Приложение А

Численный пример оптимального размещения базовых станций сети с линейной топологией в виде задачи ЦЛП

В этой секции представлен численный пример решения данной задачи.

Задан линейный участок L с длиной 300 с количеством n=7 точек размещения. Координаты точек размещения представлены в таблице 10. Задан бюджет размещения C=130. Центарльная частота $f=2437~{\rm M}\Gamma$ ц.

a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7
Координата	29	40	95	139	181	230	273

Таблица 10 — Точки размещения участка с длиной L=300.

Задано множества базовых станций m=8 с параметрами представленными в таблице 11. Также в таблице представлены параметры шлюзов и контролируемых объектов. Параметры объектов необходимы для расчета радиусов покрытия станций.

BS	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	P_{recv}^r	G_{recv}^r	c
	дБм	дБ	Дбм	дБм	дБ	y.e.
1	20	5	-69	-67	5	40
2	19	5	-67	-67	5	28
3	18	5	-69	-67	5	45
4	19	5	-69	-67	6	22
5	19	5	-67	-67	5	21
6	20	5	-69	-67	5	40
7	19	5	-67	-67	5	28
8	18	5	-69	-67	5	45
	G_{recv}^R	P_{recv}^R			P_{tr}^r	G^r_{tr}
Шлюз	дБ	дБм		Объект	дБм	дБ
	5	-69			15	2

Таблица 11 — Параметры базовых станций, шлюзов и объектов.

А.0.1 Расчет радиса связи между станциями

Базовые станции оснащены направленной антенной с высоким коэффициентом усиления для связи с соседними станциями. Для расчета потерь между станциями j и q воспользуемся формулой (1.4):

$$L_{fs}^{jq} = P_{tr}^{R}(j) - L_{tr} + G_{tr}^{R}(j) + G_{tr}^{R}(q) - L_{recv} - SOM - P_{recv}^{R}(q).$$

Потери на кабелях приемникп L_{recv} и передатчике L_{tr} примем равным 1 дБ и запас на замирания сигнала SOM=10 дБ.

Let us carry out an example of the calculation communication link between stations s_1 and s_2 : Для примера расчетаем радиус связи между станциями s_1 и s_2 :

$$L_{fs}^{12} = P_{tr}^{R}(1) - L_{tr} + G_{tr}^{R}(1) + G_{tr}^{R}(2) - L_{recv} - SOM - P_{recv}^{R}(2) =$$

$$= 20 - 1 + 5 + 5 - 1 - 10 - (-69) = 87(dB).$$
(A.1)

Для расчета канала связи необходимо использовать формулу (1.5). Несущая частота $f=2437~{\rm M}\Gamma$ ц и коэффициент для расчета потерь K=-27,55:

$$R_{jq} = 10^{\left(\frac{L_{fs}^{jq} - 20\lg F - K}{20}\right)} = 10^{\left(\frac{87 - 20\lg 2437 - (-27.55)}{20}\right)} = 174(m). \tag{A.2}$$

В таблице 12 приведены расчеты максимальных радиусов связи между всеми станциями $s_j,\ j=1,...,m$ и шлюзом $s_{m+1}.$

А.0.2 Расчет радиуса покрытия

Расчет проводится аналогично расчета радиусу связи между станциями. Потери в свободном простанстве для канала между j-ой станции и контролируемым объектом

$$L_{fs}^j = P_{tr}^r(j) - L_{tr} - SOM - P_{RX}.$$

$R_{jq},(m)$	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_{m+1}
s_1	_	174	219	219	174	219	174	219	219
s_2	195	_	195	195	155	195	155	195	195
s_3	174	138	_	174	138	174	138	174	174
s_4	195	155	195	_	155	195	155	195	195
s_5	195	155	195	195	_	195	155	195	195
s_6	219	174	219	219	174	_	174	219	219
s_7	195	155	195	195	155	195	_	195	195
s_8	174	138	174	174	138	174	138	_	174

Таблица 12 — Рассчитанные радиусы связи между станциями

Пример расчечта радиуса покрытия для 1-ой станции:

$$L_{fs}^{1} = P_{tr}^{r} + G_{tr}^{r} + G_{recv}^{r}(1) - L_{recv}(1) - SOM - P_{recv}^{r}(1) =$$

$$= 15 + 2 + 5 - 1 - (-67) - 10 = 78 \text{ (дБ)}.$$

$$r_{1} = 10^{\left(\frac{78 - 20 \lg 2437 - (-27.55)}{20}\right)} = 77 \text{ (м)}.$$

Рассчитанные радиусы покрытия для всех станций $s_j, j = \overline{1,m}$ представлены в таблице 13).

