

Reti Mobili Distribuite

Prof. Antonio Capone

Accesso Multiplo

- □ a) Si illustri il modello per il calcolo del tempo medio di attesa in coda per sistemi a polling di tipo esaustivo.
- □ b) Nel caso di:
- tempo di trasmissione pari a 3 ms
- □ tempo di passaggio del token pari a 0.8 ms
- \square traffico r = 0.7
- □ numero di stazioni M=10
- □ si calcolino: 1) il ritardo medio d'attesa in coda; 2) la durata media del ciclo; 3) il numero medio di pacchetti nella coda locale; 4) il numero medio di pacchetti trasmessi per ciclo.

Per la parte b) si ha:

$$E[W] = \frac{\rho}{2(1-\rho)}T + \frac{M-\rho}{2(1-\rho)}h = 15.9ms$$

$$E[C] = \frac{Mh}{1-\rho} = 26.67ms$$

$$E[N_l] = \frac{\lambda E[W]}{M} = 0.37$$

$$Q_c = \frac{E[C] - Mh}{T} = 6.22$$

- □ a) Si illustri il modello single buffer di Aloha e si commentino i possibili stati di funzionamento.
- □ b) Si caratterizzi il comportamento del sistema (numero e tipo degli stati di equilibrio) nel caso di:
 - M = 50
 - a = 0.004
 - b = 0.03
- c) Si stimi il valore del throughput del sistema assumendo i valori numerici del punto precedente (suggerimento: si approssimi la curva del throughput con uno sviluppo in serie di secondo grado).

$$s(g) = ge^{-g} \cong g - g^{2}$$

$$a(g) = M\alpha + (g - M\alpha) \frac{\alpha}{\beta - \alpha}$$

$$s(g) = a(g)$$

$$s \cong 0.19$$

$$g \cong 0.25$$

- a) Si illustri il meccanismo di risoluzione delle collisione basato sugli algoritmi ad albero.
- b) Si descriva l'evoluzione del meccanismo, slot per slot, nel caso di 7 stazioni che collidono insieme nello slot 0, ipotizzando che nessun altra stazione si inserisca durante la risoluzione della collisione e che il generatore di numeri casuali utilizzato da ogni stazione fornisca per ciascuna le seguenti sequenze:

1)				0			1	
2)				1			0	
3)				0				
4)	0			1		1	0	
5)	0			0		1	1	
6)	0	1	1	1	0	0	1	
7)	0	1	0	1	0	1	0	

1 2 3 4 5 6	3 4 5 6 7	3 4	3	4	5 6 7	5 7	5	7	6	1 2	1	2
7		-	1)	1	0	0	0		1	1	1	
			2)	1	1	1	1		1	0	0	
			3)	0	0	0	0		1	1	0	
			4)	0	0	1	1		0	1	0	
			5)	0	1	0	0		0	1	1	
			6)	0	1	1	1		0	0	1	
		_	7)	0	1	0	1		0	1	0	

- ☐ Si illustri il modello single buffer di Aloha e si commentino i possibili stati di funzionamento.
- ☐ Si caratterizzi il comportamento del sistema (numero e tipo degli stati di equilibrio) nel caso di:
 - $M = \infty$
 - $M \alpha = 0.3$

$$s(g) = ge^{-g}$$

$$a(g) = M\alpha = 0.3$$

$$s(g) = a(g)$$

$$s = 0.3$$

$$g \approx 0.49$$

- a) Si illustri il modello per il calcolo del tempo medio di attesa in coda per sistemi a polling di tipo esaustivo.
- □ b) Nel caso di:
 - tempo di trasmissione pari a 2 ms
 - tempo di passaggio del token pari a 0.5 ms
 - traffico r = 0.7
 - numero di stazioni M=10
- si calcolino: 1) il ritardo medio d'attesa in coda; 2) la durata media del ciclo; 3) il numero medio di pacchetti nella coda locale; 4) il numero medio di pacchetti trasmessi per ciclo.

