	3-34
Table 3-26 TS output timing parameters (reverse)	3-34

3 Hardware

3.1 Package and Pins

3.1.1 Package and Pinout

Package

Hi3136 V100 uses the mapped quad flat non-leaded (MQFN) package. It has 48 pins, its body size is 6 mm x 6 mm (0.24 in. x 0.24 in.), and its ball pitch is 0.4 mm (0.02 in.). Figure 3-1 shows package views. Figure 3-2 shows package dimensions.

Figure 3-1 Package views

Figure 3-2 Package dimensions

6	Dimension in mm			Dimer	sion in	inch	
Symbol	MIN	МОМ	MAX	MIN	NOM	MAX	
Α	0.80	0.85	0.90	0.031	0.033	0.035	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
A3	(0.20 REF	'		0.008 RE	F	
b	0.15	0.20	0.25	0.006	0.008	0.010	
D/E	5.90	6.00	6.10	0.232	0.236	0.240	
D2/E2	3.65	3.80	3.95	0.144	0.150	0.156	
е		0.40 BSC	,	0.016 BSC			
L	0.30	0.40	0.50	0.012	0.016	0.020	
K	0.20			0.008			
R	0.075			0.003			
aaa		0.10		0.004			
bbb		0.07			0.003		
ccc	0.10			0.004			
ddd	0.05			0.002			
eee	0.08			0.003			
fff		0.10			0.004		

For details, see the JEDEC MO-220 standard.

Pin Map

Figure 3-3 shows the pin map.

Figure 3-3 Pin map

3.1.2 Pin Descriptions

Pin Arrangement

Table 3-1 lists the pins of Hi3136 V100 in order.

Table 3-1 Pin arrangement

Position	Pin Name	Position	Pin Name
1	TS_OUT1	25	DVDD12
2	TS_OUT2	26	SDAT
3	TS_OUT3	27	SCLT
4	DVDD33	28	AVDD12_PLL
5	TS_OUT4	29	PLL_GND

Position	Pin Name	Position	Pin Name
6	TS_OUT5	30	AVDD33_PLL
7	DVDD12	31	VINPI
8	TS_OUT6	32	VINNI
9	TS_OUT7	33	ADC_VDD12
10	TS_ERR	34	ADC_GND
11	DVDD33	35	VINNQ
12	DISEQC_OUT	36	VINPQ
13	DISEQC_IN	37	AGC
14	FUNC_SEL	38	ADDR1
15	RSTN	39	ADDR0
16	FSK_OUT	40	SDA
17	DVDD12	41	SCL
18	HV_SEL	42	DVDD12
19	DVDD33	43	TS_SYNC
20	FSK_IN	44	TS_VALID
21	LNB_EN	45	DVDD33
22	XOUT	46	TS_CLK
23	XIN	47	GND
24	CLK_OUT	48	TS_OUT0

Pin Types

Table 3-2 describes the I/O pin types.

Table 3-2 I/O pin types

I/O	Description				
I	Input signal				
I_{PD}	Input signal, internal pull-down				
I_{PU}	Input signal, internal pull-up				
I_S	Input signal with a Schmitt trigger				
I_{SPD}	Input signal with a Schmitt trigger, internal pull-down				
I_{SPU}	Input signal with a Schmitt trigger, internal pull-up				

I/O	Description
О	Output signal
O _{OD}	Output open drain (OD)
I/O	Bidirectional (input/output) signal
I _{PD} /O	Bidirectional signal, input pull-down
I _{PU} /O	Bidirectional signal, input pull-up
I _{SPU} /O	Bidirectional signal with a Schmitt trigger, input pull-up
I _{PD} /O _{OD}	Bidirectional signal, input pull-down and output OD
I _{PU} /O _{OD}	Bidirectional signal, input pull-up and output OD
I _S /O	Bidirectional signal, input with a Schmitt trigger
I _S /O _{OD}	Bidirectional signal, input with a Schmitt trigger and output OD
XIN	Crystal oscillator input
XOUT	Crystal oscillator output
P	Power supply
G	Ground (GND)

ADC Pins

Table 3-3 describes ADC pins.

Table 3-3 ADC pins

Pin Position	Pin Name	Туре	Drive Current (mA)	Voltage (V)	Description
34	ADC_GND	G	None	None	ADC GND.
33	ADC_VDD 12	P	None	1.2	1.2 V ADC power.
32	VINNI	I	None	1.2	Differential input for channel I. The peak voltage is 1 Vpp in both differential input and single-ended input modes. In single-ended input mode, the pin connects to a 100 nF capacitor and then to GND.
35	VINNQ	I	None	1.2	Differential input for

Pin Position	Pin Name	Туре	Drive Current (mA)	Voltage (V)	Description
					channel Q. The peak voltage is 1 Vpp in both differential input and single-ended input modes.
					In single-ended input mode, the pin connects to a 100 nF capacitor and then to GND.
31	VINPI	I	None	1.2	Differential input for channel I. The peak voltage is 1 Vpp in both differential input and single-ended input modes.
36	VINPQ	I	None	1.2	Differential input for channel Q. The peak voltage is 1 Vpp in both differential input and single-ended input modes.

I²C Pins

Table 3-4 describes I²C pins.

Table 3-4 I²C pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
39	ADDR0	I	4	3.3	Hi3136 device address selection 0.
38	ADDR1	I	4	3.3	Hi3136 device address selection 1.
27	SCLT	O _{OD}	4	3.3/5	I ² C bus clock output, OD. This pin is used to control the tuner communication interface. This pin must connect to an external pull-up resistor and then to the 3.3 V or 5 V power. The power voltage depends on the I ² C level of the tuner.

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
26	SDAT	I _S /O _{OD}	4	3.3/5	I ² C bus data output, OD. This pin is used to control the tuner communication interface. This pin must connect to an external pull-up resistor and then to the 3.3 V or 5 V power. The power voltage depends on the I ² C level of the tuner.
41	SCL	I_S	4	3.3	Clock input line of the I ² C bus. This pin must connect to an external pull-up resistor and then to the 3.3 V power.
40	SDA	I _S /O _{OD}	4	3.3	Data line of the I ² C bus, OD output. This pin must connect to an external pull-up resistor and then to the 3.3 V power.

TS Pins

Table 3-5 describes TS pins.

Table 3-5 TS pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
37	AGC	O _{OD}	8	3.3/5	AGC output, OD. This pin is used to control the tuner gain and can connect to a pull-up resistor and then to the 3.3 V or 5 V power.
46	TS_CLK	О	8	3.3	TS clock of the Demod output.
48	TS_OUT0	О	8	3.3	Demod data output.
1	TS_OUT1	О	8	3.3	Demod data output.

