Programação Dinâmica Tópicos Avançados de Programação

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2007

Problemas de Programação Dinâmica

Estrutura dos problemas

- Geralmente possuem estruturas recursivas.
 - ► Sub-problemas devem ser resolvidos para que a solução final possa ser alcançada.
- Em geral aplicados a problemas de otimização.
 - Buscam uma solução ótima.

Por que não recursão?

- Se a estrutura do problema é recursiva, por que um algoritmo recursivo não seria uma boa solução?
 - Algoritmos puramente recursivos trabalharão mais que o necessário resolvendo os sub-problemas comuns mais de uma vez (repetição de cálculos).
- Uma boa estratégia seria ter uma tabela para:
 - Guardar os resultados dos sub-problemas que já foram resolvidos.
 - ► Fazer consultas na tabela para encontrar os resultados de tais sub-problemas.

Definição (Programação Dinâmica)

Técnica de programação que visa resolver problemas que exigem que diversos cálculos de sub-problemas sejam refeitos. Para isso, os resultados parciais são armazenados, não sendo necessário recalculá-los.

- ► Problèma de se comparar duas palavras (strings) para saber o custo necessário para transformar uma na outra.
- ► Normalmente é usado o algoritmo de distância de edição, que calcula a melhor forma de resolver o problema utilizando programação dinâmica.

- ightharpoonup Dadas duas palavras t e p, define-se a distância de edição D[t,p] entre elas como o custo total mínimo necessário para transformar t em p ou vice-versa.
- ▶ Para calcular tal custo, define-se custos de operações de edição de uma palavra, que podem ser:
 - 1. Substituição (Replacement).
 - 2. Inserção (Insertion).
 - 3. Remoção (Deletion).
 - 4. Casamento (Match).
- A operação de casamento não é contada na distância de edição, ou seja, custo 0.
- ► Assim, valores menores indicam menor distância de edição.

- Algoritmo:
 - ▶ Dados duas palavras (A e B) e os custos de inserção, remoção e substituição de elementos.
 - Calcular o custo para transformar a palavra A na palavra B através do cálculo do custo de transformação de subcadeias de A em subcadeias de B.
 - Armazenar os resultados em uma tabela.

- ▶ O tamanho da matriz é $(M+1) \times (N+1)$, onde M e N são os tamanhos das cadeias A e B respectivamente.
- ► Cada linha da tabela representa uma subcadeia de A e cada coluna representa uma subcadeia de B.
 - A linha i representa a cadeia com os i primeiros caracteres de A (cadeia vazia para i=0).
 - A coluna j representa a cadeia com os j primeiros caracteres de B.
 - A posição [i][j] da tabela representa o custo de transformar a subcadeia com i caracteres de A na subcadeia com j caracteres de B.

- ▶ Matriz é iniciada com 0 na posição [0][0].
- Às demais posições da linha 0 é adicionado o custo de uma inserção ao elemento da esquerda.
- Às demais posições da coluna 0 é adicionado o custo de remoção ao elemento de cima.

		P	A	I
	0	1	2	3
C	1			
A	2			
S	3			
A	4			

Exemplo (Distância de Edição)

- ▶ Para as demais posições [i][j], o algoritmo verifica se é melhor:
 - 1. Transformar a subcadeia i na j-1 e inserir um elemento;

cas
ightarrow pa: transforma cas em p e insere a no fim da subcadeia.

2. Transformar a subcadeia i-1 na j e remover um elemento;

 $cas \rightarrow pa$: transforma ca em pa e depois remove o último caractere (s).

3. Transformar a subcadeia i-1 na j-1 e substituir um elemento (caso o elemento A[i] seja diferente do B[j]);

 $cas \rightarrow pa$: transforma ca em p e depois substitui o último caractere (s) por a.

Exemplo (Distância de Edição)

▶ Custo para transformar CASA em PAI:

Inicialização								
		P A I						
	0	1	2	3]			
C	1				:			
A	2							
S	3							
A	4							

	Substituição							
]			P	A	I	1		
]		0	1	2	3	1		
\Rightarrow	C	1	1			1		
]	A	2				1		
]	S	3				1		
]	A	4				J		

	Substituição						
			P	A	I		
		0	1	2	3		
۱	C	1	1	2		\Rightarrow	
	A	2				1	
	S	3					
ĺ	A	4					

	Substituição					
		P	A	I	l	
	0	1	2	3	l	
C	1	1	2	3	1	
A	2					
S	3				l	
A	4					

			Substituição						
			P	A	I				
		0	1	2	3	1			
\Rightarrow	C	1	1	2	3	⇒			
	A	2							
	S	3				1			
	A	4							

	Substituição						
			P	A	I		
		0	1	2	3		
⇒	C	1	1	2	3	\Rightarrow	
	A	2	2				
	S	3					
	A	4					