□ Per la parte b) si ha:

$$E[W] = \frac{\rho}{2(1-\rho)}T + \frac{M-\rho}{2(1-\rho)}h = 10.08ms$$

$$E[C] = \frac{Mh}{1-\rho} = 16.67ms$$

$$E[N_l] = \frac{\lambda E[W]}{M} = 0.35$$

$$Q_c = \frac{E[C] - Mh}{T} = 5.83$$

TCP

- ☐ Si descriva il modello per il calcolo del throughput medio per connessioni TCP di tipo long-lived. Si stimi il tempo medio per il trasferimento di un file di 10MB nell'ipotesi che:
 - Le perdite vengano tutte recuperate mediante fast retransmit
 - Le perdite siano solo dovute a congestione
 - La capacità del link che costituisce il collo di bottiglia della connessione è pari a 1 Mb/s
 - Il RTT è pari a 200 ms
 - Il MSS è pari a 1000B

- In questo caso non è indicata una probabilità di perdita dei segmenti ma la capacità del collo di bottiglia del collegamento
- Quindi le perdite si hanno quando il rate di trasmissione raggiunge la capacità:

$$C = \frac{W \cdot MSS}{RTT}$$

- □ Il rate medio si può ottenere sostituendo W ricavato dalla formula nell'espressione del rate fornita dal modello per connessioni long-lived
- Oppure osservando la figura e notando che:

$$R = \frac{3}{4}C = 7.5 \text{ Mb/s}$$

☐ E quindi

$$t = \frac{80 \, Mb}{7,5 \, Mb \, / \, s} = 10,67 \, s$$

- ☐ Si descriva il modello per il calcolo del throughput medio per connessioni TCP di tipo short-lived. Si stimi il tempo medio per il trasferimento di un file di 30KB nell'ipotesi che:
 - La probabilità di perdità è pari a 2 x 10⁻²
 - Il RTT è pari a 200 ms
 - Il timeout iniziale è pari a 2s
 - Il MSS è pari a 1000B

☐ Si ha:

30 segmenti

$$1 = 30 \frac{0.02}{1 - 0.02} = 0.6$$
 segmenti persi

$$Q(p) = \min\left(1; \frac{3}{\sqrt{\frac{3}{8pb}}}\right) = 0.7$$

$$u = l \cdot Q(p) \cdot (1-p) = 0.6 \cdot 0.7 \cdot 0.98 = 0.41$$

continua:

$$t_{RTO} = u \cdot t_u = 0.41 \cdot 2 = 0.82 \text{ s con } t_u \cong t_0$$

$$e = \frac{30 + 0.6}{u + 1} = 21.7$$

$$t_{xfer} = \log_2 \left(\frac{e}{w_0} + 1\right)(u + 1)RTT = 1.27 \text{ s}$$

$$t_{tot} = 1.27 + 0.82 + 0.2 = 2.29 \text{ s}$$

- □ a) Si descriva il modello per il calcolo del throughput medio per connessioni TCP di tipo longlived in presenza di errori sul canale wireless.
- □ b) Si stimi il tempo medio per il trasferimento di un file di D=5MB nell'ipotesi che:
 - Le perdite vengano tutte recuperate mediante fast retransmit
 - La probabilità di perdità è pari a 8 x 10⁻³
 - Il RTT è pari a 300 ms
 - Il MSS è pari a 1000B
 - La capacità del canale è pari a 2 Mb/s
 - Si usi una politica di delayed ack
 - c) Cosa cambia se il numero i connessioni TCP contemporanee è pari a 2? E nel caso in cui sono 10?

Per la parte b) si ha:

$$R = \frac{MSS}{RTT} \frac{C}{\sqrt{p}} = 258Kb/s$$

$$C = \sqrt{3/4}$$

$$t_{xfer} = \frac{D}{R} \approx 155,04 s$$

Per la parte c) Nel caso in cui le connessioni siano 2 la stima del throughput continua a valere in quanto la capacità del link è significativamente più alta. Nel caso in cui le connessioni siano 10 la stima non è più valida.