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
2	TS_OUT2	О	8	3.3	Demod data output.
3	TS_OUT3	О	8	3.3	Demod data output.
5	TS_OUT4	О	8	3.3	Demod data output.
6	TS_OUT5	О	8	3.3	Demod data output.
8	TS_OUT6	О	8	3.3	Demod data output.
9	TS_OUT7	О	8	3.3	Demod data output.
10	TS_ERR	О	8	3.3	TS error indicator.
43	TS_SYNC	О	8	3.3	Demod sync signal output.
44	TS_VALID	О	8	3.3	Demod output data validity indicator, active high.

PLL Pins

Table 3-6 describes PLL pins.

Table 3-6 PLL pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
28	AVDD12_PLL	P	None	1.2	1.2 V PLL analog power.
30	AVDD33_PLL	P	None	3.3	3.3 V PLL analog power.
29	PLL_GND	G	None	None	PLL analog GND.

OSC Pins

Table 3-7 describes oscillator (OSC) pins.

Table 3-7 OSC pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
24	CLK_OUT	О	8	3.3	Slow pass output of the crystal oscillator clock.
23	XIN	Ι	None	3.3	Crystal oscillator input.
22	XOUT	О	None	3.3	Crystal oscillator output.

DiSEqC Pins

Table 3-8 describes DiSEqC pins.

Table 3-8 DiSEqC pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
13	DISEQC_IN	I_S	8	3.3	DiSEqC input.
12	DISEQC_OUT	О	8	3.3	DiSEqC output.
21	LNB_EN	О	8	3.3	LNB power control enable.
18	HV_SEL	О	8	3.3	Antenna horizontal/vertical selection.

PG Pins

Table 3-9 describes power/ground (PG) pins.

Table 3-9 PG pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
4, 11, 19, 45	DVDD33	P	None	3.3	3.3 V I/O power.
7, 17, 25, 42	DVDD12	P	None	1.2	1.2 V core power.
47	GND	G	None	None	Digital GND.

SYS Pins

Table 3-10 describes system (SYS) pins.

Table 3-10 SYS pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
14	FUNC_SEL	I_{SPD}	4	3.3	Mode selection. 0: functional mode 1: design for test (DFT) mode
15	RSTN	I_{SPU}	4	3.3	System reset signal input, active low.

FSK Pins

Table 3-11 describes FSK pins.

Table 3-11 FSK pins

Pin Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
20	FSK_IN	I_S	4	3.3	FSK input.
16	FSK_OUT	О	6	3.3	FSK output.

3.1.3 Multiplexing Control Register

Hi3136 V100 provides the multiplexing control register LOCK_FSKO whose base address is 0x00 and offset address is 0x0C.

LOCK_FSKO

LOCK_FSKO is the multiplexing control register for the FSKO pin.

0 1 0 Reset Bits Access Name Description Pin multiplexing control. RW [1] lock_fsko_sel 0: LOCK 1: FSKO

3.1.4 Software Multiplexed Pin

Table 3-12 describes the software multiplexed pin FSK_OUT.

Table 3-12 Software multiplexed pin FSK OUT

Pin	Pad Signal	Multiplexing	Multiplexing	Multiplexing	
Position		Control Register	Signal 0	Signal 1	
16	FSK_OUT	LOCK_FSKO	LOCK	FSK_OUT	

Table 3-13 describes the outputs of the multiplexed pin FSK_OUT.

Table 3-13 Outputs of the multiplexed pin FSK OUT

Signal	Direction	Description
LOCK	О	Channel lock indicator.
FSK_OUT	О	FSK output.

3.2 Electrical Specifications

3.2.1 Power Consumption Specifications

Table 3-14 describes the power consumption specifications.

Table 3-14 Power consumption specifications

Symbol	Description	Min	Тур	Max	Unit
DVDD33	3.3 V I/O power	None	8	12	mA
AVDD33_PLL	3.3 V PLL analog power	None	1	1	mA
DVDD12	1.2 V core power	None	100	352	mA
ADC_VDD12	1.2 V ADC power	None	56	65	mA

Symbol	Description	Min	Тур	Max	Unit
AVDD12_PLL	1.2 V PLL analog power	None	1	1	mA

3.2.2 Rated Working Conditions

WARNING

Hi3136 V100 may be unstable or damaged when working beyond the rated working conditions listed in Table 3-15.

Table 3-15 describes the rated working conditions.

Table 3-15 Rated working conditions

Symbol	Description	Min	Max	Unit
T_{OPT}	Operating temperature	-40	+125	°C
T _{STG}	Storage temperature	-65	+150	°C
VI	Input voltage	-0.5	+4.6	V
VO	Output voltage	-0.5	+4.6	V
DVDD12	Internal core voltage	-0.5	+1.8	V
DVDD33	I/O power	-0.5	+4.6	V

3.2.3 Recommended Working Conditions

Table 3-16 describes the recommended working conditions.

Table 3-16 Recommended working conditions

Symbol	Description	Min	Тур	Max	Unit
T_{OPT}	Operating temperature	0	25	70	°C
DVDD12	Internal core voltage	1.14	1.2	1.26	V
DVDD33	I/O power	2.97	3.3	3.63	V
AVDD33_PLL	PLL power	2.97	3.3	3.63	V
AVDD12_PLL	PLL power	1.14	1.2	1.26	V
ADC_VDD12	ADC power	1.14	1.2	1.26	V

3.2.4 Power-On and Power-Off Sequences

The 3.3 V power is turned on before the 1.2 V power, and they are turned off in reverse order.

3.2.5 DC Electrical Specifications

Table 3-17 describes the DC electrical specifications.

Table 3-17 DC electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Remarks
V_{IH}	Input high voltage	2.0	None	DVDD33 + 0.3	V	The 5 V tolerance voltage is not supported.
$V_{\rm IL}$	Input low voltage	-0.3	None	0.8	V	None
I_{L}	Input leakage current	None	None	±10	μΑ	None
I_{OZ}	Tri-state output leakage current	None	None	±10	μΑ	None
V _{OH}	Output high voltage	2.4	None	None	V	None
V_{OL}	Output low voltage	None	None	0.4	V	None
R _{PU}	Internal pull-up resistor	30	55	80	kΩ	None
R _{PD}	Internal pull-down resistor	30	45	80	kΩ	None

3.3 Design Recommendations for Schematic Diagrams

3.3.1 Design Recommendations for the Small System

3.3.1.1 Clocking Circuit

The system clock can be generated by combining the internal feedback circuit of Hi3136 V100 with an external 24 MHz crystal oscillator circuit (recommended).

Figure 3-4 shows the recommended connection mode of the crystal oscillator.

Figure 3-4 Recommended connection mode of the crystal oscillator

The following formula is used to calculate the capacitance of the load capacitor in the crystal oscillator:

$$C_L = C1 \times C2/(C1 + C2) + C$$

where

- C is the capacitance of the IC's internal capacitor, in the range of 5–7 pF.
- C1 and C2 each are 30 pF in Figure 3-4.
- C_L is the capacitance of the load capacitor in the crystal oscillator, in the range of 20–22 pF. The specific value provided by vendors prevails.