	Casamento						
		P	A	I			
	0	1	2	3			
C	1	1	2	3			
A	2	2	1				
S	3						
A	4						

			Inserção					
			P	A	I			
		0	1	2	3			
\Rightarrow	C	1	1	2	3	=		
	A	2	2	1	2			
	S	3						
	A	4						

		9	Substituição						
			P	A	I				
		0	1	2	3				
\Rightarrow	C	1	1	2	3	\Rightarrow			
	A	2	2	1	2				
	S	3	3						
	A	4							

Exemplo (Distância de Edição)

ightharpoonup Custo para transformar CASA em PAI:

	Kemoçao				- 2	oupsti	tuiça	0			
		P	A	I]			P	A	I	1
	0	1	2	3]		0	1	2	3]
C	1	1	2	3	\Rightarrow	C	1	1	2	3]
A	2	2	1	2]	A	2	2	1	2]
S	3	3	2]	S	3	3	2	2]
A	4]	A	4]

C L ~

			Remoção					
			P	A	I			
		0	1	2	3			
	C	1	1	2	3			
	A	2	2	1	2			
	S	3	3	2	2			
ĺ	A	4	4	3	3			

Custo no pseudo-código:

R Remoção,

I Inserção.

S Substituição

0 Casamento.

```
Dist(A, B)
     Entrada: Cadeias A, B
     Saída: Inteiro
 1 m \leftarrow |A|:
 2 n ← |B|;
 3 M[0][0] ← 0:
 4 para i \leftarrow 1 até m faca
 5 | M[i][0] \leftarrow M[i-1][0] + R;
 6 para i \leftarrow 1 até n faca
 7 | M[0][j] \leftarrow M[0][j-1] + I:
    para i \leftarrow 1 até m faça
            para i \leftarrow 1 até n faca
10
                   se A[i] = B[i] então
                  | custo Extra \leftarrow 0; senão
11
12
                    | custoExtra \leftarrow S
13
           M[i][j] \leftarrow \min \left( \begin{array}{cc} M[i-1][j] & +R, \\ M[i][j-1] & +I, \\ M[i-1][i-1] + custoExtra \end{array} \right);
14
15 retorna M[m][n];
```

Exemplo (Problema da Mochila)

- Busca calcular a melhor maneira de se armazenar em um compartimento qualquer muitos itens com valores agregados, de forma que o somatório dos valores de tais itens seja o máximo possível dentre as possibilidades de combinação de itens.
- ▶ Matriz bidimensional (M), de ordem $(N+1) \times (C+1)$, onde:

N: Número de itens;

C: Capacidade da mochila.

- Idéia do algoritmo:
 - 1. Começar com uma mochila de capacidade 1 e descobrir o valor máximo possível para esta mochila.
 - Passar para uma mochila de capacidade 2 e aproveitar as informações da mochila de capacidade atual - 1 (nesse caso, 1) para descobrir o valor máximo para uma mochila de capacidade 2.
 - 3. Repetir esse procedimento até capacidade atual ser igual a C. Além da capacidade ir crescendo, também vai se adicionando novos itens no processo.

- ► Idéia do algoritmo:
 - 1. Percorrendo a tabela por linha (por item), e para a coluna j atual (capacidade atual), analisar se o item atual i (linha atual) cabe na mochila de capacidade j.
 - 2. Se couber é preciso escolher o maior valor entre:
 - 2.1 Valor na mochila de mesma capacidade j que não tinha esse item (essa informação estará em M[i-1][j]).
 - 2.2 Soma do valor do item com o valor na mochila de capacidade (j- peso do item i) e que não tinha esse item (M[i-1][j- peso do item i]).
 - 3. Se não couber, o maior valor para essa mochila será o valor da mochila de mesma capacidade, mas que não tem esse item (M[i][j] = M[i-1][j]).

```
\mathsf{Knapsack}(N,C)
    Entrada: Número de produtos (N) e Capacidade da mochila (C)
    Saída: Valor máximo para a capacidade C
 1 M[0][0] ← 0:
 2 para i \leftarrow 1 até N faca
 3 | M[i][0] ← 0;
   para i \leftarrow 1 até C faca
 5 | M[0][i] ← 0;
    para i \leftarrow 1 até N faca
           para j \leftarrow 1 até C faça
 7
 8
                 se itens[i].peso \leq j então
                        M[i][i] \leftarrow
                    \max \left(\begin{array}{c} M[i-1][j], \\ M[i-1][j-itens[i].peso] + itens[i].valor \end{array}\right);
10
                 senão
11
                       M[i][j] \leftarrow M[i-1][j];
12 retorna M[N][C]:
```

	,	
ltem	Peso	Valor
1	4	2
2	2	1
3	1	3
4	2	4
5	2	1