- ☐ Si descriva il modello per il calcolo del throughput medio per connessioni TCP di tipo short-lived.
- ☐ Si calcoli fino a che dimensione del file si può considerare la connessione di tipo short-lived nell'ipotesi che:
 - Il RTT è pari a 250 ms
 - Il MSS è pari a 512B
 - La capacità del canale è pari a 4194,304 Kb/s
- □ Si stimi il tempo medio per il trasferimento di un file di 100 KB nell'ipotesi che:
 - La probabilità di perdità è pari a 5 x 10⁻²
 - Il timeout iniziale è pari a 300 ms

□ b) La connessione rimane in slow start (short lived) fino a che la velocità di trasmissione è inferiore alla banda disponibile:

$$\frac{cwd}{RTT} = B$$

Dove

$$B = \frac{C}{MSS}$$

☐ Si ha:

$$cwd = B \cdot RTT$$

$$2^{i-1} = B \cdot RTT$$

$$i = \log_2(B \cdot RTT) + 1 = 9$$

□ La quantità di dati inviati è pari a:

$$data = (2^1 - 1)MSS = 261,632KB$$

 \Box c

data = 200 segmenti

$$l = \frac{data \cdot p}{1 - p} = 10.53 \text{ segmenti errati}$$

$$Q(p) = \min\left(1, \frac{3}{\sqrt{\frac{8}{3bp}}}\right) = 0.41 \quad \text{prob. che una perdita porti a RTO}$$

$$l = lQ(p) = 4.32$$
 num di RTO

$$u = lQ(p)(1-p) = 4.11$$
 num di gruppi di RTO

$$t_u = \frac{1 + p + 2p^2 + 4p^3 + 8p^4 + 16p^5 + 32p^6}{1 - p}T_0 = 333.3 \text{ ms}$$

$$t_{RTO} = uT_u = 1369.3 \text{ ms}$$

$$\nu = u + 1 = 5.11$$
 num. di rampe

$$e = \frac{data + l}{v} = 41.2$$
 Segmenti per rampa

$$t_{xfer} = t_{RTO} + t_{xfer} + RTT = 2960 \text{ ms}$$

Quesiti

- ☐ Si illustri in dettaglio il funzionamento del meccanismo di accesso multiplo utilizzato nella funzione DCF di 802.11 indicando inoltre
 - a) cosa indica la RTSThreshold e perché viene introdotta,
 - b) come avviene la trasmissione di trame broadcast,
 - c) in che modo viene evitato il problema dell'hidden terminal e in cosa consiste il problema del exposed terminal,
 - d) dato un grafo orientato G(N, V) che rappresenta la topologia della rete e una trasmissione (i,j) quali trasmissioni blocca il meccanismo del carrier sense virtuale e tra queste quali potrebbero essere effettuate senza causare collisioni,
 - e) per quale motivo oltre al carrier sense virtuale viene comunque mantenuto il carrier sense fisico.

- □ Si illustri in dettaglio il funzionamento del meccanismo di accesso multiplo utilizzato nella funzione HCF di 802.11e illustrando:
 - a) il funzionamento della modalità di accesso EDCA;
 - b) il funzionamento del meccanismo HCCA;
 - c) per quale motivo la modalità HCF risolve i problemi che impediscono a PCF di offrire servizi con garanzia di qualità;
 - d) perché le classi di EDCA sono considerate priorità statistiche e come si potrebbero definire priorità deterministiche;
 - e) come si selezionano i pacchetti da trasmettere nel caso in cui in una stazioni sia presenti contemporaneamente code di diverse classi EDCA;
 - f) a casa serve il Direct Link Protocol (DLP).