3.3.1.2 Reset Circuit

The RSTN pin of Hi3136 V100 is a reset signal input pin. The valid reset signal must have low-level pulses and the pulse width must be greater than 12 cycles of the input crystal oscillator clock from the XIN pin. Typically, the pulse width of the reset signal is 10–100 ms.

During the board design, the RC power-on reset circuit is recommended for the RSTN pin. The RSTN pin connects to a pull-up resistor and then to the 3.3 V power, and connects to a 4.7 μ F capacitor and then to GND. This connection mode implements power-on reset. The RSTN pin can also connect to an STB decoder master chip. The master chip may generate a reset signal complying with protocols when the master chip and the decoder are working properly.

If an exception occurs, a specific GPIO pin of the master chip generates a low-level pulse to trigger a reset.

Figure 3-5 shows the typical reset circuit.

Figure 3-5 Typical reset circuit

3.3.1.3 System Configuration Circuit for Hardware Initialization

The system configuration circuit for hardware initialization initializes internal registers over the I²C bus. The I²C addresses for Hi3136 V100 are set by configuring the external ADDR0 and ADDR1 pins.

Table 3-18 and Table 3-19 describe address configurations.

Table 3-18 Address configurations 1

ADDR1	ADDR0	7-Bit A	Add	ress	6			R/W	Write Address (in	
		MSB						LSB	Bit	Hexadecimal)
Low	Low	1	0	1	1	0	0	0	0	0xB0
Low	High	1	0	1	1	0	0	1	0	0xB2
High	Low	1	0	1	1	0	1	0	0	0xB4
High	High	1	0	1	1	0	1	1	0	0xB6

Table 3-19 Address configurations 2

ADDR1	ADDR0	7-Bit A	Add	ress	5			R/W	Write Address (in	
		MSB						LSB	Bit	Hexadecimal)
Low	Low	1	0	1	1	0	0	0	1	0xB1
Low	High	1	0	1	1	0	0	1	1	0xB3
High	Low	1	0	1	1	0	1	0	1	0xB5
High	High	1	0	1	1	0	1	1	1	0xB7

3.3.1.4 Circuits for Digital/Analog Signal Interfaces

Introduction

The level standard of digital interfaces is LVCMOS33. Hi3136 V100 provides the following digital signal interfaces:

- One TS serial/parallel interface. The working mode can be set to parallel or serial. The working clock frequency is 187.5 MHz in 1-bit serial mode or 94 MHz in 2-bit serial mode. In parallel mode, the working clock frequency is a maximum of 23.5 MHz. The bit width is 8 bits in parallel mode, 1 bit in 1-bit serial mode, or 2 bits in 2-bit serial mode.
- One I²C interface. The internal registers of Hi3136 V100 and tuner are accessed over the I²C interface. Hi3136 V100 controls the tuner by using the commands forwarded by the I²C. The maximum I²C working clock frequency is 400 kHz.

- Two DiSEqC interfaces and two FSK interfaces. The DISEQC_OUT and FSK_OUT interfaces are used to switch antennas. The DiSEqc_IN and FSK_IN interfaces are used to implement the backhaul of control signals provided by antennas.
- One AGC output interface. This interface is used to control the gain of the front-end tuner in pulse density modulation (PDM) mode by using an RC low-pass filtering circuit.
- One RSTN interface. A reset can be performed by using a hardware RC circuit or an STB decoder chip. The RSTN signal is active low.

TS Topologies

Figure 3-6 shows the typical topology in which Hi3136 V100 connects to an STB decoder chip in parallel.

Figure 3-6 Topology in which Hi3136 V100 connects to an STB decoder chip in parallel

M NOTE

All TS output pins except TS_CLK in the TS parallel interface can be configured based on the actual layout.

Figure 3-7 shows the typical topology in which Hi3136 V100 connects to an STB decoder chip in series.

Figure 3-7 Topology in which Hi3136 V100 connects to an STB decoder chip in series

M NOTE

All TS output pins except TS_CLK in the TS serial interface can be configured based on the actual layout.

DiSEqC Topology

The embedded DiSEqC module in Hi3136 V100 switches LNBs to control multiple satellite signals. In this way, an STB can control multiple antennas. The DiSEqC module provides discontinuous digital signals that are modulated at 22 kHz carriers and LNB power supplies. An external shaping circuit is required for ensuring amplitude and signal quality. Otherwise, the DiSEqC device cannot identify commands.

The following are required configurations:

- 22 kHz frequency range: 22±4.4 kHz
- Peak voltage: 650 mV (±250 mV)
- External bus load capacitance: less than or equal to 250 nF

Figure 3-8 shows the topology in which the DiSEqC interface connects to an external circuit.

Figure 3-8 Topology in which the DiSEqC interface connects to the LM317 or MP8126

AGC Topology

The AGC module converts digital signals into analog signals in PDM output mode by using an external RC low-pass filter and automatically controls the gain of the front-end tuner when the external environment changes. This ensures good output signal quality. During the PCB layout design, the RC filtering circuit needs to be placed close to the AGC output pin of Hi3136 V100, preventing interference to analog radio frequency (RF) signals. Figure 3-9 shows the topology in which the AGC interface connects to a tuner.

AGC_OUT

AGC_Module

3.3 V

1 kΩ

4.7 kΩ

100 nF

100 nF

Figure 3-9 Topology in which the AGC interface connects to a tuner

I²C Bus

The I²C bus between Hi3136 V100 and an STB decoder chip must connect to a pull-up resistor and then to the 3.3 V power. In Figure 3-10, a 2 k Ω pull-up resistor is used. You can select the resistor based on the I2C bus rate. In addition, a 100 pF or less bypass filtering capacitor must be connected on each I²C trace close to the Hi3136 I²C pin. See Figure 3-10.

Figure 3-10 Topology in which the I²C interface of Hi3136 V100 connects to an STB decoder chip

TS Matching Design

The TS matching design is provided based on the number of PCB layers:

- When more than two PCB layers are designed, the trace characteristic impedance is 50 Ω.
 - TS_OUT[0:7] connect to a 33 Ω resistor in series. For details about the topology, see Figure 3-11.
 - TS_CLK, TS_SYNC, and TS_VALID connect to a 33 Ω resistor in series. For details about the topology, see Figure 3-12.
- When two PCB layers are designed, the trace characteristic impedance is 140 Ω .

- TS_OUT[0:7] connect to a 75 Ω resistor in series. For details about the topology, see Figure 3-13.
- TS_CLK, TS_VALID, and TS_SYNC connect to a 75 Ω resistor in series. For details about the topology, see Figure 3-14.

M NOTE

The maximum trace length is 5000 mils.

