#### 3.23 Use nodal analysis to find $V_o$ in the circuit of Fig. 3.72.



Figure 3.72 For Prob. 3.23.

# **3.51** Apply mesh analysis to find $v_o$ in the circuit of Fig. 3.96.



Figure 3.96 For Prob. 3.51.

# **4.41** Find the Thevenin and Norton equivalents at terminals *a-b* of the circuit shown in Fig. 4.108.



Figure 4.108 For Prob. 4.41.

#### 5.27 Find $v_n$ in the op amp circuit of Fig. 5.65.



Figure 5.65 For Prob. 5.27.

7.39 Calculate the capacitor voltage for t < 0 and t > 0 for each of the circuits in Fig. 7.106.



# 7.53 Determine the inductor current i(t) for both t < 0 and t > 0 for each of the circuits in Fig. 7.119.



## **8.49** Determine i(t) for t > 0 in the circuit of Fig. 8.96.



### 10.1 Determine i in the circuit of Fig. 10.50.