STA	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8
	77							

Таблица 13 — Рассчитанные радиусы покрытия станций

Задача ЦЛП решена с помощью Optimization Toolbox MatLab. Таблица 14 содержит все полученные целочисленные решения.

a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	Покрытие	Цена
Координаты	29	40	95	139	181	230	273	М	y.e.
Целлочисленное решение 1	s_1	s_2	s_6	_	_	-	s_4	286	130
Целлочисленное решение 2	s_4	_	s_5	s_7	_	_	s_2	289	99
Оптимальное решение	s_4	s_2	ı	_	s_1	_	s_5	300	111

Таблица 14 — Решение задачи ЦЛП.

Приложение Б

Сравнения оценок «недопокрытия» для задачи 2, 3 и 4

В таблице 15 приведены результаты вычислительного эксперимента, показывающего время решения $\underline{sadav}\ 2,\ 3,\ 4$ и относительную точность $\underline{sadav}\ 3,\ 4$ по отношению к $\underline{sadav}\ 2$. Для непокрытого участка заданной длины $|\beta|=50$, варьируя количеством неразмещенных станций, а также количеством свободных мест размещения рассчитаем оценку недопокрытия при бюджетном ограничении C=600. Как видно из результатов расчетов, представляется целесообразным для решения задач большой размерности использовать в качестве оценки $w_2(G_{\nu})$ $\underline{sadavy}\ 3$, так как время ее расчета в виде задачи линейного программирования существенно ниже с учетом высокой точности.

Таблица 15 — Сравнения оценок «недопокрытия» для задачи ЦЛП и ЛП

Количество	Количество	Ц	ПП		Задача о ранце			ЛП	
точек размещения, т	свободных $^{ m cтанций},$ $ S_{eta} $	Время расчета, с	Недопокрытие, <i>z</i>	Время расчета, с	Недопокрытие, <i>z</i>	Точность, %	Время расчета, с	Недопокрытие, <i>z</i>	Точность, %
-		CeK	49.6.00	Cek	100.00	07.71	Cek	496.00	100.00
5 5	6 8	$0,3250 \\ 0,3218$	436,00 431,00	0,3214 $0,3582$	426,00 398,00	97,71 92,34	0,0047 0,0045	436,00 431,00	100,00 100,00
8	10	0.3765	395,00	0.3621	375,00	94,94	0,0043	395,00	100,00
8	12	0,3746	390,00	0.3021	347,00	88,97	0,0094	390,00	100,00
12	15	0,3363	339,00	0.2960	309,00	91,15	0.0114	339,00	100,00
12	17	0,4072	336,00	0.3456	283,00	84,23	0,0136	336,00	100,00
18	20	0,3558	265,00	0.3407	265,00	100,00	0,0121	265,00	100,00
18	25	0,3794	260,00	0.3096	259,00	99,62	0,0169	257,60	99,08
25	30	0,3177	246,00	0.3576	246,00	100,00	0,0222	244,33	99,32
25	45	0,3539	229,00	0.3556	229,00	100,00	0,0494	226,40	98,86
30	50	0,2994	225,00	0.3146	225,00	100,00	0,0570	224,13	99,61
30	100	0,5179	223,00	0,5177	223,00	100,00	0,1513	218,75	98,09

Приложение В

Числовой пример оптимального размещения базовых станций сети с линейной топологией в виде экстреальной задачи в комбинаторной форме

Рассмотрим пример задачи размещения базовых станций.

Задан линейный участок L=200.

Множество точек размещегия |A| = 7.

Множество станций |S| = 5.

Ограничение на стоимость C = 65.

Ограничение на стоимость T = 0.5 (сек).

Средний размер пакетов $w=3.2~{
m Mбит}$

Отклонение $\varepsilon = 1$

В таблице 16 представлены параметры базовых станций.