Figure 3-11 Interconnection topology for TS_OUT[0:7] and an STB decoder chip when more than two PCB layers are designed

Figure 3-12 Interconnection topology for TS_CLK/TS_SYNC/TS_VALID and an STB decoder chip when more than two PCB layers are designed

Figure 3-13 Interconnection topology for TS_OUT[0:7] and an STB decoder chip when two PCB layers are designed

Figure 3-14 Interconnection topology for TS_VAILD/TS_SYNC/TS_CLK and an STB decoder chip when two PCB layers are designed

AGC Circuit

After the low-pass filter processes PDM signals, the AC analog signals are significantly reduced. On the RC filtering network, a larger RC value indicates less AC analog signals but slower response. Therefore, an appropriate RC value is required to balance the quantity of AC analog signals and response speed in actual application scenarios. A 4.7 k Ω resistor and a 100 nF capacitor are recommended on the AGC circuit.

3.3.2 Power Supplies

M NOTE

For details about system power supply design, see the schematic diagram of the Hi3136 V100 board.

3.3.2.1 Core Power

The core power pins (DVDD12) connect to the 1.2 V digital power. Note the following:

- If there is no 1.2 V power on the board, the low dropout regulator (LDO) is preferred for the power chip and the current of the power chip must be greater than or equal to 500 mA.
- The typical current of the core power is 100 mA and the maximum current is 405 mA.
- Each core power pin connects to a 10 μF filtering bypass capacitor and then to GND. In addition, each core power pin connects to a group of 10 nF and 100 nF decoupling capacitors, which are placed close to the core power pin.

3.3.2.2 I/O Power

The I/O power pins (DVDD33) connect to the 3.3 V digital power. Note the following:

- The maximum current of VDD_IO is 12 mA. The LDO is preferred.
- Each I/O power pin connects to a group of 10 nF and 100 nF decoupling capacitors, which are placed close to the I/O power pin.
- The inputs of I/O power pins are isolated by using electromagnetic interference (EMI) beads. See Figure 3-15.

Figure 3-15 VDD33 IO topology

3.3.2.3 ADC Power

ADC power pins (ADC_VDD12) connect to the 1.2 V analog power. Note the following:

- The maximum current of the ADC power is 65 mA. The ADC power and core power share a 1.2 V power.
- The ADC power is isolated from the 1.2 V power by using an EMI bead and connects to a 10 μ F filtering bypass capacitor and then to GND.
- Each ADC power pin connects to a group of 10 nF and 100 nF decoupling capacitors, which are placed close to the ADC power pin.
- The deviation of the 1.2 V power is within $\pm 5\%$. See Figure 3-16.

Figure 3-16 ADC VDD12 topology

3.3.2.4 Others

Note the following:

- The LDO is preferred for the power chip. The digital and analog power supplies are isolated by using EMI beads and groups of 10 nF and 100 pF decoupling capacitors are connected.
- Ensure that the output voltage of power supplies meets requirements even when ripples
 and noises occur. For details about the requirements on the power supply of each module,
 see section 3.2 "Electrical Specifications."

3.3.3 Unused Pins

If some pins are not used, do not connect them. You can disable some circuits by configuring registers.

3.4 PCB Design Recommendations

3.4.1 Stack and Layout

3.4.1.1 Stack

The package of Hi3136 V100 is mapped quad flat non-leaded 48 (MQFN48). The ball pitch is 0.4 mm (0.02 in.). You are advised to design a 4-layer PCB with the following stack:

• Top layer: signal traces

• Internal layer 1: GND plane

• Internal layer 2: power plane

Bottom layer: signal traces

To reduce the cost, you can also design a 2-layer PCB with the following stack:

- Top layer: signal traces and part of power traces
- Bottom layer: GND plane and part of power traces

Take the following precautions during PCB design:

- Components are placed at the top layer. Routing signal traces at the top layer is preferred.
- Power pins are connected by using wide traces.
- Ensure that the bottom layer is a complete GND plane.
- The vias with 8-mil diameter is recommended for master chip fanout.
- The impedance of special signal traces must meet requirements.

The PCB material is FR-4, the PCB thickness is 1.6 mm, and the thickness of the copper foil on the surface is 1 oz.

3.4.1.2 Board Layout

Figure 3-17 shows the board layout of the Hi3136 V100 reference design.

Figure 3-17 Board layout

The following items are considered in the Hi3136 V100 reference design: the layout of RF, analog, and digital signals and electrostatic discharge (ESD) protective components such as the female connector of the RF interface, crystal resonator, and RF loop filter.

The 3.3 V and 1.2 V power pins should be isolated from digital parts by using EMI beads. The components with a small-sized package are recommended.

3.4.2 PCB Design Recommendations for the Small System

3.4.2.1 Power Supplies of the Small System

Digital Power

The digital power supplies of Hi3136 V100 include DVDD33 (3.3 V) and DVDD12 (1.2 V). It is recommended that the DVDD33 and DVDD12 be isolated from the 3.3 V and 1.2 V digital power supplies of the board by using EMI beads. All power traces use the exposed pad of Hi3136 V100 as the reference GND. The traces should be as wide as possible when the through-flow capacity is ensured. The minimum trace width is 15 mils for DVDD33 or 25 mils for DVDD12. Ensure that digital power and analog power do not overlap and decoupling capacitors are placed close to Hi3136 V100.

RF/Analog Power

The RF and analog power supplies must be isolated from other power supplies by using EMI beads. Hi3136 V100 uses the exposed pad as the reference GND. The following are design recommendations:

- Never route digital signal traces, especially high-speed digital signal traces, in the analog power area.
- Connect a decoupling capacitor to each power pin and ensure that traces are as wide as possible and decoupling capacitors are placed close to Hi3136 V100.

3.4.2.2 Clock and Reset Circuits

Clock

The power supplies of the Hi3136 V100 PLL unit are AVDD12_PLL (1.2 V) and AVDD33_PLL. The reference GND of the Hi3136 V100 PLL unit is PLL_GND. Design the PCB according to the following guidelines:

- Ensure that the width of the AVDD12_PLL trace or the AVDD33_PLL trace is 12 mils when the through-flow capacity is ensured.
- It is recommended that GND traces be connected under the exposed pad and the GND planes of Hi3136 V100 and the board are connected.
- The traces of the crystal oscillator circuit for the system clock must be as short as possible and be surrounded by GND traces. The crystal GND part must be isolated from the large-sized GND area to prevent coupling.
- The matched capacitors for the crystal oscillator must be placed close to the crystal oscillator and the crystal oscillator must be placed close to Hi3136 V100. Ensure that the spacing between the crystal oscillator and the board edge is at least 1000 mils. Never route critical traces such as high-speed clock traces under the crystal oscillator and ensure the integrity of the signal traces under the crystal oscillator.

