Binary Trees Problems

Binary Trees Problems

The definition of the trees is given by:

data $Tree \ a = Node \ a \ (Tree \ a) \ | \ Empty \ deriving \ (Show)$

That is, a tree with elements of type a is, either an empty tree, either a node with an element (of type a) and two other trees of the same type. The *deriving (Show)* statement simply enables an visualization of trees.

Problem 4

Write a function *isomorphic* :: $Eq \ a \Rightarrow Tree \ a \Rightarrow Tree \ a \Rightarrow Bool$ that, given two trees, tells whether they are isomorphic, that is, if one can obtain one from the other flipping some of its descendants.

Public test cases		
Input		Output
<pre>let t7 = Node 7 Empty Empty let t6 = Node 6 Empty Empty let t5 = Node 5 Empty Empty let t4 = Node 4 Empty Empty let t3 = Node 3 t6 t7 let t2 = Node 2 t4 t5 let t1 = Node 1 t2 t3 let t1' = Node 1 t3 t2</pre>	isomorphic t1 t1'	True

Isomorphic Trees

Instructor Youtube Channel: Lucas Science

