CY-TECH - Département Mathématiques

2^{ème} année Ingénieurs - Mathématiques & Informatique Optimisation déterministe

TD1 - Introduction et généralités 2023-2024

EXERCICE 1 On considère $\mathbf{U} = \mathcal{B}((0,0),1)$ la boule ouverte de \mathbb{R}^2 centrée en (0,0) et de rayon 1. Soit f une fonction de classe \mathscr{C}^2 sur \mathbf{U} , $f: \mathbf{U} \to \mathbb{R}^2$ définie pour $(x_1, x_2) \in \mathbb{R}^2$ par

$$f(x_1, x_2) = \frac{e^{\sin(\sqrt{1+x_1} - \sqrt{1+x_2})}}{2 + x_1 - x_2}.$$

Sachant que

$$\frac{\partial f}{\partial x_1}(0,0) = \frac{\partial f}{\partial x_2}(0,0) = 0, \frac{\partial^2 f}{\partial x_1^2}(0,0) = 0, \quad \frac{\partial^2 f}{\partial x_2^2}(0,0) = \frac{1}{8}, \quad \frac{\partial^2 f}{\partial x_1 \partial x_2}(0,0) = \frac{\partial^2 f}{\partial x_2 \partial x_1}(0,0) = -\frac{1}{8},$$

déterminer le développement de Taylor-Young de f à l'ordre 2 en a = (0,0).

EXERCICE 2 Soit $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ l'espace vectoriel des applications linéaires de \mathbb{R}^n dans \mathbb{R} . Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$. Montrer que l'hyperplan H de \mathbb{R}^n défini par

$$H = \left\{ x \in \mathbb{R}^n; \ f(x) = \alpha \right\}$$

est un convexe de \mathbb{R}^n où $\alpha \in \mathbb{R}$.

EXERCICE 3 Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable sur \mathbb{R}^n . Montrer que Les propriétés suivantes sont équivalentes:

- 1. *f* est convexe.
- 2. $\forall (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, f(y) \ge f(x) + \langle \nabla f(x), y x \rangle.$

EXERCICE 4

- 1. Soit $f: \Omega \to \mathbb{R}$ une fonction convexe avec $f(\Omega) \subset I$ et soit $g: I \to \mathbb{R}$, une fonction convexe croissante. Montrer que la fonction composée $g \circ f$ est convexe.
- 2. Application:
 - (a) Si f est une fonction convexe sur \mathbb{R} . Montrer que la fonction $\exp(f)$ est convexe.
 - (b) Si f > 0 et la fonction $\ln(f)$ est convexe alors la fonction f est convexe.

EXERCICE 5 On considère la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x_1, x_2) \in \mathbb{R}^2$ par

$$f(x_1, x_2) = x_1^2 + x_2^2$$
.

- 1. Soit $d = (d_1, d_2)$, montrer que la dérivée directionnelle au point (x_1, x_2) dans la direction de d existe.
- 2. Soit d = (1;0), exprimer la dérivée directionnelle au point (x_1, x_2) dans la direction de d. Que peut-on dire sur f.

EXERCICE 6 Soit $f: \mathbb{R}^n \to \mathbb{R}$ une forme quadratique où

$$f: x \mapsto c + b^{\mathrm{T}}x + \frac{1}{2}x^{\mathrm{T}}Ax$$

A une matrice symétrique d'ordre n. Montrer que $\forall x \in \mathbb{R}^n$, $\nabla f(x) = Ax + b$ et $\nabla^2 f(x) = A$.

EXERCICE 7 Sur \mathbb{R}^2 , on considère la fonction f définie pour $x = (x_1, x_2) \in \mathbb{R}^2$ par

$$f(x) = x_1 - x_2 + \frac{1}{2}x_1^2 + x_2^2.$$

- 1. Montrer que f est une fonction quadratique sur \mathbb{R}^2 .
- 2. Exprimer $\nabla f(x)$ et $\mathbf{H}_f(x)$.
- 3. Soient $x \in \mathbb{R}^2$, $d \in \mathbb{R}^2$ non nul. Résoudre $g'(\mathbf{t}) = 0$ où

$$g: \mathbb{R} \to \mathbb{R}$$

$$\mathbf{t} \mapsto f(x+\mathbf{t}d)$$

EXERCICE 8 Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée et b un vecteur de \mathbb{R}^n . On considère la fonction des moindres carrés $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}^n$ par

$$f(x) = \frac{1}{2} \left\| Ax - b \right\|^2.$$

- 1. Montrer que f est une fonction quadratique.
- 2. Donner l'expression du gradient $\nabla f(x)$ et du hessien $\mathbf{H}_f(x)$ en tout point $x \in \mathbb{R}^n$.
- 3. Montrer que f est convexe.
- 4. Soient $x \in \mathbb{R}^n$ et d un vecteur non nul de \mathbb{R}^n tel que $Ad \neq 0_{\mathbb{R}^n}$. On considère la fonction réelle $g: t \mapsto f(x+td)$. Montrer que

$$\arg\min_{t\in\mathbb{R}_+}g(t) = -\frac{\langle \nabla f(x), d\rangle}{\|Ad\|^2}.$$