Reset

Pin 15 is a reset pin. The reset signal trace is a critical trace and is susceptible to interference. The following are design recommendations:

- If more than two PCB layers are designed, route the reset signal trace at an inner layer close to the GND plane and ensure that the trace width is greater than 8 mils. If two PCB layers are designed, ensure that the reset signal trace is surrounded by GND traces.
- Route the reset signal trace at least 30 mils far away from interfaces and power inputs.

3.4.3 PCB Design Recommendations for Digital and Analog Interfaces

3.4.3.1 Digital Interfaces

TS Signals

The following are requirements on TS signal traces:

- The maximum signal trace length is 5000 mils.
- The length of all TS signal traces is determined based on the TS_CLK traces. The length deviation is ±250 mils.
- The serial matched resistors are connected close to Hi3136 V100.
- If two PCB layers are designed, the characteristic impedance of TS signal traces should be 140 Ω . It is recommended that a 75 Ω resistor connect to TS_OUT[0:7] in series and a 75 Ω resistor connect to TS_CLK, TS_SYNC, and TS_VALID in series.
- If more than two PCB layers are designed, the characteristic impedance of the TS signal traces should be 50 Ω . A 33 Ω matched resistor is recommended.

AGC Signals

The following are requirements on AGC signal traces:

- The maximum trace length is 5000 mils and the minimum one is 12 mils. Route GND traces around AGC signal traces. This prevents interference to external signal traces from AGC signals and interference to AGC signal traces from external noise.
- The RC low-pass integrating filter to which AGC outputs are transmitted is placed close to the AGC output pin of Hi3136 V100. This prevents AGC noise from being transmitted to the board, which prevents channel performance from deteriorating.

The following are requirements on the I²C bus length:

- The maximum length of serial clock (SCL) signal traces is 5000 mils.
- The serial data (SDA) traces are routed based on SCL traces. The length deviation is ±250 mils.

PCB Routing Recommendations

Route traces on a PCB according to the following guidelines:

CAUTION

Never cross the reference GND plane of TS signal traces when routing other signal traces, and ensure that GND traces are routed around signal traces. Serial resistors need to be placed close to Hi3136 V100. For details, see the PCB design documents of the Hi3136EVA board.

- All the TS signal traces must be routed on the planes close to the GND plane. Never route the signal traces across the power and GND plane splits. Ensure that signal traces have a complete reference GND plane.
- To ensure a good signal return path, punch vias around signal traces and changed layers and connect the punched vias to GND.
- Ensure that signal traces are as short as possible. Minimize the use of vias to ensure the impedance continuity of traces. If more than two PCB layers are designed, the characteristic impedance of the single-ended PCB signal trace is $50 \Omega \pm 10\%$. If two PCB layers are designed, the characteristic impedance of the single-ended PCB signal trace is $140 \Omega \pm 10\%$. The serial matched resistors are connected close to Hi3136 V100.
- If resistor networks are used, ensure that the TS_CLK trace and TS traces are not routed on the same resistor network.
- Ensure that the spacing between adjacent signal traces is 2–3 times of the trace width according to the 3W rule. The 3W rule indicates that the trace spacing is three times of the trace width.
- Route signal traces far away from data and address buses and route GND traces around the TS_CLK trace.

3.4.3.2 Others

Integrity Simulation Design Recommendations for PCB Signals

By using board-level simulation tools, PCB designers can simulate and analyze signal integrity based on the input/output buffer information specification (IBIS) models of the Hi3136 V100 interfaces and interconnected components, transmission line models, and board topologies. Based on the simulation results, the PCB designers can adjust the typologies to meet the signal quality requirements in overshoot, undershoot, ringing, monotonicity, and others.

Note

If a clock signal trace connects to multiple loads, ensure good signal quality especially signal edge monotonicity regardless of the frequency.

3.5 Heat Design Recommendations

3.5.1 Package Thermal Resistance

CAUTION

The thermal resistance is provided in compliance with the JEDEC JESD51-2 standard. The actual system design and environment may be different.

Table 3-20 describes the thermal resistance of the package.

Table 3-20 Thermal resistance of the package

Parameter	Symbol	Value	Unit
Junction-to-ambient thermal resistance	θ_{JA}	32	°C/W
Junction-to-case thermal resistance	$\theta_{ m JC}$	6.5	°C/W
Junction-to-top center of case thermal resistance	$\Psi_{ m JT}$	None	°C/W
Junction-to-board thermal resistance	$\theta_{ m JB}$	8.5	°C/W

3.5.2 Recommended Thermally Conductive Materials

Table 3-21 describes recommended thermally conductive materials.

Table 3-21 Recommended thermally conductive materials

Mode of Fixing Heat Sinks	Model	Thermal Conductivity Coefficient (W/m ·k)	Ambient Temperature (°C)	Colloid Type	Insulation Strength (V/Mil)	Flame Retar dance	Bearing Capacity (g)
Mechanical fixing	GF2000	2	-60 to +200	Silicone rubber	500	UL9V 0	None
Non- mechanical fixing	Locotite 315	0.808	None	Acrylic resin	6000	UL9V 2	None

3.5.3 Schematic Diagram Design

3.5.3.1 Power Supply

Ensure that the efficiency of the board power tree is the highest as long as the power supply is stable. To this end, design the board power supply optimally and use fewer LDO components with large voltage difference to reduce the heat produced during power conversion. An exposed pad is designed at the bottom of the chip and a solder mask opening is designed for the GND plane of the PCB to facilitate heat conduction.

3.5.4 PCB Design

3.5.4.1 Component Layout

Lay out components based on the product architecture and heat dissipation design:

- Do not lay out the components that consume a large amount of power and produce much heat on the same ventilation path.
- Evenly place the components that consume a large amount of power and produce much heat and increase the size of copper planes under and around the components, ensuring that the heat produced by the PCB is effectively dissipated.

3.5.4.2 PCB Heat Dissipation

The recommendations are as follows:

- For the connect style of the vias under Hi3136 V100, select the full connect style but not the thermal connect style, In addition, an opening copper plane is used at the PCB bottom layer on which the exposed pad of Hi3136 V100 is soldered, improving the dissipation efficiency of the board.
- The 1.2 V power traces, 3.3 V power traces, and GND traces should be as wide as possible when the over-current capability is ensured.
- Never place the components that produce much heat around Hi3136 V100.

3.6 Soldering Process Recommendations

3.6.1 Overview

Determine appropriate reflow soldering temperatures based on the reflow profiles supported by all the components, ICs, and PCB and the reflow profile recommended by the solder paste vendor. This chapter describes only the reflow soldering temperature range supported by Hi3136 V100.

3.6.1.1 Coating Material

The elelectrotinning coating is used on the MQFN package.

3.6.1.2 Component Package and Storage

The following describes the component package and storage:

- Package of surface-mount components: tray or tape & reel
- Allowed storage duration (at most 60% RH): 12 months at 40°C (104°F)
- Packaging material: ESD material

3.6.1.3 Soldering Process

Reflow soldering can be used.

