Curso: MIECOM Teste Escrito: 10/Jul/09

Disciplina: Redes de Computadores 2 **Duração:** 120 min

NOME	
------	--

Leia atentamente todo o enunciado do teste antes de começar a responder.

1. A figura representa uma rede TCP/IP constituída por 6 routers interligados entre si por ligações Ethernet IEEE802.3 a 100Mpbs e/ou Série a 10Mpbs, com uma única ligação ao exterior.

a. **[2 valores]** Suponha que está a usar encaminhamento estático. Apresente as tabelas de encaminhamento dos routers A e F (utilizando como métrica o nº de saltos) de forma a garantir-lhes conectividade com todas as redes. (atribua endereços IP às interfaces dos routers que necessitar de incluir nas tabelas).

Router A

Destino	Máscara de Rede	Interface de Saída	Próximo Nó	Custo

Router F

Destino	Máscara de Rede	Interface de Saída	Próximo Nó	Custo
	_	_		

b. **[2 valores]** Suponha agora que activa o encaminhamento dinâmico na sua rede, recorrendo ao protocolo OSPF. Atribua custos a todas as ligações de acordo com a métrica utilizada pelo OSPF e preencha a seguinte tabela utilizando o algoritmo de Dijkstra para determinar os menores caminhos para todos os destinos a partir do *Router* A, e a respectiva tabela de encaminhamento.

N	D (B), P (B)	D (C), P (C)	D (D), P (D)	D (E), P (E)	D (F), P (F)

Destino	Máscara de Rede	Interface de Saída	Próximo Nó	Custo

- c. **[2 valores]** Partindo do princípio que se está a usar um algoritmo de <u>vectores de distância</u>, construa a tabela de distância dos nós A e F quando o sistema atinge a estabilidade, isto é, quando todos os nós têm uma estimativa correcta dos custos dos caminhos mais curtos.
- d. **[2 valores]** Suponha que se quebra a ligação entre os routers A e B. Mostre a evolução das tabelas de distância até o sistema voltar a estabilizar usando o algoritmo de vectores de distância com o método poisson-reverse,
- 2. Considere que os nós Y e Z da topologia apresentada em cima fazem parte do grupo multicast G.
 - a. **[1,5 valores]** Admita que o nó X é uma fonte do grupo G. Determine a árvore de distribuição de tráfego multicast construída pelo protocolo MOSPF. Apresente as tabelas de encaminhamento multicast dos nós envolvidos (Sugestão: use apenas os seguintes campos: source, group, incomingInterfaceNode, outgoingInterfaceNodes).
 - b. **[1,5 valores]** Suponha que em vez de se usar o protocolo MOSPF se usava antes o protocolo PIM-DM. Explique se neste caso as árvores multicast construídas por um e outro protocolo eram iguais ou diferentes, justificando.
 - c. [2 valores] Compare estes dois protocolos realçando as suas principais vantagens e desvantagens.
- **3. [2 valores]** Identifique as principais limitações do modelo IntServ, e explique como é que estas foram ultrapassadas ou minimizadas pelo modelo DiffServ.

- **4.** Um cliente pretende fazer o download de um ficheiro de tamanho 20.000 bytes, usando o protocolo TCP-Reno através de uma única ligação. Assuma que o pedido de transferência feito pelo cliente segue juntamente com o terceiro segmento da fase de estabelecimento da sessão TCP. Desprezam-se quaisquer tempos de processamento no cliente e no servidor. Suponha ainda que:
 - i. os segmentos TCP com dados são de dimensão L=1000 bytes e o comprimento dos cabeçalhos (de todos os protocolos da pilha) é desprezável;
 - ii. a ligação tem um débito R=8 Mbit/s e o atraso de ida e volta é RTT = 5 ms;
 - iii. somente os pacotes com dados não têm tempos de transmissão desprezáveis;
 - iv. é enviado um segmento de confirmação (ACK) por cada segmento bem recebido, logo após a recepção de um segmento; a janela TCP de emissão no servidor é apenas limitada pelos mecanismos de controlo de congestionamento (isto é, os buffers na recepção do cliente são ilimitados):
 - v. o limiar (threshold) entre a fase slow-start e a fase congestion avoidance da sessão TCP é 4.
 - a. **[2 valores]** Apresente um diagrama temporal que ilustre a sequência de segmentos trocados até que o ficheiro seja totalmente recebido pelo cliente. Com base nesse diagrama, determine o tempo necessário até à completa recepção do ficheiro pelo cliente
 - b. **[3 valores]** Admita agora que o segmento 7 ser perde e a perda é detectada por timeout. Supondo que o intervalo do temporizador para o evento de timeout é de 7 ms e assumindo que, nesta implementação do receptor TCP, todos os segmentos que forem recebidos fora de ordem são aceites pelo receptor, calcule o tempo necessário até à completa recepção do ficheiro com auxilio <u>de um diagrama temporal que ilustre a sequência de segmentos trocados</u>.