S	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	L	P_{tr}^r	G^r_{tr}	p	c
$N_{\overline{0}}$	дБм	дБ	дБм	дБ	дБм	дБ	Мбит/сек	y.e.
1	16	5	-69	1	20	5	433	20
2	19	5	-67	1	20	5	433	28
3	15	5	-69	1	18	5	433	25
4	16	5	-69	1	19	6	433	24
5	16	5	-67	1	19	5	433	21

Таблица 16 — Параметры базовых станций. P^R_{tr} — мощность направленной антенны, G^R_{tr} — усиление направленной антенны, P^R_{recv} — чувствительность направленной антенны, L — потери в антенном кабеле и разъемах, передающего тракта, P^r_{tr} — мощность всенаправленной антенны, G^r_{tr} — усиление всенаправленной антенны, p — пропускная способность, c — стоимость

На концах участка размещены шлюзы s_0 и s_{m+1} с параметрами (таблица 17):

По формуле (5) рассчитаем радиус покрытия для каждой станции (таблица 18) и радиусы связи между станциями и со шлюзами (таблица 19 и таблица 20).

Шлюз	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	L
$N_{\overline{0}}$	дБм	дБ	дБм	дБ
s_0	20	3	-69	1
s_{m+1}	20	3	-69	1

Таблица 17 — Параметры шлюзов

Станция	S_1	S_2	S_3	S_4	S_5	S_{m+1}
r_j , м	48	43	38	43	43	0

Таблица 18 — Рассчитанные радиусы покрытия

R_{jq} , M	S_1	S_2	S_3	S_4	S_5	S_0	S_{m+1}
S_1	_	76	96	96	76	76	76
S_2	85						68
S_3	76	60	_	76	60	60	60
S_4						68	
S_5	85	68	85	85	_	68	68

Таблица 19 — Рассчитанные радиусы связи базовых станций

R_{jq} , м	S_1	S_2	S_3	S_4	S_5
S_0	96	85	76	85	85
S_{m+1}	96	85	76	85	85

Таблица 20 — Рассчитанные радиусы связи шлюзов

В таблице 21 представлены результаты решения размещения станций. Для заданной $\varepsilon=1\%$, т.е. d=2 был получены последовательности расстановок для $\underline{sadau}\ 2,\ 3\ u\ 4$ расчета оценок с помощью задачи ЦЛП, задачи «О ранце» и ЛП. В таблице представлены рекорды «недопокрытия», стоимости и задержки сети, а также размещения станций, число пройденных узлов дерева а и время счета. Задача ЦЛП и задача о ранце решались с помощью Optimization Toolbox Matlab, а задача ЛП решалась с помощью библиотеки с исходным кодом Scipy Python. Как видно из результатов оценка, полученная с помощью задачи ЛП менее точная, приходится обходить большее количество узлов для нахождения рекордов по сравнению с методом оценки «недопокрытия» с помощью $\underline{sadau}\ 2\ u\ 3$. В итоге возрастает итоговое количество пройденых узлов. В свою очередь метод ЛП имеет свое преимущество, так как время счета меньше.

Таблица 21 — Сравнения оценок «недопокрытия» для задачи ЦЛП и ЛП

№	Рекорд, м	Стоимость, у.е.	Задержка, сек			P	азмещени	е		
31-				a_1	a_2	a_3	a_4	a_5	a_6	a_7
1	1	65	0,03244	S_1	-	S_4	-	-	S_5	-
2	1	65	0,03244	S_1	-	S_5	-	-	S_4	-
3	1	65	0,03244	S_4	-	S_1	-	-	S_5	-
4	0	65	0,03244	S_4	-	S_5	-	-	S_1	-
5	1	65	0,03244	S_5	-	S_1	-	-	S_4	-
6	0	65	0,03244	S_5	-	S_4	-	-	S_1	-
7	1	65	0,03244	-	S_1	S_4	-	-	S_5	-
8	1	65	0,03244	-	S_1	S_5	-	-	S_4	-
9	1	65	0,03244	-	S_1	-	S_4	-	S_5	-
10	0	65	0,03244	-	S_1	-	S_4	-	-	S_5
11	1	65	0,03244	-	S_4	S_1	-	-	S_5	-
12	0	65	0,03244	-	S_4	S_5	-	-	S_1	-
13	1	65	0,03244	-	S_4	-	S_1	-	S_5	-
14	0	65	0,03244	-	S_4	-	S_1	-	-	S_5
15	1	65	0,03244	-	S_5	S_1	-	-	S_4	-
16	0	65	0,03244	-	S_5	S_4	-	-	S_1	-
M	етод оценки									
			ЦЛП		מפ) norma		ЛП	
«не	допокрытия»		Ц√111	Задача «О ранце»			Э ранце»		JIII	
	справа									
	Число									
			934		934				1590	
11	пройденных 934		904			90	14		1090	
	узлов									
	Время					_				
	_		5,412			5.1	36		3 613	
	,		0,414		5,136 3,613				'	
сек										