Figure 3-18 shows the reflow profiles supported by Hi3136 V100 but not the reflow profiles recommended during soldering. Determine the soldering temperatures based on the reflow profiles of the solder paste, PCB, and all ICs and components. For details, see the JEDEC020D standard.

Figure 3-18 Soldering temperatures

Table 3-22 describes the reflow soldering specifications.

Table	3-22	Reflow	soldering	specifications
Labic	J-44	KCHOW	Solucinia	Succincations

Zone	Duration	Heating Up Slope	Peak Temperature	Cooling Down Slope
Preheat zone (40–150°C or 104–302°F)	60-150s	≤2.0°C/s (≤ 35.6°F/s)	None	None
Soak zone (150–200°C or 302–392°F)	60-120s	< 1.0°C/s (≤ 33.8°F/s)	None	None
Reflow zone (> 217°C or 423°F)	30-90s	None	230–260°C (446–500°F)	None
Cooling zone (Tmax to 180°C or 356°F)	None	None	None	1.0°C/s ≤ Slope ≤ 4.0°C/s (33.8°F/s ≤ Slope ≤ 39.2°F/s)

3.6.2 Process Preparations

Confirm that all products are dry and materials have not expired.

Test the first sample such as checking the solder paste thickness before mass production. Start mass production only when the first sample passes all tests.

3.7 Moisture-Sensitive Specifications

3.7.1 Storage and Usage

[Application Scope]

The specifications apply to the storage and usage of all moisture-sensitive ICs of HiSilicon.

[Storage Environment]

You are advised to store products in vacuum packages at 30°C (86°F) or lower and at most 60% relative humidity (RH).

[Shelf Life]

At 30°C (86°F) or lower and at most 60% RH, the shelf life is greater than or equal to 12 months for the vacuum package.

[Floor Life]

Table 3-23 describes the floor life at 30°C (86°F) or lower and at most 60% RH.

Table 3-23 Floor life

Level	Floor Life (Out of Bag) at Factory Ambient ≤ 30°C (86°F)/60% RH or As Stated
1	Unlimited at 30°C (86°F) or lower and at most 85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. The product must be reflowed within the time limit specified on the label.

[Usage of Moisture-Sensitive Products]

- If a chip has been exposed to air for 2 hours at 30°C (86°F) or lower and at most 60% RH, rebake it and pack it into a vacuum bag.
- If a chip has been exposed to air for less than 2 hours at 30°C (86°F) or lower and at most 60% RH, replace the desiccant and pack the chip into a vacuum bag.

For details about other storage modes and usage rules, see the JEDEC J-STD-033A standard.

3.7.2 Rebaking

[Applicable Products]

All moisture-sensitive ICs of HiSilicon

[Application Scope]

All ICs that need to be rebaked

[Rebaking Reference]

Table 3-24 Rebaking reference

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH
≤ 1.4 mm	2a	3 hours	11 hours	5 days
(0.06 in.)	3	7hours	23 hours	9 days
	4	7 hours	23 hours	9 days
	5	7 hours	24 hours	10 days
	5a	10 hours	24 hours	10 days
≤ 2.0 mm (0.08 in.)	2a	16 hours	2 days	22 days
	3	17 hours	2 days	23 days
	4	20 hours	3 days	28 days
	5	25 hours	4 days	35 days
	5a	40 hours	6 days	56 days
≤ 4.5 mm	2a	48 hours	7 days	67 days
(0.18 in.)	3	48 hours	8 days	67 days
	4	48 hours	10 days	67 days
	5	48 hours	10 days	67 days
	5a	48 hours	10 days	67 days

Note:

- Table 3-24 lists the minimum rebaking time for moist chips.
- Low-temperature rebaking is recommended.
- For details, see the JEDEC standard.

3.8 Interface Timings

3.8.1 Output Interface Timings

Hi3136 V100 supports three TS output modes: parallel mode, 1-bit serial mode, and 2-bit serial mode.

The signals from the TS output interface include the data signal TS_OUT[7:0], clock signal TS_CLK, data validity signal TS_VLD, sync header signal TS_SYNC, and packet error signal TS_ERR.

- TS_OUT: TS frame data. This signal is 8 bits in parallel mode, 1 bit in 1-bit serial mode, and 2 bits in 2-bit serial mode.
- TS_CLK: data clock. The clock edge is configurable. The clock output varies according to the output mode.
- TS_VLD: TS packet data validity indicator. It is byte valid in parallel mode or bit valid in 1-bit serial mode.
- TS_SYNC: TS packet sync header indicator. It is byte valid in parallel mode or bit valid in 1-bit serial mode.
- TS_ERR: TS packet error indicator. It is set to 1 if an error occurs in the current TS packet.

Figure 3-19 Timing in TS parallel output mode

Figure 3-20 Timing in 1-bit TS serial output mode

Figure 3-21 Timing in 2-bit TS serial output mode

3.8.2 Output Timing Parameters

Figure 3-22 and Figure 3-23 show the TS output timings.

Figure 3-22 TS_CLK timing and reverse timing

Figure 3-23 TS timings in parallel and 2-bit serial modes

The minimum values of T1 and T2 are both 5.3 ns.

 Table 3-25 TS output timing parameters

Parameter	Symbol	Min	Тур	Max	Unit
TS_CLK	Tck	5.3	None	5.3	ns
Output data signal delay	t	0	None	0.48	ns

 Table 3-26 TS output timing parameters (reverse)

Parameter	Symbol	Min	Тур	Max	Unit
TS_CLK	Tck	5.3	None	5.3	ns
Output data signal delay	t	1.0	None	2.63	ns

A

Acronyms and Abbreviations

 \mathbf{A}

AAC advanced audio coding

AAF anti-aliasing filter

ABR average bit rate

AC alternating current

ACA accessory charge adapter

ACC automatic contrast control

ACD auto command done

ACM adaptive coding and modulation

ADP attach detection protocol

ADC analog-to-digital converter

AE automatic exposure

AEC audio echo cancellation

AES advanced encryption standard

AF adaption field

AGC automatic gain control

AHB advanced high-performance bus

AI audio input

AIU audio input unit

ALU arithmetic logic unit

AMBA advanced microcontroller bus architecture

AMP asymmetric multi-processing

ANI automatic number identification

ANR automatic noise reduction

AO audio output

AOU audio output unit

AP access point

APB advanced peripheral bus

API application programming interface

APLL analog phase-locked loop

APSK amplitude phase shift keying

AQTD alternate queue transfer descriptor

ARM advanced RISC machines

ARGB alpha, red, green, blue

ASF advanced specification format

ATA advanced technology attachment

ATAH ATA host controller

ATAPI advanced technology attachment packet interface

ATR answer to reset

ATTR attribute

AUD audio

AV audio & video

AVI auxiliary video information

AVS audio video coding standard

AWB automatic white balance

AXI advanced eXtensible interface

В

BB baseband

BCH Bose-Chaudhuri-Hocquenghem

BCM byte counter modified

BEP boot entrance point

BER bit error rate

BGA ball grid array

BIST built-in self test

BIU bus interface unit

BMC bi-phase mark coding

BND bayonet nut connector

BOM bill of material
BPD bit plan decoder

BPSK binary phase shift keying

BRG bridge

BSP board support package

BVACT bottom vertical active area

BVBB bottom vertical back blank

BVFB bottom vertical front blank

 \mathbf{C}

CA conditional access

CABAC context-based adaptive binary arithmetic coding

CAR committed access rate
CAS column address signal.

