4CCS1DST, 2016/17 – Lecture 6 – Tree Structures,

Lecture 6: Tree Structures

(Chapter 7 from the book)

Agenda

- General Trees
- □ Tree Traversal Algorithms
- Binary Trees
- Binary Search Tree

4CCS1DST, 2016/17 – Lecture 6 – Tree Structures,

General Trees

What is a Tree

 In computer science, a tree is an abstract model of a hierarchical structure (nonlinear)

A tree consists of nodes with a parent-child relation

- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Terminology

- Each node (except root top node) has parent and zero or more children
 - Root: node without parent (A)
 - Internal node: node with at least one child (A, B, C, F)
 - External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
 - Ancestors of a node: parent, grandparent, grandgrandparent, etc.
 - Descendant of a node: child, grandchild, grand-grandchild, etc.
 - Siblings: children of the same parent (e.g. I, J, K)

Tree Terminology

- Depth of a node: number of ancestors (e.g. for F it is 2)
- Height of a tree: maximum depth of any node (3)
- Subtree: tree consisting of a node and its descendants

Formal Tree Definition

- Tree 7 is a set of nodes storing elements such that the nodes have a parent-child relationship, that satisfies the following properties:
 - If T is nonempty, it has a special node, called the root of T, that has no parent.
 - Each node ν of T different from the root has a unique parent node w. Every node with parent w is a child of w.

Note that tree can be empty!

Exercise 1 – Tree

- Draw a tree that has 11 nodes.6 of those nodes are leaves.
- For each node:
 - name its ancestors and descendants,
 - Name its siblings,
 - say if the node is internal or external,
 - give its depth.
- Evaluate the height of the tree

Exercise 1 – Tree – Answer

- Consider node G:
 - its ancestors A, B
 - its descendants I, J
 - its siblings F
 - say if the node is internal or external – internal
 - give its depth 2
- Evaluate the height of the tree – 3

Ordered Tree

- A tree is ordered if there is a linear ordering defined for the children of each node
 - We can identify the children of node as being the first, second, third, etc.
- Ordered trees typically indicate the linear order among siblings by listing them in the correct order.

Tree ADT

- Tree ADT stores elements at positions, which, as with positions in a list, are defined relative to neighbouring positions.
- As with a list position, a position object for a tree supports the method
 - element() return the object stored at this position
- The positions in a tree are its nodes, and neighbouring positions satisfy the parent-child relationships that define a valid tree.
- Accessor methods:
 - position root() return the tree's root; an error occurs if the tree is empty;
 - position parent(v) return the parent of v, an error occurs if v is the root;
 - Iterable children(v) return an iterable collection containing the children of node v.

Tree ADT (cont.)

- Query methods:
 - boolean isInternal(v) test whether node v is internal;
 - boolean isExternal(v) test whether node v is external;
 - boolean isRoot(v) test whether node v is a root.
- These methods make programming with trees easier
 and more readable as we can use them in the
 conditionals of *if* statements and *while* loops

Tree ADT (cont.)

Generic methods:

- integer size() return the number of nodes in the tree;
- boolean isEmpty() test whether the tree has any nodes or not;
- Iterator iterator() return an iterator of all the elements stored at nodes of the tree;
- Iterable positions() return an iterable collection of all the nodes of the tree;
- element replace (v, e) replace with e and return the element stored at node v.

Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

4CCS1DST, 2016/17 – Lecture 6 – Tree Structures,

Tree Traversal Algorithms

Traversal of a Tree

- A traversal of a tree T is a systematic way of accessing, or "visiting", all the nodes of T.
- Traversal schemes:
 - Preorder traversal
 - Postorder traversal

Preorder Traversal

- In a preorder traversal, a node is visited before its descendants.
- Parents always come before their children.
- Note that if the tree is ordered, then the subtrees are traversed according to the order of children.
- Application: print a structured document.
- \square Running time for the tree with *n* nodes: O(*n*)

Preorder Traversal

© 2010 Goodrich, Tamassia

Trees

18

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories
- Running time for the tree with n nodes: O(n)

Postorder Traversal

© 2010 Goodrich, Tamassia

Trees

4CCS1DST, 2016/17 – Lecture 6 – Tree Structures, **Binary Trees** © 2010 Goodrich, Tamassia 21 **Trees**

Binary Trees - Definition

- A binary tree is an ordered tree with the following properties:
 - Each internal node has at most two children
 - Each child node is labeled as being either a left child or a right child
 - A left child precedes a right child in the ordering of children of a node
- □ The subtree rooted at a left or right child of an internal node \(\nu\) is called a left subtree or right subtree, respectively, of \(\nu\).
- A binary tree is proper (a.k.a. full) if each node has either zero or two children. Each internal node has exactly two children.

B C

Binary Trees - Recursive Def.

- □ A binary tree 7 is either empty or consists of
 - A node *r*, called the root of *T* and storing the element
 - A binary tree, called the left subtree of T
 - A binary tree, called the right subtree of 7.