- ☐ Si illustri in dettaglio il meccanismo di formazione di una piconet Bluetooth e il meccanismo di accesso multiplo che viene utilizzato dopo che la piconet è stata creata. Si indichi inoltre:
 - a) per quale motivo la procedura di page prevede un elevato consumo energetico per il dispositivo in page e uno bassissimo per quello in scan,
 - b) quanto può durare la procedura nel caso peggiore,
 - c) per quale motivo nella risposta al inquiry viene inviato un pacchetto di FHS,
 - d) se alla procedura di *inquiry* segue immediatamente una di *page* questa quanto tempo può durare,
 - e) come viene gestito il frequency hopping se si trasmettono pacchetti multi-slot.

☐ Si illustri il concetto di scatternet definito per le reti Bluetooth. Si illustrino inoltre i possibili stati a basso consumo energetico di un terminale Bluetooth e le possibili relazioni con la gestione delle scatternet.

- □ Si illustri in il funzionamento della e tecnologia e dei protocolli ZigBee illustrando:
 - a) le topologie di rete possibili;
 - b) la differenza tra FFD e RFD anche in relazione alle topologie di rete;
 - c) l'accesso al mezzo di tipo beacon-enabled;
 - d) l'accesso al mezzo non beacon enabled;
 - e) il meccanismo di routing di tipo cluster tree;
 - f) il meccanismo di routing di tipo reattivo e la sua integrazione con quello cluster tree.

- ☐ Con riferimento alla tecnologia wireless IEEE 802.16 si illustrino
 - a) le possibili architetture di rete,
 - b) il meccanismo di accesso al canale utilizzato dal livello MAC,
 - c) le modalità di segnalazione per la richiesta di banda,
 - d) la funzione del uplink map,
 - e) la funzione del down link map,
 - f) le classi di schedulino predefinite,
 - g) le differenze tra la versione OFDM e la versione OFDMA.

☐ Si illustri il livello MAC di WiMax nella versione OFDM per reti punto-multipunto. Si illustri il meccanismo di prenotazione delle risorse relativo alla modalità mesh centralizzata e distribuita.

- □ a) Si descriva nel dettaglio il meccanismo di stabilizzazione dell'Aloha basato sulla probabilità di accesso al canale (b) illustrando l'algoritmo eseguito da ogni stazione per il calcolo della probabiltà d'accesso.
- b) Si illustrino metodi di stabilizzazione alternativi.

- ☐ Si illustrino in dettaglio i possibili approcci allo scheduling centralizzato per reti di accesso wireless illustrando inoltre:
 - a) le differenze fondamentali rispetto a schemi tradizionali per collegamenti punto-punto;
 - b) i meccansimi di fair-queing wireless basati sullo stato del canale per sistemi a divisione di tempo (commentare le ipotesi su cui si basano);
 - c) i possibili meccanismi di scheduling nel caso di rate di trasmissione adattativo.

☐ Si illustrino le caratteristiche dei protocolli di instradamento per reti ad hoc di tipo reattivo DSR e AODV e le loro differenze rispetto alla gestione delle rotte e al meccanismo di caching.

☐ Si illustrino le caratteristiche fondamentali che differenziano i protocolli di instradamento per reti ad hoc di tipo proattivo, reattivo e geografico.

☐ Si illustri il protocollo Mobile IP e si discutano gli ambiti di applicabilità anche in relazione ad approcci alternativi alla gestione della mobilità.

- □ a) Si illustrino le caratteristiche dei protocolli di routing di tipo geografico per reti ad hoc e le si confrontino con quelle dei protocolli proattivi e reattivi.
- b) Si illustri il funzionamento del protocollo GPSR nella parte di inoltro greedy e in quella di superamento di minimi locali.

☐ Si illustrino le caratteristice principali dei protocolli di instradamento di tipo *data centric* per reti di sensori e le caratteristiche di un protocollo d'esempio a scelta.