CAVLC context adaptive variable length coding

CBC cipher block chaining

CBR constant bit rate

CCB change control board

CCC command completion coalescing

CCD charge-coupled device

CCM constant coding and modulation

CD command done or collision detection

CDR clock data recovery

CEC consumer electronics control

CFB compact flash
cipher feedback

CFR crest factor reduction

CGI common gate interface

CGMS copy generation management system

CI common interface

CIC cascaded integrator comb

CIU card interface unit

CL CAS latency

CLK clock

CML current mode logic

CMOS complementary metal-oxide semiconductor

CN carrier noise

CNG comfort noise generator

CODEC coder/decoder
CP charge pump
CPL completion

CPLD complex programmable logic device

CPU central processing unit

CR carrier recovery

CRC cyclic redundancy check
CRG clock and reset generator
CRS completion retry request

CS chip select

CSA common scramble algorithm

CSI camera serial interface

CSIX common switch interface

CSMD carrier sense multiple access

CTI chroma transient improvement

CTR counter

CTS clear to send

CVBS composite video broadcast signal

CW cipher word

D

DAC digital-to-analog converter

DAG digital automatic gain

DAGC digital automatic gain control

DAV DMA of audio and video

DC direct current

DCD data connect detection

DCRC data CRC error

DDC display data channel

DDR double data-rate

DDRC double data rate controller

DHCP dynamic host configuration protocol

DEM dynamic-element matching

DES data encryption standard

DFT design for test

DIP dual in-line package

DIS digital image stabilization

DiSEqC digital satellite equipment control

DLL delay locked loop

DM data mask

DMA direct memory access

DMAC direct memory access controller

DNR digital noise reduction

DP data path

DPLL digital phase-locked loop

DQ data input/output

DQS data strobe

DR design requirement

DRAM dynamic random access memory

DRC dynamic range compression

DRM digital rights management

DRTO data read timeout

DSI display serial interface

DSU dedicated scaling unit

DTMF dual tone multi frequency

DTO data transfer over

DVB digital video broadcasting

DVB-S digital video broadcasting-satellite

DVD digital versatile disc

DVI digital visual interface

DVR digital video recorder

DWA data weighted averaging

 \mathbf{E}

E2PROM electrically erasable programmable read-only memory

EAV end of active video

EB eviction buffer

EBE end-bit error

EBI external bus interface

ECB electronic codebook

ECC error correcting code

ECM entitlement control message

ECS embedded CPU subsystem

ED exposed die

EDID extended display identification data

EEE energy efficient Ethernet

EHCI enhanced host controller interface

EMI electromagnetic interference

EMM entitlement management message

eMMC embedded multimedia card

EOP end of PES

EoS Ethernet over SONET/SDH

EP end point

EPG electronic program guide

EQU equalizer

ERR error

ES element stream

eSATA external serial advanced technology attachment

ESD electrostatic discharge

ESR equivalent series resistance

ETH Ethernet

ETU elementary time unit

F

FAS frame aligning signal

FBE feedback equalizer

FC switch fabric

FCBGA flip-chip ball grid array

FCCSP flip-chip chip scale package

FEC forward error correction

FER frame error rate

FFC flexible flat cable

FFE feed forward equalizer

FIFO first in first out

FIQ fast interrupt request

FIR finite impulse response

FIS frame information structure

FOD field order detect

FPC flexible printed connector

FPU floating-point unit

FRUN FIFO underrun/overrun error

FSK frequency shift keying
FTP File Transfer Protocol

 \mathbf{G}

GFP-F frame-mapped generic framing procedure

GFP-T transparent generic framing procedure

GHB global history buffer

GIC generic interrupt controller

GOP group of picture
GS generic stream

GMAC gigabit media access control

GND ground

GPIO general purpose input/output
GPL GNU general public license
GPU graphics processing unit