Binary Trees – Applications

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

- Notation
- n number of nodes
- n_e number of external nodes
- n_i number of internal nodes
- h height

- a) $h+1 \le n \le 2^{h+1}-1$
- b) $1 \le n_e \le 2^h$
 - c) $h \le n_i \le 2^h 1$
 - d) $\log_2(n+1) 1 \le h \le n-1$

For $n \ge 1$

a)
$$h+1 \le n \le 2^{h+1}-1$$

b)
$$1 \le n_e \le 2^h$$

c)
$$h \le n_i \le 2^h - 1$$

d)
$$\log_2(n+1) - 1 \le h \le n-1$$

a)
$$4 \le 15 \le 15$$

b)
$$1 \le 8 \le 8$$

c)
$$3 \le 7 \le 7$$

d)
$$3 \le 3 \le 14$$

For $n \ge 1$

Height – h

© 2010 Goodrich, Tamassia

Trees

h=3 $n_e=8$ $n_i=7$ n=15

a)
$$h+1 \le n \le 2^{h+1}-1$$

b)
$$1 \le n_e \le 2^h$$

c)
$$h \le n_i \le 2^h - 1$$

d)
$$\log_2(n+1) - 1 \le h \le n-1$$

a)
$$4 \le 7 \le 15$$

b)
$$1 \le 4 \le 8$$

c)
$$3 \le 3 \le 7$$

d)
$$2 \le 3 \le 6$$

For $n \ge 1$

h=3 $n_e=4$ $n_i=3$ n=7

a)
$$h+1 \le n \le 2^{h+1}-1$$

b)
$$1 \le n_e \le 2^h$$

c)
$$h \le n_i \le 2^h - 1$$

d)
$$\log_2(n+1) - 1 \le h \le n-1$$

For
$$n \ge 1$$

a)
$$1 \le 1 \le 1$$

b)
$$1 \le 1 \le 1$$

c)
$$0 \le 0 \le 0$$

d)
$$0 \le 0 \le 0$$

Height
$$-h$$
 $h=0$ $n_e=1$ $n_i=0$ $n=1$

a) Let $n \ge 1$ be the number of elements in a binary tree of height $h \ge 0$ then: $h+1 \le n \le 2^{h+1}-1$

Justification

- \Box We must have at least one element at each level 0, 1, ..., h, so $n \ge h+1$
- □ At each level i, for i=0, 1, ..., h there are at most 2^i elements at this level, so we have:

$$n \le \sum_{i=0}^{h} 2^{i} = 1 + 2 + 4 + \dots + 2^{h} = 1 \cdot \frac{1 - 2^{h+1}}{1 - 2} = 2^{h+1} - 1$$

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT,
 i.e., it inherits all the methods of the Tree
 ADT
- Additional methods:
 - position left(v) return the left child of v,
 - position right(v) return the right child of v,
 - boolean hasLeft(v) test whether v has a left child
 - boolean hasRight(v) test whether v has a right child

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

Preorder Traversal

- The preorder traversal for general trees can be applied to any binary tree.
- However, the algorithm can be simplified:

```
Algorithm preOrder(T, v)

visit(v)

for each child w of v in T

preorder (T, w)
```

```
Algorithm binaryPreorder(T, v)
visit(v)
if hasLeft (v) then
binaryPreorder(T, left(v))
if hasRight (v) then
binaryPreorder(T,
right(v))c
```

Postorder Traversal

- The postorder traversal for general trees can be applied to any binary tree.
- However, the algorithm can be simplified:

```
Algorithm postOrder(T, v)

for each child w of v in T

postOrder (T, w)

visit(v)
```

```
Algorithm binaryPostorder(T, v)
if hasLeft (v) then
binaryPostorder(T, left(v))
if hasRight (v) then
binaryPostorder(T,
right(v))
visit(v)
```

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm inOrder(T, v)

if hasLeft(v)

inOrder(T, left(v))

visit(v)

if hasRight (v)

inOrder(T, right(v))

Binary Tree Traversals – To sum up

- Basic operations of the Binary Tree data structure are systematic traversals of the nodes of the tree.
- The common ways of traverse a binary tree are:
 - Preorder: Visit-Left-Right
 - Inorder: Left-Visit-Right
 - Postorder: Left-Right-Visit
- Example
 - Preorder: A [left] [right] = A B D E C F
 - Inorder: [left] A [right] = D B E A F C
 - Postorder: [left] [right] A = D E B F C A
 - Postorder, [left] [right] A D L D i C
- See also:
 - http://www.khanacademy.org/cs/depth-first-traversals-of-binarytrees/934024358

Exercise 2 – Binary tree traversals

 List the nodes of the following binary tree in preorder, postorder and inorder traversals.

39

Exercise 2 – Binary tree traversals – Answer

- □ Preorder: D E G B H I A F C J
- □ Postorder: G I H B E C F J A D
- □ Inorder: G E H I B D F C A J

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree


```
Algorithm printExpression(T, v)

if hasLeft (v)

print("(")

inOrder (T, left(v))

print(v.element ())

if hasRight (v)

inOrder (T, right(v))

print (")")
```

$$((2 \times (a - 1)) + (3 \times b))$$

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

```
2 — 3 <u>2</u> — 5 <u>1</u>
```

```
Algorithm evalExpr(T, v)

if isExternal (v)

return v.element ()

else

x \leftarrow evalExpr(T, leftChild (v))

y \leftarrow evalExpr(T, rightChild (v))

\Diamond \leftarrow operator stored at v

return x \Diamond y
```

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)

Binary Search Trees

Binary Search Trees

- A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes and satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have key(u) ≤ key(v) ≤ key(w)
- External nodes do not store items

 An inorder traversal of a binary search trees visits the keys in increasing order

Search

- To search for a key k, we trace a downward path
 starting at the root
- The next node visited
 depends on the comparison
 of k with the key of the
 current node
- If we reach a leaf, the key is not found
- Example: TreeSearch(4,root)

```
Algorithm TreeSearch(k, v)

if isExternal (v)

return v

if k < key(v)

return TreeSearch(k, left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, right(v))
```


Exercise 3 – Binary search tree

- Represent the below array as a binary search tree and show the execution of *TreeSearch* algorithm.
- Give the set of steps that have to be performed in order to find element
 "Paul" in an ordered array presented below

 0	1	2	3	4	5	6	7
 Iain	Beryl	Otto	Anne	George	Janet	Paul	Rachel

