Results are obtained with h_0^P estimated

		h_0^Q IS UNC UNDER P, UPDATED UNDER Q 1 YEAR, THEN FROZEN								
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018	
ω	8.5020e - 08	9.2713e - 06	1.9239e - 07	2.2129e - 06	1.9389e - 06	4.1610e - 07	5.9988e - 07	3.5296e - 07	5.5717e - 07	
std	(4.4877e - 07)	(2.7968e - 05)	(1.0856e - 06)	(6.4184e - 06)	(6.6239e - 06)	(2.4952e - 06)	(2.9189e - 06)	(2.0142e - 06)	(2.7148e - 06)	
median	4.8556e - 10	1.1201e - 09	8.3045e - 10	1.6349e - 09	1.4218e - 09	1.6699e - 09	8.8906e - 10	3.3972e - 10	4.7252e - 10	
α	2.5053e - 05	2.0773e - 05	1.8857e - 05	1.3866e - 05	1.3094e - 05	1.3613e - 05	1.3838e - 05	8.6221e - 06	1.4345e - 05	
std	(2.2286e - 05)	(2.0915e - 05)	(1.6575e - 05)	(1.1518e - 05)	(8.8443e - 06)	(5.8573e - 06)	(8.0132e - 06)	(5.2512e - 06)	(1.0681e - 05)	
median	1.6946e - 05	1.8770e - 05	1.2068e - 05	1.2723e - 05	1.2664e - 05	1.2849e - 05	1.3228e - 05	8.5732e - 06	1.3804e - 05	
β	0.4924	0.3370	0.4751	0.3745	0.1724	0.1755	0.2466	0.1768	0.1836	
std	(0.3262)	(0.3216)	(0.3449)	(0.3822)	(0.2854)	(0.2334)	(0.3159)	(0.3270)	(0.2983)	
median	0.5759	0.3823	0.5676	0.3025	0.0002	0.0008	0.0018	0.0001	0.0003	
γ^*	150.2212	214.4353	173.9764	268.9184	247.7121	222.3940	210.4781	296.4724	185.4170	
\mathbf{std}	(138.1818)	(168.3789)	(143.1116)	(295.6025)	(244.5211)	(41.1800)	(73.6564)	(189.9753)	(149.9507)	
median	110.8449	155.9251	143.9621	170.7408	196.1680	228.8470	208.6253	252.7287	154.5740	
h_0^Q	1.2468e - 04	1.5814e - 04	8.6791e - 05	6.4327e - 05	6.2555e - 05	0.0001	9.5618e - 05	4.2789e - 05	9.6085e - 05	
\mathbf{std}	(8.4854e - 05)	(1.0317e - 04)	(4.2726e - 05)	(3.0386e - 05)	(3.9619e - 05)	(5.4010e - 05)	(6.6049e - 05)	(2.5624e - 05)	(8.6926e - 05)	
median	1.0398e - 04	1.3624e - 04	7.8012e - 05	5.3266e - 05	5.2105e - 05	8.5698e - 05	7.4335e - 05	3.6616e - 05	5.7654e - 05	
persistency	0.8233	0.8361	0.7863	0.7230	0.6557	0.7936	0.7599	0.6817	0.5976	
std	(0.1875)	(0.1268)	(0.2318)	(0.2418)	(0.2553)	(0.0951)	(0.1551)	(0.2158)	(0.2878)	
median	0.8873	0.8444	0.8856	0.7596	0.7135	0.7919	0.7344	0.6894	0.6653	
MSE	13.1341	29.7013	11.0076	10.4282	20.1567	21.2395	26.0305	26.8897	47.4491	
median MSE	4.0691	6.5356	5.3875	6.5788	9.0235	11.1964	17.4622	23.3996	23.1610	
IMDMCE	0.1070	0.0905	0.1550	0.1445	0.1657	0.1040	0.0000	0.1500	0.1044	
IVRMSE	0.1878	0.2385	0.1550	0.1445	0.1657	0.1849	0.2030	0.1592	0.1844	
MAPE	0.2247	0.2822	0.2447	0.2502	0.3132	0.3755	0.3917	0.3454	0.3111	
OptLL	157.8028	158.6809	200.4516	278.2008	271.7112	341.9052	395.4835	495.1797	461.7832	