H

HBA host bus adapter

HBP horizontal back porch

HD high definition

HDCP high-bandwidth digital content protection

HDI high density interconnector

HDMI high definition multimedia interface

HFP horizontal front porch

HIAO high-performance audio output interface

HPW horizontal pulse width

HSTL high speed transceiver logic

HTML hypertext markup language

HACT horizontal active area

HFB horizontal front blank

HL high level

HLDC horizontal lens distortion correction

HLE hardware locked error

HNP host negotiation protocol

HTO data starvation-by-host timeout

HP high profile

HSIC high-speed inter-chip

HSS high-speed serializer/deserializer

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HVBB horizontal back blank

I

I in-phase

IBIS input/output buffer information specification

IC integrated circuit

I²C inter-integrated circuit

I²**S** inter-IC sound

I/O input/output

IOC I/O configuration
IP Internet Protocol

ISI input stream identifier

ISP image signal processor

IDE integrated device electronic

LDPC low density parity check code

IDR intermediate data rate

IF intermediate frequency

IGMP Internet Group Management Protocol

LMS linear mean square

IPF IP filter

IPv4 Internet Protocol Version 4

IR infrared

IRQ interrupt request

ISI input stream identifier

ISP image signal processor

ISR interrupt service routine

ITCM instruction tightly coupled memory

ITLA integrated tunable laser assembly

ITU International Telecommunication Union

IV initialization vector

J

JPEG Joint Photographic Experts Group

JPGE JPEG encoder

JTAG Joint Test Action Group

K

KL key ladder

L

LCD liquid crystal display

LDO low dropout regulator

LDPC low-density parity check code

LED light emitting diode

LFB line fill buffer

LFSR linear feedback shifting register

LMR load mode register

LMS least mean square

LNB low noise block

LOS loss of signal

LPI low-power idle

LRB line read buffer

LSB least significant bit

LSP label switched path

LSN logic sector number

LTI luma transient improvement

LVDS low-voltage differential signaling

LVPECL low-voltage positive emitter coupled logic

LVTTL low-voltage transistor-transistor logic

LVPECL low-voltage positive emitter-coupled logic

M

MAC media access control

MBAFF macroblock adaptive frame field

MCE media control engine

MCU microprogrammed control unit

MD motion detection

MDDRC multiport DDRC

MDIO management data input/output

MDU motion detect unit

MF matched filter

MQFN mapped quad flat non-leaded

MHL mobile high-definition link

MII media independent interface

MIPI mobile industry processor interface

MIPS microprocessor without interlocked pipeline stages

MLC multi-level cell

MLF malformed

MMB media memory block

MMC multimedia card

MMU memory management unit

MMZ media memory zone

MP main profile

MPI MPP programming interface

MPE media processing engine

MPLL multiplying phase-locked loop

MPP media processing platform

MRL manually-operated retention latch

MSB most significant bit

MSE mean square error

MSG message

MV motion vector

N

NAL network abstraction layer

NANDC NAND flash controller

NC not connect

NCQ native command queuing

NLP non-linear processor

NR noise reduction

NRZ non-return-to-zero

NTSC National Television Systems Committee

NVR network video recorder

 \mathbf{o}

OCT on-chip termination

OD open drain

ODT on-die termination

OEN output enable

OFB output feedback

OHCI open host controller interface

OOB out of band

OP operational amplifier
OR original requirement

OSC oscillator

OSD on screen display

OTG on-the-go

OTP one time programmable
OTU optical transponder unit

P

PAD packet assembler/disassembler

PAFF picture adaptive frame field

PAL phase alternating line

PCB printed circuit board

PCI peripheral component interconnect

PCIe peripheral component interconnect express

PCIV PCI view

PCR program clock reference
PCM pulse code modulation
PDM pulse density modulation

PECL positive emitter coupled logic

PER packet error rate

PES packetized elementary stream

PG power/ground

PHY physical
PID packet ID

PIM-DM protocol independent multicast dense mode
PIM-SM protocol independent multicast sparse mode

PIO programmable input/output

SSA secure software authentication

PLL phase-locked loop

PLS physical layer signaling

PM port multiplexer

PMoC power management of chip

PMP personal media player

POR power-on reset

PPP Point-to-Point Protocol

PPS picture parameter set

PRBS pseudo random binary sequence

PRDT physical region descriptor table

PSI program specific information

PSK phase shift keying

PSRAM pseudo static random access memory

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

PT packet type

PTS presentation time stamp

PUB PHY utility block

PUSI payload unit start indicator

PWM pulse width modulation

Q

Q quadrant

QAM quadrature amplitude modulation

QDR quad data rate

QoS quality of service

QP quantizer parameter

QPSK quaternary phase shift keying

R

RAM random access memory

RAS row address signal

RC resistor-capacitor

RCA Radio Corporation of America

RCRC response CRC error

RE response error
RF radio frequency
RGB red-green-blue

RGMII reduced gigabit media independent interface

RH relative humidity

RoHS restriction of the use of certain hazardous substances

ROI region of interest

ROM read-only memory

ROP raster operation

RPR resilient packet ring

RLDRAM reduced latency dynamic random access memory

RMII reduced media-independent interface

RS Reed-Solomon
RTC real-time clock
RTO response timeout
RTS request to send

RVDS RealView development suite

RX receive

RXDR receive FIFO data request

 \mathbf{S}

SAP service access point

SAD sum of absolute difference

SAR successive approximation

SATA serial advanced technology attachment

SAV start of active video

SBE start-bit error

SBP secure boot procedure

SCD start code detect

SCI smart card interface

SCL serial clock

SCR system clock reference

SCS secure chipset start-up

SCU snoop control unit

SD secure digital

SDA serial data

SDB set device bits

SDH synchronous digital hierarchy

SDHC secure digital high capacity

SDI serial digital interface

SDIO secure digital input/output
SDK software development kit

SDRAM synchronous dynamic random access memory

SDV system design verification

SI specific information

SIO sonic input/output

SLC single-level cell

SMI static memory interface

SNAP subnetwork access point

SNR signal-to-noise ratio

SNTF serial ATA notification

SOA semiconductor optical amplifier

SoC system-on-chip

SONET synchronous optical network

SOP start of PES

SP simple profile

SPDIF Sony/Philips digital interface

SPI serial peripheral interface

SPS sequence parameter set

SRAM static random access memory

SRP Session Request Protocol

SSA secure software authentication

SSD secure software download

SSMC synchronous static memory controller

SSP synchronous serial port

SSRAM synchronous static random access memory

SSTL-18 stub series terminated logic for 1.8 V

STA station

STB set-top box

STM-1 synchronous transport module level 1

SVB selective voltage bing

SYNC synchronization

SYS system

 \mathbf{T}

TBD to be determined

TBGA tape ball grid array

TC traffic class

TCP Transmission Control Protocol

TD TLP digest

TDES triple data encryption standard

TDE two-dimensional engine

TE tearing effect

TEI transport error indicator

TFD task file data

TFPBGA tape fine-pitch ball grid array

TFT thin-film technology

TI Texas Instruments

TLV type-length-value

TOE TCP/IP offload engine

TP transponder

TPIT TS packet index table

TR timing recovery

TS transport stream

TSI transport stream interface

TT teletext

TV television

TVACT top vertical active area

TVBB top vertical back blank

TVFB top vertical front blank

TVS transient voltage suppressor

TX transmit

TXDR transmit FIFO data request

U

UART universal asynchronous receiver transmitter

U-boot universal boot loaderUC unexpected completionUDP User Datagram Protocol

ULPI UTMI low pin interface
UPnP universal plug and play

UPnP universal plug and playUR unsupported request

USB universal serial bus

USIM universal subscriber identity module

UTMI USB 2.0 transceiver macrocell interface

V

VACT vertical active area

VAD voice activity detector

VAPU video analysis&process unit

VBB vertical back blank

VBI vertical blanking interval

VBR variable bit rate

VCC common connector voltage
VCO voltage controller oscillator

VCM variable coding and modulation

VCMP video compress

VCXO voltage control crystal oscillator

VDA video detection analysis

VDH video decoder for high-definition

VDM video decoding module

VDEC video decoding
VDP video display

VEDU video encoding/decoding unit

VENC video encoding

VFB vertical front blank

VFMW video firmware

VFP vertical front porch

VGA video graphics array

VI video input

VIC vector interrupt controller

VICAP video capture

VIU video input unit

VLD valid

VLL virtual leased line

VO video output
VOIE voice encoder

VOU video output unit

VPP video pre-processing

VPS video programming system

VPSS video process subsystem

VPW vertical pulse width

VSA vertical sync start

VQE voice quality enhancement

VQM voice quality monitor

 \mathbf{W}

WDG watchdog
WE write enable
WFE wait for event
WFI wait for interrupt

WRED weighted random early discard

A Acronyms and Abbreviations

WSS wide screen signaling

 \mathbf{X}

XAUI 10 gigabit attachment unit interface

Y

YUV luminance-bandwidth-chrominance

 \mathbf{Z}

ZME zoom engine