Solutions to Practice Problems for Linear Algebra Review

Within Exam Scope

1. Subspaces and Spans

Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ are vectors in \mathbb{R}^3 . Do you agree with the statement that these vectors span \mathbb{R}^3 ?

Solution: Not necessarily. They can be linearly dependent so that the dimension of their span is less than 3.

2. Orthogonality

Which pairs are orthogonal among the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

Solution: v_1 and v_3 ; v_2 and v_3 .

3. Linear Independence

If v_1 , v_2 and v_3 are independent vectors, would the following vectors be independent?

$$w_1 = v_1 + v_3$$
, $w_2 = v_1 + v_2$, $w_3 = v_2 + v_3$.

Solution: Yes. Can check by definition. Source: Strang, Gilbert (2006), Linear Algebra and Its Applications, CENGAGE.

4. Range and Rank

For $A \in \mathbb{R}^{n \times n}$, if rank(A) = m < n, then what is the dimension of the null space?

Solution: n-m.

5. Matrix Inverse

We have matrices $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Which of the following are true?

(a) A is singular

- (b) **B** is invertible
- (c) $\mathbf{A} + \mathbf{B}$ is invertible.

Solution: (1) and (3) true, (2) is false since **B** is singular.

6. Subspaces

The smallest subspace of \mathbb{R}^3 containing the vectors $\begin{pmatrix} 0 \\ -3 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ is the line whose equations are x=a and z=by. What are the values of a and b?

Solution: a = 0, b = -2.

7. Matrix Inverse

For \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\alpha \in \mathbb{R}$, assume \mathbf{A} and \mathbf{B} are invertible:

(a) $(\text{True/False}) (\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$,

- (b) (True/False) $(\mathbf{AB})^{-1} = \mathbf{A}^{-1}\mathbf{B}^{-1}$
- (c) (True/False) If $det(\mathbf{A}) = 2$, then $det(\mathbf{A}^{-1}) = 2^{-1}$.
- (d) (True/False) If $\det(\mathbf{A}) = 2$ and $\alpha > 1$, then $\det(\alpha \mathbf{A}) = 2$.

Solution: (a) True (b) False (c) True (d) False

8. Linear Independence

Let $\mathbf{u} = \begin{pmatrix} \lambda \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$. What are possible values of λ that make $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly dependent?

2

Solution: Solving $det([\mathbf{u}, \mathbf{v}, \mathbf{w}]) = 0$ we get $\lambda = -\sqrt{2}, 0, \sqrt{2}$.

9. Matrix Product

For $\mathbf{A} = \begin{bmatrix} 1 & 1/3 \\ x & y \end{bmatrix}$, find the value of x and y such that $\mathbf{A}^2 = 0$.

Solution: x = -3, y = -1.

10. Inner Product

Consider the space of all matrices in $\mathbb{R}^{2\times 2}$. Define inner product as $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B})$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2\times 2}$. Let $\mathbf{U} = \begin{bmatrix} 1 & 4 \\ -3 & 5 \end{bmatrix}$ and $\mathbf{V} = \begin{bmatrix} x^2 & x-1 \\ x+1 & -1 \end{bmatrix}$. Find all values of x such that $\mathbf{U} \perp \mathbf{V}$.

Solution: x = 3, -4.

11. Matrix Inverse

If a non-singular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ satisfies $\mathbf{A}^3 - 4\mathbf{A}^2 + 3\mathbf{A} - 2\mathbf{I}_n = \mathbf{0}$, what is \mathbf{A}^{-1} ?

Solution: $\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A}^2 - 4\mathbf{A} + 3\mathbf{I}_n).$

12. Basis

Let $\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ c \end{pmatrix}$ where $c \in \mathbb{R}$. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is **not** equal to what value?

Solution: $c \neq -3$.

13. Subspaces

Consider the set of points $(x, y, z) \in \mathbb{R}^3$. Which one of the following is a subspace of \mathbb{R}^3 ?

- (a) x + 3y 2z = 3.
- (b) x + y + z = 0 and x y z = 2.
- (c) $\frac{x+1}{2} = \frac{y-2}{4} = \frac{z}{3}$.
- (d) $x^2 + y^2 = z$.
- (e) x = -z and x = z.
- (f) $\frac{x}{3} = \frac{y+1}{2}$.

Solution: (e). Subspaces of \mathbb{R}^3 must contain the origin.